From f2e39872a451082822fc4cdaba06ed87f750181a Mon Sep 17 00:00:00 2001 From: Scott Charlton Date: Tue, 14 Aug 2018 15:27:30 -0700 Subject: [PATCH 001/384] removed register keywords and updated for misc clang warnings --- phreeqcpp/PBasic.cpp | 100 ++++++++++++++++++++-------------------- phreeqcpp/PBasic.h | 44 +++++++++--------- phreeqcpp/Phreeqc.cpp | 2 +- phreeqcpp/cl1.cpp | 6 +-- phreeqcpp/transport.cpp | 2 +- phreeqcpp/utilities.cpp | 3 +- 6 files changed, 76 insertions(+), 81 deletions(-) diff --git a/phreeqcpp/PBasic.cpp b/phreeqcpp/PBasic.cpp index c0bc75dd..2932c6f5 100644 --- a/phreeqcpp/PBasic.cpp +++ b/phreeqcpp/PBasic.cpp @@ -15,8 +15,6 @@ #include "Utils.h" #include "Solution.h" -#define register - /* Run-time library for PhreeqcPtr->use with "p2c", the Pascal to C translator */ /* "p2c" Copyright (C) 1989, 1990, 1991 Free Software Foundation. @@ -2759,7 +2757,7 @@ factor(struct LOC_exec * LINK) case tokedl_species: { - double area, thickness; + double area=0.0, thickness=0.0; require(toklp, LINK); const char *surf_name = stringfactor(STR1, LINK); require(tokcomma, LINK); @@ -6423,7 +6421,7 @@ my_labs(long l_x) void * PBasic:: my_memmove(void * d, Const void * l_s, size_t n) { - register char *dd = (char *) d, *ss = (char *) l_s; + char *dd = (char *) d, *ss = (char *) l_s; if (dd < ss || (unsigned int) (dd - ss) >= n) { memcpy(dd, ss, n); @@ -6441,7 +6439,7 @@ my_memmove(void * d, Const void * l_s, size_t n) void * PBasic:: my_memcpy(void * d, Const void * l_s, size_t n) { - register char *ss = (char *) l_s, *dd = (char *) d; + char *ss = (char *) l_s, *dd = (char *) d; while (n-- > 0) *dd++ = *ss++; return d; @@ -6450,8 +6448,8 @@ my_memcpy(void * d, Const void * l_s, size_t n) int PBasic:: my_memcmp(Const void * s1, Const void * s2, size_t n) { - register char *a = (char *) s1, *b = (char *) s2; - register int i; + char *a = (char *) s1, *b = (char *) s2; + int i; while (n-- > 0) if ((i = (*a++) - (*b++)) != 0) return i; @@ -6461,7 +6459,7 @@ my_memcmp(Const void * s1, Const void * s2, size_t n) void * PBasic:: my_memset(void * d, int c, size_t n) { - register char *dd = (char *) d; + char *dd = (char *) d; while (n-- > 0) *dd++ = (char) c; return d; @@ -6513,10 +6511,10 @@ ipow(long a, long b) /* Store in "ret" the substring of length "len" starting from "pos" (1-based). Store a shorter or null string if out-of-range. Return "ret". */ char * PBasic:: -strsub(register char *ret, register char *l_s, register int pos, - register int len) +strsub(char *ret, char *l_s, int pos, + int len) { - register char *s2; + char *s2; if (--pos < 0 || len <= 0) { @@ -6546,10 +6544,10 @@ strsub(register char *ret, register char *l_s, register int pos, starting at index "pos" (1-based). Result is 1-based, 0 if not found. */ int PBasic:: -strpos2(char *l_s, register char *pat, register int pos) +strpos2(char *l_s, char *pat, int pos) { - register char *cp, ch; - register int slen; + char *cp, ch; + int slen; if (--pos < 0) return 0; @@ -6569,9 +6567,9 @@ strpos2(char *l_s, register char *pat, register int pos) /* Case-insensitive version of strcmp. */ int PBasic:: -strcicmp(register char *s1, register char *s2) +strcicmp(char *s1, char *s2) { - register unsigned char c1, c2; + unsigned char c1, c2; while (*s1) { @@ -6594,7 +6592,7 @@ strcicmp(register char *s1, register char *s2) /* Trim blanks at left end of string. */ char * PBasic:: -strltrim(register char *l_s) +strltrim(char *l_s) { while (Isspace((int) *l_s++)); return l_s - 1; @@ -6602,9 +6600,9 @@ strltrim(register char *l_s) /* Trim blanks at right end of string. */ char * PBasic:: -strrtrim(register char *l_s) +strrtrim(char *l_s) { - register char *s2 = l_s; + char *s2 = l_s; if (!*l_s) return l_s; @@ -6620,8 +6618,8 @@ strrtrim(register char *l_s) to index "dpos" of "d", lengthening "d" if necessary. Length and indices must be in-range. */ void PBasic:: -strmove(register int len, register char *l_s, register int spos, - register char *d, register int dpos) +strmove(int len, char *l_s, int spos, + char *d, int dpos) { l_s += spos - 1; d += dpos - 1; @@ -6637,9 +6635,9 @@ strmove(register int len, register char *l_s, register int spos, /* Insert string "src" at index "pos" of "dst". */ void PBasic:: -strinsert(register char *src, register char *dst, register int pos) +strinsert(char *src, char *dst, int pos) { - register int slen, dlen; + int slen, dlen; if (--pos < 0) return; @@ -6692,7 +6690,7 @@ P_eof(void) int PBasic:: P_eoln(FILE * f) { - register int ch; + int ch; ch = getc(f); if (ch == EOF) @@ -6760,9 +6758,9 @@ P_maxpos(FILE * f) /* Use packed array of char for a file name. */ char * PBasic:: -P_trimname(register char * fn, register int len) +P_trimname(char * fn, int len) { - register char *cp = fnbuf; + char *cp = fnbuf; while (--len >= 0 && *fn && !isspace((int) *fn)) *cp++ = *fn++; @@ -6794,10 +6792,10 @@ maxavail(void) /* (Sets with 32 or fewer elements are normally stored as plain longs.) */ long * PBasic:: -P_setunion(register long *d, register long *s1, register long *s2) /* d := s1 + s2 */ +P_setunion(long *d, long *s1, long *s2) /* d := s1 + s2 */ { long *dbase = d++; - register int sz1 = *s1++, sz2 = *s2++; + int sz1 = *s1++, sz2 = *s2++; while (sz1 > 0 && sz2 > 0) { *d++ = *s1++ | *s2++; @@ -6812,10 +6810,10 @@ P_setunion(register long *d, register long *s1, register long *s2) /* d := s1 + } long * PBasic:: -P_setint(register long *d, register long *s1, register long *s2) /* d := s1 * s2 */ +P_setint(long *d, long *s1, long *s2) /* d := s1 * s2 */ { long *dbase = d++; - register int sz1 = *s1++, sz2 = *s2++; + int sz1 = *s1++, sz2 = *s2++; while (--sz1 >= 0 && --sz2 >= 0) *d++ = *s1++ & *s2++; while (--d > dbase && !*d); @@ -6824,10 +6822,10 @@ P_setint(register long *d, register long *s1, register long *s2) /* d := s1 * s2 } long * PBasic:: -P_setdiff(register long *d, register long *s1, register long *s2) /* d := s1 - s2 */ +P_setdiff(long *d, long *s1, long *s2) /* d := s1 - s2 */ { long *dbase = d++; - register int sz1 = *s1++, sz2 = *s2++; + int sz1 = *s1++, sz2 = *s2++; while (--sz1 >= 0 && --sz2 >= 0) *d++ = *s1++ & ~*s2++; if (sz1 >= 0) @@ -6841,10 +6839,10 @@ P_setdiff(register long *d, register long *s1, register long *s2) /* d := s1 - s } long * PBasic:: -P_setxor(register long *d, register long *s1, register long *s2) /* d := s1 / s2 */ +P_setxor(long *d, long *s1, long *s2) /* d := s1 / s2 */ { long *dbase = d++; - register int sz1 = *s1++, sz2 = *s2++; + int sz1 = *s1++, sz2 = *s2++; while (sz1 > 0 && sz2 > 0) { *d++ = *s1++ ^ *s2++; @@ -6860,10 +6858,10 @@ P_setxor(register long *d, register long *s1, register long *s2) /* d := s1 / s2 } long * PBasic:: -P_addset(register long *l_s, register unsigned val) /* s := s + [val] */ +P_addset(long *l_s, unsigned val) /* s := s + [val] */ { - register long *sbase = l_s; - register int bit, size; + long *sbase = l_s; + int bit, size; bit = val % SETBITS; val /= SETBITS; size = *l_s; @@ -6881,10 +6879,10 @@ P_addset(register long *l_s, register unsigned val) /* s := s + [val] */ } long * PBasic:: -P_addsetr(register long *l_s, register unsigned v1, register unsigned v2) /* s := s + [v1..v2] */ +P_addsetr(long *l_s, unsigned v1, unsigned v2) /* s := s + [v1..v2] */ { - register long *sbase = l_s; - register int b1, b2, size; + long *sbase = l_s; + int b1, b2, size; if ((int) v1 > (int) v2) return sbase; b1 = v1 % SETBITS; @@ -6916,9 +6914,9 @@ P_addsetr(register long *l_s, register unsigned v1, register unsigned v2) /* s : } long * PBasic:: -P_remset(register long *l_s, register unsigned val) /* s := s - [val] */ +P_remset(long *l_s, unsigned val) /* s := s - [val] */ { - register int bit; + int bit; bit = val % SETBITS; val /= SETBITS; if ((long) ++val <= *l_s) @@ -6931,9 +6929,9 @@ P_remset(register long *l_s, register unsigned val) /* s := s - [val] */ } int PBasic:: -P_setequal(register long *s1, register long *s2) /* s1 = s2 */ +P_setequal(long *s1, long *s2) /* s1 = s2 */ { - register int size = *s1++; + int size = *s1++; if (*s2++ != size) return 0; while (--size >= 0) @@ -6945,9 +6943,9 @@ P_setequal(register long *s1, register long *s2) /* s1 = s2 */ } int PBasic:: -P_subset(register long *s1, register long *s2) /* s1 <= s2 */ +P_subset(long *s1, long *s2) /* s1 <= s2 */ { - register int sz1 = *s1++, sz2 = *s2++; + int sz1 = *s1++, sz2 = *s2++; if (sz1 > sz2) return 0; while (--sz1 >= 0) @@ -6959,14 +6957,14 @@ P_subset(register long *s1, register long *s2) /* s1 <= s2 */ } long * PBasic:: -P_setcpy(register long *d, register long *l_s) /* d := s */ +P_setcpy(long *d, long *l_s) /* d := s */ { - register long *save_d = d; + long *save_d = d; #ifdef SETCPY_MEMCPY memcpy(d, l_s, (*l_s + 1) * sizeof(long)); #else - register int i = *l_s + 1; + int i = *l_s + 1; while (--i >= 0) *d++ = *l_s++; #endif @@ -6976,7 +6974,7 @@ P_setcpy(register long *d, register long *l_s) /* d := s */ /* s is a "smallset", i.e., a 32-bit or less set stored directly in a long. */ long * PBasic:: -P_expset(register long *d, register long l_s) /* d := s */ +P_expset(long *d, long l_s) /* d := s */ { if (l_s) { @@ -6989,7 +6987,7 @@ P_expset(register long *d, register long l_s) /* d := s */ } long PBasic:: -P_packset(register long *l_s) /* convert s to a small-set */ +P_packset(long *l_s) /* convert s to a small-set */ { if (*l_s++) return *l_s; diff --git a/phreeqcpp/PBasic.h b/phreeqcpp/PBasic.h index 2978f00a..1654aad9 100644 --- a/phreeqcpp/PBasic.h +++ b/phreeqcpp/PBasic.h @@ -478,36 +478,36 @@ public: int my_toupper(int c); int my_tolower(int c); long ipow(long a, long b); - char * strsub(register char *ret, register char *s, register int pos, - register int len); - int strpos2(char *s, register char *pat, register int pos); - int strcicmp(register char *s1, register char *s2); - char * strltrim(register char *s); - char * strrtrim(register char *s); - void strmove(register int len, register char *s, register int spos, - register char *d, register int dpos); - void strinsert(register char *src, register char *dst, register int pos); + char * strsub(char *ret, char *s, int pos, + int len); + int strpos2(char *s, char *pat, int pos); + int strcicmp(char *s1, char *s2); + char * strltrim(char *s); + char * strrtrim(char *s); + void strmove(int len, char *s, int spos, + char *d, int dpos); + void strinsert(char *src, char *dst, int pos); int P_peek(FILE * f); int P_eof(void); int P_eoln(FILE * f); void P_readpaoc(FILE * f, char *s, int len); void P_readlnpaoc(FILE * f, char *s, int len); long P_maxpos(FILE * f); - char * P_trimname(register char * fn, register int len); + char * P_trimname(char * fn, int len); long memavail(void); long maxavail(void); - long * P_setunion(register long *d, register long *s1, register long *s2); - long * P_setint(register long *d, register long *s1, register long *s2); - long * P_setdiff(register long *d, register long *s1, register long *s2); - long * P_setxor(register long *d, register long *s1, register long *s2); - long * P_addset(register long *s, register unsigned val); - long * P_addsetr(register long *s, register unsigned v1, register unsigned v2); - long * P_remset(register long *s, register unsigned val); - int P_setequal(register long *s1, register long *s2); - int P_subset(register long *s1, register long *s2); - long * P_setcpy(register long *d, register long *s); - long * P_expset(register long *d, register long s); - long P_packset(register long *s); + long * P_setunion(long *d, long *s1, long *s2); + long * P_setint(long *d, long *s1, long *s2); + long * P_setdiff(long *d, long *s1, long *s2); + long * P_setxor(long *d, long *s1, long *s2); + long * P_addset(long *s, unsigned val); + long * P_addsetr(long *s, unsigned v1, unsigned v2); + long * P_remset(long *s, unsigned val); + int P_setequal(long *s1, long *s2); + int P_subset(long *s1, long *s2); + long * P_setcpy(long *d, long *s); + long * P_expset(long *d, long s); + long P_packset(long *s); int _OutMem(void); int _CaseCheck(void); int _NilCheck(void); diff --git a/phreeqcpp/Phreeqc.cpp b/phreeqcpp/Phreeqc.cpp index 508e1d1b..6860488b 100644 --- a/phreeqcpp/Phreeqc.cpp +++ b/phreeqcpp/Phreeqc.cpp @@ -348,7 +348,7 @@ size_t Phreeqc::list_Surfaces(std::list &list_surftype, std::listsecond; std::vector &scomps = entity.Get_surface_comps(); - std::vector &scharges = entity.Get_surface_charges(); + // std::vector &scharges = entity.Get_surface_charges(); for (size_t i = 0; i < scomps.size(); i++) { std::pair p(scomps[i].Get_master_element(), scomps[i].Get_charge_name()); diff --git a/phreeqcpp/cl1.cpp b/phreeqcpp/cl1.cpp index e363e72b..2e7bc82a 100644 --- a/phreeqcpp/cl1.cpp +++ b/phreeqcpp/cl1.cpp @@ -5,8 +5,6 @@ #include "Phreeqc.h" #include "phqalloc.h" -#define register - /* debug #define DEBUG_CL1 #define CHECK_ERRORS @@ -32,8 +30,8 @@ cl1(int k, int l, int m, int n, LDBLE xmin, xmax; int iout = 0; // static i runs faster on windows - register int i, j; - register LDBLE l_z; + int i, j; + LDBLE l_z; int maxit, n1, n2; LDBLE pivot; int ia, ii, kk, nk, js; diff --git a/phreeqcpp/transport.cpp b/phreeqcpp/transport.cpp index 1887e88c..7cdba798 100644 --- a/phreeqcpp/transport.cpp +++ b/phreeqcpp/transport.cpp @@ -3075,7 +3075,7 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) if (dV_dcell) { if (transport_step >= 100) - icell = icell; + /* icell = icell */; current_cells[icell].ele = current_cells[icell].dif = 0; dum = dV_dcell * F_Re3 / tk_x2; for (i = 0; i < ct[icell].J_ij_count_spec; i++) diff --git a/phreeqcpp/utilities.cpp b/phreeqcpp/utilities.cpp index 54247f76..a3d98b75 100644 --- a/phreeqcpp/utilities.cpp +++ b/phreeqcpp/utilities.cpp @@ -6,7 +6,6 @@ #include "Solution.h" #include -#define register /* ---------------------------------------------------------------------- */ int Phreeqc:: @@ -1739,7 +1738,7 @@ hsearch_multi(HashTable * Table, ENTRY item, ACTION action) Hash_multi(HashTable * Table, const char *Key) { Address h, address; - register unsigned char *k = (unsigned char *) Key; + unsigned char *k = (unsigned char *) Key; h = 0; /* From e5a7fa638bbd131eff1919fc93d1385a232603d3 Mon Sep 17 00:00:00 2001 From: Scott Charlton Date: Tue, 14 Aug 2018 19:55:28 -0700 Subject: [PATCH 002/384] [IPhreeqc] added parens for clang++ -Wlogical-op-parentheses --- phreeqcpp/transport.cpp | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/phreeqcpp/transport.cpp b/phreeqcpp/transport.cpp index 7cdba798..837c772e 100644 --- a/phreeqcpp/transport.cpp +++ b/phreeqcpp/transport.cpp @@ -973,8 +973,8 @@ void Phreeqc:: print_punch(int i, boolean active) /* ---------------------------------------------------------------------- */ { - if (!(cell_data[i].punch && (transport_step % punch_modulus == 0)) && - !(cell_data[i].print && (transport_step % print_modulus == 0)) || + if ((!(cell_data[i].punch && (transport_step % punch_modulus == 0)) && + !(cell_data[i].print && (transport_step % print_modulus == 0))) || (bcon_first == 2 && i == 0) || (bcon_last == 2 && i == count_cells + 1)) return; From 4c7946afb5029a3b68e91343792194cecb0c2a38 Mon Sep 17 00:00:00 2001 From: Scott R Charlton Date: Mon, 28 Jan 2019 16:41:11 -0700 Subject: [PATCH 003/384] Added code to record git commit hash --- IPhreeqcLib.cpp | 4 +++- Version.h | 1 + 2 files changed, 4 insertions(+), 1 deletion(-) diff --git a/IPhreeqcLib.cpp b/IPhreeqcLib.cpp index df489636..2cd59d89 100644 --- a/IPhreeqcLib.cpp +++ b/IPhreeqcLib.cpp @@ -781,6 +781,7 @@ SetBasicCallback(int id, double (*fcn)(double x1, double x2, const char *str, vo } return IPQ_BADINSTANCE; } +#if !defined(R_SO) #ifdef IPHREEQC_NO_FORTRAN_MODULE IPQ_RESULT SetBasicFortranCallback(int id, double (*fcn)(double *x1, double *x2, char *str, size_t l)) @@ -805,7 +806,8 @@ SetBasicFortranCallback(int id, double (*fcn)(double *x1, double *x2, const char } return IPQ_BADINSTANCE; } -#endif +#endif /* IPHREEQC_NO_FORTRAN_MODULE */ +#endif /* !defined(R_SO) */ IPQ_RESULT SetCurrentSelectedOutputUserNumber(int id, int n) { diff --git a/Version.h b/Version.h index 562e2f53..94c88663 100644 --- a/Version.h +++ b/Version.h @@ -3,6 +3,7 @@ #define VER_MINOR 0 #define VER_PATCH 0 #define VER_REVISION 0 +#define GIT_COMMIT 0000000000000000000000000000000000000000 #define RELEASE_DATE "@RELEASE_DATE@" From e3ea51f8eb5ecbbdf534f630c6ead042a6c33a81 Mon Sep 17 00:00:00 2001 From: Scott Charlton Date: Tue, 29 Jan 2019 16:04:01 -0800 Subject: [PATCH 004/384] Fixed -Wcatch-value warnings reported by CRAN --- IPhreeqc.cpp | 32 ++++++++++++++++---------------- IPhreeqc_interface_F.cpp | 4 ++-- phreeqcpp/PHRQ_io_output.cpp | 10 +++++----- 3 files changed, 23 insertions(+), 23 deletions(-) diff --git a/IPhreeqc.cpp b/IPhreeqc.cpp index ddb7b9ac..3b66ce82 100644 --- a/IPhreeqc.cpp +++ b/IPhreeqc.cpp @@ -591,7 +591,7 @@ int IPhreeqc::load_db(const char* filename) this->PhreeqcPtr->phrq_io->push_istream(&ifs, false); this->PhreeqcPtr->read_database(); } - catch (IPhreeqcStop) + catch (const IPhreeqcStop&) { this->close_input_files(); } @@ -602,7 +602,7 @@ int IPhreeqc::load_db(const char* filename) { this->PhreeqcPtr->error_msg(errmsg, STOP); // throws IPhreeqcStop } - catch (IPhreeqcStop) + catch (const IPhreeqcStop&) { // do nothing } @@ -654,7 +654,7 @@ int IPhreeqc::load_db_str(const char* input) this->PhreeqcPtr->phrq_io->push_istream(&iss, false); this->PhreeqcPtr->read_database(); } - catch (IPhreeqcStop) + catch (const IPhreeqcStop&) { this->close_input_files(); } @@ -665,7 +665,7 @@ int IPhreeqc::load_db_str(const char* input) { this->PhreeqcPtr->error_msg(errmsg, STOP); // throws PhreeqcStop } - catch (IPhreeqcStop) + catch (const IPhreeqcStop&) { // do nothing } @@ -743,7 +743,7 @@ int IPhreeqc::RunAccumulated(void) // this may throw this->do_run(sz_routine, &iss, NULL, NULL, NULL); } - catch (IPhreeqcStop) + catch (const IPhreeqcStop&) { // do nothing } @@ -755,7 +755,7 @@ int IPhreeqc::RunAccumulated(void) { this->PhreeqcPtr->error_msg(errmsg.c_str(), STOP); // throws PhreeqcStop } - catch (IPhreeqcStop) + catch (const IPhreeqcStop&) { // do nothing } @@ -768,7 +768,7 @@ int IPhreeqc::RunAccumulated(void) { this->PhreeqcPtr->error_msg(errmsg, STOP); // throws PhreeqcStop } - catch (IPhreeqcStop) + catch (const IPhreeqcStop&) { // do nothing } @@ -814,7 +814,7 @@ int IPhreeqc::RunFile(const char* filename) // this may throw this->do_run(sz_routine, &ifs, NULL, NULL, NULL); } - catch (IPhreeqcStop) + catch (const IPhreeqcStop&) { this->close_input_files(); } @@ -826,7 +826,7 @@ int IPhreeqc::RunFile(const char* filename) { this->PhreeqcPtr->error_msg(errmsg.c_str(), STOP); // throws PhreeqcStop } - catch (IPhreeqcStop) + catch (const IPhreeqcStop&) { // do nothing } @@ -839,7 +839,7 @@ int IPhreeqc::RunFile(const char* filename) { this->PhreeqcPtr->error_msg(errmsg, STOP); // throws PhreeqcStop } - catch (IPhreeqcStop) + catch (const IPhreeqcStop&) { // do nothing } @@ -877,7 +877,7 @@ int IPhreeqc::RunString(const char* input) // this may throw this->do_run(sz_routine, &iss, NULL, NULL, NULL); } - catch (IPhreeqcStop) + catch (const IPhreeqcStop&) { this->close_input_files(); } @@ -889,7 +889,7 @@ int IPhreeqc::RunString(const char* input) { this->PhreeqcPtr->error_msg(errmsg.c_str(), STOP); // throws PhreeqcStop } - catch (IPhreeqcStop) + catch (const IPhreeqcStop&) { // do nothing } @@ -902,7 +902,7 @@ int IPhreeqc::RunString(const char* input) { this->PhreeqcPtr->error_msg(errmsg, STOP); // throws PhreeqcStop } - catch (IPhreeqcStop) + catch (const IPhreeqcStop&) { // do nothing } @@ -1761,7 +1761,7 @@ void IPhreeqc::fpunchf(const char *name, const char *format, double d) ASSERT(this->SelectedOutputMap.find(this->PhreeqcPtr->current_selected_output->Get_n_user()) != this->SelectedOutputMap.end()); this->SelectedOutputMap[this->PhreeqcPtr->current_selected_output->Get_n_user()]->PushBackDouble(name, d); } - catch (std::bad_alloc) + catch (const std::bad_alloc&) { this->PhreeqcPtr->malloc_error(); } @@ -1780,7 +1780,7 @@ void IPhreeqc::fpunchf(const char *name, const char *format, char *s) ASSERT(this->SelectedOutputMap.find(this->PhreeqcPtr->current_selected_output->Get_n_user()) != this->SelectedOutputMap.end()); this->SelectedOutputMap[this->PhreeqcPtr->current_selected_output->Get_n_user()]->PushBackString(name, s); } - catch (std::bad_alloc) + catch (const std::bad_alloc&) { this->PhreeqcPtr->malloc_error(); } @@ -1799,7 +1799,7 @@ void IPhreeqc::fpunchf(const char *name, const char *format, int i) ASSERT(this->SelectedOutputMap.find(this->PhreeqcPtr->current_selected_output->Get_n_user()) != this->SelectedOutputMap.end()); this->SelectedOutputMap[this->PhreeqcPtr->current_selected_output->Get_n_user()]->PushBackLong(name, (long)i); } - catch (std::bad_alloc) + catch (const std::bad_alloc&) { this->PhreeqcPtr->malloc_error(); } diff --git a/IPhreeqc_interface_F.cpp b/IPhreeqc_interface_F.cpp index a6e3f465..a303d15b 100644 --- a/IPhreeqc_interface_F.cpp +++ b/IPhreeqc_interface_F.cpp @@ -30,13 +30,13 @@ padfstring(char *dest, const char *src, int* len) { int sofar, c_len; - c_len = (int)strlen(src); + c_len = (int)strlen(src); for (sofar = 0; (sofar < *len) && (*src != '\0'); ++sofar) *dest++ = *src++; while (sofar++ < *len) *dest++ = ' '; - *len = c_len; + *len = c_len; } IPQ_RESULT diff --git a/phreeqcpp/PHRQ_io_output.cpp b/phreeqcpp/PHRQ_io_output.cpp index 149388af..eeb8c3f9 100644 --- a/phreeqcpp/PHRQ_io_output.cpp +++ b/phreeqcpp/PHRQ_io_output.cpp @@ -74,7 +74,7 @@ fpunchf(const char *name, const char *format, double d) { if (phrq_io) phrq_io->fpunchf(name, format, d); } - catch(std::bad_alloc) + catch(const std::bad_alloc&) { malloc_error(); } @@ -86,7 +86,7 @@ fpunchf(const char *name, const char *format, char * s) { if (phrq_io) phrq_io->fpunchf(name, format, s); } - catch(std::bad_alloc) + catch(const std::bad_alloc&) { malloc_error(); } @@ -98,7 +98,7 @@ fpunchf(const char *name, const char *format, int d) { if (phrq_io) phrq_io->fpunchf(name, format, d); } - catch(std::bad_alloc) + catch(const std::bad_alloc&) { malloc_error(); } @@ -136,7 +136,7 @@ fpunchf_user(int user_index, const char *format, double d) { if (phrq_io) phrq_io->fpunchf(name, format, (double) d); } - catch(std::bad_alloc) + catch(const std::bad_alloc&) { malloc_error(); } @@ -173,7 +173,7 @@ fpunchf_user(int user_index, const char *format, char * d) { if (phrq_io) phrq_io->fpunchf(name, format, d); } - catch(std::bad_alloc) + catch(const std::bad_alloc&) { malloc_error(); } From 183eaeee52a3c3f4fe80d3fc2feba5aae105cc2d Mon Sep 17 00:00:00 2001 From: Scott R Charlton Date: Mon, 19 Aug 2019 10:40:46 -0600 Subject: [PATCH 005/384] CRAN: replaced deprecated std::ptr_fun with lambda function --- phreeqcpp/common/Parser.h | 14 +++++++++++--- 1 file changed, 11 insertions(+), 3 deletions(-) diff --git a/phreeqcpp/common/Parser.h b/phreeqcpp/common/Parser.h index 3bf093a1..1f329b4d 100644 --- a/phreeqcpp/common/Parser.h +++ b/phreeqcpp/common/Parser.h @@ -280,13 +280,21 @@ class CParser: public PHRQ_base // Global functions static inline std::string &trim_left(std::string &s) { - s.erase(s.begin(), std::find_if(s.begin(), s.end(), std::not1(std::ptr_fun(std::isspace)))); +#if (__GNUC__ && (__cplusplus >= 201103L)) || (_MSC_VER >= 1600) + s.erase(s.begin(), std::find_if(s.begin(), s.end(), [](int c) {return !std::isspace(c);})); +#else + s.erase(s.begin(), std::find_if(s.begin(), s.end(), std::not1(std::ptr_fun(std::isspace)))); +#endif return s; } static inline std::string &trim_right(std::string &s) { - s.erase(std::find_if(s.rbegin(), s.rend(), std::not1(std::ptr_fun(std::isspace))).base(), s.end()); - return s; +#if (__GNUC__ && (__cplusplus >= 201103L)) || (_MSC_VER >= 1600) + s.erase(std::find_if(s.rbegin(), s.rend(), [](int c) {return !std::isspace(c);}).base(), s.end()); +#else + s.erase(std::find_if(s.rbegin(), s.rend(), std::not1(std::ptr_fun(std::isspace))).base(), s.end()); +#endif + return s; } static inline std::string &trim(std::string &s) { From 9d49905cd2889622351bc6e7882e258714766055 Mon Sep 17 00:00:00 2001 From: Scott R Charlton Date: Sat, 23 Nov 2019 21:14:02 -0700 Subject: [PATCH 006/384] IPhreeqc: ifdef'd out references to std::cerr and std::cout --- phreeqcpp/Phreeqc.cpp | 2 ++ 1 file changed, 2 insertions(+) diff --git a/phreeqcpp/Phreeqc.cpp b/phreeqcpp/Phreeqc.cpp index e300d820..08c747ce 100644 --- a/phreeqcpp/Phreeqc.cpp +++ b/phreeqcpp/Phreeqc.cpp @@ -2867,8 +2867,10 @@ Phreeqc &Phreeqc::operator=(const Phreeqc &rhs) // copy Phreeqc object to this //this->phrq_io = rhs.phrq_io; //this->phrq_io = new PHRQ_io; +#if !defined(R_SO) this->phrq_io->Set_output_ostream(&std::cout); this->phrq_io->Set_error_ostream(&std::cerr); +#endif this->init(); this->initialize(); this->InternalCopy(&rhs); From 195c800fafef1923ff220616b12b0c61e2050a3f Mon Sep 17 00:00:00 2001 From: Scott Charlton Date: Sat, 18 Jan 2020 23:42:45 -0700 Subject: [PATCH 007/384] Added .gitlab-ci.yml --- .gitlab-ci.yml | 48 ++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 48 insertions(+) create mode 100644 .gitlab-ci.yml diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml new file mode 100644 index 00000000..78fe8a08 --- /dev/null +++ b/.gitlab-ci.yml @@ -0,0 +1,48 @@ +# +# https://code.chs.usgs.gov/coupled/subtrees/phreeqc-commanuscript-cgfinal-examples-com +# +image: buildpack-deps:bionic-scm + +stages: + - trigger + +before_script: + - eval $(ssh-agent -s) + - echo "${SSH_PRIVATE_KEY_ENC}" | base64 --decode | tr -d '\r' | ssh-add - + - mkdir -p ~/.ssh + - chmod 700 ~/.ssh + - ssh-keyscan ${CI_SERVER_HOST} >> ~/.ssh/known_hosts + - chmod 644 ~/.ssh/known_hosts + - git config --global user.email "darth@empire.com" + - git config --global user.name "Darth Vader" + +trigger-downstream: + stage: trigger + ## + ## Only run if on the master branch and the variable GROUP is set + ## + ## change this to + ## only: + ## - master@$GROUP/subtrees/phreeqc-commanuscript-cgfinal-examples-com + ## and set GROUP to coupled before merge + only: + refs: + - master + variables: + - $GROUP + + ## Downstream Projects + ## triggers and ids are stored at the group level + ## iphreeqc https://code.chs.usgs.gov/coupled/iphreeqc + ## iphreeqccom https://code.chs.usgs.gov/coupled/iphreeqccom + ## phreeqc https://code.chs.usgs.gov/coupled/phreeqc + script: + - echo triggering iphreeqc + - curl -X POST -F token=${IPHREEQC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${IPHREEQC_ID}/trigger/pipeline + - echo triggering iphreeqccom + - curl -X POST -F token=${IPHREEQCCOM_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${IPHREEQCCOM_ID}/trigger/pipeline + - echo triggering phreeqc + - curl -X POST -F token=${PHREEQC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${PHREEQC_ID}/trigger/pipeline + + ## Upstream Projects + ## none From 5f6538350dde5bff0d824283a6777fcd5db35016 Mon Sep 17 00:00:00 2001 From: Scott Charlton Date: Sat, 18 Jan 2020 23:42:45 -0700 Subject: [PATCH 008/384] Added .gitlab-ci.yml --- .gitlab-ci.yml | 122 ++++++++++++++++++++++++++++++++ phreeqcpp/.gitlab-ci.yml | 110 ++++++++++++++++++++++++++++ phreeqcpp/common/.gitlab-ci.yml | 45 ++++++++++++ 3 files changed, 277 insertions(+) create mode 100644 .gitlab-ci.yml create mode 100644 phreeqcpp/.gitlab-ci.yml create mode 100644 phreeqcpp/common/.gitlab-ci.yml diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml new file mode 100644 index 00000000..129da58f --- /dev/null +++ b/.gitlab-ci.yml @@ -0,0 +1,122 @@ +# +# https://code.chs.usgs.gov/coupled/subtrees/iphreeqc-src +# +image: buildpack-deps:bionic-scm + +stages: + - sync + - trigger + +before_script: + - eval $(ssh-agent -s) + - echo "${SSH_PRIVATE_KEY_ENC}" | base64 --decode | tr -d '\r' | ssh-add - + - mkdir -p ~/.ssh + - chmod 700 ~/.ssh + - ssh-keyscan ${CI_SERVER_HOST} >> ~/.ssh/known_hosts + - chmod 644 ~/.ssh/known_hosts + - git config --global user.email "darth@empire.com" + - git config --global user.name "Darth Vader" + +subtree-sync: + stage: sync + + ## + ## Only run if on the master branch and the variable GROUP is set + ## + ## change this to + ## only: + ## - master@$GROUP/subtrees/iphreeqc-src + ## and set GROUP to coupled before merge + only: + refs: + - master + variables: + - $GROUP + + script: + ## + ## Must re-clone in order for the subtree merge to work + ## tried re-setting the url for the origin but didn't work + ## + - cd .. + - rm -rf ${CI_PROJECT_NAME} + - git clone git@${CI_SERVER_HOST}:${CI_PROJECT_PATH}.git + - cd ${CI_PROJECT_NAME} + + ## + ## Sync subtrees + ## + - | + #!/bin/bash -ex + # + # IPhreeqc/ git@${CI_SERVER_HOST}:${GROUP}/IPhreeqc.git + # ├─database/ ├─git@${CI_SERVER_HOST}:${GROUP}/subtrees/phreeqc3-database.git database + # ├─examples/ │ └─examples + # │ ├─c/ │ ├─git@${CI_SERVER_HOST}:${GROUP}/subtrees/phreeqc-COMManuscript-CGfinal-examples-c.git examples/c + # │ ├─com/ │ ├─git@${CI_SERVER_HOST}:${GROUP}/subtrees/phreeqc-COMManuscript-CGfinal-examples-com.git examples/com + # │ └─fortran/ │ └─git@${CI_SERVER_HOST}:${GROUP}/subtrees/phreeqc-COMManuscript-CGfinal-examples-fortran.git examples/fortran + # ├─phreeqc3-doc/ ├─git@${CI_SERVER_HOST}:${GROUP}/subtrees/phreeqc3-doc.git phreeqc3-doc + # ├─phreeqc3-examples/ ├─git@${CI_SERVER_HOST}:${GROUP}/subtrees/phreeqc3-examples.git phreeqc3-examples + # └─src/ └─git@${CI_SERVER_HOST}:${GROUP}/subtrees/IPhreeqc-src.git src + # └─phreeqcpp/ └─git@${CI_SERVER_HOST}:${GROUP}/subtrees/phreeqc3-src.git src/phreeqcpp + # └─common/ └─git@${CI_SERVER_HOST}:${GROUP}/subtrees/phreeqc3-src-common.git src/phreeqcpp/common + # + # IPhreeqc-src/ git@${CI_SERVER_HOST}:${GROUP}/subtrees/IPhreeqc-src.git + # └─phreeqcpp/ └─git@${CI_SERVER_HOST}:${GROUP}/subtrees/phreeqc3-src.git phreeqcpp + # └─common/ └─git@${CI_SERVER_HOST}:${GROUP}/subtrees/phreeqc3-src-common.git phreeqcpp/common + + git_subtree() { + git subtree "${1}" --prefix="${2}" "${4}" master 2>&1 | grep -v "^[[:digit:]].*/[[:digit:]].*" + } + + declare -A urls=( \ + ["phreeqc3-src"]="git@${CI_SERVER_HOST}:${GROUP}/subtrees/phreeqc3-src.git" \ + ) + + declare -A prefixes=( \ + ["phreeqc3-src"]="phreeqcpp" \ + ) + + export GIT_EDITOR=true + + for remote in "${!urls[@]}"; do + git_subtree "pull" "${prefixes[$remote]}" "$remote" "${urls[$remote]}" + done + + for remote in "${!urls[@]}"; do + git_subtree "push" "${prefixes[$remote]}" "$remote" "${urls[$remote]}" + done + + git push origin master + git status + +trigger-downstream: + stage: trigger + ## + ## Only run if on the master branch and the variable GROUP is set + ## + ## change this to + ## only: + ## - master@$GROUP/subtrees/iphreeqc-src + ## and set GROUP to coupled before merge + only: + refs: + - master + variables: + - $GROUP + + ## Downstream Projects + ## triggers and ids are stored at the group level + ## iphreeqc https://code.chs.usgs.gov/coupled/iphreeqc + ## iphreeqccom https://code.chs.usgs.gov/coupled/iphreeqccom + ## phreeqcrm-src https://code.chs.usgs.gov/coupled/subtrees/phreeqcrm-src + script: + - echo triggering iphreeqc + - curl -X POST -F token=${IPHREEQC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${IPHREEQC_ID}/trigger/pipeline + - echo triggering iphreeqccom + - curl -X POST -F token=${IPHREEQCCOM_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${IPHREEQCCOM_ID}/trigger/pipeline + - echo triggering phreeqcrm-src + - curl -X POST -F token=${PHREEQCRM_SRC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${PHREEQCRM_SRC_ID}/trigger/pipeline + + ## Upstream Projects + ## phreeqc3-src https://code.chs.usgs.gov/coupled/subtrees/phreeqc3-src diff --git a/phreeqcpp/.gitlab-ci.yml b/phreeqcpp/.gitlab-ci.yml new file mode 100644 index 00000000..a1e8f4d3 --- /dev/null +++ b/phreeqcpp/.gitlab-ci.yml @@ -0,0 +1,110 @@ +# +# https://code.chs.usgs.gov/coupled/subtrees/phreeqc3-src +# +image: buildpack-deps:bionic-scm + +stages: + - sync + - trigger + +before_script: + - eval $(ssh-agent -s) + - echo "${SSH_PRIVATE_KEY_ENC}" | base64 --decode | tr -d '\r' | ssh-add - + - mkdir -p ~/.ssh + - chmod 700 ~/.ssh + - ssh-keyscan ${CI_SERVER_HOST} >> ~/.ssh/known_hosts + - chmod 644 ~/.ssh/known_hosts + - git config --global user.email "darth@empire.com" + - git config --global user.name "Darth Vader" + +subtree-sync: + stage: sync + + ## + ## Only run if on the master branch and the variable GROUP is set + ## + ## change this to + ## only: + ## - master@$GROUP/subtrees/phreeqc3-src + ## and set GROUP to coupled before merge + only: + refs: + - master + variables: + - $GROUP + + script: + ## + ## Must re-clone in order for the subtree merge to work + ## tried re-setting the url for the origin but didn't work + ## + - cd .. + - rm -rf ${CI_PROJECT_NAME} + - git clone git@${CI_SERVER_HOST}:${CI_PROJECT_PATH}.git + - cd ${CI_PROJECT_NAME} + + ## + ## Sync subtrees + ## + - | + #!/bin/bash -ex + # + # phreeqc3/ git@${CI_SERVER_HOST}:${GROUP}/phreeqc3.git + # ├─database/ ├─git@${CI_SERVER_HOST}:${GROUP}/subtrees/phreeqc3-database.git database + # ├─doc/ ├─git@${CI_SERVER_HOST}:${GROUP}/subtrees/phreeqc3-doc.git doc + # ├─examples/ ├─git@${CI_SERVER_HOST}:${GROUP}/subtrees/phreeqc3-examples.git examples + # └─src/ └─git@${CI_SERVER_HOST}:${GROUP}/subtrees/phreeqc3-src.git src + # └─common/ └─git@${CI_SERVER_HOST}:${GROUP}/subtrees/phreeqc3-src-common.git src/common + + git_subtree() { + git subtree "${1}" --prefix="${2}" "${4}" master 2>&1 | grep -v "^[[:digit:]].*/[[:digit:]].*" + } + + declare -A urls=( \ + ["phreeqc3-src-common"]="git@${CI_SERVER_HOST}:${GROUP}/subtrees/phreeqc3-src-common.git" \ + ) + + declare -A prefixes=( \ + ["phreeqc3-src-common"]="common" \ + ) + + export GIT_EDITOR=true + + for remote in "${!urls[@]}"; do + git_subtree "pull" "${prefixes[$remote]}" "$remote" "${urls[$remote]}" + done + + for remote in "${!urls[@]}"; do + git_subtree "push" "${prefixes[$remote]}" "$remote" "${urls[$remote]}" + done + + git push origin master + git status + +trigger-downstream: + stage: trigger + ## + ## Only run if on the master branch and the variable GROUP is set + ## + ## change this to + ## only: + ## - master@$GROUP/subtrees/phreeqc3-src + ## and set GROUP to coupled before merge + only: + refs: + - master + variables: + - $GROUP + + ## Downstream Projects + ## triggers and ids are stored at the group level + ## iphreeqc-src https://code.chs.usgs.gov/coupled/subtrees/iphreeqc-src + ## phreeqc3 https://code.chs.usgs.gov/coupled/phreeqc3 + script: + - echo triggering iphreeqc-src + - curl -X POST -F token=${IPHREEQC_SRC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${IPHREEQC_SRC_ID}/trigger/pipeline + - echo triggering phreeqc3 + - curl -X POST -F token=${PHREEQC3_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${PHREEQC3_ID}/trigger/pipeline + + ## Upstream Projects + ## phreeqc3-src-common https://code.chs.usgs.gov/coupled/subtrees/phreeqc3-src-common diff --git a/phreeqcpp/common/.gitlab-ci.yml b/phreeqcpp/common/.gitlab-ci.yml new file mode 100644 index 00000000..6c7d5573 --- /dev/null +++ b/phreeqcpp/common/.gitlab-ci.yml @@ -0,0 +1,45 @@ +# +# https://code.chs.usgs.gov/coupled/subtrees/phreeqc3-src-common +# +image: buildpack-deps:bionic-scm + +stages: + - trigger + +before_script: + - eval $(ssh-agent -s) + - echo "${SSH_PRIVATE_KEY_ENC}" | base64 --decode | tr -d '\r' | ssh-add - + - mkdir -p ~/.ssh + - chmod 700 ~/.ssh + - ssh-keyscan ${CI_SERVER_HOST} >> ~/.ssh/known_hosts + - chmod 644 ~/.ssh/known_hosts + - git config --global user.email "darth@empire.com" + - git config --global user.name "Darth Vader" + +trigger-downstream: + stage: trigger + ## + ## Only run if on the master branch and the variable GROUP is set + ## + ## change this to + ## only: + ## - master@$GROUP/subtrees/phreeqc3-src-common + ## and set GROUP to coupled before merge + only: + refs: + - master + variables: + - $GROUP + + ## Downstream Projects + ## triggers and ids are stored at the group level + ## phreeqc3-src https://code.chs.usgs.gov/coupled/subtrees/phreeqc3-src + ## wphast https://code.chs.usgs.gov/coupled/wphast + script: + - echo triggering phreeqc3-src + - curl -X POST -F token=${PHREEQC3_SRC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${PHREEQC3_SRC_ID}/trigger/pipeline + - echo triggering wphast + - curl -X POST -F token=${WPHAST_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${WPHAST_ID}/trigger/pipeline + + ## Upstream Projects + ## none From e221f73ce7a2bd53b8fa678729f1811a81b788d7 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Tue, 25 Aug 2020 12:17:54 -0600 Subject: [PATCH 009/384] implemented Get/SetErrorOn --- IPhreeqc.cpp | 15 ++++++++++++++ IPhreeqc.f.inc | 2 ++ IPhreeqc.f90.inc | 17 ++++++++++++++++ IPhreeqc.h | 44 ++++++++++++++++++++++++++++++++++++++++ IPhreeqc.hpp | 19 ++++++++++++++++- IPhreeqcF.f | 21 +++++++++++++++++++ IPhreeqcLib.cpp | 30 +++++++++++++++++++++++++++ IPhreeqc_interface.F90 | 36 ++++++++++++++++++++++++++++++++ IPhreeqc_interface_F.cpp | 12 +++++++++++ IPhreeqc_interface_F.h | 4 ++++ fimpl.h | 8 ++++++++ fwrap.cpp | 12 +++++++++++ fwrap.h | 4 ++++ 13 files changed, 223 insertions(+), 1 deletion(-) diff --git a/IPhreeqc.cpp b/IPhreeqc.cpp index b24c4cb2..426465f5 100644 --- a/IPhreeqc.cpp +++ b/IPhreeqc.cpp @@ -213,9 +213,19 @@ bool IPhreeqc::GetErrorFileOn(void)const return this->ErrorFileOn; } +bool IPhreeqc::GetErrorOn(void)const +{ + return this->Get_error_on(); +} + const char* IPhreeqc::GetErrorString(void) { static const char err_msg[] = "GetErrorString: ErrorStringOn not set.\n"; + static const char err_msg2[] = "GetErrorString: ErrorOn not set.\n"; + if (!this->error_on) + { + return err_msg2; + } if (!this->ErrorStringOn) { return err_msg; @@ -973,6 +983,11 @@ void IPhreeqc::SetErrorFileOn(bool bValue) this->ErrorFileOn = bValue; } +void IPhreeqc::SetErrorOn(bool bValue) +{ + this->Set_error_on(bValue); +} + void IPhreeqc::SetErrorStringOn(bool bValue) { this->ErrorStringOn = bValue; diff --git a/IPhreeqc.f.inc b/IPhreeqc.f.inc index 97ead48c..ebe942f8 100644 --- a/IPhreeqc.f.inc +++ b/IPhreeqc.f.inc @@ -54,6 +54,7 @@ INTEGER(KIND=4) GetDumpStringLineCount LOGICAL(KIND=4) GetDumpStringOn LOGICAL(KIND=4) GetErrorFileOn + LOGICAL(KIND=4) GetErrorOn INTEGER(KIND=4) GetErrorStringLine INTEGER(KIND=4) GetErrorStringLineCount LOGICAL(KIND=4) GetLogFileOn @@ -78,6 +79,7 @@ INTEGER(KIND=4) SetDumpFileOn INTEGER(KIND=4) SetDumpStringOn INTEGER(KIND=4) SetErrorFileOn + INTEGER(KIND=4) SetErrorOn INTEGER(KIND=4) SetErrorStringOn INTEGER(KIND=4) SetLogFileName INTEGER(KIND=4) SetLogFileOn diff --git a/IPhreeqc.f90.inc b/IPhreeqc.f90.inc index 1d6d2ade..77cc6a35 100644 --- a/IPhreeqc.f90.inc +++ b/IPhreeqc.f90.inc @@ -147,6 +147,14 @@ END INTERFACE + INTERFACE + FUNCTION GetErrorOn(ID) + INTEGER(KIND=4), INTENT(IN) :: ID + LOGICAL(KIND=4) :: GetErrorOn + END FUNCTION GetErrorOn + END INTERFACE + + INTERFACE SUBROUTINE GetErrorStringLine(ID,N,LINE) INTEGER(KIND=4), INTENT(IN) :: ID @@ -496,6 +504,15 @@ END INTERFACE + INTERFACE + FUNCTION SetErrorOn(ID,ERR_ON) + INTEGER(KIND=4), INTENT(IN) :: ID + LOGICAL(KIND=4), INTENT(IN) :: ERR_ON + INTEGER(KIND=4) :: SetErrorOn + END FUNCTION SetErrorOn + END INTERFACE + + INTERFACE FUNCTION SetErrorStringOn(ID,ERR_STRING_ON) INTEGER(KIND=4), INTENT(IN) :: ID diff --git a/IPhreeqc.h b/IPhreeqc.h index cf60f878..93adac90 100644 --- a/IPhreeqc.h +++ b/IPhreeqc.h @@ -433,6 +433,25 @@ extern "C" { */ IPQ_DLL_EXPORT int GetErrorFileOn(int id); +/** + * Retrieves the current value of the error on switch. + * @param id The instance id returned from @ref CreateIPhreeqc. + * @return Non-zero if errors are generated, 0 (zero) otherwise. + * @see SetErrorOn + * @par Fortran90 Interface: + * @htmlonly + * + *
+ *  FUNCTION GetErrorOn(ID)
+ *    INTEGER(KIND=4),  INTENT(IN)  :: ID
+ *    LOGICAL(KIND=4)               :: GetErrorOn
+ *  END FUNCTION GetErrorOn
+ *  
+ *
+ * @endhtmlonly + */ + IPQ_DLL_EXPORT int GetErrorOn(int id); + /** * Retrieves the error messages from the last call to @ref RunAccumulated, @ref RunFile, @ref RunString, @ref LoadDatabase, or @ref LoadDatabaseString. @@ -1852,6 +1871,31 @@ Headings */ IPQ_DLL_EXPORT IPQ_RESULT SetErrorFileOn(int id, int error_on); +/** + * Sets the error switch on or off. This switch controls whether or not + * error messages are generated and displayed. The initial setting after calling + * @ref CreateIPhreeqc is on. + * @param id The instance id returned from @ref CreateIPhreeqc. + * @param error_on If non-zero, writes errors to the error file and error string; if zero, no errors are written to the error file or stored in the error string. + * @retval IPQ_OK Success. + * @retval IPQ_BADINSTANCE The given id is invalid. + * @see GetErrorOn, GetErrorStringLine, GetErrorStringLineCount, OutputErrorString + * @par Fortran90 Interface: + * @htmlonly + * + *
+ *  FUNCTION SetErrorOn(ID,ERR_ON)
+ *    INTEGER(KIND=4),  INTENT(IN)  :: ID
+ *    LOGICAL(KIND=4),  INTENT(IN)  :: ERR_ON
+ *    INTEGER(KIND=4)               :: SetErrorOn
+ *  END FUNCTION SetErrorOn
+ *  
+ *
+ * @endhtmlonly + */ + IPQ_DLL_EXPORT IPQ_RESULT SetErrorOn(int id, int error_on); + + /** * Sets the error string switch on or off. This switch controls whether or not the data normally sent * to the error file are stored in a buffer for retrieval. The initial setting after calling diff --git a/IPhreeqc.hpp b/IPhreeqc.hpp index c6111f30..ce668b40 100644 --- a/IPhreeqc.hpp +++ b/IPhreeqc.hpp @@ -193,6 +193,14 @@ public: */ bool GetErrorFileOn(void)const; + /** + * Retrieves the current value of the error switch. + * @retval true Error messages are sent to the error file and to the string buffer + * @retval false No errors are sent. + * @see SetErrorOn + */ + bool GetErrorOn(void)const; + /** * Retrieves the error messages from the last call to @ref RunAccumulated, @ref RunFile, @ref RunString, @ref LoadDatabase, or @ref LoadDatabaseString. * @return A null terminated string containing error messages. @@ -768,12 +776,21 @@ public: /** * Sets the error file switch on or off. This switch controls whether or not * error messages are written to the phreeqc.id.err (where id is obtained from @ref GetId) file. - * The initial setting is false. + * The initial setting is true. * @param bValue If true, writes errors to the error file; if false, no errors are written to the error file. * @see GetErrorStringLine, GetErrorStringLineCount, GetErrorFileOn, OutputErrorString */ void SetErrorFileOn(bool bValue); + /** + * Sets the error switch on or off. This switch controls whether + * error messages are are generated and displayed. + * The initial setting is true. + * @param bValue If true, error messages are sent to the error file and error string buffer; if false, no error messages are generated. + * @see GetErrorOn, GetErrorStringLine, GetErrorStringLineCount, GetErrorFileOn, OutputErrorString + */ + void SetErrorOn(bool bValue); + /** * Sets the error string switch on or off. This switch controls whether or not the data normally sent * to the error file are stored in a buffer for retrieval. The initial setting is true. diff --git a/IPhreeqcF.f b/IPhreeqcF.f index c5586dc6..856700ba 100644 --- a/IPhreeqcF.f +++ b/IPhreeqcF.f @@ -145,6 +145,18 @@ GetErrorFileOn = .TRUE. ENDIF END FUNCTION GetErrorFileOn +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + FUNCTION GetErrorOn(ID) + IMPLICIT NONE + INTEGER(KIND=4) :: ID + LOGICAL(KIND=4) :: GetErrorOn + INTEGER(KIND=4) :: GetErrorOnF + IF (GetErrorOnF(ID).EQ.0) THEN + GetErrorOn = .FALSE. + ELSE + GetErrorOn = .TRUE. + ENDIF + END FUNCTION GetErrorOn !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! GetErrorString !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! @@ -536,6 +548,15 @@ INTEGER(KIND=4) :: SetErrorFileOnF SetErrorFileOn = SetErrorFileOnF(ID,ERROR_ON) END FUNCTION SetErrorFileOn +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + FUNCTION SetErrorOn(ID,ERROR_ON) + IMPLICIT NONE + INTEGER(KIND=4) :: ID + LOGICAL(KIND=4) :: ERROR_ON + INTEGER(KIND=4) :: SetErrorOn + INTEGER(KIND=4) :: SetErrorOnF + SetErrorOn = SetErrorOnF(ID,ERROR_ON) + END FUNCTION SetErrorOn !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! FUNCTION SetErrorStringOn(ID,ERROR_STRING_ON) IMPLICIT NONE diff --git a/IPhreeqcLib.cpp b/IPhreeqcLib.cpp index 2cd59d89..b57755ab 100644 --- a/IPhreeqcLib.cpp +++ b/IPhreeqcLib.cpp @@ -236,6 +236,24 @@ GetErrorFileOn(int id) return IPQ_BADINSTANCE; } +int +GetErrorOn(int id) +{ + IPhreeqc* IPhreeqcPtr = IPhreeqcLib::GetInstance(id); + if (IPhreeqcPtr) + { + if (IPhreeqcPtr->GetErrorOn()) + { + return 1; + } + else + { + return 0; + } + } + return IPQ_BADINSTANCE; +} + const char* GetErrorString(int id) { @@ -884,6 +902,18 @@ SetErrorFileOn(int id, int value) return IPQ_BADINSTANCE; } +IPQ_RESULT +SetErrorOn(int id, int value) +{ + IPhreeqc* IPhreeqcPtr = IPhreeqcLib::GetInstance(id); + if (IPhreeqcPtr) + { + IPhreeqcPtr->SetErrorOn(value != 0); + return IPQ_OK; + } + return IPQ_BADINSTANCE; +} + IPQ_RESULT SetErrorStringOn(int id, int value) { diff --git a/IPhreeqc_interface.F90 b/IPhreeqc_interface.F90 index 96ac3cf7..6c726c83 100644 --- a/IPhreeqc_interface.F90 +++ b/IPhreeqc_interface.F90 @@ -289,6 +289,22 @@ LOGICAL FUNCTION GetErrorFileOn(id) return END FUNCTION GetErrorFileOn +LOGICAL FUNCTION GetErrorOn(id) + USE ISO_C_BINDING + IMPLICIT NONE + INTERFACE + INTEGER(KIND=C_INT) FUNCTION GetErrorOnF(id) & + BIND(C, NAME='GetErrorOnF') + USE ISO_C_BINDING + IMPLICIT NONE + INTEGER(KIND=C_INT), INTENT(in) :: id + END FUNCTION GetErrorOnF + END INTERFACE + INTEGER, INTENT(in) :: id + GetErrorOn = (GetErrorOnF(id) .ne. 0) + return +END FUNCTION GetErrorOn + INTEGER FUNCTION GetErrorStringLineCount(id) USE ISO_C_BINDING IMPLICIT NONE @@ -1049,6 +1065,26 @@ INTEGER FUNCTION SetErrorFileOn(id, error_file_on) return END FUNCTION SetErrorFileOn +INTEGER FUNCTION SetErrorOn(id, error_on) + USE ISO_C_BINDING + IMPLICIT NONE + INTERFACE + INTEGER(KIND=C_INT) FUNCTION SetErrorOnF(id, error_on) & + BIND(C, NAME='SetErrorOnF') + USE ISO_C_BINDING + IMPLICIT NONE + INTEGER(KIND=C_INT), INTENT(in) :: id, error_on + END FUNCTION SetErrorOnF + END INTERFACE + INTEGER, INTENT(in) :: id + LOGICAL, INTENT(in) :: error_on + INTEGER :: tf = 0 + tf = 0 + if (error_on) tf = 1 + SetErrorOn = SetErrorOnF(id, tf) + return +END FUNCTION SetErrorOn + INTEGER FUNCTION SetErrorStringOn(id, error_string_on) USE ISO_C_BINDING IMPLICIT NONE diff --git a/IPhreeqc_interface_F.cpp b/IPhreeqc_interface_F.cpp index 8e406e82..ab1125de 100644 --- a/IPhreeqc_interface_F.cpp +++ b/IPhreeqc_interface_F.cpp @@ -145,6 +145,12 @@ GetErrorFileOnF(int *id) return ::GetErrorFileOn(*id); } +int +GetErrorOnF(int *id) +{ + return ::GetErrorOn(*id); +} + /* GetErrorStringF */ @@ -457,6 +463,12 @@ SetErrorFileOnF(int *id, int* error_file_on) return ::SetErrorFileOn(*id, *error_file_on); } +IPQ_RESULT +SetErrorOnF(int *id, int* error_on) +{ + return ::SetErrorOn(*id, *error_on); +} + IPQ_RESULT SetErrorStringOnF(int *id, int* error_string_on) { diff --git a/IPhreeqc_interface_F.h b/IPhreeqc_interface_F.h index 660dcd38..d1c3e2a3 100644 --- a/IPhreeqc_interface_F.h +++ b/IPhreeqc_interface_F.h @@ -25,6 +25,7 @@ #define GetDumpStringOnF FC_FUNC (getdumpstringonf, GETDUMPSTRINGONF) #define GetErrorFileNameF FC_FUNC (geterrorfilenamef, GETERRORFILENAMEF) #define GetErrorFileOnF FC_FUNC (geterrorfileonf, GETERRORFILEONF) +#define GetErrorOnF FC_FUNC (geterroronf, GETERRORONF) #define GetErrorStringLineF FC_FUNC (geterrorstringlinef, GETERRORSTRINGLINEF) #define GetErrorStringLineCountF FC_FUNC (geterrorstringlinecountf, GETERRORSTRINGLINECOUNTF) #define GetErrorStringOnF FC_FUNC (geterrorstringonf, GETERRORSTRINGONF) @@ -66,6 +67,7 @@ #define SetDumpStringOnF FC_FUNC (setdumpstringonf, SETDUMPSTRINGONF) #define SetErrorFileNameF FC_FUNC (seterrorfilenamef, SETERRORFILENAMEF) #define SetErrorFileOnF FC_FUNC (seterrorfileonf, SETERRORFILEONF) +#define SetErrorOnF FC_FUNC (seterroronf, SETERRORONF) #define SetErrorStringOnF FC_FUNC (seterrorstringonf, SETERRORSTRINGONF) #define SetLogFileNameF FC_FUNC (setlogfilenamef, SETLOGFILENAMEF) #define SetLogFileOnF FC_FUNC (setlogfileonf, SETLOGFILEONF) @@ -99,6 +101,7 @@ extern "C" { IPQ_DLL_EXPORT int GetDumpStringOnF(int *id); IPQ_DLL_EXPORT void GetErrorFileNameF(int *id, char* filename, int* filename_length); IPQ_DLL_EXPORT int GetErrorFileOnF(int *id); + IPQ_DLL_EXPORT int GetErrorOnF(int *id); IPQ_DLL_EXPORT void GetErrorStringLineF(int *id, int* n, char* line, int* line_length); IPQ_DLL_EXPORT int GetErrorStringLineCountF(int *id); IPQ_DLL_EXPORT int GetErrorStringOnF(int *id); @@ -144,6 +147,7 @@ extern "C" { IPQ_DLL_EXPORT IPQ_RESULT SetDumpStringOnF(int *id, int* dump_string_on); IPQ_DLL_EXPORT IPQ_RESULT SetErrorFileNameF(int *id, char* fname); IPQ_DLL_EXPORT IPQ_RESULT SetErrorFileOnF(int *id, int* error_file_on); + IPQ_DLL_EXPORT IPQ_RESULT SetErrorOnF(int *id, int* error_on); IPQ_DLL_EXPORT IPQ_RESULT SetErrorStringOnF(int *id, int* error_string_on); IPQ_DLL_EXPORT IPQ_RESULT SetLogFileNameF(int *id, char* fname); IPQ_DLL_EXPORT IPQ_RESULT SetLogFileOnF(int *id, int* log_file_on); diff --git a/fimpl.h b/fimpl.h index e01095f6..de9eb214 100644 --- a/fimpl.h +++ b/fimpl.h @@ -63,6 +63,10 @@ IPQ_DLL_EXPORT int IPQ_DECL IPQ_CASE_UND(geterrorfileon, GETERRORFILEON, geterr { return GetErrorFileOnF(id); } +IPQ_DLL_EXPORT int IPQ_DECL IPQ_CASE_UND(geterroron, GETERRORON, geterroron_, GETERRORON_)(int *id) +{ + return GetErrorOnF(id); +} // GetErrorString IPQ_DLL_EXPORT void IPQ_DECL IPQ_CASE_UND(geterrorstringline, GETERRORSTRINGLINE, geterrorstringline_, GETERRORSTRINGLINE_)(int *id, int *n, char* line, size_t line_length) { @@ -232,6 +236,10 @@ IPQ_DLL_EXPORT int IPQ_DECL IPQ_CASE_UND(seterrorfileon, SETERRORFILEON, seterr { return SetErrorFileOnF(id, error_on); } +IPQ_DLL_EXPORT int IPQ_DECL IPQ_CASE_UND(seterroron, SETERRORON, seterroron_, SETERRORON_)(int *id, int *error_on) +{ + return SetErrorOnF(id, error_on); +} IPQ_DLL_EXPORT int IPQ_DECL IPQ_CASE_UND(seterrorstringon, SETERRORSTRINGON, seterrorstringon_, SETERRORSTRINGON_)(int *id, int *error_string_on) { return SetErrorStringOnF(id, error_string_on); diff --git a/fwrap.cpp b/fwrap.cpp index ae23e5dd..2c096f93 100644 --- a/fwrap.cpp +++ b/fwrap.cpp @@ -174,6 +174,12 @@ GetErrorFileOnF(int *id) return ::GetErrorFileOn(*id); } +int +GetErrorOnF(int *id) +{ + return ::GetErrorOn(*id); +} + /* GetErrorStringF */ @@ -539,6 +545,12 @@ SetErrorFileOnF(int *id, int* error_file_on) return ::SetErrorFileOn(*id, *error_file_on); } +IPQ_RESULT +SetErrorOnF(int *id, int* error_on) +{ + return ::SetErrorOn(*id, *error_on); +} + IPQ_RESULT SetErrorStringOnF(int *id, int* error_string_on) { diff --git a/fwrap.h b/fwrap.h index 0f2740f5..c95758d0 100644 --- a/fwrap.h +++ b/fwrap.h @@ -25,6 +25,7 @@ #define GetDumpStringOnF FC_FUNC (getdumpstringonf, GETDUMPSTRINGONF) #define GetErrorFileNameF FC_FUNC (geterrorfilenamef, GETERRORFILENAMEF) #define GetErrorFileOnF FC_FUNC (geterrorfileonf, GETERRORFILEONF) +#define GetErrorOnF FC_FUNC (geterroronf, GETERRORONF) #define GetErrorStringLineF FC_FUNC (geterrorstringlinef, GETERRORSTRINGLINEF) #define GetErrorStringLineCountF FC_FUNC (geterrorstringlinecountf, GETERRORSTRINGLINECOUNTF) #define GetErrorStringOnF FC_FUNC (geterrorstringonf, GETERRORSTRINGONF) @@ -66,6 +67,7 @@ #define SetDumpStringOnF FC_FUNC (setdumpstringonf, SETDUMPSTRINGONF) #define SetErrorFileNameF FC_FUNC (seterrorfilenamef, SETERRORFILENAMEF) #define SetErrorFileOnF FC_FUNC (seterrorfileonf, SETERRORFILEONF) +#define SetErrorOnF FC_FUNC (seterroronf, SETERRORONF) #define SetErrorStringOnF FC_FUNC (seterrorstringonf, SETERRORSTRINGONF) #define SetLogFileNameF FC_FUNC (setlogfilenamef, SETLOGFILENAMEF) #define SetLogFileOnF FC_FUNC (setlogfileonf, SETLOGFILEONF) @@ -98,6 +100,7 @@ extern "C" { int GetDumpStringOnF(int *id); void GetErrorFileNameF(int *id, char* filename, size_t filename_length); int GetErrorFileOnF(int *id); + int GetErrorOnF(int *id); void GetErrorStringLineF(int *id, int* n, char* line, size_t line_length); int GetErrorStringLineCountF(int *id); int GetErrorStringOnF(int *id); @@ -139,6 +142,7 @@ extern "C" { IPQ_RESULT SetDumpStringOnF(int *id, int* dump_string_on); IPQ_RESULT SetErrorFileNameF(int *id, char* fname, size_t fname_length); IPQ_RESULT SetErrorFileOnF(int *id, int* error_file_on); + IPQ_RESULT SetErrorOnF(int *id, int* error_on); IPQ_RESULT SetErrorStringOnF(int *id, int* error_string_on); IPQ_RESULT SetLogFileNameF(int *id, char* fname, size_t fname_length); IPQ_RESULT SetLogFileOnF(int *id, int* log_file_on); From c4599034766aa655c901e03aa37aa30c807f7737 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Tue, 25 Aug 2020 12:27:15 -0600 Subject: [PATCH 010/384] added googletest and fixed some minor bugs --- CSelectedOutput.hxx | 8 ++++++- phreeqcpp/common/PHRQ_io.h | 46 +++++++++++++++++++------------------- 2 files changed, 30 insertions(+), 24 deletions(-) diff --git a/CSelectedOutput.hxx b/CSelectedOutput.hxx index fd1ab794..e5d20ef3 100644 --- a/CSelectedOutput.hxx +++ b/CSelectedOutput.hxx @@ -15,7 +15,13 @@ #include #include "CVar.hxx" -class CSelectedOutput +#if defined(_WINDLL) +#define IPQ_DLL_EXPORT __declspec(dllexport) +#else +#define IPQ_DLL_EXPORT +#endif + +class IPQ_DLL_EXPORT CSelectedOutput { public: CSelectedOutput(void); diff --git a/phreeqcpp/common/PHRQ_io.h b/phreeqcpp/common/PHRQ_io.h index 8c469248..f020b2eb 100644 --- a/phreeqcpp/common/PHRQ_io.h +++ b/phreeqcpp/common/PHRQ_io.h @@ -44,8 +44,8 @@ public: static void safe_close(std::ostream **stream_ptr); static void safe_close(FILE **file_ptr); void close_ostreams(void); - void Set_io_error_count(int i) {this->io_error_count = i;}; - int Get_io_error_count(void) {return this->io_error_count;}; + void Set_io_error_count(int i) {this->io_error_count = i;}; + int Get_io_error_count(void)const {return this->io_error_count;}; // istreams @@ -65,7 +65,7 @@ public: void Set_output_ostream(std::ostream * out) {this->output_ostream = out;}; std::ostream *Get_output_ostream(void) {return this->output_ostream;}; void Set_output_on(bool tf) {this->output_on = tf;}; - bool Get_output_on(void) {return this->output_on;}; + bool Get_output_on(void)const {return this->output_on;}; // log_ostream virtual bool log_open(const char *file_name, std::ios_base::openmode mode = std::ios_base::out); @@ -75,7 +75,7 @@ public: void Set_log_ostream(std::ostream * out) {this->log_ostream = out;} std::ostream *Get_log_ostream(void) {return this->log_ostream;} void Set_log_on(bool tf) {this->log_on = tf;} - bool Get_log_on(void) {return this->log_on;} + bool Get_log_on(void)const {return this->log_on;} // punch_ostream virtual bool punch_open(const char *file_name, std::ios_base::openmode mode = std::ios_base::out, int n_user = 1); @@ -94,19 +94,19 @@ public: void error_close(void); virtual void error_msg(const char * str, bool stop=false); void Set_error_ostream(std::ostream * out) {this->error_ostream = out;} - std::ostream *Get_error_ostream(void) {return this->error_ostream;} + std::ostream *Get_error_ostream(void)const {return this->error_ostream;} void Set_error_on(bool tf) {this->error_on = tf;} - bool Get_error_on(void) {return this->error_on;} + bool Get_error_on(void)const {return this->error_on;} virtual void warning_msg(const char *err_str); #else virtual bool error_open(const char *file_name, const char * mode = "w"); void error_flush(void); void error_close(void); virtual void error_msg(const char * str, bool stop=false); - void Set_error_file(FILE * out) {this->error_file = out;} - FILE *Get_error_file(void) {return this->error_file;} + void Set_error_file(FILE * out) {this->error_file = out;} + FILE *Get_error_file(void)const {return this->error_file;} void Set_error_on(bool tf) {this->error_on = tf;} - bool Get_error_on(void) {return this->error_on;} + bool Get_error_on(void)const {return this->error_on;} virtual void warning_msg(const char *err_str); #endif @@ -118,7 +118,7 @@ public: void Set_dump_ostream(std::ostream * out) {this->dump_ostream = out;}; std::ostream *Get_dump_ostream(void) {return this->dump_ostream;}; void Set_dump_on(bool tf) {this->dump_on = tf;}; - bool Get_dump_on(void) {return this->dump_on;}; + bool Get_dump_on(void)const {return this->dump_on;}; // fpunchf virtual void fpunchf(const char *name, const char *format, double d); @@ -130,17 +130,17 @@ public: virtual void screen_msg(const char * str); void Set_screen_on(bool tf) {this->screen_on = tf;}; - bool Get_screen_on(void) {return this->screen_on;}; + bool Get_screen_on(void)const {return this->screen_on;}; // input methods virtual int getc(void); virtual LINE_TYPE get_line(void); virtual LINE_TYPE get_logical_line(void); bool check_key(std::string::iterator begin, std::string::iterator end); - std::string & Get_m_line() {return m_line;} - std::string & Get_m_line_save() {return m_line_save;} - std::string & Get_accumulated() {return accumulated;} - LINE_TYPE Get_m_line_type() {return m_line_type;}; + std::string & Get_m_line() {return m_line;} + std::string & Get_m_line_save() {return m_line_save;} + std::string & Get_accumulated() {return accumulated;} + LINE_TYPE Get_m_line_type()const {return m_line_type;}; void Set_accumulate(bool tf) { if (tf) @@ -149,7 +149,7 @@ public: } this->accumulate = tf; } - Keywords::KEYWORDS Get_m_next_keyword() const {return m_next_keyword;} + Keywords::KEYWORDS Get_m_next_keyword() const {return m_next_keyword;} // echo enum ECHO_OPTION @@ -158,16 +158,16 @@ public: ECHO_OUTPUT }; virtual void echo_msg(const char * str); - void Set_echo_on(bool tf) {this->echo_on = tf;}; - bool Get_echo_on(void) {return this->echo_on;}; - void Set_echo_destination(ECHO_OPTION eo) {this->echo_destination = eo;}; - ECHO_OPTION Get_echo_destination(void) {return this->echo_destination;}; + void Set_echo_on(bool tf) {this->echo_on = tf;}; + bool Get_echo_on(void)const {return this->echo_on;}; + void Set_echo_destination(ECHO_OPTION eo) {this->echo_destination = eo;}; + ECHO_OPTION Get_echo_destination(void)const {return this->echo_destination;}; // data protected: - std::ostream *output_ostream; - std::ostream *log_ostream; - std::ostream *punch_ostream; + std::ostream *output_ostream; + std::ostream *log_ostream; + std::ostream *punch_ostream; #ifdef ERROR_OSTREAM std::ostream *error_ostream; #else From abb80b511fc45f86f40207240c9e9ef6cea328b4 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Tue, 15 Sep 2020 20:29:41 -0600 Subject: [PATCH 011/384] added src/phreeqcpp/common/PHRQ_exports.h --- CSelectedOutput.hxx | 6 +----- IPhreeqc.hpp | 6 +----- Makefile.am | 1 + Var.h | 6 +----- phreeqcpp/Makefile.am | 1 + phreeqcpp/NameDouble.h | 6 +----- phreeqcpp/common/PHRQ_base.h | 6 +----- phreeqcpp/common/PHRQ_exports.h | 14 ++++++++++++++ phreeqcpp/common/PHRQ_io.h | 6 +----- 9 files changed, 22 insertions(+), 30 deletions(-) create mode 100644 phreeqcpp/common/PHRQ_exports.h diff --git a/CSelectedOutput.hxx b/CSelectedOutput.hxx index e5d20ef3..c15e1240 100644 --- a/CSelectedOutput.hxx +++ b/CSelectedOutput.hxx @@ -15,11 +15,7 @@ #include #include "CVar.hxx" -#if defined(_WINDLL) -#define IPQ_DLL_EXPORT __declspec(dllexport) -#else -#define IPQ_DLL_EXPORT -#endif +#include "PHRQ_exports.h" class IPQ_DLL_EXPORT CSelectedOutput { diff --git a/IPhreeqc.hpp b/IPhreeqc.hpp index ce668b40..22bdf150 100644 --- a/IPhreeqc.hpp +++ b/IPhreeqc.hpp @@ -14,11 +14,7 @@ #include "Var.h" /* VRESULT */ #include "PHRQ_io.h" -#if defined(_WINDLL) -#define IPQ_DLL_EXPORT __declspec(dllexport) -#else -#define IPQ_DLL_EXPORT -#endif +#include "PHRQ_exports.h" class Phreeqc; class IErrorReporter; diff --git a/Makefile.am b/Makefile.am index 9ca76526..bd994e65 100644 --- a/Makefile.am +++ b/Makefile.am @@ -48,6 +48,7 @@ libiphreeqc_la_SOURCES=\ phreeqcpp/common/Parser.h\ phreeqcpp/common/PHRQ_base.cxx\ phreeqcpp/common/PHRQ_base.h\ + phreeqcpp/common/PHRQ_exports.h\ phreeqcpp/common/PHRQ_io.cpp\ phreeqcpp/common/PHRQ_io.h\ phreeqcpp/common/phrqtype.h\ diff --git a/Var.h b/Var.h index 39ae1e71..0169bd16 100644 --- a/Var.h +++ b/Var.h @@ -6,11 +6,7 @@ #ifndef __VAR_H_INC #define __VAR_H_INC -#if defined(_WINDLL) -#define IPQ_DLL_EXPORT __declspec(dllexport) -#else -#define IPQ_DLL_EXPORT -#endif +#include "PHRQ_exports.h" #if defined(R_SO) || defined(NO_NAMELESS_UNION) #define VAR_UNION_NAME u diff --git a/phreeqcpp/Makefile.am b/phreeqcpp/Makefile.am index b7651924..a568ea8c 100644 --- a/phreeqcpp/Makefile.am +++ b/phreeqcpp/Makefile.am @@ -24,6 +24,7 @@ phreeqc_SOURCES=\ common/Parser.h\ common/PHRQ_base.cxx\ common/PHRQ_base.h\ + common/PHRQ_exports.h\ common/PHRQ_io.cpp\ common/PHRQ_io.h\ common/phrqtype.h\ diff --git a/phreeqcpp/NameDouble.h b/phreeqcpp/NameDouble.h index 7df7e53b..9c7c12ba 100644 --- a/phreeqcpp/NameDouble.h +++ b/phreeqcpp/NameDouble.h @@ -1,11 +1,7 @@ #if !defined(NAMEDOUBLE_H_INCLUDED) #define NAMEDOUBLE_H_INCLUDED -#if defined(_WINDLL) -#define IPQ_DLL_EXPORT __declspec(dllexport) -#else -#define IPQ_DLL_EXPORT -#endif +#include "PHRQ_exports.h" #include // assert #include // std::map diff --git a/phreeqcpp/common/PHRQ_base.h b/phreeqcpp/common/PHRQ_base.h index 037d0881..26ac25d6 100644 --- a/phreeqcpp/common/PHRQ_base.h +++ b/phreeqcpp/common/PHRQ_base.h @@ -3,11 +3,7 @@ #include -#if defined(_WINDLL) -#define IPQ_DLL_EXPORT __declspec(dllexport) -#else -#define IPQ_DLL_EXPORT -#endif +#include "PHRQ_exports.h" class PHRQ_io; class IPQ_DLL_EXPORT PHRQ_base diff --git a/phreeqcpp/common/PHRQ_exports.h b/phreeqcpp/common/PHRQ_exports.h new file mode 100644 index 00000000..d936a60c --- /dev/null +++ b/phreeqcpp/common/PHRQ_exports.h @@ -0,0 +1,14 @@ +#ifndef INC_PHRQ_EXPORTS_H +#define INC_PHRQ_EXPORTS_H + +#if defined(_WINDLL) +# ifdef IPhreeqc_EXPORTS +# define IPQ_DLL_EXPORT __declspec(dllexport) +# else +# define IPQ_DLL_EXPORT __declspec(dllimport) +# endif +#else +# define IPQ_DLL_EXPORT +#endif + +#endif // INC_PHRQ_EXPORTS_H diff --git a/phreeqcpp/common/PHRQ_io.h b/phreeqcpp/common/PHRQ_io.h index f020b2eb..25bfec8a 100644 --- a/phreeqcpp/common/PHRQ_io.h +++ b/phreeqcpp/common/PHRQ_io.h @@ -1,11 +1,7 @@ #ifndef _PHRQIO_H #define _PHRQIO_H -#if defined(_WINDLL) -#define IPQ_DLL_EXPORT __declspec(dllexport) -#else -#define IPQ_DLL_EXPORT -#endif +#include "PHRQ_exports.h" #include #include From 621401d34c753a56ae111f24e84a2db5286e934a Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Tue, 29 Sep 2020 10:27:55 -0600 Subject: [PATCH 012/384] reset for dlls --- IPhreeqc_interface_F.h | 6 +----- phreeqcpp/common/PHRQ_exports.h | 9 +++------ 2 files changed, 4 insertions(+), 11 deletions(-) diff --git a/IPhreeqc_interface_F.h b/IPhreeqc_interface_F.h index d1c3e2a3..d3fe29ec 100644 --- a/IPhreeqc_interface_F.h +++ b/IPhreeqc_interface_F.h @@ -1,11 +1,7 @@ #ifndef __IPHREEQC_INTERFACE__H #define __IPHREEQC_INTERFACE__H -#if defined(_WINDLL) -#define IPQ_DLL_EXPORT __declspec(dllexport) -#else -#define IPQ_DLL_EXPORT -#endif +#include "PHRQ_exports.h" #ifdef SKIP #if defined(FC_FUNC) diff --git a/phreeqcpp/common/PHRQ_exports.h b/phreeqcpp/common/PHRQ_exports.h index d936a60c..8f50a7cc 100644 --- a/phreeqcpp/common/PHRQ_exports.h +++ b/phreeqcpp/common/PHRQ_exports.h @@ -1,12 +1,9 @@ #ifndef INC_PHRQ_EXPORTS_H #define INC_PHRQ_EXPORTS_H -#if defined(_WINDLL) -# ifdef IPhreeqc_EXPORTS -# define IPQ_DLL_EXPORT __declspec(dllexport) -# else -# define IPQ_DLL_EXPORT __declspec(dllimport) -# endif + +#if defined(_WINDLL) && defined(IPhreeqc_EXPORTS) +# define IPQ_DLL_EXPORT __declspec(dllexport) #else # define IPQ_DLL_EXPORT #endif From fb31cc3811a321dbc88a9d1f69f234f78da81d0b Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Tue, 1 Dec 2020 17:36:14 -0700 Subject: [PATCH 013/384] [iphreeqc] updated image location --- .gitlab-ci.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 72331b29..b1094009 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -2,7 +2,7 @@ # https://code.chs.usgs.gov/coupled/subtrees/iphreeqc-src # SRC 2020-01-28T10:03:39-07:00 # -image: buildpack-deps:bionic-scm +image: ${CI_REGISTRY}/coupled/containers/buildpack-deps:bionic-scm stages: - sync From 77aa5731e969a5f91b50aca93c98ab68adb3dc10 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Tue, 1 Dec 2020 17:36:14 -0700 Subject: [PATCH 014/384] [iphreeqc] updated image location --- .gitlab-ci.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 8290522a..78eca61f 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -2,7 +2,7 @@ # https://code.chs.usgs.gov/coupled/subtrees/phreeqc-commanuscript-cgfinal-examples-com # SRC 2020-01-28T10:03:39-07:00 # -image: buildpack-deps:bionic-scm +image: ${CI_REGISTRY}/coupled/containers/buildpack-deps:bionic-scm stages: - trigger From f686374e5e6b2d8c471c396f82ae6a687ac12586 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Fri, 19 Mar 2021 17:32:10 -0600 Subject: [PATCH 015/384] only call qsort with more than one element --- phreeqcpp/basicsubs.cpp | 6 +++--- phreeqcpp/prep.cpp | 2 +- phreeqcpp/print.cpp | 2 +- phreeqcpp/read.cpp | 4 ++-- phreeqcpp/structures.cpp | 10 +++++----- phreeqcpp/tidy.cpp | 8 ++++---- 6 files changed, 16 insertions(+), 16 deletions(-) diff --git a/phreeqcpp/basicsubs.cpp b/phreeqcpp/basicsubs.cpp index 208c14bb..d88832ce 100644 --- a/phreeqcpp/basicsubs.cpp +++ b/phreeqcpp/basicsubs.cpp @@ -2636,7 +2636,7 @@ edl_species(const char *surf_name, LDBLE * count, char ***names, LDBLE ** moles, /* * Sort system species */ - if (sys.size() > 0) + if (sys.size() > 1) { qsort(&sys[0], sys.size(), sizeof(struct system_species), system_species_compare); @@ -2727,12 +2727,12 @@ system_total(const char *total_name, LDBLE * count, char ***names, /* * Sort system species */ - if (sys.size() > 0 && isort == 0) + if (sys.size() > 1 && isort == 0) { qsort(&sys[0], sys.size(), sizeof(struct system_species), system_species_compare); } - else if (sys.size() > 0) + else if (sys.size() > 1) { qsort(&sys[0], sys.size(), (size_t)sizeof(struct system_species), system_species_compare_name); diff --git a/phreeqcpp/prep.cpp b/phreeqcpp/prep.cpp index b69fb185..77464ce2 100644 --- a/phreeqcpp/prep.cpp +++ b/phreeqcpp/prep.cpp @@ -1352,7 +1352,7 @@ build_model(void) /* * Sort species list, by master only */ - qsort(&species_list[0], (int)species_list.size(), + if (species_list.size() > 1) qsort(&species_list[0], species_list.size(), sizeof(struct species_list), species_list_compare_master); /* * Save model description diff --git a/phreeqcpp/print.cpp b/phreeqcpp/print.cpp index 84bcbc47..71c9103c 100644 --- a/phreeqcpp/print.cpp +++ b/phreeqcpp/print.cpp @@ -3641,7 +3641,7 @@ print_alkalinity(void) (double) (total_alkalinity / mass_water_aq_x))); output_msg(sformatf("\t%-15s%12s%12s%10s\n\n", "Species", "Alkalinity", "Molality", "Alk/Mol")); - qsort(&alk_list[0], (size_t) count_alk_list, + if (count_alk_list > 1) qsort(&alk_list[0], (size_t) count_alk_list, (size_t) sizeof(struct species_list), species_list_compare_alk); for (i = 0; i < count_alk_list; i++) { diff --git a/phreeqcpp/read.cpp b/phreeqcpp/read.cpp index 05851720..fdd5f9a6 100644 --- a/phreeqcpp/read.cpp +++ b/phreeqcpp/read.cpp @@ -1661,14 +1661,14 @@ read_inverse(void) /* * Sort isotopes */ - if (inverse[n].count_isotopes > 0) + if (inverse[n].count_isotopes > 1) { qsort(inverse[n].isotopes, (size_t) inverse[n].count_isotopes, sizeof(struct inv_isotope), inverse_isotope_compare); } - if (inverse[n].count_i_u > 0) + if (inverse[n].count_i_u > 1) { qsort(inverse[n].i_u, (size_t) inverse[n].count_i_u, diff --git a/phreeqcpp/structures.cpp b/phreeqcpp/structures.cpp index 6b006f4b..670500de 100644 --- a/phreeqcpp/structures.cpp +++ b/phreeqcpp/structures.cpp @@ -848,7 +848,7 @@ inverse_sort(void) /* * Sort array of inverse structures */ - if (count_inverse > 0) + if (count_inverse > 1) { qsort(&inverse[0], (size_t) count_inverse, sizeof(struct inverse), inverse_compare); @@ -2163,7 +2163,7 @@ save_values_sort(void) /* * Sort array of save_values structures */ - if (save_values.size() > 0) + if (save_values.size() > 1) { qsort(&save_values[0], save_values.size(), sizeof(struct save_values), save_values_compare); @@ -2207,7 +2207,7 @@ save_values_store(struct save_values *s_v) save_values_sort(); } - if (save_values.size() > 0) + if (save_values.size() > 1) { qsort(&save_values[0], save_values.size(), sizeof(struct save_values), save_values_compare); @@ -2409,7 +2409,7 @@ species_list_sort(void) /* * Sort list using rules in species_list_compare */ - if (species_list.size() > 0) + if (species_list.size() > 1) { qsort(&species_list[0], species_list.size(), sizeof(struct species_list), species_list_compare); @@ -2909,7 +2909,7 @@ trxn_sort(void) /* * Compare names in tokens in trxn array for sorting */ - if (count_trxn - 1 > 0) + if (count_trxn - 1 > 1) { qsort(&trxn.token[1], (size_t) count_trxn - 1, diff --git a/phreeqcpp/tidy.cpp b/phreeqcpp/tidy.cpp index 3d3a140e..cca5d3e2 100644 --- a/phreeqcpp/tidy.cpp +++ b/phreeqcpp/tidy.cpp @@ -150,14 +150,14 @@ tidy_model(void) /* species */ if (new_model == TRUE) { - qsort(&s[0], s.size(), sizeof(struct species *), s_compare); + if (s.size() > 1) qsort(&s[0], s.size(), sizeof(struct species *), s_compare); /* master species */ - qsort(&master[0], master.size(), sizeof(struct master *), master_compare); + if (master.size() > 1) qsort(&master[0], master.size(), sizeof(struct master *), master_compare); /* elements */ - qsort(&elements[0], elements.size(), sizeof(struct element *), element_compare); + if (elements.size() > 1) qsort(&elements[0], elements.size(), sizeof(struct element *), element_compare); /* phases */ - qsort(&phases[0], phases.size(), sizeof(struct phase *), phase_compare); + if (phases.size() > 1) qsort(&phases[0], phases.size(), sizeof(struct phase *), phase_compare); } From c27e7010bbb8f6b0b01b653e6d029011eee6c69a Mon Sep 17 00:00:00 2001 From: Scott R Charlton Date: Thu, 8 Apr 2021 11:15:55 -0600 Subject: [PATCH 016/384] updated for classify branch --- IPhreeqc.cpp | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/IPhreeqc.cpp b/IPhreeqc.cpp index 426465f5..d5f4640c 100644 --- a/IPhreeqc.cpp +++ b/IPhreeqc.cpp @@ -1268,14 +1268,14 @@ void IPhreeqc::do_run(const char* sz_routine, std::istream* pis, PFN_PRERUN_CALL } ASSERT(this->PhreeqcPtr->SelectedOutput_map.size() == this->SelectedOutputMap.size()); ASSERT(this->PhreeqcPtr->SelectedOutput_map.size() == this->SelectedOutputStringMap.size()); - if (this->PhreeqcPtr->title_x != NULL) + if (!this->PhreeqcPtr->title_x.empty()) { ::sprintf(token, "TITLE"); this->PhreeqcPtr->dup_print(token, TRUE); if (this->PhreeqcPtr->pr.headings == TRUE) { - char *p = this->PhreeqcPtr->sformatf("%s\n\n", this->PhreeqcPtr->title_x); - this->PhreeqcPtr->output_msg(p); + this->PhreeqcPtr->output_msg(this->PhreeqcPtr->title_x.c_str()); + this->PhreeqcPtr->output_msg("\n\n"); } } From fd0bc3096f9b8cc209ba0322e6b612a7dc906923 Mon Sep 17 00:00:00 2001 From: Scott R Charlton Date: Thu, 8 Apr 2021 11:24:03 -0600 Subject: [PATCH 017/384] removed TESTING definition --- phreeqcpp/mainsubs.cpp | 1 - 1 file changed, 1 deletion(-) diff --git a/phreeqcpp/mainsubs.cpp b/phreeqcpp/mainsubs.cpp index d7e86ddf..fc94b14f 100644 --- a/phreeqcpp/mainsubs.cpp +++ b/phreeqcpp/mainsubs.cpp @@ -2217,7 +2217,6 @@ do_status(void) screen_msg("\n"); } //pr.headings = TRUE; // set in class_main; not set for IPhreeqc -#define TESTING #ifndef TESTING LDBLE ext = (double)clock() / CLOCKS_PER_SEC; dup_print(sformatf("End of Run after %g Seconds.", ext), TRUE); From eebc11b3252923cd2b0d90d31d079a5aa36aa906 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Mon, 26 Apr 2021 23:38:21 -0600 Subject: [PATCH 018/384] made tally_table a vector of class tally --- phreeqcpp/Phreeqc.cpp | 2 +- phreeqcpp/Phreeqc.h | 3 ++- phreeqcpp/tally.cpp | 22 ++++++++++++---------- 3 files changed, 15 insertions(+), 12 deletions(-) diff --git a/phreeqcpp/Phreeqc.cpp b/phreeqcpp/Phreeqc.cpp index 1e71ab9e..343c8e15 100644 --- a/phreeqcpp/Phreeqc.cpp +++ b/phreeqcpp/Phreeqc.cpp @@ -1109,7 +1109,7 @@ void Phreeqc::init(void) /* tally.cpp ------------------------------- */ t_buffer = NULL; tally_count_component = 0; - tally_table = NULL; + //tally_table = NULL; count_tally_table_columns = 0; count_tally_table_rows = 0; /* transport.cpp ------------------------------- */ diff --git a/phreeqcpp/Phreeqc.h b/phreeqcpp/Phreeqc.h index c91b6ed0..30982a91 100644 --- a/phreeqcpp/Phreeqc.h +++ b/phreeqcpp/Phreeqc.h @@ -1769,7 +1769,8 @@ protected: /* tally.cpp ------------------------------- */ class tally_buffer* t_buffer; size_t tally_count_component; - class tally* tally_table; + //class tally* tally_table; + std::vector tally_table; size_t count_tally_table_columns; size_t count_tally_table_rows; diff --git a/phreeqcpp/tally.cpp b/phreeqcpp/tally.cpp index e8e9967e..969b165d 100644 --- a/phreeqcpp/tally.cpp +++ b/phreeqcpp/tally.cpp @@ -172,7 +172,8 @@ store_tally_table(LDBLE * l_array, int row_dim_in, int col_dim, LDBLE fill_facto { int i, j; int row_dim = row_dim_in + 1; - if (tally_table == NULL) + //if (tally_table == NULL) + if (tally_table.size() == 0) { input_error++; error_msg("Tally table not defined, get_tally_table_rows_columns", @@ -245,7 +246,7 @@ get_tally_table_rows_columns(int *rows, int *columns) { *rows = 0; *columns = 0; - if (tally_table == NULL) + if (tally_table.size() == 0) { input_error++; error_msg("tally table not defined, get_tally_table_rows_columns", @@ -266,7 +267,7 @@ get_tally_table_row_heading(int row, char *string) * row is C row number */ strcpy(string, ""); - if (tally_table == NULL) + if (tally_table.size() == 0) { input_error++; error_msg("Tally table not defined, get_tally_table row_heading", @@ -295,7 +296,7 @@ get_tally_table_column_heading(int column, int *type, char *string) */ *type = -1; strcpy(string, ""); - if (tally_table == NULL) + if (tally_table.size() == 0) { input_error++; error_msg("tally table not defined, get_tally_table_column_heading", @@ -321,7 +322,7 @@ free_tally_table(void) /* ---------------------------------------------------------------------- */ { int i, k; - if (tally_table == NULL) + if (tally_table.size() == 0) return (OK); for (i = 0; i < count_tally_table_columns; i++) { @@ -333,7 +334,7 @@ free_tally_table(void) tally_table[i].total[k]); } } - tally_table = (class tally *) free_check_null(tally_table); + //tally_table = (class tally *) free_check_null(tally_table); t_buffer = (class tally_buffer *) free_check_null(t_buffer); return (OK); } @@ -1214,10 +1215,11 @@ extend_tally_table(void) * adds another column to tally_table * increments number of columns */ - tally_table = (class tally *) PHRQ_realloc((void *) tally_table, - (count_tally_table_columns + 1) * sizeof(class tally)); - if (tally_table == NULL) - malloc_error(); + //tally_table = (class tally *) PHRQ_realloc((void *) tally_table, + // (count_tally_table_columns + 1) * sizeof(class tally)); + //if (tally_table == NULL) + // malloc_error(); + tally_table.resize(count_tally_table_columns + 1); for (i = 0; i < 3; i++) { tally_table[count_tally_table_columns].total[i] = (class tally_buffer *) From c7dfbb5f6083a435e1791e31f3a084e3235dd08a Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Thu, 23 Sep 2021 06:37:13 -0700 Subject: [PATCH 019/384] added newlines for CRAN --- phreeqcpp/ChartObject.cpp | 2 +- phreeqcpp/CurveObject.cpp | 2 +- phreeqcpp/ExchComp.cxx | 2 +- phreeqcpp/ISolutionComp.cxx | 2 +- phreeqcpp/NA.h | 2 +- phreeqcpp/PhreeqcKeywords/Keywords.h | 2 +- phreeqcpp/Pressure.cxx | 2 +- phreeqcpp/Reaction.cxx | 2 +- phreeqcpp/SS.cxx | 2 +- phreeqcpp/SScomp.cxx | 2 +- phreeqcpp/Serializer.h | 2 +- phreeqcpp/Solution.cxx | 2 +- phreeqcpp/SurfaceCharge.cxx | 2 +- phreeqcpp/Temperature.cxx | 2 +- phreeqcpp/UserPunch.h | 2 +- phreeqcpp/common/PHRQ_base.cxx | 2 +- phreeqcpp/common/Parser.cxx | 2 +- phreeqcpp/cxxMix.cxx | 2 +- phreeqcpp/global_structures.h | 2 +- phreeqcpp/pitzer.cpp | 2 +- phreeqcpp/sit.cpp | 2 +- phreeqcpp/transport.cpp | 2 +- 22 files changed, 22 insertions(+), 22 deletions(-) diff --git a/phreeqcpp/ChartObject.cpp b/phreeqcpp/ChartObject.cpp index d6ab781b..9d6513ce 100644 --- a/phreeqcpp/ChartObject.cpp +++ b/phreeqcpp/ChartObject.cpp @@ -1379,4 +1379,4 @@ const std::vector< std::string >::value_type temp_vopts[] = { const std::vector< std::string > ChartObject::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); -#endif // MULTICHART \ No newline at end of file +#endif // MULTICHART diff --git a/phreeqcpp/CurveObject.cpp b/phreeqcpp/CurveObject.cpp index 53410bdf..91e1e29c 100644 --- a/phreeqcpp/CurveObject.cpp +++ b/phreeqcpp/CurveObject.cpp @@ -39,4 +39,4 @@ CurveObject::~CurveObject() { } -#endif // MULTICHART \ No newline at end of file +#endif // MULTICHART diff --git a/phreeqcpp/ExchComp.cxx b/phreeqcpp/ExchComp.cxx index 89f47536..4072e49c 100644 --- a/phreeqcpp/ExchComp.cxx +++ b/phreeqcpp/ExchComp.cxx @@ -395,4 +395,4 @@ const std::vector< std::string >::value_type temp_vopts[] = { std::vector< std::string >::value_type("totals"), // 8 std::vector< std::string >::value_type("formula_totals") // 9 }; -const std::vector< std::string > cxxExchComp::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); \ No newline at end of file +const std::vector< std::string > cxxExchComp::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); diff --git a/phreeqcpp/ISolutionComp.cxx b/phreeqcpp/ISolutionComp.cxx index 81c57514..d9fd455f 100644 --- a/phreeqcpp/ISolutionComp.cxx +++ b/phreeqcpp/ISolutionComp.cxx @@ -199,4 +199,4 @@ read(const char *line_in, cxxSolution *solution_ptr) } return (CParser::PARSER_OK); -} \ No newline at end of file +} diff --git a/phreeqcpp/NA.h b/phreeqcpp/NA.h index 7f1afa93..3222c6cb 100644 --- a/phreeqcpp/NA.h +++ b/phreeqcpp/NA.h @@ -1 +1 @@ -#define NA -98.7654321 \ No newline at end of file +#define NA -98.7654321 diff --git a/phreeqcpp/PhreeqcKeywords/Keywords.h b/phreeqcpp/PhreeqcKeywords/Keywords.h index 7c5e3740..f812fb39 100644 --- a/phreeqcpp/PhreeqcKeywords/Keywords.h +++ b/phreeqcpp/PhreeqcKeywords/Keywords.h @@ -96,4 +96,4 @@ public: static const std::map phreeqc_keyword_names; }; -#endif // _INC_KEYWORDS_H \ No newline at end of file +#endif // _INC_KEYWORDS_H diff --git a/phreeqcpp/Pressure.cxx b/phreeqcpp/Pressure.cxx index 71e80783..a5075b0d 100644 --- a/phreeqcpp/Pressure.cxx +++ b/phreeqcpp/Pressure.cxx @@ -414,4 +414,4 @@ const std::vector< std::string >::value_type temp_vopts[] = { std::vector< std::string >::value_type("equal_increments"), //1 std::vector< std::string >::value_type("count") //2 }; -const std::vector< std::string > cxxPressure::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); \ No newline at end of file +const std::vector< std::string > cxxPressure::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); diff --git a/phreeqcpp/Reaction.cxx b/phreeqcpp/Reaction.cxx index 83d1eb64..511e3719 100644 --- a/phreeqcpp/Reaction.cxx +++ b/phreeqcpp/Reaction.cxx @@ -281,4 +281,4 @@ const std::vector< std::string >::value_type temp_vopts[] = { std::vector< std::string >::value_type("equal_increments"), //4 std::vector< std::string >::value_type("count_steps") //5 }; -const std::vector< std::string > cxxReaction::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); \ No newline at end of file +const std::vector< std::string > cxxReaction::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); diff --git a/phreeqcpp/SS.cxx b/phreeqcpp/SS.cxx index 9f65068c..bee411af 100644 --- a/phreeqcpp/SS.cxx +++ b/phreeqcpp/SS.cxx @@ -606,4 +606,4 @@ const std::vector< std::string >::value_type temp_vopts[] = { std::vector< std::string >::value_type("totals"), //16 std::vector< std::string >::value_type("dn") //17 }; -const std::vector< std::string > cxxSS::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); \ No newline at end of file +const std::vector< std::string > cxxSS::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); diff --git a/phreeqcpp/SScomp.cxx b/phreeqcpp/SScomp.cxx index d3ac5761..5b7b136f 100644 --- a/phreeqcpp/SScomp.cxx +++ b/phreeqcpp/SScomp.cxx @@ -294,4 +294,4 @@ const std::vector< std::string >::value_type temp_vopts[] = { std::vector< std::string >::value_type("dnc"), // 9 std::vector< std::string >::value_type("dnb") // 10 }; -const std::vector< std::string > cxxSScomp::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); \ No newline at end of file +const std::vector< std::string > cxxSScomp::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); diff --git a/phreeqcpp/Serializer.h b/phreeqcpp/Serializer.h index 80c285d8..f468dd47 100644 --- a/phreeqcpp/Serializer.h +++ b/phreeqcpp/Serializer.h @@ -39,4 +39,4 @@ protected: //std::string words_string; Dictionary dictionary; }; -#endif // !defined(SERIALIZER_H_INCLUDED) \ No newline at end of file +#endif // !defined(SERIALIZER_H_INCLUDED) diff --git a/phreeqcpp/Solution.cxx b/phreeqcpp/Solution.cxx index 85055223..cb2d2941 100644 --- a/phreeqcpp/Solution.cxx +++ b/phreeqcpp/Solution.cxx @@ -1754,4 +1754,4 @@ const std::vector< std::string >::value_type temp_vopts[] = { std::vector< std::string >::value_type("potential"), // 26 std::vector< std::string >::value_type("log_molalities_map") // 27 }; -const std::vector< std::string > cxxSolution::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); \ No newline at end of file +const std::vector< std::string > cxxSolution::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); diff --git a/phreeqcpp/SurfaceCharge.cxx b/phreeqcpp/SurfaceCharge.cxx index 4dcb473b..5d2857d8 100644 --- a/phreeqcpp/SurfaceCharge.cxx +++ b/phreeqcpp/SurfaceCharge.cxx @@ -583,4 +583,4 @@ const std::vector< std::string >::value_type temp_vopts[] = { std::vector< std::string >::value_type("g_map"), // 15 std::vector< std::string >::value_type("diffuse_layer_species") // 16 }; -const std::vector< std::string > cxxSurfaceCharge::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); \ No newline at end of file +const std::vector< std::string > cxxSurfaceCharge::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); diff --git a/phreeqcpp/Temperature.cxx b/phreeqcpp/Temperature.cxx index 6c486d3b..d67afe82 100644 --- a/phreeqcpp/Temperature.cxx +++ b/phreeqcpp/Temperature.cxx @@ -420,4 +420,4 @@ const std::vector< std::string >::value_type temp_vopts[] = { std::vector< std::string >::value_type("equal_increments"), //1 std::vector< std::string >::value_type("count_temps") //2 }; -const std::vector< std::string > cxxTemperature::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); \ No newline at end of file +const std::vector< std::string > cxxTemperature::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); diff --git a/phreeqcpp/UserPunch.h b/phreeqcpp/UserPunch.h index 599137b1..81d87168 100644 --- a/phreeqcpp/UserPunch.h +++ b/phreeqcpp/UserPunch.h @@ -36,4 +36,4 @@ protected: class rate * rate; Phreeqc * PhreeqcPtr; }; -#endif // !defined(USERPUNCH_H_INCLUDED) \ No newline at end of file +#endif // !defined(USERPUNCH_H_INCLUDED) diff --git a/phreeqcpp/common/PHRQ_base.cxx b/phreeqcpp/common/PHRQ_base.cxx index f2c164c2..6e48faaa 100644 --- a/phreeqcpp/common/PHRQ_base.cxx +++ b/phreeqcpp/common/PHRQ_base.cxx @@ -114,4 +114,4 @@ echo_msg(const std::string & stdstr) std::cout << stdstr << "\n"; #endif } -} \ No newline at end of file +} diff --git a/phreeqcpp/common/Parser.cxx b/phreeqcpp/common/Parser.cxx index 0469142b..db7d3556 100644 --- a/phreeqcpp/common/Parser.cxx +++ b/phreeqcpp/common/Parser.cxx @@ -1328,4 +1328,4 @@ CParser::TOKEN_TYPE CParser::parse_delimited(std::string & source, std::string & std::string str = result; return token_type(trim_left(str)); -} \ No newline at end of file +} diff --git a/phreeqcpp/cxxMix.cxx b/phreeqcpp/cxxMix.cxx index af7c174d..8cd8e0be 100644 --- a/phreeqcpp/cxxMix.cxx +++ b/phreeqcpp/cxxMix.cxx @@ -151,4 +151,4 @@ void cxxMix::Vectorize(std::vector &n, std::vector &f) f.push_back(it->second); } } -const std::vector< std::string > cxxMix::vopts; \ No newline at end of file +const std::vector< std::string > cxxMix::vopts; diff --git a/phreeqcpp/global_structures.h b/phreeqcpp/global_structures.h index 619c75e6..9d07f324 100644 --- a/phreeqcpp/global_structures.h +++ b/phreeqcpp/global_structures.h @@ -1650,4 +1650,4 @@ public: LDBLE uncertainty; }; -#endif /* _INC_GLOBAL_STRUCTURES_H */ \ No newline at end of file +#endif /* _INC_GLOBAL_STRUCTURES_H */ diff --git a/phreeqcpp/pitzer.cpp b/phreeqcpp/pitzer.cpp index 68a57a39..0b5db899 100644 --- a/phreeqcpp/pitzer.cpp +++ b/phreeqcpp/pitzer.cpp @@ -2704,4 +2704,4 @@ pitzer_make_lists(void) } param_list.push_back(i); } -} \ No newline at end of file +} diff --git a/phreeqcpp/sit.cpp b/phreeqcpp/sit.cpp index fb372c3b..8f213e98 100644 --- a/phreeqcpp/sit.cpp +++ b/phreeqcpp/sit.cpp @@ -1683,4 +1683,4 @@ sit_make_lists(void) if (sit_IPRSNT[i0] == FALSE || sit_IPRSNT[i1] == FALSE) continue; param_list.push_back(i); } -} \ No newline at end of file +} diff --git a/phreeqcpp/transport.cpp b/phreeqcpp/transport.cpp index 0f649fb0..88f33a29 100644 --- a/phreeqcpp/transport.cpp +++ b/phreeqcpp/transport.cpp @@ -6180,4 +6180,4 @@ flux_mcd(const char* species_name, int option) } } return (f); -} \ No newline at end of file +} From 9f3e76c4b9d7a2e9d231b4a201b5cae4c32bec10 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Mon, 25 Oct 2021 18:05:08 -0600 Subject: [PATCH 020/384] Fixed DIFF_C and SETDIFF_C. Updated RELEASE.txt --- RELEASE.TXT | 32 ++++++++++++++++++++++++++++++++ 1 file changed, 32 insertions(+) diff --git a/RELEASE.TXT b/RELEASE.TXT index 75fbb70c..7e50ee9d 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,4 +1,36 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + + ---------------- + October 25, 2021 + ---------------- + PHREEQC: The Basic function DIFF_C returned an incorrect value at + temperatures other than 25 C. The value returned was missing a + factor TK/298.15, where TK is the current temperature in Kelvin. The + factor has now been added and the function returns the correct + value. Note that previous documentation indicated the returned + value was for 25 C, but the value returned is actually for the + current temperature of the system. + + The return value for SETDIFF_C was also missing the factor TK/298.15. + This Basic function now returns the correct value for the current + temperature of the system (TK). + + The Basic functions are provided only for user output, so all TRANSPORT + calculations used the correct temperature-dependent diffusion coefficients. + + ---------------- + October 25, 2021 + ---------------- + PHREEQC: Revised a bug fix from May 28, 2021 making Fe(+3) and Fe(3) + equivalent names in SELECTED_OUTPUT and Basic functions TOT and TOTMOL. + The previous fix had unintended consequences for element names like [Fe+3], + causing this definition to fail. The revised bug fix should eliminate the + unintended problem. + +--------------------------------------------------------------------------------------------- +Version 3.7.1: September 21, 2021 +--------------------------------------------------------------------------------------------- + -------------- August 25, 2021 -------------- From f1fa927adfd3d01d732c22cd376b977d5d1f71bc Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Sun, 31 Oct 2021 18:20:51 +0000 Subject: [PATCH 021/384] git subtree pull now squashes --- .gitlab-ci.yml | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 764e2204..10dced62 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -1,6 +1,7 @@ # # https://code.chs.usgs.gov/coupled/subtrees/iphreeqc-src # SRC 2020-12-02T18:39:55-07:00 +# SRC 2021-10-31T12:20:11-06:00 -- changed pull to squash -- HEAD:f715edb5897985acf0692d2b0bde4ab34379469f # image: ${CI_REGISTRY}/coupled/containers/buildpack-deps:bionic-scm @@ -81,7 +82,8 @@ subtree-sync: export GIT_EDITOR=true for remote in "${!urls[@]}"; do - git_subtree "pull" "${prefixes[$remote]}" "$remote" "${urls[$remote]}" + # git_subtree "pull" "${prefixes[$remote]}" "$remote" "${urls[$remote]}" + git subtree pull --prefix "${prefixes[$remote]}" --squash "${urls[$remote]}" master done for remote in "${!urls[@]}"; do From b8745514b6031a2cc548d6a3eab54b6a90031bc1 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Sun, 31 Oct 2021 18:21:10 +0000 Subject: [PATCH 022/384] Squashed 'phreeqcpp/' changes from da9d06b..2243d25 2243d25 Merge commit '013c822f76e5dc2e4fc19e87c6e5777aea6151d2' c1af6f3 added newlines for CRAN 013c822 added newlines for CRAN e4bd9ba [phreeqc3] fixes -Wclass-memaccess warnings for CRAN 29f06d2 fixed alignment in Description of solution 09a2680 guarded write_banner with NO_UTF8_ENCODING 082edbb changed src/print.cpp back to windows-1252 encoding; updated check_utf.sh 8d7c1fc adding mcd_Jtot and mcd_Jconc 9f0f622 Merge branch 'master' of github.com:usgs-coupled/phreeqc3 1040066 Merge remote-tracking branch 'usgs-coupled/master' 2a94644 cleaned up to eliminate some prints 07a864d all jacobians are consistent. Looks pretty good. 56975a7 Saved surface for numerical derivatives df0d68b Runs all the test cases. Numerical derivatives work, but still some changes in residuals before and after jacobian calculations. 6bd936e Fixed numerical derivative (non-pitzer) 0dde2b0 removed comments aef51fa Finally have derivatives right, I think 20281a0 always reset gases 13ec2fc best I could do for H2S while maintaining old tests. Used INCREMENTAL reactions 8be1ba8 revised jacobian_pz with new logic. Works with fixed_pressure examples H2S, H2S_pz, H2S_pz_appt, H2S_NaCl_Na2SO4. 71cf2a9 still produces different residuals 9022ded Tony H2S. Amm.dat, phreeqc.dat, pitzer.dat, utf8, updated test cases cb1f9af Finished up C, Fortran, documentation. Need to check DOxygen 9dad447 Merge remote-tracking branch 'origin/master' into state d647eec Added StateSave, StateApply, StateDelete with documentation for C++. Need testing, Fortran, and C 48cb5e8 Including OH- in converting units. Revised calculated density for H+ and OH-. Makes a difference in several test cases. Removed timing at end of .out in test cases. Checking in all test cases and selected output. 47e1ce5 added OH in density iteration calculation, test case NaOH_density 4aefb06 allow Fe(+3), equivalent to Fe(3), in TOT and TOTMOL. Previously fixed in SELECTED_OUTPUT -total bea0ad1 unused variable, punch Fe(+3) eaf788b fixed add_constant, undefined surface null pointer, added test cases 2212f9c fixed bug in reprep when sit had surface species. Added capability of sit + edl, have not tested it 79956e3 made tally_table a vector of class tally 58b0d1f Merge commit 'd77c11ec700085f19b76af6543013e23ee0739d3' d77c11e [phreeqci] fixed header error with phast 63175ab [phreeqci] fixed header error with phast 0feb715 [phreeqci] fixed WINDOWS.H already included error on windows builds 123cc8a [phreeqci] fixed _ASSERTE error on linux builds 22c4a62 [phreeqci] struct to class changes 4cee19d Merge commit '2d8ca2d0f37d13ad67be582208a4e65edfcf702f' 2d8ca2d [phreeqci] added 'new' debugging d0c8212 [phreeqci] added 'new' debugging 9661fea tokadd_heading leak 4565c5d catching upMerge remote-tracking branch 'origin/master' into classify c22d792 fix notab leak 6d2b45a Merge remote-tracking branch 'usgs-coupled/master' 38cfe18 memory leak user_print, pitz/sit store, add uphill_NPa, remove TESTINT 24f9bf7 removed TESTING definition e2ce928 Tony agreed with change for all_cells, new test case d2a5d63 reset all_cells in all cases e3c0d61 initialize aphi c960e05 builds on vs2005; still needs to initialize class pitz_param* aphi 71dc944 cl1mp, bad initialization 2e5f255 fixed errors/warnings from ming and intel 369733e converted to classes 7961b16 release.txt, couple size_t 5d76f82 copy operator works well enough 7ce8947 updated InternalCopy for operator equal 7bd13ff new/delete theta params, pitz_param_copy 50e8903 new/delete pitz_params 87d6792 reverting changes to sit_params and theta_params. Will consider using new and delet dcb9efe sit_params ac3335e theta_params 8878232 delete rate, unused cptr 492df61 descriptions 25e0621 cell_data 051ddba stag_data 33157a2 fixed more size_t and initialized all structs f86f430 back to original set of files I think af1b761 removing CReaction and Classes files 006d1de reorganizing 287f81c elt_list vectorized 7228bd0 move struct rxn_token 28de8b5 more size_t d2e3a4e Removed cxxChemRxn ce64720 cleaned up, removed struct reaction 028e908 moving to CReaction dc2dc53 vectorized token 9fd3f2a save_values rewritten with map 8a6cef5 vectorized save_values 8685225 fixed clang errors, needed .c_str 318e267 (size_t) max and count 1547d91 finished up spread b5c7ba4 going to work on warnings 4c848b4 all inverse structures vectorized. Starting on solver workspace 980d58e finished vectorizing struct inverse. Need to do sub structs d13bb76 removed count_elts 89ab28d vector inverse elts d575ade tidy.cpp, title_x 16fd18f removed string_duplicate from prep.cpp 82a10d6 revised get_elt and get_token d7e3be4 cleaned up some string_duplicate 76366a6 fixed processing file names 157a458 description_x 51fec19 class_main c748922 added const qualifier for all the parsing 380a6ea methods set to const, variables need to follow 6d67e22 copier and dash 48e6b93 fixed a new master, advection punch_temp and print_temp, some tidying 5f21daf unknown->master now a vector. Using size instead of a null to end list. 3c432d0 user_graph commands, alk_list 2b14f80 last_model 7a6b8b6 Merge branch 'warnings_redux' into vectorize_2 885a2f7 Fix memory bug in ex13_impl, tweak Makefile. 6907bb0 base, sit arrays 90e8412 starting on pitzer bd0cad9 vector kinetics arrays 1850c32 basic commands are now std::string 78a83ed c,d in polint d82d5d6 vector llnl parameters, removed hash references 7c538b6 Revert "delete s[i]" 97bcfd7 Merge branch 'warnings_redux' into vectorize 15a8991 delete s[i] 0b19404 master new/delete b100f85 more new/delete. Fixed str_tolower for ming fd93f84 needed to new/delete species and phase structs 1986e00 alphabetize tokens ee6fa53 bool analytic cc614e6 add_logk for logk, species, phases 67447c5 Removed hashtable, all hashes have been replaced with maps. ee7d2c5 replaced hash for isotope_ratio, isotope_alpha, calculate_value with maps. Fixed some case errors with new maps. 52e0622 replase master_isotope_hash_table with master_isotope_map c01c8d6 replace logk_hash_table with logk_map. Added str_tolower(std::string) 3e69461 replaced phases_hash_table with phases_map effafe0 replace species_hash_table with species_map 8bff6d3 removed HASH code. replaced elements_hash_table with elements_map 90e9ee0 removed ineq_init. Vector advection_print, advection_punch 2f38047 size_t for subscripts 5161ea7 Merged origin/master, Alphabetized Basic toks f8e05c1 only call qsort with more than one element 1ab8641 remove _v, use std::vector only, alloc at least 1 scratch 9732a1c cannot qsort size 0 vector 67fc478 one more .data 2f0f5e1 Some replacements of .data() were incorrect ba9813a remove .data() 43765f8 need 0feb20d after merging origin/master, one fix needed f136feb Merging origin/master. Merge remote-tracking branch 'origin/master' into warnings_redux 71aa5b9 bug count_sys not incremented e43550c vector inverse d4cc14e vector x 6c0edef vector rates e3cc46a vector save_values 41b9965 vector species_list 449a54f vector mb_unknowns 51514eb vector delta, sum_jacobx f0707aa vector sum_mb1, sum_mb2 7d303de vector trxn.token 83cfb29 elt_list, moved qsort to elt_list_combine e8c9027 vector elt_list 0957a52 vector theta_params b1af156 vector pitz_params e3ea010 vector sit_params b87d0cd vector my_array, residual, delta e43471a vector s_x 622d361 vector s_x 3d41ef8 vector logk e8dd208 vector sys 3c9f594 vector master de1ba62 vector s e7c78a8 vector phases f2c64fe vector elements e8af689 vector isotope_alpha ba2601a vector isotope_ratio 76da4f8 finished master_isotope 4bb1c80 vector master_isotope 97e574d vector calculate_value** 9d9fbfb cl1 variables converted to std::vector 1e0d410 using memset 54b0d4d starting on space 5a649c2 Merge pull request #2 from usgs-coupled/gasphasepressures a992537 (void)sscanf, removed SKIP, removed PHREEQ98 6a5bb8a Merge pull request #1 from usgs-coupled/mar10 d9ced82 Fixed uninitialized constructors and couple of other warnings c79d2c2 working on UTF-8 fcee4d5 Added delta_h_species, delta_h_phase, dh_a0, dh_bdot Basic functions 81e862d Tonys changes Mar 10. SIs in inverse calulations 9e8b382 Merge remote-tracking branch 'usgs-coupled/master' 053b4c6 Merge remote-tracking branch 'origin/master' 20091aa Merge branch 'log10molalities' into gasphasepressures 41e1112 Last of changes for GetGasPhasePressures and GetGasPhasePhi, openmp and mpi. MPI fortrans not tested. e1f9cb1 more checking in. Should be down to tweaks for SetGasPhaseMoles. 00ee6e3 C++ is working with OpenMP and MPI for Get/SetGasPhaseMoles. Need to add c and F90. c3a3153 Added GetSpeciesLog10Molalities. Tested OpenMP with VS. Tested MPI with MinGW. Fortran, C, and C++ seem to work. e8b11f3 added optional 6th argument to Basic function sys to change sort order from molality or moles to the name. Added synonym PAD$. Added new mytest/sys_sort. 3e4fc7e cleanup commented lines 54b992f working on tabs and no newline 2181847 Merge branch 'master' of https://github.com/usgs-coupled/phreeqc3 deeecb0 needed strexpr in ADD_HEADING to allow expressions 9b7785f [iphreeqccom] updated date 711b1d0 Merge commit '608e74f5d3c55a4d91a4e08d86f2fd6df0ce0a05' 608e74f [wphast] updated date 5128e13 [phreeqc3] updated image location fba8ae2 [phreeqc3] updated image location 43988f0 initialize punch_newline 176fb02 Moved initialization from header to constructor, special characters in As.out c9f796a added ADD_HEADING for IPhreeqc 1362f0f Added EOL_NOTAB$ and NO_NEWLINE$, updated release notes 2b4dbbd Merge commit 'cd51d8aeed46909e5f028a19089acfef43d6ede9' f2023c4 Merge branch 'gtest' into 'master' cd51d8a reset for dlls 54161f4 reset for dlls 01c99a7 Merge remote-tracking branch 'github/master' 23f3917 Merge remote-tracking branch 'scharlton2/master' f6644e6 check for null pointer. Encoding for .out file 9319c9d Merge commit '5b816fa1fd82eb94e2702b6bd9df6066fb71267b' 5b816fa added src/phreeqcpp/common/PHRQ_exports.h 07717b1 added src/phreeqcpp/common/PHRQ_exports.h d8c638f Merge remote-tracking branch 'origin/master' into gtest 87bbb6a adjusted alignment for utf-8 strings 03bda16 added write_banner to non-DOS and added UTF8 define 995de52 converted to utf-8 fc8fe3e re-added src/ZedGraph.dll fbae3e9 code change for extending porosity definition. Change to TonyLitharge2a 46257e7 added googletest and fixed some minor bugs 13ca055 added googletest and fixed some minor bugs f1dda6c Fixed problem with exchange-related when exchanger is defined as CaX2 20daad4 I guess cxxSurface::NO_EDL is correct 801812d Tony's changes to implicit Nernst-Planck calculation 6b4892c added Basic function DEBYE_LENGTH and test case zeta 921ab10 Changed tidy_exchange_min and tidy_exchange_kin to tidy only for new_def and n_user >= 0. Fixed bug if surf_charge not defined for NO_EDL. Added test MoreExchMix 2aef60a Finished up surface and exchange related for cases where related phase or kinetic reaction was modified. Proportionality should now be maintained. Added test cases. 569e1e1 Exchange related. Needed to update in case the related entity changed. ea54e02 Free str in callback in PBasic a87cd1f Merge commit '1871b026ca8487c23a025415dbc0b2eca01f9af4' 1871b02 fixed some c2011 warnings, added more info for -formula errors, fixed pressure llnl examples aa4d023 fixed some c2011 warnings, added more info for -formula errors, fixed pressure llnl examples e1465e3 Commit from David's Email 2020-05-22; Implementing llnl-type databases with higher temperature nad pressure e18e1ec Tony bug fix for TRANSPORT. Harmonic mean for boundary? Added Cub example. 44f077e Merge commit 'e68934133fc9cd45e7cccc397c55e13f7ee92e5b' e689341 [phreeqci] Testing subtree merges 4f34fd0 [phreeqci] Testing subtree merges 69c0bb3 fixed conflict on merge 55c4dba Merge commit 'b25fc5bdd48b6d3ab8d677f7d38ad3a462789500' b25fc5b fixed conflict on merge ca80be6 fixed conflict on merge 49a74a6 [phreeqc3] Testing subtree merges aec6f90 [phreeqc3] Testing subtree merges c4c224a Merge commit '84865ad5ac30a9edb86c89ced4194d127ee896fd' 0bf4138 Merge commit '4a8727cecd9fefd1587485820e913c0e666b77d9' 553875f Merge commit 'aab8bc12ea8be8aec5943e1c77a54b19d28168cb' aab8bc1 Merge commit '84865ad5ac30a9edb86c89ced4194d127ee896fd' 7bd02ff Fixed bug with more porosities than cells in TRANSPORT. Added silica sorption to databases. Revised CalPortDiff 84865ad Added .gitlab-ci.yml d398195 Added .gitlab-ci.yml 40c2787 Added .gitlab-ci.yml 3b6ce6c Added .gitlab-ci.yml daf64a1 Added .gitlab-ci.yml ae06f35 Fixed GFW bug on new elements in TRANSPORT 9cc783b added Basic functions for PHAST: velocity_x, velocity_y, velocity_z, transport_cell_no 79f768a Merge branch 'master' into 'master' bd7634a removed j = j in loop 542394c IPhreeqc: ifdef'd out references to std::cerr and std::cout 6067ce8 Merge branch 'implicit3' into 'master' 21bd20f Fixed more compile warnings. Removed andra_kin_ss from testing, results are inconsistent between Linux and Windows, presumably the ifs in RATES 97b9c58 Merge branch 'implicit3' into 'master' 45db5cf Another Linux warning, lower tol on andra_kin_ss. 443be1c Merge branch 'implicit3' into 'master' 9a29aaf Last Linux compile warnings. Added more precision to andra_kin_ss. 6dafd7d Merge branch 'implicit3' into 'master' fbde633 Fixing Linux compiler warnings, checking in new regression test files. 2207711 Merge branch 'implicit3' into 'master' 77e36a2 Tony fixed some transport, revised colloid_U. New cases added to Makefile. f07caf9 Changed back print to allow incremental_reactions to work correctly beadd07 Merge commit '5947da90657d1cb8f832152b4573dca0bbefb49e' 6a49d41 changes to make related and mixing items independent of case. surface_mix test case. 5947da9 initial Tony changes 8089c10 initial Tony changes 009aec7 Merge remote-tracking branch 'coupled/master' 4676ee4 added more P-R gas paramteters c07314c Merge commit '492a4d257f300b7a9e0b5dc7e212c8f85ecb7f6e' 492a4d2 Merge remote-tracking branch 'coupled/master' 81ca633 Merge remote-tracking branch 'coupled/master' 950fca2 CRAN: replaced deprecated std::ptr_fun with lambda function 597bcd7 CRAN: replaced deprecated std::ptr_fun with lambda function 044e0ea phreeqc_ptr bug in internal copy 5934297 Merge commit '5c53fb207238bc0e846123a7e0d71a48bd9976ab' 5c53fb2 Merge commit '1327e93127e40e7a55ec629dcc9dd91ec29e77fe' c117e18 Tony fix of index error b90ddb5 Fixed Tony's fix, added implicit_as example 03acc3f changed abs to fabs 1fef40e added implicit, max_mixf to internal copy 32939ba Merge commit '1327e93127e40e7a55ec629dcc9dd91ec29e77fe' b3bf691 fixed > > in templates for gcc c929113 Tony fix May 31 1327e93 Implicit seems to be working with Tony's latest changes 55ea163 Implicit seems to be working with Tony's latest changes c7111f7 Sort of works, still bugs and serious errors compared to explicit 600c7ee Fixed some bugs with iso.dat inverse modeling, added test case. Still does not generate [13C](4) and [13C](-4) from SOLUTION 2291700 Fixed gas_phase_mix bug, added test case 035a4e0 Tony tweak to transport.cpp bd4fc25 Merge branch 'tony20190117' into 'master' 71c994b skipping restart 1257f8c Merge branch 'issue-3' into 'master' ce33478 Fixed -Wcatch-value warnings reported by CRAN 040fd95 include restart, remove ex20_debug d57264d 2. changes to solid solution numerical method 3fd8155 changes to solid solution numerical method 2b14a94 Tony's changes 20190117 ae6e8b0 added modify methods for restart files b500c54 changed restart file to include UZ fffac6d another try for ex20_debug fa5ee50 fix problem with ex20_debug d993901 encoding, limit.h 92c81f9 Revised logic for nmix 3cc84da Merge remote-tracking branch 'coupled/master' into ss_trans 56b5bf3 create valid ranges when sscanf doesn't return 2 c43c9af tweaked ss, changed surf function per Kinniburgh b10df16 Corrected syntax of integer limit, previous commit actually changed ss convergence parameter, used to multiply by 0.99 d74c8ff Corrected syntax of integer limit 906cfd4 Check value of nmix 058375c removed check of ss when sum of components is small 2977db4 Tonys fix to diffusion bug with porosity change f904467 revised lists to be cumulative for eq, gas, kin, ss 9285985 merging coupled/master into copy 7c23b62 Fixed string_duplicate memory error 2d5551a fixed sc7 for copy and initial time 4842d9e inverse iter 100000; finished copy operator; a bit more testing to go 4eefe43 ex20_debug fix 78e39cd still debugging copy cee10e7 fixing bugs in copy operator ebab4bc fixing bugs in copy operator 5a35e02 Fixed Linux warnings, memory errors b86f793 Beginning to test copy operator 5d40e69 [IPhreeqc] added parens for clang++ -Wlogical-op-parentheses 936de38 removed register keywords and updated for misc clang warnings ec9de4c beginning of checking copy operation ebeddcd [iphreeqc] Changes for CRAN 3.4.7 9592d6e Merge branch 'dlpark-phreeqc3-TonyApr2018' into 'master' 7c0fb65 [phreeqc3] needed to check gas phase type for same model, added test case 9152ca2 Closes #1 ebc4f69 Merge branch 'dlpark-phreeqc3-TonyApr2018' into 'master' 97a0cec Fixed bug where 1W was interpreted as an isotope 2deb4ed added option -ddl to surface. Added test case df7d5de Merge branch 'gammas' into 'master' 34abb5b gammas finished, working on reactants 5314827 Tony's changes; diffuse layer with pitzer 4271ca4 Tonys corrections, added balonis test 2e390fd commit fix for Mtg git-subtree-dir: phreeqcpp git-subtree-split: 2243d25babbc524e7875b3d591bb6b91c4399a95 --- .gitlab-ci.yml | 111 + ChartHandler.cpp | 9 +- ChartObject.cpp | 36 +- ChartObject.h | 8 +- CurveObject.cpp | 9 +- Dictionary.cpp | 9 + ExchComp.cxx | 80 +- ExchComp.h | 8 - Exchange.cxx | 44 +- GasComp.cxx | 79 +- GasComp.h | 9 + GasPhase.cxx | 288 +-- GasPhase.h | 10 +- ISolution.cxx | 185 +- ISolution.h | 8 +- ISolutionComp.cxx | 265 +- KineticsComp.cxx | 55 +- Makefile.am | 1 + Makefile.old | 6 +- NA.h | 2 +- NameDouble.cxx | 119 +- NameDouble.h | 11 +- NumKeyword.cxx | 11 +- PBasic.cpp | 4701 ++++++++++++++++++---------------- PBasic.h | 289 ++- PHRQ_io_output.cpp | 20 +- PPassemblage.cxx | 50 +- PPassemblage.h | 2 +- PPassemblageComp.cxx | 10 +- Phreeqc.cpp | 2470 +++++++----------- Phreeqc.h | 1693 ++++++------ PhreeqcKeywords/Keywords.cpp | 7 + PhreeqcKeywords/Keywords.h | 2 +- Pressure.cxx | 52 +- Reaction.cxx | 44 +- ReadClass.cxx | 22 +- SS.cxx | 43 +- SSassemblage.cxx | 40 +- SScomp.cxx | 53 +- SelectedOutput.cpp | 10 + SelectedOutput.h | 7 +- Serializer.cxx | 15 +- Serializer.h | 2 +- Solution.cxx | 172 +- Solution.h | 2 + SolutionIsotope.cxx | 8 + SolutionIsotope.h | 2 +- StorageBin.cxx | 529 ++-- StorageBin.h | 2 + StorageBinList.cpp | 8 + Surface.cxx | 98 +- Surface.h | 3 + SurfaceCharge.cxx | 9 +- SurfaceCharge.h | 2 +- SurfaceComp.cxx | 18 +- System.cxx | 8 + Temperature.cxx | 53 +- Use.cpp | 8 + Use.h | 6 +- UserPunch.cpp | 11 +- UserPunch.h | 10 +- advection.cpp | 18 +- basicsubs.cpp | 1228 ++++----- cl1.cpp | 69 +- cl1mp.cpp | 7 + class_main.cpp | 524 +--- common/.gitlab-ci.yml | 46 + common/PHRQ_base.cxx | 11 +- common/PHRQ_base.h | 6 +- common/PHRQ_exports.h | 20 + common/PHRQ_io.cpp | 13 +- common/PHRQ_io.h | 52 +- common/Parser.cxx | 18 +- common/Parser.h | 22 +- common/Utils.cxx | 8 + cvdense.cpp | 11 +- cvode.cpp | 112 +- cxxKinetics.cxx | 49 +- cxxMix.cxx | 47 +- dense.cpp | 9 +- dumper.cpp | 8 + gases.cpp | 85 +- global_structures.h | 1696 +++++++----- input.cpp | 8 + integrate.cpp | 93 +- inverse.cpp | 1308 ++++------ isotopes.cpp | 694 ++--- kinetics.cpp | 791 ++---- mainsubs.cpp | 870 ++----- model.cpp | 1540 +++++------ nvector.cpp | 8 + nvector_serial.cpp | 8 + parse.cpp | 254 +- phqalloc.cpp | 12 +- pitzer.cpp | 470 ++-- pitzer_structures.cpp | 229 +- prep.cpp | 1500 ++++------- print.cpp | 236 +- read.cpp | 3819 ++++++++------------------- readtr.cpp | 254 +- runner.cpp | 9 + sit.cpp | 594 +++-- smalldense.cpp | 13 +- spread.cpp | 521 ++-- step.cpp | 165 +- structures.cpp | 2423 ++++++------------ sundialsmath.cpp | 9 +- tally.cpp | 266 +- tidy.cpp | 1876 +++++++------- transport.cpp | 2647 ++++++++++++++----- utilities.cpp | 1131 ++------ 111 files changed, 16477 insertions(+), 21174 deletions(-) create mode 100644 .gitlab-ci.yml create mode 100644 common/.gitlab-ci.yml create mode 100644 common/PHRQ_exports.h diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml new file mode 100644 index 00000000..25c56f8c --- /dev/null +++ b/.gitlab-ci.yml @@ -0,0 +1,111 @@ +# +# https://code.chs.usgs.gov/coupled/subtrees/phreeqc3-src +# SRC 2020-12-02T18:39:55-07:00 +# +image: ${CI_REGISTRY}/coupled/containers/buildpack-deps:bionic-scm + +stages: + - sync + - trigger + +before_script: + - eval $(ssh-agent -s) + - echo "${SSH_PRIVATE_KEY_ENC}" | base64 --decode | tr -d '\r' | ssh-add - + - mkdir -p ~/.ssh + - chmod 700 ~/.ssh + - ssh-keyscan ${CI_SERVER_HOST} >> ~/.ssh/known_hosts + - chmod 644 ~/.ssh/known_hosts + - git config --global user.email "darth@empire.com" + - git config --global user.name "Darth Vader" + +subtree-sync: + stage: sync + + ## + ## Only run if on the master branch and the variable GROUP is set + ## + ## change this to + ## only: + ## - master@$GROUP/subtrees/phreeqc3-src + ## and set GROUP to coupled before merge + only: + refs: + - master + variables: + - $GROUP + + script: + ## + ## Must re-clone in order for the subtree merge to work + ## tried re-setting the url for the origin but didn't work + ## + - cd .. + - rm -rf ${CI_PROJECT_NAME} + - git clone git@${CI_SERVER_HOST}:${CI_PROJECT_PATH}.git + - cd ${CI_PROJECT_NAME} + + ## + ## Sync subtrees + ## + - | + #!/bin/bash -ex + # + # phreeqc3/ git@${CI_SERVER_HOST}:${GROUP}/phreeqc3.git + # ├─database/ ├─git@${CI_SERVER_HOST}:${GROUP}/subtrees/phreeqc3-database.git database + # ├─doc/ ├─git@${CI_SERVER_HOST}:${GROUP}/subtrees/phreeqc3-doc.git doc + # ├─examples/ ├─git@${CI_SERVER_HOST}:${GROUP}/subtrees/phreeqc3-examples.git examples + # └─src/ └─git@${CI_SERVER_HOST}:${GROUP}/subtrees/phreeqc3-src.git src + # └─common/ └─git@${CI_SERVER_HOST}:${GROUP}/subtrees/phreeqc3-src-common.git src/common + + git_subtree() { + git subtree "${1}" --prefix="${2}" "${4}" master 2>&1 | grep -v "^[[:digit:]].*/[[:digit:]].*" + } + + declare -A urls=( \ + ["phreeqc3-src-common"]="git@${CI_SERVER_HOST}:${GROUP}/subtrees/phreeqc3-src-common.git" \ + ) + + declare -A prefixes=( \ + ["phreeqc3-src-common"]="common" \ + ) + + export GIT_EDITOR=true + + for remote in "${!urls[@]}"; do + git_subtree "pull" "${prefixes[$remote]}" "$remote" "${urls[$remote]}" + done + + for remote in "${!urls[@]}"; do + git_subtree "push" "${prefixes[$remote]}" "$remote" "${urls[$remote]}" + done + + git push origin master + git status + +trigger-downstream: + stage: trigger + ## + ## Only run if on the master branch and the variable GROUP is set + ## + ## change this to + ## only: + ## - master@$GROUP/subtrees/phreeqc3-src + ## and set GROUP to coupled before merge + only: + refs: + - master + variables: + - $GROUP + + ## Downstream Projects + ## triggers and ids are stored at the group level + ## iphreeqc-src https://code.chs.usgs.gov/coupled/subtrees/iphreeqc-src + ## phreeqc3 https://code.chs.usgs.gov/coupled/phreeqc3 + script: + - echo triggering iphreeqc-src + - curl -X POST -F token=${IPHREEQC_SRC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${IPHREEQC_SRC_ID}/trigger/pipeline + - echo triggering phreeqc3 + - curl -X POST -F token=${PHREEQC3_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${PHREEQC3_ID}/trigger/pipeline + + ## Upstream Projects + ## phreeqc3-src-common https://code.chs.usgs.gov/coupled/subtrees/phreeqc3-src-common diff --git a/ChartHandler.cpp b/ChartHandler.cpp index edee12d4..b9236865 100644 --- a/ChartHandler.cpp +++ b/ChartHandler.cpp @@ -2,13 +2,20 @@ // ////////////////////////////////////////////////////////////////////// #if defined MULTICHART +#include "Phreeqc.h" #ifdef _DEBUG #pragma warning(disable : 4786) // disable truncation warning (Only used by debugger) #endif #include "ChartHandler.h" -#include "phreeqc.h" #include +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif ////////////////////////////////////////////////////////////////////// // Construction/Destruction diff --git a/ChartObject.cpp b/ChartObject.cpp index 510a667d..9d6513ce 100644 --- a/ChartObject.cpp +++ b/ChartObject.cpp @@ -2,6 +2,7 @@ // ////////////////////////////////////////////////////////////////////// #ifdef MULTICHART +#include "Phreeqc.h" #ifdef _DEBUG #pragma warning(disable : 4786) // disable truncation warning (Only used by debugger) #endif @@ -12,12 +13,19 @@ #include #include #include -#include "Phreeqc.h" #include "phqalloc.h" #include "Form1.h" using namespace zdg_ui2; +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + ////////////////////////////////////////////////////////////////////// // Construction/Destruction ////////////////////////////////////////////////////////////////////// @@ -87,7 +95,7 @@ cxxNumKeyword(io) point_added = false; user_graph = new rate; - user_graph->commands = NULL; + user_graph->commands.clear(); user_graph->name = NULL; user_graph->new_def = 0; user_graph->linebase = user_graph->loopbase = user_graph->varbase = NULL; @@ -368,18 +376,6 @@ ChartObject::Read(CParser & parser) this->chart_type = 1; break; case 10: /* grid_offset */ -#ifdef PHREEQ98 - /* - i = copy_token(token, &next_char, &l); - str_tolower(token); - if (i == DIGIT) - sscanf(token, "%d", &RowOffset); - i = copy_token(token, &next_char, &l); - str_tolower(token); - if (i == DIGIT) - sscanf(token, "%d", &ColumnOffset); - */ -#endif break; case 11: /* connect_simulations */ this->connect_simulations = parser.get_true_false(next_char, true); @@ -849,11 +845,7 @@ ChartObject::Set_rate_struct(void) oss << *it << "\n"; } this->Rate_free(); - if (this->phreeqc_ptr) - { - this->user_graph->commands = (char *) phreeqc_ptr-> PHRQ_malloc((oss.str().size()) + 100 * sizeof(char)); - } - ::strcpy(this->user_graph->commands, oss.str().c_str()); + this->user_graph->commands = oss.str().c_str(); this->user_graph->new_def = this->rate_new_def; this->user_graph->loopbase = NULL; this->user_graph->varbase = NULL; @@ -1086,7 +1078,7 @@ ChartObject::Rate_free(void) if (this->phreeqc_ptr) { - user_graph->commands = (char *) phreeqc_ptr-> free_check_null(user_graph->commands); + user_graph->commands.clear(); } if (user_graph->linebase != NULL) { @@ -1334,7 +1326,7 @@ ChartObject::dump(std::ostream & oss, unsigned int indent) oss << indent1 << "-end" << "\n"; /* - struct rate *user_graph; + class rate *user_graph; // C++ for rate struct std::string rate_name; std::list rate_command_list; @@ -1387,4 +1379,4 @@ const std::vector< std::string >::value_type temp_vopts[] = { const std::vector< std::string > ChartObject::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); -#endif // MULTICHART \ No newline at end of file +#endif // MULTICHART diff --git a/ChartObject.h b/ChartObject.h index 5e7e2eb0..3402febf 100644 --- a/ChartObject.h +++ b/ChartObject.h @@ -230,11 +230,11 @@ class ChartObject:public cxxNumKeyword { return this->point_added; } - struct rate *Get_user_graph() + class rate *Get_user_graph() { return this->user_graph; } - const struct rate *Get_user_graph()const + const class rate *Get_user_graph()const { return this->user_graph; } @@ -399,8 +399,8 @@ class ChartObject:public cxxNumKeyword bool curve_added; bool point_added; - struct rate *user_graph; - // C++ for rate struct + class rate *user_graph; + // C++ for rate class std::string rate_name; std::list rate_command_list; std::list rate_command_list_original; diff --git a/CurveObject.cpp b/CurveObject.cpp index 42710b99..91e1e29c 100644 --- a/CurveObject.cpp +++ b/CurveObject.cpp @@ -7,6 +7,13 @@ #endif #include "CurveObject.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif ////////////////////////////////////////////////////////////////////// // Construction/Destruction @@ -32,4 +39,4 @@ CurveObject::~CurveObject() { } -#endif // MULTICHART \ No newline at end of file +#endif // MULTICHART diff --git a/Dictionary.cpp b/Dictionary.cpp index bd5348d8..ed5ee933 100644 --- a/Dictionary.cpp +++ b/Dictionary.cpp @@ -1,4 +1,13 @@ #include "Dictionary.h" + +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + Dictionary::Dictionary(void) { } diff --git a/ExchComp.cxx b/ExchComp.cxx index 5af520b7..4072e49c 100644 --- a/ExchComp.cxx +++ b/ExchComp.cxx @@ -15,6 +15,14 @@ #include "phqalloc.h" #include "Dictionary.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + ////////////////////////////////////////////////////////////////////// // Construction/Destruction ////////////////////////////////////////////////////////////////////// @@ -31,68 +39,6 @@ cxxExchComp::cxxExchComp(PHRQ_io *io) phase_proportion = 0.0; formula_z = 0.0; } -#ifdef SKIP -cxxExchComp::cxxExchComp(std::vector < cxxExchComp > &ec_vector, - std::vector < LDBLE >&f_vector) - // - // constructor for cxxExchComp from mixing - // -{ - if (ec_vector.size() <= 0) - return; - // - // check consistency - // - std::vector < LDBLE >::iterator it_f; - std::vector < cxxExchComp >::iterator it_ec; - // set fixed variables - it_ec = ec_vector.begin(); - this->formula = it_ec->formula; - this->formula_totals = it_ec->formula_totals; - this->formula_z = it_ec->formula_z; - this->phase_name = it_ec->phase_name; - this->rate_name = it_ec->rate_name; - it_ec++; - for (; it_ec != ec_vector.end(); it_ec++) - { - if (it_ec->formula != this->formula || - it_ec->formula_z != this->formula_z || - it_ec->phase_name != this->phase_name || - this->rate_name != this->rate_name) - { - error_msg - ("Mixing exchange components. Formula, z, phase_name, or rate_name did not match", - STOP); - } - } - // calculate sum of extensive factors - LDBLE sum_extensive = 0; - for (it_f = f_vector.begin(); it_f != f_vector.end(); it_f++) - { - sum_extensive += *it_f; - } - this->moles = 0; - this->la = 0; - this->charge_balance = 0; - this->phase_proportion = 0; - this->totals.clear(); - this->totals.type = cxxNameDouble::ND_ELT_MOLES; - it_ec = ec_vector.begin(); - it_f = f_vector.begin(); - for (; it_ec != ec_vector.end();) - { - LDBLE extensive = *it_f; - LDBLE intensive = extensive / sum_extensive; - this->moles += it_ec->moles * extensive; - this->la += it_ec->la * intensive; - this->charge_balance += it_ec->charge_balance * extensive; - this->phase_proportion += it_ec->phase_proportion * intensive; - this->totals.add_extensive(it_ec->totals, extensive); - it_ec++; - it_f++; - } -} -#endif cxxExchComp::~cxxExchComp() { } @@ -360,7 +306,8 @@ cxxExchComp::add(const cxxExchComp & addee, LDBLE extensive) this->la = f1 * this->la + f2 * addee.la; this->charge_balance += addee.charge_balance * extensive; - if (this->phase_name != addee.phase_name) + //if (this->phase_name != addee.phase_name) + if (Phreeqc::strcmp_nocase(this->phase_name.c_str(), addee.phase_name.c_str()) != 0) { std::ostringstream oss; oss << @@ -374,7 +321,8 @@ cxxExchComp::add(const cxxExchComp & addee, LDBLE extensive) this->phase_proportion = this->phase_proportion * f1 + addee.phase_proportion * f2; } - if (this->rate_name != addee.rate_name) + //if (this->rate_name != addee.rate_name) + if (Phreeqc::strcmp_nocase(this->rate_name.c_str(), addee.rate_name.c_str()) != 0) { std::ostringstream oss; oss << @@ -404,7 +352,7 @@ cxxExchComp::multiply(LDBLE extensive) { this->totals.multiply(extensive); this->charge_balance *= extensive; - this->phase_proportion *= extensive; + //this->phase_proportion *= extensive; } void @@ -447,4 +395,4 @@ const std::vector< std::string >::value_type temp_vopts[] = { std::vector< std::string >::value_type("totals"), // 8 std::vector< std::string >::value_type("formula_totals") // 9 }; -const std::vector< std::string > cxxExchComp::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); \ No newline at end of file +const std::vector< std::string > cxxExchComp::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); diff --git a/ExchComp.h b/ExchComp.h index c2846f7a..6af0718f 100644 --- a/ExchComp.h +++ b/ExchComp.h @@ -87,14 +87,6 @@ class cxxExchComp: public PHRQ_base { this->formula_z = d; } - void Set_totals(struct elt_list *e_l, int count) - { - this->totals = cxxNameDouble(e_l, count); - } - void Set_totals(struct elt_list *e_l) - { - this->totals = cxxNameDouble(e_l); - } void Set_totals(cxxNameDouble nd) { this->totals = nd; diff --git a/Exchange.cxx b/Exchange.cxx index 117123dd..b009bba0 100644 --- a/Exchange.cxx +++ b/Exchange.cxx @@ -15,6 +15,13 @@ #include "Exchange.h" #include "phqalloc.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif ////////////////////////////////////////////////////////////////////// // Construction/Destruction @@ -39,6 +46,7 @@ cxxNumKeyword(io) this->pitzer_exchange_gammas = true; this->new_def = false; this->n_solution = -999; + this->solution_equilibria = false; // // Mix exchangers // @@ -117,40 +125,6 @@ cxxExchange::dump_xml(std::ostream & s_oss, unsigned int indent) const return; } -#ifdef SKIP -void -cxxExchange::dump_xml(std::ostream & s_oss, unsigned int indent) const -{ - unsigned int i; - s_oss.precision(DBL_DIG - 1); - std::string indent0(""), indent1(""), indent2(""); - for (i = 0; i < indent; ++i) - indent0.append(Utilities::INDENT); - for (i = 0; i < indent + 1; ++i) - indent1.append(Utilities::INDENT); - for (i = 0; i < indent + 2; ++i) - indent2.append(Utilities::INDENT); - - // Exchange element and attributes - s_oss << indent0; - s_oss << " - pitzer_exchange_gammas << "\"" << "\n"; - - // components - s_oss << indent1; - s_oss << "::const_iterator it = exchComps.begin(); - it != exchComps.end(); ++it) - { - (*it).second.dump_xml(s_oss, indent + 2); - } - - return; -} -#endif void cxxExchange::dump_raw(std::ostream & s_oss, unsigned int indent, int *n_out) const { @@ -467,7 +441,7 @@ cxxExchange::Deserialize(Dictionary & dictionary, std::vector < int >&ints, std: this->exchange_comps.clear(); for (int n = 0; n < count; n++) { - cxxExchComp ec; + cxxExchComp ec(this->io); ec.Deserialize(dictionary, ints, doubles, ii, dd); this->exchange_comps.push_back(ec); } diff --git a/GasComp.cxx b/GasComp.cxx index 21a13c71..427d169b 100644 --- a/GasComp.cxx +++ b/GasComp.cxx @@ -15,7 +15,13 @@ #include "phqalloc.h" #include "Dictionary.h" - +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif ////////////////////////////////////////////////////////////////////// // Construction/Destruction @@ -30,6 +36,9 @@ cxxGasComp::cxxGasComp(PHRQ_io *io) p_read = 0.0; moles = 0.0; initial_moles = 0.0; + p = 0.0; + phi = 0.0; + f = 0.0; } cxxGasComp::~cxxGasComp() @@ -56,6 +65,9 @@ cxxGasComp::dump_raw(std::ostream & s_oss, unsigned int indent) const s_oss << indent0 << "# GasComp workspace variables #\n"; s_oss << indent0 << "-initial_moles " << this->initial_moles << "\n"; + s_oss << indent0 << "-p " << this->p << "\n"; + s_oss << indent0 << "-phi " << this->phi << "\n"; + s_oss << indent0 << "-f " << this->f << "\n"; } bool @@ -125,6 +137,37 @@ cxxGasComp::read_raw(CParser & parser, bool check) PHRQ_io::OT_CONTINUE); } break; + + case 5: // p + if (!(parser.get_iss() >> this->p)) + { + this->p = 0; + parser.incr_input_error(); + parser.error_msg("Expected numeric value for pressure.", + PHRQ_io::OT_CONTINUE); + } + break; + + case 6: // phi + if (!(parser.get_iss() >> this->phi)) + { + this->phi = 0; + parser.incr_input_error(); + parser.error_msg("Expected numeric value for phi.", + PHRQ_io::OT_CONTINUE); + } + break; + + case 7: // f + if (!(parser.get_iss() >> this->f)) + { + this->f = 0; + parser.incr_input_error(); + parser.error_msg("Expected numeric value for f.", + PHRQ_io::OT_CONTINUE); + } + break; + } if (opt == CParser::OPT_EOF || opt == CParser::OPT_KEYWORD) break; @@ -150,9 +193,9 @@ cxxGasComp::add(const cxxGasComp & addee, LDBLE extensive) if (addee.phase_name.size() == 0) return; - /* - ext1 = this->moles; - ext2 = addee.moles * extensive; + double f1, f2; + double ext1 = this->moles; + double ext2 = addee.moles * extensive; if (ext1 + ext2 != 0) { f1 = ext1 / (ext1 + ext2); @@ -163,13 +206,15 @@ cxxGasComp::add(const cxxGasComp & addee, LDBLE extensive) f1 = 0.5; f2 = 0.5; } - */ assert(this->phase_name == addee.phase_name); - this->p_read += addee.p_read * extensive; + this->p_read = this->p_read*f1 + addee.p_read * f2; this->moles += addee.moles * extensive; this->initial_moles += addee.initial_moles * extensive; + this->p = this->p * f1 + addee.p * f2; + this->phi = this->phi * f1 + addee.phi * f2; + this->f = this->f * f1 + addee.f * f2; } void @@ -178,6 +223,9 @@ cxxGasComp::multiply(LDBLE extensive) this->p_read *= extensive; this->moles *= extensive; this->initial_moles *= extensive; + this->p *= 1.0; + this->phi *= 1.0; + this->f *= 1.0; } void cxxGasComp::Serialize(Dictionary & dictionary, std::vector < int >&ints, std::vector < double >&doubles) @@ -186,6 +234,9 @@ cxxGasComp::Serialize(Dictionary & dictionary, std::vector < int >&ints, std::ve doubles.push_back(this->moles); doubles.push_back(this->p_read); doubles.push_back(this->initial_moles); + doubles.push_back(this->p); + doubles.push_back(this->phi); + doubles.push_back(this->f); } void @@ -196,13 +247,19 @@ cxxGasComp::Deserialize(Dictionary & dictionary, std::vector < int >&ints, this->moles = doubles[dd++]; this->p_read = doubles[dd++]; this->initial_moles = doubles[dd++]; + this->p = doubles[dd++]; + this->phi = doubles[dd++]; + this->f = doubles[dd++]; } const std::vector< std::string >::value_type temp_vopts[] = { - std::vector< std::string >::value_type("phase_name"), // 0 - std::vector< std::string >::value_type("name"), // 1 - std::vector< std::string >::value_type("p_read"), // 2 - std::vector< std::string >::value_type("moles"), // 3 - std::vector< std::string >::value_type("initial_moles") // 4 + std::vector< std::string >::value_type("phase_name"), // 0 + std::vector< std::string >::value_type("name"), // 1 + std::vector< std::string >::value_type("p_read"), // 2 + std::vector< std::string >::value_type("moles"), // 3 + std::vector< std::string >::value_type("initial_moles"), // 4 + std::vector< std::string >::value_type("p"), // 5 + std::vector< std::string >::value_type("phi"), // 6 + std::vector< std::string >::value_type("f") // 7 }; const std::vector< std::string > cxxGasComp::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); diff --git a/GasComp.h b/GasComp.h index d4661a6b..ce44e100 100644 --- a/GasComp.h +++ b/GasComp.h @@ -28,6 +28,12 @@ class cxxGasComp: public PHRQ_base void Set_p_read(LDBLE t) {this->p_read = t;} LDBLE Get_moles() const {return this->moles;} void Set_moles(LDBLE t) {this->moles = t;} + LDBLE Get_p() const { return this->p; } + void Set_p(LDBLE t) { this->p = t; } + LDBLE Get_phi() const { return this->phi; } + void Set_phi(LDBLE t) { this->phi = t; } + LDBLE Get_f() const { return this->f; } + void Set_f(LDBLE t) { this->f = t; } LDBLE Get_initial_moles() const {return this->initial_moles;} void Set_initial_moles(LDBLE t) {this->initial_moles = t;} @@ -44,6 +50,9 @@ class cxxGasComp: public PHRQ_base LDBLE p_read; // internal workspace LDBLE initial_moles; + LDBLE p; + LDBLE phi; + LDBLE f; const static std::vector < std::string > vopts; }; diff --git a/GasPhase.cxx b/GasPhase.cxx index 7be3206c..d4c651ef 100644 --- a/GasPhase.cxx +++ b/GasPhase.cxx @@ -14,6 +14,13 @@ #include "cxxMix.h" #include "phqalloc.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif ////////////////////////////////////////////////////////////////////// // Construction/Destruction @@ -36,7 +43,6 @@ cxxGasPhase::cxxGasPhase(PHRQ_io * io) pr_in = false; temperature = 298.15; } -#ifdef SKIP cxxGasPhase::cxxGasPhase(std::map < int, cxxGasPhase > &entity_map, cxxMix & mx, int l_n_user, PHRQ_io * io) : cxxNumKeyword(io) @@ -47,87 +53,13 @@ cxxGasPhase::cxxGasPhase(std::map < int, cxxGasPhase > &entity_map, v_m = 0; pr_in = false; bool first = true; -// -// Mix -// - // accumulate in map - std::map comp_map; - std::map::iterator comp_it; + new_def = false; + solution_equilibria = false; + n_solution = -999; + type = cxxGasPhase::GP_PRESSURE; + total_moles = 0.0; + temperature = 298.15; - const std::map < int, LDBLE > & mixcomps = mx.Get_mixComps(); - std::map < int, LDBLE >::const_iterator it; - for (it = mixcomps.begin(); it != mixcomps.end(); it++) - { - const cxxGasPhase *entity_ptr = &(entity_map.find(it->first)->second); - if (first) - { - this->new_def = entity_ptr->new_def; - this->solution_equilibria = entity_ptr->solution_equilibria; - this->n_solution = entity_ptr->n_solution; - this->type = entity_ptr->type; - this->total_p = entity_ptr->total_p * it->second; - this->total_moles = entity_ptr->total_moles * it->second; - this->volume = entity_ptr->volume * it->second; - this->v_m = entity_ptr->v_m * it->second; - this->pr_in = entity_ptr->pr_in; - this->temperature = entity_ptr->temperature; - first = false; - } - else - { - if (this->type != entity_ptr->type) - { - std::ostringstream oss; - oss << "Cannot mix two gas_phases with differing types."; - error_msg(oss.str().c_str(), CONTINUE); - return; - } - - this->total_p += entity_ptr->total_p * it->second; - this->volume += entity_ptr->volume * it->second; - this->v_m += entity_ptr->v_m * it->second; - } - cxxGasPhase *gas_phase_ptr = Utilities::Rxn_find(entity_map, it->first); - if (gas_phase_ptr) - { - std::vector add_comps = gas_phase_ptr->Get_gas_comps(); - for (size_t i = 0; i < add_comps.size(); i++) - { - comp_it = comp_map.find(add_comps[i].Get_phase_name()); - if (comp_it != comp_map.end()) - { - comp_it->second.add(add_comps[i], it->second); - } - else - { - cxxGasComp gc(add_comps[i]); - gc.multiply(it->second); - comp_map[add_comps[i].Get_phase_name()] = gc; - } - } - - } - } - - // put map into vector - this->gas_comps.clear(); - std::vector gc; - for (comp_it = comp_map.begin(); comp_it != comp_map.end(); comp_it++) - { - this->gas_comps.push_back(comp_it->second); - } -} -#endif -cxxGasPhase::cxxGasPhase(std::map < int, cxxGasPhase > &entity_map, - cxxMix & mx, int l_n_user, PHRQ_io * io) -: cxxNumKeyword(io) -{ - this->n_user = this->n_user_end = l_n_user; - total_p = 0; - volume = 0; - v_m = 0; - pr_in = false; - bool first = true; // // Mix // @@ -169,9 +101,9 @@ cxxGasPhase::cxxGasPhase(std::map < int, cxxGasPhase > &entity_map, this->pr_in = entity_ptr->pr_in; this->temperature = entity_ptr->temperature; first = false; - } - else - { + } + else + { if (this->type != entity_ptr->type) { std::ostringstream oss; @@ -180,9 +112,13 @@ cxxGasPhase::cxxGasPhase(std::map < int, cxxGasPhase > &entity_map, return; } - this->total_p += entity_ptr->total_p * it->second; + this->total_moles += entity_ptr->total_moles * it->second; this->volume += entity_ptr->volume * it->second; - this->v_m += entity_ptr->v_m * it->second; + if (sum_fractions > 0.0) + { + this->v_m += entity_ptr->v_m * it->second / sum_fractions; + this->total_p += entity_ptr->total_p * it->second / sum_fractions; + } } } cxxGasPhase *gas_phase_ptr = Utilities::Rxn_find(entity_map, it->first); @@ -215,102 +151,10 @@ cxxGasPhase::cxxGasPhase(std::map < int, cxxGasPhase > &entity_map, this->gas_comps.push_back(comp_it->second); } } -#ifdef SKIP -cxxGasPhase::cxxGasPhase(const std::map < int, cxxGasPhase > &entities, - cxxMix & mix, int l_n_user, PHRQ_io * io): -cxxNumKeyword(io) -{ - this->n_user = this->n_user_end = l_n_user; - gasPhaseComps.type = cxxNameDouble::ND_NAME_COEF; - total_p = 0; - volume = 0; - v_m = 0; - pr_in = false; - bool first = true; -// -// Mix -// - //cxxNameDouble gasPhaseComps; - const std::map < int, LDBLE > & mixcomps = mix.Get_mixComps(); - std::map < int, LDBLE >::const_iterator it; - for (it = mixcomps.begin(); it != mixcomps.end(); it++) - { - if (entities.find(it->first) != entities.end()) - { - const cxxGasPhase *entity_ptr = - &(entities.find(it->first)->second); - this->gasPhaseComps.add_extensive(entity_ptr->gasPhaseComps, - it->second); - //GP_TYPE type; - //LDBLE total_p; - //LDBLE volume; - if (first) - { - this->type = entity_ptr->type; - this->total_p = entity_ptr->total_p * it->second; - this->volume = entity_ptr->volume * it->second; - this->v_m = entity_ptr->v_m * it->second; - this->pr_in = entity_ptr->pr_in; - first = false; - } - else - { - if (this->type != entity_ptr->type) - { - std::ostringstream oss; - oss << "Cannot mix two gas_phases with differing types."; - error_msg(oss.str().c_str(), CONTINUE); - //input_error++; - return; - } - - this->total_p += entity_ptr->total_p * it->second; - this->volume += entity_ptr->volume * it->second; - this->v_m += entity_ptr->v_m * it->second; - } - } - } -} -#endif cxxGasPhase::~cxxGasPhase() { } -#ifdef SKIP -void -cxxGasPhase::dump_xml(std::ostream & s_oss, unsigned int indent) const const -{ - unsigned int i; - s_oss.precision(DBL_DIG - 1); - std::string indent0(""), indent1(""), indent2(""); - for (i = 0; i < indent; ++i) - indent0.append(Utilities::INDENT); - for (i = 0; i < indent + 1; ++i) - indent1.append(Utilities::INDENT); - for (i = 0; i < indent + 2; ++i) - indent2.append(Utilities::INDENT); - - // GasPhase element and attributes - s_oss << indent0; - s_oss << " - pitzer_gas_phase_gammas << "\"" << "\n"; - - // components - s_oss << indent1; - s_oss << "::const_iterator it = - gas_phaseComps.begin(); it != gas_phaseComps.end(); ++it) - { - it->dump_xml(s_oss, indent + 2); - } - - return; -} -#endif - void cxxGasPhase::dump_raw(std::ostream & s_oss, unsigned int indent, int *n_out) const { @@ -621,7 +465,7 @@ cxxGasPhase::totalize(Phreeqc * phreeqc_ptr) // component structures for (size_t i = 0; i < this->gas_comps.size(); i++) { - struct phase *phase_ptr; + class phase *phase_ptr; int l; phase_ptr = phreeqc_ptr-> phase_bsearch(this->gas_comps[i].Get_phase_name().c_str(), &l, FALSE); if (phase_ptr != NULL) @@ -645,6 +489,92 @@ LDBLE cxxGasPhase::Calc_total_moles(void)const } return tot; } +void cxxGasPhase::Delete_component(const std::string comp_name) +{ + for (size_t i = 0; i < this->gas_comps.size(); i++) + { + if (Utilities::strcmp_nocase(this->gas_comps[i].Get_phase_name().c_str(), comp_name.c_str()) == 0) + { + this->gas_comps.erase(this->gas_comps.begin() + i); // To delete the ith element + break; + } + } +} +void cxxGasPhase::Set_component_moles(const std::string comp_name, const double moles) +{ + if (moles < 0.0) + { + this->Delete_component(comp_name); + } + else + { + cxxGasComp* ptr = this->Find_comp(comp_name.c_str()); + if (ptr != NULL) + { + ptr->Set_moles(moles); + } + else + { + cxxGasComp temp_comp; + temp_comp.Set_phase_name(comp_name); + temp_comp.Set_moles(moles); + this->gas_comps.push_back(temp_comp); + } + } +} +double cxxGasPhase::Get_component_moles(const std::string comp_name) +{ + double moles = -1.0; + for (size_t i = 0; i < this->gas_comps.size(); i++) + { + if (Utilities::strcmp_nocase(this->gas_comps[i].Get_phase_name().c_str(), comp_name.c_str()) == 0) + { + moles = this->gas_comps[i].Get_moles(); + break; + } + } + return moles; +} +double cxxGasPhase::Get_component_p(const std::string comp_name) +{ + double p = -1.0; + for (size_t i = 0; i < this->gas_comps.size(); i++) + { + if (Utilities::strcmp_nocase(this->gas_comps[i].Get_phase_name().c_str(), comp_name.c_str()) == 0) + { + p = this->gas_comps[i].Get_p(); + break; + } + } + return p; +} +double cxxGasPhase::Get_component_phi(const std::string comp_name) +{ + double phi = -1.0; + for (size_t i = 0; i < this->gas_comps.size(); i++) + { + if (Utilities::strcmp_nocase(this->gas_comps[i].Get_phase_name().c_str(), comp_name.c_str()) == 0) + { + phi = this->gas_comps[i].Get_phi(); + break; + } + } + return phi; +} +double cxxGasPhase::Get_component_f(const std::string comp_name) +{ + double f = -1.0; + for (size_t i = 0; i < this->gas_comps.size(); i++) + { + if (Utilities::strcmp_nocase(this->gas_comps[i].Get_phase_name().c_str(), comp_name.c_str()) == 0) + { + f = this->gas_comps[i].Get_f(); + break; + } + } + return f; +} + cxxGasComp * cxxGasPhase::Find_comp(const char * comp_name) { diff --git a/GasPhase.h b/GasPhase.h index 7dde49d1..1798feb1 100644 --- a/GasPhase.h +++ b/GasPhase.h @@ -24,7 +24,8 @@ class cxxGasPhase:public cxxNumKeyword enum GP_TYPE { GP_PRESSURE = 0, - GP_VOLUME = 1 + GP_VOLUME = 1, + GP_UNKNOWN = 2 }; //void dump_xml(std::ostream& os, unsigned int indent = 0)const; @@ -69,7 +70,12 @@ class cxxGasPhase:public cxxNumKeyword cxxGasComp *Find_comp(const char * comp_name); void Serialize(Dictionary & dictionary, std::vector < int >&ints, std::vector < double >&doubles); void Deserialize(Dictionary & dictionary, std::vector < int >&ints, std::vector < double >&doubles, int &ii, int &dd); - + void Delete_component(const std::string comp_name); + void Set_component_moles(const std::string comp_name, const double moles); + double Get_component_moles(const std::string comp_name); + double Get_component_p(const std::string comp_name); + double Get_component_phi(const std::string comp_name); + double Get_component_f(const std::string comp_name); protected: void add(const cxxGasPhase & addee, LDBLE extensive); diff --git a/ISolution.cxx b/ISolution.cxx index 29afa583..a7728789 100644 --- a/ISolution.cxx +++ b/ISolution.cxx @@ -13,6 +13,13 @@ #include "ISolution.h" #include "phqalloc.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif ////////////////////////////////////////////////////////////////////// // Construction/Destruction @@ -23,7 +30,7 @@ cxxISolution::cxxISolution(PHRQ_io *io) units("mMol/kgw") { default_pe = "pe"; - cxxChemRxn temp_pe_reactions; + CReaction temp_pe_reactions; pe_reactions[default_pe] = temp_pe_reactions; this->calc_density = false; @@ -31,179 +38,3 @@ units("mMol/kgw") cxxISolution::~cxxISolution() { } - -#ifdef SKIP_OR_MOVE_TO_STRUCTURES -void -cxxISolution::ConvertUnits(Phreeqc * phreeqc_ptr) - // - // Converts from input units to moles per kilogram water - // -{ - LDBLE sum_solutes = 0; - // foreach conc - std::map < std::string, cxxISolutionComp >::iterator iter = - this->comps.begin(); - for (; iter != this->comps.end(); ++iter) - { - struct master *master_ptr = phreeqc_ptr-> master_bsearch(iter->first.c_str()); - if (master_ptr != NULL && (master_ptr->minor_isotope == TRUE)) - continue; - //if (iter->second.Get_description() == "H(1)" || iter->second.Get_description() == "E") continue; - if (strcmp(iter->second.Get_description().c_str(), "H(1)") == 0 - || strcmp(iter->second.Get_description().c_str(), "E")) - continue; - if (iter->second.get_input_conc() <= 0.0) - continue; -/* -* Convert liters to kg solution -*/ - LDBLE moles = iter->second.get_input_conc(); - if (this->units.find("/l") != std::string::npos) - { - moles /= this->density; - } -/* -* Convert to moles -*/ - //set gfw for element - iter->second.set_gfw(phreeqc_ptr); - // convert to moles - if (iter->second.get_units().find("g/") != std::string::npos) - { - if (iter->second.get_gfw() != 0) - { - moles /= iter->second.get_gfw(); - } - else - { - std::ostringstream oss; - oss << "Could not find gfw, " << iter->second. - Get_description(); - error_msg(oss.str().c_str(), CONTINUE); - } - } -/* -* Convert milli or micro -*/ - char c = iter->second.get_units().c_str()[0]; - if (c == 'm') - { - moles *= 1e-3; - } - else if (c == 'u') - { - moles *= 1e-6; - } - iter->second.set_moles(moles); -/* -* Sum grams of solute, convert from moles necessary -*/ - sum_solutes += moles * (iter->second.get_gfw()); - } -/* - * Convert /kgs to /kgw - */ - LDBLE l_mass_water; - if ((this->units.find("kgs") != std::string::npos) || - (this->units.find("/l") != std::string::npos)) - { - l_mass_water = 1.0 - 1e-3 * sum_solutes; - for (; iter != this->comps.end(); ++iter) - { - iter->second.set_moles(iter->second.get_moles() / l_mass_water); - } - } -/* - * Scale by mass of water in solution - */ - l_mass_water = this->mass_water; - for (; iter != this->comps.end(); ++iter) - { - iter->second.set_moles(iter->second.get_moles() * l_mass_water); - } -} -#endif - -#ifdef SKIP -void -cxxISolution::dump_xml(std::ostream & os, unsigned int indent) const const -{ - unsigned int i; - - for (i = 0; i < indent; ++i) - os << Utilities::INDENT; - os << "\n"; - - cxxNumKeyword::dump_xml(os, indent); - - for (i = 0; i < indent + 1; ++i) - os << Utilities::INDENT; - os << "" << this->get_tc() << "" << "\n"; - - for (i = 0; i < indent + 1; ++i) - os << Utilities::INDENT; - os << "" << this->get_ph() << "" << "\n"; - - for (i = 0; i < indent + 1; ++i) - os << Utilities::INDENT; - os << "" << this->get_solution_pe() << "" << "\n"; - - assert(this->pe.size() > 0); - assert(this->default_pe >= 0); - assert(this->pe.size() > (unsigned int) this->default_pe); - - for (i = 0; i < indent + 1; ++i) - os << Utilities::INDENT; - os << "" << this->get_units() << "" << "\n"; - - for (i = 0; i < indent + 1; ++i) - os << Utilities::INDENT; - os << "" << this->get_density() << "" << "\n"; - - // foreach conc - if (!this->totals.empty()) - { - for (i = 0; i < indent + 1; ++i) - os << Utilities::INDENT; - os << "\n"; - - std::vector < cxxISolutionComp >::const_iterator iter = - this->totals.begin(); - for (; iter != this->totals.end(); ++iter) - { - (*iter).dump_xml(*this, os, indent + 2); - } - - for (i = 0; i < indent + 1; ++i) - os << Utilities::INDENT; - os << "\n"; - } - - // foreach isotope - if (!this->isotopes.empty()) - { - for (i = 0; i < indent + 1; ++i) - os << Utilities::INDENT; - os << "\n"; - - std::list < cxxIsotope >::const_iterator iter = - this->isotopes.begin(); - for (; iter != this->isotopes.end(); ++iter) - { - (*iter).dump_xml(os, indent + 2); - } - - for (i = 0; i < indent + 1; ++i) - os << Utilities::INDENT; - os << "\n"; - } - - for (i = 0; i < indent + 1; ++i) - os << Utilities::INDENT; - os << "" << this->get_mass_water() << "" << "\n"; - - for (i = 0; i < indent; ++i) - os << Utilities::INDENT; - os << "" << "\n"; -} -#endif diff --git a/ISolution.h b/ISolution.h index 1c7de94e..10fb7160 100644 --- a/ISolution.h +++ b/ISolution.h @@ -38,17 +38,15 @@ class cxxISolution: public PHRQ_base std::map < std::string, cxxISolutionComp > &Get_comps(void) {return this->comps;} const std::map < std::string, cxxISolutionComp > &Get_comps(void)const {return this->comps;} void Set_comps(std::map < std::string, cxxISolutionComp > &c) {this->comps = c;} - std::map < std::string, cxxChemRxn > &Get_pe_reactions(void) {return this->pe_reactions;} - void Set_pe_reactions(std::map < std::string, cxxChemRxn > &pe) {this->pe_reactions = pe;} - //void dump_xml(std::ostream& os, unsigned int indent = 0)const; - //void ConvertUnits(Phreeqc * phreeqc_ptr); + std::map& Get_pe_reactions(void) { return this->pe_reactions; } + void Set_pe_reactions(std::map < std::string, CReaction >& pe) { this->pe_reactions = pe; } protected: friend class cxxISolutionComp; // for this->pe access std::string units; bool calc_density; std::map < std::string, cxxISolutionComp > comps; - std::map pe_reactions; + std::map pe_reactions; const char * default_pe; }; diff --git a/ISolutionComp.cxx b/ISolutionComp.cxx index 7e0ca016..d9fd455f 100644 --- a/ISolutionComp.cxx +++ b/ISolutionComp.cxx @@ -9,6 +9,14 @@ #include "Solution.h" #include "phqalloc.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + cxxISolutionComp::cxxISolutionComp(PHRQ_io *io): PHRQ_base(io), moles(0.0), @@ -21,259 +29,6 @@ cxxISolutionComp::~cxxISolutionComp(void) { } -#ifdef SKIP_OR_MOVE_TO_STRUCTURES -struct conc * -cxxISolutionComp::cxxISolutionComp2conc(Phreeqc * phreeqc_ptr, const std::map < std::string, - cxxISolutionComp > &totals) - // for ISolutions - // takes a std::vector cxxISolutionComp structures - // returns list of conc structures -{ - struct conc *c; - c = (struct conc *) - phreeqc_ptr-> PHRQ_malloc((size_t) ((totals.size() + 1) * sizeof(struct conc))); - if (c == NULL) - phreeqc_ptr-> malloc_error(); - int i = 0; - for (std::map < std::string, cxxISolutionComp >::const_iterator it = totals.begin(); - it != totals.end(); ++it) - { - c[i].description = phreeqc_ptr-> string_duplicate(it->second.description.c_str()); - c[i].moles = it->second.moles; - c[i].input_conc = it->second.input_conc; - if (it->second.units.size() == 0) - c[i].units = NULL; - else - c[i].units = phreeqc_ptr-> string_hsave(it->second.units.c_str()); - if (it->second.equation_name.size() == 0) - c[i].equation_name = NULL; - else - c[i].equation_name = phreeqc_ptr-> string_hsave(it->second.equation_name.c_str()); - c[i].phase_si = it->second.phase_si; - c[i].n_pe = it->second.n_pe; - c[i].as = phreeqc_ptr-> string_hsave(it->second.as.c_str()); - c[i].gfw = it->second.gfw; - //c[i].skip = 0; - c[i].phase = NULL; - i++; - } - c[i].description = NULL; - return (c); -} -#endif - -#ifdef SKIP_OR_MOVE_TO_STRUCTURES -void -cxxISolutionComp::set_gfw(Phreeqc * phreeqc_ptr) -{ -// return gfw - if (this->gfw > 0.0) - return; -// calculate gfw from as or from master species gfw - if (this->as.size() != 0) - { - /* use given chemical formula to calculate gfw */ - LDBLE l_gfw; - if (phreeqc_ptr-> compute_gfw(this->as.c_str(), &l_gfw) == ERROR) - { - std::ostringstream oss; - oss << "Could not compute gfw, " << this->as; - error_msg(oss.str().c_str(), CONTINUE); - return; - } - //if (this->description == "Alkalinity" && this->as == "CaCO3") - if (strcmp(this->description.c_str(), "Alkalinity") == 0 - && strcmp(this->as.c_str(), "CaCO3")) - { - l_gfw /= 2.; - } - this->gfw = l_gfw; - return; - } - /* use gfw of master species */ - std::string str(this->description); - struct master *master_ptr = phreeqc_ptr-> master_bsearch(str.c_str()); - if (master_ptr != NULL) - { - /* use gfw for element redox state */ - this->gfw = master_ptr->gfw; - return; - } - std::ostringstream oss; - oss << "Could not find gfw, " << this->description; - error_msg(oss.str().c_str(), CONTINUE); - return; -} -#endif -#ifdef SKIP -cxxISolutionComp::STATUS_TYPE cxxISolutionComp::read(CParser & parser, - cxxISolution & solution) -{ - // std::string& str = parser.line(); - std::string str = parser.line(); - - // defaults set in ctor - - // Remove space between "kg" and "solution" or "water" in units - Utilities::replace("Kg", "kg", str); - Utilities::replace("KG", "kg", str); - while (Utilities::replace("kg ", "kg", str)); - - std::istream::pos_type ptr = 0; - - // - // Read master species list for mass balance equation - // - std::string token; - std::string token1; - int - count_redox_states = 0; - CParser::TOKEN_TYPE j; - while (((j = parser.copy_token(token, ptr)) == CParser::TT_UPPER) || - (token[0] == '[') || - (Utilities::strcmp_nocase_arg1(token.c_str(), "ph") == 0) || - (Utilities::strcmp_nocase_arg1(token.c_str(), "pe") == 0)) - { - ++count_redox_states; - Utilities::replace("(+", "(", token); - if (count_redox_states > 1) - token1 += " "; - token1 += token; - } - if (count_redox_states == 0) - { - parser.incr_input_error(); - parser. - error_msg - ("No element or master species given for concentration input.", - PHRQ_io::OT_CONTINUE); - return cxxISolutionComp::ERROR; - } - description = token1; - - // Determine if reading alkalinity, allow equivalents for units - Utilities::str_tolower(token1); - bool - alk = false; - if (token1.find("alk") == 0) - { - alk = true; - } - - // Read concentration - if (!(std::istringstream(token) >> this->input_conc)) - { - std::ostringstream err; - err << "Concentration data error for " << token1 << - " in solution input."; - parser.error_msg(err, PHRQ_io::OT_CONTINUE); - return cxxISolutionComp::ERROR; - } - if ((j = parser.copy_token(token, ptr)) == CParser::TT_EMPTY) - return cxxISolutionComp::OK; - - // Read optional data - token1 = token; - - // Check for units info - if (parser.check_units(token1, alk, false, solution.get_units(), false) == - CParser::OK) - { - if (parser. - check_units(token1, alk, false, solution.get_units(), - true) == CParser::OK) - { - this->units = token1; - if ((j = parser.copy_token(token, ptr)) == CParser::TT_EMPTY) - return cxxISolutionComp::OK; - } - else - { - return cxxISolutionComp::ERROR; - } - } - - // Check for "as" followed by formula to be used for gfw - token1 = token; - Utilities::str_tolower(token1); - if (token1.compare("as") == 0) - { - parser.copy_token(token, ptr); - this->as = token; - if ((j = parser.copy_token(token, ptr)) == CParser::TT_EMPTY) - return cxxISolutionComp::OK; - } - // Check for "gfw" followed by gram formula weight - else if (token1.compare("gfw") == 0) - { - if (parser.copy_token(token, ptr) != CParser::TT_DIGIT) - { - parser.error_msg("Expecting gram formula weight.", - PHRQ_io::OT_CONTINUE); - return cxxISolutionComp::ERROR; - } - else - { - parser.get_iss() >> this->gfw; - if ((j = parser.copy_token(token, ptr)) == CParser::TT_EMPTY) - return cxxISolutionComp::OK; - } - } - - // Check for redox couple for pe - if (Utilities::strcmp_nocase_arg1(token.c_str(), "pe") == 0) - { - this->n_pe = cxxPe_Data::store(solution.pe, token); - if ((j = parser.copy_token(token, ptr)) == CParser::TT_EMPTY) - return cxxISolutionComp::OK; - } - else if (token.find("/") != std::string::npos) - { - if (parser.parse_couple(token) == CParser::OK) - { - this->n_pe = cxxPe_Data::store(solution.pe, token); - if ((j = parser.copy_token(token, ptr)) == CParser::TT_EMPTY) - return cxxISolutionComp::OK; - } - else - { - return cxxISolutionComp::ERROR; - } - } - - // Must have phase - this->equation_name = token; - if ((j = parser.copy_token(token, ptr)) == CParser::TT_EMPTY) - return cxxISolutionComp::OK; - - // Check for saturation index - if (!(std::istringstream(token) >> this->phase_si)) - { - parser.error_msg("Expected saturation index.", PHRQ_io::OT_CONTINUE); - return cxxISolutionComp::ERROR; - } - return cxxISolutionComp::OK; -} -#endif -#ifdef SKIP -void -cxxISolutionComp::dump_xml(std::ostream & s_oss, unsigned int indent) const const -{ - unsigned int i; - std::string indent0(""); - for (i = 0; i < indent; ++i) - indent0.append(Utilities::INDENT); - - s_oss << indent0; - s_oss << "description << "\""; - - s_oss << " conc_moles=\"" << this->moles << "\""; - - s_oss << "\">" << "\n"; -} -#endif /* ---------------------------------------------------------------------- */ CParser::STATUS_TYPE cxxISolutionComp:: read(const char *line_in, cxxSolution *solution_ptr) @@ -397,7 +152,7 @@ read(const char *line_in, cxxSolution *solution_ptr) } else { - sscanf(token.c_str(), SCANFORMAT, &this->gfw); + (void)sscanf(token.c_str(), SCANFORMAT, &this->gfw); if ((CParser::copy_token(token, b, e)) == CParser::TT_EMPTY) return (CParser::PARSER_OK); } @@ -444,4 +199,4 @@ read(const char *line_in, cxxSolution *solution_ptr) } return (CParser::PARSER_OK); -} \ No newline at end of file +} diff --git a/KineticsComp.cxx b/KineticsComp.cxx index 3c9cd177..b4d29f17 100644 --- a/KineticsComp.cxx +++ b/KineticsComp.cxx @@ -14,6 +14,14 @@ #include "phqalloc.h" #include "Dictionary.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + ////////////////////////////////////////////////////////////////////// // Construction/Destruction ////////////////////////////////////////////////////////////////////// @@ -36,51 +44,6 @@ cxxKineticsComp::~cxxKineticsComp() { } -#ifdef SKIP -void -cxxKineticsComp::dump_xml(std::ostream & s_oss, unsigned int indent) const const -{ - unsigned int i; - s_oss.precision(DBL_DIG - 1); - std::string indent0(""), indent1(""), indent2(""); - for (i = 0; i < indent; ++i) - indent0.append(Utilities::INDENT); - for (i = 0; i < indent + 1; ++i) - indent1.append(Utilities::INDENT); - for (i = 0; i < indent + 2; ++i) - indent2.append(Utilities::INDENT); - - // Kinetics_Comp element and attributes - - s_oss << indent0 << "formula=\"" << this->formula << "\"" << "\n"; - s_oss << indent0 << "moles=\"" << this->moles << "\"" << "\n"; - s_oss << indent0 << "la=\"" << this->la << "\"" << "\n"; - s_oss << indent0 << "charge_balance=\"" << this-> - charge_balance << "\"" << "\n"; - if (this->phase_name != NULL) - { - s_oss << indent0 << "phase_name=\"" << this-> - phase_name << "\"" << "\n"; - } - if (this->rate_name != NULL) - { - s_oss << indent0 << "rate_name=\"" << this-> - rate_name << "\"" << "\n"; - } - s_oss << indent0 << "phase_proportion=\"" << this-> - phase_proportion << "\"" << "\n"; - - // totals - s_oss << indent0; - s_oss << "totals.dump_xml(s_oss, indent + 1); - - // formula_totals - s_oss << indent0; - s_oss << "formula_totals.dump_xml(s_oss, indent + 1); -} -#endif void cxxKineticsComp::dump_raw(std::ostream & s_oss, unsigned int indent) const { @@ -233,7 +196,7 @@ cxxKineticsComp::read_raw(CParser & parser, bool check) while (parser.copy_token(token, next_char) == CParser::TT_DIGIT) { double dd; - sscanf(token.c_str(), "%lf", &dd); + (void)sscanf(token.c_str(), "%lf", &dd); temp_d_params.push_back((LDBLE) dd); d_params_defined = true; } diff --git a/Makefile.am b/Makefile.am index b7651924..a568ea8c 100644 --- a/Makefile.am +++ b/Makefile.am @@ -24,6 +24,7 @@ phreeqc_SOURCES=\ common/Parser.h\ common/PHRQ_base.cxx\ common/PHRQ_base.h\ + common/PHRQ_exports.h\ common/PHRQ_io.cpp\ common/PHRQ_io.h\ common/phrqtype.h\ diff --git a/Makefile.old b/Makefile.old index 6d7279c2..c0b66adb 100644 --- a/Makefile.old +++ b/Makefile.old @@ -158,7 +158,7 @@ ifeq ($(CFG), CLASS_DEBUG_64) CL1MP_OBJS=cl1mp.o CL1MP_LIB=libgmp.a endif - DEFINES = -DUSE_PHRQ_ALLOC $(DEFINE_INVERSE_CL1MP) # -DPHREEQC2 + DEFINES = -DUSE_PHRQ_ALLOC $(DEFINE_INVERSE_CL1MP) -DTEST_COPY_OPERATOR VPATH = ..:../PhreeqcKeywords:../common INCLUDES = -I.. -I../PhreeqcKeywords -I../common CXX = g++ @@ -971,8 +971,8 @@ tester: # cd ../mytest; make clean; make -k -j 1 $(SPOOL) make.out $(SPOOL2); make diff $(SPOOL) diff.out $(SPOOL2) cd ../mytest $(CONCAT) make clean $(CONCAT) make -k -j 1 $(SPOOL) make.out $(SPOOL2) $(CONCAT) make diff $(SPOOL) diff.out $(SPOOL2) cd ../examples $(CONCAT) make -f Makefile.old clean $(CONCAT) make -f Makefile.old -k -j 1 $(SPOOL) make.out $(SPOOL2) $(CONCAT) make -f Makefile.old diff $(SPOOL) diff.out $(SPOOL2) - svn status -q ../mytest - svn status -q ../examples +# svn status -q ../mytest +# svn status -q ../examples #ld-option # Usage: ldflags += $(call ld-option, -Wl$(comma)--hash-style=sysv) diff --git a/NA.h b/NA.h index 7f1afa93..3222c6cb 100644 --- a/NA.h +++ b/NA.h @@ -1 +1 @@ -#define NA -98.7654321 \ No newline at end of file +#define NA -98.7654321 diff --git a/NameDouble.cxx b/NameDouble.cxx index 5780cfc8..3dcf9607 100644 --- a/NameDouble.cxx +++ b/NameDouble.cxx @@ -17,6 +17,13 @@ #include "phqalloc.h" #include "ISolutionComp.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif ////////////////////////////////////////////////////////////////////// // Construction/Destruction @@ -29,39 +36,17 @@ cxxNameDouble::cxxNameDouble() { this->type = ND_ELT_MOLES; } - -cxxNameDouble::cxxNameDouble(struct elt_list *elt_list_ptr) - // - // constructor for cxxNameDouble from list of elt_list - // +cxxNameDouble::cxxNameDouble(const std::vector& el) +// constructor for cxxNameDouble from vector of elt_list { - int i; - if (elt_list_ptr != NULL) + size_t i; + const class elt_list* elt_list_ptr = &el[0]; + for (i = 0; elt_list_ptr[i].elt != NULL; i++) { - for (i = 0; elt_list_ptr[i].elt != NULL; i++) - { - (*this)[elt_list_ptr[i].elt->name] = elt_list_ptr[i].coef; - } + (*this)[elt_list_ptr[i].elt->name] = elt_list_ptr[i].coef; } this->type = ND_ELT_MOLES; } - -cxxNameDouble::cxxNameDouble(struct elt_list *elt_list_ptr, int count) - // - // constructor for cxxNameDouble from list of elt_list with known count - // -{ - int i; - if (elt_list_ptr != NULL) - { - for (i = 0; i < count; i++) - { - (*this)[elt_list_ptr[i].elt->name] = elt_list_ptr[i].coef; - } - } - this->type = ND_ELT_MOLES; -} - cxxNameDouble::cxxNameDouble(const cxxNameDouble & old, LDBLE factor) // // constructor for cxxNameDouble from list of elt_list @@ -96,24 +81,7 @@ cxxNameDouble::cxxNameDouble(std::map < std::string, cxxISolutionComp > &comps) } this->type = ND_ELT_MOLES; } -#ifdef SKIP -cxxNameDouble::cxxNameDouble(struct master_activity *ma, int count, - cxxNameDouble::ND_TYPE l_type) - // - // constructor for cxxNameDouble from list of elt_list - // -{ - int i; - for (i = 0; i < count; i++) - { - if (ma[i].description == NULL) - continue; - (*this)[ma[i].description] = ma[i].la; - } - this->type = l_type; -} -#endif -cxxNameDouble::cxxNameDouble(struct name_coef *nc, int count) +cxxNameDouble::cxxNameDouble(class name_coef *nc, int count) // // constructor for cxxNameDouble from list of elt_list // @@ -379,38 +347,7 @@ cxxNameDouble::Simplify_redox(void) const } return new_totals; } -#ifdef SKIP -cxxNameDouble -cxxNameDouble::Simplify_redox(void) -{ - // remove individual redox states from totals - cxxNameDouble &nd = *this; - std::set list_of_elements; - cxxNameDouble::const_iterator it; - for (it = nd.begin(); it != nd.end(); ++it) - { - std::string current_ename(it->first); - std::basic_string < char >::size_type indexCh; - indexCh = current_ename.find("("); - if (indexCh != std::string::npos) - { - current_ename = current_ename.substr(0, indexCh); - } - if (current_ename == "H" || current_ename == "O" || current_ename == "Charge") - continue; - list_of_elements.insert(current_ename); - } - cxxNameDouble new_totals; - new_totals.type = cxxNameDouble::ND_ELT_MOLES; - std::set::iterator nt_it = list_of_elements.begin(); - for( ; nt_it != list_of_elements.end(); nt_it++) - { - new_totals[(*nt_it).c_str()] = nd.Get_total_element((*nt_it).c_str()); - } - return new_totals; -} -#endif void cxxNameDouble::Multiply_activities_redox(std::string str, LDBLE f) { @@ -439,34 +376,6 @@ cxxNameDouble::Multiply_activities_redox(std::string str, LDBLE f) if (str[0] < it->first[0]) break; } } -#ifdef SKIP -void -cxxNameDouble::Multiply_activities_redox(std::string str, LDBLE f) -{ - // update original master_activities using just computed factors - cxxNameDouble::iterator it; - LDBLE lg_f = log10(f); - std::string redox_name = str; - redox_name.append("("); - - for (it = this->begin(); it != this->end(); it++) - { - if (it->first == str) - { - // Found exact match - it->second += lg_f; - } - else - { - // no exact match, current is element name, need to find all valences - if (strstr(it->first.c_str(), redox_name.c_str()) == it->first.c_str()) - { - it->second += lg_f; - } - } - } -} -#endif LDBLE cxxNameDouble::Get_total_element(const char *string) const { diff --git a/NameDouble.h b/NameDouble.h index 7df7e53b..cbc9091f 100644 --- a/NameDouble.h +++ b/NameDouble.h @@ -1,11 +1,7 @@ #if !defined(NAMEDOUBLE_H_INCLUDED) #define NAMEDOUBLE_H_INCLUDED -#if defined(_WINDLL) -#define IPQ_DLL_EXPORT __declspec(dllexport) -#else -#define IPQ_DLL_EXPORT -#endif +#include "PHRQ_exports.h" #include // assert #include // std::map @@ -32,11 +28,10 @@ class IPQ_DLL_EXPORT cxxNameDouble:public }; cxxNameDouble(); - cxxNameDouble(struct elt_list *); - cxxNameDouble(struct elt_list *, int count); + cxxNameDouble(const std::vector& el); cxxNameDouble(std::map < std::string, cxxISolutionComp > &comps); - cxxNameDouble(struct name_coef *nc, int count); + cxxNameDouble(class name_coef *nc, int count); cxxNameDouble(const cxxNameDouble & old, LDBLE factor); ~cxxNameDouble(); diff --git a/NumKeyword.cxx b/NumKeyword.cxx index 0dae9df6..4dad6469 100644 --- a/NumKeyword.cxx +++ b/NumKeyword.cxx @@ -10,6 +10,14 @@ #include "Parser.h" #include "Utils.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + ////////////////////////////////////////////////////////////////////// // Construction/Destruction ////////////////////////////////////////////////////////////////////// @@ -135,6 +143,7 @@ cxxNumKeyword::read_number_description(const std::string & line_in) std::string line = line_in; std::string::iterator b = line.begin(); std::string::iterator e = line.end(); + this->description.clear(); // skip keyword CParser::copy_token(keyword, b, e); @@ -168,11 +177,11 @@ cxxNumKeyword::read_number_description(const std::string & line_in) else { this->n_user = this->n_user_end = 1; + this->description = token; } // skip whitespace std::string::iterator ic; - this->description.clear(); for (ic = b; ic != e; ic++) { this->description += *ic; diff --git a/PBasic.cpp b/PBasic.cpp index 2cfcadc5..09016cd9 100644 --- a/PBasic.cpp +++ b/PBasic.cpp @@ -1,15 +1,10 @@ -#if defined(WIN32) && !defined(__GNUC__) -#include -#if defined(PHREEQCI_GUI) -#include "../../resource.h" -#endif -#else +#if !(defined(WIN32) && !defined(__GNUC__)) #include #define _ASSERTE assert #endif #include -#include "PBasic.h" #include "Phreeqc.h" +#include "PBasic.h" #include "phqalloc.h" #include "NameDouble.h" #include "Utils.h" @@ -29,6 +24,14 @@ #define toklength 20 typedef long chset[9]; +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /* Output from p2c, the Pascal-to-C translator */ /* From input file "basic.p" */ @@ -64,18 +67,19 @@ PBasic::PBasic(Phreeqc * ptr, PHRQ_io *phrq_io) nIDErrPrompt = (PBasic::IDErr)0; #endif nErrLineNumber = 0; + punch_tab = true; + skip_punch = false; // Basic commands initialized at bottom of file } PBasic::~PBasic(void) { - } int PBasic:: -basic_compile(char *commands, void **lnbase, void **vbase, void **lpbase) +basic_compile(const char *commands, void **lnbase, void **vbase, void **lpbase) { /*main */ int l; - char *ptr; + const char *ptr; P_escapecode = 0; P_ioresult = 0; @@ -162,7 +166,7 @@ int PBasic:: basic_renumber(char *commands, void **lnbase, void **vbase, void **lpbase) { /*main */ int l, i; - char *ptr; + const char *ptr; P_escapecode = 0; P_ioresult = 0; @@ -243,7 +247,7 @@ int PBasic:: basic_run(char *commands, void *lnbase, void *vbase, void *lpbase) { /*main */ int l; - char *ptr; + const char *ptr; P_escapecode = 0; P_ioresult = 0; inbuf = (char *) PhreeqcPtr->PHRQ_calloc(PhreeqcPtr->max_line, sizeof(char)); @@ -315,10 +319,10 @@ basic_run(char *commands, void *lnbase, void *vbase, void *lpbase) } int PBasic:: -basic_main(char *commands) +basic_main(const char *commands) { /*main */ int l; - char *ptr; + const char *ptr; P_escapecode = 0; P_ioresult = 0; @@ -377,7 +381,7 @@ basic_main(char *commands) /* ---------------------------------------------------------------------- */ int PBasic:: -sget_logical_line(char **ptr, int *l, char *return_line) +sget_logical_line(const char **ptr, int *l, char *return_line) /* ---------------------------------------------------------------------- */ { /* @@ -721,7 +725,7 @@ parse(char * l_inbuf, tokenrec ** l_buf) * Note: Modification of string length may translate incorrectly [146] */ /* - * Search hash list + * Search list */ PhreeqcPtr->str_tolower(token); std::map::const_iterator item; @@ -1035,14 +1039,6 @@ listtokens(FILE * f, tokenrec * l_buf) output_msg("SQRT"); break; - case tokceil: - output_msg("CEIL"); - break; - - case tokfloor: - output_msg("FLOOR"); - break; - case toksin: output_msg("SIN"); break; @@ -1087,10 +1083,6 @@ listtokens(FILE * f, tokenrec * l_buf) output_msg("CHR$"); break; - case tokeol_: - output_msg("EOL$"); - break; - case tokasc: output_msg("ASC"); break; @@ -1115,10 +1107,6 @@ listtokens(FILE * f, tokenrec * l_buf) output_msg("LET"); break; - case tokprint: - output_msg("PRINT"); - break; - case tokinput: output_msg("INPUT"); break; @@ -1187,10 +1175,6 @@ listtokens(FILE * f, tokenrec * l_buf) output_msg("DIM"); break; - case tokerase: - output_msg("ERASE"); - break; - case tokpoke: output_msg("POKE"); break; @@ -1215,10 +1199,6 @@ listtokens(FILE * f, tokenrec * l_buf) output_msg("MERGE"); break; - case toksave: - output_msg("SAVE"); - break; - case tokbye: output_msg("BYE"); break; @@ -1242,312 +1222,146 @@ listtokens(FILE * f, tokenrec * l_buf) case tokto: output_msg(" TO "); break; - case tokstep: output_msg(" STEP "); break; - - case toktc: - output_msg("TC"); - break; - - case tokm0: - output_msg("M0"); - break; - - case tokm: - output_msg("M"); - break; - - case tokparm: - output_msg("PARM"); - break; - +/* +* PHREEQC functions +*/ case tokact: output_msg("ACT"); break; - - case tokchange_por: - output_msg("CHANGE_POR"); + case tokadd_heading: + output_msg("ADD_HEADING"); break; - - case tokget_por: - output_msg("GET_POR"); - break; - - case tokchange_surf: - output_msg("CHANGE_SURF"); - break; - - case tokporevolume: - output_msg("POREVOLUME"); - break; - - case tokmol: - output_msg("MOL"); - break; - - case tokla: - output_msg("LA"); - break; - - case toklm: - output_msg("LM"); - break; - - case toksr: - output_msg("SR"); - break; - - case toksi: - output_msg("SI"); - break; - - case toktot: - output_msg("TOT"); - break; - - case toktotmole: - case toktotmol: - case toktotmoles: - output_msg("TOTMOLE"); - break; - - case toktk: - output_msg("TK"); - break; - - case toktime: - output_msg("TIME"); - break; - - case toklog10: - output_msg("LOG10"); - break; - - case toksim_time: - output_msg("SIM_TIME"); - break; - - case tokequi: - output_msg("EQUI"); - break; - - case tokequi_delta: - output_msg("EQUI_DELTA"); - break; - - case tokgas: - output_msg("GAS"); - break; - - case tokpunch: - output_msg("PUNCH"); - break; - - case tokkin: - output_msg("KIN"); - break; - - case tokkin_delta: - output_msg("KIN_DELTA"); - break; - - case tokkin_time: - output_msg("KIN_TIME"); - break; - - case toks_s: - output_msg("S_S"); - break; - - case tokmu: - output_msg("MU"); - break; - - case tokosmotic: - output_msg("OSMOTIC"); - break; - case tokalk: output_msg("ALK"); break; - - case toklk_species: - output_msg("LK_SPECIES"); + case tokaphi: + output_msg("APHI"); // mole volume of a phase break; - - case toklk_named: - output_msg("LK_NAMED"); - break; - - case toklk_phase: - output_msg("LK_PHASE"); - break; - - case toksum_species: - output_msg("SUM_SPECIES"); - break; - - case toksum_gas: - output_msg("SUM_GAS"); - break; - - case toksum_s_s: - output_msg("SUM_s_s"); - break; - case tokcalc_value: output_msg("CALC_VALUE"); break; - - case tokdescription: - output_msg("DESCRIPTION"); + case tokceil: + output_msg("CEIL"); break; - - case toktitle: - output_msg("TITLE"); + case tokcell_no: + output_msg("CELL_NO"); break; - - case toksys: - output_msg("SYS"); + case tokchange_por: + output_msg("CHANGE_POR"); break; - - case tokinstr: - output_msg("INSTR"); + case tokchange_surf: + output_msg("CHANGE_SURF"); break; - - case tokltrim: - output_msg("LTRIM"); - break; - - case tokrtrim: - output_msg("RTRIM"); - break; - - case toktrim: - output_msg("TRIM"); - break; - - case tokpad: - output_msg("PAD"); - break; - - case tokrxn: - output_msg("RXN"); - break; - - case tokdist: - output_msg("DIST"); - break; - - case tokmisc1: - output_msg("MISC1"); - break; - - case tokmisc2: - output_msg("MISC2"); - break; - - case tokedl: - output_msg("EDL"); - break; - - case toksurf: - output_msg("SURF"); - break; - - case tokedl_species: - output_msg("EDL_SPECIES"); - break; - - case tokstep_no: - output_msg("STEP_NO"); - break; - - case toksim_no: - output_msg("SIM_NO"); - break; - - case toktotal_time: - output_msg("TOTAL_TIME"); - break; - - case tokput: - output_msg("PUT"); - break; - - case tokget: - output_msg("GET"); - break; - case tokcharge_balance: output_msg("CHARGE_BALANCE"); break; - - case tokpercent_error: - output_msg("PERCENT_ERROR"); + case tokcurrent_a: + output_msg("CURRENT_A"); break; - -#if defined PHREEQ98 || defined MULTICHART + case tokdebye_length: + output_msg("DEBYE_LENGTH"); // Debye-Hueckel length + break; + case tokdelta_h_phase: + output_msg("DELTA_H_PHASE"); + break; + case tokdelta_h_species: + output_msg("DELTA_H_SPECIES"); + break; + case tokdescription: + output_msg("DESCRIPTION"); + break; + case tokdh_a: + output_msg("DH_A"); // Debye-Hueckel A + break; + case tokdh_a0: + output_msg("DH_A0"); + break; + case tokdh_av: + output_msg("DH_Av"); // Debye-Hueckel Av + break; + case tokdh_b: + output_msg("DH_B"); // Debye-Hueckel B + break; + case tokdh_bdot: + output_msg("DH_BDOT"); + break; + case tokdiff_c: + output_msg("DIFF_C"); + break; + case tokdist: + output_msg("DIST"); + break; + case tokedl: + output_msg("EDL"); + break; + case tokedl_species: + output_msg("EDL_SPECIES"); + break; + case tokeol_: + output_msg("EOL$"); + break; + case tokeol_notab_: + output_msg("EOL_NOTAB$"); + break; + case tokeps_r: + output_msg("EPS_R"); // dielectric constant + break; + case tokeq_frac: + case tokequiv_frac: + output_msg("EQ_FRAC"); + break; + case tokequi: + output_msg("EQUI"); + break; + case tokequi_delta: + output_msg("EQUI_DELTA"); + break; + case tokerase: + output_msg("ERASE"); + break; + case tokexists: + output_msg("EXISTS"); + break; + case tokfloor: + output_msg("FLOOR"); + break; + case tokgamma: + output_msg("GAMMA"); + break; + case tokgas: + output_msg("GAS"); + break; + case tokgas_p: + output_msg("GAS_P"); + break; + case tokgas_vm: + output_msg("GAS_VM"); + break; + case tokget: + output_msg("GET"); + break; + case tokget_por: + output_msg("GET_POR"); + break; + case tokgfw: + output_msg("GFW"); // gram formula weight of a formula + break; +#if defined MULTICHART case tokgraph_x: output_msg("GRAPH_X"); break; - case tokgraph_y: output_msg("GRAPH_Y"); break; - case tokgraph_sy: output_msg("GRAPH_SY"); break; #endif - -#if defined MULTICHART - case tokplot_xy: - output_msg("PLOT_XY"); - break; -#endif - - case tokcell_no: - output_msg("CELL_NO"); - break; - - case tokexists: - output_msg("EXISTS"); - break; - - case toksc: - output_msg("SC"); - break; - - case tokgamma: - output_msg("GAMMA"); - break; - - case toklg: - output_msg("LG"); - break; - -/* VP: Density Start */ - case tokrho: - output_msg("RHO"); - break; - case tokrho_0: - output_msg("RHO_0"); - break; -/* VP: Density End */ - case tokcell_volume: - output_msg("CELL_VOLUME"); - break; - case tokcell_pore_volume: - output_msg("CELL_PORE_VOLUME"); - break; - case tokcell_porosity: - output_msg("CELL_POROSITY"); - break; - case tokcell_saturation: - output_msg("CELL_SATURATION"); + case tokinstr: + output_msg("INSTR"); break; case tokiso: output_msg("ISO"); @@ -1555,20 +1369,103 @@ listtokens(FILE * f, tokenrec * l_buf) case tokiso_unit: output_msg("ISO_UNIT"); break; + case tokiterations: + output_msg("ITERATIONS"); + break; + case tokkappa: + output_msg("KAPPA"); // compressibility of pure water, d(rho)/d(P) / rho + break; + case tokkin: + output_msg("KIN"); + break; + case tokkin_delta: + output_msg("KIN_DELTA"); + break; + case tokkin_time: + output_msg("KIN_TIME"); + break; case tokkinetics_formula: case tokkinetics_formula_: output_msg("KINETICS_FORMULA$"); break; + case tokla: + output_msg("LA"); + break; + case toklg: + output_msg("LG"); + break; + case toklist_s_s: + output_msg("LIST_S_S"); + break; + case toklk_named: + output_msg("LK_NAMED"); + break; + case toklk_phase: + output_msg("LK_PHASE"); + break; + case toklk_species: + output_msg("LK_SPECIES"); + break; + case toklm: + output_msg("LM"); + break; + case tokltrim: + output_msg("LTRIM"); + break; + case tokm: + output_msg("M"); + break; + case tokm0: + output_msg("M0"); + break; + case tokmcd_jtot: + output_msg("MCD_JTOT"); + break; + case tokmcd_jconc: + output_msg("MCD_JCONC"); + break; + case tokmisc1: + output_msg("MISC1"); + break; + case tokmisc2: + output_msg("MISC2"); + break; + case tokmol: + output_msg("MOL"); + break; + case tokmu: + output_msg("MU"); + break; + case tokno_newline_: + output_msg("NO_NEWLINE$"); + break; + case tokosmotic: + output_msg("OSMOTIC"); + break; + case tokpad_: + case tokpad: + output_msg("PAD"); + break; + case tokparm: + output_msg("PARM"); + break; + case tokpercent_error: + output_msg("PERCENT_ERROR"); + break; case tokphase_formula: case tokphase_formula_: output_msg("PHASE_FORMULA$"); break; - case tokspecies_formula: - case tokspecies_formula_: - output_msg("SPECIES_FORMULA$"); - break; - case toklist_s_s: - output_msg("LIST_S_S"); + case tokphase_vm: + output_msg("PHASE_VM"); // mole volume of a phase + break; +#if defined MULTICHART + case tokplot_xy: + output_msg("PLOT_XY"); + break; +#endif + case tokpot_v: + output_msg("POT_V"); break; case tokpr_p: output_msg("PR_P"); @@ -1576,69 +1473,114 @@ listtokens(FILE * f, tokenrec * l_buf) case tokpr_phi: output_msg("PR_PHI"); break; - case tokgas_p: - output_msg("GAS_P"); - break; - case tokgas_vm: - output_msg("GAS_VM"); - break; - case tokpressure: - output_msg("PRESSURE"); - break; - case tokeps_r: - output_msg("EPS_R"); // dielectric constant + case tokpressure: + output_msg("PRESSURE"); break; - case tokvm: - output_msg("VM"); // mole volume of aqueous solute - break; - case tokphase_vm: - output_msg("PHASE_VM"); // mole volume of a phase - break; - case tokaphi: - output_msg("APHI"); // mole volume of a phase - break; - case tokdh_a: - output_msg("DH_A"); // Debye-Hueckel A - break; - case tokdh_b: - output_msg("DH_B"); // Debye-Hueckel B - break; - case tokdh_av: - output_msg("DH_Av"); // Debye-Hueckel Av - break; - case tokqbrn: - output_msg("QBrn"); // Q_Born, d(eps_r)/d(P)/(eps_r^2) - break; - case tokkappa: - output_msg("KAPPA"); // compressibility of pure water, d(rho)/d(P) / rho - break; - case tokgfw: - output_msg("GFW"); // gram formula weight of a formula - break; - case toksoln_vol: - output_msg("SOLN_VOL"); // volume of solution - break; - case tokstr_f_: - output_msg("STR_F$"); + case tokprint: + output_msg("PRINT"); break; - case tokstr_e_: - output_msg("STR_E$"); + case tokpunch: + output_msg("PUNCH"); break; - case tokeq_frac: - case tokequiv_frac: - output_msg("EQ_FRAC"); + case tokput: + output_msg("PUT"); break; - case tokcallback: - output_msg("CALLBACK"); + case tokqbrn: + output_msg("QBrn"); // Q_Born, d(eps_r)/d(P)/(eps_r^2) break; - case tokdiff_c: - output_msg("DIFF_C"); + case tokrho: + output_msg("RHO"); + break; + case tokrho_0: + output_msg("RHO_0"); + break; + case tokrtrim: + output_msg("RTRIM"); + break; + case tokrxn: + output_msg("RXN"); + break; + case toks_s: + output_msg("S_S"); + break; + case toksave: + output_msg("SAVE"); + break; + case toksc: + output_msg("SC"); break; case toksetdiff_c: output_msg("SETDIFF_C"); break; - case toksa_declercq: - output_msg("SA_DECLERCQ"); + case toksi: + output_msg("SI"); + case toksim_no: + output_msg("SIM_NO"); + break; + case toksim_time: + output_msg("SIM_TIME"); + break; + case toksoln_vol: + output_msg("SOLN_VOL"); // volume of solution + break; + case tokspecies_formula: + case tokspecies_formula_: + output_msg("SPECIES_FORMULA$"); + break; + case toksr: + output_msg("SR"); + break; + case tokstep_no: + output_msg("STEP_NO"); + break; + case tokstr_e_: + output_msg("STR_E$"); + break; + case tokstr_f_: + output_msg("STR_F$"); + break; + case toksum_gas: + output_msg("SUM_GAS"); + break; + case toksum_s_s: + output_msg("SUM_s_s"); + break; + case toksum_species: + output_msg("SUM_SPECIES"); + case toksurf: + output_msg("SURF"); + break; + case toksys: + output_msg("SYS"); + break; + case tokt_sc: + output_msg("T_SC"); + break; + case toktc: + output_msg("TC"); + break; + case toktime: + output_msg("TIME"); + break; + case toktitle: + output_msg("TITLE"); + break; + case toktk: + output_msg("TK"); + break; + case toktot: + output_msg("TOT"); + break; + case toktotal_time: + output_msg("TOTAL_TIME"); + break; + case toktotmole: + case toktotmol: + case toktotmoles: + output_msg("TOTMOLE"); + break; + case toktrim: + output_msg("TRIM"); break; case tokviscos: output_msg("VISCOS"); @@ -1646,15 +1588,46 @@ listtokens(FILE * f, tokenrec * l_buf) case tokviscos_0: output_msg("VISCOS_0"); break; - case tokcurrent_a: - output_msg("CURRENT_A"); + case tokvm: + output_msg("VM"); // mole volume of aqueous solute break; - case tokpot_v: - output_msg("POT_V"); +/* +* End PHREEQC functions +*/ + case toksa_declercq: // Undocumented function + output_msg("SA_DECLERCQ"); break; - case tokt_sc: - output_msg("T_SC"); + case tokcallback: // PHAST function + output_msg("CALLBACK"); break; + case tokcell_pore_volume: // PHAST function + case tokporevolume: + output_msg("POREVOLUME"); + break; + case tokcell_porosity: // PHAST function + output_msg("CELL_POROSITY"); + break; + case tokcell_saturation: // PHAST function + output_msg("CELL_SATURATION"); + break; + case tokcell_volume: // PHAST function + output_msg("CELL_VOLUME"); + break; + case toktransport_cell_no: // PHAST function + output_msg("TRANSPORT_CELL_NO"); + break; + case tokvelocity_x: // PHAST function + output_msg("VELOCITY_X"); + break; + case tokvelocity_y: // PHAST function + output_msg("VELOCITY_Y"); + break; + case tokvelocity_z: // PHAST function + output_msg("VELOCITY_Z"); + break; + case toklog10: + output_msg("LOG10"); + break;; } l_buf = l_buf->next; } @@ -1774,7 +1747,11 @@ void PBasic:: _ASSERTE(nIDErrPrompt == 0); nIDErrPrompt = IDS_ERR_SYNTAX; } - errormsg(strcat(str, l_s)); + strcat(str, l_s); + strcat(str, " in line: "); + if (strcmp(inbuf, "run")) + strcat(str, inbuf); + errormsg(str); } void PBasic:: @@ -1787,7 +1764,11 @@ void PBasic:: _ASSERTE(nIDErrPrompt == 0); nIDErrPrompt = IDS_ERR_MISMATCH; } - errormsg(strcat(str, l_s)); + strcat(str, l_s); + strcat(str, " in line: "); + if (strcmp(inbuf, "run")) + strcat(str, inbuf); + errormsg(str); } void PBasic:: @@ -2048,8 +2029,6 @@ factor(struct LOC_exec * LINK) long i; char *c; } trick; - struct save_values s_v, *s_v_ptr; - int k; LDBLE TEMP; std::string STR1, STR2; const char *elt_name, *surface_name, *mytemplate, *name; @@ -2066,9 +2045,6 @@ factor(struct LOC_exec * LINK) facttok = LINK->t; LINK->t = LINK->t->next; n.stringval = false; - s_v.count_subscripts = 0; - /*s_v.subscripts = (int *) PhreeqcPtr->PHRQ_malloc (sizeof (int)); */ - s_v.subscripts = NULL; switch (facttok->kind) { @@ -2078,10 +2054,10 @@ factor(struct LOC_exec * LINK) case tokstr: n.stringval = true; - m = (int) strlen(facttok->UU.sp) + 1; + m = (int)strlen(facttok->UU.sp) + 1; if (m < 256) m = 256; - n.UU.sval = (char *) PhreeqcPtr->PHRQ_calloc(m, sizeof(char)); + n.UU.sval = (char*)PhreeqcPtr->PHRQ_calloc(m, sizeof(char)); if (n.UU.sval == NULL) PhreeqcPtr->malloc_error(); strcpy(n.UU.sval, facttok->UU.sp); @@ -2095,7 +2071,7 @@ factor(struct LOC_exec * LINK) { if (*v->UU.U1.sval != NULL) { - m = (int) strlen(*v->UU.U1.sval) + 1; + m = (int)strlen(*v->UU.U1.sval) + 1; if (m < 256) m = 256; } @@ -2103,7 +2079,7 @@ factor(struct LOC_exec * LINK) { m = 256; } - n.UU.sval = (char *) PhreeqcPtr->PHRQ_calloc(m, sizeof(char)); + n.UU.sval = (char*)PhreeqcPtr->PHRQ_calloc(m, sizeof(char)); if (n.UU.sval == NULL) PhreeqcPtr->malloc_error(); if (*v->UU.U1.sval != NULL) @@ -2126,43 +2102,1316 @@ factor(struct LOC_exec * LINK) break; case tokplus: + { n.UU.val = realfactor(LINK); - break; + } + break; case toknot: + { n.UU.val = ~intfactor(LINK); - break; + } + break; case toksqr: + { TEMP = realfactor(LINK); n.UU.val = TEMP * TEMP; - break; + } + break; case toksqrt: + { n.UU.val = sqrt(realfactor(LINK)); - break; + } + break; + /* + * PHREEQC functions============================================= + */ + case tokact: + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->activity(str); + } + break; + + case tokadd_heading: + { + require(toklp, LINK); + name = strexpr(LINK); + require(tokrp, LINK); + if (PhreeqcPtr->current_user_punch != NULL) + { + PhreeqcPtr->current_user_punch->Get_headings().push_back(name); + n.UU.val = (parse_all) ? 1 : (double)PhreeqcPtr->current_user_punch->Get_headings().size(); + } + else { + n.UU.val = 0; + } + name = (char*)PhreeqcPtr->free_check_null((void*) name); + } + break; + + case tokalk: + { + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->total_alkalinity / PhreeqcPtr->mass_water_aq_x; + } + break; + + case tokaphi: + { + n.UU.val = PhreeqcPtr->A0; + } + break; + + case tokcalc_value: + { + require(toklp, LINK); + name = stringfactor(STR1, LINK); + require(tokrp, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->get_calculate_value(name); + } + break; case tokceil: + { n.UU.val = ceil(realfactor(LINK)); - break; + } + break; + + case tokcell_no: + { + if (parse_all) + { + n.UU.val = 1; + break; + } + n.UU.val = PhreeqcPtr->solution_number(); + } + break; + + case tokcharge_balance: + { + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->cb_x; + } + break; + + case tokcurrent_a: + { + //n.UU.val = (parse_all) ? 1 : PhreeqcPtr->current_x; + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->current_A; + } + break; + + case tokdebye_length: + { + double debye_length = (PhreeqcPtr->eps_r * EPSILON_ZERO * R_KJ_DEG_MOL * 1000.0 * PhreeqcPtr->tk_x) + / (2. * F_C_MOL * F_C_MOL * PhreeqcPtr->mu_x * 1000.); + n.UU.val = sqrt(debye_length); + } + break; + + case tokdelta_h_phase: + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->calc_deltah_p(str); + } + break; + + case tokdelta_h_species: + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->calc_deltah_s(str); + } + break; + + case tokdescription: + { + n.stringval = true; + if (PhreeqcPtr->state == REACTION) + { + if (PhreeqcPtr->use.Get_mix_in()) + { + sprintf(string, "Mix %d", PhreeqcPtr->use.Get_n_mix_user()); + n.UU.sval = PhreeqcPtr->string_duplicate(string); + } + else + { + soln_ptr = Utilities::Rxn_find(PhreeqcPtr->Rxn_solution_map, + PhreeqcPtr->use.Get_n_solution_user()); + if (soln_ptr != NULL) + { + n.UU.sval = PhreeqcPtr->string_duplicate(soln_ptr->Get_description().c_str()); + } + else + { + n.UU.sval = PhreeqcPtr->string_duplicate("Unknown"); + } + } + } + else if (PhreeqcPtr->state == ADVECTION || PhreeqcPtr->state == TRANSPORT || PhreeqcPtr->state == PHAST) + { + sprintf(string, "Cell %d", PhreeqcPtr->cell_no); + n.UU.sval = PhreeqcPtr->string_duplicate(string); + } + else + { + if (PhreeqcPtr->use.Get_solution_ptr() != NULL) + { + n.UU.sval = PhreeqcPtr->string_duplicate(PhreeqcPtr->use.Get_solution_ptr()->Get_description().c_str()); + } + else + { + n.UU.sval = PhreeqcPtr->string_duplicate("Unknown"); + } + } + while (PhreeqcPtr->replace("\t", " ", n.UU.sval)); + } + break; + + case tokdh_a: + { + if (PhreeqcPtr->llnl_temp.size() > 0) + { + n.UU.val = PhreeqcPtr->a_llnl; + } + else + { + n.UU.val = PhreeqcPtr->DH_A; + } + } + break; + + case tokdh_a0: + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->dh_a0(str); + } + break; + + case tokdh_av: + { + n.UU.val = PhreeqcPtr->DH_Av; + } + break; + + case tokdh_b: + { + if (PhreeqcPtr->llnl_temp.size() > 0) + { + n.UU.val = PhreeqcPtr->b_llnl; + } + else + { + n.UU.val = PhreeqcPtr->DH_B; + } + } + break; + + case tokdh_bdot: + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->dh_bdot(str); + } + break; + + case tokdiff_c: + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->diff_c(str); + } + break; + + case tokdist: + { + if (PhreeqcPtr->state == PHAST) + { + n.UU.val = 0; + } + else if (PhreeqcPtr->state == TRANSPORT) + { + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->cell_data[PhreeqcPtr->cell].mid_cell_x; + } + else if (PhreeqcPtr->state == ADVECTION) + { + n.UU.val = (parse_all) ? 1 : (LDBLE)PhreeqcPtr->use.Get_n_solution_user(); + } + else + { + n.UU.val = 0; + } + } + break; + + case tokedl: + { + require(toklp, LINK); + elt_name = stringfactor(STR1, LINK); + if (LINK->t != NULL && LINK->t->kind == tokcomma) + { + LINK->t = LINK->t->next; + surface_name = stringfactor(STR2, LINK); + } + else + { + surface_name = NULL; + } + require(tokrp, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->diff_layer_total(elt_name, surface_name); + } + break; + + case tokedl_species: + { + double area = 0.0, thickness = 0.0; + require(toklp, LINK); + const char* surf_name = stringfactor(STR1, LINK); + require(tokcomma, LINK); + // variable for number of species + count_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || !count_varrec || count_varrec->stringvar != 0) + { + snerr(": Missing or wrong type count variable."); +#if !defined(R_SO) + exit(4); +#endif + } + // variable for species names + LINK->t = LINK->t->next; + require(tokcomma, LINK); + names_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || !names_varrec || names_varrec->stringvar != 1) + { + snerr(": Missing or wrong type name variable."); +#if !defined(R_SO) + exit(4); +#endif + } + // variable for species concentrations + LINK->t = LINK->t->next; + require(tokcomma, LINK); + moles_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || moles_varrec->stringvar != 0) + snerr(": Missing or wrong type moles variable."); + // variable for area + LINK->t = LINK->t->next; + require(tokcomma, LINK); + varrec* area_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || area_varrec->stringvar != 0) + snerr(": Missing or wrong type area varaiable."); + // varaiable for thickness + LINK->t = LINK->t->next; + require(tokcomma, LINK); + varrec* thickness_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || thickness_varrec->stringvar != 0) + snerr(": Missing or wrong type thickness variable."); + LINK->t = LINK->t->next; + require(tokrp, LINK); + + free_dim_stringvar(names_varrec); + PhreeqcPtr->free_check_null(moles_varrec->UU.U0.arr); + moles_varrec->UU.U0.arr = NULL; + + // Call subroutine + if (parse_all) + { + PhreeqcPtr->sys_tot = 0; + //PhreeqcPtr->count_sys = 1000; + //int count_sys = PhreeqcPtr->count_sys; + size_t count_sys = 1000; + names_arg = (char**)PhreeqcPtr->PHRQ_calloc((count_sys + 1), sizeof(char*)); + if (names_arg == NULL) + { + PhreeqcPtr->malloc_error(); +#if !defined(R_SO) + exit(4); +#endif + } + moles_arg = (LDBLE*)PhreeqcPtr->PHRQ_calloc((count_sys + 1), sizeof(LDBLE)); + if (moles_arg == NULL) + { + PhreeqcPtr->malloc_error(); +#if !defined(R_SO) + exit(4); +#endif + } + names_arg[0] = NULL; + moles_arg[0] = 0; + count_species = (LDBLE)count_sys; + n.UU.val = 0; + } + else + { + //n.UU.val = PhreeqcPtr->system_total(elt_name, &count_species, &(names_arg), + // &(types_arg), &(moles_arg)); + n.UU.val = PhreeqcPtr->edl_species(surf_name, &count_species, &(names_arg), &(moles_arg), &area, &thickness); + } + /* + * fill in varrec structures + */ + *count_varrec->UU.U0.val = count_species; + names_varrec->UU.U1.sarr = names_arg; + moles_varrec->UU.U0.arr = moles_arg; + *area_varrec->UU.U0.val = area; + *thickness_varrec->UU.U0.val = thickness; + + for (i = 0; i < maxdims; i++) + { + names_varrec->dims[i] = 0; + moles_varrec->dims[i] = 0; + } + names_varrec->dims[0] = (long)(*count_varrec->UU.U0.val) + 1; + moles_varrec->dims[0] = (long)(*count_varrec->UU.U0.val) + 1; + names_varrec->numdims = 1; + moles_varrec->numdims = 1; + } + break; + + case tokeol_: + { + n.stringval = true; + n.UU.sval = (char*)PhreeqcPtr->PHRQ_calloc(256, sizeof(char)); + if (n.UU.sval == NULL) + PhreeqcPtr->malloc_error(); + strcpy(n.UU.sval, "\n"); + } + break; + + case tokeol_notab_: + { + n.stringval = true; + n.UU.sval = (char*)PhreeqcPtr->PHRQ_calloc(256, sizeof(char)); + if (n.UU.sval == NULL) + PhreeqcPtr->malloc_error(); + strcpy(n.UU.sval, "\n"); + punch_tab = false; + } + break; + + case tokeps_r: + { + n.UU.val = PhreeqcPtr->eps_r; + } + break; + + case tokeq_frac: + case tokequiv_frac: + { + // left parenthesis + require(toklp, LINK); + + // species name + std::string species_name(stringfactor(STR1, LINK)); + + require(tokcomma, LINK); + + // equivalents + count_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || count_varrec->stringvar != 0) + snerr(": Cannot find equivalents variable"); + + LINK->t = LINK->t->next; + require(tokcomma, LINK); + + // exchange or surface element + varrec* elt_varrec = NULL; + elt_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || elt_varrec->stringvar != 1) + snerr(": Cannot find element string variable"); + free_dim_stringvar(elt_varrec); + *elt_varrec->UU.U1.sval = (char*)PhreeqcPtr->free_check_null(*elt_varrec->UU.U1.sval); + + // right parenthesis + LINK->t = LINK->t->next; + require(tokrp, LINK); + + // set function value + LDBLE eq; + std::string elt_name; + + // return equivalent fraction + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->equivalent_fraction(species_name.c_str(), &eq, elt_name); + + // set equivalents + *count_varrec->UU.U0.val = (parse_all) ? 1 : eq; + + // set element name + size_t l = elt_name.size(); + l = l < 256 ? 256 : l + 1; + char* token = (char*)PhreeqcPtr->PHRQ_malloc(l * sizeof(char)); + strcpy(token, elt_name.c_str()); + *elt_varrec->UU.U1.sval = token; + } + break; + + case tokequi: + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->equi_phase(str); + } + break; + + case tokequi_delta: + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->equi_phase_delta(str); + } + break; + + case tokexists: + { + std::ostringstream oss; + require(toklp, LINK); + + /* get first subscript */ + if (LINK->t != NULL && LINK->t->kind != tokrp) + { + i = intexpr(LINK); + oss << i << ","; + } + + /* get other subscripts */ + for (;;) + { + if (LINK->t != NULL && LINK->t->kind == tokcomma) + { + LINK->t = LINK->t->next; + j = intexpr(LINK); + oss << j << ","; + } + else + { + /* get right parentheses */ + require(tokrp, LINK); + break; + } + } + if (parse_all) + { + n.UU.val = 1; + } + else + { + std::map::iterator it = PhreeqcPtr->save_values.find(oss.str()); + n.UU.val = (it == PhreeqcPtr->save_values.end()) ? 0 : 1; + } + } + break; case tokfloor: + { n.UU.val = floor(realfactor(LINK)); - break; + } + break; - case toktc: - n.UU.val = PhreeqcPtr->tc_x; - break; + case tokmcd_jtot: + { + double f = 0.0; + const char* str = stringfactor(STR1, LINK); + if (PhreeqcPtr->state == TRANSPORT && PhreeqcPtr->multi_Dflag) + { + f = PhreeqcPtr->flux_mcd(str, 1); + } + n.UU.val = (parse_all) ? 1 : f; + } + break; + case tokmcd_jconc: + { + double f = 0.0; + const char* str = stringfactor(STR1, LINK); + if (PhreeqcPtr->state == TRANSPORT && PhreeqcPtr->multi_Dflag) + { + f = PhreeqcPtr->flux_mcd(str, 2); + } + n.UU.val = (parse_all) ? 1 : f; + } + break; - case toktk: - n.UU.val = PhreeqcPtr->tc_x + 273.15; - break; + case tokgamma: + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->activity_coefficient(str); + } + break; - case toktime: - n.UU.val = PhreeqcPtr->rate_time; + case tokgas: + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->find_gas_comp(str); + } + break; + + case tokgas_p: + { + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->find_gas_p(); + } + break; + + case tokgas_vm: + { + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->find_gas_vm(); + } + break; + + case tokget: + { + std::ostringstream oss; + require(toklp, LINK); + + /* get first subscript */ + if (LINK->t != NULL && LINK->t->kind != tokrp) + { + i = intexpr(LINK); + oss << i << ","; + } + + /* get other subscripts */ + for (;;) + { + if (LINK->t != NULL && LINK->t->kind == tokcomma) + { + LINK->t = LINK->t->next; + j = intexpr(LINK); + oss << j << ","; + } + else + { + /* get right parentheses */ + require(tokrp, LINK); + break; + } + } + if (parse_all) + { + n.UU.val = 1; + } + else + { + std::map::iterator it = PhreeqcPtr->save_values.find(oss.str()); + n.UU.val = (it == PhreeqcPtr->save_values.end()) ? 0 : it->second; + } break; + } + + case tokget_por: + { + i = intfactor(LINK); + if (parse_all) + { + n.UU.val = 1; + } + else + { + if (PhreeqcPtr->phast != TRUE) + { + if (i <= 0 || i > PhreeqcPtr->count_cells * (1 + PhreeqcPtr->stag_data.count_stag) + 1 + || i == PhreeqcPtr->count_cells + 1) + { + /* warning_msg("Note... no porosity for boundary solutions."); */ + n.UU.val = 0; + break; + } + else + n.UU.val = PhreeqcPtr->cell_data[i].por; + break; + } + else + { + n.UU.val = PhreeqcPtr->cell_porosity; + break; + } + } + } + break; + + case tokgfw: + { + const char* str = stringfactor(STR1, LINK); + LDBLE gfw; + PhreeqcPtr->compute_gfw(str, &gfw); + n.UU.val = (parse_all) ? 1 : gfw; + } + break; + + case tokinstr: + { + require(toklp, LINK); + string1 = stringfactor(STR1, LINK); + require(tokcomma, LINK); + string2 = stringfactor(STR2, LINK); + require(tokrp, LINK); + { + const char* cptr = strstr(string1, string2); + if (cptr == NULL) + { + n.UU.val = 0; + } + else + { + n.UU.val = ((LDBLE)(cptr - string1)) + 1; + } + } + } + break; + + case tokiso: + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->iso_value(str); + } + break; + + case tokiso_unit: + { + n.stringval = true; + require(toklp, LINK); + string1 = stringfactor(STR1, LINK); + require(tokrp, LINK); + trim(STR1); + n.UU.sval = (parse_all) ? PhreeqcPtr->string_duplicate("unknown") : PhreeqcPtr->iso_unit(STR1.c_str()); + } + break; + + case tokiterations: + { + n.UU.val = (parse_all) ? 0 : PhreeqcPtr->overall_iterations; + } + break; + + case tokkappa: + { + n.UU.val = PhreeqcPtr->kappa_0; + } + break; + + case tokkin: + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->kinetics_moles(str); + } + break; + + case tokkin_delta: + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->kinetics_moles_delta(str); + } + break; + + case tokkin_time: + { + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->rate_kin_time; + } + break; + + case tokkinetics_formula: + case tokkinetics_formula_: + { + require(toklp, LINK); + std::string kinetics_name(stringfactor(STR1, LINK)); + varrec* elts_varrec = NULL, * coef_varrec = NULL; + cxxNameDouble stoichiometry; + /* + * Parse arguments + */ + if (LINK->t != NULL && LINK->t->kind == tokcomma) + { + /* kinetics_formula("calcite", count, elt, coef) */ + /* return formula */ + /*int c; */ + /* struct varrec *count_varrec, *names_varrec, *types_varrec, *moles_varrec; */ + /* struct varrec *count_varrec, *elt_varrec, *coef_varrec; */ + /* return number of species */ + LINK->t = LINK->t->next; + count_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || count_varrec->stringvar != 0) + snerr(": Cannot find count variable"); + + /* return number of names of elements */ + LINK->t = LINK->t->next; + require(tokcomma, LINK); + elts_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || elts_varrec->stringvar != 1) + snerr(": Cannot find element string variable"); + + /* return coefficients of species */ + LINK->t = LINK->t->next; + require(tokcomma, LINK); + coef_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || coef_varrec->stringvar != 0) + snerr(": Cannot find coefficient variable"); + LINK->t = LINK->t->next; + arg_num = 4; + } + else + { + arg_num = 1; + } + require(tokrp, LINK); + + if (arg_num > 1) + { + free_dim_stringvar(elts_varrec); + PhreeqcPtr->free_check_null(coef_varrec->UU.U0.arr); + coef_varrec->UU.U0.arr = NULL; + } + /* + * Call subroutine + */ + std::string form = PhreeqcPtr->kinetics_formula(kinetics_name, stoichiometry); + + // put formula as return value + n.stringval = true; + n.UU.sval = PhreeqcPtr->string_duplicate(form.c_str()); + + /* + * fill in varrec structure + */ + + if (arg_num > 1) + { + size_t count = stoichiometry.size(); + *count_varrec->UU.U0.val = (LDBLE)count; + /* + * malloc space + */ + elts_varrec->UU.U1.sarr = (char**)PhreeqcPtr->PHRQ_malloc((count + 1) * sizeof(char*)); + if (elts_varrec->UU.U1.sarr == NULL) + PhreeqcPtr->malloc_error(); + coef_varrec->UU.U0.arr = (LDBLE*)PhreeqcPtr->PHRQ_malloc((count + 1) * sizeof(LDBLE)); + if (coef_varrec->UU.U0.arr == NULL) + PhreeqcPtr->malloc_error(); + + // first position not used + elts_varrec->UU.U1.sarr[0] = NULL; + coef_varrec->UU.U0.arr[0] = 0; + + // set dims for Basic array + for (i = 0; i < maxdims; i++) + { + elts_varrec->dims[i] = 0; + coef_varrec->dims[i] = 0; + } + // set dims for first dimension and number of dims + elts_varrec->dims[0] = (long)(count + 1); + coef_varrec->dims[0] = (long)(count + 1); + elts_varrec->numdims = 1; + coef_varrec->numdims = 1; + + // fill in arrays + i = 1; + for (cxxNameDouble::iterator it = stoichiometry.begin(); it != stoichiometry.end(); it++) + { + elts_varrec->UU.U1.sarr[i] = PhreeqcPtr->string_duplicate((it->first).c_str()); + coef_varrec->UU.U0.arr[i] = it->second; + i++; + } + } + } + break; + + case tokla: + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->log_activity(str); + } + break; + + case toklg: + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->log_activity_coefficient(str); + } + break; + + case toklist_s_s: + { + /* list_s_s("calcite", count, name$, moles) */ + /* return total moles */ + require(toklp, LINK); + std::string s_s_name(stringfactor(STR1, LINK)); + cxxNameDouble composition; + /* + * Parse arguments + */ + arg_num = -1; + if (LINK->t != NULL && LINK->t->kind == tokcomma) + { + LINK->t = LINK->t->next; + count_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || count_varrec->stringvar != 0) + snerr(": Cannot find count variable"); + + /* return number of names of components */ + LINK->t = LINK->t->next; + require(tokcomma, LINK); + names_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || names_varrec->stringvar != 1) + snerr(": Cannot find component string variable"); + + /* return number of moles of components */ + LINK->t = LINK->t->next; + require(tokcomma, LINK); + moles_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || moles_varrec->stringvar != 0) + snerr(": Cannot find moles of component variable"); + LINK->t = LINK->t->next; + arg_num = 4; + } + else + { + snerr(": Expected 4 arguments for list_s_s"); +#if !defined(R_SO) + exit(4); +#endif + } + require(tokrp, LINK); + + if (arg_num > 1) + { + free_dim_stringvar(names_varrec); + if (moles_varrec) + { + PhreeqcPtr->free_check_null(moles_varrec->UU.U0.arr); + moles_varrec->UU.U0.arr = NULL; + } + } + /* + * Call subroutine + */ + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->list_ss(s_s_name, composition); + + /* + * fill in varrec structure + */ + + if (arg_num > 1) + { + size_t count = composition.size(); + *count_varrec->UU.U0.val = (LDBLE)count; + /* + * malloc space + */ + names_varrec->UU.U1.sarr = (char**)PhreeqcPtr->PHRQ_malloc((count + 1) * sizeof(char*)); + if (names_varrec->UU.U1.sarr == NULL) + { + PhreeqcPtr->malloc_error(); +#if !defined(R_SO) + exit(4); +#endif + } + moles_varrec->UU.U0.arr = (LDBLE*)PhreeqcPtr->PHRQ_malloc((count + 1) * sizeof(LDBLE)); + if (moles_varrec->UU.U0.arr == NULL) + { + PhreeqcPtr->malloc_error(); +#if !defined(R_SO) + exit(4); +#endif + } + + // first position not used + names_varrec->UU.U1.sarr[0] = NULL; + moles_varrec->UU.U0.arr[0] = 0; + + // set dims for Basic array + for (i = 0; i < maxdims; i++) + { + names_varrec->dims[i] = 0; + moles_varrec->dims[i] = 0; + } + // set dims for first dimension and number of dims + names_varrec->dims[0] = (long)(count + 1); + moles_varrec->dims[0] = (long)(count + 1); + names_varrec->numdims = 1; + moles_varrec->numdims = 1; + + // fill in arrays + i = 1; + std::vector< std::pair > sort_comp = composition.sort_second(); + size_t j; + for (j = 0; j != sort_comp.size(); j++) + { + names_varrec->UU.U1.sarr[i] = PhreeqcPtr->string_duplicate(sort_comp[j].first.c_str()); + moles_varrec->UU.U0.arr[i] = sort_comp[j].second; + i++; + } + + } + } + break; + + case toklk_named: + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->calc_logk_n(str); + } + break; + + case toklk_phase: + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->calc_logk_p(str); + } + break; + + case toklk_species: + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->calc_logk_s(str); + } + break; + + case toklm: + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->log_molality(str); + } + break; + + case tokltrim: + { + n.stringval = true; + require(toklp, LINK); + string1 = stringfactor(STR1, LINK); + require(tokrp, LINK); + trim_left(STR1); + n.UU.sval = PhreeqcPtr->string_duplicate(STR1.c_str()); + } + break; + + case tokm: + { + n.UU.val = PhreeqcPtr->rate_m; + } + break; + + case tokm0: + { + n.UU.val = PhreeqcPtr->rate_m0; + } + break; + + case tokmisc1: + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->find_misc1(str); + } + break; + + case tokmisc2: + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->find_misc2(str); + } + break; + + case tokmol: + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->molality(str); + } + break; + + case tokmu: + { + n.UU.val = PhreeqcPtr->mu_x; + } + break; + + case tokno_newline_: + { + n.stringval = true; + PhreeqcPtr->Set_output_newline(false); + this->skip_punch = true; + } + break; + + case tokosmotic: + { + if (PhreeqcPtr->pitzer_model == TRUE || PhreeqcPtr->sit_model == TRUE) + { + n.UU.val = PhreeqcPtr->COSMOT; + } + else + { + n.UU.val = 0.0; + } + } + break; + + case tokpad_: + case tokpad: + { + n.stringval = true; + require(toklp, LINK); + string1 = stringfactor(STR1, LINK); + require(tokcomma, LINK); + i = intexpr(LINK); + require(tokrp, LINK); + n.UU.sval = PhreeqcPtr->string_pad(string1, i); + } + break; + + case tokparm: + { + i_rate = intfactor(LINK); + if (parse_all) + { + n.UU.val = 1; + } + else + { + if (i_rate > PhreeqcPtr->count_rate_p || i_rate == 0) + { + errormsg("Parameter subscript out of range."); + } + n.UU.val = PhreeqcPtr->rate_p[(size_t)i_rate - 1]; + } + } + break; + + case tokpercent_error: + { + n.UU.val = (parse_all) ? 1 : 100 * PhreeqcPtr->cb_x / PhreeqcPtr->total_ions_x; + } + break; + + case tokphase_formula: + case tokphase_formula_: + { + require(toklp, LINK); + std::string phase_name(stringfactor(STR1, LINK)); + varrec* elts_varrec = NULL, * coef_varrec = NULL; + cxxNameDouble stoichiometry; + /* + * Parse arguments + */ + if (LINK->t != NULL && LINK->t->kind == tokcomma) + { + /* phase_formula("calcite", count, elt, coef) */ + /* return formula */ + /*int c; */ + /* struct varrec *count_varrec, *names_varrec, *types_varrec, *moles_varrec; */ + /* struct varrec *count_varrec, *elt_varrec, *coef_varrec; */ + /* return number of species */ + LINK->t = LINK->t->next; + count_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || count_varrec->stringvar != 0) + snerr(": Cannot find count variable"); + + /* return number of names of species */ + LINK->t = LINK->t->next; + require(tokcomma, LINK); + elts_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || elts_varrec->stringvar != 1) + snerr(": Cannot find element string variable"); + + /* return coefficients of species */ + LINK->t = LINK->t->next; + require(tokcomma, LINK); + coef_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || coef_varrec->stringvar != 0) + snerr(": Cannot find coefficient variable"); + LINK->t = LINK->t->next; + arg_num = 4; + } + else + { + arg_num = 1; + } + require(tokrp, LINK); + + if (arg_num > 1) + { + free_dim_stringvar(elts_varrec); + PhreeqcPtr->free_check_null(coef_varrec->UU.U0.arr); + coef_varrec->UU.U0.arr = NULL; + } + /* + * Call subroutine + */ + std::string form = PhreeqcPtr->phase_formula(phase_name, stoichiometry); + + // put formula as return value + n.stringval = true; + n.UU.sval = PhreeqcPtr->string_duplicate(form.c_str()); + + /* + * fill in varrec structure + */ + + if (arg_num > 1) + { + size_t count = stoichiometry.size(); + *count_varrec->UU.U0.val = (LDBLE)count; + /* + * malloc space + */ + elts_varrec->UU.U1.sarr = (char**)PhreeqcPtr->PHRQ_malloc((count + 1) * sizeof(char*)); + if (elts_varrec->UU.U1.sarr == NULL) + PhreeqcPtr->malloc_error(); + coef_varrec->UU.U0.arr = (LDBLE*)PhreeqcPtr->PHRQ_malloc((count + 1) * sizeof(LDBLE)); + if (coef_varrec->UU.U0.arr == NULL) + PhreeqcPtr->malloc_error(); + + // first position not used + elts_varrec->UU.U1.sarr[0] = NULL; + coef_varrec->UU.U0.arr[0] = 0; + + // set dims for Basic array + for (i = 0; i < maxdims; i++) + { + elts_varrec->dims[i] = 0; + coef_varrec->dims[i] = 0; + } + // set dims for first dimension and number of dims + elts_varrec->dims[0] = (long)(count + 1); + coef_varrec->dims[0] = (long)(count + 1); + elts_varrec->numdims = 1; + coef_varrec->numdims = 1; + + // fill in arrays + i = 1; + for (cxxNameDouble::iterator it = stoichiometry.begin(); it != stoichiometry.end(); it++) + { + elts_varrec->UU.U1.sarr[i] = PhreeqcPtr->string_duplicate((it->first).c_str()); + coef_varrec->UU.U0.arr[i] = it->second; + i++; + } + + } + } + break; + + case tokphase_vm: + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->phase_vm(str); + } + break; + + case tokpot_v: + { + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->use.Get_solution_ptr()->Get_potV(); + } + break; + + case tokpr_p: + { + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->pr_pressure(stringfactor(STR1, LINK)); + } + break; + + case tokpr_phi: + { + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->pr_phi(stringfactor(STR1, LINK)); + } + break; + + case tokpressure: + { + n.UU.val = PhreeqcPtr->pressure(); + } + break; + + case tokqbrn: + { + n.UU.val = PhreeqcPtr->QBrn; + } + break; + + case tokrho: + { + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->calc_dens(); + } + break; + + case tokrho_0: + { + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->rho_0; + } + break; + + case tokrtrim: + { + n.stringval = true; + require(toklp, LINK); + string1 = stringfactor(STR1, LINK); + require(tokrp, LINK); + trim_right(STR1); + n.UU.sval = PhreeqcPtr->string_duplicate(STR1.c_str()); + } + break; + + case tokrxn: + { + if (PhreeqcPtr->state == REACTION || + PhreeqcPtr->state == ADVECTION || + PhreeqcPtr->state == TRANSPORT) + { + n.UU.val = PhreeqcPtr->step_x; + } + else + { + n.UU.val = 0.0; + } + } + break; + + case toks_s: + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->find_ss_comp(str); + } + break; + + case toksc: + { + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->calc_SC(); + } + break; + + case toksetdiff_c: + { + double d; + + require(toklp, LINK); + + const char* str = stringfactor(STR1, LINK); + require(tokcomma, LINK); + + // double arugument + d = realexpr(LINK); + require(tokrp, LINK); + + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->setdiff_c(str, d); + + //PhreeqcPtr->PHRQ_free((void *) str); + } + break; + + case toksi: + { + const char* str = stringfactor(STR1, LINK); + if (parse_all) + { + n.UU.val = 1; + } + else + { + PhreeqcPtr->saturation_index(str, &l_dummy, &n.UU.val); + } + } + break; + + case toksim_no: + { + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->simulation; + } + break; case toksim_time: + { if (!PhreeqcPtr->use.Get_kinetics_in()) { if (PhreeqcPtr->state == PHAST) @@ -2193,260 +3442,233 @@ factor(struct LOC_exec * LINK) { n.UU.val = PhreeqcPtr->rate_sim_time; } - break; + } + break; - case toktotal_time: - if (!PhreeqcPtr->use.Get_kinetics_in()) - { - if (PhreeqcPtr->state == PHAST) - { - n.UU.val = PhreeqcPtr->rate_sim_time_end; - } - else if (PhreeqcPtr->state == TRANSPORT) - { - n.UU.val = PhreeqcPtr->initial_total_time + PhreeqcPtr->transport_step * PhreeqcPtr->timest; - } - else if (PhreeqcPtr->state == ADVECTION) - { - n.UU.val = - PhreeqcPtr->initial_total_time + PhreeqcPtr->advection_step * PhreeqcPtr->advection_kin_time; - } - else - { - n.UU.val = 0; - } - } - else - { - n.UU.val = PhreeqcPtr->initial_total_time + PhreeqcPtr->rate_sim_time; - } - break; + case toksoln_vol: + { + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->calc_solution_volume(); + } + break; - case tokm0: - n.UU.val = PhreeqcPtr->rate_m0; - break; - - case tokm: - n.UU.val = PhreeqcPtr->rate_m; - break; - - case tokparm: - i_rate = intfactor(LINK); - if (parse_all) - { - n.UU.val = 1; - } - else - { - if (i_rate > PhreeqcPtr->count_rate_p || i_rate == 0) - { - errormsg("Parameter subscript out of range."); - } - n.UU.val = PhreeqcPtr->rate_p[i_rate - 1]; - } - - break; - - case tokact: - { - const char * str = stringfactor(STR1, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->activity(str); - } - break; - - case tokgamma: - { - const char * str = stringfactor(STR1, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->activity_coefficient(str); - } - break; - - case toklg: - { - const char * str = stringfactor(STR1, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->log_activity_coefficient(str); - } - break; - - case tokget_por: - i = intfactor(LINK); - if (parse_all) - { - n.UU.val = 1; - } - else - { - if (PhreeqcPtr->phast != TRUE) - { - if (i <= 0 || i > PhreeqcPtr->count_cells * (1 + PhreeqcPtr->stag_data->count_stag) + 1 - || i == PhreeqcPtr->count_cells + 1) - { - /* warning_msg("Note... no porosity for boundary solutions."); */ - n.UU.val = 0; - break; - } - else - n.UU.val = PhreeqcPtr->cell_data[i].por; - break; - } - else - { - n.UU.val = PhreeqcPtr->cell_porosity; - break; - } - } - break; - case tokedl: + case tokspecies_formula: + case tokspecies_formula_: + { require(toklp, LINK); - elt_name = stringfactor(STR1, LINK); - if (LINK->t != NULL && LINK->t->kind == tokcomma) + std::string species_name(stringfactor(STR1, LINK)); + varrec* elts_varrec = NULL, * coef_varrec = NULL; + cxxNameDouble stoichiometry; + /* + * Parse arguments + */ + require(tokcomma, LINK); + + count_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || count_varrec->stringvar != 0) + snerr(": Cannot find count variable"); + + /* return number of names of species */ + LINK->t = LINK->t->next; + require(tokcomma, LINK); + elts_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || elts_varrec->stringvar != 1) + snerr(": Cannot find element string variable"); + + /* return coefficients of species */ + LINK->t = LINK->t->next; + require(tokcomma, LINK); + coef_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || coef_varrec->stringvar != 0) + snerr(": Cannot find coefficient variable"); + LINK->t = LINK->t->next; + + require(tokrp, LINK); + + free_dim_stringvar(elts_varrec); + PhreeqcPtr->free_check_null(coef_varrec->UU.U0.arr); + coef_varrec->UU.U0.arr = NULL; + /* + * Call subroutine + */ + std::string type = PhreeqcPtr->species_formula(species_name, stoichiometry); + + // put type as return value + n.stringval = true; + n.UU.sval = PhreeqcPtr->string_duplicate(type.c_str()); + + /* + * fill in varrec structure + */ + + size_t count = stoichiometry.size(); + *count_varrec->UU.U0.val = (LDBLE)count; + /* + * malloc space + */ + elts_varrec->UU.U1.sarr = (char**)PhreeqcPtr->PHRQ_malloc((count + 1) * sizeof(char*)); + if (elts_varrec->UU.U1.sarr == NULL) { - LINK->t = LINK->t->next; - surface_name = stringfactor(STR2, LINK); + PhreeqcPtr->malloc_error(); +#if !defined(R_SO) + exit(4); +#endif + } + coef_varrec->UU.U0.arr = (LDBLE*)PhreeqcPtr->PHRQ_malloc((count + 1) * sizeof(LDBLE)); + if (coef_varrec->UU.U0.arr == NULL) + { + PhreeqcPtr->malloc_error(); +#if !defined(R_SO) + exit(4); +#endif + } + + // first position not used + elts_varrec->UU.U1.sarr[0] = NULL; + coef_varrec->UU.U0.arr[0] = 0; + + // set dims for Basic array + for (i = 0; i < maxdims; i++) + { + elts_varrec->dims[i] = 0; + coef_varrec->dims[i] = 0; + } + // set dims for first dimension and number of dims + elts_varrec->dims[0] = (long)(count + 1); + coef_varrec->dims[0] = (long)(count + 1); + elts_varrec->numdims = 1; + coef_varrec->numdims = 1; + + // fill in arrays + i = 1; + for (cxxNameDouble::iterator it = stoichiometry.begin(); it != stoichiometry.end(); it++) + { + elts_varrec->UU.U1.sarr[i] = PhreeqcPtr->string_duplicate((it->first).c_str()); + coef_varrec->UU.U0.arr[i] = it->second; + i++; + } + } + break; + + case toksr: + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->saturation_ratio(str); + } + break; + + case tokstep_no: + { + if (PhreeqcPtr->state == PHAST) + { + n.UU.val = 0; + } + else if (PhreeqcPtr->state == TRANSPORT) + { + n.UU.val = PhreeqcPtr->transport_step; + } + else if (PhreeqcPtr->state == ADVECTION) + { + n.UU.val = PhreeqcPtr->advection_step; + } + else if (PhreeqcPtr->state == REACTION) + { + n.UU.val = PhreeqcPtr->reaction_step; } else { - surface_name = NULL; + n.UU.val = 0; } - require(tokrp, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->diff_layer_total(elt_name, surface_name); - break; + } + break; - case toksurf: + case tokstr_e_: + { + // left parenthesis require(toklp, LINK); - elt_name = stringfactor(STR1, LINK); - if (LINK->t != NULL && LINK->t->kind == tokcomma) - { - LINK->t = LINK->t->next; - surface_name = stringfactor(STR2, LINK); - } - else - { - surface_name = NULL; - } + + // set number + LDBLE nmbr; + nmbr = realexpr(LINK); + + // set total length + require(tokcomma, LINK); + int length = (int)realexpr(LINK); + + // set total length + require(tokcomma, LINK); + int width = (int)realexpr(LINK); + + // right parenthesis require(tokrp, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->surf_total(elt_name, surface_name); - break; - case tokequi: + // Make work space + int max_length = length < 256 ? 256 : length; + char* token = (char*)PhreeqcPtr->PHRQ_calloc((max_length + 1), sizeof(char)); + if (token == NULL) PhreeqcPtr->malloc_error(); + + std::string std_num; { - const char * str = stringfactor(STR1, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->equi_phase(str); + sprintf(token, "%*.*e", length, width, nmbr); + std_num = token; } - break; - case tokequi_delta: - { - const char * str = stringfactor(STR1, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->equi_phase_delta(str); - } - break; + // set function value + n.UU.sval = (char*)PhreeqcPtr->PHRQ_calloc(std_num.size() + 2, sizeof(char)); + if (n.UU.sval == NULL) + PhreeqcPtr->malloc_error(); + strcpy(n.UU.sval, std_num.c_str()); + n.stringval = true; - case tokkin: - { - const char * str = stringfactor(STR1, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->kinetics_moles(str); - } - break; + // free work space + PhreeqcPtr->free_check_null(token); + } + break; - case tokkin_delta: - { - const char * str = stringfactor(STR1, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->kinetics_moles_delta(str); - } - break; - - case tokkin_time: - { - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->rate_kin_time; - } - break; - - case tokgas: - { - const char * str = stringfactor(STR1, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->find_gas_comp(str); - } - break; - - case toks_s: - { - const char * str = stringfactor(STR1, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->find_ss_comp(str); - } - break; - - case tokmisc1: - { - const char * str = stringfactor(STR1, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->find_misc1(str); - } - break; - - case tokmisc2: - { - const char * str = stringfactor(STR1, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->find_misc2(str); - } - break; - - case tokmu: - n.UU.val = PhreeqcPtr->mu_x; - break; - - case tokosmotic: - if (PhreeqcPtr->pitzer_model == TRUE || PhreeqcPtr->sit_model == TRUE) - { - n.UU.val = PhreeqcPtr->COSMOT; - } - else - { - n.UU.val = 0.0; - } - break; - - case tokalk: - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->total_alkalinity / PhreeqcPtr->mass_water_aq_x; - break; - - case toklk_species: - { - const char * str = stringfactor(STR1, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->calc_logk_s(str); - } - break; - - case toklk_named: - { - const char * str = stringfactor(STR1, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->calc_logk_n(str); - } - break; - - case toklk_phase: - { - const char * str = stringfactor(STR1, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->calc_logk_p(str); - } - break; - - case toksum_species: + case tokstr_f_: + { + // left parenthesis require(toklp, LINK); - mytemplate = stringfactor(STR1, LINK); - if (LINK->t != NULL && LINK->t->kind == tokcomma) - { - LINK->t = LINK->t->next; - elt_name = stringfactor(STR2, LINK); - } - else - { - elt_name = NULL; - } + + // set number + LDBLE nmbr; + nmbr = realexpr(LINK); + + // set total length + require(tokcomma, LINK); + int length = (int)realexpr(LINK); + + // set total length + require(tokcomma, LINK); + int width = (int)realexpr(LINK); + + // right parenthesis require(tokrp, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->sum_match_species(mytemplate, elt_name); - break; + + // Make work space + int max_length = length < 256 ? 256 : length; + char* token = (char*)PhreeqcPtr->PHRQ_calloc((max_length + 1), sizeof(char)); + if (token == NULL) PhreeqcPtr->malloc_error(); + + std::string std_num; + { + sprintf(token, "%*.*f", length, width, nmbr); + std_num = token; + } + + // set function value + n.UU.sval = (char*)PhreeqcPtr->PHRQ_calloc(std_num.size() + 2, sizeof(char)); + if (n.UU.sval == NULL) + PhreeqcPtr->malloc_error(); + strcpy(n.UU.sval, std_num.c_str()); + n.stringval = true; + + // free work space + PhreeqcPtr->free_check_null(token); + } + break; case toksum_gas: + { require(toklp, LINK); mytemplate = stringfactor(STR1, LINK); if (LINK->t != NULL && LINK->t->kind == tokcomma) @@ -2460,9 +3682,11 @@ factor(struct LOC_exec * LINK) } require(tokrp, LINK); n.UU.val = (parse_all) ? 1 : PhreeqcPtr->sum_match_gases(mytemplate, elt_name); - break; + } + break; case toksum_s_s: + { require(toklp, LINK); mytemplate = stringfactor(STR1, LINK); if (LINK->t != NULL && LINK->t->kind == tokcomma) @@ -2476,140 +3700,48 @@ factor(struct LOC_exec * LINK) } require(tokrp, LINK); n.UU.val = (parse_all) ? 1 : PhreeqcPtr->sum_match_ss(mytemplate, elt_name); - break; + } + break; - case tokcalc_value: + case toksum_species: + { require(toklp, LINK); - name = stringfactor(STR1, LINK); - require(tokrp, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->get_calculate_value(name); - break; - - case tokdescription: - n.stringval = true; - if (PhreeqcPtr->state == REACTION) + mytemplate = stringfactor(STR1, LINK); + if (LINK->t != NULL && LINK->t->kind == tokcomma) { - if (PhreeqcPtr->use.Get_mix_in()) - { - sprintf(string, "Mix %d", PhreeqcPtr->use.Get_n_mix_user()); - n.UU.sval = PhreeqcPtr->string_duplicate(string); - } - else - { - soln_ptr = Utilities::Rxn_find(PhreeqcPtr->Rxn_solution_map, - PhreeqcPtr->use.Get_n_solution_user()); - if (soln_ptr != NULL) - { - n.UU.sval = PhreeqcPtr->string_duplicate(soln_ptr->Get_description().c_str()); - } - else - { - n.UU.sval = PhreeqcPtr->string_duplicate("Unknown"); - } - } - } - else if (PhreeqcPtr->state == ADVECTION || PhreeqcPtr->state == TRANSPORT || PhreeqcPtr->state == PHAST) - { - sprintf(string, "Cell %d", PhreeqcPtr->cell_no); - n.UU.sval = PhreeqcPtr->string_duplicate(string); + LINK->t = LINK->t->next; + elt_name = stringfactor(STR2, LINK); } else { - if (PhreeqcPtr->use.Get_solution_ptr() != NULL) - { - n.UU.sval = PhreeqcPtr->string_duplicate(PhreeqcPtr->use.Get_solution_ptr()->Get_description().c_str()); - } - else - { - n.UU.sval = PhreeqcPtr->string_duplicate("Unknown"); - } + elt_name = NULL; } - while (PhreeqcPtr->replace("\t", " ", n.UU.sval)); - break; + require(tokrp, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->sum_match_species(mytemplate, elt_name); + } + break; - case toktitle: - n.stringval = true; - if (strlen(PhreeqcPtr->last_title_x.c_str()) == 0) + case toksurf: + { + require(toklp, LINK); + elt_name = stringfactor(STR1, LINK); + if (LINK->t != NULL && LINK->t->kind == tokcomma) { - PhreeqcPtr->last_title_x = " "; + LINK->t = LINK->t->next; + surface_name = stringfactor(STR2, LINK); } - n.UU.sval = PhreeqcPtr->string_duplicate(PhreeqcPtr->last_title_x.c_str()); - while (PhreeqcPtr->replace("\t", " ", n.UU.sval)); - break; - - case tokinstr: - require(toklp, LINK); - string1 = stringfactor(STR1, LINK); - require(tokcomma, LINK); - string2 = stringfactor(STR2, LINK); - require(tokrp, LINK); + else { - const char * cptr = strstr(string1, string2); - if (cptr == NULL) - { - n.UU.val = 0; - } - else - { - n.UU.val = ((LDBLE) (cptr - string1)) + 1; - } + surface_name = NULL; } - break; - - case tokltrim: - n.stringval = true; - require(toklp, LINK); - string1 = stringfactor(STR1, LINK); require(tokrp, LINK); - trim_left(STR1); - n.UU.sval = PhreeqcPtr->string_duplicate(STR1.c_str()); - break; - - case tokrtrim: - n.stringval = true; - require(toklp, LINK); - string1 = stringfactor(STR1, LINK); - require(tokrp, LINK); - trim_right(STR1); - n.UU.sval = PhreeqcPtr->string_duplicate(STR1.c_str()); - break; - - case toktrim: - n.stringval = true; - require(toklp, LINK); - string1 = stringfactor(STR1, LINK); - require(tokrp, LINK); - STR1 = trim(STR1); - n.UU.sval = PhreeqcPtr->string_duplicate(STR1.c_str()); - break; - - case tokiso: - { - const char * str = stringfactor(STR1, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->iso_value(str); - } - break; - - case tokiso_unit: - n.stringval = true; - require(toklp, LINK); - string1 = stringfactor(STR1, LINK); - require(tokrp, LINK); - trim(STR1); - n.UU.sval = (parse_all) ? PhreeqcPtr->string_duplicate("unknown") : PhreeqcPtr->iso_unit(STR1.c_str()); - break; - - case tokpad: - n.stringval = true; - require(toklp, LINK); - string1 = stringfactor(STR1, LINK); - require(tokcomma, LINK); - i = intexpr(LINK); - require(tokrp, LINK); - n.UU.sval = PhreeqcPtr->string_pad(string1, i); - break; + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->surf_total(elt_name, surface_name); + } + break; case toksys: + { + int isort = 0; require(toklp, LINK); elt_name = stringfactor(STR1, LINK); /* @@ -2654,7 +3786,16 @@ factor(struct LOC_exec * LINK) if (LINK->t->kind != tokvar || moles_varrec->stringvar != 0) snerr(": can`t find moles of species"); LINK->t = LINK->t->next; - arg_num = 4; + if (LINK->t != NULL && LINK->t->kind == tokcomma) + { + LINK->t = LINK->t->next; + isort = intexpr(LINK); + arg_num = 5; + } + else + { + arg_num = 4; + } } else { @@ -2672,15 +3813,16 @@ factor(struct LOC_exec * LINK) /* * Call subroutine */ - /* - n.UU.val = system_total(elt_name, count_varrec->UU.U0.val, &(names_varrec->UU.U1.sarr), &(types_varrec->UU.U1.sarr), &(moles_varrec->UU.U0.arr)); - */ + /* + n.UU.val = system_total(elt_name, count_varrec->UU.U0.val, &(names_varrec->UU.U1.sarr), &(types_varrec->UU.U1.sarr), &(moles_varrec->UU.U0.arr)); + */ if (parse_all) { PhreeqcPtr->sys_tot = 0; - PhreeqcPtr->count_sys = 1000; - int count_sys = PhreeqcPtr->count_sys; - names_arg = (char **) PhreeqcPtr->PHRQ_calloc((size_t) (count_sys + 1), sizeof(char *)); + //PhreeqcPtr->count_sys = 1000; + //int count_sys = PhreeqcPtr->count_sys; + size_t count_sys = 1000; + names_arg = (char**)PhreeqcPtr->PHRQ_calloc((size_t)(count_sys + 1), sizeof(char*)); if (names_arg == NULL) { PhreeqcPtr->malloc_error(); @@ -2688,7 +3830,7 @@ factor(struct LOC_exec * LINK) exit(4); #endif } - types_arg = (char **)PhreeqcPtr->PHRQ_calloc((size_t) (count_sys + 1), sizeof(char *)); + types_arg = (char**)PhreeqcPtr->PHRQ_calloc((size_t)(count_sys + 1), sizeof(char*)); if (types_arg == NULL) { PhreeqcPtr->malloc_error(); @@ -2696,7 +3838,7 @@ factor(struct LOC_exec * LINK) exit(4); #endif } - moles_arg = (LDBLE *) PhreeqcPtr->PHRQ_calloc((size_t) (count_sys + 1), sizeof(LDBLE)); + moles_arg = (LDBLE*)PhreeqcPtr->PHRQ_calloc((size_t)(count_sys + 1), sizeof(LDBLE)); if (moles_arg == NULL) { PhreeqcPtr->malloc_error(); @@ -2707,13 +3849,13 @@ factor(struct LOC_exec * LINK) names_arg[0] = NULL; types_arg[0] = NULL; moles_arg[0] = 0; - count_species = (LDBLE) count_sys; + count_species = (LDBLE)count_sys; n.UU.val = 0; } else { n.UU.val = PhreeqcPtr->system_total(elt_name, &count_species, &(names_arg), - &(types_arg), &(moles_arg)); + &(types_arg), &(moles_arg), isort); } /* @@ -2732,9 +3874,9 @@ factor(struct LOC_exec * LINK) types_varrec->dims[i] = 0; moles_varrec->dims[i] = 0; } - names_varrec->dims[0] = (long) (*count_varrec->UU.U0.val) + 1; - types_varrec->dims[0] = (long) (*count_varrec->UU.U0.val) + 1; - moles_varrec->dims[0] = (long) (*count_varrec->UU.U0.val) + 1; + names_varrec->dims[0] = (long)(*count_varrec->UU.U0.val) + 1; + types_varrec->dims[0] = (long)(*count_varrec->UU.U0.val) + 1; + moles_varrec->dims[0] = (long)(*count_varrec->UU.U0.val) + 1; names_varrec->numdims = 1; types_varrec->numdims = 1; moles_varrec->numdims = 1; @@ -2750,1013 +3892,301 @@ factor(struct LOC_exec * LINK) PhreeqcPtr->free_check_null(types_arg); PhreeqcPtr->free_check_null(moles_arg); } - break; + } + break; - case tokedl_species: + case tokt_sc: + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->calc_t_sc(str); + } + break; + + case toktc: + { + n.UU.val = PhreeqcPtr->tc_x; + } + break; + + case toktime: + { + n.UU.val = PhreeqcPtr->rate_time; + } + break; + + case toktitle: + { + n.stringval = true; + if (strlen(PhreeqcPtr->last_title_x.c_str()) == 0) { - double area, thickness; - require(toklp, LINK); - const char *surf_name = stringfactor(STR1, LINK); - require(tokcomma, LINK); - // variable for number of species - count_varrec = LINK->t->UU.vp; - if (LINK->t->kind != tokvar || !count_varrec || count_varrec->stringvar != 0) - { - snerr(": Missing or wrong type count variable."); -#if !defined(R_SO) - exit(4); -#endif - } - // variable for species names - LINK->t = LINK->t->next; - require(tokcomma, LINK); - names_varrec = LINK->t->UU.vp; - if (LINK->t->kind != tokvar || !names_varrec || names_varrec->stringvar != 1) - { - snerr(": Missing or wrong type name variable."); -#if !defined(R_SO) - exit(4); -#endif - } - // variable for species concentrations - LINK->t = LINK->t->next; - require(tokcomma, LINK); - moles_varrec = LINK->t->UU.vp; - if (LINK->t->kind != tokvar || moles_varrec->stringvar != 0) - snerr(": Missing or wrong type moles variable."); - // variable for area - LINK->t = LINK->t->next; - require(tokcomma, LINK); - varrec *area_varrec = LINK->t->UU.vp; - if (LINK->t->kind != tokvar || area_varrec->stringvar != 0) - snerr(": Missing or wrong type area varaiable."); - // varaiable for thickness - LINK->t = LINK->t->next; - require(tokcomma, LINK); - varrec *thickness_varrec = LINK->t->UU.vp; - if (LINK->t->kind != tokvar || thickness_varrec->stringvar != 0) - snerr(": Missing or wrong type thickness variable."); - LINK->t = LINK->t->next; - require(tokrp, LINK); - - free_dim_stringvar(names_varrec); - PhreeqcPtr->free_check_null(moles_varrec->UU.U0.arr); - moles_varrec->UU.U0.arr = NULL; - - // Call subroutine - if (parse_all) - { - PhreeqcPtr->sys_tot = 0; - PhreeqcPtr->count_sys = 1000; - int count_sys = PhreeqcPtr->count_sys; - names_arg = (char **) PhreeqcPtr->PHRQ_calloc((size_t) (count_sys + 1), sizeof(char *)); - if (names_arg == NULL) - { - PhreeqcPtr->malloc_error(); -#if !defined(R_SO) - exit(4); -#endif - } - moles_arg = (LDBLE *) PhreeqcPtr->PHRQ_calloc((size_t) (count_sys + 1), sizeof(LDBLE)); - if (moles_arg == NULL) - { - PhreeqcPtr->malloc_error(); -#if !defined(R_SO) - exit(4); -#endif - } - names_arg[0] = NULL; - moles_arg[0] = 0; - count_species = (LDBLE) count_sys; - n.UU.val = 0; - } - else - { - //n.UU.val = PhreeqcPtr->system_total(elt_name, &count_species, &(names_arg), - // &(types_arg), &(moles_arg)); - n.UU.val = PhreeqcPtr->edl_species(surf_name, &count_species, &(names_arg), &(moles_arg), &area, &thickness); - } - /* - * fill in varrec structures - */ - *count_varrec->UU.U0.val = count_species; - names_varrec->UU.U1.sarr = names_arg; - moles_varrec->UU.U0.arr = moles_arg; - *area_varrec->UU.U0.val = area; - *thickness_varrec->UU.U0.val = thickness; - - for (i = 0; i < maxdims; i++) - { - names_varrec->dims[i] = 0; - moles_varrec->dims[i] = 0; - } - names_varrec->dims[0] = (long) (*count_varrec->UU.U0.val) + 1; - moles_varrec->dims[0] = (long) (*count_varrec->UU.U0.val) + 1; - names_varrec->numdims = 1; - moles_varrec->numdims = 1; + PhreeqcPtr->last_title_x = " "; } - break; + n.UU.sval = PhreeqcPtr->string_duplicate(PhreeqcPtr->last_title_x.c_str()); + while (PhreeqcPtr->replace("\t", " ", n.UU.sval)); + } + break; - case toklist_s_s: - { - /* list_s_s("calcite", count, name$, moles) */ - /* return total moles */ - require(toklp, LINK); - std::string s_s_name(stringfactor(STR1, LINK)); - cxxNameDouble composition; - /* - * Parse arguments - */ - arg_num = -1; - if (LINK->t != NULL && LINK->t->kind == tokcomma) - { - LINK->t = LINK->t->next; - count_varrec = LINK->t->UU.vp; - if (LINK->t->kind != tokvar || count_varrec->stringvar != 0) - snerr(": Cannot find count variable"); - - /* return number of names of components */ - LINK->t = LINK->t->next; - require(tokcomma, LINK); - names_varrec = LINK->t->UU.vp; - if (LINK->t->kind != tokvar || names_varrec->stringvar != 1) - snerr(": Cannot find component string variable"); - - /* return number of moles of components */ - LINK->t = LINK->t->next; - require(tokcomma, LINK); - moles_varrec = LINK->t->UU.vp; - if (LINK->t->kind != tokvar || moles_varrec->stringvar != 0) - snerr(": Cannot find moles of component variable"); - LINK->t = LINK->t->next; - arg_num = 4; - } - else - { - snerr(": Expected 4 arguments for list_s_s"); -#if !defined(R_SO) - exit(4); -#endif - } - require(tokrp, LINK); - - if (arg_num > 1) - { - free_dim_stringvar(names_varrec); - if (moles_varrec) - { - PhreeqcPtr->free_check_null(moles_varrec->UU.U0.arr); - moles_varrec->UU.U0.arr = NULL; - } - } - /* - * Call subroutine - */ - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->list_ss(s_s_name, composition); - - /* - * fill in varrec structure - */ - - if (arg_num > 1) - { - size_t count = composition.size(); - *count_varrec->UU.U0.val = (LDBLE) count; - /* - * malloc space - */ - names_varrec->UU.U1.sarr = (char **) PhreeqcPtr->PHRQ_malloc((count + 1) * sizeof(char *)); - if (names_varrec->UU.U1.sarr == NULL) - { - PhreeqcPtr->malloc_error(); -#if !defined(R_SO) - exit(4); -#endif - } - moles_varrec->UU.U0.arr = (LDBLE *) PhreeqcPtr->PHRQ_malloc((count + 1) * sizeof(LDBLE)); - if (moles_varrec->UU.U0.arr == NULL) - { - PhreeqcPtr->malloc_error(); -#if !defined(R_SO) - exit(4); -#endif - } - - // first position not used - names_varrec->UU.U1.sarr[0] = NULL; - moles_varrec->UU.U0.arr[0] = 0; - - // set dims for Basic array - for (i = 0; i < maxdims; i++) - { - names_varrec->dims[i] = 0; - moles_varrec->dims[i] = 0; - } - // set dims for first dimension and number of dims - names_varrec->dims[0] = (long) (count + 1); - moles_varrec->dims[0] = (long) (count + 1); - names_varrec->numdims = 1; - moles_varrec->numdims = 1; - - // fill in arrays - i = 1; - std::vector< std::pair > sort_comp = composition.sort_second(); - size_t j; - for (j = 0; j != sort_comp.size(); j++) - { - names_varrec->UU.U1.sarr[i] = PhreeqcPtr->string_duplicate(sort_comp[j].first.c_str()); - moles_varrec->UU.U0.arr[i] = sort_comp[j].second; - i++; - } - - } - break; - } - - case tokkinetics_formula: - case tokkinetics_formula_: - { - require(toklp, LINK); - std::string kinetics_name(stringfactor(STR1, LINK)); - varrec *elts_varrec = NULL, *coef_varrec = NULL; - cxxNameDouble stoichiometry; - /* - * Parse arguments - */ - if (LINK->t != NULL && LINK->t->kind == tokcomma) - { - /* kinetics_formula("calcite", count, elt, coef) */ - /* return formula */ - /*int c; */ - /* struct varrec *count_varrec, *names_varrec, *types_varrec, *moles_varrec; */ - /* struct varrec *count_varrec, *elt_varrec, *coef_varrec; */ - /* return number of species */ - LINK->t = LINK->t->next; - count_varrec = LINK->t->UU.vp; - if (LINK->t->kind != tokvar || count_varrec->stringvar != 0) - snerr(": Cannot find count variable"); - - /* return number of names of elements */ - LINK->t = LINK->t->next; - require(tokcomma, LINK); - elts_varrec = LINK->t->UU.vp; - if (LINK->t->kind != tokvar || elts_varrec->stringvar != 1) - snerr(": Cannot find element string variable"); - - /* return coefficients of species */ - LINK->t = LINK->t->next; - require(tokcomma, LINK); - coef_varrec = LINK->t->UU.vp; - if (LINK->t->kind != tokvar || coef_varrec->stringvar != 0) - snerr(": Cannot find coefficient variable"); - LINK->t = LINK->t->next; - arg_num = 4; - } - else - { - arg_num = 1; - } - require(tokrp, LINK); - - if (arg_num > 1) - { - free_dim_stringvar(elts_varrec); - PhreeqcPtr->free_check_null(coef_varrec->UU.U0.arr); - coef_varrec->UU.U0.arr = NULL; - } - /* - * Call subroutine - */ - std::string form = PhreeqcPtr->kinetics_formula(kinetics_name, stoichiometry); - - // put formula as return value - n.stringval = true; - n.UU.sval = PhreeqcPtr->string_duplicate(form.c_str()); - - /* - * fill in varrec structure - */ - - if (arg_num > 1) - { - size_t count = stoichiometry.size(); - *count_varrec->UU.U0.val = (LDBLE) count; - /* - * malloc space - */ - elts_varrec->UU.U1.sarr = (char **) PhreeqcPtr->PHRQ_malloc((count + 1) * sizeof(char *)); - if (elts_varrec->UU.U1.sarr == NULL) - PhreeqcPtr->malloc_error(); - coef_varrec->UU.U0.arr = (LDBLE *) PhreeqcPtr->PHRQ_malloc((count + 1) * sizeof(LDBLE)); - if (coef_varrec->UU.U0.arr == NULL) - PhreeqcPtr->malloc_error(); - - // first position not used - elts_varrec->UU.U1.sarr[0] = NULL; - coef_varrec->UU.U0.arr[0] = 0; - - // set dims for Basic array - for (i = 0; i < maxdims; i++) - { - elts_varrec->dims[i] = 0; - coef_varrec->dims[i] = 0; - } - // set dims for first dimension and number of dims - elts_varrec->dims[0] = (long) (count + 1); - coef_varrec->dims[0] = (long) (count + 1); - elts_varrec->numdims = 1; - coef_varrec->numdims = 1; - - // fill in arrays - i = 1; - for (cxxNameDouble::iterator it = stoichiometry.begin(); it != stoichiometry.end(); it++) - { - elts_varrec->UU.U1.sarr[i] = PhreeqcPtr->string_duplicate((it->first).c_str()); - coef_varrec->UU.U0.arr[i] = it->second; - i++; - } - - } - break; - } - case tokphase_formula: - case tokphase_formula_: - { - require(toklp, LINK); - std::string phase_name(stringfactor(STR1, LINK)); - varrec *elts_varrec = NULL, *coef_varrec = NULL; - cxxNameDouble stoichiometry; - /* - * Parse arguments - */ - if (LINK->t != NULL && LINK->t->kind == tokcomma) - { - /* phase_formula("calcite", count, elt, coef) */ - /* return formula */ - /*int c; */ - /* struct varrec *count_varrec, *names_varrec, *types_varrec, *moles_varrec; */ - /* struct varrec *count_varrec, *elt_varrec, *coef_varrec; */ - /* return number of species */ - LINK->t = LINK->t->next; - count_varrec = LINK->t->UU.vp; - if (LINK->t->kind != tokvar || count_varrec->stringvar != 0) - snerr(": Cannot find count variable"); - - /* return number of names of species */ - LINK->t = LINK->t->next; - require(tokcomma, LINK); - elts_varrec = LINK->t->UU.vp; - if (LINK->t->kind != tokvar || elts_varrec->stringvar != 1) - snerr(": Cannot find element string variable"); - - /* return coefficients of species */ - LINK->t = LINK->t->next; - require(tokcomma, LINK); - coef_varrec = LINK->t->UU.vp; - if (LINK->t->kind != tokvar || coef_varrec->stringvar != 0) - snerr(": Cannot find coefficient variable"); - LINK->t = LINK->t->next; - arg_num = 4; - } - else - { - arg_num = 1; - } - require(tokrp, LINK); - - if (arg_num > 1) - { - free_dim_stringvar(elts_varrec); - PhreeqcPtr->free_check_null(coef_varrec->UU.U0.arr); - coef_varrec->UU.U0.arr = NULL; - } - /* - * Call subroutine - */ - std::string form = PhreeqcPtr->phase_formula(phase_name, stoichiometry); - - // put formula as return value - n.stringval = true; - n.UU.sval = PhreeqcPtr->string_duplicate(form.c_str()); - - /* - * fill in varrec structure - */ - - if (arg_num > 1) - { - size_t count = stoichiometry.size(); - *count_varrec->UU.U0.val = (LDBLE) count; - /* - * malloc space - */ - elts_varrec->UU.U1.sarr = (char **) PhreeqcPtr->PHRQ_malloc((count + 1) * sizeof(char *)); - if (elts_varrec->UU.U1.sarr == NULL) - PhreeqcPtr->malloc_error(); - coef_varrec->UU.U0.arr = (LDBLE *) PhreeqcPtr->PHRQ_malloc((count + 1) * sizeof(LDBLE)); - if (coef_varrec->UU.U0.arr == NULL) - PhreeqcPtr->malloc_error(); - - // first position not used - elts_varrec->UU.U1.sarr[0] = NULL; - coef_varrec->UU.U0.arr[0] = 0; - - // set dims for Basic array - for (i = 0; i < maxdims; i++) - { - elts_varrec->dims[i] = 0; - coef_varrec->dims[i] = 0; - } - // set dims for first dimension and number of dims - elts_varrec->dims[0] = (long) (count + 1); - coef_varrec->dims[0] = (long) (count + 1); - elts_varrec->numdims = 1; - coef_varrec->numdims = 1; - - // fill in arrays - i = 1; - for (cxxNameDouble::iterator it = stoichiometry.begin(); it != stoichiometry.end(); it++) - { - elts_varrec->UU.U1.sarr[i] = PhreeqcPtr->string_duplicate((it->first).c_str()); - coef_varrec->UU.U0.arr[i] = it->second; - i++; - } - - } - break; - } - case tokspecies_formula: - case tokspecies_formula_: - { - require(toklp, LINK); - std::string species_name(stringfactor(STR1, LINK)); - varrec *elts_varrec = NULL, *coef_varrec = NULL; - cxxNameDouble stoichiometry; - /* - * Parse arguments - */ - require(tokcomma, LINK); - - count_varrec = LINK->t->UU.vp; - if (LINK->t->kind != tokvar || count_varrec->stringvar != 0) - snerr(": Cannot find count variable"); - - /* return number of names of species */ - LINK->t = LINK->t->next; - require(tokcomma, LINK); - elts_varrec = LINK->t->UU.vp; - if (LINK->t->kind != tokvar || elts_varrec->stringvar != 1) - snerr(": Cannot find element string variable"); - - /* return coefficients of species */ - LINK->t = LINK->t->next; - require(tokcomma, LINK); - coef_varrec = LINK->t->UU.vp; - if (LINK->t->kind != tokvar || coef_varrec->stringvar != 0) - snerr(": Cannot find coefficient variable"); - LINK->t = LINK->t->next; - - require(tokrp, LINK); - - free_dim_stringvar(elts_varrec); - PhreeqcPtr->free_check_null(coef_varrec->UU.U0.arr); - coef_varrec->UU.U0.arr = NULL; - /* - * Call subroutine - */ - std::string type = PhreeqcPtr->species_formula(species_name, stoichiometry); - - // put type as return value - n.stringval = true; - n.UU.sval = PhreeqcPtr->string_duplicate(type.c_str()); - - /* - * fill in varrec structure - */ - - size_t count = stoichiometry.size(); - *count_varrec->UU.U0.val = (LDBLE) count; - /* - * malloc space - */ - elts_varrec->UU.U1.sarr = (char **) PhreeqcPtr->PHRQ_malloc((count + 1) * sizeof(char *)); - if (elts_varrec->UU.U1.sarr == NULL) - { - PhreeqcPtr->malloc_error(); -#if !defined(R_SO) - exit(4); -#endif - } - coef_varrec->UU.U0.arr = (LDBLE *) PhreeqcPtr->PHRQ_malloc((count + 1) * sizeof(LDBLE)); - if (coef_varrec->UU.U0.arr == NULL) - { - PhreeqcPtr->malloc_error(); -#if !defined(R_SO) - exit(4); -#endif - } - - // first position not used - elts_varrec->UU.U1.sarr[0] = NULL; - coef_varrec->UU.U0.arr[0] = 0; - - // set dims for Basic array - for (i = 0; i < maxdims; i++) - { - elts_varrec->dims[i] = 0; - coef_varrec->dims[i] = 0; - } - // set dims for first dimension and number of dims - elts_varrec->dims[0] = (long) (count + 1); - coef_varrec->dims[0] = (long) (count + 1); - elts_varrec->numdims = 1; - coef_varrec->numdims = 1; - - // fill in arrays - i = 1; - for (cxxNameDouble::iterator it = stoichiometry.begin(); it != stoichiometry.end(); it++) - { - elts_varrec->UU.U1.sarr[i] = PhreeqcPtr->string_duplicate((it->first).c_str()); - coef_varrec->UU.U0.arr[i] = it->second; - i++; - } - - break; - } - case tokrxn: - if (PhreeqcPtr->state == REACTION || - PhreeqcPtr->state == ADVECTION || - PhreeqcPtr->state == TRANSPORT) - { - n.UU.val = PhreeqcPtr->step_x; - } - else - { - n.UU.val = 0.0; - } - break; - - case tokdist: - if (PhreeqcPtr->state == PHAST) - { - n.UU.val = 0; - } - else if (PhreeqcPtr->state == TRANSPORT) - { - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->cell_data[PhreeqcPtr->cell].mid_cell_x; - } - else if (PhreeqcPtr->state == ADVECTION) - { - n.UU.val = (parse_all) ? 1 : (LDBLE) PhreeqcPtr->use.Get_n_solution_user(); - } - else - { - n.UU.val = 0; - } - break; - - case tokmol: - { - const char * str = stringfactor(STR1, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->molality(str); - } - break; - - case tokla: - { - const char * str = stringfactor(STR1, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->log_activity(str); - } - break; - - case toklm: - { - const char * str = stringfactor(STR1, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->log_molality(str); - } - break; - - case toksr: - { - const char * str = stringfactor(STR1, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->saturation_ratio(str); - } - break; - - case tokstep_no: - if (PhreeqcPtr->state == PHAST) - { - n.UU.val = 0; - } - else if (PhreeqcPtr->state == TRANSPORT) - { - n.UU.val = PhreeqcPtr->transport_step; - } - else if (PhreeqcPtr->state == ADVECTION) - { - n.UU.val = PhreeqcPtr->advection_step; - } - else if (PhreeqcPtr->state == REACTION) - { - n.UU.val = PhreeqcPtr->reaction_step; - } - else - { - n.UU.val = 0; - } - break; - - case tokcell_no: - if (parse_all) - { - n.UU.val = 1; - break; - } - n.UU.val = PhreeqcPtr->solution_number(); -#ifdef SKIP - if (PhreeqcPtr->state == TRANSPORT) - { - n.UU.val = PhreeqcPtr->cell_no; - } - else if (PhreeqcPtr->state == PHAST) - { - n.UU.val = PhreeqcPtr->cell_no; - } - else if (PhreeqcPtr->state == ADVECTION) - { - n.UU.val = PhreeqcPtr->cell_no; - } - else if (PhreeqcPtr->state < REACTION) - { - n.UU.val = PhreeqcPtr->use.Get_solution_ptr()->Get_n_user(); - } - else - { - if (PhreeqcPtr->use.Get_mix_in()) - { - n.UU.val = PhreeqcPtr->use.Get_n_mix_user(); - } - else - { - n.UU.val = PhreeqcPtr->use.Get_n_solution_user(); - } - } -#endif - break; - - case toksim_no: - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->simulation; - break; - - case tokget: - require(toklp, LINK); - - s_v.count_subscripts = 0; - /* get first subscript */ - if (LINK->t != NULL && LINK->t->kind != tokrp) - { - i = intexpr(LINK); - if (s_v.subscripts == NULL) - { - s_v.subscripts = (int *) PhreeqcPtr->PHRQ_malloc(sizeof(int)); - if (s_v.subscripts == NULL) - PhreeqcPtr->malloc_error(); - } - s_v.subscripts = - (int *) PhreeqcPtr->PHRQ_realloc(s_v.subscripts, - (size_t) (s_v.count_subscripts + - 1) * sizeof(int)); - if (s_v.subscripts == NULL) - PhreeqcPtr->malloc_error(); - s_v.subscripts[s_v.count_subscripts] = i; - s_v.count_subscripts++; - } - - /* get other subscripts */ - for (;;) - { - if (LINK->t != NULL && LINK->t->kind == tokcomma) - { - LINK->t = LINK->t->next; - j = intexpr(LINK); - if (s_v.subscripts == NULL) - { - s_v.subscripts = (int *) PhreeqcPtr->PHRQ_malloc(sizeof(int)); - if (s_v.subscripts == NULL) - PhreeqcPtr->malloc_error(); - } - s_v.subscripts = - (int *) PhreeqcPtr->PHRQ_realloc(s_v.subscripts, - (size_t) (s_v.count_subscripts + - 1) * sizeof(int)); - if (s_v.subscripts == NULL) - PhreeqcPtr->malloc_error(); - s_v.subscripts[s_v.count_subscripts] = j; - s_v.count_subscripts++; - } - else - { - /* get right parentheses */ - require(tokrp, LINK); - break; - } - } - s_v_ptr = (parse_all) ? NULL : PhreeqcPtr->save_values_bsearch(&s_v, &k); - if (s_v_ptr == NULL) - { - n.UU.val = (parse_all) ? 1 : 0; - } - else - { - n.UU.val = s_v_ptr->value; - } - break; - - case tokexists: - require(toklp, LINK); - - s_v.count_subscripts = 0; - /* get first subscript */ - if (LINK->t != NULL && LINK->t->kind != tokrp) - { - i = intexpr(LINK); - if (s_v.subscripts == NULL) - { - s_v.subscripts = (int *) PhreeqcPtr->PHRQ_malloc(sizeof(int)); - if (s_v.subscripts == NULL) - PhreeqcPtr->malloc_error(); - } - s_v.subscripts = - (int *) PhreeqcPtr->PHRQ_realloc(s_v.subscripts, - (size_t) (s_v.count_subscripts + - 1) * sizeof(int)); - if (s_v.subscripts == NULL) - { - PhreeqcPtr->malloc_error(); - } - else - { - s_v.subscripts[s_v.count_subscripts] = i; - s_v.count_subscripts++; - } - } - - /* get other subscripts */ - for (;;) - { - if (LINK->t != NULL && LINK->t->kind == tokcomma) - { - LINK->t = LINK->t->next; - j = intexpr(LINK); - if (s_v.subscripts == NULL) - { - s_v.subscripts = (int *) PhreeqcPtr->PHRQ_malloc(sizeof(int)); - if (s_v.subscripts == NULL) - PhreeqcPtr->malloc_error(); - } - s_v.subscripts = - (int *) PhreeqcPtr->PHRQ_realloc(s_v.subscripts, - (size_t) (s_v.count_subscripts + - 1) * sizeof(int)); - if (s_v.subscripts == NULL) - { - PhreeqcPtr->malloc_error(); - } - else - { - s_v.subscripts[s_v.count_subscripts] = j; - s_v.count_subscripts++; - } - } - else - { - /* get right parentheses */ - require(tokrp, LINK); - break; - } - } - if (parse_all) - { - n.UU.val = 1; - } - else - { - s_v_ptr = PhreeqcPtr->save_values_bsearch(&s_v, &k); - if (s_v_ptr == NULL) - { - n.UU.val = 0; - } - else - { - n.UU.val = 1; - } - } - break; - - case tokcharge_balance: - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->cb_x; - break; - - case tokpercent_error: - n.UU.val = (parse_all) ? 1 : 100 * PhreeqcPtr->cb_x / PhreeqcPtr->total_ions_x; - break; - - case toksi: - { - const char * str = stringfactor(STR1, LINK); - if (parse_all) - { - n.UU.val = 1; - } - else - { - PhreeqcPtr->saturation_index(str, &l_dummy, &n.UU.val); - } - } - break; + case toktk: + { + n.UU.val = PhreeqcPtr->tc_x + 273.15; + } + break; case toktot: + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->total(str); + } + break; + + case toktotal_time: + { + if (!PhreeqcPtr->use.Get_kinetics_in()) { - const char * str = stringfactor(STR1, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->total(str); + if (PhreeqcPtr->state == PHAST) + { + n.UU.val = PhreeqcPtr->rate_sim_time_end; + } + else if (PhreeqcPtr->state == TRANSPORT) + { + n.UU.val = PhreeqcPtr->initial_total_time + PhreeqcPtr->transport_step * PhreeqcPtr->timest; + } + else if (PhreeqcPtr->state == ADVECTION) + { + n.UU.val = + PhreeqcPtr->initial_total_time + PhreeqcPtr->advection_step * PhreeqcPtr->advection_kin_time; + } + else + { + n.UU.val = 0; + } } - break; + else + { + n.UU.val = PhreeqcPtr->initial_total_time + PhreeqcPtr->rate_sim_time; + } + } + break; case toktotmole: case toktotmol: case toktotmoles: - { - const char * str = stringfactor(STR1, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->total_mole(str); - } - break; + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->total_mole(str); + } + break; - case tokcell_pore_volume: + case toktrim: + { + n.stringval = true; + require(toklp, LINK); + string1 = stringfactor(STR1, LINK); + require(tokrp, LINK); + STR1 = trim(STR1); + n.UU.sval = PhreeqcPtr->string_duplicate(STR1.c_str()); + } + break; + + case tokviscos: + { + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->viscos; + } + break; + + case tokviscos_0: + { + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->viscos_0; + } + break; + + case tokvm: + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->aqueous_vm(str); + } + break; + /* + * End of PHREEQC functions + */ + case toksa_declercq: // Undocumented function + { + double type, sa, d, m, m0, gfw; + + // left parenthesis + require(toklp, LINK); + + // first double arugument, type + type = realfactor(LINK); + require(tokcomma, LINK); + + // second double arugument, Sa + sa = realfactor(LINK); + require(tokcomma, LINK); + + // third double arugument, Sa + d = realfactor(LINK); + require(tokcomma, LINK); + + // fourth double arugument, m + m = realfactor(LINK); + require(tokcomma, LINK); + + // fifth double arugument, m0 + m0 = realfactor(LINK); + require(tokcomma, LINK); + + // sixth double arugument, gfw + gfw = realfactor(LINK); + require(tokrp, LINK); + + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->sa_declercq(type, sa, d, m, m0, gfw); + } + break; + + case tokcallback: // PHAST function + { + double x1, x2; + char* str; + + // left parenthesis + require(toklp, LINK); + + // first double arugument + x1 = realfactor(LINK); + require(tokcomma, LINK); + + // second double arugument + x2 = realfactor(LINK); + require(tokcomma, LINK); + + // string arugument + str = strexpr(LINK); + + require(tokrp, LINK); + + // call callback Basic function + + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->basic_callback(x1, x2, str); + PhreeqcPtr->PHRQ_free(str); + } + break; + + case tokcell_pore_volume: // PHAST function case tokporevolume: - { - double x1 = (double) PhreeqcPtr->solution_number(); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->basic_callback(x1, x1, "cell_pore_volume"); - } - break; + { + double x1 = (double)PhreeqcPtr->solution_number(); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->basic_callback(x1, x1, "cell_pore_volume"); + } + break; -/* VP : Density Start */ - case tokrho: - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->calc_dens(); - break; - case tokrho_0: - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->rho_0; - break; -/* VP: Density End */ - case tokcell_volume: - { - double x1 = (double) PhreeqcPtr->solution_number(); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->basic_callback(x1, x1, "cell_volume"); - } - break; - case tokcell_porosity: - { - double x1 = (double) PhreeqcPtr->solution_number(); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->basic_callback(x1, x1, "cell_porosity"); - } - break; - case tokcell_saturation: - { - double x1 = (double) PhreeqcPtr->solution_number(); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->basic_callback(x1, x1, "cell_saturation"); - } - break; - case toksc: - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->calc_SC(); - break; - case tokpr_p: - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->pr_pressure(stringfactor(STR1, LINK)); - break; - case tokpressure: - n.UU.val = PhreeqcPtr->pressure(); - break; - case tokpr_phi: - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->pr_phi(stringfactor(STR1, LINK)); - break; - case tokgas_p: - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->find_gas_p(); - break; - case tokgas_vm: - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->find_gas_vm(); - break; - case tokeps_r: - n.UU.val = PhreeqcPtr->eps_r; - break; - case tokaphi: - n.UU.val = PhreeqcPtr->A0; - break; - case tokdh_a: - n.UU.val = PhreeqcPtr->DH_A; - break; - case tokdh_b: - n.UU.val = PhreeqcPtr->DH_B; - break; - case tokdh_av: - n.UU.val = PhreeqcPtr->DH_Av; - break; - case tokqbrn: - n.UU.val = PhreeqcPtr->QBrn; - break; - case tokkappa: - n.UU.val = PhreeqcPtr->kappa_0; - break; - case tokgfw: - { - const char * str = stringfactor(STR1, LINK); - LDBLE gfw; - PhreeqcPtr->compute_gfw(str, &gfw); - n.UU.val = (parse_all) ? 1 : gfw; - } - break; - case toksoln_vol: - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->calc_solution_volume(); - break; - case tokvm: - { - const char * str = stringfactor(STR1, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->aqueous_vm(str); - } - break; - case tokphase_vm: - { - const char * str = stringfactor(STR1, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->phase_vm(str); - } - break; - case tokviscos: - { - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->viscos; - } - break; - case tokviscos_0: - { - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->viscos_0; - } - break; - case tokcurrent_a: - //n.UU.val = (parse_all) ? 1 : PhreeqcPtr->current_x; - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->current_A; - break; - case tokpot_v: - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->use.Get_solution_ptr()->Get_potV(); - break; - case tokt_sc: - { - const char * str = stringfactor(STR1, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->calc_t_sc(str); - } - break; + case tokcell_porosity: // PHAST function + { + double x1 = (double)PhreeqcPtr->solution_number(); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->basic_callback(x1, x1, "cell_porosity"); + } + break; + + case tokcell_saturation: // PHAST function + { + double x1 = (double)PhreeqcPtr->solution_number(); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->basic_callback(x1, x1, "cell_saturation"); + } + break; + + case tokcell_volume: // PHAST function + { + double x1 = (double)PhreeqcPtr->solution_number(); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->basic_callback(x1, x1, "cell_volume"); + } + break; + + case toktransport_cell_no: // PHAST function + { + double x1 = (double)PhreeqcPtr->solution_number(); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->basic_callback(x1, x1, "transport_cell_no"); + } + break; + + case tokvelocity_x: // PHAST function + { + double x1 = (double)PhreeqcPtr->solution_number(); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->basic_callback(x1, x1, "velocity_x"); + } + break; + + case tokvelocity_y: // PHAST function + { + double x1 = (double)PhreeqcPtr->solution_number(); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->basic_callback(x1, x1, "velocity_y"); + } + break; + + case tokvelocity_z: // PHAST function + { + double x1 = (double)PhreeqcPtr->solution_number(); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->basic_callback(x1, x1, "velocity_z"); + } + break; case toklog10: + { + LDBLE t = realfactor(LINK); { - LDBLE t = realfactor(LINK); - //if (t > 0.0) - { - n.UU.val = log10(t); - } - //else - //{ - // n.UU.val = 0; - //} + n.UU.val = log10(t); } - break; + } + break; + case toksin: + { n.UU.val = sin(realfactor(LINK)); - break; + } + break; case tokcos: + { n.UU.val = cos(realfactor(LINK)); - break; + } + break; case toktan: + { n.UU.val = realfactor(LINK); n.UU.val = sin(n.UU.val) / cos(n.UU.val); - break; + } + break; case tokarctan: + { n.UU.val = atan(realfactor(LINK)); - break; + } + break; case toklog: + { n.UU.val = log(realfactor(LINK)); - break; + } + break; case tokexp: + { n.UU.val = exp(realfactor(LINK)); - break; + } + break; case tokabs: + { n.UU.val = fabs(realfactor(LINK)); - break; + } + break; case toksgn: + { n.UU.val = realfactor(LINK); - n.UU.val = (n.UU.val > 0) - (n.UU.val < 0); - break; + n.UU.val = (double)(n.UU.val > 0) - (double)(n.UU.val < 0); + } + break; case tokstr_: n.stringval = true; @@ -3765,234 +4195,6 @@ factor(struct LOC_exec * LINK) PhreeqcPtr->malloc_error(); numtostr(n.UU.sval, realfactor(LINK)); break; - - case tokstr_f_: - { - // left parenthesis - require(toklp, LINK); - - // set number - LDBLE nmbr; - nmbr = realexpr(LINK); - - // set total length - require(tokcomma, LINK); - int length = (int) realexpr(LINK); - - // set total length - require(tokcomma, LINK); - int width = (int) realexpr(LINK); - - // right parenthesis - require(tokrp, LINK); - - // Make work space - int max_length = length < 256 ? 256 : length; - char *token = (char *) PhreeqcPtr->PHRQ_calloc(size_t (max_length + 1), sizeof(char)); - if (token == NULL) PhreeqcPtr->malloc_error(); - - std::string std_num; - { - sprintf(token, "%*.*f", length, width, nmbr); - std_num = token; - } - - // set function value - n.UU.sval = (char *) PhreeqcPtr->PHRQ_calloc(std_num.size() + 2, sizeof(char)); - if (n.UU.sval == NULL) - PhreeqcPtr->malloc_error(); - strcpy(n.UU.sval, std_num.c_str()); - n.stringval = true; - - // free work space - PhreeqcPtr->free_check_null(token); - } - break; - - case tokstr_e_: - { - // left parenthesis - require(toklp, LINK); - - // set number - LDBLE nmbr; - nmbr = realexpr(LINK); - - // set total length - require(tokcomma, LINK); - int length = (int) realexpr(LINK); - - // set total length - require(tokcomma, LINK); - int width = (int) realexpr(LINK); - - // right parenthesis - require(tokrp, LINK); - - // Make work space - int max_length = length < 256 ? 256 : length; - char *token = (char *) PhreeqcPtr->PHRQ_calloc(size_t (max_length + 1), sizeof(char)); - if (token == NULL) PhreeqcPtr->malloc_error(); - - std::string std_num; - { - sprintf(token, "%*.*e", length, width, nmbr); - std_num = token; - } - - // set function value - n.UU.sval = (char *) PhreeqcPtr->PHRQ_calloc(std_num.size() + 2, sizeof(char)); - if (n.UU.sval == NULL) - PhreeqcPtr->malloc_error(); - strcpy(n.UU.sval, std_num.c_str()); - n.stringval = true; - - // free work space - PhreeqcPtr->free_check_null(token); - } - break; - case tokeq_frac: - case tokequiv_frac: - { - // left parenthesis - require(toklp, LINK); - - // species name - std::string species_name(stringfactor(STR1, LINK)); - - require(tokcomma, LINK); - - // equivalents - count_varrec = LINK->t->UU.vp; - if (LINK->t->kind != tokvar || count_varrec->stringvar != 0) - snerr(": Cannot find equivalents variable"); - - LINK->t = LINK->t->next; - require(tokcomma, LINK); - - // exchange or surface element - varrec *elt_varrec = NULL; - elt_varrec = LINK->t->UU.vp; - if (LINK->t->kind != tokvar || elt_varrec->stringvar != 1) - snerr(": Cannot find element string variable"); - free_dim_stringvar(elt_varrec); - *elt_varrec->UU.U1.sval = (char *) PhreeqcPtr->free_check_null(*elt_varrec->UU.U1.sval); - - // right parenthesis - LINK->t = LINK->t->next; - require(tokrp, LINK); - - // Make work space - //int max_length = length < 256 ? 256 : length; - //char *token = (char *) PhreeqcPtr->PHRQ_calloc(size_t (max_length + 1), sizeof(char)); - //if (token == NULL) PhreeqcPtr->malloc_error(); - - // set function value - LDBLE eq; - std::string elt_name; - - // return equivalent fraction - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->equivalent_fraction(species_name.c_str(), &eq, elt_name); - - // set equivalents - *count_varrec->UU.U0.val = (parse_all) ? 1 : eq; - - // set element name - size_t l = elt_name.size(); - l = l < 256 ? 256 : l + 1; - char * token = (char *) PhreeqcPtr->PHRQ_malloc( l * sizeof(char)); - strcpy(token, elt_name.c_str()); - *elt_varrec->UU.U1.sval = token; - } - break; - case tokcallback: - { - double x1, x2; - char * str; - - // left parenthesis - require(toklp, LINK); - - // first double arugument - x1 = realfactor(LINK); - require(tokcomma, LINK); - - // second double arugument - x2 = realfactor(LINK); - require(tokcomma, LINK); - - // string arugument - str = strexpr(LINK); - - require(tokrp, LINK); - - // call callback Basic function - - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->basic_callback(x1, x2, str); - - } - break; - - case toksa_declercq: - { - double type, sa, d, m, m0, gfw; - - // left parenthesis - require(toklp, LINK); - - // first double arugument, type - type = realfactor(LINK); - require(tokcomma, LINK); - - // second double arugument, Sa - sa = realfactor(LINK); - require(tokcomma, LINK); - - // third double arugument, Sa - d = realfactor(LINK); - require(tokcomma, LINK); - - // fourth double arugument, m - m = realfactor(LINK); - require(tokcomma, LINK); - - // fifth double arugument, m0 - m0 = realfactor(LINK); - require(tokcomma, LINK); - - // sixth double arugument, gfw - gfw = realfactor(LINK); - require(tokrp, LINK); - - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->sa_declercq(type, sa, d, m, m0, gfw); - } - break; - - case tokdiff_c: - { - const char * str = stringfactor(STR1, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->diff_c(str); - } - break; - - case toksetdiff_c: - { - double d; - - require(toklp, LINK); - - const char * str = stringfactor(STR1, LINK); - require(tokcomma, LINK); - - // double arugument - d = realexpr(LINK); - require(tokrp, LINK); - - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->setdiff_c(str, d); - - //PhreeqcPtr->PHRQ_free((void *) str); - } - break; case tokval: l_s = strfactor(LINK); tok1 = LINK->t; @@ -4016,14 +4218,6 @@ factor(struct LOC_exec * LINK) n.UU.sval[0] = (char) intfactor(LINK); break; - case tokeol_: - n.stringval = true; - n.UU.sval = (char *) PhreeqcPtr->PHRQ_calloc(256, sizeof(char)); - if (n.UU.sval == NULL) - PhreeqcPtr->malloc_error(); - strcpy(n.UU.sval, "\n"); - break; - case tokasc: l_s = strfactor(LINK); if (*l_s == '\0') @@ -4049,7 +4243,7 @@ factor(struct LOC_exec * LINK) } { std::string str = n.UU.sval; - str = str.substr(i - 1, j); + str = str.substr((size_t)i - 1, (size_t)j); strcpy(n.UU.sval, str.c_str()); } require(tokrp, LINK); @@ -4079,7 +4273,6 @@ factor(struct LOC_exec * LINK) snerr(": missing \" or ("); break; } - s_v.subscripts = (int *) PhreeqcPtr->free_check_null(s_v.subscripts); return n; } @@ -4388,21 +4581,6 @@ findline(long n) l = l->next; return l; } -#ifdef SKIP -linerec * PBasic:: -mustfindline(long n) -{ - linerec *l; - - l = findline(n); - if (l == NULL) - { - char * error_string = PhreeqcPtr->sformatf( "Undefined line %ld", n); - errormsg(error_string); - } - return l; -} -#endif linerec * PBasic:: mustfindline(long n) { @@ -4658,16 +4836,13 @@ void PBasic:: cmdput(struct LOC_exec *LINK) { int j; - struct save_values s_v; - - s_v.count_subscripts = 0; - s_v.subscripts = (int *) PhreeqcPtr->PHRQ_malloc(sizeof(int)); + std::ostringstream oss; /* get parentheses */ require(toklp, LINK); /* get first argumen */ - s_v.value = realexpr(LINK); + double value = realexpr(LINK); for (;;) { @@ -4675,14 +4850,7 @@ cmdput(struct LOC_exec *LINK) { LINK->t = LINK->t->next; j = intexpr(LINK); - s_v.count_subscripts++; - s_v.subscripts = - (int *) PhreeqcPtr->PHRQ_realloc(s_v.subscripts, - (size_t) s_v.count_subscripts * - sizeof(int)); - if (s_v.subscripts == NULL) - PhreeqcPtr->malloc_error(); - s_v.subscripts[s_v.count_subscripts - 1] = j; + oss << j << ","; } else { @@ -4693,9 +4861,8 @@ cmdput(struct LOC_exec *LINK) } if (!parse_all) { - PhreeqcPtr->save_values_store(&s_v); + PhreeqcPtr->save_values[oss.str()] = value; } - s_v.subscripts = (int *) PhreeqcPtr->free_check_null(s_v.subscripts); } void PBasic:: @@ -4710,7 +4877,7 @@ cmdchange_por(struct LOC_exec *LINK) /* get cell_no */ j = intexpr(LINK); require(tokrp, LINK); - if (j > 0 && j <= PhreeqcPtr->count_cells * (1 + PhreeqcPtr->stag_data->count_stag) + 1 + if (j > 0 && j <= PhreeqcPtr->count_cells * (1 + PhreeqcPtr->stag_data.count_stag) + 1 && j != PhreeqcPtr->count_cells + 1) PhreeqcPtr->cell_data[j].por = TEMP; } @@ -4924,17 +5091,21 @@ cmdprint(struct LOC_exec *LINK) n = expr(LINK); if (n.stringval) { -/* fputs(n.UU.sval, stdout); */ - output_msg(PhreeqcPtr->sformatf("%s ", n.UU.sval)); - PhreeqcPtr->PHRQ_free(n.UU.sval); + if (!skip_punch) { + /* fputs(n.UU.sval, stdout); */ + output_msg(PhreeqcPtr->sformatf("%s ", n.UU.sval)); + } + n.UU.sval = (char*)PhreeqcPtr->free_check_null(n.UU.sval); } else /* printf("%s ", numtostr(STR1, n.UU.val)); */ output_msg(PhreeqcPtr->sformatf("%s ", numtostr(STR1, n.UU.val))); } - if (!semiflag) + if (!semiflag && PhreeqcPtr->Get_output_newline()) /* putchar('\n');*/ output_msg("\n"); + PhreeqcPtr->Set_output_newline(true); + skip_punch = false; } void PBasic:: @@ -4954,46 +5125,78 @@ cmdpunch(struct LOC_exec *LINK) continue; } n = expr(LINK); - bool temp_high_precision = (PhreeqcPtr->current_selected_output != NULL) ? - PhreeqcPtr->current_selected_output->Get_high_precision() : + bool temp_high_precision = (PhreeqcPtr->current_selected_output != NULL) ? + PhreeqcPtr->current_selected_output->Get_high_precision() : PhreeqcPtr->high_precision; - if (n.stringval) + if (!this->skip_punch) { -/* fputs(n.UU.sval, stdout); */ - - if (!temp_high_precision) + if (n.stringval) { - if (strlen(n.UU.sval) <= 12) + /* fputs(n.UU.sval, stdout); */ { - PhreeqcPtr->fpunchf_user(PhreeqcPtr->n_user_punch_index, "%12.12s\t", n.UU.sval); - } - else - { - PhreeqcPtr->fpunchf_user(PhreeqcPtr->n_user_punch_index, "%s\t", n.UU.sval); + if (!temp_high_precision) + { + if (strlen(n.UU.sval) <= 12) + { + if (punch_tab) + { + PhreeqcPtr->fpunchf_user(PhreeqcPtr->n_user_punch_index, "%12.12s\t", n.UU.sval); + } + else { + PhreeqcPtr->fpunchf_user(PhreeqcPtr->n_user_punch_index, "%12.12s", n.UU.sval); + } + } + else + { + if (punch_tab) + { + PhreeqcPtr->fpunchf_user(PhreeqcPtr->n_user_punch_index, "%s\t", n.UU.sval); + } + else { + PhreeqcPtr->fpunchf_user(PhreeqcPtr->n_user_punch_index, "%s", n.UU.sval); + } + } + } + else + { + if (strlen(n.UU.sval) <= 20) + { + if (punch_tab) { + PhreeqcPtr->fpunchf_user(PhreeqcPtr->n_user_punch_index, "%20.20s\t", n.UU.sval); + } + else { + PhreeqcPtr->fpunchf_user(PhreeqcPtr->n_user_punch_index, "%20.20s", n.UU.sval); + } + } + else + { + if (punch_tab) { + PhreeqcPtr->fpunchf_user(PhreeqcPtr->n_user_punch_index, "%s\t", n.UU.sval); + } + else { + PhreeqcPtr->fpunchf_user(PhreeqcPtr->n_user_punch_index, "%s", n.UU.sval); + } + } + } } + n.UU.sval = (char*)PhreeqcPtr->free_check_null(n.UU.sval); + } + else if (!temp_high_precision) + { + PhreeqcPtr->fpunchf_user(PhreeqcPtr->n_user_punch_index, "%12.4e\t", (double)n.UU.val); } else { - if (strlen(n.UU.sval) <= 20) - { - PhreeqcPtr->fpunchf_user(PhreeqcPtr->n_user_punch_index, "%20.20s\t", n.UU.sval); - } - else - { - PhreeqcPtr->fpunchf_user(PhreeqcPtr->n_user_punch_index, "%s\t", n.UU.sval); - } + PhreeqcPtr->fpunchf_user(PhreeqcPtr->n_user_punch_index, "%20.12e\t", (double)n.UU.val); } - PhreeqcPtr->PHRQ_free(n.UU.sval); - } - else if (!temp_high_precision) - { - PhreeqcPtr->fpunchf_user(PhreeqcPtr->n_user_punch_index, "%12.4e\t", (double) n.UU.val); + punch_tab = true; + ++PhreeqcPtr->n_user_punch_index; } else { - PhreeqcPtr->fpunchf_user(PhreeqcPtr->n_user_punch_index, "%20.12e\t", (double) n.UU.val); + n.UU.sval = (char*)PhreeqcPtr->free_check_null(n.UU.sval); } - ++PhreeqcPtr->n_user_punch_index; + this->skip_punch = false; } } @@ -6025,7 +6228,10 @@ exec(void) _ASSERTE(nIDErrPrompt == 0); nIDErrPrompt = IDS_ERR_ILLEGAL; } - errormsg("Illegal command"); + strcat(STR1, "Illegal command in line: "); + if (strcmp(inbuf, "run")) + strcat(STR1, inbuf); + errormsg(STR1); break; } } @@ -6415,7 +6621,7 @@ my_labs(long l_x) void * PBasic:: my_memmove(void * d, Const void * l_s, size_t n) { - register char *dd = (char *) d, *ss = (char *) l_s; + char *dd = (char *) d, *ss = (char *) l_s; if (dd < ss || (unsigned int) (dd - ss) >= n) { memcpy(dd, ss, n); @@ -6433,7 +6639,7 @@ my_memmove(void * d, Const void * l_s, size_t n) void * PBasic:: my_memcpy(void * d, Const void * l_s, size_t n) { - register char *ss = (char *) l_s, *dd = (char *) d; + char *ss = (char *) l_s, *dd = (char *) d; while (n-- > 0) *dd++ = *ss++; return d; @@ -6442,8 +6648,8 @@ my_memcpy(void * d, Const void * l_s, size_t n) int PBasic:: my_memcmp(Const void * s1, Const void * s2, size_t n) { - register char *a = (char *) s1, *b = (char *) s2; - register int i; + char *a = (char *) s1, *b = (char *) s2; + int i; while (n-- > 0) if ((i = (*a++) - (*b++)) != 0) return i; @@ -6453,7 +6659,7 @@ my_memcmp(Const void * s1, Const void * s2, size_t n) void * PBasic:: my_memset(void * d, int c, size_t n) { - register char *dd = (char *) d; + char *dd = (char *) d; while (n-- > 0) *dd++ = (char) c; return d; @@ -6505,10 +6711,10 @@ ipow(long a, long b) /* Store in "ret" the substring of length "len" starting from "pos" (1-based). Store a shorter or null string if out-of-range. Return "ret". */ char * PBasic:: -strsub(register char *ret, register char *l_s, register int pos, - register int len) +strsub(char *ret, char *l_s, int pos, + int len) { - register char *s2; + char *s2; if (--pos < 0 || len <= 0) { @@ -6538,10 +6744,10 @@ strsub(register char *ret, register char *l_s, register int pos, starting at index "pos" (1-based). Result is 1-based, 0 if not found. */ int PBasic:: -strpos2(char *l_s, register char *pat, register int pos) +strpos2(char *l_s, char *pat, int pos) { - register char *cp, ch; - register int slen; + char *cp, ch; + int slen; if (--pos < 0) return 0; @@ -6561,9 +6767,9 @@ strpos2(char *l_s, register char *pat, register int pos) /* Case-insensitive version of strcmp. */ int PBasic:: -strcicmp(register char *s1, register char *s2) +strcicmp(char *s1, char *s2) { - register unsigned char c1, c2; + unsigned char c1, c2; while (*s1) { @@ -6586,7 +6792,7 @@ strcicmp(register char *s1, register char *s2) /* Trim blanks at left end of string. */ char * PBasic:: -strltrim(register char *l_s) +strltrim(char *l_s) { while (Isspace((int) *l_s++)); return l_s - 1; @@ -6594,9 +6800,9 @@ strltrim(register char *l_s) /* Trim blanks at right end of string. */ char * PBasic:: -strrtrim(register char *l_s) +strrtrim(char *l_s) { - register char *s2 = l_s; + char *s2 = l_s; if (!*l_s) return l_s; @@ -6612,11 +6818,11 @@ strrtrim(register char *l_s) to index "dpos" of "d", lengthening "d" if necessary. Length and indices must be in-range. */ void PBasic:: -strmove(register int len, register char *l_s, register int spos, - register char *d, register int dpos) +strmove(int len, char *l_s, int spos, + char *d, int dpos) { - l_s += spos - 1; - d += dpos - 1; + l_s += (size_t)spos - 1; + d += (size_t)dpos - 1; while (*d && --len >= 0) *d++ = *l_s++; if (len > 0) @@ -6629,9 +6835,9 @@ strmove(register int len, register char *l_s, register int spos, /* Insert string "src" at index "pos" of "dst". */ void PBasic:: -strinsert(register char *src, register char *dst, register int pos) +strinsert(char *src, char *dst, int pos) { - register int slen, dlen; + int slen, dlen; if (--pos < 0) return; @@ -6684,7 +6890,7 @@ P_eof(void) int PBasic:: P_eoln(FILE * f) { - register int ch; + int ch; ch = getc(f); if (ch == EOF) @@ -6752,9 +6958,9 @@ P_maxpos(FILE * f) /* Use packed array of char for a file name. */ char * PBasic:: -P_trimname(register char * fn, register int len) +P_trimname(char * fn, int len) { - register char *cp = fnbuf; + char *cp = fnbuf; while (--len >= 0 && *fn && !isspace((int) *fn)) *cp++ = *fn++; @@ -6786,10 +6992,10 @@ maxavail(void) /* (Sets with 32 or fewer elements are normally stored as plain longs.) */ long * PBasic:: -P_setunion(register long *d, register long *s1, register long *s2) /* d := s1 + s2 */ +P_setunion(long *d, long *s1, long *s2) /* d := s1 + s2 */ { long *dbase = d++; - register int sz1 = *s1++, sz2 = *s2++; + int sz1 = *s1++, sz2 = *s2++; while (sz1 > 0 && sz2 > 0) { *d++ = *s1++ | *s2++; @@ -6804,10 +7010,10 @@ P_setunion(register long *d, register long *s1, register long *s2) /* d := s1 + } long * PBasic:: -P_setint(register long *d, register long *s1, register long *s2) /* d := s1 * s2 */ +P_setint(long *d, long *s1, long *s2) /* d := s1 * s2 */ { long *dbase = d++; - register int sz1 = *s1++, sz2 = *s2++; + int sz1 = *s1++, sz2 = *s2++; while (--sz1 >= 0 && --sz2 >= 0) *d++ = *s1++ & *s2++; while (--d > dbase && !*d); @@ -6816,10 +7022,10 @@ P_setint(register long *d, register long *s1, register long *s2) /* d := s1 * s2 } long * PBasic:: -P_setdiff(register long *d, register long *s1, register long *s2) /* d := s1 - s2 */ +P_setdiff(long *d, long *s1, long *s2) /* d := s1 - s2 */ { long *dbase = d++; - register int sz1 = *s1++, sz2 = *s2++; + int sz1 = *s1++, sz2 = *s2++; while (--sz1 >= 0 && --sz2 >= 0) *d++ = *s1++ & ~*s2++; if (sz1 >= 0) @@ -6833,10 +7039,10 @@ P_setdiff(register long *d, register long *s1, register long *s2) /* d := s1 - s } long * PBasic:: -P_setxor(register long *d, register long *s1, register long *s2) /* d := s1 / s2 */ +P_setxor(long *d, long *s1, long *s2) /* d := s1 / s2 */ { long *dbase = d++; - register int sz1 = *s1++, sz2 = *s2++; + int sz1 = *s1++, sz2 = *s2++; while (sz1 > 0 && sz2 > 0) { *d++ = *s1++ ^ *s2++; @@ -6852,10 +7058,10 @@ P_setxor(register long *d, register long *s1, register long *s2) /* d := s1 / s2 } long * PBasic:: -P_addset(register long *l_s, register unsigned val) /* s := s + [val] */ +P_addset(long *l_s, unsigned val) /* s := s + [val] */ { - register long *sbase = l_s; - register int bit, size; + long *sbase = l_s; + int bit, size; bit = val % SETBITS; val /= SETBITS; size = *l_s; @@ -6872,45 +7078,45 @@ P_addset(register long *l_s, register unsigned val) /* s := s + [val] */ return sbase; } -long * PBasic:: -P_addsetr(register long *l_s, register unsigned v1, register unsigned v2) /* s := s + [v1..v2] */ -{ - register long *sbase = l_s; - register int b1, b2, size; - if ((int) v1 > (int) v2) - return sbase; - b1 = v1 % SETBITS; - v1 /= SETBITS; - b2 = v2 % SETBITS; - v2 /= SETBITS; - size = *l_s; - v1++; - if ((int) ++v2 > size) - { - while ((int) v2 > size) - l_s[++size] = 0; - l_s[v2] = 0; - *l_s = v2; - } - l_s += v1; - if (v1 == v2) - { - *l_s |= (~((-2L) << (b2 - b1))) << b1; - } - else - { - *l_s++ |= (-1L) << b1; - while (++v1 < v2) - *l_s++ = -1; - *l_s |= ~((-2L) << b2); - } - return sbase; -} +//long * PBasic:: +//P_addsetr(long *l_s, unsigned v1, unsigned v2) /* s := s + [v1..v2] */ +//{ +// long *sbase = l_s; +// int b1, b2, size; +// if ((int) v1 > (int) v2) +// return sbase; +// b1 = v1 % SETBITS; +// v1 /= SETBITS; +// b2 = v2 % SETBITS; +// v2 /= SETBITS; +// size = *l_s; +// v1++; +// if ((int) ++v2 > size) +// { +// while ((int) v2 > size) +// l_s[++size] = 0; +// l_s[v2] = 0; +// *l_s = v2; +// } +// l_s += v1; +// if (v1 == v2) +// { +// *l_s |= (~((-2L) << (b2 - b1))) << b1; +// } +// else +// { +// *l_s++ |= (-1L) << b1; +// while (++v1 < v2) +// *l_s++ = -1; +// *l_s |= ~((-2L) << b2); +// } +// return sbase; +//} long * PBasic:: -P_remset(register long *l_s, register unsigned val) /* s := s - [val] */ +P_remset(long *l_s, unsigned val) /* s := s - [val] */ { - register int bit; + int bit; bit = val % SETBITS; val /= SETBITS; if ((long) ++val <= *l_s) @@ -6923,9 +7129,9 @@ P_remset(register long *l_s, register unsigned val) /* s := s - [val] */ } int PBasic:: -P_setequal(register long *s1, register long *s2) /* s1 = s2 */ +P_setequal(long *s1, long *s2) /* s1 = s2 */ { - register int size = *s1++; + int size = *s1++; if (*s2++ != size) return 0; while (--size >= 0) @@ -6937,9 +7143,9 @@ P_setequal(register long *s1, register long *s2) /* s1 = s2 */ } int PBasic:: -P_subset(register long *s1, register long *s2) /* s1 <= s2 */ +P_subset(long *s1, long *s2) /* s1 <= s2 */ { - register int sz1 = *s1++, sz2 = *s2++; + int sz1 = *s1++, sz2 = *s2++; if (sz1 > sz2) return 0; while (--sz1 >= 0) @@ -6951,14 +7157,14 @@ P_subset(register long *s1, register long *s2) /* s1 <= s2 */ } long * PBasic:: -P_setcpy(register long *d, register long *l_s) /* d := s */ +P_setcpy(long *d, long *l_s) /* d := s */ { - register long *save_d = d; + long *save_d = d; #ifdef SETCPY_MEMCPY memcpy(d, l_s, (*l_s + 1) * sizeof(long)); #else - register int i = *l_s + 1; + int i = *l_s + 1; while (--i >= 0) *d++ = *l_s++; #endif @@ -6968,7 +7174,7 @@ P_setcpy(register long *d, register long *l_s) /* d := s */ /* s is a "smallset", i.e., a 32-bit or less set stored directly in a long. */ long * PBasic:: -P_expset(register long *d, register long l_s) /* d := s */ +P_expset(long *d, long l_s) /* d := s */ { if (l_s) { @@ -6981,7 +7187,7 @@ P_expset(register long *d, register long l_s) /* d := s */ } long PBasic:: -P_packset(register long *l_s) /* convert s to a small-set */ +P_packset(long *l_s) /* convert s to a small-set */ { if (*l_s++) return *l_s; @@ -7109,27 +7315,6 @@ _Escape(int code) throw PBasicStop(); // following not used -#ifdef SKIP - char l_buf[100]; - char token[200], empty[2] = { "\0" }; - if (code == 0) - /* exit(EXIT_SUCCESS); */ - error_msg("Exit success in Basic", STOP); - if (code == -1) - { - error_msg("Fatal error in Basic interpreter.", CONTINUE); - sprintf(token, "%s", - _ShowEscape(l_buf, P_escapecode, P_ioresult, empty)); - error_msg(token, STOP); - exit(EXIT_FAILURE); - } - /* fprintf(stderr, "%s\n", _ShowEscape(l_buf, P_escapecode, P_ioresult, "")); */ - /* exit(EXIT_FAILURE); */ - error_msg("Fatal error in Basic interpreter.", CONTINUE); - sprintf(token, "%s", _ShowEscape(l_buf, P_escapecode, P_ioresult, empty)); - error_msg(token, STOP); - return (1); -#endif } int PBasic:: @@ -7176,21 +7361,13 @@ const std::map::value_type temp_tokens[] std::map::value_type("val", PBasic::tokval), std::map::value_type("chr$", PBasic::tokchr_), std::map::value_type("eol$", PBasic::tokeol_), + std::map::value_type("eol_notab$", PBasic::tokeol_notab_), + std::map::value_type("no_newline$", PBasic::tokno_newline_), std::map::value_type("asc", PBasic::tokasc), std::map::value_type("len", PBasic::toklen), std::map::value_type("mid$", PBasic::tokmid_), std::map::value_type("peek", PBasic::tokpeek), std::map::value_type("let", PBasic::toklet), - std::map::value_type("print", PBasic::tokprint), - std::map::value_type("punch", PBasic::tokpunch), -#if defined (PHREEQ98) || defined (MULTICHART) - std::map::value_type("graph_x", PBasic::tokgraph_x), - std::map::value_type("graph_y", PBasic::tokgraph_y), - std::map::value_type("graph_sy", PBasic::tokgraph_sy), -#endif -#if defined MULTICHART - std::map::value_type("plot_xy", PBasic::tokplot_xy), -#endif std::map::value_type("input", PBasic::tokinput), std::map::value_type("goto", PBasic::tokgoto), std::map::value_type("go to", PBasic::tokgoto), @@ -7225,117 +7402,143 @@ const std::map::value_type temp_tokens[] std::map::value_type("else", PBasic::tokelse), std::map::value_type("to", PBasic::tokto), std::map::value_type("step", PBasic::tokstep), - std::map::value_type("tc", PBasic::toktc), - std::map::value_type("tk", PBasic::toktk), - std::map::value_type("time", PBasic::toktime), - std::map::value_type("sim_time", PBasic::toksim_time), - std::map::value_type("total_time", PBasic::toktotal_time), - std::map::value_type("m0", PBasic::tokm0), - std::map::value_type("m", PBasic::tokm), - std::map::value_type("parm", PBasic::tokparm), std::map::value_type("act", PBasic::tokact), - std::map::value_type("edl", PBasic::tokedl), - std::map::value_type("surf", PBasic::toksurf), - std::map::value_type("equi", PBasic::tokequi), - std::map::value_type("kin", PBasic::tokkin), - std::map::value_type("gas", PBasic::tokgas), - std::map::value_type("s_s", PBasic::toks_s), - std::map::value_type("misc1", PBasic::tokmisc1), - std::map::value_type("misc2", PBasic::tokmisc2), - std::map::value_type("mu", PBasic::tokmu), - std::map::value_type("osmotic", PBasic::tokosmotic), + std::map::value_type("add_heading", PBasic::tokadd_heading), std::map::value_type("alk", PBasic::tokalk), - std::map::value_type("lk_species", PBasic::toklk_species), + std::map::value_type("aphi", PBasic::tokaphi), + std::map::value_type("calc_value", PBasic::tokcalc_value), + std::map::value_type("callback", PBasic::tokcallback), + std::map::value_type("cell_no", PBasic::tokcell_no), + std::map::value_type("change_por", PBasic::tokchange_por), + std::map::value_type("change_surf", PBasic::tokchange_surf), + std::map::value_type("charge_balance", PBasic::tokcharge_balance), + std::map::value_type("current_a", PBasic::tokcurrent_a), + std::map::value_type("debye_length", PBasic::tokdebye_length), + std::map::value_type("delta_h_phase", PBasic::tokdelta_h_phase), + std::map::value_type("delta_h_species", PBasic::tokdelta_h_species), + std::map::value_type("description", PBasic::tokdescription), + std::map::value_type("dh_a0", PBasic::tokdh_a0), + std::map::value_type("dh_a", PBasic::tokdh_a), + std::map::value_type("dh_av", PBasic::tokdh_av), + std::map::value_type("dh_b", PBasic::tokdh_b), + std::map::value_type("dh_bdot", PBasic::tokdh_bdot), + std::map::value_type("diff_c", PBasic::tokdiff_c), + std::map::value_type("dist", PBasic::tokdist), + std::map::value_type("edl", PBasic::tokedl), + std::map::value_type("edl_species", PBasic::tokedl_species), + std::map::value_type("eps_r", PBasic::tokeps_r), + std::map::value_type("eq_frac", PBasic::tokeq_frac), + std::map::value_type("equi", PBasic::tokequi), + std::map::value_type("equi_delta", PBasic::tokequi_delta), + std::map::value_type("equiv_frac", PBasic::tokeq_frac), + std::map::value_type("exists", PBasic::tokexists), + std::map::value_type("gamma", PBasic::tokgamma), + std::map::value_type("gas", PBasic::tokgas), + std::map::value_type("gas_p", PBasic::tokgas_p), + std::map::value_type("gas_vm", PBasic::tokgas_vm), + std::map::value_type("get", PBasic::tokget), + std::map::value_type("get_por", PBasic::tokget_por), + std::map::value_type("gfw", PBasic::tokgfw), +#if defined (PHREEQ98) || defined (MULTICHART) + std::map::value_type("graph_x", PBasic::tokgraph_x), + std::map::value_type("graph_y", PBasic::tokgraph_y), + std::map::value_type("graph_sy", PBasic::tokgraph_sy), +#endif + std::map::value_type("instr", PBasic::tokinstr), + std::map::value_type("iso", PBasic::tokiso), + std::map::value_type("iso_unit", PBasic::tokiso_unit), + std::map::value_type("iterations", PBasic::tokiterations), + std::map::value_type("kappa", PBasic::tokkappa), + std::map::value_type("kin", PBasic::tokkin), + std::map::value_type("kin_delta", PBasic::tokkin_delta), + std::map::value_type("kin_time", PBasic::tokkin_time), + std::map::value_type("kinetics_formula", PBasic::tokkinetics_formula), + std::map::value_type("kinetics_formula$", PBasic::tokkinetics_formula), + std::map::value_type("la", PBasic::tokla), + std::map::value_type("lg", PBasic::toklg), + std::map::value_type("list_s_s", PBasic::toklist_s_s), std::map::value_type("lk_named", PBasic::toklk_named), std::map::value_type("lk_phase", PBasic::toklk_phase), - std::map::value_type("sum_species", PBasic::toksum_species), + std::map::value_type("lk_species", PBasic::toklk_species), + std::map::value_type("lm", PBasic::toklm), + std::map::value_type("log10", PBasic::toklog10), + std::map::value_type("ltrim", PBasic::tokltrim), + std::map::value_type("m0", PBasic::tokm0), + std::map::value_type("m", PBasic::tokm), + std::map::value_type("mcd_jtot", PBasic::tokmcd_jtot), + std::map::value_type("mcd_jconc", PBasic::tokmcd_jconc), + std::map::value_type("misc1", PBasic::tokmisc1), + std::map::value_type("misc2", PBasic::tokmisc2), + std::map::value_type("mol", PBasic::tokmol), + std::map::value_type("mu", PBasic::tokmu), + std::map::value_type("osmotic", PBasic::tokosmotic), + std::map::value_type("pad", PBasic::tokpad), + std::map::value_type("pad$", PBasic::tokpad_), + std::map::value_type("parm", PBasic::tokparm), + std::map::value_type("percent_error", PBasic::tokpercent_error), + std::map::value_type("phase_formula", PBasic::tokphase_formula), + std::map::value_type("phase_formula$", PBasic::tokphase_formula_), + std::map::value_type("phase_vm", PBasic::tokphase_vm), +#if defined MULTICHART + std::map::value_type("plot_xy", PBasic::tokplot_xy), +#endif + std::map::value_type("porevolume", PBasic::tokporevolume), + std::map::value_type("pot_v", PBasic::tokpot_v), + std::map::value_type("pr_p", PBasic::tokpr_p), + std::map::value_type("pr_phi", PBasic::tokpr_phi), + std::map::value_type("pressure", PBasic::tokpressure), + std::map::value_type("print", PBasic::tokprint), + std::map::value_type("punch", PBasic::tokpunch), + std::map::value_type("put", PBasic::tokput), + std::map::value_type("qbrn", PBasic::tokqbrn), + std::map::value_type("rem", PBasic::tokrem), + std::map::value_type("rho", PBasic::tokrho), + std::map::value_type("rho_0", PBasic::tokrho_0), + std::map::value_type("rtrim", PBasic::tokrtrim), + std::map::value_type("rxn", PBasic::tokrxn), + std::map::value_type("s_s", PBasic::toks_s), + std::map::value_type("sc", PBasic::toksc), + std::map::value_type("setdiff_c", PBasic::toksetdiff_c), + std::map::value_type("si", PBasic::toksi), + std::map::value_type("sim_no", PBasic::toksim_no), + std::map::value_type("sim_time", PBasic::toksim_time), + std::map::value_type("soln_vol", PBasic::toksoln_vol), + std::map::value_type("species_formula", PBasic::tokspecies_formula), + std::map::value_type("species_formula$", PBasic::tokspecies_formula_), + std::map::value_type("sr", PBasic::toksr), + std::map::value_type("step_no", PBasic::tokstep_no), + std::map::value_type("str_e$", PBasic::tokstr_e_), + std::map::value_type("str_f$", PBasic::tokstr_f_), std::map::value_type("sum_gas", PBasic::toksum_gas), std::map::value_type("sum_s_s", PBasic::toksum_s_s), - std::map::value_type("calc_value", PBasic::tokcalc_value), - std::map::value_type("description", PBasic::tokdescription), - std::map::value_type("title", PBasic::toktitle), + std::map::value_type("sum_species", PBasic::toksum_species), + std::map::value_type("surf", PBasic::toksurf), std::map::value_type("sys", PBasic::toksys), - std::map::value_type("instr", PBasic::tokinstr), - std::map::value_type("ltrim", PBasic::tokltrim), - std::map::value_type("rtrim", PBasic::tokrtrim), - std::map::value_type("trim", PBasic::toktrim), - std::map::value_type("pad", PBasic::tokpad), - std::map::value_type("rxn", PBasic::tokrxn), - std::map::value_type("dist", PBasic::tokdist), - std::map::value_type("mol", PBasic::tokmol), - std::map::value_type("la", PBasic::tokla), - std::map::value_type("lm", PBasic::toklm), - std::map::value_type("sr", PBasic::toksr), - std::map::value_type("si", PBasic::toksi), - std::map::value_type("step_no", PBasic::tokstep_no), - std::map::value_type("cell_no", PBasic::tokcell_no), - std::map::value_type("sim_no", PBasic::toksim_no), + std::map::value_type("t_sc", PBasic::tokt_sc), + std::map::value_type("tc", PBasic::toktc), + std::map::value_type("time", PBasic::toktime), + std::map::value_type("title", PBasic::toktitle), + std::map::value_type("tk", PBasic::toktk), std::map::value_type("tot", PBasic::toktot), - std::map::value_type("log10", PBasic::toklog10), - std::map::value_type("charge_balance", PBasic::tokcharge_balance), - std::map::value_type("percent_error", PBasic::tokpercent_error), - std::map::value_type("put", PBasic::tokput), - std::map::value_type("get", PBasic::tokget), - std::map::value_type("exists", PBasic::tokexists), - std::map::value_type("rem", PBasic::tokrem), - std::map::value_type("change_por", PBasic::tokchange_por), - std::map::value_type("get_por", PBasic::tokget_por), - std::map::value_type("change_surf", PBasic::tokchange_surf), - std::map::value_type("porevolume", PBasic::tokporevolume), - std::map::value_type("sc", PBasic::toksc), - std::map::value_type("gamma", PBasic::tokgamma), - std::map::value_type("lg", PBasic::toklg), - std::map::value_type("rho", PBasic::tokrho), - std::map::value_type("cell_volume", PBasic::tokcell_volume), + std::map::value_type("total_time", PBasic::toktotal_time), + std::map::value_type("totmol", PBasic::toktotmol), + std::map::value_type("totmole", PBasic::toktotmole), + std::map::value_type("totmoles", PBasic::toktotmoles), + std::map::value_type("trim", PBasic::toktrim), + std::map::value_type("viscos", PBasic::tokviscos), + std::map::value_type("viscos_0", PBasic::tokviscos_0), + std::map::value_type("vm", PBasic::tokvm), + /* PHAST */ std::map::value_type("cell_pore_volume", PBasic::tokcell_pore_volume), std::map::value_type("cell_porosity", PBasic::tokcell_porosity), std::map::value_type("cell_saturation", PBasic::tokcell_saturation), - std::map::value_type("totmole", PBasic::toktotmole), - std::map::value_type("totmol", PBasic::toktotmol), - std::map::value_type("totmoles", PBasic::toktotmoles), - std::map::value_type("iso", PBasic::tokiso), - std::map::value_type("iso_unit", PBasic::tokiso_unit), - std::map::value_type("phase_formula", PBasic::tokphase_formula), - std::map::value_type("phase_formula$", PBasic::tokphase_formula_), - std::map::value_type("list_s_s", PBasic::toklist_s_s), - std::map::value_type("pr_p", PBasic::tokpr_p), - std::map::value_type("pr_phi", PBasic::tokpr_phi), - std::map::value_type("gas_p", PBasic::tokgas_p), - std::map::value_type("gas_vm", PBasic::tokgas_vm), - std::map::value_type("pressure", PBasic::tokpressure), - std::map::value_type("eps_r", PBasic::tokeps_r), - std::map::value_type("vm", PBasic::tokvm), - std::map::value_type("dh_a", PBasic::tokdh_a), - std::map::value_type("dh_b", PBasic::tokdh_b), - std::map::value_type("dh_av", PBasic::tokdh_av), - std::map::value_type("qbrn", PBasic::tokqbrn), - std::map::value_type("kappa", PBasic::tokkappa), - std::map::value_type("gfw", PBasic::tokgfw), - std::map::value_type("soln_vol", PBasic::toksoln_vol), - std::map::value_type("equi_delta", PBasic::tokequi_delta), - std::map::value_type("kin_delta", PBasic::tokkin_delta), - std::map::value_type("kin_time", PBasic::tokkin_time), - std::map::value_type("str_f$", PBasic::tokstr_f_), - std::map::value_type("str_e$", PBasic::tokstr_e_), - std::map::value_type("species_formula", PBasic::tokspecies_formula), - std::map::value_type("species_formula$", PBasic::tokspecies_formula_), - std::map::value_type("eq_frac", PBasic::tokeq_frac), - std::map::value_type("equiv_frac", PBasic::tokeq_frac), - std::map::value_type("callback", PBasic::tokcallback), - std::map::value_type("diff_c", PBasic::tokdiff_c), - std::map::value_type("sa_declercq", PBasic::toksa_declercq), - std::map::value_type("edl_species", PBasic::tokedl_species), - std::map::value_type("viscos", PBasic::tokviscos), - std::map::value_type("viscos_0", PBasic::tokviscos_0), - std::map::value_type("rho_0", PBasic::tokrho_0), - std::map::value_type("kinetics_formula", PBasic::tokkinetics_formula), - std::map::value_type("kinetics_formula$", PBasic::tokkinetics_formula), - std::map::value_type("phase_vm", PBasic::tokphase_vm), - std::map::value_type("current_a", PBasic::tokcurrent_a), - std::map::value_type("pot_v", PBasic::tokpot_v), - std::map::value_type("t_sc", PBasic::tokt_sc), - std::map::value_type("setdiff_c", PBasic::toksetdiff_c), - std::map::value_type("aphi", PBasic::tokaphi) + std::map::value_type("cell_volume", PBasic::tokcell_volume), + std::map::value_type("transport_cell_no", PBasic::toktransport_cell_no), + std::map::value_type("velocity_x", PBasic::tokvelocity_x), + std::map::value_type("velocity_y", PBasic::tokvelocity_y), + std::map::value_type("velocity_z", PBasic::tokvelocity_z), + /* Undocumented */ + std::map::value_type("sa_declercq", PBasic::toksa_declercq) }; std::map PBasic::command_tokens(temp_tokens, temp_tokens + sizeof temp_tokens / sizeof temp_tokens[0]); diff --git a/PBasic.h b/PBasic.h index 45de1df7..749b7077 100644 --- a/PBasic.h +++ b/PBasic.h @@ -170,6 +170,7 @@ public: toktan, tokarctan, toklog, + toklog10, tokexp, tokabs, toksgn, @@ -182,7 +183,6 @@ public: tokpeek, tokrem, toklet, - tokprint, tokinput, tokgoto, tokif, @@ -206,7 +206,6 @@ public: toknew, tokload, tokmerge, - toksave, tokbye, tokdel, tokrenum, @@ -214,129 +213,144 @@ public: tokelse, tokto, tokstep, - toktc, - tokm0, - tokm, - tokparm, + /* start phreeqc */ tokact, - tokmol, - tokla, - toklm, - toksr, - toksi, - toktot, - toktk, - toktime, - toklog10, - toksim_time, - tokequi, - tokgas, - tokpunch, - tokkin, - toks_s, - tokmu, + tokadd_heading, tokalk, - tokrxn, - tokdist, - tokmisc1, - tokmisc2, - tokedl, - tokstep_no, - toksim_no, - toktotal_time, - tokput, - tokget, + tokaphi, + tokcalc_value, + tokceil, + tokcell_no, + tokchange_por, + tokchange_surf, tokcharge_balance, - tokpercent_error, -#if defined (PHREEQ98) || defined (MULTICHART) + tokcurrent_a, + tokdebye_length, + tokdelta_h_phase, + tokdelta_h_species, + tokdescription, + tokdh_a, + tokdh_a0, + tokdh_av, + tokdh_b, + tokdh_bdot, + tokdiff_c, + tokdist, + tokedl, + tokedl_species, + tokeol_, + tokeol_notab_, + tokeps_r, + tokeq_frac, + tokequiv_frac, + tokequi, + tokequi_delta, + tokerase, + tokexists, + tokfloor, + tokgamma, + tokgas, + tokgas_p, + tokgas_vm, + tokget, + tokget_por, + tokgfw, tokgraph_x, tokgraph_y, tokgraph_sy, -#endif - tokcell_no, - tokexists, - toksurf, - toklk_species, - toklk_named, - toklk_phase, - toksum_species, - toksum_gas, - toksum_s_s, - tokcalc_value, - tokdescription, - toktitle, - toksys, tokinstr, - tokltrim, - tokrtrim, - toktrim, - tokpad, - tokchange_por, - tokget_por, - tokosmotic, - tokchange_surf, - tokporevolume, - toksc, - tokgamma, - toklg, - tokrho, - tokrho_0, - tokcell_volume, - tokcell_pore_volume, - tokcell_porosity, - tokcell_saturation, -#if defined MULTICHART - tokplot_xy, -#endif - toktotmole, tokiso, tokiso_unit, - toktotmol, - toktotmoles, - tokeol_, - tokceil, - tokfloor, - tokkinetics_formula, - tokkinetics_formula_, - tokphase_formula, - tokphase_formula_, - tokspecies_formula, - tokspecies_formula_, - toklist_s_s, - tokpr_p, - tokpr_phi, - tokgas_p, - tokgas_vm, - tokpressure, - tokerase, - tokeps_r, - tokvm, - tokphase_vm, - tokdh_a, - tokdh_b, - tokdh_av, - tokqbrn, + tokiterations, tokkappa, - tokgfw, - toksoln_vol, - tokequi_delta, + tokkin, tokkin_delta, tokkin_time, - tokstr_f_, - tokstr_e_, - tokeq_frac, - tokequiv_frac, - tokcallback, - tokdiff_c, + tokkinetics_formula, + tokkinetics_formula_, + tokla, + toklg, + toklist_s_s, + toklk_named, + toklk_phase, + toklk_species, + toklm, + tokltrim, + tokm, + tokm0, + tokmcd_jtot, + tokmcd_jconc, + tokmisc1, + tokmisc2, + tokmol, + tokmu, + tokno_newline_, + tokosmotic, + tokpad_, + tokpad, + tokparm, + tokpercent_error, + tokphase_formula, + tokphase_formula_, + tokphase_vm, + tokplot_xy, + tokpot_v, + tokpr_p, + tokpr_phi, + tokpressure, + tokprint, + tokpunch, + tokput, + tokqbrn, + tokrho, + tokrho_0, + tokrtrim, + tokrxn, + toks_s, + toksave, + toksc, toksetdiff_c, - toksa_declercq, - tokedl_species, + toksi, + toksim_no, + toksim_time, + toksoln_vol, + tokspecies_formula, + tokspecies_formula_, + toksr, + tokstep_no, + tokstr_e_, + tokstr_f_, + toksum_gas, + toksum_s_s, + toksum_species, + toksurf, + toksys, + tokt_sc, + toktc, + toktime, + toktitle, + toktk, + toktot, + toktotal_time, + toktotmole, + toktotmol, + toktotmoles, + toktrim, tokviscos, tokviscos_0, - tokcurrent_a, - tokpot_v, - tokt_sc, - tokaphi + tokvm, + /* end phreeqc */ + toksa_declercq, // Undocumented function + tokcallback, // PHAST function + tokcell_pore_volume, // PHAST function + tokporevolume, // PHAST function + tokcell_porosity, // PHAST function + tokcell_saturation, // PHAST function + tokcell_volume, // PHAST function + toktransport_cell_no, // PHAST function + tokvelocity_x, // PHAST function + tokvelocity_y, // PHAST function + tokvelocity_z // PHAST function }; #if !defined(PHREEQCI_GUI) @@ -461,14 +475,11 @@ public: void cmddim(struct LOC_exec *LINK); void cmderase(struct LOC_exec *LINK); void cmdpoke(struct LOC_exec *LINK); - int basic_main(char *commands); - int basic_compile(char *commands, void **lnbase, void **vbase, void **lpbase); + int basic_main(const char *commands); + int basic_compile(const char *commands, void **lnbase, void **vbase, void **lpbase); int basic_run(char *commands, void *lnbase, void *vbase, void *lpbase); int basic_init(void); -#ifdef PHREEQ98 - void GridChar(char *s, char *a); -#endif - int sget_logical_line(char **ptr, int *l, char *return_line); + int sget_logical_line(const char **ptr, int *l, char *return_line); long my_labs(long x); void * my_memmove(void * d, Const void * s, size_t n); void * my_memcpy(void * d, Const void * s, size_t n); @@ -477,36 +488,36 @@ public: int my_toupper(int c); int my_tolower(int c); long ipow(long a, long b); - char * strsub(register char *ret, register char *s, register int pos, - register int len); - int strpos2(char *s, register char *pat, register int pos); - int strcicmp(register char *s1, register char *s2); - char * strltrim(register char *s); - char * strrtrim(register char *s); - void strmove(register int len, register char *s, register int spos, - register char *d, register int dpos); - void strinsert(register char *src, register char *dst, register int pos); + char * strsub(char *ret, char *s, int pos, + int len); + int strpos2(char *s, char *pat, int pos); + int strcicmp(char *s1, char *s2); + char * strltrim(char *s); + char * strrtrim(char *s); + void strmove(int len, char *s, int spos, + char *d, int dpos); + void strinsert(char *src, char *dst, int pos); int P_peek(FILE * f); int P_eof(void); int P_eoln(FILE * f); void P_readpaoc(FILE * f, char *s, int len); void P_readlnpaoc(FILE * f, char *s, int len); long P_maxpos(FILE * f); - char * P_trimname(register char * fn, register int len); + char * P_trimname(char * fn, int len); long memavail(void); long maxavail(void); - long * P_setunion(register long *d, register long *s1, register long *s2); - long * P_setint(register long *d, register long *s1, register long *s2); - long * P_setdiff(register long *d, register long *s1, register long *s2); - long * P_setxor(register long *d, register long *s1, register long *s2); - long * P_addset(register long *s, register unsigned val); - long * P_addsetr(register long *s, register unsigned v1, register unsigned v2); - long * P_remset(register long *s, register unsigned val); - int P_setequal(register long *s1, register long *s2); - int P_subset(register long *s1, register long *s2); - long * P_setcpy(register long *d, register long *s); - long * P_expset(register long *d, register long s); - long P_packset(register long *s); + long * P_setunion(long *d, long *s1, long *s2); + long * P_setint(long *d, long *s1, long *s2); + long * P_setdiff(long *d, long *s1, long *s2); + long * P_setxor(long *d, long *s1, long *s2); + long * P_addset(long *s, unsigned val); +// long * P_addsetr(long *s, unsigned v1, unsigned v2); + long * P_remset(long *s, unsigned val); + int P_setequal(long *s1, long *s2); + int P_subset(long *s1, long *s2); + long * P_setcpy(long *d, long *s); + long * P_expset(long *d, long s); + long P_packset(long *s); int _OutMem(void); int _CaseCheck(void); int _NilCheck(void); @@ -541,6 +552,8 @@ protected: IDErr nIDErrPrompt; #endif int nErrLineNumber; + bool punch_tab; + bool skip_punch; }; #endif /* _INC_PBasic_H */ diff --git a/PHRQ_io_output.cpp b/PHRQ_io_output.cpp index 149388af..5eaeb5c1 100644 --- a/PHRQ_io_output.cpp +++ b/PHRQ_io_output.cpp @@ -2,6 +2,14 @@ #include "Phreeqc.h" #include "phqalloc.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /* ---------------------------------------------------------------------- */ int Phreeqc:: warning_msg(const char *err_str) @@ -74,7 +82,7 @@ fpunchf(const char *name, const char *format, double d) { if (phrq_io) phrq_io->fpunchf(name, format, d); } - catch(std::bad_alloc) + catch(const std::bad_alloc&) { malloc_error(); } @@ -86,7 +94,7 @@ fpunchf(const char *name, const char *format, char * s) { if (phrq_io) phrq_io->fpunchf(name, format, s); } - catch(std::bad_alloc) + catch(const std::bad_alloc&) { malloc_error(); } @@ -98,7 +106,7 @@ fpunchf(const char *name, const char *format, int d) { if (phrq_io) phrq_io->fpunchf(name, format, d); } - catch(std::bad_alloc) + catch(const std::bad_alloc&) { malloc_error(); } @@ -136,7 +144,7 @@ fpunchf_user(int user_index, const char *format, double d) { if (phrq_io) phrq_io->fpunchf(name, format, (double) d); } - catch(std::bad_alloc) + catch(const std::bad_alloc&) { malloc_error(); } @@ -173,7 +181,7 @@ fpunchf_user(int user_index, const char *format, char * d) { if (phrq_io) phrq_io->fpunchf(name, format, d); } - catch(std::bad_alloc) + catch(const std::bad_alloc&) { malloc_error(); } @@ -193,7 +201,9 @@ void Phreeqc:: screen_msg(const char *err_str) /* ---------------------------------------------------------------------- */ { +#ifndef TESTING if (phrq_io) phrq_io->screen_msg(err_str); +#endif } // ---------------------------------------------------------------------- */ // dump file methods diff --git a/PPassemblage.cxx b/PPassemblage.cxx index aed9983b..8b9b830e 100644 --- a/PPassemblage.cxx +++ b/PPassemblage.cxx @@ -13,6 +13,13 @@ #include "cxxMix.h" #include "phqalloc.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif ////////////////////////////////////////////////////////////////////// // Construction/Destruction @@ -35,6 +42,7 @@ cxxNumKeyword(io) { this->n_user = this->n_user_end = l_n_user; eltList.type = cxxNameDouble::ND_ELT_MOLES; + this->new_def = false; // // Mix // @@ -248,6 +256,23 @@ cxxPPassemblage::totalize(Phreeqc * phreeqc_ptr) } return; } +std::set +cxxPPassemblage::GetPhases(Phreeqc * phreeqc_ptr) +{ + std::set phase_list; + // component structures + for (std::map < std::string, cxxPPassemblageComp >::iterator it = + pp_assemblage_comps.begin(); it != pp_assemblage_comps.end(); ++it) + { + int l; + phase * phase_ptr = phreeqc_ptr->phase_bsearch((*it).second.Get_name().c_str(), &l, FALSE);; + if (phase_ptr != NULL) + { + phase_list.insert(phase_ptr->name); + } + } + return phase_list; +} void cxxPPassemblage::add(const cxxPPassemblage & addee, LDBLE extensive) // @@ -282,29 +307,6 @@ cxxPPassemblage::add(const cxxPPassemblage & addee, LDBLE extensive) //cxxNameDouble eltList; this->eltList.add_extensive(addee.eltList, extensive); } -#ifdef SKIP -cxxPPassemblageComp * cxxPPassemblage:: -Find(const std::string name_in) -{ - std::string name(name_in); - Utilities::str_tolower(name); - - cxxPPassemblageComp * comp = NULL; - std::map::iterator it; - it = this->pp_assemblage_comps.begin(); - for ( ; it != this->pp_assemblage_comps.end(); it++) - { - std::string pname(it->first); - Utilities::str_tolower(pname); - if (name == pname) - { - comp = &it->second; - break; - } - } - return comp; -} -#endif cxxPPassemblageComp * cxxPPassemblage:: Find(const std::string name_in) { @@ -356,7 +358,7 @@ cxxPPassemblage::Deserialize(Dictionary & dictionary, std::vector < int >&ints, this->pp_assemblage_comps.clear(); for (int n = 0; n < count; n++) { - cxxPPassemblageComp ppc; + cxxPPassemblageComp ppc(this->io); ppc.Deserialize(dictionary, ints, doubles, ii, dd); std::string str(ppc.Get_name()); this->pp_assemblage_comps[str] = ppc; diff --git a/PPassemblage.h b/PPassemblage.h index 5b735ad3..868599c5 100644 --- a/PPassemblage.h +++ b/PPassemblage.h @@ -49,7 +49,7 @@ class cxxPPassemblage:public cxxNumKeyword void Set_new_def(bool tf) {this->new_def = tf;} cxxPPassemblageComp *Find(const std::string name); - + std::set GetPhases(Phreeqc * phreeqc_ptr); void totalize(Phreeqc * phreeqc_ptr); void Serialize(Dictionary & dictionary, std::vector < int >&ints, std::vector < double >&doubles); void Deserialize(Dictionary & dictionary, std::vector < int >&ints, std::vector < double >&doubles, int &ii, int &dd); diff --git a/PPassemblageComp.cxx b/PPassemblageComp.cxx index ea35b2b6..4e95552c 100644 --- a/PPassemblageComp.cxx +++ b/PPassemblageComp.cxx @@ -13,6 +13,14 @@ #include "Dictionary.h" #include "phqalloc.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + ////////////////////////////////////////////////////////////////////// // Construction/Destruction ////////////////////////////////////////////////////////////////////// @@ -315,7 +323,7 @@ cxxPPassemblageComp::totalize(Phreeqc * phreeqc_ptr) // component structures if (this->add_formula.size() != 0) return; - struct phase *phase_ptr; + class phase *phase_ptr; int l; phase_ptr = phreeqc_ptr-> phase_bsearch(this->name.c_str(), &l, FALSE); if (phase_ptr != NULL) diff --git a/Phreeqc.cpp b/Phreeqc.cpp index 55e52146..00febed2 100644 --- a/Phreeqc.cpp +++ b/Phreeqc.cpp @@ -15,24 +15,48 @@ #include "Temperature.h" #include "SSassemblage.h" -const struct const_iso Phreeqc::iso_defaults[] = { - {"13C", -10, 1}, - {"13C(4)", -10, 1}, - {"13C(-4)", -50, 5}, - {"34S", 10, 1}, - {"34S(6)", 10, 1}, - {"34S(-2)", -30, 5}, - {"2H", -28, 1}, - {"2H(1)", -28, 1}, - {"2H(0)", -28, 1}, - {"18O", -5, .1}, - {"18O(-2)", -5, .1}, - {"18O(0)", -5, .1}, - {"87Sr", .71, .01}, - {"11B", 20, 5} +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + +//const const_iso Phreeqc::iso_defaults[] = { +// {"13C", -10, 1}, +// {"13C(4)", -10, 1}, +// {"13C(-4)", -50, 5}, +// {"34S", 10, 1}, +// {"34S(6)", 10, 1}, +// {"34S(-2)", -30, 5}, +// {"2H", -28, 1}, +// {"2H(1)", -28, 1}, +// {"2H(0)", -28, 1}, +// {"18O", -5, .1}, +// {"18O(-2)", -5, .1}, +// {"18O(0)", -5, .1}, +// {"87Sr", .71, .01}, +// {"11B", 20, 5} +//}; +const const_iso Phreeqc::iso_defaults[] = { + const_iso("13C", -10, 1), + const_iso("13C(4)", -10, 1), + const_iso("13C(-4)", -50, 5), + const_iso("34S", 10, 1), + const_iso("34S(6)", 10, 1), + const_iso("34S(-2)", -30, 5), + const_iso("2H", -28, 1), + const_iso("2H(1)", -28, 1), + const_iso("2H(0)", -28, 1), + const_iso("18O", -5, .1), + const_iso("18O(-2)", -5, .1), + const_iso("18O(0)", -5, .1), + const_iso("87Sr", .71, .01), + const_iso("11B", 20, 5) }; -const int Phreeqc::count_iso_defaults = (sizeof(iso_defaults) / sizeof(struct const_iso)); +const int Phreeqc::count_iso_defaults = (sizeof(iso_defaults) / sizeof(class const_iso)); Phreeqc::~Phreeqc(void) { @@ -150,7 +174,7 @@ size_t Phreeqc::list_components(std::list &list_c) if (it->first == "Charge") continue; char string[MAX_LENGTH]; strcpy(string, it->first.c_str()); - struct master *master_ptr = master_bsearch_primary(string); + class master *master_ptr = master_bsearch_primary(string); if (master_ptr == NULL) continue; if (master_ptr->type != AQ) continue; accumulator.add(master_ptr->elt->name, 1); @@ -158,7 +182,7 @@ size_t Phreeqc::list_components(std::list &list_c) // print list for (it = accumulator.begin(); it != accumulator.end(); it++) { - struct master *master_ptr = master_bsearch(it->first.c_str()); + class master *master_ptr = master_bsearch(it->first.c_str()); if (master_ptr == NULL) continue; if (master_ptr->type != AQ) continue; if (master_ptr->primary == 0) continue; @@ -169,8 +193,253 @@ size_t Phreeqc::list_components(std::list &list_c) } return(list_c.size()); } +size_t Phreeqc::list_EquilibriumPhases(std::list &list_pp) +/* +* Find all elements in any class definition +*/ +{ + std::set accumulator; + // pure phases + { + std::map::const_iterator cit = Rxn_pp_assemblage_map.begin(); + for (; cit != Rxn_pp_assemblage_map.end(); cit++) + { + cxxPPassemblage entity = cit->second; + std::set pp = entity.GetPhases(this); + std::set::iterator ppit = pp.begin(); + for (; ppit != pp.end(); ppit++) + { + accumulator.insert(*ppit); + } + } + } + list_pp.clear(); + std::set::iterator it = accumulator.begin(); + for (; it != accumulator.end(); it++) + { + list_pp.insert(list_pp.end(),*it); + } + return(list_pp.size()); +} +size_t Phreeqc::list_GasComponents(std::list &list_gc) +/* +* Find all elements in any class definition +*/ +{ + std::set accumulator; + // pure phases + { + std::map::const_iterator cit = Rxn_gas_phase_map.begin(); + for (; cit != Rxn_gas_phase_map.end(); cit++) + { + cxxGasPhase entity = cit->second; + std::vector &gc = entity.Get_gas_comps(); + for (size_t i = 0; i < gc.size(); i++) + { + int j; + phase * p = phase_bsearch(gc[i].Get_phase_name().c_str(), &j, 0); + accumulator.insert(p->name); + } + } + } + list_gc.clear(); + std::set::iterator it = accumulator.begin(); + for (; it != accumulator.end(); it++) + { + list_gc.insert(list_gc.end(), *it); + } + return(list_gc.size()); +} +size_t Phreeqc::list_KineticReactions(std::list &list_kr) +/* +* Find all kinetic reactions +*/ +{ + std::set accumulator; + // Kinetics + { + std::map::const_iterator cit = Rxn_kinetics_map.begin(); + for (; cit != Rxn_kinetics_map.end(); cit++) + { + cxxKinetics entity = cit->second; + for (size_t i = 0; i < entity.Get_kinetics_comps().size(); i++) + { + std::string ratename = entity.Get_kinetics_comps()[i].Get_rate_name(); + int j; + rate *r = rate_search(ratename.c_str(), &j); + if (r != NULL) + { + accumulator.insert(r->name); + } + } + } + } + list_kr.clear(); + std::set::iterator it = accumulator.begin(); + for (; it != accumulator.end(); it++) + { + list_kr.insert(list_kr.end(), *it); + } + return(list_kr.size()); +} +size_t Phreeqc::list_SolidSolutions(std::list &list_comps, std::list &list_names) +/* +* Find all elements in any class definition +*/ +{ + std::vector< std::set > ss_sets; + std::vector ss_names; + // solid solutions + std::map::const_iterator cit = Rxn_ss_assemblage_map.begin(); + // Fill vectors, ss names and related set of component names + for (; cit != Rxn_ss_assemblage_map.end(); cit++) + { + cxxSSassemblage entity = cit->second; + std::map &SSs = entity.Get_SSs(); + std::map::iterator ssit = SSs.begin(); + for (; ssit != SSs.end(); ssit++) + { + std::string ssname = ssit->second.Get_name(); + std::set accumulator_phases; + for (size_t i = 0; i < ssit->second.Get_ss_comps().size(); i++) + { + std::string pname = ssit->second.Get_ss_comps()[i].Get_name(); + int j; + phase * p = phase_bsearch(pname.c_str(), &j, 0); + accumulator_phases.insert(p->name); + } + ss_names.push_back(ssname); + ss_sets.push_back(accumulator_phases); + } + } + // need to merge into exclusive sets of solid solution components + bool repeat = true; + while (repeat) + { + repeat = false; + for (int i = 0; i < (int) ss_sets.size() - 1; i++) + { + for (int j = i + 1; j < (int) ss_sets.size(); j++) + { + // locate any common component + std::set::iterator it = ss_sets[j].begin(); + for (; it != ss_sets[j].end(); it++) + { + if (ss_sets[i].find(*it) != ss_sets[i].end()) + { + repeat = true; + break; + } + } + // merge sets and clear second set + if (repeat) + { + for (it = ss_sets[j].begin(); it != ss_sets[j].end(); it++) + { + ss_sets[i].insert(*it); + } + ss_sets[j].clear(); + break; + } + } + if (repeat) break; + } + } + list_comps.clear(); + list_names.clear(); + // Write lists + for (size_t i = 0; i < ss_sets.size(); i++) + { + std::set::iterator it = ss_sets[i].begin(); + for (; it != ss_sets[i].end(); it++) + { + list_names.push_back(ss_names[i]); + list_comps.push_back(*it); + } + } + return(list_comps.size()); +} +size_t Phreeqc::list_Surfaces(std::list &list_surftype, std::list &list_surfname) +/* +* Find all surface types and surfaces +*/ +{ + std::set > accumulator; + // Surfaces + { + std::map::const_iterator cit = Rxn_surface_map.begin(); + for (; cit != Rxn_surface_map.end(); cit++) + { + cxxSurface entity = cit->second; + std::vector &scomps = entity.Get_surface_comps(); + //std::vector &scharges = entity.Get_surface_charges(); + for (size_t i = 0; i < scomps.size(); i++) + { + std::pair p(scomps[i].Get_master_element(), scomps[i].Get_charge_name()); + accumulator.insert(p); + } + } + } + list_surftype.clear(); + list_surfname.clear(); + std::set >::iterator it = accumulator.begin(); + for (; it != accumulator.end(); it++) + { + list_surftype.push_back(it->first); + list_surfname.push_back(it->second); + } + return(list_surfname.size()); +} +size_t Phreeqc::list_Exchangers(std::list &list_exname) +/* +* Find all exchangers +*/ +{ + std::set accumulator; + // Exchangers + std::map::const_iterator cit = Rxn_exchange_map.begin(); + for (; cit != Rxn_exchange_map.end(); cit++) + { + cxxExchange entity = cit->second; + std::vector &ecomps = entity.Get_exchange_comps(); + for (size_t i = 0; i < ecomps.size(); i++) + { + std::string exname = ""; + cxxNameDouble nd = ecomps[i].Get_totals(); + cxxNameDouble::iterator it = nd.begin(); + for (; it != nd.end(); it++) + { + class master *m = master_bsearch(it->first.c_str()); + if (m != NULL) + { + if (m->type == EX) + { + exname = it->first; + break; + } + } + } + if (exname != "") + { + accumulator.insert(exname); + } + } + } + list_exname.clear(); + std::set< std::string>::iterator it = accumulator.begin(); + for (; it != accumulator.end(); it++) + { + list_exname.push_back(*it); + } + return(list_exname.size()); +} Phreeqc::Phreeqc(PHRQ_io *io) { + user_print = NULL; + sformatf_buffer = NULL; + basic_interpreter = NULL; + count_elts = 0; + aphi = NULL; // phrq_io if (io) { @@ -205,79 +474,19 @@ void Phreeqc::init(void) /* * last model */ - last_model.force_prep = TRUE; - last_model.temperature = -100; - last_model.pressure = 0; - last_model.count_exchange = -1; - last_model.exchange = NULL; - last_model.count_kinetics = -1; - last_model.kinetics = NULL; - last_model.count_gas_phase = -1; - last_model.gas_phase = NULL; - last_model.count_ss_assemblage = -1; - last_model.ss_assemblage = NULL; - last_model.count_pp_assemblage = -1; - last_model.pp_assemblage = NULL; - last_model.add_formula = NULL; - last_model.si = NULL; + last_model.force_prep = true; + last_model.gas_phase_type = cxxGasPhase::GP_UNKNOWN; + last_model.gas_phase.clear(); + last_model.ss_assemblage.clear(); + last_model.pp_assemblage.clear(); + last_model.add_formula.clear(); + last_model.si.clear(); last_model.dl_type = cxxSurface::NO_DL; last_model.surface_type = cxxSurface::UNKNOWN_DL; - last_model.only_counter_ions = FALSE; - last_model.thickness = 1e-8; - last_model.count_surface_comp = -1; - last_model.surface_comp = NULL; - last_model.count_surface_charge = -1; - last_model.surface_charge = NULL; current_selected_output = NULL; current_user_punch = NULL; high_precision = false; -#ifdef SKIP - //struct punch punch; -/* - * Initialize punch - */ - punch.in = FALSE; - punch.count_totals = 0; - punch.totals = 0; - punch.count_molalities = 0; - punch.molalities = 0; - punch.count_activities = 0; - punch.activities = 0; - punch.count_pure_phases = 0; - punch.pure_phases = 0; - punch.count_si = 0; - punch.si = 0; - punch.count_gases = 0; - punch.gases = 0; - punch.count_s_s = 0; - punch.s_s = 0; - punch.count_kinetics = 0; - punch.kinetics = 0; - punch.count_isotopes = 0; - punch.isotopes = 0; - punch.count_calculate_values = 0; - punch.calculate_values = 0; - punch.inverse = TRUE; - punch.sim = TRUE; - punch.state = TRUE; - punch.soln = TRUE; - punch.dist = TRUE; - punch.time = TRUE; - punch.step = TRUE; - punch.rxn = FALSE; - punch.temp = FALSE; - punch.ph = TRUE; - punch.pe = TRUE; - punch.alk = FALSE; - punch.mu = FALSE; - punch.water = FALSE; - punch.high_precision = FALSE; - punch.user_punch = TRUE; - punch.charge_balance = FALSE; - punch.percent_error = FALSE; -#endif - MIN_LM = -30.0; /* minimum log molality allowed before molality set to zero */ LOG_ZERO_MOLALITY = -30; /* molalities <= LOG_ZERO_MOLALITY are considered equal to zero */ MIN_RELATED_LOG_ACTIVITY = -30; @@ -309,39 +518,11 @@ void Phreeqc::init(void) /*---------------------------------------------------------------------- * Save *---------------------------------------------------------------------- */ - count_save_values = 0; - save_values = NULL; save_init(-1); // set initial save values - // auto use - - // copier structures - copy_solution.n_user = copy_solution.start = copy_solution.end = 0; - copy_solution.count = copy_solution.max = 0; - copy_pp_assemblage.n_user = copy_pp_assemblage.start = copy_pp_assemblage.end = 0; - copy_pp_assemblage.count = copy_pp_assemblage.max = 0; - copy_exchange.n_user = copy_exchange.start = copy_exchange.end = 0; - copy_exchange.count = copy_exchange.max = 0; - copy_surface.n_user = copy_surface.start = copy_surface.end = 0; - copy_surface.count = copy_surface.max = 0; - copy_ss_assemblage.n_user = copy_ss_assemblage.start = copy_ss_assemblage.end = 0; - copy_ss_assemblage.count = copy_ss_assemblage.max = 0; - copy_gas_phase.n_user = copy_gas_phase.start = copy_gas_phase.end = 0; - copy_gas_phase.count = copy_gas_phase.max = 0; - copy_kinetics.n_user = copy_kinetics.start = copy_kinetics.end = 0; - copy_kinetics.count = copy_kinetics.max = 0; - copy_mix.n_user = copy_mix.start = copy_mix.end = 0; - copy_mix.count = copy_mix.max = 0; - copy_reaction.n_user = copy_reaction.start = copy_reaction.end = 0; - copy_reaction.count = copy_reaction.max = 0; - copy_temperature.n_user = copy_temperature.start = copy_temperature.end = 0; - copy_temperature.count = copy_temperature.max = 0; - copy_pressure.n_user = copy_pressure.start = copy_pressure.end = 0; - copy_pressure.count = copy_pressure.max = 0; /*---------------------------------------------------------------------- * Inverse *---------------------------------------------------------------------- */ - inverse = NULL; count_inverse = 0; /*---------------------------------------------------------------------- * Mix @@ -375,30 +556,10 @@ void Phreeqc::init(void) /*---------------------------------------------------------------------- * Species_list *---------------------------------------------------------------------- */ - count_species_list = 0; - max_species_list = 0; - species_list = NULL; /*---------------------------------------------------------------------- * Jacobian and Mass balance lists *---------------------------------------------------------------------- */ - count_sum_jacob0 = 0; - max_sum_jacob0 = 0; - sum_jacob0 = NULL; - count_sum_mb1 = 0; - max_sum_mb1 = 0; - sum_mb1 = NULL; - count_sum_jacob1 = 0; - max_sum_jacob1 = 0; - sum_jacob1 = NULL; - count_sum_mb2 = 0; - max_sum_mb2 = 0; - sum_mb2 = NULL; - count_sum_jacob2 = 0; - max_sum_jacob2 = 0; - sum_jacob2 = NULL; - count_sum_delta = 0; - max_sum_delta = 0; - sum_delta = NULL; + /*---------------------------------------------------------------------- * Solution *---------------------------------------------------------------------- */ @@ -408,9 +569,7 @@ void Phreeqc::init(void) /*---------------------------------------------------------------------- * Global solution *---------------------------------------------------------------------- */ - title_x = NULL; new_x = FALSE; - description_x = NULL; tc_x = 0; tk_x = 0; patm_x = 1; @@ -431,7 +590,6 @@ void Phreeqc::init(void) mass_water_aq_x = 0; mass_water_surfaces_x = 0; mass_water_bulk_x = 0; - units_x = NULL; // auto pe_x // auto isotopes_x // auto default_pe_x @@ -446,7 +604,6 @@ void Phreeqc::init(void) * Transport data *---------------------------------------------------------------------- */ count_cells = 1; - cell_data_max_cells = count_cells; count_shifts = 1; ishift = 1; bcon_first = bcon_last = 3; @@ -458,18 +615,19 @@ void Phreeqc::init(void) heat_diffc = -0.1; cell = 0; mcd_substeps = 1.0; - stag_data = NULL; print_modulus = 1; punch_modulus = 1; dump_in = FALSE; dump_modulus = 0; transport_warnings = TRUE; - cell_data = NULL; old_cells = 0; max_cells = 0; all_cells = 0; multi_Dflag = FALSE; interlayer_Dflag = FALSE; + implicit = FALSE; + max_mixf = 1.0; + min_dif_LM = -30.0; default_Dw = 0; correct_Dw = 0; multi_Dpor = 0; @@ -487,10 +645,8 @@ void Phreeqc::init(void) count_ad_shifts = 1; print_ad_modulus = 1; punch_ad_modulus = 1; - advection_punch = NULL; advection_kin_time = 0.0; advection_kin_time_defined = FALSE; - advection_print = NULL; advection_warnings = TRUE; /*---------------------------------------------------------------------- * Tidy data @@ -513,31 +669,14 @@ void Phreeqc::init(void) /*---------------------------------------------------------------------- * Elements *---------------------------------------------------------------------- */ - elements = NULL; - count_elements = 0; - max_elements = MAX_ELEMENTS; element_h_one = NULL; /*---------------------------------------------------------------------- * Element List *---------------------------------------------------------------------- */ - elt_list = NULL; count_elts = 0; - max_elts = MAX_ELTS; /*---------------------------------------------------------------------- * Species *---------------------------------------------------------------------- */ - logk = NULL; - count_logk = 0; - max_logk = MAX_S; - moles_per_kilogram_string= NULL; - pe_string = NULL; - s = NULL; - count_s = 0; - max_s = MAX_S; - // auto s_diff_layer; - s_x = NULL; - count_s_x = 0; - max_s_x = 0; s_h2o = NULL; s_hplus = NULL; s_h3oplus = NULL; @@ -548,20 +687,14 @@ void Phreeqc::init(void) /*---------------------------------------------------------------------- * Phases *---------------------------------------------------------------------- */ - phases = NULL; - count_phases = 0; - max_phases = MAX_PHASES; + /*---------------------------------------------------------------------- * Master species *---------------------------------------------------------------------- */ - master = NULL; - dbg_master = NULL; - count_master = 0; - max_master = MAX_MASTER; + /*---------------------------------------------------------------------- * Unknowns *---------------------------------------------------------------------- */ - x = NULL; count_unknowns = 0; max_unknowns = 0; ah2o_unknown = NULL; @@ -585,7 +718,6 @@ void Phreeqc::init(void) * Reaction work space *---------------------------------------------------------------------- */ // struct trxn; - trxn.token = 0; for (int i = 0; i < MAX_LOG_K_INDICES; i++) { trxn.logk[i] = 0; @@ -595,11 +727,7 @@ void Phreeqc::init(void) trxn.dz[i] = 0; } count_trxn = 0; - max_trxn = MAX_TRXN; - mb_unknowns = NULL; - count_mb_unknowns = 0; - max_mb_unknowns = MAX_TRXN; /* ---------------------------------------------------------------------- * Print * ---------------------------------------------------------------------- */ @@ -647,8 +775,6 @@ void Phreeqc::init(void) /* ---------------------------------------------------------------------- * RATES * ---------------------------------------------------------------------- */ - rates = NULL; - count_rates = 0; rate_m = 0; rate_m0 = 0; rate_time = 0; @@ -663,18 +789,13 @@ void Phreeqc::init(void) /* ---------------------------------------------------------------------- * USER PRINT COMMANDS * ---------------------------------------------------------------------- */ - user_print = NULL; -#ifdef SKIP - user_punch = NULL; - user_punch_headings = NULL; - user_punch_count_headings = 0; -#endif + //user_print = NULL; n_user_punch_index = 0; fpunchf_user_s_warning = 0; fpunchf_user_buffer[0] = 0; #if defined PHREEQ98 - struct rate *user_graph; + class rate *user_graph; char **user_graph_headings; int user_graph_count_headings; #endif @@ -695,16 +816,15 @@ void Phreeqc::init(void) stop_program = FALSE; incremental_reactions = FALSE; count_strings = 0; - array = NULL; - delta = NULL; - residual = NULL; input_error = 0; next_keyword = Keywords::KEY_NONE; parse_error = 0; paren_count = 0; iterations = 0; gamma_iterations = 0; + density_iterations = 0; run_reactions_iterations= 0; + overall_iterations = 0; max_line = MAX_LINE; line = NULL; line_save = NULL; @@ -712,6 +832,8 @@ void Phreeqc::init(void) debug_model = FALSE; debug_prep = FALSE; debug_set = FALSE; + debug_mass_action = FALSE; + debug_mass_balance = FALSE; debug_diffuse_layer = FALSE; debug_inverse = FALSE; #ifdef USE_LONG_DOUBLE @@ -750,76 +872,32 @@ void Phreeqc::init(void) numerical_deriv = FALSE; count_total_steps = 0; phast = FALSE; - llnl_temp = 0; - llnl_count_temp = 0; - llnl_adh = 0; - llnl_count_adh = 0; - llnl_bdh = 0; - llnl_count_bdh = 0; - llnl_bdot = 0; - llnl_count_bdot = 0; - llnl_co2_coefs = 0; - llnl_count_co2_coefs = 0; + output_newline = true; //selected_output_file_name = NULL; dump_file_name = NULL; remove_unstable_phases = FALSE; // auto screen_string; spread_length = 10; - /* ---------------------------------------------------------------------- */ - /* - * Hash definitions - */ - // auto strings_map; -#ifdef HASH - // auto strings_hash; -#endif - elements_hash_table = NULL; - species_hash_table = NULL; - phases_hash_table = NULL; - logk_hash_table = NULL; - master_isotope_hash_table = NULL; /* ---------------------------------------------------------------------- * ISOTOPES * ---------------------------------------------------------------------- */ - count_master_isotope = 0; - master_isotope = NULL; - max_master_isotope = MAX_ELTS; initial_solution_isotopes = FALSE; - count_calculate_value = 0; - calculate_value = NULL; - max_calculate_value = MAX_ELTS; - calculate_value_hash_table = NULL; - count_isotope_ratio = 0; - isotope_ratio = 0; - max_isotope_ratio = MAX_ELTS; - isotope_ratio_hash_table = 0; - count_isotope_alpha = 0; - isotope_alpha = 0; - max_isotope_alpha = MAX_ELTS; - isotope_alpha_hash_table = 0; - phreeqc_mpi_myself = 0; first_read_input = TRUE; - user_database = NULL; - //have_punch_name = FALSE; print_density = 0; print_viscosity = 0; - zeros = NULL; - zeros_max = 1; cell_pore_volume = 0; cell_volume = 0; cell_porosity = 0; cell_saturation = 0; - sys = NULL; - count_sys = 0; - max_sys = 0; sys_tot = 0; V_solutes = 0.0; viscos = 0.0; viscos_0 = 0.0; - rho_0 = 0; + viscos_0_25 = 0.0; + rho_0 = 0.0; kappa_0 = 0.0; p_sat = 0.0; eps_r = EPSILON; @@ -836,18 +914,11 @@ void Phreeqc::init(void) /* phqalloc.cpp ------------------------------- */ s_pTail = NULL; /* Basic */ - basic_interpreter = NULL; + //basic_interpreter = NULL; basic_callback_ptr = NULL; basic_callback_cookie = NULL; basic_fortran_callback_ptr = NULL; - /* cl1.cpp ------------------------------- */ - x_arg = NULL; - res_arg = NULL; - scratch = NULL; - x_arg_max = 0; - res_arg_max = 0; - scratch_max = 0; #ifdef SKIP /* dw.cpp ------------------------------- */ /* COMMON /QQQQ/ */ @@ -886,8 +957,6 @@ void Phreeqc::init(void) max_row_count = 50; max_column_count = 50; carbon = FALSE; - col_name = NULL; - row_name = NULL; count_rows = 0; count_optimize = 0; col_phases = 0; @@ -905,18 +974,6 @@ void Phreeqc::init(void) row_epsilon = 0; row_isotope_epsilon = 0; row_water = 0; - inv_zero = NULL; - array1 = 0; - inv_res = NULL; - inv_delta1 = NULL; - delta2 = NULL; - delta3 = NULL; - inv_cu = NULL; - delta_save = NULL; - min_delta = NULL; - max_delta = NULL; - inv_iu = NULL; - inv_is = NULL; klmd = 0; nklmd = 0; n2d = 0; @@ -927,11 +984,6 @@ void Phreeqc::init(void) max_pct = 0; scaled_error = 0; master_alk = NULL; - row_back = NULL; - col_back = NULL; - good = NULL; - bad = NULL; - minimal = NULL; max_good = 0; max_bad = 0; max_minimal = 0; @@ -972,40 +1024,18 @@ void Phreeqc::init(void) kinetics_cvode_mem = NULL; cvode_pp_assemblage_save= NULL; cvode_ss_assemblage_save= NULL; - m_original = NULL; - m_temp = NULL; - rk_moles = NULL; set_and_run_attempt = 0; - x0_moles = NULL; /* model.cpp ------------------------------- */ gas_in = FALSE; min_value = 1e-10; - normal = NULL; - ineq_array = NULL; - res = NULL; - cu = NULL; - zero = NULL; - delta1 = NULL; - iu = NULL; - is = NULL; - back_eq = NULL; - normal_max = 0; - ineq_array_max = 0; - res_max = 0; - cu_max = 0; - zero_max = 0; - delta1_max = 0; - iu_max = 0; - is_max = 0; - back_eq_max = 0; + /* phrq_io_output.cpp ------------------------------- */ forward_output_to_log = 0; /* phreeqc_files.cpp ------------------------------- */ - default_data_base = string_duplicate("phreeqc.dat"); -#ifdef PHREEQ98 - int outputlinenr; - char *LogFileNameC; - char progress_str[512]; +#ifdef NPP + default_data_base = "c:\\phreeqc\\database\\phreeqc.dat"; +#else + default_data_base = "phreeqc.dat"; #endif /* Pitzer */ pitzer_model = FALSE; @@ -1019,19 +1049,11 @@ void Phreeqc::init(void) AW = 0; VP = 0; DW0 = 0; - pitz_params = NULL; - count_pitz_param = 0; - max_pitz_param = 100; // auto pitz_param_map - theta_params = 0; - count_theta_param = 0; - max_theta_param = 100; use_etheta = TRUE; OTEMP = -100.; OPRESS = -100.; - A0 = 0; - aphi = NULL; - spec = NULL; + A0 = 0; cations = NULL; anions = NULL; neutrals = NULL; @@ -1044,36 +1066,21 @@ void Phreeqc::init(void) mcb0 = NULL; mcb1 = NULL; mcc0 = NULL; - IPRSNT = NULL; - M = NULL; - LGAMMA = NULL; for (int i = 0; i < 23; i++) { BK[i] = 0.0; DK[i] = 0.0; } -#ifdef PHREEQ98 - int connect_simulations, graph_initial_solutions; - int shifts_as_points; - int chart_type; - int ShowChart; - int RowOffset, ColumnOffset; -#endif dummy = 0; /* print.cpp ------------------------------- */ - sformatf_buffer = (char *) PHRQ_malloc(256 * sizeof(char)); + if (sformatf_buffer != NULL) + { + sformatf_buffer = (char*)free_check_null(sformatf_buffer); + } + sformatf_buffer = (char *) PHRQ_calloc(256 , sizeof(char)); if (sformatf_buffer == NULL) malloc_error(); - sformatf_buffer_size = 256; -#ifdef PHREEQ98 - int colnr, rownr; - int graph_initial_solutions; - int prev_advection_step, prev_transport_step; /*, prev_reaction_step */ - /* int shifts_as_points; */ - int chart_type; - int AddSeries; - int FirstCallToUSER_GRAPH; -#endif + sformatf_buffer_size = 256; /* read.cpp */ prev_next_char = NULL; #if defined PHREEQ98 @@ -1087,10 +1094,7 @@ void Phreeqc::init(void) /* readtr.cpp */ // auto dump_file_name_cpp; /* sit.cpp ------------------------------- */ - sit_params = NULL; - count_sit_param = 0; - max_sit_param = 100; - // auto sit_param_map + sit_A0 = 0; sit_count_cations = 0; sit_count_anions = 0; @@ -1098,9 +1102,6 @@ void Phreeqc::init(void) sit_MAXCATIONS = 0; sit_FIRSTANION = 0; sit_MAXNEUTRAL = 0; - sit_IPRSNT = NULL; - sit_M = NULL; - sit_LGAMMA = NULL; /* tidy.cpp ------------------------------- */ a0 = 0; a1 = 0; @@ -1109,7 +1110,7 @@ void Phreeqc::init(void) /* tally.cpp ------------------------------- */ t_buffer = NULL; tally_count_component = 0; - tally_table = NULL; + //tally_table = NULL; count_tally_table_columns = 0; count_tally_table_rows = 0; /* transport.cpp ------------------------------- */ @@ -1137,19 +1138,13 @@ void Phreeqc::init(void) heat_mix_f_m = 0; warn_MCD_X = 0; warn_fixed_Surf = 0; -#ifdef PHREEQ98 - int AutoLoadOutputFile, CreateToC; - int ProcessMessages, ShowProgress, ShowProgressWindow, ShowChart; - int outputlinenr; - int stop_calculations; - char err_str98[80]; -#endif /* utilities.cpp ------------------------------- */ spinner = 0; // keycount; + keycount.resize(Keywords::KEY_COUNT_KEYWORDS); for (int i = 0; i < Keywords::KEY_COUNT_KEYWORDS; i++) { - keycount.push_back(0); + keycount[i] = 0; } return; @@ -1157,373 +1152,257 @@ void Phreeqc::init(void) /*-----------------------------------------------------*/ Phreeqc::Phreeqc(const Phreeqc &src) { - this->phrq_io = src.phrq_io; + user_print = NULL; + sformatf_buffer = NULL; + basic_interpreter = NULL; + count_elts = 0; + aphi = NULL; + //this->phrq_io = src.phrq_io; + this->phrq_io = &this->ioInstance; this->init(); this->initialize(); InternalCopy(&src); } void -Phreeqc::InternalCopy(const Phreeqc *pSrc) +Phreeqc::InternalCopy(const Phreeqc* pSrc) { // phrq_io - /* - if (io) - { - this->phrq_io = io; - } - else - { - this->phrq_io = &this->ioInstance; - } - */ + //this->phrq_io = new PHRQ_io; + same_model = FALSE; + current_tc = pSrc->current_tc; + current_pa = pSrc->current_pa; + current_mu = pSrc->current_mu; + mu_terms_in_logk = pSrc->mu_terms_in_logk; - same_model = FALSE; - current_tc = pSrc->current_tc; - current_pa = pSrc->current_pa; - current_mu = pSrc->current_mu; - mu_terms_in_logk = pSrc->mu_terms_in_logk; - - MIN_LM = pSrc->MIN_LM; /* minimum log molality allowed before molality set to zero */ - LOG_ZERO_MOLALITY = pSrc->LOG_ZERO_MOLALITY; /* molalities <= LOG_ZERO_MOLALITY are considered equal to zero */ - MIN_RELATED_LOG_ACTIVITY = pSrc->MIN_RELATED_LOG_ACTIVITY; - MIN_TOTAL = pSrc->MIN_TOTAL; - MIN_TOTAL_SS = pSrc->MIN_TOTAL_SS; - MIN_RELATED_SURFACE = pSrc->MIN_RELATED_SURFACE; /* ---------------------------------------------------------------------- * STRUCTURES * ---------------------------------------------------------------------- */ -/* - * last model - */ - //-- skip last model, accept init - -/* - * Initialize punch - */ - //-- skip punch, accept init + //last_model, accept init high_precision = pSrc->high_precision; - + // Maps Rxn_temperature_map = pSrc->Rxn_temperature_map; Rxn_pressure_map = pSrc->Rxn_pressure_map; - - /* ---------------------------------------------------------------------- - * Surface - * --------------------------------------------------------------------- */ - g_iterations = -1; - G_TOL = 1e-8; + g_iterations = -1; + G_TOL = pSrc->G_TOL; Rxn_surface_map = pSrc->Rxn_surface_map; - // auto charge_group_map; - /* - change_surf_count = 0; - change_surf = NULL; - */ - /* ---------------------------------------------------------------------- - * Exchange - * ---------------------------------------------------------------------- */ - Rxn_exchange_map = pSrc->Rxn_exchange_map; - - /* ---------------------------------------------------------------------- - * Kinetics - * ---------------------------------------------------------------------- */ - Rxn_kinetics_map = pSrc->Rxn_kinetics_map; - - /*---------------------------------------------------------------------- - * Save - *---------------------------------------------------------------------- */ - count_save_values = 0; - /* - save_values = NULL; - save_init(-1); // set initial save values - */ - - // auto use - - // copier structures - //-- skip copier, accept init - - /*---------------------------------------------------------------------- - * Inverse - *---------------------------------------------------------------------- */ - - /* - inverse = NULL; - */ - count_inverse = 0; - /*---------------------------------------------------------------------- - * Mix - *---------------------------------------------------------------------- */ - // Should be empty after each END - // auto Rxn_mix_map; - // auto Dispersion_mix_map; - // auto Rxn_solution_mix_map; - // auto Rxn_exchange_mix_map; - // auto Rxn_gas_phase_mix_map; - // auto Rxn_kinetics_mix_map; - // auto Rxn_pp_assemblage_mix_map; - // auto Rxn_ss_assemblage_mix_map; - // auto Rxn_surface_mix_map; - /*---------------------------------------------------------------------- - * Irreversible reaction - *---------------------------------------------------------------------- */ - Rxn_reaction_map = pSrc->Rxn_reaction_map; - run_cells_one_step = pSrc->run_cells_one_step; - /*---------------------------------------------------------------------- - * Gas phase - *---------------------------------------------------------------------- */ - Rxn_gas_phase_map = pSrc->Rxn_gas_phase_map; - /*---------------------------------------------------------------------- - * Solid solution - *---------------------------------------------------------------------- */ - Rxn_ss_assemblage_map = pSrc->Rxn_ss_assemblage_map; - /*---------------------------------------------------------------------- - * Pure-phase assemblage - *---------------------------------------------------------------------- */ - Rxn_pp_assemblage_map = pSrc->Rxn_pp_assemblage_map; - /*---------------------------------------------------------------------- - * Species_list - *---------------------------------------------------------------------- */ - /* - count_species_list = 0; - max_species_list = 0; - species_list = NULL; - */ - /*---------------------------------------------------------------------- - * Jacobian and Mass balance lists - *---------------------------------------------------------------------- */ - /* - count_sum_jacob0 = 0; - max_sum_jacob0 = 0; - sum_jacob0 = NULL; - count_sum_mb1 = 0; - max_sum_mb1 = 0; - sum_mb1 = NULL; - count_sum_jacob1 = 0; - max_sum_jacob1 = 0; - sum_jacob1 = NULL; - count_sum_mb2 = 0; - max_sum_mb2 = 0; - sum_mb2 = NULL; - count_sum_jacob2 = 0; - max_sum_jacob2 = 0; - sum_jacob2 = NULL; - count_sum_delta = 0; - max_sum_delta = 0; - sum_delta = NULL; - */ - /*---------------------------------------------------------------------- - * Solution - *---------------------------------------------------------------------- */ - Rxn_solution_map = pSrc->Rxn_solution_map; - save_species = pSrc->save_species; - // auto Rxn_solution_map; - // auto unnumbered_solutions; - /*---------------------------------------------------------------------- - * Global solution - *---------------------------------------------------------------------- */ - /* - title_x = NULL; - new_x = FALSE; - description_x = NULL; - tc_x = 0; - tk_x = 0; - patm_x = 1; - last_patm_x = 1; - numerical_fixed_volume = false; - force_numerical_fixed_volume = false; - //switch_numerical = false; - ph_x = 0; - solution_pe_x = 0; - mu_x = 0; - ah2o_x = 1.0; - density_x = 0; - total_h_x = 0; - total_o_x = 0; - cb_x = 0; - total_ions_x = 0; - mass_water_aq_x = 0; - mass_water_surfaces_x = 0; - mass_water_bulk_x = 0; - units_x = NULL; - */ - // auto pe_x - // auto isotopes_x - // auto default_pe_x - /* - dl_type_x = cxxSurface::NO_DL; - total_carbon = 0; - total_co2 = 0; - total_alkalinity = 0; - gfw_water = 0; - step_x = 0; - kin_time_x = 0; - */ - /*---------------------------------------------------------------------- - * Transport data - *---------------------------------------------------------------------- */ - count_cells = pSrc->count_cells; - cell_data_max_cells = pSrc->cell_data_max_cells; - count_shifts = pSrc->count_shifts; - ishift = pSrc->ishift; - bcon_first = pSrc->bcon_first; - bcon_last = pSrc->bcon_last; - correct_disp = pSrc->correct_disp; - tempr = pSrc->tempr; - timest = pSrc->timest; - simul_tr = pSrc->simul_tr; - diffc = pSrc->diffc; - heat_diffc = pSrc->heat_diffc; - cell = pSrc->cell; - mcd_substeps = pSrc->mcd_substeps; - /* stag_data */ - memcpy(stag_data, pSrc->stag_data, sizeof(struct stag_data)); - print_modulus = pSrc->print_modulus; - punch_modulus = pSrc->punch_modulus; - dump_in = pSrc->dump_in; - dump_modulus = pSrc->dump_modulus; - transport_warnings = pSrc->transport_warnings; - /* cell_data */ - if (count_cells > 0) + change_surf_count = pSrc->change_surf_count; + change_surf = change_surf_alloc(change_surf_count + 1); + for (int ii = 0; ii < change_surf_count; ii++) { - cell_data = (struct cell_data *) free_check_null(cell_data); - cell_data = (struct cell_data *) PHRQ_malloc((size_t) ((count_cells + 2) * sizeof(struct cell_data))); - if (cell_data == NULL) malloc_error(); - memcpy(cell_data, pSrc->cell_data, ((size_t) ((count_cells + 2) * sizeof(struct cell_data)))); + change_surf[ii].comp_name = string_hsave(pSrc->change_surf[ii].comp_name); + change_surf[ii].fraction = pSrc->change_surf[ii].fraction; + change_surf[ii].new_comp_name = string_hsave(pSrc->change_surf[ii].new_comp_name); + change_surf[ii].new_Dw = pSrc->change_surf[ii].new_Dw; + change_surf[ii].cell_no = pSrc->change_surf[ii].cell_no; + change_surf[ii].next = pSrc->change_surf[ii].next; } + Rxn_exchange_map = pSrc->Rxn_exchange_map; + Rxn_kinetics_map = pSrc->Rxn_kinetics_map; + use_kinetics_limiter = pSrc->use_kinetics_limiter; + save_values = pSrc->save_values; + save = pSrc->save; + //class copier copy_solution; + //class copier copy_pp_assemblage; + //class copier copy_exchange; + //class copier copy_surface; + //class copier copy_ss_assemblage; + //class copier copy_gas_phase; + //class copier copy_kinetics; + //class copier copy_mix; + //class copier copy_reaction; + //class copier copy_temperature; + //class copier copy_pressure; + // Inverse not implemented + //std::vector inverse; + count_inverse = 0; + // Mix + Rxn_mix_map = pSrc->Rxn_mix_map; + Dispersion_mix_map = pSrc->Dispersion_mix_map; + Rxn_solution_mix_map = pSrc->Rxn_solution_mix_map; + Rxn_exchange_mix_map = pSrc->Rxn_exchange_mix_map; + Rxn_gas_phase_mix_map = pSrc->Rxn_gas_phase_mix_map; + Rxn_kinetics_mix_map = pSrc->Rxn_kinetics_mix_map; + Rxn_pp_assemblage_mix_map = pSrc->Rxn_pp_assemblage_mix_map; + Rxn_ss_assemblage_mix_map = pSrc->Rxn_ss_assemblage_mix_map; + Rxn_surface_mix_map = pSrc->Rxn_surface_mix_map; + //List new definitions + //std::set Rxn_new_exchange; + //std::set Rxn_new_gas_phase; + //std::set Rxn_new_kinetics; // not used + //std::set Rxn_new_mix; // not used + //std::set Rxn_new_pp_assemblage; + //std::set Rxn_new_pressure; // not used + //std::set Rxn_new_reaction; // not used + //std::set Rxn_new_solution; + //std::set Rxn_new_ss_assemblage; + //std::set Rxn_new_surface; + //std::set Rxn_new_temperature; // not used + Rxn_reaction_map = pSrc->Rxn_reaction_map; + Rxn_gas_phase_map = pSrc->Rxn_gas_phase_map; + Rxn_ss_assemblage_map = pSrc->Rxn_ss_assemblage_map; + Rxn_pp_assemblage_map = pSrc->Rxn_pp_assemblage_map; + + std::vector species_list; + // will be rebuilt + //std::vector sum_jacob0; + //std::vector sum_mb1; + //std::vector sum_jacob1; + //std::vector sum_mb2; + //std::vector sum_jacob2; + //std::vector sum_delta; + // Solution + Rxn_solution_map = pSrc->Rxn_solution_map; + unnumbered_solutions = pSrc->unnumbered_solutions; + save_species = pSrc->save_species; + // Global solution + title_x = pSrc->title_x; + last_title_x = pSrc->last_title_x; + //new_x = FALSE; + description_x = pSrc->description_x; + //new_x = FALSE; + description_x = pSrc->description_x; + //tc_x = 0; + //tk_x = 0; + //patm_x = 1; + //last_patm_x = 1; + //numerical_fixed_volume = false; + //force_numerical_fixed_volume = false; + //ph_x = 0; + //solution_pe_x = 0; + //mu_x = 0; + //ah2o_x = 1.0; + //density_x = 0; + //total_h_x = 0; + //total_o_x = 0; + //cb_x = 0; + //total_ions_x = 0; + //mass_water_aq_x = 0; + //mass_water_surfaces_x = 0; + //mass_water_bulk_x = 0; + //units_x + //pe_x + //isotopes_x + //default_pe_x + //dl_type_x = cxxSurface::NO_DL; + //total_carbon = 0; + //total_co2 = 0; + //total_alkalinity = 0; + gfw_water = pSrc->gfw_water; + //step_x = 0; + //kin_time_x = 0; + // Transport data + count_cells = pSrc->count_cells; + count_shifts = pSrc->count_shifts; + ishift = pSrc->ishift; + bcon_first = pSrc->bcon_first; + bcon_last = pSrc->bcon_last; + correct_disp = pSrc->correct_disp; + tempr = pSrc->tempr; + timest = pSrc->timest; + simul_tr = pSrc->simul_tr; + diffc = pSrc->diffc; + heat_diffc = pSrc->heat_diffc; + cell = pSrc->cell; + mcd_substeps = pSrc->mcd_substeps; + stag_data = pSrc->stag_data; + print_modulus = pSrc->print_modulus; + punch_modulus = pSrc->punch_modulus; + dump_in = pSrc->dump_in; + dump_modulus = pSrc->dump_modulus; + transport_warnings = pSrc->transport_warnings; + // cell_data + cell_data = pSrc->cell_data; old_cells = pSrc->old_cells; max_cells = pSrc->max_cells; + if (stag_data.count_stag > 0) + { + max_cells = (max_cells - 2) / (1 + stag_data.count_stag); + } all_cells = pSrc->all_cells; - multi_Dflag = pSrc->multi_Dflag; - interlayer_Dflag = pSrc->interlayer_Dflag; - default_Dw = pSrc->default_Dw; - multi_Dpor = pSrc->multi_Dpor; - interlayer_Dpor = pSrc->interlayer_Dpor; - multi_Dpor_lim = pSrc->multi_Dpor_lim; - interlayer_Dpor_lim = pSrc->interlayer_Dpor_lim; - multi_Dn = pSrc->multi_Dn; - interlayer_tortf = pSrc->interlayer_tortf; - cell_no = pSrc->cell_no; - fix_current = pSrc->fix_current; - /*---------------------------------------------------------------------- - * Advection data - *---------------------------------------------------------------------- */ - count_ad_cells = pSrc->count_ad_cells; - count_ad_shifts = pSrc->count_ad_shifts; - print_ad_modulus = pSrc->print_ad_modulus; - punch_ad_modulus = pSrc->punch_ad_modulus; - /* advection_punch */ - if (count_ad_cells > 0) - { - advection_punch = (int *) free_check_null(advection_punch); - advection_punch = (int *) PHRQ_malloc((size_t) (count_ad_cells * sizeof(int))); - if (advection_punch == NULL) malloc_error(); - memcpy(advection_punch, pSrc->advection_punch, (size_t) (count_ad_cells * sizeof(int))); - } - /* advection_print */ - if (count_ad_cells > 0) - { - advection_print = (int *) free_check_null(advection_print); - advection_print = (int *) PHRQ_malloc((size_t) (count_ad_cells * sizeof(int))); - if (advection_print == NULL) malloc_error(); - memcpy(advection_print, pSrc->advection_print, (size_t) (count_ad_cells * sizeof(int))); - } - advection_kin_time = pSrc->advection_kin_time; + max_cells = pSrc->max_cells; + multi_Dflag = pSrc->multi_Dflag; + interlayer_Dflag = pSrc->interlayer_Dflag; + implicit = pSrc->implicit; + max_mixf = pSrc->max_mixf; + min_dif_LM = pSrc->min_dif_LM; + default_Dw = pSrc->default_Dw; + correct_Dw = pSrc->correct_Dw; + multi_Dpor = pSrc->multi_Dpor; + interlayer_Dpor = pSrc->interlayer_Dpor; + multi_Dpor_lim = pSrc->multi_Dpor_lim; + interlayer_Dpor_lim = pSrc->interlayer_Dpor_lim; + multi_Dn = pSrc->multi_Dn; + interlayer_tortf = pSrc->interlayer_tortf; + cell_no = pSrc->cell_no; + mixrun = pSrc->mixrun; + // Advection data + count_ad_cells = pSrc->count_ad_cells; + count_ad_shifts = pSrc->count_ad_shifts; + print_ad_modulus = pSrc->print_ad_modulus; + punch_ad_modulus = pSrc->punch_ad_modulus; + advection_punch = pSrc->advection_punch; + advection_print = pSrc->advection_print; + advection_kin_time = pSrc->advection_kin_time; advection_kin_time_defined = pSrc->advection_kin_time_defined; - advection_warnings = pSrc->advection_warnings; - /*---------------------------------------------------------------------- - * Tidy data - *---------------------------------------------------------------------- */ - /* - new_model = TRUE; - new_exchange = FALSE; - new_pp_assemblage = FALSE; - new_surface = FALSE; - new_reaction = FALSE; - new_temperature = FALSE; - new_mix = FALSE; - new_solution = FALSE; - new_gas_phase = FALSE; - new_inverse = FALSE; - new_punch = FALSE; - new_ss_assemblage = FALSE; - new_kinetics = FALSE; - new_copy = FALSE; - new_pitzer = FALSE; - */ - /*---------------------------------------------------------------------- - * Elements - *---------------------------------------------------------------------- */ - for (int i = 0; i < pSrc->count_elements; i++) + advection_warnings = pSrc->advection_warnings; + // Tidy data + new_model = TRUE; + new_exchange = FALSE; + new_pp_assemblage = FALSE; + new_surface = FALSE; + new_reaction = FALSE; + new_temperature = FALSE; + new_mix = FALSE; + new_solution = FALSE; + new_gas_phase = FALSE; + new_inverse = FALSE; + new_punch = FALSE; + new_ss_assemblage = FALSE; + new_kinetics = FALSE; + new_copy = FALSE; + new_pitzer = FALSE; + // Elements + for (int i = 0; i < (int)pSrc->elements.size(); i++) { - string_hsave(pSrc->elements[i]->name); - struct element *elt_ptr = element_store(pSrc->elements[i]->name); + const char* ptr = string_hsave(pSrc->elements[i]->name); + class element* elt_ptr = element_store(ptr); elt_ptr->gfw = pSrc->elements[i]->gfw; } element_h_one = element_store("H(1)"); - /* - elements = NULL; - count_elements = 0; - max_elements = MAX_ELEMENTS; - element_h_one = NULL; - */ - /*---------------------------------------------------------------------- - * Element List - *---------------------------------------------------------------------- */ - /* - elt_list = NULL; - count_elts = 0; - max_elts = MAX_ELTS; - */ - /*---------------------------------------------------------------------- - * Species - *---------------------------------------------------------------------- */ - /* - logk = NULL; - count_logk = 0; - max_logk = MAX_S; - moles_per_kilogram_string= NULL; - pe_string = NULL; - s = NULL; - count_s = 0; - max_s = MAX_S; - // auto s_diff_layer; - s_x = NULL; - count_s_x = 0; - max_s_x = 0; - s_h2o = NULL; - s_hplus = NULL; - s_h3oplus = NULL; - s_eminus = NULL; - s_co3 = NULL; - s_h2 = NULL; - s_o2 = NULL; - */ - // logk - for (int i = 0; i < pSrc->count_logk; i++) + // Element List + count_elts = 0; + // Reaction + run_cells_one_step = pSrc->run_cells_one_step; + //// logk + //logk.clear(); + //for (size_t i = 0; i < pSrc->logk.size(); i++) + //{ + // class logk* tlk = new class logk; + // *tlk = *pSrc->logk[i]; + // tlk->name = string_hsave(pSrc->logk[i]->name); + // logk.push_back(tlk); + //} + for (int i = 0; i < (int)pSrc->logk.size(); i++) { - char * name = string_duplicate(pSrc->logk[i]->name); - struct logk *logk_ptr = logk_store(name, FALSE); - free_check_null(name); - memcpy(logk_ptr, pSrc->logk[i], sizeof(struct logk)); + class logk* logk_ptr = logk_store(pSrc->logk[i]->name, FALSE); + //memcpy(logk_ptr, pSrc->logk[i], sizeof(class logk)); + *logk_ptr = *pSrc->logk[i]; logk_ptr->name = string_hsave(pSrc->logk[i]->name); - logk_ptr->add_logk = NULL; - if (logk_ptr->count_add_logk > 0) + logk_ptr->add_logk.resize(pSrc->logk[i]->add_logk.size()); + for (size_t j = 0; j < logk_ptr->add_logk.size(); j++) { - logk_ptr->add_logk = (struct name_coef *) PHRQ_malloc((size_t) pSrc->logk[i]->count_add_logk * sizeof(struct name_coef)); - if (logk[i]->add_logk == NULL) malloc_error(); - for (int j = 0; j < logk_ptr->count_add_logk; j++) - { - logk_ptr->add_logk[j].coef = pSrc->logk[i]->add_logk[j].coef; - logk_ptr->add_logk[j].name = string_hsave( pSrc->logk[i]->add_logk[j].name); - } - } + logk_ptr->add_logk[j].coef = pSrc->logk[i]->add_logk[j].coef; + logk_ptr->add_logk[j].name = string_hsave(pSrc->logk[i]->add_logk[j].name); + } } // s, species - for (int i = 0; i < pSrc->count_s; i++) + for (int i = 0; i < (int)pSrc->s.size(); i++) { - struct species *s_ptr = s_store(pSrc->s[i]->name, pSrc->s[i]->z, FALSE); - memcpy(s_ptr, pSrc->s[i], sizeof(struct species)); - s_ptr->name = string_hsave(pSrc->s[i]->name); + class species* s_ptr = s_store(pSrc->s[i]->name, pSrc->s[i]->z, FALSE); + //memcpy(s_ptr, pSrc->s[i], sizeof(class species)); + *s_ptr = *pSrc->s[i]; // fix up all pointers + s_ptr->name = string_hsave(pSrc->s[i]->name); s_ptr->mole_balance = NULL; if (pSrc->s[i]->mole_balance != NULL) { @@ -1531,361 +1410,127 @@ Phreeqc::InternalCopy(const Phreeqc *pSrc) } s_ptr->primary = NULL; s_ptr->secondary = NULL; - //add_logk - s_ptr->add_logk = NULL; - if (s_ptr->count_add_logk > 0) + s_ptr->add_logk.resize(pSrc->s[i]->add_logk.size()); + for (size_t j = 0; j < s_ptr->add_logk.size(); j++) { - s_ptr->add_logk = (struct name_coef *) PHRQ_malloc((size_t) s_ptr->count_add_logk * sizeof(struct name_coef)); - if (s_ptr->add_logk == NULL) malloc_error(); - for (int j = 0; j < s_ptr->count_add_logk; j++) - { - s_ptr->add_logk[j].coef = pSrc->s[i]->add_logk[j].coef; - s_ptr->add_logk[j].name = string_hsave( pSrc->s[i]->add_logk[j].name); - } + s_ptr->add_logk[j].coef = pSrc->s[i]->add_logk[j].coef; + s_ptr->add_logk[j].name = string_hsave(pSrc->s[i]->add_logk[j].name); } //next_elt - s_ptr->next_elt = NULL; - if (pSrc->s[i]->next_elt) - { - cxxNameDouble next_elt(pSrc->s[i]->next_elt); - s_ptr->next_elt = NameDouble2elt_list(next_elt); - } - //next_secondary - s_ptr->next_secondary = NULL; - if (pSrc->s[i]->next_secondary) - { - cxxNameDouble next_secondary(pSrc->s[i]->next_secondary); - s_ptr->next_secondary = NameDouble2elt_list(next_secondary); - } - //next_sys_total - s_ptr->next_sys_total = NULL; - if (pSrc->s[i]->next_sys_total) - { - cxxNameDouble next_sys_total(pSrc->s[i]->next_sys_total); - s_ptr->next_sys_total = NameDouble2elt_list(next_sys_total); - } + s_ptr->next_elt = elt_list_internal_copy(pSrc->s[i]->next_elt); + s_ptr->next_secondary = elt_list_internal_copy(pSrc->s[i]->next_secondary); + s_ptr->next_sys_total = elt_list_internal_copy(pSrc->s[i]->next_sys_total); //rxn - s_ptr->rxn = NULL; - if (pSrc->s[i]->rxn != NULL) - { - cxxChemRxn rxn(pSrc->s[i]->rxn); - s_ptr->rxn = cxxChemRxn2rxn(rxn); - //s_ptr->rxn = rxn_copy_operator(pSrc->s[i]->rxn); - } - //rxn_s - s_ptr->rxn_s = NULL; - if (pSrc->s[i]->rxn_s != NULL) - { - cxxChemRxn rxn_s(pSrc->s[i]->rxn_s); - s_ptr->rxn_s = cxxChemRxn2rxn(rxn_s); - } - //rxn_x - s_ptr->rxn_x = NULL; - if (pSrc->s[i]->rxn_x != NULL) - { - cxxChemRxn rxn_x(pSrc->s[i]->rxn_x); - s_ptr->rxn_x = cxxChemRxn2rxn(rxn_x); - } + s_ptr->rxn = CReaction_internal_copy(pSrc->s[i]->rxn); + s_ptr->rxn_s = CReaction_internal_copy(pSrc->s[i]->rxn_s); + s_ptr->rxn_x = CReaction_internal_copy(pSrc->s[i]->rxn_x); } - s_h2o = s_search("H2O"); - s_hplus = s_search("H+"); - s_h3oplus = s_search("H3O+"); - s_eminus = s_search("e-"); - s_co3 = s_search("CO3-2"); - s_h2 = s_search("H2"); - s_o2 = s_search("O2"); + s_diff_layer = pSrc->s_diff_layer; + //s_x will be built + s_h2o = s_search("H2O"); + s_hplus = s_search("H+"); + s_h3oplus = s_search("H3O+"); + s_eminus = s_search("e-"); + s_co3 = s_search("CO3-2"); + s_h2 = s_search("H2"); + s_o2 = s_search("O2"); /*---------------------------------------------------------------------- * Phases *---------------------------------------------------------------------- */ - /* - phases = NULL; - count_phases = 0; - max_phases = MAX_PHASES; - */ - for (int i = 0; i < pSrc->count_phases; i++) + for (int i = 0; i < (int)pSrc->phases.size(); i++) { - struct phase *phase_ptr = phase_store(pSrc->phases[i]->name); - memcpy(phase_ptr, pSrc->phases[i], sizeof(struct phase)); + class phase* phase_ptr = phase_store(pSrc->phases[i]->name); + //memcpy(phase_ptr, pSrc->phases[i], sizeof(class phase)); + *phase_ptr = *pSrc->phases[i]; // clean up pointers phase_ptr->name = string_hsave(pSrc->phases[i]->name); phase_ptr->formula = string_hsave(pSrc->phases[i]->formula); //add_logk - phase_ptr->add_logk = NULL; - if (phase_ptr->count_add_logk > 0) + phase_ptr->add_logk.resize(pSrc->phases[i]->add_logk.size()); + for (size_t j = 0; j < phase_ptr->add_logk.size(); j++) { - phase_ptr->add_logk = (struct name_coef *) PHRQ_malloc((size_t) pSrc->phases[i]->count_add_logk * sizeof(struct name_coef)); - if (phase_ptr->add_logk == NULL) malloc_error(); - for (int j = 0; j < phase_ptr->count_add_logk; j++) - { - phase_ptr->add_logk[j].coef = pSrc->phases[i]->add_logk[j].coef; - phase_ptr->add_logk[j].name = string_hsave( pSrc->phases[i]->add_logk[j].name); - } + phase_ptr->add_logk[j].coef = pSrc->phases[i]->add_logk[j].coef; + phase_ptr->add_logk[j].name = string_hsave(pSrc->phases[i]->add_logk[j].name); } //next_elt - phase_ptr->next_elt = NULL; - if (pSrc->phases[i]->next_elt) - { - cxxNameDouble next_elt(pSrc->phases[i]->next_elt); - phase_ptr->next_elt = NameDouble2elt_list(next_elt); - } - //next_sys_total - phase_ptr->next_sys_total = NULL; - if (pSrc->phases[i]->next_sys_total) - { - cxxNameDouble next_sys_total(pSrc->phases[i]->next_sys_total); - phase_ptr->next_sys_total = NameDouble2elt_list(next_sys_total); - } + phase_ptr->next_elt = elt_list_internal_copy(pSrc->phases[i]->next_elt); + phase_ptr->next_sys_total = elt_list_internal_copy(pSrc->phases[i]->next_sys_total); //rxn - phase_ptr->rxn = NULL; - if (pSrc->phases[i]->rxn != NULL) - { - cxxChemRxn rxn(pSrc->phases[i]->rxn); - phase_ptr->rxn = cxxChemRxn2rxn(rxn); - } - //rxn_s - phase_ptr->rxn_s = NULL; - if (pSrc->phases[i]->rxn_s != NULL) - { - cxxChemRxn rxn_s(pSrc->phases[i]->rxn_s); - phase_ptr->rxn_s = cxxChemRxn2rxn(rxn_s); - } - //rxn_x - phase_ptr->rxn_x = NULL; - if (pSrc->phases[i]->rxn_x != NULL) - { - cxxChemRxn rxn_x(pSrc->phases[i]->rxn_x); - phase_ptr->rxn_x = cxxChemRxn2rxn(rxn_x); - } + phase_ptr->rxn = CReaction_internal_copy(pSrc->phases[i]->rxn); + phase_ptr->rxn_s = CReaction_internal_copy(pSrc->phases[i]->rxn_s); + phase_ptr->rxn_x = CReaction_internal_copy(pSrc->phases[i]->rxn_x); } - /*---------------------------------------------------------------------- - * Master species - *---------------------------------------------------------------------- */ - /* - master = NULL; - dbg_master = NULL; - count_master = 0; - max_master = MAX_MASTER; - */ - count_master = pSrc->count_master; - max_master = pSrc->max_master; - master = (struct master **) free_check_null(master); - master = (struct master **) PHRQ_malloc((size_t) max_master * sizeof(struct master *)); - if (master == NULL) malloc_error(); - dbg_master = master; - for (int i = 0; i < count_master; i++) + // Master species + for (size_t i = 0; i < pSrc->master.size(); i++) { - master[i] = (struct master *) PHRQ_malloc( sizeof(struct master)); - if (master[i] == NULL) malloc_error(); - memcpy(master[i], pSrc->master[i], sizeof(struct master)); + master.resize(i + 1); + master[i] = new class master; + //memcpy(master[i], pSrc->master[i], sizeof(class master)); + *master[i] = *pSrc->master[i]; // clean up pointers - master[i]->gfw_formula = NULL; - if (pSrc->master[i]->gfw_formula != NULL) - { - master[i]->gfw_formula = string_hsave(pSrc->master[i]->gfw_formula); - } + master[i]->gfw_formula = string_hsave(pSrc->master[i]->gfw_formula); master[i]->elt = element_store(pSrc->master[i]->elt->name); master[i]->unknown = NULL; - master[i]->s = s_store(pSrc->master[i]->s->name, pSrc->master[i]->s->z, false); + master[i]->s = s_store(pSrc->master[i]->s->name, pSrc->master[i]->s->z, FALSE); //rxn_primary - master[i]->rxn_primary = NULL; - if (pSrc->master[i]->rxn_primary != NULL) - { - cxxChemRxn rxn_primary(pSrc->master[i]->rxn_primary); - master[i]->rxn_primary = cxxChemRxn2rxn(rxn_primary); - } - //rxn_secondary - master[i]->rxn_secondary = NULL; - if (pSrc->master[i]->rxn_secondary != NULL) - { - cxxChemRxn rxn_secondary(pSrc->master[i]->rxn_secondary); - master[i]->rxn_secondary = cxxChemRxn2rxn(rxn_secondary); - } + master[i]->rxn_primary = CReaction_internal_copy(pSrc->master[i]->rxn_primary); + master[i]->rxn_secondary = CReaction_internal_copy(pSrc->master[i]->rxn_secondary); } - /*---------------------------------------------------------------------- - * Unknowns - *---------------------------------------------------------------------- */ - /* - x = NULL; - count_unknowns = 0; - max_unknowns = 0; - ah2o_unknown = NULL; - alkalinity_unknown = NULL; - carbon_unknown = NULL; - charge_balance_unknown = NULL; - exchange_unknown = NULL; - mass_hydrogen_unknown = NULL; - mass_oxygen_unknown = NULL; - mb_unknown = NULL; - mu_unknown = NULL; - pe_unknown = NULL; - ph_unknown = NULL; - pure_phase_unknown = NULL; - solution_phase_boundary_unknown = NULL; - surface_unknown = NULL; - gas_unknown = NULL; - ss_unknown = NULL; - */ - // auto gas_unknowns; - /*---------------------------------------------------------------------- - * Reaction work space - *---------------------------------------------------------------------- */ - // struct trxn; - /* - trxn.token = 0; - for (int i = 0; i < MAX_LOG_K_INDICES; i++) - { - trxn.logk[i] = 0; - } - for (int i = 0; i < 3; i++) - { - trxn.dz[i] = 0; - } - count_trxn = 0; - max_trxn = MAX_TRXN; - */ - /* - mb_unknowns = NULL; - count_mb_unknowns = 0; - max_mb_unknowns = MAX_TRXN; - */ - /* ---------------------------------------------------------------------- - * Print - * ---------------------------------------------------------------------- */ - /* - pr.all = TRUE; - pr.initial_solutions = TRUE; - pr.initial_exchangers = TRUE; - pr.reactions = TRUE; - pr.gas_phase = TRUE; - pr.ss_assemblage = TRUE; - pr.pp_assemblage = TRUE; - pr.surface = TRUE; - pr.exchange = TRUE; - pr.kinetics = TRUE; - pr.totals = TRUE; - pr.eh = TRUE; - pr.species = TRUE; - pr.saturation_indices = TRUE; - pr.irrev = TRUE; - pr.mix = TRUE; - pr.reaction = TRUE; - pr.use = TRUE; - pr.logfile = FALSE; - pr.punch = TRUE; - pr.status = TRUE; - pr.inverse = TRUE; - pr.dump = TRUE; - pr.user_print = TRUE; - pr.headings = TRUE; - pr.user_graph = TRUE; - pr.echo_input = TRUE; - pr.warnings = 100; - pr.initial_isotopes = TRUE; - pr.isotope_ratios = TRUE; - pr.isotope_alphas = TRUE; - pr.hdf = FALSE; - pr.alkalinity = FALSE; - */ + // Unknowns will be built + //x = NULL; + //count_unknowns = 0; + //max_unknowns = 0; + //ah2o_unknown = NULL; + //alkalinity_unknown = NULL; + //carbon_unknown = NULL; + //charge_balance_unknown = NULL; + //exchange_unknown = NULL; + //mass_hydrogen_unknown = NULL; + //mass_oxygen_unknown = NULL; + //mb_unknown = NULL; + //mu_unknown = NULL; + //pe_unknown = NULL; + //ph_unknown = NULL; + //pure_phase_unknown = NULL; + //solution_phase_boundary_unknown = NULL; + //surface_unknown = NULL; + //gas_unknown = NULL; + //ss_unknown = NULL; + //gas_unknowns; + //mb_unknowns + // Reaction work space + // class reaction_temp trxn; + count_trxn = 0; + // Print pr = pSrc->pr; - status_on = pSrc->status_on; - status_interval = pSrc->status_interval; - status_timer = clock(); - count_warnings = 0; - /* ---------------------------------------------------------------------- - * RATES - * ---------------------------------------------------------------------- */ - /* - rates = NULL; - count_rates = 0; - rate_m = 0; - rate_m0 = 0; - rate_time = 0; - rate_kin_time = 1.0; - rate_sim_time_start = 0; - rate_sim_time_end = 0; - rate_sim_time = 0; - rate_moles = 0; - initial_total_time = 0; - // auto rate_p - count_rate_p = 0; - */ - rates = (struct rate *) free_check_null(rates); - count_rates = pSrc->count_rates; - if (count_rates > 0) + status_on = pSrc->status_on; + status_interval = pSrc->status_interval; + status_timer = clock(); + status_string.clear(); + count_warnings = 0; + // RATES + //rates = pSrc->rates; + for (size_t i = 0; i < pSrc->rates.size(); i++) { - rates = (struct rate *) PHRQ_malloc((size_t) count_rates * sizeof(struct rate)); - if (rates == NULL) malloc_error(); - for (int i = 0; i < count_rates; i++) - { - rates[i].name = string_hsave(pSrc->rates[i].name); - rates[i].commands = string_duplicate(pSrc->rates[i].commands); - rates[i].new_def = TRUE; - rates[i].linebase = NULL; - rates[i].varbase = NULL; - rates[i].loopbase = NULL; - } + rates.push_back(*rate_copy(&pSrc->rates[i])); } - /* ---------------------------------------------------------------------- - * USER PRINT COMMANDS - * ---------------------------------------------------------------------- */ - /* - user_print = NULL; - */ - { - user_print->name = NULL; - user_print->commands = NULL; - if (pSrc->user_print->commands != NULL) - { - user_print->commands = string_duplicate(pSrc->user_print->commands); - } - user_print->new_def = TRUE; - user_print->linebase = NULL; - user_print->varbase = NULL; - user_print->loopbase = NULL; - } - - // For now, User Punch is not copied -#ifdef SKIP - /* - user_punch = NULL; - */ - { - user_punch->name = NULL; - user_punch->commands = NULL; - if (pSrc->user_punch->commands != NULL) - { - user_punch->commands = string_duplicate(pSrc->user_punch->commands); - } - user_punch->new_def = TRUE; - user_punch->linebase = NULL; - user_punch->varbase = NULL; - user_punch->loopbase = NULL; - } - /* - user_punch_headings = NULL; - user_punch_count_headings = 0; - */ - user_punch_count_headings = pSrc->user_punch_count_headings; - if (user_punch_count_headings > 0) - { - user_punch_headings = (const char **) free_check_null(user_punch_headings); - user_punch_headings = (const char **) PHRQ_malloc((size_t) user_punch_count_headings * sizeof(char *)); - if (user_punch_headings == NULL) malloc_error(); - for (int i = 0; i < user_punch_count_headings; i++) - { - user_punch_headings[i] = string_hsave(pSrc->user_punch_headings[i]); - } - } -#endif - n_user_punch_index = pSrc->n_user_punch_index; - fpunchf_user_s_warning = pSrc->fpunchf_user_s_warning; + //rate_m = 0; + //rate_m0 = 0; + //rate_time = 0; + //rate_kin_time = 1.0; + //rate_sim_time_start = 0; + //rate_sim_time_end = 0; + //rate_sim_time = 0; + //rate_moles = 0; + initial_total_time = pSrc->initial_total_time; + //rate_p + count_rate_p = 0; + // User print + user_print = rate_copy(pSrc->user_print); + // For now, User Punch is NOT copied + n_user_punch_index = pSrc->n_user_punch_index; + fpunchf_user_s_warning = pSrc->fpunchf_user_s_warning; //fpunchf_user_buffer[0] = 0; - -#if defined PHREEQ98 - struct rate *user_graph; - char **user_graph_headings; - int user_graph_count_headings; -#endif #if defined MULTICHART // auto chart_handler; chart_handler.Set_io(phrq_io); @@ -1893,157 +1538,130 @@ Phreeqc::InternalCopy(const Phreeqc *pSrc) /* ---------------------------------------------------------------------- * GLOBAL DECLARATIONS * ---------------------------------------------------------------------- */ - /* - error_string = NULL; - simulation = 0; - int state = INITIALIZE; - reaction_step = 0; - transport_step = 0; - transport_start = 0; - advection_step = 0; - stop_program = FALSE; - incremental_reactions = FALSE; - count_strings = 0; - array = NULL; - delta = NULL; - residual = NULL; - input_error = 0; - next_keyword = Keywords::KEY_NONE; - parse_error = 0; - paren_count = 0; - iterations = 0; - gamma_iterations = 0; - run_reactions_iterations= 0; - max_line = MAX_LINE; - line = NULL; - line_save = NULL; - LOG_10 = log(10.0); - debug_model = FALSE; - debug_prep = FALSE; - debug_set = FALSE; - debug_diffuse_layer = FALSE; - debug_inverse = FALSE; - */ - inv_tol_default = pSrc->inv_tol_default; - itmax = pSrc->itmax; - max_tries = pSrc->max_tries; - ineq_tol = pSrc->ineq_tol; - convergence_tolerance = pSrc->convergence_tolerance; - step_size = pSrc->step_size; - pe_step_size = pSrc->pe_step_size; - step_size_now = step_size; - pe_step_size_now = pe_step_size; - pp_scale = pSrc->pp_scale; - pp_column_scale = pSrc->pp_column_scale; - diagonal_scale = pSrc->diagonal_scale; - mass_water_switch = pSrc->mass_water_switch; - delay_mass_water = pSrc->delay_mass_water; - equi_delay = pSrc->equi_delay; - dampen_ah2o = pSrc->dampen_ah2o; - censor = pSrc->censor; - aqueous_only = pSrc->aqueous_only; + error_string = NULL; + simulation = pSrc->simulation; + //state = INITIALIZE; + //reaction_step = 0; + //transport_step = 0; + //transport_start = 0; + //advection_step = 0; + //stop_program = FALSE; + incremental_reactions = pSrc->incremental_reactions; + // Constants + MIN_LM = pSrc->MIN_LM; /* minimum log molality allowed before molality set to zero */ + LOG_ZERO_MOLALITY = pSrc->LOG_ZERO_MOLALITY; /* molalities <= LOG_ZERO_MOLALITY are considered equal to zero */ + MIN_RELATED_LOG_ACTIVITY = pSrc->MIN_RELATED_LOG_ACTIVITY; + MIN_TOTAL = pSrc->MIN_TOTAL; + MIN_TOTAL_SS = pSrc->MIN_TOTAL_SS; + MIN_RELATED_SURFACE = pSrc->MIN_RELATED_SURFACE; + simulation = pSrc->simulation; + //my_array, + //delta, + //residual + input_error = 0; + next_keyword = Keywords::KEY_NONE; + parse_error = 0; + paren_count = 0; + iterations = 0; + gamma_iterations = 0; + density_iterations = 0; + run_reactions_iterations = 0; + overall_iterations = 0; + free_check_null(line); + free_check_null(line_save); + max_line = pSrc->max_line; + line = (char*)PHRQ_malloc(max_line * sizeof(char)); + line_save = (char*)PHRQ_malloc(max_line * sizeof(char)); + LOG_10 = pSrc->LOG_10; + // Debug + debug_model = pSrc->debug_model; + debug_prep = pSrc->debug_prep; + debug_set = pSrc->debug_set; + debug_diffuse_layer = pSrc->debug_diffuse_layer; + debug_inverse = pSrc->debug_inverse; + // + inv_tol_default = pSrc->inv_tol_default; + itmax = pSrc->itmax; + max_tries = pSrc->max_tries; + ineq_tol = pSrc->ineq_tol; + convergence_tolerance = pSrc->convergence_tolerance; + step_size = pSrc->step_size; + pe_step_size = pSrc->pe_step_size; + step_size_now = step_size; + pe_step_size_now = pe_step_size; + pp_scale = pSrc->pp_scale; + pp_column_scale = pSrc->pp_column_scale; + diagonal_scale = pSrc->diagonal_scale; + mass_water_switch = pSrc->mass_water_switch; + delay_mass_water = pSrc->delay_mass_water; + equi_delay = pSrc->equi_delay; + dampen_ah2o = pSrc->dampen_ah2o; + censor = pSrc->censor; + aqueous_only = pSrc->aqueous_only; negative_concentrations = pSrc->negative_concentrations; - calculating_deriv = FALSE; - numerical_deriv = FALSE; - count_total_steps = 0; - phast = FALSE; - /* - llnl_temp = 0; - llnl_count_temp = 0; - llnl_adh = 0; - llnl_count_adh = 0; - llnl_bdh = 0; - llnl_count_bdh = 0; - llnl_bdot = 0; - llnl_count_bdot = 0; - llnl_co2_coefs = 0; - llnl_count_co2_coefs = 0; - */ - llnl_count_temp = pSrc->llnl_count_temp; - if (llnl_count_temp > 0) - { - llnl_temp = (LDBLE *) free_check_null(llnl_temp); - llnl_temp = (LDBLE *) PHRQ_malloc((size_t) llnl_count_temp * sizeof(LDBLE)); - if (llnl_temp == NULL) malloc_error(); - memcpy(llnl_temp, pSrc->llnl_temp, (size_t) llnl_count_temp * sizeof(LDBLE)); - } - llnl_count_adh = pSrc->llnl_count_adh; - if (llnl_count_adh > 0) - { - llnl_adh = (LDBLE *) free_check_null(llnl_adh); - llnl_adh = (LDBLE *) PHRQ_malloc((size_t) llnl_count_adh * sizeof(LDBLE)); - if (llnl_adh == NULL) malloc_error(); - memcpy(llnl_adh, pSrc->llnl_adh, (size_t) llnl_count_adh * sizeof(LDBLE)); - } - llnl_count_bdh = pSrc->llnl_count_bdh; - if (llnl_count_bdh > 0) - { - llnl_bdh = (LDBLE *) free_check_null(llnl_bdh); - llnl_bdh = (LDBLE *) PHRQ_malloc((size_t) llnl_count_bdh * sizeof(LDBLE)); - if (llnl_bdh == NULL) malloc_error(); - memcpy(llnl_bdh, pSrc->llnl_bdh, (size_t) llnl_count_bdh * sizeof(LDBLE)); - } - llnl_count_bdot = pSrc->llnl_count_bdot; - if (llnl_count_bdot > 0) - { - llnl_bdot = (LDBLE *) free_check_null(llnl_bdot); - llnl_bdot = (LDBLE *) PHRQ_malloc((size_t) llnl_count_bdot * sizeof(LDBLE)); - if (llnl_bdot == NULL) malloc_error(); - memcpy(llnl_bdot, pSrc->llnl_bdot, (size_t) llnl_count_bdot * sizeof(LDBLE)); - } - llnl_count_co2_coefs = pSrc->llnl_count_co2_coefs; - if (llnl_count_co2_coefs > 0) - { - llnl_co2_coefs = (LDBLE *) free_check_null(llnl_co2_coefs); - llnl_co2_coefs = (LDBLE *) PHRQ_malloc((size_t) llnl_count_co2_coefs * sizeof(LDBLE)); - if (llnl_co2_coefs == NULL) malloc_error(); - memcpy(llnl_co2_coefs, pSrc->llnl_co2_coefs, (size_t) llnl_count_co2_coefs * sizeof(LDBLE)); - } + calculating_deriv = pSrc->calculating_deriv; + numerical_deriv = pSrc->numerical_deriv; + count_total_steps = 0; + phast = FALSE; + output_newline = true; + // llnl + a_llnl = pSrc->a_llnl; + b_llnl = pSrc->b_llnl; + bdot_llnl = pSrc->bdot_llnl; + llnl_temp = pSrc->llnl_temp; + llnl_adh = pSrc->llnl_adh; + llnl_bdh = pSrc->llnl_bdh; + llnl_bdot = pSrc->llnl_bdot; + llnl_co2_coefs = pSrc->llnl_co2_coefs; // Not implemented for now - //SelectedOutput_map = pSrc->SelectedOutput_map; + SelectedOutput_map = pSrc->SelectedOutput_map; + { + std::map::iterator it = SelectedOutput_map.begin(); + for (; it != SelectedOutput_map.end(); it++) + { + //phrq_io->punch_open(it->second.Get_file_name().c_str()); + //it->second.Set_punch_ostream(phrq_io->Get_punch_ostream()); + //phrq_io->Set_punch_ostream(NULL); + it->second.Set_punch_ostream(NULL); + } + } SelectedOutput_map.clear(); - //selected_output_file_name = NULL; - //dump_file_name = NULL; - //remove_unstable_phases = FALSE; - // auto screen_string; - spread_length = 10; - /* ---------------------------------------------------------------------- */ - /* - * Hash definitions - */ - // auto strings_map; -#ifdef HASH - // auto strings_hash; -#endif - /* - elements_hash_table = NULL; - species_hash_table = NULL; - phases_hash_table = NULL; - logk_hash_table = NULL; - master_isotope_hash_table = NULL; - */ + UserPunch_map = pSrc->UserPunch_map; + std::map::iterator it = UserPunch_map.begin(); + for (; it != UserPunch_map.end(); it++) + { + class rate* rate_new = new class rate; + rate_new = rate_copy(it->second.Get_rate()); + it->second.Set_rate(rate_new); + it->second.Set_PhreeqcPtr(this); + } + + remove_unstable_phases = FALSE; + //screen_string; + spread_length = pSrc->spread_length; + //maps set by store below + //std::map strings_map; + //std::map elements_map; + //std::map species_map; + //std::map phases_map; + //std::map logk_map; + //std::map master_isotope_map; /* ---------------------------------------------------------------------- * ISOTOPES * ---------------------------------------------------------------------- */ - /* - count_master_isotope = 0; - master_isotope = NULL; - max_master_isotope = MAX_ELTS; - */ - for (int i = 0; i < pSrc->count_master_isotope; i++) + for (int i = 0; i < (int)pSrc->master_isotope.size(); i++) { - struct master_isotope *master_isotope_ptr = master_isotope_store(pSrc->master_isotope[i]->name, FALSE); - memcpy(master_isotope_ptr, pSrc->master_isotope[i], sizeof(struct master_isotope)); + class master_isotope* master_isotope_ptr = master_isotope_store(pSrc->master_isotope[i]->name, FALSE); + // memcpy(master_isotope_ptr, pSrc->master_isotope[i], sizeof(class master_isotope)); + *master_isotope_ptr = *pSrc->master_isotope[i]; master_isotope_ptr->name = string_hsave(pSrc->master_isotope[i]->name); int n; master_isotope_ptr->master = NULL; if (pSrc->master_isotope[i]->master) { - char * name = string_duplicate(pSrc->master_isotope[i]->master->elt->name); - master_isotope_ptr->master = master_search(name, &n); - free_check_null(name); + master_isotope_ptr->master = master_search(pSrc->master_isotope[i]->master->elt->name, &n); } if (master_isotope_ptr->master == NULL) { @@ -2061,339 +1679,236 @@ Phreeqc::InternalCopy(const Phreeqc *pSrc) } } initial_solution_isotopes = pSrc->initial_solution_isotopes; - /* - count_calculate_value = 0; - calculate_value = NULL; - max_calculate_value = MAX_ELTS; - calculate_value_hash_table = NULL; - */ - for (int i = 0; i < pSrc->count_calculate_value; i++) + // Calculate values + for (int i = 0; i < pSrc->calculate_value.size(); i++) { - struct calculate_value *calculate_value_ptr = calculate_value_store(pSrc->calculate_value[i]->name, FALSE); - memcpy(calculate_value_ptr, pSrc->calculate_value[i], sizeof(struct calculate_value)); + class calculate_value* calculate_value_ptr = calculate_value_store(pSrc->calculate_value[i]->name, FALSE); calculate_value_ptr->value = pSrc->calculate_value[i]->value; - calculate_value_ptr->commands = NULL; - if (pSrc->calculate_value[i]->commands) - { - calculate_value_ptr->commands = string_duplicate(pSrc->calculate_value[i]->commands); - } - calculate_value_ptr->new_def = TRUE; - calculate_value_ptr->calculated = FALSE; - calculate_value_ptr->linebase = NULL; - calculate_value_ptr->varbase = NULL; - calculate_value_ptr->loopbase = NULL; + calculate_value[i]->commands = pSrc->calculate_value[i]->commands; } - /* - count_isotope_ratio = 0; - isotope_ratio = 0; - max_isotope_ratio = MAX_ELTS; - isotope_ratio_hash_table = 0; - */ - for (int i = 0; i < pSrc->count_isotope_ratio; i++) + // More isotopes + for (int i = 0; i < (int)pSrc->isotope_ratio.size(); i++) { - struct isotope_ratio *isotope_ratio_ptr = isotope_ratio_store(pSrc->isotope_ratio[i]->name, FALSE); + class isotope_ratio* isotope_ratio_ptr = isotope_ratio_store(pSrc->isotope_ratio[i]->name, FALSE); isotope_ratio_ptr->name = string_hsave(pSrc->isotope_ratio[i]->name); isotope_ratio_ptr->isotope_name = string_hsave(pSrc->isotope_ratio[i]->isotope_name); isotope_ratio_ptr->ratio = pSrc->isotope_ratio[i]->ratio; isotope_ratio_ptr->converted_ratio = pSrc->isotope_ratio[i]->converted_ratio; } - /* - count_isotope_alpha = 0; - isotope_alpha = 0; - max_isotope_alpha = MAX_ELTS; - isotope_alpha_hash_table = 0; - */ - for (int i = 0; i < pSrc->count_isotope_alpha; i++) + //std::map isotope_ratio_map; + for (int i = 0; i < (int)pSrc->isotope_alpha.size(); i++) { - struct isotope_alpha *isotope_alpha_ptr = isotope_alpha_store(pSrc->isotope_alpha[i]->name, FALSE); + class isotope_alpha* isotope_alpha_ptr = isotope_alpha_store(pSrc->isotope_alpha[i]->name, FALSE); isotope_alpha_ptr->named_logk = string_hsave(pSrc->isotope_alpha[i]->named_logk); isotope_alpha_ptr->value = pSrc->isotope_alpha[i]->value; } - - phreeqc_mpi_myself = 0; - first_read_input = TRUE; - user_database = string_duplicate(pSrc->user_database); + //std::map isotope_alpha_map; + // Misc + phreeqc_mpi_myself = 0; + first_read_input = pSrc->first_read_input; + user_database = pSrc->user_database; //have_punch_name = pSrc->have_punch_name; - print_density = pSrc->print_density; -#ifdef SKIP - zeros = NULL; - zeros_max = 1; - cell_pore_volume = 0; - cell_volume = 0; - cell_porosity = 0; - cell_saturation = 0; - sys = NULL; - count_sys = 0; - max_sys = 0; - sys_tot = 0; - - V_solutes = 0.0; - rho_0 = 0; - kappa_0 = 0.0; - p_sat = 0.0; - eps_r = EPSILON; - DH_A = 0.0; - DH_B = 0.0; - DH_Av = 0.0; - QBrn = 0.0; - ZBrn = 0.0; - dgdP = 0.0; - - need_temp_msg = 0; - solution_mass = 0; - solution_volume = 0; - /* phqalloc.cpp ------------------------------- */ - s_pTail = NULL; - /* Basic */ - basic_interpreter = NULL; + print_density = pSrc->print_density; + print_viscosity = pSrc->print_viscosity; + viscos = pSrc->viscos; + viscos_0 = pSrc->viscos_0; + viscos_0_25 = pSrc->viscos_0_25; // viscosity of the solution, of pure water, of pure water at 25 C + cell_pore_volume = pSrc->cell_pore_volume;; + cell_porosity = pSrc->cell_porosity; + cell_volume = pSrc->cell_volume; + cell_saturation = pSrc->cell_saturation; + sys.clear(); + sys_tot = pSrc->sys_tot; + // solution properties + V_solutes = pSrc->V_solutes; + viscos = pSrc->viscos; + viscos_0 = pSrc->viscos_0; + viscos_0_25 = pSrc->viscos_0_25; + rho_0 = pSrc->rho_0; + kappa_0 = pSrc->kappa_0; + p_sat = pSrc->p_sat; + eps_r = pSrc->eps_r; + DH_A = pSrc->DH_A; + DH_B = pSrc->DH_B; + DH_Av = pSrc->DH_Av; + QBrn = pSrc->QBrn; + ZBrn = pSrc->ZBrn; + dgdP = pSrc->dgdP; + // + need_temp_msg = pSrc->need_temp_msg; + solution_mass = pSrc->solution_mass; + solution_volume = pSrc->solution_volume; + s_pTail = NULL; + //basic_interpreter = NULL; /* cl1.cpp ------------------------------- */ - x_arg = NULL; - res_arg = NULL; - scratch = NULL; - x_arg_max = 0; - res_arg_max = 0; - scratch_max = 0; - /* dw.cpp ------------------------------- */ - /* COMMON /QQQQ/ */ - Q0 = 0; - Q5 = 0; - GASCON = 0.461522e0; - TZ = 647.073e0; - AA = 1.e0; - Z = 0; - DZ = 0; - Y = 0; - G1 = 11.e0; - G2 = 44.333333333333e0; - GF = 3.5e0; - B1 = 0; - B2 = 0; - B1T = 0; - B2T = 0; - B1TT = 0; - B2TT = 0; - /* gases.cpp ------------------------------- */ - a_aa_sum = 0; - b2 = 0; - b_sum = 0; - R_TK = 0; + //std::vector x_arg, res_arg, scratch; + // gases.cpp + a_aa_sum = pSrc->a_aa_sum; + b2 = pSrc->b2; + b_sum = pSrc->b_sum; + R_TK = pSrc->R_TK; /* input.cpp ------------------------------- */ - check_line_return = 0; - reading_db = FALSE; + check_line_return = 0; + reading_db = FALSE; /* integrate.cpp ------------------------------- */ - midpoint_sv = 0; - z_global = 0; - xd_global = 0; - alpha_global = 0; - /* inverse.cpp ------------------------------- */ - max_row_count = 50; - max_column_count = 50; - carbon = FALSE; - col_name = NULL; - row_name = NULL; - count_rows = 0; - count_optimize = 0; - col_phases = 0; - col_redox = 0; - col_epsilon = 0; - col_ph = 0; - col_water = 0; - col_isotopes = 0; - col_phase_isotopes = 0; - row_mb = 0; - row_fract = 0; - row_charge = 0; - row_carbon = 0; - row_isotopes = 0; - row_epsilon = 0; - row_isotope_epsilon = 0; - row_water = 0; - inv_zero = NULL; - array1 = 0; - inv_res = NULL; - inv_delta1 = NULL; - delta2 = NULL; - delta3 = NULL; - inv_cu = NULL; - delta_save = NULL; - min_delta = NULL; - max_delta = NULL; - inv_iu = NULL; - inv_is = NULL; - klmd = 0; - nklmd = 0; - n2d = 0; - kode = 0; - iter = 0; - toler = 0; - error = 0; - max_pct = 0; - scaled_error = 0; - master_alk = NULL; - row_back = NULL; - col_back = NULL; - good = NULL; - bad = NULL; - minimal = NULL; - max_good = 0; - max_bad = 0; - max_minimal = 0; - count_good = 0; - count_bad = 0; - count_minimal = 0; - count_calls = 0; - soln_bits = 0; - phase_bits = 0; - current_bits = 0; - temp_bits = 0; - netpath_file = NULL; - count_inverse_models = 0; - count_pat_solutions = 0; + midpoint_sv = pSrc->midpoint_sv; + z_global = pSrc->z_global; + xd_global = pSrc->xd_global; + alpha_global = pSrc->alpha_global; + /* inverse.cpp ------------------------------- */ /* integrate.cpp ------------------------------- */ + max_row_count = pSrc->max_row_count; + max_column_count = pSrc->max_column_count; + carbon = pSrc->carbon; + //std::vector col_name, row_name; + count_rows = pSrc->count_rows; + count_optimize = pSrc->count_optimize; + col_phases = pSrc->col_phases; + col_redox = pSrc->col_redox; + col_epsilon = pSrc->col_epsilon; + col_ph = pSrc->col_ph; + col_water = pSrc->col_water; + col_isotopes = pSrc->col_isotopes; + col_phase_isotopes = pSrc->col_phase_isotopes; + row_mb = pSrc->row_mb; + row_fract = pSrc->row_fract; + row_charge = pSrc->row_charge; + row_carbon = pSrc->row_carbon; + row_isotopes = pSrc->row_isotopes; + row_epsilon = pSrc->row_epsilon; + row_isotope_epsilon = pSrc->row_isotope_epsilon; + row_water = pSrc->row_water; + //std::vector inv_zero, array1, inv_res, inv_delta1, delta2, + // delta3, inv_cu, delta_save; + //std::vector min_delta, max_delta; + //std::vector inv_iu, inv_is; + klmd = pSrc->klmd; + nklmd = pSrc->nklmd; + n2d = pSrc->n2d; + kode = pSrc->kode; + iter = pSrc->iter; + toler = pSrc->toler; + error = pSrc->error; + max_pct = pSrc->max_pct; + scaled_error = pSrc->scaled_error; + master_alk = NULL; + //std::vector row_back, col_back; + //std::vector good, bad, minimal; + max_good = pSrc->max_good; + max_bad = pSrc->max_bad; + max_minimal = pSrc->max_minimal; + count_good = pSrc->count_good; + count_bad = pSrc->count_bad; + count_minimal = pSrc->count_minimal; + count_calls = pSrc->count_calls; + soln_bits = pSrc->soln_bits; + phase_bits = pSrc->phase_bits; + current_bits = pSrc->current_bits; + temp_bits = pSrc->temp_bits; + netpath_file = NULL; + count_inverse_models = pSrc->count_inverse_models; + count_pat_solutions = pSrc->count_pat_solutions; for (int i = 0; i < 32; i++) { - min_position[i] = 0; - max_position[i] = 0; - now[i] = 0; + min_position[i] = pSrc->min_position[i]; + max_position[i] = pSrc->max_position[i]; + now[i] = pSrc->now[i]; } + //std::vector inverse_heading_names; /* kinetics.cpp ------------------------------- */ - count_pp = count_pg = count_ss = 0; - cvode_kinetics_ptr = NULL; - cvode_test = FALSE; - cvode_error = FALSE; - cvode_n_user = -99; - cvode_n_reactions = -99; - cvode_step_fraction = 0.0; - cvode_rate_sim_time = 0.0; + count_pp = count_pg = count_ss = 0; + cvode_kinetics_ptr = NULL; + cvode_test = FALSE; + cvode_error = FALSE; + cvode_n_user = -99; + cvode_n_reactions = -99; + cvode_step_fraction = 0.0; + cvode_rate_sim_time = 0.0; cvode_rate_sim_time_start = 0.0; - cvode_last_good_time = 0.0; - cvode_prev_good_time = 0.0; - cvode_last_good_y = NULL; - cvode_prev_good_y = NULL; - kinetics_machEnv = NULL; - kinetics_y = NULL; - kinetics_abstol = NULL; - kinetics_cvode_mem = NULL; - cvode_pp_assemblage_save= NULL; - cvode_ss_assemblage_save= NULL; - m_original = NULL; - m_temp = NULL; - rk_moles = NULL; - set_and_run_attempt = 0; - x0_moles = NULL; + cvode_last_good_time = 0.0; + cvode_prev_good_time = 0.0; + cvode_last_good_y = NULL; + cvode_prev_good_y = NULL; + kinetics_machEnv = NULL; + kinetics_y = NULL; + kinetics_abstol = NULL; + kinetics_cvode_mem = NULL; + cvode_pp_assemblage_save = NULL; + cvode_ss_assemblage_save = NULL; + //std::vector m_temp, m_original, rk_moles, x0_moles; + set_and_run_attempt = 0; /* model.cpp ------------------------------- */ - gas_in = FALSE; - min_value = 1e-10; - normal = NULL; - ineq_array = NULL; - res = NULL; - cu = NULL; - zero = NULL; - delta1 = NULL; - iu = NULL; - is = NULL; - back_eq = NULL; - normal_max = 0; - ineq_array_max = 0; - res_max = 0; - cu_max = 0; - zero_max = 0; - delta1_max = 0; - iu_max = 0; - is_max = 0; - back_eq_max = 0; + gas_in = FALSE; + min_value = 1e-10; + //std::vector normal, ineq_array, res, cu, zero, delta1; + //std::vector iu, is, back_eq; /* phrq_io_output.cpp ------------------------------- */ - forward_output_to_log = 0; + forward_output_to_log = pSrc->forward_output_to_log; /* phreeqc_files.cpp ------------------------------- */ - default_data_base = string_duplicate("phreeqc.dat"); -#ifdef PHREEQ98 - int outputlinenr; - char *LogFileNameC; - char progress_str[512]; -#endif -#endif - /* Pitzer */ - pitzer_model = pSrc->pitzer_model; - sit_model = pSrc->sit_model; - pitzer_pe = pSrc->pitzer_pe; + default_data_base = pSrc->default_data_base; + // Pitzer + pitzer_model = pSrc->pitzer_model; + sit_model = pSrc->sit_model; + pitzer_pe = pSrc->pitzer_pe; - //full_pitzer = FALSE; - //always_full_pitzer = FALSE; - //ICON = TRUE; - //IC = -1; - //COSMOT = 0; - //AW = 0; - //VP = 0; - //DW0 = 0; - ICON = pSrc->ICON; - /* - pitz_params = NULL; - count_pitz_param = 0; - max_pitz_param = 100; - */ - for (int i = 0; i < pSrc->count_pitz_param; i++) + full_pitzer = pSrc->full_pitzer; + always_full_pitzer = pSrc->always_full_pitzer; + ICON = pSrc->ICON; + IC = pSrc->IC; + COSMOT = pSrc->COSMOT; + AW = pSrc->AW; + VP = pSrc->VP; + DW0 = pSrc->DW0; + for (int i = 0; i < (int)pSrc->pitz_params.size(); i++) { - pitz_param_store(pSrc->pitz_params[i], true); + pitz_param_store(pSrc->pitz_params[i]); } - // auto pitz_param_map - /* - theta_params = 0; - count_theta_param = 0; - max_theta_param = 100; - use_etheta = TRUE; - OTEMP = -100.0; - OPRESS = -100.0; - A0 = 0; - spec = NULL; - cations = NULL; - anions = NULL; - neutrals = NULL; - count_cations = 0; - count_anions = 0; - count_neutrals = 0; - MAXCATIONS = 0; - FIRSTANION = 0; - MAXNEUTRAL = 0; - mcb0 = NULL; - mcb1 = NULL; - mcc0 = NULL; - IPRSNT = NULL; - M = NULL; - LGAMMA = NULL; + //pitz_param_map = pSrc->pitz_param_map; created by store + for (int i = 0; i < (int)pSrc->theta_params.size(); i++) + { + size_t count_theta_params = theta_params.size(); + theta_params.resize(count_theta_params + 1); + theta_params[count_theta_params] = new class theta_param; + *theta_params[count_theta_params] = *pSrc->theta_params[i]; + } + use_etheta = pSrc->use_etheta; + OTEMP = pSrc->OTEMP; + OPRESS = pSrc->OPRESS; + A0 = pSrc->A0; + aphi = pitz_param_copy(pSrc->aphi); + // will be rebuilt + spec = pSrc->spec; + cations = pSrc->cations; + anions = pSrc->anions; + neutrals = pSrc->neutrals; + count_cations = pSrc->count_cations; + count_anions = pSrc->count_anions; + count_neutrals = pSrc->count_neutrals; + MAXCATIONS = pSrc->MAXCATIONS; + FIRSTANION = pSrc->FIRSTANION; + MAXNEUTRAL = pSrc->MAXNEUTRAL; + mcb0 = pSrc->mcb0; + mcb1 = pSrc->mcb1; + mcc0 = pSrc->mcc0; + IPRSNT = pSrc->IPRSNT; + M = pSrc->M; + LGAMMA = pSrc->LGAMMA; for (int i = 0; i < 23; i++) { - BK[i] = 0.0; - DK[i] = 0.0; + BK[i] = pSrc->BK[i]; + DK[i] = pSrc->DK[i]; } - */ - -#ifdef PHREEQ98 - int connect_simulations, graph_initial_solutions; - int shifts_as_points; - int chart_type; - int ShowChart; - int RowOffset, ColumnOffset; -#endif - dummy = 0; + dummy = 0; /* print.cpp ------------------------------- */ /* sformatf_buffer = (char *) PHRQ_malloc(256 * sizeof(char)); - if (sformatf_buffer == NULL) + if (sformatf_buffer == NULL) malloc_error(); sformatf_buffer_size = 256; */ -#ifdef PHREEQ98 - int colnr, rownr; - int graph_initial_solutions; - int prev_advection_step, prev_transport_step; /*, prev_reaction_step */ - /* int shifts_as_points; */ - int chart_type; - int AddSeries; - int FirstCallToUSER_GRAPH; -#endif /* read.cpp */ - prev_next_char = NULL; + prev_next_char = NULL; #if defined PHREEQ98 int shifts_as_points; #endif @@ -2407,27 +1922,28 @@ Phreeqc::InternalCopy(const Phreeqc *pSrc) /* readtr.cpp */ // auto dump_file_name_cpp; /* sit.cpp ------------------------------- */ -/* - sit_params = NULL; - count_sit_param = 0; - max_sit_param = 100; - // auto sit_param_map - sit_A0 = 0; - sit_count_cations = 0; - sit_count_anions = 0; - sit_count_neutrals = 0; - sit_MAXCATIONS = 0; - sit_FIRSTANION = 0; - sit_MAXNEUTRAL = 0; - sit_IPRSNT = NULL; - sit_M = NULL; - sit_LGAMMA = NULL; -*/ - - for (int i = 0; i < pSrc->count_sit_param; i++) + for (int i = 0; i < (int)pSrc->sit_params.size(); i++) { - sit_param_store(pSrc->sit_params[i], true); + sit_param_store(pSrc->sit_params[i]); } + //sit_param_map = pSrc->sit_param_map; // filled by store + sit_A0 = pSrc->sit_A0; + sit_count_cations = pSrc->sit_count_cations; + sit_count_anions = pSrc->sit_count_anions; + sit_count_neutrals = pSrc->sit_count_neutrals; + sit_MAXCATIONS = pSrc->sit_MAXCATIONS; + sit_FIRSTANION = pSrc->sit_FIRSTANION; + sit_MAXNEUTRAL = pSrc->sit_MAXNEUTRAL; + sit_IPRSNT = pSrc->sit_IPRSNT; + sit_M = pSrc->sit_M; + sit_LGAMMA = pSrc->sit_LGAMMA; + s_list = pSrc->s_list; + cation_list = pSrc->cation_list; + neutral_list = pSrc->neutral_list; + anion_list = pSrc->anion_list; + ion_list = pSrc->ion_list; + param_list = pSrc->param_list; + /* tidy.cpp ------------------------------- */ //a0 = 0; //a1 = 0; @@ -2442,38 +1958,34 @@ Phreeqc::InternalCopy(const Phreeqc *pSrc) /* transport.cpp ------------------------------- */ /* storage is created and freed in tranport.cpp */ - sol_D = NULL; - sol_D_dbg = NULL; - J_ij = NULL; - J_ij_il = NULL; - J_ij_count_spec = pSrc->J_ij_count_spec; - m_s = NULL; - count_m_s = pSrc->count_m_s; - tot1_h = pSrc->tot1_h; - tot1_o = pSrc->tot1_o; - tot2_h = pSrc->tot2_h; - tot2_o = pSrc->tot2_o; - diffc_max = pSrc->diffc_max; - diffc_tr = pSrc->diffc_tr; - J_ij_sum = pSrc->J_ij_sum; - transp_surf = pSrc->transp_surf; - heat_mix_array = NULL; - temp1 = NULL; - temp2 = NULL; - nmix = pSrc->nmix; - heat_nmix = pSrc->heat_nmix; - heat_mix_f_imm = pSrc->heat_mix_f_imm; - heat_mix_f_m = pSrc->heat_mix_f_m; - warn_MCD_X = pSrc->warn_MCD_X; - warn_fixed_Surf = pSrc->warn_fixed_Surf; + sol_D = NULL; + sol_D_dbg = NULL; + J_ij = NULL; + J_ij_il = NULL; + J_ij_count_spec = pSrc->J_ij_count_spec; + m_s = NULL; + count_m_s = pSrc->count_m_s; + tot1_h = pSrc->tot1_h; + tot1_o = pSrc->tot1_o; + tot2_h = pSrc->tot2_h; + tot2_o = pSrc->tot2_o; + diffc_max = pSrc->diffc_max; + diffc_tr = pSrc->diffc_tr; + J_ij_sum = pSrc->J_ij_sum; + transp_surf = pSrc->transp_surf; + heat_mix_array = NULL; + temp1 = NULL; + temp2 = NULL; + nmix = pSrc->nmix; + heat_nmix = pSrc->heat_nmix; + heat_mix_f_imm = pSrc->heat_mix_f_imm; + heat_mix_f_m = pSrc->heat_mix_f_m; + warn_MCD_X = pSrc->warn_MCD_X; + warn_fixed_Surf = pSrc->warn_fixed_Surf; + current_x = pSrc->current_x; + current_A = pSrc->current_A; + fix_current = pSrc->fix_current; -#ifdef PHREEQ98 - int AutoLoadOutputFile, CreateToC; - int ProcessMessages, ShowProgress, ShowProgressWindow, ShowChart; - int outputlinenr; - int stop_calculations; - char err_str98[80]; -#endif /* utilities.cpp ------------------------------- */ //spinner = 0; //// keycount; @@ -2481,6 +1993,11 @@ Phreeqc::InternalCopy(const Phreeqc *pSrc) //{ // keycount.push_back(0); //} + spinner = pSrc->spinner; + gfw_map = pSrc->gfw_map; + //rates_map = pSrc->rates_map; + sum_species_map = pSrc->sum_species_map; + sum_species_map_db = pSrc->sum_species_map_db; // make sure new_model gets set this->keycount[Keywords::KEY_SOLUTION_SPECIES] = 1; @@ -2504,7 +2021,12 @@ Phreeqc &Phreeqc::operator=(const Phreeqc &rhs) } // copy Phreeqc object to this - this->phrq_io = rhs.phrq_io; + //this->phrq_io = rhs.phrq_io; + //this->phrq_io = new PHRQ_io; +#if !defined(R_SO) + this->phrq_io->Set_output_ostream(&std::cout); + this->phrq_io->Set_error_ostream(&std::cerr); +#endif this->init(); this->initialize(); this->InternalCopy(&rhs); diff --git a/Phreeqc.h b/Phreeqc.h index d02e2326..7e4e0c7d 100644 --- a/Phreeqc.h +++ b/Phreeqc.h @@ -1,7 +1,16 @@ #ifndef _INC_PHREEQC_H #define _INC_PHREEQC_H #if defined(WIN32) -#include +# if defined(PHREEQCI_GUI) +# ifndef WINVER +# define WINVER 0x0400 +# endif +# include +# endif +# include +# if defined(PHREEQCI_GUI) +# include "../../resource.h" +# endif #endif #if defined(WIN32_MEMORY_DEBUG) #define _CRTDBG_MAP_ALLOC @@ -17,9 +26,6 @@ typedef unsigned char boolean; #include #include #include -#ifdef HASH -#include -#endif #include #include #include @@ -47,7 +53,6 @@ typedef unsigned char boolean; class cxxNameDouble; class cxxKinetics; -//class cxxMix; class cxxKineticsComp; class cxxExchange; class cxxExchComp; @@ -62,17 +67,17 @@ class cxxSolutionIsotope; class cxxSSassemblage; class cxxSS; class cxxStorageBin; +class PBasic; #include "global_structures.h" -class PBasic; class Phreeqc { public: - Phreeqc(PHRQ_io *io = NULL); - Phreeqc(const Phreeqc &src); - void InternalCopy(const Phreeqc *pSrc); - Phreeqc &operator=(const Phreeqc &rhs); + Phreeqc(PHRQ_io* io = NULL); + Phreeqc(const Phreeqc& src); + void InternalCopy(const Phreeqc* pSrc); + Phreeqc& operator=(const Phreeqc& rhs); ~Phreeqc(void); public: @@ -84,79 +89,85 @@ public: int advection(void); // basicsubs.cpp ------------------------------- - int basic_compile(char *commands, void **lnbase, void **vbase, void **lpbase); - int basic_run(char *commands, void *lnbase, void *vbase, void *lpbase); + int basic_compile(const char* commands, void** lnbase, void** vbase, void** lpbase); + int basic_run(char* commands, void* lnbase, void* vbase, void* lpbase); void basic_free(void); #ifdef IPHREEQC_NO_FORTRAN_MODULE - double basic_callback(double x1, double x2, char * str); + double basic_callback(double x1, double x2, char* str); #else - double basic_callback(double x1, double x2, const char * str); + double basic_callback(double x1, double x2, const char* str); #endif - void register_basic_callback(double ( *fcn)(double x1, double x2, const char *str, void *cookie), void *cookie1); + void register_basic_callback(double (*fcn)(double x1, double x2, const char* str, void* cookie), void* cookie1); #ifdef IPHREEQC_NO_FORTRAN_MODULE - void register_fortran_basic_callback(double ( *fcn)(double *x1, double *x2, char *str, size_t l)); + void register_fortran_basic_callback(double (*fcn)(double* x1, double* x2, char* str, size_t l)); #else - void register_fortran_basic_callback(double ( *fcn)(double *x1, double *x2, const char *str, int l)); + void register_fortran_basic_callback(double (*fcn)(double* x1, double* x2, const char* str, int l)); #endif - LDBLE activity(const char *species_name); - LDBLE activity_coefficient(const char *species_name); - LDBLE log_activity_coefficient(const char *species_name); - LDBLE aqueous_vm(const char *species_name); - LDBLE phase_vm(const char *phase_name); - LDBLE diff_c(const char *species_name); - LDBLE setdiff_c(const char *species_name, double d); + LDBLE activity(const char* species_name); + LDBLE activity_coefficient(const char* species_name); + LDBLE log_activity_coefficient(const char* species_name); + LDBLE aqueous_vm(const char* species_name); + LDBLE phase_vm(const char* phase_name); + LDBLE diff_c(const char* species_name); + LDBLE setdiff_c(const char* species_name, double d); + LDBLE flux_mcd(const char* species_name, int option); LDBLE sa_declercq(double type, double sa, double d, double m, double m0, double gfw); LDBLE calc_SC(void); /* VP: Density Start */ LDBLE calc_dens(void); /* VP: Density End */ - LDBLE calc_logk_n(const char *name); - LDBLE calc_logk_p(const char *name); - LDBLE calc_logk_s(const char *name); - LDBLE calc_surface_charge(const char *surface_name); - LDBLE calc_t_sc(const char *name); - LDBLE diff_layer_total(const char *total_name, const char *surface_name); - LDBLE edl_species(const char *surf_name, LDBLE * count, char ***names, LDBLE ** moles, LDBLE * area, LDBLE * thickness); - int get_edl_species(cxxSurfaceCharge & charge_ref); - LDBLE equi_phase(const char *phase_name); - LDBLE equi_phase_delta(const char *phase_name); - LDBLE equivalent_fraction(const char *name, LDBLE *eq, std::string &elt_name); - LDBLE find_gas_comp(const char *gas_comp_name); + LDBLE calc_logk_n(const char* name); + LDBLE calc_logk_p(const char* name); + LDBLE calc_logk_s(const char* name); + LDBLE calc_deltah_s(const char* name); + LDBLE calc_deltah_p(const char* name); + LDBLE dh_a0(const char* name); + LDBLE dh_bdot(const char* name); + LDBLE calc_surface_charge(const char* surface_name); + LDBLE calc_t_sc(const char* name); + LDBLE diff_layer_total(const char* total_name, const char* surface_name); + LDBLE edl_species(const char* surf_name, LDBLE* count, char*** names, LDBLE** moles, LDBLE* area, LDBLE* thickness); + int get_edl_species(cxxSurfaceCharge& charge_ref); + LDBLE equi_phase(const char* phase_name); + LDBLE equi_phase_delta(const char* phase_name); + LDBLE equivalent_fraction(const char* name, LDBLE* eq, std::string& elt_name); + LDBLE find_gas_comp(const char* gas_comp_name); LDBLE find_gas_p(void); LDBLE find_gas_vm(void); - LDBLE find_misc1(const char *ss_name); - LDBLE find_misc2(const char *ss_name); - LDBLE find_ss_comp(const char *ss_comp_name); - LDBLE get_calculate_value(const char *name); - char * iso_unit(const char *total_name); - LDBLE iso_value(const char *total_name); - LDBLE kinetics_moles(const char *kinetics_name); - LDBLE kinetics_moles_delta(const char *kinetics_name); - LDBLE log_activity(const char *species_name); - LDBLE log_molality(const char *species_name); - LDBLE molality(const char *species_name); + LDBLE find_misc1(const char* ss_name); + LDBLE find_misc2(const char* ss_name); + LDBLE find_ss_comp(const char* ss_comp_name); + LDBLE get_calculate_value(const char* name); + char* iso_unit(const char* total_name); + LDBLE iso_value(const char* total_name); + LDBLE kinetics_moles(const char* kinetics_name); + LDBLE kinetics_moles_delta(const char* kinetics_name); + LDBLE log_activity(const char* species_name); + LDBLE log_molality(const char* species_name); + LDBLE molality(const char* species_name); LDBLE pressure(void); - LDBLE pr_pressure(const char *phase_name); - LDBLE pr_phi(const char *phase_name); - LDBLE saturation_ratio(const char *phase_name); - int saturation_index(const char *phase_name, LDBLE * iap, LDBLE * si); + LDBLE pr_pressure(const char* phase_name); + LDBLE pr_phi(const char* phase_name); + LDBLE saturation_ratio(const char* phase_name); + int saturation_index(const char* phase_name, LDBLE* iap, LDBLE* si); int solution_number(void); - LDBLE solution_sum_secondary(const char *total_name); - LDBLE sum_match_gases(const char *stemplate, const char *name); - LDBLE sum_match_species(const char *stemplate, const char *name); - LDBLE sum_match_ss(const char *stemplate, const char *name); - int match_elts_in_species(const char *name, const char *stemplate); - int extract_bracket(char **string, char *bracket_string); - LDBLE surf_total(const char *total_name, const char *surface_name); - LDBLE surf_total_no_redox(const char *total_name, const char *surface_name); - static int system_species_compare(const void *ptr1, const void *ptr2); - LDBLE system_total(const char *total_name, LDBLE * count, char ***names, - char ***types, LDBLE ** moles); - std::string kinetics_formula(std::string kinetics_name, cxxNameDouble &stoichiometry); - std::string phase_formula(std::string phase_name, cxxNameDouble &stoichiometry); - std::string species_formula(std::string phase_name, cxxNameDouble &stoichiometry); - LDBLE list_ss(std::string ss_name, cxxNameDouble &composition); + LDBLE solution_sum_secondary(const char* total_name); + LDBLE sum_match_gases(const char* stemplate, const char* name); + LDBLE sum_match_species(const char* stemplate, const char* name); + LDBLE sum_match_ss(const char* stemplate, const char* name); + int match_elts_in_species(const char* name, const char* stemplate); + int extract_bracket(const char** string, char* bracket_string); + LDBLE surf_total(const char* total_name, const char* surface_name); + LDBLE surf_total_no_redox(const char* total_name, const char* surface_name); + static int system_species_compare(const void* ptr1, const void* ptr2); + static int system_species_compare_name(const void* ptr1, const void* ptr2); + LDBLE system_total(const char* total_name, LDBLE* count, char*** names, + char*** types, LDBLE** moles, int i); + std::string kinetics_formula(std::string kinetics_name, cxxNameDouble& stoichiometry); + std::string phase_formula(std::string phase_name, cxxNameDouble& stoichiometry); + std::string species_formula(std::string phase_name, cxxNameDouble& stoichiometry); + LDBLE list_ss(std::string ss_name, cxxNameDouble& composition); int system_total_elements(void); int system_total_si(void); int system_total_aq(void); @@ -166,129 +177,102 @@ public: int system_total_equi(void); int system_total_kin(void); int system_total_ss(void); - int system_total_elt(const char *total_name); - int system_total_elt_secondary(const char *total_name); - LDBLE total(const char *total_name); - LDBLE total_mole(const char *total_name); - int system_total_solids(cxxExchange *exchange_ptr, - cxxPPassemblage *pp_assemblage_ptr, - cxxGasPhase *gas_phase_ptr, - cxxSSassemblage *ss_assemblage_ptr, - cxxSurface *surface_ptr); + int system_total_elt(const char* total_name); + int system_total_elt_secondary(const char* total_name); + LDBLE total(const char* total_name); + LDBLE total_mole(const char* total_name); + int system_total_solids(cxxExchange* exchange_ptr, + cxxPPassemblage* pp_assemblage_ptr, + cxxGasPhase* gas_phase_ptr, + cxxSSassemblage* ss_assemblage_ptr, + cxxSurface* surface_ptr); - static LDBLE f_rho(LDBLE rho_old, void *cookie); - static LDBLE f_Vm(LDBLE v1, void *cookie); + static LDBLE f_rho(LDBLE rho_old, void* cookie); + static LDBLE f_Vm(LDBLE v1, void* cookie); LDBLE calc_solution_volume(void); - // chart.cpp -#if defined PHREEQ98 - void DeleteCurves(void); - void ExtractCurveInfo(char *line, int curvenr); - void GridChar(char *s, char *a); - void MallocCurves(int nc, int ncxy); - int OpenCSVFile(char file_name[MAX_LENGTH]); - void SaveCurvesToFile(char file_name[MAX_LENGTH]); - void PlotXY(char *x, char *y); - void ReallocCurves(int new_nc); - void ReallocCurveXY(int i); - void SetAxisScale(char *a, int j, char *token, int true_); - void SetAxisTitles(char *s, int i); - void SetChartTitle(char *s); - void start_chart(bool end); -#endif - // cl1.cpp ------------------------------- int cl1(int k, int l, int m, int n, int nklmd, int n2d, - LDBLE * q, - int *kode, LDBLE toler, - int *iter, LDBLE * x, LDBLE * res, LDBLE * error, - LDBLE * cu, int *iu, int *s, int check); + LDBLE* q, + int* kode, LDBLE toler, + int* iter, LDBLE* x, LDBLE* res, LDBLE* error, + LDBLE* cu, int* iu, int* s, int check); void cl1_space(int check, int n2d, int klm, int nklmd); // cl1mp.cpp ------------------------------- int cl1mp(int k, int l, int m, int n, int nklmd, int n2d, - LDBLE * q_arg, - int *kode, LDBLE toler, - int *iter, LDBLE * x_arg, LDBLE * res_arg, LDBLE * error, - LDBLE * cu_arg, int *iu, int *s, int check, LDBLE censor_arg); + LDBLE* q_arg, + int* kode, LDBLE toler, + int* iter, LDBLE* x_arg, LDBLE* res_arg, LDBLE* error, + LDBLE* cu_arg, int* iu, int* s, int check, LDBLE censor_arg); // class_main.cpp ------------------------------- int write_banner(void); /* default.cpp */ public: - int close_input_files(void); - int close_output_files(void); - static int istream_getc(void *cookie); - int process_file_names(int argc, char *argv[], std::istream **db_cookie, - std::istream **input_cookie, int log); + //int close_input_files(void); + //int close_output_files(void); + //static int istream_getc(void* cookie); + int process_file_names(int argc, char* argv[], std::istream** db_cookie, + std::istream** input_cookie, int log); /* PHRQ_io_output.cpp */ - void screen_msg(const char * str); + void screen_msg(const char* str); - void echo_msg(const char *err_str); - int warning_msg(const char *err_str); + void echo_msg(const char* err_str); + int warning_msg(const char* err_str); void set_forward_output_to_log(int value); int get_forward_output_to_log(void); // dump_ostream - bool dump_open(const char *file_name); + bool dump_open(const char* file_name); void dump_flush(void); void dump_close(void); - void dump_msg(const char * str); + void dump_msg(const char* str); // log_ostream - bool log_open(const char *file_name); + bool log_open(const char* file_name); void log_flush(void); void log_close(void); - void log_msg(const char * str); + void log_msg(const char* str); // error_ostream - bool error_open(const char *file_name); + bool error_open(const char* file_name); void error_flush(void); void error_close(void); - void error_msg(const char * str, bool stop=false); + void error_msg(const char* str, bool stop = false); // output_ostream - bool output_open(const char *file_name); + bool output_open(const char* file_name); void output_flush(void); void output_close(void); - void output_msg(const char * str); + void output_msg(const char* str); // punch_ostream - bool punch_open(const char *file_name, int n_user); + bool punch_open(const char* file_name, int n_user); void punch_flush(void); void punch_close(void); - void punch_msg(const char * str); + void punch_msg(const char* str); - void fpunchf_heading(const char *name); - void fpunchf(const char *name, const char *format, double d); - void fpunchf(const char *name, const char *format, char * d); - void fpunchf(const char *name, const char *format, int d); - void fpunchf_user(int user_index, const char *format, double d); - void fpunchf_user(int user_index, const char *format, char * d); - int fpunchf_end_row(const char *format); -#ifdef SKIP - // dw.cpp ------------------------------- - int BB(LDBLE T); - LDBLE PS(LDBLE T); - LDBLE VLEST(LDBLE T); - int DFIND(LDBLE * DOUT, LDBLE P, LDBLE D, LDBLE T); - int QQ(LDBLE T, LDBLE D); - LDBLE BASE(LDBLE D); -#endif + void fpunchf_heading(const char* name); + void fpunchf(const char* name, const char* format, double d); + void fpunchf(const char* name, const char* format, char* d); + void fpunchf(const char* name, const char* format, int d); + void fpunchf_user(int user_index, const char* format, double d); + void fpunchf_user(int user_index, const char* format, char* d); + int fpunchf_end_row(const char* format); // input.cpp ------------------------------- int reading_database(void); void set_reading_database(int reading_database); - int check_line(const char *string, int allow_empty, int allow_eof, + int check_line(const char* string, int allow_empty, int allow_eof, int allow_keyword, int print); - int add_char_to_line(int *i, char c); - int check_line_impl(const char *string, int allow_empty, + int check_line_impl(const char* string, int allow_empty, int allow_eof, int allow_keyword, int print); int get_line(void); - int get_logical_line(void *cookie, int *l); + //int get_logical_line(void* cookie, int* l); int read_database(void); int run_simulations(void); @@ -296,102 +280,99 @@ public: int calc_all_g(void); int calc_init_g(void); int initial_surface_water(void); - int sum_diffuse_layer(cxxSurfaceCharge *surface_charge_ptr1); + int sum_diffuse_layer(cxxSurfaceCharge* surface_charge_ptr1); int calc_all_donnan(void); int calc_init_donnan(void); LDBLE g_function(LDBLE x_value); LDBLE midpnt(LDBLE x1, LDBLE x2, int n); - void polint(LDBLE * xa, LDBLE * ya, int n, LDBLE xv, LDBLE * yv, - LDBLE * dy); - LDBLE qromb_midpnt(cxxSurfaceCharge *charge_ptr, LDBLE x1, LDBLE x2); - LDBLE calc_psi_avg(cxxSurfaceCharge *charge_ptr, LDBLE surf_chrg_eq); - int calc_all_donnan_music(void); - int calc_init_donnan_music(void); + void polint(LDBLE* xa, LDBLE* ya, int n, LDBLE xv, LDBLE* yv, + LDBLE* dy); + LDBLE qromb_midpnt(cxxSurfaceCharge* charge_ptr, LDBLE x1, LDBLE x2); + LDBLE calc_psi_avg(cxxSurfaceCharge* charge_ptr, LDBLE surf_chrg_eq); // inverse.cpp ------------------------------- int inverse_models(void); - int add_to_file(const char *filename, const char *string); + int add_to_file(const char* filename, const char* string); int bit_print(unsigned long bits, int l); - int carbon_derivs(struct inverse *inv_ptr); - int check_isotopes(struct inverse *inv_ptr); - int check_solns(struct inverse *inv_ptr); - int count_isotope_unknowns(struct inverse *inv_ptr, - struct isotope **isotope_unknowns); - cxxSolutionIsotope *get_isotope(cxxSolution *solution_ptr, const char *elt); - LDBLE get_inv_total(cxxSolution *solution_ptr, const char *elt); - int isotope_balance_equation(struct inverse *inv_ptr, int row, int n); + int carbon_derivs(class inverse* inv_ptr); + int check_isotopes(class inverse* inv_ptr); + int check_solns(class inverse* inv_ptr); + bool set_isotope_unknowns(class inverse* inv_ptrs); + cxxSolutionIsotope* get_isotope(cxxSolution* solution_ptr, const char* elt); + LDBLE get_inv_total(cxxSolution* solution_ptr, const char* elt); + int isotope_balance_equation(class inverse* inv_ptr, int row, int n); int post_mortem(void); bool test_cl1_solution(void); unsigned long get_bits(unsigned long bits, int position, int number); - unsigned long minimal_solve(struct inverse *inv_ptr, + unsigned long minimal_solve(class inverse* inv_ptr, unsigned long minimal_bits); - void dump_netpath(struct inverse *inv_ptr); - int dump_netpath_pat(struct inverse *inv_ptr); - int next_set_phases(struct inverse *inv_ptr, int first_of_model_size, + void dump_netpath(class inverse* inv_ptr); + int dump_netpath_pat(class inverse* inv_ptr); + int next_set_phases(class inverse* inv_ptr, int first_of_model_size, int model_size); - int phase_isotope_inequalities(struct inverse *inv_ptr); - int print_model(struct inverse *inv_ptr); - int punch_model_heading(struct inverse *inv_ptr); - int punch_model(struct inverse *inv_ptr); - void print_isotope(FILE * netpath_file, cxxSolution *solution_ptr, - const char *elt, const char *string); - void print_total(FILE * netpath_file, cxxSolution *solution_ptr, - const char *elt, const char *string); - void print_total_multi(FILE * netpath_file, cxxSolution *solution_ptr, - const char *string, const char *elt0, - const char *elt1, const char *elt2, const char *elt3, - const char *elt4); + int phase_isotope_inequalities(class inverse* inv_ptr); + int print_model(class inverse* inv_ptr); + int punch_model_heading(class inverse* inv_ptr); + int punch_model(class inverse* inv_ptr); + void print_isotope(FILE* netpath_file, cxxSolution* solution_ptr, + const char* elt, const char* string); + void print_total(FILE* netpath_file, cxxSolution* solution_ptr, + const char* elt, const char* string); + void print_total_multi(FILE* netpath_file, cxxSolution* solution_ptr, + const char* string, const char* elt0, + const char* elt1, const char* elt2, const char* elt3, + const char* elt4); - void print_total_pat(FILE * netpath_file, const char *elt, - const char *string); - int range(struct inverse *inv_ptr, unsigned long cur_bits); + void print_total_pat(FILE* netpath_file, const char* elt, + const char* string); + int range(class inverse* inv_ptr, unsigned long cur_bits); int save_bad(unsigned long bits); int save_good(unsigned long bits); int save_minimal(unsigned long bits); unsigned long set_bit(unsigned long bits, int position, int value); - int setup_inverse(struct inverse *inv_ptr); + int setup_inverse(class inverse* inv_ptr); int set_initial_solution(int n_user_old, int n_user_new); - int set_ph_c(struct inverse *inv_ptr, - int i, cxxSolution *soln_ptr_orig, int n_user_new, + int set_ph_c(class inverse* inv_ptr, + int i, cxxSolution* soln_ptr_orig, int n_user_new, LDBLE d_alk, LDBLE ph_factor, LDBLE alk_factor); - int shrink(struct inverse *inv_ptr, LDBLE * array_in, - LDBLE * array_out, int *k, int *l, int *m, int *n, - unsigned long cur_bits, LDBLE * delta_l, int *col_back_l, - int *row_back_l); - int solve_inverse(struct inverse *inv_ptr); - int solve_with_mask(struct inverse *inv_ptr, unsigned long cur_bits); + int shrink(class inverse* inv_ptr, LDBLE* array_in, + LDBLE* array_out, int* k, int* l, int* m, int* n, + unsigned long cur_bits, LDBLE* delta_l, int* col_back_l, + int* row_back_l); + int solve_inverse(class inverse* inv_ptr); + int solve_with_mask(class inverse* inv_ptr, unsigned long cur_bits); int subset_bad(unsigned long bits); int subset_minimal(unsigned long bits); int superset_minimal(unsigned long bits); - int write_optimize_names(struct inverse *inv_ptr); + int write_optimize_names(class inverse* inv_ptr); // isotopes.cpp ------------------------------- - int add_isotopes(cxxSolution &solution_ptr); + int add_isotopes(cxxSolution& solution_ptr); int calculate_values(void); - int calculate_isotope_moles(struct element *elt_ptr, - cxxSolution *solution_ptr, LDBLE total_moles); - LDBLE convert_isotope(struct master_isotope *master_isotope_ptr, LDBLE ratio); - int from_pcil(struct master_isotope *master_isotope_ptr); - int from_permil(struct master_isotope *master_isotope_ptr, LDBLE major_total); - int from_pct(struct master_isotope *master_isotope_ptr, LDBLE major_total); - int from_tu(struct master_isotope *master_isotope_ptr); - struct calculate_value *calculate_value_alloc(void); - int calculate_value_free(struct calculate_value *calculate_value_ptr); - struct calculate_value *calculate_value_search(const char *name); - struct calculate_value *calculate_value_store(const char *name, + int calculate_isotope_moles(class element* elt_ptr, + cxxSolution* solution_ptr, LDBLE total_moles); + LDBLE convert_isotope(class master_isotope* master_isotope_ptr, LDBLE ratio); + int from_pcil(class master_isotope* master_isotope_ptr); + int from_permil(class master_isotope* master_isotope_ptr, LDBLE major_total); + int from_pct(class master_isotope* master_isotope_ptr, LDBLE major_total); + int from_tu(class master_isotope* master_isotope_ptr); + class calculate_value* calculate_value_alloc(void); + int calculate_value_free(class calculate_value* calculate_value_ptr); + class calculate_value* calculate_value_search(const char* name); + class calculate_value* calculate_value_store(const char* name, int replace_if_found); - struct isotope_alpha *isotope_alpha_alloc(void); - struct isotope_alpha *isotope_alpha_search(const char *name); - struct isotope_alpha *isotope_alpha_store(const char *name, + class isotope_alpha* isotope_alpha_alloc(void); + class isotope_alpha* isotope_alpha_search(const char* name); + class isotope_alpha* isotope_alpha_store(const char* name, int replace_if_found); - struct isotope_ratio *isotope_ratio_alloc(void); - struct isotope_ratio *isotope_ratio_search(const char *name); - struct isotope_ratio *isotope_ratio_store(const char *name, + class isotope_ratio* isotope_ratio_alloc(void); + class isotope_ratio* isotope_ratio_search(const char* name); + class isotope_ratio* isotope_ratio_store(const char* name, int replace_if_found); - struct master_isotope *master_isotope_store(const char *name, + class master_isotope* master_isotope_store(const char* name, int replace_if_found); - struct master_isotope *master_isotope_alloc(void); - struct master_isotope *master_isotope_search(const char *name); + class master_isotope* master_isotope_alloc(void); + class master_isotope* master_isotope_search(const char* name); int print_initial_solution_isotopes(void); int print_isotope_ratios(void); int print_isotope_alphas(void); @@ -401,10 +382,10 @@ public: int read_isotopes(void); int read_isotope_ratios(void); int read_isotope_alphas(void); - int calculate_value_init(struct calculate_value *calculate_value_ptr); - int isotope_alpha_init(struct isotope_alpha *isotope_alpha_ptr); - int isotope_ratio_init(struct isotope_ratio *isotope_ratio_ptr); - int master_isotope_init(struct master_isotope *master_isotope_ptr); + int calculate_value_init(class calculate_value* calculate_value_ptr); + int isotope_alpha_init(class isotope_alpha* isotope_alpha_ptr); + int isotope_ratio_init(class isotope_ratio* isotope_ratio_ptr); + int master_isotope_init(class master_isotope* master_isotope_ptr); // kinetics.cpp ------------------------------- void cvode_init(void); @@ -418,16 +399,16 @@ public: int free_cvode(void); public: static void f(integertype N, realtype t, N_Vector y, N_Vector ydot, - void *f_data); - static void Jac(integertype N, DenseMat J, RhsFn f, void *f_data, realtype t, + void* f_data); + static void Jac(integertype N, DenseMat J, RhsFn f, void* f_data, realtype t, N_Vector y, N_Vector fy, N_Vector ewt, realtype h, - realtype uround, void *jac_data, long int *nfePtr, + realtype uround, void* jac_data, long int* nfePtr, N_Vector vtemp1, N_Vector vtemp2, N_Vector vtemp3); - int calc_final_kinetic_reaction(cxxKinetics *kinetics_ptr); - int calc_kinetic_reaction(cxxKinetics *kinetics_ptr, + int calc_final_kinetic_reaction(cxxKinetics* kinetics_ptr); + int calc_kinetic_reaction(cxxKinetics* kinetics_ptr, LDBLE time_step); - bool limit_rates(cxxKinetics *kinetics_ptr); + bool limit_rates(cxxKinetics* kinetics_ptr); int rk_kinetics(int i, LDBLE kin_time, int use_mix, int nsaver, LDBLE step_fraction); int set_reaction(int i, int use_mix, int use_kinetics); @@ -435,15 +416,14 @@ public: int store_get_equi_reactants(int k, int kin_end); // mainsubs.cpp ------------------------------- - std::ifstream * open_input_stream(char *query, char *default_name, std::ios_base::openmode mode, bool batch); - std::ofstream * open_output_stream(char *query, char *default_name, std::ios_base::openmode mode, bool batch); + std::ifstream* open_input_stream(std::string query, std::string& default_name, std::ios_base::openmode mode, bool batch); + std::ofstream* open_output_stream(std::string query, std::string& default_name, std::ios_base::openmode mode, bool batch); int copy_entities(void); void do_mixes(void); void initialize(void); int initial_exchangers(int print); int initial_gas_phases(int print); int initial_solutions(int print); - int solution_mix(void); int step_save_exch(int n_user); int step_save_surf(int n_user); int initial_surfaces(int print); @@ -486,56 +466,55 @@ public: void set_inert_moles(void); void unset_inert_moles(void); #ifdef SLNQ - int add_trivial_eqns(int rows, int cols, LDBLE * matrix); + int add_trivial_eqns(int rows, int cols, LDBLE* matrix); //int slnq(int n, LDBLE * a, LDBLE * delta, int ncols, int print); #endif int calc_gas_pressures(void); int calc_fixed_volume_gas_pressures(void); int calc_ss_fractions(void); int gammas(LDBLE mu); + int gammas_a_f(int i); int initial_guesses(void); int revise_guesses(void); - int ss_binary(cxxSS *ss_ptr); - int ss_ideal(cxxSS *ss_ptr); - void ineq_init(int max_row_count, int max_column_count); + int ss_binary(cxxSS* ss_ptr); + int ss_ideal(cxxSS* ss_ptr); // parse.cpp ------------------------------- int check_eqn(int association); - int get_charge(char *charge, LDBLE * z); - int get_elt(char **t_ptr, char *element, int *i); - int get_elts_in_species(char **t_ptr, LDBLE coef); - int get_num(char **t_ptr, LDBLE * num); - int get_secondary_in_species(char **t_ptr, LDBLE coef); - int parse_eq(char *eqn, struct elt_list **elt_ptr, int association); - int get_coef(LDBLE * coef, char **eqnaddr); - int get_secondary(char **t_ptr, char *element, int *i); - int get_species(char **ptr); + int get_charge(char* charge, LDBLE* z); + int get_elt(const char** t_ptr, std::string& element, int* i); + int get_elts_in_species(const char** t_ptr, LDBLE coef); + int get_num(const char** t_ptr, LDBLE* num); + int get_secondary_in_species(const char** t_ptr, LDBLE coef); + int parse_eq(char* eqn, std::vector& new_elt_list, int association); + int get_coef(LDBLE* coef, const char** eqnaddr); + int get_secondary(const char** t_ptr, char* element, int* i); + int get_species(const char** ptr); // phqalloc.cpp ------------------------------- public: #if !defined(NDEBUG) - void *PHRQ_malloc(size_t, const char *, int); - void *PHRQ_calloc(size_t, size_t, const char *, int); - void *PHRQ_realloc(void *, size_t, const char *, int); + void* PHRQ_malloc(size_t, const char*, int); + void* PHRQ_calloc(size_t, size_t, const char*, int); + void* PHRQ_realloc(void*, size_t, const char*, int); #else - void *PHRQ_malloc(size_t); - void *PHRQ_calloc(size_t, size_t); - void *PHRQ_realloc(void *, size_t); + void* PHRQ_malloc(size_t); + void* PHRQ_calloc(size_t, size_t); + void* PHRQ_realloc(void*, size_t); #endif - void PHRQ_free(void *ptr); + void PHRQ_free(void* ptr); void PHRQ_free_all(void); public: // pitzer.cpp ------------------------------- - struct pitz_param *pitz_param_read(char *string, int n); - void pitz_param_store(struct pitz_param *pzp_ptr, bool force_copy); - void sit_param_store(struct pitz_param *pzp_ptr, bool force_copy); - struct theta_param *theta_param_search(LDBLE zj, LDBLE zk); - struct theta_param *theta_param_alloc(void); - int theta_param_init(struct theta_param *theta_param_ptr); + class pitz_param* pitz_param_read(char* string, int n); + void pitz_param_store(class pitz_param* pzp_ptr); + void sit_param_store(class pitz_param* pzp_ptr); + class pitz_param* pitz_param_copy(const class pitz_param* src); + class theta_param* theta_param_search(LDBLE zj, LDBLE zk); void pitzer_make_lists(void); - int gammas_pz(void); + int gammas_pz(bool exch_a_f); int model_pz(void); int pitzer(void); int pitzer_clean_up(void); @@ -543,33 +522,19 @@ public: int pitzer_tidy(void); int read_pitzer(void); int set_pz(int initial); - int calc_pitz_param(struct pitz_param *pz_ptr, LDBLE TK, LDBLE TR); - int check_gammas_pz(void); -#ifdef SKIP - LDBLE DC(LDBLE T); - int DW(LDBLE T); -#endif - int ISPEC(const char *name); + int calc_pitz_param(class pitz_param* pz_ptr, LDBLE TK, LDBLE TR); + int check_gammas_pz(void); + int ISPEC(const char* name); LDBLE G(LDBLE Y); LDBLE GP(LDBLE Y); - int ETHETAS(LDBLE ZJ, LDBLE ZK, LDBLE I, LDBLE * etheta, - LDBLE * ethetap); - void ETHETA_PARAMS(LDBLE X, LDBLE& JAY, LDBLE& JPRIME ); - //int BDK(LDBLE X); + int ETHETAS(LDBLE ZJ, LDBLE ZK, LDBLE I, LDBLE* etheta, + LDBLE* ethetap); + void ETHETA_PARAMS(LDBLE X, LDBLE& JAY, LDBLE& JPRIME); int pitzer_initial_guesses(void); int pitzer_revise_guesses(void); int PTEMP(LDBLE TK); - //LDBLE JAY(LDBLE X); - //LDBLE JPRIME(LDBLE Y); int jacobian_pz(void); - // pitzer_structures.cpp ------------------------------- - struct pitz_param *pitz_param_alloc(void); - int pitz_param_init(struct pitz_param *pitz_param_ptr); - struct pitz_param *pitz_param_duplicate(struct pitz_param *old_ptr); - int pitz_param_copy(struct pitz_param *old_ptr, - struct pitz_param *new_ptr); - // prep.cpp ------------------------------- int add_potential_factor(void); int add_cd_music_factors(int n); @@ -586,21 +551,16 @@ public: int build_solution_phase_boundaries(void); int build_species_list(int n); int build_min_surface(void); - LDBLE calc_lk_phase(phase * p_ptr, LDBLE TK, LDBLE pa); - LDBLE calc_delta_v(reaction * r_ptr, bool phase); - LDBLE calc_PR(std::vector phase_ptrs, LDBLE P, LDBLE TK, LDBLE V_m); + LDBLE calc_lk_phase(phase* p_ptr, LDBLE TK, LDBLE pa); + LDBLE calc_PR(std::vector phase_ptrs, LDBLE P, LDBLE TK, LDBLE V_m); LDBLE calc_PR(); int calc_vm(LDBLE tc, LDBLE pa); - int change_hydrogen_in_elt_list(LDBLE charge); int clear(void); - //int convert_units(struct solution *solution_ptr); - int convert_units(cxxSolution *solution_ptr); - LDBLE f_Vm(LDBLE v1); - struct unknown *find_surface_charge_unknown(std::string &str_ptr, int plane); - struct master **get_list_master_ptrs(char *ptr, - struct master *master_ptr); + int convert_units(cxxSolution* solution_ptr); + class unknown* find_surface_charge_unknown(std::string& str_ptr, int plane); + std::vector get_list_master_ptrs(const char* cptr, class master* master_ptr); int inout(void); - int is_special(struct species *spec); + int is_special(class species* spec); int mb_for_species_aq(int n); int mb_for_species_ex(int n); int mb_for_species_surf(int n); @@ -610,8 +570,8 @@ public: int setup_exchange(void); int setup_gas_phase(void); int setup_fixed_volume_gas(void); - int setup_master_rxn(struct master **master_ptr_list, - const std::string &pe_rxn); + int setup_master_rxn(const std::vector& master_ptr_list, + const std::string& pe_rxn); int setup_pure_phases(void); int adjust_setup_pure_phases(void); int setup_related_surface(void); @@ -620,46 +580,44 @@ public: int adjust_setup_solution(void); int setup_surface(void); int setup_unknowns(void); - int store_dn(int k, LDBLE * source, int row, LDBLE coef_in, - LDBLE * gamma_source); - int store_jacob(LDBLE * source, LDBLE * target, LDBLE coef); + int store_dn(int k, LDBLE* source, int row, LDBLE coef_in, + LDBLE* gamma_source); + int store_jacob(LDBLE* source, LDBLE* target, LDBLE coef); int store_jacob0(int row, int column, LDBLE coef); - int store_mb(LDBLE * source, LDBLE * target, LDBLE coef); - int store_mb_unknowns(struct unknown *unknown_ptr, LDBLE * LDBLE_ptr, - LDBLE coef, LDBLE * gamma_ptr); - int store_sum_deltas(LDBLE * source, LDBLE * target, LDBLE coef); + int store_mb(LDBLE* source, LDBLE* target, LDBLE coef); + int store_mb_unknowns(class unknown* unknown_ptr, LDBLE* LDBLE_ptr, + LDBLE coef, LDBLE* gamma_ptr); + int store_sum_deltas(LDBLE* source, LDBLE* target, LDBLE coef); int tidy_redox(void); - struct master **unknown_alloc_master(void); int write_mb_eqn_x(void); int write_mb_for_species_list(int n); int write_mass_action_eqn_x(int stop); int check_same_model(void); int k_temp(LDBLE tc, LDBLE pa); - LDBLE k_calc(LDBLE * logk, LDBLE tempk, LDBLE presPa); + LDBLE k_calc(LDBLE* logk, LDBLE tempk, LDBLE presPa); int prep(void); int reprep(void); - int rewrite_master_to_secondary(struct master *master_ptr1, - struct master *master_ptr2); + int rewrite_master_to_secondary(class master* master_ptr1, + class master* master_ptr2); int switch_bases(void); int write_phase_sys_total(int n); // print.cpp ------------------------------- - char *sformatf(const char *format, ...); - int array_print(LDBLE * array_l, int row_count, int column_count, + char* sformatf(const char* format, ...); + int array_print(LDBLE* array_l, int row_count, int column_count, int max_column_count); int set_pr_in_false(void); int print_all(void); int print_exchange(void); int print_gas_phase(void); int print_master_reactions(void); - int print_reaction(struct reaction *rxn_ptr); int print_species(void); int print_surface(void); int print_user_print(void); int punch_all(void); int print_alkalinity(void); - int print_diffuse_layer(cxxSurfaceCharge *surface_charge_ptr); + int print_diffuse_layer(cxxSurfaceCharge* surface_charge_ptr); int print_eh(void); int print_reaction(void); int print_kinetics(void); @@ -670,7 +628,6 @@ public: int print_surface_cd_music(void); int print_totals(void); int print_using(void); - /*int print_user_print(void);*/ int punch_gas_phase(void); int punch_identifiers(void); int punch_kinetics(void); @@ -687,39 +644,38 @@ public: // read.cpp ------------------------------- int read_input(void); - int read_conc(cxxSolution *solution_ptr, int count_mass_balance, char *str); - int *read_list_ints_range(char **ptr, int *count_ints, int positive, - int *int_list); - int read_log_k_only(char *ptr, LDBLE * log_k); - int read_t_c_only(char *ptr, LDBLE *t_c); - int read_p_c_only(char *ptr, LDBLE * p_c); - int read_omega_only(char *ptr, LDBLE *omega); - int read_number_description(char *ptr, int *n_user, int *n_user_end, - char **description, int allow_negative=FALSE); - int check_key(const char *str); - int check_units(std::string &tot_units, bool alkalinity, bool check_compatibility, - const char *default_units, bool print); - int find_option(const char *item, int *n, const char **list, int count_list, + int* read_list_ints_range(const char** ptr, int* count_ints, int positive, + int* int_list); + int read_log_k_only(const char* cptr, LDBLE* log_k); + int read_t_c_only(const char* cptr, LDBLE* t_c); + int read_p_c_only(const char* cptr, LDBLE* p_c); + int read_omega_only(const char* cptr, LDBLE* omega); + int read_number_description(const char* cptr, int* n_user, int* n_user_end, + char** description, int allow_negative = FALSE); + int check_key(const char* str); + int check_units(std::string& tot_units, bool alkalinity, bool check_compatibility, + const char* default_units, bool print); + int find_option(const char* item, int* n, const char** list, int count_list, int exact); - int get_option(const char **opt_list, int count_opt_list, char **next_char); - int get_true_false(char *string, int default_value); + int get_option(const char** opt_list, int count_opt_list, const char** next_char); + int get_true_false(const char* string, int default_value); - int add_psi_master_species(char *token); + int add_psi_master_species(char* token); int read_advection(void); - int read_analytical_expression_only(char *ptr, LDBLE * log_k); + int read_analytical_expression_only(const char* cptr, LDBLE* log_k); /* VP: Density Start */ - int read_millero_abcdef (char *ptr, LDBLE * abcdef); + int read_millero_abcdef(const char* cptr, LDBLE* abcdef); /* VP: Density End */ - int read_viscosity_parms(char *ptr, LDBLE * Jones_Dole); + int read_viscosity_parms(const char* cptr, LDBLE* Jones_Dole); int read_copy(void); int read_debug(void); - int read_delta_h_only(char *ptr, LDBLE * delta_h, - DELTA_H_UNIT * units); - int read_aq_species_vm_parms(char *ptr, LDBLE * delta_v); - int read_vm_only(char *ptr, LDBLE * delta_v, - DELTA_V_UNIT * units); - int read_phase_vm(char *ptr, LDBLE * delta_v, - DELTA_V_UNIT * units); + int read_delta_h_only(const char* cptr, LDBLE* delta_h, + DELTA_H_UNIT* units); + int read_aq_species_vm_parms(const char* cptr, LDBLE* delta_v); + int read_vm_only(const char* cptr, LDBLE* delta_v, + DELTA_V_UNIT* units); + int read_phase_vm(const char* cptr, LDBLE* delta_v, + DELTA_V_UNIT* units); int read_llnl_aqueous_model_parameters(void); int read_exchange(void); int read_exchange_master_species(void); @@ -727,21 +683,16 @@ public: int read_gas_phase(void); int read_incremental_reactions(void); int read_inverse(void); - int read_inv_balances(struct inverse *inverse_ptr, char *next_char); - int read_inv_isotopes(struct inverse *inverse_ptr, char *ptr); - int read_inv_phases(struct inverse *inverse_ptr, char *next_char); + int read_inv_balances(class inverse* inverse_ptr, const char* next_char); + int read_inv_isotopes(class inverse* inverse_ptr, const char* cptr); + int read_inv_phases(class inverse* inverse_ptr, const char* next_char); int read_kinetics(void); - int read_line_doubles(char *next_char, LDBLE ** d, int *count_d, - int *count_alloc); - int read_lines_doubles(char *next_char, LDBLE ** d, int *count_d, - int *count_alloc, const char **opt_list, - int count_opt_list, int *opt); - LDBLE *read_list_doubles(char **ptr, int *count_doubles); - int *read_list_ints(char **ptr, int *count_ints, int positive); - int *read_list_t_f(char **ptr, int *count_ints); + bool read_vector_doubles(const char** ptr, std::vector& v); + bool read_vector_ints(const char** cptr, std::vector& v, int positive); + bool read_vector_t_f(const char** ptr, std::vector& v); int read_master_species(void); int read_mix(void); - int read_entity_mix(std::map &mix_map); + int read_entity_mix(std::map& mix_map); //int read_solution_mix(void); int read_named_logk(void); int read_phases(void); @@ -749,11 +700,11 @@ public: int read_pp_assemblage(void); int read_rates(void); int read_reaction(void); - int read_reaction_reactants(cxxReaction *reaction_ptr); - int read_reaction_steps(cxxReaction *reaction_ptr); + int read_reaction_reactants(cxxReaction* reaction_ptr); + int read_reaction_steps(cxxReaction* reaction_ptr); int read_solid_solutions(void); int read_temperature(void); - int read_reaction_temps(struct temperature *temperature_ptr); + //int read_reaction_temps(struct temperature* temperature_ptr); int read_reaction_pressure(void); int read_reaction_pressure_raw(void); int read_save(void); @@ -767,20 +718,17 @@ public: int read_title(void); int read_user_print(void); int read_user_punch(void); -#if defined PHREEQ98 - int read_user_graph(void); -#endif #if defined MULTICHART int read_user_graph_handler(); #endif - int next_keyword_or_option(const char **opt_list, int count_opt_list); - int cleanup_after_parser(CParser &parser); + int next_keyword_or_option(const char** opt_list, int count_opt_list); + int cleanup_after_parser(CParser& parser); // ReadClass.cxx int read_dump(void); int read_delete(void); int read_run_cells(void); - int streamify_to_next_keyword(std::istringstream & lines); + int streamify_to_next_keyword(std::istringstream& lines); int dump_entities(void); int delete_entities(void); int run_as_cells(void); @@ -789,18 +737,18 @@ public: // readtr.cpp ------------------------------- int read_transport(void); int dump(void); - int dump_exchange(int k); - int dump_gas_phase(int k); - int dump_kinetics(int k); - int dump_mix(int k); - int dump_pp_assemblage(int k); - int dump_reaction(int k); - int dump_ss_assemblage(int k); - int dump_solution(int k); - int dump_surface(int k); + //int dump_exchange(int k); + //int dump_gas_phase(int k); + //int dump_kinetics(int k); + //int dump_mix(int k); + //int dump_pp_assemblage(int k); + //int dump_reaction(int k); + //int dump_ss_assemblage(int k); + //int dump_solution(int k); + //int dump_surface(int k); int dump_cpp(void); - int read_line_LDBLEs(char *next_char, LDBLE ** d, int *count_d, - int *count_alloc); + int read_line_LDBLEs(const char* next_char, LDBLE** d, int* count_d, + int* count_alloc); // sit.cpp ------------------------------- int gammas_sit(void); @@ -811,9 +759,9 @@ public: int sit_tidy(void); int read_sit(void); int set_sit(int initial); - int calc_sit_param(struct pitz_param *pz_ptr, LDBLE TK, LDBLE TR); + int calc_sit_param(class pitz_param* pz_ptr, LDBLE TK, LDBLE TR); int check_gammas_sit(void); - int sit_ISPEC(const char *name); + int sit_ISPEC(const char* name); /*int DH_AB (LDBLE TK, LDBLE *A, LDBLE *B);*/ int sit_initial_guesses(void); int sit_revise_guesses(void); @@ -823,184 +771,167 @@ public: // spread.cpp ------------------------------- int read_solution_spread(void); - int copy_token_tab(char *token_ptr, char **ptr, int *length); - int get_option_string(const char **opt_list, int count_opt_list, - char **next_char); - int spread_row_free(struct spread_row *spread_row_ptr); - int spread_row_to_solution(struct spread_row *heading, - struct spread_row *units, - struct spread_row *data, - struct defaults defaults); - struct spread_row *string_to_spread_row(char *string); + int copy_token_tab(std::string& token, const char** cptr); + int get_option_string(const char** opt_list, int count_opt_list, + const char** next_char); + int spread_row_free(class spread_row* spread_row_ptr); + int spread_row_to_solution(class spread_row* heading, + class spread_row* units, + class spread_row* data, + class defaults defaults); + class spread_row* string_to_spread_row(char* string); #ifdef PHREEQCI_GUI - void add_row(struct spread_row *spread_row_ptr); - void copy_defaults(struct defaults *dest_ptr, - struct defaults *src_ptr); + void add_row(class spread_row* spread_row_ptr); void free_spread(void); - struct spread_row *copy_row(struct spread_row *spread_row_ptr); + class spread_row* copy_row(class spread_row* spread_row_ptr); #endif // step.cpp ------------------------------- int step(LDBLE step_fraction); int xsolution_zero(void); - int add_exchange(cxxExchange *exchange_ptr); - int add_gas_phase(cxxGasPhase *gas_phase_ptr); - int add_kinetics(cxxKinetics *kinetics_ptr); - int add_mix(cxxMix * mix_ptr); - int add_pp_assemblage(cxxPPassemblage *pp_assemblage_ptr); - int add_reaction(cxxReaction *reaction_ptr, int step_number, LDBLE step_fraction); - int add_ss_assemblage(cxxSSassemblage *ss_assemblage_ptr); - int add_solution(cxxSolution *solution_ptr, LDBLE extensive, + int add_exchange(cxxExchange* exchange_ptr); + int add_gas_phase(cxxGasPhase* gas_phase_ptr); + int add_kinetics(cxxKinetics* kinetics_ptr); + int add_mix(cxxMix* mix_ptr); + int add_pp_assemblage(cxxPPassemblage* pp_assemblage_ptr); + int add_reaction(cxxReaction* reaction_ptr, int step_number, LDBLE step_fraction); + int add_ss_assemblage(cxxSSassemblage* ss_assemblage_ptr); + int add_solution(cxxSolution* solution_ptr, LDBLE extensive, LDBLE intensive); - int add_surface(cxxSurface *surface_ptr); - int check_pp_assemblage(cxxPPassemblage *pp_assemblage_ptr); - int gas_phase_check(cxxGasPhase *gas_phase_ptr); - int pp_assemblage_check(cxxPPassemblage *pp_assemblage_ptr); - int reaction_calc(cxxReaction *reaction_ptr); + int add_surface(cxxSurface* surface_ptr); + int check_pp_assemblage(cxxPPassemblage* pp_assemblage_ptr); + int gas_phase_check(cxxGasPhase* gas_phase_ptr); + int pp_assemblage_check(cxxPPassemblage* pp_assemblage_ptr); + int reaction_calc(cxxReaction* reaction_ptr); int solution_check(void); - int ss_assemblage_check(cxxSSassemblage *ss_assemblage_ptr); + int ss_assemblage_check(cxxSSassemblage* ss_assemblage_ptr); // structures.cpp ------------------------------- int clean_up(void); int reinitialize(void); - int copier_add(struct copier *copier_ptr, int n_user, int start, int end); - int copier_free(struct copier *copier_ptr); - int copier_init(struct copier *copier_ptr); - static int element_compare(const void *ptr1, const void *ptr2); -public: - struct element *element_store(const char *element); + + int copier_add(class copier* copier_ptr, int n_user, int start, int end); + int copier_clear(class copier* copier_ptr); + // + CReaction CReaction_internal_copy(CReaction& rxn_ref); + double rxn_find_coef(CReaction& r_ptr, const char* str); + // + static int element_compare(const void* ptr1, const void* ptr2); + class element* element_store(const char* element); + // + int add_elt_list(const cxxNameDouble& nd, LDBLE coef); + int add_elt_list(const std::vector& el, double coef); + int change_hydrogen_in_elt_list(LDBLE charge); int elt_list_combine(void); - static int elt_list_compare(const void *ptr1, const void *ptr2); -protected: - struct elt_list *elt_list_dup(struct elt_list *elt_list_ptr_old); - int elt_list_print(struct elt_list *elt_list_ptr); - struct elt_list *elt_list_save(void); + static int elt_list_compare(const void* ptr1, const void* ptr2); + std::vector elt_list_internal_copy(const std::vector& el); + std::vector elt_list_vsave(void); cxxNameDouble elt_list_NameDouble(void); - struct elt_list * NameDouble2elt_list(const cxxNameDouble &nd); -public: - enum entity_type get_entity_enum(char *name); - struct inverse *inverse_alloc(void); + // + enum entity_type get_entity_enum(char* name); + // + class inverse* inverse_alloc(void); int inverse_delete(int i); - static int inverse_isotope_compare(const void *ptr1, const void *ptr2); - struct inverse *inverse_search(int n_user, int *n); + static int inverse_isotope_compare(const void* ptr1, const void* ptr2); + class inverse* inverse_search(int n_user, int* n); int inverse_sort(void); -protected: - struct logk *logk_alloc(void); - int logk_copy2orig(struct logk *logk_ptr); - struct logk *logk_store(char *name, int replace_if_found); - struct logk *logk_search(const char *name); - struct master *master_alloc(void); - static int master_compare(const void *ptr1, const void *ptr2); - int master_delete(char *ptr); -public: - struct master *master_bsearch(const char *ptr); - struct master *master_bsearch_primary(const char *ptr); - struct master *master_bsearch_secondary(char *ptr); - struct master *master_search(char *ptr, int *n); - struct pe_data *pe_data_alloc(void); -public: - struct pe_data *pe_data_dup(struct pe_data *pe_ptr_old); - struct pe_data *pe_data_free(struct pe_data *pe_data_ptr); -protected: - int pe_data_store(struct pe_data **pe, const char *token); -public: - struct phase *phase_bsearch(const char *ptr, int *j, int print); -protected: - static int phase_compare(const void *ptr1, const void *ptr2); + // + class logk* logk_alloc(void); + int logk_copy2orig(class logk* logk_ptr); + class logk* logk_store(const char* name, int replace_if_found); + class logk* logk_search(const char* name); + // + class master* master_alloc(void); + static int master_compare(const void* ptr1, const void* ptr2); + int master_delete(const char* cptr); + class master* master_bsearch(const char* cptr); + class master* master_bsearch_primary(const char* cptr); + class master* master_bsearch_secondary(const char* cptr); + class master* master_search(const char* cptr, int* n); + class master* surface_get_psi_master(const char* name, int plane); + // + class phase* phase_bsearch(const char* cptr, int* j, int print); + static int phase_compare(const void* ptr1, const void* ptr2); int phase_delete(int i); - struct phase *phase_store(const char *name); -public: - struct rate *rate_bsearch(char *ptr, int *j); - int rate_free(struct rate *rate_ptr); - struct rate *rate_search(const char *name, int *n); + class phase* phase_store(const char* name); + // + class rate* rate_bsearch(const char* cptr, int* j); + int rate_free(class rate* rate_ptr); + class rate* rate_copy(const class rate* rate_ptr); + class rate* rate_search(const char* name, int* n); int rate_sort(void); - struct reaction *rxn_alloc(int ntokens); - struct reaction *rxn_dup(struct reaction *rxn_ptr_old); - struct reaction * cxxChemRxn2rxn(cxxChemRxn &cr); - LDBLE rxn_find_coef(struct reaction *r_ptr, const char *str); - int rxn_free(struct reaction *rxn_ptr); - int rxn_print(struct reaction *rxn_ptr); - static int s_compare(const void *ptr1, const void *ptr2); + // + static int s_compare(const void* ptr1, const void* ptr2); int s_delete(int i); - struct species *s_search(const char *name); - struct species *s_store(const char *name, LDBLE z, int replace_if_found); -protected: - struct save_values *save_values_bsearch(struct save_values *k, int *n); - static int save_values_compare(const void *ptr1, const void *ptr2); - int save_values_sort(void); - int save_values_store(struct save_values *s_v); - static int isotope_compare(const void *ptr1, const void *ptr2); - static int species_list_compare_alk(const void *ptr1, const void *ptr2); - static int species_list_compare_master(const void *ptr1, const void *ptr2); + class species* s_search(const char* name); + class species* s_store(const char* name, LDBLE z, int replace_if_found); + // + static int isotope_compare(const void* ptr1, const void* ptr2); + // + static int species_list_compare_alk(const void* ptr1, const void* ptr2); + static int species_list_compare_master(const void* ptr1, const void* ptr2); int species_list_sort(void); - struct Change_Surf *change_surf_alloc(int count); -public: - struct master *surface_get_psi_master(const char *name, int plane); + // + struct Change_Surf* change_surf_alloc(int count); + // int system_duplicate(int i, int save_old); - int trxn_add(struct reaction *r_ptr, LDBLE coef, int combine); - int trxn_add(cxxChemRxn &r_ptr, LDBLE coef, int combine); - int trxn_add_phase(struct reaction *r_ptr, LDBLE coef, int combine); + // + // + bool phase_rxn_to_trxn(class phase* phase_ptr, CReaction& rxn_ptr); + bool trxn_add(CReaction& r_ptr, double coef, bool combine); + bool trxn_add_phase(CReaction& r_ref, double coef, bool combine); int trxn_combine(void); - int trxn_copy(struct reaction *rxn_ptr); - LDBLE trxn_find_coef(const char *str, int start); + static int trxn_compare(const void* ptr1, const void* ptr2); + bool trxn_copy(CReaction& rxn_ref); + LDBLE trxn_find_coef(const char* str, int start); + int trxn_multiply(LDBLE coef); int trxn_print(void); int trxn_reverse_k(void); int trxn_sort(void); - int trxn_swap(const char *token); - struct unknown *unknown_alloc(void); + int trxn_swap(const char* token); + + class unknown* unknown_alloc(void); int unknown_delete(int i); - int unknown_free(struct unknown *unknown_ptr); - int entity_exists(const char *name, int n_user); - static int inverse_compare(const void *ptr1, const void *ptr2); - int inverse_free(struct inverse *inverse_ptr); - static int kinetics_compare_int(const void *ptr1, const void *ptr2); - int logk_init(struct logk *logk_ptr); - static int master_compare_string(const void *ptr1, const void *ptr2); - int master_free(struct master *master_ptr); - struct phase *phase_alloc(void); - static int phase_compare_string(const void *ptr1, const void *ptr2); - int phase_free(struct phase *phase_ptr); - int phase_init(struct phase *phase_ptr); - static int rate_compare(const void *ptr1, const void *ptr2); - static int rate_compare_string(const void *ptr1, const void *ptr2); - struct species *s_alloc(void); - int s_free(struct species *s_ptr); - int s_init(struct species *s_ptr); - static int ss_assemblage_compare_int(const void *ptr1, const void *ptr2); - static int solution_compare(const void *ptr1, const void *ptr2); - static int solution_compare_int(const void *ptr1, const void *ptr2); - static int species_list_compare(const void *ptr1, const void *ptr2); - static int surface_compare_int(const void *ptr1, const void *ptr2); - static int rxn_token_temp_compare(const void *ptr1, const void *ptr2); - int trxn_multiply(LDBLE coef); + int unknown_free(class unknown* unknown_ptr); + int entity_exists(const char* name, int n_user); + static int inverse_compare(const void* ptr1, const void* ptr2); + int inverse_free(class inverse* inverse_ptr); + int logk_init(class logk* logk_ptr); + static int master_compare_string(const void* ptr1, const void* ptr2); + int master_free(class master* master_ptr); + class phase* phase_alloc(void); + static int phase_compare_string(const void* ptr1, const void* ptr2); + int phase_free(class phase* phase_ptr); + int phase_init(class phase* phase_ptr); + static int rate_compare(const void* ptr1, const void* ptr2); + static int rate_compare_string(const void* ptr1, const void* ptr2); + class species* s_alloc(void); + int s_free(class species* s_ptr); + int s_init(class species* s_ptr); + static int species_list_compare(const void* ptr1, const void* ptr2); - struct elt_list * cxxNameDouble2elt_list(const cxxNameDouble * nd); - struct name_coef * cxxNameDouble2name_coef(const cxxNameDouble * nd); - struct master_activity * cxxNameDouble2master_activity(const cxxNameDouble * nd); - struct master * cxxNameDouble2surface_master(const cxxNameDouble * totals); - - void Use2cxxStorageBin(cxxStorageBin & sb); - void phreeqc2cxxStorageBin(cxxStorageBin & sb); - void phreeqc2cxxStorageBin(cxxStorageBin & sb, int n); - void cxxStorageBin2phreeqc(cxxStorageBin & sb, int n); - void cxxStorageBin2phreeqc(cxxStorageBin & sb); + void Use2cxxStorageBin(cxxStorageBin& sb); + void phreeqc2cxxStorageBin(cxxStorageBin& sb); + void phreeqc2cxxStorageBin(cxxStorageBin& sb, int n); + void cxxStorageBin2phreeqc(cxxStorageBin& sb, int n); + void cxxStorageBin2phreeqc(cxxStorageBin& sb); /* tally.cpp */ void add_all_components_tally(void); int build_tally_table(void); - int calc_dummy_kinetic_reaction_tally(cxxKinetics *kinetics_ptr); + int calc_dummy_kinetic_reaction_tally(cxxKinetics* kinetics_ptr); int diff_tally_table(void); int extend_tally_table(void); int free_tally_table(void); - int fill_tally_table(int *n_user, int index_conservative, int n_buffer); - int get_tally_table_rows_columns(int *rows, int *columns); - int get_tally_table_column_heading(int column, int *type, char *string); - int get_tally_table_row_heading(int column, char *string); - int store_tally_table(LDBLE * array, int row_dim, int col_dim, + int fill_tally_table(int* n_user, int index_conservative, int n_buffer); + int get_tally_table_rows_columns(int* rows, int* columns); + int get_tally_table_column_heading(int column, int* type, char* string); + int get_tally_table_row_heading(int column, char* string); + int store_tally_table(LDBLE* array, int row_dim, int col_dim, LDBLE fill_factor); int zero_tally_table(void); - int elt_list_to_tally_table(struct tally_buffer *buffer_ptr); - int master_to_tally_table(struct tally_buffer *buffer_ptr); + int elt_list_to_tally_table(class tally_buffer* buffer_ptr); + int master_to_tally_table(class tally_buffer* buffer_ptr); int get_all_components(void); int print_tally_table(void); int set_reaction_moles(int n_user, LDBLE moles); @@ -1008,69 +939,74 @@ public: int set_kinetics_time(int n_user, LDBLE step); // tidy.cpp ------------------------------- - int add_other_logk(LDBLE * source_k, int count_add_logk, - struct name_coef *add_logk); - int add_logks(struct logk *logk_ptr, int repeats); - LDBLE halve(LDBLE f(LDBLE x, void *), LDBLE x0, LDBLE x1, LDBLE tol); + int add_other_logk(LDBLE* source_k, std::vector& add_logk); + int add_logks(class logk* logk_ptr, int repeats); + LDBLE halve(LDBLE f(LDBLE x, void*), LDBLE x0, LDBLE x1, LDBLE tol); int replace_solids_gases(void); - int ss_prep(LDBLE t, cxxSS *ss_ptr, int print); - int select_log_k_expression(LDBLE * source_k, LDBLE * target_k); - int slnq(int n, LDBLE * a, LDBLE * delta, int ncols, int print); + int ss_prep(LDBLE t, cxxSS* ss_ptr, int print); + int select_log_k_expression(LDBLE* source_k, LDBLE* target_k); + int slnq(int n, LDBLE* a, LDBLE* delta, int ncols, int print); public: int tidy_punch(void); int tidy_model(void); int check_species_input(void); - LDBLE coef_in_master(struct master *master_ptr); - int phase_rxn_to_trxn(struct phase *phase_ptr, - struct reaction *rxn_ptr); + LDBLE coef_in_master(class master* master_ptr); int reset_last_model(void); int rewrite_eqn_to_primary(void); int rewrite_eqn_to_secondary(void); - int species_rxn_to_trxn(struct species *s_ptr); + int species_rxn_to_trxn(class species* s_ptr); int tidy_logk(void); int tidy_exchange(void); int tidy_min_exchange(void); + int update_min_exchange(void); int tidy_kin_exchange(void); + int update_kin_exchange(void); int tidy_gas_phase(void); int tidy_inverse(void); int tidy_isotopes(void); int tidy_isotope_ratios(void); int tidy_isotope_alphas(void); int tidy_kin_surface(void); + int update_kin_surface(void); int tidy_master_isotope(void); int tidy_min_surface(void); + int update_min_surface(void); int tidy_phases(void); int tidy_pp_assemblage(void); int tidy_solutions(void); int tidy_ss_assemblage(void); int tidy_species(void); int tidy_surface(void); - int scan(LDBLE f(LDBLE x, void *), LDBLE * xx0, LDBLE * xx1); - static LDBLE f_spinodal(LDBLE x, void *); - int solve_misc(LDBLE * xxc1, LDBLE * xxc2, LDBLE tol); - int ss_calc_a0_a1(cxxSS *ss_ptr); + int scan(LDBLE f(LDBLE x, void*), LDBLE* xx0, LDBLE* xx1); + static LDBLE f_spinodal(LDBLE x, void*); + int solve_misc(LDBLE* xxc1, LDBLE* xxc2, LDBLE tol); + int ss_calc_a0_a1(cxxSS* ss_ptr); // transport.cpp ------------------------------- int transport(void); void print_punch(int i, boolean active); int set_initial_moles(int i); - cxxSurface sum_surface_comp(cxxSurface *source1, LDBLE f1, - cxxSurface *source2, std::string charge_name, LDBLE f2, + cxxSurface sum_surface_comp(cxxSurface* source1, LDBLE f1, + cxxSurface* source2, std::string charge_name, LDBLE f2, LDBLE new_Dw); - int reformat_surf(const char *comp_name, LDBLE fraction, const char *new_comp_name, + int reformat_surf(const char* comp_name, LDBLE fraction, const char* new_comp_name, LDBLE new_Dw, int cell); LDBLE viscosity(void); LDBLE calc_vm_Cl(void); int multi_D(LDBLE DDt, int mobile_cell, int stagnant); - int find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant); - int fill_spec(int cell_no); - void define_ct_structures(void); - int fill_m_s(struct J_ij *J_ij, int J_ij_count_spec); - static int sort_species_name(const void *ptr1, const void *ptr2); + LDBLE find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant); + void calc_b_ij(int icell, int jcell, int k, LDBLE b_i, LDBLE b_j, LDBLE g_i, LDBLE g_j, LDBLE free_i, LDBLE free_j, int stagnant); + void diffuse_implicit(LDBLE DDt, int stagnant); + int fill_spec(int cell_no, int ref_cell); + LDBLE moles_from_redox_states(cxxSolution* sptr, const char* name); + LDBLE moles_from_donnan_layer(cxxSurface* sptr, const char* name, LDBLE moles_needed); + LDBLE add_MCD_moles(LDBLE moles, LDBLE min_mol, int i, cxxSolution* sptr, const char* name); + int fill_m_s(class J_ij* J_ij, int J_ij_count_spec, int i, int stagnant); + static int sort_species_name(const void* ptr1, const void* ptr2); int disp_surf(LDBLE stagkin_time); int diff_stag_surf(int mobile_cell); - int check_surfaces(cxxSurface *surface_ptr1, cxxSurface *surface_ptr2); - cxxSurface mobile_surface_copy(cxxSurface *surface_old_ptr, + int check_surfaces(cxxSurface* surface_ptr1, cxxSurface* surface_ptr2); + cxxSurface mobile_surface_copy(cxxSurface* surface_old_ptr, int n_user_new, bool move_old); void transport_cleanup(void); @@ -1082,95 +1018,76 @@ public: // utilities.cpp ------------------------------- public: - int add_elt_list(struct elt_list *elt_list_ptr, LDBLE coef); - int add_elt_list_multi_surf(struct elt_list *elt_list_ptr, LDBLE coef, struct element *surf_elt_ptr); - int add_elt_list(const cxxNameDouble & nd, LDBLE coef); -protected: - int backspace_screen(int spaces); - LDBLE calc_alk(struct reaction *rxn_ptr); -public: - LDBLE calc_rho_0(LDBLE tc, LDBLE pa); + double calc_alk(CReaction& rxn_ptr); + double calc_delta_v(CReaction& r_ref, bool phase); LDBLE calc_dielectrics(LDBLE tc, LDBLE pa); - int compute_gfw(const char *string, LDBLE * gfw); -#if defined PHREEQ98 - int copy_title(char *token_ptr, char **ptr, int *length); -#endif - int copy_token(char *token_ptr, char **ptr, int *length); - int copy_token(std::string &token, char **ptr); - int dup_print(const char *ptr, int emphasis); + LDBLE calc_rho_0(LDBLE tc, LDBLE pa); + int compute_gfw(const char* string, LDBLE* gfw); + static int copy_token(char* token_ptr, const char** ptr, int* length); + static int copy_token(std::string& token, const char** ptr); + int dup_print(const char* cptr, int emphasis); int equal(LDBLE a, LDBLE b, LDBLE eps); -public: - void *free_check_null(void *ptr); -protected: - void free_hash_strings(HashTable * Table); - int get_token(char **eqnaddr, char *string, LDBLE * z, int *l); - int hcreate_multi(unsigned Count, HashTable ** HashTable_ptr); - void hdestroy_multi(HashTable * HashTable_ptr); - ENTRY *hsearch_multi(HashTable * Table, ENTRY item, ACTION action); + void* free_check_null(void* ptr); + int get_token(const char** eqnaddr, std::string& string, LDBLE* z, int* l); int islegit(const char c); -public: void malloc_error(void); -protected: - int parse_couple(char *token); - int print_centered(const char *string); -public: - static int replace(const char *str1, const char *str2, char *str); - static bool replace(const char *str1, const char *str2, std::string & str); - static int strcmp_nocase(const char *str1, const char *str2); - static int strcmp_nocase_arg1(const char *str1, const char *str2); -protected: - void space(void **ptr, int i, int *max, int struct_size); - void squeeze_white(char *s_l); - int status(int count, const char *str, bool kinetics = false); - void str_tolower(char *str); - void str_toupper(char *str); -public: + int parse_couple(char* token); + int print_centered(const char* string); + static int replace(const char* str1, const char* str2, char* str); + static void replace(std::string &stds, const char* str1, const char* str2); + static bool replace(const char* str1, const char* str2, std::string& str); + static int strcmp_nocase(const char* str1, const char* str2); + static int strcmp_nocase_arg1(const char* str1, const char* str2); + static void str_tolower(std::string& name); + void space(void** ptr, int i, int* max, int struct_size); + void squeeze_white(char* s_l); + int status(int count, const char* str, bool kinetics = false); + void str_tolower(char* str); + void str_toupper(char* str); #if !defined(NDEBUG) && defined(WIN32_MEMORY_DEBUG) - char *_string_duplicate(const char *token, const char *szFileName, int nLine); + char* _string_duplicate(const char* token, const char* szFileName, int nLine); #else - char *string_duplicate(const char *token); + char* string_duplicate(const char* token); #endif - const char *string_hsave(const char *str); + const char* string_hsave(const char* str); void strings_map_clear(); -#ifdef HASH - void strings_hash_clear(); -#endif protected: - char *string_pad(const char *str, int i); - int string_trim(char *str); - int string_trim_right(char *str); - int string_trim_left(char *str); + char* string_pad(const char* str, int i); + static int string_trim(char* str); + static int string_trim_right(char* str); + static int string_trim_left(char* str); + static void string_trim(std::string& str); + static void string_trim_left(std::string& str); + static void string_trim_right(std::string& str); static LDBLE under(LDBLE xval); - void zero_double(LDBLE * target, int n); int get_input_errors(void); -#ifdef PHREEQ98 - void AddToCEntry(char *a, int l, int i); - void ApplicationProcessMessages(void); - int copy_title(char *token_ptr, char **ptr, int *length); - extern int clean_up_null(void); -#endif - int isamong(char c, const char *s_l); - Address Hash_multi(HashTable * Table, const char *Key); - void ExpandTable_multi(HashTable * Table); + int isamong(char c, const char* s_l); public: - int main_method(int argc, char *argv[]); + int main_method(int argc, char* argv[]); void set_phast(int); int next_user_number(Keywords::KEYWORDS key); - size_t list_components(std::list &list_c); - PHRQ_io * Get_phrq_io(void) {return this->phrq_io;} - void Set_run_cells_one_step(const bool tf) {this->run_cells_one_step = tf;} + size_t list_components(std::list& list_c); + size_t list_EquilibriumPhases(std::list& list_pp); + size_t list_GasComponents(std::list& list_gc); + size_t list_KineticReactions(std::list& list_kr); + size_t list_SolidSolutions(std::list& list_comps, std::list& list_names); + size_t list_Surfaces(std::list& surftype, std::list& surf); + size_t list_Exchangers(std::list& ex); + PHRQ_io* Get_phrq_io(void) { return this->phrq_io; } + void Set_run_cells_one_step(const bool tf) { this->run_cells_one_step = tf; } - std::map & Get_Rxn_solution_map() {return this->Rxn_solution_map;} - std::map & Get_Rxn_exchange_map() {return this->Rxn_exchange_map;} - std::map & Get_Rxn_gas_phase_map() {return this->Rxn_gas_phase_map;} - std::map & Get_Rxn_kinetics_map() {return this->Rxn_kinetics_map;} - std::map & Get_Rxn_pp_assemblage_map() {return this->Rxn_pp_assemblage_map;} - std::map & Get_Rxn_ss_assemblage_map() {return this->Rxn_ss_assemblage_map;} - std::map & Get_Rxn_surface_map() {return this->Rxn_surface_map;} - std::map & Get_Rxn_temperature_map() {return this->Rxn_temperature_map;} - std::map & Get_Rxn_pressure_map() {return this->Rxn_pressure_map;} - + std::map& Get_Rxn_solution_map() { return this->Rxn_solution_map; } + std::map& Get_Rxn_exchange_map() { return this->Rxn_exchange_map; } + std::map& Get_Rxn_gas_phase_map() { return this->Rxn_gas_phase_map; } + std::map& Get_Rxn_kinetics_map() { return this->Rxn_kinetics_map; } + std::map& Get_Rxn_pp_assemblage_map() { return this->Rxn_pp_assemblage_map; } + std::map& Get_Rxn_ss_assemblage_map() { return this->Rxn_ss_assemblage_map; } + std::map& Get_Rxn_surface_map() { return this->Rxn_surface_map; } + std::map& Get_Rxn_mix_map() { return this->Rxn_mix_map; } + std::map& Get_Rxn_reaction_map() { return this->Rxn_reaction_map; } + std::map& Get_Rxn_temperature_map() { return this->Rxn_temperature_map; } + std::map& Get_Rxn_pressure_map() { return this->Rxn_pressure_map; } protected: void init(void); @@ -1179,7 +1096,7 @@ protected: //Data members // protected: - PHRQ_io *phrq_io; + PHRQ_io* phrq_io; PHRQ_io ioInstance; int same_model; @@ -1192,7 +1109,7 @@ protected: * STRUCTURES * ---------------------------------------------------------------------- */ - struct model last_model; + Model last_model; //struct punch punch; bool high_precision; @@ -1216,7 +1133,7 @@ protected: std::map Rxn_surface_map; std::map charge_group_map; int change_surf_count; - struct Change_Surf *change_surf; + struct Change_Surf* change_surf; /* ---------------------------------------------------------------------- * Exchange @@ -1232,9 +1149,8 @@ protected: /*---------------------------------------------------------------------- * Save *---------------------------------------------------------------------- */ - int count_save_values; - struct save_values *save_values; - struct save save; + std::map save_values; + class save save; /*---------------------------------------------------------------------- * Use @@ -1244,23 +1160,22 @@ protected: /*---------------------------------------------------------------------- * Copy *---------------------------------------------------------------------- */ - struct copier copy_solution; - struct copier copy_pp_assemblage; - struct copier copy_exchange; - struct copier copy_surface; - struct copier copy_ss_assemblage; - struct copier copy_gas_phase; - struct copier copy_kinetics; - struct copier copy_mix; - struct copier copy_reaction; - struct copier copy_temperature; - struct copier copy_pressure; + class copier copy_solution; + class copier copy_pp_assemblage; + class copier copy_exchange; + class copier copy_surface; + class copier copy_ss_assemblage; + class copier copy_gas_phase; + class copier copy_kinetics; + class copier copy_mix; + class copier copy_reaction; + class copier copy_temperature; + class copier copy_pressure; /*---------------------------------------------------------------------- * Inverse *---------------------------------------------------------------------- */ - - struct inverse *inverse; + std::vector inverse; int count_inverse; /*---------------------------------------------------------------------- @@ -1312,41 +1227,26 @@ protected: /*---------------------------------------------------------------------- * Species_list *---------------------------------------------------------------------- */ - int count_species_list; - int max_species_list; - struct species_list *species_list; + std::vector species_list; /*---------------------------------------------------------------------- * Jacobian and Mass balance lists *---------------------------------------------------------------------- */ + std::vector sum_jacob0; /* array of pointers to targets and coefficients for array */ - int count_sum_jacob0; /* number of elements in sum_jacob0 */ - int max_sum_jacob0; /* calculated maximum number of elements in sum_jacob0 */ - struct list0 *sum_jacob0; /* array of pointers to targets and coefficients for array */ - - int count_sum_mb1; /* number of elements in sum_mb1 */ - int max_sum_mb1; /* calculated maximum number of elements in sum_mb1 */ - struct list1 *sum_mb1; /* array of pointers to sources and targets for mass - balance summations with coef = 1.0 */ - int count_sum_jacob1; /* number of elements in sum_jacob1 */ - int max_sum_jacob1; /* calculated maximum number of elements in sum_jacob1 */ - struct list1 *sum_jacob1; /* array of pointers to sources and targets for array - equations with coef = 1.0 */ - int count_sum_mb2; /* number of elements in sum_mb2 */ - int max_sum_mb2; /* calculated maximum number of elements in sum_mb2 */ - struct list2 *sum_mb2; /* array of coefficients and pointers to sources and - targets for mass balance summations with coef != 1.0 */ - int count_sum_jacob2; /* number of elements in sum_jacob2 */ - int max_sum_jacob2; /* calculated maximum number of elements in sum_jacob2 */ - struct list2 *sum_jacob2; /* array of coefficients and pointers to sources and - targets, coef != 1.0 */ - int count_sum_delta; /* number of elements in sum_delta */ - int max_sum_delta; /* calculated maximum number of elements in sum_delta */ - struct list2 *sum_delta; /* array of pointers to sources, targets and coefficients for - summing deltas for mass balance equations */ - /*---------------------------------------------------------------------- - * Solution - *---------------------------------------------------------------------- */ + std::vector sum_mb1; /* array of pointers to sources and targets for mass + balance summations with coef = 1.0 */ + std::vector sum_jacob1; /* array of pointers to sources and targets for array + equations with coef = 1.0 */ + std::vector sum_mb2; /* array of coefficients and pointers to sources and + targets for mass balance summations with coef != 1.0 */ + std::vector sum_jacob2; /* array of coefficients and pointers to sources and + targets, coef != 1.0 */ + std::vector sum_delta; /* array of pointers to sources, targets and coefficients for + summing deltas for mass balance equations */ + /*---------------------------------------------------------------------- + * Solution + *---------------------------------------------------------------------- */ std::map Rxn_solution_map; std::vector unnumbered_solutions; bool save_species; @@ -1354,10 +1254,10 @@ protected: /*---------------------------------------------------------------------- * Global solution *---------------------------------------------------------------------- */ - char *title_x; + std::string title_x; std::string last_title_x; int new_x; - char *description_x; + std::string description_x; LDBLE tc_x; LDBLE tk_x; LDBLE patm_x; @@ -1378,8 +1278,8 @@ protected: LDBLE mass_water_aq_x; LDBLE mass_water_surfaces_x; LDBLE mass_water_bulk_x; - char *units_x; - std::map < std::string, cxxChemRxn > pe_x; + std::string units_x; + std::map < std::string, CReaction > pe_x; std::map isotopes_x; std::string default_pe_x; cxxSurface::DIFFUSE_LAYER_TYPE dl_type_x; @@ -1394,7 +1294,6 @@ protected: * Transport data *---------------------------------------------------------------------- */ int count_cells; - int cell_data_max_cells; int count_shifts; int ishift; int bcon_first; @@ -1407,16 +1306,19 @@ protected: LDBLE heat_diffc; int cell; LDBLE mcd_substeps; - struct stag_data *stag_data; + class stag_data stag_data; int print_modulus; int punch_modulus; int dump_in; int dump_modulus; int transport_warnings; - struct cell_data *cell_data; + std::vector cell_data; int old_cells, max_cells, all_cells; int multi_Dflag; /* signals calc'n of multicomponent diffusion */ int interlayer_Dflag; /* multicomponent diffusion and diffusion through interlayer porosity */ + int implicit; /* implicit calculation of diffusion */ + LDBLE max_mixf; /* the maximum value of the implicit mixfactor = De * Dt / (Dx^2) */ + LDBLE min_dif_LM; /* the minimal log10(molality) for including a species in multicomponent diffusion */ LDBLE default_Dw; /* default species diffusion coefficient in water at 25oC, m2/s */ int correct_Dw; /* if true, Dw is adapted in calc_SC */ LDBLE multi_Dpor; /* uniform porosity of free porewater in solid medium */ @@ -1436,7 +1338,7 @@ protected: int count_ad_shifts; int print_ad_modulus; int punch_ad_modulus; - int *advection_punch, *advection_print; + std::vector advection_print, advection_punch; LDBLE advection_kin_time; LDBLE advection_kin_time_defined; int advection_warnings; @@ -1452,20 +1354,14 @@ protected: /*---------------------------------------------------------------------- * Elements *---------------------------------------------------------------------- */ - - struct element **elements; - int count_elements; - int max_elements; - struct element *element_h_one; + std::vector elements; + class element* element_h_one; /*---------------------------------------------------------------------- * Element List *---------------------------------------------------------------------- */ - - struct elt_list *elt_list; /* structure array of working space while reading equations - names are in "strings", initially in input order */ - int count_elts; /* number of elements in elt_list = position of next */ - int max_elts; + std::vector elt_list; + size_t count_elts; /* number of elements in elt_list = position of next */ /*---------------------------------------------------------------------- * Reaction *---------------------------------------------------------------------- */ @@ -1473,88 +1369,71 @@ protected: /*---------------------------------------------------------------------- * Species *---------------------------------------------------------------------- */ + std::vector logk; - struct logk **logk; - int count_logk; - int max_logk; + std::string moles_per_kilogram_string; - char *moles_per_kilogram_string; - char *pe_string; - - struct species **s; - int count_s; - int max_s; + std::vector s; std::vector< std::map < std::string, cxxSpeciesDL > > s_diff_layer; + std::vector s_x; - struct species **s_x; - int count_s_x; - int max_s_x; - - struct species *s_h2o; - struct species *s_hplus; - struct species *s_h3oplus; - struct species *s_eminus; - struct species *s_co3; - struct species *s_h2; - struct species *s_o2; + class species* s_h2o; + class species* s_hplus; + class species* s_h3oplus; + class species* s_eminus; + class species* s_co3; + class species* s_h2; + class species* s_o2; /*---------------------------------------------------------------------- * Phases *---------------------------------------------------------------------- */ - struct phase **phases; - int count_phases; - int max_phases; + std::vector phases; /*---------------------------------------------------------------------- * Master species *---------------------------------------------------------------------- */ - struct master **master; /* structure array of master species */ - struct master **dbg_master; - int count_master; - int max_master; + std::vector master; /*---------------------------------------------------------------------- * Unknowns *---------------------------------------------------------------------- */ + std::vector x; + size_t count_unknowns; + size_t sit_aqueous_unknowns; + size_t max_unknowns; - struct unknown **x; - int count_unknowns; - int max_unknowns; - - struct unknown *ah2o_unknown; - struct unknown *alkalinity_unknown; - struct unknown *carbon_unknown; - struct unknown *charge_balance_unknown; - struct unknown *exchange_unknown; - struct unknown *mass_hydrogen_unknown; - struct unknown *mass_oxygen_unknown; - struct unknown *mb_unknown; - struct unknown *mu_unknown; - struct unknown *pe_unknown; - struct unknown *ph_unknown; - struct unknown *pure_phase_unknown; - struct unknown *solution_phase_boundary_unknown; - struct unknown *surface_unknown; - struct unknown *gas_unknown; - struct unknown *ss_unknown; - std::vector gas_unknowns; + class unknown* ah2o_unknown; + class unknown* alkalinity_unknown; + class unknown* carbon_unknown; + class unknown* charge_balance_unknown; + class unknown* exchange_unknown; + class unknown* mass_hydrogen_unknown; + class unknown* mass_oxygen_unknown; + class unknown* mb_unknown; + class unknown* mu_unknown; + class unknown* pe_unknown; + class unknown* ph_unknown; + class unknown* pure_phase_unknown; + class unknown* solution_phase_boundary_unknown; + class unknown* surface_unknown; + class unknown* gas_unknown; + class unknown* ss_unknown; + std::vector gas_unknowns; /*---------------------------------------------------------------------- * Reaction work space *---------------------------------------------------------------------- */ - struct reaction_temp trxn; /* structure array of working space while reading equations + class reaction_temp trxn; /* structure array of working space while reading equations species names are in "temp_strings" */ - int count_trxn; /* number of reactants in trxn = position of next */ - int max_trxn; + size_t count_trxn; /* number of reactants in trxn = position of next */ - struct unknown_list *mb_unknowns; - int count_mb_unknowns; - int max_mb_unknowns; + std::vector mb_unknowns; /* ---------------------------------------------------------------------- * Print * ---------------------------------------------------------------------- */ - struct prints pr; + class prints pr; bool status_on; clock_t status_interval; clock_t status_timer; @@ -1564,8 +1443,7 @@ protected: /* ---------------------------------------------------------------------- * RATES * ---------------------------------------------------------------------- */ - struct rate *rates; - int count_rates; + std::vector rates; LDBLE rate_m, rate_m0, rate_time, rate_kin_time, rate_sim_time_start, rate_sim_time_end, rate_sim_time, rate_moles, initial_total_time; std::vector rate_p; @@ -1574,20 +1452,12 @@ protected: /* ---------------------------------------------------------------------- * USER PRINT COMMANDS * ---------------------------------------------------------------------- */ - struct rate *user_print; - //struct rate *user_punch; - //const char **user_punch_headings; - //int user_punch_count_headings; + class rate* user_print; int n_user_punch_index; int fpunchf_user_s_warning; char fpunchf_user_buffer[80]; -#if defined PHREEQ98 - struct rate *user_graph; - char **user_graph_headings; - int user_graph_count_headings; -#endif #if defined MULTICHART ChartHandler chart_handler; public: @@ -1605,7 +1475,7 @@ protected: /* ---------------------------------------------------------------------- * GLOBAL DECLARATIONS * ---------------------------------------------------------------------- */ - const char * error_string; + const char* error_string; int simulation; int state; int reaction_step; @@ -1625,9 +1495,7 @@ protected: int count_strings; int max_strings; - LDBLE *array; - LDBLE *delta; - LDBLE *residual; + std::vector my_array, delta, residual; int input_error; @@ -1636,16 +1504,20 @@ protected: int paren_count; int iterations; int gamma_iterations; + size_t density_iterations; int run_reactions_iterations; + int overall_iterations; int max_line; - char *line; - char *line_save; + char* line; + char* line_save; LDBLE LOG_10; int debug_model; int debug_prep; + int debug_mass_action; + int debug_mass_balance; int debug_set; int debug_diffuse_layer; int debug_inverse; @@ -1674,39 +1546,38 @@ protected: int count_total_steps; int phast; - LDBLE *llnl_temp, *llnl_adh, *llnl_bdh, *llnl_bdot, *llnl_co2_coefs; - int llnl_count_temp, llnl_count_adh, llnl_count_bdh, llnl_count_bdot, - llnl_count_co2_coefs; + bool output_newline; + inline void Set_output_newline(bool tf) { this->output_newline = tf; } + inline bool Get_output_newline() { return this->output_newline; } + double a_llnl, b_llnl, bdot_llnl; + std::vector llnl_temp, llnl_adh, llnl_bdh, llnl_bdot, llnl_co2_coefs; //char *selected_output_file_name; std::map SelectedOutput_map; - SelectedOutput * current_selected_output; - - std::map UserPunch_map; - UserPunch * current_user_punch; + SelectedOutput* current_selected_output; - char *dump_file_name; + std::map UserPunch_map; + UserPunch* current_user_punch; + + char* dump_file_name; int remove_unstable_phases; std::string screen_string; #ifdef PHREEQCI_GUI - struct spread_sheet g_spread_sheet; + class spread_sheet g_spread_sheet; #endif int spread_length; /* ---------------------------------------------------------------------- */ /* - * Hash definitions + * Map definitions */ - std::map strings_map; -#ifdef HASH - std::hash_map strings_hash; -#endif - HashTable *elements_hash_table; - HashTable *species_hash_table; - HashTable *phases_hash_table; - HashTable *logk_hash_table; - HashTable *master_isotope_hash_table; + std::map strings_map; + std::map elements_map; + std::map species_map; + std::map phases_map; + std::map logk_map; + std::map master_isotope_map; #if defined(PHREEQCI_GUI) #include "../../phreeqci_gui.h" @@ -1714,27 +1585,17 @@ protected: /* ---------------------------------------------------------------------- * ISOTOPES * ---------------------------------------------------------------------- */ - //struct name_coef match_tokens[50]; - //int count_match_tokens; - int count_master_isotope; - struct master_isotope **master_isotope; - int max_master_isotope; + std::vector master_isotope; int initial_solution_isotopes; - int count_calculate_value; - struct calculate_value **calculate_value; - int max_calculate_value; - HashTable *calculate_value_hash_table; - int count_isotope_ratio; - struct isotope_ratio **isotope_ratio; - int max_isotope_ratio; - HashTable *isotope_ratio_hash_table; - int count_isotope_alpha; - struct isotope_alpha **isotope_alpha; - int max_isotope_alpha; - HashTable *isotope_alpha_hash_table; + std::vector calculate_value; + std::map calculate_value_map; + std::vector isotope_ratio; + std::map isotope_ratio_map; + std::vector isotope_alpha; + std::map isotope_alpha_map; int phreeqc_mpi_myself; int first_read_input; - char *user_database; + std::string user_database; //int have_punch_name; /* VP: Density Start */ @@ -1742,16 +1603,12 @@ protected: /* VP: Density End */ int print_viscosity; - LDBLE *zeros; - int zeros_max; - LDBLE viscos, viscos_0, viscos_0_25; // viscosity of the solution, of pure water, of pure water at 25 C LDBLE cell_pore_volume; LDBLE cell_porosity; LDBLE cell_volume; LDBLE cell_saturation; - struct system_species *sys; - int count_sys, max_sys; + std::vector sys; LDBLE sys_tot; LDBLE V_solutes, rho_0, rho_0_sat, kappa_0, p_sat/*, ah2o_x0*/; @@ -1766,39 +1623,30 @@ protected: LDBLE solution_mass, solution_volume; /* phqalloc.cpp ------------------------------- */ - PHRQMemHeader *s_pTail; + PHRQMemHeader* s_pTail; /* Basic */ - PBasic * basic_interpreter; - double (*basic_callback_ptr) (double x1, double x2, const char *str, void *cookie); - void *basic_callback_cookie; + PBasic* basic_interpreter; + + double (*basic_callback_ptr) (double x1, double x2, const char* str, void* cookie); + void* basic_callback_cookie; #ifdef IPHREEQC_NO_FORTRAN_MODULE - double (*basic_fortran_callback_ptr) (double *x1, double *x2, char *str, size_t l); + double (*basic_fortran_callback_ptr) (double* x1, double* x2, char* str, size_t l); #else - double (*basic_fortran_callback_ptr) (double *x1, double *x2, const char *str, int l); + double (*basic_fortran_callback_ptr) (double* x1, double* x2, const char* str, int l); #endif #if defined(SWIG) || defined(SWIG_IPHREEQC) - class BasicCallback *basicCallback; - void SetCallback(BasicCallback *cb) { basicCallback = cb; } + class BasicCallback* basicCallback; + void SetCallback(BasicCallback* cb) { basicCallback = cb; } #endif /* cl1.cpp ------------------------------- */ - LDBLE *x_arg, *res_arg, *scratch; - int x_arg_max, res_arg_max, scratch_max; -#ifdef SKIP - /* dw.cpp ------------------------------- */ - /* COMMON /QQQQ/ */ - LDBLE Q0, Q5; - LDBLE GASCON, TZ, AA; - LDBLE Z, DZ, Y; - LDBLE G1, G2, GF; - LDBLE B1, B2, B1T, B2T, B1TT, B2TT; -#endif + std::vector x_arg, res_arg, scratch; /* gases.cpp ------------------------------- */ LDBLE a_aa_sum, b2, b_sum, R_TK; /* input.cpp ------------------------------- */ - int check_line_return; + int check_line_return; int reading_db; /* integrate.cpp ------------------------------- */ @@ -1806,27 +1654,28 @@ protected: LDBLE z_global, xd_global, alpha_global; /* inverse.cpp ------------------------------- */ - int max_row_count, max_column_count; + size_t max_row_count, max_column_count; int carbon; - const char **col_name, **row_name; - int count_rows, count_optimize; - int col_phases, col_redox, col_epsilon, col_ph, col_water, + std::vector col_name, row_name; + size_t count_rows, count_optimize; + size_t col_phases, col_redox, col_epsilon, col_ph, col_water, col_isotopes, col_phase_isotopes; - int row_mb, row_fract, row_charge, row_carbon, row_isotopes, + size_t row_mb, row_fract, row_charge, row_carbon, row_isotopes, row_epsilon, row_isotope_epsilon, row_water; - LDBLE *inv_zero, *array1, *inv_res, *inv_delta1, *delta2, *delta3, *inv_cu, - *delta_save; - LDBLE *min_delta, *max_delta; - int *inv_iu, *inv_is; - int klmd, nklmd, n2d, kode, iter; + std::vector inv_zero, array1, inv_res, inv_delta1, delta2, + delta3, inv_cu, delta_save; + std::vector min_delta, max_delta; + std::vector inv_iu, inv_is; + size_t klmd, nklmd, n2d; + int kode, iter; LDBLE toler, error, max_pct, scaled_error; - struct master *master_alk; - int *row_back, *col_back; - unsigned long *good, *bad, *minimal; - int max_good, max_bad, max_minimal; + class master* master_alk; + std::vector row_back, col_back; + std::vector good, bad, minimal; + size_t max_good, max_bad, max_minimal; int count_good, count_bad, count_minimal, count_calls; unsigned long soln_bits, phase_bits, current_bits, temp_bits; - FILE *netpath_file; + FILE* netpath_file; int count_inverse_models, count_pat_solutions; int min_position[32], max_position[32], now[32]; std::vector inverse_heading_names; @@ -1834,7 +1683,7 @@ protected: /* kinetics.cpp ------------------------------- */ public: int count_pp, count_pg, count_ss; - void *cvode_kinetics_ptr; + void* cvode_kinetics_ptr; int cvode_test; int cvode_error; int cvode_n_user; @@ -1848,80 +1697,52 @@ public: N_Vector cvode_prev_good_y; M_Env kinetics_machEnv; N_Vector kinetics_y, kinetics_abstol; - void *kinetics_cvode_mem; - cxxSSassemblage *cvode_ss_assemblage_save; - cxxPPassemblage *cvode_pp_assemblage_save; + void* kinetics_cvode_mem; + cxxSSassemblage* cvode_ss_assemblage_save; + cxxPPassemblage* cvode_pp_assemblage_save; protected: - LDBLE *m_original; - LDBLE *m_temp; - LDBLE *rk_moles; + std::vector m_temp, m_original, rk_moles, x0_moles; int set_and_run_attempt; - LDBLE *x0_moles; /* model.cpp ------------------------------- */ int gas_in; LDBLE min_value; - LDBLE *normal, *ineq_array, *res, *cu, *zero, *delta1; - int *iu, *is, *back_eq; - int normal_max, ineq_array_max, res_max, cu_max, zero_max, - delta1_max, iu_max, is_max, back_eq_max; + std::vector normal, ineq_array, res, cu, zero, delta1; + std::vector iu, is, back_eq; /* phrq_io_output.cpp ------------------------------- */ int forward_output_to_log; /* phreeqc_files.cpp ------------------------------- */ - char *default_data_base; -#ifdef PHREEQ98 - int outputlinenr; - char *LogFileNameC; - char progress_str[512]; -#endif - + std::string default_data_base; /* Pitzer */ int pitzer_model, sit_model, pitzer_pe; int full_pitzer, always_full_pitzer, ICON, IC; LDBLE COSMOT; LDBLE AW; LDBLE VP, DW0; - struct pitz_param **pitz_params; - int count_pitz_param, max_pitz_param; + std::vector pitz_params; std::map< std::string, size_t > pitz_param_map; - struct theta_param **theta_params; - int count_theta_param, max_theta_param; + std::vector theta_params; int use_etheta; LDBLE OTEMP, OPRESS; LDBLE A0; - struct pitz_param *aphi; - struct species **spec, **cations, **anions, **neutrals; + class pitz_param* aphi/* = NULL*/; + std::vector spec; + class species** cations, ** anions, ** neutrals; // pointers to spec int count_cations, count_anions, count_neutrals; int MAXCATIONS, FIRSTANION, MAXNEUTRAL; - struct pitz_param *mcb0, *mcb1, *mcc0; - int *IPRSNT; - LDBLE *M, *LGAMMA; + class pitz_param* mcb0, * mcb1, * mcc0; + std::vector IPRSNT; + std::vector M, LGAMMA; LDBLE BK[23], DK[23]; -#ifdef PHREEQ98 - int connect_simulations, graph_initial_solutions; - int shifts_as_points; - int chart_type; - int ShowChart; - int RowOffset, ColumnOffset; -#endif LDBLE dummy; /* print.cpp ------------------------------- */ -#ifdef PHREEQ98 - int colnr, rownr; - int graph_initial_solutions; - int prev_advection_step, prev_transport_step; /*, prev_reaction_step */ - /* int shifts_as_points; */ - int chart_type; - int AddSeries; - int FirstCallToUSER_GRAPH; -#endif /* read.cpp */ - char *prev_next_char; + const char* prev_next_char; #if defined PHREEQ98 int shifts_as_points; #endif @@ -1930,65 +1751,58 @@ protected: dumper dump_info; StorageBinList delete_info; runner run_info; - char * sformatf_buffer; + char* sformatf_buffer; size_t sformatf_buffer_size; /* readtr.cpp */ std::string dump_file_name_cpp; /* sit.cpp ------------------------------- */ - struct pitz_param **sit_params; - int count_sit_param, max_sit_param; + std::vector sit_params; std::map< std::string, size_t > sit_param_map; LDBLE sit_A0; int sit_count_cations, sit_count_anions, sit_count_neutrals; int sit_MAXCATIONS, sit_FIRSTANION, sit_MAXNEUTRAL; - int *sit_IPRSNT; - LDBLE *sit_M, *sit_LGAMMA; + std::vector sit_IPRSNT; + std::vector sit_M, sit_LGAMMA; std::vector s_list, cation_list, neutral_list, anion_list, ion_list, param_list; /* tidy.cpp ------------------------------- */ LDBLE a0, a1, kc, kb; /* tally.cpp ------------------------------- */ - struct tally_buffer *t_buffer; - int tally_count_component; - struct tally *tally_table; - int count_tally_table_columns; - int count_tally_table_rows; + class tally_buffer* t_buffer; + size_t tally_count_component; + //class tally* tally_table; + std::vector tally_table; + size_t count_tally_table_columns; + size_t count_tally_table_rows; /* transport.cpp ------------------------------- */ - struct sol_D *sol_D; - struct sol_D *sol_D_dbg; - struct J_ij *J_ij, *J_ij_il; + class sol_D* sol_D; + class sol_D* sol_D_dbg; + class J_ij* J_ij, * J_ij_il; int J_ij_count_spec; - struct M_S *m_s; + class M_S* m_s; int count_m_s; LDBLE tot1_h, tot1_o, tot2_h, tot2_o; LDBLE diffc_max, diffc_tr, J_ij_sum; int transp_surf; - LDBLE *heat_mix_array; - LDBLE *temp1, *temp2; + LDBLE* heat_mix_array; + LDBLE* temp1, * temp2; int nmix, heat_nmix; LDBLE heat_mix_f_imm, heat_mix_f_m; int warn_MCD_X, warn_fixed_Surf; LDBLE current_x, current_A, fix_current; // current: coulomb / s, Ampere, fixed current (Ampere) -#ifdef PHREEQ98 - int AutoLoadOutputFile, CreateToC; - int ProcessMessages, ShowProgress, ShowProgressWindow, ShowChart; - int outputlinenr; - int stop_calculations; - char err_str98[80]; -#endif /* utilities.cpp ------------------------------- */ int spinner; std::map gfw_map; - std::map rates_map; + std::map rates_map; /* new after release of Version 3 */ - std::map > sum_species_map; + std::map > sum_species_map; std::map > sum_species_map_db; friend class PBasic; @@ -2003,17 +1817,17 @@ protected: std::vector keycount; // used to mark keywords that have been read public: - static const struct const_iso iso_defaults[]; + static const class const_iso iso_defaults[]; static const int count_iso_defaults; }; #endif /* _INC_PHREEQC_H */ #ifndef _INC_ISFINITE_H #define _INC_ISFINITE_H - /********************************* - isfinite handling - (Note: Should NOT be guarded) - **********************************/ +/********************************* +isfinite handling +(Note: Should NOT be guarded) +**********************************/ #if defined (PHREEQ98) || defined (_MSC_VER) # define HAVE_FINITE @@ -2047,7 +1861,7 @@ namespace Utilities // operations on maps of entities (Solution, Exchange, ...) template < typename T > - void Rxn_dump_raw(const T & b, std::ostream & s_oss, unsigned int indent) + void Rxn_dump_raw(const T& b, std::ostream& s_oss, unsigned int indent) { typename T::const_iterator it; for (it = b.begin(); it != b.end(); ++it) @@ -2062,7 +1876,23 @@ namespace Utilities } template < typename T > - T * Rxn_find(std::map < int, T > &b, int i) + void Rxn_dump_raw_range(const T& b, std::ostream& s_oss, int start, int end, unsigned int indent) + { + typename T::const_iterator it; + for (int i = start; i <= end; i++) + { + if (i < 0) continue; + it = b.find(i); + if (it != b.end()) + { + it->second.dump_raw(s_oss, indent); + } + } + return; + } + + template < typename T > + T* Rxn_find(std::map < int, T >& b, int i) { if (b.find(i) != b.end()) { @@ -2075,7 +1905,7 @@ namespace Utilities } template < typename T > - int Rxn_next_user_number(std::map < int, T > &b) + int Rxn_next_user_number(std::map < int, T >& b) { int ret = 0; if (b.size() != 0) @@ -2086,7 +1916,7 @@ namespace Utilities } template < typename T > - T * Rxn_copy(std::map < int, T > &b, int i, int j) + T* Rxn_copy(std::map < int, T >& b, int i, int j) { typename std::map < int, T >::iterator it; it = b.find(i); @@ -2105,7 +1935,7 @@ namespace Utilities } template < typename T > - void Rxn_copies(std::map < int, T > &b, int n_user, int n_user_end) + void Rxn_copies(std::map < int, T >& b, int n_user, int n_user_end) { if (n_user_end <= n_user) return; typename std::map < int, T >::iterator it; @@ -2122,7 +1952,7 @@ namespace Utilities } } template < typename T > - int Rxn_read_raw(std::map < int, T > &m, std::set < int > &s, Phreeqc * phreeqc_cookie) + int Rxn_read_raw(std::map < int, T >& m, std::set < int >& s, Phreeqc* phreeqc_cookie) { typename std::map < int, T >::iterator it; assert(!phreeqc_cookie->reading_database()); @@ -2147,12 +1977,11 @@ namespace Utilities return phreeqc_cookie->cleanup_after_parser(parser); } -#ifdef SKIP template < typename T > - int Rxn_read_modify(std::map < int, T > &m, std::set < int > &s, Phreeqc * phreeqc_cookie) + int Rxn_read_modify(std::map < int, T >& m, std::set < int >& s, Phreeqc* phreeqc_cookie) { typename std::map < int, T >::iterator it; - + CParser parser(phreeqc_cookie->Get_phrq_io()); std::string key_name; @@ -2162,43 +1991,11 @@ namespace Utilities cxxNumKeyword nk; nk.read_number_description(parser); - T * entity_ptr = Utilities::Rxn_find(m, nk.Get_n_user()); + T* entity_ptr = Utilities::Rxn_find(m, nk.Get_n_user()); if (!entity_ptr) { std::ostringstream errstr; - errstr << "Could not find " << key_name << " " << nk.Get_n_user() << " to modify.\n"; - phreeqc_cookie->error_msg(errstr.str().c_str(), PHRQ_io::OT_STOP); - } - - entity_ptr->read_raw(parser, false); - entity_ptr->Set_n_user(nk.Get_n_user()); - entity_ptr->Set_n_user_end(nk.Get_n_user_end()); - entity_ptr->Set_description(nk.Get_description()); - s.insert(entity_ptr->Get_n_user()); - - return phreeqc_cookie->cleanup_after_parser(parser); - } -#endif - - template < typename T > - int Rxn_read_modify(std::map < int, T > &m, std::set < int > &s, Phreeqc * phreeqc_cookie) - { - typename std::map < int, T >::iterator it; - - CParser parser(phreeqc_cookie->Get_phrq_io()); - - std::string key_name; - std::string::iterator b = parser.line().begin(); - std::string::iterator e = parser.line().end(); - CParser::copy_token(key_name, b, e); - - cxxNumKeyword nk; - nk.read_number_description(parser); - T * entity_ptr = Utilities::Rxn_find(m, nk.Get_n_user()); - if (!entity_ptr) - { - std::ostringstream errstr; - errstr << "Could not find " << key_name << " " << nk.Get_n_user() << ", ignoring modify data.\n"; + errstr << "Could not find " << key_name << " " << nk.Get_n_user() << ", ignoring modify data.\n"; phreeqc_cookie->warning_msg(errstr.str().c_str()); //phreeqc_cookie->error_msg(errstr.str().c_str(), PHRQ_io::OT_STOP); @@ -2219,7 +2016,41 @@ namespace Utilities } template < typename T > - void Rxn_mix(std::map &mix_map, std::map < int, T > &entity_map, Phreeqc * phreeqc_cookie) + int SB_read_modify(std::map < int, T >& m, CParser& parser) + { + typename std::map < int, T >::iterator it; + + std::string key_name; + std::string::iterator b = parser.line().begin(); + std::string::iterator e = parser.line().end(); + CParser::copy_token(key_name, b, e); + + cxxNumKeyword nk; + nk.read_number_description(parser); + T* entity_ptr = Utilities::Rxn_find(m, nk.Get_n_user()); + if (!entity_ptr) + { + std::ostringstream errstr; + errstr << "Could not find " << key_name << " " << nk.Get_n_user() << ", ignoring modify data.\n"; + //io->warning_msg(errstr.str().c_str()); + + // Don't throw, read data into dummy entity, then ignore + T entity; + entity_ptr = &entity; + entity_ptr->read_raw(parser, false); + return FALSE; + } + + entity_ptr->read_raw(parser, false); + entity_ptr->Set_n_user(nk.Get_n_user()); + entity_ptr->Set_n_user_end(nk.Get_n_user_end()); + entity_ptr->Set_description(nk.Get_description()); + + return TRUE; + } + + template < typename T > + void Rxn_mix(std::map & mix_map, std::map < int, T >& entity_map, Phreeqc* phreeqc_cookie) { std::map::iterator mix_it; for (mix_it = mix_map.begin(); mix_it != mix_map.end(); mix_it++) @@ -2235,14 +2066,14 @@ namespace Utilities #if defined(PHREEQCI_GUI) -void PhreeqcIWait(Phreeqc *phreeqc); +void PhreeqcIWait(Phreeqc* phreeqc); #endif #if !defined(NDEBUG) && defined(WIN32_MEMORY_DEBUG) #define string_duplicate(s) _string_duplicate(s, __FILE__, __LINE__) #endif #if defined(_DEBUG) - char * _string_duplicate(const char *token, const char *szFileName, int nLine); +char* _string_duplicate(const char* token, const char* szFileName, int nLine); #endif #endif //_INC_UTILITIES_NAMESPACE_H diff --git a/PhreeqcKeywords/Keywords.cpp b/PhreeqcKeywords/Keywords.cpp index c17be459..c92bf0de 100644 --- a/PhreeqcKeywords/Keywords.cpp +++ b/PhreeqcKeywords/Keywords.cpp @@ -1,5 +1,12 @@ #include "Keywords.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif Keywords::Keywords(void) { diff --git a/PhreeqcKeywords/Keywords.h b/PhreeqcKeywords/Keywords.h index 7c5e3740..f812fb39 100644 --- a/PhreeqcKeywords/Keywords.h +++ b/PhreeqcKeywords/Keywords.h @@ -96,4 +96,4 @@ public: static const std::map phreeqc_keyword_names; }; -#endif // _INC_KEYWORDS_H \ No newline at end of file +#endif // _INC_KEYWORDS_H diff --git a/Pressure.cxx b/Pressure.cxx index 03bd30ca..a5075b0d 100644 --- a/Pressure.cxx +++ b/Pressure.cxx @@ -8,11 +8,19 @@ #include // std::sort #include "Utils.h" // define first -#include "Parser.h" #include "Phreeqc.h" +#include "Parser.h" #include "Pressure.h" #include "phqalloc.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + ////////////////////////////////////////////////////////////////////// // Construction/Destruction ////////////////////////////////////////////////////////////////////// @@ -310,40 +318,6 @@ cxxPressure::read_raw(CParser & parser, bool check) } } } -#ifdef SKIP -void -cxxPressure::dump_xml(std::ostream & s_oss, unsigned int indent) const const -{ - unsigned int i; - s_oss.precision(DBL_DIG - 1); - std::string indent0(""), indent1(""), indent2(""); - for (i = 0; i < indent; ++i) - indent0.append(Utilities::INDENT); - for (i = 0; i < indent + 1; ++i) - indent1.append(Utilities::INDENT); - for (i = 0; i < indent + 2; ++i) - indent2.append(Utilities::INDENT); - - // Temperature element and attributes - s_oss << indent0; - s_oss << " - pitzer_temperature_gammas << "\"" << "\n"; - - // components - s_oss << indent1; - s_oss << "::const_iterator it = - temperatureComps.begin(); it != temperatureComps.end(); ++it) - { - it->dump_xml(s_oss, indent + 2); - } - - return; -} -#endif /* ---------------------------------------------------------------------- */ LDBLE cxxPressure:: Pressure_for_step(int step_number) @@ -370,9 +344,9 @@ Pressure_for_step(int step_number) else { LDBLE denom; - denom = (this->count <= 1) ? 1 : (LDBLE) (this->count - 1); + denom = (this->count <= 1) ? 1 : ((LDBLE)this->count - 1); p_temp = this->pressures[0] + ( this->pressures[1] - this->pressures[0]) * - ((LDBLE) (step_number - 1)) / (denom); + (((LDBLE)step_number - 1)) / (denom); } } else @@ -383,7 +357,7 @@ Pressure_for_step(int step_number) } else { - p_temp = this->pressures[step_number - 1]; + p_temp = this->pressures[(size_t)step_number - 1]; } } @@ -440,4 +414,4 @@ const std::vector< std::string >::value_type temp_vopts[] = { std::vector< std::string >::value_type("equal_increments"), //1 std::vector< std::string >::value_type("count") //2 }; -const std::vector< std::string > cxxPressure::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); \ No newline at end of file +const std::vector< std::string > cxxPressure::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); diff --git a/Reaction.cxx b/Reaction.cxx index 44252814..511e3719 100644 --- a/Reaction.cxx +++ b/Reaction.cxx @@ -12,6 +12,13 @@ #include "Reaction.h" #include "phqalloc.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif ////////////////////////////////////////////////////////////////////// // Construction/Destruction @@ -33,41 +40,6 @@ cxxReaction::~cxxReaction() { } -#ifdef SKIP -void -cxxReaction::dump_xml(std::ostream & s_oss, unsigned int indent) const const -{ - unsigned int i; - s_oss.precision(DBL_DIG - 1); - std::string indent0(""), indent1(""), indent2(""); - for (i = 0; i < indent; ++i) - indent0.append(Utilities::INDENT); - for (i = 0; i < indent + 1; ++i) - indent1.append(Utilities::INDENT); - for (i = 0; i < indent + 2; ++i) - indent2.append(Utilities::INDENT); - - // Reaction element and attributes - s_oss << indent0; - s_oss << " - pitzer_irrev_gammas << "\"" << "\n"; - - // components - s_oss << indent1; - s_oss << "::const_iterator it = - irrevComps.begin(); it != irrevComps.end(); ++it) - { - it->dump_xml(s_oss, indent + 2); - } - - return; -} -#endif - void cxxReaction::dump_raw(std::ostream & s_oss, unsigned int indent, int *n_out) const { @@ -309,4 +281,4 @@ const std::vector< std::string >::value_type temp_vopts[] = { std::vector< std::string >::value_type("equal_increments"), //4 std::vector< std::string >::value_type("count_steps") //5 }; -const std::vector< std::string > cxxReaction::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); \ No newline at end of file +const std::vector< std::string > cxxReaction::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); diff --git a/ReadClass.cxx b/ReadClass.cxx index a6350745..937d6575 100644 --- a/ReadClass.cxx +++ b/ReadClass.cxx @@ -24,6 +24,14 @@ #include "Surface.h" #include "phqalloc.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /* ---------------------------------------------------------------------- */ int Phreeqc:: read_dump(void) @@ -459,7 +467,7 @@ int Phreeqc:: run_as_cells(void) /* ---------------------------------------------------------------------- */ { - struct save save_data; + class save save_data; LDBLE kin_time; int count_steps, use_mix; char token[2 * MAX_LENGTH]; @@ -534,7 +542,7 @@ run_as_cells(void) /* * save data for saving solutions */ - memcpy(&save_data, &save, sizeof(struct save)); + memcpy(&save_data, &save, sizeof(class save)); /* *Copy everything to -2 */ @@ -611,7 +619,7 @@ run_as_cells(void) /* * save end of reaction */ - memcpy(&save, &save_data, sizeof(struct save)); + memcpy(&save, &save_data, sizeof(class save)); if (use.Get_kinetics_in() == TRUE) { Utilities::Rxn_copy(Rxn_kinetics_map, -2, use.Get_n_kinetics_user()); @@ -669,7 +677,7 @@ int Phreeqc:: run_as_cells(void) /* ---------------------------------------------------------------------- */ { - struct save save_data; + class save save_data; LDBLE kin_time; int count_steps, use_mix; char token[2 * MAX_LENGTH]; @@ -745,7 +753,8 @@ run_as_cells(void) /* * save data for saving solutions */ - memcpy(&save_data, &save, sizeof(struct save)); + // memcpy(&save_data, &save, sizeof(class save)); + save_data = save; /* *Copy everything to -2 */ @@ -825,7 +834,8 @@ run_as_cells(void) /* * save end of reaction */ - memcpy(&save, &save_data, sizeof(struct save)); + // memcpy(&save, &save_data, sizeof(class save)); + save = save_data; if (use.Get_kinetics_in() == TRUE) { Utilities::Rxn_copy(Rxn_kinetics_map, -2, use.Get_n_kinetics_user()); diff --git a/SS.cxx b/SS.cxx index 2ed2edc6..bee411af 100644 --- a/SS.cxx +++ b/SS.cxx @@ -13,7 +13,13 @@ #include "Dictionary.h" #include "phqalloc.h" - +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif ////////////////////////////////////////////////////////////////////// // Construction/Destruction @@ -49,35 +55,6 @@ cxxSS::~cxxSS() { } -#ifdef SKIP -void -cxxSS::dump_xml(std::ostream & s_oss, unsigned int indent) const const -{ - unsigned int i; - s_oss.precision(DBL_DIG - 1); - std::string indent0(""), indent1(""), indent2(""); - for (i = 0; i < indent; ++i) - indent0.append(Utilities::INDENT); - for (i = 0; i < indent + 1; ++i) - indent1.append(Utilities::INDENT); - for (i = 0; i < indent + 2; ++i) - indent2.append(Utilities::INDENT); - - // S_S element and attributes - - s_oss << indent0 << "name=\"" << this->name << "\"" << "\n"; - s_oss << indent0 << "add_formula=\"" << this-> - add_formula << "\"" << "\n"; - s_oss << indent0 << "si=\"" << this->si << "\"" << "\n"; - s_oss << indent0 << "moles=\"" << this->moles << "\"" << "\n"; - s_oss << indent0 << "delta=\"" << this->delta << "\"" << "\n"; - s_oss << indent0 << "initial_moles=\"" << this-> - initial_moles << "\"" << "\n"; - s_oss << indent0 << "dissolve_only=\"" << this-> - dissolve_only << "\"" << "\n"; - -} -#endif void cxxSS::dump_raw(std::ostream & s_oss, unsigned int indent) const { @@ -450,7 +427,7 @@ cxxSS::totalize(Phreeqc * phreeqc_ptr) // component structures for (size_t i = 0; i < this->ss_comps.size(); i++) { - struct phase *phase_ptr; + class phase *phase_ptr; int l; phase_ptr = phreeqc_ptr-> phase_bsearch(ss_comps[i].Get_name().c_str(), &l, FALSE); if (phase_ptr != NULL) @@ -580,7 +557,7 @@ cxxSS::Deserialize(Dictionary & dictionary, std::vector < int >&ints, this->ss_comps.clear(); for (int i = 0; i < count; i++) { - cxxSScomp ssc; + cxxSScomp ssc(this->io); ssc.Deserialize(dictionary, ints, doubles, ii, dd); this->ss_comps.push_back(ssc); } @@ -629,4 +606,4 @@ const std::vector< std::string >::value_type temp_vopts[] = { std::vector< std::string >::value_type("totals"), //16 std::vector< std::string >::value_type("dn") //17 }; -const std::vector< std::string > cxxSS::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); \ No newline at end of file +const std::vector< std::string > cxxSS::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); diff --git a/SSassemblage.cxx b/SSassemblage.cxx index 471127bb..6a0be268 100644 --- a/SSassemblage.cxx +++ b/SSassemblage.cxx @@ -16,6 +16,13 @@ #include "phqalloc.h" #include "Dictionary.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif ////////////////////////////////////////////////////////////////////// // Construction/Destruction @@ -57,37 +64,6 @@ cxxSSassemblage::~cxxSSassemblage() { } -#ifdef SKIP -void -cxxSSassemblage::dump_xml(std::ostream & s_oss, unsigned int indent) const const -{ - unsigned int i; - s_oss.precision(DBL_DIG - 1); - std::string indent0(""), indent1(""), indent2(""); - for (i = 0; i < indent; ++i) - indent0.append(Utilities::INDENT); - for (i = 0; i < indent + 1; ++i) - indent1.append(Utilities::INDENT); - for (i = 0; i < indent + 2; ++i) - indent2.append(Utilities::INDENT); - - // SSassemblage element and attributes - s_oss << indent0; - s_oss << "eltList.dump_xml(s_oss, indent + 1); - - // SSs - s_oss << indent1; - s_oss << "::const_iterator it = - SSs.begin(); it != SSs.end(); ++it) - { - it->dump_xml(s_oss, indent + 2); - } -} -#endif void cxxSSassemblage::dump_raw(std::ostream & s_oss, unsigned int indent, int *n_out) const { @@ -319,7 +295,7 @@ cxxSSassemblage::Deserialize(Dictionary & dictionary, std::vector < int >&ints, this->SSs.clear(); for (int n = 0; n < count; n++) { - cxxSS ssc; + cxxSS ssc(this->io); ssc.Deserialize(dictionary, ints, doubles, ii, dd); std::string str(ssc.Get_name()); this->SSs[str] = ssc; diff --git a/SScomp.cxx b/SScomp.cxx index a750a627..5b7b136f 100644 --- a/SScomp.cxx +++ b/SScomp.cxx @@ -13,6 +13,14 @@ #include "phqalloc.h" #include "Dictionary.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + ////////////////////////////////////////////////////////////////////// // Construction/Destruction ////////////////////////////////////////////////////////////////////// @@ -36,26 +44,6 @@ PHRQ_base(io) dnc = 0; dnb = 0; } -#ifdef SKIP -cxxSScomp::cxxSScomp(struct pure_phase * pure_phase_ptr, PHRQ_io *io) -: -PHRQ_base(io) - // - // constructor for cxxSScomp from struct pure_phase - // -{ - this->Set_name(pure_phase_ptr->name); - this->Set_add_formula(pure_phase_ptr->add_formula); - si = pure_phase_ptr->si; - si_org = pure_phase_ptr->si_org; - moles = pure_phase_ptr->moles; - delta = pure_phase_ptr->delta; - initial_moles = pure_phase_ptr->initial_moles; - force_equality = (pure_phase_ptr->force_equality == TRUE); - dissolve_only = (pure_phase_ptr->dissolve_only == TRUE); - precipitate_only = (pure_phase_ptr->precipitate_only == TRUE); -} -#endif cxxSScomp::~cxxSScomp() { } @@ -248,29 +236,6 @@ cxxSScomp::read_raw(CParser & parser, bool check) } } -#ifdef SKIP -void -cxxSScomp::totalize(Phreeqc * phreeqc_ptr) -{ - this->totals.clear(); - // component structures - if (this->add_formula.size() != 0) - return; - struct phase *phase_ptr; - int l; - phase_ptr = phreeqc_ptr-> phase_bsearch(this->name.c_str(), &l, FALSE); - if (phase_ptr != NULL) - { - cxxNameDouble phase_formula(phase_ptr->next_elt); - this->totals.add_extensive(phase_formula, this->moles); - } - else - { - assert(false); - } - return; -} -#endif void cxxSScomp::multiply(LDBLE extensive) { @@ -329,4 +294,4 @@ const std::vector< std::string >::value_type temp_vopts[] = { std::vector< std::string >::value_type("dnc"), // 9 std::vector< std::string >::value_type("dnb") // 10 }; -const std::vector< std::string > cxxSScomp::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); \ No newline at end of file +const std::vector< std::string > cxxSScomp::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); diff --git a/SelectedOutput.cpp b/SelectedOutput.cpp index 63937185..f28b3930 100644 --- a/SelectedOutput.cpp +++ b/SelectedOutput.cpp @@ -1,5 +1,13 @@ #include "SelectedOutput.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + SelectedOutput::SelectedOutput(int n, PHRQ_io *io) : cxxNumKeyword(io) { @@ -38,6 +46,7 @@ SelectedOutput::SelectedOutput(int n, PHRQ_io *io) this->water = false; this->charge_balance = false; this->percent_error = false; + this->new_line = true; // as-is set flags // @@ -62,6 +71,7 @@ SelectedOutput::SelectedOutput(int n, PHRQ_io *io) this->set_water = false; this->set_charge_balance = false; this->set_percent_error = false; + this->set_new_line = false; } SelectedOutput::~SelectedOutput(void) diff --git a/SelectedOutput.h b/SelectedOutput.h index 39a8bac0..0ea5c575 100644 --- a/SelectedOutput.h +++ b/SelectedOutput.h @@ -82,6 +82,7 @@ public: inline bool Get_water(void)const {return this->water;} inline bool Get_charge_balance(void)const {return this->charge_balance;} inline bool Get_percent_error(void)const {return this->percent_error;} + inline bool Get_new_line(void)const {return this->new_line; } // as-is setters inline void Set_user_punch(bool tf) {this->user_punch = tf; this->set_user_punch = true;} @@ -105,6 +106,7 @@ public: inline void Set_water(bool tf) {this->water = tf; this->set_water = true;} inline void Set_charge_balance(bool tf) {this->charge_balance = tf; this->set_charge_balance = true;} inline void Set_percent_error(bool tf) {this->percent_error = tf; this->set_percent_error = true;} + inline void Set_new_line(bool tf) {this->new_line = tf; this->set_new_line = true;} // set flag getters inline bool was_set_user_punch()const {return this->set_user_punch;} @@ -128,7 +130,8 @@ public: inline bool was_set_water()const {return this->set_water;} inline bool was_set_charge_balance()const {return this->set_charge_balance;} inline bool was_set_percent_error()const {return this->set_percent_error;} - + inline bool was_set_new_line()const {return this->set_new_line;} + protected: // vectors @@ -177,6 +180,7 @@ protected: bool water; bool charge_balance; bool percent_error; + bool new_line; // as-is set flags bool set_user_punch; @@ -200,5 +204,6 @@ protected: bool set_water; bool set_charge_balance; bool set_percent_error; + bool set_new_line; }; #endif // !defined(SELECTEDOUTPUT_H_INCLUDED) diff --git a/Serializer.cxx b/Serializer.cxx index 4b67baeb..b4ebab76 100644 --- a/Serializer.cxx +++ b/Serializer.cxx @@ -9,6 +9,15 @@ #include "PPassemblage.h" #include "SSassemblage.h" #include "Surface.h" + +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + Serializer::Serializer(PHRQ_io *io) : PHRQ_base(io) { @@ -133,7 +142,7 @@ Serializer::Deserialize(Phreeqc &phreeqc_ref, Dictionary &dictionary, std::vecto break; case PT_GASPHASE: { - cxxGasPhase entity; + cxxGasPhase entity(phreeqc_ref.Get_phrq_io()); entity.Deserialize(dictionary, ints, doubles, ii, dd); int n_user = entity.Get_n_user(); phreeqc_ref.Get_Rxn_gas_phase_map()[n_user] = entity; @@ -141,7 +150,7 @@ Serializer::Deserialize(Phreeqc &phreeqc_ref, Dictionary &dictionary, std::vecto break; case PT_KINETICS: { - cxxKinetics entity; + cxxKinetics entity(phreeqc_ref.Get_phrq_io()); entity.Deserialize(dictionary, ints, doubles, ii, dd); int n_user = entity.Get_n_user(); phreeqc_ref.Get_Rxn_kinetics_map()[n_user] = entity; @@ -158,7 +167,7 @@ Serializer::Deserialize(Phreeqc &phreeqc_ref, Dictionary &dictionary, std::vecto break; case PT_SSASSEMBLAGE: { - cxxSSassemblage entity; + cxxSSassemblage entity(phreeqc_ref.Get_phrq_io()); entity.Deserialize(dictionary, ints, doubles, ii, dd); int n_user = entity.Get_n_user(); phreeqc_ref.Get_Rxn_ss_assemblage_map()[n_user] = entity; diff --git a/Serializer.h b/Serializer.h index 80c285d8..f468dd47 100644 --- a/Serializer.h +++ b/Serializer.h @@ -39,4 +39,4 @@ protected: //std::string words_string; Dictionary dictionary; }; -#endif // !defined(SERIALIZER_H_INCLUDED) \ No newline at end of file +#endif // !defined(SERIALIZER_H_INCLUDED) diff --git a/Solution.cxx b/Solution.cxx index 3500128d..cb2d2941 100644 --- a/Solution.cxx +++ b/Solution.cxx @@ -15,6 +15,13 @@ #include "phqalloc.h" #include "Dictionary.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif ////////////////////////////////////////////////////////////////////// // Construction/Destruction @@ -83,6 +90,7 @@ cxxSolution::operator =(const cxxSolution &rhs) this->isotopes = rhs.isotopes; this->species_map = rhs.species_map; this->log_gamma_map = rhs.log_gamma_map; + this->log_molalities_map = rhs.log_molalities_map; if (this->initial_data) delete initial_data; if (rhs.initial_data != NULL) @@ -106,6 +114,17 @@ cxxSolution::cxxSolution(std::map < int, cxxSolution > &solutions, this->n_user = this->n_user_end = l_n_user; this->new_def = false; this->ah2o = 0; + // potV is an external variable, imposed in a given solution, not mixed. + std::map < int, cxxSolution >::const_iterator sol = solutions.find(mix.Get_n_user()); + const cxxSolution *cxxsoln_ptr1; + if (sol != solutions.end()) + { + cxxsoln_ptr1 = &(sol->second); + if (cxxsoln_ptr1->new_def) + this->potV = 0.0; + else + this->potV = cxxsoln_ptr1->potV; + } // // Mix solutions // @@ -113,8 +132,7 @@ cxxSolution::cxxSolution(std::map < int, cxxSolution > &solutions, std::map < int, LDBLE >::const_iterator it; for (it = mixcomps.begin(); it != mixcomps.end(); it++) { - std::map < int, cxxSolution >::const_iterator sol = - solutions.find(it->first); + sol = solutions.find(it->first); if (sol == solutions.end()) { std::ostringstream msg; @@ -123,7 +141,7 @@ cxxSolution::cxxSolution(std::map < int, cxxSolution > &solutions, } else { - const cxxSolution *cxxsoln_ptr1 = &(sol->second); + cxxsoln_ptr1 = &(sol->second); this->add(*cxxsoln_ptr1, it->second); } } @@ -327,6 +345,19 @@ cxxSolution::dump_raw(std::ostream & s_oss, unsigned int indent, int *n_out) con s_oss << it->first << " " << it->second << "\n"; } } + + // log_molalities_map + if (log_molalities_map.size() > 0) + { + s_oss << indent1; + s_oss << "-log_molalities_map" << "\n"; + std::map::const_iterator it = this->log_molalities_map.begin(); + for (; it != log_molalities_map.end(); it++) + { + s_oss << indent2; + s_oss << it->first << " " << it->second << "\n"; + } + } return; } @@ -1013,7 +1044,32 @@ cxxSolution::read_raw(CParser & parser, bool check) } opt_save = CParser::OPT_DEFAULT; break; - + case 27: // log_molalities_map + { + int s_num; + if (parser.peek_token() != CParser::TT_EMPTY) + { + if (!(parser.get_iss() >> s_num)) + { + parser.incr_input_error(); + parser.error_msg("Expected integer for species number.", + PHRQ_io::OT_CONTINUE); + } + else + { + double d; + if (!(parser.get_iss() >> d)) + { + parser.incr_input_error(); + parser.error_msg("Expected double for species molality.", + PHRQ_io::OT_CONTINUE); + } + this->log_molalities_map[s_num] = d; + } + } + opt_save = 27; + } + break; } if (opt == CParser::OPT_EOF || opt == CParser::OPT_KEYWORD) break; @@ -1128,7 +1184,7 @@ cxxSolution::Update(LDBLE h_tot, LDBLE o_tot, LDBLE charge, const cxxNameDouble cxxNameDouble::iterator it; for (it = this->totals.begin(); it != this->totals.end(); it++) { - if (it->second < 1e-18) + if (it->second < 1e-25) { it->second = 0.0; } @@ -1297,44 +1353,6 @@ cxxSolution::Update(const cxxNameDouble &const_nd) // update totals this->totals = simple_new; } -#ifdef SKIP -void -cxxSolution::Update(const cxxNameDouble &const_nd) -{ - // const_nd is updated totals - cxxNameDouble simple_original_totals = this->totals.Simplify_redox(); - cxxNameDouble original_activities(this->master_activity); - - this->master_activity.clear(); - - // Update activities - if (original_activities.size() > 0) - { - cxxNameDouble nd = const_nd; - cxxNameDouble simple_this_totals = nd.Simplify_redox(); - cxxNameDouble::iterator it = simple_original_totals.begin(); - for ( ; it != simple_original_totals.end(); it++) - { - cxxNameDouble::iterator jit = simple_this_totals.find(it->first); - if (jit != simple_this_totals.end()) - { - if (it->second != 0) - { - LDBLE f = jit->second / it->second; - if (f != 1) - { - original_activities.Multiply_activities_redox(it->first, f); - } - } - } - } - original_activities.merge_redox(this->master_activity); - this->master_activity = original_activities; - } - - return; -} -#endif void cxxSolution::zero() { @@ -1380,7 +1398,7 @@ cxxSolution::add(const cxxSolution & addee, LDBLE extensive) this->cb += addee.cb * extensive; this->density = f1 * this->density + f2 * addee.density; this->patm = f1 * this->patm + f2 * addee.patm; - this->potV = f1 * this->potV + f2 * addee.potV; + // this->potV = f1 * this->potV + f2 * addee.potV; // appt this->mass_water += addee.mass_water * extensive; this->soln_vol += addee.soln_vol * extensive; this->total_alkalinity += addee.total_alkalinity * extensive; @@ -1415,6 +1433,19 @@ cxxSolution::add(const cxxSolution & addee, LDBLE extensive) this->log_gamma_map[git->first] = git->second; } } + // Add molalities + std::map::const_iterator mit = addee.log_molalities_map.begin(); + for (; mit != addee.log_molalities_map.end(); mit++) + { + if (this->log_molalities_map.find(mit->first) != this->log_molalities_map.end()) + { + this->log_molalities_map[mit->first] = this->log_molalities_map[mit->first] * f1 + mit->second * f2; + } + else + { + this->log_molalities_map[mit->first] = mit->second; + } + } } } @@ -1449,31 +1480,6 @@ cxxSolution::Get_total(const char *string) const return (it->second); } } -#ifdef SKIP -LDBLE -cxxSolution::Get_total_element(const char *string) const -{ - cxxNameDouble::const_iterator it; - LDBLE d = 0.0; - for (it = this->totals.begin(); it != this->totals.end(); ++it) - { - // C++ way to do it - std::string ename(string); - std::string current_ename(it->first); - std::basic_string < char >::size_type indexCh; - indexCh = current_ename.find("("); - if (indexCh != std::string::npos) - { - current_ename = current_ename.substr(0, indexCh); - } - if (current_ename == ename) - { - d += it->second; - } - } - return (d); -} -#endif void cxxSolution::Set_total(char *string, LDBLE d) @@ -1618,6 +1624,18 @@ cxxSolution::Serialize(Dictionary & dictionary, std::vector < int >&ints, doubles.push_back(it->second); } } + /* + * log_molalities_map + */ + ints.push_back((int)log_molalities_map.size()); + { + std::map < int, double >::iterator it; + for (it = log_molalities_map.begin(); it != log_molalities_map.end(); it++) + { + ints.push_back(it->first); + doubles.push_back(it->second); + } + } } /* ---------------------------------------------------------------------- */ @@ -1692,6 +1710,17 @@ cxxSolution::Deserialize(Dictionary & dictionary, std::vector < int >&ints, std: log_gamma_map[ints[ii++]] = doubles[dd++]; } } + /* + * log_molalities_map + */ + { + log_molalities_map.clear(); + int n = ints[ii++]; + for (int i = 0; i < n; i++) + { + log_molalities_map[ints[ii++]] = doubles[dd++]; + } + } } @@ -1722,6 +1751,7 @@ const std::vector< std::string >::value_type temp_vopts[] = { std::vector< std::string >::value_type("soln_vol"), // 23 std::vector< std::string >::value_type("species_map"), // 24 std::vector< std::string >::value_type("log_gamma_map"), // 25 - std::vector< std::string >::value_type("potential") // 26 + std::vector< std::string >::value_type("potential"), // 26 + std::vector< std::string >::value_type("log_molalities_map") // 27 }; -const std::vector< std::string > cxxSolution::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); \ No newline at end of file +const std::vector< std::string > cxxSolution::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); diff --git a/Solution.h b/Solution.h index 1ab18654..cecabe78 100644 --- a/Solution.h +++ b/Solution.h @@ -66,6 +66,7 @@ class cxxSolution:public cxxNumKeyword cxxNameDouble & Get_species_gamma(void) {return this->species_gamma;} std::map & Get_species_map(void) {return this->species_map;} std::map & Get_log_gamma_map(void) {return this->log_gamma_map;} + std::map& Get_log_molalities_map(void) { return this->log_molalities_map; } std::map < std::string, cxxSolutionIsotope > & Get_isotopes(void) {return this->isotopes;} const std::map < std::string, cxxSolutionIsotope > & Get_isotopes(void)const {return this->isotopes;} void Set_isotopes(const std::map < std::string, cxxSolutionIsotope > &iso ) {this->isotopes = iso;} @@ -141,6 +142,7 @@ class cxxSolution:public cxxNumKeyword const static std::vector < std::string > vopts; std::map species_map; std::map log_gamma_map; + std::map log_molalities_map; }; #endif // !defined(SOLUTION_H_INCLUDED) diff --git a/SolutionIsotope.cxx b/SolutionIsotope.cxx index d37c90c7..78d832a5 100644 --- a/SolutionIsotope.cxx +++ b/SolutionIsotope.cxx @@ -10,6 +10,14 @@ #include "phqalloc.h" #include "Dictionary.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + cxxSolutionIsotope::cxxSolutionIsotope(PHRQ_io *io) : PHRQ_base(io), diff --git a/SolutionIsotope.h b/SolutionIsotope.h index 231fe0ab..13fdd041 100644 --- a/SolutionIsotope.h +++ b/SolutionIsotope.h @@ -11,7 +11,7 @@ class cxxSolutionIsotope: public PHRQ_base { public: cxxSolutionIsotope(PHRQ_io *io=NULL); - cxxSolutionIsotope(struct isotope *isotope_ptr, PHRQ_io *io=NULL); + cxxSolutionIsotope(class isotope *isotope_ptr, PHRQ_io *io=NULL); virtual ~cxxSolutionIsotope(void); void dump_xml(std::ostream & os, unsigned int indent) const; diff --git a/StorageBin.cxx b/StorageBin.cxx index efe3ffb2..25665a03 100644 --- a/StorageBin.cxx +++ b/StorageBin.cxx @@ -28,6 +28,13 @@ #include "phqalloc.h" #include "Use.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif ////////////////////////////////////////////////////////////////////// // Construction/Destruction @@ -186,6 +193,155 @@ cxxStorageBin::Add(cxxStorageBin &src, int n) } } void +cxxStorageBin::Add_uz(cxxStorageBin &uzbin) +{ + cxxMix mx; + mx.Add(0, 1.0); + mx.Add(1, 1.0); + + // Solution + + // Exchange + { + std::map::iterator it_uz = uzbin.Get_Exchangers().begin(); + std::map temp_map; + for (; it_uz != uzbin.Get_Exchangers().end(); it_uz++) + { + int n_user = it_uz->second.Get_n_user(); + std::map < int, cxxExchange >::iterator it_sz = this->Exchangers.find(n_user); + if (it_sz == this->Exchangers.end()) + { + this->Exchangers[n_user] = it_uz->second; + } + else + { + temp_map[0] = it_uz->second; + temp_map[1] = it_sz->second; + cxxExchange temp_entity(temp_map, mx, n_user); + this->Exchangers[n_user] = temp_entity; + } + } + } + + // gas_phase + { + std::map::iterator it_uz = uzbin.Get_GasPhases().begin(); + std::map temp_map; + for (; it_uz != uzbin.Get_GasPhases().end(); it_uz++) + { + int n_user = it_uz->second.Get_n_user(); + std::map < int, cxxGasPhase >::iterator it_sz = this->GasPhases.find(n_user); + if (it_sz == this->GasPhases.end()) + { + this->GasPhases[n_user] = it_uz->second; + } + else + { + temp_map[0] = it_uz->second; + temp_map[1] = it_sz->second; + cxxGasPhase temp_entity(temp_map, mx, n_user); + this->GasPhases[n_user] = temp_entity; + } + } + } + + // kinetics + { + std::map::iterator it_uz = uzbin.Get_Kinetics().begin(); + std::map temp_map; + for (; it_uz != uzbin.Get_Kinetics().end(); it_uz++) + { + int n_user = it_uz->second.Get_n_user(); + std::map < int, cxxKinetics >::iterator it_sz = this->Kinetics.find(n_user); + if (it_sz == this->Kinetics.end()) + { + this->Kinetics[n_user] = it_uz->second; + } + else + { + temp_map[0] = it_uz->second; + temp_map[1] = it_sz->second; + cxxKinetics temp_entity(temp_map, mx, n_user); + this->Kinetics[n_user] = temp_entity; + } + } + } + + // pp_assemblage + { + std::map::iterator it_uz = uzbin.Get_PPassemblages().begin(); + std::map temp_map; + for (; it_uz != uzbin.Get_PPassemblages().end(); it_uz++) + { + int n_user = it_uz->second.Get_n_user(); + std::map < int, cxxPPassemblage >::iterator it_sz = this->PPassemblages.find(n_user); + if (it_sz == this->PPassemblages.end()) + { + this->PPassemblages[n_user] = it_uz->second; + } + else + { + temp_map[0] = it_uz->second; + temp_map[1] = it_sz->second; + cxxPPassemblage temp_entity(temp_map, mx, n_user); + this->PPassemblages[n_user] = temp_entity; + } + } + } + + // ss_assemblage + { + std::map::iterator it_uz = uzbin.Get_SSassemblages().begin(); + std::map temp_map; + for (; it_uz != uzbin.Get_SSassemblages().end(); it_uz++) + { + int n_user = it_uz->second.Get_n_user(); + std::map < int, cxxSSassemblage >::iterator it_sz = this->SSassemblages.find(n_user); + if (it_sz == this->SSassemblages.end()) + { + this->SSassemblages[n_user] = it_uz->second; + } + else + { + temp_map[0] = it_uz->second; + temp_map[1] = it_sz->second; + cxxSSassemblage temp_entity(temp_map, mx, n_user); + this->SSassemblages[n_user] = temp_entity; + } + } + } + + // surface + { + std::map::iterator it_uz = uzbin.Get_Surfaces().begin(); + std::map temp_map; + for (; it_uz != uzbin.Get_Surfaces().end(); it_uz++) + { + int n_user = it_uz->second.Get_n_user(); + std::map < int, cxxSurface >::iterator it_sz = this->Surfaces.find(n_user); + if (it_sz == this->Surfaces.end()) + { + this->Surfaces[n_user] = it_uz->second; + } + else + { + temp_map[0] = it_uz->second; + temp_map[1] = it_sz->second; + cxxSurface temp_entity(temp_map, mx, n_user); + this->Surfaces[n_user] = temp_entity; + } + } + } + + // mix + + // reaction + + // reaction temperature + + // reaction pressure +} +void cxxStorageBin::Copy(int destination, int source) { if (destination == source) @@ -653,41 +809,6 @@ cxxStorageBin::Get_Pressures() { return this->Pressures; } -#ifdef SKIP -void -cxxStorageBin::dump_xml(std::ostream & s_oss, unsigned int indent) const const -{ - unsigned int i; - s_oss.precision(DBL_DIG - 1); - std::string indent0(""), indent1(""), indent2(""); - for (i = 0; i < indent; ++i) - indent0.append(Utilities::INDENT); - for (i = 0; i < indent + 1; ++i) - indent1.append(Utilities::INDENT); - for (i = 0; i < indent + 2; ++i) - indent2.append(Utilities::INDENT); - - // StorageBin element and attributes - s_oss << indent0; - s_oss << " - pitzer_mix_gammas << "\"" << "\n"; - - // components - s_oss << indent1; - s_oss << "::const_iterator it = - mixComps.begin(); it != mixComps.end(); ++it) - { - it->dump_xml(s_oss, indent + 2); - } - - return; -} -#endif - void cxxStorageBin::dump_raw(std::ostream & s_oss, unsigned int indent) const { @@ -793,6 +914,43 @@ cxxStorageBin::dump_raw(std::ostream & s_oss, int n, unsigned int indent, int *n } } +void +cxxStorageBin::dump_raw_range(std::ostream & s_oss, int start, int end, unsigned int indent) const +{ + // Dump all data + s_oss.precision(DBL_DIG - 1); + + // Solutions + Utilities::Rxn_dump_raw_range(Solutions, s_oss, start, end, indent); + + // Exchange + Utilities::Rxn_dump_raw_range(Exchangers, s_oss, start, end, indent); + + // Gas Phases + Utilities::Rxn_dump_raw_range(GasPhases, s_oss, start, end, indent); + + // Kinetics + Utilities::Rxn_dump_raw_range(Kinetics, s_oss, start, end, indent); + + // PPassemblage + Utilities::Rxn_dump_raw_range(PPassemblages, s_oss, start, end, indent); + + // SSassemblage + Utilities::Rxn_dump_raw_range(SSassemblages, s_oss, start, end, indent); + + // Surface + Utilities::Rxn_dump_raw_range(Surfaces, s_oss, start, end, indent); + + // Mix + Utilities::Rxn_dump_raw_range(Mixes, s_oss, start, end, indent); + + // Reactions + Utilities::Rxn_dump_raw_range(Reactions, s_oss, start, end, indent); + + // Temperature + Utilities::Rxn_dump_raw_range(Temperatures, s_oss, start, end, indent); +} + void cxxStorageBin::read_raw(CParser & parser) { @@ -820,6 +978,11 @@ cxxStorageBin::read_raw(CParser & parser) Solutions[entity.Get_n_user()] = entity; } break; + case Keywords::KEY_SOLUTION_MODIFY: + { + Utilities::SB_read_modify(this->Solutions, parser); + } + break; case Keywords::KEY_EXCHANGE_RAW: { cxxExchange entity(this->Get_io()); @@ -827,6 +990,11 @@ cxxStorageBin::read_raw(CParser & parser) Exchangers[entity.Get_n_user()] = entity; } break; + case Keywords::KEY_EXCHANGE_MODIFY: + { + Utilities::SB_read_modify(this->Exchangers, parser); + } + break; case Keywords::KEY_GAS_PHASE_RAW: { cxxGasPhase entity(this->Get_io()); @@ -834,6 +1002,11 @@ cxxStorageBin::read_raw(CParser & parser) GasPhases[entity.Get_n_user()] = entity; } break; + case Keywords::KEY_GAS_PHASE_MODIFY: + { + Utilities::SB_read_modify(this->GasPhases, parser); + } + break; case Keywords::KEY_KINETICS_RAW: { cxxKinetics entity(this->Get_io()); @@ -841,7 +1014,11 @@ cxxStorageBin::read_raw(CParser & parser) Kinetics[entity.Get_n_user()] = entity; } break; - + case Keywords::KEY_KINETICS_MODIFY: + { + Utilities::SB_read_modify(this->Kinetics, parser); + } + break; case Keywords::KEY_EQUILIBRIUM_PHASES_RAW: { cxxPPassemblage entity(this->Get_io()); @@ -849,15 +1026,23 @@ cxxStorageBin::read_raw(CParser & parser) PPassemblages[entity.Get_n_user()] = entity; } break; - + case Keywords::KEY_EQUILIBRIUM_PHASES_MODIFY: + { + Utilities::SB_read_modify(this->PPassemblages, parser); + } + break; case Keywords::KEY_SOLID_SOLUTIONS_RAW: { - cxxSSassemblage entity; + cxxSSassemblage entity(this->Get_io()); entity.read_raw(parser); SSassemblages[entity.Get_n_user()] = entity; } break; - + case Keywords::KEY_SOLID_SOLUTIONS_MODIFY: + { + Utilities::SB_read_modify(this->SSassemblages, parser); + } + break; case Keywords::KEY_SURFACE_RAW: { cxxSurface entity(this->Get_io()); @@ -865,7 +1050,11 @@ cxxStorageBin::read_raw(CParser & parser) Surfaces[entity.Get_n_user()] = entity; } break; - + case Keywords::KEY_SURFACE_MODIFY: + { + Utilities::SB_read_modify(this->Surfaces, parser); + } + break; case Keywords::KEY_REACTION_TEMPERATURE_RAW: { cxxTemperature entity(this->Get_io()); @@ -873,7 +1062,6 @@ cxxStorageBin::read_raw(CParser & parser) Temperatures[entity.Get_n_user()] = entity; } break; - case Keywords::KEY_REACTION_RAW: { cxxReaction entity; @@ -881,6 +1069,11 @@ cxxStorageBin::read_raw(CParser & parser) Reactions[entity.Get_n_user()] = entity; } break; + case Keywords::KEY_REACTION_MODIFY: + { + Utilities::SB_read_modify(this->Reactions, parser); + } + break; case Keywords::KEY_MIX_RAW: { cxxMix entity; @@ -974,7 +1167,7 @@ cxxStorageBin::read_raw_keyword(CParser & parser) case Keywords::KEY_SOLID_SOLUTIONS_RAW: { - cxxSSassemblage entity; + cxxSSassemblage entity(this->Get_io()); entity.read_raw(parser); SSassemblages[entity.Get_n_user()] = entity; entity_number = entity.Get_n_user(); @@ -1097,258 +1290,6 @@ cxxStorageBin::Clear(void) // Pressure this->Pressures.clear(); } -#ifdef SKIP -cxxSolution * -cxxStorageBin::mix_cxxSolutions(cxxMix & mixmap) -{ -/* - * mixes solutions based on cxxMix structure, returns new solution - * return solution must be freed by calling method - */ - LDBLE intensive, extensive; - cxxSolution *cxxsoln_ptr, *cxxsoln_ptr1; -/* - * Zero out global solution data - */ - cxxsoln_ptr = new cxxSolution(0.0); -/* - * Determine sum of mixing fractions - */ - extensive = 0.0; - - std::map < int, LDBLE >*mixcomps = mixmap.comps(); - - std::map < int, LDBLE >::const_iterator it; - for (it = mixcomps->begin(); it != mixcomps->end(); it++) - { - extensive += it->second; - } -/* - * Add solutions - */ - for (it = mixcomps->begin(); it != mixcomps->end(); it++) - { - cxxsoln_ptr1 = &((this->Solutions.find(it->first))->second); - if (cxxsoln_ptr1 == NULL) - { - error_string = sformatf( - "Solution %d not found in mix_cxxSolutions.", it->first); - error_msg(error_string, CONTINUE); - phreeqc_ptr-> input_error++; - return (NULL); - } - intensive = it->second / extensive; - cxxsoln_ptr->add(*cxxsoln_ptr1, intensive, it->second); - } - return (cxxsoln_ptr); -} -#endif - -#ifdef SKIP_OR_MOVE_TO_STRUCTURES -struct system * -cxxStorageBin::cxxStorageBin2system(Phreeqc * phreeqc_ptr, int n) - // - // make a system from storagebin - // -{ - struct system *system_ptr = - (struct system *) phreeqc_ptr-> PHRQ_malloc(sizeof(struct system)); - if (system_ptr == NULL) - phreeqc_ptr-> malloc_error(); - - // Solutions - - if (this->getSolution(n) != NULL) - { - //system_ptr->solution = (this->getSolution(n))->cxxSolution2solution(phreeqc_ptr); - system_ptr->solution = phreeqc_ptr-> cxxSolution2solution(this->getSolution(n)); - } - else - { - system_ptr->solution = NULL; - } - - // Exchangers - if (this->getExchange(n) != NULL) - { - //system_ptr->exchange = (this->getExchange(n))->cxxExchange2exchange(phreeqc_ptr); - system_ptr->exchange = phreeqc_ptr-> cxxExchange2exchange(this->getExchange(n)); - } - else - { - system_ptr->exchange = NULL; - } - - // GasPhases - if (this->getGasPhase(n) != NULL) - { - //system_ptr->gas_phase = (this->getGasPhase(n))->cxxGasPhase2gas_phase(phreeqc_ptr); - system_ptr->gas_phase = phreeqc_ptr-> cxxGasPhase2gas_phase(this->getGasPhase(n)); - } - else - { - system_ptr->gas_phase = NULL; - } - - // Kinetics - if (this->getKinetics(n) != NULL) - { - //system_ptr->kinetics = (this->getKinetics(n))->cxxKinetics2kinetics(phreeqc_ptr); - system_ptr->kinetics = phreeqc_ptr-> cxxKinetics2kinetics(this->getKinetics(n)); - - } - else - { - system_ptr->kinetics = NULL; - } - - // PPassemblages - if (this->getPPassemblage(n) != NULL) - { - //system_ptr->pp_assemblage = - // (this->getPPassemblage(n))->cxxPPassemblage2pp_assemblage(phreeqc_ptr); - system_ptr->pp_assemblage = - phreeqc_ptr-> cxxPPassemblage2pp_assemblage(this->getPPassemblage(n)); - } - else - { - system_ptr->pp_assemblage = NULL; - } - - // SSassemblages - if (this->getSSassemblage(n) != NULL) - { - //system_ptr->ss_assemblage = - // (this->getSSassemblage(n))->cxxSSassemblage2ss_assemblage(phreeqc_ptr); - system_ptr->ss_assemblage = - phreeqc_ptr-> cxxSSassemblage2ss_assemblage((this->getSSassemblage(n))); - } - else - { - system_ptr->ss_assemblage = NULL; - } - - // Surfaces - if (this->getSurface(n) != NULL) - { - //system_ptr->surface = (this->getSurface(n))->cxxSurface2surface(phreeqc_ptr); - system_ptr->surface = phreeqc_ptr-> cxxSurface2surface((this->getSurface(n))); - } - else - { - system_ptr->surface = NULL; - } - return system_ptr; -} -#endif - -#ifdef SKIP -cxxExchange * -cxxStorageBin::mix_cxxExchange(cxxMix & mixmap) -{ -/* - * mixes exchangers based on cxxMix structure, returns new exchanger - * return exchanger must be freed by calling method - */ - cxxExchange *new_exch_ptr, *old_exch_ptr; -/* - * Zero out global solution data - */ - new_exch_ptr = new cxxExchange(); - - std::map < int, LDBLE >::const_iterator it_mix; - std::map < int, LDBLE >*mixcomps = mixmap.comps(); - - // Pitzer_exchange_gammas - it_mix = mixcomps->begin(); - old_exch_ptr = &((this->Exchangers.find(it_mix->first))->second); - if (old_exch_ptr == NULL) - { - error_string = sformatf( "Exchange %d not found in mix_cxxExchange.", - it_mix->first); - error_msg(error_string, CONTINUE); - phreeqc_ptr-> input_error++; - return (NULL); - } - new_exch_ptr->set_pitzer_exchange_gammas(old_exch_ptr-> - get_pitzer_exchange_gammas()); -/* - * Make list of ExchComps - */ - std::vector < cxxExchComp > ec_vector; - std::vector < LDBLE >f_vector; - // - // make list of all exchange components and their mix fractions - // - for (it_mix = mixcomps->begin(); it_mix != mixcomps->end(); it_mix++) - { - old_exch_ptr = &((this->Exchangers.find(it_mix->first))->second); - if (old_exch_ptr == NULL) - { - error_string = sformatf( "Exchange %d not found in mix_cxxExchange.", - it_mix->first); - error_msg(error_string, CONTINUE); - phreeqc_ptr-> input_error++; - return (NULL); - } - // Add exchange components to vector ec_vector - std::list < cxxExchComp >::const_iterator it_ec; - std::list < cxxExchComp > &eclist = old_exch_ptr->get_exchComps(); - for (it_ec = eclist.begin(); it_ec != eclist.end(); it_ec++) - { - f_vector.push_back(it_mix->second); - //cxxExchComp ec = *it_ec; - //ec_vector.push_back(ec); - ec_vector.push_back(*it_ec); - } - } - // - // Process list to make mixture - // - char *current_formula = ec_vector.begin()->get_formula(); - while (current_formula != NULL) - { - - std::vector < cxxExchComp > ec_subvector; - std::vector < LDBLE >f_subvector; - std::vector < cxxExchComp >::iterator it_ec = ec_vector.begin(); - std::vector < LDBLE >::iterator it_f = f_vector.begin(); - current_formula = NULL; - for (; it_ec != ec_vector.end(); it_ec++) - { - if (*it_f != 0) - { - if (current_formula == NULL) - current_formula = it_ec->get_formula(); - if (it_ec->get_formula() == current_formula) - { - ec_subvector.push_back(*it_ec); - f_subvector.push_back(*it_f); - *it_f = 0; - //ec_vector.erase(it_ec); - //f_vector.erase(it_f); - } - } - it_f++; - } - // - // mix ec_subvector to make - // one exchange component - // - if (current_formula != NULL) - { - cxxExchComp new_comp(ec_subvector, f_subvector); - new_exch_ptr->get_exchComps().push_back(new_comp); - } - } - /* - std::ostringstream oss; - new_exch_ptr->dump_raw(oss, 0); - std::cerr << oss.str(); - */ - return (new_exch_ptr); -} -#endif cxxSystem & cxxStorageBin::Get_System(void) diff --git a/StorageBin.h b/StorageBin.h index cf83d7f7..1cf5c9c7 100644 --- a/StorageBin.h +++ b/StorageBin.h @@ -94,11 +94,13 @@ class cxxStorageBin: public PHRQ_base void dump_raw(std::ostream & s_oss, unsigned int indent) const; void dump_raw(std::ostream & s_oss, int i, unsigned int indent, int *n_out=NULL); + void dump_raw_range(std::ostream & s_oss, int start, int end, unsigned int indent) const; void read_raw(CParser & parser); int read_raw_keyword(CParser & parser); void Add(cxxStorageBin &src, int n); + void Add_uz(cxxStorageBin &uzbin); //cxxSolution *mix_cxxSolutions(cxxMix &mixmap); cxxExchange *mix_cxxExchange(cxxMix & mixmap); diff --git a/StorageBinList.cpp b/StorageBinList.cpp index 71a89692..f968a66d 100644 --- a/StorageBinList.cpp +++ b/StorageBinList.cpp @@ -2,6 +2,14 @@ #include "StorageBinList.h" #include "Parser.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + StorageBinListItem::StorageBinListItem(void) { this->defined = false; diff --git a/Surface.cxx b/Surface.cxx index b2e7ef2f..40c8cc0f 100644 --- a/Surface.cxx +++ b/Surface.cxx @@ -12,6 +12,13 @@ #include "cxxMix.h" #include "phqalloc.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif ////////////////////////////////////////////////////////////////////// // Construction/Destruction @@ -24,6 +31,7 @@ cxxSurface::cxxSurface(PHRQ_io *io) : cxxNumKeyword(io) { new_def = false; + tidied = false; type = DDL; dl_type = NO_DL; sites_units = SITES_ABSOLUTE; @@ -42,6 +50,7 @@ cxxNumKeyword(io) { this->n_user = this->n_user_end = l_n_user; this->new_def = false; + this->tidied = true; type = DDL; dl_type = NO_DL; sites_units = SITES_ABSOLUTE; @@ -94,74 +103,6 @@ cxxSurface::Get_related_rate() const } return (false); } -#ifdef SKIP -void -cxxSurface::dump_xml(std::ostream & s_oss, unsigned int indent) const -{ - unsigned int i; - s_oss.precision(DBL_DIG - 1); - std::string indent0(""), indent1(""), indent2(""); - for (i = 0; i < indent; ++i) - indent0.append(Utilities::INDENT); - for (i = 0; i < indent + 1; ++i) - indent1.append(Utilities::INDENT); - for (i = 0; i < indent + 2; ++i) - indent2.append(Utilities::INDENT); - - // Surface element and attributes - s_oss << indent0; - s_oss << "type << "\"" << "\n"; - - s_oss << indent1; - s_oss << "dl_type=\"" << this->dl_type << "\"" << "\n"; - - s_oss << indent1; - s_oss << "sites_units=\"" << this->sites_units << "\"" << "\n"; - - s_oss << indent1; - s_oss << "only_counter_ions=\"" << this-> - only_counter_ions << "\"" << "\n"; - - s_oss << indent1; - s_oss << "thickness=\"" << this->thickness << "\"" << "\n"; - - s_oss << indent1; - s_oss << "debye_lengths=\"" << this->debye_lengths << "\"" << "\n"; - - s_oss << indent1; - s_oss << "DDL_viscosity=\"" << this->DDL_viscosity << "\"" << "\n"; - - s_oss << indent1; - s_oss << "DDL_limit=\"" << this->DDL_limit << "\"" << "\n"; - - s_oss << indent1; - s_oss << "transport=\"" << this->transport << "\"" << "\n"; - - // surface component structures - s_oss << indent1; - s_oss << "::const_iterator it = - this->surfaceComps.begin(); it != this->surfaceComps.end(); ++it) - { - (*it).second.dump_xml(s_oss, indent + 2); - } - } - // surface charge structures - s_oss << indent1; - s_oss << "::const_iterator it = - surface_charges.begin(); it != surface_charges.end(); ++it) - { - (*it).second.dump_xml(s_oss, indent + 2); - } - - return; -} -#endif void cxxSurface::dump_raw(std::ostream & s_oss, unsigned int indent, int *n_out) const { @@ -215,6 +156,8 @@ cxxSurface::dump_raw(std::ostream & s_oss, unsigned int indent, int *n_out) cons s_oss << indent1; s_oss << "-new_def " << this->new_def << "\n"; s_oss << indent1; + s_oss << "-tidied " << this->tidied << "\n"; + s_oss << indent1; s_oss << "-sites_units " << this->sites_units << "\n"; s_oss << indent1; s_oss << "-solution_equilibria " << this->solution_equilibria << "\n"; @@ -243,6 +186,7 @@ cxxSurface::read_raw(CParser & parser, bool check) // Read surface number and description this->read_number_description(parser); this->Set_new_def(false); + this->Set_tidied(true); bool only_counter_ions_defined(false); bool thickness_defined(false); @@ -515,6 +459,15 @@ cxxSurface::read_raw(CParser & parser, bool check) PHRQ_io::OT_CONTINUE); } break; + case 18: // tidied + if (!(parser.get_iss() >> this->tidied)) + { + this->tidied = false; + parser.incr_input_error(); + parser.error_msg("Expected boolean value for tidied.", + PHRQ_io::OT_CONTINUE); + } + break; } if (opt == CParser::OPT_EOF || opt == CParser::OPT_KEYWORD) break; @@ -768,6 +721,7 @@ cxxSurface::Serialize(Dictionary & dictionary, std::vector < int >&ints, } } ints.push_back(this->new_def ? 1 : 0); + ints.push_back(this->tidied ? 1 : 0); ints.push_back((int) this->type); ints.push_back((int) this->dl_type); ints.push_back((int) this->sites_units); @@ -797,7 +751,7 @@ cxxSurface::Deserialize(Dictionary & dictionary, std::vector < int >&ints, this->surface_comps.clear(); for (int n = 0; n < count; n++) { - cxxSurfaceComp sc; + cxxSurfaceComp sc(this->io); sc.Deserialize(dictionary, ints, doubles, ii, dd); this->surface_comps.push_back(sc); } @@ -807,12 +761,13 @@ cxxSurface::Deserialize(Dictionary & dictionary, std::vector < int >&ints, this->surface_charges.clear(); for (int n = 0; n < count; n++) { - cxxSurfaceCharge sc; + cxxSurfaceCharge sc(this->io); sc.Deserialize(dictionary, ints, doubles, ii, dd); this->surface_charges.push_back(sc); } } this->new_def = (ints[ii++] != 0); + this->tidied = (ints[ii++] != 0); this->type = (SURFACE_TYPE) ints[ii++]; this->dl_type = (DIFFUSE_LAYER_TYPE) ints[ii++]; this->sites_units = (SITES_UNITS) ints[ii++]; @@ -847,6 +802,7 @@ const std::vector< std::string >::value_type temp_vopts[] = { std::vector< std::string >::value_type("new_def"), // 14 std::vector< std::string >::value_type("solution_equilibria"), // 15 std::vector< std::string >::value_type("n_solution"), // 16 - std::vector< std::string >::value_type("totals") // 17 + std::vector< std::string >::value_type("totals"), // 17 + std::vector< std::string >::value_type("tidied") // 18 }; const std::vector< std::string > cxxSurface::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); diff --git a/Surface.h b/Surface.h index 4a197453..7f97bce3 100644 --- a/Surface.h +++ b/Surface.h @@ -49,6 +49,8 @@ public: void Set_surface_charges(std::vector < cxxSurfaceCharge > &sc) {this->surface_charges = sc;} bool Get_new_def(void) {return new_def;} void Set_new_def(bool tf) {new_def = tf;} + bool Get_tidied(void) { return tidied; } + void Set_tidied(bool tf) { tidied = tf; } SURFACE_TYPE Get_type(void) const {return this->type;} void Set_type(SURFACE_TYPE t) {this->type = t;} DIFFUSE_LAYER_TYPE Get_dl_type(void) const {return dl_type;} @@ -80,6 +82,7 @@ protected: std::vector < cxxSurfaceComp > surface_comps; std::vector < cxxSurfaceCharge > surface_charges; bool new_def; + bool tidied; SURFACE_TYPE type; DIFFUSE_LAYER_TYPE dl_type; SITES_UNITS sites_units; diff --git a/SurfaceCharge.cxx b/SurfaceCharge.cxx index 6ee4ff1c..5d2857d8 100644 --- a/SurfaceCharge.cxx +++ b/SurfaceCharge.cxx @@ -13,6 +13,13 @@ #include "phqalloc.h" #include "Dictionary.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif ////////////////////////////////////////////////////////////////////// // Construction/Destruction @@ -576,4 +583,4 @@ const std::vector< std::string >::value_type temp_vopts[] = { std::vector< std::string >::value_type("g_map"), // 15 std::vector< std::string >::value_type("diffuse_layer_species") // 16 }; -const std::vector< std::string > cxxSurfaceCharge::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); \ No newline at end of file +const std::vector< std::string > cxxSurfaceCharge::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); diff --git a/SurfaceCharge.h b/SurfaceCharge.h index 669172a1..091b26b7 100644 --- a/SurfaceCharge.h +++ b/SurfaceCharge.h @@ -70,7 +70,7 @@ public: cxxSurfaceCharge(struct surface_charge *, PHRQ_io *io=NULL); virtual ~cxxSurfaceCharge(); - struct master *Get_psi_master(); + class master *Get_psi_master(); void dump_xml(std::ostream & os, unsigned int indent = 0) const; void dump_raw(std::ostream & s_oss, unsigned int indent) const; void read_raw(CParser & parser, bool check = true); diff --git a/SurfaceComp.cxx b/SurfaceComp.cxx index 5a23eb16..d0435db5 100644 --- a/SurfaceComp.cxx +++ b/SurfaceComp.cxx @@ -13,6 +13,14 @@ #include "phqalloc.h" #include "Dictionary.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + ////////////////////////////////////////////////////////////////////// // Construction/Destruction ////////////////////////////////////////////////////////////////////// @@ -395,7 +403,8 @@ cxxSurfaceComp::add(const cxxSurfaceComp & addee, LDBLE extensive) this->totals.add_extensive(addee.totals, extensive); this->la = f1 * this->la + f2 * addee.la; this->charge_balance += addee.charge_balance * extensive; - if (this->phase_name != addee.phase_name) + //if (this->phase_name != addee.phase_name) + if (Phreeqc::strcmp_nocase(this->phase_name.c_str(),addee.phase_name.c_str()) != 0) { std::ostringstream oss; oss << @@ -410,11 +419,12 @@ cxxSurfaceComp::add(const cxxSurfaceComp & addee, LDBLE extensive) this->phase_proportion * f1 + addee.phase_proportion * f2; } - if (this->rate_name != addee.rate_name) + //if (this->rate_name != addee.rate_name) + if (Phreeqc::strcmp_nocase(this->rate_name.c_str(), addee.rate_name.c_str()) != 0) { std::ostringstream oss; oss << - "Cannot mix two exchange components with same formula and different related kinetics, " + "Cannot mix two surface components with same formula and different related kinetics, " << this->formula; error_msg(oss.str().c_str(), CONTINUE); return; @@ -430,7 +440,7 @@ cxxSurfaceComp::add(const cxxSurfaceComp & addee, LDBLE extensive) { std::ostringstream oss; oss << - "Cannot mix exchange components related to phase with exchange components related to kinetics, " + "Cannot mix surface components related to phase with surface components related to kinetics, " << this->formula; error_msg(oss.str().c_str(), CONTINUE); return; diff --git a/System.cxx b/System.cxx index 467363de..ebae0af7 100644 --- a/System.cxx +++ b/System.cxx @@ -15,6 +15,14 @@ #include "Reaction.h" #include "Temperature.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + cxxSystem::cxxSystem(PHRQ_io *io) : PHRQ_base(io) diff --git a/Temperature.cxx b/Temperature.cxx index a1df2da2..d67afe82 100644 --- a/Temperature.cxx +++ b/Temperature.cxx @@ -8,12 +8,18 @@ #include // std::sort #include "Utils.h" // define first -#include "Parser.h" #include "Phreeqc.h" +#include "Parser.h" #include "Temperature.h" #include "phqalloc.h" - +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif ////////////////////////////////////////////////////////////////////// // Construction/Destruction @@ -32,41 +38,6 @@ cxxTemperature::~cxxTemperature() { } -#ifdef SKIP -void -cxxTemperature::dump_xml(std::ostream & s_oss, unsigned int indent) const const -{ - unsigned int i; - s_oss.precision(DBL_DIG - 1); - std::string indent0(""), indent1(""), indent2(""); - for (i = 0; i < indent; ++i) - indent0.append(Utilities::INDENT); - for (i = 0; i < indent + 1; ++i) - indent1.append(Utilities::INDENT); - for (i = 0; i < indent + 2; ++i) - indent2.append(Utilities::INDENT); - - // Temperature element and attributes - s_oss << indent0; - s_oss << " - pitzer_temperature_gammas << "\"" << "\n"; - - // components - s_oss << indent1; - s_oss << "::const_iterator it = - temperatureComps.begin(); it != temperatureComps.end(); ++it) - { - it->dump_xml(s_oss, indent + 2); - } - - return; -} -#endif - int cxxTemperature::read(CParser & parser) { @@ -381,9 +352,9 @@ Temperature_for_step(int step_number) else { LDBLE denom; - denom = (this->countTemps <= 1) ? 1 : (LDBLE) (this->countTemps - 1); + denom = (this->countTemps <= 1) ? 1 : (LDBLE)this->countTemps - 1; t_temp = this->temps[0] + ( this->temps[1] - this->temps[0]) * - ((LDBLE) (step_number - 1)) / (denom); + ((LDBLE)step_number - 1) / (denom); } } else @@ -394,7 +365,7 @@ Temperature_for_step(int step_number) } else { - t_temp = this->temps[step_number - 1]; + t_temp = this->temps[(size_t)step_number - 1]; } } @@ -449,4 +420,4 @@ const std::vector< std::string >::value_type temp_vopts[] = { std::vector< std::string >::value_type("equal_increments"), //1 std::vector< std::string >::value_type("count_temps") //2 }; -const std::vector< std::string > cxxTemperature::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); \ No newline at end of file +const std::vector< std::string > cxxTemperature::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); diff --git a/Use.cpp b/Use.cpp index e6f8c349..c8b87979 100644 --- a/Use.cpp +++ b/Use.cpp @@ -1,6 +1,14 @@ #include #include "Use.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + cxxUse::cxxUse() { this->init(); diff --git a/Use.h b/Use.h index 90a22a5c..a1ff1094 100644 --- a/Use.h +++ b/Use.h @@ -87,7 +87,7 @@ public: cxxPressure * Get_pressure_ptr(void) const {return this->pressure_ptr;} cxxTemperature * Get_temperature_ptr(void) const {return this->temperature_ptr;} cxxGasPhase * Get_gas_phase_ptr(void) const {return this->gas_phase_ptr;} - struct inverse * Get_inverse_ptr(void) const {return this->inverse_ptr;} + class inverse * Get_inverse_ptr(void) const {return this->inverse_ptr;} cxxSSassemblage * Get_ss_assemblage_ptr(void) {return this->ss_assemblage_ptr;} void Set_solution_ptr(cxxSolution * p) {this->solution_ptr = p;} @@ -100,7 +100,7 @@ public: void Set_pressure_ptr(cxxPressure * p) {this->pressure_ptr = p;} void Set_temperature_ptr(cxxTemperature * p) {this->temperature_ptr = p;} void Set_gas_phase_ptr(cxxGasPhase * p) {this->gas_phase_ptr = p;} - void Set_inverse_ptr(struct inverse * p) {this->inverse_ptr = p;} + void Set_inverse_ptr(class inverse * p) {this->inverse_ptr = p;} void Set_ss_assemblage_ptr(cxxSSassemblage * p) {this->ss_assemblage_ptr = p;} protected: @@ -143,7 +143,7 @@ protected: bool inverse_in; int n_inverse_user; - struct inverse *inverse_ptr; + class inverse *inverse_ptr; bool gas_phase_in; int n_gas_phase_user; diff --git a/UserPunch.cpp b/UserPunch.cpp index 290a427f..39ea8955 100644 --- a/UserPunch.cpp +++ b/UserPunch.cpp @@ -1,5 +1,14 @@ #include "UserPunch.h" #include "Phreeqc.h" + +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + UserPunch::UserPunch(int n, PHRQ_io *io) : cxxNumKeyword(io) { @@ -15,7 +24,7 @@ UserPunch::~UserPunch(void) if (this->PhreeqcPtr != NULL) { this->PhreeqcPtr->rate_free(this->rate); - this->PhreeqcPtr->free_check_null(this->rate); + delete this->rate; } } this->PhreeqcPtr = NULL; diff --git a/UserPunch.h b/UserPunch.h index fb8c123f..81d87168 100644 --- a/UserPunch.h +++ b/UserPunch.h @@ -26,14 +26,14 @@ public: // rate // - struct rate * Get_rate() {return this->rate;} - const struct rate * Get_rate()const {return this->rate;} + class rate * Get_rate() {return this->rate;} + const class rate * Get_rate()const {return this->rate;} - void Set_rate(struct rate * r) {this->rate = r;} + void Set_rate(class rate * r) {this->rate = r;} protected: std::vector headings; - struct rate * rate; + class rate * rate; Phreeqc * PhreeqcPtr; }; -#endif // !defined(USERPUNCH_H_INCLUDED) \ No newline at end of file +#endif // !defined(USERPUNCH_H_INCLUDED) diff --git a/advection.cpp b/advection.cpp index 276cb1a4..e85992c6 100644 --- a/advection.cpp +++ b/advection.cpp @@ -5,6 +5,14 @@ #include "Solution.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /* ---------------------------------------------------------------------- */ int Phreeqc:: advection(void) @@ -60,7 +68,7 @@ advection(void) /* * Equilibrate solutions with phases, exchangers, surfaces */ - last_model.force_prep = TRUE; + last_model.force_prep = true; rate_sim_time_start = 0; for (advection_step = 1; advection_step <= count_ad_shifts; advection_step++) @@ -89,7 +97,7 @@ advection(void) /* * Equilibrate and (or) mix */ - for (i = 1; i <= count_ad_cells; i++) + for (int i = 1; i <= count_ad_cells; i++) { set_initial_moles(i); cell_no = i; @@ -102,17 +110,17 @@ advection(void) log_msg(sformatf( "\nCell %d.\n\n", i)); if (pr.use == TRUE && pr.all == TRUE && advection_step % print_ad_modulus == 0 && - advection_print[i - 1] == TRUE) + advection_print[(size_t)i - 1] == TRUE) { output_msg(sformatf( "\nCell %d.\n\n", i)); } if (advection_step % punch_ad_modulus == 0 && - advection_punch[i - 1] == TRUE) + advection_punch[(size_t)i - 1] == TRUE) { punch_all(); } if (advection_step % print_ad_modulus == 0 && - advection_print[i - 1] == TRUE) + advection_print[(size_t)i - 1] == TRUE) { print_all(); } diff --git a/basicsubs.cpp b/basicsubs.cpp index 525dc18a..758112f9 100644 --- a/basicsubs.cpp +++ b/basicsubs.cpp @@ -11,12 +11,21 @@ #include "cxxKinetics.h" #include "Solution.h" #include "Parser.h" + +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: activity(const char *species_name) /* ---------------------------------------------------------------------- */ { - struct species *s_ptr; + class species *s_ptr; LDBLE a; s_ptr = s_search(species_name); @@ -44,7 +53,7 @@ LDBLE Phreeqc:: activity_coefficient(const char *species_name) /* ---------------------------------------------------------------------- */ { - struct species *s_ptr; + class species *s_ptr; LDBLE g, dum = 0.0; s_ptr = s_search(species_name); @@ -66,7 +75,7 @@ LDBLE Phreeqc:: log_activity_coefficient(const char *species_name) /* ---------------------------------------------------------------------- */ { - struct species *s_ptr; + class species *s_ptr; LDBLE g, dum = 0.0; s_ptr = s_search(species_name); @@ -88,7 +97,7 @@ LDBLE Phreeqc:: aqueous_vm(const char *species_name) /* ---------------------------------------------------------------------- */ { - struct species *s_ptr; + class species *s_ptr; LDBLE g; s_ptr = s_search(species_name); @@ -107,7 +116,7 @@ LDBLE Phreeqc:: phase_vm(const char *phase_name) /* ---------------------------------------------------------------------- */ { - struct phase *phase_ptr; + class phase *phase_ptr; int l; LDBLE g; @@ -177,7 +186,7 @@ LDBLE Phreeqc:: diff_c(const char *species_name) /* ---------------------------------------------------------------------- */ { - struct species *s_ptr; + class species *s_ptr; LDBLE g; s_ptr = s_search(species_name); @@ -199,7 +208,7 @@ LDBLE Phreeqc:: setdiff_c(const char *species_name, double d) /* ---------------------------------------------------------------------- */ { - struct species *s_ptr; + class species *s_ptr; LDBLE g; s_ptr = s_search(species_name); @@ -267,7 +276,7 @@ calc_SC(void) return (SC); //# endif - for (i = 0; i < count_s_x; i++) + for (i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type != AQ && s_x[i]->type != HPLUS) continue; @@ -305,7 +314,7 @@ calc_SC(void) SC = 0; //LDBLE ta1, ta2, ta3, ta4; - for (i = 0; i < count_s_x; i++) + for (i = 0; i < (int)this->s_x.size(); i++) { // ** for optimizing, get numbers from -analyt for H+ = H+... //if (!strcmp(s_x[i]->name, "H+")) @@ -318,7 +327,7 @@ calc_SC(void) //} // } - for (i = 0; i < count_s_x; i++) + for (i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type != AQ && s_x[i]->type != HPLUS) continue; @@ -378,7 +387,7 @@ calc_SC(void) m_plus = m_min = eq_plus = eq_min = eq_dw_plus = eq_dw_min = Sum_m_dw = z_plus = z_min = 0; SC = 0; - for (i = 0; i < count_s_x; i++) + for (i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type != AQ && s_x[i]->type != HPLUS) continue; @@ -418,7 +427,7 @@ calc_SC(void) B2 = t1 * AVOGADRO / t2 * DH_B * 1e17; // DH_B per Angstrom (*1e10), viscos in mPa.s (*1e3), B2 in cm2 (*1e4) Dw_SC = viscos_0_25 / t2 * 1e4 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298160.0); - for (i = 0; i < count_s_x; i++) + for (i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type != AQ && s_x[i]->type != HPLUS) continue; @@ -470,7 +479,7 @@ calc_dens(void) /* 2 options: original VP, assign the volumes of species with zero molar volume to their master species, but this doubles counts of complexes with -Vm defined. And, cation-OH and H-anion complexes are counted once. Also, must add H+ and OH-... */ - //struct species *s_ptr; + //class species *s_ptr; //V_solutes = M_T = 0.0; //for (i = 0; i < count_species_list; i++) @@ -520,7 +529,7 @@ calc_dens(void) /* 2nd option, use species_x, vm = 0 for complexes with undefined volume... */ V_solutes = M_T = 0.0; - for (i = 0; i < count_s_x; i++) + for (i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type != AQ && s_x[i]->type != HPLUS) continue; @@ -583,10 +592,10 @@ calc_solution_volume(void) gfw = s_h2o->primary->gfw; total_mass += total_o_x * gfw; - for (int i = 0; i < count_master; i++) + for (int i = 0; i < (int)master.size(); i++) { if (master[i]->s->type != AQ) continue; - struct master *master_ptr = master[i]; + class master *master_ptr = master[i]; if (master_ptr->primary == TRUE && strcmp(master_ptr->elt->name, "Alkalinity")) { total_mass += master_ptr->total_primary * master_ptr->elt->gfw; @@ -605,9 +614,10 @@ calc_logk_n(const char *name) char token[MAX_LENGTH]; int i; LDBLE lk; - struct logk *logk_ptr; + class logk *logk_ptr; LDBLE l_logk[MAX_LOG_K_INDICES]; - struct name_coef add_logk; + class name_coef add_logk; + std::vector add_logk_v; for (i = 0; i < MAX_LOG_K_INDICES; i++) { @@ -619,7 +629,8 @@ calc_logk_n(const char *name) { add_logk.name = token; add_logk.coef = 1.0; - add_other_logk(l_logk, 1, &add_logk); + add_logk_v.push_back(add_logk); + add_other_logk(l_logk, add_logk_v); lk = k_calc(l_logk, tk_x, patm_x * PASCAL_PER_ATM); return (lk); } @@ -633,7 +644,7 @@ calc_logk_p(const char *name) { int i, j; char token[MAX_LENGTH]; - struct phase *phase_ptr; + class phase *phase_ptr; LDBLE lk=-999.9; LDBLE l_logk[MAX_LOG_K_INDICES]; @@ -642,15 +653,15 @@ calc_logk_p(const char *name) if (phase_ptr != NULL) { - struct reaction *reaction_ptr; + CReaction* reaction_ptr; if (phase_ptr->replaced) - reaction_ptr = phase_ptr->rxn_s; + reaction_ptr = &phase_ptr->rxn_s; else - reaction_ptr = phase_ptr->rxn; + reaction_ptr = &phase_ptr->rxn; /* * Print saturation index */ - reaction_ptr->logk[delta_v] = calc_delta_v(reaction_ptr, true) - + reaction_ptr->logk[delta_v] = calc_delta_v(*reaction_ptr, true) - phase_ptr->logk[vm0]; if (reaction_ptr->logk[delta_v]) mu_terms_in_logk = true; @@ -660,44 +671,12 @@ calc_logk_p(const char *name) } //lk = k_calc(reaction_ptr->logk, tk_x, patm_x * PASCAL_PER_ATM); select_log_k_expression(reaction_ptr->logk, l_logk); - add_other_logk(l_logk, phase_ptr->count_add_logk, phase_ptr->add_logk); + add_other_logk(l_logk, phase_ptr->add_logk); lk = k_calc(l_logk, tk_x, patm_x * PASCAL_PER_ATM); } return (lk); } -#ifdef SKIP -/* ---------------------------------------------------------------------- */ -LDBLE Phreeqc:: -calc_logk_s(const char *name) -/* ---------------------------------------------------------------------- */ -{ - int i; - char token[MAX_LENGTH]; - struct species *s_ptr; - LDBLE lk, l_logk[MAX_LOG_K_INDICES]; - strcpy(token, name); - s_ptr = s_search(token); - if (s_ptr != NULL) - { - for (i = 0; i < MAX_LOG_K_INDICES; i++) - { - l_logk[i] = 0.0; - } - //if (s_ptr->moles) - //select_log_k_expression(s_ptr->rxn_x->logk, l_logk); - select_log_k_expression(s_ptr->rxn->logk, l_logk); - //{ - // perhaps calculate species' delta_v if absent? - // select_log_k_expression(s_ptr->rxn_s->logk, l_logk); - //} - add_other_logk(l_logk, s_ptr->count_add_logk, s_ptr->add_logk); - lk = k_calc(l_logk, tk_x, patm_x * PASCAL_PER_ATM); - return (lk); - } - return (-999.99); -} -#endif /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: calc_logk_s(const char *name) @@ -705,7 +684,7 @@ calc_logk_s(const char *name) { int i; char token[MAX_LENGTH]; - struct species *s_ptr; + class species *s_ptr; LDBLE lk, l_logk[MAX_LOG_K_INDICES]; strcpy(token, name); @@ -714,14 +693,14 @@ calc_logk_s(const char *name) { //if (s_ptr->logk[vm_tc]) /* calculate delta_v for the reaction... */ - s_ptr->logk[delta_v] = calc_delta_v(s_ptr->rxn, false); + s_ptr->logk[delta_v] = calc_delta_v(*&s_ptr->rxn, false); for (i = 0; i < MAX_LOG_K_INDICES; i++) { l_logk[i] = 0.0; } select_log_k_expression(s_ptr->logk, l_logk); mu_terms_in_logk = true; - add_other_logk(l_logk, s_ptr->count_add_logk, s_ptr->add_logk); + add_other_logk(l_logk, s_ptr->add_logk); lk = k_calc(l_logk, tk_x, patm_x * PASCAL_PER_ATM); return (lk); } @@ -729,21 +708,131 @@ calc_logk_s(const char *name) } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: +dh_a0(const char* name) +/* ---------------------------------------------------------------------- */ +{ + char token[MAX_LENGTH]; + class species* s_ptr; + double a = -999.99; + + strcpy(token, name); + s_ptr = s_search(token); + if (s_ptr != NULL) + { + a = s_ptr->dha; + } + return (a); +} +/* ---------------------------------------------------------------------- */ +LDBLE Phreeqc:: +dh_bdot(const char* name) +/* ---------------------------------------------------------------------- */ +{ + char token[MAX_LENGTH]; + class species* s_ptr; + double b = -999.99; + if (llnl_temp.size() > 0) + { + b = bdot_llnl; + } + else + { + strcpy(token, name); + s_ptr = s_search(token); + if (s_ptr != NULL) + { + b = s_ptr->dhb; + } + } + return (b); +} +/* ---------------------------------------------------------------------- */ +LDBLE Phreeqc:: +calc_deltah_p(const char* name) +/* ---------------------------------------------------------------------- */ +{ + int i, j; + char token[MAX_LENGTH]; + class phase* phase_ptr; + LDBLE lkm, lkp; + LDBLE l_logk[MAX_LOG_K_INDICES]; + double dh = -999.99; + strcpy(token, name); + phase_ptr = phase_bsearch(token, &j, FALSE); + + if (phase_ptr != NULL) + { + CReaction* reaction_ptr; + if (phase_ptr->replaced) + reaction_ptr = &phase_ptr->rxn_s; + else + reaction_ptr = &phase_ptr->rxn; + /* + * Print saturation index + */ + reaction_ptr->logk[delta_v] = calc_delta_v(*reaction_ptr, true) - + phase_ptr->logk[vm0]; + if (reaction_ptr->logk[delta_v]) + mu_terms_in_logk = true; + for (i = 0; i < MAX_LOG_K_INDICES; i++) + { + l_logk[i] = 0.0; + } + //lk = k_calc(reaction_ptr->logk, tk_x, patm_x * PASCAL_PER_ATM); + select_log_k_expression(reaction_ptr->logk, l_logk); + add_other_logk(l_logk, phase_ptr->add_logk); + lkm = k_calc(l_logk, tk_x - 1.0, patm_x * PASCAL_PER_ATM); + lkp = k_calc(l_logk, tk_x + 1.0, patm_x * PASCAL_PER_ATM); + dh = (lkp - lkm) / 2.0 * LOG_10 * R_KJ_DEG_MOL * pow(tk_x, 2.0); + } + return (dh); +} +/* ---------------------------------------------------------------------- */ +LDBLE Phreeqc:: +calc_deltah_s(const char* name) +/* ---------------------------------------------------------------------- */ +{ + int i; + char token[MAX_LENGTH]; + class species* s_ptr; + LDBLE lkm, lkp, l_logk[MAX_LOG_K_INDICES]; + double dh = -999.99; + strcpy(token, name); + s_ptr = s_search(token); + if (s_ptr != NULL) + { + /* calculate delta_v for the reaction... */ + s_ptr->logk[delta_v] = calc_delta_v(*&s_ptr->rxn, false); + for (i = 0; i < MAX_LOG_K_INDICES; i++) + { + l_logk[i] = 0.0; + } + select_log_k_expression(s_ptr->logk, l_logk); + mu_terms_in_logk = true; + add_other_logk(l_logk, s_ptr->add_logk); + lkm = k_calc(l_logk, tk_x-1.0, patm_x * PASCAL_PER_ATM); + lkp = k_calc(l_logk, tk_x + 1.0, patm_x * PASCAL_PER_ATM); + dh = (lkp - lkm) / 2.0 * LOG_10 * R_KJ_DEG_MOL * pow(tk_x,2.0); + return (dh); + } + return (0.0); +} +/* ---------------------------------------------------------------------- */ +LDBLE Phreeqc:: calc_surface_charge(const char *surface_name) /* ---------------------------------------------------------------------- */ { char token[MAX_LENGTH], token1[MAX_LENGTH]; - char *ptr; + const char* cptr; int i, j, k; LDBLE charge; - struct rxn_token_temp *token_ptr; - struct master *master_ptr; - + class rxn_token_temp *token_ptr; + class master *master_ptr; /* * Go through species, sum charge */ charge = 0; - for (k = 0; k < count_s_x; k++) + for (k = 0; k < (int)this->s_x.size(); k++) { if (s_x[k]->type != SURF) continue; @@ -751,7 +840,7 @@ calc_surface_charge(const char *surface_name) * Match surface_name */ count_trxn = 0; - trxn_add(s_x[k]->rxn_s, 1.0, FALSE); /* rxn_s is set in tidy_model */ + trxn_add(s_x[k]->rxn_s, 1.0, false); /* rxn_s is set in tidy_model */ for (i = 1; i < count_trxn; i++) { token_ptr = &(trxn.token[i]); @@ -760,8 +849,8 @@ calc_surface_charge(const char *surface_name) master_ptr = trxn.token[i].s->primary; strcpy(token, master_ptr->elt->name); replace("_", " ", token); - ptr = token; - copy_token(token1, &ptr, &j); + cptr = token; + copy_token(token1, &cptr, &j); if (strcmp(surface_name, token1) == 0) { charge += s_x[k]->moles * s_x[k]->z; @@ -780,7 +869,7 @@ diff_layer_total(const char *total_name, const char *surface_name) */ cxxSurfaceCharge *surface_charge_ptr1; std::string name, token, surface_name_local; - struct master *master_ptr; + class master *master_ptr; LDBLE mass_water_surface; LDBLE molality, moles_excess, moles_surface, charge; @@ -1028,7 +1117,7 @@ diff_layer_total(const char *total_name, const char *surface_name) mass_water_surface = surface_charge_ptr1->Get_mass_water(); count_elts = 0; paren_count = 0; - for (j = 0; j < count_s_x; j++) + for (j = 0; j < (int)this->s_x.size(); j++) { if (s_x[j]->type > HPLUS) continue; @@ -1044,12 +1133,7 @@ diff_layer_total(const char *total_name, const char *surface_name) */ add_elt_list(s_x[j]->next_elt, moles_surface); } - if (count_elts > 0) - { - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), Phreeqc:: elt_list_compare); - elt_list_combine(); - } + elt_list_combine(); /* * Return totals */ @@ -1069,7 +1153,7 @@ calc_t_sc(const char *name) /* ---------------------------------------------------------------------- */ { char token[MAX_LENGTH]; - struct species *s_ptr; + class species *s_ptr; strcpy(token, name); s_ptr = s_search(token); @@ -1206,16 +1290,16 @@ LDBLE Phreeqc:: equivalent_fraction(const char *name, LDBLE *eq, std::string &elt_name) /* ---------------------------------------------------------------------- */ { - struct species *s_ptr = s_search(name); + class species *s_ptr = s_search(name); *eq = 0; elt_name.clear(); LDBLE f = 0; if (s_ptr != NULL && (s_ptr->type == EX || s_ptr->type == SURF)) { *eq = s_ptr->equiv; - struct elt_list *next_elt; + const class elt_list *next_elt; LDBLE tot=0.0; - for (next_elt = s_ptr->next_elt; next_elt->elt != NULL; next_elt++) + for (next_elt = &s_ptr->next_elt[0]; next_elt->elt != NULL; next_elt++) { if (next_elt->elt->master->s->type == SURF || next_elt->elt->master->s->type == EX) @@ -1245,7 +1329,7 @@ find_gas_comp(const char *gas_comp_name) { if (strcmp_nocase(gas_phase_ptr->Get_gas_comps()[j].Get_phase_name().c_str(), gas_comp_name) == 0) { - struct phase *phase_ptr = phase_bsearch(gas_comp_name, &i, false); + class phase *phase_ptr = phase_bsearch(gas_comp_name, &i, false); if (phase_ptr) { return (phase_ptr->moles_x); @@ -1386,14 +1470,15 @@ get_calculate_value(const char *name) * return: LDBLE of value */ { - struct calculate_value *calculate_value_ptr; + class calculate_value *calculate_value_ptr; calculate_value_ptr = calculate_value_search(name); if (calculate_value_ptr == NULL) { error_string = sformatf( "CALC_VALUE Basic function, %s not found.", name); - error_msg(error_string, CONTINUE); - input_error++; + //error_msg(error_string, CONTINUE); + //input_error++; + warning_msg(error_string); return (MISSING); } if (name == NULL) @@ -1410,7 +1495,7 @@ get_calculate_value(const char *name) if (calculate_value_ptr->new_def == TRUE) { if (interp.basic_compile - (calculate_value_ptr->commands, + (calculate_value_ptr->commands.c_str(), &calculate_value_ptr->linebase, &calculate_value_ptr->varbase, &calculate_value_ptr->loopbase) != 0) @@ -1469,7 +1554,8 @@ kinetics_moles(const char *kinetics_name) error_string = sformatf( "No data for rate %s in KINETICS keyword.", kinetics_name); - warning_msg(error_string); + //if (count_warnings >= 0) // appt debug cvode + // warning_msg(error_string); return (0); } /* ---------------------------------------------------------------------- */ @@ -1515,7 +1601,7 @@ LDBLE Phreeqc:: log_activity(const char *species_name) /* ---------------------------------------------------------------------- */ { - struct species *s_ptr; + class species *s_ptr; LDBLE la; s_ptr = s_search(species_name); @@ -1544,7 +1630,7 @@ LDBLE Phreeqc:: log_molality(const char *species_name) /* ---------------------------------------------------------------------- */ { - struct species *s_ptr; + class species *s_ptr; LDBLE lm; s_ptr = s_search(species_name); @@ -1573,7 +1659,7 @@ LDBLE Phreeqc:: molality(const char *species_name) /* ---------------------------------------------------------------------- */ { - struct species *s_ptr; + class species *s_ptr; LDBLE m; s_ptr = s_search(species_name); @@ -1593,7 +1679,7 @@ LDBLE Phreeqc:: pr_pressure(const char *phase_name) /* ---------------------------------------------------------------------- */ { - struct phase *phase_ptr; + class phase *phase_ptr; int l; phase_ptr = phase_bsearch(phase_name, &l, FALSE); @@ -1622,7 +1708,7 @@ LDBLE Phreeqc:: pr_phi(const char *phase_name) /* ---------------------------------------------------------------------- */ { - struct phase *phase_ptr; + class phase *phase_ptr; int l; phase_ptr = phase_bsearch(phase_name, &l, FALSE); @@ -1643,8 +1729,8 @@ LDBLE Phreeqc:: saturation_ratio(const char *phase_name) /* ---------------------------------------------------------------------- */ { - struct rxn_token *rxn_ptr; - struct phase *phase_ptr; + class rxn_token *rxn_ptr; + class phase *phase_ptr; int l; LDBLE si, iap; @@ -1658,7 +1744,7 @@ saturation_ratio(const char *phase_name) } else if (phase_ptr->in != FALSE) { - for (rxn_ptr = phase_ptr->rxn_x->token + 1; rxn_ptr->s != NULL; + for (rxn_ptr = &phase_ptr->rxn_x.token[0] + 1; rxn_ptr->s != NULL; rxn_ptr++) { iap += rxn_ptr->s->la * rxn_ptr->coef; @@ -1675,8 +1761,8 @@ int Phreeqc:: saturation_index(const char *phase_name, LDBLE * iap, LDBLE * si) /* ---------------------------------------------------------------------- */ { - struct rxn_token *rxn_ptr; - struct phase *phase_ptr; + class rxn_token *rxn_ptr; + class phase *phase_ptr; int l; *si = -99.99; @@ -1690,7 +1776,7 @@ saturation_index(const char *phase_name, LDBLE * iap, LDBLE * si) } else if (phase_ptr->in != FALSE) { - for (rxn_ptr = phase_ptr->rxn_x->token + 1; rxn_ptr->s != NULL; + for (rxn_ptr = &phase_ptr->rxn_x.token[0] + 1; rxn_ptr->s != NULL; rxn_ptr++) { *iap += rxn_ptr->s->la * rxn_ptr->coef; @@ -1710,7 +1796,7 @@ sum_match_gases(const char *mytemplate, const char *name) { int i; LDBLE tot; - struct elt_list *next_elt; + const class elt_list *next_elt; if (use.Get_gas_phase_in() == FALSE || use.Get_gas_phase_ptr() == NULL) return (0); @@ -1718,7 +1804,7 @@ sum_match_gases(const char *mytemplate, const char *name) tot = 0; for (size_t j = 0; j < gas_phase_ptr->Get_gas_comps().size(); j++) { - struct phase * phase_ptr = phase_bsearch(gas_phase_ptr->Get_gas_comps()[j].Get_phase_name().c_str(), + class phase * phase_ptr = phase_bsearch(gas_phase_ptr->Get_gas_comps()[j].Get_phase_name().c_str(), &i, FALSE); if (match_elts_in_species(phase_ptr->formula, mytemplate) == TRUE) { @@ -1728,7 +1814,7 @@ sum_match_gases(const char *mytemplate, const char *name) } else { - for (next_elt = phase_ptr->next_elt; + for (next_elt = &phase_ptr->next_elt[0]; next_elt->elt != NULL; next_elt++) { if (strcmp(next_elt->elt->name, name) == 0) @@ -1750,7 +1836,7 @@ sum_match_species(const char *mytemplate, const char *name) { int i; LDBLE tot; - struct elt_list *next_elt; + const class elt_list *next_elt; count_elts = 0; paren_count = 0; @@ -1758,9 +1844,9 @@ sum_match_species(const char *mytemplate, const char *name) if (sum_species_map.find(mytemplate) == sum_species_map.end()) { std::vector species_list; - for (i = 0; i < count_s_x; i++) + for (i = 0; i < (int)this->s_x.size(); i++) { - struct species *s_ptr = s_x[i]; + class species *s_ptr = s_x[i]; if (match_elts_in_species(s_ptr->name, mytemplate) == TRUE) { species_list.push_back(s_ptr->name); @@ -1771,7 +1857,7 @@ sum_match_species(const char *mytemplate, const char *name) std::vector &species_list = (sum_species_map.find(mytemplate))->second; for (size_t i=0; i < species_list.size(); i++) { - struct species *s_ptr = s_search(species_list[i].c_str()); + class species *s_ptr = s_search(species_list[i].c_str()); if (s_ptr->in == FALSE) continue; if (name == NULL) { @@ -1779,7 +1865,7 @@ sum_match_species(const char *mytemplate, const char *name) } else { - for (next_elt = s_ptr->next_elt; next_elt->elt != NULL; + for (next_elt = &s_ptr->next_elt[0]; next_elt->elt != NULL; next_elt++) { if (strcmp(next_elt->elt->name, name) == 0) @@ -1801,7 +1887,7 @@ sum_match_ss(const char *mytemplate, const char *name) /* ---------------------------------------------------------------------- */ { LDBLE tot; - struct elt_list *next_elt; + const class elt_list *next_elt; if (use.Get_ss_assemblage_in() == FALSE || use.Get_ss_assemblage_ptr() == NULL) return (0); @@ -1827,8 +1913,8 @@ sum_match_ss(const char *mytemplate, const char *name) else { int l; - struct phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); - for (next_elt = phase_ptr->next_elt; next_elt->elt != NULL; next_elt++) + class phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + for (next_elt = &phase_ptr->next_elt[0]; next_elt->elt != NULL; next_elt++) { if (strcmp(next_elt->elt->name, name) == 0) { @@ -1889,9 +1975,8 @@ match_elts_in_species(const char *name, const char *mytemplate) */ int i, i1, l, case_no, match; char c, c1; - char *ptr, *ptr1; + const char* cptr, *ptr1; LDBLE d; - char element[MAX_LENGTH]; char token[MAX_LENGTH], equal_list[MAX_LENGTH]; char token1[MAX_LENGTH], template1[MAX_LENGTH], equal_list1[MAX_LENGTH]; char str[2]; @@ -1916,11 +2001,11 @@ match_elts_in_species(const char *name, const char *mytemplate) replace("--", "-2", token); } - ptr = token; + cptr = token; std::vector< std::pair > match_vector; - while ((c = *ptr) != '\0') + while ((c = *cptr) != '\0') { - c1 = *(ptr + 1); + c1 = *(cptr + 1); str[0] = c; str[1] = '\0'; /* @@ -1931,11 +2016,12 @@ match_elts_in_species(const char *name, const char *mytemplate) /* * Get new element and subscript */ - if (get_elt(&ptr, element, &l) == ERROR) + std::string element; + if (get_elt(&cptr, element, &l) == ERROR) { return (ERROR); } - if (get_num(&ptr, &d) == ERROR) + if (get_num(&cptr, &d) == ERROR) { return (ERROR); } @@ -1946,7 +2032,7 @@ match_elts_in_species(const char *name, const char *mytemplate) { std::pair pr(str, 1.0); match_vector.push_back(pr); - ptr += 1; + cptr += 1; } } /* @@ -1954,8 +2040,8 @@ match_elts_in_species(const char *name, const char *mytemplate) */ strcpy(template1, mytemplate); squeeze_white(template1); - ptr = template1; - while (extract_bracket(&ptr, equal_list) == TRUE) + cptr = template1; + while (extract_bracket(&cptr, equal_list) == TRUE) { replace("{", "", equal_list); replace("}", "", equal_list); @@ -2025,8 +2111,8 @@ match_elts_in_species(const char *name, const char *mytemplate) */ strcpy(template1, mytemplate); squeeze_white(template1); - ptr = template1; - while (extract_bracket(&ptr, equal_list) == TRUE) + cptr = template1; + while (extract_bracket(&cptr, equal_list) == TRUE) { strcpy(equal_list1, equal_list); replace("{", "", equal_list); @@ -2047,7 +2133,7 @@ match_elts_in_species(const char *name, const char *mytemplate) } replace(equal_list1, elt_name.c_str(), template1); squeeze_white(template1); - ptr = template1; + cptr = template1; } /* * Compare string @@ -2083,13 +2169,13 @@ match_elts_in_species(const char *name, const char *mytemplate) break; case 1: /* leading wild card */ - if ((ptr = strstr(token, template1)) == NULL) + if ((cptr = strstr(token, template1)) == NULL) { match = FALSE; } else { - if (strcmp(ptr, template1) == 0) + if (strcmp(cptr, template1) == 0) match = TRUE; } break; @@ -2106,248 +2192,18 @@ match_elts_in_species(const char *name, const char *mytemplate) } return (match); } -#ifdef SKIP + /* ---------------------------------------------------------------------- */ int Phreeqc:: -match_elts_in_species(const char *name, const char *mytemplate) +extract_bracket(const char **string, char *bracket_string) /* ---------------------------------------------------------------------- */ { -/* - * Makes a list of elements with their coefficients, stores elements - * in elt_list at position count_elts. Global variable count_elts is - * updated with each stored element. Also uses static global variable - * paren_count. - * - * Arguments: - * **t_ptr input, point in token string to start looking - * output, is next position to start looking - * coef input, coefficient to multiply subscripts by - */ - int i, i1, l, case_no, match; - char c, c1; - char *ptr, *ptr1; - const char *replace_name, *name_ptr; - LDBLE d; - char element[MAX_LENGTH]; - char token[MAX_LENGTH], equal_list[MAX_LENGTH], elt_name[MAX_LENGTH]; - char token1[MAX_LENGTH], template1[MAX_LENGTH], equal_list1[MAX_LENGTH]; - char str[2]; + const char* cptr; + char *ptr1; - strcpy(token, name); - squeeze_white(token); - while (replace("(+", "(", token)); - while (replace("++++++", "+6", token)); - while (replace("+++++", "+5", token)); - while (replace("++++", "+4", token)); - while (replace("+++", "+3", token)); - while (replace("++", "+2", token)); - while (replace("------", "-6", token)); - while (replace("-----", "-5", token)); - while (replace("----", "-4", token)); - while (replace("---", "-3", token)); - while (replace("--", "-2", token)); - - ptr = token; - count_match_tokens = 0; - while ((c = *ptr) != '\0') - { - c1 = *(ptr + 1); - str[0] = c; - str[1] = '\0'; -/* - * New element - */ - if (isupper((int) c) || (c == 'e' && c1 == '-') || (c == '[')) - { - /* - * Get new element and subscript - */ - if (get_elt(&ptr, element, &l) == ERROR) - { - return (ERROR); - } - match_tokens[count_match_tokens].name = string_hsave(element); - if (get_num(&ptr, &d) == ERROR) - { - return (ERROR); - } - match_tokens[count_match_tokens++].coef = d; - } - else - { - match_tokens[count_match_tokens].name = string_hsave(str); - match_tokens[count_match_tokens++].coef = 1.0; - ptr += 1; - } - } - /* - * Replace elements with first of equivalent elements - */ - strcpy(template1, mytemplate); - squeeze_white(template1); - ptr = template1; - while (extract_bracket(&ptr, equal_list) == TRUE) - { - replace("{", "", equal_list); - replace("}", "", equal_list); - while (replace(",", " ", equal_list) == TRUE); - ptr1 = equal_list; - /* - * Get first name in a list from template - */ - if (copy_token(elt_name, &ptr1, &l) == EMPTY) - { - error_string = sformatf( - "Expecting a nonempty list of element names in isotope sum. %s", - mytemplate); - error_msg(error_string, CONTINUE); - return (ERROR); - } - replace_name = string_hsave(elt_name); - /* - * Replace in species all equivalent names from template - */ - while (copy_token(elt_name, &ptr1, &l) != EMPTY) - { - name_ptr = string_hsave(elt_name); - for (i = 0; i < count_match_tokens; i++) - { - if (name_ptr == match_tokens[i].name) - { - match_tokens[i].name = replace_name; - } - } - } - } - /* - * Combine contiguous elements - */ - i1 = 0; - for (i = 1; i < count_match_tokens; i++) - { - if ((isupper((int) (match_tokens[i].name[0])) != FALSE) - && (match_tokens[i].name == match_tokens[i1].name)) - { - match_tokens[i1].coef += match_tokens[i].coef; - } - else - { - i1++; - match_tokens[i1].name = match_tokens[i].name; - match_tokens[i1].coef = match_tokens[i].coef; - } - } - count_match_tokens = i1 + 1; - /* - * write out string - */ - token[0] = '\0'; - for (i = 0; i < count_match_tokens; i++) - { - strcat(token, match_tokens[i].name); - if (match_tokens[i].coef != 1.0) - { - sprintf(token1, "%g", (double) match_tokens[i].coef); - strcat(token, token1); - } - } - /* - * Write a template name using first of equivalent elements - */ - strcpy(template1, mytemplate); - squeeze_white(template1); - ptr = template1; - while (extract_bracket(&ptr, equal_list) == TRUE) - { - strcpy(equal_list1, equal_list); - replace("{", "", equal_list); - replace("}", "", equal_list); - while (replace(",", " ", equal_list) == TRUE); - ptr1 = equal_list; - /* - * Get first name in a list - */ - if (copy_token(elt_name, &ptr1, &l) == EMPTY) - { - error_string = sformatf( - "Expecting a nonempty list of element names in isotope sum. %s", - mytemplate); - error_msg(error_string, CONTINUE); - return (ERROR); - } - replace_name = string_hsave(elt_name); - replace(equal_list1, replace_name, template1); - squeeze_white(template1); - ptr = template1; - } - /* - * Compare string - */ - /* Cases: 0 exact match - * 1 leading wild card - * 2 trailing wild card - * 3 leading and trailing wild card - */ - case_no = 0; - if (template1[0] == '*') - case_no = 1; - l = (int) strlen(template1); - if (template1[l - 1] == '*') - { - if (case_no != 1) - { - case_no = 2; - } - else - { - case_no = 3; - } - } - while (replace("*", "", template1)); - match = FALSE; - switch (case_no) - { - case 0: - /* exact match */ - if (strcmp(token, template1) == 0) - match = TRUE; - break; - case 1: - /* leading wild card */ - if ((ptr = strstr(token, template1)) == NULL) - { - match = FALSE; - } - else - { - if (strcmp(ptr, template1) == 0) - match = TRUE; - } - break; - case 2: - /* trailing wild card */ - if (strstr(token, template1) == token) - match = TRUE; - break; - case 3: - /* trailing wild card */ - if (strstr(token, template1) != NULL) - match = TRUE; - break; - } - return (match); -} -#endif -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -extract_bracket(char **string, char *bracket_string) -/* ---------------------------------------------------------------------- */ -{ - char *ptr, *ptr1; - - if ((ptr = strstr(*string, "{")) == NULL) + if ((cptr = strstr(*string, "{")) == NULL) return (FALSE); - strcpy(bracket_string, ptr); + strcpy(bracket_string, cptr); if ((ptr1 = strstr(bracket_string, "}")) == NULL) { error_string = sformatf( @@ -2411,7 +2267,7 @@ surf_total(const char *total_name, const char *surface_name) * find total moles for redox state */ LDBLE t = 0; - for (j = 0; j < count_s_x; j++) + for (j = 0; j < (int)this->s_x.size(); j++) { if (s_x[j]->type != SURF) continue; @@ -2426,8 +2282,8 @@ surf_total(const char *total_name, const char *surface_name) //strcpy(token, s_x[j]->next_elt[i].elt->name); //replace("_", " ", token); - //ptr = token; - //copy_token(name, &ptr, &k); + //cptr = token; + //copy_token(name, &cptr, &k); token = s_x[j]->next_elt[i].elt->name; replace("_", " ", token); std::string::iterator b = token.begin(); @@ -2443,170 +2299,66 @@ surf_total(const char *total_name, const char *surface_name) if (!match) continue; // surface matches, now match element or redox state - struct rxn_token *rxn_ptr; - for (rxn_ptr = s_x[j]->rxn_s->token + 1; rxn_ptr->s != NULL; rxn_ptr++) + class rxn_token *rxn_ptr; + if (s_x[j]->mole_balance == NULL) { - if (redox && rxn_ptr->s->secondary) + for (rxn_ptr = &s_x[j]->rxn_s.token[0] + 1; rxn_ptr->s != NULL; rxn_ptr++) { - token = rxn_ptr->s->secondary->elt->name; - } - else if (!redox && rxn_ptr->s->secondary) - { - token = rxn_ptr->s->secondary->elt->primary->elt->name; - } - else if (!redox && rxn_ptr->s->primary) - { - token = rxn_ptr->s->primary->elt->name; - } - else - { - continue; - } - if (strcmp(token.c_str(), total_name) == 0) - { - t += rxn_ptr->coef * s_x[j]->moles; - break; - } - else - // sum all sites in case total_name is a surface name without underscore surf ("Hfo_w", "Hfo") - { - if (rxn_ptr->s->type == SURF) + if (redox && rxn_ptr->s->secondary) { - if (token.find("_") != std::string::npos) + token = rxn_ptr->s->secondary->elt->name; + } + else if (!redox && rxn_ptr->s->secondary) + { + token = rxn_ptr->s->secondary->elt->primary->elt->name; + } + else if (!redox && rxn_ptr->s->primary) + { + token = rxn_ptr->s->primary->elt->name; + } + else + { + continue; + } + if (strcmp(token.c_str(), total_name) == 0) + { + t += rxn_ptr->coef * s_x[j]->moles; + break; + } + else + // sum all sites in case total_name is a surface name without underscore surf ("Hfo_w", "Hfo") + { + if (rxn_ptr->s->type == SURF) { - token = token.substr(0, token.find("_")); - } - if (strcmp(token.c_str(), total_name) == 0) - { - t += rxn_ptr->coef * s_x[j]->moles; - break; + if (token.find("_") != std::string::npos) + { + token = token.substr(0, token.find("_")); + } + if (strcmp(token.c_str(), total_name) == 0) + { + t += rxn_ptr->coef * s_x[j]->moles; + break; + } } } } } + else + { + for (int i = 0; s_x[j]->next_secondary[i].elt != NULL; i++) + { + token = s_x[j]->next_secondary[i].elt->name; + if (strcmp(token.c_str(), total_name) == 0) + { + t += s_x[j]->next_secondary[i].coef * s_x[j]->moles; + break; + } + } + } } return t; } -#ifdef SKIP -/* ---------------------------------------------------------------------- */ -LDBLE Phreeqc:: -surf_total(const char *total_name, const char *surface_name) -/* ---------------------------------------------------------------------- */ -{ -/* - * Provides total moles in LDBLE layer - */ - int j; - if (use.Get_surface_ptr() == NULL || surface_name == NULL) - return (0); - -/* - * Find surface... - */ - for (j = 0; j < count_unknowns; j++) - { - if (x[j]->type != SURFACE) - continue; - - std::string token; - token = x[j]->master[0]->elt->name; - replace("_", " ", token); - std::string::iterator b = token.begin(); - std::string::iterator e = token.end(); - std::string name; - CParser::copy_token(name, b, e); - if (strcmp(name.c_str(), surface_name) == 0) - break; - } - if (j >= count_unknowns) - return (0); -/* - * find total moles for redox state - */ - LDBLE t = 0; - bool redox = false; - if (strstr(total_name, "(") != NULL) - { - redox = true; - } - for (j = 0; j < count_s_x; j++) - { - if (s_x[j]->type != SURF) - continue; - - std::string token; - bool match = false; - - // find if surface matches - for (int i = 0; s_x[j]->next_elt[i].elt != NULL; i++) - { - if (s_x[j]->next_elt[i].elt->master->type != SURF) continue; - - //strcpy(token, s_x[j]->next_elt[i].elt->name); - //replace("_", " ", token); - //ptr = token; - //copy_token(name, &ptr, &k); - token = s_x[j]->next_elt[i].elt->name; - replace("_", " ", token); - std::string::iterator b = token.begin(); - std::string::iterator e = token.end(); - std::string name; - CParser::copy_token(name, b, e); - if (strcmp(name.c_str(), surface_name) == 0) - { - match = true; - break; - } - } - if (!match) continue; - - // surface matches, now match element or redox state - struct rxn_token *rxn_ptr; - for (rxn_ptr = s_x[j]->rxn_s->token + 1; rxn_ptr->s != NULL; rxn_ptr++) - { - if (redox && rxn_ptr->s->secondary) - { - token = rxn_ptr->s->secondary->elt->name; - } - else if (!redox && rxn_ptr->s->secondary) - { - token = rxn_ptr->s->secondary->elt->primary->elt->name; - } - else if (!redox && rxn_ptr->s->primary) - { - token = rxn_ptr->s->primary->elt->name; - } - else - { - continue; - } - if (strcmp(token.c_str(), total_name) == 0) - { - t += rxn_ptr->coef * s_x[j]->moles; - break; - } - else - // sum all sites in case total_name is a surface name without underscore surf ("Hfo_w", "Hfo") - { - if (rxn_ptr->s->type == SURF) - { - if (token.find("_") != std::string::npos) - { - token = token.substr(0, token.find("_")); - } - if (strcmp(token.c_str(), total_name) == 0) - { - t += rxn_ptr->coef * s_x[j]->moles; - break; - } - } - } - } - } - return t; -} -#endif /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: surf_total_no_redox(const char *total_name, const char *surface_name) @@ -2618,7 +2370,7 @@ surf_total_no_redox(const char *total_name, const char *surface_name) int i, j, k; char name[MAX_LENGTH], token[MAX_LENGTH]; char surface_name_local[MAX_LENGTH]; - char *ptr; + const char* cptr; if (use.Get_surface_ptr() == NULL) return (0); @@ -2632,8 +2384,8 @@ surf_total_no_redox(const char *total_name, const char *surface_name) continue; strcpy(token, x[j]->master[0]->elt->name); replace("_", " ", token); - ptr = token; - copy_token(name, &ptr, &k); + cptr = token; + copy_token(name, &cptr, &k); if (surface_name != NULL) { if (strcmp(name, surface_name) == 0) @@ -2652,7 +2404,7 @@ surf_total_no_redox(const char *total_name, const char *surface_name) */ count_elts = 0; paren_count = 0; - for (j = 0; j < count_s_x; j++) + for (j = 0; j < (int)this->s_x.size(); j++) { if (s_x[j]->type != SURF) continue; @@ -2662,8 +2414,8 @@ surf_total_no_redox(const char *total_name, const char *surface_name) strcpy(token, s_x[j]->next_elt[i].elt->name); replace("_", " ", token); - ptr = token; - copy_token(name, &ptr, &k); + cptr = token; + copy_token(name, &cptr, &k); if (strcmp(name, surface_name_local) == 0) { /* @@ -2675,12 +2427,7 @@ surf_total_no_redox(const char *total_name, const char *surface_name) } } } - if (count_elts > 0) - { - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); - elt_list_combine(); - } + elt_list_combine(); /* * Return totals */ @@ -2698,9 +2445,8 @@ LDBLE Phreeqc:: total(const char *total_name) /* ---------------------------------------------------------------------- */ { - struct master *master_ptr; + class master *master_ptr; LDBLE t; - int i; if (strcmp(total_name, "H") == 0) { @@ -2710,7 +2456,9 @@ total(const char *total_name) { return (total_o_x / mass_water_aq_x); } - master_ptr = master_bsearch(total_name); + std::string noplus = total_name; + replace(noplus, "+", ""); + master_ptr = master_bsearch(noplus.c_str()); t = 0.0; if (master_ptr == NULL) { @@ -2746,8 +2494,8 @@ total(const char *total_name) else { t = 0; - for (i = master_ptr->number + 1; - (i < count_master && master[i]->elt->primary == master_ptr); + for (size_t i = master_ptr->number + 1; + (i < (int)master.size() && master[i]->elt->primary == master_ptr); i++) { t += master[i]->total / mass_water_aq_x; @@ -2768,9 +2516,8 @@ LDBLE Phreeqc:: total_mole(const char *total_name) /* ---------------------------------------------------------------------- */ { - struct master *master_ptr; + class master *master_ptr; LDBLE t; - int i; if (strcmp(total_name, "H") == 0) { @@ -2780,7 +2527,9 @@ total_mole(const char *total_name) { return (total_o_x); } - master_ptr = master_bsearch(total_name); + std::string noplus = total_name; + replace(noplus, "+", ""); + master_ptr = master_bsearch(noplus.c_str()); t = 0.0; if (master_ptr == NULL) { @@ -2816,8 +2565,8 @@ total_mole(const char *total_name) else { t = 0; - for (i = master_ptr->number + 1; - (i < count_master && master[i]->elt->primary == master_ptr); + for (size_t i = master_ptr->number + 1; + (i < master.size() && master[i]->elt->primary == master_ptr); i++) { t += master[i]->total; @@ -2841,12 +2590,13 @@ get_edl_species(cxxSurfaceCharge & charge_ref) { double mass_water_surface = charge_ref.Get_mass_water(); - space((void **) ((void *) &sys), count_s_x, &max_sys, sizeof(struct system_species)); - count_sys = 0; - for (int j = 0; j < count_s_x; j++) + sys.clear(); + for (int j = 0; j < (int)this->s_x.size(); j++) { if (s_x[j]->type == H2O) { + size_t count_sys = sys.size(); + sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate(s_x[j]->name); sys[count_sys].moles = mass_water_surface / gfw_water; sys_tot += sys[count_sys].moles; @@ -2854,6 +2604,8 @@ get_edl_species(cxxSurfaceCharge & charge_ref) } else if (s_x[j]->type < H2O) { + size_t count_sys = sys.size(); + sys.resize(count_sys + 1); double molality = under(s_x[j]->lm); double moles_excess = mass_water_aq_x * molality * charge_ref.Get_g_map()[s_x[j]->z].Get_g(); double moles_surface = mass_water_surface * molality + moles_excess; @@ -2861,44 +2613,12 @@ get_edl_species(cxxSurfaceCharge & charge_ref) sys[count_sys].moles = moles_surface; sys_tot += sys[count_sys].moles; count_sys++; -#ifdef SKIP - double g = charge_ref.Get_g_map()[s_x[j]->z].Get_g(); - double moles_excess = mass_water_aq_x * molality * (g * s_x[j]->erm_ddl + - mass_water_surface / - mass_water_aq_x * (s_x[j]->erm_ddl - 1)); - double c = (mass_water_surface * molality + moles_excess) / mass_water_surface; - charge_ref.Get_dl_species_map()[s_x[j]->number] = c; -#endif } else { continue; } } -#ifdef SKIP -/* - * Provides total moles in system and lists of species/phases in sort order - */ - int i; -/* - * find total moles in aq, surface, and exchange - */ - - for (i = 0; i < count_s_x; i++) - { - //if (s_x[i]->type != AQ) - if (s_x[i]->type > HPLUS) - continue; - sys[count_sys].name = string_duplicate(s_x[i]->name); - sys[count_sys].moles = s_x[i]->moles; - sys_tot += sys[count_sys].moles; - sys[count_sys].type = string_duplicate("aq"); - count_sys++; - space((void **) ((void *) &sys), count_sys, &max_sys, - sizeof(struct system_species)); - } - -#endif return (OK); } /* ---------------------------------------------------------------------- */ @@ -2911,10 +2631,7 @@ edl_species(const char *surf_name, LDBLE * count, char ***names, LDBLE ** moles, */ int i; sys_tot = 0; - count_sys = 0; - max_sys = 100; - space((void **) ((void *) &sys), INIT, &max_sys, - sizeof(struct system_species)); + sys.clear(); if (!(dl_type_x == cxxSurface::NO_DL)) { cxxSurface *surface_ptr = use.Get_surface_ptr(); @@ -2933,37 +2650,38 @@ edl_species(const char *surf_name, LDBLE * count, char ***names, LDBLE ** moles, /* * Sort system species */ - if (count_sys > 1) + if (sys.size() > 1) { - qsort(sys, (size_t) count_sys, - (size_t) sizeof(struct system_species), system_species_compare); + qsort(&sys[0], sys.size(), + sizeof(class system_species), system_species_compare); } /* * malloc space */ - *names = (char **) PHRQ_malloc((size_t) (count_sys + 1) * sizeof(char *)); + *names = (char **) PHRQ_malloc((sys.size() + 1) * sizeof(char *)); if (names == NULL) malloc_error(); - *moles = (LDBLE *) PHRQ_malloc((size_t) (count_sys + 1) * sizeof(LDBLE)); + *moles = (LDBLE *) PHRQ_malloc((sys.size() + 1) * sizeof(LDBLE)); if (moles == NULL) malloc_error(); (*names)[0] = NULL; (*moles)[0] = 0; - for (i = 0; i < count_sys; i++) + for (i = 0; i < (int)sys.size(); i++) { (*names)[i + 1] = sys[i].name; (*moles)[i + 1] = sys[i].moles; } - *count = (LDBLE) count_sys; + *count = (LDBLE)sys.size(); - PHRQ_free(sys); + //PHRQ_free(sys); + sys.clear(); return (sys_tot); } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: system_total(const char *total_name, LDBLE * count, char ***names, - char ***types, LDBLE ** moles) + char ***types, LDBLE ** moles, int isort) /* ---------------------------------------------------------------------- */ { /* @@ -2972,10 +2690,7 @@ system_total(const char *total_name, LDBLE * count, char ***names, int i; sys_tot = 0; - count_sys = 0; - max_sys = 100; - space((void **) ((void *) &sys), INIT, &max_sys, - sizeof(struct system_species)); + sys.clear(); if (strcmp_nocase(total_name, "elements") == 0) { system_total_elements(); @@ -3026,28 +2741,34 @@ system_total(const char *total_name, LDBLE * count, char ***names, /* * Sort system species */ - if (count_sys > 1) + if (sys.size() > 1 && isort == 0) { - qsort(sys, (size_t) count_sys, - (size_t) sizeof(struct system_species), system_species_compare); + qsort(&sys[0], sys.size(), + sizeof(class system_species), system_species_compare); + } + else if (sys.size() > 1) + { + qsort(&sys[0], sys.size(), + sizeof(class system_species), system_species_compare_name); } /* * malloc space */ - *names = (char **) PHRQ_malloc((size_t) (count_sys + 1) * sizeof(char *)); + size_t count_sys = sys.size(); + *names = (char **) PHRQ_malloc((count_sys + 1) * sizeof(char *)); if (names == NULL) malloc_error(); - *types = (char **) PHRQ_malloc((size_t) (count_sys + 1) * sizeof(char *)); + *types = (char **) PHRQ_malloc((count_sys + 1) * sizeof(char *)); if (types == NULL) malloc_error(); - *moles = (LDBLE *) PHRQ_malloc((size_t) (count_sys + 1) * sizeof(LDBLE)); + *moles = (LDBLE *) PHRQ_malloc((count_sys + 1) * sizeof(LDBLE)); if (moles == NULL) malloc_error(); (*names)[0] = NULL; (*types)[0] = NULL; (*moles)[0] = 0; - for (i = 0; i < count_sys; i++) + for (i = 0; i < (int)count_sys; i++) { (*names)[i + 1] = sys[i].name; (*types)[i + 1] = sys[i].type; @@ -3057,7 +2778,7 @@ system_total(const char *total_name, LDBLE * count, char ***names, if (strcmp_nocase(total_name, "elements") == 0) { sys_tot = 0;; - for (i = 0; i < count_sys; i++) + for (i = 0; i < (int)count_sys; i++) { if (strcmp(sys[i].type, "dis") == 0 && strstr(sys[i].name, "(") == NULL && @@ -3068,7 +2789,8 @@ system_total(const char *total_name, LDBLE * count, char ***names, } } } - PHRQ_free(sys); + //PHRQ_free(sys); + sys.clear(); return (sys_tot); } @@ -3100,7 +2822,7 @@ kinetics_formula(std::string kin_name, cxxNameDouble &stoichiometry) { // Try Phases int l; - struct phase *phase_ptr = phase_bsearch(it->first.c_str(), &l, FALSE); + class phase *phase_ptr = phase_bsearch(it->first.c_str(), &l, FALSE); if (phase_ptr != NULL) { add_elt_list(phase_ptr->next_elt, it->second); @@ -3110,20 +2832,13 @@ kinetics_formula(std::string kin_name, cxxNameDouble &stoichiometry) // add formula std::string name = it->first; LDBLE coef = it->second; - char * temp_name = string_duplicate(name.c_str()); - char *ptr = temp_name; - get_elts_in_species(&ptr, coef); - free_check_null(temp_name); + const char* cptr = &name[0]; + get_elts_in_species(&cptr, coef); } } formula.append(kin_name); //elt_list[count_elts].elt = NULL; - if (count_elts > 0) - { - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); - elt_list_combine(); - } + elt_list_combine(); stoichiometry = elt_list_NameDouble(); break; } @@ -3143,7 +2858,7 @@ phase_formula(std::string phase_name, cxxNameDouble &stoichiometry) std::string formula; int j; - struct phase *phase_ptr = phase_bsearch(phase_name.c_str(), &j, FALSE); + class phase *phase_ptr = phase_bsearch(phase_name.c_str(), &j, FALSE); if (phase_ptr != NULL) { formula.append(phase_ptr->formula); @@ -3165,7 +2880,7 @@ species_formula(std::string phase_name, cxxNameDouble &stoichiometry) stoichiometry.clear(); std::string formula; formula = "none"; - struct species *s_ptr = s_search(phase_name.c_str()); + class species *s_ptr = s_search(phase_name.c_str()); if (s_ptr != NULL) { cxxNameDouble nd(s_ptr->next_elt); @@ -3192,47 +2907,43 @@ int Phreeqc:: system_total_elements(void) /* ---------------------------------------------------------------------- */ { - int i, j; + int i; LDBLE t; char name[MAX_LENGTH]; - struct master *master_ptr; + class master *master_ptr; /* * Include H and O */ + size_t count_sys = sys.size(); + sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate("H"); sys[count_sys].moles = total_h_x; sys_tot += sys[count_sys].moles; sys[count_sys].type = string_duplicate("dis"); count_sys++; - space((void **) ((void *) &sys), count_sys, &max_sys, - sizeof(struct system_species)); + sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate("O"); sys[count_sys].moles = total_o_x; sys_tot += sys[count_sys].moles; sys[count_sys].type = string_duplicate("dis"); - count_sys++; - space((void **) ((void *) &sys), count_sys, &max_sys, - sizeof(struct system_species)); + count_sys++;; /* * Include H(1) and O(-2) */ + sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate("H(1)"); sys[count_sys].moles = solution_sum_secondary("H(1)"); sys_tot += sys[count_sys].moles; sys[count_sys].type = string_duplicate("dis"); count_sys++; - space((void **) ((void *) &sys), count_sys, &max_sys, - sizeof(struct system_species)); + sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate("O(-2)"); sys[count_sys].moles = solution_sum_secondary("O(-2)"); sys_tot += sys[count_sys].moles; sys[count_sys].type = string_duplicate("dis"); count_sys++; - space((void **) ((void *) &sys), count_sys, &max_sys, - sizeof(struct system_species)); - - for (i = 0; i < count_master; i++) + for (i = 0; i < (int)master.size(); i++) { master_ptr = master[i]; if (master_ptr->primary == TRUE && master_ptr->total_primary <= 0) @@ -3271,7 +2982,7 @@ system_total_elements(void) else { t = 0; - for (j = master_ptr->number + 1; + for (size_t j = master_ptr->number + 1; master[j]->elt->primary == master_ptr; j++) { t += master[j]->total; @@ -3285,7 +2996,9 @@ system_total_elements(void) { t = master_ptr->total; } - strcpy(name, master[i]->elt->name); + strcpy(name, master[i]->elt->name); + count_sys = sys.size(); + sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate(name); sys[count_sys].moles = t; sys_tot += sys[count_sys].moles; @@ -3301,10 +3014,6 @@ system_total_elements(void) { sys[count_sys].type = string_duplicate("surf"); } - count_sys++; - space((void **) ((void *) &sys), count_sys, &max_sys, - sizeof(struct system_species)); - } return (OK); } @@ -3316,11 +3025,11 @@ system_total_si(void) { int i; LDBLE si, iap; - struct rxn_token *rxn_ptr; + class rxn_token *rxn_ptr; char name[MAX_LENGTH]; sys_tot = -999.9; - for (i = 0; i < count_phases; i++) + for (i = 0; i < (int)phases.size(); i++) { if (phases[i]->in == FALSE || phases[i]->type != SOLID) continue; @@ -3328,21 +3037,20 @@ system_total_si(void) * Print saturation index */ iap = 0.0; - for (rxn_ptr = phases[i]->rxn_x->token + 1; rxn_ptr->s != NULL; + for (rxn_ptr = &phases[i]->rxn_x.token[0] + 1; rxn_ptr->s != NULL; rxn_ptr++) { iap += rxn_ptr->s->la * rxn_ptr->coef; } si = -phases[i]->lk + iap; strcpy(name, phases[i]->name); + size_t count_sys = sys.size(); + sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate(name); sys[count_sys].moles = si; if (si > sys_tot) sys_tot = si; sys[count_sys].type = string_duplicate("phase"); - count_sys++; - space((void **) ((void *) &sys), count_sys, &max_sys, - sizeof(struct system_species)); } return (OK); } @@ -3359,18 +3067,17 @@ system_total_aq(void) /* * find total moles in aq, surface, and exchange */ - for (i = 0; i < count_s_x; i++) + for (i = 0; i < (int)this->s_x.size(); i++) { //if (s_x[i]->type != AQ) if (s_x[i]->type > HPLUS) continue; + size_t count_sys = sys.size(); + sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate(s_x[i]->name); sys[count_sys].moles = s_x[i]->moles; sys_tot += sys[count_sys].moles; sys[count_sys].type = string_duplicate("aq"); - count_sys++; - space((void **) ((void *) &sys), count_sys, &max_sys, - sizeof(struct system_species)); } return (OK); } @@ -3387,19 +3094,18 @@ system_total_ex(void) /* * find total moles in aq, surface, and exchange */ - for (i = 0; i < count_s_x; i++) + for (i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type != EX) continue; if (s_x[i]->primary != NULL) continue; + size_t count_sys = sys.size(); + sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate(s_x[i]->name); sys[count_sys].moles = s_x[i]->moles; sys_tot += sys[count_sys].moles; sys[count_sys].type = string_duplicate("ex"); - count_sys++; - space((void **) ((void *) &sys), count_sys, &max_sys, - sizeof(struct system_species)); } return (OK); } @@ -3416,17 +3122,16 @@ system_total_surf(void) /* * find total moles in aq, surface, and exchange */ - for (i = 0; i < count_s_x; i++) + for (i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type != SURF) continue; + size_t count_sys = sys.size(); + sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate(s_x[i]->name); sys[count_sys].moles = s_x[i]->moles; sys_tot += sys[count_sys].moles; sys[count_sys].type = string_duplicate("surf"); - count_sys++; - space((void **) ((void *) &sys), count_sys, &max_sys, - sizeof(struct system_species)); } return (OK); } @@ -3448,16 +3153,15 @@ system_total_gas(void) cxxGasPhase *gas_phase_ptr = use.Get_gas_phase_ptr(); for (size_t j = 0; j < gas_phase_ptr->Get_gas_comps().size(); j++) { - struct phase *phase_ptr = phase_bsearch(gas_phase_ptr->Get_gas_comps()[j].Get_phase_name().c_str(), + class phase *phase_ptr = phase_bsearch(gas_phase_ptr->Get_gas_comps()[j].Get_phase_name().c_str(), &i, FALSE); assert(phase_ptr); + size_t count_sys = sys.size(); + sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate(phase_ptr->name); sys[count_sys].moles = phase_ptr->moles_x; sys_tot += sys[count_sys].moles; sys[count_sys].type = string_duplicate("gas"); - count_sys++; - space((void **) ((void *) &sys), count_sys, &max_sys, - sizeof(struct system_species)); } return (OK); } @@ -3477,15 +3181,13 @@ system_total_equi(void) { cxxPPassemblageComp *comp_ptr = &(it->second); int l; - struct phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + class phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + size_t count_sys = sys.size(); + sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate(phase_ptr->name); - //sys[count_sys].moles = comp_ptr->Get_moles(); sys[count_sys].moles = equi_phase(sys[count_sys].name); sys_tot += sys[count_sys].moles; sys[count_sys].type = string_duplicate("equi"); - count_sys++; - space((void **) ((void *) &sys), count_sys, &max_sys, - sizeof(struct system_species)); } return (OK); } @@ -3502,14 +3204,13 @@ system_total_kin(void) std::vector comps = use.Get_kinetics_ptr()->Get_kinetics_comps(); for (size_t i=0 ; i < comps.size(); i++) { - cxxKineticsComp *comp_ptr = &comps[i]; + cxxKineticsComp *comp_ptr = &comps[i]; + size_t count_sys = sys.size(); + sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate(comp_ptr->Get_rate_name().c_str()); sys[count_sys].moles = comp_ptr->Get_m(); sys_tot += sys[count_sys].moles; sys[count_sys].type = string_duplicate("kin"); - count_sys++; - space((void **) ((void *) &sys), count_sys, &max_sys, - sizeof(struct system_species)); } return (OK); } @@ -3535,14 +3236,13 @@ system_total_ss(void) { cxxSScomp *comp_ptr = &(ss_ptr->Get_ss_comps()[i]); int l; - struct phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + class phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + size_t count_sys = sys.size(); + sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate(phase_ptr->name); sys[count_sys].moles = comp_ptr->Get_moles(); sys_tot += sys[count_sys].moles; sys[count_sys].type = string_duplicate("s_s"); - count_sys++; - space((void **) ((void *) &sys), count_sys, &max_sys, - sizeof(struct system_species)); } } return (OK); @@ -3562,18 +3262,13 @@ system_total_elt(const char *total_name) /* * find total moles in aq, surface, and exchange */ - for (i = 0; i < count_s_x; i++) + for (i = 0; i < (int)this->s_x.size(); i++) { count_elts = 0; paren_count = 0; add_elt_list(s_x[i]->next_elt, s_x[i]->moles); - if (count_elts > 0) - { - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); - elt_list_combine(); - } + elt_list_combine(); /* * Look for element */ @@ -3581,6 +3276,8 @@ system_total_elt(const char *total_name) { if (strcmp(elt_list[j].elt->name, total_name) == 0) { + size_t count_sys = sys.size(); + sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate(s_x[i]->name); sys[count_sys].moles = elt_list[j].coef; sys_tot += sys[count_sys].moles; @@ -3615,9 +3312,6 @@ system_total_elt(const char *total_name) { error_msg("System_total", STOP); } - count_sys++; - space((void **) ((void *) &sys), count_sys, &max_sys, - sizeof(struct system_species)); break; } } @@ -3641,7 +3335,7 @@ system_total_elt(const char *total_name) mass_water_surface = charge_ptr->Get_mass_water(); count_elts = 0; paren_count = 0; - for (j = 0; j < count_s_x; j++) + for (j = 0; j < (int)this->s_x.size(); j++) { if (s_x[j]->type > HPLUS) continue; @@ -3657,12 +3351,7 @@ system_total_elt(const char *total_name) */ add_elt_list(s_x[j]->next_elt, moles_surface); } - if (count_elts > 0) - { - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); - elt_list_combine(); - } + elt_list_combine(); /* * Print totals */ @@ -3670,15 +3359,14 @@ system_total_elt(const char *total_name) { if (strcmp(elt_list[j].elt->name, total_name) == 0) { + size_t count_sys = sys.size(); + sys.resize(count_sys + 1); strcpy(name, x[k]->master[0]->elt->name); replace("_psi", "", name); sys[count_sys].name = string_duplicate(name); sys[count_sys].moles = elt_list[j].coef; sys_tot += sys[count_sys].moles; sys[count_sys].type = string_duplicate("diff"); - count_sys++; - space((void **) ((void *) &sys), count_sys, &max_sys, - sizeof(struct system_species)); break; } } @@ -3702,27 +3390,20 @@ system_total_elt(const char *total_name) count_elts = 0; paren_count = 0; int j; - //struct phase * phase_ptr = phase_bsearch(x[i]->pp_assemblage_comp_name, &j, FALSE); - struct phase * phase_ptr = x[i]->phase; + //class phase * phase_ptr = phase_bsearch(x[i]->pp_assemblage_comp_name, &j, FALSE); + class phase * phase_ptr = x[i]->phase; add_elt_list(phase_ptr->next_elt, x[i]->moles); - if (count_elts > 0) - { - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); - elt_list_combine(); - } + elt_list_combine(); for (j = 0; j < count_elts; j++) { if (strcmp(elt_list[j].elt->name, total_name) == 0) { - sys[count_sys].name = - string_duplicate(phase_ptr->name); + size_t count_sys = sys.size(); + sys.resize(count_sys + 1); + sys[count_sys].name = string_duplicate(phase_ptr->name); sys[count_sys].moles = elt_list[j].coef; sys_tot += sys[count_sys].moles; sys[count_sys].type = string_duplicate("equi"); - count_sys++; - space((void **) ((void *) &sys), count_sys, &max_sys, - sizeof(struct system_species)); break; } } @@ -3743,30 +3424,23 @@ system_total_elt(const char *total_name) { cxxSScomp *comp_ptr = &(ss_ptr->Get_ss_comps()[i]); int l; - struct phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + class phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); count_elts = 0; paren_count = 0; add_elt_list(phase_ptr->next_elt, comp_ptr->Get_moles()); - if (count_elts > 0) - { - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), - elt_list_compare); - elt_list_combine(); - } + elt_list_combine(); for (j = 0; j < count_elts; j++) { if (strcmp(elt_list[j].elt->name, total_name) == 0) { + size_t count_sys = sys.size(); + sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate(phase_ptr->name); sys[count_sys].moles = elt_list[j].coef; sys_tot += sys[count_sys].moles; sys[count_sys].type = string_duplicate("s_s"); - count_sys++; - space((void **) ((void *) &sys), count_sys, - &max_sys, sizeof(struct system_species)); break; } } @@ -3782,7 +3456,7 @@ system_total_elt(const char *total_name) cxxGasPhase *gas_phase_ptr = use.Get_gas_phase_ptr(); for (size_t i = 0; i < gas_phase_ptr->Get_gas_comps().size(); i++) { - struct phase *phase_ptr = + class phase *phase_ptr = phase_bsearch(gas_phase_ptr->Get_gas_comps()[i].Get_phase_name().c_str(), &k, FALSE); assert(phase_ptr); if (phase_ptr->in == TRUE) @@ -3790,12 +3464,7 @@ system_total_elt(const char *total_name) count_elts = 0; paren_count = 0; add_elt_list(phase_ptr->next_elt, phase_ptr->moles_x); - if (count_elts > 0) - { - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); - elt_list_combine(); - } + elt_list_combine(); /* * Look for element */ @@ -3803,13 +3472,12 @@ system_total_elt(const char *total_name) { if (strcmp(elt_list[j].elt->name, total_name) == 0) { + size_t count_sys = sys.size(); + sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate(phase_ptr->name); sys[count_sys].moles = elt_list[j].coef; sys_tot += sys[count_sys].moles; sys[count_sys].type = string_duplicate("gas"); - count_sys++; - space((void **) ((void *) &sys), count_sys, &max_sys, - sizeof(struct system_species)); break; } } @@ -3834,11 +3502,11 @@ system_total_elt_secondary(const char *total_name) /* * find total moles in aq, surface, and exchange */ - for (i = 0; i < count_s_x; i++) + for (i = 0; i < (int)this->s_x.size(); i++) { count_elts = 0; paren_count = 0; - if (s_x[i]->next_secondary != NULL) + if (s_x[i]->next_secondary.size() != 0) { add_elt_list(s_x[i]->next_secondary, s_x[i]->moles); } @@ -3846,12 +3514,7 @@ system_total_elt_secondary(const char *total_name) { add_elt_list(s_x[i]->next_sys_total, s_x[i]->moles); } - if (count_elts > 0) - { - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); - elt_list_combine(); - } + elt_list_combine(); /* * Look for element */ @@ -3859,6 +3522,8 @@ system_total_elt_secondary(const char *total_name) { if (strcmp(elt_list[j].elt->name, total_name) == 0) { + size_t count_sys = sys.size(); + sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate(s_x[i]->name); sys[count_sys].moles = elt_list[j].coef; sys_tot += sys[count_sys].moles; @@ -3888,9 +3553,6 @@ system_total_elt_secondary(const char *total_name) { error_msg("System_total", STOP); } - count_sys++; - space((void **) ((void *) &sys), count_sys, &max_sys, - sizeof(struct system_species)); break; } } @@ -3913,11 +3575,11 @@ system_total_elt_secondary(const char *total_name) */ mass_water_surface = charge_ptr->Get_mass_water(); sum = 0; - for (j = 0; j < count_s_x; j++) + for (j = 0; j < (int)this->s_x.size(); j++) { count_elts = 0; paren_count = 0; - if (s_x[i]->next_secondary != NULL) + if (s_x[i]->next_secondary.size() != 0) { add_elt_list(s_x[i]->next_secondary, 1); } @@ -3946,13 +3608,12 @@ system_total_elt_secondary(const char *total_name) continue; strcpy(name, x[k]->master[0]->elt->name); replace("_psi", "", name); + size_t count_sys = sys.size(); + sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate(name); sys[count_sys].moles = sum; sys_tot += sys[count_sys].moles; sys[count_sys].type = string_duplicate("diff"); - count_sys++; - space((void **) ((void *) &sys), count_sys, &max_sys, - sizeof(struct system_species)); break; } } @@ -3975,27 +3636,21 @@ system_total_elt_secondary(const char *total_name) count_elts = 0; paren_count = 0; int j; - //struct phase * phase_ptr = phase_bsearch(x[i]->pp_assemblage_comp_name, &j, FALSE); - struct phase * phase_ptr = x[i]->phase; + //class phase * phase_ptr = phase_bsearch(x[i]->pp_assemblage_comp_name, &j, FALSE); + class phase * phase_ptr = x[i]->phase; add_elt_list(phase_ptr->next_sys_total, x[i]->moles); - if (count_elts > 0) - { - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); - elt_list_combine(); - } + elt_list_combine(); for (j = 0; j < count_elts; j++) { if (strcmp(elt_list[j].elt->name, total_name) == 0) { + size_t count_sys = sys.size(); + sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate(phase_ptr->name); sys[count_sys].moles = elt_list[j].coef; sys_tot += sys[count_sys].moles; sys[count_sys].type = string_duplicate("equi"); - count_sys++; - space((void **) ((void *) &sys), count_sys, &max_sys, - sizeof(struct system_species)); break; } } @@ -4016,30 +3671,23 @@ system_total_elt_secondary(const char *total_name) { cxxSScomp *comp_ptr = &(ss_ptr->Get_ss_comps()[k]); int l; - struct phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + class phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); count_elts = 0; paren_count = 0; add_elt_list(phase_ptr->next_sys_total, comp_ptr->Get_moles()); - if (count_elts > 0) - { - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), - elt_list_compare); - elt_list_combine(); - } + elt_list_combine(); for (j = 0; j < count_elts; j++) { if (strcmp(elt_list[j].elt->name, total_name) == 0) { + size_t count_sys = sys.size(); + sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate(phase_ptr->name); sys[count_sys].moles = elt_list[j].coef; sys_tot += sys[count_sys].moles; sys[count_sys].type = string_duplicate("s_s"); - count_sys++; - space((void **) ((void *) &sys), count_sys, - &max_sys, sizeof(struct system_species)); break; } } @@ -4055,7 +3703,7 @@ system_total_elt_secondary(const char *total_name) cxxGasPhase *gas_phase_ptr = use.Get_gas_phase_ptr(); for (size_t j = 0; j < gas_phase_ptr->Get_gas_comps().size(); j++) { - struct phase *phase_ptr = + class phase *phase_ptr = phase_bsearch(gas_phase_ptr->Get_gas_comps()[j].Get_phase_name().c_str(), &i, FALSE); assert(phase_ptr); if (phase_ptr->in == TRUE) @@ -4065,12 +3713,7 @@ system_total_elt_secondary(const char *total_name) add_elt_list(phase_ptr->next_sys_total, phase_ptr->moles_x); - if (count_elts > 0) - { - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); - elt_list_combine(); - } + elt_list_combine(); /* * Look for element */ @@ -4078,14 +3721,13 @@ system_total_elt_secondary(const char *total_name) { if (strcmp(elt_list[j1].elt->name, total_name) == 0) { + size_t count_sys = sys.size(); + sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate(phase_ptr->name); sys[count_sys].moles = elt_list[j1].coef; sys_tot += sys[count_sys].moles; sys[count_sys].type = string_duplicate("gas"); - count_sys++; - space((void **) ((void *) &sys), count_sys, &max_sys, - sizeof(struct system_species)); break; } } @@ -4144,13 +3786,13 @@ solution_sum_secondary(const char *total_name) * find total moles in aq, surface, and exchange */ sum = 0; - for (i = 0; i < count_s_x; i++) + for (i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type > H2O) continue; count_elts = 0; paren_count = 0; - if (s_x[i]->next_secondary != NULL) + if (s_x[i]->next_secondary.size() != 0) { add_elt_list(s_x[i]->next_secondary, s_x[i]->moles); } @@ -4158,12 +3800,7 @@ solution_sum_secondary(const char *total_name) { add_elt_list(s_x[i]->next_sys_total, s_x[i]->moles); } - if (count_elts > 0) - { - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); - elt_list_combine(); - } + elt_list_combine(); /* * Look for element */ @@ -4184,16 +3821,26 @@ int Phreeqc:: system_species_compare(const void *ptr1, const void *ptr2) /* ---------------------------------------------------------------------- */ { - const struct system_species *a, *b; + const class system_species *a, *b; - a = (const struct system_species *) ptr1; - b = (const struct system_species *) ptr2; + a = (const class system_species *) ptr1; + b = (const class system_species *) ptr2; if (a->moles < b->moles) return (1); if (a->moles > b->moles) return (-1); return (0); } +int Phreeqc:: +system_species_compare_name(const void* ptr1, const void* ptr2) +/* ---------------------------------------------------------------------- */ +{ + const class system_species* a, * b; + + a = (const class system_species*)ptr1; + b = (const class system_species*)ptr2; + return (strncmp(a->name, b->name, MAX_LENGTH)); +} /* ---------------------------------------------------------------------- */ int Phreeqc:: @@ -4236,7 +3883,7 @@ system_total_solids(cxxExchange *exchange_ptr, { cxxSScomp *comp_ptr = &(ss_ptr->Get_ss_comps()[j]); int l; - struct phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + class phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); add_elt_list(phase_ptr->next_elt, comp_ptr->Get_moles()); } @@ -4247,7 +3894,7 @@ system_total_solids(cxxExchange *exchange_ptr, for (size_t j = 0; j < gas_phase_ptr->Get_gas_comps().size(); j++) { int i; - struct phase *phase_ptr = + class phase *phase_ptr = phase_bsearch(gas_phase_ptr->Get_gas_comps()[j].Get_phase_name().c_str(), &i, FALSE); add_elt_list(phase_ptr->next_elt, gas_phase_ptr->Get_gas_comps()[j].Get_moles()); } @@ -4259,18 +3906,12 @@ system_total_solids(cxxExchange *exchange_ptr, for ( ; it != pp_assemblage_ptr->Get_pp_assemblage_comps().end(); it++) { int j; - struct phase * phase_ptr = phase_bsearch(it->first.c_str(), &j, FALSE); + class phase * phase_ptr = phase_bsearch(it->first.c_str(), &j, FALSE); add_elt_list(phase_ptr->next_elt, it->second.Get_moles()); } } - - if (count_elts > 0) - { - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); - elt_list_combine(); - } + elt_list_combine(); return (OK); } @@ -4283,7 +3924,7 @@ iso_value(const char *total_name) strcpy(token, ""); strcpy(my_total_name, total_name); while (replace(" ","_",my_total_name)); - for (j = 0; j < count_isotope_ratio; j++) + for (j = 0; j < (int)isotope_ratio.size(); j++) { if (isotope_ratio[j]->ratio == MISSING) continue; @@ -4297,7 +3938,7 @@ iso_value(const char *total_name) strcat(token,"R("); strcat(token,my_total_name); strcat(token,")"); - for (j = 0; j < count_isotope_ratio; j++) + for (j = 0; j < (int)isotope_ratio.size(); j++) { if (isotope_ratio[j]->ratio == MISSING) continue; @@ -4313,13 +3954,13 @@ iso_unit(const char *total_name) { int j; char token[MAX_LENGTH], unit[MAX_LENGTH]; - struct master_isotope *master_isotope_ptr; + class master_isotope *master_isotope_ptr; char my_total_name[MAX_LENGTH]; strcpy(token, ""); strcpy(my_total_name, total_name); while (replace(" ","_",my_total_name)); strcpy(unit, "unknown"); - for (j = 0; j < count_isotope_ratio; j++) + for (j = 0; j < (int)isotope_ratio.size(); j++) { if (isotope_ratio[j]->ratio == MISSING) continue; @@ -4338,7 +3979,7 @@ iso_unit(const char *total_name) strcat(token,"R("); strcat(token,my_total_name); strcat(token,")"); - for (j = 0; j < count_isotope_ratio; j++) + for (j = 0; j < (int)isotope_ratio.size(); j++) { if (isotope_ratio[j]->ratio == MISSING) continue; @@ -4355,7 +3996,7 @@ iso_unit(const char *total_name) } int Phreeqc:: -basic_compile(char *commands, void **lnbase, void **vbase, void **lpbase) +basic_compile(const char *commands, void **lnbase, void **vbase, void **lpbase) { return this->basic_interpreter->basic_compile(commands, lnbase, vbase, lpbase); } @@ -4370,6 +4011,7 @@ void Phreeqc:: basic_free(void) { delete this->basic_interpreter; + this->basic_interpreter = NULL; } #if defined(SWIG) || defined(SWIG_IPHREEQC) diff --git a/cl1.cpp b/cl1.cpp index ce47b201..107a8ad9 100644 --- a/cl1.cpp +++ b/cl1.cpp @@ -10,6 +10,14 @@ #define CHECK_ERRORS */ +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + int Phreeqc:: cl1(int k, int l, int m, int n, int l_nklmd, int l_n2d, @@ -30,8 +38,8 @@ cl1(int k, int l, int m, int n, LDBLE xmin, xmax; int iout = 0; // static i runs faster on windows - register int i, j; - register LDBLE l_z; + int i, j; + LDBLE l_z; int maxit, n1, n2; LDBLE pivot; int ia, ii, kk, nk, js; @@ -188,12 +196,8 @@ cl1(int k, int l, int m, int n, output_msg(sformatf( "Set up phase 1 costs\n")); #endif /* Zero first row of cu and iu */ - memcpy((void *) &(l_cu[0]), (void *) &(scratch[0]), - (size_t) nklm * sizeof(LDBLE)); - for (j = 0; j < nklm; ++j) - { - l_iu[j] = 0; - } + memset(&l_cu[0], 0, (size_t)nklm * sizeof(LDBLE)); + memset(&l_iu[0], 0, (size_t)nklm * sizeof(int)); /* L40: */ #ifdef DEBUG_CL1 output_msg(sformatf( "L40\n")); @@ -849,48 +853,29 @@ cl1_space(int check, int l_n2d, int klm, int l_nklmd) { if (check == 1) { - if (x_arg == NULL) + if ((size_t)l_n2d > x_arg.size()) { - x_arg = (LDBLE *) PHRQ_malloc((size_t) (l_n2d * sizeof(LDBLE))); + x_arg.resize((size_t)l_n2d); } - else if (l_n2d > x_arg_max) - { - x_arg = - (LDBLE *) PHRQ_realloc(x_arg, (size_t) (l_n2d * sizeof(LDBLE))); - x_arg_max = l_n2d; - } - if (x_arg == NULL) - malloc_error(); - zero_double(x_arg, l_n2d); + memset(&x_arg[0], 0, sizeof(double) * (size_t)l_n2d); - if (res_arg == NULL) + if ((size_t)klm > res_arg.size()) { - res_arg = (LDBLE *) PHRQ_malloc((size_t) ((klm) * sizeof(LDBLE))); + res_arg.resize((size_t)klm); } - else if (klm > res_arg_max) + memset(&res_arg[0], 0, sizeof(double) * (size_t)klm); + } + if (l_nklmd > 0) + { + if ((size_t)l_nklmd > scratch.size()) { - res_arg = - (LDBLE *) PHRQ_realloc(res_arg, - (size_t) ((klm) * sizeof(LDBLE))); - res_arg_max = klm; + scratch.resize(l_nklmd); } - if (res_arg == NULL) - malloc_error(); - zero_double(res_arg, klm); + memset(&scratch[0], 0, sizeof(double) * (size_t)l_nklmd); } - -/* Make scratch space */ - if (scratch == NULL) + else if (scratch.size() == 0) { - scratch = (LDBLE *) PHRQ_malloc((size_t) l_nklmd * sizeof(LDBLE)); + scratch.resize(1); + memset(&scratch[0], 0, sizeof(double)); } - else if (l_nklmd > scratch_max) - { - scratch = - (LDBLE *) PHRQ_realloc(scratch, (size_t) l_nklmd * sizeof(LDBLE)); - scratch_max = l_nklmd; - } - if (scratch == NULL) - malloc_error(); - zero_double(scratch, l_nklmd); } diff --git a/cl1mp.cpp b/cl1mp.cpp index 0d1d2d1d..79767406 100644 --- a/cl1mp.cpp +++ b/cl1mp.cpp @@ -14,6 +14,13 @@ #define CHECK_ERRORS */ +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif int Phreeqc:: cl1mp(int k, int l, int m, int n, diff --git a/class_main.cpp b/class_main.cpp index 88e19156..74721e86 100644 --- a/class_main.cpp +++ b/class_main.cpp @@ -11,6 +11,15 @@ #include "cxxKinetics.h" //#include //#include + +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /* ---------------------------------------------------------------------- * MAIN * ---------------------------------------------------------------------- */ @@ -23,6 +32,7 @@ main(int argc, char *argv[]) // check for floating point exceptions on Linux // feenableexcept(FE_DIVBYZERO|FE_INVALID|FE_OVERFLOW|FE_UNDERFLOW); +//#define WIN32_MEMORY_DEBUG #if defined(WIN32_MEMORY_DEBUG) int tmpDbgFlag; @@ -109,7 +119,10 @@ main_method(int argc, char *argv[]) { return errors; } +#ifndef NO_UTF8_ENCODING #ifdef DOS + SetConsoleOutputCP(CP_UTF8); +#endif write_banner(); #endif @@ -132,11 +145,10 @@ main_method(int argc, char *argv[]) { return errors; } - Phreeqc MyCopy; - MyCopy = *this; + Phreeqc MyCopy = *this; this->clean_up(); - this->init(); - this->initialize(); + // this->init(); + // this->initialize(); /* * Read input data for simulation */ @@ -155,7 +167,7 @@ main_method(int argc, char *argv[]) * Display successful status */ pr.headings = TRUE; - errors = do_status(); + // errors = do_status(); if (errors != 0) { return errors; @@ -199,7 +211,10 @@ main_method(int argc, char *argv[]) { return errors; } +#ifndef NO_UTF8_ENCODING #ifdef DOS + SetConsoleOutputCP(CP_UTF8); +#endif write_banner(); #endif @@ -268,66 +283,68 @@ int Phreeqc:: write_banner(void) /* ---------------------------------------------------------------------- */ { +#ifdef TESTING + return OK; +#endif +#ifndef NO_UTF8_ENCODING char buffer[80]; int len, indent; screen_msg( - " \n"); + " █▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀█\n"); screen_msg( - " \n"); + " ║ ║\n"); /* version */ #ifdef NPP - //len = sprintf(buffer, "* PHREEQC-%s *", "3.4.2 Ampre"); - len = sprintf(buffer, "* PHREEQC-%s *", "3.4.2"); + len = sprintf(buffer, "* PHREEQC-%s *", "3.7.1"); #else len = sprintf(buffer, "* PHREEQC-%s *", "@VERSION@"); #endif indent = (44 - len) / 2; - screen_msg(sformatf("%14c%*c%s%*c\n", ' ', indent, ' ', buffer, + screen_msg(sformatf("%14c║%*c%s%*c║\n", ' ', indent, ' ', buffer, 44 - indent - len, ' ')); screen_msg( - " \n"); + " ║ ║\n"); screen_msg( - " A hydrogeochemical transport model \n"); + " ║ A hydrogeochemical transport model ║\n"); screen_msg( - " \n"); + " ║ ║\n"); screen_msg( - " by \n"); + " ║ by ║\n"); screen_msg( - " D.L. Parkhurst and C.A.J. Appelo \n"); + " ║ D.L. Parkhurst and C.A.J. Appelo ║\n"); screen_msg( - " \n"); + " ║ ║\n"); /* date */ #ifdef NPP - len = sprintf(buffer, "%s", "February 27, 2018"); + len = sprintf(buffer, "%s", "July 5, 2021"); #else len = sprintf(buffer, "%s", "@VER_DATE@"); #endif indent = (44 - len) / 2; - screen_msg(sformatf("%14c%*c%s%*c\n", ' ', indent, ' ', buffer, + screen_msg(sformatf("%14c║%*c%s%*c║\n", ' ', indent, ' ', buffer, 44 - indent - len, ' ')); screen_msg( - " \n\n"); - + " █▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄█\n\n"); +#endif return 0; } -#ifdef ERROR_OSTREAM + /* ---------------------------------------------------------------------- */ int Phreeqc:: process_file_names(int argc, char *argv[], std::istream **db_cookie, std::istream **input_cookie, int log) /* ---------------------------------------------------------------------- */ { - int l; - char token[2 * MAX_LENGTH], default_name[2 * MAX_LENGTH]; - char query[2 * MAX_LENGTH]; - char in_file[2 * MAX_LENGTH], out_file[2 * MAX_LENGTH], db_file[2 * MAX_LENGTH]; + std::string token, default_name; + std::string query; + std::string in_file, out_file, db_file; char *env_ptr; - char *ptr; + const char* cptr; /* * Prepare error handling */ @@ -360,28 +377,28 @@ process_file_names(int argc, char *argv[], std::istream **db_cookie, /* * Open user-input file */ - strcpy(query, "Name of input file?"); + query = "Name of input file?"; std::ifstream * local_input_stream = NULL; if (argc <= 1) { - default_name[0] = '\0'; + default_name.clear(); local_input_stream = open_input_stream(query, default_name, std::ios_base::in, false); } else { - strcpy(default_name, argv[1]); + default_name = argv[1]; local_input_stream = open_input_stream(query, default_name, std::ios_base::in, true); } - screen_msg(sformatf("Input file: %s\n\n", default_name)); - strcpy(in_file, default_name); + screen_msg(sformatf("Input file: %s\n\n", default_name.c_str())); + in_file = default_name; /* * Open file for output */ - strcpy(query, "Name of output file?"); - ptr = default_name; - copy_token(token, &ptr, &l); - strcpy(token, default_name); - strcat(token, ".out"); + query = "Name of output file?"; + cptr = default_name.c_str(); + copy_token(token, &cptr); + token = default_name; + token.append(".out"); std::ofstream * local_output_stream = NULL; if (argc <= 1) { @@ -393,11 +410,11 @@ process_file_names(int argc, char *argv[], std::istream **db_cookie, } else if (argc >= 3) { - strcpy(token, argv[2]); + token = argv[2]; local_output_stream = open_output_stream(query, token, std::ios_base::out, true); } - screen_msg(sformatf("Output file: %s\n\n", token)); - strcpy(out_file, token); + screen_msg(sformatf("Output file: %s\n\n", token.c_str())); + out_file = token; phrq_io->Set_output_ostream(local_output_stream); /* * Open log file @@ -417,20 +434,15 @@ process_file_names(int argc, char *argv[], std::istream **db_cookie, phrq_io->push_istream(local_input_stream); if (get_line() == KEYWORD) { - ptr = line; - copy_token(token, &ptr, &l); - if (strcmp_nocase(token, "database") == 0) + cptr = line; + copy_token(token, &cptr); + if (strcmp_nocase(token.c_str(), "database") == 0) { - user_database = (char *) free_check_null(user_database); -#ifdef PHREEQ98 - user_database = string_duplicate(prefix_database_dir(ptr)); -#else - user_database = string_duplicate(ptr); -#endif - if (string_trim(user_database) == EMPTY) + user_database = cptr; + string_trim(user_database); + if (user_database.size() == 0) { warning_msg("DATABASE file name is missing; default database will be used."); - user_database = (char *) free_check_null(user_database); } } } @@ -439,26 +451,26 @@ process_file_names(int argc, char *argv[], std::istream **db_cookie, else { delete local_input_stream; - error_string = sformatf( "Error opening file, %s.", in_file); + error_string = sformatf( "Error opening file, %s.", in_file.c_str()); error_msg(error_string, STOP); } /* * Open data base */ - strcpy(query, "Name of database file?"); + query = "Name of database file?"; env_ptr = getenv("PHREEQC_DATABASE"); - if (user_database != NULL) + if (user_database.size() > 0) { - strcpy(token, user_database); + token = user_database; } else if (env_ptr != NULL) { - strcpy(token, env_ptr); + token = env_ptr; } else { - strcpy(token, default_data_base); + token = default_data_base; } std::ifstream * local_database_file = NULL; @@ -472,9 +484,9 @@ process_file_names(int argc, char *argv[], std::istream **db_cookie, } else if (argc >= 4) { - if (user_database == NULL) + if (user_database.size() == 0) { - strcpy(token, argv[3]); + token = argv[3]; } else { @@ -486,32 +498,27 @@ process_file_names(int argc, char *argv[], std::istream **db_cookie, } local_database_file->close(); delete local_database_file; - - user_database = (char *) free_check_null(user_database); - user_database = string_duplicate(token); - screen_msg(sformatf("Database file: %s\n\n", token)); - strcpy(db_file, token); + user_database = token; + screen_msg(sformatf("Database file: %s\n\n", token.c_str())); + db_file = token; + output_msg(sformatf(" Input file: %s\n", in_file.c_str())); + output_msg(sformatf(" Output file: %s\n", out_file.c_str())); #ifdef NPP - //output_msg(sformatf("Using PHREEQC: version 3.4.2 Ampre, compiled February 27, 2018\n")); + output_msg(sformatf("Using PHREEQC: version 3.7.1, compiled July 5, 2021\n")); #endif - output_msg(sformatf(" Input file: %s\n", in_file)); - output_msg(sformatf(" Output file: %s\n", out_file)); -#ifdef NPP - output_msg(sformatf("Using PHREEQC: version 3.4.2, compiled February 27, 2018\n")); -#endif - output_msg(sformatf("Database file: %s\n\n", token)); + output_msg(sformatf("Database file: %s\n\n", token.c_str())); #ifdef NPP output_flush(); #endif /* * local cleanup */ - user_database = (char *) free_check_null(user_database); + line = (char *) free_check_null(line); line_save = (char *) free_check_null(line_save); - *db_cookie = new std::ifstream(db_file, std::ios_base::in); - *input_cookie = new std::ifstream(in_file, std::ios_base::in); + *db_cookie = new std::ifstream(db_file.c_str(), std::ios_base::in); + *input_cookie = new std::ifstream(in_file.c_str(), std::ios_base::in); } catch (const PhreeqcStop&) { @@ -519,260 +526,51 @@ process_file_names(int argc, char *argv[], std::istream **db_cookie, } return 0; } -#else -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -process_file_names(int argc, char *argv[], std::istream **db_cookie, - std::istream **input_cookie, int log) -/* ---------------------------------------------------------------------- */ -{ - int l; - char token[2 * MAX_LENGTH], default_name[2 * MAX_LENGTH]; - char query[2 * MAX_LENGTH]; - char in_file[2 * MAX_LENGTH], out_file[2 * MAX_LENGTH], db_file[2 * MAX_LENGTH]; - char *env_ptr; - char *ptr; -/* - * Prepare error handling - */ - try { - if (phrq_io == NULL) - { - std::cerr << "No PHRQ_io output handler defined in process_file_names" << "\n"; - } -/* - * Prep for get_line - */ - max_line = MAX_LINE; - space((void **) ((void *) &line), INIT, &max_line, sizeof(char)); - space((void **) ((void *) &line_save), INIT, &max_line, sizeof(char)); -/* - * Open error ostream - */ - if (argc > 4) - { - if (!phrq_io->error_open(argv[4])) - { - error_string = sformatf( "Error opening file, %s.", argv[4]); - warning_msg(error_string); - } - } - else - { - phrq_io->error_open(NULL); - } -/* - * Open user-input file - */ - strcpy(query, "Name of input file?"); - std::ifstream * local_input_stream = NULL; - if (argc <= 1) - { - default_name[0] = '\0'; - local_input_stream = open_input_stream(query, default_name, std::ios_base::in, false); - } - else - { - strcpy(default_name, argv[1]); - local_input_stream = open_input_stream(query, default_name, std::ios_base::in, true); - } - screen_msg(sformatf("Input file: %s\n\n", default_name)); - strcpy(in_file, default_name); -/* - * Open file for output - */ - strcpy(query, "Name of output file?"); - ptr = default_name; - copy_token(token, &ptr, &l); - strcat(token, ".out"); - std::ofstream * local_output_stream; - if (argc <= 1) - { - local_output_stream = open_output_stream(query, token, std::ios_base::out, false); - } - else if (argc == 2) - { - local_output_stream = open_output_stream(query, token, std::ios_base::out, true); - } - else if (argc >= 3) - { - strcpy(token, argv[2]); - local_output_stream = open_output_stream(query, token, std::ios_base::out, true); - } - screen_msg(sformatf("Output file: %s\n\n", token)); - strcpy(out_file, token); - phrq_io->Set_output_ostream(local_output_stream); -/* - * Open log file - */ - if (log == TRUE) - { - if (!phrq_io->log_open("phreeqc.log")) - { - error_msg("Cannot open log file, phreeqc.log.", STOP); - } - } -/* - * Read input file for DATABASE keyword - */ - if (local_input_stream->is_open()) - { - phrq_io->push_istream(local_input_stream); - if (get_line() == KEYWORD) - { - ptr = line; - copy_token(token, &ptr, &l); - if (strcmp_nocase(token, "database") == 0) - { - user_database = (char *) free_check_null(user_database); -#ifdef PHREEQ98 - user_database = string_duplicate(prefix_database_dir(ptr)); -#else - user_database = string_duplicate(ptr); -#endif - if (string_trim(user_database) == EMPTY) - { - warning_msg("DATABASE file name is missing; default database will be used."); - user_database = (char *) free_check_null(user_database); - } - } - } - phrq_io->pop_istream(); - } - else - { - delete local_input_stream; - error_string = sformatf( "Error opening file, %s.", in_file); - error_msg(error_string, STOP); - } - -/* - * Open data base - */ - strcpy(query, "Name of database file?"); - env_ptr = getenv("PHREEQC_DATABASE"); - if (user_database != NULL) - { - strcpy(token, user_database); - } - else if (env_ptr != NULL) - { - strcpy(token, env_ptr); - } - else - { - strcpy(token, default_data_base); - } - - std::ifstream * local_database_file; - if (argc <= 1) - { - local_database_file = open_input_stream(query, token, std::ios_base::in, false); - } - else if (argc < 4) - { - local_database_file = open_input_stream(query, token, std::ios_base::in, true); - } - else if (argc >= 4) - { - if (user_database == NULL) - { - strcpy(token, argv[3]); - } - else - { -#ifndef PHREEQCI_GUI - warning_msg ("Database file from DATABASE keyword is used; command line argument ignored."); -#endif - } - local_database_file = open_input_stream(query, token, std::ios_base::in, true); - } - local_database_file->close(); - delete local_database_file; - screen_msg(sformatf("Database file: %s\n\n", token)); - strcpy(db_file, token); - - output_msg(sformatf(" Input file: %s\n", in_file)); - output_msg(sformatf(" Output file: %s\n", out_file)); - output_msg(sformatf("Database file: %s\n\n", token)); - /* - * local cleanup - */ - user_database = (char *) free_check_null(user_database); - user_database = string_duplicate(token); - line = (char *) free_check_null(line); - line_save = (char *) free_check_null(line_save); - - *db_cookie = new std::ifstream(db_file, std::ios_base::in); - *input_cookie = new std::ifstream(in_file, std::ios_base::in); - } - catch (const PhreeqcStop& e) - { - return get_input_errors(); - } - return 0; -} -#endif /* ---------------------------------------------------------------------- */ std::ifstream * Phreeqc:: -open_input_stream(char *query, char *default_name, std::ios_base::openmode mode, bool batch) +open_input_stream(std::string query, std::string& default_name, std::ios_base::openmode mode, bool batch) /* ---------------------------------------------------------------------- */ { - char name[MAX_LENGTH]; + std::string name; std::ifstream *new_stream; - int l; -#ifdef ERROR_OSTREAM std::ostream * error_ostream_save = phrq_io->Get_error_ostream(); -#else - FILE * error_file_save = phrq_io->Get_error_file(); -#endif for (;;) { /* * Get file name */ - strcpy(name, default_name); + name = default_name; if (!batch ) { -#ifdef ERROR_OSTREAM phrq_io->Set_error_ostream(&std::cerr); -#else - phrq_io->Set_error_file(stderr); -#endif - screen_msg(sformatf("%s\n", query)); - if (default_name[0] != '\0') + screen_msg(sformatf("%s\n", query.c_str())); + if (default_name.size() > 0) { - screen_msg(sformatf("Default: %s\n", default_name)); + screen_msg(sformatf("Default: %s\n", default_name.c_str())); } - char *s_ptr = fgets(name, MAX_LENGTH, stdin); - if (s_ptr == NULL) + std::getline(std::cin, name); + if (name.size() == 0 && default_name.size() == 0) { - std::cerr << "Failed defining name." << std::endl; + std::cerr << "No name defined." << std::endl; + continue; } - - l = (int) strlen(name); - name[l - 1] = '\0'; - if (name[0] == '\0') + if (name.size() == 0) { - strcpy(name, default_name); + name = default_name; } } /* * Open existing file to read */ - new_stream = new std::ifstream(name, mode); + new_stream = new std::ifstream(name.c_str(), mode); if (new_stream == NULL || !new_stream->is_open()) { -#ifdef ERROR_OSTREAM phrq_io->Set_error_ostream(&std::cerr); -#else - phrq_io->Set_error_file(stderr); -#endif - error_string = sformatf( "\nERROR: Cannot open file, %s.\n", name); + error_string = sformatf( "\nERROR: Cannot open file, %s.\n", name.c_str()); screen_msg(error_string); #ifdef NPP - error_msg(sformatf( "\nERROR: Cannot open file, %s.\n Please check, and give the correct, full path + name.\n", name), STOP); + error_msg(sformatf( "\nERROR: Cannot open file, %s.\n Please check, and give the correct, full path + name.\n", name.c_str()), STOP); break; #endif error_flush(); @@ -781,76 +579,54 @@ open_input_stream(char *query, char *default_name, std::ios_base::openmode mode, } break; } - strncpy(default_name, name, MAX_LENGTH); + default_name = name; if (!batch ) { - //phrq_io->Set_error_ostream(error_file_save); -#ifdef ERROR_OSTREAM phrq_io->Set_error_ostream(error_ostream_save); -#else - phrq_io->Set_error_file(error_file_save); -#endif } return (new_stream); } /* ---------------------------------------------------------------------- */ std::ofstream * Phreeqc:: -open_output_stream(char *query, char *default_name, std::ios_base::openmode mode, bool batch) +open_output_stream(std::string query, std::string& default_name, std::ios_base::openmode mode, bool batch) /* ---------------------------------------------------------------------- */ { - char name[MAX_LENGTH]; + std::string name; std::ofstream *new_stream; - int l; -#ifdef ERROR_OSTREAM std::ostream * error_ostream_save = phrq_io->Get_error_ostream(); -#else - FILE * error_file_save = phrq_io->Get_error_file(); -#endif for (;;) { /* * Get file name */ - strcpy(name, default_name); + name = default_name; if (!batch ) { -#ifdef ERROR_OSTREAM phrq_io->Set_error_ostream(&std::cerr); -#else - phrq_io->Set_error_file(stderr); -#endif - - screen_msg(sformatf("%s\n", query)); + screen_msg(sformatf("%s\n", query.c_str())); if (default_name[0] != '\0') { - screen_msg(sformatf("Default: %s\n", default_name)); + screen_msg(sformatf("Default: %s\n", default_name.c_str())); } - char *s_ptr = fgets(name, MAX_LENGTH, stdin); - if (s_ptr == NULL) + std::getline(std::cin, name); + if (name.size() == 0 && default_name.size() == 0) { - std::cerr << "Failed defining name." << std::endl; + std::cerr << "No name defined." << std::endl; } - - l = (int) strlen(name); - name[l - 1] = '\0'; - if (name[0] == '\0') + if (name.size() == 0) { - strcpy(name, default_name); + name = default_name; } } /* * Open existing file to read */ - new_stream = new std::ofstream(name, mode); + new_stream = new std::ofstream(name.c_str(), mode); if (new_stream == NULL || !new_stream->is_open()) { -#ifdef ERROR_OSTREAM phrq_io->Set_error_ostream(&std::cerr); -#else - phrq_io->Set_error_file(stderr); -#endif - error_string = sformatf( "\nERROR: Cannot open file, %s.\n", name); + error_string = sformatf( "\nERROR: Cannot open file, %s.\n", name.c_str()); screen_msg(error_string); error_flush(); batch = FALSE; @@ -858,92 +634,10 @@ open_output_stream(char *query, char *default_name, std::ios_base::openmode mode } break; } - strncpy(default_name, name, MAX_LENGTH); + default_name = name; if (!batch ) { -#ifdef ERROR_OSTREAM phrq_io->Set_error_ostream(error_ostream_save); -#else - phrq_io->Set_error_file(error_file_save); -#endif } return (new_stream); } -#ifdef SKIP -/* ---------------------------------------------------------------------- */ -std::ofstream * Phreeqc:: -open_output_file(char *query, char *default_name, std::ios_base::openmode mode, bool batch) -/* ---------------------------------------------------------------------- */ -{ - char name[MAX_LENGTH]; - std::ofstream *new_stream; - int l; -#ifdef ERROR_OSTREAM - std::ostream * error_ostream_save = phrq_io->Get_error_ostream(); -#else - FILE * error_file_save = phrq_io->Get_error_file(); -#endif - - - for (;;) - { -/* - * Get file name - */ - strcpy(name, default_name); - if (!batch ) - { -#ifdef ERROR_OSTREAM - phrq_io->Set_error_ostream(&std::cerr); -#else - phrq_io->Set_error_file(stderr); -#endif - screen_msg(sformatf("%s\n", query)); - if (default_name[0] != '\0') - { - screen_msg(sformatf("Default: %s\n", default_name)); - } - char *s_ptr = fgets(name, MAX_LENGTH, stdin); - if (s_ptr == NULL) - { - std::cerr << "Failed defining name." << std::endl; - } - - l = (int) strlen(name); - name[l - 1] = '\0'; - if (name[0] == '\0') - { - strcpy(name, default_name); - } - } -/* - * Open existing file to read - */ - new_stream = new std::ofstream(name, mode); - if (new_stream == NULL || !new_stream->is_open()) - { -#ifdef ERROR_OSTREAM - phrq_io->Set_error_ostream(&std::cerr); -#else - phrq_io->Set_error_file(stderr); -#endif - error_string = sformatf( "\nERROR: Cannot open file, %s.\n", name); - screen_msg(error_string); - error_flush(); - batch = FALSE; - continue; - } - break; - } - strncpy(default_name, name, MAX_LENGTH); - if (!batch ) - { -#ifdef ERROR_OSTREAM - phrq_io->Set_error_ostream(error_ostream_save); -#else - phrq_io->Set_error_file(error_file_save); -#endif - } - return (new_stream); -} -#endif diff --git a/common/.gitlab-ci.yml b/common/.gitlab-ci.yml new file mode 100644 index 00000000..408cc696 --- /dev/null +++ b/common/.gitlab-ci.yml @@ -0,0 +1,46 @@ +# +# https://code.chs.usgs.gov/coupled/subtrees/phreeqc3-src-common +# SRC 2020-12-02T18:39:55-07:00 +# +image: ${CI_REGISTRY}/coupled/containers/buildpack-deps:bionic-scm + +stages: + - trigger + +before_script: + - eval $(ssh-agent -s) + - echo "${SSH_PRIVATE_KEY_ENC}" | base64 --decode | tr -d '\r' | ssh-add - + - mkdir -p ~/.ssh + - chmod 700 ~/.ssh + - ssh-keyscan ${CI_SERVER_HOST} >> ~/.ssh/known_hosts + - chmod 644 ~/.ssh/known_hosts + - git config --global user.email "darth@empire.com" + - git config --global user.name "Darth Vader" + +trigger-downstream: + stage: trigger + ## + ## Only run if on the master branch and the variable GROUP is set + ## + ## change this to + ## only: + ## - master@$GROUP/subtrees/phreeqc3-src-common + ## and set GROUP to coupled before merge + only: + refs: + - master + variables: + - $GROUP + + ## Downstream Projects + ## triggers and ids are stored at the group level + ## phreeqc3-src https://code.chs.usgs.gov/coupled/subtrees/phreeqc3-src + ## wphast https://code.chs.usgs.gov/coupled/wphast + script: + - echo triggering phreeqc3-src + - curl -X POST -F token=${PHREEQC3_SRC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${PHREEQC3_SRC_ID}/trigger/pipeline + - echo triggering wphast + - curl -X POST -F token=${WPHAST_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${WPHAST_ID}/trigger/pipeline + + ## Upstream Projects + ## none diff --git a/common/PHRQ_base.cxx b/common/PHRQ_base.cxx index 0e07d1f0..6e48faaa 100644 --- a/common/PHRQ_base.cxx +++ b/common/PHRQ_base.cxx @@ -1,6 +1,15 @@ #include "PHRQ_base.h" #include #include "PHRQ_io.h" + +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + PHRQ_base:: PHRQ_base(void) { @@ -105,4 +114,4 @@ echo_msg(const std::string & stdstr) std::cout << stdstr << "\n"; #endif } -} \ No newline at end of file +} diff --git a/common/PHRQ_base.h b/common/PHRQ_base.h index 037d0881..26ac25d6 100644 --- a/common/PHRQ_base.h +++ b/common/PHRQ_base.h @@ -3,11 +3,7 @@ #include -#if defined(_WINDLL) -#define IPQ_DLL_EXPORT __declspec(dllexport) -#else -#define IPQ_DLL_EXPORT -#endif +#include "PHRQ_exports.h" class PHRQ_io; class IPQ_DLL_EXPORT PHRQ_base diff --git a/common/PHRQ_exports.h b/common/PHRQ_exports.h new file mode 100644 index 00000000..3e74673e --- /dev/null +++ b/common/PHRQ_exports.h @@ -0,0 +1,20 @@ +#ifndef INC_PHRQ_EXPORTS_H +#define INC_PHRQ_EXPORTS_H + +#if defined(WIN32) +# if defined(PHREEQCI_GUI) +# ifndef WINVER +# define WINVER 0x0400 +# endif +# include +# endif +# include +#endif + +#if defined(_WINDLL) && defined(IPhreeqc_EXPORTS) +# define IPQ_DLL_EXPORT __declspec(dllexport) +#else +# define IPQ_DLL_EXPORT +#endif + +#endif // INC_PHRQ_EXPORTS_H diff --git a/common/PHRQ_io.cpp b/common/PHRQ_io.cpp index ab34f8c1..15449606 100644 --- a/common/PHRQ_io.cpp +++ b/common/PHRQ_io.cpp @@ -13,6 +13,14 @@ #include #include +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + PHRQ_io:: PHRQ_io(void) { @@ -32,7 +40,7 @@ PHRQ_io(void) punch_on = true; error_on = true; dump_on = true; - echo_on = true; //**appt + echo_on = true; screen_on = true; echo_destination = ECHO_OUTPUT; @@ -792,6 +800,7 @@ get_line(void) continue; #else output_msg(errstr.str().c_str()); + output_flush(); error_msg(errstr.str().c_str(), OT_STOP); #endif } @@ -800,7 +809,7 @@ get_line(void) this->push_istream(next_stream); std::ostringstream errstr; errstr << "\n\tReading data from " << file_name <<" ...\n"; - output_msg(errstr.str().c_str()); // **appt + output_msg(errstr.str().c_str()); } continue; } diff --git a/common/PHRQ_io.h b/common/PHRQ_io.h index 8c469248..25bfec8a 100644 --- a/common/PHRQ_io.h +++ b/common/PHRQ_io.h @@ -1,11 +1,7 @@ #ifndef _PHRQIO_H #define _PHRQIO_H -#if defined(_WINDLL) -#define IPQ_DLL_EXPORT __declspec(dllexport) -#else -#define IPQ_DLL_EXPORT -#endif +#include "PHRQ_exports.h" #include #include @@ -44,8 +40,8 @@ public: static void safe_close(std::ostream **stream_ptr); static void safe_close(FILE **file_ptr); void close_ostreams(void); - void Set_io_error_count(int i) {this->io_error_count = i;}; - int Get_io_error_count(void) {return this->io_error_count;}; + void Set_io_error_count(int i) {this->io_error_count = i;}; + int Get_io_error_count(void)const {return this->io_error_count;}; // istreams @@ -65,7 +61,7 @@ public: void Set_output_ostream(std::ostream * out) {this->output_ostream = out;}; std::ostream *Get_output_ostream(void) {return this->output_ostream;}; void Set_output_on(bool tf) {this->output_on = tf;}; - bool Get_output_on(void) {return this->output_on;}; + bool Get_output_on(void)const {return this->output_on;}; // log_ostream virtual bool log_open(const char *file_name, std::ios_base::openmode mode = std::ios_base::out); @@ -75,7 +71,7 @@ public: void Set_log_ostream(std::ostream * out) {this->log_ostream = out;} std::ostream *Get_log_ostream(void) {return this->log_ostream;} void Set_log_on(bool tf) {this->log_on = tf;} - bool Get_log_on(void) {return this->log_on;} + bool Get_log_on(void)const {return this->log_on;} // punch_ostream virtual bool punch_open(const char *file_name, std::ios_base::openmode mode = std::ios_base::out, int n_user = 1); @@ -94,19 +90,19 @@ public: void error_close(void); virtual void error_msg(const char * str, bool stop=false); void Set_error_ostream(std::ostream * out) {this->error_ostream = out;} - std::ostream *Get_error_ostream(void) {return this->error_ostream;} + std::ostream *Get_error_ostream(void)const {return this->error_ostream;} void Set_error_on(bool tf) {this->error_on = tf;} - bool Get_error_on(void) {return this->error_on;} + bool Get_error_on(void)const {return this->error_on;} virtual void warning_msg(const char *err_str); #else virtual bool error_open(const char *file_name, const char * mode = "w"); void error_flush(void); void error_close(void); virtual void error_msg(const char * str, bool stop=false); - void Set_error_file(FILE * out) {this->error_file = out;} - FILE *Get_error_file(void) {return this->error_file;} + void Set_error_file(FILE * out) {this->error_file = out;} + FILE *Get_error_file(void)const {return this->error_file;} void Set_error_on(bool tf) {this->error_on = tf;} - bool Get_error_on(void) {return this->error_on;} + bool Get_error_on(void)const {return this->error_on;} virtual void warning_msg(const char *err_str); #endif @@ -118,7 +114,7 @@ public: void Set_dump_ostream(std::ostream * out) {this->dump_ostream = out;}; std::ostream *Get_dump_ostream(void) {return this->dump_ostream;}; void Set_dump_on(bool tf) {this->dump_on = tf;}; - bool Get_dump_on(void) {return this->dump_on;}; + bool Get_dump_on(void)const {return this->dump_on;}; // fpunchf virtual void fpunchf(const char *name, const char *format, double d); @@ -130,17 +126,17 @@ public: virtual void screen_msg(const char * str); void Set_screen_on(bool tf) {this->screen_on = tf;}; - bool Get_screen_on(void) {return this->screen_on;}; + bool Get_screen_on(void)const {return this->screen_on;}; // input methods virtual int getc(void); virtual LINE_TYPE get_line(void); virtual LINE_TYPE get_logical_line(void); bool check_key(std::string::iterator begin, std::string::iterator end); - std::string & Get_m_line() {return m_line;} - std::string & Get_m_line_save() {return m_line_save;} - std::string & Get_accumulated() {return accumulated;} - LINE_TYPE Get_m_line_type() {return m_line_type;}; + std::string & Get_m_line() {return m_line;} + std::string & Get_m_line_save() {return m_line_save;} + std::string & Get_accumulated() {return accumulated;} + LINE_TYPE Get_m_line_type()const {return m_line_type;}; void Set_accumulate(bool tf) { if (tf) @@ -149,7 +145,7 @@ public: } this->accumulate = tf; } - Keywords::KEYWORDS Get_m_next_keyword() const {return m_next_keyword;} + Keywords::KEYWORDS Get_m_next_keyword() const {return m_next_keyword;} // echo enum ECHO_OPTION @@ -158,16 +154,16 @@ public: ECHO_OUTPUT }; virtual void echo_msg(const char * str); - void Set_echo_on(bool tf) {this->echo_on = tf;}; - bool Get_echo_on(void) {return this->echo_on;}; - void Set_echo_destination(ECHO_OPTION eo) {this->echo_destination = eo;}; - ECHO_OPTION Get_echo_destination(void) {return this->echo_destination;}; + void Set_echo_on(bool tf) {this->echo_on = tf;}; + bool Get_echo_on(void)const {return this->echo_on;}; + void Set_echo_destination(ECHO_OPTION eo) {this->echo_destination = eo;}; + ECHO_OPTION Get_echo_destination(void)const {return this->echo_destination;}; // data protected: - std::ostream *output_ostream; - std::ostream *log_ostream; - std::ostream *punch_ostream; + std::ostream *output_ostream; + std::ostream *log_ostream; + std::ostream *punch_ostream; #ifdef ERROR_OSTREAM std::ostream *error_ostream; #else diff --git a/common/Parser.cxx b/common/Parser.cxx index c0e13059..db7d3556 100644 --- a/common/Parser.cxx +++ b/common/Parser.cxx @@ -15,6 +15,14 @@ #include "Parser.h" #include "PHRQ_io.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + ////////////////////////////////////////////////////////////////////// // Construction/Destruction ////////////////////////////////////////////////////////////////////// @@ -27,6 +35,11 @@ m_next_keyword(Keywords::KEY_NONE) if (!io) { error_msg("This parser constructor requires non-null phrq_io", PHRQ_io::OT_STOP); + echo_file = EO_ALL; + echo_stream = EO_NONE; + accumulate = false; + phrq_io_only = true; + m_line_type = PHRQ_io::LT_EMPTY; } else { @@ -55,6 +68,7 @@ m_next_keyword(Keywords::KEY_NONE) echo_stream = EO_NONE; accumulate = false; phrq_io_only = false; + m_line_type = PHRQ_io::LT_EMPTY; } CParser::~CParser() @@ -326,7 +340,7 @@ PHRQ_io::LINE_TYPE CParser::get_logical_line() // remove '\\' for (; pos < m_line_save.size(); pos++) { - m_line_save[pos] = m_line_save[pos + 1]; + m_line_save[pos] = m_line_save[(size_t) pos + 1]; } m_line_save.erase(m_line_save.size() - 1, 1); break; @@ -1314,4 +1328,4 @@ CParser::TOKEN_TYPE CParser::parse_delimited(std::string & source, std::string & std::string str = result; return token_type(trim_left(str)); -} \ No newline at end of file +} diff --git a/common/Parser.h b/common/Parser.h index 3bf093a1..ac6620bc 100644 --- a/common/Parser.h +++ b/common/Parser.h @@ -1,7 +1,13 @@ #if !defined(PARSER_H_INCLUDED) #define PARSER_H_INCLUDED #if defined(WIN32) -#include +# if defined(PHREEQCI_GUI) +# ifndef WINVER +# define WINVER 0x0400 +# endif +# include +# endif +# include #endif #include // std::string #include // std::map @@ -280,13 +286,21 @@ class CParser: public PHRQ_base // Global functions static inline std::string &trim_left(std::string &s) { - s.erase(s.begin(), std::find_if(s.begin(), s.end(), std::not1(std::ptr_fun(std::isspace)))); +#if (__GNUC__ && (__cplusplus >= 201103L)) || (_MSC_VER >= 1600) + s.erase(s.begin(), std::find_if(s.begin(), s.end(), [](int c) {return !std::isspace(c);})); +#else + s.erase(s.begin(), std::find_if(s.begin(), s.end(), std::not1(std::ptr_fun(std::isspace)))); +#endif return s; } static inline std::string &trim_right(std::string &s) { - s.erase(std::find_if(s.rbegin(), s.rend(), std::not1(std::ptr_fun(std::isspace))).base(), s.end()); - return s; +#if (__GNUC__ && (__cplusplus >= 201103L)) || (_MSC_VER >= 1600) + s.erase(std::find_if(s.rbegin(), s.rend(), [](int c) {return !std::isspace(c);}).base(), s.end()); +#else + s.erase(std::find_if(s.rbegin(), s.rend(), std::not1(std::ptr_fun(std::isspace))).base(), s.end()); +#endif + return s; } static inline std::string &trim(std::string &s) { diff --git a/common/Utils.cxx b/common/Utils.cxx index 453218d3..ad96a147 100644 --- a/common/Utils.cxx +++ b/common/Utils.cxx @@ -12,6 +12,14 @@ #include "float.h" #include "math.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + //////////////////////////////////////////////////////////////////////////// int Utilities::strcmp_nocase_arg1(const char *str1, const char *str2) diff --git a/cvdense.cpp b/cvdense.cpp index 330ef02b..d4f6e3fa 100644 --- a/cvdense.cpp +++ b/cvdense.cpp @@ -63,6 +63,7 @@ #include #include #include +#include "Phreeqc.h" #include "cvdense.h" #include "cvode.h" #include "dense.h" @@ -71,7 +72,6 @@ #include "sundialsmath.h" -#include "Phreeqc.h" #if !defined(WIN32_MEMORY_DEBUG) #define malloc PHRQ_malloc #endif @@ -150,6 +150,15 @@ static void CVDenseDQJac(integertype N, DenseMat J, RhsFn f, void *f_data, N_Vector vtemp2, N_Vector vtemp3); + +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /*************** CVDenseDQJac **************************************** This routine generates a dense difference quotient approximation to diff --git a/cvode.cpp b/cvode.cpp index c03a679c..509412aa 100644 --- a/cvode.cpp +++ b/cvode.cpp @@ -59,6 +59,7 @@ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************/ +#include "Phreeqc.h" #include "nvector_serial.h" #define Ith(v,i) NV_Ith_S(v,i-1) /************************************************************/ @@ -71,7 +72,7 @@ #include "nvector.h" #include "sundialsmath.h" -#include "Phreeqc.h" + #if !defined(WIN32_MEMORY_DEBUG) #define malloc MACHENV_MALLOC PHRQ_malloc #endif @@ -405,8 +406,9 @@ static realtype CVYddNorm(CVodeMem cv_mem, realtype hg); static int CVStep(CVodeMem cv_mem); +#ifdef ORIGINAL_CVBDFStab static int CVsldet(CVodeMem cv_mem); - +#endif static void CVAdjustParams(CVodeMem cv_mem); static void CVAdjustOrder(CVodeMem cv_mem, int deltaq); static void CVAdjustAdams(CVodeMem cv_mem, int deltaq); @@ -541,6 +543,13 @@ static int CVHandleFailure(CVodeMem cv_mem, int kflag); /********* BEGIN Exported Functions Implementation *************/ /***************************************************************/ +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif /******************** CVodeMalloc ******************************* @@ -1974,7 +1983,6 @@ CVStep(CVodeMem cv_mem) } #endif CVSet(cv_mem); - nflag = CVnls(cv_mem, nflag); if (CVMEM cvode_error == TRUE || predict_fail) { @@ -2785,7 +2793,6 @@ CVnlsNewton(CVodeMem cv_mem, int nflag) loop { - f(N, tn, zn[0], ftemp, f_data); nfe++; @@ -3408,7 +3415,7 @@ CVHandleFailure(CVodeMem cv_mem, int kflag) size is reset accordingly. *****************************************************************/ - +#ifdef ORIGINAL_CVBDFStab void CVBDFStab(CVodeMem cv_mem) { @@ -3469,6 +3476,82 @@ CVBDFStab(CVodeMem cv_mem) nscon = 0; } } +#endif +void +CVBDFStab(CVodeMem cv_mem) +{ + // appt try... + if (q >= 3 && qprime >= q) + { + if (tq[5] < saved_tq5) + qprime = 1; + //else + //nscon = 0; + } + + //int i, k, ldflag, factorial; + //realtype sq, sqm1, sqm2; + + ///* If order is 3 or greater, then save scaled derivative data, + // push old data down in i, then add current values to top. */ + + //if (q >= 3) + //{ + // for (k = 1; k <= 3; k++) + // { + // for (i = 5; i >= 2; i--) + // ssdat[i][k] = ssdat[i - 1][k]; + // } + // factorial = 1; + // for (i = 1; i <= q - 1; i++) + // factorial *= i; + // sq = factorial * q * (q + 1) * acnrm / MAX(tq[5], TINY); + // sqm1 = factorial * q * N_VWrmsNorm(zn[q], ewt); + // sqm2 = factorial * N_VWrmsNorm(zn[q - 1], ewt); + // ssdat[1][1] = sqm2 * sqm2; + // ssdat[1][2] = sqm1 * sqm1; + // ssdat[1][3] = sq * sq; + //} + + //if (qprime >= q) + //{ + + // /* If order is 3 or greater, and enough ssdat has been saved, + // nscon >= q+5, then call stability limit detection routine. */ + + // if ((q >= 3) && (nscon >= q + 5)) + // { + // ldflag = CVsldet(cv_mem); + // //cv_mem->cv_machenv->phreeqc_ptr->set_forward_output_to_log(1); // appt + // qprime = 1; // appt try + // //CVMEM warning_msg(CVMEM sformatf( + // // "CVBDFStab: ldflag = %d, order(q) = %d, qprime = %d, nst = %d, h = %8.2e, time = %8.2e\n", + // // ldflag, q, qprime, nst, h, CVMEM cvode_last_good_time)); + + // if (ldflag > 3) + // { + // /* A stability limit violation is indicated by + // a return flag of 4, 5, or 6. + // Reduce new order. */ + // qprime = q - 1; + // eta = etaqm1; + // eta = MIN(eta, etamax); + // eta = eta / MAX(ONE, ABS(h) * hmax_inv * eta); + // hprime = h * eta; + // iopt[NOR] = iopt[NOR] + 1; + // //CVMEM warning_msg(CVMEM sformatf( + // // " Order reduced to %d by CVBDFStab at nst = %d,\n h = %e hnew = %e\n", + // // qprime,nst,h,h*eta)); + // } + // } + //} + //else + //{ + // /* Otherwise, let order increase happen, and + // reset stability limit counter, nscon. */ + // nscon = 0; + //} +} /********************* CVsldet ************************************ This routine detects stability limitation using stored scaled @@ -3505,6 +3588,7 @@ CVBDFStab(CVodeMem cv_mem) ********************************************************************/ +#ifdef ORIGINAL_CVBDFStab static int CVsldet(CVodeMem cv_mem) { @@ -3514,8 +3598,10 @@ CVsldet(CVodeMem cv_mem) realtype rr, rrcut, vrrtol, vrrt2, sqtol, rrtol; realtype smink, smaxk, sumrat, sumrsq, vmin, vmax, drrmax, adrr; realtype /*small_cvode,*/ tem, sqmax, saqk, qp, s, sqmaxk, saqj, sqmin; - realtype rsa, rsb, rsc, rsd, rse, rd1a, rd1b, rd1c, rd1d; - realtype rd2a, rd2b, rd2c, rd3a, rd3b, cest1, corr1; + //realtype rsa, rsb, rsc, rsd, rse, rd1a, rd1b, rd1c, rd1d; + realtype rsa, rsb, rsc, rsd, rd1a, rd1b, rd1c; + //realtype rd2a, rd2b, rd2c, rd3a, rd3b, cest1, corr1; + realtype rd2a, rd2b, rd3a, cest1, corr1; realtype ratp, ratm, qfac1, qfac2, bb, rrb; /* The following are cutoffs and tolerances used by this routine */ @@ -3770,17 +3856,17 @@ CVsldet(CVodeMem cv_mem) rsb = ssdat[2][k] * rr; rsc = ssdat[3][k] * rr * rr; rsd = ssdat[4][k] * rr * rr * rr; - rse = ssdat[5][k] * rr * rr * rr * rr; + //rse = ssdat[5][k] * rr * rr * rr * rr; rd1a = rsa - rsb; rd1b = rsb - rsc; rd1c = rsc - rsd; - rd1d = rsd - rse; + //rd1d = rsd - rse; rd2a = rd1a - rd1b; rd2b = rd1b - rd1c; - rd2c = rd1c - rd1d; + //rd2c = rd1c - rd1d; rd3a = rd2a - rd2b; - rd3b = rd2b - rd2c; - rd3b = rd3b; + //rd3b = rd2b - rd2c; + /* rd3b = rd3b; */ if (ABS(rd1b) < TINY * smax[k]) { @@ -3841,7 +3927,7 @@ CVsldet(CVodeMem cv_mem) return (kflag); } - +#endif /*******************************************************************/ /********* END Private Helper Functions Implementation *************/ diff --git a/cxxKinetics.cxx b/cxxKinetics.cxx index 17ad6626..6da1a9f6 100644 --- a/cxxKinetics.cxx +++ b/cxxKinetics.cxx @@ -15,6 +15,14 @@ #include "PHRQ_io.h" #include "Dictionary.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + ////////////////////////////////////////////////////////////////////// // Construction/Destruction ////////////////////////////////////////////////////////////////////// @@ -69,41 +77,6 @@ cxxKinetics::~cxxKinetics() { } -#ifdef SKIP -void -cxxKinetics::dump_xml(std::ostream & s_oss, unsigned int indent) const const -{ - unsigned int i; - s_oss.precision(DBL_DIG - 1); - std::string indent0(""), indent1(""), indent2(""); - for (i = 0; i < indent; ++i) - indent0.append(Utilities::INDENT); - for (i = 0; i < indent + 1; ++i) - indent1.append(Utilities::INDENT); - for (i = 0; i < indent + 2; ++i) - indent2.append(Utilities::INDENT); - - // Kinetics element and attributes - s_oss << indent0; - s_oss << " - pitzer_kinetics_gammas << "\"" << "\n"; - - // components - s_oss << indent1; - s_oss << "::const_iterator it = - kineticsComps.begin(); it != kineticsComps.end(); ++it) - { - it->dump_xml(s_oss, indent + 2); - } - - return; -} -#endif - void cxxKinetics::dump_raw(std::ostream & s_oss, unsigned int indent, int * n_out) const { @@ -524,7 +497,7 @@ Current_step(bool incremental_reactions, int reaction_step) const } else { - kin_time = this->steps[reaction_step - 1]; + kin_time = this->steps[(size_t)reaction_step - 1]; } } else @@ -550,7 +523,7 @@ Current_step(bool incremental_reactions, int reaction_step) const } else { - kin_time = this->steps[reaction_step - 1]; + kin_time = this->steps[(size_t)reaction_step - 1]; } } else @@ -605,7 +578,7 @@ cxxKinetics::Deserialize(Dictionary & dictionary, std::vector < int >&ints, this->kinetics_comps.clear(); for (int i = 0; i < n; i++) { - cxxKineticsComp kc; + cxxKineticsComp kc(this->io); kc.Deserialize(dictionary, ints, doubles, ii, dd); this->kinetics_comps.push_back(kc); } diff --git a/cxxMix.cxx b/cxxMix.cxx index a9161c36..8cd8e0be 100644 --- a/cxxMix.cxx +++ b/cxxMix.cxx @@ -8,11 +8,19 @@ #include // std::sort #include "Utils.h" // define first -#include "Parser.h" #include "Phreeqc.h" +#include "Parser.h" #include "cxxMix.h" #include "phqalloc.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + ////////////////////////////////////////////////////////////////////// // Construction/Destruction ////////////////////////////////////////////////////////////////////// @@ -29,41 +37,6 @@ cxxMix::~cxxMix() { } -#ifdef SKIP -void -cxxMix::dump_xml(std::ostream & s_oss, unsigned int indent) const const -{ - unsigned int i; - s_oss.precision(DBL_DIG - 1); - std::string indent0(""), indent1(""), indent2(""); - for (i = 0; i < indent; ++i) - indent0.append(Utilities::INDENT); - for (i = 0; i < indent + 1; ++i) - indent1.append(Utilities::INDENT); - for (i = 0; i < indent + 2; ++i) - indent2.append(Utilities::INDENT); - - // Mix element and attributes - s_oss << indent0; - s_oss << " - pitzer_mix_gammas << "\"" << "\n"; - - // components - s_oss << indent1; - s_oss << "::const_iterator it = mixComps.begin(); - it != mixComps.end(); ++it) - { - it->dump_xml(s_oss, indent + 2); - } - - return; -} -#endif - void cxxMix::dump_raw(std::ostream & s_oss, unsigned int indent, int *n_out) const { @@ -178,4 +151,4 @@ void cxxMix::Vectorize(std::vector &n, std::vector &f) f.push_back(it->second); } } -const std::vector< std::string > cxxMix::vopts; \ No newline at end of file +const std::vector< std::string > cxxMix::vopts; diff --git a/dense.cpp b/dense.cpp index 059fa6cc..5c25e8fe 100644 --- a/dense.cpp +++ b/dense.cpp @@ -66,6 +66,14 @@ #include "dense.h" #include "smalldense.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /* WARNING don`t include any headers below here */ #define ZERO RCONST(0.0) @@ -74,7 +82,6 @@ /* Implementation */ - DenseMat DenseAllocMat(integertype N) { diff --git a/dumper.cpp b/dumper.cpp index bc89a50e..edc897e6 100644 --- a/dumper.cpp +++ b/dumper.cpp @@ -4,6 +4,14 @@ #include "Parser.h" #include "PHRQ_io.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + dumper::dumper(PHRQ_io *io) : PHRQ_base(io) diff --git a/gases.cpp b/gases.cpp index 77a484ce..d64d2c97 100644 --- a/gases.cpp +++ b/gases.cpp @@ -1,5 +1,14 @@ #include "Phreeqc.h" #include "GasPhase.h" + +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /* ---------------------------------------------------------------------- */ int Phreeqc:: setup_fixed_volume_gas(void) @@ -22,7 +31,7 @@ setup_fixed_volume_gas(void) { const cxxGasComp *comp_ptr = &(gas_phase_ptr->Get_gas_comps()[i]); int j; - struct phase *phase_ptr = phase_bsearch(comp_ptr->Get_phase_name().c_str(), &j, FALSE); + class phase *phase_ptr = phase_bsearch(comp_ptr->Get_phase_name().c_str(), &j, FALSE); x[count_unknowns]->type = GAS_MOLES; x[count_unknowns]->description = phase_ptr->name; x[count_unknowns]->phase = phase_ptr; @@ -56,10 +65,10 @@ build_fixed_volume_gas(void) * sum of partial pressures equation and * mass balance equations for elements contained in gases */ - int row, col; - struct master *master_ptr; - struct rxn_token *rxn_ptr; - struct unknown *unknown_ptr; + size_t row, col; + class master *master_ptr; + class rxn_token *rxn_ptr; + class unknown *unknown_ptr; LDBLE coef, coef_elt; if (gas_unknown == NULL) @@ -69,13 +78,13 @@ build_fixed_volume_gas(void) { const cxxGasComp *comp_ptr = &(gas_phase_ptr->Get_gas_comps()[i]); int j; - struct phase *phase_ptr = phase_bsearch(comp_ptr->Get_phase_name().c_str(), &j, FALSE); + class phase *phase_ptr = phase_bsearch(comp_ptr->Get_phase_name().c_str(), &j, FALSE); /* * Determine elements in gas component */ count_elts = 0; paren_count = 0; - if (phase_ptr->rxn_x == NULL) + if (phase_ptr->rxn_x.token.size() == 0) continue; add_elt_list(phase_ptr->next_elt, 1.0); #define COMBINE @@ -87,12 +96,12 @@ build_fixed_volume_gas(void) */ if (debug_prep == TRUE) { - output_msg(sformatf( "\n\tMass balance summations %s.\n\n", + output_msg(sformatf( "\n\tMass balance summations %s.\n", phase_ptr->name)); } /* All elements in gas */ - for (j = 0; j < count_elts; j++) + for (j = 0; j < (int) count_elts; j++) { unknown_ptr = NULL; if (strcmp(elt_list[j].elt->name, "H") == 0) @@ -140,7 +149,7 @@ build_fixed_volume_gas(void) output_msg(sformatf( "\n\tJacobian summations %s.\n\n", phase_ptr->name)); } - for (j = 0; j < count_elts; j++) + for (j = 0; j < (int) count_elts; j++) { unknown_ptr = NULL; if (strcmp(elt_list[j].elt->name, "H") == 0) @@ -174,7 +183,7 @@ build_fixed_volume_gas(void) } row = unknown_ptr->number * (count_unknowns + 1); coef_elt = elt_list[j].coef; - for (rxn_ptr = phase_ptr->rxn_x->token + 1; + for (rxn_ptr = &phase_ptr->rxn_x.token[0] + 1; rxn_ptr->s != NULL; rxn_ptr++) { @@ -211,27 +220,27 @@ build_fixed_volume_gas(void) } col = master_ptr->unknown->number; coef = coef_elt * rxn_ptr->coef; - store_jacob(&(gas_unknowns[i]->moles), - &(array[row + col]), coef); if (debug_prep == TRUE) { - output_msg(sformatf( "\t\t%-24s%10.3f\t%d\t%d\n", + output_msg(sformatf( "\t\t%-24s%10.3f\t%d\t%d", master_ptr->s->name, (double) coef, row / (count_unknowns + 1), col)); } + store_jacob(&(gas_unknowns[i]->moles), + &(my_array[(size_t)row + (size_t)col]), coef); } if (gas_phase_ptr->Get_type() == cxxGasPhase::GP_PRESSURE) { /* derivative wrt total moles of gas */ - store_jacob(&(phase_ptr->fraction_x), - &(array[row + gas_unknown->number]), coef_elt); if (debug_prep == TRUE) { - output_msg(sformatf( "\t\t%-24s%10.3f\t%d\t%d\n", + output_msg(sformatf( "\t\t%-24s%10.3f\t%d\t%d", "gas moles", (double) elt_list[j].coef, row / (count_unknowns + 1), gas_unknown->number)); } + store_jacob(&(phase_ptr->fraction_x), + &(my_array[(size_t)row + (size_t)gas_unknown->number]), coef_elt); } } /* @@ -246,7 +255,7 @@ build_fixed_volume_gas(void) } unknown_ptr = gas_unknown; row = unknown_ptr->number * (count_unknowns + 1); - for (rxn_ptr = phase_ptr->rxn_x->token + 1; rxn_ptr->s != NULL; rxn_ptr++) + for (rxn_ptr = &phase_ptr->rxn_x.token[0] + 1; rxn_ptr->s != NULL; rxn_ptr++) { if (rxn_ptr->s != s_eminus && rxn_ptr->s->in == FALSE) { @@ -303,13 +312,13 @@ build_fixed_volume_gas(void) } col = master_ptr->unknown->number; coef = rxn_ptr->coef; - store_jacob(&(phase_ptr->p_soln_x), &(array[row + col]), coef); if (debug_prep == TRUE) { - output_msg(sformatf( "\t\t%-24s%10.3f\t%d\t%d\n", + output_msg(sformatf( "\t\t%-24s%10.3f\t%d\t%d", master_ptr->s->name, (double) coef, row / (count_unknowns + 1), col)); } + store_jacob(&(phase_ptr->p_soln_x), &(my_array[(size_t)row + (size_t)col]), coef); } } } @@ -351,7 +360,7 @@ calc_PR(void) LDBLE r3[4], r3_12, rp, rp3, rq, rz, ri, ri1, one_3 = 0.33333333333333333; LDBLE disct, vinit, v1, ddp, dp_dv, dp_dv2; int it; - struct phase *phase_ptr; + class phase *phase_ptr; LDBLE V_m = 0, P = 0; LDBLE TK = tk_x; @@ -413,7 +422,7 @@ calc_PR(void) // continue; b_sum += phase_ptr->fraction_x * phase_ptr->pr_b; size_t i1; - struct phase *phase_ptr1; + class phase *phase_ptr1; for (i1 = 0; i1 < gas_unknowns.size(); i1++) { phase_ptr1 = gas_unknowns[i1]->phase; @@ -427,23 +436,31 @@ calc_PR(void) { if (!strcmp(phase_ptr1->name, "CO2(g)")) a_aa *= 0.81; // Soreide and Whitson, 1992, FPE 77, 217 - else if (!strcmp(phase_ptr1->name, "H2S(g)")) + else if (!strcmp(phase_ptr1->name, "H2S(g)") || !strcmp(phase_ptr1->name, "H2Sg(g)")) a_aa *= 0.81; - else if (!strcmp(phase_ptr1->name, "CH4(g)")) + else if (!strcmp(phase_ptr1->name, "CH4(g)") || !strcmp(phase_ptr1->name, "Mtg(g)") || !strcmp(phase_ptr1->name, "Methane(g)")) a_aa *= 0.51; - else if (!strcmp(phase_ptr1->name, "N2(g)")) + else if (!strcmp(phase_ptr1->name, "N2(g)") || !strcmp(phase_ptr1->name, "Ntg(g)")) a_aa *= 0.51; + else if (!strcmp(phase_ptr1->name, "Ethane(g)")) + a_aa *= 0.51; + else if (!strcmp(phase_ptr1->name, "Propane(g)")) + a_aa *= 0.45; } if (!strcmp(phase_ptr1->name, "H2O(g)")) { if (!strcmp(phase_ptr->name, "CO2(g)")) a_aa *= 0.81; - else if (!strcmp(phase_ptr->name, "H2S(g)")) + else if (!strcmp(phase_ptr->name, "H2S(g)") || !strcmp(phase_ptr->name, "H2Sg(g)")) a_aa *= 0.81; - else if (!strcmp(phase_ptr->name, "CH4(g)")) + else if (!strcmp(phase_ptr->name, "CH4(g)") || !strcmp(phase_ptr->name, "Mtg(g)") || !strcmp(phase_ptr->name, "Methane(g)")) a_aa *= 0.51; - else if (!strcmp(phase_ptr->name, "N2(g)")) + else if (!strcmp(phase_ptr->name, "N2(g)") || !strcmp(phase_ptr->name, "Ntg(g)")) a_aa *= 0.51; + else if (!strcmp(phase_ptr->name, "Ethane(g)")) + a_aa *= 0.51; + else if (!strcmp(phase_ptr->name, "Propane(g)")) + a_aa *= 0.45; } a_aa_sum += phase_ptr->fraction_x * phase_ptr1->fraction_x * a_aa; a_aa_sum2 += phase_ptr1->fraction_x * a_aa; @@ -589,10 +606,10 @@ calc_PR(void) { phi = B_r * (rz - 1) - log(rz - B) + A / (2.828427 * B) * (B_r - 2.0 * phase_ptr->pr_aa_sum2 / a_aa_sum) * log((rz + 2.41421356 * B) / (rz - 0.41421356 * B)); - phi = (phi > 4.44 ? 4.44 : (phi < -3 ? -3 : phi)); + //phi = (phi > 4.44 ? 4.44 : (phi < -3 ? -3 : phi)); } else - phi = -3.0; // fugacity coefficient > 0.05 + phi = -3.0; // fugacity coefficient = 0.05 phase_ptr->pr_phi = exp(phi); phase_ptr->pr_si_f = phi / LOG_10; // pr_si_f updated // **** @@ -609,8 +626,8 @@ calc_fixed_volume_gas_pressures(void) { int n_g = 0; LDBLE lp; - struct rxn_token *rxn_ptr; - struct phase *phase_ptr; + class rxn_token *rxn_ptr; + class phase *phase_ptr; bool PR = false, pr_done = false; size_t i; /* @@ -648,8 +665,8 @@ calc_fixed_volume_gas_pressures(void) if (phase_ptr->in == TRUE) { lp = -phase_ptr->lk; - //lp = -k_calc(phase_ptr->rxn_x->logk, tk_x, use.Get_gas_phase_ptr()->total_p * PASCAL_PER_ATM); - for (rxn_ptr = phase_ptr->rxn_x->token + 1; rxn_ptr->s != NULL; + //lp = -k_calc(phase_ptr->rxn_x.logk, tk_x, use.Get_gas_phase_ptr()->total_p * PASCAL_PER_ATM); + for (rxn_ptr = &phase_ptr->rxn_x.token[0] + 1; rxn_ptr->s != NULL; rxn_ptr++) { lp += rxn_ptr->s->la * rxn_ptr->coef; diff --git a/global_structures.h b/global_structures.h index aec2ab56..9d07f324 100644 --- a/global_structures.h +++ b/global_structures.h @@ -1,6 +1,7 @@ #ifndef _INC_GLOBAL_STRUCTURES_H #define _INC_GLOBAL_STRUCTURES_H #include "Surface.h" +#include "GasPhase.h" /* ---------------------------------------------------------------------- * #define DEFINITIONS * ---------------------------------------------------------------------- */ @@ -40,6 +41,7 @@ #define DISP 2 #define STAG 3 #define NOMIX 4 +#define MIX_BS 5 // mix boundary solutions in electromigration #define CONVERGED 2 #define MASS_BALANCE 3 @@ -147,16 +149,8 @@ // #define MIN_RELATED_LOG_ACTIVITY -30 #endif #define REF_PRES_PASCAL 1.01325E5 /* Reference pressure: 1 atm */ -/* - * Hash definitions - */ -# define SegmentSize 256 -# define SegmentSizeShift 8 /* log2(SegmentSize) */ -# define DirectorySize 256 -# define DirectorySizeShift 8 /* log2(DirectorySize) */ -# define Prime1 37 -# define Prime2 1048583 -# define DefaultMaxLoadFactor 5 +#define MAX_P_NONLLNL 1500.0 + // // Typedefs and structure definitions // @@ -185,43 +179,6 @@ typedef enum { vmi1, vmi2, vmi3, vmi4, /* ionic strength terms: (i1 + i2/(TK - 228) + i3 * (TK - 228) ) * I^i4 */ MAX_LOG_K_INDICES /* Keep this definition at the end of the enum */ } LOG_K_INDICES; -/* HSEARCH(3C) */ -typedef struct entry -{ - const char *key; - void *data; -} ENTRY; -typedef enum -{ FIND, ENTER } ACTION; - -/* TSEARCH(3C) */ -typedef enum -{ preorder, postorder, endorder, leaf } VISIT; - -typedef struct Element -{ - /* - ** The user only sees the first two fields, - ** as we pretend to pass back only a pointer to ENTRY. - ** {S}he doesn`t know what else is in here. - */ - const char *Key; - char *Data; - struct Element *Next; /* secret from user */ -} Element, *Segment; - -typedef struct -{ - short p; /* Next bucket to be split */ - short maxp; /* upper bound on p during expansion */ - long KeyCount; /* current # keys */ - short SegmentCount; /* current # segments */ - short MinLoadFactor; - short MaxLoadFactor; - Segment *Directory[DirectorySize]; -} HashTable; - -typedef unsigned long Address; typedef struct PHRQMemHeader { @@ -235,102 +192,6 @@ typedef struct PHRQMemHeader #endif } PHRQMemHeader; -struct model -{ - int force_prep; - LDBLE temperature; - int count_exchange; - struct master **exchange; - - int count_kinetics; - struct kinetics *kinetics; - - int count_gas_phase; - struct phase **gas_phase; - - int count_ss_assemblage; - const char **ss_assemblage; - - int count_pp_assemblage; - struct phase **pp_assemblage; - const char **add_formula; - LDBLE *si; - - cxxSurface::DIFFUSE_LAYER_TYPE dl_type; - cxxSurface::SURFACE_TYPE surface_type; - int only_counter_ions; - - LDBLE thickness; - int count_surface_comp; - const char **surface_comp; - int count_surface_charge; - const char **surface_charge; - LDBLE pressure; - bool numerical_fixed_volume; -}; - - - -struct name_master -{ - const char *name; - struct master *master; -}; -struct name_species -{ - const char *name; - struct species *s; -}; -struct name_phase -{ - const char *name; - struct phase *phase; -}; -#ifdef SKIP -struct punch -{ - int in; - int new_def; - struct name_master *totals; - int count_totals; - struct name_species *molalities; - int count_molalities; - struct name_species *activities; - int count_activities; - struct name_phase *pure_phases; - int count_pure_phases; - struct name_phase *si; - int count_si; - struct name_phase *gases; - int count_gases; - struct name_phase *s_s; - int count_s_s; - struct name_phase *kinetics; - int count_kinetics; - struct name_master *isotopes; - int count_isotopes; - struct name_master *calculate_values; - int count_calculate_values; - int inverse; - int sim; - int state; - int soln; - int dist; - int time; - int step; - int rxn; - int temp; - int ph; - int pe; - int alk; - int mu; - int water; - int high_precision; - int user_punch; - int charge_balance; - int percent_error; -}; -#endif struct Change_Surf { const char *comp_name; @@ -340,25 +201,76 @@ struct Change_Surf int cell_no; int next; }; - -struct Charge_Group -{ - LDBLE z; - LDBLE eq; -}; - /*---------------------------------------------------------------------- - * Save + * CReaction *---------------------------------------------------------------------- */ -struct save_values +class CReaction { - LDBLE value; - int count_subscripts; - int *subscripts; -}; +public: + CReaction(void); + CReaction(size_t ntoken); + ~CReaction(void) {} + double* Get_logk(void) { return this->logk; } + void Set_logk(double* d); + double* Get_dz(void) { return this->dz; } + void Set_dz(double* d); + size_t size() { return token.size(); } + std::vector& Get_tokens(void) { return this->token; } + void Set_tokens(const std::vector& t) { this->token = t; } -struct save +public: + double logk[MAX_LOG_K_INDICES]; + double dz[3]; + std::vector token; +}; +class rxn_token { +public: + ~rxn_token() {}; + rxn_token() + { + s = NULL; + coef = 0.0; + name = NULL; + } + class species* s; + LDBLE coef; + const char* name; +}; +class save +{ +public: + ~save() {}; + save() + { + solution = 0; + n_solution_user = 0; + n_solution_user_end = 0; + mix = 0; + n_mix_user = 0; + n_mix_user_end = 0; + reaction = 0; + n_reaction_user = 0; + n_reaction_user_end = 0; + pp_assemblage = 0; + n_pp_assemblage_user = 0; + n_pp_assemblage_user_end = 0; + exchange = 0; + n_exchange_user = 0; + n_exchange_user_end = 0; + kinetics = 0; + n_kinetics_user = 0; + n_kinetics_user_end = 0; + surface = 0; + n_surface_user = 0; + n_surface_user_end = 0; + gas_phase = 0; + n_gas_phase_user = 0; + n_gas_phase_user_end = 0; + ss_assemblage = 0; + n_ss_assemblage_user = 0; + n_ss_assemblage_user_end = 0; + } int solution; int n_solution_user; int n_solution_user_end; @@ -391,22 +303,56 @@ struct save /*---------------------------------------------------------------------- * Copy *---------------------------------------------------------------------- */ -struct copier +class copier { - int count; - int max; - int *n_user; - int *start; - int *end; +public: + ~copier() {}; + copier() + {} + std::vector n_user; + std::vector start; + std::vector end; }; - /*---------------------------------------------------------------------- * Inverse *---------------------------------------------------------------------- */ -struct inverse +class inverse { +public: + ~inverse() {}; + inverse() + { + n_user = -1; + description = NULL; + new_def = FALSE; + minimal = FALSE; + range = FALSE; + mp = FALSE; + mp_censor = 1e-20; + range_max = 1000.0; + tolerance = 1e-10; + mp_tolerance = 1e-12; + //uncertainties.clear(); + //ph_uncertainties.clear(); + water_uncertainty = 0.0; + mineral_water = TRUE; + carbon = TRUE; + //dalk_dph.clear(); + //dalk_dc.clear(); + count_solns = 0; + //solns.clear(); + //force_solns.clear(); + //elts.clear(); + //phases.clear(); + count_redox_rxns = 0; + //isotopes.clear(); + //i_u.clear(); + //isotope_unknowns.clear(); + netpath = NULL; + pat = NULL; + } int n_user; - char *description; + char* description; int new_def; int minimal; int range; @@ -415,395 +361,699 @@ struct inverse LDBLE range_max; LDBLE tolerance; LDBLE mp_tolerance; - int count_uncertainties; - LDBLE *uncertainties; - int count_ph_uncertainties; - LDBLE *ph_uncertainties; + std::vector uncertainties; + std::vector ph_uncertainties; LDBLE water_uncertainty; int mineral_water; int carbon; - LDBLE *dalk_dph; - LDBLE *dalk_dc; - int count_solns; - int *solns; - int count_force_solns; - int *force_solns; - int count_elts; - struct inv_elts *elts; - int count_phases; - struct inv_phases *phases; - int count_master_list; - struct master **master_list; - int count_redox_rxns; - int count_isotopes; - struct inv_isotope *isotopes; - int count_i_u; - struct inv_isotope *i_u; - int count_isotope_unknowns; - struct isotope *isotope_unknowns; - const char *netpath; - const char *pat; + std::vector dalk_dph; + std::vector dalk_dc; + size_t count_solns; + std::vector solns; + std::vector force_solns; + std::vector elts; + std::vector phases; + size_t count_redox_rxns; + std::vector isotopes; + std::vector i_u; + std::vector isotope_unknowns; + const char* netpath; + const char* pat; }; -struct inv_elts +class inv_elts { - const char *name; - struct master *master; - int row; - int count_uncertainties; - LDBLE *uncertainties; +public: + ~inv_elts() {}; + inv_elts() + { + name = NULL; + master = NULL; + row = 0; + //uncertainties.clear(); + } + const char* name; + class master* master; + size_t row; + std::vector uncertainties; }; -struct inv_isotope +class inv_isotope { - const char *isotope_name; +public: + ~inv_isotope() {}; + inv_isotope() + { + isotope_name = NULL; + isotope_number = 0; + elt_name = NULL; + //uncertainties.clear(); + } + const char* isotope_name; LDBLE isotope_number; - const char *elt_name; - int count_uncertainties; - LDBLE *uncertainties; + const char* elt_name; + std::vector uncertainties; }; -struct inv_phases +class inv_phases { - const char *name; - struct phase *phase; +public: + ~inv_phases() {}; + inv_phases() + { + name = NULL; + phase = NULL; + column = 0; + constraint = EITHER; + force = FALSE; + //isotopes.clear(); + } + const char* name; + class phase* phase; int column; int constraint; int force; - int count_isotopes; - struct isotope *isotopes; + std::vector isotopes; }; -struct name_coef +/*---------------------------------------------------------------------- + * Jacobian and Mass balance lists + *---------------------------------------------------------------------- */ +class Model { - const char *name; +public: + Model() + { + force_prep = true; + gas_phase_type = cxxGasPhase::GP_UNKNOWN; + numerical_fixed_volume = false; + dl_type = cxxSurface::NO_DL; + surface_type = cxxSurface::UNKNOWN_DL; + }; + ~Model() + { + }; + bool force_prep; + bool numerical_fixed_volume; + cxxGasPhase::GP_TYPE gas_phase_type; + std::vector gas_phase; + std::vector ss_assemblage; + std::vector pp_assemblage; + std::vector si; + std::vector add_formula; + cxxSurface::DIFFUSE_LAYER_TYPE dl_type; + cxxSurface::SURFACE_TYPE surface_type; + std::vector surface_comp; + std::vector surface_charge; +}; +class name_coef +{ +public: + ~name_coef() {}; + name_coef() + { + name = NULL; + coef = 0; + } + const char* name; LDBLE coef; }; /*---------------------------------------------------------------------- * Species_list *---------------------------------------------------------------------- */ -struct species_list +class species_list { - struct species *master_s; - struct species *s; +public: + ~species_list() {}; + species_list() + { + master_s = NULL; + s = NULL; + coef = 0; + } + class species* master_s; + class species* s; LDBLE coef; }; - /*---------------------------------------------------------------------- * Jacobian and Mass balance lists *---------------------------------------------------------------------- */ -struct list0 +class list0 { - LDBLE *target; +public: + ~list0() {}; + list0() + { + target = NULL; + coef = 0; + } + LDBLE* target; LDBLE coef; }; -struct list1 +class list1 { - LDBLE *source; - LDBLE *target; +public: + ~list1() {}; + list1() + { + source = NULL; + target = NULL; + } + LDBLE* source; + LDBLE* target; }; -struct list2 +class list2 { - LDBLE *source; - LDBLE *target; +public: + ~list2() {}; + list2() + { + source = NULL; + target = NULL; + coef = 0; + } + LDBLE* source; + LDBLE* target; LDBLE coef; }; - - struct isotope - { - LDBLE isotope_number; - const char *elt_name; - const char *isotope_name; - LDBLE total; - LDBLE ratio; - LDBLE ratio_uncertainty; - LDBLE x_ratio_uncertainty; - struct master *master; - struct master *primary; - LDBLE coef; /* coefficient of element in phase */ -}; -struct iso +class isotope { - const char *name; +public: + ~isotope() {}; + isotope() + { + isotope_number = 0; + elt_name = NULL; + isotope_name = NULL; + total = 0; + ratio = 0; + ratio_uncertainty = 0; + x_ratio_uncertainty = 0; + master = NULL; + primary = NULL; + coef = 0; /* coefficient of element in phase */ + } + LDBLE isotope_number; + const char* elt_name; + const char* isotope_name; + LDBLE total; + LDBLE ratio; + LDBLE ratio_uncertainty; + LDBLE x_ratio_uncertainty; + class master* master; + class master* primary; + LDBLE coef; +}; +class iso +{ +public: + ~iso() {}; + iso() + { + name = NULL; + value = 0; + uncertainty = 0.05; + } + const char* name; LDBLE value; LDBLE uncertainty; }; /*---------------------------------------------------------------------- * Transport data *---------------------------------------------------------------------- */ -struct stag_data +class stag_data { +public: + ~stag_data() {}; + stag_data() + { + count_stag = 0; + exch_f = 0; + th_m = 0; + th_im = 0; + } int count_stag; LDBLE exch_f; LDBLE th_m; LDBLE th_im; }; -struct cell_data +class cell_data { +public: + ~cell_data() {}; + cell_data() + { + length = 1; + mid_cell_x = 1.; + disp = 1.0; + temp = 25.; + // free (uncharged) porewater porosities + por = 0.1; + // interlayer water porosities + por_il = 0.01; + // potential (V) + potV = 0; + punch = FALSE; + print = FALSE; + same_model = FALSE; + } LDBLE length; LDBLE mid_cell_x; LDBLE disp; LDBLE temp; - LDBLE por; /* free (uncharged) porewater porosities */ - LDBLE por_il; /* interlayer water porosities */ - LDBLE potV; /* potential (V) */ + LDBLE por; + LDBLE por_il; + LDBLE potV; int punch; int print; + int same_model; }; - /*---------------------------------------------------------------------- * Keywords *---------------------------------------------------------------------- */ - struct key - { - char *name; - int keycount; - }; - struct const_key - { - const char *name; - int keycount; -}; - +//class key +//{ +//public: +// ~key() {}; +// key() +// { +// name = NULL; +// keycount = 0; +// } +// char* name; +// int keycount = 0; +// }; +//class const_key +//{ +//public: +// ~const_key() {}; +// const_key() +// { +// name = NULL; +// keycount = 0; +// } +// const char* name; +// int keycount; +//}; /*---------------------------------------------------------------------- * Elements *---------------------------------------------------------------------- */ -struct element +class element { - const char *name; /* element name */ - /* int in; */ - struct master *master; - struct master *primary; +public: + ~element() {}; + element() + { + // element name + name = NULL; + /* int in; */ + master = NULL; + primary = NULL; + gfw = 0; + } + const char* name; + class master* master; + class master* primary; LDBLE gfw; }; /*---------------------------------------------------------------------- * Element List *---------------------------------------------------------------------- */ -struct elt_list -{ /* list of name and number of elements in an equation */ - struct element *elt; /* pointer to element structure */ - LDBLE coef; /* number of element e's in eqn */ -}; -/*---------------------------------------------------------------------- - * Reaction - *---------------------------------------------------------------------- */ -struct reaction -{ - LDBLE logk[MAX_LOG_K_INDICES]; - LDBLE dz[3]; - struct rxn_token *token; -}; -struct rxn_token -{ - struct species *s; - LDBLE coef; - const char *name; -}; -class cxxChemRxn +class elt_list { public: - cxxChemRxn(void) - { - for (size_t i = 0; i < MAX_LOG_K_INDICES; i++) - { - logk[i] = 0.0; - } - for (size_t i = 0; i < 3; i++) - { - dz[i] =0.0; - } + ~elt_list() {}; + elt_list() + { /* list of name and number of elements in an equation */ + elt = NULL; /* pointer to element structure */ + coef = 0.0; /* number of element e's in eqn */ } - cxxChemRxn(struct reaction *rxn) - { - for (size_t i = 0; i < MAX_LOG_K_INDICES; i++) - { - logk[i] = rxn->logk[i]; - } - for (size_t i = 0; i < 3; i++) - { - dz[i] = rxn->dz[i]; - } - struct rxn_token *next_token; - next_token = rxn->token; - this->tokens.push_back(*next_token++); - while (next_token->s != NULL || next_token->name != NULL) - { - this->tokens.push_back(*next_token++); - } - } - ~cxxChemRxn(void) {} - LDBLE *Get_logk(void) {return this->logk;} - void Set_logk(LDBLE *d) - { - for (size_t i = 0; i < MAX_LOG_K_INDICES; i++) - { - logk[i] = d[i]; - } - - } - LDBLE *Get_dz(void) {return this->dz;} - void Set_dz(LDBLE *d) - { - for (size_t i = 0; i < 3; i++) - { - dz[i] = d[i]; - } - } - std::vector &Get_tokens(void) {return this->tokens;} - void Set_tokens(const std::vector &t) {this->tokens = t;} - -protected: - LDBLE logk[MAX_LOG_K_INDICES]; - LDBLE dz[3]; - std::vector tokens; + class element* elt; + LDBLE coef; }; /*---------------------------------------------------------------------- * Species *---------------------------------------------------------------------- */ -struct species -{ /* all data pertinent to an aqueous species */ - const char *name; /* name of species */ - const char *mole_balance; /* formula for mole balance */ - int in; /* species used in model if TRUE */ +class species +{ +public: + ~species() {}; + species() + { /* all data pertinent to an aqueous species */ + name = NULL; // name of species + mole_balance = NULL; // formula for mole balance + in = FALSE; // set internally if species in model + number = 0; + // points to master species list, NULL if not primary master + primary = NULL; + // points to master species list, NULL if not secondary master + secondary = NULL; + gfw = 0; // gram formula wt of species + z = 0; // charge of species + // tracer diffusion coefficient in water at 25oC, m2/s + dw = 0; + // correct Dw for temperature: Dw(TK) = Dw(298.15) * exp(dw_t / TK - dw_t / 298.15) + dw_t = 0; + // parms for calc'ng SC = SC0 * exp(-dw_a * z * mu^0.5 / (1 + DH_B * dw_a2 * mu^0.5)) + dw_a = 0; + dw_a2 = 0; + dw_a_visc = 0; // viscosity correction of SC + dw_t_SC = 0; // contribution to SC, for calc'ng transport number with BASIC + dw_corr = 0; // dw corrected for TK and mu + erm_ddl = 0; // enrichment factor in DDL + equiv = 0; // equivalents in exchange species + alk = 0; // alkalinity of species, used for cec in exchange + carbon = 0; // stoichiometric coefficient of carbon in species + co2 = 0; // stoichiometric coefficient of C(4) in species + h = 0; // stoichiometric coefficient of H in species + // stoichiometric coefficient of O in species + o = 0; + // WATEQ Debye Huckel a and b-dot; active_fraction coef for exchange species + dha = 0, dhb = 0, a_f = 0; + lk = 0; // log10 k at working temperature + // log kt0, delh, 6 coefficients analytical expression + volume terms + for (size_t i = 0; i < MAX_LOG_K_INDICES; i++) logk[i] = 0; + // 7 coefficients analytical expression for B, D, anion terms and pressure in Jones_Dole viscosity eqn + for (size_t i = 0; i < 10; i++) Jones_Dole[i] = 0; + // regression coefficients to calculate temperature dependent phi_0and b_v of Millero density model + for (size_t i = 0; i < 7; i++) millero[i] = 0; + original_units = kjoules; // enum with original delta H units + //add_logk.clear(); + lg = 0; // log10 activity coefficient, gamma + lg_pitzer = 0; // log10 activity coefficient, from pitzer calculation + lm = 0; // log10 molality + la = 0; // log10 activity + dg = 0; // gamma term for jacobian + dg_total_g = 0; + moles = 0; // moles in solution; moles/mass_water = molality + type = 0; // flag indicating presence in model and types of equations + gflag = 0; // flag for preferred activity coef eqn + exch_gflag = 0; // flag for preferred activity coef eqn + // vector of elements + //next_elt.clear(); + //next_secondary.clear(); + //next_sys_total.clear(); + // switch to check equation for charge and element balance + check_equation = TRUE; + //CReaction rxn; // data base reaction + //CReaction rxn_s; // reaction converted to secondary and primary master species + //CReaction rxn_x; // reaction to be used in model + // (1 + sum(g)) * moles + tot_g_moles = 0; + // sum(moles*g*Ws/Waq) + tot_dh2o_moles = 0; + for (size_t i = 0; i < 5; i++) cd_music[i] = 0; + for (size_t i = 0; i < 3; i++) dz[i] = 0; + original_deltav_units = cm3_per_mol; + } + const char* name; + const char* mole_balance; + int in; int number; - struct master *primary; /* points to master species list, NULL if not primary master */ - struct master *secondary; /* points to master species list, NULL if not secondary master */ - LDBLE gfw; /* gram formula wt of species */ - LDBLE z; /* charge of species */ - LDBLE dw; /* tracer diffusion coefficient in water at 25oC, m2/s */ - LDBLE dw_t; /* correct Dw for temperature: Dw(TK) = Dw(298.15) * exp(dw_t / TK - dw_t / 298.15) */ - LDBLE dw_a; /* parms for calc'ng SC = SC0 * exp(-dw_a * z * mu^0.5 / (1 + DH_B * dw_a2 * mu^0.5)) */ - LDBLE dw_a2; /* */ - LDBLE dw_a_visc; /* viscosity correction of SC */ - LDBLE dw_t_SC; /* contribution to SC, for calc'ng transport number with BASIC */ - LDBLE dw_corr; /* dw corrected for TK and mu */ - LDBLE erm_ddl; /* enrichment factor in DDL */ - LDBLE equiv; /* equivalents in exchange species */ - LDBLE alk; /* alkalinity of species, used for cec in exchange */ - LDBLE carbon; /* stoichiometric coefficient of carbon in species */ - LDBLE co2; /* stoichiometric coefficient of C(4) in species */ - LDBLE h; /* stoichiometric coefficient of H in species */ - LDBLE o; /* stoichiometric coefficient of O in species */ - LDBLE dha, dhb, a_f; /* WATEQ Debye Huckel a and b-dot; active_fraction coef for exchange species */ - LDBLE lk; /* log10 k at working temperature */ - LDBLE logk[MAX_LOG_K_INDICES]; /* log kt0, delh, 6 coefficients analytical expression + volume terms */ - LDBLE Jones_Dole[10]; /* 7 coefficients analytical expression for B, D, anion terms and pressure in Jones_Dole viscosity eqn */ -/* VP: Density Start */ - LDBLE millero[7]; /* regression coefficients to calculate temperature dependent phi_0 and b_v of Millero density model */ - /* VP: Density End */ - DELTA_H_UNIT original_units; /* enum with original delta H units */ - int count_add_logk; - struct name_coef *add_logk; - LDBLE lg; /* log10 activity coefficient, gamma */ - LDBLE lg_pitzer; /* log10 activity coefficient, from pitzer calculation */ - LDBLE lm; /* log10 molality */ - LDBLE la; /* log10 activity */ - LDBLE dg; /* gamma term for jacobian */ + class master* primary; + class master* secondary; + LDBLE gfw; + LDBLE z; + LDBLE dw; + LDBLE dw_t; + LDBLE dw_a; + LDBLE dw_a2; + LDBLE dw_a_visc; + LDBLE dw_t_SC; + LDBLE dw_corr; + LDBLE erm_ddl; + LDBLE equiv; + LDBLE alk; + LDBLE carbon; + LDBLE co2; + LDBLE h; + LDBLE o; + LDBLE dha, dhb, a_f; + LDBLE lk; + LDBLE logk[MAX_LOG_K_INDICES]; + LDBLE Jones_Dole[10]; + LDBLE millero[7]; + DELTA_H_UNIT original_units; + std::vector add_logk; + LDBLE lg; + LDBLE lg_pitzer; + LDBLE lm; + LDBLE la; + LDBLE dg; LDBLE dg_total_g; - LDBLE moles; /* moles in solution; moles/mass_water = molality */ - int type; /* flag indicating presence in model and types of equations */ - int gflag; /* flag for preferred activity coef eqn */ - int exch_gflag; /* flag for preferred activity coef eqn */ - struct elt_list *next_elt; /* pointer to next element */ - struct elt_list *next_secondary; - struct elt_list *next_sys_total; - int check_equation; /* switch to check equation for charge and element balance */ - struct reaction *rxn; /* pointer to data base reaction */ - struct reaction *rxn_s; /* pointer to reaction converted to secondary and primary - master species */ - struct reaction *rxn_x; /* reaction to be used in model */ - LDBLE tot_g_moles; /* (1 + sum(g)) * moles */ - LDBLE tot_dh2o_moles; /* sum(moles*g*Ws/Waq) */ + LDBLE moles; + int type; + int gflag; + int exch_gflag; + std::vector next_elt; + std::vector next_secondary; + std::vector next_sys_total; + int check_equation; + CReaction rxn; + CReaction rxn_s; + CReaction rxn_x; + LDBLE tot_g_moles; + LDBLE tot_dh2o_moles; LDBLE cd_music[5]; LDBLE dz[3]; DELTA_V_UNIT original_deltav_units; }; -struct logk -{ /* Named log K's */ - const char *name; /* name of species */ - LDBLE lk; /* log10 k at working temperature */ - LDBLE log_k[MAX_LOG_K_INDICES]; /* log kt0, delh, 6 coefficients analalytical expression */ - DELTA_H_UNIT original_units; /* enum with original delta H units */ - int count_add_logk; +class logk +{ +public: + ~logk() {}; + logk() + { /* Named log K's */ + name = NULL; // name of species + lk = 0.0; // log10 k at working temperature + // log kt0, delh, 6 coefficients analalytical expression + for (size_t i = 0; i < MAX_LOG_K_INDICES; i++) log_k[i] = 0; + // enum with original delta H units + original_units = kjoules; + done = FALSE; + //add_logk.clear(); + // log kt0, delh, 5 coefficients analalytical expression + for (size_t i = 0; i < MAX_LOG_K_INDICES; i++) log_k_original[i] = 0; + original_deltav_units = cm3_per_mol; + } + const char* name; + LDBLE lk; + LDBLE log_k[MAX_LOG_K_INDICES]; + DELTA_H_UNIT original_units; int done; - struct name_coef *add_logk; - LDBLE log_k_original[MAX_LOG_K_INDICES]; /* log kt0, delh, 5 coefficients analalytical expression */ + std::vector add_logk; + LDBLE log_k_original[MAX_LOG_K_INDICES]; DELTA_V_UNIT original_deltav_units; }; - /*---------------------------------------------------------------------- * Phases *---------------------------------------------------------------------- */ -struct phase -{ /* all data pertinent to a pure solid phase */ - const char *name; /* name of species */ - const char *formula; /* chemical formula */ - int in; /* species used in model if TRUE */ - LDBLE lk; /* log10 k at working temperature */ - LDBLE logk[MAX_LOG_K_INDICES]; /* log kt0, delh, 6 coefficients analalytical expression */ - DELTA_H_UNIT original_units; /* enum with original delta H units */ +class phase +{ +public: + ~phase() {}; + phase() + { /* all data pertinent to a pure solid phase */ + name = NULL; //name of species + formula = NULL; // chemical formula + in = FALSE; // species used in model if TRUE + lk = 0; // log10 k at working temperature + // log kt0, delh, 6 coefficients analalytical expression + for (size_t i = 0; i < MAX_LOG_K_INDICES; i++) logk[i] = 0; + // enum with original delta H units + original_units = kjoules; + original_deltav_units = cm3_per_mol; + //add_logk.clear(); + moles_x = 0; + delta_max = 0; + p_soln_x = 0; + fraction_x = 0; + log10_lambda = 0; + log10_fraction_x = 0; + dn = 0, dnb = 0, dnc = 0; + gn = 0, gntot = 0; + gn_n = 0, gntot_n = 0; + // gas: critical TK, critical P(atm), Pitzer acentric coeff + t_c = 0, p_c = 0, omega = 0; + // Peng-Robinson parm's + pr_a = 0, pr_b = 0, pr_alpha = 0; + // Temperature (K), Pressure (atm) + pr_tk = 0, pr_p = 0; + // fugacity coefficient (-) + pr_phi = 0; + // for calculating multicomponent phi + pr_aa_sum2 = 0; + // delta_v[0] = [1] + [2]*T + [3]/T + [4]*log10(T) + [5]/T^2 + [6]*T^2 + [7]*P + for (size_t i = 0; i < 9; i++) delta_v[i] = 0; + // si adapter: log10(phi) - delta_v[0] * (P - 1) /RT + pr_si_f = 0; + // Peng-Robinson in the calc's, or not + pr_in = false; + // flag indicating presence in model and types of equations + type = SOLID; + // list of elements in phase + //next_elt.clear(); + //next_sys_total.clear(); + // switch to check equation for charge and element balance + check_equation = TRUE; + // data base reaction + //CReaction rxn; + // reaction converted to secondary and primary master species + //CReaction rxn_s; + // reaction to be used in model + //CReaction rxn_x; + // equation contains solids or gases + replaced = FALSE; + in_system = FALSE; + } + const char* name; + const char* formula; + int in; + LDBLE lk; + LDBLE logk[MAX_LOG_K_INDICES]; + DELTA_H_UNIT original_units; DELTA_V_UNIT original_deltav_units; - int count_add_logk; - struct name_coef *add_logk; + std::vector add_logk; LDBLE moles_x; LDBLE delta_max; LDBLE p_soln_x; LDBLE fraction_x; - LDBLE log10_lambda, log10_fraction_x; + LDBLE log10_lambda; + LDBLE log10_fraction_x; LDBLE dn, dnb, dnc; LDBLE gn, gntot; LDBLE gn_n, gntot_n; - LDBLE t_c, p_c, omega; /* gas: critical TK, critical P(atm), Pitzer acentric coeff */ - LDBLE pr_a, pr_b, pr_alpha; /* Peng-Robinson parm's */ - LDBLE pr_tk, pr_p; /* Temperature (K), Pressure (atm) */ - LDBLE pr_phi; /* fugacity coefficient (-) */ - LDBLE pr_aa_sum2; /* for calculating multicomponent phi */ - LDBLE delta_v[9]; /* delta_v[0] = [1] + [2]*T + [3]/T + [4]*log10(T) + [5]/T^2 + [6]*T^2 + [7]*P */ - LDBLE pr_si_f; /* si adapter: log10(phi) - delta_v[0] * (P - 1) /RT */ - bool pr_in; /* Peng-Robinson in the calc's, or not */ - - int type; /* flag indicating presence in model and types of equations */ - struct elt_list *next_elt; /* pointer to list of elements in phase */ - struct elt_list *next_sys_total; - int check_equation; /* switch to check equation for charge and element balance */ - struct reaction *rxn; /* pointer to data base reaction */ - struct reaction *rxn_s; /* pointer to reaction converted to secondary and primary - master species */ - struct reaction *rxn_x; /* reaction to be used in model */ - int replaced; /* equation contains solids or gases */ + LDBLE t_c, p_c, omega; + LDBLE pr_a, pr_b, pr_alpha; + LDBLE pr_tk, pr_p; + LDBLE pr_phi; + LDBLE pr_aa_sum2; + LDBLE delta_v[9]; + LDBLE pr_si_f; + bool pr_in; + int type; + std::vector next_elt; + std::vector next_sys_total; + int check_equation; + CReaction rxn; + CReaction rxn_s; + CReaction rxn_x; + int replaced; int in_system; }; /*---------------------------------------------------------------------- * Master species *---------------------------------------------------------------------- */ - struct master - { /* list of name and number of elements in an equation */ - int in; /* TRUE if in model, FALSE if out, REWRITE if other mb eq */ - int number; /* sequence number in list of masters */ - int last_model; /* saved to determine if model has changed */ - int type; /* AQ or EX */ - int primary; /* TRUE if master species is primary */ - LDBLE coef; /* coefficient of element in master species */ - LDBLE total; /* total concentration for element or valence state */ - LDBLE isotope_ratio; - LDBLE isotope_ratio_uncertainty; - int isotope; - LDBLE total_primary; - /* LDBLE la; */ /* initial guess of master species log activity */ - struct element *elt; /* element structure */ - LDBLE alk; /* alkalinity of species */ - LDBLE gfw; /* default gfw for species */ - const char *gfw_formula; /* formula from which to calcuate gfw */ - struct unknown *unknown; /* pointer to unknown structure */ - struct species *s; /* pointer to species structure */ - struct reaction *rxn_primary; /* reaction writes master species in terms of primary - master species */ - struct reaction *rxn_secondary; /* reaction writes master species in terms of secondary - master species */ - const char * pe_rxn; - int minor_isotope; +class master +{ +public: + ~master() {}; + master() + { + // TRUE if in model, FALSE if out, REWRITE if other mb eq + in = 0; + // sequence number in list of masters + number = 0; + // saved to determine if model has changed + last_model = FALSE; + // AQ or EX + type = 0; + // TRUE if master species is primary + primary = FALSE; + // coefficient of element in master species + coef = 0; + // total concentration for element or valence state + total = 0; + isotope_ratio = 0; + isotope_ratio_uncertainty = 0; + isotope = 0; + total_primary = 0; + // element structure + elt = NULL; + // alkalinity of species + alk = 0; + // default gfw for species + gfw = 1; + // formula from which to calcuate gfw + gfw_formula = NULL; + // pointer to unknown structure + unknown = NULL; + // pointer to species structure + s = NULL; + // reaction writes master species in terms of primary master species + //CReaction rxn_primary; + // reaction writes master species in terms of secondary master species + //CReaction rxn_secondary; + pe_rxn = NULL; + minor_isotope = FALSE; + } + int in; + size_t number; + int last_model; + int type; + int primary; + LDBLE coef; + LDBLE total; + LDBLE isotope_ratio; + LDBLE isotope_ratio_uncertainty; + int isotope; + LDBLE total_primary; + class element* elt; + LDBLE alk; + LDBLE gfw; + const char* gfw_formula; + class unknown* unknown; + class species* s; + CReaction rxn_primary; + CReaction rxn_secondary; + const char* pe_rxn; + int minor_isotope; }; /*---------------------------------------------------------------------- * Unknowns *---------------------------------------------------------------------- */ -struct unknown +class unknown { +public: + ~unknown() {}; + unknown() + { + type = 0; + moles = 0; + ln_moles = 0; + f = 0; + sum = 0; + delta = 0; + la = 0; + number = 0; + description = NULL; + //master.clear(); + phase = NULL; + si = 0; + n_gas_phase_user = 0; + s = NULL; + exch_comp = NULL; + pp_assemblage_comp_name = NULL; + pp_assemblage_comp_ptr = NULL; + ss_name = NULL; + ss_ptr = NULL; + ss_comp_name = NULL; + ss_comp_ptr = NULL; + ss_comp_number = 0; + ss_in = FALSE; + surface_comp = NULL; + surface_charge = NULL; + related_moles = 0; + potential_unknown = NULL; + potential_unknown1 = NULL; + potential_unknown2 = NULL; + // list for CD_MUSIC of comps that contribute to 0 plane mass-balance term + //comp_unknowns.clear(); + phase_unknown = NULL; + mass_water = 1; + dissolve_only = FALSE; + inert_moles = 0; + V_m = 0; + pressure = 1; + mb_number = 0; + iteration = 0; + } int type; LDBLE moles; LDBLE ln_moles; @@ -811,30 +1061,30 @@ struct unknown LDBLE sum; LDBLE delta; LDBLE la; - int number; - const char *description; - struct master **master; - struct phase *phase; + size_t number; + const char* description; + std::vector master; + class phase* phase; LDBLE si; int n_gas_phase_user; - struct species *s; - const char * exch_comp; - const char *pp_assemblage_comp_name; - void *pp_assemblage_comp_ptr; - const char * ss_name; - void *ss_ptr; - const char * ss_comp_name; - void *ss_comp_ptr; + class species* s; + const char* exch_comp; + const char* pp_assemblage_comp_name; + void* pp_assemblage_comp_ptr; + const char* ss_name; + void* ss_ptr; + const char* ss_comp_name; + void* ss_comp_ptr; int ss_comp_number; int ss_in; - const char *surface_comp; - const char *surface_charge; + const char* surface_comp; + const char* surface_charge; LDBLE related_moles; - struct unknown *potential_unknown, *potential_unknown1, - *potential_unknown2; - int count_comp_unknowns; - struct unknown **comp_unknowns; /* list for CD_MUSIC of comps that contribute to 0 plane mass-balance term */ - struct unknown *phase_unknown; + class unknown* potential_unknown; + class unknown* potential_unknown1; + class unknown* potential_unknown2; + std::vector comp_unknowns; + class unknown* phase_unknown; LDBLE mass_water; int dissolve_only; LDBLE inert_moles; @@ -843,38 +1093,100 @@ struct unknown int mb_number; int iteration; }; - /*---------------------------------------------------------------------- * Reaction work space *---------------------------------------------------------------------- */ -struct reaction_temp +class reaction_temp { +public: + ~reaction_temp() {}; + reaction_temp() + { + for (size_t i = 0; i < MAX_LOG_K_INDICES; i++) logk[i] = 0; + for (size_t i = 0; i < 3; i++) dz[i] = 0; + //token.clear(); + } LDBLE logk[MAX_LOG_K_INDICES]; LDBLE dz[3]; - struct rxn_token_temp *token; + std::vector token; }; -struct rxn_token_temp -{ /* data for equations, aq. species or minerals */ - const char *name; /* pointer to a species name (formula) */ - LDBLE z; /* charge on species */ - struct species *s; - struct unknown *unknown; - LDBLE coef; /* coefficient of species name */ -}; -struct unknown_list +class rxn_token_temp { - struct unknown *unknown; - LDBLE *source; - LDBLE *gamma_source; - /* int row; */ - /* int col; */ +public: + ~rxn_token_temp() {}; + rxn_token_temp() + { // data for equations, aq. species or minerals + name = NULL; // pointer to a species name (formula) + z = 0; // charge on species + s = NULL; + unknown = NULL; + coef = 0; // coefficient of species name + } + const char* name; + LDBLE z; + class species* s; + class unknown* unknown; + LDBLE coef; +}; +class unknown_list +{ +public: + ~unknown_list() {}; + unknown_list() + { + unknown = NULL; + source = NULL; + gamma_source = NULL; + coef = 0; + } + class unknown* unknown; + LDBLE* source; + LDBLE* gamma_source; LDBLE coef; }; /* ---------------------------------------------------------------------- * Print * ---------------------------------------------------------------------- */ -struct prints +class prints { +public: + ~prints() {}; + prints() + { + all = 0; + initial_solutions = 0; + initial_exchangers = 0; + reactions = 0; + gas_phase = 0; + ss_assemblage = 0; + pp_assemblage = 0; + surface = 0; + exchange = 0; + kinetics = 0; + totals = 0; + eh = 0; + species = 0; + saturation_indices = 0; + irrev = 0; + mix = 0; + reaction = 0; + use = 0; + logfile = 0; + punch = 0; + status = 0; + inverse = 0; + dump = 0; + user_print = 0; + headings = 0; + user_graph = 0; + echo_input = 0; + warnings = 0; + initial_isotopes = 0; + isotope_ratios = 0; + isotope_alphas = 0; + hdf = 0; + alkalinity = 0; + } int all; int initial_solutions; int initial_exchangers; @@ -912,150 +1224,344 @@ struct prints /* ---------------------------------------------------------------------- * RATES * ---------------------------------------------------------------------- */ -struct rate +class rate { - const char *name; - char *commands; +public: + ~rate() {}; + rate() + { + name = NULL; + //std::string commands; + new_def = 0; + linebase = NULL; + varbase = NULL; + loopbase = NULL; + } + const char* name; + std::string commands; int new_def; - void *linebase; - void *varbase; - void *loopbase; + void* linebase; + void* varbase; + void* loopbase; }; /* ---------------------------------------------------------------------- * GLOBAL DECLARATIONS * ---------------------------------------------------------------------- */ -struct spread_row +class spread_row { - int count; - int empty, string, number; - char **char_vector; - LDBLE *d_vector; - int *type_vector; +public: + ~spread_row() {}; + spread_row() + { + count = 0; + empty = 0, string = 0, number = 0; + //char_vector.clear(); + //d_vector.clear(); + //type_vector.clear(); + } + size_t count; + size_t empty, string, number; + std::vector str_vector; + std::vector type_vector; }; -struct defaults +class defaults { +public: + ~defaults() {}; + defaults() + { + temp = 25; + density = 1; + calc_density = false; + units = NULL; + redox = NULL; + ph = 7; + pe = 4; + water = 1; + //iso.clear(); + pressure = 1; /* pressure in atm */ + } LDBLE temp; LDBLE density; bool calc_density; - const char *units; - const char *redox; + const char* units; + const char* redox; LDBLE ph; LDBLE pe; LDBLE water; - int count_iso; - struct iso *iso; - LDBLE pressure; /* pressure in atm */ + std::vector iso; + LDBLE pressure; }; -struct spread_sheet +class spread_sheet { - struct spread_row *heading; - struct spread_row *units; - int count_rows; - struct spread_row **rows; - struct defaults defaults; +public: + ~spread_sheet() {}; + spread_sheet() + { + heading = NULL; + units = NULL; + //class defaults defaults; + } + class spread_row* heading; + class spread_row* units; + std::vector rows; + class defaults defaults; }; /* ---------------------------------------------------------------------- * ISOTOPES * ---------------------------------------------------------------------- */ -struct master_isotope +class master_isotope { - const char *name; - struct master *master; - struct element *elt; - const char *units; +public: + ~master_isotope() {}; + master_isotope() + { + name = NULL; + master = NULL; + elt = NULL; + units = NULL; + standard = 0; + ratio = 0; + moles = 0; + total_is_major = 0; + minor_isotope = 0; + } + const char* name; + class master* master; + class element* elt; + const char* units; LDBLE standard; LDBLE ratio; LDBLE moles; int total_is_major; int minor_isotope; }; -struct calculate_value +class calculate_value { - const char *name; +public: + ~calculate_value() {}; + calculate_value() + { + name = NULL; + value = 0; + //commands.clear(); + new_def = 0; + calculated = 0; + linebase = NULL; + varbase = NULL; + loopbase = NULL; + } + const char* name; LDBLE value; - char *commands; + std::string commands; int new_def; int calculated; - void *linebase; - void *varbase; - void *loopbase; + void* linebase; + void* varbase; + void* loopbase; }; -struct isotope_ratio +class isotope_ratio { - const char *name; - const char *isotope_name; +public: + isotope_ratio() + { + name = NULL; + isotope_name = NULL; + ratio = 0; + converted_ratio = 0; + } + ~isotope_ratio() {}; + + const char* name; + const char* isotope_name; LDBLE ratio; LDBLE converted_ratio; }; -struct isotope_alpha +class isotope_alpha { - const char *name; - const char *named_logk; +public: + isotope_alpha() + { + name = NULL; + named_logk = NULL; + value = 0; + } + ~isotope_alpha() {}; + const char* name; + const char* named_logk; LDBLE value; }; -struct system_species +class system_species { - char *name; - char *type; +public: + ~system_species() {}; + system_species() + { + name = NULL; + type = NULL; + moles = 0; + } + char* name; + char* type; LDBLE moles; }; - /* tally.c ------------------------------- */ -struct tally_buffer +class tally_buffer { - const char *name; - struct master *master; +public: + ~tally_buffer() {}; + tally_buffer() + { + name = NULL; + master = NULL; + moles = 0; + gfw = 0; + } + const char* name; + class master* master; LDBLE moles; LDBLE gfw; }; -struct tally +class tally { - const char *name; +public: + ~tally() {}; + tally() + { + name = NULL; + type = UnKnown; + add_formula = NULL; + moles = 0; + //formula.clear(); + /* + * first total is initial + * second total is final + * third total is difference (final - initial) + */ + for(size_t i = 0; i < 3; i++) total[i]= NULL; + } + const char* name; enum entity_type type; - const char *add_formula; + const char* add_formula; LDBLE moles; - struct elt_list *formula; + std::vector formula; /* * first total is initial * second total is final * third total is difference (final - initial) */ - struct tally_buffer *total[3]; + class tally_buffer* total[3]; +}; +/* transport.c ------------------------------- */ +class spec +{ +public: + ~spec() {}; + spec() + { + // name of species + name = NULL; + // name of aqueous species in EX species + aq_name = NULL; + // type: AQ or EX + type = 0; + // activity + a = 0; + // log(concentration) + lm = 0; + // log(gamma) + lg = 0; + // concentration for AQ, equivalent fraction for EX + c = 0; + // charge number + z = 0; + // temperature corrected free water diffusion coefficient, m2/s + Dwt = 0; + // temperature factor for Dw + dw_t = 0; + // enrichment factor in ddl + erm_ddl = 0; + } + const char* name; + const char* aq_name; + int type; + LDBLE a; + LDBLE lm; + LDBLE lg; + LDBLE c; + LDBLE z; + LDBLE Dwt; + LDBLE dw_t; + LDBLE erm_ddl; }; -/* transport.c ------------------------------- */ -struct spec +class sol_D { - const char *name; /* name of species */ - const char *aq_name; /* name of aqueous species in EX species */ - int type; /* type: AQ or EX */ - LDBLE a; /* activity */ - LDBLE lm; /* log(concentration) */ - LDBLE lg; /* log(gamma) */ - LDBLE c; /* concentration for AQ, equivalent fraction for EX */ - LDBLE z; /* charge number */ - LDBLE Dwt; /* temperature corrected free water diffusion coefficient, m2/s */ - LDBLE dw_t; /* temperature factor for Dw */ - LDBLE erm_ddl; /* enrichment factor in ddl */ -}; -struct sol_D -{ - int count_spec; /* number of aqueous + exchange species */ - int count_exch_spec; /* number of exchange species */ - LDBLE exch_total, x_max, tk_x; /* total moles of X-, max X- in transport step in sol_D[1], tk */ - LDBLE viscos_f; /* (tk_x * viscos_0_25) / (298 * viscos) */ - struct spec *spec; +public: + ~sol_D() {}; + sol_D() + { + // number of aqueous + exchange species + count_spec = 0; + // number of exchange species + count_exch_spec = 0; + // total moles of X-, max X- in transport step in sol_D[1], tk + exch_total = 0, x_max = 0, tk_x = 0; + // (tk_x * viscos_0_25) / (298 * viscos) + viscos_f = 0; + spec = NULL; + spec_size = 0; + } + int count_spec; + int count_exch_spec; + LDBLE exch_total, x_max, tk_x; + LDBLE viscos_f; + class spec* spec; int spec_size; }; -struct J_ij +class J_ij { - const char *name; - LDBLE tot1, tot2; /* species change in cells i and j */ +public: + ~J_ij() {}; + J_ij() + { + name = NULL; + // species change in cells i and j + tot1 = 0; + tot2 = 0; + tot_stag = 0; + charge = 0; + } + const char* name; + LDBLE tot1, tot2, tot_stag, charge; }; -struct M_S +class J_ij_save { - const char *name; - LDBLE tot1, tot2; +public: + ~J_ij_save() {}; + J_ij_save() + { + // species change in cells i and j + flux_t = 0; + flux_c = 0; + } + double flux_t, flux_c; +}; +class M_S +{ +public: + ~M_S() {}; + M_S() + { + name = NULL; + // master species transport in cells i and j + tot1 = 0; + tot2 = 0; + tot_stag = 0; + charge = 0; + } + const char* name; + LDBLE tot1, tot2, tot_stag, charge; }; // Pitzer definitions typedef enum @@ -1063,10 +1569,24 @@ typedef enum TYPE_PSI, TYPE_ETHETA, TYPE_ALPHAS, TYPE_MU, TYPE_ETA, TYPE_Other, TYPE_SIT_EPSILON, TYPE_SIT_EPSILON_MU, TYPE_APHI } pitz_param_type; - -struct pitz_param +class pitz_param { - const char *species[3]; +public: + ~pitz_param() {}; + pitz_param() + { + for(size_t i = 0; i < 3; i++) species[i] = NULL; + for (size_t i = 0; i < 3; i++) ispec[i] = -1; + type = TYPE_Other; + p = 0; + U.b0 = 0; + for (size_t i = 0; i < 6; i++) a[i] = 0; + alpha = 0; + os_coef = 0; + for (size_t i = 0; i < 3; i++) ln_coef[i] = 0; + thetas = NULL; + } + const char* species[3]; int ispec[3]; pitz_param_type type; LDBLE p; @@ -1091,23 +1611,43 @@ struct pitz_param LDBLE alpha; LDBLE os_coef; LDBLE ln_coef[3]; - struct theta_param *thetas; + class theta_param* thetas; }; - -struct theta_param +class theta_param { +public: + ~theta_param() {}; + theta_param() + { + zj = 0; + zk = 0; + etheta = 0; + ethetap = 0; + } LDBLE zj; LDBLE zk; LDBLE etheta; LDBLE ethetap; }; - -struct const_iso +class const_iso { - const char *name; +public: + ~const_iso() {}; + const_iso() + { + name = NULL; + value = 0; + uncertainty = 0; + } + const_iso(const char *n, LDBLE v, LDBLE u) + { + name = n; + value = v; + uncertainty = u; + } + const char* name; LDBLE value; LDBLE uncertainty; }; #endif /* _INC_GLOBAL_STRUCTURES_H */ - diff --git a/input.cpp b/input.cpp index 10d120c8..18339645 100644 --- a/input.cpp +++ b/input.cpp @@ -5,6 +5,14 @@ #include #include "phqalloc.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /* ---------------------------------------------------------------------- */ void Phreeqc:: set_reading_database(int reading_database) diff --git a/integrate.cpp b/integrate.cpp index fa3fb255..1cfab335 100644 --- a/integrate.cpp +++ b/integrate.cpp @@ -6,6 +6,14 @@ #define MAX_QUAD 20 #define K_POLY 5 +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /* ---------------------------------------------------------------------- */ int Phreeqc:: calc_all_g(void) @@ -53,7 +61,7 @@ calc_all_g(void) /* * calculate g for given surface for each species */ - for (int i = 0; i < count_s_x; i++) + for (int i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type > HPLUS) continue; @@ -252,7 +260,7 @@ g_function(LDBLE x_value) { it->second.Set_psi_to_z(exp(ln_x_value * it->first) - 1.0); } - for (i = 0; i < count_s_x; i++) + for (i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type < H2O && s_x[i]->z != 0.0) { @@ -265,7 +273,7 @@ g_function(LDBLE x_value) sum1 = 0.0; output_msg(sformatf( "Species\tmoles\tX**z-1\tsum\tsum charge\n")); - for (i = 0; i < count_s_x; i++) + for (i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type < H2O && s_x[i]->z != 0.0) { @@ -298,21 +306,15 @@ polint(LDBLE * xa, LDBLE * ya, int n, LDBLE xv, LDBLE * yv, LDBLE * dy) { int i, m, ns; LDBLE den, dif, dift, ho, hp, w; - LDBLE *c, *d; ns = 1; dif = fabs(xv - xa[1]); /* * Malloc work space */ - c = (LDBLE *) PHRQ_malloc((size_t) (n + 1) * sizeof(LDBLE)); - if (c == NULL) - malloc_error(); - d = (LDBLE *) PHRQ_malloc((size_t) (n + 1) * sizeof(LDBLE)); - if (d == NULL) - malloc_error(); - - + std::vector c, d; + c.resize((size_t)n + 1); + d.resize((size_t)n + 1); for (i = 1; i <= n; i++) { @@ -329,7 +331,7 @@ polint(LDBLE * xa, LDBLE * ya, int n, LDBLE xv, LDBLE * yv, LDBLE * dy) *yv = ya[ns--]; for (m = 1; m < n; m++) { - for (i = 1; i <= n - m; i++) + for (size_t i = 1; i <= n - m; i++) { ho = xa[i] - xv; hp = xa[i + m] - xv; @@ -344,7 +346,7 @@ polint(LDBLE * xa, LDBLE * ya, int n, LDBLE xv, LDBLE * yv, LDBLE * dy) } if (2 * ns < (n - m)) { - *dy = c[ns + 1]; + *dy = c[(size_t)ns + 1]; } else { @@ -354,8 +356,6 @@ polint(LDBLE * xa, LDBLE * ya, int n, LDBLE xv, LDBLE * yv, LDBLE * dy) /* *yv += (*dy = (2 * ns < (n-m) ? c[ns+1] : d[ns--])); */ } - c = (LDBLE *) free_check_null(c); - d = (LDBLE *) free_check_null(d); return; } @@ -479,7 +479,7 @@ calc_init_g(void) /* * calculate g for given surface for each species */ - for (int i = 0; i < count_s_x; i++) + for (int i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type > HPLUS) continue; @@ -604,8 +604,7 @@ initial_surface_water(void) if (rd > rd_limit) { mass_water_surfaces_x = - use.Get_solution_ptr()->Get_mass_water() * ddl_limit / (1 - - ddl_limit); + use.Get_solution_ptr()->Get_mass_water() * ddl_limit / (1 - ddl_limit); r = 0.002 * (mass_water_surfaces_x + use.Get_solution_ptr()->Get_mass_water()) / sum_surfs; rd_limit = (1 - sqrt(1 - ddl_limit)) * r; @@ -614,15 +613,13 @@ initial_surface_water(void) } else mass_water_surfaces_x = - (r * r / pow(r - rd, 2) - - 1) * use.Get_solution_ptr()->Get_mass_water(); + (r * r / pow(r - rd, 2) - 1) * use.Get_solution_ptr()->Get_mass_water(); for (int i = 0; i < count_unknowns; i++) { if (x[i]->type != SURFACE_CB) continue; cxxSurfaceCharge *charge_ptr = use.Get_surface_ptr()->Find_charge(x[i]->surface_charge); - l_s =charge_ptr->Get_specific_area() * - charge_ptr->Get_grams(); + l_s = charge_ptr->Get_specific_area() * charge_ptr->Get_grams(); charge_ptr->Set_mass_water(mass_water_surfaces_x * l_s / sum_surfs); } } @@ -706,7 +703,7 @@ sum_diffuse_layer(cxxSurfaceCharge *charge_ptr) count_elts = 0; paren_count = 0; mass_water_surface = charge_ptr->Get_mass_water(); - for (int j = 0; j < count_s_x; j++) + for (int j = 0; j < (int)this->s_x.size(); j++) { if (s_x[j]->type > HPLUS) continue; @@ -726,13 +723,7 @@ sum_diffuse_layer(cxxSurfaceCharge *charge_ptr) add_elt_list(s_x[j]->next_elt, moles_surface); } add_elt_list(s_h2o->next_elt, mass_water_surface / gfw_water); - - if (count_elts > 0) - { - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); - elt_list_combine(); - } + elt_list_combine(); return (OK); } /* ---------------------------------------------------------------------- */ @@ -754,6 +745,8 @@ calc_all_donnan(void) /* * calculate g for each surface... */ + if (!calculating_deriv || use.Get_surface_ptr()->Get_debye_lengths()) // DL_pitz + initial_surface_water(); converge = TRUE; for (int j = 0; j < count_unknowns; j++) { @@ -772,7 +765,7 @@ calc_all_donnan(void) it->second = 0.0; } charge_group_map.clear(); - for (int i = 0; i < count_s_x; i++) + for (int i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type > HPLUS) continue; @@ -782,7 +775,7 @@ calc_all_donnan(void) A_surf = charge_ptr->Get_specific_area() * charge_ptr->Get_grams(); if (use.Get_surface_ptr()->Get_type() == cxxSurface::CD_MUSIC) { - f_psi = x[j + 2]->master[0]->s->la * LOG_10; /* -FPsi/RT */ + f_psi = x[(size_t)j + 2]->master[0]->s->la * LOG_10; /* -FPsi/RT */ f_psi = f_psi / 2; cd_m = 1; } else @@ -791,9 +784,9 @@ calc_all_donnan(void) cd_m = -1; } surf_chrg_eq = A_surf * f_sinh * sinh(f_psi) / F_C_MOL; - if (surf_chrg_eq < -5e3) + if (fabs(surf_chrg_eq) > 5e3) { - surf_chrg_eq = -5e3; + surf_chrg_eq = (surf_chrg_eq < 0 ? -5e3 : 5e3); var1 = surf_chrg_eq / (A_surf * f_sinh / F_C_MOL); var1 = (var1 + sqrt(var1 * var1 + 1)); f_psi = (var1 > 1e-8 ? log(var1) : -18.4); @@ -834,9 +827,9 @@ calc_all_donnan(void) if (new_g <= -ratio_aq) new_g = -ratio_aq + G_TOL * 1e-3; new_g2 = ratio_aq * (exp(cd_m * z * psi_avg2) - 1); - if (use.Get_surface_ptr()->Get_only_counter_ions() && - ((surf_chrg_eq < 0 && z < 0) - || (surf_chrg_eq > 0 && z > 0))) + if (use.Get_surface_ptr()->Get_only_counter_ions() && surf_chrg_eq * z > 0) + //((surf_chrg_eq < 0 && z < 0) + // || (surf_chrg_eq > 0 && z > 0))) new_g2 = -ratio_aq; if (new_g2 <= -ratio_aq) new_g2 = -ratio_aq + G_TOL * 1e-3; @@ -926,7 +919,7 @@ calc_init_donnan(void) charge_group_map.clear(); charge_group_map[0.0] = 0.0; - for (int i = 0; i < count_s_x; i++) + for (int i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type > HPLUS) continue; @@ -953,7 +946,7 @@ calc_init_donnan(void) A_surf = charge_ptr->Get_specific_area() * charge_ptr->Get_grams(); if (use.Get_surface_ptr()->Get_type() == cxxSurface::CD_MUSIC) { - f_psi = x[j + 2]->master[0]->s->la * LOG_10; /* -FPsi/RT */ + f_psi = x[(size_t)j + 2]->master[0]->s->la * LOG_10; /* -FPsi/RT */ f_psi = f_psi / 2; } else f_psi = x[j]->master[0]->s->la * LOG_10; @@ -990,7 +983,7 @@ calc_init_donnan(void) charge_ptr->Get_g_map()[z].Set_dg(-z); } /* save g for species */ - for (int i = 0; i < count_s_x; i++) + for (int i = 0; i < (int)this->s_x.size(); i++) { int is = s_x[i]->number; assert (is < (int) s_diff_layer.size()); @@ -1053,15 +1046,13 @@ calc_psi_avg(cxxSurfaceCharge *charge_ptr, LDBLE surf_chrg_eq) for (it = charge_group_map.begin(); it != charge_group_map.end(); it++) { LDBLE z = it->first; + if (!z || (use.Get_surface_ptr()->Get_only_counter_ions() && surf_chrg_eq * z > 0)) + continue; LDBLE eq = it->second; /* multiply with ratio_aq for multiplier options cp and cm in calc_all_donnan (not used now)... */ temp = exp(-z * p) * ratio_aq; - if (use.Get_surface_ptr()->Get_only_counter_ions() && - ((surf_chrg_eq < 0 && z < 0) - || (surf_chrg_eq > 0 && z > 0))) - temp = 0.0; fd += eq * temp; fd1 -= z * eq * temp; } @@ -1072,9 +1063,17 @@ calc_psi_avg(cxxSurfaceCharge *charge_ptr, LDBLE surf_chrg_eq) l_iter++; if (l_iter > 50) { + pr.all = TRUE; + pr.exchange = TRUE; + pr.headings = TRUE; + pr.pp_assemblage = TRUE; + pr.species = TRUE; + pr.surface = TRUE; + pr.totals = TRUE; + print_all(); error_string = sformatf( - "\nToo many iterations in subroutine calc_psi_avg; surface charge = %12.4e; surface water = %12.4e.\n", - (double) surf_chrg_eq, (double) charge_ptr->Get_mass_water()); + "\nToo many iterations in subroutine calc_psi_avg; surface charge = %12.4e; surface water = %12.4e.\n", + (double)surf_chrg_eq, (double)charge_ptr->Get_mass_water()); error_msg(error_string, STOP); } } diff --git a/inverse.cpp b/inverse.cpp index f9f500e9..81a33781 100644 --- a/inverse.cpp +++ b/inverse.cpp @@ -12,6 +12,15 @@ #define SCALE_EPSILON .0009765625 #define SCALE_WATER 1. #define SCALE_ALL 1. + +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /* ---------------------------------------------------------------------- */ int Phreeqc:: inverse_models(void) @@ -26,30 +35,6 @@ inverse_models(void) if (count_inverse <= 0) return OK; // Revert to previous headings after inverse modeling std::vector old_headings; - //int i; - - //for (i = 0; i < user_punch_count_headings; i++) - //{ - // old_headings.push_back(user_punch_headings[i]); - //} - - array1 = NULL; - inv_zero = NULL; - inv_res = NULL; - inv_delta1 = NULL; - delta2 = NULL; - delta3 = NULL; - delta_save = NULL; - inv_cu = NULL; - inv_iu = NULL; - inv_is = NULL; - col_name = NULL; - row_name = NULL; - min_delta = NULL; - max_delta = NULL; - good = NULL; - bad = NULL; - minimal = NULL; state = INVERSE; dl_type_x = cxxSurface::NO_DL; @@ -122,11 +107,9 @@ inverse_models(void) setup_inverse(&(inverse[n])); punch_model_heading(&inverse[n]); solve_inverse(&(inverse[n])); - if (inverse[n].count_isotope_unknowns > 0) + if (inverse[n].isotope_unknowns.size() > 0) { - inverse[n].isotope_unknowns = - (struct isotope *) free_check_null(inverse[n]. - isotope_unknowns); + inverse[n].isotope_unknowns.clear(); } inverse[n].new_def = FALSE; if (inverse[n].pat != NULL) @@ -151,24 +134,24 @@ inverse_models(void) /* ---------------------------------------------------------------------- */ int Phreeqc:: -setup_inverse(struct inverse *inv_ptr) +setup_inverse(class inverse *inv_ptr) /* ---------------------------------------------------------------------- */ { /* * Fill in array for an inverse problem */ int i, j, k, i_alk, i_carb; - int max; - int count_rows_t; - int column, row; + size_t max; + size_t count_rows_t; + size_t column, row; int temp; LDBLE isotope_number; LDBLE f, coef, cb, conc; char token[MAX_LENGTH]; - struct phase *phase_ptr; + class phase *phase_ptr; cxxSolution *solution_ptr; - struct reaction *rxn_ptr; - struct master *master_ptr; + CReaction *rxn_ptr; + class master *master_ptr; /* * Determine array sizes, row and column positions */ @@ -193,11 +176,9 @@ setup_inverse(struct inverse *inv_ptr) /* * tidy isotopes if necessary */ - inv_ptr->count_isotope_unknowns = 0; - if (inv_ptr->count_isotopes > 0) + if (inv_ptr->isotopes.size() > 0) { - inv_ptr->count_isotope_unknowns = - count_isotope_unknowns(inv_ptr, &inv_ptr->isotope_unknowns); + set_isotope_unknowns(inv_ptr); if (get_input_errors() > 0) { error_msg("Stopping because of input errors.", STOP); @@ -212,50 +193,50 @@ setup_inverse(struct inverse *inv_ptr) /* * count unknowns */ - max_column_count = inv_ptr->count_elts * inv_ptr->count_solns + /* epsilons */ + max_column_count = inv_ptr->elts.size() * inv_ptr->count_solns + /* epsilons */ inv_ptr->count_solns + /* solutions */ - inv_ptr->count_phases + /* phases */ + inv_ptr->phases.size() + /* phases */ inv_ptr->count_redox_rxns + /* redox reactions */ carbon * inv_ptr->count_solns + /* pH */ 1 + /* water */ - inv_ptr->count_isotope_unknowns * inv_ptr->count_solns + /* isotopes in solution */ - inv_ptr->count_isotopes * inv_ptr->count_phases + /* isotopes in phases */ + inv_ptr->isotope_unknowns.size() * inv_ptr->count_solns + /* isotopes in solution */ + inv_ptr->isotopes.size() * inv_ptr->phases.size() + /* isotopes in phases */ 1 + 1; /* rhs, ineq */ count_unknowns = max_column_count - 2; col_phases = inv_ptr->count_solns; - col_redox = col_phases + inv_ptr->count_phases; + col_redox = col_phases + inv_ptr->phases.size(); col_epsilon = col_redox + inv_ptr->count_redox_rxns; - col_ph = col_epsilon + inv_ptr->count_elts * inv_ptr->count_solns; + col_ph = col_epsilon + inv_ptr->elts.size() * inv_ptr->count_solns; col_water = col_ph + carbon * inv_ptr->count_solns; col_isotopes = col_water + 1; col_phase_isotopes = - col_isotopes + inv_ptr->count_isotope_unknowns * inv_ptr->count_solns; - max_row_count = inv_ptr->count_solns * inv_ptr->count_elts + /* optimize */ + col_isotopes + inv_ptr->isotope_unknowns.size() * inv_ptr->count_solns; + max_row_count = inv_ptr->count_solns * inv_ptr->elts.size() + /* optimize */ carbon * inv_ptr->count_solns + /* optimize ph */ 1 + /* optimize water */ - inv_ptr->count_solns * inv_ptr->count_isotope_unknowns + /* optimize isotopes */ - inv_ptr->count_isotopes * inv_ptr->count_phases + /* optimize phase isotopes */ - inv_ptr->count_elts + /* mass balances */ + inv_ptr->count_solns * inv_ptr->isotope_unknowns.size() + /* optimize isotopes */ + inv_ptr->isotopes.size() * inv_ptr->phases.size() + /* optimize phase isotopes */ + inv_ptr->elts.size() + /* mass balances */ 1 + 1 + /* fractions, init and final */ inv_ptr->count_solns + /* charge balances */ carbon * inv_ptr->count_solns + /* dAlk = dC + dph */ - inv_ptr->count_isotopes + /* isotopes */ - 2 * inv_ptr->count_solns * inv_ptr->count_elts + /* epsilon constraints */ + inv_ptr->isotopes.size() + /* isotopes */ + 2 * inv_ptr->count_solns * inv_ptr->elts.size() + /* epsilon constraints */ 2 * carbon * inv_ptr->count_solns + /* epsilon on ph */ 2 + /* epsilon for water */ - 2 * inv_ptr->count_isotope_unknowns * inv_ptr->count_solns + /* epsilon for isotopes */ - 2 * inv_ptr->count_isotopes * inv_ptr->count_phases + /* epsilon for isotopes in phases */ + 2 * inv_ptr->isotope_unknowns.size() * inv_ptr->count_solns + /* epsilon for isotopes */ + 2 * inv_ptr->isotopes.size() * inv_ptr->phases.size() + /* epsilon for isotopes in phases */ 2; /* work space */ - row_mb = inv_ptr->count_solns * inv_ptr->count_elts + + row_mb = inv_ptr->count_solns * inv_ptr->elts.size() + carbon * inv_ptr->count_solns + 1 + - inv_ptr->count_solns * inv_ptr->count_isotope_unknowns + - inv_ptr->count_isotopes * inv_ptr->count_phases; - row_fract = row_mb + inv_ptr->count_elts; + inv_ptr->count_solns * inv_ptr->isotope_unknowns.size() + + inv_ptr->isotopes.size() * inv_ptr->phases.size(); + row_fract = row_mb + inv_ptr->elts.size(); row_charge = row_fract + 2; row_carbon = row_charge + inv_ptr->count_solns; row_isotopes = row_carbon + carbon * inv_ptr->count_solns; - row_epsilon = row_isotopes + inv_ptr->count_isotopes; + row_epsilon = row_isotopes + inv_ptr->isotopes.size(); /* The next three are not right, some rows of epsilon are deleted */ /* row_ph_epsilon = row_epsilon + 2 * inv_ptr->count_solns * inv_ptr->count_elts; @@ -266,63 +247,18 @@ setup_inverse(struct inverse *inv_ptr) /* * Malloc space for arrays */ - array = (LDBLE *) free_check_null(array); - array = - (LDBLE *) PHRQ_malloc((size_t) max_column_count * max_row_count * - sizeof(LDBLE)); - if (array == NULL) - malloc_error(); - - array1 = - (LDBLE *) PHRQ_malloc((size_t) max_column_count * max_row_count * - sizeof(LDBLE)); - if (array1 == NULL) - malloc_error(); - - col_name = - (const char **) PHRQ_malloc((size_t) max_column_count * sizeof(char *)); - if (col_name == NULL) - malloc_error(); - - row_name = (const char **) PHRQ_malloc((size_t) max_row_count * sizeof(char *)); - if (row_name == NULL) - malloc_error(); - - delta = (LDBLE *) free_check_null(delta); - delta = (LDBLE *) PHRQ_malloc((size_t) max_column_count * sizeof(LDBLE)); - if (delta == NULL) - malloc_error(); - - inv_delta1 = (LDBLE *) PHRQ_malloc((size_t) max_column_count * sizeof(LDBLE)); - if (inv_delta1 == NULL) - malloc_error(); - - delta2 = (LDBLE *) PHRQ_malloc((size_t) max_column_count * sizeof(LDBLE)); - if (delta2 == NULL) - malloc_error(); - - delta3 = (LDBLE *) PHRQ_malloc((size_t) max_column_count * sizeof(LDBLE)); - if (delta3 == NULL) - malloc_error(); - - delta_save = - (LDBLE *) PHRQ_malloc((size_t) max_column_count * sizeof(LDBLE)); - if (delta_save == NULL) - malloc_error(); - - min_delta = - (LDBLE *) PHRQ_malloc((size_t) max_column_count * sizeof(LDBLE)); - if (min_delta == NULL) - malloc_error(); - - max_delta = - (LDBLE *) PHRQ_malloc((size_t) max_column_count * sizeof(LDBLE)); - if (max_delta == NULL) - malloc_error(); - - inv_res = (LDBLE *) PHRQ_malloc((size_t) max_row_count * sizeof(LDBLE)); - if (inv_res == NULL) - malloc_error(); + my_array.resize(max_column_count * max_row_count); + array1.resize(max_column_count * max_row_count); + col_name.resize(max_column_count); + row_name.resize(max_row_count); + delta.resize(max_column_count); + inv_delta1.resize(max_column_count); + delta2.resize(max_column_count); + delta3.resize(max_column_count); + delta_save.resize(max_column_count); + min_delta.resize(max_column_count); + max_delta.resize(max_column_count); + inv_res.resize(max_row_count); if (max_column_count < max_row_count) { @@ -332,13 +268,11 @@ setup_inverse(struct inverse *inv_ptr) { max = max_column_count; } - inv_zero = (LDBLE *) PHRQ_malloc((size_t) max * sizeof(LDBLE)); - if (inv_zero == NULL) - malloc_error(); + inv_zero.resize((size_t) max); /* * Define inv_zero and inv_zero array, delta */ - for (i = 0; i < max; i++) + for (i = 0; i < (int) max; i++) inv_zero[i] = 0.0; memcpy((void *) &(delta[0]), (void *) &(inv_zero[0]), @@ -349,8 +283,8 @@ setup_inverse(struct inverse *inv_ptr) (size_t) max_column_count * sizeof(LDBLE)); for (i = 0; i < max_row_count; i++) { - memcpy((void *) &(array[i * max_column_count]), (void *) &(inv_zero[0]), - (size_t) max_column_count * sizeof(LDBLE)); + memcpy((void *) &(my_array[(size_t)i * max_column_count]), (void *) &(inv_zero[0]), + max_column_count * sizeof(LDBLE)); } /* * begin filling array @@ -359,11 +293,11 @@ setup_inverse(struct inverse *inv_ptr) /* * optimization */ - count_optimize = inv_ptr->count_solns * inv_ptr->count_elts + /* optimize */ + count_optimize = inv_ptr->count_solns * inv_ptr->elts.size() + /* optimize */ carbon * inv_ptr->count_solns + /* optimize ph */ 1 + /* optimize water */ - inv_ptr->count_solns * inv_ptr->count_isotope_unknowns + /* optimize isotopes */ - inv_ptr->count_isotopes * inv_ptr->count_phases; /* optimize phase isotopes */ + inv_ptr->count_solns * inv_ptr->isotope_unknowns.size() + /* optimize isotopes */ + inv_ptr->isotopes.size() * inv_ptr->phases.size(); /* optimize phase isotopes */ for (i = 0; i < count_optimize; i++) { @@ -380,7 +314,7 @@ setup_inverse(struct inverse *inv_ptr) */ /* initialize master species */ - for (i = 0; i < count_master; i++) + for (i = 0; i < (int)master.size(); i++) { master[i]->in = -1; if (strstr(master[i]->elt->name, "Alk") == master[i]->elt->name) @@ -392,14 +326,14 @@ setup_inverse(struct inverse *inv_ptr) count_rows_t = count_rows; i_alk = -1; i_carb = -1; - for (i = 0; i < inv_ptr->count_elts; i++) + for (i = 0; i < inv_ptr->elts.size(); i++) { master_ptr = inv_ptr->elts[i].master; if (master_ptr == master_alk) i_alk = i; if (strcmp(master_ptr->elt->name, "C(4)") == 0) i_carb = i; - inv_ptr->elts[i].master->in = count_rows_t; + inv_ptr->elts[i].master->in = (int)count_rows_t; row_name[count_rows_t] = inv_ptr->elts[i].master->elt->name; count_rows_t++; } @@ -439,21 +373,21 @@ setup_inverse(struct inverse *inv_ptr) column = i; sprintf(token, "soln %d", i); col_name[column] = string_hsave(token); - for (j = 0; j < count_master; j++) + for (j = 0; j < (int)master.size(); j++) { if (master[j]->in >= 0) { - array[master[j]->in * max_column_count + i] = + my_array[(size_t)master[j]->in * max_column_count + (size_t)i] = f * master[j]->total; if (master[j]->s == s_eminus) { - array[master[j]->in * max_column_count + i] = 0.0; + my_array[(size_t)master[j]->in * max_column_count + (size_t)i] = 0.0; } } } /* calculate charge balance for elements in model */ cb = 0; - for (j = 0; j < count_master; j++) + for (j = 0; j < (int)master.size(); j++) { if (master[j]->in >= 0) { @@ -474,15 +408,15 @@ setup_inverse(struct inverse *inv_ptr) } if (fabs(cb) < toler) cb = 0.0; - array[(row_charge + i) * max_column_count + i] = cb; + my_array[((size_t)row_charge + (size_t)i) * max_column_count + (size_t)i] = cb; } /* mass_balance: phase data */ - for (i = 0; i < inv_ptr->count_phases; i++) + for (size_t i = 0; i < inv_ptr->phases.size(); i++) { phase_ptr = inv_ptr->phases[i].phase; - rxn_ptr = phase_ptr->rxn_s; + rxn_ptr = &phase_ptr->rxn_s; column = col_phases + i; col_name[column] = phase_ptr->name; for (j = 1; rxn_ptr->token[j].s != NULL; j++) @@ -520,22 +454,22 @@ setup_inverse(struct inverse *inv_ptr) coef = master_ptr->coef; if (coef <= 0) coef = 1.0; - array[row * max_column_count + column] = + my_array[(size_t)row * max_column_count + (size_t)column] = rxn_ptr->token[j].coef * coef; } row = master_alk->in; /* include alkalinity for phase */ - array[row * max_column_count + column] = calc_alk(rxn_ptr); + my_array[(size_t)row * max_column_count + (size_t)column] = calc_alk(*rxn_ptr); } /* mass balance: redox reaction data */ k = 0; - for (i = 0; i < inv_ptr->count_elts; i++) + for (i = 0; i < inv_ptr->elts.size(); i++) { if (inv_ptr->elts[i].master->s->primary == NULL) { coef = inv_ptr->elts[i].master->coef; - rxn_ptr = inv_ptr->elts[i].master->rxn_primary; + rxn_ptr = &inv_ptr->elts[i].master->rxn_primary; column = col_redox + k; col_name[column] = inv_ptr->elts[i].master->elt->name; k++; @@ -572,44 +506,44 @@ setup_inverse(struct inverse *inv_ptr) assert(row * max_column_count + column < max_column_count * max_row_count); assert(row >= 0); assert(column >= 0); - array[row * max_column_count + column] = + my_array[(size_t)row * max_column_count + (size_t)column] = rxn_ptr->token[j].coef; /* if coefficient of element is not 1.0 in master species */ if (j != 0) - array[row * max_column_count + column] /= coef; + my_array[(size_t)row * max_column_count + (size_t)column] /= coef; } row = master_alk->in; /* include alkalinity for redox reaction */ - array[row * max_column_count + column] = - (calc_alk(rxn_ptr) - inv_ptr->elts[i].master->s->alk) / coef; + my_array[(size_t)row * max_column_count + (size_t)column] = + (calc_alk(*rxn_ptr) - inv_ptr->elts[i].master->s->alk) / coef; } } /* mass-balance: epsilons */ column = col_epsilon; - for (i = 0; i < inv_ptr->count_elts; i++) + for (i = 0; i < inv_ptr->elts.size(); i++) { row = inv_ptr->elts[i].master->in; for (j = 0; j < inv_ptr->count_solns; j++) { if (j < (inv_ptr->count_solns - 1)) { - array[row * max_column_count + column] = 1.0; + my_array[(size_t)row * max_column_count + (size_t)column] = 1.0; } else { - array[row * max_column_count + column] = -1.0; + my_array[(size_t)row * max_column_count + (size_t)column] = -1.0; } if (inv_ptr->elts[i].master->s == s_eminus) { - array[row * max_column_count + column] = 0.0; + my_array[(size_t)row * max_column_count + (size_t)column] = 0.0; } sprintf(token, "%s %d", row_name[row], j); col_name[column] = string_hsave(token); column++; } } - count_rows += inv_ptr->count_elts; + count_rows += inv_ptr->elts.size(); /* put names in col_name for ph */ @@ -628,7 +562,7 @@ setup_inverse(struct inverse *inv_ptr) /* put names of isotopes in col_name */ for (i = 0; i < inv_ptr->count_solns; i++) { - for (j = 0; j < inv_ptr->count_isotope_unknowns; j++) + for (j = 0; j < inv_ptr->isotope_unknowns.size(); j++) { sprintf(token, "%d%s %d", (int) inv_ptr->isotope_unknowns[j].isotope_number, @@ -640,12 +574,12 @@ setup_inverse(struct inverse *inv_ptr) /* put phase isotopes in col_name */ - if (inv_ptr->count_isotopes > 0) + if (inv_ptr->isotopes.size() > 0) { /* isotopes of phases phases */ - for (i = 0; i < inv_ptr->count_phases; i++) + for (size_t i = 0; i < inv_ptr->phases.size(); i++) { - for (j = 0; j < inv_ptr->count_isotopes; j++) + for (j = 0; j < inv_ptr->isotopes.size(); j++) { sprintf(token, "%d%s %s", (int) inv_ptr->isotopes[j].isotope_number, @@ -664,19 +598,19 @@ setup_inverse(struct inverse *inv_ptr) solution_ptr = Utilities::Rxn_find(Rxn_solution_map, inv_ptr->solns[i]); if (i < inv_ptr->count_solns - 1) { - array[count_rows * max_column_count + i] = + my_array[count_rows * max_column_count + (size_t)i] = 1.0 / gfw_water * solution_ptr->Get_mass_water(); } else { - array[count_rows * max_column_count + inv_ptr->count_solns - 1] = + my_array[count_rows * max_column_count + (size_t)inv_ptr->count_solns - 1] = -1.0 / gfw_water * solution_ptr->Get_mass_water(); } } /* coefficient for water uncertainty */ if (inv_ptr->water_uncertainty > 0) { - array[count_rows * max_column_count + col_water] = 1.0; + my_array[count_rows * max_column_count + (size_t)col_water] = 1.0; } row_name[count_rows] = string_hsave("H2O"); row_water = count_rows; @@ -686,8 +620,8 @@ setup_inverse(struct inverse *inv_ptr) * Final solution fraction equals 1.0 */ - array[count_rows * max_column_count + inv_ptr->count_solns - 1] = 1.0; - array[count_rows * max_column_count + count_unknowns] = 1.0; + my_array[count_rows * max_column_count + (size_t)inv_ptr->count_solns - 1] = 1.0; + my_array[count_rows * max_column_count + count_unknowns] = 1.0; row_name[count_rows] = string_hsave("fract, final"); count_rows++; @@ -698,8 +632,8 @@ setup_inverse(struct inverse *inv_ptr) for (i = 0; i < inv_ptr->count_solns; i++) { /* solution_ptr = solution_bsearch(inv_ptr->solns[i], &j, TRUE); */ -/* array[count_rows * max_column_count + i] = solution_ptr->cb; */ - for (j = 0; j < inv_ptr->count_elts; j++) +/* array[count_rows * max_column_count + (size_t)i] = solution_ptr->cb; */ + for (j = 0; j < inv_ptr->elts.size(); j++) { column = col_epsilon + j * inv_ptr->count_solns + i; coef = @@ -709,10 +643,10 @@ setup_inverse(struct inverse *inv_ptr) { coef = -1.0; } - array[count_rows * max_column_count + column] = coef; + my_array[count_rows * max_column_count + (size_t)column] = coef; if (inv_ptr->elts[j].master->s == s_eminus) { - array[count_rows * max_column_count + column] = 0.0; + my_array[count_rows * max_column_count + (size_t)column] = 0.0; } } sprintf(token, "%s %d", "charge", i); @@ -730,12 +664,12 @@ setup_inverse(struct inverse *inv_ptr) if (inv_ptr->dalk_dph[i] != 0 || inv_ptr->dalk_dc[i] != 0) { column = col_ph + i; - array[count_rows * max_column_count + column] = + my_array[count_rows * max_column_count + (size_t)column] = inv_ptr->dalk_dph[i]; column = col_epsilon + i_alk * inv_ptr->count_solns + i; - array[count_rows * max_column_count + column] = -1.0; + my_array[count_rows * max_column_count + (size_t)column] = -1.0; column = col_epsilon + i_carb * inv_ptr->count_solns + i; - array[count_rows * max_column_count + column] = + my_array[count_rows * max_column_count + (size_t)column] = inv_ptr->dalk_dc[i]; } sprintf(token, "%s %d", "dAlk", i); @@ -749,11 +683,11 @@ setup_inverse(struct inverse *inv_ptr) { error_msg("Stopping because of input errors.", STOP); } - if (inv_ptr->count_isotopes != 0) + if (inv_ptr->isotopes.size() != 0) { - for (j = 0; j < inv_ptr->count_isotopes; j++) + for (size_t j = 0; j < inv_ptr->isotopes.size(); j++) { - isotope_balance_equation(inv_ptr, count_rows, j); + isotope_balance_equation(inv_ptr, (int)count_rows, (int)j); sprintf(token, "%d%s", (int) inv_ptr->isotopes[j].isotope_number, inv_ptr->isotopes[j].elt_name); row_name[count_rows] = string_hsave(token); @@ -766,7 +700,7 @@ setup_inverse(struct inverse *inv_ptr) row_epsilon = count_rows; for (i = 0; i < inv_ptr->count_solns; i++) { - for (j = 0; j < inv_ptr->count_elts; j++) + for (j = 0; j < inv_ptr->elts.size(); j++) { if (inv_ptr->elts[j].master->s == s_eminus) continue; @@ -781,9 +715,8 @@ setup_inverse(struct inverse *inv_ptr) } else { - coef = - array[inv_ptr->elts[j].master->in * max_column_count + - i] * coef; + coef = my_array[(size_t)inv_ptr->elts[j].master->in * + max_column_count + (size_t)i] * coef; coef = fabs(coef); } @@ -795,7 +728,7 @@ setup_inverse(struct inverse *inv_ptr) { for (k = 0; k < count_rows; k++) { - array[k * max_column_count + column] = 0.0; + my_array[(size_t)k * max_column_count + (size_t)column] = 0.0; } continue; } @@ -807,12 +740,12 @@ setup_inverse(struct inverse *inv_ptr) if (coef < toler) { - array[(column - col_epsilon) * max_column_count + column] = + my_array[((size_t)column - (size_t)col_epsilon) * max_column_count + (size_t)column] = SCALE_EPSILON / toler; } else { - array[(column - col_epsilon) * max_column_count + column] = + my_array[((size_t)column - (size_t)col_epsilon) * max_column_count + (size_t)column] = SCALE_EPSILON / coef; } @@ -826,15 +759,14 @@ setup_inverse(struct inverse *inv_ptr) { f = 1.0; } - array[count_rows * max_column_count + column] = 1.0 * f; - array[count_rows * max_column_count + i] = -coef * f; - sprintf(token, "%s %s", inv_ptr->elts[j].master->elt->name, - "eps+"); + my_array[count_rows * max_column_count + (size_t)column] = 1.0 * f; + my_array[count_rows * max_column_count + (size_t)i] = -coef * f; + sprintf(token, "%s %s", inv_ptr->elts[j].master->elt->name, "eps+"); row_name[count_rows] = string_hsave(token); count_rows++; /* set lower limit of change in negative direction */ - conc = array[inv_ptr->elts[j].master->in * max_column_count + i]; + conc = my_array[(size_t)inv_ptr->elts[j].master->in * max_column_count + (size_t)i]; /* if concentration is zero, only positive direction allowed */ if (conc == 0.0) @@ -861,8 +793,8 @@ setup_inverse(struct inverse *inv_ptr) inv_ptr->elts[j].master->elt->name)) coef = fabs(conc) + toler; - array[count_rows * max_column_count + i] = -coef * f; - array[count_rows * max_column_count + column] = -1.0 * f; + my_array[count_rows * max_column_count + (size_t)i] = -coef * f; + my_array[count_rows * max_column_count + (size_t)column] = -1.0 * f; sprintf(token, "%s %s", inv_ptr->elts[j].master->elt->name, "eps-"); row_name[count_rows] = string_hsave(token); @@ -882,21 +814,21 @@ setup_inverse(struct inverse *inv_ptr) /* scale epsilon in optimization equation */ - array[(column - col_epsilon) * max_column_count + column] = + my_array[((size_t)column - (size_t)col_epsilon) * max_column_count + (size_t)column] = SCALE_EPSILON / coef; /* set upper limit of change in positive direction */ - array[count_rows * max_column_count + column] = 1.0; - array[count_rows * max_column_count + i] = -coef; + my_array[count_rows * max_column_count + (size_t)column] = 1.0; + my_array[count_rows * max_column_count + (size_t)i] = -coef; sprintf(token, "%s %s", "pH", "eps+"); row_name[count_rows] = string_hsave(token); count_rows++; /* set lower limit of change in negative direction */ - array[count_rows * max_column_count + column] = -1.0; - array[count_rows * max_column_count + i] = -coef; + my_array[count_rows * max_column_count + (size_t)column] = -1.0; + my_array[count_rows * max_column_count + (size_t)i] = -coef; sprintf(token, "%s %s", "pH", "eps-"); row_name[count_rows] = string_hsave(token); count_rows++; @@ -911,16 +843,16 @@ setup_inverse(struct inverse *inv_ptr) if (coef > 0.0) { /* set upper limit of change in positive direction */ - array[count_rows * max_column_count + column] = 1.0; - array[count_rows * max_column_count + count_unknowns] = coef; + my_array[count_rows * max_column_count + (size_t)column] = 1.0; + my_array[count_rows * max_column_count + count_unknowns] = coef; sprintf(token, "%s %s", "water", "eps+"); row_name[count_rows] = string_hsave(token); count_rows++; /* set lower limit of change in negative direction */ - array[count_rows * max_column_count + column] = -1.0; - array[count_rows * max_column_count + count_unknowns] = coef; + my_array[count_rows * max_column_count + (size_t)column] = -1.0; + my_array[count_rows * max_column_count + count_unknowns] = coef; sprintf(token, "%s %s", "water", "eps-"); row_name[count_rows] = string_hsave(token); count_rows++; @@ -929,21 +861,21 @@ setup_inverse(struct inverse *inv_ptr) * inequalities for isotopes */ row_isotope_epsilon = count_rows; - if (inv_ptr->count_isotopes > 0) + if (inv_ptr->isotopes.size() > 0) { for (i = 0; i < inv_ptr->count_solns; i++) { solution_ptr = Utilities::Rxn_find(Rxn_solution_map, inv_ptr->solns[i]); - for (j = 0; j < inv_ptr->count_isotope_unknowns; j++) + for (j = 0; j < inv_ptr->isotope_unknowns.size(); j++) { column = - col_isotopes + (i * inv_ptr->count_isotope_unknowns) + j; + col_isotopes + (i * inv_ptr->isotope_unknowns.size()) + j; master_ptr = inv_ptr->isotope_unknowns[j].master; isotope_number = inv_ptr->isotope_unknowns[j].isotope_number; std::map < std::string, cxxSolutionIsotope >::iterator kit = solution_ptr->Get_isotopes().begin(); for ( ; kit != solution_ptr->Get_isotopes().end(); kit++) { - struct master *master_kit = master_bsearch(kit->second.Get_elt_name().c_str()); + class master *master_kit = master_bsearch(kit->second.Get_elt_name().c_str()); if (master_kit == master_ptr && kit->second.Get_isotope_number() == isotope_number) @@ -952,12 +884,12 @@ setup_inverse(struct inverse *inv_ptr) /* scale epsilon in optimization equation */ - array[(column - col_epsilon) * max_column_count + - column] = SCALE_EPSILON / coef; + my_array[((size_t)column - (size_t)col_epsilon) * max_column_count + + (size_t)column] = SCALE_EPSILON / coef; /* set upper limit of change in positive direction */ - array[count_rows * max_column_count + column] = 1.0; - array[count_rows * max_column_count + i] = -coef; + my_array[count_rows * max_column_count + (size_t)column] = 1.0; + my_array[count_rows * max_column_count + (size_t)i] = -coef; sprintf(token, "%d%s %s", (int) kit->second.Get_isotope_number(), kit->second.Get_elt_name().c_str(), "eps+"); @@ -966,8 +898,8 @@ setup_inverse(struct inverse *inv_ptr) /* set lower limit of change in negative direction */ - array[count_rows * max_column_count + column] = -1.0; - array[count_rows * max_column_count + i] = -coef; + my_array[count_rows * max_column_count + (size_t)column] = -1.0; + my_array[count_rows * max_column_count + (size_t)i] = -coef; sprintf(token, "%d%s %s", (int) kit->second.Get_isotope_number(), kit->second.Get_elt_name().c_str(), "eps-"); @@ -992,15 +924,15 @@ setup_inverse(struct inverse *inv_ptr) * Set non-negativity constraints */ - for (i = 0; i < inv_ptr->count_phases; i++) + for (size_t i = 0; i < inv_ptr->phases.size(); i++) { if (inv_ptr->phases[i].constraint == PRECIPITATE) { - delta[col_phases + i] = -1.0; + delta[(size_t)col_phases + (size_t)i] = -1.0; } else if (inv_ptr->phases[i].constraint == DISSOLVE) { - delta[col_phases + i] = 1.0; + delta[(size_t)col_phases + (size_t)i] = 1.0; } } for (i = 0; i < (inv_ptr->count_solns - 1); i++) @@ -1012,7 +944,7 @@ setup_inverse(struct inverse *inv_ptr) */ for (i = 0; i < max_column_count; i++) { - array[row_water * max_column_count + i] *= SCALE_WATER; + my_array[(size_t)row_water * max_column_count + (size_t)i] *= SCALE_WATER; } /* * Arrays are complete @@ -1034,8 +966,8 @@ setup_inverse(struct inverse *inv_ptr) output_msg(sformatf( "\n")); k = 0; } - output_msg(sformatf( "%11.2e", - (double) array[i * max_column_count + j])); + output_msg(sformatf("%11.2e", + (double)my_array[(size_t)i * max_column_count + (size_t)j])); k++; } if (k != 0) @@ -1065,7 +997,7 @@ setup_inverse(struct inverse *inv_ptr) } /* ---------------------------------------------------------------------- */ int Phreeqc:: -solve_inverse(struct inverse *inv_ptr) +solve_inverse(class inverse *inv_ptr) /* ---------------------------------------------------------------------- */ { /* @@ -1080,57 +1012,34 @@ solve_inverse(struct inverse *inv_ptr) unsigned long minimal_bits, good_bits; char token[MAX_LENGTH]; - n = count_unknowns; /* columns in A, C, E */ - klmd = max_row_count - 2; - nklmd = n + klmd; - n2d = n + 2; + n = (int)count_unknowns; /* columns in A, C, E */ + klmd = (max_row_count - 2); + nklmd = (n + klmd); + n2d = (size_t)n + 2; max_good = MAX_MODELS; max_bad = MAX_MODELS; max_minimal = MAX_MODELS; - good = - (unsigned long *) PHRQ_malloc((size_t) max_good * - sizeof(unsigned long)); - if (good == NULL) - malloc_error(); + good.resize(max_good); count_good = 0; - bad = - (unsigned long *) PHRQ_malloc((size_t) max_bad * - sizeof(unsigned long)); - if (bad == NULL) - malloc_error(); + bad.resize(max_bad); count_bad = 0; - minimal = - (unsigned long *) PHRQ_malloc((size_t) max_minimal * - sizeof(unsigned long)); - if (minimal == NULL) - malloc_error(); + minimal.resize(max_minimal); count_minimal = 0; - col_back = (int *) PHRQ_malloc((size_t) max_column_count * sizeof(int)); - if (col_back == NULL) - malloc_error(); - - row_back = (int *) PHRQ_malloc((size_t) max_row_count * sizeof(int)); - if (row_back == NULL) - malloc_error(); + col_back.resize(max_column_count); + row_back.resize(max_row_count); /* * Allocate space for arrays */ - inv_cu = (LDBLE *) PHRQ_malloc((size_t) 2 * nklmd * sizeof(LDBLE)); - if (inv_cu == NULL) - malloc_error(); - memset(inv_cu, 0, ((size_t) (2 * nklmd * sizeof(LDBLE)))); - inv_iu = (int *) PHRQ_malloc((size_t) 2 * nklmd * sizeof(int)); - if (inv_iu == NULL) - malloc_error(); - inv_is = (int *) PHRQ_malloc((size_t) klmd * sizeof(int)); - if (inv_is == NULL) - malloc_error(); + inv_cu.resize( 2 * (size_t)nklmd); + memset(&inv_cu[0], 0, ((2 * nklmd * sizeof(LDBLE)))); + inv_iu.resize(2 * nklmd); + inv_is.resize(klmd); for (i = 0; i < 79; i++) token[i] = '='; @@ -1141,13 +1050,13 @@ solve_inverse(struct inverse *inv_ptr) * Set current bits to complete list. */ soln_bits = 0; - if (inv_ptr->count_solns + inv_ptr->count_phases > 32) + if (inv_ptr->count_solns + inv_ptr->phases.size() > 32) { error_msg ("For inverse modeling, sum of initial solutions and phases must be <= 32.\n\tFor all reasonable calculations, the sum should be much less than 32.", STOP); } - for (i = inv_ptr->count_solns; i > 0; i--) + for (size_t i = inv_ptr->count_solns; i > 0; i--) { temp_bits = 1 << (i - 1); soln_bits += temp_bits; @@ -1163,24 +1072,20 @@ solve_inverse(struct inverse *inv_ptr) * All combinations of solutions */ first = TRUE; - for (; - get_bits(soln_bits, inv_ptr->count_solns - 2, - inv_ptr->count_solns - 1) > 0; soln_bits--) + for (; get_bits(soln_bits, (int)(inv_ptr->count_solns - 2), + (int)(inv_ptr->count_solns - 1)) > 0; soln_bits--) { /* * Loop through all models of of descending size */ - for (model_size = inv_ptr->count_phases; model_size >= 0; - model_size--) + for (model_size = (int)inv_ptr->phases.size(); model_size >= 0; model_size--) { first_of_model_size = TRUE; quit = TRUE; - while (next_set_phases(inv_ptr, first_of_model_size, model_size) - == TRUE) + while (next_set_phases(inv_ptr, first_of_model_size, model_size) == TRUE) { first_of_model_size = FALSE; - current_bits = - (soln_bits << inv_ptr->count_phases) + phase_bits; + current_bits = (soln_bits << inv_ptr->phases.size()) + phase_bits; if (subset_bad(current_bits) == TRUE || subset_minimal(current_bits) == TRUE) @@ -1214,20 +1119,18 @@ solve_inverse(struct inverse *inv_ptr) * Model has been found, set bits */ good_bits = current_bits; - for (i = 0; i < inv_ptr->count_phases; i++) + for (size_t i = 0; i < inv_ptr->phases.size(); i++) { - if (equal(inv_delta1[i + inv_ptr->count_solns], 0.0, TOL) == - TRUE) + if (equal(inv_delta1[i + inv_ptr->count_solns], 0.0, TOL) == TRUE) { - good_bits = set_bit(good_bits, i, 0); + good_bits = set_bit(good_bits, (int)i, 0); } } - for (i = 0; i < inv_ptr->count_solns; i++) + for (size_t i = 0; i < inv_ptr->count_solns; i++) { if (equal(inv_delta1[i], 0.0, TOL) == TRUE) { - good_bits = - set_bit(good_bits, i + inv_ptr->count_phases, 0); + good_bits = set_bit(good_bits, (int)(i + inv_ptr->phases.size()), 0); } } /* @@ -1332,59 +1235,57 @@ solve_inverse(struct inverse *inv_ptr) output_msg(sformatf( "\tNumber of calls to cl1: %d\n", count_calls)); } - array = (LDBLE *) free_check_null(array); - delta = (LDBLE *) free_check_null(delta); - array1 = (LDBLE *) free_check_null(array1); - inv_zero = (LDBLE *) free_check_null(inv_zero); - inv_res = (LDBLE *) free_check_null(inv_res); - inv_delta1 = (LDBLE *) free_check_null(inv_delta1); - delta2 = (LDBLE *) free_check_null(delta2); - delta3 = (LDBLE *) free_check_null(delta3); - delta_save = (LDBLE *) free_check_null(delta_save); - inv_cu = (LDBLE *) free_check_null(inv_cu); - inv_iu = (int *) free_check_null(inv_iu); - inv_is = (int *) free_check_null(inv_is); - col_name = (const char **) free_check_null(col_name); - row_name = (const char **) free_check_null(row_name); - col_back = (int *) free_check_null(col_back); - row_back = (int *) free_check_null(row_back); - min_delta = (LDBLE *) free_check_null(min_delta); - max_delta = (LDBLE *) free_check_null(max_delta); - good = (unsigned long *) free_check_null(good); - bad = (unsigned long *) free_check_null(bad); - minimal = (unsigned long *) free_check_null(minimal); + my_array.clear(); + delta.clear(); + array1.clear(); + inv_zero.clear(); + inv_res.clear(); + inv_delta1.clear(); + delta2.clear(); + delta3.clear(); + delta_save.clear(); + inv_cu.clear(); + inv_iu.clear(); + inv_is.clear(); + col_name.clear(); + row_name.clear(); + col_back.clear(); + row_back.clear(); + min_delta.clear(); + max_delta.clear(); + good.clear(); + bad.clear(); + minimal.clear(); return (OK); } /* ---------------------------------------------------------------------- */ unsigned long Phreeqc:: -minimal_solve(struct inverse *inv_ptr, unsigned long minimal_bits) +minimal_solve(class inverse *inv_ptr, unsigned long minimal_bits) /* ---------------------------------------------------------------------- */ { /* * Starting with phases indicated in minimal bits, sequentially * remove phases to find minimal solution */ - int i; unsigned long temp_bits_l; if (debug_inverse == TRUE) { output_msg(sformatf( "Beginning minimal solve: \n")); - bit_print(minimal_bits, inv_ptr->count_phases + inv_ptr->count_solns); + bit_print(minimal_bits, (int)(inv_ptr->phases.size() + inv_ptr->count_solns)); } - for (i = 0; i < inv_ptr->count_phases + inv_ptr->count_solns - 1; i++) + for (size_t i = 0; i < inv_ptr->phases.size() + inv_ptr->count_solns - 1; i++) { - if (get_bits(minimal_bits, i, 1) == 0) + if (get_bits(minimal_bits, (int)i, 1) == 0) continue; - temp_bits_l = 1 << i; /* 0's and one 1 */ + temp_bits_l = 1 << (int)i; /* 0's and one 1 */ temp_bits_l = ~temp_bits_l; /* 1's and one 0 */ minimal_bits = minimal_bits & temp_bits_l; if (debug_inverse == TRUE) { output_msg(sformatf( "Solving for minimal\n")); - bit_print(minimal_bits, - inv_ptr->count_phases + inv_ptr->count_solns); + bit_print(minimal_bits, (int)(inv_ptr->phases.size() + inv_ptr->count_solns)); } /* @@ -1409,23 +1310,23 @@ minimal_solve(struct inverse *inv_ptr, unsigned long minimal_bits) if (debug_inverse == TRUE) { output_msg(sformatf( "\n\nMINIMAL MODEL\n\n")); - bit_print(minimal_bits, inv_ptr->count_phases + inv_ptr->count_solns); + bit_print(minimal_bits, (int)(inv_ptr->phases.size() + inv_ptr->count_solns)); } solve_with_mask(inv_ptr, minimal_bits); unsigned long actual_bits = 0; - for (i = 0; i < inv_ptr->count_solns; i++) + for (size_t i = 0; i < inv_ptr->count_solns; i++) { if (equal(inv_delta1[i], 0.0, TOL) == FALSE) { - actual_bits = set_bit(actual_bits, i + inv_ptr->count_phases, 1); + actual_bits = set_bit(actual_bits, (int)(i + inv_ptr->phases.size()), 1); } } - for (i = 0; i < inv_ptr->count_phases; i++) + for (size_t i = 0; i < inv_ptr->phases.size(); i++) { if (equal(inv_delta1[i + inv_ptr->count_solns], 0.0, TOL) == FALSE) { - actual_bits = set_bit(actual_bits, i, 1); + actual_bits = set_bit(actual_bits, (int)i, 1); } } if (actual_bits != minimal_bits) @@ -1437,7 +1338,7 @@ minimal_solve(struct inverse *inv_ptr, unsigned long minimal_bits) /* ---------------------------------------------------------------------- */ int Phreeqc:: -solve_with_mask(struct inverse *inv_ptr, unsigned long cur_bits) +solve_with_mask(class inverse *inv_ptr, unsigned long cur_bits) /* ---------------------------------------------------------------------- */ { /* @@ -1448,10 +1349,10 @@ solve_with_mask(struct inverse *inv_ptr, unsigned long cur_bits) /* * Calculate dimensions */ - k = row_mb; /* rows in A */ - l = row_epsilon - row_mb; /* rows in C */ - m = count_rows - row_epsilon; /* rows in E */ - n = count_unknowns; + k = (int)row_mb; /* rows in A */ + l = (int)(row_epsilon - row_mb); /* rows in C */ + m = (int)(count_rows - row_epsilon); /* rows in E */ + n = (int)count_unknowns; @@ -1462,8 +1363,8 @@ solve_with_mask(struct inverse *inv_ptr, unsigned long cur_bits) memcpy((void *) &(delta_save[0]), (void *) &(inv_zero[0]), (size_t) max_column_count * sizeof(LDBLE)); - shrink(inv_ptr, array, array1, - &k, &l, &m, &n, cur_bits, delta2, col_back, row_back); + shrink(inv_ptr, &my_array[0], &array1[0], + &k, &l, &m, &n, cur_bits, &delta2[0], &col_back[0], &row_back[0]); /* * Save delta constraints */ @@ -1490,7 +1391,7 @@ solve_with_mask(struct inverse *inv_ptr, unsigned long cur_bits) } output_msg(sformatf( "\nA and B arrays:\n\n")); - array_print(array1, k + l + m, n + 1, max_column_count); + array_print(&array1[0], k + l + m, n + 1, (int)max_column_count); output_msg(sformatf( "\nInput delta vector:\n")); for (i = 0; i < n; i++) @@ -1522,27 +1423,25 @@ solve_with_mask(struct inverse *inv_ptr, unsigned long cur_bits) } kode = 1; - iter = 1000; + iter = 100000; count_calls++; - #ifdef INVERSE_CL1MP if (inv_ptr->mp == TRUE) { - cl1mp(k, l, m, n, - nklmd, n2d, array1, - &kode, inv_ptr->mp_tolerance, &iter, - delta2, inv_res, &error, inv_cu, inv_iu, inv_is, TRUE, inv_ptr->mp_censor); + cl1mp(k, l, m, n, (int)nklmd, (int)n2d, &array1[0], + &kode, inv_ptr->mp_tolerance, &iter, &delta2[0], &inv_res[0], + &error, &inv_cu[0], &inv_iu[0], &inv_is[0], TRUE, inv_ptr->mp_censor); } else { - cl1(k, l, m, n, - nklmd, n2d, array1, - &kode, toler, &iter, delta2, inv_res, &error, inv_cu, inv_iu, inv_is, TRUE); + cl1(k, l, m, n, (int)nklmd, (int)n2d, &array1[0], + &kode, toler, &iter, &delta2[0], &inv_res[0], + &error, &inv_cu[0], &inv_iu[0], &inv_is[0], TRUE); } #else - cl1(k, l, m, n, - nklmd, n2d, array1, - &kode, toler, &iter, delta2, inv_res, &error, inv_cu, inv_iu, inv_is, TRUE); + cl1(k, l, m, n, (int)nklmd, (int)n2d, &array1[0], + &kode, toler, &iter, &delta2[0], &inv_res[0], + &error, &inv_cu[0], &inv_iu[0], &inv_is[0], TRUE); #endif if (kode == 3) { @@ -1614,12 +1513,7 @@ save_minimal(unsigned long bits) if (count_minimal >= max_minimal) { max_minimal *= 2; - minimal = - (unsigned long *) PHRQ_realloc(minimal, - (size_t) max_minimal * - sizeof(unsigned long)); - if (minimal == NULL) - malloc_error(); + minimal.resize(max_minimal); } return (TRUE); } @@ -1637,12 +1531,7 @@ save_good(unsigned long bits) if (count_good >= max_good) { max_good *= 2; - good = - (unsigned long *) PHRQ_realloc(good, - (size_t) max_good * - sizeof(unsigned long)); - if (good == NULL) - malloc_error(); + good.resize(max_good); } return (TRUE); } @@ -1660,12 +1549,7 @@ save_bad(unsigned long bits) if (count_bad >= max_bad) { max_bad *= 2; - bad = - (unsigned long *) PHRQ_realloc(bad, - (size_t) max_bad * - sizeof(unsigned long)); - if (bad == NULL) - malloc_error(); + bad.resize(max_bad); } return (TRUE); } @@ -1752,18 +1636,17 @@ bit_print(unsigned long bits, int l) } /* ---------------------------------------------------------------------- */ int Phreeqc:: -print_model(struct inverse *inv_ptr) +print_model(class inverse *inv_ptr) /* ---------------------------------------------------------------------- */ { /* * Prints model */ - int i, j, k; - int column; + int i, j; + size_t column; int print_msg; cxxSolution *solution_ptr; - struct master *master_ptr; - struct isotope *isotope_ptr; + class master *master_ptr; LDBLE d1, d2, d3, d4; char token[MAX_LENGTH]; /* @@ -1822,7 +1705,7 @@ print_model(struct inverse *inv_ptr) error_msg("Computing delta pH/uncertainty", CONTINUE); } } - for (j = 0; j < inv_ptr->count_elts; j++) + for (j = 0; j < inv_ptr->elts.size(); j++) { if (inv_ptr->elts[j].master->s == s_eminus) continue; @@ -1869,10 +1752,10 @@ print_model(struct inverse *inv_ptr) error_msg("Computing delta element/uncertainty", CONTINUE); } } - if (inv_ptr->count_isotopes > 0) + if (inv_ptr->isotopes.size() > 0) { /* adjustments to solution isotope composition */ - for (j = 0; j < inv_ptr->count_isotope_unknowns; j++) + for (j = 0; j < inv_ptr->isotope_unknowns.size(); j++) { std::map < std::string, cxxSolutionIsotope >::iterator kit = solution_ptr->Get_isotopes().begin(); for ( ; kit != solution_ptr->Get_isotopes().end(); kit++) @@ -1884,7 +1767,7 @@ print_model(struct inverse *inv_ptr) continue; d1 = kit->second.Get_ratio(); d2 = inv_delta1[col_isotopes + - i * inv_ptr->count_isotope_unknowns + + i * inv_ptr->isotope_unknowns.size() + j] / inv_delta1[i]; d3 = d1 + d2; @@ -1931,31 +1814,30 @@ print_model(struct inverse *inv_ptr) * Adjustments to phases */ print_msg = FALSE; - if (inv_ptr->count_isotopes > 0) + if (inv_ptr->isotopes.size() > 0) { output_msg(sformatf( "\nIsotopic composition of phases:\n")); - for (i = 0; i < inv_ptr->count_phases; i++) + for (size_t i = 0; i < inv_ptr->phases.size(); i++) { - if (inv_ptr->phases[i].count_isotopes == 0) + if (inv_ptr->phases[i].isotopes.size() == 0) continue; - j = col_phases + i; + size_t j = col_phases + i; if (equal(inv_delta1[j], 0.0, toler) == TRUE && equal(min_delta[j], 0.0, toler) == TRUE && equal(max_delta[j], 0.0, toler) == TRUE) continue; - isotope_ptr = inv_ptr->phases[i].isotopes; - for (j = 0; j < inv_ptr->count_isotopes; j++) + std::vector& isotope_ref = inv_ptr->phases[i].isotopes; + for (size_t j = 0; j < inv_ptr->isotopes.size(); j++) { - for (k = 0; k < inv_ptr->phases[i].count_isotopes; k++) + for (size_t k = 0; k < inv_ptr->phases[i].isotopes.size(); k++) { if (inv_ptr->isotopes[j].elt_name != - isotope_ptr[k].elt_name || + isotope_ref[k].elt_name || inv_ptr->isotopes[j].isotope_number != - isotope_ptr[k].isotope_number) + isotope_ref[k].isotope_number) continue; - d1 = isotope_ptr[k].ratio; - column = - col_phase_isotopes + i * inv_ptr->count_isotopes + j; + d1 = isotope_ref[k].ratio; + column = col_phase_isotopes + i * inv_ptr->isotopes.size() + j; if (inv_delta1[col_phases + i] != 0.0) { d2 = inv_delta1[column] / inv_delta1[col_phases + i]; @@ -1978,16 +1860,16 @@ print_model(struct inverse *inv_ptr) output_msg(sformatf( "%15.15s %12g +%12g =%12g", token, (double) d1, (double) d2, (double) d3)); - if (fabs(d2) > (isotope_ptr[k].ratio_uncertainty + toler)) + if (fabs(d2) > (isotope_ref[k].ratio_uncertainty + toler)) { output_msg(sformatf( " **")); print_msg = TRUE; } output_msg(sformatf( "\n")); - if (isotope_ptr[k].ratio_uncertainty > 0) + if (isotope_ref[k].ratio_uncertainty > 0) { scaled_error += - fabs(d2) / isotope_ptr[k].ratio_uncertainty; + fabs(d2) / isotope_ref[k].ratio_uncertainty; /* debug output_msg(sformatf( "%e\t%e\t%e\n", fabs(d2) / isotope_ptr[k].ratio_uncertainty, fabs(d2), isotope_ptr[k].ratio_uncertainty)); */ @@ -2029,14 +1911,30 @@ print_model(struct inverse *inv_ptr) (double) d3)); } - output_msg(sformatf( "\n%-25.25s %2s %12.12s %12.12s\n", - "Phase mole transfers:", " ", "Minimum", "Maximum")); - for (i = col_phases; i < col_redox; i++) + // appt, calculate and print SI's + LDBLE t_i, p_i, iap, lk, t; + const char *name; + class rxn_token *rxn_ptr; + CReaction *reaction_ptr; + + output_msg(sformatf( "\n%-25.25s %2s %12.12s %12.12s %-18.18s (Approximate SI in solution ", + "Phase mole transfers:", " ", "Minimum", "Maximum", "Formula")); + + for (i = 0; i < inv_ptr->count_solns - 1; i++) + output_msg(sformatf("%d, ", inv_ptr->solns[i])); + solution_ptr = Utilities::Rxn_find(Rxn_solution_map, inv_ptr->solns[i]); + t_i = solution_ptr->Get_tc() + 273.15; + p_i = solution_ptr->Get_patm(); + output_msg(sformatf("%d at %3d K, %3d atm)\n", inv_ptr->solns[i], int(t_i), int(floor(p_i + 0.5)))); + p_i *= PASCAL_PER_ATM; + + for (size_t i = col_phases; i < col_redox; i++) { if (equal(inv_delta1[i], 0.0, toler) == TRUE && equal(min_delta[i], 0.0, toler) == TRUE && equal(max_delta[i], 0.0, toler) == TRUE) continue; + d1 = inv_delta1[i]; d2 = min_delta[i]; d3 = max_delta[i]; @@ -2047,13 +1945,62 @@ print_model(struct inverse *inv_ptr) if (equal(d3, 0.0, MIN_TOTAL_INVERSE) == TRUE) d3 = 0.0; output_msg(sformatf( - "%15.15s %12.3e %12.3e %12.3e %s\n", col_name[i], - (double) d1, (double) d2, (double) d3, - inv_ptr->phases[i - col_phases].phase->formula)); - } + "%15.15s %12.3e %12.3e %12.3e %-25.25s (", col_name[i], + (double)d1, (double)d2, (double)d3, inv_ptr->phases[i - col_phases].phase->formula)); + size_t i1 = 0; + for (; i1 < phases.size(); i1++) + { + if (Utilities::strcmp_nocase(phases[i1]->name, col_name[i])) + continue; + reaction_ptr = &phases[i1]->rxn_s; + for (size_t i2 = 0; i2 < inv_ptr->count_solns; i2++) + { + solution_ptr = Utilities::Rxn_find(Rxn_solution_map, inv_ptr->solns[i2]); + + reaction_ptr->logk[delta_v] = calc_delta_v(*reaction_ptr, true) - phases[i1]->logk[vm0]; + if (reaction_ptr->logk[delta_v]) + mu_terms_in_logk = true; + lk = k_calc(reaction_ptr->logk, t_i, p_i); + + iap = 0.0; + for (rxn_ptr = &reaction_ptr->token[0] + 1; rxn_ptr->s != NULL; rxn_ptr++) + { + t = 0; + if (rxn_ptr->s == s_eminus) + t = -solution_ptr->Get_pe(); + else if (!Utilities::strcmp_nocase(rxn_ptr->s->name, "H2O")) + t = log10(solution_ptr->Get_ah2o()); + else if (!Utilities::strcmp_nocase(rxn_ptr->s->name, "H+")) + t = -solution_ptr->Get_ph(); + else + { + if (rxn_ptr->s->secondary) + name = rxn_ptr->s->secondary->elt->name; + else + name = rxn_ptr->s->primary->elt->name; + t = solution_ptr->Get_master_activity()[name]; + } + if (t) + iap += t * rxn_ptr->coef; + else + { + iap = -999; break; + } + } + + if (iap == -999) + output_msg(sformatf(" ")); + else + output_msg(sformatf("%6.2f", iap - lk)); + if (i2 < inv_ptr->count_solns - 1) + output_msg(sformatf(",")); + } + } + output_msg(sformatf(")\n")); + } output_msg(sformatf( "\n%-25.25s\n", "Redox mole transfers:")); - for (i = col_redox; i < col_epsilon; i++) + for (size_t i = col_redox; i < col_epsilon; i++) { if (equal(inv_delta1[i], 0.0, toler) == TRUE) continue; @@ -2078,7 +2025,7 @@ print_model(struct inverse *inv_ptr) } /* ---------------------------------------------------------------------- */ int Phreeqc:: -punch_model_heading(struct inverse *inv_ptr) +punch_model_heading(class inverse *inv_ptr) /* ---------------------------------------------------------------------- */ { /* @@ -2126,7 +2073,7 @@ punch_model_heading(struct inverse *inv_ptr) /* * Print phase names */ - for (i = col_phases; i < col_redox; i++) + for (size_t i = col_phases; i < col_redox; i++) { std::string tok1(col_name[i]); @@ -2138,9 +2085,7 @@ punch_model_heading(struct inverse *inv_ptr) inverse_heading_names.push_back(sformatf("%*s\t", l, tok1.c_str())); inverse_heading_names.push_back(sformatf("%*s\t", l, tok2.c_str())); } - - size_t j; - for (j = 0; j < inverse_heading_names.size(); j++) + for (size_t j = 0; j < inverse_heading_names.size(); j++) { fpunchf_heading(inverse_heading_names[j].c_str()); //user_punch_headings[j] = string_hsave(heading_names[j].c_str()); @@ -2155,103 +2100,9 @@ punch_model_heading(struct inverse *inv_ptr) punch_flush(); return (OK); } -#ifdef SKIP /* ---------------------------------------------------------------------- */ int Phreeqc:: -punch_model_heading(struct inverse *inv_ptr) -/* ---------------------------------------------------------------------- */ -{ -/* - * Prints model headings to selected output file - */ - int i; - char token[MAX_LENGTH]; - //if (/*punch.in == FALSE ||*/ pr.punch == FALSE || punch.inverse == FALSE) - // return (OK); - std::vector heading_names; - std::map < int, SelectedOutput >::iterator so_it = SelectedOutput_map.begin(); - for ( ; so_it != SelectedOutput_map.end(); so_it++) - { - // set punch file - current_selected_output = &(so_it->second); - if (pr.punch == FALSE || - current_selected_output == NULL || - current_selected_output->punch_ostream == NULL || - !current_selected_output->Get_inverse() || - !current_selected_output->Get_active()) - continue; - phrq_io->Set_punch_ostream(current_selected_output->punch_ostream); - - int l = (!current_selected_output->Get_high_precision()) ? 15 : 20; - heading_names.clear(); - /* - * Print sum of residuals and maximum fractional error - */ - heading_names.push_back(sformatf("%*s\t", l, "Sum_resid")); - heading_names.push_back(sformatf("%*s\t", l, "Sum_Delta/U")); - heading_names.push_back(sformatf("%*s\t", l, "MaxFracErr")); - - /* - * Print solution numbers - */ - for (i = 0; i < inv_ptr->count_solns; i++) - { - sprintf(token, "Soln_%d", inv_ptr->solns[i]); - std::string tok1(token); - tok1.append("_min"); - std::string tok2(token); - tok2.append("_max"); - - heading_names.push_back(sformatf("%*s\t", l, token)); - heading_names.push_back(sformatf("%*s\t", l, tok1.c_str())); - heading_names.push_back(sformatf("%*s\t", l, tok2.c_str())); - } - /* - * Print phase names - */ - for (i = col_phases; i < col_redox; i++) - { - - std::string tok1(col_name[i]); - tok1.append("_max"); - std::string tok2(col_name[i]); - tok2.append("_max"); - - heading_names.push_back(sformatf("%*s\t", l, col_name[i])); - heading_names.push_back(sformatf("%*s\t", l, tok1.c_str())); - heading_names.push_back(sformatf("%*s\t", l, tok2.c_str())); - - } - - size_t j; - - // punch headings - //user_punch_count_headings = (int) heading_names.size(); - //user_punch_headings = (const char **) PHRQ_realloc(user_punch_headings, - // (size_t) (user_punch_count_headings + 1) * sizeof(char *)); - //if (user_punch_headings == NULL) - // malloc_error(); - - for (j = 0; j < heading_names.size(); j++) - { - fpunchf_heading(heading_names[j].c_str()); - //user_punch_headings[j] = string_hsave(heading_names[j].c_str()); - } - fpunchf_heading("\n"); - } - current_selected_output = NULL; - phrq_io->Set_punch_ostream(NULL); - inverse_heading_names = heading_names; -/* - * Flush buffer after each model - */ - punch_flush(); - return (OK); -} -#endif -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -punch_model(struct inverse *inv_ptr) +punch_model(class inverse *inv_ptr) /* ---------------------------------------------------------------------- */ { /* @@ -2323,7 +2174,7 @@ punch_model(struct inverse *inv_ptr) /* * write phase transfers */ - for (i = col_phases; i < col_redox; i++) + for (size_t i = col_phases; i < col_redox; i++) { d1 = inv_delta1[i]; d2 = min_delta[i]; @@ -2384,7 +2235,7 @@ set_bit(unsigned long bits, int position, int value) /* ---------------------------------------------------------------------- */ int Phreeqc:: -next_set_phases(struct inverse *inv_ptr, +next_set_phases(class inverse *inv_ptr, int first_of_model_size, int model_size) /* ---------------------------------------------------------------------- */ { @@ -2409,7 +2260,7 @@ next_set_phases(struct inverse *inv_ptr, { min_position[i] = i; now[i] = i; - max_position[i] = inv_ptr->count_phases - model_size + i; + max_position[i] = (int)inv_ptr->phases.size() - model_size + i; } } else @@ -2451,7 +2302,7 @@ next_set_phases(struct inverse *inv_ptr, /* ---------------------------------------------------------------------- */ int Phreeqc:: -range(struct inverse *inv_ptr, unsigned long cur_bits) +range(class inverse *inv_ptr, unsigned long cur_bits) /* ---------------------------------------------------------------------- */ { /* @@ -2467,20 +2318,20 @@ range(struct inverse *inv_ptr, unsigned long cur_bits) /* * Include forced solutions and phases in range calculation */ - for (i = 0; i < inv_ptr->count_solns + inv_ptr->count_phases; i++) + for (size_t i = 0; i < inv_ptr->count_solns + inv_ptr->phases.size(); i++) { - if (i < inv_ptr->count_phases) + if (i < inv_ptr->phases.size()) { if (inv_ptr->phases[i].force == TRUE) { - cur_bits = set_bit(cur_bits, i, 1); + cur_bits = set_bit(cur_bits, (int)i, 1); } } else { - if (inv_ptr->force_solns[i - inv_ptr->count_phases] == TRUE) + if (inv_ptr->force_solns[i - inv_ptr->phases.size()] == TRUE) { - cur_bits = set_bit(cur_bits, i, 1); + cur_bits = set_bit(cur_bits, (int)i, 1); } } } @@ -2493,15 +2344,15 @@ range(struct inverse *inv_ptr, unsigned long cur_bits) * Switch bits so that phases are high and solutions are low */ bits = - get_bits(cur_bits, inv_ptr->count_phases + inv_ptr->count_solns - 1, - inv_ptr->count_solns); + get_bits(cur_bits, (int)(inv_ptr->phases.size() + inv_ptr->count_solns) - 1, + (int)inv_ptr->count_solns); bits += - (get_bits(cur_bits, inv_ptr->count_phases - 1, inv_ptr->count_phases) - << inv_ptr->count_solns); + (get_bits(cur_bits, (int)inv_ptr->phases.size() - 1, (int)inv_ptr->phases.size()) + << (int)inv_ptr->count_solns); /* * Do range calculation */ - for (i = 0; i < inv_ptr->count_solns + inv_ptr->count_phases; i++) + for (i = 0; i < inv_ptr->count_solns + inv_ptr->phases.size(); i++) { if (inv_ptr->count_solns == i + 1) { @@ -2516,14 +2367,14 @@ range(struct inverse *inv_ptr, unsigned long cur_bits) */ for (f = -1; f < 2; f += 2) { - k = row_mb; /* rows in A */ - l = row_epsilon - row_mb; /* rows in C */ - m = count_rows - row_epsilon; /* rows in E */ - n = count_unknowns; /* number of variables */ + k = (int)row_mb; /* rows in A */ + l = (int)(row_epsilon - row_mb); /* rows in C */ + m = (int)(count_rows - row_epsilon); /* rows in E */ + n = (int)count_unknowns; /* number of variables */ /* * Copy equations */ - memcpy((void *) &(array1[0]), (void *) &(array[0]), + memcpy((void *) &(array1[0]), (void *) &(my_array[0]), (size_t) max_column_count * max_row_count * sizeof(LDBLE)); memcpy((void *) &(delta2[0]), (void *) &(delta[0]), (size_t) max_column_count * sizeof(LDBLE)); @@ -2552,8 +2403,8 @@ range(struct inverse *inv_ptr, unsigned long cur_bits) { array1[n] = fabs(inv_ptr->range_max); } - shrink(inv_ptr, array1, array1, - &k, &l, &m, &n, cur_bits, delta2, col_back, row_back); + shrink(inv_ptr, &array1[0], &array1[0], + &k, &l, &m, &n, cur_bits, &delta2[0], &col_back[0], &row_back[0]); /* * Save delta constraints */ @@ -2570,7 +2421,7 @@ range(struct inverse *inv_ptr, unsigned long cur_bits) col_name[col_back[j]], (double) delta2[j])); } output_msg(sformatf( "\nA and B arrays:\n\n")); - array_print(array1, k + l + m, n + 1, max_column_count); + array_print(&array1[0], k + l + m, n + 1, (int)max_column_count); } kode = 1; iter = 200; @@ -2578,23 +2429,18 @@ range(struct inverse *inv_ptr, unsigned long cur_bits) #ifdef INVERSE_CL1MP if (inv_ptr->mp == TRUE) { - cl1mp(k, l, m, n, - nklmd, n2d, array1, - &kode, inv_ptr->mp_tolerance, &iter, - delta2, inv_res, &error2, inv_cu, inv_iu, inv_is, TRUE, - inv_ptr->mp_censor); + cl1mp(k, l, m, n, (int)nklmd, (int)n2d, &array1[0], + &kode, inv_ptr->mp_tolerance, &iter, &delta2[0], &inv_res[0], + &error2, &inv_cu[0], &inv_iu[0], &inv_is[0], TRUE, inv_ptr->mp_censor); } else { - cl1(k, l, m, n, - nklmd, n2d, array1, - &kode, toler, &iter, delta2, inv_res, &error2, inv_cu, inv_iu, inv_is, - TRUE); + cl1(k, l, m, n, (int)nklmd, (int)n2d, &array1[0], &kode, toler, &iter, &delta2[0], + &inv_res[0], &error2, &inv_cu[0], &inv_iu[0], &inv_is[0], TRUE); } #else - cl1(k, l, m, n, - nklmd, n2d, array1, - &kode, toler, &iter, delta2, inv_res, &error2, inv_cu, inv_iu, inv_is, TRUE); + cl1(k, l, m, n, (int)nklmd, (int)n2d, &array1[0], &kode, toler, &iter, &delta2[0], + &inv_res[0], &error2, &inv_cu[0], &inv_iu[0], &inv_is[0], TRUE); #endif if (kode != 0) { @@ -2648,7 +2494,7 @@ range(struct inverse *inv_ptr, unsigned long cur_bits) /* ---------------------------------------------------------------------- */ int Phreeqc:: -shrink(struct inverse *inv_ptr, LDBLE * array_in, LDBLE * array_out, +shrink(class inverse *inv_ptr, LDBLE * array_in, LDBLE * array_out, int *k, int *l, int *m, int *n, unsigned long cur_bits, LDBLE * delta_l, int *col_back_l, int *row_back_l) @@ -2665,7 +2511,7 @@ shrink(struct inverse *inv_ptr, LDBLE * array_in, LDBLE * array_out, */ int i, j, row; int k1, l1, m1; - int cur_col, column; + size_t cur_col, column; int nonzero; /* * Copy array_in to array_out @@ -2688,18 +2534,18 @@ shrink(struct inverse *inv_ptr, LDBLE * array_in, LDBLE * array_out, /* * Drop phases not in model */ - for (i = 0; i < inv_ptr->count_phases; i++) + for (i = 0; i < inv_ptr->phases.size(); i++) { if (get_bits(cur_bits, i, 1) == 0) { col_back_l[col_phases + i] = -1; /* drop isotopes */ - if (inv_ptr->count_isotopes > 0) + if (inv_ptr->isotopes.size() > 0) { - for (j = 0; j < inv_ptr->count_isotopes; j++) + for (j = 0; j < inv_ptr->isotopes.size(); j++) { column = - col_phase_isotopes + i * inv_ptr->count_isotopes + j; + col_phase_isotopes + i * inv_ptr->isotopes.size() + j; col_back_l[column] = -1; } } @@ -2710,11 +2556,11 @@ shrink(struct inverse *inv_ptr, LDBLE * array_in, LDBLE * array_out, */ for (i = 0; i < (inv_ptr->count_solns - 1); i++) { - if (get_bits(cur_bits, inv_ptr->count_phases + i, 1) == 0) + if (get_bits(cur_bits, (int)inv_ptr->phases.size() + i, 1) == 0) { col_back_l[i] = -1; /* drop all epsilons for the solution */ - for (j = 0; j < inv_ptr->count_elts; j++) + for (j = 0; j < inv_ptr->elts.size(); j++) { column = col_epsilon + j * inv_ptr->count_solns + i; col_back_l[column] = -1; @@ -2726,13 +2572,12 @@ shrink(struct inverse *inv_ptr, LDBLE * array_in, LDBLE * array_out, col_back_l[column] = -1; } /* drop isotopes */ - if (inv_ptr->count_isotopes > 0) + if (inv_ptr->isotopes.size() > 0) { - for (j = 0; j < inv_ptr->count_isotope_unknowns; j++) + for (size_t j = 0; j < inv_ptr->isotope_unknowns.size(); j++) { - column = - col_isotopes + i * inv_ptr->count_isotope_unknowns + - j; + column = col_isotopes + + i * inv_ptr->isotope_unknowns.size() + j; col_back_l[column] = -1; } } @@ -2742,13 +2587,13 @@ shrink(struct inverse *inv_ptr, LDBLE * array_in, LDBLE * array_out, /* * Drop epsilons not used */ - for (i = col_epsilon; i < *n; i++) + for (i = (int)col_epsilon; i < *n; i++) { if (col_back_l[i] < 0) continue; for (j = 0; j < (*k + *l + *m); j++) { - if (array_out[j * max_column_count + i] != 0) + if (array_out[(size_t)j * max_column_count + (size_t)i] != 0) break; } if (j == (*k + *l + *m)) @@ -2778,7 +2623,7 @@ shrink(struct inverse *inv_ptr, LDBLE * array_in, LDBLE * array_out, delta_l[cur_col] = delta_l[i]; cur_col++; } - *n = cur_col - 1; + *n = (int)cur_col - 1; /* * Eliminate unnecessary optimization eqns */ @@ -2804,8 +2649,8 @@ shrink(struct inverse *inv_ptr, LDBLE * array_in, LDBLE * array_out, memcpy(&(array_out[row * max_column_count]), - &(array_out[i * max_column_count]), - (size_t) (*n + 1) * sizeof(LDBLE)); + &(array_out[(size_t)i * max_column_count]), + ((size_t)*n + 1) * sizeof(LDBLE)); } row_back_l[row] = i; row++; @@ -2848,8 +2693,8 @@ shrink(struct inverse *inv_ptr, LDBLE * array_in, LDBLE * array_out, assert(false); } memcpy(&(array_out[row * max_column_count]), - &(array_out[i * max_column_count]), - (size_t) (*n + 1) * sizeof(LDBLE)); + &(array_out[(size_t)i * max_column_count]), + ((size_t)*n + 1) * sizeof(LDBLE)); } row_back_l[row] = i; row++; @@ -2890,9 +2735,9 @@ shrink(struct inverse *inv_ptr, LDBLE * array_in, LDBLE * array_out, { assert(false); } - memcpy(&(array_out[row * max_column_count]), - &(array_out[i * max_column_count]), - (size_t) (*n + 1) * sizeof(LDBLE)); + memcpy(&(array_out[(size_t)row * max_column_count]), + &(array_out[(size_t)i * max_column_count]), + ((size_t)*n + 1) * sizeof(LDBLE)); } row_back_l[row] = i; row++; @@ -2919,7 +2764,7 @@ shrink(struct inverse *inv_ptr, LDBLE * array_in, LDBLE * array_out, /* ---------------------------------------------------------------------- */ int Phreeqc:: -check_solns(struct inverse *inv_ptr) +check_solns(class inverse *inv_ptr) /* ---------------------------------------------------------------------- */ { /* @@ -2927,7 +2772,8 @@ check_solns(struct inverse *inv_ptr) * the given constraints. If not, it is an error and the program will * terminate. */ - int i, j; + int i; + size_t j; int k, l, m, n; int return_value; unsigned long bits; @@ -2945,14 +2791,14 @@ check_solns(struct inverse *inv_ptr) for (i = 0; i < inv_ptr->count_solns; i++) { bits = 0; - bits += 1 << (inv_ptr->count_phases + i); + bits += 1 << (inv_ptr->phases.size() + i); /* * Check for feasibility of charge balance with given uncertainties */ - k = row_mb; /* rows in A */ - l = row_epsilon - row_mb; /* rows in C */ - m = count_rows - row_epsilon; /* rows in E */ - n = count_unknowns; /* number of variables */ + k = (int)row_mb; /* rows in A */ + l = (int)(row_epsilon - row_mb); /* rows in C */ + m = (int)(count_rows - row_epsilon); /* rows in E */ + n = (int)count_unknowns; /* number of variables */ /* debug output_msg(sformatf( "\nColumns\n")); for (j = 0; j < n; j++) { @@ -2971,7 +2817,7 @@ check_solns(struct inverse *inv_ptr) /* * Copy equations */ - memcpy((void *) &(array1[0]), (void *) &(array[0]), + memcpy((void *) &(array1[0]), (void *) &(my_array[0]), (size_t) max_column_count * max_row_count * sizeof(LDBLE)); memcpy((void *) &(delta2[0]), (void *) &(delta[0]), (size_t) max_column_count * sizeof(LDBLE)); @@ -2988,7 +2834,7 @@ check_solns(struct inverse *inv_ptr) { memcpy((void *) &(array1[j * max_column_count]), (void *) &(inv_zero[0]), - (size_t) max_column_count * sizeof(LDBLE)); + max_column_count * sizeof(LDBLE)); } /* * Set fraction of solution to 1.0 @@ -3011,29 +2857,29 @@ check_solns(struct inverse *inv_ptr) /* * Zero out isotope mole balance */ - for (j = row_isotopes; j < row_epsilon; j++) + for (size_t j = row_isotopes; j < row_epsilon; j++) { memcpy((void *) &(array1[j * max_column_count]), (void *) &(inv_zero[0]), - (size_t) max_column_count * sizeof(LDBLE)); + max_column_count * sizeof(LDBLE)); } /* * Zero out isotope uncertainties */ - for (j = row_isotope_epsilon; j < count_rows; j++) + for (size_t j = row_isotope_epsilon; j < count_rows; j++) { memcpy((void *) &(array1[j * max_column_count]), (void *) &(inv_zero[0]), - (size_t) max_column_count * sizeof(LDBLE)); + max_column_count * sizeof(LDBLE)); } /* * Can`t Zero out epsilon constraint rows for other solutions because not sure which * are which */ - shrink(inv_ptr, array1, array1, - &k, &l, &m, &n, bits, delta2, col_back, row_back); + shrink(inv_ptr, &array1[0], &array1[0], + &k, &l, &m, &n, bits, &delta2[0], &col_back[0], &row_back[0]); /* Debug output_msg(sformatf( "\nColumns\n")); @@ -3060,9 +2906,8 @@ check_solns(struct inverse *inv_ptr) kode = 1; iter = 200; count_calls++; - cl1(k, l, m, n, - nklmd, n2d, array1, - &kode, toler, &iter, delta2, inv_res, &error2, inv_cu, inv_iu, inv_is, TRUE); + cl1(k, l, m, n, (int)nklmd, (int)n2d, &array1[0], &kode, toler, &iter, + &delta2[0], &inv_res[0], &error2, &inv_cu[0], &inv_iu[0], &inv_is[0], TRUE); if (kode != 0) { @@ -3102,53 +2947,52 @@ post_mortem(void) * array have not been satisfied. * */ - int i, j; LDBLE sum; /* * Check equalities */ output_msg(sformatf( "\nPost_mortem examination of inverse modeling:\n\n")); - for (i = row_mb; i < row_epsilon; i++) + for (size_t i = row_mb; i < row_epsilon; i++) { sum = 0; - for (j = 0; j < count_unknowns; j++) + for (size_t j = 0; j < count_unknowns; j++) { - sum += inv_delta1[j] * array[i * max_column_count + j]; + sum += inv_delta1[j] * my_array[i * max_column_count + j]; } - if (equal(sum, array[(i * max_column_count) + count_unknowns], toler) + if (equal(sum, my_array[(i * max_column_count) + count_unknowns], toler) == FALSE) { output_msg(sformatf( "\tERROR: equality not satisfied for %s, %e.\n", row_name[i], - (double) (sum - array[(i * max_column_count) + count_unknowns]))); + (double) (sum - my_array[(i * max_column_count) + count_unknowns]))); } } /* * Check inequalities */ - for (i = row_epsilon; i < count_rows; i++) + for (size_t i = row_epsilon; i < count_rows; i++) { sum = 0; - for (j = 0; j < count_unknowns; j++) + for (size_t j = 0; j < count_unknowns; j++) { - sum += inv_delta1[j] * array[i * max_column_count + j]; + sum += inv_delta1[j] * my_array[i * max_column_count + j]; } - if (sum > array[(i * max_column_count) + count_unknowns] + toler) + if (sum > my_array[(i * max_column_count) + count_unknowns] + toler) { output_msg(sformatf( "\tERROR: inequality not satisfied for %s, %e\n", row_name[i], - (double) (sum - array[(i * max_column_count) + count_unknowns]))); + (double) (sum - my_array[(i * max_column_count) + count_unknowns]))); } } /* * Check dissolution/precipitation constraints */ - for (i = 0; i < count_unknowns; i++) + for (size_t i = 0; i < count_unknowns; i++) { if (delta_save[i] > 0.5 && inv_delta1[i] < -toler) { @@ -3175,7 +3019,7 @@ test_cl1_solution(void) * checks that equality and inequalities are satisfied * */ - int i, j; + int i; LDBLE sum; /* * Check equalities @@ -3186,20 +3030,20 @@ test_cl1_solution(void) output_msg(sformatf( "\nTesting cl1 inverse modeling:\n\n")); } - for (i = row_mb; i < row_epsilon; i++) + for (size_t i = row_mb; i < row_epsilon; i++) { sum = 0; - for (j = 0; j < count_unknowns; j++) + for (size_t j = 0; j < count_unknowns; j++) { - sum += inv_delta1[j] * array[i * max_column_count + j]; + sum += inv_delta1[j] * my_array[i * max_column_count + j]; } - if (equal(sum, array[(i * max_column_count) + count_unknowns], toler) == FALSE) + if (equal(sum, my_array[(i * max_column_count) + count_unknowns], toler) == FALSE) { if (debug_inverse) { output_msg(sformatf("\tERROR: equality not satisfied for %s, %e.\n", row_name[i], - (double) (sum - array[(i * max_column_count) + count_unknowns]))); + (double) (sum - my_array[(i * max_column_count) + count_unknowns]))); } rv = false; } @@ -3207,22 +3051,22 @@ test_cl1_solution(void) /* * Check inequalities */ - for (i = row_epsilon; i < count_rows; i++) + for (size_t i = row_epsilon; i < count_rows; i++) { sum = 0; - for (j = 0; j < count_unknowns; j++) + for (size_t j = 0; j < count_unknowns; j++) { - sum += inv_delta1[j] * array[i * max_column_count + j]; + sum += inv_delta1[j] * my_array[i * max_column_count + j]; } - if (sum > array[(i * max_column_count) + count_unknowns] + toler) + if (sum > my_array[(i * max_column_count) + count_unknowns] + toler) { if (debug_inverse) { output_msg(sformatf( "\tERROR: inequality not satisfied for %s, %e\n", row_name[i], - (double) (sum - array[(i * max_column_count) + count_unknowns]))); + (double) (sum - my_array[(i * max_column_count) + count_unknowns]))); } rv = false; } @@ -3259,24 +3103,15 @@ test_cl1_solution(void) } /* ---------------------------------------------------------------------- */ int Phreeqc:: -carbon_derivs(struct inverse *inv_ptr) +carbon_derivs(class inverse *inv_ptr) /* ---------------------------------------------------------------------- */ { int i, j, temp; LDBLE c_uncertainty, d_carbon, alk_plus, alk_minus; cxxSolution *solution_ptr_orig, *solution_ptr; - inv_ptr->dalk_dph = (LDBLE *) free_check_null(inv_ptr->dalk_dph); - inv_ptr->dalk_dph = - (LDBLE *) PHRQ_malloc((size_t) inv_ptr->count_solns * sizeof(LDBLE)); - if (inv_ptr->dalk_dph == NULL) - malloc_error(); - - inv_ptr->dalk_dc = (LDBLE *) free_check_null(inv_ptr->dalk_dc); - inv_ptr->dalk_dc = - (LDBLE *) PHRQ_malloc((size_t) inv_ptr->count_solns * sizeof(LDBLE)); - if (inv_ptr->dalk_dc == NULL) - malloc_error(); + inv_ptr->dalk_dph.resize(inv_ptr->count_solns); + inv_ptr->dalk_dc.resize(inv_ptr->count_solns); for (i = 0; i < inv_ptr->count_solns; i++) { @@ -3292,7 +3127,7 @@ carbon_derivs(struct inverse *inv_ptr) */ c_uncertainty = 0; d_carbon = 0; - for (j = 0; j < inv_ptr->count_elts; j++) + for (j = 0; j < inv_ptr->elts.size(); j++) { if (inv_ptr->elts[j].master == s_co3->secondary) { @@ -3370,7 +3205,7 @@ carbon_derivs(struct inverse *inv_ptr) } /* ---------------------------------------------------------------------- */ int Phreeqc:: -set_ph_c(struct inverse *inv_ptr, +set_ph_c(class inverse *inv_ptr, int i, cxxSolution *solution_ptr_orig, int n_user_new, LDBLE d_carbon, LDBLE ph_factor, LDBLE c_factor) @@ -3409,7 +3244,7 @@ set_ph_c(struct inverse *inv_ptr, } /* ---------------------------------------------------------------------- */ int Phreeqc:: -isotope_balance_equation(struct inverse *inv_ptr, int row, int n) +isotope_balance_equation(class inverse *inv_ptr, int row, int n) /* ---------------------------------------------------------------------- */ /* * routine fills in an isotope balance equation @@ -3420,9 +3255,9 @@ isotope_balance_equation(struct inverse *inv_ptr, int row, int n) { int i, j, k; LDBLE isotope_number; - int column; + size_t column; LDBLE f; - struct master *primary_ptr; + class master *primary_ptr; cxxSolution *solution_ptr; /* * Determine primary master species and isotope number for @@ -3471,11 +3306,11 @@ isotope_balance_equation(struct inverse *inv_ptr, int row, int n) std::map < std::string, cxxSolutionIsotope >::iterator jit = solution_ptr->Get_isotopes().begin(); for ( ; jit != solution_ptr->Get_isotopes().end(); jit++) { - struct master *primary_jit = master_bsearch_primary(jit->second.Get_elt_name().c_str()); + class master *primary_jit = master_bsearch_primary(jit->second.Get_elt_name().c_str()); if (primary_jit == primary_ptr && jit->second.Get_isotope_number() == isotope_number) { - array[row * max_column_count + i] += + my_array[(size_t)row * max_column_count + (size_t)i] += f * jit->second.Get_total() * jit->second.Get_ratio(); } } @@ -3488,19 +3323,19 @@ isotope_balance_equation(struct inverse *inv_ptr, int row, int n) if (primary_ptr == s_hplus->primary || primary_ptr == s_h2o->primary) continue; - struct master *master_jit = master_bsearch(jit->second.Get_elt_name().c_str()); - struct master *primary_jit = master_bsearch_primary(jit->second.Get_elt_name().c_str()); + class master *master_jit = master_bsearch(jit->second.Get_elt_name().c_str()); + class master *primary_jit = master_bsearch_primary(jit->second.Get_elt_name().c_str()); if (primary_jit == primary_ptr && jit->second.Get_isotope_number() == isotope_number) { /* find column of master for solution i */ - for (k = 0; k < inv_ptr->count_elts; k++) + for (k = 0; k < inv_ptr->elts.size(); k++) { if (master_jit == inv_ptr->elts[k].master) break; } column = col_epsilon + (k * inv_ptr->count_solns) + i; - array[row * max_column_count + column] += + my_array[(size_t)row * max_column_count + (size_t)column] += f * jit->second.Get_ratio(); } } @@ -3509,14 +3344,14 @@ isotope_balance_equation(struct inverse *inv_ptr, int row, int n) jit = solution_ptr->Get_isotopes().begin(); for ( ; jit != solution_ptr->Get_isotopes().end(); jit++) { - struct master *master_jit = master_bsearch(jit->second.Get_elt_name().c_str()); - struct master *primary_jit = master_bsearch_primary(jit->second.Get_elt_name().c_str()); + class master *master_jit = master_bsearch(jit->second.Get_elt_name().c_str()); + class master *primary_jit = master_bsearch_primary(jit->second.Get_elt_name().c_str()); if (primary_jit == primary_ptr && jit->second.Get_isotope_number() == isotope_number) { /* find column of epsilon for ratio of valence */ - for (k = 0; k < inv_ptr->count_isotope_unknowns; k++) + for (k = 0; k < inv_ptr->isotope_unknowns.size(); k++) { if (master_jit == inv_ptr->isotope_unknowns[k].master @@ -3525,10 +3360,10 @@ isotope_balance_equation(struct inverse *inv_ptr, int row, int n) { column = col_isotopes + - (i * inv_ptr->count_isotope_unknowns) + k; + (i * inv_ptr->isotope_unknowns.size()) + k; } } - array[row * max_column_count + column] += + my_array[(size_t)row * max_column_count + (size_t)column] += f * jit->second.Get_total(); } } @@ -3536,23 +3371,23 @@ isotope_balance_equation(struct inverse *inv_ptr, int row, int n) /* * Fill in terms for each phase */ - for (i = 0; i < inv_ptr->count_phases; i++) + for (i = 0; i < inv_ptr->phases.size(); i++) { - if (inv_ptr->phases[i].count_isotopes <= 0) + if (inv_ptr->phases[i].isotopes.size() == 0) continue; - struct isotope *isotope_ptr = inv_ptr->phases[i].isotopes; - for (j = 0; j < inv_ptr->phases[i].count_isotopes; j++) + std::vector& isotope_ref = inv_ptr->phases[i].isotopes; + for (j = 0; j < inv_ptr->phases[i].isotopes.size(); j++) { - if (isotope_ptr[j].primary == primary_ptr && - isotope_ptr[j].isotope_number == isotope_number) + if (isotope_ref[j].primary == primary_ptr && + isotope_ref[j].isotope_number == isotope_number) { /* term for alpha phase unknowns */ column = col_phases + i; - array[row * max_column_count + column] = - isotope_ptr[j].ratio * isotope_ptr[j].coef; + my_array[(size_t)row * max_column_count + (size_t)column] = + isotope_ref[j].ratio * isotope_ref[j].coef; /* term for phase isotope uncertainty unknown */ - column = col_phase_isotopes + i * inv_ptr->count_isotopes + n; - array[row * max_column_count + column] = isotope_ptr[j].coef; + column = col_phase_isotopes + i * inv_ptr->isotopes.size() + (size_t)n; + my_array[(size_t)row * max_column_count + column] = isotope_ref[j].coef; break; } } @@ -3561,55 +3396,47 @@ isotope_balance_equation(struct inverse *inv_ptr, int row, int n) return OK; } /* ---------------------------------------------------------------------- */ -int Phreeqc:: -count_isotope_unknowns(struct inverse *inv_ptr, - struct isotope **isotope_unknowns) -/* ---------------------------------------------------------------------- */ +bool Phreeqc:: +set_isotope_unknowns(class inverse* inv_ptr) + /* ---------------------------------------------------------------------- */ { -/* - * Go through elements for which isotope balances are requested - * and make a array of isotope structures - * return total number of isotope unknowns and structure array - */ + /* + * Go through elements for which isotope balances are requested + * and make a array of isotope structures + * return total number of isotope unknowns and structure array + */ int i, k; LDBLE isotope_number; - struct master *primary_ptr; - int count_isotopes; - struct isotope *isotopes; + class master* primary_ptr; + size_t count_isotopes; + std::vector& isotopes = inv_ptr->isotope_unknowns; - if (inv_ptr->count_isotopes == 0) + if (inv_ptr->isotopes.size() == 0) { - *isotope_unknowns = NULL; - return (0); - } - isotopes = - (struct isotope *) PHRQ_malloc((size_t) sizeof(struct isotope)); - if (isotopes == NULL) - { - malloc_error(); - return (0); + isotopes.clear(); + return true; } count_isotopes = 0; - for (i = 0; i < inv_ptr->count_isotopes; i++) + for (i = 0; i < inv_ptr->isotopes.size(); i++) { primary_ptr = master_bsearch(inv_ptr->isotopes[i].elt_name); isotope_number = inv_ptr->isotopes[i].isotope_number; if (primary_ptr == NULL) { error_string = sformatf( - "Element not found for isotope calculation: %s.", - inv_ptr->isotopes[i].elt_name); + "Element not found for isotope calculation: %s.", + inv_ptr->isotopes[i].elt_name); error_msg(error_string, CONTINUE); input_error++; break; } if (primary_ptr->primary != TRUE) { - error_string = sformatf( "Isotope mass-balance may only be used" - " for total element concentrations.\n" - "Secondary species not allowed: %s.", - inv_ptr->isotopes[i].elt_name); + error_string = sformatf("Isotope mass-balance may only be used" + " for total element concentrations.\n" + "Secondary species not allowed: %s.", + inv_ptr->isotopes[i].elt_name); error_msg(error_string, CONTINUE); input_error++; break; @@ -3618,16 +3445,7 @@ count_isotope_unknowns(struct inverse *inv_ptr, /* nonredox element */ if (primary_ptr->s->secondary == NULL) { - isotopes = - (struct isotope *) PHRQ_realloc(isotopes, - (size_t) (count_isotopes + - 1) * - sizeof(struct isotope)); - if (isotopes == NULL) - { - malloc_error(); - return (0); - } + isotopes.resize(count_isotopes + 1); isotopes[count_isotopes].primary = primary_ptr; isotopes[count_isotopes].master = primary_ptr; isotopes[count_isotopes].isotope_number = isotope_number; @@ -3640,7 +3458,7 @@ count_isotope_unknowns(struct inverse *inv_ptr, { /* find master */ - for (k = 0; k < count_master; k++) + for (k = 0; k < (int)master.size(); k++) { if (master[k] == primary_ptr) break; @@ -3648,21 +3466,9 @@ count_isotope_unknowns(struct inverse *inv_ptr, /* sum all secondary for master */ k++; - for (; k < count_master; k++) + for (; k < (int)master.size(); k++) { - if (master[k]->elt->primary != primary_ptr) - break; - isotopes = - (struct isotope *) PHRQ_realloc(isotopes, - (size_t) (count_isotopes - + - 1) * - sizeof(struct isotope)); - if (isotopes == NULL) - { - malloc_error(); - return (0); - } + isotopes.resize(count_isotopes + 1); isotopes[count_isotopes].primary = primary_ptr; isotopes[count_isotopes].master = master[k]; isotopes[count_isotopes].isotope_number = isotope_number; @@ -3671,12 +3477,11 @@ count_isotope_unknowns(struct inverse *inv_ptr, } } } - *isotope_unknowns = isotopes; - return (count_isotopes); + return true; } /* ---------------------------------------------------------------------- */ int Phreeqc:: -check_isotopes(struct inverse *inv_ptr) +check_isotopes(class inverse *inv_ptr) /* ---------------------------------------------------------------------- */ { /* @@ -3686,9 +3491,9 @@ check_isotopes(struct inverse *inv_ptr) int i, ii, j, k, l; int err, found_isotope; LDBLE isotope_number; - struct master *master_ptr, *primary_ptr; + class master *master_ptr, *primary_ptr; cxxSolution *solution_ptr; - struct phase *phase_ptr; + class phase *phase_ptr; char token[MAX_LENGTH]; /* @@ -3703,7 +3508,7 @@ check_isotopes(struct inverse *inv_ptr) * Go through inverse isotopes and make sure isotope data for each solution * inv_ptr->isotopes has elements; inv_ptr->i_u has redox states and uncertainties */ - for (i = 0; i < inv_ptr->count_isotopes; i++) + for (i = 0; i < inv_ptr->isotopes.size(); i++) { err = FALSE; primary_ptr = master_bsearch(inv_ptr->isotopes[i].elt_name); @@ -3712,7 +3517,7 @@ check_isotopes(struct inverse *inv_ptr) std::map < std::string, cxxSolutionIsotope >::iterator kit = solution_ptr->Get_isotopes().begin(); for ( ; kit != solution_ptr->Get_isotopes().end(); kit++) { - struct master *primary_kit = master_bsearch_primary(kit->second.Get_elt_name().c_str()); + class master *primary_kit = master_bsearch_primary(kit->second.Get_elt_name().c_str()); if (primary_kit == primary_ptr && kit->second.Get_isotope_number() == isotope_number) @@ -3751,14 +3556,14 @@ check_isotopes(struct inverse *inv_ptr) std::map < std::string, cxxSolutionIsotope >::iterator kit = solution_ptr->Get_isotopes().begin(); for ( ; kit != solution_ptr->Get_isotopes().end(); kit++) { - struct master *master_kit = master_bsearch(kit->second.Get_elt_name().c_str()); - struct master *primary_kit = master_bsearch_primary(kit->second.Get_elt_name().c_str()); + class master *master_kit = master_bsearch(kit->second.Get_elt_name().c_str()); + class master *primary_kit = master_bsearch_primary(kit->second.Get_elt_name().c_str()); kit->second.Set_x_ratio_uncertainty(NAN); /* * Search for secondary or primary master in inverse uncertainties */ ii = -1; - for (i = 0; i < inv_ptr->count_i_u; i++) + for (i = 0; i < inv_ptr->i_u.size(); i++) { master_ptr = master_bsearch(inv_ptr->i_u[i].elt_name); if (master_ptr == master_kit) @@ -3778,10 +3583,10 @@ check_isotopes(struct inverse *inv_ptr) i = ii; /* use inverse-defined uncertainties first */ #ifdef NPP - if (j < inv_ptr->i_u[i].count_uncertainties + if (j < inv_ptr->i_u[i].uncertainties.size() && !isnan(inv_ptr->i_u[i].uncertainties[j])) #else - if (j < inv_ptr->i_u[i].count_uncertainties + if (j < inv_ptr->i_u[i].uncertainties.size() && inv_ptr->i_u[i].uncertainties[j] != NAN) #endif { @@ -3790,14 +3595,14 @@ check_isotopes(struct inverse *inv_ptr) /* use solution-defined uncertainties second */ } #ifdef NPP - else if (inv_ptr->i_u[i].count_uncertainties > 0 - && !isnan(inv_ptr->i_u[i].uncertainties[inv_ptr->i_u[i].count_uncertainties - 1])) + else if (inv_ptr->i_u[i].uncertainties.size() > 0 + && !isnan(inv_ptr->i_u[i].uncertainties[inv_ptr->i_u[i].uncertainties.size() - 1])) #else - else if (inv_ptr->i_u[i].count_uncertainties > 0 - && inv_ptr->i_u[i].uncertainties[inv_ptr->i_u[i].count_uncertainties - 1] != NAN) + else if (inv_ptr->i_u[i].uncertainties.size() > 0 + && inv_ptr->i_u[i].uncertainties[(size_t)inv_ptr->i_u[i].uncertainties.size() - 1] != NAN) #endif { - kit->second.Set_x_ratio_uncertainty(inv_ptr->i_u[i].uncertainties[inv_ptr->i_u[i].count_uncertainties - 1]); + kit->second.Set_x_ratio_uncertainty(inv_ptr->i_u[i].uncertainties[inv_ptr->i_u[i].uncertainties.size() - 1]); /* use solution-defined uncertainties second */ } @@ -3852,14 +3657,14 @@ check_isotopes(struct inverse *inv_ptr) /* * Check phases for necessary isotope data */ - for (j = 0; j < inv_ptr->count_phases; j++) + for (j = 0; j < inv_ptr->phases.size(); j++) { - for (i = 0; i < inv_ptr->count_isotopes; i++) + for (i = 0; i < inv_ptr->isotopes.size(); i++) { primary_ptr = master_bsearch(inv_ptr->isotopes[i].elt_name); isotope_number = inv_ptr->isotopes[i].isotope_number; found_isotope = FALSE; - for (k = 0; k < inv_ptr->phases[j].count_isotopes; k++) + for (k = 0; k < inv_ptr->phases[j].isotopes.size(); k++) { if (inv_ptr->phases[j].isotopes[k].primary == primary_ptr && inv_ptr->phases[j].isotopes[k].isotope_number == @@ -3904,23 +3709,23 @@ check_isotopes(struct inverse *inv_ptr) } /* ---------------------------------------------------------------------- */ int Phreeqc:: -phase_isotope_inequalities(struct inverse *inv_ptr) +phase_isotope_inequalities(class inverse *inv_ptr) /* ---------------------------------------------------------------------- */ { - int i, j, k; - int column; + size_t column; char token[MAX_LENGTH]; - if (inv_ptr->count_isotopes <= 0) + if (inv_ptr->isotopes.size() <= 0) return OK; - for (i = 0; i < inv_ptr->count_phases; i++) + for (size_t i = 0; i < inv_ptr->phases.size(); i++) { - if (inv_ptr->phases[i].count_isotopes <= 0) + if (inv_ptr->phases[i].isotopes.size() == 0) continue; - for (j = 0; j < inv_ptr->phases[i].count_isotopes; j++) + for (size_t j = 0; j < inv_ptr->phases[i].isotopes.size(); j++) { /* find index number */ - for (k = 0; k < inv_ptr->count_isotopes; k++) + size_t k = 0; + for (k = 0; k < inv_ptr->isotopes.size(); k++) { if (inv_ptr->phases[i].isotopes[j].elt_name == inv_ptr->isotopes[k].elt_name @@ -3930,9 +3735,9 @@ phase_isotope_inequalities(struct inverse *inv_ptr) break; } } - if (k >= inv_ptr->count_isotopes) + if (k >= inv_ptr->isotopes.size()) break; - column = col_phase_isotopes + i * inv_ptr->count_isotopes + k; + column = col_phase_isotopes + i * inv_ptr->isotopes.size() + k; /* * zero column if uncertainty is zero */ @@ -3940,7 +3745,7 @@ phase_isotope_inequalities(struct inverse *inv_ptr) { for (k = 0; k < count_rows; k++) { - array[k * max_column_count + column] = 0.0; + my_array[(size_t)k * max_column_count + (size_t)column] = 0.0; } continue; } @@ -3948,26 +3753,25 @@ phase_isotope_inequalities(struct inverse *inv_ptr) /* * optimization */ - array[(column - col_epsilon) * max_column_count + column] = - SCALE_EPSILON / - inv_ptr->phases[i].isotopes[j].ratio_uncertainty; + my_array[((size_t)column - (size_t)col_epsilon) * max_column_count + (size_t)column] = + SCALE_EPSILON / inv_ptr->phases[i].isotopes[j].ratio_uncertainty; /* * two inequalities to account for absolute value */ /* for phases constrained to precipitate */ if (inv_ptr->phases[i].constraint == PRECIPITATE) { - array[count_rows * max_column_count + col_phases + i] = + my_array[count_rows * max_column_count + (size_t)col_phases + (size_t)i] = inv_ptr->phases[i].isotopes[j].ratio_uncertainty; - array[count_rows * max_column_count + column] = 1.0; + my_array[count_rows * max_column_count + (size_t)column] = 1.0; sprintf(token, "%s %s", inv_ptr->phases[i].phase->name, "iso pos"); row_name[count_rows] = string_hsave(token); count_rows++; - array[count_rows * max_column_count + col_phases + i] = + my_array[count_rows * max_column_count + (size_t)col_phases + (size_t)i] = inv_ptr->phases[i].isotopes[j].ratio_uncertainty; - array[count_rows * max_column_count + column] = -1.0; + my_array[count_rows * max_column_count + (size_t)column] = -1.0; sprintf(token, "%s %s", inv_ptr->phases[i].phase->name, "iso neg"); row_name[count_rows] = string_hsave(token); @@ -3977,17 +3781,17 @@ phase_isotope_inequalities(struct inverse *inv_ptr) } else if (inv_ptr->phases[i].constraint == DISSOLVE) { - array[count_rows * max_column_count + col_phases + i] = + my_array[count_rows * max_column_count + (size_t)col_phases + (size_t)i] = -inv_ptr->phases[i].isotopes[j].ratio_uncertainty; - array[count_rows * max_column_count + column] = -1.0; + my_array[count_rows * max_column_count + (size_t)column] = -1.0; sprintf(token, "%s %s", inv_ptr->phases[i].phase->name, "iso pos"); row_name[count_rows] = string_hsave(token); count_rows++; - array[count_rows * max_column_count + col_phases + i] = + my_array[count_rows * max_column_count + (size_t)col_phases + (size_t)i] = -inv_ptr->phases[i].isotopes[j].ratio_uncertainty; - array[count_rows * max_column_count + column] = 1.0; + my_array[count_rows * max_column_count + (size_t)column] = 1.0; sprintf(token, "%s %s", inv_ptr->phases[i].phase->name, "iso neg"); row_name[count_rows] = string_hsave(token); @@ -4012,7 +3816,7 @@ phase_isotope_inequalities(struct inverse *inv_ptr) /* ---------------------------------------------------------------------- */ int Phreeqc:: -write_optimize_names(struct inverse *inv_ptr) +write_optimize_names(class inverse *inv_ptr) /* ---------------------------------------------------------------------- */ { int i, j, row; @@ -4021,7 +3825,7 @@ write_optimize_names(struct inverse *inv_ptr) /* * epsilons for analytical data */ - for (j = 0; j < inv_ptr->count_elts; j++) + for (j = 0; j < inv_ptr->elts.size(); j++) { for (i = 0; i < inv_ptr->count_solns; i++) { @@ -4054,7 +3858,7 @@ write_optimize_names(struct inverse *inv_ptr) */ for (i = 0; i < inv_ptr->count_solns; i++) { - for (j = 0; j < inv_ptr->count_isotope_unknowns; j++) + for (j = 0; j < inv_ptr->isotope_unknowns.size(); j++) { sprintf(token, "%s %d%s %d", "optimize", (int) inv_ptr->isotope_unknowns[j].isotope_number, @@ -4067,9 +3871,9 @@ write_optimize_names(struct inverse *inv_ptr) * phase isotopes */ - for (i = 0; i < inv_ptr->count_phases; i++) + for (i = 0; i < inv_ptr->phases.size(); i++) { - for (j = 0; j < inv_ptr->count_isotopes; j++) + for (j = 0; j < inv_ptr->isotopes.size(); j++) { sprintf(token, "%s %s %d%s", "optimize", inv_ptr->phases[i].phase->name, @@ -4084,12 +3888,11 @@ write_optimize_names(struct inverse *inv_ptr) /* ---------------------------------------------------------------------- */ void Phreeqc:: -dump_netpath(struct inverse *inverse_ptr) +dump_netpath(class inverse *inverse_ptr) /* ---------------------------------------------------------------------- */ { - int j; std::string string; - char *ptr; + //const char* cptr; if (inverse_ptr->netpath == NULL) return; @@ -4121,21 +3924,16 @@ dump_netpath(struct inverse *inverse_ptr) { if (it->second.Get_n_user() < 0) continue; - - /* flags and description */ - char * description = string_duplicate(it->second.Get_description().c_str()); - ptr = description; - j = copy_token(string, &ptr); - if (j != EMPTY) + if (it->second.Get_description().size() > 0) { - string = sformatf("%s", description); + string = it->second.Get_description(); } else { string = sformatf("Solution %d", it->second.Get_n_user()); } fprintf(netpath_file, "4020%s\n", string.c_str()); - description = (char *) free_check_null(description); + //description = (char *) free_check_null(description); /* lat/lon */ fprintf(netpath_file, " # Lat/lon\n"); @@ -4432,7 +4230,7 @@ print_total_multi(FILE * l_netpath_file, cxxSolution *solution_ptr, } /* ---------------------------------------------------------------------- */ int Phreeqc:: -dump_netpath_pat(struct inverse *inv_ptr) +dump_netpath_pat(class inverse *inv_ptr) /* ---------------------------------------------------------------------- */ { /* @@ -4440,34 +4238,32 @@ dump_netpath_pat(struct inverse *inv_ptr) */ int i, j, k; cxxSolution *solution_ptr, *solution_ptr_orig; - struct master *master_ptr; + class master *master_ptr; LDBLE d1, d2, d3; - char *ptr; LDBLE sum, sum1, sum_iso, d; - LDBLE *array_save, *l_delta_save; - int count_unknowns_save, max_row_count_save, max_column_count_save, temp, - count_current_solutions, temp_punch; + std::vector array_save, l_delta_save; + size_t count_unknowns_save, max_row_count_save, + max_column_count_save, count_current_solutions; + int temp, temp_punch; int solnmap[10][2]; - struct isotope *isotope_ptr; FILE *model_file; - struct elt_list *next_elt; - int exch, column; + const class elt_list *next_elt; + int exch; + size_t column; LDBLE f; - struct rxn_token *rxn_ptr; + class rxn_token *rxn_ptr; /* * print solution data, epsilons, and revised data */ if (inv_ptr->pat == NULL) return (OK); - array_save = array; + array_save = my_array; l_delta_save = delta; count_unknowns_save = count_unknowns; max_row_count_save = max_row_count; max_column_count_save = max_column_count; - array = NULL; - delta = NULL; count_unknowns = 0; max_row_count = 0; max_column_count = 0; @@ -4505,7 +4301,7 @@ dump_netpath_pat(struct inverse *inv_ptr) /*master_alk->total = solution_ptr->total_alkalinity; */ /* update total in master */ - for (j = 0; j < inv_ptr->count_elts; j++) + for (j = 0; j < inv_ptr->elts.size(); j++) { if (inv_ptr->elts[j].master->s == s_eminus) continue; @@ -4527,10 +4323,10 @@ dump_netpath_pat(struct inverse *inv_ptr) solution_ptr->Set_totals(nd); /* update isotopes in solution */ - if (inv_ptr->count_isotopes > 0) + if (inv_ptr->isotopes.size() > 0) { /* adjustments to solution isotope composition */ - for (j = 0; j < inv_ptr->count_isotope_unknowns; j++) + for (j = 0; j < inv_ptr->isotope_unknowns.size(); j++) { std::map < std::string, cxxSolutionIsotope >::iterator kit = solution_ptr->Get_isotopes().begin(); for ( ; kit != solution_ptr->Get_isotopes().end(); kit++) @@ -4542,7 +4338,7 @@ dump_netpath_pat(struct inverse *inv_ptr) continue; d1 = kit->second.Get_ratio(); d2 = inv_delta1[col_isotopes + - i * inv_ptr->count_isotope_unknowns + + i * inv_ptr->isotope_unknowns.size() + j] / inv_delta1[i]; d3 = d1 + d2; kit->second.Set_ratio(d3); @@ -4563,10 +4359,8 @@ dump_netpath_pat(struct inverse *inv_ptr) solution_ptr = Utilities::Rxn_find(Rxn_solution_map, -7); /* Header */ - char * description = string_duplicate(solution_ptr_orig->Get_description().c_str()); - ptr = description; std::string string; - if (copy_token(string, &ptr) != EMPTY) + if (solution_ptr_orig->Get_description().size() > 0) { fprintf(netpath_file, "%d. %s\n", count_inverse_models, solution_ptr_orig->Get_description().c_str()); @@ -4576,7 +4370,6 @@ dump_netpath_pat(struct inverse *inv_ptr) fprintf(netpath_file, "%d. Solution %d\n", count_inverse_models, solution_ptr_orig->Get_n_user()); } - description = (char *) free_check_null(description); /* bookkeeping */ count_pat_solutions++; @@ -4905,10 +4698,7 @@ dump_netpath_pat(struct inverse *inv_ptr) fprintf(netpath_file, "%14d # Well number\n", count_pat_solutions); } - //free_model_allocs(); - array = (LDBLE *) free_check_null(array); - delta = (LDBLE *) free_check_null(delta); - array = array_save; + my_array = array_save; delta = l_delta_save; count_unknowns = count_unknowns_save; max_row_count = max_row_count_save; @@ -4948,11 +4738,11 @@ dump_netpath_pat(struct inverse *inv_ptr) * Write elements */ xsolution_zero(); - for (j = 0; j < count_master; j++) + for (j = 0; j < (int)master.size(); j++) { master[j]->in = FALSE; } - for (j = 0; j < inv_ptr->count_elts; j++) + for (j = 0; j < inv_ptr->elts.size(); j++) { master_ptr = inv_ptr->elts[j].master; master_ptr = master_ptr->elt->primary; @@ -4968,7 +4758,7 @@ dump_netpath_pat(struct inverse *inv_ptr) continue; master_ptr->in = TRUE; } - for (j = 0; j < count_master; j++) + for (j = 0; j < (int)master.size(); j++) { if (master[j]->in == TRUE) { @@ -4981,7 +4771,7 @@ dump_netpath_pat(struct inverse *inv_ptr) /* * Add isotope mole balance */ - for (j = 0; j < inv_ptr->count_isotopes; j++) + for (j = 0; j < inv_ptr->isotopes.size(); j++) { string = sformatf("%d%s", (int) inv_ptr->isotopes[j].isotope_number, inv_ptr->isotopes[j].elt_name); @@ -5009,9 +4799,9 @@ dump_netpath_pat(struct inverse *inv_ptr) /* * Write phase information */ - for (i = 0; i < inv_ptr->count_phases; i++) + for (size_t i = 0; i < inv_ptr->phases.size(); i++) { - j = col_phases + i; + size_t j = col_phases + i; /* skip if not in model */ /* if (equal (inv_delta1[j], 0.0, toler) == TRUE) continue;*/ @@ -5022,7 +4812,7 @@ dump_netpath_pat(struct inverse *inv_ptr) * Determine if exchange reaction */ exch = FALSE; - for (next_elt = inv_ptr->phases[i].phase->next_elt; + for (next_elt = &inv_ptr->phases[i].phase->next_elt[0]; next_elt->elt != NULL; next_elt++) { if (strcmp(next_elt->elt->name, "X") == 0) @@ -5075,7 +4865,7 @@ dump_netpath_pat(struct inverse *inv_ptr) /* * Write stoichiometry */ - for (next_elt = inv_ptr->phases[i].phase->next_elt; + for (next_elt = &inv_ptr->phases[i].phase->next_elt[0]; next_elt->elt != NULL; next_elt++) { f = 1.0; @@ -5106,7 +4896,7 @@ dump_netpath_pat(struct inverse *inv_ptr) */ std::string token; sum = 0; - for (rxn_ptr = inv_ptr->phases[i].phase->rxn_s->token + 1; + for (rxn_ptr = &inv_ptr->phases[i].phase->rxn_s.token[0] + 1; rxn_ptr->s != NULL; rxn_ptr++) { if (rxn_ptr->s == s_hplus) @@ -5136,7 +4926,7 @@ dump_netpath_pat(struct inverse *inv_ptr) std::string::iterator e = string.end(); CParser::copy_token(token, b, e); CParser::copy_token(string1, b, e); - sscanf(string1.c_str(), SCANFORMAT, &f); + (void)sscanf(string1.c_str(), SCANFORMAT, &f); sum += f * rxn_ptr->coef; } } @@ -5146,30 +4936,30 @@ dump_netpath_pat(struct inverse *inv_ptr) * Add isotopes */ - for (k = 0; k < inv_ptr->phases[i].count_isotopes; k++) + for (k = 0; k < inv_ptr->phases[i].isotopes.size(); k++) { - isotope_ptr = inv_ptr->phases[i].isotopes; - d1 = isotope_ptr[k].ratio; - for (j = 0; j < inv_ptr->count_isotopes; j++) + std::vector& isotope_ref = inv_ptr->phases[i].isotopes; + d1 = isotope_ref[k].ratio; + for (j = 0; j < inv_ptr->isotopes.size(); j++) { - if ((inv_ptr->isotopes[j].elt_name != isotope_ptr[k].elt_name) + if ((inv_ptr->isotopes[j].elt_name != isotope_ref[k].elt_name) || (inv_ptr->isotopes[j].isotope_number != - isotope_ptr[k].isotope_number)) + isotope_ref[k].isotope_number)) continue; break; } d2 = 0.0; - if (j < inv_ptr->count_isotopes) + if (j < inv_ptr->isotopes.size()) { - column = col_phase_isotopes + i * inv_ptr->count_isotopes + j; + column = col_phase_isotopes + i * inv_ptr->isotopes.size() + j; if (inv_delta1[col_phases + i] != 0.0) { d2 = inv_delta1[column] / inv_delta1[col_phases + i]; } } d3 = d1 + d2; - string = sformatf("%d%s", (int) isotope_ptr[k].isotope_number, - isotope_ptr[k].elt_name); + string = sformatf("%d%s", (int)isotope_ref[k].isotope_number, + isotope_ref[k].elt_name); if (strcmp(string.c_str(), "13C") == 0) fprintf(model_file, " %-2s%12.7f", "I1", (double) d3); if (strcmp(string.c_str(), "14C") == 0) @@ -5215,7 +5005,7 @@ dump_netpath_pat(struct inverse *inv_ptr) /*fprintf(model_file,"%2d", i); */ /* not written, 1, mixing, number of mixing wells -1 */ fprintf(model_file, "%2d", 3); /* 2, exchange */ i = 0; - if (inv_ptr->count_isotopes > 0) + if (inv_ptr->isotopes.size() > 0) i = 1; fprintf(model_file, "%2d", i); /* 3, Rayleigh */ fprintf(model_file, "%2d", 1); /* 4, A0 model */ diff --git a/isotopes.cpp b/isotopes.cpp index 4ced82a5..68570473 100644 --- a/isotopes.cpp +++ b/isotopes.cpp @@ -2,6 +2,13 @@ #include "phqalloc.h" #include "Solution.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif /* ---------------------------------------------------------------------- */ int Phreeqc:: @@ -23,12 +30,12 @@ read_isotopes(void) */ int l; - struct master_isotope *master_isotope_ptr; + class master_isotope *master_isotope_ptr; char token[MAX_LENGTH]; - struct element *elt_ptr; + class element *elt_ptr; int return_value, opt, opt_save; - char *next_char; + const char* next_char; const char *opt_list[] = { "isotope", /* 0 */ "total_is_major" /* 1 */ @@ -106,7 +113,7 @@ read_isotopes(void) input_error++; break; } - sscanf(token, SCANFORMAT, &(master_isotope_ptr->standard)); + (void)sscanf(token, SCANFORMAT, &(master_isotope_ptr->standard)); opt_save = OPTION_DEFAULT; break; case 1: /* total_is_major_isotope */ @@ -160,25 +167,16 @@ read_calculate_values(void) * ERROR if error occurred reading data * */ - char *ptr; - int l, length, line_length; + int l; int return_value, opt, opt_save; char token[MAX_LENGTH]; - struct calculate_value *calculate_value_ptr; - char *description; - int n_user, n_user_end; - char *next_char; + class calculate_value *calculate_value_ptr; + const char* next_char; const char *opt_list[] = { "start", /* 0 */ "end" /* 1 */ }; int count_opt_list = 2; -/* - * Read advection number (not currently used) - */ - ptr = line; - read_number_description(ptr, &n_user, &n_user_end, &description); - description = (char *) free_check_null(description); opt_save = OPTION_DEFAULT; /* * Read lines @@ -226,37 +224,19 @@ read_calculate_values(void) } calculate_value_ptr = calculate_value_store(token, TRUE); calculate_value_ptr->new_def = TRUE; - calculate_value_ptr->commands = - (char *) PHRQ_malloc(sizeof(char)); - if (calculate_value_ptr->commands == NULL) - { - malloc_error(); - } - else - { - calculate_value_ptr->commands[0] = '\0'; - calculate_value_ptr->linebase = NULL; - calculate_value_ptr->varbase = NULL; - calculate_value_ptr->loopbase = NULL; - } + calculate_value_ptr->commands.clear(); + calculate_value_ptr->linebase = NULL; + calculate_value_ptr->varbase = NULL; + calculate_value_ptr->loopbase = NULL; opt_save = OPT_1; break; case OPT_1: /* read command */ if (calculate_value_ptr) { - length = (int) strlen(calculate_value_ptr->commands); - line_length = (int) strlen(line); - calculate_value_ptr->commands = - (char *) PHRQ_realloc(calculate_value_ptr->commands, - (size_t) (length + line_length + - 2) * sizeof(char)); - if (calculate_value_ptr->commands == NULL) - malloc_error(); - calculate_value_ptr->commands[length] = ';'; - calculate_value_ptr->commands[length + 1] = '\0'; - strcat((calculate_value_ptr->commands), line); - opt_save = OPT_1; + calculate_value_ptr->commands.append(";\0"); + calculate_value_ptr->commands.append(line); + opt_save = OPT_1; } else { @@ -294,24 +274,15 @@ read_isotope_ratios(void) * ERROR if error occurred reading data * */ - char *ptr; int l; int return_value, opt, opt_save; char token[MAX_LENGTH]; - struct isotope_ratio *isotope_ratio_ptr; - char *description; - int n_user, n_user_end; - char *next_char; + class isotope_ratio *isotope_ratio_ptr; + const char* next_char; const char *opt_list[] = { "no_options" /* 0 */ }; int count_opt_list = 0; -/* - * Read number (not currently used) - */ - ptr = line; - read_number_description(ptr, &n_user, &n_user_end, &description); - description = (char *) free_check_null(description); opt_save = OPTION_DEFAULT; /* * Read lines @@ -393,24 +364,15 @@ read_isotope_alphas(void) * ERROR if error occurred reading data * */ - char *ptr; int l; int return_value, opt, opt_save; char token[MAX_LENGTH]; - struct isotope_alpha *isotope_alpha_ptr; - char *description; - int n_user, n_user_end; - char *next_char; + class isotope_alpha *isotope_alpha_ptr; + const char* next_char; const char *opt_list[] = { "no_options" /* 0 */ }; int count_opt_list = 0; -/* - * Read number (not currently used) - */ - ptr = line; - read_number_description(ptr, &n_user, &n_user_end, &description); - description = (char *) free_check_null(description); opt_save = OPTION_DEFAULT; /* * Read lines @@ -473,12 +435,12 @@ add_isotopes(cxxSolution &solution_ref) /* ---------------------------------------------------------------------- */ { int i; - struct master_isotope *master_isotope_ptr; + class master_isotope *master_isotope_ptr; LDBLE total_moles; /* * zero out isotopes */ - for (i = 0; i < count_master_isotope; i++) + for (i = 0; i < (int)master_isotope.size(); i++) { master_isotope[i]->moles = 0; } @@ -513,7 +475,7 @@ add_isotopes(cxxSolution &solution_ref) * Set isotopes flag */ initial_solution_isotopes = FALSE; - for (i = 0; i < count_master_isotope; i++) + for (i = 0; i < (int)master_isotope.size(); i++) { if (master_isotope[i]->minor_isotope == TRUE && master_isotope[i]->moles > 0) @@ -526,14 +488,14 @@ add_isotopes(cxxSolution &solution_ref) /* ---------------------------------------------------------------------- */ int Phreeqc:: -calculate_isotope_moles(struct element *elt_ptr, +calculate_isotope_moles(class element *elt_ptr, cxxSolution *solution_ptr, LDBLE total_moles) /* ---------------------------------------------------------------------- */ { int i, j, l_iter; int count_isotopes, total_is_major; - struct master_isotope *master_isotope_ptr, *master_isotope_ptr1; - struct master_isotope list[MAX_ELTS]; + class master_isotope *master_isotope_ptr, *master_isotope_ptr1; + class master_isotope list[MAX_ELTS]; LDBLE m_major, tot; /* * Get total concentration of elt_ptr @@ -555,8 +517,9 @@ calculate_isotope_moles(struct element *elt_ptr, master_isotope_ptr = master_isotope_search("H"); if ((master_isotope_ptr != NULL) && (master_isotope_ptr->elt == elt_ptr)) { - memcpy(&(list[count_isotopes]), master_isotope_ptr, - sizeof(struct master_isotope)); + // memcpy(&(list[count_isotopes]), master_isotope_ptr, + // sizeof(class master_isotope)); + list[count_isotopes] = *master_isotope_ptr; list[count_isotopes].ratio = 1.0; if (list[count_isotopes].minor_isotope == FALSE) { @@ -567,8 +530,9 @@ calculate_isotope_moles(struct element *elt_ptr, master_isotope_ptr = master_isotope_search("O"); if ((master_isotope_ptr != NULL) && (master_isotope_ptr->elt == elt_ptr)) { - memcpy(&(list[count_isotopes]), master_isotope_ptr, - sizeof(struct master_isotope)); + // memcpy(&(list[count_isotopes]), master_isotope_ptr, + // sizeof(class master_isotope)); + list[count_isotopes] = *master_isotope_ptr; list[count_isotopes].ratio = 1.0; if (list[count_isotopes].minor_isotope == FALSE) { @@ -586,8 +550,9 @@ calculate_isotope_moles(struct element *elt_ptr, continue; if (master_isotope_ptr->elt != elt_ptr) continue; - memcpy(&(list[count_isotopes]), master_isotope_ptr, - sizeof(struct master_isotope)); + // memcpy(&(list[count_isotopes]), master_isotope_ptr, + // sizeof(class master_isotope)); + list[count_isotopes] = *master_isotope_ptr; if (list[count_isotopes].minor_isotope == FALSE) { total_is_major = list[count_isotopes].total_is_major; @@ -662,14 +627,15 @@ calculate_isotope_moles(struct element *elt_ptr, /* * Update master_isotope */ - for (j = 0; j < count_master_isotope; j++) + for (j = 0; j < (int)master_isotope.size(); j++) { for (i = 0; i < count_isotopes; i++) { if (list[i].name == master_isotope[j]->name) { - memcpy(master_isotope[j], &(list[i]), - sizeof(struct master_isotope)); + // memcpy(master_isotope[j], &(list[i]), + // sizeof(class master_isotope)); + *master_isotope[j] = list[i]; } } } @@ -703,7 +669,7 @@ calculate_isotope_moles(struct element *elt_ptr, /* ---------------------------------------------------------------------- */ int Phreeqc:: -from_permil(struct master_isotope *master_isotope_ptr, LDBLE major_total) +from_permil(class master_isotope *master_isotope_ptr, LDBLE major_total) /* ---------------------------------------------------------------------- */ { LDBLE r; @@ -716,7 +682,7 @@ from_permil(struct master_isotope *master_isotope_ptr, LDBLE major_total) /* ---------------------------------------------------------------------- */ int Phreeqc:: -from_pct(struct master_isotope *master_isotope_ptr, LDBLE total_moles) +from_pct(class master_isotope *master_isotope_ptr, LDBLE total_moles) /* ---------------------------------------------------------------------- */ { master_isotope_ptr->moles = @@ -727,7 +693,7 @@ from_pct(struct master_isotope *master_isotope_ptr, LDBLE total_moles) /* ---------------------------------------------------------------------- */ int Phreeqc:: -from_tu(struct master_isotope *master_isotope_ptr) +from_tu(class master_isotope *master_isotope_ptr) /* ---------------------------------------------------------------------- */ { master_isotope_ptr->moles = @@ -738,7 +704,7 @@ from_tu(struct master_isotope *master_isotope_ptr) /* ---------------------------------------------------------------------- */ int Phreeqc:: -from_pcil(struct master_isotope *master_isotope_ptr) +from_pcil(class master_isotope *master_isotope_ptr) /* ---------------------------------------------------------------------- */ { master_isotope_ptr->moles = @@ -770,12 +736,12 @@ print_initial_solution_isotopes(void) print_centered("Isotopes"); output_msg(sformatf( "%10s\t%12s\t%12s\t%12s\t%12s\n\n", "Isotope", "Molality", "Moles", "Ratio", "Units")); - for (i = 0; i < count_master_isotope; i++) + for (i = 0; i < (int)master_isotope.size(); i++) { if (master_isotope[i]->minor_isotope == FALSE) { print_isotope = FALSE; - for (j = 0; j < count_master_isotope; j++) + for (j = 0; j < (int)master_isotope.size(); j++) { if ((master_isotope[j]->elt == master_isotope[i]->elt) && (master_isotope[j]->minor_isotope == TRUE) && @@ -794,7 +760,7 @@ print_initial_solution_isotopes(void) master_isotope[i]->name, (double) (master_isotope[i]->moles / mass_water_aq_x), (double) master_isotope[i]->moles)); - for (j = 0; j < count_master_isotope; j++) + for (j = 0; j < (int)master_isotope.size(); j++) { if (i == j) continue; @@ -827,8 +793,8 @@ punch_isotopes(void) */ //int i; LDBLE iso; - struct isotope_ratio *isotope_ratio_ptr; - struct master_isotope *master_isotope_ptr; + class isotope_ratio *isotope_ratio_ptr; + class master_isotope *master_isotope_ptr; //if (punch.in == FALSE || punch.isotopes == FALSE) // return (OK); @@ -887,16 +853,12 @@ punch_calculate_values(void) */ //int i; LDBLE result; - struct calculate_value *calculate_value_ptr; + class calculate_value *calculate_value_ptr; char l_command[] = "run"; if (current_selected_output->Get_calculate_values().size() == 0) return OK; - //if (punch.in == FALSE || punch.calculate_values == FALSE) - // return (OK); - //if (punch.count_calculate_values == 0) - // return (OK); - //for (i = 0; i < punch.count_calculate_values; i++) + for (size_t i = 0; i < current_selected_output->Get_calculate_values().size(); i++) { result = MISSING; @@ -919,7 +881,7 @@ punch_calculate_values(void) if (calculate_value_ptr->new_def == TRUE) { if (basic_compile - (calculate_value_ptr->commands, &calculate_value_ptr->linebase, + (calculate_value_ptr->commands.c_str(), &calculate_value_ptr->linebase, &calculate_value_ptr->varbase, &calculate_value_ptr->loopbase) != 0) { @@ -982,8 +944,8 @@ print_isotope_ratios(void) */ int i, j; int print_isotope; - struct master *master_ptr; - struct master_isotope *master_isotope_ptr; + class master *master_ptr; + class master_isotope *master_isotope_ptr; char token[MAX_LENGTH]; @@ -995,7 +957,7 @@ print_isotope_ratios(void) * Print heading */ print_isotope = FALSE; - for (i = 0; i < count_master_isotope; i++) + for (i = 0; i < (int)master_isotope.size(); i++) { if (master_isotope[i]->minor_isotope == FALSE) continue; @@ -1015,7 +977,7 @@ print_isotope_ratios(void) output_msg(sformatf( "%25s\t%12s\t%15s\n\n", "Isotope Ratio", "Ratio", "Input Units")); - for (j = 0; j < count_isotope_ratio; j++) + for (j = 0; j < (int)isotope_ratio.size(); j++) { if (isotope_ratio[j]->ratio == MISSING) continue; @@ -1045,7 +1007,7 @@ print_isotope_alphas(void) */ int i, j; int print_isotope; - struct master *master_ptr; + class master *master_ptr; char token[MAX_LENGTH]; LDBLE log_alpha; @@ -1057,7 +1019,7 @@ print_isotope_alphas(void) * Print heading */ print_isotope = FALSE; - for (i = 0; i < count_master_isotope; i++) + for (i = 0; i < (int)master_isotope.size(); i++) { if (master_isotope[i]->minor_isotope == FALSE) continue; @@ -1080,7 +1042,7 @@ print_isotope_alphas(void) " Isotope Ratio", "Solution alpha", "Solution", (double) tc_x)); - for (j = 0; j < count_isotope_alpha; j++) + for (j = 0; j < (int)isotope_alpha.size(); j++) { if (isotope_alpha[j]->value == MISSING) continue; @@ -1122,64 +1084,24 @@ calculate_values(void) /* ---------------------------------------------------------------------- */ { int j; - struct calculate_value *calculate_value_ptr; - struct isotope_ratio *isotope_ratio_ptr; - struct isotope_alpha *isotope_alpha_ptr; - struct master_isotope *master_isotope_ptr; + class calculate_value *calculate_value_ptr; + class isotope_ratio *isotope_ratio_ptr; + class isotope_alpha *isotope_alpha_ptr; + class master_isotope *master_isotope_ptr; char l_command[] = "run"; /* * initialize ratios as missing */ - for (j = 0; j < count_calculate_value; j++) + for (j = 0; j < calculate_value.size(); j++) { calculate_value[j]->calculated = FALSE; calculate_value[j]->value = MISSING; } -#ifdef SKIP - for (j = 0; j < count_calculate_value; j++) - { - calculate_value_ptr = calculate_value[j]; - rate_moles = NAN; - if (calculate_value_ptr->new_def == TRUE) - { - if (basic_compile - (calculate_value[j]->commands, &calculate_value[j]->linebase, - &calculate_value[j]->varbase, - &calculate_value[j]->loopbase) != 0) - { - error_string = sformatf( - "Fatal Basic error in CALCULATE_VALUES %s.", - calculate_value[j]->name); - error_msg(error_string, STOP); - } - calculate_value_ptr->new_def = FALSE; - } - if (basic_run - (l_command, calculate_value[j]->linebase, - calculate_value[j]->varbase, calculate_value[j]->loopbase) != 0) - { - error_string = sformatf( "Fatal Basic error in calculate_value %s.", - calculate_value[j]->name); - error_msg(error_string, STOP); - } - if (rate_moles == NAN) - { - error_string = sformatf( "Calculated value not SAVEed for %s.", - calculate_value[j]->name); - error_msg(error_string, STOP); - } - else - { - calculate_value[j]->calculated = TRUE; - calculate_value[j]->value = rate_moles; - } - } -#endif if (pr.isotope_ratios == TRUE) { - for (j = 0; j < count_isotope_ratio; j++) + for (j = 0; j < (int)isotope_ratio.size(); j++) { isotope_ratio_ptr = isotope_ratio[j]; master_isotope_ptr = @@ -1192,7 +1114,7 @@ calculate_values(void) if (calculate_value_ptr->new_def == TRUE) { if (basic_compile - (calculate_value_ptr->commands, &calculate_value_ptr->linebase, + (calculate_value_ptr->commands.c_str(), &calculate_value_ptr->linebase, &calculate_value_ptr->varbase, &calculate_value_ptr->loopbase) != 0) { @@ -1246,7 +1168,7 @@ calculate_values(void) } if (pr.isotope_alphas == TRUE) { - for (j = 0; j < count_isotope_alpha; j++) + for (j = 0; j < (int)isotope_alpha.size(); j++) { isotope_alpha_ptr = isotope_alpha[j]; calculate_value_ptr = calculate_value_search(isotope_alpha_ptr->name); @@ -1259,7 +1181,7 @@ calculate_values(void) if (calculate_value_ptr->new_def == TRUE) { if (basic_compile - (calculate_value_ptr->commands, &calculate_value_ptr->linebase, + (calculate_value_ptr->commands.c_str(), &calculate_value_ptr->linebase, &calculate_value_ptr->varbase, &calculate_value_ptr->loopbase) != 0) { @@ -1306,110 +1228,9 @@ calculate_values(void) } return (OK); } -#ifdef SKIP -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -calculate_values(void) -/* ---------------------------------------------------------------------- */ -{ - int j; - struct calculate_value *calculate_value_ptr; - struct isotope_ratio *isotope_ratio_ptr; - struct isotope_alpha *isotope_alpha_ptr; - struct master_isotope *master_isotope_ptr; - char l_command[] = "run"; - - - /* - * initialize ratios as missing - */ - for (j = 0; j < count_calculate_value; j++) - { - calculate_value[j]->calculated = FALSE; - calculate_value[j]->value = MISSING; - } - for (j = 0; j < count_calculate_value; j++) - { - calculate_value_ptr = calculate_value[j]; - rate_moles = NAN; - if (calculate_value_ptr->new_def == TRUE) - { - if (basic_compile - (calculate_value[j]->commands, &calculate_value[j]->linebase, - &calculate_value[j]->varbase, - &calculate_value[j]->loopbase) != 0) - { - error_string = sformatf( - "Fatal Basic error in CALCULATE_VALUES %s.", - calculate_value[j]->name); - error_msg(error_string, STOP); - } - calculate_value_ptr->new_def = FALSE; - } - if (basic_run - (l_command, calculate_value[j]->linebase, - calculate_value[j]->varbase, calculate_value[j]->loopbase) != 0) - { - error_string = sformatf( "Fatal Basic error in calculate_value %s.", - calculate_value[j]->name); - error_msg(error_string, STOP); - } - if (rate_moles == NAN) - { - error_string = sformatf( "Calculated value not SAVEed for %s.", - calculate_value[j]->name); - error_msg(error_string, STOP); - } - else - { - calculate_value[j]->calculated = TRUE; - calculate_value[j]->value = rate_moles; - } - } - for (j = 0; j < count_isotope_ratio; j++) - { - isotope_ratio_ptr = isotope_ratio[j]; - master_isotope_ptr = - master_isotope_search(isotope_ratio_ptr->isotope_name); - calculate_value_ptr = calculate_value_search(isotope_ratio_ptr->name); - /* - * Calculate converted isotope ratio - */ - if (calculate_value_ptr->value == MISSING) - { - isotope_ratio_ptr->ratio = MISSING; - isotope_ratio_ptr->converted_ratio = MISSING; - } - else - { - isotope_ratio_ptr->ratio = calculate_value_ptr->value; - isotope_ratio_ptr->converted_ratio = - convert_isotope(master_isotope_ptr, - calculate_value_ptr->value); - } - } - for (j = 0; j < count_isotope_alpha; j++) - { - isotope_alpha_ptr = isotope_alpha[j]; - calculate_value_ptr = calculate_value_search(isotope_alpha_ptr->name); - /* - * Calculate converted isotope ratio - */ - if (calculate_value_ptr->value == MISSING) - { - isotope_alpha_ptr->value = MISSING; - } - else - { - isotope_alpha_ptr->value = calculate_value_ptr->value; - } - } - return (OK); -} -#endif /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -convert_isotope(struct master_isotope * master_isotope_ptr, LDBLE ratio) +convert_isotope(class master_isotope * master_isotope_ptr, LDBLE ratio) /* ---------------------------------------------------------------------- */ { const char *units; @@ -1446,16 +1267,16 @@ convert_isotope(struct master_isotope * master_isotope_ptr, LDBLE ratio) */ /* ---------------------------------------------------------------------- */ -struct master_isotope * Phreeqc:: +class master_isotope * Phreeqc:: master_isotope_store(const char *name, int replace_if_found) /* ---------------------------------------------------------------------- */ { /* - * Function locates the string "name" in the hash table for master_isotope. + * Function locates the string "name" in the map for master_isotope. * * Pointer to a master_isotope structure is always returned. * - * If the string is not found, a new entry is made in the hash table. Pointer to + * If the string is not found, a new entry is made in the map. Pointer to * the new structure is returned. * If "name" is found and replace is true, pointers in old master_isotope structure * are freed and replaced with additional input. @@ -1471,60 +1292,41 @@ master_isotope_store(const char *name, int replace_if_found) * pointer to master_isotope structure "master_isotope" where "name" can be found. */ int n; - struct master_isotope *master_isotope_ptr; - ENTRY item, *found_item; - char token[MAX_LENGTH]; + class master_isotope *master_isotope_ptr; /* * Search list */ - strcpy(token, name); - - item.key = token; - item.data = NULL; - found_item = hsearch_multi(master_isotope_hash_table, item, FIND); - - if (found_item != NULL && replace_if_found == FALSE) + std::map::iterator mi_it = + master_isotope_map.find(name); + if (mi_it != master_isotope_map.end() && replace_if_found == FALSE) { - master_isotope_ptr = (struct master_isotope *) (found_item->data); + master_isotope_ptr = mi_it->second; return (master_isotope_ptr); } - else if (found_item != NULL && replace_if_found == TRUE) + else if (mi_it != master_isotope_map.end() && replace_if_found == TRUE) { - master_isotope_ptr = (struct master_isotope *) (found_item->data); + master_isotope_ptr = mi_it->second; master_isotope_init(master_isotope_ptr); } else { - n = count_master_isotope++; - /* make sure there is space in s */ - if (count_master_isotope >= max_master_isotope) - { - space((void **) ((void *) &master_isotope), count_master_isotope, - &max_master_isotope, sizeof(struct master_isotope *)); - } + n = (int)master_isotope.size(); + master_isotope.resize((size_t)n + 1); /* Make new master_isotope structure */ master_isotope[n] = master_isotope_alloc(); master_isotope_ptr = master_isotope[n]; } /* set name and z in pointer in master_isotope structure */ - master_isotope_ptr->name = string_hsave(token); + master_isotope_ptr->name = string_hsave(name); /* - * Update hash table + * Update map */ - item.key = master_isotope_ptr->name; - item.data = (void *) master_isotope_ptr; - found_item = hsearch_multi(master_isotope_hash_table, item, ENTER); - if (found_item == NULL) - { - error_string = sformatf( "Hash table error in master_isotope_store."); - error_msg(error_string, CONTINUE); - } - + master_isotope_map[name] = master_isotope_ptr; return (master_isotope_ptr); } /* ---------------------------------------------------------------------- */ -struct master_isotope * Phreeqc:: +class master_isotope * Phreeqc:: master_isotope_alloc(void) /* ---------------------------------------------------------------------- */ /* @@ -1533,11 +1335,7 @@ master_isotope_alloc(void) * return: pointer to a master_isotope structure */ { - struct master_isotope *master_isotope_ptr; - master_isotope_ptr = - (struct master_isotope *) PHRQ_malloc(sizeof(struct master_isotope)); - if (master_isotope_ptr == NULL) - malloc_error(); + class master_isotope *master_isotope_ptr = new class master_isotope; /* * set pointers in structure to NULL, variables to zero */ @@ -1548,7 +1346,7 @@ master_isotope_alloc(void) /* ---------------------------------------------------------------------- */ int Phreeqc:: -master_isotope_init(struct master_isotope *master_isotope_ptr) +master_isotope_init(class master_isotope *master_isotope_ptr) /* ---------------------------------------------------------------------- */ /* * return: pointer to a master_isotope structure @@ -1574,12 +1372,12 @@ master_isotope_init(struct master_isotope *master_isotope_ptr) } /* ---------------------------------------------------------------------- */ -struct master_isotope * Phreeqc:: +class master_isotope * Phreeqc:: master_isotope_search(const char *name) /* ---------------------------------------------------------------------- */ { /* - * Function locates the string "name" in the hash table for master_isotope. + * Function locates the string "name" in the map for master_isotope. * * Arguments: * name input, character string to be found in "master_isotope". @@ -1588,21 +1386,15 @@ master_isotope_search(const char *name) * pointer to master_isotope structure "master_isotope" where "name" can be found. * or NULL if not found. */ - struct master_isotope *master_isotope_ptr; - ENTRY item, *found_item; - char token[MAX_LENGTH]; + class master_isotope* master_isotope_ptr = NULL; /* * Search list */ - strcpy(token, name); - - item.key = token; - item.data = NULL; - found_item = hsearch_multi(master_isotope_hash_table, item, FIND); - - if (found_item != NULL) + std::map::iterator mi_it = + master_isotope_map.find(name); + if (mi_it != master_isotope_map.end()) { - master_isotope_ptr = (struct master_isotope *) (found_item->data); + master_isotope_ptr = mi_it->second; return (master_isotope_ptr); } return (NULL); @@ -1613,16 +1405,16 @@ master_isotope_search(const char *name) */ /* ---------------------------------------------------------------------- */ -struct calculate_value * Phreeqc:: -calculate_value_store(const char *name, int replace_if_found) +class calculate_value * Phreeqc:: +calculate_value_store(const char *name_in, int replace_if_found) /* ---------------------------------------------------------------------- */ { /* - * Function locates the string "name" in the hash table for calculate_value. + * Function locates the string "name" in the map for calculate_value. * * Pointer to a calculate_value structure is always returned. * - * If the string is not found, a new entry is made in the hash table. Pointer to + * If the string is not found, a new entry is made in the map. Pointer to * the new structure is returned. * If "name" is found and replace is true, pointers in old calculate_value structure * are freed and replaced with additional input. @@ -1637,63 +1429,44 @@ calculate_value_store(const char *name, int replace_if_found) * Returns: * pointer to calculate_value structure "calculate_value" where "name" can be found. */ - int n; - struct calculate_value *calculate_value_ptr; - char token[MAX_LENGTH]; - ENTRY item, *found_item; + class calculate_value *calculate_value_ptr=NULL; /* * Search list */ - strcpy(token, name); - str_tolower(token); - item.key = token; - item.data = NULL; - found_item = hsearch_multi(calculate_value_hash_table, item, FIND); - - if (found_item != NULL && replace_if_found == FALSE) + std::string name = name_in; + str_tolower(name); + std::map::iterator cv_it = + calculate_value_map.find(name); + if (cv_it != calculate_value_map.end() && replace_if_found == FALSE) { - calculate_value_ptr = (struct calculate_value *) (found_item->data); + calculate_value_ptr = cv_it->second; return (calculate_value_ptr); } - else if (found_item != NULL && replace_if_found == TRUE) + else if (cv_it != calculate_value_map.end() && replace_if_found == TRUE) { - calculate_value_ptr = (struct calculate_value *) (found_item->data); + calculate_value_ptr = cv_it->second; calculate_value_free(calculate_value_ptr); calculate_value_init(calculate_value_ptr); } else { - n = count_calculate_value++; - /* make sure there is space in s */ - if (count_calculate_value >= max_calculate_value) - { - space((void **) ((void *) &calculate_value), - count_calculate_value, &max_calculate_value, - sizeof(struct calculate_value *)); - } + size_t n = calculate_value.size(); + calculate_value.resize(n+1); /* Make new calculate_value structure */ calculate_value[n] = calculate_value_alloc(); calculate_value_ptr = calculate_value[n]; } - /* set name and z in pointer in calculate_value structure */ - calculate_value_ptr->name = string_hsave(name); + /* set name in calculate_value structure */ + calculate_value_ptr->name = string_hsave(name_in); /* - * Update hash table + * Update map */ - item.key = string_hsave(token); - item.data = (void *) calculate_value_ptr; - found_item = hsearch_multi(calculate_value_hash_table, item, ENTER); - if (found_item == NULL) - { - error_string = sformatf( "Hash table error in calculate_value_store."); - error_msg(error_string, CONTINUE); - } - + calculate_value_map[name] = calculate_value_ptr; return (calculate_value_ptr); } /* ---------------------------------------------------------------------- */ -struct calculate_value * Phreeqc:: +class calculate_value * Phreeqc:: calculate_value_alloc(void) /* ---------------------------------------------------------------------- */ /* @@ -1702,12 +1475,8 @@ calculate_value_alloc(void) * return: pointer to a calculate_value structure */ { - struct calculate_value *calculate_value_ptr; - calculate_value_ptr = - (struct calculate_value *) - PHRQ_malloc(sizeof(struct calculate_value)); - if (calculate_value_ptr == NULL) - malloc_error(); + class calculate_value *calculate_value_ptr = + new class calculate_value; /* * set pointers in structure to NULL, variables to zero */ @@ -1718,7 +1487,7 @@ calculate_value_alloc(void) /* ---------------------------------------------------------------------- */ int Phreeqc:: -calculate_value_init(struct calculate_value *calculate_value_ptr) +calculate_value_init(class calculate_value *calculate_value_ptr) /* ---------------------------------------------------------------------- */ /* * return: pointer to a calculate_value structure @@ -1730,7 +1499,10 @@ calculate_value_init(struct calculate_value *calculate_value_ptr) if (calculate_value_ptr) { calculate_value_ptr->name = NULL; - calculate_value_ptr->commands = NULL; + calculate_value_ptr->value = 0.0; + calculate_value_ptr->commands.clear(); + calculate_value_ptr->new_def = TRUE; + calculate_value_ptr->calculated = FALSE; calculate_value_ptr->linebase = NULL; calculate_value_ptr->varbase = NULL; calculate_value_ptr->loopbase = NULL; @@ -1740,12 +1512,12 @@ calculate_value_init(struct calculate_value *calculate_value_ptr) } /* ---------------------------------------------------------------------- */ -struct calculate_value * Phreeqc:: -calculate_value_search(const char *name) +class calculate_value * Phreeqc:: +calculate_value_search(const char *name_in) /* ---------------------------------------------------------------------- */ { /* - * Function locates the string "name" in the hash table for calculate_value. + * Function locates the string "name" in the map for calculate_value. * * Arguments: * name input, character string to be found in "calculate_value". @@ -1754,29 +1526,20 @@ calculate_value_search(const char *name) * pointer to calculate_value structure "calculate_value" where "name" can be found. * or NULL if not found. */ - struct calculate_value *calculate_value_ptr; - char token[MAX_LENGTH]; - ENTRY item, *found_item; -/* - * Search list - */ - strcpy(token, name); - str_tolower(token); - item.key = token; - item.data = NULL; - found_item = hsearch_multi(calculate_value_hash_table, item, FIND); - - if (found_item != NULL) + std::string name = name_in; + str_tolower(name); + std::map::iterator cv_it = + calculate_value_map.find(name); + if (cv_it != calculate_value_map.end()) { - calculate_value_ptr = (struct calculate_value *) (found_item->data); - return (calculate_value_ptr); + return (cv_it->second); } return (NULL); } /* ---------------------------------------------------------------------- */ int Phreeqc:: -calculate_value_free(struct calculate_value *calculate_value_ptr) +calculate_value_free(class calculate_value *calculate_value_ptr) /* ---------------------------------------------------------------------- */ { /* @@ -1788,8 +1551,7 @@ calculate_value_free(struct calculate_value *calculate_value_ptr) if (calculate_value_ptr == NULL) return (ERROR); - calculate_value_ptr->commands = - (char *) free_check_null(calculate_value_ptr->commands); + calculate_value_ptr->commands.clear(); basic_run(cmd, calculate_value_ptr->linebase, calculate_value_ptr->varbase, calculate_value_ptr->loopbase); calculate_value_ptr->linebase = NULL; @@ -1803,16 +1565,16 @@ calculate_value_free(struct calculate_value *calculate_value_ptr) */ /* ---------------------------------------------------------------------- */ -struct isotope_ratio * Phreeqc:: -isotope_ratio_store(const char *name, int replace_if_found) +class isotope_ratio * Phreeqc:: +isotope_ratio_store(const char *name_in, int replace_if_found) /* ---------------------------------------------------------------------- */ { /* - * Function locates the string "name" in the hash table for isotope_ratio. + * Function locates the string "name" in the map for isotope_ratio. * * Pointer to a isotope_ratio structure is always returned. * - * If the string is not found, a new entry is made in the hash table. Pointer to + * If the string is not found, a new entry is made in the map. Pointer to * the new structure is returned. * If "name" is found and replace is true, pointers in old isotope_ratio structure * are freed and replaced with additional input. @@ -1827,61 +1589,44 @@ isotope_ratio_store(const char *name, int replace_if_found) * Returns: * pointer to isotope_ratio structure "isotope_ratio" where "name" can be found. */ - int n; - struct isotope_ratio *isotope_ratio_ptr; - char token[MAX_LENGTH]; - ENTRY item, *found_item; + class isotope_ratio *isotope_ratio_ptr; /* * Search list */ - strcpy(token, name); - str_tolower(token); - item.key = token; - item.data = NULL; - found_item = hsearch_multi(isotope_ratio_hash_table, item, FIND); + std::string name = name_in; + str_tolower(name); + std::map::iterator it = + isotope_ratio_map.find(name); - if (found_item != NULL && replace_if_found == FALSE) + if (it != isotope_ratio_map.end() && replace_if_found == FALSE) { - isotope_ratio_ptr = (struct isotope_ratio *) (found_item->data); + isotope_ratio_ptr = it->second; return (isotope_ratio_ptr); } - else if (found_item != NULL && replace_if_found == TRUE) + else if (it != isotope_ratio_map.end() && replace_if_found == TRUE) { - isotope_ratio_ptr = (struct isotope_ratio *) (found_item->data); + isotope_ratio_ptr = it->second; isotope_ratio_init(isotope_ratio_ptr); } else { - n = count_isotope_ratio++; - /* make sure there is space in s */ - if (count_isotope_ratio >= max_isotope_ratio) - { - space((void **) ((void *) &isotope_ratio), count_isotope_ratio, - &max_isotope_ratio, sizeof(struct isotope_ratio *)); - } + size_t n = isotope_ratio.size(); + isotope_ratio.resize(n + 1); /* Make new isotope_ratio structure */ isotope_ratio[n] = isotope_ratio_alloc(); isotope_ratio_ptr = isotope_ratio[n]; } /* set name and z in pointer in isotope_ratio structure */ - isotope_ratio_ptr->name = string_hsave(name); + isotope_ratio_ptr->name = string_hsave(name_in); /* - * Update hash table + * Update map */ - item.key = string_hsave(token); - item.data = (void *) isotope_ratio_ptr; - found_item = hsearch_multi(isotope_ratio_hash_table, item, ENTER); - if (found_item == NULL) - { - error_string = sformatf( "Hash table error in isotope_ratio_store."); - error_msg(error_string, CONTINUE); - } - + isotope_ratio_map[name] = isotope_ratio_ptr; return (isotope_ratio_ptr); } /* ---------------------------------------------------------------------- */ -struct isotope_ratio * Phreeqc:: +class isotope_ratio * Phreeqc:: isotope_ratio_alloc(void) /* ---------------------------------------------------------------------- */ /* @@ -1890,11 +1635,8 @@ isotope_ratio_alloc(void) * return: pointer to a isotope_ratio structure */ { - struct isotope_ratio *isotope_ratio_ptr; - isotope_ratio_ptr = - (struct isotope_ratio *) PHRQ_malloc(sizeof(struct isotope_ratio)); - if (isotope_ratio_ptr == NULL) - malloc_error(); + class isotope_ratio* isotope_ratio_ptr = + new class isotope_ratio; /* * set pointers in structure to NULL, variables to zero */ @@ -1905,7 +1647,7 @@ isotope_ratio_alloc(void) /* ---------------------------------------------------------------------- */ int Phreeqc:: -isotope_ratio_init(struct isotope_ratio *isotope_ratio_ptr) +isotope_ratio_init(class isotope_ratio *isotope_ratio_ptr) /* ---------------------------------------------------------------------- */ /* * return: pointer to a isotope_ratio structure @@ -1926,12 +1668,12 @@ isotope_ratio_init(struct isotope_ratio *isotope_ratio_ptr) } /* ---------------------------------------------------------------------- */ -struct isotope_ratio * Phreeqc:: -isotope_ratio_search(const char *name) +class isotope_ratio * Phreeqc:: +isotope_ratio_search(const char *name_in) /* ---------------------------------------------------------------------- */ { /* - * Function locates the string "name" in the hash table for isotope_ratio. + * Function locates the string "name" in the map for isotope_ratio. * * Arguments: * name input, character string to be found in "isotope_ratio". @@ -1940,22 +1682,14 @@ isotope_ratio_search(const char *name) * pointer to isotope_ratio structure "isotope_ratio" where "name" can be found. * or NULL if not found. */ - struct isotope_ratio *isotope_ratio_ptr; - char token[MAX_LENGTH]; - ENTRY item, *found_item; -/* - * Search list - */ - strcpy(token, name); - str_tolower(token); - item.key = token; - item.data = NULL; - found_item = hsearch_multi(isotope_ratio_hash_table, item, FIND); + std::string name = name_in; + str_tolower(name); + std::map::iterator it = + isotope_ratio_map.find(name); - if (found_item != NULL) + if (it != isotope_ratio_map.end()) { - isotope_ratio_ptr = (struct isotope_ratio *) (found_item->data); - return (isotope_ratio_ptr); + return (it->second); } return (NULL); } @@ -1965,16 +1699,16 @@ isotope_ratio_search(const char *name) */ /* ---------------------------------------------------------------------- */ -struct isotope_alpha * Phreeqc:: -isotope_alpha_store(const char *name, int replace_if_found) +class isotope_alpha * Phreeqc:: +isotope_alpha_store(const char *name_in, int replace_if_found) /* ---------------------------------------------------------------------- */ { /* - * Function locates the string "name" in the hash table for isotope_alpha. + * Function locates the string "name" in the map for isotope_alpha. * * Pointer to a isotope_alpha structure is always returned. * - * If the string is not found, a new entry is made in the hash table. Pointer to + * If the string is not found, a new entry is made in the map. Pointer to * the new structure is returned. * If "name" is found and replace is true, pointers in old isotope_alpha structure * are freed and replaced with additional input. @@ -1989,61 +1723,40 @@ isotope_alpha_store(const char *name, int replace_if_found) * Returns: * pointer to isotope_alpha structure "isotope_alpha" where "name" can be found. */ - int n; - struct isotope_alpha *isotope_alpha_ptr; - char token[MAX_LENGTH]; - ENTRY item, *found_item; -/* - * Search list - */ - strcpy(token, name); - str_tolower(token); - item.key = token; - item.data = NULL; - found_item = hsearch_multi(isotope_alpha_hash_table, item, FIND); + class isotope_alpha *isotope_alpha_ptr; + std::string name = name_in; + str_tolower(name); + std::map::iterator it = + isotope_alpha_map.find(name); - if (found_item != NULL && replace_if_found == FALSE) + if (it != isotope_alpha_map.end() && replace_if_found == FALSE) { - isotope_alpha_ptr = (struct isotope_alpha *) (found_item->data); - return (isotope_alpha_ptr); + return (it->second); } - else if (found_item != NULL && replace_if_found == TRUE) + else if (it != isotope_alpha_map.end() && replace_if_found == TRUE) { - isotope_alpha_ptr = (struct isotope_alpha *) (found_item->data); + isotope_alpha_ptr = it->second; isotope_alpha_init(isotope_alpha_ptr); } else { - n = count_isotope_alpha++; - /* make sure there is space in s */ - if (count_isotope_alpha >= max_isotope_alpha) - { - space((void **) ((void *) &isotope_alpha), count_isotope_alpha, - &max_isotope_alpha, sizeof(struct isotope_alpha *)); - } + size_t n = isotope_alpha.size(); + isotope_alpha.resize(n + 1); /* Make new isotope_alpha structure */ isotope_alpha[n] = isotope_alpha_alloc(); isotope_alpha_ptr = isotope_alpha[n]; } /* set name and z in pointer in isotope_alpha structure */ - isotope_alpha_ptr->name = string_hsave(name); + isotope_alpha_ptr->name = string_hsave(name_in); /* - * Update hash table + * Update map */ - item.key = string_hsave(token); - item.data = (void *) isotope_alpha_ptr; - found_item = hsearch_multi(isotope_alpha_hash_table, item, ENTER); - if (found_item == NULL) - { - error_string = sformatf( "Hash table error in isotope_alpha_store."); - error_msg(error_string, CONTINUE); - } - + isotope_alpha_map[name] = isotope_alpha_ptr; return (isotope_alpha_ptr); } /* ---------------------------------------------------------------------- */ -struct isotope_alpha * Phreeqc:: +class isotope_alpha * Phreeqc:: isotope_alpha_alloc(void) /* ---------------------------------------------------------------------- */ /* @@ -2052,11 +1765,8 @@ isotope_alpha_alloc(void) * return: pointer to a isotope_alpha structure */ { - struct isotope_alpha *isotope_alpha_ptr; - isotope_alpha_ptr = - (struct isotope_alpha *) PHRQ_malloc(sizeof(struct isotope_alpha)); - if (isotope_alpha_ptr == NULL) - malloc_error(); + class isotope_alpha* isotope_alpha_ptr = + new class isotope_alpha; /* * set pointers in structure to NULL, variables to zero */ @@ -2067,7 +1777,7 @@ isotope_alpha_alloc(void) /* ---------------------------------------------------------------------- */ int Phreeqc:: -isotope_alpha_init(struct isotope_alpha *isotope_alpha_ptr) +isotope_alpha_init(class isotope_alpha *isotope_alpha_ptr) /* ---------------------------------------------------------------------- */ /* * return: pointer to a isotope_alpha structure @@ -2087,12 +1797,12 @@ isotope_alpha_init(struct isotope_alpha *isotope_alpha_ptr) } /* ---------------------------------------------------------------------- */ -struct isotope_alpha * Phreeqc:: -isotope_alpha_search(const char *name) +class isotope_alpha * Phreeqc:: +isotope_alpha_search(const char *name_in) /* ---------------------------------------------------------------------- */ { /* - * Function locates the string "name" in the hash table for isotope_alpha. + * Function locates the string "name" in the map for isotope_alpha. * * Arguments: * name input, character string to be found in "isotope_alpha". @@ -2101,22 +1811,14 @@ isotope_alpha_search(const char *name) * pointer to isotope_alpha structure "isotope_alpha" where "name" can be found. * or NULL if not found. */ - struct isotope_alpha *isotope_alpha_ptr; - char token[MAX_LENGTH]; - ENTRY item, *found_item; -/* - * Search list - */ - strcpy(token, name); - str_tolower(token); - item.key = token; - item.data = NULL; - found_item = hsearch_multi(isotope_alpha_hash_table, item, FIND); + std::string name = name_in; + str_tolower(name); + std::map::iterator it = + isotope_alpha_map.find(name); - if (found_item != NULL) + if (it != isotope_alpha_map.end()) { - isotope_alpha_ptr = (struct isotope_alpha *) (found_item->data); - return (isotope_alpha_ptr); + return (it->second); } return (NULL); } diff --git a/kinetics.cpp b/kinetics.cpp index 9b50c43e..27ce4bdc 100644 --- a/kinetics.cpp +++ b/kinetics.cpp @@ -39,6 +39,15 @@ #define MAX_DIVIDE 2 #define KINETICS_TOL 1e-8; + +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /* ---------------------------------------------------------------------- */ int Phreeqc:: calc_kinetic_reaction(cxxKinetics *kinetics_ptr, LDBLE time_step) @@ -53,7 +62,7 @@ calc_kinetic_reaction(cxxKinetics *kinetics_ptr, LDBLE time_step) int j, return_value; LDBLE coef; char l_command[] = "run"; - struct rate *rate_ptr; + class rate *rate_ptr; /* * Go through list and generate list of elements and * coefficient of elements in reaction @@ -88,7 +97,7 @@ calc_kinetic_reaction(cxxKinetics *kinetics_ptr, LDBLE time_step) if (rate_ptr->new_def == TRUE) { if (basic_compile - (rates[j].commands, &rates[j].linebase, &rates[j].varbase, + (rates[j].commands.c_str(), &rates[j].linebase, &rates[j].varbase, &rates[j].loopbase) != 0) { error_string = sformatf( "Fatal Basic error in rate %s.", @@ -145,8 +154,8 @@ calc_final_kinetic_reaction(cxxKinetics *kinetics_ptr) * stored in moles in run_kinetics */ LDBLE coef; - struct phase *phase_ptr; - struct master *master_ptr; + class phase *phase_ptr; + class master *master_ptr; int count= 0; /* * Go through list and generate list of elements and @@ -186,10 +195,12 @@ RESTART: // if limiting rates, jump to here } else { - char * temp_name = string_duplicate(name.c_str()); - char * ptr = temp_name; - get_elts_in_species(&ptr, coef * coef1); - free_check_null(temp_name); + const char* ptr = name.c_str(); + if (get_elts_in_species(&ptr, coef * coef1) == ERROR) + { + error_string = sformatf("Error in -formula: %s", name.c_str()); + error_msg(error_string, CONTINUE); + } } } if (use.Get_exchange_ptr() != NULL @@ -206,10 +217,13 @@ RESTART: // if limiting rates, jump to here name.c_str()) == 0) { /* found kinetics component */ - char * formula = string_duplicate(exchange_ptr->Get_exchange_comps()[j].Get_formula().c_str()); - char * ptr = formula; - get_elts_in_species(&ptr, -coef*exchange_ptr->Get_exchange_comps()[j].Get_phase_proportion()); - free_check_null(formula); + std::string formula = exchange_ptr->Get_exchange_comps()[j].Get_formula().c_str(); + const char* ptr = formula.c_str(); + if (get_elts_in_species(&ptr, -coef*exchange_ptr->Get_exchange_comps()[j].Get_phase_proportion()) == ERROR) + { + error_string = sformatf("Error in -formula: %s", formula.c_str()); + error_msg(error_string, CONTINUE); + } } } } @@ -227,14 +241,13 @@ RESTART: // if limiting rates, jump to here surface_comp_ptr->Get_rate_name().c_str()) == 0) { /* found kinetics component */ - char * temp_formula = string_duplicate(surface_comp_ptr->Get_formula().c_str()); - char *ptr = temp_formula; + std::string temp_formula = surface_comp_ptr->Get_formula().c_str(); + const char* cptr = temp_formula.c_str(); /* Surface = 0 when m becomes low ... */ if (0.9 * surface_comp_ptr->Get_phase_proportion() * (kinetics_comp_ptr->Get_m()) < MIN_RELATED_SURFACE) { - //master_ptr = master_bsearch(ptr); master_ptr = master_bsearch(surface_comp_ptr->Get_master_element().c_str()); if (master_ptr != NULL) { @@ -243,9 +256,12 @@ RESTART: // if limiting rates, jump to here } else { - get_elts_in_species(&ptr, -coef * surface_comp_ptr->Get_phase_proportion()); + if (get_elts_in_species(&cptr, -coef * surface_comp_ptr->Get_phase_proportion()) == ERROR) + { + error_string = sformatf("Error in -formula: %s", temp_formula.c_str()); + error_msg(error_string, CONTINUE); + } } - free_check_null(temp_formula); } } } @@ -276,121 +292,7 @@ RESTART: // if limiting rates, jump to here } return (OK); } -#ifdef SKIP -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -calc_final_kinetic_reaction(cxxKinetics *kinetics_ptr) -/* ---------------------------------------------------------------------- */ -{ -/* - * Go through kinetic components to - * using extrapolated values, which were - * stored in moles in run_kinetics - */ - LDBLE coef; - struct phase *phase_ptr; - struct master *master_ptr; -/* - * Go through list and generate list of elements and - * coefficient of elements in reaction - */ - kinetics_ptr->Get_totals().clear(); - count_elts = 0; - paren_count = 0; - for (size_t i = 0; i < kinetics_ptr->Get_kinetics_comps().size(); i++) - { - cxxKineticsComp * kinetics_comp_ptr = &(kinetics_ptr->Get_kinetics_comps()[i]); - if (kinetics_comp_ptr->Get_moles() > m_temp[i]) - { - kinetics_comp_ptr->Set_moles(m_temp[i]); - kinetics_comp_ptr->Set_m(0); - } - coef = kinetics_comp_ptr->Get_moles(); - if (coef == 0.0) - continue; -/* - * Reactant is a pure phase, copy formula into token - */ - cxxNameDouble::iterator it = kinetics_comp_ptr->Get_namecoef().begin(); - for ( ; it != kinetics_comp_ptr->Get_namecoef().end(); it++) - { - std::string name = it->first; - LDBLE coef1 = it->second; - phase_ptr = NULL; - int k; - phase_ptr = phase_bsearch(name.c_str(), &k, FALSE); - if (phase_ptr != NULL) - { - add_elt_list(phase_ptr->next_elt, - coef *coef1); - } - else - { - char * temp_name = string_duplicate(name.c_str()); - char * ptr = temp_name; - get_elts_in_species(&ptr, coef * coef1); - free_check_null(temp_name); - } - } - if (use.Get_exchange_ptr() != NULL - && use.Get_exchange_ptr()->Get_related_rate()) - { - cxxExchange * exchange_ptr = use.Get_exchange_ptr(); - for(size_t j = 0; j < exchange_ptr->Get_exchange_comps().size(); j++) - { - std::string name(exchange_ptr->Get_exchange_comps()[j].Get_rate_name()); - if (name.size() > 0) - { - if (strcmp_nocase - (kinetics_comp_ptr->Get_rate_name().c_str(), - name.c_str()) == 0) - { - /* found kinetics component */ - char * formula = string_duplicate(exchange_ptr->Get_exchange_comps()[j].Get_formula().c_str()); - char * ptr = formula; - get_elts_in_species(&ptr, -coef*exchange_ptr->Get_exchange_comps()[j].Get_phase_proportion()); - free_check_null(formula); - } - } - } - } - if (use.Get_surface_ptr() != NULL && use.Get_surface_ptr()->Get_related_rate()) - { - for (size_t j = 0; j < use.Get_surface_ptr()->Get_surface_comps().size(); j++) - { - cxxSurfaceComp *surface_comp_ptr = &(use.Get_surface_ptr()->Get_surface_comps()[j]); - if (surface_comp_ptr->Get_rate_name().size() > 0) - { - if (strcmp_nocase - (kinetics_comp_ptr->Get_rate_name().c_str(), - surface_comp_ptr->Get_rate_name().c_str()) == 0) - { - /* found kinetics component */ - char * temp_formula = string_duplicate(surface_comp_ptr->Get_formula().c_str()); - char *ptr = temp_formula; -/* Surface = 0 when m becomes low ... - */ - if (0.9 * surface_comp_ptr->Get_phase_proportion() * - (kinetics_comp_ptr->Get_m()) < MIN_RELATED_SURFACE) - { - master_ptr = master_bsearch(ptr); - master_ptr->total = 0.0; - } - else - { - get_elts_in_species(&ptr, -coef * surface_comp_ptr->Get_phase_proportion()); - } - free_check_null(temp_formula); - } - } - } - } - } - kinetics_ptr->Set_totals(elt_list_NameDouble()); - return (OK); -} -#endif /* ---------------------------------------------------------------------- */ int Phreeqc:: rk_kinetics(int i, LDBLE kin_time, int use_mix, int nsaver, @@ -426,7 +328,7 @@ rk_kinetics(int i, LDBLE kin_time, int use_mix, int nsaver, /* * Save kinetics i and solution i, if necessary */ - save_old = -2 - (count_cells * (1 + stag_data->count_stag) + 2); + save_old = -2 - (count_cells * (1 + stag_data.count_stag) + 2); Utilities::Rxn_copy(Rxn_kinetics_map, i, save_old); if (nsaver != i) { @@ -440,9 +342,7 @@ rk_kinetics(int i, LDBLE kin_time, int use_mix, int nsaver, if (kinetics_ptr == NULL) return (OK); n_reactions = (int) kinetics_ptr->Get_kinetics_comps().size(); - rk_moles = (LDBLE *) free_check_null(rk_moles); - rk_moles = (LDBLE *) PHRQ_malloc((size_t) 6 * n_reactions * sizeof(LDBLE)); - if (rk_moles == NULL) malloc_error(); + rk_moles.resize(6 * (size_t)n_reactions); /*if (use_mix != NOMIX) last_model.force_prep = TRUE; */ set_and_run_wrapper(i, use_mix, FALSE, i, step_fraction); @@ -500,8 +400,8 @@ rk_kinetics(int i, LDBLE kin_time, int use_mix, int nsaver, if (step_bad > kinetics_ptr->Get_bad_step_max()) { error_string = sformatf( - "Bad RK steps > %d. Please decrease (time)step or increase -bad_step_max.", - kinetics_ptr->Get_bad_step_max()); + "Bad RK steps > %d in cell %d. Please decrease (time)step or increase -bad_step_max.", + kinetics_ptr->Get_bad_step_max(), cell_no); error_msg(error_string, STOP); } @@ -960,8 +860,9 @@ rk_kinetics(int i, LDBLE kin_time, int use_mix, int nsaver, /* define reaction for calculating k5 */ rk_moles[k + j] = kinetics_comp_ptr->Get_moles(); kinetics_comp_ptr->Set_moles(b51 * rk_moles[j] - + 2.5 * rk_moles[n_reactions + j] - + b53 * rk_moles[2 * n_reactions + j] + b54 * rk_moles[k + j]); + + 2.5 * rk_moles[(size_t)n_reactions + j] + + b53 * rk_moles[2 * (size_t)n_reactions + j] + + b54 * rk_moles[(size_t)k + (size_t)j]); } if (moles_reduction > 1.0) goto MOLES_TOO_LARGE; @@ -1012,9 +913,10 @@ rk_kinetics(int i, LDBLE kin_time, int use_mix, int nsaver, /* define reaction for calculating k6 */ rk_moles[k + j] = kinetics_comp_ptr->Get_moles(); kinetics_comp_ptr->Set_moles(b61 * rk_moles[j] - + b62 * rk_moles[n_reactions + j] - + b63 * rk_moles[2 * n_reactions + j] - + b64 * rk_moles[3 * n_reactions + j] + b65 * rk_moles[k + j]); + + b62 * rk_moles[(size_t)n_reactions + j] + + b63 * rk_moles[2 * (size_t)n_reactions + j] + + b64 * rk_moles[3 * (size_t)n_reactions + j] + + b65 * rk_moles[(size_t)k + (size_t)j]); } if (moles_reduction > 1.0) goto MOLES_TOO_LARGE; @@ -1066,10 +968,10 @@ rk_kinetics(int i, LDBLE kin_time, int use_mix, int nsaver, { cxxKineticsComp * kinetics_comp_ptr = &(kinetics_ptr->Get_kinetics_comps()[j]); l_error = fabs(dc1 * rk_moles[j] - + dc3 * rk_moles[2 * n_reactions + j] - + dc4 * rk_moles[3 * n_reactions + j] - + dc5 * rk_moles[4 * n_reactions + j] - + dc6 * rk_moles[5 * n_reactions + j]); + + dc3 * rk_moles[2 * (size_t)n_reactions + (size_t)j] + + dc4 * rk_moles[3 * (size_t)n_reactions + (size_t)j] + + dc5 * rk_moles[4 * (size_t)n_reactions + (size_t)j] + + dc6 * rk_moles[5 * (size_t)n_reactions + (size_t)j]); /* tol is in moles/l */ l_error /= kinetics_comp_ptr->Get_tol(); @@ -1100,9 +1002,9 @@ rk_kinetics(int i, LDBLE kin_time, int use_mix, int nsaver, { cxxKineticsComp * kinetics_comp_ptr = &(kinetics_ptr->Get_kinetics_comps()[j]); kinetics_comp_ptr->Set_moles(c1 * rk_moles[j] - + c3 * rk_moles[2 * n_reactions + j] - + c4 * rk_moles[3 * n_reactions + j] - + c6 * rk_moles[5 * n_reactions + j]); + + c3 * rk_moles[2 * (size_t)n_reactions + (size_t)j] + + c4 * rk_moles[3 * (size_t)n_reactions + (size_t)j] + + c6 * rk_moles[5 * (size_t)n_reactions + (size_t)j]); } calc_final_kinetic_reaction(kinetics_ptr); for (size_t j = 0; j < kinetics_ptr->Get_kinetics_comps().size(); j++) @@ -1177,21 +1079,6 @@ rk_kinetics(int i, LDBLE kin_time, int use_mix, int nsaver, step_ok, (int) (100 * h_sum / kin_time)); status(0, str, true); } -#ifdef SKIP -#if !defined(PHREEQCI_GUI) -#ifndef PHREEQ98 - if (pr.status == TRUE && status_on == TRUE - && (int) (1e3 / CLOCKS_PER_SEC * ((float) clock() - status_timer)) > status_interval) - { - char str[MAX_LENGTH]; - backspace_screen(37); - sprintf(str, "RK-steps: Bad%4d. OK%5d. Time %3d%%", step_bad, - step_ok, (int) (100 * h_sum / kin_time)); - screen_msg(sformatf("%-37s", str)); - } -#endif -#endif -#endif } EQUAL_RATE_OUT: @@ -1227,7 +1114,7 @@ rk_kinetics(int i, LDBLE kin_time, int use_mix, int nsaver, { Utilities::Rxn_copy(Rxn_solution_map, save_old, i); } - rk_moles = (LDBLE *) free_check_null(rk_moles); + rk_moles.clear(); rate_sim_time = rate_sim_time_start + kin_time; use.Set_kinetics_in(true); @@ -1266,7 +1153,7 @@ set_and_run_wrapper(int i, int use_mix, int use_kinetics, int nsaver, std::auto_ptr ss_assemblage_save(NULL); std::auto_ptr kinetics_save(NULL); #endif - + int restart = 0; small_pe_step = 5.; small_step = 10.; @@ -1312,7 +1199,7 @@ set_and_run_wrapper(int i, int use_mix, int use_kinetics, int nsaver, { diagonal_scale = TRUE; always_full_pitzer = FALSE; - max_try = 13; + max_try = 14; } else { @@ -1320,6 +1207,8 @@ set_and_run_wrapper(int i, int use_mix, int use_kinetics, int nsaver, } max_try = (max_tries < max_try) ? max_tries : max_try; /*max_try = 1; */ + +restart: for (j = 0; j < max_try; j++) { if (j == 1) @@ -1468,6 +1357,26 @@ set_and_run_wrapper(int i, int use_mix, int use_kinetics, int nsaver, error_string = sformatf( "Trying reduced tolerance %g ...\n", (double) ineq_tol); warning_msg(error_string); + } + else if (j == 14 && use.Get_ss_assemblage_in()) + { + //cxxStorageBin error_bin; + //Use2cxxStorageBin(error_bin); + //std::ostringstream error_input; + //error_bin.dump_raw(error_input, 0); + //cxxStorageBin reread; + //std::istringstream is(error_input.str()); + //CParser cp(is); + //cp.set_echo_stream(CParser::EO_NONE); + //reread.read_raw(cp); + //cxxStorageBin2phreeqc(reread); + //error_string = sformatf("Trying restarting ...\n"); + //warning_msg(error_string); + //if (restart < 2) + //{ + // restart++; + // goto restart; + //} } if (j > 0) { @@ -1487,6 +1396,30 @@ set_and_run_wrapper(int i, int use_mix, int use_kinetics, int nsaver, use.Set_kinetics_ptr(Utilities::Rxn_find(Rxn_kinetics_map, kinetics_save->Get_n_user())); } } + if (j == 14) + { + cxxStorageBin error_bin(this->Get_phrq_io()); + Use2cxxStorageBin(error_bin); + std::ostringstream error_input; + error_bin.dump_raw(error_input, 0); + cxxStorageBin reread(this->Get_phrq_io()); + std::istringstream is(error_input.str()); + CParser cp(is); + cp.set_echo_stream(CParser::EO_NONE); + cp.set_echo_file(CParser::EO_NONE); + reread.read_raw(cp); + cxxStorageBin2phreeqc(reread); + error_string = sformatf("Trying restarting ...\n"); + warning_msg(error_string); + + step_size = 1.0 + (small_step - 1.0)/((double) restart + 1.0); + pe_step_size = 1.0 + (small_pe_step - 1)/ ((double)restart + 1.0); + if (restart < 2) + { + restart++; + goto restart; + } + } set_and_run_attempt = j; converge = @@ -1528,7 +1461,7 @@ set_and_run_wrapper(int i, int use_mix, int use_kinetics, int nsaver, * write to error.inp what failed to converge. */ std::ofstream error_input("error.inp"); - cxxStorageBin error_bin; + cxxStorageBin error_bin(this->Get_phrq_io()); Use2cxxStorageBin(error_bin); error_bin.dump_raw(error_input, 0); error_input.close(); @@ -1662,7 +1595,7 @@ set_transport(int i, int use_mix, int use_kinetics, int nsaver) /* * i --user number for soln, reaction, etc. * use_mix --integer flag - state == TRANSPORT: DISP, STAG, NOMIX + state == TRANSPORT: DISP, STAG, NOMIX, MIX_BS state == REACTION: TRUE, FALSE * use_kinetics --true or false flag to calculate kinetic reactions * nsaver --user number to store solution @@ -1682,7 +1615,7 @@ set_transport(int i, int use_mix, int use_kinetics, int nsaver) use.Set_n_mix_user(i); use.Set_n_mix_user_orig(i); } - else if (use_mix == STAG && multi_Dflag != TRUE) + else if ((use_mix == STAG && multi_Dflag != TRUE) || use_mix == MIX_BS) { use.Set_mix_ptr(Utilities::Rxn_find(Rxn_mix_map, i)); if (use.Get_mix_ptr() != NULL) @@ -1947,7 +1880,13 @@ set_reaction(int i, int use_mix, int use_kinetics) /* * Find surface */ - dl_type_x = cxxSurface::NO_DL; + if (use.Get_surface_in() && use.Get_kinetics_in() && use.Get_kinetics_ptr() && !use.Get_kinetics_ptr()->Get_use_cvode() && reaction_step > 1) + { + // use.Set_surface_ptr(Utilities::Rxn_find(Rxn_surface_map, i)); + // appt: we may come here with zero kinetic reaction, but surface may have to keep DONNAN_DL + } + else + dl_type_x = cxxSurface::NO_DL; if (use.Get_surface_in() == TRUE) { use.Set_surface_ptr(Utilities::Rxn_find(Rxn_surface_map, i)); @@ -2030,8 +1969,6 @@ set_reaction(int i, int use_mix, int use_kinetics) */ return (OK); } -//#define REVISED_CVODE -#ifdef REVISED_CVODE /* ---------------------------------------------------------------------- */ int Phreeqc:: run_reactions(int i, LDBLE kin_time, int use_mix, LDBLE step_fraction) @@ -2042,397 +1979,7 @@ run_reactions(int i, LDBLE kin_time, int use_mix, LDBLE step_fraction) * Rates and moles of each reaction are calculated in calc_kinetic_reaction * Total number of moles in reaction is stored in kinetics[i].totals */ - - int converge, m_iter; - int pr_all_save; - int nsaver; - cxxKinetics *kinetics_ptr; - cxxPPassemblage *pp_assemblage_ptr; - cxxSSassemblage *ss_assemblage_ptr; - cxxUse use_save; - int save_old, n_reactions /*, nok, nbad */ ; - - /* CVODE definitions */ - realtype ropt[OPT_SIZE], reltol, t, tout, tout1, sum_t; - long int iopt[OPT_SIZE]; - int flag; -/* - * Set nsaver - */ - run_reactions_iterations = 0; - kin_time_x = kin_time; - rate_kin_time = kin_time; - nsaver = i; - if (state == TRANSPORT || state == PHAST) - { - if (use_mix == DISP) - { - nsaver = -2; - } - else if (use_mix == STAG) - { - nsaver = -2 - i; - } - } - if (state == ADVECTION) - { - nsaver = -2; - } -/* - * Check that reaction exists for this cell .. - */ - kinetics_ptr = Utilities::Rxn_find(Rxn_kinetics_map, i); - if (kin_time <= 0 || - (state == REACTION && use.Get_kinetics_in() == FALSE) || - (state == TRANSPORT && kinetics_ptr == NULL) || - (state == PHAST && kinetics_ptr == NULL) || - (state == ADVECTION && kinetics_ptr == NULL)) - { - converge = set_and_run_wrapper(i, use_mix, FALSE, nsaver, step_fraction); - if (converge == MASS_BALANCE) - { - error_msg("Negative concentration in system. Stopping calculation.", STOP); - } - run_reactions_iterations += iterations; - } - else - { -/* - * Save moles of kinetic reactants for printout... - */ - size_t count_comps = kinetics_ptr->Get_kinetics_comps().size(); - m_temp = (LDBLE *) PHRQ_malloc(count_comps * sizeof(LDBLE)); - if (m_temp == NULL) - malloc_error(); - - m_original = (LDBLE *) PHRQ_malloc(count_comps * sizeof(LDBLE)); - if (m_original == NULL) - malloc_error(); - - for (size_t j = 0; j < kinetics_ptr->Get_kinetics_comps().size(); j++) - { - cxxKineticsComp * kinetics_comp_ptr = &(kinetics_ptr->Get_kinetics_comps()[j]); - m_original[j] = kinetics_comp_ptr->Get_m(); - m_temp[j] = kinetics_comp_ptr->Get_m(); - } -/* -* Start the loop for timestepping ... - * Use either Runge-Kutta-Fehlberg, or final result extrapolation - */ - pr_all_save = pr.all; - pr.all = FALSE; -/* - * This condition makes output equal for incremental_reactions TRUE/FALSE... - * (if (incremental_reactions == FALSE || reaction_step == 1) - */ - store_get_equi_reactants(i, FALSE); - if (!kinetics_ptr->Get_use_cvode()) - { - rk_kinetics(i, kin_time, use_mix, nsaver, step_fraction); - - // finish up - rate_sim_time = rate_sim_time_start + kin_time; - store_get_equi_reactants(i, TRUE); - pr.all = pr_all_save; - - kinetics_ptr = Utilities::Rxn_find(Rxn_kinetics_map, i); - for (size_t j = 0; j < kinetics_ptr->Get_kinetics_comps().size(); j++) - { - cxxKineticsComp * kinetics_comp_ptr = &(kinetics_ptr->Get_kinetics_comps()[j]); - kinetics_comp_ptr->Set_moles(m_original[j] - kinetics_comp_ptr->Get_m()); - } - m_temp = (LDBLE *) free_check_null(m_temp); - m_original = (LDBLE *) free_check_null(m_original); - } - else - { - // save initial reactants - // cxxStorageBin save_bin(use); // if needed - - save_old = -2 - (count_cells * (1 + stag_data->count_stag) + 2); - if (nsaver != i) - { - Utilities::Rxn_copy(Rxn_solution_map, i, save_old); - } - for (int j = 0; j < OPT_SIZE; j++) - { - iopt[j] = 0; - ropt[j] = 0; - } - -/* - * Do mix first - */ - kinetics_ptr = Utilities::Rxn_find(Rxn_kinetics_map, i); - n_reactions = (int) kinetics_ptr->Get_kinetics_comps().size(); - cvode_n_user = i; - cvode_kinetics_ptr = (void *) kinetics_ptr; - cvode_n_reactions = n_reactions; - cvode_rate_sim_time_start = rate_sim_time_start; - cvode_rate_sim_time = rate_sim_time; - - if (multi_Dflag) - converge = set_and_run_wrapper(i, NOMIX, FALSE, i, 0.0); - else - converge = set_and_run_wrapper(i, use_mix, FALSE, i, 0.0); - if (converge == MASS_BALANCE) - error_msg - ("Negative concentration in system. Stopping calculation.", - STOP); - saver(); - pp_assemblage_ptr = Utilities::Rxn_find(Rxn_pp_assemblage_map, i); - ss_assemblage_ptr = Utilities::Rxn_find(Rxn_ss_assemblage_map, i); - if (pp_assemblage_ptr != NULL) - { - cvode_pp_assemblage_save = new cxxPPassemblage(*pp_assemblage_ptr); - } - if (ss_assemblage_ptr != NULL) - { - cvode_ss_assemblage_save = new cxxSSassemblage(*ss_assemblage_ptr); - } - - /* allocate space for CVODE */ - kinetics_machEnv = M_EnvInit_Serial(n_reactions); - kinetics_machEnv->phreeqc_ptr = this; - kinetics_y = N_VNew(n_reactions, kinetics_machEnv); /* Allocate y, abstol vectors */ - if (kinetics_y == NULL) - malloc_error(); - cvode_last_good_y = N_VNew(n_reactions, kinetics_machEnv); /* Allocate y, abstol vectors */ - if (cvode_last_good_y == NULL) - malloc_error(); - cvode_prev_good_y = N_VNew(n_reactions, kinetics_machEnv); /* Allocate y, abstol vectors */ - if (cvode_prev_good_y == NULL) - malloc_error(); - kinetics_abstol = N_VNew(n_reactions, kinetics_machEnv); - if (kinetics_abstol == NULL) - malloc_error(); - for (int j = 0; j < n_reactions; j++) - { - Ith(cvode_last_good_y, j + 1) = 0.0; - Ith(cvode_prev_good_y, j + 1) = 0.0; - Ith(kinetics_abstol, j + 1) = 0.0; - } -/* - * Set y to 0.0 - */ - for (size_t j = 0; j < kinetics_ptr->Get_kinetics_comps().size(); j++) - { - cxxKineticsComp * kinetics_comp_ptr = &(kinetics_ptr->Get_kinetics_comps()[j]); - kinetics_comp_ptr->Set_moles(0.0); - Ith(kinetics_y, j + 1) = 0.0; - Ith(kinetics_abstol, j + 1) = kinetics_comp_ptr->Get_tol(); - } - reltol = 0.0; - - /* Call CVodeMalloc to initialize CVODE: - - NEQ is the problem size = number of equations - f is the user's right hand side function in y'=f(t,y) - T0 is the initial time - y is the initial dependent variable vector - BDF specifies the Backward Differentiation Formula - NEWTON specifies a Newton iteration - SV specifies scalar relative and vector absolute tolerances - &reltol is a pointer to the scalar relative tolerance - abstol is the absolute tolerance vector - FALSE indicates there are no optional inputs in iopt and ropt - iopt is an array used to communicate optional integer input and output - ropt is an array used to communicate optional real input and output - - A pointer to CVODE problem memory is returned and stored in cvode_mem. */ - /* Don`t know what this does */ - /* - iopt[SLDET] = TRUE; - cvode_mem = CVodeMalloc(n_reactions, f, 0.0, y, BDF, NEWTON, SV, &reltol, abstol, NULL, NULL, TRUE, iopt, ropt, machEnv); - cvode_mem = CVodeMalloc(n_reactions, f, 0.0, y, ADAMS, FUNCTIONAL, SV, &reltol, abstol, NULL, NULL, FALSE, iopt, ropt, machEnv); - iopt[MXSTEP] is maximum number of steps that CVODE tries. - */ - iopt[MXSTEP] = kinetics_ptr->Get_cvode_steps(); - iopt[MAXORD] = kinetics_ptr->Get_cvode_order(); - kinetics_cvode_mem = - CVodeMalloc(n_reactions, f, 0.0, kinetics_y, BDF, NEWTON, SV, - &reltol, kinetics_abstol, this, NULL, TRUE, iopt, - ropt, kinetics_machEnv); - if (kinetics_cvode_mem == NULL) - malloc_error(); - - /* Call CVDense to specify the CVODE dense linear solver with the - user-supplied Jacobian routine Jac. */ - flag = CVDense(kinetics_cvode_mem, Jac, this); - if (flag != SUCCESS) - { - error_msg("CVDense failed.", STOP); - } - t = 0; - tout = kin_time; - /*ropt[HMAX] = tout/10.; */ - /*ropt[HMIN] = 1e-17; */ - use_save = use; - flag = CVode(kinetics_cvode_mem, tout, kinetics_y, &t, NORMAL); - rate_sim_time = rate_sim_time_start + t; - /* - printf("At t = %0.4e y =%14.6e %14.6e %14.6e\n", - t, Ith(y,1), Ith(y,2), Ith(y,3)); - */ - m_iter = 0; - sum_t = 0; -RESTART: - while (flag != SUCCESS) - { - sum_t += cvode_last_good_time; - error_string = sformatf( - "CVode incomplete at cvode_steps %d. Cell: %d\tTime: %e\tCvode calls: %d, continuing...\n", - (int) iopt[NST], cell_no, (double) sum_t, m_iter + 1); - warning_msg(error_string); - - // run with last good y, update reactants - cvode_update_reactants(i, nsaver, true); - - cvode_last_good_time = 0; - if (++m_iter >= kinetics_ptr->Get_bad_step_max()) - { - m_temp = (LDBLE *) free_check_null(m_temp); - m_original = (LDBLE *) free_check_null(m_original); - error_msg("Repeated restart of integration.", STOP); - } - tout1 = tout - sum_t; - t = 0; - N_VScale(1.0, cvode_last_good_y, kinetics_y); - for (int j = 0; j < OPT_SIZE; j++) - { - iopt[j] = 0; - ropt[j] = 0; - } - CVodeFree(kinetics_cvode_mem); /* Free the CVODE problem memory */ - iopt[MXSTEP] = kinetics_ptr->Get_cvode_steps(); - iopt[MAXORD] = kinetics_ptr->Get_cvode_order(); - kinetics_cvode_mem = - CVodeMalloc(n_reactions, f, 0.0, kinetics_y, BDF, NEWTON, - SV, &reltol, kinetics_abstol, this, NULL, - TRUE, iopt, ropt, kinetics_machEnv); - if (kinetics_cvode_mem == NULL) - malloc_error(); - - /* Call CVDense to specify the CVODE dense linear solver with the - user-supplied Jacobian routine Jac. */ - flag = CVDense(kinetics_cvode_mem, Jac, this); - if (flag != SUCCESS) - { - error_msg("CVDense failed.", STOP); - } - flag = CVode(kinetics_cvode_mem, tout1, kinetics_y, &t, NORMAL); - } - // end cvode integration - - // update -#ifdef SKIP - for (size_t j = 0; j < kinetics_ptr->Get_kinetics_comps().size(); j++) - { - cxxKineticsComp * kinetics_comp_ptr = &(kinetics_ptr->Get_kinetics_comps()[j]); - kinetics_comp_ptr->Set_moles(Ith(kinetics_y, j + 1)); - kinetics_comp_ptr->Set_m(m_original[j] - kinetics_comp_ptr->Get_moles()); - if (kinetics_comp_ptr->Get_m() < 0) - { - kinetics_comp_ptr->Set_moles(m_original[j]); - kinetics_comp_ptr->Set_m(0.0); - } - } - if (use.Get_pp_assemblage_ptr() != NULL) - { - Rxn_pp_assemblage_map[cvode_pp_assemblage_save->Get_n_user()] = *cvode_pp_assemblage_save; - use.Set_pp_assemblage_ptr(Utilities::Rxn_find(Rxn_pp_assemblage_map, cvode_pp_assemblage_save->Get_n_user())); - } - if (use.Get_ss_assemblage_ptr() != NULL) - { - Rxn_ss_assemblage_map[cvode_ss_assemblage_save->Get_n_user()] = *cvode_ss_assemblage_save; - use.Set_ss_assemblage_ptr(Utilities::Rxn_find(Rxn_ss_assemblage_map, cvode_ss_assemblage_save->Get_n_user())); - } -#endif - - // put remaining kinetic reaction in last_good_y for update - N_VScale(1.0, kinetics_y, cvode_last_good_y); - if (!cvode_update_reactants(i, nsaver, false)) - { - warning_msg("FAIL 2 after successful integration in CVode"); - flag = -1; - goto RESTART; - } -#ifdef SKIP - calc_final_kinetic_reaction(kinetics_ptr); - if (set_and_run_wrapper(i, NOMIX, TRUE, nsaver, 1.0) == MASS_BALANCE) - { - warning_msg("FAIL 2 after successful integration in CVode"); - flag = -1; - goto RESTART; - } - for (size_t j = 0; j < kinetics_ptr->Get_kinetics_comps().size(); j++) - { - cxxKineticsComp * kinetics_comp_ptr = &(kinetics_ptr->Get_kinetics_comps()[j]); - kinetics_comp_ptr->Set_m(m_original[j] - kinetics_comp_ptr->Get_moles()); - } -#endif -/* - * Restore solution i, if necessary - */ - if (nsaver != i) - { - Utilities::Rxn_copy(Rxn_solution_map, save_old, i); - } - free_cvode(); - use.Set_mix_in(use_save.Get_mix_in()); - use.Set_mix_ptr(use_save.Get_mix_ptr()); - - // finish up - rate_sim_time = rate_sim_time_start + kin_time; - store_get_equi_reactants(i, TRUE); - pr.all = pr_all_save; - -#ifdef SKIP - kinetics_ptr = Utilities::Rxn_find(Rxn_kinetics_map, i); - for (size_t j = 0; j < kinetics_ptr->Get_kinetics_comps().size(); j++) - { - cxxKineticsComp * kinetics_comp_ptr = &(kinetics_ptr->Get_kinetics_comps()[j]); - kinetics_comp_ptr->Set_moles(m_original[j] - kinetics_comp_ptr->Get_m()); - } -#else - kinetics_ptr = Utilities::Rxn_find(Rxn_kinetics_map, i); - cxxKinetics *kinetics_original_ptr = Utilities::Rxn_find(Rxn_kinetics_map, use.Get_n_kinetics_user()); - for (size_t j = 0; j < kinetics_ptr->Get_kinetics_comps().size(); j++) - { - cxxKineticsComp * kinetics_comp_ptr = &(kinetics_ptr->Get_kinetics_comps()[j]); - cxxKineticsComp * kinetics_original_comp_ptr = &(kinetics_original_ptr->Get_kinetics_comps()[j]); - kinetics_comp_ptr->Set_moles(kinetics_original_comp_ptr->Get_m() - kinetics_comp_ptr->Get_m()); - } -#endif - m_temp = (LDBLE *) free_check_null(m_temp); - m_original = (LDBLE *) free_check_null(m_original); - } // end cvode - } - iterations = run_reactions_iterations; - if (cvode_pp_assemblage_save != NULL) - { - delete cvode_pp_assemblage_save; - cvode_pp_assemblage_save = NULL; - } - if (cvode_ss_assemblage_save != NULL) - { - delete cvode_ss_assemblage_save; - cvode_ss_assemblage_save = NULL; - } - return (OK); -} -#else -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -run_reactions(int i, LDBLE kin_time, int use_mix, LDBLE step_fraction) -/* ---------------------------------------------------------------------- */ -{ -/* - * Kinetics calculations - * Rates and moles of each reaction are calculated in calc_kinetic_reaction - * Total number of moles in reaction is stored in kinetics[i].totals - */ - + //int increase_tol = 0; // appt int converge, m_iter; int pr_all_save; int nsaver; @@ -2450,6 +1997,7 @@ run_reactions(int i, LDBLE kin_time, int use_mix, LDBLE step_fraction) * Set nsaver */ run_reactions_iterations = 0; + overall_iterations = 0; kin_time_x = kin_time; rate_kin_time = kin_time; nsaver = i; @@ -2473,6 +2021,7 @@ run_reactions(int i, LDBLE kin_time, int use_mix, LDBLE step_fraction) */ kinetics_ptr = Utilities::Rxn_find(Rxn_kinetics_map, i); if (kin_time <= 0 || + (kinetics_ptr && kinetics_ptr->Get_kinetics_comps().size() == 0) || (state == REACTION && use.Get_kinetics_in() == FALSE) || (state == TRANSPORT && kinetics_ptr == NULL) || (state == PHAST && kinetics_ptr == NULL) || @@ -2481,9 +2030,10 @@ run_reactions(int i, LDBLE kin_time, int use_mix, LDBLE step_fraction) converge = set_and_run_wrapper(i, use_mix, FALSE, nsaver, step_fraction); if (converge == MASS_BALANCE) - error_msg - ("Negative concentration in system. Stopping calculation.", - STOP); + { + error_string = sformatf("Negative concentration in solution %d. Stopping calculation.", cell_no); + error_msg(error_string, STOP); + } run_reactions_iterations += iterations; } else @@ -2492,14 +2042,8 @@ run_reactions(int i, LDBLE kin_time, int use_mix, LDBLE step_fraction) * Save moles of kinetic reactants for printout... */ size_t count_comps = kinetics_ptr->Get_kinetics_comps().size(); - m_temp = (LDBLE *) PHRQ_malloc(count_comps * sizeof(LDBLE)); - if (m_temp == NULL) - malloc_error(); - - m_original = - (LDBLE *) PHRQ_malloc(count_comps * sizeof(LDBLE)); - if (m_original == NULL) - malloc_error(); + m_temp.resize(count_comps); + m_original.resize(count_comps); for (size_t j = 0; j < kinetics_ptr->Get_kinetics_comps().size(); j++) { @@ -2529,7 +2073,7 @@ run_reactions(int i, LDBLE kin_time, int use_mix, LDBLE step_fraction) } else { - save_old = -2 - (count_cells * (1 + stag_data->count_stag) + 2); + save_old = -2 - (count_cells * (1 + stag_data.count_stag) + 2); if (nsaver != i) { Utilities::Rxn_copy(Rxn_solution_map, i, save_old); @@ -2539,7 +2083,6 @@ run_reactions(int i, LDBLE kin_time, int use_mix, LDBLE step_fraction) iopt[j] = 0; ropt[j] = 0; } - /* * Do mix first */ @@ -2552,13 +2095,14 @@ run_reactions(int i, LDBLE kin_time, int use_mix, LDBLE step_fraction) cvode_rate_sim_time = rate_sim_time; if (multi_Dflag) - converge = set_and_run_wrapper(i, NOMIX, FALSE, i, 0.0); + converge = set_and_run_wrapper(i, NOMIX, FALSE, i, step_fraction); else - converge = set_and_run_wrapper(i, use_mix, FALSE, i, 0.0); + converge = set_and_run_wrapper(i, use_mix, FALSE, i, step_fraction); if (converge == MASS_BALANCE) - error_msg - ("Negative concentration in system. Stopping calculation.", - STOP); + { + error_string = sformatf("Negative concentration in solution %d. Stopping calculation.", cell_no); + error_msg(error_string, STOP); + } saver(); pp_assemblage_ptr = Utilities::Rxn_find(Rxn_pp_assemblage_map, i); ss_assemblage_ptr = Utilities::Rxn_find(Rxn_ss_assemblage_map, i); @@ -2570,7 +2114,6 @@ run_reactions(int i, LDBLE kin_time, int use_mix, LDBLE step_fraction) { cvode_ss_assemblage_save = new cxxSSassemblage(*ss_assemblage_ptr); } - /* allocate space for CVODE */ kinetics_machEnv = M_EnvInit_Serial(n_reactions); kinetics_machEnv->phreeqc_ptr = this; @@ -2629,6 +2172,7 @@ run_reactions(int i, LDBLE kin_time, int use_mix, LDBLE step_fraction) cvode_mem = CVodeMalloc(n_reactions, f, 0.0, y, ADAMS, FUNCTIONAL, SV, &reltol, abstol, NULL, NULL, FALSE, iopt, ropt, machEnv); iopt[MXSTEP] is maximum number of steps that CVODE tries. */ + //iopt[SLDET] = TRUE; // appt iopt[MXSTEP] = kinetics_ptr->Get_cvode_steps(); iopt[MAXORD] = kinetics_ptr->Get_cvode_order(); kinetics_cvode_mem = @@ -2658,25 +2202,50 @@ run_reactions(int i, LDBLE kin_time, int use_mix, LDBLE step_fraction) */ m_iter = 0; sum_t = 0; - RESTART: + RESTART: while (flag != SUCCESS) { sum_t += cvode_last_good_time; - error_string = sformatf( - "CVode incomplete at cvode_steps %d. Cell: %d\tTime: %e\tCvode calls: %d, continuing...\n", - (int) iopt[NST], cell_no, (double) sum_t, m_iter + 1); - warning_msg(error_string); + { + error_string = sformatf("CV_ODE: Time: %8.2e s. Delta t: %8.2e s. Calls: %d.", (double)(sum_t), (double) cvode_last_good_time, m_iter); + status(0, error_string, true); + } + //if (state != TRANSPORT) + //{ + // error_string = sformatf( + // "CVode incomplete at cvode_steps %d. Cell: %d. Time: %8.2e s. Cvode calls: %d, continuing...\n", + // (int)iopt[NST], cell_no, (double)sum_t, m_iter + 1); + // warning_msg(error_string); + //} #ifdef DEBUG_KINETICS if (m_iter > 5) dump_kinetics_stderr(cell_no); #endif + //if (m_iter > 0.5 * kinetics_ptr->Get_bad_step_max() && + // (cvode_last_good_time < 1e-6 || cvode_last_good_time < 1e-6 * tout)) // appt + //{ + // if (increase_tol < 3) + // { + // increase_tol += 1; + // for (size_t j = 0; j < kinetics_ptr->Get_kinetics_comps().size(); j++) + // { + // cxxKineticsComp * kinetics_comp_ptr = &(kinetics_ptr->Get_kinetics_comps()[j]); + // LDBLE tr = kinetics_comp_ptr->Get_tol() * 10.0; + // kinetics_comp_ptr->Set_tol(tr); + // tr += 0; + // } + // } + //} cvode_last_good_time = 0; if (++m_iter >= kinetics_ptr->Get_bad_step_max()) { - m_temp = (LDBLE *) free_check_null(m_temp); - m_original = (LDBLE *) free_check_null(m_original); - error_msg("Repeated restart of integration.", STOP); + m_temp.clear(); + m_original.clear(); + error_string = sformatf( + "CVode is at maximum calls: %d. Cell: %d. Time: %8.2e s\nERROR: Please increase the maximum calls with -bad_step_max.", + m_iter, cell_no, (double)sum_t); + error_msg(error_string, STOP); } tout1 = tout - sum_t; t = 0; @@ -2735,8 +2304,8 @@ run_reactions(int i, LDBLE kin_time, int use_mix, LDBLE step_fraction) use.Set_ss_assemblage_ptr(Utilities::Rxn_find(Rxn_ss_assemblage_map, cvode_ss_assemblage_save->Get_n_user())); } calc_final_kinetic_reaction(kinetics_ptr); - if (set_and_run_wrapper(i, NOMIX, TRUE, nsaver, 1.0) == - MASS_BALANCE) + if (set_and_run_wrapper(i, NOMIX, TRUE, nsaver, 0) == + MASS_BALANCE) { /*error_msg("FAIL 2 after successful integration in CVode", CONTINUE); */ warning_msg("FAIL 2 after successful integration in CVode"); @@ -2758,6 +2327,11 @@ run_reactions(int i, LDBLE kin_time, int use_mix, LDBLE step_fraction) free_cvode(); use.Set_mix_in(use_save.Get_mix_in()); use.Set_mix_ptr(use_save.Get_mix_ptr()); + + error_string = sformatf("CV_ODE: Final Delta t: %8.2e s. Calls: %d. ", (double)cvode_last_good_time, m_iter); + status(0, error_string, true); + + //status(0, NULL); } rate_sim_time = rate_sim_time_start + kin_time; @@ -2771,8 +2345,8 @@ run_reactions(int i, LDBLE kin_time, int use_mix, LDBLE step_fraction) kinetics_comp_ptr->Set_moles(m_original[j] - kinetics_comp_ptr->Get_m()); /* if (kinetics_ptr->comps[j].moles < 1.e-15) kinetics_ptr->comps[j].moles = 0.0; */ } - m_temp = (LDBLE *) free_check_null(m_temp); - m_original = (LDBLE *) free_check_null(m_original); + m_temp.clear(); + m_original.clear(); } iterations = run_reactions_iterations; if (cvode_pp_assemblage_save != NULL) @@ -2787,7 +2361,7 @@ run_reactions(int i, LDBLE kin_time, int use_mix, LDBLE step_fraction) } return (OK); } -#endif + /* ---------------------------------------------------------------------- */ int Phreeqc:: free_cvode(void) @@ -3073,13 +2647,8 @@ store_get_equi_reactants(int l, int kin_end) if (k == 0) return (OK); - x0_moles = (LDBLE *) free_check_null(x0_moles); - x0_moles = (LDBLE *) PHRQ_malloc((size_t) k * sizeof(LDBLE)); - if (x0_moles == NULL) malloc_error(); - for (i = 0; i < k; i++) - { - x0_moles[i] = 0.0; - } + x0_moles.resize(k); + for (i = 0; i < k; i++) x0_moles[i] = 0.0; k = -1; if (pp_assemblage_ptr) { @@ -3162,7 +2731,7 @@ store_get_equi_reactants(int l, int kin_end) * This condition makes output equal for incremental_reactions TRUE/FALSE... * if (incremental_reactions == FALSE || reaction_step == count_total_steps) */ - x0_moles = (LDBLE *) free_check_null(x0_moles); + x0_moles.clear(); } return (OK); } @@ -3271,7 +2840,8 @@ Jac(integertype N, DenseMat J, RhsFn f, void *f_data, { int count_cvode_errors; int n_reactions, n_user; - LDBLE *initial_rates, del; + LDBLE del; + std::vector initial_rates; cxxKinetics *kinetics_ptr; LDBLE step_fraction; @@ -3284,10 +2854,7 @@ Jac(integertype N, DenseMat J, RhsFn f, void *f_data, step_fraction = pThis->cvode_step_fraction; pThis->rate_sim_time = pThis->cvode_rate_sim_time; - initial_rates = - (LDBLE *) pThis->PHRQ_malloc ((size_t) n_reactions * sizeof(LDBLE)); - if (initial_rates == NULL) - pThis->malloc_error(); + initial_rates.resize(n_reactions); for (size_t i = 0; i < kinetics_ptr->Get_kinetics_comps().size(); i++) { @@ -3329,7 +2896,7 @@ Jac(integertype N, DenseMat J, RhsFn f, void *f_data, /* error_msg("Mass balance error in jacobian", CONTINUE); */ - initial_rates = (LDBLE *) pThis->free_check_null(initial_rates); + initial_rates.clear(); return; } pThis->run_reactions_iterations += pThis->iterations; @@ -3401,7 +2968,7 @@ Jac(integertype N, DenseMat J, RhsFn f, void *f_data, pThis->cvode_error = TRUE; if (count_cvode_errors > 30) { - initial_rates = (LDBLE *) pThis->free_check_null(initial_rates); + initial_rates.clear(); return; } pThis->run_reactions_iterations += pThis->iterations; @@ -3432,7 +2999,7 @@ Jac(integertype N, DenseMat J, RhsFn f, void *f_data, cxxKineticsComp * kinetics_comp_ptr = &(kinetics_ptr->Get_kinetics_comps()[i]); kinetics_comp_ptr->Set_moles(0); } - initial_rates = (LDBLE *) pThis->free_check_null(initial_rates); + initial_rates.clear(); return; } diff --git a/mainsubs.cpp b/mainsubs.cpp index ee53a2cd..0f1c714a 100644 --- a/mainsubs.cpp +++ b/mainsubs.cpp @@ -17,6 +17,14 @@ #include #endif +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /* ---------------------------------------------------------------------- */ void Phreeqc:: initialize(void) @@ -25,239 +33,35 @@ initialize(void) /* * Initialize global variables */ - struct logk *logk_ptr; - char token[MAX_LENGTH]; - - moles_per_kilogram_string = string_duplicate("Mol/kgw"); - pe_string = string_duplicate("pe"); -/* - * Initialize advection - */ - advection_punch = (int *) PHRQ_malloc(sizeof(int)); - if (advection_punch == NULL) - malloc_error(); - advection_punch[0] = TRUE; - advection_print = (int *) PHRQ_malloc(sizeof(int)); - if (advection_print == NULL) - malloc_error(); - advection_print[0] = TRUE; + moles_per_kilogram_string = "Mol/kgw"; /* * Allocate space */ - cell_data_max_cells = count_cells + 2; - space((void **) ((void *) &cell_data), INIT, &cell_data_max_cells, - sizeof(struct cell_data)); - for (int i = 0; i < cell_data_max_cells; i++) - { - cell_data[i].length = 1.0; - cell_data[i].mid_cell_x = 1.0; - cell_data[i].disp = 1.0; - cell_data[i].temp = 25.0; - cell_data[i].por = 0.1; - cell_data[i].por_il = 0.01; - cell_data[i].potV = 0; - cell_data[i].punch = FALSE; - cell_data[i].print = FALSE; - } + cell_data.resize((size_t)count_cells + 2); // initialized by global_structures.h - space((void **) ((void *) &elements), INIT, &max_elements, - sizeof(struct element *)); - - space((void **) ((void *) &elt_list), INIT, &max_elts, - sizeof(struct elt_list)); - - inverse = (struct inverse *) PHRQ_malloc((size_t) sizeof(struct inverse)); - if (inverse == NULL) malloc_error(); count_inverse = 0; space((void **) ((void *) &line), INIT, &max_line, sizeof(char)); space((void **) ((void *) &line_save), INIT, &max_line, sizeof(char)); - space((void **) ((void *) &master), INIT, &max_master, - sizeof(struct master *)); - - space((void **) ((void *) &mb_unknowns), INIT, &max_mb_unknowns, - sizeof(struct unknown_list)); - - // one stag_data - stag_data = (struct stag_data *) PHRQ_calloc(1, sizeof(struct stag_data)); - if (stag_data == NULL) - malloc_error(); - stag_data->count_stag = 0; - stag_data->exch_f = 0; - stag_data->th_m = 0; - stag_data->th_im = 0; - - space((void **) ((void *) &phases), INIT, &max_phases, - sizeof(struct phase *)); - - space((void **) ((void *) &trxn.token), INIT, &max_trxn, - sizeof(struct rxn_token_temp)); - - space((void **) ((void *) &s), INIT, &max_s, sizeof(struct species *)); - - space((void **) ((void *) &logk), INIT, &max_logk, sizeof(struct logk *)); - - space((void **) ((void *) &master_isotope), INIT, &max_master_isotope, - sizeof(struct master_isotope *)); - -/* - * Create hash tables - */ - hcreate_multi((unsigned) max_logk, &logk_hash_table); - hcreate_multi((unsigned) max_master_isotope, &master_isotope_hash_table); - hcreate_multi((unsigned) max_elements, &elements_hash_table); - hcreate_multi((unsigned) max_s, &species_hash_table); - hcreate_multi((unsigned) max_phases, &phases_hash_table); -#ifdef SKIP_OLD_SELECTED_OUTPUT -/* - * Initialize punch - */ - punch.in = FALSE; - punch.new_def = FALSE; - - // one punch.totals - punch.count_totals = 0; - punch.totals = - (struct name_master *) PHRQ_malloc(sizeof(struct name_master)); - if (punch.totals == NULL) - malloc_error(); - - // one punch.molalities - punch.count_molalities = 0; - punch.molalities = - (struct name_species *) PHRQ_malloc(sizeof(struct name_species)); - if (punch.molalities == NULL) - malloc_error(); - - // one punch.activities - punch.count_activities = 0; - punch.activities = - (struct name_species *) PHRQ_malloc(sizeof(struct name_species)); - if (punch.activities == NULL) - malloc_error(); - - // one punch.pure_phases - punch.count_pure_phases = 0; - punch.pure_phases = - (struct name_phase *) PHRQ_malloc(sizeof(struct name_phase)); - if (punch.pure_phases == NULL) - malloc_error(); - - // one punch.si - punch.count_si = 0; - punch.si = (struct name_phase *) PHRQ_malloc(sizeof(struct name_phase)); - if (punch.si == NULL) - malloc_error(); - - // one punch.gases - punch.count_gases = 0; - punch.gases = - (struct name_phase *) PHRQ_malloc(sizeof(struct name_phase)); - if (punch.gases == NULL) - malloc_error(); - - // one punch.s_s - punch.count_s_s = 0; - punch.s_s = (struct name_phase *) PHRQ_malloc(sizeof(struct name_phase)); - if (punch.s_s == NULL) - malloc_error(); - - // one punch.kinetics - punch.count_kinetics = 0; - punch.kinetics = - (struct name_phase *) PHRQ_malloc(sizeof(struct name_phase)); - if (punch.kinetics == NULL) - malloc_error(); - - // one punch.isotopes - punch.count_isotopes = 0; - punch.isotopes = - (struct name_master *) PHRQ_malloc(sizeof(struct name_master)); - if (punch.isotopes == NULL) - malloc_error(); - - // one punch.calculate_values - punch.count_calculate_values = 0; - punch.calculate_values = - (struct name_master *) PHRQ_malloc(sizeof(struct name_master)); - if (punch.calculate_values == NULL) - malloc_error(); -#endif - // one save_values - save_values = - (struct save_values *) PHRQ_malloc(sizeof(struct save_values)); - if (save_values == NULL) - malloc_error(); - - // one rate - rates = (struct rate *) PHRQ_malloc(sizeof(struct rate)); - if (rates == NULL) - malloc_error(); + // one stag_data in phreeqc.h, initialized in global_structures // user_print - user_print = (struct rate *) PHRQ_malloc((size_t) sizeof(struct rate)); - if (user_print == NULL) - malloc_error(); - user_print->commands = NULL; + user_print = new class rate; + user_print->name = string_hsave("User_print"); + user_print->commands.clear(); user_print->linebase = NULL; user_print->varbase = NULL; user_print->loopbase = NULL; - -#ifdef SKIP - // user_punch - user_punch = (struct rate *) PHRQ_malloc((size_t) sizeof(struct rate)); - if (user_punch == NULL) - malloc_error(); - user_punch->commands = NULL; - user_punch->linebase = NULL; - user_punch->varbase = NULL; - user_punch->loopbase = NULL; - user_punch_headings = (const char **) PHRQ_malloc(sizeof(char *)); - if (user_punch_headings == NULL) - malloc_error(); - user_punch_count_headings = 0; -#endif -#if defined PHREEQ98 -/* - * user_graph - */ - user_graph = (struct rate *) PHRQ_malloc((size_t) sizeof(struct rate)); - if (user_graph == NULL) - malloc_error(); - user_graph->commands = NULL; - user_graph->linebase = NULL; - user_graph->varbase = NULL; - user_graph->loopbase = NULL; - user_graph_headings = (char **) PHRQ_malloc(sizeof(char *)); - if (user_graph_headings == NULL) - malloc_error(); - user_graph_count_headings = 0; -#endif /* Initialize llnl aqueous model parameters */ - llnl_temp = (LDBLE *) PHRQ_malloc(sizeof(LDBLE)); - if (llnl_temp == NULL) - malloc_error(); - llnl_count_temp = 0; - llnl_adh = (LDBLE *) PHRQ_malloc(sizeof(LDBLE)); - if (llnl_adh == NULL) - malloc_error(); - llnl_count_adh = 0; - llnl_bdh = (LDBLE *) PHRQ_malloc(sizeof(LDBLE)); - if (llnl_bdh == NULL) - malloc_error(); - llnl_count_bdh = 0; - llnl_bdot = (LDBLE *) PHRQ_malloc(sizeof(LDBLE)); - if (llnl_bdot == NULL) - malloc_error(); - llnl_count_bdot = 0; - llnl_co2_coefs = (LDBLE *) PHRQ_malloc(sizeof(LDBLE)); - if (llnl_co2_coefs == NULL) - malloc_error(); - llnl_count_co2_coefs = 0; + a_llnl = b_llnl = 0.0; // new PBasic + if (basic_interpreter != NULL) + { + basic_free(); + } basic_interpreter = new PBasic(this, phrq_io); // allocate one change_surf change_surf = @@ -269,61 +73,21 @@ initialize(void) change_surf[0].next = TRUE; change_surf[1].cell_no = -99; change_surf[1].next = FALSE; + /* + * define constant named log_k + */ + class logk* logk_ptr = logk_store("XconstantX", TRUE); + read_log_k_only("1.0", &logk_ptr->log_k[0]); #ifdef PHREEQCI_GUI g_spread_sheet.heading = NULL; g_spread_sheet.units = NULL; - g_spread_sheet.count_rows = 0; - g_spread_sheet.rows = NULL; g_spread_sheet.defaults.units = NULL; - g_spread_sheet.defaults.count_iso = 0; - g_spread_sheet.defaults.iso = NULL; g_spread_sheet.defaults.redox = NULL; + assert(g_spread_sheet.rows.empty()); + assert(g_spread_sheet.defaults.iso.empty()); #endif - /* calculate_value */ - max_calculate_value = MAX_ELTS; - count_calculate_value = 0; - space((void **) ((void *) &calculate_value), INIT, &max_calculate_value, - sizeof(struct calculate_value *)); - hcreate_multi((unsigned) max_calculate_value, - &calculate_value_hash_table); - - /* isotope_ratio */ - max_isotope_ratio = MAX_ELTS; - count_isotope_ratio = 0; - space((void **) ((void *) &isotope_ratio), INIT, &max_isotope_ratio, - sizeof(struct isotope_ratio *)); - hcreate_multi((unsigned) max_isotope_ratio, &isotope_ratio_hash_table); - - /* isotope_value */ - max_isotope_alpha = MAX_ELTS; - count_isotope_alpha = 0; - space((void **) ((void *) &isotope_alpha), INIT, &max_isotope_alpha, - sizeof(struct isotope_alpha *)); - hcreate_multi((unsigned) max_isotope_alpha, &isotope_alpha_hash_table); - - /* - * define constant named log_k - */ - strcpy(token, "XconstantX"); - logk_ptr = logk_store(token, TRUE); - strcpy(token, "1.0"); - read_log_k_only(token, &logk_ptr->log_k[0]); - - // allocate space for copier - copier_init(©_solution); - copier_init(©_pp_assemblage); - copier_init(©_exchange); - copier_init(©_surface); - copier_init(©_ss_assemblage); - copier_init(©_gas_phase); - copier_init(©_kinetics); - copier_init(©_mix); - copier_init(©_reaction); - copier_init(©_temperature); - copier_init(©_pressure); - // Initialize cvode cvode_init(); @@ -333,12 +97,6 @@ initialize(void) // Allocate space for sit sit_init(); - // Allocate zeros - zeros = (LDBLE *) PHRQ_malloc(sizeof(LDBLE)); - if (zeros == NULL) - malloc_error(); - zeros[0] = 0.0; - zeros_max = 1; use_kinetics_limiter = false; return; @@ -634,6 +392,7 @@ initial_solutions(int print) int count_iterations = 0; std::string input_units = solution_ref.Get_initial_data()->Get_units(); cxxISolution *initial_data_ptr = solution_ref.Get_initial_data(); + density_iterations = 0; for (;;) { prep(); @@ -650,6 +409,7 @@ initial_solutions(int print) set(TRUE); converge = model(); } + density_iterations++; if (solution_ref.Get_initial_data()->Get_calc_density()) { solution_ref.Set_density(calc_dens()); @@ -678,9 +438,10 @@ initial_solutions(int print) add_isotopes(solution_ref); punch_all(); print_all(); + density_iterations = 0; /* free_model_allocs(); */ // remove pr_in - for (int i = 0; i < count_unknowns; i++) + for (size_t i = 0; i < count_unknowns; i++) { if (x[i]->type == SOLUTION_PHASE_BOUNDARY) x[i]->phase->pr_in = false; @@ -709,26 +470,6 @@ initial_solutions(int print) initial_solution_isotopes = FALSE; return (OK); } -#ifdef SKIP -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -solution_mix() -/* ---------------------------------------------------------------------- */ -{ -/* - * Go through list of solution_mix, mix, save solutions - */ - std::map::iterator it; - for (it = Rxn_solution_mix_map.begin(); it != Rxn_solution_mix_map.end(); it++) - { - cxxSolution sol(Rxn_solution_map, it->second, it->second.Get_n_user(), this->phrq_io); - Rxn_solution_map[it->second.Get_n_user()] = sol; - Utilities::Rxn_copies(Rxn_solution_map, it->second.Get_n_user(), it->second.Get_n_user_end()); - } - Rxn_solution_mix_map.clear(); - return OK; -} -#endif /* ---------------------------------------------------------------------- */ int Phreeqc:: initial_exchangers(int print) @@ -829,8 +570,8 @@ initial_gas_phases(int print) int converge, converge1; int last, n_user, print1; char token[2 * MAX_LENGTH]; - struct phase *phase_ptr; - struct rxn_token *rxn_ptr; + class phase *phase_ptr; + class rxn_token *rxn_ptr; LDBLE lp; bool PR = false; @@ -898,7 +639,7 @@ initial_gas_phases(int print) if (phase_ptr->in == TRUE) { lp = -phase_ptr->lk; - for (rxn_ptr = phase_ptr->rxn_x->token + 1; + for (rxn_ptr = &phase_ptr->rxn_x.token[0] + 1; rxn_ptr->s != NULL; rxn_ptr++) { lp += rxn_ptr->s->la * rxn_ptr->coef; @@ -1032,7 +773,7 @@ reactions(void) */ int count_steps, use_mix; char token[2 * MAX_LENGTH]; - struct save save_data; + class save save_data; LDBLE kin_time; cxxKinetics *kinetics_ptr; @@ -1076,7 +817,8 @@ reactions(void) /* * save data for saving solutions */ - memcpy(&save_data, &save, sizeof(struct save)); + // memcpy(&save_data, &save, sizeof(class save)); + save_data = save; /* *Copy everything to -2 */ @@ -1085,6 +827,7 @@ reactions(void) rate_sim_time = 0; for (reaction_step = 1; reaction_step <= count_steps; reaction_step++) { + overall_iterations = 0; sprintf(token, "Reaction step %d.", reaction_step); if (reaction_step > 1 && incremental_reactions == FALSE) { @@ -1138,7 +881,8 @@ reactions(void) /* * save end of reaction */ - memcpy(&save, &save_data, sizeof(struct save)); + // memcpy(&save, &save_data, sizeof(class save)); + save = save_data; if (use.Get_kinetics_in() == TRUE) { Utilities::Rxn_copy(Rxn_kinetics_map, -2, use.Get_n_kinetics_user()); @@ -1162,7 +906,7 @@ reactions(void) // { // cxxGasComp *gc_ptr = &(gas_phase_ptr->Get_gas_comps()[i]); // int k; -// struct phase *phase_ptr = phase_bsearch(gc_ptr->Get_phase_name().c_str(), &k, FALSE); +// class phase *phase_ptr = phase_bsearch(gc_ptr->Get_phase_name().c_str(), &k, FALSE); // assert(phase_ptr); // phase_ptr->pr_in = false; // } @@ -1191,8 +935,7 @@ saver(void) if (save.solution == TRUE) { sprintf(token, "Solution after simulation %d.", simulation); - description_x = (char *) free_check_null(description_x); - description_x = string_duplicate(token); + description_x = token; n = save.n_solution_user; xsolution_save(n); for (i = save.n_solution_user + 1; i <= save.n_solution_user_end; i++) @@ -1268,7 +1011,7 @@ xexchange_save(int n_user) * Save exchanger assemblage into structure exchange with user * number n_user. */ - int i, j; + size_t i, j; char token[MAX_LENGTH]; LDBLE charge; @@ -1308,7 +1051,7 @@ xexchange_save(int n_user) count_elts = 0; paren_count = 0; charge = 0.0; - for (j = 0; j < count_species_list; j++) + for (j = 0; j < species_list.size(); j++) { if (species_list[j].master_s == x[i]->master[0]->s) { @@ -1350,19 +1093,19 @@ int Phreeqc:: xgas_save(int n_user) /* ---------------------------------------------------------------------- */ { -/* - * Save gas composition into structure gas_phase with user - * number n_user. - */ + /* + * Save gas composition into structure gas_phase with user + * number n_user. + */ char token[MAX_LENGTH]; if (use.Get_gas_phase_ptr() == NULL) return (OK); - cxxGasPhase *gas_phase_ptr = use.Get_gas_phase_ptr(); + cxxGasPhase* gas_phase_ptr = use.Get_gas_phase_ptr(); cxxGasPhase temp_gas_phase(*gas_phase_ptr); -/* - * Store in gas_phase - */ + /* + * Store in gas_phase + */ temp_gas_phase.Set_n_user(n_user); temp_gas_phase.Set_n_user_end(n_user); sprintf(token, "Gas phase after simulation %d.", simulation); @@ -1370,22 +1113,38 @@ xgas_save(int n_user) temp_gas_phase.Set_new_def(false); temp_gas_phase.Set_solution_equilibria(false); temp_gas_phase.Set_n_solution(-99); -/* - * Update amounts - */ - for (size_t i = 0 ; i < temp_gas_phase.Get_gas_comps().size(); i++) + /* + * Update amounts + */ + bool PR = false; + if (gas_phase_ptr->Get_v_m() >= 0.01) PR = true; + for (size_t i = 0; i < temp_gas_phase.Get_gas_comps().size(); i++) { - cxxGasComp * gc_ptr = &(temp_gas_phase.Get_gas_comps()[i]); + cxxGasComp* gc_ptr = &(temp_gas_phase.Get_gas_comps()[i]); int k; - struct phase *phase_ptr = phase_bsearch(gc_ptr->Get_phase_name().c_str(), &k, FALSE); + class phase* phase_ptr = phase_bsearch(gc_ptr->Get_phase_name().c_str(), &k, FALSE); assert(phase_ptr); - gc_ptr->Set_moles(phase_ptr->moles_x); + if (PR) + { + gc_ptr->Set_moles(phase_ptr->moles_x); + gc_ptr->Set_p(phase_ptr->p_soln_x); + gc_ptr->Set_phi(phase_ptr->pr_phi); + gc_ptr->Set_f(phase_ptr->p_soln_x * phase_ptr->pr_phi); + } + else + { + gc_ptr->Set_moles(phase_ptr->moles_x); + gc_ptr->Set_p(phase_ptr->p_soln_x); + gc_ptr->Set_phi(1.0); + gc_ptr->Set_f(phase_ptr->p_soln_x); + } } Rxn_gas_phase_map[n_user] = temp_gas_phase; use.Set_gas_phase_ptr(NULL); return (OK); } + /* ---------------------------------------------------------------------- */ int Phreeqc:: xss_assemblage_save(int n_user) @@ -1395,7 +1154,7 @@ xss_assemblage_save(int n_user) * Save ss_assemblage composition into structure ss_assemblage with user * number n_user. */ - cxxSSassemblage temp_ss_assemblage; + cxxSSassemblage temp_ss_assemblage(this->phrq_io); if (use.Get_ss_assemblage_ptr() == NULL) return (OK); @@ -1481,7 +1240,7 @@ xsolution_save(int n_user) * * input: n_user is user solution number of target */ - struct master *master_i_ptr, *master_ptr; + class master *master_i_ptr, *master_ptr; /* * Malloc space for solution data */ @@ -1513,7 +1272,7 @@ xsolution_save(int n_user) */ if (initial_solution_isotopes == TRUE) { - for (int i = 0; i < count_master_isotope; i++) + for (int i = 0; i < (int)master_isotope.size(); i++) { if (master_isotope[i]->moles > 0) { @@ -1554,7 +1313,7 @@ xsolution_save(int n_user) /* * Copy totals data */ - for (int i = 0; i < count_master; i++) + for (int i = 0; i < (int)master.size(); i++) { if (master[i]->s->type == EX || master[i]->s->type == SURF || master[i]->s->type == SURF_PSI) @@ -1583,7 +1342,7 @@ xsolution_save(int n_user) } if (pitzer_model == TRUE || sit_model == TRUE) { - for (int j = 0; j < count_s_x; j++) + for (int j = 0; j < (int)this->s_x.size(); j++) { if (s_x[j]->lg != 0.0) { @@ -1598,53 +1357,31 @@ xsolution_save(int n_user) std::map< std::string, cxxSolutionIsotope >::iterator it; for (it = temp_solution.Get_isotopes().begin(); it != temp_solution.Get_isotopes().end(); it++) { - struct master *iso_master_ptr = master_bsearch(it->second.Get_elt_name().c_str()); - it->second.Set_total(iso_master_ptr->total); - if (iso_master_ptr == s_hplus->secondary) + class master *iso_master_ptr = master_bsearch(it->second.Get_elt_name().c_str()); + if (iso_master_ptr != NULL) { - it->second.Set_total(2 * mass_water_aq_x / gfw_water); + it->second.Set_total(iso_master_ptr->total); + if (iso_master_ptr == s_hplus->secondary) + { + it->second.Set_total(2 * mass_water_aq_x / gfw_water); + } + if (iso_master_ptr == s_h2o->secondary) + { + it->second.Set_total(mass_water_aq_x / gfw_water); + } } - if (iso_master_ptr == s_h2o->secondary) + else { - it->second.Set_total(mass_water_aq_x / gfw_water); + error_string = sformatf("Ignoring failed attempt to interpret %s as an isotope of element %s.", + it->second.Get_isotope_name().c_str(), it->second.Get_elt_name().c_str()); + warning_msg(error_string); } } -#ifdef SKIP -/* - * Bug-fix - * Create and initialize intial data (this object should always be present even if it is left empty) - */ - - temp_solution.Create_initial_data(); - cxxISolution* initialData = temp_solution.Get_initial_data(); - - initialData->Set_units( "Mol/kgw" ); - - // Copy totals to initialdata when present - if ( !temp_solution.Get_totals().empty() ) - { - cxxNameDouble& totals = temp_solution.Get_totals(); - - for (cxxNameDouble::iterator jit = totals.begin(); jit != totals.end(); jit++) - { - std::string compName( jit->first ); - double compConc = jit->second; - - SolutionCompMap& comps = initialData->Get_comps(); - - cxxISolutionComp& tempComp = comps[ compName ]; - - tempComp.Set_description( compName.c_str() ); - tempComp.Set_input_conc( compConc / temp_solution.Get_mass_water()); - tempComp.Set_units( initialData->Get_units().c_str() ); - } - } -#endif if (this->save_species) { // saves mol/L temp_solution.Get_species_map().clear(); - for (int i = 0; i < this->count_s_x; i++) + for (int i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type <= H2O) { @@ -1653,13 +1390,22 @@ xsolution_save(int n_user) } // saves gamma temp_solution.Get_log_gamma_map().clear(); - for (int i = 0; i < this->count_s_x; i++) + for (int i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type <= H2O) { temp_solution.Get_log_gamma_map()[s_x[i]->number] = s_x[i]->lg; } } + // saves molalities + temp_solution.Get_log_molalities_map().clear(); + for (int i = 0; i < (int)this->s_x.size(); i++) + { + if (s_x[i]->type <= H2O) + { + temp_solution.Get_log_molalities_map()[s_x[i]->number] = s_x[i]->lm; + } + } } /* * Save solution @@ -1709,6 +1455,8 @@ xsurface_save(int n_user) if (x[i]->type == SURFACE) { cxxSurfaceComp *comp_ptr = temp_surface.Find_comp(x[i]->surface_comp); + if (comp_ptr == NULL) + continue; // appt in transport with different mobile and stagnant surfaces assert(comp_ptr); comp_ptr->Set_la(x[i]->master[0]->s->la); comp_ptr->Set_moles(0.); @@ -1718,7 +1466,7 @@ xsurface_save(int n_user) count_elts = 0; paren_count = 0; charge = 0.0; - for (int j = 0; j < count_species_list; j++) + for (int j = 0; j < (int)species_list.size(); j++) { if (species_list[j].master_s == x[i]->master[0]->s) { @@ -1738,6 +1486,8 @@ xsurface_save(int n_user) else if (x[i]->type == SURFACE_CB && (use.Get_surface_ptr()->Get_type() == cxxSurface::DDL || use.Get_surface_ptr()->Get_type() == cxxSurface::CCM)) { cxxSurfaceCharge *charge_ptr = temp_surface.Find_charge(x[i]->surface_charge); + if (charge_ptr == NULL) + continue; // appt in transport with different mobile and stagnant surfaces assert(charge_ptr); charge_ptr->Set_charge_balance(x[i]->f); charge_ptr->Set_la_psi(x[i]->master[0]->s->la); @@ -1794,7 +1544,7 @@ xsurface_save(int n_user) { cxxSurfaceCharge & charge_ref = surface_ptr->Get_surface_charges()[i]; double mass_water_surface = charge_ref.Get_mass_water(); - for (int j = 0; j < count_s_x; j++) + for (int j = 0; j < (int)this->s_x.size(); j++) { if (s_x[j]->type > H2O) continue; @@ -1802,7 +1552,6 @@ xsurface_save(int n_user) double moles_excess = mass_water_aq_x * molality * charge_ref.Get_g_map()[s_x[j]->z].Get_g(); double moles_surface = mass_water_surface * molality + moles_excess; charge_ref.Get_dl_species_map()[s_x[j]->number] = moles_surface/mass_water_surface; -//#ifdef SKIP double g = charge_ref.Get_g_map()[s_x[j]->z].Get_g(); //double moles_excess = mass_water_aq_x * molality * (g * s_x[j]->erm_ddl + // mass_water_surface / @@ -1818,9 +1567,6 @@ xsurface_save(int n_user) moles_excess = mass_water_aq_x * molality * g; double c = (mass_water_surface * molality + moles_excess) / mass_water_surface; charge_ref.Get_dl_species_map()[s_x[j]->number] = c; - - -//#endif } //charge_ref.Get_dl_species_map()[s_h2o->number] = 0.0; charge_ref.Get_dl_species_map()[s_h2o->number] = 1.0/gfw_water; @@ -2001,7 +1747,7 @@ step_save_exch(int n_user) } // Set exchange total in one component - for (int i = 0; i < count_master; i++) + for (int i = 0; i < (int)master.size(); i++) { if (master[i]->s->type != EX) continue; @@ -2046,7 +1792,7 @@ step_save_surf(int n_user) return (OK); Utilities::Rxn_copy(Rxn_surface_map, use.Get_surface_ptr()->Get_n_user(), n_user); cxxSurface *surface_ptr = Utilities::Rxn_find(Rxn_surface_map, n_user); - for (int i = 0; i < count_master; i++) + for (int i = 0; i < (int)master.size(); i++) { if (master[i]->s->type != SURF) continue; @@ -2103,286 +1849,164 @@ int Phreeqc:: copy_entities(void) /* ---------------------------------------------------------------------- */ { - int i, j, return_value; - int verbose; - - verbose = FALSE; + int return_value; return_value = OK; - if (copy_solution.count > 0) + for (size_t j = 0; j < copy_solution.n_user.size(); j++) { - for (j = 0; j < copy_solution.count; j++) + if (Utilities::Rxn_find(Rxn_solution_map, copy_solution.n_user[j]) != NULL) { - if (Utilities::Rxn_find(Rxn_solution_map, copy_solution.n_user[j]) != NULL) + for (size_t i = copy_solution.start[j]; i <= copy_solution.end[j]; i++) { - for (i = copy_solution.start[j]; i <= copy_solution.end[j]; - i++) - { - if (i == copy_solution.n_user[j]) - continue; - Utilities::Rxn_copy(Rxn_solution_map, copy_solution.n_user[j], i); - } - } - else - { - if (verbose == TRUE) - { - warning_msg("SOLUTION to copy not found."); - return_value = ERROR; - } - } - } - } - if (copy_pp_assemblage.count > 0) - { - for (j = 0; j < copy_pp_assemblage.count; j++) - { - if (Utilities::Rxn_find(Rxn_pp_assemblage_map, copy_pp_assemblage.n_user[j]) != NULL) - { - for (i = copy_pp_assemblage.start[j]; - i <= copy_pp_assemblage.end[j]; i++) - { - if (i == copy_pp_assemblage.n_user[j]) - continue; - Utilities::Rxn_copy(Rxn_pp_assemblage_map, copy_pp_assemblage.n_user[j], i); - } - } - else - { - if (verbose == TRUE) - { - warning_msg("EQUILIBRIUM_PHASES to copy not found."); - return_value = ERROR; - } - } - } - } - if (copy_reaction.count > 0) - { - for (j = 0; j < copy_reaction.count; j++) - { - if (Utilities::Rxn_find(Rxn_reaction_map, copy_reaction.n_user[j]) != NULL) - { - for (i = copy_reaction.start[j]; i <= copy_reaction.end[j]; i++) - { - if (i == copy_reaction.n_user[j]) - continue; - Utilities::Rxn_copy(Rxn_reaction_map, copy_reaction.n_user[j], i); - } - } - else - { - if (verbose == TRUE) - { - warning_msg("REACTION to copy not found."); - return_value = ERROR; - } - } - } - } - if (copy_mix.count > 0) - { - for (j = 0; j < copy_mix.count; j++) - { - if (Utilities::Rxn_find(Rxn_mix_map, copy_mix.n_user[j]) != NULL) - { - for (i = copy_mix.start[j]; i <= copy_mix.end[j]; i++) - { - if (i != copy_mix.n_user[j]) - { - Utilities::Rxn_copy(Rxn_mix_map, copy_mix.n_user[j], i); - } - } - } - else - { - if (verbose == TRUE) - { - warning_msg("Mix to copy not found."); - return_value = ERROR; - } + if (i == copy_solution.n_user[j]) + continue; + Utilities::Rxn_copy(Rxn_solution_map, copy_solution.n_user[j], (int)i); } } } + copier_clear(©_solution); - if (copy_exchange.count > 0) + for (size_t j = 0; j < copy_pp_assemblage.n_user.size(); j++) { - for (j = 0; j < copy_exchange.count; j++) + if (Utilities::Rxn_find(Rxn_pp_assemblage_map, copy_pp_assemblage.n_user[j]) != NULL) { - if (Utilities::Rxn_find(Rxn_exchange_map, copy_exchange.n_user[j]) != NULL) + for (size_t i = copy_pp_assemblage.start[j]; i <= copy_pp_assemblage.end[j]; i++) { - for (i = copy_exchange.start[j]; i <= copy_exchange.end[j]; - i++) - { - if (i == copy_exchange.n_user[j]) - continue; - Utilities::Rxn_copy(Rxn_exchange_map, copy_exchange.n_user[j], i); - } - } - else - { - if (verbose == TRUE) - { - warning_msg("EXCHANGE to copy not found."); - return_value = ERROR; - } - } - } - } - if (copy_surface.count > 0) - { - for (j = 0; j < copy_surface.count; j++) - { - if (Utilities::Rxn_find(Rxn_surface_map, copy_surface.n_user[j]) != NULL) - { - for (i = copy_surface.start[j]; i <= copy_surface.end[j]; i++) - { - if (i == copy_surface.n_user[j]) - continue; - Utilities::Rxn_copy(Rxn_surface_map, copy_surface.n_user[j], i); - } - } - else - { - if (verbose == TRUE) - { - warning_msg("SURFACE to copy not found."); - return_value = ERROR; - } + if (i == copy_pp_assemblage.n_user[j]) + continue; + Utilities::Rxn_copy(Rxn_pp_assemblage_map, copy_pp_assemblage.n_user[j], (int)i); } } } + copier_clear(©_pp_assemblage); - if (copy_temperature.count > 0) + for (size_t j = 0; j < copy_reaction.n_user.size(); j++) { - for (j = 0; j < copy_temperature.count; j++) + if (Utilities::Rxn_find(Rxn_reaction_map, copy_reaction.n_user[j]) != NULL) { - if (Utilities::Rxn_find(Rxn_temperature_map, copy_temperature.n_user[j]) != NULL) + for (size_t i = copy_reaction.start[j]; i <= copy_reaction.end[j]; i++) { - for (i = copy_temperature.start[j]; i <= copy_temperature.end[j]; i++) - { - if (i != copy_temperature.n_user[j]) - { - Utilities::Rxn_copy(Rxn_temperature_map, copy_temperature.n_user[j], i); - } - } + if (i == copy_reaction.n_user[j]) + continue; + Utilities::Rxn_copy(Rxn_reaction_map, copy_reaction.n_user[j], (int)i); } - else + } + } + copier_clear(©_reaction); + + for (size_t j = 0; j < copy_mix.n_user.size(); j++) + { + if (Utilities::Rxn_find(Rxn_mix_map, copy_mix.n_user[j]) != NULL) + { + for (size_t i = copy_mix.start[j]; i <= copy_mix.end[j]; i++) { - if (verbose == TRUE) + if (i != copy_mix.n_user[j]) { - warning_msg("temperature to copy not found."); - return_value = ERROR; + Utilities::Rxn_copy(Rxn_mix_map, copy_mix.n_user[j], (int)i); } } } } - if (copy_pressure.count > 0) + copier_clear(©_mix); + + for (size_t j = 0; j < copy_exchange.n_user.size(); j++) { - for (j = 0; j < copy_pressure.count; j++) + if (Utilities::Rxn_find(Rxn_exchange_map, copy_exchange.n_user[j]) != NULL) { - if (Utilities::Rxn_find(Rxn_pressure_map, copy_pressure.n_user[j]) != NULL) + for (size_t i = copy_exchange.start[j]; i <= copy_exchange.end[j]; i++) { - for (i = copy_pressure.start[j]; i <= copy_pressure.end[j]; i++) - { - if (i != copy_pressure.n_user[j]) - { - Utilities::Rxn_copy(Rxn_pressure_map, copy_pressure.n_user[j], i); - } - } + if (i == copy_exchange.n_user[j]) continue; + Utilities::Rxn_copy(Rxn_exchange_map, copy_exchange.n_user[j], (int)i); } - else + } + } + copier_clear(©_exchange); + + for (size_t j = 0; j < copy_surface.n_user.size(); j++) + { + if (Utilities::Rxn_find(Rxn_surface_map, copy_surface.n_user[j]) != NULL) + { + for (size_t i = copy_surface.start[j]; i <= copy_surface.end[j]; i++) { - if (verbose == TRUE) + if (i == copy_surface.n_user[j]) + continue; + Utilities::Rxn_copy(Rxn_surface_map, copy_surface.n_user[j], (int)i); + } + } + } + copier_clear(©_surface); + + for (size_t j = 0; j < copy_temperature.n_user.size(); j++) + { + if (Utilities::Rxn_find(Rxn_temperature_map, copy_temperature.n_user[j]) != NULL) + { + for (size_t i = copy_temperature.start[j]; i <= copy_temperature.end[j]; i++) + { + if (i != copy_temperature.n_user[j]) { - warning_msg("pressure to copy not found."); - return_value = ERROR; + Utilities::Rxn_copy(Rxn_temperature_map, copy_temperature.n_user[j], (int)i); } } } } - if (copy_gas_phase.count > 0) + copier_clear(©_temperature); + + for (size_t j = 0; j < copy_pressure.n_user.size(); j++) { - for (j = 0; j < copy_gas_phase.count; j++) + if (Utilities::Rxn_find(Rxn_pressure_map, copy_pressure.n_user[j]) != NULL) { - if (Utilities::Rxn_find(Rxn_gas_phase_map, copy_gas_phase.n_user[j]) != NULL) + for (size_t i = copy_pressure.start[j]; i <= copy_pressure.end[j]; i++) { - for (i = copy_gas_phase.start[j]; i <= copy_gas_phase.end[j]; - i++) + if (i != copy_pressure.n_user[j]) { - if (i == copy_gas_phase.n_user[j]) - continue; - Utilities::Rxn_copy(Rxn_gas_phase_map, copy_gas_phase.n_user[j], i); - } - } - else - { - if (verbose == TRUE) - { - warning_msg("EXCHANGE to copy not found."); - return_value = ERROR; + Utilities::Rxn_copy(Rxn_pressure_map, copy_pressure.n_user[j], (int)i); } } } } - if (copy_kinetics.count > 0) + copier_clear(©_pressure); + + for (size_t j = 0; j < copy_gas_phase.n_user.size(); j++) { - for (j = 0; j < copy_kinetics.count; j++) + if (Utilities::Rxn_find(Rxn_gas_phase_map, copy_gas_phase.n_user[j]) != NULL) { - if (Utilities::Rxn_find(Rxn_kinetics_map, copy_kinetics.n_user[j]) != NULL) + for (size_t i = copy_gas_phase.start[j]; i <= copy_gas_phase.end[j]; i++) { - for (i = copy_kinetics.start[j]; i <= copy_kinetics.end[j]; - i++) - { - if (i == copy_kinetics.n_user[j]) - continue; - Utilities::Rxn_copy(Rxn_kinetics_map, copy_kinetics.n_user[j], i); - } - } - else - { - if (verbose == TRUE) - { - warning_msg("KINETICS to copy not found."); - return_value = ERROR; - } + if (i == copy_gas_phase.n_user[j]) + continue; + Utilities::Rxn_copy(Rxn_gas_phase_map, copy_gas_phase.n_user[j], (int)i); } } } - if (copy_ss_assemblage.count > 0) + copier_clear(©_gas_phase); + + for (size_t j = 0; j < copy_kinetics.n_user.size(); j++) { - for (j = 0; j < copy_ss_assemblage.count; j++) + if (Utilities::Rxn_find(Rxn_kinetics_map, copy_kinetics.n_user[j]) != NULL) { - if (Utilities::Rxn_find(Rxn_ss_assemblage_map, copy_ss_assemblage.n_user[j]) != NULL) + for (size_t i = copy_kinetics.start[j]; i <= copy_kinetics.end[j]; i++) { - for (i = copy_ss_assemblage.start[j]; - i <= copy_ss_assemblage.end[j]; i++) - { - if (i == copy_ss_assemblage.n_user[j]) - continue; - Utilities::Rxn_copy(Rxn_ss_assemblage_map, copy_ss_assemblage.n_user[j], i); - } - } - else - { - if (verbose == TRUE) - { - warning_msg("SOLID_SOLUTIONS to copy not found."); - return_value = ERROR; - } + if (i == copy_kinetics.n_user[j]) + continue; + Utilities::Rxn_copy(Rxn_kinetics_map, copy_kinetics.n_user[j], (int)i); } } } - copy_solution.count = 0; - copy_pp_assemblage.count = 0; - copy_exchange.count = 0; - copy_surface.count = 0; - copy_ss_assemblage.count = 0; - copy_gas_phase.count = 0; - copy_kinetics.count = 0; - copy_mix.count = 0; - copy_reaction.count = 0; - copy_temperature.count = 0; - copy_pressure.count = 0; + copier_clear(©_kinetics); + + for (size_t j = 0; j < copy_ss_assemblage.n_user.size(); j++) + { + if (Utilities::Rxn_find(Rxn_ss_assemblage_map, copy_ss_assemblage.n_user[j]) != NULL) + { + for (size_t i = copy_ss_assemblage.start[j]; i <= copy_ss_assemblage.end[j]; i++) + { + if (i == copy_ss_assemblage.n_user[j]) + continue; + Utilities::Rxn_copy(Rxn_ss_assemblage_map, copy_ss_assemblage.n_user[j], (int)i); + } + } + } + copier_clear(©_ss_assemblage); + new_copy = FALSE; return return_value; } @@ -2419,12 +2043,10 @@ run_simulations(void) /* ---------------------------------------------------------------------- */ { char token[MAX_LENGTH]; -//#ifdef SKIP_KEEP #if defined(_MSC_VER) && (_MSC_VER < 1900) // removed in vs2015 unsigned int old_exponent_format; old_exponent_format = _set_output_format(_TWO_DIGIT_EXPONENT); #endif -//#endif /* * Prepare error handling */ @@ -2435,7 +2057,38 @@ run_simulations(void) */ for (simulation = 1;; simulation++) { - +#ifdef TEST_COPY_OPERATOR + { + //int simulation_save = simulation; + Phreeqc phreeqc_new; + phreeqc_new = *this; + PHRQ_io *temp_io = this->phrq_io; + std::vector so_ostreams; + { + std::map::iterator so_it = this->SelectedOutput_map.begin(); + for (; so_it != this->SelectedOutput_map.end(); so_it++) + { + so_ostreams.push_back(so_it->second.Get_punch_ostream()); + so_it->second.Set_punch_ostream(NULL); + } + } + this->clean_up(); + this->init(); + this->initialize(); + this->phrq_io = temp_io; + this->InternalCopy(&phreeqc_new); + { + size_t i = 0; + std::map::iterator so_it = this->SelectedOutput_map.begin(); + for (; so_it != this->SelectedOutput_map.end(); so_it++) + { + so_it->second.Set_punch_ostream(so_ostreams[i++]); + } + } + //this->simulation = simulation_save; + //delete phreeqc_new.Get_phrq_io(); + } +#endif #if defined PHREEQ98 AddSeries = !connect_simulations; #endif @@ -2450,19 +2103,16 @@ run_simulations(void) if (read_input() == EOF) break; - if (title_x != NULL) + if (title_x.size() > 0) { sprintf(token, "TITLE"); dup_print(token, TRUE); if (pr.headings == TRUE) - output_msg(sformatf( "%s\n\n", title_x)); + { + output_msg(sformatf("%s\n\n", title_x.c_str())); + } } tidy_model(); -#ifdef PHREEQ98 - if (!phreeq98_debug) - { -#endif - /* * Calculate distribution of species for initial solutions */ @@ -2537,9 +2187,6 @@ run_simulations(void) dup_print("End of simulation.", TRUE); output_flush(); error_flush(); -#ifdef PHREEQ98 - } /* if (!phreeq98_debug) */ -#endif } } catch (const PhreeqcStop&) @@ -2586,9 +2233,11 @@ do_status(void) screen_msg("\n"); } //pr.headings = TRUE; // set in class_main; not set for IPhreeqc - LDBLE ext = (double) clock() / CLOCKS_PER_SEC; +#ifndef TESTING + LDBLE ext = (double)clock() / CLOCKS_PER_SEC; dup_print(sformatf("End of Run after %g Seconds.", ext), TRUE); screen_msg(sformatf("\nEnd of Run after %g Seconds.\n", ext)); +#endif // appt this gives output when the charts are active... phrq_io->output_flush(); phrq_io->error_flush(); @@ -2633,6 +2282,11 @@ save_init(int i) void Phreeqc::do_mixes(void) { + bool surf, exch, kin, min; + surf = (Rxn_surface_mix_map.size() > 0); + exch = (Rxn_exchange_mix_map.size() > 0); + kin = (Rxn_kinetics_mix_map.size() > 0); + min = (Rxn_pp_assemblage_mix_map.size() > 0); Utilities::Rxn_mix(Rxn_solution_mix_map, Rxn_solution_map, this); Utilities::Rxn_mix(Rxn_exchange_mix_map, Rxn_exchange_map, this); Utilities::Rxn_mix(Rxn_gas_phase_mix_map, Rxn_gas_phase_map, this); @@ -2640,4 +2294,8 @@ Phreeqc::do_mixes(void) Utilities::Rxn_mix(Rxn_pp_assemblage_mix_map, Rxn_pp_assemblage_map, this); Utilities::Rxn_mix(Rxn_ss_assemblage_mix_map, Rxn_ss_assemblage_map, this); Utilities::Rxn_mix(Rxn_surface_mix_map, Rxn_surface_map, this); + if (exch || kin) update_kin_exchange(); + if (exch || min) update_min_exchange(); + if (surf || min) update_min_surface(); + if (surf || kin) update_kin_surface(); } diff --git a/model.cpp b/model.cpp index 818bfdff..1d31226a 100644 --- a/model.cpp +++ b/model.cpp @@ -8,6 +8,14 @@ #include "SSassemblage.h" #include "Solution.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /* ---------------------------------------------------------------------- */ int Phreeqc:: model(void) @@ -53,6 +61,11 @@ model(void) input_error++; error_msg("Cannot use PITZER and SIT data blocks in same run (database + input file).", STOP); } + if ((pitzer_model == TRUE || sit_model == TRUE) && llnl_temp.size() > 0) + { + input_error++; + error_msg("Cannot use LLNL_AQUEOUS_MODEL_PARAMETERS with PITZER or SIT data blocks in same run (database + input file).", STOP); + } if (pitzer_model == TRUE) { @@ -96,6 +109,7 @@ model(void) PhreeqcIWait(this); #endif iterations++; + overall_iterations++; if (iterations > itmax - 1 && debug_model == FALSE && pr.logfile == TRUE) { @@ -133,6 +147,7 @@ model(void) { jacobian_sums(); numerical_jacobian(); + } /* * Full matrix with pure phases @@ -252,26 +267,6 @@ model(void) return (OK); } -#ifdef SKIP -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -adjust_step_size(void) -/* ---------------------------------------------------------------------- */ -{ -/* - * Step sizes are cut down if overflow occurs in molalities - */ - pe_step_size_now -= (pe_step_size_now - 1.0) / 2.0; - step_size_now -= (step_size_now - 1.) / 2.0; - if (pe_step_size_now < 1.5) - pe_step_size_now = 1.5; - if (step_size_now < 1.5) - step_size_now = 1.5; - log_msg(sformatf( "\tNew step sizes: %f\t%f\t%d\n", - step_size_now, pe_step_size_now, iterations)); - return (OK); -} -#endif /* ---------------------------------------------------------------------- */ int Phreeqc:: check_residuals(void) @@ -530,15 +525,15 @@ check_residuals(void) { if (x[i]->ss_in == FALSE) continue; - if (x[i]->moles <= MIN_TOTAL_SS) - continue; + //if (x[i]->moles <= 1e2*MIN_TOTAL) + // continue; if (residual[i] >= epsilon || residual[i] <= -epsilon /* || stop_program == TRUE */ ) { error_string = sformatf( "%20s Total moles in solid solution has not converged. " - "\tResidual: %e\n", x[i]->description, - (double) residual[i]); + "\tResidual: %e %e\n", x[i]->description, + (double) residual[i], x[i]->moles); error_msg(error_string, CONTINUE); } } @@ -561,14 +556,14 @@ gammas(LDBLE mu) */ int i, j; int ifirst, ilast; - LDBLE d1, d2, d3, f, a_llnl, b_llnl, bdot_llnl, log_g_co2, dln_g_co2, c2_llnl; + LDBLE f, log_g_co2, dln_g_co2, c2_llnl; LDBLE c1, c2, a, b; LDBLE muhalf, equiv; /* Initialize */ if (mu <= 0) mu = 1e-10; if (pitzer_model == TRUE) - return gammas_pz(); + return gammas_pz(true); if (sit_model == TRUE) return gammas_sit(); a_llnl = b_llnl = bdot_llnl = log_g_co2 = dln_g_co2 = c2_llnl = 0; @@ -583,17 +578,17 @@ gammas(LDBLE mu) /* * LLNL temperature dependence */ - if (llnl_count_temp > 0) + if (llnl_temp.size() > 0) { ifirst = 0; - ilast = llnl_count_temp; - if (tc_x < llnl_temp[0] || tc_x > llnl_temp[llnl_count_temp - 1]) + ilast = (int)llnl_temp.size(); + if (tc_x < llnl_temp[0] || tc_x > llnl_temp[llnl_temp.size() - 1]) { error_msg ("Temperature out of range of LLNL_AQUEOUS_MODEL parameters", STOP); } - for (i = 0; i < llnl_count_temp; i++) + for (i = 0; i < (int)llnl_temp.size(); i++) { if (tc_x >= llnl_temp[i]) ifirst = i; @@ -642,7 +637,7 @@ gammas(LDBLE mu) (2 * muhalf * (muhalf + 1.0) * (muhalf + 1.0)) - 0.3); c2 = -a / (2 * muhalf); - if (llnl_count_temp > 0) + if (llnl_temp.size() > 0) { c2_llnl = -a_llnl / (2 * muhalf); } @@ -650,7 +645,7 @@ gammas(LDBLE mu) /* * Calculate activity coefficients */ - for (i = 0; i < count_s_x; i++) + for (i = 0; i < (int)this->s_x.size(); i++) { switch (s_x[i]->gflag) { @@ -681,105 +676,102 @@ gammas(LDBLE mu) /* * Find CEC * z contains charge of cation for exchange species, alk contains cec + * correct activity for Gapon-type exchange eqns: Ca0.5X uses (gamma_Ca)^0.5 */ -/* !!!!! */ - for (j = 1; s_x[i]->rxn_x->token[j].s != NULL; j++) + if (calculating_deriv) + continue; { - if (s_x[i]->rxn_x->token[j].s->type == EX) + LDBLE coef = 0, z = 0; + for (j = 1; s_x[i]->rxn_x.token[j].s != NULL; j++) { - s_x[i]->alk = - s_x[i]->rxn_x->token[j].s->primary->unknown->moles; - break; + if (s_x[i]->rxn_x.token[j].s->type == EX) + { + s_x[i]->alk = + s_x[i]->rxn_x.token[j].s->primary->unknown->moles; + //break; + } + else if (s_x[i]->rxn_x.token[j].s->type <= HPLUS) + { + coef = s_x[i]->rxn_x.token[j].coef; + z = s_x[i]->rxn_x.token[j].s->z; + } } - } - if (s_x[i]->exch_gflag == 1 && s_x[i]->alk > 0) - { - /* Davies */ - d1 = s_x[i]->lg; - s_x[i]->lg = -s_x[i]->equiv * s_x[i]->equiv * a * - (muhalf / (1.0 + muhalf) - 0.3 * mu) + - log10(fabs(s_x[i]->equiv) / s_x[i]->alk); - if (s_x[i]->a_f && s_x[i]->primary == NULL) + if (!use.Get_exchange_ptr()->Get_pitzer_exchange_gammas()) { - d2 = s_x[i]->moles * s_x[i]->equiv / s_x[i]->alk; - if (d2 > 1) d2 = 1; - d2 = s_x[i]->lg - s_x[i]->a_f * (1 - d2); - d3 = 0.89; - if (iterations < 10) d3 = 0.7; else d3 = 0.89; - s_x[i]->lg = d3 * d1 + (1 - d3) * d2; - } - s_x[i]->dg = - c1 * s_x[i]->equiv * s_x[i]->equiv * s_x[i]->moles; - } - else if (s_x[i]->exch_gflag == 2 && s_x[i]->alk > 0) - { - /* Extended D-H, WATEQ D-H */ - d1 = s_x[i]->lg; - s_x[i]->lg = -a * muhalf * s_x[i]->equiv * s_x[i]->equiv / - (1.0 + s_x[i]->dha * b * muhalf) + s_x[i]->dhb * mu + - log10(fabs(s_x[i]->equiv) / s_x[i]->alk); - if (s_x[i]->a_f && s_x[i]->primary == NULL) - { - d2 = s_x[i]->moles * s_x[i]->equiv / s_x[i]->alk; - if (d2 > 1) d2 = 1; - d2 = s_x[i]->lg - s_x[i]->a_f * (1 - d2); - d3 = 0.89; - if (iterations < 10) d3 = 0.7; else d3 = 0.89; - s_x[i]->lg = d3 * d1 + (1 - d3) * d2; - } - s_x[i]->dg = (c2 * s_x[i]->equiv * s_x[i]->equiv / - ((1.0 + s_x[i]->dha * b * muhalf) * (1.0 + - s_x[i]-> - dha * b * - muhalf)) + - s_x[i]->dhb) * LOG_10 * s_x[i]->moles; - } - else if (s_x[i]->exch_gflag == 7 && s_x[i]->alk > 0) - { - if (llnl_count_temp > 0) - { - s_x[i]->lg = - -a_llnl * muhalf * s_x[i]->equiv * s_x[i]->equiv / - (1.0 + s_x[i]->dha * b_llnl * muhalf) + - bdot_llnl * mu + - log10(fabs(s_x[i]->equiv) / s_x[i]->alk); - s_x[i]->dg = - (c2_llnl * s_x[i]->equiv * s_x[i]->equiv / - ((1.0 + s_x[i]->dha * b_llnl * muhalf) * (1.0 + - s_x[i]-> - dha * - b_llnl * - muhalf)) + - bdot_llnl) * LOG_10 * s_x[i]->moles; - } - else - { - error_msg("LLNL_AQUEOUS_MODEL_PARAMETERS not defined.", - STOP); - } - } - else - { -/* - * Master species is a dummy variable with meaningless activity and mass - */ - if (s_x[i]->primary != NULL) - { - s_x[i]->lg = 0.0; - s_x[i]->dg = 0.0; - } - else - { - if (s_x[i]->alk <= 0) + if (s_x[i]->primary != NULL) { s_x[i]->lg = 0.0; + s_x[i]->dg = 0.0; } else { - s_x[i]->lg = log10(fabs(s_x[i]->equiv) / s_x[i]->alk); + if (s_x[i]->alk <= 0) + s_x[i]->lg = 0.0; + else + s_x[i]->lg = log10(fabs(s_x[i]->equiv) / s_x[i]->alk); + s_x[i]->dg = 0.0; } - s_x[i]->dg = 0.0; } + else if (s_x[i]->exch_gflag == 1 && s_x[i]->alk > 0) + { + /* Davies */ + s_x[i]->lg = -coef * z * z * a * + (muhalf / (1.0 + muhalf) - 0.3 * mu) + + log10(fabs(s_x[i]->equiv) / s_x[i]->alk); + s_x[i]->dg = + c1 * coef * z * z * s_x[i]->moles; + } + else if (s_x[i]->exch_gflag == 2 && s_x[i]->alk > 0) + { + /* Extended D-H, WATEQ D-H */ + s_x[i]->lg = coef * (-a * muhalf * z * z / + (1.0 + s_x[i]->dha * b * muhalf) + s_x[i]->dhb * mu) + + log10(fabs(s_x[i]->equiv) / s_x[i]->alk); + s_x[i]->dg = coef * (c2 * z * z / + ((1.0 + s_x[i]->dha * b * muhalf) * (1.0 + s_x[i]->dha * b * muhalf)) + + s_x[i]->dhb) * LOG_10 * s_x[i]->moles; + } + else if (s_x[i]->exch_gflag == 7 && s_x[i]->alk > 0) + { + if (llnl_temp.size() > 0) + { + s_x[i]->lg = + coef * (-a_llnl * muhalf * z * z / + (1.0 + s_x[i]->dha * b_llnl * muhalf) + + bdot_llnl * mu) + + log10(fabs(s_x[i]->equiv) / s_x[i]->alk); + s_x[i]->dg = + coef * (c2_llnl * z * z / + ((1.0 + s_x[i]->dha * b_llnl * muhalf) * (1.0 + s_x[i]->dha * b_llnl * muhalf)) + + bdot_llnl) * LOG_10 * s_x[i]->moles; + } + else + { + error_msg("LLNL_AQUEOUS_MODEL_PARAMETERS not defined.", + STOP); + } + } + else + { + /* + * Master species is a dummy variable with meaningless activity and mass + */ + if (s_x[i]->primary != NULL) + { + s_x[i]->lg = 0.0; + s_x[i]->dg = 0.0; + } + else + { + if (s_x[i]->alk <= 0) + s_x[i]->lg = 0.0; + else + s_x[i]->lg = log10(fabs(s_x[i]->equiv) / s_x[i]->alk); + s_x[i]->dg = 0.0; + } + } + if (s_x[i]->a_f && s_x[i]->primary == NULL && s_x[i]->moles) + gammas_a_f(i); // appt } break; case 5: /* Always 1.0 */ @@ -791,12 +783,12 @@ gammas(LDBLE mu) * Find moles of sites. * s_x[i]->equiv is stoichiometric coefficient of sites in species */ - for (j = 1; s_x[i]->rxn_x->token[j].s != NULL; j++) + for (j = 1; s_x[i]->rxn_x.token[j].s != NULL; j++) { - if (s_x[i]->rxn_x->token[j].s->type == SURF) + if (s_x[i]->rxn_x.token[j].s->type == SURF) { s_x[i]->alk = - s_x[i]->rxn_x->token[j].s->primary->unknown->moles; + s_x[i]->rxn_x.token[j].s->primary->unknown->moles; break; } } @@ -821,7 +813,7 @@ gammas(LDBLE mu) } break; case 7: /* LLNL */ - if (llnl_count_temp > 0) + if (llnl_temp.size() > 0) { if (s_x[i]->z == 0) { @@ -850,7 +842,7 @@ gammas(LDBLE mu) } break; case 8: /* LLNL CO2 */ - if (llnl_count_temp > 0) + if (llnl_temp.size() > 0) { s_x[i]->lg = log_g_co2; s_x[i]->dg = dln_g_co2 * s_x[i]->moles; @@ -877,6 +869,59 @@ gammas(LDBLE mu) return (OK); } /* ------------------------------------------------------------------------------- */ +int Phreeqc::gammas_a_f(int i1) +/* ------------------------------------------------------------------------------- */ +{ + int i, j; + //LDBLE d2, d3, coef = 0, sum = 0; + LDBLE d2, d3, sum = 0; + //char name[MAX_LENGTH]; + std::string name; + //class master *m_ptr; + + i = i1; + for (j = 1; s_x[i]->rxn_x.token[j].s != NULL; j++) + { + if (s_x[i]->rxn_x.token[j].s->type == EX) + { + //strcpy(name, s_x[i]->rxn_x.token[j].s->name); + name = s_x[i]->rxn_x.token[j].s->name; + //m_ptr = s_x[i]->rxn_x.token[j].s->primary->elt->master; // appt debug + break; + } + } + + for (i = 0; i < (int)this->s_x.size(); i++) + { + if (s_x[i]->gflag != 4 || s_x[i]->primary) + continue; + for (j = 1; s_x[i]->rxn_x.token[j].s != NULL; j++) + { + if (s_x[i]->rxn_x.token[j].s->type == EX) + { + if (!strcmp(name.c_str(), s_x[i]->rxn_x.token[j].s->name)) + sum += s_x[i]->moles * s_x[i]->equiv; + break; + } + } + } + i = i1; + d2 = s_x[i]->moles * s_x[i]->equiv / sum; + if (d2 > 1) d2 = 1; + //if (iterations > 19) + // i += 0; // appt debug + + d3 = 0.5; + if (s_x[i]->a_f > 2) + { + d3 += (s_x[i]->a_f - 2) / 10; if (d3 > 0.8) d3 = 0.8; + } + d2 = s_x[i]->dw_a * d3 + (1 - d3) * d2; + s_x[i]->lg -= s_x[i]->a_f * (1 - d2); + s_x[i]->dw_a = d2; + return 0; +} +/* ------------------------------------------------------------------------------- */ int Phreeqc:: ineq(int in_kode) /* ------------------------------------------------------------------------------- */ @@ -971,29 +1016,20 @@ ineq(int in_kode) { for (j = 0; j < count_unknowns; j++) { - array[j * (count_unknowns + 1) + i] = 0.0; + my_array[(size_t)j * (count_unknowns + 1) + i] = 0.0; } for (j = 0; j < count_unknowns + 1; j++) { - array[i * (count_unknowns + 1) + j] = 0.0; + my_array[(size_t)i * (count_unknowns + 1) + (size_t)j] = 0.0; } } } } - -/* - * Initialize space if necessary - */ - ineq_init(3 * count_unknowns, 3 * count_unknowns); /* * Normalize column */ - space((void **) ((void *) &normal), count_unknowns, &normal_max, - sizeof(LDBLE)); - - for (i = 0; i < count_unknowns; i++) - normal[i] = 1.0; - + normal.resize(count_unknowns); + std::fill(normal.begin(), normal.end(), 1.0); for (i = 0; i < count_unknowns; i++) { @@ -1013,24 +1049,24 @@ ineq(int in_kode) if (x[i]->type == SURFACE_CB1 && x[j]->type == SURFACE_CB2) continue; - if (fabs(array[j * (count_unknowns + 1) + i]) > max) + if (fabs(my_array[(size_t)j * (count_unknowns + 1) + (size_t)i]) > max) { - max = fabs(array[j * (count_unknowns + 1) + i]); + max = fabs(my_array[(size_t)j * (count_unknowns + 1) + (size_t)i]); if (max > min_value) break; } } if (diagonal_scale == TRUE) { - if (fabs(array[i * (count_unknowns + 1) + i]) < min_value) + if (fabs(my_array[(size_t)i * (count_unknowns + 1) + (size_t)i]) < min_value) { - max = fabs(array[i * (count_unknowns + 1) + i]); + max = fabs(my_array[(size_t)i * (count_unknowns + 1) + (size_t)i]); } } if (max == 0) { - array[i * (count_unknowns + 1) + i] = 1e-5 * x[i]->moles; + my_array[(size_t)i * (count_unknowns + 1) + (size_t)i] = 1e-5 * x[i]->moles; max = fabs(1e-5 * x[i]->moles); } } @@ -1041,12 +1077,9 @@ ineq(int in_kode) min = 1e-12; min = MIN_TOTAL; - array[x[i]->number * (count_unknowns + 1) + x[i]->number] += min; - if (fabs - (array[x[i]->number * (count_unknowns + 1) + x[i]->number]) < - min) - array[x[i]->number * (count_unknowns + 1) + x[i]->number] = - min; + my_array[(size_t)x[i]->number * (count_unknowns + 1) + (size_t)x[i]->number] += min; + if (fabs(my_array[(size_t)x[i]->number * (count_unknowns + 1) + (size_t)x[i]->number]) < min) + my_array[(size_t)x[i]->number * (count_unknowns + 1) + (size_t)x[i]->number] = min; max = 0.0; for (j = 0; j < count_unknowns; j++) @@ -1059,9 +1092,9 @@ ineq(int in_kode) x[j]->type != EXCH && x[j]->type != MH && x[j]->type != MH2O) continue; - if (fabs(array[j * (count_unknowns + 1) + i]) > max) + if (fabs(my_array[(size_t)j * (count_unknowns + 1) + (size_t)i]) > max) { - max = fabs(array[j * (count_unknowns + 1) + i]); + max = fabs(my_array[(size_t)j * (count_unknowns + 1) + (size_t)i]); if (max > min_value) break; } @@ -1078,7 +1111,7 @@ ineq(int in_kode) } for (j = 0; j < count_unknowns; j++) { - array[j * (count_unknowns + 1) + i] *= min_value / max; + my_array[(size_t)j * (count_unknowns + 1) + (size_t)i] *= min_value / max; } normal[i] = min_value / max; } @@ -1089,23 +1122,14 @@ ineq(int in_kode) */ max_row_count = 2 * count_unknowns + 2; max_column_count = count_unknowns + 2; - space((void **) ((void *) &ineq_array), max_row_count * max_column_count, - &ineq_array_max, sizeof(LDBLE)); - - space((void **) ((void *) &back_eq), max_row_count, &back_eq_max, - sizeof(int)); - - space((void **) ((void *) &zero), max_row_count, &zero_max, - sizeof(LDBLE)); - zero_double(zero, max_row_count); - - space((void **) ((void *) &res), max_row_count, &res_max, sizeof(LDBLE)); - zero_double(res, max_row_count); - - space((void **) ((void *) &delta1), max_column_count, &delta1_max, - sizeof(LDBLE)); - zero_double(delta1, max_column_count); - + ineq_array.resize(max_row_count * max_column_count); + back_eq.resize(max_row_count); + zero.resize(max_row_count); + memset(&zero[0], 0, max_row_count * sizeof(double)); + res.resize(max_row_count); + memset(&res[0], 0, max_row_count * sizeof(double)); + delta1.resize(max_column_count); + memset(&delta1[0], 0,max_column_count * sizeof(double)); /* * Copy equations to optimize into ineq_array */ @@ -1150,9 +1174,9 @@ ineq(int in_kode) else { /* Copy in saturation index equation (has mass or supersaturated) */ - memcpy((void *) &(ineq_array[l_count_rows * max_column_count]), - (void *) &(array[i * (count_unknowns + 1)]), - (size_t) (count_unknowns + 1) * sizeof(LDBLE)); + memcpy((void *) &(ineq_array[(size_t)l_count_rows * max_column_count]), + (void *) &(my_array[(size_t)i * (count_unknowns + 1)]), + (count_unknowns + 1) * sizeof(LDBLE)); back_eq[l_count_rows] = i; //if (it->second.Get_add_formula().size() == 0 if (comp_ptr->Get_add_formula().size() == 0 @@ -1167,8 +1191,7 @@ ineq(int in_kode) { for (j = 0; j < count_unknowns + 1; j++) { - ineq_array[l_count_rows * max_column_count + j] *= - pp_scale; + ineq_array[(size_t)l_count_rows * max_column_count + (size_t)j] *= pp_scale; } } @@ -1184,9 +1207,9 @@ ineq(int in_kode) /* * Alkalinity and solution phase boundary */ - memcpy((void *) &(ineq_array[l_count_rows * max_column_count]), - (void *) &(array[i * (count_unknowns + 1)]), - (size_t) (count_unknowns + 1) * sizeof(LDBLE)); + memcpy((void *) &(ineq_array[(size_t)l_count_rows * max_column_count]), + (void *) &(my_array[(size_t)i * (count_unknowns + 1)]), + (count_unknowns + 1) * sizeof(LDBLE)); back_eq[l_count_rows] = i; l_count_rows++; /* @@ -1195,9 +1218,9 @@ ineq(int in_kode) } else if (x[i]->type == GAS_MOLES && gas_in == TRUE) { - memcpy((void *) &(ineq_array[l_count_rows * max_column_count]), - (void *) &(array[i * (count_unknowns + 1)]), - (size_t) (count_unknowns + 1) * sizeof(LDBLE)); + memcpy((void *) &(ineq_array[(size_t)l_count_rows * max_column_count]), + (void *) &(my_array[(size_t)i * (count_unknowns + 1)]), + (count_unknowns + 1) * sizeof(LDBLE)); back_eq[l_count_rows] = i; res[l_count_rows] = 1.0; @@ -1212,9 +1235,9 @@ ineq(int in_kode) } else if (x[i]->type == SS_MOLES && x[i]->ss_in == TRUE) { - memcpy((void *) &(ineq_array[l_count_rows * max_column_count]), - (void *) &(array[i * (count_unknowns + 1)]), - (size_t) (count_unknowns + 1) * sizeof(LDBLE)); + memcpy((void *) &(ineq_array[(size_t)l_count_rows * max_column_count]), + (void *) &(my_array[(size_t)i * (count_unknowns + 1)]), + (count_unknowns + 1) * sizeof(LDBLE)); back_eq[l_count_rows] = i; res[l_count_rows] = 1.0; if (in_kode != 1) @@ -1243,9 +1266,9 @@ ineq(int in_kode) } if ((x[i]->type == SURFACE_CB || x[i]->type == SURFACE_CB1 || x[i]->type == SURFACE_CB2) - && x[i - 1]->phase_unknown != NULL) + && x[(size_t)i - 1]->phase_unknown != NULL) { - comp_ptr1 = pp_assemblage_ptr->Find(x[i-1]->phase_unknown->phase->name); + comp_ptr1 = pp_assemblage_ptr->Find(x[(size_t)i-1]->phase_unknown->phase->name); } if (x[i]->type != SOLUTION_PHASE_BOUNDARY && x[i]->type != ALK && @@ -1258,6 +1281,7 @@ ineq(int in_kode) continue; if (x[i]->type == MH && pitzer_model == TRUE && pitzer_pe == FALSE) continue; + if (mass_water_switch == TRUE && x[i] == mass_oxygen_unknown) continue; /* @@ -1284,7 +1308,7 @@ ineq(int in_kode) continue; if ((x[i]->type == SURFACE_CB || x[i]->type == SURFACE_CB1 || x[i]->type == SURFACE_CB2) - && x[i - 1]->phase_unknown != NULL) + && x[(size_t)i - 1]->phase_unknown != NULL) { cxxSurfaceCharge *charge_ptr = use.Get_surface_ptr()->Find_charge(x[i]->surface_charge); if (charge_ptr->Get_grams() <= MIN_RELATED_SURFACE && @@ -1293,26 +1317,26 @@ ineq(int in_kode) continue; } } - memcpy((void *) &(ineq_array[l_count_rows * max_column_count]), - (void *) &(array[i * (count_unknowns + 1)]), - (size_t) (count_unknowns + 1) * sizeof(LDBLE)); + memcpy((void *) &(ineq_array[(size_t)l_count_rows * max_column_count]), + (void *) &(my_array[(size_t)i * (count_unknowns + 1)]), + (count_unknowns + 1) * sizeof(LDBLE)); back_eq[l_count_rows] = i; if (mass_water_switch == TRUE && x[i] == mass_hydrogen_unknown) { - k = mass_oxygen_unknown->number; + k = (int)mass_oxygen_unknown->number; for (j = 0; j < count_unknowns; j++) { - ineq_array[l_count_rows * max_column_count + j] -= - 2 * array[k * (count_unknowns + 1) + j]; + ineq_array[(size_t)l_count_rows * max_column_count + (size_t)j] -= + 2 * my_array[(size_t)k * (count_unknowns + 1) + (size_t)j]; } } l_count_rows++; } else if (x[i]->type == PITZER_GAMMA && full_pitzer == TRUE) { - memcpy((void *) &(ineq_array[l_count_rows * max_column_count]), - (void *) &(array[i * (count_unknowns + 1)]), - (size_t) (count_unknowns + 1) * sizeof(LDBLE)); + memcpy((void *) &(ineq_array[(size_t)l_count_rows * max_column_count]), + (void *) &(my_array[(size_t)i * (count_unknowns + 1)]), + (count_unknowns + 1) * sizeof(LDBLE)); back_eq[l_count_rows] = i; l_count_rows++; } @@ -1353,26 +1377,22 @@ ineq(int in_kode) { /* Pure phase is present, force Mass transfer to be <= amount of mineral remaining */ - memcpy((void *) - &(ineq_array[l_count_rows * max_column_count]), - (void *) &(zero[0]), - (size_t) (count_unknowns + 1) * sizeof(LDBLE)); - ineq_array[l_count_rows * max_column_count + i] = 1.0; - ineq_array[l_count_rows * max_column_count + - count_unknowns] = x[i]->moles; + memset(&ineq_array[(size_t)l_count_rows * max_column_count], 0, ((size_t) count_unknowns + 1) * sizeof(LDBLE)); + ineq_array[(size_t)l_count_rows * max_column_count + i] = 1.0; + ineq_array[(size_t)l_count_rows * max_column_count + count_unknowns] = x[i]->moles; back_eq[l_count_rows] = i; l_count_rows++; } /* Pure phase is present and dissolve_only, force ppt to be <= amount of dissolved so far */ if (x[i]->dissolve_only == TRUE) { - memcpy((void *) - &(ineq_array[l_count_rows * max_column_count]), - (void *) &(zero[0]), - (size_t) (count_unknowns + 1) * sizeof(LDBLE)); - ineq_array[l_count_rows * max_column_count + i] = -1.0; - ineq_array[l_count_rows * max_column_count + - count_unknowns] = + //memcpy((void *) + // &(ineq_array[(size_t)l_count_rows * max_column_count]), + // (void *) &(zero[0]), + // ((size_t) count_unknowns + 1) * sizeof(LDBLE)); + memset(&(ineq_array[(size_t)l_count_rows * max_column_count]), 0, (count_unknowns + 1) * sizeof(LDBLE)); + ineq_array[(size_t)l_count_rows * max_column_count + i] = -1.0; + ineq_array[(size_t)l_count_rows * max_column_count + count_unknowns] = comp_ptr->Get_initial_moles() - x[i]->moles; back_eq[l_count_rows] = i; l_count_rows++; @@ -1389,22 +1409,22 @@ ineq(int in_kode) { if (x[i]->type == MH2O) { - memcpy((void *) &(ineq_array[l_count_rows * max_column_count]), - (void *) &(array[i * (count_unknowns + 1)]), - (size_t) (count_unknowns + 1) * sizeof(LDBLE)); + memcpy((void *) &(ineq_array[(size_t)l_count_rows * max_column_count]), + (void *) &(my_array[(size_t)i * (count_unknowns + 1)]), + (count_unknowns + 1) * sizeof(LDBLE)); back_eq[l_count_rows] = i; for (j = 0; j < count_unknowns; j++) { if (x[j]->type < PP) { - ineq_array[l_count_rows * max_column_count + j] = 0.0; + ineq_array[(size_t)l_count_rows * max_column_count + j] = 0.0; } else { /*ineq_array[l_count_rows*max_column_count + j] = -ineq_array[l_count_rows*max_column_count + j]; */ } } - ineq_array[l_count_rows * max_column_count + count_unknowns] = + ineq_array[(size_t)l_count_rows * max_column_count + count_unknowns] = 0.5 * x[i]->moles; l_count_rows++; } @@ -1432,7 +1452,7 @@ ineq(int in_kode) { for (j = 0; j < l_count_rows; j++) { - ineq_array[j * max_column_count + i] = 0.0; + ineq_array[(size_t)j * max_column_count + i] = 0.0; } } if (x[i]->dissolve_only == TRUE) @@ -1443,7 +1463,7 @@ ineq(int in_kode) { for (j = 0; j < l_count_rows; j++) { - ineq_array[j * max_column_count + i] = 0.0; + ineq_array[(size_t)j * max_column_count + (size_t)i] = 0.0; } } } @@ -1463,7 +1483,7 @@ ineq(int in_kode) { for (j = 0; j < l_count_rows; j++) { - ineq_array[j * max_column_count + i] = 0.0; + ineq_array[(size_t)j * max_column_count + i] = 0.0; } } } @@ -1485,14 +1505,14 @@ ineq(int in_kode) } if ((x[i]->type == SURFACE_CB || x[i]->type == SURFACE_CB1 || x[i]->type == SURFACE_CB2) - && (x[i - 1]->phase_unknown != NULL)) + && (x[(size_t)i - 1]->phase_unknown != NULL)) { - comp_ptr1 = pp_assemblage_ptr->Find(x[i-1]->phase_unknown->phase->name); + comp_ptr1 = pp_assemblage_ptr->Find(x[(size_t)i-1]->phase_unknown->phase->name); } LDBLE grams = 0; if ((x[i]->type == SURFACE_CB || x[i]->type == SURFACE_CB1 || x[i]->type == SURFACE_CB2) - && x[i - 1]->phase_unknown != NULL) + && x[(size_t)i - 1]->phase_unknown != NULL) { cxxSurfaceCharge *charge_ptr = use.Get_surface_ptr()->Find_charge(x[i]->surface_charge); grams = charge_ptr->Get_grams(); @@ -1502,13 +1522,13 @@ ineq(int in_kode) comp_ptr->Get_add_formula().size() == 0) || ((x[i]->type == SURFACE_CB || x[i]->type == SURFACE_CB1 || x[i]->type == SURFACE_CB2) - && x[i - 1]->phase_unknown != NULL && + && x[(size_t)i - 1]->phase_unknown != NULL && grams <= MIN_RELATED_SURFACE && comp_ptr1->Get_add_formula().size() == 0)) { for (j = 0; j < l_count_rows; j++) { - ineq_array[j * max_column_count + i] = 0.0; + ineq_array[(size_t)j * max_column_count + (size_t)i] = 0.0; } } } @@ -1522,7 +1542,7 @@ ineq(int in_kode) for (i = 0; i < count_unknowns; i++) { if ((x[i]->type == SURFACE_CB || x[i]->type == SURFACE_CB1 - || x[i]->type == SURFACE_CB2) && x[i - 1]->phase_unknown == NULL) + || x[i]->type == SURFACE_CB2) && x[(size_t)i - 1]->phase_unknown == NULL) { cxxSurfaceCharge *charge_ptr = use.Get_surface_ptr()->Find_charge(x[i]->surface_charge); grams = charge_ptr->Get_grams(); @@ -1532,12 +1552,12 @@ ineq(int in_kode) x[i]->moles <= MIN_RELATED_SURFACE) || ((x[i]->type == SURFACE_CB || x[i]->type == SURFACE_CB1 || x[i]->type == SURFACE_CB2) - && x[i - 1]->phase_unknown == NULL + && x[(size_t)i - 1]->phase_unknown == NULL && grams <= MIN_RELATED_SURFACE)) { for (j = 0; j < l_count_rows; j++) { - ineq_array[j * max_column_count + i] = 0.0; + ineq_array[(size_t)j * max_column_count + (size_t)i] = 0.0; } } } @@ -1547,15 +1567,20 @@ ineq(int in_kode) */ if (gas_in == TRUE) { - for (i = gas_unknown->number; i < count_unknowns; i++) + for (i = (int)gas_unknown->number; i < (int)count_unknowns; i++) { if (x[i]->type == GAS_MOLES) { - memcpy((void *) &(ineq_array[l_count_rows * max_column_count]), - (void *) &(zero[0]), - (size_t) (count_unknowns + 1) * sizeof(LDBLE)); - ineq_array[l_count_rows * max_column_count + i] = -1.0; - ineq_array[l_count_rows * max_column_count + count_unknowns] = + //memcpy((void *) &(ineq_array[(size_t)l_count_rows * max_column_count]), + // (void *) &(zero[0]), + // ((size_t) count_unknowns + 1) * sizeof(LDBLE)); + //std::fill(&(ineq_array[(size_t)l_count_rows * max_column_count]), + // &(ineq_array[l_count_rows * max_column_count + count_unknowns]), + // 0.0e0); + memset(&(ineq_array[(size_t)l_count_rows * max_column_count]), 0, + (count_unknowns + 1) * sizeof(LDBLE)); + ineq_array[(size_t)l_count_rows * max_column_count + (size_t)i] = -1.0; + ineq_array[(size_t)l_count_rows * max_column_count + count_unknowns] = x[i]->moles; back_eq[l_count_rows] = i; l_count_rows++; @@ -1571,10 +1596,10 @@ ineq(int in_kode) /* * Moles of gas small and sum p < ptotal */ - i = gas_unknown->number; + i = (int)gas_unknown->number; for (j = 0; j < l_count_rows; j++) { - ineq_array[j * max_column_count + i] = 0.0; + ineq_array[(size_t)j * max_column_count + (size_t)i] = 0.0; } } /* @@ -1583,17 +1608,19 @@ ineq(int in_kode) if (ss_unknown != NULL) { - for (i = ss_unknown->number; i < count_unknowns; i++) + for (i = (int)ss_unknown->number; i < (int)count_unknowns; i++) { if (x[i]->type != SS_MOLES) break; if (x[i]->phase->in == TRUE && x[i]->ss_in == TRUE) { - memcpy((void *) &(ineq_array[l_count_rows * max_column_count]), - (void *) &(zero[0]), - (size_t) (count_unknowns + 1) * sizeof(LDBLE)); - ineq_array[l_count_rows * max_column_count + i] = 1.0; - ineq_array[l_count_rows * max_column_count + count_unknowns] = + //memcpy((void *) &(ineq_array[(size_t)l_count_rows * max_column_count]), + // (void *) &(zero[0]), + // ((size_t) count_unknowns + 1) * sizeof(LDBLE)); + memset(&(ineq_array[(size_t)l_count_rows * max_column_count]), 0, + (count_unknowns + 1) * sizeof(LDBLE)); + ineq_array[(size_t)l_count_rows * max_column_count + (size_t)i] = 1.0; + ineq_array[(size_t)l_count_rows * max_column_count + count_unknowns] = 0.99 * x[i]->moles - MIN_TOTAL_SS; back_eq[l_count_rows] = i; l_count_rows++; @@ -1602,7 +1629,7 @@ ineq(int in_kode) { for (j = 0; j < l_count_rows; j++) { - ineq_array[j * max_column_count + i] = 0.0; + ineq_array[(size_t)j * max_column_count + (size_t)i] = 0.0; } } } @@ -1616,15 +1643,15 @@ ineq(int in_kode) { if (x[i]->type == MB && x[i]->moles < 0.0) { - memcpy((void *) &(ineq_array[l_count_rows * max_column_count]), - (void *) &(array[i * (count_unknowns + 1)]), - (size_t) (count_unknowns + 1) * sizeof(LDBLE)); + memcpy((void *) &(ineq_array[(size_t)l_count_rows * max_column_count]), + (void *) &(my_array[(size_t)i * (count_unknowns + 1)]), + ((size_t) count_unknowns + 1) * sizeof(LDBLE)); back_eq[l_count_rows] = i; for (j = 0; j < count_unknowns; j++) { if (x[j]->type < PP) { - ineq_array[l_count_rows * max_column_count + j] = 0.0; + ineq_array[(size_t)l_count_rows * max_column_count + (size_t)j] = 0.0; } } l_count_rows++; @@ -1636,10 +1663,10 @@ ineq(int in_kode) */ if (mass_oxygen_unknown != NULL && mass_water_switch == TRUE) { - k = mass_oxygen_unknown->number; + k = (int)mass_oxygen_unknown->number; for (j = 0; j < l_count_rows + 1; j++) { - ineq_array[j * max_column_count + k] = 0; + ineq_array[(size_t)j * max_column_count + (size_t)k] = 0; } } /* @@ -1647,12 +1674,12 @@ ineq(int in_kode) */ for (i = 0; i < count_unknowns; i++) { - if ((x[i]->type == PP || x[i]->type == SS_MOLES) + if ((x[i]->type == PP || x[i]->type == SS_MOLES) && x[i]->phase->in == TRUE && pp_column_scale != 1.0) { for (j = 0; j < l_count_rows; j++) { - ineq_array[j * max_column_count + i] *= pp_column_scale; + ineq_array[(size_t)j * max_column_count + (size_t)i] *= pp_column_scale; } normal[i] = pp_column_scale; } @@ -1661,8 +1688,8 @@ ineq(int in_kode) if (debug_model == TRUE) { output_msg(sformatf( "\nA and B arrays:\n\n")); - array_print(ineq_array, l_count_rows, count_unknowns + 1, - max_column_count); + array_print(&ineq_array[0], (int)l_count_rows, (int)count_unknowns + 1, + (int)max_column_count); } /* * Calculate dimensions @@ -1681,28 +1708,28 @@ ineq(int in_kode) #ifdef SHRINK_ARRAY if ((sit_model || pitzer_model) && full_pitzer == FALSE) { - n = count_unknowns - (int) s_list.size(); + n = (int)count_unknowns - (int)s_list.size(); for (int i = 0; i < l_count_rows; i++) { for (int j = 0; j < n; j++) { - ineq_array[i*(n+2) + j] = ineq_array[i*(count_unknowns+2) +j]; + ineq_array[(size_t)i*((size_t)n+2) + (size_t)j] = ineq_array[(size_t)i*(count_unknowns+2) + (size_t)j]; } //if (i > 0) //{ // memcpy((void *) &ineq_array[i*(n+2)], (void *) &ineq_array[i*(count_unknowns+2)], (size_t) (n) * sizeof(LDBLE)); //} - ineq_array[i*(n+2) + n] = ineq_array[i*(count_unknowns+2) + count_unknowns]; + ineq_array[(size_t)i*((size_t)n+2) + (size_t)n] = ineq_array[(size_t)i*(count_unknowns+2) + count_unknowns]; } } else { - n = count_unknowns; /* columns in A, C, E */ + n = (int)count_unknowns; /* columns in A, C, E */ } #else n = count_unknowns; /* columns in A, C, E */ #endif - l_klmd = max_row_count - 2; + l_klmd = (int)max_row_count - 2; l_nklmd = n + l_klmd; l_n2d = n + 2; /* @@ -1719,11 +1746,9 @@ ineq(int in_kode) /* * Allocate space for arrays */ - space((void **) ((void *) &cu), 2 * l_nklmd, &cu_max, sizeof(LDBLE)); - - space((void **) ((void *) &iu), 2 * l_nklmd, &iu_max, sizeof(int)); - - space((void **) ((void *) &is), l_klmd, &is_max, sizeof(int)); + cu.resize(2 * (size_t)l_nklmd); + iu.resize(2 * (size_t)l_nklmd); + is.resize(l_klmd); #ifdef SLNQ slnq_array = @@ -1749,9 +1774,9 @@ ineq(int in_kode) /* * Call CL1 */ - cl1(k, l, m, n, - l_nklmd, l_n2d, ineq_array, - &l_kode, ineq_tol, &l_iter, delta1, res, &l_error, cu, iu, is, FALSE); + cl1(k, l, m, n, l_nklmd, l_n2d, &ineq_array[0], + &l_kode, ineq_tol, &l_iter, &delta1[0], &res[0], + &l_error, &cu[0], &iu[0], &is[0], FALSE); /* Set return_kode */ if (l_kode == 1) { @@ -1816,8 +1841,10 @@ ineq(int in_kode) #endif /* Copy delta1 into delta and scale */ #ifdef SHRINK_ARRAY - memcpy((void *) &(delta[0]), (void *) &(zero[0]), - (size_t) count_unknowns * sizeof(LDBLE)); + //memcpy((void *) &(delta[0]), (void *) &(zero[0]), + // (size_t) count_unknowns * sizeof(LDBLE)); + memset(&(delta[0]), 0, + count_unknowns * sizeof(LDBLE)); #endif memcpy((void *) &(delta[0]), (void *) &(delta1[0]), (size_t) n * sizeof(LDBLE)); @@ -1832,7 +1859,7 @@ ineq(int in_kode) { for (j = 0; j < count_unknowns; j++) { - array[j * (count_unknowns + 1) + i] /= normal[i]; + my_array[(size_t)j * (count_unknowns + 1) + (size_t)i] /= normal[i]; } } } @@ -1909,31 +1936,31 @@ jacobian_sums(void) */ for (i = 0; i < count_unknowns; i++) { - array[i] = 0.0; + my_array[i] = 0.0; } for (i = 1; i < count_unknowns; i++) { - memcpy((void *) &(array[i * (count_unknowns + 1)]), - (void *) &(array[0]), (size_t) count_unknowns * sizeof(LDBLE)); + memcpy((void *) &(my_array[(size_t)i * (count_unknowns + 1)]), + (void *) &(my_array[0]), (size_t) count_unknowns * sizeof(LDBLE)); } /* * Add constant terms */ - for (k = 0; k < count_sum_jacob0; k++) + for (k = 0; k < (int)sum_jacob0.size(); k++) { *sum_jacob0[k].target += sum_jacob0[k].coef; } /* * Add terms with coefficients of 1.0 */ - for (k = 0; k < count_sum_jacob1; k++) + for (k = 0; k < (int)sum_jacob1.size(); k++) { *sum_jacob1[k].target += *sum_jacob1[k].source; } /* * Add terms with coefficients != 1.0 */ - for (k = 0; k < count_sum_jacob2; k++) + for (k = 0; k < (int)sum_jacob2.size(); k++) { *sum_jacob2[k].target += *sum_jacob2[k].source * sum_jacob2[k].coef; } @@ -1948,18 +1975,18 @@ jacobian_sums(void) for (i = 0; i < count_unknowns; i++) { // using straight mu equation - array[mu_unknown->number * (count_unknowns + 1) + i] *= 0.5; + my_array[(size_t)mu_unknown->number * (count_unknowns + 1) + i] *= 0.5; } - array[mu_unknown->number * (count_unknowns + 1) + - mu_unknown->number] -= mass_water_aq_x; + my_array[(size_t)mu_unknown->number * (count_unknowns + 1) + + (size_t)mu_unknown->number] -= mass_water_aq_x; } /* * Mass of oxygen */ if (mass_oxygen_unknown != NULL && mu_unknown != NULL) { - array[mu_unknown->number * (count_unknowns + 1) + - mass_oxygen_unknown->number] -= mu_x * mass_water_aq_x; + my_array[(size_t)mu_unknown->number * (count_unknowns + 1) + + (size_t)mass_oxygen_unknown->number] -= mu_x * mass_water_aq_x; } /* * Activity of water @@ -1978,16 +2005,16 @@ jacobian_sums(void) for (i = 0; i < count_unknowns; i++) { - array[ah2o_unknown->number * (count_unknowns + 1) + i] *= factor; + my_array[(size_t)ah2o_unknown->number * (count_unknowns + 1) + (size_t)i] *= factor; } // activity of water term - array[ah2o_unknown->number * (count_unknowns + 1) + - ah2o_unknown->number] -= exp(s_h2o->la * LOG_10); + my_array[(size_t)ah2o_unknown->number * (count_unknowns + 1) + + (size_t)ah2o_unknown->number] -= exp(s_h2o->la * LOG_10); // mass of water term if (mass_oxygen_unknown != NULL) { - array[ah2o_unknown->number * (count_unknowns + 1) + mass_oxygen_unknown->number] -= + my_array[(size_t)ah2o_unknown->number * (count_unknowns + 1) + (size_t)mass_oxygen_unknown->number] -= a*y_sum*(x_h2o*(0.5*tanh(lim) + 0.5) + (47.5*x_h2o - 50.0*a*y_sum)/(cosh(lim)*cosh(lim))) / (x_h2o*x_h2o*x_h2o); } @@ -1996,13 +2023,13 @@ jacobian_sums(void) { for (i = 0; i < count_unknowns; i++) { - array[ah2o_unknown->number * (count_unknowns + 1) + i] *= -AH2O_FACTOR; + my_array[(size_t)ah2o_unknown->number * (count_unknowns + 1) + i] *= -AH2O_FACTOR; } - array[ah2o_unknown->number * (count_unknowns + 1) + ah2o_unknown->number] -= + my_array[(size_t)ah2o_unknown->number * (count_unknowns + 1) + (size_t)ah2o_unknown->number] -= mass_water_aq_x * exp(s_h2o->la * LOG_10); if (mass_oxygen_unknown != NULL) { - array[ah2o_unknown->number * (count_unknowns + 1) + mass_oxygen_unknown->number] -= + my_array[(size_t)ah2o_unknown->number * (count_unknowns + 1) + (size_t)mass_oxygen_unknown->number] -= (exp(s_h2o->la * LOG_10) - 1) * mass_water_aq_x; } } @@ -2019,7 +2046,7 @@ jacobian_sums(void) //sqrt(8 * EPSILON * EPSILON_ZERO * (R_KJ_DEG_MOL * 1000) * tk_x * // 1000); sqrt(8 * eps_r * EPSILON_ZERO * (R_KJ_DEG_MOL * 1000) * tk_x * - 1000); + 1000); for (i = 0; i < count_unknowns; i++) { cxxSurfaceCharge *charge_ptr = NULL; @@ -2031,18 +2058,15 @@ jacobian_sums(void) { for (j = 0; j < count_unknowns; j++) { - array[x[i]->number * (count_unknowns + 1) + j] *= - F_C_MOL / (charge_ptr->Get_specific_area() * - charge_ptr->Get_grams()); + my_array[(size_t)x[i]->number * (count_unknowns + 1) + (size_t)j] *= + F_C_MOL / (charge_ptr->Get_specific_area() * charge_ptr->Get_grams()); } - array[x[i]->number * (count_unknowns + 1) + x[i]->number] -= - sinh_constant * sqrt(mu_x) * - cosh(x[i]->master[0]->s->la * LOG_10); + my_array[(size_t)x[i]->number * (count_unknowns + 1) + (size_t)x[i]->number] -= + sinh_constant * sqrt(mu_x) * cosh(x[i]->master[0]->s->la * LOG_10); if (mu_unknown != NULL) { - array[x[i]->number * (count_unknowns + 1) + - mu_unknown->number] -= - 0.5 * sinh_constant / sqrt(mu_x) * + my_array[(size_t)x[i]->number * (count_unknowns + 1) + + (size_t)mu_unknown->number] -= 0.5 * sinh_constant / sqrt(mu_x) * sinh(x[i]->master[0]->s->la * LOG_10); } } @@ -2061,13 +2085,11 @@ jacobian_sums(void) { for (j = 0; j < count_unknowns; j++) { - array[x[i]->number * (count_unknowns + 1) + j] *= - F_C_MOL / (charge_ptr->Get_specific_area() * - charge_ptr->Get_grams()); + my_array[(size_t)x[i]->number * (count_unknowns + 1) + (size_t)j] *= + F_C_MOL / (charge_ptr->Get_specific_area() * charge_ptr->Get_grams()); } - array[x[i]->number * (count_unknowns + 1) + x[i]->number] -= - charge_ptr->Get_capacitance0() * 2 * R_KJ_DEG_MOL * - tk_x * LOG_10 / F_KJ_V_EQ; + my_array[(size_t)x[i]->number * (count_unknowns + 1) + (size_t)x[i]->number] -= + charge_ptr->Get_capacitance0() * 2 * R_KJ_DEG_MOL * tk_x * LOG_10 / F_KJ_V_EQ; } } } @@ -2100,18 +2122,16 @@ mb_sums(void) /* * Add terms with coefficients of 1.0 */ - for (k = 0; k < count_sum_mb1; k++) + for (k = 0; k < (int)sum_mb1.size(); k++) { *sum_mb1[k].target += *sum_mb1[k].source; -/* { k += 1; k -= 1;} */ } /* * Add terms with coefficients != 1.0 */ - for (k = 0; k < count_sum_mb2; k++) + for (k = 0; k < (int)sum_mb2.size(); k++) { *sum_mb2[k].target += *sum_mb2[k].source * sum_mb2[k].coef; -/* { k += 1; k -= 1;} */ } return (OK); } @@ -2159,7 +2179,7 @@ mb_ss(void) LDBLE iapc, iapb, l_kc, l_kb, lc, lb, xcaq, xbaq, xb, xc; LDBLE sigmapi_aq, sigmapi_solid; LDBLE total_p; - struct rxn_token *rxn_ptr; + class rxn_token *rxn_ptr; /* * Determines whether solid solution equation is needed */ @@ -2170,27 +2190,35 @@ mb_ss(void) { cxxSS *ss_ptr = ss_ptrs[i]; total_moles = 0; + //bool ss_in = true; for (size_t j = 0; j < ss_ptr->Get_ss_comps().size(); j++) { + int l; + class phase *phase_ptr = phase_bsearch(ss_ptr->Get_ss_comps()[j].Get_name().c_str(), &l, FALSE); + if (phase_ptr->in == FALSE) + { + continue; + } cxxSScomp *comp_ptr = &(ss_ptr->Get_ss_comps()[j]); total_moles += comp_ptr->Get_moles(); + } - if (total_moles > 1e-13) + if (total_moles > 1.e10*MIN_TOTAL) { ss_ptr->Set_ss_in(true); } else if (ss_ptr->Get_a0() != 0.0 || ss_ptr->Get_a1() != 0.0) { int l; - struct phase *phase0_ptr = phase_bsearch(ss_ptr->Get_ss_comps()[0].Get_name().c_str(), &l, FALSE); - struct phase *phase1_ptr = phase_bsearch(ss_ptr->Get_ss_comps()[1].Get_name().c_str(), &l, FALSE); + class phase *phase0_ptr = phase_bsearch(ss_ptr->Get_ss_comps()[0].Get_name().c_str(), &l, FALSE); + class phase *phase1_ptr = phase_bsearch(ss_ptr->Get_ss_comps()[1].Get_name().c_str(), &l, FALSE); /* * Calculate IAPc and IAPb */ - if (phase0_ptr->rxn_x != NULL) + if (phase0_ptr->in == TRUE && phase0_ptr->rxn_x.token.size() != 0) { log10_iap = 0; - for (rxn_ptr = phase0_ptr->rxn_x->token + 1; + for (rxn_ptr = &phase0_ptr->rxn_x.token[0] + 1; rxn_ptr->s != NULL; rxn_ptr++) { log10_iap += rxn_ptr->s->la * rxn_ptr->coef; @@ -2201,10 +2229,10 @@ mb_ss(void) { iapc = 1e-99; } - if (phase1_ptr->rxn_x != NULL) + if (phase1_ptr->in == TRUE && phase1_ptr->rxn_x.token.size() != 0) { log10_iap = 0; - for (rxn_ptr = phase1_ptr->rxn_x->token + 1; + for (rxn_ptr = &phase1_ptr->rxn_x.token[0] + 1; rxn_ptr->s != NULL; rxn_ptr++) { log10_iap += rxn_ptr->s->la * rxn_ptr->coef; @@ -2265,11 +2293,11 @@ mb_ss(void) { cxxSScomp *comp_ptr = &(ss_ptr->Get_ss_comps()[j]); int l; - struct phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + class phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); if (phase_ptr->in == TRUE) { lp = -phase_ptr->lk; - for (rxn_ptr = phase_ptr->rxn_x->token + 1; + for (rxn_ptr = &phase_ptr->rxn_x.token[0] + 1; rxn_ptr->s != NULL; rxn_ptr++) { lp += rxn_ptr->s->la * rxn_ptr->coef; @@ -2287,13 +2315,16 @@ mb_ss(void) } } } - for (int i = ss_unknown->number; i < count_unknowns; i++) + for (int i = (int)ss_unknown->number; i < (int)count_unknowns; i++) { if (x[i]->type != SS_MOLES) break; - //cxxSS *ss_ptr = use.Get_ss_assemblage_ptr()->Find(x[i]->ss_name); cxxSS *ss_ptr = (cxxSS *) x[i]->ss_ptr; - x[i]->ss_in = ss_ptr->Get_ss_in() ? TRUE : FALSE; + x[i]->ss_in = FALSE; + if (x[i]->phase->in == TRUE && ss_ptr->Get_ss_in()) + { + x[i]->ss_in = TRUE; + } } return (OK); } @@ -2309,11 +2340,11 @@ molalities(int allow_overflow) */ int i, j; LDBLE total_g; - struct rxn_token *rxn_ptr; + class rxn_token *rxn_ptr; /* * la for master species */ - for (i = 0; i < count_master; i++) + for (i = 0; i < (int)master.size(); i++) { if (master[i]->in == REWRITE) { @@ -2322,10 +2353,16 @@ molalities(int allow_overflow) } if (dl_type_x != cxxSurface::NO_DL) { + //s_h2o->tot_g_moles = s_h2o->moles; + //s_h2o->tot_dh2o_moles = 0.0; + + if (calculating_deriv && use.Get_surface_ptr() != NULL) // DL_pitz + if (use.Get_surface_ptr()->Get_debye_lengths() > 0) + s_h2o->moles = mass_water_bulk_x / gfw_water; s_h2o->tot_g_moles = s_h2o->moles; s_h2o->tot_dh2o_moles = 0.0; } - for (i = 0; i < count_s_x; i++) + for (i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type > HPLUS && s_x[i]->type != EX && s_x[i]->type != SURF) @@ -2334,7 +2371,7 @@ molalities(int allow_overflow) * lm and moles for all aqueous species */ s_x[i]->lm = s_x[i]->lk - s_x[i]->lg; - for (rxn_ptr = s_x[i]->rxn_x->token + 1; rxn_ptr->s != NULL; + for (rxn_ptr = &s_x[i]->rxn_x.token[0] + 1; rxn_ptr->s != NULL; rxn_ptr++) { s_x[i]->lm += rxn_ptr->s->la * rxn_ptr->coef; @@ -2377,14 +2414,15 @@ molalities(int allow_overflow) * other terms for diffuse layer model */ if (use.Get_surface_ptr() != NULL - && use.Get_surface_ptr()->Get_type() == cxxSurface::CD_MUSIC - && dl_type_x != cxxSurface::NO_DL) + && dl_type_x != cxxSurface::NO_DL + && (use.Get_surface_ptr()->Get_type() == cxxSurface::CD_MUSIC + || pitzer_model || calculating_deriv)) // DL_pitz { calc_all_donnan(); } - struct species *s_ptr = NULL; - for (i = 0; i < count_s_x; i++) + class species *s_ptr = NULL; + for (i = 0; i < (int)this->s_x.size(); i++) { s_ptr = s_x[i]; if (s_ptr->type > HPLUS && s_ptr->type != EX && s_ptr->type != SURF) @@ -2499,217 +2537,7 @@ molalities(int allow_overflow) return (OK); } -#ifdef SKIP -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -molalities(int allow_overflow) -/* ---------------------------------------------------------------------- */ -{ -/* - * Calculates la for master species - * Calculates lm and moles from lk, lg, and la's of master species - * Adjusts lm of h2 and o2. - */ - int i, j; - LDBLE total_g; - struct rxn_token *rxn_ptr; -/* - * la for master species - */ - for (i = 0; i < count_master; i++) - { - if (master[i]->in == REWRITE) - { - master[i]->s->la = master[i]->s->lm + master[i]->s->lg; - } - } - if (dl_type_x != cxxSurface::NO_DL) - { - s_h2o->tot_g_moles = s_h2o->moles; - s_h2o->tot_dh2o_moles = 0.0; - } - for (i = 0; i < count_s_x; i++) - { - if (s_x[i]->type > HPLUS && s_x[i]->type != EX - && s_x[i]->type != SURF) - continue; -/* - * lm and moles for all aqueous species - */ - s_x[i]->lm = s_x[i]->lk - s_x[i]->lg; - for (rxn_ptr = s_x[i]->rxn_x->token + 1; rxn_ptr->s != NULL; - rxn_ptr++) - { - s_x[i]->lm += rxn_ptr->s->la * rxn_ptr->coef; - /* - if (isnan(rxn_ptr->s->la)) - { - fprintf(stderr,"molalities la %s %e\n", rxn_ptr->s->name, rxn_ptr->s->la); - } - */ - } - if (s_x[i]->type == EX) - { - s_x[i]->moles = Utilities::safe_exp(s_x[i]->lm * LOG_10); - } - else if (s_x[i]->type == SURF) - { - s_x[i]->moles = Utilities::safe_exp(s_x[i]->lm * LOG_10); - - } - else - { - s_x[i]->moles = under(s_x[i]->lm) * mass_water_aq_x; - if (s_x[i]->moles / mass_water_aq_x > 100) - { - log_msg(sformatf( "Overflow: %s\t%e\t%e\t%d\n", - s_x[i]->name, - (double) (s_x[i]->moles / mass_water_aq_x), - (double) s_x[i]->lm, iterations)); - - if (iterations >= 0 && allow_overflow == FALSE) - { - return (ERROR); - } - } - - } - } -/* - * other terms for diffuse layer model - */ - if (use.Get_surface_ptr() != NULL && use.Get_surface_ptr()->Get_type() == cxxSurface::CD_MUSIC - && dl_type_x != cxxSurface::NO_DL) - calc_all_donnan(); - - for (i = 0; i < count_s_x; i++) - { - if (s_x[i]->type > HPLUS && s_x[i]->type != EX - && s_x[i]->type != SURF) - continue; - if (use.Get_surface_ptr() != NULL && dl_type_x != cxxSurface::NO_DL - && s_x[i]->type <= HPLUS) - { - total_g = 0.0; - s_x[i]->tot_dh2o_moles = 0.0; - for (j = 0; j < (int) use.Get_surface_ptr()->Get_surface_charges().size(); j++) - { - int is = s_x[i]->number; - cxxSurfaceCharge & charge_ref = use.Get_surface_ptr()->Get_surface_charges()[j]; -/* - * partially corrected formulation assumes mass of water in diffuse layer - * is insignificant. Excess is calculated on the basis of moles_water_aq_x - * instead of moles_water_bulk. - */ - /* revised eq. 61 */ - s_diff_layer[is][charge_ref.Get_name()].Set_g_moles(s_x[i]->moles * s_x[i]->erm_ddl * - (charge_ref.Get_g_map()[s_x[i]->z].Get_g() + - charge_ref.Get_mass_water() / - mass_water_aq_x)); - if (s_x[i]->moles > 1e-30) - { - s_diff_layer[is][charge_ref.Get_name()].Set_dg_g_moles(s_x[i]->dg * s_diff_layer[is][charge_ref.Get_name()].Get_g_moles() / - s_x[i]->moles); - } - - /* - * first term of 63 is summed for all surfaces in - * s_x[i]->tot_g_moles. This sum is then used in - * the jacobian for species i - */ - total_g += - charge_ref.Get_g_map()[s_x[i]->z].Get_g() + - charge_ref.Get_mass_water() / - mass_water_aq_x; - /* revised eq. 63, second term */ - /* g.dg is dg/dx(-2y**2) or dg/d(ln y) */ - s_diff_layer[is][charge_ref.Get_name()].Set_dx_moles( - s_x[i]->moles * s_x[i]->erm_ddl * - charge_ref.Get_g_map()[s_x[i]->z].Get_dg()); - /* revised eq. 63, third term */ - s_diff_layer[is][charge_ref.Get_name()].Set_dh2o_moles( - -s_x[i]->moles * s_x[i]->erm_ddl * - charge_ref.Get_mass_water() / - mass_water_aq_x); - s_x[i]->tot_dh2o_moles += s_diff_layer[is][charge_ref.Get_name()].Get_dh2o_moles(); - - /* surface related to phase */ - s_diff_layer[is][charge_ref.Get_name()].Set_drelated_moles( - s_x[i]->moles * s_x[i]->erm_ddl * - charge_ref.Get_specific_area() * - use.Get_surface_ptr()->Get_thickness() / mass_water_aq_x); - } - s_x[i]->tot_g_moles = - s_x[i]->moles * (1 + total_g /* s_x[i]->erm_ddl */ ); - - /* note that dg is for cb, act water, mu eqns */ - /* dg_total_g for mole balance eqns */ - /* dg_g_moles for surface cb */ - - if (s_x[i]->moles > 1e-30) - { - s_x[i]->dg_total_g = - s_x[i]->dg * s_x[i]->tot_g_moles / s_x[i]->moles; - } - else - { - s_x[i]->dg_total_g = 0.0; - } - if (debug_diffuse_layer == TRUE) - { - output_msg(sformatf( "%s\t%e\t%e\n", s_x[i]->name, - (double) s_x[i]->moles, - (double) s_x[i]->tot_g_moles)); - output_msg(sformatf( "\tg\n")); - for (j = 0; j < (int) use.Get_surface_ptr()->Get_surface_charges().size(); j++) - { - cxxSurfaceCharge &charge_ref = use.Get_surface_ptr()->Get_surface_charges()[j]; - output_msg(sformatf( "\t%e", - (double) charge_ref.Get_g_map()[s_x[i]->z].Get_g())); - } - output_msg(sformatf( "\n\tg_moles\n")); - for (j = 0; j < (int) use.Get_surface_ptr()->Get_surface_charges().size(); j++) - { - cxxSurfaceCharge &charge_ref = use.Get_surface_ptr()->Get_surface_charges()[j]; - int is = s_x[i]->number; - output_msg(sformatf( "\t%e", - (double) s_diff_layer[is][charge_ref.Get_name()].Get_g_moles())); - } - output_msg(sformatf( "\n\tdg\n")); - for (j = 0; j < (int) use.Get_surface_ptr()->Get_surface_charges().size(); j++) - { - cxxSurfaceCharge &charge_ref = use.Get_surface_ptr()->Get_surface_charges()[j]; - output_msg(sformatf( "\t%e", - (double) charge_ref.Get_g_map()[s_x[i]->z].Get_dg())); - } - output_msg(sformatf( "\n\tdx_moles\n")); - for (j = 0; j < (int) use.Get_surface_ptr()->Get_surface_charges().size(); j++) - { - int is = s_x[i]->number; - cxxSurfaceCharge &charge_ref = use.Get_surface_ptr()->Get_surface_charges()[j]; - output_msg(sformatf( "\t%e", - (double) s_diff_layer[is][charge_ref.Get_name()].Get_dx_moles())); - } - output_msg(sformatf( "\n\tdh2o_moles\t%e\n", - (double) s_x[i]->tot_dh2o_moles)); - for (j = 0; j < (int) use.Get_surface_ptr()->Get_surface_charges().size(); j++) - { - cxxSurfaceCharge &charge_ref = use.Get_surface_ptr()->Get_surface_charges()[j]; - int is = s_x[i]->number; - output_msg(sformatf( "\t%e", - s_diff_layer[is][charge_ref.Get_name()].Get_dh2o_moles())); - } - output_msg(sformatf( "\n")); - } - } - } - calc_gas_pressures(); - calc_ss_fractions(); - - return (OK); -} -#endif /* ---------------------------------------------------------------------- */ int Phreeqc:: calc_gas_pressures(void) @@ -2717,8 +2545,8 @@ calc_gas_pressures(void) { int n_g = 0; LDBLE lp, V_m = 0; - struct rxn_token *rxn_ptr; - std::vector phase_ptrs; + class rxn_token *rxn_ptr; + std::vector phase_ptrs; bool PR = false, pr_done = false; /* * moles and partial pressures for gases @@ -2742,7 +2570,7 @@ calc_gas_pressures(void) { const cxxGasComp * gas_comp_ptr = &(gas_phase_ptr->Get_gas_comps()[i]); int j; - struct phase *phase_ptr = phase_bsearch(gas_comp_ptr->Get_phase_name().c_str(), &j, FALSE); + class phase *phase_ptr = phase_bsearch(gas_comp_ptr->Get_phase_name().c_str(), &j, FALSE); if (phase_ptr->in == TRUE) { phase_ptrs.push_back(phase_ptr); @@ -2785,13 +2613,12 @@ calc_gas_pressures(void) V_m = (2. * gas_phase_ptr->Get_v_m() + V_m) / 3; else V_m = (1. * gas_phase_ptr->Get_v_m() + V_m) / 2; - if (iterations > 99 && numerical_fixed_volume == false) + if ((pitzer_model || iterations > 99) && numerical_fixed_volume == false) { //V_m *= 1; /* debug */ numerical_fixed_volume = true; //switch_numerical = true; - warning_msg - ("Numerical method failed, switching to numerical derivatives."); + if (!pitzer_model) warning_msg("Numerical method failed, switching to numerical derivatives."); prep(); //switch_numerical = false; } @@ -2811,18 +2638,18 @@ calc_gas_pressures(void) { const cxxGasComp *gas_comp = &(gas_phase_ptr->Get_gas_comps()[i]); int j; - struct phase *phase_ptr = phase_bsearch(gas_comp->Get_phase_name().c_str(), &j, FALSE); + class phase *phase_ptr = phase_bsearch(gas_comp->Get_phase_name().c_str(), &j, FALSE); if (phase_ptr->in == TRUE) { lp = -phase_ptr->lk; - for (rxn_ptr = phase_ptr->rxn_x->token + 1; rxn_ptr->s != NULL; + for (rxn_ptr = &phase_ptr->rxn_x.token[0] + 1; rxn_ptr->s != NULL; rxn_ptr++) { lp += rxn_ptr->s->la * rxn_ptr->coef; } phase_ptr->p_soln_x = exp(LOG_10 * (lp - phase_ptr->pr_si_f)); - if (!strcmp(phase_ptr->name, "H2O(g)") && phase_ptr->p_soln_x > 90) - phase_ptr->p_soln_x = 90; + //if (!strcmp(phase_ptr->name, "H2O(g)") && phase_ptr->p_soln_x > 90) + // phase_ptr->p_soln_x = 90; if (gas_phase_ptr->Get_type() == cxxGasPhase::GP_PRESSURE) { @@ -2866,22 +2693,22 @@ calc_gas_pressures(void) * Fixed-volume gas phase reacting with a solution * Change pressure used in logK to pressure of gas phase */ - if (gas_phase_ptr->Get_total_p() > 1500) + if (gas_phase_ptr->Get_total_p() > MAX_P_NONLLNL && llnl_temp.size() == 0) { gas_phase_ptr->Set_total_moles(0); for (size_t i = 0; i < gas_phase_ptr->Get_gas_comps().size(); i++) { const cxxGasComp *gas_comp = &(gas_phase_ptr->Get_gas_comps()[i]); int j; - struct phase *phase_ptr = phase_bsearch(gas_comp->Get_phase_name().c_str(), &j, FALSE); + class phase *phase_ptr = phase_bsearch(gas_comp->Get_phase_name().c_str(), &j, FALSE); if (phase_ptr->in == TRUE) { - phase_ptr->moles_x *= 1500.0 / gas_phase_ptr->Get_total_p(); + phase_ptr->moles_x *= MAX_P_NONLLNL / gas_phase_ptr->Get_total_p(); gas_phase_ptr->Set_total_moles(gas_phase_ptr->Get_total_moles() + phase_ptr->moles_x); } } - gas_phase_ptr->Set_total_p(1500.0); + gas_phase_ptr->Set_total_p(MAX_P_NONLLNL); } } @@ -2924,7 +2751,7 @@ calc_ss_fractions(void) { cxxSScomp *comp_ptr = &(ss_ptr->Get_ss_comps()[k]); int l; - struct phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + class phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); moles = comp_ptr->Get_moles(); if (moles < 0) { @@ -2953,7 +2780,8 @@ ss_binary(cxxSS *ss_ptr) /* ---------------------------------------------------------------------- */ { LDBLE nb, nc, n_tot, xb, xc, dnb, dnc, l_a0, l_a1; - LDBLE xb2, xb3, xb4, xc2, xc3; + //LDBLE xb2, xb3, xb4, xc2, xc3; + LDBLE xb2, xc2; LDBLE xb1, xc1; /* * component 0 is major component @@ -2968,8 +2796,8 @@ ss_binary(cxxSS *ss_ptr) cxxSScomp *comp0_ptr = &(ss_ptr->Get_ss_comps()[0]); cxxSScomp *comp1_ptr = &(ss_ptr->Get_ss_comps()[1]); int l; - struct phase *phase0_ptr = phase_bsearch(comp0_ptr->Get_name().c_str(), &l, FALSE); - struct phase *phase1_ptr = phase_bsearch(comp1_ptr->Get_name().c_str(), &l, FALSE); + class phase *phase0_ptr = phase_bsearch(comp0_ptr->Get_name().c_str(), &l, FALSE); + class phase *phase1_ptr = phase_bsearch(comp1_ptr->Get_name().c_str(), &l, FALSE); nc = comp0_ptr->Get_moles(); xc = nc / n_tot; @@ -3040,12 +2868,12 @@ ss_binary(cxxSS *ss_ptr) comp1_ptr->Get_log10_lambda(); xc2 = xc * xc; - xc3 = xc2 * xc; + //xc3 = xc2 * xc; xb2 = xb * xb; - xb3 = xb2 * xb; - xb4 = xb3 * xb; - xb4 = xb4; - xc3 = xc3; + //xb3 = xb2 * xb; + //xb4 = xb3 * xb; + /* xb4 = xb4; */ + /* xc3 = xc3; */ /* used derivation that did not substitute x2 = 1-x1 */ @@ -3099,7 +2927,7 @@ ss_ideal(cxxSS *ss_ptr) { cxxSScomp *compk_ptr = &(ss_ptr->Get_ss_comps()[k]); int l; - struct phase *phasek_ptr = phase_bsearch(compk_ptr->Get_name().c_str(), &l, FALSE); + class phase *phasek_ptr = phase_bsearch(compk_ptr->Get_name().c_str(), &l, FALSE); n_tot1 = 0; for (size_t j = 0; j < ss_ptr->Get_ss_comps().size(); j++) { @@ -3157,7 +2985,7 @@ reset(void) */ for (i = 0; i < count_unknowns; i++) { - if (x[i]->type == PP || x[i]->type == SS_MOLES) + if ((x[i]->type == PP || x[i]->type == SS_MOLES) && x[i]->phase->in == TRUE) { if (delta[i] < -1e8) @@ -3176,21 +3004,21 @@ reset(void) assert(comp_ptr); if ((delta[i] < 0.0) && (-delta[i] > - (comp_ptr->Get_initial_moles() - x[i]->moles))) + (comp_ptr->Get_initial_moles() - x[i]->moles))) { if ((comp_ptr->Get_initial_moles() - x[i]->moles) != 0.0) { f0 = fabs(delta[i] / - (comp_ptr->Get_initial_moles() - - x[i]->moles)); + (comp_ptr->Get_initial_moles() - + x[i]->moles)); if (f0 > factor) { if (debug_model == TRUE) { output_msg(sformatf( - "%-10.10s, Precipitating too much dissolve_only mineral.\tDelta %e\tCurrent %e\tInitial %e\n", - x[i]->description, + "%-10.10s, Precipitating too much dissolve_only mineral.\tDelta %e\tCurrent %e\tInitial %e\n", + x[i]->description, (double) delta[i], (double) x[i]->moles, (double) comp_ptr->Get_initial_moles())); @@ -3203,9 +3031,9 @@ reset(void) if (debug_model == TRUE) { output_msg(sformatf( - "%-10.10s, Precipitating dissolve_only mineral.\tDelta %e\n", - x[i]->description, - (double) delta[i])); + "%-10.10s, Precipitating dissolve_only mineral.\tDelta %e\n", + x[i]->description, + (double) delta[i])); } delta[i] = 0; } @@ -3220,7 +3048,7 @@ reset(void) if (debug_model == TRUE) { output_msg(sformatf( - "%-10.10s, Removing more than total mineral.\t%f\n", + "%-10.10s, Removing more than total mineral.\t%f\n", x[i]->description, (double) f0)); } factor = f0; @@ -3231,17 +3059,17 @@ reset(void) if (debug_model == TRUE) { output_msg(sformatf( - "%-10.10s\tDelta: %e\tMass: %e " - "Dissolving mineral with 0.0 mass.\n ", + "%-10.10s\tDelta: %e\tMass: %e " + "Dissolving mineral with 0.0 mass.\n ", x[i]->description, (double) delta[i], (double) x[i]->moles)); } delta[i] = 0.0; } else if (x[i]->ss_comp_name != NULL && delta[i] < -x[i]->phase->delta_max) - // Uses delta_max computed in step - // delta_max is the maximum amount of the mineral that could form based - // on the limiting element in the system + // Uses delta_max computed in step + // delta_max is the maximum amount of the mineral that could form based + // on the limiting element in the system { f0 = -delta[i] / x[i]->phase->delta_max; if (f0 > factor) @@ -3249,12 +3077,40 @@ reset(void) if (debug_model == TRUE) { output_msg(sformatf( - "%-10.10s, Precipitating too much mineral.\t%f\n", + "%-10.10s, Precipitating too much mineral.\t%f\n", x[i]->description, (double) f0)); } factor = f0; } } + else if (x[i]->ss_comp_name != NULL && delta[i] < -pe_step_size*x[i]->moles) + { + f0 = (-delta[i]) / (pe_step_size*x[i]->moles); + if (f0 > factor) + { + if (debug_model == TRUE) + { + output_msg(sformatf( + "%-10.10s, Precipitating too much mineral.\t%f\n", + x[i]->description, (double)f0)); + } + factor = f0; + } + } + else if (x[i]->ss_comp_name != NULL && delta[i] > x[i]->moles/ pe_step_size) + { + f0 = (delta[i]) / (x[i]->moles/ pe_step_size); + if (f0 > factor) + { + if (debug_model == TRUE) + { + output_msg(sformatf( + "%-10.10s, Precipitating too much mineral.\t%f\n", + x[i]->description, (double)f0)); + } + factor = f0; + } + } } } } @@ -3286,7 +3142,7 @@ reset(void) x[i]->delta = 0.0; } - for (i = 0; i < count_sum_delta; i++) + for (i = 0; i < (int)sum_delta.size(); i++) { *sum_delta[i].target += *sum_delta[i].source * sum_delta[i].coef; } @@ -3724,7 +3580,9 @@ reset(void) else if (x[i]->type == MH2O) { if (mass_water_switch == TRUE) + { continue; + } /*if (fabs(delta[i]) > epsilon * mass_water_aq_x) converge=FALSE; */ /* ln(gh2o) + delta, log(gh2o) + d, gh2o * 10**d */ d = exp(delta[i]); @@ -3738,7 +3596,6 @@ reset(void) (double) delta[i], "10**d/c", (double) d)); } mass_water_aq_x *= d; - mass_water_bulk_x = mass_water_aq_x + mass_water_surfaces_x; if (debug_model == TRUE && dl_type_x != cxxSurface::NO_DL) { @@ -3749,7 +3606,7 @@ reset(void) (double) mass_water_surfaces_x)); } x[i]->master[0]->s->moles = mass_water_aq_x / gfw_water; -/*appt */ + if (use.Get_surface_ptr() != NULL) { if (use.Get_surface_ptr()->Get_debye_lengths() > 0) @@ -3832,12 +3689,15 @@ reset(void) //{ // patm_x = ( 1 * patm_x + p_sat) / 2.0; //} - if (patm_x > 1500) - patm_x = 1500; + if (llnl_temp.size() == 0) + { + if (patm_x > MAX_P_NONLLNL) + patm_x = MAX_P_NONLLNL; + } } last_patm_x = patm_x; } - else if (x[i]->type == SS_MOLES) + else if (x[i]->type == SS_MOLES && x[i]->ss_in == TRUE) { /*if (fabs(delta[i]) > epsilon) converge=FALSE; */ @@ -3921,7 +3781,7 @@ residuals(void) LDBLE sum_residual; LDBLE sinh_constant; LDBLE sum, sum1; - struct master *master_ptr, *master_ptr1, *master_ptr2; + class master *master_ptr, *master_ptr1, *master_ptr2; LDBLE sigmaddl, negfpsirt; int print_fail; std::vector cd_psi; @@ -4195,8 +4055,10 @@ residuals(void) } else if (x[i]->type == SS_MOLES) { + if (x[i]->ss_in == FALSE) + continue; residual[i] = x[i]->f * LOG_10; - if (fabs(residual[i]) > l_toler && x[i]->ss_in == TRUE) + if (fabs(residual[i]) > l_toler) { if (print_fail) output_msg(sformatf( @@ -4293,27 +4155,22 @@ residuals(void) } else { -/* - * sinh_constant is (8 e e0 R T 1000)**1/2 - * = sqrt(8*EPSILON*EPSILON_ZERO*(R_KJ_DEG_MOL*1000)*t_x*1000) - * ~ 0.1174 at 25C - */ - residual[i] = - sinh_constant * sqrt(mu_x) * - sinh(x[i]->master[0]->s->la * LOG_10) - - x[i]->f * F_C_MOL / (charge_ptr->Get_specific_area() * - charge_ptr->Get_grams()); + residual[i] = sinh_constant * sqrt(mu_x) * sinh(x[i]->master[0]->s->la * LOG_10) - + x[i]->f * F_C_MOL / (charge_ptr->Get_specific_area() * charge_ptr->Get_grams()); } if (debug_model == TRUE) { output_msg(sformatf( "Charge/Potential\n")); if (charge_ptr->Get_grams() > 0) { - output_msg(sformatf( - "\tSum of surface charge %e eq\n", - (double) (x[i]->f - /* F_C_MOL / (x[i]->surface_charge->specific_area * x[i]->surface_charge->grams) */ - ))); + if (dl_type_x != cxxSurface::NO_DL) + output_msg(sformatf("\tSum of surface + diffuse layer charge %e eq\n", (double)(x[i]->f))); + else + output_msg(sformatf( + "\tSum of surface charge %e eq\n", + (double)(x[i]->f + /* F_C_MOL / (x[i]->surface_charge->specific_area * x[i]->surface_charge->grams) */ + ))); } else { @@ -4381,7 +4238,7 @@ residuals(void) cd_psi.push_back(-(master_ptr2->s->la * LOG_10) * R_KJ_DEG_MOL * tk_x / F_KJ_V_EQ); sum = 0; - for (j = 0; j < x[i]->count_comp_unknowns; j++) + for (size_t j = 0; j < x[i]->comp_unknowns.size(); j++) { sum += x[i]->comp_unknowns[j]->moles * @@ -4432,7 +4289,10 @@ residuals(void) output_msg(sformatf( "Charge/Potential\n")); if (charge_ptr->Get_grams() > 0) { - output_msg(sformatf( + if (dl_type_x != cxxSurface::NO_DL) + output_msg(sformatf("\tSum of surface + diffuse layer charge %e eq\n", (double)(x[i]->f))); + else + output_msg(sformatf( "\tSum of surface charge %e eq\n", (double) (x[i]->f /* F_C_MOL / (x[i]->surface_charge->specific_area * x[i]->surface_charge->grams) */ @@ -4503,7 +4363,7 @@ residuals(void) { sum = 0; sum1 = 0; - for (j = 0; j < count_s_x; j++) + for (j = 0; j < (int)this->s_x.size(); j++) { if (s_x[j]->type == SURF) { @@ -4549,7 +4409,7 @@ residuals(void) negfpsirt = master_ptr2->s->la * LOG_10; sum = 0; sum1 = 0; - for (j = 0; j < count_s_x; j++) + for (j = 0; j < (int)this->s_x.size(); j++) { if (s_x[j]->type < H2O) { @@ -4669,7 +4529,7 @@ residuals(void) /* * Store residuals in array */ - array[(i + 1) * (count_unknowns + 1) - 1] = residual[i]; + my_array[((size_t)i + 1) * (count_unknowns + 1) - 1] = residual[i]; sum_residual += fabs(residual[i]); } /* @@ -4704,7 +4564,7 @@ set(int initial) return (set_sit(initial)); iterations = -1; solution_ptr = use.Get_solution_ptr(); - for (i = 0; i < count_s_x; i++) + for (i = 0; i < (int)this->s_x.size(); i++) { s_x[i]->lm = LOG_ZERO_MOLALITY; s_x[i]->lg = 0.0; @@ -4749,7 +4609,7 @@ initial_guesses(void) */ int i; cxxSolution *solution_ptr; - + // mu_x is reset here, but the real, already calculated mu_x must be used for INITIAL_EXCHANGE & _SURFACE appt solution_ptr = use.Get_solution_ptr(); mu_x = s_hplus->moles + @@ -4800,9 +4660,9 @@ initial_guesses(void) } } else if (x[i]->type == SURFACE_CB) - { - x[i]->master[0]->s->la = 0.0; - } + { + x[i]->master[0]->s->la = 0.0; + } } return (OK); } @@ -4923,10 +4783,7 @@ revise_guesses(void) { repeat = TRUE; d = 0; -#ifdef SKIP - d = weight * log10(fabs(x[i]->moles / x[i]->sum)); - double d1 = d; -#else + // avoid underflows and overflows if (x[i]->moles > 1e101 || x[i]->moles < 1e-101 || x[i]->sum > 1e101 || x[i]->sum < 1e-101) @@ -4965,7 +4822,6 @@ revise_guesses(void) { x[i]->master[0]->s->la += 5.0; } -#endif } if (debug_set == TRUE) { @@ -5027,8 +4883,8 @@ sum_species(void) * * Sums total valence states and stores in master[i]->total. */ - int i, j; - struct master *master_ptr; + int i; + class master *master_ptr; /* * Set global variables */ @@ -5052,7 +4908,7 @@ sum_species(void) total_ions_x = 0.0; total_o_x = 0.0; total_h_x = 0.0; - for (i = 0; i < count_s_x; i++) + for (i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type == EX) continue; @@ -5080,12 +4936,12 @@ sum_species(void) /* * Sum valence states, put in master->total */ - for (i = 0; i < count_master; i++) + for (i = 0; i < (int)master.size(); i++) { master[i]->total = 0.0; master[i]->total_primary = 0.0; } - for (i = 0; i < count_species_list; i++) + for (i = 0; i < (int)species_list.size(); i++) { if (species_list[i].master_s->secondary != NULL) { @@ -5109,7 +4965,7 @@ sum_species(void) (x[i]->type == CB && x[i] != ph_unknown && x[i] != pe_unknown)) { x[i]->sum = 0.0; - for (j = 0; x[i]->master[j] != NULL; j++) + for (size_t j = 0; j < x[i]->master.size(); j++) { x[i]->sum += x[i]->master[j]->total; } @@ -5122,7 +4978,7 @@ sum_species(void) /* * Calculate total element concentrations */ - for (i = 0; i < count_master; i++) + for (i = 0; i < (int)master.size(); i++) { master[i]->elt->primary->total_primary += master[i]->total; } @@ -5148,7 +5004,7 @@ surface_model(void) */ debug_diffuse_layer_save = debug_diffuse_layer; debug_model_save = debug_model; - if (last_model.force_prep == TRUE) + if (last_model.force_prep) { same_model = FALSE; } @@ -5159,7 +5015,7 @@ surface_model(void) if (dl_type_x != cxxSurface::NO_DL && same_model == FALSE) { s_diff_layer.clear(); - for (i = 0; i < count_s; i++) + for (i = 0; i < (int)s.size(); i++) { std::map < std::string, cxxSpeciesDL > dl; s_diff_layer.push_back(dl); @@ -5216,6 +5072,7 @@ surface_model(void) } if (model() == ERROR) return (ERROR); + g_iterations = 0; if (use.Get_surface_ptr()->Get_dl_type() == cxxSurface::DONNAN_DL) @@ -5230,6 +5087,7 @@ surface_model(void) mb_sums(); if (model() == ERROR) return (ERROR); + if (!use.Get_surface_ptr()->Get_related_phases() && !use.Get_surface_ptr()->Get_related_rate()) initial_surface_water(); @@ -5294,32 +5152,23 @@ free_model_allocs(void) * free space allocated in model */ int i; - if (x != NULL) + for (i = 0; i < (int)x.size(); i++) { - for (i = 0; i < max_unknowns; i++) - { - unknown_free(x[i]); - } + unknown_free(x[i]); } - x = (struct unknown **) free_check_null(x); + x.clear(); + count_unknowns = 0; max_unknowns = 0; - array = (LDBLE *) free_check_null(array); - delta = (LDBLE *) free_check_null(delta); - residual = (LDBLE *) free_check_null(residual); - s_x = (struct species **) free_check_null(s_x); - count_s_x = 0; - sum_mb1 = (struct list1 *) free_check_null(sum_mb1); - count_sum_mb1 = 0; - sum_mb2 = (struct list2 *) free_check_null(sum_mb2); - count_sum_mb2 = 0; - sum_jacob0 = (struct list0 *) free_check_null(sum_jacob0); - count_sum_jacob0 = 0; - sum_jacob1 = (struct list1 *) free_check_null(sum_jacob1); - count_sum_jacob1 = 0; - sum_jacob2 = (struct list2 *) free_check_null(sum_jacob2); - count_sum_jacob2 = 0; - sum_delta = (struct list2 *) free_check_null(sum_delta); - count_sum_delta = 0; + my_array.clear(); + delta.clear(); + residual.clear(); + s_x.clear(); + sum_mb1.clear(); + sum_mb2.clear(); + sum_jacob0.clear(); + sum_jacob1.clear(); + sum_jacob2.clear(); + sum_delta.clear(); return (OK); } @@ -5455,22 +5304,23 @@ ss_f(LDBLE xb, LDBLE l_a0, LDBLE l_a1, LDBLE l_kc, LDBLE l_kb, LDBLE xcaq, f = xcaq * (xb / r + xc) + xbaq * (xb + r * xc) - 1; return (f); } - +//#define ORIGINAL +#ifdef ORIGINAL /* ---------------------------------------------------------------------- */ int Phreeqc:: numerical_jacobian(void) /* ---------------------------------------------------------------------- */ { - LDBLE *base; + std::vector base; LDBLE d, d1, d2; int i, j; cxxGasPhase *gas_phase_ptr = use.Get_gas_phase_ptr(); if (! - (numerical_deriv || + (numerical_deriv || (use.Get_surface_ptr() != NULL && use.Get_surface_ptr()->Get_type() == cxxSurface::CD_MUSIC) || - (gas_phase_ptr != NULL && gas_phase_ptr->Get_type() == cxxGasPhase::GP_VOLUME && - (gas_phase_ptr->Get_pr_in() || force_numerical_fixed_volume) && numerical_fixed_volume) - )) + (gas_phase_ptr != NULL && gas_phase_ptr->Get_type() == cxxGasPhase::GP_VOLUME && + (gas_phase_ptr->Get_pr_in() || force_numerical_fixed_volume) && numerical_fixed_volume) + )) return(OK); calculating_deriv = TRUE; @@ -5484,23 +5334,17 @@ numerical_jacobian(void) for (i = 0; i < count_unknowns; i++) { - array[i] = 0.0; + my_array[i] = 0.0; } for (i = 1; i < count_unknowns; i++) { - memcpy((void *) &(array[i * (count_unknowns + 1)]), - (void *) &(array[0]), (size_t) count_unknowns * sizeof(LDBLE)); - } - - base = (LDBLE *) PHRQ_malloc((size_t) count_unknowns * sizeof(LDBLE)); - if (base == NULL) - malloc_error(); - for (i = 0; i < count_unknowns; i++) - { - base[i] = residual[i]; + memcpy((void *) &(my_array[(size_t)i * (count_unknowns + 1)]), + (void *) &(my_array[0]), count_unknowns * sizeof(LDBLE)); } + base.resize(count_unknowns); + base = residual; d = 0.0001; - d1 = d * log(10.0); + d1 = d * LOG_10; d2 = 0; for (i = 0; i < count_unknowns; i++) { @@ -5516,24 +5360,32 @@ numerical_jacobian(void) case SURFACE_CB1: case SURFACE_CB2: x[i]->master[0]->s->la += d; - d2 = d1; + d2 = d * LOG_10; break; case MH: s_eminus->la += d; - d2 = d1; + d2 = d * LOG_10; break; case AH2O: x[i]->master[0]->s->la += d; - d2 = d1; + d2 = d * LOG_10; break; case PITZER_GAMMA: x[i]->s->lg += d; d2 = d; break; case MH2O: - mass_water_aq_x *= (1.0 + d); + //mass_water_aq_x *= (1 + d); + //x[i]->master[0]->s->moles = mass_water_aq_x / gfw_water; + //d2 = log(1.0 + d); + //break; + // DL_pitz + d1 = mass_water_aq_x * d; + mass_water_aq_x += d1; + if (use.Get_surface_in() && dl_type_x == cxxSurface::DONNAN_DL) + mass_water_bulk_x += d1; x[i]->master[0]->s->moles = mass_water_aq_x / gfw_water; - d2 = log(1.0 + d); + d2 = d1; break; case MU: d2 = d * mu_x; @@ -5558,8 +5410,8 @@ numerical_jacobian(void) delta[j] = 0.0; } /*d2 = -1e-8; */ - d2 = -d * x[i]->moles; - d2 = -.1 * x[i]->moles; + d2 = d * 10 * x[i]->moles; + //d2 = -.1 * x[i]->moles; /* if (d2 > -1e-10) d2 = -1e-10; calculating_deriv = FALSE; @@ -5573,8 +5425,8 @@ numerical_jacobian(void) case GAS_MOLES: if (gas_in == FALSE) continue; - - d2 = d * x[i]->moles; + d2 = (x[i]->moles > 1 ? 1 : 20); + d2 *= d * x[i]->moles; if (d2 < 1e-14) d2 = 1e-14; x[i]->moles += d2; @@ -5596,11 +5448,13 @@ numerical_jacobian(void) LDBLE t = (LDBLE) pow((LDBLE) 10.0, (LDBLE) (DBL_MAX_10_EXP - 50.0)); if (residual[j] > t) { - array[j * (count_unknowns + 1) + i] = -pow(10.0, DBL_MAX_10_EXP - 50.0); + my_array[(size_t)j * (count_unknowns + 1) + (size_t)i] = -pow(10.0, DBL_MAX_10_EXP - 50.0); } else { - array[j * (count_unknowns + 1) + i] = -(residual[j] - base[j]) / d2; + my_array[(size_t)j * (count_unknowns + 1) + (size_t)i] = -(residual[j] - base[j]) / d2; + if (x[i]->type == MH2O) // DL_pitz + my_array[(size_t)j * (count_unknowns + 1) + (size_t)i] *= mass_water_aq_x; } } else if (residual[j] < -1.0e101) @@ -5608,17 +5462,21 @@ numerical_jacobian(void) LDBLE t = pow((LDBLE) 10.0, (LDBLE) (DBL_MIN_10_EXP + 50.0)); if (residual[j] < -t) { - array[j * (count_unknowns + 1) + i] = pow(10.0, DBL_MIN_10_EXP + 50.0); + my_array[(size_t)j * (count_unknowns + 1) + (size_t)i] = pow(10.0, DBL_MIN_10_EXP + 50.0); } else { - array[j * (count_unknowns + 1) + i] = -(residual[j] - base[j]) / d2; + my_array[(size_t)j * (count_unknowns + 1) + (size_t)i] = -(residual[j] - base[j]) / d2; + if (x[i]->type == MH2O) // DL_pitz + my_array[(size_t)j * (count_unknowns + 1) + (size_t)i] *= mass_water_aq_x; } } else { - array[j * (count_unknowns + 1) + i] = -(residual[j] - base[j]) / d2; - if (!PHR_ISFINITE(array[j * (count_unknowns + 1) + i])) + my_array[(size_t)j * (count_unknowns + 1) + (size_t)i] = -(residual[j] - base[j]) / d2; + if (x[i]->type == MH2O) // DL_pitz + my_array[(size_t)j * (count_unknowns + 1) + (size_t)i] *= mass_water_aq_x; + if (!PHR_ISFINITE(my_array[(size_t)j * (count_unknowns + 1) + (size_t)i])) { //fprintf(stderr, "oops, got NaN: %e, %e, %e, %e\n", residual[j], base[j], d2, array[j * (count_unknowns + 1) + i]); } @@ -5642,10 +5500,10 @@ numerical_jacobian(void) break; case MH: s_eminus->la -= d; - if (array[i * (count_unknowns + 1) + i] == 0) + if (my_array[(size_t)i * (count_unknowns + 1) + (size_t)i] == 0) { /*output_msg(sformatf( "Zero diagonal for MH\n")); */ - array[i * (count_unknowns + 1) + i] = + my_array[(size_t)i * (count_unknowns + 1) + (size_t)i] = under(s_h2->lm) * 2; } break; @@ -5653,7 +5511,13 @@ numerical_jacobian(void) x[i]->s->lg -= d; break; case MH2O: - mass_water_aq_x /= (1 + d); + //mass_water_aq_x /= (1 + d); + //x[i]->master[0]->s->moles = mass_water_aq_x / gfw_water; + //break; + //DL_pitz + mass_water_aq_x -= d1; + if (use.Get_surface_in() && dl_type_x == cxxSurface::DONNAN_DL) + mass_water_bulk_x -= d1; x[i]->master[0]->s->moles = mass_water_aq_x / gfw_water; break; case MU: @@ -5678,85 +5542,269 @@ numerical_jacobian(void) mb_gases(); mb_ss(); residuals(); - free_check_null(base); + base.clear(); calculating_deriv = FALSE; return OK; } - +#else /* ---------------------------------------------------------------------- */ -void Phreeqc:: -ineq_init(int l_max_row_count, int l_max_column_count) +int Phreeqc:: +numerical_jacobian(void) /* ---------------------------------------------------------------------- */ { - if (normal == NULL) + std::vector base; + LDBLE d, d1, d2; + int i, j; + cxxGasPhase* gas_phase_ptr = use.Get_gas_phase_ptr(); + std::vector phase_ptrs; + std::vector base_phases; + double base_mass_water_bulk_x = 0, base_moles_h2o = 0; + cxxGasPhase base_gas_phase; + cxxSurface base_surface; + + if (! + (numerical_deriv || + (use.Get_surface_ptr() != NULL && use.Get_surface_ptr()->Get_type() == cxxSurface::CD_MUSIC) || + (gas_phase_ptr != NULL && gas_phase_ptr->Get_type() == cxxGasPhase::GP_VOLUME && + (gas_phase_ptr->Get_pr_in() || force_numerical_fixed_volume) && numerical_fixed_volume) + )) + return(OK); + + //jacobian_sums(); + if (use.Get_surface_ptr() != NULL) { - normal = - (LDBLE *) PHRQ_malloc((size_t) count_unknowns * sizeof(LDBLE)); - normal_max = count_unknowns; - if (normal == NULL) - malloc_error(); + base_surface = *use.Get_surface_ptr(); } - if (ineq_array == NULL) + if (use.Get_gas_phase_ptr() != NULL) { - ineq_array = - (LDBLE *) PHRQ_malloc((size_t) l_max_row_count * l_max_column_count * - sizeof(LDBLE)); - if (ineq_array == NULL) - malloc_error(); - ineq_array_max = l_max_row_count * l_max_column_count; + //cxxGasPhase* gas_phase_ptr = use.Get_gas_phase_ptr(); + base_gas_phase = *gas_phase_ptr; + base_phases.resize(gas_phase_ptr->Get_gas_comps().size()); + for (size_t i = 0; i < gas_phase_ptr->Get_gas_comps().size(); i++) + { + const cxxGasComp* gas_comp_ptr = &(gas_phase_ptr->Get_gas_comps()[i]); + class phase* phase_ptr = phase_bsearch(gas_comp_ptr->Get_phase_name().c_str(), &j, FALSE); + phase_ptrs.push_back(phase_ptr); + base_phases[i] = *phase_ptr; + } } - if (back_eq == NULL) + calculating_deriv = TRUE; + gammas(mu_x); + molalities(TRUE); + mb_sums(); + //mb_gases(); + //mb_ss(); + residuals(); + /* + * Clear array, note residuals are in array[i, count_unknowns+1] + */ + + //for (i = 0; i < count_unknowns; i++) + //{ + // my_array[i] = 0.0; + //} + //for (i = 1; i < count_unknowns; i++) + //{ + // memcpy((void*)&(my_array[(size_t)i * (count_unknowns + 1)]), + // (void*)&(my_array[0]), count_unknowns * sizeof(LDBLE)); + //} + + base.resize(count_unknowns); + base = residual; + d = 0.0001; + d1 = d * LOG_10; + d2 = 0; + for (i = 0; i < count_unknowns; i++) { - back_eq = (int *) PHRQ_malloc((size_t) l_max_row_count * sizeof(int)); - if (back_eq == NULL) - malloc_error(); - back_eq_max = l_max_row_count; - } - if (zero == NULL) - { - zero = (LDBLE *) PHRQ_malloc((size_t) l_max_row_count * sizeof(LDBLE)); - if (zero == NULL) - malloc_error(); - zero_max = l_max_row_count; - } - if (res == NULL) - { - res = (LDBLE *) PHRQ_malloc((size_t) l_max_row_count * sizeof(LDBLE)); - if (res == NULL) - malloc_error(); - res_max = l_max_row_count; - } - if (delta1 == NULL) - { - delta1 = - (LDBLE *) PHRQ_malloc((size_t) l_max_column_count * sizeof(LDBLE)); - if (delta1 == NULL) - malloc_error(); - delta1_max = l_max_column_count; - } - if (cu == NULL) - { - cu = (LDBLE *) PHRQ_malloc((size_t) 3 * l_max_row_count * - sizeof(LDBLE)); - if (cu == NULL) - malloc_error(); - cu_max = 3 * l_max_row_count; - } - if (iu == NULL) - { - iu = (int *) PHRQ_malloc((size_t) 3 * l_max_row_count * sizeof(int)); - if (iu == NULL) - malloc_error(); - iu_max = 3 * l_max_row_count; - } - if (is == NULL) - { - is = (int *) PHRQ_malloc((size_t) 3 * l_max_row_count * sizeof(int)); - if (is == NULL) - malloc_error(); - is_max = 3 * l_max_row_count; + switch (x[i]->type) + { + case MB: + case ALK: + case CB: + case SOLUTION_PHASE_BOUNDARY: + case EXCH: + case SURFACE: + case SURFACE_CB: + case SURFACE_CB1: + case SURFACE_CB2: + x[i]->master[0]->s->la += d; + d2 = d;// *LOG_10; + break; + case MH: + s_eminus->la += d; + d2 = d;// *LOG_10; + break; + case AH2O: + x[i]->master[0]->s->la += d; + d2 = d;// *LOG_10; + break; + case PITZER_GAMMA: + x[i]->s->lg += d; + d2 = d; + break; + case MH2O: + //mass_water_aq_x *= (1 + d); + //x[i]->master[0]->s->moles = mass_water_aq_x / gfw_water; + //d2 = log(1.0 + d); + //break; + // DL_pitz + d1 = mass_water_aq_x * d; + mass_water_aq_x += d1; + if (use.Get_surface_in() && dl_type_x == cxxSurface::DONNAN_DL) + mass_water_bulk_x += d1; + x[i]->master[0]->s->moles = mass_water_aq_x / gfw_water; + d2 = d1; + break; + case MU: + d2 = d * mu_x; + mu_x += d2; + //gammas(mu_x); + break; + case PP: + for (j = 0; j < count_unknowns; j++) + { + delta[j] = 0.0; + } + d2 = -1e-8; + delta[i] = d2; + reset(); + d2 = delta[i]; + break; + case SS_MOLES: + if (x[i]->ss_in == FALSE) + continue; + for (j = 0; j < count_unknowns; j++) + { + delta[j] = 0.0; + } + /*d2 = -1e-8; */ + d2 = d * 10 * x[i]->moles; + //d2 = -.1 * x[i]->moles; + /* + if (d2 > -1e-10) d2 = -1e-10; + calculating_deriv = FALSE; + */ + delta[i] = d2; + /*fprintf (stderr, "delta before reset %e\n", delta[i]); */ + reset(); + d2 = delta[i]; + /*fprintf (stderr, "delta after reset %e\n", delta[i]); */ + break; + case GAS_MOLES: + if (gas_in == FALSE) + continue; + d2 = (x[i]->moles > 1 ? 1 : 30); + d2 *= d * x[i]->moles; + d2 = (d2 < ineq_tol ? ineq_tol : d2); + //if (d2 < 1e-14) + // d2 = 1e-14; + x[i]->moles += d2; + break; + } + gammas(mu_x); + molalities(TRUE); + mb_sums(); + //mb_gases(); + //mb_ss(); + residuals(); + + for (j = 0; j < count_unknowns; j++) + { + my_array[(size_t)j * (count_unknowns + 1) + (size_t)i] = -(residual[j] - base[j]) / d2; + if (x[i]->type == MH2O) // DL_pitz + my_array[(size_t)j * (count_unknowns + 1) + (size_t)i] *= mass_water_aq_x; + } + switch (x[i]->type) + { + case MB: + case ALK: + case CB: + case SOLUTION_PHASE_BOUNDARY: + case EXCH: + case SURFACE: + case SURFACE_CB: + case SURFACE_CB1: + case SURFACE_CB2: + case AH2O: + x[i]->master[0]->s->la -= d2; + break; + case MH: + s_eminus->la -= d2; + if (my_array[(size_t)i * (count_unknowns + 1) + (size_t)i] == 0) + { + /*output_msg(sformatf( "Zero diagonal for MH\n")); */ + my_array[(size_t)i * (count_unknowns + 1) + (size_t)i] = + under(s_h2->lm) * 2; + } + break; + case PITZER_GAMMA: + x[i]->s->lg -= d2; + break; + case MH2O: + //mass_water_aq_x /= (1 + d); + //x[i]->master[0]->s->moles = mass_water_aq_x / gfw_water; + //break; + //DL_pitz + mass_water_aq_x -= d2; + if (use.Get_surface_in() && dl_type_x == cxxSurface::DONNAN_DL) + mass_water_bulk_x -= d2; + x[i]->master[0]->s->moles = mass_water_aq_x / gfw_water; + break; + case MU: + mu_x -= d2; + //gammas(mu_x); + break; + case PP: + delta[i] = -d2; + reset(); + break; + case SS_MOLES: + delta[i] = -d2; + reset(); + break; + case GAS_MOLES: + x[i]->moles -= d2; + break; + } + if (use.Get_surface_ptr() != NULL) + { + *use.Get_surface_ptr() = base_surface; + } + if (use.Get_gas_phase_ptr() != NULL) + { + *use.Get_gas_phase_ptr() = base_gas_phase; + for (size_t g = 0; g < base_phases.size(); g++) + { + *phase_ptrs[g] = base_phases[g]; + } + } + //gammas(mu_x); + //molalities(TRUE); + //mb_sums(); + ////mb_gases(); + ////mb_ss(); + //residuals(); } + gammas(mu_x); + molalities(TRUE); + mb_sums(); + //mb_gases(); + //mb_ss(); + residuals(); + //for (i = 0; i < count_unknowns; i++) + //{ + // //Debugging + // if (fabs(2.0 * (residual[i] - base[i]) / (residual[i] + base[i])) > 1e-2 && + // fabs(residual[i]) + fabs(base[i]) > 1e-8) + // { + // std::cerr << iterations << ": " << x[i]->description << " " << residual[i] << " " << base[i] << std::endl; + // } + //} + base.clear(); + calculating_deriv = FALSE; + return OK; } +#endif /* ---------------------------------------------------------------------- */ void Phreeqc:: set_inert_moles(void) diff --git a/nvector.cpp b/nvector.cpp index 010ac16a..1da1a863 100644 --- a/nvector.cpp +++ b/nvector.cpp @@ -61,6 +61,14 @@ #include "nvector.h" /* generic M_Env and N_Vector */ +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + N_Vector N_VNew(integertype n, M_Env machEnv) { diff --git a/nvector_serial.cpp b/nvector_serial.cpp index 8760a599..761739f9 100644 --- a/nvector_serial.cpp +++ b/nvector_serial.cpp @@ -98,6 +98,14 @@ static void Vaxpy_Serial(realtype a, N_Vector x, N_Vector y); /* x <- ax */ static void VScaleBy_Serial(realtype a, N_Vector x); +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /********************* Exported Functions ************************/ /* Serial implementation of the machine environment diff --git a/parse.cpp b/parse.cpp index cf149a4d..82eb5400 100644 --- a/parse.cpp +++ b/parse.cpp @@ -1,10 +1,17 @@ #include "Phreeqc.h" #include "phqalloc.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif /* ---------------------------------------------------------------------- */ int Phreeqc:: -parse_eq(char *eqn, struct elt_list **elt_ptr, int association) +parse_eq(char* eqn, std::vector& new_elt_list, int association) /* ---------------------------------------------------------------------- */ /* * function to break equation up into component species @@ -26,69 +33,69 @@ parse_eq(char *eqn, struct elt_list **elt_ptr, int association) int i; LDBLE coef, l_z; char c; - char *ptr; + const char* cptr; char token[MAX_LENGTH]; paren_count = 0; -/* - * Remove white space - */ + /* + * Remove white space + */ squeeze_white(eqn); -/* - * Check for illegal characters - */ + /* + * Check for illegal characters + */ for (i = 0; (c = eqn[i]) != '\0'; i++) { if (islegit(c) == FALSE) { - error_string = sformatf( "Character is not allowed,\ + error_string = sformatf("Character is not allowed,\ %c (octal: %o).", c, c); error_msg(error_string, CONTINUE); return (ERROR); } } -/* - * Find coefficients, name, and charge for each species for lhs - */ + /* + * Find coefficients, name, and charge for each species for lhs + */ count_trxn = 0; trxn.dz[0] = trxn.dz[1] = trxn.dz[2] = 0.0; - ptr = eqn; - c = ptr[0]; + cptr = eqn; + c = cptr[0]; for (;;) { if (c == '=') break; if (c == '\0') { - error_string = sformatf( "Equation has no equal sign.\n\t%s", eqn); + error_string = sformatf("Equation has no equal sign.\n\t%s", eqn); error_msg(error_string, CONTINUE); return (ERROR); } - if (get_species(&ptr) == ERROR) + if (get_species(&cptr) == ERROR) { return (ERROR); } - c = ptr[0]; + c = cptr[0]; if (association == FALSE) { trxn.token[count_trxn].coef *= -1.0; } count_trxn++; } -/* - * Get coefficient, name, and charge of species for dissociation reaction - */ - ptr++; + /* + * Get coefficient, name, and charge of species for dissociation reaction + */ + cptr++; if (association == TRUE) { - if (get_species(&ptr) == ERROR) + if (get_species(&cptr) == ERROR) { return (ERROR); } trxn.token[count_trxn].coef *= -1.0; /* Swap species into first structure position */ - const char * char_ptr = trxn.token[0].name; + const char* char_ptr = trxn.token[0].name; coef = trxn.token[0].coef; l_z = trxn.token[0].z; trxn.token[0].name = trxn.token[count_trxn].name; @@ -99,77 +106,66 @@ parse_eq(char *eqn, struct elt_list **elt_ptr, int association) trxn.token[count_trxn].z = l_z; count_trxn++; } -/* - * Get reaction species from rhs of equation - */ - c = ptr[0]; + /* + * Get reaction species from rhs of equation + */ + c = cptr[0]; for (;;) { if (c == '\0') break; - if (get_species(&ptr) == ERROR) + if (get_species(&cptr) == ERROR) { return (ERROR); } - c = ptr[0]; + c = cptr[0]; if (association == TRUE) { trxn.token[count_trxn].coef *= -1.0; } count_trxn++; } -/* - * Sort list of reaction species - */ + /* + * Sort list of reaction species + */ trxn_sort(); -/* - * Get elements in species or mineral formula - */ + /* + * Get elements in species or mineral formula + */ count_elts = 0; strcpy(token, trxn.token[0].name); replace("(s)", "", token); replace("(S)", "", token); replace("(g)", "", token); replace("(G)", "", token); - char *char_ptr = token; + const char* char_ptr = token; if (get_elts_in_species(&char_ptr, trxn.token[0].coef) == ERROR) { return (ERROR); } -/* - * Sort elements in reaction and combine - */ - qsort(elt_list, (size_t) count_elts, (size_t) sizeof(struct elt_list), - elt_list_compare); + /* + * Sort elements in reaction and combine + */ if (elt_list_combine() == ERROR) return (ERROR); -/* - * Malloc space and store element data for return - */ - *elt_ptr = - (struct elt_list *) PHRQ_malloc((size_t) (count_elts + 1) * - sizeof(struct elt_list)); - if (*elt_ptr == NULL) + /* + * Malloc space and store element data for return + */ + new_elt_list.resize(count_elts + 1); + for (i = 0; i < count_elts; i++) { - malloc_error(); + new_elt_list[i].elt = elt_list[i].elt; + new_elt_list[i].coef = -elt_list[i].coef; } - else - { - for (i = 0; i < count_elts; i++) - { - (*elt_ptr)[i].elt = elt_list[i].elt; - (*elt_ptr)[i].coef = -elt_list[i].coef; - } - (*elt_ptr)[count_elts].elt = NULL; - } -/* - * Debugging print of parsed equation - trxn_print(); - */ + new_elt_list[count_elts].elt = NULL; + + /* + * Debugging print of parsed equation + trxn_print(); + */ return (OK); } - /* ---------------------------------------------------------------------- */ int Phreeqc:: check_eqn(int association) @@ -216,20 +212,15 @@ check_eqn(int association) for (i = 0; i < count_trxn; i++) { sumcharge += (trxn.token[i].coef) * (trxn.token[i].z); - char * temp_name = string_duplicate(trxn.token[i].name); - char *t_ptr = temp_name; + const char* t_ptr = trxn.token[i].name; if (get_elts_in_species(&t_ptr, trxn.token[i].coef) == ERROR) { - free_check_null(temp_name); return (ERROR); } - free_check_null(temp_name); } /* * Sort elements in reaction and combine */ - qsort(elt_list, (size_t) count_elts, (size_t) sizeof(struct elt_list), - elt_list_compare); if (elt_list_combine() == ERROR) return (ERROR); /* @@ -288,7 +279,7 @@ get_charge(char *charge, LDBLE * l_z) */ { int i; - char *ptr; + char* ptr; char c, c1; /* * Charge is zero @@ -338,6 +329,7 @@ get_charge(char *charge, LDBLE * l_z) { if (*ptr != '0') { + char* ptr; *l_z = strtod(charge, &ptr); return (OK); } @@ -390,7 +382,7 @@ get_charge(char *charge, LDBLE * l_z) /* ---------------------------------------------------------------------- */ int Phreeqc:: -get_coef(LDBLE * coef, char **eqnaddr) +get_coef(LDBLE * coef, const char **eqnaddr) /* ---------------------------------------------------------------------- */ /* * Function reads through eqn and determines the coefficient of the next @@ -409,12 +401,14 @@ get_coef(LDBLE * coef, char **eqnaddr) { int i; char c, c1; - char *ptr, *ptr1, *rest; + const char* cptr; + const char* rest; + char* ptr1; char token[MAX_LENGTH];; rest = *eqnaddr; - ptr = *eqnaddr; /* address of a position in eqn */ - c = *ptr; /* character in eqn */ + cptr = *eqnaddr; /* address of a position in eqn */ + c = *cptr; /* character in eqn */ *coef = 0.0; /* * No leading sign or number @@ -428,12 +422,12 @@ get_coef(LDBLE * coef, char **eqnaddr) /* * Leading +, no digits */ - c1 = *(ptr + 1); + c1 = *(cptr + 1); if (c == '+' && (isalpha((int) c1) || (c1 == '(') || (c1 == ')') || (c1 == '[') || (c1 == ']'))) { - *eqnaddr = ++ptr; + *eqnaddr = ++cptr; *coef = 1.0; return (OK); } @@ -444,7 +438,7 @@ get_coef(LDBLE * coef, char **eqnaddr) (isalpha((int) c1) || (c1 == '(') || (c1 == ')') || (c1 == '[') || (c1 == ']'))) { - *eqnaddr = ++ptr; + *eqnaddr = ++cptr; *coef = -1.0; return (OK); } @@ -464,10 +458,10 @@ get_coef(LDBLE * coef, char **eqnaddr) error_msg(error_string, CONTINUE); return (ERROR); } - c = *(++ptr); + c = *(++cptr); } token[i] = '\0'; - *eqnaddr = ptr; + *eqnaddr = cptr; errno = 0; *coef = strtod(token, &ptr1); if ((errno == ERANGE) || (*ptr1 != '\0')) @@ -490,7 +484,7 @@ get_coef(LDBLE * coef, char **eqnaddr) /* ---------------------------------------------------------------------- */ int Phreeqc:: -get_elt(char **t_ptr, char *element, int *i) +get_elt(const char** t_ptr, std::string& element, int* i) /* ---------------------------------------------------------------------- */ /* * Function reads an element name out of the equation string. @@ -506,29 +500,30 @@ get_elt(char **t_ptr, char *element, int *i) { char c; + element.clear(); c = *(*t_ptr)++; if (c == '\0') { error_string = sformatf( - "Empty string in get_elt. Expected an element name."); + "Empty string in get_elt. Expected an element name."); error_msg(error_string, CONTINUE); return (ERROR); } -/* - * Load name into char array element - */ - element[0] = c; + /* + * Load name into char array element + */ + element.push_back(c); *i = 1; if (c == '[') { while ((c = (**t_ptr)) != ']') { - element[*i] = c; + element.push_back(c); (*i)++; (*t_ptr)++; if ((c = (**t_ptr)) == ']') { - element[*i] = c; + element.push_back(c); (*i)++; (*t_ptr)++; break; @@ -540,29 +535,28 @@ get_elt(char **t_ptr, char *element, int *i) break; } } - while (islower((int) (c = (**t_ptr))) || c == '_') + while (islower((int)(c = (**t_ptr))) || c == '_') { - element[*i] = c; + element.push_back(c); (*i)++; (*t_ptr)++; } } else { - while (islower((int) (c = (**t_ptr))) || c == '_') + while (islower((int)(c = (**t_ptr))) || c == '_') { - element[*i] = c; + element.push_back(c); (*i)++; (*t_ptr)++; } } - element[*i] = '\0'; return (OK); } /* ---------------------------------------------------------------------- */ int Phreeqc:: -get_elts_in_species(char **t_ptr, LDBLE coef) +get_elts_in_species(const char **t_ptr, LDBLE coef) /* ---------------------------------------------------------------------- */ { /* @@ -576,11 +570,12 @@ get_elts_in_species(char **t_ptr, LDBLE coef) * output, is next position to start looking * coef input, coefficient to multiply subscripts by */ - int i, count, l; + int l; + size_t count; char c, c1; LDBLE d; - char element[MAX_LENGTH]; - + std::string element; + const char** t_ptr_save = t_ptr; while (((c = **t_ptr) != '+') && (c != '-') && (c != '\0')) { /* close parenthesis */ @@ -607,12 +602,11 @@ get_elts_in_species(char **t_ptr, LDBLE coef) { return (ERROR); } - if (count_elts >= max_elts) + if (count_elts >= (int)elt_list.size()) { - space((void **) ((void *) &elt_list), count_elts, &max_elts, - sizeof(struct elt_list)); + elt_list.resize(count_elts + 1); } - elt_list[count_elts].elt = element_store(element); + elt_list[count_elts].elt = element_store(element.c_str()); if (get_num(t_ptr, &d) == ERROR) { return (ERROR); @@ -622,10 +616,9 @@ get_elts_in_species(char **t_ptr, LDBLE coef) /* * Expand working space for elements if necessary */ - if (count_elts >= max_elts) + if (count_elts >= (int)elt_list.size()) { - space((void **) ((void *) &elt_list), count_elts, &max_elts, - sizeof(struct elt_list)); + elt_list.resize(count_elts + 1); } continue; } @@ -650,7 +643,7 @@ get_elts_in_species(char **t_ptr, LDBLE coef) { return (ERROR); } - for (i = count; i < count_elts; i++) + for (size_t i = count; i < count_elts; i++) { elt_list[i].coef *= d; } @@ -671,7 +664,7 @@ get_elts_in_species(char **t_ptr, LDBLE coef) { return (ERROR); } - for (i = count; i < count_elts; i++) + for (size_t i = count; i < count_elts; i++) { elt_list[i].coef *= d; } @@ -689,7 +682,7 @@ get_elts_in_species(char **t_ptr, LDBLE coef) } if (paren_count != 0) { - error_string = sformatf( "Unbalanced parentheses."); + error_string = sformatf( "Unbalanced parentheses: %s", *t_ptr_save); error_msg(error_string, CONTINUE); input_error++; return (ERROR); @@ -699,7 +692,7 @@ get_elts_in_species(char **t_ptr, LDBLE coef) /* ---------------------------------------------------------------------- */ int Phreeqc:: -get_secondary(char **t_ptr, char *element, int *i) +get_secondary(const char **t_ptr, char *element, int *i) /* ---------------------------------------------------------------------- */ /* * Function reads an element name out of the equation string. @@ -715,7 +708,7 @@ get_secondary(char **t_ptr, char *element, int *i) { int j; char c; - char *ptr; + const char* cptr; c = *(*t_ptr)++; if (c == '\0') @@ -773,7 +766,7 @@ get_secondary(char **t_ptr, char *element, int *i) * Check if secondary master species element */ j = *i; - ptr = *t_ptr; + cptr = *t_ptr; if (c == '(') { /* copy parenthesis */ @@ -803,7 +796,7 @@ get_secondary(char **t_ptr, char *element, int *i) if (c != ')') { *i = j; - *t_ptr = ptr; + *t_ptr = cptr; /* put in closing parenthesis */ } else @@ -819,7 +812,7 @@ get_secondary(char **t_ptr, char *element, int *i) /* ---------------------------------------------------------------------- */ int Phreeqc:: -get_secondary_in_species(char **t_ptr, LDBLE coef) +get_secondary_in_species(const char **t_ptr, LDBLE coef) /* ---------------------------------------------------------------------- */ { /* @@ -833,11 +826,12 @@ get_secondary_in_species(char **t_ptr, LDBLE coef) * output, is next position to start looking * coef input, coefficient to multiply subscripts by */ - int i, count, l; + int l; + size_t count; char c, c1; LDBLE d; char element[MAX_LENGTH]; - + const char** t_ptr_save = t_ptr; while (((c = **t_ptr) != '+') && (c != '-') && (c != '\0')) { /* close parenthesis */ @@ -875,10 +869,9 @@ get_secondary_in_species(char **t_ptr, LDBLE coef) /* * Expand working space for elements if necessary */ - if (count_elts >= max_elts) + if (count_elts >= (int)elt_list.size()) { - space((void **) ((void *) &elt_list), count_elts, &max_elts, - sizeof(struct elt_list)); + elt_list.resize(count_elts + 1); } continue; } @@ -903,7 +896,7 @@ get_secondary_in_species(char **t_ptr, LDBLE coef) { return (ERROR); } - for (i = count; i < count_elts; i++) + for (size_t i = count; i < count_elts; i++) { elt_list[i].coef *= d; } @@ -924,7 +917,7 @@ get_secondary_in_species(char **t_ptr, LDBLE coef) { return (ERROR); } - for (i = count; i < count_elts; i++) + for (size_t i = count; i < count_elts; i++) { elt_list[i].coef *= d; } @@ -941,7 +934,7 @@ get_secondary_in_species(char **t_ptr, LDBLE coef) } if (paren_count != 0) { - error_string = sformatf( "Unbalanced parentheses."); + error_string = sformatf("Unbalanced parentheses: %s", *t_ptr_save); error_msg(error_string, CONTINUE); return (ERROR); } @@ -950,7 +943,7 @@ get_secondary_in_species(char **t_ptr, LDBLE coef) /* ---------------------------------------------------------------------- */ int Phreeqc:: -get_num(char **t_ptr, LDBLE * num) +get_num(const char **t_ptr, LDBLE * num) /* ---------------------------------------------------------------------- */ /* * Function reads through a string looking for leading numeric field @@ -970,7 +963,7 @@ get_num(char **t_ptr, LDBLE * num) { int i, decimal; char c; - char *ptr1; + char* ptr1; char token[MAX_LENGTH]; *num = 1.0; @@ -1013,7 +1006,7 @@ get_num(char **t_ptr, LDBLE * num) /* ---------------------------------------------------------------------- */ int Phreeqc:: -get_species(char **ptr) +get_species(const char **cptr) /* ---------------------------------------------------------------------- */ { /* Function reads next species out of the equation, including optional @@ -1021,29 +1014,26 @@ get_species(char **ptr) * store in trxn.token[count]. * * Arguments: - * **ptr input, points to the position in the equation to pick up the species. + * **cptr input, points to the position in the equation to pick up the species. * output, points to the next character after the species charge. * */ - char string[MAX_LENGTH]; + std::string string; int l; - if (count_trxn + 1 >= max_trxn) - { - space((void **) ((void *) &(trxn.token)), count_trxn + 1, &max_trxn, - sizeof(struct rxn_token_temp)); - } + if ((size_t) count_trxn + 1 > trxn.token.size()) + trxn.token.resize(count_trxn + 1); /* coefficient */ - if (get_coef(&(trxn.token[count_trxn].coef), ptr) == ERROR) + if (get_coef(&(trxn.token[count_trxn].coef), cptr) == ERROR) { return (ERROR); } /* name and charge */ - if (get_token(ptr, string, &trxn.token[count_trxn].z, &l) == ERROR) + if (get_token(cptr, string, &trxn.token[count_trxn].z, &l) == ERROR) { return (ERROR); } - trxn.token[count_trxn].name = string_hsave(string); + trxn.token[count_trxn].name = string_hsave(string.c_str()); /* trxn.token[count_trxn].z = 0; trxn.token[count_trxn].s = NULL; diff --git a/phqalloc.cpp b/phqalloc.cpp index 3823f397..456e84dc 100644 --- a/phqalloc.cpp +++ b/phqalloc.cpp @@ -8,6 +8,15 @@ #define _CRTDBG_MAP_ALLOC #include #endif + +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + #if defined(USE_PHRQ_ALLOC) /* ---------------------------------------------------------------------- */ #if !defined(NDEBUG) @@ -141,7 +150,8 @@ PHRQ_calloc(size_t num, size_t size assert((s_pTail == NULL) || (s_pTail->pNext == NULL)); - p = (PHRQMemHeader *) malloc(sizeof(PHRQMemHeader) + size * num); + //p = (PHRQMemHeader *) malloc(sizeof(PHRQMemHeader) + size * num); + p = (PHRQMemHeader *) calloc(1, sizeof(PHRQMemHeader) + size * num); // appt if (p == NULL) return NULL; diff --git a/pitzer.cpp b/pitzer.cpp index 2becc326..0b5db899 100644 --- a/pitzer.cpp +++ b/pitzer.cpp @@ -5,6 +5,14 @@ #define PITZER_LISTS #define PITZER +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /* ---------------------------------------------------------------------- */ int Phreeqc:: pitzer_init(void) @@ -15,16 +23,9 @@ pitzer_init(void) * Initialization for pitzer */ pitzer_model = FALSE; - max_pitz_param = 100; - count_pitz_param = 0; use_etheta = TRUE; - space((void **) ((void *) &pitz_params), INIT, &max_pitz_param, - sizeof(struct pitz_param *)); - - max_theta_param = 100; - count_theta_param = 0; - space((void **) ((void *) &theta_params), INIT, &max_theta_param, - sizeof(struct theta_param *)); + pitz_params.clear(); + theta_params.clear(); ICON = TRUE; OTEMP = -100.; @@ -53,8 +54,8 @@ pitzer_tidy(void) int i0, i1, i2; int count_pos, count_neg, count_neut, count[3], jj; LDBLE z0, z1; - struct pitz_param *pzp_ptr; - struct theta_param *theta_param_ptr; + class pitz_param *pzp_ptr; + class theta_param *theta_param_ptr; /* * Ensure new parameters are calculated */ @@ -63,21 +64,14 @@ pitzer_tidy(void) /* * allocate pointers to species structures */ - if (spec != NULL) - spec = (struct species **) free_check_null(spec); - spec = - (struct species **) - PHRQ_malloc((size_t) (3 * count_s * sizeof(struct species *))); - if (spec == NULL) - malloc_error(); - for (i = 0; i < 3 * count_s; i++) - spec[i] = NULL; - cations = spec; - neutrals = &(spec[count_s]); - anions = &(spec[2 * count_s]); - MAXCATIONS = count_s; - FIRSTANION = 2 * count_s; - MAXNEUTRAL = count_s; + spec.clear(); + spec.resize(3 * s.size(), NULL); + cations = &spec[0]; + neutrals = &(spec[s.size()]); + anions = &(spec[2 * s.size()]); + MAXCATIONS = (int)s.size(); + FIRSTANION = 2 * (int)s.size(); + MAXNEUTRAL = (int)s.size(); count_cations = 0; count_anions = 0; count_neutrals = 0; @@ -86,24 +80,11 @@ pitzer_tidy(void) /* * allocate other arrays for Pitzer */ - if (IPRSNT != NULL) - IPRSNT = (int *) free_check_null(IPRSNT); - IPRSNT = (int *) PHRQ_malloc((size_t) (3 * count_s * sizeof(int))); - if (IPRSNT == NULL) - malloc_error(); - if (M != NULL) - M = (LDBLE *) free_check_null(M); - M = (LDBLE *) PHRQ_malloc((size_t) (3 * count_s * sizeof(LDBLE))); - if (M == NULL) - malloc_error(); - if (LGAMMA != NULL) - LGAMMA = (LDBLE *) free_check_null(LGAMMA); - LGAMMA = (LDBLE *) PHRQ_malloc((size_t) (3 * count_s * sizeof(LDBLE))); - if (LGAMMA == NULL) - malloc_error(); + IPRSNT.resize(3 * s.size()); + M.resize(3 * s.size()); + LGAMMA.resize(3 * s.size()); - - for (i = 0; i < count_s; i++) + for (i = 0; i < (int)s.size(); i++) { if (s[i] == s_eminus) continue; @@ -129,20 +110,21 @@ pitzer_tidy(void) * cation-cation or anion-anion pair * Remove old TYPE_ETHETA definitions */ - j = 0; - for (i = 0; i < count_pitz_param; i++) + + std::vector pitz_params_temp = pitz_params; + pitz_params.clear(); + + for (i = 0; i < (int)pitz_params_temp.size(); i++) { - if (pitz_params[i]->type == TYPE_ETHETA) + if (pitz_params_temp[i]->type == TYPE_ETHETA) { - pitz_params[i] = - (struct pitz_param *) free_check_null(pitz_params[i]); + delete pitz_params_temp[i]; } else { - pitz_params[j++] = pitz_params[i]; + pitz_params.push_back(pitz_params_temp[i]); } } - count_pitz_param = j; for (i = 0; i < count_cations - 1; i++) { for (j = i + 1; j < count_cations; j++) @@ -150,35 +132,27 @@ pitzer_tidy(void) sprintf(line, "%s %s 1", spec[i]->name, spec[j]->name); pzp_ptr = pitz_param_read(line, 2); pzp_ptr->type = TYPE_ETHETA; - if (count_pitz_param >= max_pitz_param) - { - space((void **) ((void *) &pitz_params), count_pitz_param, - &max_pitz_param, sizeof(struct pitz_param *)); - } - pitz_params[count_pitz_param++] = pzp_ptr; - + size_t count_pitz_param = pitz_params.size(); + pitz_params.resize(count_pitz_param + 1); + pitz_params[count_pitz_param] = pzp_ptr; } } - for (i = 2 * count_s; i < 2 * count_s + count_anions - 1; i++) + for (i = 2 * (int)s.size(); i < 2 * (int)s.size() + count_anions - 1; i++) { - for (j = i + 1; j < 2 * count_s + count_anions; j++) + for (j = i + 1; j < 2 * (int)s.size() + count_anions; j++) { sprintf(line, "%s %s 1", spec[i]->name, spec[j]->name); pzp_ptr = pitz_param_read(line, 2); pzp_ptr->type = TYPE_ETHETA; - if (count_pitz_param >= max_pitz_param) - { - space((void **) ((void *) &pitz_params), count_pitz_param, - &max_pitz_param, sizeof(struct pitz_param *)); - } + size_t count_pitz_param = pitz_params.size(); + pitz_params.resize(count_pitz_param + 1); pitz_params[count_pitz_param] = pzp_ptr; - count_pitz_param++; } } /* * put species numbers in pitz_params */ - for (i = 0; i < count_pitz_param; i++) + for (i = 0; i < (int)pitz_params.size(); i++) { for (j = 0; j < 3; j++) { @@ -186,9 +160,7 @@ pitzer_tidy(void) continue; pitz_params[i]->ispec[j] = ISPEC(pitz_params[i]->species[j]); if ((j < 2 && pitz_params[i]->ispec[j] == -1) || - (j == 2 - && (pitz_params[i]->type == TYPE_PSI - || pitz_params[i]->type == TYPE_ZETA) + (j == 2 && (pitz_params[i]->type == TYPE_PSI || pitz_params[i]->type == TYPE_ZETA) && pitz_params[i]->ispec[j] == -1)) { input_error++; @@ -206,7 +178,7 @@ pitzer_tidy(void) string1 = string_hsave("K+"); string2 = string_hsave("Cl-"); IC = ISPEC(string2); - for (i = 0; i < count_pitz_param; i++) + for (i = 0; i < (int)pitz_params.size(); i++) { if ((pitz_params[i]->species[0] == string1 && pitz_params[i]->species[1] == string2) || @@ -249,7 +221,7 @@ pitzer_tidy(void) /* * Set alpha values */ - for (i = 0; i < count_pitz_param; i++) + for (i = 0; i < (int)pitz_params.size(); i++) { z0 = fabs(spec[pitz_params[i]->ispec[0]]->z); z1 = fabs(spec[pitz_params[i]->ispec[1]]->z); @@ -297,11 +269,11 @@ pitzer_tidy(void) /* * Add specific alphas */ - for (i = 0; i < count_pitz_param; i++) + for (i = 0; i < (int)pitz_params.size(); i++) { if (pitz_params[i]->type == TYPE_ALPHAS) { - for (j = 0; j < count_pitz_param; j++) + for (j = 0; j < (int)pitz_params.size(); j++) { if (pitz_params[j]->type != TYPE_B1) continue; @@ -312,7 +284,7 @@ pitzer_tidy(void) pitz_params[j]->alpha = pitz_params[i]->a[0]; break; } - for (j = 0; j < count_pitz_param; j++) + for (j = 0; j < (int)pitz_params.size(); j++) { if (pitz_params[j]->type != TYPE_B2) continue; @@ -330,16 +302,12 @@ pitzer_tidy(void) * Add thetas pointer to etheta pitzer parameters */ - if (count_theta_param > 0) + for (i = 0; i < (int)theta_params.size(); i++) { - for (i = 0; i < count_theta_param; i++) - { - theta_params[i] = - (struct theta_param *) free_check_null(theta_params[i]); - } + delete theta_params[i]; } - count_theta_param = 0; - for (i = 0; i < count_pitz_param; i++) + theta_params.clear(); + for (i = 0; i < (int)pitz_params.size(); i++) { if (pitz_params[i]->type == TYPE_ETHETA) { @@ -348,18 +316,12 @@ pitzer_tidy(void) theta_param_ptr = theta_param_search(z0, z1); if (theta_param_ptr == NULL) { - if (count_theta_param >= max_theta_param) - { - space((void **) ((void *) &theta_params), - count_theta_param, &max_theta_param, - sizeof(struct theta_param *)); - } - theta_params[count_theta_param] = theta_param_alloc(); - theta_param_init(theta_params[count_theta_param]); + size_t count_theta_param = theta_params.size(); + theta_params.resize(count_theta_param + 1); + theta_params[count_theta_param] = new class theta_param; theta_params[count_theta_param]->zj = z0; theta_params[count_theta_param]->zk = z1; theta_param_ptr = theta_params[count_theta_param]; - count_theta_param++; } pitz_params[i]->thetas = theta_param_ptr; } @@ -370,7 +332,7 @@ pitzer_tidy(void) /* Coef for Osmotic coefficient for TYPE_MU */ - for (i = 0; i < count_pitz_param; i++) + for (i = 0; i < (int)pitz_params.size(); i++) { if (pitz_params[i]->type == TYPE_MU) { @@ -433,7 +395,7 @@ pitzer_tidy(void) /* Coef for gammas for TYPE_MU */ - for (i = 0; i < count_pitz_param; i++) + for (i = 0; i < (int)pitz_params.size(); i++) { if (pitz_params[i]->type == TYPE_MU) { @@ -489,7 +451,7 @@ pitzer_tidy(void) } /* Debug TYPE_MU coefficients */ /* - for (i = 0; i < count_pitz_param; i++) + for (i = 0; i < (int)pitz_params.size(); i++) { if (pitz_params[i]->type == TYPE_MU) { @@ -505,7 +467,7 @@ pitzer_tidy(void) /* Coef for Osmotic coefficient for TYPE_LAMDA */ - for (i = 0; i < count_pitz_param; i++) + for (i = 0; i < (int)pitz_params.size(); i++) { if (pitz_params[i]->type == TYPE_LAMDA) { @@ -530,7 +492,7 @@ pitzer_tidy(void) } /* Debug TYPE_LAMDA coefficients */ /* - for (i = 0; i < count_pitz_param; i++) + for (i = 0; i < (int)pitz_params.size(); i++) { if (pitz_params[i]->type == TYPE_LAMDA) { @@ -543,7 +505,7 @@ pitzer_tidy(void) /* remake map */ { pitz_param_map.clear(); - for (int j = 0; j < count_pitz_param; j++) + for (int j = 0; j < (int)pitz_params.size(); j++) { std::set< std::string > header; for (int i = 0; i < 3; i++) @@ -560,7 +522,7 @@ pitzer_tidy(void) std::string key = key_str.str().c_str(); pitz_param_map[key] = j; } - assert ((int) pitz_param_map.size() == count_pitz_param); + assert ((int) pitz_param_map.size() == (int)pitz_params.size()); } return OK; } @@ -574,7 +536,7 @@ ISPEC(const char *name) */ { int i; - for (i = 0; i < 3 * count_s; i++) + for (i = 0; i < 3 * (int)s.size(); i++) { if (spec[i] == NULL) continue; @@ -610,11 +572,11 @@ read_pitzer(void) * number of shifts; */ int n; - struct pitz_param *pzp_ptr; + class pitz_param *pzp_ptr; pitz_param_type pzp_type; int return_value, opt, opt_save; - char *next_char; + const char* next_char; const char *opt_list[] = { "b0", /* 0 */ "b1", /* 1 */ @@ -667,12 +629,12 @@ read_pitzer(void) pzp_ptr->type = pzp_type; if (pzp_type == TYPE_APHI) { - aphi = (struct pitz_param *) free_check_null(aphi); + delete aphi; aphi = pzp_ptr; } else { - pitz_param_store(pzp_ptr, false); + pitz_param_store(pzp_ptr); } } break; @@ -784,7 +746,7 @@ C VP = patm_x; #if !defined(PITZER_LISTS) int i; - for (i = 0; i < count_pitz_param; i++) + for (i = 0; i < (int)pitz_params.size(); i++) { calc_pitz_param(pitz_params[i], TK, TR); } @@ -819,7 +781,7 @@ C /* ---------------------------------------------------------------------- */ int Phreeqc:: -calc_pitz_param(struct pitz_param *pz_ptr, LDBLE TK, LDBLE TR) +calc_pitz_param(class pitz_param *pz_ptr, LDBLE TK, LDBLE TR) /* ---------------------------------------------------------------------- */ { LDBLE param; @@ -908,7 +870,7 @@ pitzer(void) C INITIALIZE C */ - CONV = 1.0 / log(10.0); + CONV = 1.0 / LOG_10; XX = 0.0; OSUM = 0.0; /*n @@ -923,7 +885,7 @@ pitzer(void) C TRANSFER DATA FROM TO M C */ - for (i = 0; i < 3 * count_s; i++) + for (i = 0; i < 3 * (int)s.size(); i++) { IPRSNT[i] = FALSE; M[i] = 0.0; @@ -954,7 +916,7 @@ pitzer(void) C */ PTEMP(TK); - for (i = 0; i < 2 * count_s + count_anions; i++) + for (i = 0; i < 2 * (int)s.size() + count_anions; i++) { LGAMMA[i] = 0.0; if (IPRSNT[i] == TRUE) @@ -1008,7 +970,7 @@ pitzer(void) /* * Calculate ethetas */ - for (i = 0; i < count_theta_param; i++) + for (i = 0; i < (int)theta_params.size(); i++) { z0 = theta_params[i]->zj; z1 = theta_params[i]->zk; @@ -1019,7 +981,7 @@ pitzer(void) /* * Sums for F, LGAMMA, and OSMOT */ - for (i = 0; i < count_pitz_param; i++) + for (i = 0; i < (int)pitz_params.size(); i++) { i0 = pitz_params[i]->ispec[0]; i1 = pitz_params[i]->ispec[1]; @@ -1155,7 +1117,7 @@ pitzer(void) F_var = (z0 == 1 ? F1 : (z0 == 2.0 ? F2 : F)); LGAMMA[i] += z0 * z0 * F_var + z0 * CSUM; } - for (i = 2 * count_s; i < 2 * count_s + count_anions; i++) + for (i = 2 * (int)s.size(); i < 2 * (int)s.size() + count_anions; i++) { if (!IPRSNT[i]) continue; @@ -1176,7 +1138,7 @@ pitzer(void) C CORRECTED ERROR IN PHIMAC, NOVEMBER, 1989 C */ - for (i = 0; i < 2 * count_s + count_anions; i++) + for (i = 0; i < 2 * (int)s.size() + count_anions; i++) { if (IPRSNT[i] == TRUE) { @@ -1198,7 +1160,7 @@ pitzer(void) */ /*s_h2o->la=log10(AW); */ mu_x = I; - for (i = 0; i < 2 * count_s + count_anions; i++) + for (i = 0; i < 2 * (int)s.size() + count_anions; i++) { if (IPRSNT[i] == FALSE) continue; @@ -1243,7 +1205,7 @@ pitzer(void) C INITIALIZE C */ - CONV = 1.0 / log(10.0); + CONV = 1.0 / LOG_10; XX = 0.0; OSUM = 0.0; I = mu_x; @@ -1332,7 +1294,7 @@ pitzer(void) */ if (use_etheta == TRUE) { - for (i = 0; i < count_theta_param; i++) + for (i = 0; i < (int)theta_params.size(); i++) { z0 = theta_params[i]->zj; z1 = theta_params[i]->zk; @@ -1671,26 +1633,26 @@ pitzer_clean_up(void) * Free all allocated memory, except strings */ int i; - for (i = 0; i < count_pitz_param; i++) + for (i = 0; i < (int)pitz_params.size(); i++) { - pitz_params[i] = - (struct pitz_param *) free_check_null(pitz_params[i]); + delete pitz_params[i]; } - count_pitz_param = 0; pitz_param_map.clear(); - pitz_params = (struct pitz_param **) free_check_null(pitz_params); - for (i = 0; i < count_theta_param; i++) + pitz_params.clear(); + for (i = 0; i < (int)theta_params.size(); i++) { - theta_params[i] = - (struct theta_param *) free_check_null(theta_params[i]); + delete theta_params[i]; } - count_theta_param = 0; - theta_params = (struct theta_param **) free_check_null(theta_params); - LGAMMA = (LDBLE *) free_check_null(LGAMMA); - IPRSNT = (int *) free_check_null(IPRSNT); - spec = (struct species **) free_check_null(spec); - aphi = (struct pitz_param *) free_check_null(aphi); - M = (LDBLE *) free_check_null(M); + theta_params.clear(); + LGAMMA.clear(); + IPRSNT.clear(); + spec.clear(); + if (aphi != NULL) + { + delete aphi; + aphi = NULL; + } + M.clear(); return OK; } @@ -1711,14 +1673,14 @@ set_pz(int initial) */ iterations = -1; solution_ptr = use.Get_solution_ptr(); - for (i = 0; i < count_s_x; i++) + for (i = 0; i < (int)this->s_x.size(); i++) { s_x[i]->lm = LOG_ZERO_MOLALITY; s_x[i]->lg_pitzer = 0.0; } if (initial == TRUE || set_and_run_attempt > 0) { - for (i = 0; i < count_s_x; i++) + for (i = 0; i < (int)this->s_x.size(); i++) { s_x[i]->lg = 0.0; } @@ -1731,6 +1693,7 @@ set_pz(int initial) tk_x = tc_x + 273.15; patm_x = solution_ptr->Get_patm(); // done in calc_rho_0(tc, pa) + potV_x = solution_ptr->Get_potV(); // added in DL_pitz /* * H+, e-, H2O @@ -1834,7 +1797,8 @@ pitzer_revise_guesses(void) LDBLE weight, f; max_iter = 100; - /* gammas(mu_x); */ + if (iterations < 0 && (use.Get_surface_in() || use.Get_exchange_in())) + gammas_pz(true); // DL_pitz : for SURF estimates l_iter = 0; repeat = TRUE; fail = FALSE; @@ -1916,7 +1880,7 @@ pitzer_revise_guesses(void) { repeat = TRUE; x[i]->master[0]->s->la += logd; -/*!!!!*/ if (x[i]->master[0]->s->la < -999.) + if (x[i]->master[0]->s->la < -999.) x[i]->master[0]->s->la = MIN_RELATED_LOG_ACTIVITY; } else if (f > d * fabs(x[i]->moles) @@ -1975,7 +1939,6 @@ pitzer_revise_guesses(void) { mu_x = 1e-8; } - /*gammas(mu_x); */ return (OK); } @@ -1983,29 +1946,49 @@ pitzer_revise_guesses(void) int Phreeqc:: jacobian_pz(void) /* ---------------------------------------------------------------------- */ -{ - LDBLE *base; +{ // calculate the derivatives numerically + std::vector base; + std::vector phase_ptrs; + std::vector base_phases; + cxxGasPhase base_gas_phase; + cxxSurface base_surface; LDBLE d, d1, d2; int i, j; - Restart: - int pz_max_unknowns = max_unknowns; - //k_temp(tc_x, patm_x); + if (use.Get_surface_ptr() != NULL) + { + base_surface = *use.Get_surface_ptr(); + } + if (use.Get_gas_phase_ptr() != NULL) + { + cxxGasPhase* gas_phase_ptr = use.Get_gas_phase_ptr(); + base_gas_phase = *gas_phase_ptr; + base_phases.resize(gas_phase_ptr->Get_gas_comps().size()); + for (size_t i = 0; i < gas_phase_ptr->Get_gas_comps().size(); i++) + { + const cxxGasComp* gas_comp_ptr = &(gas_phase_ptr->Get_gas_comps()[i]); + class phase* phase_ptr = phase_bsearch(gas_comp_ptr->Get_phase_name().c_str(), &j, FALSE); + phase_ptrs.push_back(phase_ptr); + base_phases[i] = *phase_ptr; + } + } + calculating_deriv = 1; + molalities(TRUE); if (full_pitzer == TRUE) { - molalities(TRUE); pitzer(); - residuals(); } - base = (LDBLE *) PHRQ_malloc((size_t) count_unknowns * sizeof(LDBLE)); - if (base == NULL) - malloc_error(); + mb_sums(); + residuals(); + + size_t pz_max_unknowns = max_unknowns; + base.resize(count_unknowns); for (i = 0; i < count_unknowns; i++) { base[i] = residual[i]; } d = 0.0001; - d1 = d * log(10.0); + d1 = d * LOG_10; d2 = 0; for (i = 0; i < count_unknowns; i++) { @@ -2021,11 +2004,13 @@ Restart: case SURFACE_CB1: case SURFACE_CB2: x[i]->master[0]->s->la += d; - d2 = d1; + //d2 = d1; + d2 = d * LOG_10; break; case AH2O: x[i]->master[0]->s->la += d; - d2 = d1; + //d2 = d1; + d2 = d * LOG_10; break; case PITZER_GAMMA: if (!full_pitzer) @@ -2034,15 +2019,25 @@ Restart: d2 = d; break; case MH2O: - mass_water_aq_x *= (1.0 + d); + //mass_water_aq_x *= (1 + d); + //x[i]->master[0]->s->moles = mass_water_aq_x / gfw_water; + //d2 = log(1.0 + d); + //break; + // DL_pitz + d1 = mass_water_aq_x * d; + mass_water_aq_x += d1; + if (use.Get_surface_in() && dl_type_x == cxxSurface::DONNAN_DL) + mass_water_bulk_x += d1; x[i]->master[0]->s->moles = mass_water_aq_x / gfw_water; - d2 = log(1.0 + d); + //d2 = log(1.0 + d); + d2 = d1; break; case MH: if (pitzer_pe == TRUE) { s_eminus->la += d; - d2 = d1; + //d2 = d1; + d2 = d * LOG_10; break; } else @@ -2052,9 +2047,11 @@ Restart: case GAS_MOLES: if (gas_in == FALSE) continue; - d2 = d * x[i]->moles; - if (d2 < 1e-14) - d2 = 1e-14; + d2 = (x[i]->moles > 1 ? 1 : 30); + d2 *= d * x[i]->moles; + d2 = (d2 < ineq_tol ? ineq_tol : d2); + //if (d2 < 1e-14) + // d2 = 1e-14; x[i]->moles += d2; break; case MU: @@ -2062,18 +2059,31 @@ Restart: d2 = d * mu_x; mu_x += d2; //k_temp(tc_x, patm_x); - gammas(mu_x); + gammas_pz(false); break; case PP: - case SS_MOLES: continue; break; + case SS_MOLES: + //continue; + //break; + if (x[i]->ss_in == FALSE) + continue; + for (j = 0; j < count_unknowns; j++) + { + delta[j] = 0.0; + } + d2 = d * 10 * x[i]->moles; + delta[i] = d2; + reset(); + d2 = delta[i]; + break; } molalities(TRUE); if (max_unknowns > pz_max_unknowns) { - base = (LDBLE *) free_check_null(base); - gammas_pz(); + base.clear(); + gammas_pz(false); jacobian_sums(); goto Restart; } @@ -2083,8 +2093,9 @@ Restart: residuals(); for (j = 0; j < count_unknowns; j++) { - array[j * (count_unknowns + 1) + i] = - -(residual[j] - base[j]) / d2; + my_array[(size_t)j * (count_unknowns + 1) + (size_t)i] = -(residual[j] - base[j]) / d2; + if (x[i]->type == MH2O) // DL_pitz + my_array[(size_t)j * (count_unknowns + 1) + (size_t)i] *= mass_water_aq_x; } switch (x[i]->type) { @@ -2102,9 +2113,9 @@ Restart: break; case MH: s_eminus->la -= d; - if (array[i * (count_unknowns + 1) + i] == 0) + if (my_array[(size_t)i * (count_unknowns + 1) + (size_t)i] == 0) { - array[i * (count_unknowns + 1) + i] = + my_array[(size_t)i * (count_unknowns + 1) + (size_t)i] = exp(s_h2->lm * LOG_10) * 2; } break; @@ -2112,28 +2123,64 @@ Restart: x[i]->s->lg -= d; break; case MH2O: - mass_water_aq_x /= (1 + d); + //mass_water_aq_x /= (1 + d); + //x[i]->master[0]->s->moles = mass_water_aq_x / gfw_water; + //break; + //DL_pitz + mass_water_aq_x -= d1; + if (use.Get_surface_in() && dl_type_x == cxxSurface::DONNAN_DL) + mass_water_bulk_x -= d1; x[i]->master[0]->s->moles = mass_water_aq_x / gfw_water; break; case MU: mu_x -= d2; //k_temp(tc_x, patm_x); - gammas(mu_x); + gammas_pz(false); break; case GAS_MOLES: if (gas_in == FALSE) continue; x[i]->moles -= d2; break; - + case SS_MOLES: + delta[i] = -d2; + reset(); + break; } + if (use.Get_surface_ptr() != NULL) + { + *use.Get_surface_ptr() = base_surface; + } + if (use.Get_gas_phase_ptr() != NULL) + { + *use.Get_gas_phase_ptr() = base_gas_phase; + for (size_t g = 0; g < base_phases.size(); g++) + { + *phase_ptrs[g] = base_phases[g]; + } + } + //molalities(TRUE); + //if (full_pitzer == TRUE) + // pitzer(); + //mb_sums(); + //residuals(); } molalities(TRUE); if (full_pitzer == TRUE) pitzer(); mb_sums(); residuals(); - free_check_null(base); + //for (i = 0; i < count_unknowns; i++) + //{ + // //Debugging + // if (fabs(2.0 * (residual[i] - base[i]) / (residual[i] + base[i])) > 1e-2 && + // fabs(residual[i]) + fabs(base[i]) > 1e-6) + // { + // std::cerr << iterations << ": " << x[i]->description << " " << residual[i] << " " << base[i] << std::endl; + // } + //} + base.clear(); + calculating_deriv = 0; return OK; } @@ -2217,6 +2264,7 @@ model_pz(void) PhreeqcIWait(this); #endif iterations++; + overall_iterations++; if (iterations > itmax - 1 && debug_model == FALSE && pr.logfile == TRUE) { @@ -2245,7 +2293,7 @@ model_pz(void) /* * Calculate jacobian */ - gammas_pz(); + gammas_pz(false); // appt: no gammas_a_f here jacobian_sums(); jacobian_pz(); /* @@ -2274,7 +2322,8 @@ model_pz(void) } reset(); } - gammas_pz(); + // appt calculate gammas_a_f here + gammas_pz(true); if (full_pitzer == TRUE) pitzer(); if (always_full_pitzer == TRUE) @@ -2303,17 +2352,17 @@ model_pz(void) { count_basis_change++; - count_unknowns -= count_s_x; + count_unknowns -= (int)this->s_x.size(); reprep(); full_pitzer = false; } - /* debug - species_list_sort(); - sum_species(); - print_species(); - print_exchange(); - print_surface(); - */ + //debug + //species_list_sort(); + //sum_species(); + //print_species(); + //print_exchange(); + //print_surface(); + if (stop_program == TRUE) { break; @@ -2415,20 +2464,20 @@ check_gammas_pz(void) /* ---------------------------------------------------------------------- */ int Phreeqc:: -gammas_pz() +gammas_pz(bool exch_a_f) /* ---------------------------------------------------------------------- */ { /* * Need exchange gammas for pitzer */ int i, j; - LDBLE coef; + LDBLE coef, equiv; /* Initialize */ k_temp(tc_x, patm_x); /* * Calculate activity coefficients */ - for (i = 0; i < count_s_x; i++) + for (i = 0; i < (int)this->s_x.size(); i++) { switch (s_x[i]->gflag) { @@ -2447,18 +2496,27 @@ gammas_pz() * Find moles of sites. * s_x[i]->equiv is stoichiometric coefficient of sites in species */ - for (j = 1; s_x[i]->rxn_x->token[j].s != NULL; j++) + for (j = 1; s_x[i]->rxn_x.token[j].s != NULL; j++) { - if (s_x[i]->rxn_x->token[j].s->type == SURF) + if (s_x[i]->rxn_x.token[j].s->type == SURF) { s_x[i]->alk = - s_x[i]->rxn_x->token[j].s->primary->unknown->moles; + s_x[i]->rxn_x.token[j].s->primary->unknown->moles; break; } } + if (use.Get_surface_ptr()->Get_type() == cxxSurface::CD_MUSIC) // DL_pitz + { + /* mole fraction */ + equiv = 1.0; + } + else + { + equiv = s_x[i]->equiv; + } if (s_x[i]->alk > 0) { - s_x[i]->lg = log10(s_x[i]->equiv / s_x[i]->alk); + s_x[i]->lg = log10(equiv / s_x[i]->alk); s_x[i]->dg = 0.0; } else @@ -2489,9 +2547,9 @@ gammas_pz() * calculate exchange gammas */ - if (use.Get_exchange_ptr() != NULL) + if (use.Get_exchange_ptr() != NULL && exch_a_f) // appt for gammas_a_f { - for (i = 0; i < count_s_x; i++) + for (i = 0; i < (int)this->s_x.size(); i++) { switch (s_x[i]->gflag) { @@ -2506,19 +2564,15 @@ gammas_pz() case 9: /* activity water */ break; case 4: /* Exchange */ - /* * Find CEC * z contains valence of cation for exchange species, alk contains cec */ - /* !!!!! */ - for (j = 1; s_x[i]->rxn_x->token[j].s != NULL; j++) + for (j = 1; s_x[i]->rxn_x.token[j].s != NULL; j++) { - if (s_x[i]->rxn_x->token[j].s->type == EX) + if (s_x[i]->rxn_x.token[j].s->type == EX) { - s_x[i]->alk = - s_x[i]->rxn_x->token[j].s->primary->unknown-> - moles; + s_x[i]->alk = s_x[i]->rxn_x.token[j].s->primary->unknown->moles; break; } } @@ -2534,7 +2588,6 @@ gammas_pz() /* * All other species */ - /* modific 29 july 2005... */ if (s_x[i]->equiv != 0 && s_x[i]->alk > 0) { @@ -2543,15 +2596,16 @@ gammas_pz() if (use.Get_exchange_ptr()->Get_pitzer_exchange_gammas()) { /* Assume equal gamma's of solute and exchangeable species... */ - for (j = 1; s_x[i]->rxn_x->token[j].s != NULL; j++) + for (j = 1; s_x[i]->rxn_x.token[j].s != NULL; j++) { - if (s_x[i]->rxn_x->token[j].s->type == EX) + if (s_x[i]->rxn_x.token[j].s->type == EX) continue; - coef = s_x[i]->rxn_x->token[j].coef; - s_x[i]->lg += coef * s_x[i]->rxn_x->token[j].s->lg; - s_x[i]->dg += coef * s_x[i]->rxn_x->token[j].s->dg; + coef = s_x[i]->rxn_x.token[j].coef; + s_x[i]->lg += coef * s_x[i]->rxn_x.token[j].s->lg; } } + if (s_x[i]->a_f && s_x[i]->primary == NULL && s_x[i]->moles) + gammas_a_f(i); // appt } } } @@ -2582,12 +2636,12 @@ pitzer_make_lists(void) max = count_cations; break; case 1: - min = count_s; - max = count_s + count_neutrals; + min = (int)s.size(); + max = (int)s.size() + count_neutrals; break; case 2: - min = 2*count_s; - max = 2*count_s + count_anions; + min = 2* (int)s.size(); + max = 2* (int)s.size() + count_anions; break; } for (int i = min; i < max; i++) @@ -2602,19 +2656,19 @@ pitzer_make_lists(void) continue; IPRSNT[i] = TRUE; s_list.push_back(i); - if (i < count_s) + if (i < (int)s.size()) { cation_list.push_back(i); } - if (i >= count_s && i < 2*count_s) + if (i >= (int)s.size() && i < 2* (int)s.size()) { neutral_list.push_back(i); } - if (i >= 2*count_s) + if (i >= 2* (int)s.size()) { anion_list.push_back(i); } - if (i < count_s || i >= 2*count_s) + if (i < (int)s.size() || i >= 2* (int)s.size()) { ion_list.push_back(i); } @@ -2629,7 +2683,7 @@ pitzer_make_lists(void) { IPRSNT[IC] = TRUE; } - for (int i = 0; i < count_pitz_param; i++) + for (int i = 0; i < (int)pitz_params.size(); i++) { /* TYPE_B0, TYPE_B1, TYPE_B2, TYPE_C0, TYPE_THETA, TYPE_LAMDA, TYPE_ZETA, @@ -2650,4 +2704,4 @@ pitzer_make_lists(void) } param_list.push_back(i); } -} \ No newline at end of file +} diff --git a/pitzer_structures.cpp b/pitzer_structures.cpp index 061eb715..380d7711 100644 --- a/pitzer_structures.cpp +++ b/pitzer_structures.cpp @@ -4,61 +4,22 @@ #include #include +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /* ********************************************************************** * * Routines related to structure "pitz_param" * * ********************************************************************** */ -/* ---------------------------------------------------------------------- */ -struct pitz_param * Phreeqc:: -pitz_param_alloc(void) -/* ---------------------------------------------------------------------- */ -{ - struct pitz_param *pitz_param_ptr; - pitz_param_ptr = - (struct pitz_param *) PHRQ_malloc(sizeof(struct pitz_param)); - if (pitz_param_ptr == NULL) - malloc_error(); - return (pitz_param_ptr); -} /* ---------------------------------------------------------------------- */ -int Phreeqc:: -pitz_param_init(struct pitz_param *pitz_param_ptr) -/* ---------------------------------------------------------------------- */ -{ - int i; -/* - * Frees all data associated with pitz_param structure. - */ - - if (pitz_param_ptr == NULL) - return (ERROR); - pitz_param_ptr->species[0] = NULL; - pitz_param_ptr->species[1] = NULL; - pitz_param_ptr->species[2] = NULL; - pitz_param_ptr->ispec[0] = -1; - pitz_param_ptr->ispec[1] = -1; - pitz_param_ptr->ispec[2] = -1; - pitz_param_ptr->type = TYPE_Other; - pitz_param_ptr->p = 0.0; - pitz_param_ptr->U.b0 = 0.0; - for (i = 0; i < 6; i++) - { - pitz_param_ptr->a[i] = 0.0; - } - pitz_param_ptr->alpha = 0.0; - pitz_param_ptr->thetas = NULL; - pitz_param_ptr->os_coef = 0.; - for (i = 0; i < 3; i++) - { - pitz_param_ptr->ln_coef[i] = 0.0; - } - return (OK); -} - -/* ---------------------------------------------------------------------- */ -struct pitz_param * Phreeqc:: +class pitz_param * Phreeqc:: pitz_param_read(char *string, int n) /* ---------------------------------------------------------------------- */ { @@ -68,23 +29,22 @@ pitz_param_read(char *string, int n) * */ int l, i, j, k; - char *ptr; + const char* cptr; char token[2 * MAX_LENGTH]; - struct pitz_param pzp, *pzp_ptr; + class pitz_param pzp, *pzp_ptr; if (n != 2 && n != 3 && n != 0) return (NULL); if (string == NULL) return (NULL); - pitz_param_init(&pzp); - ptr = string; - if (copy_token(token, &ptr, &l) == EMPTY) + cptr = string; + if (copy_token(token, &cptr, &l) == EMPTY) return (NULL); - ptr = string; + cptr = string; for (i = 0; i < n; i++) { - int j = copy_token(token, &ptr, &l); + int j = copy_token(token, &cptr, &l); if (j == EMPTY) return (NULL); if (j != UPPER && token[0] != '(') @@ -99,7 +59,7 @@ pitz_param_read(char *string, int n) k = 0; for (i = 0; i < 6; i++) { - if (copy_token(token, &ptr, &l) == EMPTY) + if (copy_token(token, &cptr, &l) == EMPTY) break; j = sscanf(token, SCANFORMAT, &pzp.a[i]); if (j <= 0) @@ -108,48 +68,13 @@ pitz_param_read(char *string, int n) } if (k <= 0) return (NULL); - pzp_ptr = pitz_param_duplicate(&pzp); + pzp_ptr = new class pitz_param; + *pzp_ptr = pzp; return (pzp_ptr); } - -/* ---------------------------------------------------------------------- */ -struct pitz_param * Phreeqc:: -pitz_param_duplicate(struct pitz_param *old_ptr) -/* ---------------------------------------------------------------------- */ -{ -/* - * Allocates space and makes duplicate copy of pitz_param structure - */ - struct pitz_param *new_ptr; - - new_ptr = pitz_param_alloc(); - pitz_param_init(new_ptr); -/* - * Copy data - */ - pitz_param_copy(old_ptr, new_ptr); - return (new_ptr); -} - -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -pitz_param_copy(struct pitz_param *old_ptr, struct pitz_param *new_ptr) -/* ---------------------------------------------------------------------- */ -{ -/* - * Copies pitz_param data from old_ptr to new location, new_ptr. - * Space for the new_ptr structure must already be malloced. - */ -/* - * Store data for structure pitz_param - */ - memcpy(new_ptr, old_ptr, sizeof(struct pitz_param)); - return (OK); -} - /* ---------------------------------------------------------------------- */ void Phreeqc:: -pitz_param_store(struct pitz_param *pzp_ptr, bool force_copy) +pitz_param_store(class pitz_param *pzp_ptr) /* ---------------------------------------------------------------------- */ { /* @@ -161,7 +86,6 @@ pitz_param_store(struct pitz_param *pzp_ptr, bool force_copy) return; if (pzp_ptr->type == TYPE_Other) return; - std::set< std::string > header; for (i = 0; i < 3; i++) { @@ -190,44 +114,21 @@ pitz_param_store(struct pitz_param *pzp_ptr, bool force_copy) pzp_ptr->species[0], pzp_ptr->species[1]); } warning_msg(error_string); - pitz_params[(*jit).second] = (struct pitz_param *) free_check_null(pitz_params[(*jit).second]); + delete pitz_params[(*jit).second]; pitz_params[(*jit).second] = pzp_ptr; } else { - if (count_pitz_param >= max_pitz_param) - { - space((void **) ((void *) &pitz_params), - count_pitz_param, &max_pitz_param, - sizeof(struct pitz_param *)); - } - if (force_copy) - { - pitz_params[count_pitz_param] = pitz_param_duplicate(pzp_ptr); - // clean up pointers - // species - for (i = 0; i < 3; i++) - { - if (pzp_ptr->species[i] != NULL) - { - pitz_params[count_pitz_param]->species[i] = string_hsave(pzp_ptr->species[i]); - } - } - // thetas - pitz_params[count_pitz_param]->thetas = NULL; - } - else - { - pitz_params[count_pitz_param] = pzp_ptr; - } + size_t count_pitz_param = pitz_params.size(); + pitz_params.resize(count_pitz_param + 1); + pitz_params[count_pitz_param] = pzp_ptr; pitz_param_map[key] = count_pitz_param; - count_pitz_param++; } } /* ---------------------------------------------------------------------- */ void Phreeqc:: -sit_param_store(struct pitz_param *pzp_ptr, bool force_copy) +sit_param_store(class pitz_param *pzp_ptr) /* ---------------------------------------------------------------------- */ { /* @@ -269,40 +170,33 @@ sit_param_store(struct pitz_param *pzp_ptr, bool force_copy) pzp_ptr->species[0], pzp_ptr->species[1]); } warning_msg(error_string); - sit_params[(*jit).second] = (struct pitz_param *) free_check_null(sit_params[(*jit).second]); + delete sit_params[(*jit).second]; sit_params[(*jit).second] = pzp_ptr; } else { - if (count_sit_param >= max_sit_param) - { - space((void **) ((void *) &sit_params), - count_sit_param, &max_sit_param, - sizeof(struct pitz_param *)); - } - if (force_copy) - { - sit_params[count_sit_param] = pitz_param_duplicate(pzp_ptr); - // clean up pointers - // species - for (i = 0; i < 3; i++) - { - if (pzp_ptr->species[i] != NULL) - { - sit_params[count_sit_param]->species[i] = string_hsave(pzp_ptr->species[i]); - } - } - // thetas - sit_params[count_sit_param]->thetas = NULL; - } - else - { - sit_params[count_sit_param] = pzp_ptr; - } + size_t count_sit_param = sit_params.size(); + sit_params.resize(count_sit_param + 1); + sit_params[count_sit_param] = pzp_ptr; sit_param_map[key] = count_sit_param; - count_sit_param++; } } +class pitz_param* Phreeqc:: +pitz_param_copy(const class pitz_param* src) +{ + if (src == NULL) return NULL; + class pitz_param* dest = new class pitz_param; + *dest = *src; + for (size_t i = 0; i < 3; i++) + { + if (src->species[i] != NULL) + { + dest->species[i] = string_hsave(src->species[i]); + } + } + dest->thetas = NULL; + return dest; +} /* ********************************************************************** * @@ -310,38 +204,7 @@ sit_param_store(struct pitz_param *pzp_ptr, bool force_copy) * * ********************************************************************** */ /* ---------------------------------------------------------------------- */ -struct theta_param * Phreeqc:: -theta_param_alloc(void) -/* ---------------------------------------------------------------------- */ -{ - struct theta_param *theta_param_ptr; - theta_param_ptr = - (struct theta_param *) PHRQ_malloc(sizeof(struct theta_param)); - if (theta_param_ptr == NULL) - malloc_error(); - return (theta_param_ptr); -} - -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -theta_param_init(struct theta_param *theta_param_ptr) -/* ---------------------------------------------------------------------- */ -{ -/* - * Frees all data associated with theta_param structure. - */ - - if (theta_param_ptr == NULL) - return (ERROR); - theta_param_ptr->zj = 0; - theta_param_ptr->zk = 0; - theta_param_ptr->etheta = 0; - theta_param_ptr->ethetap = 0; - return (OK); -} - -/* ---------------------------------------------------------------------- */ -struct theta_param * Phreeqc:: +class theta_param * Phreeqc:: theta_param_search(LDBLE zj, LDBLE zk) /* ---------------------------------------------------------------------- */ { @@ -350,7 +213,7 @@ theta_param_search(LDBLE zj, LDBLE zk) * Returns NULL if not found, index number in theta_params if found */ int i; - for (i = 0; i < count_theta_param; i++) + for (i = 0; i < (int)theta_params.size(); i++) { if ((theta_params[i]->zj == zj && theta_params[i]->zk == zk) || (theta_params[i]->zj == zk && theta_params[i]->zk == zj)) diff --git a/prep.cpp b/prep.cpp index c3f29436..82b3125c 100644 --- a/prep.cpp +++ b/prep.cpp @@ -10,6 +10,15 @@ #include "SS.h" #include "Solution.h" #include "cxxKinetics.h" + +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /* ---------------------------------------------------------------------- */ int Phreeqc:: prep(void) @@ -19,7 +28,7 @@ prep(void) * Input is model defined by the structure use. * Most of routine is skipped if model, as defined by master.total * plus use.pure_phases, is same as previous calculation. - * Routine sets up struct unknown for each unknown. + * Routine sets up class unknown for each unknown. * Determines elements, species, and phases that are in the model. * Calculates mass-action equations for each species and phase. * Routine builds a set of lists for calculating mass balance and @@ -34,7 +43,7 @@ prep(void) else { same_model = FALSE; - last_model.force_prep = TRUE; + last_model.force_prep = true; } /*same_model = FALSE; */ /* @@ -47,17 +56,13 @@ prep(void) STOP); return ERROR; } - description_x = (char *) free_check_null(description_x); - description_x = string_duplicate(solution_ptr->Get_description().c_str()); + description_x = solution_ptr->Get_description(); /* * Allocate space for unknowns * Must allocate all necessary space before pointers to * X are set. */ - - //if (!same_model && !switch_numerical) - // numerical_fixed_volume = false; - if (same_model == FALSE /*|| switch_numerical*/) + if (same_model == FALSE || my_array.size() == 0) { clear(); setup_unknowns(); @@ -81,26 +86,9 @@ prep(void) /* * Allocate space for array */ -/* - array = (LDBLE *) PHRQ_malloc( (size_t) (count_unknowns+1) * count_unknowns * sizeof( LDBLE )); - if (array == NULL) malloc_error(); - delta = (LDBLE *) PHRQ_malloc( (size_t) count_unknowns * sizeof( LDBLE )); - if (delta == NULL) malloc_error(); - residual = (LDBLE *) PHRQ_malloc( (size_t) count_unknowns * sizeof( LDBLE )); - if (residual == NULL) malloc_error(); -*/ - array = - (LDBLE *) PHRQ_malloc((size_t) (max_unknowns + 1) * - max_unknowns * sizeof(LDBLE)); - if (array == NULL) - malloc_error(); - delta = (LDBLE *) PHRQ_malloc((size_t) max_unknowns * sizeof(LDBLE)); - if (delta == NULL) - malloc_error(); - residual = - (LDBLE *) PHRQ_malloc((size_t) max_unknowns * sizeof(LDBLE)); - if (residual == NULL) - malloc_error(); + my_array.resize((max_unknowns + 1) * max_unknowns); + delta.resize(max_unknowns); + residual.resize(max_unknowns); for (int j = 0; j < max_unknowns; j++) { residual[j] = 0; @@ -120,12 +108,26 @@ prep(void) */ quick_setup(); } + if (debug_mass_balance) + { + output_msg(sformatf("\nTotals for the equation solver.\n")); + output_msg(sformatf("\n\tRow\tName Type Total moles\n")); + for (int i = 0; i < count_unknowns; i++) + { + if (x[i]->type == PITZER_GAMMA) + continue; + output_msg(sformatf("\t%3d\t%-17s%2d %15.6e\n", + x[i]->number, x[i]->description, (int)x[i]->type, (double)x[i]->moles)); + } + output_msg(sformatf("\n\n")); + } if (get_input_errors() > 0) { error_msg("Program stopping due to input errors.", STOP); } if (sit_model) sit_make_lists(); - if (pitzer_model) pitzer_make_lists(); + if (pitzer_model) + pitzer_make_lists(); return (OK); } @@ -141,7 +143,7 @@ quick_setup(void) * Updates essential information for the model. */ int i; - for (i = 0; i < count_master; i++) + for (i = 0; i < (int)master.size(); i++) { if (master[i]->s->type == SURF_PSI) continue; @@ -311,28 +313,6 @@ quick_setup(void) cxxSurfaceCharge *charge_ptr = use.Get_surface_ptr()->Find_charge(x[i]->surface_charge); x[i]->related_moles = charge_ptr->Get_grams(); x[i]->mass_water = charge_ptr->Get_mass_water(); -#ifdef DEBUG - /* test that charge and surface match */ - cxxSurfaceComp *comp_ptr = use.Get_surface_ptr()->Find_comp(x[i]->surface_comp); - char * temp_formula = string_duplicate(comp_ptr->Get_formula().c_str()); - char * ptr = temp_formula; - copy_token(token, &ptr, &l); - char * ptr1 = token; - get_elt(&ptr1, name, &l); - ptr1 = strchr(name, '_'); - if (ptr1 != NULL) - ptr1[0] = '\0'; - if (strcmp(name, charge_ptr->Get_name().c_str()) != 0) - { - free_check_null(temp_formula); - error_string = sformatf( - "Internal error: Surface charge name %s does not match surface component name %s\nTry alphabetical order for surfaces in SURFACE", - charge_ptr->Get_name().c_str(), - comp_ptr->Get_formula().c_str()); - error_msg(error_string, STOP); - } - free_check_null(temp_formula); -#endif /* moles picked up from master->total */ } else if (x[i]->type == SURFACE_CB1 || x[i]->type == SURFACE_CB2) @@ -351,8 +331,8 @@ quick_setup(void) cxxNameDouble::iterator lit; for (lit = comp_ptr->Get_totals().begin(); lit != comp_ptr->Get_totals().end(); lit++) { - struct element *elt_ptr = element_store(lit->first.c_str()); - struct master *master_ptr = elt_ptr->master; + class element *elt_ptr = element_store(lit->first.c_str()); + class master *master_ptr = elt_ptr->master; if (master_ptr->type != SURF) continue; if (strcmp_nocase(x[i]->description, lit->first.c_str()) == 0) @@ -383,10 +363,10 @@ build_gas_phase(void) * sum of partial pressures equation and * mass balance equations for elements contained in gases */ - int row, col; - struct master *master_ptr; - struct rxn_token *rxn_ptr; - struct unknown *unknown_ptr; + size_t row, col; + class master *master_ptr; + class rxn_token *rxn_ptr; + class unknown *unknown_ptr; LDBLE coef, coef_elt; if (gas_unknown == NULL) @@ -402,14 +382,14 @@ build_gas_phase(void) { cxxGasComp *gc_ptr = &(gas_phase_ptr->Get_gas_comps()[i]); int k; - struct phase *phase_ptr = phase_bsearch(gc_ptr->Get_phase_name().c_str() , &k, FALSE); + class phase *phase_ptr = phase_bsearch(gc_ptr->Get_phase_name().c_str() , &k, FALSE); assert(phase_ptr); /* * Determine elements in gas component */ count_elts = 0; paren_count = 0; - if (phase_ptr->rxn_x == NULL) + if (phase_ptr->rxn_x.token.size() == 0) continue; add_elt_list(phase_ptr->next_elt, 1.0); #ifdef COMBINE @@ -420,7 +400,7 @@ build_gas_phase(void) */ if (debug_prep == TRUE) { - output_msg(sformatf( "\n\tMass balance summations %s.\n\n", + output_msg(sformatf( "\n\tMass balance summations. %s.\n", phase_ptr->name)); } @@ -506,7 +486,7 @@ build_gas_phase(void) } row = unknown_ptr->number * (count_unknowns + 1); coef_elt = elt_list[j].coef; - for (rxn_ptr = phase_ptr->rxn_x->token + 1; + for (rxn_ptr = &phase_ptr->rxn_x.token[0] + 1; rxn_ptr->s != NULL; rxn_ptr++) { @@ -543,27 +523,27 @@ build_gas_phase(void) } col = master_ptr->unknown->number; coef = coef_elt * rxn_ptr->coef; - store_jacob(&(phase_ptr->moles_x), - &(array[row + col]), coef); if (debug_prep == TRUE) { - output_msg(sformatf( "\t\t%-24s%10.3f\t%d\t%d\n", + output_msg(sformatf( "\t\t%-24s%10.3f\t%d\t%d", master_ptr->s->name, (double) coef, row / (count_unknowns + 1), col)); } + store_jacob(&(phase_ptr->moles_x), + &(my_array[(size_t)row + (size_t)col]), coef); } if (gas_phase_ptr->Get_type() == cxxGasPhase::GP_PRESSURE) { /* derivative wrt total moles of gas */ - store_jacob(&(phase_ptr->fraction_x), - &(array[row + gas_unknown->number]), coef_elt); if (debug_prep == TRUE) { - output_msg(sformatf( "\t\t%-24s%10.3f\t%d\t%d\n", + output_msg(sformatf( "\t\t%-24s%10.3f\t%d\t%d", "gas moles", (double) elt_list[j].coef, row / (count_unknowns + 1), gas_unknown->number)); } + store_jacob(&(phase_ptr->fraction_x), + &(my_array[(size_t)row + (size_t)gas_unknown->number]), coef_elt); } } /* @@ -578,7 +558,7 @@ build_gas_phase(void) } unknown_ptr = gas_unknown; row = unknown_ptr->number * (count_unknowns + 1); - for (rxn_ptr = phase_ptr->rxn_x->token + 1; rxn_ptr->s != NULL; rxn_ptr++) + for (rxn_ptr = &phase_ptr->rxn_x.token[0] + 1; rxn_ptr->s != NULL; rxn_ptr++) { if (rxn_ptr->s != s_eminus && rxn_ptr->s->in == FALSE) { @@ -634,13 +614,13 @@ build_gas_phase(void) } col = master_ptr->unknown->number; coef = rxn_ptr->coef; - store_jacob(&(phase_ptr->p_soln_x), &(array[row + col]), coef); if (debug_prep == TRUE) { - output_msg(sformatf( "\t\t%-24s%10.3f\t%d\t%d\n", + output_msg(sformatf( "\t\t%-24s%10.3f\t%d\t%d", master_ptr->s->name, (double) coef, row / (count_unknowns + 1), col)); } + store_jacob(&(phase_ptr->p_soln_x), &(my_array[(size_t)row + (size_t)col]), coef); } } } @@ -659,10 +639,10 @@ build_ss_assemblage(void) * mass balance equations for elements contained in solid solutions */ bool stop; - int row, col; - struct master *master_ptr; - struct rxn_token *rxn_ptr; - char *ptr; + size_t row, col; + class master *master_ptr; + class rxn_token *rxn_ptr; + const char* cptr; if (ss_unknown == NULL) return (OK); @@ -683,10 +663,10 @@ build_ss_assemblage(void) /* * Calculate function value (inverse saturation index) */ - if (x[i]->phase->rxn_x == NULL) + if (x[i]->phase->rxn_x.token.size() == 0) continue; store_mb(&(x[i]->phase->lk), &(x[i]->f), 1.0); - for (rxn_ptr = x[i]->phase->rxn_x->token + 1; rxn_ptr->s != NULL; + for (rxn_ptr = &x[i]->phase->rxn_x.token[0] + 1; rxn_ptr->s != NULL; rxn_ptr++) { store_mb(&(rxn_ptr->s->la), &(x[i]->f), -rxn_ptr->coef); @@ -700,7 +680,7 @@ build_ss_assemblage(void) * Put coefficients into mass action equations */ /* first IAP terms */ - for (rxn_ptr = x[i]->phase->rxn_x->token + 1; rxn_ptr->s != NULL; + for (rxn_ptr = &x[i]->phase->rxn_x.token[0] + 1; rxn_ptr->s != NULL; rxn_ptr++) { if (rxn_ptr->s->secondary != NULL @@ -714,8 +694,8 @@ build_ss_assemblage(void) } if (master_ptr == NULL || master_ptr->unknown == NULL) continue; - store_jacob0(x[i]->number, master_ptr->unknown->number, - rxn_ptr->coef); + store_jacob0((int)x[i]->number, (int)master_ptr->unknown->number, + rxn_ptr->coef); } if (ss_ptr->Get_a0() != 0.0 || ss_ptr->Get_a1() != 0.0) @@ -733,11 +713,11 @@ build_ss_assemblage(void) { col = x[i]->number - 1; } - store_jacob(&(x[i]->phase->dnc), &(array[row + col]), -1); + store_jacob(&(x[i]->phase->dnc), &(my_array[(size_t)row + (size_t)col]), -1); /* next dnb terms */ col++; - store_jacob(&(x[i]->phase->dnb), &(array[row + col]), -1); + store_jacob(&(x[i]->phase->dnb), &(my_array[(size_t)row + (size_t)col]), -1); } else { @@ -750,12 +730,12 @@ build_ss_assemblage(void) if ((int) j != x[i]->ss_comp_number) { /* store_jacob (&(s_s_ptr->dn), &(array[row + col + j]), -1.0); */ - store_jacob(&(x[i]->phase->dn), &(array[row + col + j]), + store_jacob(&(x[i]->phase->dn), &(my_array[(size_t)row + (size_t)col + (size_t)j]), -1.0); } else { - store_jacob(&(x[i]->phase->dnb), &(array[row + col + j]), + store_jacob(&(x[i]->phase->dnb), &(my_array[(size_t)row + (size_t)col + (size_t)j]), -1.0); } } @@ -765,10 +745,8 @@ build_ss_assemblage(void) */ count_elts = 0; paren_count = 0; - char * token = string_duplicate(x[i]->phase->formula); - ptr = token; - get_elts_in_species(&ptr, 1.0); - free_check_null(token); + cptr = x[i]->phase->formula; + get_elts_in_species(&cptr, 1.0); /* * Go through elements in phase */ @@ -781,19 +759,19 @@ build_ss_assemblage(void) if (strcmp(elt_list[j].elt->name, "H") == 0 && mass_hydrogen_unknown != NULL) { - store_jacob0(mass_hydrogen_unknown->number, x[i]->number, - -elt_list[j].coef); + store_jacob0((int)mass_hydrogen_unknown->number, (int)x[i]->number, + -elt_list[j].coef); store_sum_deltas(&(delta[i]), &mass_hydrogen_unknown->delta, - elt_list[j].coef); + elt_list[j].coef); } else if (strcmp(elt_list[j].elt->name, "O") == 0 && mass_oxygen_unknown != NULL) { - store_jacob0(mass_oxygen_unknown->number, x[i]->number, - -elt_list[j].coef); + store_jacob0((int)mass_oxygen_unknown->number, (int)x[i]->number, + -elt_list[j].coef); store_sum_deltas(&(delta[i]), &mass_oxygen_unknown->delta, - elt_list[j].coef); + elt_list[j].coef); } else @@ -823,10 +801,10 @@ build_ss_assemblage(void) } else if (master_ptr->in == TRUE) { - store_jacob0(master_ptr->unknown->number, x[i]->number, - -elt_list[j].coef); + store_jacob0((int)master_ptr->unknown->number, (int)x[i]->number, + -elt_list[j].coef); store_sum_deltas(&delta[i], &master_ptr->unknown->delta, - elt_list[j].coef); + elt_list[j].coef); /* * Master species in equation needs to be rewritten */ @@ -838,16 +816,15 @@ build_ss_assemblage(void) { if (x[k]->type != MB) continue; - for (int l = 0; x[k]->master[l] != NULL; l++) + for (size_t l = 0; l < x[k]->master.size(); l++) { if (x[k]->master[l] == master_ptr) { - store_jacob0(x[k]->master[0]->unknown-> - number, x[i]->number, - -elt_list[j].coef); + store_jacob0((int)x[k]->master[0]->unknown->number, + (int)x[i]->number, -elt_list[j].coef); store_sum_deltas(&delta[i], - &x[k]->master[0]->unknown-> - delta, elt_list[j].coef); + &x[k]->master[0]->unknown-> + delta, elt_list[j].coef); stop = TRUE; break; } @@ -880,7 +857,7 @@ build_jacobian_sums(int k) /* * Calculate jacobian coefficients for each mass balance equation */ - for (i = 0; i < count_mb_unknowns; i++) + for (i = 0; i < (int)mb_unknowns.size(); i++) { /* * Store d(moles) for a mass balance equation @@ -892,10 +869,10 @@ build_jacobian_sums(int k) } coef = mb_unknowns[i].coef; if (debug_prep == TRUE) - output_msg(sformatf( "\n\tMass balance eq: %s\t%f\n", - mb_unknowns[i].unknown->description, (double) coef)); - store_dn(k, mb_unknowns[i].source, mb_unknowns[i].unknown->number, - coef, mb_unknowns[i].gamma_source); + output_msg(sformatf("\n\tMass balance eq: %-13s\t%f\trow\tcol\n", + mb_unknowns[i].unknown->description, (double)coef)); + store_dn(k, mb_unknowns[i].source, (int)mb_unknowns[i].unknown->number, + coef, mb_unknowns[i].gamma_source); /* * Add extra terms for change in dg/dx in diffuse layer model */ @@ -911,18 +888,16 @@ build_jacobian_sums(int k) { /* term for water, sum of all surfaces */ source = &s[k]->tot_dh2o_moles; - target = - &(array - [mb_unknowns[i].unknown->number * (count_unknowns + 1) + - mass_oxygen_unknown->number]); - store_jacob(source, target, coef); + target = &(my_array[(size_t)mb_unknowns[i].unknown->number * + (count_unknowns + 1) + (size_t)mass_oxygen_unknown->number]); if (debug_prep == TRUE) { - output_msg(sformatf( "\t\t%-24s%10.3f\t%d\t%d\n", + output_msg(sformatf( "\t\t%-24s%10.3f\t%d\t%d", "sum[dn(i,s)/dlnwater]", (double) coef, mb_unknowns[i].unknown->number, mass_oxygen_unknown->number)); } + store_jacob(source, target, coef); } /* terms for psi, one for each surface */ @@ -933,15 +908,15 @@ build_jacobian_sums(int k) continue; cxxSurfaceCharge *charge_ptr = use.Get_surface_ptr()->Find_charge(x[j]->surface_charge); source = s_diff_layer[k][charge_ptr->Get_name()].Get_dx_moles_address(); - target = &(array[mb_unknowns[i].unknown->number * - (count_unknowns + 1) + x[j]->number]); - store_jacob(source, target, coef); + target = &(my_array[(size_t)mb_unknowns[i].unknown->number * + (count_unknowns + 1) + (size_t)x[j]->number]); if (debug_prep == TRUE) { - output_msg(sformatf( "\t\t%-24s%10.3f\t%d\t%d\n", + output_msg(sformatf( "\t\t%-24s%10.3f\t%d\t%d", "dg/dlny", (double) coef, mb_unknowns[i].unknown->number, x[j]->number)); } + store_jacob(source, target, coef); count_g++; if (count_g >= (int) use.Get_surface_ptr()->Get_surface_charges().size()) break; @@ -955,12 +930,12 @@ build_jacobian_sums(int k) continue; cxxSurfaceCharge *charge_ptr = use.Get_surface_ptr()->Find_charge(x[j]->surface_charge); /* has related phase */ - cxxSurfaceComp *comp_ptr = use.Get_surface_ptr()->Find_comp(x[j - 1]->surface_comp); + cxxSurfaceComp *comp_ptr = use.Get_surface_ptr()->Find_comp(x[(size_t)j - 1]->surface_comp); if (comp_ptr->Get_phase_name().size() == 0) continue; /* now find the related phase */ - for (kk = count_unknowns - 1; kk >= 0; kk--) + for (kk = (int)count_unknowns - 1; kk >= 0; kk--) { if (x[kk]->type != PP) continue; @@ -972,17 +947,17 @@ build_jacobian_sums(int k) if (kk >= 0) { source = s_diff_layer[k][charge_ptr->Get_name()].Get_drelated_moles_address(); - target = &(array[mb_unknowns[i].unknown->number * - (count_unknowns + 1) + x[kk]->number]); - store_jacob(source, target, coef); + target = &(my_array[(size_t)mb_unknowns[i].unknown->number * + (count_unknowns + 1) + (size_t)x[kk]->number]); if (debug_prep == TRUE) { output_msg(sformatf( - "\t\t%-24s%10.3f\t%d\t%d\n", "dphase", + "\t\t%-24s%10.3f\t%d\t%d", "dphase", (double) coef, mb_unknowns[i].unknown->number, x[kk]->number)); } + store_jacob(source, target, coef); } count_g++; if (count_g >= (int) use.Get_surface_ptr()->Get_surface_charges().size()) @@ -1001,25 +976,24 @@ build_jacobian_sums(int k) if (mb_unknowns[i].unknown->number == x[j]->number) { source = s_diff_layer[k][charge_ptr->Get_name()].Get_dx_moles_address(); - target = &(array[mb_unknowns[i].unknown->number * - (count_unknowns + 1) + x[j]->number]); - store_jacob(source, target, coef); + target = &(my_array[(size_t)mb_unknowns[i].unknown->number * + (count_unknowns + 1) + (size_t)x[j]->number]); if (debug_prep == TRUE) { - output_msg(sformatf( - "\t\t%-24s%10.3f\t%d\t%d\n", "dg/dlny", - (double) coef, - mb_unknowns[i].unknown->number, - x[j]->number)); + output_msg(sformatf("\t\t%-24s%10.3f\t%d\t%d", "dg/dlny", + (double)coef, + mb_unknowns[i].unknown->number, + x[j]->number)); } + store_jacob(source, target, coef); /* term for related phase */ /* has related phase */ - cxxSurfaceComp *comp_ptr = use.Get_surface_ptr()->Find_comp(x[j - 1]->surface_comp); + cxxSurfaceComp *comp_ptr = use.Get_surface_ptr()->Find_comp(x[(size_t)j - 1]->surface_comp); if (comp_ptr->Get_phase_name().size() > 0) { /* now find the related phase */ - for (kk = count_unknowns - 1; kk >= 0; kk--) + for (kk = (int)count_unknowns - 1; kk >= 0; kk--) { if (x[kk]->type != PP) continue; @@ -1030,17 +1004,17 @@ build_jacobian_sums(int k) if (kk >= 0) { source = s_diff_layer[k][charge_ptr->Get_name()].Get_drelated_moles_address(); - target = &(array[mb_unknowns[i].unknown->number * - (count_unknowns + 1) + x[kk]->number]); - store_jacob(source, target, coef); + target = &(my_array[(size_t)(size_t)mb_unknowns[i].unknown->number * + (count_unknowns + 1) + (size_t)x[kk]->number]); if (debug_prep == TRUE) { output_msg(sformatf( - "\t\t%-24s%10.3f\t%d\t%d\n", + "\t\t%-24s%10.3f\t%d\t%d", "dphase", (double) coef, mb_unknowns[i].unknown->number, x[kk]->number)); } + store_jacob(source, target, coef); } } @@ -1048,18 +1022,18 @@ build_jacobian_sums(int k) { /* term for water, for same surfaces */ source = s_diff_layer[k][charge_ptr->Get_name()].Get_dh2o_moles_address(); - target = &(array[mb_unknowns[i].unknown->number * - (count_unknowns + 1) + - mass_oxygen_unknown->number]); - store_jacob(source, target, coef); + target = &(my_array[(size_t)mb_unknowns[i].unknown->number * + (count_unknowns + 1) + + (size_t)mass_oxygen_unknown->number]); if (debug_prep == TRUE) { output_msg(sformatf( - "\t\t%-24s%10.3f\t%d\t%d\n", + "\t\t%-24s%10.3f\t%d\t%d", "dn(i,s)/dlnwater", (double) coef, mb_unknowns[i].unknown->number, mass_oxygen_unknown->number)); } + store_jacob(source, target, coef); } break; } @@ -1087,24 +1061,11 @@ build_mb_sums(void) /* * Make space for lists */ - if (count_sum_mb1 + count_mb_unknowns >= max_sum_mb1) - { - space((void **) ((void *) &sum_mb1), - count_sum_mb1 + count_mb_unknowns, &max_sum_mb1, - sizeof(struct list1)); - } - if (count_sum_mb2 + count_mb_unknowns >= max_sum_mb2) - { - space((void **) ((void *) &sum_mb2), - count_sum_mb2 + count_mb_unknowns, &max_sum_mb2, - sizeof(struct list2)); - } - if (debug_prep == TRUE) { - output_msg(sformatf( "\n\tMass balance summations.\n\n")); + output_msg(sformatf( "\n\tMass balance summations.\n")); } - for (i = 0; i < count_mb_unknowns; i++) + for (i = 0; i < (int)mb_unknowns.size(); i++) { target = &(mb_unknowns[i].unknown->f); store_mb(mb_unknowns[i].source, target, mb_unknowns[i].coef); @@ -1127,7 +1088,7 @@ build_model(void) * Guts of prep. Determines species in model, rewrites equations, * builds lists for mass balance and jacobian sums. */ - int i, j, j0, k; + int i, j; LDBLE coef_e; if (s_hplus == NULL || s_eminus == NULL || s_h2o == NULL) @@ -1138,66 +1099,30 @@ build_model(void) /* * Make space for lists of pointers to species in the model */ - - max_s_x = MAX_S; - // clear sum_species_map, which is built from s_x sum_species_map_db.clear(); sum_species_map.clear(); - - space((void **) ((void *) &s_x), INIT, &max_s_x, - sizeof(struct species *)); - - max_sum_mb1 = MAX_SUM_MB; - count_sum_mb1 = 0; - space((void **) ((void *) &sum_mb1), INIT, &max_sum_mb1, - sizeof(struct list1)); - - max_sum_mb2 = MAX_SUM_MB; - count_sum_mb2 = 0; - space((void **) ((void *) &sum_mb2), INIT, &max_sum_mb2, - sizeof(struct list2)); - - max_sum_jacob0 = MAX_SUM_JACOB0; - count_sum_jacob0 = 0; - space((void **) ((void *) &sum_jacob0), INIT, &max_sum_jacob0, - sizeof(struct list0)); - - max_sum_jacob1 = MAX_SUM_JACOB1; - count_sum_jacob1 = 0; - space((void **) ((void *) &sum_jacob1), INIT, &max_sum_jacob1, - sizeof(struct list1)); - - max_sum_jacob2 = MAX_SUM_JACOB2; - count_sum_jacob2 = 0; - space((void **) ((void *) &sum_jacob2), INIT, &max_sum_jacob2, - sizeof(struct list2)); - - - max_sum_delta = MAX_SUM_JACOB0; - count_sum_delta = 0; - space((void **) ((void *) &sum_delta), INIT, &max_sum_delta, - sizeof(struct list2)); - - max_species_list = 5 * MAX_S; - count_species_list = 0; - species_list = (struct species_list *) free_check_null(species_list); - space((void **) ((void *) &species_list), INIT, &max_species_list, - sizeof(struct species_list)); - + s_x.clear(); + sum_mb1.clear(); + sum_mb2.clear(); + sum_jacob0.clear(); + sum_jacob1.clear(); + sum_jacob2.clear(); + sum_delta.clear(); + species_list.clear(); /* * Pick species in the model, determine reaction for model, build jacobian */ - count_s_x = 0; + s_x.clear(); compute_gfw("H2O", &gfw_water); gfw_water *= 0.001; - for (i = 0; i < count_s; i++) + for (i = 0; i < (int)s.size(); i++) { if (s[i]->type > H2O && s[i]->type != EX && s[i]->type != SURF) continue; s[i]->in = FALSE; count_trxn = 0; - trxn_add(s[i]->rxn_s, 1.0, FALSE); /* rxn_s is set in tidy_model */ + trxn_add(s[i]->rxn_s, 1.0, false); /* rxn_s is set in tidy_model */ /* * Check if species is in model */ @@ -1211,13 +1136,10 @@ build_model(void) } if (pitzer_model == FALSE && sit_model == FALSE) s[i]->lg = 0.0; - if (count_s_x + 1 >= max_s_x) - { - space((void **) ((void *) &s_x), count_s_x + 1, - &max_s_x, sizeof(struct species *)); - } compute_gfw(s[i]->name, &s[i]->gfw); - s_x[count_s_x++] = s[i]; + size_t count_s_x = s_x.size(); + s_x.resize(count_s_x + 1); + s_x[count_s_x] = s[i]; /* * Write mass action equation for current model @@ -1229,14 +1151,12 @@ build_model(void) add_potential_factor(); add_cd_music_factors(i); } - rxn_free(s[i]->rxn_x); - s[i]->rxn_x = rxn_alloc(count_trxn + 1); trxn_copy(s[i]->rxn_x); for (j = 0; j < 3; j++) { - s[i]->dz[j] = s[i]->rxn_x->dz[j]; + s[i]->dz[j] = s[i]->rxn_x.dz[j]; } - if (debug_prep == TRUE) + if (debug_mass_action == TRUE) { output_msg(sformatf( "\n%s\n\tMass-action equation\n", s[i]->name)); @@ -1246,8 +1166,8 @@ build_model(void) * Determine mass balance equations, build sums for mass balance, build sums for jacobian */ count_trxn = 0; - trxn_add(s[i]->rxn_s, 1.0, FALSE); - if (s[i]->next_secondary == NULL) + trxn_add(s[i]->rxn_s, 1.0, false); + if (s[i]->next_secondary.size() == 0) { write_mb_eqn_x(); } @@ -1265,7 +1185,7 @@ build_model(void) } if (debug_prep == TRUE) { - output_msg(sformatf( "\tElement composition %s\n", + output_msg(sformatf( "\n%s, Element composition:\n", trxn.token[0].s->name)); for (j = 0; j < count_elts; j++) { @@ -1274,12 +1194,12 @@ build_model(void) (double) elt_list[j].coef)); } } - if (debug_prep == TRUE) - { - output_msg(sformatf( "\n\tMass balance equation\n", - s[i]->name)); - trxn_print(); - } + //if (debug_prep == TRUE) + //{ + // output_msg(sformatf( "\n\tMass balance equation\n", + // s[i]->name)); + // trxn_print(); + //} if (s[i]->type < EMINUS) { mb_for_species_aq(i); @@ -1300,12 +1220,13 @@ build_model(void) build_mb_sums(); } #endif + if (!pitzer_model && !sit_model) build_jacobian_sums(i); /* * Build list of species for summing and printing */ - if (s[i]->next_secondary == NULL) + if (s[i]->next_secondary.size() == 0) { write_mb_for_species_list(i); } @@ -1317,10 +1238,9 @@ build_model(void) build_species_list(i); } } - if (dl_type_x != cxxSurface::NO_DL && (pitzer_model == TRUE || sit_model == TRUE)) + if (dl_type_x != cxxSurface::NO_DL && (/*pitzer_model == TRUE || */sit_model == TRUE)) //DL_pitz { - error_msg("-diffuse_layer option not available for Pizer or SIT model", - STOP); + warning_msg("-diffuse_layer option not tested for SIT model"); } /* * Sum diffuse layer water into hydrogen and oxygen mass balances @@ -1344,15 +1264,14 @@ build_model(void) } } /* - * For Pizer model add lg unknown for each aqueous species + * For Pitzer model add lg unknown for each aqueous species */ - if (pitzer_model == TRUE || sit_model == TRUE) { - j0 = count_unknowns; - j = count_unknowns + count_s_x; - k = j0; - for (i = j0; i < j; i++) + size_t j0 = count_unknowns; + size_t j = count_unknowns + this->s_x.size(); + size_t k = j0; + for (size_t i = j0; i < j; i++) { if (s_x[i - j0]->type == EX) continue; @@ -1365,14 +1284,15 @@ build_model(void) k++; count_unknowns++; } + sit_aqueous_unknowns = count_unknowns - j0; } -/* + /* * Rewrite phases to current master species */ - for (i = 0; i < count_phases; i++) + for (i = 0; i < (int)phases.size(); i++) { count_trxn = 0; - trxn_add_phase(phases[i]->rxn_s, 1.0, FALSE); + trxn_add_phase(phases[i]->rxn_s, 1.0, false); trxn_reverse_k(); phases[i]->in = inout(); if (phases[i]->in == TRUE) @@ -1390,13 +1310,6 @@ build_model(void) */ write_mass_action_eqn_x(STOP); trxn_reverse_k(); - rxn_free(phases[i]->rxn_x); - if (debug_prep == TRUE) - { - output_msg(sformatf( "\nPhase: %s\n", phases[i]->name)); - trxn_print(); - } - phases[i]->rxn_x = rxn_alloc(count_trxn + 1); trxn_copy(phases[i]->rxn_x); write_phase_sys_total(i); } @@ -1410,8 +1323,8 @@ build_model(void) /* * Sort species list, by master only */ - qsort(&species_list[0], (size_t) count_species_list, - (size_t) sizeof(struct species_list), species_list_compare_master); + if (species_list.size() > 1) qsort(&species_list[0], species_list.size(), + sizeof(class species_list), species_list_compare_master); /* * Save model description */ @@ -1434,9 +1347,9 @@ build_pure_phases(void) */ bool stop; std::string token; - char *ptr; - struct master *master_ptr; - struct rxn_token *rxn_ptr; + const char* cptr; + class master *master_ptr; + class rxn_token *rxn_ptr; /* * Build into sums the logic to calculate inverse saturation indices for * pure phases @@ -1449,7 +1362,7 @@ build_pure_phases(void) */ for (int i = 0; i < count_unknowns; i++) { - if (x[i]->type != PP || x[i]->phase->rxn_x == NULL) + if (x[i]->type != PP || x[i]->phase->rxn_x.token.size() == 0) continue; if (pure_phase_unknown == NULL) pure_phase_unknown = x[i]; @@ -1457,7 +1370,7 @@ build_pure_phases(void) store_mb(&(x[i]->phase->lk), &(x[i]->f), 1.0); store_mb(&(x[i]->si), &(x[i]->f), 1.0); - for (rxn_ptr = x[i]->phase->rxn_x->token + 1; rxn_ptr->s != NULL; + for (rxn_ptr = &x[i]->phase->rxn_x.token[0] + 1; rxn_ptr->s != NULL; rxn_ptr++) { store_mb(&(rxn_ptr->s->la), &(x[i]->f), -rxn_ptr->coef); @@ -1468,12 +1381,12 @@ build_pure_phases(void) /* * rxn_x is null if an element in phase is not in solution */ - if (x[i]->type != PP || x[i]->phase->rxn_x == NULL) + if (x[i]->type != PP || x[i]->phase->rxn_x.token.size() == 0) continue; /* * Put coefficients into IAP equations */ - for (rxn_ptr = x[i]->phase->rxn_x->token + 1; rxn_ptr->s != NULL; + for (rxn_ptr = &x[i]->phase->rxn_x.token[0] + 1; rxn_ptr->s != NULL; rxn_ptr++) { if (rxn_ptr->s->secondary != NULL @@ -1487,8 +1400,8 @@ build_pure_phases(void) } if (master_ptr == NULL || master_ptr->unknown == NULL) continue; - store_jacob0(x[i]->number, master_ptr->unknown->number, - rxn_ptr->coef); + store_jacob0((int)x[i]->number, (int)master_ptr->unknown->number, + rxn_ptr->coef); } /* * Put coefficients into mass balance equations @@ -1499,17 +1412,13 @@ build_pure_phases(void) cxxPPassemblageComp * comp_ptr = (cxxPPassemblageComp *) x[i]->pp_assemblage_comp_ptr; if (comp_ptr->Get_add_formula().size() > 0) { - char * char_name = string_duplicate(comp_ptr->Get_add_formula().c_str()); - ptr = char_name; - get_elts_in_species(&ptr, 1.0); - free_check_null(char_name); + cptr = comp_ptr->Get_add_formula().c_str(); + get_elts_in_species(&cptr, 1.0); } else { - char * char_name = string_duplicate(x[i]->phase->formula); - ptr = char_name; - get_elts_in_species(&ptr, 1.0); - free_check_null(char_name); + cptr = x[i]->phase->formula; + get_elts_in_species(&cptr, 1.0); } /* * Go through elements in phase @@ -1524,19 +1433,19 @@ build_pure_phases(void) if (strcmp(elt_list[j].elt->name, "H") == 0 && mass_hydrogen_unknown != NULL) { - store_jacob0(mass_hydrogen_unknown->number, x[i]->number, - -elt_list[j].coef); + store_jacob0((int)mass_hydrogen_unknown->number, (int)x[i]->number, + -elt_list[j].coef); store_sum_deltas(&(delta[i]), &mass_hydrogen_unknown->delta, - elt_list[j].coef); + elt_list[j].coef); } else if (strcmp(elt_list[j].elt->name, "O") == 0 && mass_oxygen_unknown != NULL) { - store_jacob0(mass_oxygen_unknown->number, x[i]->number, - -elt_list[j].coef); + store_jacob0((int)mass_oxygen_unknown->number, (int)x[i]->number, + -elt_list[j].coef); store_sum_deltas(&(delta[i]), &mass_oxygen_unknown->delta, - elt_list[j].coef); + elt_list[j].coef); } else @@ -1573,10 +1482,10 @@ build_pure_phases(void) } else if (master_ptr->in == TRUE) { - store_jacob0(master_ptr->unknown->number, x[i]->number, - -elt_list[j].coef); + store_jacob0((int)master_ptr->unknown->number, (int)x[i]->number, + -elt_list[j].coef); store_sum_deltas(&delta[i], &master_ptr->unknown->delta, - elt_list[j].coef); + elt_list[j].coef); /* * Master species in equation needs to be rewritten */ @@ -1588,16 +1497,15 @@ build_pure_phases(void) { if (x[k]->type != MB) continue; - for (int l = 0; x[k]->master[l] != NULL; l++) + for (size_t l = 0; l < x[k]->master.size(); l++) { if (x[k]->master[l] == master_ptr) { - store_jacob0(x[k]->master[0]->unknown-> - number, x[i]->number, - -elt_list[j].coef); + store_jacob0((int)x[k]->master[0]->unknown->number, + (int)x[i]->number, -elt_list[j].coef); store_sum_deltas(&delta[i], - &x[k]->master[0]->unknown-> - delta, elt_list[j].coef); + &x[k]->master[0]->unknown-> + delta, elt_list[j].coef); stop = TRUE; break; } @@ -1617,8 +1525,8 @@ build_solution_phase_boundaries(void) /* ---------------------------------------------------------------------- */ { int i; - struct master *master_ptr; - struct rxn_token *rxn_ptr; + class master *master_ptr; + class rxn_token *rxn_ptr; /* * Build into sums the logic to calculate inverse saturation indices for * solution phase boundaries @@ -1644,7 +1552,7 @@ build_solution_phase_boundaries(void) input_error++; break; } - for (rxn_ptr = x[i]->phase->rxn_x->token + 1; rxn_ptr->s != NULL; + for (rxn_ptr = &x[i]->phase->rxn_x.token[0] + 1; rxn_ptr->s != NULL; rxn_ptr++) { store_mb(&(rxn_ptr->s->la), &(x[i]->f), -rxn_ptr->coef); @@ -1659,7 +1567,7 @@ build_solution_phase_boundaries(void) { if (x[i]->type != SOLUTION_PHASE_BOUNDARY) continue; - for (rxn_ptr = x[i]->phase->rxn_x->token + 1; rxn_ptr->s != NULL; + for (rxn_ptr = &x[i]->phase->rxn_x.token[0] + 1; rxn_ptr->s != NULL; rxn_ptr++) { if (rxn_ptr->s->secondary != NULL @@ -1673,7 +1581,7 @@ build_solution_phase_boundaries(void) } if (master_ptr->unknown == NULL) continue; - store_jacob0(x[i]->number, master_ptr->unknown->number, + store_jacob0((int)x[i]->number, (int)master_ptr->unknown->number, rxn_ptr->coef); } } @@ -1691,25 +1599,17 @@ build_species_list(int n) * printing results. */ int j; - struct master *master_ptr; -/* - * Check space and store reaction token name and pointer to species - */ - if (count_species_list + count_elts >= max_species_list) - { - space((void **) ((void *) &species_list), - count_species_list + count_elts, &max_species_list, - sizeof(struct species_list)); - } + class master *master_ptr; /* * Treat species made only with H+, e-, and H2O specially */ if (is_special(s[n]) == TRUE) { + size_t count_species_list = species_list.size(); + species_list.resize(count_species_list + 1); species_list[count_species_list].master_s = s_hplus; species_list[count_species_list].s = s[n]; species_list[count_species_list].coef = 0.0; - count_species_list++; return (OK); } /* @@ -1724,12 +1624,13 @@ build_species_list(int n) if (elt_list[j].elt->master->s->type != EX) continue; master_ptr = elt_list[j].elt->master; + size_t count_species_list = species_list.size(); + species_list.resize(count_species_list + 1); species_list[count_species_list].master_s = elt_list[j].elt->master->s; species_list[count_species_list].s = s[n]; species_list[count_species_list].coef = master_ptr->coef * elt_list[j].coef; - count_species_list++; } return (OK); } @@ -1745,12 +1646,13 @@ build_species_list(int n) if (elt_list[j].elt->master->s->type != SURF) continue; master_ptr = elt_list[j].elt->master; + size_t count_species_list = species_list.size(); + species_list.resize(count_species_list + 1); species_list[count_species_list].master_s = elt_list[j].elt->master->s; species_list[count_species_list].s = s[n]; species_list[count_species_list].coef = master_ptr->coef * elt_list[j].coef; - count_species_list++; } return (OK); } @@ -1769,6 +1671,8 @@ build_species_list(int n) { master_ptr = elt_list[j].elt->master->s->primary; } + size_t count_species_list = species_list.size(); + species_list.resize(count_species_list + 1); species_list[count_species_list].master_s = master_ptr->s; species_list[count_species_list].s = s[n]; /* @@ -1776,7 +1680,6 @@ build_species_list(int n) */ species_list[count_species_list].coef = master_ptr->coef * elt_list[j].coef; - count_species_list++; } return (OK); } @@ -1796,7 +1699,7 @@ clear(void) */ solution_ptr = use.Get_solution_ptr(); - for (i = 0; i < count_s; i++) + for (i = 0; i < (int)s.size(); i++) { s[i]->in = FALSE; } @@ -1813,7 +1716,7 @@ clear(void) else { default_pe_x = "pe"; - cxxChemRxn chem_rxn; + CReaction chem_rxn; pe_x[default_pe_x] = chem_rxn; } @@ -1821,7 +1724,7 @@ clear(void) * Clear master species solution-dependent data */ const char * pe_str = string_hsave("pe"); - for (i = 0; i < count_master; i++) + for (i = 0; i < (int)master.size(); i++) { master[i]->in = FALSE; master[i]->unknown = NULL; @@ -1836,8 +1739,7 @@ clear(void) /* * copy primary reaction to secondary reaction */ - rxn_free(master[i]->rxn_secondary); - master[i]->rxn_secondary = rxn_dup(master[i]->rxn_primary); + master[i]->rxn_secondary = master[i]->rxn_primary; } if (state == INITIAL_SOLUTION) @@ -1874,37 +1776,6 @@ clear(void) * Free arrays used in model */ free_model_allocs(); -#ifdef SKIP - // Bug-fix - // The standard implementation of clear() sets the unknown pointer of some of the - // masters to NULL. However, the function quick_setup presumes that a master pointer - // is valid when the masters total is larger than zero. This results in a crash - // when the unknown pointer is dereferenced. The same goes for the secondary master - // species. - // - // Perhaps this should be part of the 'Clear master species solution-dependent data'-loop above?! - for ( int i = 0; i < count_master; i++ ) - { - if (master[i]->s->type == SURF_PSI) - continue; - - if ( master[i]->s == s_eminus || - master[i]->s == s_hplus || - master[i]->s == s_h2o || - master[i]->s == s_h2 || - master[i]->s == s_o2 ) - continue; - - if (master[i]->total > 0 ) - { - // Make sure masters total is set to zero when unknown pointer for master species is not set - if ( ( master[i]->s->secondary && !master[i]->s->secondary->unknown ) || !master[i]->unknown ) - { - master[i]->total = 0.0; - } - } - } -#endif return (OK); } /* ---------------------------------------------------------------------- */ @@ -1917,7 +1788,7 @@ convert_units(cxxSolution *solution_ptr) * Uses totals.input conc to calculate totals.moles. */ LDBLE sum_solutes; - struct master *master_ptr; + class master *master_ptr; std::string token; if (!solution_ptr->Get_new_def() || !solution_ptr->Get_initial_data()) { @@ -1927,7 +1798,25 @@ convert_units(cxxSolution *solution_ptr) /* * Convert units */ +#ifdef ORIGINAL sum_solutes = exp(-solution_ptr->Get_ph() * LOG_10); +#else + double g_h, g_oh; + compute_gfw("H", &g_h); + compute_gfw("OH", &g_oh); + if (density_iterations == 0) + { + sum_solutes = exp(-solution_ptr->Get_ph() * LOG_10) * g_h; + sum_solutes += exp((-14 + solution_ptr->Get_ph()) * LOG_10) * g_oh; + } + else + { + double soln_vol = calc_solution_volume(); + sum_solutes = s_hplus->moles / soln_vol * g_h; + species* s_oh = s_search("OH-"); + sum_solutes += s_oh->moles / soln_vol * g_oh; + } +#endif cxxISolution *initial_data_ptr = solution_ptr->Get_initial_data(); std::map::iterator jit = initial_data_ptr->Get_comps().begin(); for ( ; jit != initial_data_ptr->Get_comps().end(); jit++) @@ -1985,11 +1874,9 @@ convert_units(cxxSolution *solution_ptr) } else { - char * temp_desc = string_duplicate(comp_ref.Get_description().c_str()); - char *ptr = temp_desc; - copy_token(token, &ptr); + const char* cptr = comp_ref.Get_description().c_str(); + copy_token(token, &cptr); master_ptr = master_bsearch(token.c_str()); - free_check_null(temp_desc); if (master_ptr != NULL) { /* use gfw for element redox state */ @@ -2084,31 +1971,31 @@ convert_units(cxxSolution *solution_ptr) } /* ---------------------------------------------------------------------- */ -struct master ** Phreeqc:: -get_list_master_ptrs(char *ptr, struct master *master_ptr) +std::vector Phreeqc:: +get_list_master_ptrs(const char* cptr, class master *master_ptr) /* ---------------------------------------------------------------------- */ { /* - * Input: ptr contains a list of one or more master species names + * Input: cptr contains a list of one or more master species names * Output: space is allocated and a list of master species pointers is * returned. */ int j, l, count_list; char token[MAX_LENGTH]; - struct master **master_ptr_list; - struct master *master_ptr0; + std::vector master_ptr_list; + class master *master_ptr0; /* * Make list of master species pointers */ count_list = 0; - master_ptr_list = unknown_alloc_master(); + //master_ptr_list = unknown_alloc_master(); master_ptr0 = master_ptr; if (master_ptr0 == master_ptr->s->primary) { /* * First in list is primary species */ - for (j = 0; j < count_master; j++) + for (j = 0; j < (int)master.size(); j++) { if (master[j] == master_ptr0) break; @@ -2117,9 +2004,9 @@ get_list_master_ptrs(char *ptr, struct master *master_ptr) /* * Element has only one valence */ - if (j >= count_master || master[j]->elt->primary != master_ptr0) + if (j >= (int)master.size() || master[j]->elt->primary != master_ptr0) { - master_ptr_list[count_list++] = master_ptr0; + master_ptr_list.push_back(master_ptr0); /* * Element has multiple valences */ @@ -2134,22 +2021,12 @@ get_list_master_ptrs(char *ptr, struct master *master_ptr) error_msg(error_string, CONTINUE); input_error++; } - master_ptr_list[count_list++] = master_ptr0->s->secondary; - while (j < count_master && master[j]->elt->primary == master_ptr0) + master_ptr_list.push_back(master_ptr0->s->secondary); + while (j < (int)master.size() && master[j]->elt->primary == master_ptr0) { if (master[j]->s->primary == NULL) { - master_ptr_list = - (struct master **) PHRQ_realloc((void *) - master_ptr_list, - (size_t) (count_list - + - 2) * - sizeof(struct master - *)); - if (master_ptr_list == NULL) - malloc_error(); - master_ptr_list[count_list++] = master[j]; + master_ptr_list.push_back(master[j]); } j++; } @@ -2160,24 +2037,16 @@ get_list_master_ptrs(char *ptr, struct master *master_ptr) /* * First in list is secondary species, Include all valences from input */ - master_ptr_list[count_list++] = master_ptr0; - while (copy_token(token, &ptr, &l) != EMPTY) + master_ptr_list.push_back(master_ptr0); + while (copy_token(token, &cptr, &l) != EMPTY) { master_ptr = master_bsearch(token); if (master_ptr != NULL) { - master_ptr_list = - (struct master **) PHRQ_realloc((void *) master_ptr_list, - (size_t) (count_list + - 2) * - sizeof(struct master *)); - if (master_ptr_list == NULL) - malloc_error(); - master_ptr_list[count_list++] = master_ptr; + master_ptr_list.push_back(master_ptr); } } } - master_ptr_list[count_list] = NULL; return (master_ptr_list); } @@ -2187,7 +2056,7 @@ inout(void) /* ---------------------------------------------------------------------- */ { int i; - struct rxn_token_temp *token_ptr; + class rxn_token_temp *token_ptr; /* * Routine goes through trxn to determine if each master species is * in this model. @@ -2217,7 +2086,7 @@ inout(void) /* ---------------------------------------------------------------------- */ int Phreeqc:: -is_special(struct species *l_spec) +is_special(class species *l_spec) /* ---------------------------------------------------------------------- */ { /* @@ -2226,10 +2095,10 @@ is_special(struct species *l_spec) * FALSE if not */ int special; - struct rxn_token *token_ptr; + class rxn_token *token_ptr; special = TRUE; - for (token_ptr = l_spec->rxn_s->token + 1; token_ptr->s != NULL; + for (token_ptr = &l_spec->rxn_s.token[0] + 1; token_ptr->s != NULL; token_ptr++) { if (token_ptr->s != s_hplus && @@ -2244,7 +2113,7 @@ is_special(struct species *l_spec) /* ---------------------------------------------------------------------- */ int Phreeqc:: -store_mb_unknowns(struct unknown *unknown_ptr, LDBLE * LDBLE_ptr, LDBLE coef, +store_mb_unknowns(class unknown *unknown_ptr, LDBLE * LDBLE_ptr, LDBLE coef, LDBLE * gamma_ptr) /* ---------------------------------------------------------------------- */ /* @@ -2254,16 +2123,12 @@ store_mb_unknowns(struct unknown *unknown_ptr, LDBLE * LDBLE_ptr, LDBLE coef, { if (equal(coef, 0.0, TOL) == TRUE) return (OK); - if ((count_mb_unknowns + 1) >= max_mb_unknowns) - { - space((void **) ((void *) &mb_unknowns), count_mb_unknowns + 1, - &max_mb_unknowns, sizeof(struct unknown_list)); - } + size_t count_mb_unknowns = mb_unknowns.size(); + mb_unknowns.resize(count_mb_unknowns + 1); mb_unknowns[count_mb_unknowns].unknown = unknown_ptr; mb_unknowns[count_mb_unknowns].source = LDBLE_ptr; mb_unknowns[count_mb_unknowns].gamma_source = gamma_ptr; mb_unknowns[count_mb_unknowns].coef = coef; - count_mb_unknowns++; return (OK); } @@ -2283,10 +2148,10 @@ mb_for_species_aq(int n) * mb_unknowns.coef - coefficient of s[n] in equation or relation */ int i, j; - struct master *master_ptr; - struct unknown *unknown_ptr; + class master *master_ptr; + class unknown *unknown_ptr; - count_mb_unknowns = 0; + mb_unknowns.clear(); /* * e- does not appear in any mass balances */ @@ -2366,7 +2231,7 @@ mb_for_species_aq(int n) cxxSurfaceCharge *charge_ptr = use.Get_surface_ptr()->Find_charge(x[i]->surface_charge); unknown_ptr = x[i]; if (use.Get_surface_ptr()->Get_type() == cxxSurface::CD_MUSIC) - unknown_ptr = x[i + 2]; + unknown_ptr = x[(size_t)i + 2]; store_mb_unknowns(unknown_ptr, s_diff_layer[n][charge_ptr->Get_name()].Get_g_moles_address(), s[n]->z, s_diff_layer[n][charge_ptr->Get_name()].Get_dg_g_moles_address()); @@ -2448,8 +2313,9 @@ mb_for_species_ex(int n) * mb_unknowns.coef - coefficient of s[n] in equation or relation */ int i; - struct master *master_ptr; - count_mb_unknowns = 0; + class master *master_ptr; + + mb_unknowns.clear(); /* * Master species for exchange do not appear in any mass balances */ @@ -2537,9 +2403,9 @@ mb_for_species_surf(int n) * mb_unknowns.coef - coefficient of s[n] in equation or relation */ int i; - struct master *master_ptr; + class master *master_ptr; - count_mb_unknowns = 0; + mb_unknowns.clear(); /* * Include in charge balance, if diffuse_layer_x == FALSE */ @@ -2663,12 +2529,11 @@ reprep(void) /* * Initialize s, master, and unknown pointers */ - for (i = 0; i < count_master; i++) + for (i = 0; i < (int)master.size(); i++) { if (master[i]->in == FALSE) continue; - rxn_free(master[i]->rxn_secondary); - master[i]->rxn_secondary = rxn_dup(master[i]->rxn_primary); + master[i]->rxn_secondary = master[i]->rxn_primary; } resetup_master(); /* @@ -2682,13 +2547,13 @@ reprep(void) /* * Free arrays built in build_model */ - s_x = (struct species **) free_check_null(s_x); - sum_mb1 = (struct list1 *) free_check_null(sum_mb1); - sum_mb2 = (struct list2 *) free_check_null(sum_mb2); - sum_jacob0 = (struct list0 *) free_check_null(sum_jacob0); - sum_jacob1 = (struct list1 *) free_check_null(sum_jacob1); - sum_jacob2 = (struct list2 *) free_check_null(sum_jacob2); - sum_delta = (struct list2 *) free_check_null(sum_delta); + s_x.clear(); + sum_mb1.clear(); + sum_mb2.clear(); + sum_jacob0.clear(); + sum_jacob1.clear(); + sum_jacob2.clear(); + sum_delta.clear(); /* * Build model again */ @@ -2710,15 +2575,16 @@ resetup_master(void) * and special cases for alkalinity, carbon, and pH. */ int i, j; - struct master *master_ptr, *master_ptr0; + class master *master_ptr, *master_ptr0; for (i = 0; i < count_unknowns; i++) { if (x[i]->type != MB) continue; master_ptr0 = x[i]->master[0]; - for (j = 0; (master_ptr = x[i]->master[j]) != NULL; j++) + for (j = 0; j < x[i]->master.size(); j++) { + master_ptr = x[i]->master[j]; /* * Set flags */ @@ -2726,8 +2592,7 @@ resetup_master(void) { if (master_ptr->s->primary == NULL) { - rxn_free(master_ptr->rxn_secondary); - master_ptr->rxn_secondary = rxn_dup(master_ptr->s->rxn_s); + master_ptr->rxn_secondary = master_ptr->s->rxn_s; } } else @@ -2735,8 +2600,6 @@ resetup_master(void) if (master_ptr0->s->primary == NULL) { rewrite_master_to_secondary(master_ptr, master_ptr0); - rxn_free(master_ptr->rxn_secondary); - master_ptr->rxn_secondary = rxn_alloc(count_trxn + 1); trxn_copy(master_ptr->rxn_secondary); } } @@ -2755,7 +2618,8 @@ write_mass_action_eqn_x(int stop) */ LDBLE coef_e; int count, repeat; - int i, count_rxn_orig; + int i; + size_t count_rxn_orig; /* * Rewrite any secondary master species flagged REWRITE * Replace pe if necessary @@ -2801,16 +2665,16 @@ write_mass_action_eqn_x(int stop) rxn_find_coef(trxn.token[i].s->secondary->rxn_secondary, "e-"); trxn_add(trxn.token[i].s->secondary->rxn_secondary, - trxn.token[i].coef, FALSE); + trxn.token[i].coef, false); if (equal(coef_e, 0.0, TOL) == FALSE) { - std::map < std::string, cxxChemRxn >::iterator chemRxnIt = pe_x.find(trxn.token[i].s->secondary->pe_rxn); + std::map < std::string, CReaction >::iterator chemRxnIt = pe_x.find(trxn.token[i].s->secondary->pe_rxn); if ( chemRxnIt == pe_x.end() ) { - cxxChemRxn &rxn_ref = pe_x[trxn.token[i].s->secondary->pe_rxn]; + CReaction& rxn_ref = pe_x[trxn.token[i].s->secondary->pe_rxn]; trxn_add(rxn_ref, trxn.token[i].coef * coef_e, FALSE); // Create temporary rxn object and add reactions together - cxxChemRxn rxn; + CReaction rxn; trxn_add(rxn, trxn.token[i].coef * coef_e, FALSE); } else @@ -2839,8 +2703,8 @@ add_potential_factor(void) int i; std::string token; LDBLE sum_z; - struct master *master_ptr; - struct unknown *unknown_ptr; + class master *master_ptr; + class unknown *unknown_ptr; if (use.Get_surface_ptr() == NULL) { @@ -2905,11 +2769,8 @@ add_potential_factor(void) /* * Make sure there is space */ - if (count_trxn + 1 >= max_trxn) - { - space((void **) ((void *) &(trxn.token)), count_trxn + 1, &max_trxn, - sizeof(struct rxn_token_temp)); - } + if (count_trxn + 1 > trxn.token.size()) + trxn.token.resize(count_trxn + 1); /* * Include psi in mass action equation */ @@ -2942,8 +2803,8 @@ add_cd_music_factors(int n) */ int i; std::string token; - struct master *master_ptr; - struct unknown *unknown_ptr; + class master *master_ptr; + class unknown *unknown_ptr; if (use.Get_surface_ptr() == NULL) { input_error++; @@ -3002,11 +2863,8 @@ add_cd_music_factors(int n) /* * Make sure there is space */ - if (count_trxn + 3 >= max_trxn) - { - space((void **) ((void *) &(trxn.token)), count_trxn + 3, &max_trxn, - sizeof(struct rxn_token_temp)); - } + if (count_trxn + 3 > trxn.token.size()) + trxn.token.resize(count_trxn + 3); /* * Include psi in mass action equation */ @@ -3070,11 +2928,11 @@ add_surface_charge_balance(void) * Include charge balance in list for mass-balance equations */ int i; - char *ptr; + const char* cptr; std::string token; - struct master *master_ptr; - struct unknown *unknown_ptr; + class master *master_ptr; + class unknown *unknown_ptr; if (use.Get_surface_ptr() == NULL) { input_error++; @@ -3121,10 +2979,8 @@ add_surface_charge_balance(void) /* * Include charge balance in list for mass-balance equations */ - char * temp_name = string_duplicate(master_ptr->elt->name); - ptr = temp_name; - get_secondary_in_species(&ptr, 1.0); - free_check_null(temp_name); + cptr = master_ptr->elt->name; + get_secondary_in_species(&cptr, 1.0); return (OK); } @@ -3142,8 +2998,8 @@ add_cd_music_charge_balances(int n) int i; std::string token; - struct master *master_ptr; - struct unknown *unknown_ptr; + class master *master_ptr; + class unknown *unknown_ptr; if (use.Get_surface_ptr() == NULL) { input_error++; @@ -3184,10 +3040,8 @@ add_cd_music_charge_balances(int n) * Include charge balance in list for mass-balance equations */ { - char * temp_name = string_duplicate( master_ptr->elt->name); - char *ptr = temp_name; - get_secondary_in_species(&ptr, s[n]->dz[0]); - free_check_null(temp_name); + const char* cptr = master_ptr->elt->name; + get_secondary_in_species(&cptr, s[n]->dz[0]); } /* * Find potential unknown for plane 1 @@ -3199,10 +3053,8 @@ add_cd_music_charge_balances(int n) * Include charge balance in list for mass-balance equations */ { - char * temp_name = string_duplicate( master_ptr->elt->name); - char *ptr = temp_name; - get_secondary_in_species(&ptr, s[n]->dz[1]); - free_check_null(temp_name); + const char* cptr = master_ptr->elt->name; + get_secondary_in_species(&cptr, s[n]->dz[1]); } /* * Find potential unknown for plane 2 @@ -3214,10 +3066,8 @@ add_cd_music_charge_balances(int n) * Include charge balance in list for mass-balance equations */ { - char * temp_name = string_duplicate(master_ptr->elt->name); - char *ptr = temp_name; - get_secondary_in_species(&ptr, s[n]->dz[2]); - free_check_null(temp_name); + const char* cptr = master_ptr->elt->name; + get_secondary_in_species(&cptr, s[n]->dz[2]); } return (OK); @@ -3225,8 +3075,8 @@ add_cd_music_charge_balances(int n) /* ---------------------------------------------------------------------- */ int Phreeqc:: -rewrite_master_to_secondary(struct master *master_ptr1, - struct master *master_ptr2) +rewrite_master_to_secondary(class master *master_ptr1, + class master *master_ptr2) /* ---------------------------------------------------------------------- */ { /* @@ -3234,7 +3084,7 @@ rewrite_master_to_secondary(struct master *master_ptr1, * Store result in rxn_secondary of master_ptr. */ LDBLE coef1, coef2; - struct master *master_ptr_p1, *master_ptr_p2; + class master *master_ptr_p1, *master_ptr_p2; /* * Check that the two master species have the same primary master species */ @@ -3267,8 +3117,8 @@ rewrite_master_to_secondary(struct master *master_ptr1, * Rewrite equation to secondary master species */ count_trxn = 0; - trxn_add(master_ptr1->rxn_primary, 1.0, FALSE); - trxn_add(master_ptr2->rxn_primary, -coef1 / coef2, TRUE); + trxn_add(master_ptr1->rxn_primary, 1.0, false); + trxn_add(master_ptr2->rxn_primary, -coef1 / coef2, true); return (OK); } /* ---------------------------------------------------------------------- */ @@ -3279,8 +3129,8 @@ setup_exchange(void) /* * Fill in data for exchanger in unknowns structures */ - struct master *master_ptr; - struct master **master_ptr_list; + class master *master_ptr; + std::vector master_ptr_list; if (use.Get_exchange_ptr() == NULL) return (OK); @@ -3331,8 +3181,8 @@ setup_exchange(void) /* * Set flags */ - master_ptr_list = unknown_alloc_master(); - master_ptr_list[0] = master_ptr; + master_ptr_list.clear(); + master_ptr_list.push_back(master_ptr); master_ptr->in = TRUE; /* * Set unknown data @@ -3409,7 +3259,7 @@ setup_ss_assemblage(void) { cxxSScomp *comp_ptr = &(ss_ptrs[j]->Get_ss_comps()[i]); int l; - struct phase* phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + class phase* phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); x[count_unknowns]->type = SS_MOLES; x[count_unknowns]->description = string_hsave(comp_ptr->Get_name().c_str()); x[count_unknowns]->moles = 0.0; @@ -3447,8 +3297,8 @@ setup_surface(void) /* * Fill in data for surface assemblage in unknown structure */ - struct master **master_ptr_list; - int mb_unknown_number; + std::vector master_ptr_list; + size_t mb_unknown_number; if (use.Get_surface_ptr() == NULL) return (OK); @@ -3462,8 +3312,8 @@ setup_surface(void) cxxNameDouble::iterator jit; for (jit = comp_ptr->Get_totals().begin(); jit != comp_ptr->Get_totals().end(); jit++) { - struct element *elt_ptr = element_store(jit->first.c_str()); - struct master *master_ptr = elt_ptr->master; + class element *elt_ptr = element_store(jit->first.c_str()); + class master *master_ptr = elt_ptr->master; if (master_ptr == NULL) { error_string = sformatf( @@ -3489,8 +3339,8 @@ setup_surface(void) /* * Set flags */ - master_ptr_list = unknown_alloc_master(); - master_ptr_list[0] = master_ptr; + master_ptr_list.clear(); + master_ptr_list.push_back(master_ptr); master_ptr->in = TRUE; /* * Setup mass balance unknown @@ -3513,7 +3363,7 @@ setup_surface(void) * Setup surface-potential unknown */ std::string token = master_ptr->elt->name; - struct unknown *unknown_ptr = find_surface_charge_unknown(token, SURF_PSI); + class unknown *unknown_ptr = find_surface_charge_unknown(token, SURF_PSI); if (unknown_ptr != NULL) { x[count_unknowns - 1]->potential_unknown = unknown_ptr; @@ -3525,8 +3375,8 @@ setup_surface(void) */ replace("_CB", "_psi", token); master_ptr = master_bsearch(token.c_str()); - master_ptr_list = unknown_alloc_master(); - master_ptr_list[0] = master_ptr; + master_ptr_list.clear(); + master_ptr_list.push_back(master_ptr); master_ptr->in = TRUE; /* * Find surface charge structure @@ -3548,10 +3398,8 @@ setup_surface(void) x[count_unknowns]->master = master_ptr_list; x[count_unknowns]->master[0]->unknown = x[count_unknowns]; x[count_unknowns]->moles = 0.0; - x[count_unknowns - 1]->potential_unknown = - x[count_unknowns]; - x[count_unknowns]->surface_comp = - x[count_unknowns - 1]->surface_comp; + x[count_unknowns - 1]->potential_unknown = x[count_unknowns]; + x[count_unknowns]->surface_comp = x[count_unknowns - 1]->surface_comp; count_unknowns++; } } @@ -3568,7 +3416,7 @@ setup_surface(void) { std::string cb_suffix("_CB"); std::string psi_suffix("_psi"); - struct unknown **unknown_target; + class unknown **unknown_target; unknown_target = NULL; int type = SURFACE_CB; switch (plane) @@ -3591,7 +3439,7 @@ setup_surface(void) unknown_target = &(x[mb_unknown_number]->potential_unknown2); break; } - struct unknown *unknown_ptr = find_surface_charge_unknown(token, plane); + class unknown *unknown_ptr = find_surface_charge_unknown(token, plane); if (unknown_ptr != NULL) { *unknown_target = unknown_ptr; @@ -3603,8 +3451,8 @@ setup_surface(void) */ replace(cb_suffix.c_str(), psi_suffix.c_str(), token); master_ptr = master_bsearch(token.c_str()); - master_ptr_list = unknown_alloc_master(); - master_ptr_list[0] = master_ptr; + master_ptr_list.clear(); + master_ptr_list.push_back(master_ptr); master_ptr->in = TRUE; /* * Find surface charge structure @@ -3648,13 +3496,9 @@ setup_surface(void) } } /* Add SURFACE unknown to a list for SURF_PSI */ - struct unknown *unknown_ptr = find_surface_charge_unknown(token, SURF_PSI); - unknown_ptr->comp_unknowns = (struct unknown **) PHRQ_realloc(unknown_ptr->comp_unknowns, - (size_t) ((unknown_ptr->count_comp_unknowns + 1) * sizeof(struct unknown *))); - if (unknown_ptr->comp_unknowns == NULL) - malloc_error(); - unknown_ptr->comp_unknowns[unknown_ptr->count_comp_unknowns++] = - x[mb_unknown_number]; + class unknown *unknown_ptr = find_surface_charge_unknown(token, SURF_PSI); + unknown_ptr->comp_unknowns.push_back(x[mb_unknown_number]); + } } } @@ -3787,7 +3631,7 @@ setup_surface(void) return (OK); } /* ---------------------------------------------------------------------- */ -struct unknown * Phreeqc:: +class unknown * Phreeqc:: find_surface_charge_unknown(std::string &str, int plane) /* ---------------------------------------------------------------------- */ { @@ -3825,21 +3669,21 @@ find_surface_charge_unknown(std::string &str, int plane) } /* ---------------------------------------------------------------------- */ int Phreeqc:: -setup_master_rxn(struct master **master_ptr_list, const std::string &pe_rxn) +setup_master_rxn(const std::vector &master_ptr_list, const std::string &pe_rxn) /* ---------------------------------------------------------------------- */ { /* * Rewrites rxn_secondary for all redox states in list * First, in = TRUE; others, in = REWRITE */ - int j; - struct master *master_ptr, *master_ptr0; + class master *master_ptr, *master_ptr0; /* * Set master_ptr->in, master_ptr->rxn */ master_ptr0 = master_ptr_list[0]; - for (j = 0; (master_ptr = master_ptr_list[j]) != NULL; j++) + for (size_t j = 0; j < master_ptr_list.size(); j++) { + master_ptr = master_ptr_list[j]; /* * Check that data not already given */ @@ -3872,11 +3716,7 @@ setup_master_rxn(struct master **master_ptr_list, const std::string &pe_rxn) master_ptr->in = TRUE; if (master_ptr->s->primary == NULL) { - rxn_free(master_ptr->rxn_secondary); - master_ptr->rxn_secondary = rxn_dup(master_ptr->s->rxn_s); -/* debug - trxn_print (); - */ + master_ptr->rxn_secondary = master_ptr->s->rxn_s; } } else @@ -3885,12 +3725,7 @@ setup_master_rxn(struct master **master_ptr_list, const std::string &pe_rxn) if (master_ptr0->s->primary == NULL) { rewrite_master_to_secondary(master_ptr, master_ptr0); - rxn_free(master_ptr->rxn_secondary); - master_ptr->rxn_secondary = rxn_alloc(count_trxn + 1); trxn_copy(master_ptr->rxn_secondary); -/* debug - trxn_print (); - */ } } master_ptr->pe_rxn = string_hsave(pe_rxn.c_str()); @@ -3899,7 +3734,7 @@ setup_master_rxn(struct master **master_ptr_list, const std::string &pe_rxn) } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -calc_PR(std::vector phase_ptrs, LDBLE P, LDBLE TK, LDBLE V_m) +calc_PR(std::vector phase_ptrs, LDBLE P, LDBLE TK, LDBLE V_m) /* ---------------------------------------------------------------------- */ /* Calculate fugacity and fugacity coefficient for gas pressures if critical T and P are defined. @@ -3933,7 +3768,7 @@ calc_PR(std::vector phase_ptrs, LDBLE P, LDBLE TK, LDBLE V_m) LDBLE r3[4], r3_12, rp, rp3, rq, rz, ri, ri1, one_3 = 0.33333333333333333; LDBLE disct, vinit, v1, ddp, dp_dv, dp_dv2; int it; - struct phase *phase_ptr, *phase_ptr1; + class phase *phase_ptr, *phase_ptr1; cxxGasPhase * gas_phase_ptr = use.Get_gas_phase_ptr(); bool halved; R_TK = R * TK; @@ -4006,27 +3841,31 @@ calc_PR(std::vector phase_ptrs, LDBLE P, LDBLE TK, LDBLE V_m) { if (!strcmp(phase_ptr1->name, "CO2(g)")) a_aa *= 0.81; // Soreide and Whitson, 1992, FPE 77, 217 - else if (!strcmp(phase_ptr1->name, "H2S(g)")) + else if (!strcmp(phase_ptr1->name, "H2S(g)") || !strcmp(phase_ptr1->name, "H2Sg(g)")) a_aa *= 0.81; - else if (!strcmp(phase_ptr1->name, "CH4(g)")) + else if (!strcmp(phase_ptr1->name, "CH4(g)") || !strcmp(phase_ptr1->name, "Mtg(g)") || !strcmp(phase_ptr1->name, "Methane(g)")) a_aa *= 0.51; - else if (!strcmp(phase_ptr->name, "Mtg(g)")) + else if (!strcmp(phase_ptr1->name, "N2(g)") || !strcmp(phase_ptr1->name, "Ntg(g)")) a_aa *= 0.51; - else if (!strcmp(phase_ptr1->name, "N2(g)")) + else if (!strcmp(phase_ptr1->name, "Ethane(g)")) a_aa *= 0.51; + else if (!strcmp(phase_ptr1->name, "Propane(g)")) + a_aa *= 0.45; } if (!strcmp(phase_ptr1->name, "H2O(g)")) { if (!strcmp(phase_ptr->name, "CO2(g)")) a_aa *= 0.81; - else if (!strcmp(phase_ptr->name, "H2S(g)")) + else if (!strcmp(phase_ptr->name, "H2S(g)") || !strcmp(phase_ptr->name, "H2Sg(g)")) a_aa *= 0.81; - else if (!strcmp(phase_ptr->name, "CH4(g)")) + else if (!strcmp(phase_ptr->name, "CH4(g)") || !strcmp(phase_ptr->name, "Mtg(g)") || !strcmp(phase_ptr->name, "Methane(g)")) a_aa *= 0.51; - else if (!strcmp(phase_ptr->name, "Mtg(g)")) + else if (!strcmp(phase_ptr->name, "N2(g)") || !strcmp(phase_ptr->name, "Ntg(g)")) a_aa *= 0.51; - else if (!strcmp(phase_ptr->name, "N2(g)")) + else if (!strcmp(phase_ptr->name, "Ethane(g)")) a_aa *= 0.51; + else if (!strcmp(phase_ptr->name, "Propane(g)")) + a_aa *= 0.45; } a_aa_sum += phase_ptr->fraction_x * phase_ptr1->fraction_x * a_aa; a_aa_sum2 += phase_ptr1->fraction_x * a_aa; @@ -4155,17 +3994,17 @@ calc_PR(std::vector phase_ptrs, LDBLE P, LDBLE TK, LDBLE V_m) { phi = B_r * (rz - 1) - log(rz - B) + A / (2.828427 * B) * (B_r - 2.0 * phase_ptr->pr_aa_sum2 / a_aa_sum) * log((rz + 2.41421356 * B) / (rz - 0.41421356 * B)); - phi = (phi > 4.44 ? 4.44 : (phi < -3 ? -3 : phi)); + //phi = (phi > 4.44 ? 4.44 : (phi < -3 ? -3 : phi)); //if (phi > 4.44) // phi = 4.44; } else - phi = -3.0; // fugacity coefficient > 0.05 - if (/*!strcmp(phase_ptr->name, "H2O(g)") && */phi < -3) - { - // avoid such phi... - phi = -3; - } + phi = -3.0; // fugacity coefficient = 0.05 + //if (/*!strcmp(phase_ptr->name, "H2O(g)") && */phi < -3) + //{ + //// avoid such phi... + // phi = -3; + //} phase_ptr->pr_phi = exp(phi); phase_ptr->pr_si_f = phi / LOG_10; // for initial equilibrations, adapt log_k of the gas phase... @@ -4225,7 +4064,7 @@ setup_pure_phases(void) { cxxPPassemblageComp * comp_ptr = &(it->second); int j; - struct phase * phase_ptr = phase_bsearch(it->first.c_str(), &j, FALSE); + class phase * phase_ptr = phase_bsearch(it->first.c_str(), &j, FALSE); assert(phase_ptr); x[count_unknowns]->type = PP; x[count_unknowns]->description = string_hsave(comp_ptr->Get_name().c_str()); @@ -4252,7 +4091,7 @@ adjust_setup_pure_phases(void) /* ---------------------------------------------------------------------- */ { int i; - struct phase *phase_ptr; + class phase *phase_ptr; LDBLE si_org, p, t; /* * Fills in data for pure_phase assemglage in unknown structure @@ -4265,7 +4104,7 @@ adjust_setup_pure_phases(void) */ for (i = 0; i < count_unknowns; i++) { - std::vector phase_ptrs; + std::vector phase_ptrs; if (x[i]->type == PP) { phase_ptr = x[i]->phase; @@ -4298,12 +4137,12 @@ setup_solution(void) /* * Fills in data in unknown structure for the solution */ - struct master *master_ptr; + class master *master_ptr; cxxSolution *solution_ptr; - char *ptr; + const char* cptr; std::string token; - struct master_isotope *master_isotope_ptr; - struct phase *phase_ptr; + class master_isotope *master_isotope_ptr; + class phase *phase_ptr; solution_ptr = use.Get_solution_ptr(); count_unknowns = 0; @@ -4339,9 +4178,8 @@ setup_solution(void) comp_it = solution_ptr->Get_initial_data()->Get_comps().find(it->first.c_str()); comp_ptr = &(comp_it->second); } - char * temp_desc = string_duplicate(it->first.c_str()); - ptr = temp_desc; - copy_token(token, &ptr); + cptr = it->first.c_str(); + copy_token(token, &cptr); master_ptr = master_bsearch(token.c_str()); /* * Check that total not <= zero @@ -4350,7 +4188,6 @@ setup_solution(void) { if (strcmp(token.c_str(), "H(1)") != 0 && strcmp(token.c_str(), "E") != 0) { - free_check_null(temp_desc); continue; } } @@ -4364,7 +4201,6 @@ setup_solution(void) "Master species not in database for %s, skipping element.", it->first.c_str()); warning_msg(error_string); - free_check_null(temp_desc); continue; } if (master_ptr->type != AQ) @@ -4374,13 +4210,12 @@ setup_solution(void) "Only aqueous concentrations are allowed in solution data, ignoring %s.", it->first.c_str()); warning_msg(error_string); - free_check_null(temp_desc); continue; } /* * Store list of master species pointers, set master[i].in and master[i].rxn for list */ - x[count_unknowns]->master = get_list_master_ptrs(ptr, master_ptr); + x[count_unknowns]->master = get_list_master_ptrs(cptr, master_ptr); if (comp_ptr) { setup_master_rxn(x[count_unknowns]->master, comp_ptr->Get_pe_reaction()); @@ -4395,7 +4230,7 @@ setup_solution(void) */ x[count_unknowns]->type = MB; x[count_unknowns]->description = string_hsave(it->first.c_str()); - for (int j = 0; x[count_unknowns]->master[j] != NULL; j++) + for (size_t j = 0; j < x[count_unknowns]->master.size(); j++) { x[count_unknowns]->master[j]->unknown = x[count_unknowns]; } @@ -4403,10 +4238,8 @@ setup_solution(void) /* * Set pointers */ - free_check_null(temp_desc); - temp_desc = string_duplicate(it->first.c_str()); - ptr = temp_desc; - copy_token(token, &ptr); + cptr = it->first.c_str(); + copy_token(token, &cptr); Utilities::str_tolower(token); if (strstr(token.c_str(), "alk") != NULL) { @@ -4457,15 +4290,13 @@ setup_solution(void) input_error++; } } - free_check_null(temp_desc); /* * Charge balance unknown */ if (comp_ptr && comp_ptr->Get_equation_name().size() > 0) { - char * temp_eq_name = string_duplicate(comp_ptr->Get_equation_name().c_str()); - ptr = temp_eq_name; - copy_token(token, &ptr); + cptr = comp_ptr->Get_equation_name().c_str(); + copy_token(token, &cptr); Utilities::str_tolower(token); if (strstr(token.c_str(), "charge") != NULL) { @@ -4510,7 +4341,6 @@ setup_solution(void) solution_phase_boundary_unknown = x[count_unknowns]; } } - free_check_null(temp_eq_name); } count_unknowns++; } @@ -4587,8 +4417,7 @@ setup_solution(void) ah2o_unknown->description = string_hsave("A(H2O)"); ah2o_unknown->type = AH2O; ah2o_unknown->number = count_unknowns; - ah2o_unknown->master = unknown_alloc_master(); - ah2o_unknown->master[0] = master_bsearch("O"); + ah2o_unknown->master.push_back(master_bsearch("O")); ah2o_unknown->master[0]->unknown = ah2o_unknown; ah2o_unknown->moles = 0.0; count_unknowns++; @@ -4604,8 +4433,7 @@ setup_solution(void) ph_unknown->type = CB; ph_unknown->moles = solution_ptr->Get_cb(); ph_unknown->number = count_unknowns; - ph_unknown->master = unknown_alloc_master(); - ph_unknown->master[0] = s_hplus->primary; + ph_unknown->master.push_back(s_hplus->primary); ph_unknown->master[0]->unknown = ph_unknown; charge_balance_unknown = ph_unknown; count_unknowns++; @@ -4623,8 +4451,7 @@ setup_solution(void) mass_hydrogen_unknown->moles = solution_ptr->total_h; #endif mass_hydrogen_unknown->number = count_unknowns; - mass_hydrogen_unknown->master = unknown_alloc_master(); - mass_hydrogen_unknown->master[0] = s_eminus->primary; + mass_hydrogen_unknown->master.push_back(s_eminus->primary); mass_hydrogen_unknown->master[0]->unknown = mass_hydrogen_unknown; count_unknowns++; /* @@ -4635,8 +4462,7 @@ setup_solution(void) mass_oxygen_unknown->type = MH2O; mass_oxygen_unknown->moles = solution_ptr->Get_total_o(); mass_oxygen_unknown->number = count_unknowns; - mass_oxygen_unknown->master = unknown_alloc_master(); - mass_oxygen_unknown->master[0] = s_h2o->primary; + mass_oxygen_unknown->master.push_back(s_h2o->primary); count_unknowns++; } /* @@ -4669,12 +4495,12 @@ adjust_setup_solution(void) * Fills in data in unknown structure for the solution */ int i; - struct phase *phase_ptr; + class phase *phase_ptr; LDBLE p, t; for (i = 0; i < count_unknowns; i++) { - std::vector phase_ptrs; + std::vector phase_ptrs; if (x[i]->type == SOLUTION_PHASE_BOUNDARY) { x[count_unknowns]->type = SOLUTION_PHASE_BOUNDARY; @@ -4698,28 +4524,6 @@ adjust_setup_solution(void) return (OK); } -/* ---------------------------------------------------------------------- */ -struct master ** Phreeqc:: -unknown_alloc_master(void) -/* ---------------------------------------------------------------------- */ -{ -/* - * Allocates space for a list of 2 master pointers - */ - struct master **master_ptr; - - master_ptr = (struct master **) PHRQ_malloc(2 * sizeof(struct master *)); - if (master_ptr == NULL) - { - malloc_error(); - } - else - { - master_ptr[0] = NULL; - master_ptr[1] = NULL; - } - return (master_ptr); -} /* ---------------------------------------------------------------------- */ int Phreeqc:: @@ -4800,8 +4604,8 @@ setup_unknowns(void) } else { - max_unknowns += (int) (use.Get_surface_ptr()->Get_surface_comps().size() + - 4 * (int) use.Get_surface_ptr()->Get_surface_charges().size()); + max_unknowns += (int)(use.Get_surface_ptr()->Get_surface_comps().size() + + 4 * use.Get_surface_ptr()->Get_surface_charges().size()); } } /* @@ -4837,18 +4641,16 @@ setup_unknowns(void) max_unknowns++; if (pitzer_model == TRUE || sit_model == TRUE) { - max_unknowns += count_s; + max_unknowns += (int)s.size(); } /* * Allocate space for pointer array and structures */ - - space((void **) ((void *) &x), INIT, &max_unknowns, - sizeof(struct unknown *)); + x.resize(max_unknowns); for (i = 0; i < max_unknowns; i++) { - x[i] = (struct unknown *) unknown_alloc(); + x[i] = (class unknown *) unknown_alloc(); x[i]->number = i; } return (OK); @@ -4863,10 +4665,10 @@ store_dn(int k, LDBLE * source, int row, LDBLE coef_in, LDBLE * gamma_source) * Stores the terms for d moles of species k in solution into row, multiplied * by coef_in */ - int col; + size_t col; LDBLE coef; - struct rxn_token *rxn_ptr; - struct master *master_ptr; + class rxn_token *rxn_ptr; + class master *master_ptr; if (equal(coef_in, 0.0, TOL) == TRUE) { @@ -4875,19 +4677,19 @@ store_dn(int k, LDBLE * source, int row, LDBLE coef_in, LDBLE * gamma_source) /* Gamma term for d molality of species */ /* Note dg includes molality as a factor */ - row = row * (count_unknowns + 1); + row = row * ((int)count_unknowns + 1); if (s[k]->type != SURF && s[k] != s_h2o) { if (debug_prep == TRUE) { - output_msg(sformatf( "\t\t%-24s%10.3f\t%d\t%d\n", + output_msg(sformatf( "\t\t%-24s%10.3f\t%d\t%d", "Activity coefficient", (double) (-1.0 * coef_in), row / (count_unknowns + 1), mu_unknown->number)); } /* mu term */ if (gamma_source != NULL) { - store_jacob(gamma_source, &array[row + mu_unknown->number], + store_jacob(gamma_source, &my_array[(size_t)row + (size_t)mu_unknown->number], -1.0 * coef_in); } } @@ -4898,17 +4700,17 @@ store_dn(int k, LDBLE * source, int row, LDBLE coef_in, LDBLE * gamma_source) { if (debug_prep == TRUE) { - output_msg(sformatf( "\t\t%-24s%10.3f\t%d\t%d\n", + output_msg(sformatf( "\t\t%-24s%10.3f\t%d\t%d", mass_oxygen_unknown->master[0]->s->name, (double) coef_in, row / (count_unknowns + 1), mass_oxygen_unknown->number)); } - store_jacob(source, &(array[row + mass_oxygen_unknown->number]), + store_jacob(source, &(my_array[(size_t)row + (size_t)mass_oxygen_unknown->number]), coef_in); } if (s[k] == s_h2o) return (OK); - for (rxn_ptr = s[k]->rxn_x->token + 1; rxn_ptr->s != NULL; rxn_ptr++) + for (rxn_ptr = &s[k]->rxn_x.token[0] + 1; rxn_ptr->s != NULL; rxn_ptr++) { if (rxn_ptr->s->secondary != NULL && rxn_ptr->s->secondary->in == TRUE) @@ -4919,21 +4721,21 @@ store_dn(int k, LDBLE * source, int row, LDBLE coef_in, LDBLE * gamma_source) { master_ptr = rxn_ptr->s->primary; } - if (debug_prep == TRUE) - { - output_msg(sformatf( "\t\t%s\n", master_ptr->s->name)); - } + //if (debug_prep == TRUE) + //{ + // output_msg(sformatf( "\t\t%s\n", master_ptr->s->name)); + //} if (master_ptr == NULL ||master_ptr->unknown == NULL) continue; col = master_ptr->unknown->number; coef = coef_in * rxn_ptr->coef; - store_jacob(source, &(array[row + col]), coef); if (debug_prep == TRUE) { - output_msg(sformatf( "\t\t%-24s%10.3f\t%d\t%d\n", + output_msg(sformatf( "\t\t%-24s%10.3f\t%d\t%d", master_ptr->s->name, (double) coef, row / (count_unknowns + 1), col)); } + store_jacob(source, &(my_array[(size_t)row + (size_t)col]), coef); } return (OK); } @@ -4950,34 +4752,26 @@ store_jacob(LDBLE * source, LDBLE * target, LDBLE coef) */ if (equal(coef, 1.0, TOL) == TRUE) { + size_t count_sum_jacob1 = sum_jacob1.size(); + sum_jacob1.resize(count_sum_jacob1 + 1); if (debug_prep == TRUE) { - output_msg(sformatf( "\t\tjacob1 %d\n", count_sum_jacob1)); + output_msg(sformatf( "\tjacob1 %d\n", (int)count_sum_jacob1)); } sum_jacob1[count_sum_jacob1].source = source; - sum_jacob1[count_sum_jacob1++].target = target; - /* Check space */ - if (count_sum_jacob1 >= max_sum_jacob1) - { - space((void **) ((void *) &sum_jacob1), count_sum_jacob1, - &max_sum_jacob1, sizeof(struct list1)); - } + sum_jacob1[count_sum_jacob1].target = target; } else { + size_t count_sum_jacob2 = sum_jacob2.size(); + sum_jacob2.resize(count_sum_jacob2 + 1); if (debug_prep == TRUE) { - output_msg(sformatf( "\t\tjacob2 %d\n", count_sum_jacob2)); + output_msg(sformatf("\tjacob2 %d\n", count_sum_jacob2)); } sum_jacob2[count_sum_jacob2].source = source; sum_jacob2[count_sum_jacob2].target = target; - sum_jacob2[count_sum_jacob2++].coef = coef; - /* Check space */ - if (count_sum_jacob2 >= max_sum_jacob2) - { - space((void **) ((void *) &sum_jacob2), count_sum_jacob2, - &max_sum_jacob2, sizeof(struct list2)); - } + sum_jacob2[count_sum_jacob2].coef = coef; } return (OK); } @@ -4990,15 +4784,11 @@ store_jacob0(int row, int column, LDBLE coef) /* * Stores in list a constant coef which will be added into jacobian array */ + size_t count_sum_jacob0 = sum_jacob0.size(); + sum_jacob0.resize(count_sum_jacob0 + 1); sum_jacob0[count_sum_jacob0].target = - &(array[row * (count_unknowns + 1) + column]); - sum_jacob0[count_sum_jacob0++].coef = coef; - /* Check space */ - if (count_sum_jacob0 >= max_sum_jacob0) - { - space((void **) ((void *) &sum_jacob0), count_sum_jacob0, - &max_sum_jacob0, sizeof(struct list0)); - } + &(my_array[(size_t)row * (count_unknowns + 1) + (size_t)column]); + sum_jacob0[count_sum_jacob0].coef = coef; return (OK); } @@ -5014,25 +4804,18 @@ store_mb(LDBLE * source, LDBLE * target, LDBLE coef) */ if (equal(coef, 1.0, TOL) == TRUE) { + size_t count_sum_mb1 = sum_mb1.size(); + sum_mb1.resize(count_sum_mb1 + 1); sum_mb1[count_sum_mb1].source = source; - sum_mb1[count_sum_mb1++].target = target; - if (count_sum_mb1 >= max_sum_mb1) - { - space((void **) ((void *) &sum_mb1), - count_sum_mb1 + count_trxn + 4, &max_sum_mb1, - sizeof(struct list1)); - } + sum_mb1[count_sum_mb1].target = target; } else { + size_t count_sum_mb2 = sum_mb2.size(); + sum_mb2.resize(count_sum_mb2 + 1); sum_mb2[count_sum_mb2].source = source; sum_mb2[count_sum_mb2].coef = coef; - sum_mb2[count_sum_mb2++].target = target; - if (count_sum_mb2 >= max_sum_mb2) - { - space((void **) ((void *) &sum_mb2), count_sum_mb2, - &max_sum_mb2, sizeof(struct list2)); - } + sum_mb2[count_sum_mb2].target = target; } return (OK); } @@ -5048,15 +4831,11 @@ store_sum_deltas(LDBLE * source, LDBLE * target, LDBLE coef) * in x[i]->delta. These may be multiplied by a factor under some * situations where the entire calculated step is not taken */ + size_t count_sum_delta = sum_delta.size(); + sum_delta.resize(count_sum_delta + 1); sum_delta[count_sum_delta].source = source; sum_delta[count_sum_delta].target = target; - sum_delta[count_sum_delta++].coef = coef; - /* Check space */ - if (count_sum_delta >= max_sum_delta) - { - space((void **) ((void *) &sum_delta), count_sum_delta, - &max_sum_delta, sizeof(struct list2)); - } + sum_delta[count_sum_delta].coef = coef; return (OK); } @@ -5069,11 +4848,11 @@ switch_bases(void) * Check if activity of first master species is predominant among activities of * secondary master species included in mass balance. */ - int i, j; + int i; int first; int return_value; LDBLE la, la1; - struct master *master_ptr; + class master *master_ptr; return_value = FALSE; for (i = 0; i < count_unknowns; i++) @@ -5084,18 +4863,18 @@ switch_bases(void) break; first = 0; la = x[i]->master[0]->s->la; - for (j = 1; x[i]->master[j] != NULL; j++) + for (size_t j = 1; j < x[i]->master.size(); j++) { la1 = x[i]->master[j]->s->lm + x[i]->master[j]->s->lg; if (first == 0 && la1 > la + 10.) { la = la1; - first = j; + first = (int)j; } else if (first != 0 && la1 > la) { la = la1; - first = j; + first = (int)j; } } if (first != 0) @@ -5129,17 +4908,17 @@ tidy_redox(void) * */ std::string token, tok1, tok2; - struct master *master_ptr1, *master_ptr2; + class master *master_ptr1, *master_ptr2; /* * Keep valences of oxygen and hydrogen in model, if not already in */ - for (int i = 0; i < count_master; i++) + for (int i = 0; i < (int)master.size(); i++) { if (master[i]->primary == TRUE && (master[i]->s == s_hplus || master[i]->s == s_h2o)) { int j = i + 1; - while (j < count_master && master[j]->elt->primary == master[i]) + while (j < (int)master.size() && master[j]->elt->primary == master[i]) { if (master[j]->in == FALSE && master[j]->s != master[i]->s) { @@ -5153,12 +4932,12 @@ tidy_redox(void) /* * Writes equations for e- for each redox couple used in solution n */ - std::map::iterator it; + std::map < std::string, CReaction >::iterator it; for (it = pe_x.begin(); it != pe_x.end(); it++) { if (strcmp_nocase(it->first.c_str(), "pe") == 0) { - cxxChemRxn temp_rxn(s_eminus->rxn); + CReaction temp_rxn(s_eminus->rxn); it->second = temp_rxn; } else @@ -5199,16 +4978,15 @@ tidy_redox(void) "Analytical data missing for redox couple, %s\n\t Using pe instead.", it->first.c_str()); warning_msg(error_string); - cxxChemRxn temp_rxn(s_eminus->rxn); + CReaction temp_rxn(s_eminus->rxn); it->second = temp_rxn; } else { - struct reaction *rxn = rxn_alloc(count_trxn + 1); + CReaction rxn(count_trxn + 1); trxn_copy(rxn); - cxxChemRxn temp_rxn(rxn); + CReaction temp_rxn(rxn); it->second = temp_rxn; - rxn_free(rxn); } } } @@ -5228,16 +5006,15 @@ tidy_redox(void) error_string = sformatf( "Using pe instead of %s.", it->first.c_str()); warning_msg(error_string); - cxxChemRxn temp_rxn(s_eminus->rxn); + CReaction temp_rxn(s_eminus->rxn); it->second = temp_rxn; } else { - struct reaction *rxn = rxn_alloc(count_trxn + 1); + CReaction rxn(count_trxn + 1); trxn_copy(rxn); - cxxChemRxn temp_rxn(rxn); + CReaction temp_rxn(rxn); it->second = temp_rxn; - rxn_free(rxn); } } @@ -5249,9 +5026,9 @@ write_mb_eqn_x(void) /* ---------------------------------------------------------------------- */ { int count, repeat; - int i, count_rxn_orig; - int j, k; - struct master *master_ptr; + int i; + size_t count_rxn_orig; + class master *master_ptr; /* * Rewrite any secondary master species flagged REWRITE * Don`t add in any pe reactions @@ -5285,7 +5062,7 @@ write_mb_eqn_x(void) { repeat = TRUE; trxn_add(trxn.token[i].s->secondary->rxn_secondary, - trxn.token[i].coef, FALSE); + trxn.token[i].coef, false); } } trxn_combine(); @@ -5295,14 +5072,12 @@ write_mb_eqn_x(void) */ count_elts = 0; paren_count = 0; - for (i = 1; i < count_trxn; i++) + for (size_t i = 1; i < count_trxn; i++) { - j = count_elts; - char * temp_name = string_duplicate(trxn.token[i].s->name); - char * ptr = temp_name; - get_elts_in_species(&ptr, trxn.token[i].coef); - free_check_null(temp_name); - for (k = j; k < count_elts; k++) + size_t j = count_elts; + const char* cptr = trxn.token[i].s->name; + get_elts_in_species(&cptr, trxn.token[i].coef); + for (size_t k = j; k < count_elts; k++) { if (trxn.token[i].s->secondary != NULL) { @@ -5320,25 +5095,16 @@ write_mb_eqn_x(void) } if (trxn.token[i].s->secondary == NULL) { - char * temp_name = string_duplicate(trxn.token[i].s->primary->elt->name); - char *ptr = temp_name; - get_secondary_in_species(&ptr, trxn.token[i].coef); - free_check_null(temp_name); + const char* cptr = trxn.token[i].s->primary->elt->name; + get_secondary_in_species(&cptr, trxn.token[i].coef); } else { - char * temp_name = string_duplicate(trxn.token[i].s->secondary->elt->name); - ptr = temp_name; - get_secondary_in_species(&ptr, trxn.token[i].coef); - free_check_null(temp_name); + cptr = trxn.token[i].s->secondary->elt->name; + get_secondary_in_species(&cptr, trxn.token[i].coef); } } - if (count_elts > 0) - { - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); - elt_list_combine(); - } + elt_list_combine(); return (OK); } @@ -5356,7 +5122,7 @@ write_mb_for_species_list(int n) * Start with secondary reaction */ count_trxn = 0; - trxn_add(s[n]->rxn_s, 1.0, FALSE); + trxn_add(s[n]->rxn_s, 1.0, false); /* * Copy to elt_list */ @@ -5366,47 +5132,36 @@ write_mb_for_species_list(int n) { if (trxn.token[i].s->secondary == NULL) { - char * temp_name = string_duplicate(trxn.token[i].s->primary->elt->name); - char * ptr = temp_name; - get_secondary_in_species(&ptr, trxn.token[i].coef); - free_check_null(temp_name); + const char* cptr = trxn.token[i].s->primary->elt->name; + get_secondary_in_species(&cptr, trxn.token[i].coef); } else { - char * temp_name = string_duplicate(trxn.token[i].s->secondary->elt->name); - char * ptr = temp_name; - if (get_secondary_in_species(&ptr, trxn.token[i].coef) == ERROR) + const char* cptr = trxn.token[i].s->secondary->elt->name; + if (get_secondary_in_species(&cptr, trxn.token[i].coef) == ERROR) { input_error++; error_string = sformatf( "Error parsing %s.", trxn.token[i].s->secondary->elt->name); error_msg(error_string, CONTINUE); } - free_check_null(temp_name); } } for (i = 0; i < count_elts; i++) { if (strcmp(elt_list[i].elt->name, "O(-2)") == 0) { - if (count_elts >= max_elts) + if (count_elts >= (int)elt_list.size()) { - space((void **) ((void *) &elt_list), count_elts, &max_elts, - sizeof(struct elt_list)); + elt_list.resize(count_elts + 1); } elt_list[count_elts].elt = element_h_one; elt_list[count_elts].coef = elt_list[i].coef * 2; count_elts++; } } - if (count_elts > 0) - { - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); - elt_list_combine(); - } - s[n]->next_sys_total = - (struct elt_list *) free_check_null(s[n]->next_sys_total); - s[n]->next_sys_total = elt_list_save(); + elt_list_combine(); + s[n]->next_sys_total.clear(); + s[n]->next_sys_total = elt_list_vsave(); return (OK); } @@ -5424,7 +5179,7 @@ write_phase_sys_total(int n) * Start with secondary reaction */ count_trxn = 0; - trxn_add_phase(phases[n]->rxn_s, 1.0, FALSE); + trxn_add_phase(phases[n]->rxn_s, 1.0, false); /* * Copy to elt_list */ @@ -5434,85 +5189,33 @@ write_phase_sys_total(int n) { if (trxn.token[i].s->secondary == NULL) { - char * temp_name = string_duplicate(trxn.token[i].s->primary->elt->name); - char *ptr = temp_name; - get_secondary_in_species(&ptr, trxn.token[i].coef); - free_check_null(temp_name); + const char* cptr = trxn.token[i].s->primary->elt->name; + get_secondary_in_species(&cptr, trxn.token[i].coef); } else { - char * temp_name = string_duplicate(trxn.token[i].s->secondary->elt->name); - char *ptr = temp_name; - get_secondary_in_species(&ptr, trxn.token[i].coef); - free_check_null(temp_name); + const char* cptr = trxn.token[i].s->secondary->elt->name; + get_secondary_in_species(&cptr, trxn.token[i].coef); } } for (i = 0; i < count_elts; i++) { if (strcmp(elt_list[i].elt->name, "O(-2)") == 0) { - if (count_elts >= max_elts) + if (count_elts >= (int)elt_list.size()) { - space((void **) ((void *) &elt_list), count_elts, &max_elts, - sizeof(struct elt_list)); + elt_list.resize(count_elts + 1); } elt_list[count_elts].elt = element_h_one; elt_list[count_elts].coef = elt_list[i].coef * 2; count_elts++; } } - if (count_elts > 0) - { - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); - elt_list_combine(); - } - phases[n]->next_sys_total = - (struct elt_list *) free_check_null(phases[n]->next_sys_total); - phases[n]->next_sys_total = elt_list_save(); + elt_list_combine(); + phases[n]->next_sys_total.clear(); + phases[n]->next_sys_total = elt_list_vsave(); return (OK); } - -/* ---------------------------------------------------------------------- */ -LDBLE Phreeqc:: -calc_delta_v(reaction *r_ptr, bool phase) -/* ---------------------------------------------------------------------- */ -{ -/* calculate delta_v from molar volumes */ -//dlp - LDBLE d_v = 0.0; - - if (phase) - { - /* for phases: reactants have coef's < 0, products have coef's > 0, v.v. for species */ - for (size_t i = 1; r_ptr->token[i].s /*|| r_ptr->token[i].s*/ ; i++) - { - //if (!r_ptr->token[i].s) - // continue; - //if (!strcmp(r_ptr->token[i].s->name, "H+")) - // continue; - //if (!strcmp(r_ptr->token[i].s->name, "e-")) - // continue; - //else if (r_ptr->token[i].s->logk[vm_tc]) - d_v += r_ptr->token[i].coef * r_ptr->token[i].s->logk[vm_tc]; - } - } - else - { - for (size_t i = 0; r_ptr->token[i].name /*|| r_ptr->token[i].s*/ ; i++) - { - if (!r_ptr->token[i].s) - continue; - //if (!strcmp(r_ptr->token[i].s->name, "H+")) - // continue; - //if (!strcmp(r_ptr->token[i].s->name, "e-")) - // continue; - //else if (r_ptr->token[i].s->logk[vm_tc]) - d_v -= r_ptr->token[i].coef * r_ptr->token[i].s->logk[vm_tc]; - } - } - return d_v; -} /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: calc_lk_phase(phase *p_ptr, LDBLE TK, LDBLE pa) @@ -5523,8 +5226,8 @@ calc_lk_phase(phase *p_ptr, LDBLE TK, LDBLE pa) * see calc_vm (below) for details. */ - reaction *r_ptr = (p_ptr->rxn_x ? p_ptr->rxn_x :\ - (p_ptr->rxn_s ? p_ptr->rxn_s : NULL)); + CReaction *r_ptr = (p_ptr->rxn_x.size() ? &p_ptr->rxn_x :\ + (p_ptr->rxn_s.size() ? &p_ptr->rxn_s : NULL)); if (!r_ptr) return 0.0; if (!r_ptr->logk[vm0]) // in case Vm of the phase is 0... @@ -5587,7 +5290,8 @@ calc_lk_phase(phase *p_ptr, LDBLE TK, LDBLE pa) } } } - else if (s_x[i]->millero[0]) + //else if (s_x[i]->millero[0]) + else if (s_ptr->millero[0]) { /* Millero volume at I = 0... */ d_v += s_ptr->millero[0] + tc * (s_ptr->millero[1] + tc * s_ptr->millero[2]); @@ -5626,8 +5330,9 @@ calc_vm(LDBLE tc, LDBLE pa) * b4 = logk[vmi4], or * coef(tc) = millero[3] + millero[4] * tc + millero[5] * tc^2 */ + if (llnl_temp.size() > 0) return OK; LDBLE pb_s = 2600. + pa * 1.01325, TK_s = tc + 45.15, sqrt_mu = sqrt(mu_x); - for (int i = 0; i < count_s_x; i++) + for (int i = 0; i < (int)this->s_x.size(); i++) { //if (!strcmp(s_x[i]->name, "H2O")) if (s_x[i] == s_h2o) @@ -5638,7 +5343,7 @@ calc_vm(LDBLE tc, LDBLE pa) if (s_x[i]->logk[vma1]) { /* supcrt volume at I = 0... */ - s_x[i]->rxn_x->logk[vm_tc] = s_x[i]->logk[vma1] + s_x[i]->logk[vma2] / pb_s + + s_x[i]->rxn_x.logk[vm_tc] = s_x[i]->logk[vma1] + s_x[i]->logk[vma2] / pb_s + (s_x[i]->logk[vma3] + s_x[i]->logk[vma4] / pb_s) / TK_s - s_x[i]->logk[wref] * QBrn; /* A (small) correction by Shock et al., 1992, for 155 < tc < 255, P_sat < P < 1e3. @@ -5648,21 +5353,21 @@ calc_vm(LDBLE tc, LDBLE pa) //{ // LDBLE re = s_x[i]->z * s_x[i]->z / (s_x[i]->logk[wref] / 1.66027e5 + s_x[i]->z / 3.082); // LDBLE Z3 = fabs(pow(s_x[i]->z, 3)) / re / re - s_x[i]->z / 9.498724; - // s_x[i]->rxn_x->logk[vm_tc] += ZBrn * 1.66027e5 * Z3 * dgdP; + // s_x[i]->rxn_x.logk[vm_tc] += ZBrn * 1.66027e5 * Z3 * dgdP; //} if (s_x[i]->z) { /* the ionic strength term * I^0.5... */ if (s_x[i]->logk[b_Av] < 1e-5) - s_x[i]->rxn_x->logk[vm_tc] += s_x[i]->z * s_x[i]->z * 0.5 * DH_Av * sqrt_mu; + s_x[i]->rxn_x.logk[vm_tc] += s_x[i]->z * s_x[i]->z * 0.5 * DH_Av * sqrt_mu; else { /* limit the Debye-Hueckel slope by b... */ /* pitzer... */ - //s_x[i]->rxn_x->logk[vm_tc] += s_x[i]->z * s_x[i]->z * 0.5 * DH_Av * + //s_x[i]->rxn_x.logk[vm_tc] += s_x[i]->z * s_x[i]->z * 0.5 * DH_Av * // log(1 + s_x[i]->logk[b_Av] * sqrt(mu_x)) / s_x[i]->logk[b_Av]; /* extended DH... */ - s_x[i]->rxn_x->logk[vm_tc] += s_x[i]->z * s_x[i]->z * 0.5 * DH_Av * + s_x[i]->rxn_x.logk[vm_tc] += s_x[i]->z * s_x[i]->z * 0.5 * DH_Av * sqrt_mu / (1 + s_x[i]->logk[b_Av] * DH_B * sqrt_mu); } /* plus the volume terms * I... */ @@ -5670,20 +5375,20 @@ calc_vm(LDBLE tc, LDBLE pa) { LDBLE bi = s_x[i]->logk[vmi1] + s_x[i]->logk[vmi2] / TK_s + s_x[i]->logk[vmi3] * TK_s; if (s_x[i]->logk[vmi4] == 1.0) - s_x[i]->rxn_x->logk[vm_tc] += bi * mu_x; + s_x[i]->rxn_x.logk[vm_tc] += bi * mu_x; else - s_x[i]->rxn_x->logk[vm_tc] += bi * pow(mu_x, s_x[i]->logk[vmi4]); + s_x[i]->rxn_x.logk[vm_tc] += bi * pow(mu_x, s_x[i]->logk[vmi4]); } } } else if (s_x[i]->millero[0]) { /* Millero volume at I = 0... */ - s_x[i]->rxn_x->logk[vm_tc] = s_x[i]->millero[0] + tc * (s_x[i]->millero[1] + tc * s_x[i]->millero[2]); + s_x[i]->rxn_x.logk[vm_tc] = s_x[i]->millero[0] + tc * (s_x[i]->millero[1] + tc * s_x[i]->millero[2]); if (s_x[i]->z) { /* the ionic strength terms... */ - s_x[i]->rxn_x->logk[vm_tc] += s_x[i]->z * s_x[i]->z * 0.5 * DH_Av * sqrt_mu + + s_x[i]->rxn_x.logk[vm_tc] += s_x[i]->z * s_x[i]->z * 0.5 * DH_Av * sqrt_mu + (s_x[i]->millero[3] + tc * (s_x[i]->millero[4] + tc * s_x[i]->millero[5])) * mu_x; } } @@ -5691,7 +5396,7 @@ calc_vm(LDBLE tc, LDBLE pa) continue; /* for calculating delta_v of the reaction... */ - s_x[i]->logk[vm_tc] = s_x[i]->rxn_x->logk[vm_tc]; + s_x[i]->logk[vm_tc] = s_x[i]->rxn_x.logk[vm_tc]; } return OK; } @@ -5722,29 +5427,29 @@ k_temp(LDBLE tc, LDBLE pa) /* pa - pressure in atm */ calc_vm(tc, pa); mu_terms_in_logk = false; - for (i = 0; i < count_s_x; i++) + for (i = 0; i < (int)this->s_x.size(); i++) { - //if (s_x[i]->rxn_x->logk[vm_tc]) + //if (s_x[i]->rxn_x.logk[vm_tc]) /* calculate delta_v for the reaction... */ - s_x[i]->rxn_x->logk[delta_v] = calc_delta_v(s_x[i]->rxn_x, false); - if (tc == current_tc && s_x[i]->rxn_x->logk[delta_v] == 0) + s_x[i]->rxn_x.logk[delta_v] = calc_delta_v(*&s_x[i]->rxn_x, false); + if (tc == current_tc && s_x[i]->rxn_x.logk[delta_v] == 0) continue; mu_terms_in_logk = true; - s_x[i]->lk = k_calc(s_x[i]->rxn_x->logk, tempk, pa * PASCAL_PER_ATM); + s_x[i]->lk = k_calc(s_x[i]->rxn_x.logk, tempk, pa * PASCAL_PER_ATM); } /* * Calculate log k for all pure phases */ - for (i = 0; i < count_phases; i++) + for (i = 0; i < (int)phases.size(); i++) { if (phases[i]->in == TRUE) { - phases[i]->rxn_x->logk[delta_v] = calc_delta_v(phases[i]->rxn_x, true) - + phases[i]->rxn_x.logk[delta_v] = calc_delta_v(*&phases[i]->rxn_x, true) - phases[i]->logk[vm0]; - if (phases[i]->rxn_x->logk[delta_v]) + if (phases[i]->rxn_x.logk[delta_v]) mu_terms_in_logk = true; - phases[i]->lk = k_calc(phases[i]->rxn_x->logk, tempk, pa * PASCAL_PER_ATM); + phases[i]->lk = k_calc(phases[i]->rxn_x.logk, tempk, pa * PASCAL_PER_ATM); } } @@ -5810,18 +5515,10 @@ save_model(void) /* ---------------------------------------------------------------------- */ { int i; -/* - * save temperature - */ - last_model.temperature = tc_x; -/* - * save pressure - */ - last_model.pressure = patm_x; /* * mark master species */ - for (i = 0; i < count_master; i++) + for (i = 0; i < (int)master.size(); i++) { master[i]->last_model = FALSE; if (master[i]->total > 0) @@ -5840,44 +5537,31 @@ save_model(void) /* * save list of phase pointers for gas phase */ - last_model.gas_phase = - (struct phase **) free_check_null(last_model.gas_phase); if (use.Get_gas_phase_ptr() != NULL) { cxxGasPhase * gas_phase_ptr = use.Get_gas_phase_ptr(); - last_model.count_gas_phase = (int) gas_phase_ptr->Get_gas_comps().size(); - last_model.gas_phase = - (struct phase **) PHRQ_malloc((size_t) last_model.count_gas_phase * - sizeof(struct phase *)); - if (last_model.gas_phase == NULL) - malloc_error(); + last_model.gas_phase_type = gas_phase_ptr->Get_type(); + last_model.gas_phase.resize(gas_phase_ptr->Get_gas_comps().size()); for (size_t i = 0; i < gas_phase_ptr->Get_gas_comps().size(); i++) { cxxGasComp *gc_ptr = &(gas_phase_ptr->Get_gas_comps()[i]); int k; - struct phase *phase_ptr = phase_bsearch(gc_ptr->Get_phase_name().c_str() , &k, FALSE); + class phase *phase_ptr = phase_bsearch(gc_ptr->Get_phase_name().c_str() , &k, FALSE); assert(phase_ptr); last_model.gas_phase[i] = phase_ptr; } } else { - last_model.count_gas_phase = 0; - last_model.gas_phase = NULL; + last_model.gas_phase_type = cxxGasPhase::GP_UNKNOWN; + last_model.gas_phase.clear(); } /* * save list of names of solid solutions */ - last_model.ss_assemblage = - (const char **) free_check_null(last_model.ss_assemblage); if (use.Get_ss_assemblage_ptr() != NULL) { - size_t count_ss = use.Get_ss_assemblage_ptr()->Get_SSs().size(); - last_model.count_ss_assemblage = (int) count_ss; - last_model.ss_assemblage = - (const char **) PHRQ_malloc(count_ss * sizeof(char *)); - if (last_model.ss_assemblage == NULL) - malloc_error(); + last_model.ss_assemblage.resize(use.Get_ss_assemblage_ptr()->Get_SSs().size()); std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); for (size_t j = 0; j < ss_ptrs.size(); j++) { @@ -5886,41 +5570,24 @@ save_model(void) } else { - last_model.count_ss_assemblage = 0; - last_model.ss_assemblage = NULL; + last_model.ss_assemblage.clear(); } /* * save list of phase pointers for pp_assemblage */ - last_model.pp_assemblage = - (struct phase **) free_check_null(last_model.pp_assemblage); - last_model.add_formula = - (const char **) free_check_null(last_model.add_formula); - last_model.si = (LDBLE *) free_check_null(last_model.si); if (use.Get_pp_assemblage_ptr() != NULL) { cxxPPassemblage * pp_assemblage_ptr = use.Get_pp_assemblage_ptr(); - last_model.count_pp_assemblage = (int) pp_assemblage_ptr->Get_pp_assemblage_comps().size(); - last_model.pp_assemblage = - (struct phase **) PHRQ_malloc((size_t) last_model.count_pp_assemblage * - sizeof(struct phase *)); - if (last_model.pp_assemblage == NULL) - malloc_error(); - last_model.add_formula = - (const char **) PHRQ_malloc((size_t)last_model.count_pp_assemblage * sizeof(char *)); - if (last_model.add_formula == NULL) - malloc_error(); - last_model.si = - (LDBLE *) PHRQ_malloc((size_t) last_model.count_pp_assemblage * sizeof(LDBLE)); - if (last_model.si == NULL) - malloc_error(); + last_model.pp_assemblage.resize(pp_assemblage_ptr->Get_pp_assemblage_comps().size()); + last_model.add_formula.resize(pp_assemblage_ptr->Get_pp_assemblage_comps().size()); + last_model.si.resize(pp_assemblage_ptr->Get_pp_assemblage_comps().size()); std::map::iterator it; it = pp_assemblage_ptr->Get_pp_assemblage_comps().begin(); i = 0; for ( ; it != pp_assemblage_ptr->Get_pp_assemblage_comps().end(); it++) { int j; - struct phase * phase_ptr = phase_bsearch(it->first.c_str(), &j, false); + class phase * phase_ptr = phase_bsearch(it->first.c_str(), &j, false); assert(phase_ptr); last_model.pp_assemblage[i] = phase_ptr; last_model.add_formula[i] = string_hsave(it->second.Get_add_formula().c_str()); @@ -5930,38 +5597,23 @@ save_model(void) } else { - last_model.count_pp_assemblage = 0; - last_model.pp_assemblage = NULL; - last_model.add_formula = NULL; - last_model.si = NULL; + last_model.pp_assemblage.clear(); + last_model.add_formula.clear(); + last_model.si.clear(); } /* * save data for surface */ - last_model.surface_comp = - (const char **) free_check_null(last_model.surface_comp); - last_model.surface_charge = - (const char **) free_check_null(last_model.surface_charge); if (use.Get_surface_ptr() != NULL) { /* comps */ - last_model.count_surface_comp = (int) use.Get_surface_ptr()->Get_surface_comps().size(); - last_model.surface_comp = - (const char **) PHRQ_malloc(use.Get_surface_ptr()->Get_surface_comps().size() * - sizeof(char *)); - if (last_model.surface_comp == NULL) - malloc_error(); + last_model.surface_comp.resize(use.Get_surface_ptr()->Get_surface_comps().size()); for (i = 0; i < (int) use.Get_surface_ptr()->Get_surface_comps().size(); i++) { last_model.surface_comp[i] = string_hsave(use.Get_surface_ptr()->Get_surface_comps()[i].Get_formula().c_str()); } /* charge */ - last_model.count_surface_charge = (int) use.Get_surface_ptr()->Get_surface_charges().size(); - last_model.surface_charge = - (const char **) PHRQ_malloc( use.Get_surface_ptr()->Get_surface_charges().size() * - sizeof(char *)); - if (last_model.surface_charge == NULL) - malloc_error(); + last_model.surface_charge.resize(use.Get_surface_ptr()->Get_surface_charges().size()); for (i = 0; i < (int) use.Get_surface_ptr()->Get_surface_charges().size(); i++) { last_model.surface_charge[i] = string_hsave(use.Get_surface_ptr()->Get_surface_charges()[i].Get_name().c_str()); @@ -5975,10 +5627,8 @@ save_model(void) last_model.dl_type = cxxSurface::NO_DL; /*last_model.edl = -1; */ last_model.surface_type = cxxSurface::UNKNOWN_DL; - last_model.count_surface_comp = 0; - last_model.surface_comp = NULL; - last_model.count_surface_charge = 0; - last_model.surface_charge = NULL; + last_model.surface_comp.clear(); + last_model.surface_charge.clear(); } current_tc = NAN; @@ -6000,15 +5650,17 @@ check_same_model(void) /* * Force new model to be built in prep */ - if (last_model.force_prep == TRUE) + if (last_model.force_prep) { - last_model.force_prep = FALSE; + last_model.force_prep = false; return (FALSE); } + if (state == TRANSPORT && cell_data[cell_no].same_model) + return TRUE; /* * Check master species */ - for (i = 0; i < count_master; i++) + for (i = 0; i < (int)master.size(); i++) { /* output_msg(sformatf("%s\t%e\t%d\n", master[i]->elt->name, @@ -6039,17 +5691,17 @@ check_same_model(void) if (use.Get_gas_phase_ptr() != NULL) { cxxGasPhase * gas_phase_ptr = use.Get_gas_phase_ptr(); - if (last_model.gas_phase == NULL) + if (last_model.gas_phase.size() != (int)gas_phase_ptr->Get_gas_comps().size()) return (FALSE); if (last_model.numerical_fixed_volume != numerical_fixed_volume) return (FALSE); - if (last_model.count_gas_phase != (int) gas_phase_ptr->Get_gas_comps().size()) + if (last_model.gas_phase_type != gas_phase_ptr->Get_type()) return (FALSE); for (i = 0; i < (int) gas_phase_ptr->Get_gas_comps().size(); i++) { cxxGasComp *gc_ptr = &(gas_phase_ptr->Get_gas_comps()[i]); int k; - struct phase *phase_ptr = phase_bsearch(gc_ptr->Get_phase_name().c_str() , &k, FALSE); + class phase *phase_ptr = phase_bsearch(gc_ptr->Get_phase_name().c_str() , &k, FALSE); assert(phase_ptr); if (last_model.gas_phase[i] != phase_ptr) { @@ -6059,7 +5711,7 @@ check_same_model(void) } else { - if (last_model.gas_phase != NULL) + if (last_model.gas_phase.size() > 0) return (FALSE); } /* @@ -6067,7 +5719,7 @@ check_same_model(void) */ if (use.Get_ss_assemblage_ptr() != NULL) { - if (last_model.count_ss_assemblage != (int) use.Get_ss_assemblage_ptr()->Get_SSs().size()) + if (last_model.ss_assemblage.size() != (int) use.Get_ss_assemblage_ptr()->Get_SSs().size()) return (FALSE); std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); for (size_t i = 0; i < ss_ptrs.size(); i++) @@ -6080,7 +5732,7 @@ check_same_model(void) } else { - if (last_model.ss_assemblage != NULL) + if (last_model.ss_assemblage.size() > 0) return (FALSE); } /* @@ -6089,7 +5741,7 @@ check_same_model(void) if (use.Get_pp_assemblage_ptr() != NULL) { cxxPPassemblage * pp_assemblage_ptr = use.Get_pp_assemblage_ptr(); - if (last_model.count_pp_assemblage != (int) pp_assemblage_ptr->Get_pp_assemblage_comps().size()) + if (last_model.pp_assemblage.size() != (int) pp_assemblage_ptr->Get_pp_assemblage_comps().size()) return (FALSE); std::map::iterator it; @@ -6098,7 +5750,7 @@ check_same_model(void) for ( ; it != pp_assemblage_ptr->Get_pp_assemblage_comps().end(); it++) { int j; - struct phase * phase_ptr = phase_bsearch(it->first.c_str(), &j, FALSE); + class phase * phase_ptr = phase_bsearch(it->first.c_str(), &j, FALSE); assert(phase_ptr); if (last_model.pp_assemblage[i] != phase_ptr) { @@ -6120,7 +5772,7 @@ check_same_model(void) } else { - if (last_model.pp_assemblage != NULL) + if (last_model.pp_assemblage.size() > 0) return (FALSE); } /* @@ -6128,9 +5780,9 @@ check_same_model(void) */ if (use.Get_surface_ptr() != NULL) { - if (last_model.count_surface_comp != (int) use.Get_surface_ptr()->Get_surface_comps().size()) + if (last_model.surface_comp.size() != (int) use.Get_surface_ptr()->Get_surface_comps().size()) return (FALSE); - if (last_model.count_surface_charge != (int) use.Get_surface_ptr()->Get_surface_charges().size()) + if (last_model.surface_charge.size() != (int) use.Get_surface_ptr()->Get_surface_charges().size()) return (FALSE); if (last_model.dl_type != use.Get_surface_ptr()->Get_dl_type()) return (FALSE); @@ -6181,7 +5833,7 @@ check_same_model(void) } else { - if (last_model.surface_comp != NULL) + if (last_model.surface_comp.size() > 0) return (FALSE); } /* @@ -6199,9 +5851,9 @@ build_min_exch(void) * jacob0 */ int j, k, jj; - int row; - struct master *master_ptr; - struct unknown *unknown_ptr; + size_t row; + class master *master_ptr; + class unknown *unknown_ptr; LDBLE coef; if (use.Get_exchange_ptr() == NULL) @@ -6228,7 +5880,7 @@ build_min_exch(void) // Find exchange master cxxNameDouble nd(comp_ref.Get_totals()); cxxNameDouble::iterator it = nd.begin(); - struct master *exchange_master = NULL; + class master *exchange_master = NULL; for ( ; it != nd.end(); it++) { element * elt_ptr = element_store(it->first.c_str()); @@ -6248,14 +5900,14 @@ build_min_exch(void) continue; } /* find unknown number */ - for (j = count_unknowns - 1; j >= 0; j--) + for (j = (int)count_unknowns - 1; j >= 0; j--) { if (x[j]->type != EXCH) continue; if (x[j]->master[0] == exchange_master) break; } - for (k = count_unknowns - 1; k >= 0; k--) + for (k = (int)count_unknowns - 1; k >= 0; k--) { if (x[k]->type != PP) continue; @@ -6278,7 +5930,7 @@ build_min_exch(void) */ /* charge balance */ - store_jacob0(charge_balance_unknown->number, x[k]->number, + store_jacob0((int)charge_balance_unknown->number, (int)x[k]->number, comp_ref.Get_formula_z() * comp_ref.Get_phase_proportion()); store_sum_deltas(&delta[k], &charge_balance_unknown->delta, -comp_ref.Get_formula_z() * comp_ref.Get_phase_proportion()); @@ -6288,10 +5940,8 @@ build_min_exch(void) count_elts = 0; paren_count = 0; { - char * formula = string_duplicate(comp_ref.Get_formula().c_str()); - char * ptr = formula; - get_elts_in_species(&ptr, 1.0); - free_check_null(formula); + const char* cptr = comp_ref.Get_formula().c_str(); + get_elts_in_species(&cptr, 1.0); } #ifdef COMBINE change_hydrogen_in_elt_list(0); @@ -6348,7 +5998,7 @@ build_min_exch(void) row = master_ptr->unknown->number; unknown_ptr = master_ptr->unknown; } - store_jacob0(row, x[k]->number, + store_jacob0((int)row, (int)x[k]->number, coef * comp_ref.Get_phase_proportion()); store_sum_deltas(&delta[k], &unknown_ptr->delta, -coef * comp_ref.Get_phase_proportion()); @@ -6375,10 +6025,10 @@ build_min_surface(void) cxxSurfaceComp *comp_ptr = &(surface_ptr->Get_surface_comps()[i]); if (comp_ptr->Get_phase_name().size() == 0) continue; - struct element *elt_ptr = element_store(comp_ptr->Get_master_element().c_str()); + class element *elt_ptr = element_store(comp_ptr->Get_master_element().c_str()); /* find unknown number */ int j; - for (j = count_unknowns - 1; j >= 0; j--) + for (j = (int)count_unknowns - 1; j >= 0; j--) { if (x[j]->type != SURFACE) continue; @@ -6386,7 +6036,7 @@ build_min_surface(void) break; } int k; - for (k = count_unknowns - 1; k >= 0; k--) + for (k = (int)count_unknowns - 1; k >= 0; k--) { if (x[k]->type != PP) continue; @@ -6406,33 +6056,29 @@ build_min_surface(void) continue; /* update grams == moles in this case */ - if (j < count_unknowns - 1 && x[j + 1]->type == SURFACE_CB) + if (j < count_unknowns - 1 && x[(size_t)j + 1]->type == SURFACE_CB) { - store_sum_deltas(&delta[k], &(x[j + 1]->related_moles), -1.0); + store_sum_deltas(&delta[k], &(x[(size_t)j + 1]->related_moles), -1.0); } /* charge balance */ - store_jacob0(charge_balance_unknown->number, x[k]->number, + store_jacob0((int)charge_balance_unknown->number, (int)x[k]->number, comp_ptr->Get_formula_z() * comp_ptr->Get_phase_proportion()); store_sum_deltas(&delta[k], &charge_balance_unknown->delta, -comp_ptr->Get_formula_z() * comp_ptr->Get_phase_proportion()); count_elts = 0; paren_count = 0; - - // { /* Add specified formula for all types of surfaces */ - char * formula = string_duplicate(comp_ptr->Get_formula().c_str()); - char *ptr1 = formula; - get_elts_in_species(&ptr1, 1.0); - free_check_null(formula); + const char* cptr1 = comp_ptr->Get_formula().c_str(); + get_elts_in_species(&cptr1, 1.0); } #ifdef COMBINE change_hydrogen_in_elt_list(0); #endif for (int jj = 0; jj < count_elts; jj++) { - struct master * master_ptr = elt_list[jj].elt->primary; + class master * master_ptr = elt_list[jj].elt->primary; if (master_ptr->in == FALSE) { master_ptr = master_ptr->s->secondary; @@ -6467,8 +6113,8 @@ build_min_surface(void) } } LDBLE coef = elt_list[jj].coef; - int row; - struct unknown *unknown_ptr; + size_t row; + class unknown *unknown_ptr; if (master_ptr->s == s_hplus) { row = mass_hydrogen_unknown->number; @@ -6484,7 +6130,7 @@ build_min_surface(void) row = master_ptr->unknown->number; unknown_ptr = master_ptr->unknown; } - store_jacob0(row, x[k]->number, + store_jacob0((int)row, (int)x[k]->number, coef * comp_ptr->Get_phase_proportion()); store_sum_deltas(&delta[k], &unknown_ptr->delta, -coef * comp_ptr->Get_phase_proportion()); @@ -6514,7 +6160,7 @@ setup_related_surface(void) if (comp_ptr->Get_phase_name().size() > 0) { int k; - for (k = count_unknowns - 1; k >= 0; k--) + for (k = (int)count_unknowns - 1; k >= 0; k--) { if (x[k]->type != PP) continue; @@ -6533,12 +6179,12 @@ setup_related_surface(void) } else if (x[i]->type == SURFACE_CB) { - cxxSurfaceComp *comp_ptr = use.Get_surface_ptr()->Find_comp(x[i-1]->surface_comp); + cxxSurfaceComp *comp_ptr = use.Get_surface_ptr()->Find_comp(x[(size_t)i-1]->surface_comp); if (comp_ptr->Get_phase_name().size() > 0) { cxxSurfaceComp *comp_i_ptr = use.Get_surface_ptr()->Find_comp(x[i]->surface_comp); int k; - for (k = count_unknowns - 1; k >= 0; k--) + for (k = (int)count_unknowns - 1; k >= 0; k--) { if (x[k]->type != PP) continue; @@ -6557,49 +6203,3 @@ setup_related_surface(void) } return (OK); } -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -change_hydrogen_in_elt_list(LDBLE charge) -/* ---------------------------------------------------------------------- */ -{ - int j; - int found_h, found_o; - LDBLE coef_h, coef_o, coef; - found_h = -1; - found_o = -1; - coef_h = 0.0; - coef_o = 0.0; - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); - elt_list_combine(); - for (j = 0; j < count_elts; j++) - { - if (strcmp(elt_list[j].elt->name, "H") == 0) - { - found_h = j; - coef_h = elt_list[j].coef; - } - else if (strcmp(elt_list[j].elt->name, "O") == 0) - { - found_o = j; - coef_o = elt_list[j].coef; - } - } - coef = coef_h - 2 * coef_o - charge; - if (found_h < 0 && found_o < 0) - return (OK); - if (found_h >= 0 && found_o < 0) - return (OK); - if (found_h < 0 && found_o >= 0) - { - elt_list[count_elts].elt = s_hplus->primary->elt; - elt_list[count_elts].coef = coef; - count_elts++; - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); - elt_list_combine(); - return (OK); - } - elt_list[found_h].coef = coef; - return (OK); -} diff --git a/print.cpp b/print.cpp index 902b1707..610b6c13 100644 --- a/print.cpp +++ b/print.cpp @@ -1,3 +1,4 @@ +// -*- coding: windows-1252 -*- #include "Utils.h" #include "Phreeqc.h" #include "phqalloc.h" @@ -12,6 +13,16 @@ #include "SSassemblage.h" #include "cxxKinetics.h" #include "Solution.h" +#include "Surface.h" + +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /* ---------------------------------------------------------------------- */ int Phreeqc:: array_print(LDBLE * array_l, int row_count, int column_count, @@ -66,7 +77,7 @@ set_pr_in_false(void) { cxxGasComp *gc_ptr = &(gas_phase_ptr->Get_gas_comps()[i]); int k; - struct phase *phase_ptr = phase_bsearch(gc_ptr->Get_phase_name().c_str(), &k, FALSE); + class phase *phase_ptr = phase_bsearch(gc_ptr->Get_phase_name().c_str(), &k, FALSE); if (phase_ptr) phase_ptr->pr_in = false; } @@ -179,7 +190,6 @@ punch_all(void) // UserPunch std::map < int, UserPunch >::iterator up_it = UserPunch_map.find(current_selected_output->Get_n_user()); current_user_punch = up_it == UserPunch_map.end() ? NULL : &(up_it->second); - punch_identifiers(); punch_totals(); punch_molalities(); @@ -195,7 +205,9 @@ punch_all(void) /* * new line for punch_file */ - punch_msg("\n"); + if (current_selected_output->Get_new_line() && this->Get_output_newline()) + punch_msg("\n"); + this->Set_output_newline(true); /* * signal end of row @@ -288,7 +300,7 @@ print_diffuse_layer(cxxSurfaceCharge *charge_ptr) { count_elts = 0; paren_count = 0; - for (j = 0; j < count_s_x; j++) + for (j = 0; j < (int)this->s_x.size(); j++) { if (s_x[j]->type > HPLUS) continue; @@ -314,12 +326,7 @@ print_diffuse_layer(cxxSurfaceCharge *charge_ptr) ptr = &(token[0]); get_elts_in_species (&ptr, mass_water_surface / gfw_water); */ - if (count_elts > 0) - { - qsort(elt_list, (size_t)count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); - elt_list_combine(); - } + elt_list_combine(); /* * Print totals */ @@ -360,7 +367,7 @@ print_eh(void) */ int i, j, k, first; LDBLE pe, eh; - struct master *master_ptr0, *master_ptr1; + class master *master_ptr0, *master_ptr1; char token[MAX_LENGTH]; if (pr.eh == FALSE || pr.all == FALSE) @@ -369,7 +376,7 @@ print_eh(void) tk_x = tc_x + 273.15; first = TRUE; - for (i = 0; i < count_master; i++) + for (i = 0; i < (int)master.size(); i++) { if (master[i]->in != TRUE) continue; @@ -379,7 +386,7 @@ print_eh(void) * Secondary master species has mass balance equation */ master_ptr0 = master[i]->elt->primary; - for (k = i + 1; k < count_master; k++) + for (k = i + 1; k < (int)master.size(); k++) { if (master[k]->in != TRUE) continue; @@ -439,7 +446,7 @@ print_exchange(void) int i; cxxExchange * exchange_ptr; const char *name, *name1; - struct master *master_ptr; + class master *master_ptr; LDBLE dum, dum2; /* * Print exchange data @@ -458,7 +465,7 @@ print_exchange(void) s_h2o->lm = s_h2o->la; name = s_hplus->secondary->elt->name; - for (i = 0; i < count_species_list; i++) + for (i = 0; i < (int)species_list.size(); i++) { /* * Get name of master species @@ -518,8 +525,7 @@ print_exchange(void) /* * Print species data */ -/* !!!!! */ - if (master_ptr->total > 1.0e-10) + if (master_ptr->total > 1.0e-16) { if (species_list[i].s->equiv != 0.0) { @@ -566,7 +572,7 @@ print_gas_phase(void) * Prints gas phase composition if present */ LDBLE lp, moles, initial_moles, delta_moles; - struct rxn_token *rxn_ptr; + class rxn_token *rxn_ptr; char info[MAX_LENGTH]; bool PR = false; @@ -601,7 +607,7 @@ print_gas_phase(void) print_centered("Gas phase"); output_msg(sformatf("Total pressure: %5.2f atmospheres", (double) gas_phase_ptr->Get_total_p())); - if (gas_phase_ptr->Get_total_p() >= 1500) + if (gas_phase_ptr->Get_total_p() >= MAX_P_NONLLNL && llnl_temp.size() == 0) output_msg(" WARNING: Program limit.\n"); else if (PR) output_msg(" (Peng-Robinson calculation)\n"); @@ -647,12 +653,12 @@ print_gas_phase(void) */ cxxGasComp *gc_ptr = &(gas_phase_ptr->Get_gas_comps()[j]); int k; - struct phase *phase_ptr = phase_bsearch(gc_ptr->Get_phase_name().c_str(), &k, FALSE); + class phase *phase_ptr = phase_bsearch(gc_ptr->Get_phase_name().c_str(), &k, FALSE); if (phase_ptr->in == TRUE) { lp = -phase_ptr->lk; for (rxn_ptr = - phase_ptr->rxn_x->token + 1; + &phase_ptr->rxn_x.token[0] + 1; rxn_ptr->s != NULL; rxn_ptr++) { lp += rxn_ptr->s->la * rxn_ptr->coef; @@ -703,8 +709,8 @@ print_gas_phase(void) (double) initial_moles, (double) moles, (double) delta_moles)); - if (!strcmp(phase_ptr->name, "H2O(g)") && phase_ptr->p_soln_x == 90) - output_msg(" WARNING: The pressure of H2O(g) is above the program limit: use the polynomial for log_k.\n"); + //if (!strcmp(phase_ptr->name, "H2O(g)") && phase_ptr->p_soln_x == 90) + // output_msg(" WARNING: The pressure of H2O(g) is fixed to the program limit.\n"); } output_msg("\n"); @@ -880,7 +886,7 @@ print_reaction(void) cit = reaction_ptr->Get_elementList().begin(); for ( ; cit != reaction_ptr->Get_elementList().end(); cit++) { - struct element * elt_ptr = element_store(cit->first.c_str()); + class element * elt_ptr = element_store(cit->first.c_str()); assert(elt_ptr); output_msg(sformatf("\t%-15s%13.5f\n", elt_ptr->name, @@ -1071,13 +1077,13 @@ print_master_reactions(void) * Debugging print routine to test primary and secondary reactions */ int i; - struct rxn_token *next_token; + class rxn_token *next_token; - for (i = 0; i < count_master; i++) + for (i = 0; i < (int)master.size(); i++) { output_msg(sformatf("%s\t%s\n\tPrimary reaction\n", master[i]->elt->name, master[i]->s->name)); - next_token = master[i]->rxn_primary->token; + next_token = master[i]->rxn_primary.token; for (; next_token->s != NULL; next_token++) { output_msg(sformatf("\t\t%s\t%f\n", next_token->s->name, @@ -1086,7 +1092,7 @@ print_master_reactions(void) output_msg(sformatf("\n\tSecondary reaction:\n")); if (master[i]->rxn_secondary != NULL) { - next_token = master[i]->rxn_secondary->token; + next_token = master[i]->rxn_secondary.token; for (; next_token->s != NULL; next_token++) { output_msg(sformatf("\t\t%s\t%f\n", @@ -1169,37 +1175,6 @@ print_mix(void) output_msg(sformatf("\n")); return (OK); } - -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -print_reaction(struct reaction *rxn_ptr) -/* ---------------------------------------------------------------------- */ -{ -/* - * Debugging print of individual chemical reactions for - * species or phases - */ - int j; - struct rxn_token *next_token; - - if (pr.use == FALSE || pr.all == FALSE) - return (OK); - - output_msg(sformatf("%s\t\n", rxn_ptr->token[0].s->name)); - output_msg(sformatf("\n\tlog k:\n")); - for (j = 0; j < MAX_LOG_K_INDICES; j++) - { - output_msg(sformatf("\t%f", (double) rxn_ptr->logk[j])); - } - output_msg(sformatf("\n\nReaction:\n")); - for (next_token = rxn_ptr->token; next_token->s != NULL; next_token++) - { - output_msg(sformatf("\t\t%s\t%f\n", next_token->s->name, - (double) next_token->coef)); - } - output_msg(sformatf("\n")); - return (OK); -} /* ---------------------------------------------------------------------- */ int Phreeqc:: print_saturation_indices(void) @@ -1212,8 +1187,8 @@ print_saturation_indices(void) LDBLE si, iap; LDBLE lk; LDBLE la_eminus; - struct rxn_token *rxn_ptr; - struct reaction *reaction_ptr; + class rxn_token *rxn_ptr; + CReaction *reaction_ptr; bool gas = true; if (pr.saturation_indices == FALSE || pr.all == FALSE) @@ -1221,7 +1196,7 @@ print_saturation_indices(void) if (state == INITIAL_SOLUTION) { iap = 0; - for (size_t tok = 1; tok < pe_x[default_pe_x].Get_tokens().size(); tok++) + for (size_t tok = 1; tok < pe_x[default_pe_x].Get_tokens().size() - 1; tok++) { iap += pe_x[default_pe_x].Get_tokens()[tok].coef * pe_x[default_pe_x].Get_tokens()[tok].s->la; /* fprintf(output,"\t%s\t%f\t%f\n", rxn_ptr->s->name, rxn_ptr->coef, rxn_ptr->s->la ); */ @@ -1252,25 +1227,25 @@ print_saturation_indices(void) output_msg(sformatf(" %-15s%9s%8s%9s%3d%4s%3d%4s\n\n", "Phase", "SI**", "log IAP", "log K(", int(tk_x), " K, ", int(floor(patm_x + 0.5)), " atm)")); - for (i = 0; i < count_phases; i++) + for (i = 0; i < (int)phases.size(); i++) { if (phases[i]->in == FALSE || phases[i]->type != SOLID) continue; /* check for solids and gases in equation */ if (phases[i]->replaced) - reaction_ptr = phases[i]->rxn_s; + reaction_ptr = &phases[i]->rxn_s; else - reaction_ptr = phases[i]->rxn; + reaction_ptr = &phases[i]->rxn; /* * Print saturation index */ - reaction_ptr->logk[delta_v] = calc_delta_v(reaction_ptr, true) - + reaction_ptr->logk[delta_v] = calc_delta_v(*reaction_ptr, true) - phases[i]->logk[vm0]; if (reaction_ptr->logk[delta_v]) mu_terms_in_logk = true; lk = k_calc(reaction_ptr->logk, tk_x, patm_x * PASCAL_PER_ATM); iap = 0.0; - for (rxn_ptr = reaction_ptr->token + 1; rxn_ptr->s != NULL; + for (rxn_ptr = &reaction_ptr->token[0] + 1; rxn_ptr->s != NULL; rxn_ptr++) { if (rxn_ptr->s != s_eminus) @@ -1330,8 +1305,8 @@ print_pp_assemblage(void) int j, k; LDBLE si, iap, lk; char token[MAX_LENGTH]; - struct rxn_token *rxn_ptr; - struct phase *phase_ptr; + class rxn_token *rxn_ptr; + class phase *phase_ptr; if (pr.pp_assemblage == FALSE || pr.all == FALSE) return (OK); @@ -1352,14 +1327,15 @@ print_pp_assemblage(void) { if (x[j]->type != PP) continue; + //cxxPPassemblage * pp_assemblage_ptr = Utilities::Rxn_find(Rxn_pp_assemblage_map, use.Get_n_pp_assemblage_user()); //cxxPPassemblageComp * comp_ptr = pp_assemblage_ptr->Find(x[j]->pp_assemblage_comp_name); - cxxPPassemblageComp * comp_ptr = (cxxPPassemblageComp * ) x[j]->pp_assemblage_comp_ptr; + cxxPPassemblageComp * comp_ptr = (cxxPPassemblageComp * ) x[j]->pp_assemblage_comp_ptr; // appt, is sometimes lost?? /* * Print saturation index */ iap = 0.0; phase_ptr = x[j]->phase; - if (x[j]->phase->rxn_x == NULL || phase_ptr->in == FALSE) + if (x[j]->phase->rxn_x.token.size() == 0 || phase_ptr->in == FALSE) { output_msg(sformatf("%-18s%23s", x[j]->phase->name, "Element not present.")); @@ -1367,12 +1343,12 @@ print_pp_assemblage(void) else { phase_ptr = x[j]->phase; - phase_ptr->rxn->logk[delta_v] = calc_delta_v(phase_ptr->rxn, true) - + phase_ptr->rxn.logk[delta_v] = calc_delta_v(*&phase_ptr->rxn, true) - phase_ptr->logk[vm0]; - if (phase_ptr->rxn->logk[delta_v]) + if (phase_ptr->rxn.logk[delta_v]) mu_terms_in_logk = true; - lk = k_calc(phase_ptr->rxn->logk, tk_x, patm_x * PASCAL_PER_ATM); - for (rxn_ptr = phase_ptr->rxn->token + 1; rxn_ptr->s != NULL; + lk = k_calc(phase_ptr->rxn.logk, tk_x, patm_x * PASCAL_PER_ATM); + for (rxn_ptr = &phase_ptr->rxn.token[0] + 1; rxn_ptr->s != NULL; rxn_ptr++) { if (rxn_ptr->s != s_eminus) @@ -1386,7 +1362,7 @@ print_pp_assemblage(void) } si = -lk + iap; /* - for (rxn_ptr = x[j]->phase->rxn_x->token + 1; rxn_ptr->s != NULL; rxn_ptr++) { + for (rxn_ptr = x[j]->phase->rxn_x.token + 1; rxn_ptr->s != NULL; rxn_ptr++) { iap += rxn_ptr->s->la * rxn_ptr->coef; } si = -x[j]->phase->lk + iap; @@ -1447,7 +1423,7 @@ print_species(void) */ int i; const char *name, *name1; - struct master *master_ptr; + class master *master_ptr; LDBLE min; LDBLE lm; @@ -1477,10 +1453,11 @@ print_species(void) { output_msg(sformatf("%50s%10s%10s%10s\n", "Log", "Log", "Log", "mole V")); } - output_msg(sformatf(" %-13s%12s%12s%10s%10s%10s%10s\n\n", "Species", #ifdef NO_UTF8_ENCODING + output_msg(sformatf(" %-13s%12s%12s%10s%10s%10s%10s\n\n", "Species", "Molality", "Activity", "Molality", "Activity", "Gamma", "cm3/mol")); #else + output_msg(sformatf(" %-13s%12s%12s%10s%10s%10s%11s\n\n", "Species", "Molality", "Activity", "Molality", "Activity", "Gamma", "cm/mol")); #endif /* @@ -1488,7 +1465,7 @@ print_species(void) */ s_h2o->lm = s_h2o->la; name = s_hplus->secondary->elt->name; - for (i = 0; i < count_species_list; i++) + for (i = 0; i < (int)species_list.size(); i++) { /* * Get name of master species @@ -1571,7 +1548,7 @@ print_surface(void) */ cxxSurface *surface_ptr; std::string name, token; - struct master *master_ptr; + class master *master_ptr; LDBLE molfrac, charge; /* * Print surface speciation @@ -1776,7 +1753,7 @@ print_surface(void) output_msg(sformatf("\t%-15s%12s%12s%12s%12s\n\n", "Species", "Moles", "Fraction", "Molality", "Molality")); - for (int i = 0; i < count_species_list; i++) + for (int i = 0; i < (int)species_list.size(); i++) { if (species_list[i].master_s != master_ptr->s) continue; @@ -1818,7 +1795,7 @@ print_surface(void) output_msg(sformatf("\t%-15s%12s%12s%12s%12s\n\n", "Species", "Moles", "Fraction", "Molality", "Molality")); - for (int i = 0; i < count_species_list; i++) + for (int i = 0; i < (int)species_list.size(); i++) { if (species_list[i].master_s != master_ptr->s) continue; @@ -1862,8 +1839,8 @@ print_surface_cd_music(void) */ cxxSurface *surface_ptr; std::string name; - struct master *master_ptr, *master_ptr0, *master_ptr1, *master_ptr2; - struct unknown *unknown_ptr0, *unknown_ptr1, *unknown_ptr2; + class master *master_ptr, *master_ptr0, *master_ptr1, *master_ptr2; + class unknown *unknown_ptr0, *unknown_ptr1, *unknown_ptr2; LDBLE molfrac, charge0, charge1, charge2, sum; /* * Print surface speciation @@ -1894,9 +1871,8 @@ print_surface_cd_music(void) */ if (dl_type_x != cxxSurface::NO_DL) { - output_msg(sformatf( - "\t%11.3e Surface + diffuse layer charge, eq\n\n", - (double) (x[j + 2]->f + (charge_ptr->Get_sigma0() + charge_ptr->Get_sigma1()) * (charge_ptr->Get_specific_area() * charge_ptr->Get_grams()) / F_C_MOL))); + output_msg(sformatf("\t%11.3e Surface + diffuse layer charge, eq\n\n", + (double)(x[(size_t)j + 2]->f + (charge_ptr->Get_sigma0() + charge_ptr->Get_sigma1()) * (charge_ptr->Get_specific_area() * charge_ptr->Get_grams()) / F_C_MOL))); } master_ptr0 = surface_get_psi_master(charge_ptr->Get_name().c_str(), SURF_PSI); @@ -1922,7 +1898,7 @@ print_surface_cd_music(void) charge2 = unknown_ptr2->f; } sum = 0; - for (int k = 0; k < x[j]->count_comp_unknowns; k++) + for (size_t k = 0; k < x[j]->comp_unknowns.size(); k++) { sum += x[j]->comp_unknowns[k]->moles * @@ -2074,7 +2050,7 @@ print_surface_cd_music(void) output_msg(sformatf("\t%-20s%12s%12s%12s%12s\n\n", "Species", "Moles", "Fraction", "Molality", "Molality")); - for (int i = 0; i < count_species_list; i++) + for (int i = 0; i < (int)species_list.size(); i++) { if (species_list[i].master_s != master_ptr->s) continue; @@ -2230,10 +2206,11 @@ print_totals(void) if (SC > 0) { //output_msg(sformatf("%36s%i%7s%i\n", - output_msg(sformatf("%35s%3.0f%7s%i\n", #ifdef NO_UTF8_ENCODING + output_msg(sformatf("%35s%3.0f%7s%i\n", "Specific Conductance (uS/cm, ", tc_x, "oC) = ", (int) SC)); #else + output_msg(sformatf("%35s%3.0f%7s%i\n", "Specific Conductance (S/cm, ", tc_x, "C) = ", (int) SC)); #endif } @@ -2264,10 +2241,11 @@ print_totals(void) (double) viscos)); if (tc_x > 200 && !pure_water) { - output_msg(sformatf("%18s\n", #ifdef NO_UTF8_ENCODING + output_msg(sformatf("%18s\n", " (solute contributions limited to 200 oC)")); #else + output_msg(sformatf("%18s\n", " (solute contributions limited to 200 C)")); #endif } @@ -2320,7 +2298,10 @@ print_totals(void) output_msg(sformatf("%45s%6.2f\n", "Percent error, 100*(Cat-|An|)/(Cat+|An|) = ", (double) (100 * cb_x / total_ions_x))); - output_msg(sformatf("%45s%3d\n", "Iterations = ", iterations)); + if (iterations == overall_iterations) + output_msg(sformatf("%45s%3d\n", "Iterations = ", iterations)); + else + output_msg(sformatf("%45s%3d (%d overall)\n", "Iterations = ", iterations, overall_iterations)); if (pitzer_model == TRUE || sit_model == TRUE) { if (always_full_pitzer == FALSE) @@ -2358,7 +2339,7 @@ print_user_print(void) if (pr.user_print == FALSE || pr.all == FALSE) return (OK); - if (user_print->commands == NULL) + if (user_print->commands.size() == 0) return (OK); kinetics_ptr = NULL; if (use.Get_kinetics_in() == TRUE) @@ -2378,7 +2359,7 @@ print_user_print(void) { /* basic_renumber(user_print->commands, &user_print->linebase, &user_print->varbase, &user_print->loopbase); */ if (basic_compile - (user_print->commands, &user_print->linebase, + (user_print->commands.c_str(), &user_print->linebase, &user_print->varbase, &user_print->loopbase) != 0) { error_msg("Fatal Basic error in USER_PRINT.", STOP); @@ -2391,7 +2372,10 @@ print_user_print(void) { error_msg("Fatal Basic error in USER_PRINT.", STOP); } - output_msg(sformatf("\n")); + if (this->output_newline) { + output_msg(sformatf("\n")); + } + this->Set_output_newline(true); if (use.Get_kinetics_in() == TRUE) { use.Set_kinetics_ptr(kinetics_ptr); @@ -2600,7 +2584,7 @@ punch_gas_phase(void) { cxxGasComp *gc_ptr = &(gas_phase_ptr->Get_gas_comps()[j]); int k; - struct phase *phase_ptr = phase_bsearch(gc_ptr->Get_phase_name().c_str() , &k, FALSE); + class phase *phase_ptr = phase_bsearch(gc_ptr->Get_phase_name().c_str() , &k, FALSE); if (phase_ptr != current_selected_output->Get_gases()[i].second) continue; moles = phase_ptr->moles_x; @@ -2710,19 +2694,19 @@ punch_totals(void) { molality = 0.0; } - else if (((struct master *) current_selected_output->Get_totals()[j].second)->primary == TRUE) + else if (((class master *) current_selected_output->Get_totals()[j].second)->primary == TRUE) { if (strncmp(current_selected_output->Get_totals()[j].first.c_str(), "Alkalinity", 20) == 0) { molality = total_alkalinity / mass_water_aq_x; } else { - molality = ((struct master *) current_selected_output->Get_totals()[j].second)->total_primary / mass_water_aq_x; + molality = ((class master *) current_selected_output->Get_totals()[j].second)->total_primary / mass_water_aq_x; } } else { - molality = ((struct master *) current_selected_output->Get_totals()[j].second)->total / mass_water_aq_x; + molality = ((class master *) current_selected_output->Get_totals()[j].second)->total / mass_water_aq_x; } if (!current_selected_output->Get_high_precision()) { @@ -2753,9 +2737,9 @@ punch_molalities(void) { molality = 0.0; if (current_selected_output->Get_molalities()[j].second != NULL - && ((struct species *) current_selected_output->Get_molalities()[j].second)->in == TRUE) + && ((class species *) current_selected_output->Get_molalities()[j].second)->in == TRUE) { - molality = ((struct species *) current_selected_output->Get_molalities()[j].second)->moles / mass_water_aq_x; + molality = ((class species *) current_selected_output->Get_molalities()[j].second)->moles / mass_water_aq_x; } if (!current_selected_output->Get_high_precision()) { @@ -2786,7 +2770,7 @@ punch_activities(void) { la = -999.999; if (current_selected_output->Get_activities()[j].second != NULL - && ((struct species *) current_selected_output->Get_activities()[j].second)->in == TRUE) + && ((class species *) current_selected_output->Get_activities()[j].second)->in == TRUE) { /*la = punch.activities[j].s->lm + punch.activities[j].s->lg; */ la = log_activity(current_selected_output->Get_activities()[j].first.c_str()); @@ -2823,7 +2807,7 @@ punch_pp_assemblage(void) { for (int j = 0; j < count_unknowns; j++) { - if (x == NULL || x[j]->type != PP) + if (x.size() == 0 || x[j]->type != PP) continue; //cxxPPassemblageComp * comp_ptr = pp_assemblage_ptr->Find(x[j]->pp_assemblage_comp_name); cxxPPassemblageComp * comp_ptr = (cxxPPassemblageComp * ) x[j]->pp_assemblage_comp_ptr; @@ -3220,11 +3204,11 @@ punch_saturation_indices(void) */ //int i; LDBLE si, iap; - struct rxn_token *rxn_ptr; + class rxn_token *rxn_ptr; for (size_t i = 0; i < current_selected_output->Get_si().size(); i++) { - if (current_selected_output->Get_si()[i].second == NULL || ((struct phase *) current_selected_output->Get_si()[i].second)->in == FALSE) + if (current_selected_output->Get_si()[i].second == NULL || ((class phase *) current_selected_output->Get_si()[i].second)->in == FALSE) { si = -999.999; } @@ -3234,12 +3218,12 @@ punch_saturation_indices(void) * Print saturation index */ iap = 0.0; - for (rxn_ptr = ((struct phase *) current_selected_output->Get_si()[i].second)->rxn_x->token + 1; + for (rxn_ptr = &(((class phase *) current_selected_output->Get_si()[i].second)->rxn_x.token[0]) + 1; rxn_ptr->s != NULL; rxn_ptr++) { iap += rxn_ptr->s->la * rxn_ptr->coef; } - si = -((struct phase *) current_selected_output->Get_si()[i].second)->lk + iap; + si = -((class phase *) current_selected_output->Get_si()[i].second)->lk + iap; } if (!current_selected_output->Get_high_precision()) { @@ -3338,14 +3322,14 @@ punch_user_punch(void) if (current_user_punch == NULL || !current_selected_output->Get_user_punch()) return OK; - struct rate * user_punch = current_user_punch->Get_rate(); + class rate * user_punch = current_user_punch->Get_rate(); - if (user_punch->commands == NULL) + if (user_punch->commands.c_str() == 0) return (OK); if (user_punch->new_def == TRUE) { if (basic_compile - (user_punch->commands, &user_punch->linebase, + (user_punch->commands.c_str(), &user_punch->linebase, &user_punch->varbase, &user_punch->loopbase) != 0) { error_msg("Fatal Basic error in USER_PUNCH.", STOP); @@ -3534,7 +3518,7 @@ punch_user_graph(void) if (chart->Get_rate_new_def()) { if (basic_compile - (chart->Get_user_graph()->commands, &chart->Get_user_graph()->linebase, + (chart->Get_user_graph()->commands.c_str(), &chart->Get_user_graph()->linebase, &chart->Get_user_graph()->varbase, &chart->Get_user_graph()->loopbase) != 0) { error_msg("Fatal Basic error in USER_GRAPH.", STOP); @@ -3601,47 +3585,38 @@ print_alkalinity(void) * Prints description of solution, uses array species_list for * order of aqueous species. */ - int i, j; - struct species_list *alk_list; - int count_alk_list; + int j; + std::vector alk_list; LDBLE min; if (pr.alkalinity == FALSE || pr.all == FALSE) return (OK); print_centered("Distribution of alkalinity"); - alk_list = - (struct species_list *) - PHRQ_malloc((size_t) (count_s_x * sizeof(struct species_list))); - if (alk_list == NULL) - { - malloc_error(); - return (OK); - } + alk_list.clear(); j = 0; - for (i = 0; i < count_s_x; i++) + for (size_t i = 0; i < this->s_x.size(); i++) { if (s_x[i]->alk == 0.0) continue; + alk_list.resize(alk_list.size() + 1); alk_list[j].master_s = s_hplus; alk_list[j].s = s_x[i]; alk_list[j].coef = s_x[i]->alk; j++; } - count_alk_list = j; min = fabs(censor * total_alkalinity / mass_water_aq_x); - if (count_alk_list > 0) + if (alk_list.size() > 0) { output_msg(sformatf("\t%26s%11.3e\n\n", "Total alkalinity (eq/kgw) = ", (double) (total_alkalinity / mass_water_aq_x))); output_msg(sformatf("\t%-15s%12s%12s%10s\n\n", "Species", "Alkalinity", "Molality", "Alk/Mol")); - qsort(&alk_list[0], (size_t) count_alk_list, - (size_t) sizeof(struct species_list), species_list_compare_alk); - for (i = 0; i < count_alk_list; i++) + if (alk_list.size() > 1) qsort(&alk_list[0], alk_list.size(), + (size_t) sizeof(class species_list), species_list_compare_alk); + for (size_t i = 0; i < alk_list.size(); i++) { - if (fabs - (alk_list[i].s->alk * (alk_list[i].s->moles) / + if (fabs(alk_list[i].s->alk * (alk_list[i].s->moles) / mass_water_aq_x) < min) continue; output_msg(sformatf("\t%-15s%12.3e%12.3e%10.2f\n", @@ -3654,7 +3629,6 @@ print_alkalinity(void) } output_msg(sformatf("\n")); - alk_list = (struct species_list *) free_check_null(alk_list); return (OK); } diff --git a/read.cpp b/read.cpp index 405cb7d8..4ade4fe4 100644 --- a/read.cpp +++ b/read.cpp @@ -19,13 +19,21 @@ #include "SelectedOutput.h" #include "UserPunch.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /* ---------------------------------------------------------------------- */ int Phreeqc:: read_input(void) /* ---------------------------------------------------------------------- */ { int i, j, l; - char *ptr; + const char* cptr; char token[2 * MAX_LENGTH]; #define LAST_C_KEYWORD 61 @@ -45,7 +53,7 @@ read_input(void) Rxn_new_ss_assemblage.clear(); Rxn_new_surface.clear(); Rxn_new_temperature.clear(); // not used - phrq_io->Set_echo_on(true); // **appt + phrq_io->Set_echo_on(true); /* * Initialize keyword counters */ @@ -67,7 +75,7 @@ read_input(void) save.surface = FALSE; save.gas_phase = FALSE; save.ss_assemblage = FALSE; - title_x = (char *) free_check_null(title_x); + title_x.clear(); while ((i = check_line("Subroutine Read", FALSE, TRUE, TRUE, TRUE)) != KEYWORD) { @@ -252,19 +260,17 @@ read_input(void) } else { - ptr = line; - copy_token(token, &ptr, &l); + cptr = line; + copy_token(token, &cptr, &l); #if defined(SWIG_SHARED_OBJ) warning_msg("DATABASE keyword is ignored by IPhreeqc."); #else - - user_database = (char *) free_check_null(user_database); - user_database = string_duplicate(ptr); - if (string_trim(user_database) == EMPTY) + user_database = cptr; + string_trim(user_database); + if (user_database.size() == 0) { error_msg("DATABASE file name is missing.", CONTINUE); input_error++; - user_database = (char *) free_check_null(user_database); } first_read_input = FALSE; #endif @@ -393,17 +399,16 @@ read_exchange_species(void) int i; int association; char token[MAX_LENGTH]; - char *ptr; - struct phase *phase_ptr; + const char* cptr; + class phase *phase_ptr; - struct species *s_ptr; - struct elt_list *next_elt; - struct rxn_token *token_ptr; + class species *s_ptr; + const class elt_list *next_elt; //LDBLE exchange_coef; LDBLE offset; int return_value, opt, opt_save; - char *next_char; + const char* next_char; const char *opt_list[] = { "no_check", /* 0 */ "check", /* 1 */ @@ -496,11 +501,10 @@ read_exchange_species(void) paren_count = 0; copy_token(token, &next_char, &i); s_ptr->mole_balance = string_hsave(token); - ptr = token; - get_secondary_in_species(&ptr, 1.0); - s_ptr->next_secondary = - (struct elt_list *) free_check_null(s_ptr->next_secondary); - s_ptr->next_secondary = elt_list_save(); + cptr = token; + get_secondary_in_species(&cptr, 1.0); + s_ptr->next_secondary.clear(); + s_ptr->next_secondary = elt_list_vsave(); /* debug for (i = 0; i < count_elts; i++) { output_msg(sformatf("%s\t%f\n", elt_list[i].elt->name, @@ -634,118 +638,68 @@ read_exchange_species(void) break; case 16: /* add_logk */ case 17: /* add_log_k */ + { if (s_ptr == NULL) { error_string = sformatf( - "No reaction defined before option, %s.", - opt_list[opt]); + "No reaction defined before option, %s.", + opt_list[opt]); error_msg(error_string, CONTINUE); input_error++; break; } - if (s_ptr->count_add_logk == 0) - { - s_ptr->add_logk = - (struct name_coef *) - PHRQ_malloc(sizeof(struct name_coef)); - if (s_ptr->add_logk == NULL) - { - malloc_error(); - return (OK); - } - } - else - { - s_ptr->add_logk = - (struct name_coef *) PHRQ_realloc(s_ptr->add_logk, - (size_t) ((s_ptr-> - count_add_logk - + - 1) * - sizeof - (struct - name_coef))); - if (s_ptr->add_logk == NULL) - { - malloc_error(); - return (OK); - } - } + size_t count_add_logk = s_ptr->add_logk.size(); + s_ptr->add_logk.resize(count_add_logk + 1); /* read name */ if (copy_token(token, &next_char, &i) == EMPTY) { input_error++; error_string = sformatf( - "Expected the name of a NAMED_EXPRESSION."); + "Expected the name of a NAMED_EXPRESSION."); error_msg(error_string, CONTINUE); break; } - s_ptr->add_logk[s_ptr->count_add_logk].name = string_hsave(token); + s_ptr->add_logk[count_add_logk].name = string_hsave(token); /* read coef */ i = sscanf(next_char, SCANFORMAT, - &s_ptr->add_logk[s_ptr->count_add_logk].coef); + &s_ptr->add_logk[count_add_logk].coef); if (i <= 0) { - s_ptr->add_logk[s_ptr->count_add_logk].coef = 1; + s_ptr->add_logk[count_add_logk].coef = 1; } - s_ptr->count_add_logk++; opt_save = OPTION_DEFAULT; - break; + } + break; case 18: /* add_constant */ + { if (s_ptr == NULL) { error_string = sformatf( - "No reaction defined before option, %s.", - opt_list[opt]); + "No reaction defined before option, %s.", + opt_list[opt]); error_msg(error_string, CONTINUE); input_error++; break; } - if (s_ptr->count_add_logk == 0) - { - s_ptr->add_logk = - (struct name_coef *) - PHRQ_malloc(sizeof(struct name_coef)); - if (s_ptr->add_logk == NULL) - { - malloc_error(); - return (OK); - } - } - else - { - s_ptr->add_logk = - (struct name_coef *) PHRQ_realloc(s_ptr->add_logk, - (size_t) ((s_ptr-> - count_add_logk - + - 1) * - sizeof - (struct - name_coef))); - if (s_ptr->add_logk == NULL) - { - malloc_error(); - return (OK); - } - } + size_t count_add_logk = s_ptr->add_logk.size(); + s_ptr->add_logk.resize(count_add_logk + 1); i = sscanf(next_char, SCANFORMAT, - &s_ptr->add_logk[s_ptr->count_add_logk].coef); + &s_ptr->add_logk[count_add_logk].coef); if (i <= 0) { input_error++; error_string = sformatf( - "Expected the constant to add for log_K definition."); + "Expected the constant to add for log_K definition."); error_msg(error_string, CONTINUE); break; } /* set name */ - s_ptr->add_logk[s_ptr->count_add_logk].name = + s_ptr->add_logk[count_add_logk].name = string_hsave("XconstantX"); /* read coef */ - s_ptr->count_add_logk++; opt_save = OPTION_DEFAULT; - break; + } + break; case 19: /* vm, molar volume */ if (s_ptr == NULL) { @@ -762,31 +716,32 @@ read_exchange_species(void) break; case OPTION_DEFAULT: -/* - * Get exchange species information and parse equation - */ + /* + * Get exchange species information and parse equation + */ + { s_ptr = NULL; - if (parse_eq(line, &next_elt, association) == ERROR) + std::vector new_elt_list; + if (parse_eq(line, new_elt_list, association) == ERROR) { - parse_error++; - error_msg("Parsing equation.", CONTINUE); - error_msg(line_save, CONTINUE); - break; - } -/* - * Get pointer to each species in the reaction, store new species if necessary - */ - trxn.token[0].s = - s_store(trxn.token[0].name, trxn.token[0].z, TRUE); + parse_error++; + error_msg("Parsing equation.", CONTINUE); + error_msg(line_save, CONTINUE); + break; + } + /* + * Get pointer to each species in the reaction, store new species if necessary + */ + trxn.token[0].s = s_store(trxn.token[0].name, trxn.token[0].z, TRUE); for (i = 1; i < count_trxn; i++) { - trxn.token[i].s = - s_store(trxn.token[i].name, trxn.token[i].z, FALSE); + trxn.token[i].s = s_store(trxn.token[i].name, trxn.token[i].z, FALSE); } -/* - * Save element list and carbon, hydrogen, and oxygen in species - */ - trxn.token[0].s->next_elt = next_elt; + /* + * Save element list and carbon, hydrogen, and oxygen in species + */ + trxn.token[0].s->next_elt = new_elt_list; + next_elt = &trxn.token[0].s->next_elt[0]; for (; next_elt->elt != NULL; next_elt++) { if (strcmp(next_elt->elt->name, "C") == 0) @@ -802,57 +757,31 @@ read_exchange_species(void) trxn.token[0].s->o = next_elt->coef; } } -#ifdef SKIP - // Need to do this in tidy species in case X- is not first species read. -/* - * Find valence of cation from coefficients of reaction components - * Changed to be coefficient of exchanger - */ - exchange_coef = 0.0; - for (i = 1; i < count_trxn; i++) - { - if (trxn.token[i].s->type == EX) - { - exchange_coef = trxn.token[i].coef; - } - } - trxn.token[0].s->equiv = exchange_coef; -#endif -/* - * Malloc space for species reaction - */ - trxn.token[0].s->rxn = rxn_alloc(count_trxn + 1); -/* - * Copy reaction to reaction for species - */ - token_ptr = trxn.token[0].s->rxn->token; - for (i = 0; i < count_trxn; i++) - { - token_ptr[i].s = trxn.token[i].s; - token_ptr[i].coef = trxn.token[i].coef; - } - token_ptr[i].s = NULL; -/* - * Set type for species - */ + /* + * Copy reaction to reaction for species + */ + trxn_copy(trxn.token[0].s->rxn); + /* + * Set type for species + */ trxn.token[0].s->type = EX; s_ptr = trxn.token[0].s; -/* - * Set gamma data - */ + /* + * Set gamma data + */ s_ptr->gflag = 4; s_ptr->exch_gflag = 3; s_ptr->dha = 0.0; s_ptr->dhb = 0.0; opt_save = OPTION_DEFAULT; -/* - * Save as a phase for inverse modeling only - */ + /* + * Save as a phase for inverse modeling only + */ phase_ptr = phase_store(s_ptr->name); if (phase_ptr == NULL) { input_error++; - error_string = sformatf( "Copying exchange to phases."); + error_string = sformatf("Copying exchange to phases."); error_msg(error_string, CONTINUE); } else @@ -860,10 +789,11 @@ read_exchange_species(void) phase_ptr->formula = s_ptr->name; phase_ptr->check_equation = FALSE; phase_ptr->type = EX; - phase_ptr->next_elt = elt_list_dup(s_ptr->next_elt); - phase_ptr->rxn = rxn_dup(s_ptr->rxn); + phase_ptr->next_elt = s_ptr->next_elt; + phase_ptr->rxn = s_ptr->rxn; } - break; + } + break; } if (return_value == EOF || return_value == KEYWORD) break; @@ -888,13 +818,11 @@ read_exchange(void) * ERROR if error occurred reading data * */ - int n_user, n_user_end; + int n_user; LDBLE conc; - char *ptr; - char *description; - + const char* cptr; int return_value, opt; - char *next_char; + const char* next_char; const char *opt_list[] = { "equilibrate", /* 0 */ "equil", /* 1 */ @@ -910,22 +838,15 @@ read_exchange(void) * Z Manganite ('equi' or 'kine') 0.25 * ^Name ^equi or kinetic mineral ^switch ^prop.factor */ -/* - * Read exchange number and description - */ - - ptr = line; - read_number_description(ptr, &n_user, &n_user_end, &description); /* * Default values + n_user, description */ cxxExchange temp_exchange; + cptr = line; + temp_exchange.read_number_description(cptr); + n_user = temp_exchange.Get_n_user(); cxxExchComp *comp_ptr = NULL; temp_exchange.Set_new_def(true); - temp_exchange.Set_n_user(n_user); - temp_exchange.Set_n_user_end(n_user_end); - temp_exchange.Set_description(description); - free_check_null(description); /* * Set use data */ @@ -967,7 +888,7 @@ read_exchange(void) if (i == DIGIT) { int n_solution; - sscanf(token.c_str(), "%d", &n_solution); + (void)sscanf(token.c_str(), "%d", &n_solution); temp_exchange.Set_n_solution(n_solution); temp_exchange.Set_new_def(true); temp_exchange.Set_solution_equilibria(true); @@ -993,8 +914,8 @@ read_exchange(void) case OPTION_DEFAULT: { std::string token; - ptr = line; - int i = copy_token(token, &ptr); + cptr = line; + int i = copy_token(token, &cptr); /* * Species formula is stored in token */ @@ -1007,13 +928,13 @@ read_exchange(void) input_error++; break; } - cxxExchComp temp_comp; + cxxExchComp temp_comp(this->phrq_io); temp_exchange.Get_exchange_comps().push_back(temp_comp); comp_ptr = &(temp_exchange.Get_exchange_comps().back()); comp_ptr->Set_formula(token.c_str()); - prev_next_char = ptr; + prev_next_char = cptr; std::string token1; - i = copy_token(token1, &ptr); + i = copy_token(token1, &cptr); if (i == DIGIT) { /* @@ -1030,12 +951,12 @@ read_exchange(void) input_error++; break; } - prev_next_char = ptr; - int j = copy_token(token1, &ptr); + prev_next_char = cptr; + int j = copy_token(token1, &cptr); if (j == UPPER || j == LOWER) { comp_ptr->Set_rate_name(token1.c_str()); - if (copy_token(token1, &ptr) != DIGIT) + if (copy_token(token1, &cptr) != DIGIT) { error_string = sformatf( "Expected a coefficient to relate exchange to kinetic reaction, but found:\n %s", @@ -1045,7 +966,7 @@ read_exchange(void) break; } LDBLE p; - sscanf(token1.c_str(), SCANFORMAT, &p); + (void)sscanf(token1.c_str(), SCANFORMAT, &p); comp_ptr->Set_phase_proportion(p); } /* @@ -1057,8 +978,8 @@ read_exchange(void) /* exchanger conc. is related to mineral or kinetics */ comp_ptr->Set_phase_name(token1.c_str()); - prev_next_char = ptr; - int j = copy_token(token1, &ptr); + prev_next_char = cptr; + int j = copy_token(token1, &cptr); if (j != DIGIT) { if (token1[0] == 'K' || token1[0] == 'k') @@ -1075,8 +996,8 @@ read_exchange(void) input_error++; break; } - prev_next_char = ptr; - j = copy_token(token1, &ptr); + prev_next_char = cptr; + j = copy_token(token1, &cptr); } @@ -1090,7 +1011,7 @@ read_exchange(void) break; } LDBLE p; - sscanf(token1.c_str(), SCANFORMAT, &p); + (void)sscanf(token1.c_str(), SCANFORMAT, &p); comp_ptr->Set_phase_proportion(p); /* real conc must be defined in tidy_model */ conc = 1.0; @@ -1109,22 +1030,19 @@ read_exchange(void) */ count_elts = 0; paren_count = 0; - char * formula = string_duplicate(token.c_str()); - ptr = formula; - get_elts_in_species(&ptr, conc); + std::string formula = token.c_str(); + cptr = formula.c_str(); + get_elts_in_species(&cptr, conc); /* * save formula for adjusting number of exchange sites */ - ptr = formula; - char *name = string_duplicate(token.c_str()); - name[0] = '\0'; + cptr = formula.c_str(); + std::string name; LDBLE z; int l; - get_token(&ptr, name, &z, &l); + get_token(&cptr, name, &z, &l); comp_ptr->Set_formula_z(z); - free_check_null(formula); - free_check_null(name); /* * Save elt_list */ @@ -1149,11 +1067,11 @@ read_exchange_master_species(void) * Reads master species data from data file or input file */ int j, l; - char *ptr, *ptr1; + const char* cptr, *cptr1; LDBLE l_z; - struct element *elts_ptr; - struct species *s_ptr; - char token[MAX_LENGTH], token1[MAX_LENGTH]; + class element *elts_ptr; + class species *s_ptr; + char token[MAX_LENGTH]; for (;;) { j = check_line("Exchange species equation", FALSE, TRUE, TRUE, TRUE); @@ -1164,11 +1082,11 @@ read_exchange_master_species(void) /* * Get element name with valence, allocate space, store */ - ptr = line; + cptr = line; /* * Get element name and save pointer to character string */ - if (copy_token(token, &ptr, &l) != UPPER && token[0] != '[') + if (copy_token(token, &cptr, &l) != UPPER && token[0] != '[') { parse_error++; error_msg("Reading element for master species.", CONTINUE); @@ -1177,8 +1095,8 @@ read_exchange_master_species(void) } /* if (token[0] == '[') { - ptr1 = token; - get_elt(&ptr, element, &l); + cptr1 = token; + get_elt(&cptr, element, &l); strcpy(token, element); } */ @@ -1190,11 +1108,8 @@ read_exchange_master_species(void) /* * Increase pointer array, if necessary, and malloc space */ - if (count_master >= max_master) - { - space((void **) ((void *) &master), count_master + 1, - &max_master, sizeof(struct master *)); - } + size_t count_master = master.size(); + master.resize(count_master + 1); master[count_master] = master_alloc(); /* * Set type to EX @@ -1207,7 +1122,7 @@ read_exchange_master_species(void) /* * Save pointer to species data for master species */ - if ((copy_token(token, &ptr, &l) != UPPER) && + if ((copy_token(token, &cptr, &l) != UPPER) && token[0] != '[' && (strcmp_nocase_arg1(token, "e-") != 0)) { parse_error++; @@ -1222,9 +1137,10 @@ read_exchange_master_species(void) } else { - ptr1 = token; - get_token(&ptr1, token1, &l_z, &l); - master[count_master]->s = s_store(token1, l_z, FALSE); + cptr1 = token; + std::string token1; + get_token(&cptr1, token1, &l_z, &l); + master[count_master]->s = s_store(token1.c_str(), l_z, FALSE); } /* * MAKE LISTS OF PRIMARY AND SECONDARY MASTER SPECIES @@ -1235,13 +1151,6 @@ read_exchange_master_species(void) elts_ptr = element_store(master[count_master]->elt->name); elts_ptr->gfw = 0.0; } - - count_master++; - if (count_master >= max_master) - { - space((void **) ((void *) &master), count_master, &max_master, - sizeof(struct master *)); - } } return (j); } @@ -1264,13 +1173,12 @@ read_gas_phase(void) * */ int i, j, l; - int n_user, n_user_end; - char *ptr; - char *description; + int n_user; + const char* cptr; char token[MAX_LENGTH]; - cxxGasPhase temp_gas_phase; + cxxGasPhase temp_gas_phase(this->phrq_io); int return_value, opt; - char *next_char; + const char* next_char; const char *opt_list[] = { "pressure", /* 0 */ "volume", /* 1 */ @@ -1283,17 +1191,11 @@ read_gas_phase(void) "equil" /* 8 */ }; int count_opt_list = 9; -/* - * Read gas_phase number - */ - ptr = line; - read_number_description(ptr, &n_user, &n_user_end, &description); - temp_gas_phase.Set_n_user(n_user); - temp_gas_phase.Set_n_user_end(n_user_end); - temp_gas_phase.Set_description(description); + cptr = line; + temp_gas_phase.read_number_description(cptr); + n_user = temp_gas_phase.Get_n_user(); temp_gas_phase.Set_new_def(true); - free_check_null(description); /* * Set use data to first read */ @@ -1323,11 +1225,11 @@ read_gas_phase(void) error_msg(line_save, CONTINUE); break; case 0: /* pressure */ - sscanf(next_char, SCANFORMAT, &dummy); + (void)sscanf(next_char, SCANFORMAT, &dummy); temp_gas_phase.Set_total_p(dummy); break; case 1: /* Volume */ - sscanf(next_char, SCANFORMAT, &dummy); + (void)sscanf(next_char, SCANFORMAT, &dummy); temp_gas_phase.Set_volume(dummy); break; case 2: /* Temperature */ @@ -1355,7 +1257,7 @@ read_gas_phase(void) i = copy_token(token, &next_char, &l); if (i == DIGIT) { - sscanf(token, "%d", &l); + (void)sscanf(token, "%d", &l); temp_gas_phase.Set_n_solution(l); temp_gas_phase.Set_new_def(true); temp_gas_phase.Set_solution_equilibria(true); @@ -1378,10 +1280,10 @@ read_gas_phase(void) /* * Read name */ - ptr = line; - copy_token(token, &ptr, &l); + cptr = line; + copy_token(token, &cptr, &l); temp_comp.Set_phase_name(token); - if ((j = copy_token(token, &ptr, &l)) == EMPTY) + if ((j = copy_token(token, &cptr, &l)) == EMPTY) { temp_comp.Set_p_read(NAN); temp_gas_phase.Get_gas_comps().push_back(temp_comp); @@ -1452,12 +1354,12 @@ read_inverse(void) */ int n, j; int n_user, n_user_end; - char *ptr; + const char* cptr; char *description; LDBLE range_max, inv_tol, water_uncertainty; int return_value, opt, opt_save; - char *next_char; + const char* next_char; const char *opt_list[] = { "solutions", /* 0 */ "uncertainty", /* 1 */ @@ -1489,11 +1391,11 @@ read_inverse(void) }; int count_opt_list = 27; - ptr = line; + cptr = line; /* * Read solution number and description */ - read_number_description(ptr, &n_user, &n_user_end, &description); + read_number_description(cptr, &n_user, &n_user_end, &description); /* * Malloc space for solution data */ @@ -1513,10 +1415,6 @@ read_inverse(void) inverse[n].tolerance = 1e-10; inverse[n].minimal = FALSE; inverse[n].description = description; - inverse[n].count_uncertainties = 1; - inverse[n].uncertainties[0] = 0.05; - inverse[n].count_ph_uncertainties = 1; - inverse[n].ph_uncertainties[0] = 0.05; inverse[n].water_uncertainty = 0.0; inverse[n].mineral_water = TRUE; inverse[n].mp = FALSE; @@ -1553,17 +1451,13 @@ read_inverse(void) break; case 0: /* solutions */ case 10: /* solution */ - inverse[n].solns = - read_list_ints(&next_char, &inverse[n].count_solns, TRUE); + read_vector_ints(&next_char, inverse[n].solns, TRUE); + inverse[n].count_solns = (int)inverse[n].solns.size(); opt_save = OPTION_ERROR; break; case 1: /* uncertainty */ case 2: /* uncertainties */ - inverse[n].uncertainties = - (LDBLE *) free_check_null(inverse[n].uncertainties); - inverse[n].uncertainties = - read_list_doubles(&next_char, - &inverse[n].count_uncertainties); + read_vector_doubles(&next_char, inverse[n].uncertainties); opt_save = OPTION_ERROR; break; case 3: /* balances */ @@ -1611,10 +1505,8 @@ read_inverse(void) case 16: /* force */ case 17: /* force_solution */ case 18: /* force_solutions */ - inverse[n].force_solns = - (int *) free_check_null(inverse[n].force_solns); - inverse[n].force_solns = - read_list_t_f(&next_char, &inverse[n].count_force_solns); + inverse[n].force_solns.clear(); + read_vector_t_f(&next_char, inverse[n].force_solns); opt_save = OPTION_ERROR; break; case 19: /* isotope values */ @@ -1645,29 +1537,35 @@ read_inverse(void) opt_save = OPTION_ERROR; break; case 25: /* lon_netpath */ - /*copy_token(file_name, &next_char, &l); */ - if (string_trim(next_char) != EMPTY) + { + std::string temp_name(next_char); + string_trim(temp_name); + if (temp_name.size() > 0) { - inverse[n].netpath = string_hsave(next_char); + inverse[n].netpath = string_hsave(temp_name.c_str()); } else { inverse[n].netpath = string_hsave("netpath"); } opt_save = OPTION_ERROR; - break; + } + break; case 26: /* pat_netpath */ - /*copy_token(file_name, &next_char, &l); */ - if (string_trim(next_char) != EMPTY) + { + std::string temp_name(next_char); + string_trim(temp_name); + if (temp_name.size() > 0) { - inverse[n].pat = string_hsave(next_char); + inverse[n].pat = string_hsave(temp_name.c_str()); } else { inverse[n].pat = string_hsave("netpath"); } opt_save = OPTION_ERROR; - break; + } + break; } if (return_value == EOF || return_value == KEYWORD) break; @@ -1677,28 +1575,25 @@ read_inverse(void) */ if (inverse[n].count_solns == 0) { - inverse[n].solns = (int *) PHRQ_malloc(2 * sizeof(int)); - if (inverse[n].solns == NULL) - malloc_error(); - inverse[n].solns[0] = 1; - inverse[n].solns[1] = 2; + inverse[n].solns.push_back(1); + inverse[n].solns.push_back(2); inverse[n].count_solns = 2; } /* * Sort isotopes */ - if (inverse[n].count_isotopes > 0) + if (inverse[n].isotopes.size() > 1) { - qsort(inverse[n].isotopes, - (size_t) inverse[n].count_isotopes, - (size_t) sizeof(struct inv_isotope), inverse_isotope_compare); + qsort(&inverse[n].isotopes[0], + inverse[n].isotopes.size(), + sizeof(class inv_isotope), inverse_isotope_compare); } - if (inverse[n].count_i_u > 0) + if (inverse[n].i_u.size() > 1) { - qsort(inverse[n].i_u, - (size_t) inverse[n].count_i_u, - (size_t) sizeof(struct inv_isotope), inverse_isotope_compare); + qsort(&inverse[n].i_u[0], + inverse[n].i_u.size(), + (size_t) sizeof(class inv_isotope), inverse_isotope_compare); } return (return_value); @@ -1706,15 +1601,15 @@ read_inverse(void) /* ---------------------------------------------------------------------- */ int Phreeqc:: -read_inv_balances(struct inverse *inverse_ptr, char *ptr) +read_inv_balances(class inverse *inverse_ptr, const char* cptr) /* ---------------------------------------------------------------------- */ { - int j, l, count; + int j, l; char token[MAX_LENGTH]; /* * Read element name */ - j = copy_token(token, &ptr, &l); + j = copy_token(token, &cptr, &l); if (j == EMPTY) { return (OK); @@ -1727,52 +1622,40 @@ read_inv_balances(struct inverse *inverse_ptr, char *ptr) } else if (strcmp_nocase_arg1(token, "ph") != 0) { - inverse_ptr->elts = - (struct inv_elts *) PHRQ_realloc(inverse_ptr->elts, - (size_t) (inverse_ptr-> - count_elts + - 1) * - sizeof(struct inv_elts)); - if (inverse_ptr->elts == NULL) - malloc_error(); + size_t count_elts = inverse_ptr->elts.size(); + inverse_ptr->elts.resize(count_elts + 1); replace("(+", "(", token); - inverse_ptr->elts[inverse_ptr->count_elts].name = string_hsave(token); + inverse_ptr->elts[count_elts].name = string_hsave(token); /* * Read element uncertainties */ - inverse_ptr->elts[inverse_ptr->count_elts].uncertainties = - read_list_doubles(&ptr, &count); - inverse_ptr->elts[inverse_ptr->count_elts].count_uncertainties = - count; - inverse_ptr->count_elts++; + read_vector_doubles(&cptr, inverse_ptr->elts[count_elts].uncertainties); } else if (strcmp_nocase_arg1(token, "ph") == 0) { - inverse_ptr->ph_uncertainties = - (LDBLE *) free_check_null(inverse_ptr->ph_uncertainties); - inverse_ptr->ph_uncertainties = read_list_doubles(&ptr, &count); - inverse_ptr->count_ph_uncertainties = count; + inverse_ptr->ph_uncertainties.clear(); + read_vector_doubles(&cptr, inverse_ptr->ph_uncertainties); } return (OK); } /* ---------------------------------------------------------------------- */ int Phreeqc:: -read_inv_isotopes(struct inverse *inverse_ptr, char *ptr) +read_inv_isotopes(class inverse *inverse_ptr, const char* cptr) /* ---------------------------------------------------------------------- */ { - int i, j, l, l1, l2, count; + int i, j, l, l1, l2; LDBLE isotope_number; char token[MAX_LENGTH], token1[MAX_LENGTH]; - char *ptr1, *ptr2; + const char* cptr1, *ptr2; const char * redox_name, *element_name; /* * Read element name */ - ptr1 = ptr; - j = copy_token(token, &ptr1, &l); + cptr1 = cptr; + j = copy_token(token, &cptr1, &l); /* - * ptr1 is start of uncertainties + * cptr1 is start of uncertainties */ if (j == EMPTY) { @@ -1813,121 +1696,89 @@ read_inv_isotopes(struct inverse *inverse_ptr, char *ptr) /* * add element name to inv_ptr->isotopes */ - for (i = 0; i < inverse_ptr->count_isotopes; i++) + for (i = 0; i < inverse_ptr->isotopes.size(); i++) { if (element_name == inverse_ptr->isotopes[i].elt_name) break; } - if (i == inverse_ptr->count_isotopes) + if (i == inverse_ptr->isotopes.size()) { - inverse_ptr->isotopes = - (struct inv_isotope *) PHRQ_realloc(inverse_ptr->isotopes, - (size_t) (inverse_ptr-> - count_isotopes + - 1) * - sizeof(struct inv_isotope)); - if (inverse_ptr->isotopes == NULL) - malloc_error(); - inverse_ptr->isotopes[inverse_ptr->count_isotopes].isotope_number = - isotope_number; - inverse_ptr->isotopes[inverse_ptr->count_isotopes].elt_name = - element_name; - inverse_ptr->isotopes[inverse_ptr->count_isotopes].uncertainties = - (LDBLE *) PHRQ_malloc((size_t) sizeof(LDBLE)); - if (inverse_ptr->isotopes[inverse_ptr->count_isotopes]. - uncertainties == NULL) - malloc_error(); - inverse_ptr->count_isotopes++; + size_t count_isotopes = inverse_ptr->isotopes.size(); + inverse_ptr->isotopes.resize(count_isotopes + 1); + inverse_ptr->isotopes[count_isotopes].isotope_number = isotope_number; + inverse_ptr->isotopes[count_isotopes].elt_name = element_name; + inverse_ptr->isotopes[count_isotopes].uncertainties.clear(); } /* * add redox state name to inv_ptr->i_u */ - inverse_ptr->i_u = - (struct inv_isotope *) PHRQ_realloc(inverse_ptr->i_u, - (size_t) (inverse_ptr-> - count_i_u + - 1) * - sizeof(struct inv_isotope)); - if (inverse_ptr->i_u == NULL) - { - malloc_error(); - return (OK); - } - inverse_ptr->i_u[inverse_ptr->count_i_u].elt_name = redox_name; - inverse_ptr->i_u[inverse_ptr->count_i_u].isotope_number = isotope_number; + size_t count_i_u = inverse_ptr->i_u.size(); + inverse_ptr->i_u.resize(count_i_u + 1); + inverse_ptr->i_u[count_i_u].elt_name = redox_name; + inverse_ptr->i_u[count_i_u].isotope_number = isotope_number; /* * Read isotope uncertainties */ - inverse_ptr->i_u[inverse_ptr->count_i_u].uncertainties = - read_list_doubles(&ptr1, &count); - inverse_ptr->i_u[inverse_ptr->count_i_u].count_uncertainties = count; - inverse_ptr->count_i_u++; + read_vector_doubles(&cptr1, inverse_ptr->i_u[count_i_u].uncertainties); return (OK); } /* ---------------------------------------------------------------------- */ int Phreeqc:: -read_inv_phases(struct inverse *inverse_ptr, char *ptr) +read_inv_phases(class inverse *inverse_ptr, const char* cptr) /* ---------------------------------------------------------------------- */ { int j, l; char token[MAX_LENGTH], token1[MAX_LENGTH]; - char *ptr1; + const char* cptr1; std::vector isotopes; /* * Read phase name */ - j = copy_token(token, &ptr, &l); + j = copy_token(token, &cptr, &l); if (j == EMPTY) return (OK); - inverse_ptr->phases = - (struct inv_phases *) PHRQ_realloc(inverse_ptr->phases, - (size_t) (inverse_ptr-> - count_phases + - 1) * - sizeof(struct inv_phases)); - if (inverse_ptr->phases == NULL) - malloc_error(); - inverse_ptr->phases[inverse_ptr->count_phases].name = string_hsave(token); + + size_t count_phases = inverse_ptr->phases.size(); + inverse_ptr->phases.resize(count_phases + 1); + inverse_ptr->phases[count_phases].name = string_hsave(token); /* * Read constraint, force, and isotopes */ - inverse_ptr->phases[inverse_ptr->count_phases].constraint = EITHER; - inverse_ptr->phases[inverse_ptr->count_phases].force = FALSE; + inverse_ptr->phases[count_phases].constraint = EITHER; + inverse_ptr->phases[count_phases].force = FALSE; for (;;) { cxxSolutionIsotope temp_isotope; - j = copy_token(token, &ptr, &l); + j = copy_token(token, &cptr, &l); if (j == EMPTY) break; strcpy(token1, token); str_tolower(token1); if (token1[0] == 'p') { - inverse_ptr->phases[inverse_ptr->count_phases].constraint = - PRECIPITATE; + inverse_ptr->phases[count_phases].constraint = PRECIPITATE; } else if (token1[0] == 'd') { - inverse_ptr->phases[inverse_ptr->count_phases].constraint = - DISSOLVE; + inverse_ptr->phases[count_phases].constraint = DISSOLVE; } else if (token[0] == 'f') { - inverse_ptr->phases[inverse_ptr->count_phases].force = TRUE; + inverse_ptr->phases[count_phases].force = TRUE; } else if (j == DIGIT) { /* * read isotope data */ - ptr1 = token; + cptr1 = token; /* isotope number */ - get_num(&ptr1, &dummy); + get_num(&cptr1, &dummy); temp_isotope.Set_isotope_number(dummy); - if (ptr1[0] == '\0' || isupper((int) ptr1[0]) == FALSE) + if (cptr1[0] == '\0' || isupper((int) cptr1[0]) == FALSE) { - error_string = sformatf( "Expecting element name: %s.", ptr1); + error_string = sformatf( "Expecting element name: %s.", cptr1); error_msg(error_string, CONTINUE); error_msg(line_save, CONTINUE); input_error++; @@ -1935,10 +1786,10 @@ read_inv_phases(struct inverse *inverse_ptr, char *ptr) } /* element name */ - temp_isotope.Set_elt_name(ptr1); + temp_isotope.Set_elt_name(cptr1); /* ratio */ - j = copy_token(token, &ptr, &l); + j = copy_token(token, &cptr, &l); if (j != DIGIT) { error_msg("Expecting isotope ratio for phase.", CONTINUE); @@ -1946,12 +1797,12 @@ read_inv_phases(struct inverse *inverse_ptr, char *ptr) input_error++; break; } - sscanf(token, SCANFORMAT, &dummy); + (void)sscanf(token, SCANFORMAT, &dummy); temp_isotope.Set_ratio(dummy); /* read and store isotope ratio uncertainty */ - prev_next_char = ptr; - if (copy_token(token, &ptr, &l) != DIGIT) + prev_next_char = cptr; + if (copy_token(token, &cptr, &l) != DIGIT) { input_error++; error_string = sformatf( @@ -1960,7 +1811,7 @@ read_inv_phases(struct inverse *inverse_ptr, char *ptr) error_msg(error_string, CONTINUE); continue; } - sscanf(token, SCANFORMAT, &dummy); + (void)sscanf(token, SCANFORMAT, &dummy); temp_isotope.Set_ratio_uncertainty(dummy); temp_isotope.Set_ratio_uncertainty_defined(true); isotopes.push_back(temp_isotope); @@ -1974,11 +1825,10 @@ read_inv_phases(struct inverse *inverse_ptr, char *ptr) } if (isotopes.size() > 0) { - inverse_ptr->phases[inverse_ptr->count_phases].isotopes = - (struct isotope *) PHRQ_malloc(isotopes.size() * sizeof(struct isotope)); + inverse_ptr->phases[count_phases].isotopes.resize(isotopes.size()); for (size_t i = 0; i < isotopes.size(); i++) { - struct isotope *iso_ptr = &(inverse_ptr->phases[inverse_ptr->count_phases].isotopes[i]); + class isotope *iso_ptr = &(inverse_ptr->phases[count_phases].isotopes[i]); iso_ptr->isotope_number = isotopes[i].Get_isotope_number(); iso_ptr->elt_name = string_hsave(isotopes[i].Get_elt_name().c_str()); iso_ptr->isotope_name = string_hsave(isotopes[i].Get_isotope_name().c_str()); @@ -1993,14 +1843,11 @@ read_inv_phases(struct inverse *inverse_ptr, char *ptr) iso_ptr->master = NULL; iso_ptr->primary = NULL; } - inverse_ptr->phases[inverse_ptr->count_phases].count_isotopes = (int) isotopes.size(); } else { - inverse_ptr->phases[inverse_ptr->count_phases].isotopes = NULL; - inverse_ptr->phases[inverse_ptr->count_phases].count_isotopes = 0; + inverse_ptr->phases[count_phases].isotopes.clear(); } - inverse_ptr->count_phases++; return (OK); } /* ---------------------------------------------------------------------- */ @@ -2024,14 +1871,13 @@ read_kinetics(void) /* * Read kinetics */ - char *ptr; - char *description; + const char* cptr; std::string token; - int n_user, n_user_end; + int n_user; LDBLE step; int return_value, opt; - char *next_char; + const char* next_char; const char *opt_list[] = { "tol", /* 0 */ "m", /* 1 */ @@ -2052,16 +1898,10 @@ read_kinetics(void) }; int count_opt_list = 16; -/* - * Read kinetics number - */ - ptr = line; - read_number_description(ptr, &n_user, &n_user_end, &description); - cxxKinetics temp_kinetics; - temp_kinetics.Set_n_user(n_user); - temp_kinetics.Set_n_user_end(n_user_end); - temp_kinetics.Set_description(description); - description = (char *) free_check_null(description); + cxxKinetics temp_kinetics(this->phrq_io); + cptr = line; + temp_kinetics.read_number_description(cptr); + n_user = temp_kinetics.Get_n_user(); cxxKineticsComp *kinetics_comp_ptr = NULL; std::string stdunits; /* @@ -2094,8 +1934,8 @@ read_kinetics(void) delete kinetics_comp_ptr; } kinetics_comp_ptr = new cxxKineticsComp; - ptr = line; - copy_token(token, &ptr); + cptr = line; + copy_token(token, &cptr); kinetics_comp_ptr->Set_rate_name(token.c_str()); break; case OPTION_ERROR: @@ -2115,6 +1955,7 @@ read_kinetics(void) prev_next_char = next_char; if (copy_token(token, &next_char) == DIGIT) { + char* ptr; kinetics_comp_ptr->Set_tol(strtod(token.c_str(), &ptr)); } else @@ -2139,6 +1980,7 @@ read_kinetics(void) prev_next_char = next_char; if (copy_token(token, &next_char) == DIGIT) { + char* ptr; kinetics_comp_ptr->Set_m(strtod(token.c_str(), &ptr)); } else @@ -2163,6 +2005,7 @@ read_kinetics(void) prev_next_char = next_char; if (copy_token(token, &next_char) == DIGIT) { + char* ptr; kinetics_comp_ptr->Set_m0(strtod(token.c_str(), &ptr)); } else @@ -2193,6 +2036,7 @@ read_kinetics(void) */ if (j == DIGIT) { + char* ptr; kinetics_comp_ptr->Get_d_params().push_back(strtod(token.c_str(), &ptr)); } else @@ -2217,11 +2061,11 @@ read_kinetics(void) /* * Store reactant name, default coefficient */ - ptr = next_char; + cptr = next_char; bool have_name = false; std::string name; LDBLE coef = 1; - while (copy_token(token, &ptr) != EMPTY) + while (copy_token(token, &cptr) != EMPTY) { coef = 1; if (isalpha((int) token[0]) || (token[0] == '(') @@ -2301,6 +2145,7 @@ read_kinetics(void) } else { + char* ptr; step = strtod(token.c_str(), &ptr); temp_kinetics.Get_steps().push_back(step); } @@ -2354,7 +2199,7 @@ read_kinetics(void) case 6: /* step_divide */ if (copy_token(token, &next_char) == DIGIT) { - sscanf(token.c_str(), SCANFORMAT, &dummy); + (void)sscanf(token.c_str(), SCANFORMAT, &dummy); temp_kinetics.Set_step_divide(dummy); } else @@ -2372,6 +2217,7 @@ read_kinetics(void) int j = copy_token(token, &next_char); if (j == DIGIT) { + char* ptr; temp_kinetics.Set_rk((int) strtod(token.c_str(), &ptr)); } else if (j == EMPTY) @@ -2391,6 +2237,7 @@ read_kinetics(void) int j = copy_token(token, &next_char); if (j == DIGIT) { + char* ptr; temp_kinetics.Set_bad_step_max((int) strtod(token.c_str(), &ptr)); } else if (j == EMPTY) @@ -2412,6 +2259,7 @@ read_kinetics(void) int j = copy_token(token, &next_char); if (j == DIGIT) { + char* ptr; temp_kinetics.Set_cvode_steps((int) strtod(token.c_str(), &ptr)); } else if (j == EMPTY) @@ -2431,6 +2279,7 @@ read_kinetics(void) int j = copy_token(token, &next_char); if (j == DIGIT) { + char* ptr; temp_kinetics.Set_cvode_order((int) strtod(token.c_str(), &ptr)); } else if (j == EMPTY) @@ -2508,125 +2357,50 @@ read_kinetics(void) return (return_value); } /* ---------------------------------------------------------------------- */ -LDBLE * Phreeqc:: -read_list_doubles(char **ptr, int *count_doubles) +bool Phreeqc:: +read_vector_doubles(const char** cptr, std::vector& v) /* ---------------------------------------------------------------------- */ { -/* - * Reads a list of LDBLE numbers until end of line is reached or - * a LDBLE cannot be read from a token. - * - * Arguments: - * ptr entry: points to line to read from - * exit: points to next non-LDBLE token or end of line - * - * count_doubles exit: number of LDBLEs read - * - * Returns: - * pointer to a list of count_doubles LDBLEs. - */ - - LDBLE *LDBLE_list; - char token[MAX_LENGTH]; - LDBLE value; - char *ptr_save; - int l; - - LDBLE_list = (LDBLE *) PHRQ_malloc(sizeof(LDBLE)); - if (LDBLE_list == NULL) - malloc_error(); - *count_doubles = 0; - - ptr_save = *ptr; - while (copy_token(token, ptr, &l) != EMPTY) + /* + * Reads a list of LDBLE numbers until end of line is reached or + * a LDBLE cannot be read from a token. + */ + double value; + std::istringstream iss(*cptr); + while (iss >> value) { - if (sscanf(token, SCANFORMAT, &value) == 1) - { - *count_doubles = *count_doubles + 1; - LDBLE_list = - (LDBLE *) PHRQ_realloc(LDBLE_list, - (size_t) (*count_doubles) * - sizeof(LDBLE)); - if (LDBLE_list == NULL) - malloc_error(); - LDBLE_list[(*count_doubles) - 1] = value; - ptr_save = *ptr; - } - else - { - *ptr = ptr_save; - break; - } + v.push_back(value); } - return (LDBLE_list); + return true; } - /* ---------------------------------------------------------------------- */ -int * Phreeqc:: -read_list_ints(char **ptr, int *count_ints, int positive) +bool Phreeqc:: +read_vector_ints(const char** cptr, std::vector& v, int positive) /* ---------------------------------------------------------------------- */ { -/* - * Reads a list of int numbers until end of line is reached or - * an int cannot be read from a token. - * - * Arguments: - * ptr entry: points to line to read from - * exit: points to next non-int token or end of line - * - * count_ints exit: number of LDBLEs read - * - * positive entry: if TRUE, expects to read only positive integers - * - * Returns: - * pointer to a list of count_ints ints. - */ - int *int_list; - char token[MAX_LENGTH]; + /* + * Reads a list of int numbers until end of line is reached or + * an int cannot be read from a token. + */ int value; - int l; - char *ptr_save; - - int_list = (int *) PHRQ_malloc(sizeof(int)); - if (int_list == NULL) - malloc_error(); - *count_ints = 0; - - ptr_save = *ptr; - while (copy_token(token, ptr, &l) != EMPTY) + std::istringstream iss(*cptr); + while (iss >> value) { - if (sscanf(token, "%d", &value) == 1) + v.push_back(value); + if (value <= 0 && positive == TRUE) { - (*count_ints)++; - int_list = - (int *) PHRQ_realloc(int_list, - (size_t) (*count_ints) * sizeof(int)); - if (int_list == NULL) - { - malloc_error(); - return (NULL); - } - int_list[(*count_ints) - 1] = value; - if (value <= 0 && positive == TRUE) - { - error_msg("Expected an integer greater than zero.", CONTINUE); - error_msg(line_save, CONTINUE); - input_error++; - } - ptr_save = *ptr; - } - else - { - *ptr = ptr_save; - break; + error_msg("Expected an integer greater than zero.", CONTINUE); + error_msg(line_save, CONTINUE); + input_error++; + return false; } } - return (int_list); + return true; } /* ---------------------------------------------------------------------- */ int * Phreeqc:: -read_list_ints_range(char **ptr, int *count_ints, int positive, int *int_list) +read_list_ints_range(const char **cptr, int *count_ints, int positive, int *int_list) /* ---------------------------------------------------------------------- */ { /* @@ -2634,7 +2408,7 @@ read_list_ints_range(char **ptr, int *count_ints, int positive, int *int_list) * an int cannot be read from a token. * * Arguments: - * ptr entry: points to line to read from + * cptr entry: points to line to read from * exit: points to next non-int token or end of line * * count_ints entry: number of ints already in list @@ -2647,7 +2421,7 @@ read_list_ints_range(char **ptr, int *count_ints, int positive, int *int_list) char token[MAX_LENGTH]; int value, value1, value2; int i, l; - char *ptr_save; + const char* cptr_save; if (int_list == NULL) { @@ -2659,8 +2433,8 @@ read_list_ints_range(char **ptr, int *count_ints, int positive, int *int_list) } *count_ints = 0; } - ptr_save = *ptr; - while (copy_token(token, ptr, &l) != EMPTY) + cptr_save = *cptr; + while (copy_token(token, cptr, &l) != EMPTY) { if (sscanf(token, "%d", &value) == 1) { @@ -2722,11 +2496,11 @@ read_list_ints_range(char **ptr, int *count_ints, int positive, int *int_list) } } } - ptr_save = *ptr; + cptr_save = *cptr; } else { - *ptr = ptr_save; + *cptr = cptr_save; break; } } @@ -2734,75 +2508,52 @@ read_list_ints_range(char **ptr, int *count_ints, int positive, int *int_list) } /* ---------------------------------------------------------------------- */ -int * Phreeqc:: -read_list_t_f(char **ptr, int *count_ints) +bool Phreeqc:: +read_vector_t_f(const char** cptr, std::vector& v) /* ---------------------------------------------------------------------- */ { -/* - * Reads a list of true and false until end of line is reached or - * until non- t or f is found - * - * Arguments: - * ptr entry: points to line to read from - * exit: points to next non-int token or end of line - * - * count_ints exit: number of LDBLEs read - * - * positive entry: if TRUE, expects to read only positive integers - * - * Returns: - * pointer to a list of count_ints ints. - */ - int *int_list; - char token[MAX_LENGTH]; - int value; - int l; - - int_list = (int *) PHRQ_malloc(sizeof(int)); - if (int_list == NULL) - malloc_error(); - *count_ints = 0; - - while (copy_token(token, ptr, &l) != EMPTY) + /* + * Reads a list of true and false until end of line is reached or + * until non- t or f is found + */ + std::string token; + while (copy_token(token, cptr) != EMPTY) { str_tolower(token); if (token[0] == 't') { - value = TRUE; + v.push_back(true); } else if (token[0] == 'f') { - value = FALSE; + v.push_back(false); } else { error_msg("Expected TRUE or FALSE.", CONTINUE); error_msg(line_save, CONTINUE); input_error++; - break; + return false; } - (*count_ints)++; - int_list = - (int *) PHRQ_realloc(int_list, - (size_t) (*count_ints) * sizeof(int)); - if (int_list == NULL) - malloc_error(); - int_list[(*count_ints) - 1] = value; + } - return (int_list); + return true; } + /* ---------------------------------------------------------------------- */ int Phreeqc:: -read_log_k_only(char *ptr, LDBLE * log_k) +read_log_k_only(const char* cptr_in, LDBLE * log_k) /* ---------------------------------------------------------------------- */ { /* * Read log k */ *log_k = 0.0; - replace("=", " ", ptr); - if (sscanf(ptr, SCANFORMAT, log_k) < 1) + std::string stds(cptr_in); + replace(stds, "=", " "); + //replace("=", " ", cptr); + if (sscanf(stds.c_str(), SCANFORMAT, log_k) < 1) { input_error++; error_msg("Expecting log k.", CONTINUE); @@ -2812,12 +2563,14 @@ read_log_k_only(char *ptr, LDBLE * log_k) } /* ---------------------------------------------------------------------- */ int Phreeqc:: -read_t_c_only(char *ptr, LDBLE *t_c) +read_t_c_only(const char* cptr_in, LDBLE *t_c) /* ---------------------------------------------------------------------- */ { *t_c = 0.0; - replace("=", " ", ptr); - if (sscanf(ptr, SCANFORMAT, t_c) < 1) + std::string stds(cptr_in); + replace(stds, "=", " "); + //replace("=", " ", cptr); + if (sscanf(stds.c_str(), SCANFORMAT, t_c) < 1) { input_error++; error_msg("Expecting numeric value for critical temperature T_c (K)", CONTINUE); @@ -2827,12 +2580,13 @@ read_t_c_only(char *ptr, LDBLE *t_c) } /* ---------------------------------------------------------------------- */ int Phreeqc:: -read_p_c_only(char *ptr, LDBLE * p_c) +read_p_c_only(const char* cptr, LDBLE * p_c) /* ---------------------------------------------------------------------- */ { *p_c = 0.0; - replace("=", " ", ptr); - if (sscanf(ptr, SCANFORMAT, p_c) < 1) + std::string stds(cptr); + replace(stds, "=", " "); + if (sscanf(stds.c_str(), SCANFORMAT, p_c) < 1) { input_error++; error_msg("Expecting numeric value for critical pressure P_c (atm)", CONTINUE); @@ -2842,12 +2596,13 @@ read_p_c_only(char *ptr, LDBLE * p_c) } /* ---------------------------------------------------------------------- */ int Phreeqc:: -read_omega_only(char *ptr, LDBLE *omega) +read_omega_only(const char* cptr, LDBLE *omega) /* ---------------------------------------------------------------------- */ { *omega = 0.0; - replace("=", " ", ptr); - if (sscanf(ptr, SCANFORMAT, omega) < 1) + std::string stds(cptr); + replace(stds, "=", " "); + if (sscanf(stds.c_str(), SCANFORMAT, omega) < 1) { input_error++; error_msg("Expecting numeric value for acentric factor Omega", CONTINUE); @@ -2857,14 +2612,14 @@ read_omega_only(char *ptr, LDBLE *omega) } /* ---------------------------------------------------------------------- */ int Phreeqc:: -read_aq_species_vm_parms(char *ptr, LDBLE * delta_v) +read_aq_species_vm_parms(const char* cptr, LDBLE * delta_v) /* ---------------------------------------------------------------------- */ { int j; /* * Read supcrt parms and Ionic strength terms */ - for (j = 0; j < 9; j++) + for (j = 0; j < 11; j++) { delta_v[j] = 0.0; } @@ -2872,7 +2627,7 @@ read_aq_species_vm_parms(char *ptr, LDBLE * delta_v) /* Vmax, dmax... delta_v[10] = 999.0; delta_v[11] = 1.0; */ - j = sscanf(ptr, SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT /*SCANFORMAT SCANFORMAT */, + j = sscanf(cptr, SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT , /* a1..a4 */ &(delta_v[0]), &(delta_v[1]), &(delta_v[2]), &(delta_v[3]), /* wref */ @@ -2880,9 +2635,9 @@ read_aq_species_vm_parms(char *ptr, LDBLE * delta_v) /* b_Av */ &(delta_v[5]), /* c1..c4 */ - &(delta_v[6]), &(delta_v[7]), &(delta_v[8]), &(delta_v[9])); - /* vmax, dmax - &(delta_v[10]), &(delta_v[11])); */ + &(delta_v[6]), &(delta_v[7]), &(delta_v[8]), &(delta_v[9]), + //vmP, exP + &(delta_v[10]), &(delta_v[11])); if (j < 1) { input_error++; @@ -2903,19 +2658,19 @@ read_aq_species_vm_parms(char *ptr, LDBLE * delta_v) } /* ---------------------------------------------------------------------- */ int Phreeqc:: -read_vm_only(char *ptr, LDBLE * delta_v, DELTA_V_UNIT * units) +read_vm_only(const char* cptr, LDBLE * delta_v, DELTA_V_UNIT * units) /* ---------------------------------------------------------------------- */ { int j, l; char token[MAX_LENGTH]; /* * Read analytical expression - */ - for (j = 0; j < 8; j++) + */ + for (j = 0; j < 9; j++) { delta_v[j] = 0.0; } - j = sscanf(ptr, SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT, + j = sscanf(cptr, SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT, &(delta_v[0]), &(delta_v[1]), &(delta_v[2]), &(delta_v[3]), &(delta_v[4]), &(delta_v[5]), &(delta_v[6]), &(delta_v[7])); if (j < 1) @@ -2931,7 +2686,7 @@ read_vm_only(char *ptr, LDBLE * delta_v, DELTA_V_UNIT * units) *units = cm3_per_mol; do { - j = copy_token(token, &ptr, &l); + j = copy_token(token, &cptr, &l); } while (j == DIGIT); if (j == EMPTY) @@ -2969,7 +2724,7 @@ read_vm_only(char *ptr, LDBLE * delta_v, DELTA_V_UNIT * units) /* ---------------------------------------------------------------------- */ int Phreeqc:: -read_phase_vm(char *ptr, LDBLE * delta_v, DELTA_V_UNIT * units) +read_phase_vm(const char* cptr, LDBLE * delta_v, DELTA_V_UNIT * units) /* ---------------------------------------------------------------------- */ { int j, l; @@ -2981,7 +2736,7 @@ read_phase_vm(char *ptr, LDBLE * delta_v, DELTA_V_UNIT * units) { delta_v[j] = 0.0; } - j = sscanf(ptr, SCANFORMAT /*SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT*/, + j = sscanf(cptr, SCANFORMAT /*SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT*/, &(delta_v[0])/*, &(delta_v[1]), &(delta_v[2]), &(delta_v[3]), &(delta_v[4]), &(delta_v[5]), &(delta_v[6]), &(delta_v[7])*/); if (j < 1) @@ -2997,7 +2752,7 @@ read_phase_vm(char *ptr, LDBLE * delta_v, DELTA_V_UNIT * units) *units = cm3_per_mol; do { - j = copy_token(token, &ptr, &l); + j = copy_token(token, &cptr, &l); } while (j == DIGIT); if (j == EMPTY) @@ -3037,7 +2792,7 @@ read_phase_vm(char *ptr, LDBLE * delta_v, DELTA_V_UNIT * units) /* ---------------------------------------------------------------------- */ int Phreeqc:: -read_delta_h_only(char *ptr, LDBLE * delta_h, DELTA_H_UNIT * units) +read_delta_h_only(const char* cptr_in, LDBLE * delta_h, DELTA_H_UNIT * units) /* ---------------------------------------------------------------------- */ { int j, l, kilo, joul; @@ -3046,8 +2801,10 @@ read_delta_h_only(char *ptr, LDBLE * delta_h, DELTA_H_UNIT * units) * Read delta H */ *delta_h = 0.0; - replace("=", " ", ptr); - j = copy_token(token, &ptr, &l); + std::string stds(cptr_in); + replace(stds, "=", " "); + const char* cptr = stds.c_str(); + j = copy_token(token, &cptr, &l); if (j == EMPTY) { input_error++; @@ -3063,7 +2820,7 @@ read_delta_h_only(char *ptr, LDBLE * delta_h, DELTA_H_UNIT * units) /* * Read delta H units */ - j = copy_token(token, &ptr, &l); + j = copy_token(token, &cptr, &l); *units = kjoules; kilo = TRUE; joul = TRUE; @@ -3107,7 +2864,7 @@ read_delta_h_only(char *ptr, LDBLE * delta_h, DELTA_H_UNIT * units) } /* ---------------------------------------------------------------------- */ int Phreeqc:: -read_analytical_expression_only(char *ptr, LDBLE * log_k) +read_analytical_expression_only(const char* cptr, LDBLE * log_k) /* ---------------------------------------------------------------------- */ { int j; @@ -3119,7 +2876,7 @@ read_analytical_expression_only(char *ptr, LDBLE * log_k) { log_k[j] = 0.0; } - j = sscanf(ptr, SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT, + j = sscanf(cptr, SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT, &(log_k[0]), &(log_k[1]), &(log_k[2]), &(log_k[3]), &(log_k[4]), &(log_k[5])); if (j < 1) @@ -3135,7 +2892,7 @@ read_analytical_expression_only(char *ptr, LDBLE * log_k) /* VP: Density Start */ /* ---------------------------------------------------------------------- */ int Phreeqc:: -read_millero_abcdef (char *ptr, LDBLE * abcdef) +read_millero_abcdef (const char* cptr, LDBLE * abcdef) /* ---------------------------------------------------------------------- */ { int j; @@ -3146,8 +2903,7 @@ read_millero_abcdef (char *ptr, LDBLE * abcdef) { abcdef[j] = 0.0; } - j = - sscanf (ptr, SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT, + j = sscanf (cptr, SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT, &(abcdef[0]), &(abcdef[1]), &(abcdef[2]), &(abcdef[3]), &(abcdef[4]), &(abcdef[5]), &(abcdef[6])); if (j < 1) { @@ -3162,7 +2918,7 @@ read_millero_abcdef (char *ptr, LDBLE * abcdef) /* ---------------------------------------------------------------------- */ int Phreeqc:: -read_viscosity_parms(char *ptr, LDBLE * Jones_Dole) +read_viscosity_parms(const char* cptr, LDBLE * Jones_Dole) /* ---------------------------------------------------------------------- */ { int j; @@ -3173,8 +2929,7 @@ read_viscosity_parms(char *ptr, LDBLE * Jones_Dole) { Jones_Dole[j] = 0.0; } - j = - sscanf (ptr, SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT, + j = sscanf (cptr, SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT, &(Jones_Dole[0]), &(Jones_Dole[1]), &(Jones_Dole[2]), &(Jones_Dole[3]), &(Jones_Dole[4]), &(Jones_Dole[5]), &(Jones_Dole[6]), &(Jones_Dole[7]), &(Jones_Dole[8]), &(Jones_Dole[9])); if (j < 1) { @@ -3205,15 +2960,15 @@ read_incremental_reactions(void) * */ int j, l; - char *ptr; + const char* cptr; char token[MAX_LENGTH]; - ptr = line; + cptr = line; /* read keyword */ - copy_token(token, &ptr, &l); + copy_token(token, &cptr, &l); /* read true or false */ - incremental_reactions = get_true_false(ptr, TRUE); + incremental_reactions = get_true_false(cptr, TRUE); /* * find next keyword */ @@ -3240,11 +2995,11 @@ read_master_species(void) * Reads master species data from data file or input file */ int j, i, l; - char *ptr, *ptr1; + const char* cptr, *cptr1; LDBLE l_z; - struct element *elts_ptr; - struct species *s_ptr; - char token[MAX_LENGTH], token1[MAX_LENGTH]; + class element *elts_ptr; + class species *s_ptr; + char token[MAX_LENGTH]; elts_ptr = NULL; for (;;) @@ -3257,11 +3012,11 @@ read_master_species(void) /* * Get element name with valence, allocate space, store */ - ptr = line; + cptr = line; /* * Get element name and save pointer to character string */ - if (copy_token(token, &ptr, &l) != UPPER && token[0] != '[') + if (copy_token(token, &cptr, &l) != UPPER && token[0] != '[') { parse_error++; error_msg("Reading element for master species.", CONTINUE); @@ -3270,8 +3025,8 @@ read_master_species(void) } /* if (token[0] == '[') { - ptr1 = token; - get_elt(&ptr, element, &l); + cptr1 = token; + get_elt(&cptr, element, &l); strcpy(token, element); } */ @@ -3283,25 +3038,22 @@ read_master_species(void) /* * Increase pointer array, if necessary, and malloc space */ - if (count_master >= max_master) - { - space((void **) ((void *) &master), count_master + 1, - &max_master, sizeof(struct master *)); - } - master[count_master++] = master_alloc(); + size_t count_master = master.size(); + master.resize(count_master + 1); + master[count_master] = master_alloc(); /* * Set type to AQ */ - master[count_master-1]->type = AQ; + master[count_master]->type = AQ; /* * Save element name */ - master[count_master-1]->elt = element_store(token); + master[count_master]->elt = element_store(token); std::string ename = token; /* * Save pointer to species data for master species */ - if ((copy_token(token, &ptr, &l) != UPPER) && + if ((copy_token(token, &cptr, &l) != UPPER) && token[0] != '[' && (strcmp_nocase_arg1(token, "e-") != 0)) { parse_error++; @@ -3313,13 +3065,14 @@ read_master_species(void) s_ptr = s_search(token); if (s_ptr != NULL) { - master[count_master-1]->s = s_ptr; + master[count_master]->s = s_ptr; } else { - ptr1 = token; - get_token(&ptr1, token1, &l_z, &l); - master[count_master-1]->s = s_store(token1, l_z, FALSE); + cptr1 = token; + std::string token1; + get_token(&cptr1, token1, &l_z, &l); + master[count_master]->s = s_store(token1.c_str(), l_z, FALSE); } std::string sname = token; @@ -3338,8 +3091,8 @@ read_master_species(void) /* * Read alkalinity for species */ - copy_token(token, &ptr, &l); - i = sscanf(token, SCANFORMAT, &master[count_master-1]->alk); + copy_token(token, &cptr, &l); + i = sscanf(token, SCANFORMAT, &master[count_master]->alk); if (i != 1) { input_error++; @@ -3360,14 +3113,14 @@ read_master_species(void) /* * Read default gfw for species */ - i = copy_token(token, &ptr, &l); + i = copy_token(token, &cptr, &l); if (i == DIGIT) { - sscanf(token, SCANFORMAT, &master[count_master-1]->gfw); + (void)sscanf(token, SCANFORMAT, &master[count_master]->gfw); } else if (i == UPPER) { - master[count_master-1]->gfw_formula = string_hsave(token); + master[count_master]->gfw_formula = string_hsave(token); } else { @@ -3389,17 +3142,17 @@ read_master_species(void) /* * MAKE LISTS OF PRIMARY AND SECONDARY MASTER SPECIES */ - if (strchr(master[count_master-1]->elt->name, '(') == NULL) + if (strchr(master[count_master]->elt->name, '(') == NULL) { - master[count_master-1]->primary = TRUE; + master[count_master]->primary = TRUE; /* Read gram formula weight for primary */ - if (strcmp(master[count_master-1]->elt->name, "E") != 0) + if (strcmp(master[count_master]->elt->name, "E") != 0) { - elts_ptr = master[count_master-1]->elt; - i = copy_token(token, &ptr, &l); + elts_ptr = master[count_master]->elt; + i = copy_token(token, &cptr, &l); if (i == DIGIT) { - sscanf(token, SCANFORMAT, &elts_ptr->gfw); + (void)sscanf(token, SCANFORMAT, &elts_ptr->gfw); } else { @@ -3423,14 +3176,8 @@ read_master_species(void) } else { - master[count_master-1]->primary = FALSE; + master[count_master]->primary = FALSE; } - if (count_master >= max_master) - { - space((void **) ((void *) &master), count_master, &max_master, - sizeof(struct master *)); - } - } gfw_map.clear(); return (j); @@ -3443,27 +3190,18 @@ read_mix(void) /* * Reads mixing fractions */ - int n_user, n_user_end; + int n_user; int return_value; int n_solution; LDBLE fraction; int j, i, l; - char *ptr; + const char* cptr; char token[MAX_LENGTH]; - char *description; cxxMix temp_mix; -/* - * Read mix number - */ - ptr = line; - read_number_description(ptr, &n_user, &n_user_end, &description); - - temp_mix.Set_n_user(n_user); - temp_mix.Set_n_user_end(n_user); - temp_mix.Set_description(description); - free_check_null(description); - + cptr = line; + temp_mix.read_number_description(cptr); + n_user = temp_mix.Get_n_user(); /* * Set use data to first read */ @@ -3483,14 +3221,14 @@ read_mix(void) { break; } - ptr = line; + cptr = line; /* * Read n_user */ - i = copy_token(token, &ptr, &l); + i = copy_token(token, &cptr, &l); if (i == DIGIT) { - sscanf(token, "%d ", &n_solution); + (void)sscanf(token, "%d ", &n_solution); } else { @@ -3502,7 +3240,7 @@ read_mix(void) /* * Read fraction for solution */ - copy_token(token, &ptr, &l); + copy_token(token, &cptr, &l); j = sscanf(token, SCANFORMAT, &fraction); if (j != 1) { @@ -3527,10 +3265,10 @@ read_mix(void) Rxn_mix_map[n_user] = temp_mix; // copy if needed - if (n_user_end > n_user) + if (temp_mix.Get_n_user_end() > n_user) { int i; - for (i = n_user + 1; i <= n_user_end; i++) + for (i = n_user + 1; i <= temp_mix.Get_n_user_end(); i++) { Utilities::Rxn_copy(Rxn_mix_map, n_user, i); } @@ -3550,14 +3288,14 @@ read_entity_mix(std::map &mix_map) int n_solution; LDBLE fraction; int j, i, l; - char *ptr; + const char* cptr; char token[MAX_LENGTH]; cxxMix temp_mix; /* * Read mix number */ - ptr = line; + cptr = line; temp_mix.read_number_description(line); /* * Read mixture data @@ -3570,14 +3308,14 @@ read_entity_mix(std::map &mix_map) { break; } - ptr = line; + cptr = line; /* * Read n_user */ - i = copy_token(token, &ptr, &l); + i = copy_token(token, &cptr, &l); if (i == DIGIT) { - sscanf(token, "%d ", &n_solution); + (void)sscanf(token, "%d ", &n_solution); } else { @@ -3589,7 +3327,7 @@ read_entity_mix(std::map &mix_map) /* * Read fraction for entity */ - copy_token(token, &ptr, &l); + copy_token(token, &cptr, &l); j = sscanf(token, SCANFORMAT, &fraction); if (j != 1) { @@ -3613,127 +3351,21 @@ read_entity_mix(std::map &mix_map) mix_map[temp_mix.Get_n_user()] = temp_mix; return (return_value); } -#ifdef SKIP /* ---------------------------------------------------------------------- */ int Phreeqc:: -read_solution_mix(void) -/* ---------------------------------------------------------------------- */ -{ -/* - * Reads mixing fractions - */ - int n_user, n_user_end; - int return_value; - int n_solution; - LDBLE fraction; - int j, i, l; - char *ptr; - char token[MAX_LENGTH]; - char *description; - cxxMix temp_mix; - -/* - * Read mix number - */ - ptr = line; - read_number_description(ptr, &n_user, &n_user_end, &description); - - temp_mix.Set_n_user(n_user); - temp_mix.Set_n_user_end(n_user_end); - temp_mix.Set_description(description); - free_check_null(description); -#ifdef SKIP -/* - * Set use data to first read - */ - if (use.Get_mix_in() == FALSE) - { - use.Set_mix_in(true); - use.Set_n_mix_user(n_user); - } -#endif -/* - * Read mixture data - */ - for (;;) - { - return_value = check_line("Mix raw data", FALSE, TRUE, TRUE, TRUE); - /* empty, eof, keyword, print */ - if (return_value == EOF || return_value == KEYWORD) - { - break; - } - ptr = line; -/* - * Read n_user - */ - i = copy_token(token, &ptr, &l); - if (i == DIGIT) - { - sscanf(token, "%d ", &n_solution); - } - else - { - input_error++; - error_msg("Expected a solution number in mix_raw input.", CONTINUE); - error_msg(line_save, CONTINUE); - continue; - } -/* - * Read fraction for solution - */ - copy_token(token, &ptr, &l); - j = sscanf(token, SCANFORMAT, &fraction); - if (j != 1) - { - input_error++; - error_msg("Expected a mixing fraction.", CONTINUE); - error_msg(line_save, CONTINUE); - continue; - } - -/* - * Save data - */ - temp_mix.Add(n_solution ,fraction); - } - if (temp_mix.Get_mixComps().size() == 0) - { - input_error++; - error_msg - ("Must define at least one solution number and mixing fraction for MIX_RAW input.", - CONTINUE); - } - Rxn_solution_mix_map[n_user] = temp_mix; -#ifdef SKIP - // copy if needed - if (n_user_end > n_user) - { - int i; - for (i = n_user + 1; i <= n_user_end; i++) - { - Utilities::Rxn_copy(Rxn_mix_map, n_user, i); - } - } -#endif - return (return_value); -} -#endif -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -read_number_description(char *ptr, int *n_user, +read_number_description(const char* cptr, int *n_user, int *n_user_end, char **description, int allow_negative) /* ---------------------------------------------------------------------- */ { int l, n; char token[MAX_LENGTH]; - char *ptr1; + const char* cptr1; /* * Read user number, allow negative numbers Oct 3, 2011 */ - copy_token(token, &ptr, &l); // keyword - ptr1 = ptr; - copy_token(token, &ptr, &l); + copy_token(token, &cptr, &l); // keyword + cptr1 = cptr; + copy_token(token, &cptr, &l); if (!isdigit(token[0]) && token[0] != '-') { @@ -3747,6 +3379,14 @@ read_number_description(char *ptr, int *n_user, n = sscanf(token, "%d%d", n_user, n_user_end); if (n != 2) { + if (n == 0) + { + *n_user_end = *n_user = 1; + } + else + { + *n_user_end = *n_user; + } if (next_keyword >= 0) { error_string = sformatf( "Reading number range for %s.", Keywords::Keyword_name_search(next_keyword).c_str()); @@ -3758,7 +3398,7 @@ read_number_description(char *ptr, int *n_user, error_msg(error_string, CONTINUE); input_error++; } - ptr1 = ptr; + cptr1 = cptr; } else { @@ -3777,7 +3417,7 @@ read_number_description(char *ptr, int *n_user, input_error++; } *n_user_end = *n_user; - ptr1 = ptr; + cptr1 = cptr; }; } if (*n_user < 0 && allow_negative == FALSE) @@ -3789,8 +3429,8 @@ read_number_description(char *ptr, int *n_user, /* * Read description */ - for (; isspace((int) ptr1[0]); ptr1++); - *description = string_duplicate(ptr1); + for (; isspace((int) cptr1[0]); cptr1++); + *description = string_duplicate(cptr1); return (OK); } @@ -3804,15 +3444,14 @@ read_phases(void) */ int j, i, l; int association; - char *ptr; + const char* cptr; char token[MAX_LENGTH]; char token1[MAX_LENGTH]; - struct phase *phase_ptr; - struct elt_list *next_elt; - struct rxn_token *token_ptr; + class phase *phase_ptr; + class rxn_token *token_ptr; int return_value, opt, opt_save; - char *next_char; + const char* next_char; const char *opt_list[] = { "no_check", /* 0 */ "check", /* 1 */ @@ -3895,93 +3534,54 @@ read_phases(void) break; case 9: /* add_logk */ case 10: /* add_log_k */ + { if (phase_ptr == NULL) break; - if (phase_ptr->count_add_logk == 0) - { - phase_ptr->add_logk = - (struct name_coef *) - PHRQ_malloc(sizeof(struct name_coef)); - if (phase_ptr->add_logk == NULL) - malloc_error(); - } - else - { - phase_ptr->add_logk = - (struct name_coef *) PHRQ_realloc(phase_ptr->add_logk, - (size_t) ((phase_ptr-> - count_add_logk - + - 1) * - sizeof - (struct - name_coef))); - if (phase_ptr->add_logk == NULL) - malloc_error(); - } + size_t count_add_logk = phase_ptr->add_logk.size(); + phase_ptr->add_logk.resize(count_add_logk + 1); /* read name */ if (copy_token(token, &next_char, &i) == EMPTY) { input_error++; error_string = sformatf( - "Expected the name of a NAMED_EXPRESSION."); + "Expected the name of a NAMED_EXPRESSION."); error_msg(error_string, CONTINUE); break; } - phase_ptr->add_logk[phase_ptr->count_add_logk].name = + phase_ptr->add_logk[count_add_logk].name = string_hsave(token); /* read coef */ i = sscanf(next_char, SCANFORMAT, - &phase_ptr->add_logk[phase_ptr->count_add_logk].coef); + &phase_ptr->add_logk[count_add_logk].coef); if (i <= 0) { - phase_ptr->add_logk[phase_ptr->count_add_logk].coef = 1; + phase_ptr->add_logk[count_add_logk].coef = 1; } - phase_ptr->count_add_logk++; opt_save = OPTION_DEFAULT; - break; + } + break; case 11: /* add_constant */ + { if (phase_ptr == NULL) break; - if (phase_ptr->count_add_logk == 0) - { - phase_ptr->add_logk = - (struct name_coef *) - PHRQ_malloc(sizeof(struct name_coef)); - if (phase_ptr->add_logk == NULL) - malloc_error(); - } - else - { - phase_ptr->add_logk = - (struct name_coef *) PHRQ_realloc(phase_ptr->add_logk, - (size_t) ((phase_ptr-> - count_add_logk - + - 1) * - sizeof - (struct - name_coef))); - if (phase_ptr->add_logk == NULL) - malloc_error(); - } + size_t count_add_logk = phase_ptr->add_logk.size(); + phase_ptr->add_logk.resize(count_add_logk + 1); i = sscanf(next_char, SCANFORMAT, - &phase_ptr->add_logk[phase_ptr->count_add_logk].coef); + &phase_ptr->add_logk[count_add_logk].coef); if (i <= 0) { input_error++; error_string = sformatf( - "Expected the constant to add for log_K definition."); + "Expected the constant to add for log_K definition."); error_msg(error_string, CONTINUE); break; } /* set name */ - phase_ptr->add_logk[phase_ptr->count_add_logk].name = + phase_ptr->add_logk[count_add_logk].name = string_hsave("XconstantX"); - /* read coef */ - phase_ptr->count_add_logk++; opt_save = OPTION_DEFAULT; - break; + } + break; case 12: /* T_c */ if (phase_ptr == NULL) break; @@ -4009,15 +3609,16 @@ read_phases(void) opt_save = OPTION_DEFAULT; break; case OPTION_DEFAULT: -/* - * Get element name and save pointer to character string - */ + { + /* + * Get element name and save pointer to character string + */ phase_ptr = NULL; - ptr = line; - copy_token(token, &ptr, &l); -/* - * Get and parse equation - */ + cptr = line; + copy_token(token, &cptr, &l); + /* + * Get and parse equation + */ j = check_line("Phase equation", FALSE, TRUE, TRUE, TRUE); if (j == EOF || j == KEYWORD) { @@ -4033,7 +3634,8 @@ read_phases(void) error_msg(line_save, CONTINUE); break; } - if (parse_eq(line, &next_elt, association) == ERROR) + std::vector new_elt_list; + if (parse_eq(line, new_elt_list, association) == ERROR) { parse_error++; error_msg("Parsing equation.", CONTINUE); @@ -4041,9 +3643,9 @@ read_phases(void) break; } phase_ptr = phase_store(token); -/* - * Get pointer to each species in the reaction, store new species if necessary - */ + /* + * Get pointer to each species in the reaction, store new species if necessary + */ strcpy(token1, trxn.token[0].name); replace("(g)", "", token1); replace("(s)", "", token1); @@ -4069,45 +3671,26 @@ read_phases(void) trxn.token[i].s = NULL; } } -/* - * Save element list - */ - phase_ptr->next_elt = next_elt; -/* - * Malloc space for phase reaction - */ - phase_ptr->rxn = rxn_alloc(count_trxn + 1); -/* - * Copy reaction to reaction for phase, first token (token[0]) is not used - * except to check that coef of phase formula = 1.0 - */ - token_ptr = phase_ptr->rxn->token; - /* token_ptr[0].coef=0; */ - token_ptr[0].coef = trxn.token[0].coef; - token_ptr[0].s = trxn.token[1].s; - for (i = 1; i < count_trxn; i++) - { - token_ptr[i].name = NULL; - token_ptr[i].s = trxn.token[i].s; - token_ptr[i].coef = trxn.token[i].coef; - if (token_ptr[i].s == NULL) - { - token_ptr[i].name = trxn.token[i].name; - } - } - token_ptr[0].name = trxn.token[1].name; /* - token_ptr[0].name=phase_ptr->name; - token_ptr[0].s=NULL; + * Save element list */ + phase_ptr->next_elt = new_elt_list; + /* + * Copy reaction to reaction for phase, first token (token[0]) is not used + * except to check that coef of phase formula = 1.0 + */ + trxn_copy(phase_ptr->rxn); + token_ptr = &phase_ptr->rxn.token[0]; + token_ptr[0].name = trxn.token[1].name; token_ptr[i].s = NULL; token_ptr[i].name = NULL; -/* - * Set type for phase - */ + /* + * Set type for phase + */ phase_ptr->type = SOLID; opt_save = OPTION_DEFAULT; - break; + } + break; } if (return_value == EOF || return_value == KEYWORD) break; @@ -4134,33 +3717,25 @@ read_pp_assemblage(void) */ int j; int return_value; - int n_user, n_user_end; - char *ptr; - char *description; + int n_user; + const char* cptr; std::string token; int opt, opt_save; - char *next_char; + const char* next_char; const char *opt_list[] = { "force_equality" /* 0 */ }; int count_opt_list = 1; - - ptr = line; - /* - * Read pp_assemblage number - */ - read_number_description(ptr, &n_user, &n_user_end, &description); /* * Find pp_assemblage or realloc space for pp_assemblage */ cxxPPassemblage temp_pp_assemblage; + cptr = line; + temp_pp_assemblage.read_number_description(cptr); + n_user = temp_pp_assemblage.Get_n_user(); cxxPPassemblageComp *comp = NULL; std::map comps; temp_pp_assemblage.Set_new_def(true); - temp_pp_assemblage.Set_n_user(n_user); - temp_pp_assemblage.Set_n_user_end(n_user_end); - temp_pp_assemblage.Set_description(description); - free_check_null(description); /* * Set use data to first read */ @@ -4222,11 +3797,11 @@ read_pp_assemblage(void) /* * Read name */ - ptr = line; - copy_token(token, &ptr); + cptr = line; + copy_token(token, &cptr); comp->Set_name(token.c_str()); - if ((j = copy_token(token, &ptr)) == EMPTY) + if ((j = copy_token(token, &cptr)) == EMPTY) continue; /* * Read saturation index @@ -4244,12 +3819,12 @@ read_pp_assemblage(void) /* * Adding a reaction to the phase boundary */ - if ((j = copy_token(token, &ptr)) == EMPTY) + if ((j = copy_token(token, &cptr)) == EMPTY) continue; if (j == UPPER || j == LOWER) { comp->Set_add_formula(token.c_str()); - j = copy_token(token, &ptr); + j = copy_token(token, &cptr); } /* * Read amount @@ -4271,7 +3846,7 @@ read_pp_assemblage(void) input_error++; continue; } - if ((j = copy_token(token, &ptr)) == EMPTY) + if ((j = copy_token(token, &cptr)) == EMPTY) continue; Utilities::str_tolower(token); if (strstr(token.c_str(), "d") == token.c_str()) @@ -4329,18 +3904,17 @@ read_reaction(void) * Read reaction */ int l; - char *ptr; - char *description; + const char* cptr; char token[MAX_LENGTH]; int return_value; - int n_user, n_user_end; - + int n_user; /* - * Read reaction number + * Defaults */ - ptr = line; - read_number_description(ptr, &n_user, &n_user_end, &description); - + cxxReaction temp_reaction; + cptr = line; + temp_reaction.read_number_description(cptr); + n_user = temp_reaction.Get_n_user(); /* * Set use data to first read */ @@ -4349,14 +3923,6 @@ read_reaction(void) use.Set_reaction_in(true); use.Set_n_reaction_user(n_user); } -/* - * Defaults - */ - cxxReaction temp_reaction; - temp_reaction.Set_n_user(n_user); - temp_reaction.Set_n_user_end(n_user_end); - temp_reaction.Set_description(description); - free_check_null(description); /* * Read reaction data */ @@ -4371,8 +3937,8 @@ read_reaction(void) { break; } - ptr = line; - copy_token(token, &ptr, &l); + cptr = line; + copy_token(token, &cptr, &l); if (isalpha((int) token[0]) || (token[0] == '(') || (token[0] == '[')) { /* @@ -4406,7 +3972,7 @@ read_reaction(void) } Rxn_reaction_map[n_user] = temp_reaction; // copy if needed - Utilities::Rxn_copies(Rxn_reaction_map, n_user, n_user_end); + Utilities::Rxn_copies(Rxn_reaction_map, n_user, temp_reaction.Get_n_user_end()); return (return_value); } @@ -4423,12 +3989,12 @@ read_reaction_reactants(cxxReaction *reaction_ptr) */ std::string token, last_token; LDBLE coef; - char *ptr; + const char* cptr; /* * Read one or more reactants */ - ptr = line; - while (copy_token(token, &ptr) != EMPTY) + cptr = line; + while (copy_token(token, &cptr) != EMPTY) { /* * Store reactant name, default coefficient @@ -4477,16 +4043,16 @@ read_reaction_steps(cxxReaction *reaction_ptr) * INCREMENTAL_REACTIONS */ - char *ptr; + const char* cptr; std::string token, token1; - ptr = line; + cptr = line; /* * Read one or more reaction increments */ for (;;) { - if (copy_token(token, &ptr) == EMPTY) + if (copy_token(token, &cptr) == EMPTY) { return (OK); } @@ -4548,7 +4114,7 @@ read_reaction_steps(cxxReaction *reaction_ptr) { reaction_ptr->Set_units(t1.c_str()); } - if (copy_token(token, &ptr) == EMPTY) + if (copy_token(token, &cptr) == EMPTY) { return (OK); } @@ -4579,7 +4145,7 @@ read_reaction_steps(cxxReaction *reaction_ptr) break; } } - while (copy_token(token, &ptr) != EMPTY); + while (copy_token(token, &cptr) != EMPTY); error_msg("Expecting positive number for number of equal " "increments to add.", CONTINUE); @@ -4597,24 +4163,24 @@ read_save(void) * in reaction calculation */ int i, l, n, n_user, n_user_end; - char *ptr; + const char* cptr; char token[MAX_LENGTH]; /* * Read "save" */ - ptr = line; - copy_token(token, &ptr, &l); + cptr = line; + copy_token(token, &cptr, &l); /* * Read keyword */ - copy_token(token, &ptr, &l); + copy_token(token, &cptr, &l); check_key(token); /* * Read number */ for (;;) { - i = copy_token(token, &ptr, &l); + i = copy_token(token, &cptr, &l); if (i == DIGIT) { replace("-", " ", token); @@ -4698,7 +4264,7 @@ read_selected_output(void) */ int value; int return_value, opt, opt_save; - char *next_char; + const char* next_char; const char *opt_list[] = { "file", /* 0 */ "totals", /* 1 */ @@ -4749,27 +4315,23 @@ read_selected_output(void) "isotopes", /* 46 */ "calculate_values", /* 47 */ "equilibrium_phase", /* 48 */ - "active" /* 49 */ + "active", /* 49 */ + "new_line" /* 50 */ }; - int count_opt_list = 50; + int count_opt_list = 51; int i, l; - char file_name[MAX_LENGTH], token[MAX_LENGTH]; - - char *ptr; - ptr = line; - int n_user, n_user_end; - char *description; - read_number_description(ptr, &n_user, &n_user_end, &description); + char token[MAX_LENGTH]; + std::string file_name; + const char* cptr; + int n_user; SelectedOutput temp_selected_output; + cptr = line; + temp_selected_output.read_number_description(cptr); + n_user = temp_selected_output.Get_n_user(); temp_selected_output.Set_new_def(false); temp_selected_output.Set_file_name(n_user); - temp_selected_output.Set_n_user(n_user); - temp_selected_output.Set_n_user_end(n_user_end); - temp_selected_output.Set_description(description); - free_check_null(description); - // find if it exists std::map< int, SelectedOutput >::iterator so = SelectedOutput_map.find(n_user); if (n_user == 1 && so != SelectedOutput_map.end()) @@ -4777,6 +4339,7 @@ read_selected_output(void) // n_user = 1, old definition, keep old definition SelectedOutput & so_ref = so->second; temp_selected_output.Set_active ( so_ref.Get_active() ); + temp_selected_output.Set_new_line ( so_ref.Get_new_line() ); temp_selected_output.Set_inverse ( so_ref.Get_inverse() ); temp_selected_output.Set_sim ( so_ref.Get_sim() ); temp_selected_output.Set_state ( so_ref.Get_state() ); @@ -4846,15 +4409,19 @@ read_selected_output(void) error_msg(line_save, CONTINUE); break; case 0: /* file name */ + { temp_selected_output.Set_new_def(true); - if (string_trim(next_char) != EMPTY) + std::string temp_name(next_char); + string_trim(temp_name); + if (temp_name.size() > 0) { - strcpy(file_name, next_char); + file_name = temp_name; temp_selected_output.Set_file_name(file_name); temp_selected_output.Set_have_punch_name(true); } opt_save = OPTION_ERROR; - break; + } + break; case 1: /* totals */ temp_selected_output.Set_new_def(true); while ((i = copy_token(token, &next_char, &l)) != EMPTY) @@ -5129,6 +4696,12 @@ read_selected_output(void) } opt_save = OPTION_ERROR; break; + case 50: /* new_line */ + temp_selected_output.Set_new_def(true); + value = get_true_false(next_char, TRUE); + temp_selected_output.Set_new_line(value != FALSE); + opt_save = OPTION_ERROR; + break; } if (return_value == EOF || return_value == KEYWORD) break; @@ -5174,465 +4747,6 @@ read_selected_output(void) return (return_value); } -#ifdef SKIP -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -read_selected_output(void) -/* ---------------------------------------------------------------------- */ -{ -/* - * Read data for to output to flat file - */ - int value; - int return_value, opt, opt_save; - char *next_char; - const char *opt_list[] = { - "file", /* 0 */ - "totals", /* 1 */ - "molalities", /* 2 */ - "activities", /* 3 */ - "pure_phases", /* 4 */ - "si", /* 5 */ - "saturation_indices", /* 6 */ - "gases", /* 7 */ - "equilibrium_phases", /* 8 */ - "equilibria", /* 9 */ - "equilibrium", /* 10 */ - "pure", /* 11 */ - "inverse", /* 12 */ - "kinetic_reactants", /* 13 */ - "kinetics", /* 14 */ - "solid_solutions", /* 15 */ - "inverse_modeling", /* 16 */ - "reset", /* 17 */ - "simulation", /* 18 */ - "sim", /* 19 */ - "state", /* 20 */ - "solution", /* 21 */ - "soln", /* 22 */ - "distance", /* 23 */ - "dist", /* 24 */ - "time", /* 25 */ - "step", /* 26 */ - "reaction", /* 27 */ - "rxn", /* 28 */ - "temperature", /* 29 */ - "temp", /* 30 */ - "ph", /* 31 */ - "pe", /* 32 */ - "alkalinity", /* 33 */ - "alk", /* 34 */ - "ionic_strength", /* 35 */ - "mu", /* 36 */ - "water", /* 37 */ - "high_precision", /* 38 */ - "user_punch", /* 39 */ - "mol", /* 40 */ - "kin", /* 41 */ - "charge_balance", /* 42 */ - "percent_error", /* 43 */ - "selected_out", /* 44 */ - "selected_output", /* 45 */ - "isotopes", /* 46 */ - "calculate_values", /* 47 */ - "equilibrium_phase" /* 48 */ - }; - int count_opt_list = 49; - - int i, l; - char file_name[MAX_LENGTH], token[MAX_LENGTH]; - - punch.in = TRUE; - punch.new_def = TRUE; - punch.count_totals = 0; - punch.count_molalities = 0; - punch.count_activities = 0; - punch.count_pure_phases = 0; - punch.count_si = 0; - punch.count_gases = 0; - punch.count_kinetics = 0; - punch.count_s_s = 0; -/* - * Read eqn from file and call parser - */ - opt_save = OPTION_ERROR; - return_value = UNKNOWN; - for (;;) - { - opt = get_option(opt_list, count_opt_list, &next_char); - if (opt == OPTION_DEFAULT) - { - opt = opt_save; - } - opt_save = opt; - switch (opt) - { - case OPTION_EOF: /* end of file */ - return_value = EOF; - break; - case OPTION_KEYWORD: /* keyword */ - return_value = KEYWORD; - break; - case OPTION_DEFAULT: - case OPTION_ERROR: - input_error++; - error_msg("Unknown input in SELECTED_OUTPUT keyword.", CONTINUE); - error_msg(line_save, CONTINUE); - break; - case 0: /* file name */ - /* copy_token(file_name, &next_char, &l); */ - if (string_trim(next_char) != EMPTY) - { - strcpy(file_name, next_char); - have_punch_name = TRUE; - punch_close(); - if (!punch_open(file_name)) - { - error_string = sformatf( "Can`t open file, %s.", file_name); - input_error++; - error_msg(error_string, CONTINUE); - } - selected_output_file_name = (char*)free_check_null(selected_output_file_name); - selected_output_file_name = string_duplicate(file_name); - } - opt_save = OPTION_ERROR; - break; - case 1: /* totals */ - while ((i = copy_token(token, &next_char, &l)) != EMPTY) - { - if (i != UPPER && token[0] != '[') - { - error_string = sformatf( "Expected element name to" - " begin with upper case letter."); - warning_msg(error_string); - } - else - { - punch.count_totals++; - punch.totals = - (struct name_master *) PHRQ_realloc(punch.totals, - (size_t) punch. - count_totals * - sizeof(struct - name_master)); - if (punch.totals == NULL) - malloc_error(); - punch.totals[punch.count_totals - 1].name = - string_hsave(token); - } - } - break; - case 2: /* molalities */ - case 40: /* mol */ - while ((i = copy_token(token, &next_char, &l)) != EMPTY) - { - if (i != UPPER && token[0] != '(' && (token[0] != '[')) - { - error_string = sformatf( "Expected species name to" - " begin with upper case letter."); - warning_msg(error_string); - } - else - { - punch.count_molalities++; - punch.molalities = - (struct name_species *) PHRQ_realloc(punch. - molalities, - (size_t) punch. - count_molalities - * - sizeof(struct - name_species)); - if (punch.molalities == NULL) - malloc_error(); - punch.molalities[punch.count_molalities - 1].name = - string_hsave(token); - } - } - break; - case 3: /* activities */ - while ((i = copy_token(token, &next_char, &l)) != EMPTY) - { - if (i != UPPER && token[0] != '(' && (token[0] != '[')) - { - error_string = sformatf( "Expected species name to" - " begin with upper case letter."); - warning_msg(error_string); - } - else - { - punch.count_activities++; - punch.activities = - (struct name_species *) PHRQ_realloc(punch. - activities, - (size_t) punch. - count_activities - * - sizeof(struct - name_species)); - if (punch.activities == NULL) - malloc_error(); - punch.activities[punch.count_activities - 1].name = - string_hsave(token); - } - } - break; - case 4: /* pure_phases */ - case 8: /* equilibrium_phases */ - case 9: /* equilibria */ - case 10: /* equilibrium */ - case 11: /* pure */ - case 48: /* equilibrium_phase */ - while ((i = copy_token(token, &next_char, &l)) != EMPTY) - { - punch.count_pure_phases++; - punch.pure_phases = - (struct name_phase *) PHRQ_realloc(punch.pure_phases, - (size_t) punch. - count_pure_phases * - sizeof(struct - name_phase)); - if (punch.pure_phases == NULL) - malloc_error(); - punch.pure_phases[punch.count_pure_phases - 1].name = - string_hsave(token); - } - break; - case 5: /* si */ - case 6: /* saturation_index */ - while ((i = copy_token(token, &next_char, &l)) != EMPTY) - { - punch.count_si++; - punch.si = - (struct name_phase *) PHRQ_realloc(punch.si, - (size_t) punch. - count_si * - sizeof(struct - name_phase)); - if (punch.si == NULL) - malloc_error(); - punch.si[punch.count_si - 1].name = string_hsave(token); - } - break; - case 7: /* gases */ - while ((i = copy_token(token, &next_char, &l)) != EMPTY) - { - punch.count_gases++; - punch.gases = - (struct name_phase *) PHRQ_realloc(punch.gases, - (size_t) punch. - count_gases * - sizeof(struct - name_phase)); - if (punch.gases == NULL) - malloc_error(); - punch.gases[punch.count_gases - 1].name = string_hsave(token); - } - break; - case 12: /* inverse */ - case 16: /* inverse_modeling */ - punch.inverse = get_true_false(next_char, TRUE); - opt_save = OPTION_ERROR; - break; - case 13: /* kinetic_reactants */ - case 14: /* kinetics */ - case 41: /* kin */ - while ((i = copy_token(token, &next_char, &l)) != EMPTY) - { - punch.count_kinetics++; - punch.kinetics = - (struct name_phase *) PHRQ_realloc(punch.kinetics, - (size_t) punch. - count_kinetics * - sizeof(struct - name_phase)); - if (punch.kinetics == NULL) - malloc_error(); - punch.kinetics[punch.count_kinetics - 1].name = - string_hsave(token); - } - break; - case 15: /* solid_solutions */ - while ((i = copy_token(token, &next_char, &l)) != EMPTY) - { - punch.count_s_s++; - punch.s_s = - (struct name_phase *) PHRQ_realloc(punch.s_s, - (size_t) punch. - count_s_s * - sizeof(struct - name_phase)); - if (punch.s_s == NULL) - malloc_error(); - punch.s_s[punch.count_s_s - 1].name = string_hsave(token); - } - break; - case 46: /* isotopes */ - while ((i = copy_token(token, &next_char, &l)) != EMPTY) - { - if (i != UPPER && token[0] != '[') - { - error_string = sformatf( "Expected element name to" - " begin with upper case letter."); - warning_msg(error_string); - } - else - { - punch.count_isotopes++; - punch.isotopes = - (struct name_master *) PHRQ_realloc(punch.isotopes, - (size_t) punch. - count_isotopes * - sizeof(struct - name_master)); - if (punch.isotopes == NULL) - malloc_error(); - punch.isotopes[punch.count_isotopes - 1].name = - string_hsave(token); - } - } - break; - case 47: /* calculate_values */ - while ((i = copy_token(token, &next_char, &l)) != EMPTY) - { - punch.count_calculate_values++; - punch.calculate_values = - (struct name_master *) PHRQ_realloc(punch. - calculate_values, - (size_t) punch. - count_calculate_values - * - sizeof(struct - name_master)); - if (punch.calculate_values == NULL) - malloc_error(); - punch.calculate_values[punch.count_calculate_values - - 1].name = string_hsave(token); - } - break; - case 17: /* reset */ - value = get_true_false(next_char, TRUE); - /* matches print order */ - punch.sim = value; - punch.state = value; - punch.soln = value; - punch.dist = value; - punch.time = value; - punch.step = value; - punch.ph = value; - punch.pe = value; - punch.rxn = value; - punch.temp = value; - punch.alk = value; - punch.mu = value; - punch.water = value; - punch.charge_balance = value; - punch.percent_error = value; - opt_save = OPTION_ERROR; - break; - case 18: /* simulation */ - case 19: /* sim */ - punch.sim = get_true_false(next_char, TRUE); - opt_save = OPTION_ERROR; - break; - case 20: /* state */ - punch.state = get_true_false(next_char, TRUE); - opt_save = OPTION_ERROR; - break; - case 21: /* solution */ - case 22: /* soln */ - punch.soln = get_true_false(next_char, TRUE); - opt_save = OPTION_ERROR; - break; - case 23: /* distance */ - case 24: /* dist */ - punch.dist = get_true_false(next_char, TRUE); - opt_save = OPTION_ERROR; - break; - case 25: /* time */ - punch.time = get_true_false(next_char, TRUE); - opt_save = OPTION_ERROR; - break; - case 26: /* step */ - punch.step = get_true_false(next_char, TRUE); - opt_save = OPTION_ERROR; - break; - case 27: /* reaction */ - case 28: /* rxn */ - punch.rxn = get_true_false(next_char, TRUE); - opt_save = OPTION_ERROR; - break; - case 29: /* temperature */ - case 30: /* temp */ - punch.temp = get_true_false(next_char, TRUE); - opt_save = OPTION_ERROR; - break; - case 31: /* ph */ - punch.ph = get_true_false(next_char, TRUE); - opt_save = OPTION_ERROR; - break; - case 32: /* pe */ - punch.pe = get_true_false(next_char, TRUE); - opt_save = OPTION_ERROR; - break; - case 33: /* alkalinity */ - case 34: /* alk */ - punch.alk = get_true_false(next_char, TRUE); - opt_save = OPTION_ERROR; - break; - case 35: /* ionic strength */ - case 36: /* mu */ - punch.mu = get_true_false(next_char, TRUE); - opt_save = OPTION_ERROR; - break; - case 37: /* water */ - punch.water = get_true_false(next_char, TRUE); - opt_save = OPTION_ERROR; - break; - case 38: /* high_precision */ - punch.high_precision = get_true_false(next_char, TRUE); - if (punch.high_precision == TRUE /*&& convergence_tolerance > 1e-12*/) - { - convergence_tolerance = 1e-12; - } - opt_save = OPTION_ERROR; - break; - case 39: /* user_punch */ - punch.user_punch = get_true_false(next_char, TRUE); - opt_save = OPTION_ERROR; - break; - case 42: /* charge_balance */ - punch.charge_balance = get_true_false(next_char, TRUE); - opt_save = OPTION_ERROR; - break; - case 43: /* percent_error */ - punch.percent_error = get_true_false(next_char, TRUE); - opt_save = OPTION_ERROR; - break; - case 44: /* selected_out */ - case 45: /* selected_output */ - warning_msg("Use PRINT; -selected_output, not SELECTED_OUTPUT; -selected_output"); - pr.punch = get_true_false(next_char, TRUE); - opt_save = OPTION_ERROR; - break; - } - if (return_value == EOF || return_value == KEYWORD) - break; - } - if (!have_punch_name) - { - punch_close(); - if (!punch_open("selected.out")) - { - error_string = sformatf( "Can`t open file, %s.", "selected.out"); - input_error++; - error_msg(error_string, CONTINUE); - } - } - - return (return_value); -} -#endif /* ---------------------------------------------------------------------- */ int Phreeqc:: read_solution(void) @@ -5651,11 +4765,9 @@ read_solution(void) * ERROR if error occurred reading data * */ - int n_user, n_user_end; - char *description; - + int n_user; int return_value, opt; - char *next_char; + const char* next_char; const char *opt_list[] = { "temp", /* 0 */ "temperature", /* 1 */ @@ -5673,24 +4785,16 @@ read_solution(void) "potential" /* 13 */ }; int count_opt_list = 14; -/* - * Read solution number and description - */ - char *ptr; - ptr = line; - read_number_description(ptr, &n_user, &n_user_end, &description); cxxSolution temp_solution; + const char* cptr = line; + temp_solution.read_number_description(cptr); + n_user = temp_solution.Get_n_user(); temp_solution.Set_new_def(true); temp_solution.Create_initial_data(); cxxISolution *isoln_ptr = temp_solution.Get_initial_data(); CParser parser(this->phrq_io); - temp_solution.Set_n_user(n_user); - temp_solution.Set_n_user_end(n_user_end); - temp_solution.Set_description(description); - free_check_null(description); - if (!use.Get_solution_in()) { use.Set_solution_in(true); @@ -5707,8 +4811,8 @@ read_solution(void) opt = get_option(opt_list, count_opt_list, &next_char); if (opt == OPTION_DEFAULT) { - ptr = next_char; - if (copy_token(token, &ptr) == CParser::TT_DIGIT) + cptr = next_char; + if (copy_token(token, &cptr) == CParser::TT_DIGIT) { opt = 9; } @@ -5786,7 +4890,7 @@ read_solution(void) const char * str = string_hsave(token.c_str()); //isoln_ptr->Set_default_pe(token); isoln_ptr->Set_default_pe(str); - cxxChemRxn temp_chem_reaction; + CReaction temp_chem_reaction; isoln_ptr->Get_pe_reactions()[token] = temp_chem_reaction; } else @@ -5853,20 +4957,18 @@ read_solution(void) temp_isotope.Set_isotope_name(token.c_str()); /* read and save element name */ { - char *temp_iso_name = string_duplicate(token.c_str()); - char *ptr1 = temp_iso_name; - get_num(&ptr1, &dummy); + std::string temp_iso_name = token.c_str(); + const char* cptr1 = temp_iso_name.c_str(); + get_num(&cptr1, &dummy); temp_isotope.Set_isotope_number(dummy); - if (ptr1[0] == '\0' || isupper((int) ptr1[0]) == FALSE) + if (cptr1[0] == '\0' || isupper((int) cptr1[0]) == FALSE) { error_msg("Expecting element name.", PHRQ_io::OT_CONTINUE); error_msg(line_save, PHRQ_io::OT_CONTINUE); input_error++; - temp_iso_name = (char*)free_check_null(temp_iso_name); return (CParser::PARSER_ERROR); } - temp_isotope.Set_elt_name(ptr1); - temp_iso_name = (char*)free_check_null(temp_iso_name); + temp_isotope.Set_elt_name(cptr1); } /* read and store isotope ratio */ if (copy_token(token, &next_char) != CParser::TT_DIGIT) @@ -5877,7 +4979,7 @@ read_solution(void) error_msg(error_string, CONTINUE); continue; } - sscanf(token.c_str(), SCANFORMAT, &dummy); + (void)sscanf(token.c_str(), SCANFORMAT, &dummy); temp_isotope.Set_ratio(dummy); temp_isotope.Set_ratio_uncertainty(NAN); @@ -5893,7 +4995,7 @@ read_solution(void) error_msg(error_string, PHRQ_io::OT_CONTINUE); continue; } - sscanf(token.c_str(), SCANFORMAT, &dummy); + (void)sscanf(token.c_str(), SCANFORMAT, &dummy); temp_isotope.Set_ratio_uncertainty(dummy); temp_isotope.Set_ratio_uncertainty_defined(true); } @@ -5916,7 +5018,7 @@ read_solution(void) } else { - sscanf(token.c_str(), SCANFORMAT, &dummy); + (void)sscanf(token.c_str(), SCANFORMAT, &dummy); temp_solution.Set_mass_water(dummy); } } @@ -5960,7 +5062,7 @@ read_solution(void) isoln_ptr->Get_comps()[temp_comp.Get_description()] = temp_comp; if (temp_comp.Get_pe_reaction().size() > 0) { - cxxChemRxn temp_chem_reaction; + CReaction temp_chem_reaction; isoln_ptr->Get_pe_reactions()[temp_comp.Get_pe_reaction()] = temp_chem_reaction; } } @@ -6015,12 +5117,13 @@ read_species(void) */ int i; int association; - struct species *s_ptr; - struct elt_list *next_elt; - char *ptr, token[MAX_LENGTH]; + class species *s_ptr; + const class elt_list *next_elt; + const char* cptr; + char token[MAX_LENGTH]; //bool vm_read = false; int return_value, opt, opt_save; - char *next_char; + const char* next_char; const char *opt_list[] = { "no_check", /* 0 */ "check", /* 1 */ @@ -6140,11 +5243,10 @@ read_species(void) paren_count = 0; copy_token(token, &next_char, &i); s_ptr->mole_balance = string_hsave(token); - ptr = token; - s_ptr->next_secondary = - (struct elt_list *) free_check_null(s_ptr->next_secondary); - get_secondary_in_species(&ptr, 1.0); - s_ptr->next_secondary = elt_list_save(); + cptr = token; + s_ptr->next_secondary.clear(); + get_secondary_in_species(&cptr, 1.0); + s_ptr->next_secondary = elt_list_vsave(); /* debug for (i = 0; i < count_elts; i++) { output_msg(sformatf("%s\t%f\n", elt_list[i].elt->name, @@ -6245,106 +5347,68 @@ read_species(void) break; case 16: /* add_logk */ case 17: /* add_log_k */ + { if (s_ptr == NULL) { error_string = sformatf( - "No reaction defined before option, %s.", - opt_list[opt]); + "No reaction defined before option, %s.", + opt_list[opt]); error_msg(error_string, CONTINUE); input_error++; break; } - if (s_ptr->count_add_logk == 0) - { - s_ptr->add_logk = - (struct name_coef *) - PHRQ_malloc(sizeof(struct name_coef)); - if (s_ptr->add_logk == NULL) - malloc_error(); - } - else - { - s_ptr->add_logk = - (struct name_coef *) PHRQ_realloc(s_ptr->add_logk, - (size_t) ((s_ptr-> - count_add_logk - + - 1) * - sizeof - (struct - name_coef))); - if (s_ptr->add_logk == NULL) - malloc_error(); - } + size_t count_add_logk = s_ptr->add_logk.size(); + s_ptr->add_logk.resize(count_add_logk + 1); /* read name */ if (copy_token(token, &next_char, &i) == EMPTY) { input_error++; error_string = sformatf( - "Expected the name of a NAMED_EXPRESSION."); + "Expected the name of a NAMED_EXPRESSION."); error_msg(error_string, CONTINUE); break; } - s_ptr->add_logk[s_ptr->count_add_logk].name = string_hsave(token); + s_ptr->add_logk[count_add_logk].name = string_hsave(token); /* read coef */ i = sscanf(next_char, SCANFORMAT, - &s_ptr->add_logk[s_ptr->count_add_logk].coef); + &s_ptr->add_logk[count_add_logk].coef); if (i <= 0) { - s_ptr->add_logk[s_ptr->count_add_logk].coef = 1; + s_ptr->add_logk[count_add_logk].coef = 1; } - s_ptr->count_add_logk++; opt_save = OPTION_DEFAULT; - break; + } + break; case 18: /* add_constant */ + { if (s_ptr == NULL) { error_string = sformatf( - "No reaction defined before option, %s.", - opt_list[opt]); + "No reaction defined before option, %s.", + opt_list[opt]); error_msg(error_string, CONTINUE); input_error++; break; } - if (s_ptr->count_add_logk == 0) - { - s_ptr->add_logk = - (struct name_coef *) - PHRQ_malloc(sizeof(struct name_coef)); - if (s_ptr->add_logk == NULL) - malloc_error(); - } - else - { - s_ptr->add_logk = - (struct name_coef *) PHRQ_realloc(s_ptr->add_logk, - (size_t) ((s_ptr-> - count_add_logk - + - 1) * - sizeof - (struct - name_coef))); - if (s_ptr->add_logk == NULL) - malloc_error(); - } + size_t count_add_logk = s_ptr->add_logk.size(); + s_ptr->add_logk.resize(count_add_logk + 1); i = sscanf(next_char, SCANFORMAT, - &s_ptr->add_logk[s_ptr->count_add_logk].coef); + &s_ptr->add_logk[count_add_logk].coef); if (i <= 0) { input_error++; error_string = sformatf( - "Expected the constant to add for log_K definition."); + "Expected the constant to add for log_K definition."); error_msg(error_string, CONTINUE); break; } /* set name */ - s_ptr->add_logk[s_ptr->count_add_logk].name = + s_ptr->add_logk[count_add_logk].name = string_hsave("XconstantX"); /* read coef */ - s_ptr->count_add_logk++; opt_save = OPTION_DEFAULT; - break; + } + break; case 19: /* tracer diffusion coefficient */ if (s_ptr == NULL) { @@ -6433,20 +5497,22 @@ read_species(void) opt_save = OPTION_DEFAULT; break; case OPTION_DEFAULT: -/* - * Get space for species information and parse equation - */ + { + /* + * Get space for species information and parse equation + */ s_ptr = NULL; - if (parse_eq(line, &next_elt, association) == ERROR) + std::vector new_elt_list; + if (parse_eq(line, new_elt_list, association) == ERROR) { parse_error++; error_msg("Parsing equation.", CONTINUE); error_msg(line_save, CONTINUE); break; } -/* - * Get pointer to each species in the reaction, store new species if necessary - */ + /* + * Get pointer to each species in the reaction, store new species if necessary + */ trxn.token[0].s = s_store(trxn.token[0].name, trxn.token[0].z, TRUE); for (i = 1; i < count_trxn; i++) @@ -6454,11 +5520,12 @@ read_species(void) trxn.token[i].s = s_store(trxn.token[i].name, trxn.token[i].z, FALSE); } -/* - * Save element list and carbon, hydrogen, and oxygen in species - */ - trxn.token[0].s->next_elt = next_elt; - trxn.token[0].s->next_secondary = NULL; + /* + * Save element list and carbon, hydrogen, and oxygen in species + */ + trxn.token[0].s->next_elt = new_elt_list; + trxn.token[0].s->next_secondary.clear(); + next_elt = &trxn.token[0].s->next_elt[0]; for (; next_elt->elt != NULL; next_elt++) { if (strcmp(next_elt->elt->name, "C") == 0) @@ -6474,18 +5541,14 @@ read_species(void) trxn.token[0].s->o = next_elt->coef; } } -/* - * Malloc space for species reaction - */ - trxn.token[0].s->rxn = rxn_alloc(count_trxn + 1); -/* - * Copy reaction to reaction for species - */ + /* + * Copy reaction to reaction for species + */ trxn_copy(trxn.token[0].s->rxn); s_ptr = trxn.token[0].s; -/* - * Default gamma data - */ + /* + * Default gamma data + */ s_ptr->dha = 0.0; s_ptr->dhb = 0.0; if (equal(s_ptr->z, 0.0, TOL) == TRUE) @@ -6497,9 +5560,9 @@ read_species(void) { s_ptr->gflag = 1; /* Davies */ } -/* - * Set type for species - */ + /* + * Set type for species + */ if (strcmp(trxn.token[0].s->name, "H+") == 0) { s_hplus = trxn.token[0].s; @@ -6541,7 +5604,8 @@ read_species(void) trxn.token[0].s->type = AQ; } opt_save = OPTION_DEFAULT; - break; + } + break; } if (return_value == EOF || return_value == KEYWORD) break; @@ -6559,17 +5623,17 @@ read_use(void) * in reaction calculation */ int i, l, n_user, return_value; - char *ptr; + const char* cptr; char token[MAX_LENGTH], token1[MAX_LENGTH];; /* * Read "use" */ - ptr = line; - copy_token(token, &ptr, &l); + cptr = line; + copy_token(token, &cptr, &l); /* * Read keyword */ - copy_token(token, &ptr, &l); + copy_token(token, &cptr, &l); check_key(token); if (next_keyword != Keywords::KEY_SOLUTION && next_keyword != Keywords::KEY_MIX && @@ -6596,10 +5660,10 @@ read_use(void) strcpy(token1, token); for (;;) { - i = copy_token(token, &ptr, &l); + i = copy_token(token, &cptr, &l); if (i == DIGIT) { - sscanf(token, "%d", &n_user); + (void)sscanf(token, "%d", &n_user); if (n_user < 0) { error_msg("Number must be a positive integer.", CONTINUE); @@ -6780,15 +5844,14 @@ read_surface_species(void) int i, j; int association; char token[MAX_LENGTH]; - char *ptr; + const char* cptr; LDBLE offset; - struct species *s_ptr; - struct elt_list *next_elt; - struct rxn_token *token_ptr; + class species *s_ptr; + const class elt_list *next_elt; int return_value, opt, opt_save; - char *next_char; + const char* next_char; const char *opt_list[] = { "no_check", /* 0 */ "check", /* 1 */ @@ -6879,11 +5942,10 @@ read_surface_species(void) paren_count = 0; copy_token(token, &next_char, &i); s_ptr->mole_balance = string_hsave(token); - ptr = token; - s_ptr->next_secondary = - (struct elt_list *) free_check_null(s_ptr->next_secondary); - get_secondary_in_species(&ptr, 1.0); - s_ptr->next_secondary = elt_list_save(); + cptr = token; + s_ptr->next_secondary.clear(); + get_secondary_in_species(&cptr, 1.0); + s_ptr->next_secondary = elt_list_vsave(); /* debug for (i = 0; i < count_elts; i++) { output_msg(sformatf("%s\t%f\n", elt_list[i].elt->name, @@ -6955,112 +6017,66 @@ read_surface_species(void) break; case 13: /* add_logk */ case 14: /* add_log_k */ + { if (s_ptr == NULL) { error_string = sformatf( - "No reaction defined before option, %s.", - opt_list[opt]); + "No reaction defined before option, %s.", + opt_list[opt]); error_msg(error_string, CONTINUE); input_error++; break; } - if (s_ptr->count_add_logk == 0) - { - s_ptr->add_logk = - (struct name_coef *) - PHRQ_malloc(sizeof(struct name_coef)); - if (s_ptr->add_logk == NULL) - { - malloc_error(); - return (OK); - } - } - else - { - s_ptr->add_logk = - (struct name_coef *) PHRQ_realloc(s_ptr->add_logk, - (size_t) ((s_ptr-> - count_add_logk - + - 1) * - sizeof - (struct - name_coef))); - if (s_ptr->add_logk == NULL) - { - malloc_error(); - return (OK); - } - } + size_t count_add_logk = s_ptr->add_logk.size(); + s_ptr->add_logk.resize(count_add_logk + 1); /* read name */ if (copy_token(token, &next_char, &i) == EMPTY) { input_error++; error_string = sformatf( - "Expected the name of a NAMED_EXPRESSION."); + "Expected the name of a NAMED_EXPRESSION."); error_msg(error_string, CONTINUE); break; } - s_ptr->add_logk[s_ptr->count_add_logk].name = string_hsave(token); + s_ptr->add_logk[count_add_logk].name = string_hsave(token); /* read coef */ i = sscanf(next_char, SCANFORMAT, - &s_ptr->add_logk[s_ptr->count_add_logk].coef); + &s_ptr->add_logk[count_add_logk].coef); if (i <= 0) { - s_ptr->add_logk[s_ptr->count_add_logk].coef = 1; + s_ptr->add_logk[count_add_logk].coef = 1; } - s_ptr->count_add_logk++; opt_save = OPTION_DEFAULT; - break; + } + break; case 15: /* add_constant */ + { if (s_ptr == NULL) { error_string = sformatf( - "No reaction defined before option, %s.", - opt_list[opt]); + "No reaction defined before option, %s.", + opt_list[opt]); error_msg(error_string, CONTINUE); input_error++; break; } - if (s_ptr->count_add_logk == 0) - { - s_ptr->add_logk = - (struct name_coef *) - PHRQ_malloc(sizeof(struct name_coef)); - if (s_ptr->add_logk == NULL) - malloc_error(); - } - else - { - s_ptr->add_logk = - (struct name_coef *) PHRQ_realloc(s_ptr->add_logk, - (size_t) ((s_ptr-> - count_add_logk - + - 1) * - sizeof - (struct - name_coef))); - if (s_ptr->add_logk == NULL) - malloc_error(); - } - i = sscanf(next_char, SCANFORMAT, - &s_ptr->add_logk[s_ptr->count_add_logk].coef); + size_t count_add_logk = s_ptr->add_logk.size(); + s_ptr->add_logk.resize(count_add_logk + 1); + i = sscanf(next_char, SCANFORMAT, &s_ptr->add_logk[count_add_logk].coef); if (i <= 0) { input_error++; error_string = sformatf( - "Expected the constant to add for log_K definition."); + "Expected the constant to add for log_K definition."); error_msg(error_string, CONTINUE); break; } /* set name */ - s_ptr->add_logk[s_ptr->count_add_logk].name = + s_ptr->add_logk[count_add_logk].name = string_hsave("XconstantX"); - /* read coef */ - s_ptr->count_add_logk++; opt_save = OPTION_DEFAULT; - break; + } + break; case 16: /* cd_music */ case 17: /* music */ if (s_ptr == NULL) @@ -7084,7 +6100,7 @@ read_surface_species(void) s_ptr->dz[2] = s_ptr->cd_music[2]; for (j = 0; j < 3; j++) { - s_ptr->rxn->dz[j] = s_ptr->dz[j]; + s_ptr->rxn.dz[j] = s_ptr->dz[j]; } opt_save = OPTION_DEFAULT; break; @@ -7103,11 +6119,13 @@ read_surface_species(void) opt_save = OPTION_DEFAULT; break; case OPTION_DEFAULT: + { /* * Get surface species information and parse equation */ s_ptr = NULL; - if (parse_eq(line, &next_elt, association) == ERROR) + std::vector new_elt_list; + if (parse_eq(line, new_elt_list, association) == ERROR) { parse_error++; error_msg("Parsing equation.", CONTINUE); @@ -7117,8 +6135,7 @@ read_surface_species(void) /* * Get pointer to each species in the reaction, store new species if necessary */ - trxn.token[0].s = - s_store(trxn.token[0].name, trxn.token[0].z, TRUE); + trxn.token[0].s = s_store(trxn.token[0].name, trxn.token[0].z, TRUE); for (i = 1; i < count_trxn; i++) { trxn.token[i].s = @@ -7127,7 +6144,8 @@ read_surface_species(void) /* * Save element list and carbon, hydrogen, and oxygen in species */ - trxn.token[0].s->next_elt = next_elt; + trxn.token[0].s->next_elt = new_elt_list; + next_elt = &trxn.token[0].s->next_elt[0]; for (; next_elt->elt != NULL; next_elt++) { if (strcmp(next_elt->elt->name, "C") == 0) @@ -7143,36 +6161,10 @@ read_surface_species(void) trxn.token[0].s->o = next_elt->coef; } } -#ifdef SKIP - // need to do this in tidy in case surface master species not yet defined - /* - * Find coefficient of surface in rxn, store in equiv - */ - trxn.token[0].s->equiv = 0.0; - for (i = 1; i < count_trxn; i++) - { - if (trxn.token[i].s->type == SURF) - { - trxn.token[0].s->equiv = trxn.token[i].coef; - } - } - if (trxn.token[0].s->equiv == 0.0) - trxn.token[0].s->equiv = 1.0; -#endif - /* - * Malloc space for species reaction - */ - trxn.token[0].s->rxn = rxn_alloc(count_trxn + 1); /* * Copy reaction to reaction for species */ - token_ptr = trxn.token[0].s->rxn->token; - for (i = 0; i < count_trxn; i++) - { - token_ptr[i].s = trxn.token[i].s; - token_ptr[i].coef = trxn.token[i].coef; - } - token_ptr[i].s = NULL; + trxn_copy(trxn.token[0].s->rxn); /* * Set type for species */ @@ -7185,7 +6177,8 @@ read_surface_species(void) s_ptr->dha = 0.0; s_ptr->dhb = 0.0; opt_save = OPTION_DEFAULT; - break; + } + break; } if (return_value == EOF || return_value == KEYWORD) break; @@ -7210,14 +6203,12 @@ read_surface(void) * ERROR if error occurred reading data * */ - int n_user, n_user_end; + int n_user; LDBLE conc; - char *ptr, *ptr1; - char *description; + const char* cptr, *cptr1; std::string token, token1, name; - int return_value, opt; - char *next_char; + const char* next_char; const char *opt_list[] = { "equilibrate", /* 0 */ "equil", /* 1 */ @@ -7234,28 +6225,23 @@ read_surface(void) "constant_capacitance", /* 12 */ "ccm", /* 13 */ "equilibrium", /* 14 */ - "site_units" /* 15 */ + "site_units", /* 15 */ + "ddl" /* 16 */ }; - int count_opt_list = 16; + int count_opt_list = 17; /* * kin_surf is for Surfaces, related to kinetically reacting minerals * they are defined if "sites" is followed by mineral name: * Surf_wOH Manganite [equilibrium_phases or kinetics] 0.25 4000 * ^Name mineral ^switch ^prop.factor ^m2/mol */ - /* - * Read surface number and description - */ - ptr = line; - read_number_description(ptr, &n_user, &n_user_end, &description); cxxSurface temp_surface; + cptr = line; + temp_surface.read_number_description(cptr); + n_user = temp_surface.Get_n_user(); cxxSurfaceComp *comp_ptr = NULL; cxxSurfaceCharge *charge_ptr = NULL; temp_surface.Set_new_def(true); - temp_surface.Set_n_user(n_user); - temp_surface.Set_n_user_end(n_user_end); - temp_surface.Set_description(description); - free_check_null(description); if (use.Get_surface_in() == FALSE) { @@ -7291,7 +6277,7 @@ read_surface(void) if (i == DIGIT) { int j; - sscanf(token.c_str(), "%d", &j); + (void)sscanf(token.c_str(), "%d", &j); temp_surface.Set_solution_equilibria(true); temp_surface.Set_n_solution(j); break; @@ -7335,7 +6321,7 @@ read_surface(void) int i = copy_token(token, &next_char); if (i == DIGIT) { - sscanf(token.c_str(), SCANFORMAT, &dummy); + (void)sscanf(token.c_str(), SCANFORMAT, &dummy); temp_surface.Set_thickness(dummy); thickness = 1; continue; @@ -7356,7 +6342,7 @@ read_surface(void) int j = copy_token(token1, &next_char); if (j == DIGIT) { - sscanf(token1.c_str(), SCANFORMAT, &dummy); + (void)sscanf(token1.c_str(), SCANFORMAT, &dummy); temp_surface.Set_debye_lengths(dummy); continue; } @@ -7375,7 +6361,7 @@ read_surface(void) int j = copy_token(token1, &next_char); if (j == DIGIT) { - sscanf(token1.c_str(), SCANFORMAT, &dummy); + (void)sscanf(token1.c_str(), SCANFORMAT, &dummy); temp_surface.Set_DDL_viscosity(dummy); continue; } @@ -7394,7 +6380,7 @@ read_surface(void) int j = copy_token(token1, &next_char); if (j == DIGIT) { - sscanf(token1.c_str(), SCANFORMAT, &dummy); + (void)sscanf(token1.c_str(), SCANFORMAT, &dummy); temp_surface.Set_DDL_limit(dummy); continue; } @@ -7500,15 +6486,17 @@ read_surface(void) /* constant capacitance model not implemented yet */ //error_msg("Constant capacitance model not implemented.", CONTINUE); //input_error++; - + break; + case 16: /* ddl */ + temp_surface.Set_type(cxxSurface::DDL); break; case OPTION_DEFAULT: /* * Read surface component */ { - ptr = line; - int i = copy_token(token, &ptr); + cptr = line; + int i = copy_token(token, &cptr); if (i != UPPER && token[0] != '[') { error_msg @@ -7519,12 +6507,13 @@ read_surface(void) break; } - cxxSurfaceComp temp_comp; + cxxSurfaceComp temp_comp(this->phrq_io); + temp_surface.Get_surface_comps().push_back(temp_comp); comp_ptr = &(temp_surface.Get_surface_comps().back()); comp_ptr->Set_formula(token.c_str()); - i = copy_token(token1, &ptr); + i = copy_token(token1, &cptr); if (i == DIGIT) { /* @@ -7549,7 +6538,7 @@ read_surface(void) /* surface conc. is related to mineral or kinetics */ comp_ptr->Set_phase_name(token1.c_str()); - int j = copy_token(token1, &ptr); + int j = copy_token(token1, &cptr); /* read optional 'equilibrium_phases' or 'kinetics' */ if (j != DIGIT) @@ -7571,7 +6560,7 @@ read_surface(void) input_error++; break; } - j = copy_token(token1, &ptr); + j = copy_token(token1, &cptr); } /* read proportion */ @@ -7583,7 +6572,7 @@ read_surface(void) input_error++; break; } - sscanf(token1.c_str(), SCANFORMAT, &dummy); + (void)sscanf(token1.c_str(), SCANFORMAT, &dummy); comp_ptr->Set_phase_proportion(dummy); /* real conc must be defined in tidy_model */ conc = 1.0; @@ -7602,35 +6591,36 @@ read_surface(void) */ count_elts = 0; paren_count = 0; - char * formula = string_duplicate(token.c_str()); - ptr1 = formula; - get_elts_in_species(&ptr1, conc); + std::string formula = token.c_str(); + cptr1 = formula.c_str(); + get_elts_in_species(&cptr1, conc); /* * save formula for adjusting number of exchange sites */ - ptr1 = formula; + cptr1 = formula.c_str(); int l; - // name is work space - char * name = string_duplicate(formula); - name[0] = '\0'; - get_token(&ptr1, name, &dummy, &l); + std::string name; + get_token(&cptr1, name, &dummy, &l); comp_ptr->Set_formula_z(dummy); cxxNameDouble nd = elt_list_NameDouble(); comp_ptr->Set_totals(nd); /* * Search for charge structure */ - ptr1 = formula; - get_elt(&ptr1, name, &l); - ptr1 = strchr(name, '_'); - if (ptr1 != NULL) - ptr1[0] = '\0'; + cptr1 = formula.c_str(); + get_elt(&cptr1, name, &l); + { + std::string::size_type pos = name.find('_'); + if (pos != std::string::npos) + { + name = name.substr(0, pos); + } + } charge_ptr = temp_surface.Find_charge(name); - formula = (char*)free_check_null(formula); if (charge_ptr == NULL) { - cxxSurfaceCharge temp_charge; - temp_charge.Set_name(name); + cxxSurfaceCharge temp_charge(this->phrq_io); + temp_charge.Set_name(name.c_str()); if (comp_ptr->Get_phase_name().size() == 0 && comp_ptr->Get_rate_name().size() == 0) { @@ -7645,12 +6635,11 @@ read_surface(void) temp_surface.Get_surface_charges().push_back(temp_charge); charge_ptr = temp_surface.Find_charge(name); } - comp_ptr->Set_charge_name(name); - name = (char*)free_check_null(name); + comp_ptr->Set_charge_name(name.c_str()); /* * Read surface area (m2/g) */ - copy_token(token1, &ptr); + copy_token(token1, &cptr); if (sscanf(token1.c_str(), SCANFORMAT, &dummy) == 1) { charge_ptr->Set_specific_area(dummy); @@ -7662,17 +6651,17 @@ read_surface(void) /* * Read grams of solid (g) */ - copy_token(token1, &ptr); + copy_token(token1, &cptr); if (sscanf(token1.c_str(), SCANFORMAT, &dummy) == 1) { charge_ptr->Set_grams(dummy); } /* read Dw */ - copy_token(token1, &ptr); + copy_token(token1, &cptr); Utilities::str_tolower(token1); if (strcmp(token1.c_str(), "dw") == 0) { - int j = copy_token(token1, &ptr); + int j = copy_token(token1, &cptr); if (j != DIGIT) { error_msg @@ -7683,7 +6672,7 @@ read_surface(void) } else { - sscanf(token1.c_str(), SCANFORMAT, &dummy); + (void)sscanf(token1.c_str(), SCANFORMAT, &dummy); comp_ptr->Set_Dw(dummy); if (dummy > 0) { @@ -7819,12 +6808,12 @@ read_surface_master_species(void) * Reads master species data from data file or input file */ int l, return_value; - char *ptr, *ptr1; + const char* cptr, *cptr1; LDBLE l_z; - struct species *s_ptr; + class species *s_ptr; char token[MAX_LENGTH], token1[MAX_LENGTH]; int opt, opt_save; - char *next_char; + const char* next_char; const char *opt_list[] = { "capacitance", /* 0 */ "cd_music_capacitance" /* 1 */ @@ -7857,11 +6846,11 @@ read_surface_master_species(void) /* * Get "element" name with valence, allocate space, store */ - ptr = line; + cptr = line; /* * Get element name and save pointer to character string */ - if (copy_token(token, &ptr, &l) != UPPER && token[0] != '[') + if (copy_token(token, &cptr, &l) != UPPER && token[0] != '[') { parse_error++; error_msg("Reading element for master species.", CONTINUE); @@ -7873,21 +6862,15 @@ read_surface_master_species(void) * Delete master if it exists */ master_delete(token); - /* - * Increase pointer array, if necessary, and malloc space - */ - if (count_master + 4 >= max_master) - { - space((void **) ((void *) &master), count_master + 4, - &max_master, sizeof(struct master *)); - } /* * Save values in master and species structure for surface sites */ + size_t count_master = master.size(); + master.resize(count_master + 1); master[count_master] = master_alloc(); master[count_master]->type = SURF; master[count_master]->elt = element_store(token); - if (copy_token(token, &ptr, &l) != UPPER && token[0] != '[') + if (copy_token(token, &cptr, &l) != UPPER && token[0] != '[') { parse_error++; error_msg("Reading surface master species name.", CONTINUE); @@ -7901,9 +6884,10 @@ read_surface_master_species(void) } else { - ptr1 = token; - get_token(&ptr1, token1, &l_z, &l); - master[count_master]->s = s_store(token1, l_z, FALSE); + cptr1 = token; + std::string token1; + get_token(&cptr1, token1, &l_z, &l); + master[count_master]->s = s_store(token1.c_str(), l_z, FALSE); } master[count_master]->primary = TRUE; strcpy(token, master[count_master]->elt->name); @@ -7913,8 +6897,8 @@ read_surface_master_species(void) */ strcpy(token1, token); replace("_", " ", token1); - ptr1 = token1; - copy_token(token, &ptr1, &l); + cptr1 = token1; + copy_token(token, &cptr1, &l); strcat(token, "_psi"); add_psi_master_species(token); opt_save = OPTION_DEFAULT; @@ -7931,9 +6915,9 @@ int Phreeqc:: add_psi_master_species(char *token) /* ---------------------------------------------------------------------- */ { - struct species *s_ptr; - struct master *master_ptr; - char *ptr; + class species *s_ptr; + class master *master_ptr; + const char* cptr; char token1[MAX_LENGTH]; int i, n, plane; @@ -7955,6 +6939,8 @@ add_psi_master_species(char *token) master_ptr = master_search(token, &n); if (master_ptr == NULL) { + size_t count_master = master.size(); + master.resize(count_master + 1); master[count_master] = master_alloc(); master[count_master]->type = plane; master[count_master]->elt = element_store(token); @@ -7969,26 +6955,27 @@ add_psi_master_species(char *token) } count_elts = 0; paren_count = 0; - ptr = token; - get_elts_in_species(&ptr, 1.0); - master[count_master]->s->next_elt = elt_list_save(); + cptr = token; + get_elts_in_species(&cptr, 1.0); + master[count_master]->s->next_elt = elt_list_vsave(); master[count_master]->s->type = plane; master[count_master]->primary = TRUE; - master[count_master]->s->rxn = rxn_alloc(3); + + master[count_master]->s->rxn.token.resize(3); /* * Define reaction for psi */ for (i = 0; i < MAX_LOG_K_INDICES; i++) { - master[count_master]->s->rxn->logk[i] = 0.0; + master[count_master]->s->rxn.logk[i] = 0.0; } - master[count_master]->s->rxn->token[0].s = + master[count_master]->s->rxn.token[0].s = master[count_master]->s; - master[count_master]->s->rxn->token[0].coef = -1.0; - master[count_master]->s->rxn->token[1].s = + master[count_master]->s->rxn.token[0].coef = -1.0; + master[count_master]->s->rxn.token[1].s = master[count_master]->s; - master[count_master]->s->rxn->token[1].coef = 1.0; - master[count_master]->s->rxn->token[2].s = NULL; + master[count_master]->s->rxn.token[1].coef = 1.0; + master[count_master]->s->rxn.token[2].s = NULL; count_master++; } } @@ -8013,27 +7000,20 @@ read_title(void) * ERROR if error occurred reading data * */ - char *ptr, *ptr1; - int l, title_x_length, line_length; + const char* cptr, *cptr1; + int l; int return_value; char token[MAX_LENGTH]; /* * Read anything after keyword */ - ptr = line; - copy_token(token, &ptr, &l); - ptr1 = ptr; - title_x = (char *) free_check_null(title_x); - if (copy_token(token, &ptr, &l) != EMPTY) + cptr = line; + copy_token(token, &cptr, &l); + cptr1 = cptr; + title_x.clear(); + if (copy_token(token, &cptr, &l) != EMPTY) { - title_x = string_duplicate(ptr1); - } - else - { - title_x = (char *) PHRQ_malloc(sizeof(char)); - if (title_x == NULL) - malloc_error(); - title_x[0] = '\0'; + title_x = cptr1; } /* @@ -8048,20 +7028,11 @@ read_title(void) /* * append line to title_x */ - title_x_length = (int) strlen(title_x); - line_length = (int) strlen(line); - title_x = - (char *) PHRQ_realloc(title_x, - (size_t) (title_x_length + line_length + - 2) * sizeof(char)); - if (title_x == NULL) - malloc_error(); - if (title_x_length > 0) + if (title_x.size() > 0) { - title_x[title_x_length] = '\n'; - title_x[title_x_length + 1] = '\0'; + title_x.append("\n"); } - strcat(title_x, line); + title_x.append(line); } last_title_x = title_x; return (return_value); @@ -8090,14 +7061,9 @@ read_advection(void) * number of cells; * number of shifts; */ - char *ptr; - char *description; - int n_user, n_user_end, i; - - int count_punch, count_print; - int *punch_temp, *print_temp; + std::vector punch_temp, print_temp; int return_value, opt, opt_save; - char *next_char; + const char* next_char; const char *opt_list[] = { "cells", /* 0 */ "shifts", /* 1 */ @@ -8119,12 +7085,6 @@ read_advection(void) "warnings" /* 17 */ }; int count_opt_list = 18; -/* - * Read advection number (not currently used) - */ - ptr = line; - read_number_description(ptr, &n_user, &n_user_end, &description); - description = (char *) free_check_null(description); /* * Set use data */ @@ -8133,14 +7093,6 @@ read_advection(void) count_ad_shifts = 0; print_ad_modulus = 1; punch_ad_modulus = 1; - count_punch = 0; - count_print = 0; - punch_temp = (int *) PHRQ_malloc(sizeof(int)); - if (punch_temp == NULL) - malloc_error(); - print_temp = (int *) PHRQ_malloc(sizeof(int)); - if (print_temp == NULL) - malloc_error(); /* * Read lines */ @@ -8169,24 +7121,29 @@ read_advection(void) error_msg(line_save, CONTINUE); break; case 0: /* cells */ - sscanf(next_char, "%d", &count_ad_cells); + (void)sscanf(next_char, "%d", &count_ad_cells); opt_save = OPTION_DEFAULT; break; case 1: /* shifts */ - sscanf(next_char, "%d", &count_ad_shifts); + (void)sscanf(next_char, "%d", &count_ad_shifts); opt_save = OPTION_DEFAULT; break; case 2: /* print */ case 5: /* print_cells */ - print_temp = - read_list_ints_range(&next_char, &count_print, TRUE, - print_temp); + { + std::istringstream iss(next_char); + int idummy; + while (iss >> idummy) + { + print_temp.push_back(idummy); + } opt_save = 2; - break; + } + break; case 3: /* selected_output */ case 11: /* selected_output_frequency */ case 12: /* punch_frequency */ - sscanf(next_char, "%d", &punch_ad_modulus); + (void)sscanf(next_char, "%d", &punch_ad_modulus); opt_save = OPTION_DEFAULT; if (punch_ad_modulus <= 0) { @@ -8199,14 +7156,19 @@ read_advection(void) case 4: /* punch */ case 14: /* punch_cells */ case 6: /* selected_cells */ - punch_temp = - read_list_ints_range(&next_char, &count_punch, TRUE, - punch_temp); + { + std::istringstream iss(next_char); + int idummy; + while (iss >> idummy) + { + punch_temp.push_back(idummy); + } opt_save = 4; break; + } case 7: /* time_step */ case 8: /* timest */ - sscanf(next_char, SCANFORMAT, &advection_kin_time); + (void)sscanf(next_char, SCANFORMAT, &advection_kin_time); { std::string token; int j = copy_token(token, &next_char); @@ -8222,7 +7184,7 @@ read_advection(void) case 9: /* output */ case 10: /* output_frequency */ case 13: /* print_frequency */ - sscanf(next_char, "%d", &print_ad_modulus); + (void)sscanf(next_char, "%d", &print_ad_modulus); opt_save = OPTION_DEFAULT; if (print_ad_modulus <= 0) { @@ -8236,7 +7198,7 @@ read_advection(void) char token[MAX_LENGTH]; int j; if (copy_token(token, &next_char, &j) == DIGIT) - sscanf(token, SCANFORMAT, &initial_total_time); + (void)sscanf(token, SCANFORMAT, &initial_total_time); { std::string stdtoken; j = copy_token(stdtoken, &next_char); @@ -8258,16 +7220,12 @@ read_advection(void) /* * Fill in data for punch */ - advection_punch = - (int *) PHRQ_realloc(advection_punch, - (size_t) (count_ad_cells + 1) * sizeof(int)); - if (advection_punch == NULL) - malloc_error(); - if (count_punch != 0) + advection_punch.resize(count_ad_cells + 1); + if (punch_temp.size() != 0) { - for (i = 0; i < count_ad_cells; i++) + for (size_t i = 0; i < count_ad_cells; i++) advection_punch[i] = FALSE; - for (i = 0; i < count_punch; i++) + for (size_t i = 0; i < punch_temp.size(); i++) { if (punch_temp[i] > count_ad_cells || punch_temp[i] < 1) { @@ -8284,23 +7242,19 @@ read_advection(void) } else { - for (i = 0; i < count_ad_cells; i++) + for (size_t i = 0; i < count_ad_cells; i++) advection_punch[i] = TRUE; } - punch_temp = (int *) free_check_null(punch_temp); + punch_temp.clear(); /* * Fill in data for print */ - advection_print = - (int *) PHRQ_realloc(advection_print, - (size_t) (count_ad_cells + 1) * sizeof(int)); - if (advection_print == NULL) - malloc_error(); - if (count_print != 0) + advection_print.resize(count_ad_cells + 1); + if (print_temp.size() != 0) { - for (i = 0; i < count_ad_cells; i++) + for (size_t i = 0; i < count_ad_cells; i++) advection_print[i] = FALSE; - for (i = 0; i < count_print; i++) + for (size_t i = 0; i < print_temp.size(); i++) { if (print_temp[i] > count_ad_cells || print_temp[i] < 1) { @@ -8317,10 +7271,10 @@ read_advection(void) } else { - for (i = 0; i < count_ad_cells; i++) + for (size_t i = 0; i < count_ad_cells; i++) advection_print[i] = TRUE; } - print_temp = (int *) free_check_null(print_temp); + print_temp.clear(); return (return_value); } @@ -8343,7 +7297,7 @@ read_debug(void) * */ int return_value, opt; - char *next_char; + const char* next_char; const char *opt_list[] = { "iterations", /* 0 */ "tolerance", /* 1 */ @@ -8367,9 +7321,11 @@ read_debug(void) "force_numerical_fixed_volume", /* 19 */ "equi_delay", /* 20 */ "minimum_total", /* 21 */ - "min_total" /* 22 */ + "min_total", /* 22 */ + "debug_mass_action", /* 23 */ + "debug_mass_balance" /* 24 */ }; - int count_opt_list = 23; + int count_opt_list = 25; /* * Read parameters: * ineq_tol; @@ -8397,19 +7353,19 @@ read_debug(void) error_msg(line_save, CONTINUE); break; case 0: /* iterations */ - sscanf(next_char, "%d", &itmax); + (void)sscanf(next_char, "%d", &itmax); break; case 1: /* tolerance */ - sscanf(next_char, SCANFORMAT, &ineq_tol); + (void)sscanf(next_char, SCANFORMAT, &ineq_tol); break; case 2: /* step_size */ - sscanf(next_char, SCANFORMAT, &step_size); + (void)sscanf(next_char, SCANFORMAT, &step_size); break; case 3: /* pe_step_size */ - sscanf(next_char, SCANFORMAT, &pe_step_size); + (void)sscanf(next_char, SCANFORMAT, &pe_step_size); break; case 4: /* pp_scale */ - sscanf(next_char, SCANFORMAT, &pp_scale); + (void)sscanf(next_char, SCANFORMAT, &pp_scale); break; case 5: /* diagonal_scale */ diagonal_scale = get_true_false(next_char, TRUE); @@ -8445,7 +7401,7 @@ read_debug(void) case 14: /* convergence_tolerance */ { LDBLE ct; - sscanf(next_char, SCANFORMAT, &ct); + (void)sscanf(next_char, SCANFORMAT, &ct); convergence_tolerance = ct; } break; @@ -8454,7 +7410,7 @@ read_debug(void) break; case 16: /* tries */ case 17: /* try */ - sscanf(next_char, "%d", &max_tries); + (void)sscanf(next_char, "%d", &max_tries); break; case 18: /* debug_inverse */ numerical_fixed_volume = (get_true_false(next_char, TRUE) == TRUE); @@ -8463,14 +7419,20 @@ read_debug(void) force_numerical_fixed_volume = (get_true_false(next_char, TRUE) == TRUE); break; case 20: /* equi_delay */ - sscanf(next_char, "%d", &equi_delay); + (void)sscanf(next_char, "%d", &equi_delay); break; case 21: /* minimum_total */ case 22: /* min_total */ - sscanf(next_char, SCANFORMAT, &MIN_TOTAL); + (void)sscanf(next_char, SCANFORMAT, &MIN_TOTAL); MIN_TOTAL_SS = MIN_TOTAL/100; MIN_RELATED_SURFACE = MIN_TOTAL*100; break; + case 23: /* debug_mass_action */ + debug_mass_action = get_true_false(next_char, TRUE); + break; + case 24: /* debug_mass_balance */ + debug_mass_balance = get_true_false(next_char, TRUE); + break; } if (return_value == EOF || return_value == KEYWORD) break; @@ -8497,7 +7459,7 @@ read_print(void) * */ int return_value, opt, l; - char *next_char; + const char* next_char; char token[MAX_LENGTH]; LDBLE num; const char *opt_list[] = { @@ -8646,7 +7608,7 @@ read_print(void) } if (j == DIGIT) { - char * tptr = token; + const char * tptr = token; get_num(&tptr, &num); num = floor(num); if (num < 0.0) num = 0.0; @@ -8688,11 +7650,11 @@ read_print(void) if (pr.echo_input == 0) phrq_io->Set_echo_on(false); else - phrq_io->Set_echo_on(true); //**appt + phrq_io->Set_echo_on(true); break; case 32: /* warning */ case 33: /* warnings */ - sscanf(next_char, "%d", &pr.warnings); + (void)sscanf(next_char, "%d", &pr.warnings); break; case 34: /* initial_isotopes */ pr.initial_isotopes = get_true_false(next_char, TRUE); @@ -8706,7 +7668,7 @@ read_print(void) case 37: /* censor_species */ if (copy_token(token, &next_char, &l) != EMPTY) { - sscanf(token, SCANFORMAT, &censor); + (void)sscanf(token, SCANFORMAT, &censor); } else { @@ -8747,13 +7709,13 @@ check_key(const char *str) * TRUE, * FALSE. */ - char *ptr; + const char* cptr; std::string stdtoken; char * token1; token1 = string_duplicate(str); - ptr = token1; - int j = copy_token(stdtoken, &ptr); + cptr = token1; + int j = copy_token(stdtoken, &cptr); Utilities::str_tolower(stdtoken); std::string key(stdtoken); @@ -8929,166 +7891,6 @@ check_units(std::string &tot_units, bool alkalinity, bool check_compatibility, } return (ERROR); } -#ifdef SKIP -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -check_units(char *tot_units, int alkalinity, int check_compatibility, - const char *default_units, int print) -/* ---------------------------------------------------------------------- */ -{ -#define NUNITS (sizeof(units) / sizeof(char *)) -/* - * Check if legitimate units - * Input: - * tot_units character string to check, - * alkalinity TRUE if alkalinity, FALSE if any other total, - * check_compatibility TRUE check alk and default units, FALSE otherwise - * default_units character string of default units (check /L, /kg, etc) - * print TRUE print warning messages - * Output: - * tot_units standard form for unit - */ - int i, found; - char *end; - char string[MAX_LENGTH]; - const char *units[] = { - "Mol/l", /* 0 */ - "mMol/l", /* 1 */ - "uMol/l", /* 2 */ - "g/l", /* 3 */ - "mg/l", /* 4 */ - "ug/l", /* 5 */ - "Mol/kgs", /* 6 */ - "mMol/kgs", /* 7 */ - "uMol/kgs", /* 8 */ - "g/kgs", /* 9 = ppt */ - "mg/kgs", /* 10 = ppm */ - "ug/kgs", /* 11 = ppb */ - "Mol/kgw", /* 12 = mol/kg H2O */ - "mMol/kgw", /* 13 = mmol/kg H2O */ - "uMol/kgw", /* 14 = umol/kg H2O */ - "g/kgw", /* 15 = mol/kg H2O */ - "mg/kgw", /* 16 = mmol/kg H2O */ - "ug/kgw", /* 17 = umol/kg H2O */ - "eq/l", /* 18 */ - "meq/l", /* 19 */ - "ueq/l", /* 20 */ - "eq/kgs", /* 21 */ - "meq/kgs", /* 22 */ - "ueq/kgs", /* 23 */ - "eq/kgw", /* 24 */ - "meq/kgw", /* 25 */ - "ueq/kgw", /* 26 */ - }; - - squeeze_white(tot_units); - str_tolower(tot_units); - replace("milli", "m", tot_units); - replace("micro", "u", tot_units); - replace("grams", "g", tot_units); - replace("gram", "g", tot_units); - replace("moles", "Mol", tot_units); - replace("mole", "Mol", tot_units); - replace("mol", "Mol", tot_units); - replace("liter", "l", tot_units); - replace("kgh", "kgw", tot_units); - replace("ppt", "g/kgs", tot_units); - replace("ppm", "mg/kgs", tot_units); - replace("ppb", "ug/kgs", tot_units); - replace("equivalents", "eq", tot_units); - replace("equivalent", "eq", tot_units); - replace("equiv", "eq", tot_units); - - if ((end = strstr(tot_units, "/l")) != NULL) - { - *(end + 2) = '\0'; - } - if ((end = strstr(tot_units, "/kgs")) != NULL) - { - *(end + 4) = '\0'; - } - if ((end = strstr(tot_units, "/kgw")) != NULL) - { - *(end + 4) = '\0'; - } -/* - * Check if unit in list - */ - found = FALSE; - for (i = 0; i < (int) NUNITS; i++) - { - if (strcmp(tot_units, units[i]) == 0) - { - found = TRUE; - break; - } - } - if (found == FALSE) - { - if (print == TRUE) - { - error_string = sformatf( "Unknown unit, %s.", tot_units); - error_msg(error_string, CONTINUE); - } - return (ERROR); - } - -/* - * Check if units are compatible with default_units - */ - if (check_compatibility == FALSE) - return (OK); -/* - * Special cases for alkalinity - */ - if (alkalinity == TRUE && strstr(tot_units, "Mol") != NULL) - { - if (print == TRUE) - { - error_string = sformatf( - "Alkalinity given in moles, assumed to be equivalents."); - warning_msg(error_string); - } - replace("Mol", "eq", tot_units); - } - if (alkalinity == FALSE && strstr(tot_units, "eq") != NULL) - { - if (print == TRUE) - { - error_msg("Only alkalinity can be entered in equivalents.", - CONTINUE); - } - return (ERROR); - } -/* - * See if default_units are compatible with tot_units - */ - if (strstr(default_units, "/l") && strstr(tot_units, "/l")) - return (OK); - if (strstr(default_units, "/kgs") && strstr(tot_units, "/kgs")) - return (OK); - if (strstr(default_units, "/kgw") && strstr(tot_units, "/kgw")) - return (OK); - - strcpy(string, default_units); - replace("kgs", "kg solution", string); - replace("kgs", "kg solution", tot_units); - replace("kgw", "kg water", string); - replace("kgw", "kg water", tot_units); - replace("/l", "/L", string); - replace("Mol", "mol", string); - replace("/l", "/L", tot_units); - replace("Mol", "mol", tot_units); - if (print == TRUE) - { - error_string = sformatf( - "Units for master species, %s, are not compatible with default units, %s.", - tot_units, string); - error_msg(error_string, CONTINUE); - } - return (ERROR); -} -#endif /* ---------------------------------------------------------------------- */ int Phreeqc:: find_option(const char *item, int *n, const char **list, int count_list, int exact) @@ -9139,7 +7941,7 @@ find_option(const char *item, int *n, const char **list, int count_list, int exa /* ---------------------------------------------------------------------- */ int Phreeqc:: -get_true_false(char *string, int default_value) +get_true_false(const char *string, int default_value) /* ---------------------------------------------------------------------- */ { /* @@ -9147,11 +7949,11 @@ get_true_false(char *string, int default_value) */ int l; char token[MAX_LENGTH]; - char *ptr; + const char* cptr; - ptr = string; + cptr = string; - if (copy_token(token, &ptr, &l) == EMPTY) + if (copy_token(token, &cptr, &l) == EMPTY) { return (default_value); } @@ -9167,7 +7969,7 @@ get_true_false(char *string, int default_value) /* ---------------------------------------------------------------------- */ int Phreeqc:: -get_option(const char **opt_list, int count_opt_list, char **next_char) +get_option(const char **opt_list, int count_opt_list, const char **next_char) /* ---------------------------------------------------------------------- */ { /* @@ -9175,7 +7977,7 @@ get_option(const char **opt_list, int count_opt_list, char **next_char) */ int j; int opt; - char *opt_ptr; + const char *opt_ptr; std::string stdoption; /* * Read line @@ -9259,26 +8061,19 @@ read_rates(void) * ERROR if error occurred reading data * */ - char *ptr; - int l, length, line_length, n; + const char* cptr; + int l, n; int return_value, opt, opt_save; char token[MAX_LENGTH]; - struct rate *rate_ptr; - char *description; - int n_user, n_user_end; - char *next_char; + class rate *rate_ptr; + const char* next_char; const char *opt_list[] = { "start", /* 0 */ "end" /* 1 */ }; int count_opt_list = 2; -/* - * Read advection number (not currently used) - */ + n = -1; - ptr = line; - read_number_description(ptr, &n_user, &n_user_end, &description); - description = (char *) free_check_null(description); opt_save = OPTION_DEFAULT; /* * Read lines @@ -9313,42 +8108,28 @@ read_rates(void) opt_save = OPTION_DEFAULT; break; case OPTION_DEFAULT: /* read rate name */ - ptr = line; - copy_token(token, &ptr, &l); + cptr = line; + copy_token(token, &cptr, &l); { const char *name = string_hsave(token); rate_ptr = rate_search(name, &n); } if (rate_ptr == NULL) { - rates = - (struct rate *) PHRQ_realloc(rates, - (size_t) (count_rates + - 1) * - sizeof(struct rate)); - if (rates == NULL) - malloc_error(); + size_t count_rates = rates.size(); + rates.resize(count_rates + 1); rate_ptr = &rates[count_rates]; - count_rates++; } else { rate_free(rate_ptr); } rate_ptr->new_def = TRUE; - rate_ptr->commands = (char *) PHRQ_malloc(sizeof(char)); - if (rate_ptr->commands == NULL) - { - malloc_error(); - } - else - { - rate_ptr->commands[0] = '\0'; - rate_ptr->name = string_hsave(token); - rate_ptr->linebase = NULL; - rate_ptr->varbase = NULL; - rate_ptr->loopbase = NULL; - } + rate_ptr->commands.clear(); + rate_ptr->name = string_hsave(token); + rate_ptr->linebase = NULL; + rate_ptr->varbase = NULL; + rate_ptr->loopbase = NULL; opt_save = OPT_1; break; case OPT_1: /* read command */ @@ -9360,22 +8141,8 @@ read_rates(void) opt_save = OPT_1; break; } - length = (int) strlen(rate_ptr->commands); - line_length = (int) strlen(line); - rate_ptr->commands = - (char *) PHRQ_realloc(rate_ptr->commands, - (size_t) (length + line_length + - 2) * sizeof(char)); - if (rate_ptr->commands == NULL) - { - malloc_error(); - } - else - { - rate_ptr->commands[length] = ';'; - rate_ptr->commands[length + 1] = '\0'; - strcat((rate_ptr->commands), line); - } + rate_ptr->commands.append(";\0"); + rate_ptr->commands.append(line); opt_save = OPT_1; break; } @@ -9406,9 +8173,8 @@ read_user_print(void) * ERROR if error occurred reading data * */ - int length, line_length; int return_value, opt, opt_save; - char *next_char; + const char* next_char; const char *opt_list[] = { "start", /* 0 */ "end" /* 1 */ @@ -9449,27 +8215,15 @@ read_user_print(void) case OPTION_DEFAULT: /* read first command */ rate_free(user_print); user_print->new_def = TRUE; - user_print->commands = (char *) PHRQ_malloc(sizeof(char)); - if (user_print->commands == NULL) - malloc_error(); - user_print->commands[0] = '\0'; + user_print->commands.clear(); user_print->linebase = NULL; user_print->varbase = NULL; user_print->loopbase = NULL; user_print->name = string_hsave("user defined Basic print routine"); case OPT_1: /* read command */ - length = (int) strlen(user_print->commands); - line_length = (int) strlen(line); - user_print->commands = - (char *) PHRQ_realloc(user_print->commands, - (size_t) (length + line_length + - 2) * sizeof(char)); - if (user_print->commands == NULL) - malloc_error(); - user_print->commands[length] = ';'; - user_print->commands[length + 1] = '\0'; - strcat((user_print->commands), line); + user_print->commands.append(";\0"); + user_print->commands.append(line); opt_save = OPT_1; break; } @@ -9497,10 +8251,9 @@ read_user_punch(void) * ERROR if error occurred reading data * */ - int length, line_length; int return_value, opt, opt_save; std::string stdtoken; - char *next_char; + const char* next_char; const char *opt_list[] = { "start", /* 0 */ "end", /* 1 */ @@ -9513,18 +8266,13 @@ read_user_punch(void) * Read lines */ - int n_user, n_user_end; - char *description; - char *ptr; - ptr = line; - read_number_description(ptr, &n_user, &n_user_end, &description); + int n_user; UserPunch temp_user_punch; + const char* cptr = line; + temp_user_punch.read_number_description(cptr); + n_user = temp_user_punch.Get_n_user(); temp_user_punch.Set_PhreeqcPtr(this); - temp_user_punch.Set_n_user(n_user); - temp_user_punch.Set_n_user_end(n_user_end); - temp_user_punch.Set_description(description); - free_check_null(description); //std::map < int, UserPunch >::iterator up = UserPunch_map.find(n_user); //if (up != UserPunch_map.end()) @@ -9533,9 +8281,8 @@ read_user_punch(void) //} // Malloc rate structure - struct rate *r = (struct rate *) PHRQ_malloc(sizeof(struct rate)); - if (r == NULL) malloc_error(); - r->commands = NULL; + class rate* r = new class rate; + r->commands.clear(); r->new_def = TRUE; r->linebase = NULL; r->varbase = NULL; @@ -9578,48 +8325,12 @@ read_user_punch(void) } break; case OPTION_DEFAULT: /* read first command */ - { - r->commands = (char *) PHRQ_malloc(sizeof(char)); - if (r->commands == NULL) malloc_error(); - else r->commands[0] = '\0'; - } - //rate_free(user_punch); - //user_punch->new_def = TRUE; - //user_punch->commands = (char *) PHRQ_malloc(sizeof(char)); - //if (user_punch->commands == NULL) - // malloc_error(); - //user_punch->commands[0] = '\0'; - //user_punch->linebase = NULL; - //user_punch->varbase = NULL; - //user_punch->loopbase = NULL; - //user_punch->name = - // string_hsave("user defined Basic punch routine"); + { + r->commands.clear(); + } case OPT_1: /* read command */ - length = (int) strlen(r->commands); - line_length = (int) strlen(line); - r->commands = (char *) PHRQ_realloc(r->commands, - (size_t) (length + line_length + 2) * sizeof(char)); - if (r->commands == NULL) - { - malloc_error(); - } - else - { - r->commands[length] = ';'; - r->commands[length + 1] = '\0'; - strcat((r->commands), line); - } - //length = (int) strlen(user_punch->commands); - //line_length = (int) strlen(line); - //user_punch->commands = - // (char *) PHRQ_realloc(user_punch->commands, - // (size_t) (length + line_length + - // 2) * sizeof(char)); - //if (user_punch->commands == NULL) - // malloc_error(); - //user_punch->commands[length] = ';'; - //user_punch->commands[length + 1] = '\0'; - //strcat((user_punch->commands), line); + r->commands.append(";\0"); + r->commands.append(line); opt_save = OPT_1; break; } @@ -9632,376 +8343,6 @@ read_user_punch(void) return (return_value); } -#ifdef SKIP -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -read_user_punch(void) -/* ---------------------------------------------------------------------- */ -{ -/* - * Reads basic code with which to calculate rates - * - * Arguments: - * none - * - * Returns: - * KEYWORD if keyword encountered, input_error may be incremented if - * a keyword is encountered in an unexpected position - * EOF if eof encountered while reading mass balance concentrations - * ERROR if error occurred reading data - * - */ - int length, line_length; - int return_value, opt, opt_save; - std::string stdtoken; - char *next_char; - const char *opt_list[] = { - "start", /* 0 */ - "end", /* 1 */ - "heading", /* 2 */ - "headings" /* 3 */ - }; - int count_opt_list = 4; - - opt_save = OPTION_DEFAULT; -/* - * Read lines - */ - user_punch_count_headings = 0; - return_value = UNKNOWN; - for (;;) - { - opt = get_option(opt_list, count_opt_list, &next_char); - if (opt == OPTION_DEFAULT) - { - opt = opt_save; - } - opt_save = OPTION_DEFAULT; - switch (opt) - { - case OPTION_EOF: /* end of file */ - return_value = EOF; - break; - case OPTION_KEYWORD: /* keyword */ - return_value = KEYWORD; - break; - case OPTION_ERROR: - input_error++; - error_msg("Unknown input in USER_PUNCH keyword.", CONTINUE); - error_msg(line_save, CONTINUE); - break; - case 0: /* start */ - opt_save = OPTION_DEFAULT; - break; - case 1: /* end */ - opt_save = OPTION_DEFAULT; - break; - case 2: /* headings */ - case 3: /* heading */ - while (copy_token(stdtoken, &next_char) != EMPTY) - { - user_punch_headings = - (const char **) PHRQ_realloc(user_punch_headings, - (size_t) - (user_punch_count_headings + - 1) * sizeof(char *)); - if (user_punch_headings == NULL) - malloc_error(); - user_punch_headings[user_punch_count_headings] = - string_hsave(stdtoken.c_str()); - user_punch_count_headings++; - } - break; - case OPTION_DEFAULT: /* read first command */ - rate_free(user_punch); - user_punch->new_def = TRUE; - user_punch->commands = (char *) PHRQ_malloc(sizeof(char)); - if (user_punch->commands == NULL) - malloc_error(); - user_punch->commands[0] = '\0'; - user_punch->linebase = NULL; - user_punch->varbase = NULL; - user_punch->loopbase = NULL; - user_punch->name = - string_hsave("user defined Basic punch routine"); - case OPT_1: /* read command */ - length = (int) strlen(user_punch->commands); - line_length = (int) strlen(line); - user_punch->commands = - (char *) PHRQ_realloc(user_punch->commands, - (size_t) (length + line_length + - 2) * sizeof(char)); - if (user_punch->commands == NULL) - malloc_error(); - user_punch->commands[length] = ';'; - user_punch->commands[length + 1] = '\0'; - strcat((user_punch->commands), line); - opt_save = OPT_1; - break; - } - if (return_value == EOF || return_value == KEYWORD) - break; - } - return (return_value); -} -#endif -#if defined PHREEQ98 -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -read_user_graph(void) -/* ---------------------------------------------------------------------- */ -{ -/* - * Reads basic code with which to calculate rates - * - * Arguments: - * none - * - * Returns: - * KEYWORD if keyword encountered, input_error may be incremented if - * a keyword is encountered in an unexpected position - * EOF if eof encountered while reading mass balance concentrations - * ERROR if error occurred reading data - * - */ - int l, length, line_length, CurveInfonr = 0; - int return_value, opt, opt_save; - char file_name[MAX_LENGTH]; - char token[MAX_LENGTH]; - char *next_char; - const char *opt_list[] = { - "start", /* 0 */ - "end", /* 1 */ - "heading", /* 2 */ - "headings", /* 3 */ - "chart_title", /* 4 */ - "axis_titles", /* 5 */ - "axis_scale", /* 6 */ - "initial_solutions", /* 7 */ - "plot_concentration_vs", /* 8 */ - "shifts_as_points", /* 9 */ - "grid_offset", /* 10 */ - "connect_simulations", /* 11 */ - "plot_csv_file" /* 12 */ - "plot_tsv_file" /* 13 */ - }; - int count_opt_list = 14; - int i; - opt_save = OPTION_DEFAULT; -/* - * Read lines - */ -#ifdef PHREEQ98 - user_graph_count_headings = 0; -#endif - return_value = UNKNOWN; - for (;;) - { - opt = get_option(opt_list, count_opt_list, &next_char); - if (opt == OPTION_DEFAULT) opt = opt_save; - - switch (opt) - { - case OPTION_EOF: /* end of file */ - return_value = EOF; - break; - case OPTION_KEYWORD: /* keyword */ - return_value = KEYWORD; - break; - case OPTION_ERROR: - input_error++; - error_msg("Unknown input in USER_GRAPH keyword.", CONTINUE); - error_msg(line_save, CONTINUE); - break; - case 0: /* start */ - opt_save = OPTION_DEFAULT; - break; - case 1: /* end */ - opt_save = OPTION_DEFAULT; - break; - case 2: /* headings */ - case 3: /* heading */ - while (copy_token(token, &next_char, &l) != EMPTY) - { - user_graph_headings = - (char **) PHRQ_realloc(user_graph_headings, - (size_t) (user_graph_count_headings + - 1) * sizeof(char *)); - if (user_graph_headings == NULL) - malloc_error(); - user_graph_headings[user_graph_count_headings] = - string_hsave(token); - user_graph_count_headings++; - } - break; -/*Modifications of read_user_punch to change the chart's appearance */ - case 4: /* chart title */ - copy_title(token, &next_char, &l); - SetChartTitle(token); - break; - case 5: /* axis titles */ - i = 0; - while (copy_title(token, &next_char, &l) != EMPTY) - { - SetAxisTitles(token, i); - i++; - } - break; - case 6: { /* axis scales */ - char *axis = ""; - int j = 0; - float f_min, f_max; f_min = (float) -9.999; - prev_next_char = next_char; - copy_token(token, &next_char, &l); - str_tolower(token); - if (strstr(token, "x") == token) - axis = "x"; - else if ((strstr(token, "y") == token) && (strstr(token, "y2") != token)) - axis = "y"; - else if ((strstr(token, "s") == token) || (strstr(token, "y2") == token)) - axis = "s"; - else - { - input_error++; - copy_token(token, &prev_next_char, &l); - error_string = sformatf( - "Found '%s', but expect axis type \'x\', \'y\', or \'sy\'.", token); - error_msg(error_string, CONTINUE); - } - while ((j < 4) - && (i = copy_token(token, &next_char, &l)) != EMPTY) - { - str_tolower(token); - if ((i == DIGIT) || (strstr(token, "a") == token)) - SetAxisScale(axis, j, token, FALSE); - else - { - input_error++; - copy_token(token, &prev_next_char, &l); - error_string = sformatf( - "Found '%s', but expect number or 'a(uto)'.", token); - error_msg(error_string, CONTINUE); - } - if (i == DIGIT) - { - if (j == 0) - f_min = (float) atof(token); - else if (j == 1 && fabs(f_min + 9.999) > 1e-3) - { - f_max = (float) atof(token); - if (f_min > f_max) - { - error_string = sformatf( - "Maximum must be larger than minimum of axis_scale, interchanging both for %s axis", axis); - warning_msg(error_string); - SetAxisScale(axis, 0, token, FALSE); - sprintf(token, "%e", f_min); - SetAxisScale(axis, 1, token, FALSE); - } - } - } - j++; /* counter for categories */ - prev_next_char = next_char; - } - if (j == 4) - SetAxisScale(axis, j, 0, - get_true_false(next_char, FALSE)); /* anything else than false turns on log scale */ - } - break; - case 7: - graph_initial_solutions = get_true_false(next_char, FALSE); - break; - case 8: - prev_next_char = next_char; - copy_token(token, &next_char, &l); - str_tolower(token); - if (strstr(token, "x") == token || strstr(token, "d") == token) - chart_type = 0; - else if (strstr(token, "t") == token) - chart_type = 1; - else - { - input_error++; - copy_token(token, &prev_next_char, &l); - error_string = sformatf( - "Found '%s', but expect plot type: (\'x\' or \'dist\') for distance, (\'t\') for time.", - token); - error_msg(error_string, CONTINUE); - } - break; - case 9: - shifts_as_points = get_true_false(next_char, TRUE); - if (shifts_as_points == TRUE) - chart_type = 0; - else - chart_type = 1; - break; - case 10: -#ifdef PHREEQ98 - i = copy_token(token, &next_char, &l); - str_tolower(token); - if (i == DIGIT) - sscanf(token, "%d", &RowOffset); - i = copy_token(token, &next_char, &l); - str_tolower(token); - if (i == DIGIT) - sscanf(token, "%d", &ColumnOffset); -#endif - break; - case 11: - connect_simulations = get_true_false(next_char, TRUE); - break; - case 12: - string_trim(next_char); - strcpy(file_name, next_char); - if (!OpenCSVFile(file_name)) - { - error_string = sformatf( "Can`t open file, %s. Give the full path + name, or copy the file to the working directory.", file_name); - input_error++; - error_msg(error_string, CONTINUE); - } - break; - /* End of modifications */ - case OPTION_DEFAULT: /* read first command */ - rate_free(user_graph); - user_graph->new_def = TRUE; - user_graph->commands = (char *) PHRQ_malloc(sizeof(char)); - if (user_graph->commands == NULL) - malloc_error(); - user_graph->commands[0] = '\0'; - user_graph->linebase = NULL; - user_graph->varbase = NULL; - user_graph->loopbase = NULL; - user_graph->name = - string_hsave("user defined Basic graph routine"); - case OPT_1: /* read command */ - length = strlen(user_graph->commands); - line_length = strlen(line); - user_graph->commands = - (char *) PHRQ_realloc(user_graph->commands, - (size_t) (length + line_length + - 2) * sizeof(char)); - if (user_graph->commands == NULL) - malloc_error(); - user_graph->commands[length] = ';'; - user_graph->commands[length + 1] = '\0'; - strcat((user_graph->commands), line); - opt_save = OPT_1; - break; - } - - if (return_value == EOF || return_value == KEYWORD) - break; - } -#ifdef PHREEQ98 - for (i = 0; i < user_graph_count_headings; i++) - { - GridHeadings(user_graph_headings[i], i); - } -#endif - return (return_value); -} -#endif /* ---------------------------------------------------------------------- */ int Phreeqc:: read_solid_solutions(void) @@ -10020,13 +8361,11 @@ read_solid_solutions(void) * ERROR if error occurred reading data * */ - int n_user, n_user_end; - char *ptr; - char *description; + int n_user; std::string token; int return_value, opt; - char *next_char; + const char* next_char; const char *opt_list[] = { "component", /* 0 */ "comp", /* 1 */ @@ -10051,13 +8390,11 @@ read_solid_solutions(void) /* * Read ss_assemblage number */ - ptr = line; - read_number_description(ptr, &n_user, &n_user_end, &description); cxxSSassemblage temp_ss_assemblage; - temp_ss_assemblage.Set_n_user(n_user); - temp_ss_assemblage.Set_n_user_end(n_user_end); - temp_ss_assemblage.Set_description(description); - free_check_null(description); + + const char* cptr = line; + temp_ss_assemblage.read_number_description(cptr); + n_user = temp_ss_assemblage.Get_n_user(); temp_ss_assemblage.Set_new_def(true); std::vector comps; @@ -10098,18 +8435,18 @@ read_solid_solutions(void) case 0: /* component */ case 1: /* comp */ { - cxxSScomp comp; + cxxSScomp comp(this->phrq_io); /* * Read phase name of component */ - ptr = next_char; - copy_token(token, &ptr); + cptr = next_char; + copy_token(token, &cptr); comp.Set_name(token); /* * Read moles of component */ - if (copy_token(token, &ptr) == EMPTY) + if (copy_token(token, &cptr) == EMPTY) { comp.Set_moles(NAN); } @@ -10137,15 +8474,15 @@ read_solid_solutions(void) error_msg("Solid solution name has not been defined", CONTINUE); break; } - ptr = next_char; - if (copy_token(token, &ptr) != EMPTY) + cptr = next_char; + if (copy_token(token, &cptr) != EMPTY) { - sscanf(token.c_str(), SCANFORMAT, &dummy); + (void)sscanf(token.c_str(), SCANFORMAT, &dummy); ss_ptr->Get_p()[0] = dummy; } - if (copy_token(token, &ptr) != EMPTY) + if (copy_token(token, &cptr) != EMPTY) { - sscanf(token.c_str(), SCANFORMAT, &dummy); + (void)sscanf(token.c_str(), SCANFORMAT, &dummy); ss_ptr->Get_p()[1] = dummy; } ss_ptr->Set_input_case(cxxSS::SS_PARM_A0_A1); @@ -10156,15 +8493,15 @@ read_solid_solutions(void) error_msg("Solid solution name has not been defined", CONTINUE); break; } - ptr = next_char; - if (copy_token(token, &ptr) != EMPTY) + cptr = next_char; + if (copy_token(token, &cptr) != EMPTY) { - sscanf(token.c_str(), SCANFORMAT, &dummy); + (void)sscanf(token.c_str(), SCANFORMAT, &dummy); ss_ptr->Get_p()[0] = dummy; } - if (copy_token(token, &ptr) != EMPTY) + if (copy_token(token, &cptr) != EMPTY) { - sscanf(token.c_str(), SCANFORMAT, &dummy); + (void)sscanf(token.c_str(), SCANFORMAT, &dummy); ss_ptr->Get_p()[1] = dummy; } ss_ptr->Set_input_case(cxxSS::SS_PARM_DIM_GUGG); @@ -10175,13 +8512,13 @@ read_solid_solutions(void) error_msg("Solid solution name has not been defined", CONTINUE); break; } - ptr = next_char; + cptr = next_char; ss_ptr->Get_p().clear(); for (int i = 0; i < 4; i++) { - if (copy_token(token, &ptr) != EMPTY) + if (copy_token(token, &cptr) != EMPTY) { - sscanf(token.c_str(), SCANFORMAT, &dummy); + (void)sscanf(token.c_str(), SCANFORMAT, &dummy); ss_ptr->Get_p().push_back(dummy); } } @@ -10202,13 +8539,13 @@ read_solid_solutions(void) error_msg("Solid solution name has not been defined", CONTINUE); break; } - ptr = next_char; + cptr = next_char; ss_ptr->Get_p().clear(); for (int i = 0; i < 4; i++) { - if (copy_token(token, &ptr) != EMPTY) + if (copy_token(token, &cptr) != EMPTY) { - sscanf(token.c_str(), SCANFORMAT, &dummy); + (void)sscanf(token.c_str(), SCANFORMAT, &dummy); ss_ptr->Get_p().push_back(dummy); } } @@ -10229,13 +8566,13 @@ read_solid_solutions(void) error_msg("Solid solution name has not been defined", CONTINUE); break; } - ptr = next_char; + cptr = next_char; ss_ptr->Get_p().clear(); for (int i = 0; i < 2; i++) { - if (copy_token(token, &ptr) != EMPTY) + if (copy_token(token, &cptr) != EMPTY) { - sscanf(token.c_str(), SCANFORMAT, &dummy); + (void)sscanf(token.c_str(), SCANFORMAT, &dummy); ss_ptr->Get_p().push_back(dummy); } } @@ -10256,13 +8593,13 @@ read_solid_solutions(void) error_msg("Solid solution name has not been defined", CONTINUE); break; } - ptr = next_char; + cptr = next_char; ss_ptr->Get_p().clear(); for (int i = 0; i < 2; i++) { - if (copy_token(token, &ptr) != EMPTY) + if (copy_token(token, &cptr) != EMPTY) { - sscanf(token.c_str(), SCANFORMAT, &dummy); + (void)sscanf(token.c_str(), SCANFORMAT, &dummy); ss_ptr->Get_p().push_back(dummy); } } @@ -10283,13 +8620,13 @@ read_solid_solutions(void) error_msg("Solid solution name has not been defined", CONTINUE); break; } - ptr = next_char; + cptr = next_char; ss_ptr->Get_p().clear(); for (int i = 0; i < 2; i++) { - if (copy_token(token, &ptr) != EMPTY) + if (copy_token(token, &cptr) != EMPTY) { - sscanf(token.c_str(), SCANFORMAT, &dummy); + (void)sscanf(token.c_str(), SCANFORMAT, &dummy); ss_ptr->Get_p().push_back(dummy); } } @@ -10310,13 +8647,13 @@ read_solid_solutions(void) error_msg("Solid solution name has not been defined", CONTINUE); break; } - ptr = next_char; + cptr = next_char; ss_ptr->Get_p().clear(); for (int i = 0; i < 2; i++) { - if (copy_token(token, &ptr) != EMPTY) + if (copy_token(token, &cptr) != EMPTY) { - sscanf(token.c_str(), SCANFORMAT, &dummy); + (void)sscanf(token.c_str(), SCANFORMAT, &dummy); ss_ptr->Get_p().push_back(dummy); } } @@ -10338,9 +8675,9 @@ read_solid_solutions(void) break; } { - ptr = next_char; + cptr = next_char; int j = 0; - if (copy_token(token, &ptr) != EMPTY) + if (copy_token(token, &cptr) != EMPTY) { j = sscanf(token.c_str(), SCANFORMAT, &dummy); ss_ptr->Set_tk(dummy); @@ -10364,9 +8701,9 @@ read_solid_solutions(void) break; } { - ptr = next_char; + cptr = next_char; int j = 0; - if (copy_token(token, &ptr) != EMPTY) + if (copy_token(token, &cptr) != EMPTY) { j = sscanf(token.c_str(), SCANFORMAT, &dummy); ss_ptr->Set_tk(dummy + 298.15); @@ -10388,13 +8725,13 @@ read_solid_solutions(void) error_msg("Solid solution name has not been defined", CONTINUE); break; } - ptr = next_char; + cptr = next_char; ss_ptr->Get_p().clear(); for (int i = 0; i < 2; i++) { - if (copy_token(token, &ptr) != EMPTY) + if (copy_token(token, &cptr) != EMPTY) { - sscanf(token.c_str(), SCANFORMAT, &dummy); + (void)sscanf(token.c_str(), SCANFORMAT, &dummy); ss_ptr->Get_p().push_back(dummy); } } @@ -10415,13 +8752,13 @@ read_solid_solutions(void) error_msg("Solid solution name has not been defined", CONTINUE); break; } - ptr = next_char; + cptr = next_char; ss_ptr->Get_p().clear(); for (int i = 0; i < 2; i++) { - if (copy_token(token, &ptr) != EMPTY) + if (copy_token(token, &cptr) != EMPTY) { - sscanf(token.c_str(), SCANFORMAT, &dummy); + (void)sscanf(token.c_str(), SCANFORMAT, &dummy); ss_ptr->Get_p().push_back(dummy); } } @@ -10443,13 +8780,13 @@ read_solid_solutions(void) */ delete comp0_ptr; comp0_ptr = new cxxSScomp; - ptr = next_char; - copy_token(token, &ptr); + cptr = next_char; + copy_token(token, &cptr); comp0_ptr->Set_name(token); /* * Read moles of component */ - if (copy_token(token, &ptr) == EMPTY) + if (copy_token(token, &cptr) == EMPTY) { comp0_ptr->Set_moles(NAN); } @@ -10471,13 +8808,13 @@ read_solid_solutions(void) /* * Read phase name of component */ - ptr = next_char; - copy_token(token, &ptr); + cptr = next_char; + copy_token(token, &cptr); comp1_ptr->Set_name(token); /* * Read moles of component */ - if (copy_token(token, &ptr) == EMPTY) + if (copy_token(token, &cptr) == EMPTY) { comp1_ptr->Set_moles(NAN); } @@ -10520,8 +8857,8 @@ read_solid_solutions(void) /* * Read solid solution name */ - ptr = line; - copy_token(token, &ptr); + cptr = line; + copy_token(token, &cptr); ss_ptr->Set_name(token); ss_ptr->Set_total_moles(0.0); break; @@ -10578,25 +8915,22 @@ int Phreeqc:: read_llnl_aqueous_model_parameters(void) /* ---------------------------------------------------------------------- */ { -/* - * Reads aqueous model parameters - * - * Arguments: - * none - * - * Returns: - * KEYWORD if keyword encountered, input_error may be incremented if - * a keyword is encountered in an unexpected position - * EOF if eof encountered while reading mass balance concentrations - * ERROR if error occurred reading data - * - */ - int i, count_alloc; - char token[MAX_LENGTH]; - + /* + * Reads aqueous model parameters + * + * Arguments: + * none + * + * Returns: + * KEYWORD if keyword encountered, input_error may be incremented if + * a keyword is encountered in an unexpected position + * EOF if eof encountered while reading mass balance concentrations + * ERROR if error occurred reading data + * + */ int return_value, opt; - char *next_char; - const char *opt_list[] = { + const char* next_char; + const char* opt_list[] = { "temperatures", /* 0 */ "temperature", /* 1 */ "temp", /* 2 */ @@ -10612,21 +8946,23 @@ read_llnl_aqueous_model_parameters(void) "co2_coefs" /* 12 */ }; int count_opt_list = 13; -/* - * Initialize - */ -/* - * Read aqueous model parameters - */ + /* + * Initialize + */ + /* + * Read aqueous model parameters + */ return_value = UNKNOWN; - opt = get_option(opt_list, count_opt_list, &next_char); + int opt_save = OPTION_DEFAULT; + opt_save = OPTION_DEFAULT; for (;;) { - next_char = line; - if (opt >= 0) + opt = get_option(opt_list, count_opt_list, &next_char); + if (opt == OPTION_DEFAULT) { - copy_token(token, &next_char, &i); + opt = opt_save; } + opt_save = OPTION_DEFAULT; switch (opt) { case OPTION_EOF: /* end of file */ @@ -10639,112 +8975,98 @@ read_llnl_aqueous_model_parameters(void) case OPTION_ERROR: input_error++; error_msg - ("Unknown input in LLNL_AQUEOUS_MODEL_PARAMETERS keyword.", - CONTINUE); + ("Unknown input in LLNL_AQUEOUS_MODEL_PARAMETERS keyword.", + CONTINUE); error_msg(line_save, CONTINUE); break; - -/* - * New component - */ case 0: /* temperatures */ case 1: /* temperature */ case 2: /* temp */ - count_alloc = 1; - llnl_count_temp = 0; - i = read_lines_doubles(next_char, &(llnl_temp), - &(llnl_count_temp), &(count_alloc), - opt_list, count_opt_list, &opt); - /* - ptr = next_char; - llnl_temp = read_list_doubles(&ptr, &count); - llnl_count_temp = count; - */ - break; + { + std::istringstream iss(next_char); + while (iss >> dummy) + { + llnl_temp.push_back(dummy); + } + opt_save = 2; + } + break; case 3: /* adh */ case 4: /* debye_huckel_a */ case 5: /* dh_a */ - count_alloc = 1; - llnl_count_adh = 0; - i = read_lines_doubles(next_char, &(llnl_adh), &(llnl_count_adh), - &(count_alloc), opt_list, count_opt_list, - &opt); - /* - ptr = next_char; - llnl_adh = read_list_doubles(&ptr, &count); - llnl_count_adh = count; - */ - break; + { + std::istringstream iss(next_char); + while (iss >> dummy) + { + llnl_adh.push_back(dummy); + } + opt_save = 5; + } + break; case 6: /* bdh */ case 7: /* debye_huckel_b */ case 8: /* dh_b */ - count_alloc = 1; - llnl_count_bdh = 0; - i = read_lines_doubles(next_char, &(llnl_bdh), &(llnl_count_bdh), - &(count_alloc), opt_list, count_opt_list, - &opt); - /* - ptr = next_char; - llnl_bdh = read_list_doubles(&ptr, &count); - llnl_count_bdh = count; - */ - break; + { + std::istringstream iss(next_char); + while (iss >> dummy) + { + llnl_bdh.push_back(dummy); + } + opt_save = 8; + } + break; case 9: /* bdot */ case 10: /* b_dot */ - count_alloc = 1; - llnl_count_bdot = 0; - i = read_lines_doubles(next_char, &(llnl_bdot), - &(llnl_count_bdot), &(count_alloc), - opt_list, count_opt_list, &opt); - /* - ptr = next_char; - llnl_bdot = read_list_doubles(&ptr, &count); - llnl_count_bdot = count; - */ - break; + { + std::istringstream iss(next_char); + while (iss >> dummy) + { + llnl_bdot.push_back(dummy); + } + opt_save = 10; + } + break; case 11: /* c_co2 */ case 12: /* co2_coefs */ - count_alloc = 1; - llnl_count_co2_coefs = 0; - i = read_lines_doubles(next_char, &(llnl_co2_coefs), - &(llnl_count_co2_coefs), &(count_alloc), - opt_list, count_opt_list, &opt); - /* - ptr = next_char; - llnl_co2_coefs = read_list_doubles(&ptr, &count); - llnl_count_co2_coefs = count; - */ - break; + { + std::istringstream iss(next_char); + while (iss >> dummy) + { + llnl_co2_coefs.push_back(dummy); + } + opt_save = 12; + } + break; } return_value = check_line_return; if (return_value == EOF || return_value == KEYWORD) break; } /* check consistency */ - if ((llnl_count_temp <= 0) || - (llnl_count_temp != llnl_count_adh) || - (llnl_count_temp != llnl_count_bdh) || - (llnl_count_temp != llnl_count_bdot)) + if ((llnl_temp.size() == 0) || + (llnl_temp.size() != llnl_adh.size()) || + (llnl_temp.size() != llnl_bdh.size()) || + (llnl_temp.size() != llnl_bdot.size())) { error_msg - ("Must define equal number (>0) of temperatures, dh_a, dh_b, and bdot parameters\nin LLNL_AQUEOUS_MODEL", - CONTINUE); + ("Must define equal number (>0) of temperatures, dh_a, dh_b, and bdot parameters\nin LLNL_AQUEOUS_MODEL", + CONTINUE); input_error++; } - if (llnl_count_co2_coefs != 5) + if (llnl_co2_coefs.size() != 5) { error_msg - ("Must define 5 CO2 activity coefficient parameters in LLNL_AQUEOUS_MODEL", - CONTINUE); + ("Must define 5 CO2 activity coefficient parameters in LLNL_AQUEOUS_MODEL", + CONTINUE); input_error++; } - for (i = 1; i < llnl_count_temp; i++) + for (size_t i = 1; i < llnl_temp.size(); i++) { if (llnl_temp[i - 1] > llnl_temp[i]) { error_msg - ("Temperatures must be in ascending order in LLNL_AQUEOUS_MODEL", - CONTINUE); + ("Temperatures must be in ascending order in LLNL_AQUEOUS_MODEL", + CONTINUE); input_error++; } } @@ -10752,119 +9074,6 @@ read_llnl_aqueous_model_parameters(void) return (return_value); } -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -read_lines_doubles(char *next_char, LDBLE ** d, int *count_d, - int *count_alloc, const char **opt_list, - int count_opt_list, int *opt) -/* ---------------------------------------------------------------------- */ -{ -/* - * Reads LDBLEs on line starting at next_char - * and on succeeding lines. Appends to d. - * Stops at KEYWORD, OPTION, and EOF - * - * Input Arguments: - * next_char points to line to read from - * d points to array of LDBLEs, must be malloced - * count_d number of elements in array - * count_alloc number of elements malloced - * - * Output Arguments: - * d points to array of LDBLEs, may have been - * realloced - * count_d updated number of elements in array - * count_alloc updated of elements malloced - * - * Returns: - * KEYWORD - * OPTION - * EOF - * ERROR if any errors reading LDBLEs - */ - - if (read_line_doubles(next_char, d, count_d, count_alloc) == ERROR) - { - return (ERROR); - } - for (;;) - { - *opt = get_option(opt_list, count_opt_list, &next_char); - if (*opt == OPTION_KEYWORD || *opt == OPTION_EOF - || *opt == OPTION_ERROR) - { - break; - } - else if (*opt >= 0) - { - break; - } - next_char = line; - if (read_line_doubles(next_char, d, count_d, count_alloc) == ERROR) - { - return (ERROR); - } - } - return (OK); -} - -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -read_line_doubles(char *next_char, LDBLE ** d, int *count_d, int *count_alloc) -/* ---------------------------------------------------------------------- */ -{ - int i, j, l, n; - LDBLE value; - char token[MAX_LENGTH]; - - for (;;) - { - j = copy_token(token, &next_char, &l); - if (j == EMPTY) - { - break; - } - if (j != DIGIT) - { - return (ERROR); - } - if (replace("*", " ", token) == TRUE) - { - if (sscanf(token, "%d" SCANFORMAT, &n, &value) != 2) - { - return (ERROR); - } - } - else - { - sscanf(token, SCANFORMAT, &value); - n = 1; - } - for (;;) - { - if ((*count_d) + n > (*count_alloc)) - { - *count_alloc *= 2; - *d = (LDBLE *) PHRQ_realloc(*d, - (size_t) (*count_alloc) * - sizeof(LDBLE)); - if (*d == NULL) - malloc_error(); - } - else - { - break; - } - } - for (i = 0; i < n; i++) - { - (*d)[(*count_d) + i] = value; - } - *count_d += n; - } - return (OK); -} - /* ---------------------------------------------------------------------- */ int Phreeqc:: next_keyword_or_option(const char **opt_list, int count_opt_list) @@ -10879,7 +9088,7 @@ next_keyword_or_option(const char **opt_list, int count_opt_list) * EOF */ int opt; - char *next_char; + const char* next_char; for (;;) { @@ -10927,11 +9136,11 @@ read_named_logk(void) int l; int i, empty; - struct logk *logk_ptr; + class logk *logk_ptr; char token[MAX_LENGTH]; int return_value, opt, opt_save; - char *next_char; + const char* next_char; const char *opt_list[] = { "log_k", /* 0 */ "logk", /* 1 */ @@ -11056,58 +9265,39 @@ read_named_logk(void) break; case 8: /* add_logk */ case 9: /* add_log_k */ + { if (logk_ptr == NULL) { error_string = sformatf( - "No reaction defined before option, %s.", - opt_list[opt]); + "No reaction defined before option, %s.", + opt_list[opt]); error_msg(error_string, CONTINUE); input_error++; break; } - if (logk_ptr->count_add_logk == 0) - { - logk_ptr->add_logk = - (struct name_coef *) - PHRQ_malloc(sizeof(struct name_coef)); - if (logk_ptr->add_logk == NULL) - malloc_error(); - } - else - { - logk_ptr->add_logk = - (struct name_coef *) PHRQ_realloc(logk_ptr->add_logk, - (size_t) ((logk_ptr-> - count_add_logk - + - 1) * - sizeof - (struct - name_coef))); - if (logk_ptr->add_logk == NULL) - malloc_error(); - } + size_t count_add_logk = logk_ptr->add_logk.size(); + logk_ptr->add_logk.resize(count_add_logk + 1); /* read name */ if (copy_token(token, &next_char, &i) == EMPTY) { input_error++; error_string = sformatf( - "Expected the name of a NAMED_EXPRESSION."); + "Expected the name of a NAMED_EXPRESSION."); error_msg(error_string, CONTINUE); break; } - logk_ptr->add_logk[logk_ptr->count_add_logk].name = + logk_ptr->add_logk[count_add_logk].name = string_hsave(token); /* read coef */ i = sscanf(next_char, SCANFORMAT, - &logk_ptr->add_logk[logk_ptr->count_add_logk].coef); + &logk_ptr->add_logk[count_add_logk].coef); if (i <= 0) { - logk_ptr->add_logk[logk_ptr->count_add_logk].coef = 1; + logk_ptr->add_logk[count_add_logk].coef = 1; } - logk_ptr->count_add_logk++; opt_save = OPTION_DEFAULT; - break; + } + break; case 10: /* vm, molar volume */ if (logk_ptr == NULL) { @@ -11162,17 +9352,17 @@ read_copy(void) * */ int i, l, n, n_user, n_user_start, n_user_end, return_value; - char *ptr; + const char* cptr; char token[MAX_LENGTH], token1[MAX_LENGTH], nonkeyword[MAX_LENGTH]; /* * Read "copy" */ - ptr = line; - copy_token(token, &ptr, &l); + cptr = line; + copy_token(token, &cptr, &l); /* * Read keyword */ - copy_token(token, &ptr, &l); + copy_token(token, &cptr, &l); check_key(token); switch (next_keyword) @@ -11206,10 +9396,10 @@ read_copy(void) * Read source index */ strcpy(token1, token); - i = copy_token(token, &ptr, &l); + i = copy_token(token, &cptr, &l); if (i == DIGIT) { - sscanf(token, "%d", &n_user); + (void)sscanf(token, "%d", &n_user); //if (n_user < 0) //{ // error_msg("Source index number must be a positive integer.", @@ -11239,7 +9429,7 @@ read_copy(void) /* * Read target index or range of indices */ - i = copy_token(token, &ptr, &l); + i = copy_token(token, &cptr, &l); if (i == DIGIT) { replace("-", " ", &token[1]); @@ -11345,15 +9535,10 @@ read_reaction_pressure(void) // Make instance, set n_user, n_user_end, description cxxPressure atm(this->phrq_io); - char *ptr = line; - char *description; - int n_user, n_user_end; - read_number_description(ptr, &n_user, &n_user_end, &description); - atm.Set_n_user(n_user); - atm.Set_n_user_end(n_user); - atm.Set_description(description); - free_check_null(description); + const char* cptr = line; + atm.read_number_description(cptr); + int n_user = atm.Get_n_user(); /* * Make parser */ @@ -11372,10 +9557,10 @@ read_reaction_pressure(void) } // Make copies if necessary - if (n_user_end > n_user) + if (atm.Get_n_user_end() > n_user) { int i; - for (i = n_user + 1; i <= n_user_end; i++) + for (i = n_user + 1; i <= atm.Get_n_user_end(); i++) { Utilities::Rxn_copy(Rxn_pressure_map, n_user, i); } @@ -11479,15 +9664,9 @@ read_temperature(void) // Make instance, set n_user, n_user_end, description cxxTemperature t_react(this->phrq_io); - char *ptr = line; - char *description; - int n_user, n_user_end; - read_number_description(ptr, &n_user, &n_user_end, &description); - t_react.Set_n_user(n_user); - t_react.Set_n_user_end(n_user); - t_react.Set_description(description); - free_check_null(description); - + const char* cptr = line; + t_react.read_number_description(cptr); + int n_user = t_react.Get_n_user(); /* * Make parser */ @@ -11506,10 +9685,10 @@ read_temperature(void) } // Make copies if necessary - if (n_user_end > n_user) + if (t_react.Get_n_user_end() > n_user) { int i; - for (i = n_user + 1; i <= n_user_end; i++) + for (i = n_user + 1; i <= t_react.Get_n_user_end(); i++) { Utilities::Rxn_copy(Rxn_temperature_map, n_user, i); } diff --git a/readtr.cpp b/readtr.cpp index f63d76d6..85d579ee 100644 --- a/readtr.cpp +++ b/readtr.cpp @@ -1,12 +1,12 @@ #include /* std::cout std::cerr */ #include #include +#include "Phreeqc.h" #include "StorageBin.h" #include "SS.h" #ifndef boolean typedef unsigned char boolean; #endif -#include "Phreeqc.h" #include "phqalloc.h" #include "Utils.h" @@ -17,6 +17,14 @@ typedef unsigned char boolean; #define OPTION_DEFAULT -4 #define OPTION_DEFAULT2 -5 +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /* ---------------------------------------------------------------------- */ int Phreeqc:: read_transport(void) @@ -35,18 +43,16 @@ read_transport(void) * ERROR if error occurred reading data * */ - char *ptr; int i, j, l; - int count_length, count_disp, count_punch, count_print, count_por; + int count_length, count_disp, count_punch, count_print, count_por, count_same_model; int count_length_alloc, count_disp_alloc, count_por_alloc; char token[MAX_LENGTH]; - char *description; - int n_user, n_user_end; LDBLE *length, *disp, *pors; - int *punch_temp, *print_temp; + int *punch_temp, *print_temp, *same_model_temp; int return_value, opt, opt_save; - char *next_char, *next_char_save; - char file_name[MAX_LENGTH]; + const char* next_char; + //char file_name[MAX_LENGTH]; + std::string file_name("phreeqc.dmp"); const char *opt_list[] = { "cells", /* 0 */ @@ -94,11 +100,12 @@ read_transport(void) "porosities", /* 42 */ "porosity", /* 43 */ "fix_current", /* 44 */ - "current" /* 45 */ + "current", /* 45 */ + "implicit", /* 46 */ + "same_model" /* 47 */ }; - int count_opt_list = 46; + int count_opt_list = 48; - strcpy(file_name, "phreeqc.dmp"); /* * Initialize */ @@ -112,7 +119,7 @@ read_transport(void) } else old_cells = count_cells; - count_length = count_disp = count_punch = count_print = count_por = 0; + count_length = count_disp = count_punch = count_print = count_por = count_same_model = 0; length = (LDBLE *)PHRQ_malloc(sizeof(LDBLE)); if (length == NULL) @@ -134,15 +141,13 @@ read_transport(void) if (print_temp == NULL) malloc_error(); + same_model_temp = (int *)PHRQ_malloc(sizeof(int)); + if (same_model_temp == NULL) + malloc_error(); + count_length_alloc = count_disp_alloc = count_por_alloc = 1; transport_start = 1; /* - * Read transport number (not currently used) - */ - ptr = line; - read_number_description(ptr, &n_user, &n_user_end, &description); - description = (char *)free_check_null(description); - /* * Set use data to last read */ use.Set_trans_in(true); @@ -171,12 +176,12 @@ read_transport(void) error_msg(line_save, CONTINUE); break; case 0: /* cells */ - sscanf(next_char, "%d", &count_cells); + (void)sscanf(next_char, "%d", &count_cells); opt_save = OPTION_DEFAULT; break; case 1: /* shifts */ if (copy_token(token, &next_char, &l) == DIGIT) - sscanf(token, "%d", &count_shifts); + (void)sscanf(token, "%d", &count_shifts); else { warning_msg @@ -187,7 +192,7 @@ read_transport(void) if (j != EMPTY) { if (j == DIGIT) - sscanf(token, "%d", &ishift); + (void)sscanf(token, "%d", &ishift); else { input_error++; @@ -209,7 +214,7 @@ read_transport(void) case 3: /* selected_output */ case 29: /* selected_output_frequency */ case 33: /* punch_frequency */ - sscanf(next_char, "%d", &punch_modulus); + (void)sscanf(next_char, "%d", &punch_modulus); opt_save = OPTION_DEFAULT; if (punch_modulus <= 0) { @@ -228,7 +233,7 @@ read_transport(void) str_tolower(token); if (i == DIGIT) { - sscanf(token, "%d", &bcon_first); + (void)sscanf(token, "%d", &bcon_first); if (bcon_first < 1 || bcon_first > 3) { input_error++; @@ -258,7 +263,7 @@ read_transport(void) str_tolower(token); if (i == DIGIT) { - sscanf(token, "%d", &bcon_last); + (void)sscanf(token, "%d", &bcon_last); if (bcon_last < 1 || bcon_last > 3) { input_error++; @@ -287,7 +292,7 @@ read_transport(void) case 5: /* timest */ case 14: /* time_step */ if (copy_token(token, &next_char, &l) == DIGIT) - sscanf(token, SCANFORMAT, ×t); + (void)sscanf(token, SCANFORMAT, ×t); { std::string stdtoken; j = copy_token(stdtoken, &next_char); @@ -298,7 +303,7 @@ read_transport(void) } if (j == DIGIT) { - sscanf(stdtoken.c_str(), SCANFORMAT, &mcd_substeps); + (void)sscanf(stdtoken.c_str(), SCANFORMAT, &mcd_substeps); } } //if (copy_token(token, &next_char, &l) == DIGIT) @@ -313,7 +318,7 @@ read_transport(void) break; case 6: /* diffc */ case 16: /* diffusion_coefficient */ - sscanf(next_char, SCANFORMAT, &diffc); + (void)sscanf(next_char, SCANFORMAT, &diffc); opt_save = OPTION_DEFAULT; break; case 7: /* tempr */ @@ -321,7 +326,7 @@ read_transport(void) case 19: /* temperature_retardation_factor */ case 39: /* thermal_diffusion */ if (copy_token(token, &next_char, &l) == DIGIT) - sscanf(token, SCANFORMAT, &tempr); + (void)sscanf(token, SCANFORMAT, &tempr); if (tempr < 1) { tempr = 1; @@ -331,7 +336,7 @@ read_transport(void) } j = copy_token(token, &next_char, &l); if (j == DIGIT) - sscanf(token, SCANFORMAT, &heat_diffc); + (void)sscanf(token, SCANFORMAT, &heat_diffc); opt_save = OPTION_DEFAULT; break; case 8: /* length */ @@ -370,7 +375,7 @@ read_transport(void) if (copy_token(token, &next_char, &l) != EMPTY) { /* exchange factor */ - if (sscanf(token, "%d", &(stag_data->count_stag)) != 1) + if (sscanf(token, "%d", &(stag_data.count_stag)) != 1) { input_error++; error_string = sformatf( @@ -383,7 +388,7 @@ read_transport(void) j = copy_token(token, &next_char, &l); if (j != EMPTY) { - if (sscanf(token, SCANFORMAT, &(stag_data->exch_f)) != 1) + if (sscanf(token, SCANFORMAT, &(stag_data.exch_f)) != 1) { input_error++; error_string = sformatf( @@ -392,7 +397,7 @@ read_transport(void) break; } copy_token(token, &next_char, &l); - if (sscanf(token, SCANFORMAT, &(stag_data->th_m)) != 1) + if (sscanf(token, SCANFORMAT, &(stag_data.th_m)) != 1) { input_error++; error_string = sformatf( @@ -401,7 +406,7 @@ read_transport(void) break; } copy_token(token, &next_char, &l); - if (sscanf(token, SCANFORMAT, &(stag_data->th_im)) != 1) + if (sscanf(token, SCANFORMAT, &(stag_data.th_im)) != 1) { input_error++; error_string = sformatf( @@ -436,21 +441,21 @@ read_transport(void) opt_save = OPTION_DEFAULT; break; case 26: /* dump */ + { dump_in = TRUE; - next_char_save = next_char; - if (copy_token(file_name, &next_char, &l) == EMPTY) - strcpy(file_name, "phreeqc.dmp"); - else + std::string temp_name(next_char); + string_trim(temp_name); + if (temp_name.size() > 0) { - string_trim(next_char_save); - strcpy(file_name, next_char_save); + file_name = temp_name; } opt_save = OPTION_DEFAULT; break; + } case 27: /* output */ case 28: /* output_frequency */ case 34: /* print_frequency */ - sscanf(next_char, "%d", &print_modulus); + (void)sscanf(next_char, "%d", &print_modulus); opt_save = OPTION_DEFAULT; if (print_modulus <= 0) { @@ -463,7 +468,7 @@ read_transport(void) case 31: /* dump_frequency */ dump_in = TRUE; if (copy_token(token, &next_char, &l) == DIGIT) - sscanf(token, "%d", &dump_modulus); + (void)sscanf(token, "%d", &dump_modulus); else { warning_msg("Expected integer value for dump_frequency."); @@ -474,7 +479,7 @@ read_transport(void) case 32: /* dump_restart */ dump_in = TRUE; if (copy_token(token, &next_char, &l) == DIGIT) - sscanf(token, "%d", &transport_start); + (void)sscanf(token, "%d", &transport_start); else { warning_msg @@ -489,7 +494,7 @@ read_transport(void) break; case 36: /* initial_time */ if (copy_token(token, &next_char, &l) == DIGIT) - sscanf(token, SCANFORMAT, &initial_total_time); + (void)sscanf(token, SCANFORMAT, &initial_total_time); { std::string stdtoken; j = copy_token(stdtoken, &next_char); @@ -672,7 +677,7 @@ read_transport(void) case 45: /* current */ if (copy_token(token, &next_char, &l) == DIGIT) { - sscanf(token, SCANFORMAT, &fix_current); + (void)sscanf(token, SCANFORMAT, &fix_current); // fix_current = fabs(fix_current); } else @@ -682,6 +687,50 @@ read_transport(void) } opt_save = OPTION_DEFAULT; break; + case 46: /* implicit diffusion */ + copy_token(token, &next_char, &l); + str_tolower(token); + if (strstr(token, "f") == token) + implicit = FALSE; + else if (strstr(token, "t") == token) + implicit = TRUE; + else + { + input_error++; + error_msg + ("Expected flag for implicit diffusion calc`s: 'true' or 'false'.", + CONTINUE); + } + if (copy_token(token, &next_char, &l) == DIGIT) + { + (void)sscanf(token, SCANFORMAT, &max_mixf); + } + else + { + //warning_msg("Expected the maximal value for the mixfactor (= D * Dt / Dx^2) in implicit calc`s of diffusion."); + max_mixf = 1.0; + } + min_dif_LM = -30.0; + if (copy_token(token, &next_char, &l) != EMPTY) + { + /* minimal moles for diffusion */ + if (sscanf(token, SCANFORMAT, &min_dif_LM) != 1) + { + input_error++; + error_string = sformatf( + "Expected the minimal log10(molality) for including a species in multicomponent diffusion,\n taking -30.0"); + warning_msg(error_string); + break; + } + } + opt_save = OPTION_DEFAULT; + break; + case 47: /* same_model */ + same_model_temp = + read_list_ints_range(&next_char, &count_same_model, FALSE, + same_model_temp); + opt_save = 47; + break; } if (return_value == EOF || return_value == KEYWORD) break; @@ -694,8 +743,8 @@ read_transport(void) max_cells = count_length; if (count_disp > max_cells) max_cells = count_disp; - //if (count_por > max_cells) - // max_cells = count_por; + if (count_por > max_cells * (1 + stag_data.count_stag)) + max_cells = (int)ceil(((double)count_por / (1 + (double)stag_data.count_stag))); if (max_cells > count_cells) { if (max_cells == count_length) @@ -712,22 +761,21 @@ read_transport(void) count_disp); warning_msg(token); } - //else - //{ - // sprintf(token, - // "Number of cells is increased to number of porosities %d.", - // count_por); - // warning_msg(token); - //} + else + { + sprintf(token, + "Number of mobile cells is increased to (ceil)(number of porosities) / (1 + number of stagnant zones) = %d.", + (int) ceil(((double)count_por / (1 + (double)stag_data.count_stag)))); + warning_msg(token); + } } /* * Allocate space for cell_data */ - int all_cells_now = max_cells * (1 + stag_data->count_stag) + 2; - space((void **)((void *)&cell_data), all_cells_now, &cell_data_max_cells, - sizeof(struct cell_data)); - - // initialize new cells + int all_cells_now = max_cells * (1 + stag_data.count_stag) + 2; + cell_data.resize(all_cells_now); // new classes initialized by global_structures.h + // But first two previously allocated for Change_Surf, so may + // need to reinitialize if (all_cells_now > all_cells) { for (int i = all_cells; i < all_cells_now; i++) @@ -741,9 +789,10 @@ read_transport(void) cell_data[i].potV = 0; cell_data[i].punch = FALSE; cell_data[i].print = FALSE; + cell_data[i].same_model = FALSE; } - all_cells = all_cells_now; } + all_cells = all_cells_now; /* * Fill in data for lengths @@ -771,7 +820,7 @@ read_transport(void) "Cell-lengths were read for %d cells. Last value is used till cell %d.", count_length, max_cells); warning_msg(error_string); - for (i = count_length; i <= max_cells; i++) + for (size_t i = count_length; i <= max_cells; i++) cell_data[i + 1].length = length[count_length - 1]; } } @@ -817,7 +866,7 @@ read_transport(void) */ if (count_por == 0) { - if (old_cells < all_cells && multi_Dflag && simul_tr == 1) + if (old_cells < all_cells && multi_Dflag /*&& simul_tr == 1*/) { multi_Dpor = (multi_Dpor < 1e-10 ? 1e-10 : multi_Dpor); if (multi_Dpor > 1e-10) @@ -827,34 +876,51 @@ read_transport(void) error_string = sformatf( "No porosities were read; set to minimal value of 1e-10 for -multi_D."); warning_msg(error_string); - for (i = 1; i < all_cells; i++) + if (simul_tr == 1) + j = 1; + else + j = old_cells + 1; + for (i = j; i < all_cells; i++) cell_data[i].por = multi_Dpor; } } else { - if ((stag_data->exch_f > 0) && (stag_data->count_stag == 1)) + if ((stag_data.exch_f > 0) && (stag_data.count_stag == 1)) { error_string = sformatf( "Mobile porosities were read, but mobile/immobile porosity was also defined in -stagnant. Using the values from -stagnant for mobile/immobile exchange and tortuosity factors."); warning_msg(error_string); for (i = 1; i <= max_cells; i++) - cell_data[i].por = stag_data->th_m; + cell_data[i].por = stag_data.th_m; for (i++; i <= 2 * max_cells + 1; i++) - cell_data[i].por = stag_data->th_im; + cell_data[i].por = stag_data.th_im; } else { for (i = 1; i <= count_por; i++) - cell_data[i].por = pors[i - 1]; - if (max_cells > count_por) { + if (i == max_cells + 1) + continue; + cell_data[i].por = pors[i - 1]; + } + if (all_cells - 2 > count_por) + { + int st = stag_data.count_stag ? 1 : 0; error_string = sformatf( "Porosities were read for %d cells. Last value is used till cell %d.", - count_por, all_cells - 1); + count_por, all_cells - st); warning_msg(error_string); - for (i = count_por; i < all_cells; i++) - cell_data[i + 1].por = pors[count_por - 1]; + for (i = count_por; i < all_cells - st; i++) + { + //if (i == max_cells) + // continue; + //assert((i+1) < all_cells); + if ((i+1) < all_cells) + { + cell_data[i + 1].por = pors[count_por - 1]; + } + } } } } @@ -875,12 +941,12 @@ read_transport(void) /* * Account for stagnant cells */ - if (stag_data->count_stag > 0) + if (stag_data.count_stag > 0) { - max_cells = count_cells * (1 + stag_data->count_stag) + 2; + max_cells = count_cells * (1 + stag_data.count_stag) + 2; for (i = 1; i <= count_cells; i++) { - for (l = 1; l <= stag_data->count_stag; l++) + for (l = 1; l <= stag_data.count_stag; l++) cell_data[i + 1 + l * count_cells].mid_cell_x = cell_data[i].mid_cell_x; } @@ -905,7 +971,7 @@ read_transport(void) cell_data[punch_temp[i]].punch = TRUE; } } - else if (simul_tr == 1) + else if (simul_tr == 1 || old_cells != count_cells) for (i = 0; i < all_cells; i++) cell_data[i].punch = TRUE; /* @@ -928,9 +994,32 @@ read_transport(void) cell_data[print_temp[i]].print = TRUE; } } - else if (simul_tr == 1) + else if (simul_tr == 1 || old_cells != count_cells) for (i = 0; i < all_cells; i++) cell_data[i].print = TRUE; + /* + * Fill in data for same_model + */ + if (count_same_model != 0) + { + for (i = 0; i < all_cells; i++) + cell_data[i].same_model = FALSE; + for (i = 0; i < count_same_model; i++) + { + if (same_model_temp[i] > all_cells - 1 || same_model_temp[i] < 0) + { + error_string = sformatf( + "Cell number for same_model is out of range, %d. Request ignored.", + same_model_temp[i]); + warning_msg(error_string); + } + else + cell_data[same_model_temp[i]].same_model = TRUE; + } + } + else if (simul_tr == 1 || old_cells != count_cells) + for (i = 0; i < all_cells; i++) + cell_data[i].same_model = FALSE; //#define OLD_POROSITY #if defined(OLD_POROSITY) /* @@ -1002,9 +1091,9 @@ read_transport(void) */ if (heat_diffc < 0) heat_diffc = diffc; - else if (stag_data->count_stag == 1) + else if (stag_data.count_stag == 1) { - if (stag_data->exch_f > 0) + if (stag_data.exch_f > 0) { if (diffc <= 0 && heat_diffc > 0) { @@ -1013,7 +1102,7 @@ read_transport(void) "Must enter diffusion coefficient (-diffc) when modeling thermal diffusion."); error_msg(error_string, CONTINUE); } - else if (heat_diffc > diffc) + else if (heat_diffc > diffc && !implicit) { error_string = sformatf( "Thermal diffusion is calculated assuming exchange factor was for\n\t effective (non-thermal) diffusion coefficient = %e.", @@ -1023,7 +1112,7 @@ read_transport(void) } else { - if (heat_diffc > diffc) + if (heat_diffc > diffc && !implicit) { input_error++; error_string = sformatf( @@ -1032,7 +1121,7 @@ read_transport(void) } } } - else if (stag_data->count_stag > 1 && heat_diffc > diffc) + else if (stag_data.count_stag > 1 && heat_diffc > diffc) { input_error++; error_string = sformatf( @@ -1047,6 +1136,7 @@ read_transport(void) pors = (LDBLE *)free_check_null(pors); punch_temp = (int *)free_check_null(punch_temp); print_temp = (int *)free_check_null(print_temp); + same_model_temp = (int *)free_check_null(same_model_temp); if (dump_in == TRUE) { @@ -1058,7 +1148,7 @@ read_transport(void) /* ---------------------------------------------------------------------- */ int Phreeqc:: -read_line_LDBLEs(char *next_char, LDBLE ** d, int *count_d, int *count_alloc) +read_line_LDBLEs(const char* next_char, LDBLE ** d, int *count_d, int *count_alloc) /* ---------------------------------------------------------------------- */ { int i, j, l, n; @@ -1079,7 +1169,7 @@ read_line_LDBLEs(char *next_char, LDBLE ** d, int *count_d, int *count_alloc) } else { - sscanf(token, SCANFORMAT, &value); + (void)sscanf(token, SCANFORMAT, &value); n = 1; } for (;;) diff --git a/runner.cpp b/runner.cpp index d8e78cb8..6aa07a0f 100644 --- a/runner.cpp +++ b/runner.cpp @@ -2,6 +2,15 @@ #include "Parser.h" #include "NA.h" #include "Utils.h" + +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + runner::runner(PHRQ_io *io) : PHRQ_base(io) diff --git a/sit.cpp b/sit.cpp index 26c8d9aa..8f213e98 100644 --- a/sit.cpp +++ b/sit.cpp @@ -3,6 +3,14 @@ #include "Exchange.h" #include "Solution.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /* ---------------------------------------------------------------------- */ int Phreeqc:: sit_init(void) @@ -12,10 +20,7 @@ sit_init(void) * Initialization for SIT */ sit_model = FALSE; - max_sit_param = 100; - count_sit_param = 0; - space((void **) ((void *) &sit_params), INIT, &max_sit_param, - sizeof(struct pitz_param *)); + sit_params.clear(); OTEMP = -100.; OPRESS = -100.; return OK; @@ -38,17 +43,15 @@ sit_tidy(void) /* * allocate pointers to species structures */ - if (spec != NULL) spec = (struct species **) free_check_null(spec); - spec = (struct species **) PHRQ_malloc((size_t) (3 * count_s * sizeof(struct species *))); - if (spec == NULL) malloc_error(); - for (i = 0; i < 3 * count_s; i++) spec[i] = NULL; + spec.clear(); + spec.resize(3 * s.size(), NULL); - cations = spec; - neutrals = &(spec[count_s]); - anions = &(spec[2 * count_s]); - sit_MAXCATIONS = count_s; - sit_FIRSTANION = 2 * count_s; - sit_MAXNEUTRAL = count_s; + cations = &spec[0]; + neutrals = &(spec[s.size()]); + anions = &(spec[2 * s.size()]); + sit_MAXCATIONS = (int)s.size(); + sit_FIRSTANION = 2 * (int)s.size(); + sit_MAXNEUTRAL = (int)s.size(); sit_count_cations = 0; sit_count_anions = 0; sit_count_neutrals = 0; @@ -56,18 +59,11 @@ sit_tidy(void) /* * allocate other arrays for SIT */ - if (sit_IPRSNT != NULL) sit_IPRSNT = (int *) free_check_null(sit_IPRSNT); - sit_IPRSNT = (int *) PHRQ_malloc((size_t) (3 * count_s * sizeof(int))); - if (sit_IPRSNT == NULL) malloc_error(); - if (sit_M != NULL) sit_M = (LDBLE *) free_check_null(sit_M); - sit_M = (LDBLE *) PHRQ_malloc((size_t) (3 * count_s * sizeof(LDBLE))); - if (sit_M == NULL) malloc_error(); - if (sit_LGAMMA != NULL) sit_LGAMMA = (LDBLE *) free_check_null(sit_LGAMMA); - sit_LGAMMA = (LDBLE *) PHRQ_malloc((size_t) (3 * count_s * sizeof(LDBLE))); - if (sit_LGAMMA == NULL) malloc_error(); + sit_IPRSNT.resize(3 * s.size()); + sit_M.resize(3 * s.size()); + sit_LGAMMA.resize(3 * s.size()); - - for (i = 0; i < count_s; i++) + for (i = 0; i < (int)s.size(); i++) { if (s[i] == s_eminus) continue; @@ -94,7 +90,7 @@ sit_tidy(void) /* * put species numbers in sit_params */ - for (i = 0; i < count_sit_param; i++) + for (i = 0; i < (int)sit_params.size(); i++) { for (j = 0; j < 3; j++) { @@ -117,7 +113,7 @@ sit_tidy(void) } /* remake map */ { sit_param_map.clear(); - for (int j = 0; j < count_sit_param; j++) + for (int j = 0; j < (int)sit_params.size(); j++) { std::set< std::string > header; for (int i = 0; i < 3; i++) @@ -134,7 +130,7 @@ sit_tidy(void) std::string key = key_str.str().c_str(); sit_param_map[key] = j; } - assert ((int) sit_param_map.size() == count_sit_param); + assert ((int) sit_param_map.size() == (int)sit_params.size()); } if (get_input_errors() > 0) return (ERROR); return OK; @@ -149,7 +145,7 @@ sit_ISPEC(const char *name) */ { int i; - for (i = 0; i < 3 * count_s; i++) + for (i = 0; i < 3 * (int)s.size(); i++) { if (spec[i] == NULL) continue; @@ -185,11 +181,11 @@ read_sit(void) * number of shifts; */ int n; - struct pitz_param *pzp_ptr; + class pitz_param *pzp_ptr; pitz_param_type pzp_type; int return_value, opt, opt_save; - char *next_char; + const char* next_char; const char *opt_list[] = { "epsilon", /* 0 */ "epsilon1" /* 1 */ @@ -223,7 +219,7 @@ read_sit(void) if (pzp_ptr != NULL) { pzp_ptr->type = pzp_type; - sit_param_store(pzp_ptr, false); + sit_param_store(pzp_ptr); } break; case OPTION_ERROR: @@ -251,7 +247,7 @@ read_sit(void) /* ---------------------------------------------------------------------- */ int Phreeqc:: -calc_sit_param(struct pitz_param *pz_ptr, LDBLE TK, LDBLE TR) +calc_sit_param(class pitz_param *pz_ptr, LDBLE TK, LDBLE TR) /* ---------------------------------------------------------------------- */ { LDBLE param; @@ -287,7 +283,6 @@ calc_sit_param(struct pitz_param *pz_ptr, LDBLE TK, LDBLE TR) } return OK; } -#ifdef SKIP /* ---------------------------------------------------------------------- */ int Phreeqc:: sit(void) @@ -312,185 +307,7 @@ sit(void) C INITIALIZE C */ - //CONV = 1.0 / log(10.0); - XI = 0.0e0; - XX = 0.0e0; - OSUM = 0.0e0; - /*n - I = *I_X; - TK = *TK_X; - */ - I = mu_x; - TK = tk_x; - /* DH_AB(TK, &A, &B); */ - /* - C - C TRANSFER DATA FROM TO sit_M - C - */ - for (i = 0; i < 3 * count_s; i++) - { - sit_IPRSNT[i] = FALSE; - sit_M[i] = 0.0; - if (spec[i] != NULL && spec[i]->in == TRUE) - { - if (spec[i]->type == EX || - spec[i]->type == SURF || spec[i]->type == SURF_PSI) - continue; - sit_M[i] = under(spec[i]->lm); - if (sit_M[i] > MIN_TOTAL) - sit_IPRSNT[i] = TRUE; - } - } - /* - C - C COMPUTE SIT COEFFICIENTS' TEMPERATURE DEPENDENCE - C - */ - PTEMP_SIT(TK); - for (i = 0; i < 2 * count_s + sit_count_anions; i++) - { - sit_LGAMMA[i] = 0.0; - if (sit_IPRSNT[i] == TRUE) - { - XX = XX + sit_M[i] * fabs(spec[i]->z); - XI = XI + sit_M[i] * spec[i]->z * spec[i]->z; - OSUM = OSUM + sit_M[i]; - } - } - I = XI / 2.0e0; - I = mu_x; // Added equation for MU - DI = sqrt(I); - /* - C - C CALCULATE F & GAMCLM - C - */ - AGAMMA = 3*sit_A0; /* Grenthe p 379 */ - A = AGAMMA / log(10.0); - /* - * F is now for log10 gamma - */ - - B = 1.5; - F = -A * (DI / (1.0e0 + B * DI)); - - - /*OSMOT = -(sit_A0) * pow(I, 1.5e0) / (1.0e0 + B * DI);*/ - T = 1.0 + B*DI; - OSMOT = -2.0*A/(B*B*B)*(T - 2.0*log(T) - 1.0/T); - /* - * Sums for sit_LGAMMA, and OSMOT - * epsilons are tabulated for log10 gamma (not ln gamma) - */ - for (i = 0; i < count_sit_param; i++) - { - i0 = sit_params[i]->ispec[0]; - i1 = sit_params[i]->ispec[1]; - if (sit_IPRSNT[i0] == FALSE || sit_IPRSNT[i1] == FALSE) continue; - z0 = spec[i0]->z; - z1 = spec[i1]->z; - param = sit_params[i]->p; - switch (sit_params[i]->type) - { - case TYPE_SIT_EPSILON: - sit_LGAMMA[i0] += sit_M[i1] * param; - sit_LGAMMA[i1] += sit_M[i0] * param; - if (z0 == 0.0 && z1 == 0.0) - { - OSMOT += sit_M[i0] * sit_M[i1] * param / 2.0; - } - else - { - OSMOT += sit_M[i0] * sit_M[i1] * param; - } - break; - case TYPE_SIT_EPSILON_MU: - sit_LGAMMA[i0] += sit_M[i1] * I * param; - sit_LGAMMA[i1] += sit_M[i0] * I * param; - OSMOT += sit_M[i0] * sit_M[i1] * param; - if (z0 == 0.0 && z1 == 0.0) - { - OSMOT += sit_M[i0] * sit_M[i1] * param * I / 2.0; - } - else - { - OSMOT += sit_M[i0] * sit_M[i1] * param * I; - } - break; - default: - case TYPE_Other: - error_msg("TYPE_Other in pitz_param list.", STOP); - break; - } - } - - /* - * Add F and CSUM terms to sit_LGAMMA - */ - - for (i = 0; i < sit_count_cations; i++) - { - z0 = spec[i]->z; - sit_LGAMMA[i] += z0 * z0 * F; - } - for (i = 2 * count_s; i < 2 * count_s + sit_count_anions; i++) - { - z0 = spec[i]->z; - sit_LGAMMA[i] += z0 * z0 * F; - } - /* - C - C CONVERT TO MACINNES CONVENTION - C - */ - /*COSMOT = 1.0e0 + 2.0e0 * OSMOT / OSUM;*/ - COSMOT = 1.0e0 + OSMOT*log(10.0) / OSUM; - /* - C - C CALCULATE THE ACTIVITY OF WATER - C - */ - AW = exp(-OSUM * COSMOT / 55.50837e0); - /*if (AW > 1.0) AW = 1.0;*/ - /*s_h2o->la=log10(AW); */ - mu_x = I; - for (i = 0; i < 2 * count_s + sit_count_anions; i++) - { - if (sit_IPRSNT[i] == FALSE) continue; - spec[i]->lg_pitzer = sit_LGAMMA[i]; -/* - output_msg(sformatf( "%d %s:\t%e\t%e\t%e\t%e \n", i, spec[i]->name, sit_M[i], spec[i]->la, spec[i]->lg_pitzer, spec[i]->lg)); -*/ - } - return (OK); -} -#endif -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -sit(void) -/* ---------------------------------------------------------------------- */ -{ - int i, i0, i1; - LDBLE param, z0, z1; - LDBLE A, AGAMMA, T; - /* - LDBLE CONV, XI, XX, OSUM, BIGZ, DI, F, XXX, GAMCLM, - CSUM, PHIMAC, OSMOT, BMXP, ETHEAP, CMX, BMX, PHI, - BMXPHI, PHIPHI, AW, A, B; - */ -/* - LDBLE CONV, XI, XX, OSUM, BIGZ, DI, F, XXX, GAMCLM, CSUM, PHIMAC, OSMOT, - B; -*/ - LDBLE XI, XX, OSUM, DI, F, OSMOT, B; - LDBLE I, TK; - /* - C - C INITIALIZE - C - */ - //CONV = 1.0 / log(10.0); + //CONV = 1.0 / LOG_10; XI = 0.0e0; XX = 0.0e0; OSUM = 0.0e0; @@ -519,7 +336,7 @@ sit(void) sit_M[i] = 0.0; } } - //for (i = 0; i < 3 * count_s; i++) + //for (i = 0; i < 3 * (int)s.size(); i++) //{ // sit_IPRSNT[i] = FALSE; // sit_M[i] = 0.0; @@ -547,7 +364,7 @@ sit(void) XI = XI + sit_M[i] * spec[i]->z * spec[i]->z; OSUM = OSUM + sit_M[i]; } - //for (i = 0; i < 2 * count_s + sit_count_anions; i++) + //for (i = 0; i < 2 * (int)s.size() + sit_count_anions; i++) //{ // sit_LGAMMA[i] = 0.0; // if (sit_IPRSNT[i] == TRUE) @@ -566,7 +383,7 @@ sit(void) C */ AGAMMA = 3*sit_A0; /* Grenthe p 379 */ - A = AGAMMA / log(10.0); + A = AGAMMA / LOG_10; /* * F is now for log10 gamma */ @@ -582,8 +399,6 @@ sit(void) * Sums for sit_LGAMMA, and OSMOT * epsilons are tabulated for log10 gamma (not ln gamma) */ - //for (i = 0; i < count_sit_param; i++) - //{ for (size_t j = 0; j < param_list.size(); j++) { int i = param_list[j]; @@ -641,7 +456,7 @@ sit(void) // z0 = spec[i]->z; // sit_LGAMMA[i] += z0 * z0 * F; //} - //for (i = 2 * count_s; i < 2 * count_s + sit_count_anions; i++) + //for (i = 2 * (int)s.size(); i < 2 * (int)s.size() + sit_count_anions; i++) //{ // z0 = spec[i]->z; // sit_LGAMMA[i] += z0 * z0 * F; @@ -652,7 +467,7 @@ sit(void) C */ /*COSMOT = 1.0e0 + 2.0e0 * OSMOT / OSUM;*/ - COSMOT = 1.0e0 + OSMOT*log(10.0) / OSUM; + COSMOT = 1.0e0 + OSMOT*LOG_10 / OSUM; /* C C CALCULATE THE ACTIVITY OF WATER @@ -667,7 +482,7 @@ sit(void) int i = s_list[j]; spec[i]->lg_pitzer = sit_LGAMMA[i]; } -// for (i = 0; i < 2 * count_s + sit_count_anions; i++) +// for (i = 0; i < 2 * (int)s.size() + sit_count_anions; i++) // { // if (sit_IPRSNT[i] == FALSE) continue; // spec[i]->lg_pitzer = sit_LGAMMA[i]; @@ -687,18 +502,17 @@ sit_clean_up(void) */ int i; - for (i = 0; i < count_sit_param; i++) + for (i = 0; i < (int)sit_params.size(); i++) { - sit_params[i] = (struct pitz_param *) free_check_null(sit_params[i]); + delete sit_params[i]; } - count_sit_param = 0; - sit_params = (struct pitz_param **) free_check_null(sit_params); + sit_params.clear(); sit_param_map.clear(); - sit_LGAMMA = (LDBLE *) free_check_null(sit_LGAMMA); - sit_IPRSNT = (int *) free_check_null(sit_IPRSNT); - spec = (struct species **) free_check_null(spec); - aphi = (struct pitz_param *) free_check_null(aphi); - sit_M = (LDBLE *) free_check_null(sit_M); + sit_LGAMMA.clear(); + sit_IPRSNT.clear(); + spec.clear(); + //delete aphi; + sit_M.clear(); return OK; } @@ -719,14 +533,14 @@ set_sit(int initial) */ iterations = -1; solution_ptr = use.Get_solution_ptr(); - for (i = 0; i < count_s_x; i++) + for (i = 0; i < (int)this->s_x.size(); i++) { s_x[i]->lm = LOG_ZERO_MOLALITY; s_x[i]->lg_pitzer = 0.0; } if (initial == TRUE || set_and_run_attempt > 0) { - for (i = 0; i < count_s_x; i++) + for (i = 0; i < (int)this->s_x.size(); i++) { s_x[i]->lg = 0.0; } @@ -984,17 +798,18 @@ sit_revise_guesses(void) /*gammas(mu_x); */ return (OK); } - +//#define ORIGINAL +#ifdef ORIGINAL /* ---------------------------------------------------------------------- */ int Phreeqc:: jacobian_sit(void) /* ---------------------------------------------------------------------- */ { - LDBLE *base; + std::vector base; LDBLE d, d1, d2; int i, j; Restart: - int pz_max_unknowns = max_unknowns; + size_t pz_max_unknowns = max_unknowns; //k_temp(tc_x, patm_x); if (full_pitzer == TRUE) { @@ -1002,18 +817,9 @@ Restart: sit(); residuals(); } - base = (LDBLE *) PHRQ_malloc((size_t) count_unknowns * sizeof(LDBLE)); - if (base == NULL) - { - malloc_error(); - return OK; - } - for (i = 0; i < count_unknowns; i++) - { - base[i] = residual[i]; - } + base = residual; // std::vectors d = 0.0001; - d1 = d * log(10.0); + d1 = d * LOG_10; d2 = 0; for (i = 0; i < count_unknowns; i++) { @@ -1065,7 +871,8 @@ Restart: case GAS_MOLES: if (gas_in == FALSE) continue; - d2 = d * x[i]->moles; + d2 = (x[i]->moles > 1 ? 1 : 20); + d2 *= d * x[i]->moles; if (d2 < 1e-14) d2 = 1e-14; x[i]->moles += d2; @@ -1085,7 +892,6 @@ Restart: molalities(TRUE); if (max_unknowns > pz_max_unknowns) { - base = (LDBLE *) free_check_null(base); gammas_sit(); jacobian_sums(); goto Restart; @@ -1096,7 +902,7 @@ Restart: residuals(); for (j = 0; j < count_unknowns; j++) { - array[j * (count_unknowns + 1) + i] = + my_array[(size_t)j * (count_unknowns + 1) + (size_t)i] = -(residual[j] - base[j]) / d2; } switch (x[i]->type) @@ -1115,9 +921,9 @@ Restart: break; case MH: s_eminus->la -= d; - if (array[i * (count_unknowns + 1) + i] == 0) + if (my_array[(size_t)i * (count_unknowns + 1) + (size_t)i] == 0) { - array[i * (count_unknowns + 1) + i] = + my_array[(size_t)i * (count_unknowns + 1) + (size_t)i] = exp(s_h2->lm * LOG_10) * 2; } break; @@ -1145,10 +951,211 @@ Restart: sit(); mb_sums(); residuals(); - free_check_null(base); return OK; } - +#else +/* ---------------------------------------------------------------------- */ +int Phreeqc:: +jacobian_sit(void) +/* ---------------------------------------------------------------------- */ +{ + std::vector base; + LDBLE d, d1, d2; + int i, j; + cxxGasPhase* gas_phase_ptr = use.Get_gas_phase_ptr(); + std::vector phase_ptrs; + std::vector base_phases; + double base_mass_water_bulk_x = 0, base_moles_h2o = 0; + cxxGasPhase base_gas_phase; + cxxSurface base_surface; +Restart: + if (use.Get_surface_ptr() != NULL) + { + base_surface = *use.Get_surface_ptr(); + } + if (use.Get_gas_phase_ptr() != NULL) + { + cxxGasPhase* gas_phase_ptr = use.Get_gas_phase_ptr(); + base_gas_phase = *gas_phase_ptr; + base_phases.resize(gas_phase_ptr->Get_gas_comps().size()); + for (size_t i = 0; i < gas_phase_ptr->Get_gas_comps().size(); i++) + { + const cxxGasComp* gas_comp_ptr = &(gas_phase_ptr->Get_gas_comps()[i]); + class phase* phase_ptr = phase_bsearch(gas_comp_ptr->Get_phase_name().c_str(), &j, FALSE); + phase_ptrs.push_back(phase_ptr); + base_phases[i] = *phase_ptr; + } + } + calculating_deriv = 1; + size_t pz_max_unknowns = max_unknowns; + //k_temp(tc_x, patm_x); + molalities(TRUE); + if (full_pitzer == TRUE) + { + + sit(); + } + mb_sums(); + residuals(); + base = residual; // std::vectors + d = 0.0001; + d1 = d * LOG_10; + d2 = 0; + for (i = 0; i < count_unknowns; i++) + { + switch (x[i]->type) + { + case MB: + case ALK: + case CB: + case SOLUTION_PHASE_BOUNDARY: + case EXCH: + case SURFACE: + case SURFACE_CB: + case SURFACE_CB1: + case SURFACE_CB2: + x[i]->master[0]->s->la += d; + d2 = d1; + break; + case AH2O: + x[i]->master[0]->s->la += d; + d2 = d1; + break; + case PITZER_GAMMA: + if (!full_pitzer) + continue; + x[i]->s->lg += d; + d2 = d; + break; + case MH2O: + mass_water_aq_x *= (1.0 + d); + x[i]->master[0]->s->moles = mass_water_aq_x / gfw_water; + d2 = log(1.0 + d); + break; + case MH: + s_eminus->la += d; + d2 = d1; + break; + /* + if (pitzer_pe == TRUE) + { + s_eminus->la += d; + d2 = d1; + break; + } + else + { + continue; + } + */ + case GAS_MOLES: + if (gas_in == FALSE) + continue; + d2 = (x[i]->moles > 1 ? 1 : 20); + d2 *= d * x[i]->moles; + if (d2 < 1e-14) + d2 = 1e-14; + x[i]->moles += d2; + break; + case MU: + //continue; + d2 = d * mu_x; + mu_x += d2; + //k_temp(tc_x, patm_x); + gammas_sit(); + break; + case PP: + case SS_MOLES: + continue; + break; + } + molalities(TRUE); + if (max_unknowns > pz_max_unknowns) + { + gammas_sit(); + jacobian_sums(); + goto Restart; + } + if (full_pitzer == TRUE) + sit(); + mb_sums(); + residuals(); + for (j = 0; j < count_unknowns; j++) + { + my_array[(size_t)j * (count_unknowns + 1) + (size_t)i] = + -(residual[j] - base[j]) / d2; + } + switch (x[i]->type) + { + case MB: + case ALK: + case CB: + case SOLUTION_PHASE_BOUNDARY: + case EXCH: + case SURFACE: + case SURFACE_CB: + case SURFACE_CB1: + case SURFACE_CB2: + case AH2O: + x[i]->master[0]->s->la -= d; + break; + case MH: + s_eminus->la -= d; + if (my_array[(size_t)i * (count_unknowns + 1) + (size_t)i] == 0) + { + my_array[(size_t)i * (count_unknowns + 1) + (size_t)i] = + exp(s_h2->lm * LOG_10) * 2; + } + break; + case PITZER_GAMMA: + x[i]->s->lg -= d; + break; + case MH2O: + mass_water_aq_x /= (1 + d); + x[i]->master[0]->s->moles = mass_water_aq_x / gfw_water; + break; + case MU: + mu_x -= d2; + //k_temp(tc_x, patm_x); + gammas_sit(); + break; + case GAS_MOLES: + if (gas_in == FALSE) + continue; + x[i]->moles -= d2; + break; + } + if (use.Get_surface_ptr() != NULL) + { + *use.Get_surface_ptr() = base_surface; + } + if (use.Get_gas_phase_ptr() != NULL) + { + *use.Get_gas_phase_ptr() = base_gas_phase; + for (size_t g = 0; g < base_phases.size(); g++) + { + *phase_ptrs[g] = base_phases[g]; + } + } + } + molalities(TRUE); + if (full_pitzer == TRUE) + sit(); + mb_sums(); + residuals(); + //for (i = 0; i < count_unknowns; i++) + //{ + // //Debugging + // if (fabs(2.0 * (residual[i] - base[i]) / (residual[i] + base[i])) > 1e-2 && + // fabs(residual[i]) + fabs(base[i]) > 1e-8) + // { + // std::cerr << i << ": " << x[i]->description << " " << residual[i] << " " << base[i] << std::endl; + // } + //} + calculating_deriv = 0; + return OK; +} +#endif /* ---------------------------------------------------------------------- */ int Phreeqc:: model_sit(void) @@ -1227,6 +1234,7 @@ model_sit(void) PhreeqcIWait(this); #endif iterations++; + overall_iterations++; if (iterations > itmax - 1 && debug_model == FALSE && pr.logfile == TRUE) { @@ -1313,7 +1321,8 @@ model_sit(void) { count_basis_change++; - count_unknowns -= count_s_x; + //count_unknowns -= (int)this->s_x.size(); + count_unknowns -= sit_aqueous_unknowns; reprep(); full_pitzer = false; } @@ -1441,7 +1450,7 @@ gammas_sit() /* * Calculate activity coefficients */ - for (i = 0; i < count_s_x; i++) + for (i = 0; i < (int)this->s_x.size(); i++) { switch (s_x[i]->gflag) { @@ -1460,12 +1469,12 @@ gammas_sit() * Find moles of sites. * s_x[i]->equiv is stoichiometric coefficient of sites in species */ - for (j = 1; s_x[i]->rxn_x->token[j].s != NULL; j++) + for (j = 1; s_x[i]->rxn_x.token[j].s != NULL; j++) { - if (s_x[i]->rxn_x->token[j].s->type == SURF) + if (s_x[i]->rxn_x.token[j].s->type == SURF) { s_x[i]->alk = - s_x[i]->rxn_x->token[j].s->primary->unknown->moles; + s_x[i]->rxn_x.token[j].s->primary->unknown->moles; break; } } @@ -1504,7 +1513,7 @@ gammas_sit() if (use.Get_exchange_ptr() != NULL) { - for (i = 0; i < count_s_x; i++) + for (i = 0; i < (int)this->s_x.size(); i++) { switch (s_x[i]->gflag) { @@ -1525,12 +1534,12 @@ gammas_sit() * z contains valence of cation for exchange species, alk contains cec */ /* !!!!! */ - for (j = 1; s_x[i]->rxn_x->token[j].s != NULL; j++) + for (j = 1; s_x[i]->rxn_x.token[j].s != NULL; j++) { - if (s_x[i]->rxn_x->token[j].s->type == EX) + if (s_x[i]->rxn_x.token[j].s->type == EX) { s_x[i]->alk = - s_x[i]->rxn_x->token[j].s->primary->unknown-> + s_x[i]->rxn_x.token[j].s->primary->unknown-> moles; break; } @@ -1556,13 +1565,13 @@ gammas_sit() if (use.Get_exchange_ptr()->Get_pitzer_exchange_gammas()) { /* Assume equal gamma's of solute and exchangeable species... */ - for (j = 1; s_x[i]->rxn_x->token[j].s != NULL; j++) + for (j = 1; s_x[i]->rxn_x.token[j].s != NULL; j++) { - if (s_x[i]->rxn_x->token[j].s->type == EX) + if (s_x[i]->rxn_x.token[j].s->type == EX) continue; - coef = s_x[i]->rxn_x->token[j].coef; - s_x[i]->lg += coef * s_x[i]->rxn_x->token[j].s->lg; - s_x[i]->dg += coef * s_x[i]->rxn_x->token[j].s->dg; + coef = s_x[i]->rxn_x.token[j].coef; + s_x[i]->lg += coef * s_x[i]->rxn_x.token[j].s->lg; + s_x[i]->dg += coef * s_x[i]->rxn_x.token[j].s->dg; } } } @@ -1572,37 +1581,6 @@ gammas_sit() return (OK); } -#ifdef SKIP -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -PTEMP_SIT(LDBLE TK) -/* ---------------------------------------------------------------------- */ -{ -/* -C -C SUBROUTINE TO CALUCLATE TEMPERATURE DEPENDENCE OF PITZER PARAMETER -C -*/ - int i; - LDBLE TR = 298.15; - - if (fabs(TK - OTEMP) < 0.001 && fabs(patm_x - OPRESS) < 0.1) return OK; -/* -C Set DW0 -*/ - DW0 = rho_0 = calc_rho_0(TK - 273.15, patm_x); - VP = patm_x; - for (i = 0; i < count_sit_param; i++) - { - calc_sit_param(sit_params[i], TK, TR); - } - calc_dielectrics(TK - 273.15, patm_x); - sit_A0 = A0; - OTEMP = TK; - OPRESS = patm_x; - return OK; -} -#endif /* ---------------------------------------------------------------------- */ int Phreeqc:: PTEMP_SIT(LDBLE TK) @@ -1656,12 +1634,12 @@ sit_make_lists(void) max = sit_count_cations; break; case 1: - min = count_s; - max = count_s + sit_count_neutrals; + min = (int)s.size(); + max = (int)s.size() + sit_count_neutrals; break; case 2: - min = 2*count_s; - max = 2*count_s + sit_count_anions; + min = 2*(int)s.size(); + max = 2*(int)s.size() + sit_count_anions; break; } for (int i = min; i < max; i++) @@ -1675,19 +1653,19 @@ sit_make_lists(void) continue; sit_IPRSNT[i] = TRUE; s_list.push_back(i); - if (i < count_s) + if (i < (int)s.size()) { cation_list.push_back(i); } - if (i >= count_s && i < 2*count_s) + if (i >= (int)s.size() && i < 2*(int)s.size()) { neutral_list.push_back(i); } - if (i >= 2*count_s) + if (i >= 2*(int)s.size()) { anion_list.push_back(i); } - if (i < count_s || i >= 2*count_s) + if (i < (int)s.size() || i >= 2*(int)s.size()) { ion_list.push_back(i); } @@ -1698,11 +1676,11 @@ sit_make_lists(void) } } } - for (int i = 0; i < count_sit_param; i++) + for (int i = 0; i < (int)sit_params.size(); i++) { int i0 = sit_params[i]->ispec[0]; int i1 = sit_params[i]->ispec[1]; if (sit_IPRSNT[i0] == FALSE || sit_IPRSNT[i1] == FALSE) continue; param_list.push_back(i); } -} \ No newline at end of file +} diff --git a/smalldense.cpp b/smalldense.cpp index 6cfd7c07..53c587a1 100644 --- a/smalldense.cpp +++ b/smalldense.cpp @@ -63,6 +63,15 @@ #include "smalldense.h" #include "sundialstypes.h" #include "sundialsmath.h" + +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /* WARNING don`t include any headers below here */ #define ZERO RCONST(0.0) @@ -83,7 +92,7 @@ denalloc(integertype n) if (a == NULL) return (NULL); - a[0] = (realtype *) malloc(n * n * sizeof(realtype)); + a[0] = (realtype *) malloc((size_t)n * (size_t)n * sizeof(realtype)); if (a[0] == NULL) { free(a); @@ -91,7 +100,7 @@ denalloc(integertype n) } for (j = 1; j < n; j++) - a[j] = a[0] + j * n; + a[j] = a[0] + (size_t)j * (size_t)n; return (a); } diff --git a/spread.cpp b/spread.cpp index 8720fd56..77ada3e7 100644 --- a/spread.cpp +++ b/spread.cpp @@ -16,6 +16,15 @@ typedef unsigned char boolean; #define OPTION_ERROR -3 #define OPTION_DEFAULT -4 #define OPT_1 -5 + +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /* ---------------------------------------------------------------------- */ int Phreeqc:: read_solution_spread(void) @@ -34,13 +43,13 @@ read_solution_spread(void) * ERROR if error occurred reading data * */ - struct spread_row *heading, *row_ptr, *units; + class spread_row *heading, *row_ptr, *units; int count, strings, numbers; int spread_lines; - char *ptr; - struct defaults soln_defaults; + const char* cptr; + class defaults soln_defaults; int return_value, opt; - char *next_char; + const char* next_char; const char *opt_list[] = { "temp", /* 0 */ "temperature", /* 1 */ @@ -79,14 +88,16 @@ read_solution_spread(void) /* fill in soln_defaults.iso */ - soln_defaults.count_iso = count_iso_defaults; - soln_defaults.iso = (struct iso *) PHRQ_malloc((size_t) soln_defaults.count_iso * - sizeof(struct iso)); - if (soln_defaults.iso == NULL) - malloc_error(); + soln_defaults.iso.resize(count_iso_defaults); + /* all iso[i].name is hsave'd, so no conflicts */ - memcpy(soln_defaults.iso, iso_defaults, - (size_t) soln_defaults.count_iso * sizeof(struct iso)); + // memcpy(&soln_defaults.iso[0], iso_defaults, + // soln_defaults.iso.size() * sizeof(class iso)); + for (size_t i = 0; i < count_iso_defaults; ++i) { + soln_defaults.iso[i].name = iso_defaults[i].name; + soln_defaults.iso[i].value = iso_defaults[i].value; + soln_defaults.iso[i].uncertainty = iso_defaults[i].uncertainty; + } heading = NULL; units = NULL; @@ -103,10 +114,10 @@ read_solution_spread(void) if (spread_lines == 0 && opt != OPTION_DEFAULT) { row_ptr = string_to_spread_row(line); - ptr = line; + cptr = line; count = numbers = strings = 0; int j; - while (((j = copy_token(token, &ptr)) != EMPTY)) + while (((j = copy_token(token, &cptr)) != EMPTY)) { count++; if (j == UPPER || j == LOWER) @@ -117,14 +128,16 @@ read_solution_spread(void) /* * Is 2nd token all number */ - ptr = line; - copy_token(token, &ptr); - j = copy_token(token, &ptr); + cptr = line; + copy_token(token, &cptr); + j = copy_token(token, &cptr); bool num = false; if (j == DIGIT) { - strtod(token.c_str(), &ptr); - int j1 = copy_token(token1, &ptr); + char* ptr; + (void)strtod(token.c_str(), &ptr); + cptr = ptr; + int j1 = copy_token(token1, &cptr); if (j1 != EMPTY) { num = FALSE; @@ -134,15 +147,14 @@ read_solution_spread(void) num = TRUE; } } - /* * Starts with hyphen */ - ptr = line; - copy_token(token, &ptr); + cptr = line; + copy_token(token, &cptr); if (token[0] == '-') { - opt = opt; + /* opt = opt; */ } else { @@ -155,7 +167,7 @@ read_solution_spread(void) case 10: /* water */ if ((count == 2 || count == 3) && num == TRUE) { - opt = opt; + /* opt = opt; */ } else { @@ -167,7 +179,7 @@ read_solution_spread(void) if ((count == 2 || count == 3 || count == 4) && num == TRUE) { - opt = opt; + /* opt = opt; */ } else { @@ -179,7 +191,7 @@ read_solution_spread(void) case 8: /* unit */ if (count == 2) { - opt = opt; + /* opt = opt; */ } else { @@ -193,7 +205,7 @@ read_solution_spread(void) } else { - opt = opt; + /* opt = opt; */ } break; case 11: /* isotope_uncertainty */ @@ -205,12 +217,12 @@ read_solution_spread(void) } else { - opt = opt; + /* opt = opt; */ } break; case 14: /* pressure */ case 15: /* press */ - sscanf(next_char, SCANFORMAT, &(soln_defaults.pressure)); + (void)sscanf(next_char, SCANFORMAT, &(soln_defaults.pressure)); break; } } @@ -269,7 +281,7 @@ read_solution_spread(void) break; case 0: /* temperature */ case 1: - sscanf(next_char, SCANFORMAT, &(soln_defaults.temp)); + (void)sscanf(next_char, SCANFORMAT, &(soln_defaults.temp)); break; case 2: /* density */ case 3: @@ -331,7 +343,7 @@ read_solution_spread(void) break; case 6: /* ph */ copy_token(token, &next_char); - sscanf(token.c_str(), SCANFORMAT, &(soln_defaults.ph)); + (void)sscanf(token.c_str(), SCANFORMAT, &(soln_defaults.ph)); if (copy_token(token, &next_char) != EMPTY) { warning_msg @@ -340,7 +352,7 @@ read_solution_spread(void) break; case 7: /* pe */ copy_token(token, &next_char); - sscanf(token.c_str(), SCANFORMAT, &(soln_defaults.pe)); + (void)sscanf(token.c_str(), SCANFORMAT, &(soln_defaults.pe)); if (copy_token(token, &next_char) != EMPTY) { warning_msg @@ -367,32 +379,20 @@ read_solution_spread(void) error_msg(error_string, PHRQ_io::OT_CONTINUE); continue; } - int i; - for (i = 0; i < soln_defaults.count_iso; i++) + size_t i; + for (i = 0; i < soln_defaults.iso.size(); i++) { if (strcmp(token.c_str(), soln_defaults.iso[i].name) == 0) { break; } } - if (i == soln_defaults.count_iso) + if (i == soln_defaults.iso.size()) { - soln_defaults.iso = - (struct iso *) PHRQ_realloc(soln_defaults.iso, - (size_t) (i + - 1) * - sizeof(struct iso)); - if (soln_defaults.iso == NULL) - { - malloc_error(); - } - else - { - soln_defaults.iso[i].name = string_hsave(token.c_str()); - soln_defaults.iso[i].value = NAN; - soln_defaults.iso[i].uncertainty = NAN; - soln_defaults.count_iso++; - } + soln_defaults.iso.resize((size_t)i + 1); + soln_defaults.iso[i].name = string_hsave(token.c_str()); + soln_defaults.iso[i].value = NAN; + soln_defaults.iso[i].uncertainty = NAN; } /* read and store isotope ratio uncertainty */ @@ -409,7 +409,7 @@ read_solution_spread(void) } else { - sscanf(token.c_str(), SCANFORMAT, + (void)sscanf(token.c_str(), SCANFORMAT, &(soln_defaults.iso[i].uncertainty)); } } @@ -431,7 +431,7 @@ read_solution_spread(void) } else { - sscanf(token.c_str(), SCANFORMAT, &(soln_defaults.water)); + (void)sscanf(token.c_str(), SCANFORMAT, &(soln_defaults.water)); } } break; @@ -453,32 +453,20 @@ read_solution_spread(void) error_msg(error_string, PHRQ_io::OT_CONTINUE); continue; } - int i; - for (i = 0; i < soln_defaults.count_iso; i++) + size_t i; + for (i = 0; i < soln_defaults.iso.size(); i++) { if (strcmp(token.c_str(), soln_defaults.iso[i].name) == 0) { break; } } - if (i == soln_defaults.count_iso) + if (i == soln_defaults.iso.size()) { - soln_defaults.iso = - (struct iso *) PHRQ_realloc(soln_defaults.iso, - (size_t) (i + - 1) * - sizeof(struct iso)); - if (soln_defaults.iso == NULL) - { - malloc_error(); - } - else - { - soln_defaults.iso[i].name = string_hsave(token.c_str()); - soln_defaults.iso[i].value = NAN; - soln_defaults.iso[i].uncertainty = NAN; - soln_defaults.count_iso++; - } + soln_defaults.iso.resize(i + 1); + soln_defaults.iso[i].name = string_hsave(token.c_str()); + soln_defaults.iso[i].value = NAN; + soln_defaults.iso[i].uncertainty = NAN; } /* read and store isotope ratio */ if (copy_token(token, &next_char) != DIGIT) @@ -489,7 +477,7 @@ read_solution_spread(void) error_msg(error_string, CONTINUE); break; } - sscanf(token.c_str(), SCANFORMAT, &(soln_defaults.iso[i].value)); + (void)sscanf(token.c_str(), SCANFORMAT, &(soln_defaults.iso[i].value)); /* read and store isotope ratio uncertainty */ int j; if ((j = copy_token(token, &next_char)) != EMPTY) @@ -504,14 +492,14 @@ read_solution_spread(void) } else { - sscanf(token.c_str(), SCANFORMAT, + (void)sscanf(token.c_str(), SCANFORMAT, &(soln_defaults.iso[i].uncertainty)); } } } break; case 14: /* pressure */ - sscanf(next_char, SCANFORMAT, &(soln_defaults.pressure)); + (void)sscanf(next_char, SCANFORMAT, &(soln_defaults.pressure)); break; case 100: /* read headings */ heading = string_to_spread_row(line); @@ -519,8 +507,8 @@ read_solution_spread(void) int i; for (i = 0; i < heading->count; i++) { - while (replace(" ", "", heading->char_vector[i]) == TRUE); - while (replace(",", "_", heading->char_vector[i]) == TRUE); + while (replace(" ", "", heading->str_vector[i]) == TRUE); + while (replace(",", "_", heading->str_vector[i]) == TRUE); } } break; @@ -539,18 +527,18 @@ read_solution_spread(void) assert(g_spread_sheet.units == NULL); g_spread_sheet.units = copy_row(units); } - copy_defaults(&g_spread_sheet.defaults, &soln_defaults); + g_spread_sheet.defaults = soln_defaults; #endif spread_row_free(heading); spread_row_free(units); - soln_defaults.iso = (struct iso *) free_check_null(soln_defaults.iso); + soln_defaults.iso.clear(); return (return_value); } /* ---------------------------------------------------------------------- */ int Phreeqc:: -spread_row_to_solution(struct spread_row *heading, struct spread_row *units, - struct spread_row *data, struct defaults defaults) +spread_row_to_solution(class spread_row *heading, class spread_row *units, + class spread_row *data, class defaults defaults) /* ---------------------------------------------------------------------- */ { Keywords::KEYWORDS next_keyword_save; @@ -560,7 +548,7 @@ spread_row_to_solution(struct spread_row *heading, struct spread_row *units, CParser parser(this->phrq_io); int return_value, opt; - char *next_char; + const char* next_char; const char *opt_list[] = { "temp", /* 0 */ "temperature", /* 1 */ @@ -590,7 +578,7 @@ spread_row_to_solution(struct spread_row *heading, struct spread_row *units, int i; for (i = 0; i < heading->count; i++) { - if (strcmp_nocase(heading->char_vector[i], "number") == 0) + if (strcmp_nocase(heading->str_vector[i].c_str(), "number") == 0) { break; } @@ -605,13 +593,13 @@ spread_row_to_solution(struct spread_row *heading, struct spread_row *units, input_error++; error_string = sformatf( "Expected solution number or number range in 'number' column, found: %s.", - data->char_vector[i]); + data->str_vector[i].c_str()); error_msg(error_string, CONTINUE); } else { string = "solution_s "; - string.append( data->char_vector[i] ); + string.append(data->str_vector[i]); next_keyword_save = next_keyword; next_keyword = Keywords::KEY_SOLUTION_SPREAD; cxxNumKeyword nk; @@ -655,7 +643,7 @@ spread_row_to_solution(struct spread_row *heading, struct spread_row *units, initial_data_ptr->Set_units(defaults.units); initial_data_ptr->Set_default_pe(defaults.redox); { - cxxChemRxn temp_chem_reaction; + CReaction temp_chem_reaction; initial_data_ptr->Get_pe_reactions()[defaults.redox] = temp_chem_reaction; } /* @@ -664,13 +652,13 @@ spread_row_to_solution(struct spread_row *heading, struct spread_row *units, return_value = UNKNOWN; for (int i = 0; i < heading->count; i++) { - if (strcmp_nocase(heading->char_vector[i], "number") == 0) + if (strcmp_nocase(heading->str_vector[i].c_str(), "number") == 0) continue; - if (strcmp_nocase(heading->char_vector[i], "uncertainty") == 0) + if (strcmp_nocase(heading->str_vector[i].c_str(), "uncertainty") == 0) continue; - if (strcmp_nocase(heading->char_vector[i], "uncertainties") == 0) + if (strcmp_nocase(heading->str_vector[i].c_str(), "uncertainties") == 0) continue; - if (strcmp_nocase(heading->char_vector[i], "isotope_uncertainty") == + if (strcmp_nocase(heading->str_vector[i].c_str(), "isotope_uncertainty") == 0) continue; /* @@ -678,14 +666,14 @@ spread_row_to_solution(struct spread_row *heading, struct spread_row *units, */ if (heading->type_vector[i] == EMPTY) continue; - string = heading->char_vector[i]; + string = heading->str_vector[i]; string.append(" "); /* * Copy in concentration data */ if (i >= data->count || data->type_vector[i] == EMPTY) continue; - string.append(data->char_vector[i]); + string.append(data->str_vector[i]); string.append(" "); /* * Copy in concentration data @@ -693,7 +681,7 @@ spread_row_to_solution(struct spread_row *heading, struct spread_row *units, if (units != NULL && i < units->count && units->type_vector[i] != EMPTY) { - string.append(units->char_vector[i]); + string.append(units->str_vector[i]); } /* * Parse string just like read_solution input @@ -720,14 +708,14 @@ spread_row_to_solution(struct spread_row *heading, struct spread_row *units, break; case 0: /* temperature */ case 1: - sscanf(next_char, SCANFORMAT, &dummy); + (void)sscanf(next_char, SCANFORMAT, &dummy); temp_solution.Set_tc(dummy); break; case 2: /* density */ case 3: { int j = copy_token(token, &next_char); - sscanf(token.c_str(), SCANFORMAT, &dummy); + (void)sscanf(token.c_str(), SCANFORMAT, &dummy); temp_solution.Set_density(dummy); j = copy_token(token, &next_char); if (j != EMPTY) @@ -767,7 +755,7 @@ spread_row_to_solution(struct spread_row *heading, struct spread_row *units, { const char * pe_str = string_hsave(token.c_str()); initial_data_ptr->Set_default_pe(pe_str); - cxxChemRxn temp_chem_reaction; + CReaction temp_chem_reaction; initial_data_ptr->Get_pe_reactions()[token] = temp_chem_reaction; } else @@ -831,7 +819,7 @@ spread_row_to_solution(struct spread_row *heading, struct spread_row *units, error_msg(error_string, PHRQ_io::OT_CONTINUE); error_string = sformatf( "\t%s\t%s\n", "line_save: ", line_save); error_msg(error_string, PHRQ_io::OT_CONTINUE); -//struct spread_row +//class spread_row //{ // int count; // int empty, string, number; @@ -845,7 +833,7 @@ spread_row_to_solution(struct spread_row *heading, struct spread_row *units, { for (int ii = 0; ii < heading->count; ii++) { - error_string = sformatf("%d\t%s\n",ii,heading->char_vector[ii]); + error_string = sformatf("%d\t%s\n",ii,heading->str_vector[ii].c_str()); error_msg(error_string, PHRQ_io::OT_CONTINUE); } } @@ -860,7 +848,7 @@ spread_row_to_solution(struct spread_row *heading, struct spread_row *units, { for (int ii = 0; ii < data->count; ii++) { - error_string = sformatf("%d\t%s\t%d\n",ii,data->char_vector[ii],data->type_vector[ii]); + error_string = sformatf("%d\t%s\t%d\n",ii,data->str_vector[ii].c_str(),data->type_vector[ii]); error_msg(error_string, PHRQ_io::OT_CONTINUE); } } @@ -874,7 +862,7 @@ spread_row_to_solution(struct spread_row *heading, struct spread_row *units, { for (int ii = 0; ii < units->count; ii++) { - error_string = sformatf("%d\t%s\n",ii,units->char_vector[ii]); + error_string = sformatf("%d\t%s\n",ii,units->str_vector[ii].c_str()); error_msg(error_string, PHRQ_io::OT_CONTINUE); } } @@ -890,10 +878,10 @@ spread_row_to_solution(struct spread_row *heading, struct spread_row *units, /* read and save element name */ { char *temp_iso_name = string_duplicate(token.c_str()); - char *ptr1 = temp_iso_name; - get_num(&ptr1, &dummy); + const char* cptr1 = temp_iso_name; + get_num(&cptr1, &dummy); temp_isotope.Set_isotope_number(dummy); - if (ptr1[0] == '\0' || isupper((int) ptr1[0]) == FALSE) + if (cptr1[0] == '\0' || isupper((int)cptr1[0]) == FALSE) { error_msg("Expecting element name.", PHRQ_io::OT_CONTINUE); error_msg(line_save, PHRQ_io::OT_CONTINUE); @@ -902,7 +890,7 @@ spread_row_to_solution(struct spread_row *heading, struct spread_row *units, char_string = (char*)free_check_null(char_string); return (CParser::PARSER_ERROR); } - temp_isotope.Set_elt_name(ptr1); + temp_isotope.Set_elt_name(cptr1); temp_iso_name = (char*)free_check_null(temp_iso_name); } /* read and store isotope ratio */ @@ -915,7 +903,7 @@ spread_row_to_solution(struct spread_row *heading, struct spread_row *units, free_check_null(char_string); continue; } - sscanf(token.c_str(), SCANFORMAT, &dummy); + (void)sscanf(token.c_str(), SCANFORMAT, &dummy); temp_isotope.Set_ratio(dummy); temp_isotope.Set_ratio_uncertainty(NAN); @@ -932,7 +920,7 @@ spread_row_to_solution(struct spread_row *heading, struct spread_row *units, free_check_null(char_string); continue; } - sscanf(token.c_str(), SCANFORMAT, &dummy); + (void)sscanf(token.c_str(), SCANFORMAT, &dummy); temp_isotope.Set_ratio_uncertainty(dummy); } temp_solution.Get_isotopes()[temp_isotope.Get_isotope_name()] = temp_isotope; @@ -940,8 +928,6 @@ spread_row_to_solution(struct spread_row *heading, struct spread_row *units, break; case 10: /* water */ { - //next_char = char_string; - //int j = copy_token(token, &next_char); // read identifier "water" int j = copy_token(token, &next_char); if (j == EMPTY) { @@ -956,7 +942,7 @@ spread_row_to_solution(struct spread_row *heading, struct spread_row *units, } else { - sscanf(token.c_str(), SCANFORMAT, &dummy); + (void)sscanf(token.c_str(), SCANFORMAT, &dummy); temp_solution.Set_mass_water(dummy); } } @@ -1007,7 +993,7 @@ spread_row_to_solution(struct spread_row *heading, struct spread_row *units, initial_data_ptr->Get_comps()[temp_comp.Get_description()] = temp_comp; if (temp_comp.Get_pe_reaction().size() > 0) { - cxxChemRxn temp_chem_reaction; + CReaction temp_chem_reaction; initial_data_ptr->Get_pe_reactions()[temp_comp.Get_pe_reaction()] = temp_chem_reaction; } } @@ -1060,206 +1046,93 @@ spread_row_to_solution(struct spread_row *heading, struct spread_row *units, return (return_value); } /* ---------------------------------------------------------------------- */ -struct spread_row * Phreeqc:: +class spread_row * Phreeqc:: string_to_spread_row(char *string) /* ---------------------------------------------------------------------- */ { - int j, l; - /* possible memory error if length of line is smaller than previous line */ - char *token; - char *ptr; - struct spread_row *spread_row_ptr = NULL; + int j; + std::string token; + const char* cptr; /* * Allocate space */ - token = (char *) PHRQ_malloc(strlen(line) + 1); - if (token == NULL) - { - malloc_error(); - return spread_row_ptr; - } - spread_row_ptr = - (struct spread_row *) PHRQ_malloc((size_t) sizeof(struct spread_row)); + class spread_row* spread_row_ptr = new class spread_row; if (spread_row_ptr == NULL) { malloc_error(); return spread_row_ptr; } - spread_row_ptr->char_vector = - (char **) PHRQ_malloc((size_t) spread_length * sizeof(char *)); - if (spread_row_ptr->char_vector == NULL) - { - malloc_error(); - return spread_row_ptr; - } - spread_row_ptr->d_vector = - (LDBLE *) PHRQ_malloc((size_t) spread_length * sizeof(LDBLE)); - if (spread_row_ptr->d_vector == NULL) - { - malloc_error(); - return spread_row_ptr; - } - spread_row_ptr->type_vector = - (int *) PHRQ_malloc((size_t) spread_length * sizeof(int)); - if (spread_row_ptr->type_vector == NULL) - { - malloc_error(); - return spread_row_ptr; - } spread_row_ptr->count = 0; spread_row_ptr->empty = 0; spread_row_ptr->string = 0; spread_row_ptr->number = 0; - ptr = string; + cptr = string; /* * Split by tabs, reallocate space */ for (;;) { - if (spread_row_ptr->count + 1 > spread_length) - { - spread_length *= 2; - - spread_row_ptr->char_vector = - (char **) PHRQ_realloc(spread_row_ptr->char_vector, - (size_t) spread_length * sizeof(char *)); - if (spread_row_ptr->char_vector == NULL) - { - malloc_error(); - return spread_row_ptr; - } - - spread_row_ptr->d_vector = - (LDBLE *) PHRQ_realloc(spread_row_ptr->d_vector, - (size_t) spread_length * sizeof(LDBLE)); - if (spread_row_ptr->d_vector == NULL) - { - malloc_error(); - return spread_row_ptr; - } - - spread_row_ptr->type_vector = - (int *) PHRQ_realloc(spread_row_ptr->type_vector, - (size_t) spread_length * sizeof(int)); - if (spread_row_ptr->type_vector == NULL) - { - malloc_error(); - return spread_row_ptr; - } - } - j = copy_token_tab(token, &ptr, &l); + j = copy_token_tab(token, &cptr); if (j == EOL) break; - spread_row_ptr->char_vector[spread_row_ptr->count] = - string_duplicate(token); - spread_row_ptr->d_vector[spread_row_ptr->count] = NAN; - if (j == EMPTY || l == 0) + spread_row_ptr->str_vector.push_back(token); + if (j == EMPTY || token.size() == 0) { spread_row_ptr->empty++; - spread_row_ptr->type_vector[spread_row_ptr->count] = EMPTY; + spread_row_ptr->type_vector.push_back(EMPTY); } else if (j == UPPER || j == LOWER) { spread_row_ptr->string++; - spread_row_ptr->type_vector[spread_row_ptr->count] = STRING; + spread_row_ptr->type_vector.push_back(STRING); } else if (j == DIGIT) { spread_row_ptr->number++; - spread_row_ptr->d_vector[spread_row_ptr->count] = - strtod(token, NULL); - spread_row_ptr->type_vector[spread_row_ptr->count] = NUMBER; + spread_row_ptr->type_vector.push_back(NUMBER); } else { input_error++; error_msg("Unknown input in string_to_spread_row keyword.", CONTINUE); - error_string = sformatf("\tcopy_token j: %d, token: %s\n", j, token); + error_string = sformatf("\tcopy_token j: %d, token: %s\n", j, token.c_str()); error_msg(error_string, CONTINUE); error_msg(line_save, CONTINUE); } spread_row_ptr->count++; } -/* - * Clean up and return - */ - if (spread_row_ptr->count == 0) - { - spread_row_ptr->char_vector = - (char **) free_check_null(spread_row_ptr->char_vector); - spread_row_ptr->d_vector = - (LDBLE *) free_check_null(spread_row_ptr->d_vector); - spread_row_ptr->type_vector = - (int *) free_check_null(spread_row_ptr->type_vector); - } - else - { -/* Do not realloc to smaller size, memory error */ -/* - spread_row_ptr->char_vector = - (char **) PHRQ_realloc (spread_row_ptr->char_vector, - (size_t) spread_row_ptr->count * - sizeof (char *)); - if (spread_row_ptr->char_vector == NULL) - malloc_error (); - spread_row_ptr->d_vector = - (LDBLE *) PHRQ_realloc (spread_row_ptr->d_vector, - (size_t) spread_row_ptr->count * - sizeof (LDBLE)); - if (spread_row_ptr->d_vector == NULL) - malloc_error (); - spread_row_ptr->type_vector = - (int *) PHRQ_realloc (spread_row_ptr->type_vector, - (size_t) spread_row_ptr->count * sizeof (int)); - if (spread_row_ptr->type_vector == NULL) - malloc_error (); -*/ - } - token = (char *) free_check_null(token); + assert(spread_row_ptr->count == spread_row_ptr->str_vector.size()); + assert(spread_row_ptr->count == spread_row_ptr->type_vector.size()); + assert(spread_row_ptr->count == spread_row_ptr->empty + spread_row_ptr->string + spread_row_ptr->number); return (spread_row_ptr); } /* ---------------------------------------------------------------------- */ int Phreeqc:: -spread_row_free(struct spread_row *spread_row_ptr) +spread_row_free(class spread_row *spread_row_ptr) /* ---------------------------------------------------------------------- */ { - int i; - if (spread_row_ptr == NULL) return (OK); - for (i = 0; i < spread_row_ptr->count; i++) - { - spread_row_ptr->char_vector[i] = - (char *) free_check_null(spread_row_ptr->char_vector[i]); - } - - spread_row_ptr->char_vector = - (char **) free_check_null(spread_row_ptr->char_vector); - spread_row_ptr->d_vector = - (LDBLE *) free_check_null(spread_row_ptr->d_vector); - spread_row_ptr->type_vector = - (int *) free_check_null(spread_row_ptr->type_vector); - spread_row_ptr = (struct spread_row *) free_check_null(spread_row_ptr); + spread_row_ptr->str_vector.clear(); + spread_row_ptr->type_vector.clear(); + delete spread_row_ptr; return (OK); } /* ---------------------------------------------------------------------- */ int Phreeqc:: -copy_token_tab(char *token_ptr, char **ptr, int *length) +copy_token_tab(std::string& token, const char **cptr) /* ---------------------------------------------------------------------- */ { /* - * Copies from **ptr to *token_ptr until first tab is encountered. + * Copies from **cptr to *token until first tab is encountered. * * Arguments: - * *token_ptr output, place to store token - * - * **ptr input, character string to read token from - * output, next position after token - * - * length output, length of token + * *token output, place to store token * + * **cptr input, character string to read token from + * output, next position after token * Returns: * UPPER, * LOWER, @@ -1268,13 +1141,14 @@ copy_token_tab(char *token_ptr, char **ptr, int *length) * EOL, * UNKNOWN. */ - int i, j, return_value; + int i, return_value; char c; /* * Strip leading spaces */ - while ((c = **ptr) == ' ') - (*ptr)++; + token.clear(); + while ((c = **cptr) == ' ') + (*cptr)++; /* * Check what we have */ @@ -1309,10 +1183,10 @@ copy_token_tab(char *token_ptr, char **ptr, int *length) i = 0; for (;;) { - c = **ptr; + c = **cptr; if (c == '\t') { - (*ptr)++; + (*cptr)++; break; } else if (c == '\0') @@ -1321,32 +1195,17 @@ copy_token_tab(char *token_ptr, char **ptr, int *length) } else { - token_ptr[i] = c; - (*ptr)++; + token.push_back(c); + (*cptr)++; i++; } } - token_ptr[i] = '\0'; - *length = i; -/* - * Strip trailing spaces - */ - for (j = i - 1; j >= 0; j--) - { - if (j != ' ') - break; - } - if (j != i - 1) - { - token_ptr[j + 1] = '\0'; - *length = j + 1; - } return (return_value); } /* ---------------------------------------------------------------------- */ int Phreeqc:: -get_option_string(const char **opt_list, int count_opt_list, char **next_char) +get_option_string(const char **opt_list, int count_opt_list, const char **next_char) /* ---------------------------------------------------------------------- */ { /* @@ -1354,7 +1213,7 @@ get_option_string(const char **opt_list, int count_opt_list, char **next_char) */ int j; int opt_l, opt; - char *opt_ptr; + const char *opt_ptr; char option[MAX_LENGTH]; opt_ptr = *next_char; @@ -1393,7 +1252,7 @@ get_option_string(const char **opt_list, int count_opt_list, char **next_char) return (j); } -#ifdef PHREEQCI_GUI +#if defined(PHREEQCI_GUI) /* ---------------------------------------------------------------------- */ void Phreeqc:: free_spread(void) @@ -1402,124 +1261,36 @@ free_spread(void) int i; spread_row_free(g_spread_sheet.heading); spread_row_free(g_spread_sheet.units); - for (i = 0; i < g_spread_sheet.count_rows; i++) + for (i = 0; i < g_spread_sheet.rows.size(); ++i) { spread_row_free(g_spread_sheet.rows[i]); } - g_spread_sheet.rows = (spread_row**)free_check_null(g_spread_sheet.rows); + g_spread_sheet.rows.clear(); + g_spread_sheet.defaults.iso.clear(); + g_spread_sheet.defaults.redox = NULL; + g_spread_sheet.defaults.units = NULL; - for (i = 0; i < g_spread_sheet.defaults.count_iso; i++) - { - g_spread_sheet.defaults.iso[i].name = - (const char *)free_check_null((void*)g_spread_sheet.defaults.iso[i].name); - } - g_spread_sheet.defaults.iso = - (struct iso*)free_check_null(g_spread_sheet.defaults.iso); - - g_spread_sheet.defaults.redox = - (const char *)free_check_null((void*)g_spread_sheet.defaults.redox); - g_spread_sheet.defaults.units = - (const char *)free_check_null((void*)g_spread_sheet.defaults.units); - - g_spread_sheet.heading = 0; - g_spread_sheet.units = 0; - g_spread_sheet.count_rows = 0; - g_spread_sheet.defaults.count_iso = 0; + g_spread_sheet.heading = NULL; + g_spread_sheet.units = NULL; + g_spread_sheet.defaults.iso.clear(); } /* ---------------------------------------------------------------------- */ void Phreeqc:: -add_row(struct spread_row *spread_row_ptr) +add_row(class spread_row *spread_row_ptr) /* ---------------------------------------------------------------------- */ { - g_spread_sheet.rows = - (struct spread_row **) PHRQ_realloc(g_spread_sheet.rows, - sizeof(struct spread_row *) * - (g_spread_sheet.count_rows + 1)); - if (g_spread_sheet.rows == NULL) - { - malloc_error(); - } - else - { - g_spread_sheet.rows[g_spread_sheet.count_rows++] = - copy_row(spread_row_ptr); - } + g_spread_sheet.rows.push_back(copy_row(spread_row_ptr)); } /* ---------------------------------------------------------------------- */ -struct spread_row * Phreeqc:: -copy_row(struct spread_row *spread_row_ptr) +class spread_row * Phreeqc:: +copy_row(class spread_row *spread_row_ptr) /* ---------------------------------------------------------------------- */ { - int i; - struct spread_row *new_spread_row_ptr; -/* - * Allocate space - */ - new_spread_row_ptr = - (struct spread_row *) PHRQ_malloc((size_t) sizeof(struct spread_row)); - if (new_spread_row_ptr == NULL) + spread_row *copy = new spread_row(*spread_row_ptr); + if (copy == NULL) malloc_error(); - new_spread_row_ptr->char_vector = - (char **) PHRQ_malloc((size_t) spread_row_ptr->count * - sizeof(char *)); - if (new_spread_row_ptr->char_vector == NULL) - malloc_error(); - new_spread_row_ptr->d_vector = - (LDBLE *) PHRQ_malloc((size_t) spread_row_ptr->count * sizeof(LDBLE)); - if (new_spread_row_ptr->d_vector == NULL) - malloc_error(); - new_spread_row_ptr->type_vector = - (int *) PHRQ_malloc((size_t) spread_row_ptr->count * sizeof(int)); - if (new_spread_row_ptr->type_vector == NULL) - malloc_error(); - - for (i = 0; i < spread_row_ptr->count; i++) - { - new_spread_row_ptr->char_vector[i] = - string_duplicate(spread_row_ptr->char_vector[i]); - new_spread_row_ptr->d_vector[i] = spread_row_ptr->d_vector[i]; - new_spread_row_ptr->type_vector[i] = spread_row_ptr->type_vector[i]; - } - new_spread_row_ptr->count = spread_row_ptr->count; - new_spread_row_ptr->empty = spread_row_ptr->empty; - new_spread_row_ptr->number = spread_row_ptr->number; - new_spread_row_ptr->string = spread_row_ptr->string; - - return new_spread_row_ptr; + return copy; } - -/* ---------------------------------------------------------------------- */ -void Phreeqc:: -copy_defaults(struct defaults *dest_ptr, struct defaults *src_ptr) -/* ---------------------------------------------------------------------- */ -{ - int i; - dest_ptr->count_iso = src_ptr->count_iso; - dest_ptr->density = src_ptr->density; - dest_ptr->iso = - (struct iso *) PHRQ_malloc(sizeof(struct iso) * src_ptr->count_iso); - if (dest_ptr->iso == NULL) - { - malloc_error(); - } - else - { - for (i = 0; i < src_ptr->count_iso; i++) - { - dest_ptr->iso[i] = src_ptr->iso[i]; - dest_ptr->iso[i].name = string_duplicate(src_ptr->iso[i].name); - } - } - - dest_ptr->pe = src_ptr->pe; - dest_ptr->ph = src_ptr->ph; - dest_ptr->redox = string_duplicate(src_ptr->redox); - dest_ptr->temp = src_ptr->temp; - dest_ptr->units = string_duplicate(src_ptr->units); - dest_ptr->water = src_ptr->water; - dest_ptr->pressure = src_ptr->pressure; -} - #endif diff --git a/step.cpp b/step.cpp index 4aeda1f3..a5503f02 100644 --- a/step.cpp +++ b/step.cpp @@ -17,6 +17,14 @@ #include "SSassemblage.h" #include "cxxKinetics.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /* ---------------------------------------------------------------------- */ int Phreeqc:: step(LDBLE step_fraction) @@ -49,11 +57,19 @@ step(LDBLE step_fraction) */ if (use.Get_mix_ptr() != NULL) { - add_mix(use.Get_mix_ptr()); + add_mix(use.Get_mix_ptr()); + int n = use.Get_n_mix_user_orig(); + if (n == 0 || n == count_cells + 1) + { + cxxSolution *solution_ptr = Utilities::Rxn_find(Rxn_solution_map, n); + if (solution_ptr != NULL && !solution_ptr->Get_new_def()) + potV_x = solution_ptr->Get_potV(); + } } else if (use.Get_solution_ptr() != NULL) { add_solution(use.Get_solution_ptr(), 1.0, 1.0); + potV_x = use.Get_solution_ptr()->Get_potV(); cell_no = use.Get_n_solution_user(); } else @@ -237,10 +253,10 @@ step(LDBLE step_fraction) for ( ; it != pp_assemblage_ptr->Get_pp_assemblage_comps().end(); it++) { int n; - struct phase *p_ptr = phase_bsearch((it->first).c_str(), &n, FALSE); - struct elt_list *e_ptr; + class phase *p_ptr = phase_bsearch((it->first).c_str(), &n, FALSE); + const class elt_list *e_ptr; LDBLE min = 1e10; - for (e_ptr = p_ptr->next_elt; e_ptr->elt != NULL; e_ptr++) + for (e_ptr = &p_ptr->next_elt[0]; e_ptr->elt != NULL; e_ptr++) { std::string e(e_ptr->elt->primary->elt->name); cxxNameDouble::iterator st = sys_tots.find(e.c_str()); @@ -264,11 +280,11 @@ step(LDBLE step_fraction) { cxxSScomp *comp_ptr = &(ss_ptr->Get_ss_comps()[k]); int n; - struct phase *p_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &n, FALSE); + class phase *p_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &n, FALSE); - struct elt_list *e_ptr; + const class elt_list *e_ptr; LDBLE min = 1e10; - for (e_ptr = p_ptr->next_elt; e_ptr->elt != NULL; e_ptr++) + for (e_ptr = &p_ptr->next_elt[0]; e_ptr->elt != NULL; e_ptr++) { std::string e(e_ptr->elt->primary->elt->name); cxxNameDouble::iterator st = sys_tots.find(e.c_str()); @@ -318,7 +334,7 @@ xsolution_zero(void) mass_water_aq_x = 0.0; units_x = moles_per_kilogram_string; - for (i = 0; i < count_master; i++) + for (i = 0; i < (int)master.size(); i++) { master[i]->total = 0.0; master[i]->total_primary = 0.0; @@ -326,7 +342,7 @@ xsolution_zero(void) } if (pitzer_model == TRUE || sit_model == TRUE) { - for (i = 0; i < count_s; i++) + for (i = 0; i < (int)s.size(); i++) { s[i]->lg = 0.0; } @@ -351,15 +367,15 @@ add_solution(cxxSolution *solution_ptr, LDBLE extensive, LDBLE intensive) * extensive is multiplication factor for solution * intensive is fraction of all multiplication factors for all solutions */ - struct master *master_ptr; - struct species *species_ptr; + class master *master_ptr; + class species *species_ptr; /* * Add solution to global variables */ tc_x += solution_ptr->Get_tc() * intensive; ph_x += solution_ptr->Get_ph() * intensive; patm_x += solution_ptr->Get_patm() * intensive; - potV_x += solution_ptr->Get_potV() * intensive; + //potV_x += solution_ptr->Get_potV() * intensive; solution_pe_x += solution_ptr->Get_pe() * intensive; mu_x += solution_ptr->Get_mu() * intensive; ah2o_x += solution_ptr->Get_ah2o() * intensive; @@ -425,7 +441,7 @@ add_exchange(cxxExchange *exchange_ptr) /* * Accumulate exchange data in master->totals and _x variables. */ - struct master *master_ptr; + class master *master_ptr; if (exchange_ptr == NULL) return (OK); @@ -439,7 +455,7 @@ add_exchange(cxxExchange *exchange_ptr) cxxNameDouble::iterator it = nd.begin(); for ( ; it != nd.end(); it++) { - struct element *elt_ptr = element_store(it->first.c_str()); + class element *elt_ptr = element_store(it->first.c_str()); LDBLE coef = it->second; assert(elt_ptr != NULL && elt_ptr->primary != NULL); master_ptr = elt_ptr->primary; @@ -459,7 +475,7 @@ add_exchange(cxxExchange *exchange_ptr) } if (exchange_ptr->Get_new_def()) { - for (int i = 0; i < count_master; i++) + for (int i = 0; i < (int)master.size(); i++) { if (master[i]->type == EX && master[i]->total > 0) { @@ -476,7 +492,7 @@ add_exchange(cxxExchange *exchange_ptr) cxxNameDouble::iterator it = nd.begin(); for ( ; it != nd.end(); it++) { - struct element *elt_ptr = element_store(it->first.c_str()); + class element *elt_ptr = element_store(it->first.c_str()); assert(elt_ptr->master); if (elt_ptr->master->type == EX) { @@ -505,23 +521,17 @@ add_surface(cxxSurface *surface_ptr) for (size_t i = 0; i < surface_ptr->Get_surface_comps().size(); i++) { cxxSurfaceComp *comp_ptr = &(surface_ptr->Get_surface_comps()[i]); - struct element *elt_ptr = element_store(comp_ptr->Get_master_element().c_str()); + class element *elt_ptr = element_store(comp_ptr->Get_master_element().c_str()); if (elt_ptr->master == NULL) { error_msg(sformatf("Data not defined for master in SURFACE, %s\n", comp_ptr->Get_formula().c_str()), STOP); } - struct master *master_i_ptr = elt_ptr->master; + class master *master_i_ptr = elt_ptr->master; if (surface_ptr->Get_type() == cxxSurface::NO_EDL) { cb_x += comp_ptr->Get_charge_balance(); } -#ifdef SKIP_MUSIC - if (surface_ptr->type == CD_MUSIC) - { - cb_x += surface_ptr->comps[i].cb; - } -#endif if (!surface_ptr->Get_new_def()) { master_i_ptr->s->la = comp_ptr->Get_la(); @@ -533,8 +543,8 @@ add_surface(cxxSurface *surface_ptr) for (jit = comp_ptr->Get_totals().begin(); jit != comp_ptr->Get_totals().end(); jit++) { LDBLE coef = jit->second; - struct element *elt_j_ptr = element_store(jit->first.c_str()); - struct master *master_j_ptr = elt_j_ptr->primary; + class element *elt_j_ptr = element_store(jit->first.c_str()); + class master *master_j_ptr = elt_j_ptr->primary; if (master_j_ptr == NULL) { input_error++; @@ -567,7 +577,7 @@ add_surface(cxxSurface *surface_ptr) } if (!surface_ptr->Get_new_def()) { - struct master *master_ptr = surface_get_psi_master(charge_ptr->Get_name().c_str(), SURF_PSI); + class master *master_ptr = surface_get_psi_master(charge_ptr->Get_name().c_str(), SURF_PSI); master_ptr->s->la = charge_ptr->Get_la_psi(); } /* @@ -579,8 +589,8 @@ add_surface(cxxSurface *surface_ptr) for (jit = charge_ptr->Get_diffuse_layer_totals().begin(); jit != charge_ptr->Get_diffuse_layer_totals().end(); jit++) { LDBLE coef = jit->second; - struct element *elt_j_ptr = element_store(jit->first.c_str()); - struct master * master_j_ptr = elt_j_ptr->master; + class element *elt_j_ptr = element_store(jit->first.c_str()); + class master * master_j_ptr = elt_j_ptr->master; if (master_j_ptr->s == s_hplus) { total_h_x += coef; @@ -669,8 +679,8 @@ add_pp_assemblage(cxxPPassemblage *pp_assemblage_ptr) int i; LDBLE amount_to_add, total; char token[MAX_LENGTH]; - char *ptr; - struct master *master_ptr; + const char* cptr; + class master *master_ptr; if (check_pp_assemblage(pp_assemblage_ptr) == OK) return (OK); @@ -690,7 +700,7 @@ add_pp_assemblage(cxxPPassemblage *pp_assemblage_ptr) cxxPPassemblageComp * comp_ptr = &(it->second); if (comp_ptr->Get_precipitate_only()) continue; int l; - struct phase * phase_ptr = phase_bsearch(it->first.c_str(), &l, FALSE); + class phase * phase_ptr = phase_bsearch(it->first.c_str(), &l, FALSE); count_elts = 0; paren_count = 0; amount_to_add = 0.0; @@ -698,8 +708,8 @@ add_pp_assemblage(cxxPPassemblage *pp_assemblage_ptr) if (comp_ptr->Get_add_formula().size() > 0) { strcpy(token, comp_ptr->Get_add_formula().c_str()); - ptr = &(token[0]); - get_elts_in_species(&ptr, 1.0); + cptr = &(token[0]); + get_elts_in_species(&cptr, 1.0); } else { @@ -774,13 +784,13 @@ check_pp_assemblage(cxxPPassemblage *pp_assemblage_ptr) * if all are in model. Return true if all are present, * Return false if one or more is missing. */ - struct master *master_ptr; + class master *master_ptr; cxxNameDouble nd = pp_assemblage_ptr->Get_eltList(); cxxNameDouble::iterator it; for (it = nd.begin(); it != nd.end(); it++) { - struct element *elt_ptr = element_store(it->first.c_str()); + class element *elt_ptr = element_store(it->first.c_str()); if (elt_ptr == NULL || elt_ptr->primary == NULL) { return FALSE; @@ -804,7 +814,7 @@ add_reaction(cxxReaction *reaction_ptr, int step_number, LDBLE step_fraction) * Add irreversible reaction */ char c; - struct master *master_ptr; + class master *master_ptr; /* * Calculate and save reaction */ @@ -829,7 +839,7 @@ add_reaction(cxxReaction *reaction_ptr, int step_number, LDBLE step_fraction) } else { - step_x = reaction_ptr->Get_steps()[step_number - 1]; + step_x = reaction_ptr->Get_steps()[(size_t)step_number - 1]; } } else if (reaction_ptr->Get_equalIncrements() && reaction_ptr->Get_steps().size()> 0) @@ -857,11 +867,11 @@ add_reaction(cxxReaction *reaction_ptr, int step_number, LDBLE step_fraction) { if (step_number > (int) reaction_ptr->Get_reaction_steps()) { - step_x = reaction_ptr->Get_steps()[reaction_ptr->Get_reaction_steps() - 1]; + step_x = reaction_ptr->Get_steps()[(size_t)reaction_ptr->Get_reaction_steps() - 1]; } else { - step_x = reaction_ptr->Get_steps()[step_number - 1]; + step_x = reaction_ptr->Get_steps()[(size_t)step_number - 1]; } } else if (reaction_ptr->Get_equalIncrements() && reaction_ptr->Get_steps().size()> 0) @@ -902,7 +912,7 @@ add_reaction(cxxReaction *reaction_ptr, int step_number, LDBLE step_fraction) cxxNameDouble::const_iterator it = reaction_ptr->Get_elementList().begin(); for ( ; it != reaction_ptr->Get_elementList().end(); it++) { - struct element * elt_ptr = element_store(it->first.c_str()); + class element * elt_ptr = element_store(it->first.c_str()); LDBLE coef = it->second; if (elt_ptr == NULL) { @@ -944,8 +954,8 @@ reaction_calc(cxxReaction *reaction_ptr) */ int return_value; LDBLE coef; - char *ptr; - struct phase *phase_ptr; + const char* cptr; + class phase *phase_ptr; /* * Go through list and generate list of elements and * coefficient of elements in reaction @@ -970,10 +980,8 @@ reaction_calc(cxxReaction *reaction_ptr) } else { - char * token = string_duplicate(it->first.c_str()); - ptr = token; - get_elts_in_species(&ptr, coef); - free_check_null(token); + cptr = it->first.c_str(); + get_elts_in_species(&cptr, coef); } } /* @@ -1004,7 +1012,7 @@ add_gas_phase(cxxGasPhase *gas_phase_ptr) * Accumulate gas data in master->totals and _x variables. */ int i; - struct master *master_ptr; + class master *master_ptr; if (gas_phase_ptr == NULL) return (OK); @@ -1017,7 +1025,7 @@ add_gas_phase(cxxGasPhase *gas_phase_ptr) { cxxGasComp *gc_ptr = &(gas_phase_ptr->Get_gas_comps()[i]); int k; - struct phase *phase_ptr = phase_bsearch(gc_ptr->Get_phase_name().c_str() , &k, FALSE); + class phase *phase_ptr = phase_bsearch(gc_ptr->Get_phase_name().c_str() , &k, FALSE); if (phase_ptr == NULL) { input_error++; @@ -1032,12 +1040,7 @@ add_gas_phase(cxxGasPhase *gas_phase_ptr) /* * Sort elements in reaction and combine */ - if (count_elts > 0) - { - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); - elt_list_combine(); - } + elt_list_combine(); /* * Add gas elements to totals */ @@ -1074,8 +1077,8 @@ add_ss_assemblage(cxxSSassemblage *ss_assemblage_ptr) */ int i, j, k; LDBLE amount_to_add, total; - struct master *master_ptr; - char *ptr; + class master *master_ptr; + const char* cptr; if (ss_assemblage_ptr == NULL) return (OK); @@ -1094,16 +1097,15 @@ add_ss_assemblage(cxxSSassemblage *ss_assemblage_ptr) { cxxSScomp *comp_ptr = &(ss_ptr->Get_ss_comps()[j]); int l; - struct phase * phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + class phase * phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); amount_to_add = 0.0; comp_ptr->Set_delta(0.0); if (comp_ptr->Get_moles() > 0.0) { - char * token = string_duplicate(phase_ptr->formula); - ptr = &(token[0]); - get_elts_in_species(&ptr, 1.0); - free_check_null(token); + cptr = phase_ptr->formula; + count_elts = 0; // appt + get_elts_in_species(&cptr, 1.0); for (k = 0; k < count_elts; k++) { master_ptr = elt_list[k].elt->primary; @@ -1170,7 +1172,7 @@ add_kinetics(cxxKinetics *kinetics_ptr) /* * Add kinetic reaction */ - struct master *master_ptr = NULL; + class master *master_ptr = NULL; /* * Add reaction to totals */ @@ -1180,7 +1182,7 @@ add_kinetics(cxxKinetics *kinetics_ptr) for (; it != kinetics_ptr->Get_totals().end(); it++) { LDBLE coef = it->second; - struct element *elt_ptr = element_store(it->first.c_str()); + class element *elt_ptr = element_store(it->first.c_str()); if (elt_ptr == NULL || (master_ptr = elt_ptr->primary) == NULL) { input_error++; @@ -1215,7 +1217,7 @@ gas_phase_check(cxxGasPhase *gas_phase_ptr) /* * Check for missing elements */ - struct master *master_ptr; + class master *master_ptr; if (gas_phase_ptr == NULL) return (OK); @@ -1233,7 +1235,7 @@ gas_phase_check(cxxGasPhase *gas_phase_ptr) { cxxGasComp *gc_ptr = &(gas_phase_ptr->Get_gas_comps()[i]); int k; - struct phase *phase_ptr = phase_bsearch(gc_ptr->Get_phase_name().c_str() , &k, FALSE); + class phase *phase_ptr = phase_bsearch(gc_ptr->Get_phase_name().c_str() , &k, FALSE); count_elts = 0; paren_count = 0; if (gc_ptr->Get_moles() <= 0.0) @@ -1280,8 +1282,8 @@ pp_assemblage_check(cxxPPassemblage *pp_assemblage_ptr) * Check for missing elements */ std::string token; - char *ptr; - struct master *master_ptr; + const char* cptr; + class master *master_ptr; if (check_pp_assemblage(pp_assemblage_ptr) == OK) return (OK); @@ -1294,7 +1296,7 @@ pp_assemblage_check(cxxPPassemblage *pp_assemblage_ptr) { cxxPPassemblageComp * comp_ptr = &(it->second); int l; - struct phase * phase_ptr = phase_bsearch(it->first.c_str(), &l, FALSE); + class phase * phase_ptr = phase_bsearch(it->first.c_str(), &l, FALSE); count_elts = 0; paren_count = 0; if (comp_ptr->Get_moles() <= 0.0) @@ -1303,8 +1305,8 @@ pp_assemblage_check(cxxPPassemblage *pp_assemblage_ptr) if (comp_ptr->Get_add_formula().size() > 0) { token = comp_ptr->Get_add_formula(); - ptr = &(token[0]); - get_elts_in_species(&ptr, 1.0); + cptr = &(token[0]); + get_elts_in_species(&cptr, 1.0); } else { @@ -1342,7 +1344,7 @@ pp_assemblage_check(cxxPPassemblage *pp_assemblage_ptr) * Make la's of all master species for the element small, so SI will be small * and no mass transfer will be calculated */ - for (int k = 0; k < count_master; k++) + for (int k = 0; k < (int)master.size(); k++) { if (master[k]->elt->primary == master_ptr) { @@ -1364,7 +1366,7 @@ ss_assemblage_check(cxxSSassemblage *ss_assemblage_ptr) * Check for missing elements */ int j, k; - struct master *master_ptr; + class master *master_ptr; if (ss_assemblage_ptr == NULL) return (OK); @@ -1379,7 +1381,7 @@ ss_assemblage_check(cxxSSassemblage *ss_assemblage_ptr) { cxxSScomp *comp_ptr = &(ss_ptr->Get_ss_comps()[k]); int l; - struct phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + class phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); count_elts = 0; paren_count = 0; if (comp_ptr->Get_moles() <= 0.0) @@ -1417,7 +1419,7 @@ ss_assemblage_check(cxxSSassemblage *ss_assemblage_ptr) * so SI will be small * and no mass transfer will be calculated */ - for (k = 0; k < count_master; k++) + for (k = 0; k < (int)master.size(); k++) { if (master[k]->elt->primary == master_ptr) { @@ -1439,12 +1441,12 @@ solution_check(void) * Check for missing elements */ int i; - struct master *master_ptr; + class master *master_ptr; /* * Check that all elements are in solution for phases with zero mass */ - for (i = 0; i < count_master; i++) + for (i = 0; i < (int)master.size(); i++) { master_ptr = master[i]; if (master_ptr->total <= MIN_TOTAL && master_ptr->total >= -MIN_TOTAL) @@ -1470,10 +1472,13 @@ solution_check(void) "Element %s has negative moles in solution, %e. \n\tErroneous mole balance occurs as moles are added to produce zero moles.\n\tUsually caused by KINETICS, REACTION, or diffuse layer calculation.\n\tMay be due to large time steps in early part of KINETICS simulation or negative concentrations in the diffuse layer.", master_ptr->elt->name, (LDBLE) master_ptr->total); */ - error_string = sformatf( + if (state != TRANSPORT) + { + error_string = sformatf( "Negative moles in solution %d for %s, %e. Recovering...", - cell_no, master_ptr->elt->name, (double) master_ptr->total); - warning_msg(error_string); + cell_no, master_ptr->elt->name, (double)master_ptr->total); + warning_msg(error_string); + } return (MASS_BALANCE); } return (OK); diff --git a/structures.cpp b/structures.cpp index 67c39f2a..ac1eaa40 100644 --- a/structures.cpp +++ b/structures.cpp @@ -15,15 +15,22 @@ #include "Surface.h" #include "Solution.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif /* ---------------------------------------------------------------------- */ int Phreeqc:: clean_up(void) /* ---------------------------------------------------------------------- */ { -/* - * Free all allocated memory, except strings - */ + /* + * Free all allocated memory, except strings + */ int i, j; #if defined MULTICHART chart_handler.End_timer(); @@ -37,352 +44,187 @@ clean_up(void) #endif #endif - description_x = (char *) free_check_null(description_x); isotopes_x.clear(); - moles_per_kilogram_string = - (char *) free_check_null(moles_per_kilogram_string); - pe_string = (char *) free_check_null(pe_string); -/* model */ - last_model.exchange = - (struct master **) free_check_null(last_model.exchange); - last_model.gas_phase = - (struct phase **) free_check_null(last_model.gas_phase); - last_model.pp_assemblage = - (struct phase **) free_check_null(last_model.pp_assemblage); - last_model.ss_assemblage = - (const char **) free_check_null(last_model.ss_assemblage); - last_model.add_formula = - (const char **) free_check_null(last_model.add_formula); - last_model.si = (LDBLE *) free_check_null(last_model.si); - last_model.surface_comp = - (const char **) free_check_null(last_model.surface_comp); - last_model.surface_charge = - (const char **) free_check_null(last_model.surface_charge); - + /* model */ + last_model.gas_phase.clear(); + last_model.pp_assemblage.clear(); + last_model.add_formula.clear(); + last_model.si.clear(); + last_model.ss_assemblage.clear(); + last_model.surface_comp.clear(); + last_model.surface_charge.clear(); /* model */ free_model_allocs(); -/* species */ + /* species */ - for (j = 0; j < count_s; j++) + for (j = 0; j < (int)s.size(); j++) { s_free(s[j]); - s[j] = (struct species *) free_check_null(s[j]); + delete s[j]; } - s = (struct species **) free_check_null(s); + s.clear(); -/* master species */ + /* master species */ - for (j = 0; j < count_master; j++) + for (j = 0; j < (int)master.size(); j++) { master_free(master[j]); } - master = (struct master **) free_check_null(master); + master.clear(); -/* elements */ + /* elements */ - for (j = 0; j < count_elements; j++) + for (j = 0; j < (int)elements.size(); j++) { - elements[j] = (struct element *) free_check_null(elements[j]); + delete elements[j]; } - elements = (struct element **) free_check_null(elements); - -/* solutions */ + elements.clear(); + /* solutions */ Rxn_solution_map.clear(); - -/* surfaces */ + /* surfaces */ Rxn_surface_map.clear(); - -/* exchange */ + /* exchange */ Rxn_exchange_map.clear(); - -/* pp assemblages */ + /* pp assemblages */ Rxn_pp_assemblage_map.clear(); - -/* s_s assemblages */ + /* s_s assemblages */ Rxn_ss_assemblage_map.clear(); - -/* irreversible reactions */ + /* irreversible reactions */ Rxn_reaction_map.clear(); - -/* temperature */ + /* temperature */ Rxn_temperature_map.clear(); - -/* pressure */ + /* pressure */ Rxn_pressure_map.clear(); - -/* unknowns */ - - for (j = 0; j < max_unknowns; j++) + /* unknowns */ + for (j = 0; j < (int)x.size(); j++) { unknown_free(x[j]); } - x = (struct unknown **) free_check_null(x); - -/* mixtures */ + x.clear(); + /* mixtures */ Rxn_mix_map.clear(); - -/* phases */ - - for (j = 0; j < count_phases; j++) + /* phases */ + for (j = 0; j < (int)phases.size(); j++) { phase_free(phases[j]); - phases[j] = (struct phase *) free_check_null(phases[j]); + delete phases[j]; } - phases = (struct phase **) free_check_null(phases); - -/* inverse */ + phases.clear(); + /* inverse */ for (j = 0; j < count_inverse; j++) { inverse_free(&(inverse[j])); } - inverse = (struct inverse *) free_check_null(inverse); - -/* gases */ + inverse.clear(); + /* gases */ Rxn_gas_phase_map.clear(); - -/* kinetics */ + /* kinetics */ Rxn_kinetics_map.clear(); - x0_moles = (LDBLE *) free_check_null(x0_moles); - m_temp = (LDBLE *) free_check_null(m_temp); - m_original = (LDBLE *) free_check_null(m_original); - rk_moles = (LDBLE *) free_check_null(rk_moles); - -/* rates */ - for (j = 0; j < count_rates; j++) + x0_moles.clear(); + m_temp.clear(); + m_original.clear(); + rk_moles.clear(); + /* rates */ + for (j = 0; j < (int)rates.size(); j++) { rate_free(&rates[j]); } - rates = (struct rate *) free_check_null(rates); - -/* logk hash table */ - for (j = 0; j < count_logk; j++) + rates.clear(); + /* logk table */ + for (j = 0; j < (int)logk.size(); j++) { - free_check_null(logk[j]->add_logk); - logk[j] = (struct logk *) free_check_null(logk[j]); + logk[j]->add_logk.clear(); + delete logk[j]; } - logk = (struct logk **) free_check_null(logk); - -/* save_values */ - for (j = 0; j < count_save_values; j++) - { - save_values[j].subscripts = - (int *) free_check_null(save_values[j].subscripts); - } - save_values = (struct save_values *) free_check_null(save_values); - -/* model */ - -/* global solution */ - + logk.clear(); + save_values.clear(); + /* working pe*/ pe_x.clear(); - -/* species_list */ - - species_list = (struct species_list *) free_check_null(species_list); - -/* transport data */ - - stag_data = (struct stag_data *) free_check_null(stag_data); - cell_data = (struct cell_data *) free_check_null(cell_data); - -/* punch */ -#ifdef SKIP - punch.totals = (struct name_master *) free_check_null(punch.totals); - punch.molalities = - (struct name_species *) free_check_null(punch.molalities); - punch.activities = - (struct name_species *) free_check_null(punch.activities); - punch.pure_phases = - (struct name_phase *) free_check_null(punch.pure_phases); - punch.si = (struct name_phase *) free_check_null(punch.si); - punch.gases = (struct name_phase *) free_check_null(punch.gases); - punch.s_s = (struct name_phase *) free_check_null(punch.s_s); - punch.kinetics = (struct name_phase *) free_check_null(punch.kinetics); -#endif - advection_punch = (int *) free_check_null(advection_punch); - advection_print = (int *) free_check_null(advection_print); -#ifdef SKIP - punch.isotopes = (struct name_master *) free_check_null(punch.isotopes); - punch.calculate_values = - (struct name_master *) free_check_null(punch.calculate_values); -#endif + /*species_list*/ + species_list.clear(); + /* transport data */ + cell_data.clear(); + /* advection */ + advection_punch.clear(); + advection_print.clear(); + /* selected_output */ SelectedOutput_map.clear(); + /* user_print and user_punch */ UserPunch_map.clear(); - -/* user_print and user_punch */ rate_free(user_print); - user_print = (struct rate *) free_check_null(user_print); -#ifdef SKIP - rate_free(user_punch); - user_print = (struct rate *) free_check_null(user_print); - - user_punch = (struct rate *) free_check_null(user_punch); - user_punch_headings = (const char **) free_check_null(user_punch_headings); -#endif - + delete user_print; /* - Free llnl aqueous model parameters + Clear llnl aqueous model parameters */ - llnl_temp = (LDBLE *) free_check_null(llnl_temp); - llnl_adh = (LDBLE *) free_check_null(llnl_adh); - llnl_bdh = (LDBLE *) free_check_null(llnl_bdh); - llnl_bdot = (LDBLE *) free_check_null(llnl_bdot); - llnl_co2_coefs = (LDBLE *) free_check_null(llnl_co2_coefs); - /* - * Copier space - */ - copier_free(©_solution); - copier_free(©_pp_assemblage); - copier_free(©_exchange); - copier_free(©_surface); - copier_free(©_ss_assemblage); - copier_free(©_gas_phase); - copier_free(©_kinetics); - copier_free(©_mix); - copier_free(©_reaction); - copier_free(©_temperature); - copier_free(©_pressure); - -#if defined PHREEQ98 - rate_free(user_graph); - user_graph = (struct rate *) free_check_null(user_graph); - user_graph_headings = (char **) free_check_null(user_graph_headings); -#endif + llnl_temp.clear(); + llnl_adh.clear(); + llnl_bdh.clear(); + llnl_bdot.clear(); + llnl_co2_coefs.clear(); /* master_isotope */ - for (i = 0; i < count_master_isotope; i++) + for (i = 0; i < (int)master_isotope.size(); i++) { - master_isotope[i] = - (struct master_isotope *) free_check_null(master_isotope[i]); + delete master_isotope[i]; } - master_isotope = - (struct master_isotope **) free_check_null(master_isotope); - hdestroy_multi(master_isotope_hash_table); - master_isotope_hash_table = NULL; - + master_isotope.clear(); + master_isotope_map.clear(); /* calculate_value */ - for (i = 0; i < count_calculate_value; i++) + for (i = 0; i < (int)calculate_value.size(); i++) { calculate_value_free(calculate_value[i]); - calculate_value[i] = - (struct calculate_value *) free_check_null(calculate_value[i]); + delete calculate_value[i]; } - calculate_value = - (struct calculate_value **) free_check_null(calculate_value); - hdestroy_multi(calculate_value_hash_table); - calculate_value_hash_table = NULL; - + calculate_value.clear(); + calculate_value_map.clear(); /* isotope_ratio */ - for (i = 0; i < count_isotope_ratio; i++) + for (i = 0; i < (int)isotope_ratio.size(); i++) { - isotope_ratio[i] = - (struct isotope_ratio *) free_check_null(isotope_ratio[i]); + delete isotope_ratio[i]; } - isotope_ratio = (struct isotope_ratio **) free_check_null(isotope_ratio); - hdestroy_multi(isotope_ratio_hash_table); - isotope_ratio_hash_table = NULL; - + isotope_ratio.clear(); + isotope_ratio_map.clear(); /* isotope_alpha */ - for (i = 0; i < count_isotope_alpha; i++) + for (i = 0; i < (int)isotope_alpha.size(); i++) { - isotope_alpha[i] = - (struct isotope_alpha *) free_check_null(isotope_alpha[i]); + delete isotope_alpha[i]; } - isotope_alpha = (struct isotope_alpha **) free_check_null(isotope_alpha); - hdestroy_multi(isotope_alpha_hash_table); - isotope_alpha_hash_table = NULL; - + isotope_alpha.clear(); + isotope_alpha_map.clear(); + /* tally table */ free_tally_table(); - /* CVODE memory */ free_cvode(); - + /* pitzer */ pitzer_clean_up(); - + /* sit */ sit_clean_up(); - - -/* hash tables */ - - hdestroy_multi(elements_hash_table); - hdestroy_multi(species_hash_table); - hdestroy_multi(logk_hash_table); - hdestroy_multi(phases_hash_table); - - elements_hash_table = NULL; - species_hash_table = NULL; - logk_hash_table = NULL; - phases_hash_table = NULL; - -/* strings */ -#ifdef HASH - strings_hash_clear(); -#else + /* elements, species, phases*/ + elements_map.clear(); + species_map.clear(); + phases_map.clear(); + logk_map.clear(); + /* strings */ strings_map_clear(); -#endif - -/* delete basic interpreter */ + /* delete basic interpreter */ basic_free(); + /* change_surf */ change_surf = (struct Change_Surf *) free_check_null(change_surf); - -/* miscellaneous work space */ - - elt_list = (struct elt_list *) free_check_null(elt_list); - trxn.token = (struct rxn_token_temp *) free_check_null(trxn.token); - mb_unknowns = (struct unknown_list *) free_check_null(mb_unknowns); + /* miscellaneous work space */ + elt_list.clear(); + trxn.token.clear(); + mb_unknowns.clear(); line = (char *) free_check_null(line); line_save = (char *) free_check_null(line_save); - - zeros = (LDBLE *) free_check_null(zeros); - scratch = (LDBLE *) free_check_null(scratch); - x_arg = (LDBLE *) free_check_null(x_arg); - res_arg = (LDBLE *) free_check_null(res_arg); - - normal = (LDBLE *) free_check_null(normal); - ineq_array = (LDBLE *) free_check_null(ineq_array); - back_eq = (int *) free_check_null(back_eq); - zero = (LDBLE *) free_check_null(zero); - res = (LDBLE *) free_check_null(res); - delta1 = (LDBLE *) free_check_null(delta1); - cu = (LDBLE *) free_check_null(cu); - iu = (int *) free_check_null(iu); - is = (int *) free_check_null(is); - -/* x_arg = res_arg = scratch = NULL; */ - x_arg_max = res_arg_max = scratch_max = 0; - - -/* free user database name if defined */ - user_database = (char *) free_check_null(user_database); - //selected_output_file_name = - // (char *) free_check_null(selected_output_file_name); + /* free user database name if defined */ dump_file_name = (char *) free_check_null(dump_file_name); #ifdef PHREEQCI_GUI free_spread(); #endif - title_x = (char *) free_check_null(title_x); + title_x.clear(); last_title_x.clear(); - count_elements = 0; - count_master = 0; - count_phases = 0; - count_s = 0; - count_logk = 0; - count_master_isotope = 0; - count_rates = 0; count_inverse = 0; - count_save_values = 0; - llnl_count_temp = 0; - llnl_count_adh = 0; - llnl_count_bdh = 0; - llnl_count_bdot = 0; - llnl_count_co2_coefs = 0; - - count_calculate_value = 0; - count_isotope_ratio = 0; - count_isotope_alpha = 0; - - default_data_base = (char *) free_check_null(default_data_base); sformatf_buffer = (char *) free_check_null(sformatf_buffer); return (OK); } @@ -391,38 +233,97 @@ int Phreeqc:: reinitialize(void) /* ---------------------------------------------------------------------- */ { -/* solutions */ + /* solutions */ Rxn_solution_map.clear(); - -/* surfaces */ + /* surfaces */ Rxn_surface_map.clear(); - -/* exchange */ + /* exchange */ Rxn_exchange_map.clear(); - -/* pp assemblages */ + /* pp assemblages */ Rxn_pp_assemblage_map.clear(); - -/* s_s assemblages */ + /* s_s assemblages */ Rxn_ss_assemblage_map.clear(); - -/* gases */ + /* gases */ Rxn_gas_phase_map.clear(); - -/* kinetics */ + /* kinetics */ Rxn_kinetics_map.clear(); - -/* irreversible reactions */ + /* irreversible reactions */ Rxn_reaction_map.clear(); - // Temperature Rxn_temperature_map.clear(); - // Pressure Rxn_pressure_map.clear(); return (OK); } +/* ********************************************************************** + * + * Routines related to CReaction + * + * ********************************************************************** */ +CReaction::CReaction(void) +{ + for (size_t i = 0; i < MAX_LOG_K_INDICES; i++) this->logk[i] = 0.0; + for (size_t i = 0; i < 3; i++) this->dz[i] = 0.0; +} +CReaction::CReaction(size_t ntoken) +{ + for (size_t i = 0; i < MAX_LOG_K_INDICES; i++) this->logk[i] = 0.0; + for (size_t i = 0; i < 3; i++) this->dz[i] = 0.0; + this->token.resize(ntoken); +} +void CReaction::Set_logk(double* d) +{ + for (size_t i = 0; i < MAX_LOG_K_INDICES; i++)logk[i] = d[i]; +} +void CReaction::Set_dz(double* d) +{ + for (size_t i = 0; i < 3; i++) dz[i] = d[i]; +} +CReaction Phreeqc::CReaction_internal_copy(CReaction& rxn_ref) +{ + CReaction rxn; + for (size_t i = 0; i < MAX_LOG_K_INDICES; i++) rxn.logk[i] = rxn_ref.logk[i]; + for (size_t i = 0; i < 3; i++) rxn.dz[i] = rxn_ref.dz[i]; + rxn.Get_tokens().resize(rxn_ref.Get_tokens().size()); + for (size_t i = 0; i < rxn_ref.Get_tokens().size(); i++) + { + rxn.token[i].s = (rxn_ref.token[i].s == NULL) ? NULL : + s_store(rxn_ref.token[i].s->name, rxn_ref.token[i].s->z, false); + rxn.token[i].coef = rxn_ref.token[i].coef; + rxn.token[i].name = (rxn_ref.token[i].name == NULL) ? NULL : + string_hsave(rxn_ref.token[i].name); + } + return rxn; +} +/* ---------------------------------------------------------------------- */ +double Phreeqc:: +rxn_find_coef(CReaction& r_ref, const char* str) +/* ---------------------------------------------------------------------- */ +{ + /* + * Finds coefficient of token in reaction. + * input: r_ptr, pointer to a reaction structure + * str, string to find as reaction token + * + * Return: 0.0, if token not found + * coefficient of token, if found. + */ + class rxn_token* r_token; + LDBLE coef; + r_token = &r_ref.token[1]; + coef = 0.0; + while (r_token->s != NULL) + { + if (strcmp(r_token->s->name, str) == 0) + { + coef = r_token->coef; + break; + } + r_token++; + } + return (coef); +} /* ********************************************************************** * * Routines related to structure "element" @@ -433,91 +334,138 @@ int Phreeqc:: element_compare(const void *ptr1, const void *ptr2) /* ---------------------------------------------------------------------- */ { - const struct element *element_ptr1, *element_ptr2; - element_ptr1 = *(const struct element **) ptr1; - element_ptr2 = *(const struct element **) ptr2; + const class element *element_ptr1, *element_ptr2; + element_ptr1 = *(const class element **) ptr1; + element_ptr2 = *(const class element **) ptr2; /* return(strcmp_nocase(element_ptr1->name, element_ptr2->name)); */ return (strcmp(element_ptr1->name, element_ptr2->name)); } /* ---------------------------------------------------------------------- */ -struct element * Phreeqc:: -element_store(const char *element) +class element* Phreeqc:: +element_store(const char * element) /* ---------------------------------------------------------------------- */ { -/* - * Function locates the string "element" in the hash table for elements. - * - * If found, pointer to the appropriate element structure is returned. - * - * If the string is not found, a new entry is made at the end of - * the elements array (position count_elements) and count_elements is - * incremented. A new entry is made in the hash table. Pointer to - * the new structure is returned. - * - * Arguments: - * element input, character string to be located or stored. - * - * Returns: - * The address of an elt structure that contains the element data. - */ - int n; - struct element *elts_ptr; - ENTRY item, *found_item; - char token[MAX_LENGTH]; -/* - * Search list - */ - strcpy(token, element); - - item.key = token; - item.data = NULL; - found_item = hsearch_multi(elements_hash_table, item, FIND); - if (found_item != NULL) + /* + * Function locates the string "element" in the map for elements. + * + * If found, pointer to the appropriate element structure is returned. + * + * If the string is not found, a new entry is made at the end of + * the elements array (position count_elements) and count_elements is + * incremented. Pointer to the new structure is returned. + * + * Arguments: + * element input, std::string to be located or stored. + * + * Returns: + * The address of an elt structure that contains the element data. + */ + /* + * Search list + */ + std::map::const_iterator it; + it = elements_map.find(element); + if (it != elements_map.end()) { - elts_ptr = (struct element *) (found_item->data); - return (elts_ptr); + return (it->second); } -/* - * Save new elt structure and return pointer to it - */ - /* make sure there is space in elements */ - elements[count_elements] = - (struct element *) PHRQ_malloc((size_t) sizeof(struct element)); - if (elements[count_elements] == NULL) - malloc_error(); - /* set name pointer in elements structure */ - elements[count_elements]->name = string_hsave(token); - /* set return value */ - elements[count_elements]->master = NULL; - elements[count_elements]->primary = NULL; - elements[count_elements]->gfw = 0.0; - n = count_elements++; - if (count_elements >= max_elements) - { - space((void **) ((void *) &elements), count_elements, &max_elements, - sizeof(struct element *)); - } -/* - * Update hash table - */ - item.key = elements[n]->name; - item.data = (void *) elements[n]; - found_item = hsearch_multi(elements_hash_table, item, ENTER); - if (found_item == NULL) - { - error_string = sformatf( "Hash table error in element_store."); - error_msg(error_string, CONTINUE); - } - return (elements[n]); + /* + * Save new element structure and return pointer to it + */ + class element *elt_ptr = new class element; + elt_ptr->name = string_hsave(element); + elt_ptr->master = NULL; + elt_ptr->primary = NULL; + elt_ptr->gfw = 0.0; + elements.push_back(elt_ptr); + elements_map[element] = elt_ptr; + return (elt_ptr); } - /* ********************************************************************** * * Routines related to structure "elt_list" * * ********************************************************************** */ + /* ---------------------------------------------------------------------- */ +int Phreeqc:: +add_elt_list(const cxxNameDouble& nd, LDBLE coef) +/* ---------------------------------------------------------------------- */ +{ + cxxNameDouble::const_iterator cit = nd.begin(); + for (; cit != nd.end(); cit++) + { + if (count_elts >= (int)elt_list.size()) + { + elt_list.resize(count_elts + 1); + } + elt_list[count_elts].elt = element_store(cit->first.c_str()); + elt_list[count_elts].coef = cit->second * coef; + count_elts++; + } + return (OK); +} +int Phreeqc:: +add_elt_list(const std::vector& el, double coef) +/* ---------------------------------------------------------------------- */ +{ + const class elt_list* elt_list_ptr = &el[0]; + + for (; elt_list_ptr->elt != NULL; elt_list_ptr++) + { + if (count_elts >= elt_list.size()) + { + elt_list.resize(count_elts + 1); + } + elt_list[count_elts].elt = elt_list_ptr->elt; + elt_list[count_elts].coef = elt_list_ptr->coef * coef; + count_elts++; + } + return (OK); +} +/* ---------------------------------------------------------------------- */ +int Phreeqc:: +change_hydrogen_in_elt_list(LDBLE charge) +/* ---------------------------------------------------------------------- */ +{ + int j; + int found_h, found_o; + LDBLE coef_h, coef_o, coef; + found_h = -1; + found_o = -1; + coef_h = 0.0; + coef_o = 0.0; + elt_list_combine(); + for (j = 0; j < count_elts; j++) + { + if (strcmp(elt_list[j].elt->name, "H") == 0) + { + found_h = j; + coef_h = elt_list[j].coef; + } + else if (strcmp(elt_list[j].elt->name, "O") == 0) + { + found_o = j; + coef_o = elt_list[j].coef; + } + } + coef = coef_h - 2 * coef_o - charge; + if (found_h < 0 && found_o < 0) + return (OK); + if (found_h >= 0 && found_o < 0) + return (OK); + if (found_h < 0 && found_o >= 0) + { + elt_list[count_elts].elt = s_hplus->primary->elt; + elt_list[count_elts].coef = coef; + count_elts++; + elt_list_combine(); + return (OK); + } + elt_list[found_h].coef = coef; + return (OK); +} /* ---------------------------------------------------------------------- */ int Phreeqc:: elt_list_combine(void) @@ -530,15 +478,17 @@ elt_list_combine(void) { int i, j; - if (count_elts < 1) - { - output_msg("elt_list_combine: How did this happen?\n"); - return (ERROR); - } - if (count_elts == 1) + //if (count_elts < 1) + //{ + // output_msg("elt_list_combine: How did this happen?\n"); + // return (ERROR); + //} + if (count_elts <= 1) { return (OK); } + qsort(&elt_list[0], count_elts, + sizeof(class elt_list), Phreeqc::elt_list_compare); j = 0; for (i = 1; i < count_elts; i++) { @@ -559,163 +509,88 @@ elt_list_combine(void) count_elts = j + 1; return (OK); } - /* ---------------------------------------------------------------------- */ int Phreeqc:: -elt_list_compare(const void *ptr1, const void *ptr2) +elt_list_compare(const void* ptr1, const void* ptr2) /* ---------------------------------------------------------------------- */ { - const struct elt_list *a, *b; + const class elt_list* a, * b; - a = (const struct elt_list *) ptr1; - b = (const struct elt_list *) ptr2; + a = (const class elt_list*)ptr1; + b = (const class elt_list*)ptr2; return (strncmp(a->elt->name, b->elt->name, MAX_LENGTH)); } - /* ---------------------------------------------------------------------- */ -struct elt_list * Phreeqc:: -elt_list_dup(struct elt_list *elt_list_ptr_old) +std::vector Phreeqc:: +elt_list_internal_copy(const std::vector& el) /* ---------------------------------------------------------------------- */ { -/* - * Duplicates the elt_list structure pointed to by elt_list_ptr_old. - */ - int i, count_totals; - struct elt_list *elt_list_ptr_new; -/* - * Count totals data and copy - */ - if (elt_list_ptr_old == NULL) - return (NULL); - for (i = 0; elt_list_ptr_old[i].elt != NULL; i++); - count_totals = i; -/* - * Malloc space and store element data - */ - elt_list_ptr_new = - (struct elt_list *) PHRQ_malloc((size_t) (count_totals + 1) * - sizeof(struct elt_list)); - if (elt_list_ptr_new == NULL) - malloc_error(); - memcpy(elt_list_ptr_new, elt_list_ptr_old, - (size_t) (count_totals + 1) * sizeof(struct elt_list)); - return (elt_list_ptr_new); -} + std::vector new_elt_list; + if (el.size() == 0) return new_elt_list; + const class elt_list* elt_list_ptr = &el[0]; -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -elt_list_print(struct elt_list *elt_list_ptr) -/* ---------------------------------------------------------------------- */ -{ -/* - * Duplicates the elt_list structure pointed to by elt_list_ptr_old. - */ - int i; -/* - * Debug print for element list - */ - if (elt_list_ptr == NULL) - return (ERROR); - output_msg(sformatf( "Elt_list\n")); - for (i = 0; elt_list_ptr[i].elt != NULL; i++) + new_elt_list.resize(el.size()); + size_t count = 0; + for (; elt_list_ptr->elt != NULL; elt_list_ptr++) { - output_msg(sformatf( "\t%s\t%e\n", elt_list_ptr[i].elt->name, - (double) elt_list_ptr[i].coef)); + new_elt_list[count].elt = element_store(elt_list_ptr->elt->name); + new_elt_list[count].coef = elt_list_ptr->coef; + count++; } - return (OK); + new_elt_list[count].elt = NULL; + return new_elt_list; } +/* ---------------------------------------------------------------------- */ +std::vector Phreeqc:: +elt_list_vsave(void) +/* ---------------------------------------------------------------------- */ +{ + /* + * Takes data from work space elt_list, allocates a new elt_list structure, + * copies data from work space to new structure, and returns pointer to + * new structure. + */ + size_t j; + std::vector new_elt_list; + /* + * Sort elements in reaction and combine + */ + elt_list_combine(); + /* + * Malloc space and store element data + */ + new_elt_list.resize(count_elts + 1); + for (j = 0; j < count_elts; j++) + { + new_elt_list[j].elt = elt_list[j].elt; + new_elt_list[j].coef = elt_list[j].coef; + } + new_elt_list[count_elts].elt = NULL; + return new_elt_list; +} + /* ---------------------------------------------------------------------- */ cxxNameDouble Phreeqc:: elt_list_NameDouble(void) /* ---------------------------------------------------------------------- */ { -/* - * Takes data from work space elt_list, makes NameDouble - */ + /* + * Takes data from work space elt_list, makes NameDouble + */ cxxNameDouble nd; - for(int i = 0; i < count_elts; i++) + for (int i = 0; i < count_elts; i++) { nd.add(elt_list[i].elt->name, elt_list[i].coef); } return (nd); } -/* ---------------------------------------------------------------------- */ -struct elt_list * Phreeqc:: -elt_list_save(void) -/* ---------------------------------------------------------------------- */ -{ -/* - * Takes data from work space elt_list, allocates a new elt_list structure, - * copies data from work space to new structure, and returns pointer to - * new structure. - */ - int j; - struct elt_list *elt_list_ptr; -/* - * Sort elements in reaction and combine - */ - if (count_elts > 0) - { - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); - elt_list_combine(); - } -/* - * Malloc space and store element data - */ - elt_list_ptr = - (struct elt_list *) PHRQ_malloc((size_t) (count_elts + 1) * - sizeof(struct elt_list)); - if (elt_list_ptr == NULL) - { - malloc_error(); - } - else - { - for (j = 0; j < count_elts; j++) - { - elt_list_ptr[j].elt = elt_list[j].elt; - elt_list_ptr[j].coef = elt_list[j].coef; - } - elt_list_ptr[count_elts].elt = NULL; - } - return (elt_list_ptr); -} -/* ---------------------------------------------------------------------- */ -struct elt_list * Phreeqc:: -NameDouble2elt_list(const cxxNameDouble &nd) -/* ---------------------------------------------------------------------- */ -{ -/* - * Takes NameDouble allocates space and fills new elt_list struct - */ - struct elt_list *elt_list_ptr = (struct elt_list *) PHRQ_malloc((nd.size() + 1) * sizeof(struct elt_list)); - if (elt_list_ptr == NULL) - { - malloc_error(); - } - else - { - cxxNameDouble::const_iterator it = nd.begin(); - int i = 0; - for( ; it != nd.end(); it++) - { - elt_list_ptr[i].elt = element_store(it->first.c_str()); - elt_list_ptr[i].coef = it->second; - i++; - } - elt_list_ptr[i].elt = NULL; - elt_list_ptr[i].coef = 0; - } - return (elt_list_ptr); -} /* ********************************************************************** * * Routines related to structure "inverse" * * ********************************************************************** */ /* ---------------------------------------------------------------------- */ -struct inverse * Phreeqc:: +class inverse * Phreeqc:: inverse_alloc(void) /* ---------------------------------------------------------------------- */ /* @@ -727,103 +602,18 @@ inverse_alloc(void) * return: OK */ { - struct inverse *inverse_ptr = NULL; - - count_inverse++; - inverse = - (struct inverse *) PHRQ_realloc(inverse, - (size_t) count_inverse * - sizeof(struct inverse)); - if (inverse == NULL) - { - malloc_error(); - return inverse_ptr; - } - inverse_ptr = &(inverse[count_inverse - 1]); + class inverse *inverse_ptr = NULL; + inverse.resize(count_inverse + 1); + inverse_ptr = &(inverse[count_inverse++]); /* * Initialize variables */ inverse_ptr->description = NULL; - inverse_ptr->count_uncertainties = 0; inverse_ptr->count_solns = 0; - inverse_ptr->count_elts = 0; - inverse_ptr->count_isotopes = 0; - inverse_ptr->count_i_u = 0; - inverse_ptr->count_phases = 0; - inverse_ptr->count_force_solns = 0; /* * allocate space for pointers in structure to NULL */ - - inverse_ptr->uncertainties = - (LDBLE *) PHRQ_malloc((size_t) sizeof(LDBLE)); - if (inverse_ptr->uncertainties == NULL) - { - malloc_error(); - return inverse_ptr; - } - - inverse_ptr->ph_uncertainties = - (LDBLE *) PHRQ_malloc((size_t) sizeof(LDBLE)); - if (inverse_ptr->ph_uncertainties == NULL) - { - malloc_error(); - return inverse_ptr; - } - - inverse_ptr->force_solns = (int *) PHRQ_malloc((size_t) sizeof(int)); - if (inverse_ptr->force_solns == NULL) - { - malloc_error(); - return inverse_ptr; - } - - inverse_ptr->dalk_dph = NULL; - inverse_ptr->dalk_dc = NULL; - - inverse_ptr->solns = NULL; - - inverse_ptr->elts = - (struct inv_elts *) PHRQ_malloc((size_t) sizeof(struct inv_elts)); - if (inverse_ptr->elts == NULL) - { - malloc_error(); - return inverse_ptr; - } - inverse_ptr->elts[0].name = NULL; - inverse_ptr->elts[0].uncertainties = NULL; - - inverse_ptr->isotopes = - (struct inv_isotope *) PHRQ_malloc((size_t) - sizeof(struct inv_isotope)); - if (inverse_ptr->isotopes == NULL) - { - malloc_error(); - return inverse_ptr; - } - inverse_ptr->isotopes[0].isotope_name = NULL; - inverse_ptr->isotopes[0].isotope_number = 0; - inverse_ptr->isotopes[0].elt_name = NULL; - - inverse_ptr->i_u = - (struct inv_isotope *) PHRQ_malloc((size_t) - sizeof(struct inv_isotope)); - if (inverse_ptr->i_u == NULL) - { - malloc_error(); - return inverse_ptr; - } - inverse_ptr->i_u[0].isotope_name = NULL; - inverse_ptr->i_u[0].isotope_number = 0; - inverse_ptr->i_u[0].elt_name = NULL; - - inverse_ptr->phases = - (struct inv_phases *) PHRQ_malloc((size_t) sizeof(struct inv_phases)); - if (inverse_ptr->phases == NULL) - { - malloc_error(); - return inverse_ptr; - } + inverse_ptr->count_solns = 0; return (inverse_ptr); } @@ -836,11 +626,11 @@ inverse_compare(const void *ptr1, const void *ptr2) /* * Compare inverse values for n_user */ - const struct inverse *nptr1; - const struct inverse *nptr2; + const class inverse *nptr1; + const class inverse *nptr2; - nptr1 = (const struct inverse *) ptr1; - nptr2 = (const struct inverse *) ptr2; + nptr1 = (const class inverse *) ptr1; + nptr2 = (const class inverse *) ptr2; if (nptr1->n_user > nptr2->n_user) return (1); if (nptr1->n_user < nptr2->n_user) @@ -859,21 +649,15 @@ inverse_delete(int i) * Input: i, number of inverse struct to delete * Return: OK */ - int j; - inverse_free(&(inverse[i])); - for (j = i; j < (count_inverse - 1); j++) - { - memcpy((void *) &(inverse[j]), (void *) &(inverse[j + 1]), - (size_t) sizeof(struct inverse)); - } + inverse.erase(inverse.begin() + (size_t)i); count_inverse--; return (OK); } /* ---------------------------------------------------------------------- */ int Phreeqc:: -inverse_free(struct inverse *inverse_ptr) +inverse_free(class inverse *inverse_ptr) /* ---------------------------------------------------------------------- */ { /* @@ -884,57 +668,45 @@ inverse_free(struct inverse *inverse_ptr) inverse_ptr->description = (char *) free_check_null(inverse_ptr->description); /* Free solns */ - inverse_ptr->solns = (int *) free_check_null(inverse_ptr->solns); + inverse_ptr->solns.clear(); /* Free uncertainties */ - inverse_ptr->uncertainties = - (LDBLE *) free_check_null(inverse_ptr->uncertainties); - inverse_ptr->ph_uncertainties = - (LDBLE *) free_check_null(inverse_ptr->ph_uncertainties); + inverse_ptr->uncertainties.clear(); + inverse_ptr->ph_uncertainties.clear(); /* Free force_solns */ - inverse_ptr->force_solns = - (int *) free_check_null(inverse_ptr->force_solns); + inverse_ptr->force_solns.clear(); /* Free elts */ - for (i = 0; i < inverse_ptr->count_elts; i++) + for (i = 0; i < inverse_ptr->elts.size(); i++) { - inverse_ptr->elts[i].uncertainties = - (LDBLE *) free_check_null(inverse_ptr->elts[i].uncertainties); + inverse_ptr->elts[i].uncertainties.clear(); }; - inverse_ptr->elts = - (struct inv_elts *) free_check_null(inverse_ptr->elts); + inverse_ptr->elts.clear(); /* Free isotopes */ - for (i = 0; i < inverse_ptr->count_isotopes; i++) + for (i = 0; i < inverse_ptr->isotopes.size(); i++) { - inverse_ptr->isotopes[i].uncertainties = - (LDBLE *) free_check_null(inverse_ptr->isotopes[i].uncertainties); + inverse_ptr->isotopes[i].uncertainties.clear(); }; - inverse_ptr->isotopes = - (struct inv_isotope *) free_check_null(inverse_ptr->isotopes); + inverse_ptr->isotopes.clear(); - for (i = 0; i < inverse_ptr->count_i_u; i++) + for (i = 0; i < inverse_ptr->i_u.size(); i++) { - inverse_ptr->i_u[i].uncertainties = - (LDBLE *) free_check_null(inverse_ptr->i_u[i].uncertainties); + inverse_ptr->i_u[i].uncertainties.clear(); }; - inverse_ptr->i_u = - (struct inv_isotope *) free_check_null(inverse_ptr->i_u); + inverse_ptr->i_u.clear(); /* Free phases */ - for (i = 0; i < inverse_ptr->count_phases; i++) + for (i = 0; i < inverse_ptr->phases.size(); i++) { - inverse_ptr->phases[i].isotopes = - (struct isotope *) free_check_null(inverse_ptr->phases[i]. - isotopes); + inverse_ptr->phases[i].isotopes.clear(); } - inverse_ptr->phases = - (struct inv_phases *) free_check_null(inverse_ptr->phases); + inverse_ptr->phases.clear(); /* Free carbon derivatives */ - inverse_ptr->dalk_dph = (LDBLE *) free_check_null(inverse_ptr->dalk_dph); - inverse_ptr->dalk_dc = (LDBLE *) free_check_null(inverse_ptr->dalk_dc); + inverse_ptr->dalk_dph.clear(); + inverse_ptr->dalk_dc.clear(); return (OK); } @@ -945,10 +717,10 @@ inverse_isotope_compare(const void *ptr1, const void *ptr2) /* ---------------------------------------------------------------------- */ { int i; - const struct inv_isotope *iso_ptr1, *iso_ptr2; + const class inv_isotope *iso_ptr1, *iso_ptr2; - iso_ptr1 = (const struct inv_isotope *) ptr1; - iso_ptr2 = (const struct inv_isotope *) ptr2; + iso_ptr1 = (const class inv_isotope *) ptr1; + iso_ptr2 = (const class inv_isotope *) ptr2; i = strcmp_nocase(iso_ptr1->elt_name, iso_ptr2->elt_name); if (i != 0) return (i); @@ -964,7 +736,7 @@ inverse_isotope_compare(const void *ptr1, const void *ptr2) } /* ---------------------------------------------------------------------- */ -struct inverse * Phreeqc:: +class inverse * Phreeqc:: inverse_search(int n_user, int *n) /* ---------------------------------------------------------------------- */ { @@ -1002,10 +774,10 @@ inverse_sort(void) /* * Sort array of inverse structures */ - if (count_inverse > 0) + if (count_inverse > 1) { - qsort(inverse, (size_t) count_inverse, - (size_t) sizeof(struct inverse), inverse_compare); + qsort(&inverse[0], (size_t) count_inverse, + sizeof(class inverse), inverse_compare); } return (OK); } @@ -1016,7 +788,7 @@ inverse_sort(void) * * ********************************************************************** */ /* ---------------------------------------------------------------------- */ -struct master * Phreeqc:: +class master * Phreeqc:: master_alloc(void) /* ---------------------------------------------------------------------- */ /* @@ -1025,10 +797,7 @@ master_alloc(void) * return: pointer to a master structure */ { - struct master *ptr; - ptr = (struct master *) PHRQ_malloc(sizeof(struct master)); - if (ptr == NULL) - malloc_error(); + class master *ptr = new class master; /* * set pointers in structure to NULL */ @@ -1049,8 +818,6 @@ master_alloc(void) ptr->gfw_formula = NULL; ptr->unknown = NULL; ptr->s = NULL; - ptr->rxn_primary = NULL; - ptr->rxn_secondary = NULL; ptr->pe_rxn = NULL; ptr->minor_isotope = FALSE; return (ptr); @@ -1058,7 +825,7 @@ master_alloc(void) /* ---------------------------------------------------------------------- */ int Phreeqc:: -master_delete(char *ptr) +master_delete(const char* cptr) /* ---------------------------------------------------------------------- */ { /* @@ -1071,22 +838,18 @@ master_delete(char *ptr) * TRUE if master species was deleted. * FALSE if master species was not found. */ - int j, n; + int n; - if (master_search(ptr, &n) == NULL) + if (master_search(cptr, &n) == NULL) return (FALSE); master_free(master[n]); - for (j = n; j < (count_master - 1); j++) - { - master[j] = master[j + 1]; - } - count_master--; + master.erase(master.begin() + n); return (TRUE); } /* ---------------------------------------------------------------------- */ int Phreeqc:: -master_free(struct master *master_ptr) +master_free(class master *master_ptr) /* ---------------------------------------------------------------------- */ { /* @@ -1095,43 +858,38 @@ master_free(struct master *master_ptr) */ if (master_ptr == NULL) return (ERROR); - rxn_free(master_ptr->rxn_primary); - rxn_free(master_ptr->rxn_secondary); - master_ptr = (struct master *) free_check_null(master_ptr); + delete master_ptr; return (OK); } /* ---------------------------------------------------------------------- */ -struct master * Phreeqc:: -master_bsearch(const char *ptr) +class master * Phreeqc:: +master_bsearch(const char* cptr) /* ---------------------------------------------------------------------- */ { /* * Uses binary search. Assumes master is in sort order. - * Find master species for string (*ptr) containing name of element or valence state. + * Find master species for string (*cptr) containing name of element or valence state. * - * Input: ptr pointer to string containing element name + * Input: cptr pointer to string containing element name * - * Return: pointer to master structure containing name ptr or NULL. + * Return: pointer to master structure containing name cptr or NULL. */ void *void_ptr; - if (count_master == 0) + if (master.size() == 0) { return (NULL); } - void_ptr = bsearch((const char *) ptr, - (char *) master, - (unsigned) count_master, - sizeof(struct master *), master_compare_string); + void_ptr = bsearch((const char *) cptr, + (char *) &master[0], + master.size(), + sizeof(class master *), master_compare_string); if (void_ptr == NULL) { - char * dup = string_duplicate(ptr); - replace("(+","(", dup); - void_ptr = bsearch((const char *) dup, - (char *) master, - (unsigned) count_master, - sizeof(struct master *), master_compare_string); - dup = (char *) free_check_null(dup); + void_ptr = bsearch(cptr, + (char*)&master[0], + master.size(), + sizeof(class master*), master_compare_string); } if (void_ptr == NULL) { @@ -1139,7 +897,7 @@ master_bsearch(const char *ptr) } else { - return (*(struct master **) void_ptr); + return (*(class master **) void_ptr); } } @@ -1149,10 +907,10 @@ master_compare_string(const void *ptr1, const void *ptr2) /* ---------------------------------------------------------------------- */ { const char *string_ptr; - const struct master *master_ptr; + const class master *master_ptr; string_ptr = (const char *) ptr1; - master_ptr = *(const struct master **) ptr2; + master_ptr = *(const class master **) ptr2; return (strcmp_nocase(string_ptr, master_ptr->elt->name)); } @@ -1161,48 +919,48 @@ int Phreeqc:: master_compare(const void *ptr1, const void *ptr2) /* ---------------------------------------------------------------------- */ { - const struct master *master_ptr1, *master_ptr2; - master_ptr1 = *(const struct master **) ptr1; - master_ptr2 = *(const struct master **) ptr2; + const class master *master_ptr1, *master_ptr2; + master_ptr1 = *(const class master **) ptr1; + master_ptr2 = *(const class master **) ptr2; return (strcmp_nocase(master_ptr1->elt->name, master_ptr2->elt->name)); } /* ---------------------------------------------------------------------- */ -struct master * Phreeqc:: -master_bsearch_primary(const char *ptr) +class master * Phreeqc:: +master_bsearch_primary(const char* cptr) /* ---------------------------------------------------------------------- */ { /* - * Find primary master species for first element in the string, ptr. + * Find primary master species for first element in the string, cptr. * Uses binary search. Assumes master is in sort order. */ int l; - char *ptr1; - char elt[MAX_LENGTH]; - struct master *master_ptr_primary; + const char* cptr1; + class master *master_ptr_primary; /* * Find element name */ - char * temp_name = string_duplicate(ptr); - ptr1 = temp_name; - get_elt(&ptr1, elt, &l); - free_check_null(temp_name); -/* - * Search master species list - */ - master_ptr_primary = master_bsearch(elt); + cptr1 = cptr; + { + std::string elt; + get_elt(&cptr1, elt, &l); + /* + * Search master species list + */ + master_ptr_primary = master_bsearch(elt.c_str()); + } if (master_ptr_primary == NULL) { input_error++; error_string = sformatf( - "Could not find primary master species for %s.", ptr); + "Could not find primary master species for %s.", cptr); error_msg(error_string, CONTINUE); } return (master_ptr_primary); } /* ---------------------------------------------------------------------- */ -struct master * Phreeqc:: -master_bsearch_secondary(char *ptr) +class master * Phreeqc:: +master_bsearch_secondary(const char* cptr) /* ---------------------------------------------------------------------- */ { /* @@ -1210,24 +968,23 @@ master_bsearch_secondary(char *ptr) * i.e. S(6) for S. */ int l; - char *ptr1; - char elt[MAX_LENGTH]; - struct master *master_ptr_primary, *master_ptr=NULL, *master_ptr_secondary=NULL; - int j; + const char* cptr1; + std::string elt; + class master *master_ptr_primary, *master_ptr=NULL, *master_ptr_secondary=NULL; /* * Find element name */ - ptr1 = ptr; - get_elt(&ptr1, elt, &l); + cptr1 = cptr; + get_elt(&cptr1, elt, &l); /* * Search master species list */ - master_ptr_primary = master_bsearch(elt); + master_ptr_primary = master_bsearch(elt.c_str()); if (master_ptr_primary == NULL) { input_error++; error_string = sformatf( - "Could not find primary master species for %s.", ptr); + "Could not find primary master species for %s.", cptr); error_msg(error_string, CONTINUE); } /* @@ -1235,8 +992,8 @@ master_bsearch_secondary(char *ptr) */ if (master_ptr_primary) { - if ((master_ptr_primary->number >= count_master - 1) || - (master[master_ptr_primary->number + 1]->elt->primary != master_ptr_primary)) + if ((master_ptr_primary->number >= (int)master.size() - 1) || + (master[(size_t)master_ptr_primary->number + 1]->elt->primary != master_ptr_primary)) { return(master_ptr_primary); } @@ -1244,7 +1001,7 @@ master_bsearch_secondary(char *ptr) * Find secondary master with same species as primary */ master_ptr = NULL; - for (j = master_ptr_primary->number + 1; j < count_master; j++) + for (size_t j = master_ptr_primary->number + 1; j < master.size(); j++) { if (master[j]->s == master_ptr_primary->s) { @@ -1263,7 +1020,7 @@ master_bsearch_secondary(char *ptr) { input_error++; error_string = sformatf( - "Could not find secondary master species for %s.", ptr); + "Could not find secondary master species for %s.", cptr); error_msg(error_string, STOP); } @@ -1271,24 +1028,24 @@ master_bsearch_secondary(char *ptr) return (master_ptr_secondary); } /* ---------------------------------------------------------------------- */ -struct master * Phreeqc:: -master_search(char *ptr, int *n) +class master * Phreeqc:: +master_search(const char* cptr, int *n) /* ---------------------------------------------------------------------- */ { /* - * Linear search of master to find master species in string, ptr. + * Linear search of master to find master species in string, cptr. * Returns pointer if found. n contains position in array master. * Returns NULL if not found. */ int i; - struct master *master_ptr; + class master *master_ptr; /* * Search master species list */ *n = -999; - for (i = 0; i < count_master; i++) + for (i = 0; i < (int)master.size(); i++) { - if (strcmp(ptr, master[i]->elt->name) == 0) + if (strcmp(cptr, master[i]->elt->name) == 0) { *n = i; master_ptr = master[i]; @@ -1303,7 +1060,7 @@ master_search(char *ptr, int *n) * * ********************************************************************** */ /* ---------------------------------------------------------------------- */ -struct phase * Phreeqc:: +class phase * Phreeqc:: phase_alloc(void) /* ---------------------------------------------------------------------- */ { @@ -1312,13 +1069,11 @@ phase_alloc(void) * arguments: void * return: pointer to new phase structure */ - struct phase *phase_ptr; + class phase *phase_ptr; /* * Allocate space */ - phase_ptr = (struct phase *) PHRQ_malloc(sizeof(struct phase)); - if (phase_ptr == NULL) - malloc_error(); + phase_ptr = new class phase; /* * Initialize space */ @@ -1334,9 +1089,9 @@ phase_compare(const void *ptr1, const void *ptr2) /* * Compares names of phases for sort */ - const struct phase *phase_ptr1, *phase_ptr2; - phase_ptr1 = *(const struct phase **) ptr1; - phase_ptr2 = *(const struct phase **) ptr2; + const class phase *phase_ptr1, *phase_ptr2; + phase_ptr1 = *(const class phase **) ptr1; + phase_ptr2 = *(const class phase **) ptr2; return (strcmp_nocase(phase_ptr1->name, phase_ptr2->name)); } @@ -1346,9 +1101,9 @@ phase_compare_string(const void *ptr1, const void *ptr2) /* ---------------------------------------------------------------------- */ { const char *char_ptr; - const struct phase *phase_ptr; + const class phase *phase_ptr; char_ptr = (const char *) ptr1; - phase_ptr = *(const struct phase **) ptr2; + phase_ptr = *(const class phase **) ptr2; return (strcmp_nocase(char_ptr, phase_ptr->name)); } @@ -1363,21 +1118,14 @@ phase_delete(int i) * Input: i, number of phase * Return: OK */ - int j; - phase_free(phases[i]); - phases[i] = (struct phase *) free_check_null(phases[i]); - for (j = i; j < (count_phases - 1); j++) - { - phases[j] = phases[j + 1]; - } - count_phases--; + phases.erase(phases.begin() + (size_t)i); return (OK); } /* ---------------------------------------------------------------------- */ int Phreeqc:: -phase_free(struct phase *phase_ptr) +phase_free(class phase *phase_ptr) /* ---------------------------------------------------------------------- */ { /* @@ -1387,25 +1135,19 @@ phase_free(struct phase *phase_ptr) */ if (phase_ptr == NULL) return (ERROR); - phase_ptr->next_elt = - (struct elt_list *) free_check_null(phase_ptr->next_elt); - phase_ptr->next_sys_total = - (struct elt_list *) free_check_null(phase_ptr->next_sys_total); - rxn_free(phase_ptr->rxn); - rxn_free(phase_ptr->rxn_s); - rxn_free(phase_ptr->rxn_x); - phase_ptr->add_logk = - (struct name_coef *) free_check_null(phase_ptr->add_logk); + phase_ptr->next_elt.clear(); + phase_ptr->next_sys_total.clear();; + phase_ptr->add_logk.clear(); return (OK); } /* ---------------------------------------------------------------------- */ -struct phase * Phreeqc:: -phase_bsearch(const char *ptr, int *j, int print) +class phase * Phreeqc:: +phase_bsearch(const char* cptr, int *j, int print) /* ---------------------------------------------------------------------- */ { /* Binary search the structure array "phases" for a name that is equal to - * ptr. Assumes array phases is in sort order. + * cptr. Assumes array phases is in sort order. * * Arguments: * name input, a character string to be located in phases. @@ -1419,17 +1161,17 @@ phase_bsearch(const char *ptr, int *j, int print) void *void_ptr; void_ptr = NULL; - if (count_phases > 0) + if ((int)phases.size() > 0) { void_ptr = (void *) - bsearch((char *) ptr, - (char *) phases, - (size_t) count_phases, - (size_t) sizeof(struct phase *), phase_compare_string); + bsearch((char *) cptr, + (char *) &phases[0], + phases.size(), + sizeof(class phase *), phase_compare_string); } if (void_ptr == NULL && print == TRUE) { - error_string = sformatf( "Could not find phase in list, %s.", ptr); + error_string = sformatf( "Could not find phase in list, %s.", cptr); error_msg(error_string, CONTINUE); } @@ -1439,13 +1181,13 @@ phase_bsearch(const char *ptr, int *j, int print) return (NULL); } - *j = (int) ((struct phase **) void_ptr - phases); - return (*(struct phase **) void_ptr); + *j = (int) ((class phase **) void_ptr - &phases[0]); + return (*(class phase **) void_ptr); } /* ---------------------------------------------------------------------- */ int Phreeqc:: -phase_init(struct phase *phase_ptr) +phase_init(class phase *phase_ptr) /* ---------------------------------------------------------------------- */ /* * set pointers in phase structure to NULL @@ -1460,8 +1202,7 @@ phase_init(struct phase *phase_ptr) for (i = 0; i < MAX_LOG_K_INDICES; i++) phase_ptr->logk[i] = 0.0; phase_ptr->original_units = kjoules; - phase_ptr->count_add_logk = 0; - phase_ptr->add_logk = NULL; + phase_ptr->add_logk.clear(); phase_ptr->moles_x = 0; phase_ptr->delta_max = 0; phase_ptr->p_soln_x = 0; @@ -1488,12 +1229,7 @@ phase_init(struct phase *phase_ptr) phase_ptr->pr_si_f = 0; phase_ptr->pr_in = false; phase_ptr->type = SOLID; - phase_ptr->next_elt = NULL; - phase_ptr->next_sys_total = NULL; phase_ptr->check_equation = TRUE; - phase_ptr->rxn = NULL; - phase_ptr->rxn_s = NULL; - phase_ptr->rxn_x = NULL; phase_ptr->replaced = 0; phase_ptr->in_system = 1; phase_ptr->original_deltav_units = cm3_per_mol; @@ -1501,19 +1237,18 @@ phase_init(struct phase *phase_ptr) } /* ---------------------------------------------------------------------- */ -struct phase * Phreeqc:: -phase_store(const char *name) +class phase * Phreeqc:: +phase_store(const char *name_in) /* ---------------------------------------------------------------------- */ { /* - * Function locates the string "name" in the hash table for phases. + * Function locates the string "name" in the map for phases. * * If found, pointer to the appropriate phase structure is returned. * * If the string is not found, a new entry is made at the end of - * the phases array (position count_phases) and count_phases is - * incremented. A new entry is made in the hash table. Pointer to - * the new structure is returned. + * the phases array (position count_phases), it is added to the map, + * and the new structure is returned. * * Arguments: * name input, character string to be located or stored. @@ -1523,55 +1258,34 @@ phase_store(const char *name) * If phase existed, it is reinitialized. The structure returned * contains only the name of the phase. */ - int n; - struct phase *phase_ptr; - ENTRY item, *found_item; - char token[MAX_LENGTH]; - const char *ptr; + class phase *phase_ptr = NULL; /* * Search list */ - - strcpy(token, name); - str_tolower(token); - ptr = string_hsave(token); - - item.key = ptr; - item.data = NULL; - found_item = hsearch_multi(phases_hash_table, item, FIND); - if (found_item != NULL) + std::string name = name_in; + str_tolower(name); + std::map::iterator p_it = + phases_map.find(name); + if (p_it != phases_map.end()) { - phase_ptr = (struct phase *) (found_item->data); + phase_ptr = p_it->second; phase_free(phase_ptr); phase_init(phase_ptr); - phase_ptr->name = string_hsave(name); + phase_ptr->name = string_hsave(name_in); return (phase_ptr); } /* * Make new phase structure and return pointer to it */ - /* make sure there is space in phases */ - n = count_phases++; - if (count_phases >= max_phases) - { - space((void **) ((void *) &phases), count_phases, &max_phases, - sizeof(struct phase *)); - } + size_t n = phases.size(); + phases.resize(n + 1); phases[n] = phase_alloc(); /* set name in phase structure */ - phases[n]->name = string_hsave(name); + phases[n]->name = string_hsave(name_in); /* - * Update hash table + * Update map */ - item.key = ptr; - item.data = (void *) phases[n]; - found_item = hsearch_multi(phases_hash_table, item, ENTER); - if (found_item == NULL) - { - error_string = sformatf( "Hash table error in phase_store."); - error_msg(error_string, CONTINUE); - } - + phases_map[name] = phases[n]; return (phases[n]); } /* ********************************************************************** @@ -1580,12 +1294,12 @@ phase_store(const char *name) * * ********************************************************************** */ /* ---------------------------------------------------------------------- */ -struct rate * Phreeqc:: -rate_bsearch(char *ptr, int *j) +class rate * Phreeqc:: +rate_bsearch(const char* cptr, int *j) /* ---------------------------------------------------------------------- */ { /* Binary search the structure array "rates" for a name that is equal to - * ptr. Assumes array rates is in sort order. + * cptr. Assumes array rates is in sort order. * * Arguments: * name input, a character string to be located in rates. @@ -1598,16 +1312,16 @@ rate_bsearch(char *ptr, int *j) */ void *void_ptr; - if (count_rates == 0) + if (rates.size() == 0) { *j = -1; return (NULL); } void_ptr = (void *) - bsearch((char *) ptr, - (char *) rates, - (size_t) count_rates, - (size_t) sizeof(struct rate *), rate_compare_string); + bsearch((char *) cptr, + (char *) &rates[0], + rates.size(), + sizeof(class rate *), rate_compare_string); if (void_ptr == NULL) { @@ -1615,8 +1329,8 @@ rate_bsearch(char *ptr, int *j) return (NULL); } - *j = (int) ((struct rate *) void_ptr - rates); - return ((struct rate *) void_ptr); + *j = (int) ((class rate *) void_ptr - &rates[0]); + return ((class rate *) void_ptr); } /* ---------------------------------------------------------------------- */ @@ -1627,9 +1341,9 @@ rate_compare(const void *ptr1, const void *ptr2) /* * Compares names of rates for sort */ - const struct rate *rate_ptr1, *rate_ptr2; - rate_ptr1 = *(const struct rate **) ptr1; - rate_ptr2 = *(const struct rate **) ptr2; + const class rate *rate_ptr1, *rate_ptr2; + rate_ptr1 = *(const class rate **) ptr1; + rate_ptr2 = *(const class rate **) ptr2; return (strcmp_nocase(rate_ptr1->name, rate_ptr2->name)); } @@ -1639,15 +1353,15 @@ rate_compare_string(const void *ptr1, const void *ptr2) /* ---------------------------------------------------------------------- */ { const char *char_ptr; - const struct rate *rate_ptr; + const class rate *rate_ptr; char_ptr = (const char *) ptr1; - rate_ptr = *(const struct rate **) ptr2; + rate_ptr = *(const class rate **) ptr2; return (strcmp_nocase(char_ptr, rate_ptr->name)); } /* ---------------------------------------------------------------------- */ int Phreeqc:: -rate_free(struct rate *rate_ptr) +rate_free(class rate *rate_ptr) /* ---------------------------------------------------------------------- */ { /* @@ -1659,7 +1373,7 @@ rate_free(struct rate *rate_ptr) if (rate_ptr == NULL) return (ERROR); - rate_ptr->commands = (char *) free_check_null(rate_ptr->commands); + rate_ptr->commands.clear(); if (rate_ptr->linebase != NULL) { char cmd[] = "new; quit"; @@ -1672,7 +1386,27 @@ rate_free(struct rate *rate_ptr) } /* ---------------------------------------------------------------------- */ -struct rate * Phreeqc:: +class rate * Phreeqc:: +rate_copy(const class rate *rate_ptr) +/* ---------------------------------------------------------------------- */ +{ + /* + * Copies a rate to new allocated space + */ + if (rate_ptr == NULL) + return (NULL); + class rate* rate_new = new class rate; + rate_new->name = string_hsave(rate_ptr->name); + rate_new->commands = rate_ptr->commands; + rate_new->new_def = TRUE; + rate_new->linebase = NULL; + rate_new->varbase = NULL; + rate_new->loopbase = NULL; + return (rate_new); +} + +/* ---------------------------------------------------------------------- */ +class rate * Phreeqc:: rate_search(const char *name_in, int *n) /* ---------------------------------------------------------------------- */ { @@ -1704,7 +1438,7 @@ rate_search(const char *name_in, int *n) int i; *n = -1; - for (i = 0; i < count_rates; i++) + for (i = 0; i < (int)rates.size(); i++) { if (strcmp_nocase(rates[i].name, name) == 0) { @@ -1728,254 +1462,20 @@ rate_sort(void) /* * Sort array of rate structures */ - if (count_rates > 0) + if (rates.size() > 1) { - qsort(rates, (size_t) count_rates, (size_t) sizeof(struct rate), + qsort(&rates[0], rates.size(), sizeof(class rate), rate_compare); } return (OK); } - -/* ********************************************************************** - * - * Routines related to structure "reaction", balanced chemical reactions - * - * ********************************************************************** */ -/* ---------------------------------------------------------------------- */ -struct reaction * Phreeqc:: -rxn_alloc(int ntokens) -/* ---------------------------------------------------------------------- */ -{ - int i; -/* - * Allocates space to a rxn structure - * input: ntokens, number of tokens in reaction - * return: pointer to a species structure - */ - struct reaction *rxn_ptr; -/* - * Malloc reaction structure - */ - rxn_ptr = (struct reaction *) PHRQ_malloc(sizeof(struct reaction)); - if (rxn_ptr == NULL) - malloc_error(); -/* - * zero log k data - */ - for (i = 0; i < MAX_LOG_K_INDICES; i++) - { - rxn_ptr->logk[i] = 0.0; - } -/* - * zero dz data - */ - for (i = 0; i < 3; i++) - { - rxn_ptr->dz[i] = 0.0; - } -/* - * Malloc rxn_token structure - */ - rxn_ptr->token = - (struct rxn_token *) PHRQ_malloc((size_t) ntokens * - sizeof(struct rxn_token)); - for (i = 0; i < ntokens; i++) - { - rxn_ptr->token[i].s = NULL; - rxn_ptr->token[i].name = NULL; - rxn_ptr->token[i].coef = 0.0; - } - - if (rxn_ptr->token == NULL) - malloc_error(); - return (rxn_ptr); -} - -/* ---------------------------------------------------------------------- */ -struct reaction * Phreeqc:: -rxn_dup(struct reaction *rxn_ptr_old) -/* ---------------------------------------------------------------------- */ -{ -/* - * mallocs space for a reaction and copies the reaction - * input: rxn_ptr_old, pointer to a reaction structure to copy - * - * Return: rxn_ptr_new, pointer to duplicated structure to copy - */ - int i; - struct reaction *rxn_ptr_new; - - if (rxn_ptr_old == NULL) - return (NULL); - for (i = 0; rxn_ptr_old->token[i].s != NULL; i++); - - rxn_ptr_new = rxn_alloc(i + 1); -/* - * Copy logk data - */ - memcpy(rxn_ptr_new->logk, rxn_ptr_old->logk, (size_t) MAX_LOG_K_INDICES * sizeof(LDBLE)); -/* - * Copy dz data - */ - memcpy(rxn_ptr_new->dz, rxn_ptr_old->dz, (size_t) (3 * sizeof(LDBLE))); -/* - * Copy tokens - */ - memcpy(rxn_ptr_new->token, rxn_ptr_old->token, - (size_t) (i + 1) * sizeof(struct rxn_token)); - - return (rxn_ptr_new); -} -/* ---------------------------------------------------------------------- */ -struct reaction * Phreeqc:: -cxxChemRxn2rxn(cxxChemRxn &cr) -/* ---------------------------------------------------------------------- */ -{ -/* - * mallocs space for a reaction and copies the cxxChemRxn to a struct reaction - * - * Return: rxn_ptr_new, pointer to new structure - */ - for (int i = 0; i < (int) cr.Get_tokens().size(); i++) - { - if (cr.Get_tokens()[i].s != NULL) - { - cr.Get_tokens()[i].s = s_store(cr.Get_tokens()[i].s->name, cr.Get_tokens()[i].s->z, FALSE); - } - if (cr.Get_tokens()[i].name != NULL) - { - cr.Get_tokens()[i].name = string_hsave(cr.Get_tokens()[i].name); - } - else - { - if (cr.Get_tokens()[i].s != NULL) - { - cr.Get_tokens()[i].name = string_hsave(cr.Get_tokens()[i].s->name); - } - else - { - cr.Get_tokens()[i].name=NULL; - } - } - } - - count_trxn = 0; - trxn_add(cr, 1.0, 1); - - struct reaction *rxn_ptr_new = rxn_alloc(count_trxn + 1); - trxn_copy(rxn_ptr_new); - - // cleanup pointers for copy operator name, and s may point into another instance - - for (int i = 0; rxn_ptr_new->token[i].s != NULL; i++) - { - rxn_ptr_new->token[i].name = string_hsave(rxn_ptr_new->token[i].name); - LDBLE z = rxn_ptr_new->token[i].s->z; - rxn_ptr_new->token[i].s = s_store(rxn_ptr_new->token[i].name, z, false); - } - return (rxn_ptr_new); -} -/* ---------------------------------------------------------------------- */ -LDBLE Phreeqc:: -rxn_find_coef(struct reaction * r_ptr, const char *str) -/* ---------------------------------------------------------------------- */ -{ -/* - * Finds coefficient of token in reaction. - * input: r_ptr, pointer to a reaction structure - * str, string to find as reaction token - * - * Return: 0.0, if token not found - * coefficient of token, if found. - */ - struct rxn_token *r_token; - LDBLE coef; - - r_token = r_ptr->token + 1; - coef = 0.0; - while (r_token->s != NULL) - { - if (strcmp(r_token->s->name, str) == 0) - { - coef = r_token->coef; - break; - } - r_token++; - } - return (coef); -} - -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -rxn_free(struct reaction *rxn_ptr) -/* ---------------------------------------------------------------------- */ -{ -/* - * Frees space allocated for a reaction structure - * input: rxn_ptr, pointer to reaction structure - * return: ERROR, if pointer is NULL - * OK, otherwise. - */ - if (rxn_ptr == NULL) - return (ERROR); - rxn_ptr->token = (struct rxn_token *) free_check_null(rxn_ptr->token); - rxn_ptr = (struct reaction *) free_check_null(rxn_ptr); - return (OK); -} - -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -rxn_print(struct reaction *rxn_ptr) -/* ---------------------------------------------------------------------- */ -{ -/* - * Frees space allocated for a reaction structure - * input: rxn_ptr, pointer to reaction structure - * return: ERROR, if pointer is NULL - * OK, otherwise. - */ - struct rxn_token *next_token; - int i; - if (rxn_ptr == NULL) - return (ERROR); - next_token = rxn_ptr->token; - output_msg(sformatf( "log k data:\n")); - for (i = 0; i < MAX_LOG_K_INDICES; i++) - { - output_msg(sformatf( "\t%f\n", (double) rxn_ptr->logk[i])); - } - output_msg(sformatf( "Reaction definition\n")); - while (next_token->s != NULL || next_token->name != NULL) - { - output_msg(sformatf( "\tcoef %f ", next_token->coef)); - if (next_token->s != NULL) - { - output_msg(sformatf( "\tspecies token: %s ", - next_token->s->name)); - } - if (next_token->name != NULL) - { - output_msg(sformatf( "\tname token: %s", next_token->name)); - } - output_msg(sformatf( "\n")); - next_token++; - } - output_msg(sformatf( "dz data\n")); - for (i = 0; i < 3; i++) - { - output_msg(sformatf( "\t%d %e\n", i, (double) rxn_ptr->dz[i])); - - } - return (OK); -} - /* ********************************************************************** * * Routines related to structure "species" * * ********************************************************************** */ /* ---------------------------------------------------------------------- */ -struct species * Phreeqc:: +class species * Phreeqc:: s_alloc(void) /* ---------------------------------------------------------------------- */ /* @@ -1984,10 +1484,8 @@ s_alloc(void) * return: pointer to a species structure */ { - struct species *s_ptr; - s_ptr = (struct species *) PHRQ_malloc(sizeof(struct species)); - if (s_ptr == NULL) - malloc_error(); + class species *s_ptr; + s_ptr = new class species; /* * set pointers in structure to NULL, variables to zero */ @@ -2001,9 +1499,9 @@ int Phreeqc:: s_compare(const void *ptr1, const void *ptr2) /* ---------------------------------------------------------------------- */ { - const struct species *s_ptr1, *s_ptr2; - s_ptr1 = *(const struct species **) ptr1; - s_ptr2 = *(const struct species **) ptr2; + const class species *s_ptr1, *s_ptr2; + s_ptr1 = *(const class species **) ptr1; + s_ptr2 = *(const class species **) ptr2; return (strcmp(s_ptr1->name, s_ptr2->name)); } @@ -2016,21 +1514,15 @@ s_delete(int i) /* * Delete species i: free memory and renumber array of pointers, s. */ - int j; - s_free(s[i]); - s[i] = (struct species *) free_check_null(s[i]); - for (j = i; j < (count_s - 1); j++) - { - s[j] = s[j + 1]; - } - count_s--; + s[i] = (class species *) free_check_null(s[i]); + s.erase(s.begin() + i); return (OK); } /* ---------------------------------------------------------------------- */ int Phreeqc:: -s_free(struct species *s_ptr) +s_free(class species *s_ptr) /* ---------------------------------------------------------------------- */ { /* @@ -2038,21 +1530,16 @@ s_free(struct species *s_ptr) */ if (s_ptr == NULL) return (ERROR); - s_ptr->next_elt = (struct elt_list *) free_check_null(s_ptr->next_elt); - s_ptr->next_secondary = - (struct elt_list *) free_check_null(s_ptr->next_secondary); - s_ptr->next_sys_total = - (struct elt_list *) free_check_null(s_ptr->next_sys_total); - s_ptr->add_logk = (struct name_coef *) free_check_null(s_ptr->add_logk); - rxn_free(s_ptr->rxn); - rxn_free(s_ptr->rxn_s); - rxn_free(s_ptr->rxn_x); + s_ptr->next_elt.clear(); + s_ptr->next_secondary.clear(); + s_ptr->next_sys_total.clear(); + s_ptr->add_logk.clear(); return (OK); } /* ---------------------------------------------------------------------- */ int Phreeqc:: -s_init(struct species *s_ptr) +s_init(class species *s_ptr) /* ---------------------------------------------------------------------- */ /* * return: pointer to a species structure @@ -2100,8 +1587,7 @@ s_init(struct species *s_ptr) } /* VP: Density End */ s_ptr->original_units = kjoules; - s_ptr->count_add_logk = 0; - s_ptr->add_logk = NULL; + s_ptr->add_logk.clear(); s_ptr->lg = 0.0; s_ptr->lg_pitzer = 0.0; s_ptr->lm = 0.0; @@ -2112,13 +1598,7 @@ s_init(struct species *s_ptr) s_ptr->type = 0; s_ptr->gflag = 0; s_ptr->exch_gflag = 0; - s_ptr->next_elt = NULL; - s_ptr->next_secondary = NULL; - s_ptr->next_sys_total = NULL; s_ptr->check_equation = TRUE; - s_ptr->rxn = NULL; - s_ptr->rxn_s = NULL; - s_ptr->rxn_x = NULL; s_ptr->tot_g_moles = 0; s_ptr->tot_dh2o_moles = 0; for (i = 0; i < 5; i++) @@ -2132,52 +1612,43 @@ s_init(struct species *s_ptr) s_ptr->original_deltav_units = cm3_per_mol; return (OK); } - /* ---------------------------------------------------------------------- */ -struct species * Phreeqc:: -s_search(const char *name) +class species* Phreeqc:: +s_search(const char* name) /* ---------------------------------------------------------------------- */ { -/* - * Function locates the string "name" in the hash table for species. - * - * Arguments: - * name input, a character string to be located in species. - * i is obsolete. - * - * Returns: - * If found, pointer to the appropriate species structure is returned. - * else, NULL pointer is returned. - */ - struct species *s_ptr; - ENTRY item, *found_item; - char safe_name[MAX_LENGTH]; - - strcpy(safe_name, name); - item.key = safe_name; - item.data = NULL; - found_item = hsearch_multi(species_hash_table, item, FIND); - if (found_item != NULL) + /* + * Function locates the string "name" in the species_map. + * + * Arguments: + * name input, a character string to be located in species. + * + * Returns: + * If found, pointer to the appropriate species structure is returned. + * else, NULL pointer is returned. + */ + class species* s_ptr = NULL; + std::map::iterator s_it = + species_map.find(name); + if (s_it != species_map.end()) { - s_ptr = (struct species *) (found_item->data); - return (s_ptr); + s_ptr = s_it->second; } - return (NULL); + return (s_ptr); } - /* ---------------------------------------------------------------------- */ -struct species * Phreeqc:: +class species * Phreeqc:: s_store(const char *name, LDBLE l_z, int replace_if_found) /* ---------------------------------------------------------------------- */ { /* - * Function locates the string "name" in the hash table for species. + * Function locates the string "name" in the map for species. * * Pointer to a species structure is always returned. * * If the string is not found, a new entry is made at the end of * the elements array (position count_elements) and count_elements is - * incremented. A new entry is made in the hash table. Pointer to + * incremented. A new entry is made in the map. Pointer to * the new structure is returned. * If "name" is found and replace is true, pointers in old species structure * are freed and replaced with additional input. @@ -2193,36 +1664,25 @@ s_store(const char *name, LDBLE l_z, int replace_if_found) * Returns: * pointer to species structure "s" where "name" can be found. */ - int n; - struct species *s_ptr; - ENTRY item, *found_item; + /* * Search list */ - item.key = name; - item.data = NULL; - found_item = hsearch_multi(species_hash_table, item, FIND); - - if (found_item != NULL && replace_if_found == FALSE) + class species* s_ptr = NULL; + s_ptr = s_search(name); + if (s_ptr != NULL && replace_if_found == FALSE) { - s_ptr = (struct species *) (found_item->data); return (s_ptr); } - else if (found_item != NULL && replace_if_found == TRUE) + else if (s_ptr != NULL && replace_if_found == TRUE) { - s_ptr = (struct species *) (found_item->data); s_free(s_ptr); s_init(s_ptr); } else { - n = count_s++; - /* make sure there is space in s */ - if (count_s >= max_s) - { - space((void **) ((void *) &s), count_s, &max_s, - sizeof(struct species *)); - } + size_t n = s.size(); + s.resize(n + 1); /* Make new species structure */ s[n] = s_alloc(); s_ptr = s[n]; @@ -2231,167 +1691,21 @@ s_store(const char *name, LDBLE l_z, int replace_if_found) s_ptr->name = string_hsave(name); s_ptr->z = l_z; /* - * Update hash table + * Update map */ - item.key = s_ptr->name; - item.data = (void *) s_ptr; - found_item = hsearch_multi(species_hash_table, item, ENTER); - if (found_item == NULL) - { - error_string = sformatf( "Hash table error in species_store."); - error_msg(error_string, CONTINUE); - } - + species_map[name] = s_ptr; return (s_ptr); } -/* ********************************************************************** - * - * Routines related to structure "save_values" - * - * ********************************************************************** */ -/* ---------------------------------------------------------------------- */ -struct save_values * Phreeqc:: -save_values_bsearch(struct save_values *k, int *n) -/* ---------------------------------------------------------------------- */ -{ -/* - * Binary search save_values to find if one exists with given coefficients - * Save_Values is assumed to be in sort order by count_subscripts and - * values of subscripts - */ - void *void_ptr; - if (count_save_values == 0) - { - *n = -999; - return (NULL); - } - void_ptr = (void *) - bsearch((char *) k, - (char *) save_values, - (size_t) count_save_values, - (size_t) sizeof(struct save_values), save_values_compare); - if (void_ptr == NULL) - { - *n = -999; - return (NULL); - } - *n = (int) ((struct save_values *) void_ptr - save_values); - return ((struct save_values *) void_ptr); -} - -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -save_values_compare(const void *ptr1, const void *ptr2) -/* ---------------------------------------------------------------------- */ -{ - int i; - const struct save_values *save_values_ptr1, *save_values_ptr2; - save_values_ptr1 = (const struct save_values *) ptr1; - save_values_ptr2 = (const struct save_values *) ptr2; - if (save_values_ptr1->count_subscripts < - save_values_ptr2->count_subscripts) - { - return (-1); - } - else if (save_values_ptr1->count_subscripts > - save_values_ptr2->count_subscripts) - { - return (1); - } - else - { - for (i = 0; i < save_values_ptr1->count_subscripts; i++) - { - if (save_values_ptr1->subscripts[i] < - save_values_ptr2->subscripts[i]) - { - return (-1); - } - else if (save_values_ptr1->subscripts[i] > - save_values_ptr2->subscripts[i]) - { - return (1); - } - } - } - return (0); -} - -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -save_values_sort(void) -/* ---------------------------------------------------------------------- */ -{ -/* - * Sort array of save_values structures - */ - if (count_save_values > 0) - { - qsort(save_values, (size_t) count_save_values, - (size_t) sizeof(struct save_values), save_values_compare); - } - return (OK); -} - -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -save_values_store(struct save_values *s_v) -/* ---------------------------------------------------------------------- */ -{ -/* - * Look for subscripts - */ - int n, i; - struct save_values *s_v_ptr; - - s_v_ptr = save_values_bsearch(s_v, &n); - if (s_v_ptr != NULL) - { - s_v_ptr->value = s_v->value; - } - else - { - save_values = - (struct save_values *) PHRQ_realloc(save_values, - (size_t) (count_save_values + - 1) * - sizeof(struct save_values)); - if (save_values == NULL) - malloc_error(); - save_values[count_save_values].value = s_v->value; - save_values[count_save_values].count_subscripts = - s_v->count_subscripts; - i = s_v->count_subscripts; - if (i == 0) - i = 1; - save_values[count_save_values].subscripts = - (int *) PHRQ_malloc((size_t) i * sizeof(int)); - if (save_values[count_save_values].subscripts == NULL) - malloc_error(); - save_values[count_save_values].subscripts = - (int *) memcpy(save_values[count_save_values].subscripts, - s_v->subscripts, (size_t) i * sizeof(int)); - count_save_values++; - save_values_sort(); - } - - if (count_save_values > 0) - { - qsort(save_values, (size_t) count_save_values, - (size_t) sizeof(struct save_values), save_values_compare); - } - return (OK); -} /* ---------------------------------------------------------------------- */ int Phreeqc:: isotope_compare(const void *ptr1, const void *ptr2) /* ---------------------------------------------------------------------- */ { int i; - const struct isotope *iso_ptr1, *iso_ptr2; + const class isotope *iso_ptr1, *iso_ptr2; - iso_ptr1 = (const struct isotope *) ptr1; - iso_ptr2 = (const struct isotope *) ptr2; + iso_ptr1 = (const class isotope *) ptr1; + iso_ptr2 = (const class isotope *) ptr2; i = strcmp_nocase(iso_ptr1->elt_name, iso_ptr2->elt_name); if (i != 0) return (i); @@ -2411,16 +1725,16 @@ isotope_compare(const void *ptr1, const void *ptr2) * * ********************************************************************** */ /* ---------------------------------------------------------------------- */ - int Phreeqc:: +int Phreeqc:: species_list_compare(const void *ptr1, const void *ptr2) /* ---------------------------------------------------------------------- */ { int j; const char *name1, *name2; - const struct species_list *nptr1, *nptr2; + const class species_list *nptr1, *nptr2; - nptr1 = (const struct species_list *) ptr1; - nptr2 = (const struct species_list *) ptr2; + nptr1 = (const class species_list *) ptr1; + nptr2 = (const class species_list *) ptr2; /* * Put H+ first @@ -2491,11 +1805,11 @@ int Phreeqc:: species_list_compare_alk(const void *ptr1, const void *ptr2) /* ---------------------------------------------------------------------- */ { - const struct species_list *nptr1, *nptr2; + const class species_list *nptr1, *nptr2; LDBLE alk1, alk2; - nptr1 = (const struct species_list *) ptr1; - nptr2 = (const struct species_list *) ptr2; + nptr1 = (const class species_list *) ptr1; + nptr2 = (const class species_list *) ptr2; /* * Else, descending order by log molality */ @@ -2521,10 +1835,10 @@ species_list_compare_master(const void *ptr1, const void *ptr2) /* ---------------------------------------------------------------------- */ { const char *name1, *name2; - const struct species_list *nptr1, *nptr2; + const class species_list *nptr1, *nptr2; - nptr1 = (const struct species_list *) ptr1; - nptr2 = (const struct species_list *) ptr2; + nptr1 = (const class species_list *) ptr1; + nptr2 = (const class species_list *) ptr2; /* * Put H+ first @@ -2577,10 +1891,10 @@ species_list_sort(void) /* * Sort list using rules in species_list_compare */ - if (count_species_list > 0) + if (species_list.size() > 1) { - qsort(&species_list[0], (size_t) count_species_list, - (size_t) sizeof(struct species_list), species_list_compare); + qsort(&species_list[0], species_list.size(), + sizeof(class species_list), species_list_compare); } return (OK); } @@ -2610,11 +1924,11 @@ change_surf_alloc(int count) return (change_surf); } /* ---------------------------------------------------------------------- */ -struct master * Phreeqc:: +class master * Phreeqc:: surface_get_psi_master(const char *name, int plane) /* ---------------------------------------------------------------------- */ { - struct master *master_ptr; + class master *master_ptr; std::string token; if (name == NULL) @@ -2642,135 +1956,84 @@ surface_get_psi_master(const char *name, int plane) * Routines related to structure "trxn" * * ********************************************************************** */ -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -rxn_token_temp_compare(const void *ptr1, const void *ptr2) -/* ---------------------------------------------------------------------- */ -{ - const struct rxn_token_temp *rxn_token_temp_ptr1, *rxn_token_temp_ptr2; - rxn_token_temp_ptr1 = (const struct rxn_token_temp *) ptr1; - rxn_token_temp_ptr2 = (const struct rxn_token_temp *) ptr2; - return (strcmp(rxn_token_temp_ptr1->name, rxn_token_temp_ptr2->name)); -} -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -trxn_add(cxxChemRxn &r_ptr, LDBLE coef, int combine) -/* ---------------------------------------------------------------------- */ -{ -/* - * Adds reactions together. - * - * Global variable count_trxn determines which position in trxn is used. - * If count_trxn=0, then the equation effectively is copied into trxn. - * If count_trxn>0, then new equation is added to existing equation. - * - * Arguments: - * *r_ptr points to rxn structure to add. - * - * coef added equation is multiplied by coef. - * combine if TRUE, reaction is reaction is sorted and - * like terms combined. - */ -/* - * Accumulate log k for reaction - */ - if (count_trxn == 0) - { - for (int i = 0; i < MAX_LOG_K_INDICES; i++) - { - trxn.logk[i] = r_ptr.Get_logk()[i]; - } - for (int i = 0; i < 3; i++) - { - trxn.dz[i] = r_ptr.Get_dz()[i]; - } - } - else - { - for (int i = 0; i < MAX_LOG_K_INDICES; i++) - { - trxn.logk[i] += coef * (r_ptr.Get_logk()[i]); - } - for (int i = 0; i < 3; i++) - { - trxn.dz[i] += coef * r_ptr.Get_dz()[i]; - } - } -/* - * Copy equation into work space - */ - for (size_t j = 0; j < r_ptr.Get_tokens().size(); j++) - { - if (count_trxn + 1 >= max_trxn) - { - space((void **) ((void *) &(trxn.token)), count_trxn + 1, - &max_trxn, sizeof(struct rxn_token_temp)); - } - trxn.token[count_trxn].name = r_ptr.Get_tokens()[j].name; - trxn.token[count_trxn].s = r_ptr.Get_tokens()[j].s; - trxn.token[count_trxn].coef = coef * r_ptr.Get_tokens()[j].coef; - count_trxn++; - } - if (combine == TRUE) - trxn_combine(); - return (OK); -} /* ---------------------------------------------------------------------- */ -int Phreeqc:: -trxn_add(struct reaction *r_ptr, LDBLE coef, int combine) +bool Phreeqc:: +phase_rxn_to_trxn(class phase* phase_ptr, CReaction& rxn_ref) /* ---------------------------------------------------------------------- */ { -/* - * Adds reactions together. - * - * Global variable count_trxn determines which position in trxn is used. - * If count_trxn=0, then the equation effectively is copied into trxn. - * If count_trxn>0, then new equation is added to existing equation. - * - * Arguments: - * *r_ptr points to rxn structure to add. - * - * coef added equation is multiplied by coef. - * combine if TRUE, reaction is reaction is sorted and - * like terms combined. - */ - int i; - struct rxn_token *next_token; -/* - * Accumulate log k for reaction - */ + /* + * Copy reaction from reaction structure to + * temp reaction structure. + */ + int l; + const char* cptr; + LDBLE l_z; + trxn.token.resize(rxn_ref.size()); + trxn.token[0].name = phase_ptr->formula; + /* charge */ + cptr = phase_ptr->formula; + { + std::string token; + get_token(&cptr, token, &l_z, &l); + } + trxn.token[0].z = l_z; + trxn.token[0].s = NULL; + trxn.token[0].unknown = NULL; + /*trxn.token[0].coef = -1.0; */ + /* check for leading coefficient of 1.0 for phase did not work */ + trxn.token[0].coef = phase_ptr->rxn.token[0].coef; + for (size_t i = 1; rxn_ref.token[i].s != NULL; i++) + { + trxn.token[i].name = rxn_ref.token[i].s->name; + trxn.token[i].z = rxn_ref.token[i].s->z; + trxn.token[i].s = NULL; + trxn.token[i].unknown = NULL; + trxn.token[i].coef = rxn_ref.token[i].coef; + count_trxn = i + 1; + } + return (OK); +} +/* ---------------------------------------------------------------------- */ +bool Phreeqc:: +trxn_add(CReaction& r_ref, double coef, bool combine) +/* ---------------------------------------------------------------------- */ +{ + /* + * Adds reactions together. + * + * Global variable count_trxn determines which position in trxn is used. + * If count_trxn=0, then the equation effectively is copied into trxn. + * If count_trxn>0, then new equation is added to existing equation. + * + * Arguments: + * *r_ptr points to rxn structure to add. + * + * coef added equation is multiplied by coef. + * combine if TRUE, reaction is reaction is sorted and + * like terms combined. + */ + /* + * Accumulate log k for reaction + */ if (count_trxn == 0) { - memcpy((void *) trxn.logk, (void *) r_ptr->logk, - (size_t) MAX_LOG_K_INDICES * sizeof(LDBLE)); - for (i = 0; i < 3; i++) - { - trxn.dz[i] = r_ptr->dz[i]; - } + for (int i = 0; i < MAX_LOG_K_INDICES; i++) trxn.logk[i] = r_ref.Get_logk()[i]; + for (int i = 0; i < 3; i++) trxn.dz[i] = r_ref.Get_dz()[i]; } else { - for (i = 0; i < MAX_LOG_K_INDICES; i++) - { - trxn.logk[i] += coef * (r_ptr->logk[i]); - } - for (i = 0; i < 3; i++) - { - trxn.dz[i] += coef * r_ptr->dz[i]; - } + for (int i = 0; i < MAX_LOG_K_INDICES; i++) trxn.logk[i] += coef * r_ref.Get_logk()[i]; + for (int i = 0; i < 3; i++) trxn.dz[i] += coef * r_ref.Get_dz()[i]; } -/* - * Copy equation into work space - */ - next_token = r_ptr->token; + /* + * Copy equation into work space + */ + class rxn_token* next_token = &r_ref.token[0]; while (next_token->s != NULL) { - if (count_trxn + 1 >= max_trxn) - { - space((void **) ((void *) &(trxn.token)), count_trxn + 1, - &max_trxn, sizeof(struct rxn_token_temp)); - } + if (count_trxn + 1 > trxn.token.size()) + trxn.token.resize(count_trxn + 1); trxn.token[count_trxn].name = next_token->s->name; trxn.token[count_trxn].s = next_token->s; trxn.token[count_trxn].coef = coef * next_token->coef; @@ -2781,54 +2044,47 @@ trxn_add(struct reaction *r_ptr, LDBLE coef, int combine) trxn_combine(); return (OK); } - /* ---------------------------------------------------------------------- */ -int Phreeqc:: -trxn_add_phase(struct reaction *r_ptr, LDBLE coef, int combine) +bool Phreeqc:: +trxn_add_phase(CReaction& r_ref, double coef, bool combine) /* ---------------------------------------------------------------------- */ { -/* - * Adds reactions together. - * - * Global variable count_trxn determines which position in trxn is used. - * If count_trxn=0, then the equation effectively is copied into trxn. - * If count_trxn>0, then new equation is added to existing equation. - * - * Arguments: - * *r_ptr points to rxn structure to add. - * - * coef added equation is multiplied by coef. - * combine if TRUE, reaction is reaction is sorted and - * like terms combined. - */ + /* + * Adds reactions together. + * + * Global variable count_trxn determines which position in trxn is used. + * If count_trxn=0, then the equation effectively is copied into trxn. + * If count_trxn>0, then new equation is added to existing equation. + * + * Arguments: + * *r_ptr points to rxn structure to add. + * + * coef added equation is multiplied by coef. + * combine if TRUE, reaction is reaction is sorted and + * like terms combined. + */ int i; - struct rxn_token *next_token; -/* - * Accumulate log k for reaction - */ + class rxn_token* next_token; + /* + * Accumulate log k for reaction + */ if (count_trxn == 0) { - memcpy((void *) trxn.logk, (void *) r_ptr->logk, - (size_t) MAX_LOG_K_INDICES * sizeof(LDBLE)); + memcpy((void*)trxn.logk, (void*)r_ref.Get_logk(), + (size_t)MAX_LOG_K_INDICES * sizeof(double)); } else { - for (i = 0; i < MAX_LOG_K_INDICES; i++) - { - trxn.logk[i] += coef * (r_ptr->logk[i]); - } + for (i = 0; i < MAX_LOG_K_INDICES; i++) trxn.logk[i] += coef * r_ref.Get_logk()[i]; } -/* - * Copy equation into work space - */ - next_token = r_ptr->token; + /* + * Copy equation into work space + */ + next_token = &r_ref.token[0]; while (next_token->s != NULL || next_token->name != NULL) { - if (count_trxn + 1 >= max_trxn) - { - space((void **) ((void *) &(trxn.token)), count_trxn + 1, - &max_trxn, sizeof(struct rxn_token_temp)); - } + if (count_trxn + 1 > trxn.token.size()) + trxn.token.resize(count_trxn + 1); if (next_token->s != NULL) { trxn.token[count_trxn].name = next_token->s->name; @@ -2843,7 +2099,7 @@ trxn_add_phase(struct reaction *r_ptr, LDBLE coef, int combine) count_trxn++; next_token++; } - if (combine == TRUE) + if (combine) trxn_combine(); return (OK); } @@ -2911,47 +2167,56 @@ trxn_combine(void) count_trxn = j + 1; /* number excluding final NULL */ return (OK); } - /* ---------------------------------------------------------------------- */ int Phreeqc:: -trxn_copy(struct reaction *rxn_ptr) +trxn_compare(const void* ptr1, const void* ptr2) /* ---------------------------------------------------------------------- */ { -/* - * Copies trxn to a reaction structure. - * - * Input: rxn_ptr, pointer to reaction structure to copy trxn to. - * - */ + const class rxn_token_temp* rxn_token_temp_ptr1, * rxn_token_temp_ptr2; + rxn_token_temp_ptr1 = (const class rxn_token_temp*)ptr1; + rxn_token_temp_ptr2 = (const class rxn_token_temp*)ptr2; + return (strcmp(rxn_token_temp_ptr1->name, rxn_token_temp_ptr2->name)); +} +/* ---------------------------------------------------------------------- */ +bool Phreeqc:: +trxn_copy(CReaction& rxn_ref) +/* ---------------------------------------------------------------------- */ +{ + /* + * Copies trxn to a reaction structure. + * + * Input: rxn_ptr, pointer to reaction structure to copy trxn to. + * + */ int i; -/* - * Copy logk data - */ + /* + * Copy logk data + */ for (i = 0; i < MAX_LOG_K_INDICES; i++) { - rxn_ptr->logk[i] = trxn.logk[i]; + rxn_ref.logk[i] = trxn.logk[i]; } -/* - * Copy dz data - */ + /* + * Copy dz data + */ for (i = 0; i < 3; i++) { - rxn_ptr->dz[i] = trxn.dz[i]; + rxn_ref.dz[i] = trxn.dz[i]; } -/* - * Copy tokens - */ - for (i = 0; i < count_trxn; i++) + /* + * Copy tokens + */ + rxn_ref.Get_tokens().resize(count_trxn + 1); + for (size_t i = 0; i < count_trxn; i++) { - rxn_ptr->token[i].s = trxn.token[i].s; - rxn_ptr->token[i].name = trxn.token[i].name; - rxn_ptr->token[i].coef = trxn.token[i].coef; + rxn_ref.Get_tokens()[i].s = trxn.token[i].s; + rxn_ref.Get_tokens()[i].name = trxn.token[i].name; + rxn_ref.Get_tokens()[i].coef = trxn.token[i].coef; } - rxn_ptr->token[count_trxn].s = NULL; - + rxn_ref.token[count_trxn].s = NULL; + rxn_ref.token[count_trxn].name = NULL; return (OK); } - /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: trxn_find_coef(const char *str, int start) @@ -3086,11 +2351,12 @@ trxn_sort(void) /* * Compare names in tokens in trxn array for sorting */ - if (count_trxn - 1 > 0) + if (count_trxn - 1 > 1) { qsort(&trxn.token[1], - (size_t) count_trxn - 1, - (size_t) sizeof(struct rxn_token_temp), rxn_token_temp_compare); + (size_t)count_trxn - 1, + sizeof(class rxn_token_temp), + trxn_compare); } return (OK); } @@ -3158,7 +2424,7 @@ trxn_swap(const char *token) * * ********************************************************************** */ /* ---------------------------------------------------------------------- */ -struct unknown * Phreeqc:: +class unknown * Phreeqc:: unknown_alloc(void) /* ---------------------------------------------------------------------- */ { @@ -3167,13 +2433,11 @@ unknown_alloc(void) * arguments: void * return: pointer to an "unknown" structure */ - struct unknown *unknown_ptr; + class unknown *unknown_ptr; /* * Allocate space */ - unknown_ptr = (struct unknown *) PHRQ_malloc(sizeof(struct unknown)); - if (unknown_ptr == NULL) - malloc_error(); + unknown_ptr = new class unknown; /* * set pointers in structure to NULL */ @@ -3186,7 +2450,6 @@ unknown_alloc(void) unknown_ptr->la = 0.0; unknown_ptr->number = 0; unknown_ptr->description = NULL; - unknown_ptr->master = NULL; unknown_ptr->phase = NULL; unknown_ptr->si = 0.0; unknown_ptr->s = NULL; @@ -3204,8 +2467,6 @@ unknown_alloc(void) unknown_ptr->potential_unknown = NULL; unknown_ptr->potential_unknown1 = NULL; unknown_ptr->potential_unknown2 = NULL; - unknown_ptr->count_comp_unknowns = 0; - unknown_ptr->comp_unknowns = NULL; unknown_ptr->phase_unknown = NULL; unknown_ptr->surface_charge = NULL; unknown_ptr->mass_water = 0.0; @@ -3227,19 +2488,15 @@ unknown_delete(int i) /* * Delete unknow from list x */ - int j; - unknown_free(x[i]); - for (j = i; j < (count_unknowns); j++) - { - x[j] = x[j + 1]; - } + x.erase(x.begin() + (size_t)i); + count_unknowns--; return (OK); } /* ---------------------------------------------------------------------- */ int Phreeqc:: -unknown_free(struct unknown *unknown_ptr) +unknown_free(class unknown *unknown_ptr) /* ---------------------------------------------------------------------- */ { /* @@ -3247,8 +2504,7 @@ unknown_free(struct unknown *unknown_ptr) */ if (unknown_ptr == NULL) return (ERROR); - unknown_ptr->master = - (struct master **) free_check_null(unknown_ptr->master); + unknown_ptr->master.clear(); if (unknown_ptr->type == SURFACE_CB) { /* @@ -3256,9 +2512,8 @@ unknown_free(struct unknown *unknown_ptr) unknown_ptr->surface_charge = (struct surface_charge *) free_check_null(unknown_ptr->surface_charge); */ } - unknown_ptr->comp_unknowns = - (struct unknown **) free_check_null(unknown_ptr->comp_unknowns); - unknown_ptr = (struct unknown *) free_check_null(unknown_ptr); + unknown_ptr->comp_unknowns.clear(); + delete unknown_ptr; return (OK); } @@ -3285,16 +2540,16 @@ system_duplicate(int i, int save_old) } /* ---------------------------------------------------------------------- */ -struct logk * Phreeqc:: -logk_store(char *name, int replace_if_found) +class logk * Phreeqc:: +logk_store(const char *name_in, int replace_if_found) /* ---------------------------------------------------------------------- */ { /* - * Function locates the string "name" in the hash table for logk. + * Function locates the string "name" in the map for logk. * * Pointer to a logk structure is always returned. * - * If the string is not found, a new entry is made in the hash table. Pointer to + * If the string is not found, a new entry is made in the map. Pointer to * the new structure is returned. * If "name" is found and replace is true, pointers in old logk structure * are freed and replaced with additional input. @@ -3309,59 +2564,44 @@ logk_store(char *name, int replace_if_found) * Returns: * pointer to logk structure "logk" where "name" can be found. */ - int n; - struct logk *logk_ptr; - ENTRY item, *found_item; /* * Search list */ + class logk* logk_ptr = NULL; + std::string name = name_in; str_tolower(name); - item.key = name; - item.data = NULL; - found_item = hsearch_multi(logk_hash_table, item, FIND); + std::map::iterator it = + logk_map.find(name); - if (found_item != NULL && replace_if_found == FALSE) + if (it != logk_map.end() && replace_if_found == FALSE) { - logk_ptr = (struct logk *) (found_item->data); + logk_ptr = it->second; return (logk_ptr); } - else if (found_item != NULL && replace_if_found == TRUE) + else if (it != logk_map.end() && replace_if_found == TRUE) { - logk_ptr = (struct logk *) (found_item->data); + logk_ptr = it->second; logk_init(logk_ptr); } else { - n = count_logk++; - /* make sure there is space in s */ - if (count_logk >= max_logk) - { - space((void **) ((void *) &logk), count_logk, &max_logk, - sizeof(struct logk *)); - } /* Make new logk structure */ + size_t n = logk.size(); + logk.resize(n + 1); logk[n] = logk_alloc(); logk_ptr = logk[n]; } /* set name and z in pointer in logk structure */ - logk_ptr->name = string_hsave(name); + logk_ptr->name = string_hsave(name_in); /* - * Update hash table + * Update map */ - item.key = logk_ptr->name; - item.data = (void *) logk_ptr; - found_item = hsearch_multi(logk_hash_table, item, ENTER); - if (found_item == NULL) - { - error_string = sformatf( "Hash table error in logk_store."); - error_msg(error_string, CONTINUE); - } - + logk_map[name] = logk_ptr; return (logk_ptr); } /* ---------------------------------------------------------------------- */ -struct logk * Phreeqc:: +class logk * Phreeqc:: logk_alloc(void) /* ---------------------------------------------------------------------- */ /* @@ -3370,10 +2610,8 @@ logk_alloc(void) * return: pointer to a logk structure */ { - struct logk *logk_ptr; - logk_ptr = (struct logk *) PHRQ_malloc(sizeof(struct logk)); - if (logk_ptr == NULL) - malloc_error(); + class logk *logk_ptr; + logk_ptr = new class logk; /* * set pointers in structure to NULL, variables to zero */ @@ -3384,7 +2622,7 @@ logk_alloc(void) /* ---------------------------------------------------------------------- */ int Phreeqc:: -logk_init(struct logk *logk_ptr) +logk_init(class logk *logk_ptr) /* ---------------------------------------------------------------------- */ /* * return: pointer to a logk structure @@ -3404,14 +2642,13 @@ logk_init(struct logk *logk_ptr) logk_ptr->log_k[i] = 0.0; logk_ptr->log_k_original[i] = 0.0; } - logk_ptr->count_add_logk = 0; - logk_ptr->add_logk = NULL; + logk_ptr->add_logk.clear(); return (OK); } /* ---------------------------------------------------------------------- */ int Phreeqc:: -logk_copy2orig(struct logk *logk_ptr) +logk_copy2orig(class logk *logk_ptr) /* ---------------------------------------------------------------------- */ /* * Copies log k data to logk_original @@ -3426,12 +2663,12 @@ logk_copy2orig(struct logk *logk_ptr) } /* ---------------------------------------------------------------------- */ -struct logk * Phreeqc:: +class logk * Phreeqc:: logk_search(const char *name_in) /* ---------------------------------------------------------------------- */ { /* - * Function locates the string "name" in the hash table for logk. + * Function locates the string "name" in the map for logk. * * Arguments: * name input, character string to be found in "logk". @@ -3440,20 +2677,17 @@ logk_search(const char *name_in) * pointer to logk structure "logk" where "name" can be found. * or NULL if not found. */ - struct logk *logk_ptr; - ENTRY item, *found_item; + class logk *logk_ptr; /* * Search list */ - char * name = string_duplicate(name_in); + std::string name = name_in; str_tolower(name); - item.key = name; - item.data = NULL; - found_item = hsearch_multi(logk_hash_table, item, FIND); - free_check_null(name); - if (found_item != NULL) + std::map::iterator l_it = + logk_map.find(name); + if (l_it != logk_map.end()) { - logk_ptr = (struct logk *) (found_item->data); + logk_ptr = l_it->second; return (logk_ptr); } return (NULL); @@ -3583,13 +2817,13 @@ get_entity_enum(char *name) * */ int i; - char *ptr; + const char* cptr; char token[MAX_LENGTH]; /* * Read keyword */ - ptr = name; - copy_token(token, &ptr, &i); + cptr = name; + copy_token(token, &cptr, &i); check_key(token); switch (next_keyword) @@ -3640,97 +2874,60 @@ get_entity_enum(char *name) */ /* ---------------------------------------------------------------------- */ int Phreeqc:: -copier_add(struct copier *copier_ptr, int n_user, int start, int end) +copier_add(class copier *copier_ptr, int n_user, int start, int end) /* ---------------------------------------------------------------------- */ /* * add new set of copy instructions */ { - - if (copier_ptr->count >= copier_ptr->max) - { - copier_ptr->max = copier_ptr->count * 2; - copier_ptr->n_user = - (int *) PHRQ_realloc(copier_ptr->n_user, - (size_t) (copier_ptr->max * sizeof(int))); - if (copier_ptr->n_user == NULL) - { - malloc_error(); - return (OK); - } - copier_ptr->start = - (int *) PHRQ_realloc(copier_ptr->start, - (size_t) (copier_ptr->max * sizeof(int))); - if (copier_ptr->start == NULL) - { - malloc_error(); - return (OK); - } - copier_ptr->end = - (int *) PHRQ_realloc(copier_ptr->end, - (size_t) (copier_ptr->max * sizeof(int))); - if (copier_ptr->end == NULL) - { - malloc_error(); - return (OK); - } - } - copier_ptr->n_user[copier_ptr->count] = n_user; - copier_ptr->start[copier_ptr->count] = start; - copier_ptr->end[copier_ptr->count] = end; - copier_ptr->count++; + copier_ptr->n_user.push_back(n_user); + copier_ptr->start.push_back(start); + copier_ptr->end.push_back(end); return (OK); } - /* ---------------------------------------------------------------------- */ int Phreeqc:: -copier_free(struct copier *copier_ptr) +copier_clear(class copier* copier_ptr) /* ---------------------------------------------------------------------- */ /* - * initialize copier structure + * clear copier */ { - - copier_ptr->n_user = (int *) free_check_null(copier_ptr->n_user); - copier_ptr->start = (int *) free_check_null(copier_ptr->start); - copier_ptr->end = (int *) free_check_null(copier_ptr->end); + copier_ptr->n_user.clear(); + copier_ptr->start.clear(); + copier_ptr->end.clear(); return (OK); } -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -copier_init(struct copier *copier_ptr) -/* ---------------------------------------------------------------------- */ -/* - * initialize copier structure - */ -{ - - copier_ptr->count = 0; - copier_ptr->max = 10; - copier_ptr->n_user = - (int *) PHRQ_malloc((size_t) (copier_ptr->max * sizeof(int))); - copier_ptr->start = - (int *) PHRQ_malloc((size_t) (copier_ptr->max * sizeof(int))); - copier_ptr->end = - (int *) PHRQ_malloc((size_t) (copier_ptr->max * sizeof(int))); - return (OK); -} #include "StorageBin.h" +/* ---------------------------------------------------------------------- */ void Phreeqc:: Use2cxxStorageBin(cxxStorageBin & sb) +/* ---------------------------------------------------------------------- */ { //Add everything from use structure to storagebin sb sb.Get_system().Set_io(sb.Get_io()); if (use.Get_mix_in()) { - cxxMix *entity = Utilities::Rxn_find(Rxn_mix_map, use.Get_n_mix_user()); + cxxMix *entity = use.Get_mix_ptr(); if (entity != NULL) { sb.Set_Mix(use.Get_n_mix_user(), entity); } + + // put mix solutions in sb + cxxMix * mix_ptr = use.Get_mix_ptr(); + std::map::const_iterator cit; + for (cit = mix_ptr->Get_mixComps().begin(); cit != mix_ptr->Get_mixComps().end(); cit++) + { + cxxSolution *entity = Utilities::Rxn_find(Rxn_solution_map, cit->first); + if (entity != NULL) + { + sb.Set_Solution(cit->first, entity); + } + } } else if (use.Get_solution_in()) { diff --git a/sundialsmath.cpp b/sundialsmath.cpp index c060716f..0f0c4578 100644 --- a/sundialsmath.cpp +++ b/sundialsmath.cpp @@ -63,11 +63,18 @@ #include "sundialsmath.h" #include "sundialstypes.h" +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + #define ZERO RCONST(0.0) #define ONE RCONST(1.0) #define TWO RCONST(2.0) - realtype UnitRoundoff(void) { diff --git a/tally.cpp b/tally.cpp index 994c6af2..969b165d 100644 --- a/tally.cpp +++ b/tally.cpp @@ -9,6 +9,15 @@ #include "SSassemblage.h" #include "cxxKinetics.h" #include "Solution.h" + +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /* Calling sequence @@ -82,11 +91,11 @@ get_all_components(void) add_all_components_tally(); // add secondary master species - for (i = 0; i < count_master; i++) + for (i = 0; i < (int)master.size(); i++) { if (master[i]->total > 0.0 && master[i]->s->type == AQ && master[i]->primary == TRUE) { - for (int j = i + 1; j < count_master; j++) + for (int j = i + 1; j < (int)master.size(); j++) { if (master[j]->elt->primary == master[i]) { @@ -105,7 +114,7 @@ get_all_components(void) * Count components + Alkalinity + total_h + total_o */ tally_count_component = 3; - for (i = 0; i < count_master; i++) + for (i = 0; i < (int)master.size(); i++) { if (master[i]->total > 0.0 && master[i]->s->type == AQ) { @@ -117,9 +126,8 @@ get_all_components(void) * Buffer contains an entry for every primary master * species that can be used in the transport problem. */ - t_buffer = - (struct tally_buffer *) PHRQ_malloc((size_t) tally_count_component * - sizeof(struct tally_buffer)); + t_buffer = (class tally_buffer *) PHRQ_malloc( + (size_t)tally_count_component * sizeof(class tally_buffer)); // store alkalinity j = 0; @@ -140,7 +148,7 @@ get_all_components(void) compute_gfw("O", &(t_buffer[j].gfw)); j++; - for (i = 0; i < count_master; i++) + for (i = 0; i < (int)master.size(); i++) { if (master[i]->total > 0.0 && master[i]->s->type == AQ) { @@ -157,63 +165,6 @@ get_all_components(void) count_tally_table_rows = tally_count_component; return (OK); } -#ifdef SKIP -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -get_all_components(void) -/* ---------------------------------------------------------------------- */ -{ -/* - * Counts components in any defined solution, gas_phase, exchanger, - * surface, or pure_phase_assemblage - * - * Returns n_comp, which is total, including H, O, elements, and Charge - * names contains character strings with names of components - */ - int i, j; -/* - * Accumulate all aqueous components - */ - add_all_components_tally(); -/* - * Count components, 2 for hydrogen, oxygen, + others, - */ - tally_count_component = 0; - for (i = 0; i < count_master; i++) - { - if (master[i]->total > 0.0 && master[i]->s->type == AQ) - { - tally_count_component++; - } - } -/* - * Put information in buffer. - * Buffer contains an entry for every primary master - * species that can be used in the transport problem. - * Each entry in buffer is sent to HST for transort. - */ - t_buffer = - (struct tally_buffer *) PHRQ_malloc((size_t) tally_count_component * - sizeof(struct tally_buffer)); - j = 0; - for (i = 0; i < count_master; i++) - { - if (master[i]->total > 0.0 && master[i]->s->type == AQ) - { - t_buffer[j].name = master[i]->elt->name; - t_buffer[j].master = master[i]; - t_buffer[j].gfw = master[i]->elt->gfw; - j++; - } - } - /* - * Return value - */ - /**n_comp = count_component;*/ - count_tally_table_rows = tally_count_component; - return (OK); -} -#endif /* ---------------------------------------------------------------------- */ int Phreeqc:: store_tally_table(LDBLE * l_array, int row_dim_in, int col_dim, LDBLE fill_factor) @@ -221,7 +172,8 @@ store_tally_table(LDBLE * l_array, int row_dim_in, int col_dim, LDBLE fill_facto { int i, j; int row_dim = row_dim_in + 1; - if (tally_table == NULL) + //if (tally_table == NULL) + if (tally_table.size() == 0) { input_error++; error_msg("Tally table not defined, get_tally_table_rows_columns", @@ -279,9 +231,9 @@ store_tally_table(LDBLE * l_array, int row_dim_in, int col_dim, LDBLE fill_facto /* * Add row for total moles of reactant */ - for (i = 0; i < count_tally_table_columns; i++) + for (size_t i = 0; i < count_tally_table_columns; i++) { - l_array[i * row_dim + count_tally_table_rows] = + l_array[i * (size_t)row_dim + count_tally_table_rows] = tally_table[i].moles / fill_factor; } return (OK); @@ -294,15 +246,15 @@ get_tally_table_rows_columns(int *rows, int *columns) { *rows = 0; *columns = 0; - if (tally_table == NULL) + if (tally_table.size() == 0) { input_error++; error_msg("tally table not defined, get_tally_table_rows_columns", CONTINUE); return (ERROR); } - *rows = count_tally_table_rows; - *columns = count_tally_table_columns; + *rows = (int)count_tally_table_rows; + *columns = (int)count_tally_table_columns; return (OK); } @@ -315,7 +267,7 @@ get_tally_table_row_heading(int row, char *string) * row is C row number */ strcpy(string, ""); - if (tally_table == NULL) + if (tally_table.size() == 0) { input_error++; error_msg("Tally table not defined, get_tally_table row_heading", @@ -344,7 +296,7 @@ get_tally_table_column_heading(int column, int *type, char *string) */ *type = -1; strcpy(string, ""); - if (tally_table == NULL) + if (tally_table.size() == 0) { input_error++; error_msg("tally table not defined, get_tally_table_column_heading", @@ -370,22 +322,20 @@ free_tally_table(void) /* ---------------------------------------------------------------------- */ { int i, k; - if (tally_table == NULL) + if (tally_table.size() == 0) return (OK); for (i = 0; i < count_tally_table_columns; i++) { - if (tally_table[i].formula != NULL) - tally_table[i].formula = - (struct elt_list *) free_check_null(tally_table[i].formula); + if (tally_table[i].formula.size() != 0) + tally_table[i].formula.clear(); for (k = 0; k < 3; k++) { - tally_table[i].total[k] = - (struct tally_buffer *) free_check_null(tally_table[i]. - total[k]); + tally_table[i].total[k] = (class tally_buffer *) free_check_null( + tally_table[i].total[k]); } } - tally_table = (struct tally *) free_check_null(tally_table); - t_buffer = (struct tally_buffer *) free_check_null(t_buffer); + //tally_table = (class tally *) free_check_null(tally_table); + t_buffer = (class tally_buffer *) free_check_null(t_buffer); return (OK); } @@ -474,7 +424,7 @@ fill_tally_table(int *n_user, int index_conservative, int n_buffer) */ int found; LDBLE moles; - //char *ptr; + //const char* cptr; /* * Cycle through tally table columns */ @@ -518,7 +468,7 @@ fill_tally_table(int *n_user, int index_conservative, int n_buffer) cxxNameDouble::iterator jit = solution_ptr->Get_totals().begin(); for ( ; jit != solution_ptr->Get_totals().end(); jit++) { - struct master *master_ptr = master_bsearch(jit->first.c_str()); + class master *master_ptr = master_bsearch(jit->first.c_str()); master_ptr->total = jit->second; } @@ -535,53 +485,6 @@ fill_tally_table(int *n_user, int index_conservative, int n_buffer) tally_table[i].total[n_buffer][2].moles = solution_ptr->Get_total_o(); } break; -#ifdef SKIP - case Solution: -/* - * fill solution - */ - if (n_user[Solution] < 0 || n_buffer == 0) - break; - { - cxxSolution *solution_ptr; - if (i == 0) - { - solution_ptr = Utilities::Rxn_find(Rxn_solution_map, index_conservative); - } - else if (i == 1) - { - solution_ptr = Utilities::Rxn_find(Rxn_solution_map, n_user[Solution]); - } - else - { - solution_ptr = NULL; - error_msg - ("Solution is not in first two columns of tally_table", - STOP); - } - if (solution_ptr == NULL) - break; - xsolution_zero(); - add_solution(solution_ptr, 1.0, 1.0); - count_elts = 0; - paren_count = 0; - for (int j = 0; j < count_master; j++) - { - if (master[j]->total > 0.0) - { - char * temp_name = string_duplicate(master[j]->elt->primary->elt->name); - ptr = temp_name; - get_elts_in_species(&ptr, master[j]->total); - free_check_null(temp_name); - } - } - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); - elt_list_combine(); - elt_list_to_tally_table(tally_table[i].total[n_buffer]); - } - break; -#endif case Reaction: /* * fill reaction @@ -654,8 +557,6 @@ fill_tally_table(int *n_user, int index_conservative, int n_buffer) { add_elt_list(exchange_ptr->Get_exchange_comps()[j].Get_totals(), 1.0); } - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); elt_list_combine(); elt_list_to_tally_table(tally_table[i].total[n_buffer]); } @@ -676,8 +577,6 @@ fill_tally_table(int *n_user, int index_conservative, int n_buffer) { add_elt_list(surface_ptr->Get_surface_comps()[j].Get_totals(), 1.0); } - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); elt_list_combine(); elt_list_to_tally_table(tally_table[i].total[n_buffer]); } @@ -705,7 +604,7 @@ fill_tally_table(int *n_user, int index_conservative, int n_buffer) { comp_ptr = &(ss_ptr->Get_ss_comps()[k]); int l; - struct phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + class phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); if (phase_ptr->name == tally_table[i].name) break; if (strcmp_nocase(phase_ptr->name, tally_table[i].name) == 0) @@ -743,12 +642,10 @@ fill_tally_table(int *n_user, int index_conservative, int n_buffer) for (size_t l = 0; l < gc->size(); l++) { int k; - struct phase *phase_ptr = phase_bsearch((*gc)[l].Get_phase_name().c_str(), &k, FALSE); + class phase *phase_ptr = phase_bsearch((*gc)[l].Get_phase_name().c_str(), &k, FALSE); add_elt_list(phase_ptr->next_elt, (*gc)[l].Get_moles()); } - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); elt_list_combine(); elt_list_to_tally_table(tally_table[i].total[n_buffer]); break; @@ -803,7 +700,7 @@ fill_tally_table(int *n_user, int index_conservative, int n_buffer) /* ---------------------------------------------------------------------- */ int Phreeqc:: -elt_list_to_tally_table(struct tally_buffer *buffer_ptr) +elt_list_to_tally_table(class tally_buffer *buffer_ptr) /* ---------------------------------------------------------------------- */ { int i, j; @@ -848,7 +745,7 @@ elt_list_to_tally_table(struct tally_buffer *buffer_ptr) /* ---------------------------------------------------------------------- */ int Phreeqc:: -master_to_tally_table(struct tally_buffer *buffer_ptr) +master_to_tally_table(class tally_buffer *buffer_ptr) /* ---------------------------------------------------------------------- */ { int i, j; @@ -860,7 +757,7 @@ master_to_tally_table(struct tally_buffer *buffer_ptr) * copy element list amounts to buffer in tally table * for column number */ - for (j = 0; j < count_master; j++) + for (j = 0; j < (int)master.size(); j++) { if (master[j]->total <= 0) continue; @@ -899,11 +796,12 @@ build_tally_table(void) * Also calculates a number greater than all user numbers and * stores in global variable first_user_number. */ - int j, k, l, n, p, save_print_use; + int j, k, l, p, save_print_use; + size_t n; int count_tt_pure_phase, count_tt_ss_phase, count_tt_kinetics; - struct phase *phase_ptr; + class phase *phase_ptr; char token[MAX_LENGTH]; - char *ptr; + const char* cptr; /* * make list of all elements in all entitites * defines the number of rows in the table @@ -989,7 +887,7 @@ build_tally_table(void) { cxxPPassemblageComp * comp_ptr = &(jit->second); int l; - struct phase * phase_ptr = phase_bsearch(jit->first.c_str(), &l, FALSE); + class phase * phase_ptr = phase_bsearch(jit->first.c_str(), &l, FALSE); /* * check if already in tally_table */ @@ -1017,18 +915,16 @@ build_tally_table(void) if (comp_ptr->Get_add_formula().size() > 0) { strcpy(token, comp_ptr->Get_add_formula().c_str()); - ptr = &(token[0]); - get_elts_in_species(&ptr, 1.0); + cptr = &(token[0]); + get_elts_in_species(&cptr, 1.0); } else { strcpy(token, phase_ptr->formula); add_elt_list(phase_ptr->next_elt, 1.0); } - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); elt_list_combine(); - tally_table[n].formula = elt_list_save(); + tally_table[n].formula = elt_list_vsave(); } } } @@ -1053,7 +949,7 @@ build_tally_table(void) { cxxSScomp *comp_ptr = &(ss_ptr->Get_ss_comps()[k]); int l; - struct phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + class phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); /* * check if already in tally_table */ @@ -1077,10 +973,8 @@ build_tally_table(void) paren_count = 0; strcpy(token, phase_ptr->formula); add_elt_list(phase_ptr->next_elt, 1.0); - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); elt_list_combine(); - tally_table[n].formula = elt_list_save(); + tally_table[n].formula = elt_list_vsave(); } } } @@ -1139,45 +1033,16 @@ build_tally_table(void) { std::string name = it->first; LDBLE coef = it->second; - char * temp_name = string_duplicate(name.c_str()); - ptr = temp_name; - get_elts_in_species(&ptr, 1.0 * coef); - free_check_null(temp_name); + cptr = name.c_str(); + get_elts_in_species(&cptr, 1.0 * coef); } } - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); elt_list_combine(); - tally_table[n].formula = elt_list_save(); + tally_table[n].formula = elt_list_vsave(); } } } -#ifdef SKIP - /* - * Debug print for table definition - */ - output_msg(sformatf( "List of rows for tally table\n")); - for (i = 0; i < count_tally_table_rows; i++) - { - output_msg(sformatf( "\t%-s\n", buffer[i].name)); - } - output_msg(sformatf( "\nList of columns for tally table\n")); - for (i = 0; i < count_tally_table_columns; i++) - { - output_msg(sformatf( "\t%-20s\tType: %d\n", - tally_table[i].name, tally_table[i].type)); - if (tally_table[i].formula != NULL) - { - for (j = 0; tally_table[i].formula[j].elt != NULL; j++) - { - output_msg(sformatf( "\t\t%-10s\t%f\n", - tally_table[i].formula[j].elt->name, - (double) tally_table[i].formula[j].coef)); - } - } - } -#endif pr.use = save_print_use; return (OK); } @@ -1299,8 +1164,8 @@ calc_dummy_kinetic_reaction_tally(cxxKinetics *kinetics_ptr) * Go through kinetic components and add positive amount of each reactant */ LDBLE coef; - char *ptr; - struct phase *phase_ptr; + const char* cptr; + class phase *phase_ptr; /* * Go through list and generate list of elements and * coefficient of elements in reaction @@ -1331,11 +1196,8 @@ calc_dummy_kinetic_reaction_tally(cxxKinetics *kinetics_ptr) cxxNameDouble::iterator it = kinetics_comp_ptr->Get_namecoef().begin(); for ( ; it != kinetics_comp_ptr->Get_namecoef().end(); it++) { - std::string name = it->first; - char * temp_name = string_duplicate(name.c_str()); - ptr = temp_name; - get_elts_in_species(&ptr, coef); - free_check_null(temp_name); + cptr = it->first.c_str(); + get_elts_in_species(&cptr, coef); } } } @@ -1353,18 +1215,15 @@ extend_tally_table(void) * adds another column to tally_table * increments number of columns */ - tally_table = - (struct tally *) PHRQ_realloc((void *) tally_table, - (size_t) (count_tally_table_columns + - 1) * sizeof(struct tally)); - if (tally_table == NULL) - malloc_error(); + //tally_table = (class tally *) PHRQ_realloc((void *) tally_table, + // (count_tally_table_columns + 1) * sizeof(class tally)); + //if (tally_table == NULL) + // malloc_error(); + tally_table.resize(count_tally_table_columns + 1); for (i = 0; i < 3; i++) { - tally_table[count_tally_table_columns].total[i] = - (struct tally_buffer *) - PHRQ_malloc((size_t) (count_tally_table_rows) * - sizeof(struct tally_buffer)); + tally_table[count_tally_table_columns].total[i] = (class tally_buffer *) + PHRQ_malloc(count_tally_table_rows * sizeof(class tally_buffer)); if (tally_table[count_tally_table_columns].total[i] == NULL) malloc_error(); for (j = 0; j < count_tally_table_rows; j++) @@ -1379,7 +1238,6 @@ extend_tally_table(void) tally_table[count_tally_table_columns].type = UnKnown; tally_table[count_tally_table_columns].add_formula = NULL; tally_table[count_tally_table_columns].moles = 0.0; - tally_table[count_tally_table_columns].formula = NULL; count_tally_table_columns++; return (OK); } diff --git a/tidy.cpp b/tidy.cpp index 2199e67c..4c95089b 100644 --- a/tidy.cpp +++ b/tidy.cpp @@ -10,6 +10,14 @@ #define ZERO_TOL 1.0e-30 +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /* ---------------------------------------------------------------------- */ int Phreeqc:: tidy_model(void) @@ -20,6 +28,7 @@ tidy_model(void) /* * Determine if any new elements, species, phases have been read */ + overall_iterations = 0; state = INITIALIZE; new_model = FALSE; new_pp_assemblage = FALSE; @@ -149,15 +158,14 @@ tidy_model(void) /* species */ if (new_model == TRUE) { - qsort(s, (size_t) count_s, (size_t) sizeof(struct species *), s_compare); + if (s.size() > 1) qsort(&s[0], s.size(), sizeof(class species *), s_compare); /* master species */ - qsort(master, (unsigned) count_master, sizeof(struct master *), master_compare); - + if (master.size() > 1) qsort(&master[0], master.size(), sizeof(class master *), master_compare); /* elements */ - qsort(elements, (size_t) count_elements, (size_t) sizeof(struct element *), element_compare); + if (elements.size() > 1) qsort(&elements[0], elements.size(), sizeof(class element *), element_compare); /* phases */ - qsort(phases, (size_t) count_phases, (size_t) sizeof(struct phase *), phase_compare); + if (phases.size() > 1) qsort(&phases[0], phases.size(), sizeof(class phase *), phase_compare); } @@ -291,7 +299,45 @@ tidy_model(void) { tidy_solutions(); } - +/* +* need to update exchange and surface related in case anything has changed +*/ + if (keycount[Keywords::KEY_KINETICS] > 0 || + keycount[Keywords::KEY_KINETICS_RAW] > 0 || + keycount[Keywords::KEY_KINETICS_MODIFY] || + keycount[Keywords::KEY_EXCHANGE] > 0 || + keycount[Keywords::KEY_EXCHANGE_RAW] > 0 || + keycount[Keywords::KEY_EXCHANGE_MODIFY]) + { + update_kin_exchange(); + } + if (keycount[Keywords::KEY_EQUILIBRIUM_PHASES] > 0 || + keycount[Keywords::KEY_EQUILIBRIUM_PHASES_RAW] > 0 || + keycount[Keywords::KEY_EQUILIBRIUM_PHASES_MODIFY] || + keycount[Keywords::KEY_EXCHANGE] > 0 || + keycount[Keywords::KEY_EXCHANGE_RAW] > 0 || + keycount[Keywords::KEY_EXCHANGE_MODIFY]) + { + update_min_exchange(); + } + if (keycount[Keywords::KEY_EQUILIBRIUM_PHASES] > 0 || + keycount[Keywords::KEY_EQUILIBRIUM_PHASES_RAW] > 0 || + keycount[Keywords::KEY_EQUILIBRIUM_PHASES_MODIFY] || + keycount[Keywords::KEY_SURFACE] > 0 || + keycount[Keywords::KEY_SURFACE_RAW] > 0 || + keycount[Keywords::KEY_SURFACE_MODIFY] > 0) + { + update_min_surface(); + } + if (keycount[Keywords::KEY_KINETICS] > 0 || + keycount[Keywords::KEY_KINETICS_RAW] > 0 || + keycount[Keywords::KEY_KINETICS_MODIFY] > 0 || + keycount[Keywords::KEY_SURFACE] > 0 || + keycount[Keywords::KEY_SURFACE_RAW] > 0 || + keycount[Keywords::KEY_SURFACE_MODIFY] > 0) + { + update_kin_surface(); + } /* if (new_model || new_exchange || new_pp_assemblage || new_surface || new_gas_phase || new_kinetics) reset_last_model(); */ if (new_model) { @@ -415,9 +461,9 @@ check_species_input(void) int return_value; return_value = OK; - for (i = 0; i < count_s; i++) + for (i = 0; i < (int)s.size(); i++) { - if (s[i]->next_elt == NULL) + if (s[i]->next_elt.size() == 0) { input_error++; return_value = ERROR; @@ -426,7 +472,7 @@ check_species_input(void) s[i]->name); error_msg(error_string, CONTINUE); } - if (s[i]->rxn == NULL) + if (s[i]->rxn.token.size() == 0) { input_error++; return_value = ERROR; @@ -437,9 +483,8 @@ check_species_input(void) } else { - select_log_k_expression(s[i]->logk, s[i]->rxn->logk); - add_other_logk(s[i]->rxn->logk, s[i]->count_add_logk, - s[i]->add_logk); + select_log_k_expression(s[i]->logk, s[i]->rxn.logk); + add_other_logk(s[i]->rxn.logk, s[i]->add_logk); } } return (return_value); @@ -450,18 +495,19 @@ int Phreeqc:: select_log_k_expression(LDBLE * source_k, LDBLE * target_k) /* ---------------------------------------------------------------------- */ { - int j, analytic; + int j; + bool analytic; - analytic = FALSE; + analytic = false; for (j = T_A1; j <= T_A6; j++) { if (source_k[j] != 0.0) { - analytic = TRUE; + analytic = true; break; } } - if (analytic == TRUE) + if (analytic) { target_k[logK_T0] = 0.0; target_k[delta_h] = 0.0; @@ -495,12 +541,12 @@ tidy_logk(void) */ { int i; - for (i = 0; i < count_logk; i++) + for (i = 0; i < (int)logk.size(); i++) { select_log_k_expression(logk[i]->log_k_original, logk[i]->log_k); logk[i]->done = FALSE; } - for (i = 0; i < count_logk; i++) + for (i = 0; i < (int)logk.size(); i++) { if (logk[i]->done == FALSE) { @@ -512,46 +558,40 @@ tidy_logk(void) /* ---------------------------------------------------------------------- */ int Phreeqc:: -add_other_logk(LDBLE * source_k, int count_add_logk, - struct name_coef *add_logk) +add_other_logk(LDBLE * source_k, std::vector &add_logk) /* ---------------------------------------------------------------------- */ { - int i, j, analytic; - struct logk *logk_ptr; - char token[MAX_LENGTH]; + int j; + bool analytic; + class logk *logk_ptr; LDBLE coef; - ENTRY item, *found_item; - if (count_add_logk == 0) - return (OK); - for (i = 0; i < count_add_logk; i++) + for (size_t i = 0; i < add_logk.size(); i++) { coef = add_logk[i].coef; - strcpy(token, add_logk[i].name); + std::string token = add_logk[i].name; str_tolower(token); - item.key = token; - item.data = NULL; - found_item = hsearch_multi(logk_hash_table, item, FIND); - if (found_item == NULL) + std::map::iterator l_it = logk_map.find(token); + if (l_it == logk_map.end()) { input_error++; error_string = sformatf( "Could not find named temperature expression, %s\n", - token); + token.c_str()); error_msg(error_string, CONTINUE); return (ERROR); } - logk_ptr = (struct logk *) found_item->data; - analytic = FALSE; + logk_ptr = l_it->second; + analytic = false; for (j = T_A1; j <= T_A6; j++) { if (logk_ptr->log_k[j] != 0.0) { - analytic = TRUE; + analytic = true; break; } } - if (analytic == TRUE) + if (analytic) { for (j = T_A1; j <= T_A6; j++) { @@ -573,14 +613,12 @@ add_other_logk(LDBLE * source_k, int count_add_logk, /* ---------------------------------------------------------------------- */ int Phreeqc:: -add_logks(struct logk *logk_ptr, int repeats) +add_logks(class logk *logk_ptr, int repeats) /* ---------------------------------------------------------------------- */ { int i, j; - struct logk *next_logk_ptr; - char token[MAX_LENGTH]; + class logk *next_logk_ptr; LDBLE coef; - ENTRY item, *found_item; /* * Adds in other named_expressions to get complete log K * Evaluates others recursively if necessary @@ -593,24 +631,22 @@ add_logks(struct logk *logk_ptr, int repeats) error_msg(error_string, CONTINUE); return (ERROR); } - for (i = 0; i < logk_ptr->count_add_logk; i++) + for (i = 0; i < (int)logk_ptr->add_logk.size(); i++) { coef = logk_ptr->add_logk[i].coef; - strcpy(token, logk_ptr->add_logk[i].name); + std::string token = logk_ptr->add_logk[i].name; str_tolower(token); - item.key = token; - item.data = NULL; - found_item = hsearch_multi(logk_hash_table, item, FIND); - if (found_item == NULL) + std::map::iterator l_it = logk_map.find(token); + if (l_it == logk_map.end()) { input_error++; error_string = sformatf( "Could not find named temperature expression, %s\n", - token); + token.c_str()); error_msg(error_string, CONTINUE); return (ERROR); } - next_logk_ptr = (struct logk *) found_item->data; + next_logk_ptr = l_it->second; if (next_logk_ptr->done == FALSE) { /*output_msg(sformatf( "Done == FALSE\n", token)); */ @@ -630,24 +666,22 @@ add_logks(struct logk *logk_ptr, int repeats) /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -coef_in_master(struct master * master_ptr) +coef_in_master(class master * master_ptr) /* ---------------------------------------------------------------------- */ { int l; LDBLE coef; - char *ptr; - char elt_name[MAX_LENGTH]; - struct elt_list *next_elt; + const char* cptr; + std::string elt_name; + const class elt_list *next_elt; coef = 0.0; - char * temp_name = string_duplicate(master_ptr->elt->name); - ptr = temp_name; - get_elt(&ptr, elt_name, &l); - free_check_null(temp_name); - for (next_elt = master_ptr->s->next_elt; next_elt->elt != NULL; + cptr = master_ptr->elt->name; + get_elt(&cptr, elt_name, &l); + for (next_elt = &master_ptr->s->next_elt[0]; next_elt->elt != NULL; next_elt++) { - if (strcmp(elt_name, next_elt->elt->name) == 0) + if (strcmp(elt_name.c_str(), next_elt->elt->name) == 0) { coef = next_elt->coef; break; @@ -667,7 +701,7 @@ rewrite_eqn_to_secondary(void) */ LDBLE coef; int repeat, i, add_count; - struct rxn_token_temp *token_ptr; + class rxn_token_temp *token_ptr; /* * */ @@ -706,7 +740,7 @@ rewrite_eqn_to_secondary(void) && token_ptr->s->primary == NULL) { coef = token_ptr->coef; - trxn_add(token_ptr->s->rxn, coef, TRUE); + trxn_add(token_ptr->s->rxn, coef, true); repeat = TRUE; break; } @@ -728,8 +762,8 @@ replace_solids_gases(void) LDBLE coef; int n; int repeat, i, add_count; - struct rxn_token_temp *token_ptr; - struct phase *phase_ptr; + class rxn_token_temp *token_ptr; + class phase *phase_ptr; int replaced; char token[MAX_LENGTH]; /* @@ -785,12 +819,12 @@ replace_solids_gases(void) output_msg(sformatf( "Reaction to add.\n")); rxn_print(phase_ptr->rxn); */ - trxn_add_phase(phase_ptr->rxn, coef, FALSE); + trxn_add_phase(phase_ptr->rxn, coef, false); /* remove solid/gas from trxn list */ - trxn.token[i].name = phase_ptr->rxn->token[0].name; - trxn.token[i].s = phase_ptr->rxn->token[0].s; - trxn.token[i].coef = -coef * phase_ptr->rxn->token[0].coef; + trxn.token[i].name = phase_ptr->rxn.token[0].name; + trxn.token[i].s = phase_ptr->rxn.token[0].s; + trxn.token[i].coef = -coef * phase_ptr->rxn.token[0].coef; repeat = TRUE; replaced = TRUE; /* debug @@ -855,7 +889,7 @@ rewrite_eqn_to_primary(void) { if (trxn.token[j].s->primary == NULL) { - trxn_add(trxn.token[j].s->rxn, trxn.token[j].coef, TRUE); + trxn_add(trxn.token[j].s->rxn, trxn.token[j].coef, true); repeat = TRUE; break; } @@ -888,7 +922,7 @@ tidy_gas_phase(void) for (size_t j = 0; j < gas_phase_ptr->Get_gas_comps().size(); j++) { int k; - struct phase *phase_ptr = phase_bsearch(gas_phase_ptr->Get_gas_comps()[j].Get_phase_name().c_str(), &k, FALSE); + class phase *phase_ptr = phase_bsearch(gas_phase_ptr->Get_gas_comps()[j].Get_phase_name().c_str(), &k, FALSE); if (phase_ptr == NULL) { input_error++; @@ -932,9 +966,14 @@ tidy_gas_phase(void) { P += gas_phase_ptr->Get_gas_comps()[j].Get_p_read(); if (!PR) - gas_phase_ptr->Get_gas_comps()[j].Set_moles( - gas_phase_ptr->Get_gas_comps()[j].Get_p_read() * gas_phase_ptr->Get_volume() / - R_LITER_ATM / gas_phase_ptr->Get_temperature()); + { + double moles = gas_phase_ptr->Get_gas_comps()[j].Get_p_read() * gas_phase_ptr->Get_volume() / + R_LITER_ATM / gas_phase_ptr->Get_temperature(); + gas_phase_ptr->Get_gas_comps()[j].Set_moles(moles); + gas_phase_ptr->Get_gas_comps()[j].Set_p(gas_phase_ptr->Get_gas_comps()[j].Get_p_read()); + gas_phase_ptr->Get_gas_comps()[j].Set_phi(1.0); + gas_phase_ptr->Get_gas_comps()[j].Set_f(gas_phase_ptr->Get_gas_comps()[j].Get_p_read()); + } } else { @@ -960,10 +999,15 @@ tidy_gas_phase(void) { P += gas_phase_ptr->Get_gas_comps()[j].Get_p_read(); if (!PR) - gas_phase_ptr->Get_gas_comps()[j].Set_moles ( - gas_phase_ptr->Get_gas_comps()[j].Get_p_read() * - gas_phase_ptr->Get_volume() / R_LITER_ATM / - gas_phase_ptr->Get_temperature()); + { + double moles = gas_phase_ptr->Get_gas_comps()[j].Get_p_read() * + gas_phase_ptr->Get_volume() / R_LITER_ATM / + gas_phase_ptr->Get_temperature(); + gas_phase_ptr->Get_gas_comps()[j].Set_moles(moles); + gas_phase_ptr->Get_gas_comps()[j].Set_p(gas_phase_ptr->Get_gas_comps()[j].Get_p_read()); + gas_phase_ptr->Get_gas_comps()[j].Set_phi(1.0); + gas_phase_ptr->Get_gas_comps()[j].Set_f(gas_phase_ptr->Get_gas_comps()[j].Get_p_read()); + } } else { @@ -980,15 +1024,21 @@ tidy_gas_phase(void) if (PR && P > 0) { - std::vector phase_ptrs; + std::vector phase_ptrs; size_t j_PR; std::vector &gc = gas_phase_ptr->Get_gas_comps(); for (j_PR = 0; j_PR < gas_phase_ptr->Get_gas_comps().size(); j_PR++) { int k; - struct phase *phase_ptr = phase_bsearch(gas_phase_ptr->Get_gas_comps()[j_PR].Get_phase_name().c_str(), &k, FALSE); + class phase *phase_ptr = phase_bsearch(gas_phase_ptr->Get_gas_comps()[j_PR].Get_phase_name().c_str(), &k, FALSE); if (gc[j_PR].Get_p_read() == 0) + { + gc[j_PR].Set_moles(0.0); + gc[j_PR].Set_p(0.0); + gc[j_PR].Set_phi(1.0); + gc[j_PR].Set_f(0.0); continue; + } if (phase_ptr) { phase_ptr->moles_x = gc[j_PR].Get_p_read() / P; @@ -1004,15 +1054,21 @@ tidy_gas_phase(void) for (j_PR = 0; j_PR < gas_phase_ptr->Get_gas_comps().size(); j_PR++) { int k; - struct phase *phase_ptr = phase_bsearch(gc[j_PR].Get_phase_name().c_str(), &k, FALSE); + class phase *phase_ptr = phase_bsearch(gc[j_PR].Get_phase_name().c_str(), &k, FALSE); if (gc[j_PR].Get_p_read() == 0) { gc[j_PR].Set_moles(0.0); + gc[j_PR].Set_p(0.0); + gc[j_PR].Set_phi(1.0); + gc[j_PR].Set_f(0.0); } else { if (phase_ptr) { gc[j_PR].Set_moles(phase_ptr->moles_x * gas_phase_ptr->Get_volume() / V_m); + gc[j_PR].Set_p(gc[j_PR].Get_p_read()); + gc[j_PR].Set_phi(phase_ptr->pr_phi); + gc[j_PR].Set_f(gc[j_PR].Get_p_read()* phase_ptr->pr_phi); gas_phase_ptr->Set_total_moles(gas_phase_ptr->Get_total_moles() + gc[j_PR].Get_moles()); } } @@ -1040,173 +1096,7 @@ tidy_gas_phase(void) } return (OK); } -#ifdef SKIP -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -tidy_gas_phase(void) -/* ---------------------------------------------------------------------- */ -{ - int n_user, last; - LDBLE P, V_m; - bool PR; -/* - * Find all gases for each gas_phase in phase list - */ - for (std::set::const_iterator nit = Rxn_new_gas_phase.begin(); nit != Rxn_new_gas_phase.end(); nit++) - { - std::map::iterator it = Rxn_gas_phase_map.find(*nit); - if (it == Rxn_gas_phase_map.end()) - { - assert(false); - } - cxxGasPhase *gas_phase_ptr = &(it->second); - PR = false; - P = 0.0; - std::vector gc = gas_phase_ptr->Get_gas_comps(); - for (size_t j = 0; j < gc.size(); j++) - { - int k; - struct phase *phase_ptr = phase_bsearch(gc[j].Get_phase_name().c_str(), &k, FALSE); - if (phase_ptr == NULL) - { - input_error++; - error_string = sformatf( - "Gas not found in PHASES database, %s.", - gc[j].Get_phase_name().c_str()); - error_msg(error_string, CONTINUE); - continue; - } - else - { - if (phase_ptr->t_c > 0 && phase_ptr->p_c > 0) - PR = true; - } - gas_phase_ptr->Set_pr_in(PR); - if (gas_phase_ptr->Get_new_def()) - { - if (j == gc.size() - 1) - gas_phase_ptr->Set_new_def(false); - /* - * Fixed pressure - */ - if (gas_phase_ptr->Get_type() == cxxGasPhase::GP_PRESSURE) - { - if (gas_phase_ptr->Get_solution_equilibria()) - { - input_error++; - error_string = sformatf( - "Gas phase %d: cannot use '-equilibrium' option with fixed pressure gas phase.", - gas_phase_ptr->Get_n_user()); - error_msg(error_string, CONTINUE); - } - /* calculate moles */ - if (gc[j].Get_p_read() != NAN) - { - P += gc[j].Get_p_read(); - if (!PR) - gc[j].Set_moles( - gc[j].Get_p_read() * gas_phase_ptr->Get_volume() / - R_LITER_ATM / gas_phase_ptr->Get_temperature()); - } - else - { - input_error++; - error_string = sformatf( - "Gas phase %d: partial pressure of gas component %s not defined.", - gas_phase_ptr->Get_n_user(), gc[j].Get_phase_name().c_str()); - error_msg(error_string, CONTINUE); - } - } - else - { - /* - * Fixed volume - */ - if (!gas_phase_ptr->Get_solution_equilibria()) - { - if (gc[j].Get_p_read() != NAN) - { - P += gc[j].Get_p_read(); - if (!PR) - gc[j].Set_moles ( - gc[j].Get_p_read() * - gas_phase_ptr->Get_volume() / R_LITER_ATM / - gas_phase_ptr->Get_temperature()); - } - else - { - input_error++; - error_string = sformatf( - "Gas phase %d: moles of gas component %s not defined.", - gas_phase_ptr->Get_n_user(), - gc[j].Get_phase_name().c_str()); - error_msg(error_string, CONTINUE); - } - } - } - - gas_phase_ptr->Set_gas_comps(gc); - - if (PR && P > 0 && j == gc.size() - 1) - { - std::vector phase_ptrs; - size_t j_PR; - for (j_PR = 0; j_PR < gas_phase_ptr->Get_gas_comps().size(); j_PR++) - { - int k; - struct phase *phase_ptr = phase_bsearch(gas_phase_ptr->Get_gas_comps()[j_PR].Get_phase_name().c_str(), &k, FALSE); - if (gc[j_PR].Get_p_read() == 0) - continue; - phase_ptr->moles_x = gc[j_PR].Get_p_read() / P; - phase_ptrs.push_back(phase_ptr); - } - V_m = calc_PR(phase_ptrs, P, gas_phase_ptr->Get_temperature(), 0); - gas_phase_ptr->Set_v_m(V_m); - if (gas_phase_ptr->Get_type() == cxxGasPhase::GP_VOLUME) - { - gas_phase_ptr->Set_total_p(P); - } - std::vector gc = gas_phase_ptr->Get_gas_comps(); - for (j_PR = 0; j_PR < gas_phase_ptr->Get_gas_comps().size(); j_PR++) - { - int k; - struct phase *phase_ptr = phase_bsearch(gc[j_PR].Get_phase_name().c_str(), &k, FALSE); - if (gc[j_PR].Get_p_read() == 0) - { - gc[j_PR].Set_moles(0.0); - } else - { - gc[j_PR].Set_moles(phase_ptr->moles_x * - gas_phase_ptr->Get_volume() / V_m); - gas_phase_ptr->Set_total_moles(gas_phase_ptr->Get_total_moles() + gc[j_PR].Get_moles()); - } - } - gas_phase_ptr->Set_gas_comps(gc); - } - /* - * Duplicate gas phase, only if not solution equilibria - */ - if (!gas_phase_ptr->Get_solution_equilibria()) - { - n_user = gas_phase_ptr->Get_n_user(); - last = gas_phase_ptr->Get_n_user_end(); - gas_phase_ptr->Set_n_user_end(n_user); - for (int j1 = n_user + 1; j1 <= last; j1++) - { - Utilities::Rxn_copy(Rxn_gas_phase_map, n_user, j1); - } - } - else - { - gas_phase_ptr->Set_new_def(true); - } - } - } - } - return (OK); -} -#endif /* ---------------------------------------------------------------------- */ int Phreeqc:: tidy_inverse(void) @@ -1220,10 +1110,9 @@ tidy_inverse(void) int i, j, k, l; int count_in; LDBLE value; - struct inv_elts *inv_elts; - struct master *master_ptr; - struct master *master_alk_ptr; - struct elt_list *elt_list_ptr; + class master *master_ptr; + class master *master_alk_ptr; + const class elt_list *elt_list_ptr; master_alk_ptr = master_bsearch("Alkalinity"); for (i = 0; i < count_inverse; i++) { @@ -1232,62 +1121,45 @@ tidy_inverse(void) /* * Set default uncertainties for all solutions, if necessary */ - if (inverse[i].count_uncertainties < inverse[i].count_solns) + if (inverse[i].uncertainties.size() < inverse[i].count_solns) { - inverse[i].uncertainties = - (LDBLE *) PHRQ_realloc(inverse[i].uncertainties, - (size_t) inverse[i].count_solns * - sizeof(LDBLE)); - if (inverse[i].uncertainties == NULL) - malloc_error(); - for (j = inverse[i].count_uncertainties; - j < inverse[i].count_solns; j++) + size_t count = inverse[i].uncertainties.size(); + double value = (count > 0) ? inverse[i].uncertainties.back() : 0.05; + inverse[i].uncertainties.resize(inverse[i].count_solns); + for (size_t j = count; j < inverse[i].count_solns; j++) { - inverse[i].uncertainties[j] = - inverse[i].uncertainties[inverse[i].count_uncertainties - - 1]; + inverse[i].uncertainties[j] = value; } } /* * Set default ph uncertainties for all solutions, if necessary */ - if (inverse[i].count_ph_uncertainties < inverse[i].count_solns) + if (inverse[i].ph_uncertainties.size() < inverse[i].count_solns) { - inverse[i].ph_uncertainties = - (LDBLE *) PHRQ_realloc(inverse[i].ph_uncertainties, - (size_t) inverse[i].count_solns * - sizeof(LDBLE)); - if (inverse[i].ph_uncertainties == NULL) - malloc_error(); - for (j = inverse[i].count_ph_uncertainties; - j < inverse[i].count_solns; j++) + size_t count = inverse[i].ph_uncertainties.size(); + double value = (count > 0) ? inverse[i].ph_uncertainties.back() : 0.05; + inverse[i].ph_uncertainties.resize(inverse[i].count_solns); + for (size_t j = count; j < inverse[i].count_solns; j++) { - inverse[i].ph_uncertainties[j] = - inverse[i].ph_uncertainties[inverse[i]. - count_ph_uncertainties - 1]; + inverse[i].ph_uncertainties[j] = value; } } /* * Set default force for all solutions */ - if (inverse[i].count_force_solns < inverse[i].count_solns) + if (inverse[i].force_solns.size() < inverse[i].count_solns) { - inverse[i].force_solns = - (int *) PHRQ_realloc(inverse[i].force_solns, - (size_t) inverse[i].count_solns * - sizeof(int)); - if (inverse[i].force_solns == NULL) - malloc_error(); - for (j = inverse[i].count_force_solns; j < inverse[i].count_solns; - j++) + size_t count = inverse[i].force_solns.size(); + inverse[i].force_solns.resize(inverse[i].count_solns); + for (size_t j = count; j < inverse[i].count_solns; j++) { - inverse[i].force_solns[j] = FALSE; + inverse[i].force_solns[j] = false; } } /* * Find master species for element, set uncertainties */ - for (j = 0; j < inverse[i].count_elts; j++) + for (j = 0; j < inverse[i].elts.size(); j++) { inverse[i].elts[j].master = master_bsearch_primary(inverse[i].elts[j].name); @@ -1299,13 +1171,9 @@ tidy_inverse(void) error_msg(error_string, CONTINUE); continue; } - inverse[i].elts[j].uncertainties = - (LDBLE *) PHRQ_realloc(inverse[i].elts[j].uncertainties, - (size_t) inverse[i].count_solns * - sizeof(LDBLE)); - if (inverse[i].elts[j].uncertainties == NULL) - malloc_error(); - if (inverse[i].elts[j].count_uncertainties == 0) + size_t count_uncertainties = inverse[i].elts[j].uncertainties.size(); + inverse[i].elts[j].uncertainties.resize((size_t)inverse[i].count_solns); + if (count_uncertainties == 0) { /* use default uncertainties for element */ for (k = 0; k < inverse[i].count_solns; k++) @@ -1314,15 +1182,11 @@ tidy_inverse(void) inverse[i].uncertainties[k]; } } - else if (inverse[i].elts[j].count_uncertainties < - inverse[i].count_solns) + else if (count_uncertainties < inverse[i].count_solns) { /* use input uncertainties, fill in any missing at end */ - value = - inverse[i].elts[j].uncertainties[inverse[i].elts[j]. - count_uncertainties - 1]; - for (k = inverse[i].elts[j].count_uncertainties; - k < inverse[i].count_solns; k++) + value = inverse[i].elts[j].uncertainties[count_uncertainties - 1]; + for (size_t k = count_uncertainties; k < inverse[i].count_solns; k++) { inverse[i].elts[j].uncertainties[k] = value; } @@ -1333,7 +1197,7 @@ tidy_inverse(void) */ count_elts = 0; paren_count = 0; - for (j = 0; j < inverse[i].count_phases; j++) + for (j = 0; j < inverse[i].phases.size(); j++) { inverse[i].phases[j].phase = phase_bsearch(inverse[i].phases[j].name, &k, FALSE); @@ -1348,9 +1212,9 @@ tidy_inverse(void) /* * Find isotope elements */ - if (inverse[i].phases[j].count_isotopes > 0) + if (inverse[i].phases[j].isotopes.size() > 0) { - for (k = 0; k < inverse[i].phases[j].count_isotopes; k++) + for (k = 0; k < inverse[i].phases[j].isotopes.size(); k++) { inverse[i].phases[j].isotopes[k].primary = NULL; inverse[i].phases[j].isotopes[k].master = NULL; @@ -1380,7 +1244,7 @@ tidy_inverse(void) inverse[i].phases[j].isotopes[k].primary = master_ptr; inverse[i].phases[j].isotopes[k].master = master_ptr; /* find coefficient for element */ - for (elt_list_ptr = inverse[i].phases[j].phase->next_elt; + for (elt_list_ptr = &inverse[i].phases[j].phase->next_elt[0]; elt_list_ptr->elt != NULL; elt_list_ptr++) { if (elt_list_ptr->elt == master_ptr->elt) @@ -1401,9 +1265,9 @@ tidy_inverse(void) continue; } } - qsort(inverse[i].phases[j].isotopes, - (size_t) inverse[i].phases[j].count_isotopes, - (size_t) sizeof(struct isotope), isotope_compare); + qsort(&inverse[i].phases[j].isotopes[0], + inverse[i].phases[j].isotopes.size(), + sizeof(class isotope), isotope_compare); } add_elt_list(inverse[i].phases[j].phase->next_elt, 1.0); @@ -1413,48 +1277,53 @@ tidy_inverse(void) /* * Sort elements in reaction and combine */ - if (count_elts > 0) - { - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); - elt_list_combine(); - } + elt_list_combine(); /* * Mark master species list */ - for (j = 0; j < count_master; j++) + for (j = 0; j < (int)master.size(); j++) master[j]->in = FALSE; for (j = 0; j < count_elts; j++) { elt_list[j].elt->master->in = TRUE; } /* Include all input elements */ - for (j = 0; j < inverse[i].count_elts; j++) + for (j = 0; j < inverse[i].elts.size(); j++) { inverse[i].elts[j].master->in = TRUE; } s_eminus->primary->in = TRUE; /* Include electrons */ + if (master_alk_ptr) + { master_alk_ptr->in = TRUE; /* Include alkalinity */ + } + else + { + input_error++; + error_string = sformatf( + "Alkalinity must be defined in SOLUTION_MASTER_SPECIES to be able to use INVERSE_MODELING."); + error_msg(error_string, CONTINUE); + } /* * Unmark primary and mark secondary master species for redox elements */ count_in = 0; inverse[i].count_redox_rxns = 0; - for (j = 0; j < count_master; j++) + for (j = 0; j < (int)master.size(); j++) { /* skip all secondary master species in this loop */ if (master[j]->primary == FALSE || master[j]->in == FALSE) continue; count_in++; - if (j + 1 == count_master) + if (j + 1 == (int)master.size()) continue; /* if next master species is secondary, mark all secondary master species until a primary is found */ - if (master[j + 1]->primary == FALSE) + if (master[(size_t)j + 1]->primary == FALSE) { master[j]->in = FALSE; count_in--; - for (k = j + 1; k < count_master; k++) + for (k = j + 1; k < (int)master.size(); k++) { if (master[k]->primary == FALSE) { @@ -1475,13 +1344,10 @@ tidy_inverse(void) /* * Save list of master species in inv_elts structure */ - inv_elts = - (struct inv_elts *) PHRQ_malloc((size_t) (count_in) * - sizeof(struct inv_elts)); - if (inv_elts == NULL) - malloc_error(); + std::vector inv_elts; + inv_elts.resize(count_in); count_in = 0; - for (j = 0; j < count_master; j++) + for (j = 0; j < (int)master.size(); j++) { /* skip H(1) and O(-2) */ if (master[j]->s == s_hplus || master[j]->s == s_h2o) @@ -1491,11 +1357,7 @@ tidy_inverse(void) /* set master */ inv_elts[count_in].master = master[j]; /* alloc uncertainties and set default */ - inv_elts[count_in].uncertainties = - (LDBLE *) PHRQ_malloc((size_t) inverse[i].count_solns * - sizeof(LDBLE)); - if (inv_elts[count_in].uncertainties == NULL) - malloc_error(); + inv_elts[count_in].uncertainties.resize((size_t)inverse[i].count_solns); for (k = 0; k < inverse[i].count_solns; k++) { inv_elts[count_in].uncertainties[k] = @@ -1516,7 +1378,7 @@ tidy_inverse(void) * copy in input uncertainties */ /* copy primary redox to all secondary redox */ - for (j = 0; j < inverse[i].count_elts; j++) + for (j = 0; j < inverse[i].elts.size(); j++) { master_ptr = master_bsearch(inverse[i].elts[j].name); if (master_ptr == NULL) @@ -1541,11 +1403,10 @@ tidy_inverse(void) } } } - inverse[i].elts[j].uncertainties = - (LDBLE *) free_check_null(inverse[i].elts[j].uncertainties); + inverse[i].elts[j].uncertainties.clear(); } /* copy masters that are not primary redox */ - for (j = 0; j < inverse[i].count_elts; j++) + for (j = 0; j < inverse[i].elts.size(); j++) { master_ptr = master_bsearch(inverse[i].elts[j].name); if (master_ptr == NULL) @@ -1571,17 +1432,15 @@ tidy_inverse(void) break; } } - inverse[i].elts[j].uncertainties = - (LDBLE *) free_check_null(inverse[i].elts[j].uncertainties); + inverse[i].elts[j].uncertainties.clear(); } /* * replace elts in inverse struct */ - inverse[i].elts = - (struct inv_elts *) free_check_null(inverse[i].elts); + inverse[i].elts.clear(); inverse[i].elts = inv_elts; - inverse[i].count_elts = count_in; - for (j = 0; j < inverse[i].count_elts; j++) + inverse[i].elts.resize(count_in); + for (j = 0; j < inverse[i].elts.size(); j++) { /* debug output_msg(sformatf( "\t%d\t%s", j, inverse[i].elts[j].master->elt->name)); @@ -1605,24 +1464,23 @@ tidy_phases(void) /* * Fix log Ks first, so they can possibly be added to other phase equations */ - for (i = 0; i < count_phases; i++) + for (i = 0; i < (int)phases.size(); i++) { - select_log_k_expression(phases[i]->logk, phases[i]->rxn->logk); - add_other_logk(phases[i]->rxn->logk, phases[i]->count_add_logk, - phases[i]->add_logk); - phases[i]->rxn->token[0].name = phases[i]->name; - phases[i]->rxn->token[0].s = NULL; + select_log_k_expression(phases[i]->logk, phases[i]->rxn.logk); + add_other_logk(phases[i]->rxn.logk, phases[i]->add_logk); + phases[i]->rxn.token[0].name = phases[i]->name; + phases[i]->rxn.token[0].s = NULL; } /* * Rewrite all phases to secondary species */ - for (i = 0; i < count_phases; i++) + for (i = 0; i < (int)phases.size(); i++) { /* * Rewrite equation */ count_trxn = 0; - trxn_add_phase(phases[i]->rxn, 1.0, FALSE); + trxn_add_phase(phases[i]->rxn, 1.0, false); trxn.token[0].name = phases[i]->name; /* debug output_msg(sformatf( "%s PHASE.\n", phases[i]->name)); @@ -1630,18 +1488,10 @@ tidy_phases(void) */ replaced = replace_solids_gases(); phases[i]->replaced = replaced; - /* save rxn */ - /* - rxn_free(phases[i]->rxn); - phases[i]->rxn = rxn_alloc(count_trxn + 1); - trxn_copy(phases[i]->rxn); - */ /* save rxn_s */ trxn_reverse_k(); rewrite_eqn_to_secondary(); trxn_reverse_k(); - rxn_free(phases[i]->rxn_s); - phases[i]->rxn_s = rxn_alloc(count_trxn + 1); trxn_copy(phases[i]->rxn_s); /* * Check equation @@ -1675,7 +1525,7 @@ tidy_pp_assemblage(void) /* ---------------------------------------------------------------------- */ { LDBLE coef; - char *ptr; + const char* cptr; /* * Find pointers for pure phases */ @@ -1705,7 +1555,7 @@ tidy_pp_assemblage(void) for ( ; it != pp_assemblage_ptr->Get_pp_assemblage_comps().end(); it++) { int k; - struct phase *phase_ptr = phase_bsearch(it->first.c_str(), &k, FALSE); + class phase *phase_ptr = phase_bsearch(it->first.c_str(), &k, FALSE); if (phase_ptr == NULL) { input_error++; @@ -1720,20 +1570,18 @@ tidy_pp_assemblage(void) } if (it->second.Get_add_formula().size() > 0) { - int first = count_elts; + size_t first = count_elts; phase_ptr = phase_bsearch(it->second.Get_add_formula().c_str(), &k, FALSE); if (phase_ptr != NULL) { it->second.Set_add_formula(phase_ptr->formula); } { - char * temp_add = string_duplicate(it->second.Get_add_formula().c_str()); - ptr = temp_add; - get_elts_in_species(&ptr, coef); - free_check_null(temp_add); + cptr = it->second.Get_add_formula().c_str(); + get_elts_in_species(&cptr, coef); } /* check that all elements are in the database */ - for (int l = first; l < count_elts; l++) + for (size_t l = first; l < count_elts; l++) { if (elt_list[l].elt->master == NULL) { @@ -1770,7 +1618,7 @@ int Phreeqc:: tidy_ss_assemblage(void) /* ---------------------------------------------------------------------- */ { - struct phase *phase_ptr; + class phase *phase_ptr; LDBLE nb, nc, n_tot, xb, xc, dnb, dnc, l_a0, l_a1; LDBLE xb2, xb3, xb4, xc2, xc3; LDBLE moles; @@ -1976,7 +1824,9 @@ tidy_punch(void) for (size_t i = 0; i < current_selected_output->Get_totals().size(); i++) { std::pair< std::string, void *> &pair_ptr = current_selected_output->Get_totals()[i]; - pair_ptr.second = master_bsearch(pair_ptr.first.c_str()); + std::string noplus = pair_ptr.first; + replace(noplus, "+", ""); + pair_ptr.second = master_bsearch(noplus.c_str()); } /* molalities */ @@ -2344,7 +2194,6 @@ tidy_punch(void) /* calculate_values */ - //for (i = 0; i < punch.count_calculate_values; i++) for (size_t i = 0; i < current_selected_output->Get_calculate_values().size(); i++) { std::pair< std::string, void *> &pair_ref = current_selected_output->Get_calculate_values()[i]; @@ -2383,14 +2232,6 @@ tidy_punch(void) } } fpunchf_heading("\n"); - //if (punch.user_punch == TRUE) - //{ - // for (i = 0; i < user_punch_count_headings; i++) - // { - // fpunchf_heading(sformatf("%*s\t", l, user_punch_headings[i])); - // } - //} - //fpunchf_heading("\n"); current_selected_output->Set_new_def(false); pr.punch = punch_save; @@ -2404,320 +2245,16 @@ tidy_punch(void) phrq_io->Set_punch_ostream(NULL); return (OK); } -#ifdef SKIP -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -tidy_punch(void) -/* ---------------------------------------------------------------------- */ -{ - int i, j, l; - int punch_save; - char token[MAX_LENGTH]; -/* - * tidy punch information - */ - if (punch.high_precision == FALSE) - { - l = 12; - } - else - { - l = 20; - } - if (punch.in == TRUE) - { - /* totals */ - for (i = 0; i < punch.count_totals; i++) - { - punch.totals[i].master = master_bsearch(punch.totals[i].name); - } - - /* molalities */ - - for (i = 0; i < punch.count_molalities; i++) - { - punch.molalities[i].s = s_search(punch.molalities[i].name); - } - - /* log activities */ - - for (i = 0; i < punch.count_activities; i++) - { - punch.activities[i].s = s_search(punch.activities[i].name); - } - - /* equilibrium phases */ - - for (i = 0; i < punch.count_pure_phases; i++) - { - punch.pure_phases[i].phase = - phase_bsearch(punch.pure_phases[i].name, &j, FALSE); - } - - /* saturation indices */ - - for (i = 0; i < punch.count_si; i++) - { - punch.si[i].phase = phase_bsearch(punch.si[i].name, &j, FALSE); - } - - /* gases */ - - for (i = 0; i < punch.count_gases; i++) - { - punch.gases[i].phase = - phase_bsearch(punch.gases[i].name, &j, FALSE); - } - } - /* - * Always write new headings when SELECTED_OUTPUT is read - */ - if (punch.new_def == TRUE && punch.in == TRUE) - { - punch_save = pr.punch; - pr.punch = TRUE; - phrq_io->Set_punch_on(true); - - /* constant stuff, sim, pH, etc. */ - - if (punch.sim == TRUE) - { - fpunchf_heading(sformatf("%*s\t", l, "sim")); - } - if (punch.state == TRUE) - { - fpunchf_heading(sformatf("%*s\t", l, "state")); - } - if (punch.soln == TRUE) - { - fpunchf_heading(sformatf("%*s\t", l, "soln")); - } - if (punch.dist == TRUE) - { - fpunchf_heading(sformatf("%*s\t", l, "dist_x")); - } - if (punch.time == TRUE) - { - fpunchf_heading(sformatf("%*s\t", l, "time")); - } - if (punch.step == TRUE) - { - fpunchf_heading(sformatf("%*s\t", l, "step")); - } - if (punch.ph == TRUE) - { - fpunchf_heading(sformatf("%*s\t", l, "pH")); - } - if (punch.pe == TRUE) - { - fpunchf_heading(sformatf("%*s\t", l, "pe")); - } - if (punch.rxn == TRUE) - { - fpunchf_heading(sformatf("%*s\t", l, "reaction")); - } - if (punch.temp == TRUE) - { - fpunchf_heading(sformatf("%*s\t", l, "temp")); - } - if (punch.alk == TRUE) - { - fpunchf_heading(sformatf("%*s\t", l, "Alk")); - } - if (punch.mu == TRUE) - { - fpunchf_heading(sformatf("%*s\t", l, "mu")); - } - if (punch.water == TRUE) - { - fpunchf_heading(sformatf("%*s\t", l, "mass_H2O")); - } - if (punch.charge_balance == TRUE) - { - fpunchf_heading(sformatf("%*s\t", l, "charge")); - } - if (punch.percent_error == TRUE) - { - fpunchf_heading(sformatf("%*s\t", l, "pct_err")); - } - /* totals */ - - for (i = 0; i < punch.count_totals; i++) - { - fpunchf_heading(sformatf("%*s\t", l, punch.totals[i].name)); - if (punch.totals[i].master == NULL) - { - error_string = sformatf( "Did not find master species," - " %s.", punch.totals[i].name); - warning_msg(error_string); - } - } - - /* molalities */ - - for (i = 0; i < punch.count_molalities; i++) - { - strcpy(token, "m_"); - strcat(token, punch.molalities[i].name); - fpunchf_heading(sformatf("%*s\t", l, token)); - if (punch.molalities[i].s == NULL) - { - error_string = sformatf( "Did not find species," - " %s.", punch.molalities[i].name); - warning_msg(error_string); - } - } - - /* log activities */ - - for (i = 0; i < punch.count_activities; i++) - { - strcpy(token, "la_"); - strcat(token, punch.activities[i].name); - fpunchf_heading(sformatf("%*s\t", l, token)); - if (punch.activities[i].s == NULL) - { - error_string = sformatf( "Did not find species, " - "%s.", punch.activities[i].name); - warning_msg(error_string); - } - } - - /* equilibrium phases */ - - for (i = 0; i < punch.count_pure_phases; i++) - { - strcpy(token, "d_"); - strcat(token, punch.pure_phases[i].name); - fpunchf_heading(sformatf("%*s\t", l, punch.pure_phases[i].name)); - fpunchf_heading(sformatf("%*s\t", l, token)); - if (punch.pure_phases[i].phase == NULL) - { - error_string = sformatf( "Did not find phase, " - "%s.", punch.pure_phases[i].name); - warning_msg(error_string); - } - } - - /* saturation indices */ - - for (i = 0; i < punch.count_si; i++) - { - strcpy(token, "si_"); - strcat(token, punch.si[i].name); - fpunchf_heading(sformatf("%*s\t", l, token)); - if (punch.si[i].phase == NULL) - { - error_string = sformatf( "Did not find phase, " - "%s.", punch.si[i].name); - warning_msg(error_string); - } - } - - /* gases */ - - if (punch.count_gases > 0) - { - fpunchf_heading(sformatf("%*s\t", l, "pressure")); - fpunchf_heading(sformatf("%*s\t", l, "total mol")); - fpunchf_heading(sformatf("%*s\t", l, "volume")); - } - for (i = 0; i < punch.count_gases; i++) - { - strcpy(token, "g_"); - strcat(token, punch.gases[i].name); - fpunchf_heading(sformatf("%*s\t", l, token)); - if (punch.gases[i].phase == NULL) - { - error_string = sformatf( "Did not find phase, " - "%s.", punch.gases[i].name); - warning_msg(error_string); - } - } - - /* kinetics */ - - for (i = 0; i < punch.count_kinetics; i++) - { - strcpy(token, "k_"); - strcat(token, punch.kinetics[i].name); - fpunchf_heading(sformatf("%*s\t", l, token)); - strcpy(token, "dk_"); - strcat(token, punch.kinetics[i].name); - fpunchf_heading(sformatf("%*s\t", l, token)); - } - - /* solid solutions */ - - for (i = 0; i < punch.count_s_s; i++) - { - strcpy(token, "s_"); - strcat(token, punch.s_s[i].name); - fpunchf_heading(sformatf("%*s\t", l, token)); - } - - /* isotopes */ - - for (i = 0; i < punch.count_isotopes; i++) - { - if (isotope_ratio_search(punch.isotopes[i].name) == NULL) - { - error_string = sformatf( - "Did not find isotope_ratio definition for " - "%s in -isotopes of SELECTED_OUTPUT.\n%s must be defined in ISOTOPE_RATIO data block.", - punch.isotopes[i].name, punch.isotopes[i].name); - warning_msg(error_string); - } - strcpy(token, "I_"); - strcat(token, punch.isotopes[i].name); - fpunchf_heading(sformatf("%*s\t", l, token)); - } - - /* calculate_values */ - - for (i = 0; i < punch.count_calculate_values; i++) - { - if (calculate_value_search(punch.calculate_values[i].name) == NULL) - { - error_string = sformatf( - "Did not find calculate_values definition for " - "%s in -calculate_values of SELECTED_OUTPUT.\n%s must be defined in CALCULATE_VALUES data block.", - punch.calculate_values[i].name, - punch.calculate_values[i].name); - warning_msg(error_string); - } - strcpy(token, "V_"); - strcat(token, punch.calculate_values[i].name); - fpunchf_heading(sformatf("%*s\t", l, token)); - } - - /* user_punch */ - if (punch.user_punch == TRUE) - { - for (i = 0; i < user_punch_count_headings; i++) - { - fpunchf_heading(sformatf("%*s\t", l, user_punch_headings[i])); - } - } - fpunchf_heading("\n"); - - punch.new_def = FALSE; - pr.punch = punch_save; - phrq_io->Set_punch_on(pr.punch == TRUE); - } - punch_flush(); - return (OK); -} -#endif /* ---------------------------------------------------------------------- */ int Phreeqc:: tidy_species(void) /* ---------------------------------------------------------------------- */ { int i, j; - struct master *master_ptr; - char c, *ptr; + class master *master_ptr; + char c; + const char* cptr; /* * Make sure species pointers are ok */ @@ -2728,7 +2265,7 @@ tidy_species(void) /* * Set secondary and primary pointers in species structures */ - for (i = 0; i < count_s; i++) + for (i = 0; i < (int)s.size(); i++) { s[i]->number = i; s[i]->primary = NULL; @@ -2746,13 +2283,12 @@ tidy_species(void) } } } - for (i = 0; i < count_master; i++) + for (i = 0; i < (int)master.size(); i++) { - char * temp_name = string_duplicate(master[i]->elt->name); - ptr = temp_name; - if (ptr[0] != '[') + cptr = master[i]->elt->name; + if (cptr[0] != '[') { - while ((c = (int) *(++ptr)) != '\0') + while ((c = (int) *(++cptr)) != '\0') { if (isupper((int) c)) { @@ -2765,7 +2301,6 @@ tidy_species(void) } } } - free_check_null(temp_name); /* store sequence number in master structure */ master[i]->number = i; if (strcmp(master[i]->elt->name, "Alkalinity") != 0) @@ -2799,42 +2334,40 @@ tidy_species(void) * Write equations for all master species in terms of primary * master species, set coefficient of element in master species */ - for (i = 0; i < count_master; i++) + for (i = 0; i < (int)master.size(); i++) { count_trxn = 0; if (master[i]->s->primary != NULL) { - trxn_add(master[i]->s->rxn, 1.0, FALSE); - trxn_add(master[i]->s->rxn, -1.0, TRUE); + trxn_add(master[i]->s->rxn, 1.0, false); + trxn_add(master[i]->s->rxn, -1.0, true); } else { - trxn_add(master[i]->s->rxn, 1.0, FALSE); + trxn_add(master[i]->s->rxn, 1.0, false); rewrite_eqn_to_primary(); } - rxn_free(master[i]->rxn_primary); - master[i]->rxn_primary = rxn_alloc(count_trxn + 1); trxn_copy(master[i]->rxn_primary); master[i]->coef = coef_in_master(master[i]); } /* * Rewrite all species to secondary species */ - for (i = 0; i < count_s; i++) + for (i = 0; i < (int)s.size(); i++) { count_trxn = 0; if (s[i]->primary != NULL || s[i]->secondary != NULL) { - trxn_add(s[i]->rxn, 1.0, FALSE); - trxn_add(s[i]->rxn, -1.0, TRUE); + trxn_add(s[i]->rxn, 1.0, false); + trxn_add(s[i]->rxn, -1.0, true); } else { - trxn_add(s[i]->rxn, 1.0, FALSE); + trxn_add(s[i]->rxn, 1.0, false); rewrite_eqn_to_secondary(); } - rxn_free(s[i]->rxn_s); - s[i]->rxn_s = rxn_alloc(count_trxn + 1); + //rxn_free(s[i].rxn_s); + //s[i].rxn_s = rxn_alloc(count_trxn + 1); trxn_copy(s[i]->rxn_s); /* calculate alkalinity */ s[i]->alk = calc_alk(s[i]->rxn_s); @@ -2852,7 +2385,7 @@ tidy_species(void) /* * Set pointer in element to master species */ - for (i = 0; i < count_elements; i++) + for (i = 0; i < (int)elements.size(); i++) { elements[i]->master = master_bsearch(elements[i]->name); if (elements[i]->master == NULL) @@ -2875,7 +2408,7 @@ tidy_species(void) * Make sure all primary master species for redox elements * are also secondary master species */ - for (i = 0; i < count_master; i++) + for (i = 0; i < (int)master.size(); i++) { if (master[i]->primary == FALSE) { @@ -2911,9 +2444,9 @@ tidy_species(void) /* * Calculate H and O if alternate mass balance is given */ - for (i = 0; i < count_s; i++) + for (i = 0; i < (int)s.size(); i++) { - if (s[i]->next_secondary != NULL) + if (s[i]->next_secondary.size() != 0) { s[i]->h = 0.0; s[i]->o = 0.0; @@ -2975,11 +2508,11 @@ tidy_species(void) * Changed to be coefficient of exchanger */ LDBLE exchange_coef = 0.0; - for (j = 1; s[i]->rxn_s->token[j].s != NULL; j++) + for (j = 1; s[i]->rxn_s.token[j].s != NULL; j++) { - if (s[i]->rxn_s->token[j].s->type == EX) + if (s[i]->rxn_s.token[j].s->type == EX) { - exchange_coef = s[i]->rxn_s->token[j].coef; + exchange_coef = s[i]->rxn_s.token[j].coef; break; } } @@ -2999,11 +2532,11 @@ tidy_species(void) /* * Find coefficient of surface in rxn, store in equiv */ - for (j = 1; s[i]->rxn_s->token[j].s != NULL; j++) + for (j = 1; s[i]->rxn_s.token[j].s != NULL; j++) { - if (s[i]->rxn_s->token[j].s->type == SURF) + if (s[i]->rxn_s.token[j].s->type == SURF) { - surface_coef = s[i]->rxn_s->token[j].coef; + surface_coef = s[i]->rxn_s.token[j].coef; break; } } @@ -3019,7 +2552,7 @@ tidy_species(void) } } - for (i = 0; i < count_master; i++) + for (i = 0; i < (int)master.size(); i++) { if (master[i]->gfw <= 0.0) { @@ -3048,7 +2581,7 @@ tidy_surface(void) * After all of data are read, fill in master species for surface comps * Sort surface */ - char *ptr1; + const char* cptr1; cxxSurface *surface_ptr; //std::map::iterator kit; //for (kit = Rxn_surface_map.begin(); kit != Rxn_surface_map.end(); kit++) @@ -3065,6 +2598,8 @@ tidy_surface(void) } //if (!kit->second.Get_new_def()) continue; surface_ptr = &(kit->second); + if (surface_ptr->Get_tidied()) continue; + surface_ptr->Set_tidied(true); // ccm incompatible with Donnan or diffuse_layer if (surface_ptr->Get_type() == cxxSurface::CCM) { @@ -3085,8 +2620,8 @@ tidy_surface(void) cxxNameDouble::iterator jit = comp_ptr->Get_totals().begin(); for ( ; jit != comp_ptr->Get_totals().end(); jit++ ) { - struct element *elt_ptr = element_store(jit->first.c_str()); - struct master *master_ptr = elt_ptr->master; + class element *elt_ptr = element_store(jit->first.c_str()); + class master *master_ptr = elt_ptr->master; if (master_ptr == NULL) { input_error++; @@ -3130,10 +2665,8 @@ tidy_surface(void) count_elts = 0; paren_count = 0; { - char * temp_formula = string_duplicate(comp_ptr->Get_formula().c_str()); - ptr1 = temp_formula; - get_elts_in_species(&ptr1, comp_ptr->Get_moles()); - free_check_null(temp_formula); + cptr1 = comp_ptr->Get_formula().c_str(); + get_elts_in_species(&cptr1, comp_ptr->Get_moles()); } { cxxNameDouble nd = elt_list_NameDouble(); @@ -3148,17 +2681,6 @@ tidy_surface(void) } break; } -#ifdef SKIP_MUSIC - /* - * If charge of formula is non zero - */ - if (surface_ptr->type == CD_MUSIC) - { - surface_ptr->comps[i].cb = - surface_ptr->comps[i].formula_z * - surface_ptr->comps[i].moles; - } -#endif } /* * Check that all surface comps have a corresponding master @@ -3201,7 +2723,7 @@ tidy_solutions(void) * Define n_user for any solutions read by solution_spread that * don`t have n_user defined */ - struct master *master_ptr; + class master *master_ptr; /* * Calculate solution numbers @@ -3294,74 +2816,32 @@ tidy_solutions(void) } /* ---------------------------------------------------------------------- */ int Phreeqc:: -species_rxn_to_trxn(struct species *s_ptr) +species_rxn_to_trxn(class species *s_ptr) /* ---------------------------------------------------------------------- */ { /* * Copy reaction from reaction structure to * temp reaction structure. */ - int i; - - for (i = 0; s_ptr->rxn->token[i].s != NULL; i++) + if (trxn.token.size() <= s_ptr->rxn.token.size()) { - trxn.token[i].name = s_ptr->rxn->token[i].s->name; - trxn.token[i].z = s_ptr->rxn->token[i].s->z; - trxn.token[i].s = s_ptr->rxn->token[i].s; + trxn.token.resize(s_ptr->rxn.token.size()); + } + count_trxn = 0; + for (size_t i = 0; s_ptr->rxn.token[i].s != NULL; i++) + { + trxn.token[i].name = s_ptr->rxn.token[i].s->name; + trxn.token[i].z = s_ptr->rxn.token[i].s->z; + trxn.token[i].s = s_ptr->rxn.token[i].s; trxn.token[i].unknown = NULL; - trxn.token[i].coef = s_ptr->rxn->token[i].coef; + trxn.token[i].coef = s_ptr->rxn.token[i].coef; count_trxn = i + 1; - if (count_trxn + 1 >= max_trxn) - { - space((void **) ((void *) &(trxn.token)), count_trxn + 1, - &max_trxn, sizeof(struct rxn_token_temp)); - } + if (count_trxn + 1 > trxn.token.size()) + trxn.token.resize(count_trxn + 1); } return (OK); } -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -phase_rxn_to_trxn(struct phase *phase_ptr, struct reaction *rxn_ptr) -/* ---------------------------------------------------------------------- */ -{ -/* - * Copy reaction from reaction structure to - * temp reaction structure. - */ - int i, l; - char *ptr; - char token[MAX_LENGTH]; - LDBLE l_z; - - trxn.token[0].name = phase_ptr->formula; - /* charge */ - char * temp_formula = string_duplicate(phase_ptr->formula); - ptr = temp_formula; - get_token(&ptr, token, &l_z, &l); - free_check_null(temp_formula); - trxn.token[0].z = l_z; - trxn.token[0].s = NULL; - trxn.token[0].unknown = NULL; - /*trxn.token[0].coef = -1.0; */ - /* check for leading coefficient of 1.0 for phase did not work */ - trxn.token[0].coef = phase_ptr->rxn->token[0].coef; - for (i = 1; rxn_ptr->token[i].s != NULL; i++) - { - trxn.token[i].name = rxn_ptr->token[i].s->name; - trxn.token[i].z = rxn_ptr->token[i].s->z; - trxn.token[i].s = NULL; - trxn.token[i].unknown = NULL; - trxn.token[i].coef = rxn_ptr->token[i].coef; - count_trxn = i + 1; - if (count_trxn + 1 >= max_trxn) - { - space((void **) ((void *) &(trxn.token)), count_trxn + 1, - &max_trxn, sizeof(struct rxn_token_temp)); - } - } - return (OK); -} /* ---------------------------------------------------------------------- */ int Phreeqc:: tidy_isotopes(void) @@ -3371,9 +2851,9 @@ tidy_isotopes(void) * Isotope ratios for each element or element valence state */ LDBLE isotope_number; - struct master *master_ptr, *primary_ptr; + class master *master_ptr, *primary_ptr; - int primary_number = 0; + size_t primary_number = 0; primary_ptr = NULL; std::map::iterator it; for (it = Rxn_solution_map.begin(); it != Rxn_solution_map.end(); it++) @@ -3428,7 +2908,7 @@ tidy_isotopes(void) /* find index number of master species, set flag to FALSE */ master_ptr = master_bsearch(kit->second.Get_elt_name().c_str()); isotope_number = kit->second.Get_isotope_number(); - for (int k = 0; k < count_master; k++) + for (int k = 0; k < (int)master.size(); k++) { master[k]->isotope = FALSE; } @@ -3459,7 +2939,7 @@ tidy_isotopes(void) /* for primary, fill in ratio for all secondary species */ if (master_ptr->primary == TRUE && master_ptr->s->secondary != NULL) { - for (int k = primary_number + 1; k < count_master; k++) + for (size_t k = primary_number + 1; k < (int)master.size(); k++) { if (master[k]->elt->primary != primary_ptr) break; @@ -3493,7 +2973,7 @@ tidy_isotopes(void) /* * Write new isotope structure */ - for (int k = 0; k < count_master; k++) + for (int k = 0; k < (int)master.size(); k++) { /* skip primary master species of redox elements */ if (master[k]->primary == TRUE && master[k]->s->secondary != NULL) @@ -3546,7 +3026,7 @@ tidy_kin_exchange(void) */ { cxxKinetics *kinetics_ptr; - char *ptr; + const char* cptr; LDBLE conc; //std::map::iterator it = Rxn_exchange_map.begin(); @@ -3562,10 +3042,10 @@ tidy_kin_exchange(void) assert(false); } cxxExchange * exchange_ptr = &(it->second); - //if (!exchange_ptr->Get_new_def()) - // continue; - //if (exchange_ptr->Get_n_user() < 0) - // continue; + if (!exchange_ptr->Get_new_def()) + continue; + if (exchange_ptr->Get_n_user() < 0) + continue; // check elements for (size_t j = 0; j < exchange_ptr->Get_exchange_comps().size(); j++) { @@ -3579,7 +3059,7 @@ tidy_kin_exchange(void) for (; kit != nd.end(); kit++) { /* Find master species */ - struct element *elt_ptr = element_store(kit->first.c_str()); + class element *elt_ptr = element_store(kit->first.c_str()); if (elt_ptr == NULL || elt_ptr->master == NULL) { input_error++; @@ -3641,10 +3121,8 @@ tidy_kin_exchange(void) count_elts = 0; paren_count = 0; { - char * temp_formula = string_duplicate(comp_ref.Get_formula().c_str()); - ptr = temp_formula; - get_elts_in_species(&ptr, conc); - free_check_null(temp_formula); + cptr = comp_ref.Get_formula().c_str(); + get_elts_in_species(&cptr, conc); } comp_ref.Set_totals(elt_list_NameDouble()); /* @@ -3656,6 +3134,136 @@ tidy_kin_exchange(void) } /* ---------------------------------------------------------------------- */ int Phreeqc:: +update_kin_exchange(void) +/* ---------------------------------------------------------------------- */ +/* + * If exchanger is related to mineral, exchanger amount is + * set in proportion. Exchange needs to be updated if the + * amount of kinetic reaction has changed. Corner case of + * zero moles. + */ +{ + cxxKinetics* kinetics_ptr; + const char* cptr; + LDBLE conc; + + std::map::iterator it = Rxn_exchange_map.begin(); + for ( ; it != Rxn_exchange_map.end(); it++) + { + cxxExchange* exchange_ptr = &(it->second); + if (exchange_ptr->Get_n_user() < 0) continue; + // check elements + for (size_t j = 0; j < exchange_ptr->Get_exchange_comps().size(); j++) + { + cxxExchComp& comp_ref = exchange_ptr->Get_exchange_comps()[j]; + if (comp_ref.Get_rate_name().size() == 0) continue; + double comp_moles = 0.0; + /* First find exchange master species */ + cxxNameDouble nd = comp_ref.Get_totals(); + cxxNameDouble::iterator kit = nd.begin(); + bool found_exchange = false; + for (; kit != nd.end(); kit++) + { + /* Find master species */ + class element* elt_ptr = element_store(kit->first.c_str()); + if (elt_ptr == NULL || elt_ptr->master == NULL) + { + input_error++; + error_string = sformatf("Master species not in database " + "for %s, skipping element.", + kit->first.c_str()); + error_msg(error_string, CONTINUE); + continue; + } + if (elt_ptr->master->type == EX) + { + comp_moles = kit->second; + found_exchange = true; + } + } + //if (!found_exchange) + //{ + // input_error++; + // error_string = sformatf( + // "Exchange formula does not contain an exchange master species, %s", + // comp_ref.Get_formula().c_str()); + // error_msg(error_string, CONTINUE); + // continue; + //} + + /* Now find associated kinetic reaction ... */ + if ((kinetics_ptr = Utilities::Rxn_find(Rxn_kinetics_map, exchange_ptr->Get_n_user())) == NULL) + { + input_error++; + error_string = sformatf( + "Kinetics %d must be defined to use exchange related to kinetic reaction, %s", + exchange_ptr->Get_n_user(), comp_ref.Get_formula().c_str()); + error_msg(error_string, CONTINUE); + continue; + } + size_t k; + for (k = 0; k < kinetics_ptr->Get_kinetics_comps().size(); k++) + { + if (strcmp_nocase + (comp_ref.Get_rate_name().c_str(), + kinetics_ptr->Get_kinetics_comps()[k].Get_rate_name().c_str()) == 0) + { + break; + } + } + if (k == kinetics_ptr->Get_kinetics_comps().size()) + { + input_error++; + error_string = sformatf( + "Kinetic reaction, %s, related to exchanger, %s, not found in KINETICS %d", + comp_ref.Get_rate_name().c_str(), comp_ref.Get_formula().c_str(), exchange_ptr->Get_n_user()); + error_msg(error_string, CONTINUE); + continue; + } + + /* use database name for phase */ + comp_ref.Set_rate_name(kinetics_ptr->Get_kinetics_comps()[k].Get_rate_name().c_str()); + + /* make exchanger concentration proportional to mineral ... */ + conc = kinetics_ptr->Get_kinetics_comps()[k].Get_m() * comp_ref.Get_phase_proportion(); + if (found_exchange && comp_moles > 0.0) + { + /* parse formula */ + count_elts = 0; + paren_count = 0; + { + cptr = comp_ref.Get_formula().c_str(); + get_elts_in_species(&cptr, 1.0); + } + cxxNameDouble nd_formula = elt_list_NameDouble(); + double comp_coef = 0; + for (kit = nd_formula.begin(); kit != nd_formula.end(); kit++) + { + /* Find master species */ + class element* elt_ptr = element_store(kit->first.c_str()); + if (elt_ptr->master->type == EX) + { + comp_coef = kit->second; + } + } + comp_ref.multiply(comp_coef * conc / comp_moles); + } + else /* need to generate totals from scratch */ + { + count_elts = 0; + paren_count = 0; + { + cptr = comp_ref.Get_formula().c_str(); + get_elts_in_species(&cptr, conc); + } + comp_ref.Set_totals(elt_list_NameDouble()); + } + } + } + return (OK); +} +/* ---------------------------------------------------------------------- */ +int Phreeqc:: tidy_min_exchange(void) /* ---------------------------------------------------------------------- */ /* @@ -3664,7 +3272,7 @@ tidy_min_exchange(void) */ { int n, jj; - char *ptr; + const char* cptr; LDBLE conc; //std::map::iterator it = Rxn_exchange_map.begin(); @@ -3681,10 +3289,10 @@ tidy_min_exchange(void) assert(false); } cxxExchange * exchange_ptr = &(it->second); - //if (!exchange_ptr->Get_new_def()) - // continue; - //if (exchange_ptr->Get_n_user() < 0) - // continue; + if (!exchange_ptr->Get_new_def()) + continue; + if (exchange_ptr->Get_n_user() < 0) + continue; n = exchange_ptr->Get_n_user(); // check elements for (size_t j = 0; j < exchange_ptr->Get_exchange_comps().size(); j++) @@ -3699,7 +3307,7 @@ tidy_min_exchange(void) for (; kit != nd.end(); kit++) { /* Find master species */ - struct element *elt_ptr = element_store(kit->first.c_str()); + class element *elt_ptr = element_store(kit->first.c_str()); if (elt_ptr == NULL || elt_ptr->master == NULL) { input_error++; @@ -3759,10 +3367,8 @@ tidy_min_exchange(void) count_elts = 0; paren_count = 0; { - char * temp_formula = string_duplicate(comp_ref.Get_formula().c_str()); - ptr = temp_formula; - get_elts_in_species(&ptr, conc); - free_check_null(temp_formula); + cptr = comp_ref.Get_formula().c_str(); + get_elts_in_species(&cptr, conc); } comp_ref.Set_totals(elt_list_NameDouble()); /* @@ -3771,19 +3377,15 @@ tidy_min_exchange(void) count_elts = 0; paren_count = 0; { - char * temp_formula = string_duplicate(comp_ref.Get_formula().c_str()); - ptr = temp_formula; - get_elts_in_species(&ptr, -comp_ref.Get_phase_proportion()); - free_check_null(temp_formula); + cptr = comp_ref.Get_formula().c_str(); + get_elts_in_species(&cptr, -comp_ref.Get_phase_proportion()); } int l; - struct phase *phase_ptr = phase_bsearch(jit->first.c_str(), &l, FALSE); + class phase *phase_ptr = phase_bsearch(jit->first.c_str(), &l, FALSE); if (phase_ptr != NULL) { - char * temp_formula = string_duplicate(phase_ptr->formula); - ptr = temp_formula; - get_elts_in_species(&ptr, 1.0); - free_check_null(temp_formula); + cptr = phase_ptr->formula; + get_elts_in_species(&cptr, 1.0); } else { @@ -3794,8 +3396,6 @@ tidy_min_exchange(void) error_msg(error_string, CONTINUE); continue; } - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); elt_list_combine(); for (jj = 0; jj < count_elts; jj++) { @@ -3819,6 +3419,177 @@ tidy_min_exchange(void) } /* ---------------------------------------------------------------------- */ int Phreeqc:: +update_min_exchange(void) +/* ---------------------------------------------------------------------- */ +/* + * If exchanger is related to mineral, exchanger amount is + * set in proportion. Need to check in case exchange or min + * are modified. + */ +{ + int n, jj; + const char* cptr; + LDBLE conc; + + std::map::iterator it = Rxn_exchange_map.begin(); + for ( ; it != Rxn_exchange_map.end(); it++) + { + cxxExchange* exchange_ptr = &(it->second); + if (exchange_ptr->Get_n_user() < 0) continue; + n = exchange_ptr->Get_n_user(); + // check elements + for (size_t j = 0; j < exchange_ptr->Get_exchange_comps().size(); j++) + { + double comp_moles = 0.0; + cxxExchComp& comp_ref = exchange_ptr->Get_exchange_comps()[j]; + if (comp_ref.Get_phase_name().size() == 0) continue; + /* First find exchange master species */ + cxxNameDouble nd = comp_ref.Get_totals(); + cxxNameDouble::iterator kit = nd.begin(); + bool found_exchange = false; + for (; kit != nd.end(); kit++) + { + /* Find master species */ + class element* elt_ptr = element_store(kit->first.c_str()); + if (elt_ptr == NULL || elt_ptr->master == NULL) + { + input_error++; + error_string = sformatf("Master species not in database " + "for %s, skipping element.", + kit->first.c_str()); + error_msg(error_string, CONTINUE); + continue; + } + if (elt_ptr->master->type == EX) + { + comp_moles = kit->second; + found_exchange = true; + } + } + //if (!found_exchange) + //{ + // input_error++; + // error_string = sformatf( + // "Exchange formula does not contain an exchange master species, %s", + // comp_ref.Get_formula().c_str()); + // error_msg(error_string, CONTINUE); + // continue; + //} + + cxxPPassemblage* pp_assemblage_ptr = Utilities::Rxn_find(Rxn_pp_assemblage_map, n); + /* Now find the mineral on which exchanger depends... */ + if (pp_assemblage_ptr == NULL) + { + input_error++; + error_string = sformatf( + "Equilibrium_phases %d must be defined to use exchange related to mineral phase, %s", + n, comp_ref.Get_formula().c_str()); + error_msg(error_string, CONTINUE); + continue; + } + std::map::iterator jit; + jit = pp_assemblage_ptr->Get_pp_assemblage_comps().begin(); + for (; jit != pp_assemblage_ptr->Get_pp_assemblage_comps().end(); jit++) + { + if (strcmp_nocase(comp_ref.Get_phase_name().c_str(), jit->first.c_str()) == 0) + { + break; + } + } + if (jit == pp_assemblage_ptr->Get_pp_assemblage_comps().end()) + { + input_error++; + error_string = sformatf( + "Mineral, %s, related to exchanger, %s, not found in Equilibrium_Phases %d", + comp_ref.Get_phase_name().c_str(), comp_ref.Get_formula().c_str(), n); + error_msg(error_string, CONTINUE); + continue; + } + /* use database name for phase */ + comp_ref.Set_phase_name(jit->first.c_str()); + + /* make exchanger concentration proportional to mineral ... */ + conc = jit->second.Get_moles() * comp_ref.Get_phase_proportion(); + if (found_exchange && comp_moles > 0.0) + { + /* parse formula */ + count_elts = 0; + paren_count = 0; + { + cptr = comp_ref.Get_formula().c_str(); + get_elts_in_species(&cptr, 1.0); + } + cxxNameDouble nd_formula = elt_list_NameDouble(); + double comp_coef = 0; + for (kit = nd_formula.begin(); kit != nd_formula.end(); kit++) + { + /* Find master species */ + class element* elt_ptr = element_store(kit->first.c_str()); + if (elt_ptr->master->type == EX) + { + comp_coef = kit->second; + } + } + comp_ref.multiply(comp_coef * conc / comp_moles); + } + else /* comp_moles is zero, need to redefine totals from scratch */ + { + count_elts = 0; + paren_count = 0; + { + cptr = comp_ref.Get_formula().c_str(); + get_elts_in_species(&cptr, conc); + } + comp_ref.Set_totals(elt_list_NameDouble()); + /* + * make sure exchange elements are in phase + */ + count_elts = 0; + paren_count = 0; + { + cptr = comp_ref.Get_formula().c_str(); + get_elts_in_species(&cptr, -comp_ref.Get_phase_proportion()); + } + int l; + class phase* phase_ptr = phase_bsearch(jit->first.c_str(), &l, FALSE); + if (phase_ptr != NULL) + { + cptr = phase_ptr->formula; + get_elts_in_species(&cptr, 1.0); + } + else + { + input_error++; + error_string = sformatf( + "Mineral, %s, related to exchanger, %s, not found in Equilibrium_Phases %d", + comp_ref.Get_phase_name().c_str(), comp_ref.Get_formula().c_str(), n); + error_msg(error_string, CONTINUE); + continue; + } + elt_list_combine(); + for (jj = 0; jj < count_elts; jj++) + { + if (elt_list[jj].elt->primary->s->type != EX + && elt_list[jj].coef < 0) + { + input_error++; + error_string = sformatf( + "Stoichiometry of exchanger, %s * %g mol sites/mol phase,\n\tmust be a subset of the related phase %s, %s.", + comp_ref.Get_formula().c_str(), + (double)comp_ref.Get_phase_proportion(), + phase_ptr->name, + phase_ptr->formula); + error_msg(error_string, CONTINUE); + break; + } + } + } + } + } + return (OK); +} +/* ---------------------------------------------------------------------- */ +int Phreeqc:: tidy_min_surface(void) /* ---------------------------------------------------------------------- */ /* @@ -3840,7 +3611,6 @@ tidy_min_surface(void) assert(false); } cxxSurface *surface_ptr = &(kit->second); - if (!surface_ptr->Get_new_def()) continue; if (!surface_ptr->Get_new_def()) continue; if (surface_ptr->Get_n_user() < 0) @@ -3859,8 +3629,8 @@ tidy_min_surface(void) for (it = surface_comp_ptr->Get_totals().begin(); it != surface_comp_ptr->Get_totals().end(); it++) { /* Find master species */ - struct element *elt_ptr = element_store(it->first.c_str()); - struct master *master_ptr = elt_ptr->master; + class element *elt_ptr = element_store(it->first.c_str()); + class master *master_ptr = elt_ptr->master; if (master_ptr == NULL) { input_error++; @@ -3916,7 +3686,7 @@ tidy_min_surface(void) continue; } int l; - struct phase *phase_ptr = phase_bsearch(jit->first.c_str(), &l, FALSE); + class phase *phase_ptr = phase_bsearch(jit->first.c_str(), &l, FALSE); if (phase_ptr == NULL) { input_error++; @@ -3930,16 +3700,13 @@ tidy_min_surface(void) surface_comp_ptr->Set_phase_name(phase_ptr->name); /* make surface concentration proportional to mineral ... */ LDBLE conc = jit->second.Get_moles() * surface_comp_ptr->Get_phase_proportion(); -#ifdef SKIP_MUSIC - comp_ptr->cb = conc * comp_ptr->formula_z; -#endif /* if (conc < MIN_RELATED_SURFACE) conc = 0.0; */ { char * temp_formula = string_duplicate(surface_comp_ptr->Get_formula().c_str()); - char *ptr = temp_formula; + const char* cptr = temp_formula; count_elts = 0; paren_count = 0; - get_elts_in_species(&ptr, conc); + get_elts_in_species(&cptr, conc); free_check_null(temp_formula); } { @@ -3966,10 +3733,8 @@ tidy_min_surface(void) count_elts = 0; paren_count = 0; { - char * temp_formula = string_duplicate(phase_ptr->formula); - char * ptr = temp_formula; - get_elts_in_species(&ptr, 1.0); - free_check_null(temp_formula); + const char* cptr = phase_ptr->formula; + get_elts_in_species(&cptr, 1.0); } // Revise logic for surface related to mineral for (size_t jj = 0; jj < surface_ptr->Get_surface_comps().size(); jj++) @@ -3977,23 +3742,20 @@ tidy_min_surface(void) cxxSurfaceComp *comp_jj_ptr = &(surface_ptr->Get_surface_comps()[jj]); // Use formula for all types of surfaces { - char * temp_formula = string_duplicate(comp_jj_ptr->Get_formula().c_str()); - char *ptr = temp_formula; - get_elts_in_species(&ptr, - -comp_jj_ptr->Get_phase_proportion()); + const char* cptr = comp_jj_ptr->Get_formula().c_str(); + get_elts_in_species(&cptr, -comp_jj_ptr->Get_phase_proportion()); if (surface_ptr->Get_type() != cxxSurface::CD_MUSIC) { // Warn if not master species and charge balanced - struct element *elt_ptr = element_store(comp_jj_ptr->Get_master_element().c_str()); + class element *elt_ptr = element_store(comp_jj_ptr->Get_master_element().c_str()); if (elt_ptr->master == NULL) { input_error++; error_string = sformatf("Unknown element definition in SURFACE \n\t for surface related to equilibrium_phase: SURFACE %d.", surface_ptr->Get_n_user()); error_msg(error_string); - free_check_null(temp_formula); continue; } if (elt_ptr->master->s == NULL || elt_ptr->master->s->name == NULL) @@ -4002,28 +3764,24 @@ tidy_min_surface(void) error_string = sformatf("Unknown master species definition in SURFACE \n\t for surface related to equilibrium_phase: SURFACE %d.", surface_ptr->Get_n_user()); error_msg(error_string); - free_check_null(temp_formula); continue; } - if (strcmp(elt_ptr->master->s->name, temp_formula) != 0) - { - error_string = sformatf("Suggest using master species formula in SURFACE \n\t for surface related to equilibrium_phase: %s.", - elt_ptr->master->s->name); - warning_msg(error_string); - } - if (elt_ptr->master->s->z != 0.0) + //if (strcmp(elt_ptr->master->s->name, temp_formula) != 0) + //{ + // error_string = sformatf("Suggest using master species formula in SURFACE \n\t for surface related to equilibrium_phase: %s.", + // elt_ptr->master->s->name); + // warning_msg(error_string); + //} + if (elt_ptr->master->s->z != 0.0 && surface_ptr->Get_dl_type() != cxxSurface::DONNAN_DL) { error_string = sformatf( - "Suggest master species of surface, %s, be uncharged for surface related to equilibrium_phase.", + "Use the -donnan option when coupling surface %s to an equilibrium_phase, \n\t and note to give the equilibrium_phase the surface charge.", elt_ptr->master->s->name); warning_msg(error_string); } } - free_check_null(temp_formula); } } - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); elt_list_combine(); /* Makes no sense: sorbed species need not be in mineral structure... */ /* But elements that can desorb into solution must be in mineral */ @@ -4032,15 +3790,40 @@ tidy_min_surface(void) Further, if you precipitate Ca-Mont, make SurfCa, desorb all the Ca, then dissolve the "Ca-Mont", you must remove SurfCa, or you will end up with Ca in solution. H and O are excluded */ + /* Example that makes montmorillonite a cation exchanger: + PHASES + Summ_Montmorillonite; Al2.33Si3.67O10(OH)2-0.33 + 12 H2O = 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+; -log_k -44.4 + SURFACE_MASTER_SPECIES; Summ Summ-; SURFACE_SPECIES; Summ- = Summ- + SOLUTION 1; Na 1e1; Cl 1e1; pH 7 charge; C(4) 1 CO2(g) -2 + EQUILIBRIUM_PHASES 1; Ca-Montmorillonite 0 1e-3 + Summ_Montmorillonite 0 0 + SURFACE 1; Summ Summ_Montmorillonite 0.33 3.11e5; -donnan; -equil 1 + END + */ for (int jj = 0; jj < count_elts; jj++) { + if (elt_list[jj].elt->primary == NULL) + { + error_string = sformatf("Primary master species missing for %s", + elt_list[jj].elt->name); + error_msg(error_string, CONTINUE); + break; + } + if (elt_list[jj].elt->primary->s == NULL) + { + error_string = sformatf( + "Species missing for %s", elt_list[jj].elt->name); + error_msg(error_string, CONTINUE); + break; + } + if (elt_list[jj].elt->primary->s->type != SURF && elt_list[jj].coef < 0 //&& elt_list[jj].elt->primary->s != s_hplus //&& elt_list[jj].elt->primary->s != s_h2o ) { - struct element *elt_ptr = element_store(surface_comp_ptr->Get_master_element().c_str()); + class element *elt_ptr = element_store(surface_comp_ptr->Get_master_element().c_str()); error_string = sformatf( "Element %s in sum of surface sites,\n" "\t including %s * %g mol sites/mol phase,\n" @@ -4061,6 +3844,151 @@ tidy_min_surface(void) } /* ---------------------------------------------------------------------- */ int Phreeqc:: +update_min_surface(void) +/* ---------------------------------------------------------------------- */ +/* + * If surface is related to mineral, surface amount is + * set in proportion + */ +{ + std::map::iterator kit; + for (kit = Rxn_surface_map.begin(); kit != Rxn_surface_map.end(); kit++) + { + cxxSurface* surface_ptr = &(kit->second); + if (surface_ptr->Get_n_user() < 0) continue; + for (size_t j = 0; j < surface_ptr->Get_surface_comps().size(); j++) + { + double comp_moles = 0.0; + cxxSurfaceComp* surface_comp_ptr = &(surface_ptr->Get_surface_comps()[j]); + if (surface_comp_ptr->Get_phase_name().size() == 0) continue; + cxxSurfaceCharge* surface_charge_ptr = NULL; + if (surface_ptr->Get_type() != cxxSurface::NO_EDL) + { + surface_charge_ptr = surface_ptr->Find_charge(surface_comp_ptr->Get_charge_name()); + if (surface_charge_ptr == NULL) + { + input_error++; + error_string = sformatf("Data structure for surface charge not found " + "for %s ", + surface_comp_ptr->Get_formula().c_str()); + error_msg(error_string, CONTINUE); + continue; + } + } + int n = surface_ptr->Get_n_user(); + + /* First find surface master species */ + cxxNameDouble::iterator it; + for (it = surface_comp_ptr->Get_totals().begin(); it != surface_comp_ptr->Get_totals().end(); it++) + { + /* Find master species */ + class element* elt_ptr = element_store(it->first.c_str()); + class master* master_ptr = elt_ptr->master; + if (master_ptr == NULL) + { + input_error++; + error_string = sformatf("Master species not in database " + "for %s, skipping element.", + elt_ptr->name); + error_msg(error_string, CONTINUE); + continue; + } + if (master_ptr->type != SURF) continue; + comp_moles = it->second; + surface_comp_ptr->Set_master_element(elt_ptr->name); + break; + } + //if (surface_comp_ptr->Get_master_element().size() == 0) + //{ + // input_error++; + // error_string = sformatf( + // "Surface formula does not contain a surface master species, %s", + // surface_comp_ptr->Get_formula().c_str()); + // error_msg(error_string, CONTINUE); + // continue; + //} + + /* Now find the mineral on which surface depends... */ + cxxPPassemblage* pp_assemblage_ptr = Utilities::Rxn_find(Rxn_pp_assemblage_map, n); + if (pp_assemblage_ptr == NULL) + { + input_error++; + error_string = sformatf( + "Equilibrium_phases %d must be defined to use surface related to mineral phase, %s", + n, surface_comp_ptr->Get_formula().c_str()); + error_msg(error_string, CONTINUE); + continue; + } + std::map::iterator jit; + jit = pp_assemblage_ptr->Get_pp_assemblage_comps().begin(); + for (; jit != pp_assemblage_ptr->Get_pp_assemblage_comps().end(); jit++) + { + if (strcmp_nocase(surface_comp_ptr->Get_phase_name().c_str(), + jit->first.c_str()) == 0) + { + break; + } + } + if (jit == pp_assemblage_ptr->Get_pp_assemblage_comps().end()) + { + input_error++; + error_string = sformatf( + "Mineral, %s, related to surface, %s, not found in Equilibrium_Phases %d", + surface_comp_ptr->Get_phase_name().c_str(), surface_comp_ptr->Get_formula().c_str(), n); + error_msg(error_string, CONTINUE); + continue; + } + int l; + class phase* phase_ptr = phase_bsearch(jit->first.c_str(), &l, FALSE); + if (phase_ptr == NULL) + { + input_error++; + error_string = sformatf( + "Mineral, %s, related to surface, %s, not found in database.", + jit->first.c_str(), surface_comp_ptr->Get_formula().c_str()); + error_msg(error_string, CONTINUE); + continue; + } + /* use database name for phase */ + surface_comp_ptr->Set_phase_name(phase_ptr->name); + /* make surface concentration proportional to mineral ... */ + LDBLE conc = jit->second.Get_moles() * surface_comp_ptr->Get_phase_proportion(); + double grams = 0.0; + if (surface_charge_ptr != NULL) + { + grams = surface_charge_ptr->Get_grams(); + } + if (comp_moles > 0.0) + { + surface_comp_ptr->multiply(conc / comp_moles); + } + else /* need to generate from scratch */ + { + char* temp_formula = string_duplicate(surface_comp_ptr->Get_formula().c_str()); + const char* cptr = temp_formula; + count_elts = 0; + paren_count = 0; + get_elts_in_species(&cptr, conc); + free_check_null(temp_formula); + + cxxNameDouble nd = elt_list_NameDouble(); + surface_comp_ptr->Set_totals(nd); + } + if (grams > 0.0) + { + surface_charge_ptr->multiply(jit->second.Get_moles() / grams); + } + else if (surface_charge_ptr != NULL) /* need to generate from scratch */ + { + surface_charge_ptr->Set_grams(jit->second.Get_moles()); + surface_charge_ptr->Set_charge_balance(0.0); + } + } + } + return (OK); +} +/* ---------------------------------------------------------------------- */ +int Phreeqc:: tidy_kin_surface(void) /* ---------------------------------------------------------------------- */ /* @@ -4069,9 +3997,9 @@ tidy_kin_surface(void) */ { cxxKinetics *kinetics_ptr; - struct phase *phase_ptr; - struct elt_list *elt_list_kinetics; - int count_elts_kinetics; + class phase *phase_ptr; + std::vector elt_list_kinetics; + size_t count_elts_kinetics; //std::map::iterator it; //for (it = Rxn_surface_map.begin(); it != Rxn_surface_map.end(); it++) @@ -4105,8 +4033,8 @@ tidy_kin_surface(void) for (kit = comp_ptr->Get_totals().begin(); kit != comp_ptr->Get_totals().end(); kit++) { /* Find master species */ - struct element *elt_ptr = element_store(kit->first.c_str()); - struct master *master_ptr = elt_ptr->master; + class element *elt_ptr = element_store(kit->first.c_str()); + class master *master_ptr = elt_ptr->master; if (master_ptr == NULL) { input_error++; @@ -4169,12 +4097,10 @@ tidy_kin_surface(void) /* if (conc < MIN_RELATED_SURFACE) conc = 0.0; */ { - char * temp_formula = string_duplicate(comp_ptr->Get_formula().c_str()); - char *ptr = temp_formula; + const char* cptr = comp_ptr->Get_formula().c_str(); count_elts = 0; paren_count = 0; - get_elts_in_species(&ptr, conc); - free_check_null(temp_formula); + get_elts_in_species(&cptr, conc); } { if (surface_ptr->Get_new_def()) @@ -4231,20 +4157,16 @@ tidy_kin_surface(void) } else { - char * temp_name = string_duplicate(name.c_str()); - char * ptr = temp_name; - get_elts_in_species(&ptr, coef); - free_check_null(temp_name); + const char* cptr = name.c_str(); + get_elts_in_species(&cptr, coef); } } /* save kinetics formula */ if (count_elts > 0) { - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); elt_list_combine(); } - elt_list_kinetics = elt_list_save(); + elt_list_kinetics = elt_list_vsave(); count_elts_kinetics = count_elts; /* get surface formulas */ @@ -4261,18 +4183,11 @@ tidy_kin_surface(void) (comp_ptr->Get_rate_name().c_str(), kin_comp_ptr->Get_rate_name().c_str()) == 0) { - char * temp_formula = string_duplicate( comp_ptr->Get_formula().c_str()); - char *ptr = temp_formula; - get_elts_in_species(&ptr, -1 * comp_ptr->Get_phase_proportion()); - free_check_null(temp_formula); + const char* cptr = comp_ptr->Get_formula().c_str(); + get_elts_in_species(&cptr, -1 * comp_ptr->Get_phase_proportion()); } } - if (count_elts > 0) - { - qsort(elt_list, (size_t) count_elts, - (size_t) sizeof(struct elt_list), elt_list_compare); - elt_list_combine(); - } + elt_list_combine(); for (int j = 0; j < count_elts; j++) { if (elt_list[j].elt == NULL) @@ -4336,8 +4251,143 @@ tidy_kin_surface(void) } } } - elt_list_kinetics = - (struct elt_list *) free_check_null(elt_list_kinetics); + elt_list_kinetics.clear(); + } + } + return (OK); +} +/* ---------------------------------------------------------------------- */ +int Phreeqc:: +update_kin_surface(void) +/* ---------------------------------------------------------------------- */ +/* + * If surface is related to mineral, surface amount is + * set in proportion. Need to update surface if + * moles of kinetic reaction changes + */ +{ + cxxKinetics* kinetics_ptr; + + std::map::iterator it; + for (it = Rxn_surface_map.begin(); it != Rxn_surface_map.end(); it++) + { + cxxSurface* surface_ptr = &(it->second); + if (surface_ptr->Get_n_user() < 0) continue; + int n = surface_ptr->Get_n_user(); + for (size_t j = 0; j < surface_ptr->Get_surface_comps().size(); j++) + { + double comp_moles = 0.0; + cxxSurfaceComp* comp_ptr = &(surface_ptr->Get_surface_comps()[j]); + if (comp_ptr->Get_rate_name().size() == 0) continue; + comp_ptr->Set_master_element(""); + + /* First find surface master species */ + int k; + cxxNameDouble::iterator kit; + for (kit = comp_ptr->Get_totals().begin(); kit != comp_ptr->Get_totals().end(); kit++) + { + /* Find master species */ + class element* elt_ptr = element_store(kit->first.c_str()); + class master* master_ptr = elt_ptr->master; + if (master_ptr == NULL) + { + input_error++; + error_string = sformatf("Master species not in database " + "for %s, skipping element.", + elt_ptr->name); + error_msg(error_string, CONTINUE); + continue; + } + if (master_ptr->type != SURF) continue; + comp_ptr->Set_master_element(elt_ptr->name); + comp_moles = kit->second; + break; + } + if (comp_ptr->Get_master_element().size() == 0) + { + input_error++; + error_string = sformatf( + "Surface formula does not contain a surface master species, %s", + comp_ptr->Get_formula().c_str()); + error_msg(error_string, CONTINUE); + continue; + } + + /* Now find the kinetic reaction on which surface depends... */ + if ((kinetics_ptr = Utilities::Rxn_find(Rxn_kinetics_map, n)) == NULL) + { + input_error++; + error_string = sformatf( + "Kinetics %d must be defined to use surface related to kinetic reaction, %s", + n, comp_ptr->Get_formula().c_str()); + error_msg(error_string, CONTINUE); + continue; + } + for (k = 0; k < (int)kinetics_ptr->Get_kinetics_comps().size(); k++) + { + cxxKineticsComp* kin_comp_ptr = &(kinetics_ptr->Get_kinetics_comps()[k]); + if (strcmp_nocase + (comp_ptr->Get_rate_name().c_str(), + kin_comp_ptr->Get_rate_name().c_str()) == 0) + { + break; + } + } + if (k == (int)kinetics_ptr->Get_kinetics_comps().size()) + { + input_error++; + error_string = sformatf( + "Kinetic reaction, %s, related to surface, %s, not found in Kinetics %d", + comp_ptr->Get_rate_name().c_str(), comp_ptr->Get_formula().c_str(), n); + error_msg(error_string, CONTINUE); + continue; + } + + cxxKineticsComp* kin_comp_ptr = &(kinetics_ptr->Get_kinetics_comps()[k]); + /* use database name for rate */ + comp_ptr->Set_rate_name(kin_comp_ptr->Get_rate_name().c_str()); + cxxSurfaceCharge* charge_ptr = surface_ptr->Find_charge(comp_ptr->Get_charge_name()); + if (surface_ptr->Get_type() != cxxSurface::NO_EDL) + { + charge_ptr = surface_ptr->Find_charge(comp_ptr->Get_charge_name()); + if (charge_ptr == NULL) + { + input_error++; + error_string = sformatf("Data structure for surface charge not found " + "for %s ", + comp_ptr->Get_formula().c_str()); + error_msg(error_string, CONTINUE); + continue; + } + } + /* make surface concentration proportional to mineral ... */ + LDBLE conc = kin_comp_ptr->Get_m() * comp_ptr->Get_phase_proportion(); + double grams = 0.0; + if (charge_ptr != NULL) charge_ptr->Get_grams(); + if (comp_moles > 0.0) + { + comp_ptr->multiply(conc / comp_moles); + } + else /* need to generate from scratch */ + { + const char* cptr = comp_ptr->Get_formula().c_str(); + count_elts = 0; + paren_count = 0; + get_elts_in_species(&cptr, conc); + + cxxNameDouble nd = elt_list_NameDouble(); + comp_ptr->Set_totals(nd); + } + + if (grams > 0.0) + { + charge_ptr->multiply(kin_comp_ptr->Get_m() / grams); + } + else if (charge_ptr != NULL) /* need to generate from scratch */ + { + charge_ptr->Set_grams(kin_comp_ptr->Get_m()); + charge_ptr->Set_charge_balance(0.0); + } } } return (OK); @@ -4370,10 +4420,10 @@ ss_prep(LDBLE t, cxxSS *ss_ptr, int print) ag1 = a1 * rt; cxxSScomp *comp0_ptr = &(ss_ptr->Get_ss_comps()[0]); cxxSScomp *comp1_ptr = &(ss_ptr->Get_ss_comps()[1]); - struct phase *phase0_ptr = phase_bsearch(comp0_ptr->Get_name().c_str(), &k, FALSE); - struct phase *phase1_ptr = phase_bsearch(comp1_ptr->Get_name().c_str(), &k, FALSE); - kc = exp(k_calc(phase0_ptr->rxn->logk, t, REF_PRES_PASCAL) * LOG_10); - kb = exp(k_calc(phase1_ptr->rxn->logk, t, REF_PRES_PASCAL) * LOG_10); + class phase *phase0_ptr = phase_bsearch(comp0_ptr->Get_name().c_str(), &k, FALSE); + class phase *phase1_ptr = phase_bsearch(comp1_ptr->Get_name().c_str(), &k, FALSE); + kc = exp(k_calc(phase0_ptr->rxn.logk, t, REF_PRES_PASCAL) * LOG_10); + kb = exp(k_calc(phase1_ptr->rxn.logk, t, REF_PRES_PASCAL) * LOG_10); crit_pt = fabs(a0) + fabs(a1); /* * Default, no miscibility or spinodal gaps @@ -4981,8 +5031,8 @@ ss_calc_a0_a1(cxxSS *ss_ptr) cxxSScomp *comp0_ptr = &(ss_ptr->Get_ss_comps()[0]); cxxSScomp *comp1_ptr = &(ss_ptr->Get_ss_comps()[1]); int k; - struct phase *phase0_ptr = phase_bsearch(comp0_ptr->Get_name().c_str(), &k, FALSE); - struct phase *phase1_ptr = phase_bsearch(comp1_ptr->Get_name().c_str(), &k, FALSE); + class phase *phase0_ptr = phase_bsearch(comp0_ptr->Get_name().c_str(), &k, FALSE); + class phase *phase1_ptr = phase_bsearch(comp1_ptr->Get_name().c_str(), &k, FALSE); if (phase0_ptr == NULL || phase1_ptr == NULL) { input_error++; @@ -4992,9 +5042,9 @@ ss_calc_a0_a1(cxxSS *ss_ptr) error_msg(error_string, CONTINUE); return (ERROR); } - l_kc = exp(k_calc(phase0_ptr->rxn->logk, ss_ptr->Get_tk(), REF_PRES_PASCAL) * + l_kc = exp(k_calc(phase0_ptr->rxn.logk, ss_ptr->Get_tk(), REF_PRES_PASCAL) * LOG_10); - l_kb = exp(k_calc(phase1_ptr->rxn->logk, ss_ptr->Get_tk(), REF_PRES_PASCAL) * + l_kb = exp(k_calc(phase1_ptr->rxn.logk, ss_ptr->Get_tk(), REF_PRES_PASCAL) * LOG_10); p = ss_ptr->Get_p(); @@ -5331,9 +5381,9 @@ tidy_master_isotope(void) /* ---------------------------------------------------------------------- */ { int i; - struct master *master_ptr; + class master *master_ptr; - for (i = 0; i < count_master_isotope; i++) + for (i = 0; i < (int)master_isotope.size(); i++) { /* * Mark master species list as minor isotope @@ -5367,11 +5417,11 @@ tidy_isotope_ratios(void) /* ---------------------------------------------------------------------- */ { int i; - struct master *master_ptr; - struct master_isotope *master_isotope_ptr; - struct calculate_value *calculate_value_ptr; + class master *master_ptr; + class master_isotope *master_isotope_ptr; + class calculate_value *calculate_value_ptr; - for (i = 0; i < count_isotope_ratio; i++) + for (i = 0; i < (int)isotope_ratio.size(); i++) { /* * Mark master species list as minor isotope @@ -5414,10 +5464,10 @@ tidy_isotope_alphas(void) /* ---------------------------------------------------------------------- */ { int i; - struct calculate_value *calculate_value_ptr; - struct logk *logk_ptr; + class calculate_value *calculate_value_ptr; + class logk *logk_ptr; - for (i = 0; i < count_isotope_alpha; i++) + for (i = 0; i < (int)isotope_alpha.size(); i++) { /* * Mark master species list as minor isotope @@ -5455,29 +5505,15 @@ reset_last_model(void) /* * Initialize model */ - last_model.force_prep = TRUE; - last_model.count_exchange = 0; - last_model.exchange = - (struct master **) free_check_null(last_model.exchange); - last_model.count_gas_phase = 0; - last_model.gas_phase = - (struct phase **) free_check_null(last_model.gas_phase); - last_model.count_ss_assemblage = 0; - last_model.ss_assemblage = - (const char **) free_check_null(last_model.ss_assemblage); - last_model.count_pp_assemblage = 0; - last_model.pp_assemblage = - (struct phase **) free_check_null(last_model.pp_assemblage); - last_model.add_formula = - (const char **) free_check_null(last_model.add_formula); - last_model.si = (LDBLE *) free_check_null(last_model.si); + last_model.force_prep = true; + last_model.gas_phase.clear(); + last_model.ss_assemblage.clear(); + last_model.pp_assemblage.clear(); + last_model.add_formula.clear(); + last_model.si.clear(); last_model.dl_type = cxxSurface::NO_DL; - last_model.count_surface_comp = 0; - last_model.surface_comp = - (const char **) free_check_null(last_model.surface_comp); - last_model.count_surface_charge = 0; - last_model.surface_charge = - (const char **) free_check_null(last_model.surface_charge); + last_model.surface_comp.clear(); + last_model.surface_charge.clear(); return (OK); } /* ---------------------------------------------------------------------- */ @@ -5522,7 +5558,7 @@ tidy_exchange(void) for (; kit != nd.end(); kit++) { /* Find master species */ - struct element *elt_ptr = element_store(kit->first.c_str()); + class element *elt_ptr = element_store(kit->first.c_str()); if (elt_ptr == NULL || elt_ptr->master == NULL) { input_error++; diff --git a/transport.cpp b/transport.cpp index 5cdfa574..88f33a29 100644 --- a/transport.cpp +++ b/transport.cpp @@ -1,4 +1,4 @@ -#include "Utils.h" +#include "Utils.h" #include "Phreeqc.h" #include "phqalloc.h" #include "Exchange.h" @@ -7,11 +7,22 @@ #include "SSassemblage.h" #include "cxxKinetics.h" #include "Solution.h" +#include LDBLE F_Re3 = F_C_MOL / (R_KJ_DEG_MOL * 1e3); -LDBLE tk_x2; // average tx_x of icell and jcell +LDBLE tk_x2; // average tk_x of icell and jcell LDBLE dV_dcell; // difference in Volt among icell and jcell int find_current; +char token[MAX_LENGTH]; + +// implicit... +std::set dif_spec_names; +std::set dif_els_names; +std::map > neg_moles; +std::map els; +double *Ct2, *l_tk_x2, **A, **LU, **mixf, **mixf_stag; +int mixf_comp_size = 0; + struct CURRENT_CELLS { LDBLE dif, ele, R; // diffusive and electric components, relative cell resistance @@ -24,17 +35,31 @@ struct V_M // For calculating Vinograd and McBain's zero-charge, diffusive tra }; struct CT /* summed parts of V_M and mcd transfer in a timestep for all cells, for free + DL water */ { - LDBLE dl_s, Dz2c, Dz2c_dl, visc1, visc2, J_ij_sum; + LDBLE kgw, dl_s, Dz2c, Dz2c_stag, visc1, visc2, J_ij_sum; LDBLE A_ij_il, Dz2c_il, mixf_il; int J_ij_count_spec, J_ij_il_count_spec; struct V_M *v_m, *v_m_il; - struct J_ij *J_ij, *J_ij_il; + class J_ij *J_ij, *J_ij_il; + int count_m_s; + class M_S *m_s; + int v_m_size, J_ij_size, m_s_size; } *ct = NULL; +std::map > cell_J_ij; struct MOLES_ADDED /* total moles added to balance negative conc's */ { char *name; LDBLE moles; } *moles_added; +int count_moles_added; + +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /* ---------------------------------------------------------------------- */ int Phreeqc:: transport(void) @@ -72,66 +97,65 @@ transport(void) { input_error++; error_string = sformatf( - "Solution %d is needed for transport, but is not defined.", - i); + "Solution %d is needed for transport, but is not defined.", i); error_msg(error_string, CONTINUE); } else - { cell_data[i].temp = use.Get_solution_ptr()->Get_tc(); - } } if (multi_Dflag) { - sol_D = (struct sol_D *) PHRQ_malloc((size_t) (all_cells)* sizeof(struct sol_D)); + sol_D = (class sol_D *) PHRQ_malloc((size_t) (all_cells)* sizeof(class sol_D)); if (sol_D == NULL) malloc_error(); - //sol_D_dbg = sol_D; - - ct = (struct CT *) PHRQ_malloc((size_t) (all_cells)* sizeof(struct CT)); - if (ct == NULL) - malloc_error(); - { - for (int i = 0; i < all_cells; i++) - { - ct[i].dl_s = 0.0; - ct[i].Dz2c = 0.0; - ct[i].Dz2c_dl = 0.0; - ct[i].visc1 = 0.0; - ct[i].visc2 = 0.0; - ct[i].J_ij_sum = 0.0; - ct[i].A_ij_il = 0.0; - ct[i].Dz2c_il = 0.0; - ct[i].mixf_il = 0.0; - ct[i].J_ij_count_spec = 0; - ct[i].J_ij_il_count_spec = 0; - ct[i].v_m = NULL; - ct[i].v_m_il = NULL; - ct[i].J_ij = NULL; - ct[i].J_ij_il = NULL; - } - } - - moles_added = (struct MOLES_ADDED *) PHRQ_malloc((size_t) (count_elements)* sizeof(struct MOLES_ADDED)); - if (moles_added == NULL) - malloc_error(); - for (i = 0; i < all_cells; i++) { sol_D[i].count_spec = 0; sol_D[i].count_exch_spec = 0; sol_D[i].exch_total = 0; sol_D[i].x_max = 0; + sol_D[i].viscos_f = 1.0; + sol_D[i].tk_x = 298.15; sol_D[i].spec = NULL; + sol_D[i].spec_size = 0; } - for (i = 0; i < count_elements; i++) + //sol_D_dbg = sol_D; + + ct = (struct CT *) PHRQ_malloc((size_t) (all_cells)* sizeof(struct CT)); + if (ct == NULL) + malloc_error(); + for (i = 0; i < all_cells; i++) + { + ct[i].kgw = 1.0; + ct[i].dl_s = 0.0; + ct[i].Dz2c = ct[i].Dz2c_stag = 0.0; + ct[i].visc1 = ct[i].visc2 = 0.0; + ct[i].J_ij_sum = 0.0; + ct[i].A_ij_il = 0.0; + ct[i].Dz2c_il = 0.0; + ct[i].mixf_il = 0.0; + ct[i].J_ij_count_spec = 0; + ct[i].J_ij_il_count_spec = 0; + ct[i].v_m = NULL; + ct[i].v_m_il = NULL; + ct[i].J_ij = NULL; + ct[i].J_ij_il = NULL; + ct[i].m_s = NULL; + ct[i].v_m_size = ct[i].J_ij_size = ct[i].m_s_size = 0; + } + count_moles_added = (int)elements.size(); + moles_added = (struct MOLES_ADDED *) PHRQ_malloc((size_t) (count_moles_added)* sizeof(struct MOLES_ADDED)); + if (moles_added == NULL) + malloc_error(); + + for (i = 0; i < count_moles_added; i++) { moles_added[i].name = NULL; moles_added[i].moles = 0; } } - try + try { /* check solution 0 */ use.Set_solution_ptr(Utilities::Rxn_find(Rxn_solution_map, 0)); @@ -176,7 +200,7 @@ transport(void) /* * Initialize temperature in stagnant cells ... */ - for (n = 1; n <= stag_data->count_stag; n++) + for (n = 1; n <= stag_data.count_stag; n++) { for (i = 1; i <= count_cells; i++) { @@ -184,10 +208,17 @@ transport(void) use.Set_solution_ptr(Utilities::Rxn_find(Rxn_solution_map, k)); if (use.Get_solution_ptr() != NULL) cell_data[k].temp = use.Get_solution_ptr()->Get_tc(); + if (n == 1 && implicit && use.Get_solution_ptr() == NULL) + { + input_error++; + error_string = sformatf( + "Stagnant solution %d not found for implicit diffusion with 1 stagnant layer.\n Please define it, or set -implicit false.", k); + error_msg(error_string, CONTINUE); + } } } - if (fix_current && !dV_dcell) + if (fix_current && !dV_dcell && !implicit) { warning_msg("fix_current (A) was defined, but potential in a boundary cell was not.\n\tUsing 1e-8 V in cell 0 for calculating the potentials."); cell_data[0].potV = 1e-8; @@ -201,7 +232,6 @@ transport(void) error_string = sformatf( "Electro-diffusion cannot be combined with advective transport."); error_msg(error_string, CONTINUE); - free_check_null(sol_D); } if (!multi_Dflag) { @@ -209,7 +239,6 @@ transport(void) error_string = sformatf( "Electrical Field (potential) was defined, but needs -multi_D."); error_msg(error_string, CONTINUE); - free_check_null(sol_D); } else { @@ -227,7 +256,7 @@ transport(void) "Electrical Field (potential) was defined, assuming constant boundary condition for last cell."); warning_msg(error_string); } - current_cells = (struct CURRENT_CELLS *) PHRQ_malloc((size_t) + current_cells = (struct CURRENT_CELLS *) PHRQ_malloc( (count_cells + 1) * sizeof(struct CURRENT_CELLS)); if (current_cells == NULL) malloc_error(); @@ -239,6 +268,47 @@ transport(void) } } } + if (implicit && interlayer_Dflag) + { + input_error++; + error_string = sformatf( + "Interlayer diffusion cannot be calculated implicitly. Please remove -implicit true."); + error_msg(error_string, CONTINUE); + } + if (implicit && !multi_Dflag) + { + input_error++; + error_string = sformatf( + "Implicit diffusion needs diffusion coefficients for individual species. Please add -multi_d true."); + error_msg(error_string, CONTINUE); + } + if (implicit && !timest) + { + error_string = sformatf( + "Time step not defined for diffusion, using -time_step 1 # seconds"); + warning_msg(error_string); + timest = 1; + } + //if (implicit && stag_data.count_stag > 1) + //{ + // error_string = sformatf( + // "Sorry, implicit diffusion can handle only 1 stagnant layer for now. Please remove -implicit true, or set -stagnant 1."); + // //error_msg(error_string, CONTINUE); + //} + if (implicit && current_cells == NULL) + { + current_cells = (struct CURRENT_CELLS *) PHRQ_malloc( + (count_cells + 1) * sizeof(struct CURRENT_CELLS)); + if (current_cells == NULL) + malloc_error(); + for (int i = 0; i < count_cells + 1; i++) + { + current_cells[i].dif = 0.0; + current_cells[i].ele = 0.0; + current_cells[i].R = 0.0; + } + } + /* * First equilibrate solutions */ @@ -246,8 +316,8 @@ transport(void) transport_step = 0; for (i = 0; i <= count_cells + 1; i++) { - if ((bcon_first == 2 && i == 0) || - (bcon_last == 2 && i == count_cells + 1)) + if (!implicit && ((bcon_first == 2 && i == 0) || + (bcon_last == 2 && i == count_cells + 1))) continue; set_initial_moles(i); cell_no = i; @@ -262,7 +332,7 @@ transport(void) } if (multi_Dflag == TRUE) { - fill_spec(cell_no); + fill_spec(cell_no, 0); } print_punch(i, true); @@ -272,7 +342,7 @@ transport(void) /* * Also stagnant cells */ - for (n = 1; n <= stag_data->count_stag; n++) + for (n = 1; n <= stag_data.count_stag; n++) { for (i = 1; i <= count_cells; i++) { @@ -284,7 +354,7 @@ transport(void) set_and_run_wrapper(k, NOMIX, FALSE, k, 0.0); if (multi_Dflag == TRUE) { - fill_spec(cell_no); + fill_spec(cell_no, i); } print_punch(k, true); saver(); @@ -295,23 +365,18 @@ transport(void) * Initialize mixing factors, define kinetics times * for multicomponent diffusion, limit mixing by diffc_max (usually from H+) */ - if (multi_Dflag == TRUE) + if (multi_Dflag) diffc_tr = diffc_max; - if ((stag_data->exch_f > 0) && (stag_data->count_stag == 1)) + if ((stag_data.exch_f > 0) && (stag_data.count_stag == 1)) { /* multi_D calc's are OK if all cells have the same amount of water */ - /* if (multi_Dflag == TRUE) + if (multi_Dflag == TRUE) { - sprintf(token, "multi_D calc's and stagnant: define MIXing factors explicitly, or \n\t give all cells the same amount of water."); - warning_msg(token); + sprintf(token, "multi_D calc's and stagnant: define MIXing factors explicitly, or \n\t give in -multi_D the Dw used for calculating the mobile-immobile exchange factor."); + warning_msg(token); } - */ - + Rxn_mix_map.clear(); - - /* - * stagnant mix factors go in mix[0 .. count_cells] - */ } /* * mix[] is extended in init_mix(), to accommodate column mix factors @@ -321,9 +386,9 @@ transport(void) if (nmix < 2) stagkin_time = timest; else - stagkin_time = timest / nmix; + stagkin_time = timest / (double)nmix; if (ishift != 0) - kin_time = timest / (1 + nmix); + kin_time = timest / (1 + (double)nmix); else kin_time = stagkin_time; kin_time_save = kin_time; @@ -341,7 +406,7 @@ transport(void) /* * Set boundary conditions, transport direction */ - last_model.force_prep = TRUE; + last_model.force_prep = true; if ((ishift == 0) || (bcon_first == 1) || (bcon_last == 1)) b_c = 1; else @@ -365,24 +430,24 @@ transport(void) * structure stag_data. * MIX 'cell_no' in input file can be an alternative for the calculation here. */ - if ((stag_data->exch_f > 0) && (stag_data->count_stag == 1)) + if ((stag_data.exch_f > 0) && (stag_data.count_stag == 1)) { - b = stag_data->th_m / (stag_data->th_m + stag_data->th_im); - f = exp(-stag_data->exch_f * stagkin_time / (b * stag_data->th_im)); + b = stag_data.th_m / (stag_data.th_m + stag_data.th_im); + f = exp(-stag_data.exch_f * stagkin_time / (b * stag_data.th_im)); mix_f_imm = b - b * f; - mix_f_m = mix_f_imm * stag_data->th_im / stag_data->th_m; + mix_f_m = mix_f_imm * stag_data.th_im / stag_data.th_m; for (j = 1; j <= count_cells; j++) { j_imm = j + (1 + count_cells); if (Utilities::Rxn_find(Rxn_solution_map, j) == NULL) error_msg ("Could not find mobile cell solution in TRANSPORT.", - STOP); + STOP); if (Utilities::Rxn_find(Rxn_solution_map, j_imm) == NULL) //error_msg //("Could not find immobile cell solution in TRANSPORT.", //STOP); - continue; + continue; water_m = Utilities::Rxn_find(Rxn_solution_map, j)->Get_mass_water(); water_imm = Utilities::Rxn_find(Rxn_solution_map, j_imm)->Get_mass_water(); /* @@ -414,11 +479,11 @@ transport(void) /* * Assumption: D_e used for calculating exch_f in input file equals diffc */ - f = stag_data->exch_f * (heat_diffc - diffc) / diffc / tempr; - f = exp(-f * stagkin_time / (b * stag_data->th_im)); + f = stag_data.exch_f * (heat_diffc - diffc) / diffc / tempr; + f = exp(-f * stagkin_time / (b * stag_data.th_im)); heat_mix_f_imm = b - b * f; heat_mix_f_m = - heat_mix_f_imm * stag_data->th_im / stag_data->th_m; + heat_mix_f_imm * stag_data.th_im / stag_data.th_m; } } /* @@ -431,9 +496,13 @@ transport(void) /* * Now transport */ - sprintf(token, "\nCalculating transport: %d cells, %d shifts, %d mixruns...\n\n", - count_cells, count_shifts - transport_start + 1, nmix); - screen_msg(token); + if (implicit) + sprintf(token, "\nCalculating implicit transport: %d (mobile) cells, %d shifts, %d mixruns, max. mixf = %g.\n\n", + count_cells, count_shifts - transport_start + 1, nmix, max_mixf); + else + sprintf(token, "\nCalculating transport: %d (mobile) cells, %d shifts, %d mixruns...\n\n", + count_cells, count_shifts - transport_start + 1, nmix); + warning_msg(token); max_iter = 0; for (transport_step = transport_start; transport_step <= count_shifts; transport_step++) @@ -443,14 +512,14 @@ transport(void) */ for (i = 0; i <= count_cells + 1; i++) { - if (!dV_dcell && (i == 0 || i == count_cells + 1)) + if (!dV_dcell && !implicit && (i == 0 || i == count_cells + 1)) continue; set_initial_moles(i); } /* * Also stagnant cells */ - for (n = 1; n <= stag_data->count_stag; n++) + for (n = 1; n <= stag_data.count_stag; n++) { for (i = 1; i <= count_cells; i++) { @@ -468,8 +537,8 @@ transport(void) /* For half of mixing steps */ for (j = 1; j <= floor((LDBLE)nmix / 2); j++) { - rate_sim_time_start = - (transport_step - 1) * timest + (j - 1) * kin_time; + rate_sim_time_start = ((double)transport_step - 1) * + timest + ((double)j - 1) * kin_time; rate_sim_time = rate_sim_time_start + kin_time; mixrun = j; @@ -487,7 +556,7 @@ transport(void) dup_print(token, FALSE); } - if (heat_nmix > 0) + if (heat_nmix > 0 && !implicit) { heat_mix(heat_nmix); /* equilibrate again ... */ @@ -496,7 +565,7 @@ transport(void) cell_no = i; set_and_run_wrapper(i, NOMIX, FALSE, i, 0.0); if (multi_Dflag) - fill_spec(i); + fill_spec(i, i - 1); saver(); } } @@ -505,74 +574,67 @@ transport(void) { if (disp_surf(stagkin_time) == ERROR) error_msg("Error in surface transport, stopping.", - STOP); + STOP); } - if (multi_Dflag) + if (implicit) + diffuse_implicit(stagkin_time, stag_data.count_stag); + else if (multi_Dflag) multi_D(stagkin_time, 1, FALSE); for (i = 0; i <= count_cells + 1; i++) { - if (!dV_dcell && (i == 0 || i == count_cells + 1)) + if (!dV_dcell && (i == 0 || i == count_cells + 1) && !implicit) + { + if (j == nmix && stag_data.count_stag == 0 && + (cell_data[0].print || cell_data[0].punch || + cell_data[count_cells + 1].print || cell_data[count_cells + 1].punch)) + print_punch(i, false); continue; - if (iterations > max_iter) - max_iter = iterations; + } + if (overall_iterations > max_iter) + max_iter = overall_iterations; cell_no = i; - mixrun = j; if (multi_Dflag) sprintf(token, - "Transport step %3d. MCDrun %3d. Cell %3d. (Max. iter %3d)", - transport_step, j, i, max_iter); + "Transport step %3d. MCDrun %3d. Cell %3d. (Max. iter %3d)", + transport_step, j, i, max_iter); else sprintf(token, - "Transport step %3d. Mixrun %3d. Cell %3d. (Max. iter %3d)", - transport_step, j, i, max_iter); + "Transport step %3d. Mixrun %3d. Cell %3d. (Max. iter %3d)", + transport_step, j, i, max_iter); status(0, token); if (i == 0 || i == count_cells + 1) - run_reactions(i, kin_time, NOMIX, step_fraction); // nsaver = i + { + if (dV_dcell) + run_reactions(i, kin_time, MIX_BS, step_fraction); // nsaver = i + else + run_reactions(i, kin_time, NOMIX, step_fraction); // nsaver = i + } else - run_reactions(i, kin_time, DISP, step_fraction); // nsaver = -2 + { + run_reactions(i, kin_time, DISP, step_fraction); // n_saver = -2 + } if (multi_Dflag) - fill_spec(i); + fill_spec(i, 0); /* punch and output file */ - if (ishift == 0 && j == nmix && stag_data->count_stag == 0) + if (ishift == 0 && j == nmix && (stag_data.count_stag == 0 || (implicit && stag_data.count_stag == 1))) print_punch(i, true); if (i > 1) Utilities::Rxn_copy(Rxn_solution_map, -2, i - 1); saver(); - - /* maybe sorb a surface component... */ - if (ishift == 0 && j == nmix && (stag_data->count_stag == 0 - || Utilities::Rxn_find(Rxn_solution_map, i + 1 + count_cells) == 0)) - { - if (change_surf_count > 0) - { - for (k = 0; k < change_surf_count; k++) - { - if (change_surf[k].cell_no != i) - break; - reformat_surf(change_surf[k].comp_name, - change_surf[k].fraction, - change_surf[k].new_comp_name, - change_surf[k].new_Dw, - change_surf[k].cell_no); - change_surf[k].cell_no = -99; - } - change_surf_count = 0; - } - } } if (!dV_dcell) Utilities::Rxn_copy(Rxn_solution_map, -2, count_cells); /* Stagnant zone mixing after completion of each diffusive/dispersive step ... */ - rate_sim_time_start = - (transport_step - 1) * timest + (j - 1) * stagkin_time; + rate_sim_time_start = ((double)transport_step - 1) * + timest + ((double)j - 1) * stagkin_time; rate_sim_time = rate_sim_time_start + stagkin_time; - if (stag_data->count_stag > 0) + if (stag_data.count_stag > 0) { if (ishift == 0 && j == nmix) punch_boolean = TRUE; @@ -583,9 +645,9 @@ transport(void) mix_stag(i, stagkin_time, punch_boolean, step_fraction); } } - if (ishift == 0 && j == nmix && stag_data->count_stag > 0) + if (ishift == 0 && j == nmix && stag_data.count_stag > 0) { - for (n = 1; n <= stag_data->count_stag; n++) + for (n = 1; n <= stag_data.count_stag; n++) { for (i = 1; i <= count_cells; i++) { @@ -606,10 +668,10 @@ transport(void) sprintf(token, "Transport step %3d.", transport_step); dup_print(token, FALSE); if (b_c == 1) - rate_sim_time_start = - (transport_step - 1) * timest + (j - 1) * kin_time; + rate_sim_time_start = ((double)transport_step - 1) * + timest + ((double)j - 1) * kin_time; else - rate_sim_time_start = (transport_step - 1) * timest; + rate_sim_time_start = ((double)transport_step - 1) * timest; rate_sim_time = rate_sim_time_start + kin_time; /* halftime kinetics for resident water in first cell ... */ @@ -645,7 +707,7 @@ transport(void) { if ((Utilities::Rxn_find(Rxn_surface_map, i) != NULL) && ((i == 0 && bcon_first == 3) - || (i == count_cells + 1 && bcon_last == 3))) + || (i == count_cells + 1 && bcon_last == 3))) { Rxn_surface_map.erase(i); } @@ -676,7 +738,7 @@ transport(void) /* * thermal diffusion when nmix = 0... */ - if ((nmix == 0) && (heat_nmix > 0)) + if (nmix == 0 && heat_nmix > 0 && !implicit) { heat_mix(heat_nmix); /* equilibrate again ... */ @@ -685,7 +747,7 @@ transport(void) cell_no = i; set_and_run_wrapper(i, NOMIX, FALSE, i, 0.0); if (multi_Dflag) - fill_spec(i); + fill_spec(i, i - 1); saver(); } } @@ -695,58 +757,35 @@ transport(void) if (i == first_c && count_cells > 1) kin_time /= 2; cell_no = i; - mixrun = 0; if (multi_Dflag) sprintf(token, - "Transport step %3d. MCDrun %3d. Cell %3d. (Max. iter %3d)", - transport_step, 0, i, max_iter); + "Transport step %3d. MCDrun %3d. Cell %3d. (Max. iter %3d)", + transport_step, 0, i, max_iter); else sprintf(token, - "Transport step %3d. Mixrun %3d. Cell %3d. (Max. iter %3d)", - transport_step, 0, i, max_iter); + "Transport step %3d. Mixrun %3d. Cell %3d. (Max. iter %3d)", + transport_step, 0, i, max_iter); status(0, token); run_reactions(i, kin_time, NOMIX, step_fraction); if (multi_Dflag == TRUE) - fill_spec(i); - if (iterations > max_iter) - max_iter = iterations; - if (nmix == 0 && stag_data->count_stag == 0) + fill_spec(i, i - 1); + if (overall_iterations > max_iter) + max_iter = overall_iterations; + if (nmix == 0 && stag_data.count_stag == 0) print_punch(i, true); if (i == first_c && count_cells > 1) kin_time = kin_time_save; saver(); - /* maybe sorb a surface component... */ - if (nmix == 0 && (stag_data->count_stag == 0 || - (Utilities::Rxn_find(Rxn_solution_map, i + 1 + count_cells) == 0))) - { - if (change_surf_count > 0) - { - for (k = 0; k < change_surf_count; k++) - { - if (change_surf[k].cell_no != i) - break; - reformat_surf(change_surf[k].comp_name, - change_surf[k].fraction, - change_surf[k].new_comp_name, - change_surf[k].new_Dw, - change_surf[k].cell_no); - change_surf[k].cell_no = -99; - } - change_surf_count = 0; - } - } - - /* If nmix is zero, stagnant zone mixing after - advective step ... */ - if ((nmix == 0) && (stag_data->count_stag > 0)) + /* If nmix is zero, stagnant zone mixing after advective step ... */ + if ((nmix == 0) && (stag_data.count_stag > 0)) { mix_stag(i, stagkin_time, TRUE, step_fraction); } } - if (nmix == 0 && stag_data->count_stag > 0) + if (nmix == 0 && stag_data.count_stag > 0) { - for (n = 1; n <= stag_data->count_stag; n++) + for (n = 1; n <= stag_data.count_stag; n++) { for (i = 1; i <= count_cells; i++) { @@ -763,8 +802,9 @@ transport(void) */ if (b_c != 1) j = 1; - for (j = j; j <= nmix; j++) + for (; j <= nmix; j++) // loop on j { + mixrun = j; if (multi_Dflag && j == nmix && (transport_step % print_modulus == 0)) { sprintf(token, @@ -778,13 +818,13 @@ transport(void) transport_step, j); dup_print(token, FALSE); } - rate_sim_time_start = - (transport_step - 1) * timest + (j - 1) * kin_time; + rate_sim_time_start = ((double)transport_step - 1) * + timest + ((double)j - 1) * kin_time; if (ishift != 0) rate_sim_time_start += kin_time; rate_sim_time = rate_sim_time_start + kin_time; - if (heat_nmix > 0) + if (heat_nmix > 0 && !implicit) { heat_mix(heat_nmix); /* equilibrate again ... */ @@ -793,7 +833,7 @@ transport(void) cell_no = i; set_and_run_wrapper(i, NOMIX, FALSE, i, 0.0); if (multi_Dflag) - fill_spec(i); + fill_spec(i, i - 1); saver(); } } @@ -802,82 +842,75 @@ transport(void) if (disp_surf(stagkin_time) == ERROR) error_msg("Error in surface transport, stopping.", STOP); } - - if (multi_Dflag == TRUE) + if (implicit) + diffuse_implicit(stagkin_time, stag_data.count_stag); + else if (multi_Dflag) multi_D(stagkin_time, 1, FALSE); /* for each cell in column */ for (i = 0; i <= count_cells + 1; i++) { - if (!dV_dcell && (i == 0 || i == count_cells + 1)) + if (!dV_dcell && (i == 0 || i == count_cells + 1) && !implicit) + { + if (j == nmix && stag_data.count_stag == 0 && + (cell_data[0].print || cell_data[0].punch || + cell_data[count_cells + 1].print || cell_data[count_cells + 1].punch)) + print_punch(i, false); continue; - if (iterations > max_iter) - max_iter = iterations; + } + if (overall_iterations > max_iter) + max_iter = overall_iterations; cell_no = i; - mixrun = j; if (multi_Dflag) sprintf(token, - "Transport step %3d. MCDrun %3d. Cell %3d. (Max. iter %3d)", - transport_step, j, i, max_iter); + "Transport step %3d. MCDrun %3d. Cell %3d. (Max. iter %3d)", + transport_step, j, i, max_iter); else sprintf(token, - "Transport step %3d. Mixrun %3d. Cell %3d. (Max. iter %3d)", - transport_step, j, i, max_iter); + "Transport step %3d. Mixrun %3d. Cell %3d. (Max. iter %3d)", + transport_step, j, i, max_iter); status(0, token); if (i == 0 || i == count_cells + 1) - run_reactions(i, kin_time, NOMIX, step_fraction); + { + if (dV_dcell) + run_reactions(i, kin_time, MIX_BS, step_fraction); // nsaver = i + else + run_reactions(i, kin_time, NOMIX, step_fraction); // nsaver = i + } else + { run_reactions(i, kin_time, DISP, step_fraction); + } if (multi_Dflag == TRUE) - fill_spec(i); - if (j == nmix && stag_data->count_stag == 0) + fill_spec(i, 0); + if (j == nmix && (stag_data.count_stag == 0 || (implicit && stag_data.count_stag == 1))) print_punch(i, true); if (i > 1) Utilities::Rxn_copy(Rxn_solution_map, -2, i - 1); saver(); - - /* maybe sorb a surface component... */ - if ((j == nmix) && ((stag_data->count_stag == 0) - || (Utilities::Rxn_find(Rxn_solution_map, i + 1 + count_cells) == 0))) - { - if (change_surf_count > 0) - { - for (k = 0; k < change_surf_count; k++) - { - if (change_surf[k].cell_no != i) - break; - reformat_surf(change_surf[k].comp_name, - change_surf[k].fraction, - change_surf[k].new_comp_name, - change_surf[k].new_Dw, - change_surf[k].cell_no); - change_surf[k].cell_no = -99; - } - change_surf_count = 0; - } - } } if (!dV_dcell) Utilities::Rxn_copy(Rxn_solution_map, -2, count_cells); - /* Stagnant zone mixing after completion of each - diffusive/dispersive step ... */ - rate_sim_time_start = - (transport_step - 1) * timest + (j - 1) * stagkin_time; + /* Stagnant zone mixing after completion of each diffusive/dispersive step ... */ + rate_sim_time_start = ((double)transport_step - 1) * + timest + ((double)j - 1) * stagkin_time; rate_sim_time = rate_sim_time_start + stagkin_time; - if (stag_data->count_stag > 0) + if (stag_data.count_stag > 0) { if (j == nmix) punch_boolean = TRUE; else punch_boolean = FALSE; for (i = 0; i <= count_cells + 1; i++) // allow for stagnant cell mixing with boundary cells + { mix_stag(i, stagkin_time, punch_boolean, step_fraction); + } } - if (j == nmix && stag_data->count_stag > 0) + if (j == nmix && ((stag_data.count_stag > 0/* && !implicit) || (implicit && stag_data.count_stag == 1*/))) { - for (n = 1; n <= stag_data->count_stag; n++) + for (n = 1; n <= stag_data.count_stag; n++) { for (i = 1; i <= count_cells; i++) { @@ -895,21 +928,48 @@ transport(void) } screen_msg("\n"); + if (implicit && neg_moles.size()) + { + std::map > ::iterator it1; + std::map ::iterator it2; + for (i = 0; i <= all_cells; i++) + { + if ((it1 = neg_moles.find(i)) != neg_moles.end() && (els = it1->second).size()) + { + for (it2 = els.begin(); it2 != els.end(); it2++) + { + for (int i1 = 0; i1 < count_moles_added; i1++) + { + if (moles_added[i1].name && !strcmp(moles_added[i1].name, it2->first.c_str())) + { + moles_added[i1].moles -= it2->second; + break; + } + else if (!moles_added[i1].moles) + { + moles_added[i1].name = string_duplicate(it2->first.c_str()); + moles_added[i1].moles -= it2->second; + break; + } + } + } + } + } + } + if (multi_Dflag && moles_added[0].moles > 0) { sprintf(token, "\nFor balancing negative concentrations in MCD, added in total to the system:"); - if (phrq_io) - phrq_io->warning_msg(token); - for (i = 0; i < count_elements; i++) + warning_msg(token); + for (i = 0; i < count_moles_added; i++) { if (!moles_added[i].moles) break; sprintf(token, "\t %.4e moles %s.", (double)moles_added[i].moles, moles_added[i].name); - if (phrq_io) - phrq_io->warning_msg(token); + warning_msg(token); } } } @@ -934,7 +994,7 @@ transport_cleanup(void) * free mix structures */ Dispersion_mix_map.clear(); - if ((stag_data->exch_f > 0) && (stag_data->count_stag == 1)) + if ((stag_data.exch_f > 0) && (stag_data.count_stag == 1)) { Rxn_mix_map.clear(); } @@ -949,23 +1009,59 @@ transport_cleanup(void) { for (i = 0; i < all_cells; i++) { - sol_D[i].spec = (struct spec *) free_check_null(sol_D[i].spec); + sol_D[i].spec = (class spec *) free_check_null(sol_D[i].spec); } - sol_D = (struct sol_D *) free_check_null(sol_D); + sol_D = (class sol_D *) free_check_null(sol_D); for (int i = 0; i < all_cells; i++) { ct[i].v_m = (struct V_M *) free_check_null(ct[i].v_m); ct[i].v_m_il = (struct V_M *) free_check_null(ct[i].v_m_il); - ct[i].J_ij = (struct J_ij *) free_check_null(ct[i].J_ij); - ct[i].J_ij_il = (struct J_ij *) free_check_null(ct[i].J_ij_il); + ct[i].J_ij = (class J_ij *) free_check_null(ct[i].J_ij); + ct[i].J_ij_il = (class J_ij *) free_check_null(ct[i].J_ij_il); + ct[i].m_s = (class M_S *) free_check_null(ct[i].m_s); } ct = (struct CT *) free_check_null(ct); - for (int i = 0; i < count_elements; i++) + for (int i = 0; i < count_moles_added; i++) { moles_added[i].name = (char *)free_check_null(moles_added[i].name); } moles_added = (struct MOLES_ADDED *) free_check_null(moles_added); } + if (implicit) + { + int l_stag = (stag_data.count_stag < 2 ? stag_data.count_stag : 0); + Ct2 = (LDBLE *)free_check_null(Ct2); + l_tk_x2 = (LDBLE *)free_check_null(l_tk_x2); + if (A) + { + for (i = 0; i < count_cells + 2 + l_stag * count_cells; i++) + { + A[i] = (LDBLE *)free_check_null(A[i]); + LU[i] = (LDBLE *)free_check_null(LU[i]); + } + } + if (mixf) + { + for (i = 0; i < count_cells + 2; i++) + { + mixf[i] = (LDBLE *)free_check_null(mixf[i]); + if (l_stag) + mixf_stag[i] = (LDBLE *)free_check_null(mixf_stag[i]); + if (!dV_dcell && !fix_current) + { + cell_data[i].potV = 0.0; + use.Set_solution_ptr(Utilities::Rxn_find(Rxn_solution_map, i)); + use.Get_solution_ptr()->Set_potV(0); + } + } + } + A = (LDBLE **)free_check_null(A); + LU = (LDBLE **)free_check_null(LU); + mixf = (LDBLE **)free_check_null(mixf); + mixf_stag = (LDBLE **)free_check_null(mixf_stag); + dif_spec_names.clear(); + mixf_comp_size = 0; + } current_cells = (struct CURRENT_CELLS *) free_check_null(current_cells); } /* ---------------------------------------------------------------------- */ @@ -981,6 +1077,12 @@ print_punch(int i, boolean active) if (!active) run_reactions(i, 0, NOMIX, 0); cell_no = i; + if (dV_dcell || fix_current) + { + use.Set_n_solution_user(i); + use.Get_solution_ptr()->Set_potV(cell_data[i].potV); + potV_x = cell_data[i].potV; + } use.Set_kinetics_ptr(Utilities::Rxn_find(Rxn_kinetics_map, i)); if (use.Get_kinetics_ptr() != NULL) { @@ -991,6 +1093,25 @@ print_punch(int i, boolean active) punch_all(); if (cell_data[i].print && (transport_step % print_modulus == 0)) print_all(); + + /* maybe sorb a surface component... */ + if (change_surf_count > 0) + { + for (int k = 0; k < change_surf_count; k++) + { + if (change_surf[k].cell_no != i) + break; + reformat_surf(change_surf[k].comp_name, + change_surf[k].fraction, + change_surf[k].new_comp_name, + change_surf[k].new_Dw, + change_surf[k].cell_no); + change_surf[k].cell_no = -99; + } + change_surf_count = 0; + save.n_surface_user = save.n_solution_user; + save.n_surface_user_end = save.n_solution_user_end; + } } /* ---------------------------------------------------------------------- */ @@ -1102,15 +1223,36 @@ init_mix(void) if (maxmix == 0) { l_nmix = 0; - if (mcd_substeps > 1 && stag_data->count_stag > 0) + if (mcd_substeps > 1 && stag_data.count_stag > 0) l_nmix = (int) ceil(mcd_substeps); } + else if (implicit) + { + l_nmix = 1; + if (maxmix > max_mixf) + l_nmix = 1 + (int)floor(maxmix / max_mixf); + if (ishift != 0 && (bcon_first == 1 || bcon_last == 1)) + { + if (l_nmix < 2) + l_nmix = 2; + } + if (mcd_substeps > 1) + l_nmix = (int)ceil(l_nmix * mcd_substeps); + } else { + if (2.25 * maxmix + 1.0 > (double)INT_MAX) + { + m = (LDBLE *)free_check_null(m); + m1 = (LDBLE *)free_check_null(m1); + char token[MAX_LENGTH]; + sprintf(token, "Calculated number of mixes %g, is beyond program limit,\nERROR: please set implicit true, or decrease time_step, or increase cell-lengths.", 2.25 * maxmix); + error_msg(token, STOP); + } if (bcon_first == 1 || bcon_last == 1) - l_nmix = 1 + (int) floor(2.25 * maxmix); + l_nmix = 1 + (int)floor(2.25 * maxmix); else - l_nmix = 1 + (int) floor(1.5 * maxmix); + l_nmix = 1 + (int)floor(1.5 * maxmix); if (ishift != 0 && (bcon_first == 1 || bcon_last == 1)) { @@ -1118,24 +1260,24 @@ init_mix(void) l_nmix = 2; } if (mcd_substeps > 1) - l_nmix = (int) ceil(l_nmix * mcd_substeps); + l_nmix = (int)ceil(l_nmix * mcd_substeps); + } - for (i = 1; i <= count_cells; i++) - { - m[i] /= l_nmix; - m1[i] /= l_nmix; - /* - * Fill mix structure - */ - cxxMix temp_mix; - temp_mix.Set_n_user(i); - temp_mix.Set_n_user_end(i); + for (i = 1; i <= count_cells; i++) + { + m[i] /= l_nmix; + m1[i] /= l_nmix; + /* + * Fill mix structure + */ + cxxMix temp_mix; + temp_mix.Set_n_user(i); + temp_mix.Set_n_user_end(i); - temp_mix.Add(i - 1, m[i]); - temp_mix.Add(i + 1, m1[i]); - temp_mix.Add(i, 1.0 - m[i] - m1[i]); - Dispersion_mix_map[i] = temp_mix; - } + temp_mix.Add(i - 1, m[i]); + temp_mix.Add(i + 1, m1[i]); + temp_mix.Add(i, 1.0 - m[i] - m1[i]); + Dispersion_mix_map[i] = temp_mix; } m = (LDBLE *)free_check_null(m); m1 = (LDBLE *)free_check_null(m1); @@ -1220,6 +1362,14 @@ init_mix(void) l_nmix = 0; else { + if (1.5 * maxmix > (double)INT_MAX) + { + m = (LDBLE *)free_check_null(m); + m1 = (LDBLE *)free_check_null(m1); + char token[MAX_LENGTH]; + sprintf(token, "Calculated number of mixes %g, is beyond program limit,\nERROR: please set implicit true, or decrease time_step, or increase cell-lengths.", 1.5 * maxmix); + error_msg(token, STOP); + } l_nmix = 1 + (int) floor(1.5 * maxmix); if ((ishift != 0) && ((bcon_first == 1) || (bcon_last == 1))) @@ -1255,7 +1405,7 @@ int Phreeqc:: mix_stag(int i, LDBLE kin_time, int l_punch, LDBLE step_fraction) /* ---------------------------------------------------------------------- */ { - int j, n, k; + int n, k; LDBLE t_imm; cxxSolution *ptr_imm, *ptr_m; k = -1000; // compiler says k may be undefined @@ -1264,7 +1414,7 @@ mix_stag(int i, LDBLE kin_time, int l_punch, LDBLE step_fraction) /* * Kinetics in transport cell is done while transporting */ - for (n = 1; n <= stag_data->count_stag; n++) + for (n = 1; n <= stag_data.count_stag; n++) { if (i == 0 || i == count_cells + 1) { @@ -1276,7 +1426,7 @@ mix_stag(int i, LDBLE kin_time, int l_punch, LDBLE step_fraction) for (std::map < int, LDBLE >::const_iterator it = use.Get_mix_ptr()->Get_mixComps().begin(); it != use.Get_mix_ptr()->Get_mixComps().end(); it++) { - if (it->first > i && it->first < all_cells) + if (it->first > i && it->first < all_cells && it->first != count_cells + 1) { k = it->first; ptr_imm = Utilities::Rxn_find(Rxn_solution_map, k); @@ -1295,7 +1445,7 @@ mix_stag(int i, LDBLE kin_time, int l_punch, LDBLE step_fraction) { if (n == 1) { - if (heat_nmix > 0) + if (heat_nmix > 0 && (!implicit || (implicit && stag_data.count_stag > 1))) { ptr_m = Utilities::Rxn_find(Rxn_solution_map, i); t_imm = @@ -1307,12 +1457,12 @@ mix_stag(int i, LDBLE kin_time, int l_punch, LDBLE step_fraction) cell_no = i; set_and_run_wrapper(i, NOMIX, FALSE, i, 0.0); if (multi_Dflag == TRUE) - fill_spec(cell_no); + fill_spec(cell_no, 0); saver(); cell_no = k; set_and_run_wrapper(k, NOMIX, FALSE, k, 0.0); if (multi_Dflag == TRUE) - fill_spec(cell_no); + fill_spec(cell_no, i); saver(); } /* @@ -1325,71 +1475,43 @@ mix_stag(int i, LDBLE kin_time, int l_punch, LDBLE step_fraction) error_msg("Error in surface transport, stopping.", STOP); } - if (multi_Dflag == TRUE) - multi_D(1.0, i, TRUE); - set_and_run_wrapper(i, STAG, FALSE, -2, 0.0); - if (multi_Dflag == TRUE) - fill_spec(cell_no); - saver(); // save solution i in -2, original can be used in other stagnant mixes - if (l_punch) - print_punch(i, true); - - /* maybe sorb a surface component... */ - if (l_punch && change_surf_count) + if (!implicit || (implicit && stag_data.count_stag > 1)) { - for (j = 0; j < change_surf_count; j++) - { - if (change_surf[j].cell_no != i) - break; - reformat_surf(change_surf[j].comp_name, - change_surf[j].fraction, - change_surf[j].new_comp_name, - change_surf[j].new_Dw, - change_surf[j].cell_no); - change_surf[j].cell_no = -99; - } - change_surf_count = 0; + if (multi_Dflag == TRUE) + multi_D(1.0, i, 2); + set_and_run_wrapper(i, STAG, FALSE, -2, 0.0); + if (multi_Dflag == TRUE) + fill_spec(cell_no, 0); + if (l_punch) + print_punch(i, true); + saver(); // save solution i in -2, original can be used in other stagnant mixes } } cell_no = k; - run_reactions(k, kin_time, STAG, step_fraction); + if (implicit) + run_reactions(k, kin_time, NOMIX, step_fraction); + else + run_reactions(k, kin_time, STAG, step_fraction); if (multi_Dflag == TRUE) - fill_spec(cell_no); + fill_spec(cell_no, i); saver(); // save solution k in -2 - k, original k can be used in other stagnant mixes - /* maybe sorb a surface component... */ - if (l_punch && change_surf_count) - { - for (j = 0; j < change_surf_count; j++) - { - if (change_surf[j].cell_no != k) - break; - reformat_surf(change_surf[j].comp_name, - change_surf[j].fraction, - change_surf[j].new_comp_name, - change_surf[j].new_Dw, - change_surf[j].cell_no); - change_surf[j].cell_no = -99; - } - change_surf_count = 0; - } - done_mixing = true; } - else if (n == 1 && l_punch) + else if (n == 1 && l_punch && !implicit) print_punch(i, false); } if (done_mixing) // after all mixing is done, the temporal solution becomes the original for the next timestep { - for (n = 1; n <= stag_data->count_stag; n++) + for (n = 1; n <= stag_data.count_stag; n++) { k = i + 1 + n * count_cells; if (Utilities::Rxn_find(Rxn_solution_map, k) != 0) { Utilities::Rxn_copy(Rxn_solution_map, -2 - k, k); - if (n == 1) + if (n == 1 && !implicit) Utilities::Rxn_copy(Rxn_solution_map, -2, i); } } @@ -1402,19 +1524,23 @@ int Phreeqc:: init_heat_mix(int l_nmix) /* ---------------------------------------------------------------------- */ { - LDBLE lav, mixf, maxmix, corr_disp; + LDBLE lav, mixf, maxmix, corr_disp, l_diffc; int i, k, n; int l_heat_nmix; LDBLE t0; /* * Check for need to model thermal diffusion... */ - if (heat_diffc <= diffc) + if (heat_diffc <= diffc && !implicit) return (0); if (count_cells < 2) return (0); l_heat_nmix = 0; + if (implicit) + l_diffc = heat_diffc; + else + l_diffc = heat_diffc - diffc_tr; t0 = Utilities::Rxn_find(Rxn_solution_map, 0)->Get_tc(); for (i = 1; i <= count_cells; i++) { @@ -1428,7 +1554,7 @@ init_heat_mix(int l_nmix) { if (fabs(Utilities::Rxn_find(Rxn_solution_map, count_cells + 1)->Get_tc() - t0) > 1.0) l_heat_nmix = 1; - for (n = 1; n <= stag_data->count_stag; n++) + for (n = 1; n <= stag_data.count_stag; n++) { for (i = 1; i < count_cells; i++) { @@ -1466,20 +1592,17 @@ init_heat_mix(int l_nmix) corr_disp = 1.; if (correct_disp == TRUE && ishift != 0) { + mixf = (l_nmix > 1 ? l_nmix : 1); if (bcon_first == 3) - corr_disp += 1. / count_cells; + corr_disp += 1. / count_cells / mixf; if (bcon_last == 3) - corr_disp += 1. / count_cells; + corr_disp += 1. / count_cells / mixf; } - if (l_nmix > 0) - corr_disp /= l_nmix; maxmix = 0.0; for (i = 1; i < count_cells; i++) { lav = (cell_data[i + 1].length + cell_data[i].length) / 2; - mixf = - (heat_diffc - - diffc_tr) * timest * corr_disp / tempr / (lav * lav); + mixf = (l_diffc) * timest * corr_disp / tempr / (lav * lav); if (mixf > maxmix) maxmix = mixf; heat_mix_array[i + 1] = mixf; /* m[i] has mixf with lower cell */ @@ -1490,9 +1613,7 @@ init_heat_mix(int l_nmix) if (bcon_first == 1) { lav = cell_data[1].length; - mixf = - (heat_diffc - - diffc_tr) * timest * corr_disp / tempr / (lav * lav); + mixf = (l_diffc) * timest * corr_disp / tempr / (lav * lav); if (2 * mixf > maxmix) maxmix = 2 * mixf; heat_mix_array[1] = 2 * mixf; @@ -1503,9 +1624,7 @@ init_heat_mix(int l_nmix) if (bcon_last == 1) { lav = cell_data[count_cells].length; - mixf = - (heat_diffc - - diffc_tr) * timest * corr_disp / tempr / (lav * lav); + mixf = (l_diffc) * timest * corr_disp / tempr / (lav * lav); if (2 * mixf > maxmix) maxmix = 2 * mixf; heat_mix_array[count_cells + 1] = 2 * mixf; @@ -1519,9 +1638,24 @@ init_heat_mix(int l_nmix) l_heat_nmix = 0; else { - l_heat_nmix = 1 + (int) floor(3.0 * maxmix); - for (i = 1; i <= count_cells + 1; i++) - heat_mix_array[i] /= l_heat_nmix; + if (implicit) + { + LDBLE viscos_f; + l_heat_nmix = l_nmix; + for (i = 1; i <= count_cells + 1; i++) + { + heat_mix_array[i - 1] = heat_mix_array[i] / l_heat_nmix; /* for implicit, m[i] has mixf with higher cell */ + viscos_f = sol_D[i - 1].viscos_f * exp(heat_diffc / sol_D[i - 1].tk_x - heat_diffc / 298.15); + viscos_f += sol_D[i].viscos_f * exp(heat_diffc / sol_D[i].tk_x - heat_diffc / 298.15); + heat_mix_array[i - 1] *= (viscos_f / 2); + } + } + else + { + l_heat_nmix = 1 + (int)floor(3.0 * maxmix); + for (i = 1; i <= count_cells + 1; i++) + heat_mix_array[i] /= l_heat_nmix; + } } return (l_heat_nmix); @@ -1544,9 +1678,8 @@ heat_mix(int l_heat_nmix) { for (j = 1; j <= count_cells; j++) temp2[j] = - heat_mix_array[j] * temp1[j - 1] + heat_mix_array[j + 1] * - temp1[j + 1] + (1 - heat_mix_array[j] - - heat_mix_array[j + 1]) * temp1[j]; + heat_mix_array[j] * temp1[j - 1] + heat_mix_array[j + 1] * temp1[j + 1] + + (1 - heat_mix_array[j] - heat_mix_array[j + 1]) * temp1[j]; for (j = 1; j <= count_cells; j++) temp1[j] = temp2[j]; } @@ -1566,7 +1699,8 @@ set_initial_moles(int i) /* ---------------------------------------------------------------------- */ { cxxKinetics *kinetics_ptr; - char token[MAX_LENGTH], token1[MAX_LENGTH], *ptr; + char token[MAX_LENGTH]; + const char* cptr; int j, k, l; /* * Pure phase assemblage @@ -1651,12 +1785,15 @@ set_initial_moles(int i) count_elts = 0; paren_count = 0; strcpy(token, "X"); - ptr = token; - get_elts_in_species(&ptr, 2e-10); - ptr = token; + cptr = token; + get_elts_in_species(&cptr, 2e-10); + cptr = token; LDBLE z; - get_token(&ptr, token1, &z, &l); - comp.Set_formula(token1); + { + std::string token1; + get_token(&cptr, token1, &z, &l); + comp.Set_formula(token1.c_str()); + } comp.Set_formula_z(z); comp.Set_totals(elt_list_NameDouble()); comp.Set_charge_balance(0.0); @@ -1672,46 +1809,59 @@ set_initial_moles(int i) /* ---------------------------------------------------------------------- */ int Phreeqc:: -fill_spec(int l_cell_no) +fill_spec(int l_cell_no, int ref_cell) /* ---------------------------------------------------------------------- */ { /* copy species activities into sol_D.spec... */ - int i, i2, count_spec, count_exch_spec; + int i, i1, i2, i3, count_spec, count_exch_spec, size_xt; char token[MAX_LENGTH]; const char * name; - struct species *s_ptr, *s_ptr2; - struct master *master_ptr; + class species *s_ptr, *s_ptr2; + class master *master_ptr; LDBLE dum, dum2; LDBLE lm; LDBLE por, por_il, viscos_f, viscos_il_f, viscos; bool x_max_done = false; + std::set loc_spec_names; s_ptr2 = NULL; - sol_D[l_cell_no].spec = - (struct spec *) free_check_null(sol_D[l_cell_no].spec); - sol_D[l_cell_no].spec = - (struct spec *) PHRQ_malloc((size_t) count_species_list * - sizeof(struct spec)); + // for implicit + std::set ::iterator it; + std::pair ::iterator, bool> name_ret; + if (implicit && !l_cell_no) + dif_spec_names.clear(); + size_xt = 5; + + //sol_D[l_cell_no].spec = (class spec *) free_check_null(sol_D[l_cell_no].spec); + if (sol_D[l_cell_no].spec == NULL) + { + sol_D[l_cell_no].spec = (class spec *) PHRQ_malloc((species_list.size() + (size_t)size_xt) * sizeof(class spec)); + sol_D[l_cell_no].spec_size = (int)species_list.size() + size_xt; + } + else if ((int)species_list.size() + size_xt > sol_D[l_cell_no].spec_size) + { + sol_D[l_cell_no].spec = (class spec *) PHRQ_realloc(sol_D[l_cell_no].spec, (species_list.size() + (size_t)size_xt) * sizeof(class spec)); + sol_D[l_cell_no].spec_size = (int)species_list.size() + size_xt; + } if (sol_D[l_cell_no].spec == NULL) malloc_error(); - sol_D[l_cell_no].spec_size = count_species_list; + + for (i = 0; i < sol_D[l_cell_no].spec_size; i++) { - for (int i = 0; i < count_species_list; i++) - { - sol_D[l_cell_no].spec[i].name = NULL; - sol_D[l_cell_no].spec[i].aq_name = NULL; - sol_D[l_cell_no].spec[i].type = -1; - sol_D[l_cell_no].spec[i].a = 0.0; - sol_D[l_cell_no].spec[i].lm = 0.0; - sol_D[l_cell_no].spec[i].lg = 0.0; - sol_D[l_cell_no].spec[i].c = 0.0; - sol_D[l_cell_no].spec[i].z = 0.0; - sol_D[l_cell_no].spec[i].Dwt = 0.0; - sol_D[l_cell_no].spec[i].dw_t = 0.0; - sol_D[l_cell_no].spec[i].erm_ddl = 0.0; - } + sol_D[l_cell_no].spec[i].name = NULL; + sol_D[l_cell_no].spec[i].aq_name = NULL; + sol_D[l_cell_no].spec[i].type = -1; + sol_D[l_cell_no].spec[i].a = 0.0; + sol_D[l_cell_no].spec[i].lm = min_dif_LM; + sol_D[l_cell_no].spec[i].lg = -0.04; + sol_D[l_cell_no].spec[i].c = 0.0; + sol_D[l_cell_no].spec[i].z = 0.0; + sol_D[l_cell_no].spec[i].Dwt = 0.0; + sol_D[l_cell_no].spec[i].dw_t = 0.0; + sol_D[l_cell_no].spec[i].erm_ddl = 0.0; + sol_D[l_cell_no].count_exch_spec = sol_D[l_cell_no].count_spec = 0; } sol_D[l_cell_no].tk_x = tk_x; @@ -1753,29 +1903,33 @@ fill_spec(int l_cell_no) /* * sort species by name... */ - if (count_species_list > 0) - qsort(&species_list[0], (size_t) count_species_list, - (size_t) sizeof(struct species_list), sort_species_name); + if (species_list.size() > 1) + { + qsort(&species_list[0], species_list.size(), + sizeof(class species_list), sort_species_name); + } - for (i = 0; i < count_species_list; i++) + for (i = 0; i < (int)species_list.size(); i++) { /* * copy species data */ s_ptr = species_list[i].s; - - if (s_ptr->type == EX && !interlayer_Dflag) + if (s_ptr->type > HPLUS && + !(s_ptr->type == EX && interlayer_Dflag)) continue; - if (s_ptr->type == SURF) - continue; - if (i > 0 && strcmp(s_ptr->name, species_list[i - 1].s->name) == 0) - continue; - if (s_ptr == s_h2o) + //if (s_ptr->type == EX && !interlayer_Dflag) + // continue; + //if (s_ptr->type == SURF) + // continue; + if (i > 0 && strcmp(s_ptr->name, species_list[(size_t)i - 1].s->name) == 0) continue; + //if (s_ptr == s_h2o) + // continue; if (s_ptr->type == EX) { - if (s_ptr->moles > 1e-30) + if (s_ptr->lm > min_dif_LM) { /* find exchanger's name, use only master exchanger 'X' */ if (species_list[i].master_s->secondary != NULL) @@ -1820,9 +1974,9 @@ fill_spec(int l_cell_no) } /* find the aqueous species in the exchange reaction... */ - for (i2 = 0; (s_ptr->rxn->token[i2].s != NULL); i2++) + for (i2 = 0; (s_ptr->rxn.token[i2].s != NULL); i2++) { - if ((s_ptr2 = s_ptr->rxn->token[i2].s)->type == AQ) + if ((s_ptr2 = s_ptr->rxn.token[i2].s)->type == AQ) break; } /* copy its name and Dw and charge... */ @@ -1830,8 +1984,7 @@ fill_spec(int l_cell_no) //string_hsave(s_ptr2->name); sol_D[l_cell_no].spec[count_spec].z = s_ptr2->z; if (s_ptr2->dw == 0) - sol_D[l_cell_no].spec[count_spec].Dwt = - default_Dw * viscos_il_f; + sol_D[l_cell_no].spec[count_spec].Dwt = default_Dw * viscos_il_f; else { if (s_ptr2->dw_t) @@ -1843,6 +1996,12 @@ fill_spec(int l_cell_no) else sol_D[l_cell_no].spec[count_spec].Dwt = s_ptr2->dw * viscos_il_f; } + + //if (implicit) // && name_ret.second && (l_cell_no > 1 || (l_cell_no == 1 && bcon_first != 2))) + //{ + // // name_ret = dif_spec_names.insert(s_ptr->name); // but not in implicit now... + // // must fill in the spec in previous cells, order the names, see below for aqueous species... + //} count_exch_spec++; count_spec++; } @@ -1850,12 +2009,75 @@ fill_spec(int l_cell_no) } lm = s_ptr->lm; - if (lm > MIN_LM) + + if (lm > min_dif_LM) { + if (implicit/* && l_cell_no < count_cells + 2 */) + { + name_ret = dif_spec_names.insert(s_ptr->name); + loc_spec_names.insert(s_ptr->name); + i2 = 0; + for (it = dif_spec_names.begin(); it != dif_spec_names.end(); it++) + { + if (*it == s_ptr->name) + break; + i2++; + } + if (i2 > count_spec) + { + if (l_cell_no == 0) + { + for (i1 = i2; i1 > count_spec; i1--) + { + it = dif_spec_names.find(s_ptr->name); + dif_spec_names.erase(--it); + } + } + else + { + // there are species before s_ptr->name that must be included first + i1 = 0; + for (it = loc_spec_names.begin(); it != loc_spec_names.end(); it++) + { + if (*it == s_ptr->name) + break; + i1++; + } + i3 = i2 - i1; + if (i3 + count_spec + 1 > sol_D[l_cell_no].spec_size) + { + sol_D[l_cell_no].spec = (class spec *) PHRQ_realloc(sol_D[l_cell_no].spec, + ((size_t)i3 + count_spec + 1 + (size_t)size_xt) * sizeof(class spec)); + if (sol_D[l_cell_no].spec == NULL) + malloc_error(); + sol_D[l_cell_no].spec_size = i3 + count_spec + 1 + size_xt; + } + for (; i1 < i2; i1++) // i1 is loop variable + { + // memmove(&sol_D[l_cell_no].spec[i1], &sol_D[ref_cell].spec[i1], sizeof(class spec)); + sol_D[l_cell_no].spec[i1] = sol_D[ref_cell].spec[i1]; + sol_D[l_cell_no].spec[i1].c = 0.0; + sol_D[l_cell_no].spec[i1].a = 0.0; + sol_D[l_cell_no].spec[i1].lm = min_dif_LM; + sol_D[l_cell_no].spec[i1].lg = -0.04; + + loc_spec_names.insert(sol_D[l_cell_no].spec[i1].name); + count_spec++; + } + } + } + } + if (count_spec >= sol_D[l_cell_no].spec_size) + { + sol_D[l_cell_no].spec = (class spec *) PHRQ_realloc(sol_D[l_cell_no].spec, + (count_spec + (size_t)size_xt) * sizeof(class spec)); + if (sol_D[l_cell_no].spec == NULL) + malloc_error(); + sol_D[l_cell_no].spec_size = count_spec + size_xt; + } sol_D[l_cell_no].spec[count_spec].name = s_ptr->name; sol_D[l_cell_no].spec[count_spec].type = AQ; - sol_D[l_cell_no].spec[count_spec].c = - s_ptr->moles / mass_water_aq_x; + sol_D[l_cell_no].spec[count_spec].c = s_ptr->moles / mass_water_aq_x; sol_D[l_cell_no].spec[count_spec].a = under(lm + s_ptr->lg); sol_D[l_cell_no].spec[count_spec].lm = lm; sol_D[l_cell_no].spec[count_spec].lg = s_ptr->lg; @@ -1882,39 +2104,94 @@ fill_spec(int l_cell_no) diffc_max = sol_D[l_cell_no].spec[count_spec].Dwt * pow(por, multi_Dn); sol_D[l_cell_no].spec[count_spec].erm_ddl = s_ptr->erm_ddl; + if (implicit/* && l_cell_no < count_cells + 2 */) + { + if (name_ret.second && l_cell_no) + { + // must fill in the spec in previous cells, order the names... + i3 = 0; + for (it = dif_spec_names.begin(); it != dif_spec_names.end(); ++it) + { + if (it == name_ret.first) + break; + i3++; + } + for (i1 = 0; i1 < l_cell_no; i1++) + { + i2 = sol_D[i1].count_spec + 1; + if (i2 > sol_D[i1].spec_size) + { + sol_D[i1].spec = (class spec *) PHRQ_realloc(sol_D[i1].spec, + ((size_t)i2 + (size_t)size_xt) * sizeof(class spec)); + if (sol_D[i1].spec == NULL) + malloc_error(); + sol_D[i1].spec_size = i2 + size_xt; + } + i2--; + for (; i2 > i3; i2--) // i2 is loop variable + sol_D[i1].spec[i2] = sol_D[i1].spec[i2 - 1]; + + // memmove(&sol_D[i1].spec[i2], &sol_D[l_cell_no].spec[i2], sizeof(class spec)); + sol_D[i1].spec[i2] = sol_D[l_cell_no].spec[i2]; + sol_D[i1].spec[i2].a = 0.0; + sol_D[i1].spec[i2].lm = min_dif_LM; + sol_D[i1].spec[i2].lg = -0.04; + sol_D[i1].spec[i2].c = 0.0; + sol_D[i1].count_spec += 1; + } + } + } count_spec++; } } - sol_D[l_cell_no].spec = - (struct spec *) PHRQ_realloc(sol_D[l_cell_no].spec, - (size_t) count_spec * - sizeof(struct spec)); - - if (sol_D[l_cell_no].spec == NULL) - malloc_error(); - { - if (count_spec > sol_D[l_cell_no].spec_size) - { - for (int i = sol_D[l_cell_no].spec_size; i < count_spec; i++) - { - sol_D[l_cell_no].spec[i].name = NULL; - sol_D[l_cell_no].spec[i].aq_name = NULL; - sol_D[l_cell_no].spec[i].type = -1; - sol_D[l_cell_no].spec[i].a = 0.0; - sol_D[l_cell_no].spec[i].lm = 0.0; - sol_D[l_cell_no].spec[i].lg = 0.0; - sol_D[l_cell_no].spec[i].c = 0.0; - sol_D[l_cell_no].spec[i].z = 0.0; - sol_D[l_cell_no].spec[i].Dwt = 0.0; - sol_D[l_cell_no].spec[i].dw_t = 0.0; - sol_D[l_cell_no].spec[i].erm_ddl = 0.0; - } - } - sol_D[l_cell_no].spec_size = count_spec; - } sol_D[l_cell_no].count_spec = count_spec; sol_D[l_cell_no].count_exch_spec = count_exch_spec; + if (implicit/* && l_cell_no < count_cells + 2 */ && loc_spec_names.size() < dif_spec_names.size()) + { + i3 = (int) dif_spec_names.size(); + if (i3 > sol_D[l_cell_no].spec_size) + { + sol_D[l_cell_no].spec = (class spec *) PHRQ_realloc(sol_D[l_cell_no].spec, + ((size_t)i3 + (size_t)size_xt) * sizeof(class spec)); + if (sol_D[l_cell_no].spec == NULL) + malloc_error(); + sol_D[l_cell_no].spec_size = i3 + size_xt; + } + for (i1 = count_spec; i1 < i3; i1++) + { + // memmove(&sol_D[l_cell_no].spec[i1], &sol_D[ref_cell].spec[i1], sizeof(class spec)); + sol_D[l_cell_no].spec[i1] = sol_D[ref_cell].spec[i1]; + sol_D[l_cell_no].spec[i1].c = 0.0; + sol_D[l_cell_no].spec[i1].a = 0.0; + sol_D[l_cell_no].spec[i1].lm = min_dif_LM; + sol_D[l_cell_no].spec[i1].lg = -0.04; + sol_D[l_cell_no].count_spec += 1; + loc_spec_names.insert(sol_D[l_cell_no].spec[i1].name); + count_spec++; + } + //if (loc_spec_names != dif_spec_names) + //{ + // error_string = sformatf( + // "Species in implicit diffusion in cell %d are %; different from previous cells with %d species.", + // l_cell_no, loc_spec_names.size(), dif_spec_names.size()); + // error_msg(error_string, CONTINUE); + //} + } + if (implicit && l_cell_no/* && l_cell_no < count_cells + 2 */) + { + for (i = 0; i < count_spec; i++) + { + //name = sol_D[l_cell_no].spec[i].name; + if (strcmp(sol_D[l_cell_no].spec[i].name, sol_D[ref_cell].spec[i].name)) + { + error_string = sformatf( + "Implicit diffusion: species %s in cell %d differs from species %s in previous cells.", + sol_D[l_cell_no].spec[i].name, l_cell_no, sol_D[ref_cell].spec[i].name); + error_msg(error_string, CONTINUE); + } + } + } return (OK); } @@ -1923,13 +2200,1083 @@ int Phreeqc:: sort_species_name(const void *ptr1, const void *ptr2) /* ---------------------------------------------------------------------- */ { - const struct species_list *nptr1, *nptr2; + const class species_list *nptr1, *nptr2; - nptr1 = (const struct species_list *) ptr1; - nptr2 = (const struct species_list *) ptr2; + nptr1 = (const class species_list *) ptr1; + nptr2 = (const class species_list *) ptr2; return (strcmp(nptr1->s->name, nptr2->s->name)); } +/* ---------------------------------------------------------------------- */ +void Phreeqc:: +diffuse_implicit(LDBLE DDt, int stagnant) +/* ---------------------------------------------------------------------- */ +{ + // The structure comes from example 11.3 in A&P and Appelo 2017, CCR 101, 102: + // Ct2 is implicitly solved for the individual species, corrected for electro-neutrality, this always gives Ct2 > 0. + // Version 3.5.2 includes diffusion in 1 stagnant layer in the implicit calc'n. + // Transport of aqueous species is summarized into master species. + // With electro-migration, transport of anions and cations is calculated in opposite directions since (sign) J = - z * dV. + // Only available moles are transported, thus are > 0, but if concentrations oscillate, + // change max_mixf in input file: -implicit true 1 # max_mixf = 1 (default). + int i, icell, cp, comp; + // ifirst = (bcon_first == 2 ? 1 : 0); ilast = (bcon_last == 2 ? count_cells - 1 : count_cells); + int ifirst, ilast; + int i_1, i0, i1, i2 = 0; + //double mfr, mfr1, max_b = 0, b, grad, dVc, j_0e, min_dif_M = pow(10, min_dif_LM); + double mfr, mfr1, grad, dVc, j_0e, min_dif_M = pow(10, min_dif_LM); + LDBLE dum1, dum2, dum_stag = 0.0, min_mol; + + LDBLE dum = 0; + //cxxSurfaceCharge * charge_ptr = NULL; + if (stagnant > 1) + stagnant = 0; + cxxSolution *sptr1, *sptr2, *sptr_stag; + std::vector n_solution; + std::vector fraction; + std::map > ::iterator it1; + std::map ::iterator it2; + // c= count_cells, c1=(c+1)= end boundary-cell, c_1=(c-1), c2=(c+2)= first stagnant cell, cc1=(c+c+1)= last stagnant cell + int c = count_cells, c1 = c + 1, c2 = c + 2, c_1 = c - 1, cc = c + stagnant * c, cc1 = cc + 1; + + comp = sol_D[1].count_spec - sol_D[1].count_exch_spec; + cell_J_ij.clear(); + for (i = 0; i <= count_cells; i++) + { + std::map J_map; + for (cp = 0; cp < comp; cp++) + { + class J_ij_save J_save; + J_map[sol_D[1].spec[cp].name] = J_save; + } + cell_J_ij[i] = J_map; + } + if (heat_nmix) + comp += 1; + + if (Ct2 == NULL) + Ct2 = (LDBLE *) PHRQ_malloc((count_cells + 2 + (size_t)stagnant * count_cells) * sizeof(LDBLE)); + if (Ct2 == NULL) malloc_error(); + if (l_tk_x2 == NULL) + l_tk_x2 = (LDBLE *) PHRQ_malloc((count_cells + 2 + (size_t)stagnant * count_cells) * sizeof(LDBLE)); + if (l_tk_x2 == NULL) malloc_error(); + + if (A == NULL) + { + A = (LDBLE **)PHRQ_malloc((count_cells + 2 + (size_t)stagnant * count_cells) * sizeof(LDBLE *)); + if (A == NULL) malloc_error(); + for (i = 0; i < count_cells + 2 + stagnant * count_cells; i++) + { + if (stagnant) + A[i] = (LDBLE *)PHRQ_calloc((2 * count_cells + 2), sizeof(LDBLE)); + else + A[i] = (LDBLE *)PHRQ_malloc(3 * sizeof(LDBLE)); + if (A[i] == NULL) malloc_error(); + } + } + if (LU == NULL) + { + LU = (LDBLE **)PHRQ_malloc((count_cells + 2 + (size_t)stagnant * count_cells) * sizeof(LDBLE *)); + if (LU == NULL) malloc_error(); + for (i = 0; i < count_cells + 2 + stagnant * count_cells; i++) + { + if (stagnant) + LU[i] = (LDBLE *)PHRQ_calloc((2 * count_cells + 2), sizeof(LDBLE)); + else + LU[i] = (LDBLE *)PHRQ_malloc(3 * sizeof(LDBLE)); + if (LU[i] == NULL) malloc_error(); + } + } + if (mixf == NULL) + { + mixf = (LDBLE **)PHRQ_malloc((count_cells + 2) * sizeof(LDBLE *)); + if (mixf == NULL) malloc_error(); + for (i = 0; i < count_cells + 2; i++) + { + mixf[i] = NULL; + } + } + if (stagnant) + { + if (mixf_stag == NULL) + { + mixf_stag = (LDBLE **)PHRQ_malloc((count_cells + 2) * sizeof(LDBLE *)); + if (mixf_stag == NULL) malloc_error(); + for (i = 0; i < count_cells + 2; i++) + { + mixf_stag[i] = NULL; + } + } + } + if (comp + 2 > mixf_comp_size) + { + for (i = 0; i < count_cells + 2; i++) + { + if (mixf[i] == NULL) + mixf[i] = (LDBLE *)PHRQ_malloc(((size_t)comp + 2) * sizeof(LDBLE)); + else + mixf[i] = (LDBLE *)PHRQ_realloc(mixf[i], ((size_t)comp + 2) * sizeof(LDBLE)); + if (mixf[i] == NULL) malloc_error(); + if (stagnant) + { + if (mixf_stag[i] == NULL) + mixf_stag[i] = (LDBLE *)PHRQ_malloc(((size_t)comp + 2) * sizeof(LDBLE)); + else + mixf_stag[i] = (LDBLE *)PHRQ_realloc(mixf_stag[i], ((size_t)comp + 2) * sizeof(LDBLE)); + if (mixf_stag[i] == NULL) malloc_error(); + for (cp = 0; cp < comp; cp++) + mixf_stag[i][cp] = 0; + } + } + mixf_comp_size = comp + 2; + } + + if (dV_dcell) + find_current = 1; + // obtain b_ij... + dummy = default_Dw * pow(multi_Dpor, multi_Dn) * multi_Dpor; + for (i = 0; i <= count_cells + 1; i++) + { + if (!heat_nmix) + { + if (i <= count_cells) + l_tk_x2[i] = (sol_D[i].tk_x + sol_D[i + 1].tk_x) / 2; + //if (stagnant && i > 0 && i <= c) + // l_tk_x2[i + c1] = (sol_D[i].tk_x + sol_D[i + c1].tk_x) / 2; + } + if (stagnant) + { + use.Set_mix_ptr(Utilities::Rxn_find(Rxn_mix_map, i)); + if (use.Get_mix_ptr() == NULL) + { + i1 = 0; + if (i == 0 && (sptr1 = Utilities::Rxn_find(Rxn_solution_map, c2)) != NULL) + { + // the 1st boundary solution diffuses into 1st stagnant cell (=c2) by the ratio immobile_kgw in cell c2 / mobile_kgw in cell 1 + find_J(0, 1, 1, 1, 0); + ct[c2].kgw = sptr1->Get_mass_water(); + for (cp = 0; cp < comp; cp++) + { + if (!heat_nmix || cp < comp - 1) + mixf_stag[i][cp] = DDt * ct[i].v_m[cp].b_ij * ct[c2].kgw / ct[1].kgw; + else if (heat_nmix && cp == comp - 1) + mixf_stag[i][cp] = mixf_stag[i][0] * heat_diffc / tempr / sol_D[i].spec[0].Dwt; + } + i1 = c2; + } + else if (i == c1 && (sptr1 = Utilities::Rxn_find(Rxn_solution_map, cc1)) != NULL) + { + // the end boundary solution diffuses into stagnant cell cc1 + find_J(c, c1, 1, 1, 0); + ct[cc1].kgw = sptr1->Get_mass_water(); + for (cp = 0; cp < comp; cp++) + { + if (!heat_nmix || cp < comp - 1) + mixf_stag[i][cp] = DDt * ct[c].v_m[cp].b_ij * ct[cc1].kgw / ct[c].kgw; + else if (heat_nmix && cp == comp - 1) + mixf_stag[i][cp] = mixf_stag[i][0] * heat_diffc / tempr / sol_D[c].spec[0].Dwt; + } + i1 = cc1; + } + if (i1) + { + find_J(i, i1, 1, 1, 1); + } + } + else + { + use.Get_mix_ptr()->Vectorize(n_solution, fraction); + for (i1 = 0; i1 < (int) use.Get_mix_ptr()->Get_mixComps().size(); i1++) + { + if (n_solution[i1] > count_cells && n_solution[i1] <= cc1) + { + mfr = fraction[i1] / nmix; + find_J(i, n_solution[i1], mfr, 1, 1); + mfr *= (2.0 / dummy); + for (cp = 0; cp < comp; cp++) + { + if (!heat_nmix || cp < comp - 1) + mixf_stag[i][cp] = ct[i].v_m[cp].b_ij * mfr; + else if (heat_nmix && cp == comp - 1) + mixf_stag[i][cp] = mixf_stag[i][0] * heat_diffc / tempr / sol_D[i].spec[0].Dwt; + } + } + } + } + } + if (i <= count_cells) + find_J(i, i + 1, 1, 1, 0); + } + if (dV_dcell) + find_current = 0; + + ifirst = (bcon_first == 2 ? 1 : 0); + ilast = (bcon_last == 2 ? count_cells - 1 : count_cells); + + for (cp = 0; cp < comp; cp++) + { + for (i = 0; i <= cc1; i++) + { + if (heat_nmix && cp == comp - 1) + Ct2[i] = sol_D[i].tk_x; + else + Ct2[i] = sol_D[i].spec[cp].c; + } + // fill coefficient matrix A ... + // boundary cells ... + if (heat_nmix && cp == comp - 1) + { + mfr = mixf[0][cp] = heat_mix_array[0]; + mfr1 = mixf[1][cp] = heat_mix_array[1]; + } + else + { + mfr = mixf[0][cp] = DDt * ct[0].v_m[cp].b_ij; + mfr1 = mixf[1][cp] = DDt * ct[1].v_m[cp].b_ij; + } + if (bcon_first == 2) + { + A[1][0] = 0; A[1][1] = 1 + mfr1; A[1][2] = -mfr1; + if (stagnant) + { + A[0][0] = A[c2][c2] = 1; + if (mixf_stag[1][cp]) + { + A[1][1] += mixf_stag[1][cp]; + A[1][c2] = A[c2][1] = -mixf_stag[1][cp]; + A[c2][c2] += mixf_stag[1][cp]; + } + } + else + { + A[0][1] = 1; A[0][2] = 0; + } + } + else + { + A[1][0] = -mfr; A[1][1] = 1 + mfr + mfr1; A[1][2] = -mfr1; + if (stagnant) + { + if (dV_dcell) + { + A[0][0] = 1 + mfr; A[0][1] = -mfr; + } + else + A[0][0] = 1; + A[c2][c2] = 1; + if (mixf_stag[0][cp]) + { + if (dV_dcell) + { + A[0][0] += mixf_stag[0][cp]; A[0][c2] = -mixf_stag[0][cp]; + } + A[c2][0] = -mixf_stag[0][cp]; + A[c2][c2] += mixf_stag[0][cp]; + } + if (mixf_stag[1][cp]) + { + A[1][1] += mixf_stag[1][cp]; + A[1][c2] = A[c2][1] = -mixf_stag[1][cp]; + A[c2][c2] += mixf_stag[1][cp]; + } + } + else + { + if (dV_dcell) + { + A[0][1] = 1 + mfr; A[0][2] = -mfr; + } + else + { + A[0][1] = 1; A[0][2] = 0; + } + } + } + if (heat_nmix && cp == comp - 1) + { + mfr = mixf[c_1][cp] = heat_mix_array[c_1]; + mfr1 = mixf[count_cells][cp] = heat_mix_array[count_cells]; + } + else + { + mfr = mixf[c_1][cp] = DDt * ct[c_1].v_m[cp].b_ij; + mfr1 = mixf[count_cells][cp] = DDt * ct[count_cells].v_m[cp].b_ij; + } + if (bcon_last == 2) + { + if (stagnant) + { + A[count_cells][c_1] = -mfr; A[count_cells][count_cells] = 1 + mfr; + A[c1][c1] = A[cc1][cc1] = 1; + if (mixf_stag[count_cells][cp]) + { + A[count_cells][count_cells] += mixf_stag[count_cells][cp]; + A[count_cells][cc1] = A[cc1][count_cells] = -mixf_stag[count_cells][cp]; + A[cc1][cc1] += mixf_stag[count_cells][cp]; + } + } + else + { + A[count_cells][0] = -mfr; A[count_cells][1] = 1 + mfr; A[count_cells][2] = 0; + A[c1][0] = 0; A[c1][1] = 1; + } + } + else + { + if (stagnant) + { + A[count_cells][c_1] = -mfr; A[count_cells][count_cells] = 1 + mfr + mfr1; + A[count_cells][c1] = -mfr1; + if (dV_dcell) + { + A[c1][count_cells] = -mfr1; A[c1][c1] = 1 + mfr1; + } + else + A[c1][c1] = 1; + A[cc1][cc1] = 1; + if (mixf_stag[count_cells][cp]) + { + A[count_cells][count_cells] += mixf_stag[count_cells][cp]; + A[count_cells][cc1] = A[cc1][count_cells] = -mixf_stag[count_cells][cp]; + A[cc1][cc1] += mixf_stag[count_cells][cp]; + } + if (mixf_stag[c1][cp]) + { + if (dV_dcell) + { + A[c1][c1] += mixf_stag[c1][cp]; A[c1][cc1] = -mixf_stag[c1][cp]; + } + A[cc1][c1] = -mixf_stag[c1][cp]; + A[cc1][cc1] += mixf_stag[c1][cp]; + } + } + else + { + A[count_cells][0] = -mfr; A[count_cells][1] = 1 + mfr + mfr1; A[count_cells][2] = -mfr1; + if (dV_dcell) + { + A[c1][0] = -mfr1; A[c1][1] = 1 + mfr1; + } + else + { + A[c1][0] = 0; A[c1][1] = 1; + } + } + } + // inner cells ... + for (i = 2; i < count_cells; i++) + { + if (heat_nmix && cp == comp - 1) + { + mfr = mixf[i - 1][cp] = heat_mix_array[i - 1]; + mfr1 = mixf[i][cp] = heat_mix_array[i]; + } + else + { + mfr = mixf[i - 1][cp] = DDt * ct[i - 1].v_m[cp].b_ij; + mfr1 = mixf[i][cp] = DDt * ct[i].v_m[cp].b_ij; + } + if (stagnant && mixf_stag[i][cp]) + { + A[i][i - 1] = -mfr; A[i][i] = 1 + mfr + mfr1 + mixf_stag[i][cp]; A[i][i + 1] = -mfr1; + A[i + c1][i + c1] = 1 + mixf_stag[i][cp]; + A[i][i + c1] = A[i + c1][i] = -mixf_stag[i][cp]; + } + else + { + A[i][0] = -mfr; A[i][1] = 1 + mfr + mfr1; A[i][2] = -mfr1; + } + } + if (stagnant) + // decompose full A in LU, bypass A[][] = 0... + { + LDBLE s; + LU[0][0] = A[0][0]; LU[1][0] = A[1][0]; LU[c2][0] = A[c2][0]; + LU[0][1] = A[0][1] / LU[0][0]; LU[0][c2] = A[0][c2] / LU[0][0]; + for (i = 1; i <= cc1; i++) + { + i_1 = i - 1; + if (i < c2) + { + LU[i][i] = A[i][i] - LU[i][i_1] * LU[i_1][i]; + LU[i + 1][i] = A[i + 1][i]; + LU[i][i + 1] = A[i][i + 1] / LU[i][i]; + if (i == 1) + { + LU[c2][1] = A[c2][1] - LU[c2][0] * LU[0][1]; + LU[1][c2] = (A[1][c2] - LU[1][0] * LU[0][c2]) / LU[1][1]; + } + else + { + for (i0 = 0; i0 <= i_1; i0++) + { + if (i0 == i_1 && i0 < c) + { + LU[c2 + i0][i] = A[c2 + i0][i]; + LU[i][c2 + i0] = A[i][c2 + i0] / LU[i][i]; + } + else if (i0 < c) + { + LU[c2 + i0][i] = -LU[c2 + i0][i_1] * LU[i_1][i]; + LU[i][c2 + i0] = -LU[i][i_1] * LU[i_1][c2 + i0] / LU[i][i]; + } + if (i > c && i0 == c_1) + { + LU[c2 + i0][i] += A[c2 + i0][i]; + LU[i][c2 + i0] += A[i][c2 + i0] / LU[i][i]; + } + } + } + } + else + { + // the i = count_cells + 2 and higher rows are filled from i0 onwards, need to subtract the L*U terms for the ith column of L. + for (i0 = i; i0 <= cc1; i0++) + { + s = 0; + if (i0 == i) + { + i2 = (i == c2 ? 0 : i - c1); + for (i1 = i2; i1 <= i_1; i1++) + s += LU[i0][i1] * LU[i1][i]; + LU[i][i] = A[i][i] - s; + i2 += (i2 == 0 ? 2 : 1); + } + else + { + for (i1 = i2; i1 <= i_1; i1++) + s += LU[i0][i1] * LU[i1][i]; + LU[i0][i] = -s; + } + } + // and the ith row of U... + if (i == cc1) + break; + for (i0 = i + 1; i0 <= cc1; i0++) + { + s = 0; + if (i0 == i + 1) + i2 = i - c; + for (i1 = i2; i1 <= i_1; i1++) + s += LU[i][i1] * LU[i1][i0]; + LU[i][i0] = -s / LU[i][i]; + i2++; + } + } + } + Ct2[0] /= LU[0][0]; + for (i = 1; i <= cc1; i++) + { + i_1 = i - 1; + if (i < c2) + s = LU[i][i_1] * Ct2[i_1]; + else + { + i2 = 0; + s = 0; + for (i1 = i2; i1 <= i_1; i1++) + { + s += LU[i][i1] * Ct2[i1]; + i2 += (i2 == 0 ? 2 : 1); + } + } + Ct2[i] = (Ct2[i] - s) / LU[i][i]; + } + for (i = cc; i >= 0; i--) + { + s = 0; + for (i1 = i + 1; i1 <= cc1; i1++) + s += LU[i][i1] * Ct2[i1]; + Ct2[i] -= s; + } + } + else + { + // decompose A in LU : store L in A[..][0..1] and U in A[..][2] ... + for (i = 1; i <= count_cells + 1; i++) + { + A[i - 1][2] /= A[i - 1][1]; + A[i][1] -= A[i][0] * A[i - 1][2]; + } + // solve Ct2 in A.Ct2 = L.U.Ct2 = Ct1, Ct1 was put in Ct2 ... + // First, find y in L.y = Ct1, put y in Ct2 + Ct2[0] /= A[0][1]; + for (i = 1; i <= count_cells + 1; i++) + Ct2[i] = (Ct2[i] - A[i][0] * Ct2[i - 1]) / A[i][1]; + // Now obtain Ct2 in U.Ct2 = 'y' ... + for (i = count_cells; i >= 0; i--) + Ct2[i] -= A[i][2] * Ct2[i + 1]; + } + // Moles transported by concentration gradient from cell [i] to [i + 1] go in tot1, + // moles by stagnant exchange from cell [i] to [i + c1] go in tot_stag + // Correct for electro-neutrality... + for (i = ifirst; i <= ilast + 1; i++) + { + if (heat_nmix && cp == comp - 1) + { + l_tk_x2[i] = (Ct2[i + 1] + Ct2[i]) / 2; + cell_data[i].temp = Ct2[i] - 273.15; + sptr1 = Utilities::Rxn_find(Rxn_solution_map, i); + sptr1->Set_tc(Ct2[i] - 273.15); + if (stagnant && i > 0 && i < c1 && mixf_stag[i][cp]) + { + i1 = i + c1; + cell_data[i1].temp = Ct2[i1] - 273.15; + sptr2 = Utilities::Rxn_find(Rxn_solution_map, i1); + sptr2->Set_tc(Ct2[i1] - 273.15); + } + continue; + } + else if (i == ilast + 1 && (!stagnant || !mixf_stag[i][cp])) + continue; + + if (!cp) + { + ct[i].J_ij_sum = 0; + ct[i].Dz2c_stag = 0; + if (i < ilast + 1) + current_cells[i].ele = current_cells[i].dif = 0; + } + for (i0 = stagnant; i0 >= 0; i0--) + { + i1 = (i0 == 0 ? i + 1 : i == 0 ? c2 : i == c1 ? cc1 : i + c1); + if (Utilities::Rxn_find(Rxn_solution_map, i1) == NULL) + continue; + ct[i].J_ij[cp].name = sol_D[i].spec[cp].name; + ct[i].J_ij[cp].charge = ct[i].v_m[cp].z; + grad = (Ct2[i1] - Ct2[i])/* * ct[i].v_m[cp].D*/; // .D has the d{lg(gamma)} / d{lg(molal)} correction + if (!i0) + { + ct[i].J_ij[cp].tot1 = -mixf[i][cp] * grad; + + std::map >::iterator + cell_iter = cell_J_ij.find(i); + std::map< std::string, class J_ij_save >::iterator + s_iter = cell_iter->second.find(sol_D[1].spec[cp].name); + s_iter->second.flux_c = ct[i].J_ij[cp].tot1; + s_iter->second.flux_t = ct[i].J_ij[cp].tot1; + } + else + ct[i].J_ij[cp].tot_stag = -mixf_stag[i][cp] * grad; + if (ct[i].v_m[cp].z) + { + if (i == 0) + ct[i].v_m[cp].zc = ct[i].v_m[cp].z * Ct2[i1]; + else if (i == ilast) + { + if (!i0) + ct[i].v_m[cp].zc = ct[i].v_m[cp].z * Ct2[i]; + else + ct[i].v_m[cp].zc = ct[i].v_m[cp].z * Ct2[i1]; + } + else + ct[i].v_m[cp].zc = ct[i].v_m[cp].z * (Ct2[i] + Ct2[i1]) / 2; + if (i0) + { + mixf_stag[i][cp] *= ct[i].v_m[cp].zc; + ct[i].J_ij_sum += ct[i].v_m[cp].z * ct[i].J_ij[cp].tot_stag; + ct[i].Dz2c_stag -= ct[i].v_m[cp].z * mixf_stag[i][cp]; + } + else if (i < ilast + 1) + { + mixf[i][cp] *= ct[i].v_m[cp].zc; + current_cells[i].dif += ct[i].v_m[cp].z * ct[i].J_ij[cp].tot1; + current_cells[i].ele -= ct[i].v_m[cp].z * mixf[i][cp]; + } + } + } + } + // define element list + if (cp == 0) + dif_els_names.clear(); + if (heat_nmix && cp == comp - 1) + { + comp -= 1; + break; + } + char * temp_name = string_duplicate(ct[1].J_ij[cp].name); + const char* cptr = temp_name; + count_elts = 0; + get_elts_in_species(&cptr, 1); + free_check_null(temp_name); + for (int k = 0; k < count_elts; k++) + { + if (!strcmp(elt_list[k].elt->name, "X")) continue; + dif_els_names.insert(elt_list[k].elt->name); + } + } + count_m_s = (int) dif_els_names.size(); + sum_R = sum_Rd = 0; + for (i = ifirst; i <= ilast; i++) + { + ct[i].J_ij_count_spec = comp; + current_cells[i].R = l_tk_x2[i] / (current_cells[i].ele * F_Re3); + if (dV_dcell && !fix_current) + { + sum_R += current_cells[i].R; + if (i > 1) + sum_Rd += (current_cells[0].dif - current_cells[i].dif) * current_cells[i].R; + } + } + if (dV_dcell || fix_current) + { + if (fix_current) + { + int sign = (current_x >= 0 ? 1 : -1); + current_x = sign * fix_current * DDt / F_C_MOL; + j_0e = current_x - current_cells[ifirst].dif; + } + else + { + j_0e = (dV_dcell * count_cells - sum_Rd) / sum_R; + current_x = j_0e + current_cells[ifirst].dif; + } + } + else + { + current_x = 1e-10 / F_C_MOL; + cell_data[ifirst].potV = 0e-8; + j_0e = current_x - current_cells[ifirst].dif; + } + dVc = j_0e * current_cells[ifirst].R; + cell_data[ifirst + 1].potV = cell_data[ifirst].potV + dVc; + for (i = ifirst + 1; i <= ilast; i++) + { + dVc = current_cells[i].R * (current_x - current_cells[i].dif); + //if (((dV_dcell && (dVc * j_0e > 0)) || + // (dV_dcell > 0 && (cell_data[i].potV + dVc) > (cell_data[count_cells + 1].potV)) || + // (dV_dcell < 0 && (cell_data[i].potV + dVc) < (cell_data[count_cells + 1].potV)))) + if ((dV_dcell && (dVc * j_0e > 0)) || + ((dV_dcell > 0) && ((cell_data[i].potV + dVc) > cell_data[count_cells + 1].potV)) || + ((dV_dcell < 0) && ((cell_data[i].potV + dVc) < cell_data[count_cells + 1].potV))) + { + dVc = (cell_data[count_cells + 1].potV - cell_data[i].potV) / ((double)count_cells + 1 - (double)i); + } + cell_data[i + 1].potV = cell_data[i].potV + dVc; + } + //if (!dV_dcell || fix_current) + //{ + // dVc = current_cells[i].R * (current_x - current_cells[i].dif); + // cell_data[i + 1].potV = cell_data[i].potV + dVc; + //} + + for (cp = 0; cp < comp; cp++) + { + if (!ct[ifirst].v_m[cp].z) + continue; + for (i = ifirst; i <= ilast + stagnant; i++) + { + if (i < ilast + 1) + { + dVc = (cell_data[i + 1].potV - cell_data[i].potV) * F_Re3 / l_tk_x2[i]; + ct[i].J_ij[cp].tot1 -= mixf[i][cp] * dVc; + + std::map >::iterator + cell_iter = cell_J_ij.find(i); + std::map< std::string, class J_ij_save >::iterator + s_iter = cell_iter->second.find(sol_D[1].spec[cp].name); + s_iter->second.flux_t = ct[i].J_ij[cp].tot1; + } + if (stagnant && ct[i].Dz2c_stag) + { + ct[i].J_ij[cp].tot_stag += (mixf_stag[i][cp] * ct[i].J_ij_sum / ct[i].Dz2c_stag); + } + } + } + current_A = current_x / DDt * F_C_MOL; + + for (i = ifirst; i <= ilast + stagnant + (bcon_last == 2 ? 1 : 0); i++) + { + if (i <= ilast + 1) + { + // preserve the potentials... + sptr1 = Utilities::Rxn_find(Rxn_solution_map, i); + sptr1->Set_potV(cell_data[i].potV); + } + // Translate transport of the solute species into master species... + ct[i].count_m_s = count_m_s; + if (ct[i].m_s_size == 0 && ct[i].m_s != NULL) + ct[i].m_s = (class M_S *) free_check_null(ct[i].m_s); + if (ct[i].m_s == NULL) + { + ct[i].m_s = (class M_S *) PHRQ_malloc((count_m_s + 5) * sizeof(class M_S)); + ct[i].m_s_size = count_m_s + 5; + } + else if (count_m_s > ct[i].m_s_size) + { + ct[i].m_s = (class M_S *) PHRQ_realloc(ct[i].m_s, (count_m_s + 5) * sizeof(class M_S)); + ct[i].m_s_size = count_m_s + 5; + } + if (ct[i].m_s == NULL) + malloc_error(); + std::set ::iterator it = dif_els_names.begin(); + for (i1 = 0; i1 < count_m_s; i1++) + { + ct[i].m_s[i1].tot1 = ct[i].m_s[i1].tot2 = ct[i].m_s[i1].tot_stag = 0.0; + ct[i].m_s[i1].charge = 0.0; + ct[i].m_s[i1].name = (*it).c_str(); + it++; + } + fill_m_s(ct[i].J_ij, ct[i].J_ij_count_spec, i, stagnant); + } + /* + * 3. find the solutions in the column, add or subtract the moles... + */ + cxxNameDouble::iterator kit; + int if1, il1, incr; + for (cp = 0; cp < count_m_s; cp++) + { + if (!dV_dcell || dV_dcell * ct[1].m_s[cp].charge <= 0) + { + if1 = ifirst; il1 = ilast + 1; incr = 1; + } + else + { + if1 = ilast; il1 = ifirst - 1; incr = -1; + } + for (icell = if1; icell != il1; icell += incr) + { + min_mol = min_dif_M * ct[icell].kgw; + if (min_mol < 1e-13) + min_mol = 1e-13; + dum1 = dum2 = 0; + sptr1 = Utilities::Rxn_find(Rxn_solution_map, icell); + sptr2 = Utilities::Rxn_find(Rxn_solution_map, icell + 1); + if (stagnant && mixf_stag[icell][cp]) + { + i1 = (icell == 0 ? c1 + 1 : icell == c1 ? cc1 : icell + c1); + sptr_stag = Utilities::Rxn_find(Rxn_solution_map, i1); + } + else + sptr_stag = NULL; + + //if (!cp) + //{ + // ct[icell].J_ij_sum = ct[icell + 1].J_ij_sum = 0.0; + // if (sptr_stag) + // ct[i1].J_ij_sum = 0.0; + //} + + if (!strcmp(ct[icell].m_s[cp].name, "H")) + { + dummy = ct[icell].m_s[cp].tot1; + if (dV_dcell || (icell > 0 && icell <= ilast)) + sptr1->Set_total_h(sptr1->Get_total_h() - dummy); + if (dV_dcell || (icell >= 0 && icell < ilast) || (icell == ilast && bcon_last == 2)) + sptr2->Set_total_h(sptr2->Get_total_h() + dummy); + if (sptr_stag) + { + dummy = ct[icell].m_s[cp].tot_stag; + if (dV_dcell || (icell > 0 && icell <= ilast)) + sptr1->Set_total_h(sptr1->Get_total_h() - dummy); + if (icell == c) + { + // mix the boundary solution with the stagnant column end-cell + dummy += ct[icell + 1].m_s[cp].tot_stag; + if (dV_dcell) + sptr2->Set_total_h(sptr2->Get_total_h() - ct[icell + 1].m_s[cp].tot_stag); + } + sptr_stag->Set_total_h(sptr_stag->Get_total_h() + dummy); + } + continue; + } + if (!strcmp(ct[icell].m_s[cp].name, "O")) + { + dummy = ct[icell].m_s[cp].tot1; + if (dV_dcell || (icell > 0 && icell <= ilast)) + sptr1->Set_total_o(sptr1->Get_total_o() - dummy); + if (dV_dcell || (icell >= 0 && icell < ilast) || (icell == ilast && bcon_last == 2)) + sptr2->Set_total_o(sptr2->Get_total_o() + dummy); + if (sptr_stag) + { + dummy = ct[icell].m_s[cp].tot_stag; + if (dV_dcell || (icell > 0 && icell <= ilast)) + sptr1->Set_total_o(sptr1->Get_total_o() - dummy); + if (icell == c) + { + dummy += ct[icell + 1].m_s[cp].tot_stag; + if (dV_dcell) + sptr2->Set_total_o(sptr2->Get_total_o() - ct[icell + 1].m_s[cp].tot_stag); + } + sptr_stag->Set_total_o(sptr_stag->Get_total_o() + dummy); + } + //if (cp == count_m_s - 1) // transport the charge imbalance + //{ + // sptr1->Set_cb(sptr1->Get_cb() + ct[icell].J_ij_sum); + // sptr2->Set_cb(sptr2->Get_cb() + ct[icell + 1].J_ij_sum); + // if (sptr_stag) + // sptr_stag->Set_cb(sptr_stag->Get_cb() + ct[i1].J_ij_sum); + //} + continue; + } + dum1 = sptr1->Get_totals()[ct[icell].m_s[cp].name]; + dum2 = sptr2->Get_totals()[ct[icell].m_s[cp].name]; + if (sptr_stag) + dum_stag = sptr_stag->Get_totals()[ct[icell].m_s[cp].name]; + + // check for negative moles, add moles from other redox states and the donnan layer when necessary and available... + if (dum1 - ct[icell].m_s[cp].tot1 - ct[icell].m_s[cp].tot_stag < min_mol && + (dV_dcell || (icell > 0 && icell <= ilast))) + { + dum1 = moles_from_redox_states(sptr1, ct[icell].m_s[cp].name); + if (ct[icell].dl_s > 1e-8) + { + cxxSurface * s_ptr = Utilities::Rxn_find(Rxn_surface_map, icell); + if (s_ptr) + { + dum1 += moles_from_donnan_layer(s_ptr, ct[icell].m_s[cp].name, ct[icell].m_s[cp].tot1 + ct[icell].m_s[cp].tot_stag - dum1 + min_mol); + } + } + sptr1->Get_totals()[ct[icell].m_s[cp].name] = dum1; + if (dum1 - ct[icell].m_s[cp].tot1 - ct[icell].m_s[cp].tot_stag < min_mol) + ct[icell].m_s[cp].tot1 = dum1 - ct[icell].m_s[cp].tot_stag - min_mol; + } + // check for negative moles, in the other cell... + ct[icell].m_s[cp].tot2 = ct[icell].m_s[cp].tot1; + dum = 0; + if (icell == c && sptr_stag && ct[c1].m_s[cp].tot_stag) + dum = ct[c1].m_s[cp].tot_stag; + if (dum2 + ct[icell].m_s[cp].tot2 - dum < min_mol && + (dV_dcell || (icell >= 0 && icell < ilast) || (icell == ilast && bcon_last == 2))) + { + dum2 = moles_from_redox_states(sptr2, ct[icell].m_s[cp].name); + if (ct[icell + 1].dl_s > 1e-8) + { + cxxSurface * s_ptr = Utilities::Rxn_find(Rxn_surface_map, icell + 1); + if (s_ptr) + { + dum2 += moles_from_donnan_layer(s_ptr, ct[icell].m_s[cp].name, -(ct[icell].m_s[cp].tot2 + dum2 - min_mol)); + } + } + sptr2->Get_totals()[ct[icell].m_s[cp].name] = dum2; + if (dum2 + ct[icell].m_s[cp].tot2 - dum < min_mol) + ct[icell].m_s[cp].tot2 = -dum2 + min_mol + dum; + } + if (fabs(ct[icell].m_s[cp].tot2) < fabs(ct[icell].m_s[cp].tot1)) + ct[icell].m_s[cp].tot1 = ct[icell].m_s[cp].tot2; + + if (dV_dcell || (icell > 0 && icell <= ilast)) + { + dum = ct[icell].m_s[cp].tot1; + if (stagnant) + dum += ct[icell].m_s[cp].tot_stag; + dum1 -= dum; + sptr1->Get_totals()[ct[icell].m_s[cp].name] = (dum1 > 0 ? dum1 : min_mol); + if (dum1 < 0) + { + dum += dum1 - min_mol; + if ((it1 = neg_moles.find(icell)) != neg_moles.end() + && (it2 = (els = it1->second).find(ct[icell].m_s[cp].name)) != els.end()) + dum1 += it2->second; + els.clear(); + els.insert(std::make_pair(ct[icell].m_s[cp].name, dum1)); + neg_moles.erase(icell); + neg_moles.insert(std::make_pair(icell, els)); + } + //ct[icell].J_ij_sum -= dum * ct[icell].m_s[cp].charge; + } + + if (dV_dcell || (icell >= 0 && icell < ilast) || (icell == ilast && bcon_last == 2)) + { + dum = ct[icell].m_s[cp].tot1; + if (stagnant && icell == c && dV_dcell) + dum -= ct[c1].m_s[cp].tot_stag; + dum2 += dum; + sptr2->Get_totals()[ct[icell].m_s[cp].name] = (dum2 > 0 ? dum2 : min_mol); + if (dum2 < 0) + { + dum -= dum2 - min_mol; + if ((it1 = neg_moles.find(icell + 1)) != neg_moles.end() + && (it2 = (els = it1->second).find(ct[icell].m_s[cp].name)) != els.end()) + dum2 += it2->second; + els.clear(); + els.insert(std::make_pair(ct[icell].m_s[cp].name, dum2)); + neg_moles.erase(icell + 1); + neg_moles.insert(std::make_pair(icell + 1, els)); + } + //ct[icell + 1].J_ij_sum += dum * ct[icell].m_s[cp].charge; + } + + if (sptr_stag) + { + dum = ct[icell].m_s[cp].tot_stag; + if (icell == c) + dum += ct[c1].m_s[cp].tot_stag; + if (dum_stag + dum < 0) + { + dum_stag = moles_from_redox_states(sptr_stag, ct[icell].m_s[cp].name); + if (ct[i1].dl_s) + { + cxxSurface * s_ptr = Utilities::Rxn_find(Rxn_surface_map, i1); + if (s_ptr) + { + dum_stag += moles_from_donnan_layer(s_ptr, ct[icell].m_s[cp].name, -(dum + dum_stag - min_mol)); + } + sptr_stag->Get_totals()[ct[icell].m_s[cp].name] = dum_stag; + } + } + dum_stag += dum; + sptr_stag->Get_totals()[ct[icell].m_s[cp].name] = (dum_stag > 0 ? dum_stag : min_mol); + if (dum_stag < 0) + { + dum -= dum_stag - min_mol; + if ((it1 = neg_moles.find(i1)) != neg_moles.end() + && (it2 = (els = it1->second).find(ct[icell].m_s[cp].name)) != els.end()) + dum_stag += it2->second; + els.clear(); + els.insert(std::make_pair(ct[icell].m_s[cp].name, dum_stag)); + neg_moles.erase(i1); + neg_moles.insert(std::make_pair(i1, els)); + } + //ct[i1].J_ij_sum += dum * ct[icell].m_s[cp].charge; + } + + // reduce oscillations in the column-boundary cells, but not for H and O, and current_A is not adjusted... + if (dV_dcell && icell == il1 - incr && dV_dcell * ct[0].m_s[cp].charge < 0 && strcmp(ct[0].m_s[cp].name, "H") && strcmp(ct[0].m_s[cp].name, "O") && c > 3 && mixrun > 1) + { + dummy = Utilities::Rxn_find(Rxn_solution_map, 0)->Get_totals()[ct[0].m_s[cp].name] / ct[0].kgw * (1 - ct[0].dl_s); + if (dummy > 1e-6) + { + sptr1 = Utilities::Rxn_find(Rxn_solution_map, 1); + sptr2 = Utilities::Rxn_find(Rxn_solution_map, 2); + dum1 = sptr1->Get_totals()[ct[0].m_s[cp].name] / ct[1].kgw * (1 - ct[1].dl_s) - dummy; + dum2 = sptr2->Get_totals()[ct[0].m_s[cp].name] / ct[2].kgw * (1 - ct[2].dl_s) - dummy; + if (dum1 / dum2 < 0 || dum1 / dum2 > 1) + { + dum = cell_data[1].mid_cell_x / cell_data[2].mid_cell_x; + //ct[1].J_ij_sum -= sptr1->Get_totals()[ct[0].m_s[cp].name] * ct[1].m_s[cp].charge; + dum1 = (dummy + dum * dum2) * ct[1].kgw / (1 - ct[1].dl_s); + sptr1->Get_totals()[ct[0].m_s[cp].name] = dum1; + //ct[1].J_ij_sum += dum1 * ct[1].m_s[cp].charge; + } + } + dummy = Utilities::Rxn_find(Rxn_solution_map, c1)->Get_totals()[ct[0].m_s[cp].name] / ct[c1].kgw * (1 - ct[c1].dl_s); + if (dummy > 1e-6) + { + sptr1 = Utilities::Rxn_find(Rxn_solution_map, c); + sptr2 = Utilities::Rxn_find(Rxn_solution_map, c_1); + dum1 = sptr1->Get_totals()[ct[0].m_s[cp].name] / ct[c].kgw * (1 - ct[c].dl_s) - dummy; + dum2 = sptr2->Get_totals()[ct[0].m_s[cp].name] / ct[c_1].kgw * (1 - ct[c_1].dl_s) - dummy; + if (dum1 / dum2 < 0 || dum1 / dum2 > 1) + { + dum = (cell_data[c].mid_cell_x - cell_data[c_1].mid_cell_x) / + (cell_data[c1].mid_cell_x - cell_data[c_1].mid_cell_x); + //ct[c].J_ij_sum -= sptr1->Get_totals()[ct[0].m_s[cp].name] * ct[c].m_s[cp].charge; + dum1 = (dummy + (1 - dum) * dum2) * ct[c].kgw / (1 - ct[c].dl_s); + sptr1->Get_totals()[ct[0].m_s[cp].name] = dum1; + //ct[c].J_ij_sum += dum1 * ct[c].m_s[cp].charge; + } + } + } +//if (cp == count_m_s - 1) + //{ + // sptr1->Set_cb(sptr1->Get_cb() + ct[icell].J_ij_sum); + // sptr2->Set_cb(sptr2->Get_cb() + ct[icell + 1].J_ij_sum); + // if (sptr_stag) + // sptr_stag->Set_cb(sptr_stag->Get_cb() + ct[i1].J_ij_sum); + //} + } + } + return; +} + +/* ---------------------------------------------------------------------- */ +LDBLE Phreeqc:: +moles_from_redox_states(cxxSolution *sptr, const char *name) +/* ---------------------------------------------------------------------- */ +{ + int length, length2; + cxxNameDouble::iterator kit; + LDBLE dum = 0; + + length = (int)strlen(name); + for (kit = sptr->Get_totals().begin(); kit != sptr->Get_totals().end(); kit++) + { + length2 = (int)(size_t)strcspn(kit->first.c_str(), "("); + if (length == length2 && !strncmp(name, kit->first.c_str(), length2)) + { + dum += kit->second; kit->second = 0; + } + } + return(dum); +} + +/* ---------------------------------------------------------------------- */ +LDBLE Phreeqc:: +add_MCD_moles(LDBLE moles, LDBLE min_mol, int i, cxxSolution *sptr, const char *name) +/* ---------------------------------------------------------------------- */ +{ + cxxNameDouble::iterator kit; + std::map > ::iterator it1; + std::map ::iterator it2; + LDBLE dum = sptr->Get_totals()[name]; + + if (!dum) + dum = moles_from_redox_states(sptr, name); + if ((it1 = neg_moles.find(i)) != neg_moles.end() + && (it2 = (els = it1->second).find(name)) != els.end()) + { + dum += it2->second; + neg_moles.erase(it1); + els.erase(it2); + neg_moles.insert(std::make_pair(i, els)); + } + dum += moles; + if (dum < -min_mol) + { + if (ct[i].dl_s) + { + cxxSurface *su_ptr = Utilities::Rxn_find(Rxn_surface_map, i); + if (su_ptr != NULL) + dum += moles_from_donnan_layer(su_ptr, name, -dum + min_mol); + } + } + sptr->Get_totals()[name] = (dum > 0 ? dum : 0e-16); + if (dum < -min_mol) + { + els.insert(std::make_pair(name, dum)); + if ((it1 = neg_moles.find(i)) != neg_moles.end()) + neg_moles.erase(it1); + neg_moles.insert(std::make_pair(i, els)); + } + return(dum); +} + +/* ---------------------------------------------------------------------- */ +LDBLE Phreeqc:: +moles_from_donnan_layer(cxxSurface *sptr, const char *name, LDBLE moles_needed) +/* ---------------------------------------------------------------------- */ +{ + cxxNameDouble::iterator kit; + LDBLE dum = 0; + cxxSurfaceCharge * charge_ptr = NULL; + + for (size_t j = 0; j < sptr->Get_surface_charges().size(); j++) + { + if (sptr->Get_dl_type() == cxxSurface::DONNAN_DL) + { + charge_ptr = &(sptr->Get_surface_charges()[j]); + for (kit = charge_ptr->Get_diffuse_layer_totals().begin(); kit != charge_ptr->Get_diffuse_layer_totals().end(); kit++) + { + if (strcmp(kit->first.c_str(), "H") == 0 || strcmp(kit->first.c_str(), "O") == 0) + continue; + if (strcmp(kit->first.c_str(), name) == 0) + { + if (kit->second > moles_needed) + { + dum += moles_needed; kit->second -= moles_needed; + } + else + { + dum += kit->second; kit->second = 0; + } + } + } + } + } + return(dum); +} + /* ---------------------------------------------------------------------- */ int Phreeqc:: multi_D(LDBLE DDt, int mobile_cell, int stagnant) @@ -1962,7 +3309,7 @@ multi_D(LDBLE DDt, int mobile_cell, int stagnant) dVtemp = dV_dcell; dV_dcell = 0; } - + cell_J_ij.clear(); icell = jcell = -1; first_c = last_c = -1; il_calcs = -1; @@ -1975,7 +3322,7 @@ multi_D(LDBLE DDt, int mobile_cell, int stagnant) for (int f_c = 0; f_c <= loop_f_c; f_c++) { - for (n = 0; n <= (stagnant ? stag_data->count_stag : 0); n++) // allow for stagnant cell mixing with higher cells in the layer + for (n = 0; n <= (stagnant ? stag_data.count_stag : 0); n++) // allow for stagnant cell mixing with higher cells in the layer { icell = mobile_cell + 1 + n * count_cells; if (stagnant) @@ -2030,7 +3377,7 @@ multi_D(LDBLE DDt, int mobile_cell, int stagnant) } if (jcell > last_c2) last_c2 = jcell; - mixf = fraction[i] / nmix; + mixf = (nmix ? fraction[i] / nmix : fraction[i]); } else { /* regular column... */ @@ -2045,7 +3392,8 @@ multi_D(LDBLE DDt, int mobile_cell, int stagnant) /* * 1. obtain J_ij... */ - il_calcs = find_J(icell, jcell, mixf, DDt, stagnant); + il_calcs = (int) find_J(icell, jcell, mixf, DDt, stagnant); + if (find_current) { if (i < last_c) @@ -2078,6 +3426,8 @@ multi_D(LDBLE DDt, int mobile_cell, int stagnant) continue; } } + if (!ct[icell].J_ij_count_spec) + continue; /* * 2. sum up the primary or secondary master_species @@ -2085,11 +3435,11 @@ multi_D(LDBLE DDt, int mobile_cell, int stagnant) if (!il_calcs) { tot1_h = tot1_o = tot2_h = tot2_o = 0.0; - m_s = (struct M_S *) free_check_null(m_s); - count_m_s = (ct[icell].J_ij_count_spec < count_elements ? - ct[icell].J_ij_count_spec : count_elements); - m_s = (struct M_S *) PHRQ_malloc((size_t) count_m_s * - sizeof(struct M_S)); + m_s = (class M_S *) free_check_null(m_s); + count_m_s = (ct[icell].J_ij_count_spec < count_moles_added ? + ct[icell].J_ij_count_spec : count_moles_added); + m_s = (class M_S *) PHRQ_malloc((size_t) count_m_s * + sizeof(class M_S)); if (m_s == NULL) malloc_error(); for (i1 = 0; i1 < count_m_s; i1++) @@ -2100,7 +3450,7 @@ multi_D(LDBLE DDt, int mobile_cell, int stagnant) } count_m_s = 0; } - fill_m_s(ct[icell].J_ij, ct[icell].J_ij_count_spec); + fill_m_s(ct[icell].J_ij, ct[icell].J_ij_count_spec, icell, stagnant); /* * 3. find the solutions, add or subtract the moles... @@ -2174,8 +3524,8 @@ multi_D(LDBLE DDt, int mobile_cell, int stagnant) // first_c = mobile_cell; // allow for stagnant cell mixing with boundary cell 0 for (i = first_c; i <= last_c2; i++) { - if (stagnant && i > first_c && i <= count_cells + first_c) - continue; + //if (stagnant && i > first_c && i <= count_cells + first_c) + // continue; use.Set_solution_ptr(Utilities::Rxn_find(Rxn_solution_map, i)); if (!use.Get_solution_ptr()) @@ -2245,7 +3595,7 @@ multi_D(LDBLE DDt, int mobile_cell, int stagnant) "Negative concentration in MCD: added %.4e moles %s in cell %d", (double)-temp, it->first.c_str(), i); warning_msg(token); - for (i1 = 0; i1 < count_elements; i1++) + for (i1 = 0; i1 < count_moles_added; i1++) { if (moles_added[i1].name && !strcmp(moles_added[i1].name, it->first.c_str())) { @@ -2264,15 +3614,15 @@ multi_D(LDBLE DDt, int mobile_cell, int stagnant) } } - m_s = (struct M_S *) free_check_null(m_s); + m_s = (class M_S *) free_check_null(m_s); for (i = first_c; i < last_c2; i++) { if (stagnant && i > first_c && i <= count_cells + first_c) continue; - ct[i].J_ij = (struct J_ij *) free_check_null(ct[i].J_ij); + ct[i].J_ij = (class J_ij *) free_check_null(ct[i].J_ij); if (il_calcs) - ct[i].J_ij_il = (struct J_ij *) free_check_null(ct[i].J_ij_il); + ct[i].J_ij_il = (class J_ij *) free_check_null(ct[i].J_ij_il); ct[i].v_m = (struct V_M *) free_check_null(ct[i].v_m); } if (dVtemp && stagnant) @@ -2285,56 +3635,82 @@ multi_D(LDBLE DDt, int mobile_cell, int stagnant) /* ---------------------------------------------------------------------- */ int Phreeqc:: -fill_m_s(struct J_ij *l_J_ij, int l_J_ij_count_spec) +fill_m_s(class J_ij *l_J_ij, int l_J_ij_count_spec, int icell, int stagnant) /* ---------------------------------------------------------------------- */ { /* sum up the primary or secondary master_species from solute species * H and O go in tot1&2_h and tot1&2_o */ int j, k, l; - char *ptr; + LDBLE fraction; + const char* cptr; for (j = 0; j < l_J_ij_count_spec; j++) { { char * temp_name = string_duplicate(l_J_ij[j].name); - ptr = temp_name; + cptr = temp_name; count_elts = 0; - get_elts_in_species(&ptr, 1); + get_elts_in_species(&cptr, 1); free_check_null(temp_name); } - for (k = 0; k < count_elts; k++) + if (implicit && stagnant < 2) { - if (strcmp(elt_list[k].elt->name, "X") == 0) - continue; - if (strcmp(elt_list[k].elt->name, "H") == 0) - { - tot1_h += elt_list[k].coef * l_J_ij[j].tot1; - tot2_h += elt_list[k].coef * l_J_ij[j].tot2; - } - else if (strcmp(elt_list[k].elt->name, "O") == 0) - { - tot1_o += elt_list[k].coef * l_J_ij[j].tot1; - tot2_o += elt_list[k].coef * l_J_ij[j].tot2; - } - else + for (k = 0; k < count_elts; k++) { for (l = 0; l < count_m_s; l++) { - if (strcmp(m_s[l].name, elt_list[k].elt->name) == 0) + if (strcmp(ct[icell].m_s[l].name, elt_list[k].elt->name) == 0) { - m_s[l].tot1 += elt_list[k].coef * l_J_ij[j].tot1; - m_s[l].tot2 += elt_list[k].coef * l_J_ij[j].tot2; + fraction = fabs((double)elt_list[k].coef * l_J_ij[j].tot1) + fabs(ct[icell].m_s[l].tot1); + if (fraction) + fraction = fabs((double)elt_list[k].coef * l_J_ij[j].tot1) / fraction; + else + fraction = 1; + ct[icell].m_s[l].tot1 += elt_list[k].coef * l_J_ij[j].tot1; + ct[icell].m_s[l].charge *= (1 - fraction); + ct[icell].m_s[l].charge += fraction * l_J_ij[j].charge; + if (stagnant) + ct[icell].m_s[l].tot_stag += elt_list[k].coef * l_J_ij[j].tot_stag; break; } } - if (l == count_m_s) + } + } + else + { + for (k = 0; k < count_elts; k++) + { + if (strcmp(elt_list[k].elt->name, "X") == 0) + continue; + if (strcmp(elt_list[k].elt->name, "H") == 0) { - //m_s[l].name = string_hsave(elt_list[k].elt->name); - m_s[l].name = elt_list[k].elt->name; - m_s[l].tot1 = elt_list[k].coef * l_J_ij[j].tot1; - m_s[l].tot2 = elt_list[k].coef * l_J_ij[j].tot2; - count_m_s++; + tot1_h += elt_list[k].coef * l_J_ij[j].tot1; + tot2_h += elt_list[k].coef * l_J_ij[j].tot2; + } + else if (strcmp(elt_list[k].elt->name, "O") == 0) + { + tot1_o += elt_list[k].coef * l_J_ij[j].tot1; + tot2_o += elt_list[k].coef * l_J_ij[j].tot2; + } + else + { + for (l = 0; l < count_m_s; l++) + { + if (strcmp(m_s[l].name, elt_list[k].elt->name) == 0) + { + m_s[l].tot1 += elt_list[k].coef * l_J_ij[j].tot1; + m_s[l].tot2 += elt_list[k].coef * l_J_ij[j].tot2; + break; + } + } + if (l == count_m_s) + { + m_s[l].name = elt_list[k].elt->name; + m_s[l].tot1 = elt_list[k].coef * l_J_ij[j].tot1; + m_s[l].tot2 = elt_list[k].coef * l_J_ij[j].tot2; + count_m_s++; + } } } } @@ -2342,7 +3718,47 @@ fill_m_s(struct J_ij *l_J_ij, int l_J_ij_count_spec) return (OK); } /* ---------------------------------------------------------------------- */ -int Phreeqc:: +void Phreeqc:: +calc_b_ij(int icell, int jcell, int k, LDBLE b_i, LDBLE b_j, LDBLE g_i, LDBLE g_j, LDBLE free_i, LDBLE free_j, int stagnant) +/* ---------------------------------------------------------------------- */ +{ + ct[icell].v_m[k].b_ij = b_i * (free_i + g_i) * b_j * (free_j + g_j) / (b_i * (free_i + g_i) + b_j * (free_j + g_j)); + // At filterends, concentrations of ions change step-wise to the DL. + // We take the harmonic mean for f_free, the average for the DL. + if (ct[icell].v_m[k].z) + { + if (!g_i && g_j) + { + ct[icell].v_m[k].b_ij = free_j * b_i * b_j / (b_i + b_j) + + b_i * (1 - free_j) / 4 + b_j * g_j / 4; + } + else if (g_i && !g_j) + ct[icell].v_m[k].b_ij = free_i * b_i * b_j / (b_i + b_j) + + b_j * (1 - free_i) / 4 + b_i * g_i / 4; + } + // for boundary cells... + if (stagnant > 1) + { /* for a diffusion experiment with well-mixed reservoir in cell 3 and the last stagnant cell, + and with the mixf * 2 for the boundary cells in the input... */ + if (icell == 3 && !g_i && g_j) + ct[icell].v_m[k].b_ij = b_j * (free_j + g_j) / 2; + else if (jcell == all_cells - 1 && !g_j && g_i) + ct[icell].v_m[k].b_ij = b_i * (free_i + g_i) / 2; + } + else + { + if (icell == 0 || (icell == count_cells + 1 && jcell == count_cells + count_cells + 1)) + ct[icell].v_m[k].b_ij = b_j * (free_j + g_j); + else if (icell == count_cells && jcell == count_cells + 1) + ct[icell].v_m[k].b_ij = b_i * (free_i + g_i); + } + if (ct[icell].v_m[k].z) + ct[icell].Dz2c += ct[icell].v_m[k].b_ij * ct[icell].v_m[k].zc * ct[icell].v_m[k].z; + return; +} + +/* ---------------------------------------------------------------------- */ +LDBLE Phreeqc:: find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) /* ---------------------------------------------------------------------- */ { @@ -2387,14 +3803,16 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) int i, i_max, j, j_max, k, k_il, only_counter, il_calcs; int i1; LDBLE A1 = 0.0, A2 = 0.0, ddlm, aq1, aq2, t_aq1, t_aq2, f_free_i, f_free_j; - LDBLE dl_aq1, dl_aq2, c_dl, dum, dum1, dum2, tort1, tort2, b_i, b_j; + LDBLE dl_aq1, dl_aq2, dum, dum1, dum2, tort1, tort2, b_i, b_j; LDBLE Sum_zM, aq_il1, aq_il2; LDBLE por_il1, por_il2, por_il12 = 0.0; LDBLE cec1, cec2, cec12 = 0.0, rc1 = 0.0, rc2 = 0.0; LDBLE dV, c1, c2; + LDBLE max_b = 0.0; + + il_calcs = (interlayer_Dflag ? 1 : 0); cxxSurface *s_ptr1, *s_ptr2; LDBLE g_i, g_j; - //char token[MAX_LENGTH], token1[MAX_LENGTH]; std::vector s_charge_p; std::vector s_charge_p1; @@ -2402,22 +3820,23 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) std::vector::iterator it_sc; std::vector s_com_p; - il_calcs = (interlayer_Dflag ? 1 : 0); - ct[icell].dl_s = dl_aq1 = dl_aq2 = 0.0; + ct[icell].dl_s = ct[jcell].dl_s = dl_aq1 = dl_aq2 = 0.0; if (dV_dcell && !find_current) goto dV_dcell2; /* check for immediate return and interlayer diffusion calcs... */ - ct[icell].J_ij_sum = 0.0; + //ct[icell].J_ij_sum = 0.0; ct[icell].J_ij_count_spec = 0; if (!il_calcs) { if (stagnant) { - if (cell_data[icell].por < multi_Dpor_lim - || cell_data[jcell].por < multi_Dpor_lim) - return (OK); + if (cell_data[icell].por < multi_Dpor_lim || cell_data[jcell].por < multi_Dpor_lim) + { + if (!implicit) + return (il_calcs); + } } else { /* regular column... */ @@ -2434,14 +3853,15 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) sum_R += current_cells[icell].R; sum_Rd += current_cells[0].dif * current_cells[icell].R; } - return (OK); + if (!implicit) + return (il_calcs); } } } /* do the calcs */ - aq1 = Utilities::Rxn_find(Rxn_solution_map, icell)->Get_mass_water(); - aq2 = Utilities::Rxn_find(Rxn_solution_map, jcell)->Get_mass_water(); + aq1 = ct[icell].kgw = Utilities::Rxn_find(Rxn_solution_map, icell)->Get_mass_water(); + aq2 = ct[jcell].kgw = Utilities::Rxn_find(Rxn_solution_map, jcell)->Get_mass_water(); /* * check if DL calculations must be made, find amounts of water... */ @@ -2510,10 +3930,6 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) else if (icell == count_cells) ct[icell].visc2 = ct[icell].visc1; } - //LDBLE d_damper = Utilities::Rxn_find(Rxn_solution_map, jcell)->Get_mu() / - // Utilities::Rxn_find(Rxn_solution_map, icell)->Get_mu(); - //d_damper = pow(d_damper, 0.3); - //if (d_damper > 1) ct[icell].visc1 *= d_damper; else ct[icell].visc2 *= d_damper; /* in each cell: DL surface = mass_water_DL / (cell_length) free pore surface = mass_water_free / (cell_length) @@ -2525,7 +3941,11 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) if (dl_aq1 > 0) ct[icell].dl_s = dl_aq1 / t_aq1; if (dl_aq2 > 0) - ct[icell].dl_s = dl_aq2 / t_aq2; + { + ct[jcell].dl_s = dl_aq2 / t_aq2; + if (!ct[icell].dl_s) + ct[icell].dl_s = 1e-8; // used in implicit appt + } if (il_calcs) { @@ -2670,37 +4090,53 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) */ k = sol_D[icell].count_spec + sol_D[jcell].count_spec; - ct[icell].J_ij = (struct J_ij *) free_check_null(ct[icell].J_ij); - ct[icell].J_ij = (struct J_ij *) PHRQ_malloc((size_t) k * sizeof(struct J_ij)); + if (ct[icell].J_ij == NULL) + { + ct[icell].J_ij = (class J_ij *) PHRQ_malloc((size_t)(k) * sizeof(class J_ij)); + ct[icell].J_ij_size = k; + } + else if (k > ct[icell].J_ij_size) + { + ct[icell].J_ij = (class J_ij *) PHRQ_realloc(ct[icell].J_ij, (size_t)(k) * sizeof(class J_ij)); + ct[icell].J_ij_size = k; + } if (ct[icell].J_ij == NULL) malloc_error(); - ct[icell].v_m = (struct V_M *) free_check_null(ct[icell].v_m); - ct[icell].v_m = (struct V_M *) PHRQ_malloc((size_t) k * sizeof(struct V_M)); + if (ct[icell].v_m == NULL) + { + ct[icell].v_m = (struct V_M *) PHRQ_malloc((size_t)(k) * sizeof(struct V_M)); + ct[icell].v_m_size = k; + } + else if (k > ct[icell].v_m_size) + { + ct[icell].v_m = (struct V_M *) PHRQ_realloc(ct[icell].v_m, (size_t)(k) * sizeof(struct V_M)); + ct[icell].v_m_size = k; + } if (ct[icell].v_m == NULL) malloc_error(); for (i = 0; i < k; i++) { - ct[icell].J_ij[i].tot1 = 0.0; + ct[icell].J_ij[i].tot1 = ct[icell].J_ij[i].tot_stag = 0.0; ct[icell].v_m[i].grad = 0.0; - ct[icell].v_m[i].D = 0.0; + ct[icell].v_m[i].D = 1.0; // used for gamma correction ct[icell].v_m[i].z = 0.0; ct[icell].v_m[i].c = 0.0; ct[icell].v_m[i].zc = 0.0; - ct[icell].v_m[i].Dz = 0.0; - ct[icell].v_m[i].Dzc = 0.0; + //ct[icell].v_m[i].Dz = 0.0; + //ct[icell].v_m[i].Dzc = 0.0; ct[icell].v_m[i].b_ij = 0.0; } - ct[icell].Dz2c = ct[icell].Dz2c_dl = ct[icell].Dz2c_il = 0.0; + ct[icell].Dz2c = ct[icell].Dz2c_il = 0.0; if (il_calcs) { /* also for interlayer cations */ k = sol_D[icell].count_exch_spec + sol_D[jcell].count_exch_spec; - ct[icell].J_ij_il = (struct J_ij *) free_check_null(ct[icell].J_ij_il); - ct[icell].J_ij_il = (struct J_ij *) PHRQ_malloc((size_t) k * sizeof(struct J_ij)); + ct[icell].J_ij_il = (class J_ij *) free_check_null(ct[icell].J_ij_il); + ct[icell].J_ij_il = (class J_ij *) PHRQ_malloc((size_t) k * sizeof(class J_ij)); if (ct[icell].J_ij_il == NULL) malloc_error(); @@ -2757,7 +4193,7 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) if (ct[icell].v_m[k].z) ct[icell].v_m[k].zc = ct[icell].v_m[k].z * c1; - if (dV_dcell && ct[icell].v_m[k].z) + if (dV_dcell && ct[icell].v_m[k].z && !fix_current) { // compare diffusive and electromotive forces dum = ct[icell].v_m[k].grad; @@ -2803,7 +4239,7 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) g_j += it_sc->Get_z_gMCD_map()[ct[icell].v_m[k].z]; else { - dum1 = it_sc->Get_mass_water() / mass_water_bulk_x; + dum1 = it_sc->Get_mass_water() / t_aq2; dum2 = it_sc->Get_z_gMCD_map()[1] / dum1; g_j += pow(dum2, ct[icell].v_m[k].z) * dum1; } @@ -2813,34 +4249,18 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) } } - b_i = A1 * sol_D[icell].spec[i].Dwt * (f_free_i + g_i / ct[icell].visc1); - b_j = A2 * (f_free_j + g_j / ct[icell].visc2); - if (icell == count_cells && !stagnant) - ct[icell].v_m[k].b_ij = b_i; + b_i = A1 * sol_D[icell].spec[i].Dwt; + b_j = A2; + if (sol_D[icell].tk_x == sol_D[jcell].tk_x) + b_j *= sol_D[icell].spec[i].Dwt; else { - if (sol_D[icell].tk_x == sol_D[jcell].tk_x) - b_j *= sol_D[icell].spec[i].Dwt; - else - { - dum2 = sol_D[icell].spec[i].Dwt / sol_D[icell].viscos_f; - dum2 *= exp(sol_D[icell].spec[i].dw_t / sol_D[jcell].tk_x - sol_D[icell].spec[i].dw_t / sol_D[icell].tk_x); - dum2 *= sol_D[jcell].viscos_f; - b_j *= dum2; - } - if (icell == 0 && !stagnant) - { - //if (d_damper < 1 && g_i == 0) - // ct[icell].v_m[k].b_ij = A2 * sol_D[icell].spec[i].Dwt * (f_free_j + g_j * d_damper / ct[icell].visc2); - //else - ct[icell].v_m[k].b_ij = b_j; - } - else - ct[icell].v_m[k].b_ij = b_i * b_j / (b_i + b_j); + dum2 = sol_D[icell].spec[i].Dwt / sol_D[icell].viscos_f; + dum2 *= exp(sol_D[icell].spec[i].dw_t / sol_D[jcell].tk_x - sol_D[icell].spec[i].dw_t / sol_D[icell].tk_x); + dum2 *= sol_D[jcell].viscos_f; + b_j *= dum2; } - - if (ct[icell].v_m[k].z) - ct[icell].Dz2c += ct[icell].v_m[k].b_ij * ct[icell].v_m[k].zc * ct[icell].v_m[k].z; + calc_b_ij(icell, jcell, k, b_i, b_j, g_i, g_j, f_free_i, f_free_j, stagnant); k++; } @@ -2874,7 +4294,7 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) if (ct[icell].v_m[k].z) ct[icell].v_m[k].zc = ct[icell].v_m[k].z * c2; - if (dV_dcell && ct[icell].v_m[k].z) + if (dV_dcell && ct[icell].v_m[k].z && !fix_current) { // compare diffuse and electromotive forces dum = ct[icell].v_m[k].grad; @@ -2912,7 +4332,7 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) g_i += it_sc->Get_z_gMCD_map()[ct[icell].v_m[k].z]; else { - dum1 = it_sc->Get_mass_water() / mass_water_bulk_x; + dum1 = it_sc->Get_mass_water() / t_aq1; dum2 = it_sc->Get_z_gMCD_map()[1] / dum1; g_i += pow(dum2, ct[icell].v_m[k].z) * dum1; } @@ -2929,28 +4349,18 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) g_j *= sol_D[jcell].spec[j].erm_ddl; } } - b_i = A1 * (f_free_i + g_i / ct[icell].visc1); - b_j = A2 * sol_D[jcell].spec[j].Dwt * (f_free_j + g_j / ct[icell].visc2); - if (icell == 0 && !stagnant) - ct[icell].v_m[k].b_ij = b_j; + b_i = A1; + b_j = A2 * sol_D[jcell].spec[j].Dwt; + if (sol_D[icell].tk_x == sol_D[jcell].tk_x) + b_i *= sol_D[jcell].spec[j].Dwt; else { - if (sol_D[icell].tk_x == sol_D[jcell].tk_x) - b_i *= sol_D[jcell].spec[j].Dwt; - else - { - dum2 = sol_D[jcell].spec[j].Dwt / sol_D[jcell].viscos_f; - dum2 *= exp(sol_D[jcell].spec[j].dw_t / sol_D[icell].tk_x - sol_D[jcell].spec[j].dw_t / sol_D[jcell].tk_x); - dum2 *= sol_D[icell].viscos_f; - b_i *= dum2; - } - if (icell == count_cells && !stagnant) - ct[icell].v_m[k].b_ij = b_i; - else - ct[icell].v_m[k].b_ij = b_i * b_j / (b_i + b_j); + dum2 = sol_D[jcell].spec[j].Dwt / sol_D[jcell].viscos_f; + dum2 *= exp(sol_D[jcell].spec[j].dw_t / sol_D[icell].tk_x - sol_D[jcell].spec[j].dw_t / sol_D[jcell].tk_x); + dum2 *= sol_D[icell].viscos_f; + b_i *= dum2; } - if (ct[icell].v_m[k].z) - ct[icell].Dz2c += ct[icell].v_m[k].b_ij * ct[icell].v_m[k].zc * ct[icell].v_m[k].z; + calc_b_ij(icell, jcell, k, b_i, b_j, g_i, g_j, f_free_i, f_free_j, stagnant); k++; } @@ -2989,7 +4399,7 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) if (ct[icell].v_m[k].z) ct[icell].v_m[k].zc = ct[icell].v_m[k].z * ct[icell].v_m[k].c; - if (dV_dcell && ct[icell].v_m[k].z) + if (dV_dcell && ct[icell].v_m[k].z && !fix_current && !implicit) { // compare diffuse and electromotive forces dum = ct[icell].v_m[k].grad; @@ -3001,7 +4411,7 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) dum2 = (cell_data[jcell].potV - cell_data[icell].potV) / ((cell_data[jcell].length + cell_data[icell].length) / 2); dum2 *= F_Re3 / tk_x2 * ct[icell].v_m[k].z * (c1 + c2); // don't transport unavailable moles against the gradient - if (abs(dum) < abs(dum2) && + if (fabs(dum) < fabs(dum2) && ((dum2 >= 0 && sol_D[jcell].spec[j].c * aq2 < 1e-12) || (dum2 <= 0 && sol_D[icell].spec[i].c * aq1 < 1e-12))) { @@ -3033,22 +4443,26 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) g_j *= sol_D[jcell].spec[j].erm_ddl; } } - b_i = A1 * sol_D[icell].spec[i].Dwt * (f_free_i + g_i / ct[icell].visc1); - b_j = A2 * sol_D[jcell].spec[j].Dwt * (f_free_j + g_j / ct[icell].visc2); - if (icell == 0 && !stagnant) - ct[icell].v_m[k].b_ij = b_j; - else if (icell == count_cells && !stagnant) - ct[icell].v_m[k].b_ij = b_i; - else - ct[icell].v_m[k].b_ij = b_i * b_j / (b_i + b_j); - - if (ct[icell].v_m[k].z) - ct[icell].Dz2c += ct[icell].v_m[k].b_ij * ct[icell].v_m[k].zc * ct[icell].v_m[k].z; + b_i = A1 * sol_D[icell].spec[i].Dwt; + b_j = A2 * sol_D[jcell].spec[j].Dwt; + calc_b_ij(icell, jcell, k, b_i, b_j, g_i, g_j, f_free_i, f_free_j, stagnant); + //ddlm = sol_D[jcell].spec[j].lm - sol_D[icell].spec[i].lm; // appt: this could give an incorrect large factor for implicit + //if (fabs(ddlm) > 1e-10) + // ct[icell].v_m[k].grad *= (1 + (sol_D[jcell].spec[j].lg - sol_D[icell].spec[i].lg) / ddlm); ddlm = sol_D[jcell].spec[j].lm - sol_D[icell].spec[i].lm; - if (fabs(ddlm) > 1e-10) - ct[icell].v_m[k].grad *= (1 + (sol_D[jcell].spec[j].lg - sol_D[icell].spec[i].lg) / ddlm); - + dum1 = sol_D[jcell].spec[j].lg - sol_D[icell].spec[i].lg; + dum = 1; + if (ddlm) + dum += dum1 / ddlm; + if (dum > 0.2 && dum < 2.25) + { + ct[icell].v_m[k].grad *= dum; + if (implicit) + ct[icell].v_m[k].D = dum; + } + //if (ct[icell].v_m[k].b_ij > max_b) + // max_b = ct[icell].v_m[k].b_ij; k++; } if (i < i_max) @@ -3057,28 +4471,31 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) j++; } } - /* - * fill in J_ij... - */ if (!dV_dcell && !ct[icell].Dz2c) k = 0; ct[icell].J_ij_count_spec = i_max = k; ct[icell].J_ij_il_count_spec = k_il; + if (icell == count_cells) + ct[jcell].J_ij_count_spec = ct[icell].J_ij_count_spec; + if (implicit && stagnant < 2) + return(max_b); + /* + * fill in J_ij... + */ if (dV_dcell) { current_cells[icell].ele = current_cells[icell].dif = 0; - dum = dV_dcell * F_Re3 / tk_x2; for (i = 0; i < ct[icell].J_ij_count_spec; i++) { if (!ct[icell].v_m[i].z) continue; current_cells[icell].ele -= ct[icell].v_m[i].b_ij * ct[icell].v_m[i].z * - ct[icell].v_m[i].zc * dum; + ct[icell].v_m[i].zc; current_cells[icell].dif -= ct[icell].v_m[i].b_ij * ct[icell].v_m[i].z * ct[icell].v_m[i].grad; } - current_cells[icell].R = dV_dcell / current_cells[icell].ele; + current_cells[icell].R = tk_x2 / (current_cells[icell].ele * F_Re3); sum_R += current_cells[icell].R; sum_Rd += (current_cells[0].dif - current_cells[icell].dif) * current_cells[icell].R; return(il_calcs); @@ -3088,47 +4505,67 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) // voltage was adapted to give equal current in the cells. dV_dcell2: - ct[icell].J_ij_sum = 0; - Sum_zM = c_dl = 0.0; + //ct[icell].J_ij_sum = 0; + Sum_zM = 0.0; for (i = 0; i < ct[icell].J_ij_count_spec; i++) { if (ct[icell].v_m[i].z) Sum_zM += ct[icell].v_m[i].b_ij * ct[icell].v_m[i].z * ct[icell].v_m[i].grad; } + std::map J_map; for (i = 0; i < ct[icell].J_ij_count_spec; i++) { + class J_ij_save J_save; ct[icell].J_ij[i].tot1 = -ct[icell].v_m[i].grad; + J_save.flux_c = ct[icell].J_ij[i].tot1; + ct[icell].J_ij[i].charge = ct[icell].v_m[i].z; if (!dV_dcell && ct[icell].v_m[i].z && ct[icell].Dz2c > 0) + { ct[icell].J_ij[i].tot1 += Sum_zM * ct[icell].v_m[i].zc / ct[icell].Dz2c; + } + J_save.flux_t = ct[icell].J_ij[i].tot1; if (stagnant) + { ct[icell].J_ij[i].tot1 *= ct[icell].v_m[i].b_ij * 2 * mixf; + J_save.flux_c *= ct[icell].v_m[i].b_ij * 2 * mixf; + J_save.flux_t *= ct[icell].v_m[i].b_ij * 2 * mixf; + } else + { ct[icell].J_ij[i].tot1 *= ct[icell].v_m[i].b_ij * DDt; + J_save.flux_c *= ct[icell].v_m[i].b_ij * DDt; + J_save.flux_t *= ct[icell].v_m[i].b_ij * DDt; + } + J_map[ct[icell].J_ij[i].name] = J_save; ct[icell].J_ij[i].tot2 = ct[icell].J_ij[i].tot1; - ct[icell].J_ij_sum += ct[icell].v_m[i].z * ct[icell].J_ij[i].tot1; + //ct[icell].J_ij_sum += ct[icell].v_m[i].z * ct[icell].J_ij[i].tot1; } - // assure that icell has dl water when checking negative conc's in MCD + cell_J_ij[icell] = J_map; + // assure that icell and jcell have dl water when checking negative conc's in MCD ct[icell].dl_s = dl_aq1; ct[jcell].dl_s = dl_aq2; if (dV_dcell) { - // perhaps adapt dV for getting equal current... - current_cells[icell].ele = current_cells[icell].dif = 0; + //ct[icell].J_ij_sum = 0; dV = cell_data[jcell].potV - cell_data[icell].potV; dum = dV * F_Re3 / tk_x2; - for (i = 0; i < ct[icell].J_ij_count_spec; i++) - { - if (!ct[icell].v_m[i].z) - continue; - current_cells[icell].ele -= ct[icell].v_m[i].b_ij * ct[icell].v_m[i].z * - ct[icell].v_m[i].zc * dum; - current_cells[icell].dif -= ct[icell].v_m[i].b_ij * ct[icell].v_m[i].z * - ct[icell].v_m[i].grad; - } - dV *= (current_x - current_cells[icell].dif) / current_cells[icell].ele; - dum = dV * F_Re3 / tk_x2; + // perhaps adapt dV for getting equal current... + //current_cells[icell].ele = current_cells[icell].dif = 0; + //for (i = 0; i < ct[icell].J_ij_count_spec; i++) + //{ + // if (!ct[icell].v_m[i].z) + // continue; + // current_cells[icell].ele -= ct[icell].v_m[i].b_ij * ct[icell].v_m[i].z * + // ct[icell].v_m[i].zc * dum; + // current_cells[icell].dif -= ct[icell].v_m[i].b_ij * ct[icell].v_m[i].z * + // ct[icell].v_m[i].grad; + //} + //dum1 = (current_x - current_cells[icell].dif) / current_cells[icell].ele; + //if (isnan(dum1)) + // dum1 = 1; + //dum *= dum1; for (i = 0; i < ct[icell].J_ij_count_spec; i++) { if (!ct[icell].v_m[i].z) @@ -3136,6 +4573,7 @@ dV_dcell2: ct[icell].J_ij[i].tot1 -= ct[icell].v_m[i].b_ij * ct[icell].v_m[i].zc * dum * DDt; ct[icell].J_ij[i].tot2 = ct[icell].J_ij[i].tot1; + //ct[icell].J_ij_sum += ct[icell].v_m[i].z * ct[icell].J_ij[i].tot1; } current_A = current_x * F_C_MOL; } @@ -3158,25 +4596,27 @@ dV_dcell2: ct[icell].J_ij_il[i].tot1 *= ct[icell].mixf_il; else ct[icell].J_ij_il[i].tot1 *= ct[icell].A_ij_il * DDt; - ct[icell].J_ij_sum += ct[icell].v_m_il[i].z * ct[icell].J_ij_il[i].tot1; + //ct[icell].J_ij_sum += ct[icell].v_m_il[i].z * ct[icell].J_ij_il[i].tot1; ct[icell].J_ij_il[i].tot2 = ct[icell].J_ij_il[i].tot1; + // ct[icell].J_ij_il[i].charge = ct[icell].v_m_il[i].z; // appt not used now } /* express the transfer in elemental moles... */ tot1_h = tot1_o = tot2_h = tot2_o = 0.0; - m_s = (struct M_S *) free_check_null(m_s); - m_s = (struct M_S *) PHRQ_malloc((size_t) count_elements * - sizeof(struct M_S)); + m_s = (class M_S *) free_check_null(m_s); + m_s = (class M_S *) PHRQ_malloc((size_t) count_moles_added * + sizeof(class M_S)); if (m_s == NULL) malloc_error(); - for (i1 = 0; i1 < count_elements; i1++) + for (i1 = 0; i1 < count_moles_added; i1++) { + m_s[i1].charge = 0; m_s[i1].name = NULL; m_s[i1].tot1 = 0; m_s[i1].tot2 = 0; } count_m_s = 0; - fill_m_s(ct[icell].J_ij_il, k_il); + fill_m_s(ct[icell].J_ij_il, k_il, icell, stagnant); /* do the mass transfer... */ if (icell > 0 || stagnant) @@ -3204,7 +4644,7 @@ dV_dcell2: /* transfer O and H... */ for (; it != nd.end(); it++) { - struct element *elt_ptr = element_store(it->first.c_str()); + class element *elt_ptr = element_store(it->first.c_str()); LDBLE coef = it->second; if (strcmp("H", elt_ptr->name) == 0) { @@ -3244,7 +4684,7 @@ dV_dcell2: cxxNameDouble::iterator it = nd.begin(); for (; it != nd.end(); it++) { - struct element *elt_ptr = element_store(it->first.c_str()); + class element *elt_ptr = element_store(it->first.c_str()); LDBLE coef = it->second; if (strcmp(m_s[j].name, elt_ptr->name) != 0) continue; @@ -3289,7 +4729,7 @@ dV_dcell2: /* transfer O and H... */ for (; it != nd.end(); it++) { - struct element *elt_ptr = element_store(it->first.c_str()); + class element *elt_ptr = element_store(it->first.c_str()); LDBLE coef = it->second; if (strcmp("H", elt_ptr->name) == 0) @@ -3329,7 +4769,7 @@ dV_dcell2: cxxNameDouble::iterator it = nd.begin(); for (; it != nd.end(); it++) { - struct element *elt_ptr = element_store(it->first.c_str()); + class element *elt_ptr = element_store(it->first.c_str()); LDBLE coef = it->second; if (strcmp(m_s[j].name, elt_ptr->name) != 0) continue; @@ -3739,7 +5179,7 @@ Step (from cell 1 to count_cells + 1): { continue; } - if (i >= 0 && i <= 1 + count_cells * (1 + stag_data->count_stag)) + if (i >= 0 && i <= 1 + count_cells * (1 + stag_data.count_stag)) { surface_ptr1 = Utilities::Rxn_find(Rxn_surface_map, i); if (surface_ptr1 != NULL) @@ -4067,7 +5507,7 @@ diff_stag_surf(int mobile_cell) cxxSurface *surface_n2_ptr; std::map Rxn_temp_surface_map; - for (ns = 0; ns < stag_data->count_stag; ns++) + for (ns = 0; ns < stag_data.count_stag; ns++) { i1 = mobile_cell + 1 + ns * count_cells; @@ -4178,11 +5618,8 @@ diff_stag_surf(int mobile_cell) if (multi_Dflag) { mixf_store *= - (cell_data[i1].por <= - cell_data[i2].por ? cell_data[i1].por : cell_data[i2]. - por); - mixf_store /= (default_Dw * pow(multi_Dpor, multi_Dn) * - multi_Dpor); + (cell_data[i1].por <= cell_data[i2].por ? cell_data[i1].por : cell_data[i2].por); + mixf_store /= (default_Dw * pow(multi_Dpor, multi_Dn) * multi_Dpor); } /* mix in comps with the same charge structure... */ @@ -4198,8 +5635,7 @@ diff_stag_surf(int mobile_cell) for (k1 = 0; k1 < k; k1++) { cxxSurfaceComp *comp_k1_ptr = &(surface_ptr2->Get_surface_comps()[k1]); - if (comp_k_ptr->Get_charge_name() == - comp_k1_ptr->Get_charge_name()) + if (comp_k_ptr->Get_charge_name() == comp_k1_ptr->Get_charge_name()) { charge_done = TRUE; break; @@ -4222,10 +5658,7 @@ diff_stag_surf(int mobile_cell) if (strcmp(comp_k1_ptr->Get_formula().c_str(), comp_k_ptr->Get_formula().c_str()) != 0) continue; - Dp1 = - comp_k1_ptr->Get_Dw() * - pow(cell_data[i1].por, - multi_Dn) * viscos_f; + Dp1 = comp_k1_ptr->Get_Dw() * pow(cell_data[i1].por, multi_Dn) * viscos_f; break; } } @@ -4262,8 +5695,7 @@ diff_stag_surf(int mobile_cell) for (k1 = 0; k1 < k; k1++) { cxxSurfaceComp *comp_k1_ptr = &(surface_ptr1->Get_surface_comps()[k1]); - if (comp_k_ptr->Get_charge_name() == - comp_k1_ptr->Get_charge_name()) + if (comp_k_ptr->Get_charge_name() == comp_k1_ptr->Get_charge_name()) { charge_done = TRUE; break; @@ -4275,9 +5707,7 @@ diff_stag_surf(int mobile_cell) /* find diffusion coefficients of surfaces... */ if (multi_Dflag) { - Dp1 = - comp_k_ptr->Get_Dw() * - pow(cell_data[i1].por, multi_Dn) * viscos_f; + Dp1 = comp_k_ptr->Get_Dw() * pow(cell_data[i1].por, multi_Dn) * viscos_f; Dp2 = 0; if (surf2) @@ -4288,10 +5718,7 @@ diff_stag_surf(int mobile_cell) if (strcmp(comp_k1_ptr->Get_formula().c_str(), comp_k_ptr->Get_formula().c_str()) != 0) continue; - Dp2 = - comp_k1_ptr->Get_Dw() * - pow(cell_data[i2].por, - multi_Dn) * viscos_f; + Dp2 = comp_k1_ptr->Get_Dw() * pow(cell_data[i2].por, multi_Dn) * viscos_f; break; } } @@ -4344,14 +5771,14 @@ diff_stag_surf(int mobile_cell) { continue; } - if (i >= 0 && i <= 1 + count_cells * (1 + stag_data->count_stag)) + if (i >= 0 && i <= 1 + count_cells * (1 + stag_data.count_stag)) { surface_ptr1 = Utilities::Rxn_find(Rxn_surface_map, i); - if (surface_ptr1 != NULL) - { - Rxn_surface_map[i] = jit->second; - } - else + //if (surface_ptr1 != NULL) + //{ + // Rxn_surface_map[i] = jit->second; + //} + //else { //Add to map Rxn_surface_map[i] = jit->second; @@ -4521,7 +5948,7 @@ viscosity(void) Jones_Dole[6] contains the anion factor, 1 for Cl-, variable for other anions f_z = (z * z + |z|) / 2, the contribution of the ion to mu_x, if z = 0: f_z = mu_x / m_i f_I = variable, depends on d3_i > 1, or d3_i < 1. - tc is limited to 200�C. + tc is limited to 200 C. A from Falkenhagen-Dole for a salt: @@ -4538,7 +5965,7 @@ viscosity(void) tc = (tc_x > 200) ? 200 : tc_x; - for (i = 0; i < count_s_x; i++) + for (i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type != AQ && s_x[i]->type > HPLUS) continue; @@ -4670,7 +6097,7 @@ calc_vm_Cl(void) */ LDBLE V_Cl = 0; LDBLE pb_s = 2600. + patm_x * 1.01325, TK_s = tc_x + 45.15, sqrt_mu = sqrt(mu_x); - struct species *s_ptr; + class species *s_ptr; s_ptr = s_search("Cl-"); if (!s_ptr) @@ -4682,6 +6109,7 @@ calc_vm_Cl(void) V_Cl = s_ptr->logk[vma1] + s_ptr->logk[vma2] / pb_s + (s_ptr->logk[vma3] + s_ptr->logk[vma4] / pb_s) / TK_s - s_ptr->logk[wref] * QBrn; + /* the ionic strength term * I^0.5... */ if (s_ptr->logk[b_Av] < 1e-5) V_Cl += s_ptr->z * s_ptr->z * 0.5 * DH_Av * sqrt_mu; @@ -4689,7 +6117,7 @@ calc_vm_Cl(void) { /* limit the Debye-Hueckel slope by b... */ /* pitzer... */ - //s_ptr->rxn_x->logk[vm_tc] += s_ptr->z * s_ptr->z * 0.5 * DH_Av * + //s_ptr->rxn_x.logk[vm_tc] += s_ptr->z * s_ptr->z * 0.5 * DH_Av * // log(1 + s_ptr->logk[b_Av] * sqrt(mu_x)) / s_ptr->logk[b_Av]; /* extended DH... */ V_Cl += s_ptr->z * s_ptr->z * 0.5 * DH_Av * @@ -4718,3 +6146,38 @@ calc_vm_Cl(void) } return V_Cl; } +/* ---------------------------------------------------------------------- */ +LDBLE Phreeqc:: +flux_mcd(const char* species_name, int option) +/* ---------------------------------------------------------------------- */ +{ + class species* s_ptr; + double f = 0.0, dum = 0.0; + if (state == TRANSPORT && multi_Dflag) + { + s_ptr = s_search(species_name); + if (s_ptr != NULL && s_ptr->in != FALSE && s_ptr->type < EMINUS) + { + int n = cell_no; + std::map >::iterator + j_map_iter = cell_J_ij.find(n); + if (j_map_iter != cell_J_ij.end()) + { + std::map::iterator + j_save_iter = j_map_iter->second.find(species_name); + if (j_save_iter != j_map_iter->second.end()) + { + if (option == 1) + { + f = j_save_iter->second.flux_t; + } + else if (option == 2) + { + f = j_save_iter->second.flux_c; + } + } + } + } + } + return (f); +} diff --git a/utilities.cpp b/utilities.cpp index 22b45a0a..d7989864 100644 --- a/utilities.cpp +++ b/utilities.cpp @@ -6,158 +6,150 @@ #include "Solution.h" #include +#if defined(PHREEQCI_GUI) +#ifdef _DEBUG +#define new DEBUG_NEW +#undef THIS_FILE +static char THIS_FILE[] = __FILE__; +#endif +#endif + /* ---------------------------------------------------------------------- */ -int Phreeqc:: -add_elt_list(struct elt_list *elt_list_ptr, LDBLE coef) +double Phreeqc:: +calc_alk(CReaction& rxn_ref) /* ---------------------------------------------------------------------- */ { - struct elt_list *elt_list_ptr1; - - if (elt_list_ptr == NULL) - return (OK); - - for (elt_list_ptr1 = elt_list_ptr; elt_list_ptr1->elt != NULL; - elt_list_ptr1++) - { - if (count_elts >= max_elts) - { - space((void **) ((void *) &elt_list), count_elts, &max_elts, - sizeof(struct elt_list)); - } - elt_list[count_elts].elt = elt_list_ptr1->elt; - elt_list[count_elts].coef = elt_list_ptr1->coef * coef; - count_elts++; - } - return (OK); -} - -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -add_elt_list_multi_surf(struct elt_list *elt_list_ptr, LDBLE coef, struct element *surf_elt_ptr) -/* ---------------------------------------------------------------------- */ -{ - struct elt_list *elt_list_ptr1; - - if (elt_list_ptr == NULL || surf_elt_ptr == NULL) - return (OK); - - // determine if surf_elt_ptr is first surface - bool first_surface = true; - for (elt_list_ptr1 = elt_list_ptr; elt_list_ptr1->elt != NULL; - elt_list_ptr1++) - { - if (elt_list_ptr1->elt->master->type == SURF) - { - if (elt_list_ptr1->elt == surf_elt_ptr) - { - first_surface = true; - break; - } - else - { - first_surface = false; - break; - } - } - } - if (first_surface) - { - for (elt_list_ptr1 = elt_list_ptr; elt_list_ptr1->elt != NULL; - elt_list_ptr1++) - { - if (count_elts >= max_elts) - { - space((void **) ((void *) &elt_list), count_elts, &max_elts, - sizeof(struct elt_list)); - } - if (elt_list_ptr1->elt == surf_elt_ptr) - { - elt_list[count_elts].elt = elt_list_ptr1->elt; - elt_list[count_elts].coef = elt_list_ptr1->coef * coef; - count_elts++; - } - else if (elt_list_ptr1->elt->master->type == SURF) - { - continue; - } - else - { - elt_list[count_elts].elt = elt_list_ptr1->elt; - elt_list[count_elts].coef = elt_list_ptr1->coef * coef; - count_elts++; - } - } - } - else - { - for (elt_list_ptr1 = elt_list_ptr; elt_list_ptr1->elt != NULL; - elt_list_ptr1++) - { - if (count_elts >= max_elts) - { - space((void **) ((void *) &elt_list), count_elts, &max_elts, - sizeof(struct elt_list)); - } - if (elt_list_ptr1->elt == surf_elt_ptr) - { - elt_list[count_elts].elt = elt_list_ptr1->elt; - elt_list[count_elts].coef = elt_list_ptr1->coef * coef; - count_elts++; - } - } - } - return (OK); -} -int Phreeqc:: -add_elt_list(const cxxNameDouble & nd, LDBLE coef) -/* ---------------------------------------------------------------------- */ -{ - cxxNameDouble::const_iterator cit = nd.begin(); - for ( ; cit != nd.end(); cit++) - { - if (count_elts >= max_elts) - { - space((void **) ((void *) &elt_list), count_elts, &max_elts, - sizeof(struct elt_list)); - } - elt_list[count_elts].elt = element_store(cit->first.c_str()); - elt_list[count_elts].coef = cit->second * coef; - count_elts++; - } - return (OK); -} - -/* ---------------------------------------------------------------------- */ -LDBLE Phreeqc:: -calc_alk(struct reaction * rxn_ptr) -/* ---------------------------------------------------------------------- */ -{ - int i; LDBLE return_value; - struct master *master_ptr; + class master* master_ptr; return_value = 0.0; - for (i = 1; rxn_ptr->token[i].s != NULL; i++) + class rxn_token* r_token = &rxn_ref.token[1]; + while (r_token->s != NULL) { - master_ptr = rxn_ptr->token[i].s->secondary; + master_ptr = r_token->s->secondary; if (master_ptr == NULL) { - master_ptr = rxn_ptr->token[i].s->primary; + master_ptr = r_token->s->primary; } if (master_ptr == NULL) { error_string = sformatf( - "Non-master species in secondary reaction, %s.", - rxn_ptr->token[0].s->name); + "Non-master species in secondary reaction, %s.", + rxn_ref.token[0].s->name); error_msg(error_string, CONTINUE); input_error++; break; } - return_value += rxn_ptr->token[i].coef * master_ptr->alk; + return_value += r_token->coef * master_ptr->alk; + r_token++; } return (return_value); +}/* ---------------------------------------------------------------------- */ +double Phreeqc:: +calc_delta_v(CReaction& r_ref, bool phase) +/* ---------------------------------------------------------------------- */ +{ + /* calculate delta_v from molar volumes */ + double d_v = 0.0; + if (phase) + { + /* for phases: reactants have coef's < 0, products have coef's > 0, v.v. for species */ + for (size_t i = 1; r_ref.Get_tokens()[i].s; i++) + { + if (!r_ref.Get_tokens()[i].s) + continue; + d_v += r_ref.Get_tokens()[i].coef * r_ref.Get_tokens()[i].s->logk[vm_tc]; + } + } + else + { + for (size_t i = 0; r_ref.token[i].name /*|| r_ptr->token[i].s*/; i++) + { + if (!r_ref.Get_tokens()[i].s) + continue; + d_v -= r_ref.Get_tokens()[i].coef * r_ref.Get_tokens()[i].s->logk[vm_tc]; + } + } + return d_v; } +/* ---------------------------------------------------------------------- */ +LDBLE Phreeqc:: +calc_dielectrics(LDBLE tc, LDBLE pa) +/* ---------------------------------------------------------------------- */ +{ + /* Relative dielectric constant of pure water, eps as a function of (P, T) + Bradley and Pitzer, 1979, JPC 83, 1599. + (newer data in Fernandez et al., 1995, JPCRD 24, 33, + and Fernandez et al., 1997, JPCRD 26, 1125, show its correctness) + + d(eps)/d(P), Debye-Hueckel A and B, and Av (for Av, see Pitzer et al., 1984, JPCRD 13, p. 4) + */ + if (llnl_temp.size() > 0) return OK; + if (tc > 350.) + { + tc = 350.; + } + LDBLE T = tc + 273.15; + LDBLE u1 = 3.4279e2, u2 = -5.0866e-3, u3 = 9.469e-7, u4 = -2.0525, + u5 = 3.1159e3, u6 = -1.8289e2, u7 = -8.0325e3, u8 = 4.2142e6, + u9 = 2.1417; + LDBLE d1000 = u1 * exp(T * (u2 + T * u3)); // relative dielectric constant at 1000 bar + LDBLE c = u4 + u5 / (u6 + T); + LDBLE b = u7 + u8 / T + u9 * T; + LDBLE pb = pa * 1.01325; // pa in bar + eps_r = d1000 + c * log((b + pb) / (b + 1e3)); // relative dielectric constant + if (eps_r <= 0) + { + eps_r = 10.; + warning_msg("Relative dielectric constant is negative.\nTemperature is out of range of parameterization."); + } + /* qe^2 / (eps_r * kB * T) = 4.803204e-10**2 / 1.38065e-16 / (eps_r * T) + = 1.671008e-3 (esu^2 / (erg/K)) / (eps_r * T) */ + LDBLE e2_DkT = 1.671008e-3 / (eps_r * T); + + DH_B = sqrt(8 * pi * AVOGADRO * e2_DkT * rho_0 / 1e3); // Debye length parameter, 1/cm(mol/kg)^-0.5 + + DH_A = DH_B * e2_DkT / (2. * LOG_10); //(mol/kg)^-0.5 + + /* A0 in pitzer */ + if (pitzer_model || sit_model) + { + A0 = DH_B * e2_DkT / 6.0; + if (pitzer_model && aphi != NULL) + { + calc_pitz_param(aphi, T, 298.15); + A0 = aphi->p; + } + } + + /* Debye-Hueckel limiting slope = DH_B * e2_DkT * RT * (d(ln(eps_r)) / d(P) - compressibility) */ + DH_Av = DH_B * e2_DkT * R_LITER_ATM * 1e3 * T * (c / (b + pb) * 1.01325 / eps_r - kappa_0 / 3.); // (cm3/mol)(mol/kg)^-0.5 + + DH_B /= 1e8; // kappa, 1/Angstrom(mol/kg)^-0.5 + + /* the Born functions, * 41.84 to give molal volumes in cm3/mol... */ + ZBrn = (-1 / eps_r + 1.0) * 41.84004; + QBrn = c / (b + pb) / eps_r / eps_r * 41.84004; + /* dgdP from subroutine gShok2 in supcrt92, g is neglected here (at tc < 300)... + and, dgdP is small. Better, adapt Wref to experimental Vm's */ + dgdP = 0; + //if (tc > 150 && rho_0 < 1.0) + //{ + // LDBLE sc[7] = {1, -0.2037662e+01, 0.5747000e-02, -0.6557892e-05, + // 0.6107361e+01, -0.1074377e-01, 0.1268348e-04}; + // LDBLE csc[4] = {1, 0.3666666e+02, -0.1504956e-9, 0.5017997e-13}; + // LDBLE sa = sc[1] + tc * (sc[2] + tc * sc[3]); + // LDBLE sb = sc[4] + tc * (sc[5] + tc * sc[6]); + + // dgdP = - sa * sb * pow(1.0 - rho_0, sb - 1.0) * rho_0 * kappa_0 / 1.01325; + + // LDBLE ft = pow((tc - 155.0)/300.0, 4.8) + csc[1] * pow((tc - 155.0)/300.0, 16.0); + // LDBLE dfdP = ft * (-3.0 * csc[2] * pow(1000.0 - pb, 2) - 4.0 * csc[3] * pow(1000.0 - pb, 3)); + // dgdP -= dfdP; + //} + + return (OK); +} /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: calc_rho_0(LDBLE tc, LDBLE pa) @@ -167,13 +159,16 @@ calc_rho_0(LDBLE tc, LDBLE pa) Wagner and Pruss, 2002, JPCRD 31, 387, eqn. 2.6, along the saturation pressure line + interpolation 0 - 300 oC, 0.006 - 1000 atm... */ + if (llnl_temp.size() > 0) return OK; if (tc > 350.) { if (need_temp_msg < 1) { std::ostringstream w_msg; - w_msg << "Fitting range for density of pure water is 0-300 C.\n"; - w_msg << "Using temperature of 350 C for density and dielectric calculation."; + w_msg << "Fitting range for dielectric constant of pure water is 0-350 C.\n"; + w_msg << "Fitting range for density along the saturation pressure line is 0-374 C,\n"; + w_msg << " for higher pressures up to 1000 atm 0-300 C.\n"; + w_msg << "Using temperature of 350 C for dielectric and density calculation."; warning_msg(w_msg.str().c_str()); need_temp_msg++; } @@ -213,84 +208,6 @@ calc_rho_0(LDBLE tc, LDBLE pa) return (rho_0 / 1e3); } -/* ---------------------------------------------------------------------- */ -LDBLE Phreeqc:: -calc_dielectrics(LDBLE tc, LDBLE pa) -/* ---------------------------------------------------------------------- */ -{ - /* Relative dielectric constant of pure water, eps as a function of (P, T) - Bradley and Pitzer, 1979, JPC 83, 1599. - (newer data in Fernandez et al., 1995, JPCRD 24, 33, - and Fernandez et al., 1997, JPCRD 26, 1125, show its correctness) - + d(eps)/d(P), Debye-Hueckel A and B, and Av (for Av, see Pitzer et al., 1984, JPCRD 13, p. 4) - */ - if (tc > 350.) - { - tc = 350.; - } - LDBLE T = tc + 273.15; - LDBLE u1 = 3.4279e2, u2 = -5.0866e-3, u3 = 9.469e-7, u4 = -2.0525, - u5 = 3.1159e3, u6 = -1.8289e2, u7 = -8.0325e3, u8 = 4.2142e6, - u9 = 2.1417; - LDBLE d1000 = u1 * exp(T * (u2 + T * u3)); // relative dielectric constant at 1000 bar - LDBLE c = u4 + u5 / (u6 + T); - LDBLE b = u7 + u8 / T + u9 * T; - LDBLE pb = pa * 1.01325; // pa in bar - eps_r = d1000 + c * log((b + pb) / (b + 1e3)); // relative dielectric constant - if (eps_r <= 0) - { - eps_r = 10.; - warning_msg("Relative dielectric constant is negative.\nTemperature is out of range of parameterization."); - } - - /* qe^2 / (eps_r * kB * T) = 4.803204e-10**2 / 1.38065e-16 / (eps_r * T) - = 1.671008e-3 (esu^2 / (erg/K)) / (eps_r * T) */ - LDBLE e2_DkT = 1.671008e-3 / (eps_r * T); - - DH_B = sqrt(8 * pi * AVOGADRO * e2_DkT * rho_0 / 1e3); // Debye length parameter, 1/cm(mol/kg)^-0.5 - - DH_A = DH_B * e2_DkT / (2. * LOG_10); //(mol/kg)^-0.5 - - /* A0 in pitzer */ - if (pitzer_model || sit_model) - { - A0 = DH_B * e2_DkT / 6.0; - if (pitzer_model && aphi != NULL) - { - calc_pitz_param(aphi, T, 298.15); - A0 = aphi->p; - } - } - - /* Debye-Hueckel limiting slope = DH_B * e2_DkT * RT * (d(ln(eps_r)) / d(P) - compressibility) */ - DH_Av = DH_B * e2_DkT * R_LITER_ATM * 1e3 * T * (c / (b + pb) * 1.01325 / eps_r - kappa_0 / 3.); // (cm3/mol)(mol/kg)^-0.5 - - DH_B /= 1e8; // kappa, 1/Angstrom(mol/kg)^-0.5 - - /* the Born functions, * 41.84 to give molal volumes in cm3/mol... */ - ZBrn = (- 1 / eps_r + 1.0) * 41.84004; - QBrn = c / (b + pb) / eps_r / eps_r * 41.84004; - /* dgdP from subroutine gShok2 in supcrt92, g is neglected here (at tc < 300)... - and, dgdP is small. Better, adapt Wref to experimental Vm's */ - dgdP = 0; - //if (tc > 150 && rho_0 < 1.0) - //{ - // LDBLE sc[7] = {1, -0.2037662e+01, 0.5747000e-02, -0.6557892e-05, - // 0.6107361e+01, -0.1074377e-01, 0.1268348e-04}; - // LDBLE csc[4] = {1, 0.3666666e+02, -0.1504956e-9, 0.5017997e-13}; - // LDBLE sa = sc[1] + tc * (sc[2] + tc * sc[3]); - // LDBLE sb = sc[4] + tc * (sc[5] + tc * sc[6]); - - // dgdP = - sa * sb * pow(1.0 - rho_0, sb - 1.0) * rho_0 * kappa_0 / 1.01325; - - // LDBLE ft = pow((tc - 155.0)/300.0, 4.8) + csc[1] * pow((tc - 155.0)/300.0, 16.0); - // LDBLE dfdP = ft * (-3.0 * csc[2] * pow(1000.0 - pb, 2) - 4.0 * csc[3] * pow(1000.0 - pb, 3)); - // dgdP -= dfdP; - //} - - return (OK); -} - /* ---------------------------------------------------------------------- */ int Phreeqc:: @@ -312,13 +229,13 @@ compute_gfw(const char *string, LDBLE * gfw) int i; char token[MAX_LENGTH]; - char *ptr; + const char* cptr; count_elts = 0; paren_count = 0; strcpy(token, string); - ptr = token; - if (get_elts_in_species(&ptr, 1.0) == ERROR) + cptr = token; + if (get_elts_in_species(&cptr, 1.0) == ERROR) { return (ERROR); } @@ -337,16 +254,16 @@ compute_gfw(const char *string, LDBLE * gfw) /* ---------------------------------------------------------------------- */ int Phreeqc:: -copy_token(char *token_ptr, char **ptr, int *length) +copy_token(char *token_ptr, const char **cptr, int *length) /* ---------------------------------------------------------------------- */ { /* - * Copies from **ptr to *token_ptr until first space is encountered. + * Copies from **cptr to *token_ptr until first space is encountered. * * Arguments: * *token_ptr output, place to store token * - * **ptr input, character string to read token from + * **cptr input, character string to read token from * output, next position after token * * length output, length of token @@ -364,8 +281,8 @@ copy_token(char *token_ptr, char **ptr, int *length) /* * Read to end of whitespace */ - while (isspace((int) (c = **ptr))) - (*ptr)++; + while (isspace((int) (c = **cptr))) + (*cptr)++; /* * Check what we have */ @@ -393,39 +310,30 @@ copy_token(char *token_ptr, char **ptr, int *length) * Begin copying to token */ i = 0; - while ((!isspace((int) (c = **ptr))) && + while ((!isspace((int) (c = **cptr))) && /* c != ',' && */ c != ';' && c != '\0') { token_ptr[i] = c; - (*ptr)++; + (*cptr)++; i++; } token_ptr[i] = '\0'; *length = i; -#ifdef PHREEQ98 - if ((return_value == DIGIT) && (strstr(token_ptr, ",") != NULL)) - { - error_string = sformatf( - "Commas are not allowed as decimal separator: %s.", - token_ptr); - error_msg(error_string, CONTINUE); - } -#endif return (return_value); } /* ---------------------------------------------------------------------- */ int Phreeqc:: -copy_token(std::string &token, char **ptr) +copy_token(std::string &token, const char **cptr) /* ---------------------------------------------------------------------- */ { /* - * Copies from **ptr to *token until first space is encountered. + * Copies from **cptr to *token until first space is encountered. * * Arguments: * &token_ptr output, place to store token * - * **ptr input, character string to read token from + * **cptr input, character string to read token from * output, next position after token * * Returns: @@ -442,8 +350,8 @@ copy_token(std::string &token, char **ptr) * Read to end of whitespace */ token.clear(); - while (isspace((int) (c = **ptr))) - (*ptr)++; + while (isspace((int) (c = **cptr))) + (*cptr)++; /* * Check what we have */ @@ -472,116 +380,19 @@ copy_token(std::string &token, char **ptr) */ char c_char[2]; c_char[1] = '\0'; - while ((!isspace((int) (c = **ptr))) && + while ((!isspace((int) (c = **cptr))) && /* c != ',' && */ c != ';' && c != '\0') { c_char[0] = c; token.append(c_char); - (*ptr)++; + (*cptr)++; } -#ifdef PHREEQ98 - if ((return_value == DIGIT) && (strstr(token_ptr, ",") != NULL)) - { - error_string = sformatf( - "Commas are not allowed as decimal separator: %s.", - token_ptr); - error_msg(error_string, CONTINUE); - } -#endif return (return_value); } -#if defined PHREEQ98 /* ---------------------------------------------------------------------- */ int Phreeqc:: -copy_title(char *token_ptr, char **ptr, int *length) -/* ---------------------------------------------------------------------- */ -{ -/* - * Copies from **ptr to *token_ptr until first space or comma is encountered. - * - * Arguments: - * *token_ptr output, place to store token - * - * **ptr input, character string to read token from - * output, next position after token - * - * length output, length of token - * - * Returns: - * UPPER, - * LOWER, - * DIGIT, - * EMPTY, - * UNKNOWN. - */ - int i, return_value; - char c; - int Quote = FALSE; - -/* - * Read to end of whitespace - */ - while (isspace((int) (c = **ptr)) || (c == ',') || (c == '"')) - { - if (c == '"') - Quote = TRUE; - (*ptr)++; - } -/* - * Check what we have - */ - if (isupper((int) c) || c == '[') - { - return_value = UPPER; - } - else if (islower((int) c)) - { - return_value = LOWER; - } - else if (isdigit((int) c) || c == '.' || c == '-') - { - return_value = DIGIT; - } - else if (c == '\0') - { - return_value = EMPTY; - } - else - { - return_value = UNKNOWN; - } -/* - * Begin copying to token - */ - i = 0; - if (Quote == TRUE) - { - while (((int) (c = **ptr) != '"') && c != '\0') - { - token_ptr[i] = c; - (*ptr)++; - i++; - } - } - else - { - while ((!isspace((int) (c = **ptr))) && - c != ',' && c != ';' && c != '\0') - { - token_ptr[i] = c; - (*ptr)++; - i++; - } - } - token_ptr[i] = '\0'; - *length = i; - return (return_value); -} -#endif -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -dup_print(const char *ptr, int emphasis) +dup_print(const char* cptr, int emphasis) /* ---------------------------------------------------------------------- */ { /* @@ -590,42 +401,24 @@ dup_print(const char *ptr, int emphasis) * a row of dashes before and after the character string. * */ - int l, i; - char *dash; + int l; if (pr.headings == FALSE) return (OK); -#ifdef PHREEQ98 - if ((CreateToC == TRUE) && (AutoLoadOutputFile == TRUE)) - { - if (strstr(ptr, "Reading") == ptr) - AddToCEntry((char *) ptr, 1, outputlinenr); - else if (strstr(ptr, "Beginning") == ptr) - AddToCEntry((char *) ptr, 2, outputlinenr); - else if ((strstr(ptr, "TITLE") != ptr) && (strstr(ptr, "End") != ptr)) - AddToCEntry((char *) ptr, 3, outputlinenr); - } -#endif - std::string save_in(ptr); - l = (int) strlen(ptr); - dash = (char *) PHRQ_malloc((size_t) (l + 2) * sizeof(char)); - if (dash == NULL) - malloc_error(); + std::string save_in(cptr); + l = (int) strlen(cptr); if (emphasis == TRUE) { - for (i = 0; i < l; i++) - dash[i] = '-'; - dash[i] = '\0'; - output_msg(sformatf("%s\n%s\n%s\n\n", dash, save_in.c_str(), dash)); - log_msg(sformatf("%s\n%s\n%s\n\n", dash, save_in.c_str(), dash)); + std::string dash; + dash.resize(l, '-'); + output_msg(sformatf("%s\n%s\n%s\n\n", dash.c_str(), save_in.c_str(), dash.c_str())); + log_msg(sformatf("%s\n%s\n%s\n\n", dash.c_str(), save_in.c_str(), dash.c_str())); } else { output_msg(sformatf("%s\n\n", save_in.c_str())); log_msg(sformatf("%s\n\n", save_in.c_str())); } - dash = (char *) free_check_null(dash); - return (OK); } @@ -656,7 +449,7 @@ free_check_null(void *ptr) /* ---------------------------------------------------------------------- */ int Phreeqc:: -get_token(char **eqnaddr, char *string, LDBLE * l_z, int *l) +get_token(const char** eqnaddr, std::string& string, LDBLE* l_z, int* l) /* ---------------------------------------------------------------------- */ /* * Function finds next species in equation, coefficient has already @@ -678,101 +471,88 @@ get_token(char **eqnaddr, char *string, LDBLE * l_z, int *l) int i, j; int ltoken, lcharge; char c; - char *ptr, *ptr1, *rest; + const char* cptr, * ptr1, * rest; char charge[MAX_LENGTH]; + string.clear(); rest = *eqnaddr; - ptr = *eqnaddr; + cptr = *eqnaddr; i = 0; -/* - * Find end of token or begining of charge - */ - while (((c = *ptr) != '+') && (c != '-') && (c != '=') && (c != '\0')) + /* + * Find end of token or begining of charge + */ + while (((c = *cptr) != '+') && (c != '-') && (c != '=') && (c != '\0')) { - string[i++] = c; + string.push_back(c); + i++; if (c == '[') { - ptr++; - while ((c = *ptr) != ']') + cptr++; + while ((c = *cptr) != ']') { if (c == '\0') { error_string = sformatf( - "No final bracket \"]\" for element name, %s.", - string); + "No final bracket \"]\" for element name, %s.", + string.c_str()); error_msg(error_string, CONTINUE); return (ERROR); } - string[i++] = c; - if (i >= MAX_LENGTH) - { - output_msg(sformatf( - "Species name greater than MAX_LENGTH (%d) characters.\n%s\n", - MAX_LENGTH, string)); - return (ERROR); - } - ptr++; + string.push_back(c); + i++; + cptr++; } - string[i++] = c; + string.push_back(c); + i++; } - /* check for overflow of space */ - if (i >= MAX_LENGTH) - { - output_msg(sformatf( - "Species name greater than MAX_LENGTH (%d) characters.\n%s\n", - MAX_LENGTH, string)); - return (ERROR); - } - ptr++; + cptr++; } - string[i] = '\0'; ltoken = i; -/* - * Check for an empty string - */ + /* + * Check for an empty string + */ if (i == 0) { - error_string = sformatf( "NULL string detected in get_token, %s.", rest); + error_string = sformatf("NULL string detected in get_token, %s.", rest); error_msg(error_string, CONTINUE); return (ERROR); } -/* - * End of token is = or \0, charge is zero - */ + /* + * End of token is = or \0, charge is zero + */ if (c == '=' || c == '\0') { - *eqnaddr = ptr; + *eqnaddr = cptr; lcharge = 0; *l_z = 0.0; } else { -/* - * Copy characters into charge until next species or end is detected - */ + /* + * Copy characters into charge until next species or end is detected + */ j = 0; - ptr1 = ptr; - while ((isalpha((int) (c = *ptr1)) == FALSE) && - (c != '(') && - (c != ')') && - (c != ']') && (c != '[') && (c != '=') && (c != '\0')) + ptr1 = cptr; + while ((isalpha((int)(c = *ptr1)) == FALSE) && + (c != '(') && + (c != ')') && + (c != ']') && (c != '[') && (c != '=') && (c != '\0')) { charge[j++] = c; /* error if no more space */ if (j >= MAX_LENGTH) { - error_msg - ("The charge on a species has exceeded MAX_LENGTH characters.", - CONTINUE); + error_msg("The charge on a species has exceeded MAX_LENGTH characters.", + CONTINUE); return (ERROR); } ptr1++; } -/* - * Go back to last + or - if not end of side, - * everything before the last + or - in charge is part of the charge - */ + /* + * Go back to last + or - if not end of side, + * everything before the last + or - in charge is part of the charge + */ if ((c != '=') && (c != '\0')) { while (((c = *ptr1) != '+') && (c != '-')) @@ -784,12 +564,12 @@ get_token(char **eqnaddr, char *string, LDBLE * l_z, int *l) charge[j] = '\0'; lcharge = j; *eqnaddr = ptr1; -/* - * Charge has been written, now need to check if charge has legal format - */ + /* + * Charge has been written, now need to check if charge has legal format + */ if (get_charge(charge, l_z) == OK) { - strcat(string, charge); + string.append(charge); } else { @@ -871,9 +651,9 @@ parse_couple(char *token) * order. */ int e1, e2, p1, p2; - char *ptr; - char elt1[MAX_LENGTH], elt2[MAX_LENGTH], paren1[MAX_LENGTH], - paren2[MAX_LENGTH]; + const char* cptr; + std::string elt1, elt2; + char paren1[MAX_LENGTH], paren2[MAX_LENGTH]; if (strcmp_nocase_arg1(token, "pe") == 0) { @@ -881,9 +661,9 @@ parse_couple(char *token) return (OK); } while (replace("+", "", token) == TRUE); - ptr = token; - get_elt(&ptr, elt1, &e1); - if (*ptr != '(') + cptr = token; + get_elt(&cptr, elt1, &e1); + if (*cptr != '(') { error_string = sformatf( "Element name must be followed by " "parentheses in redox couple, %s.", token); @@ -894,10 +674,10 @@ parse_couple(char *token) paren_count = 1; paren1[0] = '('; p1 = 1; - while (*ptr != '\0') + while (*cptr != '\0') { - ptr++; - if (*ptr == '/' || *ptr == '\0') + cptr++; + if (*cptr == '/' || *cptr == '\0') { error_string = sformatf( "End of line or " "/" @@ -905,17 +685,17 @@ parse_couple(char *token) error_msg(error_string, CONTINUE); return (ERROR); } - paren1[p1++] = *ptr; - if (*ptr == '(') + paren1[p1++] = *cptr; + if (*cptr == '(') paren_count++; - if (*ptr == ')') + if (*cptr == ')') paren_count--; if (paren_count == 0) break; } paren1[p1] = '\0'; - ptr++; - if (*ptr != '/') + cptr++; + if (*cptr != '/') { error_string = sformatf( " " "/" " must follow parentheses " "ending first half of redox couple, %s.", token); @@ -923,16 +703,16 @@ parse_couple(char *token) parse_error++; return (ERROR); } - ptr++; - get_elt(&ptr, elt2, &e2); - if (strcmp(elt1, elt2) != 0) + cptr++; + get_elt(&cptr, elt2, &e2); + if (strcmp(elt1.c_str(), elt2.c_str()) != 0) { error_string = sformatf( "Redox couple must be two redox states " "of the same element, %s.", token); error_msg(error_string, CONTINUE); return (ERROR); } - if (*ptr != '(') + if (*cptr != '(') { error_string = sformatf( "Element name must be followed by " "parentheses in redox couple, %s.", token); @@ -943,10 +723,10 @@ parse_couple(char *token) paren2[0] = '('; paren_count = 1; p2 = 1; - while (*ptr != '\0') + while (*cptr != '\0') { - ptr++; - if (*ptr == '/' || *ptr == '\0') + cptr++; + if (*cptr == '/' || *cptr == '\0') { error_string = sformatf( "End of line or " "/" " encountered" " before end of parentheses, %s.", token); @@ -954,10 +734,10 @@ parse_couple(char *token) return (ERROR); } - paren2[p2++] = *ptr; - if (*ptr == '(') + paren2[p2++] = *cptr; + if (*cptr == '(') paren_count++; - if (*ptr == ')') + if (*cptr == ')') paren_count--; if (paren_count == 0) break; @@ -965,18 +745,18 @@ parse_couple(char *token) paren2[p2] = '\0'; if (strcmp(paren1, paren2) < 0) { - strcpy(token, elt1); + strcpy(token, elt1.c_str()); strcat(token, paren1); strcat(token, "/"); - strcat(token, elt2); + strcat(token, elt2.c_str()); strcat(token, paren2); } else if (strcmp(paren1, paren2) > 0) { - strcpy(token, elt2); + strcpy(token, elt2.c_str()); strcat(token, paren2); strcat(token, "/"); - strcat(token, elt1); + strcat(token, elt1.c_str()); strcat(token, paren1); } else @@ -997,10 +777,6 @@ print_centered(const char *string) int i, l, l1, l2; char token[MAX_LENGTH]; -#ifdef PHREEQ98 - if ((CreateToC == TRUE) && (AutoLoadOutputFile == TRUE)) - AddToCEntry((char *) string, 4, outputlinenr); -#endif l = (int) strlen(string); l1 = (79 - l) / 2; l2 = 79 - l - l1; @@ -1044,7 +820,7 @@ replace(const char *str1, const char *str2, char *str) * FALSE if string was not replaced */ int l, l1, l2; - char *ptr_start; + char* ptr_start; ptr_start = strstr(str, str1); /* @@ -1069,7 +845,14 @@ replace(const char *str1, const char *str2, char *str) memcpy(ptr_start, str2, l2); return (TRUE); } - +void Phreeqc:: +replace(std::string &stds, const char* str1, const char* str2) +{ + size_t pos; + while ((pos = stds.find(str1)) != std::string::npos) { + stds.replace(pos, 1, str2); + } +} /* ---------------------------------------------------------------------- */ void Phreeqc:: space(void **ptr, int i, int *max, int struct_size) @@ -1176,7 +959,7 @@ str_tolower(char *str) /* * Replaces string, str, with same string, lower case */ - char *ptr; + char* ptr; ptr = str; while (*ptr != '\0') { @@ -1193,7 +976,7 @@ str_toupper(char *str) /* * Replaces string, str, with same string, lower case */ - char *ptr; + char* ptr; ptr = str; while (*ptr != '\0') { @@ -1220,7 +1003,10 @@ strcmp_nocase(const char *str1, const char *str2) return (-1); return (1); } - +void Phreeqc::str_tolower(std::string &name) +{ + std::transform(name.begin(), name.end(), name.begin(), tolower); +} /* ---------------------------------------------------------------------- */ int Phreeqc:: strcmp_nocase_arg1(const char *str1, const char *str2) @@ -1258,7 +1044,7 @@ string_duplicate(const char *token) #if !defined(NDEBUG) && defined(WIN32_MEMORY_DEBUG) str = (char *) _malloc_dbg((size_t) (l + 1) * sizeof(char), _NORMAL_BLOCK, szFileName, nLine); #else - str = (char *) PHRQ_malloc((size_t) (l + 1) * sizeof(char)); + str = (char *) PHRQ_malloc(((size_t)l + 1) * sizeof(char)); #endif if (str == NULL) @@ -1266,54 +1052,7 @@ string_duplicate(const char *token) strcpy(str, token); return (str); } -#ifdef HASH -/* ---------------------------------------------------------------------- */ -const char * Phreeqc:: -string_hsave(const char *str) -/* ---------------------------------------------------------------------- */ -{ -/* - * Save character string str - * - * Arguments: - * str input string to save. - * - * Returns: - * starting address of saved string (str) - */ - std::hash_map::const_iterator it; - it = strings_hash.find(str); - if (it != strings_hash.end()) - { - return (it->second->c_str()); - } - std::string *stdstr = new std::string(str); - strings_map[*stdstr] = stdstr; - return(stdstr->c_str()); -} -/* ---------------------------------------------------------------------- */ -void Phreeqc:: -strings_hash_clear() -/* ---------------------------------------------------------------------- */ -{ -/* - * Save character string str - * - * Arguments: - * str input string to save. - * - * Returns: - * starting address of saved string (str) - */ - std::hash_map::iterator it; - for (it = strings_hash.begin(); it != strings_hash.end(); it++) - { - delete it->second; - } - strings_hash.clear(); -} -#else /* ---------------------------------------------------------------------- */ const char * Phreeqc:: string_hsave(const char *str) @@ -1328,6 +1067,7 @@ string_hsave(const char *str) * Returns: * starting address of saved string (str) */ + if (str == NULL) return (NULL); std::map::const_iterator it; it = strings_map.find(str); if (it != strings_map.end()) @@ -1339,7 +1079,6 @@ string_hsave(const char *str) strings_map[*stdstr] = stdstr; return(stdstr->c_str()); } -#endif /* ---------------------------------------------------------------------- */ void Phreeqc:: strings_map_clear() @@ -1393,12 +1132,6 @@ status(int count, const char *str, bool rk_string) char spin_str[2]; clock_t t2; -#ifdef PHREEQ98 - if (ProcessMessages) - ApplicationProcessMessages(); - if (stop_calculations == TRUE) - error_msg("Execution canceled by user.", STOP); -#endif if (pr.status == FALSE || phast == TRUE) return (OK); @@ -1513,7 +1246,7 @@ status(int count, const char *str, bool rk_string) } else { - screen_string = sformatf("%-15s%-27s%1s%37s", sim_str, state_str, spin_str, stdstr.c_str()); + screen_string = sformatf("%-15s%-27s%1s%45s", sim_str, state_str, spin_str, stdstr.c_str()); status_string = screen_string; } } @@ -1533,334 +1266,8 @@ status(int count, const char *str, bool rk_string) return (OK); } #endif /*PHREEQCI_GUI */ -/* -** Dynamic hashing, after CACM April 1988 pp 446-457, by Per-Ake Larson. -** Coded into C, with minor code improvements, and with hsearch(3) interface, -** by ejp@ausmelb.oz, Jul 26, 1988: 13:16; -** also, hcreate/hdestroy routines added to simulate hsearch(3). -** -** These routines simulate hsearch(3) and family, with the important -** difference that the hash table is dynamic - can grow indefinitely -** beyond its original size (as supplied to hcreate()). -** -** Performance appears to be comparable to that of hsearch(3). -** The 'source-code' options referred to in hsearch(3)'s 'man' page -** are not implemented; otherwise functionality is identical. -** -** Compilation controls: -** DEBUG controls some informative traces, mainly for debugging. -** HASH_STATISTICS causes HashAccesses and HashCollisions to be maintained; -** when combined with DEBUG, these are displayed by hdestroy(). -** -** Problems & fixes to ejp@ausmelb.oz. WARNING: relies on pre-processor -** concatenation property, in probably unnecessary code 'optimisation'. -** Esmond Pitt, Austec (Asia/Pacific) Ltd -** ...!uunet.UU.NET!munnari!ausmelb!ejp,ejp@ausmelb.oz -*/ - # include -/* -** Fast arithmetic, relying on powers of 2, -** and on pre-processor concatenation property -*/ - -/* rewrote to remove MUL and DIV */ -# define MOD(x,y) ((x) & ((y)-1)) - -/* -** Local data -*/ - -#ifdef HASH_STATISTICS - long HashAccesses, HashCollisions; -#endif - -/* -** Code -*/ - -int Phreeqc:: -hcreate_multi(unsigned Count, HashTable ** HashTable_ptr) -{ - int i; - HashTable *Table; - /* - ** Adjust Count to be nearest higher power of 2, - ** minimum SegmentSize, then convert into segments. - */ - i = SegmentSize; - while (i < (int) Count) - i <<= 1; -/* Count = DIV(i,SegmentSize); */ - Count = ((i) >> (SegmentSizeShift)); - - Table = (HashTable *) PHRQ_calloc(sizeof(HashTable), 1); - *HashTable_ptr = Table; - - if (Table == NULL) - return (0); - /* - ** resets are redundant - done by calloc(3) - ** - Table->SegmentCount = Table->p = Table->KeyCount = 0; - */ - /* - ** Allocate initial 'i' segments of buckets - */ - for (i = 0; i < (int) Count; i++) - { - Table->Directory[i] = - (Segment *) PHRQ_calloc(sizeof(Segment), SegmentSize); - if (Table->Directory[i] == NULL) - { - hdestroy_multi(Table); - return (0); - } - Table->SegmentCount++; - } -/* Table->maxp = MUL(Count,SegmentSize); */ - Table->maxp = (short) ((Count) << (SegmentSizeShift)); - Table->MinLoadFactor = 1; - Table->MaxLoadFactor = DefaultMaxLoadFactor; -#ifdef HASH_STATISTICS - HashAccesses = HashCollisions = 0; -#endif - return (1); -} - -void Phreeqc:: -hdestroy_multi(HashTable * Table) -{ - int i, j; - Segment *seg; - Element *p, *q; - - if (Table != NULL) - { - for (i = 0; i < Table->SegmentCount; i++) - { - /* test probably unnecessary */ - if ((seg = Table->Directory[i]) != NULL) - { - for (j = 0; j < SegmentSize; j++) - { - p = seg[j]; - while (p != NULL) - { - q = p->Next; - PHRQ_free((void *) p); - p = q; - } - } - PHRQ_free(Table->Directory[i]); - } - } - PHRQ_free(Table); - /* Table = NULL; */ - } -} - -ENTRY * Phreeqc:: -hsearch_multi(HashTable * Table, ENTRY item, ACTION action) -/* ACTION FIND/ENTER */ -{ - Address h; - Segment *CurrentSegment; - int SegmentIndex; - int SegmentDir; - Segment *p, q; - - assert(Table != NULL); /* Kinder really than return(NULL); */ -#ifdef HASH_STATISTICS - HashAccesses++; -#endif - h = Hash_multi(Table, item.key); -/* SegmentDir = DIV(h,SegmentSize); */ - SegmentDir = ((h) >> (SegmentSizeShift)); - SegmentIndex = MOD(h, SegmentSize); - /* - ** valid segment ensured by Hash() - */ - CurrentSegment = Table->Directory[SegmentDir]; - assert(CurrentSegment != NULL); /* bad failure if tripped */ - p = &CurrentSegment[SegmentIndex]; - q = *p; - /* - ** Follow collision chain - */ - while (q != NULL && strcmp(q->Key, item.key)) - { - p = &q->Next; - q = *p; -#ifdef HASH_STATISTICS - HashCollisions++; -#endif - } - if (q != NULL /* found */ - || action == FIND /* not found, search only */ - ) - { - return ((ENTRY *) q); - } - else if ((q = (Element *) PHRQ_calloc(sizeof(Element), 1)) == NULL) - { - malloc_error(); - } - *p = q; /* link into chain */ - /* - ** Initialize new element - */ - q->Key = item.key; - q->Data = (char *) item.data; - /* - ** cleared by calloc(3) - q->Next = NULL; - */ - /* - ** Table over-full? - */ -/* if (++Table->KeyCount / MUL(Table->SegmentCount,SegmentSize) > Table->MaxLoadFactor) */ - if (++Table->KeyCount / ((Table->SegmentCount) << (SegmentSizeShift)) > - Table->MaxLoadFactor) - ExpandTable_multi(Table); /* doesn`t affect q */ - return ((ENTRY *) q); -} - -/* -** Internal routines -*/ - - Address Phreeqc:: -Hash_multi(HashTable * Table, const char *Key) -{ - Address h, address; - register unsigned char *k = (unsigned char *) Key; - - h = 0; - /* - ** Convert string to integer - */ - while (*k) - h = h * Prime1 ^ (*k++ - ' '); - h %= Prime2; - address = MOD(h, Table->maxp); - if (address < (unsigned long) Table->p) - address = MOD(h, (Table->maxp << 1)); /* h % (2*Table->maxp) */ - return (address); -} - -void Phreeqc:: -ExpandTable_multi(HashTable * Table) -{ - Address NewAddress; - int OldSegmentIndex, NewSegmentIndex; - int OldSegmentDir, NewSegmentDir; - Segment *OldSegment, *NewSegment; - Element *Current, **Previous, **LastOfNew; - -/* if (Table->maxp + Table->p < MUL(DirectorySize,SegmentSize)) */ - if (Table->maxp + Table->p < ((DirectorySize) << (SegmentSizeShift))) - { - /* - ** Locate the bucket to be split - */ -/* OldSegmentDir = DIV(Table->p,SegmentSize); */ - OldSegmentDir = ((Table->p) >> (SegmentSizeShift)); - OldSegment = Table->Directory[OldSegmentDir]; - OldSegmentIndex = MOD(Table->p, SegmentSize); - /* - ** Expand address space; if necessary create a new segment - */ - NewAddress = Table->maxp + Table->p; -/* NewSegmentDir = DIV(NewAddress,SegmentSize); */ - NewSegmentDir = ((NewAddress) >> (SegmentSizeShift)); - NewSegmentIndex = MOD(NewAddress, SegmentSize); - if (NewSegmentIndex == 0) - { - Table->Directory[NewSegmentDir] = - (Segment *) PHRQ_calloc(sizeof(Segment), SegmentSize); - if (Table->Directory[NewSegmentDir] == NULL) - { - malloc_error(); - } - } - NewSegment = Table->Directory[NewSegmentDir]; - /* - ** Adjust state variables - */ - Table->p++; - if (Table->p == Table->maxp) - { - Table->maxp <<= 1; /* Table->maxp *= 2 */ - Table->p = 0; - } - Table->SegmentCount++; - /* - ** Relocate records to the new bucket - */ - Previous = &OldSegment[OldSegmentIndex]; - Current = *Previous; - LastOfNew = &NewSegment[NewSegmentIndex]; - *LastOfNew = NULL; - while (Current != NULL) - { - if (Hash_multi(Table, Current->Key) == NewAddress) - { - /* - ** Attach it to the end of the new chain - */ - *LastOfNew = Current; - /* - ** Remove it from old chain - */ - *Previous = Current->Next; - LastOfNew = &Current->Next; - Current = Current->Next; - *LastOfNew = NULL; - } - else - { - /* - ** leave it on the old chain - */ - Previous = &Current->Next; - Current = Current->Next; - } - } - } -} - - -void Phreeqc:: -free_hash_strings(HashTable * Table) -{ - int i, j; - Segment *seg; - Element *p, *q; - - if (Table != NULL) - { - for (i = 0; i < Table->SegmentCount; i++) - { - /* test probably unnecessary */ - if ((seg = Table->Directory[i]) != NULL) - { - for (j = 0; j < SegmentSize; j++) - { - p = seg[j]; - while (p != NULL) - { - q = p->Next; - p->Data = (char *) free_check_null((void *) p->Data); - p = q; - } - } - } - } - } -} - /* ---------------------------------------------------------------------- */ int Phreeqc:: string_trim(char *str) @@ -1878,7 +1285,7 @@ string_trim(char *str) * EMPTY if string is all whitespace */ int i, l, start, end, length; - char *ptr_start; + char* ptr_start; l = (int) strlen(str); /* @@ -1912,6 +1319,22 @@ string_trim(char *str) return (TRUE); } +void Phreeqc::string_trim_left(std::string& str) +{ + const std::string& chars = "\t\n "; + str.erase(0, str.find_first_not_of(chars)); +} +void Phreeqc::string_trim_right(std::string& str) +{ + const std::string& chars = "\t\n "; + str.erase(str.find_last_not_of(chars) + 1); +} +void Phreeqc::string_trim(std::string& str) +{ + const std::string& chars = "\t\n "; + str.erase(0, str.find_first_not_of(chars)); + str.erase(str.find_last_not_of(chars) + 1); +} /* ---------------------------------------------------------------------- */ int Phreeqc:: @@ -1965,7 +1388,7 @@ string_trim_left(char *str) * EMPTY if string is all whitespace */ int i, l, start, end, length; - char *ptr_start; + char* ptr_start; l = (int) strlen(str); /* @@ -2012,10 +1435,11 @@ string_pad(const char *str, int i) max = l; if (l < i) max = i; - str_ptr = (char *) PHRQ_malloc((size_t) ((max + 1) * sizeof(char))); + str_ptr = (char *) PHRQ_malloc((((size_t)max + 1) * sizeof(char))); if (str_ptr == NULL) malloc_error(); - strcpy(str_ptr, str); + else + strcpy(str_ptr, str); if (i > l) { for (j = l; j < i; j++) @@ -2026,29 +1450,6 @@ string_pad(const char *str, int i) } return (str_ptr); } - -/* ---------------------------------------------------------------------- */ -void Phreeqc:: -zero_double(LDBLE * target, int n) -/* ---------------------------------------------------------------------- */ -{ - int i; - - if (n > zeros_max) - { - zeros = (LDBLE *) PHRQ_realloc(zeros, (size_t) (n * sizeof(LDBLE))); - if (zeros == NULL) - malloc_error(); - for (i = zeros_max; i < n; i++) - { - zeros[i] = 0.0; - } - zeros_max = n; - } - memcpy((void *) target, (void *) zeros, (size_t) (n * sizeof(LDBLE))); - return; -} - /* ---------------------------------------------------------------------- */ int Phreeqc:: get_input_errors() From a330bc51e33350cf81008c29742fe570fae074da Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Sun, 31 Oct 2021 18:57:52 +0000 Subject: [PATCH 023/384] Squashed 'phreeqcpp/' changes from 2243d25..7e50e98 7e50e98 Merge commit 'df6addc21acd81411e81b36a9daf373b10cba255' df6addc Squashed 'common/' changes from 077abe0..013c822 5bc41df git subtree pull now squashes git-subtree-dir: phreeqcpp git-subtree-split: 7e50e9840fd9a15a541345f02fbcbfed5b09dd8e --- .gitlab-ci.yml | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 25c56f8c..9c8a9fed 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -1,6 +1,7 @@ # # https://code.chs.usgs.gov/coupled/subtrees/phreeqc3-src # SRC 2020-12-02T18:39:55-07:00 +# SRC 2021-10-31T12:53:15-06:00 -- changed pull to squash -- HEAD:2243d25babbc524e7875b3d591bb6b91c4399a95 # image: ${CI_REGISTRY}/coupled/containers/buildpack-deps:bionic-scm @@ -72,7 +73,8 @@ subtree-sync: export GIT_EDITOR=true for remote in "${!urls[@]}"; do - git_subtree "pull" "${prefixes[$remote]}" "$remote" "${urls[$remote]}" + # git_subtree "pull" "${prefixes[$remote]}" "$remote" "${urls[$remote]}" + git subtree pull --prefix "${prefixes[$remote]}" --squash "${urls[$remote]}" master done for remote in "${!urls[@]}"; do From 3765e0cf266655280d362cdf5de35c25892959b6 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Sun, 31 Oct 2021 19:41:44 +0000 Subject: [PATCH 024/384] Squashed 'phreeqcpp/' changes from 7e50e98..a377818 a377818 Merge remote-tracking branch 'usgs-coupled/master' 7c3d060 Merged remote-tracking branch 'origin/master' c6e8aea Fixed DIFF_C and SETDIFF_C. Updated RELEASE.txt 942dc22 Replace (+ with ( for dealing with Fe(+3, so that [Fe+2] is still a legitimate element name git-subtree-dir: phreeqcpp git-subtree-split: a3778180a1d258bdccda2d2e3ec1a745f4738c77 --- basicsubs.cpp | 8 ++++---- common/Parser.cxx | 2 +- tidy.cpp | 2 +- utilities.cpp | 7 ++++--- 4 files changed, 10 insertions(+), 9 deletions(-) diff --git a/basicsubs.cpp b/basicsubs.cpp index 758112f9..a21f34d5 100644 --- a/basicsubs.cpp +++ b/basicsubs.cpp @@ -195,7 +195,7 @@ diff_c(const char *species_name) g = s_ptr->dw; if (s_ptr->dw_t) g *= exp(s_ptr->dw_t / tk_x - s_ptr->dw_t / 298.15); - g *= viscos_0_25 / viscos; + g *= viscos_0_25 / viscos * tk_x / 298.15; } else { @@ -218,7 +218,7 @@ setdiff_c(const char *species_name, double d) g = s_ptr->dw; if (s_ptr->dw_t) g *= exp(s_ptr->dw_t / tk_x - s_ptr->dw_t / 298.15); - g *= viscos_0_25 / viscos; + g *= viscos_0_25 / viscos * tk_x / 298.15;; } else { @@ -2457,7 +2457,7 @@ total(const char *total_name) return (total_o_x / mass_water_aq_x); } std::string noplus = total_name; - replace(noplus, "+", ""); + replace(noplus, "(+", "("); master_ptr = master_bsearch(noplus.c_str()); t = 0.0; if (master_ptr == NULL) @@ -2528,7 +2528,7 @@ total_mole(const char *total_name) return (total_o_x); } std::string noplus = total_name; - replace(noplus, "+", ""); + replace(noplus, "(+", "("); master_ptr = master_bsearch(noplus.c_str()); t = 0.0; if (master_ptr == NULL) diff --git a/common/Parser.cxx b/common/Parser.cxx index db7d3556..4f6665ae 100644 --- a/common/Parser.cxx +++ b/common/Parser.cxx @@ -899,7 +899,7 @@ CParser::STATUS_TYPE CParser::parse_couple(std::string & token) return PARSER_OK; } - while (Utilities::replace("+", "", token)); + while (Utilities::replace("(+", "(", token)); std::string::iterator ptr = token.begin(); std::string elt1; diff --git a/tidy.cpp b/tidy.cpp index 4c95089b..1c9c0884 100644 --- a/tidy.cpp +++ b/tidy.cpp @@ -1825,7 +1825,7 @@ tidy_punch(void) { std::pair< std::string, void *> &pair_ptr = current_selected_output->Get_totals()[i]; std::string noplus = pair_ptr.first; - replace(noplus, "+", ""); + replace(noplus, "(+", "("); pair_ptr.second = master_bsearch(noplus.c_str()); } diff --git a/utilities.cpp b/utilities.cpp index d7989864..67a030ee 100644 --- a/utilities.cpp +++ b/utilities.cpp @@ -660,7 +660,7 @@ parse_couple(char *token) str_tolower(token); return (OK); } - while (replace("+", "", token) == TRUE); + while (replace("(+", "(", token) == TRUE); cptr = token; get_elt(&cptr, elt1, &e1); if (*cptr != '(') @@ -848,9 +848,10 @@ replace(const char *str1, const char *str2, char *str) void Phreeqc:: replace(std::string &stds, const char* str1, const char* str2) { - size_t pos; + size_t pos, l; + l = strlen(str1); while ((pos = stds.find(str1)) != std::string::npos) { - stds.replace(pos, 1, str2); + stds.replace(pos, l, str2); } } /* ---------------------------------------------------------------------- */ From e26566584588855e782e2ab4cdd467984a185890 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Sun, 31 Oct 2021 19:42:50 +0000 Subject: [PATCH 025/384] Squashed 'phreeqcpp/' changes from a377818..a376a40 a376a40 Merge commit '9e3623356a6be908d7e8b120ecf07c6dceb00d92' 9e36233 Squashed 'common/' changes from 013c822..fb03f6a git-subtree-dir: phreeqcpp git-subtree-split: a376a40fa91d71c45a6cc75d6af94e5838ca5060 From e52222e9fd82aa1f1abfe06e8e43f2d3452cc8ee Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Sun, 7 Nov 2021 21:29:23 -0700 Subject: [PATCH 026/384] added change note concerning change in surface related to phase coming into existence --- RELEASE.TXT | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/RELEASE.TXT b/RELEASE.TXT index 7e50ee9d..69b7d8c0 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,4 +1,10 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + ---------------- + November 7, 2021 + ---------------- + PHREEQC: Modified the initial guess for the potential terms + when a surface related to a phase comes into existence; that is + when the phase begins to precipitate. ---------------- October 25, 2021 From 754ea3a9bc11cd1f7d350ff217bdb3dcd3af3d97 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Tue, 9 Nov 2021 01:59:31 +0000 Subject: [PATCH 027/384] Squashed 'phreeqcpp/' changes from a376a40..40f9a93 40f9a93 phase_compare is obsolete 1a07c70 remove qsort for phases, elements, and species 23dd4ac merging Merge branch 'master' into surf_related bf534d5 changed -10 to -15 for estimate of surface charge la 404aa0f changed -5 to -10 for estimating related surface activity git-subtree-dir: phreeqcpp git-subtree-split: 40f9a93535eea4367f6be8a2ecb9da4a9a0172a7 --- Phreeqc.h | 2 ++ model.cpp | 2 +- structures.cpp | 4 ++-- tidy.cpp | 41 +++++++++++++++++++++++++++++++---------- 4 files changed, 36 insertions(+), 13 deletions(-) diff --git a/Phreeqc.h b/Phreeqc.h index 7e4e0c7d..605f72f7 100644 --- a/Phreeqc.h +++ b/Phreeqc.h @@ -851,7 +851,9 @@ public: class master* surface_get_psi_master(const char* name, int plane); // class phase* phase_bsearch(const char* cptr, int* j, int print); +#ifdef OBSOLETE static int phase_compare(const void* ptr1, const void* ptr2); +#endif int phase_delete(int i); class phase* phase_store(const char* name); // diff --git a/model.cpp b/model.cpp index 1d31226a..35a98ff2 100644 --- a/model.cpp +++ b/model.cpp @@ -3361,7 +3361,7 @@ reset(void) } if (old_moles <= 0 && x[i]->moles > 0) { - x[i]->master[0]->s->la = log10(x[i]->moles) - 5.; + x[i]->master[0]->s->la = log10(x[i]->moles) - 15.; } } else if (comp_ptr->Get_phase_name().size() > 0) diff --git a/structures.cpp b/structures.cpp index ac1eaa40..1580f0ae 100644 --- a/structures.cpp +++ b/structures.cpp @@ -1080,7 +1080,7 @@ phase_alloc(void) phase_init(phase_ptr); return (phase_ptr); } - +#ifdef OBSOLETE /* ---------------------------------------------------------------------- */ int Phreeqc:: phase_compare(const void *ptr1, const void *ptr2) @@ -1094,7 +1094,7 @@ phase_compare(const void *ptr1, const void *ptr2) phase_ptr2 = *(const class phase **) ptr2; return (strcmp_nocase(phase_ptr1->name, phase_ptr2->name)); } - +#endif /* ---------------------------------------------------------------------- */ int Phreeqc:: phase_compare_string(const void *ptr1, const void *ptr2) diff --git a/tidy.cpp b/tidy.cpp index 1c9c0884..71280107 100644 --- a/tidy.cpp +++ b/tidy.cpp @@ -155,18 +155,39 @@ tidy_model(void) * Sort arrays */ -/* species */ if (new_model == TRUE) { - if (s.size() > 1) qsort(&s[0], s.size(), sizeof(class species *), s_compare); - -/* master species */ - if (master.size() > 1) qsort(&master[0], master.size(), sizeof(class master *), master_compare); -/* elements */ - if (elements.size() > 1) qsort(&elements[0], elements.size(), sizeof(class element *), element_compare); -/* phases */ - if (phases.size() > 1) qsort(&phases[0], phases.size(), sizeof(class phase *), phase_compare); - + /* species */ + if (s.size() > 1) //qsort(&s[0], s.size(), sizeof(class species*), s_compare); + { + s.clear(); + std::map::iterator it; + for (it = species_map.begin(); it != species_map.end(); it++) + { + s.push_back(it->second); + } + } + /* master species */ + if (master.size() > 1) qsort(&master[0], master.size(), sizeof(class master*), master_compare); + /* elements */ + if (elements.size() > 1) //qsort(&elements[0], elements.size(), sizeof(class element*), element_compare); + { + elements.clear(); + std::map::iterator it; + for (it = elements_map.begin(); it != elements_map.end(); it++) + { + elements.push_back(it->second); + } + } /* phases */ + if (phases.size() > 1) //qsort(&phases[0], phases.size(), sizeof(class phase *), phase_compare); + { + phases.clear(); + std::map::iterator it; + for (it = phases_map.begin(); it != phases_map.end(); it++) + { + phases.push_back(it->second); + } + } } /* named_log_k */ From a321fbd61bc1901e82e5404f928bef35f679c94f Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Sat, 27 Nov 2021 13:26:12 -0700 Subject: [PATCH 028/384] fixed ranges in ADVECTION, added test case advect_ranges, fixed RELEASE.TXT --- RELEASE.TXT | 13 +++++++++++++ 1 file changed, 13 insertions(+) diff --git a/RELEASE.TXT b/RELEASE.TXT index 69b7d8c0..318273ab 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,4 +1,17 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + ----------------- + November 27, 2021 + ----------------- + PHREEQC: Fixed a recently introduced bug in the options + -print_cells and -punch_cells of the ADVECTION data block. + Ranges of cells using "-", such as + + ADVECTION + -punch_cells 1-10 11 12-20 + + were not read properly. Ranges of cells are now read + correctly. + ---------------- November 7, 2021 ---------------- From 8f2558798f15927fa58343a43c7c14295986ae45 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Mon, 29 Nov 2021 15:18:33 +0000 Subject: [PATCH 029/384] Squashed 'phreeqcpp/' changes from 40f9a93..7cda4a7 7cda4a7 fixed ranges in ADVECTION, added test case advect_ranges, fixed RELEASE.TXT f1ab542 unused variables git-subtree-dir: phreeqcpp git-subtree-split: 7cda4a7dee0f79a9093614a0b07a9b1ba0ab7ff2 --- Phreeqc.h | 2 + model.cpp | 1 - read.cpp | 100 ++++++++++++++++++++++++++++++++++++++++++-------- sit.cpp | 2 - transport.cpp | 2 +- 5 files changed, 88 insertions(+), 19 deletions(-) diff --git a/Phreeqc.h b/Phreeqc.h index 605f72f7..dd414fb2 100644 --- a/Phreeqc.h +++ b/Phreeqc.h @@ -646,6 +646,8 @@ public: int read_input(void); int* read_list_ints_range(const char** ptr, int* count_ints, int positive, int* int_list); + int read_list_ints_range(const char** cptr, bool positive, std::vector& int_list); + int read_log_k_only(const char* cptr, LDBLE* log_k); int read_t_c_only(const char* cptr, LDBLE* t_c); int read_p_c_only(const char* cptr, LDBLE* p_c); diff --git a/model.cpp b/model.cpp index 35a98ff2..9bebfc87 100644 --- a/model.cpp +++ b/model.cpp @@ -5558,7 +5558,6 @@ numerical_jacobian(void) cxxGasPhase* gas_phase_ptr = use.Get_gas_phase_ptr(); std::vector phase_ptrs; std::vector base_phases; - double base_mass_water_bulk_x = 0, base_moles_h2o = 0; cxxGasPhase base_gas_phase; cxxSurface base_surface; diff --git a/read.cpp b/read.cpp index 4ade4fe4..ba2a0b1c 100644 --- a/read.cpp +++ b/read.cpp @@ -2506,6 +2506,86 @@ read_list_ints_range(const char **cptr, int *count_ints, int positive, int *int_ } return (int_list); } +/* ---------------------------------------------------------------------- */ +int Phreeqc:: +read_list_ints_range(const char** cptr, bool positive, std::vector &int_list) +/* ---------------------------------------------------------------------- */ +{ + /* + * Reads a list of int numbers until end of line is reached or + * an int cannot be read from a token. + * + * Arguments: + * cptr entry: points to line to read from + * exit: points to next non-int token or end of line + * + * count_ints entry: number of ints already in list + * + * positive entry: if TRUE, expects to read only positive integers + * + * Returns: + * pointer to a list of count_ints ints + */ + char token[MAX_LENGTH]; + int value, value1, value2; + int i, l; + const char* cptr_save; + int count_start = (int)int_list.size(); + + cptr_save = *cptr; + while (copy_token(token, cptr, &l) != EMPTY) + { + if (sscanf(token, "%d", &value) == 1) + { + /* Read an integer */ + int_list.push_back(value); + if (value <= 0 && positive) + { + error_msg("Expected an integer greater than zero.", CONTINUE); + error_msg(line_save, CONTINUE); + input_error++; + } + /* Read range of integers */ + if (replace("-", " ", token) == TRUE) + { + if (sscanf(token, "%d %d", &value1, &value2) != 2) + { + error_msg("Expected an integer range n-m.", CONTINUE); + error_msg(line_save, CONTINUE); + input_error++; + } + else if (value2 < value1) + { + error_msg("Expected an integer range n-m, with n <= m.", + CONTINUE); + error_msg(line_save, CONTINUE); + input_error++; + } + else if (value2 <= 0 && positive == TRUE) + { + error_msg("Expected an integer greater than zero.", + CONTINUE); + error_msg(line_save, CONTINUE); + input_error++; + } + else + { + for (i = value1 + 1; i <= value2; i++) + { + int_list.push_back(i); + } + } + } + cptr_save = *cptr; + } + else + { + *cptr = cptr_save; + break; + } + } + return ((int )int_list.size() - count_start); +} /* ---------------------------------------------------------------------- */ bool Phreeqc:: @@ -7131,18 +7211,13 @@ read_advection(void) case 2: /* print */ case 5: /* print_cells */ { - std::istringstream iss(next_char); - int idummy; - while (iss >> idummy) - { - print_temp.push_back(idummy); - } + (void)read_list_ints_range(&next_char, false, print_temp); opt_save = 2; } break; case 3: /* selected_output */ - case 11: /* selected_output_frequency */ - case 12: /* punch_frequency */ + case 11: /* selected_output_frequency */ + case 12: /* punch_frequency */ (void)sscanf(next_char, "%d", &punch_ad_modulus); opt_save = OPTION_DEFAULT; if (punch_ad_modulus <= 0) @@ -7154,15 +7229,10 @@ read_advection(void) } break; case 4: /* punch */ - case 14: /* punch_cells */ + case 14: /* punch_cells */ case 6: /* selected_cells */ { - std::istringstream iss(next_char); - int idummy; - while (iss >> idummy) - { - punch_temp.push_back(idummy); - } + (void) read_list_ints_range(&next_char, false, punch_temp); opt_save = 4; break; } diff --git a/sit.cpp b/sit.cpp index 8f213e98..8e9c4e8c 100644 --- a/sit.cpp +++ b/sit.cpp @@ -962,10 +962,8 @@ jacobian_sit(void) std::vector base; LDBLE d, d1, d2; int i, j; - cxxGasPhase* gas_phase_ptr = use.Get_gas_phase_ptr(); std::vector phase_ptrs; std::vector base_phases; - double base_mass_water_bulk_x = 0, base_moles_h2o = 0; cxxGasPhase base_gas_phase; cxxSurface base_surface; Restart: diff --git a/transport.cpp b/transport.cpp index 88f33a29..19ffe8a5 100644 --- a/transport.cpp +++ b/transport.cpp @@ -6152,7 +6152,7 @@ flux_mcd(const char* species_name, int option) /* ---------------------------------------------------------------------- */ { class species* s_ptr; - double f = 0.0, dum = 0.0; + double f = 0.0; if (state == TRANSPORT && multi_Dflag) { s_ptr = s_search(species_name); From 37a63bcf44e319cea0465322ac36fd73beed6769 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Fri, 28 Jan 2022 22:13:23 +0000 Subject: [PATCH 030/384] Squashed 'phreeqcpp/' changes from 7cda4a7..ba27ef1 ba27ef1 Tony fix to transport git-subtree-dir: phreeqcpp git-subtree-split: ba27ef1db0232a4147914025795a6dd3b6ba60f7 --- transport.cpp | 2 ++ 1 file changed, 2 insertions(+) diff --git a/transport.cpp b/transport.cpp index 19ffe8a5..32e0e0a8 100644 --- a/transport.cpp +++ b/transport.cpp @@ -2751,6 +2751,8 @@ diffuse_implicit(LDBLE DDt, int stagnant) std::map >::iterator cell_iter = cell_J_ij.find(i); + if (cell_iter == cell_J_ij.end()) + continue; std::map< std::string, class J_ij_save >::iterator s_iter = cell_iter->second.find(sol_D[1].spec[cp].name); s_iter->second.flux_c = ct[i].J_ij[cp].tot1; From e0b04393edfc68bc3bf689e45b4196b165a1ab0a Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Fri, 25 Mar 2022 16:36:54 +0000 Subject: [PATCH 031/384] Squashed 'phreeqcpp/' changes from ba27ef1..8715a91 8715a91 fixed MacInnes in warning msg git-subtree-dir: phreeqcpp git-subtree-split: 8715a91e401b61cf8ab5e3482e97ae26becf114b --- pitzer.cpp | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pitzer.cpp b/pitzer.cpp index 0b5db899..f2b6a92f 100644 --- a/pitzer.cpp +++ b/pitzer.cpp @@ -214,7 +214,7 @@ pitzer_tidy(void) if (mcb0 == NULL && mcb1 == NULL && mcc0 == NULL && ICON == TRUE) { error_string = sformatf( - "No KCl interaction parameters, turning off MacInnis scaling."); + "No KCl interaction parameters, turning off MacInnes scaling."); warning_msg(error_string); ICON = FALSE; } From b674cfe5e8bb3c67617054ecaba65beb78b0c240 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Fri, 6 Jan 2023 19:05:16 -0700 Subject: [PATCH 032/384] Fixing up ctests for cdash --- CMakeLists.txt | 80 +++++++++++++++++++++++++++++--------------------- 1 file changed, 46 insertions(+), 34 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index ddd47824..46fcfe2e 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -1,3 +1,5 @@ +cmake_minimum_required (VERSION 3.9) + SET(phreeqc_EXAMPLES co2.tsv ex1 @@ -52,7 +54,7 @@ else() endif() # -# copy tsv files to output directories +# copy tsv files to build directories for testing # # ex2b.tsv @@ -108,167 +110,177 @@ configure_file ( "co2.tsv" "co2.tsv" ) - + # # run examples for testing # # ex1 -add_test(NAME ex1 +add_test(NAME examples.ex1 COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex1 ex1.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex1.log ) # ex2 -add_test(NAME ex2 +add_test(NAME examples.ex2 COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex2 ex2.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex2.log ) # ex2b -add_test(NAME ex2b +add_test(NAME examples.ex2b COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex2b ex2b.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex2b.log ) # ex3 -add_test(NAME ex3 +add_test(NAME examples.ex3 COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex3 ex3.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex3.log ) # ex4 -add_test(NAME ex4 +add_test(NAME examples.ex4 COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex4 ex4.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex4.log ) # ex5 -add_test(NAME ex5 +add_test(NAME examples.ex5 COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex5 ex5.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex5.log ) # ex6 -add_test(NAME ex6 +add_test(NAME examples.ex6 COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex6 ex6.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex6.log ) # ex7 -add_test(NAME ex7 +add_test(NAME examples.ex7 COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex7 ex7.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex7.log ) # ex8 -add_test(NAME ex8 +add_test(NAME examples.ex8 COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex8 ex8.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex8.log ) # ex9 -add_test(NAME ex9 +add_test(NAME examples.ex9 COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex9 ex9.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex9.log ) # ex10 -add_test(NAME ex10 +add_test(NAME examples.ex10 COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex10 ex10.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex10.log ) # ex11 -add_test(NAME ex11 +add_test(NAME examples.ex11 COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex11 ex11.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex11.log ) # ex12 -add_test(NAME ex12 +add_test(NAME examples.ex12 COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex12 ex12.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex12.log ) # ex12a -add_test(NAME ex12a +add_test(NAME examples.ex12a COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex12a ex12a.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex12a.log ) # ex13a -add_test(NAME ex13a +add_test(NAME examples.ex13a COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex13a ex13a.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex13a.log ) # ex13b -add_test(NAME ex13b +add_test(NAME examples.ex13b COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex13b ex13b.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex13b.log ) # ex13c -add_test(NAME ex13c +add_test(NAME examples.ex13c COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex13c ex13c.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex13c.log ) # ex13ac -add_test(NAME ex13ac +add_test(NAME examples.ex13ac COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex13ac ex13ac.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex13ac.log ) # ex14 -add_test(NAME ex14 +add_test(NAME examples.ex14 COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex14 ex14.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex14.log ) # ex15 -add_test(NAME ex15 +add_test(NAME examples.ex15 COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex15 ex15.out ${PROJECT_SOURCE_DIR}/examples/ex15.dat ex15.log ) # ex15a -add_test(NAME ex15a +add_test(NAME examples.ex15a COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex15a ex15a.out ${PROJECT_SOURCE_DIR}/examples/ex15.dat ex15a.log ) # ex15b -add_test(NAME ex15b +add_test(NAME examples.ex15b COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex15b ex15b.out ${PROJECT_SOURCE_DIR}/examples/ex15.dat ex15b.log ) # ex16 -add_test(NAME ex16 +add_test(NAME examples.ex16 COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex16 ex16.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex16.log ) # ex17 -add_test(NAME ex17 +add_test(NAME examples.ex17 COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex17 ex17.out ${PROJECT_SOURCE_DIR}/database/pitzer.dat ex17.log ) # ex17b -add_test(NAME ex17b +add_test(NAME examples.ex17b COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex17b ex17b.out ${PROJECT_SOURCE_DIR}/database/pitzer.dat ex17b.log ) # ex18 -add_test(NAME ex18 +add_test(NAME examples.ex18 COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex18 ex18.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex18.log ) # ex19 -add_test(NAME ex19 +add_test(NAME examples.ex19 COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex19 ex19.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex19.log ) # ex19b -add_test(NAME ex19b +add_test(NAME examples.ex19b COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex19b ex19b.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex19b.log ) # ex20a -add_test(NAME ex20a +add_test(NAME examples.ex20a COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex20a ex20a.out ${PROJECT_SOURCE_DIR}/database/iso.dat ex20a.log ) # ex20b -add_test(NAME ex20b +add_test(NAME examples.ex20b COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex20b ex20b.out ${PROJECT_SOURCE_DIR}/database/iso.dat ex20b.log ) # ex21 -add_test(NAME ex21 +add_test(NAME examples.ex21 COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex21 ex21.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex21.log ) # ex22 -add_test(NAME ex22 +add_test(NAME examples.ex22 COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex22 ex22.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex22.log ) + +# these take more than 600 seconds +set(SKIP + examples.ex21 +) + +# disable tests that take too long +foreach(test ${SKIP}) + set_tests_properties(${test} PROPERTIES DISABLED TRUE) +endforeach() From 00816dc695969bae581851db0355dfbef5e5215f Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Sat, 14 Jan 2023 22:14:20 -0700 Subject: [PATCH 033/384] [iphreeqc] Issue 8 -- change sprintf to snprintf for CRAN (#9) --- IPhreeqc.cpp | 10 +-- IPhreeqc_interface_F.cpp | 4 +- fwrap.cpp | 4 +- phreeqcpp/PBasic.cpp | 39 +++++----- phreeqcpp/PBasic.h | 1 + phreeqcpp/PHRQ_io_output.cpp | 4 +- phreeqcpp/Phreeqc.h | 2 +- phreeqcpp/ReadClass.cxx | 6 +- phreeqcpp/basicsubs.cpp | 3 +- phreeqcpp/class_main.cpp | 11 ++- phreeqcpp/inverse.cpp | 60 +++++++-------- phreeqcpp/kinetics.cpp | 2 +- phreeqcpp/mainsubs.cpp | 22 +++--- phreeqcpp/parse.cpp | 4 +- phreeqcpp/pitzer.cpp | 4 +- phreeqcpp/print.cpp | 6 +- phreeqcpp/readtr.cpp | 140 +++++++++++++++++------------------ phreeqcpp/transport.cpp | 40 +++++----- phreeqcpp/utilities.cpp | 22 +++--- 19 files changed, 196 insertions(+), 188 deletions(-) diff --git a/IPhreeqc.cpp b/IPhreeqc.cpp index d5f4640c..e648b313 100644 --- a/IPhreeqc.cpp +++ b/IPhreeqc.cpp @@ -485,7 +485,7 @@ VRESULT IPhreeqc::GetSelectedOutputValue(int row, int col, VAR* pVAR) { char buffer[120]; v = VR_INVALIDARG; - ::sprintf(buffer, "GetSelectedOutputValue: VR_INVALIDARG Invalid selected-output user number %d.\n", this->CurrentSelectedOutputUserNumber); + ::snprintf(buffer, sizeof(buffer), "GetSelectedOutputValue: VR_INVALIDARG Invalid selected-output user number %d.\n", this->CurrentSelectedOutputUserNumber); this->AddError(buffer); this->update_errors(); } @@ -512,13 +512,13 @@ VRESULT IPhreeqc::GetSelectedOutputValue2(int row, int col, int *vtype, double* case TT_LONG: *vtype = TT_DOUBLE; *dvalue = (double)v.lVal; - ::sprintf(buffer, "%ld", v.lVal); + ::snprintf(buffer, sizeof(buffer), "%ld", v.lVal); ::strncpy(svalue, buffer, svalue_length); break; case TT_DOUBLE: *vtype = v.type; *dvalue = v.dVal; - ::sprintf(buffer, "%23.15e", v.dVal); + ::snprintf(buffer, sizeof(buffer), "%23.15e", v.dVal); ::strncpy(svalue, buffer, svalue_length); break; case TT_STRING: @@ -1238,7 +1238,7 @@ void IPhreeqc::do_run(const char* sz_routine, std::istream* pis, PFN_PRERUN_CALL #ifdef PHREEQ98 AddSeries = !connect_simulations; #endif - ::sprintf(token, "Reading input data for simulation %d.", this->PhreeqcPtr->simulation); + ::snprintf(token, sizeof(token), "Reading input data for simulation %d.", this->PhreeqcPtr->simulation); // bool save_punch_in = this->PhreeqcPtr->SelectedOutput_map.size() > 0; @@ -1270,7 +1270,7 @@ void IPhreeqc::do_run(const char* sz_routine, std::istream* pis, PFN_PRERUN_CALL ASSERT(this->PhreeqcPtr->SelectedOutput_map.size() == this->SelectedOutputStringMap.size()); if (!this->PhreeqcPtr->title_x.empty()) { - ::sprintf(token, "TITLE"); + ::snprintf(token, sizeof(token), "TITLE"); this->PhreeqcPtr->dup_print(token, TRUE); if (this->PhreeqcPtr->pr.headings == TRUE) { diff --git a/IPhreeqc_interface_F.cpp b/IPhreeqc_interface_F.cpp index ab1125de..80c2ed14 100644 --- a/IPhreeqc_interface_F.cpp +++ b/IPhreeqc_interface_F.cpp @@ -318,13 +318,13 @@ GetSelectedOutputValueF(int *id, int *row, int *col, int *vtype, double* dvalue, case TT_LONG: *vtype = TT_DOUBLE; *dvalue = (double)v.lVal; - ::sprintf(buffer, "%ld", v.lVal); + ::snprintf(buffer, sizeof(buffer), "%ld", v.lVal); padfstring(svalue, buffer, svalue_length); break; case TT_DOUBLE: *vtype = v.type; *dvalue = v.dVal; - ::sprintf(buffer, "%23.15e", v.dVal); + ::snprintf(buffer, sizeof(buffer), "%23.15e", v.dVal); padfstring(svalue, buffer, svalue_length); break; case TT_STRING: diff --git a/fwrap.cpp b/fwrap.cpp index 2c096f93..bdec8e5a 100644 --- a/fwrap.cpp +++ b/fwrap.cpp @@ -347,13 +347,13 @@ GetSelectedOutputValueF(int *id, int *row, int *col, int *vtype, double* dvalue, case TT_LONG: *vtype = TT_DOUBLE; *dvalue = (double)v.lVal; - ::sprintf(buffer, "%ld", v.lVal); + ::snprintf(buffer, sizeof(buffer), "%ld", v.lVal); padfstring(svalue, buffer, (unsigned int) svalue_length); break; case TT_DOUBLE: *vtype = v.type; *dvalue = v.dVal; - ::sprintf(buffer, "%23.15e", v.dVal); + ::snprintf(buffer, sizeof(buffer), "%23.15e", v.dVal); padfstring(svalue, buffer, (unsigned int) svalue_length); break; case TT_STRING: diff --git a/phreeqcpp/PBasic.cpp b/phreeqcpp/PBasic.cpp index 09016cd9..7233f91c 100644 --- a/phreeqcpp/PBasic.cpp +++ b/phreeqcpp/PBasic.cpp @@ -499,22 +499,22 @@ numtostr(char * Result, LDBLE n) //if (PhreeqcPtr->current_selected_output != NULL && // !PhreeqcPtr->current_selected_output->Get_high_precision()) //{ - // sprintf(l_s, "%12.0f", (double) n); + // snprintf(l_s, PhreeqcPtr->max_line, "%12.0f", (double) n); //} //else //{ - // sprintf(l_s, "%20.0f", (double) n); + // snprintf(l_s, PhreeqcPtr->max_line, "%20.0f", (double) n); //} bool temp_high_precision = (PhreeqcPtr->current_selected_output != NULL) ? PhreeqcPtr->current_selected_output->Get_high_precision() : PhreeqcPtr->high_precision; if (!temp_high_precision) { - sprintf(l_s, "%12.0f", (double) n); + snprintf(l_s, PhreeqcPtr->max_line, "%12.0f", (double) n); } else { - sprintf(l_s, "%20.0f", (double) n); + snprintf(l_s, PhreeqcPtr->max_line, "%20.0f", (double) n); } } else @@ -524,11 +524,11 @@ numtostr(char * Result, LDBLE n) PhreeqcPtr->high_precision; if (!temp_high_precision) { - sprintf(l_s, "%12.4e", (double) n); + snprintf(l_s, PhreeqcPtr->max_line, "%12.4e", (double) n); } else { - sprintf(l_s, "%20.12e", (double) n); + snprintf(l_s, PhreeqcPtr->max_line, "%20.12e", (double) n); } } i = (int) strlen(l_s) + 1; @@ -539,8 +539,8 @@ numtostr(char * Result, LDBLE n) PhreeqcPtr->free_check_null(l_s); return (Result); /* } else { - if (PhreeqcPtr->punch.high_precision == FALSE) sprintf(l_s, "%30.10f", n); - else sprintf(l_s, "%30.12f", n); + if (PhreeqcPtr->punch.high_precision == FALSE) snprintf(l_s, PhreeqcPtr->max_line, "%30.10f", n); + else snprintf(l_s, PhreeqcPtr->max_line, "%30.12f", n); i = strlen(l_s) + 1; do { i--; @@ -612,6 +612,7 @@ parse(char * l_inbuf, tokenrec ** l_buf) if (j + 1 > m) m = j + 1; t->UU.sp = (char *) PhreeqcPtr->PHRQ_calloc(m, sizeof(char)); + t->sp_sz = m; if (t->UU.sp == NULL) { PhreeqcPtr->malloc_error(); @@ -739,6 +740,7 @@ parse(char * l_inbuf, tokenrec ** l_buf) if (m < 256) m = 256; t->UU.sp = (char *) PhreeqcPtr->PHRQ_calloc(m, sizeof(char)); + t->sp_sz = m; if (t->UU.sp == NULL) { PhreeqcPtr->malloc_error(); @@ -746,7 +748,7 @@ parse(char * l_inbuf, tokenrec ** l_buf) exit(4); #endif } - sprintf(t->UU.sp, "%.*s", + snprintf(t->UU.sp, t->sp_sz, "%.*s", (int) (strlen(l_inbuf) - i + 1), l_inbuf + i - 1); i = (int) strlen(l_inbuf) + 1; @@ -2232,7 +2234,7 @@ factor(struct LOC_exec * LINK) { if (PhreeqcPtr->use.Get_mix_in()) { - sprintf(string, "Mix %d", PhreeqcPtr->use.Get_n_mix_user()); + snprintf(string, sizeof(string), "Mix %d", PhreeqcPtr->use.Get_n_mix_user()); n.UU.sval = PhreeqcPtr->string_duplicate(string); } else @@ -2251,7 +2253,7 @@ factor(struct LOC_exec * LINK) } else if (PhreeqcPtr->state == ADVECTION || PhreeqcPtr->state == TRANSPORT || PhreeqcPtr->state == PHAST) { - sprintf(string, "Cell %d", PhreeqcPtr->cell_no); + snprintf(string, sizeof(string), "Cell %d", PhreeqcPtr->cell_no); n.UU.sval = PhreeqcPtr->string_duplicate(string); } else @@ -3608,7 +3610,7 @@ factor(struct LOC_exec * LINK) std::string std_num; { - sprintf(token, "%*.*e", length, width, nmbr); + snprintf(token, sizeof(token), "%*.*e", length, width, nmbr); std_num = token; } @@ -3651,7 +3653,7 @@ factor(struct LOC_exec * LINK) std::string std_num; { - sprintf(token, "%*.*f", length, width, nmbr); + snprintf(token, sizeof(token), "%*.*f", length, width, nmbr); std_num = token; } @@ -4729,12 +4731,12 @@ cmdload(bool merging, char * name, struct LOC_exec *LINK) cmdnew(LINK); if (f != NULL) { - sprintf(STR1, "%s.TEXT", name); + snprintf(STR1, sizeof(STR1), "%s.TEXT", name); f = freopen(STR1, "r", f); } else { - sprintf(STR1, "%s.TEXT", name); + snprintf(STR1, sizeof(STR1), "%s.TEXT", name); f = fopen(STR1, "r"); } if (f == NULL) @@ -7213,6 +7215,7 @@ _NilCheck(void) return _Escape(-3); } +#ifdef SKIP /* The following is suitable for the HP Pascal operating system. It might want to be revised when emulating another system. */ @@ -7233,7 +7236,7 @@ _ShowEscape(char *buf, int code, int ior, char *prefix) } if (code == -10) { - sprintf(bufp, "Pascal system I/O error %d", ior); + snprintf(bufp, sizeof(bufp), "Pascal system I/O error %d", ior); // FIXME -- replace sizeof switch (ior) { case 3: @@ -7273,7 +7276,7 @@ _ShowEscape(char *buf, int code, int ior, char *prefix) } else { - sprintf(bufp, "Pascal system error %d", code); + snprintf(bufp, sizeof(bufp), "Pascal system error %d", code); // FIXME -- replace sizeof switch (code) { case -2: @@ -7307,7 +7310,7 @@ _ShowEscape(char *buf, int code, int ior, char *prefix) } return buf; } - +#endif int PBasic:: _Escape(int code) { diff --git a/phreeqcpp/PBasic.h b/phreeqcpp/PBasic.h index 749b7077..95d77db2 100644 --- a/phreeqcpp/PBasic.h +++ b/phreeqcpp/PBasic.h @@ -79,6 +79,7 @@ typedef struct tokenrec //#ifdef PHREEQCI_GUI size_t n_sz; char *sz_num; + size_t sp_sz; //#endif } tokenrec; diff --git a/phreeqcpp/PHRQ_io_output.cpp b/phreeqcpp/PHRQ_io_output.cpp index 5eaeb5c1..8cc33f05 100644 --- a/phreeqcpp/PHRQ_io_output.cpp +++ b/phreeqcpp/PHRQ_io_output.cpp @@ -136,7 +136,7 @@ fpunchf_user(int user_index, const char *format, double d) warning_msg(error_string); fpunchf_user_s_warning = 1; } - sprintf(fpunchf_user_buffer, "no_heading_%d", + snprintf(fpunchf_user_buffer, sizeof(fpunchf_user_buffer), "no_heading_%d", (user_index - user_punch_count_headings) + 1); name = fpunchf_user_buffer; } @@ -173,7 +173,7 @@ fpunchf_user(int user_index, const char *format, char * d) warning_msg(error_string); fpunchf_user_s_warning = 1; } - sprintf(fpunchf_user_buffer, "no_heading_%d", + snprintf(fpunchf_user_buffer, sizeof(fpunchf_user_buffer), "no_heading_%d", (user_index - user_punch_count_headings) + 1); name = fpunchf_user_buffer; } diff --git a/phreeqcpp/Phreeqc.h b/phreeqcpp/Phreeqc.h index dd414fb2..c3f20aae 100644 --- a/phreeqcpp/Phreeqc.h +++ b/phreeqcpp/Phreeqc.h @@ -481,7 +481,7 @@ public: // parse.cpp ------------------------------- int check_eqn(int association); - int get_charge(char* charge, LDBLE* z); + int get_charge(char* charge, size_t charge_size, LDBLE* z); int get_elt(const char** t_ptr, std::string& element, int* i); int get_elts_in_species(const char** t_ptr, LDBLE coef); int get_num(const char** t_ptr, LDBLE* num); diff --git a/phreeqcpp/ReadClass.cxx b/phreeqcpp/ReadClass.cxx index 937d6575..fda93428 100644 --- a/phreeqcpp/ReadClass.cxx +++ b/phreeqcpp/ReadClass.cxx @@ -551,7 +551,7 @@ run_as_cells(void) rate_sim_time = 0; for (reaction_step = 1; reaction_step <= count_steps; reaction_step++) { - sprintf(token, "Reaction step %d.", reaction_step); + snprintf(token, sizeof(token), "Reaction step %d.", reaction_step); if (reaction_step > 1 && incremental_reactions == FALSE) { copy_use(-2); @@ -635,7 +635,7 @@ run_as_cells(void) rate_sim_time = 0; reaction_step = 1; - sprintf(token, "Reaction step %d.", reaction_step); + snprintf(token, sizeof(token), "Reaction step %d.", reaction_step); dup_print(token, FALSE); /* @@ -763,7 +763,7 @@ run_as_cells(void) rate_sim_time = 0; for (reaction_step = 1; reaction_step <= count_steps; reaction_step++) { - sprintf(token, "Reaction step %d.", reaction_step); + snprintf(token, sizeof(token), "Reaction step %d.", reaction_step); if (reaction_step > 1 && incremental_reactions == FALSE) { copy_use(-2); diff --git a/phreeqcpp/basicsubs.cpp b/phreeqcpp/basicsubs.cpp index a21f34d5..3e93470b 100644 --- a/phreeqcpp/basicsubs.cpp +++ b/phreeqcpp/basicsubs.cpp @@ -2097,12 +2097,13 @@ match_elts_in_species(const char *name, const char *mytemplate) * write out string */ token[0] = '\0'; + assert(MAX_LENGTH == sizeof(token1)); for (i = 0; i < count_match_tokens; i++) { strcat(token, match_vector[i].first.c_str()); if (match_vector[i].second != 1.0) { - sprintf(token1, "%g", (double) match_vector[i].second); + snprintf(token1, sizeof(token1), "%g", (double) match_vector[i].second); strcat(token, token1); } } diff --git a/phreeqcpp/class_main.cpp b/phreeqcpp/class_main.cpp index 74721e86..fe3d0e77 100644 --- a/phreeqcpp/class_main.cpp +++ b/phreeqcpp/class_main.cpp @@ -1,3 +1,6 @@ +#ifdef DOS +#include +#endif #include "Phreeqc.h" #include "NameDouble.h" @@ -296,9 +299,9 @@ write_banner(void) /* version */ #ifdef NPP - len = sprintf(buffer, "* PHREEQC-%s *", "3.7.1"); + len = snprintf(buffer, sizeof(buffer), "* PHREEQC-%s *", "3.7.1"); #else - len = sprintf(buffer, "* PHREEQC-%s *", "@VERSION@"); + len = snprintf(buffer, sizeof(buffer), "* PHREEQC-%s *", "@VERSION@"); #endif indent = (44 - len) / 2; screen_msg(sformatf("%14c║%*c%s%*c║\n", ' ', indent, ' ', buffer, @@ -320,9 +323,9 @@ write_banner(void) /* date */ #ifdef NPP - len = sprintf(buffer, "%s", "July 5, 2021"); + len = snprintf(buffer, sizeof(buffer), "%s", "July 5, 2021"); #else - len = sprintf(buffer, "%s", "@VER_DATE@"); + len = snprintf(buffer, sizeof(buffer), "%s", "@VER_DATE@"); #endif indent = (44 - len) / 2; screen_msg(sformatf("%14c║%*c%s%*c║\n", ' ', indent, ' ', buffer, diff --git a/phreeqcpp/inverse.cpp b/phreeqcpp/inverse.cpp index 81a33781..b9bbcd0d 100644 --- a/phreeqcpp/inverse.cpp +++ b/phreeqcpp/inverse.cpp @@ -371,7 +371,7 @@ setup_inverse(class inverse *inv_ptr) f = -1.0; } column = i; - sprintf(token, "soln %d", i); + snprintf(token, sizeof(token), "soln %d", i); col_name[column] = string_hsave(token); for (j = 0; j < (int)master.size(); j++) { @@ -538,7 +538,7 @@ setup_inverse(class inverse *inv_ptr) { my_array[(size_t)row * max_column_count + (size_t)column] = 0.0; } - sprintf(token, "%s %d", row_name[row], j); + snprintf(token, sizeof(token), "%s %d", row_name[row], j); col_name[column] = string_hsave(token); column++; } @@ -549,13 +549,13 @@ setup_inverse(class inverse *inv_ptr) for (i = 0; i < inv_ptr->count_solns; i++) { - sprintf(token, "ph %d", i); + snprintf(token, sizeof(token), "ph %d", i); col_name[column] = string_hsave(token); column++; } /* put names in col_name for water */ - sprintf(token, "water"); + snprintf(token, sizeof(token), "water"); col_name[column] = string_hsave(token); column++; @@ -564,7 +564,7 @@ setup_inverse(class inverse *inv_ptr) { for (j = 0; j < inv_ptr->isotope_unknowns.size(); j++) { - sprintf(token, "%d%s %d", + snprintf(token, sizeof(token), "%d%s %d", (int) inv_ptr->isotope_unknowns[j].isotope_number, inv_ptr->isotope_unknowns[j].elt_name, i); col_name[column] = string_hsave(token); @@ -581,7 +581,7 @@ setup_inverse(class inverse *inv_ptr) { for (j = 0; j < inv_ptr->isotopes.size(); j++) { - sprintf(token, "%d%s %s", + snprintf(token, sizeof(token), "%d%s %s", (int) inv_ptr->isotopes[j].isotope_number, inv_ptr->isotopes[j].elt_name, inv_ptr->phases[i].phase->name); @@ -649,7 +649,7 @@ setup_inverse(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)column] = 0.0; } } - sprintf(token, "%s %d", "charge", i); + snprintf(token, sizeof(token), "%s %d", "charge", i); row_name[count_rows] = string_hsave(token); count_rows++; } @@ -672,7 +672,7 @@ setup_inverse(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)column] = inv_ptr->dalk_dc[i]; } - sprintf(token, "%s %d", "dAlk", i); + snprintf(token, sizeof(token), "%s %d", "dAlk", i); row_name[count_rows] = string_hsave(token); count_rows++; } @@ -688,7 +688,7 @@ setup_inverse(class inverse *inv_ptr) for (size_t j = 0; j < inv_ptr->isotopes.size(); j++) { isotope_balance_equation(inv_ptr, (int)count_rows, (int)j); - sprintf(token, "%d%s", (int) inv_ptr->isotopes[j].isotope_number, + snprintf(token, sizeof(token), "%d%s", (int) inv_ptr->isotopes[j].isotope_number, inv_ptr->isotopes[j].elt_name); row_name[count_rows] = string_hsave(token); count_rows++; @@ -761,7 +761,7 @@ setup_inverse(class inverse *inv_ptr) } my_array[count_rows * max_column_count + (size_t)column] = 1.0 * f; my_array[count_rows * max_column_count + (size_t)i] = -coef * f; - sprintf(token, "%s %s", inv_ptr->elts[j].master->elt->name, "eps+"); + snprintf(token, sizeof(token), "%s %s", inv_ptr->elts[j].master->elt->name, "eps+"); row_name[count_rows] = string_hsave(token); count_rows++; @@ -795,7 +795,7 @@ setup_inverse(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)i] = -coef * f; my_array[count_rows * max_column_count + (size_t)column] = -1.0 * f; - sprintf(token, "%s %s", inv_ptr->elts[j].master->elt->name, + snprintf(token, sizeof(token), "%s %s", inv_ptr->elts[j].master->elt->name, "eps-"); row_name[count_rows] = string_hsave(token); count_rows++; @@ -821,7 +821,7 @@ setup_inverse(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)column] = 1.0; my_array[count_rows * max_column_count + (size_t)i] = -coef; - sprintf(token, "%s %s", "pH", "eps+"); + snprintf(token, sizeof(token), "%s %s", "pH", "eps+"); row_name[count_rows] = string_hsave(token); count_rows++; @@ -829,7 +829,7 @@ setup_inverse(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)column] = -1.0; my_array[count_rows * max_column_count + (size_t)i] = -coef; - sprintf(token, "%s %s", "pH", "eps-"); + snprintf(token, sizeof(token), "%s %s", "pH", "eps-"); row_name[count_rows] = string_hsave(token); count_rows++; } @@ -845,7 +845,7 @@ setup_inverse(class inverse *inv_ptr) /* set upper limit of change in positive direction */ my_array[count_rows * max_column_count + (size_t)column] = 1.0; my_array[count_rows * max_column_count + count_unknowns] = coef; - sprintf(token, "%s %s", "water", "eps+"); + snprintf(token, sizeof(token), "%s %s", "water", "eps+"); row_name[count_rows] = string_hsave(token); count_rows++; @@ -853,7 +853,7 @@ setup_inverse(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)column] = -1.0; my_array[count_rows * max_column_count + count_unknowns] = coef; - sprintf(token, "%s %s", "water", "eps-"); + snprintf(token, sizeof(token), "%s %s", "water", "eps-"); row_name[count_rows] = string_hsave(token); count_rows++; } @@ -890,7 +890,7 @@ setup_inverse(class inverse *inv_ptr) /* set upper limit of change in positive direction */ my_array[count_rows * max_column_count + (size_t)column] = 1.0; my_array[count_rows * max_column_count + (size_t)i] = -coef; - sprintf(token, "%d%s %s", + snprintf(token, sizeof(token), "%d%s %s", (int) kit->second.Get_isotope_number(), kit->second.Get_elt_name().c_str(), "eps+"); row_name[count_rows] = string_hsave(token); @@ -900,7 +900,7 @@ setup_inverse(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)column] = -1.0; my_array[count_rows * max_column_count + (size_t)i] = -coef; - sprintf(token, "%d%s %s", + snprintf(token, sizeof(token), "%d%s %s", (int) kit->second.Get_isotope_number(), kit->second.Get_elt_name().c_str(), "eps-"); row_name[count_rows] = string_hsave(token); @@ -1777,7 +1777,7 @@ print_model(class inverse *inv_ptr) d2 = 0.0; if (equal(d3, 0.0, MIN_TOTAL_INVERSE) == TRUE) d3 = 0.0; - sprintf(token, "%d%s", + snprintf(token, sizeof(token), "%d%s", (int) inv_ptr->isotope_unknowns[j]. isotope_number, inv_ptr->isotope_unknowns[j].elt_name); @@ -1853,7 +1853,7 @@ print_model(class inverse *inv_ptr) d2 = 0.0; if (equal(d3, 0.0, 1e-7) == TRUE) d3 = 0.0; - sprintf(token, "%d%s %s", + snprintf(token, sizeof(token), "%d%s %s", (int) inv_ptr->isotopes[j].isotope_number, inv_ptr->isotopes[j].elt_name, inv_ptr->phases[i].phase->name); @@ -2060,7 +2060,7 @@ punch_model_heading(class inverse *inv_ptr) */ for (i = 0; i < inv_ptr->count_solns; i++) { - sprintf(token, "Soln_%d", inv_ptr->solns[i]); + snprintf(token, sizeof(token), "Soln_%d", inv_ptr->solns[i]); std::string tok1(token); tok1.append("_min"); std::string tok2(token); @@ -3618,7 +3618,7 @@ check_isotopes(class inverse *inv_ptr) } else { - sprintf(token, "%g%s", + snprintf(token, sizeof(token), "%g%s", (double) kit->second.Get_isotope_number(), kit->second.Get_elt_name().c_str()); for (l = 0; l < count_iso_defaults; l++) @@ -3764,7 +3764,7 @@ phase_isotope_inequalities(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)col_phases + (size_t)i] = inv_ptr->phases[i].isotopes[j].ratio_uncertainty; my_array[count_rows * max_column_count + (size_t)column] = 1.0; - sprintf(token, "%s %s", inv_ptr->phases[i].phase->name, + snprintf(token, sizeof(token), "%s %s", inv_ptr->phases[i].phase->name, "iso pos"); row_name[count_rows] = string_hsave(token); count_rows++; @@ -3772,7 +3772,7 @@ phase_isotope_inequalities(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)col_phases + (size_t)i] = inv_ptr->phases[i].isotopes[j].ratio_uncertainty; my_array[count_rows * max_column_count + (size_t)column] = -1.0; - sprintf(token, "%s %s", inv_ptr->phases[i].phase->name, + snprintf(token, sizeof(token), "%s %s", inv_ptr->phases[i].phase->name, "iso neg"); row_name[count_rows] = string_hsave(token); count_rows++; @@ -3784,7 +3784,7 @@ phase_isotope_inequalities(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)col_phases + (size_t)i] = -inv_ptr->phases[i].isotopes[j].ratio_uncertainty; my_array[count_rows * max_column_count + (size_t)column] = -1.0; - sprintf(token, "%s %s", inv_ptr->phases[i].phase->name, + snprintf(token, sizeof(token), "%s %s", inv_ptr->phases[i].phase->name, "iso pos"); row_name[count_rows] = string_hsave(token); count_rows++; @@ -3792,7 +3792,7 @@ phase_isotope_inequalities(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)col_phases + (size_t)i] = -inv_ptr->phases[i].isotopes[j].ratio_uncertainty; my_array[count_rows * max_column_count + (size_t)column] = 1.0; - sprintf(token, "%s %s", inv_ptr->phases[i].phase->name, + snprintf(token, sizeof(token), "%s %s", inv_ptr->phases[i].phase->name, "iso neg"); row_name[count_rows] = string_hsave(token); count_rows++; @@ -3829,7 +3829,7 @@ write_optimize_names(class inverse *inv_ptr) { for (i = 0; i < inv_ptr->count_solns; i++) { - sprintf(token, "%s %s %d", "optimize", + snprintf(token, sizeof(token), "%s %s %d", "optimize", inv_ptr->elts[j].master->elt->name, inv_ptr->solns[i]); row_name[row] = string_hsave(token); row++; @@ -3842,7 +3842,7 @@ write_optimize_names(class inverse *inv_ptr) { for (i = 0; i < inv_ptr->count_solns; i++) { - sprintf(token, "%s %s %d", "optimize", "pH", inv_ptr->solns[i]); + snprintf(token, sizeof(token), "%s %s %d", "optimize", "pH", inv_ptr->solns[i]); row_name[row] = string_hsave(token); row++; } @@ -3850,7 +3850,7 @@ write_optimize_names(class inverse *inv_ptr) /* * water */ - sprintf(token, "%s %s", "optimize", "water"); + snprintf(token, sizeof(token), "%s %s", "optimize", "water"); row_name[row] = string_hsave(token); row++; /* @@ -3860,7 +3860,7 @@ write_optimize_names(class inverse *inv_ptr) { for (j = 0; j < inv_ptr->isotope_unknowns.size(); j++) { - sprintf(token, "%s %d%s %d", "optimize", + snprintf(token, sizeof(token), "%s %d%s %d", "optimize", (int) inv_ptr->isotope_unknowns[j].isotope_number, inv_ptr->isotope_unknowns[j].elt_name, inv_ptr->solns[i]); row_name[row] = string_hsave(token); @@ -3875,7 +3875,7 @@ write_optimize_names(class inverse *inv_ptr) { for (j = 0; j < inv_ptr->isotopes.size(); j++) { - sprintf(token, "%s %s %d%s", "optimize", + snprintf(token, sizeof(token), "%s %s %d%s", "optimize", inv_ptr->phases[i].phase->name, (int) inv_ptr->isotopes[j].isotope_number, inv_ptr->isotopes[j].elt_name); diff --git a/phreeqcpp/kinetics.cpp b/phreeqcpp/kinetics.cpp index 27ce4bdc..f6e02338 100644 --- a/phreeqcpp/kinetics.cpp +++ b/phreeqcpp/kinetics.cpp @@ -1075,7 +1075,7 @@ rk_kinetics(int i, LDBLE kin_time, int use_mix, int nsaver, } { char str[MAX_LENGTH]; - sprintf(str, "RK-steps: Bad%4d. OK%5d. Time %3d%%", step_bad, + snprintf(str, sizeof(str), "RK-steps: Bad%4d. OK%5d. Time %3d%%", step_bad, step_ok, (int) (100 * h_sum / kin_time)); status(0, str, true); } diff --git a/phreeqcpp/mainsubs.cpp b/phreeqcpp/mainsubs.cpp index 0f1c714a..5cc76a3f 100644 --- a/phreeqcpp/mainsubs.cpp +++ b/phreeqcpp/mainsubs.cpp @@ -381,7 +381,7 @@ initial_solutions(int print) } if (print == TRUE) { - sprintf(token, "Initial solution %d.\t%.350s", + snprintf(token, sizeof(token), "Initial solution %d.\t%.350s", solution_ref.Get_n_user(), solution_ref.Get_description().c_str()); dup_print(token, FALSE); } @@ -518,7 +518,7 @@ initial_exchangers(int print) } if (print == TRUE) { - sprintf(token, "Exchange %d.\t%.350s", + snprintf(token, sizeof(token), "Exchange %d.\t%.350s", exchange_ptr->Get_n_user(), exchange_ptr->Get_description().c_str()); dup_print(token, FALSE); } @@ -609,7 +609,7 @@ initial_gas_phases(int print) } if (print == TRUE) { - sprintf(token, "Gas_Phase %d.\t%.350s", + snprintf(token, sizeof(token), "Gas_Phase %d.\t%.350s", gas_phase_ptr->Get_n_user(), gas_phase_ptr->Get_description().c_str()); dup_print(token, FALSE); } @@ -660,7 +660,7 @@ initial_gas_phases(int print) } if (fabs(gas_phase_ptr->Get_total_p() - use.Get_solution_ptr()->Get_patm()) > 5) { - sprintf(token, + snprintf(token, sizeof(token), "WARNING: While initializing gas phase composition by equilibrating:\n%s (%.2f atm) %s (%.2f atm).\n%s.", " Gas phase pressure", (double) gas_phase_ptr->Get_total_p(), @@ -828,7 +828,7 @@ reactions(void) for (reaction_step = 1; reaction_step <= count_steps; reaction_step++) { overall_iterations = 0; - sprintf(token, "Reaction step %d.", reaction_step); + snprintf(token, sizeof(token), "Reaction step %d.", reaction_step); if (reaction_step > 1 && incremental_reactions == FALSE) { copy_use(-2); @@ -934,7 +934,7 @@ saver(void) if (save.solution == TRUE) { - sprintf(token, "Solution after simulation %d.", simulation); + snprintf(token, sizeof(token), "Solution after simulation %d.", simulation); description_x = token; n = save.n_solution_user; xsolution_save(n); @@ -1025,7 +1025,7 @@ xexchange_save(int n_user) temp_exchange.Set_n_user(n_user); temp_exchange.Set_n_user_end(n_user); temp_exchange.Set_new_def(false); - sprintf(token, "Exchange assemblage after simulation %d.", simulation); + snprintf(token, sizeof(token), "Exchange assemblage after simulation %d.", simulation); temp_exchange.Set_description(token); temp_exchange.Set_solution_equilibria(false); temp_exchange.Set_n_solution(-999); @@ -1108,7 +1108,7 @@ xgas_save(int n_user) */ temp_gas_phase.Set_n_user(n_user); temp_gas_phase.Set_n_user_end(n_user); - sprintf(token, "Gas phase after simulation %d.", simulation); + snprintf(token, sizeof(token), "Gas phase after simulation %d.", simulation); temp_gas_phase.Set_description(token); temp_gas_phase.Set_new_def(false); temp_gas_phase.Set_solution_equilibria(false); @@ -2094,10 +2094,10 @@ run_simulations(void) #endif #if defined PHREEQCI_GUI - sprintf(token, "\nSimulation %d\n", simulation); + snprintf(token, sizeof(token), "\nSimulation %d\n", simulation); screen_msg(token); #endif - sprintf(token, "Reading input data for simulation %d.", simulation); + snprintf(token, sizeof(token), "Reading input data for simulation %d.", simulation); dup_print(token, TRUE); if (read_input() == EOF) @@ -2105,7 +2105,7 @@ run_simulations(void) if (title_x.size() > 0) { - sprintf(token, "TITLE"); + snprintf(token, sizeof(token), "TITLE"); dup_print(token, TRUE); if (pr.headings == TRUE) { diff --git a/phreeqcpp/parse.cpp b/phreeqcpp/parse.cpp index 82eb5400..6ea041d9 100644 --- a/phreeqcpp/parse.cpp +++ b/phreeqcpp/parse.cpp @@ -259,7 +259,7 @@ check_eqn(int association) /* ---------------------------------------------------------------------- */ int Phreeqc:: -get_charge(char *charge, LDBLE * l_z) +get_charge(char *charge, size_t charge_size, LDBLE * l_z) /* ---------------------------------------------------------------------- */ /* * Function takes character string and calculates the charge on @@ -367,7 +367,7 @@ get_charge(char *charge, LDBLE * l_z) */ if (abs(i) > 1) { - if (sprintf(charge, "%-+d", i) == EOF) + if (snprintf(charge, charge_size, "%-+d", i) == EOF) { error_string = sformatf( "Error converting charge to character string, %s.", diff --git a/phreeqcpp/pitzer.cpp b/phreeqcpp/pitzer.cpp index f2b6a92f..77de08e5 100644 --- a/phreeqcpp/pitzer.cpp +++ b/phreeqcpp/pitzer.cpp @@ -129,7 +129,7 @@ pitzer_tidy(void) { for (j = i + 1; j < count_cations; j++) { - sprintf(line, "%s %s 1", spec[i]->name, spec[j]->name); + snprintf(line, max_line, "%s %s 1", spec[i]->name, spec[j]->name); pzp_ptr = pitz_param_read(line, 2); pzp_ptr->type = TYPE_ETHETA; size_t count_pitz_param = pitz_params.size(); @@ -141,7 +141,7 @@ pitzer_tidy(void) { for (j = i + 1; j < 2 * (int)s.size() + count_anions; j++) { - sprintf(line, "%s %s 1", spec[i]->name, spec[j]->name); + snprintf(line, max_line, "%s %s 1", spec[i]->name, spec[j]->name); pzp_ptr = pitz_param_read(line, 2); pzp_ptr->type = TYPE_ETHETA; size_t count_pitz_param = pitz_params.size(); diff --git a/phreeqcpp/print.cpp b/phreeqcpp/print.cpp index 610b6c13..612460be 100644 --- a/phreeqcpp/print.cpp +++ b/phreeqcpp/print.cpp @@ -590,7 +590,7 @@ print_gas_phase(void) return (OK); if (gas_unknown->moles < 1e-12) { - sprintf(info, "Fixed-pressure gas phase %d dissolved completely", + snprintf(info, sizeof(info), "Fixed-pressure gas phase %d dissolved completely", use.Get_n_gas_phase_user()); print_centered(info); return (OK); @@ -1378,7 +1378,7 @@ print_pp_assemblage(void) x[j]->moles = 0.0; if (state != TRANSPORT && state != PHAST) { - sprintf(token, " %11.3e %11.3e %11.3e", + snprintf(token, sizeof(token), " %11.3e %11.3e %11.3e", (double) (comp_ptr->Get_moles() + comp_ptr->Get_delta()), (double) x[j]->moles, (double) (x[j]->moles - comp_ptr->Get_moles() - @@ -1386,7 +1386,7 @@ print_pp_assemblage(void) } else { - sprintf(token, " %11.3e %11.3e %11.3e", + snprintf(token, sizeof(token), " %11.3e %11.3e %11.3e", (double) comp_ptr->Get_initial_moles(), (double) x[j]->moles, (double) (x[j]->moles - comp_ptr->Get_initial_moles())); diff --git a/phreeqcpp/readtr.cpp b/phreeqcpp/readtr.cpp index 85d579ee..cf30b67d 100644 --- a/phreeqcpp/readtr.cpp +++ b/phreeqcpp/readtr.cpp @@ -749,21 +749,21 @@ read_transport(void) { if (max_cells == count_length) { - sprintf(token, + snprintf(token, sizeof(token), "Number of cells is increased to number of 'lengths' %d.", count_length); warning_msg(token); } else if (max_cells == count_disp) { - sprintf(token, + snprintf(token, sizeof(token), "Number of cells is increased to number of dispersivities %d.", count_disp); warning_msg(token); } else { - sprintf(token, + snprintf(token, sizeof(token), "Number of mobile cells is increased to (ceil)(number of porosities) / (1 + number of stagnant zones) = %d.", (int) ceil(((double)count_por / (1 + (double)stag_data.count_stag)))); warning_msg(token); @@ -1222,26 +1222,26 @@ dump_cpp(void) fs << "END" << "\n"; char token[MAX_LENGTH]; - sprintf(token, "KNOBS\n"); + snprintf(token, sizeof(token), "KNOBS\n"); fs << token; - sprintf(token, "\t-iter%15d\n", itmax); + snprintf(token, sizeof(token), "\t-iter%15d\n", itmax); fs << token; - sprintf(token, "\t-tol %15.3e\n", (double)ineq_tol); + snprintf(token, sizeof(token), "\t-tol %15.3e\n", (double)ineq_tol); fs << token; - sprintf(token, "\t-step%15.3e\n", (double)step_size); + snprintf(token, sizeof(token), "\t-step%15.3e\n", (double)step_size); fs << token; - sprintf(token, "\t-pe_s%15.3e\n", (double)pe_step_size); + snprintf(token, sizeof(token), "\t-pe_s%15.3e\n", (double)pe_step_size); fs << token; - sprintf(token, "\t-diag "); + snprintf(token, sizeof(token), "\t-diag "); fs << token; if (diagonal_scale == TRUE) { - sprintf(token, "true\n"); + snprintf(token, sizeof(token), "true\n"); fs << token; } else { - sprintf(token, "false\n"); + snprintf(token, sizeof(token), "false\n"); fs << token; } std::map < int, SelectedOutput >::iterator so_it = SelectedOutput_map.begin(); @@ -1249,223 +1249,223 @@ dump_cpp(void) { current_selected_output = &(so_it->second); - sprintf(token, "SELECTED_OUTPUT %d\n", current_selected_output->Get_n_user()); + snprintf(token, sizeof(token), "SELECTED_OUTPUT %d\n", current_selected_output->Get_n_user()); fs << token; - //sprintf(token, "\t-file %-15s\n", "sel_o$$$.prn"); + //snprintf(token, sizeof(token), "\t-file %-15s\n", "sel_o$$$.prn"); //fs << token; fs << "\t-file " << "sel_o$$$" << current_selected_output->Get_n_user() << ".prn\n"; //if (punch.count_totals != 0) if (current_selected_output->Get_totals().size() > 0) { - sprintf(token, "\t-tot "); + snprintf(token, sizeof(token), "\t-tot "); fs << token; for (size_t i = 0; i < current_selected_output->Get_totals().size(); i++) { - sprintf(token, " %s", current_selected_output->Get_totals()[i].first.c_str()); + snprintf(token, sizeof(token), " %s", current_selected_output->Get_totals()[i].first.c_str()); fs << token; } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } if (current_selected_output->Get_molalities().size() > 0) { - sprintf(token, "\t-mol "); + snprintf(token, sizeof(token), "\t-mol "); fs << token; for (size_t i = 0; i < current_selected_output->Get_molalities().size(); i++) { - sprintf(token, " %s", current_selected_output->Get_molalities()[i].first.c_str()); + snprintf(token, sizeof(token), " %s", current_selected_output->Get_molalities()[i].first.c_str()); fs << token; } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } if (current_selected_output->Get_activities().size() > 0) { - sprintf(token, "\t-act "); + snprintf(token, sizeof(token), "\t-act "); fs << token; for (size_t i = 0; i < current_selected_output->Get_activities().size(); i++) { - sprintf(token, " %s", current_selected_output->Get_activities()[i].first.c_str()); + snprintf(token, sizeof(token), " %s", current_selected_output->Get_activities()[i].first.c_str()); fs << token; } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } if (current_selected_output->Get_pure_phases().size() > 0) { - sprintf(token, "\t-equ "); + snprintf(token, sizeof(token), "\t-equ "); fs << token; for (size_t i = 0; i < current_selected_output->Get_pure_phases().size(); i++) { - sprintf(token, " %s", current_selected_output->Get_pure_phases()[i].first.c_str()); + snprintf(token, sizeof(token), " %s", current_selected_output->Get_pure_phases()[i].first.c_str()); fs << token; } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } if (current_selected_output->Get_si().size() > 0) { - sprintf(token, "\t-si "); + snprintf(token, sizeof(token), "\t-si "); fs << token; for (size_t i = 0; i < current_selected_output->Get_si().size(); i++) { - sprintf(token, " %s", current_selected_output->Get_si()[i].first.c_str()); + snprintf(token, sizeof(token), " %s", current_selected_output->Get_si()[i].first.c_str()); fs << token; } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } if (current_selected_output->Get_gases().size() > 0) { - sprintf(token, "\t-gas "); + snprintf(token, sizeof(token), "\t-gas "); fs << token; for (size_t i = 0; i < current_selected_output->Get_gases().size(); i++) { - sprintf(token, " %s", current_selected_output->Get_gases()[i].first.c_str()); + snprintf(token, sizeof(token), " %s", current_selected_output->Get_gases()[i].first.c_str()); fs << token; } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } if (current_selected_output->Get_s_s().size() > 0) { - sprintf(token, "\t-solid_solutions "); + snprintf(token, sizeof(token), "\t-solid_solutions "); fs << token; for (size_t i = 0; i < current_selected_output->Get_s_s().size(); i++) { - sprintf(token, " %s", current_selected_output->Get_s_s()[i].first.c_str()); + snprintf(token, sizeof(token), " %s", current_selected_output->Get_s_s()[i].first.c_str()); fs << token; } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } if (current_selected_output->Get_kinetics().size() > 0) { - sprintf(token, "\t-kin "); + snprintf(token, sizeof(token), "\t-kin "); fs << token; for (size_t i = 0; i < current_selected_output->Get_kinetics().size(); i++) { - sprintf(token, " %s", current_selected_output->Get_kinetics()[i].first.c_str()); + snprintf(token, sizeof(token), " %s", current_selected_output->Get_kinetics()[i].first.c_str()); fs << token; } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } } - sprintf(token, "TRANSPORT\n"); + snprintf(token, sizeof(token), "TRANSPORT\n"); fs << token; - sprintf(token, "\t-cells %6d\n", count_cells); + snprintf(token, sizeof(token), "\t-cells %6d\n", count_cells); fs << token; - sprintf(token, "\t-shifts%6d%6d\n", count_shifts, ishift); + snprintf(token, sizeof(token), "\t-shifts%6d%6d\n", count_shifts, ishift); fs << token; - sprintf(token, "\t-output_frequency %6d\n", print_modulus); + snprintf(token, sizeof(token), "\t-output_frequency %6d\n", print_modulus); fs << token; - sprintf(token, "\t-selected_output_frequency %6d\n", + snprintf(token, sizeof(token), "\t-selected_output_frequency %6d\n", punch_modulus); fs << token; - sprintf(token, "\t-bcon %6d%6d\n", bcon_first, bcon_last); + snprintf(token, sizeof(token), "\t-bcon %6d%6d\n", bcon_first, bcon_last); fs << token; - sprintf(token, "\t-timest %13.5e\n", (double)timest); + snprintf(token, sizeof(token), "\t-timest %13.5e\n", (double)timest); fs << token; if (!high_precision) { - sprintf(token, "\t-diffc %13.5e\n", (double)diffc); + snprintf(token, sizeof(token), "\t-diffc %13.5e\n", (double)diffc); fs << token; } else { - sprintf(token, "\t-diffc %20.12e\n", (double)diffc); + snprintf(token, sizeof(token), "\t-diffc %20.12e\n", (double)diffc); fs << token; } - sprintf(token, "\t-tempr %13.5e\n", (double)tempr); + snprintf(token, sizeof(token), "\t-tempr %13.5e\n", (double)tempr); fs << token; if (correct_disp == TRUE) { - sprintf(token, "\t-correct_disp %s\n", "True"); + snprintf(token, sizeof(token), "\t-correct_disp %s\n", "True"); fs << token; } else { - sprintf(token, "\t-correct_disp %s\n", "False"); + snprintf(token, sizeof(token), "\t-correct_disp %s\n", "False"); fs << token; } - sprintf(token, "\t-length\n"); + snprintf(token, sizeof(token), "\t-length\n"); fs << token; for (int i = 1; i <= count_cells; i++) { - sprintf(token, "%12.3e", (double)cell_data[i].length); + snprintf(token, sizeof(token), "%12.3e", (double)cell_data[i].length); fs << token; if (i > 0 && (i % 8) == 0) { - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; - sprintf(token, "\t-disp\n"); + snprintf(token, sizeof(token), "\t-disp\n"); fs << token; for (int i = 1; i <= count_cells; i++) { if (!high_precision) { - sprintf(token, "%12.3e", (double)cell_data[i].disp); + snprintf(token, sizeof(token), "%12.3e", (double)cell_data[i].disp); fs << token; } else { - sprintf(token, "%20.12e", (double)cell_data[i].disp); + snprintf(token, sizeof(token), "%20.12e", (double)cell_data[i].disp); fs << token; } if (i > 0 && (i % 8) == 0) { - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; - sprintf(token, "\t-punch_cells"); + snprintf(token, sizeof(token), "\t-punch_cells"); fs << token; l = 0; for (int i = 0; i < all_cells; i++) { if (cell_data[i].punch != TRUE) continue; - sprintf(token, " %d", i); + snprintf(token, sizeof(token), " %d", i); fs << token; l++; if ((l % 20) == 0) { - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; - sprintf(token, "\t-print_cells"); + snprintf(token, sizeof(token), "\t-print_cells"); fs << token; l = 0; for (int i = 0; i < all_cells; i++) { if (cell_data[i].print != TRUE) continue; - sprintf(token, " %d", i); + snprintf(token, sizeof(token), " %d", i); fs << token; l++; if ((l % 20) == 0) { - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; - sprintf(token, "\t-dump $$$.dmp\n"); + snprintf(token, sizeof(token), "\t-dump $$$.dmp\n"); fs << token; - sprintf(token, "\t-dump_frequency %d\n", dump_modulus); + snprintf(token, sizeof(token), "\t-dump_frequency %d\n", dump_modulus); fs << token; - sprintf(token, "\t-dump_restart %d\n", transport_step + 1); + snprintf(token, sizeof(token), "\t-dump_restart %d\n", transport_step + 1); fs << token; #if defined MULTICHART @@ -1473,7 +1473,7 @@ dump_cpp(void) chart_handler.dump(fs, 0); #endif - sprintf(token, "END\n"); + snprintf(token, sizeof(token), "END\n"); fs << token; return (OK); } diff --git a/phreeqcpp/transport.cpp b/phreeqcpp/transport.cpp index 32e0e0a8..36dda3cc 100644 --- a/phreeqcpp/transport.cpp +++ b/phreeqcpp/transport.cpp @@ -372,7 +372,7 @@ transport(void) /* multi_D calc's are OK if all cells have the same amount of water */ if (multi_Dflag == TRUE) { - sprintf(token, "multi_D calc's and stagnant: define MIXing factors explicitly, or \n\t give in -multi_D the Dw used for calculating the mobile-immobile exchange factor."); + snprintf(token, sizeof(token), "multi_D calc's and stagnant: define MIXing factors explicitly, or \n\t give in -multi_D the Dw used for calculating the mobile-immobile exchange factor."); warning_msg(token); } @@ -497,10 +497,10 @@ transport(void) * Now transport */ if (implicit) - sprintf(token, "\nCalculating implicit transport: %d (mobile) cells, %d shifts, %d mixruns, max. mixf = %g.\n\n", + snprintf(token, sizeof(token), "\nCalculating implicit transport: %d (mobile) cells, %d shifts, %d mixruns, max. mixf = %g.\n\n", count_cells, count_shifts - transport_start + 1, nmix, max_mixf); else - sprintf(token, "\nCalculating transport: %d (mobile) cells, %d shifts, %d mixruns...\n\n", + snprintf(token, sizeof(token), "\nCalculating transport: %d (mobile) cells, %d shifts, %d mixruns...\n\n", count_cells, count_shifts - transport_start + 1, nmix); warning_msg(token); max_iter = 0; @@ -544,14 +544,14 @@ transport(void) mixrun = j; if (multi_Dflag && j == floor((LDBLE)nmix / 2)) { - //sprintf(token, + //snprintf(token, sizeof(token), // "Transport step %3d. Multicomponent diffusion run %3d.", // transport_step, j); //dup_print(token, FALSE); } else if (!multi_Dflag) { - sprintf(token, "Transport step %3d. Mixrun %3d.", + snprintf(token, sizeof(token), "Transport step %3d. Mixrun %3d.", transport_step, j); dup_print(token, FALSE); } @@ -595,11 +595,11 @@ transport(void) max_iter = overall_iterations; cell_no = i; if (multi_Dflag) - sprintf(token, + snprintf(token, sizeof(token), "Transport step %3d. MCDrun %3d. Cell %3d. (Max. iter %3d)", transport_step, j, i, max_iter); else - sprintf(token, + snprintf(token, sizeof(token), "Transport step %3d. Mixrun %3d. Cell %3d. (Max. iter %3d)", transport_step, j, i, max_iter); status(0, token); @@ -665,7 +665,7 @@ transport(void) */ if (ishift != 0) { - sprintf(token, "Transport step %3d.", transport_step); + snprintf(token, sizeof(token), "Transport step %3d.", transport_step); dup_print(token, FALSE); if (b_c == 1) rate_sim_time_start = ((double)transport_step - 1) * @@ -758,11 +758,11 @@ transport(void) kin_time /= 2; cell_no = i; if (multi_Dflag) - sprintf(token, + snprintf(token, sizeof(token), "Transport step %3d. MCDrun %3d. Cell %3d. (Max. iter %3d)", transport_step, 0, i, max_iter); else - sprintf(token, + snprintf(token, sizeof(token), "Transport step %3d. Mixrun %3d. Cell %3d. (Max. iter %3d)", transport_step, 0, i, max_iter); status(0, token); @@ -807,14 +807,14 @@ transport(void) mixrun = j; if (multi_Dflag && j == nmix && (transport_step % print_modulus == 0)) { - sprintf(token, + snprintf(token, sizeof(token), "Transport step %3d. Multicomponent diffusion run %3d.", transport_step, j); dup_print(token, FALSE); } else if (!multi_Dflag) { - sprintf(token, "Transport step %3d. Mixrun %3d.", + snprintf(token, sizeof(token), "Transport step %3d. Mixrun %3d.", transport_step, j); dup_print(token, FALSE); } @@ -862,11 +862,11 @@ transport(void) max_iter = overall_iterations; cell_no = i; if (multi_Dflag) - sprintf(token, + snprintf(token, sizeof(token), "Transport step %3d. MCDrun %3d. Cell %3d. (Max. iter %3d)", transport_step, j, i, max_iter); else - sprintf(token, + snprintf(token, sizeof(token), "Transport step %3d. Mixrun %3d. Cell %3d. (Max. iter %3d)", transport_step, j, i, max_iter); status(0, token); @@ -959,14 +959,14 @@ transport(void) if (multi_Dflag && moles_added[0].moles > 0) { - sprintf(token, + snprintf(token, sizeof(token), "\nFor balancing negative concentrations in MCD, added in total to the system:"); warning_msg(token); for (i = 0; i < count_moles_added; i++) { if (!moles_added[i].moles) break; - sprintf(token, + snprintf(token, sizeof(token), "\t %.4e moles %s.", (double)moles_added[i].moles, moles_added[i].name); warning_msg(token); @@ -1246,7 +1246,7 @@ init_mix(void) m = (LDBLE *)free_check_null(m); m1 = (LDBLE *)free_check_null(m1); char token[MAX_LENGTH]; - sprintf(token, "Calculated number of mixes %g, is beyond program limit,\nERROR: please set implicit true, or decrease time_step, or increase cell-lengths.", 2.25 * maxmix); + snprintf(token, sizeof(token), "Calculated number of mixes %g, is beyond program limit,\nERROR: please set implicit true, or decrease time_step, or increase cell-lengths.", 2.25 * maxmix); error_msg(token, STOP); } if (bcon_first == 1 || bcon_last == 1) @@ -1367,7 +1367,7 @@ init_mix(void) m = (LDBLE *)free_check_null(m); m1 = (LDBLE *)free_check_null(m1); char token[MAX_LENGTH]; - sprintf(token, "Calculated number of mixes %g, is beyond program limit,\nERROR: please set implicit true, or decrease time_step, or increase cell-lengths.", 1.5 * maxmix); + snprintf(token, sizeof(token), "Calculated number of mixes %g, is beyond program limit,\nERROR: please set implicit true, or decrease time_step, or increase cell-lengths.", 1.5 * maxmix); error_msg(token, STOP); } l_nmix = 1 + (int) floor(1.5 * maxmix); @@ -1950,7 +1950,7 @@ fill_spec(int l_cell_no, int ref_cell) { if (!warn_MCD_X) { - sprintf(token, + snprintf(token, sizeof(token), "MCD found more than 1 exchanger, uses X for interlayer diffusion."); warning_msg(token); warn_MCD_X = 1; @@ -3593,7 +3593,7 @@ multi_D(LDBLE DDt, int mobile_cell, int stagnant) } if (temp < -1e-12) { - sprintf(token, + snprintf(token, sizeof(token), "Negative concentration in MCD: added %.4e moles %s in cell %d", (double)-temp, it->first.c_str(), i); warning_msg(token); diff --git a/phreeqcpp/utilities.cpp b/phreeqcpp/utilities.cpp index 67a030ee..d655f656 100644 --- a/phreeqcpp/utilities.cpp +++ b/phreeqcpp/utilities.cpp @@ -567,7 +567,7 @@ get_token(const char** eqnaddr, std::string& string, LDBLE* l_z, int* l) /* * Charge has been written, now need to check if charge has legal format */ - if (get_charge(charge, l_z) == OK) + if (get_charge(charge, MAX_LENGTH, l_z) == OK) { string.append(charge); } @@ -1193,37 +1193,37 @@ status(int count, const char *str, bool rk_string) { stdstr = str; } - sprintf(sim_str, "\rSimulation %d.", simulation); - sprintf(state_str, " "); - sprintf(spin_str, " "); + snprintf(sim_str, sizeof(sim_str), "\rSimulation %d.", simulation); + snprintf(state_str, sizeof(state_str), " "); + snprintf(spin_str, sizeof(spin_str), " "); switch (state) { default: break; case INITIAL_SOLUTION: - sprintf(state_str, "Initial solution %d.", use.Get_solution_ptr()->Get_n_user()); + snprintf(state_str, sizeof(state_str), "Initial solution %d.", use.Get_solution_ptr()->Get_n_user()); break; case INITIAL_EXCHANGE: - sprintf(state_str, "Initial exchange %d.", use.Get_exchange_ptr()->Get_n_user()); + snprintf(state_str, sizeof(state_str), "Initial exchange %d.", use.Get_exchange_ptr()->Get_n_user()); break; case INITIAL_SURFACE: - sprintf(state_str, "Initial surface %d.", use.Get_surface_ptr()->Get_n_user()); + snprintf(state_str, sizeof(state_str), "Initial surface %d.", use.Get_surface_ptr()->Get_n_user()); break; case INVERSE: - sprintf(state_str, "Inverse %d. Models = %d.", use.Get_inverse_ptr()->n_user, count); + snprintf(state_str, sizeof(state_str), "Inverse %d. Models = %d.", use.Get_inverse_ptr()->n_user, count); break; case REACTION: if (use.Get_kinetics_in() == TRUE) { - sprintf(state_str, "Kinetic step %d.", reaction_step); + snprintf(state_str, sizeof(state_str), "Kinetic step %d.", reaction_step); } else { - sprintf(state_str, "Reaction step %d.", reaction_step); + snprintf(state_str, sizeof(state_str), "Reaction step %d.", reaction_step); } break; case ADVECTION: - sprintf(state_str, "Advection, shift %d.", advection_step); + snprintf(state_str, sizeof(state_str), "Advection, shift %d.", advection_step); break; } spinner++; From b32560efa0718ceb1afc7d5b2abf43011d0063c9 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Sat, 14 Jan 2023 22:14:20 -0700 Subject: [PATCH 034/384] [iphreeqc] Issue 8 -- change sprintf to snprintf for CRAN (#9) --- IPhreeqc.cpp | 10 +-- IPhreeqc_interface_F.cpp | 4 +- fwrap.cpp | 4 +- phreeqcpp/PBasic.cpp | 39 +++++----- phreeqcpp/PBasic.h | 1 + phreeqcpp/PHRQ_io_output.cpp | 4 +- phreeqcpp/Phreeqc.h | 2 +- phreeqcpp/ReadClass.cxx | 6 +- phreeqcpp/basicsubs.cpp | 3 +- phreeqcpp/class_main.cpp | 11 ++- phreeqcpp/inverse.cpp | 60 +++++++-------- phreeqcpp/kinetics.cpp | 2 +- phreeqcpp/mainsubs.cpp | 22 +++--- phreeqcpp/parse.cpp | 4 +- phreeqcpp/pitzer.cpp | 4 +- phreeqcpp/print.cpp | 6 +- phreeqcpp/readtr.cpp | 140 +++++++++++++++++------------------ phreeqcpp/transport.cpp | 40 +++++----- phreeqcpp/utilities.cpp | 22 +++--- 19 files changed, 196 insertions(+), 188 deletions(-) diff --git a/IPhreeqc.cpp b/IPhreeqc.cpp index d5f4640c..e648b313 100644 --- a/IPhreeqc.cpp +++ b/IPhreeqc.cpp @@ -485,7 +485,7 @@ VRESULT IPhreeqc::GetSelectedOutputValue(int row, int col, VAR* pVAR) { char buffer[120]; v = VR_INVALIDARG; - ::sprintf(buffer, "GetSelectedOutputValue: VR_INVALIDARG Invalid selected-output user number %d.\n", this->CurrentSelectedOutputUserNumber); + ::snprintf(buffer, sizeof(buffer), "GetSelectedOutputValue: VR_INVALIDARG Invalid selected-output user number %d.\n", this->CurrentSelectedOutputUserNumber); this->AddError(buffer); this->update_errors(); } @@ -512,13 +512,13 @@ VRESULT IPhreeqc::GetSelectedOutputValue2(int row, int col, int *vtype, double* case TT_LONG: *vtype = TT_DOUBLE; *dvalue = (double)v.lVal; - ::sprintf(buffer, "%ld", v.lVal); + ::snprintf(buffer, sizeof(buffer), "%ld", v.lVal); ::strncpy(svalue, buffer, svalue_length); break; case TT_DOUBLE: *vtype = v.type; *dvalue = v.dVal; - ::sprintf(buffer, "%23.15e", v.dVal); + ::snprintf(buffer, sizeof(buffer), "%23.15e", v.dVal); ::strncpy(svalue, buffer, svalue_length); break; case TT_STRING: @@ -1238,7 +1238,7 @@ void IPhreeqc::do_run(const char* sz_routine, std::istream* pis, PFN_PRERUN_CALL #ifdef PHREEQ98 AddSeries = !connect_simulations; #endif - ::sprintf(token, "Reading input data for simulation %d.", this->PhreeqcPtr->simulation); + ::snprintf(token, sizeof(token), "Reading input data for simulation %d.", this->PhreeqcPtr->simulation); // bool save_punch_in = this->PhreeqcPtr->SelectedOutput_map.size() > 0; @@ -1270,7 +1270,7 @@ void IPhreeqc::do_run(const char* sz_routine, std::istream* pis, PFN_PRERUN_CALL ASSERT(this->PhreeqcPtr->SelectedOutput_map.size() == this->SelectedOutputStringMap.size()); if (!this->PhreeqcPtr->title_x.empty()) { - ::sprintf(token, "TITLE"); + ::snprintf(token, sizeof(token), "TITLE"); this->PhreeqcPtr->dup_print(token, TRUE); if (this->PhreeqcPtr->pr.headings == TRUE) { diff --git a/IPhreeqc_interface_F.cpp b/IPhreeqc_interface_F.cpp index ab1125de..80c2ed14 100644 --- a/IPhreeqc_interface_F.cpp +++ b/IPhreeqc_interface_F.cpp @@ -318,13 +318,13 @@ GetSelectedOutputValueF(int *id, int *row, int *col, int *vtype, double* dvalue, case TT_LONG: *vtype = TT_DOUBLE; *dvalue = (double)v.lVal; - ::sprintf(buffer, "%ld", v.lVal); + ::snprintf(buffer, sizeof(buffer), "%ld", v.lVal); padfstring(svalue, buffer, svalue_length); break; case TT_DOUBLE: *vtype = v.type; *dvalue = v.dVal; - ::sprintf(buffer, "%23.15e", v.dVal); + ::snprintf(buffer, sizeof(buffer), "%23.15e", v.dVal); padfstring(svalue, buffer, svalue_length); break; case TT_STRING: diff --git a/fwrap.cpp b/fwrap.cpp index 2c096f93..bdec8e5a 100644 --- a/fwrap.cpp +++ b/fwrap.cpp @@ -347,13 +347,13 @@ GetSelectedOutputValueF(int *id, int *row, int *col, int *vtype, double* dvalue, case TT_LONG: *vtype = TT_DOUBLE; *dvalue = (double)v.lVal; - ::sprintf(buffer, "%ld", v.lVal); + ::snprintf(buffer, sizeof(buffer), "%ld", v.lVal); padfstring(svalue, buffer, (unsigned int) svalue_length); break; case TT_DOUBLE: *vtype = v.type; *dvalue = v.dVal; - ::sprintf(buffer, "%23.15e", v.dVal); + ::snprintf(buffer, sizeof(buffer), "%23.15e", v.dVal); padfstring(svalue, buffer, (unsigned int) svalue_length); break; case TT_STRING: diff --git a/phreeqcpp/PBasic.cpp b/phreeqcpp/PBasic.cpp index 09016cd9..7233f91c 100644 --- a/phreeqcpp/PBasic.cpp +++ b/phreeqcpp/PBasic.cpp @@ -499,22 +499,22 @@ numtostr(char * Result, LDBLE n) //if (PhreeqcPtr->current_selected_output != NULL && // !PhreeqcPtr->current_selected_output->Get_high_precision()) //{ - // sprintf(l_s, "%12.0f", (double) n); + // snprintf(l_s, PhreeqcPtr->max_line, "%12.0f", (double) n); //} //else //{ - // sprintf(l_s, "%20.0f", (double) n); + // snprintf(l_s, PhreeqcPtr->max_line, "%20.0f", (double) n); //} bool temp_high_precision = (PhreeqcPtr->current_selected_output != NULL) ? PhreeqcPtr->current_selected_output->Get_high_precision() : PhreeqcPtr->high_precision; if (!temp_high_precision) { - sprintf(l_s, "%12.0f", (double) n); + snprintf(l_s, PhreeqcPtr->max_line, "%12.0f", (double) n); } else { - sprintf(l_s, "%20.0f", (double) n); + snprintf(l_s, PhreeqcPtr->max_line, "%20.0f", (double) n); } } else @@ -524,11 +524,11 @@ numtostr(char * Result, LDBLE n) PhreeqcPtr->high_precision; if (!temp_high_precision) { - sprintf(l_s, "%12.4e", (double) n); + snprintf(l_s, PhreeqcPtr->max_line, "%12.4e", (double) n); } else { - sprintf(l_s, "%20.12e", (double) n); + snprintf(l_s, PhreeqcPtr->max_line, "%20.12e", (double) n); } } i = (int) strlen(l_s) + 1; @@ -539,8 +539,8 @@ numtostr(char * Result, LDBLE n) PhreeqcPtr->free_check_null(l_s); return (Result); /* } else { - if (PhreeqcPtr->punch.high_precision == FALSE) sprintf(l_s, "%30.10f", n); - else sprintf(l_s, "%30.12f", n); + if (PhreeqcPtr->punch.high_precision == FALSE) snprintf(l_s, PhreeqcPtr->max_line, "%30.10f", n); + else snprintf(l_s, PhreeqcPtr->max_line, "%30.12f", n); i = strlen(l_s) + 1; do { i--; @@ -612,6 +612,7 @@ parse(char * l_inbuf, tokenrec ** l_buf) if (j + 1 > m) m = j + 1; t->UU.sp = (char *) PhreeqcPtr->PHRQ_calloc(m, sizeof(char)); + t->sp_sz = m; if (t->UU.sp == NULL) { PhreeqcPtr->malloc_error(); @@ -739,6 +740,7 @@ parse(char * l_inbuf, tokenrec ** l_buf) if (m < 256) m = 256; t->UU.sp = (char *) PhreeqcPtr->PHRQ_calloc(m, sizeof(char)); + t->sp_sz = m; if (t->UU.sp == NULL) { PhreeqcPtr->malloc_error(); @@ -746,7 +748,7 @@ parse(char * l_inbuf, tokenrec ** l_buf) exit(4); #endif } - sprintf(t->UU.sp, "%.*s", + snprintf(t->UU.sp, t->sp_sz, "%.*s", (int) (strlen(l_inbuf) - i + 1), l_inbuf + i - 1); i = (int) strlen(l_inbuf) + 1; @@ -2232,7 +2234,7 @@ factor(struct LOC_exec * LINK) { if (PhreeqcPtr->use.Get_mix_in()) { - sprintf(string, "Mix %d", PhreeqcPtr->use.Get_n_mix_user()); + snprintf(string, sizeof(string), "Mix %d", PhreeqcPtr->use.Get_n_mix_user()); n.UU.sval = PhreeqcPtr->string_duplicate(string); } else @@ -2251,7 +2253,7 @@ factor(struct LOC_exec * LINK) } else if (PhreeqcPtr->state == ADVECTION || PhreeqcPtr->state == TRANSPORT || PhreeqcPtr->state == PHAST) { - sprintf(string, "Cell %d", PhreeqcPtr->cell_no); + snprintf(string, sizeof(string), "Cell %d", PhreeqcPtr->cell_no); n.UU.sval = PhreeqcPtr->string_duplicate(string); } else @@ -3608,7 +3610,7 @@ factor(struct LOC_exec * LINK) std::string std_num; { - sprintf(token, "%*.*e", length, width, nmbr); + snprintf(token, sizeof(token), "%*.*e", length, width, nmbr); std_num = token; } @@ -3651,7 +3653,7 @@ factor(struct LOC_exec * LINK) std::string std_num; { - sprintf(token, "%*.*f", length, width, nmbr); + snprintf(token, sizeof(token), "%*.*f", length, width, nmbr); std_num = token; } @@ -4729,12 +4731,12 @@ cmdload(bool merging, char * name, struct LOC_exec *LINK) cmdnew(LINK); if (f != NULL) { - sprintf(STR1, "%s.TEXT", name); + snprintf(STR1, sizeof(STR1), "%s.TEXT", name); f = freopen(STR1, "r", f); } else { - sprintf(STR1, "%s.TEXT", name); + snprintf(STR1, sizeof(STR1), "%s.TEXT", name); f = fopen(STR1, "r"); } if (f == NULL) @@ -7213,6 +7215,7 @@ _NilCheck(void) return _Escape(-3); } +#ifdef SKIP /* The following is suitable for the HP Pascal operating system. It might want to be revised when emulating another system. */ @@ -7233,7 +7236,7 @@ _ShowEscape(char *buf, int code, int ior, char *prefix) } if (code == -10) { - sprintf(bufp, "Pascal system I/O error %d", ior); + snprintf(bufp, sizeof(bufp), "Pascal system I/O error %d", ior); // FIXME -- replace sizeof switch (ior) { case 3: @@ -7273,7 +7276,7 @@ _ShowEscape(char *buf, int code, int ior, char *prefix) } else { - sprintf(bufp, "Pascal system error %d", code); + snprintf(bufp, sizeof(bufp), "Pascal system error %d", code); // FIXME -- replace sizeof switch (code) { case -2: @@ -7307,7 +7310,7 @@ _ShowEscape(char *buf, int code, int ior, char *prefix) } return buf; } - +#endif int PBasic:: _Escape(int code) { diff --git a/phreeqcpp/PBasic.h b/phreeqcpp/PBasic.h index 749b7077..95d77db2 100644 --- a/phreeqcpp/PBasic.h +++ b/phreeqcpp/PBasic.h @@ -79,6 +79,7 @@ typedef struct tokenrec //#ifdef PHREEQCI_GUI size_t n_sz; char *sz_num; + size_t sp_sz; //#endif } tokenrec; diff --git a/phreeqcpp/PHRQ_io_output.cpp b/phreeqcpp/PHRQ_io_output.cpp index 5eaeb5c1..8cc33f05 100644 --- a/phreeqcpp/PHRQ_io_output.cpp +++ b/phreeqcpp/PHRQ_io_output.cpp @@ -136,7 +136,7 @@ fpunchf_user(int user_index, const char *format, double d) warning_msg(error_string); fpunchf_user_s_warning = 1; } - sprintf(fpunchf_user_buffer, "no_heading_%d", + snprintf(fpunchf_user_buffer, sizeof(fpunchf_user_buffer), "no_heading_%d", (user_index - user_punch_count_headings) + 1); name = fpunchf_user_buffer; } @@ -173,7 +173,7 @@ fpunchf_user(int user_index, const char *format, char * d) warning_msg(error_string); fpunchf_user_s_warning = 1; } - sprintf(fpunchf_user_buffer, "no_heading_%d", + snprintf(fpunchf_user_buffer, sizeof(fpunchf_user_buffer), "no_heading_%d", (user_index - user_punch_count_headings) + 1); name = fpunchf_user_buffer; } diff --git a/phreeqcpp/Phreeqc.h b/phreeqcpp/Phreeqc.h index dd414fb2..c3f20aae 100644 --- a/phreeqcpp/Phreeqc.h +++ b/phreeqcpp/Phreeqc.h @@ -481,7 +481,7 @@ public: // parse.cpp ------------------------------- int check_eqn(int association); - int get_charge(char* charge, LDBLE* z); + int get_charge(char* charge, size_t charge_size, LDBLE* z); int get_elt(const char** t_ptr, std::string& element, int* i); int get_elts_in_species(const char** t_ptr, LDBLE coef); int get_num(const char** t_ptr, LDBLE* num); diff --git a/phreeqcpp/ReadClass.cxx b/phreeqcpp/ReadClass.cxx index 937d6575..fda93428 100644 --- a/phreeqcpp/ReadClass.cxx +++ b/phreeqcpp/ReadClass.cxx @@ -551,7 +551,7 @@ run_as_cells(void) rate_sim_time = 0; for (reaction_step = 1; reaction_step <= count_steps; reaction_step++) { - sprintf(token, "Reaction step %d.", reaction_step); + snprintf(token, sizeof(token), "Reaction step %d.", reaction_step); if (reaction_step > 1 && incremental_reactions == FALSE) { copy_use(-2); @@ -635,7 +635,7 @@ run_as_cells(void) rate_sim_time = 0; reaction_step = 1; - sprintf(token, "Reaction step %d.", reaction_step); + snprintf(token, sizeof(token), "Reaction step %d.", reaction_step); dup_print(token, FALSE); /* @@ -763,7 +763,7 @@ run_as_cells(void) rate_sim_time = 0; for (reaction_step = 1; reaction_step <= count_steps; reaction_step++) { - sprintf(token, "Reaction step %d.", reaction_step); + snprintf(token, sizeof(token), "Reaction step %d.", reaction_step); if (reaction_step > 1 && incremental_reactions == FALSE) { copy_use(-2); diff --git a/phreeqcpp/basicsubs.cpp b/phreeqcpp/basicsubs.cpp index a21f34d5..3e93470b 100644 --- a/phreeqcpp/basicsubs.cpp +++ b/phreeqcpp/basicsubs.cpp @@ -2097,12 +2097,13 @@ match_elts_in_species(const char *name, const char *mytemplate) * write out string */ token[0] = '\0'; + assert(MAX_LENGTH == sizeof(token1)); for (i = 0; i < count_match_tokens; i++) { strcat(token, match_vector[i].first.c_str()); if (match_vector[i].second != 1.0) { - sprintf(token1, "%g", (double) match_vector[i].second); + snprintf(token1, sizeof(token1), "%g", (double) match_vector[i].second); strcat(token, token1); } } diff --git a/phreeqcpp/class_main.cpp b/phreeqcpp/class_main.cpp index 74721e86..fe3d0e77 100644 --- a/phreeqcpp/class_main.cpp +++ b/phreeqcpp/class_main.cpp @@ -1,3 +1,6 @@ +#ifdef DOS +#include +#endif #include "Phreeqc.h" #include "NameDouble.h" @@ -296,9 +299,9 @@ write_banner(void) /* version */ #ifdef NPP - len = sprintf(buffer, "* PHREEQC-%s *", "3.7.1"); + len = snprintf(buffer, sizeof(buffer), "* PHREEQC-%s *", "3.7.1"); #else - len = sprintf(buffer, "* PHREEQC-%s *", "@VERSION@"); + len = snprintf(buffer, sizeof(buffer), "* PHREEQC-%s *", "@VERSION@"); #endif indent = (44 - len) / 2; screen_msg(sformatf("%14c║%*c%s%*c║\n", ' ', indent, ' ', buffer, @@ -320,9 +323,9 @@ write_banner(void) /* date */ #ifdef NPP - len = sprintf(buffer, "%s", "July 5, 2021"); + len = snprintf(buffer, sizeof(buffer), "%s", "July 5, 2021"); #else - len = sprintf(buffer, "%s", "@VER_DATE@"); + len = snprintf(buffer, sizeof(buffer), "%s", "@VER_DATE@"); #endif indent = (44 - len) / 2; screen_msg(sformatf("%14c║%*c%s%*c║\n", ' ', indent, ' ', buffer, diff --git a/phreeqcpp/inverse.cpp b/phreeqcpp/inverse.cpp index 81a33781..b9bbcd0d 100644 --- a/phreeqcpp/inverse.cpp +++ b/phreeqcpp/inverse.cpp @@ -371,7 +371,7 @@ setup_inverse(class inverse *inv_ptr) f = -1.0; } column = i; - sprintf(token, "soln %d", i); + snprintf(token, sizeof(token), "soln %d", i); col_name[column] = string_hsave(token); for (j = 0; j < (int)master.size(); j++) { @@ -538,7 +538,7 @@ setup_inverse(class inverse *inv_ptr) { my_array[(size_t)row * max_column_count + (size_t)column] = 0.0; } - sprintf(token, "%s %d", row_name[row], j); + snprintf(token, sizeof(token), "%s %d", row_name[row], j); col_name[column] = string_hsave(token); column++; } @@ -549,13 +549,13 @@ setup_inverse(class inverse *inv_ptr) for (i = 0; i < inv_ptr->count_solns; i++) { - sprintf(token, "ph %d", i); + snprintf(token, sizeof(token), "ph %d", i); col_name[column] = string_hsave(token); column++; } /* put names in col_name for water */ - sprintf(token, "water"); + snprintf(token, sizeof(token), "water"); col_name[column] = string_hsave(token); column++; @@ -564,7 +564,7 @@ setup_inverse(class inverse *inv_ptr) { for (j = 0; j < inv_ptr->isotope_unknowns.size(); j++) { - sprintf(token, "%d%s %d", + snprintf(token, sizeof(token), "%d%s %d", (int) inv_ptr->isotope_unknowns[j].isotope_number, inv_ptr->isotope_unknowns[j].elt_name, i); col_name[column] = string_hsave(token); @@ -581,7 +581,7 @@ setup_inverse(class inverse *inv_ptr) { for (j = 0; j < inv_ptr->isotopes.size(); j++) { - sprintf(token, "%d%s %s", + snprintf(token, sizeof(token), "%d%s %s", (int) inv_ptr->isotopes[j].isotope_number, inv_ptr->isotopes[j].elt_name, inv_ptr->phases[i].phase->name); @@ -649,7 +649,7 @@ setup_inverse(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)column] = 0.0; } } - sprintf(token, "%s %d", "charge", i); + snprintf(token, sizeof(token), "%s %d", "charge", i); row_name[count_rows] = string_hsave(token); count_rows++; } @@ -672,7 +672,7 @@ setup_inverse(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)column] = inv_ptr->dalk_dc[i]; } - sprintf(token, "%s %d", "dAlk", i); + snprintf(token, sizeof(token), "%s %d", "dAlk", i); row_name[count_rows] = string_hsave(token); count_rows++; } @@ -688,7 +688,7 @@ setup_inverse(class inverse *inv_ptr) for (size_t j = 0; j < inv_ptr->isotopes.size(); j++) { isotope_balance_equation(inv_ptr, (int)count_rows, (int)j); - sprintf(token, "%d%s", (int) inv_ptr->isotopes[j].isotope_number, + snprintf(token, sizeof(token), "%d%s", (int) inv_ptr->isotopes[j].isotope_number, inv_ptr->isotopes[j].elt_name); row_name[count_rows] = string_hsave(token); count_rows++; @@ -761,7 +761,7 @@ setup_inverse(class inverse *inv_ptr) } my_array[count_rows * max_column_count + (size_t)column] = 1.0 * f; my_array[count_rows * max_column_count + (size_t)i] = -coef * f; - sprintf(token, "%s %s", inv_ptr->elts[j].master->elt->name, "eps+"); + snprintf(token, sizeof(token), "%s %s", inv_ptr->elts[j].master->elt->name, "eps+"); row_name[count_rows] = string_hsave(token); count_rows++; @@ -795,7 +795,7 @@ setup_inverse(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)i] = -coef * f; my_array[count_rows * max_column_count + (size_t)column] = -1.0 * f; - sprintf(token, "%s %s", inv_ptr->elts[j].master->elt->name, + snprintf(token, sizeof(token), "%s %s", inv_ptr->elts[j].master->elt->name, "eps-"); row_name[count_rows] = string_hsave(token); count_rows++; @@ -821,7 +821,7 @@ setup_inverse(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)column] = 1.0; my_array[count_rows * max_column_count + (size_t)i] = -coef; - sprintf(token, "%s %s", "pH", "eps+"); + snprintf(token, sizeof(token), "%s %s", "pH", "eps+"); row_name[count_rows] = string_hsave(token); count_rows++; @@ -829,7 +829,7 @@ setup_inverse(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)column] = -1.0; my_array[count_rows * max_column_count + (size_t)i] = -coef; - sprintf(token, "%s %s", "pH", "eps-"); + snprintf(token, sizeof(token), "%s %s", "pH", "eps-"); row_name[count_rows] = string_hsave(token); count_rows++; } @@ -845,7 +845,7 @@ setup_inverse(class inverse *inv_ptr) /* set upper limit of change in positive direction */ my_array[count_rows * max_column_count + (size_t)column] = 1.0; my_array[count_rows * max_column_count + count_unknowns] = coef; - sprintf(token, "%s %s", "water", "eps+"); + snprintf(token, sizeof(token), "%s %s", "water", "eps+"); row_name[count_rows] = string_hsave(token); count_rows++; @@ -853,7 +853,7 @@ setup_inverse(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)column] = -1.0; my_array[count_rows * max_column_count + count_unknowns] = coef; - sprintf(token, "%s %s", "water", "eps-"); + snprintf(token, sizeof(token), "%s %s", "water", "eps-"); row_name[count_rows] = string_hsave(token); count_rows++; } @@ -890,7 +890,7 @@ setup_inverse(class inverse *inv_ptr) /* set upper limit of change in positive direction */ my_array[count_rows * max_column_count + (size_t)column] = 1.0; my_array[count_rows * max_column_count + (size_t)i] = -coef; - sprintf(token, "%d%s %s", + snprintf(token, sizeof(token), "%d%s %s", (int) kit->second.Get_isotope_number(), kit->second.Get_elt_name().c_str(), "eps+"); row_name[count_rows] = string_hsave(token); @@ -900,7 +900,7 @@ setup_inverse(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)column] = -1.0; my_array[count_rows * max_column_count + (size_t)i] = -coef; - sprintf(token, "%d%s %s", + snprintf(token, sizeof(token), "%d%s %s", (int) kit->second.Get_isotope_number(), kit->second.Get_elt_name().c_str(), "eps-"); row_name[count_rows] = string_hsave(token); @@ -1777,7 +1777,7 @@ print_model(class inverse *inv_ptr) d2 = 0.0; if (equal(d3, 0.0, MIN_TOTAL_INVERSE) == TRUE) d3 = 0.0; - sprintf(token, "%d%s", + snprintf(token, sizeof(token), "%d%s", (int) inv_ptr->isotope_unknowns[j]. isotope_number, inv_ptr->isotope_unknowns[j].elt_name); @@ -1853,7 +1853,7 @@ print_model(class inverse *inv_ptr) d2 = 0.0; if (equal(d3, 0.0, 1e-7) == TRUE) d3 = 0.0; - sprintf(token, "%d%s %s", + snprintf(token, sizeof(token), "%d%s %s", (int) inv_ptr->isotopes[j].isotope_number, inv_ptr->isotopes[j].elt_name, inv_ptr->phases[i].phase->name); @@ -2060,7 +2060,7 @@ punch_model_heading(class inverse *inv_ptr) */ for (i = 0; i < inv_ptr->count_solns; i++) { - sprintf(token, "Soln_%d", inv_ptr->solns[i]); + snprintf(token, sizeof(token), "Soln_%d", inv_ptr->solns[i]); std::string tok1(token); tok1.append("_min"); std::string tok2(token); @@ -3618,7 +3618,7 @@ check_isotopes(class inverse *inv_ptr) } else { - sprintf(token, "%g%s", + snprintf(token, sizeof(token), "%g%s", (double) kit->second.Get_isotope_number(), kit->second.Get_elt_name().c_str()); for (l = 0; l < count_iso_defaults; l++) @@ -3764,7 +3764,7 @@ phase_isotope_inequalities(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)col_phases + (size_t)i] = inv_ptr->phases[i].isotopes[j].ratio_uncertainty; my_array[count_rows * max_column_count + (size_t)column] = 1.0; - sprintf(token, "%s %s", inv_ptr->phases[i].phase->name, + snprintf(token, sizeof(token), "%s %s", inv_ptr->phases[i].phase->name, "iso pos"); row_name[count_rows] = string_hsave(token); count_rows++; @@ -3772,7 +3772,7 @@ phase_isotope_inequalities(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)col_phases + (size_t)i] = inv_ptr->phases[i].isotopes[j].ratio_uncertainty; my_array[count_rows * max_column_count + (size_t)column] = -1.0; - sprintf(token, "%s %s", inv_ptr->phases[i].phase->name, + snprintf(token, sizeof(token), "%s %s", inv_ptr->phases[i].phase->name, "iso neg"); row_name[count_rows] = string_hsave(token); count_rows++; @@ -3784,7 +3784,7 @@ phase_isotope_inequalities(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)col_phases + (size_t)i] = -inv_ptr->phases[i].isotopes[j].ratio_uncertainty; my_array[count_rows * max_column_count + (size_t)column] = -1.0; - sprintf(token, "%s %s", inv_ptr->phases[i].phase->name, + snprintf(token, sizeof(token), "%s %s", inv_ptr->phases[i].phase->name, "iso pos"); row_name[count_rows] = string_hsave(token); count_rows++; @@ -3792,7 +3792,7 @@ phase_isotope_inequalities(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)col_phases + (size_t)i] = -inv_ptr->phases[i].isotopes[j].ratio_uncertainty; my_array[count_rows * max_column_count + (size_t)column] = 1.0; - sprintf(token, "%s %s", inv_ptr->phases[i].phase->name, + snprintf(token, sizeof(token), "%s %s", inv_ptr->phases[i].phase->name, "iso neg"); row_name[count_rows] = string_hsave(token); count_rows++; @@ -3829,7 +3829,7 @@ write_optimize_names(class inverse *inv_ptr) { for (i = 0; i < inv_ptr->count_solns; i++) { - sprintf(token, "%s %s %d", "optimize", + snprintf(token, sizeof(token), "%s %s %d", "optimize", inv_ptr->elts[j].master->elt->name, inv_ptr->solns[i]); row_name[row] = string_hsave(token); row++; @@ -3842,7 +3842,7 @@ write_optimize_names(class inverse *inv_ptr) { for (i = 0; i < inv_ptr->count_solns; i++) { - sprintf(token, "%s %s %d", "optimize", "pH", inv_ptr->solns[i]); + snprintf(token, sizeof(token), "%s %s %d", "optimize", "pH", inv_ptr->solns[i]); row_name[row] = string_hsave(token); row++; } @@ -3850,7 +3850,7 @@ write_optimize_names(class inverse *inv_ptr) /* * water */ - sprintf(token, "%s %s", "optimize", "water"); + snprintf(token, sizeof(token), "%s %s", "optimize", "water"); row_name[row] = string_hsave(token); row++; /* @@ -3860,7 +3860,7 @@ write_optimize_names(class inverse *inv_ptr) { for (j = 0; j < inv_ptr->isotope_unknowns.size(); j++) { - sprintf(token, "%s %d%s %d", "optimize", + snprintf(token, sizeof(token), "%s %d%s %d", "optimize", (int) inv_ptr->isotope_unknowns[j].isotope_number, inv_ptr->isotope_unknowns[j].elt_name, inv_ptr->solns[i]); row_name[row] = string_hsave(token); @@ -3875,7 +3875,7 @@ write_optimize_names(class inverse *inv_ptr) { for (j = 0; j < inv_ptr->isotopes.size(); j++) { - sprintf(token, "%s %s %d%s", "optimize", + snprintf(token, sizeof(token), "%s %s %d%s", "optimize", inv_ptr->phases[i].phase->name, (int) inv_ptr->isotopes[j].isotope_number, inv_ptr->isotopes[j].elt_name); diff --git a/phreeqcpp/kinetics.cpp b/phreeqcpp/kinetics.cpp index 27ce4bdc..f6e02338 100644 --- a/phreeqcpp/kinetics.cpp +++ b/phreeqcpp/kinetics.cpp @@ -1075,7 +1075,7 @@ rk_kinetics(int i, LDBLE kin_time, int use_mix, int nsaver, } { char str[MAX_LENGTH]; - sprintf(str, "RK-steps: Bad%4d. OK%5d. Time %3d%%", step_bad, + snprintf(str, sizeof(str), "RK-steps: Bad%4d. OK%5d. Time %3d%%", step_bad, step_ok, (int) (100 * h_sum / kin_time)); status(0, str, true); } diff --git a/phreeqcpp/mainsubs.cpp b/phreeqcpp/mainsubs.cpp index 0f1c714a..5cc76a3f 100644 --- a/phreeqcpp/mainsubs.cpp +++ b/phreeqcpp/mainsubs.cpp @@ -381,7 +381,7 @@ initial_solutions(int print) } if (print == TRUE) { - sprintf(token, "Initial solution %d.\t%.350s", + snprintf(token, sizeof(token), "Initial solution %d.\t%.350s", solution_ref.Get_n_user(), solution_ref.Get_description().c_str()); dup_print(token, FALSE); } @@ -518,7 +518,7 @@ initial_exchangers(int print) } if (print == TRUE) { - sprintf(token, "Exchange %d.\t%.350s", + snprintf(token, sizeof(token), "Exchange %d.\t%.350s", exchange_ptr->Get_n_user(), exchange_ptr->Get_description().c_str()); dup_print(token, FALSE); } @@ -609,7 +609,7 @@ initial_gas_phases(int print) } if (print == TRUE) { - sprintf(token, "Gas_Phase %d.\t%.350s", + snprintf(token, sizeof(token), "Gas_Phase %d.\t%.350s", gas_phase_ptr->Get_n_user(), gas_phase_ptr->Get_description().c_str()); dup_print(token, FALSE); } @@ -660,7 +660,7 @@ initial_gas_phases(int print) } if (fabs(gas_phase_ptr->Get_total_p() - use.Get_solution_ptr()->Get_patm()) > 5) { - sprintf(token, + snprintf(token, sizeof(token), "WARNING: While initializing gas phase composition by equilibrating:\n%s (%.2f atm) %s (%.2f atm).\n%s.", " Gas phase pressure", (double) gas_phase_ptr->Get_total_p(), @@ -828,7 +828,7 @@ reactions(void) for (reaction_step = 1; reaction_step <= count_steps; reaction_step++) { overall_iterations = 0; - sprintf(token, "Reaction step %d.", reaction_step); + snprintf(token, sizeof(token), "Reaction step %d.", reaction_step); if (reaction_step > 1 && incremental_reactions == FALSE) { copy_use(-2); @@ -934,7 +934,7 @@ saver(void) if (save.solution == TRUE) { - sprintf(token, "Solution after simulation %d.", simulation); + snprintf(token, sizeof(token), "Solution after simulation %d.", simulation); description_x = token; n = save.n_solution_user; xsolution_save(n); @@ -1025,7 +1025,7 @@ xexchange_save(int n_user) temp_exchange.Set_n_user(n_user); temp_exchange.Set_n_user_end(n_user); temp_exchange.Set_new_def(false); - sprintf(token, "Exchange assemblage after simulation %d.", simulation); + snprintf(token, sizeof(token), "Exchange assemblage after simulation %d.", simulation); temp_exchange.Set_description(token); temp_exchange.Set_solution_equilibria(false); temp_exchange.Set_n_solution(-999); @@ -1108,7 +1108,7 @@ xgas_save(int n_user) */ temp_gas_phase.Set_n_user(n_user); temp_gas_phase.Set_n_user_end(n_user); - sprintf(token, "Gas phase after simulation %d.", simulation); + snprintf(token, sizeof(token), "Gas phase after simulation %d.", simulation); temp_gas_phase.Set_description(token); temp_gas_phase.Set_new_def(false); temp_gas_phase.Set_solution_equilibria(false); @@ -2094,10 +2094,10 @@ run_simulations(void) #endif #if defined PHREEQCI_GUI - sprintf(token, "\nSimulation %d\n", simulation); + snprintf(token, sizeof(token), "\nSimulation %d\n", simulation); screen_msg(token); #endif - sprintf(token, "Reading input data for simulation %d.", simulation); + snprintf(token, sizeof(token), "Reading input data for simulation %d.", simulation); dup_print(token, TRUE); if (read_input() == EOF) @@ -2105,7 +2105,7 @@ run_simulations(void) if (title_x.size() > 0) { - sprintf(token, "TITLE"); + snprintf(token, sizeof(token), "TITLE"); dup_print(token, TRUE); if (pr.headings == TRUE) { diff --git a/phreeqcpp/parse.cpp b/phreeqcpp/parse.cpp index 82eb5400..6ea041d9 100644 --- a/phreeqcpp/parse.cpp +++ b/phreeqcpp/parse.cpp @@ -259,7 +259,7 @@ check_eqn(int association) /* ---------------------------------------------------------------------- */ int Phreeqc:: -get_charge(char *charge, LDBLE * l_z) +get_charge(char *charge, size_t charge_size, LDBLE * l_z) /* ---------------------------------------------------------------------- */ /* * Function takes character string and calculates the charge on @@ -367,7 +367,7 @@ get_charge(char *charge, LDBLE * l_z) */ if (abs(i) > 1) { - if (sprintf(charge, "%-+d", i) == EOF) + if (snprintf(charge, charge_size, "%-+d", i) == EOF) { error_string = sformatf( "Error converting charge to character string, %s.", diff --git a/phreeqcpp/pitzer.cpp b/phreeqcpp/pitzer.cpp index f2b6a92f..77de08e5 100644 --- a/phreeqcpp/pitzer.cpp +++ b/phreeqcpp/pitzer.cpp @@ -129,7 +129,7 @@ pitzer_tidy(void) { for (j = i + 1; j < count_cations; j++) { - sprintf(line, "%s %s 1", spec[i]->name, spec[j]->name); + snprintf(line, max_line, "%s %s 1", spec[i]->name, spec[j]->name); pzp_ptr = pitz_param_read(line, 2); pzp_ptr->type = TYPE_ETHETA; size_t count_pitz_param = pitz_params.size(); @@ -141,7 +141,7 @@ pitzer_tidy(void) { for (j = i + 1; j < 2 * (int)s.size() + count_anions; j++) { - sprintf(line, "%s %s 1", spec[i]->name, spec[j]->name); + snprintf(line, max_line, "%s %s 1", spec[i]->name, spec[j]->name); pzp_ptr = pitz_param_read(line, 2); pzp_ptr->type = TYPE_ETHETA; size_t count_pitz_param = pitz_params.size(); diff --git a/phreeqcpp/print.cpp b/phreeqcpp/print.cpp index 610b6c13..612460be 100644 --- a/phreeqcpp/print.cpp +++ b/phreeqcpp/print.cpp @@ -590,7 +590,7 @@ print_gas_phase(void) return (OK); if (gas_unknown->moles < 1e-12) { - sprintf(info, "Fixed-pressure gas phase %d dissolved completely", + snprintf(info, sizeof(info), "Fixed-pressure gas phase %d dissolved completely", use.Get_n_gas_phase_user()); print_centered(info); return (OK); @@ -1378,7 +1378,7 @@ print_pp_assemblage(void) x[j]->moles = 0.0; if (state != TRANSPORT && state != PHAST) { - sprintf(token, " %11.3e %11.3e %11.3e", + snprintf(token, sizeof(token), " %11.3e %11.3e %11.3e", (double) (comp_ptr->Get_moles() + comp_ptr->Get_delta()), (double) x[j]->moles, (double) (x[j]->moles - comp_ptr->Get_moles() - @@ -1386,7 +1386,7 @@ print_pp_assemblage(void) } else { - sprintf(token, " %11.3e %11.3e %11.3e", + snprintf(token, sizeof(token), " %11.3e %11.3e %11.3e", (double) comp_ptr->Get_initial_moles(), (double) x[j]->moles, (double) (x[j]->moles - comp_ptr->Get_initial_moles())); diff --git a/phreeqcpp/readtr.cpp b/phreeqcpp/readtr.cpp index 85d579ee..cf30b67d 100644 --- a/phreeqcpp/readtr.cpp +++ b/phreeqcpp/readtr.cpp @@ -749,21 +749,21 @@ read_transport(void) { if (max_cells == count_length) { - sprintf(token, + snprintf(token, sizeof(token), "Number of cells is increased to number of 'lengths' %d.", count_length); warning_msg(token); } else if (max_cells == count_disp) { - sprintf(token, + snprintf(token, sizeof(token), "Number of cells is increased to number of dispersivities %d.", count_disp); warning_msg(token); } else { - sprintf(token, + snprintf(token, sizeof(token), "Number of mobile cells is increased to (ceil)(number of porosities) / (1 + number of stagnant zones) = %d.", (int) ceil(((double)count_por / (1 + (double)stag_data.count_stag)))); warning_msg(token); @@ -1222,26 +1222,26 @@ dump_cpp(void) fs << "END" << "\n"; char token[MAX_LENGTH]; - sprintf(token, "KNOBS\n"); + snprintf(token, sizeof(token), "KNOBS\n"); fs << token; - sprintf(token, "\t-iter%15d\n", itmax); + snprintf(token, sizeof(token), "\t-iter%15d\n", itmax); fs << token; - sprintf(token, "\t-tol %15.3e\n", (double)ineq_tol); + snprintf(token, sizeof(token), "\t-tol %15.3e\n", (double)ineq_tol); fs << token; - sprintf(token, "\t-step%15.3e\n", (double)step_size); + snprintf(token, sizeof(token), "\t-step%15.3e\n", (double)step_size); fs << token; - sprintf(token, "\t-pe_s%15.3e\n", (double)pe_step_size); + snprintf(token, sizeof(token), "\t-pe_s%15.3e\n", (double)pe_step_size); fs << token; - sprintf(token, "\t-diag "); + snprintf(token, sizeof(token), "\t-diag "); fs << token; if (diagonal_scale == TRUE) { - sprintf(token, "true\n"); + snprintf(token, sizeof(token), "true\n"); fs << token; } else { - sprintf(token, "false\n"); + snprintf(token, sizeof(token), "false\n"); fs << token; } std::map < int, SelectedOutput >::iterator so_it = SelectedOutput_map.begin(); @@ -1249,223 +1249,223 @@ dump_cpp(void) { current_selected_output = &(so_it->second); - sprintf(token, "SELECTED_OUTPUT %d\n", current_selected_output->Get_n_user()); + snprintf(token, sizeof(token), "SELECTED_OUTPUT %d\n", current_selected_output->Get_n_user()); fs << token; - //sprintf(token, "\t-file %-15s\n", "sel_o$$$.prn"); + //snprintf(token, sizeof(token), "\t-file %-15s\n", "sel_o$$$.prn"); //fs << token; fs << "\t-file " << "sel_o$$$" << current_selected_output->Get_n_user() << ".prn\n"; //if (punch.count_totals != 0) if (current_selected_output->Get_totals().size() > 0) { - sprintf(token, "\t-tot "); + snprintf(token, sizeof(token), "\t-tot "); fs << token; for (size_t i = 0; i < current_selected_output->Get_totals().size(); i++) { - sprintf(token, " %s", current_selected_output->Get_totals()[i].first.c_str()); + snprintf(token, sizeof(token), " %s", current_selected_output->Get_totals()[i].first.c_str()); fs << token; } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } if (current_selected_output->Get_molalities().size() > 0) { - sprintf(token, "\t-mol "); + snprintf(token, sizeof(token), "\t-mol "); fs << token; for (size_t i = 0; i < current_selected_output->Get_molalities().size(); i++) { - sprintf(token, " %s", current_selected_output->Get_molalities()[i].first.c_str()); + snprintf(token, sizeof(token), " %s", current_selected_output->Get_molalities()[i].first.c_str()); fs << token; } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } if (current_selected_output->Get_activities().size() > 0) { - sprintf(token, "\t-act "); + snprintf(token, sizeof(token), "\t-act "); fs << token; for (size_t i = 0; i < current_selected_output->Get_activities().size(); i++) { - sprintf(token, " %s", current_selected_output->Get_activities()[i].first.c_str()); + snprintf(token, sizeof(token), " %s", current_selected_output->Get_activities()[i].first.c_str()); fs << token; } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } if (current_selected_output->Get_pure_phases().size() > 0) { - sprintf(token, "\t-equ "); + snprintf(token, sizeof(token), "\t-equ "); fs << token; for (size_t i = 0; i < current_selected_output->Get_pure_phases().size(); i++) { - sprintf(token, " %s", current_selected_output->Get_pure_phases()[i].first.c_str()); + snprintf(token, sizeof(token), " %s", current_selected_output->Get_pure_phases()[i].first.c_str()); fs << token; } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } if (current_selected_output->Get_si().size() > 0) { - sprintf(token, "\t-si "); + snprintf(token, sizeof(token), "\t-si "); fs << token; for (size_t i = 0; i < current_selected_output->Get_si().size(); i++) { - sprintf(token, " %s", current_selected_output->Get_si()[i].first.c_str()); + snprintf(token, sizeof(token), " %s", current_selected_output->Get_si()[i].first.c_str()); fs << token; } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } if (current_selected_output->Get_gases().size() > 0) { - sprintf(token, "\t-gas "); + snprintf(token, sizeof(token), "\t-gas "); fs << token; for (size_t i = 0; i < current_selected_output->Get_gases().size(); i++) { - sprintf(token, " %s", current_selected_output->Get_gases()[i].first.c_str()); + snprintf(token, sizeof(token), " %s", current_selected_output->Get_gases()[i].first.c_str()); fs << token; } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } if (current_selected_output->Get_s_s().size() > 0) { - sprintf(token, "\t-solid_solutions "); + snprintf(token, sizeof(token), "\t-solid_solutions "); fs << token; for (size_t i = 0; i < current_selected_output->Get_s_s().size(); i++) { - sprintf(token, " %s", current_selected_output->Get_s_s()[i].first.c_str()); + snprintf(token, sizeof(token), " %s", current_selected_output->Get_s_s()[i].first.c_str()); fs << token; } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } if (current_selected_output->Get_kinetics().size() > 0) { - sprintf(token, "\t-kin "); + snprintf(token, sizeof(token), "\t-kin "); fs << token; for (size_t i = 0; i < current_selected_output->Get_kinetics().size(); i++) { - sprintf(token, " %s", current_selected_output->Get_kinetics()[i].first.c_str()); + snprintf(token, sizeof(token), " %s", current_selected_output->Get_kinetics()[i].first.c_str()); fs << token; } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } } - sprintf(token, "TRANSPORT\n"); + snprintf(token, sizeof(token), "TRANSPORT\n"); fs << token; - sprintf(token, "\t-cells %6d\n", count_cells); + snprintf(token, sizeof(token), "\t-cells %6d\n", count_cells); fs << token; - sprintf(token, "\t-shifts%6d%6d\n", count_shifts, ishift); + snprintf(token, sizeof(token), "\t-shifts%6d%6d\n", count_shifts, ishift); fs << token; - sprintf(token, "\t-output_frequency %6d\n", print_modulus); + snprintf(token, sizeof(token), "\t-output_frequency %6d\n", print_modulus); fs << token; - sprintf(token, "\t-selected_output_frequency %6d\n", + snprintf(token, sizeof(token), "\t-selected_output_frequency %6d\n", punch_modulus); fs << token; - sprintf(token, "\t-bcon %6d%6d\n", bcon_first, bcon_last); + snprintf(token, sizeof(token), "\t-bcon %6d%6d\n", bcon_first, bcon_last); fs << token; - sprintf(token, "\t-timest %13.5e\n", (double)timest); + snprintf(token, sizeof(token), "\t-timest %13.5e\n", (double)timest); fs << token; if (!high_precision) { - sprintf(token, "\t-diffc %13.5e\n", (double)diffc); + snprintf(token, sizeof(token), "\t-diffc %13.5e\n", (double)diffc); fs << token; } else { - sprintf(token, "\t-diffc %20.12e\n", (double)diffc); + snprintf(token, sizeof(token), "\t-diffc %20.12e\n", (double)diffc); fs << token; } - sprintf(token, "\t-tempr %13.5e\n", (double)tempr); + snprintf(token, sizeof(token), "\t-tempr %13.5e\n", (double)tempr); fs << token; if (correct_disp == TRUE) { - sprintf(token, "\t-correct_disp %s\n", "True"); + snprintf(token, sizeof(token), "\t-correct_disp %s\n", "True"); fs << token; } else { - sprintf(token, "\t-correct_disp %s\n", "False"); + snprintf(token, sizeof(token), "\t-correct_disp %s\n", "False"); fs << token; } - sprintf(token, "\t-length\n"); + snprintf(token, sizeof(token), "\t-length\n"); fs << token; for (int i = 1; i <= count_cells; i++) { - sprintf(token, "%12.3e", (double)cell_data[i].length); + snprintf(token, sizeof(token), "%12.3e", (double)cell_data[i].length); fs << token; if (i > 0 && (i % 8) == 0) { - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; - sprintf(token, "\t-disp\n"); + snprintf(token, sizeof(token), "\t-disp\n"); fs << token; for (int i = 1; i <= count_cells; i++) { if (!high_precision) { - sprintf(token, "%12.3e", (double)cell_data[i].disp); + snprintf(token, sizeof(token), "%12.3e", (double)cell_data[i].disp); fs << token; } else { - sprintf(token, "%20.12e", (double)cell_data[i].disp); + snprintf(token, sizeof(token), "%20.12e", (double)cell_data[i].disp); fs << token; } if (i > 0 && (i % 8) == 0) { - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; - sprintf(token, "\t-punch_cells"); + snprintf(token, sizeof(token), "\t-punch_cells"); fs << token; l = 0; for (int i = 0; i < all_cells; i++) { if (cell_data[i].punch != TRUE) continue; - sprintf(token, " %d", i); + snprintf(token, sizeof(token), " %d", i); fs << token; l++; if ((l % 20) == 0) { - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; - sprintf(token, "\t-print_cells"); + snprintf(token, sizeof(token), "\t-print_cells"); fs << token; l = 0; for (int i = 0; i < all_cells; i++) { if (cell_data[i].print != TRUE) continue; - sprintf(token, " %d", i); + snprintf(token, sizeof(token), " %d", i); fs << token; l++; if ((l % 20) == 0) { - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; - sprintf(token, "\t-dump $$$.dmp\n"); + snprintf(token, sizeof(token), "\t-dump $$$.dmp\n"); fs << token; - sprintf(token, "\t-dump_frequency %d\n", dump_modulus); + snprintf(token, sizeof(token), "\t-dump_frequency %d\n", dump_modulus); fs << token; - sprintf(token, "\t-dump_restart %d\n", transport_step + 1); + snprintf(token, sizeof(token), "\t-dump_restart %d\n", transport_step + 1); fs << token; #if defined MULTICHART @@ -1473,7 +1473,7 @@ dump_cpp(void) chart_handler.dump(fs, 0); #endif - sprintf(token, "END\n"); + snprintf(token, sizeof(token), "END\n"); fs << token; return (OK); } diff --git a/phreeqcpp/transport.cpp b/phreeqcpp/transport.cpp index 32e0e0a8..36dda3cc 100644 --- a/phreeqcpp/transport.cpp +++ b/phreeqcpp/transport.cpp @@ -372,7 +372,7 @@ transport(void) /* multi_D calc's are OK if all cells have the same amount of water */ if (multi_Dflag == TRUE) { - sprintf(token, "multi_D calc's and stagnant: define MIXing factors explicitly, or \n\t give in -multi_D the Dw used for calculating the mobile-immobile exchange factor."); + snprintf(token, sizeof(token), "multi_D calc's and stagnant: define MIXing factors explicitly, or \n\t give in -multi_D the Dw used for calculating the mobile-immobile exchange factor."); warning_msg(token); } @@ -497,10 +497,10 @@ transport(void) * Now transport */ if (implicit) - sprintf(token, "\nCalculating implicit transport: %d (mobile) cells, %d shifts, %d mixruns, max. mixf = %g.\n\n", + snprintf(token, sizeof(token), "\nCalculating implicit transport: %d (mobile) cells, %d shifts, %d mixruns, max. mixf = %g.\n\n", count_cells, count_shifts - transport_start + 1, nmix, max_mixf); else - sprintf(token, "\nCalculating transport: %d (mobile) cells, %d shifts, %d mixruns...\n\n", + snprintf(token, sizeof(token), "\nCalculating transport: %d (mobile) cells, %d shifts, %d mixruns...\n\n", count_cells, count_shifts - transport_start + 1, nmix); warning_msg(token); max_iter = 0; @@ -544,14 +544,14 @@ transport(void) mixrun = j; if (multi_Dflag && j == floor((LDBLE)nmix / 2)) { - //sprintf(token, + //snprintf(token, sizeof(token), // "Transport step %3d. Multicomponent diffusion run %3d.", // transport_step, j); //dup_print(token, FALSE); } else if (!multi_Dflag) { - sprintf(token, "Transport step %3d. Mixrun %3d.", + snprintf(token, sizeof(token), "Transport step %3d. Mixrun %3d.", transport_step, j); dup_print(token, FALSE); } @@ -595,11 +595,11 @@ transport(void) max_iter = overall_iterations; cell_no = i; if (multi_Dflag) - sprintf(token, + snprintf(token, sizeof(token), "Transport step %3d. MCDrun %3d. Cell %3d. (Max. iter %3d)", transport_step, j, i, max_iter); else - sprintf(token, + snprintf(token, sizeof(token), "Transport step %3d. Mixrun %3d. Cell %3d. (Max. iter %3d)", transport_step, j, i, max_iter); status(0, token); @@ -665,7 +665,7 @@ transport(void) */ if (ishift != 0) { - sprintf(token, "Transport step %3d.", transport_step); + snprintf(token, sizeof(token), "Transport step %3d.", transport_step); dup_print(token, FALSE); if (b_c == 1) rate_sim_time_start = ((double)transport_step - 1) * @@ -758,11 +758,11 @@ transport(void) kin_time /= 2; cell_no = i; if (multi_Dflag) - sprintf(token, + snprintf(token, sizeof(token), "Transport step %3d. MCDrun %3d. Cell %3d. (Max. iter %3d)", transport_step, 0, i, max_iter); else - sprintf(token, + snprintf(token, sizeof(token), "Transport step %3d. Mixrun %3d. Cell %3d. (Max. iter %3d)", transport_step, 0, i, max_iter); status(0, token); @@ -807,14 +807,14 @@ transport(void) mixrun = j; if (multi_Dflag && j == nmix && (transport_step % print_modulus == 0)) { - sprintf(token, + snprintf(token, sizeof(token), "Transport step %3d. Multicomponent diffusion run %3d.", transport_step, j); dup_print(token, FALSE); } else if (!multi_Dflag) { - sprintf(token, "Transport step %3d. Mixrun %3d.", + snprintf(token, sizeof(token), "Transport step %3d. Mixrun %3d.", transport_step, j); dup_print(token, FALSE); } @@ -862,11 +862,11 @@ transport(void) max_iter = overall_iterations; cell_no = i; if (multi_Dflag) - sprintf(token, + snprintf(token, sizeof(token), "Transport step %3d. MCDrun %3d. Cell %3d. (Max. iter %3d)", transport_step, j, i, max_iter); else - sprintf(token, + snprintf(token, sizeof(token), "Transport step %3d. Mixrun %3d. Cell %3d. (Max. iter %3d)", transport_step, j, i, max_iter); status(0, token); @@ -959,14 +959,14 @@ transport(void) if (multi_Dflag && moles_added[0].moles > 0) { - sprintf(token, + snprintf(token, sizeof(token), "\nFor balancing negative concentrations in MCD, added in total to the system:"); warning_msg(token); for (i = 0; i < count_moles_added; i++) { if (!moles_added[i].moles) break; - sprintf(token, + snprintf(token, sizeof(token), "\t %.4e moles %s.", (double)moles_added[i].moles, moles_added[i].name); warning_msg(token); @@ -1246,7 +1246,7 @@ init_mix(void) m = (LDBLE *)free_check_null(m); m1 = (LDBLE *)free_check_null(m1); char token[MAX_LENGTH]; - sprintf(token, "Calculated number of mixes %g, is beyond program limit,\nERROR: please set implicit true, or decrease time_step, or increase cell-lengths.", 2.25 * maxmix); + snprintf(token, sizeof(token), "Calculated number of mixes %g, is beyond program limit,\nERROR: please set implicit true, or decrease time_step, or increase cell-lengths.", 2.25 * maxmix); error_msg(token, STOP); } if (bcon_first == 1 || bcon_last == 1) @@ -1367,7 +1367,7 @@ init_mix(void) m = (LDBLE *)free_check_null(m); m1 = (LDBLE *)free_check_null(m1); char token[MAX_LENGTH]; - sprintf(token, "Calculated number of mixes %g, is beyond program limit,\nERROR: please set implicit true, or decrease time_step, or increase cell-lengths.", 1.5 * maxmix); + snprintf(token, sizeof(token), "Calculated number of mixes %g, is beyond program limit,\nERROR: please set implicit true, or decrease time_step, or increase cell-lengths.", 1.5 * maxmix); error_msg(token, STOP); } l_nmix = 1 + (int) floor(1.5 * maxmix); @@ -1950,7 +1950,7 @@ fill_spec(int l_cell_no, int ref_cell) { if (!warn_MCD_X) { - sprintf(token, + snprintf(token, sizeof(token), "MCD found more than 1 exchanger, uses X for interlayer diffusion."); warning_msg(token); warn_MCD_X = 1; @@ -3593,7 +3593,7 @@ multi_D(LDBLE DDt, int mobile_cell, int stagnant) } if (temp < -1e-12) { - sprintf(token, + snprintf(token, sizeof(token), "Negative concentration in MCD: added %.4e moles %s in cell %d", (double)-temp, it->first.c_str(), i); warning_msg(token); diff --git a/phreeqcpp/utilities.cpp b/phreeqcpp/utilities.cpp index 67a030ee..d655f656 100644 --- a/phreeqcpp/utilities.cpp +++ b/phreeqcpp/utilities.cpp @@ -567,7 +567,7 @@ get_token(const char** eqnaddr, std::string& string, LDBLE* l_z, int* l) /* * Charge has been written, now need to check if charge has legal format */ - if (get_charge(charge, l_z) == OK) + if (get_charge(charge, MAX_LENGTH, l_z) == OK) { string.append(charge); } @@ -1193,37 +1193,37 @@ status(int count, const char *str, bool rk_string) { stdstr = str; } - sprintf(sim_str, "\rSimulation %d.", simulation); - sprintf(state_str, " "); - sprintf(spin_str, " "); + snprintf(sim_str, sizeof(sim_str), "\rSimulation %d.", simulation); + snprintf(state_str, sizeof(state_str), " "); + snprintf(spin_str, sizeof(spin_str), " "); switch (state) { default: break; case INITIAL_SOLUTION: - sprintf(state_str, "Initial solution %d.", use.Get_solution_ptr()->Get_n_user()); + snprintf(state_str, sizeof(state_str), "Initial solution %d.", use.Get_solution_ptr()->Get_n_user()); break; case INITIAL_EXCHANGE: - sprintf(state_str, "Initial exchange %d.", use.Get_exchange_ptr()->Get_n_user()); + snprintf(state_str, sizeof(state_str), "Initial exchange %d.", use.Get_exchange_ptr()->Get_n_user()); break; case INITIAL_SURFACE: - sprintf(state_str, "Initial surface %d.", use.Get_surface_ptr()->Get_n_user()); + snprintf(state_str, sizeof(state_str), "Initial surface %d.", use.Get_surface_ptr()->Get_n_user()); break; case INVERSE: - sprintf(state_str, "Inverse %d. Models = %d.", use.Get_inverse_ptr()->n_user, count); + snprintf(state_str, sizeof(state_str), "Inverse %d. Models = %d.", use.Get_inverse_ptr()->n_user, count); break; case REACTION: if (use.Get_kinetics_in() == TRUE) { - sprintf(state_str, "Kinetic step %d.", reaction_step); + snprintf(state_str, sizeof(state_str), "Kinetic step %d.", reaction_step); } else { - sprintf(state_str, "Reaction step %d.", reaction_step); + snprintf(state_str, sizeof(state_str), "Reaction step %d.", reaction_step); } break; case ADVECTION: - sprintf(state_str, "Advection, shift %d.", advection_step); + snprintf(state_str, sizeof(state_str), "Advection, shift %d.", advection_step); break; } spinner++; From 11a83991492940a25d12e4ffe94623f2b6b05853 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Sat, 14 Jan 2023 22:14:20 -0700 Subject: [PATCH 035/384] [iphreeqc] Issue 8 -- change sprintf to snprintf for CRAN (#9) --- advect/advect.c | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/advect/advect.c b/advect/advect.c index b7534c62..ef924a41 100644 --- a/advect/advect.c +++ b/advect/advect.c @@ -23,7 +23,7 @@ void ExtractWrite(int cell) switch (vt[j]) { case TT_DOUBLE: dv[j] = v.dVal; - sprintf(sv[j], "%23.15e", v.dVal); + snprintf(sv[j], sizeof(sv[j]), "%23.15e", v.dVal); break; case TT_STRING: strcpy(sv[j], v.sVal); From be9e230efb49f1bde06d9ca21a6a6042befc3c8e Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Sun, 15 Jan 2023 06:04:23 +0000 Subject: [PATCH 036/384] Squashed 'phreeqcpp/' changes from 8715a91..feaa432 feaa432 [iphreeqc] Issue 8 -- change sprintf to snprintf for CRAN (#9) git-subtree-dir: phreeqcpp git-subtree-split: feaa4321a63ece0f205ce12795d6553261c74f7d --- PBasic.cpp | 39 +++++++------ PBasic.h | 1 + PHRQ_io_output.cpp | 4 +- Phreeqc.h | 2 +- ReadClass.cxx | 6 +- basicsubs.cpp | 3 +- class_main.cpp | 11 ++-- inverse.cpp | 60 +++++++++---------- kinetics.cpp | 2 +- mainsubs.cpp | 22 +++---- parse.cpp | 4 +- pitzer.cpp | 4 +- print.cpp | 6 +- readtr.cpp | 140 ++++++++++++++++++++++----------------------- transport.cpp | 40 ++++++------- utilities.cpp | 22 +++---- 16 files changed, 187 insertions(+), 179 deletions(-) diff --git a/PBasic.cpp b/PBasic.cpp index 09016cd9..7233f91c 100644 --- a/PBasic.cpp +++ b/PBasic.cpp @@ -499,22 +499,22 @@ numtostr(char * Result, LDBLE n) //if (PhreeqcPtr->current_selected_output != NULL && // !PhreeqcPtr->current_selected_output->Get_high_precision()) //{ - // sprintf(l_s, "%12.0f", (double) n); + // snprintf(l_s, PhreeqcPtr->max_line, "%12.0f", (double) n); //} //else //{ - // sprintf(l_s, "%20.0f", (double) n); + // snprintf(l_s, PhreeqcPtr->max_line, "%20.0f", (double) n); //} bool temp_high_precision = (PhreeqcPtr->current_selected_output != NULL) ? PhreeqcPtr->current_selected_output->Get_high_precision() : PhreeqcPtr->high_precision; if (!temp_high_precision) { - sprintf(l_s, "%12.0f", (double) n); + snprintf(l_s, PhreeqcPtr->max_line, "%12.0f", (double) n); } else { - sprintf(l_s, "%20.0f", (double) n); + snprintf(l_s, PhreeqcPtr->max_line, "%20.0f", (double) n); } } else @@ -524,11 +524,11 @@ numtostr(char * Result, LDBLE n) PhreeqcPtr->high_precision; if (!temp_high_precision) { - sprintf(l_s, "%12.4e", (double) n); + snprintf(l_s, PhreeqcPtr->max_line, "%12.4e", (double) n); } else { - sprintf(l_s, "%20.12e", (double) n); + snprintf(l_s, PhreeqcPtr->max_line, "%20.12e", (double) n); } } i = (int) strlen(l_s) + 1; @@ -539,8 +539,8 @@ numtostr(char * Result, LDBLE n) PhreeqcPtr->free_check_null(l_s); return (Result); /* } else { - if (PhreeqcPtr->punch.high_precision == FALSE) sprintf(l_s, "%30.10f", n); - else sprintf(l_s, "%30.12f", n); + if (PhreeqcPtr->punch.high_precision == FALSE) snprintf(l_s, PhreeqcPtr->max_line, "%30.10f", n); + else snprintf(l_s, PhreeqcPtr->max_line, "%30.12f", n); i = strlen(l_s) + 1; do { i--; @@ -612,6 +612,7 @@ parse(char * l_inbuf, tokenrec ** l_buf) if (j + 1 > m) m = j + 1; t->UU.sp = (char *) PhreeqcPtr->PHRQ_calloc(m, sizeof(char)); + t->sp_sz = m; if (t->UU.sp == NULL) { PhreeqcPtr->malloc_error(); @@ -739,6 +740,7 @@ parse(char * l_inbuf, tokenrec ** l_buf) if (m < 256) m = 256; t->UU.sp = (char *) PhreeqcPtr->PHRQ_calloc(m, sizeof(char)); + t->sp_sz = m; if (t->UU.sp == NULL) { PhreeqcPtr->malloc_error(); @@ -746,7 +748,7 @@ parse(char * l_inbuf, tokenrec ** l_buf) exit(4); #endif } - sprintf(t->UU.sp, "%.*s", + snprintf(t->UU.sp, t->sp_sz, "%.*s", (int) (strlen(l_inbuf) - i + 1), l_inbuf + i - 1); i = (int) strlen(l_inbuf) + 1; @@ -2232,7 +2234,7 @@ factor(struct LOC_exec * LINK) { if (PhreeqcPtr->use.Get_mix_in()) { - sprintf(string, "Mix %d", PhreeqcPtr->use.Get_n_mix_user()); + snprintf(string, sizeof(string), "Mix %d", PhreeqcPtr->use.Get_n_mix_user()); n.UU.sval = PhreeqcPtr->string_duplicate(string); } else @@ -2251,7 +2253,7 @@ factor(struct LOC_exec * LINK) } else if (PhreeqcPtr->state == ADVECTION || PhreeqcPtr->state == TRANSPORT || PhreeqcPtr->state == PHAST) { - sprintf(string, "Cell %d", PhreeqcPtr->cell_no); + snprintf(string, sizeof(string), "Cell %d", PhreeqcPtr->cell_no); n.UU.sval = PhreeqcPtr->string_duplicate(string); } else @@ -3608,7 +3610,7 @@ factor(struct LOC_exec * LINK) std::string std_num; { - sprintf(token, "%*.*e", length, width, nmbr); + snprintf(token, sizeof(token), "%*.*e", length, width, nmbr); std_num = token; } @@ -3651,7 +3653,7 @@ factor(struct LOC_exec * LINK) std::string std_num; { - sprintf(token, "%*.*f", length, width, nmbr); + snprintf(token, sizeof(token), "%*.*f", length, width, nmbr); std_num = token; } @@ -4729,12 +4731,12 @@ cmdload(bool merging, char * name, struct LOC_exec *LINK) cmdnew(LINK); if (f != NULL) { - sprintf(STR1, "%s.TEXT", name); + snprintf(STR1, sizeof(STR1), "%s.TEXT", name); f = freopen(STR1, "r", f); } else { - sprintf(STR1, "%s.TEXT", name); + snprintf(STR1, sizeof(STR1), "%s.TEXT", name); f = fopen(STR1, "r"); } if (f == NULL) @@ -7213,6 +7215,7 @@ _NilCheck(void) return _Escape(-3); } +#ifdef SKIP /* The following is suitable for the HP Pascal operating system. It might want to be revised when emulating another system. */ @@ -7233,7 +7236,7 @@ _ShowEscape(char *buf, int code, int ior, char *prefix) } if (code == -10) { - sprintf(bufp, "Pascal system I/O error %d", ior); + snprintf(bufp, sizeof(bufp), "Pascal system I/O error %d", ior); // FIXME -- replace sizeof switch (ior) { case 3: @@ -7273,7 +7276,7 @@ _ShowEscape(char *buf, int code, int ior, char *prefix) } else { - sprintf(bufp, "Pascal system error %d", code); + snprintf(bufp, sizeof(bufp), "Pascal system error %d", code); // FIXME -- replace sizeof switch (code) { case -2: @@ -7307,7 +7310,7 @@ _ShowEscape(char *buf, int code, int ior, char *prefix) } return buf; } - +#endif int PBasic:: _Escape(int code) { diff --git a/PBasic.h b/PBasic.h index 749b7077..95d77db2 100644 --- a/PBasic.h +++ b/PBasic.h @@ -79,6 +79,7 @@ typedef struct tokenrec //#ifdef PHREEQCI_GUI size_t n_sz; char *sz_num; + size_t sp_sz; //#endif } tokenrec; diff --git a/PHRQ_io_output.cpp b/PHRQ_io_output.cpp index 5eaeb5c1..8cc33f05 100644 --- a/PHRQ_io_output.cpp +++ b/PHRQ_io_output.cpp @@ -136,7 +136,7 @@ fpunchf_user(int user_index, const char *format, double d) warning_msg(error_string); fpunchf_user_s_warning = 1; } - sprintf(fpunchf_user_buffer, "no_heading_%d", + snprintf(fpunchf_user_buffer, sizeof(fpunchf_user_buffer), "no_heading_%d", (user_index - user_punch_count_headings) + 1); name = fpunchf_user_buffer; } @@ -173,7 +173,7 @@ fpunchf_user(int user_index, const char *format, char * d) warning_msg(error_string); fpunchf_user_s_warning = 1; } - sprintf(fpunchf_user_buffer, "no_heading_%d", + snprintf(fpunchf_user_buffer, sizeof(fpunchf_user_buffer), "no_heading_%d", (user_index - user_punch_count_headings) + 1); name = fpunchf_user_buffer; } diff --git a/Phreeqc.h b/Phreeqc.h index dd414fb2..c3f20aae 100644 --- a/Phreeqc.h +++ b/Phreeqc.h @@ -481,7 +481,7 @@ public: // parse.cpp ------------------------------- int check_eqn(int association); - int get_charge(char* charge, LDBLE* z); + int get_charge(char* charge, size_t charge_size, LDBLE* z); int get_elt(const char** t_ptr, std::string& element, int* i); int get_elts_in_species(const char** t_ptr, LDBLE coef); int get_num(const char** t_ptr, LDBLE* num); diff --git a/ReadClass.cxx b/ReadClass.cxx index 937d6575..fda93428 100644 --- a/ReadClass.cxx +++ b/ReadClass.cxx @@ -551,7 +551,7 @@ run_as_cells(void) rate_sim_time = 0; for (reaction_step = 1; reaction_step <= count_steps; reaction_step++) { - sprintf(token, "Reaction step %d.", reaction_step); + snprintf(token, sizeof(token), "Reaction step %d.", reaction_step); if (reaction_step > 1 && incremental_reactions == FALSE) { copy_use(-2); @@ -635,7 +635,7 @@ run_as_cells(void) rate_sim_time = 0; reaction_step = 1; - sprintf(token, "Reaction step %d.", reaction_step); + snprintf(token, sizeof(token), "Reaction step %d.", reaction_step); dup_print(token, FALSE); /* @@ -763,7 +763,7 @@ run_as_cells(void) rate_sim_time = 0; for (reaction_step = 1; reaction_step <= count_steps; reaction_step++) { - sprintf(token, "Reaction step %d.", reaction_step); + snprintf(token, sizeof(token), "Reaction step %d.", reaction_step); if (reaction_step > 1 && incremental_reactions == FALSE) { copy_use(-2); diff --git a/basicsubs.cpp b/basicsubs.cpp index a21f34d5..3e93470b 100644 --- a/basicsubs.cpp +++ b/basicsubs.cpp @@ -2097,12 +2097,13 @@ match_elts_in_species(const char *name, const char *mytemplate) * write out string */ token[0] = '\0'; + assert(MAX_LENGTH == sizeof(token1)); for (i = 0; i < count_match_tokens; i++) { strcat(token, match_vector[i].first.c_str()); if (match_vector[i].second != 1.0) { - sprintf(token1, "%g", (double) match_vector[i].second); + snprintf(token1, sizeof(token1), "%g", (double) match_vector[i].second); strcat(token, token1); } } diff --git a/class_main.cpp b/class_main.cpp index 74721e86..fe3d0e77 100644 --- a/class_main.cpp +++ b/class_main.cpp @@ -1,3 +1,6 @@ +#ifdef DOS +#include +#endif #include "Phreeqc.h" #include "NameDouble.h" @@ -296,9 +299,9 @@ write_banner(void) /* version */ #ifdef NPP - len = sprintf(buffer, "* PHREEQC-%s *", "3.7.1"); + len = snprintf(buffer, sizeof(buffer), "* PHREEQC-%s *", "3.7.1"); #else - len = sprintf(buffer, "* PHREEQC-%s *", "@VERSION@"); + len = snprintf(buffer, sizeof(buffer), "* PHREEQC-%s *", "@VERSION@"); #endif indent = (44 - len) / 2; screen_msg(sformatf("%14c║%*c%s%*c║\n", ' ', indent, ' ', buffer, @@ -320,9 +323,9 @@ write_banner(void) /* date */ #ifdef NPP - len = sprintf(buffer, "%s", "July 5, 2021"); + len = snprintf(buffer, sizeof(buffer), "%s", "July 5, 2021"); #else - len = sprintf(buffer, "%s", "@VER_DATE@"); + len = snprintf(buffer, sizeof(buffer), "%s", "@VER_DATE@"); #endif indent = (44 - len) / 2; screen_msg(sformatf("%14c║%*c%s%*c║\n", ' ', indent, ' ', buffer, diff --git a/inverse.cpp b/inverse.cpp index 81a33781..b9bbcd0d 100644 --- a/inverse.cpp +++ b/inverse.cpp @@ -371,7 +371,7 @@ setup_inverse(class inverse *inv_ptr) f = -1.0; } column = i; - sprintf(token, "soln %d", i); + snprintf(token, sizeof(token), "soln %d", i); col_name[column] = string_hsave(token); for (j = 0; j < (int)master.size(); j++) { @@ -538,7 +538,7 @@ setup_inverse(class inverse *inv_ptr) { my_array[(size_t)row * max_column_count + (size_t)column] = 0.0; } - sprintf(token, "%s %d", row_name[row], j); + snprintf(token, sizeof(token), "%s %d", row_name[row], j); col_name[column] = string_hsave(token); column++; } @@ -549,13 +549,13 @@ setup_inverse(class inverse *inv_ptr) for (i = 0; i < inv_ptr->count_solns; i++) { - sprintf(token, "ph %d", i); + snprintf(token, sizeof(token), "ph %d", i); col_name[column] = string_hsave(token); column++; } /* put names in col_name for water */ - sprintf(token, "water"); + snprintf(token, sizeof(token), "water"); col_name[column] = string_hsave(token); column++; @@ -564,7 +564,7 @@ setup_inverse(class inverse *inv_ptr) { for (j = 0; j < inv_ptr->isotope_unknowns.size(); j++) { - sprintf(token, "%d%s %d", + snprintf(token, sizeof(token), "%d%s %d", (int) inv_ptr->isotope_unknowns[j].isotope_number, inv_ptr->isotope_unknowns[j].elt_name, i); col_name[column] = string_hsave(token); @@ -581,7 +581,7 @@ setup_inverse(class inverse *inv_ptr) { for (j = 0; j < inv_ptr->isotopes.size(); j++) { - sprintf(token, "%d%s %s", + snprintf(token, sizeof(token), "%d%s %s", (int) inv_ptr->isotopes[j].isotope_number, inv_ptr->isotopes[j].elt_name, inv_ptr->phases[i].phase->name); @@ -649,7 +649,7 @@ setup_inverse(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)column] = 0.0; } } - sprintf(token, "%s %d", "charge", i); + snprintf(token, sizeof(token), "%s %d", "charge", i); row_name[count_rows] = string_hsave(token); count_rows++; } @@ -672,7 +672,7 @@ setup_inverse(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)column] = inv_ptr->dalk_dc[i]; } - sprintf(token, "%s %d", "dAlk", i); + snprintf(token, sizeof(token), "%s %d", "dAlk", i); row_name[count_rows] = string_hsave(token); count_rows++; } @@ -688,7 +688,7 @@ setup_inverse(class inverse *inv_ptr) for (size_t j = 0; j < inv_ptr->isotopes.size(); j++) { isotope_balance_equation(inv_ptr, (int)count_rows, (int)j); - sprintf(token, "%d%s", (int) inv_ptr->isotopes[j].isotope_number, + snprintf(token, sizeof(token), "%d%s", (int) inv_ptr->isotopes[j].isotope_number, inv_ptr->isotopes[j].elt_name); row_name[count_rows] = string_hsave(token); count_rows++; @@ -761,7 +761,7 @@ setup_inverse(class inverse *inv_ptr) } my_array[count_rows * max_column_count + (size_t)column] = 1.0 * f; my_array[count_rows * max_column_count + (size_t)i] = -coef * f; - sprintf(token, "%s %s", inv_ptr->elts[j].master->elt->name, "eps+"); + snprintf(token, sizeof(token), "%s %s", inv_ptr->elts[j].master->elt->name, "eps+"); row_name[count_rows] = string_hsave(token); count_rows++; @@ -795,7 +795,7 @@ setup_inverse(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)i] = -coef * f; my_array[count_rows * max_column_count + (size_t)column] = -1.0 * f; - sprintf(token, "%s %s", inv_ptr->elts[j].master->elt->name, + snprintf(token, sizeof(token), "%s %s", inv_ptr->elts[j].master->elt->name, "eps-"); row_name[count_rows] = string_hsave(token); count_rows++; @@ -821,7 +821,7 @@ setup_inverse(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)column] = 1.0; my_array[count_rows * max_column_count + (size_t)i] = -coef; - sprintf(token, "%s %s", "pH", "eps+"); + snprintf(token, sizeof(token), "%s %s", "pH", "eps+"); row_name[count_rows] = string_hsave(token); count_rows++; @@ -829,7 +829,7 @@ setup_inverse(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)column] = -1.0; my_array[count_rows * max_column_count + (size_t)i] = -coef; - sprintf(token, "%s %s", "pH", "eps-"); + snprintf(token, sizeof(token), "%s %s", "pH", "eps-"); row_name[count_rows] = string_hsave(token); count_rows++; } @@ -845,7 +845,7 @@ setup_inverse(class inverse *inv_ptr) /* set upper limit of change in positive direction */ my_array[count_rows * max_column_count + (size_t)column] = 1.0; my_array[count_rows * max_column_count + count_unknowns] = coef; - sprintf(token, "%s %s", "water", "eps+"); + snprintf(token, sizeof(token), "%s %s", "water", "eps+"); row_name[count_rows] = string_hsave(token); count_rows++; @@ -853,7 +853,7 @@ setup_inverse(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)column] = -1.0; my_array[count_rows * max_column_count + count_unknowns] = coef; - sprintf(token, "%s %s", "water", "eps-"); + snprintf(token, sizeof(token), "%s %s", "water", "eps-"); row_name[count_rows] = string_hsave(token); count_rows++; } @@ -890,7 +890,7 @@ setup_inverse(class inverse *inv_ptr) /* set upper limit of change in positive direction */ my_array[count_rows * max_column_count + (size_t)column] = 1.0; my_array[count_rows * max_column_count + (size_t)i] = -coef; - sprintf(token, "%d%s %s", + snprintf(token, sizeof(token), "%d%s %s", (int) kit->second.Get_isotope_number(), kit->second.Get_elt_name().c_str(), "eps+"); row_name[count_rows] = string_hsave(token); @@ -900,7 +900,7 @@ setup_inverse(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)column] = -1.0; my_array[count_rows * max_column_count + (size_t)i] = -coef; - sprintf(token, "%d%s %s", + snprintf(token, sizeof(token), "%d%s %s", (int) kit->second.Get_isotope_number(), kit->second.Get_elt_name().c_str(), "eps-"); row_name[count_rows] = string_hsave(token); @@ -1777,7 +1777,7 @@ print_model(class inverse *inv_ptr) d2 = 0.0; if (equal(d3, 0.0, MIN_TOTAL_INVERSE) == TRUE) d3 = 0.0; - sprintf(token, "%d%s", + snprintf(token, sizeof(token), "%d%s", (int) inv_ptr->isotope_unknowns[j]. isotope_number, inv_ptr->isotope_unknowns[j].elt_name); @@ -1853,7 +1853,7 @@ print_model(class inverse *inv_ptr) d2 = 0.0; if (equal(d3, 0.0, 1e-7) == TRUE) d3 = 0.0; - sprintf(token, "%d%s %s", + snprintf(token, sizeof(token), "%d%s %s", (int) inv_ptr->isotopes[j].isotope_number, inv_ptr->isotopes[j].elt_name, inv_ptr->phases[i].phase->name); @@ -2060,7 +2060,7 @@ punch_model_heading(class inverse *inv_ptr) */ for (i = 0; i < inv_ptr->count_solns; i++) { - sprintf(token, "Soln_%d", inv_ptr->solns[i]); + snprintf(token, sizeof(token), "Soln_%d", inv_ptr->solns[i]); std::string tok1(token); tok1.append("_min"); std::string tok2(token); @@ -3618,7 +3618,7 @@ check_isotopes(class inverse *inv_ptr) } else { - sprintf(token, "%g%s", + snprintf(token, sizeof(token), "%g%s", (double) kit->second.Get_isotope_number(), kit->second.Get_elt_name().c_str()); for (l = 0; l < count_iso_defaults; l++) @@ -3764,7 +3764,7 @@ phase_isotope_inequalities(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)col_phases + (size_t)i] = inv_ptr->phases[i].isotopes[j].ratio_uncertainty; my_array[count_rows * max_column_count + (size_t)column] = 1.0; - sprintf(token, "%s %s", inv_ptr->phases[i].phase->name, + snprintf(token, sizeof(token), "%s %s", inv_ptr->phases[i].phase->name, "iso pos"); row_name[count_rows] = string_hsave(token); count_rows++; @@ -3772,7 +3772,7 @@ phase_isotope_inequalities(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)col_phases + (size_t)i] = inv_ptr->phases[i].isotopes[j].ratio_uncertainty; my_array[count_rows * max_column_count + (size_t)column] = -1.0; - sprintf(token, "%s %s", inv_ptr->phases[i].phase->name, + snprintf(token, sizeof(token), "%s %s", inv_ptr->phases[i].phase->name, "iso neg"); row_name[count_rows] = string_hsave(token); count_rows++; @@ -3784,7 +3784,7 @@ phase_isotope_inequalities(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)col_phases + (size_t)i] = -inv_ptr->phases[i].isotopes[j].ratio_uncertainty; my_array[count_rows * max_column_count + (size_t)column] = -1.0; - sprintf(token, "%s %s", inv_ptr->phases[i].phase->name, + snprintf(token, sizeof(token), "%s %s", inv_ptr->phases[i].phase->name, "iso pos"); row_name[count_rows] = string_hsave(token); count_rows++; @@ -3792,7 +3792,7 @@ phase_isotope_inequalities(class inverse *inv_ptr) my_array[count_rows * max_column_count + (size_t)col_phases + (size_t)i] = -inv_ptr->phases[i].isotopes[j].ratio_uncertainty; my_array[count_rows * max_column_count + (size_t)column] = 1.0; - sprintf(token, "%s %s", inv_ptr->phases[i].phase->name, + snprintf(token, sizeof(token), "%s %s", inv_ptr->phases[i].phase->name, "iso neg"); row_name[count_rows] = string_hsave(token); count_rows++; @@ -3829,7 +3829,7 @@ write_optimize_names(class inverse *inv_ptr) { for (i = 0; i < inv_ptr->count_solns; i++) { - sprintf(token, "%s %s %d", "optimize", + snprintf(token, sizeof(token), "%s %s %d", "optimize", inv_ptr->elts[j].master->elt->name, inv_ptr->solns[i]); row_name[row] = string_hsave(token); row++; @@ -3842,7 +3842,7 @@ write_optimize_names(class inverse *inv_ptr) { for (i = 0; i < inv_ptr->count_solns; i++) { - sprintf(token, "%s %s %d", "optimize", "pH", inv_ptr->solns[i]); + snprintf(token, sizeof(token), "%s %s %d", "optimize", "pH", inv_ptr->solns[i]); row_name[row] = string_hsave(token); row++; } @@ -3850,7 +3850,7 @@ write_optimize_names(class inverse *inv_ptr) /* * water */ - sprintf(token, "%s %s", "optimize", "water"); + snprintf(token, sizeof(token), "%s %s", "optimize", "water"); row_name[row] = string_hsave(token); row++; /* @@ -3860,7 +3860,7 @@ write_optimize_names(class inverse *inv_ptr) { for (j = 0; j < inv_ptr->isotope_unknowns.size(); j++) { - sprintf(token, "%s %d%s %d", "optimize", + snprintf(token, sizeof(token), "%s %d%s %d", "optimize", (int) inv_ptr->isotope_unknowns[j].isotope_number, inv_ptr->isotope_unknowns[j].elt_name, inv_ptr->solns[i]); row_name[row] = string_hsave(token); @@ -3875,7 +3875,7 @@ write_optimize_names(class inverse *inv_ptr) { for (j = 0; j < inv_ptr->isotopes.size(); j++) { - sprintf(token, "%s %s %d%s", "optimize", + snprintf(token, sizeof(token), "%s %s %d%s", "optimize", inv_ptr->phases[i].phase->name, (int) inv_ptr->isotopes[j].isotope_number, inv_ptr->isotopes[j].elt_name); diff --git a/kinetics.cpp b/kinetics.cpp index 27ce4bdc..f6e02338 100644 --- a/kinetics.cpp +++ b/kinetics.cpp @@ -1075,7 +1075,7 @@ rk_kinetics(int i, LDBLE kin_time, int use_mix, int nsaver, } { char str[MAX_LENGTH]; - sprintf(str, "RK-steps: Bad%4d. OK%5d. Time %3d%%", step_bad, + snprintf(str, sizeof(str), "RK-steps: Bad%4d. OK%5d. Time %3d%%", step_bad, step_ok, (int) (100 * h_sum / kin_time)); status(0, str, true); } diff --git a/mainsubs.cpp b/mainsubs.cpp index 0f1c714a..5cc76a3f 100644 --- a/mainsubs.cpp +++ b/mainsubs.cpp @@ -381,7 +381,7 @@ initial_solutions(int print) } if (print == TRUE) { - sprintf(token, "Initial solution %d.\t%.350s", + snprintf(token, sizeof(token), "Initial solution %d.\t%.350s", solution_ref.Get_n_user(), solution_ref.Get_description().c_str()); dup_print(token, FALSE); } @@ -518,7 +518,7 @@ initial_exchangers(int print) } if (print == TRUE) { - sprintf(token, "Exchange %d.\t%.350s", + snprintf(token, sizeof(token), "Exchange %d.\t%.350s", exchange_ptr->Get_n_user(), exchange_ptr->Get_description().c_str()); dup_print(token, FALSE); } @@ -609,7 +609,7 @@ initial_gas_phases(int print) } if (print == TRUE) { - sprintf(token, "Gas_Phase %d.\t%.350s", + snprintf(token, sizeof(token), "Gas_Phase %d.\t%.350s", gas_phase_ptr->Get_n_user(), gas_phase_ptr->Get_description().c_str()); dup_print(token, FALSE); } @@ -660,7 +660,7 @@ initial_gas_phases(int print) } if (fabs(gas_phase_ptr->Get_total_p() - use.Get_solution_ptr()->Get_patm()) > 5) { - sprintf(token, + snprintf(token, sizeof(token), "WARNING: While initializing gas phase composition by equilibrating:\n%s (%.2f atm) %s (%.2f atm).\n%s.", " Gas phase pressure", (double) gas_phase_ptr->Get_total_p(), @@ -828,7 +828,7 @@ reactions(void) for (reaction_step = 1; reaction_step <= count_steps; reaction_step++) { overall_iterations = 0; - sprintf(token, "Reaction step %d.", reaction_step); + snprintf(token, sizeof(token), "Reaction step %d.", reaction_step); if (reaction_step > 1 && incremental_reactions == FALSE) { copy_use(-2); @@ -934,7 +934,7 @@ saver(void) if (save.solution == TRUE) { - sprintf(token, "Solution after simulation %d.", simulation); + snprintf(token, sizeof(token), "Solution after simulation %d.", simulation); description_x = token; n = save.n_solution_user; xsolution_save(n); @@ -1025,7 +1025,7 @@ xexchange_save(int n_user) temp_exchange.Set_n_user(n_user); temp_exchange.Set_n_user_end(n_user); temp_exchange.Set_new_def(false); - sprintf(token, "Exchange assemblage after simulation %d.", simulation); + snprintf(token, sizeof(token), "Exchange assemblage after simulation %d.", simulation); temp_exchange.Set_description(token); temp_exchange.Set_solution_equilibria(false); temp_exchange.Set_n_solution(-999); @@ -1108,7 +1108,7 @@ xgas_save(int n_user) */ temp_gas_phase.Set_n_user(n_user); temp_gas_phase.Set_n_user_end(n_user); - sprintf(token, "Gas phase after simulation %d.", simulation); + snprintf(token, sizeof(token), "Gas phase after simulation %d.", simulation); temp_gas_phase.Set_description(token); temp_gas_phase.Set_new_def(false); temp_gas_phase.Set_solution_equilibria(false); @@ -2094,10 +2094,10 @@ run_simulations(void) #endif #if defined PHREEQCI_GUI - sprintf(token, "\nSimulation %d\n", simulation); + snprintf(token, sizeof(token), "\nSimulation %d\n", simulation); screen_msg(token); #endif - sprintf(token, "Reading input data for simulation %d.", simulation); + snprintf(token, sizeof(token), "Reading input data for simulation %d.", simulation); dup_print(token, TRUE); if (read_input() == EOF) @@ -2105,7 +2105,7 @@ run_simulations(void) if (title_x.size() > 0) { - sprintf(token, "TITLE"); + snprintf(token, sizeof(token), "TITLE"); dup_print(token, TRUE); if (pr.headings == TRUE) { diff --git a/parse.cpp b/parse.cpp index 82eb5400..6ea041d9 100644 --- a/parse.cpp +++ b/parse.cpp @@ -259,7 +259,7 @@ check_eqn(int association) /* ---------------------------------------------------------------------- */ int Phreeqc:: -get_charge(char *charge, LDBLE * l_z) +get_charge(char *charge, size_t charge_size, LDBLE * l_z) /* ---------------------------------------------------------------------- */ /* * Function takes character string and calculates the charge on @@ -367,7 +367,7 @@ get_charge(char *charge, LDBLE * l_z) */ if (abs(i) > 1) { - if (sprintf(charge, "%-+d", i) == EOF) + if (snprintf(charge, charge_size, "%-+d", i) == EOF) { error_string = sformatf( "Error converting charge to character string, %s.", diff --git a/pitzer.cpp b/pitzer.cpp index f2b6a92f..77de08e5 100644 --- a/pitzer.cpp +++ b/pitzer.cpp @@ -129,7 +129,7 @@ pitzer_tidy(void) { for (j = i + 1; j < count_cations; j++) { - sprintf(line, "%s %s 1", spec[i]->name, spec[j]->name); + snprintf(line, max_line, "%s %s 1", spec[i]->name, spec[j]->name); pzp_ptr = pitz_param_read(line, 2); pzp_ptr->type = TYPE_ETHETA; size_t count_pitz_param = pitz_params.size(); @@ -141,7 +141,7 @@ pitzer_tidy(void) { for (j = i + 1; j < 2 * (int)s.size() + count_anions; j++) { - sprintf(line, "%s %s 1", spec[i]->name, spec[j]->name); + snprintf(line, max_line, "%s %s 1", spec[i]->name, spec[j]->name); pzp_ptr = pitz_param_read(line, 2); pzp_ptr->type = TYPE_ETHETA; size_t count_pitz_param = pitz_params.size(); diff --git a/print.cpp b/print.cpp index 610b6c13..612460be 100644 --- a/print.cpp +++ b/print.cpp @@ -590,7 +590,7 @@ print_gas_phase(void) return (OK); if (gas_unknown->moles < 1e-12) { - sprintf(info, "Fixed-pressure gas phase %d dissolved completely", + snprintf(info, sizeof(info), "Fixed-pressure gas phase %d dissolved completely", use.Get_n_gas_phase_user()); print_centered(info); return (OK); @@ -1378,7 +1378,7 @@ print_pp_assemblage(void) x[j]->moles = 0.0; if (state != TRANSPORT && state != PHAST) { - sprintf(token, " %11.3e %11.3e %11.3e", + snprintf(token, sizeof(token), " %11.3e %11.3e %11.3e", (double) (comp_ptr->Get_moles() + comp_ptr->Get_delta()), (double) x[j]->moles, (double) (x[j]->moles - comp_ptr->Get_moles() - @@ -1386,7 +1386,7 @@ print_pp_assemblage(void) } else { - sprintf(token, " %11.3e %11.3e %11.3e", + snprintf(token, sizeof(token), " %11.3e %11.3e %11.3e", (double) comp_ptr->Get_initial_moles(), (double) x[j]->moles, (double) (x[j]->moles - comp_ptr->Get_initial_moles())); diff --git a/readtr.cpp b/readtr.cpp index 85d579ee..cf30b67d 100644 --- a/readtr.cpp +++ b/readtr.cpp @@ -749,21 +749,21 @@ read_transport(void) { if (max_cells == count_length) { - sprintf(token, + snprintf(token, sizeof(token), "Number of cells is increased to number of 'lengths' %d.", count_length); warning_msg(token); } else if (max_cells == count_disp) { - sprintf(token, + snprintf(token, sizeof(token), "Number of cells is increased to number of dispersivities %d.", count_disp); warning_msg(token); } else { - sprintf(token, + snprintf(token, sizeof(token), "Number of mobile cells is increased to (ceil)(number of porosities) / (1 + number of stagnant zones) = %d.", (int) ceil(((double)count_por / (1 + (double)stag_data.count_stag)))); warning_msg(token); @@ -1222,26 +1222,26 @@ dump_cpp(void) fs << "END" << "\n"; char token[MAX_LENGTH]; - sprintf(token, "KNOBS\n"); + snprintf(token, sizeof(token), "KNOBS\n"); fs << token; - sprintf(token, "\t-iter%15d\n", itmax); + snprintf(token, sizeof(token), "\t-iter%15d\n", itmax); fs << token; - sprintf(token, "\t-tol %15.3e\n", (double)ineq_tol); + snprintf(token, sizeof(token), "\t-tol %15.3e\n", (double)ineq_tol); fs << token; - sprintf(token, "\t-step%15.3e\n", (double)step_size); + snprintf(token, sizeof(token), "\t-step%15.3e\n", (double)step_size); fs << token; - sprintf(token, "\t-pe_s%15.3e\n", (double)pe_step_size); + snprintf(token, sizeof(token), "\t-pe_s%15.3e\n", (double)pe_step_size); fs << token; - sprintf(token, "\t-diag "); + snprintf(token, sizeof(token), "\t-diag "); fs << token; if (diagonal_scale == TRUE) { - sprintf(token, "true\n"); + snprintf(token, sizeof(token), "true\n"); fs << token; } else { - sprintf(token, "false\n"); + snprintf(token, sizeof(token), "false\n"); fs << token; } std::map < int, SelectedOutput >::iterator so_it = SelectedOutput_map.begin(); @@ -1249,223 +1249,223 @@ dump_cpp(void) { current_selected_output = &(so_it->second); - sprintf(token, "SELECTED_OUTPUT %d\n", current_selected_output->Get_n_user()); + snprintf(token, sizeof(token), "SELECTED_OUTPUT %d\n", current_selected_output->Get_n_user()); fs << token; - //sprintf(token, "\t-file %-15s\n", "sel_o$$$.prn"); + //snprintf(token, sizeof(token), "\t-file %-15s\n", "sel_o$$$.prn"); //fs << token; fs << "\t-file " << "sel_o$$$" << current_selected_output->Get_n_user() << ".prn\n"; //if (punch.count_totals != 0) if (current_selected_output->Get_totals().size() > 0) { - sprintf(token, "\t-tot "); + snprintf(token, sizeof(token), "\t-tot "); fs << token; for (size_t i = 0; i < current_selected_output->Get_totals().size(); i++) { - sprintf(token, " %s", current_selected_output->Get_totals()[i].first.c_str()); + snprintf(token, sizeof(token), " %s", current_selected_output->Get_totals()[i].first.c_str()); fs << token; } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } if (current_selected_output->Get_molalities().size() > 0) { - sprintf(token, "\t-mol "); + snprintf(token, sizeof(token), "\t-mol "); fs << token; for (size_t i = 0; i < current_selected_output->Get_molalities().size(); i++) { - sprintf(token, " %s", current_selected_output->Get_molalities()[i].first.c_str()); + snprintf(token, sizeof(token), " %s", current_selected_output->Get_molalities()[i].first.c_str()); fs << token; } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } if (current_selected_output->Get_activities().size() > 0) { - sprintf(token, "\t-act "); + snprintf(token, sizeof(token), "\t-act "); fs << token; for (size_t i = 0; i < current_selected_output->Get_activities().size(); i++) { - sprintf(token, " %s", current_selected_output->Get_activities()[i].first.c_str()); + snprintf(token, sizeof(token), " %s", current_selected_output->Get_activities()[i].first.c_str()); fs << token; } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } if (current_selected_output->Get_pure_phases().size() > 0) { - sprintf(token, "\t-equ "); + snprintf(token, sizeof(token), "\t-equ "); fs << token; for (size_t i = 0; i < current_selected_output->Get_pure_phases().size(); i++) { - sprintf(token, " %s", current_selected_output->Get_pure_phases()[i].first.c_str()); + snprintf(token, sizeof(token), " %s", current_selected_output->Get_pure_phases()[i].first.c_str()); fs << token; } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } if (current_selected_output->Get_si().size() > 0) { - sprintf(token, "\t-si "); + snprintf(token, sizeof(token), "\t-si "); fs << token; for (size_t i = 0; i < current_selected_output->Get_si().size(); i++) { - sprintf(token, " %s", current_selected_output->Get_si()[i].first.c_str()); + snprintf(token, sizeof(token), " %s", current_selected_output->Get_si()[i].first.c_str()); fs << token; } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } if (current_selected_output->Get_gases().size() > 0) { - sprintf(token, "\t-gas "); + snprintf(token, sizeof(token), "\t-gas "); fs << token; for (size_t i = 0; i < current_selected_output->Get_gases().size(); i++) { - sprintf(token, " %s", current_selected_output->Get_gases()[i].first.c_str()); + snprintf(token, sizeof(token), " %s", current_selected_output->Get_gases()[i].first.c_str()); fs << token; } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } if (current_selected_output->Get_s_s().size() > 0) { - sprintf(token, "\t-solid_solutions "); + snprintf(token, sizeof(token), "\t-solid_solutions "); fs << token; for (size_t i = 0; i < current_selected_output->Get_s_s().size(); i++) { - sprintf(token, " %s", current_selected_output->Get_s_s()[i].first.c_str()); + snprintf(token, sizeof(token), " %s", current_selected_output->Get_s_s()[i].first.c_str()); fs << token; } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } if (current_selected_output->Get_kinetics().size() > 0) { - sprintf(token, "\t-kin "); + snprintf(token, sizeof(token), "\t-kin "); fs << token; for (size_t i = 0; i < current_selected_output->Get_kinetics().size(); i++) { - sprintf(token, " %s", current_selected_output->Get_kinetics()[i].first.c_str()); + snprintf(token, sizeof(token), " %s", current_selected_output->Get_kinetics()[i].first.c_str()); fs << token; } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } } - sprintf(token, "TRANSPORT\n"); + snprintf(token, sizeof(token), "TRANSPORT\n"); fs << token; - sprintf(token, "\t-cells %6d\n", count_cells); + snprintf(token, sizeof(token), "\t-cells %6d\n", count_cells); fs << token; - sprintf(token, "\t-shifts%6d%6d\n", count_shifts, ishift); + snprintf(token, sizeof(token), "\t-shifts%6d%6d\n", count_shifts, ishift); fs << token; - sprintf(token, "\t-output_frequency %6d\n", print_modulus); + snprintf(token, sizeof(token), "\t-output_frequency %6d\n", print_modulus); fs << token; - sprintf(token, "\t-selected_output_frequency %6d\n", + snprintf(token, sizeof(token), "\t-selected_output_frequency %6d\n", punch_modulus); fs << token; - sprintf(token, "\t-bcon %6d%6d\n", bcon_first, bcon_last); + snprintf(token, sizeof(token), "\t-bcon %6d%6d\n", bcon_first, bcon_last); fs << token; - sprintf(token, "\t-timest %13.5e\n", (double)timest); + snprintf(token, sizeof(token), "\t-timest %13.5e\n", (double)timest); fs << token; if (!high_precision) { - sprintf(token, "\t-diffc %13.5e\n", (double)diffc); + snprintf(token, sizeof(token), "\t-diffc %13.5e\n", (double)diffc); fs << token; } else { - sprintf(token, "\t-diffc %20.12e\n", (double)diffc); + snprintf(token, sizeof(token), "\t-diffc %20.12e\n", (double)diffc); fs << token; } - sprintf(token, "\t-tempr %13.5e\n", (double)tempr); + snprintf(token, sizeof(token), "\t-tempr %13.5e\n", (double)tempr); fs << token; if (correct_disp == TRUE) { - sprintf(token, "\t-correct_disp %s\n", "True"); + snprintf(token, sizeof(token), "\t-correct_disp %s\n", "True"); fs << token; } else { - sprintf(token, "\t-correct_disp %s\n", "False"); + snprintf(token, sizeof(token), "\t-correct_disp %s\n", "False"); fs << token; } - sprintf(token, "\t-length\n"); + snprintf(token, sizeof(token), "\t-length\n"); fs << token; for (int i = 1; i <= count_cells; i++) { - sprintf(token, "%12.3e", (double)cell_data[i].length); + snprintf(token, sizeof(token), "%12.3e", (double)cell_data[i].length); fs << token; if (i > 0 && (i % 8) == 0) { - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; - sprintf(token, "\t-disp\n"); + snprintf(token, sizeof(token), "\t-disp\n"); fs << token; for (int i = 1; i <= count_cells; i++) { if (!high_precision) { - sprintf(token, "%12.3e", (double)cell_data[i].disp); + snprintf(token, sizeof(token), "%12.3e", (double)cell_data[i].disp); fs << token; } else { - sprintf(token, "%20.12e", (double)cell_data[i].disp); + snprintf(token, sizeof(token), "%20.12e", (double)cell_data[i].disp); fs << token; } if (i > 0 && (i % 8) == 0) { - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; - sprintf(token, "\t-punch_cells"); + snprintf(token, sizeof(token), "\t-punch_cells"); fs << token; l = 0; for (int i = 0; i < all_cells; i++) { if (cell_data[i].punch != TRUE) continue; - sprintf(token, " %d", i); + snprintf(token, sizeof(token), " %d", i); fs << token; l++; if ((l % 20) == 0) { - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; - sprintf(token, "\t-print_cells"); + snprintf(token, sizeof(token), "\t-print_cells"); fs << token; l = 0; for (int i = 0; i < all_cells; i++) { if (cell_data[i].print != TRUE) continue; - sprintf(token, " %d", i); + snprintf(token, sizeof(token), " %d", i); fs << token; l++; if ((l % 20) == 0) { - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; } } - sprintf(token, "\n"); + snprintf(token, sizeof(token), "\n"); fs << token; - sprintf(token, "\t-dump $$$.dmp\n"); + snprintf(token, sizeof(token), "\t-dump $$$.dmp\n"); fs << token; - sprintf(token, "\t-dump_frequency %d\n", dump_modulus); + snprintf(token, sizeof(token), "\t-dump_frequency %d\n", dump_modulus); fs << token; - sprintf(token, "\t-dump_restart %d\n", transport_step + 1); + snprintf(token, sizeof(token), "\t-dump_restart %d\n", transport_step + 1); fs << token; #if defined MULTICHART @@ -1473,7 +1473,7 @@ dump_cpp(void) chart_handler.dump(fs, 0); #endif - sprintf(token, "END\n"); + snprintf(token, sizeof(token), "END\n"); fs << token; return (OK); } diff --git a/transport.cpp b/transport.cpp index 32e0e0a8..36dda3cc 100644 --- a/transport.cpp +++ b/transport.cpp @@ -372,7 +372,7 @@ transport(void) /* multi_D calc's are OK if all cells have the same amount of water */ if (multi_Dflag == TRUE) { - sprintf(token, "multi_D calc's and stagnant: define MIXing factors explicitly, or \n\t give in -multi_D the Dw used for calculating the mobile-immobile exchange factor."); + snprintf(token, sizeof(token), "multi_D calc's and stagnant: define MIXing factors explicitly, or \n\t give in -multi_D the Dw used for calculating the mobile-immobile exchange factor."); warning_msg(token); } @@ -497,10 +497,10 @@ transport(void) * Now transport */ if (implicit) - sprintf(token, "\nCalculating implicit transport: %d (mobile) cells, %d shifts, %d mixruns, max. mixf = %g.\n\n", + snprintf(token, sizeof(token), "\nCalculating implicit transport: %d (mobile) cells, %d shifts, %d mixruns, max. mixf = %g.\n\n", count_cells, count_shifts - transport_start + 1, nmix, max_mixf); else - sprintf(token, "\nCalculating transport: %d (mobile) cells, %d shifts, %d mixruns...\n\n", + snprintf(token, sizeof(token), "\nCalculating transport: %d (mobile) cells, %d shifts, %d mixruns...\n\n", count_cells, count_shifts - transport_start + 1, nmix); warning_msg(token); max_iter = 0; @@ -544,14 +544,14 @@ transport(void) mixrun = j; if (multi_Dflag && j == floor((LDBLE)nmix / 2)) { - //sprintf(token, + //snprintf(token, sizeof(token), // "Transport step %3d. Multicomponent diffusion run %3d.", // transport_step, j); //dup_print(token, FALSE); } else if (!multi_Dflag) { - sprintf(token, "Transport step %3d. Mixrun %3d.", + snprintf(token, sizeof(token), "Transport step %3d. Mixrun %3d.", transport_step, j); dup_print(token, FALSE); } @@ -595,11 +595,11 @@ transport(void) max_iter = overall_iterations; cell_no = i; if (multi_Dflag) - sprintf(token, + snprintf(token, sizeof(token), "Transport step %3d. MCDrun %3d. Cell %3d. (Max. iter %3d)", transport_step, j, i, max_iter); else - sprintf(token, + snprintf(token, sizeof(token), "Transport step %3d. Mixrun %3d. Cell %3d. (Max. iter %3d)", transport_step, j, i, max_iter); status(0, token); @@ -665,7 +665,7 @@ transport(void) */ if (ishift != 0) { - sprintf(token, "Transport step %3d.", transport_step); + snprintf(token, sizeof(token), "Transport step %3d.", transport_step); dup_print(token, FALSE); if (b_c == 1) rate_sim_time_start = ((double)transport_step - 1) * @@ -758,11 +758,11 @@ transport(void) kin_time /= 2; cell_no = i; if (multi_Dflag) - sprintf(token, + snprintf(token, sizeof(token), "Transport step %3d. MCDrun %3d. Cell %3d. (Max. iter %3d)", transport_step, 0, i, max_iter); else - sprintf(token, + snprintf(token, sizeof(token), "Transport step %3d. Mixrun %3d. Cell %3d. (Max. iter %3d)", transport_step, 0, i, max_iter); status(0, token); @@ -807,14 +807,14 @@ transport(void) mixrun = j; if (multi_Dflag && j == nmix && (transport_step % print_modulus == 0)) { - sprintf(token, + snprintf(token, sizeof(token), "Transport step %3d. Multicomponent diffusion run %3d.", transport_step, j); dup_print(token, FALSE); } else if (!multi_Dflag) { - sprintf(token, "Transport step %3d. Mixrun %3d.", + snprintf(token, sizeof(token), "Transport step %3d. Mixrun %3d.", transport_step, j); dup_print(token, FALSE); } @@ -862,11 +862,11 @@ transport(void) max_iter = overall_iterations; cell_no = i; if (multi_Dflag) - sprintf(token, + snprintf(token, sizeof(token), "Transport step %3d. MCDrun %3d. Cell %3d. (Max. iter %3d)", transport_step, j, i, max_iter); else - sprintf(token, + snprintf(token, sizeof(token), "Transport step %3d. Mixrun %3d. Cell %3d. (Max. iter %3d)", transport_step, j, i, max_iter); status(0, token); @@ -959,14 +959,14 @@ transport(void) if (multi_Dflag && moles_added[0].moles > 0) { - sprintf(token, + snprintf(token, sizeof(token), "\nFor balancing negative concentrations in MCD, added in total to the system:"); warning_msg(token); for (i = 0; i < count_moles_added; i++) { if (!moles_added[i].moles) break; - sprintf(token, + snprintf(token, sizeof(token), "\t %.4e moles %s.", (double)moles_added[i].moles, moles_added[i].name); warning_msg(token); @@ -1246,7 +1246,7 @@ init_mix(void) m = (LDBLE *)free_check_null(m); m1 = (LDBLE *)free_check_null(m1); char token[MAX_LENGTH]; - sprintf(token, "Calculated number of mixes %g, is beyond program limit,\nERROR: please set implicit true, or decrease time_step, or increase cell-lengths.", 2.25 * maxmix); + snprintf(token, sizeof(token), "Calculated number of mixes %g, is beyond program limit,\nERROR: please set implicit true, or decrease time_step, or increase cell-lengths.", 2.25 * maxmix); error_msg(token, STOP); } if (bcon_first == 1 || bcon_last == 1) @@ -1367,7 +1367,7 @@ init_mix(void) m = (LDBLE *)free_check_null(m); m1 = (LDBLE *)free_check_null(m1); char token[MAX_LENGTH]; - sprintf(token, "Calculated number of mixes %g, is beyond program limit,\nERROR: please set implicit true, or decrease time_step, or increase cell-lengths.", 1.5 * maxmix); + snprintf(token, sizeof(token), "Calculated number of mixes %g, is beyond program limit,\nERROR: please set implicit true, or decrease time_step, or increase cell-lengths.", 1.5 * maxmix); error_msg(token, STOP); } l_nmix = 1 + (int) floor(1.5 * maxmix); @@ -1950,7 +1950,7 @@ fill_spec(int l_cell_no, int ref_cell) { if (!warn_MCD_X) { - sprintf(token, + snprintf(token, sizeof(token), "MCD found more than 1 exchanger, uses X for interlayer diffusion."); warning_msg(token); warn_MCD_X = 1; @@ -3593,7 +3593,7 @@ multi_D(LDBLE DDt, int mobile_cell, int stagnant) } if (temp < -1e-12) { - sprintf(token, + snprintf(token, sizeof(token), "Negative concentration in MCD: added %.4e moles %s in cell %d", (double)-temp, it->first.c_str(), i); warning_msg(token); diff --git a/utilities.cpp b/utilities.cpp index 67a030ee..d655f656 100644 --- a/utilities.cpp +++ b/utilities.cpp @@ -567,7 +567,7 @@ get_token(const char** eqnaddr, std::string& string, LDBLE* l_z, int* l) /* * Charge has been written, now need to check if charge has legal format */ - if (get_charge(charge, l_z) == OK) + if (get_charge(charge, MAX_LENGTH, l_z) == OK) { string.append(charge); } @@ -1193,37 +1193,37 @@ status(int count, const char *str, bool rk_string) { stdstr = str; } - sprintf(sim_str, "\rSimulation %d.", simulation); - sprintf(state_str, " "); - sprintf(spin_str, " "); + snprintf(sim_str, sizeof(sim_str), "\rSimulation %d.", simulation); + snprintf(state_str, sizeof(state_str), " "); + snprintf(spin_str, sizeof(spin_str), " "); switch (state) { default: break; case INITIAL_SOLUTION: - sprintf(state_str, "Initial solution %d.", use.Get_solution_ptr()->Get_n_user()); + snprintf(state_str, sizeof(state_str), "Initial solution %d.", use.Get_solution_ptr()->Get_n_user()); break; case INITIAL_EXCHANGE: - sprintf(state_str, "Initial exchange %d.", use.Get_exchange_ptr()->Get_n_user()); + snprintf(state_str, sizeof(state_str), "Initial exchange %d.", use.Get_exchange_ptr()->Get_n_user()); break; case INITIAL_SURFACE: - sprintf(state_str, "Initial surface %d.", use.Get_surface_ptr()->Get_n_user()); + snprintf(state_str, sizeof(state_str), "Initial surface %d.", use.Get_surface_ptr()->Get_n_user()); break; case INVERSE: - sprintf(state_str, "Inverse %d. Models = %d.", use.Get_inverse_ptr()->n_user, count); + snprintf(state_str, sizeof(state_str), "Inverse %d. Models = %d.", use.Get_inverse_ptr()->n_user, count); break; case REACTION: if (use.Get_kinetics_in() == TRUE) { - sprintf(state_str, "Kinetic step %d.", reaction_step); + snprintf(state_str, sizeof(state_str), "Kinetic step %d.", reaction_step); } else { - sprintf(state_str, "Reaction step %d.", reaction_step); + snprintf(state_str, sizeof(state_str), "Reaction step %d.", reaction_step); } break; case ADVECTION: - sprintf(state_str, "Advection, shift %d.", advection_step); + snprintf(state_str, sizeof(state_str), "Advection, shift %d.", advection_step); break; } spinner++; From 4fbe69b0b5e2b1d809367769096a79bffd027d48 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Mon, 16 Jan 2023 18:17:24 -0700 Subject: [PATCH 037/384] [phreeqc3] Updated to split numdiff from memcheck added additional labels based on mytest/Makefile sorted lists in CMakeLists.txt files numdiff tests use Release builds --- CMakeLists.txt | 16 +++++++++++----- 1 file changed, 11 insertions(+), 5 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index 46fcfe2e..ef1dc5bb 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -275,12 +275,18 @@ add_test(NAME examples.ex22 COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex22 ex22.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex22.log ) -# these take more than 600 seconds -set(SKIP +# Note when setting labels we can't use the following: +# set_tests_properties(${test} PROPERTIES LABELS "pitzer") +# since it will overwrite any existing labels already set + +# long_debug +# > 600 seconds Debug +set(LONG_DEBUG examples.ex21 ) -# disable tests that take too long -foreach(test ${SKIP}) - set_tests_properties(${test} PROPERTIES DISABLED TRUE) +# label tests that take too long +foreach(test ${LONG_DEBUG}) + set_property(TEST ${test} APPEND PROPERTY LABELS "long_debug") + set_property(TEST ${test} APPEND PROPERTY LABELS "long_memcheck") endforeach() From fb59ec8b19173e55422aef14fd2488cd1aca0680 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Tue, 17 Jan 2023 03:32:29 +0000 Subject: [PATCH 038/384] Squashed 'phreeqcpp/' changes from feaa432..bbd2543 bbd2543 [phreeqc] fixes what iphreeqc/issue-8 broke git-subtree-dir: phreeqcpp git-subtree-split: bbd2543978c857c8e46ff6f553231f188c5cb32c --- PBasic.cpp | 4 ++-- basicsubs.cpp | 1 - 2 files changed, 2 insertions(+), 3 deletions(-) diff --git a/PBasic.cpp b/PBasic.cpp index 7233f91c..99b4661d 100644 --- a/PBasic.cpp +++ b/PBasic.cpp @@ -3610,7 +3610,7 @@ factor(struct LOC_exec * LINK) std::string std_num; { - snprintf(token, sizeof(token), "%*.*e", length, width, nmbr); + snprintf(token, max_length, "%*.*e", length, width, nmbr); std_num = token; } @@ -3653,7 +3653,7 @@ factor(struct LOC_exec * LINK) std::string std_num; { - snprintf(token, sizeof(token), "%*.*f", length, width, nmbr); + snprintf(token, max_length, "%*.*f", length, width, nmbr); std_num = token; } diff --git a/basicsubs.cpp b/basicsubs.cpp index 3e93470b..69eed0ed 100644 --- a/basicsubs.cpp +++ b/basicsubs.cpp @@ -2097,7 +2097,6 @@ match_elts_in_species(const char *name, const char *mytemplate) * write out string */ token[0] = '\0'; - assert(MAX_LENGTH == sizeof(token1)); for (i = 0; i < count_match_tokens; i++) { strcat(token, match_vector[i].first.c_str()); From a4eba15e3b254fa202a7ff58f9f474b1f2dbc584 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Sat, 11 Feb 2023 17:25:04 +0000 Subject: [PATCH 039/384] Squashed 'phreeqcpp/' changes from bbd2543..e9db33b e9db33b Added replacement code for snprintf for vs versions before vs2015 (#30) git-subtree-dir: phreeqcpp git-subtree-split: e9db33b14235f3d9018e1205ae05895dd2eb3e2e --- Phreeqc.h | 40 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 40 insertions(+) diff --git a/Phreeqc.h b/Phreeqc.h index c3f20aae..31d8c98f 100644 --- a/Phreeqc.h +++ b/Phreeqc.h @@ -2081,3 +2081,43 @@ char* _string_duplicate(const char* token, const char* szFileName, int nLine); #endif #endif //_INC_UTILITIES_NAMESPACE_H + +#ifndef _INC_MISSING_SNPRINTF_H +#define _INC_MISSING_SNPRINTF_H + +// Section _INC_MISSING_SNPRINTF_H is based on +// https://stackoverflow.com/questions/2915672/snprintf-and-visual-studio-2010 + +#if defined(_MSC_VER) && (_MSC_VER < 1900) + +#include + +#define snprintf c99_snprintf +#define vsnprintf c99_vsnprintf + +__inline int c99_vsnprintf(char *outBuf, size_t size, const char *format, va_list ap) +{ + int count = -1; + + if (size != 0) + count = _vsnprintf_s(outBuf, size, _TRUNCATE, format, ap); + if (count == -1) + count = _vscprintf(format, ap); + + return count; +} + +__inline int c99_snprintf(char *outBuf, size_t size, const char *format, ...) +{ + int count; + va_list ap; + + va_start(ap, format); + count = c99_vsnprintf(outBuf, size, format, ap); + va_end(ap); + + return count; +} +#endif // defined(_MSC_VER) && (_MSC_VER < 1900) + +#endif //_INC_MISSING_SNPRINTF_H From a161f1c81da294667fd96a8d775254bdb33a474c Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Thu, 16 Feb 2023 15:45:40 -0700 Subject: [PATCH 040/384] added Thermoddem database --- PHREEQC_ThermoddemV1.10_15Dec2020.dat | 12965 ++++++++++++++++++++++++ 1 file changed, 12965 insertions(+) create mode 100644 PHREEQC_ThermoddemV1.10_15Dec2020.dat diff --git a/PHREEQC_ThermoddemV1.10_15Dec2020.dat b/PHREEQC_ThermoddemV1.10_15Dec2020.dat new file mode 100644 index 00000000..35f3d2b8 --- /dev/null +++ b/PHREEQC_ThermoddemV1.10_15Dec2020.dat @@ -0,0 +1,12965 @@ +# PHREEQC database +# Base de Donnee Thermoddem_MAJ2020 +# Version V1.10 +# BDD Date : 12/15/2020 5:30:25 AM +# Converted on 12/15/2020 5:30:59 AM by ThermoBridge 1.0.3.4 +# Data from Thermoddem V1.10 Code version 1.07_2.06 +# Thermochemical Database +# from the BRGM institute (french geological survey) +# The database is regularly updated. Kindly send comments or +# corrections to the Thermoddem team +# https://thermoddem.brgm.fr/ +LLNL_AQUEOUS_MODEL_PARAMETERS + -temperatures + 0.0000 25.0000 60.0000 100.0000 + 150.0000 200.0000 250.0000 300.0000 +#debye huckel a (adh) + -dh_a + 0.4901 0.5095 0.5450 0.5986 + 0.6867 0.8046 0.9710 1.2414 +#debye huckel b (bdh) + -dh_b + 0.3245 0.3284 0.3343 0.3420 + 0.3528 0.3647 0.3782 0.3950 +#bdot (bdot) + -bdot + 0.0374 0.0410 0.0438 0.0460 + 0.0470 0.0470 0.0340 0.0000 +#cco2 (coefficients for the Drummond (1981) polynomial) + -co2_coefs + -1.0312 0.0012806 + 255.9 0.4445 + -0.00161 + +NAMED_EXPRESSIONS + +# +# formation of O2 from H2O +# 2H2O = O2 + 4H+ + 4e- +# + Log_K_O2 + log_k -85.991 + delta_H 559.524 kJ/mol +# + -analytic 2.1432E+2 3.00247E-2 -4.21233E+4 -7.2111E+1 9.29169E+5 + +SOLUTION_MASTER_SPECIES + +#element species alk gfw_formula element_gfw +Alkalinity HCO3- 1 Ca0.5(CO3)0.5 50.05 +E e- 0 0 0 +Ag Ag+ 0 Ag 107.868 +Ag(1) Ag+ 0 Ag 107.868 +Ag(2) Ag+2 0 Ag 107.868 +Al Al+3 0 Al 26.982 +Ar Ar 0 Ar 39.948 +As H2AsO4- 0 As 74.922 +As(-3) AsH3 0 As 74.922 +As(3) H2AsO3- 1 As 74.922 +As(5) H2AsO4- 0 As 74.922 +Au Au+ -1 Au 196.967 +Au(1) Au+ -1 Au 196.967 +Au(3) Au+3 0 Au 196.967 +B B(OH)3 0 B 10.811 +Ba Ba+2 0 Ba 137.34 +Be Be+2 0 Be 9.012 +Bi Bi+3 -2 Bi 208.98 +Br Br- 0 Br 79.904 +Br(-1) Br- 0 Br 79.904 +Br(-0.3) Br3- 0 Br 79.904 +Br(1) BrO- 1 Br 79.904 +Br(5) BrO3- 0 Br 79.904 +Br(7) BrO4- 0 Br 79.904 +C HCO3- 1 C 12.011 +C(-4) CH4 0 C 12.011 +C(2) CO 0 C 12.011 +C(4) HCO3- 1 C 12.011 +Ca Ca+2 0 Ca 40.078 +Cd Cd+2 0 Cd 112.41 +Ce Ce+3 0 Ce 140.12 +Ce(2) Ce+2 0 Ce 140.12 +Ce(3) Ce+3 0 Ce 140.12 +Ce(4) Ce+4 0 Ce 140.12 +Cl Cl- 0 Cl 35.452 +Cl(-1) Cl- 0 Cl 35.452 +Cl(1) ClO- 1 Cl 35.452 +Cl(3) ClO2- 0 Cl 35.452 +Cl(4) ClO2 0 Cl 35.452 +Cl(5) ClO3- 0 Cl 35.452 +Cl(7) ClO4- 0 Cl 35.452 +Co Co+2 0 Co 58.933 +Co(2) Co+2 0 Co 58.933 +Cr CrO4-2 1 Cr 51.966 +Cr(2) Cr+2 0 Cr 51.966 +Cr(3) Cr+3 -1 Cr 51.966 +Cr(6) CrO4-2 1 Cr 51.966 +Cs Cs+ 0 Cs 132.905 +Cu Cu+2 0 Cu 63.546 +Cu(1) Cu+ 0 Cu 63.546 +Cu(2) Cu+2 0 Cu 63.546 +Dy Dy+3 0 Dy 162.5 +Dy(2) Dy+2 0 Dy 162.5 +Dy(3) Dy+3 0 Dy 162.5 +Dy(4) Dy+4 0 Dy 162.5 +Er Er+3 0 Er 167.26 +Er(2) Er+2 0 Er 167.26 +Er(3) Er+3 0 Er 167.26 +Er(4) Er+4 0 Er 167.26 +Eu Eu+3 0 Eu 151.964 +Eu(2) Eu+2 0 Eu 151.964 +Eu(3) Eu+3 0 Eu 151.964 +Eu(4) Eu+4 0 Eu 151.964 +F F- 0 F 18.998 +Fe Fe+2 0 Fe 55.847 +Fe(2) Fe+2 0 Fe 55.847 +Fe(3) Fe+3 -2 Fe 55.847 +Fr Fr+ 0 Fr 223.02 +Ga Ga+3 -4 Ga 69.723 +Gd Gd+3 0 Gd 157.25 +Gd(2) Gd+2 0 Gd 157.25 +Gd(3) Gd+3 0 Gd 157.25 +Gd(4) Gd+4 0 Gd 157.25 +Ge Ge(OH)4 0 Ge 72.61 +H H+ -1 H 1.008 +H(0) H2 0 H 1.008 +H(1) H+ -1 H 1.008 +He He 0 He 4.003 +Hf Hf+4 -3 Hf 178.49 +Hg Hg+2 -2 Hg 200.59 +Hg(0) Hg 0 Hg 200.59 +Hg(1) Hg2+2 0 Hg 200.59 +Hg(2) Hg+2 -2 Hg 200.59 +Ho Ho+3 0 Ho 164.93 +Ho(2) Ho+2 0 Ho 164.93 +Ho(3) Ho+3 0 Ho 164.93 +Ho(4) Ho+4 0 Ho 164.93 +I I- 0 I 126.904 +I(-1) I- 0 I 126.904 +I(-0.3) I3- 0 I 126.904 +I(1) IO- 0 I 126.904 +I(5) IO3- 0 I 126.904 +I(7) IO4- 0 I 126.904 +In In+3 -2 In 114.82 +K K+ 0 K 39.098 +Kr Kr 0 Kr 83.8 +La La+3 0 La 138.906 +La(2) La+2 0 La 138.906 +La(3) La+3 0 La 138.906 +Li Li+ 0 Li 6.941 +Lu Lu+3 0 Lu 174.967 +Lu(3) Lu+3 0 Lu 174.967 +Lu(4) Lu+4 0 Lu 174.967 +Mg Mg+2 0 Mg 24.305 +Mn Mn+2 0 Mn 54.938 +Mn(2) Mn+2 0 Mn 54.938 +Mn(3) Mn+3 0 Mn 54.938 +Mn(6) MnO4-2 0 Mn 54.938 +Mn(7) MnO4- 0 Mn 54.938 +Mo MoO4-2 0 Mo 95.94 +N NH3 1 N 14.007 +N(-5) CN- 1 N 14.007 +N(-3) NH3 1 N 14.007 +N(0) N2 0 N 14.007 +N(3) NO2- 0 N 14.007 +N(5) NO3- 0 N 14.007 +Na Na+ 0 Na 22.99 +Nb NbO3- 1 Nb 92.906 +Nd Nd+3 0 Nd 144.24 +Nd(2) Nd+2 0 Nd 144.24 +Nd(3) Nd+3 0 Nd 144.24 +Nd(4) Nd+4 0 Nd 144.24 +Ne Ne 0 Ne 20.18 +Ni Ni+2 0 Ni 58.693 +O H2O 0 O 15.999 +O(-2) H2O 0 O 15.999 +O(0) O2 0 O 15.999 +P H2PO4- 0 P 30.974 +P(-3) PH3 0 P 30.974 +P(2) H2PO2- 0 P 30.974 +P(3) H2PO3- 0 P 30.974 +P(5) H2PO4- 0 P 30.974 +Pb Pb+2 0 Pb 207.2 +Pd Pd+2 -2 Pd 106.42 +Pm Pm+3 0 Pm 144.913 +Pm(2) Pm+2 0 Pm 144.913 +Pm(3) Pm+3 0 Pm 144.913 +Pm(4) Pm+4 0 Pm 144.913 +Pr Pr+3 0 Pr 140.908 +Pr(2) Pr+2 0 Pr 140.908 +Pr(3) Pr+3 0 Pr 140.908 +Pr(4) Pr+4 0 Pr 140.908 +Pt Pt+2 -2 Pt 195.08 +Ra Ra+2 0 Ra 226.025 +Rb Rb+ 0 Rb 85.468 +Re ReO4- 0 Re 186.27 +Rh Rh+2 0 Rh 102.906 +Rh(2) Rh+2 0 Rh 102.906 +Rh(3) Rh+3 -2 Rh 102.906 +Rn Rn 0 Rn 222.018 +Ru RuO4-2 0 Ru 101.07 +Ru(2) Ru+2 0 Ru 101.07 +Ru(3) Ru+3 -2 Ru 101.07 +Ru(6) RuO4-2 0 Ru 101.07 +S SO4-2 0 S 32.066 +S(-2) HS- 1 S 32.066 +S(2) S2O3-2 0 S 32.066 +S(3) S2O4-2 0 S 32.066 +S(4) SO3-2 1 S 32.066 +S(5) S2O6-2 0 S 32.066 +S(6) SO4-2 0 S 32.066 +S(7) S2O8-2 0 S 32.066 +S(8) HSO5- 0 S 32.066 +Sb Sb(OH)3 0 Sb 121.76 +Sc Sc+3 0 Sc 44.956 +Se SeO3-2 1 Se 78.96 +Se(-2) HSe- 0 Se 78.96 +Se(4) SeO3-2 1 Se 78.96 +Se(6) SeO4-2 0 Se 78.96 +Si H4SiO4 0 Si 28.086 +Sm Sm+3 0 Sm 150.36 +Sm(2) Sm+2 0 Sm 150.36 +Sm(3) Sm+3 0 Sm 150.36 +Sm(4) Sm+4 0 Sm 150.36 +Sn Sn+2 -2 Sn 118.71 +Sr Sr+2 0 Sr 87.62 +Tb Tb+3 0 Tb 158.925 +Tb(2) Tb+2 0 Tb 158.925 +Tb(3) Tb+3 0 Tb 158.925 +Tb(4) Tb+4 0 Tb 158.925 +Tc TcO4- 0 Tc 97.907 +Th Th+4 0 Th 232.038 +Ti Ti(OH)4 0 Ti 47.87 +Tl Tl+ -1 Tl 204.383 +Tl(1) Tl+ -1 Tl 204.383 +Tl(3) Tl+3 -3 Tl 204.383 +Tm Tm+3 0 Tm 168.934 +Tm(2) Tm+2 0 Tm 168.934 +Tm(3) Tm+3 0 Tm 168.934 +Tm(4) Tm+4 0 Tm 168.934 +U UO2+2 0 U 238.029 +U(3) U+3 0 U 238.029 +U(4) U+4 -4 U 238.029 +U(5) UO2+ 0 U 238.029 +U(6) UO2+2 0 U 238.029 +V VO+2 0 V 50.942 +V(2) V+2 0 V 50.942 +V(3) V+3 -2 V 50.942 +V(4) VO+2 0 V 50.942 +V(5) VO2+ -2 V 50.942 +W WO4-2 0 W 183.84 +Xe Xe 0 Xe 131.29 +Y Y+3 0 Y 88.906 +Yb Yb+3 0 Yb 173.04 +Yb(2) Yb+2 0 Yb 173.04 +Yb(3) Yb+3 0 Yb 173.04 +Yb(4) Yb+4 0 Yb 173.04 +Zn Zn+2 0 Zn 65.39 +Zr ZrO+2 -1 Zr 91.224 + + +SOLUTION_SPECIES + +1.000H2O = H2O + -llnl_gamma 3.4 + log_k 0.000 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; V°: Default value; + +1.000H+ = H+ + -llnl_gamma 9.0 + log_k 0.000 + + +1.000e- = e- + -llnl_gamma 3.6 + log_k 0.000 + #References = S°: 89cox/wag; V°: Default value; + +1.000Al+3 = Al+3 + -llnl_gamma 9.0 + log_k 0.000 + #References = LogK/DGf: 06bla/pia; DHf/DHr: 89cox/wag; S°: Internal calculation; Cp: 95pok/hel; V°: 95pok/hel; + +1.000Ar = Ar + -llnl_gamma 3.4 + log_k 0.000 + #References = LogK/DGf: 89bsho/hel, 01sch/sho; DHf/DHr: Internal calculation; S°: 89bsho/hel, 01sch/sho; Cp: 89bsho/hel, 01sch/sho; V°: 89bsho/hel, 01sch/sho; + +1.000B(OH)3 = B(OH)3 + -llnl_gamma 3.4 + log_k 0.000 + #References = LogK/DGf: 95pok/sch; DHf/DHr: Internal calculation; S°: 95pok/sch; Cp: 95pok/sch; V°: 95pok/sch; + +1.000Ba+2 = Ba+2 + -llnl_gamma 5.0 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Be+2 = Be+2 + -llnl_gamma 8.0 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Bi+3 = Bi+3 + -llnl_gamma 8.2 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Ca+2 = Ca+2 + -llnl_gamma 6.0 + log_k 0.000 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Cd+2 = Cd+2 + -llnl_gamma 5.0 + log_k 0.000 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Cs+ = Cs+ + -llnl_gamma 2.5 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000F- = F- + -llnl_gamma 3.5 + log_k 0.000 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Fr+ = Fr+ + -llnl_gamma 4.1 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Ga+3 = Ga+3 + -llnl_gamma 4.5 + log_k 0.000 + #References = LogK/DGf: 97ben/dia; DHf/DHr: Internal calculation; S°: 97ben/dia; Cp: 97ben/dia; V°: 97ben/dia; + +1.000Ge(OH)4 = Ge(OH)4 + -llnl_gamma 3.4 + log_k 0.000 + #References = LogK/DGf: 05pok/rou; DHf/DHr: Internal calculation; S°: 05pok/rou; Cp: 05pok/rou; V°: 05pok/rou; + +1.000H4SiO4 = H4SiO4 + -llnl_gamma 3.4 + log_k 0.000 + #References = LogK/DGf: 01ste; DHf/DHr: Internal calculation; S°: 01ste; Cp: 01ste; V°: 01ste; + +1.000He = He + -llnl_gamma 3.4 + log_k 0.000 + #References = LogK/DGf: 89bsho/hel, 01sch/sho; DHf/DHr: Internal calculation; S°: 89bsho/hel, 01sch/sho; Cp: 89bsho/hel, 01sch/sho; V°: 89bsho/hel, 01sch/sho; + +1.000Hf+4 = Hf+4 + -llnl_gamma 11.6 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000In+3 = In+3 + -llnl_gamma 9.0 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000K+ = K+ + -llnl_gamma 3.0 + log_k 0.000 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Kr = Kr + -llnl_gamma 3.4 + log_k 0.000 + #References = LogK/DGf: 89bsho/hel, 01sch/sho; DHf/DHr: Internal calculation; S°: 89bsho/hel, 01sch/sho; Cp: 89bsho/hel, 01sch/sho; V°: 89bsho/hel, 01sch/sho; + +1.000Li+ = Li+ + -llnl_gamma 6.0 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Mg+2 = Mg+2 + -llnl_gamma 6.5 + log_k 0.000 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 97asho/sas; V°: 97asho/sas; + +1.000MoO4-2 = MoO4-2 + -llnl_gamma 4.5 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Na+ = Na+ + -llnl_gamma 4.2 + log_k 0.000 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 97asho/sas; V°: 97asho/sas; + +1.000NbO3- = NbO3- + -llnl_gamma 3.6 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Ne = Ne + -llnl_gamma 3.4 + log_k 0.000 + #References = LogK/DGf: 89bsho/hel, 01sch/sho; DHf/DHr: Internal calculation; S°: 89bsho/hel, 01sch/sho; Cp: 89bsho/hel, 01sch/sho; V°: 89bsho/hel, 01sch/sho; + +1.000Ni+2 = Ni+2 + -llnl_gamma 6.0 + log_k 0.000 + #References = LogK/DGf: Internal calculation; DHf/DHr: 10pal/gam; S°: 10pal/gam; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Pb+2 = Pb+2 + -llnl_gamma 4.5 + log_k 0.000 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Pd+2 = Pd+2 + -llnl_gamma 5.7 + log_k 0.000 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Pt+2 = Pt+2 + -llnl_gamma 5.7 + log_k 0.000 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Ra+2 = Ra+2 + -llnl_gamma 5.0 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Rb+ = Rb+ + -llnl_gamma 2.5 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000ReO4- = ReO4- + -llnl_gamma 3.6 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Rn = Rn + -llnl_gamma 3.4 + log_k 0.000 + #References = LogK/DGf: 89bsho/hel, 01sch/sho; DHf/DHr: Internal calculation; S°: 89bsho/hel, 01sch/sho; Cp: 89bsho/hel, 01sch/sho; V°: 89bsho/hel, 01sch/sho; + +1.000Sb(OH)3 = Sb(OH)3 + -llnl_gamma 3.4 + log_k 0.000 + #References = LogK/DGf: 03zot/shi; DHf/DHr: Internal calculation; S°: 03zot/shi; Cp: 03zot/shi; V°: 03zot/shi; + +1.000Sc+3 = Sc+3 + -llnl_gamma 9.0 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Sn+2 = Sn+2 + -llnl_gamma 6.0 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Sr+2 = Sr+2 + -llnl_gamma 5.0 + log_k 0.000 + #References = LogK/DGf: Internal calculation; DHf/DHr: 97asho/sas; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000TcO4- = TcO4- + -llnl_gamma 3.6 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Th+4 = Th+4 + -llnl_gamma 11.0 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Ti(OH)4 = Ti(OH)4 + -llnl_gamma 3.4 + log_k 0.000 + #References = LogK/DGf: 01ste; DHf/DHr: Internal calculation; S°: 01ste; Cp: 01ste; V°: 01ste; + +1.000WO4-2 = WO4-2 + -llnl_gamma 5.0 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Xe = Xe + -llnl_gamma 3.4 + log_k 0.000 + #References = LogK/DGf: 89bsho/hel, 01sch/sho; DHf/DHr: Internal calculation; S°: 89bsho/hel, 01sch/sho; Cp: 89bsho/hel, 01sch/sho; V°: 89bsho/hel, 01sch/sho; + +1.000Y+3 = Y+3 + -llnl_gamma 9.0 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Zn+2 = Zn+2 + -llnl_gamma 6.0 + log_k 0.000 + #References = LogK/DGf: Internal calculation; DHf/DHr: 97asho/sas; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000ZrO+2 = ZrO+2 + -llnl_gamma 5.7 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Ag+ = Ag+ + -llnl_gamma 2.5 + log_k 0.000 + #References = LogK/DGf: 01aki/zot; DHf/DHr: Internal calculation; S°: 01aki/zot; Cp: 01aki/zot; V°: 01aki/zot; + +1.000Au+ = Au+ + -llnl_gamma 4.1 + log_k 0.000 + #References = LogK/DGf: 01aki/zot; DHf/DHr: Internal calculation; S°: 01aki/zot; Cp: 01aki/zot; V°: 01aki/zot; + +1.000Br- = Br- + -llnl_gamma 3.0 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Ce+3 = Ce+3 + -llnl_gamma 9.0 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Cl- = Cl- + -llnl_gamma 3.0 + log_k 0.000 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Co+2 = Co+2 + -llnl_gamma 6.0 + log_k 0.000 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98ply/zha; S°: 98ply/zha; Cp: 97asho/sas; V°: 97asho/sas; + +1.000CrO4-2 = CrO4-2 + -llnl_gamma 4.0 + log_k 0.000 + #References = LogK/DGf: Internal calculation; DHf/DHr: 04chi; S°: 04chi; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Cu+2 = Cu+2 + -llnl_gamma 6.0 + log_k 0.000 + #References = LogK/DGf: 89cox/wag; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Dy+3 = Dy+3 + -llnl_gamma 8.2 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Er+3 = Er+3 + -llnl_gamma 8.2 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Eu+3 = Eu+3 + -llnl_gamma 8.2 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Fe+2 = Fe+2 + -llnl_gamma 6.0 + log_k 0.000 + #References = LogK/DGf: 95par/kho; DHf/DHr: 95par/kho; S°: Internal calculation; Cp: 88sho/hel,85hel,89bsho/hel,97asho/sas; V°: 88sho/hel,85hel,89bsho/hel,97asho/sas; + +1.000Gd+3 = Gd+3 + -llnl_gamma 4.5 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000H2AsO4- = H2AsO4- + -llnl_gamma 3.6 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000H2PO4- = H2PO4- + -llnl_gamma 4.2 + log_k 0.000 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 97asho/sas; V°: 97asho/sas; + +1.000HCO3- = HCO3- + -llnl_gamma 4.2 + log_k 0.000 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Hg+2 = Hg+2 + -llnl_gamma 5.0 + log_k 0.000 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 88sho/hel; V°: 88sho/hel; + +1.000Ho+3 = Ho+3 + -llnl_gamma 8.2 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000I- = I- + -llnl_gamma 3.0 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000La+3 = La+3 + -llnl_gamma 9.0 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Lu+3 = Lu+3 + -llnl_gamma 8.2 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Mn+2 = Mn+2 + -llnl_gamma 6.0 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Nd+3 = Nd+3 + -llnl_gamma 9.0 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000NH3 = NH3 + -llnl_gamma 3.4 + log_k 0.000 + #References = LogK/DGf: 89bsho/hel, 01sch/sho; DHf/DHr: Internal calculation; S°: 89bsho/hel, 01sch/sho; Cp: 89bsho/hel, 01sch/sho; V°: 89bsho/hel, 01sch/sho; + +1.000Pm+3 = Pm+3 + -llnl_gamma 8.2 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Pr+3 = Pr+3 + -llnl_gamma 9.0 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Rh+2 = Rh+2 + -llnl_gamma 5.7 + log_k 0.000 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000RuO4-2 = RuO4-2 + -llnl_gamma 4.7 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000SeO3-2 = SeO3-2 + -llnl_gamma 4.7 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Sm+3 = Sm+3 + -llnl_gamma 9.0 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000SO4-2 = SO4-2 + -llnl_gamma 4.0 + log_k 0.000 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Tb+3 = Tb+3 + -llnl_gamma 8.2 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Tl+ = Tl+ + -llnl_gamma 2.5 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Tm+3 = Tm+3 + -llnl_gamma 8.2 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000UO2+2 = UO2+2 + -llnl_gamma 5.7 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000VO+2 = VO+2 + -llnl_gamma 5.7 + log_k 0.000 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Yb+3 = Yb+3 + -llnl_gamma 9.0 + log_k 0.000 + #References = LogK/DGf: 00deb/cas; DHf/DHr: Internal calculation; S°: 00deb/cas; Cp: 97asho/sas; V°: 97asho/sas; + + +0.250O2 + 1.000Ag+ + 1.000H+ = Ag+2 + 0.500H2O + -llnl_gamma 5.7 + log_k -12.127 + delta_h 23.455 #kJ/mol #88sho/hel + -analytic -2.0657583E+2 -3.7349701E-2 9.0186154E+3 7.3591766E+1 -6.0111045E+5 + #References = LogK/DGf: 88sho/hel; DHf/DHr: Internal calculation; S°: 88sho/hel; Cp: 88sho/hel; V°: 88sho/hel; + +1.000H2AsO4- + 1.000H+ = AsH3 + 2.000O2 + -llnl_gamma 3.4 + log_k -155.191 + delta_h 953.551 #kJ/mol #Internal calculation + -analytic 1.0159192E+3 1.6805906E-1 -1.0965043E+5 -3.6367028E+2 4.1273516E+6 + #References = LogK/DGf: 92wol; DHf/DHr: Internal calculation; S°: 01sch/sho; Cp: 01sch/sho; V°: 01sch/sho; + +0.500O2 + 1.000Au+ + 2.000H+ = Au+3 + 1.000H2O + -llnl_gamma 8.2 + log_k -4.356 + delta_h -59.461 #kJ/mol #97asho/sas + -analytic -4.7983001E+2 -7.7833649E-2 2.7682E+4 1.7039826E+2 -1.4050021E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.500O2 + 3.000Br- + 2.000H+ = Br3- + 1.000H2O + -llnl_gamma 3.6 + log_k 7.064 + delta_h -45.557 #kJ/mol #88sho/hel + -analytic 1.3619685E+3 2.2240213E-1 -7.2926898E+4 -4.9636214E+2 4.5868973E+6 + #References = LogK/DGf: 88sho/hel; DHf/DHr: Internal calculation; S°: 88sho/hel; Cp: 88sho/hel; V°: 88sho/hel; + +0.500O2 + 1.000Br- = BrO- + -llnl_gamma 3.6 + log_k -10.916 + delta_h 33.468 #kJ/mol #97asho/sas + -analytic -1.2104624E+2 -1.7516524E-2 5.9243731E+3 4.1227804E+1 -5.807676E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.500O2 + 1.000Br- = BrO3- + -llnl_gamma 3.5 + log_k -17.143 + delta_h 72.640 #kJ/mol #97asho/sas + -analytic -1.8193484E+2 -2.9510238E-2 9.4046739E+3 6.2639673E+1 -1.1512341E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +2.000O2 + 1.000Br- = BrO4- + -llnl_gamma 3.6 + log_k -33.102 + delta_h 158.659 #kJ/mol #97asho/sas + -analytic -1.9678304E+2 -3.3029409E-2 6.1026016E+3 6.7668921E+1 -1.2784481E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Ce+3 + 0.500H2O = Ce+2 + 0.250O2 + 1.000H+ + -llnl_gamma 5.7 + log_k -85.049 + delta_h 546.025 #kJ/mol #97asho/sas + -analytic 2.9075419E+2 4.7815997E-2 -4.4743395E+4 -1.0192219E+2 1.0854253E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.250O2 + 1.000Ce+3 + 1.000H+ = Ce+4 + 0.500H2O + -llnl_gamma 11.0 + log_k -8.042 + delta_h -15.531 #kJ/mol #97asho/sas + -analytic -1.0233128E+2 -1.8184502E-2 2.4367778E+3 3.602259E+1 2.1354773E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000HCO3- + 1.000H+ + 1.000H2O = CH4 + 2.000O2 + -llnl_gamma 3.4 + log_k -144.119 + delta_h 863.586 #kJ/mol #01sch/sho + -analytic 1.1299846E+3 1.8230999E-1 -1.1241163E+5 -4.0551385E+2 4.6214962E+6 + #References = LogK/DGf: 01sch/sho; DHf/DHr: Internal calculation; S°: 01sch/sho; Cp: 01sch/sho; V°: 01sch/sho; + +0.500O2 + 1.000Cl- = ClO- + -llnl_gamma 3.6 + log_k -15.088 + delta_h 65.482 #kJ/mol #97asho/sas + -analytic -1.2718166E+2 -1.754872E-2 4.9174081E+3 4.3632661E+1 -6.3414497E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.250O2 + 1.000Cl- + 1.000H+ = ClO2 + 0.500H2O + -llnl_gamma 3.4 + log_k -19.629 + delta_h 114.140 #kJ/mol #01sch/sho + -analytic 1.7204718E+2 4.2430351E-2 -9.6430135E+3 -6.8520713E+1 -2.163155E+5 + #References = LogK/DGf: 01sch/sho; DHf/DHr: Internal calculation; S°: 01sch/sho; Cp: 01sch/sho; V°: 01sch/sho; + +1.000O2 + 1.000Cl- = ClO2- + -llnl_gamma 4.2 + log_k -23.094 + delta_h 112.653 #kJ/mol #97asho/sas + -analytic -1.6180729E+2 -2.4105415E-2 5.185463E+3 5.5981341E+1 -8.9021873E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.500O2 + 1.000Cl- = ClO3- + -llnl_gamma 3.5 + log_k -17.247 + delta_h 81.246 #kJ/mol #97asho/sas + -analytic -1.7354206E+2 -2.7187912E-2 8.4148495E+3 5.9993555E+1 -1.090937E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +2.000O2 + 1.000Cl- = ClO4- + -llnl_gamma 3.5 + log_k -15.695 + delta_h 62.602 #kJ/mol #89cox/wag + -analytic -2.6466887E+2 -4.0304843E-2 1.5479657E+4 9.1600227E+1 -1.5633429E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 89cox/wag; Cp: 97asho/sas; V°: 97asho/sas; + +1.000HCO3- + 1.000NH3 = CN- + 0.500O2 + 2.000H2O + -llnl_gamma 3.0 + log_k -56.046 + delta_h 344.462 #kJ/mol #97asho/sas + -analytic 1.1852296E+2 1.7256275E-2 -2.6323686E+4 -4.0118961E+1 6.9760155E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000HCO3- + 1.000H+ = CO + 0.500O2 + 1.000H2O + -llnl_gamma 3.4 + log_k -41.717 + delta_h 277.073 #kJ/mol #93sho/mck, 01sch/sho + -analytic 8.5353613E+2 1.3933213E-1 -6.4626271E+4 -3.0647727E+2 3.4064568E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 93sho/mck, 01sch/sho; S°: 82wag/eva; Cp: 93sho/mck, 01sch/sho; V°: 93sho/mck, 01sch/sho; + +1.000CrO4-2 + 4.000H+ = Cr+2 + 1.000O2 + 2.000H2O + -llnl_gamma 5.7 + log_k -18.750 + delta_h 137.506 #kJ/mol #04chi + -analytic 1.1149548E+3 1.8590414E-1 -7.1904098E+4 -4.0280473E+2 4.3335266E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 04chi; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000CrO4-2 + 5.000H+ = Cr+3 + 0.750O2 + 2.500H2O + -llnl_gamma 9.0 + log_k 9.128 + delta_h -85.176 #kJ/mol #04chi + -analytic 8.890801E+2 1.4807745E-1 -4.8673588E+4 -3.239627E+2 3.6246194E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 04chi; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Cu+2 + 0.500H2O = Cu+ + 0.250O2 + 1.000H+ + -llnl_gamma 4.1 + log_k -18.665 + delta_h 145.276 #kJ/mol #Internal calculation + -analytic 2.6404224E+2 4.2104999E-2 -2.1941255E+4 -9.3632203E+1 8.9047513E+5 + #References = LogK/DGf: 95bev/pui; DHf/DHr: Internal calculation; S°: 00pui; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Dy+3 + 0.500H2O = Dy+2 + 0.250O2 + 1.000H+ + -llnl_gamma 5.7 + log_k -62.473 + delta_h 418.654 #kJ/mol #97asho/sas + -analytic 2.5338772E+2 4.1769908E-2 -3.5297323E+4 -8.8675977E+1 8.4420174E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.250O2 + 1.000Dy+3 + 1.000H+ = Dy+4 + 0.500H2O + -llnl_gamma 11.6 + log_k -54.001 + delta_h 249.675 #kJ/mol #97asho/sas + -analytic -1.3014124E+2 -2.2813493E-2 -9.0016229E+3 4.5808809E+1 -1.933883E+4 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Er+3 + 0.500H2O = Er+2 + 0.250O2 + 1.000H+ + -llnl_gamma 5.7 + log_k -71.562 + delta_h 472.033 #kJ/mol #97asho/sas + -analytic 2.6052089E+2 4.2799355E-2 -3.862162E+4 -9.1065942E+1 8.9169235E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.250O2 + 1.000Er+3 + 1.000H+ = Er+4 + 0.500H2O + -llnl_gamma 11.6 + log_k -75.112 + delta_h 373.168 #kJ/mol #97asho/sas + -analytic -1.2530275E+2 -2.2044431E-2 -1.5788749E+4 4.4287713E+1 1.1753294E+4 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Eu+3 + 0.500H2O = Eu+2 + 0.250O2 + 1.000H+ + -llnl_gamma 5.7 + log_k -27.435 + delta_h 217.412 #kJ/mol #97asho/sas + -analytic 2.6616359E+2 4.3567406E-2 -2.5786489E+4 -9.3179264E+1 9.3036057E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.250O2 + 1.000Eu+3 + 1.000H+ = Eu+4 + 0.500H2O + -llnl_gamma 11.6 + log_k -82.808 + delta_h 412.235 #kJ/mol #97asho/sas + -analytic -1.2383718E+2 -2.1933829E-2 -1.8160786E+4 4.3614331E+1 4.9714097E+4 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.250O2 + 1.000Fe+2 + 1.000H+ = Fe+3 + 0.500H2O + -llnl_gamma 9.0 + log_k 8.490 + delta_h -98.882 #kJ/mol #95par/kho + -analytic -2.1237347E+2 -3.5300742E-2 1.6059769E+4 7.4699184E+1 -6.5023697E+5 + #References = LogK/DGf: 95par/kho; DHf/DHr: 95par/kho; S°: Internal calculation; Cp: 88sho/hel,89bsho/hel,97asho/sas; V°: 88sho/hel,89bsho/hel,97asho/sas; + +1.000Gd+3 + 0.500H2O = Gd+2 + 0.250O2 + 1.000H+ + -llnl_gamma 5.7 + log_k -86.376 + delta_h 544.603 #kJ/mol #97asho/sas + -analytic 2.6214444E+2 4.3067982E-2 -4.2833109E+4 -9.2162612E+1 9.2020863E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.250O2 + 1.000Gd+3 + 1.000H+ = Gd+4 + 0.500H2O + -llnl_gamma 11.6 + log_k -104.366 + delta_h 523.048 #kJ/mol #97asho/sas + -analytic -1.2786149E+2 -2.2564553E-2 -2.3882817E+4 4.4446215E+1 3.0823378E+4 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000H2O = H2 + 0.500O2 + -CO2_llnl_gamma + log_k -46.072 + delta_h 275.563 #kJ/mol #82wag/eva + -analytic 1.9265056E+2 3.3721081E-2 -2.6491918E+4 -6.8822847E+1 9.2233489E+5 + #References = LogK/DGf: 82wag/eva; DHf/DHr: Internal calculation; S°: 82wag/eva; Cp: 89bsho/hel, 01sch/sho; V°: 89bsho/hel, 01sch/sho; + +1.000H2AsO4- = H2AsO3- + 0.500O2 + -llnl_gamma 3.6 + log_k -30.565 + delta_h 194.451 #kJ/mol #Internal calculation + -analytic 2.9326858E+2 4.8837428E-2 -2.8918064E+4 -1.0408625E+2 1.4357821E+6 + #References = LogK/DGf: 05bes/app; DHf/DHr: Internal calculation; S°: 05bes/app; Cp: 05bes/app; V°: 05bes/app; + +1.000H2PO4- = H2PO2- + 1.000O2 + -llnl_gamma 3.6 + log_k -112.399 + delta_h 676.548 #kJ/mol #97asho/sas + -analytic 1.8769881E+2 3.1944112E-2 -4.739622E+4 -6.5257081E+1 9.6182174E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000H2PO4- = H2PO3- + 0.500O2 + -llnl_gamma 3.6 + log_k -52.346 + delta_h 327.001 #kJ/mol #97asho/sas + -analytic 1.659843E+2 2.7516639E-2 -2.7411128E+4 -5.7969451E+1 7.8621025E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Hg+2 + 1.000H2O = Hg + 0.500O2 + 2.000H+ + -llnl_gamma 3.4 + log_k -20.650 + delta_h 122.056 #kJ/mol #Internal calculation + -analytic 5.567368E+2 8.8981012E-2 -4.1241387E+4 -1.9964099E+2 2.5251708E+6 + #References = LogK/DGf: 05bes/app; DHf/DHr: Internal calculation; S°: 05bes/app; Cp: 05bes/app; V°: 05bes/app; + +2.000Hg+2 + 1.000H2O = Hg2+2 + 0.500O2 + 2.000H+ + -llnl_gamma 5.7 + log_k -12.202 + delta_h 106.213 #kJ/mol #89cox/wag + -analytic 4.3669923E+2 6.636136E-2 -2.950441E+4 -1.5596628E+2 1.4400152E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Ho+3 + 0.500H2O = Ho+2 + 0.250O2 + 1.000H+ + -llnl_gamma 5.7 + log_k -68.776 + delta_h 452.641 #kJ/mol #97asho/sas + -analytic 2.5769347E+2 4.248515E-2 -3.7417222E+4 -9.0309823E+1 8.7355517E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.250O2 + 1.000H+ + 1.000Ho+3 = Ho+4 + 0.500H2O + -llnl_gamma 11.6 + log_k -74.452 + delta_h 365.036 #kJ/mol #97asho/sas + -analytic -1.276532E+2 -2.2327255E-2 -1.5242785E+4 4.4848358E+1 7.3282983E+2 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000H+ + 1.000SO4-2 = HS- + 2.000O2 + -llnl_gamma 3.5 + log_k -138.286 + delta_h 868.772 #kJ/mol #89cox/wag + -analytic 1.0441949E+3 1.6867211E-1 -1.0699853E+5 -3.7241269E+2 4.2326498E+6 + #References = LogK/DGf: 89cox/wag; DHf/DHr: Internal calculation; S°: 89cox/wag; Cp: 97asho/sas; V°: 97asho/sas; + +1.000H+ + 1.000SeO3-2 = HSe- + 1.500O2 + -llnl_gamma 3.6 + log_k -76.843 + delta_h 507.180 #kJ/mol #97asho/sas + -analytic 9.3740801E+2 1.5397659E-1 -8.0712835E+4 -3.3560865E+2 3.6442044E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.500O2 + 1.000H+ + 1.000SO4-2 = HSO5- + -llnl_gamma 3.6 + log_k -17.206 + delta_h 139.702 #kJ/mol #97asho/sas + -analytic 8.9276273E+2 1.4042283E-1 -5.7825135E+4 -3.2083246E+2 3.1992215E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.500O2 + 2.000H+ + 3.000I- = I3- + 1.000H2O + -llnl_gamma 3.6 + log_k 24.722 + delta_h -160.570 #kJ/mol #88sho/hel + -analytic 1.2968773E+3 2.1633197E-1 -6.2986978E+4 -4.745428E+2 4.3406424E+6 + #References = LogK/DGf: 88sho/hel; DHf/DHr: Internal calculation; S°: 88sho/hel; Cp: 88sho/hel; V°: 88sho/hel; + +0.500O2 + 1.000I- = IO- + -llnl_gamma 3.6 + log_k -0.903 + delta_h -44.643 #kJ/mol #97asho/sas + -analytic -1.9219512E+2 -2.7455202E-2 1.416178E+4 6.5360203E+1 -8.6678728E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.500O2 + 1.000I- = IO3- + -llnl_gamma 4.2 + log_k 17.682 + delta_h -146.163 #kJ/mol #97asho/sas + -analytic -2.5165335E+2 -3.9000199E-2 2.4364112E+4 8.6615705E+1 -1.3404455E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +2.000O2 + 1.000I- = IO4- + -llnl_gamma 3.5 + log_k 6.964 + delta_h -70.413 #kJ/mol #97asho/sas + -analytic -1.9590107E+2 -3.1524372E-2 1.8212262E+4 6.6978074E+1 -1.2936854E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000La+3 + 0.500H2O = La+2 + 0.250O2 + 1.000H+ + -llnl_gamma 5.7 + log_k -84.756 + delta_h 547.220 #kJ/mol #97asho/sas + -analytic 2.6287551E+2 4.2546551E-2 -4.2906034E+4 -9.1684447E+1 9.2966642E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.250O2 + 1.000H+ + 1.000Lu+3 = Lu+4 + 0.500H2O + -llnl_gamma 11.6 + log_k -115.134 + delta_h 603.486 #kJ/mol #97asho/sas + -analytic -1.2896046E+2 -2.2767194E-2 -2.7489803E+4 4.568381E+1 -2.0041519E+4 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.250O2 + 1.000H+ + 1.000Mn+2 = Mn+3 + 0.500H2O + -llnl_gamma 8.2 + log_k -4.011 + delta_h -46.901 #kJ/mol #97asho/sas + -analytic -2.3287768E+2 -3.8806757E-2 1.4675899E+4 8.0810977E+1 -7.7758964E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.250O2 + 1.000Mn+2 + 1.500H2O = MnO4- + 3.000H+ + -llnl_gamma 3.5 + log_k -20.212 + delta_h 121.692 #kJ/mol #97asho/sas + -analytic -3.2811384E+2 -5.8736046E-2 1.5072728E+4 1.1872115E+2 -1.6808293E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000O2 + 1.000Mn+2 + 2.000H2O = MnO4-2 + 4.000H+ + -llnl_gamma 4.7 + log_k -32.328 + delta_h 149.866 #kJ/mol #97asho/sas + -analytic -1.1203039E+3 -1.8684747E-1 5.7477125E+4 4.0431449E+2 -4.4041732E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.500O2 + 2.000NH3 = N2 + 3.000H2O + -llnl_gamma 3.4 + log_k 116.443 + delta_h -686.530 #kJ/mol #89bsho/hel, 01sch/sho + -analytic 7.0576158E+1 1.0950681E-3 3.0221983E+4 -2.4321491E+1 3.8731568E+5 + #References = LogK/DGf: 89bsho/hel, 01sch/sho; DHf/DHr: Internal calculation; S°: 89bsho/hel, 01sch/sho; Cp: 89bsho/hel, 01sch/sho; V°: 89bsho/hel, 01sch/sho; + +1.000Nd+3 + 0.500H2O = Nd+2 + 0.250O2 + 1.000H+ + -llnl_gamma 5.7 + log_k -65.771 + delta_h 434.239 #kJ/mol #97asho/sas + -analytic 2.696062E+2 4.4271549E-2 -3.7629698E+4 -9.4383931E+1 9.9389245E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.250O2 + 1.000H+ + 1.000Nd+3 = Nd+4 + 0.500H2O + -llnl_gamma 11.6 + log_k -61.771 + delta_h 293.526 #kJ/mol #97asho/sas + -analytic -1.1141075E+2 -1.9899192E-2 -1.3023676E+4 3.9410268E+1 1.5432344E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.500O2 + 1.000NH3 = NO2- + 1.000H+ + 1.000H2O + -llnl_gamma 3.0 + log_k 46.860 + delta_h -290.816 #kJ/mol #97asho/sas + -analytic -7.8034587E+2 -1.3125158E-1 6.0315794E+4 2.8208575E+2 -3.0192075E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +2.000O2 + 1.000NH3 = NO3- + 1.000H+ + 1.000H2O + -llnl_gamma 3.0 + log_k 62.095 + delta_h -386.885 #kJ/mol #97asho/sas + -analytic -8.298251E+2 -1.3990188E-1 6.8801778E+4 2.9915423E+2 -3.3217568E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +2.000H2O = O2 + 4.000e- + 4.000H+ + -CO2_llnl_gamma + log_k -85.991 + delta_h 559.524 #kJ/mol #By convention + -analytic 2.1432049E+2 3.0024652E-2 -4.2123282E+4 -7.2110967E+1 9.2916949E+5 + #References = LogK/DGf: Internal calculation; S°: 89bsho/hel, 01sch/sho; Cp: 89bsho/hel, 01sch/sho; V°: 89bsho/hel, 01sch/sho; + +1.000H+ + 1.000H2PO4- = PH3 + 2.000O2 + -llnl_gamma 3.4 + log_k -209.460 + delta_h 1267.173 #kJ/mol #01sch/sho + -analytic 1.0769538E+3 1.7678067E-1 -1.3003273E+5 -3.8505428E+2 4.4271547E+6 + #References = LogK/DGf: 01sch/sho; DHf/DHr: Internal calculation; S°: 01sch/sho; Cp: 01sch/sho; V°: 01sch/sho; + +0.500H2O + 1.000Pm+3 = Pm+2 + 0.250O2 + 1.000H+ + -llnl_gamma 5.7 + log_k -69.363 + delta_h 453.618 #kJ/mol #97asho/sas + -analytic 2.8289543E+2 4.6479471E-2 -3.9433524E+4 -9.926782E+1 1.0468456E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.250O2 + 1.000H+ + 1.000Pm+3 = Pm+4 + 0.500H2O + -llnl_gamma 11.6 + log_k -69.248 + delta_h 335.579 #kJ/mol #97asho/sas + -analytic -1.0627208E+2 -1.8767757E-2 -1.5494016E+4 3.7442915E+1 1.721935E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.500H2O + 1.000Pr+3 = Pr+2 + 0.250O2 + 1.000H+ + -llnl_gamma 5.7 + log_k -72.735 + delta_h 476.108 #kJ/mol #97asho/sas + -analytic 2.8312534E+2 4.6471003E-2 -4.0327333E+4 -9.9314903E+1 1.0037468E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.250O2 + 1.000H+ + 1.000Pr+3 = Pr+4 + 0.500H2O + -llnl_gamma 11.6 + log_k -44.399 + delta_h 195.239 #kJ/mol #97asho/sas + -analytic -1.1184137E+2 -1.965722E-2 -7.6440681E+3 3.9434097E+1 1.2128573E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.250O2 + 1.000H+ + 1.000Rh+2 = Rh+3 + 0.500H2O + -llnl_gamma 8.2 + log_k 3.356 + delta_h -71.111 #kJ/mol #97asho/sas,98sas/sho + -analytic -2.3440826E+2 -3.8914188E-2 1.6283112E+4 8.2344542E+1 -8.0035213E+5 + #References = LogK/DGf: 97asho/sas,98sas/sho; DHf/DHr: Internal calculation; S°: 97asho/sas,98sas/sho; Cp: 97asho/sas,98sas/sho; V°: 97asho/sas,98sas/sho; + +4.000H+ + 1.000RuO4-2 = Ru+2 + 1.000O2 + 2.000H2O + -llnl_gamma 5.7 + log_k 1.395 + delta_h 24.827 #kJ/mol #98sas/sho + -analytic 1.1196807E+3 1.8646373E-1 -6.5402676E+4 -4.0488377E+2 4.208257E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +5.000H+ + 1.000RuO4-2 = Ru+3 + 0.750O2 + 2.500H2O + -llnl_gamma 8.2 + log_k 18.832 + delta_h -127.532 #kJ/mol #98sas/sho + -analytic 8.9598641E+2 1.4928792E-1 -4.5813524E+4 -3.2628208E+2 3.4987171E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +2.000H+ + 2.000SO4-2 = S2O3-2 + 2.000O2 + 1.000H2O + -llnl_gamma 4.7 + log_k -133.412 + delta_h 856.296 #kJ/mol #04chi + -analytic 1.733264E+3 2.7921733E-1 -1.4472362E+5 -6.2187136E+2 6.6012742E+6 + #References = LogK/DGf: 06bla/pia; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +2.000H+ + 2.000SO4-2 = S2O4-2 + 1.500O2 + 1.000H2O + -llnl_gamma 5.0 + log_k -118.280 + delta_h 761.149 #kJ/mol #04chi + -analytic 1.6894585E+3 2.7120058E-1 -1.3662141E+5 -6.0678585E+2 6.3189982E+6 + #References = LogK/DGf: 06bla/pia; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +2.000H+ + 2.000SO4-2 = S2O6-2 + 0.500O2 + 1.000H2O + -llnl_gamma 4.7 + log_k -50.822 + delta_h 353.589 #kJ/mol #97asho/sas + -analytic 1.5608113E+3 2.4832074E-1 -1.0652801E+5 -5.6213548E+2 5.5642127E+6 + #References = LogK/DGf: 06bla/pia; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.500O2 + 2.000H+ + 2.000SO4-2 = S2O8-2 + 1.000H2O + -llnl_gamma 4.7 + log_k -22.379 + delta_h 194.179 #kJ/mol #97asho/sas + -analytic 1.5275233E+3 2.4060196E-1 -9.4877209E+4 -5.5036229E+2 5.1929459E+6 + #References = LogK/DGf: 06bla/pia; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.500O2 + 1.000SeO3-2 = SeO4-2 + -llnl_gamma 4.7 + log_k 13.984 + delta_h -83.838 #kJ/mol #97asho/sas + -analytic -6.0078355E+1 -1.0501177E-2 8.5380155E+3 2.1213969E+1 -3.4988829E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.500H2O + 1.000Sm+3 = Sm+2 + 0.250O2 + 1.000H+ + -llnl_gamma 5.7 + log_k -47.959 + delta_h 326.954 #kJ/mol #97asho/sas + -analytic 2.7485159E+2 4.485272E-2 -3.2509759E+4 -9.6492889E+1 1.0329494E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.250O2 + 1.000H+ + 1.000Sm+3 = Sm+4 + 0.500H2O + -llnl_gamma 11.6 + log_k -65.876 + delta_h 315.460 #kJ/mol #97asho/sas + -analytic -1.1123676E+2 -1.984073E-2 -1.4161055E+4 3.9233434E+1 1.5042396E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000SO4-2 = SO3-2 + 0.500O2 + -llnl_gamma 4.5 + log_k -46.615 + delta_h 272.213 #kJ/mol #04chi + -analytic 9.6718748E+1 1.4160691E-2 -2.0794588E+4 -3.379293E+1 5.1632043E+5 + #References = LogK/DGf: 06bla/pia; DHf/DHr: Internal calculation; S°: 04chi; Cp: 97asho/sas; V°: 97asho/sas; + +0.500H2O + 1.000Tb+3 = Tb+2 + 0.250O2 + 1.000H+ + -llnl_gamma 5.7 + log_k -80.211 + delta_h 519.284 #kJ/mol #97asho/sas + -analytic 2.6941166E+2 4.4396063E-2 -4.1621672E+4 -9.4441058E+1 9.2702692E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.250O2 + 1.000H+ + 1.000Tb+3 = Tb+4 + 0.500H2O + -llnl_gamma 11.6 + log_k -30.765 + delta_h 115.296 #kJ/mol #97asho/sas + -analytic -1.2122705E+2 -2.1217186E-2 -2.6720181E+3 4.2547035E+1 4.1770292E+4 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.500O2 + 2.000H+ + 1.000Tl+ = Tl+3 + 1.000H2O + -llnl_gamma 8.2 + log_k -0.281 + delta_h -88.585 #kJ/mol #Internal calculation + -analytic -4.3040062E+2 -7.0560248E-2 2.5654218E+4 1.5265599E+2 -1.1222464E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.500H2O + 1.000Tm+3 = Tm+2 + 0.250O2 + 1.000H+ + -llnl_gamma 5.7 + log_k -59.834 + delta_h 403.343 #kJ/mol #97asho/sas + -analytic 2.5313548E+2 4.188993E-2 -3.4630377E+4 -8.8536341E+1 8.6845097E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.250O2 + 1.000H+ + 1.000Tm+3 = Tm+4 + 0.500H2O + -llnl_gamma 11.6 + log_k -73.646 + delta_h 363.428 #kJ/mol #97asho/sas + -analytic -1.2502148E+2 -2.192915E-2 -1.5289373E+4 4.4080624E+1 1.0675332E+4 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000H+ + 1.000UO2+2 = U+3 + 0.750O2 + 0.500H2O + -llnl_gamma 8.2 + log_k -65.059 + delta_h 377.959 #kJ/mol #97asho/sas + -analytic -1.2165579E+2 -1.6192696E-2 -1.3049369E+4 4.4151415E+1 -3.6065373E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +2.000H+ + 1.000UO2+2 = U+4 + 0.500O2 + 1.000H2O + -llnl_gamma 11.6 + log_k -33.959 + delta_h 136.009 #kJ/mol #97asho/sas + -analytic -2.4123228E+2 -3.7333955E-2 2.6508413E+3 8.5983925E+1 -2.8871609E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.500H2O + 1.000UO2+2 = UO2+ + 0.250O2 + 1.000H+ + -llnl_gamma 4.1 + log_k -20.024 + delta_h 133.821 #kJ/mol #97asho/sas + -analytic 8.7871001E+1 1.6321781E-2 -9.3669369E+3 -3.2601192E+1 -6.0038674E+4 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000VO+2 = V+2 + 0.500O2 + -llnl_gamma 5.7 + log_k -41.545 + delta_h 254.628 #kJ/mol #97asho/sas + -analytic -1.8041661E+0 6.8848917E-4 -1.1973287E+4 8.7119464E-1 -1.7271618E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000H+ + 1.000VO+2 = V+3 + 0.250O2 + 0.500H2O + -llnl_gamma 8.2 + log_k -15.722 + delta_h 79.603 #kJ/mol #97asho/sas + -analytic -1.8237496E+2 -2.9049355E-2 6.1110664E+3 6.5528679E+1 -6.5152594E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.250O2 + 0.500H2O + 1.000VO+2 = VO2+ + 1.000H+ + -llnl_gamma 4.1 + log_k 4.581 + delta_h -17.379 #kJ/mol #97asho/sas + -analytic -1.2924216E+0 -1.0283206E-3 4.7835316E+3 -1.1847103E+0 -6.16289E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.500H2O + 1.000Yb+3 = Yb+2 + 0.250O2 + 1.000H+ + -llnl_gamma 5.7 + log_k -39.298 + delta_h 279.889 #kJ/mol #97asho/sas + -analytic 2.571531E+2 4.2349491E-2 -2.8687646E+4 -9.0196375E+1 9.1791424E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.250O2 + 1.000H+ + 1.000Yb+3 = Yb+4 + 0.500H2O + -llnl_gamma 11.6 + log_k -93.279 + delta_h 473.623 #kJ/mol #97asho/sas + -analytic -1.2230787E+2 -2.145478E-2 -2.1306744E+4 4.3034565E+1 3.5807202E+4 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + + +2.000CH4 + 1.000H2O + 2.000Hg+2 = (CH3Hg)2OH+ + 3.000H+ + -llnl_gamma 4.1 + log_k 3.849 + delta_h -51.052 #kJ/mol #Internal calculation + -analytic 1.9165425E+2 1.7962117E-2 -1.9485039E+3 -7.3196661E+1 -4.8935722E+5 + #References = LogK/DGf: 18bla/bur; DHf/DHr: Internal calculation; S°: 03ald/gan; V°: Default value; + +1.000Ag+ + 1.000HCO3- = Ag(CO3)- + 1.000H+ + -llnl_gamma 3.6 + log_k -7.625 + delta_h -7.695 #kJ/mol #97sve/sho + -analytic 8.4651911E+1 7.6902515E-3 -5.3377686E+3 -3.2488438E+1 3.3101911E+5 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Ag+ + 2.000HCO3- = Ag(CO3)2-3 + 2.000H+ + -llnl_gamma 6.7 + log_k -18.473 + delta_h 1.186 #kJ/mol #97sve/sho + -analytic -4.5906328E+2 -8.623166E-2 2.0926686E+4 1.6500764E+2 -1.0835008E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Ag+ + 2.000HS- = Ag(HS)2- + -llnl_gamma 4.5 + log_k 17.586 + delta_h -101.091 #kJ/mol #01aki/zot + -analytic 1.0878147E+3 1.6776771E-1 -5.5051572E+4 -3.9447291E+2 3.5995721E+6 + #References = LogK/DGf: 01aki/zot; DHf/DHr: Internal calculation; S°: 01aki/zot; Cp: 01aki/zot; V°: 01aki/zot; + +1.000Ag+ + 2.000H2O = Ag(OH)2- + 2.000H+ + -llnl_gamma 3.6 + log_k -24.211 + delta_h 93.954 #kJ/mol #01aki/zot + -analytic -4.135193E+2 -7.571665E-2 1.805993E+4 1.4901557E+2 -1.548508E+6 + #References = LogK/DGf: 01aki/zot; DHf/DHr: Internal calculation; S°: 01aki/zot; Cp: 01aki/zot; V°: 01aki/zot; + +1.000Ag+ + 1.000Cl- = AgCl + -llnl_gamma 3.4 + log_k 3.272 + delta_h -17.432 #kJ/mol #01aki/zot + -analytic 7.1369211E+2 1.1107321E-1 -3.7903218E+4 -2.5933589E+2 2.2491237E+6 + #References = LogK/DGf: 01aki/zot; DHf/DHr: Internal calculation; S°: 01aki/zot; Cp: 01aki/zot; V°: 01aki/zot; + +1.000Ag+ + 2.000Cl- = AgCl2- + -llnl_gamma 3.6 + log_k 5.170 + delta_h -23.043 #kJ/mol #01aki/zot, d'apres 97tag/zot + -analytic 1.0064096E+3 1.5935015E-1 -5.3662662E+4 -3.6576419E+2 3.2264014E+6 + #References = LogK/DGf: 01aki/zot, d'apres 97tag/zot; DHf/DHr: Internal calculation; S°: 01aki/zot, d'apres 97tag/zot; Cp: 01aki/zot, d'apres 97tag/zot; V°: 01aki/zot, d'apres 97tag/zot; + +1.000Ag+ + 3.000Cl- = AgCl3-2 + -llnl_gamma 4.7 + log_k 5.169 + delta_h -46.497 #kJ/mol #97sve/sho + -analytic 8.7083926E+2 1.3955959E-1 -4.8314056E+4 -3.1621901E+2 3.3094144E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Ag+ + 4.000Cl- = AgCl4-3 + -llnl_gamma 6.7 + log_k 3.855 + delta_h -67.726 #kJ/mol #97sve/sho + -analytic 8.4377547E+2 1.3674414E-1 -4.7783794E+4 -3.072141E+2 3.5342408E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Ag+ + 1.000F- = AgF + -llnl_gamma 3.4 + log_k 0.440 + delta_h 0.604 #kJ/mol #97sve/sho + -analytic 8.2472648E+2 1.2774281E-1 -4.5563406E+4 -2.9905362E+2 2.7055728E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Ag+ + 1.000H2AsO3- = AgH2AsO3 + -llnl_gamma 3.4 + log_k 1.220 + delta_h -12.252 #kJ/mol #Internal calculation + -analytic 5.3646422E+2 7.7632696E-2 -2.7629696E+4 -1.9492959E+2 1.4774385E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000Ag+ + 1.000HS- = AgHS + -llnl_gamma 3.4 + log_k 13.606 + delta_h -74.337 #kJ/mol #01aki/zot + -analytic 7.3849739E+2 1.1292029E-1 -3.6606291E+4 -2.6768104E+2 2.3626874E+6 + #References = LogK/DGf: 01aki/zot; DHf/DHr: Internal calculation; S°: 01aki/zot; Cp: 01aki/zot; V°: 01aki/zot; + +1.000Ag+ + 1.000NO3- = AgNO3 + -llnl_gamma 3.4 + log_k -0.251 + delta_h -3.135 #kJ/mol #97sve/sho + -analytic 7.2342807E+2 1.0880002E-1 -4.1228371E+4 -2.6135579E+2 2.5664439E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Ag+ + 1.000H2O = AgO- + 2.000H+ + -llnl_gamma 3.6 + log_k -24.007 + delta_h 111.633 #kJ/mol #97asho/sas + -analytic -5.0250177E+2 -8.6787958E-2 2.2083116E+4 1.8205904E+2 -1.7947767E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Ag+ + 1.000H2O = AgOH + 1.000H+ + -llnl_gamma 3.4 + log_k -11.899 + delta_h 49.628 #kJ/mol #01aki/zot + -analytic 9.769342E+1 9.0769024E-3 -7.3868208E+3 -3.6006528E+1 1.3979518E+5 + #References = LogK/DGf: 01aki/zot; DHf/DHr: Internal calculation; S°: 01aki/zot; Cp: 01aki/zot; V°: 01aki/zot; + +1.000Al+3 + 2.000H2O = Al(OH)2+ + 2.000H+ + -llnl_gamma 4.1 + log_k -10.592 + delta_h 111.289 #kJ/mol #Internal calculation + -analytic 3.0242922E+2 5.4151633E-2 -2.1423313E+4 -1.0832543E+2 9.5398614E+5 + #References = LogK/DGf: 95pok/hel; DHf/DHr: Internal calculation; S°: 01tag/sch; Cp: 95pok/hel; V°: 95pok/hel; + +1.000Al+3 + 1.000H2AsO4- = AlAsO4 + 2.000H+ + -llnl_gamma 3.4 + log_k -8.064 + delta_h 65.458 #kJ/mol #Internal calculation + -analytic 8.077854E+2 1.3844116E-1 -4.1721191E+4 -2.9797478E+2 1.7892057E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000Al+3 + 1.000F- = AlF+2 + -llnl_gamma 5.7 + log_k 6.980 + delta_h -0.346 #kJ/mol #Internal calculation + -analytic 8.4659404E+2 1.3829049E-1 -4.6152377E+4 -3.0616536E+2 2.8034064E+6 + #References = LogK/DGf: 01tag/sch; DHf/DHr: Internal calculation; S°: 01tag/sch; Cp: 01tag/sch; V°: 01tag/sch; + +1.000Al+3 + 2.000F- = AlF2+ + -llnl_gamma 4.1 + log_k 12.500 + delta_h 0.419 #kJ/mol #Internal calculation + -analytic 1.7120205E+3 2.7760152E-1 -9.3606823E+4 -6.1919223E+2 5.6733803E+6 + #References = LogK/DGf: 01tag/sch; DHf/DHr: Internal calculation; S°: 01tag/sch; Cp: 01tag/sch; V°: 01tag/sch; + +1.000Al+3 + 3.000F- = AlF3 + -llnl_gamma 3.4 + log_k 16.550 + delta_h 0.615 #kJ/mol #Internal calculation + -analytic 2.565441E+3 4.1575855E-1 -1.401093E+5 -9.2872423E+2 8.4579433E+6 + #References = LogK/DGf: 01tag/sch; DHf/DHr: Internal calculation; S°: 01tag/sch; Cp: 01tag/sch; V°: 01tag/sch; + +1.000Al+3 + 4.000F- = AlF4- + -llnl_gamma 3.6 + log_k 18.930 + delta_h 0.823 #kJ/mol #Internal calculation + -analytic 2.6280275E+3 4.2423088E-1 -1.4521848E+5 -9.4931749E+2 8.9344578E+6 + #References = LogK/DGf: 01tag/sch; DHf/DHr: Internal calculation; S°: 01tag/sch; Cp: 01tag/sch; V°: 01tag/sch; + +1.000Al+3 + 1.000H2AsO3- = AlH2AsO3+2 + -llnl_gamma 5.7 + log_k 7.164 + delta_h -48.031 #kJ/mol #Internal calculation + -analytic 6.4521956E+2 9.4795631E-2 -3.1633386E+4 -2.3465102E+2 1.8141781E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000Al+3 + 1.000H2AsO4- = AlH2AsO4+2 + -llnl_gamma 5.7 + log_k 2.506 + delta_h -19.575 #kJ/mol #Internal calculation + -analytic 8.4061174E+2 1.276049E-1 -4.6025869E+4 -3.0453835E+2 2.8251201E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000Al+3 + 1.000H2PO4- = AlH2PO4+2 + -llnl_gamma 5.7 + log_k 3.098 + #References = LogK/DGf: 79lan; + #References = LogK/DGf: 79lan; V°: Default value; + +1.000Al+3 + 1.000H4SiO4 = AlH3SiO4+2 + 1.000H+ + -llnl_gamma 5.7 + log_k -2.380 + delta_h 75.017 #kJ/mol #Internal calculation + -analytic -9.904345E+0 1.4796271E-2 3.7896393E+3 4.3274439E-1 -9.4835712E+5 + #References = LogK/DGf: 01tag/sch, d'apres 98sal/pok; DHf/DHr: Internal calculation; S°: 01tag/sch, d'apres 98sal/pok; Cp: 01tag/sch, d'apres 98sal/pok; V°: 01tag/sch, d'apres 98sal/pok; + +1.000Al+3 + 1.000H2AsO4- = AlHAsO4+ + 1.000H+ + -llnl_gamma 4.1 + log_k -0.495 + delta_h 11.152 #kJ/mol #Internal calculation + -analytic 7.5176456E+2 1.1972102E-1 -3.8060264E+4 -2.7529115E+2 1.8570525E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000Al+3 + 1.000H2PO4- = AlHPO4+ + 1.000H+ + -llnl_gamma 4.1 + log_k 0.188 + #References = LogK/DGf: 79lan; + #References = LogK/DGf: 79lan; V°: Default value; + +1.000Al+3 + 2.000H2O = AlO2- + 4.000H+ + -llnl_gamma 3.6 + log_k -22.872 + delta_h 180.865 #kJ/mol #Internal calculation + -analytic -1.7804863E+2 -2.6890119E-2 1.8671726E+3 6.6832788E+1 -7.5043954E+5 + #References = LogK/DGf: 95pok/hel; DHf/DHr: Internal calculation; S°: 95pok/hel; Cp: 95pok/hel; V°: 95pok/hel; + +1.000Al+3 + 1.000H2O = AlOH+2 + 1.000H+ + -llnl_gamma 5.7 + log_k -4.951 + delta_h 49.758 #kJ/mol #Internal calculation + -analytic 1.6145683E+2 3.018521E-2 -1.1505645E+4 -5.8055033E+1 6.0767162E+5 + #References = LogK/DGf: 95pok/hel; DHf/DHr: Internal calculation; S°: 95pok/hel; Cp: 95pok/hel; V°: 95pok/hel; + +1.000Al+3 + 1.000SO4-2 = AlSO4+ + -llnl_gamma 4.1 + log_k 3.170 + delta_h 18.869 #kJ/mol #Internal calculation + -analytic 2.3192944E+3 3.6142931E-1 -1.3493481E+5 -8.3585467E+2 8.6188288E+6 + #References = LogK/DGf: 01tag/sch; DHf/DHr: Internal calculation; S°: 01tag/sch; Cp: 01tag/sch; V°: 01tag/sch; + +1.000H2AsO3- + 1.000H+ = As(OH)3 + -llnl_gamma 3.4 + log_k 9.256 + delta_h -28.176 #kJ/mol #Internal calculation + -analytic 1.4914501E+1 1.5860089E-2 4.9992329E+3 -8.7541689E+0 -4.8834206E+5 + #References = LogK/DGf: 08per/pok; DHf/DHr: Internal calculation; S°: 08per/pok; Cp: 08per/pok; V°: 08per/pok; + +1.000H2AsO4- = AsO4-3 + 2.000H+ + -llnl_gamma 6.7 + log_k -18.460 + delta_h 21.915 #kJ/mol #Internal calculation + -analytic -1.5040869E+3 -2.4299555E-1 8.2186102E+4 5.4181996E+2 -5.1803237E+6 + #References = LogK/DGf: 76bae/mes; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Au+ + 2.000HS- = Au(HS)2- + -llnl_gamma 3.6 + log_k 31.536 + delta_h -167.409 #kJ/mol #01aki/zot + -analytic 9.748226E+2 1.4920268E-1 -4.5421601E+4 -3.5238686E+2 3.2474397E+6 + #References = LogK/DGf: 01aki/zot; DHf/DHr: Internal calculation; S°: 01aki/zot; Cp: 01aki/zot; V°: 01aki/zot; + +1.000Au+ + 2.000H2O = Au(OH)2- + 2.000H+ + -llnl_gamma 3.6 + log_k -5.721 + delta_h -13.559 #kJ/mol #01aki/zot + -analytic -3.494866E+2 -6.242185E-2 2.0985378E+4 1.2457024E+2 -1.4445224E+6 + #References = LogK/DGf: 01aki/zot; DHf/DHr: Internal calculation; S°: 01aki/zot; Cp: 01aki/zot; V°: 01aki/zot; + +1.000Au+ + 1.000Cl- = AuCl + -llnl_gamma 3.4 + log_k 7.933 + delta_h -30.688 #kJ/mol #01aki/zot + -analytic 6.4840507E+2 1.032363E-1 -3.2991539E+4 -2.3553558E+2 1.9751403E+6 + #References = LogK/DGf: 01aki/zot; DHf/DHr: Internal calculation; S°: 01aki/zot; Cp: 01aki/zot; V°: 01aki/zot; + +1.000Au+ + 2.000Cl- = AuCl2- + -llnl_gamma 3.6 + log_k 9.581 + delta_h -50.195 #kJ/mol #01aki/zot + -analytic 4.8501548E+2 9.8333012E-2 -2.0375873E+4 -1.8189812E+2 1.2163919E+6 + #References = LogK/DGf: 01aki/zot; DHf/DHr: Internal calculation; S°: 01aki/zot; Cp: 01aki/zot; V°: 01aki/zot; + +1.000Au+ + 3.000Cl- = AuCl3-2 + -llnl_gamma 4.7 + log_k 9.328 + delta_h -47.873 #kJ/mol #97sve/sho + -analytic 8.3327128E+2 1.3522704E-1 -4.309319E+4 -3.0328218E+2 2.7313036E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Au+3 + 4.000Cl- = AuCl4- + -llnl_gamma 3.6 + log_k -41.913 + delta_h 199.282 #kJ/mol #97sve/sho + -analytic 2.3945086E+3 3.9162149E-1 -1.4143643E+5 -8.7562563E+2 7.8115342E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Au+ + 1.000HS- = AuHS + -llnl_gamma 3.4 + log_k 26.016 + delta_h -134.682 #kJ/mol #01aki/zot + -analytic 8.1512422E+2 1.1760818E-1 -3.866775E+4 -2.9300397E+2 2.7146428E+6 + #References = LogK/DGf: 01aki/zot; DHf/DHr: Internal calculation; S°: 01aki/zot; Cp: 01aki/zot; V°: 01aki/zot; + +1.000Au+ + 1.000H2O = AuOH + 1.000H+ + -llnl_gamma 3.4 + log_k 11.022 + delta_h -77.054 #kJ/mol #01aki/zot + -analytic 5.8273598E+1 4.3431282E-3 1.494163E+3 -2.171427E+1 1.5336336E+4 + #References = LogK/DGf: 01aki/zot; DHf/DHr: Internal calculation; S°: 01aki/zot; Cp: 01aki/zot; V°: 01aki/zot; + +1.000B(OH)3 + 1.000H2O = B(OH)4- + 1.000H+ + -llnl_gamma 3.6 + log_k -9.243 + delta_h 14.069 #kJ/mol #95pok/sch + -analytic -4.9835469E+2 -7.5280182E-2 2.8167289E+4 1.7713522E+2 -1.8868727E+6 + #References = LogK/DGf: 95pok/sch; DHf/DHr: Internal calculation; S°: 95pok/sch; Cp: 95pok/sch; V°: 95pok/sch; + +1.000Ba+2 + 1.000HCO3- = Ba(HCO3)+ + -llnl_gamma 4.1 + log_k 1.034 + delta_h 20.309 #kJ/mol #95sho/kor + -analytic 9.2777025E+2 1.4836435E-1 -5.2385332E+4 -3.3564941E+2 3.1355167E+6 + #References = LogK/DGf: 95sho/kor; DHf/DHr: Internal calculation; S°: 95sho/kor; Cp: 95sho/kor; V°: 95sho/kor; + +1.000Ba+2 + 1.000Cl- = BaCl+ + -llnl_gamma 4.1 + log_k -0.485 + delta_h 12.964 #kJ/mol #97sve/sho + -analytic 8.0870215E+2 1.3328694E-1 -4.4762732E+4 -2.9445734E+2 2.6511191E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Ba+2 + 1.000HCO3- = BaCO3 + 1.000H+ + -llnl_gamma 3.4 + log_k -7.667 + delta_h 31.514 #kJ/mol #97sve/sho + -analytic 6.6880196E+2 1.1124343E-1 -3.5057328E+4 -2.4693095E+2 1.6855493E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Ba+2 + 1.000F- = BaF+ + -llnl_gamma 4.1 + log_k -0.143 + delta_h 8.925 #kJ/mol #97sve/sho + -analytic 8.2520409E+2 1.3420958E-1 -4.5844967E+4 -3.0007457E+2 2.7483725E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000H2AsO3- + 1.000Ba+2 = BaH2AsO3+ + -llnl_gamma 4.1 + log_k 1.463 + delta_h 0.131 #kJ/mol #Internal calculation + -analytic 5.5629355E+2 9.1454479E-2 -2.8046882E+4 -2.0384348E+2 1.4551382E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000Ba+2 + 1.000H2O = BaOH+ + 1.000H+ + -llnl_gamma 4.1 + log_k -13.494 + delta_h 87.599 #kJ/mol #97asho/sas + -analytic 1.3006325E+2 2.1000683E-2 -9.5608825E+3 -4.8012131E+1 9.3482077E+4 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Be+2 + 1.000Cl- = BeCl+ + -llnl_gamma 4.1 + log_k -4.835 + delta_h 165.918 #kJ/mol #97sve/sho + -analytic 1.4310104E+3 2.2804857E-1 -8.534038E+4 -5.1275469E+2 4.548962E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Be+2 + 2.000Cl- = BeCl2 + -llnl_gamma 3.4 + log_k -5.683 + delta_h 201.449 #kJ/mol #97sve/sho + -analytic 1.6810811E+3 2.6952393E-1 -1.0259918E+5 -6.0096501E+2 5.6932323E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Be+2 + 1.000F- = BeF+ + -llnl_gamma 4.1 + log_k 0.482 + delta_h 115.257 #kJ/mol #97sve/sho + -analytic 1.2125411E+3 1.939563E-1 -7.142536E+4 -4.3427562E+2 3.9345255E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Be+2 + 2.000F- = BeF2 + -llnl_gamma 3.4 + log_k 4.592 + delta_h 111.529 #kJ/mol #97sve/sho + -analytic 1.83336E+3 2.9242206E-1 -1.068392E+5 -6.5781627E+2 6.2323368E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Be+2 + 3.000F- = BeF3-1 + -llnl_gamma 3.6 + log_k 7.422 + delta_h 140.733 #kJ/mol #97sve/sho + -analytic 2.6366086E+3 4.178817E-1 -1.5336649E+5 -9.4609351E+2 9.0370795E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Be+2 + 4.000F- = BeF4-2 + -llnl_gamma 4.7 + log_k 8.062 + delta_h 247.651 #kJ/mol #97sve/sho + -analytic 3.2813241E+3 5.1721885E-1 -1.9459117E+5 -1.1727229E+3 1.1290997E+7 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Be+2 + 1.000H2O = BeO + 2.000H+ + -llnl_gamma 3.4 + log_k -13.655 + delta_h 65.815 #kJ/mol #97asho/sas + -analytic 3.45563E+2 5.5462702E-2 -2.1609247E+4 -1.270664E+2 9.9034524E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Be+2 + 2.000H2O = BeO2-2 + 4.000H+ + -llnl_gamma 4.7 + log_k -37.389 + delta_h 160.594 #kJ/mol #97asho/sas + -analytic -9.5944815E+2 -1.5864289E-1 4.2532511E+4 3.4763186E+2 -2.9769447E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Be+2 + 1.000H2O = BeOH+ + 1.000H+ + -llnl_gamma 4.1 + log_k -5.372 + delta_h 27.518 #kJ/mol #97asho/sas + -analytic 2.1898601E+2 3.2917783E-2 -1.423665E+4 -7.9061373E+1 8.1865103E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000B(OH)3 + 4.000F- + 3.000H+ = BF4- + 3.000H2O + -llnl_gamma 3.6 + log_k 18.145 + delta_h -19.282 #kJ/mol #88sho/hel + -analytic 2.3767387E+3 3.7694759E-1 -1.299062E+5 -8.5857917E+2 7.9315717E+6 + #References = LogK/DGf: 88sho/hel; DHf/DHr: Internal calculation; S°: 88sho/hel; Cp: 88sho/hel; V°: 88sho/hel; + +1.000Bi+3 + 1.000H2O = BiO+ + 2.000H+ + -llnl_gamma 4.1 + log_k -3.298 + delta_h 77.925 #kJ/mol #97asho/sas + -analytic 1.6682384E+2 2.6735453E-2 -6.1473575E+3 -6.1266475E+1 -5.2222674E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Bi+3 + 2.000H2O = BiO2- + 4.000H+ + -llnl_gamma 3.6 + log_k -21.095 + delta_h 191.082 #kJ/mol #97asho/sas + -analytic -2.0624372E+2 -3.8098808E-2 1.0086283E+4 7.5067808E+1 -2.0509303E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Bi+3 + 1.000H2O = BiOH+2 + 1.000H+ + -llnl_gamma 5.7 + log_k -1.099 + delta_h 17.221 #kJ/mol #97asho/sas + -analytic 1.143915E+2 1.6629762E-2 -5.0879279E+3 -4.1936958E+1 3.4368009E+4 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000HCO3- + 1.000Ca+2 = Ca(HCO3)+ + -llnl_gamma 4.1 + log_k 1.103 + delta_h -8.895 #kJ/mol #Internal calculation + -analytic 8.6860476E+2 1.4583333E-1 -4.8281225E+4 -3.167311E+2 3.0832247E+6 + #References = LogK/DGf: 82plu/bus; DHf/DHr: Internal calculation; S°: 99aki/zot; Cp: 99aki/zot; V°: 99aki/zot; + +1.000H2AsO4- + 1.000Ca+2 = CaAsO4- + 2.000H+ + -llnl_gamma 3.6 + log_k -14.839 + delta_h 113.307 #kJ/mol #Internal calculation + -analytic 2.5836626E+2 3.8536281E-2 -1.5534058E+4 -9.4530772E+1 1.1707092E+5 + #References = LogK/DGf: 95mir/kis; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000Ca+2 + 1.000Cl- = CaCl+ + -llnl_gamma 4.1 + log_k -0.290 + delta_h 7.149 #kJ/mol #Internal calculation + -analytic 7.8430049E+2 1.2981026E-1 -4.3492375E+4 -2.8572394E+2 2.63E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Ca+2 + 2.000Cl- = CaCl2 + -llnl_gamma 3.4 + log_k -0.640 + delta_h -5.857 #kJ/mol #Internal calculation + -analytic 1.56211E+3 2.5579437E-1 -8.5800777E+4 -5.6981616E+2 5.2211638E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000HCO3- + 1.000Ca+2 = CaCO3 + 1.000H+ + -llnl_gamma 3.4 + log_k -7.107 + delta_h 29.530 #kJ/mol #82plu/bus + -analytic 6.9542939E+2 1.1632931E-1 -3.6152348E+4 -2.5684303E+2 1.7402592E+6 + #References = LogK/DGf: 82plu/bus; DHf/DHr: 82plu/bus; S°: Internal calculation; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Ca+2 + 1.000CrO4-2 = CaCrO4 + -llnl_gamma 3.4 + log_k 2.770 + #References = LogK/DGf: 00per/pal; + #References = LogK/DGf: 00per/pal; V°: Default value; + +1.000Ca+2 + 1.000F- = CaF+ + -llnl_gamma 4.1 + log_k 0.719 + delta_h 5.541 #kJ/mol #97sve/sho + -analytic 8.5112291E+2 1.3865645E-1 -4.7741292E+4 -3.0905372E+2 2.9435917E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000H2AsO3- + 1.000Ca+2 = CaH2AsO3+ + -llnl_gamma 4.1 + log_k 1.745 + #References = LogK/DGf: 07mar/acc; + #References = LogK/DGf: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000H2AsO4- + 1.000Ca+2 = CaH2AsO4+ + -llnl_gamma 4.1 + log_k 1.398 + delta_h -3.075 #kJ/mol #Internal calculation + -analytic 8.1838467E+2 1.309461E-1 -4.5283605E+4 -2.9716863E+2 2.7715193E+6 + #References = LogK/DGf: 95mir/kis; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000Ca+2 + 1.000H2PO4- = CaH2PO4+ + -llnl_gamma 4.1 + log_k 1.500 + delta_h 7.776 #kJ/mol #Internal calculation + -analytic 9.2198728E+2 1.44563E-1 -4.9725223E+4 -3.3475721E+2 2.8023976E+6 + #References = LogK/DGf: 68chu/mar; DHf/DHr: Internal calculation; S°: 68chu/mar; V°: Default value; + +1.000H2AsO4- + 1.000Ca+2 = CaHAsO4 + 1.000H+ + -llnl_gamma 3.4 + log_k -4.080 + delta_h 9.480 #kJ/mol #Internal calculation + -analytic 8.505557E+2 1.3673726E-1 -4.5213965E+4 -3.1174192E+2 2.4561126E+6 + #References = LogK/DGf: 95mir/kis; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000Ca+2 + 1.000H2PO4- = CaHPO4 + 1.000H+ + -llnl_gamma 3.4 + log_k -4.370 + delta_h 17.564 #kJ/mol #Internal calculation + -analytic 9.1783212E+2 1.44563E-1 -5.0236502E+4 -3.3475721E+2 2.8023976E+6 + #References = LogK/DGf: 68chu/mar; DHf/DHr: Internal calculation; S°: 68chu/mar; V°: Default value; + +1.000Ca+2 + 1.000H2O = CaOH+ + 1.000H+ + -llnl_gamma 4.1 + log_k -12.781 + delta_h 77.207 #kJ/mol #Internal calculation + -analytic 1.3129766E+2 2.1418381E-2 -1.0189734E+4 -4.8224772E+1 2.7032707E+5 + #References = LogK/DGf: 87gar/par; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Ca+2 + 2.000H2PO4- = CaP2O7-2 + 1.000H2O + 2.000H+ + -llnl_gamma 4.7 + log_k -11.010 + #References = LogK/DGf: 76smi/mar; + #References = LogK/DGf: 76smi/mar; V°: Default value; + +1.000Ca+2 + 1.000H2PO4- = CaPO4- + 2.000H+ + -llnl_gamma 3.6 + log_k -13.110 + delta_h 38.532 #kJ/mol #Internal calculation + -analytic 1.0277723E+3 1.6138722E-1 -5.7688437E+4 -3.7631665E+2 3.1698606E+6 + #References = LogK/DGf: 68chu/mar; DHf/DHr: Internal calculation; S°: 68chu/mar; V°: Default value; + +1.000Ca+2 + 1.000SO4-2 = CaSO4 + -llnl_gamma 3.4 + log_k 2.310 + delta_h 4.291 #kJ/mol #Internal calculation + -analytic 1.720334E+3 2.6573378E-1 -9.4254922E+4 -6.2356103E+2 5.4972745E+6 + #References = LogK/DGf: 53bell/geo; DHf/DHr: Internal calculation; S°: 97sve/sho; V°: Default value; + +2.000HCO3- + 1.000Cd+2 = Cd(CO3)2-2 + 2.000H+ + -llnl_gamma 4.7 + log_k -14.154 + #References = LogK/DGf: 91rai/fel; + #References = LogK/DGf: 91rai/fel; V°: Default value; + +1.000Cd+2 + 1.000H2PO4- = Cd(H2PO4)+ + -llnl_gamma 4.1 + log_k 1.800 + #References = LogK/DGf: 01aya/mad; + #References = LogK/DGf: 01aya/mad; V°: Default value; + +1.000Cd+2 + 2.000HS- = Cd(HS)2 + -llnl_gamma 3.4 + log_k 14.430 + #References = LogK/DGf: 99wan/tes; + #References = LogK/DGf: 99wan/tes; V°: Default value; + +1.000Cd+2 + 2.000SO4-2 = Cd(SO4)2-2 + -llnl_gamma 4.7 + log_k 3.440 + #References = LogK/DGf: 76smi/mar; + #References = LogK/DGf: 76smi/mar; V°: Default value; + +2.000Cd+2 + 1.000H2O = Cd2OH+3 + 1.000H+ + -llnl_gamma 8.2 + log_k -9.390 + delta_h 49.083 #kJ/mol #06bla/pia + -analytic 6.4452526E+2 9.783847E-2 -3.6589833E+4 -2.3480419E+2 1.8351506E+6 + #References = LogK/DGf: 06bla/pia; DHf/DHr: Internal calculation; S°: 06bla/pia; V°: Default value; + +4.000Cd+2 + 4.000H2O = Cd4(OH)4+4 + 4.000H+ + -llnl_gamma 11.6 + log_k -32.076 + delta_h 172.135 #kJ/mol #99yun/glu + -analytic 1.3419038E+3 1.9583393E-1 -7.9397739E+4 -4.8792886E+2 3.6696627E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 99yun/glu; S°: 99yun/glu; V°: Default value; + +1.000Cd+2 + 1.000Cl- = CdCl+ + -llnl_gamma 4.2 + log_k 1.970 + delta_h -5.521 #kJ/mol #Internal calculation + -analytic 8.0941004E+2 1.3169312E-1 -4.4807432E+4 -2.9412173E+2 2.7881921E+6 + #References = LogK/DGf: 76smi/mar; DHf/DHr: Internal calculation; S°: 97cro; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Cd+2 + 2.000Cl- = CdCl2 + -llnl_gamma 3.4 + log_k 2.590 + delta_h -13.968 #kJ/mol #Internal calculation + -analytic 1.6082169E+3 2.6110353E-1 -8.8756923E+4 -5.8505444E+2 5.5021787E+6 + #References = LogK/DGf: 76smi/mar; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Cd+2 + 3.000Cl- = CdCl3- + -llnl_gamma 3.6 + log_k 2.400 + delta_h -29.073 #kJ/mol #Internal calculation + -analytic 1.6305933E+3 2.6642709E-1 -9.142449E+4 -5.9316042E+2 5.9334096E+6 + #References = LogK/DGf: 76smi/mar; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Cd+2 + 4.000Cl- = CdCl4-2 + -llnl_gamma 4.7 + log_k 1.470 + delta_h -44.766 #kJ/mol #Internal calculation + -analytic 1.6152923E+3 2.6481694E-1 -9.192457E+4 -5.8775952E+2 6.2146892E+6 + #References = LogK/DGf: 76smi/mar; DHf/DHr: Internal calculation; S°: 97cro; Cp: 97sve/sho; V°: 97sve/sho; + +1.000HCO3- + 1.000Cd+2 = CdCO3 + 1.000H+ + -llnl_gamma 3.4 + log_k -5.627 + delta_h 19.000 #kJ/mol #Internal calculation + -analytic 9.294725E+2 1.444084E-1 -5.1233705E+4 -3.3885674E+2 2.8590555E+6 + #References = LogK/DGf: 91rai/fel; DHf/DHr: Internal calculation; S°: 97sve/sho; V°: Default value; + +1.000Cd+2 + 1.000F- = CdF+ + -llnl_gamma 4.1 + log_k 1.106 + delta_h 3.153 #kJ/mol #97sve/sho + -analytic 8.6860724E+2 1.3907163E-1 -4.8793028E+4 -3.1489835E+2 3.0119326E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Cd+2 + 2.000F- = CdF2 + -llnl_gamma 3.4 + log_k 1.476 + delta_h -8.083 #kJ/mol #97sve/sho + -analytic 1.7658928E+3 2.8400177E-1 -9.8001296E+4 -6.4190608E+2 6.0412892E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000HCO3- + 1.000Cd+2 = CdHCO3+ + -llnl_gamma 4.1 + log_k 1.503 + #References = LogK/DGf: 92sti/par; + #References = LogK/DGf: 92sti/par; V°: Default value; + +1.000Cd+2 + 1.000H2PO4- = CdHPO4 + 1.000H+ + -llnl_gamma 3.4 + log_k -2.380 + #References = LogK/DGf: 01aya/mad; + #References = LogK/DGf: 01aya/mad; V°: Default value; + +1.000Cd+2 + 1.000HS- = CdHS+ + -llnl_gamma 4.1 + log_k 7.380 + #References = LogK/DGf: 99wan/tes; + #References = LogK/DGf: 99wan/tes; V°: Default value; + +1.000Cd+2 + 1.000H2O = CdO + 2.000H+ + -llnl_gamma 3.4 + log_k -20.901 + delta_h 114.908 #kJ/mol #Internal calculation + -analytic 2.5360367E+2 4.0290623E-2 -1.7872087E+4 -9.3801559E+1 4.917393E+5 + #References = LogK/DGf: 91rai/fel; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Cd+2 + 2.000H2O = CdO2-2 + 4.000H+ + -llnl_gamma 4.7 + log_k -47.482 + delta_h 225.688 #kJ/mol #Internal calculation + -analytic -1.0196666E+3 -1.6933521E-1 4.4897737E+4 3.6868458E+2 -3.573682E+6 + #References = LogK/DGf: 91rai/fel; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Cd+2 + 1.000H2O = CdOH+ + 1.000H+ + -llnl_gamma 4.1 + log_k -10.081 + delta_h 54.808 #kJ/mol #Internal calculation + -analytic 1.8391243E+2 2.7018987E-2 -1.2809154E+4 -6.6798446E+1 5.5125943E+5 + #References = LogK/DGf: 81bae/mes; DHf/DHr: Internal calculation; S°: 81bae/mes; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Cd+2 + 2.000H2PO4- = CdP2O7-2 + 1.000H2O + 2.000H+ + -llnl_gamma 4.7 + log_k -9.110 + #References = LogK/DGf: 06bla/pia; + #References = LogK/DGf: 06bla/pia; V°: Default value; + +1.000Cd+2 + 1.000S2O3-2 = CdS2O3 + -llnl_gamma 3.4 + log_k 2.459 + delta_h 5.405 #kJ/mol #74nau/ryz + -analytic 1.651486E+3 2.5979388E-1 -9.0543035E+4 -5.9921486E+2 5.326193E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 74nau/ryz; S°: 74nau/ryz; V°: Default value; + +1.000Cd+2 + 1.000SO4-2 = CdSO4 + -llnl_gamma 3.4 + log_k 3.440 + delta_h 8.700 #kJ/mol #97smi/mar + -analytic 1.7076044E+3 2.670935E-1 -9.4180412E+4 -6.1854172E+2 5.5669977E+6 + #References = LogK/DGf: 76smi/mar; DHf/DHr: 97smi/mar; S°: Internal calculation; V°: Default value; + +1.000Br- + 1.000Ce+3 = CeBr+2 + -llnl_gamma 5.7 + log_k 0.380 + delta_h 3.059 #kJ/mol #95haa/sho + -analytic 8.2693258E+2 1.3442435E-1 -4.6674137E+4 -3.0023701E+2 2.9184796E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Ce+3 + 1.000Cl- = CeCl+2 + -llnl_gamma 5.7 + log_k 0.321 + delta_h 14.848 #kJ/mol #95haa/sho + -analytic 8.3468541E+2 1.3664496E-1 -4.7387297E+4 -3.0267925E+2 2.915068E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Ce+3 + 2.000Cl- = CeCl2+ + -llnl_gamma 4.1 + log_k 0.056 + delta_h 20.694 #kJ/mol #95haa/sho + -analytic 1.5937511E+3 2.5971223E-1 -8.8186986E+4 -5.7961464E+2 5.2332188E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Ce+3 + 3.000Cl- = CeCl3 + -llnl_gamma 3.4 + log_k -0.356 + delta_h 15.775 #kJ/mol #95haa/sho + -analytic 2.2998571E+3 3.7318309E-1 -1.2390706E+5 -8.3884218E+2 7.0909287E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Ce+3 + 4.000Cl- = CeCl4- + -llnl_gamma 3.6 + log_k -0.695 + delta_h -2.036 #kJ/mol #95haa/sho + -analytic 1.7735262E+3 2.997484E-1 -9.0032161E+4 -6.529228E+2 4.7996539E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Ce+3 + 1.000ClO4- = CeClO4+2 + -llnl_gamma 5.7 + log_k 1.910 + delta_h -49.621 #kJ/mol #95haa/sho + -analytic 7.9639902E+2 1.2548148E-1 -4.4858429E+4 -2.8969599E+2 3.1458152E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 1.000Ce+3 = CeCO3+ + 1.000H+ + -llnl_gamma 4.1 + log_k -2.912 + delta_h -2.239 #kJ/mol #95haa/sho + -analytic 8.9003653E+2 1.399476E-1 -4.667524E+4 -3.2597914E+2 2.5325726E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Ce+3 + 1.000F- = CeF+2 + -llnl_gamma 5.7 + log_k 4.262 + delta_h 23.074 #kJ/mol #95haa/sho + -analytic 9.2556331E+2 1.4957752E-1 -5.2486449E+4 -3.3368444E+2 3.1844153E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Ce+3 + 2.000F- = CeF2+ + -llnl_gamma 4.1 + log_k 7.351 + delta_h 14.795 #kJ/mol #95haa/sho + -analytic 1.7515304E+3 2.8132856E-1 -9.65276E+4 -6.3411408E+2 5.7577706E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Ce+3 + 3.000F- = CeF3 + -llnl_gamma 3.4 + log_k 9.634 + delta_h -6.097 #kJ/mol #95haa/sho + -analytic 2.5476445E+3 4.0837409E-1 -1.3652006E+5 -9.2589648E+2 7.9287157E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Ce+3 + 4.000F- = CeF4- + -llnl_gamma 3.6 + log_k 11.550 + delta_h -45.853 #kJ/mol #95haa/sho + -analytic 2.5036098E+3 3.9603946E-1 -1.3084927E+5 -9.1159356E+2 7.5035411E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Ce+3 + 1.000H2PO4- = CeH2PO4+2 + -llnl_gamma 5.7 + log_k 1.256 + delta_h -5.935 #kJ/mol #95haa/sho + -analytic 8.6781969E+2 1.388024E-1 -4.9895174E+4 -3.1412105E+2 3.260084E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 1.000Ce+3 = CeHCO3+2 + -llnl_gamma 5.7 + log_k 1.936 + delta_h 8.888 #kJ/mol #95haa/sho + -analytic 8.8257465E+2 1.4152087E-1 -5.101329E+4 -3.1862313E+2 3.2604375E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Ce+3 + 1.000IO3- = CeIO3+2 + -llnl_gamma 5.7 + log_k 1.900 + delta_h -21.162 #kJ/mol #95haa/sho + -analytic 8.2463602E+2 1.3171092E-1 -4.6619643E+4 -2.9919542E+2 3.0843268E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Ce+3 + 1.000NO3- = CeNO3+2 + -llnl_gamma 5.7 + log_k 0.655 + delta_h -26.590 #kJ/mol #95haa/sho + -analytic 7.9612577E+2 1.2675841E-1 -4.5076687E+4 -2.8938182E+2 3.0206153E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Ce+3 + 1.000H2O = CeO+ + 2.000H+ + -llnl_gamma 4.1 + log_k -16.404 + delta_h 150.615 #kJ/mol #95haa/sho + -analytic 2.4849638E+2 4.0099364E-2 -1.723781E+4 -8.9431827E+1 2.0028476E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Ce+3 + 2.000H2O = CeO2- + 4.000H+ + -llnl_gamma 3.6 + log_k -38.745 + delta_h 288.714 #kJ/mol #95haa/sho + -analytic -1.4934194E+2 -2.7864032E-2 -1.2127248E+3 5.5875909E+1 -1.3591423E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Ce+3 + 2.000H2O = CeO2H + 3.000H+ + -llnl_gamma 3.4 + log_k -26.138 + delta_h 229.099 #kJ/mol #95haa/sho + -analytic 2.4791913E+2 3.571409E-2 -1.7519638E+4 -8.9366091E+1 -4.2787278E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Ce+3 + 1.000H2O = CeOH+2 + 1.000H+ + -llnl_gamma 5.7 + log_k -8.414 + delta_h 84.925 #kJ/mol #95haa/sho + -analytic 1.8955802E+2 2.9219906E-2 -1.3675377E+4 -6.7123216E+1 4.6893067E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Ce+3 + 1.000SO4-2 = CeSO4+ + -llnl_gamma 4.1 + log_k 3.723 + delta_h 18.642 #kJ/mol #95haa/sho + -analytic 1.6476675E+3 2.6134533E-1 -8.9771705E+4 -5.9763179E+2 5.1586415E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 4.000F- + 5.000H+ = CF4 + 3.000H2O + -llnl_gamma 3.4 + log_k -26.875 + delta_h 243.525 #kJ/mol #01sch/sho + -analytic 3.7594031E+3 5.9885315E-1 -2.2411277E+5 -1.3586198E+3 1.3215605E+7 + #References = LogK/DGf: 01sch/sho; DHf/DHr: Internal calculation; S°: 01sch/sho; Cp: 01sch/sho; V°: 01sch/sho; + +1.000CH4 + 1.000Hg+2 = CH3Hg+ + 1.000H+ + -llnl_gamma 4.1 + log_k 3.000 + delta_h -12.867 #kJ/mol #Internal calculation + -analytic 8.6387411E+1 9.0151552E-3 -1.0803883E+3 -3.2219217E+1 -2.4243792E+5 + #References = LogK/DGf: 18bla/bur; DHf/DHr: Internal calculation; S°: 18bla/bur; V°: Default value; + +1.000CH4 + 1.000Cl- + 1.000Hg+2 = CH3HgCl + 1.000H+ + -llnl_gamma 3.4 + log_k 8.450 + delta_h -51.567 #kJ/mol #Internal calculation + -analytic 6.255863E+2 9.8694212E-2 -2.8238238E+4 -2.2975713E+2 1.4817267E+6 + #References = LogK/DGf: 18bla/bur; DHf/DHr: Internal calculation; S°: 03ald/gan; V°: Default value; + +1.000CH4 + 1.000H2O + 1.000Hg+2 = CH3HgOH + 2.000H+ + -llnl_gamma 3.4 + log_k -1.531 + delta_h -8.122 #kJ/mol #Internal calculation + -analytic 1.0815377E+2 8.9469616E-3 -2.4384525E+3 -4.0977444E+1 -2.469193E+5 + #References = LogK/DGf: 18bla/bur; DHf/DHr: Internal calculation; S°: 03ald/gan; V°: Default value; + +1.000CH4 + 1.000HS- + 1.000Hg+2 = CH3HgS- + 2.000H+ + -llnl_gamma 3.6 + log_k 7.000 + #References = LogK/DGf: 18bla/bur; + #References = LogK/DGf: 18bla/bur; V°: Default value; + +1.000CH4 + 1.000HS- + 1.000Hg+2 = CH3HgSH + 1.000H+ + -llnl_gamma 3.4 + log_k 17.500 + #References = LogK/DGf: 18bla/bur; + #References = LogK/DGf: 18bla/bur; V°: Default value; + +1.000Co+2 + 2.000HS- = Co(HS)2 + -llnl_gamma 3.4 + log_k 8.770 + #References = LogK/DGf: 74nau/ryz; + #References = LogK/DGf: 74nau/ryz; V°: Default value; + +1.000HCO3- + 1.000H+ = CO2 + 1.000H2O + -CO2_llnl_gamma + log_k 6.354 + delta_h -9.160 #kJ/mol #89cox/wag + -analytic 6.8216082E+2 1.1432034E-1 -3.8165149E+4 -2.4658624E+2 2.5136382E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 89bsho/hel, 01sch/sho; V°: 89bsho/hel, 01sch/sho; + +2.000Co+2 + 1.000H2O = Co2OH+3 + 1.000H+ + -llnl_gamma 8.2 + log_k -9.831 + delta_h 30.030 #kJ/mol #98ply/zha + -analytic 6.799409E+2 1.0606208E-1 -3.7703166E+4 -2.4942013E+2 1.9766835E+6 + #References = LogK/DGf: 98ply/zha; DHf/DHr: 98ply/zha; S°: Internal calculation; V°: Default value; + +1.000HCO3- = CO3-2 + 1.000H+ + -llnl_gamma 4.5 + log_k -10.327 + delta_h 14.700 #kJ/mol #89cox/wag + -analytic -7.7058011E+2 -1.2433467E-1 4.2038591E+4 2.7739354E+2 -2.6727243E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 97asho/sas; V°: 97asho/sas; + +4.000Co+2 + 4.000H2O = Co4(OH)4+4 + 4.000H+ + -llnl_gamma 11.6 + log_k -29.884 + delta_h 149.720 #kJ/mol #98ply/zha + -analytic 1.4185577E+3 2.1228114E-1 -8.2444082E+4 -5.1716074E+2 3.9527286E+6 + #References = LogK/DGf: 98ply/zha; DHf/DHr: 98ply/zha; S°: Internal calculation; V°: Default value; + +1.000H2AsO4- + 1.000Co+2 = CoAsO4- + 2.000H+ + -llnl_gamma 3.6 + log_k -11.805 + delta_h 86.431 #kJ/mol #Internal calculation + -analytic 2.394832E+2 3.2348369E-2 -1.3569818E+4 -8.746078E+1 8.8584941E+4 + #References = LogK/DGf: 95mir/kis; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000Cl- + 1.000Co+2 = CoCl+ + -llnl_gamma 4.1 + log_k 0.570 + delta_h -2.167 #kJ/mol #Internal calculation + -analytic 8.0574427E+2 1.3135558E-1 -4.4524051E+4 -2.9329044E+2 2.7312086E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +2.000Cl- + 1.000Co+2 = CoCl2 + -llnl_gamma 3.4 + log_k 0.020 + delta_h 4.070 #kJ/mol #89pan/sus + -analytic 1.7082364E+3 2.5831757E-1 -9.2266157E+4 -6.199283E+2 5.1736511E+6 + #References = LogK/DGf: 89pan/sus; DHf/DHr: 89pan/sus; S°: Internal calculation; V°: Default value; + +3.000Cl- + 1.000Co+2 = CoCl3- + -llnl_gamma 3.6 + log_k -1.710 + delta_h 6.690 #kJ/mol #89pan/sus + -analytic 2.3905305E+3 3.6098046E-1 -1.2943638E+5 -8.6786525E+2 7.2662259E+6 + #References = LogK/DGf: 89pan/sus; DHf/DHr: 89pan/sus; S°: Internal calculation; V°: Default value; + +4.000Cl- + 1.000Co+2 = CoCl4-2 + -llnl_gamma 4.7 + log_k -2.090 + delta_h 22.570 #kJ/mol #89pan/sus + -analytic 3.1843876E+3 4.6364335E-1 -1.7210204E+5 -1.152894E+3 9.3588007E+6 + #References = LogK/DGf: 89pan/sus; DHf/DHr: 89pan/sus; S°: Internal calculation; V°: Default value; + +1.000HCO3- + 1.000Co+2 = CoCO3 + 1.000H+ + -llnl_gamma 3.4 + log_k -6.097 + #References = LogK/DGf: 97smi/mar; + #References = LogK/DGf: 97smi/mar; V°: Default value; + +1.000Co+2 + 1.000F- = CoF+ + -llnl_gamma 4.1 + log_k 1.500 + delta_h -0.619 #kJ/mol #Internal calculation + -analytic 8.5095337E+2 1.378658E-1 -4.6822342E+4 -3.0933992E+2 2.8380397E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000H2AsO4- + 1.000Co+2 = CoH2AsO4+ + -llnl_gamma 4.1 + log_k 0.068 + delta_h -5.168 #kJ/mol #Internal calculation + -analytic 8.1774351E+2 1.278571E-1 -4.5499278E+4 -2.9684761E+2 2.7858691E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000H2AsO4- + 1.000Co+2 = CoHAsO4 + 1.000H+ + -llnl_gamma 3.4 + log_k -4.236 + delta_h 7.924 #kJ/mol #Internal calculation + -analytic 8.9531849E+2 1.4279267E-1 -4.7685424E+4 -3.2794927E+2 2.6044572E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000HCO3- + 1.000Co+2 = CoHCO3+ + -llnl_gamma 4.1 + log_k 1.893 + #References = LogK/DGf: 97smi/mar; + #References = LogK/DGf: 97smi/mar; V°: Default value; + +1.000Co+2 + 1.000H2PO4- = CoHPO4 + 1.000H+ + -llnl_gamma 3.4 + log_k -4.150 + #References = LogK/DGf: 97smi/mar; + #References = LogK/DGf: 97smi/mar; V°: Default value; + +1.000Co+2 + 1.000HS- = CoHS+ + -llnl_gamma 4.1 + log_k 5.670 + #References = LogK/DGf: 74nau/ryz; + #References = LogK/DGf: 74nau/ryz; V°: Default value; + +1.000Co+2 + 1.000H2O = CoO + 2.000H+ + -llnl_gamma 3.4 + log_k -18.601 + delta_h 105.707 #kJ/mol #Internal calculation + -analytic 3.1328181E+2 5.0768623E-2 -2.1353247E+4 -1.1499319E+2 8.1273479E+5 + #References = LogK/DGf: 98ply/zha; DHf/DHr: Internal calculation; S°: 98ply/zha; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Co+2 + 2.000H2O = CoO2-2 + 4.000H+ + -llnl_gamma 4.7 + log_k -46.422 + delta_h 214.485 #kJ/mol #Internal calculation + -analytic -9.6639832E+2 -1.5989582E-1 4.1017755E+4 3.4976688E+2 -3.1468584E+6 + #References = LogK/DGf: 98ply/zha; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Co+2 + 1.000H2O = CoOH+ + 1.000H+ + -llnl_gamma 4.1 + log_k -9.231 + delta_h 45.961 #kJ/mol #Internal calculation + -analytic 2.2297572E+2 3.3971906E-2 -1.5185488E+4 -8.0960562E+1 7.9368937E+5 + #References = LogK/DGf: 98ply/zha; DHf/DHr: Internal calculation; S°: 06bla/pia; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Co+2 + 1.000S2O3-2 = CoS2O3 + -llnl_gamma 3.4 + log_k 2.050 + #References = LogK/DGf: 51den/mon; + #References = LogK/DGf: 51den/mon; V°: Default value; + +1.000Co+2 + 1.000SO4-2 = CoSO4 + -llnl_gamma 3.4 + log_k 2.300 + delta_h 2.090 #kJ/mol #97smi/mar + -analytic 1.7249035E+3 2.712053E-1 -9.4889438E+4 -6.2584969E+2 5.6377642E+6 + #References = LogK/DGf: 97smi/mar; DHf/DHr: 97smi/mar; S°: Internal calculation; V°: Default value; + +1.000Cr+3 + 1.000H2PO4- + 3.000H2O = Cr(OH)3(H2PO4)- + 3.000H+ + -llnl_gamma 3.6 + log_k -4.391 + delta_h 49.800 #kJ/mol #98zie/jon + -analytic 1.321583E+3 1.9751002E-1 -7.2520713E+4 -4.7863243E+2 3.7973918E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98zie/jon; S°: 98zie/jon; V°: Default value; + +1.000Cr+3 + 1.000H2PO4- + 3.000H2O = Cr(OH)3(HPO4)-2 + 4.000H+ + -llnl_gamma 4.7 + log_k -13.275 + delta_h 59.600 #kJ/mol #98zie/jon + -analytic 1.4294234E+3 2.1433424E-1 -7.938932E+4 -5.2019187E+2 4.1648548E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98zie/jon; S°: 98zie/jon; V°: Default value; + +1.000Cr+3 + 1.000H2PO4- + 3.000H2O = Cr(OH)3(PO4)-3 + 5.000H+ + -llnl_gamma 6.7 + log_k -24.581 + delta_h 116.120 #kJ/mol #98zie/jon + -analytic 1.5430251E+3 2.3115846E-1 -8.8698268E+4 -5.6175132E+2 4.5323178E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98zie/jon; S°: 98zie/jon; V°: Default value; + +1.000Cr+3 + 2.000H2PO4- + 4.000H2O = Cr(OH)4(HPO4)(H2PO4)-4 + 5.000H+ + -llnl_gamma 9.6 + log_k -22.913 + delta_h 53.950 #kJ/mol #98zie/jon + -analytic 2.3071296E+3 3.451039E-1 -1.2720376E+5 -8.4196735E+2 6.8538475E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98zie/jon; S°: 98zie/jon; V°: Default value; + +2.000Cl- + 1.000Cr+3 + 1.000H2O = Cr(OH)Cl2 + 1.000H+ + -llnl_gamma 3.4 + log_k -5.731 + delta_h 32.720 #kJ/mol #76del/hep + -analytic 1.7982728E+3 2.8881186E-1 -9.8928557E+4 -6.5549992E+2 5.661331E+6 + #References = LogK/DGf: 76del/hep; DHf/DHr: 76del/hep; S°: Internal calculation; V°: Default value; + +2.000Cr+3 + 2.000H2O = Cr2(OH)2+4 + 2.000H+ + -llnl_gamma 11.6 + log_k -5.000 + #References = LogK/DGf: 87rai/sas; + #References = LogK/DGf: 87rai/sas; V°: Default value; + +2.000CrO4-2 + 2.000H+ = Cr2O7-2 + 1.000H2O + -llnl_gamma 4.7 + log_k 14.751 + delta_h -3.753 #kJ/mol #Internal calculation + -analytic 1.5673025E+3 2.514521E-1 -8.6785648E+4 -5.6462916E+2 5.3955261E+6 + #References = LogK/DGf: 04chi; DHf/DHr: Internal calculation; S°: 04chi; Cp: 97asho/sas; V°: 97asho/sas; + +3.000Cr+3 + 4.000H2O = Cr3(OH)4+5 + 4.000H+ + -llnl_gamma 15.9 + log_k -10.750 + #References = LogK/DGf: 87rai/sas; + #References = LogK/DGf: 87rai/sas; V°: Default value; + +1.000Br- + 1.000Cr+3 = CrBr+2 + -llnl_gamma 5.7 + log_k -0.657 + delta_h 22.708 #kJ/mol #76del/hep + -analytic 1.1396737E+3 1.8584069E-1 -6.2633207E+4 -4.147693E+2 3.6138545E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 76del/hep; S°: 76del/hep; V°: Default value; + +1.000Cl- + 1.000Cr+2 = CrCl+ + -llnl_gamma 4.1 + log_k 5.600 + delta_h -20.200 #kJ/mol #91all/bro + -analytic 9.6874977E+2 1.5500587E-1 -5.1412439E+4 -3.5220401E+2 3.0738695E+6 + #References = LogK/DGf: 91all/bro; DHf/DHr: 91all/bro; S°: Internal calculation; V°: Default value; + +1.000Cl- + 1.000Cr+3 = CrCl+2 + -llnl_gamma 5.7 + log_k 0.620 + delta_h 20.920 #kJ/mol #64sil/mar + -analytic 1.1354893E+3 1.8607048E-1 -6.2019908E+4 -4.1321779E+2 3.5690754E+6 + #References = LogK/DGf: 64sil/mar; DHf/DHr: 64sil/mar; S°: Internal calculation; V°: Default value; + +2.000Cl- + 1.000Cr+3 = CrCl2+ + -llnl_gamma 4.1 + log_k -0.710 + delta_h 20.920 #kJ/mol #64sil/mar + -analytic 1.7746314E+3 2.8873337E-1 -9.7134949E+4 -6.4633968E+2 5.6616502E+6 + #References = LogK/DGf: 64sil/mar; DHf/DHr: 64sil/mar; S°: Internal calculation; V°: Default value; + +1.000Cr+3 + 1.000H2PO4- = CrH2PO4+2 + -llnl_gamma 5.7 + log_k 2.549 + #References = LogK/DGf: 76bae/mes; + #References = LogK/DGf: 76bae/mes; V°: Default value; + +1.000Cr+3 + 1.000H2PO4- = CrHPO4+ + 1.000H+ + -llnl_gamma 4.1 + log_k 2.200 + #References = LogK/DGf: 71sil/mar; + #References = LogK/DGf: 71sil/mar; V°: Default value; + +1.000Cr+3 + 1.000H2O = CrO+ + 2.000H+ + -llnl_gamma 4.1 + log_k -9.841 + delta_h 98.557 #kJ/mol #Internal calculation + -analytic 2.6719511E+2 4.3344511E-2 -1.6800539E+4 -9.6449621E+1 4.4876034E+5 + #References = LogK/DGf: 87rai/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Cr+3 + 2.000H2O = CrO2- + 4.000H+ + -llnl_gamma 3.6 + log_k -27.652 + delta_h 203.812 #kJ/mol #Internal calculation + -analytic -1.4181637E+2 -2.4795424E-2 -8.8480997E+2 5.371086E+1 -7.4486152E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Cl- + 1.000CrO4-2 + 2.000H+ = CrO3Cl- + 1.000H2O + -llnl_gamma 3.6 + log_k 8.080 + delta_h 5.450 #kJ/mol #76del/hep + -analytic 2.079232E+3 3.3092138E-1 -1.1480449E+5 -7.5273593E+2 6.9190961E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 76del/hep; S°: 76del/hep; V°: Default value; + +1.000Cr+2 + 1.000H2O = CrOH+ + 1.000H+ + -llnl_gamma 4.1 + log_k -5.301 + delta_h 30.313 #kJ/mol #Internal calculation + -analytic 3.2728308E+2 5.2421472E-2 -1.8976264E+4 -1.1946254E+2 9.8097547E+5 + #References = LogK/DGf: 83mic/deb; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97sho/sas; + +1.000Cr+3 + 1.000H2O = CrOH+2 + 1.000H+ + -llnl_gamma 5.7 + log_k -3.571 + delta_h 38.068 #kJ/mol #Internal calculation + -analytic 2.3314727E+2 3.6201743E-2 -1.5165555E+4 -8.3278255E+1 8.3740288E+5 + #References = LogK/DGf: 04chi; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Br- + 1.000Cs+ = CsBr + -llnl_gamma 3.4 + log_k 0.022 + delta_h 7.047 #kJ/mol #97sve/sho + -analytic 6.4329231E+2 9.9916955E-2 -3.5069999E+4 -2.3350243E+2 1.9868872E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Cl- + 1.000Cs+ = CsCl + -llnl_gamma 3.4 + log_k -0.126 + delta_h 9.828 #kJ/mol #97sve/sho + -analytic 5.3671191E+2 8.4468653E-2 -2.9379828E+4 -1.9485009E+2 1.6589284E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Cs+ + 1.000I- = CsI + -llnl_gamma 3.4 + log_k 0.982 + delta_h -1.802 #kJ/mol #97sve/sho + -analytic 5.4186384E+2 8.5367942E-2 -2.9035394E+4 -1.9709354E+2 1.6664179E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Cs+ + 1.000H2O = CsOH + 1.000H+ + -llnl_gamma 3.4 + log_k -15.678 + delta_h 73.808 #kJ/mol #97asho/sas + -analytic 3.1858552E+1 -1.5007639E-4 -4.3079828E+3 -1.2547063E+1 -1.7745211E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Cu+ + 2.000HS- = Cu(HS)2- + -llnl_gamma 3.6 + log_k 16.880 + delta_h -86.990 #kJ/mol #01aki/zot + -analytic 1.0004589E+3 1.569816E-1 -4.9906901E+4 -3.6323139E+2 3.1822069E+6 + #References = LogK/DGf: 00pui; DHf/DHr: Internal calculation; S°: 00pui; Cp: 01aki/zot; V°: 01aki/zot; + +1.000Cu+2 + 4.000NH3 = Cu(NH3)4+2 + -llnl_gamma 5.7 + log_k 12.350 + delta_h -89.045 #kJ/mol #Internal calculation + -analytic 6.5057285E+2 7.6875021E-2 -3.4924021E+4 -2.3104824E+2 2.4629175E+6 + #References = LogK/DGf: 00pui; DHf/DHr: Internal calculation; S°: 00pui; V°: Default value; + +1.000Cu+ + 2.000H2O = Cu(OH)2- + 2.000H+ + -llnl_gamma 3.6 + log_k -16.183 + delta_h -1.706 #kJ/mol #Internal calculation + -analytic -4.8525575E+2 -8.2823109E-2 2.7721816E+4 1.7070319E+2 -1.9206929E+6 + #References = LogK/DGf: 95bev/pui; DHf/DHr: Internal calculation; S°: 00pui; Cp: 01aki/zot; V°: 01aki/zot; + +2.000Cu+2 + 1.000H2O = Cu2(OH)+3 + 1.000H+ + -llnl_gamma 8.2 + log_k -6.401 + delta_h 24.661 #kJ/mol #Internal calculation + -analytic 6.4115019E+2 1.0512591E-1 -3.5425412E+4 -2.3517192E+2 1.9414761E+6 + #References = LogK/DGf: 07pow/bro; DHf/DHr: Internal calculation; S°: 97ply/wan; V°: Default value; + +2.000Cu+2 + 2.000H2O = Cu2(OH)2+2 + 2.000H+ + -llnl_gamma 5.7 + log_k -10.432 + delta_h 73.916 #kJ/mol #Internal calculation + -analytic 6.5455072E+2 1.052044E-1 -3.8383385E+4 -2.3821514E+2 1.9411569E+6 + #References = LogK/DGf: 07pow/bro; DHf/DHr: Internal calculation; S°: 97ply/wan; V°: Default value; + +2.000Cu+ + 3.000HS- = Cu2S(HS)2-2 + 1.000H+ + -llnl_gamma 4.7 + log_k 29.300 + delta_h -227.532 #kJ/mol #Internal calculation + -analytic 2.3103904E+3 3.4433386E-1 -1.1328616E+5 -8.4148785E+2 6.9707492E+6 + #References = LogK/DGf: 00pui; DHf/DHr: Internal calculation; S°: 00pui; V°: Default value; + +3.000Cu+2 + 4.000H2O = Cu3(OH)4+2 + 4.000H+ + -llnl_gamma 5.7 + log_k -21.104 + delta_h 109.827 #kJ/mol #Internal calculation + -analytic 9.6115092E+2 1.578851E-1 -5.6844365E+4 -3.5217063E+2 2.9114161E+6 + #References = LogK/DGf: 07pow/bro; DHf/DHr: Internal calculation; S°: 97ply/wan; V°: Default value; + +1.000H2AsO4- + 1.000Cu+2 = CuAsO4- + 2.000H+ + -llnl_gamma 3.6 + log_k -9.325 + delta_h 76.057 #kJ/mol #Internal calculation + -analytic 2.626073E+2 3.5516884E-2 -1.4171376E+4 -9.5619907E+1 1.4350145E+5 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000Cl- + 1.000Cu+2 = CuCl+ + -llnl_gamma 4.1 + log_k 0.830 + delta_h 6.359 #kJ/mol #Internal calculation + -analytic 8.3390521E+2 1.3507993E-1 -4.6804817E+4 -3.0257864E+2 2.8753437E+6 + #References = LogK/DGf: 07pow/bro; DHf/DHr: Internal calculation; S°: 00pui; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Cl- + 1.000Cu+ = CuCl + -llnl_gamma 3.4 + log_k 3.601 + delta_h -11.542 #kJ/mol #Internal calculation + -analytic 6.9681754E+2 1.1145523E-1 -3.6152723E+4 -2.5390211E+2 2.051111E+6 + #References = LogK/DGf: 01aki/zot; DHf/DHr: Internal calculation; S°: 01aki/zot; Cp: 01aki/zot; V°: 01aki/zot; + +2.000Cl- + 1.000Cu+2 = CuCl2 + -llnl_gamma 3.4 + log_k 0.600 + delta_h 13.649 #kJ/mol #Internal calculation + -analytic 1.6510546E+3 2.6756367E-1 -9.2495163E+4 -5.9955609E+2 5.650422E+6 + #References = LogK/DGf: 07pow/bro; DHf/DHr: Internal calculation; S°: 00pui; Cp: 97sve/sho; V°: 97sve/sho; + +2.000Cl- + 1.000Cu+ = CuCl2- + -llnl_gamma 3.6 + log_k 4.813 + delta_h -1.390 #kJ/mol #Internal calculation + -analytic 9.3079385E+2 1.494387E-1 -4.9495748E+4 -3.3804517E+2 2.8396488E+6 + #References = LogK/DGf: 01aki/zot; DHf/DHr: Internal calculation; S°: 01aki/zot; Cp: 01aki/zot; V°: 01aki/zot; + +3.000Cl- + 1.000Cu+2 = CuCl3- + -llnl_gamma 3.6 + log_k -1.280 + delta_h 21.876 #kJ/mol #Internal calculation + -analytic 1.6530252E+3 2.6875422E-1 -9.5507799E+4 -5.9904871E+2 6.0631898E+6 + #References = LogK/DGf: 00pui; DHf/DHr: Internal calculation; S°: 00pui; Cp: 97sve/sho; V°: 97sve/sho; + +3.000Cl- + 1.000Cu+ = CuCl3-2 + -llnl_gamma 4.7 + log_k 4.593 + delta_h -24.914 #kJ/mol #Internal calculation + -analytic 8.1933075E+2 1.3272212E-1 -4.2717224E+4 -2.9893016E+2 2.5466317E+6 + #References = LogK/DGf: 05liu/mcp; DHf/DHr: Internal calculation; S°: 05liu/mcp; Cp: 05liu/mcp; V°: 05liu/mcp; + +4.000Cl- + 1.000Cu+2 = CuCl4-2 + -llnl_gamma 4.7 + log_k -3.980 + delta_h 27.657 #kJ/mol #Internal calculation + -analytic 1.646818E+3 2.6794805E-1 -9.7852707E+4 -5.9597E+2 6.4182616E+6 + #References = LogK/DGf: 00pui; DHf/DHr: Internal calculation; S°: 00pui; Cp: 97sve/sho; V°: 97sve/sho; + +1.000HCO3- + 1.000Cu+2 = CuCO3 + 1.000H+ + -llnl_gamma 3.4 + log_k -3.560 + delta_h 14.258 #kJ/mol #Internal calculation + -analytic 9.9493512E+2 1.4805212E-1 -5.3947175E+4 -3.6147969E+2 2.9122183E+6 + #References = LogK/DGf: 07pow/bro; DHf/DHr: Internal calculation; S°: 00pui; V°: Default value; + +1.000Cu+2 + 1.000F- = CuF+ + -llnl_gamma 4.1 + log_k 1.580 + delta_h 12.707 #kJ/mol #Internal calculation + -analytic 9.0349106E+2 1.4391531E-1 -5.1152201E+4 -3.2670735E+2 3.1256667E+6 + #References = LogK/DGf: 00pui; DHf/DHr: Internal calculation; S°: 00pui; Cp: 97sve/sho; V°: 97sve/sho; + +1.000H2AsO3- + 1.000Cu+2 = CuH2AsO3+ + -llnl_gamma 4.1 + log_k 7.054 + delta_h -46.255 #kJ/mol #Internal calculation + -analytic 6.4048192E+2 9.7286724E-2 -3.1510789E+4 -2.3336288E+2 1.8396788E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000H2AsO4- + 1.000Cu+2 = CuH2AsO4+ + -llnl_gamma 4.1 + log_k 1.760 + delta_h -10.919 #kJ/mol #Internal calculation + -analytic 8.3708326E+2 1.3054379E-1 -4.6267199E+4 -3.0355991E+2 2.8512706E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000Cu+ + 1.000H2PO4- = CuH2PO4 + -llnl_gamma 3.4 + log_k 0.870 + delta_h 0.072 #kJ/mol #Internal calculation + -analytic 7.5823266E+2 1.1422352E-1 -4.0572596E+4 -2.7506552E+2 2.2485098E+6 + #References = LogK/DGf: 00pui; DHf/DHr: Internal calculation; S°: 00pui; V°: Default value; + +1.000Cu+2 + 1.000H2PO4- = CuH2PO4+ + -llnl_gamma 4.1 + log_k 1.140 + delta_h -5.145 #kJ/mol #Internal calculation + -analytic 8.9465245E+2 1.4956644E-1 -4.8398894E+4 -3.2681514E+2 2.9252836E+6 + #References = LogK/DGf: 00pui; DHf/DHr: Internal calculation; V°: Default value; + +1.000H2AsO4- + 1.000Cu+2 = CuHAsO4 + 1.000H+ + -llnl_gamma 3.4 + log_k -3.241 + delta_h 4.151 #kJ/mol #Internal calculation + -analytic 9.0174376E+2 1.4276292E-1 -4.7805103E+4 -3.3001007E+2 2.6115411E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000HCO3- + 1.000Cu+2 = CuHCO3+ + -llnl_gamma 4.1 + log_k 1.840 + delta_h 8.599 #kJ/mol #Internal calculation + -analytic 8.9894018E+2 1.4805212E-1 -4.9182002E+4 -3.2696172E+2 2.9122183E+6 + #References = LogK/DGf: 07pow/bro; DHf/DHr: Internal calculation; S°: 00pui; V°: Default value; + +1.000Cu+2 + 1.000H2PO4- = CuHPO4 + 1.000H+ + -llnl_gamma 3.4 + log_k -3.960 + delta_h 18.003 #kJ/mol #Internal calculation + -analytic 9.8806398E+2 1.4956644E-1 -5.38128E+4 -3.5928849E+2 2.9252836E+6 + #References = LogK/DGf: 07pow/bro; DHf/DHr: Internal calculation; S°: 00pui; V°: Default value; + +1.000Cu+ + 1.000HS- = CuHS + -llnl_gamma 3.4 + log_k 13.020 + delta_h -49.570 #kJ/mol #Internal calculation + -analytic 7.2535776E+2 1.1352028E-1 -3.5911324E+4 -2.6273887E+2 2.168426E+6 + #References = LogK/DGf: 00pui; DHf/DHr: Internal calculation; S°: 01aki/zot; Cp: 01aki/zot; V°: 01aki/zot; + +1.000Cu+2 + 1.000NO2- = CuNO2+ + -llnl_gamma 4.1 + log_k 1.960 + delta_h -5.953 #kJ/mol #Internal calculation + -analytic 9.1084088E+2 1.4749476E-1 -4.978949E+4 -3.3134417E+2 3.0248528E+6 + #References = LogK/DGf: 00pui; DHf/DHr: Internal calculation; S°: 00pui; V°: Default value; + +1.000Cu+2 + 1.000NO3- = CuNO3+ + -llnl_gamma 4.1 + log_k 0.500 + delta_h -7.587 #kJ/mol #Internal calculation + -analytic 8.7787692E+2 1.4269939E-1 -4.7836804E+4 -3.2011231E+2 2.8996803E+6 + #References = LogK/DGf: 00pui; DHf/DHr: Internal calculation; S°: 00pui; V°: Default value; + +1.000Cu+2 + 1.000H2O = CuO + 2.000H+ + -llnl_gamma 3.4 + log_k -16.201 + delta_h 85.087 #kJ/mol #Internal calculation + -analytic -8.7149135E+1 -1.3485807E-2 1.1918581E+3 3.0620115E+1 -4.2633991E+5 + #References = LogK/DGf: 07pow/bro; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Cu+2 + 2.000H2O = CuO2-2 + 4.000H+ + -llnl_gamma 4.7 + log_k -39.742 + delta_h 178.319 #kJ/mol #Internal calculation + -analytic -9.8990166E+2 -1.6461176E-1 4.5503226E+4 3.5779639E+2 -3.4422913E+6 + #References = LogK/DGf: 07pow/bro; DHf/DHr: Internal calculation; S°: 97ply/wan; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Cu+2 + 1.000H2O = CuOH+ + 1.000H+ + -llnl_gamma 4.1 + log_k -7.951 + delta_h 50.497 #kJ/mol #Internal calculation + -analytic 2.0602498E+2 3.0281135E-2 -1.3784298E+4 -7.4298786E+1 6.2900562E+5 + #References = LogK/DGf: 07pow/bro; DHf/DHr: Internal calculation; S°: 97ply/wan; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Cu+ + 1.000H2O = CuOH + 1.000H+ + -llnl_gamma 3.4 + log_k -11.555 + delta_h 100.371 #kJ/mol #Internal calculation + -analytic -4.1481835E+2 -3.801405E-2 2.4684244E+4 1.4405042E+2 -2.190106E+6 + #References = LogK/DGf: 95bev/pui; DHf/DHr: Internal calculation; S°: 00pui; Cp: 01aki/zot; V°: 01aki/zot; + +1.000Cu+2 + 1.000SO4-2 = CuSO4 + -llnl_gamma 3.4 + log_k 2.350 + delta_h 7.300 #kJ/mol #07pow/bro + -analytic 1.7631488E+3 2.7073722E-1 -9.6741388E+4 -6.3863896E+2 5.6201604E+6 + #References = LogK/DGf: 07pow/bro; DHf/DHr: 07pow/bro; S°: Internal calculation; V°: Default value; + +1.000Cl- + 1.000Dy+3 = DyCl+2 + -llnl_gamma 5.7 + log_k 0.248 + delta_h 13.769 #kJ/mol #95haa/sho + -analytic 8.3240482E+2 1.3607074E-1 -4.72526E+4 -3.0188268E+2 2.911125E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +2.000Cl- + 1.000Dy+3 = DyCl2+ + -llnl_gamma 4.1 + log_k -0.018 + delta_h 17.245 #kJ/mol #95haa/sho + -analytic 1.6092072E+3 2.6228525E-1 -8.9639636E+4 -5.8502132E+2 5.4069277E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +3.000Cl- + 1.000Dy+3 = DyCl3 + -llnl_gamma 3.4 + log_k -0.429 + delta_h 8.709 #kJ/mol #95haa/sho + -analytic 2.3531558E+3 3.829353E-1 -1.2811742E+5 -8.5790436E+2 7.5362961E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +4.000Cl- + 1.000Dy+3 = DyCl4- + -llnl_gamma 3.6 + log_k -0.841 + delta_h -14.298 #kJ/mol #95haa/sho + -analytic 2.2301534E+3 3.6216901E-1 -1.1943024E+5 -8.1506523E+2 6.9711425E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 1.000Dy+3 = DyCO3+ + 1.000H+ + -llnl_gamma 4.1 + log_k -2.316 + delta_h -7.263 #kJ/mol #95haa/sho + -analytic 7.3151175E+2 1.1889994E-1 -3.6613025E+4 -2.6980602E+2 1.8792518E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Dy+3 + 1.000F- = DyF+2 + -llnl_gamma 5.7 + log_k 4.702 + delta_h 23.183 #kJ/mol #95haa/sho + -analytic 9.2537808E+2 1.4948246E-1 -5.2430454E+4 -3.3346772E+2 3.1781321E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Dy+3 + 2.000F- = DyF2+ + -llnl_gamma 4.1 + log_k 8.231 + delta_h 12.519 #kJ/mol #95haa/sho + -analytic 1.7736739E+3 2.8506069E-1 -9.8272375E+4 -6.4162369E+2 5.9406617E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Dy+3 + 3.000F- = DyF3 + -llnl_gamma 3.4 + log_k 10.880 + delta_h -12.087 #kJ/mol #95haa/sho + -analytic 2.6024499E+3 4.1812618E-1 -1.4078655E+5 -9.4495822E+2 8.374077E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Dy+3 + 4.000F- = DyF4- + -llnl_gamma 3.6 + log_k 13.016 + delta_h -57.465 #kJ/mol #95haa/sho + -analytic 2.6223269E+3 4.1563229E-1 -1.3980488E+5 -9.5321842E+2 8.3873693E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Dy+3 + 1.000H2PO4- = DyH2PO4+2 + -llnl_gamma 5.7 + log_k 0.963 + delta_h -7.629 #kJ/mol #95haa/sho + -analytic 8.6571276E+2 1.3816756E-1 -4.9784606E+4 -3.1346556E+2 3.2609892E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 1.000Dy+3 = DyHCO3+2 + -llnl_gamma 5.7 + log_k 1.716 + delta_h 7.024 #kJ/mol #95haa/sho + -analytic 8.7431568E+2 1.400267E-1 -5.0541461E+4 -3.1574276E+2 3.2404154E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Dy+3 + 1.000NO3- = DyNO3+2 + -llnl_gamma 5.7 + log_k 0.141 + delta_h -30.398 #kJ/mol #95haa/sho + -analytic 7.9613206E+2 1.2634232E-1 -4.5042889E+4 -2.8965026E+2 3.0344417E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Dy+3 + 1.000H2O = DyO+ + 2.000H+ + -llnl_gamma 4.1 + log_k -16.111 + delta_h 145.698 #kJ/mol #95haa/sho + -analytic 2.2134729E+2 3.5633866E-2 -1.5304395E+4 -7.9858383E+1 7.5843612E+4 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Dy+3 + 2.000H2O = DyO2- + 4.000H+ + -llnl_gamma 3.6 + log_k -33.468 + delta_h 253.849 #kJ/mol #95haa/sho + -analytic -1.5670382E+2 -2.9389413E-2 5.8222508E+2 5.8571782E+1 -1.3232983E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Dy+3 + 2.000H2O = DyO2H + 3.000H+ + -llnl_gamma 3.4 + log_k -24.818 + delta_h 217.576 #kJ/mol #95haa/sho + -analytic 2.6362394E+2 3.8631017E-2 -1.8018305E+4 -9.5260401E+1 -3.3875445E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Dy+3 + 1.000H2O = DyOH+2 + 1.000H+ + -llnl_gamma 5.7 + log_k -7.828 + delta_h 79.083 #kJ/mol #95haa/sho + -analytic 1.6882254E+2 2.5734929E-2 -1.198771E+4 -5.9863348E+1 3.5660503E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Dy+3 + 1.000SO4-2 = DySO4+ + -llnl_gamma 4.1 + log_k 3.723 + delta_h 19.765 #kJ/mol #95haa/sho + -analytic 1.6458326E+3 2.6071025E-1 -8.928871E+4 -5.9710723E+2 5.079193E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Cl- + 1.000Er+3 = ErCl+2 + -llnl_gamma 5.7 + log_k 0.321 + delta_h 12.603 #kJ/mol #95haa/sho + -analytic 8.2676712E+2 1.3504078E-1 -4.67563E+4 -2.9993639E+2 2.8700137E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +2.000Cl- + 1.000Er+3 = ErCl2+ + -llnl_gamma 4.1 + log_k -0.018 + delta_h 15.374 #kJ/mol #95haa/sho + -analytic 1.5960588E+3 2.5983481E-1 -8.8470728E+4 -5.8051678E+2 5.3013509E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +3.000Cl- + 1.000Er+3 = ErCl3 + -llnl_gamma 3.4 + log_k -0.429 + delta_h 5.091 #kJ/mol #95haa/sho + -analytic 2.3306175E+3 3.7922048E-1 -1.2590783E+5 -8.504052E+2 7.3299428E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +4.000Cl- + 1.000Er+3 = ErCl4- + -llnl_gamma 3.6 + log_k -0.841 + delta_h -20.785 #kJ/mol #95haa/sho + -analytic 2.1932191E+3 3.5535427E-1 -1.1596956E+5 -8.0257333E+2 6.6554384E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 1.000Er+3 = ErCO3+ + 1.000H+ + -llnl_gamma 4.1 + log_k -2.169 + delta_h -8.973 #kJ/mol #95haa/sho + -analytic 7.3934469E+2 1.1995466E-1 -3.6987359E+4 -2.7265916E+2 1.9072191E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Er+3 + 1.000F- = ErF+2 + -llnl_gamma 5.7 + log_k 4.775 + delta_h 24.137 #kJ/mol #95haa/sho + -analytic 9.2008982E+2 1.4857189E-1 -5.2017464E+4 -3.3155023E+2 3.133967E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Er+3 + 2.000F- = ErF2+ + -llnl_gamma 4.1 + log_k 8.377 + delta_h 13.054 #kJ/mol #95haa/sho + -analytic 1.7618166E+3 2.8294036E-1 -9.7221306E+4 -6.3744761E+2 5.8319659E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Er+3 + 3.000F- = ErF3 + -llnl_gamma 3.4 + log_k 11.026 + delta_h -12.424 #kJ/mol #95haa/sho + -analytic 2.5806326E+3 4.1441135E-1 -1.3874827E+5 -9.3745897E+2 8.1677234E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Er+3 + 4.000F- = ErF4- + -llnl_gamma 3.6 + log_k 13.236 + delta_h -60.342 #kJ/mol #95haa/sho + -analytic 2.6019304E+3 4.1141589E-1 -1.3733497E+5 -9.4648565E+2 8.1144297E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Er+3 + 1.000H2PO4- = ErH2PO4+2 + -llnl_gamma 5.7 + log_k 1.037 + delta_h -9.794 #kJ/mol #95haa/sho + -analytic 8.605117E+2 1.3715286E-1 -4.9285741E+4 -3.1171805E+2 3.2236187E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 1.000Er+3 = ErHCO3+2 + -llnl_gamma 5.7 + log_k 1.789 + delta_h 4.984 #kJ/mol #95haa/sho + -analytic 8.6599887E+2 1.3856721E-1 -4.9872667E+4 -3.1286569E+2 3.1926771E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Er+3 + 1.000NO3- = ErNO3+2 + -llnl_gamma 5.7 + log_k 0.141 + delta_h -33.891 #kJ/mol #95haa/sho + -analytic 7.9270518E+2 1.2553468E-1 -4.4610395E+4 -2.8862531E+2 3.0060762E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Er+3 + 1.000H2O = ErO+ + 2.000H+ + -llnl_gamma 4.1 + log_k -15.964 + delta_h 143.738 #kJ/mol #95haa/sho + -analytic 2.2763044E+2 3.6632863E-2 -1.5948969E+4 -8.1967483E+1 1.5996727E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Er+3 + 2.000H2O = ErO2- + 4.000H+ + -llnl_gamma 3.6 + log_k -32.588 + delta_h 246.957 #kJ/mol #95haa/sho + -analytic -1.5372142E+2 -2.8947515E-2 6.8194187E+1 5.7811757E+1 -1.2015005E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Er+3 + 2.000H2O = ErO2H + 3.000H+ + -llnl_gamma 3.4 + log_k -24.305 + delta_h 213.151 #kJ/mol #95haa/sho + -analytic 2.8747002E+2 4.269491E-2 -1.9686474E+4 -1.0371082E+2 -1.6448388E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Er+3 + 1.000H2O = ErOH+2 + 1.000H+ + -llnl_gamma 5.7 + log_k -7.755 + delta_h 77.916 #kJ/mol #95haa/sho + -analytic 1.7672529E+2 2.6971445E-2 -1.2734861E+4 -6.2551071E+1 4.418032E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Er+3 + 1.000SO4-2 = ErSO4+ + -llnl_gamma 4.1 + log_k 3.649 + delta_h 20.059 #kJ/mol #95haa/sho + -analytic 1.6363856E+3 2.5910227E-1 -8.883243E+4 -5.9363228E+2 5.0546786E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Cl- + 1.000Eu+2 = EuCl+ + -llnl_gamma 4.1 + log_k 0.321 + delta_h 8.611 #kJ/mol #95haa/sho + -analytic 8.7689106E+2 1.4309214E-1 -5.0463111E+4 -3.1771985E+2 3.2177901E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Cl- + 1.000Eu+3 = EuCl+2 + -llnl_gamma 5.7 + log_k 0.321 + delta_h 13.850 #kJ/mol #95haa/sho + -analytic 8.238151E+2 1.3443343E-1 -4.6518539E+4 -2.9884573E+2 2.8377358E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +2.000Cl- + 1.000Eu+3 = EuCl2+ + -llnl_gamma 4.1 + log_k -0.018 + delta_h 18.617 #kJ/mol #95haa/sho + -analytic 1.5865848E+3 2.5819383E-1 -8.7692605E+4 -5.7710225E+2 5.2039588E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +2.000Cl- + 1.000Eu+2 = EuCl2 + -llnl_gamma 3.4 + log_k 1.229 + delta_h 5.891 #kJ/mol #95haa/sho + -analytic 1.6456329E+3 2.6723309E-1 -9.4211704E+4 -5.9644348E+2 6.0241509E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +3.000Cl- + 1.000Eu+3 = EuCl3 + -llnl_gamma 3.4 + log_k -0.429 + delta_h 11.329 #kJ/mol #95haa/sho + -analytic 2.3076256E+3 3.7460572E-1 -1.2432252E+5 -8.4187845E+2 7.1478641E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +3.000Cl- + 1.000Eu+2 = EuCl3- + -llnl_gamma 3.6 + log_k 1.989 + delta_h -3.227 #kJ/mol #95haa/sho + -analytic 1.8618067E+3 3.0434429E-1 -1.0853988E+5 -6.7402E+2 7.227534E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +4.000Cl- + 1.000Eu+3 = EuCl4- + -llnl_gamma 3.6 + log_k -0.841 + delta_h -9.682 #kJ/mol #95haa/sho + -analytic 2.1620221E+3 3.5015112E-1 -1.1348436E+5 -7.9130159E+2 6.3462481E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +4.000Cl- + 1.000Eu+2 = EuCl4-2 + -llnl_gamma 4.7 + log_k 2.824 + delta_h -19.999 #kJ/mol #95haa/sho + -analytic 1.916995E+3 3.1639231E-1 -1.1392685E+5 -6.9342232E+2 7.9503781E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 1.000Eu+3 = EuCO3+ + 1.000H+ + -llnl_gamma 4.1 + log_k -2.389 + delta_h -6.221 #kJ/mol #95haa/sho + -analytic 7.2456116E+2 1.1771798E-1 -3.6310087E+4 -2.6720946E+2 1.8604618E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Eu+2 + 1.000F- = EuF+ + -llnl_gamma 4.1 + log_k -1.382 + delta_h 17.118 #kJ/mol #95haa/sho + -analytic 9.0224383E+2 1.4533312E-1 -5.267501E+4 -3.2649187E+2 3.3422662E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Eu+3 + 1.000F- = EuF+2 + -llnl_gamma 5.7 + log_k 4.482 + delta_h 23.440 #kJ/mol #95haa/sho + -analytic 9.1671907E+2 1.4780499E-1 -5.1730846E+4 -3.3048004E+2 3.1070113E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Eu+3 + 2.000F- = EuF2+ + -llnl_gamma 4.1 + log_k 7.791 + delta_h 14.031 #kJ/mol #95haa/sho + -analytic 1.7496003E+3 2.8072103E-1 -9.629607E+4 -6.3330131E+2 5.7367301E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Eu+2 + 2.000F- = EuF2 + -llnl_gamma 3.4 + log_k -2.031 + delta_h 17.703 #kJ/mol #95haa/sho + -analytic 1.8014906E+3 2.9000867E-1 -1.0370843E+5 -6.5304643E+2 6.5578913E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Eu+3 + 3.000F- = EuF3 + -llnl_gamma 3.4 + log_k 10.293 + delta_h -9.114 #kJ/mol #95haa/sho + -analytic 2.5563965E+3 4.0979671E-1 -1.3701018E+5 -9.2893272E+2 7.9856509E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Eu+2 + 3.000F- = EuF3- + -llnl_gamma 3.6 + log_k -2.461 + delta_h 3.810 #kJ/mol #95haa/sho + -analytic 1.8653631E+3 3.0178367E-1 -1.1030823E+5 -6.7525371E+2 7.3822715E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Eu+3 + 4.000F- = EuF4- + -llnl_gamma 3.6 + log_k 12.283 + delta_h -52.158 #kJ/mol #95haa/sho + -analytic 2.5367016E+3 4.0101664E-1 -1.3298926E+5 -9.2331586E+2 7.7116295E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Eu+2 + 4.000F- = EuF4-2 + -llnl_gamma 4.7 + log_k -2.743 + delta_h -37.366 #kJ/mol #95haa/sho + -analytic 2.0277848E+3 3.2467665E-1 -1.2234194E+5 -7.3335734E+2 8.6805463E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Eu+3 + 1.000H2PO4- = EuH2PO4+2 + -llnl_gamma 5.7 + log_k 1.037 + delta_h -6.925 #kJ/mol #95haa/sho + -analytic 8.5703543E+2 1.3656607E-1 -4.9058459E+4 -3.1037682E+2 3.185406E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 1.000Eu+3 = EuHCO3+2 + -llnl_gamma 5.7 + log_k 1.642 + delta_h 8.441 #kJ/mol #95haa/sho + -analytic 8.6818797E+2 1.3879631E-1 -4.9995692E+4 -3.1358177E+2 3.1731665E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Eu+3 + 1.000NO3- = EuNO3+2 + -llnl_gamma 5.7 + log_k 0.874 + delta_h -32.212 #kJ/mol #95haa/sho + -analytic 7.8646976E+2 1.2464808E-1 -4.4100868E+4 -2.8615161E+2 2.9529873E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Eu+3 + 1.000H2O = EuO+ + 2.000H+ + -llnl_gamma 4.1 + log_k -16.331 + delta_h 148.075 #kJ/mol #95haa/sho + -analytic 2.2765249E+2 3.6505777E-2 -1.5847506E+4 -8.2011819E+1 1.0829636E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Eu+3 + 2.000H2O = EuO2- + 4.000H+ + -llnl_gamma 3.6 + log_k -34.494 + delta_h 261.329 #kJ/mol #95haa/sho + -analytic -1.5920807E+2 -2.9821979E-2 4.7543806E+2 5.9502961E+1 -1.353429E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Eu+3 + 2.000H2O = EuO2H + 3.000H+ + -llnl_gamma 3.4 + log_k -25.405 + delta_h 222.296 #kJ/mol #95haa/sho + -analytic 3.7116681E+2 5.628658E-2 -2.3756441E+4 -1.3463576E+2 -4.6802414E+4 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Eu+3 + 1.000H2O = EuOH+2 + 1.000H+ + -llnl_gamma 5.7 + log_k -7.901 + delta_h 80.374 #kJ/mol #95haa/sho + -analytic 1.7258446E+2 2.6194621E-2 -1.2357342E+4 -6.1092439E+1 3.8405339E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Eu+3 + 1.000SO4-2 = EuSO4+ + -llnl_gamma 4.1 + log_k 3.723 + delta_h 20.264 #kJ/mol #95haa/sho + -analytic 1.6444036E+3 2.6037942E-1 -8.9254214E+4 -5.9652657E+2 5.076988E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +2.000HCO3- + 1.000Fe+3 = Fe(CO3)2- + 2.000H+ + -llnl_gamma 3.6 + log_k -1.053 + #References = LogK/DGf: 04chi; + #References = LogK/DGf: 04chi; V°: Default value; + +2.000HCO3- + 1.000Fe+2 = Fe(CO3)2-2 + 2.000H+ + -llnl_gamma 4.7 + log_k -13.690 + delta_h -10.380 #kJ/mol #Internal calculation + -analytic 1.6792207E+3 2.4368936E-1 -8.998357E+4 -6.1370379E+2 4.8722193E+6 + #References = LogK/DGf: 17bbla; DHf/DHr: Internal calculation; S°: 17bbla; V°: Default value; + +1.000Fe+2 + 2.000HS- = Fe(HS)2 + -llnl_gamma 3.4 + log_k 6.450 + delta_h -36.849 #kJ/mol #Internal calculation + -analytic 1.6097764E+3 2.5928073E-1 -8.6157617E+4 -5.8625727E+2 5.2445791E+6 + #References = LogK/DGf: 99dav/phi; DHf/DHr: Internal calculation; S°: 17bbla; V°: Default value; + +1.000Fe+3 + 4.000H2O = Fe(OH)4- + 4.000H+ + -llnl_gamma 3.6 + log_k -21.604 + delta_h 144.982 #kJ/mol #Internal calculation + -analytic -3.5412445E+2 -3.3996622E-2 1.7227197E+4 1.2318536E+2 -1.7723537E+6 + #References = LogK/DGf: 76bae/mes; DHf/DHr: Internal calculation; S°: 99dia/sch; Cp: 99dia/sch; V°: 99dia/sch; + +2.000Fe+3 + 2.000H2O = Fe2(OH)2+4 + 2.000H+ + -llnl_gamma 11.6 + log_k -2.922 + delta_h 56.480 #kJ/mol #76bae/mes + -analytic 9.8561666E+2 1.5463064E-1 -5.3189669E+4 -3.5798472E+2 2.628317E+6 + #References = LogK/DGf: 07ste; DHf/DHr: 76bae/mes; S°: Internal calculation; V°: Default value; + +1.000H2AsO4- + 1.000Fe+3 = FeAsO4 + 2.000H+ + -llnl_gamma 3.4 + log_k -4.427 + delta_h 42.544 #kJ/mol #Internal calculation + -analytic 7.6691918E+2 1.2863321E-1 -3.6919146E+4 -2.8354416E+2 1.3992875E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000H2AsO4- + 1.000Fe+2 = FeAsO4- + 2.000H+ + -llnl_gamma 3.6 + log_k -10.980 + delta_h 85.100 #kJ/mol #Internal calculation + -analytic 2.4918198E+2 3.4099947E-2 -1.3982837E+4 -9.0834371E+1 1.1856173E+5 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000Cl- + 1.000Fe+2 = FeCl+ + -llnl_gamma 4.1 + log_k -0.160 + delta_h 21.550 #kJ/mol #17bbla + -analytic 8.1211306E+2 1.3182113E-1 -4.6120838E+4 -2.9423909E+2 2.7725831E+6 + #References = LogK/DGf: 04chi; DHf/DHr: 17bbla; S°: Internal calculation; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Cl- + 1.000Fe+3 = FeCl+2 + -llnl_gamma 5.7 + log_k 1.520 + delta_h 22.480 #kJ/mol #17bbla + -analytic 8.1445764E+2 1.3244659E-1 -4.5719558E+4 -2.9480872E+2 2.7025839E+6 + #References = LogK/DGf: 00tag/dia; DHf/DHr: 17bbla; S°: Internal calculation; Cp: 97sve/sho; V°: 97sve/sho; + +2.000Cl- + 1.000Fe+3 = FeCl2+ + -llnl_gamma 4.1 + log_k 0.700 + delta_h 22.180 #kJ/mol #17bbla + -analytic 1.8008911E+3 2.8747526E-1 -9.8236714E+4 -6.5463437E+2 5.6390215E+6 + #References = LogK/DGf: 17bbla; DHf/DHr: 17bbla; S°: Internal calculation; V°: Default value; + +2.000Cl- + 1.000Fe+2 = FeCl2 + -llnl_gamma 3.4 + log_k -1.740 + delta_h 9.900 #kJ/mol #17bbla + -analytic 1.6056019E+3 2.6112437E-1 -8.8964588E+4 -5.8478635E+2 5.3521165E+6 + #References = LogK/DGf: 17bbla; DHf/DHr: 17bbla; S°: Internal calculation; Cp: 97sve/sho; V°: 97sve/sho; + +1.000HCO3- + 1.000Fe+3 = FeCO3+ + 1.000H+ + -llnl_gamma 4.1 + log_k -0.607 + delta_h -49.765 #kJ/mol #Internal calculation + -analytic 1.1016241E+3 1.7767788E-1 -5.6871574E+4 -4.0520415E+2 3.3951924E+6 + #References = LogK/DGf: 04chi; DHf/DHr: Internal calculation; S°: 04chi; V°: Default value; + +1.000HCO3- + 1.000Fe+2 = FeCO3 + 1.000H+ + -llnl_gamma 3.4 + log_k -5.140 + delta_h 14.400 #kJ/mol #17bbla + -analytic 9.679726E+2 1.4816095E-1 -5.293247E+4 -3.5269522E+2 2.9308987E+6 + #References = LogK/DGf: 17bbla; DHf/DHr: 17bbla; S°: Internal calculation; V°: Default value; + +1.000HCO3- + 1.000Fe+2 + 1.000H2O = FeCO3OH- + 2.000H+ + -llnl_gamma 3.6 + log_k -14.358 + #References = LogK/DGf: 04chi; + #References = LogK/DGf: 04chi; V°: Default value; + +1.000CrO4-2 + 1.000Fe+3 = FeCrO4+ + -llnl_gamma 4.1 + log_k 7.800 + delta_h 19.100 #kJ/mol #96bbar/pal + -analytic 1.8409988E+3 2.9366224E-1 -1.0087706E+5 -6.6638423E+2 5.9126109E+6 + #References = LogK/DGf: 96bbar/pal; DHf/DHr: 96bbar/pal; S°: Internal calculation; V°: Default value; + +1.000F- + 1.000Fe+2 = FeF+ + -llnl_gamma 4.1 + log_k 1.430 + delta_h 0.150 #kJ/mol #Internal calculation + -analytic 8.7587621E+2 1.4031911E-1 -4.8713189E+4 -3.178321E+2 2.9830234E+6 + #References = LogK/DGf: 04chi; DHf/DHr: Internal calculation; S°: 04chi; Cp: 97sve/sho; V°: 97sve/sho; + +1.000F- + 1.000Fe+3 = FeF+2 + -llnl_gamma 5.7 + log_k 6.000 + delta_h 20.832 #kJ/mol #Internal calculation + -analytic 9.0321706E+2 1.4595301E-1 -5.0109539E+4 -3.2568539E+2 2.9532654E+6 + #References = LogK/DGf: 04chi; DHf/DHr: Internal calculation; S°: 04chi; Cp: 97sve/sho; V°: 97sve/sho; + +1.000H2AsO3- + 1.000Fe+3 = FeH2AsO3+2 + -llnl_gamma 5.7 + log_k 7.485 + delta_h -47.156 #kJ/mol #Internal calculation + -analytic 6.861598E+2 1.010876E-1 -3.5091E+4 -2.4860876E+2 2.1377338E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000H2AsO4- + 1.000Fe+2 = FeH2AsO4+ + -llnl_gamma 4.1 + log_k 2.966 + delta_h -20.323 #kJ/mol #Internal calculation + -analytic 8.173727E+2 1.278786E-1 -4.4686163E+4 -2.9663667E+2 2.7869956E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000H2AsO4- + 1.000Fe+3 = FeH2AsO4+2 + -llnl_gamma 5.7 + log_k 4.433 + delta_h -26.990 #kJ/mol #Internal calculation + -analytic 8.8043002E+2 1.3378917E-1 -4.8973152E+4 -3.1805275E+2 3.1442912E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000Fe+2 + 1.000H2PO4- = FeH2PO4+ + -llnl_gamma 4.1 + log_k 2.693 + #References = LogK/DGf: 72bnri, 76smi/mar; + #References = LogK/DGf: 72bnri, 76smi/mar; V°: Default value; + +1.000Fe+3 + 1.000H2PO4- = FeH2PO4+2 + -llnl_gamma 5.7 + log_k 5.423 + #References = LogK/DGf: 72cnri; + #References = LogK/DGf: 72cnri; V°: Default value; + +1.000H2AsO4- + 1.000Fe+2 = FeHAsO4 + 1.000H+ + -llnl_gamma 3.4 + log_k -3.435 + delta_h 3.862 #kJ/mol #Internal calculation + -analytic 8.9223042E+2 1.421203E-1 -4.734188E+4 -3.2673886E+2 2.5993229E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000H2AsO4- + 1.000Fe+3 = FeHAsO4+ + 1.000H+ + -llnl_gamma 4.1 + log_k 3.142 + delta_h -13.135 #kJ/mol #Internal calculation + -analytic 7.6208406E+2 1.2019338E-1 -3.7827005E+4 -2.7878925E+2 1.9503984E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000HCO3- + 1.000Fe+2 = FeHCO3+ + -llnl_gamma 4.1 + log_k 1.440 + delta_h 3.626 #kJ/mol #Internal calculation + -analytic 9.521787E+2 1.4816095E-1 -5.1457764E+4 -3.4565212E+2 2.9308987E+6 + #References = LogK/DGf: 04chi; DHf/DHr: Internal calculation; S°: 04chi; V°: Default value; + +1.000Fe+3 + 1.000H2PO4- = FeHPO4+ + 1.000H+ + -llnl_gamma 4.1 + log_k 3.674 + delta_h -29.668 #kJ/mol #Internal calculation + -analytic 1.1187415E+3 1.7919221E-1 -5.8323333E+4 -4.0866572E+2 3.4082578E+6 + #References = LogK/DGf: 65lah; DHf/DHr: Internal calculation; S°: 65lah; V°: Default value; + +1.000Fe+2 + 1.000H2PO4- = FeHPO4 + 1.000H+ + -llnl_gamma 3.4 + log_k -3.608 + #References = LogK/DGf: 72bnri; + #References = LogK/DGf: 72bnri; V°: Default value; + +1.000Fe+2 + 1.000SO4-2 + 1.000H+ = FeHSO4+ + -llnl_gamma 4.1 + log_k 1.740 + delta_h 9.900 #kJ/mol #17bbla + -analytic 1.6672872E+3 2.7084605E-1 -9.272565E+4 -6.0568591E+2 5.6388409E+6 + #References = LogK/DGf: 17bbla; DHf/DHr: 17bbla; S°: Internal calculation; V°: Default value; + +1.000Fe+3 + 1.000SO4-2 + 1.000H+ = FeHSO4+2 + -llnl_gamma 5.7 + log_k 2.480 + delta_h 75.275 #kJ/mol #Internal calculation + -analytic 1.921485E+3 3.0036299E-1 -1.0795589E+5 -6.9313976E+2 6.1031346E+6 + #References = LogK/DGf: 08bla; DHf/DHr: Internal calculation; S°: 17bbla; V°: Default value; + +1.000Fe+2 + 1.000H2O = FeO + 2.000H+ + -llnl_gamma 3.4 + log_k -20.601 + delta_h 119.662 #kJ/mol #76bae/mes + -analytic 2.9801735E+2 4.8033373E-2 -2.1047608E+4 -1.0934625E+2 7.3112082E+5 + #References = LogK/DGf: 04chi; DHf/DHr: 76bae/mes; S°: Internal calculation; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Fe+3 + 1.000H2O = FeO+ + 2.000H+ + -llnl_gamma 4.1 + log_k -5.483 + delta_h 79.606 #kJ/mol #97asho/sas + -analytic 2.4453735E+2 3.9811555E-2 -1.3316723E+4 -8.8609916E+1 1.8080609E+5 + #References = LogK/DGf: Internal calculation; DHf/DHr: 97asho/sas; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Fe+2 + 1.000H2O = FeOH+ + 1.000H+ + -llnl_gamma 4.1 + log_k -9.501 + delta_h 55.228 #kJ/mol #76bae/mes + -analytic 2.0044169E+2 3.0052015E-2 -1.394772E+4 -7.2506144E+1 6.480235E+5 + #References = LogK/DGf: 76bae/mes; DHf/DHr: 76bae/mes; S°: Internal calculation; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Fe+3 + 1.000H2O = FeOH+2 + 1.000H+ + -llnl_gamma 5.7 + log_k -2.191 + delta_h 35.903 #kJ/mol #Internal calculation + -analytic 1.8256378E+2 2.847781E-2 -1.0694132E+4 -6.5541931E+1 4.2687247E+5 + #References = LogK/DGf: 76bae/mes; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Fe+2 + 1.000H2PO4- = FePO4- + 2.000H+ + -llnl_gamma 3.6 + log_k -11.626 + #References = LogK/DGf: 79mat/spo; + #References = LogK/DGf: 79mat/spo; V°: Default value; + +1.000Fe+3 + 1.000SO4-2 = FeSO4+ + -llnl_gamma 4.1 + log_k 4.250 + delta_h 26.000 #kJ/mol #17bbla + -analytic 1.9864651E+3 3.0036299E-1 -1.0858023E+5 -7.1783875E+2 6.1031346E+6 + #References = LogK/DGf: 17bbla; DHf/DHr: 17bbla; S°: Internal calculation; V°: Default value; + +1.000Fe+2 + 1.000SO4-2 = FeSO4 + -llnl_gamma 3.4 + log_k 2.440 + delta_h 8.400 #kJ/mol #17bbla + -analytic 1.7511642E+3 2.7084605E-1 -9.6361704E+4 -6.3437191E+2 5.6388409E+6 + #References = LogK/DGf: 17bbla; DHf/DHr: 17bbla; S°: Internal calculation; V°: Default value; + +1.000Ga+3 + 2.000H2O = Ga(OH)2+ + 2.000H+ + -llnl_gamma 4.5 + log_k -7.270 + delta_h 74.711 #kJ/mol #Internal calculation + -analytic -9.322444E+2 -1.7256427E-1 4.3134662E+4 3.4785755E+2 -2.5780056E+6 + #References = LogK/DGf: 97ben/dia; DHf/DHr: Internal calculation; S°: 97ben/dia; Cp: 97ben/dia; V°: 97ben/dia; + +1.000Ga+3 + 3.000H2O = Ga(OH)3 + 3.000H+ + -llnl_gamma 3.0 + log_k -11.924 + delta_h 104.965 #kJ/mol #Internal calculation + -analytic -9.2015042E+2 -1.7507184E-1 4.0677481E+4 3.445661E+2 -2.5437331E+6 + #References = LogK/DGf: 97ben/dia; DHf/DHr: Internal calculation; S°: 97ben/dia; Cp: 97ben/dia; V°: 97ben/dia; + +1.000Ga+3 + 4.000H2O = Ga(OH)4- + 4.000H+ + -llnl_gamma 4.5 + log_k -15.633 + delta_h 106.332 #kJ/mol #99dia/sch + -analytic -1.342829E+3 -2.4411019E-1 6.3111904E+4 4.97759E+2 -3.8555639E+6 + #References = LogK/DGf: 99dia/sch; DHf/DHr: Internal calculation; S°: 99dia/sch; Cp: 99dia/sch; V°: 99dia/sch; + +1.000Ga+3 + 1.000H2O = GaOH+2 + 1.000H+ + -llnl_gamma 4.5 + log_k -2.836 + delta_h 93.041 #kJ/mol #Internal calculation + -analytic 2.0217371E+2 1.66864E-2 -1.72604E+4 -6.5163316E+1 8.1329418E+5 + #References = LogK/DGf: 97ben/dia; DHf/DHr: Internal calculation; S°: 97ben/dia; Cp: 97ben/dia; V°: 97ben/dia; + +1.000Cl- + 1.000Gd+3 = GdCl+2 + -llnl_gamma 5.7 + log_k -0.053 + delta_h 14.848 #kJ/mol #95haa/sho + -analytic 8.2939993E+2 1.3564543E-1 -4.693983E+4 -3.0089682E+2 2.8526372E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +2.000Cl- + 1.000Gd+3 = GdCl2+ + -llnl_gamma 4.1 + log_k -0.392 + delta_h 20.988 #kJ/mol #95haa/sho + -analytic 1.5972152E+3 2.602796E-1 -8.8497171E+4 -5.8088986E+2 5.2434214E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +3.000Cl- + 1.000Gd+3 = GdCl3 + -llnl_gamma 3.4 + log_k -0.804 + delta_h 15.944 #kJ/mol #95haa/sho + -analytic 2.3148468E+3 3.7577571E-1 -1.252276E+5 -8.4411193E+2 7.2027801E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +4.000Cl- + 1.000Gd+3 = GdCl4- + -llnl_gamma 3.6 + log_k -1.216 + delta_h -1.574 #kJ/mol #95haa/sho + -analytic 2.1880502E+3 3.5487598E-1 -1.1553806E+5 -8.0028406E+2 6.4621111E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 1.000Gd+3 = GdCO3+ + 1.000H+ + -llnl_gamma 4.1 + log_k -2.837 + delta_h -4.804 #kJ/mol #95haa/sho + -analytic 7.1898344E+2 1.1724319E-1 -3.6101843E+4 -2.65239E+2 1.8335482E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000F- + 1.000Gd+3 = GdF+2 + -llnl_gamma 5.7 + log_k 4.254 + delta_h 21.107 #kJ/mol #95haa/sho + -analytic 9.2090464E+2 1.4871256E-1 -5.1959824E+4 -3.3213443E+2 3.1227998E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +2.000F- + 1.000Gd+3 = GdF2+ + -llnl_gamma 4.1 + log_k 7.636 + delta_h 11.154 #kJ/mol #95haa/sho + -analytic 1.7544539E+3 2.8176381E-1 -9.6609943E+4 -6.351642E+2 5.7672383E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +3.000F- + 1.000Gd+3 = GdF3 + -llnl_gamma 3.4 + log_k 10.212 + delta_h -11.536 #kJ/mol #95haa/sho + -analytic 2.5626765E+3 4.1096658E-1 -1.3754757E+5 -9.3116571E+2 8.0405607E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +4.000F- + 1.000Gd+3 = GdF4- + -llnl_gamma 3.6 + log_k 12.275 + delta_h -52.254 #kJ/mol #95haa/sho + -analytic 2.5335377E+3 4.0124876E-1 -1.3314097E+5 -9.2202279E+2 7.7468286E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Gd+3 + 1.000H2PO4- = GdH2PO4+2 + -llnl_gamma 5.7 + log_k 0.662 + delta_h -4.679 #kJ/mol #95haa/sho + -analytic 8.6261287E+2 1.3781172E-1 -4.9518141E+4 -3.1236628E+2 3.1979618E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 1.000Gd+3 = GdHCO3+2 + -llnl_gamma 5.7 + log_k 1.341 + delta_h 10.143 #kJ/mol #95haa/sho + -analytic 8.7789277E+2 1.4065577E-1 -5.0654894E+4 -3.1707264E+2 3.1988156E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Gd+3 + 1.000NO3- = GdNO3+2 + -llnl_gamma 5.7 + log_k 0.060 + delta_h -25.460 #kJ/mol #95haa/sho + -analytic 7.9142958E+2 1.2589444E-1 -4.4712191E+4 -2.8783408E+2 2.9590175E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Gd+3 + 1.000H2O = GdO+ + 2.000H+ + -llnl_gamma 4.1 + log_k -16.705 + delta_h 150.071 #kJ/mol #95haa/sho + -analytic 2.2786336E+2 3.6738867E-2 -1.5618443E+4 -8.2275166E+1 3.9714967E+4 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Gd+3 + 2.000H2O = GdO2- + 4.000H+ + -llnl_gamma 3.6 + log_k -34.795 + delta_h 263.904 #kJ/mol #95haa/sho + -analytic -1.8390206E+2 -3.3109244E-2 2.4553508E+3 6.8032643E+1 -1.5644536E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Gd+3 + 2.000H2O = GdO2H + 3.000H+ + -llnl_gamma 3.4 + log_k -25.633 + delta_h 223.954 #kJ/mol #95haa/sho + -analytic 2.2889116E+2 3.2627784E-2 -1.5762248E+4 -8.2787565E+1 -5.8069709E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Gd+3 + 1.000H2O = GdOH+2 + 1.000H+ + -llnl_gamma 5.7 + log_k -8.276 + delta_h 81.996 #kJ/mol #95haa/sho + -analytic 1.6984519E+2 2.6018714E-2 -1.1975007E+4 -6.0299596E+1 3.1054152E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Gd+3 + 1.000SO4-2 = GdSO4+ + -llnl_gamma 4.1 + log_k 3.348 + delta_h 19.640 #kJ/mol #95haa/sho + -analytic 1.6474744E+3 2.6115913E-1 -8.9441961E+4 -5.9776996E+2 5.0795308E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Ge(OH)4 = GeO(OH)3- + 1.000H+ + -llnl_gamma 4.5 + log_k -9.309 + delta_h 27.364 #kJ/mol #98pok/sch + -analytic -2.3900584E+2 -5.2430474E-2 9.7373089E+3 8.88644E+1 -6.4175606E+5 + #References = LogK/DGf: 98pok/sch; DHf/DHr: Internal calculation; S°: 98pok/sch; Cp: 98pok/sch; V°: 98pok/sch; + +3.000H2AsO3- + 6.000HS- + 8.000H+ = H2As3S6- + 9.000H2O + -llnl_gamma 3.6 + log_k 100.896 + delta_h -503.405 #kJ/mol #Internal calculation + -analytic 4.9991939E+3 8.103392E-1 -2.476806E+5 -1.8164716E+3 1.6495466E+7 + #References = LogK/DGf: 05bes/app; DHf/DHr: Internal calculation; S°: 05bes/app; Cp: 05bes/app; V°: 05bes/app; + +1.000CrO4-2 + 2.000H+ = H2CrO4 + -llnl_gamma 3.4 + log_k 6.320 + delta_h 39.595 #kJ/mol #Internal calculation + -analytic 1.3545703E+3 2.1151276E-1 -7.6293524E+4 -4.8721485E+2 4.4587391E+6 + #References = LogK/DGf: 04chi; DHf/DHr: Internal calculation; S°: 04chi; V°: Default value; + +0.666666666666667N2 + 0.666666666666667NO2- + 0.666666666666667H2O + 0.666666666666667H+ = H2N2O2 + -llnl_gamma 3.4 + log_k -35.640 + delta_h 210.897 #kJ/mol #97asho/sas + -analytic 5.5135053E+2 8.3220208E-2 -4.1015812E+4 -1.9948206E+2 1.7219364E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +2.000H2PO4- = H2P2O7-2 + 1.000H2O + -llnl_gamma 4.7 + log_k -1.759 + delta_h 24.397 #kJ/mol #Internal calculation + -analytic 9.4821779E+1 1.5740091E-2 -8.6638259E+3 -3.2312144E+1 6.879313E+5 + #References = LogK/DGf: 92gre/fug; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000F- + 1.000H2PO4- + 2.000H+ = H2PO3F + 1.000H2O + -llnl_gamma 3.4 + log_k 3.725 + #References = LogK/DGf: 82wag/eva; + #References = LogK/DGf: 82wag/eva; V°: Default value; + +1.000HS- + 1.000H+ = H2S + -llnl_gamma 3.4 + log_k 6.989 + delta_h -22.300 #kJ/mol #89cox/wag + -analytic 7.4840235E+2 1.1981739E-1 -4.1346833E+4 -2.7032197E+2 2.7054412E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 89bsho/hel, 01sch/sho; V°: 89bsho/hel, 01sch/sho; + +1.000S2O3-2 + 2.000H+ = H2S2O3 + -llnl_gamma 3.4 + log_k 2.320 + delta_h 22.916 #kJ/mol #Internal calculation + -analytic 1.4978457E+3 2.3814241E-1 -8.4048537E+4 -5.4206379E+2 5.0379338E+6 + #References = LogK/DGf: 04chi; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000S2O4-2 + 2.000H+ = H2S2O4 + -llnl_gamma 3.4 + log_k 2.800 + delta_h 20.193 #kJ/mol #Internal calculation + -analytic 1.5238086E+3 2.4187759E-1 -8.5503757E+4 -5.5133352E+2 5.1465289E+6 + #References = LogK/DGf: 04chi; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +4.000HS- + 2.000Sb(OH)3 + 4.000H+ = H2Sb2S4 + 6.000H2O + -llnl_gamma 3.4 + log_k 58.089 + delta_h -307.718 #kJ/mol #Internal calculation + -analytic 2.5377019E+3 4.1753376E-1 -1.2186629E+5 -9.2465532E+2 8.2351176E+6 + #References = LogK/DGf: 05bes/app; DHf/DHr: Internal calculation; S°: 05bes/app; Cp: 05bes/app; V°: 05bes/app; + +1.000SeO3-2 + 2.000H+ = H2SeO3 + -llnl_gamma 3.4 + log_k 9.859 + delta_h 1.856 #kJ/mol #97asho/sas + -analytic 1.5653221E+3 2.4888692E-1 -8.6809664E+4 -5.6508325E+2 5.3117245E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000H4SiO4 = H2SiO4-2 + 2.000H+ + -llnl_gamma 4.7 + log_k -23.270 + delta_h 75.000 #kJ/mol #92gre/fug + -analytic 5.0628236E+2 4.2835675E-2 -3.4394739E+4 -1.8000322E+2 1.639456E+6 + #References = LogK/DGf: 01fel/cho; DHf/DHr: 92gre/fug; S°: Internal calculation; V°: Default value; + +1.000SO3-2 + 2.000H+ = H2SO3 + -llnl_gamma 3.4 + log_k 9.030 + delta_h 21.452 #kJ/mol #Internal calculation + -analytic 1.2947587E+3 2.1816277E-1 -7.3029473E+4 -4.6771565E+2 4.5780174E+6 + #References = LogK/DGf: 04chi; DHf/DHr: Internal calculation; S°: 04chi; V°: Default value; + +1.000VO2+ + 2.000H2O = H2VO4- + 2.000H+ + -llnl_gamma 3.6 + log_k -7.087 + delta_h 47.506 #kJ/mol #97asho/sas + -analytic -1.6588352E+2 -3.4517213E-2 4.0275461E+3 6.3757317E+1 -1.9414525E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +3.000H2AsO3- + 6.000HS- + 9.000H+ = H3As3S6 + 9.000H2O + -llnl_gamma 3.4 + log_k 104.476 + delta_h -520.971 #kJ/mol #Internal calculation + -analytic 5.0101536E+3 8.125097E-1 -2.467788E+5 -1.820706E+3 1.6444457E+7 + #References = LogK/DGf: 05bes/app; DHf/DHr: Internal calculation; S°: 05bes/app; Cp: 05bes/app; V°: 05bes/app; + +1.000H2AsO4- + 1.000H+ = H3AsO4 + -llnl_gamma 3.4 + log_k 2.302 + delta_h 11.056 #kJ/mol #Internal calculation + -analytic 1.6315798E+2 4.072998E-2 -7.3546098E+3 -6.1578275E+1 3.590386E+5 + #References = LogK/DGf: 08per/pok; DHf/DHr: Internal calculation; S°: 08per/pok; Cp: 08per/pok; V°: 08per/pok; + +2.000H2PO4- + 1.000H+ = H3P2O7- + 1.000H2O + -llnl_gamma 3.6 + log_k 0.491 + delta_h 26.523 #kJ/mol #Internal calculation + -analytic 8.0953847E+2 1.2990245E-1 -4.7077964E+4 -2.9196531E+2 2.8953565E+6 + #References = LogK/DGf: 92gre/fug; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000H2PO2- + 1.000H+ = H3PO2 + -llnl_gamma 3.4 + log_k 1.969 + delta_h 4.727 #kJ/mol #97asho/sas + -analytic 6.8841114E+2 1.0842457E-1 -3.7570856E+4 -2.4947114E+2 2.1818456E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 97asho/sas; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000H2PO3- + 1.000H+ = H3PO3 + -llnl_gamma 3.4 + log_k 1.777 + delta_h 4.700 #kJ/mol #97asho/sas + -analytic 7.1612262E+2 1.1249217E-1 -3.9032373E+4 -2.5960307E+2 2.2579858E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 97asho/sas; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000H2PO4- + 1.000H+ = H3PO4 + -llnl_gamma 3.4 + log_k 2.140 + delta_h 8.480 #kJ/mol #92gre/fug + -analytic 7.1025502E+2 1.1203519E-1 -3.9337065E+4 -2.5690201E+2 2.3206641E+6 + #References = LogK/DGf: 92gre/fug; DHf/DHr: 92gre/fug; S°: Internal calculation; Cp: 89bsho/hel; V°: 89bsho/hel; + +1.000VO2+ + 2.000H2O = H3VO4 + 1.000H+ + -llnl_gamma 3.4 + log_k -3.268 + delta_h 35.811 #kJ/mol #97asho/sas + -analytic 3.4737348E+2 4.8356993E-2 -2.0930147E+4 -1.24101E+2 1.0863345E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +2.000H2PO4- + 2.000H+ = H4P2O7 + 1.000H2O + -llnl_gamma 3.4 + log_k 1.491 + delta_h 39.160 #kJ/mol #92gre/fug + -analytic 1.5915746E+3 2.5209768E-1 -9.0201163E+4 -5.7514933E+2 5.3743838E+6 + #References = LogK/DGf: 92gre/fug; DHf/DHr: 92gre/fug; S°: Internal calculation; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Al+3 + 2.000H2O = HAlO2 + 3.000H+ + -llnl_gamma 3.4 + log_k -16.422 + delta_h 144.672 #kJ/mol #Internal calculation + -analytic 3.4561264E+2 6.0310894E-2 -2.5787154E+4 -1.2375721E+2 1.129243E+6 + #References = LogK/DGf: 95pok/hel; DHf/DHr: Internal calculation; S°: 95pok/hel; Cp: 95pok/hel; V°: 95pok/hel; + +3.000H2AsO3- + 6.000HS- + 7.000H+ = HAs3S6-2 + 9.000H2O + -llnl_gamma 4.7 + log_k 92.989 + delta_h -475.787 #kJ/mol #Internal calculation + -analytic 4.0596965E+3 6.6336637E-1 -1.9822099E+5 -1.4758773E+3 1.3539198E+7 + #References = LogK/DGf: 05bes/app; DHf/DHr: Internal calculation; S°: 05bes/app; Cp: 05bes/app; V°: 05bes/app; + +1.000H2AsO4- = HAsO4-2 + 1.000H+ + -llnl_gamma 4.7 + log_k -6.960 + delta_h 4.300 #kJ/mol #Internal calculation + -analytic -7.5496385E+2 -1.2127676E-1 4.1238614E+4 2.724917E+2 -2.5259453E+6 + #References = LogK/DGf: 76bae/mes; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Be+2 + 2.000H2O = HBeO2- + 3.000H+ + -llnl_gamma 3.6 + log_k -23.242 + delta_h 89.448 #kJ/mol #97asho/sas + -analytic -1.2687707E+2 -2.7577326E-2 -1.2642123E+3 4.6771863E+1 3.2277325E+4 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Br- + 1.000H+ = HBr + -llnl_gamma 3.4 + log_k -8.600 + delta_h 73.414 #kJ/mol #18las/bla + -analytic -2.5897713E+2 -2.5546307E-2 9.8674943E+3 9.3502034E+1 -5.7484365E+5 + #References = LogK/DGf: 12liu/bor; DHf/DHr: 18las/bla; S°: Internal calculation; Cp: 18las/bla; V°: 18las/bla; + +1.000BrO- + 1.000H+ = HBrO + -llnl_gamma 3.4 + log_k 8.576 + delta_h -18.890 #kJ/mol #97asho/sas + -analytic 7.2538439E+2 1.148023E-1 -3.88363E+4 -2.6179537E+2 2.4015962E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Cd+2 + 2.000H2O = HCdO2- + 3.000H+ + -llnl_gamma 3.6 + log_k -33.302 + delta_h 156.474 #kJ/mol #Internal calculation + -analytic -3.0951893E+2 -5.4688749E-2 8.3874974E+3 1.1156503E+2 -1.0373718E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Cl- + 1.000H+ = HCl + -llnl_gamma 3.4 + log_k -0.710 + delta_h -12.298 #kJ/mol #Internal calculation + -analytic 4.7680293E+2 9.0812819E-2 -2.5456962E+4 -1.7702289E+2 1.6734984E+6 + #References = LogK/DGf: 97tag/zot; DHf/DHr: Internal calculation; S°: 99aki/zot, d'apres 97tag/zot; Cp: 99aki/zot, d'apres 97tag/zot; V°: 99aki/zot, d'apres 97tag/zot; + +1.000ClO- + 1.000H+ = HClO + -llnl_gamma 3.4 + log_k 7.550 + delta_h -13.281 #kJ/mol #97asho/sas + -analytic 7.2521427E+2 1.147631E-1 -3.9121157E+4 -2.617469E+2 2.4008033E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000ClO2- + 1.000H+ = HClO2 + -llnl_gamma 3.4 + log_k 1.979 + delta_h 14.650 #kJ/mol #97asho/sas + -analytic 7.8823184E+2 1.2433314E-1 -4.4591623E+4 -2.8450217E+2 2.6863984E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000CN- + 1.000H+ = HCN + -llnl_gamma 3.4 + log_k 9.236 + delta_h -43.612 #kJ/mol #93sho/mck + -analytic 6.7984155E+2 1.0836058E-1 -3.6475824E+4 -2.4584018E+2 2.4661309E+6 + #References = LogK/DGf: 93sho/mck; DHf/DHr: Internal calculation; S°: 93sho/mck; Cp: 93sho/mck; V°: 93sho/mck; + +1.000Co+2 + 2.000H2O = HCoO2- + 3.000H+ + -llnl_gamma 3.6 + log_k -31.702 + delta_h 139.444 #kJ/mol #Internal calculation + -analytic -1.5068561E+2 -3.116226E-2 -1.6802729E+3 5.4958317E+1 -1.8494349E+5 + #References = LogK/DGf: 98ply/zha; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Cr+3 + 2.000H2O = HCrO2 + 3.000H+ + -llnl_gamma 3.4 + log_k -16.192 + delta_h 154.241 #kJ/mol #97asho/sas + -analytic 4.1185363E+2 6.4897144E-2 -2.5827678E+4 -1.4869592E+2 6.373717E+5 + #References = LogK/DGf: 87rai/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000CrO4-2 + 1.000H+ = HCrO4- + -llnl_gamma 3.6 + log_k 6.520 + delta_h 7.379 #kJ/mol #97asho/sas + -analytic 8.4378241E+2 1.3502825E-1 -4.7404104E+4 -3.037181E+2 2.9338129E+6 + #References = LogK/DGf: 04chi; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Cu+2 + 2.000H2O = HCuO2- + 3.000H+ + -llnl_gamma 3.6 + log_k -26.602 + delta_h 139.438 #kJ/mol #Internal calculation + -analytic 4.6058039E+1 2.3361402E-3 -7.4761642E+3 -1.8185832E+1 -2.9172674E+5 + #References = LogK/DGf: 07pow/bro; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000F- + 1.000H+ = HF + -llnl_gamma 3.4 + log_k 3.208 + delta_h 13.871 #kJ/mol #89bsho/hel + -analytic 6.6852284E+2 1.0837606E-1 -3.7234833E+4 -2.4152987E+2 2.2142303E+6 + #References = LogK/DGf: 89bsho/hel; DHf/DHr: Internal calculation; S°: 89bsho/hel; Cp: 89bsho/hel; V°: 89bsho/hel; + +2.000F- + 1.000H+ = HF2- + -llnl_gamma 3.6 + log_k 2.630 + delta_h 20.783 #kJ/mol #88sho/hel + -analytic 7.3982947E+2 1.1859444E-1 -4.0367467E+4 -2.6775489E+2 2.2558689E+6 + #References = LogK/DGf: 88sho/hel; DHf/DHr: Internal calculation; S°: 88sho/hel; Cp: 88sho/hel; V°: 88sho/hel; + +1.000Fe+3 + 2.000H2O = HFeO2 + 3.000H+ + -llnl_gamma 3.4 + log_k -14.302 + delta_h 150.625 #kJ/mol #Internal calculation + -analytic 3.2853473E+2 5.0357636E-2 -1.9143962E+4 -1.1889896E+2 5.0313883E+4 + #References = LogK/DGf: 07ste; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Fe+2 + 2.000H2O = HFeO2- + 3.000H+ + -llnl_gamma 3.6 + log_k -31.932 + delta_h 152.121 #kJ/mol #Internal calculation + -analytic -1.7417344E+2 -3.4755142E-2 -2.4333271E+2 6.3714895E+1 -3.7678014E+5 + #References = LogK/DGf: 76bae/mes; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Hf+4 + 1.000H2O = HfO+2 + 2.000H+ + -llnl_gamma 5.7 + log_k -2.404 + delta_h 73.943 #kJ/mol #97asho/sas + -analytic 2.5312717E+2 4.1789098E-2 -1.454566E+4 -9.040826E+1 4.0050254E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Hf+4 + 2.000H2O = HfO2 + 4.000H+ + -llnl_gamma 3.4 + log_k -10.671 + delta_h 101.647 #kJ/mol #97asho/sas + -analytic 6.8189581E+2 1.1294646E-1 -4.0735993E+4 -2.4738855E+2 2.0031066E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Hf+4 + 1.000H2O = HfOH+3 + 1.000H+ + -llnl_gamma 8.2 + log_k -0.205 + delta_h 28.209 #kJ/mol #97asho/sas + -analytic 2.2758035E+2 3.5899887E-2 -1.4701237E+4 -8.0521313E+1 8.9465128E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Hg+2 + 2.000HS- = Hg(HS)2 + -llnl_gamma 3.4 + log_k 39.759 + delta_h -194.111 #kJ/mol #Internal calculation + -analytic 1.5703216E+3 2.4882639E-1 -7.6283746E+4 -5.687585E+2 5.1969628E+6 + #References = LogK/DGf: 05bes/app; DHf/DHr: Internal calculation; S°: 05bes/app; Cp: 05bes/app; V°: 05bes/app; + +1.000Hg+2 + 2.000H2O = Hg(OH)2 + 2.000H+ + -llnl_gamma 3.4 + log_k -6.077 + delta_h 50.266 #kJ/mol #Internal calculation + -analytic 2.971886E+2 4.0966815E-2 -1.7978686E+4 -1.0663777E+2 7.7240412E+5 + #References = LogK/DGf: 05bes/app; DHf/DHr: Internal calculation; S°: 12bla; Cp: 05bes/app; V°: 05bes/app; + +1.000HCO3- + 1.000Hg+2 + 1.000H2O = Hg(OH)CO3- + 2.000H+ + -llnl_gamma 3.6 + log_k -5.095 + #References = LogK/DGf: 05pow/bro; + #References = LogK/DGf: 05pow/bro; V°: Default value; + +1.000Hg2+2 + 1.000H2O = Hg2(OH)+ + 1.000H+ + -llnl_gamma 4.1 + log_k -5.000 + #References = LogK/DGf: 76bae/mes; + #References = LogK/DGf: 76bae/mes; V°: Default value; + +2.000Hg+2 + 1.000H2O = Hg2(OH)+3 + 1.000H+ + -llnl_gamma 8.2 + log_k -3.331 + delta_h 12.803 #kJ/mol #76bae/mes + -analytic 6.0697682E+2 9.0887971E-2 -3.2328388E+4 -2.2128194E+2 1.6508927E+6 + #References = LogK/DGf: 76bae/mes; DHf/DHr: 76bae/mes; S°: Internal calculation; V°: Default value; + +3.000Hg+2 + 3.000H2O = Hg3(OH)3+3 + 3.000H+ + -llnl_gamma 8.2 + log_k -6.420 + #References = LogK/DGf: 76bae/mes; + #References = LogK/DGf: 76bae/mes; V°: Default value; + +1.000Hg+2 + 1.000Cl- = HgCl+ + -llnl_gamma 4.1 + log_k 7.210 + delta_h -32.683 #kJ/mol #Internal calculation + -analytic 8.3901583E+2 1.3660114E-1 -4.5239944E+4 -3.0460502E+2 2.927023E+6 + #References = LogK/DGf: 76bae/mes; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +2.000Cl- + 1.000Hg+2 = HgCl2 + -llnl_gamma 3.4 + log_k 13.980 + delta_h -72.022 #kJ/mol #Internal calculation + -analytic 1.6287495E+3 2.6423846E-1 -8.7764608E+4 -5.9148288E+2 5.7245183E+6 + #References = LogK/DGf: 76bae/mes; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +3.000Cl- + 1.000Hg+2 = HgCl3- + -llnl_gamma 3.6 + log_k 15.060 + delta_h -87.739 #kJ/mol #Internal calculation + -analytic 1.7509092E+3 2.8618938E-1 -9.6316342E+4 -6.3530694E+2 6.5688389E+6 + #References = LogK/DGf: 76bae/mes; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +4.000Cl- + 1.000Hg+2 = HgCl4-2 + -llnl_gamma 4.7 + log_k 15.420 + delta_h -109.352 #kJ/mol #Internal calculation + -analytic 1.6653853E+3 2.7781516E-1 -9.2970467E+4 -6.0481422E+2 6.7205177E+6 + #References = LogK/DGf: 76bae/mes; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000HCO3- + 1.000Hg+2 = HgCO3 + 1.000H+ + -llnl_gamma 3.4 + log_k 1.050 + #References = LogK/DGf: 05pow/bro; + #References = LogK/DGf: 05pow/bro; V°: Default value; + +1.000F- + 1.000Hg+2 = HgF+ + -llnl_gamma 4.1 + log_k 1.667 + delta_h -0.202 #kJ/mol #97sve/sho + -analytic 8.7968293E+2 1.4114324E-1 -4.9515548E+4 -3.1880911E+2 3.0980174E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000HCO3- + 1.000Hg+2 = HgHCO3+ + -llnl_gamma 4.1 + log_k 5.380 + #References = LogK/DGf: 05pow/bro; + #References = LogK/DGf: 05pow/bro; V°: Default value; + +1.000Hg+2 + 1.000H2PO4- = HgHPO4 + 1.000H+ + -llnl_gamma 3.4 + log_k 1.587 + #References = LogK/DGf: 05pow/bro; + #References = LogK/DGf: 05pow/bro; V°: Default value; + +1.000Hg+2 + 1.000H2O = HgOH+ + 1.000H+ + -llnl_gamma 4.1 + log_k -3.401 + delta_h 30.174 #kJ/mol #Internal calculation + -analytic 2.7849935E+2 4.2311865E-2 -1.7809238E+4 -9.9688771E+1 1.0569599E+6 + #References = LogK/DGf: 76bae/mes; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Hg+2 + 1.000Cl- + 1.000H2O = HgOHCl + 1.000H+ + -llnl_gamma 3.4 + log_k 4.059 + delta_h 0.005 #kJ/mol #76bae/mes + -analytic 9.6186198E+2 1.4814612E-1 -5.1533752E+4 -3.4834297E+2 2.9178616E+6 + #References = LogK/DGf: 76bae/mes; DHf/DHr: 76bae/mes; S°: Internal calculation; V°: Default value; + +1.000Hg+2 + 1.000H2PO4- = HgPO4- + 2.000H+ + -llnl_gamma 3.6 + log_k -3.962 + #References = LogK/DGf: 05pow/bro; + #References = LogK/DGf: 05pow/bro; V°: Default value; + +1.000Hg+2 + 2.000HS- = HgS(HS)- + 1.000H+ + -llnl_gamma 3.6 + log_k 33.628 + delta_h -176.127 #kJ/mol #Internal calculation + -analytic 1.0519009E+3 1.6731094E-1 -4.8800006E+4 -3.8143256E+2 3.4978736E+6 + #References = LogK/DGf: 05bes/app; DHf/DHr: Internal calculation; S°: 05bes/app; Cp: 05bes/app; V°: 05bes/app; + +1.000Hg+2 + 2.000HS- = HgS2-2 + 2.000H+ + -llnl_gamma 4.7 + log_k 25.328 + #References = LogK/DGf: 63sch/wid; + #References = LogK/DGf: 63sch/wid; V°: Default value; + +1.000Hg + 1.000HSO5- + 1.000H+ = HgSO4 + 1.000H2O + -llnl_gamma 3.4 + log_k 39.255 + #References = LogK/DGf: 05pow/bro; + #References = LogK/DGf: 05pow/bro; V°: Default value; + +1.000Hf+4 + 2.000H2O = HHfO2+ + 3.000H+ + -llnl_gamma 4.1 + log_k -5.980 + delta_h 67.509 #kJ/mol #97asho/sas + -analytic 6.5804843E+2 1.0343865E-1 -4.0925588E+4 -2.3620182E+2 2.387873E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Hf+4 + 3.000H2O = HHfO3- + 5.000H+ + -llnl_gamma 3.6 + log_k -17.180 + delta_h 131.409 #kJ/mol #97asho/sas + -analytic 1.5398918E+2 1.91636E-2 -1.5488751E+4 -5.2861288E+1 5.2167683E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Hg+2 + 2.000H2O = HHgO2- + 3.000H+ + -llnl_gamma 3.6 + log_k -21.102 + delta_h 92.387 #kJ/mol #Internal calculation + -analytic -3.5527596E+2 -6.25913E-2 1.6060615E+4 1.275503E+2 -1.4798029E+6 + #References = LogK/DGf: 76bae/mes; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000In+3 + 2.000H2O = HInO2 + 3.000H+ + -llnl_gamma 3.4 + log_k -12.431 + delta_h 141.752 #kJ/mol #97asho/sas + -analytic 2.9395295E+2 4.4420963E-2 -1.6132337E+4 -1.065324E+2 -1.6997303E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000IO- + 1.000H+ = HIO + -llnl_gamma 3.4 + log_k 10.629 + delta_h -30.480 #kJ/mol #97asho/sas + -analytic 6.4142751E+2 1.020626E-1 -3.3047675E+4 -2.3170778E+2 2.0409305E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000IO3- + 1.000H+ = HIO3 + -llnl_gamma 3.4 + log_k 0.806 + delta_h 9.868 #kJ/mol #97asho/sas + -analytic 7.165435E+2 1.1308494E-1 -4.0076773E+4 -2.5940292E+2 2.3859256E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Mn+2 + 2.000H2O = HMnO2- + 3.000H+ + -llnl_gamma 3.6 + log_k -34.787 + delta_h 165.700 #kJ/mol #97asho/sas + -analytic -2.9963926E+2 -5.2516471E-2 7.7242198E+3 1.0769592E+2 -1.0563926E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000MoO4-2 + 1.000H+ = HMoO4- + -llnl_gamma 3.6 + log_k 4.398 + delta_h 4.211 #kJ/mol #97asho/sas + -analytic 7.9783743E+2 1.285935E-1 -4.5529953E+4 -2.8764197E+2 2.9050307E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.666666666666667N2 + 0.666666666666667NO2- + 0.666666666666667H2O = HN2O2- + 0.333333333333333H+ + -llnl_gamma 3.6 + log_k -42.676 + delta_h 228.610 #kJ/mol #97asho/sas + -analytic -2.2857803E+2 -3.9101606E-2 7.0800973E+2 8.2558503E+1 -8.0898012E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000NbO3- + 1.000H+ = HNbO3 + -llnl_gamma 3.4 + log_k 7.110 + delta_h -5.781 #kJ/mol #97asho/sas + -analytic 9.7365947E+2 1.5468696E-1 -5.4364891E+4 -3.5110732E+2 3.4191631E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Ni+2 + 2.000H2O = HNiO2- + 3.000H+ + -llnl_gamma 3.6 + log_k -31.502 + delta_h 128.446 #kJ/mol #Internal calculation + -analytic -1.1258582E+2 -2.5264697E-2 -4.274717E+3 4.1154062E+1 9.963932E+4 + #References = LogK/DGf: 12bla; DHf/DHr: Internal calculation; S°: 12coo/oli; Cp: 97asho/sas; V°: 97asho/sas; + +1.000NO2- + 1.000H+ = HNO2 + -llnl_gamma 3.4 + log_k 3.225 + delta_h -14.668 #kJ/mol #97asho/sas + -analytic 6.4401715E+2 1.0196656E-1 -3.4771091E+4 -2.3381642E+2 2.1328223E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000NO3- + 1.000H+ = HNO3 + -llnl_gamma 3.4 + log_k -1.303 + delta_h 16.890 #kJ/mol #97asho/sas + -analytic 7.1469352E+2 1.122887E-1 -4.0454469E+4 -2.5890316E+2 2.3867006E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Cl- + 1.000Ho+3 = HoCl+2 + -llnl_gamma 5.7 + log_k 0.248 + delta_h 14.019 #kJ/mol #95haa/sho + -analytic 8.309322E+2 1.3592251E-1 -4.7056051E+4 -3.0142496E+2 2.8866799E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +2.000Cl- + 1.000Ho+3 = HoCl2+ + -llnl_gamma 4.1 + log_k -0.018 + delta_h 17.744 #kJ/mol #95haa/sho + -analytic 1.6029986E+3 2.6130038E-1 -8.9032768E+4 -5.8291199E+2 5.3400293E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +3.000Cl- + 1.000Ho+3 = HoCl3 + -llnl_gamma 3.4 + log_k -0.429 + delta_h 9.832 #kJ/mol #95haa/sho + -analytic 2.3394977E+3 3.8054592E-1 -1.2692221E+5 -8.5313943E+2 7.4092857E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +4.000Cl- + 1.000Ho+3 = HoCl4- + -llnl_gamma 3.6 + log_k -0.841 + delta_h -12.427 #kJ/mol #95haa/sho + -analytic 2.2089312E+3 3.5855722E-1 -1.1752417E+5 -8.0770442E+2 6.7659988E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 1.000Ho+3 = HoCO3+ + 1.000H+ + -llnl_gamma 4.1 + log_k -2.243 + delta_h -7.432 #kJ/mol #95haa/sho + -analytic 7.2948E+2 1.1872233E-1 -3.6463468E+4 -2.6909319E+2 1.8696978E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000F- + 1.000Ho+3 = HoF+2 + -llnl_gamma 5.7 + log_k 4.775 + delta_h 22.390 #kJ/mol #95haa/sho + -analytic 9.2355918E+2 1.492425E-1 -5.2178487E+4 -3.3290731E+2 3.1543027E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +2.000F- + 1.000Ho+3 = HoF2+ + -llnl_gamma 4.1 + log_k 8.377 + delta_h 11.307 #kJ/mol #95haa/sho + -analytic 1.7668602E+3 2.8395888E-1 -9.756201E+4 -6.393358E+2 5.8735454E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +3.000F- + 1.000Ho+3 = HoF3 + -llnl_gamma 3.4 + log_k 11.026 + delta_h -13.048 #kJ/mol #95haa/sho + -analytic 2.5885746E+3 4.1573691E-1 -1.3948256E+5 -9.4019374E+2 8.2470724E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +4.000F- + 1.000Ho+3 = HoF4- + -llnl_gamma 3.6 + log_k 13.163 + delta_h -57.927 #kJ/mol #95haa/sho + -analytic 2.595255E+3 4.1115554E-1 -1.3747819E+5 -9.4382429E+2 8.1655191E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Ho+3 + 1.000H2PO4- = HoH2PO4+2 + -llnl_gamma 5.7 + log_k 1.037 + delta_h -7.549 #kJ/mol #95haa/sho + -analytic 8.6398498E+2 1.3798195E-1 -4.9561363E+4 -3.1290174E+2 3.2354358E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 1.000Ho+3 = HoHCO3+2 + -llnl_gamma 5.7 + log_k 1.716 + delta_h 7.399 #kJ/mol #95haa/sho + -analytic 8.740355E+2 1.4007946E-1 -5.0409724E+4 -3.1571701E+2 3.2189804E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Ho+3 + 1.000NO3- = HoNO3+2 + -llnl_gamma 5.7 + log_k 0.215 + delta_h -29.818 #kJ/mol #95haa/sho + -analytic 7.9393439E+2 1.2608575E-1 -4.4812596E+4 -2.8888825E+2 3.0068428E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Ho+3 + 1.000H2O = HoO+ + 2.000H+ + -llnl_gamma 4.1 + log_k -16.038 + delta_h 145.778 #kJ/mol #95haa/sho + -analytic 2.2407397E+2 3.6160052E-2 -1.5435642E+4 -8.0847231E+1 8.2668698E+4 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Ho+3 + 2.000H2O = HoO2- + 4.000H+ + -llnl_gamma 3.6 + log_k -33.468 + delta_h 254.473 #kJ/mol #95haa/sho + -analytic -1.5775613E+2 -2.9424924E-2 7.2063971E+2 5.8902822E+1 -1.3428981E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Ho+3 + 2.000H2O = HoO2H + 3.000H+ + -llnl_gamma 3.4 + log_k -24.525 + delta_h 216.527 #kJ/mol #95haa/sho + -analytic 2.603044E+2 3.8111555E-2 -1.7689378E+4 -9.407076E+1 -3.6358229E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Ho+3 + 1.000H2O = HoOH+2 + 1.000H+ + -llnl_gamma 5.7 + log_k -7.755 + delta_h 79.039 #kJ/mol #95haa/sho + -analytic 1.7051224E+2 2.6095428E-2 -1.2060168E+4 -6.0480107E+1 3.6062857E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Ho+3 + 1.000SO4-2 = HoSO4+ + -llnl_gamma 4.1 + log_k 3.649 + delta_h 20.183 #kJ/mol #95haa/sho + -analytic 1.6455968E+3 2.6077336E-1 -8.9276752E+4 -5.9705121E+2 5.0760809E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +2.000H2PO4- = HP2O7-3 + 1.000H2O + 1.000H+ + -llnl_gamma 6.7 + log_k -8.409 + delta_h 27.426 #kJ/mol #Internal calculation + -analytic -5.6732929E+2 -9.3832759E-2 2.7021233E+4 2.0729311E+2 -1.4815617E+6 + #References = LogK/DGf: 92gre/fug; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Pb+2 + 2.000H2O = HPbO2- + 3.000H+ + -llnl_gamma 3.6 + log_k -27.202 + delta_h 130.486 #kJ/mol #Internal calculation + -analytic -3.6756019E+2 -6.4891308E-2 1.6117043E+4 1.3143972E+2 -1.7414527E+6 + #References = LogK/DGf: 06bla/pia; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000H2PO3- = HPO3-2 + 1.000H+ + -llnl_gamma 4.7 + log_k -6.144 + delta_h 0.516 #kJ/mol #97asho/sas + -analytic -7.7016322E+2 -1.2356824E-1 4.2208561E+4 2.7809446E+2 -2.563151E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 97asho/sas; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000F- + 1.000H2PO4- + 1.000H+ = HPO3F- + 1.000H2O + -llnl_gamma 3.6 + log_k 2.919 + #References = LogK/DGf: 82wag/eva; + #References = LogK/DGf: 82wag/eva; V°: Default value; + +1.000H2PO4- = HPO4-2 + 1.000H+ + -llnl_gamma 4.0 + log_k -7.212 + delta_h 3.600 #kJ/mol #89cox/wag + -analytic -7.466061E+2 -1.2024182E-1 4.0983107E+4 2.6925857E+2 -2.5313893E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 97asho/sas; V°: 97asho/sas; + +1.000S2O3-2 + 1.000H+ = HS2O3- + -llnl_gamma 3.6 + log_k 1.720 + delta_h 8.253 #kJ/mol #Internal calculation + -analytic 7.6374275E+2 1.2282727E-1 -4.3349734E+4 -2.7623629E+2 2.6917567E+6 + #References = LogK/DGf: 04chi; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000S2O4-2 + 1.000H+ = HS2O4- + -llnl_gamma 3.6 + log_k 2.500 + delta_h 3.818 #kJ/mol #Internal calculation + -analytic 7.6785921E+2 1.2335334E-1 -4.3510905E+4 -2.7760746E+2 2.7308809E+6 + #References = LogK/DGf: 04chi; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +4.000HS- + 2.000Sb(OH)3 + 3.000H+ = HSb2S4- + 6.000H2O + -llnl_gamma 3.6 + log_k 53.028 + delta_h -302.105 #kJ/mol #Internal calculation + -analytic 2.0735093E+3 3.4443133E-1 -9.5834763E+4 -7.5796985E+2 6.5607411E+6 + #References = LogK/DGf: 05bes/app; DHf/DHr: Internal calculation; S°: 05bes/app; Cp: 05bes/app; V°: 05bes/app; + +1.000Sc+3 + 2.000H2O = HScO2 + 3.000H+ + -llnl_gamma 3.4 + log_k -16.096 + delta_h 164.044 #kJ/mol #97asho/sas + -analytic 2.8354404E+2 4.2565645E-2 -1.6343969E+4 -1.0286017E+2 -2.659603E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000SeO3-2 + 1.000H+ = HSeO3- + -llnl_gamma 3.6 + log_k 7.286 + delta_h -5.164 #kJ/mol #97asho/sas + -analytic 7.9466768E+2 1.2793535E-1 -4.4347573E+4 -2.8632224E+2 2.8181559E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000SeO4-2 + 1.000H+ = HSeO4- + -llnl_gamma 3.6 + log_k 1.906 + delta_h 17.563 #kJ/mol #97asho/sas + -analytic 7.9284475E+2 1.2748453E-1 -4.5582806E+4 -2.8605958E+2 2.8243941E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000H4SiO4 = HSiO3- + 1.000H2O + 1.000H+ + -llnl_gamma 3.6 + log_k -9.819 + delta_h 26.884 #kJ/mol #Internal calculation + -analytic -1.8375672E+2 -5.0579914E-2 4.6983651E+3 7.0958395E+1 -2.0642699E+5 + #References = LogK/DGf: 01fel/cho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Sn+2 + 2.000H2O = HSnO2- + 3.000H+ + -llnl_gamma 3.6 + log_k -16.587 + delta_h 69.671 #kJ/mol #97asho/sas + -analytic -3.493042E+2 -6.1507829E-2 1.6925159E+4 1.2555105E+2 -1.4559988E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000SO3-2 + 1.000H+ = HSO3- + -llnl_gamma 4.2 + log_k 7.170 + delta_h 3.667 #kJ/mol #Internal calculation + -analytic 8.1037351E+2 1.3067603E-1 -4.535994E+4 -2.9173714E+2 2.8319627E+6 + #References = LogK/DGf: 04chi; DHf/DHr: Internal calculation; S°: 04chi; Cp: 97asho/sas; V°: 97asho/sas; + +1.000SO4-2 + 1.000H+ = HSO4- + -llnl_gamma 3.6 + log_k 1.982 + delta_h 22.440 #kJ/mol #04chi + -analytic 8.1698008E+2 1.2949832E-1 -4.7437431E+4 -2.9402094E+2 2.9364246E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 04chi; S°: 04chi; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Tl+3 + 2.000H2O = HTlO2 + 3.000H+ + -llnl_gamma 3.4 + log_k -3.302 + delta_h 100.748 #kJ/mol #Internal calculation + -analytic 1.4438534E+2 1.8619426E-2 -2.2648729E+3 -5.3249839E+1 -1.2337586E+6 + #References = LogK/DGf: 81tur/whi; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000U+4 + 2.000H2O = HUO2+ + 3.000H+ + -llnl_gamma 4.1 + log_k -4.991 + delta_h 96.790 #kJ/mol #97bsho/sas + -analytic 4.2213458E+2 6.7242242E-2 -2.4043395E+4 -1.5172768E+2 7.9192177E+5 + #References = LogK/DGf: 97bsho/sas; DHf/DHr: Internal calculation; S°: 97bsho/sas; Cp: 97bsho/sas; V°: 97bsho/sas; + +1.000U+3 + 2.000H2O = HUO2 + 3.000H+ + -llnl_gamma 3.4 + log_k -21.190 + delta_h 202.729 #kJ/mol #97bsho/sas + -analytic 2.0720196E+2 2.8823161E-2 -1.2882635E+4 -7.4999805E+1 -7.28472E+5 + #References = LogK/DGf: 97bsho/sas; DHf/DHr: Internal calculation; S°: 97bsho/sas; Cp: 97bsho/sas; V°: 97bsho/sas; + +1.000U+4 + 3.000H2O = HUO3- + 5.000H+ + -llnl_gamma 3.6 + log_k -16.557 + delta_h 104.650 #kJ/mol #97bsho/sas + -analytic 1.8339274E+2 2.3291824E-2 -1.678554E+4 -6.4303956E+1 7.5744435E+5 + #References = LogK/DGf: 97bsho/sas; DHf/DHr: Internal calculation; S°: 97bsho/sas; Cp: 97bsho/sas; V°: 97bsho/sas; + +1.000UO2+2 + 2.000H2O = HUO4- + 3.000H+ + -llnl_gamma 3.6 + log_k -19.233 + delta_h 72.175 #kJ/mol #97bsho/sas + -analytic -3.1939827E+2 -5.428582E-2 1.3137453E+4 1.146927E+2 -1.0233544E+6 + #References = LogK/DGf: 97bsho/sas; DHf/DHr: Internal calculation; S°: 97bsho/sas; Cp: 97bsho/sas; V°: 97bsho/sas; + +1.000VO2+ + 2.000H2O = HVO4-2 + 3.000H+ + -llnl_gamma 4.7 + log_k -15.143 + delta_h 62.301 #kJ/mol #97asho/sas + -analytic -6.2765274E+2 -1.1126012E-1 2.3415516E+4 2.3346197E+2 -9.3695934E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000WO4-2 + 1.000H+ = HWO4- + -llnl_gamma 3.6 + log_k 3.592 + delta_h 6.318 #kJ/mol #97asho/sas + -analytic 7.9451317E+2 1.2806542E-1 -4.5447474E+4 -2.8660145E+2 2.8893928E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Y+3 + 2.000H2O = HYO2 + 3.000H+ + -llnl_gamma 3.4 + log_k -25.991 + delta_h 221.152 #kJ/mol #97asho/sas + -analytic 2.6793461E+2 3.9922729E-2 -1.8227636E+4 -9.7265274E+1 -3.5702822E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Zn+2 + 2.000H2O = HZnO2- + 3.000H+ + -llnl_gamma 3.6 + log_k -28.140 + delta_h 144.668 #kJ/mol #14aki/tag + -analytic -2.8915838E+2 -5.200839E-2 8.6724758E+3 1.0491204E+2 -1.0810376E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 14aki/tag; S°: 14aki/tag; Cp: 14aki/tag; V°: 14aki/tag; + +1.000ZrO+2 + 1.000H2O = HZrO2+ + 1.000H+ + -llnl_gamma 4.1 + log_k -3.357 + delta_h 2.913 #kJ/mol #97asho/sas + -analytic 3.5560139E+2 5.4759312E-2 -2.3278403E+4 -1.2787202E+2 1.706986E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000ZrO+2 + 2.000H2O = HZrO3- + 3.000H+ + -llnl_gamma 3.6 + log_k -14.263 + delta_h 65.514 #kJ/mol #97asho/sas + -analytic -1.218036E+2 -2.6025908E-2 6.8865585E+2 4.5970138E+1 -6.7540487E+4 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Cl- + 1.000In+3 = InCl+2 + -llnl_gamma 5.7 + log_k 3.272 + delta_h -5.365 #kJ/mol #97sve/sho + -analytic 8.0564469E+2 1.3148007E-1 -4.3715289E+4 -2.9287704E+2 2.6449007E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000F- + 1.000In+3 = InF+2 + -llnl_gamma 5.7 + log_k 4.640 + delta_h 26.865 #kJ/mol #97sve/sho + -analytic 8.9887292E+2 1.4513136E-1 -4.9986234E+4 -3.2431973E+2 2.9031673E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000In+3 + 1.000H2O = InO+ + 2.000H+ + -llnl_gamma 4.1 + log_k -7.828 + delta_h 99.167 #kJ/mol #97asho/sas + -analytic 2.0224088E+2 3.2825218E-2 -1.137909E+4 -7.3174996E+1 -5.5401319E+4 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000In+3 + 2.000H2O = InO2- + 4.000H+ + -llnl_gamma 3.6 + log_k -22.033 + delta_h 182.466 #kJ/mol #97asho/sas + -analytic -1.6540867E+2 -3.0638101E-2 4.1319219E+3 6.1725725E+1 -1.2520057E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000In+3 + 1.000H2O = InOH+2 + 1.000H+ + -llnl_gamma 5.7 + log_k -4.016 + delta_h 24.892 #kJ/mol #97asho/sas + -analytic 2.0215457E+2 3.0376701E-2 -1.2788621E+4 -7.2869098E+1 7.0895805E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Al+3 + 1.000K+ + 2.000H2O = KAlO2 + 4.000H+ + -llnl_gamma 3.4 + log_k -24.224 + delta_h 211.675 #kJ/mol #97apok/hel + -analytic 6.4898432E+2 9.8197261E-2 -4.4681059E+4 -2.3170404E+2 1.841148E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 97apok/hel; S°: 97apok/hel; Cp: 97apok/hel; V°: 97apok/hel; + +1.000H2AsO4- + 1.000K+ = KAsO4-2 + 2.000H+ + -llnl_gamma 4.7 + log_k -14.003 + delta_h 119.613 #kJ/mol #Internal calculation + -analytic -2.5155995E+2 -5.1873394E-2 1.0009804E+4 9.4532025E+1 -1.2856822E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000Br- + 1.000K+ = KBr + -llnl_gamma 3.4 + log_k -1.746 + delta_h 14.345 #kJ/mol #97sve/sho + -analytic 6.5418733E+2 1.0441228E-1 -3.6116244E+4 -2.3806364E+2 2.0573498E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Cl- + 1.000K+ = KCl + -llnl_gamma 3.4 + log_k -0.500 + delta_h 4.180 #kJ/mol #97smi/mar + -analytic 7.8954315E+2 1.2046911E-1 -4.4722195E+4 -2.8553339E+2 2.7176259E+6 + #References = LogK/DGf: 97smi/mar; DHf/DHr: 97smi/mar; S°: Internal calculation; Cp: 97bpok/hel; V°: 97bpok/hel; + +1.000H2AsO4- + 1.000K+ = KH2AsO4 + -llnl_gamma 3.4 + log_k -1.903 + delta_h 13.748 #kJ/mol #Internal calculation + -analytic 6.6054606E+2 1.0281261E-1 -3.6976883E+4 -2.3970458E+2 2.1380303E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000K+ + 1.000H2PO4- = KH2PO4 + -llnl_gamma 3.4 + log_k 0.440 + #References = LogK/DGf: 97smi/mar; + #References = LogK/DGf: 97smi/mar; V°: Default value; + +1.000H2AsO4- + 1.000K+ = KHAsO4- + 1.000H+ + -llnl_gamma 3.6 + log_k -6.434 + delta_h 9.920 #kJ/mol #Internal calculation + -analytic 1.4673963E+2 1.732212E-2 -8.6601791E+3 -5.4068442E+1 3.9976775E+5 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000K+ + 1.000H2PO4- = KHPO4- + 1.000H+ + -llnl_gamma 3.6 + log_k -6.432 + delta_h 31.590 #kJ/mol #97smi/mar + -analytic 8.4152475E+2 1.2701276E-1 -4.7518124E+4 -3.0549408E+2 2.6202354E+6 + #References = LogK/DGf: 89mar/smi; DHf/DHr: 97smi/mar; S°: Internal calculation; V°: Default value; + +1.000I- + 1.000K+ = KI + -llnl_gamma 3.4 + log_k -1.606 + delta_h 8.560 #kJ/mol #97sve/sho + -analytic 6.1043989E+2 9.8873976E-2 -3.3332222E+4 -2.2276046E+2 1.9092154E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000K+ + 1.000H2O = KOH + 1.000H+ + -llnl_gamma 3.4 + log_k -14.461 + delta_h 66.438 #kJ/mol #Internal calculation + -analytic 1.4239065E+2 1.6361293E-2 -1.1313422E+4 -5.1781943E+1 3.8638962E+5 + #References = LogK/DGf: 76bae/mes; DHf/DHr: Internal calculation; S°: 97apok/hel; Cp: 97apok/hel; V°: 97apok/hel; + +1.000K+ + 2.000H2PO4- = KP2O7-3 + 1.000H2O + 2.000H+ + -llnl_gamma 6.7 + log_k -15.709 + delta_h 39.592 #kJ/mol #76smi/mar + -analytic 1.6687934E+3 2.5762544E-1 -9.3691143E+4 -6.0894907E+2 5.3098665E+6 + #References = LogK/DGf: 76smi/mar; DHf/DHr: 76smi/mar; S°: Internal calculation; V°: Default value; + +1.000K+ + 1.000H2PO4- = KPO4-2 + 2.000H+ + -llnl_gamma 4.7 + log_k -18.260 + #References = LogK/DGf: 97smi/mar; + #References = LogK/DGf: 97smi/mar; V°: Default value; + +1.000K+ + 1.000SO4-2 = KSO4- + -llnl_gamma 3.6 + log_k 0.880 + delta_h 2.949 #kJ/mol #Internal calculation + -analytic 9.1524972E+2 1.434877E-1 -5.1253575E+4 -3.315177E+2 3.1178195E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Cl- + 1.000La+3 = LaCl+2 + -llnl_gamma 5.7 + log_k 0.321 + delta_h 14.100 #kJ/mol #95haa/sho + -analytic 8.1634992E+2 1.3260344E-1 -4.6231329E+4 -2.9593873E+2 2.8247841E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +2.000Cl- + 1.000La+3 = LaCl2+ + -llnl_gamma 4.1 + log_k -0.018 + delta_h 19.241 #kJ/mol #95haa/sho + -analytic 1.5772265E+3 2.5601738E-1 -8.725879E+4 -5.7351329E+2 5.1747592E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +3.000Cl- + 1.000La+3 = LaCl3 + -llnl_gamma 3.4 + log_k -0.356 + delta_h 12.158 #kJ/mol #95haa/sho + -analytic 2.2943766E+3 3.7167037E-1 -1.2361533E+5 -8.3685398E+2 7.0938925E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +4.000Cl- + 1.000La+3 = LaCl4- + -llnl_gamma 3.6 + log_k -0.768 + delta_h -7.980 #kJ/mol #95haa/sho + -analytic 2.1478018E+3 3.4713233E-1 -1.1261389E+5 -7.8597533E+2 6.2657631E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 1.000La+3 = LaCO3+ + 1.000H+ + -llnl_gamma 4.1 + log_k -3.195 + delta_h -1.369 #kJ/mol #95haa/sho + -analytic 8.8069985E+2 1.3716892E-1 -4.6016324E+4 -3.2253412E+2 2.4567447E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000F- + 1.000La+3 = LaF+2 + -llnl_gamma 5.7 + log_k 3.895 + delta_h 26.413 #kJ/mol #95haa/sho + -analytic 9.0881585E+2 1.4587257E-1 -5.1579298E+4 -3.2743797E+2 3.0943233E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +2.000F- + 1.000La+3 = LaF2+ + -llnl_gamma 4.1 + log_k 6.765 + delta_h 19.514 #kJ/mol #95haa/sho + -analytic 1.7394142E+3 2.784031E-1 -9.6089752E+4 -6.2946264E+2 5.7065496E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +3.000F- + 1.000La+3 = LaF3 + -llnl_gamma 3.4 + log_k 8.827 + delta_h -0.995 #kJ/mol #95haa/sho + -analytic 2.5428838E+3 4.0686124E-1 -1.3668365E+5 -9.2390776E+2 7.9316731E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +4.000F- + 1.000La+3 = LaF4- + -llnl_gamma 3.6 + log_k 10.524 + delta_h -41.617 #kJ/mol #95haa/sho + -analytic 2.5159075E+3 3.969999E-1 -1.3224947E+5 -9.1569334E+2 7.6129444E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000La+3 + 1.000H2PO4- = LaH2PO4+2 + -llnl_gamma 5.7 + log_k 1.330 + delta_h -7.975 #kJ/mol #95haa/sho + -analytic 8.4941099E+2 1.3470811E-1 -4.8689854E+4 -3.0739008E+2 3.1716089E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 1.000La+3 = LaHCO3+2 + -llnl_gamma 5.7 + log_k 2.009 + delta_h 6.972 #kJ/mol #95haa/sho + -analytic 8.6124314E+2 1.3701914E-1 -4.9646784E+4 -3.1083503E+2 3.1619943E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000La+3 + 1.000NO3- = LaNO3+2 + -llnl_gamma 5.7 + log_k 0.581 + delta_h -29.415 #kJ/mol #95haa/sho + -analytic 7.7848056E+2 1.2273421E-1 -4.3906053E+4 -2.8300449E+2 2.9375084E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000La+3 + 1.000H2O = LaO+ + 2.000H+ + -llnl_gamma 4.1 + log_k -18.163 + delta_h 159.159 #kJ/mol #95haa/sho + -analytic 2.2239703E+2 3.5067195E-2 -1.6212712E+4 -7.9912578E+1 9.7837946E+4 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000La+3 + 2.000H2O = LaO2- + 4.000H+ + -llnl_gamma 3.6 + log_k -40.798 + delta_h 298.184 #kJ/mol #95haa/sho + -analytic -1.7159293E+2 -3.2272206E-2 -7.3662721E+2 6.4124208E+1 -1.4030409E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000La+3 + 2.000H2O = LaO2H + 3.000H+ + -llnl_gamma 3.4 + log_k -27.897 + delta_h 237.270 #kJ/mol #95haa/sho + -analytic 2.4275405E+2 3.4272614E-2 -1.7828479E+4 -8.7402792E+1 -4.2667646E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000La+3 + 1.000H2O = LaOH+2 + 1.000H+ + -llnl_gamma 5.7 + log_k -8.634 + delta_h 85.057 #kJ/mol #95haa/sho + -analytic 1.6651917E+2 2.4643621E-2 -1.234983E+4 -5.8705719E+1 3.7194078E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000La+3 + 1.000SO4-2 = LaSO4+ + -llnl_gamma 4.1 + log_k 3.723 + delta_h 18.143 #kJ/mol #95haa/sho + -analytic 1.6377681E+3 2.572115E-1 -8.8909314E+4 -5.9381884E+2 5.0523657E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Cl- + 1.000Li+ = LiCl + -llnl_gamma 3.4 + log_k -1.499 + delta_h 4.704 #kJ/mol #97sve/sho + -analytic 7.6754981E+2 1.2375957E-1 -4.2240117E+4 -2.7980277E+2 2.4961357E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Li+ + 1.000H2O = LiOH + 1.000H+ + -llnl_gamma 3.4 + log_k -13.643 + delta_h 56.014 #kJ/mol #97asho/sas + -analytic 1.189022E+2 1.669755E-2 -8.4427854E+3 -4.4932738E+1 1.757402E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Cl- + 1.000Lu+3 = LuCl+2 + -llnl_gamma 5.7 + log_k -0.045 + delta_h 13.572 #kJ/mol #95haa/sho + -analytic 8.3064858E+2 1.3557662E-1 -4.7247523E+4 -3.0126661E+2 2.9172513E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +2.000Cl- + 1.000Lu+3 = LuCl2+ + -llnl_gamma 4.1 + log_k -0.604 + delta_h 15.727 #kJ/mol #95haa/sho + -analytic 1.6101226E+3 2.6205139E-1 -8.9751122E+4 -5.8552003E+2 5.4225656E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +3.000Cl- + 1.000Lu+3 = LuCl3 + -llnl_gamma 3.4 + log_k -1.162 + delta_h 3.412 #kJ/mol #95haa/sho + -analytic 2.3529274E+3 3.8350168E-1 -1.2778178E+5 -8.5856737E+2 7.5221913E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +4.000Cl- + 1.000Lu+3 = LuCl4- + -llnl_gamma 3.6 + log_k -1.721 + delta_h -25.993 #kJ/mol #95haa/sho + -analytic 2.2401583E+3 3.6276449E-1 -1.1968401E+5 -8.1942912E+2 7.02335E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 1.000Lu+3 = LuCO3+ + 1.000H+ + -llnl_gamma 4.1 + log_k -2.023 + delta_h -11.057 #kJ/mol #95haa/sho + -analytic 9.2406266E+2 1.4413121E-1 -4.7864568E+4 -3.3852843E+2 2.5909836E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000F- + 1.000Lu+3 = LuF+2 + -llnl_gamma 5.7 + log_k 4.848 + delta_h 25.714 #kJ/mol #95haa/sho + -analytic 9.2299835E+2 1.4904399E-1 -5.2422765E+4 -3.3237886E+2 3.1725262E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +2.000F- + 1.000Lu+3 = LuF2+ + -llnl_gamma 4.1 + log_k 8.524 + delta_h 14.338 #kJ/mol #95haa/sho + -analytic 1.7748057E+3 2.8514005E-1 -9.8383425E+4 -6.4182001E+2 5.9403007E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +3.000F- + 1.000Lu+3 = LuF3 + -llnl_gamma 3.4 + log_k 11.219 + delta_h -12.652 #kJ/mol #95haa/sho + -analytic 2.6041242E+3 4.1869268E-1 -1.4069815E+5 -9.4562169E+2 8.3599781E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +4.000F- + 1.000Lu+3 = LuF4- + -llnl_gamma 3.6 + log_k 13.456 + delta_h -64.092 #kJ/mol #95haa/sho + -analytic 2.6641587E+3 4.213141E-1 -1.4179985E+5 -9.6851144E+2 8.5159719E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Lu+3 + 1.000H2PO4- = LuH2PO4+2 + -llnl_gamma 5.7 + log_k 1.183 + delta_h -13.375 #kJ/mol #95haa/sho + -analytic 8.6590301E+2 1.3785804E-1 -4.9658355E+4 -3.1366862E+2 3.2788531E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 1.000Lu+3 = LuHCO3+2 + -llnl_gamma 5.7 + log_k 1.936 + delta_h 1.528 #kJ/mol #95haa/sho + -analytic 8.6599382E+2 1.3847482E-1 -4.9953347E+4 -3.1285684E+2 3.2307152E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Lu+3 + 1.000NO3- = LuNO3+2 + -llnl_gamma 5.7 + log_k 0.581 + delta_h -41.640 #kJ/mol #95haa/sho + -analytic 8.019714E+2 1.2673884E-1 -4.5031696E+4 -2.9209462E+2 3.0782758E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Lu+3 + 1.000H2O = LuO+ + 2.000H+ + -llnl_gamma 4.1 + log_k -15.305 + delta_h 136.978 #kJ/mol #95haa/sho + -analytic 2.2943238E+2 3.6792722E-2 -1.6134946E+4 -8.2523518E+1 2.3194775E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Lu+3 + 2.000H2O = LuO2- + 4.000H+ + -llnl_gamma 3.6 + log_k -31.928 + delta_h 238.950 #kJ/mol #95haa/sho + -analytic -1.6095972E+2 -2.9432083E-2 1.1122665E+2 6.0535033E+1 -1.0984226E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Lu+3 + 2.000H2O = LuO2H + 3.000H+ + -llnl_gamma 3.4 + log_k -23.865 + delta_h 207.023 #kJ/mol #95haa/sho + -analytic 3.1921803E+2 4.8163595E-2 -2.189193E+4 -1.1507882E+2 6.5556739E+4 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Lu+3 + 1.000H2O = LuOH+2 + 1.000H+ + -llnl_gamma 5.7 + log_k -7.608 + delta_h 74.709 #kJ/mol #95haa/sho + -analytic 1.8512515E+2 2.8070592E-2 -1.3441099E+4 -6.5464972E+1 5.3052023E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Lu+3 + 1.000SO4-2 = LuSO4+ + -llnl_gamma 4.1 + log_k 3.649 + delta_h 19.185 #kJ/mol #95haa/sho + -analytic 1.6468397E+3 2.6057133E-1 -8.9434501E+4 -5.974135E+2 5.0976729E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 1.000Mg+2 = Mg(HCO3)+ + -llnl_gamma 4.1 + log_k 1.038 + delta_h 1.841 #kJ/mol #Internal calculation + -analytic 8.7719152E+2 1.3812485E-1 -5.0324694E+4 -3.1704995E+2 3.1978381E+6 + #References = LogK/DGf: 06bla/pia; DHf/DHr: Internal calculation; S°: 74rea/lan; Cp: 95sho/kor; V°: 95sho/kor; + +4.000Mg+2 + 4.000H2O = Mg4(OH)4+4 + 4.000H+ + -llnl_gamma 11.6 + log_k -39.754 + delta_h 229.187 #kJ/mol #Internal calculation + -analytic 1.3448905E+3 2.2219545E-1 -8.4561812E+4 -4.9120416E+2 4.2830869E+6 + #References = LogK/DGf: 76bae/mes; DHf/DHr: Internal calculation; S°: 99yun/glu; V°: Default value; + +1.000H2AsO4- + 1.000Mg+2 = MgAsO4- + 2.000H+ + -llnl_gamma 3.6 + log_k -12.735 + delta_h 99.689 #kJ/mol #Internal calculation + -analytic 2.724103E+2 3.5612873E-2 -1.6231704E+4 -9.8493145E+1 2.1275459E+5 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000Cl- + 1.000Mg+2 = MgCl+ + -llnl_gamma 4.1 + log_k 0.350 + delta_h -1.729 #kJ/mol #Internal calculation + -analytic 8.362486E+2 1.3422557E-1 -4.6833261E+4 -3.0373153E+2 2.9090756E+6 + #References = LogK/DGf: 96bou; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000HCO3- + 1.000Mg+2 = MgCO3 + 1.000H+ + -llnl_gamma 3.4 + log_k -7.347 + delta_h 23.505 #kJ/mol #Internal calculation + -analytic 7.769792E+2 1.2651382E-1 -4.0717685E+4 -2.8627656E+2 2.0351429E+6 + #References = LogK/DGf: 06bla/pia; DHf/DHr: Internal calculation; S°: 74rea/lan; Cp: 97sve/sho; V°: 97sve/sho; + +1.000F- + 1.000Mg+2 = MgF+ + -llnl_gamma 4.1 + log_k 1.149 + delta_h 3.388 #kJ/mol #97sve/sho + -analytic 9.305036E+2 1.4739446E-1 -5.2880884E+4 -3.3670964E+2 3.3093949E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000H2AsO3- + 1.000Mg+2 = MgH2AsO3+ + -llnl_gamma 4.1 + log_k 1.674 + delta_h -21.477 #kJ/mol #Internal calculation + -analytic 6.4358587E+2 9.5687384E-2 -3.344971E+4 -2.342365E+2 1.8981183E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000H2AsO4- + 1.000Mg+2 = MgH2AsO4+ + -llnl_gamma 4.1 + log_k 1.512 + delta_h -15.687 #kJ/mol #Internal calculation + -analytic 8.3847159E+2 1.2866674E-1 -4.6573309E+4 -3.0382206E+2 2.904498E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000Mg+2 + 1.000H2PO4- = MgH2PO4+ + -llnl_gamma 4.1 + log_k 1.170 + delta_h 13.510 #kJ/mol #96bou + -analytic 9.8987559E+2 1.525131E-1 -5.3901944E+4 -3.5863715E+2 3.0254769E+6 + #References = LogK/DGf: 81tur/whi; DHf/DHr: 96bou; S°: Internal calculation; V°: Default value; + +1.000H2AsO4- + 1.000Mg+2 = MgHAsO4 + 1.000H+ + -llnl_gamma 3.4 + log_k -4.539 + delta_h 10.494 #kJ/mol #Internal calculation + -analytic 9.2236556E+2 1.4553155E-1 -4.9509414E+4 -3.3734707E+2 2.711604E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000Mg+2 + 1.000H2PO4- = MgHPO4 + 1.000H+ + -llnl_gamma 3.4 + log_k -4.303 + delta_h 16.152 #kJ/mol #76smi/mar + -analytic 9.8486594E+2 1.525131E-1 -5.4039945E+4 -3.5863715E+2 3.0254769E+6 + #References = LogK/DGf: 63tay/fra, 76smi/mar; DHf/DHr: 76smi/mar; S°: Internal calculation; V°: Default value; + +1.000Mg+2 + 1.000H2O = MgOH+ + 1.000H+ + -llnl_gamma 4.1 + log_k -11.681 + delta_h 62.834 #kJ/mol #Internal calculation + -analytic 2.435508E+2 3.4906997E-2 -1.7787625E+4 -8.7502059E+1 9.3682965E+5 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Mg+2 + 2.000H2PO4- = MgP2O7-2 + 1.000H2O + 2.000H+ + -llnl_gamma 4.7 + log_k -10.609 + delta_h 45.031 #kJ/mol #76smi/mar + -analytic 1.8187626E+3 2.8312577E-1 -1.0130344E+5 -6.6209214E+2 5.715108E+6 + #References = LogK/DGf: 76smi/mar; DHf/DHr: 76smi/mar; S°: Internal calculation; V°: Default value; + +1.000Mg+2 + 1.000H2PO4- = MgPO4- + 2.000H+ + -llnl_gamma 3.6 + log_k -14.710 + delta_h 31.170 #kJ/mol #96bou + -analytic 1.0920963E+3 1.6933732E-1 -6.1181105E+4 -4.001966E+2 3.3929399E+6 + #References = LogK/DGf: 81tur/whi; DHf/DHr: 96bou; S°: Internal calculation; V°: Default value; + +1.000Mg+2 + 1.000SO4-2 = MgSO4 + -llnl_gamma 3.4 + log_k 2.230 + delta_h 5.860 #kJ/mol #76smi/mar + -analytic 1.6922933E+3 2.6688291E-1 -9.1845736E+4 -6.1481011E+2 5.3091773E+6 + #References = LogK/DGf: 76smi/mar; DHf/DHr: 76smi/mar; S°: Internal calculation; Cp: 97mcc/sho; V°: 97mcc/sho; + +1.000H2AsO4- + 1.000Mn+2 = MnAsO4- + 2.000H+ + -llnl_gamma 3.6 + log_k -12.330 + delta_h 78.986 #kJ/mol #Internal calculation + -analytic 2.3867904E+2 3.2373438E-2 -1.328689E+4 -8.7779659E+1 9.8538805E+4 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000Cl- + 1.000Mn+2 = MnCl+ + -llnl_gamma 4.1 + log_k -0.126 + delta_h 19.022 #kJ/mol #97sve/sho + -analytic 8.5360276E+2 1.3944778E-1 -4.8024815E+4 -3.0980373E+2 2.8765919E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000F- + 1.000Mn+2 = MnF+ + -llnl_gamma 4.1 + log_k 0.920 + delta_h 2.479 #kJ/mol #97sve/sho + -analytic 8.8233139E+2 1.4187932E-1 -4.9330512E+4 -3.202196E+2 3.0317368E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000H2AsO4- + 1.000Mn+2 = MnH2AsO4+ + -llnl_gamma 4.1 + log_k 1.006 + delta_h -2.373 #kJ/mol #Internal calculation + -analytic 8.5232998E+2 1.3468648E-1 -4.7596222E+4 -3.0908643E+2 2.9309634E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000Mn+2 + 1.000H2PO4- = MnH2PO4+ + -llnl_gamma 4.1 + log_k 1.343 + #References = LogK/DGf: 79mat/spo; + #References = LogK/DGf: 79mat/spo; V°: Default value; + +1.000H2AsO4- + 1.000Mn+2 = MnHAsO4 + 1.000H+ + -llnl_gamma 3.4 + log_k -4.065 + delta_h 9.357 #kJ/mol #Internal calculation + -analytic 8.9132777E+2 1.4178862E-1 -4.7598059E+4 -3.2624407E+2 2.5998729E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000Mn+2 + 1.000H2PO4- = MnHPO4 + 1.000H+ + -llnl_gamma 3.4 + log_k -3.632 + #References = LogK/DGf: 79mat/spo; + #References = LogK/DGf: 79mat/spo; V°: Default value; + +1.000Mn+2 + 1.000H2O = MnO + 2.000H+ + -llnl_gamma 3.4 + log_k -22.195 + delta_h 122.917 #kJ/mol #97asho/sas + -analytic 2.6391741E+2 4.249812E-2 -1.8624121E+4 -9.7751419E+1 4.9443928E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Mn+2 + 2.000H2O = MnO2-2 + 4.000H+ + -llnl_gamma 4.7 + log_k -48.274 + delta_h 235.076 #kJ/mol #97asho/sas + -analytic -1.0163249E+3 -1.6829842E-1 4.5018798E+4 3.6720843E+2 -3.680045E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Mn+2 + 1.000H2O = MnOH+ + 1.000H+ + -llnl_gamma 4.1 + log_k -10.613 + delta_h 60.303 #kJ/mol #97asho/sas + -analytic 1.9891301E+2 3.0037154E-2 -1.3547092E+4 -7.2431629E+1 5.4959243E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Mn+2 + 1.000H2PO4- = MnPO4- + 2.000H+ + -llnl_gamma 3.6 + log_k -12.344 + #References = LogK/DGf: 79mat/spo; + #References = LogK/DGf: 79mat/spo; V°: Default value; + +1.000Mn+2 + 1.000SO4-2 = MnSO4 + -llnl_gamma 3.4 + log_k 1.993 + delta_h 9.555 #kJ/mol #97sve/sho + -analytic 1.6669915E+3 2.6400874E-1 -9.0477378E+4 -6.0575091E+2 5.2127865E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.33333333333333NH3 + 0.333333333333333N2 + 1.000H+ = N2H5+ + -llnl_gamma 4.1 + log_k -19.616 + delta_h 104.619 #kJ/mol #97asho/sas + -analytic 5.8563027E+1 -2.6409537E-3 -9.6379895E+3 -1.9202698E+1 2.1777513E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.33333333333333NH3 + 0.333333333333333N2 + 2.000H+ = N2H6+2 + -llnl_gamma 5.7 + log_k -20.643 + delta_h 95.382 #kJ/mol #97asho/sas + -analytic -9.7146654E+1 -2.8900934E-2 -1.478413E+3 3.7243242E+1 -1.8457957E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +0.666666666666667N2 + 0.666666666666667NO2- + 0.666666666666667H+ = N2O + 0.333333333333333H2O + -llnl_gamma 3.4 + log_k -7.654 + delta_h 42.826 #kJ/mol #01sch/sho + -analytic 1.7863969E+2 3.8081879E-2 -9.2432665E+3 -6.8377311E+1 2.2661515E+5 + #References = LogK/DGf: 01sch/sho; DHf/DHr: Internal calculation; S°: 01sch/sho; Cp: 01sch/sho; V°: 01sch/sho; + +0.666666666666667N2 + 0.666666666666667NO2- + 0.666666666666667H2O = N2O2-2 + 1.33333333333333H+ + -llnl_gamma 4.7 + log_k -53.671 + delta_h 257.189 #kJ/mol #97asho/sas + -analytic -1.0223894E+3 -1.6683336E-1 4.3874461E+4 3.6864883E+2 -3.6351903E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +2.000Na+ + 2.000H2PO4- = Na2P2O7-2 + 1.000H2O + 2.000H+ + -llnl_gamma 4.7 + log_k -13.620 + #References = LogK/DGf: 76smi/mar; + #References = LogK/DGf: 76smi/mar; V°: Default value; + +1.000Al+3 + 1.000Na+ + 2.000H2O = NaAlO2 + 4.000H+ + -llnl_gamma 3.4 + log_k -23.631 + delta_h 190.348 #kJ/mol #95pok/hel + -analytic 7.0419419E+2 1.1134123E-1 -4.7487012E+4 -2.5312881E+2 2.1869214E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95pok/hel; S°: 95pok/hel; Cp: 95pok/hel; V°: 95pok/hel; + +1.000H2AsO4- + 1.000Na+ = NaAsO4-2 + 2.000H+ + -llnl_gamma 4.7 + log_k -13.867 + delta_h 87.299 #kJ/mol #Internal calculation + -analytic -3.4933341E+2 -7.1708066E-2 1.6125209E+4 1.2933599E+2 -1.535333E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000B(OH)3 + 1.000Na+ + 1.000H2O = NaB(OH)4 + 1.000H+ + -llnl_gamma 3.0 + log_k -8.977 + delta_h 13.466 #kJ/mol #95pok/sch + -analytic -2.9853208E+1 3.3203413E-3 2.8438652E+3 5.8780992E+0 -3.7313403E+5 + #References = LogK/DGf: 95pok/sch; DHf/DHr: Internal calculation; S°: 95pok/sch; Cp: 95pok/sch; V°: 95pok/sch; + +1.000Br- + 1.000Na+ = NaBr + -llnl_gamma 3.4 + log_k -1.369 + delta_h 8.228 #kJ/mol #97sve/sho + -analytic 7.7683714E+2 1.2166393E-1 -4.318765E+4 -2.8215325E+2 2.5371295E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000HCO3- + 1.000Na+ = NaCO3- + 1.000H+ + -llnl_gamma 3.6 + log_k -9.057 + delta_h 32.452 #kJ/mol #Internal calculation + -analytic 8.7000767E+2 1.1461962E-1 -4.8239216E+4 -3.1451953E+2 2.3836494E+6 + #References = LogK/DGf: 90nor/plu; DHf/DHr: Internal calculation; S°: 13ste/ben; V°: Default value; + +1.000F- + 1.000Na+ = NaF + -llnl_gamma 3.4 + log_k -0.970 + delta_h 7.196 #kJ/mol #97sve/sho + -analytic 8.349296E+2 1.3086137E-1 -4.6137375E+4 -3.0331266E+2 2.6984991E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000H2AsO3- + 1.000Na+ = NaH2AsO3 + -llnl_gamma 3.4 + log_k 0.273 + delta_h -8.134 #kJ/mol #Internal calculation + -analytic 5.4981154E+2 8.1312652E-2 -2.8352689E+4 -2.0026573E+2 1.4985828E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000H2AsO4- + 1.000Na+ = NaH2AsO4 + -llnl_gamma 3.4 + log_k -1.788 + delta_h 9.245 #kJ/mol #Internal calculation + -analytic 7.4433644E+2 1.1409449E-1 -4.206536E+4 -2.6964583E+2 2.5038843E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000Na+ + 1.000H2PO4- = NaH2PO4 + -llnl_gamma 3.4 + log_k 0.410 + #References = LogK/DGf: 97smi/mar; + #References = LogK/DGf: 97smi/mar; V°: Default value; + +1.000H2AsO4- + 1.000Na+ = NaHAsO4- + 1.000H+ + -llnl_gamma 3.6 + log_k -6.298 + delta_h 7.794 #kJ/mol #Internal calculation + -analytic 1.8757937E+2 2.0070146E-2 -1.1257017E+4 -6.8100531E+1 5.6937493E+5 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000HCO3- + 1.000Na+ = NaHCO3 + -llnl_gamma 3.4 + log_k -0.247 + delta_h 11.979 #kJ/mol #Internal calculation + -analytic 7.8588594E+2 1.1461962E-1 -4.319257E+4 -2.8380335E+2 2.3836494E+6 + #References = LogK/DGf: 90nor/plu; DHf/DHr: Internal calculation; S°: 13ste/ben; V°: Default value; + +1.000Na+ + 2.000H2PO4- = NaHP2O7-2 + 1.000H2O + 1.000H+ + -llnl_gamma 4.7 + log_k -7.010 + #References = LogK/DGf: 76smi/mar; + #References = LogK/DGf: 76smi/mar; V°: Default value; + +1.000Na+ + 1.000H2PO4- = NaHPO4- + 1.000H+ + -llnl_gamma 3.6 + log_k -6.340 + delta_h 34.940 #kJ/mol #97smi/mar + -analytic 8.9613811E+2 1.3295816E-1 -5.061644E+4 -3.2469905E+2 2.7641778E+6 + #References = LogK/DGf: 97smi/mar; DHf/DHr: 97smi/mar; S°: Internal calculation; V°: Default value; + +1.000I- + 1.000Na+ = NaI + -llnl_gamma 3.4 + log_k -1.553 + delta_h 6.654 #kJ/mol #97sve/sho + -analytic 6.9652453E+2 1.1039538E-1 -3.8647875E+4 -2.5339072E+2 2.2785916E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Na+ + 1.000H2O = NaOH + 1.000H+ + -llnl_gamma 3.4 + log_k -14.751 + delta_h 53.395 #kJ/mol #Internal calculation + -analytic 5.6334876E+2 8.5075501E-2 -3.4107556E+4 -2.0591888E+2 1.8192148E+6 + #References = LogK/DGf: 95pok/hel; DHf/DHr: Internal calculation; S°: 95pok/hel; Cp: 95pok/hel; V°: 95pok/hel; + +1.000Na+ + 2.000H2PO4- = NaP2O7-3 + 1.000H2O + 2.000H+ + -llnl_gamma 6.7 + log_k -15.519 + delta_h 38.336 #kJ/mol #76smi/mar + -analytic 1.722698E+3 2.6357083E-1 -9.6548904E+4 -6.2815404E+2 5.4538089E+6 + #References = LogK/DGf: 76smi/mar; DHf/DHr: 76smi/mar; S°: Internal calculation; V°: Default value; + +1.000Na+ + 1.000H2PO4- = NaPO4-2 + 2.000H+ + -llnl_gamma 4.7 + log_k -18.070 + #References = LogK/DGf: 97smi/mar; + #References = LogK/DGf: 97smi/mar; V°: Default value; + +1.000Na+ + 1.000SO4-2 = NaSO4- + -llnl_gamma 4.5 + log_k 0.936 + delta_h -2.788 #kJ/mol #Internal calculation + -analytic 9.358708E+2 1.4438495E-1 -5.3022649E+4 -3.3839614E+2 3.3063776E+6 + #References = LogK/DGf: 95pok/sch; DHf/DHr: Internal calculation; S°: 95pok/sch; Cp: 95pok/sch; V°: 95pok/sch; + +1.000Cl- + 1.000Nd+3 = NdCl+2 + -llnl_gamma 4.5 + log_k 0.321 + delta_h 14.723 #kJ/mol #Internal calculation + -analytic 8.1545635E+2 1.3290054E-1 -4.5700896E+4 -2.959651E+2 2.7439937E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +2.000Cl- + 1.000Nd+3 = NdCl2+ + -llnl_gamma 4.5 + log_k 0.056 + delta_h 20.320 #kJ/mol #Internal calculation + -analytic 1.5608345E+3 2.5357847E-1 -8.5275485E+4 -5.6818794E+2 4.9403665E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +3.000Cl- + 1.000Nd+3 = NdCl3 + -llnl_gamma 3.4 + log_k -0.283 + delta_h 14.733 #kJ/mol #95haa/sho + -analytic 2.2484686E+3 3.6383024E-1 -1.1928654E+5 -8.2107479E+2 6.6276816E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +4.000Cl- + 1.000Nd+3 = NdCl4- + -llnl_gamma 3.6 + log_k -0.695 + delta_h -3.159 #kJ/mol #95haa/sho + -analytic 1.6636121E+3 2.8151179E-1 -8.1236994E+4 -6.1456541E+2 3.994219E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 1.000Nd+3 = NdCO3+ + 1.000H+ + -llnl_gamma 4.1 + log_k -2.609 + delta_h -4.092 #kJ/mol #95haa/sho + -analytic 7.1584766E+2 1.1644076E-1 -3.5928831E+4 -2.6401012E+2 1.8319354E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000F- + 1.000Nd+3 = NdF+2 + -llnl_gamma 5.7 + log_k 4.408 + delta_h 22.486 #kJ/mol #95haa/sho + -analytic 9.0700608E+2 1.4596778E-1 -5.0799572E+4 -3.2720315E+2 3.0141621E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +2.000F- + 1.000Nd+3 = NdF2+ + -llnl_gamma 4.1 + log_k 7.644 + delta_h 13.371 #kJ/mol #95haa/sho + -analytic 1.7189021E+3 2.7521607E-1 -9.3572231E+4 -6.2275063E+2 5.4656127E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +3.000F- + 1.000Nd+3 = NdF3 + -llnl_gamma 3.4 + log_k 10.000 + delta_h -8.064 #kJ/mol #95haa/sho + -analytic 2.4963871E+3 3.9902123E-1 -1.3185121E+5 -9.0812905E+2 7.4654683E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +4.000F- + 1.000Nd+3 = NdF4- + -llnl_gamma 3.6 + log_k 11.990 + delta_h -48.613 #kJ/mol #95haa/sho + -analytic 2.0115722E+3 3.2824571E-1 -9.923865E+4 -7.3716381E+2 5.2858774E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Nd+3 + 1.000H2PO4- = NdH2PO4+2 + -llnl_gamma 5.7 + log_k 1.103 + delta_h -5.272 #kJ/mol #95haa/sho + -analytic 8.4864766E+2 1.3506583E-1 -4.8254427E+4 -3.0743224E+2 3.0893002E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 1.000Nd+3 = NdHCO3+2 + -llnl_gamma 5.7 + log_k 1.862 + delta_h 9.057 #kJ/mol #95haa/sho + -analytic 8.6312092E+2 1.3775386E-1 -4.9329531E+4 -3.1183779E+2 3.0885476E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000NO3- + 1.000Nd+3 = NdNO3+2 + -llnl_gamma 5.7 + log_k 0.790 + delta_h -27.851 #kJ/mol #95haa/sho + -analytic 7.7708387E+2 1.2304454E-1 -4.3346102E+4 -2.8275638E+2 2.8504883E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Nd+3 + 1.000H2O = NdO+ + 2.000H+ + -llnl_gamma 4.1 + log_k -17.064 + delta_h 154.131 #kJ/mol #95haa/sho + -analytic 2.3819228E+2 3.8116357E-2 -1.6751761E+4 -8.570707E+1 1.4594807E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Nd+3 + 2.000H2O = NdO2- + 4.000H+ + -llnl_gamma 3.6 + log_k -37.059 + delta_h 278.717 #kJ/mol #95haa/sho + -analytic -1.6311882E+2 -3.0299566E-2 1.3119783E+2 6.0862948E+1 -1.417697E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Nd+3 + 2.000H2O = NdO2H + 3.000H+ + -llnl_gamma 3.4 + log_k -26.358 + delta_h 230.105 #kJ/mol #95haa/sho + -analytic 2.4107809E+2 3.4321221E-2 -1.7125691E+4 -8.6887028E+1 -4.6513406E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Nd+3 + 1.000H2O = NdOH+2 + 1.000H+ + -llnl_gamma 5.7 + log_k -8.121 + delta_h 83.126 #kJ/mol #95haa/sho + -analytic 1.7993266E+2 2.7345024E-2 -1.2939793E+4 -6.3642966E+1 4.1548299E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Nd+3 + 1.000SO4-2 = NdSO4+ + -llnl_gamma 4.1 + log_k 3.723 + delta_h 19.640 #kJ/mol #95haa/sho + -analytic 1.6353073E+3 2.5876186E-1 -8.8784189E+4 -5.9319153E+2 5.0547369E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +3.000F- + 1.000NO2- + 4.000H+ = NF3 + 2.000H2O + -llnl_gamma 3.4 + log_k -59.035 + delta_h 398.898 #kJ/mol #01sch/sho + -analytic 2.9348049E+3 4.6865606E-1 -1.8594797E+5 -1.0613021E+3 1.033171E+7 + #References = LogK/DGf: 01sch/sho; DHf/DHr: Internal calculation; S°: 01sch/sho; Cp: 01sch/sho; V°: 01sch/sho; + +1.000NH3 + 1.000H+ = NH4+ + -llnl_gamma 2.5 + log_k 9.241 + delta_h -51.750 #kJ/mol #97asho/sas + -analytic 3.7494408E+1 -1.5452368E-3 -6.9560062E+2 -1.1496355E+1 2.655499E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Ni+2 + 4.000CN- = Ni(CN)4-2 + -llnl_gamma 4.7 + log_k 34.083 + delta_h -189.579 #kJ/mol #05gam/bug + -analytic 3.1157118E+3 4.8046739E-1 -1.6103564E+5 -1.1305335E+3 1.0015423E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05gam/bug; S°: 05gam/bug; V°: Default value; + +1.000Ni+2 + 5.000CN- = Ni(CN)5-3 + -llnl_gamma 6.7 + log_k 33.337 + delta_h -203.321 #kJ/mol #05gam/bug + -analytic 3.8659541E+3 5.956038E-1 -2.0178816E+5 -1.4037206E+3 1.2446798E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05gam/bug; S°: 05gam/bug; V°: Default value; + +1.000H2AsO4- + 1.000Ni+2 = NiAsO4- + 2.000H+ + -llnl_gamma 3.6 + log_k -10.665 + delta_h 84.853 #kJ/mol #Internal calculation + -analytic 2.2480603E+2 2.9293092E-2 -1.2692869E+4 -8.1674589E+1 4.1399361E+4 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000Cl- + 1.000Ni+2 = NiCl+ + -llnl_gamma 4.1 + log_k 0.151 + delta_h 5.242 #kJ/mol #Internal calculation + -analytic 7.9675849E+2 1.2938975E-1 -4.4201147E+4 -2.8974022E+2 2.6676433E+6 + #References = LogK/DGf: 05gam/bug; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000HCO3- + 1.000Ni+2 = NiCO3 + 1.000H+ + -llnl_gamma 3.4 + log_k -6.056 + #References = LogK/DGf: 05gam/bug; + #References = LogK/DGf: 05gam/bug; V°: Default value; + +1.000F- + 1.000Ni+2 = NiF+ + -llnl_gamma 4.1 + log_k 1.501 + delta_h 13.990 #kJ/mol #05gam/bug + -analytic 8.7794739E+2 1.3998113E-1 -4.9222365E+4 -3.1775043E+2 2.9480287E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05gam/bug; S°: 05gam/bug; Cp: 97sve/sho; V°: 97sve/sho; + +1.000H2AsO4- + 1.000Ni+2 = NiH2AsO4+ + -llnl_gamma 4.1 + log_k 1.680 + delta_h -9.191 #kJ/mol #Internal calculation + -analytic 8.0557284E+2 1.2506729E-1 -4.4376502E+4 -2.9209319E+2 2.704456E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000H2AsO4- + 1.000Ni+2 = NiHAsO4 + 1.000H+ + -llnl_gamma 3.4 + log_k -3.786 + delta_h 12.531 #kJ/mol #Internal calculation + -analytic 8.9542941E+2 1.4271702E-1 -4.783787E+4 -3.2756597E+2 2.5977159E+6 + #References = LogK/DGf: 05gam/bug; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000Ni+2 + 2.000H2PO4- = NiHP2O7- + 1.000H2O + 1.000H+ + -llnl_gamma 3.6 + log_k -3.200 + #References = LogK/DGf: 05gam/bug; + #References = LogK/DGf: 05gam/bug; V°: Default value; + +1.000Ni+2 + 1.000H2PO4- = NiHPO4 + 1.000H+ + -llnl_gamma 3.4 + log_k -4.091 + #References = LogK/DGf: 05gam/bug; + #References = LogK/DGf: 05gam/bug; V°: Default value; + +1.000Ni+2 + 1.000HS- = NiHS+ + -llnl_gamma 4.1 + log_k 5.251 + #References = LogK/DGf: 05gam/bug; + #References = LogK/DGf: 05gam/bug; V°: Default value; + +1.000NO3- + 1.000Ni+2 = NiNO3+ + -llnl_gamma 4.1 + log_k 0.551 + #References = LogK/DGf: 05gam/bug; + #References = LogK/DGf: 05gam/bug; V°: Default value; + +1.000Ni+2 + 1.000H2O = NiO + 2.000H+ + -llnl_gamma 3.4 + log_k -19.501 + delta_h 98.873 #kJ/mol #Internal calculation + -analytic 3.6026241E+2 5.7732513E-2 -2.4281238E+4 -1.3233624E+2 1.059672E+6 + #References = LogK/DGf: 12bla; DHf/DHr: Internal calculation; S°: 12coo/oli; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Ni+2 + 1.000H2O = NiOH+ + 1.000H+ + -llnl_gamma 4.1 + log_k -9.501 + delta_h 35.577 #kJ/mol #Internal calculation + -analytic 2.3696944E+2 3.6212326E-2 -1.6157506E+4 -8.636598E+1 9.4514802E+5 + #References = LogK/DGf: 98ply/zha; DHf/DHr: Internal calculation; S°: 12coo/oli; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Ni+2 + 2.000H2PO4- = NiP2O7-2 + 1.000H2O + 2.000H+ + -llnl_gamma 4.7 + log_k -9.008 + delta_h 8.643 #kJ/mol #Internal calculation + -analytic 1.7906449E+3 2.8122558E-1 -9.819552E+4 -6.5385543E+2 5.6688658E+6 + #References = LogK/DGf: 05gam/bug; DHf/DHr: Internal calculation; S°: 82wag/eva; V°: Default value; + +1.000Ni+2 + 1.000SO4-2 = NiSO4 + -llnl_gamma 3.4 + log_k 2.420 + delta_h 10.150 #kJ/mol #05gam/bug + -analytic 1.7287472E+3 2.7178368E-1 -9.5601893E+4 -6.2662385E+2 5.6741115E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05gam/bug; S°: 05gam/bug; V°: Default value; + +0.166666666666667N2 + 0.666666666666667NO2- + 0.666666666666667H+ = NO + 0.333333333333333H2O + -llnl_gamma 3.4 + log_k -7.261 + delta_h 54.740 #kJ/mol #01sch/sho + -analytic 5.4270966E+2 8.8266951E-2 -3.4476911E+4 -1.957306E+2 2.1042284E+6 + #References = LogK/DGf: 01sch/sho; DHf/DHr: Internal calculation; S°: 01sch/sho; Cp: 01sch/sho; V°: 01sch/sho; + +1.000CN- + 0.500O2 = OCN- + -llnl_gamma 3.5 + log_k 48.713 + delta_h -290.559 #kJ/mol #97asho/sas + -analytic -7.470346E+1 -1.2812853E-2 2.0195896E+4 2.5943932E+1 -4.175178E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000H2O = OH- + 1.000H+ + -llnl_gamma 3.5 + log_k -14.002 + delta_h 55.815 #kJ/mol #89cox/wag + -analytic -7.0195411E+2 -1.1273948E-1 3.6168089E+4 2.5360011E+2 -2.423262E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 97asho/sas; V°: 97asho/sas; + +2.000H2PO4- = P2O7-4 + 1.000H2O + 2.000H+ + -llnl_gamma 9.6 + log_k -17.810 + delta_h 32.478 #kJ/mol #Internal calculation + -analytic -1.5373765E+3 -2.4808173E-1 8.3161679E+4 5.5500874E+2 -5.2203742E+6 + #References = LogK/DGf: 92gre/fug; DHf/DHr: Internal calculation; S°: 82wag/eva; Cp: 97asho/sas; V°: 97asho/sas; + +1.000HCO3- + 1.000Pb+2 = Pb(CO3) + 1.000H+ + -llnl_gamma 3.4 + log_k -3.327 + delta_h 11.685 #kJ/mol #06bla/pia + -analytic 9.2698891E+2 1.4344226E-1 -5.1261042E+4 -3.371417E+2 2.9408009E+6 + #References = LogK/DGf: 06bla/pia; DHf/DHr: Internal calculation; S°: 06bla/pia; V°: Default value; + +2.000HCO3- + 1.000Pb+2 = Pb(CO3)2-2 + 2.000H+ + -llnl_gamma 4.7 + log_k -10.524 + #References = LogK/DGf: 06bla/pia; + #References = LogK/DGf: 06bla/pia; V°: Default value; + +1.000H2PO4- + 1.000Pb+2 = Pb(H2PO4)+ + -llnl_gamma 4.1 + log_k 1.500 + #References = LogK/DGf: 72anri; + #References = LogK/DGf: 72anri; V°: Default value; + +1.000Pb+2 + 2.000HS- = Pb(HS)2 + -llnl_gamma 3.4 + log_k 15.010 + delta_h -65.580 #kJ/mol #Internal calculation + -analytic 1.6254117E+3 2.5826405E-1 -8.6954283E+4 -5.8916053E+2 5.5187048E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Pb+2 + 3.000HS- = Pb(HS)3- + -llnl_gamma 3.6 + log_k 16.260 + delta_h -73.330 #kJ/mol #Internal calculation + -analytic 1.9733404E+3 3.1294593E-1 -1.0667492E+5 -7.1501176E+2 6.8140498E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Pb+2 + 4.000H2O = Pb(OH)4-2 + 4.000H+ + -llnl_gamma 4.7 + log_k -38.904 + delta_h 197.475 #kJ/mol #Internal calculation + -analytic 5.0743539E+2 4.8227827E-2 -3.6287128E+4 -1.8195677E+2 9.9820342E+5 + #References = LogK/DGf: 01per/hef; DHf/DHr: Internal calculation; S°: 97cro; V°: Default value; + +1.000Pb+2 + 2.000SO4-2 = Pb(SO4)2-2 + -llnl_gamma 4.7 + log_k 3.470 + #References = LogK/DGf: 06bla/pia; + #References = LogK/DGf: 06bla/pia; V°: Default value; + +2.000Pb+2 + 1.000H2O = Pb2(OH)+3 + 1.000H+ + -llnl_gamma 8.2 + log_k -7.180 + #References = LogK/DGf: 99lot/och; + #References = LogK/DGf: 99lot/och; V°: Default value; + +4.000Pb+2 + 4.000H2O = Pb4(OH)4+4 + 4.000H+ + -llnl_gamma 11.6 + log_k -20.634 + delta_h 82.038 #kJ/mol #Internal calculation + -analytic 1.3235532E+3 1.9196939E-1 -7.6329308E+4 -4.8106871E+2 3.9966443E+6 + #References = LogK/DGf: 99lot/och; DHf/DHr: Internal calculation; S°: 82wag/eva; V°: Default value; + +6.000Pb+2 + 8.000H2O = Pb6(OH)8+4 + 8.000H+ + -llnl_gamma 11.6 + log_k -42.688 + delta_h 192.158 #kJ/mol #Internal calculation + -analytic 2.0388889E+3 2.8811107E-1 -1.2045783E+5 -7.3992355E+2 5.994328E+6 + #References = LogK/DGf: 99lot/och; DHf/DHr: Internal calculation; S°: 82wag/eva; V°: Default value; + +1.000H2AsO4- + 1.000Pb+2 = PbAsO4- + 2.000H+ + -llnl_gamma 3.6 + log_k -11.735 + delta_h 95.026 #kJ/mol #Internal calculation + -analytic 3.5533311E+2 5.2767108E-2 -2.0155818E+4 -1.2948352E+2 4.6229891E+5 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000Cl- + 1.000Pb+2 = PbCl+ + -llnl_gamma 4.1 + log_k 1.440 + delta_h 4.318 #kJ/mol #Internal calculation + -analytic 8.6381866E+2 1.4020171E-1 -4.7427207E+4 -3.1399054E+2 2.8304505E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +2.000Cl- + 1.000Pb+2 = PbCl2 + -llnl_gamma 3.4 + log_k 2.000 + delta_h 7.948 #kJ/mol #Internal calculation + -analytic 1.5426169E+3 2.4867155E-1 -8.4545453E+4 -5.6074042E+2 5.0068443E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +3.000Cl- + 1.000Pb+2 = PbCl3- + -llnl_gamma 3.6 + log_k 1.690 + delta_h 7.811 #kJ/mol #Internal calculation + -analytic 1.7729993E+3 2.865683E-1 -9.7270049E+4 -6.448192E+2 5.7832948E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +4.000Cl- + 1.000Pb+2 = PbCl4-2 + -llnl_gamma 4.7 + log_k 1.400 + delta_h 1.324 #kJ/mol #Internal calculation + -analytic 1.7059874E+3 2.7716686E-1 -9.3612476E+4 -6.2096082E+2 5.6251873E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000F- + 1.000Pb+2 = PbF+ + -llnl_gamma 4.1 + log_k 2.270 + delta_h -4.055 #kJ/mol #Internal calculation + -analytic 8.7137062E+2 1.3980107E-1 -4.7875203E+4 -3.1641801E+2 2.9110495E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +2.000F- + 1.000Pb+2 = PbF2 + -llnl_gamma 3.4 + log_k 3.010 + delta_h -8.880 #kJ/mol #Internal calculation + -analytic 1.7070306E+3 2.7307779E-1 -9.3362198E+4 -6.2056351E+2 5.6219366E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000H2AsO3- + 1.000Pb+2 = PbH2AsO3+ + -llnl_gamma 4.1 + log_k 5.172 + delta_h -20.319 #kJ/mol #Internal calculation + -analytic 7.3145269E+2 1.1407821E-1 -3.7319588E+4 -2.6618197E+2 2.0914377E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000H2AsO4- + 1.000Pb+2 = PbH2AsO4+ + -llnl_gamma 4.1 + log_k 1.534 + delta_h 6.559 #kJ/mol #Internal calculation + -analytic 9.3632249E+2 1.4861231E-1 -5.2073502E+4 -3.3932426E+2 3.1285274E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000H2PO4- + 1.000Pb+2 = PbH2PO4+ + -llnl_gamma 4.1 + log_k -1.500 + #References = LogK/DGf: 74nri; + #References = LogK/DGf: 74nri; V°: Default value; + +1.000H2AsO4- + 1.000Pb+2 = PbHAsO4 + 1.000H+ + -llnl_gamma 3.4 + log_k -4.166 + delta_h 11.030 #kJ/mol #Internal calculation + -analytic 8.6079462E+2 1.356431E-1 -4.6327365E+4 -3.1465411E+2 2.5397679E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000HCO3- + 1.000Pb+2 = PbHCO3+ + -llnl_gamma 4.1 + log_k 3.443 + #References = LogK/DGf: 89mar/smi; + #References = LogK/DGf: 89mar/smi; V°: Default value; + +1.000H2PO4- + 1.000Pb+2 = PbHPO4 + 1.000H+ + -llnl_gamma 3.4 + log_k -4.105 + #References = LogK/DGf: 72anri, 76smi/mar; + #References = LogK/DGf: 72anri, 76smi/mar; V°: Default value; + +1.000Pb+2 + 1.000H2O = PbO + 2.000H+ + -llnl_gamma 3.4 + log_k -16.951 + delta_h 97.824 #kJ/mol #Internal calculation + -analytic 1.8259665E+2 2.7874046E-2 -1.2184514E+4 -6.7986728E+1 1.1000287E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Pb+2 + 1.000H2O = PbOH+ + 1.000H+ + -llnl_gamma 4.1 + log_k -7.511 + delta_h 4.021 #kJ/mol #Internal calculation + -analytic 8.5257852E+1 1.1377634E-2 -4.2238231E+3 -3.3591773E+1 1.0012203E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +2.000H2PO4- + 1.000Pb+2 = PbP2O7-2 + 1.000H2O + 2.000H+ + -llnl_gamma 4.7 + log_k -9.478 + #References = LogK/DGf: 82wag/eva; + #References = LogK/DGf: 82wag/eva; V°: Default value; + +1.000Pb+2 + 1.000SO4-2 = PbSO4 + -llnl_gamma 3.4 + log_k 2.820 + delta_h 6.860 #kJ/mol #Internal calculation + -analytic 1.70316E+3 2.6612736E-1 -9.449375E+4 -6.1682668E+2 5.6487431E+6 + #References = LogK/DGf: 06bla/pia; DHf/DHr: Internal calculation; S°: 06bla/pia; V°: Default value; + +1.000Pd+2 + 2.000SO4-2 = Pd(SO4)2-2 + -llnl_gamma 4.7 + log_k 4.543 + delta_h 13.311 #kJ/mol #98sas/sho + -analytic 1.832795E+3 2.8730487E-1 -1.0245499E+5 -6.6270289E+2 6.1815203E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Pd+2 + 3.000SO4-2 = Pd(SO4)3-4 + -llnl_gamma 9.6 + log_k 6.330 + delta_h 22.791 #kJ/mol #98sas/sho + -analytic 2.0039129E+3 3.1048858E-1 -1.1510724E+5 -7.2128643E+2 7.1730748E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Cl- + 1.000Pd+2 = PdCl+ + -llnl_gamma 4.1 + log_k 6.112 + delta_h -30.306 #kJ/mol #98sas/sho + -analytic 8.1838728E+2 1.3409366E-1 -4.3614989E+4 -2.9786625E+2 2.7628525E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +2.000Cl- + 1.000Pd+2 = PdCl2 + -llnl_gamma 3.4 + log_k 10.728 + delta_h -63.428 #kJ/mol #98sas/sho + -analytic 1.6134783E+3 2.6312616E-1 -8.5772393E+4 -5.8778955E+2 5.4160873E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +3.000Cl- + 1.000Pd+2 = PdCl3- + -llnl_gamma 3.6 + log_k 13.138 + delta_h -96.181 #kJ/mol #98sas/sho + -analytic 1.6089528E+3 2.6370202E-1 -8.5837979E+4 -5.8634035E+2 5.7181439E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +4.000Cl- + 1.000Pd+2 = PdCl4-2 + -llnl_gamma 4.7 + log_k 15.138 + delta_h -142.184 #kJ/mol #98sas/sho + -analytic 1.5764809E+3 2.5922264E-1 -8.3560665E+4 -5.7571001E+2 5.8839186E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Pd+2 + 1.000H2O = PdO + 2.000H+ + -llnl_gamma 3.4 + log_k -2.184 + delta_h 6.074 #kJ/mol #98sas/sho + -analytic 2.9119088E+2 4.7651938E-2 -1.4350767E+4 -1.0777241E+2 6.4237875E+5 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Pd+2 + 1.000H2O = PdOH+ + 1.000H+ + -llnl_gamma 4.1 + log_k -0.989 + delta_h 6.864 #kJ/mol #98sas/sho + -analytic 1.9846565E+2 3.0793354E-2 -1.0840088E+4 -7.2242887E+1 5.7624594E+5 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Pd+2 + 1.000SO4-2 = PdSO4 + -llnl_gamma 3.4 + log_k 2.477 + delta_h 5.546 #kJ/mol #98sas/sho + -analytic 1.6703449E+3 2.6532341E-1 -9.0413222E+4 -6.0720656E+2 5.2239121E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000F- + 1.000H2PO4- = PO3F-2 + 1.000H2O + -llnl_gamma 4.7 + log_k -1.180 + #References = LogK/DGf: 82wag/eva; + #References = LogK/DGf: 82wag/eva; V°: Default value; + +1.000H2PO4- = PO4-3 + 2.000H+ + -llnl_gamma 4.0 + log_k -19.560 + delta_h 18.200 #kJ/mol #89cox/wag + -analytic -1.4841595E+3 -2.40379E-1 8.1179531E+4 5.3408042E+2 -5.1163686E+6 + #References = LogK/DGf: 89cox/wag; DHf/DHr: 89cox/wag; S°: Internal calculation; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Cl- + 1.000Pr+3 = PrCl+2 + -llnl_gamma 5.7 + log_k 0.321 + delta_h 14.599 #kJ/mol #95haa/sho + -analytic 8.2254301E+2 1.3443941E-1 -4.6166589E+4 -2.9856825E+2 2.7846877E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +2.000Cl- + 1.000Pr+3 = PrCl2+ + -llnl_gamma 4.1 + log_k 0.056 + delta_h 20.070 #kJ/mol #95haa/sho + -analytic 1.5750449E+3 2.563597E-1 -8.6405665E+4 -5.7323523E+2 5.050608E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +3.000Cl- + 1.000Pr+3 = PrCl3 + -llnl_gamma 3.4 + log_k -0.283 + delta_h 14.109 #kJ/mol #95haa/sho + -analytic 2.275443E+3 3.6890619E-1 -1.2146741E+5 -8.306044E+2 6.8416809E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +4.000Cl- + 1.000Pr+3 = PrCl4- + -llnl_gamma 3.6 + log_k -0.695 + delta_h -4.157 #kJ/mol #95haa/sho + -analytic 1.7182082E+3 2.9070183E-1 -8.5507347E+4 -6.3375192E+2 4.3909077E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 1.000Pr+3 = PrCO3+ + 1.000H+ + -llnl_gamma 4.1 + log_k -2.756 + delta_h -3.380 #kJ/mol #95haa/sho + -analytic 7.2138296E+2 1.1758338E-1 -3.6202729E+4 -2.6611711E+2 1.8416874E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000F- + 1.000Pr+3 = PrF+2 + -llnl_gamma 5.7 + log_k 4.262 + delta_h 23.448 #kJ/mol #95haa/sho + -analytic 9.1398371E+2 1.4748891E-1 -5.131259E+4 -3.2975248E+2 3.0542579E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +2.000F- + 1.000Pr+3 = PrF2+ + -llnl_gamma 4.1 + log_k 7.424 + delta_h 14.875 #kJ/mol #95haa/sho + -analytic 1.7346569E+3 2.7829505E-1 -9.4856483E+4 -6.2834975E+2 5.5784545E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +3.000F- + 1.000Pr+3 = PrF3 + -llnl_gamma 3.4 + log_k 9.780 + delta_h -6.684 #kJ/mol #95haa/sho + -analytic 2.5234912E+3 4.0409706E-1 -1.3413665E+5 -9.1765819E+2 7.6794616E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +4.000F- + 1.000Pr+3 = PrF4- + -llnl_gamma 3.6 + log_k 11.697 + delta_h -47.314 #kJ/mol #95haa/sho + -analytic 2.4721985E+3 3.9032509E-1 -1.2770247E+5 -9.0092257E+2 7.174863E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000H2PO4- + 1.000Pr+3 = PrH2PO4+2 + -llnl_gamma 5.7 + log_k 1.183 + delta_h -6.015 #kJ/mol #95haa/sho + -analytic 8.5579111E+2 1.3661523E-1 -4.8692969E+4 -3.1006558E+2 3.1303163E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 1.000Pr+3 = PrHCO3+2 + -llnl_gamma 5.7 + log_k 1.936 + delta_h -13.317 #kJ/mol #95haa/sho + -analytic 8.4631902E+2 1.350292E-1 -4.7807504E+4 -3.0679259E+2 3.0973152E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000NO3- + 1.000Pr+3 = PrNO3+2 + -llnl_gamma 5.7 + log_k 0.655 + delta_h -27.588 #kJ/mol #95haa/sho + -analytic 7.8435293E+2 1.2461399E-1 -4.3847158E+4 -2.8544811E+2 2.8921306E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Pr+3 + 1.000H2O = PrO+ + 2.000H+ + -llnl_gamma 4.1 + log_k -17.284 + delta_h 155.136 #kJ/mol #95haa/sho + -analytic 2.3729949E+2 3.8289818E-2 -1.6589158E+4 -8.5554282E+1 1.1907844E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Pr+3 + 2.000H2O = PrO2- + 4.000H+ + -llnl_gamma 3.6 + log_k -37.573 + delta_h 281.272 #kJ/mol #95haa/sho + -analytic -1.6354321E+2 -3.00551E-2 1.3562404E+2 6.0869811E+1 -1.4348912E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Pr+3 + 2.000H2O = PrO2H + 3.000H+ + -llnl_gamma 3.4 + log_k -26.578 + delta_h 230.986 #kJ/mol #95haa/sho + -analytic 2.4796025E+2 3.5075905E-2 -1.7372222E+4 -8.9468671E+1 -4.7509796E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Pr+3 + 1.000H2O = PrOH+2 + 1.000H+ + -llnl_gamma 5.7 + log_k -8.268 + delta_h 83.714 #kJ/mol #95haa/sho + -analytic 1.7910838E+2 2.7507621E-2 -1.2763523E+4 -6.3508715E+1 3.8933027E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Pr+3 + 1.000SO4-2 = PrSO4+ + -llnl_gamma 4.1 + log_k -3.607 + delta_h 61.106 #kJ/mol #95haa/sho + -analytic 1.6468274E+3 2.6102526E-1 -9.1474449E+4 -5.9754525E+2 5.0788508E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Pt+2 + 2.000SO4-2 = Pt(SO4)2-2 + -llnl_gamma 4.7 + log_k 4.858 + delta_h 11.138 #kJ/mol #98sas/sho + -analytic 1.8256106E+3 2.8625795E-1 -1.0194701E+5 -6.6013009E+2 6.1585564E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Pt+2 + 3.000SO4-2 = Pt(SO4)3-4 + -llnl_gamma 9.6 + log_k 6.242 + delta_h 22.544 #kJ/mol #98sas/sho + -analytic 1.9956555E+3 3.0926494E-1 -1.1461862E+5 -7.1836054E+2 7.1424438E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Cl- + 1.000Pt+2 = PtCl+ + -llnl_gamma 4.1 + log_k 8.692 + delta_h -45.782 #kJ/mol #98sas/sho + -analytic 8.1368089E+2 1.3336855E-1 -4.2477924E+4 -2.9625054E+2 2.7353877E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +2.000Cl- + 1.000Pt+2 = PtCl2 + -llnl_gamma 3.4 + log_k 15.515 + delta_h -92.745 #kJ/mol #98sas/sho + -analytic 1.6086577E+3 2.6251361E-1 -8.3744187E+4 -5.863356E+2 5.3618039E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +3.000Cl- + 1.000Pt+2 = PtCl3- + -llnl_gamma 3.6 + log_k 18.526 + delta_h -130.801 #kJ/mol #98sas/sho + -analytic 1.5878896E+3 2.6017069E-1 -8.2562327E+4 -5.7909277E+2 5.5922158E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +4.000Cl- + 1.000Pt+2 = PtCl4-2 + -llnl_gamma 4.7 + log_k 20.057 + delta_h -177.245 #kJ/mol #98sas/sho + -analytic 1.5484256E+3 2.5438282E-1 -7.970325E+4 -5.6619741E+2 5.7008538E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Pt+2 + 1.000H2O = PtO + 2.000H+ + -llnl_gamma 3.4 + log_k 4.435 + delta_h -32.955 #kJ/mol #98sas/sho + -analytic 3.0248248E+2 4.970448E-2 -1.3165226E+4 -1.1185901E+2 7.1803995E+5 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Pt+2 + 1.000H2O = PtOH+ + 1.000H+ + -llnl_gamma 4.1 + log_k 2.463 + delta_h -13.841 #kJ/mol #98sas/sho + -analytic 2.0903797E+2 3.2408781E-2 -1.0630587E+4 -7.5961331E+1 6.5597033E+5 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Pt+2 + 1.000SO4-2 = PtSO4 + -llnl_gamma 3.4 + log_k 2.990 + delta_h 2.368 #kJ/mol #98sas/sho + -analytic 1.671333E+3 2.6568475E-1 -9.0259416E+4 -6.076424E+2 5.2221217E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Br- + 1.000Rb+ = RbBr + -llnl_gamma 3.4 + log_k -1.217 + delta_h 13.931 #kJ/mol #97sve/sho + -analytic 6.493888E+2 1.0249979E-1 -3.5678675E+4 -2.3605258E+2 2.008785E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Cl- + 1.000Rb+ = RbCl + -llnl_gamma 3.4 + log_k -0.947 + delta_h 13.180 #kJ/mol #97sve/sho + -analytic 6.4893355E+2 1.0345472E-1 -3.5313843E+4 -2.3619228E+2 1.9698829E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000F- + 1.000Rb+ = RbF + -llnl_gamma 3.4 + log_k 1.000 + delta_h 1.899 #kJ/mol #97sve/sho + -analytic 7.2298773E+2 1.1414094E-1 -3.888063E+4 -2.6290417E+2 2.2158183E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000I- + 1.000Rb+ = RbI + -llnl_gamma 3.4 + log_k -0.960 + delta_h 7.975 #kJ/mol #97sve/sho + -analytic 5.9916358E+2 9.5931008E-2 -3.2537894E+4 -2.1835591E+2 1.8413791E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Rb+ + 1.000H2O = RbOH + 1.000H+ + -llnl_gamma 3.4 + log_k -14.205 + delta_h 64.213 #kJ/mol #97asho/sas + -analytic 2.2766071E+1 1.618384E-4 -3.0743368E+3 -9.7533177E+0 -2.2881424E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Rh+3 + 2.000SO4-2 = Rh(SO4)2- + -llnl_gamma 3.6 + log_k 2.131 + delta_h 67.868 #kJ/mol #98sas/sho + -analytic 2.5513074E+3 4.0341082E-1 -1.4205323E+5 -9.2337344E+2 8.1624604E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Rh+2 + 2.000SO4-2 = Rh(SO4)2-2 + -llnl_gamma 4.7 + log_k 4.513 + delta_h 12.231 #kJ/mol #98sas/sho + -analytic 1.8024932E+3 2.8181216E-1 -1.009668E+5 -6.5150595E+2 6.1115247E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Rh+3 + 3.000SO4-2 = Rh(SO4)3-3 + -llnl_gamma 6.7 + log_k 1.969 + delta_h 108.811 #kJ/mol #98sas/sho + -analytic 2.7847149E+3 4.3682783E-1 -1.5921278E+5 -1.0036905E+3 9.296724E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Rh+2 + 3.000SO4-2 = Rh(SO4)3-4 + -llnl_gamma 9.6 + log_k 6.110 + delta_h 22.050 #kJ/mol #98sas/sho + -analytic 1.973939E+3 3.0503986E-1 -1.1363504E+5 -7.1026833E+2 7.0999265E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Cl- + 1.000Rh+2 = RhCl+ + -llnl_gamma 4.1 + log_k -0.207 + delta_h 3.515 #kJ/mol #98sas/sho + -analytic 7.9942098E+2 1.3016799E-1 -4.4358864E+4 -2.9094996E+2 2.6916782E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Cl- + 1.000Rh+3 = RhCl+2 + -llnl_gamma 5.7 + log_k 2.022 + delta_h -0.348 #kJ/mol #98sas/sho + -analytic 8.3282981E+2 1.3629335E-1 -4.6668187E+4 -3.0224243E+2 2.93002E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +2.000Cl- + 1.000Rh+3 = RhCl2+ + -llnl_gamma 4.1 + log_k 3.303 + delta_h -11.813 #kJ/mol #98sas/sho + -analytic 1.6310643E+3 2.6553912E-1 -8.9750896E+4 -5.933253E+2 5.5326373E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +2.000Cl- + 1.000Rh+2 = RhCl2 + -llnl_gamma 3.4 + log_k -0.772 + delta_h -3.394 #kJ/mol #98sas/sho + -analytic 1.592734E+3 2.5933545E-1 -8.7318037E+4 -5.8080651E+2 5.2630806E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +3.000Cl- + 1.000Rh+3 = RhCl3 + -llnl_gamma 3.4 + log_k 3.338 + delta_h -32.382 #kJ/mol #98sas/sho + -analytic 2.3666082E+3 3.8724948E-1 -1.2704087E+5 -8.6422958E+2 7.6313648E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +3.000Cl- + 1.000Rh+2 = RhCl3- + -llnl_gamma 3.6 + log_k -2.093 + delta_h -20.215 #kJ/mol #98sas/sho + -analytic 1.5502361E+3 2.5286135E-1 -8.5900102E+4 -5.6586836E+2 5.3864651E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +4.000Cl- + 1.000Rh+3 = RhCl4- + -llnl_gamma 3.6 + log_k 3.300 + delta_h -72.492 #kJ/mol #98sas/sho + -analytic 2.3207293E+3 3.7507356E-1 -1.2284792E+5 -8.4908606E+2 7.4479114E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +4.000Cl- + 1.000Rh+2 = RhCl4-2 + -llnl_gamma 4.7 + log_k -3.297 + delta_h -56.417 #kJ/mol #98sas/sho + -analytic 1.4969138E+3 2.444351E-1 -8.2503761E+4 -5.4840133E+2 5.3881248E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Rh+3 + 1.000H2O = RhO+ + 2.000H+ + -llnl_gamma 4.1 + log_k -5.402 + delta_h 75.962 #kJ/mol #98sas/sho + -analytic 2.4708519E+2 4.0026999E-2 -1.4473707E+4 -8.8962661E+1 3.7836874E+5 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Rh+2 + 1.000H2O = RhO + 2.000H+ + -llnl_gamma 3.4 + log_k -15.950 + delta_h 81.032 #kJ/mol #98sas/sho + -analytic 3.1405806E+2 5.1150083E-2 -2.0383153E+4 -1.1576781E+2 8.5046889E+5 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Rh+2 + 1.000H2O = RhOH+ + 1.000H+ + -llnl_gamma 4.1 + log_k -7.835 + delta_h 43.198 #kJ/mol #98sas/sho + -analytic 2.2356249E+2 3.3738144E-2 -1.5117932E+4 -8.0753274E+1 8.0606176E+5 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Rh+3 + 1.000H2O = RhOH+2 + 1.000H+ + -llnl_gamma 5.7 + log_k -2.499 + delta_h 42.178 #kJ/mol #98sas/sho + -analytic 1.9684414E+2 3.0495179E-2 -1.2853102E+4 -6.9750442E+1 6.4600168E+5 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Rh+3 + 1.000SO4-2 = RhSO4+ + -llnl_gamma 4.1 + log_k 1.560 + delta_h 31.110 #kJ/mol #98sas/sho + -analytic 1.6670619E+3 2.642195E-1 -9.1392176E+4 -6.0470209E+2 5.2045442E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Rh+2 + 1.000SO4-2 = RhSO4 + -llnl_gamma 3.4 + log_k 2.477 + delta_h 4.798 #kJ/mol #98sas/sho + -analytic 1.6662208E+3 2.6432319E-1 -9.0242269E+4 -6.0563896E+2 5.2212441E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Ru+3 + 2.000SO4-2 = Ru(SO4)2- + -llnl_gamma 3.6 + log_k 2.710 + delta_h 64.563 #kJ/mol #98sas/sho + -analytic 2.5456446E+3 4.0235711E-1 -1.41287E+5 -9.2146323E+2 8.0966263E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Ru+2 + 2.000SO4-2 = Ru(SO4)2-2 + -llnl_gamma 4.7 + log_k 4.147 + delta_h 14.572 #kJ/mol #98sas/sho + -analytic 1.8095619E+3 2.8292403E-1 -1.0145925E+5 -6.5406993E+2 6.1319114E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Ru+3 + 3.000SO4-2 = Ru(SO4)3-3 + -llnl_gamma 6.7 + log_k 2.328 + delta_h 106.761 #kJ/mol #98sas/sho + -analytic 2.7804944E+3 4.3599172E-1 -1.5859043E+5 -1.0023035E+3 9.235339E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Ru+2 + 3.000SO4-2 = Ru(SO4)3-4 + -llnl_gamma 9.6 + log_k 5.304 + delta_h 27.151 #kJ/mol #98sas/sho + -analytic 1.9783259E+3 3.0571737E-1 -1.1412874E+5 -7.1183657E+2 7.1124813E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Cl- + 1.000Ru+2 = RuCl+ + -llnl_gamma 4.1 + log_k -0.493 + delta_h 5.645 #kJ/mol #98sas/sho + -analytic 8.0085686E+2 1.3040388E-1 -4.4592021E+4 -2.9141439E+2 2.7040459E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Cl- + 1.000Ru+3 = RuCl+2 + -llnl_gamma 5.7 + log_k 2.183 + delta_h -1.019 #kJ/mol #98sas/sho + -analytic 8.4565856E+2 1.3854402E-1 -4.7776368E+4 -3.0665568E+2 3.0454602E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +2.000Cl- + 1.000Ru+3 = RuCl2+ + -llnl_gamma 4.1 + log_k 3.779 + delta_h -14.033 #kJ/mol #98sas/sho + -analytic 1.6644237E+3 2.7145897E-1 -9.2650509E+4 -6.0479587E+2 5.8402547E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +2.000Cl- + 1.000Ru+2 = RuCl2 + -llnl_gamma 3.4 + log_k -1.293 + delta_h 0.824 #kJ/mol #98sas/sho + -analytic 1.5955207E+3 2.5972086E-1 -8.7828073E+4 -5.8164465E+2 5.2953048E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +3.000Cl- + 1.000Ru+3 = RuCl3 + -llnl_gamma 3.4 + log_k 4.335 + delta_h -37.199 #kJ/mol #98sas/sho + -analytic 2.4332537E+3 3.9886877E-1 -1.3271282E+5 -8.8718139E+2 8.2272763E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +3.000Cl- + 1.000Ru+2 = RuCl3- + -llnl_gamma 3.6 + log_k -2.790 + delta_h -13.870 #kJ/mol #98sas/sho + -analytic 1.5591329E+3 2.5444943E-1 -8.6909466E+4 -5.6886182E+2 5.4510013E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +4.000Cl- + 1.000Ru+3 = RuCl4- + -llnl_gamma 3.6 + log_k 4.194 + delta_h -75.975 #kJ/mol #98sas/sho + -analytic 2.422649E+3 3.9314942E-1 -1.3186961E+5 -8.8412883E+2 8.386198E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +4.000Cl- + 1.000Ru+2 = RuCl4-2 + -llnl_gamma 4.7 + log_k -4.140 + delta_h -47.364 #kJ/mol #98sas/sho + -analytic 1.5103603E+3 2.4688837E-1 -8.4007718E+4 -5.5288768E+2 5.4880936E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +5.000Cl- + 1.000Ru+3 = RuCl5-2 + -llnl_gamma 4.7 + log_k 3.907 + delta_h -165.659 #kJ/mol #98sas/sho + -analytic 2.440593E+3 3.9395171E-1 -1.3121559E+5 -8.9436264E+2 8.8003351E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +6.000Cl- + 1.000Ru+3 = RuCl6-3 + -llnl_gamma 6.7 + log_k 3.525 + delta_h -265.789 #kJ/mol #98sas/sho + -analytic 2.3986671E+3 3.8299613E-1 -1.2423733E+5 -8.8470391E+2 8.5785132E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Ru+3 + 1.000H2O = RuO+ + 2.000H+ + -llnl_gamma 4.1 + log_k -3.511 + delta_h 65.666 #kJ/mol #98sas/sho + -analytic 2.3278218E+2 3.7687648E-2 -1.2698857E+4 -8.3997096E+1 2.5852116E+5 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Ru+2 + 1.000H2O = RuO + 2.000H+ + -llnl_gamma 3.4 + log_k -15.400 + delta_h 78.642 #kJ/mol #98sas/sho + -analytic 3.0726734E+2 4.9945697E-2 -1.9739908E+4 -1.1331861E+2 8.0439886E+5 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Ru+2 + 1.000H2O = RuOH+ + 1.000H+ + -llnl_gamma 4.1 + log_k -7.557 + delta_h 42.231 #kJ/mol #98sas/sho + -analytic 2.1465798E+2 3.2412844E-2 -1.4399221E+4 -7.7600316E+1 7.496886E+5 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Ru+3 + 1.000H2O = RuOH+2 + 1.000H+ + -llnl_gamma 5.7 + log_k -2.235 + delta_h 40.921 #kJ/mol #98sas/sho + -analytic 1.8359445E+2 2.8310258E-2 -1.1623699E+4 -6.5172418E+1 5.3164471E+5 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Ru+3 + 1.000SO4-2 = RuSO4+ + -llnl_gamma 4.1 + log_k 2.066 + delta_h 28.223 #kJ/mol #98sas/sho + -analytic 1.6577992E+3 2.6264434E-1 -9.0447764E+4 -6.0149254E+2 5.1270885E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000Ru+2 + 1.000SO4-2 = RuSO4 + -llnl_gamma 3.4 + log_k 2.403 + delta_h 5.341 #kJ/mol #98sas/sho + -analytic 1.6653862E+3 2.6410257E-1 -9.0243637E+4 -6.0530093E+2 5.2208168E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +1.000HS- = S-2 + 1.000H+ + -llnl_gamma 5.0 + log_k -17.100 + delta_h 73.277 #kJ/mol #Internal calculation + -analytic 7.5990577E+2 1.0332409E-1 -4.4623962E+4 -2.7564897E+2 2.1275005E+6 + #References = LogK/DGf: 04chi; DHf/DHr: Internal calculation; S°: 04chi; V°: Default value; + +1.500HS- + 0.250S2O3-2 = S2-2 + 0.750H2O + -llnl_gamma 4.7 + log_k -3.332 + delta_h 8.189 #kJ/mol #04chi + -analytic -6.7494608E+1 -8.3051219E-3 3.5841897E+3 2.3253269E+1 -2.5968306E+5 + #References = LogK/DGf: Internal calculation; DHf/DHr: 04chi; S°: 04chi; Cp: 88sho/hel; V°: 88sho/hel; + +2.000SO3-2 + 2.000H+ = S2O5-2 + 1.000H2O + -llnl_gamma 4.7 + log_k 12.851 + delta_h 2.605 #kJ/mol #Internal calculation + -analytic 1.4398326E+3 2.3207016E-1 -7.9779598E+4 -5.1891599E+2 4.9275901E+6 + #References = LogK/DGf: 04chi; DHf/DHr: Internal calculation; S°: 04chi; Cp: 97asho/sas; V°: 97asho/sas; + +2.000HS- + 0.500S2O3-2 + 1.000H+ = S3-2 + 1.500H2O + -llnl_gamma 4.7 + log_k 7.905 + delta_h -44.062 #kJ/mol #04chi + -analytic 6.0944351E+2 1.0131316E-1 -3.1252624E+4 -2.2227278E+2 2.0513662E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 04chi; S°: 04chi; Cp: 88sho/hel; V°: 88sho/hel; + +1.000S2O4-2 + 1.000SO3-2 + 2.000H+ = S3O6-2 + 1.000H2O + -llnl_gamma 4.7 + log_k 18.882 + delta_h -68.607 #kJ/mol #97asho/sas + -analytic 1.3915088E+3 2.2410736E-1 -7.344261E+4 -5.0366254E+2 4.7259086E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 97asho/sas; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +2.500HS- + 0.750S2O3-2 + 2.000H+ = S4-2 + 2.250H2O + -llnl_gamma 4.7 + log_k 18.039 + delta_h -90.143 #kJ/mol #04chi + -analytic 1.2851749E+3 2.108594E-1 -6.6321358E+4 -4.674034E+2 4.3556807E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 04chi; S°: 04chi; Cp: 88sho/hel; V°: 88sho/hel; + +1.000S2O3-2 + 1.000S2O4-2 + 2.000H+ = S4O6-2 + 1.000H2O + -llnl_gamma 4.7 + log_k 27.057 + delta_h -104.283 #kJ/mol #97asho/sas + -analytic 1.4881486E+3 2.3891761E-1 -7.6989541E+4 -5.3794071E+2 5.066786E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 97asho/sas; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +3.000HS- + 1.000S2O3-2 + 3.000H+ = S5-2 + 3.000H2O + -llnl_gamma 4.7 + log_k 27.953 + delta_h -134.964 #kJ/mol #04chi + -analytic 1.9639823E+3 3.2084145E-1 -1.0162344E+5 -7.1364456E+2 6.6692789E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 04chi; S°: 04chi; Cp: 88sho/hel; V°: 88sho/hel; + +2.500S2O3-2 + 3.000H+ = S5O6-2 + 1.500H2O + -llnl_gamma 4.7 + log_k 0.873 + delta_h 26.266 #kJ/mol #97asho/sas + -analytic 2.0689312E+3 3.3258469E-1 -1.1610663E+5 -7.5037952E+2 7.01997E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 97asho/sas; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +4.000HS- + 2.000Sb(OH)3 + 2.000H+ = Sb2S4-2 + 6.000H2O + -llnl_gamma 4.7 + log_k 43.527 + delta_h -258.255 #kJ/mol #Internal calculation + -analytic 1.0090656E+3 1.8217565E-1 -3.7210477E+4 -3.7419458E+2 2.744198E+6 + #References = LogK/DGf: 05bes/app; DHf/DHr: Internal calculation; S°: 05bes/app; Cp: 05bes/app; V°: 05bes/app; + +1.000CN- + 0.500HS- + 0.250S2O3-2 + 1.000H+ = SCN- + 0.750H2O + -llnl_gamma 3.5 + log_k 23.307 + delta_h -117.402 #kJ/mol #97asho/sas + -analytic 7.0313314E+2 1.1369087E-1 -3.2819997E+4 -2.5482736E+2 2.3920376E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Sc+3 + 1.000H2O = ScO+ + 2.000H+ + -llnl_gamma 4.1 + log_k -9.734 + delta_h 106.303 #kJ/mol #97asho/sas + -analytic 2.0996003E+2 3.4063531E-2 -1.2170602E+4 -7.6231148E+1 -3.5591983E+4 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Sc+3 + 2.000H2O = ScO2- + 4.000H+ + -llnl_gamma 3.6 + log_k -25.991 + delta_h 206.682 #kJ/mol #97asho/sas + -analytic -1.8859669E+2 -3.3898954E-2 4.6758138E+3 6.9861707E+1 -1.4079381E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Sc+3 + 1.000H2O = ScOH+2 + 1.000H+ + -llnl_gamma 5.7 + log_k -4.310 + delta_h 60.247 #kJ/mol #97asho/sas + -analytic 1.6067565E+2 2.4732952E-2 -9.8054372E+3 -5.7333991E+1 2.1312403E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000CN- + 0.750HSe- + 0.250SeO4-2 + 1.250H+ = SeCN- + 1.000H2O + -llnl_gamma 3.6 + log_k 43.892 + delta_h -221.410 #kJ/mol #97asho/sas + -analytic 9.242059E+2 1.4808733E-1 -3.9746951E+4 -3.3409613E+2 3.1596671E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +6.000F- + 1.000SO4-2 + 8.000H+ = SF6 + 4.000H2O + -llnl_gamma 3.4 + log_k -70.059 + delta_h 548.922 #kJ/mol #01sch/sho + -analytic 5.9960136E+3 9.5151254E-1 -3.6609435E+5 -2.1658085E+3 2.1091951E+7 + #References = LogK/DGf: 01sch/sho; DHf/DHr: Internal calculation; S°: 01sch/sho; Cp: 01sch/sho; V°: 01sch/sho; + +2.000H4SiO4 = Si2O2(OH)5- + 1.000H2O + 1.000H+ + -llnl_gamma 3.6 + log_k -8.499 + delta_h 16.986 #kJ/mol #Internal calculation + -analytic 7.8101365E+2 8.5739544E-2 -5.0901363E+4 -2.7533082E+2 3.2833934E+6 + #References = LogK/DGf: 01fel/cho; DHf/DHr: Internal calculation; S°: 17bbla; V°: Default value; + +2.000H4SiO4 = Si2O3(OH)4-2 + 1.000H2O + 2.000H+ + -llnl_gamma 4.7 + log_k -19.399 + delta_h 52.399 #kJ/mol #Internal calculation + -analytic 8.6570631E+2 8.5739544E-2 -5.6730365E+4 -3.0606191E+2 3.2833934E+6 + #References = LogK/DGf: 01fel/cho; DHf/DHr: Internal calculation; S°: 17bbla; V°: Default value; + +3.000H4SiO4 = Si3O5(OH)5-3 + 2.000H2O + 3.000H+ + -llnl_gamma 4.5 + log_k -29.398 + delta_h 80.312 #kJ/mol #Internal calculation + -analytic 1.2990071E+3 1.2864341E-1 -8.5216622E+4 -4.5924499E+2 4.9273308E+6 + #References = LogK/DGf: 01fel/cho; DHf/DHr: Internal calculation; S°: 17bbla; V°: Default value; + +3.000H4SiO4 = Si3O6(OH)3-3 + 3.000H2O + 3.000H+ + -llnl_gamma 4.5 + log_k -29.397 + delta_h 80.312 #kJ/mol #Internal calculation + -analytic 1.2999024E+3 1.2871161E-1 -8.527988E+4 -4.5954923E+2 4.9318122E+6 + #References = LogK/DGf: 07las; DHf/DHr: Internal calculation; S°: 17bbla; V°: Default value; + +4.000H4SiO4 = Si4O12H4-4 + 4.000H2O + 4.000H+ + -llnl_gamma 9.6 + log_k -39.196 + delta_h 107.083 #kJ/mol #Internal calculation + -analytic 1.7332032E+3 1.7161548E-1 -1.1370651E+5 -6.1273231E+2 6.5757496E+6 + #References = LogK/DGf: 01fel/cho; DHf/DHr: Internal calculation; S°: 17bbla; V°: Default value; + +4.000H4SiO4 = Si4O6(OH)6-2 + 4.000H2O + 2.000H+ + -llnl_gamma 4.7 + log_k -15.196 + delta_h 23.697 #kJ/mol #Internal calculation + -analytic 1.5638178E+3 1.7161548E-1 -1.0139257E+5 -5.5127012E+2 6.5757496E+6 + #References = LogK/DGf: 07las; DHf/DHr: Internal calculation; S°: 17bbla; V°: Default value; + +4.000H4SiO4 = Si4O7(OH)6-4 + 3.000H2O + 4.000H+ + -llnl_gamma 9.6 + log_k -39.097 + delta_h 106.512 #kJ/mol #Internal calculation + -analytic 1.7323079E+3 1.7154728E-1 -1.1361343E+5 -6.1242807E+2 6.5712682E+6 + #References = LogK/DGf: 01fel/cho; DHf/DHr: Internal calculation; S°: 17bbla; V°: Default value; + +4.000H4SiO4 = Si4O8(OH)4-4 + 4.000H2O + 4.000H+ + -llnl_gamma 9.6 + log_k -39.096 + delta_h 106.512 #kJ/mol #Internal calculation + -analytic 1.7332032E+3 1.7161548E-1 -1.1367669E+5 -6.1273231E+2 6.5757496E+6 + #References = LogK/DGf: 01fel/cho; DHf/DHr: Internal calculation; S°: 17bbla; V°: Default value; + +6.000H4SiO4 = Si6O15-6 + 9.000H2O + 6.000H+ + -llnl_gamma 4.5 + log_k -61.491 + delta_h 176.036 #kJ/mol #Internal calculation + -analytic 2.6024906E+3 2.5762779E-1 -1.7155454E+5 -9.200112E+2 9.8770686E+6 + #References = LogK/DGf: 07las; DHf/DHr: Internal calculation; S°: 17bbla; V°: Default value; + +6.000F- + 1.000H4SiO4 + 4.000H+ = SiF6-2 + 4.000H2O + -llnl_gamma 4.7 + log_k 26.230 + delta_h -61.424 #kJ/mol #88sho/hel + -analytic 3.1934139E+3 4.9694767E-1 -1.7458722E+5 -1.1524674E+3 1.0838297E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 88sho/hel; S°: 88sho/hel; Cp: 88sho/hel; V°: 88sho/hel; + +1.000Cl- + 1.000Sm+3 = SmCl+2 + -llnl_gamma 5.7 + log_k 0.321 + delta_h 14.474 #kJ/mol #95haa/sho + -analytic 8.1417211E+2 1.3280197E-1 -4.5594837E+4 -2.9554583E+2 2.7369219E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +2.000Cl- + 1.000Sm+3 = SmCl2+ + -llnl_gamma 4.1 + log_k -0.018 + delta_h 19.990 #kJ/mol #95haa/sho + -analytic 1.5580684E+3 2.5323028E-1 -8.5086085E+4 -5.6725841E+2 4.9280355E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +3.000Cl- + 1.000Sm+3 = SmCl3 + -llnl_gamma 3.4 + log_k -0.356 + delta_h 13.779 #kJ/mol #95haa/sho + -analytic 2.2472115E+3 3.6383277E-1 -1.1911301E+5 -8.2077449E+2 6.61506E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +4.000Cl- + 1.000Sm+3 = SmCl4- + -llnl_gamma 3.6 + log_k -0.768 + delta_h -5.236 #kJ/mol #95haa/sho + -analytic 1.6568796E+3 2.8048496E-1 -8.0746573E+4 -6.1229376E+2 3.9675027E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 1.000Sm+3 = SmCO3+ + 1.000H+ + -llnl_gamma 4.1 + log_k -2.462 + delta_h -5.178 #kJ/mol #95haa/sho + -analytic 7.1835641E+2 1.1692165E-1 -3.5990078E+4 -2.6496479E+2 1.8374614E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000F- + 1.000Sm+3 = SmF+2 + -llnl_gamma 5.7 + log_k 4.408 + delta_h 22.985 #kJ/mol #95haa/sho + -analytic 9.0554589E+2 1.4583337E-1 -5.0713701E+4 -3.2667564E+2 3.0058895E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +2.000F- + 1.000Sm+3 = SmF2+ + -llnl_gamma 4.1 + log_k 7.717 + delta_h 13.451 #kJ/mol #95haa/sho + -analytic 1.7179479E+3 2.7518152E-1 -9.3475138E+4 -6.22421E+2 5.4564174E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +3.000F- + 1.000Sm+3 = SmF3 + -llnl_gamma 3.4 + log_k 10.147 + delta_h -8.776 #kJ/mol #95haa/sho + -analytic 2.4953922E+3 3.9902376E-1 -1.3169031E+5 -9.0782875E+2 7.4528467E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +4.000F- + 1.000Sm+3 = SmF4- + -llnl_gamma 3.6 + log_k 12.136 + delta_h -50.074 #kJ/mol #95haa/sho + -analytic 2.0120082E+3 3.2837569E-1 -9.9124291E+4 -7.3741155E+2 5.2770984E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000H2PO4- + 1.000Sm+3 = SmH2PO4+2 + -llnl_gamma 5.7 + log_k 1.037 + delta_h -5.553 #kJ/mol #95haa/sho + -analytic 8.4697763E+2 1.3486774E-1 -4.8140877E+4 -3.0688355E+2 3.0825285E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 1.000Sm+3 = SmHCO3+2 + -llnl_gamma 5.7 + log_k 1.789 + delta_h 8.851 #kJ/mol #95haa/sho + -analytic 8.6053586E+2 1.3744737E-1 -4.9163259E+4 -3.1096402E+2 3.0781802E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000NO3- + 1.000Sm+3 = SmNO3+2 + -llnl_gamma 5.7 + log_k 0.801 + delta_h -29.298 #kJ/mol #95haa/sho + -analytic 7.7580751E+2 1.2290978E-1 -4.3203029E+4 -2.8239195E+2 2.8456795E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Sm+3 + 1.000H2O = SmO+ + 2.000H+ + -llnl_gamma 4.1 + log_k -16.477 + delta_h 150.160 #kJ/mol #95haa/sho + -analytic 2.3947792E+2 3.8444535E-2 -1.6711908E+4 -8.6175799E+1 1.6631257E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Sm+3 + 2.000H2O = SmO2- + 4.000H+ + -llnl_gamma 3.6 + log_k -35.007 + delta_h 266.129 #kJ/mol #95haa/sho + -analytic -1.534254E+2 -2.8782339E-2 3.2144694E+1 5.7423699E+1 -1.3511117E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Sm+3 + 2.000H2O = SmO2H + 3.000H+ + -llnl_gamma 3.4 + log_k -25.918 + delta_h 226.722 #kJ/mol #95haa/sho + -analytic 3.6714266E+2 5.5496773E-2 -2.3719045E+4 -1.3307918E+2 -6.7297773E+4 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Sm+3 + 1.000H2O = SmOH+2 + 1.000H+ + -llnl_gamma 5.7 + log_k -7.975 + delta_h 81.791 #kJ/mol #95haa/sho + -analytic 1.8272046E+2 2.7909271E-2 -1.3103937E+4 -6.4659494E+1 4.3827895E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000SO4-2 + 1.000Sm+3 = SmSO4+ + -llnl_gamma 4.1 + log_k 3.723 + delta_h 19.890 #kJ/mol #95haa/sho + -analytic 1.6441652E+3 2.60395E-1 -8.9216456E+4 -5.9647633E+2 5.0754538E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Sn+2 + 1.000H2O = SnO + 2.000H+ + -llnl_gamma 3.4 + log_k -7.073 + delta_h 42.963 #kJ/mol #97asho/sas + -analytic 2.1228185E+2 3.2818669E-2 -1.1494323E+4 -7.8384229E+1 2.9949478E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Sn+2 + 1.000H2O = SnOH+ + 1.000H+ + -llnl_gamma 4.1 + log_k -3.408 + delta_h 27.532 #kJ/mol #97asho/sas + -analytic 1.7410041E+2 2.5991343E-2 -9.8497669E+3 -6.3233284E+1 3.7737577E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000HCO3- + 1.000Sr+2 = Sr(CO3) + 1.000H+ + -llnl_gamma 3.4 + log_k -7.522 + delta_h 36.523 #kJ/mol #Internal calculation + -analytic 7.1800436E+2 1.171315E-1 -3.8145554E+4 -2.6404948E+2 1.8547807E+6 + #References = LogK/DGf: 84bus/plu; DHf/DHr: Internal calculation; S°: 84bus/plu; Cp: 97sve/sho; V°: 97sve/sho; + +1.000HCO3- + 1.000Sr+2 = Sr(HCO3)+ + -llnl_gamma 4.1 + log_k 1.180 + delta_h 25.315 #kJ/mol #Internal calculation + -analytic 9.6005853E+2 1.5199472E-1 -5.512222E+4 -3.463306E+2 3.3475113E+6 + #References = LogK/DGf: 84bus/plu; DHf/DHr: Internal calculation; S°: 84bus/plu; Cp: 95sho/kor; V°: 95sho/kor; + +1.000H2AsO4- + 1.000Sr+2 = SrAsO4- + 2.000H+ + -llnl_gamma 3.6 + log_k -13.586 + delta_h 106.774 #kJ/mol #Internal calculation + -analytic 3.0904721E+2 4.4557781E-2 -1.832413E+4 -1.1237028E+2 3.1953307E+5 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000Cl- + 1.000Sr+2 = SrCl+ + -llnl_gamma 4.1 + log_k -0.230 + delta_h 7.551 #kJ/mol #Internal calculation + -analytic 8.1483026E+2 1.3239194E-1 -4.5357106E+4 -2.9629935E+2 2.7351601E+6 + #References = LogK/DGf: 96bou; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000F- + 1.000Sr+2 = SrF+ + -llnl_gamma 4.1 + log_k 0.174 + delta_h 4.780 #kJ/mol #97sve/sho + -analytic 8.5496899E+2 1.368167E-1 -4.7790674E+4 -3.1037331E+2 2.9069966E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000H2AsO3- + 1.000Sr+2 = SrH2AsO3+ + -llnl_gamma 4.1 + log_k 0.399 + delta_h 0.626 #kJ/mol #Internal calculation + -analytic 6.6324976E+2 1.0241115E-1 -3.4997772E+4 -2.4144499E+2 1.9057487E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000H2AsO4- + 1.000Sr+2 = SrH2AsO4+ + -llnl_gamma 4.1 + log_k 0.820 + delta_h 3.838 #kJ/mol #Internal calculation + -analytic 8.6396585E+2 1.3631095E-1 -4.8294185E+4 -3.1310918E+2 2.9299955E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000H2PO4- + 1.000Sr+2 = SrH2PO4+ + -llnl_gamma 4.1 + log_k 0.830 + #References = LogK/DGf: 97smi/mar; + #References = LogK/DGf: 97smi/mar; V°: Default value; + +1.000H2AsO4- + 1.000Sr+2 = SrHAsO4 + 1.000H+ + -llnl_gamma 3.4 + log_k -5.151 + delta_h 16.090 #kJ/mol #Internal calculation + -analytic 8.6809689E+2 1.3702902E-1 -4.693967E+4 -3.1741697E+2 2.5566549E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000H2PO4- + 1.000Sr+2 = SrHPO4 + 1.000H+ + -llnl_gamma 3.4 + log_k -4.700 + #References = LogK/DGf: 97smi/mar; + #References = LogK/DGf: 97smi/mar; V°: Default value; + +1.000Sr+2 + 1.000H2O = SrOH+ + 1.000H+ + -llnl_gamma 4.1 + log_k -13.291 + delta_h 82.608 #kJ/mol #Internal calculation + -analytic 1.6150632E+2 2.3851214E-2 -1.2107439E+4 -5.8671532E+1 3.4480512E+5 + #References = LogK/DGf: 76bae/mes; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +2.000H2PO4- + 1.000Sr+2 = SrP2O7-2 + 1.000H2O + 2.000H+ + -llnl_gamma 4.7 + log_k -12.410 + #References = LogK/DGf: 76smi/mar; + #References = LogK/DGf: 76smi/mar; V°: Default value; + +1.000H2PO4- + 1.000Sr+2 = SrPO4- + 2.000H+ + -llnl_gamma 3.6 + log_k -13.560 + #References = LogK/DGf: 96bou; + #References = LogK/DGf: 96bou; V°: Default value; + +1.000SO4-2 + 1.000Sr+2 = SrSO4 + -llnl_gamma 3.4 + log_k 2.300 + delta_h 7.029 #kJ/mol #06bla/ign + -analytic 1.7733453E+3 2.6670271E-1 -9.7497524E+4 -6.413138E+2 5.6300434E+6 + #References = LogK/DGf: 06bla/ign; DHf/DHr: 06bla/ign; S°: Internal calculation; V°: Default value; + +1.000Cl- + 1.000Tb+3 = TbCl+2 + -llnl_gamma 5.7 + log_k 0.248 + delta_h 14.019 #kJ/mol #95haa/sho + -analytic 8.2636104E+2 1.3516797E-1 -4.6635953E+4 -2.9986247E+2 2.8440851E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +2.000Cl- + 1.000Tb+3 = TbCl2+ + -llnl_gamma 4.1 + log_k -0.018 + delta_h 17.994 #kJ/mol #95haa/sho + -analytic 1.5906954E+3 2.5921921E-1 -8.7918237E+4 -5.7867999E+2 5.2256902E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +3.000Cl- + 1.000Tb+3 = TbCl3 + -llnl_gamma 3.4 + log_k -0.429 + delta_h 10.206 #kJ/mol #95haa/sho + -analytic 2.3151183E+3 3.7630779E-1 -1.247778E+5 -8.4469864E+2 7.1927767E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +4.000Cl- + 1.000Tb+3 = TbCl4- + -llnl_gamma 3.6 + log_k -0.841 + delta_h -11.803 #kJ/mol #95haa/sho + -analytic 2.1704268E+3 3.5191218E-1 -1.1409841E+5 -7.9440436E+2 6.4180145E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 1.000Tb+3 = TbCO3+ + 1.000H+ + -llnl_gamma 4.1 + log_k -2.389 + delta_h -6.595 #kJ/mol #95haa/sho + -analytic 7.1212505E+2 1.1821654E-1 -3.5408636E+4 -2.6324747E+2 1.8124839E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000F- + 1.000Tb+3 = TbF+2 + -llnl_gamma 5.7 + log_k 4.702 + delta_h 22.684 #kJ/mol #95haa/sho + -analytic 9.1896466E+2 1.4848782E-1 -5.177363E+4 -3.313443E+2 3.1117015E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +2.000F- + 1.000Tb+3 = TbF2+ + -llnl_gamma 4.1 + log_k 8.231 + delta_h 12.020 #kJ/mol #95haa/sho + -analytic 1.7544687E+3 2.8187539E-1 -9.6470192E+4 -6.350959E+2 5.7591124E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +3.000F- + 1.000Tb+3 = TbF3 + -llnl_gamma 3.4 + log_k 10.807 + delta_h -11.918 #kJ/mol #95haa/sho + -analytic 2.5641075E+3 4.1149879E-1 -1.3737764E+5 -9.3175286E+2 8.0305635E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +4.000F- + 1.000Tb+3 = TbF4- + -llnl_gamma 3.6 + log_k 12.943 + delta_h -56.422 #kJ/mol #95haa/sho + -analytic 2.5515098E+3 4.0376057E-1 -1.3381086E+5 -9.2865621E+2 7.8008251E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000H2PO4- + 1.000Tb+3 = TbH2PO4+2 + -llnl_gamma 5.7 + log_k 0.963 + delta_h -7.005 #kJ/mol #95haa/sho + -analytic 8.5978383E+2 1.3733122E-1 -4.9177603E+4 -3.114809E+2 3.1926732E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 1.000Tb+3 = TbHCO3+2 + -llnl_gamma 5.7 + log_k 1.716 + delta_h -14.557 #kJ/mol #95haa/sho + -analytic 8.5057733E+2 1.3578269E-1 -4.829781E+4 -3.0831738E+2 3.1608408E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000NO3- + 1.000Tb+3 = TbNO3+2 + -llnl_gamma 5.7 + log_k 0.508 + delta_h -31.242 #kJ/mol #95haa/sho + -analytic 7.8947618E+2 1.2539959E-1 -4.4309528E+4 -2.8736823E+2 2.9630605E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Tb+3 + 1.000H2O = TbO+ + 2.000H+ + -llnl_gamma 4.1 + log_k -16.184 + delta_h 146.740 #kJ/mol #95haa/sho + -analytic 2.3041021E+2 3.7258499E-2 -1.5919285E+4 -8.3105957E+1 1.1830429E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Tb+3 + 2.000H2O = TbO2- + 4.000H+ + -llnl_gamma 3.6 + log_k -34.201 + delta_h 258.906 #kJ/mol #95haa/sho + -analytic -1.495695E+2 -2.8083973E-2 -2.3142501E+1 5.597371E+1 -1.3052849E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Tb+3 + 2.000H2O = TbO2H + 3.000H+ + -llnl_gamma 3.4 + log_k -25.038 + delta_h 219.580 #kJ/mol #95haa/sho + -analytic 2.6483149E+2 3.8897158E-2 -1.8164965E+4 -9.5678399E+1 -3.370285E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Tb+3 + 1.000H2O = TbOH+2 + 1.000H+ + -llnl_gamma 5.7 + log_k -7.828 + delta_h 79.582 #kJ/mol #95haa/sho + -analytic 1.7703049E+2 2.7233874E-2 -1.2534766E+4 -6.2805138E+1 3.9742806E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000SO4-2 + 1.000Tb+3 = TbSO4+ + -llnl_gamma 4.1 + log_k 3.723 + delta_h 19.266 #kJ/mol #95haa/sho + -analytic 1.6378251E+3 2.5957544E-1 -8.8820202E+4 -5.94252E+2 5.0533547E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Tl+3 + 2.000H2O = Tl(OH)2+ + 2.000H+ + -llnl_gamma 4.1 + log_k -1.572 + delta_h 59.815 #kJ/mol #Internal calculation + -analytic 4.7218515E+2 6.9545809E-2 -2.6023983E+4 -1.6940589E+2 1.0646261E+6 + #References = LogK/DGf: 81tur/whi; DHf/DHr: Internal calculation; S°: 17abla; V°: Default value; + +1.000Tl+3 + 1.000SO4-2 = Tl(SO4)+ + -llnl_gamma 4.1 + log_k 4.380 + delta_h 11.958 #kJ/mol #Internal calculation + -analytic 1.8636003E+3 2.9458614E-1 -1.0166412E+5 -6.7594522E+2 5.9126895E+6 + #References = LogK/DGf: 81tur/whi; DHf/DHr: Internal calculation; S°: 17abla; V°: Default value; + +1.000Tl+3 + 1.000Cl- = TlCl+2 + -llnl_gamma 5.7 + log_k 7.743 + delta_h -27.242 #kJ/mol #Internal calculation + -analytic 7.8251409E+2 1.2726044E-1 -4.001214E+4 -2.8493608E+2 2.3595039E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 82wag/eva; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Cl- + 1.000Tl+ = TlCl + -llnl_gamma 3.4 + log_k 0.523 + delta_h -11.690 #kJ/mol #09xio + -analytic 6.4703392E+2 1.0349928E-1 -3.4122023E+4 -2.3649987E+2 1.9805263E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: 09xio; S°: Internal calculation; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Tl+3 + 2.000Cl- = TlCl2+ + -llnl_gamma 4.1 + log_k 13.500 + delta_h -44.780 #kJ/mol #Internal calculation + -analytic 1.750445E+3 2.8169841E-1 -9.1628977E+4 -6.3646924E+2 5.4485764E+6 + #References = LogK/DGf: 81tur/whi; DHf/DHr: Internal calculation; S°: 82wag/eva; V°: Default value; + +1.000Tl+ + 2.000Cl- = TlCl2- + -llnl_gamma 3.6 + log_k 0.003 + delta_h -17.850 #kJ/mol #82wag/eva + -analytic 1.3893248E+3 2.1764815E-1 -7.5784216E+4 -5.0567911E+2 4.5547087E+6 + #References = LogK/DGf: 09xio; DHf/DHr: 82wag/eva; S°: Internal calculation; V°: Default value; + +1.000Tl+3 + 3.000Cl- = TlCl3 + -llnl_gamma 3.4 + log_k 16.500 + delta_h -47.474 #kJ/mol #Internal calculation + -analytic 2.3934452E+3 3.843613E-1 -1.2660332E+5 -8.6959112E+2 7.5411512E+6 + #References = LogK/DGf: 81tur/whi; DHf/DHr: Internal calculation; S°: 82wag/eva; V°: Default value; + +1.000Tl+3 + 4.000Cl- = TlCl4- + -llnl_gamma 3.6 + log_k 18.340 + delta_h -42.354 #kJ/mol #Internal calculation + -analytic 3.0366544E+3 4.8702419E-1 -1.6198581E+5 -1.102713E+3 9.6337261E+6 + #References = LogK/DGf: 81tur/whi; DHf/DHr: Internal calculation; S°: 82wag/eva; V°: Default value; + +1.000Tl+ + 1.000HCO3- = TlCO3- + 1.000H+ + -llnl_gamma 3.6 + log_k -8.170 + delta_h 11.100 #kJ/mol #17abla + -analytic 7.4258904E+2 1.0785078E-1 -4.1546418E+4 -2.7059248E+2 2.3108796E+6 + #References = LogK/DGf: 09xio; DHf/DHr: 17abla; S°: Internal calculation; V°: Default value; + +1.000F- + 1.000Tl+ = TlF + -llnl_gamma 3.4 + log_k 0.100 + delta_h 7.510 #kJ/mol #Internal calculation + -analytic 7.2684871E+2 1.1460751E-1 -3.9447134E+4 -2.6421494E+2 2.2374501E+6 + #References = LogK/DGf: 09xio; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000Tl+ + 1.000HCO3- = TlHCO3 + -llnl_gamma 3.4 + log_k 0.900 + delta_h 8.480 #kJ/mol #17abla + -analytic 6.9710113E+2 1.0785078E-1 -3.9001301E+4 -2.5199367E+2 2.3108796E+6 + #References = LogK/DGf: 09xio; DHf/DHr: 17abla; S°: Internal calculation; V°: Default value; + +1.000HS- + 1.000Tl+ = TlHS + -llnl_gamma 3.4 + log_k 2.710 + delta_h 8.473 #kJ/mol #17abla + -analytic 7.5537043E+2 1.1564646E-1 -4.2183394E+4 -2.7228323E+2 2.4970595E+6 + #References = LogK/DGf: 09xio; DHf/DHr: 17abla; S°: Internal calculation; V°: Default value; + +1.000Tl+3 + 2.000H2O = TlO2- + 4.000H+ + -llnl_gamma 3.6 + log_k -15.002 + delta_h 155.557 #kJ/mol #Internal calculation + -analytic -2.0948209E+2 -3.8490419E-2 1.1887029E+4 7.6320668E+1 -2.0235551E+6 + #References = LogK/DGf: 81tur/whi; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Tl+3 + 1.000H2O = TlOH+2 + 1.000H+ + -llnl_gamma 5.7 + log_k -0.645 + delta_h 10.635 #kJ/mol #Internal calculation + -analytic 1.2102576E+2 1.7623845E-2 -5.4871523E+3 -4.4364466E+1 1.1166343E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Tl+ + 1.000H2O = TlOH + 1.000H+ + -llnl_gamma 3.4 + log_k -13.311 + delta_h 58.237 #kJ/mol #Internal calculation + -analytic 1.1431624E+1 -1.7536167E-3 -2.2386304E+3 -5.6072879E+0 -2.5214866E+5 + #References = LogK/DGf: 09xio; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Tl+ + 1.000H2PO4- = TlPO4-2 + 2.000H+ + -llnl_gamma 4.7 + log_k -16.020 + delta_h 3.600 #kJ/mol #17abla + -analytic 7.9859329E+2 1.093651E-1 -4.4043004E+4 -2.9325589E+2 2.323945E+6 + #References = LogK/DGf: 09xio; DHf/DHr: 17abla; S°: Internal calculation; V°: Default value; + +1.000Tl+ + 1.000SO4-2 = TlSO4- + -llnl_gamma 3.6 + log_k 1.380 + delta_h -0.840 #kJ/mol #82wag/eva + -analytic 1.5130908E+3 2.3053588E-1 -8.4059115E+4 -5.4758698E+2 5.0188218E+6 + #References = LogK/DGf: 09xio; DHf/DHr: 82wag/eva; S°: Internal calculation; V°: Default value; + +1.000Cl- + 1.000Tm+3 = TmCl+2 + -llnl_gamma 5.7 + log_k 0.248 + delta_h 13.021 #kJ/mol #95haa/sho + -analytic 8.2725254E+2 1.3522114E-1 -4.6781641E+4 -3.0014456E+2 2.8689133E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +2.000Cl- + 1.000Tm+3 = TmCl2+ + -llnl_gamma 4.1 + log_k -0.018 + delta_h 15.499 #kJ/mol #95haa/sho + -analytic 1.596674E+3 2.6008877E-1 -8.8474395E+4 -5.8078125E+2 5.2992002E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +3.000Cl- + 1.000Tm+3 = TmCl3 + -llnl_gamma 3.4 + log_k -0.429 + delta_h 5.216 #kJ/mol #95haa/sho + -analytic 2.3311248E+3 3.7940083E-1 -1.2591784E+5 -8.5061337E+2 7.3288424E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +4.000Cl- + 1.000Tm+3 = TmCl4- + -llnl_gamma 3.6 + log_k -0.841 + delta_h -20.411 #kJ/mol #95haa/sho + -analytic 2.1934565E+3 3.5555354E-1 -1.1596144E+5 -8.0268756E+2 6.6517664E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 1.000Tm+3 = TmCO3+ + 1.000H+ + -llnl_gamma 4.1 + log_k -2.096 + delta_h -9.266 #kJ/mol #95haa/sho + -analytic 7.3741081E+2 1.1985828E-1 -3.6824427E+4 -2.720086E+2 1.8965221E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000F- + 1.000Tm+3 = TmF+2 + -llnl_gamma 5.7 + log_k 4.848 + delta_h 23.594 #kJ/mol #95haa/sho + -analytic 9.2055338E+2 1.4875225E-1 -5.1992581E+4 -3.3175841E+2 3.1328666E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +2.000F- + 1.000Tm+3 = TmF2+ + -llnl_gamma 4.1 + log_k 8.450 + delta_h 12.511 #kJ/mol #95haa/sho + -analytic 1.7625729E+3 2.8321721E-1 -9.7201143E+4 -6.3777764E+2 5.8304994E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +3.000F- + 1.000Tm+3 = TmF3 + -llnl_gamma 3.4 + log_k 11.100 + delta_h -12.843 #kJ/mol #95haa/sho + -analytic 2.581118E+3 4.145917E-1 -1.387299E+5 -9.3766715E+2 8.166623E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +4.000F- + 1.000Tm+3 = TmF4- + -llnl_gamma 3.6 + log_k 13.309 + delta_h -60.635 #kJ/mol #95haa/sho + -analytic 2.5968229E+3 4.1089444E-1 -1.3698725E+5 -9.4470067E+2 8.0924911E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000H2PO4- + 1.000Tm+3 = TmH2PO4+2 + -llnl_gamma 5.7 + log_k 1.037 + delta_h -9.794 #kJ/mol #95haa/sho + -analytic 8.6116717E+2 1.3741429E-1 -4.9286637E+4 -3.1200451E+2 3.2217001E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 1.000Tm+3 = TmHCO3+2 + -llnl_gamma 5.7 + log_k 1.789 + delta_h 4.984 #kJ/mol #95haa/sho + -analytic 8.6648429E+2 1.3874757E-1 -4.9876153E+4 -3.1307386E+2 3.1915767E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000NO3- + 1.000Tm+3 = TmNO3+2 + -llnl_gamma 5.7 + log_k 0.215 + delta_h -34.060 #kJ/mol #95haa/sho + -analytic 7.932343E+2 1.2571503E-1 -4.4605059E+4 -2.8883348E+2 3.0049758E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Tm+3 + 1.000H2O = TmO+ + 2.000H+ + -llnl_gamma 4.1 + log_k -15.891 + delta_h 142.945 #kJ/mol #95haa/sho + -analytic 2.2770462E+2 3.6724939E-2 -1.5905776E+4 -8.2035852E+1 1.596092E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Tm+3 + 2.000H2O = TmO2- + 4.000H+ + -llnl_gamma 3.6 + log_k -32.661 + delta_h 247.001 #kJ/mol #95haa/sho + -analytic -1.5124606E+2 -2.8469133E-2 -6.8329283E+1 5.6871852E+1 -1.1932921E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Tm+3 + 2.000H2O = TmO2H + 3.000H+ + -llnl_gamma 3.4 + log_k -24.159 + delta_h 211.940 #kJ/mol #95haa/sho + -analytic 2.9020407E+2 4.300493E-2 -1.9754531E+4 -1.0472071E+2 -1.6028079E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Tm+3 + 1.000H2O = TmOH+2 + 1.000H+ + -llnl_gamma 5.7 + log_k -7.681 + delta_h 77.123 #kJ/mol #95haa/sho + -analytic 1.7767273E+2 2.7229271E-2 -1.2731747E+4 -6.2946444E+1 4.4330242E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000SO4-2 + 1.000Tm+3 = TmSO4+ + -llnl_gamma 4.1 + log_k 3.649 + delta_h 19.684 #kJ/mol #95haa/sho + -analytic 1.645014E+3 2.6061557E-1 -8.924154E+4 -5.9684661E+2 5.0765674E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000U+4 + 1.000H2O = U(OH)+3 + 1.000H+ + -llnl_gamma 8.2 + log_k -0.535 + delta_h 46.808 #kJ/mol #97bsho/sas + -analytic 1.7101348E+2 2.7066935E-2 -1.0634169E+4 -6.0084821E+1 4.2003067E+5 + #References = LogK/DGf: 97bsho/sas; DHf/DHr: Internal calculation; S°: 97bsho/sas; Cp: 97bsho/sas; V°: 97bsho/sas; + +1.000U+3 + 1.000H2O = UO+ + 2.000H+ + -llnl_gamma 4.1 + log_k -12.702 + delta_h 130.982 #kJ/mol #97bsho/sas + -analytic 2.3111318E+2 3.7178722E-2 -1.4465797E+4 -8.3476779E+1 1.564297E+4 + #References = LogK/DGf: 97bsho/sas; DHf/DHr: Internal calculation; S°: 97bsho/sas; Cp: 97bsho/sas; V°: 97bsho/sas; + +1.000U+4 + 1.000H2O = UO+2 + 2.000H+ + -llnl_gamma 5.7 + log_k -2.001 + delta_h 73.139 #kJ/mol #97bsho/sas + -analytic 2.308384E+2 3.8167946E-2 -1.2316234E+4 -8.2788607E+1 1.7290833E+5 + #References = LogK/DGf: 97bsho/sas; DHf/DHr: Internal calculation; S°: 97bsho/sas; Cp: 97bsho/sas; V°: 97bsho/sas; + +1.000U+4 + 2.000H2O = UO2 + 4.000H+ + -llnl_gamma 3.4 + log_k -4.551 + delta_h 76.066 #kJ/mol #97bsho/sas + -analytic 5.9175465E+2 9.7336954E-2 -3.241666E+4 -2.1504124E+2 1.3782915E+6 + #References = LogK/DGf: 97bsho/sas; DHf/DHr: Internal calculation; S°: 97bsho/sas; Cp: 97bsho/sas; V°: 97bsho/sas; + +1.000UO2+2 + 1.000H2O = UO2OH+ + 1.000H+ + -llnl_gamma 4.1 + log_k -5.211 + delta_h 43.313 #kJ/mol #97bsho/sas + -analytic 1.2256731E+2 1.9794452E-2 -7.1064014E+3 -4.4921584E+1 1.1648421E+5 + #References = LogK/DGf: 97bsho/sas; DHf/DHr: Internal calculation; S°: 97bsho/sas; Cp: 97bsho/sas; V°: 97bsho/sas; + +1.000UO2+ + 1.000H2O = UO2OH + 1.000H+ + -llnl_gamma 3.4 + log_k -18.156 + delta_h 72.918 #kJ/mol #97bsho/sas + -analytic 2.6086013E+2 4.0103499E-2 -1.9758974E+4 -9.5644948E+1 1.0637182E+6 + #References = LogK/DGf: 97bsho/sas; DHf/DHr: Internal calculation; S°: 97bsho/sas; Cp: 97bsho/sas; V°: 97bsho/sas; + +1.000UO2+2 + 1.000H2O = UO3 + 2.000H+ + -llnl_gamma 3.4 + log_k -10.305 + delta_h 51.185 #kJ/mol #97bsho/sas + -analytic 2.2788881E+2 3.8664183E-2 -1.262414E+4 -8.5383135E+1 3.4620169E+5 + #References = LogK/DGf: 97bsho/sas; DHf/DHr: Internal calculation; S°: 97bsho/sas; Cp: 97bsho/sas; V°: 97bsho/sas; + +1.000UO2+ + 1.000H2O = UO3- + 2.000H+ + -llnl_gamma 3.6 + log_k -36.481 + delta_h 170.532 #kJ/mol #97bsho/sas + -analytic -3.3047935E+2 -5.8240061E-2 6.1303609E+3 1.2062567E+2 -6.8261122E+5 + #References = LogK/DGf: 97bsho/sas; DHf/DHr: Internal calculation; S°: 97bsho/sas; Cp: 97bsho/sas; V°: 97bsho/sas; + +1.000UO2+2 + 2.000H2O = UO4-2 + 4.000H+ + -llnl_gamma 4.7 + log_k -33.013 + delta_h 142.227 #kJ/mol #97bsho/sas + -analytic -1.0408635E+3 -1.7075415E-1 5.0554951E+4 3.7593102E+2 -3.6462617E+6 + #References = LogK/DGf: 97bsho/sas; DHf/DHr: Internal calculation; S°: 97bsho/sas; Cp: 97bsho/sas; V°: 97bsho/sas; + +1.000U+3 + 1.000H2O = UOH+2 + 1.000H+ + -llnl_gamma 5.7 + log_k -6.179 + delta_h 73.411 #kJ/mol #97bsho/sas + -analytic 1.6701811E+2 2.5515959E-2 -1.1019904E+4 -5.9329998E+1 2.6354985E+5 + #References = LogK/DGf: 97bsho/sas; DHf/DHr: Internal calculation; S°: 97bsho/sas; Cp: 97bsho/sas; V°: 97bsho/sas; + +1.000V+3 + 1.000H2O = VO+ + 2.000H+ + -llnl_gamma 4.1 + log_k -6.215 + delta_h 89.338 #kJ/mol #97asho/sas + -analytic 2.0995699E+2 3.4110521E-2 -1.0386006E+4 -7.6592412E+1 -1.7641742E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000VO2+ + 2.000H2O = VO4-3 + 4.000H+ + -llnl_gamma 6.7 + log_k -28.410 + delta_h 89.131 #kJ/mol #97asho/sas + -analytic -1.266962E+3 -2.1762336E-1 5.6529425E+4 4.6396661E+2 -3.0418819E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000V+2 + 1.000H2O = VOH+ + 1.000H+ + -llnl_gamma 4.1 + log_k -6.509 + delta_h 34.502 #kJ/mol #97asho/sas + -analytic 2.4010799E+2 3.6386614E-2 -1.5867164E+4 -8.6664385E+1 9.0661687E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000V+3 + 1.000H2O = VOH+2 + 1.000H+ + -llnl_gamma 5.7 + log_k -2.257 + delta_h 47.409 #kJ/mol #97asho/sas + -analytic 1.4320961E+2 2.1803112E-2 -7.6452307E+3 -5.1357679E+1 6.7215145E+4 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000VO+2 + 1.000H2O = VOOH+ + 1.000H+ + -llnl_gamma 4.1 + log_k -5.629 + delta_h 29.107 #kJ/mol #97asho/sas + -analytic 1.4555154E+2 2.1494564E-2 -8.3262407E+3 -5.3602352E+1 2.6426314E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Cl- + 1.000Yb+3 = YbCl+2 + -llnl_gamma 5.7 + log_k 0.333 + delta_h 13.785 #kJ/mol #95haa/sho + -analytic 8.2488046E+2 1.3489572E-1 -4.6522415E+4 -2.9931396E+2 2.8359431E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +2.000Cl- + 1.000Yb+3 = YbCl2+ + -llnl_gamma 4.1 + log_k -0.079 + delta_h 17.474 #kJ/mol #95haa/sho + -analytic 1.5878363E+3 2.5863439E-1 -8.77071E+4 -5.7769176E+2 5.209526E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +3.000Cl- + 1.000Yb+3 = YbCl3 + -llnl_gamma 3.4 + log_k -0.565 + delta_h 8.358 #kJ/mol #95haa/sho + -analytic 2.3001138E+3 3.7624092E-1 -1.2384903E+5 -8.3980157E+2 7.1622577E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +4.000Cl- + 1.000Yb+3 = YbCl4- + -llnl_gamma 3.6 + log_k -0.976 + delta_h -16.270 #kJ/mol #95haa/sho + -analytic 2.1638343E+3 3.5055793E-1 -1.1343544E+5 -7.9233787E+2 6.3757106E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 1.000Yb+3 = YbCO3+ + 1.000H+ + -llnl_gamma 4.1 + log_k -1.865 + delta_h -9.464 #kJ/mol #95haa/sho + -analytic 7.4105886E+2 1.2046211E-1 -3.7100317E+4 -2.7321315E+2 1.9240048E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000F- + 1.000Yb+3 = YbF+2 + -llnl_gamma 5.7 + log_k 5.006 + delta_h 23.066 #kJ/mol #95haa/sho + -analytic 9.179499E+2 1.4835679E-1 -5.1674109E+4 -3.3088189E+2 3.1010742E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +2.000F- + 1.000Yb+3 = YbF2+ + -llnl_gamma 4.1 + log_k 8.609 + delta_h 11.983 #kJ/mol #95haa/sho + -analytic 1.7534795E+3 2.8169805E-1 -9.6313719E+4 -6.3465697E+2 5.7421414E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +3.000F- + 1.000Yb+3 = YbF3 + -llnl_gamma 3.4 + log_k 11.331 + delta_h -13.539 #kJ/mol #95haa/sho + -analytic 2.562976E+3 4.1143192E-1 -1.3704712E+5 -9.3138478E+2 8.0000444E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +4.000F- + 1.000Yb+3 = YbF4- + -llnl_gamma 3.6 + log_k 13.541 + delta_h -60.458 #kJ/mol #95haa/sho + -analytic 2.5622195E+3 4.0508659E-1 -1.3402503E+5 -9.3263002E+2 7.804744E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000H2PO4- + 1.000Yb+3 = YbH2PO4+2 + -llnl_gamma 5.7 + log_k 1.268 + delta_h -9.505 #kJ/mol #95haa/sho + -analytic 8.5853416E+2 1.3704918E-1 -4.8983087E+4 -3.1105899E+2 3.1875167E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000HCO3- + 1.000Yb+3 = YbHCO3+2 + -llnl_gamma 5.7 + log_k 2.014 + delta_h 5.195 #kJ/mol #95haa/sho + -analytic 8.6527744E+2 1.3861987E-1 -4.9642822E+4 -3.1265861E+2 3.1613768E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000NO3- + 1.000Yb+3 = YbNO3+2 + -llnl_gamma 5.7 + log_k 0.373 + delta_h -32.716 #kJ/mol #95haa/sho + -analytic 7.8981106E+2 1.2529328E-1 -4.4290668E+4 -2.8758469E+2 2.9660832E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Yb+3 + 1.000H2O = YbO+ + 2.000H+ + -llnl_gamma 4.1 + log_k -15.586 + delta_h 142.704 #kJ/mol #95haa/sho + -analytic 2.3085797E+2 3.7325098E-2 -1.6026277E+4 -8.3126742E+1 1.6635003E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Yb+3 + 2.000H2O = YbO2- + 4.000H+ + -llnl_gamma 3.6 + log_k -32.503 + delta_h 247.846 #kJ/mol #95haa/sho + -analytic -1.5571639E+2 -2.9002889E-2 2.9112414E+2 5.8483761E+1 -1.2294431E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Yb+3 + 2.000H2O = YbO2H + 3.000H+ + -llnl_gamma 3.4 + log_k -23.707 + delta_h 210.986 #kJ/mol #95haa/sho + -analytic 2.8726132E+2 4.2278767E-2 -1.9408728E+4 -1.0358532E+2 -1.9217377E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Yb+3 + 1.000H2O = YbOH+2 + 1.000H+ + -llnl_gamma 5.7 + log_k -7.450 + delta_h 77.175 #kJ/mol #95haa/sho + -analytic 1.7990797E+2 2.7683251E-2 -1.2826988E+4 -6.3705386E+1 4.4846911E+5 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000SO4-2 + 1.000Yb+3 = YbSO4+ + -llnl_gamma 4.1 + log_k 3.807 + delta_h 19.531 #kJ/mol #95haa/sho + -analytic 1.6441577E+3 2.6056591E-1 -8.9158771E+4 -5.9651812E+2 5.0711182E+6 + #References = LogK/DGf: 95haa/sho; DHf/DHr: Internal calculation; S°: 95haa/sho; Cp: 95haa/sho; V°: 95haa/sho; + +1.000Y+3 + 1.000H2O = YO+ + 2.000H+ + -llnl_gamma 4.1 + log_k -16.404 + delta_h 144.876 #kJ/mol #97asho/sas + -analytic 1.9607957E+2 3.1746857E-2 -1.3335148E+4 -7.11862E+1 -9.57392E+4 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Y+3 + 2.000H2O = YO2- + 4.000H+ + -llnl_gamma 3.6 + log_k -36.473 + delta_h 267.261 #kJ/mol #97asho/sas + -analytic -1.771422E+2 -3.2428094E-2 1.0912832E+3 6.5672868E+1 -1.4068141E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000Y+3 + 1.000H2O = YOH+2 + 1.000H+ + -llnl_gamma 5.7 + log_k -7.681 + delta_h 76.375 #kJ/mol #97asho/sas + -analytic 1.461105E+2 2.2221495E-2 -1.0017949E+4 -5.2100917E+1 1.8699011E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +2.000HS- + 1.000Zn+2 = Zn(HS)2 + -llnl_gamma 3.4 + log_k 9.688 + delta_h -25.428 #kJ/mol #14aki/tag + -analytic 1.3697011E+3 2.3985132E-1 -7.1784109E+4 -5.0120469E+2 4.3948013E+6 + #References = LogK/DGf: 14aki/tag; DHf/DHr: 14aki/tag; S°: Internal calculation; Cp: 14aki/tag; V°: 14aki/tag; + +2.000HS- + 1.000Zn+2 + 1.000H2O = Zn(HS)2OH- + 1.000H+ + -llnl_gamma 3.6 + log_k 3.450 + delta_h -15.391 #kJ/mol #14aki/tag + -analytic 3.0809716E+1 5.4932382E-2 1.1491841E+4 -2.6910778E+1 -1.3950136E+6 + #References = LogK/DGf: 14aki/tag; DHf/DHr: 14aki/tag; S°: Internal calculation; Cp: 14aki/tag; V°: 14aki/tag; + +3.000HS- + 1.000Zn+2 = Zn(HS)3- + -llnl_gamma 3.6 + log_k 13.261 + delta_h -47.972 #kJ/mol #14aki/tag + -analytic 1.8887087E+3 3.001466E-1 -1.0404038E+5 -6.8337985E+2 6.6666278E+6 + #References = LogK/DGf: 14aki/tag; DHf/DHr: 14aki/tag; S°: Internal calculation; Cp: 14aki/tag; V°: 14aki/tag; + +4.000HS- + 1.000Zn+2 = Zn(HS)4-2 + -llnl_gamma 4.7 + log_k 14.422 + delta_h -55.182 #kJ/mol #14aki/tag + -analytic 1.9390201E+3 3.0749579E-1 -1.082167E+5 -7.005019E+2 7.1139995E+6 + #References = LogK/DGf: 14aki/tag; DHf/DHr: 14aki/tag; S°: Internal calculation; Cp: 14aki/tag; V°: 14aki/tag; + +2.000Zn+2 + 1.000H2O = Zn2OH+3 + 1.000H+ + -llnl_gamma 8.2 + log_k -7.900 + #References = LogK/DGf: 13pow/bro; + #References = LogK/DGf: 13pow/bro; V°: Default value; + +1.000H2AsO4- + 1.000Zn+2 = ZnAsO4- + 2.000H+ + -llnl_gamma 3.6 + log_k -11.051 + delta_h 84.413 #kJ/mol #Internal calculation + -analytic 2.6279953E+2 3.4757121E-2 -1.4936863E+4 -9.5458378E+1 1.8580873E+5 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000Br- + 1.000Zn+2 = ZnBr+ + -llnl_gamma 4.1 + log_k -0.600 + delta_h 12.644 #kJ/mol #18las/bla + -analytic 2.1871288E+3 3.7000624E-1 -1.1686597E+5 -8.0098541E+2 6.7479398E+6 + #References = LogK/DGf: 12liu/bor; DHf/DHr: 18las/bla; S°: Internal calculation; Cp: 18las/bla; V°: 18las/bla; + +2.000Br- + 1.000Zn+2 = ZnBr2 + -llnl_gamma 3.4 + log_k -1.000 + delta_h 44.176 #kJ/mol #18las/bla + -analytic 3.4973497E+3 6.0799813E-1 -1.8795473E+5 -1.2821009E+3 1.0956471E+7 + #References = LogK/DGf: 12liu/bor; DHf/DHr: 18las/bla; S°: Internal calculation; Cp: 18las/bla; V°: 18las/bla; + +3.000Br- + 1.000Zn+2 = ZnBr3- + -llnl_gamma 3.6 + log_k -1.800 + delta_h 45.292 #kJ/mol #18las/bla + -analytic 1.1951492E+3 2.4740138E-1 -6.3318177E+4 -4.4485712E+2 3.7715864E+6 + #References = LogK/DGf: 12liu/bor; DHf/DHr: 18las/bla; S°: Internal calculation; Cp: 18las/bla; V°: 18las/bla; + +4.000Br- + 1.000Zn+2 = ZnBr4-2 + -llnl_gamma 4.7 + log_k -1.300 + delta_h 14.919 #kJ/mol #18las/bla + -analytic 1.2534971E+4 1.9885931E+0 -6.8170832E+5 -4.5623671E+3 3.969726E+7 + #References = LogK/DGf: 12liu/bor; DHf/DHr: 18las/bla; S°: Internal calculation; Cp: 18las/bla; V°: 18las/bla; + +1.000Cl- + 1.000Zn+2 = ZnCl+ + -llnl_gamma 4.1 + log_k 0.394 + delta_h 14.732 #kJ/mol #14aki/tag + -analytic 7.5385635E+2 1.2884929E-1 -4.1526201E+4 -2.7497535E+2 2.4720643E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 14aki/tag; S°: 14aki/tag; Cp: 14aki/tag; V°: 14aki/tag; + +2.000Cl- + 1.000Zn+2 = ZnCl2 + -llnl_gamma 3.4 + log_k 0.470 + delta_h 27.707 #kJ/mol #14aki/tag + -analytic 1.6193931E+3 2.6158376E-1 -9.0926778E+4 -5.8736607E+2 5.4629569E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 14aki/tag; S°: 14aki/tag; Cp: 14aki/tag; V°: 14aki/tag; + +3.000Cl- + 1.000Zn+2 = ZnCl3- + -llnl_gamma 3.6 + log_k 0.537 + delta_h 24.494 #kJ/mol #14aki/tag + -analytic 1.6459292E+3 2.7794257E-1 -9.198497E+4 -5.9935831E+2 5.6297735E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 14aki/tag; S°: 14aki/tag; Cp: 14aki/tag; V°: 14aki/tag; + +4.000Cl- + 1.000Zn+2 = ZnCl4-2 + -llnl_gamma 4.7 + log_k -0.384 + delta_h 28.134 #kJ/mol #14aki/tag + -analytic 1.6394766E+3 2.7846195E-1 -9.329168E+4 -5.9646267E+2 5.8604073E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 14aki/tag; S°: 14aki/tag; Cp: 14aki/tag; V°: 14aki/tag; + +1.000HCO3- + 1.000Zn+2 = ZnCO3 + 1.000H+ + -llnl_gamma 3.4 + log_k -5.577 + #References = LogK/DGf: 13pow/bro; + #References = LogK/DGf: 13pow/bro; V°: Default value; + +1.000F- + 1.000Zn+2 = ZnF+ + -llnl_gamma 4.1 + log_k 1.199 + delta_h 2.748 #kJ/mol #97sve/sho + -analytic 8.9752406E+2 1.4254963E-1 -5.0259745E+4 -3.2528445E+2 3.0793283E+6 + #References = LogK/DGf: 97sve/sho; DHf/DHr: Internal calculation; S°: 97sve/sho; Cp: 97sve/sho; V°: 97sve/sho; + +1.000H2AsO4- + 1.000Zn+2 = ZnH2AsO4+ + -llnl_gamma 4.1 + log_k 0.534 + delta_h -5.671 #kJ/mol #Internal calculation + -analytic 8.3966786E+2 1.3021327E-1 -4.7009052E+4 -3.0428858E+2 2.9028001E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000H2PO4- + 1.000Zn+2 = ZnH2PO4+ + -llnl_gamma 4.1 + log_k 1.593 + #References = LogK/DGf: 73bnri; + #References = LogK/DGf: 73bnri; V°: Default value; + +1.000H2AsO4- + 1.000Zn+2 = ZnHAsO4 + 1.000H+ + -llnl_gamma 3.4 + log_k -3.937 + delta_h 7.877 #kJ/mol #Internal calculation + -analytic -4.3975167E+2 -5.7657192E-2 -2.1640529E+4 1.8509619E+2 6.0073694E+6 + #References = LogK/DGf: 07mar/acc; DHf/DHr: Internal calculation; S°: 07mar/acc; Cp: 07mar/acc; V°: 07mar/acc; + +1.000HCO3- + 1.000Zn+2 = ZnHCO3+ + -llnl_gamma 4.1 + log_k 1.620 + delta_h 3.560 #kJ/mol #13pow/bro + -analytic 8.3907763E+3 1.2847431E+0 -4.5555549E+5 -3.0460668E+3 2.604861E+7 + #References = LogK/DGf: 13pow/bro; DHf/DHr: 13pow/bro; S°: Internal calculation; Cp: 18las/bla; V°: 18las/bla; + +1.000H2PO4- + 1.000Zn+2 = ZnHPO4 + 1.000H+ + -llnl_gamma 3.4 + log_k -3.912 + #References = LogK/DGf: 73bnri; + #References = LogK/DGf: 73bnri; V°: Default value; + +1.000Zn+2 + 1.000H2O = ZnO + 2.000H+ + -llnl_gamma 3.4 + log_k -19.173 + delta_h 137.231 #kJ/mol #14aki/tag + -analytic 4.3906948E+2 5.5379885E-2 -3.0039744E+4 -1.5627088E+2 1.1273191E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 14aki/tag; S°: 14aki/tag; Cp: 14aki/tag; V°: 14aki/tag; + +1.000Zn+2 + 2.000H2O = ZnO2-2 + 4.000H+ + -llnl_gamma 4.7 + log_k -40.518 + delta_h 172.339 #kJ/mol #14aki/tag + -analytic -9.3081286E+2 -1.5548536E-1 4.01997E+4 3.3714158E+2 -2.8812319E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 14aki/tag; S°: 14aki/tag; Cp: 14aki/tag; V°: 14aki/tag; + +1.000Zn+2 + 1.000H2O = ZnOH+ + 1.000H+ + -llnl_gamma 4.1 + log_k -8.674 + delta_h 46.781 #kJ/mol #14aki/tag + -analytic 4.7637521E+1 1.6290474E-2 -3.8292893E+3 -1.9715903E+1 4.0942952E+4 + #References = LogK/DGf: Internal calculation; DHf/DHr: 14aki/tag; S°: 14aki/tag; Cp: 14aki/tag; V°: 14aki/tag; + +1.000H2PO4- + 1.000Zn+2 = ZnPO4- + 2.000H+ + -llnl_gamma 3.6 + log_k -11.514 + #References = LogK/DGf: 79mat/spo; + #References = LogK/DGf: 79mat/spo; V°: Default value; + +1.000SO4-2 + 1.000Zn+2 = ZnSO4 + -llnl_gamma 3.4 + log_k 2.460 + delta_h 14.000 #kJ/mol #18las/bla + -analytic 1.740406E+3 2.7195031E-1 -9.6340376E+4 -6.3038264E+2 5.6838383E+6 + #References = LogK/DGf: 18las/bla; DHf/DHr: 18las/bla; S°: Internal calculation; V°: Default value; + +1.000ZrO+2 + 2.000H+ = Zr+4 + 1.000H2O + -llnl_gamma 11.0 + log_k 1.722 + delta_h -59.949 #kJ/mol #97asho/sas + -analytic -2.670101E+2 -4.3822917E-2 1.5170181E+4 9.5718067E+1 -5.272473E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000ZrO+2 + 1.000H2O = ZrO2 + 2.000H+ + -llnl_gamma 3.4 + log_k -7.975 + delta_h 36.757 #kJ/mol #97asho/sas + -analytic 4.2075385E+2 6.9561546E-2 -2.5545709E+4 -1.5373316E+2 1.476988E+6 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + +1.000ZrO+2 + 1.000H+ = ZrOH+3 + -llnl_gamma 8.2 + log_k 2.052 + delta_h -34.419 #kJ/mol #97asho/sas + -analytic -4.2410379E+1 -8.4292173E-3 8.5853689E+2 1.6257324E+1 3.4390346E+5 + #References = LogK/DGf: 97asho/sas; DHf/DHr: Internal calculation; S°: 97asho/sas; Cp: 97asho/sas; V°: 97asho/sas; + + + + +PHASES + +2K2SO4.Fe2(SO4)3:14H2O +K4Fe2(SO4)5:14H2O = 2.000Fe+3 + 4.000K+ + 5.000SO4-2 + 14.000H2O + log_k -13.032 + #References = LogK/DGf: 04chr; + #References = LogK/DGf: 04chr; V°: Default value; + +2KCl.FeCl3:H2O +K2FeCl5:H2O = 5.000Cl- + 1.000Fe+3 + 2.000K+ + 1.000H2O + log_k 5.631 + #References = LogK/DGf: 04chr; + #References = LogK/DGf: 04chr; V°: Default value; + +Acanthite(alpha) +Ag2S + 1.000H+ = 2.000Ag+ + 1.000HS- + log_k -36.070 + delta_h 226.837 #kJ/mol #78hel/del + -analytic -8.8668277E+2 -1.3249371E-1 3.7956106E+4 3.2176875E+2 -2.9677242E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 78hel/del; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +Adamite +Zn2AsO4(OH) + 3.000H+ = 1.000H2AsO4- + 2.000Zn+2 + 1.000H2O + log_k 5.711 + #References = LogK/DGf: 01gas/aza; + #References = LogK/DGf: 01gas/aza; V°: 00bla/bid; + +Aegerine(alpha) +NaFe(SiO3)2 + 4.000H+ + 2.000H2O = 1.000Fe+3 + 1.000Na+ + 2.000H4SiO4 + log_k 0.921 + delta_h -50.902 #kJ/mol #95rob/hem + -analytic -1.3269183E+3 -1.7923949E-1 8.042349E+4 4.7137251E+2 -4.875199E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 95rob/hem; V°: 78hel/del; + +Afwillite +Ca3Si2O4(OH)6 + 6.000H+ = 3.000Ca+2 + 2.000H4SiO4 + 2.000H2O + log_k 49.422 + delta_h -264.562 #kJ/mol #10abla/bou + -analytic -1.6142822E+3 -2.1834047E-1 1.0738813E+5 5.7888781E+2 -5.671339E+6 + #References = LogK/DGf: 10abla/bou; DHf/DHr: 10abla/bou; S°: Internal calculation; Cp: 10abla/bou; V°: 52meg; + +Ag(element) +Ag + 0.500O2 + 2.000H+ = 1.000Ag+2 + 1.000H2O + log_k -4.136 + delta_h -10.653 #kJ/mol #Internal calculation + -analytic -4.0915782E+2 -6.3075772E-2 2.3013138E+4 1.4627168E+2 -1.3599563E+6 + #References = S°: 89cox/wag; Cp: 89cox/wag; V°: 95rob/hem; + +Ag2O +Ag2O + 2.000H+ = 2.000Ag+ + 1.000H2O + log_k 12.570 + delta_h -43.307 #kJ/mol #Internal calculation + -analytic -2.8494996E+2 -3.3482379E-2 1.8828474E+4 1.0296307E+2 -9.2655701E+5 + #References = LogK/DGf: 74nau/ryz; DHf/DHr: Internal calculation; S°: 74nau/ryz; Cp: 74nau/ryz; V°: 74nau/ryz; + +Akermanite +Ca2MgSi2O7 + 6.000H+ + 1.000H2O = 2.000Ca+2 + 1.000Mg+2 + 2.000H4SiO4 + log_k 46.094 + delta_h -308.213 #kJ/mol #Internal calculation + -analytic -1.6695244E+3 -2.3351244E-1 1.1207999E+5 5.9635452E+2 -5.8952957E+6 + #References = LogK/DGf: 78hel/del,92ajoh; DHf/DHr: Internal calculation; S°: 78hel/del,92ajoh; Cp: 78hel/del,92ajoh; V°: 78hel/del,92ajoh; + +Al(element) +Al + 0.750O2 + 3.000H+ = 1.000Al+3 + 1.500H2O + log_k 149.924 + delta_h -958.045 #kJ/mol #By convention + -analytic -6.2729914E+2 -1.0258284E-1 8.3655223E+4 2.2250662E+2 -2.0757715E+6 + #References = S°: 89cox/wag; Cp: 98cha; V°: 95rob/hem; + +Alabandite +MnS + 1.000H+ = 1.000Mn+2 + 1.000HS- + log_k -0.003 + delta_h -24.167 #kJ/mol #Internal calculation + -analytic -9.5452833E+2 -1.5284462E-1 5.2895037E+4 3.4627314E+2 -3.0352852E+6 + #References = LogK/DGf: 78hel/del; DHf/DHr: Internal calculation; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +Alamosite +PbSiO3 + 2.000H+ + 1.000H2O = 1.000Pb+2 + 1.000H4SiO4 + log_k 6.177 + delta_h -27.117 #kJ/mol #98cha + -analytic -6.464242E+2 -8.7125282E-2 4.0360344E+4 2.3091989E+2 -2.5057398E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98cha; S°: 98cha; Cp: 98cha; V°: 94pan; + +Albite(low) +NaAlSi3O8 + 4.000H+ + 4.000H2O = 1.000Al+3 + 1.000Na+ + 3.000H4SiO4 + log_k 3.007 + delta_h -77.003 #kJ/mol #95rob/hem + -analytic -1.6580418E+3 -2.197277E-1 1.0357481E+5 5.8663771E+2 -6.4383377E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 95rob/hem; V°: 95rob/hem; + +AlF3 +AlF3 = 1.000Al+3 + 3.000F- + log_k -17.324 + delta_h -34.050 #kJ/mol #89cox/wag + -analytic -2.5363674E+3 -4.1169047E-1 1.384551E+5 9.168972E+2 -8.1243361E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 89cox/wag; V°: 95rob/hem; + +Almandine(alpha) +Fe3Al2Si3O12 + 12.000H+ = 2.000Al+3 + 3.000Fe+2 + 3.000H4SiO4 + log_k 42.180 + delta_h -458.683 #kJ/mol #95rob/hem + -analytic -3.0848427E+3 -4.4981168E-1 1.9672956E+5 1.0990475E+3 -1.0509115E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +Alunite(K) +KAl3(OH)6(SO4)2 + 6.000H+ = 3.000Al+3 + 1.000K+ + 2.000SO4-2 + 6.000H2O + log_k -0.523 + delta_h -230.738 #kJ/mol #Internal calculation + -analytic -4.0636275E+3 -6.6562738E-1 2.2900483E+5 1.4699301E+3 -1.2780316E+7 + #References = LogK/DGf: 78hel/del; DHf/DHr: Internal calculation; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +Alunite(Na) +NaAl3(SO4)2(OH)6 + 6.000H+ = 3.000Al+3 + 1.000Na+ + 2.000SO4-2 + 6.000H2O + log_k 2.340 + delta_h -257.759 #kJ/mol #Internal calculation + -analytic -4.3291826E+3 -7.0539753E-1 2.4414706E+5 1.5659468E+3 -1.3500184E+7 + #References = LogK/DGf: 90sto/cyg; DHf/DHr: Internal calculation; S°: 90sto/cyg; Cp: 90sto/cyg; V°: Default value; + +Amesite +Mg4Al2(Al2Si2)O10(OH)8 + 20.000H+ = 4.000Al+3 + 4.000Mg+2 + 2.000H4SiO4 + 10.000H2O + log_k 69.410 + delta_h -761.722 #kJ/mol #05vid/par + -analytic -4.0615346E+3 -6.1544793E-1 2.5538153E+5 1.4531422E+3 -1.2251219E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05vid/par; S°: 05vid/par; Cp: 05vid/par; V°: 05vid/par; + +Amesite(Fe) +Fe4Al2(Al2Si2)O10(OH)8 + 20.000H+ = 4.000Al+3 + 4.000Fe+2 + 2.000H4SiO4 + 10.000H2O + log_k 57.042 + delta_h -682.162 #kJ/mol #05vid/par + -analytic -3.9260763E+3 -6.0068024E-1 2.4387915E+5 1.4055208E+3 -1.1879079E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05vid/par; S°: 05vid/par; Cp: 05vid/par; V°: 05vid/par; + +Amorphous_silica +SiO2 + 2.000H2O = 1.000H4SiO4 + log_k -2.697 + delta_h 15.949 #kJ/mol #00gun/arn + -analytic -3.5339604E+2 -4.0433695E-2 2.2631079E+4 1.2344453E+2 -1.6539534E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 00gun/arn; S°: 00gun/arn; Cp: 00gun/arn; V°: 78hel/del; + +Analcime +Na0.99Al0.99Si2.01O6:H2O + 3.960H+ + 1.040H2O = 0.990Al+3 + 0.990Na+ + 2.010H4SiO4 + log_k 6.654 + delta_h -98.000 #kJ/mol #04neu/hov + -analytic -1.3403358E+3 -1.8135021E-1 8.3684586E+4 4.7527556E+2 -4.9476886E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 04neu/hov; S°: 82joh/flo, 04neu/hov; Cp: 82joh/flo; V°: 97coo/alb; + +Andalusite +Al2SiO5 + 6.000H+ = 2.000Al+3 + 1.000H4SiO4 + 1.000H2O + log_k 16.206 + delta_h -244.610 #kJ/mol #Internal calculation + -analytic -1.339469E+3 -2.048042E-1 8.5279067E+4 4.7661954E+2 -4.3249835E+6 + #References = LogK/DGf: 78hel/del; DHf/DHr: Internal calculation; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +Andradite +Ca3Fe2Si3O12 + 12.000H+ = 3.000Ca+2 + 2.000Fe+3 + 3.000H4SiO4 + log_k 33.787 + delta_h -327.864 #kJ/mol #Internal calculation + -analytic -2.9077837E+3 -4.2372897E-1 1.7981493E+5 1.040602E+3 -9.7870213E+6 + #References = LogK/DGf: 78hel/del,92ajoh; DHf/DHr: Internal calculation; S°: 78hel/del,92ajoh; Cp: 78hel/del,92ajoh; V°: 78hel/del,92ajoh; + +Anglesite +PbSO4 = 1.000Pb+2 + 1.000SO4-2 + log_k -7.848 + delta_h 11.550 #kJ/mol #89cox/wag + -analytic -1.6531905E+3 -2.6395706E-1 9.1051907E+4 5.9877724E+2 -5.5987833E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 78hel/del; V°: 95rob/hem; + +Anhydrite +CaSO4 = 1.000Ca+2 + 1.000SO4-2 + log_k -4.436 + delta_h -17.940 #kJ/mol #95rob/hem + -analytic -1.6180709E+3 -2.6204311E-1 8.9584938E+4 5.866302E+2 -5.3589079E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 95rob/hem; V°: 95rob/hem; + +Anilite +Cu1.75S + 1.000H+ = 1.500Cu+ + 0.250Cu+2 + 1.000HS- + log_k -31.220 + delta_h 176.426 #kJ/mol #Internal calculation + -analytic -8.8799094E+2 -1.3923697E-1 3.8770491E+4 3.2302098E+2 -2.7598554E+6 + #References = LogK/DGf: 00pui; DHf/DHr: Internal calculation; S°: 95rob/hem; Cp: 00pui; V°: 95rob/hem; + +Annite +KFe3(AlSi3)O10(OH)2 + 10.000H+ = 1.000Al+3 + 3.000Fe+2 + 1.000K+ + 3.000H4SiO4 + log_k 32.771 + delta_h -306.153 #kJ/mol #92cir/nav + -analytic -2.6382558E+3 -3.7460641E-1 1.6621477E+5 9.4111433E+2 -9.2002058E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 92cir/nav; S°: 95dac/ben; Cp: 95dac/ben; V°: 78hel/del; + +Anorthite +Ca(Al2Si2)O8 + 8.000H+ = 2.000Al+3 + 1.000Ca+2 + 2.000H4SiO4 + log_k 24.235 + delta_h -303.522 #kJ/mol #95rob/hem + -analytic -1.9788284E+3 -2.9190197E-1 1.2612201E+5 7.0425974E+2 -6.7173266E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 95rob/hem; V°: 95rob/hem; + +Antarcticite +CaCl2:6H2O = 1.000Ca+2 + 2.000Cl- + 6.000H2O + log_k 3.947 + delta_h 13.990 #kJ/mol #87gar/par + -analytic -1.6295682E+3 -2.3838587E-1 8.6900443E+4 5.9279239E+2 -4.7737295E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 87gar/par; S°: 87gar/par; V°: 63wyc; + +Anthophyllite +Mg7Si8O22(OH)2 + 14.000H+ + 8.000H2O = 7.000Mg+2 + 8.000H4SiO4 + log_k 73.783 + delta_h -583.247 #kJ/mol #95rob/hem + -analytic -5.2321622E+3 -7.0079895E-1 3.3845592E+5 1.8579984E+3 -1.9360477E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 95rob/hem; V°: 95rob/hem; + +Antigorite +Mg48Si34O85(OH)62 + 96.000H+ = 48.000Mg+2 + 34.000H4SiO4 + 11.000H2O + log_k 500.080 + delta_h -3743.421 #kJ/mol #98hol/pow + -analytic -2.9383249E+4 -4.0195982E+0 1.8738549E+6 1.0481455E+4 -1.0123582E+8 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98hol/pow; S°: 98hol/pow; Cp: 98hol/pow; V°: 98hol/pow; + +Antlerite +Cu3SO4(OH)4 + 4.000H+ = 3.000Cu+2 + 1.000SO4-2 + 4.000H2O + log_k 8.912 + delta_h -128.158 #kJ/mol #Internal calculation + -analytic -2.3201815E+3 -3.6568954E-1 1.3242642E+5 8.3938238E+2 -7.3811544E+6 + #References = LogK/DGf: 00pui; DHf/DHr: Internal calculation; S°: 00pui; Cp: 00pui; V°: 90rob/cam; + +Aplowite +CoSO4:H2O = 1.000Co+2 + 1.000SO4-2 + 1.000H2O + log_k -1.049 + delta_h -52.050 #kJ/mol #74nau/ryz + -analytic -1.7188433E+3 -2.6476287E-1 9.6596288E+4 6.203035E+2 -5.5249789E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 74nau/ryz; S°: 74nau/ryz; V°: 94pan; + +Aragonite +CaCO3 + 1.000H+ = 1.000HCO3- + 1.000Ca+2 + log_k 2.014 + delta_h -25.150 #kJ/mol #87gar/par + -analytic -8.590273E+2 -1.3909045E-1 4.7686137E+4 3.1246802E+2 -2.721065E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 87gar/par; S°: 87gar/par; Cp: 87gar/par; V°: 78hel/del,82plu/bus; + +Arcanite +K2(SO4) = 2.000K+ + 1.000SO4-2 + log_k -1.849 + delta_h 24.080 #kJ/mol #98cha + -analytic -1.4895978E+3 -2.3691323E-1 8.2162114E+4 5.4168048E+2 -5.1150985E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98cha; S°: 98cha; Cp: 98cha; V°: 95rob/hem; + +Argutite(alpha) +GeO2 + 2.000H2O = 1.000Ge(OH)4 + log_k -5.024 + delta_h 34.742 #kJ/mol #98pok/sch + -analytic -1.4824527E+2 -1.9630913E-2 6.6761533E+3 5.3445441E+1 -4.9465477E+5 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98pok/sch; S°: 98pok/sch; Cp: 98pok/sch; V°: 98pok/sch; + +Argutite(beta) +GeO2 + 2.000H2O = 1.000Ge(OH)4 + log_k -1.975 + #delta_h 0.000 #kJ/mol + -analytic -1.4819636E+2 -1.909519E-2 7.9209063E+3 5.2947428E+1 -5.0374798E+5 + #References = LogK/DGf: Internal calculation; Cp: 98pok/sch; V°: Default value; + +Arsenocrandallite +CaAl3(AsO4)2(OH)5:H2O + 9.000H+ = 3.000Al+3 + 2.000H2AsO4- + 1.000Ca+2 + 6.000H2O + log_k 10.146 + #References = LogK/DGf: 93sch/got; + #References = LogK/DGf: 93sch/got; V°: Default value; + +Arsenoflorencite(Ce) +CeAl3(AsO4)2(OH)6 + 10.000H+ = 3.000Al+3 + 2.000H2AsO4- + 1.000Ce+3 + 6.000H2O + log_k 9.351 + #References = LogK/DGf: 93sch/got; + #References = LogK/DGf: 93sch/got; V°: Default value; + +Arsenoflorencite(La) +LaAl3(AsO4)2(OH)6 + 10.000H+ = 3.000Al+3 + 2.000H2AsO4- + 1.000La+3 + 6.000H2O + log_k 9.628 + #References = LogK/DGf: 93sch/got; + #References = LogK/DGf: 93sch/got; V°: Default value; + +Arsenogorceixite +BaAl3(AsO4)2(OH)5:H2O + 9.000H+ = 3.000Al+3 + 2.000H2AsO4- + 1.000Ba+2 + 6.000H2O + log_k 7.115 + #References = LogK/DGf: 93sch/got; + #References = LogK/DGf: 93sch/got; V°: Default value; + +Arsenogoyazite +SrAl3(AsO4)2(OH)5:H2O + 9.000H+ = 3.000Al+3 + 2.000H2AsO4- + 1.000Sr+2 + 6.000H2O + log_k 9.933 + #References = LogK/DGf: 93sch/got; + #References = LogK/DGf: 93sch/got; V°: Default value; + +Arsenolite +As2O3 + 3.000H2O = 2.000H2AsO3- + 2.000H+ + log_k -19.864 + delta_h 96.123 #kJ/mol #Internal calculation + -analytic -4.9427978E+2 -9.1883532E-2 1.7334955E+4 1.8383582E+2 -9.9745764E+5 + #References = LogK/DGf: 96pok/gou; DHf/DHr: Internal calculation; S°: 96pok/gou; Cp: 96pok/gou; V°: 96pok/gou; + +Arsenopyrite +FeAsS + 1.000H+ + 1.500H2O = 1.000AsH3 + 1.000Fe+2 + 1.000HS- + 0.750O2 + log_k -92.129 + delta_h 525.884 #kJ/mol #Internal calculation + -analytic -5.6913698E+2 -9.5561738E-2 5.3458889E+2 2.0987371E+2 -1.3877748E+6 + #References = LogK/DGf: 08per/pok; DHf/DHr: Internal calculation; S°: 08per/pok; Cp: 08per/pok; V°: 08per/pok; + +Artinite +Mg2(OH)2(CO3):3H2O + 3.000H+ = 1.000HCO3- + 2.000Mg+2 + 5.000H2O + log_k 20.142 + delta_h -132.468 #kJ/mol #73hem/rob + -analytic -1.2920631E+3 -1.9865269E-1 7.5563611E+4 4.6912486E+2 -3.8070101E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 73hem/rob; S°: 72hem/rob; Cp: 78hel/del; V°: 78hel/del; + +As(element) +As + 1.500H2O = 1.000AsH3 + 0.750O2 + log_k -81.939 + delta_h 487.814 #kJ/mol #Internal calculation + -analytic 2.8384136E+2 4.472113E-2 -4.3128642E+4 -1.0058438E+2 1.2827157E+6 + #References = S°: 73hul/des; Cp: 73hul/des; V°: 96pok/gou; + +As2O5 +As2O5 + 3.000H2O = 2.000H2AsO4- + 2.000H+ + log_k 2.238 + delta_h -36.939 #kJ/mol #01gas/aza + -analytic -1.0425421E+3 -1.7648403E-1 5.8968029E+4 3.7952389E+2 -3.5102109E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 01gas/aza; S°: 01gas/aza; Cp: 01gas/aza; V°: 84pan/stu; + +Atacamite +Cu4Cl2(OH)6 + 6.000H+ = 2.000Cl- + 4.000Cu+2 + 6.000H2O + log_k 14.926 + delta_h -142.094 #kJ/mol #Internal calculation + -analytic -2.5884643E+3 -4.0624673E-1 1.4553345E+5 9.3940336E+2 -7.8316144E+6 + #References = LogK/DGf: 00pui; DHf/DHr: Internal calculation; S°: 00pui; Cp: 00pui; V°: 90rob/cam; + +Au(element) +Au + 0.750O2 + 3.000H+ = 1.000Au+3 + 1.500H2O + log_k -11.446 + delta_h -10.259 #kJ/mol #Internal calculation + -analytic -6.2441652E+2 -9.8368017E-2 3.3850496E+4 2.2265417E+2 -1.9715639E+6 + #References = S°: 95rob/hem; Cp: 78hel/del; V°: 78hel/del; + +Augelite +Al2PO4(OH)3 + 5.000H+ = 2.000Al+3 + 1.000H2PO4- + 3.000H2O + log_k 10.277 + #References = LogK/DGf: 79vie/tar; + #References = LogK/DGf: 79vie/tar; V°: 63wyc; + +Austinite +CaZnAsO4(OH) + 3.000H+ = 1.000H2AsO4- + 1.000Ca+2 + 1.000Zn+2 + 1.000H2O + log_k 6.881 + #References = LogK/DGf: 01gas/aza; + #References = LogK/DGf: 01gas/aza; V°: 00bla/bid; + +Azurite +Cu3(OH)2(CO3)2 + 4.000H+ = 2.000HCO3- + 3.000Cu+2 + 2.000H2O + log_k 3.750 + delta_h -83.679 #kJ/mol #Internal calculation + -analytic -2.1870066E+3 -3.4835539E-1 1.2025145E+5 7.9413505E+2 -6.5551758E+6 + #References = LogK/DGf: 07pow/bro; DHf/DHr: Internal calculation; S°: 00pui; Cp: 00pui; V°: 78hel/del; + +B(OH)3 +B(OH)3 = 1.000B(OH)3 + log_k -0.158 + delta_h 22.474 #kJ/mol #89cox/wag + -analytic -1.6282655E+2 -2.1070484E-2 8.2789957E+3 5.9514064E+1 -5.4057481E+5 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 89cox/wag; V°: 95rob/hem; + +B2O3 +B2O3 + 3.000H2O = 2.000B(OH)3 + log_k 5.565 + delta_h -13.662 #kJ/mol #89cox/wag + -analytic -2.7605646E+2 -3.5653136E-2 1.7965697E+4 9.8924339E+1 -1.1367477E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 89cox/wag; V°: 95rob/hem; + +Ba3(AsO4)2 +Ba3(AsO4)2 + 4.000H+ = 2.000H2AsO4- + 3.000Ba+2 + log_k 15.320 + #References = LogK/DGf: 01gas/aza; + #References = LogK/DGf: 01gas/aza; V°: Default value; + +BaHAsO4:H2O +BaHAsO4:H2O + 1.000H+ = 1.000H2AsO4- + 1.000Ba+2 + 1.000H2O + log_k -6.039 + #References = LogK/DGf: 01gas/aza; + #References = LogK/DGf: 01gas/aza; V°: Default value; + +BaHPO4 +BaHPO4 + 1.000H+ = 1.000Ba+2 + 1.000H2PO4- + log_k -7.410 + delta_h -25.577 #kJ/mol #71par/wag + -analytic -9.1213779E+2 -1.4085955E-1 5.0075968E+4 3.2749001E+2 -2.8075415E+6 + #References = LogK/DGf: 66spi/mik; DHf/DHr: 71par/wag; S°: Internal calculation; V°: Default value; + +Barite +BaSO4 = 1.000Ba+2 + 1.000SO4-2 + log_k -10.051 + delta_h 26.335 #kJ/mol #Internal calculation + -analytic -1.5795404E+3 -2.5599158E-1 8.5700701E+4 5.7308569E+2 -5.3061519E+6 + #References = LogK/DGf: 78hel/del; DHf/DHr: Internal calculation; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +Bassanite +CaSO4:0.5H2O = 1.000Ca+2 + 1.000SO4-2 + 0.500H2O + log_k -3.919 + delta_h -17.357 #kJ/mol #Internal calculation + -analytic -1.5834316E+3 -2.5347761E-1 8.8114917E+4 5.7346485E+2 -5.2850565E+6 + #References = LogK/DGf: 06bla/las; DHf/DHr: Internal calculation; S°: CODATA87; Cp: 06bla/pia; V°: 93bar; + +Beidellite(Ca) +Ca0.17Al2.34Si3.66O10(OH)2 + 7.360H+ + 2.640H2O = 2.340Al+3 + 0.170Ca+2 + 3.660H4SiO4 + log_k 5.788 + delta_h -199.096 #kJ/mol #15bla/vie + -analytic -2.4532307E+3 -3.3777719E-1 1.5377736E+5 8.6747751E+2 -9.1169893E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Beidellite(K) +K0.34Al2.34Si3.66O10(OH)2 + 7.360H+ + 2.640H2O = 2.340Al+3 + 0.340K+ + 3.660H4SiO4 + log_k 4.620 + delta_h -180.563 #kJ/mol #15bla/vie + -analytic -2.4366989E+3 -3.3467927E-1 1.5217638E+5 8.619875E+2 -9.0876414E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Beidellite(Mg) +Mg0.17Al2.34Si3.66O10(OH)2 + 7.360H+ + 2.640H2O = 2.340Al+3 + 0.170Mg+2 + 3.660H4SiO4 + log_k 5.243 + delta_h -200.276 #kJ/mol #15bla/vie + -analytic -2.4698191E+3 -3.397414E-1 1.5473238E+5 8.731313E+2 -9.1671514E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Beidellite(Na) +Na0.34Al2.34Si3.66O10(OH)2 + 7.360H+ + 2.640H2O = 2.340Al+3 + 0.340Na+ + 3.660H4SiO4 + log_k 5.117 + delta_h -189.181 #kJ/mol #15bla/vie + -analytic -2.4563509E+3 -3.3672371E-1 1.5363066E+5 8.6862698E+2 -9.1362932E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +BeidelliteSBId +Ca0.185K0.104(Si3.574Al0.426)(Al1.812Mg0.090Fe0.112)O10(OH)2 + 7.704H+ + 2.296H2O = 2.238Al+3 + 0.185Ca+2 + 0.112Fe+3 + 0.104K+ + 0.090Mg+2 + 3.574H4SiO4 + log_k 7.597 + delta_h -216.148 #kJ/mol #12gai/bla + -analytic -2.4917268E+3 -3.5177889E-1 1.5494595E+5 8.8349303E+2 -9.0342882E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 12gai/bla; S°: 12gai/bla; Cp: 12gai/bla; V°: 12gai/bla; + +Berlinite +AlPO4 + 2.000H+ = 1.000Al+3 + 1.000H2PO4- + log_k 1.207 + delta_h -107.151 #kJ/mol #Internal calculation + -analytic -1.0573736E+3 -1.7484841E-1 6.1600673E+4 3.8046565E+2 -3.3188334E+6 + #References = LogK/DGf: 82wag/eva; DHf/DHr: Internal calculation; S°: 68wag/eva; Cp: 74nau/ryz, 76wag/eva, 71par/wag; V°: 95rob/hem; + +Berndtite +SnS2 + 0.750H2O = 1.500HS- + 1.000Sn+2 + 0.250S2O3-2 + log_k -32.151 + delta_h 171.770 #kJ/mol #Internal calculation + -analytic -1.5673577E+3 -2.5297031E-1 7.7602812E+4 5.6962368E+2 -5.2578723E+6 + #References = LogK/DGf: 85jac/hel; DHf/DHr: Internal calculation; S°: 85jac/hel; Cp: 85jac/hel; V°: 85jac/hel; + +BerthierineISGS +(Si1.332Al0.668)(Al0.976Fe1.622Mg0.157)O5(OH)4 + 8.672H+ = 1.644Al+3 + 1.440Fe+2 + 0.157Mg+2 + 1.332H4SiO4 + 0.182Fe+3 + 3.672H2O + log_k 28.891 + delta_h -320.787 #kJ/mol #14bla/gai + -analytic -1.9377506E+3 -2.8270535E-1 1.2290255E+5 6.9063516E+2 -6.241976E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 14bla/gai; S°: 14bla/gai; Cp: 14bla/gai; V°: 14bla/gai; + +Berthierine(FeII) +(Fe2Al)(SiAl)O5(OH)4 + 10.000H+ = 2.000Al+3 + 2.000Fe+2 + 1.000H4SiO4 + 5.000H2O + log_k 33.710 + delta_h -369.411 #kJ/mol #15bla/vie + -analytic -1.973861E+3 -2.9595392E-1 1.2535721E+5 7.0492903E+2 -6.1284403E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Berthierine(FeIII) +(Fe2.67Al0.33)(Si1.34Al0.66)O5(OH)4 + 8.640H+ = 0.990Al+3 + 2.340Fe+2 + 1.340H4SiO4 + 0.330Fe+3 + 3.640H2O + log_k 28.921 + delta_h -297.641 #kJ/mol #15bla/vie + -analytic -1.9010637E+3 -2.7605598E-1 1.2010468E+5 6.7840745E+2 -6.1529544E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Berthierite +FeSb2S4 + 6.000H2O = 1.000Fe+2 + 4.000HS- + 2.000Sb(OH)3 + 2.000H+ + log_k -61.058 + delta_h 307.851 #kJ/mol #Internal calculation + -analytic -2.7120828E+3 -4.5157008E-1 1.2837625E+5 9.8993258E+2 -8.3950548E+6 + #References = LogK/DGf: 92sea/rob; DHf/DHr: Internal calculation; S°: 92sea/rob; Cp: 92sea/rob; V°: 92sea/rob; + +Beudantite +PbFe3(AsO4)2(OH)5:H2O + 9.000H+ = 2.000H2AsO4- + 3.000Fe+3 + 1.000Pb+2 + 6.000H2O + log_k -9.342 + #References = LogK/DGf: 04gab/vie; + #References = LogK/DGf: 04gab/vie; V°: Default value; + +Bieberite +CoSO4:7H2O = 1.000Co+2 + 1.000SO4-2 + 7.000H2O + log_k -2.345 + delta_h 11.840 #kJ/mol #74nau/ryz + -analytic -1.6645723E+3 -2.5502938E-1 9.0786352E+4 6.0374082E+2 -5.347068E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 74nau/ryz; S°: 74nau/ryz; Cp: 74nau/ryz; V°: 94pan; + +Bilinite +Fe3(SO4)4:22H2O = 2.000Fe+3 + 4.000SO4-2 + 1.000Fe+2 + 22.000H2O + log_k -16.343 + delta_h 7.380 #kJ/mol #02hem/sea + -analytic -7.1379563E+3 -1.0362887E+0 3.8586546E+5 2.5778164E+3 -2.1534911E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 02hem/sea; S°: 02hem/sea; V°: 69bol/ptu; + +Bischofite +MgCl2:6H2O = 2.000Cl- + 1.000Mg+2 + 6.000H2O + log_k 4.466 + delta_h -8.710 #kJ/mol #74nau/ryz + -analytic -1.6137748E+3 -2.4625715E-1 8.8110778E+4 5.8693541E+2 -4.9954494E+6 + #References = LogK/DGf: 84har/mol; DHf/DHr: 74nau/ryz; S°: Internal calculation; Cp: 74nau/ryz; V°: 63wyc; + +Bloedite +Na2Mg(SO4)2:4H2O = 1.000Mg+2 + 2.000Na+ + 2.000SO4-2 + 4.000H2O + log_k -2.346 + #References = LogK/DGf: 84har/mol; + #References = LogK/DGf: 84har/mol; V°: 63wyc; + +Bobbierite +Mg3(PO4)2:8H2O + 4.000H+ = 3.000Mg+2 + 2.000H2PO4- + 8.000H2O + log_k 13.928 + #References = LogK/DGf: 63tay/fra, 96bou; + #References = LogK/DGf: 63tay/fra, 96bou; V°: 84nri; + +Boehmite +AlO(OH) + 3.000H+ = 1.000Al+3 + 2.000H2O + log_k 7.625 + delta_h -113.660 #kJ/mol #95rob/hem + -analytic -4.7846065E+2 -7.8925715E-2 2.9738634E+4 1.7148206E+2 -1.2842726E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 95rob/hem; V°: 95rob/hem; + +Bornite(alpha) +Cu5FeS4 + 4.000H+ = 4.000Cu+ + 1.000Cu+2 + 1.000Fe+2 + 4.000HS- + log_k -107.495 + delta_h 563.866 #kJ/mol #95rob/hem + -analytic -3.6594623E+3 -5.7956556E-1 1.6798484E+5 1.3295872E+3 -1.1434856E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 78hel/del,70pan/kin; V°: 95rob/hem; + +Brochantite +Cu4SO4(OH)6 + 6.000H+ = 4.000Cu+2 + 1.000SO4-2 + 6.000H2O + log_k 15.543 + delta_h -175.083 #kJ/mol #Internal calculation + -analytic -2.7209001E+3 -4.2572542E-1 1.5456015E+5 9.8537993E+2 -8.2921862E+6 + #References = LogK/DGf: 00pui; DHf/DHr: Internal calculation; S°: 00pui; Cp: 95rob/hem; V°: 95rob/hem; + +Bromellite +BeO + 2.000H+ = 1.000Be+2 + 1.000H2O + log_k 6.292 + delta_h -59.205 #kJ/mol #89cox/wag + -analytic -3.4398439E+2 -5.3311223E-2 2.063174E+4 1.2421191E+2 -9.2288712E+5 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 89cox/wag; V°: 95rob/hem; + +Brucite +Mg(OH)2 + 2.000H+ = 1.000Mg+2 + 2.000H2O + log_k 17.112 + delta_h -114.518 #kJ/mol #08bla + -analytic -3.5641635E+2 -5.3167189E-2 2.4317829E+4 1.2873122E+2 -9.5286882E+5 + #References = LogK/DGf: 08bla; DHf/DHr: 08bla; S°: Internal calculation; Cp: 95rob/hem; V°: 95rob/hem; + +Brushite +CaHPO4:2H2O + 1.000H+ = 1.000Ca+2 + 1.000H2PO4- + 2.000H2O + log_k 0.602 + delta_h -7.375 #kJ/mol #Internal calculation + -analytic -9.002507E+2 -1.5102401E-1 4.7493595E+4 3.299399E+2 -2.6515612E+6 + #References = LogK/DGf: 84nan; DHf/DHr: Internal calculation; S°: 84nan; Cp: 70gre/mor, after 64aega/wak and bega/wak; V°: 84nri; + +Bunsenite +NiO + 2.000H+ = 1.000Ni+2 + 1.000H2O + log_k 12.505 + delta_h -106.030 #kJ/mol #90hem + -analytic -3.4458754E+2 -5.4041547E-2 2.3408881E+4 1.2361235E+2 -9.9378264E+5 + #References = LogK/DGf: Internal calculation; DHf/DHr: 90hem; S°: 90hem; Cp: 95rob/hem; V°: 78hel/del; + +Burkeite +Na6CO3(SO4)2 + 1.000H+ = 1.000HCO3- + 6.000Na+ + 2.000SO4-2 + log_k -0.770 + #References = LogK/DGf: 84har/mol; + #References = LogK/DGf: 84har/mol; V°: 63wyc; + +C(element) +C + 1.000O2 + 1.000H2O = 1.000HCO3- + 1.000H+ + log_k 64.163 + delta_h -391.966 #kJ/mol #By convention + -analytic -7.4217625E+2 -1.2227979E-1 6.2957072E+4 2.6790665E+2 -2.7805115E+6 + #References = S°: 89cox/wag; Cp: 89cox/wag; V°: 95rob/hem; + +C0.7SH +Ca1.4Si2O5.9496H1.0992:1.378H2O + 2.800H+ + 0.6724H2O = 1.400Ca+2 + 2.000H4SiO4 + log_k 17.796 + delta_h -99.315 #kJ/mol #Internal calculation + -analytic -1.0799065E+3 -1.389491E-1 7.0714511E+4 3.8364667E+2 -4.2096302E+6 + #References = LogK/DGf: 18roo/vie; DHf/DHr: Internal calculation; S°: 18roo/vie; Cp: 18roo/vie; V°: 18roo/vie; + +C0.8SH +Ca1.6Si2O6.1698H1.1396:1.6122H2O + 3.200H+ + 0.218H2O = 1.600Ca+2 + 2.000H4SiO4 + log_k 21.184 + delta_h -118.525 #kJ/mol #Internal calculation + -analytic -1.1396811E+3 -1.4803607E-1 7.4806082E+4 4.0544805E+2 -4.369437E+6 + #References = LogK/DGf: 18roo/vie; DHf/DHr: Internal calculation; S°: 18roo/vie; Cp: 18roo/vie; V°: 18roo/vie; + +C0.9SH +Ca1.8Si2O6.4048H1.2096:1.7014H2O + 3.600H+ = 1.800Ca+2 + 2.000H4SiO4 + 0.1062H2O + log_k 25.247 + delta_h -142.264 #kJ/mol #Internal calculation + -analytic -1.1870726E+3 -1.5556596E-1 7.8435929E+4 4.2278161E+2 -4.4908616E+6 + #References = LogK/DGf: 18roo/vie; DHf/DHr: Internal calculation; S°: 18roo/vie; Cp: 18roo/vie; V°: 18roo/vie; + +C1SH +Ca2Si2O6.6436H1.2872:1.7542H2O + 4.000H+ = 2.000Ca+2 + 2.000H4SiO4 + 0.3978H2O + log_k 29.474 + delta_h -167.108 #kJ/mol #Internal calculation + -analytic -1.2759222E+3 -1.687102E-1 8.4531036E+4 4.5493777E+2 -4.7589472E+6 + #References = LogK/DGf: 18roo/vie; DHf/DHr: Internal calculation; S°: 18roo/vie; Cp: 18roo/vie; V°: 18roo/vie; + +C1.1SH +Ca2.2Si2O6.8821H1.3642:1.867H2O + 4.400H+ = 2.200Ca+2 + 2.000H4SiO4 + 0.7491H2O + log_k 33.758 + delta_h -191.888 #kJ/mol #Internal calculation + -analytic -1.3444716E+3 -1.7902986E-1 8.9443229E+4 4.7984377E+2 -4.9539663E+6 + #References = LogK/DGf: 18roo/vie; DHf/DHr: Internal calculation; S°: 18roo/vie; Cp: 18roo/vie; V°: 18roo/vie; + +C1.2SH +Ca2.4Si2O7.1203H1.4406:2.0692H2O + 4.800H+ = 2.400Ca+2 + 2.000H4SiO4 + 1.1895H2O + log_k 38.095 + delta_h -216.390 #kJ/mol #Internal calculation + -analytic -1.4129647E+3 -1.892025E-1 9.4334986E+4 5.0474601E+2 -5.146218E+6 + #References = LogK/DGf: 18roo/vie; DHf/DHr: Internal calculation; S°: 18roo/vie; Cp: 18roo/vie; V°: 18roo/vie; + +C1.3SH +Ca2.6Si2O7.3957H1.5914:2.1702H2O + 5.200H+ = 2.600Ca+2 + 2.000H4SiO4 + 1.5659H2O + log_k 42.473 + delta_h -241.097 #kJ/mol #Internal calculation + -analytic -1.4826299E+3 -1.9955627E-1 9.9299385E+4 5.300773E+2 -5.3418257E+6 + #References = LogK/DGf: 18roo/vie; DHf/DHr: Internal calculation; S°: 18roo/vie; Cp: 18roo/vie; V°: 18roo/vie; + +C1.4SH +Ca2.8Si2O7.687H1.774:2.2274H2O + 5.600H+ = 2.800Ca+2 + 2.000H4SiO4 + 1.9144H2O + log_k 46.935 + delta_h -266.266 #kJ/mol #Internal calculation + -analytic -1.5527962E+3 -2.0998834E-1 1.0431442E+5 5.5559198E+2 -5.5388847E+6 + #References = LogK/DGf: 18roo/vie; DHf/DHr: Internal calculation; S°: 18roo/vie; Cp: 18roo/vie; V°: 18roo/vie; + +C1.5SH +Ca3Si2O7.9783H1.9566:2.2848H2O + 6.000H+ = 3.000Ca+2 + 2.000H4SiO4 + 2.2631H2O + log_k 51.442 + delta_h -291.690 #kJ/mol #Internal calculation + -analytic -1.6002727E+3 -2.1736724E-1 1.0802648E+5 5.7299087E+2 -5.656187E+6 + #References = LogK/DGf: 18roo/vie; DHf/DHr: Internal calculation; S°: 18roo/vie; Cp: 18roo/vie; V°: 18roo/vie; + +C1.6SH +Ca3.2Si2O8.2682H2.1364:2.3446H2O + 6.400H+ = 3.200Ca+2 + 2.000H4SiO4 + 2.6128H2O + log_k 55.989 + delta_h -317.358 #kJ/mol #Internal calculation + -analytic -1.6460458E+3 -2.2451827E-1 1.1165267E+5 5.8977983E+2 -5.7675717E+6 + #References = LogK/DGf: 18roo/vie; DHf/DHr: Internal calculation; S°: 18roo/vie; Cp: 18roo/vie; V°: 18roo/vie; + +C0.7A0.01SH +Ca1.4Al0.04Si2O6.0128H1.1056:1.4156H2O + 2.920H+ + 0.5716H2O = 0.040Al+3 + 1.400Ca+2 + 2.000H4SiO4 + log_k 17.949 + delta_h -103.921 #kJ/mol #Internal calculation + -analytic -1.0965647E+3 -1.4190979E-1 7.1801805E+4 3.8955699E+2 -4.2609978E+6 + #References = LogK/DGf: 18roo/vie; DHf/DHr: Internal calculation; S°: 18roo/vie; Cp: 18roo/vie; V°: 18roo/vie; + +C0.8A0.01SH +Ca1.6Al0.04Si2O6.2343H1.1486:1.63H2O + 3.320H+ + 0.1357H2O = 0.040Al+3 + 1.600Ca+2 + 2.000H4SiO4 + log_k 21.541 + delta_h -124.405 #kJ/mol #Internal calculation + -analytic -1.1563628E+3 -1.5102639E-1 7.5961503E+4 4.113641E+2 -4.4213297E+6 + #References = LogK/DGf: 18roo/vie; DHf/DHr: Internal calculation; S°: 18roo/vie; Cp: 18roo/vie; V°: 18roo/vie; + +C1.1A0.01SH +Ca2.2Al0.04Si2O6.9455H1.371:1.885H2O + 4.520H+ = 0.040Al+3 + 2.200Ca+2 + 2.000H4SiO4 + 0.8305H2O + log_k 34.217 + delta_h -198.369 #kJ/mol #Internal calculation + -analytic -1.3619414E+3 -1.8212281E-1 9.0678169E+4 4.8603839E+2 -5.0089959E+6 + #References = LogK/DGf: 18roo/vie; DHf/DHr: Internal calculation; S°: 18roo/vie; Cp: 18roo/vie; V°: 18roo/vie; + +C1.2A0.01SH +Ca2.4Al0.04Si2O7.1845H1.449:2.0794H2O + 4.920H+ = 0.040Al+3 + 2.400Ca+2 + 2.000H4SiO4 + 1.2639H2O + log_k 38.539 + delta_h -222.821 #kJ/mol #Internal calculation + -analytic -1.4304627E+3 -1.9230858E-1 9.5568963E+4 5.1094988E+2 -5.2014938E+6 + #References = LogK/DGf: 18roo/vie; DHf/DHr: Internal calculation; S°: 18roo/vie; Cp: 18roo/vie; V°: 18roo/vie; + +C1.3A0.01SH +Ca2.6Al0.04Si2O7.4606H1.6012:2.1732H2O + 5.320H+ = 0.040Al+3 + 2.600Ca+2 + 2.000H4SiO4 + 1.6338H2O + log_k 42.904 + delta_h -247.485 #kJ/mol #Internal calculation + -analytic -1.5001527E+3 -2.0267446E-1 1.0053261E+5 5.3628926E+2 -5.3973284E+6 + #References = LogK/DGf: 18roo/vie; DHf/DHr: Internal calculation; S°: 18roo/vie; Cp: 18roo/vie; V°: 18roo/vie; + +C1.4A0.01SH +Ca2.8Al0.04Si2O7.7502H1.7804:2.2294H2O + 5.720H+ = 0.040Al+3 + 2.800Ca+2 + 2.000H4SiO4 + 1.9796H2O + log_k 47.302 + delta_h -272.330 #kJ/mol #Internal calculation + -analytic -1.5698685E+3 -2.1305369E-1 1.0550505E+5 5.6164131E+2 -5.5930024E+6 + #References = LogK/DGf: 18roo/vie; DHf/DHr: Internal calculation; S°: 18roo/vie; Cp: 18roo/vie; V°: 18roo/vie; + +C1.5A0.01SH +Ca3Al0.04Si2O8.0399H1.9598:2.2858H2O + 6.120H+ = 0.040Al+3 + 3.000Ca+2 + 2.000H4SiO4 + 2.3257H2O + log_k 51.724 + delta_h -297.311 #kJ/mol #Internal calculation + -analytic -1.6156273E+3 -2.2020888E-1 1.0909469E+5 5.7842436E+2 -5.7044556E+6 + #References = LogK/DGf: 18roo/vie; DHf/DHr: Internal calculation; S°: 18roo/vie; Cp: 18roo/vie; V°: 18roo/vie; + +C1.6A0.01SH +Ca3.2Al0.04Si2O8.3296H2.1392:2.3446H2O + 6.520H+ = 0.040Al+3 + 3.200Ca+2 + 2.000H4SiO4 + 2.6742H2O + log_k 56.220 + delta_h -322.694 #kJ/mol #Internal calculation + -analytic -1.661392E+3 -2.2736109E-1 1.1270564E+5 5.9521001E+2 -5.8158601E+6 + #References = LogK/DGf: 18roo/vie; DHf/DHr: Internal calculation; S°: 18roo/vie; Cp: 18roo/vie; V°: 18roo/vie; + +C0.7A0.025SH +Ca1.4Al0.1Si2O6.1077H1.1154:1.5092H2O + 3.100H+ + 0.3831H2O = 0.100Al+3 + 1.400Ca+2 + 2.000H4SiO4 + log_k 18.203 + delta_h -110.731 #kJ/mol #Internal calculation + -analytic -1.121563E+3 -1.462932E-1 7.3427015E+4 3.9843325E+2 -4.3370047E+6 + #References = LogK/DGf: 18roo/vie; DHf/DHr: Internal calculation; S°: 18roo/vie; Cp: 18roo/vie; V°: 18roo/vie; + +C0.8A0.025SH +Ca1.6Al0.1Si2O6.331H1.162:1.6746H2O + 3.500H+ = 0.100Al+3 + 1.600Ca+2 + 2.000H4SiO4 + 0.0056H2O + log_k 22.108 + delta_h -133.284 #kJ/mol #Internal calculation + -analytic -1.1793458E+3 -1.5519884E-1 7.7582015E+4 4.1950822E+2 -4.4918796E+6 + #References = LogK/DGf: 18roo/vie; DHf/DHr: Internal calculation; S°: 18roo/vie; Cp: 18roo/vie; V°: 18roo/vie; + +C0.7A0.05SH +Ca1.4Al0.2Si2O6.2658H1.1316:1.6968H2O + 3.400H+ + 0.0374H2O = 0.200Al+3 + 1.400Ca+2 + 2.000H4SiO4 + log_k 19.290 + delta_h -125.656 #kJ/mol #Internal calculation + -analytic -1.1632315E+3 -1.5354988E-1 7.6321758E+4 4.1323449E+2 -4.4627952E+6 + #References = LogK/DGf: 18roo/vie; DHf/DHr: Internal calculation; S°: 18roo/vie; Cp: 18roo/vie; V°: 18roo/vie; + +C0.8A0.05SH +Ca1.6Al0.2Si2O6.4921H1.1842:1.7636H2O + 3.800H+ = 0.200Al+3 + 1.600Ca+2 + 2.000H4SiO4 + 0.2557H2O + log_k 23.173 + delta_h -148.678 #kJ/mol #Internal calculation + -analytic -1.217671E+3 -1.621328E-1 8.0314689E+4 4.3309156E+2 -4.609113E+6 + #References = LogK/DGf: 18roo/vie; DHf/DHr: Internal calculation; S°: 18roo/vie; Cp: 18roo/vie; V°: 18roo/vie; + +C2AH8 +Ca2Al2O5:8H2O + 10.000H+ = 2.000Al+3 + 2.000Ca+2 + 13.000H2O + log_k 59.723 + delta_h -436.130 #kJ/mol #06bla/las + -analytic -1.7346637E+3 -2.3804512E-1 1.1041064E+5 6.232244E+2 -4.1857412E+6 + #References = LogK/DGf: 06bla/las; DHf/DHr: 06bla/las; S°: Internal calculation; V°: 92wol; + +C2SHa +Ca2(HSiO4)(OH) + 4.000H+ = 2.000Ca+2 + 1.000H4SiO4 + 1.000H2O + log_k 35.545 + delta_h -195.771 #kJ/mol #10abla/bou + -analytic -9.2430752E+2 -1.2731736E-1 6.2844135E+4 3.3224777E+2 -3.1195834E+6 + #References = LogK/DGf: 10abla/bou; DHf/DHr: 10abla/bou; S°: Internal calculation; Cp: 10abla/bou; V°: 10abla/bou; + +C3AH6 +Ca3Al2(OH)12 + 12.000H+ = 2.000Al+3 + 3.000Ca+2 + 12.000H2O + log_k 80.332 + delta_h -584.260 #kJ/mol #99sch/nav + -analytic -1.7858029E+3 -2.8803505E-1 1.1970595E+5 6.4758061E+2 -4.6117004E+6 + #References = LogK/DGf: 10bbla/bou; DHf/DHr: 99sch/nav; S°: Internal calculation; Cp: 79ede/sat; V°: 92wol; + +C3FH6 +Ca3Fe2(OH)12 + 12.000H+ = 3.000Ca+2 + 2.000Fe+3 + 12.000H2O + log_k 72.382 + delta_h -509.370 #kJ/mol #85bab/mat + -analytic -1.9413488E+3 -3.0335333E-1 1.2528639E+5 7.0390811E+2 -5.1390961E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 85bab/mat; S°: 10bbla/bou; Cp: 10bbla/bou; V°: 97tay; + +C4AH13 +Ca4Al2O7:13H2O + 14.000H+ = 2.000Al+3 + 4.000Ca+2 + 20.000H2O + log_k 103.670 + delta_h -647.400 #kJ/mol #76hou/ste + -analytic -2.1674746E+3 -3.2685802E-1 1.4528384E+5 7.8649867E+2 -5.7626461E+6 + #References = LogK/DGf: 10bbla/bou; DHf/DHr: 76hou/ste; S°: Internal calculation; Cp: 10bbla/bou; V°: 92wol; + +C4FH13 +Ca4Fe2O7:13H2O + 14.000H+ = 4.000Ca+2 + 2.000Fe+3 + 20.000H2O + log_k 95.142 + delta_h -569.205 #kJ/mol #85bab/mat + -analytic -2.2790678E+3 -3.4978791E-1 1.4486256E+5 8.3140351E+2 -5.744869E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 85bab/mat; S°: 10bbla/bou; Cp: 85bab/mat; V°: 97tay; + +Ca(element) +Ca + 0.500O2 + 2.000H+ = 1.000Ca+2 + 1.000H2O + log_k 139.842 + delta_h -822.763 #kJ/mol #89cox/wag + -analytic -3.6438219E+2 -5.800883E-2 6.2982687E+4 1.3095262E+2 -1.2230594E+6 + #References = S°: 89cox/wag; Cp: 89cox/wag; V°: 95rob/hem; + +Ca3(AsO4)2:3.66H2O +Ca3(AsO4)2:3.66H2O + 4.000H+ = 2.000H2AsO4- + 3.000Ca+2 + 3.660H2O + log_k 16.774 + #References = LogK/DGf: 99bot/bro; + #References = LogK/DGf: 99bot/bro; V°: Default value; + +Ca4(OH)2(AsO4)2:4H2O +Ca4(OH)2(AsO4)2:4H2O + 6.000H+ = 2.000H2AsO4- + 4.000Ca+2 + 6.000H2O + log_k 37.096 + #References = LogK/DGf: 99bot/bro; + #References = LogK/DGf: 99bot/bro; V°: Default value; + +Ca4H(PO4)3:2.5H2O +Ca4H(PO4)3:2.5H2O + 5.000H+ = 4.000Ca+2 + 3.000H2PO4- + 2.500H2O + log_k 11.813 + #References = LogK/DGf: 84nan; + #References = LogK/DGf: 84nan; V°: Default value; + +Ca4H(PO4)3:3H2O +Ca4H(PO4)3:3H2O + 5.000H+ = 4.000Ca+2 + 3.000H2PO4- + 3.000H2O + log_k 10.118 + #References = LogK/DGf: NIST46.4; + #References = LogK/DGf: NIST46.4; V°: Default value; + +Ca5(AsO4)3OH +Ca5(AsO4)3OH + 7.000H+ = 3.000H2AsO4- + 5.000Ca+2 + 1.000H2O + log_k 31.611 + #References = LogK/DGf: 99bot/bro; + #References = LogK/DGf: 99bot/bro; V°: Default value; + +CaAlH(PO4)2:6H2O +CaAlH(PO4)2:6H2O + 3.000H+ = 1.000Al+3 + 1.000Ca+2 + 2.000H2PO4- + 6.000H2O + log_k -14.304 + #References = LogK/DGf: 64atay/gur; + #References = LogK/DGf: 64atay/gur; V°: Default value; + +CaCl2:2H2O +CaCl2:2H2O = 1.000Ca+2 + 2.000Cl- + 2.000H2O + log_k 7.952 + delta_h -44.790 #kJ/mol #87gar/par + -analytic -1.555851E+3 -2.4235408E-1 8.6627587E+4 5.6580889E+2 -4.848861E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 87gar/par; S°: 87gar/par; V°: 63wyc; + +CaCl2:4H2O +CaCl2:4H2O = 1.000Ca+2 + 2.000Cl- + 4.000H2O + log_k 5.359 + delta_h -11.310 #kJ/mol #87gar/par + -analytic -1.6007547E+3 -2.4169682E-1 8.6973605E+4 5.8229303E+2 -4.8341793E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 87gar/par; S°: 87gar/par; V°: 03dea; + +CaCl2:H2O +CaCl2:H2O = 1.000Ca+2 + 2.000Cl- + 1.000H2O + log_k 7.849 + delta_h -52.160 #kJ/mol #87gar/par + -analytic -1.5551146E+3 -2.462483E-1 8.7102469E+4 5.6560817E+2 -4.9176973E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 87gar/par; S°: 87gar/par; V°: 03dea; + +CaCrO4(s) +CaCrO4 = 1.000Ca+2 + 1.000CrO4-2 + log_k -3.150 + delta_h -22.807 #kJ/mol #Internal calculation + -analytic -1.6003839E+3 -2.5327245E-1 8.8679287E+4 5.7948408E+2 -5.2073984E+6 + #References = LogK/DGf: 04wan/li; DHf/DHr: Internal calculation; S°: 03dea; V°: 90rob/cam; + +CaHAsO3 +CaHAsO3 + 1.000H+ = 1.000H2AsO3- + 1.000Ca+2 + log_k 34.250 + #References = LogK/DGf: 01gas/aza; + #References = LogK/DGf: 01gas/aza; V°: Default value; + +CaHAsO4:H2O +CaHAsO4:H2O + 1.000H+ = 1.000H2AsO4- + 1.000Ca+2 + 1.000H2O + log_k 2.021 + #References = LogK/DGf: 99bot/bro; + #References = LogK/DGf: 99bot/bro; V°: Default value; + +Calcite +CaCO3 + 1.000H+ = 1.000HCO3- + 1.000Ca+2 + log_k 1.847 + delta_h -25.325 #kJ/mol #Internal calculation + -analytic -8.5009769E+2 -1.3947083E-1 4.6880816E+4 3.0964755E+2 -2.6591399E+6 + #References = LogK/DGf: 06bla/pia; DHf/DHr: Internal calculation; S°: 82plu/bus; Cp: 95rob/hem; V°: 78hel/del,82plu/bus; + +Calomel +Hg2Cl2 = 2.000Cl- + 1.000Hg2+2 + log_k -17.844 + delta_h 98.080 #kJ/mol #89cox/wag + -analytic -1.4752305E+3 -2.4016648E-1 7.5071959E+4 5.377565E+2 -4.7508137E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 85cha/dav; V°: 95rob/hem; + +Carbonate(K) +K2CO3:1.5H2O + 1.000H+ = 1.000HCO3- + 2.000K+ + 1.500H2O + log_k 13.359 + delta_h -15.889 #kJ/mol #Internal calculation + -analytic -8.4310854E+2 -1.2193778E-1 4.6997675E+4 3.0865172E+2 -2.5376147E+6 + #References = LogK/DGf: 84har/mol; DHf/DHr: Internal calculation; S°: 82wag/eva; V°: Default value; + +Carnallite +KMgCl3:6H2O = 3.000Cl- + 1.000K+ + 1.000Mg+2 + 6.000H2O + log_k 4.336 + delta_h 9.340 #kJ/mol #74nau/ryz + -analytic -2.4013581E+3 -3.5694639E-1 1.2977001E+5 8.7250899E+2 -7.2981156E+6 + #References = LogK/DGf: 84har/mol; DHf/DHr: 74nau/ryz; S°: Internal calculation; V°: 63wyc; + +Cassiterite +SnO2 + 2.000H+ = 1.000Sn+2 + 0.500O2 + 1.000H2O + log_k -45.456 + delta_h 276.957 #kJ/mol #89cox/wag + -analytic -1.9555862E+2 -3.0314741E-2 -4.8823113E+3 7.2858703E+1 -4.2383267E+5 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 89cox/wag; V°: 95rob/hem; + +Cattierite +CoS2 + 0.750H2O = 1.000Co+2 + 1.500HS- + 0.250S2O3-2 + log_k -27.183 + delta_h 120.151 #kJ/mol #95rob/hem + -analytic -1.5956797E+3 -2.5849685E-1 8.0777162E+4 5.7925091E+2 -5.2161779E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 87pan/mah; V°: 95rob/hem; + +Cd(element) +Cd + 0.500O2 + 2.000H+ = 1.000Cd+2 + 1.000H2O + log_k 56.614 + delta_h -355.683 #kJ/mol #By convention + -analytic -3.971198E+2 -6.0896205E-2 4.039564E+4 1.4194817E+2 -1.31913E+6 + #References = S°: 89cox/wag; Cp: 89cox/wag; V°: 95rob/hem; + +Cd(OH)2 +Cd(OH)2 + 2.000H+ = 1.000Cd+2 + 2.000H2O + log_k 13.862 + delta_h -87.730 #kJ/mol #Internal calculation + -analytic -3.0555379E+2 -4.5670879E-2 2.0230697E+4 1.1079785E+2 -7.9857844E+5 + #References = LogK/DGf: 91rai/fel; DHf/DHr: Internal calculation; S°: 82wag/eva; Cp: 99yun/glu; V°: 01mer/vie; + +Cd3(PO4)2 +Cd3(PO4)2 + 4.000H+ = 3.000Cd+2 + 2.000H2PO4- + log_k 8.970 + delta_h -206.960 #kJ/mol #01ben/jem + -analytic -2.2188201E+3 -3.4072542E-1 1.2852108E+5 7.974586E+2 -6.6619766E+6 + #References = LogK/DGf: 82wag/eva; DHf/DHr: 01ben/jem; S°: Internal calculation; V°: Default value; + +Cd5(PO4)3Cl +Cd5(PO4)3Cl + 6.000H+ = 5.000Cd+2 + 1.000Cl- + 3.000H2PO4- + log_k 12.673 + #References = LogK/DGf: 84vie/tar; + #References = LogK/DGf: 84vie/tar; V°: Default value; + +Cd5(PO4)3OH +Cd5(PO4)3OH + 7.000H+ = 5.000Cd+2 + 3.000H2PO4- + 1.000H2O + log_k 19.843 + #References = LogK/DGf: 84vie/tar; + #References = LogK/DGf: 84vie/tar; V°: Default value; + +CdCl2 +CdCl2 = 1.000Cd+2 + 2.000Cl- + log_k -0.656 + delta_h -18.580 #kJ/mol #82wag/eva + -analytic -1.5398285E+3 -2.5000429E-1 8.4903052E+4 5.5985763E+2 -5.012328E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 82wag/eva; S°: 74nau/ryz; Cp: 74nau/ryz; V°: 84pan; + +CdCl2:2.5H2O +CdCl2:2.5H2O = 1.000Cd+2 + 2.000Cl- + 2.500H2O + log_k -1.897 + delta_h 7.285 #kJ/mol #82wag/eva + -analytic -1.5982554E+3 -2.4479563E-1 8.6152936E+4 5.8030142E+2 -4.936406E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 82wag/eva; S°: 82wag/eva; V°: 01mer/vie; + +CdCl2:H2O +CdCl2:H2O = 1.000Cd+2 + 2.000Cl- + 1.000H2O + log_k -1.691 + delta_h -7.470 #kJ/mol #82wag/eva + -analytic -1.5752675E+3 -2.470366E-1 8.5910114E+4 5.7188057E+2 -4.9775653E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 82wag/eva; S°: 82wag/eva; V°: 01mer/vie; + +CdSiO3 +CdSiO3 + 2.000H+ + 1.000H2O = 1.000Cd+2 + 1.000H4SiO4 + log_k 7.793 + delta_h -59.861 #kJ/mol #77bar/kna + -analytic -6.9406813E+2 -9.3870006E-2 4.3858156E+4 2.4709479E+2 -2.5487506E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 77bar/kna; S°: 77bar/kna; Cp: 77bar/kna; V°: Default value; + +CdSO4 +CdSO4 = 1.000Cd+2 + 1.000SO4-2 + log_k -0.157 + delta_h -51.980 #kJ/mol #82wag/eva + -analytic -1.6519282E+3 -2.6396402E-1 9.341426E+4 5.9762565E+2 -5.4781603E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 82wag/eva; S°: 82wag/eva; Cp: 74nau/ryz; V°: 94pan; + +CdSO4:8/3H2O +CdSO4:2.67H2O = 1.000Cd+2 + 1.000SO4-2 + 2.670H2O + log_k -1.723 + delta_h -19.126 #kJ/mol #89cox/wag + -analytic -1.6718458E+3 -2.6791743E-1 9.1743077E+4 6.0721101E+2 -5.3522102E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 82dek; V°: 95rob/hem; + +Celadonite +K(MgAl)Si4O10(OH)2 + 6.000H+ + 4.000H2O = 1.000Al+3 + 1.000K+ + 1.000Mg+2 + 4.000H4SiO4 + log_k 10.218 + delta_h -114.928 #kJ/mol #02par/vid + -analytic -2.2951597E+3 -3.0749038E-1 1.4288441E+5 8.1489322E+2 -8.7631954E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 02par/vid; S°: 02par/vid; Cp: 98hol/pow; V°: 02par/vid; + +Celadonite(Fe) +KFeAlSi4O10(OH)2 + 6.000H+ + 4.000H2O = 1.000Al+3 + 1.000Fe+2 + 1.000K+ + 4.000H4SiO4 + log_k 6.448 + delta_h -94.529 #kJ/mol #02par/vid + -analytic -2.263818E+3 -3.0410611E-1 1.4008687E+5 8.0369207E+2 -8.6761644E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 02par/vid; S°: 02par/vid; Cp: 98hol/pow; V°: 02par/vid; + +Celestite +SrSO4 = 1.000SO4-2 + 1.000Sr+2 + log_k -6.620 + delta_h -2.451 #kJ/mol #Internal calculation + -analytic -1.6382597E+3 -2.6134201E-1 9.0847992E+4 5.929224E+2 -5.5375878E+6 + #References = LogK/DGf: 06bla/ign; DHf/DHr: Internal calculation; S°: 06bla/ign; Cp: 06bla/ign; V°: 78hel/del; + +Cerussite +PbCO3 + 1.000H+ = 1.000HCO3- + 1.000Pb+2 + log_k -2.963 + delta_h 12.709 #kJ/mol #Internal calculation + -analytic -8.8003392E+2 -1.4186278E-1 4.7401035E+4 3.2029657E+2 -2.8596598E+6 + #References = LogK/DGf: 84tay/lop; DHf/DHr: Internal calculation; S°: 60kel; Cp: 78hel/del; V°: 78hel/del; + +Chabazite +Ca(Al2Si4)O12:6H2O + 8.000H+ = 2.000Al+3 + 1.000Ca+2 + 4.000H4SiO4 + 2.000H2O + log_k 11.541 + delta_h -200.464 #kJ/mol #08bla + -analytic -2.5875779E+3 -3.5298441E-1 1.6180839E+5 9.1700928E+2 -9.5494778E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 08bla; S°: 09bla; Cp: 10vie; V°: 97coo/alb; + +Chalcanthite +CuSO4:5H2O = 1.000Cu+2 + 1.000SO4-2 + 5.000H2O + log_k -2.681 + delta_h 6.384 #kJ/mol #Internal calculation + -analytic -1.757937E+3 -2.5797348E-1 9.5315507E+4 6.3579287E+2 -5.4000291E+6 + #References = LogK/DGf: 00pui; DHf/DHr: Internal calculation; S°: 00pui; Cp: 95rob/hem; V°: 95rob/hem; + +Chalcedony +SiO2 + 2.000H2O = 1.000H4SiO4 + log_k -3.450 + delta_h 21.907 #kJ/mol #78hel/del + -analytic -3.5123163E+2 -4.1614757E-2 2.1730112E+4 1.2331201E+2 -1.5842401E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 78hel/del; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +Chalcocite(alpha) +Cu2S + 1.000H+ = 2.000Cu+ + 1.000HS- + log_k -34.020 + delta_h 203.728 #kJ/mol #Internal calculation + -analytic -8.6799465E+2 -1.364481E-1 3.6090718E+4 3.1664576E+2 -2.6589355E+6 + #References = LogK/DGf: 00pui; DHf/DHr: Internal calculation; S°: 95rob/hem; Cp: 78hel/del; V°: 84pan/stu; + +Chalcocyanite +CuSO4 = 1.000Cu+2 + 1.000SO4-2 + log_k 2.940 + delta_h -72.762 #kJ/mol #89cox/wag + -analytic -1.6722166E+3 -2.6806438E-1 9.5236736E+4 6.0518365E+2 -5.4965898E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 98cha; V°: 95rob/hem; + +Chalcopyrite(alpha) +CuFeS2 + 2.000H+ = 1.000Cu+2 + 1.000Fe+2 + 2.000HS- + log_k -33.986 + delta_h 137.477 #kJ/mol #95rob/hem + -analytic -1.924317E+3 -3.081148E-1 9.6811265E+4 6.976372E+2 -6.1130764E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 78hel/del,70pan/kin; V°: 95rob/hem; + +Chamosite(Daphnite) +Fe5Al(AlSi3)O10(OH)8 + 16.000H+ = 2.000Al+3 + 5.000Fe+2 + 3.000H4SiO4 + 6.000H2O + log_k 47.603 + delta_h -497.518 #kJ/mol #01vid/par + -analytic -3.7422355E+3 -5.4789298E-1 2.3185338E+5 1.338448E+3 -1.2120616E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 01vid/par; S°: 01vid/par; Cp: 05vid/par; V°: 05vid/par; + +Chlorapatite(Pp) +Ca5(PO4)3Cl + 6.000H+ = 5.000Ca+2 + 1.000Cl- + 3.000H2PO4- + log_k 14.533 + #References = LogK/DGf: 84vie/tar,after 72bduf; + #References = LogK/DGf: 84vie/tar,after 72bduf; Cp: 68val/kog; V°: 74nau/ryz; + +Chlorapatite(Synth) +Ca5(PO4)3Cl + 6.000H+ = 5.000Ca+2 + 1.000Cl- + 3.000H2PO4- + log_k 5.210 + delta_h -132.541 #kJ/mol #Internal calculation + -analytic -3.7341077E+3 -6.1239758E-1 2.0792342E+5 1.357092E+3 -1.1868188E+7 + #References = LogK/DGf: 68val/kog; DHf/DHr: Internal calculation; S°: 71par/wag; Cp: 68val/kog; V°: 74nau/ryz; + +Chlorargyrite +AgCl = 1.000Ag+ + 1.000Cl- + log_k -9.749 + delta_h 65.704 #kJ/mol #89cox/wag + -analytic -7.3805154E+2 -1.15886E-1 3.7595198E+4 2.6854595E+2 -2.4658989E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 78rob/hem,70pan; V°: 95rob/hem; + +Chlorite(Cca-2) +(Mg2.964Fe1.927Al1.116Ca0.011)(Si2.633Al1.367)O10(OH)8 + 17.468H+ = 2.483Al+3 + 0.011Ca+2 + 1.712Fe+2 + 2.964Mg+2 + 2.633H4SiO4 + 0.215Fe+3 + 7.468H2O + log_k 61.339 + delta_h -627.242 #kJ/mol #14bla/gai + -analytic -3.9196735E+3 -5.7906678E-1 2.4546019E+5 1.4019542E+3 -1.232598E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 14bla/gai; S°: 14bla/gai; Cp: 09gai/rog; V°: 14bla/gai; + +Chloritoid +FeAl2SiO5(OH)2 + 8.000H+ = 2.000Al+3 + 1.000Fe+2 + 1.000H4SiO4 + 3.000H2O + log_k 21.787 + delta_h -289.851 #kJ/mol #87woo/gar + -analytic -1.6643862E+3 -2.5448941E-1 1.0438177E+5 5.9428858E+2 -5.2071617E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 87woo/gar; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +Chloromagnesite +MgCl2 = 2.000Cl- + 1.000Mg+2 + log_k 22.025 + delta_h -159.540 #kJ/mol #98cha + -analytic -1.5873819E+3 -2.5606599E-1 9.4920387E+4 5.761318E+2 -5.1746597E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98cha; S°: 98cha; Cp: 98cha; V°: 95rob/hem; + +Chromite +FeCr2O4 + 8.000H+ = 2.000Cr+3 + 1.000Fe+2 + 4.000H2O + log_k 15.126 + delta_h -268.820 #kJ/mol #95rob/hem + -analytic -1.3655056E+3 -2.161256E-1 8.3517093E+4 4.8806529E+2 -3.7987696E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 95rob/hem; V°: 95rob/hem; + +Chrysotile +Mg3Si2O5(OH)4 + 6.000H+ = 3.000Mg+2 + 2.000H4SiO4 + 1.000H2O + log_k 33.182 + delta_h -244.552 #kJ/mol #04eva + -analytic -1.8039877E+3 -2.4743291E-1 1.1552931E+5 6.4375706E+2 -6.1763163E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 04eva; S°: 04eva; Cp: 95rob/hem; V°: 78hel/del; + +Cinnabar(alpha) +HgS + 1.000H+ = 1.000HS- + 1.000Hg+2 + log_k -39.005 + delta_h 207.256 #kJ/mol #78hel/del + -analytic -9.1508706E+2 -1.4584062E-1 3.8659747E+4 3.3236538E+2 -2.8906305E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 78hel/del; S°: 78hel/del; Cp: 87pan/mah; V°: 78hel/del; + +Cinnabar(beta) +HgS + 1.000H+ = 1.000HS- + 1.000Hg+2 + log_k -38.620 + #delta_h 0.000 #kJ/mol + -analytic -9.1312565E+2 -1.4554446E-1 3.8723194E+4 3.3154914E+2 -2.8779424E+6 + #References = LogK/DGf: Internal calculation; Cp: 87pan/mah; V°: Default value; + +Claudetite +As2O3 + 3.000H2O = 2.000H2AsO3- + 2.000H+ + log_k -19.930 + delta_h 94.727 #kJ/mol #Internal calculation + -analytic -4.9288445E+2 -9.1503089E-2 1.7342083E+4 1.8317982E+2 -9.9527093E+5 + #References = LogK/DGf: 96pok/gou; DHf/DHr: Internal calculation; S°: 96pok/gou; Cp: 96pok/gou; V°: 96pok/gou; + +Clinochlore +Mg5Al(AlSi3)O10(OH)8 + 16.000H+ = 2.000Al+3 + 5.000Mg+2 + 3.000H4SiO4 + 6.000H2O + log_k 61.706 + delta_h -593.773 #kJ/mol #05vid/par + -analytic -3.933293E+3 -5.6860144E-1 2.4698841E+5 1.4055516E+3 -1.2607E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05vid/par; S°: 05vid/par; Cp: 05vid/par; V°: 05vid/par; + +Clinoclase +Cu3AsO4(OH)3 + 5.000H+ = 1.000H2AsO4- + 3.000Cu+2 + 3.000H2O + log_k 10.103 + #References = LogK/DGf: 01gas/aza; + #References = LogK/DGf: 01gas/aza; V°: 00bla/bid; + +Clinoptilolite(Ca) +Ca0.55(Si4.9Al1.1)O12:3.9H2O + 4.400H+ + 3.700H2O = 1.100Al+3 + 0.550Ca+2 + 4.900H4SiO4 + log_k -2.085 + delta_h -58.407 #kJ/mol #09bla + -analytic -2.3815518E+3 -3.0085981E-1 1.4942318E+5 8.390927E+2 -9.6254008E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 09bla; S°: 09bla; Cp: 10vie; V°: 97coo/alb; + +Clinoptilolite(K) +K1.1(Si4.9Al1.1)O12:2.7H2O + 4.400H+ + 4.900H2O = 1.100Al+3 + 1.100K+ + 4.900H4SiO4 + log_k -1.142 + delta_h -49.035 #kJ/mol #09bla + -analytic -2.3148616E+3 -2.905299E-1 1.4612903E+5 8.1530832E+2 -9.5298429E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 09bla; S°: 09bla; Cp: 10vie; V°: 97coo/alb; + +Clinoptilolite(Na) +Na1.1(Si4.9Al1.1)O12:3.5H2O + 4.400H+ + 4.100H2O = 1.100Al+3 + 1.100Na+ + 4.900H4SiO4 + log_k -0.113 + delta_h -50.769 #kJ/mol #09bla + -analytic -2.3846087E+3 -2.9645291E-1 1.4988094E+5 8.401942E+2 -9.6738611E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 09bla; S°: 09bla; Cp: 10vie; V°: 97coo/alb; + +Clinozoisite +Ca2Al3Si3O12(OH) + 13.000H+ = 3.000Al+3 + 2.000Ca+2 + 3.000H4SiO4 + 1.000H2O + log_k 41.904 + delta_h -473.273 #kJ/mol #04got + -analytic -3.1715578E+3 -4.6903394E-1 2.0085705E+5 1.1313077E+3 -1.0642395E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 04got; S°: 04got; Cp: 04got; V°: 04got; + +Co(element) +Co + 0.500O2 + 2.000H+ = 1.000Co+2 + 1.000H2O + log_k 52.733 + delta_h -337.363 #kJ/mol #By convention + -analytic -4.2222181E+2 -6.5911962E-2 4.0708492E+4 1.5106804E+2 -1.3990067E+6 + #References = S°: 87fer, 91din; Cp: 87fer, 91din; V°: 87fer; + +Co(FeO2)2(alpha) +Co(FeO2)2 + 8.000H+ = 1.000Co+2 + 2.000Fe+3 + 4.000H2O + log_k 0.775 + delta_h -159.200 #kJ/mol #74nau/ryz + -analytic -1.3609059E+3 -2.1592327E-1 7.7662036E+4 4.8820401E+2 -3.7735897E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 74nau/ryz; S°: 74nau/ryz; Cp: 74nau/ryz; V°: 94pan; + +Co(OH)2(blue) +Co(OH)2 + 2.000H+ = 1.000Co+2 + 2.000H2O + log_k 13.801 + #References = LogK/DGf: 98ply/zha; + #References = LogK/DGf: 98ply/zha; V°: 01mer/vie; + +Co(OH)2(pink-pc) +Co(OH)2 + 2.000H+ = 1.000Co+2 + 2.000H2O + log_k 13.205 + delta_h -93.560 #kJ/mol #98ply/zha + -analytic -3.6762496E+2 -5.0273126E-2 2.3802884E+4 1.3196506E+2 -9.3826672E+5 + #References = LogK/DGf: 98ply/zha; DHf/DHr: 98ply/zha; S°: Internal calculation; V°: 01mer/vie; + +Co(OH)2(pink-wc) +Co(OH)2 + 2.000H+ = 1.000Co+2 + 2.000H2O + log_k 12.207 + delta_h -88.460 #kJ/mol #98ply/zha + -analytic -3.6773008E+2 -5.0273126E-2 2.3536494E+4 1.3196506E+2 -9.3826672E+5 + #References = LogK/DGf: 98ply/zha; DHf/DHr: 98ply/zha; S°: Internal calculation; V°: 01mer/vie; + +Co2SiO4 +Co2SiO4 + 4.000H+ = 2.000Co+2 + 1.000H4SiO4 + log_k 7.358 + delta_h -97.061 #kJ/mol #82wag/eva + -analytic -1.038818E+3 -1.4608633E-1 6.3991738E+4 3.6993709E+2 -3.5808584E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 82wag/eva; S°: 82wag/eva; Cp: 61kel/kin; V°: 82pan; + +Co3(PO4)2 +Co3(PO4)2 + 4.000H+ = 3.000Co+2 + 2.000H2PO4- + log_k 4.360 + #References = LogK/DGf: 84vie/tar; + #References = LogK/DGf: 84vie/tar; V°: Default value; + +CoCl2 +CoCl2 = 2.000Cl- + 1.000Co+2 + log_k 8.474 + delta_h -79.220 #kJ/mol #98cha + -analytic -1.5576853E+3 -2.5385016E-1 8.897969E+4 5.6601013E+2 -5.0802322E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98cha; S°: 98cha; Cp: 98cha; V°: 84pan; + +CoCl2:6H2O +CoCl2:6H2O = 2.000Cl- + 1.000Co+2 + 6.000H2O + log_k -2.534 + delta_h 8.060 #kJ/mol #97smi/mar + -analytic -1.6775899E+3 -2.4368585E-1 8.9533977E+4 6.0727459E+2 -4.9112606E+6 + #References = LogK/DGf: 97smi/mar; DHf/DHr: 97smi/mar; S°: Internal calculation; V°: 94pan; + +Coesite(alpha) +SiO2 + 2.000H2O = 1.000H4SiO4 + log_k -2.910 + delta_h 19.112 #kJ/mol #78hel/del + -analytic -3.527031E+2 -4.1818062E-2 2.195059E+4 1.2386474E+2 -1.5873687E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 78hel/del; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +CoF2 +CoF2 = 1.000Co+2 + 2.000F- + log_k -1.391 + delta_h -56.770 #kJ/mol #98cha + -analytic -1.6903413E+3 -2.7132141E-1 9.4539877E+4 6.1180182E+2 -5.4319926E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98cha; S°: 98cha; Cp: 98cha; V°: 84pan; + +CoHPO4 +CoHPO4 + 1.000H+ = 1.000Co+2 + 1.000H2PO4- + log_k 0.490 + #References = LogK/DGf: 84vie/tar; + #References = LogK/DGf: 84vie/tar; V°: Default value; + +Conichalcite +CaCuAsO4(OH) + 3.000H+ = 1.000H2AsO4- + 1.000Ca+2 + 1.000Cu+2 + 1.000H2O + log_k 1.291 + #References = LogK/DGf: 01gas/aza; + #References = LogK/DGf: 01gas/aza; V°: 00bla/bid; + +Connellite +Cu37Cl8(SO4)2(OH)62:8H2O + 62.000H+ = 8.000Cl- + 37.000Cu+2 + 2.000SO4-2 + 70.000H2O + log_k 188.071 + delta_h -1554.399 #kJ/mol #Internal calculation + -analytic -2.0100792E+4 -3.0717503E+0 1.1510558E+6 7.2803175E+3 -5.9614214E+7 + #References = LogK/DGf: 00pui; DHf/DHr: Internal calculation; S°: 00pui; Cp: 00pui; V°: 90rob/cam; + +CoO +CoO + 2.000H+ = 1.000Co+2 + 1.000H2O + log_k 13.775 + delta_h -105.530 #kJ/mol #95rob/hem + -analytic -3.2438693E+2 -5.0962961E-2 2.2180786E+4 1.1684824E+2 -9.0419208E+5 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 95rob/hem; V°: 95rob/hem; + +Cooperite +PtS + 1.000H+ = 1.000Pt+2 + 1.000HS- + log_k -60.932 + delta_h 321.919 #kJ/mol #Internal calculation + -analytic -9.6572844E+2 -1.5547775E-1 3.5270208E+4 3.5048023E+2 -3.0565786E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +Copiapite +Fe5(SO4)6(OH)2:20H2O + 2.000H+ = 4.000Fe+3 + 6.000SO4-2 + 1.000Fe+2 + 22.000H2O + log_k -16.563 + delta_h -206.300 #kJ/mol #02hem/sea + -analytic -1.0864336E+4 -1.62485E+0 5.9905788E+5 3.9201601E+3 -3.3531377E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 02hem/sea; S°: 02hem/sea; V°: 90rob/cam; + +Coquimbite +Fe2(SO4)3:9H2O = 2.000Fe+3 + 3.000SO4-2 + 9.000H2O + log_k -8.976 + delta_h -110.290 #kJ/mol #02hem/sea + -analytic -5.2353491E+3 -7.8891898E-1 2.8976809E+5 1.8886427E+3 -1.6322713E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 02hem/sea; S°: 02hem/sea; V°: 90rob/cam; + +Cordierite +Mg2Al3(AlSi5)O18 + 16.000H+ + 2.000H2O = 4.000Al+3 + 2.000Mg+2 + 5.000H4SiO4 + log_k 49.433 + delta_h -648.745 #kJ/mol #95rob/hem + -analytic -4.3696636E+3 -6.2958321E-1 2.8022776E+5 1.5507866E+3 -1.5147654E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 95rob/hem; V°: 95rob/hem; + +Cordierite(hydrated) +Mg2Al3(AlSi5)O18:H2O + 16.000H+ + 1.000H2O = 4.000Al+3 + 2.000Mg+2 + 5.000H4SiO4 + log_k 51.683 + delta_h -658.326 #kJ/mol #78hel/del + -analytic -4.3487968E+3 -6.2643937E-1 2.794002E+5 1.5435514E+3 -1.5047659E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 78hel/del; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +Corkite +PbFe3(PO4)(OH)6SO4 + 8.000H+ = 3.000Fe+3 + 1.000H2PO4- + 1.000Pb+2 + 1.000SO4-2 + 6.000H2O + log_k -1.943 + #References = LogK/DGf: 84nri; + #References = LogK/DGf: 84nri; V°: 63wyc; + +Cornetite +Cu3PO4(OH)3 + 5.000H+ = 3.000Cu+2 + 1.000H2PO4- + 3.000H2O + log_k 15.018 + #References = LogK/DGf: 84nri; + #References = LogK/DGf: 84nri; V°: 63wyc; + +Corundum(alpha) +Al2O3 + 6.000H+ = 2.000Al+3 + 3.000H2O + log_k 18.301 + delta_h -258.590 #kJ/mol #89cox/wag + -analytic -9.4860009E+2 -1.5787708E-1 6.0832419E+4 3.3914801E+2 -2.601091E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 89cox/wag; V°: 95rob/hem; + +Corundum(gamma) +Al2O3 + 6.000H+ = 2.000Al+3 + 3.000H2O + log_k 21.522 + delta_h -277.390 #kJ/mol #89cox/wag + -analytic -9.4999225E+2 -1.5841591E-1 6.1869865E+4 3.3969343E+2 -2.6059688E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 89cox/wag; V°: 78hel/del; + +CoS(alpha) +CoS + 1.000H+ = 1.000Co+2 + 1.000HS- + log_k -7.441 + delta_h 11.840 #kJ/mol #74nau/ryz + -analytic -9.8081985E+2 -1.5438024E-1 5.2331559E+4 3.5505659E+2 -3.0826179E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 74nau/ryz; S°: 74nau/ryz; V°: 03dea; + +CoS(beta) +CoS + 1.000H+ = 1.000Co+2 + 1.000HS- + log_k -11.070 + #References = LogK/DGf: 61kel/kin; + #References = LogK/DGf: 61kel/kin; V°: 03dea; + +CoSO4 +CoSO4 = 1.000Co+2 + 1.000SO4-2 + log_k 3.009 + delta_h -78.680 #kJ/mol #98cha + -analytic -1.665155E+3 -2.6798638E-1 9.5300782E+4 6.0234072E+2 -5.5139462E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98cha; S°: 98cha; Cp: 98cha; V°: 94pan; + +Cotunnite +PbCl2 = 2.000Cl- + 1.000Pb+2 + log_k -4.807 + delta_h 26.160 #kJ/mol #98cha + -analytic -1.5285737E+3 -2.4847531E-1 8.2798391E+4 5.56649E+2 -5.0890471E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98cha; S°: 98cha; Cp: 98cha; V°: 84pan; + +Covellite +CuS + 1.000H+ = 1.000Cu+2 + 1.000HS- + log_k -22.060 + delta_h 96.859 #kJ/mol #Internal calculation + -analytic -9.6590567E+2 -1.5396697E-1 4.7082597E+4 3.5005256E+2 -3.0532321E+6 + #References = LogK/DGf: 00pui; DHf/DHr: Internal calculation; S°: 95rob/hem; Cp: 84pan/stu; V°: 84pan/stu; + +Cr(element) +Cr + 0.500O2 + 2.000H+ = 1.000Cr+2 + 1.000H2O + log_k 70.927 + delta_h -437.463 #kJ/mol #By convention + -analytic -4.1918772E+2 -6.5280642E-2 4.5814893E+4 1.5015581E+2 -1.3900134E+6 + #References = S°: 98cha; Cp: 98cha; V°: 95rob/hem; + +Cr(OH)2(s) +Cr(OH)2 + 2.000H+ = 1.000Cr+2 + 2.000H2O + log_k 11.002 + delta_h -75.446 #kJ/mol #Internal calculation + -analytic -3.8162222E+2 -5.2499966E-2 2.3647804E+4 1.3740262E+2 -9.8065626E+5 + #References = LogK/DGf: 41hum/sto; DHf/DHr: Internal calculation; S°: 74nau/ryz; V°: Default value; + +Cr(OH)3(s) +Cr(OH)3 + 3.000H+ = 1.000Cr+3 + 3.000H2O + log_k 9.353 + delta_h -115.301 #kJ/mol #Internal calculation + -analytic -5.4711646E+2 -7.9193855E-2 3.333245E+4 1.9538296E+2 -1.3492986E+6 + #References = LogK/DGf: 87rai/sas; DHf/DHr: Internal calculation; S°: 74nau/ryz; V°: Default value; + +Cr2(SO4)3(s) +Cr2(SO4)3 = 2.000Cr+3 + 3.000SO4-2 + log_k 4.379 + delta_h -277.720 #kJ/mol #91kna/kub + -analytic -4.9834942E+3 -8.0843973E-1 2.858872E+5 1.8002483E+3 -1.6405967E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 91kna/kub; S°: 91kna/kub; Cp: 91kna/kub; V°: 94pan; + +Cr2S3(s) +Cr2S3 + 1.000H+ + 0.750H2O = 2.000Cr+2 + 2.500HS- + 0.250S2O3-2 + log_k -16.704 + delta_h 29.851 #kJ/mol #84pan/stu + -analytic -2.5536734E+3 -4.1073391E-1 1.3750673E+5 9.2606397E+2 -8.2897942E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 84pan/stu; S°: 84pan/stu; Cp: 91kna/kub; V°: 87pan/mah; + +Crandallite +CaAl3(PO4)2(OH)5:H2O + 9.000H+ = 3.000Al+3 + 1.000Ca+2 + 2.000H2PO4- + 6.000H2O + log_k 21.051 + #References = LogK/DGf: 79vie/tar; + #References = LogK/DGf: 79vie/tar; V°: 63wyc; + +CrCl2(s) +CrCl2 = 2.000Cl- + 1.000Cr+2 + log_k 12.744 + delta_h -103.560 #kJ/mol #98bal/nor + -analytic -1.5567584E+3 -2.5305905E-1 9.0178871E+4 5.6558148E+2 -5.0672435E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98bal/nor; S°: 98bal/nor; Cp: 91kna/kub; V°: 84pan; + +CrCl3(s) +CrCl3 + 0.500H2O = 2.500Cl- + 1.000Cr+2 + 0.500ClO- + 1.000H+ + log_k -15.227 + delta_h 58.083 #kJ/mol #98bal/nor + -analytic -2.1812433E+3 -3.5513694E-1 1.1640242E+5 7.9307607E+2 -7.1942121E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98bal/nor; S°: 98bal/nor; Cp: 91kna/kub; V°: 84pan; + +Cristobalite(alpha) +SiO2 + 2.000H2O = 1.000H4SiO4 + log_k -3.158 + delta_h 18.829 #kJ/mol #04fab/sax + -analytic -3.544017E+2 -4.1702635E-2 2.2114271E+4 1.2427357E+2 -1.6001472E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 04fab/sax; S°: 04fab/sax; Cp: 04fab/sax; V°: 04fab/sax; + +Cristobalite(beta) +SiO2 + 2.000H2O = 1.000H4SiO4 + log_k -3.096 + #delta_h 0.000 #kJ/mol + -analytic -3.6088361E+2 -4.1957223E-2 2.2873339E+4 1.2628239E+2 -1.6799304E+6 + #References = LogK/DGf: Internal calculation; Cp: 04fab/sax; V°: 04fab/sax; + +CrO2(s) +CrO2 + 3.000H+ = 1.000Cr+3 + 0.250O2 + 1.500H2O + log_k 0.443 + delta_h -74.378 #kJ/mol #04chi + -analytic -4.2881145E+2 -7.0876056E-2 2.4921682E+4 1.5330843E+2 -1.1158625E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 04chi; S°: 04chi; Cp: 93bar; V°: 92wol; + +CrO3(s) +CrO3 + 1.000H2O = 1.000CrO4-2 + 2.000H+ + log_k -3.019 + delta_h -10.070 #kJ/mol #98bal/nor + -analytic -1.2674558E+3 -2.0965617E-1 7.0660776E+4 4.6023827E+2 -4.3451972E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98bal/nor; S°: 98bal/nor; Cp: 91kna/kub; V°: 92wol; + +Crocoite +PbCrO4 = 1.000CrO4-2 + 1.000Pb+2 + log_k -12.550 + delta_h 48.940 #kJ/mol #76del/hep + -analytic -1.5708609E+3 -2.5330557E-1 8.4654283E+4 5.6987411E+2 -5.35265E+6 + #References = LogK/DGf: 42kol/per; DHf/DHr: 76del/hep; S°: Internal calculation; Cp: 74nau/ryz; V°: 00lyd; + +Cronstedtite(Th) +Fe3SiAlO5(OH)4 + 10.000H+ = 1.000Al+3 + 2.000Fe+2 + 1.000H4SiO4 + 1.000Fe+3 + 5.000H2O + log_k 96.643 + delta_h -738.731 #kJ/mol #15bla/vie + -analytic -2.0074006E+3 -2.9853864E-1 1.4641628E+5 7.1605734E+2 -6.2107203E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +CrPO4(green) +CrPO4 + 2.000H+ = 1.000Cr+3 + 1.000H2PO4- + log_k -5.326 + #References = LogK/DGf: 51zha; + #References = LogK/DGf: 51zha; V°: Default value; + +CrPO4(purple) +CrPO4 + 2.000H+ = 1.000Cr+3 + 1.000H2PO4- + log_k 0.298 + #References = LogK/DGf: 51zha; + #References = LogK/DGf: 51zha; V°: Default value; + +CrS(s) +CrS + 1.000H+ = 1.000Cr+2 + 1.000HS- + log_k 1.675 + delta_h -38.860 #kJ/mol #84pan/stu + -analytic -9.6517921E+2 -1.5487857E-1 5.4210441E+4 3.4989438E+2 -3.0741518E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 84pan/stu; S°: 84pan/stu; Cp: 91kna/kub; V°: 87pan/mah; + +Cu(element) +Cu + 0.500O2 + 2.000H+ = 1.000Cu+2 + 1.000H2O + log_k 31.601 + delta_h -214.586 #kJ/mol #By convention + -analytic -4.2540758E+2 -6.5327607E-2 3.438206E+4 1.5224054E+2 -1.3815072E+6 + #References = S°: 89cox/wag; Cp: 89cox/wag; V°: 95rob/hem; + +Cu(OH)2 +Cu(OH)2 + 2.000H+ = 1.000Cu+2 + 2.000H2O + log_k 8.672 + delta_h -62.658 #kJ/mol #Internal calculation + -analytic -3.3666279E+2 -4.9930343E-2 2.0701537E+4 1.216584E+2 -9.1093669E+5 + #References = LogK/DGf: 07pow/bro; DHf/DHr: Internal calculation; S°: 98cha; Cp: 98cha; V°: 84pan/stu; + +Cu2SO4 +Cu2SO4 = 2.000Cu+ + 1.000SO4-2 + log_k -1.387 + delta_h -16.749 #kJ/mol #00pui + -analytic -1.568224E+3 -2.4863101E-1 8.6685802E+4 5.6885969E+2 -5.1011532E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 00pui; S°: 00pui; Cp: 84pan/stu; V°: 84pan/stu; + +Cu2SO5 +Cu2SO5 + 2.000H+ = 2.000Cu+2 + 1.000SO4-2 + 1.000H2O + log_k 10.304 + delta_h -137.222 #kJ/mol #00pui + -analytic -1.9974029E+3 -3.1787668E-1 1.1581856E+5 7.220889E+2 -6.4658431E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 00pui; S°: 00pui; Cp: 98cha; V°: 98cha; + +Cu3(PO4)2 +Cu3(PO4)2 + 4.000H+ = 3.000Cu+2 + 2.000H2PO4- + log_k 2.210 + delta_h -154.596 #kJ/mol #Internal calculation + -analytic -2.2061797E+3 -3.5165658E-1 1.256368E+5 7.9556988E+2 -6.8214649E+6 + #References = LogK/DGf: 84vie/tar; DHf/DHr: Internal calculation; S°: 00pui; Cp: 00pui; V°: Default value; + +Cu3(PO4)2:3H2O +Cu3(PO4)2:3H2O + 4.000H+ = 3.000Cu+2 + 2.000H2PO4- + 3.000H2O + log_k 3.983 + delta_h -142.084 #kJ/mol #Internal calculation + -analytic -2.23932E+3 -3.5189206E-1 1.266151E+5 8.0837746E+2 -6.8205072E+6 + #References = LogK/DGf: 84vie/tar; DHf/DHr: Internal calculation; S°: 00pui; Cp: 00pui; V°: Default value; + +Cu4(NO3)2(OH)6 +Cu4(NO3)2(OH)6 + 6.000H+ = 4.000Cu+2 + 2.000NO3- + 6.000H2O + log_k 14.506 + delta_h -104.797 #kJ/mol #Internal calculation + -analytic -2.5319236E+3 -3.9091715E-1 1.4171661E+5 9.1929025E+2 -7.7392407E+6 + #References = LogK/DGf: 00pui; DHf/DHr: Internal calculation; S°: 00pui; Cp: 00pui; V°: Default value; + +CuCO3 +CuCO3 + 1.000H+ = 1.000HCO3- + 1.000Cu+2 + log_k -1.120 + delta_h -19.417 #kJ/mol #Internal calculation + -analytic -9.2672644E+2 -1.4906832E-1 5.0839146E+4 3.363369E+2 -2.9075173E+6 + #References = LogK/DGf: 00pui; DHf/DHr: Internal calculation; S°: 00pui; Cp: 00pui; V°: Default value; + +CuF +CuF = 1.000Cu+ + 1.000F- + log_k -4.712 + delta_h 15.552 #kJ/mol #84pan/stu + -analytic -7.9465013E+2 -1.2605589E-1 4.2204908E+4 2.8862734E+2 -2.508921E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 84pan/stu; S°: 84pan/stu; Cp: 84pan/stu; V°: 09hon; + +CuF2 +CuF2 = 1.000Cu+2 + 2.000F- + log_k 1.114 + delta_h -66.622 #kJ/mol #84pan/stu + -analytic -1.6993335E+3 -2.7172344E-1 9.5414751E+4 6.1527418E+2 -5.4239539E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 84pan/stu; S°: 84pan/stu; Cp: 84pan/stu; V°: 84pan/stu; + +CuF2:2H2O +CuF2:2H2O = 1.000Cu+2 + 2.000F- + 2.000H2O + log_k -4.548 + delta_h -15.030 #kJ/mol #Internal calculation + -analytic -1.6994665E+3 -2.6788903E-1 9.2886119E+4 6.158373E+2 -5.3870415E+6 + #References = LogK/DGf: 00pui; DHf/DHr: Internal calculation; S°: 00pui; Cp: 00pui; V°: 07gre/per; + +Cummingtonite +Mg7Si8O22(OH)2 + 14.000H+ + 8.000H2O = 7.000Mg+2 + 8.000H4SiO4 + log_k 76.152 + delta_h -596.457 #kJ/mol #98hol/pow + -analytic -5.2421442E+3 -6.9998733E-1 3.3979766E+5 1.8611863E+3 -1.9385351E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98hol/pow; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +Cuprite +Cu2O + 2.000H+ = 2.000Cu+ + 1.000H2O + log_k -1.470 + delta_h 25.915 #kJ/mol #95rob/hem + -analytic -2.0387364E+2 -2.8150991E-2 8.6475258E+3 7.5329242E+1 -4.0932625E+5 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 98cha; V°: 78hel/del; + +Dawsonite +NaAlCO3(OH)2 + 3.000H+ = 1.000Al+3 + 1.000HCO3- + 1.000Na+ + 2.000H2O + log_k 4.327 + delta_h -76.330 #kJ/mol #76fer/stu + -analytic -1.21599E+3 -1.9110794E-1 6.8919359E+4 4.3970018E+2 -3.7220307E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 76fer/stu; S°: 76fer/stu; Cp: 76fer/stu; V°: 95rob/hem; + +Diaspore +AlO(OH) + 3.000H+ = 1.000Al+3 + 2.000H2O + log_k 6.866 + delta_h -108.760 #kJ/mol #95rob/hem + -analytic -4.8201662E+2 -7.7930965E-2 2.9964822E+4 1.7237439E+2 -1.3257386E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 95rob/hem; V°: 78hel/del; + +Dickite +Al2Si2O5(OH)4 + 6.000H+ = 2.000Al+3 + 2.000H4SiO4 + 1.000H2O + log_k 9.397 + delta_h -180.552 #kJ/mol #06bla/pia + -analytic -1.6638485E+3 -2.4070345E-1 1.0291406E+5 5.916831E+2 -5.7109981E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 06bla/pia; S°: 06bla/pia; Cp: 06bla/pia; V°: 78hel/del,78rob/hem; + +Diopside +CaMg(SiO3)2 + 4.000H+ + 2.000H2O = 1.000Ca+2 + 1.000Mg+2 + 2.000H4SiO4 + log_k 21.743 + delta_h -153.574 #kJ/mol #Internal calculation + -analytic -1.332806E+3 -1.8198553E-1 8.603858E+4 4.749095E+2 -4.8802351E+6 + #References = LogK/DGf: 78hel/del,92ajoh; DHf/DHr: Internal calculation; S°: 78hel/del,92ajoh; Cp: 78hel/del,92ajoh; V°: 78hel/del,92ajoh; + +Djurleite +Cu1.934S + 1.000H+ = 1.868Cu+ + 0.066Cu+2 + 1.000HS- + log_k -33.330 + delta_h 196.825 #kJ/mol #Internal calculation + -analytic -8.6915401E+2 -1.3576764E-1 3.6697803E+4 3.1661699E+2 -2.6872489E+6 + #References = LogK/DGf: 00pui; DHf/DHr: Internal calculation; S°: 95rob/hem; Cp: 00pui; V°: 95rob/hem; + +Dolomite +CaMg(CO3)2 + 2.000H+ = 2.000HCO3- + 1.000Ca+2 + 1.000Mg+2 + log_k 3.533 + delta_h -65.360 #kJ/mol #95rob/hem + -analytic -1.7923552E+3 -2.8963391E-1 9.9594038E+4 6.511419E+2 -5.6008136E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 95rob/hem; V°: 78hel/del,92ajoh; + +Dolomite(disordered) +CaMg(CO3)2 + 2.000H+ = 2.000HCO3- + 1.000Ca+2 + 1.000Mg+2 + log_k 4.299 + delta_h -73.162 #kJ/mol #78hel/del,92ajoh + -analytic -1.7814432E+3 -2.8852695E-1 9.9263747E+4 6.4714027E+2 -5.5533944E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 78hel/del,92ajoh; S°: 78hel/del,92ajoh; Cp: 78hel/del,92ajoh; V°: 78hel/del,92ajoh; + +Dolomite(ordered) +CaMg(CO3)2 + 2.000H+ = 2.000HCO3- + 1.000Ca+2 + 1.000Mg+2 + log_k 2.754 + delta_h -60.916 #kJ/mol #78hel/del,92ajoh + -analytic -1.792373E+3 -2.8963681E-1 9.9362832E+4 6.5114844E+2 -5.6008636E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 78hel/del,92ajoh; S°: 78hel/del,92ajoh; Cp: 95rob/hem; V°: 78hel/del,92ajoh; + +Doralcharite +TlFe3(SO4)2(OH)6 + 6.000H+ = 3.000Fe+3 + 2.000SO4-2 + 1.000Tl+ + 6.000H2O + log_k -2.221 + delta_h -230.910 #kJ/mol #09xio + -analytic -4.2350425E+3 -6.7654413E-1 2.4158966E+5 1.5269473E+3 -1.3697943E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 09xio; S°: 09xio; Cp: 84pan/stu; V°: 84pan/stu; + +Duftite +PbCuAsO4(OH) + 3.000H+ = 1.000H2AsO4- + 1.000Cu+2 + 1.000Pb+2 + 1.000H2O + log_k -1.974 + #References = LogK/DGf: 01gas/aza; + #References = LogK/DGf: 01gas/aza; V°: 00bla/bid; + +Eastonite +KMg2Al3Si2O10(OH)2 + 14.000H+ = 3.000Al+3 + 1.000K+ + 2.000Mg+2 + 2.000H4SiO4 + 4.000H2O + log_k 46.313 + delta_h -513.442 #kJ/mol #98hol/pow + -analytic -3.0257344E+3 -4.5185951E-1 1.9137182E+5 1.0805094E+3 -9.6667032E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98hol/pow; S°: 98hol/pow; Cp: 98hol/pow; V°: 98hol/pow; + +Edenite(alpha) +Na(Ca2Mg5)(AlSi7)O22(OH)2 + 18.000H+ + 4.000H2O = 1.000Al+3 + 2.000Ca+2 + 5.000Mg+2 + 1.000Na+ + 7.000H4SiO4 + log_k 81.946 + delta_h -679.296 #kJ/mol #97got + -analytic -5.4623009E+3 -7.5241996E-1 3.5051336E+5 1.9444511E+3 -1.942E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 97got; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +Enstatite(alpha) +MgSiO3 + 2.000H+ + 1.000H2O = 1.000Mg+2 + 1.000H4SiO4 + log_k 11.844 + delta_h -93.265 #kJ/mol #78hel/del + -analytic -7.0139177E+2 -9.4618096E-2 4.5846726E+4 2.4912172E+2 -2.5565294E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 78hel/del; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +Epidote +Ca2FeAl2Si3O12(OH) + 13.000H+ = 2.000Al+3 + 2.000Ca+2 + 1.000Fe+3 + 3.000H4SiO4 + 1.000H2O + log_k 32.230 + delta_h -411.613 #kJ/mol #04got + -analytic -3.1567388E+3 -4.6487997E-1 1.9676775E+5 1.1260692E+3 -1.0558252E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 04got; S°: 04got; Cp: 04got; V°: 04got; + +Epsomite +MgSO4:7H2O = 1.000Mg+2 + 1.000SO4-2 + 7.000H2O + log_k -1.873 + delta_h 10.991 #kJ/mol #Internal calculation + -analytic -1.6988081E+3 -2.5721818E-1 9.2712801E+4 6.1577249E+2 -5.4246599E+6 + #References = LogK/DGf: 84har/mol; DHf/DHr: Internal calculation; S°: 74nau/ryz; Cp: 74nau/ryz; V°: 95rob/hem; + +Erdite +NaFeS2:2H2O + 0.875H+ = 1.000Fe+2 + 1.000Na+ + 1.875HS- + 0.125SO4-2 + 1.500H2O + log_k -5.500 + delta_h 27.385 #kJ/mol #14las/pia + -analytic -1.8074895E+3 -2.8349252E-1 9.7609895E+4 6.5664586E+2 -5.8402468E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 14las/pia; S°: 14las/pia; Cp: 14las/pia; V°: 14las/pia; + +Eskolaite +Cr2O3 + 6.000H+ = 2.000Cr+3 + 3.000H2O + log_k 7.756 + delta_h -197.990 #kJ/mol #04chi + -analytic -9.8817895E+2 -1.5834184E-1 6.0401277E+4 3.5225212E+2 -2.7616883E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 04chi; S°: 04chi; Cp: 98cha; V°: 82pan; + +Ettringite +Ca6Al2(SO4)3(OH)12:26H2O + 12.000H+ = 2.000Al+3 + 6.000Ca+2 + 3.000SO4-2 + 38.000H2O + log_k 57.009 + delta_h -379.834 #kJ/mol #63ber/new + -analytic -6.6745712E+3 -1.0474291E+0 3.7870629E+5 2.4266186E+3 -2.0518895E+7 + #References = LogK/DGf: 10bbla/bou; DHf/DHr: 63ber/new; S°: Internal calculation; Cp: 79ede/sat; V°: 70moo/tay; + +Ettringite(Cr) +Ca6Al2(OH)12(CrO4)3:26H2O + 12.000H+ = 2.000Al+3 + 6.000Ca+2 + 3.000CrO4-2 + 38.000H2O + log_k 60.279 + delta_h -503.048 #kJ/mol #00per/pal + -analytic -6.462794E+3 -1.0029528E+0 3.7372626E+5 2.3408513E+3 -1.9882337E+7 + #References = LogK/DGf: 00per/pal; DHf/DHr: 00per/pal; S°: Internal calculation; Cp: 00per/pal; V°: 70moo/tay; + +Ettringite(Fe) +Ca6Fe2(SO4)3(OH)12:26H2O + 12.000H+ = 6.000Ca+2 + 2.000Fe+3 + 3.000SO4-2 + 38.000H2O + log_k 54.589 + delta_h -344.348 #kJ/mol #Internal calculation + -analytic -6.6148727E+3 -1.0245412E+0 3.7573238E+5 2.4027407E+3 -2.0508554E+7 + #References = LogK/DGf: 10bbla/bou; DHf/DHr: Internal calculation; S°: 10bbla/bou; Cp: 10bbla/bou; V°: 98gla/tyr; + +Farringtonite +Mg3(PO4)2 + 4.000H+ = 3.000Mg+2 + 2.000H2PO4- + log_k 15.820 + delta_h -214.093 #kJ/mol #Internal calculation + -analytic -2.1864544E+3 -3.5145069E-1 1.2767723E+5 7.9006079E+2 -6.7671011E+6 + #References = LogK/DGf: 68rac/sop; DHf/DHr: Internal calculation; S°: 74nau/ryz; Cp: 63oet/mdo; V°: 84nri; + +Faustite +ZnAl6(PO4)4(OH)8:4H2O + 16.000H+ = 6.000Al+3 + 4.000H2PO4- + 1.000Zn+2 + 12.000H2O + log_k 19.627 + #References = LogK/DGf: 84nri; + #References = LogK/DGf: 84nri; V°: 63wyc; + +Fayalite +Fe2SiO4 + 4.000H+ = 2.000Fe+2 + 1.000H4SiO4 + log_k 19.030 + delta_h -157.157 #kJ/mol #Internal calculation + -analytic -1.0258478E+3 -1.4618015E-1 6.6129821E+4 3.6618221E+2 -3.5053712E+6 + #References = LogK/DGf: 78hel/del; DHf/DHr: Internal calculation; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +Fe(element) +Fe + 0.500O2 + 2.000H+ = 1.000Fe+2 + 1.000H2O + log_k 58.856 + delta_h -369.763 #kJ/mol #By convention + -analytic -4.2248325E+2 -6.5961519E-2 4.2457852E+4 1.5130357E+2 -1.4036127E+6 + #References = S°: 95par/kho; Cp: 98cha; V°: 04fab/sax; + +Fe(OH)2 +Fe(OH)2 + 2.000H+ = 1.000Fe+2 + 2.000H2O + log_k 12.852 + delta_h -88.121 #kJ/mol #Internal calculation + -analytic -3.3299984E+2 -5.0831539E-2 2.190257E+4 1.2042336E+2 -9.2751796E+5 + #References = LogK/DGf: 53leu/kho; DHf/DHr: Internal calculation; S°: 04chi; Cp: 98cha; V°: 01mer/vie; + +Fe10S11 +Fe10S11 + 9.000H+ + 0.750H2O = 10.000Fe+2 + 10.500HS- + 0.250S2O3-2 + log_k -59.393 + delta_h 28.630 #kJ/mol #05wal/pel + -analytic -1.0231691E+4 -1.6418452E+0 5.5394991E+5 3.7077556E+3 -3.2956546E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05wal/pel; S°: 05wal/pel; Cp: 05wal/pel; V°: 08bla; + +Fe11S12 +Fe11S12 + 10.000H+ + 0.750H2O = 11.000Fe+2 + 11.500HS- + 0.250S2O3-2 + log_k -64.318 + delta_h 21.930 #kJ/mol #05wal/pel + -analytic -1.1193273E+4 -1.7956615E+0 6.0638077E+5 4.0558402E+3 -3.6036712E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05wal/pel; S°: 05wal/pel; Cp: 05wal/pel; V°: 08bla; + +Fe2(SO4)3 +Fe2(SO4)3 = 2.000Fe+3 + 3.000SO4-2 + log_k 0.038 + delta_h -240.820 #kJ/mol #05maj/nav + -analytic -5.0254612E+3 -8.1192986E-1 2.8639592E+5 1.8156889E+3 -1.6516778E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05maj/nav; S°: 05maj/nav; Cp: 02hem/sea; V°: 95rob/hem; + +Fe7.016S8 +Fe7.016S8 + 6.032H+ + 0.738H2O = 7.016Fe+2 + 7.508HS- + 0.246S2O3-2 + log_k -47.307 + delta_h 52.039 #kJ/mol #05wal/pel + -analytic -7.4346812E+3 -1.2000209E+0 3.9979108E+5 2.6965143E+3 -2.3831792E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05wal/pel; S°: 05wal/pel; Cp: 05wal/pel; V°: 08bla; + +Fe9S10 +Fe9S10 + 8.000H+ + 0.750H2O = 9.000Fe+2 + 9.500HS- + 0.250S2O3-2 + log_k -55.460 + delta_h 37.210 #kJ/mol #05wal/pel + -analytic -9.2707725E+3 -1.4880288E+0 5.0142086E+5 3.359671E+3 -2.9876381E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05wal/pel; S°: 05wal/pel; Cp: 05wal/pel; V°: 08bla; + +FeCl2 +FeCl2 = 2.000Cl- + 1.000Fe+2 + log_k 8.981 + delta_h -83.000 #kJ/mol #95par/kho + -analytic -1.5585061E+3 -2.5365884E-1 8.9252888E+4 5.661784E+2 -5.085739E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95par/kho; S°: 95par/kho; Cp: 98cha; V°: 95rob/hem; + +FeCl2:2H2O +FeCl2:2H2O = 2.000Cl- + 1.000Fe+2 + 2.000H2O + log_k 4.361 + delta_h -44.808 #kJ/mol #08bla + -analytic -1.6107676E+3 -2.4925728E-1 8.9551087E+4 5.8420437E+2 -5.0213153E+6 + #References = LogK/DGf: 08bla; DHf/DHr: 08bla; S°: Internal calculation; V°: 63wyc; + +FeCl2:4H2O +FeCl2:4H2O = 2.000Cl- + 1.000Fe+2 + 4.000H2O + log_k 3.034 + delta_h -24.776 #kJ/mol #08bla + -analytic -1.7163246E+3 -2.582723E-1 9.3684709E+4 6.2250208E+2 -5.1734509E+6 + #References = LogK/DGf: 04chr; DHf/DHr: 08bla; S°: Internal calculation; V°: Default value; + +FeCl2:H2O +FeCl2:H2O = 2.000Cl- + 1.000Fe+2 + 1.000H2O + log_k 6.114 + delta_h -63.904 #kJ/mol #08bla + -analytic -1.6403139E+3 -2.5803682E-1 9.219673E+4 5.9502136E+2 -5.1744086E+6 + #References = LogK/DGf: 08bla; DHf/DHr: 08bla; S°: Internal calculation; V°: Default value; + +FeCl3 +FeCl3 + 0.500H2O = 2.500Cl- + 1.000Fe+2 + 0.500ClO- + 1.000H+ + log_k -2.348 + delta_h -22.957 #kJ/mol #95par/kho + -analytic -2.1900087E+3 -3.5702059E-1 1.2100306E+5 7.9592707E+2 -7.2189736E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95par/kho; S°: 95par/kho; Cp: 98cha; V°: 95rob/hem; + +FeCl3:6H2O +FeCl3:6H2O = 3.000Cl- + 1.000Fe+3 + 6.000H2O + log_k 11.376 + delta_h -54.500 #kJ/mol #08bla + -analytic -2.4628446E+3 -3.7358238E-1 1.3547843E+5 8.9509667E+2 -7.436022E+6 + #References = LogK/DGf: 95par/kho; DHf/DHr: 08bla; S°: Internal calculation; V°: 63wyc; + +FeO +FeO + 2.000H+ = 1.000Fe+2 + 1.000H2O + log_k 13.359 + delta_h -103.790 #kJ/mol #98cha + -analytic -3.3327288E+2 -5.1539534E-2 2.2778307E+4 1.1977513E+2 -9.5795774E+5 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98cha; S°: 98cha; Cp: 98cha; V°: 95rob/hem; + +Ferricopiapite +Fe5(SO4)6O(OH):20H2O + 3.000H+ = 5.000Fe+3 + 6.000SO4-2 + 22.000H2O + log_k -20.491 + delta_h -222.300 #kJ/mol #02hem/sea + -analytic -1.1028378E+4 -1.653793E+0 6.0791316E+5 3.9784177E+3 -3.3985772E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 02hem/sea; S°: 02hem/sea; V°: 90rob/cam; + +Ferrihydrite(2L) +Fe(OH)3 + 3.000H+ = 1.000Fe+3 + 3.000H2O + log_k 3.403 + delta_h -79.390 #kJ/mol #04maj/nav + -analytic -4.8305058E+2 -7.3766353E-2 2.8359549E+4 1.7273465E+2 -1.2526817E+6 + #References = LogK/DGf: 04maj/nav; DHf/DHr: 04maj/nav; S°: Internal calculation; Cp: 98cha; V°: 92wol; + +Ferrihydrite(6L) +Fe(OH)3 + 3.000H+ = 1.000Fe+3 + 3.000H2O + log_k 3.003 + delta_h -76.190 #kJ/mol #04maj/nav + -analytic -4.8288997E+2 -7.3766353E-2 2.8192403E+4 1.7273465E+2 -1.2526817E+6 + #References = LogK/DGf: 04maj/nav; DHf/DHr: 04maj/nav; S°: Internal calculation; Cp: 98cha; V°: 92wol; + +Ferrite(Mn) +MnFe2O4 + 8.000H+ = 2.000Fe+3 + 1.000Mn+2 + 4.000H2O + log_k 14.909 + delta_h -233.808 #kJ/mol #91kna/kub + -analytic -1.3969262E+3 -2.1048378E-1 8.3432651E+4 4.9991008E+2 -3.7546979E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 91kna/kub; S°: 91kna/kub; V°: 63wyc; + +Ferrohexahydrite +FeSO4:6H2O = 1.000Fe+2 + 1.000SO4-2 + 6.000H2O + log_k -2.523 + delta_h 5.080 #kJ/mol #02hem/sea + -analytic -1.7860196E+3 -2.5570246E-1 9.6570679E+4 6.4508358E+2 -5.3676223E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 02hem/sea; S°: 02hem/sea; V°: 63wyc; + +Ferropargasite +Na(Ca2Fe4Al)(Al2Si6)O22(OH)2 + 22.000H+ = 3.000Al+3 + 2.000Ca+2 + 4.000Fe+2 + 1.000Na+ + 6.000H4SiO4 + log_k 83.843 + delta_h -811.949 #kJ/mol #Internal calculation + -analytic -5.6904992E+3 -8.1766908E-1 3.6331793E+5 2.0284623E+3 -1.9533576E+7 + #References = LogK/DGf: 78hel/del; DHf/DHr: Internal calculation; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +Ferrosilite(alpha) +FeSiO3 + 2.000H+ + 1.000H2O = 1.000Fe+2 + 1.000H4SiO4 + log_k 8.053 + delta_h -67.838 #kJ/mol #78hel/del,85hel + -analytic -6.6565871E+2 -9.1071991E-2 4.2608236E+4 2.3669255E+2 -2.4644786E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 78hel/del,85hel; S°: 78hel/del,85hel; Cp: 78hel/del,85hel; V°: 78hel/del,85hel; + +Ferrotremolite +(Ca2Fe5)Si8O22(OH)2 + 14.000H+ + 8.000H2O = 2.000Ca+2 + 5.000Fe+2 + 8.000H4SiO4 + log_k 53.699 + delta_h -412.225 #kJ/mol #Internal calculation + -analytic -4.942592E+3 -6.6976495E-1 3.1400258E+5 1.7585882E+3 -1.8552107E+7 + #References = LogK/DGf: 78hel/del; DHf/DHr: Internal calculation; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +FeS(am) +FeS + 1.000H+ = 1.000Fe+2 + 1.000HS- + log_k -2.990 + delta_h -13.944 #kJ/mol #Internal calculation + -analytic -9.7855105E+2 -1.5384713E-1 5.3595697E+4 3.541519E+2 -3.0806961E+6 + #References = LogK/DGf: 08bla; DHf/DHr: Internal calculation; S°: 08bla; V°: 08bla; + +FeSO4 +FeSO4 = 1.000Fe+2 + 1.000SO4-2 + log_k 1.105 + delta_h -67.140 #kJ/mol #02hem/sea + -analytic -1.6664998E+3 -2.6803306E-1 9.4748784E+4 6.0285988E+2 -5.5121092E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 02hem/sea; S°: 02hem/sea; Cp: 98cha; V°: 01mer/vie; + +Florencite +CeAl3(PO4)2(OH)6 + 10.000H+ = 3.000Al+3 + 1.000Ce+3 + 2.000H2PO4- + 6.000H2O + log_k 16.579 + delta_h -387.869 #kJ/mol #Internal calculation + -analytic -3.2764273E+3 -5.1637881E-1 1.9220932E+5 1.1768428E+3 -9.7541791E+6 + #References = LogK/DGf: 93sch/got; DHf/DHr: Internal calculation; S°: 93sch/got; Cp: 93sch/got; V°: 93sch/got; + +Florencite(La) +LaAl3(PO4)2(OH)6 + 10.000H+ = 3.000Al+3 + 1.000La+3 + 2.000H2PO4- + 6.000H2O + log_k 18.176 + #References = LogK/DGf: 93sch/got; + #References = LogK/DGf: 93sch/got; V°: Default value; + +Fluorapatite(Natur) +Ca5(PO4)3F + 6.000H+ = 5.000Ca+2 + 1.000F- + 3.000H2PO4- + log_k -0.910 + delta_h -115.601 #kJ/mol #Internal calculation + -analytic -3.7675938E+3 -6.2227437E-1 2.0719593E+5 1.369906E+3 -1.1775417E+7 + #References = LogK/DGf: 06bla/pia; DHf/DHr: Internal calculation; S°: 71par/wag; Cp: 60kel; V°: 95rob/hem; + +Fluorite +CaF2 = 1.000Ca+2 + 2.000F- + log_k -10.510 + delta_h 14.561 #kJ/mol #Internal calculation + -analytic -1.6496805E+3 -2.6611418E-1 8.8752676E+4 5.9836725E+2 -5.3146007E+6 + #References = LogK/DGf: 04gar/muc; DHf/DHr: Internal calculation; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +Fluorphlogopite +KMg3(AlSi3)O10(F)2 + 8.000H+ + 2.000H2O = 1.000Al+3 + 2.000F- + 1.000K+ + 3.000Mg+2 + 3.000H4SiO4 + log_k 24.017 + delta_h -311.663 #kJ/mol #95rob/hem + -analytic -3.942573E+3 -5.8323303E-1 2.3765657E+5 1.4124165E+3 -1.3472307E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 78hel/del,78rob/hem; Cp: 78hel/del,78rob/hem; V°: 78hel/del,78rob/hem; + +Forsterite +Mg2SiO4 + 4.000H+ = 2.000Mg+2 + 1.000H4SiO4 + log_k 28.609 + delta_h -217.115 #kJ/mol #Internal calculation + -analytic -1.0983766E+3 -1.5385695E-1 7.321503E+4 3.91599E+2 -3.7061609E+6 + #References = LogK/DGf: 78hel/del; DHf/DHr: Internal calculation; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +Foshagite +Ca4Si3O9(OH)2:0.5H2O + 8.000H+ + 0.500H2O = 4.000Ca+2 + 3.000H4SiO4 + log_k 65.959 + delta_h -373.238 #kJ/mol #56new + -analytic -2.2772909E+3 -3.0919715E-1 1.5248108E+5 8.1483143E+2 -8.1989745E+6 + #References = LogK/DGf: 10abla/bou; DHf/DHr: 56new; S°: Internal calculation; Cp: 10abla/bou; V°: 63wyc; + +Friedel_Salt +Ca4Al2Cl2O6:10H2O + 12.000H+ = 2.000Al+3 + 4.000Ca+2 + 2.000Cl- + 16.000H2O + log_k 74.946 + delta_h -486.198 #kJ/mol #10bbla/bou + -analytic -3.3745929E+3 -5.3105384E-1 2.0377591E+5 1.2270148E+3 -9.9349994E+6 + #References = LogK/DGf: 10bbla/bou; DHf/DHr: 10bbla/bou; S°: Internal calculation; Cp: 10bbla/bou; V°: 97tay; + +Galena +PbS + 1.000H+ = 1.000Pb+2 + 1.000HS- + log_k -14.835 + delta_h 82.940 #kJ/mol #98cha + -analytic -9.2559024E+2 -1.4783405E-1 4.6673721E+4 3.3654235E+2 -3.0637176E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98cha; S°: 98cha; Cp: 98cha; V°: 78hel/del; + +Gallobeudantite +PbGa3(AsO4)(SO4)(OH)6 + 8.000H+ = 1.000H2AsO4- + 3.000Ga+3 + 1.000Pb+2 + 1.000SO4-2 + 6.000H2O + log_k -8.694 + #References = LogK/DGf: 04gab/vie; + #References = LogK/DGf: 04gab/vie; V°: Default value; + +GaOOH +GaOOH + 3.000H+ = 1.000Ga+3 + 2.000H2O + log_k 1.487 + delta_h -42.093 #kJ/mol #Internal calculation + -analytic 9.5782754E+2 1.7552134E-1 -4.6284848E+4 -3.5697837E+2 2.6568082E+6 + #References = LogK/DGf: 97ben/dia; DHf/DHr: Internal calculation; S°: 97ben/dia; Cp: 97ben/dia; V°: 97ben/dia; + +Gaylussite +CaNa2(CO3)2:5H2O + 2.000H+ = 2.000HCO3- + 1.000Ca+2 + 2.000Na+ + 5.000H2O + log_k 11.229 + delta_h 1.696 #kJ/mol #Internal calculation + -analytic -1.8466947E+3 -2.5990269E-1 9.946122E+4 6.7151642E+2 -5.3162171E+6 + #References = LogK/DGf: 99kon/kon; DHf/DHr: Internal calculation; S°: 99kon/kon; V°: 63wyc; + +Gehlenite +Ca2(Al2Si)O7 + 10.000H+ = 2.000Al+3 + 2.000Ca+2 + 1.000H4SiO4 + 3.000H2O + log_k 55.240 + delta_h -494.151 #kJ/mol #95rob/hem + -analytic -1.8832924E+3 -2.9157019E-1 1.2620693E+5 6.7395732E+2 -5.8224906E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 95rob/hem; V°: 95rob/hem; + +Gibbsite +Al(OH)3 + 3.000H+ = 1.000Al+3 + 3.000H2O + log_k 7.738 + delta_h -102.759 #kJ/mol #Internal calculation + -analytic -4.9375037E+2 -8.0899785E-2 2.9713754E+4 1.779027E+2 -1.2676533E+6 + #References = LogK/DGf: 95pok/hel; DHf/DHr: Internal calculation; S°: 95pok/hel; Cp: 95pok/hel; V°: 78hel/del; + +Gibbsite(am) +Al(OH)3 + 3.000H+ = 1.000Al+3 + 3.000H2O + log_k 10.578 + delta_h -119.770 #kJ/mol #93bar + -analytic -5.1603622E+2 -7.6452847E-2 3.2063453E+4 1.8448125E+2 -1.2995608E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 93bar; S°: 93bar; V°: 78hel/del; + +Gibbsite(mc) +Al(OH)3 + 3.000H+ = 1.000Al+3 + 3.000H2O + log_k 9.353 + delta_h -102.510 #kJ/mol #90nor/plu + -analytic -5.1423761E+2 -7.6452847E-2 3.1161906E+4 1.8448125E+2 -1.2995608E+6 + #References = LogK/DGf: 90nor/plu; DHf/DHr: 90nor/plu; S°: Internal calculation; V°: 78hel/del; + +Gismondine +Ca2Al4Si4O16:9H2O + 16.000H+ = 4.000Al+3 + 2.000Ca+2 + 4.000H4SiO4 + 9.000H2O + log_k 39.004 + delta_h -467.714 #kJ/mol #08bla + -analytic -4.0017219E+3 -5.8056754E-1 2.4734497E+5 1.428423E+3 -1.3362172E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 08bla; S°: 10vie; Cp: 10vie; V°: 97coo/alb; + +Glaserite +Na2K6(SO4)4 = 6.000K+ + 2.000Na+ + 4.000SO4-2 + log_k -7.610 + delta_h 78.360 #kJ/mol #82wag/eva + -analytic -6.2606413E+3 -9.6072249E-1 3.4398961E+5 2.2709666E+3 -2.0768609E+7 + #References = LogK/DGf: 80har/wea; DHf/DHr: 82wag/eva; S°: Internal calculation; V°: 63wyc; + +Glauberite +Na2Ca(SO4)2 = 1.000Ca+2 + 2.000Na+ + 2.000SO4-2 + log_k 1.970 + delta_h -13.160 #kJ/mol #82wag/eva + -analytic -3.3021161E+3 -5.1053089E-1 1.8312273E+5 1.1978285E+3 -1.0831151E+7 + #References = LogK/DGf: 84har/mol; DHf/DHr: 82wag/eva; S°: Internal calculation; V°: 63wyc; + +Glauconite +(K0.75Mg0.25Fe1.5Al0.25)(Al0.25Si3.75)O10(OH)2 + 7.000H+ + 3.000H2O = 0.500Al+3 + 1.250Fe+3 + 0.750K+ + 0.250Mg+2 + 3.750H4SiO4 + 0.250Fe+2 + log_k 1.873 + delta_h -120.903 #kJ/mol #15bla/vie + -analytic -2.3976207E+3 -3.2091227E-1 1.4807364E+5 8.4865741E+2 -9.0151175E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Glaucophane +Na2(Mg3Al2)Si8O22(OH)2 + 14.000H+ + 8.000H2O = 2.000Al+3 + 3.000Mg+2 + 2.000Na+ + 8.000H4SiO4 + log_k 37.026 + delta_h -378.727 #kJ/mol #95rob/hem + -analytic -5.095188E+3 -6.8518568E-1 3.2040873E+5 1.8087612E+3 -1.9006796E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 95rob/hem; V°: 95rob/hem; + +Goethite +FeOOH + 3.000H+ = 1.000Fe+3 + 2.000H2O + log_k 0.362 + delta_h -60.660 #kJ/mol #03maj/gre + -analytic -4.9687107E+2 -8.1269723E-2 2.7746417E+4 1.789779E+2 -1.2860575E+6 + #References = LogK/DGf: 95par/kho; DHf/DHr: 03maj/gre; S°: Internal calculation; Cp: 03maj/gre; V°: 95rob/hem; + +Gorceixite +BaAl3(PO4)2(OH)5:H2O + 9.000H+ = 3.000Al+3 + 1.000Ba+2 + 2.000H2PO4- + 6.000H2O + log_k 13.706 + #References = LogK/DGf: 89sch/her; + #References = LogK/DGf: 89sch/her; V°: Default value; + +Goyazite +SrAl3(PO4)2(OH)5:H2O + 9.000H+ = 3.000Al+3 + 2.000H2PO4- + 1.000Sr+2 + 6.000H2O + log_k 16.848 + delta_h -334.188 #kJ/mol #Internal calculation + -analytic -3.0527103E+3 -4.7785773E-1 1.7704657E+5 1.0986155E+3 -8.9105125E+6 + #References = LogK/DGf: 89sch/her; DHf/DHr: Internal calculation; S°: 04gab/vie; Cp: 04gab/vie; V°: 04gab/vie; + +Greenalite +Fe3Si2O5(OH)4 + 6.000H+ = 3.000Fe+2 + 2.000H4SiO4 + 1.000H2O + log_k 21.774 + delta_h -172.552 #kJ/mol #83miy/kle + -analytic -1.7299665E+3 -2.4007877E-1 1.0801798E+5 6.1781495E+2 -6.0195713E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 83miy/kle; S°: 83miy/kle; Cp: 83miy/kle; V°: 78hel/del; + +Greenockite +CdS + 1.000H+ = 1.000Cd+2 + 1.000HS- + log_k -14.820 + delta_h 56.570 #kJ/mol #06deo/nav + -analytic -9.3406918E+2 -1.4889926E-1 4.7625641E+4 3.3842223E+2 -2.9776997E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 06deo/nav; S°: 06bla/pia; Cp: 99yun/glu; V°: 95rob/hem; + +Greenrust(Cl) +Fe4(OH)8Cl + 8.000H+ = 1.000Cl- + 3.000Fe+2 + 1.000Fe+3 + 8.000H2O + log_k 32.324 + #References = LogK/DGf: 04chi; + #References = LogK/DGf: 04chi; V°: Default value; + +Greenrust(CO3) +Fe6(OH)12CO3:2H2O + 13.000H+ = 1.000HCO3- + 4.000Fe+2 + 2.000Fe+3 + 14.000H2O + log_k 45.336 + #References = LogK/DGf: 04chi; + #References = LogK/DGf: 04chi; V°: Default value; + +Greenrust(OH) +Fe3O2(OH)4 + 8.000H+ = 2.000Fe+3 + 1.000Fe+2 + 6.000H2O + log_k 17.177 + #References = LogK/DGf: 04chi; + #References = LogK/DGf: 04chi; V°: Default value; + +Greenrust(SO3) +Fe8(OH)16SO3:4H2O + 14.000H+ = 8.000Fe+2 + 1.000SO4-2 + 19.000H2O + log_k 89.176 + #References = LogK/DGf: 04chi; + #References = LogK/DGf: 04chi; V°: Default value; + +Greenrust2(SO4) +Fe6(OH)12SO4:2H2O + 12.000H+ = 4.000Fe+2 + 1.000SO4-2 + 2.000Fe+3 + 14.000H2O + log_k 37.501 + #References = LogK/DGf: 04chi; + #References = LogK/DGf: 04chi; V°: Default value; + +Greigite +Fe3S4 + 2.000H+ + 0.750H2O = 3.000Fe+2 + 3.500HS- + 0.250S2O3-2 + log_k -21.889 + delta_h 35.262 #kJ/mol #08bla + -analytic -3.5543818E+3 -5.6187424E-1 1.9110521E+5 1.2878114E+3 -1.1339225E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 08bla; S°: 08bla; V°: 90rob/cam; + +Grossular +Ca3Al2Si3O12 + 12.000H+ = 2.000Al+3 + 3.000Ca+2 + 3.000H4SiO4 + log_k 49.372 + delta_h -442.383 #kJ/mol #95rob/hem + -analytic -2.9566754E+3 -4.3410622E-1 1.8868769E+5 1.057027E+3 -1.0038715E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 78hel/del,92ajoh; V°: 78hel/del,92ajoh; + +Grunerite +Fe7Si8O22(OH)2 + 14.000H+ + 8.000H2O = 7.000Fe+2 + 8.000H4SiO4 + log_k 48.038 + delta_h -391.247 #kJ/mol #95rob/hem + -analytic -5.050855E+3 -6.8320226E-1 3.187714E+5 1.7966553E+3 -1.8870364E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 95rob/hem; V°: 95rob/hem; + +Guerinite +Ca5H2(AsO4)4:9H2O + 6.000H+ = 4.000H2AsO4- + 5.000Ca+2 + 9.000H2O + log_k 19.689 + #References = LogK/DGf: 99bot/bro; + #References = LogK/DGf: 99bot/bro; V°: 00bla/bid; + +Gypsum +CaSO4:2H2O = 1.000Ca+2 + 1.000SO4-2 + 2.000H2O + log_k -4.605 + delta_h -1.054 #kJ/mol #CODATA87 + -analytic -1.620207E+3 -2.5723367E-1 8.9150211E+4 5.8738246E+2 -5.3473276E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: CODATA87; S°: CODATA87; Cp: 74nau/ryz; V°: 95rob/hem; + +Gyrolite +Ca2Si3O7.5(OH):2H2O + 4.000H+ + 1.500H2O = 2.000Ca+2 + 3.000H4SiO4 + log_k 22.338 + delta_h -115.848 #kJ/mol #10abla/bou + -analytic -1.6006301E+3 -2.0524823E-1 1.0339525E+5 5.6892558E+2 -6.2576818E+6 + #References = LogK/DGf: 10abla/bou; DHf/DHr: 10abla/bou; S°: Internal calculation; Cp: 10abla/bou; V°: 10abla/bou; + +Halite +NaCl = 1.000Cl- + 1.000Na+ + log_k 1.594 + delta_h 3.700 #kJ/mol #78hel/del, 98cha + -analytic -7.522461E+2 -1.1904903E-1 4.1385514E+4 2.7417807E+2 -2.4808996E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 78hel/del, 98cha; S°: 98cha; Cp: 78hel/del; V°: 78hel/del; + +Halloysite +Al2Si2O5(OH)4 + 6.000H+ = 2.000Al+3 + 2.000H4SiO4 + 1.000H2O + log_k 10.334 + delta_h -187.752 #kJ/mol #06bla/pia + -analytic -1.67629E+3 -2.3686038E-1 1.0512453E+5 5.9440364E+2 -5.8810176E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 06bla/pia; S°: 06bla/pia; Cp: 06bla/pia; V°: 78hel/del,78rob/hem; + +Halotrichite +FeAl2(SO4)4:22H2O = 2.000Al+3 + 1.000Fe+2 + 4.000SO4-2 + 22.000H2O + log_k -8.239 + delta_h -51.420 #kJ/mol #02hem/sea + -analytic -7.0608605E+3 -1.0302679E+0 3.8495138E+5 2.5498444E+3 -2.1402056E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 02hem/sea; S°: 02hem/sea; V°: 90rob/cam; + +Hbeidellite(Ca) +Ca0.17Al2.34Si3.66O10(OH)2:4.24H2O + 7.360H+ = 2.340Al+3 + 0.170Ca+2 + 3.660H4SiO4 + 1.600H2O + log_k 3.936 + delta_h -176.294 #kJ/mol #15bla/vie, 11vie/bla + -analytic -2.4027162E+3 -3.2987816E-1 1.5008099E+5 8.4975426E+2 -8.9808844E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie, 11vie/bla; S°: 15bla/vie, 11vie/bla; Cp: 15bla/vie, 11vie/bla; V°: 15bla/vie, 11vie/bla; + +Hbeidellite(K) +K0.34Al2.34Si3.66O10(OH)2:1.627H2O + 7.360H+ + 1.013H2O = 2.340Al+3 + 0.340K+ + 3.660H4SiO4 + log_k 4.321 + delta_h -173.017 #kJ/mol #15bla/vie, 11vie/bla + -analytic -2.4171154E+3 -3.316485E-1 1.5082088E+5 8.5518702E+2 -9.0354191E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie, 11vie/bla; S°: 15bla/vie, 11vie/bla; Cp: 15bla/vie, 11vie/bla; V°: 15bla/vie, 11vie/bla; + +Hbeidellite(Mg) +Mg0.17Al2.34Si3.66O10(OH)2:4.098H2O + 7.360H+ = 2.340Al+3 + 0.170Mg+2 + 3.660H4SiO4 + 1.458H2O + log_k 3.203 + delta_h -174.536 #kJ/mol #15bla/vie, 11vie/bla + -analytic -2.4206016E+3 -3.321074E-1 1.5096664E+5 8.56003E+2 -9.0356122E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie, 11vie/bla; S°: 15bla/vie, 11vie/bla; Cp: 15bla/vie, 11vie/bla; V°: 15bla/vie, 11vie/bla; + +Hbeidellite(Na) +Na0.34Al2.34Si3.66O10(OH)2:2.756H2O + 7.360H+ = 2.340Al+3 + 0.340Na+ + 3.660H4SiO4 + 0.116H2O + log_k 4.407 + delta_h -177.111 #kJ/mol #15bla/vie, 11vie/bla + -analytic -2.4235063E+3 -3.3158969E-1 1.5137177E+5 8.5710749E+2 -9.0478304E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie, 11vie/bla; S°: 15bla/vie, 11vie/bla; Cp: 15bla/vie, 11vie/bla; V°: 15bla/vie, 11vie/bla; + +Hedenbergite +CaFe(SiO3)2 + 4.000H+ + 2.000H2O = 1.000Ca+2 + 1.000Fe+2 + 2.000H4SiO4 + log_k 19.970 + delta_h -141.006 #kJ/mol #Internal calculation + -analytic -1.3059182E+3 -1.7957547E-1 8.3977294E+4 4.6555296E+2 -4.8191744E+6 + #References = LogK/DGf: 78hel/del,92ajoh; DHf/DHr: Internal calculation; S°: 78hel/del,92ajoh; Cp: 78hel/del,92ajoh; V°: 78hel/del,92ajoh; + +Hellyerite +NiCO3:6H2O + 1.000H+ = 1.000HCO3- + 1.000Ni+2 + 6.000H2O + log_k 2.819 + delta_h -8.036 #kJ/mol #Internal calculation + -analytic -8.5139433E+2 -1.3673168E-1 4.6900758E+4 3.1058787E+2 -2.7428402E+6 + #References = LogK/DGf: 02wal/pre; DHf/DHr: Internal calculation; S°: 02wal/pre; Cp: 13bla/gab; V°: 02wal/pre; + +Hematite +Fe2O3 + 6.000H+ = 2.000Fe+3 + 3.000H2O + log_k -0.044 + delta_h -129.260 #kJ/mol #90hem + -analytic -9.4281016E+2 -1.528255E-1 5.3792156E+4 3.3793499E+2 -2.5145091E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 90hem; S°: 90hem; Cp: 90hem; V°: 78hel/del; + +Hemicarboaluminate +Ca8Al4CO16:22H2O + 27.000H+ = 4.000Al+3 + 1.000HCO3- + 8.000Ca+2 + 35.000H2O + log_k 183.696 + delta_h -1204.546 #kJ/mol #Internal calculation + -analytic -4.8335447E+3 -7.4530291E-1 3.1368398E+5 1.7531972E+3 -1.3406998E+7 + #References = LogK/DGf: 10bbla/bou; DHf/DHr: Internal calculation; S°: 10bbla/bou; Cp: 10bbla/bou; V°: 97tay; + +Hemihydroxichloride(Ca) +Ca2(OH)2Cl2:H2O + 2.000H+ = 2.000Ca+2 + 2.000Cl- + 3.000H2O + log_k 26.533 + #References = LogK/DGf: 84har/mol; + #References = LogK/DGf: 84har/mol; V°: Default value; + +Heulandite(Ca) +Ca1.07Al2.14Si6.86O18:6.17H2O + 8.560H+ + 3.270H2O = 2.140Al+3 + 1.070Ca+2 + 6.860H4SiO4 + log_k 2.457 + delta_h -139.108 #kJ/mol #09bla + -analytic -3.7607701E+3 -5.0483789E-1 2.3083824E+5 1.3337643E+3 -1.4294418E+7 + #References = LogK/DGf: 09bla; DHf/DHr: 09bla; S°: Internal calculation; Cp: 10vie; V°: 97coo/alb; + +Heulandite(Na) +Na2.14Al2.14Si6.86O18:6.17H2O + 8.560H+ + 3.270H2O = 2.140Al+3 + 2.140Na+ + 6.860H4SiO4 + log_k 2.797 + delta_h -126.775 #kJ/mol #09bla + -analytic -3.7890714E+3 -4.9720069E-1 2.3269508E+5 1.3423841E+3 -1.4400431E+7 + #References = LogK/DGf: 09bla; DHf/DHr: 09bla; S°: Internal calculation; Cp: 10vie; V°: 97coo/alb; + +Hexahydrite +MgSO4:6H2O = 1.000Mg+2 + 1.000SO4-2 + 6.000H2O + log_k -1.634 + delta_h -4.625 #kJ/mol #Internal calculation + -analytic -1.6899917E+3 -2.5875891E-1 9.3104084E+4 6.1208974E+2 -5.4529058E+6 + #References = LogK/DGf: 84har/mol; DHf/DHr: Internal calculation; S°: 74nau/ryz; Cp: 74nau/ryz; V°: 63wyc; + +Hg(l) +Hg = 1.000Hg + log_k -6.502 + delta_h 12.503 #kJ/mol #By convention + -analytic 1.6301788E+2 2.9252674E-2 -1.3987847E+4 -5.8730554E+1 1.2443643E+6 + #References = S°: 89cox/wag; Cp: 98cha; V°: 95rob/hem; + +Hg2SO4 +Hg2SO4 = 1.000Hg2+2 + 1.000SO4-2 + log_k -6.192 + delta_h 0.620 #kJ/mol #89cox/wag + -analytic -1.565348E+3 -2.5198577E-1 8.5551995E+4 5.6783449E+2 -5.131496E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 77bar/kna; V°: 95rob/hem; + +Hg3(OH)3PO4 +Hg3(OH)3PO4 + 5.000H+ = 3.000Hg+2 + 1.000H2PO4- + 3.000H2O + log_k -2.185 + #References = LogK/DGf: 05pow/bro; + #References = LogK/DGf: 05pow/bro; V°: Default value; + +Hg3(PO4)2 +Hg3(PO4)2 + 4.000H+ = 3.000Hg+2 + 2.000H2PO4- + log_k -10.175 + #References = LogK/DGf: 05pow/bro; + #References = LogK/DGf: 05pow/bro; V°: Default value; + +HgCO3.2HgO +HgCO3(HgO)2 + 5.000H+ = 1.000HCO3- + 3.000Hg+2 + 2.000H2O + log_k -0.868 + #References = LogK/DGf: 05pow/bro; + #References = LogK/DGf: 05pow/bro; V°: Default value; + +HgHPO4 +HgHPO4 + 1.000H+ = 1.000Hg+2 + 1.000H2PO4- + log_k -5.887 + #References = LogK/DGf: 05pow/bro; + #References = LogK/DGf: 05pow/bro; V°: Default value; + +HgO(cr) +HgO + 2.000H+ = 1.000Hg+2 + 1.000H2O + log_k 2.445 + delta_h -24.830 #kJ/mol #89cox/wag + -analytic -2.9025869E+2 -4.3816549E-2 1.6223576E+4 1.0510834E+2 -7.7606166E+5 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 98cha; V°: 95rob/hem; + +Hilgenstockite +Ca4O(PO4)2 + 6.000H+ = 4.000Ca+2 + 2.000H2PO4- + 1.000H2O + log_k 23.594 + #References = LogK/DGf: 84vie/tar,after 71bduf; + #References = LogK/DGf: 84vie/tar,after 71bduf; V°: Default value; + +Hillebrandite +Ca2SiO3(OH)2:0.17H2O + 4.000H+ = 2.000Ca+2 + 1.000H4SiO4 + 1.170H2O + log_k 36.951 + delta_h -216.802 #kJ/mol #56new + -analytic -9.0735648E+2 -1.2719296E-1 6.3081089E+4 3.2561964E+2 -3.117433E+6 + #References = LogK/DGf: 10abla/bou; DHf/DHr: 56new; S°: Internal calculation; Cp: 10abla/bou; V°: 95dai/pos; + +Hinsdalite +PbAl3(PO4)(SO4)(OH)6 + 8.000H+ = 3.000Al+3 + 1.000H2PO4- + 1.000Pb+2 + 1.000SO4-2 + 6.000H2O + log_k 6.691 + #References = LogK/DGf: 78ric/nri; + #References = LogK/DGf: 78ric/nri; V°: 63wyc; + +Hmontmorillonite(HcCa) +Ca0.3Mg0.6Al1.4Si4O10(OH)2:4.288H2O + 6.000H+ = 1.400Al+3 + 0.300Ca+2 + 0.600Mg+2 + 4.000H4SiO4 + 0.288H2O + log_k 4.334 + delta_h -120.986 #kJ/mol #15bla/vie, 11vie/bla + -analytic -2.3094231E+3 -3.0580588E-1 1.4471075E+5 8.1639059E+2 -8.9368523E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie, 11vie/bla; S°: 15bla/vie, 11vie/bla; Cp: 15bla/vie, 11vie/bla; V°: 15bla/vie, 11vie/bla; + +Hmontmorillonite(HcK) +K0.6Mg0.6Al1.4Si4O10(OH)2:2.513H2O + 6.000H+ + 1.487H2O = 1.400Al+3 + 0.600K+ + 0.600Mg+2 + 4.000H4SiO4 + log_k 3.654 + delta_h -108.272 #kJ/mol #15bla/vie, 11vie/bla + -analytic -2.3026227E+3 -3.0364656E-1 1.4397869E+5 8.1412322E+2 -8.9420525E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie, 11vie/bla; S°: 15bla/vie, 11vie/bla; Cp: 15bla/vie, 11vie/bla; V°: 15bla/vie, 11vie/bla; + +Hmontmorillonite(HcMg) +Mg0.3Mg0.6Al1.4Si4O10(OH)2:5.129H2O + 6.000H+ = 1.400Al+3 + 0.900Mg+2 + 4.000H4SiO4 + 1.129H2O + log_k 2.761 + delta_h -115.778 #kJ/mol #15bla/vie, 11vie/bla + -analytic -2.3284436E+3 -3.0770632E-1 1.455187E+5 8.2285518E+2 -8.9983921E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie, 11vie/bla; S°: 15bla/vie, 11vie/bla; Cp: 15bla/vie, 11vie/bla; V°: 15bla/vie, 11vie/bla; + +Hmontmorillonite(HcNa) +Na0.6Mg0.6Al1.4Si4O10(OH)2:3.006H2O + 6.000H+ + 0.994H2O = 1.400Al+3 + 0.600Mg+2 + 0.600Na+ + 4.000H4SiO4 + log_k 4.188 + delta_h -118.065 #kJ/mol #15bla/vie, 11vie/bla + -analytic -2.3310741E+3 -3.0633588E-1 1.4597088E+5 8.2377926E+2 -9.0120819E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie, 11vie/bla; S°: 15bla/vie, 11vie/bla; Cp: 15bla/vie, 11vie/bla; V°: 15bla/vie, 11vie/bla; + +Hmontmorillonite(MgCa) +Ca0.17Mg0.34Al1.66Si4O10(OH)2:4.265H2O + 6.000H+ = 1.660Al+3 + 0.170Ca+2 + 0.340Mg+2 + 4.000H4SiO4 + 0.265H2O + log_k 1.859 + delta_h -115.428 #kJ/mol #15bla/vie, 11vie/bla + -analytic -2.3130675E+3 -3.0785671E-1 1.4446533E+5 8.1750003E+2 -8.9493788E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie, 11vie/bla; S°: 15bla/vie, 11vie/bla; Cp: 15bla/vie, 11vie/bla; V°: 15bla/vie, 11vie/bla; + +Hmontmorillonite(MgK) +K0.34Mg0.34Al1.66Si4O10(OH)2:2.517H2O + 6.000H+ + 1.483H2O = 1.660Al+3 + 0.340K+ + 0.340Mg+2 + 4.000H4SiO4 + log_k 2.068 + delta_h -116.222 #kJ/mol #15bla/vie, 11vie/bla + -analytic -2.318488E+3 -3.0801566E-1 1.449068E+5 8.1931728E+2 -8.9761481E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie, 11vie/bla; S°: 15bla/vie, 11vie/bla; Cp: 15bla/vie, 11vie/bla; V°: 15bla/vie, 11vie/bla; + +Hmontmorillonite(MgMg) +Mg0.17Mg0.34Al1.66Si4O10(OH)2:5.093H2O + 6.000H+ = 1.660Al+3 + 0.510Mg+2 + 4.000H4SiO4 + 1.093H2O + log_k 0.730 + delta_h -109.751 #kJ/mol #15bla/vie, 11vie/bla + -analytic -2.3195967E+3 -3.0827895E-1 1.4457311E+5 8.1969438E+2 -8.9729708E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie, 11vie/bla; S°: 15bla/vie, 11vie/bla; Cp: 15bla/vie, 11vie/bla; V°: 15bla/vie, 11vie/bla; + +Hmontmorillonite(MgNa) +Na0.34Mg0.34Al1.66Si4O10(OH)2:3.003H2O + 6.000H+ + 0.997H2O = 1.660Al+3 + 0.340Mg+2 + 0.340Na+ + 4.000H4SiO4 + log_k 2.190 + delta_h -119.524 #kJ/mol #15bla/vie, 11vie/bla + -analytic -2.3320394E+3 -3.0915468E-1 1.4579619E+5 8.2392535E+2 -9.0091988E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie, 11vie/bla; S°: 15bla/vie, 11vie/bla; Cp: 15bla/vie, 11vie/bla; V°: 15bla/vie, 11vie/bla; + +Hnontronite(Ca) +Ca0.17Fe1.67Al0.67Si3.66O10(OH)2:4.24H2O + 7.360H+ = 0.670Al+3 + 0.170Ca+2 + 1.670Fe+3 + 3.660H4SiO4 + 1.600H2O + log_k -4.661 + delta_h -114.584 #kJ/mol #15bla/vie, 11vie/bla + -analytic -2.4190674E+3 -3.2865025E-1 1.4773689E+5 8.5589721E+2 -8.9764584E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie, 11vie/bla; S°: 15bla/vie, 11vie/bla; Cp: 15bla/vie, 11vie/bla; V°: 15bla/vie, 11vie/bla; + +Hnontronite(K) +K0.34Fe1.67Al0.67Si3.66O10(OH)2:1.627H2O + 7.360H+ + 1.013H2O = 0.670Al+3 + 1.670Fe+3 + 0.340K+ + 3.660H4SiO4 + log_k -4.276 + delta_h -111.307 #kJ/mol #15bla/vie, 11vie/bla + -analytic -2.4331472E+3 -3.3037598E-1 1.4845875E+5 8.6121518E+2 -9.0299317E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie, 11vie/bla; S°: 15bla/vie, 11vie/bla; Cp: 15bla/vie, 11vie/bla; V°: 15bla/vie, 11vie/bla; + +Hnontronite(Mg) +Mg0.17Fe1.67Al0.67Si3.66O10(OH)2:4.098H2O + 7.360H+ = 0.670Al+3 + 1.670Fe+3 + 0.170Mg+2 + 3.660H4SiO4 + 1.458H2O + log_k -5.394 + delta_h -112.827 #kJ/mol #15bla/vie, 11vie/bla + -analytic -2.4356476E+3 -3.3069713E-1 1.4854883E+5 8.6167672E+2 -9.0268481E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie, 11vie/bla; S°: 15bla/vie, 11vie/bla; Cp: 15bla/vie, 11vie/bla; V°: 15bla/vie, 11vie/bla; + +Hnontronite(Na) +Na0.34Fe1.67Al0.67Si3.66O10(OH)2:2.756H2O + 7.360H+ = 0.670Al+3 + 1.670Fe+3 + 0.340Na+ + 3.660H4SiO4 + 0.116H2O + log_k -4.190 + delta_h -115.401 #kJ/mol #15bla/vie, 11vie/bla + -analytic -2.4395943E+3 -3.3032501E-1 1.4901281E+5 8.6315584E+2 -9.0425297E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie, 11vie/bla; S°: 15bla/vie, 11vie/bla; Cp: 15bla/vie, 11vie/bla; V°: 15bla/vie, 11vie/bla; + +Hopeite(alpha) +Zn3(PO4)2:4H2O + 4.000H+ = 2.000H2PO4- + 3.000Zn+2 + 4.000H2O + log_k 3.824 + delta_h -106.676 #kJ/mol #84vie/tar, after 78yag + -analytic -2.3065362E+3 -3.3859157E-1 1.2821301E+5 8.3124159E+2 -6.7177085E+6 + #References = LogK/DGf: 73bnri,76smi/mar; DHf/DHr: 84vie/tar, after 78yag; S°: Internal calculation; V°: 63wyc; + +Hopeite(beta) +Zn3(PO4)2:4H2O + 4.000H+ = 2.000H2PO4- + 3.000Zn+2 + 4.000H2O + log_k 8.439 + delta_h -117.176 #kJ/mol #79vol + -analytic -2.3037611E+3 -3.3859157E-1 1.2876146E+5 8.3124159E+2 -6.7177085E+6 + #References = LogK/DGf: 84vie/tar; DHf/DHr: 79vol; S°: Internal calculation; V°: 63wyc; + +Hsaponite(Ca) +Ca0.17Mg3Al0.34Si3.66O10(OH)2:4.799H2O + 7.360H+ = 0.340Al+3 + 0.170Ca+2 + 3.000Mg+2 + 3.660H4SiO4 + 2.159H2O + log_k 26.450 + delta_h -241.776 #kJ/mol #15bla/vie, 11vie/bla + -analytic -2.5060268E+3 -3.3073338E-1 1.6052946E+5 8.8800109E+2 -9.3012824E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie, 11vie/bla; S°: 15bla/vie, 11vie/bla; Cp: 15bla/vie, 11vie/bla; V°: 15bla/vie, 11vie/bla; + +Hsaponite(FeCa) +Ca0.17Mg2FeAl0.34Si3.66O10(OH)2:4.799H2O + 7.360H+ = 0.340Al+3 + 0.170Ca+2 + 1.000Fe+2 + 2.000Mg+2 + 3.660H4SiO4 + 2.159H2O + log_k 23.663 + delta_h -229.642 #kJ/mol #15bla/vie, 11vie/bla + -analytic -2.4749203E+3 -3.277182E-1 1.5813824E+5 8.7679134E+2 -9.2154974E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie, 11vie/bla; S°: 15bla/vie, 11vie/bla; Cp: 15bla/vie, 11vie/bla; V°: 15bla/vie, 11vie/bla; + +Hsaponite(FeK) +K0.34Mg2FeAl0.34Si3.66O10(OH)2:4.061H2O + 7.360H+ = 0.340Al+3 + 1.000Fe+2 + 0.340K+ + 2.000Mg+2 + 3.660H4SiO4 + 1.421H2O + log_k 23.914 + delta_h -222.075 #kJ/mol #15bla/vie, 11vie/bla + -analytic -2.4649624E+3 -3.2566748E-1 1.5741356E+5 8.7354256E+2 -9.2020401E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie, 11vie/bla; S°: 15bla/vie, 11vie/bla; Cp: 15bla/vie, 11vie/bla; V°: 15bla/vie, 11vie/bla; + +Hsaponite(FeMg) +Mg0.17Mg2FeAl0.34Si3.66O10(OH)2:5.039H2O + 7.360H+ = 0.340Al+3 + 1.000Fe+2 + 2.170Mg+2 + 3.660H4SiO4 + 2.399H2O + log_k 22.899 + delta_h -228.943 #kJ/mol #15bla/vie, 11vie/bla + -analytic -2.4869452E+3 -3.2899569E-1 1.5875646E+5 8.8082551E+2 -9.252251E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie, 11vie/bla; S°: 15bla/vie, 11vie/bla; Cp: 15bla/vie, 11vie/bla; V°: 15bla/vie, 11vie/bla; + +Hsaponite(FeNa) +Na0.34Mg2FeAl0.34Si3.66O10(OH)2:4.297H2O + 7.360H+ = 0.340Al+3 + 1.000Fe+2 + 2.000Mg+2 + 0.340Na+ + 3.660H4SiO4 + 1.657H2O + log_k 23.900 + delta_h -227.112 #kJ/mol #15bla/vie, 11vie/bla + -analytic -2.4828296E+3 -3.2741511E-1 1.5859911E+5 8.7956328E+2 -9.2465149E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie, 11vie/bla; S°: 15bla/vie, 11vie/bla; Cp: 15bla/vie, 11vie/bla; V°: 15bla/vie, 11vie/bla; + +Hsaponite(K) +K0.34Mg3Al0.34Si3.66O10(OH)2:4.061H2O + 7.360H+ = 0.340Al+3 + 0.340K+ + 3.000Mg+2 + 3.660H4SiO4 + 1.421H2O + log_k 26.701 + delta_h -234.210 #kJ/mol #15bla/vie, 11vie/bla + -analytic -2.4960689E+3 -3.2868265E-1 1.5980478E+5 8.8475231E+2 -9.2878251E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie, 11vie/bla; S°: 15bla/vie, 11vie/bla; Cp: 15bla/vie, 11vie/bla; V°: 15bla/vie, 11vie/bla; + +Hsaponite(Mg) +Mg3.17Al0.34Si3.66O10(OH)2:5.039H2O + 7.360H+ = 0.340Al+3 + 3.170Mg+2 + 3.660H4SiO4 + 2.399H2O + log_k 25.687 + delta_h -241.078 #kJ/mol #15bla/vie, 11vie/bla + -analytic -2.5180517E+3 -3.3201086E-1 1.6114769E+5 8.9203526E+2 -9.338036E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie, 11vie/bla; S°: 15bla/vie, 11vie/bla; Cp: 15bla/vie, 11vie/bla; V°: 15bla/vie, 11vie/bla; + +Hsaponite(Na) +Na0.34Mg3Al0.34Si3.66O10(OH)2:4.297H2O + 7.360H+ = 0.340Al+3 + 3.000Mg+2 + 0.340Na+ + 3.660H4SiO4 + 1.657H2O + log_k 26.687 + delta_h -239.247 #kJ/mol #15bla/vie, 11vie/bla + -analytic -2.5139361E+3 -3.3043028E-1 1.6099033E+5 8.9077303E+2 -9.3322999E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie, 11vie/bla; S°: 15bla/vie, 11vie/bla; Cp: 15bla/vie, 11vie/bla; V°: 15bla/vie, 11vie/bla; + +Huntite +CaMg3(CO3)4 + 4.000H+ = 4.000HCO3- + 1.000Ca+2 + 3.000Mg+2 + log_k 11.014 + delta_h -174.120 #kJ/mol #73hem/rob + -analytic -3.6441403E+3 -5.8648344E-1 2.0445197E+5 1.3223404E+3 -1.1357533E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 73hem/rob; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +Hvermiculite(Ca) +Ca0.43Mg3.00Si3.14Al0.86O10(OH)2:4.12H2O + 9.440H+ = 0.860Al+3 + 0.430Ca+2 + 3.000Mg+2 + 3.140H4SiO4 + 3.560H2O + log_k 37.372 + delta_h -354.086 #kJ/mol #15bla/vie, 11vie/bla + -analytic -2.6984797E+3 -3.6909505E-1 1.7371045E+5 9.5805743E+2 -9.545486E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie, 11vie/bla; S°: 15bla/vie, 11vie/bla; Cp: 15bla/vie, 11vie/bla; V°: 15bla/vie, 11vie/bla; + +Hvermiculite(K) +K0.86Mg3.00Si3.14Al0.86O10(OH)2:3.319H2O + 9.440H+ = 0.860Al+3 + 0.860K+ + 3.000Mg+2 + 3.140H4SiO4 + 2.759H2O + log_k 36.577 + delta_h -326.110 #kJ/mol #15bla/vie, 11vie/bla + -analytic -2.6520265E+3 -3.6077621E-1 1.7024583E+5 9.4219214E+2 -9.4433014E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie, 11vie/bla; S°: 15bla/vie, 11vie/bla; Cp: 15bla/vie, 11vie/bla; V°: 15bla/vie, 11vie/bla; + +Hvermiculite(Mg) +Mg0.43Mg3.00Si3.14Al0.86O10(OH)2:4.55H2O + 9.440H+ = 0.860Al+3 + 3.430Mg+2 + 3.140H4SiO4 + 3.990H2O + log_k 35.859 + delta_h -353.588 #kJ/mol #15bla/vie, 11vie/bla + -analytic -2.7266776E+3 -3.7215075E-1 1.7519919E+5 9.6756954E+2 -9.6285103E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie, 11vie/bla; S°: 15bla/vie, 11vie/bla; Cp: 15bla/vie, 11vie/bla; V°: 15bla/vie, 11vie/bla; + +Hvermiculite(Na) +Na0.86Mg3.00Si3.14Al0.86O10(OH)2:3.58H2O + 9.440H+ = 0.860Al+3 + 3.000Mg+2 + 0.860Na+ + 3.140H4SiO4 + 3.020H2O + log_k 37.036 + delta_h -341.580 #kJ/mol #15bla/vie, 11vie/bla + -analytic -2.7035941E+3 -3.6614932E-1 1.7373928E+5 9.5973431E+2 -9.5762214E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie, 11vie/bla; S°: 15bla/vie, 11vie/bla; Cp: 15bla/vie, 11vie/bla; V°: 15bla/vie, 11vie/bla; + +Hydrocalumnite(Cr) +(CaCrO4)Al2O3(CaO)3:15H2O + 12.000H+ = 2.000Al+3 + 4.000Ca+2 + 1.000CrO4-2 + 21.000H2O + log_k 71.341 + delta_h -541.448 #kJ/mol #01per/pal + -analytic -4.020784E+3 -5.6965144E-1 2.3754631E+5 1.449328E+3 -1.0759208E+7 + #References = LogK/DGf: 01per/pal; DHf/DHr: 01per/pal; S°: Internal calculation; V°: Default value; + +Hydrocerussite +Pb3(CO3)2(OH)2 + 4.000H+ = 2.000HCO3- + 3.000Pb+2 + 2.000H2O + log_k 2.750 + delta_h -34.559 #kJ/mol #83san/bar + -analytic -2.1379559E+3 -3.2181267E-1 1.1810256E+5 7.7407054E+2 -6.6537723E+6 + #References = LogK/DGf: 84tay/lop; DHf/DHr: 83san/bar; S°: Internal calculation; V°: 63wyc; + +Hydromagnesite +Mg5(OH)2(CO3)4:4H2O + 6.000H+ = 4.000HCO3- + 5.000Mg+2 + 6.000H2O + log_k 31.000 + delta_h -293.700 #kJ/mol #99kon/kon + -analytic -4.0797202E+3 -6.4286834E-1 2.3339952E+5 1.479039E+3 -1.2464629E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 99kon/kon; S°: 99kon/kon; Cp: 78hel/del; V°: 78hel/del; + +Hydrophilite +CaCl2 = 1.000Ca+2 + 2.000Cl- + log_k 11.642 + delta_h -81.770 #kJ/mol #87gar/par + -analytic -1.5067232E+3 -2.4695162E-1 8.6377781E+4 5.4864355E+2 -4.9159099E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 87gar/par; S°: 87gar/par; Cp: 95rob/hem; V°: 95rob/hem; + +Hydrotalcite +Mg4Al2O7:10H2O + 14.000H+ = 2.000Al+3 + 4.000Mg+2 + 17.000H2O + log_k 73.757 + delta_h -584.223 #kJ/mol #Internal calculation + -analytic -2.490177E+3 -3.632725E-1 1.5928839E+5 8.9467068E+2 -6.7395607E+6 + #References = LogK/DGf: 10bbla/bou; DHf/DHr: Internal calculation; S°: 10bbla/bou; Cp: 10bbla/bou; V°: 97tay; + +Hydrotalcite(CO3) +Mg4Al2(OH)12(CO3):2H2O + 13.000H+ = 2.000Al+3 + 1.000HCO3- + 4.000Mg+2 + 14.000H2O + log_k 61.203 + delta_h -557.470 #kJ/mol #Internal calculation + -analytic -3.0209635E+3 -4.5809237E-1 1.8727771E+5 1.0863848E+3 -8.6736802E+6 + #References = LogK/DGf: 10bbla/bou; DHf/DHr: Internal calculation; S°: 10bbla/bou; Cp: 10bbla/bou; V°: 97tay; + +Hydroxichloride(Ca) +CaOHCl + 1.000H+ = 1.000Ca+2 + 1.000Cl- + 1.000H2O + log_k 13.195 + delta_h -82.086 #kJ/mol #Internal calculation + -analytic -9.2891866E+2 -1.5120323E-1 5.4580853E+4 3.3845178E+2 -2.9643626E+6 + #References = LogK/DGf: 97all/dol,06bod/las; DHf/DHr: Internal calculation; S°: 97all/dol,06bod/las; Cp: 97all/dol; V°: Default value; + +Hydroxichloride(Ca:13H2O) +Ca4Cl2(OH)6:13H2O + 6.000H+ = 4.000Ca+2 + 2.000Cl- + 19.000H2O + log_k 68.749 + delta_h -271.930 #kJ/mol #82wag/eva + -analytic -2.9147407E+3 -3.9689822E-1 1.672024E+5 1.0613318E+3 -7.5711313E+6 + #References = LogK/DGf: 84har/mol; DHf/DHr: 82wag/eva; S°: Internal calculation; V°: Default value; + +Hydroxichloride(Ca:H2O) +CaCl(OH):H2O + 1.000H+ = 1.000Ca+2 + 1.000Cl- + 2.000H2O + log_k 11.353 + delta_h -63.609 #kJ/mol #Internal calculation + -analytic -9.453468E+2 -1.5269202E-1 5.4384447E+4 3.4484186E+2 -2.9752984E+6 + #References = LogK/DGf: 06bod/las; DHf/DHr: Internal calculation; S°: 06bod/las; Cp: 06bod/las; V°: Default value; + +Hydroxichloride(Mg:4H2O) +Mg2Cl(OH)3:4H2O + 3.000H+ = 1.000Cl- + 2.000Mg+2 + 7.000H2O + log_k 26.037 + delta_h -154.690 #kJ/mol #82wag/eva + -analytic -1.5369282E+3 -2.1415308E-1 8.9390619E+4 5.555252E+2 -4.2325222E+6 + #References = LogK/DGf: 84har/mol; DHf/DHr: 82wag/eva; S°: Internal calculation; V°: Default value; + +Hydroxyapatite(Natur) +Ca5(PO4)3(OH) + 7.000H+ = 5.000Ca+2 + 3.000H2PO4- + 1.000H2O + log_k 14.336 + delta_h -178.396 #kJ/mol #Internal calculation + -analytic -3.0901586E+3 -5.1247394E-1 1.732823E+5 1.1247363E+3 -9.5106697E+6 + #References = LogK/DGf: 06bla/pia; DHf/DHr: Internal calculation; S°: 71par/wag; Cp: 60kel; V°: 95rob/hem; + +I/S(ISCz-1) +(Ca0.092K0.439)(Si3.562Al0.438)(Al1.732Fe0.04Mg0.255)O10(OH)2 + 7.752H+ + 2.248H2O = 2.170Al+3 + 0.092Ca+2 + 0.029Fe+3 + 0.439K+ + 0.255Mg+2 + 3.562H4SiO4 + 0.011Fe+2 + log_k 10.949 + delta_h -217.166 #kJ/mol #19gai/bla + -analytic -2.494898E+3 -3.5122636E-1 1.5520818E+5 8.8562811E+2 -9.0168998E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 19gai/bla; S°: 19gai/bla; Cp: 19gai/bla; V°: 14bla/gai; + +Illite(Al) +K0.85Al2.85Si3.15O10(OH)2 + 9.400H+ + 0.600H2O = 2.850Al+3 + 0.850K+ + 3.150H4SiO4 + log_k 13.037 + delta_h -259.023 #kJ/mol #15bla/vie + -analytic -2.5573928E+3 -3.6178396E-1 1.6000104E+5 9.0702444E+2 -9.1314491E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Illite(FeII) +K0.85Fe0.25Al2.35Si3.4O10(OH)2 + 8.400H+ + 1.600H2O = 2.350Al+3 + 0.250Fe+2 + 0.850K+ + 3.400H4SiO4 + log_k 9.472 + delta_h -208.568 #kJ/mol #15bla/vie + -analytic -2.4766309E+3 -3.437332E-1 1.5468507E+5 8.7765237E+2 -9.0602985E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Illite(FeIII) +K0.85Fe0.25Al2.6Si3.15O10(OH)2 + 9.400H+ + 0.600H2O = 2.600Al+3 + 0.250Fe+3 + 0.850K+ + 3.150H4SiO4 + log_k 12.382 + delta_h -254.933 #kJ/mol #15bla/vie + -analytic -2.5612909E+3 -3.617655E-1 1.5998574E+5 9.0836875E+2 -9.1347162E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Illite(IMt2) +(Na0.044K0.762)(Si3.387Al0.613)(Al1.427Fe0.376Mg0.241)O10(OH)2 + 8.452H+ + 1.548H2O = 2.040Al+3 + 0.292Fe+3 + 0.762K+ + 0.241Mg+2 + 0.044Na+ + 3.387H4SiO4 + 0.084Fe+2 + log_k 11.538 + delta_h -222.904 #kJ/mol #12gai/bla + -analytic -2.498976E+3 -3.5351343E-1 1.5505023E+5 8.8765243E+2 -8.939547E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 12gai/bla; S°: 12gai/bla; Cp: 12gai/bla; V°: 12gai/bla; + +Illite(Mg) +K0.85Mg0.25Al2.35Si3.4O10(OH)2 + 8.400H+ + 1.600H2O = 2.350Al+3 + 0.850K+ + 0.250Mg+2 + 3.400H4SiO4 + log_k 11.027 + delta_h -217.718 #kJ/mol #15bla/vie + -analytic -2.4845922E+3 -3.4448304E-1 1.5560095E+5 8.8044462E+2 -9.08168E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Ilmenite +FeTiO3 + 2.000H+ + 1.000H2O = 1.000Fe+2 + 1.000Ti(OH)4 + log_k 1.816 + delta_h -87.445 #kJ/mol #Internal calculation + -analytic -7.7719505E+2 -8.1479565E-2 4.34898E+4 2.7302259E+2 -1.612373E+6 + #References = LogK/DGf: 95rob/hem; DHf/DHr: Internal calculation; S°: 95rob/hem; Cp: 95rob/hem; V°: 95rob/hem; + +Imogolite +Al2SiO3(OH)4 + 6.000H+ = 2.000Al+3 + 1.000H4SiO4 + 3.000H2O + log_k 13.083 + delta_h -203.551 #kJ/mol #82far/fra + -analytic -1.4344023E+3 -2.0160715E-1 8.8284887E+4 5.0966175E+2 -4.4126001E+6 + #References = LogK/DGf: 96su/har; DHf/DHr: 82far/fra; S°: Internal calculation; V°: 90rob/cam; + +Jacobsite +Mn(FeO2)2 + 8.000H+ = 2.000Fe+3 + 1.000Mn+2 + 4.000H2O + log_k 15.742 + delta_h -236.318 #kJ/mol #73bar/kna + -analytic -1.3488025E+3 -2.1350724E-1 8.1033524E+4 4.8425566E+2 -3.719726E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 73bar/kna; S°: 73bar/kna; Cp: 73bar/kna; V°: 73bar/kna; + +Jadeite +NaAl(SiO3)2 + 4.000H+ + 2.000H2O = 1.000Al+3 + 1.000Na+ + 2.000H4SiO4 + log_k 7.561 + delta_h -95.502 #kJ/mol #95rob/hem + -analytic -1.3237509E+3 -1.8118316E-1 8.2628986E+4 4.7016122E+2 -4.9060741E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 95rob/hem; V°: 78hel/del; + +Jaffeite +Ca6(Si2O7)(OH)6 + 12.000H+ = 6.000Ca+2 + 2.000H4SiO4 + 5.000H2O + log_k 114.074 + delta_h -632.100 #kJ/mol #10abla/bou + -analytic -2.4008904E+3 -3.4132185E-1 1.6681355E+5 8.6659708E+2 -7.7429258E+6 + #References = LogK/DGf: 10abla/bou; DHf/DHr: 10abla/bou; S°: Internal calculation; Cp: 10abla/bou; V°: 95ant/bid; + +Jarosite(Ag) +AgFe3(SO4)2(OH)6 + 6.000H+ = 1.000Ag+ + 3.000Fe+3 + 2.000SO4-2 + 6.000H2O + log_k -11.577 + #References = LogK/DGf: 75kas/bor; + #References = LogK/DGf: 75kas/bor; V°: Default value; + +Jarosite(Cr) +KFe3(CrO4)2(OH)6 + 6.000H+ = 2.000CrO4-2 + 3.000Fe+3 + 1.000K+ + 6.000H2O + log_k -17.945 + delta_h -109.620 #kJ/mol #96bbar/pal + -analytic -4.4406545E+3 -6.8309073E-1 2.4349472E+5 1.6013376E+3 -1.3575565E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 96bbar/pal; S°: 96bbar/pal; V°: Default value; + +Jarosite(H) +(H3O)Fe3(SO4)2(OH)6 + 5.000H+ = 3.000Fe+3 + 2.000SO4-2 + 7.000H2O + log_k -5.139 + delta_h -196.290 #kJ/mol #04maj/ste + -analytic -4.2610817E+3 -6.8268613E-1 2.3808458E+5 1.5398661E+3 -1.3276429E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 04maj/ste; S°: 04maj/ste; Cp: 04maj/ste; V°: 90rob/cam; + +Jarosite(K) +KFe3(SO4)2(OH)6 + 6.000H+ = 3.000Fe+3 + 1.000K+ + 2.000SO4-2 + 6.000H2O + log_k -10.994 + delta_h -103.200 #kJ/mol #03dro/nav + -analytic -4.1989081E+3 -6.8049573E-1 2.3005389E+5 1.5222608E+3 -1.3114957E+7 + #References = LogK/DGf: 96abar/pal; DHf/DHr: 03dro/nav; S°: Internal calculation; Cp: 03dro/nav; V°: 76men/sab; + +Jarosite(Na) +NaFe3(SO4)2(OH)6 + 6.000H+ = 3.000Fe+3 + 1.000Na+ + 2.000SO4-2 + 6.000H2O + log_k 6.738 + delta_h -247.900 #kJ/mol #93sto + -analytic -4.2650991E+3 -6.8697004E-1 2.4071922E+5 1.5431623E+3 -1.3260549E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 93sto; S°: 93sto; Cp: 93sto; V°: 08bas/pet; + +Jarosite(NH4) +NH4Fe3(SO4)2(OH)6 + 5.000H+ = 3.000Fe+3 + 1.000NH3 + 2.000SO4-2 + 6.000H2O + log_k -19.022 + #References = LogK/DGf: 75kas/bor; + #References = LogK/DGf: 75kas/bor; V°: Default value; + +Jarosite(Pb) +Pb0.5Fe3(SO4)2(OH)6 + 6.000H+ = 3.000Fe+3 + 0.500Pb+2 + 2.000SO4-2 + 6.000H2O + log_k -11.448 + #References = LogK/DGf: 75kas/bor; + #References = LogK/DGf: 75kas/bor; V°: Default value; + +Jennite +Ca9Si6H22O32 + 18.000H+ = 9.000Ca+2 + 6.000H4SiO4 + 8.000H2O + log_k 147.338 + delta_h -737.766 #kJ/mol #10abla/bou + -analytic -4.8419783E+3 -6.4881272E-1 3.1938387E+5 1.7385166E+3 -1.6916851E+7 + #References = LogK/DGf: 10abla/bou; DHf/DHr: 10abla/bou; S°: Internal calculation; Cp: 10abla/bou; V°: 92tay; + +K(element) +K + 0.250O2 + 1.000H+ = 1.000K+ + 0.500H2O + log_k 70.991 + delta_h -392.022 #kJ/mol #By convention + -analytic -1.03379E+2 -1.4987856E-2 2.6916111E+4 3.7746555E+1 -4.302278E+5 + #References = S°: 89cox/wag; Cp: 89cox/wag; V°: 95rob/hem; + +K2CO3 +K2CO3 + 1.000H+ = 1.000HCO3- + 2.000K+ + log_k 15.735 + delta_h -46.500 #kJ/mol #74nau/ryz + -analytic -7.255422E+2 -1.1522261E-1 4.2944247E+4 2.6626971E+2 -2.4243081E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 74nau/ryz; S°: 74nau/ryz; Cp: 74nau/ryz; V°: 94pan; + +K2O +K2O + 2.000H+ = 2.000K+ + 1.000H2O + log_k 84.106 + delta_h -426.940 #kJ/mol #98cha + -analytic -1.5056958E+2 -2.16898E-2 3.1266668E+4 5.7417117E+1 -5.1573238E+5 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98cha; S°: 98cha; Cp: 98cha; V°: 95rob/hem; + +K2SO4.FeSO4:6H2O +K2Fe(SO4)2:6H2O = 1.000Fe+2 + 2.000K+ + 2.000SO4-2 + 6.000H2O + log_k -4.604 + delta_h 152.806 #kJ/mol #Internal calculation + -analytic -3.4430373E+3 -5.1582216E-1 1.817216E+5 1.2548949E+3 -1.0882961E+7 + #References = LogK/DGf: 04chr; DHf/DHr: Internal calculation; S°: 78hel/del; V°: Default value; + +Kainite +KMgClSO4:3H2O = 1.000Cl- + 1.000K+ + 1.000Mg+2 + 1.000SO4-2 + 3.000H2O + log_k -0.187 + delta_h -12.950 #kJ/mol #82wag/eva + -analytic -2.5347833E+3 -3.8461077E-1 1.3926246E+5 9.183606E+2 -8.0220997E+6 + #References = LogK/DGf: 84har/mol; DHf/DHr: 82wag/eva; S°: Internal calculation; V°: 95rob/hem; + +Kalicinite +KHCO3 = 1.000HCO3- + 1.000K+ + log_k 0.267 + delta_h 20.250 #kJ/mol #74nau/ryz + -analytic -6.4282153E+2 -1.0327296E-1 3.462817E+4 2.351581E+2 -2.1465517E+6 + #References = LogK/DGf: 84har/mol; DHf/DHr: 74nau/ryz; S°: Internal calculation; Cp: 74nau/ryz; V°: 90rob/cam; + +Kalsilite(alpha) +K(AlSi)O4 + 4.000H+ = 1.000Al+3 + 1.000K+ + 1.000H4SiO4 + log_k 11.208 + delta_h -118.038 #kJ/mol #78hel/del + -analytic -9.1768479E+2 -1.3338074E-1 5.8042569E+4 3.2728043E+2 -3.1868141E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 78hel/del; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +Kalsilite(beta) +K(AlSi)O4 + 4.000H+ = 1.000Al+3 + 1.000K+ + 1.000H4SiO4 + log_k 10.639 + #delta_h 0.000 #kJ/mol + -analytic -8.9890404E+2 -1.3148378E-1 5.715201E+4 3.2070339E+2 -3.2449468E+6 + #References = LogK/DGf: Internal calculation; V°: Default value; + +Kaolinite +Al2Si2O5(OH)4 + 6.000H+ = 2.000Al+3 + 2.000H4SiO4 + 1.000H2O + log_k 6.483 + delta_h -165.052 #kJ/mol #01fia/nav + -analytic -1.6614047E+3 -2.40262E-1 1.0202166E+5 5.9067962E+2 -5.7121776E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 01fia/nav; S°: 91rob/hem; Cp: 91rob/hem; V°: 95rob/hem; + +KatoiteSi1 +Ca3Al2(SiO4)1(OH)8 + 12.000H+ = 2.000Al+3 + 3.000Ca+2 + 1.000H4SiO4 + 8.000H2O + log_k 71.168 + delta_h -543.405 #kJ/mol #Internal calculation + -analytic -2.1445204E+3 -3.249761E-1 1.4263205E+5 7.7064419E+2 -6.4642286E+6 + #References = LogK/DGf: 10bbla/bou; DHf/DHr: Internal calculation; S°: 10bbla/bou; Cp: 10bbla/bou; V°: 10bbla/bou; + +KCl.MgCl2:6H2O +KMgCl3:6H2O = 3.000Cl- + 1.000K+ + 1.000Mg+2 + 6.000H2O + log_k 4.396 + #References = LogK/DGf: 93bal/chr; + #References = LogK/DGf: 93bal/chr; V°: 78hel/del; + +KH2PO4 +KH2PO4 = 1.000K+ + 1.000H2PO4- + log_k 0.278 + delta_h 15.960 #kJ/mol #74nau/ryz + -analytic -6.8356114E+2 -1.1018854E-1 3.6862322E+4 2.4991456E+2 -2.2527724E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 74nau/ryz; S°: 74nau/ryz; Cp: 74nau/ryz; V°: Default value; + +Kieserite +MgSO4:H2O = 1.000Mg+2 + 1.000SO4-2 + 1.000H2O + log_k -0.119 + delta_h -51.464 #kJ/mol #Internal calculation + -analytic -1.6964548E+3 -2.6749876E-1 9.5983219E+4 6.1318774E+2 -5.6120063E+6 + #References = LogK/DGf: 84har/mol; DHf/DHr: Internal calculation; S°: 74nau/ryz; Cp: 74nau/ryz; V°: 63wyc; + +Kornelite +Fe2(SO4)3:7H2O = 2.000Fe+3 + 3.000SO4-2 + 7.000H2O + log_k -7.869 + delta_h -134.630 #kJ/mol #02hem/sea + -analytic -5.2076569E+3 -7.9238988E-1 2.8984213E+5 1.8785041E+3 -1.6385922E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 02hem/sea; S°: 02hem/sea; V°: 90rob/cam; + +Krausite(Cr) +KFe(CrO4)2:2H2O = 2.000CrO4-2 + 1.000Fe+3 + 1.000K+ + 2.000H2O + log_k -19.388 + delta_h 27.540 #kJ/mol #98bar/pal + -analytic -3.1373224E+3 -5.184778E-1 1.7153076E+5 1.1385318E+3 -1.0669098E+7 + #References = LogK/DGf: 98bar/pal; DHf/DHr: 98bar/pal; S°: Internal calculation; Cp: 98bar/pal; V°: Default value; + +Kyanite +Al2SiO5 + 6.000H+ = 2.000Al+3 + 1.000H4SiO4 + 1.000H2O + log_k 15.936 + delta_h -240.322 #kJ/mol #Internal calculation + -analytic -1.3447799E+3 -2.0581745E-1 8.5324148E+4 4.7877192E+2 -4.3369481E+6 + #References = LogK/DGf: 78hel/del; DHf/DHr: Internal calculation; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +La2O3glass +La2O3 + 6.000H+ = 2.000La+3 + 3.000H2O + log_k 78.618 + #References = LogK/DGf: 92plo/wic; + #References = LogK/DGf: 92plo/wic; V°: Default value; + +Lammuchangite +TlAl(SO4)2:12H2O = 1.000Al+3 + 2.000SO4-2 + 1.000Tl+ + 12.000H2O + log_k -16.486 + delta_h 37.510 #kJ/mol #09xio + -analytic -3.1907615E+3 -5.0111308E-1 1.7407477E+5 1.1553265E+3 -1.057366E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 09xio; S°: 09xio; Cp: 84pan/stu; V°: 84pan/stu; + +Lanarkite +Pb2SO5 + 2.000H+ = 2.000Pb+2 + 1.000SO4-2 + 1.000H2O + log_k 2.631 + delta_h -39.234 #kJ/mol #Internal calculation + -analytic -1.9815301E+3 -3.0530151E-1 1.1138299E+5 7.1720646E+2 -6.4958171E+6 + #References = LogK/DGf: 74nau/ryz; DHf/DHr: Internal calculation; S°: 74nau/ryz; V°: 74nau/ryz; + +Langite +Cu4SO4(OH)6:H2O + 6.000H+ = 4.000Cu+2 + 1.000SO4-2 + 7.000H2O + log_k 17.496 + delta_h -163.966 #kJ/mol #Internal calculation + -analytic -2.6805273E+3 -4.1268217E-1 1.5291727E+5 9.7032402E+2 -8.2516388E+6 + #References = LogK/DGf: 00pui; DHf/DHr: Internal calculation; S°: 00pui; Cp: 00pui; V°: 90rob/cam; + +Lansfordite +MgCO3:5H2O + 1.000H+ = 1.000HCO3- + 1.000Mg+2 + 5.000H2O + log_k 5.293 + delta_h -11.810 #kJ/mol #99kon/kon + -analytic -1.0339782E+3 -1.3957008E-1 5.5526821E+4 3.7431693E+2 -2.8069366E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 99kon/kon; S°: 99kon/kon; V°: 63wyc; + +Larnite(alpha) +Ca2SiO4 + 4.000H+ = 2.000Ca+2 + 1.000H4SiO4 + log_k 39.044 + delta_h -238.161 #kJ/mol #95rob/hem + -analytic -8.9908942E+2 -1.301379E-1 6.3335055E+4 3.2296168E+2 -3.0793446E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 78hel/del,60kel; Cp: 78hel/del,60kel; V°: 78hel/del,60kel; + +Larnite(beta) +Ca2SiO4 + 4.000H+ = 2.000Ca+2 + 1.000H4SiO4 + log_k 39.322 + #delta_h 0.000 #kJ/mol + -analytic -9.0365527E+2 -1.3027777E-1 6.4015139E+4 3.243254E+2 -3.1477489E+6 + #References = LogK/DGf: Internal calculation; V°: Default value; + +Larnite(gamma) +Ca2SiO4 + 4.000H+ = 2.000Ca+2 + 1.000H4SiO4 + log_k 41.444 + #delta_h 0.000 #kJ/mol + -analytic -8.7896206E+2 -1.2907359E-1 6.3430487E+4 3.1585123E+2 -3.1477489E+6 + #References = LogK/DGf: Internal calculation; V°: Default value; + +Laumontite +Ca(Al2Si4)O12:4H2O + 8.000H+ = 2.000Al+3 + 1.000Ca+2 + 4.000H4SiO4 + log_k 11.695 + delta_h -204.244 #kJ/mol #96kis/nav + -analytic -2.6447429E+3 -3.6684244E-1 1.6419074E+5 9.3900001E+2 -9.6343473E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 96kis/nav; S°: 09bla; Cp: 10vie; V°: 97coo/alb; + +Laurelite +PbF2 = 2.000F- + 1.000Pb+2 + log_k -7.522 + delta_h 6.530 #kJ/mol #98cha + -analytic -1.6567757E+3 -2.6526991E-1 9.0348124E+4 6.0072066E+2 -5.4339707E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98cha; S°: 98cha; Cp: 98cha; V°: 84pan; + +Laurionite +PbClOH + 1.000H+ = 1.000Cl- + 1.000Pb+2 + 1.000H2O + log_k 0.621 + delta_h 6.285 #kJ/mol #Internal calculation + -analytic -9.4122516E+2 -1.4578714E-1 5.1245015E+4 3.4241021E+2 -3.0077762E+6 + #References = LogK/DGf: 99lot/och; DHf/DHr: Internal calculation; S°: 78ric/nri; V°: 90rob/cam; + +Laurite +RuS2 + 0.750H2O = 1.000Ru+2 + 1.500HS- + 0.250S2O3-2 + log_k -70.817 + delta_h 373.889 #kJ/mol #Internal calculation + -analytic -1.5922392E+3 -2.5764375E-1 6.7489717E+4 5.7815639E+2 -5.2209877E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +Leonhardtite +MgSO4:4H2O = 1.000Mg+2 + 1.000SO4-2 + 4.000H2O + log_k -0.886 + delta_h -24.030 #kJ/mol #74nau/ryz + -analytic -1.8009396E+3 -2.6450971E-1 9.9216758E+4 6.5010323E+2 -5.5554353E+6 + #References = LogK/DGf: 80har/wea; DHf/DHr: 74nau/ryz; S°: Internal calculation; V°: 95rob/hem; + +Leonite +K2Mg(SO4)2:4H2O = 2.000K+ + 1.000Mg+2 + 2.000SO4-2 + 4.000H2O + log_k -3.976 + delta_h 15.290 #kJ/mol #74nau/ryz + -analytic -3.3213159E+3 -4.9919289E-1 1.8191661E+5 1.2025484E+3 -1.0632072E+7 + #References = LogK/DGf: 84har/mol; DHf/DHr: 74nau/ryz; S°: Internal calculation; V°: 63wyc; + +Lepidocrocite +FeOOH + 3.000H+ = 1.000Fe+3 + 2.000H2O + log_k 1.849 + delta_h -71.260 #kJ/mol #03maj/gre + -analytic -4.7832566E+2 -7.6621598E-2 2.7558432E+4 1.7164011E+2 -1.2555405E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 03maj/gre; S°: 03maj/gre; Cp: 03maj/gre; V°: 63wyc; + +Libenthenite +Cu2PO4OH + 3.000H+ = 2.000Cu+2 + 1.000H2PO4- + 1.000H2O + log_k 6.872 + #References = LogK/DGf: 84nri; + #References = LogK/DGf: 84nri; V°: 63wyc; + +Lime +CaO + 2.000H+ = 1.000Ca+2 + 1.000H2O + log_k 32.701 + delta_h -193.910 #kJ/mol #89cox/wag + -analytic -2.8484757E+2 -4.5719864E-2 2.4808995E+4 1.0380296E+2 -7.8972712E+5 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 89cox/wag; V°: 95rob/hem; + +Linnaeite +Co3S4 + 2.000H+ + 0.750H2O = 3.000Co+2 + 3.500HS- + 0.250S2O3-2 + log_k -49.969 + delta_h 195.951 #kJ/mol #95rob/hem + -analytic -3.5226763E+3 -5.6829546E-1 1.8101478E+5 1.2781825E+3 -1.1357129E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 87pan/mah; V°: 95rob/hem; + +Litharge +PbO + 2.000H+ = 1.000Pb+2 + 1.000H2O + log_k 12.632 + delta_h -65.501 #kJ/mol #98cha + -analytic -3.7745355E+2 -6.0261596E-2 2.3503756E+4 1.3816402E+2 -1.1251442E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98cha; S°: 98cha; Cp: 98cha; V°: 97asho/sas; + +Lizardite +Mg3Si2O5(OH)4 + 6.000H+ = 3.000Mg+2 + 2.000H4SiO4 + 1.000H2O + log_k 33.093 + delta_h -242.552 #kJ/mol #04eva + -analytic -1.8045338E+3 -2.475614E-1 1.1546724E+5 6.4405193E+2 -6.1786442E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 04eva; S°: 04eva; Cp: 95rob/hem; V°: 95rob/hem; + +Loellingite +FeAs2 + 2.000H+ + 2.000H2O = 2.000AsH3 + 1.000Fe+2 + 1.000O2 + log_k -119.078 + delta_h 691.640 #kJ/mol #Internal calculation + -analytic 1.8913297E+2 2.9442437E-2 -5.0784902E+4 -6.5254355E+1 1.3166945E+6 + #References = LogK/DGf: 08per/pok; DHf/DHr: Internal calculation; S°: 08per/pok; Cp: 08per/pok; V°: 08per/pok; + +Mackinawite +FeS + 1.000H+ = 1.000Fe+2 + 1.000HS- + log_k -3.540 + delta_h -10.805 #kJ/mol #Internal calculation + -analytic -9.7649376E+2 -1.5351306E-1 5.3325155E+4 3.5339847E+2 -3.0749343E+6 + #References = LogK/DGf: 08bla; DHf/DHr: Internal calculation; S°: 08bla; V°: 63wyc; + +Maghemite(disordered) +Fe2O3 + 6.000H+ = 2.000Fe+3 + 3.000H2O + log_k 2.840 + delta_h -147.390 #kJ/mol #03maj/gre + -analytic -9.4710744E+2 -1.5337346E-1 5.4980194E+4 3.3936381E+2 -2.5301239E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 03maj/gre; S°: 03maj/gre; Cp: 03maj/gre; V°: 63wyc; + +Magnesiochromite +MgCr2O4 + 8.000H+ = 2.000Cr+3 + 1.000Mg+2 + 4.000H2O + log_k 22.180 + delta_h -307.720 #kJ/mol #95rob/hem + -analytic -1.3851604E+3 -2.1817938E-1 8.6553199E+4 4.9517316E+2 -3.8387458E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 95rob/hem; V°: 95rob/hem; + +Magnesioferrite +MgFe2O4 + 8.000H+ = 2.000Fe+3 + 1.000Mg+2 + 4.000H2O + log_k 19.257 + delta_h -270.279 #kJ/mol #73bar/kna + -analytic -1.3893653E+3 -2.1583905E-1 8.541145E+4 4.9718785E+2 -3.8896199E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 73bar/kna; S°: 73bar/kna; Cp: 73bar/kna; V°: 73bar/kna; + +Magnesite(Natur) +MgCO3 + 1.000H+ = 1.000HCO3- + 1.000Mg+2 + log_k 1.415 + delta_h -38.990 #kJ/mol #99kon/kon + -analytic -9.327102E+2 -1.4911589E-1 5.208943E+4 3.380952E+2 -2.9085567E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 99kon/kon; S°: 99kon/kon; Cp: 95rob/hem; V°: 78hel/del; + +Magnesite(Synth) +MgCO3 + 1.000H+ = 1.000HCO3- + 1.000Mg+2 + log_k 2.227 + delta_h -43.630 #kJ/mol #95rob/hem + -analytic -9.3271072E+2 -1.4911589E-1 5.2331793E+4 3.380952E+2 -2.9085567E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 95rob/hem; V°: 78hel/del; + +Magnetite +Fe3O4 + 8.000H+ = 2.000Fe+3 + 1.000Fe+2 + 4.000H2O + log_k 10.362 + delta_h -215.594 #kJ/mol #90hem + -analytic -1.3520774E+3 -2.1498134E-1 8.0017747E+4 4.8502632E+2 -3.7344997E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 90hem; S°: 90hem; Cp: 90hem; V°: 78hel/del; + +Magnetite(am) +Fe3O4 + 8.000H+ = 2.000Fe+3 + 1.000Fe+2 + 4.000H2O + log_k 14.594 + delta_h -239.752 #kJ/mol #Internal calculation + -analytic -1.3520774E+3 -2.1498134E-1 8.127961E+4 4.8502632E+2 -3.7344997E+6 + #References = LogK/DGf: 98bre/lin; DHf/DHr: Internal calculation; S°: 90hem; Cp: 90hem; V°: 78hel/del; + +Malachite +Cu2(OH)2(CO3) + 3.000H+ = 1.000HCO3- + 2.000Cu+2 + 2.000H2O + log_k 5.172 + delta_h -65.926 #kJ/mol #Internal calculation + -analytic -1.2854962E+3 -2.0294982E-1 7.1071353E+4 4.6679919E+2 -3.7567222E+6 + #References = LogK/DGf: 07pow/bro; DHf/DHr: Internal calculation; S°: 00pui; Cp: 00pui; V°: 78hel/del; + +Manganosite +MnO + 2.000H+ = 1.000Mn+2 + 1.000H2O + log_k 18.357 + delta_h -121.934 #kJ/mol #Internal calculation + -analytic -3.2766336E+2 -5.056928E-2 2.3347901E+4 1.1844095E+2 -9.1431959E+5 + #References = LogK/DGf: 78hel/del,82wag/eva; DHf/DHr: Internal calculation; S°: 78hel/del,82wag/eva; Cp: 78hel/del,82wag/eva; V°: 78hel/del,82wag/eva; + +Mansfieldite +AlAsO4:2H2O + 2.000H+ = 1.000Al+3 + 1.000H2AsO4- + 2.000H2O + log_k -2.738 + #References = LogK/DGf: 01gas/aza; + #References = LogK/DGf: 01gas/aza; V°: 00bla/bid; + +Marcassite +FeS2 + 0.750H2O = 1.000Fe+2 + 1.500HS- + 0.250S2O3-2 + log_k -22.862 + delta_h 103.451 #kJ/mol #76gro/wes + -analytic -1.5907157E+3 -2.5758554E-1 8.1459617E+4 5.7789197E+2 -5.2020274E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 76gro/wes; S°: 76gro/wes; Cp: 95rob/hem; V°: 95rob/hem; + +Margarite +CaAl2(Al2Si2)O10(OH)2 + 14.000H+ = 4.000Al+3 + 1.000Ca+2 + 2.000H4SiO4 + 4.000H2O + log_k 37.000 + delta_h -513.642 #kJ/mol #95rob/hem + -analytic -2.9900115E+3 -4.5742401E-1 1.8786785E+5 1.0668773E+3 -9.4793863E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 95rob/hem; V°: 95rob/hem; + +Massicot +PbO + 2.000H+ = 1.000Pb+2 + 1.000H2O + log_k 12.744 + delta_h -66.848 #kJ/mol #98cha + -analytic -3.6351679E+2 -5.7235197E-2 2.2991772E+4 1.327999E+2 -1.1017698E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98cha; S°: 98cha; Cp: 98cha; V°: 97asho/sas; + +Melanothallite +CuCl2 = 1.000Cu+2 + 2.000Cl- + log_k 3.730 + delta_h -48.709 #kJ/mol #Internal calculation + -analytic -1.5642954E+3 -2.5355582E-1 8.7639599E+4 5.6848225E+2 -5.0663809E+6 + #References = LogK/DGf: 00pui; DHf/DHr: Internal calculation; S°: 98cha; Cp: 98cha; V°: 84pan/stu; + +Melanterite +FeSO4:7H2O = 1.000Fe+2 + 1.000SO4-2 + 7.000H2O + log_k -2.312 + delta_h 12.450 #kJ/mol #95par/kho + -analytic -1.8027011E+3 -2.5441513E-1 9.6927317E+4 6.5116352E+2 -5.3437468E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95par/kho; S°: 95par/kho; V°: 95rob/hem; + +Mercallite +KHSO4 = 1.000K+ + 1.000SO4-2 + 1.000H+ + log_k -1.400 + delta_h -0.590 #kJ/mol #74nau/ryz + -analytic -1.38445E+3 -2.2459036E-1 7.7601709E+4 5.0277305E+2 -4.8309052E+6 + #References = LogK/DGf: 84har/mol; DHf/DHr: 74nau/ryz; S°: Internal calculation; Cp: 74nau/ryz; V°: 63wyc; + +Merlinoite(K) +K1.04Al1.04Si1.96O6:1.69H2O + 4.160H+ + 0.150H2O = 1.040Al+3 + 1.040K+ + 1.960H4SiO4 + log_k 9.484 + delta_h -101.054 #kJ/mol #09bla + -analytic -1.2577118E+3 -1.6847568E-1 7.978458E+4 4.4582039E+2 -4.74026E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 09bla; S°: 09bla; Cp: 09bla; V°: 97coo/alb; + +Merlinoite(Na) +Na1.04Al1.04Si1.96O6:2.27H2O + 4.160H+ = 1.040Al+3 + 1.040Na+ + 1.960H4SiO4 + 0.430H2O + log_k 10.301 + delta_h -110.734 #kJ/mol #09bla + -analytic -1.3169697E+3 -1.7554408E-1 8.3524532E+4 4.6666888E+2 -4.9135999E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 09bla; S°: 09bla; Cp: 09bla; V°: 97coo/alb; + +Merwinite +Ca3Mg(SiO4)2 + 8.000H+ = 3.000Ca+2 + 1.000Mg+2 + 2.000H4SiO4 + log_k 69.285 + delta_h -449.547 #kJ/mol #Internal calculation + -analytic -1.8969057E+3 -2.7166913E-1 1.3072527E+5 6.7957207E+2 -6.4734374E+6 + #References = LogK/DGf: 78hel/del,92ajoh; DHf/DHr: Internal calculation; S°: 78hel/del,92ajoh; Cp: 78hel/del,92ajoh; V°: 78hel/del,92ajoh; + +Metacinnabar +HgS + 0.375H2O = 0.500Hg2+2 + 0.750HS- + 0.125S2O3-2 + log_k -26.850 + delta_h 146.269 #kJ/mol #Internal calculation + -analytic -7.4104658E+2 -1.1971387E-1 3.278079E+4 2.6955896E+2 -2.405793E+6 + #References = LogK/DGf: 78hel/del; DHf/DHr: Internal calculation; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +Mg(element) +Mg + 0.500O2 + 2.000H+ = 1.000Mg+2 + 1.000H2O + log_k 122.773 + delta_h -746.763 #kJ/mol #89cox/wag + -analytic -4.3311436E+2 -6.6018737E-2 6.2651382E+4 1.5416155E+2 -1.4245392E+6 + #References = S°: 89cox/wag; Cp: 89cox/wag; V°: 95rob/hem; + +Mg3(PO4)2:22H2O +Mg3(PO4)2:22H2O + 4.000H+ = 3.000Mg+2 + 2.000H2PO4- + 22.000H2O + log_k 16.022 + #References = LogK/DGf: 63tay/fra; + #References = LogK/DGf: 63tay/fra; V°: 63wyc; + +MgCl2.FeCl2:8H2O +MgFeCl4:8H2O = 4.000Cl- + 1.000Fe+2 + 1.000Mg+2 + 8.000H2O + log_k 8.598 + #References = LogK/DGf: 04chr; + #References = LogK/DGf: 04chr; V°: Default value; + +MgHPO4 +MgHPO4 + 1.000H+ = 1.000Mg+2 + 1.000H2PO4- + log_k -5.815 + #References = LogK/DGf: 70web/rac; + #References = LogK/DGf: 70web/rac; V°: Default value; + +MgSO4 +MgSO4 = 1.000Mg+2 + 1.000SO4-2 + log_k 9.104 + delta_h -114.550 #kJ/mol #98cha + -analytic -1.6958699E+3 -2.6892242E-1 9.9244946E+4 6.1254845E+2 -5.6382331E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98cha; S°: 98cha; Cp: 98cha; V°: 94pan; + +Microcline +K(AlSi3)O8 + 4.000H+ + 4.000H2O = 1.000Al+3 + 1.000K+ + 3.000H4SiO4 + log_k 0.015 + delta_h -49.203 #kJ/mol #95rob/hem + -analytic -1.6018728E+3 -2.1339241E-1 9.9207574E+4 5.6723025E+2 -6.2943433E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 95rob/hem; V°: 95rob/hem; + +Mimetite +Pb5(AsO4)3Cl + 6.000H+ = 3.000H2AsO4- + 1.000Cl- + 5.000Pb+2 + log_k -19.800 + #References = LogK/DGf: 01gas/aza; + #References = LogK/DGf: 01gas/aza; V°: 00bla/bid; + +Minium +Pb3O4 + 6.000H+ = 3.000Pb+2 + 0.500O2 + 3.000H2O + log_k 30.534 + delta_h -142.109 #kJ/mol #98cha + -analytic -8.015252E+2 -1.2285091E-1 5.0264712E+4 2.9359866E+2 -2.3461313E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98cha; S°: 98cha; Cp: 98cha; V°: 82pan; + +Minnesotaite +Fe3Si4O10(OH)2 + 6.000H+ + 4.000H2O = 3.000Fe+2 + 4.000H4SiO4 + log_k 14.940 + delta_h -139.134 #kJ/mol #83miy/kle + -analytic -2.3397027E+3 -3.1209647E-1 1.4691034E+5 8.3066215E+2 -8.9306193E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 83miy/kle; S°: 83miy/kle; Cp: 83miy/kle; V°: 83miy/kle; + +Mirabilite +Na2SO4:10H2O = 2.000Na+ + 1.000SO4-2 + 10.000H2O + log_k -1.220 + delta_h 79.471 #kJ/mol #Internal calculation + -analytic -1.5883646E+3 -2.3177636E-1 8.4305192E+4 5.7822353E+2 -5.0925784E+6 + #References = LogK/DGf: 84har/mol; DHf/DHr: Internal calculation; S°: 95rob/hem; Cp: 74nau/ryz; V°: 63wyc; + +Mn3(PO4)2 +Mn3(PO4)2 + 4.000H+ = 3.000Mn+2 + 2.000H2PO4- + log_k 0.817 + #References = LogK/DGf: 76plu/jon; + #References = LogK/DGf: 76plu/jon; V°: Default value; + +MnHPO4 +MnHPO4 + 1.000H+ = 1.000Mn+2 + 1.000H2PO4- + log_k -4.119 + #References = LogK/DGf: 69wag/eva; + #References = LogK/DGf: 69wag/eva; V°: Default value; + +Monetite +CaHPO4 + 1.000H+ = 1.000Ca+2 + 1.000H2PO4- + log_k 0.300 + delta_h -24.098 #kJ/mol #Internal calculation + -analytic -8.7069488E+2 -1.4527553E-1 4.7592522E+4 3.1728589E+2 -2.7041882E+6 + #References = LogK/DGf: 84nan; DHf/DHr: Internal calculation; S°: 84nan; Cp: 70gre/mor, after 64a,bega/wak; V°: 84nri; + +Monocarboaluminate +Ca4Al2CO9:10.68H2O + 13.000H+ = 2.000Al+3 + 1.000HCO3- + 4.000Ca+2 + 16.680H2O + log_k 80.567 + delta_h -530.628 #kJ/mol #61ber/new + -analytic -2.7332194E+3 -4.22965E-1 1.7042075E+5 9.9220207E+2 -7.7194996E+6 + #References = LogK/DGf: 10bbla/bou; DHf/DHr: 61ber/new; S°: Internal calculation; Cp: 10bbla/bou; V°: 97tay; + +Monohydrocalcite +CaCO3:H2O + 1.000H+ = 1.000HCO3- + 1.000Ca+2 + 1.000H2O + log_k 2.728 + delta_h -20.470 #kJ/mol #73hul/tur + -analytic -9.0250204E+2 -1.374825E-1 4.9363013E+4 3.2772564E+2 -2.6916597E+6 + #References = LogK/DGf: 73hul/tur; DHf/DHr: 73hul/tur; S°: Internal calculation; V°: 95rob/hem; + +Monosulfate(Fe) +Ca4Fe2SO10:12H2O + 12.000H+ = 4.000Ca+2 + 2.000Fe+3 + 1.000SO4-2 + 18.000H2O + log_k 66.068 + delta_h -477.608 #kJ/mol #Internal calculation + -analytic -3.4469231E+3 -5.3737284E-1 2.0816052E+5 1.2491877E+3 -1.031149E+7 + #References = LogK/DGf: 10bbla/bou; DHf/DHr: Internal calculation; S°: 10bbla/bou; Cp: 10bbla/bou; V°: 97tay; + +Monosulfoaluminate +Ca4Al2SO10:12H2O + 12.000H+ = 2.000Al+3 + 4.000Ca+2 + 1.000SO4-2 + 18.000H2O + log_k 73.088 + delta_h -539.403 #kJ/mol #10bbla/bou + -analytic -3.5426334E+3 -5.7054376E-1 2.1351144E+5 1.2875254E+3 -1.0328468E+7 + #References = LogK/DGf: 10bbla/bou; DHf/DHr: 10bbla/bou; S°: Internal calculation; Cp: 79ede/sat; V°: 97tay; + +Monteponite +CdO + 2.000H+ = 1.000Cd+2 + 1.000H2O + log_k 15.105 + delta_h -103.400 #kJ/mol #89cox/wag + -analytic -3.1106128E+2 -4.7317585E-2 2.1589627E+4 1.1222264E+2 -8.7346579E+5 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 77bar/kna; V°: 95rob/hem; + +Monticellite +CaMgSiO4 + 4.000H+ = 1.000Ca+2 + 1.000Mg+2 + 1.000H4SiO4 + log_k 30.091 + delta_h -206.036 #kJ/mol #Internal calculation + -analytic -9.9945187E+2 -1.4199681E-1 6.7213519E+4 3.5752371E+2 -3.3979475E+6 + #References = LogK/DGf: 78hel/del; DHf/DHr: Internal calculation; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +Montmorillonite(HcCa) +Ca0.3Mg0.6Al1.4Si4O10(OH)2 + 6.000H+ + 4.000H2O = 1.400Al+3 + 0.300Ca+2 + 0.600Mg+2 + 4.000H4SiO4 + log_k 6.903 + delta_h -154.564 #kJ/mol #15bla/vie + -analytic -2.3616529E+3 -3.1379357E-1 1.4899818E+5 8.3431323E+2 -9.0744862E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Montmorillonite(HcK) +K0.6Mg0.6Al1.4Si4O10(OH)2 + 6.000H+ + 4.000H2O = 1.400Al+3 + 0.600K+ + 0.600Mg+2 + 4.000H4SiO4 + log_k 4.449 + delta_h -119.628 #kJ/mol #15bla/vie + -analytic -2.3324885E+3 -3.0832834E-1 1.4605682E+5 8.2462838E+2 -9.022722E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Montmorillonite(HcMg) +Mg0.3Mg0.6Al1.4Si4O10(OH)2 + 6.000H+ + 4.000H2O = 1.400Al+3 + 0.900Mg+2 + 4.000H4SiO4 + log_k 5.996 + delta_h -156.964 #kJ/mol #15bla/vie + -analytic -2.3909331E+3 -3.1726069E-1 1.5070041E+5 8.4429278E+2 -9.163021E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Montmorillonite(HcNa) +Na0.6Mg0.6Al1.4Si4O10(OH)2 + 6.000H+ + 4.000H2O = 1.400Al+3 + 0.600Mg+2 + 0.600Na+ + 4.000H4SiO4 + log_k 5.472 + delta_h -135.658 #kJ/mol #15bla/vie + -analytic -2.3671642E+3 -3.1193536E-1 1.486659E+5 8.3634354E+2 -9.1085654E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Montmorillonite(MgCa) +Ca0.17Mg0.34Al1.66Si4O10(OH)2 + 6.000H+ + 4.000H2O = 1.660Al+3 + 0.170Ca+2 + 0.340Mg+2 + 4.000H4SiO4 + log_k 4.222 + delta_h -146.668 #kJ/mol #15bla/vie + -analytic -2.3648299E+3 -3.1580182E-1 1.4861699E+5 8.3532612E+2 -9.0862785E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Montmorillonite(MgK) +K0.34Mg0.34Al1.66Si4O10(OH)2 + 6.000H+ + 4.000H2O = 1.660Al+3 + 0.340K+ + 0.340Mg+2 + 4.000H4SiO4 + log_k 2.830 + delta_h -126.865 #kJ/mol #15bla/vie + -analytic -2.3483045E+3 -3.1270489E-1 1.4694997E+5 8.2983827E+2 -9.056946E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Montmorillonite(MgMg) +Mg0.17Mg0.34Al1.66Si4O10(OH)2 + 6.000H+ + 4.000H2O = 1.660Al+3 + 0.510Mg+2 + 4.000H4SiO4 + log_k 3.708 + delta_h -148.028 #kJ/mol #15bla/vie + -analytic -2.3814282E+3 -3.1776702E-1 1.4958186E+5 8.4098328E+2 -9.1364559E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Montmorillonite(MgNa) +Na0.34Mg0.34Al1.66Si4O10(OH)2 + 6.000H+ + 4.000H2O = 1.660Al+3 + 0.340Mg+2 + 0.340Na+ + 4.000H4SiO4 + log_k 3.411 + delta_h -135.953 #kJ/mol #15bla/vie + -analytic -2.3679565E+3 -3.1474933E-1 1.4842879E+5 8.3647775E+2 -9.1055977E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Moorhouseite +CoSO4:6H2O = 1.000Co+2 + 1.000SO4-2 + 6.000H2O + log_k -2.192 + delta_h 1.570 #kJ/mol #74nau/ryz + -analytic -1.7907128E+3 -2.5657242E-1 9.6944118E+4 6.4674796E+2 -5.3753538E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 74nau/ryz; S°: 74nau/ryz; V°: 94pan; + +MordeniteB(Ca) +Ca0.515Al1.03Si4.97O12:3.1H2O + 4.120H+ + 4.780H2O = 1.030Al+3 + 0.515Ca+2 + 4.970H4SiO4 + log_k -2.898 + delta_h -56.278 #kJ/mol #09bla + -analytic -2.3577543E+3 -2.9682032E-1 1.4847577E+5 8.2993876E+2 -9.6241393E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 09bla; S°: 09bla; Cp: 10vie; V°: 95rob/hem; + +MordeniteJ +Ca0.289Na0.362Al0.94Si5.06O12:3.468H2O + 3.760H+ + 4.772H2O = 0.940Al+3 + 0.289Ca+2 + 0.362Na+ + 5.060H4SiO4 + log_k -4.160 + delta_h -29.442 #kJ/mol #92joh/tas + -analytic -2.3112502E+3 -2.9430315E-1 1.4403365E+5 8.1541676E+2 -9.418252E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 92joh/tas; S°: 92joh/tas; Cp: 92joh/tas; V°: 92joh/tas; + +MSH06 +Mg0.82SiO2.385(OH)0.87 + 1.640H+ + 0.745H2O = 0.820Mg+2 + 1.000H4SiO4 + log_k 9.119 + delta_h -68.719 #kJ/mol #Internal calculation + -analytic -6.5663083E+2 -8.4167939E-2 4.2529241E+4 2.3260872E+2 -2.4333819E+6 + #References = LogK/DGf: 18roo/vie; DHf/DHr: Internal calculation; S°: 18roo/vie; Cp: 18roo/vie; V°: 18roo/vie; + +MSH12 +Mg1.07SiO2.075(OH)1.99 + 2.140H+ = 1.070Mg+2 + 1.000H4SiO4 + 0.065H2O + log_k 12.730 + delta_h -81.218 #kJ/mol #Internal calculation + -analytic -7.6313186E+2 -9.8017026E-2 4.8779471E+4 2.7151823E+2 -2.7001912E+6 + #References = LogK/DGf: 18roo/vie; DHf/DHr: Internal calculation; S°: 18roo/vie; Cp: 18roo/vie; V°: 18roo/vie; + +Mullite +Al6Si2O13 + 18.000H+ = 6.000Al+3 + 2.000H4SiO4 + 5.000H2O + log_k 50.510 + delta_h -758.072 #kJ/mol #95rob/hem + -analytic -3.6870561E+3 -5.7421808E-1 2.3549563E+5 1.3126483E+3 -1.1480522E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 95rob/hem; V°: 95rob/hem; + +Muscovite(disordered) +KAl2(AlSi3)O10(OH)2 + 10.000H+ = 3.000Al+3 + 1.000K+ + 3.000H4SiO4 + log_k 14.016 + delta_h -269.123 #kJ/mol #95has/cyg + -analytic -2.5862792E+3 -3.7607072E-1 1.5986956E+5 9.2024545E+2 -8.9668534E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95has/cyg; S°: 76rob/hem; Cp: 76rob/hem; V°: 95rob/hem; + +Muscovite(ordered) +KAl2(AlSi3)O10(OH)2 + 10.000H+ = 3.000Al+3 + 1.000K+ + 3.000H4SiO4 + log_k 11.353 + delta_h -253.923 #kJ/mol #06bla/pia + -analytic -2.5862792E+3 -3.7607072E-1 1.5907562E+5 9.2024545E+2 -8.9668534E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 06bla/pia; S°: 76rob/hem; Cp: 76rob/hem; V°: 95rob/hem; + +Na(element) +Na + 0.250O2 + 1.000H+ = 1.000Na+ + 0.500H2O + log_k 67.390 + delta_h -380.222 #kJ/mol #By convention + -analytic -1.7220031E+2 -2.3093547E-2 2.9895625E+4 6.1852278E+1 -6.0843298E+5 + #References = S°: 89cox/wag; Cp: 89cox/wag; V°: 95rob/hem; + +Na2CO3 +Na2CO3 + 1.000H+ = 1.000HCO3- + 2.000Na+ + log_k 11.449 + delta_h -41.410 #kJ/mol #95rob/hem + -analytic -8.4894024E+2 -1.2888909E-1 4.9144859E+4 3.0909685E+2 -2.7428181E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 98cha; V°: 95rob/hem; + +Na2CO3:7H2O +Na2CO3:7H2O + 1.000H+ = 1.000HCO3- + 2.000Na+ + 7.000H2O + log_k 9.874 + delta_h 27.981 #kJ/mol #Internal calculation + -analytic -1.0930495E+3 -1.3426028E-1 5.7027772E+4 3.9744299E+2 -2.8237438E+6 + #References = LogK/DGf: 84har/mol; DHf/DHr: Internal calculation; S°: 82wag/eva; V°: Default value; + +Na2HPO4 +Na2HPO4 + 1.000H+ = 2.000Na+ + 1.000H2PO4- + log_k 9.240 + delta_h -35.180 #kJ/mol #82wag/eva + -analytic -8.4128991E+2 -1.2884794E-1 4.834671E+4 3.0612661E+2 -2.7290563E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 82wag/eva; S°: 67and/cou; Cp: 67and/cou; V°: 84nri; + +Na2O +Na2O + 2.000H+ = 2.000Na+ + 1.000H2O + log_k 67.458 + delta_h -351.710 #kJ/mol #95rob/hem + -analytic -2.7083762E+2 -3.4494312E-2 3.3535999E+4 9.9078094E+1 -8.0561224E+5 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 95rob/hem; V°: 95rob/hem; + +Na2SO4.FeSO4:4H2O +Na2Fe(SO4)2:4H2O = 1.000Fe+2 + 2.000Na+ + 2.000SO4-2 + 4.000H2O + log_k -3.206 + #References = LogK/DGf: 04chr; + #References = LogK/DGf: 04chr; V°: Default value; + +Na3PO4 +Na3PO4 + 2.000H+ = 3.000Na+ + 1.000H2PO4- + log_k 23.521 + delta_h -106.220 #kJ/mol #74nau/ryz + -analytic -1.0219976E+3 -1.5431636E-1 6.2024517E+4 3.7196804E+2 -3.2813724E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 74nau/ryz; S°: 67and/cou; Cp: 67and/cou; V°: Default value; + +NaFeS2 +NaFeS2 + 0.875H+ + 0.500H2O = 1.000Fe+2 + 1.000Na+ + 1.875HS- + 0.125SO4-2 + log_k -1.228 + delta_h -13.555 #kJ/mol #14las/pia + -analytic -1.8421177E+3 -2.9269387E-1 1.0159357E+5 6.688121E+2 -6.0022879E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 14las/pia; S°: 14las/pia; Cp: 14las/pia; V°: Default value; + +NaH2PO4 +NaH2PO4 = 1.000Na+ + 1.000H2PO4- + log_k 2.301 + delta_h -6.140 #kJ/mol #82wag/eva + -analytic -7.3924322E+2 -1.1613394E-1 4.0935497E+4 2.6908466E+2 -2.3967148E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 82wag/eva; S°: 67and/cou; Cp: 67and/cou; V°: Default value; + +Nahcolite +NaHCO3 = 1.000HCO3- + 1.000Na+ + log_k -0.413 + delta_h 18.730 #kJ/mol #82van + -analytic -7.1133666E+2 -1.1020588E-1 3.828212E+4 2.5918687E+2 -2.3075259E+6 + #References = LogK/DGf: 84har/mol; DHf/DHr: 82van; S°: Internal calculation; Cp: 74nau/ryz; V°: 95rob/hem; + +Nantokite +CuCl = 1.000Cl- + 1.000Cu+ + log_k -6.800 + delta_h 41.847 #kJ/mol #Internal calculation + -analytic -7.2286429E+2 -1.1683546E-1 3.6968085E+4 2.637667E+2 -2.290454E+6 + #References = LogK/DGf: 00pui; DHf/DHr: Internal calculation; S°: 84pan/stu; Cp: 84pan/stu; V°: 84pan/stu; + +Natrolite +Na2(Al2Si3)O10:2H2O + 8.000H+ = 2.000Al+3 + 2.000Na+ + 3.000H4SiO4 + log_k 19.326 + delta_h -215.463 #kJ/mol #83joh/flo + -analytic -2.303612E+3 -3.1993458E-1 1.4352482E+5 8.1980235E+2 -8.1431211E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 83joh/flo; S°: 83joh/flo; Cp: 83joh/flo; V°: 95rob/hem; + +Natron +Na2CO3:10H2O + 1.000H+ = 1.000HCO3- + 2.000Na+ + 10.000H2O + log_k 9.507 + delta_h 50.170 #kJ/mol #Internal calculation + -analytic -9.7679183E+2 -1.3449576E-1 5.0830177E+4 3.5873581E+2 -2.8227861E+6 + #References = LogK/DGf: 84har/mol; DHf/DHr: Internal calculation; S°: 74nau/ryz; Cp: 74nau/ryz; V°: Default value; + +Nepheline +Na(AlSi)O4 + 4.000H+ = 1.000Al+3 + 1.000Na+ + 1.000H4SiO4 + log_k 14.077 + delta_h -144.506 #kJ/mol #Internal calculation + -analytic -9.7409139E+2 -1.3955693E-1 6.2423687E+4 3.467383E+2 -3.3400695E+6 + #References = LogK/DGf: 78hel/del; DHf/DHr: Internal calculation; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +Nesquehonite(alpha) +MgCO3:3H2O + 1.000H+ = 1.000HCO3- + 1.000Mg+2 + 3.000H2O + log_k 5.234 + delta_h -37.120 #kJ/mol #73rob/hem + -analytic -3.106996E+3 -5.6863644E-1 1.5082727E+5 1.1555717E+3 -7.4221439E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 73rob/hem; S°: 72rob/hem; Cp: 78hel/del; V°: 78hel/del; + +Nesquehonite(beta) +MgCO3:3H2O + 1.000H+ = 1.000HCO3- + 1.000Mg+2 + 3.000H2O + log_k 5.238 + #delta_h 0.000 #kJ/mol + -analytic -9.6246266E+2 -1.5254091E-1 5.3323715E+4 3.504019E+2 -2.9080803E+6 + #References = LogK/DGf: Internal calculation; V°: Default value; + +Newberyite +MgHPO4:3H2O + 1.000H+ = 1.000Mg+2 + 1.000H2PO4- + 3.000H2O + log_k 1.413 + #References = LogK/DGf: 01wen/mus; + #References = LogK/DGf: 01wen/mus; V°: 84nri; + +Ni(alpha) +Ni + 0.500O2 + 2.000H+ = 1.000Ni+2 + 1.000H2O + log_k 50.944 + delta_h -339.263 #kJ/mol #By convention + -analytic -4.174024E+2 -6.5506473E-2 4.0498606E+4 1.486164E+2 -1.395407E+6 + #References = LogK/DGf: Internal calculation; S°: 78hel/del; Cp: 98cha; V°: 78hel/del; + +Ni(OH)2 +Ni(OH)2 + 2.000H+ = 1.000Ni+2 + 2.000H2O + log_k 11.672 + delta_h -82.100 #kJ/mol #10pal/gam + -analytic -3.2916428E+2 -5.110766E-2 2.1713318E+4 1.189204E+2 -9.7903196E+5 + #References = LogK/DGf: 10pal/gam; DHf/DHr: 10pal/gam; S°: Internal calculation; Cp: 10pal/gam; V°: 04roi; + +Ni11As8 +Ni11As8 + 22.000H+ + 1.000H2O = 11.000Ni+2 + 8.000AsH3 + 0.500O2 + log_k -220.274 + delta_h 913.615 #kJ/mol #05gam/bug + -analytic -2.4033234E+3 -3.7939392E-1 6.5947045E+4 8.6274011E+2 -5.3172488E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05gam/bug; S°: 05gam/bug; Cp: 05gam/bug; V°: Default value; + +Ni2SiO4 +Ni2SiO4 + 4.000H+ = 2.000Ni+2 + 1.000H4SiO4 + log_k 19.544 + delta_h -181.861 #kJ/mol #05gam/bug + -analytic -1.0540534E+3 -1.5033032E-1 6.8937158E+4 3.7498951E+2 -3.6166446E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05gam/bug; S°: 05gam/bug; Cp: 05gam/bug; V°: 04roi; + +Ni3(AsO3)2 +Ni3(AsO3)2 + 4.000H+ = 2.000H2AsO3- + 3.000Ni+2 + log_k 9.884 + #References = LogK/DGf: 05gam/bug; + #References = LogK/DGf: 05gam/bug; V°: Default value; + +Ni3(AsO4)2:8H2O +Ni3(AsO4)2:8H2O + 4.000H+ = 2.000H2AsO4- + 3.000Ni+2 + 8.000H2O + log_k 8.479 + delta_h -105.439 #kJ/mol #05gam/bug + -analytic -2.4131791E+3 -3.4422466E-1 1.3257814E+5 8.7084587E+2 -6.6876022E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05gam/bug; S°: 05gam/bug; V°: Default value; + +Ni3S2 +Ni3S2 + 0.500O2 + 4.000H+ = 3.000Ni+2 + 2.000HS- + 1.000H2O + log_k 25.556 + delta_h -273.663 #kJ/mol #05gam/bug + -analytic -2.3714699E+3 -3.7830592E-1 1.4299917E+5 8.5539557E+2 -7.6825603E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05gam/bug; S°: 05gam/bug; Cp: 05gam/bug; V°: 04roi; + +Ni5As2 +Ni5As2 + 1.000O2 + 10.000H+ = 5.000Ni+2 + 2.000AsH3 + 2.000H2O + log_k 49.272 + delta_h -476.089 #kJ/mol #05gam/bug + -analytic -1.5917824E+3 -2.5006838E-1 1.0794148E+5 5.6849757E+2 -4.7233651E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05gam/bug; S°: 05gam/bug; Cp: 05gam/bug; V°: Default value; + +Ni9S8 +Ni9S8 + 0.94444O2 + 10.000H+ = 9.000Ni+2 + 7.55556HS- + 0.22222S2O3-2 + 1.22222H2O + log_k -1.647 + delta_h -381.495 #kJ/mol #05gam/bug + -analytic -8.4080802E+3 -1.3465873E+0 4.7613878E+5 3.0378034E+3 -2.7192974E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05gam/bug; S°: 05gam/bug; Cp: 05gam/bug; V°: Default value; + +NiAs +NiAs + 2.000H+ + 0.500H2O = 1.000Ni+2 + 1.000AsH3 + 0.250O2 + log_k -42.629 + delta_h 219.371 #kJ/mol #05gam/bug + -analytic -1.3859649E+2 -2.1691118E-2 -5.9999667E+3 5.0134625E+1 -1.3298174E+5 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05gam/bug; S°: 05gam/bug; Cp: 05gam/bug; V°: 04roi; + +NiCl2 +NiCl2 = 2.000Cl- + 1.000Ni+2 + log_k 8.596 + delta_h -88.760 #kJ/mol #05gam/bug + -analytic -1.5673181E+3 -2.5504198E-1 9.0038499E+4 5.6886271E+2 -5.1246883E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05gam/bug; S°: 05gam/bug; Cp: 05gam/bug; V°: 04roi; + +NiCl2:2H2O +NiCl2:2H2O = 2.000Cl- + 1.000Ni+2 + 2.000H2O + log_k 4.857 + delta_h -51.950 #kJ/mol #05gam/bug + -analytic -1.5891861E+3 -2.5905294E-1 8.9486365E+4 5.7780587E+2 -5.20936E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05gam/bug; S°: 05gam/bug; Cp: 05gam/bug; V°: Default value; + +NiCl2:4H2O +NiCl2:4H2O = 2.000Cl- + 1.000Ni+2 + 4.000H2O + log_k 3.757 + delta_h -22.930 #kJ/mol #05gam/bug + -analytic -1.7188548E+3 -2.5920992E-1 9.3906938E+4 6.2378883E+2 -5.2087215E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05gam/bug; S°: 05gam/bug; V°: Default value; + +NiCl2:6H2O +NiCl2:6H2O = 2.000Cl- + 1.000Ni+2 + 6.000H2O + log_k 2.981 + delta_h -3.940 #kJ/mol #05gam/bug + -analytic -1.769494E+3 -2.5936691E-1 9.5269537E+4 6.4210932E+2 -5.2080831E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05gam/bug; S°: 05gam/bug; V°: Default value; + +NiCO3 +NiCO3 + 1.000H+ = 1.000HCO3- + 1.000Ni+2 + log_k -0.736 + delta_h -36.110 #kJ/mol #05gam/bug + -analytic -9.0949728E+2 -1.4698499E-1 5.0789653E+4 3.2922115E+2 -2.8801945E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05gam/bug; S°: 05gam/bug; Cp: 05gam/bug; V°: 04roi; + +NiF2 +NiF2 = 2.000F- + 1.000Ni+2 + log_k -0.251 + delta_h -72.900 #kJ/mol #05gam/bug + -analytic -1.6994596E+3 -2.7222932E-1 9.5943104E+4 6.1436514E+2 -5.4783063E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05gam/bug; S°: 05gam/bug; Cp: 05gam/bug; V°: 04roi; + +NiFe2O4 +NiFe2O4 + 8.000H+ = 2.000Fe+3 + 1.000Ni+2 + 4.000H2O + log_k 10.780 + delta_h -230.320 #kJ/mol #95rob/hem + -analytic -1.3772254E+3 -2.176043E-1 8.2334916E+4 4.9303863E+2 -3.8455402E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 95rob/hem; V°: 04roi; + +NiS2 +NiS2 + 0.750H2O = 1.000Ni+2 + 1.500HS- + 0.250S2O3-2 + log_k -25.241 + delta_h 95.351 #kJ/mol #05gam/bug + -analytic -1.6103276E+3 -2.6122591E-1 8.3081707E+4 5.8362549E+2 -5.3184534E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05gam/bug; S°: 05gam/bug; Cp: 05gam/bug; V°: Default value; + +NiSO4 +NiSO4 = 1.000Ni+2 + 1.000SO4-2 + log_k 4.675 + delta_h -95.560 #kJ/mol #05gam/bug + -analytic -1.665992E+3 -2.6825807E-1 9.6194818E+4 6.0221013E+2 -5.5220764E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05gam/bug; S°: 05gam/bug; Cp: 05gam/bug; V°: 04roi; + +NiSO4:6H2O +NiSO4:6H2O = 1.000Ni+2 + 1.000SO4-2 + 6.000H2O + log_k -2.316 + #delta_h 0.000 #kJ/mol #05gam/bug + -analytic -1.6823835E+3 -2.5774702E-1 9.2401248E+4 6.0942968E+2 -5.4219841E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05gam/bug; S°: 05gam/bug; Cp: 05gam/bug; V°: 04roi; + +NiSO4:7H2O +NiSO4:7H2O = 1.000Ni+2 + 1.000SO4-2 + 7.000H2O + log_k -2.331 + delta_h 7.680 #kJ/mol #05gam/bug + -analytic -1.6839128E+3 -2.5605608E-1 9.2041413E+4 6.1018541E+2 -5.3911476E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05gam/bug; S°: 05gam/bug; Cp: 05gam/bug; V°: 04roi; + +Nontronite(Ca) +Ca0.17Fe1.67Al0.67Si3.66O10(OH)2 + 7.360H+ + 2.640H2O = 0.670Al+3 + 0.170Ca+2 + 1.670Fe+3 + 3.660H4SiO4 + log_k -2.807 + delta_h -137.388 #kJ/mol #15bla/vie + -analytic -2.4741658E+3 -3.3718972E-1 1.5169235E+5 8.7526886E+2 -9.1278051E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Nontronite(K) +K0.34Fe1.67Al0.67Si3.66O10(OH)2 + 7.360H+ + 2.640H2O = 0.670Al+3 + 1.670Fe+3 + 0.340K+ + 3.660H4SiO4 + log_k -3.976 + delta_h -118.855 #kJ/mol #15bla/vie + -analytic -2.4544931E+3 -3.3365307E-1 1.4991391E+5 8.6864952E+2 -9.0880119E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Nontronite(Mg) +Mg0.17Fe1.67Al0.67Si3.66O10(OH)2 + 7.360H+ + 2.640H2O = 0.670Al+3 + 1.670Fe+3 + 0.170Mg+2 + 3.660H4SiO4 + log_k -3.353 + delta_h -138.568 #kJ/mol #15bla/vie + -analytic -2.4893022E+3 -3.3895116E-1 1.525653E+5 8.804005E+2 -9.1731351E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Nontronite(Na) +Na0.34Fe1.67Al0.67Si3.66O10(OH)2 + 7.360H+ + 2.640H2O = 0.670Al+3 + 1.670Fe+3 + 0.340Na+ + 3.660H4SiO4 + log_k -3.478 + delta_h -127.473 #kJ/mol #15bla/vie + -analytic -2.4754229E+3 -3.3587611E-1 1.5144038E+5 8.7574857E+2 -9.1409123E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Nontronite(Nau2) +Ca0.247K0.02(Si3.458Al0.542)(Fe1.688Al0.276Mg0.068)O10(OH)2 + 8.168H+ + 1.832H2O = 0.818Al+3 + 0.247Ca+2 + 1.688Fe+3 + 0.020K+ + 0.068Mg+2 + 3.458H4SiO4 + log_k 1.349 + delta_h -179.453 #kJ/mol #13gai/bla + -analytic -2.5155355E+3 -3.5487839E-1 1.5340261E+5 8.9268474E+2 -8.9527335E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 13gai/bla; S°: 13gai/bla; Cp: 09gai; V°: 13gai/bla; + +Okenite +CaSi2O4(OH)2:H2O + 2.000H+ + 1.000H2O = 1.000Ca+2 + 2.000H4SiO4 + log_k 9.190 + delta_h -39.192 #kJ/mol #10abla/bou + -analytic -9.6754502E+2 -1.2011494E-1 6.1769903E+4 3.4310498E+2 -3.8776397E+6 + #References = LogK/DGf: 10abla/bou; DHf/DHr: 10abla/bou; S°: Internal calculation; Cp: 10abla/bou; V°: 92wol; + +Olivenite +Cu2AsO4(OH) + 3.000H+ = 1.000H2AsO4- + 2.000Cu+2 + 1.000H2O + log_k 2.391 + #References = LogK/DGf: 01gas/aza; + #References = LogK/DGf: 01gas/aza; V°: 00bla/bid; + +Orpiment +As2S3 + 6.000H2O = 2.000H2AsO3- + 3.000HS- + 5.000H+ + log_k -65.110 + delta_h 334.975 #kJ/mol #Internal calculation + -analytic -2.5599772E+3 -4.2267991E-1 1.1988784E+5 9.3328822E+2 -8.0517057E+6 + #References = LogK/DGf: 96pok/gou; DHf/DHr: Internal calculation; S°: 96pok/gou; Cp: 96pok/gou; V°: 96pok/gou; + +Otavite +CdCO3 + 1.000H+ = 1.000HCO3- + 1.000Cd+2 + log_k -1.773 + delta_h -13.219 #kJ/mol #Internal calculation + -analytic -8.8925402E+2 -1.4348661E-1 4.8437632E+4 3.2294259E+2 -2.7823139E+6 + #References = LogK/DGf: 91rai/fel; DHf/DHr: Internal calculation; S°: 96arc; Cp: 96arc; V°: 95rob/hem; + +P(element) +P + 1.500H2O = 1.000PH3 + 0.750O2 + log_k -68.935 + delta_h 408.486 #kJ/mol #89cox/wag + -analytic 3.3404985E+2 5.1313372E-2 -4.2306256E+4 -1.1859734E+2 1.5176804E+6 + #References = S°: 89cox/wag; Cp: 89cox/wag; V°: 95rob/hem; + +Paragonite +NaAl2(AlSi3)O10(OH)2 + 10.000H+ = 3.000Al+3 + 1.000Na+ + 3.000H4SiO4 + log_k 16.804 + delta_h -294.623 #kJ/mol #96rou/hov + -analytic -2.6452559E+3 -3.8247258E-1 1.64246E+5 9.4070011E+2 -9.1107641E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 96rou/hov; S°: 84rob/hem; Cp: 84rob/hem; V°: 78hel/del; + +Pargasite +Na(Ca2Mg4Al)(Al2Si6)O22(OH)2 + 22.000H+ = 3.000Al+3 + 2.000Ca+2 + 4.000Mg+2 + 1.000Na+ + 6.000H4SiO4 + log_k 104.557 + delta_h -940.614 #kJ/mol #Internal calculation + -analytic -5.7962939E+3 -8.2700886E-1 3.7555969E+5 2.0652064E+3 -1.9772394E+7 + #References = LogK/DGf: 78hel/del,92ajoh; DHf/DHr: Internal calculation; S°: 78hel/del,92ajoh; Cp: 78hel/del,92ajoh; V°: 78hel/del,92ajoh; + +Pb(element) +Pb + 0.500O2 + 2.000H+ = 1.000Pb+2 + 1.000H2O + log_k 47.242 + delta_h -278.843 #kJ/mol #By convention + -analytic -3.7331236E+2 -5.7965165E-2 3.5805889E+4 1.344975E+2 -1.3389494E+6 + #References = S°: 89cox/wag; Cp: 98cha; V°: 95rob/hem; + +Pb(H2PO4)2 +Pb(H2PO4)2 = 2.000H2PO4- + 1.000Pb+2 + log_k -9.840 + #References = LogK/DGf: 74nri; + #References = LogK/DGf: 74nri; V°: Default value; + +Pb(OH)2 +Pb(OH)2 + 2.000H+ = 1.000Pb+2 + 2.000H2O + log_k 13.514 + delta_h -56.140 #kJ/mol #52lat + -analytic -3.5536959E+2 -4.807084E-2 2.2120649E+4 1.2942742E+2 -9.9884185E+5 + #References = LogK/DGf: Internal calculation; DHf/DHr: 52lat; S°: 52lat; V°: Default value; + +Pb2SiO4 +Pb2SiO4 + 4.000H+ = 2.000Pb+2 + 1.000H4SiO4 + log_k 15.895 + delta_h -79.140 #kJ/mol #98cha + -analytic -9.8551984E+2 -1.3794931E-1 6.181618E+4 3.5389453E+2 -3.5981442E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98cha; S°: 98cha; Cp: 98cha; V°: 94pan; + +Pb3(PO4)2 +Pb3(PO4)2 + 4.000H+ = 2.000H2PO4- + 3.000Pb+2 + log_k -5.480 + delta_h -2.292 #kJ/mol #Internal calculation + -analytic -2.0146212E+3 -3.2440847E-1 1.1078767E+5 7.3122905E+2 -6.6757837E+6 + #References = LogK/DGf: 74nri; DHf/DHr: Internal calculation; S°: 74nau/ryz; Cp: 74nau/ryz, 68,69,71,76wag/eva, 71par/wag, 60kel; V°: 82wag/eva,60kel; + +Pb4O(PO4)2 +Pb4O(PO4)2 + 6.000H+ = 2.000H2PO4- + 4.000Pb+2 + 1.000H2O + log_k 4.488 + #References = LogK/DGf: 78ric/nri; + #References = LogK/DGf: 78ric/nri; V°: Default value; + +PbHPO4 +PbHPO4 + 1.000H+ = 1.000H2PO4- + 1.000Pb+2 + log_k -4.225 + delta_h 16.293 #kJ/mol #Internal calculation + -analytic -9.3895452E+2 -1.4495658E-1 5.0201609E+4 3.4060327E+2 -2.9538662E+6 + #References = LogK/DGf: 74nri; DHf/DHr: Internal calculation; S°: 74nau/ryz; V°: Default value; + +Pd(element) +Pd + 0.500O2 + 2.000H+ = 1.000Pd+2 + 1.000H2O + log_k 12.063 + delta_h -101.834 #kJ/mol #By convention + -analytic -4.2361301E+2 -6.6488438E-2 2.8339235E+4 1.5194195E+2 -1.379754E+6 + #References = LogK/DGf: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +Pd(OH)2(s) +Pd(OH)2 + 2.000H+ = 1.000Pd+2 + 2.000H2O + log_k -0.617 + delta_h -8.148 #kJ/mol #Internal calculation + -analytic -3.4050715E+2 -5.1805384E-2 1.7918515E+4 1.2345499E+2 -9.1063928E+5 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +Pd4S(s) +Pd4S + 1.500O2 + 7.000H+ = 4.000Pd+2 + 1.000HS- + 3.000H2O + log_k -8.837 + delta_h -74.876 #kJ/mol #Internal calculation + -analytic -2.2432047E+3 -3.5541282E-1 1.2538029E+5 8.086155E+2 -7.2056652E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +PdO(s) +PdO + 2.000H+ = 1.000Pd+2 + 1.000H2O + log_k 0.109 + delta_h -22.551 #kJ/mol #Internal calculation + -analytic -3.3626615E+2 -5.2414852E-2 1.8536004E+4 1.2139695E+2 -9.3834536E+5 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +PdS2 +PdS2 + 0.750H2O = 1.000Pd+2 + 1.500HS- + 0.250S2O3-2 + log_k -55.402 + delta_h 283.030 #kJ/mol #Internal calculation + -analytic -1.5914637E+3 -2.5792846E-1 7.1900011E+4 5.779375E+2 -5.1788755E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +Pentahydrite +MgSO4:5H2O = 1.000Mg+2 + 1.000SO4-2 + 5.000H2O + log_k -1.275 + delta_h -14.187 #kJ/mol #Internal calculation + -analytic -1.8063993E+3 -2.6137294E-1 9.8854326E+4 6.520122E+2 -5.4996627E+6 + #References = LogK/DGf: 80har/wea; DHf/DHr: Internal calculation; S°: 99yun/glu; V°: 63wyc; + +Periclase +MgO + 2.000H+ = 1.000Mg+2 + 1.000H2O + log_k 21.585 + delta_h -151.230 #kJ/mol #89cox/wag + -analytic -3.613142E+2 -5.4384296E-2 2.6720862E+4 1.2972311E+2 -1.0222234E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 89cox/wag; V°: 95rob/hem; + +Philipsbornite +PbAl3(AsO4)2(OH)5:H2O + 9.000H+ = 3.000Al+3 + 2.000H2AsO4- + 1.000Pb+2 + 6.000H2O + log_k 8.943 + #References = LogK/DGf: 93sch/got; + #References = LogK/DGf: 93sch/got; V°: Default value; + +Phillipsite(Ca) +Ca0.5AlSi3O8:3H2O + 4.000H+ + 1.000H2O = 1.000Al+3 + 0.500Ca+2 + 3.000H4SiO4 + log_k 2.319 + delta_h -76.540 #kJ/mol #Internal calculation + -analytic -1.6547191E+3 -2.1495941E-1 1.0353289E+5 5.8439479E+2 -6.4154021E+6 + #References = LogK/DGf: 09bla; DHf/DHr: Internal calculation; S°: 09bla; Cp: 10vie; V°: 97coo/alb; + +Phillipsite(K) +KAlSi3O8:3H2O + 4.000H+ + 1.000H2O = 1.000Al+3 + 1.000K+ + 3.000H4SiO4 + log_k 0.039 + delta_h -39.343 #kJ/mol #Internal calculation + -analytic -1.5999198E+3 -2.0580731E-1 9.9368527E+4 5.6547382E+2 -6.3284609E+6 + #References = LogK/DGf: 09bla; DHf/DHr: Internal calculation; S°: 09bla; Cp: 10vie; V°: 97coo/alb; + +Phillipsite(Na) +NaAlSi3O8:3H2O + 4.000H+ + 1.000H2O = 1.000Al+3 + 1.000Na+ + 3.000H4SiO4 + log_k 1.449 + delta_h -57.740 #kJ/mol #Internal calculation + -analytic -1.664361E+3 -2.1153563E-1 1.0362077E+5 5.876435E+2 -6.4671724E+6 + #References = LogK/DGf: 09bla; DHf/DHr: Internal calculation; S°: 09bla; Cp: 10vie; V°: 97coo/alb; + +Phlogopite +KMg3(AlSi3)O10(OH)2 + 10.000H+ = 1.000Al+3 + 1.000K+ + 3.000Mg+2 + 3.000H4SiO4 + log_k 41.098 + delta_h -353.123 #kJ/mol #92cir/nav + -analytic -2.7194067E+3 -3.8106546E-1 1.7318081E+5 9.69566E+2 -9.4102646E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 92cir/nav; S°: 84rob/hem; Cp: 84rob/hem; V°: 78hel/del; + +Phlogopite(Na) +NaMg3AlSi3O10(OH)2 + 10.000H+ = 1.000Al+3 + 3.000Mg+2 + 1.000Na+ + 3.000H4SiO4 + log_k 44.196 + delta_h -384.183 #kJ/mol #98hol/pow + -analytic -2.7791087E+3 -3.8785207E-1 1.7786448E+5 9.9009687E+2 -9.5602456E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98hol/pow; S°: 98hol/pow; Cp: 98hol/pow; V°: 98hol/pow; + +Phosgenite +Pb2(CO3)Cl2 + 1.000H+ = 1.000HCO3- + 2.000Cl- + 2.000Pb+2 + log_k -9.573 + delta_h 49.187 #kJ/mol #Internal calculation + -analytic -2.4536433E+3 -3.8655162E-1 1.3191406E+5 8.9164594E+2 -7.9507146E+6 + #References = LogK/DGf: 78ric/nri; DHf/DHr: Internal calculation; S°: 78ric/nri; V°: 90rob/cam; + +Picromerite +K2Mg(SO4)2:6H2O = 2.000K+ + 1.000Mg+2 + 2.000SO4-2 + 6.000H2O + log_k -4.324 + delta_h 33.490 #kJ/mol #74nau/ryz + -analytic -3.3496813E+3 -4.9577994E-1 1.8218177E+5 1.2128178E+3 -1.0569863E+7 + #References = LogK/DGf: 84har/mol; DHf/DHr: 74nau/ryz; S°: Internal calculation; V°: 63wyc; + +Pirssonite +Na2Ca(CO3)2:2H2O + 2.000H+ = 2.000HCO3- + 1.000Ca+2 + 2.000Na+ + 2.000H2O + log_k 11.746 + delta_h -19.823 #kJ/mol #Internal calculation + -analytic -1.803153E+3 -2.6502443E-1 9.8762262E+4 6.5611765E+2 -5.4095705E+6 + #References = LogK/DGf: 99kon/kon; DHf/DHr: Internal calculation; S°: 99kon/kon; V°: 63wyc; + +Plattnerite +PbO2 + 2.000H+ = 1.000Pb+2 + 0.500O2 + 1.000H2O + log_k 6.561 + delta_h -16.236 #kJ/mol #98cha + -analytic -1.9048846E+2 -2.9141125E-2 1.0244404E+4 7.1138759E+1 -4.1340982E+5 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98cha; S°: 98cha; Cp: 98cha; V°: 82pan; + +Plumbogummite +PbAl3(PO4)2(OH)5:H2O + 9.000H+ = 3.000Al+3 + 2.000H2PO4- + 1.000Pb+2 + 6.000H2O + log_k 9.651 + #References = LogK/DGf: 04gab/vie; + #References = LogK/DGf: 04gab/vie; V°: 63wyc; + +Plumbonacrite +Pb10O(OH)6(CO3)6 + 14.000H+ = 6.000HCO3- + 10.000Pb+2 + 7.000H2O + log_k 19.879 + #References = LogK/DGf: 84tay/lop; + #References = LogK/DGf: 84tay/lop; V°: 90rob/cam; + +Polyhalite +K2MgCa2(SO4)4:2H2O = 2.000Ca+2 + 2.000K+ + 1.000Mg+2 + 4.000SO4-2 + 2.000H2O + log_k -13.738 + #References = LogK/DGf: 84har/mol; + #References = LogK/DGf: 84har/mol; V°: 63wyc; + +Portlandite +Ca(OH)2 + 2.000H+ = 1.000Ca+2 + 2.000H2O + log_k 22.812 + delta_h -130.108 #kJ/mol #Internal calculation + -analytic -2.8492926E+2 -4.4710612E-2 2.1380115E+4 1.0420455E+2 -7.5424917E+5 + #References = LogK/DGf: 10abla/bou; DHf/DHr: Internal calculation; S°: 98cha; Cp: 99aki/zot; V°: 95rob/hem; + +Prehnite +Ca2Al2Si3O10(OH)2 + 10.000H+ = 2.000Al+3 + 2.000Ca+2 + 3.000H4SiO4 + log_k 32.596 + delta_h -339.617 #kJ/mol #98cha/kru + -analytic -2.6255465E+3 -3.8041883E-1 1.6586587E+5 9.3642007E+2 -9.0549681E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98cha/kru; S°: 95rob/hem; Cp: 95rob/hem; V°: 95rob/hem; + +Pseudomalachite +Cu5(PO4)2(OH)4 + 8.000H+ = 5.000Cu+2 + 2.000H2PO4- + 4.000H2O + log_k 22.037 + #References = LogK/DGf: 84nri; + #References = LogK/DGf: 84nri; V°: 63wyc; + +Pt(element) +Pt + 0.500O2 + 2.000H+ = 1.000Pt+2 + 1.000H2O + log_k -2.157 + delta_h -24.919 #kJ/mol #By convention + -analytic -4.2540447E+2 -6.6879597E-2 2.4409294E+4 1.5234139E+2 -1.3903575E+6 + #References = S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +PtS2 +PtS2 + 0.750H2O = 1.000Pt+2 + 1.500HS- + 0.250S2O3-2 + log_k -74.387 + delta_h 392.207 #kJ/mol #Internal calculation + -analytic -1.5937696E+3 -2.5854409E-1 6.6351027E+4 5.7885384E+2 -5.1923221E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +Pyrite +FeS2 + 0.750H2O = 1.000Fe+2 + 1.500HS- + 0.250S2O3-2 + log_k -23.591 + delta_h 107.901 #kJ/mol #05wal/pel + -analytic -1.5918872E+3 -2.5774873E-1 8.1293961E+4 5.7833155E+2 -5.2056586E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05wal/pel; S°: 95rob/hem; Cp: 05wal/pel; V°: 78hel/del; + +Pyromorphite +Pb5(PO4)3OH + 7.000H+ = 3.000H2PO4- + 5.000Pb+2 + 1.000H2O + log_k -18.119 + #References = LogK/DGf: 74nri; + #References = LogK/DGf: 74nri; V°: 90rob/cam; + +Pyromorphite(Br) +Pb5(PO4)3Br + 6.000H+ = 1.000Br- + 3.000H2PO4- + 5.000Pb+2 + log_k -19.420 + #References = LogK/DGf: 74nri; + #References = LogK/DGf: 74nri; V°: 90rob/cam; + +Pyromorphite(Cl) +Pb5(PO4)3Cl + 6.000H+ = 1.000Cl- + 3.000H2PO4- + 5.000Pb+2 + log_k -25.720 + #References = LogK/DGf: 74nri; + #References = LogK/DGf: 74nri; V°: 63wyc; + +Pyromorphite(F) +Pb5(PO4)3F + 6.000H+ = 1.000F- + 3.000H2PO4- + 5.000Pb+2 + log_k -12.920 + #References = LogK/DGf: 74nri; + #References = LogK/DGf: 74nri; V°: 90rob/cam; + +Pyrope(alpha) +Mg3Al2Si3O12 + 12.000H+ = 2.000Al+3 + 3.000Mg+2 + 3.000H4SiO4 + log_k 58.930 + delta_h -569.383 #kJ/mol #95rob/hem + -analytic -3.1632192E+3 -4.564587E-1 2.0653485E+5 1.1257864E+3 -1.0681752E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 78hel/del,78rob/hem; Cp: 78hel/del,78rob/hem; V°: 78hel/del,78rob/hem; + +Pyrophyllite +Al2Si4O10(OH)2 + 6.000H+ + 4.000H2O = 2.000Al+3 + 4.000H4SiO4 + log_k -0.418 + delta_h -128.924 #kJ/mol #95rob/hem + -analytic -2.3595061E+3 -3.237303E-1 1.4585394E+5 8.3524091E+2 -8.9193526E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 76rob/hem; V°: 95rob/hem; + +Pyroxene(CaAl) +CaAl(AlSi)O6 + 8.000H+ = 2.000Al+3 + 1.000Ca+2 + 1.000H4SiO4 + 2.000H2O + log_k 36.234 + delta_h -370.792 #kJ/mol #Internal calculation + -analytic -1.5908243E+3 -2.4603865E-1 1.0453251E+5 5.681931E+2 -4.9909659E+6 + #References = LogK/DGf: 78hel/del,92ajoh; DHf/DHr: Internal calculation; S°: 78hel/del,92ajoh; Cp: 78hel/del,92ajoh; V°: 78hel/del,92ajoh; + +Pyrrhotite +FeS + 1.000H+ = 1.000Fe+2 + 1.000HS- + log_k -3.679 + delta_h -10.009 #kJ/mol #05wal/pel + -analytic -1.1321823E+3 -1.8235764E-1 6.1304821E+4 4.1103628E+2 -3.5403537E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05wal/pel; S°: 05wal/pel; Cp: 05wal/pel; V°: 78hel/del; + +Quartz(alpha) +SiO2 + 2.000H2O = 1.000H4SiO4 + log_k -3.734 + delta_h 23.499 #kJ/mol #82ric/bot + -analytic -3.5374911E+2 -4.1888083E-2 2.18041E+4 1.2419287E+2 -1.5942862E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 82ric/bot; S°: 82ric/bot; Cp: 82ric/bot; V°: 95rob/hem; + +Quartz(beta) +SiO2 + 2.000H2O = 1.000H4SiO4 + log_k -3.502 + #delta_h 0.000 #kJ/mol + -analytic -3.4680063E+2 -4.1000884E-2 2.1497205E+4 1.2167536E+2 -1.5695706E+6 + #References = LogK/DGf: Internal calculation; Cp: 89cox/wag; V°: Default value; + +Realgar +AsS + 0.250O2 + 2.500H2O = 1.000H2AsO3- + 1.000HS- + 2.000H+ + log_k -7.800 + delta_h 24.594 #kJ/mol #Internal calculation + -analytic -1.0034543E+3 -1.6631516E-1 5.2749124E+4 3.654584E+2 -3.1986476E+6 + #References = LogK/DGf: 13bla/las; DHf/DHr: Internal calculation; S°: 96pok/gou; Cp: 96pok/gou; V°: 96pok/gou; + +Rh(element) +Rh + 0.500O2 + 2.000H+ = 1.000Rh+2 + 1.000H2O + log_k 22.694 + delta_h -169.367 #kJ/mol #98sas/sho + -analytic -4.2198365E+2 -6.5807108E-2 3.1965536E+4 1.5071669E+2 -1.409249E+6 + #References = LogK/DGf: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +Rh2O(s) +Rh2O + 0.6666675O2 + 4.66667H+ = 1.33333Rh+2 + 0.66667Rh+3 + 2.333335H2O + log_k 32.170 + delta_h -297.073 #kJ/mol #Internal calculation + -analytic -9.2880217E+2 -1.4590429E-1 6.5217476E+4 3.3096914E+2 -2.9537693E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: Default value; + +Rh2O3(s) +Rh2O3 + 6.000H+ = 2.000Rh+3 + 3.000H2O + log_k 12.342 + delta_h -213.359 #kJ/mol #Internal calculation + -analytic -1.0500191E+3 -1.6722402E-1 6.5471364E+4 3.7474604E+2 -3.0808349E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +Rhodochrosite +MnCO3 + 1.000H+ = 1.000HCO3- + 1.000Mn+2 + log_k 0.230 + delta_h -22.001 #kJ/mol #Internal calculation + -analytic -8.9448089E+2 -1.4475403E-1 4.9047875E+4 3.2517342E+2 -2.7786359E+6 + #References = LogK/DGf: 78hel/del; DHf/DHr: Internal calculation; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +Riebeckite +Na2(Fe3Fe2)Si8O22(OH)2 + 14.000H+ + 8.000H2O = 3.000Fe+2 + 2.000Na+ + 8.000H4SiO4 + 2.000Fe+3 + log_k 9.199 + delta_h -197.377 #kJ/mol #98hol/pow + -analytic -5.0079102E+3 -6.7170777E-1 3.0608951E+5 1.7785742E+3 -1.8686839E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98hol/pow; S°: 98hol/pow; Cp: 95rob/hem; V°: 78hel/del; + +Rockbridgite(Zn) +ZnFe4(PO4)3(OH)5 + 11.000H+ = 4.000Fe+3 + 3.000H2PO4- + 1.000Zn+2 + 5.000H2O + log_k 1.837 + #References = LogK/DGf: 84nri; + #References = LogK/DGf: 84nri; V°: Default value; + +Romarchite +SnO + 2.000H+ = 1.000Sn+2 + 1.000H2O + log_k 2.229 + delta_h -13.896 #kJ/mol #89cox/wag + -analytic -3.110607E+2 -4.7538033E-2 1.782514E+4 1.1273586E+2 -1.0027505E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 89cox/wag; V°: 95rob/hem; + +Romerite +Fe3(SO4)4:14H2O = 2.000Fe+3 + 4.000SO4-2 + 1.000Fe+2 + 14.000H2O + log_k -11.628 + delta_h -96.980 #kJ/mol #02hem/sea + -analytic -7.0143861E+3 -1.0479409E+0 3.8581548E+5 2.5322294E+3 -2.1749259E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 02hem/sea; S°: 02hem/sea; V°: 90rob/cam; + +Rozenite +FeSO4:4H2O = 1.000Fe+2 + 1.000SO4-2 + 4.000H2O + log_k -1.696 + delta_h -14.960 #kJ/mol #02cho/sea + -analytic -1.7627909E+3 -2.59975E-1 9.6675812E+4 6.3675286E+2 -5.4446565E+6 + #References = LogK/DGf: 02cho/sea; DHf/DHr: 02cho/sea; S°: Internal calculation; V°: 90rob/cam; + +Ru(element) +Ru + 0.500O2 + 2.000H+ = 1.000Ru+2 + 1.000H2O + log_k 16.681 + delta_h -132.285 #kJ/mol #Internal calculation + -analytic -4.2170452E+2 -6.5535745E-2 3.0046781E+4 1.5073586E+2 -1.4079513E+6 + #References = DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +RuO2(s) +RuO2 + 3.000H+ = 1.000Ru+3 + 0.250O2 + 1.500H2O + log_k -13.121 + delta_h 10.393 #kJ/mol #Internal calculation + -analytic -4.3559843E+2 -7.045936E-2 2.0658276E+4 1.5613632E+2 -1.080241E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +Rutile +TiO2 + 2.000H2O = 1.000Ti(OH)4 + log_k -8.861 + delta_h 0.300 #kJ/mol #89cox/wag + -analytic -4.6738595E+2 -3.2546139E-2 2.3089926E+4 1.6138804E+2 -7.6089683E+5 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 89cox/wag; V°: 95rob/hem; + +S(alpha) +S + 1.000H2O = 1.000HS- + 0.500O2 + 1.000H+ + log_k -45.140 + delta_h 263.463 #kJ/mol #By convention + -analytic -5.3915576E+2 -8.8467883E-2 1.5130512E+4 1.9737497E+2 -1.6665249E+6 + #References = S°: 89cox/wag; Cp: 11par/cor; V°: 11par/cor; + +S(beta) +S + 1.000H2O = 1.000HS- + 0.500O2 + 1.000H+ + log_k -45.128 + #delta_h 0.000 #kJ/mol + -analytic -5.3856231E+2 -8.8389178E-2 1.5118745E+4 1.9714171E+2 -1.6654188E+6 + #References = LogK/DGf: Internal calculation; Cp: 11par/cor; V°: Default value; + +S(gamma) +S + 1.000H2O = 1.000HS- + 0.500O2 + 1.000H+ + log_k -45.089 + #delta_h 0.000 #kJ/mol + -analytic -5.2201078E+2 -8.6900678E-2 1.4085028E+4 1.9135181E+2 -1.5909958E+6 + #References = LogK/DGf: Internal calculation; Cp: 11par/cor; V°: Default value; + +Sanidine +K(AlSi3)O8 + 4.000H+ + 4.000H2O = 1.000Al+3 + 1.000K+ + 3.000H4SiO4 + log_k 0.620 + delta_h -58.203 #kJ/mol #95rob/hem + -analytic -1.6040776E+3 -2.1368942E-1 9.9754212E+4 5.6769011E+2 -6.3008126E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 06bla/pia; V°: 78hel/del; + +Saponite(Ca) +Ca0.17Mg3Al0.34Si3.66O10(OH)2 + 7.360H+ + 2.640H2O = 0.340Al+3 + 0.170Ca+2 + 3.000Mg+2 + 3.660H4SiO4 + log_k 29.355 + delta_h -262.766 #kJ/mol #15bla/vie + -analytic -2.5667428E+3 -3.4039957E-1 1.6475488E+5 9.099285E+2 -9.472597E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Saponite(FeCa) +Ca0.17Mg2FeAl0.34Si3.66O10(OH)2 + 7.360H+ + 2.640H2O = 0.340Al+3 + 0.170Ca+2 + 1.000Fe+2 + 2.000Mg+2 + 3.660H4SiO4 + log_k 26.569 + delta_h -250.636 #kJ/mol #15bla/vie + -analytic -2.5356344E+3 -3.373844E-1 1.6236385E+5 8.9871835E+2 -9.386812E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Saponite(FeK) +K0.34Mg2FeAl0.34Si3.66O10(OH)2 + 7.360H+ + 2.640H2O = 0.340Al+3 + 1.000Fe+2 + 0.340K+ + 2.000Mg+2 + 3.660H4SiO4 + log_k 25.398 + delta_h -232.093 #kJ/mol #15bla/vie + -analytic -2.515955E+3 -3.3384661E-1 1.6058454E+5 8.9209651E+2 -9.3470003E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Saponite(FeMg) +Mg0.17Mg2FeAl0.34Si3.66O10(OH)2 + 7.360H+ + 2.640H2O = 0.340Al+3 + 1.000Fe+2 + 2.170Mg+2 + 3.660H4SiO4 + log_k 26.022 + delta_h -251.806 #kJ/mol #15bla/vie + -analytic -2.5507675E+3 -3.3914471E-1 1.6323608E+5 9.0384868E+2 -9.4321235E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Saponite(FeNa) +Na0.34Mg2FeAl0.34Si3.66O10(OH)2 + 7.360H+ + 2.640H2O = 0.340Al+3 + 1.000Fe+2 + 2.000Mg+2 + 0.340Na+ + 3.660H4SiO4 + log_k 25.896 + delta_h -240.711 #kJ/mol #15bla/vie + -analytic -2.5368817E+3 -3.3606965E-1 1.6211086E+5 8.9919435E+2 -9.3999007E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Saponite(K) +K0.33Mg3Al0.33Si3.67O10(OH)2 + 7.320H+ + 2.680H2O = 0.330Al+3 + 0.330K+ + 3.000Mg+2 + 3.670H4SiO4 + log_k 27.430 + delta_h -239.483 #kJ/mol #15bla/vie + -analytic -2.544416E+3 -3.3629993E-1 1.6263915E+5 9.0231366E+2 -9.4312976E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Saponite(Mg) +Mg0.17Mg3Al0.34Si3.66O10(OH)2 + 7.360H+ + 2.640H2O = 0.340Al+3 + 3.170Mg+2 + 3.660H4SiO4 + log_k 28.810 + delta_h -263.946 #kJ/mol #15bla/vie + -analytic -2.5818719E+3 -3.4215988E-1 1.6562747E+5 9.1505763E+2 -9.5179085E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Saponite(Na) +Na0.33Mg3Al0.33Si3.67O10(OH)2 + 7.320H+ + 2.680H2O = 0.330Al+3 + 3.000Mg+2 + 0.330Na+ + 3.670H4SiO4 + log_k 27.971 + delta_h -248.219 #kJ/mol #15bla/vie + -analytic -2.5647603E+3 -3.3846001E-1 1.6414122E+5 9.0921188E+2 -9.482682E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Saponite(SapCa) +(Na0.394K0.021Ca0.038)(Si3.569Al0.397)(Mg2.949Fe0.055)O10(OH)2 + 7.724H+ + 2.276H2O = 0.397Al+3 + 0.038Ca+2 + 0.034Fe+3 + 0.021K+ + 2.949Mg+2 + 0.394Na+ + 3.569H4SiO4 + 0.021Fe+2 + log_k 31.473 + delta_h -277.172 #kJ/mol #13gai/bla + -analytic -2.5790231E+3 -3.508959E-1 1.6429225E+5 9.168404E+2 -9.2969386E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 13gai/bla; S°: 13gai/bla; Cp: 09gai; V°: 13gai/bla; + +Sb(element) +Sb + 0.750O2 + 1.500H2O = 1.000Sb(OH)3 + log_k 52.745 + delta_h -316.199 #kJ/mol #Internal calculation + -analytic -3.9870715E+1 -1.2316823E-2 1.7752813E+4 1.5100207E+1 -5.509819E+4 + #References = DHf/DHr: Internal calculation; S°: 94aki/zot; Cp: 94aki/zot; V°: 94aki/zot; + +Scholzite +CaZn2(PO4)2:2H2O + 4.000H+ = 1.000Ca+2 + 2.000H2PO4- + 2.000Zn+2 + 2.000H2O + log_k 7.425 + #References = LogK/DGf: 84nri; + #References = LogK/DGf: 84nri; V°: 63wyc; + +Schultenite +PbHAsO4 + 1.000H+ = 1.000H2AsO4- + 1.000Pb+2 + log_k -5.410 + #References = LogK/DGf: 01gas/aza; + #References = LogK/DGf: 01gas/aza; V°: 00bla/bid; + +Schwertmannite +Fe8O8(OH)6SO4:8H2O + 22.000H+ = 8.000Fe+3 + 1.000SO4-2 + 22.000H2O + log_k 8.982 + #References = LogK/DGf: 04maj/nav; + #References = LogK/DGf: 04maj/nav; V°: 90rob/cam; + +Scolecite +CaAl2Si3O10:3H2O + 8.000H+ = 2.000Al+3 + 1.000Ca+2 + 3.000H4SiO4 + 1.000H2O + log_k 16.647 + delta_h -233.213 #kJ/mol #83joh/flo + -analytic -2.3692738E+3 -3.4026162E-1 1.4623007E+5 8.4431312E+2 -8.2035956E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 83joh/flo; S°: 83joh/flo; Cp: 83joh/flo; V°: 95rob/hem; + +Scorodite +FeAsO4:2H2O + 2.000H+ = 1.000H2AsO4- + 1.000Fe+3 + 2.000H2O + log_k -7.368 + delta_h -21.409 #kJ/mol #11maj/dra + -analytic -1.0365332E+3 -1.6539267E-1 5.5820815E+4 3.7435481E+2 -3.1169074E+6 + #References = LogK/DGf: 06lan/mah; DHf/DHr: 11maj/dra; S°: Internal calculation; Cp: 90pap/ber; V°: 00bla/bid; + +Scorodite(am) +FeAsO4:2H2O + 2.000H+ = 1.000H2AsO4- + 1.000Fe+3 + 2.000H2O + log_k -4.538 + #References = LogK/DGf: 06lan/mah; + #References = LogK/DGf: 06lan/mah; V°: 00bla/bid; + +Sellaite +MgF2 = 2.000F- + 1.000Mg+2 + log_k -9.220 + delta_h -13.500 #kJ/mol #89cox/wag + -analytic -1.7205734E+3 -2.7422476E-1 9.3940935E+4 6.2238979E+2 -5.5139817E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 89cox/wag; V°: 95rob/hem; + +Senarmontite +Sb2O3 + 3.000H2O = 2.000Sb(OH)3 + log_k -9.835 + delta_h 67.343 #kJ/mol #Internal calculation + -analytic 1.8477675E+2 1.7342449E-2 -1.8040472E+4 -6.1767774E+1 1.2058989E+6 + #References = LogK/DGf: 03zot/shi; DHf/DHr: Internal calculation; S°: 03zot/shi; Cp: 03zot/shi; V°: 03zot/shi; + +Sepiolite +Mg4Si6O15(OH)2:6H2O + 8.000H+ + 1.000H2O = 4.000Mg+2 + 6.000H4SiO4 + log_k 31.419 + delta_h -225.784 #kJ/mol #Internal calculation + -analytic -3.4714843E+3 -4.4714531E-1 2.1930423E+5 1.2318165E+3 -1.3101111E+7 + #References = LogK/DGf: 88sto; DHf/DHr: Internal calculation; S°: 88sto; Cp: 88sto; V°: 88sto; + +Siderite +FeCO3 + 1.000H+ = 1.000HCO3- + 1.000Fe+2 + log_k -0.273 + delta_h -27.862 #kJ/mol #Internal calculation + -analytic -9.0290711E+2 -1.4586154E-1 4.9930776E+4 3.2756069E+2 -2.8333705E+6 + #References = LogK/DGf: 04chi; DHf/DHr: Internal calculation; S°: 04chi; Cp: 04chi; V°: 78hel/del,85hel; + +Siderophyllite +KFe2Al3Si2O10(OH)2 + 14.000H+ = 3.000Al+3 + 2.000Fe+2 + 1.000K+ + 2.000H4SiO4 + 4.000H2O + log_k 40.570 + delta_h -480.112 #kJ/mol #90hol/pow + -analytic -2.9500852E+3 -4.434036E-1 1.8546339E+5 1.0536299E+3 -9.4520282E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 90hol/pow; S°: 90hol/pow; Cp: 90hol/pow; V°: 90hol/pow; + +Siderotil +FeSO4:5H2O = 1.000Fe+2 + 1.000SO4-2 + 5.000H2O + log_k -2.235 + delta_h -4.190 #kJ/mol #02hem/sea + -analytic -1.7787588E+3 -2.585467E-1 9.6809893E+4 6.4251488E+2 -5.4183498E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 02hem/sea; S°: 02hem/sea; V°: 90rob/cam; + +Sillimanite +Al2SiO5 + 6.000H+ = 2.000Al+3 + 1.000H4SiO4 + 1.000H2O + log_k 16.570 + delta_h -247.845 #kJ/mol #Internal calculation + -analytic -1.3428885E+3 -2.0513363E-1 8.5642987E+4 4.7774773E+2 -4.3366238E+6 + #References = LogK/DGf: 78hel/del; DHf/DHr: Internal calculation; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +Smectite(MX80) +Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.208)O10(OH)2 + 7.048H+ + 2.952H2O = 1.860Al+3 + 0.009Ca+2 + 0.173Fe+3 + 0.024K+ + 0.214Mg+2 + 0.409Na+ + 3.738H4SiO4 + 0.035Fe+2 + log_k 5.278 + delta_h -175.308 #kJ/mol #12gai/bla + -analytic -2.4267042E+3 -3.3712249E-1 1.5038583E+5 8.6021197E+2 -8.9284687E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 12gai/bla; S°: 12gai/bla; Cp: 12gai/bla; V°: 12gai/bla; + +Smectite(MX80:3.989H2O) +Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.208)O10(OH)2:3.989H2O + 7.048H+ = 1.860Al+3 + 0.009Ca+2 + 0.173Fe+3 + 0.024K+ + 0.214Mg+2 + 0.409Na+ + 3.738H4SiO4 + 0.035Fe+2 + 1.037H2O + log_k 1.774 + delta_h -148.524 #kJ/mol #12gai/bla + -analytic -2.3838609E+3 -3.2232449E-1 1.4844358E+5 8.4261556E+2 -8.9910004E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 12gai/bla; S°: 12gai/bla; Cp: 12gai/bla; V°: 12gai/bla; + +Smectite(MX80:5.189H2O) +Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.208)O10(OH)2:5.189H2O + 7.048H+ = 1.860Al+3 + 0.009Ca+2 + 0.173Fe+3 + 0.024K+ + 0.214Mg+2 + 0.409Na+ + 3.738H4SiO4 + 0.035Fe+2 + 2.237H2O + log_k 1.435 + delta_h -140.430 #kJ/mol #12gai/bla + -analytic -2.3706061E+3 -3.2008903E-1 1.4737914E+5 8.3812012E+2 -8.9524821E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 12gai/bla; S°: 12gai/bla; Cp: 12gai/bla; V°: 12gai/bla; + +Smithsonite +ZnCO3 + 1.000H+ = 1.000HCO3- + 1.000Zn+2 + log_k -0.620 + delta_h -24.415 #kJ/mol #13pow/bro + -analytic -9.2301285E+2 -1.4773149E-1 5.0911225E+4 3.3471433E+2 -2.8932044E+6 + #References = LogK/DGf: 13pow/bro; DHf/DHr: 13pow/bro; S°: Internal calculation; Cp: 18las/bla; V°: 78hel/del; + +Sn(alpha) +Sn + 0.500O2 + 2.000H+ = 1.000Sn+2 + 1.000H2O + log_k 47.810 + delta_h -288.539 #kJ/mol #By convention + -analytic -3.9316687E+2 -6.1216051E-2 3.7388231E+4 1.4132387E+2 -1.4106793E+6 + #References = LogK/DGf: Internal calculation; S°: 85jac/hel; Cp: 85jac/hel; V°: 85jac/hel; + +Sn(beta) +Sn + 0.500O2 + 2.000H+ = 1.000Sn+2 + 1.000H2O + log_k 48.308 + #delta_h 0.000 #kJ/mol + -analytic -3.9004193E+2 -6.0527637E-2 3.7613102E+4 1.3987461E+2 -1.4106793E+6 + #References = LogK/DGf: Internal calculation; V°: Default value; + +Spencerite +Zn4(PO4)2(OH)2:3H2O + 6.000H+ = 2.000H2PO4- + 4.000Zn+2 + 5.000H2O + log_k 16.800 + #References = LogK/DGf: 84nri; + #References = LogK/DGf: 84nri; V°: 63wyc; + +Spessartine(alpha) +Mn3Al2Si3O12 + 12.000H+ = 2.000Al+3 + 3.000Mn+2 + 3.000H4SiO4 + log_k 49.887 + delta_h -471.069 #kJ/mol #98hol/pow + -analytic -3.0782231E+3 -4.4800236E-1 1.9682378E+5 1.0986866E+3 -1.0409112E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98hol/pow; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +Sphaerocobaltite +CoCO3 + 1.000H+ = 1.000HCO3- + 1.000Co+2 + log_k -0.873 + delta_h -24.122 #kJ/mol #Internal calculation + -analytic -9.0848908E+2 -1.4524556E-1 5.0272924E+4 3.2921793E+2 -2.8733445E+6 + #References = LogK/DGf: 99gra; DHf/DHr: Internal calculation; S°: 74nau/ryz; Cp: 74nau/ryz; V°: 90rob/cam; + +Sphalerite +ZnS + 1.000H+ = 1.000HS- + 1.000Zn+2 + log_k -11.145 + delta_h 33.421 #kJ/mol #14aki/tag + -analytic -9.721935E+2 -1.5451455E-1 5.0956629E+4 3.5205735E+2 -3.1055331E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 14aki/tag; S°: 78hel/del; Cp: 14aki/tag; V°: 78hel/del; + +Spinel +MgAl2O4 + 8.000H+ = 2.000Al+3 + 1.000Mg+2 + 4.000H2O + log_k 37.856 + delta_h -399.057 #kJ/mol #Internal calculation + -analytic -1.3571269E+3 -2.1829196E-1 8.9808713E+4 4.8560142E+2 -3.7994678E+6 + #References = LogK/DGf: 78hel/del; DHf/DHr: Internal calculation; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +Spingcreekite +BaV3(PO4)2(OH)5:H2O + 9.000H+ = 1.000Ba+2 + 2.000H2PO4- + 3.000V+3 + 6.000H2O + log_k 7.607 + #References = LogK/DGf: 04gab/vie; + #References = LogK/DGf: 04gab/vie; V°: Default value; + +Sr(element) +Sr + 0.500O2 + 2.000H+ = 1.000Sr+2 + 1.000H2O + log_k 141.780 + delta_h -830.663 #kJ/mol #By convention + -analytic -3.7926603E+2 -5.8081797E-2 6.4803064E+4 1.3582543E+2 -1.3403758E+6 + #References = S°: 98cha; Cp: 98cha; V°: 95rob/hem; + +Sr(OH)2 +Sr(OH)2 + 2.000H+ = 1.000Sr+2 + 2.000H2O + log_k 27.516 + delta_h -153.670 #kJ/mol #98cha + -analytic -3.1110535E+2 -4.4757502E-2 2.478162E+4 1.1280107E+2 -9.1307436E+5 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98cha; S°: 98cha; Cp: 98cha; V°: 94pan; + +Sr(OH)2:8H2O +Sr(OH)2:8H2O + 2.000H+ = 1.000Sr+2 + 10.000H2O + log_k 24.330 + delta_h -57.000 #kJ/mol #82wag/eva + -analytic -5.3417288E+2 -4.5999427E-2 2.9973392E+4 1.9461183E+2 -8.7717847E+5 + #References = LogK/DGf: 98fel/dix; DHf/DHr: 82wag/eva; S°: Internal calculation; V°: Default value; + +Sr2SiO4 +Sr2SiO4 + 4.000H+ = 1.000H4SiO4 + 2.000Sr+2 + log_k 43.253 + #References = LogK/DGf: 82wag/eva; + #References = LogK/DGf: 82wag/eva; V°: Default value; + +Sr3(AsO4)2 +Sr3(AsO4)2 + 4.000H+ = 2.000H2AsO4- + 3.000Sr+2 + log_k 20.630 + #References = LogK/DGf: 01gas/aza; + #References = LogK/DGf: 01gas/aza; V°: Default value; + +Sr3(PO4)2 +Sr3(PO4)2 + 4.000H+ = 2.000H2PO4- + 3.000Sr+2 + log_k 10.530 + delta_h -147.900 #kJ/mol #06bla/ign + -analytic -2.2047977E+3 -3.3955304E-1 1.2658427E+5 7.9576591E+2 -6.8511138E+6 + #References = LogK/DGf: 06bla/ign; DHf/DHr: 06bla/ign; S°: Internal calculation; V°: Default value; + +Sr5(PO4)3(OH) +Sr5(PO4)3(OH) + 7.000H+ = 3.000H2PO4- + 5.000Sr+2 + 1.000H2O + log_k 7.171 + delta_h -261.630 #kJ/mol #95jem/che + -analytic -3.5037126E+3 -5.3365266E-1 2.0153503E+5 1.258938E+3 -1.0766742E+7 + #References = LogK/DGf: 05kin/par; DHf/DHr: 95jem/che; S°: Internal calculation; V°: Default value; + +SrCl2 +SrCl2 = 2.000Cl- + 1.000Sr+2 + log_k 8.644 + delta_h -59.210 #kJ/mol #98cha + -analytic -1.5278114E+3 -2.4779477E-1 8.7032436E+4 5.55833E+2 -5.0621001E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98cha; S°: 98cha; Cp: 98cha; V°: 01mer/vie; + +SrCl2:2H2O +SrCl2:2H2O = 2.000Cl- + 1.000Sr+2 + 2.000H2O + log_k 3.470 + delta_h -18.720 #kJ/mol #82wag/eva + -analytic -1.535214E+3 -2.4563477E-1 8.5215308E+4 5.5875189E+2 -5.0215008E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 82wag/eva; S°: 82wag/eva; Cp: 82wag/eva; V°: 01mer/vie; + +SrCl2:6H2O +SrCl2:6H2O = 2.000Cl- + 1.000Sr+2 + 6.000H2O + log_k 1.621 + delta_h 23.760 #kJ/mol #82wag/eva + -analytic -1.6486766E+3 -2.3890624E-1 8.7953959E+4 5.9877764E+2 -4.8987622E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 82wag/eva; S°: 82wag/eva; V°: 01mer/vie; + +SrCl2:H2O +SrCl2:H2O = 2.000Cl- + 1.000Sr+2 + 1.000H2O + log_k 4.910 + delta_h -34.090 #kJ/mol #82wag/eva + -analytic -1.5321006E+3 -2.4688805E-1 8.5890167E+4 5.5741804E+2 -5.044789E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 82wag/eva; S°: 82wag/eva; Cp: 82wag/eva; V°: 01mer/vie; + +SrCrO4 +SrCrO4 = 1.000CrO4-2 + 1.000Sr+2 + log_k -4.650 + delta_h -10.124 #kJ/mol #Internal calculation + -analytic -1.6563926E+3 -2.6000196E-1 9.1561204E+4 5.9947259E+2 -5.4395197E+6 + #References = LogK/DGf: 97smi/mar; DHf/DHr: Internal calculation; S°: 97smi/mar; V°: Default value; + +SrHPO4 +SrHPO4 + 1.000H+ = 1.000H2PO4- + 1.000Sr+2 + log_k 0.280 + delta_h -19.487 #kJ/mol #Internal calculation + -analytic -9.4351476E+2 -1.4553192E-1 5.2043824E+4 3.4175408E+2 -2.9351666E+6 + #References = LogK/DGf: 97smi/mar; DHf/DHr: Internal calculation; S°: 82wag/eva; V°: Default value; + +SrO +SrO + 2.000H+ = 1.000Sr+2 + 1.000H2O + log_k 41.977 + delta_h -244.690 #kJ/mol #98cha + -analytic -3.0548702E+2 -4.6169573E-2 2.929319E+4 1.1054806E+2 -9.3910125E+5 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98cha; S°: 98cha; Cp: 98cha; V°: 95rob/hem; + +SrS +SrS + 1.000H+ = 1.000HS- + 1.000Sr+2 + log_k 14.685 + delta_h -93.570 #kJ/mol #74nau/ryz + -analytic -9.4569551E+2 -1.4806485E-1 5.6587654E+4 3.4309608E+2 -3.0436321E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 74nau/ryz; S°: 82wag/eva; V°: 87pan/mah; + +SrSiO3 +SrSiO3 + 2.000H+ + 1.000H2O = 1.000H4SiO4 + 1.000Sr+2 + log_k 13.163 + delta_h -77.941 #kJ/mol #82wag/eva + -analytic -6.4877499E+2 -8.5691266E-2 4.3155067E+4 2.307548E+2 -2.5107164E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 82wag/eva; S°: 74nau/ryz; Cp: 74nau/ryz; V°: 94pan; + +Staurolite +Fe2Al9Si4O23(OH) + 31.000H+ = 9.000Al+3 + 2.000Fe+2 + 4.000H4SiO4 + 8.000H2O + log_k 216.340 + delta_h -1956.484 #kJ/mol #87woo/gar + -analytic -6.5297334E+3 -1.0061427E+0 4.5225123E+5 2.3281295E+3 -2.0588442E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 87woo/gar; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +Stellerite +Ca2Al4Si14O36:14H2O + 16.000H+ + 6.000H2O = 4.000Al+3 + 2.000Ca+2 + 14.000H4SiO4 + log_k 6.989 + delta_h -292.435 #kJ/mol #01fri/neu + -analytic -7.2181141E+3 -9.5602824E-1 4.4808837E+5 2.5546613E+3 -2.7921039E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 01fri/neu; S°: 01fri/neu; Cp: 01fri/neu; V°: 01fri/neu; + +Sterlinghillite +Mn3(AsO4)2:8H2O + 4.000H+ = 2.000H2AsO4- + 3.000Mn+2 + 8.000H2O + log_k 7.428 + #References = LogK/DGf: 01gas/aza; + #References = LogK/DGf: 01gas/aza; V°: 00bla/bid; + +Stibnite +Sb2S3 + 6.000H2O = 3.000HS- + 2.000Sb(OH)3 + 3.000H+ + log_k -56.207 + delta_h 309.255 #kJ/mol #Internal calculation + -analytic -1.3680519E+3 -2.5017937E-1 5.4369104E+4 5.0512051E+2 -4.0718841E+6 + #References = LogK/DGf: 03zot/shi; DHf/DHr: Internal calculation; S°: 03zot/shi; Cp: 03zot/shi; V°: 03zot/shi; + +Stilbite +NaCa2(Al5Si13)O36:16H2O + 20.000H+ = 5.000Al+3 + 2.000Ca+2 + 1.000Na+ + 13.000H4SiO4 + log_k 23.044 + delta_h -403.823 #kJ/mol #01fri/neu + -analytic -7.4700792E+3 -1.0099722E+0 4.6170528E+5 2.6510812E+3 -2.7934606E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 01fri/neu; S°: 01fri/neu; Cp: 01fri/neu; V°: 01fri/neu; + +Straetlingite +Ca2Al2SiO2(OH)10:2.5H2O + 10.000H+ = 2.000Al+3 + 2.000Ca+2 + 1.000H4SiO4 + 10.500H2O + log_k 49.671 + delta_h -406.014 #kJ/mol #Internal calculation + -analytic -1.8830104E+3 -2.7529055E-1 1.2215595E+5 6.7447093E+2 -5.6792627E+6 + #References = LogK/DGf: 10bbla/bou; DHf/DHr: Internal calculation; S°: 10bbla/bou; Cp: 10bbla/bou; V°: 90rin/sac; + +Strengite +FePO4:2H2O + 2.000H+ = 1.000Fe+3 + 1.000H2PO4- + 2.000H2O + log_k -5.251 + delta_h -34.799 #kJ/mol #Internal calculation + -analytic -1.0756044E+3 -1.7187319E-1 5.8848892E+4 3.8841198E+2 -3.2786811E+6 + #References = LogK/DGf: 69wag/eva; DHf/DHr: Internal calculation; S°: 69wag/eva; Cp: 74nau/ryz,76wag/eva, 71par/wag; V°: 95rob/hem; + +Strontianite +SrCO3 + 1.000H+ = 1.000HCO3- + 1.000Sr+2 + log_k 1.057 + delta_h -15.067 #kJ/mol #Internal calculation + -analytic -8.6448147E+2 -1.3949607E-1 4.8173734E+4 3.1423274E+2 -2.8441186E+6 + #References = LogK/DGf: 84bus/plu; DHf/DHr: Internal calculation; S°: 84bus/plu; Cp: 06bla/ign; V°: 78hel/del; + +Sudoite +Mg2Al4Si3O10(OH)8 + 16.000H+ = 4.000Al+3 + 2.000Mg+2 + 3.000H4SiO4 + 6.000H2O + log_k 37.957 + delta_h -523.893 #kJ/mol #05vid/par + -analytic -3.8039833E+3 -5.6366499E-1 2.3506768E+5 1.3575717E+3 -1.2235862E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05vid/par; S°: 05vid/par; Cp: 05vid/par; V°: 05vid/par; + +Sudoite(Fe) +Fe2Al4Si3O10(OH)8 + 16.000H+ = 4.000Al+3 + 2.000Fe+2 + 3.000H4SiO4 + 6.000H2O + log_k 36.169 + delta_h -512.393 #kJ/mol #98hol/pow + -analytic -3.7175132E+3 -5.5966294E-1 2.2968738E+5 1.32784E+3 -1.204357E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98hol/pow; S°: 98hol/pow; Cp: 98hol/pow; V°: 98hol/pow; + +Svanbergite +SrAl3(PO4)(SO4)(OH)6 + 8.000H+ = 3.000Al+3 + 1.000H2PO4- + 1.000SO4-2 + 1.000Sr+2 + 6.000H2O + log_k 7.747 + delta_h -301.843 #kJ/mol #Internal calculation + -analytic -3.8171949E+3 -5.9863034E-1 2.1835867E+5 1.3746361E+3 -1.1591927E+7 + #References = LogK/DGf: 04gab/vie; DHf/DHr: Internal calculation; S°: 04gab/vie; Cp: 04gab/vie; V°: 04gab/vie; + +Sylvite +KCl = 1.000Cl- + 1.000K+ + log_k 0.872 + delta_h 17.460 #kJ/mol #98cha + -analytic -6.8750501E+2 -1.1145941E-1 3.7309485E+4 2.5158262E+2 -2.3159492E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98cha; S°: 78hel/del, 98cha; Cp: 98cha; V°: 78hel/del; + +Symplesite +Fe3(AsO4)2:8H2O + 4.000H+ = 2.000H2AsO4- + 3.000Fe+2 + 8.000H2O + log_k -1.562 + #References = LogK/DGf: 01gas/aza; + #References = LogK/DGf: 01gas/aza; V°: 00bla/bid; + +Syngenite +K2Ca(SO4)2:6H2O = 1.000Ca+2 + 2.000K+ + 2.000SO4-2 + 6.000H2O + log_k -7.444 + #References = LogK/DGf: 84har/mol; + #References = LogK/DGf: 84har/mol; V°: 63wyc; + +Szomolnokite +FeSO4:H2O = 1.000Fe+2 + 1.000SO4-2 + 1.000H2O + log_k -1.657 + delta_h -41.470 #kJ/mol #02hem/sea + -analytic -1.71659E+3 -2.6444535E-1 9.6029771E+4 6.1988501E+2 -5.5267753E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 02hem/sea; S°: 02hem/sea; V°: 95rob/hem; + +Tachyhydrite +Mg2CaCl6:12H2O = 1.000Ca+2 + 6.000Cl- + 2.000Mg+2 + 12.000H2O + log_k 17.392 + #References = LogK/DGf: 84har/mol; + #References = LogK/DGf: 84har/mol; V°: 63wyc; + +Talc +Mg3Si4O10(OH)2 + 6.000H+ + 4.000H2O = 3.000Mg+2 + 4.000H4SiO4 + log_k 24.932 + delta_h -201.024 #kJ/mol #01kal/mar + -analytic -2.4241826E+3 -3.2073548E-1 1.5435753E+5 8.6054525E+2 -9.0972202E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 01kal/mar; S°: 63rob/sto; Cp: 79kru/rob; V°: 78hel/del; + +Tarbuttite +Zn2(PO4)OH + 3.000H+ = 1.000H2PO4- + 2.000Zn+2 + 1.000H2O + log_k 8.240 + #References = LogK/DGf: 84nri; + #References = LogK/DGf: 84nri; V°: 63wyc; + +Tenorite +CuO + 2.000H+ = 1.000Cu+2 + 1.000H2O + log_k 7.641 + delta_h -64.396 #kJ/mol #Internal calculation + -analytic -3.3656488E+2 -5.1335422E-2 2.073181E+4 1.2139698E+2 -9.25576E+5 + #References = LogK/DGf: 07pow/bro; DHf/DHr: Internal calculation; S°: 98cha; Cp: 98cha; V°: 84pan; + +Thaumasite +CaSiO3CaSO4CaCO3:15H2O + 3.000H+ = 1.000HCO3- + 3.000Ca+2 + 1.000SO4-2 + 1.000H4SiO4 + 14.000H2O + log_k 10.314 + delta_h -6.676 #kJ/mol #Internal calculation + -analytic -3.0528975E+3 -4.6537E-1 1.6935031E+5 1.1096389E+3 -9.9357013E+6 + #References = LogK/DGf: 10bbla/bou; DHf/DHr: Internal calculation; S°: 08sch/lot; Cp: 08sch/lot; V°: 10bbla/bou; + +Thenardite +Na2SO4 = 2.000Na+ + 1.000SO4-2 + log_k -0.340 + delta_h -2.461 #kJ/mol #98cha + -analytic -1.6163229E+3 -2.5323852E-1 8.9802804E+4 5.8641201E+2 -5.4004694E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98cha; S°: 98cha; Cp: 98cha; V°: 95rob/hem; + +Thermonatrite +Na2CO3:H2O + 1.000H+ = 1.000HCO3- + 2.000Na+ + 1.000H2O + log_k 10.808 + delta_h -26.740 #kJ/mol #82van + -analytic -8.5085649E+2 -1.2741559E-1 4.8473539E+4 3.1022149E+2 -2.7157318E+6 + #References = LogK/DGf: 84har/mol; DHf/DHr: 82van; S°: Internal calculation; Cp: 82van; V°: 95rob/hem; + +Thorianite +ThO2 + 4.000H+ = 1.000Th+4 + 2.000H2O + log_k 1.762 + delta_h -113.777 #kJ/mol #89cox/wag + -analytic -5.6583558E+2 -9.2404587E-2 3.2187789E+4 2.0247106E+2 -1.2277684E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 91kna/kub; V°: 95rob/hem; + +Titanite +CaTiSiO5 + 2.000H+ + 3.000H2O = 1.000Ca+2 + 1.000H4SiO4 + 1.000Ti(OH)4 + log_k 0.987 + delta_h -60.702 #kJ/mol #Internal calculation + -analytic -1.1182222E+3 -1.2215084E-1 6.4584624E+4 3.9390971E+2 -3.1728605E+6 + #References = LogK/DGf: 78rob/hem,92cjoh; DHf/DHr: Internal calculation; S°: 78rob/hem,92cjoh; Cp: 78rob/hem,92cjoh; V°: 78rob/hem,92cjoh; + +Tl(OH)3 +Tl(OH)3 + 3.000H+ = 1.000Tl+3 + 3.000H2O + log_k -1.817 + #References = LogK/DGf: 52lat; + #References = LogK/DGf: 52lat; V°: Default value; + +Tl2CO3 +Tl2CO3 + 1.000H+ = 1.000HCO3- + 2.000Tl+ + log_k 6.531 + delta_h 20.627 #kJ/mol #84pan/stu + -analytic -7.2445801E+2 -1.1510541E-1 3.9838967E+4 2.6655188E+2 -2.4782051E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 84pan/stu; S°: 84pan/stu; Cp: 84pan/stu; V°: 84pan/stu; + +Tl2O +Tl2O + 2.000H+ = 2.000Tl+ + 1.000H2O + log_k 27.771 + delta_h -106.097 #kJ/mol #84pan/stu + -analytic -1.5896535E+2 -2.1453453E-2 1.5819395E+4 5.9637349E+1 -6.6619937E+5 + #References = LogK/DGf: Internal calculation; DHf/DHr: 84pan/stu; S°: 84pan/stu; Cp: 84pan/stu; V°: 84pan/stu; + +Tl2O3 +Tl2O3 + 6.000H+ = 2.000Tl+3 + 3.000H2O + log_k -5.204 + delta_h -69.882 #kJ/mol #84pan/stu + -analytic -8.4542229E+2 -1.3480133E-1 4.4570052E+4 3.0451378E+2 -2.0070973E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 84pan/stu; S°: 84pan/stu; Cp: 84pan/stu; V°: 84pan/stu; + +Tl2S +Tl2S + 1.000H+ = 1.000HS- + 2.000Tl+ + log_k -7.145 + delta_h 86.447 #kJ/mol #84pan/stu + -analytic -7.7798985E+2 -1.2228106E-1 3.9977646E+4 2.8460764E+2 -2.758022E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 84pan/stu; S°: 84pan/stu; Cp: 84pan/stu; V°: 84pan/stu; + +Tl2SO4 +Tl2SO4 = 1.000SO4-2 + 2.000Tl+ + log_k -3.841 + delta_h 33.555 #kJ/mol #84pan/stu + -analytic -1.4949765E+3 -2.3643296E-1 8.253568E+4 5.4293922E+2 -5.2150211E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 84pan/stu; S°: 84pan/stu; Cp: 84pan/stu; V°: 84pan/stu; + +TlOH +TlOH + 1.000H+ = 1.000Tl+ + 1.000H2O + log_k 12.899 + delta_h -41.580 #kJ/mol #82wag/eva + -analytic -8.6203605E+1 -9.6627866E-3 7.6975327E+3 3.2277779E+1 -3.2919952E+5 + #References = LogK/DGf: Internal calculation; DHf/DHr: 82wag/eva; S°: 82wag/eva; Cp: 82wag/eva; V°: 17abla; + +Tobermorite(11A) +Ca5Si6H11O22.5 + 10.000H+ + 1.500H2O = 5.000Ca+2 + 6.000H4SiO4 + log_k 65.578 + delta_h -358.501 #kJ/mol #00zue/feh + -analytic -3.473201E+3 -4.5588943E-1 2.2749211E+5 1.2371653E+3 -1.3297952E+7 + #References = LogK/DGf: 10abla/bou; DHf/DHr: 00zue/feh; S°: Internal calculation; Cp: 10abla/bou; V°: 00mer/bon; + +Tobermorite(14A) +Ca5Si6H21O27.5 + 10.000H+ = 5.000Ca+2 + 6.000H4SiO4 + 3.500H2O + log_k 62.944 + delta_h -293.421 #kJ/mol #10abla/bou + -analytic -3.4830146E+3 -4.4941621E-1 2.246166E+5 1.2426661E+3 -1.3183989E+7 + #References = LogK/DGf: 10abla/bou; DHf/DHr: 10abla/bou; S°: Internal calculation; Cp: 10abla/bou; V°: 10abla/bou; + +Tremolite +(Ca2Mg5)Si8O22(OH)2 + 14.000H+ + 8.000H2O = 2.000Ca+2 + 5.000Mg+2 + 8.000H4SiO4 + log_k 67.281 + delta_h -502.247 #kJ/mol #95rob/hem + -analytic -5.0977019E+3 -6.8545317E-1 3.2680746E+5 1.8129659E+3 -1.8919407E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 95rob/hem; S°: 95rob/hem; Cp: 95rob/hem; V°: 78hel/del,92ajoh; + +Troilite +FeS + 1.000H+ = 1.000Fe+2 + 1.000HS- + log_k -3.874 + delta_h -6.179 #kJ/mol #05wal/pel + -analytic -1.1310855E+3 -1.8225687E-1 6.1072624E+4 4.1080902E+2 -3.5386157E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05wal/pel; S°: 05wal/pel; Cp: 05wal/pel; V°: 63wyc; + +Trona(K) +K2NaH(CO3)2:2H2O + 1.000H+ = 2.000HCO3- + 2.000K+ + 1.000Na+ + 2.000H2O + log_k 11.556 + #References = LogK/DGf: 84har/mol; + #References = LogK/DGf: 84har/mol; V°: Default value; + +Trona(Na) +Na3H(CO3)2:2H2O + 1.000H+ = 2.000HCO3- + 3.000Na+ + 2.000H2O + log_k 9.276 + delta_h 9.560 #kJ/mol #82van + -analytic -1.5651037E+3 -2.3608538E-1 8.5975659E+4 5.7087653E+2 -4.9950918E+6 + #References = LogK/DGf: 84har/mol; DHf/DHr: 82van; S°: Internal calculation; Cp: 82van; V°: 95rob/hem; + +Truscottite +Ca7Si12O29(OH)4:H2O + 14.000H+ + 14.000H2O = 7.000Ca+2 + 12.000H4SiO4 + log_k 77.134 + delta_h -451.092 #kJ/mol #10abla/bou + -analytic -6.0499789E+3 -7.7969416E-1 3.9492302E+5 2.1453496E+3 -2.4314793E+7 + #References = LogK/DGf: 10abla/bou; DHf/DHr: 10abla/bou; S°: Internal calculation; Cp: 10abla/bou; V°: 95ant/bid; + +Tsumebite +Pb2Cu(PO4)(SO4)OH + 3.000H+ = 1.000Cu+2 + 1.000H2PO4- + 2.000Pb+2 + 1.000SO4-2 + 1.000H2O + log_k -66.023 + #References = LogK/DGf: 78ric/nri; + #References = LogK/DGf: 78ric/nri; V°: 63wyc; + +U3O8 +U3O8 + 4.000H+ = 2.000UO2+ + 1.000UO2+2 + 2.000H2O + log_k -3.596 + delta_h -66.279 #kJ/mol #89cox/wag + -analytic -6.3791854E+2 -1.064687E-1 3.7678137E+4 2.2772712E+2 -2.115901E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 89bar/sau; V°: 95rob/hem; + +Ulvospinel +Fe2TiO4 + 4.000H+ = 2.000Fe+2 + 1.000Ti(OH)4 + log_k 16.405 + delta_h -201.464 #kJ/mol #Internal calculation + -analytic -1.1197988E+3 -1.3358889E-1 6.8782645E+4 3.9491461E+2 -2.8317245E+6 + #References = LogK/DGf: 95rob/hem; DHf/DHr: Internal calculation; S°: 95rob/hem; Cp: 95rob/hem; V°: 95rob/hem; + +UO3(gamma) +UO3 + 2.000H+ = 1.000UO2+2 + 1.000H2O + log_k 7.712 + delta_h -81.129 #kJ/mol #89cox/wag + -analytic -2.269251E+2 -3.9352914E-2 1.4461672E+4 8.2058913E+1 -4.6082093E+5 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 89cox/wag; V°: 95rob/hem; + +Uraninite +UO2 + 4.000H+ = 1.000U+4 + 2.000H2O + log_k -4.839 + delta_h -77.857 #kJ/mol #Internal calculation + -analytic -5.6919348E+2 -9.2992713E-2 3.0455139E+4 2.0361233E+2 -1.2349132E+6 + #References = LogK/DGf: 97csho/sas; DHf/DHr: Internal calculation; S°: 97csho/sas; Cp: 97csho/sas; V°: 95rob/hem; + +Valentinite +Sb2O3 + 3.000H2O = 2.000Sb(OH)3 + log_k -8.516 + delta_h 57.242 #kJ/mol #Internal calculation + -analytic 1.8630582E+2 1.7323698E-2 -1.7580045E+4 -6.245816E+1 1.2023398E+6 + #References = LogK/DGf: 03zot/shi; DHf/DHr: Internal calculation; S°: 03zot/shi; Cp: 03zot/shi; V°: 03zot/shi; + +Variscite +AlPO4:2H2O + 2.000H+ = 1.000Al+3 + 1.000H2PO4- + 2.000H2O + log_k -2.158 + delta_h -59.250 #kJ/mol #Internal calculation + -analytic -1.069096E+3 -1.7322356E-1 5.9751042E+4 3.8601185E+2 -3.2874639E+6 + #References = LogK/DGf: 74nau/ryz; DHf/DHr: Internal calculation; S°: 66ega/wak; Cp: 74nau/ryz; V°: 63wyc; + +Vaterite +CaCO3 + 1.000H+ = 1.000HCO3- + 1.000Ca+2 + log_k 2.427 + delta_h -29.630 #kJ/mol #87gar/par + -analytic -8.8571443E+2 -1.3868709E-1 4.9073483E+4 3.2145911E+2 -2.7141083E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 87gar/par; S°: 87gar/par; V°: 95rob/hem; + +VermiculiteSO +Ca0.445(Si2.778Al1.222)(Al0.216Mg2.475Fe0.254)O10(OH)2 + 10.888H+ = 1.438Al+3 + 0.445Ca+2 + 0.226Fe+3 + 2.475Mg+2 + 2.778H4SiO4 + 0.028Fe+2 + 0.888H2O + log_k 45.904 + delta_h -457.396 #kJ/mol #13gai/bla + -analytic -2.8715623E+3 -4.1270713E-1 1.8439849E+5 1.0227505E+3 -9.6618206E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 13gai/bla; S°: 13gai/bla; Cp: 13gai/bla; V°: 13gai/bla; + +Vermiculite(Ca) +Ca0.43Mg3.00Si3.14Al0.86O10(OH)2 + 9.440H+ + 0.560H2O = 0.860Al+3 + 0.430Ca+2 + 3.000Mg+2 + 3.140H4SiO4 + log_k 39.563 + delta_h -370.212 #kJ/mol #15bla/vie + -analytic -2.7557327E+3 -3.7804175E-1 1.7755183E+5 9.7871075E+2 -9.7123719E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Vermiculite(K) +K0.86Mg3.00Si3.14Al0.86O10(OH)2 + 9.440H+ + 0.560H2O = 0.860Al+3 + 0.860K+ + 3.000Mg+2 + 3.140H4SiO4 + log_k 37.461 + delta_h -328.213 #kJ/mol #15bla/vie + -analytic -2.6971221E+3 -3.6798347E-1 1.7277164E+5 9.5883004E+2 -9.5777409E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Vermiculite(Mg) +Mg0.43Mg3.00Si3.14Al0.86O10(OH)2 + 9.440H+ + 0.560H2O = 0.860Al+3 + 3.430Mg+2 + 3.140H4SiO4 + log_k 38.058 + delta_h -372.482 #kJ/mol #15bla/vie + -analytic -2.7903207E+3 -3.8203185E-1 1.7949836E+5 9.9037974E+2 -9.8128256E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Vermiculite(Na) +Na0.86Mg3.00Si3.14Al0.86O10(OH)2 + 9.440H+ + 0.560H2O = 0.860Al+3 + 3.000Mg+2 + 0.860Na+ + 3.140H4SiO4 + log_k 38.405 + delta_h -348.215 #kJ/mol #15bla/vie + -analytic -2.7525898E+3 -3.7392402E-1 1.7669205E+5 9.7768226E+2 -9.7212455E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 15bla/vie; S°: 15bla/vie; Cp: 15bla/vie; V°: 15bla/vie; + +Vivianite +Fe3(PO4)2:8H2O + 4.000H+ = 3.000Fe+2 + 2.000H2PO4- + 8.000H2O + log_k -3.272 + #References = LogK/DGf: 94alb/tom; + #References = LogK/DGf: 94alb/tom; V°: 63wyc; + +Voltaite +K2Fe9(SO4)12:18H2O = 5.000Fe+2 + 2.000K+ + 12.000SO4-2 + 4.000Fe+3 + 18.000H2O + log_k -38.234 + delta_h -347.300 #kJ/mol #02hem/sea + -analytic -2.1081148E+4 -3.2380273E+0 1.1674091E+6 7.6171622E+3 -6.7145558E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 02hem/sea; S°: 02hem/sea; V°: Default value; + +Vysotskite +PdS + 1.000H+ = 1.000Pd+2 + 1.000HS- + log_k -44.806 + delta_h 232.566 #kJ/mol #Internal calculation + -analytic -9.6498826E+2 -1.552161E-1 3.9896683E+4 3.5036221E+2 -3.0492371E+6 + #References = LogK/DGf: 98sas/sho; DHf/DHr: Internal calculation; S°: 98sas/sho; Cp: 98sas/sho; V°: 98sas/sho; + +Wairakite +Ca(Al2Si4)O12:2H2O + 8.000H+ + 2.000H2O = 2.000Al+3 + 1.000Ca+2 + 4.000H4SiO4 + log_k 14.444 + delta_h -236.884 #kJ/mol #96kis/nav + -analytic -2.659569E+3 -3.7206038E-1 1.6652132E+5 9.4388262E+2 -9.7025546E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 96kis/nav; S°: 96kis/nav; Cp: 07neu/wan; V°: 97coo/alb; + +Wavellite +Al3(PO4)2(OH)3:5H2O + 7.000H+ = 3.000Al+3 + 2.000H2PO4- + 8.000H2O + log_k 12.157 + #References = LogK/DGf: 79vie/tar; + #References = LogK/DGf: 79vie/tar; V°: 63wyc; + +Waylandite +BiAl3(PO4)2(OH)6 + 10.000H+ = 3.000Al+3 + 1.000Bi+3 + 2.000H2PO4- + 6.000H2O + log_k 10.927 + #References = LogK/DGf: 04gab/vie; + #References = LogK/DGf: 04gab/vie; V°: Default value; + +Weillite +CaHAsO4 + 1.000H+ = 1.000H2AsO4- + 1.000Ca+2 + log_k 2.360 + #References = LogK/DGf: 01gas/aza; + #References = LogK/DGf: 01gas/aza; V°: 00bla/bid; + +Westerveldite +FeAs + 2.000H+ + 0.500H2O = 1.000AsH3 + 1.000Fe+2 + 0.250O2 + log_k -30.680 + delta_h 161.563 #kJ/mol #Internal calculation + -analytic -1.3332249E+2 -2.0499916E-2 -3.2509983E+3 4.8822128E+1 -1.0207523E+5 + #References = LogK/DGf: 08per/pok; DHf/DHr: Internal calculation; S°: 08per/pok; Cp: 08per/pok; V°: 08per/pok; + +Whitlockite(high) +Ca3(PO4)2 + 4.000H+ = 3.000Ca+2 + 2.000H2PO4- + log_k 10.120 + delta_h -124.730 #kJ/mol #Internal calculation + -analytic -1.9939171E+3 -3.2961925E-1 1.1275179E+5 7.2498167E+2 -6.2028155E+6 + #References = LogK/DGf: 84nan; DHf/DHr: Internal calculation; S°: 84nan; Cp: 60kel; V°: 95rob/hem; + +Whitlockite(low) +Ca3(PO4)2 + 4.000H+ = 3.000Ca+2 + 2.000H2PO4- + log_k 8.393 + delta_h -113.380 #kJ/mol #71par/wag + -analytic -1.987741E+3 -3.2533142E-1 1.1250341E+5 7.2185701E+2 -6.2576605E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 71par/wag; S°: 71par/wag; Cp: 60kel; V°: 95rob/hem; + +Wollastonite +CaSiO3 + 2.000H+ + 1.000H2O = 1.000Ca+2 + 1.000H4SiO4 + log_k 14.047 + delta_h -85.986 #kJ/mol #78hel/del,92ajoh + -analytic -6.3184784E+2 -8.6944016E-2 4.1722732E+4 2.2563038E+2 -2.3494013E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 78hel/del,92ajoh; S°: 78hel/del,92ajoh; Cp: 78hel/del,92ajoh; V°: 78hel/del,92ajoh; + +Woodhouseite +CaAl3(PO4)(SO4)(OH)6 + 8.000H+ = 3.000Al+3 + 1.000Ca+2 + 1.000H2PO4- + 1.000SO4-2 + 6.000H2O + log_k 8.893 + #References = LogK/DGf: 04gab/vie; + #References = LogK/DGf: 04gab/vie; V°: Default value; + +Wurtzite +ZnS + 1.000H+ = 1.000HS- + 1.000Zn+2 + log_k -9.198 + delta_h 22.250 #kJ/mol #Internal calculation + -analytic -9.7140397E+2 -1.5442373E-1 5.1494768E+4 3.5177355E+2 -3.1030426E+6 + #References = LogK/DGf: 78hel/del; DHf/DHr: Internal calculation; S°: 78hel/del; Cp: 78hel/del; V°: 78hel/del; + +Wustite +Fe0.947O + 2.000H+ = 0.841Fe+2 + 0.106Fe+3 + 1.000H2O + log_k 12.240 + delta_h -100.444 #kJ/mol #98cha + -analytic -3.339745E+2 -5.2002139E-2 2.2588799E+4 1.1992389E+2 -9.5903287E+5 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98cha; S°: 98cha; Cp: 98cha; V°: 95rob/hem; + +Xonotlite +Ca6Si6O17(OH)2 + 12.000H+ + 5.000H2O = 6.000Ca+2 + 6.000H4SiO4 + log_k 91.335 + delta_h -559.866 #kJ/mol #56new + -analytic -3.8251338E+3 -5.1722865E-1 2.5680809E+5 1.3628531E+3 -1.448512E+7 + #References = LogK/DGf: 10abla/bou; DHf/DHr: 56new; S°: Internal calculation; Cp: 10abla/bou; V°: 56den/tay; + +Yavapaiite +KFe(SO4)2 = 1.000Fe+3 + 1.000K+ + 2.000SO4-2 + log_k -5.569 + delta_h -77.020 #kJ/mol #05for/dro + -analytic -3.3189727E+3 -5.2021275E-1 1.8590158E+5 1.19909E+3 -1.0852279E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 05for/dro; S°: 05for/dro; V°: 90rob/cam; + +Zairite +BiFe3(PO4)2(OH)6 + 10.000H+ = 1.000Bi+3 + 3.000Fe+3 + 2.000H2PO4- + 6.000H2O + log_k -3.680 + #References = LogK/DGf: 04gab/vie; + #References = LogK/DGf: 04gab/vie; V°: Default value; + +ZeoliteP(Ca) +Ca2Al4Si4O16:9H2O + 16.000H+ = 4.000Al+3 + 2.000Ca+2 + 4.000H4SiO4 + 9.000H2O + log_k 45.159 + delta_h -527.740 #kJ/mol #10bbla/bou + -analytic -3.9631092E+3 -5.6691115E-1 2.5021425E+5 1.4103537E+3 -1.349029E+7 + #References = LogK/DGf: 08bla; DHf/DHr: 10bbla/bou; S°: Internal calculation; Cp: 10vie; V°: 97coo/alb; + +Zincite +ZnO + 2.000H+ = 1.000Zn+2 + 1.000H2O + log_k 11.193 + delta_h -88.728 #kJ/mol #13pow/bro + -analytic -3.4633277E+2 -5.231005E-2 2.2726463E+4 1.2447389E+2 -9.8716955E+5 + #References = LogK/DGf: Internal calculation; DHf/DHr: 13pow/bro; S°: 89cox/wag; Cp: 95rob/hem; V°: 95rob/hem; + +Zn3(PO4)2 +Zn3(PO4)2 + 4.000H+ = 2.000H2PO4- + 3.000Zn+2 + log_k 14.468 + delta_h -165.756 #kJ/mol #84vie/tar, after 74avol/yag + -analytic -2.3046635E+3 -3.5529587E-1 1.3201826E+5 8.3298135E+2 -7.0124985E+6 + #References = LogK/DGf: 84vie/tar,after 78yag; DHf/DHr: 84vie/tar, after 74avol/yag; S°: Internal calculation; V°: Default value; + +Zn3(PO4)2:2H2O +Zn3(PO4)2:2H2O + 4.000H+ = 2.000H2PO4- + 3.000Zn+2 + 2.000H2O + log_k 8.230 + delta_h -120.716 #kJ/mol #84vie/tar, after 78yag + -analytic -2.3562013E+3 -3.5545285E-1 1.3202018E+5 8.5130184E+2 -7.0118601E+6 + #References = LogK/DGf: 84vie/tar,after 78yag; DHf/DHr: 84vie/tar, after 78yag; S°: Internal calculation; V°: Default value; + +Zn3(PO4)2:H2O +Zn3(PO4)2:H2O + 4.000H+ = 2.000H2PO4- + 3.000Zn+2 + 1.000H2O + log_k 10.902 + delta_h -139.486 #kJ/mol #84vie/tar, after 78yag + -analytic -2.3302222E+3 -3.5537436E-1 1.3182335E+5 8.4214159E+2 -7.0121793E+6 + #References = LogK/DGf: 84vie/tar,after 78yag; DHf/DHr: 84vie/tar, after 78yag; S°: Internal calculation; V°: Default value; + +Zn5(PO4)3Cl +Zn5(PO4)3Cl + 6.000H+ = 1.000Cl- + 3.000H2PO4- + 5.000Zn+2 + log_k 24.843 + #References = LogK/DGf: 76nri; + #References = LogK/DGf: 76nri; V°: Default value; + +Zn5(PO4)3OH +Zn5(PO4)3OH + 7.000H+ = 3.000H2PO4- + 5.000Zn+2 + 1.000H2O + log_k 13.177 + #References = LogK/DGf: 84nri; + #References = LogK/DGf: 84nri; V°: Default value; + +ZnHPO4 +ZnHPO4 + 1.000H+ = 1.000H2PO4- + 1.000Zn+2 + log_k -2.333 + delta_h -80.033 #kJ/mol #Internal calculation + -analytic -9.9029332E+2 -1.5077953E-1 5.670674E+4 3.5415923E+2 -2.9889615E+6 + #References = LogK/DGf: 06pia/bod; DHf/DHr: Internal calculation; S°: 78hel/del,92ajoh; V°: Default value; + +ZnSiO3glass +ZnSiO3 + 2.000H+ + 1.000H2O = 1.000H4SiO4 + 1.000Zn+2 + log_k 1.758 + delta_h -89.311 #kJ/mol #Internal calculation + -analytic -7.6264982E+2 -9.6666895E-2 4.8514609E+4 2.6693933E+2 -2.668003E+6 + #References = LogK/DGf: 92plo/wic; DHf/DHr: Internal calculation; S°: 95rob/hem; V°: Default value; + +Zoisite +Ca2Al3Si3O12(OH) + 13.000H+ = 3.000Al+3 + 2.000Ca+2 + 3.000H4SiO4 + 1.000H2O + log_k 43.848 + delta_h -485.113 #kJ/mol #01sme/fra + -analytic -3.1722373E+3 -4.6912132E-1 2.0150433E+5 1.1315082E+3 -1.0643978E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 01sme/fra; S°: 04got; Cp: 04got; V°: 04got; + +Actinolite +Ca2(Mg2.25Fe2.5Al0.25)(Si7.75Al0.25)O22(OH)2 + 15.000H+ + 7.000H2O = 0.500Al+3 + 2.000Ca+2 + 2.500Fe+2 + 2.250Mg+2 + 7.750H4SiO4 + log_k 7.128 + delta_h -181.662 #kJ/mol #19bla/lac + -analytic -5.0954182E+3 -6.949504E-1 3.0825312E+5 1.8133351E+3 -1.8767155E+7 + #References = LogK/DGf: Internal calculation; DHf/DHr: 19bla/lac; S°: 19bla/lac; Cp: 19bla/lac; V°: 19bla/lac; + +Zn(OH)2_e +Zn(OH)2 + 2.000H+ = 1.000Zn+2 + 2.000H2O + log_k 11.382 + delta_h -100.000 #kJ/mol #13pow/bro + -analytic -4.0154128E+2 -5.3893789E-2 2.5885353E+4 1.4298338E+2 -1.0339371E+6 + #References = LogK/DGf: 13pow/bro; DHf/DHr: 13pow/bro; S°: Internal calculation; V°: Default value; + +Zn(OH)2_b1 +Zn(OH)2 + 2.000H+ = 1.000Zn+2 + 2.000H2O + log_k 11.722 + #References = LogK/DGf: 13pow/bro; + #References = LogK/DGf: 13pow/bro; V°: Default value; + +Zn(OH)2_b2 +Zn(OH)2 + 2.000H+ = 1.000Zn+2 + 2.000H2O + log_k 11.762 + #References = LogK/DGf: 13pow/bro; + #References = LogK/DGf: 13pow/bro; V°: Default value; + +Zn(OH)2_g +Zn(OH)2 + 2.000H+ = 1.000Zn+2 + 2.000H2O + log_k 11.702 + #References = LogK/DGf: 13pow/bro; + #References = LogK/DGf: 13pow/bro; V°: Default value; + +Zn(OH)2_d +Zn(OH)2 + 2.000H+ = 1.000Zn+2 + 2.000H2O + log_k 11.812 + #References = LogK/DGf: 13pow/bro; + #References = LogK/DGf: 13pow/bro; V°: Default value; + +Hydrozincite +Zn5(OH)6(CO3)2 + 8.000H+ = 2.000HCO3- + 5.000Zn+2 + 6.000H2O + log_k 26.856 + delta_h -277.767 #kJ/mol #13pow/bro + -analytic -2.9831904E+3 -4.658426E-1 1.7180254E+5 1.0796095E+3 -8.7750572E+6 + #References = LogK/DGf: 13pow/bro; DHf/DHr: 13pow/bro; S°: Internal calculation; Cp: 01pre/gam; V°: 63wyc; + +Hydrozincite(mc) +Zn5(OH)6(CO3)2 + 8.000H+ = 2.000HCO3- + 5.000Zn+2 + 6.000H2O + log_k 29.706 + delta_h -277.767 #kJ/mol #13pow/bro + -analytic -2.9803404E+3 -4.658426E-1 1.7180254E+5 1.0796095E+3 -8.7750572E+6 + #References = LogK/DGf: 13pow/bro; DHf/DHr: 13pow/bro; S°: Internal calculation; Cp: 01pre/gam; V°: 63wyc; + +Hopeite(para) +Zn3(PO4)2:4H2O + 4.000H+ = 2.000H2PO4- + 3.000Zn+2 + 4.000H2O + log_k 10.208 + delta_h -130.926 #kJ/mol #84vie/tar + -analytic -2.3043984E+3 -3.3859121E-1 1.2947956E+5 8.3124079E+2 -6.7177024E+6 + #References = LogK/DGf: 84vie/tar; DHf/DHr: 84vie/tar; S°: Internal calculation; V°: 63wyc; + + + + +# PMATCH GASES + +Ar(g) +Ar = 1.000Ar + log_k -2.853 + delta_h -12.011 #kJ/mol #Internal calculation + -analytic 1.0247144E+2 2.1560163E-2 -6.0959431E+3 -3.9305133E+1 5.2903083E+5 + #References = S°: 89cox/wag; Cp: 89cox/wag; V°: 18sig; + +Br2(g) +Br2 + 2.500O2 + 1.000H2O = 2.000BrO3- + 2.000H+ + log_k -40.272 + delta_h 151.078 #kJ/mol #89cox/wag + -analytic -1.4934932E+3 -2.4330708E-1 7.9796062E+4 5.3553448E+2 -5.9575741E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 89cox/wag; V°: Default value; + +CH4(g) +CH4 = 1.000CH4 + log_k -2.852 + delta_h -13.033 #kJ/mol #98cha + -analytic 2.1637472E+2 3.7708343E-2 -1.3407085E+4 -7.9787987E+1 1.0603213E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 98cha; S°: 98cha; Cp: 98cha; V°: 18sig; + +Cl2(g) +Cl2 + 1.500O2 + 1.000H2O = 2.000ClO2- + 2.000H+ + log_k -43.202 + delta_h 170.910 #kJ/mol #By convention + -analytic -1.4601846E+3 -2.3497967E-1 7.4365808E+4 5.2470839E+2 -5.3993088E+6 + #References = S°: 89cox/wag; Cp: 89cox/wag; V°: Default value; + +CO(g) +CO = 1.000CO + log_k -3.028 + delta_h -10.429 #kJ/mol #89cox/wag + -analytic 2.0392287E+2 3.3602805E-2 -1.3511248E+4 -7.4398193E+1 1.1059156E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 89cox/wag; V°: 18sig; + +CO2(g) +CO2 + 1.000H2O = 1.000HCO3- + 1.000H+ + log_k -7.821 + delta_h -10.590 #kJ/mol #89cox/wag + -analytic -5.7507055E+2 -9.3141147E-2 3.1611113E+4 2.061746E+2 -1.8818659E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 89cox/wag; V°: 18sig; + +F2(g) +F2 + 1.000H2O = 2.000F- + 0.500O2 + 2.000H+ + log_k 55.651 + delta_h -390.937 #kJ/mol #By convention + -analytic -1.2945503E+3 -2.073214E-1 8.9896765E+4 4.6733048E+2 -4.0784041E+6 + #References = S°: 89cox/wag; Cp: 89cox/wag; V°: Default value; + +H2(g) +H2 + 0.500O2 = 1.000H2O + log_k 43.001 + delta_h -279.763 #kJ/mol #By convention + -analytic -9.7000832E+1 -1.3278572E-2 2.0554694E+4 3.2310915E+1 -4.3832674E+5 + #References = S°: 89cox/wag; Cp: 89cox/wag; V°: 18sig; + +H2O(g) +H2O = 1.000H2O + log_k 1.506 + delta_h -44.004 #kJ/mol #89cox/wag + -analytic -2.3213898E+1 -4.7007593E-4 3.0569287E+3 5.9253123E+0 -4.8803037E+3 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 89cox/wag; V°: Default value; + +H2S(g) +H2S = 1.000HS- + 1.000H+ + log_k -7.998 + delta_h 4.300 #kJ/mol #89cox/wag + -analytic -7.7127715E+2 -1.2255518E-1 4.1397856E+4 2.7827756E+2 -2.4543375E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 89cox/wag; V°: 18sig; + +HCl(g) +HCl = 1.000Cl- + 1.000H+ + log_k 6.299 + delta_h -74.770 #kJ/mol #89cox/wag + -analytic -6.3720253E+2 -1.0269569E-1 3.8570655E+4 2.2966638E+2 -2.0926463E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 89cox/wag; V°: Default value; + +He(g) +He = 1.000He + log_k -3.409 + delta_h -0.634 #kJ/mol #By convention + -analytic 1.0815628E+2 2.2564863E-2 -6.7331757E+3 -4.1022233E+1 5.1535315E+5 + #References = S°: 89cox/wag; Cp: 89cox/wag; V°: Default value; + +Hg(CH3)2(g) +Hg(CH3)2 + 2.000H+ = 1.000Hg+2 + 2.000CH4 + log_k 8.824 + delta_h -99.993 #kJ/mol #82wag/eva + -analytic 1.1863116E+2 2.4722443E-2 -6.5144924E+3 -4.4108004E+1 1.2279784E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 82wag/eva; S°: 82wag/eva; Cp: 82wag/eva; V°: Default value; + +Hg(g) +Hg = 1.000Hg + log_k -0.918 + delta_h -48.877 #kJ/mol #89cox/wag + -analytic 1.4728083E+2 2.7804157E-2 -1.0282255E+4 -5.4874827E+1 1.2251378E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 89cox/wag; V°: Default value; + +I2(g) +I2 + 2.500O2 + 1.000H2O = 2.000IO3- + 2.000H+ + log_k 13.953 + delta_h -188.798 #kJ/mol #89cox/wag + -analytic -1.574445E+3 -2.5535266E-1 1.0104771E+5 5.6345195E+2 -6.0989611E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 89cox/wag; V°: Default value; + +Kr(g) +Kr = 1.000Kr + log_k -2.599 + delta_h -15.265 #kJ/mol #By convention + -analytic 1.5418658E+2 2.7181652E-2 -1.0135989E+4 -5.6952629E+1 8.9175105E+5 + #References = S°: 89cox/wag; Cp: 89cox/wag; V°: Default value; + +N2(g) +N2 = 1.000N2 + log_k -3.181 + delta_h -10.374 #kJ/mol #By convention + -analytic 1.9129523E+2 3.2723886E-2 -1.2195873E+4 -7.0432157E+1 9.7360057E+5 + #References = S°: 89cox/wag; Cp: 89cox/wag; V°: 18sig; + +Ne(g) +Ne = 1.000Ne + log_k -3.340 + delta_h -3.645 #kJ/mol #By convention + -analytic 1.0930207E+2 2.2477932E-2 -6.8539283E+3 -4.1431746E+1 5.4794274E+5 + #References = S°: 89cox/wag; Cp: 89cox/wag; V°: Default value; + +NH3(g) +NH3 = 1.000NH3 + log_k 1.810 + delta_h -35.627 #kJ/mol #89cox/wag + -analytic -1.0678705E+2 -7.8888089E-3 8.4083244E+3 3.5264156E+1 -4.0102535E+5 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 89cox/wag; V°: Default value; + +O2(g) +O2 = 1.000O2 + log_k -2.893 + delta_h -12.134 #kJ/mol #By convention + -analytic 1.7801783E+2 3.0292392E-2 -1.1471729E+4 -6.5497059E+1 9.4241338E+5 + #References = S°: 89cox/wag; Cp: 89cox/wag; V°: 18sig; + +S2(g) +S2 + 2.000H2O = 2.000HS- + 1.000O2 + 2.000H+ + log_k -76.315 + delta_h 398.326 #kJ/mol #89cox/wag + -analytic -1.1105401E+3 -1.797198E-1 3.8238562E+4 4.0321915E+2 -3.3942654E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 89cox/wag; V°: Default value; + +SO2(g) +SO2 + 1.000H2O = 1.000SO3-2 + 2.000H+ + log_k -8.936 + delta_h -48.420 #kJ/mol #89cox/wag + -analytic -9.4894252E+2 -1.528595E-1 5.5815518E+4 3.3827315E+2 -3.4365885E+6 + #References = LogK/DGf: Internal calculation; DHf/DHr: 89cox/wag; S°: 89cox/wag; Cp: 89cox/wag; V°: 18sig; + +Xe(g) +Xe = 1.000Xe + log_k -2.358 + delta_h -18.860 #kJ/mol #By convention + -analytic 2.4653496E+2 3.8234446E-2 -1.6842452E+4 -8.8953639E+1 1.4495917E+6 + #References = S°: 89cox/wag; Cp: 89cox/wag; V°: Default value; + +References + +# 00bru/dur Bruno J. and Duro L. (2000) Reply to W. Hummel's comment on and correction to 'On the influence of carbonate in mineral dissolution: 1. The thermodynamics and kinetics of hematite dissolution in bicarbonate solutions at T = 25C' by J. Bruno, W. Stumm, P. Wersin, and F. Brandberg. Geochimica et Cosmochimica Acta 64(12), 2173-2176. +# 00bla/bid Bladh K.W., Bideaux R.A., Anthony-Morton E., Nichols B.G. (2000) The Handbook of Mineralogy Volume IV, Mineralogical Society of America. +# 00cou Courault, A. C., 2000, Simulation experimentale des C-S-H dans les betons modernes : etude de la composition et des proprietes a l'equilibre dans des milieux complexes : Ph.D. thesis, Universite de Bourgogne, Dijon, 201 p. +# 00cra/eig Crannell B.S., Eighmy T.T., Krzanowski J.E., Eusden J.D. Jr., Shaw E.L., Francis C.A., 2000, Heavy metal stabilization in municipal solid waste combustion bottom ash using soluble phosphate. Waste Manag., 20, 135-148 +# 00deb/cas Deberdt S., Castet S., Dandurand J.L. and Harrichoury J.C., 2000. Potentiometric study of Gd- and Yb-acetate complexing in the temperature range 25-80C. Chemical Geology, Volume 167, Issues 1-2, 5 June 2000, Pages 75-88 +# 00gun/arn Gunnarson I., and Arnorsson S., 2000. Amorphous silica solubility and the thermodynamic properties of H4SiO4 in the range of 0 to 350C at Psat. Geochimica et Cosmochimica Acta, 64, p. 2295-2307. +# 00lyd Lyde D.R., 2000. CRC Handbook of Chemistry and Physics, 2000-200. CRC Press +# 00mer/bon Merlino, S., Bonaccorsi, E., and Armbruster, T., 2000, The real structure of clinotobermorite and tobermorite 9 A: OD character, polytypes, and structural relationships: European Journal of Mineralogy, v. 12, p. 411-429. +# 00per/pal Perkins R.B. and Palmer C.D., 2000. Solubility of Ca6[Al(OH)6]2(CrO4)3.26 H2O, the chromate analog of ettringite; 5-75C. Applied Geochem., 15, p. 1203-1218. +# 00pui Puigdomenech, I., 2000. Thermodynamic data for copper: implications for the corrosion of copper under repository conditions, SKB report. SKB/Swedish Nuclear Fuel and Waste Management, p. 96. +# 00rea/fag Reardon E.J., and Fagan R., 2000. The calcite/portlandite phase boundary: enhanced calcite solubility at high pH. Applied Geochemistry, 15, p. 327 335. +# 00sto/alp Stoffregen R. E., Alpers C. N., and Jambor J. L. (2000) Alunite-jarosite crystallography, thermodynamics, and geochronology. Rev. Mineral. Geochem. 40, 453-479. +# 00tag/dia Tagirov B. R., Diakonov I. I., Devina O. A., and Zotov A. V. (2000) Standard ferric-ferrous potential and stability of FeCl2+ to 90C. Thermodynamic properties of Fe(aq)3+ and ferric-chloride species. Chemical Geology 162(3-4), 193-219. +# 00vie Vieillard P., 2000. A new method for the prediction of Gibbs free energies of formation of hydrated clay minerals based on the electronegativity scale. Clays and Clay Minerals, 48, p. 459-473. +# 00zue/feh Zuern, S.G., and Fehr, K.T., 2000. Phase relations and thermodynamic properties of 1.13 nm tobermorite and xonotlite. In: Sixth International Symposium on Hydrothermal reactions/Fourth International Conference on Solvo-thermal Reactions, Kochi, Japan, pp. 286-289. +# 01aki/zot Akinfiev N. N. and Zotov A. V., 2001. Thermodynamic Description of Chloride, Hydrosulfide, and Hydroxo Complexes of Ag(I), Cu(I), and Au(I) at Temperatures of 25-500oC and Pressures of 1-2000 bar. Geochem. Intern., v. 39, No 10, p. 990-1006. Abstract +# 01aya/mad Ayati M., and Madsen H.E.L., 2001. Solubility Product of the Cadmium Phosphate Cd5H2(PO4)4.4H2O at 37 C. J. Chem. Eng. Data, 46, p. 113 116. +# 01ben/jem Ben Cherifa A., and Jemal M., 2001. Synthese et thermochimie de phosphates au cadmium: Partie I: Cas du phosphate tricadmique et de la chlorapatite cadmiee. Thermochimica Acta, 366, p. 1 6. +# 01ben/pal Benezeth P., Palmer D.A., and Wesolowski D.J., 2001. Aqueous high-temperature solubility studies. II. The solubility of boehmite at 0.03 m ionic strength as a function of temperature and pH as determined by in situ measurements. Geochimica et Cosmochimica Acta, 65, p. 2097-2111 +# 01fel/cho Felmy A. R., Cho H., Rustad J. R., and Mason M. J. (2001) An aqueous thermodynamic model for polymerized silica species to high ionic strength. Journal of Solution Chemistry 30(6), 509-525. +# 01fia/nav Fialips C.-I., Navrotsky A. and Petit S. (2001) - Crystal properties and energetics of synthetic kaolinite. American Mineralogist, 86, p. 304.311. +# 01fri/neu Fridriksson, T., Neuhoff, P. S., Arnorsson, S., and Bird, D. K., 2001, Geological constraints on the thermodynamic properties of the stilbite-stellerite solid solution in low-grade metabasalts. Geochimica Cosochimica Acta, v. 65, p. 3993-4008. +# 01gas/aza Gaskova O., Azaroual M., Piantone, P., Lassin A. (2001) - Arsenic behaviour in subsurface hydrogeochemical systems - A critical review of thermodynamic data forarsenic minerals and aqueous species - A compilation of arsenic surface complexation reactions. BRGM Report RP-51356-FR, 78 p. +# 01kal/mar Kahl W.A. and Maresch W.V., 2001. Enthalpies of formation of tremolite and talc by high-temperature solution calorimetry-a consistent picture. American Mineralogist, 86, p. 1345-1357 +# 01mer/vie Lionel Mercury, Philippe Vieillard, Yves Tardy, 2001. Thermodynamics of ice polymorphs and 'ice-like' water in hydrates and hydroxides. Applied Geochemistry, Volume 16, Issue 2, February 2001, Pages 161-181 +# 01per/hef Pererra N.W., Hefter G., and Sipos P.M., 2001. An Investigation of the Lead(II)-Hydroxide System. Inorg. Chem., 40, p. 3974-3978. +# 01per/pal Perkins R.B. and Palmer C.D., 2001. Solubility of chromate hydrocalumite (3CaO.Al2O3.CaCrO4.nH2O) at 5-75C. Cement and Concrete Research, 31, pp. 983-992. +# 01pre/gam Preis W., and Gamsjager H., 2001. Invited Review Thermodynamic Investigation of Phase Equilibria in Metal Carbonate Water Carbon Dioxide Systems. Monatshefte fur Chemie, 132, p. 1327 1346. +# 01sch/sho Schulte M.D., Shock E.L. and Wood R.H., 2001. The temperature dependence of the standard-state thermodynamic properties of aqueous nonelectrolytes. Geochimica et Cosmochimica Acta, 65, 3919-3930 +# 01sme/fra Smelik, E.A., Franz, G., Navrotsky, A., 2001. A calorimetric study of zoisite and clinozoisite solid solutions. American Mineralogist 86, 80-91. +# 01ste A. Stefansson, 2001Dissolution of primary minerals of basalt in natural waters: I. Calculation of mineral solubilities from 0C to 350C. Chemical Geology, Volume 172, Issues 3-4, 225-250 +# 01tag/sch Tagirov B., and Schott J., 2001. Aluminum speciation in crustal fluids revisited Geochim. Cosmochim. Acta (Helgeson's special issue), 65, p. 3965 3992. +# 01vid/par Vidal, O., Parra, T. and Trotet, F (2001): A thermodynamic model for Fe-Mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the 100-600C, 1-25 kbar P-T range. Am. J. Sci., 301, 557-592. +# 01wen/mus Wentzel M.C., Musvoto E.V. and Ekama G.A., 2001. Application of integrated chemical - physical processes modelling to aeration treatment of anaerobic digester liquors. Environmental Technology, 22, 1287-1293 +# 02cho/sea Chou, I.M., Seal, R.R., Hemingway, B.S. (2002) Determination of melanterite-rozenite and chalcanthite-bonattite equilibria by humidity measurements at 0.1 MPa, Am. Mineral. 87, 108-114. +# 02dut Dutrizac J.E., 2002. Calcium sulphate solubilities in simulated zinc processing solutions. Hydrometallurgy, 65, p. 109-135. +# 02hem/sea Hemingway, B.S., Seal, R.R., II, and Chou, I-M. (2002) Thermodynamic data for modeling acid mine drainage problems. Part I. Selected soluble iron-sulfate minerals. U.S. Geological Survey Open File Report 02 - 161, 13 p. +# 02hum/ber NAGRA Hummel W., Berner U., Curti E., Pearson F.J., and Thoenen T., 2002. Nagra/PSI Chemical Thermodynamic Data Base 01/01. Universal Publishers (uPUBL.com), 600 pp. +# 02mig/will Migdisov Art A. and Williams-Jones A. E. 2002. A spectrophotometric study of neodymium(III) complexation in chloride solutions. Geochimica et Cosmochimica Acta, 66, 4311-4323 +# 02ogo/mel Ogorodova L.P., Melchakova L.V., Kiseleva I.A. 2002 Enthalpies of formation of formation of natural zeolites - gismondine, garronite and amicite. Experimental mineralogy, petrology and geochemistry annual seminar 2002, April 16-17, 2002, Moscow +# 02par/vid Parra, T., Vidal, O., and Agard, P., 2002, A thermodynamic model for fe-mg dioctahedral k white micas using data from phase-equilibrium experiments and natural pelitic assemblages: Contribution to Mineralogy and Petrology, v. 143, p. 706-732. +# 02wal/pre Wallner, H., Preis, W., Gamsjager, H., 2002. Solid-solute phase equilibria in aqueous solutions: XV [1]. Thermodynamic analysis of the solubility of nickel carbonates. Thermochimica acta 382, 289-296. +# 03ald/gan Alderighi, L., Gans, P., Midollini, S., Vacca, A., 2003. Co-ordination chemistry of the methylmercury(II) ion in aqueous solution: a thermodynamic investigation. Inorganica Chimica Acta 356, 8-18. +# 03alt/met Altamaier M., Metz V., Neck V., Muller R.and Fanghanel Th., 2003. Solid liquid equilibria of Mg(OH)2(cr) and Mg2(OH)3Cl.4H2O(cr) in the system Mg Na H OH Cl H2O at 25C. Geochimica et Cosmochimica Acta, 67, p. 3595-3601. +# 03bou Bourbon X., 2003. Chemical conceptual model for cement based materials ~ mineral phases and thermodynamic data. Technical report C.NT.ASCM.03.026, 14 p. +# 03chr Christov C., 2003. Thermodynamic study of the aqueous sodium, potassium, and chromium chloride systems at the temperature 298.15K. J. Chem. Thermodynamics, 35, p. 909-917. +# 03dea Dean J.A. 2003. Lange's Handbook of chemistry, 2nd edition. Science and technology press: Beijing (in Chinese). +# 03dro/bar Drouet C. , Baron D. , Navrotsky A. (2003) On the thermochemistry of the solid solution between jarosite and its chromate analog. American Mineralogist, 88, 1949-1954 +# 03dro/nav Drouet C, Navrotsky A (2003) Synthesis, characterization and thermochemistry of K-Na-H3O jarosites. Geochim Cosmochim Acta 67:2063-2076 +# 03fre/voi Freyer D., and Voigt W., 2003. Invited Review : Crystallization and Phase Stability of CaSO4 and CaSO4 - Based Salts. Monatshefte fur Chemie, 134, p. 693-719. +# 03maj/gre Majzlan., J., Grevel, K.-D., Navrotsky, A., (2003) Thermodynamics of iron oxides. H. Enthalpies of formation and relative stability of goethite (a-FeOOH), lepidocrocite (y-FeOOH), and maghemite (y-Fe2O3). American Mineralogist 88, 855-859. +# 03web/hun Weber C.F., and Hunt R.D., 2003. Modeling Alkaline Silicate Solutions at 25 C. Ind. Eng. Chem. Res., 42, p. 6970 6976. +# 03wil/wal Wilkin, R. T., D. Wallschlager, and R. G. Ford. 2003. Speciation of arsenic in sulfidic waters. Geochem. Trans. 4:1-7. +# 03zot/shi Zotov A. V., Shikina N. D. and Akinfiev N. N., 2003. Thermodynamic properties of the Sb(III) hydroxide complex Sb(OH)3(aq) at hydrothermal conditions. Geochimica et Cosmochimica Acta, Volume 67, 1821-1836 +# 04chi Chivot J., 2004. Thermodynamique des produits de corrosion. Fonctions thermodynamiques de solubilite, diagrammes E-pH des systemes Fe-H2O, Fe-CO2-H2O, Fe-S-H2O, Cr-H2O et Ni-H2O en fonction de la temperature. Document ANDRA, Collection Sciences et Techniques. +# 04chr Christov C., 2004. 'Pitzer ion-interaction parameters for Fe(II) and Fe(III) in the quinary {Na + K + Mg + Cl + SO4 + H2O} system at T = 298.15 K.' J. Chem. Thermod. 36: 223-235. +# 04ess/fos Essington M.E., Foss J.E. and Roh Y., 2004. The soil mineralogy of lead at Horace's Villa. Soil Sci. Soc. Am. J., 68, p. 979 993. +# 04eva Evans B. (2004) The serpentine multisystem revisited: Chrysotile is metastable, International Geology Review, 46, 479-506 +# 04fab/sax Fabrichnaya O., Saxena S.K., Richet P. and Westrum E.F. (Eds), 2004. Thermodynamic data, models, and phase diagrams in multicomponent oxide systems. ISBN 3-540-14018-2 Springer Verlag Berlin Heidelberg New York, 198 p. +# 04gab/vie Gaboreau S. and Vieillard Ph. (2004). Prediction of Gibbs free energies of formation of minerals of the alunite supergroup. Geochimica and Cosmochimica Acta, 68, 3307-3316 +# 04gar/muc Alain Garand, Alfonso Mucci. The solubility of fluorite as a function of ionic strength and solution composition at 25C and 1 atm total pressure. Marine Chemistry, Volume 91, Issues 1-4, 15 November 2004, Pages 27-35 +# 04got Gottschalk, M., 2004. Thermodynamic Properties of Zoisite, Clinozoisite and Epidote. Reviews in Mineralogy and Geochemistry 56, 83-124. +# 04loo/pas Loos D., Pasel C., Luckas M., Schmidt Klaus G., and Herbell J.D., 2004. Experimental investigation and modelling of the solubility of calcite and gypsum in aqueous systems at higher ionic strength. Fluid Phase Equilibria, 219, p. 219-229. +# 04maj/nav Majzlan, J., Navrotsky, A., Schwertmann, U. (2004) Thermodynamics of iron oxides: Part III. Enthalpies of formation and stability of ferrihydrite (~Fe(OH)3), schwertmannite (~FeO(OH)3/4(SO4)1/8), and e-Fe2O3. Geochimica et Cosmochimica Acta 68, 1049-1059 +# 04maj/ste Majzlan, J., Stevens, R., Boerio-Goates, J., Woodfield, B.F., Navrotsky, A., Burns, P.C., Crawford, M.K., Amos, T.G. (2004) Thermodynamic properties, low-temperature heat capacity anomalies, and single crystal X-ray refinement of hydronium jarosite, (H3O)Fe3(SO4)2(OH)6. Physics and Chemistry of Minerals 31, 518-531 +# 04neu/hov Neuhoff, P.S., Hovis, G.L., Balassone, G., and Stebbins, J.F., 2004, Thermodynamic properties of analcime solid solutions. American Journal of Science, v. 304, p. 21-66. +# 04roi Roine A., 2004. HSC Chemistry: v5.0, Outokompu Research Oy: Pori. +# 04smi/mar Smith R.M., and Martell A.E., 2004. NIST Critically Selected Stability Constants of Metals Complexes Database, V 8.0. National Institute of Standards and Technology (NIST); Texas A and M University. +# 04wan/li Wang T. and Li Z., 2004. Some thermodynamic properties of calcium chromate. J. Chem. Eng. Data, 49, p. 1300-1302. +# 04xu/app Xu, T, J. A. Apps, and K. Pruess, Numerical simulation of CO2 disposal by mineral trapping in deep aquifers, Applied Geochemistry, 19, 917-936, 2004 +# 05bes/app Bessinger, B. and Apps, J.A., 2005. The Hydrothermal Chemistry of Gold, Arsenic, Antimony, Mercury and Silver. Report LBNL-57395, 52 p. +# 05for/dro Forray, F.L., Drouet, C, Navrotsky, A. (2005) Thermochemistry of yavapaiite KFe(SO4)2: Formation and decomposition. Geochimica et Cosmochimica Acta 69(8), 2133-2140 +# 05gam/bug Gamsjager, H., Bugajski, J., Gajda, T., Lemire, R., 2005. Chemical Thermodynamics of Nickel. Elsevier Science. +# 05kin/par Kim T.G. and Park B., 2005. Synthesis and Growth Mechanisms of One-Dimensional Strontium Hydroxyapatite Nanostructures. Inorganic chemistry, 44, p. 9895-9901 +# 05las/aza Lassin A., Azaroual M., Mercury L. (2005) 'Geochemistry of Unsaturated Soil Systems: Aqueous Speciation and Solubility of Minerals and Gases in Capillary Solutions'. Geochim. Cosmochim. Acta 69, 5187-5201. +# 05liu/mcp Liu W. and McPhail D.C., 2005. Thermodynamic properties of copper chloride complexes and copper transport in magmatic-hydrothermal solutions. Chemical Geology, 221, 21-39 +# 05maj/nav Majzlan, J., Navrotsky, A., Stevens, R., Donaldson, M., Woodfield, B.F., Boerio-Goates, J. (2005) Thermodynamics of monoclinic Fe2(SO4)3. Journal of Chemical Thermodynamics 37, 802-809 +# 05pok/rou Pokrovski G.S., Roux J., Hazemann J.L. and Testemale D. , 2005. An X-ray absorption spectroscopy study of argutite solubility and aqueous Ge(IV) speciation in hydrothermal fluids to 500 C and 400 bar. Chemical Geology, 217, 127-145 +# 05pow/bro Powell, K.J., Brown, P.L., Byrne, R.H., Gajda, T., Hefter, G., Sjoberg, S., Wanner, H., 2005. Chemical speciation of environmentally significant heavy metals with inorganic ligands. Part 1: The Hg2+- Cl-, OH-, CO32-, SO42-, and PO43- aqueous systems (IUPAC Technical Report). Pure and Applied Chemistry 77, 739-800. +# 05vid/par Vidal O., Parra T., Vieillard, P., 2005. Thermodynamic properties of the Tschermak solid solution in Fe-chlorite: Application to natural examples and possible role of oxidation. American Mineralogist 90, 347-358. +# 05wal/pel Waldner, P., Pelton, A.D. (2005) Thermodynamic modeling of the Fe-S system. Journal of Phase Equilibria and Diffusion 26, 23-38. +# 06bla/ign Blanc P., Ignatadis I., Lassin A. et Burnol A., 2006. Thermochimie : Selection de constantes thermodynamiques pour le chrome, le cobalt et le strontium. Rapport final. Rapport BRGM 55083-FR. +# 06bla/las Blanc P., Lassin A., Gaucher E.C. et Jacquot E., 2006. Un modele thermodynamique et mineralogique de beton : prise en compte de l'influence de la temperature. Rapport final. Rapport BRGM 55084-FR. +# 06bla/pia Blanc P., Piantone P., Lassin A. et Burnol A., 2006. Thermochimie : Selection de constantes thermodynamiques pour les elements majeurs, le plomb et le cadmium. Rapport final. Rapport BRGM 54902-FR +# 06bod/las Bodenan F., Lassin A., Hottier M., Filippov L. et Piantone P., 2006. Projet Decalco - Piegeage et valorisation de dechet alcalin par passivation au CO2 industriel. Rapport BRGM/RP-55015-FR, 140 p. +# 06deo/nav Deore S., and Navrotsky A., 2006. Oxide melt solution calorimetry of sulfides: Enthalpy of formation of sphalerite, galena, greenockite, and hawleyite. American Mineralogist, 91, p. 400 403. +# 06gai/bla Gailhanou H., et Blanc P., 2006. Thermochimie - Estimation des entropies, capacites calorifiques et volumes molaires des phyllosilicates 2 :1 deshydrates. BRGM/RP-55095-FR +# 06gau/bla Gaucher E. C., Blanc P., Bardot F., Braibant G., Buschaert S., Crouzet C., Gautier A., Girard J.-P., Jacquot E., Lassin A., Negrel G., Tournassat C., Vinsot A., Altmann S. (2006) Modelling the porewater chemistry of the Callovian-Oxfordian formation at a at a regional scale, C. R. Geoscience 338 (2006). +# 06lan/mah Langmuir D, Mahoney J, Rowson J (2006) Solubility products of amorphous ferric arsenate and crystalline scorodite (Fe- AsO4_2H2O) and their application to arsenic behavior in buried mine tailings. Geochim Cosmochim Acta 70:2942-2956 +# 06las/bla Lassin A. et Blanc P., 2006. Considerations sur les contraintes liees a la gestion des donnees thermodynamiques en vue de la creation de la base de donnees THERMODDEM. Rapport BRGM/RP-55118-FR, 120 p. +# 06mes/bou Messnaoui B., and Bounahmidi T., 2006. On the modeling of calcium sulfate solubility in aqueous solutions. Fluid Phase Equilibria, 244, p. 117-127. +# 06pia/bod Piantone P., Bodenan F. et Lassin A., 2006. Projet NOVOSOL - Evaluation environnementale de sediments phosphates et calcines. Rapport BRGM/RP-54845-FR, 133 p. +# 06pia/now Piantone P., Nowak C., Blanc P., Lassin A. et Burnol A., 2006. Themoddem : THERmodynamique et MOdelisation de la Degradation DEchets Mineraux. Rapport d'avancement. Rapport BRGM n BRGM/RP- 54547-FR, 52 p. +# 07avie Vieillard P., 2007. Estimation des entropies et capacites calorifiques des zeolithes. Rapport CNRS-Hydrasa 2007-2, 30 p. +# 07bla/bou Blanc P., Bourbon X. et Lassin A. (2007) Un modele thermodynamique et mineralogique de beton : selection de constantes thermodynamiques. Rapport final. Rapport BRGM/RP-55967-FR +# 07bla/gai Blanc P. et Gailhanou H. (2007) Thermochimie : Estimation des entropies, capacites calorifiques et volumes molaires des phyllosilicates deshydrates et hydrates. Rapport final. Rapport BRGM/RP-55966-FR. +# 07gai/bla Gailhanou H. et Blanc P., 2007. Thermochimie : Acquisition des proprietes thermodynamiques sur une saponite et revision des donnees sur les mineraux argileux. Rapport final BRGM/RP-55925-FR +# 07gre/per Green, D., Perry, R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition. McGraw-Hill Education. +# 07las brgm report in progress +# 07mar/acc Marini L, Accornero M (2007) Prediction of the thermodynamic properties of metal-arsenate and metal-arsenite aqueous complexes to high temperatures and pressures and some geological consequences. Environ Geol 52:1343-1363 +# 07neu/wan Neuhoff P. S. and Wang J. (2007) Heat capacity of hydration. American Mineralogist 92, 1358-1367 +# 07pow/bro Powell, K.J., Brown, P.L., Byrne, R.H., Gadja, T., Hefter, G., Sjoberg, S., Wanner, H., 2007. Chemical speciation of environmentally significant metals with inorganic ligands Part 2 : The Cu[2+]-OH[-], Cl[-], CO[3][2-], SO[4][2-], and PO[4][3-] systems : (IUPAC Technical Report). Pure and applied chemistry, USA. +# 07ste Stefansson A. (2007) Iron(III) hydrolysis at 25C. Environ. Sci. Technol. 2007, 41, 6117-6123 +# 07vie Vieillard P., 2007. THERMOCHIMIE : Estimation des enthalpies de formation des Phyllosilicates (7, 10 et 14A) anhydres. Rapport final. CNRS-Hydrasa 2007-1, 21 p. +# 08aza/and Azaroual M., Andre L., Blanc Ph., Jacquemet N., Crouzet C. (2008) Modelisation thermocinetique des phenomenes d'interaction eaux riches en gaz acides - ciment du casing des forages petroliers. Rapport BRGM/RC-56584-FR, 48 fig., 14 tabl., 124 p +# 08bas/pet Basciano L.C., Peterson R.C. (2008) Amer. Mineral., 93, 853-862 +# 08bla Blanc P. (2008) : Thermoddem - Selection de proprietes thermodynamiques pour les principales especes aqueuses et minerales porteuses de fer. Rapport final. Rapport BRGM/RP-56587-FR, 70p. +# 08gai Gailhanou H. (2008) : Thermochimie : Acquisition des proprietes thermodynamiques sur une berthierine et revision des donnees sur les mineraux argileux. Rapport final BRGM/RP-56838-FR +# 08las Lassin A., 2008, personnal calculations. +# 08per/pok Perfetti E., Pokrovski G., Ballerat-Busserolles K., Majer V., Gibert F. (2008) Densities and heat capacities of aqueous arsenious and arsenic acid solutions to 350 C and 300 bar, and revised thermodynamic properties of As(OH)3(aq), AsO(OH)3(aq) and iron sulfarsenide minerals. Geochimica et Cosmochimica Acta 72, 713-731 +# 08sch/lot Schmidt, T., Lothenbach, B., Romer, M., Scrivener, K.L., Rentsch, D., Figi, R. (2008), A thermodynamic and experimental study of the conditions of thaumasite formation, Cement and Concrete Research, 38(3), 337-349. +# 08vie Vieillard P., 2008. Estimation des entropies et capacites calorifiques des zeolithes. Rapport CNRS-Hydrasa 2008, 29 p. +# 09bla Blanc P. (2009) - Thermochimie - Selection de constantes thermodynamiques pour les zeolites : version 2. Rapport final. Rapport BRGM/RP-57796-FR. 55 p. +# 09gai Gailhanou H. (2009) : Thermochimie : Acquisition des proprietes thermodynamiques d'une nontronite, d'une beidellite et revision des donnees de la saponite Sap-Ca-1. Rapport final BRGM/RP-57797-FR +# 09gai/rog Gailhanou, H., Rogez, J., van Miltenburg, J.C., van Genderen, A.C.G., Greneche, J.M., Gilles, C., Jalabert, D., Michau, N., Gaucher, E.C., Blanc, P., 2009. Thermodynamic properties of chlorite CCa-2. Heat capacities, heat contents and entropies. Geochimica et Cosmochimica Acta 73, 4738-4749. +# 09hon Honerlage, B., 2009. CuF: lattice constants, in: Roessler, U. (Ed.), New Data and Updates for I-VII, III-V, III-VI and IV-VI Compounds. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 149-149. +# 09xio Xiong, Y., 2009. The aqueous geochemistry of thallium: speciation and solubility of thallium in low temperature systems. Environmental Chemistry 6, 441-451. +# 10abla/bou Blanc, Ph.; Bourbon, X.; Lassin, A.; Gaucher, E.C. 2010 - Chemical model for cement-based materials: Temperature dependence of thermodynamic functions for nanocrystalline and crystalline C-S-H phases. Cement and Concrete Research, 40, p. 851-867 +# 10bbla/bou Blanc, Ph.; Bourbon, X.; Lassin, A.; Gaucher, E.C. 2010 - Chemical model for cement-based materials: Thermodynamic data assessment for phases other than C-S-H. Cement and Concrete Research, 40, p. 1360-1374. +# 10bla/vie Blanc P. and Vieillard P. (2010) - Thermochimie: Estimation of the thermodynamic properties of dehydrated phyllosilicates. Final Report. BRGM/RP-57798-FR. +# 10pal/gam Palmer, D.A., Gamsjager, H., 2010. Solubility measurements of crystalline beta-Ni(OH)2 in aqueous solution as a function of temperature and pH. Journal of Coordination Chemistry 63, 2888-2908. +# 10vie Vieillard P., 2010 - A predictive model for the entropies and heat capacities of zeolites. Eur. J. Mineral. 22, 823-836 +# 11bla/las Blanc P., Lassin A. 2011. Thermoddem report 2011 +# 11maj/dra Majzlan J, Drahota P, Filippi M, Novak M, Loun J and Grevel K-D 2011. Thermodynamics of Crystalline iron(III) Arsenates Scorodite, Kankite, and Bukovskyite. Goldschmidt 2011 Conference Abstract 1391 +# 11pal/ben Palmer, D.A., Benezeth, P., Wesolowski, D.J., 2011. Solubility of Nickel Oxide and Hydroxide in Water, 14th International Conference on the Properties of Water and Steam, pp. 264-269. +# 11par/cor Parmentier M., Corvisier J., Chiquet P., Parra T. et Sterpenich J. 2011. La modelisation geochimique de la reactivite des gaz annexes co-injectes avec le CO2 : possibilites et limites des codes de calcul via une application. BRGM/RP-60605-FR +# 11sky Skyllberg, U., 2011. Chemical Speciation of Mercury in Soil and Sediment, Environmental Chemistry and Toxicology of Mercury. John Wiley and Sons, Inc., pp. 219-258. +# 11vie/bla Vieillard, P., Blanc, P., Fialips, C.I., Gailhanou, H., Gaboreau, S., 2011. Hydration thermodynamics of the SWy-1 montmorillonite saturated with alkali and alkaline-earth cations: A predictive model. Geochimica et Cosmochimica Acta 75, 5664-5685. doi:10.1016/j.gca.2011.07.014 +# 12bla Blanc P., 2012, Mercury associated physical and chemical constants: updating of the THERMODDEM database, IMaHg project, rapport BRGM RP-61299-FR, 32p +# 12coo/oli Cook, W.G., Olive, R.P., 2012. Pourbaix diagrams for the nickel-water system extended to high-subcritical and low-supercritical conditions. Corrosion Science 58, 284-290. +# 12gai/bla Gailhanou, H., Blanc, P., Rogez, J., Mikaelian, G., Kawaji, H., Olives, J., Amouric, M., Denoyel, R., S., B., Montouillout, V., Vieillard, P., Fialips, C. I., Giffaut, E., Michau, N., and Gaucher, E. C., 2012, Thermodynamic properties of illite IMt-2, smectite MX-80 and beidellite SBld-1 by calorimetric methods: Enthalpies of formation, heat capacities , entropies and Gibbs free energies of formation. : Geochimica Cosmochimica Acta, v. 89, p. 279-301. +# 13bla/gab Blanc P., Gaboreau S. (2013) - Thermoddem : Selection de proprietes thermodynamiques pour les principales especes aqueuses et minerales porteuses de nickel. Rapport final. BRGM/RP-61871-FR. 35 p., 12 fig., 4 tabl. +# 13bla/las Blanc P., Lassin A. (2013) - Thermoddem : Selection de proprietes thermodynamiques pour les principales especes aqueuses et minerales porteuses d'arsenic. Rapport final. BRGM/RP-62585-FR. 29 p., 5 fig., 3 tabl. +# 13gai/bla Gailhanou, H., Blanc, P., Rogez, J., Mikaelian, G., Horiuchi, K., Yamamura, Y., Saito, K., Kawaji, H., Warmont, F., Greneche, J.-M., Vieillard, P., Fialips, C.I., Giffaut, E., Gaucher, E.C., 2013. Thermodynamic properties of saponite, nontronite, and vermiculite derived from calorimetric measurements. American Mineralogist 98, 1834-1847. +# 13ste/ben Stefansson, A., Benezeth, P., Schott, J., 2013. Carbonic acid ionization and the stability of sodium bicarbonate and carbonate ion pairs to 200 C - A potentiometric and spectrophotometric study. Geochimica et Cosmochimica Acta 120, 600-611. +# 14bla/gai Blanc, P., Gailhanou, H., Rogez, J., Mikaelian, G., Kawaji, H., Warmont, F., Grangeon, S., Greneche, J.M., Fialips, C.I., Giffaut, E., Gaucher, E.C., Claret, F., 2014, Thermodynamic properties of a chlorite and a berthierine by calorimetric methods: Physics and Chemistry of Minerals (accdepted) +# 14las/pia Lassin, A., Piantone, P., Crouzet, C., Bodenan, F., Blanc, P., 2014. Estimated thermodynamic properties of NaFeS2 and erdite (NaFeS2:2H2O). Applied Geochemistry 45, 14-24. doi:10.1016/j.apgeochem.2014.02.015 +# 15bla/vie Blanc, P., Vieillard, P., Gailhanou, H., Gaboreau, S., Gaucher, E.C., Fialips, C.I., Made, B., Giffaut, E., 2015. A generalized model for predicting the thermodynamic properties of clay minerals. American Journal of Science 315, 734-780. +# 16bla Blanc P., (2016) Biomore WP1 progress report +# 17abla Blanc P. (2017) Selection de proprietes thermodynamiques pour les principales especes aqueuses et minerales porteuses de thallium. Rapport final. Rapport BRGM 66385-FR. +# 17bbla Blanc P. (2017) - Thermoddem : Update for the 2017 version. Report BRGM/RP-66811-FR, 20 p. +# 17gai/vie Gailhanou, H., Vieillard, P., Blanc, P., Lassin, A., Denoyel, R., Bloch, E., De Weireld, G., Claret, F., Fialips, C.I., Made, B., Giffaut, E., 2017. Methodology for determining the thermodynamic properties of hydration of Na-smectite considering the energetic contribution of capillary water. Applied Geochemistry. +# 18roo/vie Roosz et al., 2017. Thermodynamic properties of C-(A)-S-H and M-S-H phases: results from direct measurements and predictive modelling. Applied Geochemistry, submited +# 18nea NEA, 2018. Forthcoming TDB selection on cement minerals +# 18sig SIGARRR, 2018. Forthcoming results from the project. +# 33dan D'Ans J., 1933. Die Losegleichgewichte der Systeme der Salze ozeanischer Salzablagerungen. Kaliorschungs Anstalt GmbH, Berlin Verlagsgesellschaft fur Ackerbau MBH, Berlin SW11 +# 37hil Hill A.E., 1937. J. Am. Chem. Soc., 59, p. 2242. +# 37kie Kielland J., 1937. Individual Activity Coefficients of Ions in Aqueous Solutions. Journal of the American Chemical Society, 59, p. 1675 1678. +# 40rol/erv Roller P.S., and Ervin G., 1940. The system calcium oxide silicawater at 30C. The association of silicate ion in dilute alkaline solution. J. Amer. Chem. Soc., 62, p. 461 471. +# 40sbo/bia Sborgi U., and Bianchi C., 1940. Ga. Chim. Ital., 70, p. 823. +# 41cor Correns C.W., 1941. Beitrage zur Petrographie und Genesis der Lydite (Kieselschiefer): Preuss. Geol. Ladesanstalt, Mitt. d. Abt. f. Gesteins , Erz , Kohle und Salz Untersuchungen, 1, p. 18 38. +# 41hum/sto Hume D.H. and Stone H.W. 1941. The apparent solubility product of chromous hydroxide. The significance of the solubility products of hydroxides of the metals with form basic salts. J. Am. Chem. Soc., 63 p. 1197-1199. +# 42kol/per Koltoff I.M., Perlich R.W. and Weiblen D., 1942. Solubility of lead sulfate and lead oxalate in various media. J. Phys. Chem, 46, p. 561. +# 50ken Kennedy G.C., 1950. A portion of the system silica water. Econ. Geol., 45, p. 629 653. +# 51den/mon Denney T.O. and Monk C.D. Trans. Faraday Soc., 47, p. 992. +# 51sch/mul Schwarz V.R., and Muller W.D., 1951. Die wasserlosliche monokieselsaure. Z. Anorg. Allg. Chemie., 2296, p. 273 279. +# 51zha Zharovskii F.G., 1951, The solubility of phosphates. Trudy. Kom. Anal. Khim. Akad. Nauk. SSSR, 3, 101-115 (in russian) +# 52lat Latimer W.M., 1952. Oxidation states of the elements and their potentials in aqueous solution, Prentice Hall, New Jersey,.392 pp. +# 52meg Megaw D., 1952, The structure of afwillite, Ca3(SiO3OH)2*2H2O, Locality: Scawt Hill, Northern Ireland, Act. Cryst.D60, v. 5, p. 477-495. +# 53bell/geo Bell R.P. et George J.H.B., 1953. Trans. Faraday Soc., 49, pp. 619-627 +# 53hem Hemley J.J., 1953. A study of lead sulfide solubility and its relation to ore deposition. Econ. Geol., 48, p. 113 138. +# 53leu/kho Leussing, D.L., Kholtoff, I.M. (1953) The solubility product of ferrous and the ionization of aquo-ferrous ion. J. Amer. Chem. Soc. 75, 2476-2479. +# 53pag Page F.M., 1953. The dissociation constants of thiosulphuric acid. J. Chem. Soc., p. 1719 1724. +# 54ale/hes Alexander G.B., Heston W.M. and Iler R.K., 1954. The Solubility of Amorphous Silica in Water. J. Phys. Chem., 58, p. 453. +# 54dan D'Ans J., Bredtschneider D., Eick H., and Freund H E., 1954. Kali u Steinsalz, 9, p. 17. +# 56den/tay Dent, L. S., and Taylor, H. F. W., 1956, The dehydration of Xonotlite: Acta Crystallographica, v. 9, p. 1002-1004. +# 56new Newman, E., 1956., Heats. of Formation of Xonotlite, Hillebrandite, and Foshagite: Journal of Research of the National Bureau of. Standards, v. 57, p. 27-30. +# 57gre/pri Greenberg S.A., and Price E.W., 1957. The solubility of silica in solutions of electrolytes. J. Phys. Chem., 61, p. 1539 1541. +# 57oka/oku Okamoto G., Okura T., and Goto K., 1957. Properties of silica in water. Geochimica et Cosmochimica Acta, 12, p. 123 132. +# 59ing Ingri N., 1959. Equilibrium studies of polyanions IV. Silicate ions in NaC1 medium. Acta Chem. Scand. 13, p. 758 775. +# 59lag Lagerstrom G., 1959. Equilibrium studies of polyanions III. Silicate ions in NaCIO4 medium. Acta Chem. Scand., 13, p. 722 736. +# 60gar/tho Garrels R.M., Thompson M.E., and Siever R., 1960. Stability of some carbonates at 25 degrees C and one atmosphere total pressure. Am. J. Sci., 258, p. 402 418. +# 60kel Kelley, K.K., 1960, Contributions to the Data in Theoretical Metallurgy XIII: High Temperature Heat Content, Heat Capacities and Entropy Data for the Elements and Inorganic Compounds. U.S. Bureau of Mines Bulletin 584, 232 p. +# 60kit Kitahara S., 1960. The solubility of quartz in water at high temperatures and high pressures. Rev. Phys. Chem. Japan, 30, p. 109 137. +# 60lin/mor Lindsay W.L., Moreno E.C., 1960, Phosphate phase equilibria in soils. Soil Sci. Am. Proc., 24, 177-182 +# 60pou Pourbaix M., 1960. Standard free energies of formation at 25C, CEBELCOR Report, 684, Brussels, 57 pp. +# 60van/bru Van Lier J.A., de Bruyn P.L., and Overbeek J.T.G., 1960. The solubility of quartz. J. Phys. Chem., 64, p. 1675 1682. +# 61bchu/aly Chukhlantsev V.G., Alyamovskaya K.V., 1961b, Solubility product of copper, cobalt, nickel, and cadmium phosphates. Izvest. Vyss. Uch. Zaved. Khim. Khim. Tekh., 4, 706-709 (in russian) +# 61ber/new Berman H.A. and Newman E.S., 1961. Heat of formation of calcium aluminate monocarbonate at 25C, Journal of Research of the National Bureau of Standards. A, Physics and Chemistry, 65, pp. 197-207 +# 61boc Bock E., 1961. Can. J. Chem., 39, p. 1746. +# 61kel/kin Kelley K.K. and King E.G. (1961) U.S. Bureau of Mines Bulletin 500 +# 61tru/hos Truesdell A.H., and Hostetler P.B., 1961. Dissociation constants of KSO4 from 10 500C. Geochim. Cosmochim. Acta, 32, p. 1019 1022. +# 62gar/tho Garrels R.M., and Thompson M.E., 1962. A chemical model for sea water at 25 degrees C and one atmosphere total pressure. Am. J. Sci., 260, p. 57 66. +# 62mor/fou Morey G.W., Foumier R.O., and Rowe J.J., 1962. The solubility of quartz in water in the temperature interval from 25 to 300C. Geochim. Cusmochim. Acta, 26, p. 1029 1043. +# 62sie Siever R., 1962. Silica Solubility, 0 200C, and the diagenesis of siliceous sediments. J. Geol., 70, p. 127 150. +# 63ber/new Berman H.A. and Newman E.S. 1963 - Heat of formation of calcium aluminate monosulfate at 25 C, Journal of Research of the National Bureau of Standards. A, Physics and Chemistry, 65, pp. 1-13 +# 63fis Fischer K. (1963) Amer. Mineral., 48, 664-672 +# 63hos Hostetler P.B., 1963. The stability and surface energy of Brucite in water at 25C. Am. J. Sci., 261, p. 238-258. +# 63oet/mdo Oetting F.L., Mac Donald R.A., 1963, The thermodynamic properties of magnesium orthophosphate and magnesium pyrophosphate. J. Phys. Chem., 63, 2737-2743 +# 63rob/sto Robie, R. A., and J. W. Stout, 1963. Heat capacity from 12 to 305K and entropy of talc and tremolite. J. Phys. Chem., 57, p. 2252-2256 +# 63sch/wid Schwarzenbach, G., Widmer, M., 1963. Die loslichkeit von metallsulfiden I. schwarzes quecksilbersulfid. Helvetica chimica acta 46, 2613-2628. +# 63tay/fra Taylor A.W., Frazier A.W., Gurney E.L. and Smith J.P., 1963. Solubility product of di- and tri-magnesium phosphates and the dissociation of magnesium phosphate solutions. Trans. Farad. Soc., 59, 1585-1589 +# 63wil Willix R. L. S. (1963) Ferrous-ferric redox reaction in the presence of sulphate ion, Trans. Faraday Soc., 59, 1315-1324 +# 63wyc Wyckoff, R.W.G., 1963, Crystal Structures, Second edition, tome 4, Interscience Publishers, New York, p. 320-322. +# 64aega/wak Egan E.P., Wakefield Z.T., 1964a, Low temperature, heat capacity and entropy of anhydrous dicalcium phosphate 10 to 310K. J. Chem. Eng. Data, 4, 541-544 +# 64atay/gur Taylor A.W., Gurney E.L., 1964a, The dissolution of calcium aluminum phosphate CaAlH(PO4)2.6H2O. Soil Sci. Soc. Am. Proc., 28, 63-64 +# 64bega/wak Egan E.P., Wakefield Z.T., 1964b, Low temperature, heat capacity and entropy of dicalcium phosphate dihydrate 10 to 310K. J. Chem. Eng. Data, 9, 544-545 +# 64sil/mar Sillen LG. and Martell A.E. 1964 - Stability constants of metal-complexes. The chemical society, special publication N17, London. +# 65gam/stu Gamsjager H., Stuber H.U., and Schindler P., 1965. Helv. Chim. Acta, 48, p. 723. +# 65gre/bas Grezes G., and Bassett M., 1965. Contribution a l'etude de 1s eolubilite du carbonate de calcium. Compt. Rend. Accad. Sci., 260, p. 869 872. +# 65lah Lahiri S.C., 1965, Ferric-phosphoric acid system. J. Ind. Chem. Soc., 42, 715-724 +# 65wyc Wyckoff R.W.G., 1965. Crystal Structures, v.3 +# 66ega/wak Egan E.P., Wakefield Z.T., 1966, Low temperature, heat capacity and entropy of variscite, AlPO4.2H2O, 10 to 310K. J. Chem. Eng. Data, 11, 610-611 +# 66lah/adi Lahiri S.C. and Aditya S. 1966. J. Indian Chem. Soc., 43, 513. +# 66spi/mik Spitsyn V.I., Mikheev H.B., Khermann A., 1966, Thermodynamic study of the distribution of micro quantities of strontium between barium hydrogen phosphate and a solution. Dokl. Akad. Nauk. SSSR, 166, 658-659 (in russian) +# 67and/cou Andon R.J.L., Counsell J.F., Martin J.F., and Mash C.J., 1967. Thermodynamic properties of phosphorus compounds: II. Low temperature heat capacity and entropy of sodium mono-, di-, and triphosphates. J. Appl. Chem., 17, 65-70 +# 68chu/mar Chughtai A., Marshall R., Nancollas G.H., 1968, Complexes in calcium phosphate solutions. J. Phys. Chem., 72, 208-211 +# 68dan D'Ans J., 1968. Kali Steinsalz, 5, p. 109. +# 68mca Mac Cann H.G., 1968, The solubility of fluorapatite and its relationships to that of calcium fluoride. Arch. Oral Biol., 13, 987-1001 +# 68nak Nakayama M., 1968. Calcium activity, complex and ion pair in saturated CaCO, solutions. Soil sci., 106, p. 429 434. +# 68rac/sop Racz G.J., Soper R.J., 1968, Solubility of dimagnesium phosphate trihydrate and trimagnesium phosphate. Can. J. Soil Sci., 48, 265-269 +# 68val/kog Valyashko V.M., Kogarko L.N., Khodakovsky I.L., 1968, Stability of fluorapatite, chlorapatite, and hydroxylapatite in aqueous solutions at different temperature. Geoch. Inter., 5, 21-30 +# 68wag/eva Wagman D.D., Evans W.H., Parker V.B., Halow I., Bailey S.M., Schumm R.H., 1968. Selected values of chemical thermodynamic properties. Natl. Bur. Stand. Tech. Note, 270-3, 264 p. +# 69bol/ptu Bol'shakov, A.P. and L.I. Ptushko (1969) Alteration products of melanterite from Nikitov mercury ore deposits. Zap. Vses. Mineral. Obshch., 3, 288-294 (in Russian). +# 69hel Helgeson, 1969H.C. Helgeson, Thermodynamics of hydrothermal systems at elevated temperatures and pressures, Am. J. Sci. 267 (1969), pp. 729-804. +# 69iza/eat Izatt R.M., Eatough D.E., Christensen J.J., Bartholomew C.H. (1969) Calorimetrically determined log K, DeltaH and DeltaS values for the inter-action of sulphate ion with several bi- and ter-valent metal ions. J. Chem. Soc. (A), 47-53. +# 69qui/mar Quist A.S., and Marshall W.L., 1969. The electrical conductances of some alkali metal halides in aqueous solutions from 0 to 800 and pressures to 4000 bars. J. Phys. Chem., 73, p. 978 985. +# 69wag/eva Wagman D.D., Evans W.H., Parker V.B., Halow I., Bailey S.M., Schumm R.H., 1969. Selected values of chemical thermodynamic properties. Natl. Bur. Stand. Tech. Note, 270-4, 152 p. +# 70gre/mor Gregory T.M., Moreno E.C., Brown W.E., 1970, Solubility of CaHPO4.2H2O in the system Ca(OH)2-H3PO4-H2O at 5, 15, 25, and 37C. J. Res. NBS, 74A, 461-475 +# 70moo/tay Moore A.E., Taylor H.F.W., 1970. Acta Cryst., B26, 386-393 +# 70pan Pankratz, L.B., 1970, Thermodynamic Data for Silver Chloride and Silver Bromide: U.S. Bureau of Mines Report of Investigations #7430, 12 p. +# 70pan/kin Pankratz, L.B., and King, E.G., 1970, High-Temperature Enthalpies and entropies of chalcopyrite and bornite: U.S. Bureau of Mines Report of Investigations #7435, 10 p. +# 70web/rac Webber M.D., Racz G.J., 1970, Soluble complexes in the systems dicalcium phosphate dihydrate or dimagnesium phosphate trihydrate equilibrated with aqueous salt solutions. Can. J. Soil Sci., 50, 243-253 +# 71aduf Duff E.J., 1971a, Orthophosphates. II. The transformation Brushite -> Fluorapatite and Monetite -> Fluorapatite in aqueous potassium fluoride solution. J. Chem. Soc. A, 33-38 +# 71bduf Duff E.J., 1971b, Orthophosphates. III. The hydrolysis of secondary calcium orthophosphates. J. Chem. Soc. A, 917-921 +# 71cre/and Crerar D.A., and Anderson G.M., 1971. Solubility and solvation reactions of quartz in dilute hydrothermal solutions. Chem. Geol., 8, p. 107 122. +# 71ell/gig Ellis A.J., and Giggenbach W., 1971. Hydrogen sulphide ionization and sulphur hydrolysis in high temperature solution. Geochim. Cosmochim. Acta, 35, p. 247 260. +# 71mac/gee Mackenzie F.T., and Gees R., 1971. Quartz: Synthesis at earthsurface conditions. Science, 173, p. 533 535. +# 71nri Nriagu J.O., 1971. Experimental investigation of a portion of the system PbS NaCl HCl H 2 O at elevated temperatures. American Journal of Science, 271, p.157 169. +# 71par/wag Parker V.B., Wagman D.D., Evans W.H., 1971, Selected values of chemical thermodynamic properties. Natl. Bur. Stand. Tech. Note, 270-6 - 270-119 +# 71sil/mar Sillen L G and Martell A E 1971 Stability constant of metal ion complexes, Special publications 17 and 25 (London: The Chemical Society) +# 71wag/eva Wagman D.D., Evans W.H., Parker V.B., Halow I., Bailey S.M., Schumm R.H., Churney K.L., 1971. Selected values of chemical thermodynamic properties. Natl. Bur. Stand. Tech. Note, 270-5, 49 p. +# 72anri Nriagu J.O., 1972a, Lead orthophosphates. I. Solubility and hydrolysis of secondary lead orthophosphates. Inorg. Chem., 11, 2499-2503 +# 72bduf Duff E.J., 1972b, Orthophosphates. IX. Chlorapatite: Phase relationships under aqueous conditions along Ca5F(PO4)3-Ca5(OH)(PO4)3-Ca5Cl(PO4)3 joins of the system CaO-CaCl2-CaF2-P2O5-H2O. J. Inorg. Nucl. Chem., 34, 859-871 +# 72bnri Nriagu J.O., 1972b, Stability of vivianite and ion-pair formation in the system Fe3(PO4)2-H3PO4-H2O. Geochim. Cosmochim. Acta, 36, 459-470 +# 72cnri Nriagu J.O., 1972c, Solubility equilibrium constant of strengite. Am. J. Sci., 272, 476-484 +# 72hem/rob Hemingway B.S. and Robie R.A., 1972. The heat capacities at low temperatures and entropies at 298.15 K of huntite, CaMg3(CO3)4, and artinite, Mg2(OH)2CO3 z 3 H2O. Am. Mineral., 57, pp. 1754-1767. +# 72mer Mereiter K (1972) Tschermaks Mineralogische und Petrographische Mitteilungen , 18, p.185-202, Die kristallstruktur des voltaits, K2Fe2+5Fe3+3Al[SO4]12*18H2O +# 72rob/hem Robie R.A. and Hemingway B.S., 1972. The heat capacities at low-temperatures and entropies at 298.15 K of nesquehonite, MgCO3 :3H2O, and hydromagnesite. Am. Mineral., 57, pp. 1768-1781. +# 72vol/kho Volosov A.G., Khodakovskiy I.L., and Ryzhenko B.N., 1972. Equilibria in the system SiO2 H20 at elevated temperatures along the lower three phase curve. Geochem. Intl., 9, p. 362 377. +# 73anri Nriagu J.O., 1973a, Lead orthophosphates. II. Stability of chloropyromorphite at 25C. Geochim. Cosmochim. Acta, 37, 367-377 +# 73bar/kna Barin I. and Knacke O., 1973, Thermochemical Properties of Inorganic Substances. Berlin: Springer-Verlag. +# 73bnri Nriagu J.O., 1973b, Solubility equilibrium constant of a-hopeite. Geochim. Cosmochim. Acta, 37, 2357-2361 +# 73hem/rob Hemingway B. S. and Robie R. A., 1973. A calorimetric determination of the standard enthalpies of formation of huntite, CaMg3(CO3)4, and artinite, Mg2(OH)2CO3 z 3 H2O, and their standard Gibbs free energies of formation. J. Res. U.S. Geol. Survey, 1, pp. 535-541. +# 73hul/des Hultgren R., Desai P. D., Hawkins D. T., Gleiser M., Kelly K. K. and Wagman D. (1973) Selected Values of the Thermodynamic Properties of the Elements. Metals Park, Ohio, AMS. +# 73hul/tur Hull H. and Turnbull A.J., 1973, A thermochemical study of monohydrocalcite. Geochim. Cosmochim. Acta, 37, 685-694 +# 73rob/hem Hemingway B. S. and Robie R. A., 1973. A calorimetric determination of the standard enthalpies of formation of huntite, CaMg3(CO3)4, and artinite, Mg2(OH)2CO3 z 3 H2O, and their standard Gibbs free energies of formation. J. Res. U.S. Geol. Survey, 1, pp. 535-541. +# 74avol/yag Volkov A.I., Yaglov V.N., Novikov G.I.,1974a, Heat of formation of trizinc diorthophosphate. Russ. J. Phys. Chem., 48, 1697 +# 74cat/fer Catti M , Ferraris G , Acta Crystallographica, Section B , 30 (1974) p.1789-1794, Crystal structure of Ca5(HAsO4)2(AsO4)2*9H2O (guerinite), Locality: synthetic +# 74ham Hamann S.D., 1974. Electrolyte solutions at high pressure. In Modern Aspects of Electrachemistry, Plenum, No. 9 (ed. Conway B.E. and Bockris J. O.), p. 47 158. +# 74jac/lan Jacobson R.L., and Langmuir D., 1974. Dissociation constants of calcite and CaHCO3+ from 0 to 50C. Geochimica et Cosmochimica Acta, 88, p. 301 318. +# 74mil Mills K.C., 1974, Thermodynamic data for inorganic sulfides, selenides, and tellurides. Butterworths, London, 845 p. +# 74nau/ryz Naumov G.B., Ryzhenko B.N., and Khodakovsky I.L., 1974. Handbook of Thermodynamic Data. U.S. Geol. Surv.WRD 74 001, 328 pp. +# 74nri Nriagu J.O., 1974. Lead orthophosphates-IV Formation and stability in the environment. Geochimica et Cosmochimica Acta, 38, p. 887 898. +# 74rea/lan Reardon E.J., and Langmuir D., 1974. Thermodynamic properties of the ion pairs CaCO3 and MgCO3 from 10 to 50C. Am. J. Sci., 274, p. 599-612. +# 74sew Seward T.M., 1974. Determination of the first ionization constant of silicic acid from quartz soIubility in borate buffer soIutions to 350C. Geochimica et Cosmochimica Acta, 38, p. 1651 1664. +# 74tru/jon Truesdell A.H., Jones B.F., 1974, WATEQ, a computer program for calculating chemical equilibria of natural waters. J. Res. US Geol. Surv., 2, 233-248 +# 75kas/bor Kashkai C. M., Borovskaya Y. B., and Badazade M. A. (1975) Determination of DGf,298 of synthetic jarosite and its sulfate analogues. Geokhimiya 7, 771-783 (in Russian). +# 76ale/mas Aleshchkina A.E., Masalovich V.M., Agasyan P.K., Sereda B.P., 1976, Chromium (III) phosphate-complexes. Russ. J. Inorg. Chem., 21, 973-975 +# 76bae/mes Baes Jr. C.F., and Mesmer R.E., 1976. The Hydrolysis of Cations. Wiley Interscience, 489 pp. +# 76del/hal Dellien I., Hall F.M. and Hepler L.G. 1976. Chromium, molybdenum and tungsten: Thermodynamic properties, chemical equilibria, and standard potentials. Chemical Reviews, 76, p. 283-310. +# 76del/hep Dellien I. and Hepler L.G., 1976b. Enthalpies of formation of Cr3+(aq) and the inner sphere complexes CrF2+(aq), CrCl2+(aq), CrBr2+(aq), and CrSO4+(aq). Can. J. Chem., 54, p.1383-1387. +# 76fer/stu Ferrante M.J., Stuve J.M. and Richardson D.W., 1976. Thermodynamic data for synthetic dawsonite. U.S. Bur. Mines Rept. Inv., 5, 577-582 +# 76gro/wes Gronvold and Westrum, 1976. F. Gronvold and E.F. Westrum, Heat capacities of iron disulfides. Thermodynamics of marcasite from 5 to 700 K, pyrite from 300 to 780 K, and the transformation of marcasite to pyrite. J. Chem. Therm. 8 (1976), pp. 1039-1048 +# 76hou/ste Houtepen, C. J. M., and Stein, H. N., 1976, The enthalpies of formation and of dehydration of some AFm phases with singly charged anions: Cement and Concrete Research, v. 6, p. 651-658 +# 76men/sab Menchetti S., Sabelli C. (1976) Neues Jb. Miner., Mh., H.9, 406-417 +# 76nri Nriagu J.O., 1976, Phosphate-clay mineral relations in soils and sediments. Can. J. Earth Sci., 13, 717-736 +# 76plu/jon Plummer L.N., Jones B.F. and Truesdell A.H., 1976, WATEQF - A FORTRAN IV version of WATEQ, a computer program for calculating chemical equilibrium of natural waters: U.S.G.S. Water Resources Inv. 76-13., 63 p. +# 76rob/hem Robie R.A., Hemingway B.S. et Wilson H.W., 1976. The heat capacities of calorimetry conference copper and of muscovite, pyrophylite, and illite between 15 and 375 K and their standard entropies at 298.15 K. J. Research U.S. Geol. Survey., 4, p. 631-644. +# 76rob/hem Robie R.A., Hemingway B.S. and Wilson H.W. (1976) - The heat capacities of calorimetry conference copper and of muscovite, pyrophylite, and illite between 15 and 375 K and their standard entropies at 298.15 K. J. Research U.S. Geol. Survey., 4, p. 631-644. +# 76smi/mar Smith R.M., Martell A.E., 1976, Critical stability constants, Vol. 4: Inorganic complexes. Plenum, New York, 257 p. +# 76tso Tsonopoulos C., Coulson D.M., and Inman L.B., 1976. Ionization constants of water pollutants. J. Chem. Eng. Data, 21, p. 190 193. +# 76wag/eva Wagman D.D., Evans W.H., Parker V.B., Schumm R.H., 1976. Chemical thermodynamic properties of compounds of sodium, potassium, and rubidium, an interim tabulation of selected values. Natl. Bur. Stand. Tech. Note, 270, 73 p. +# 77bar/kna Barin I., Knacke O., and Kubaschewski I., 1977: Thermochemical properties of inorganic substances. Springer Verlag, Berlin. +# 77bus/mes Busey R.H., and Mesmer R.E., 1977. Ionization equilibria of silicic acid and polysilicate formation in aqueous sodium chloride solutions to 300C. Inorg. Chem., 16, p. 2444 2450. +# 77fou/row Fournier R.O., and Rowe J.J., 1977. The solubility of amorphous silica in water at high temperatures and high pressures. Amer. Mineral., 62, p. 1052 1056. +# 77hem/rob Hemingway B.S., Robie R.A., Fisher J.R., et Wilson W.H., 1977. Heat capacity of gibbsite, Al(OH)3, between 13 and 480 K and magnesite, MgCO3, between 13 and 380 K and their standard entropies at 289.15 K, and the heat capacities of calorimetry conference benzoic acid between 12 and 316 K. J. Res. U. S. Geol. Survey, 5, p. 797-806. +# 77mac/hos MacGee K.A., and Hostetler P.B., 1977. Studies in the system MgO SiO2 CO2 H2O (IV): The stability of MgOH+ from 10 to 90C., Am. J. Sci., 275, p. 304 317. +# 77rie/gam Riesen W., Gamsjager H., and Schindler P.W., 1977. Complex formation in the ternary system Mg(II) CO2 H2O . Geochimica et Cosmochimica Acta, 41, p. 1193 1200. +# 77sre Sretenskaya N.G., 1977. Dissociation of hydrogen sulfide acid under pressure. Geokhimiya, 3, p. 430 438 (in Russian). +# 78hel/del Helgeson, H.C., Delany, J.M, Nesbitt, H.W., and Bird, D.K., 1978. Summary and Critique of the Thermodynamic Properties of Rock Forming Minerals: Amer. J. Sci., 278A, 229 pp. +# 78kru/sta Kruykov P.A., and Starostina L.I., 1978. The first ionization constants of hydrogen sulfide at temperature to 150C. lzvestija Sibirskogo Otdeleniya AN SSSR, 14, p. 87 93. +# 78ric/nri Rickard D.T., Nriagu J.O., 1978, Aqueous environmental chemistry of lead. In: The biochemistry of lead in the environment. Part A. Ecological Cycles, J.O. Nriagu (Ed), Elsevier/North-Holland Biomedical Press, 219-284 +# 78rob/hem Robie R.A., Hemingway B.S., and Fisher J.R., 1978. Thermodynamic properties of minerals and related substances at 298.15K and 1 bar 105 Pascals pressure and at higher temperatures. US Geol. Survey Bull., 1452, 456 pp. +# 78yag Yaglov V.N., 1978, Some characteristics of dehydration of hydrates of 3d elements orthophosphates. Khim. Khim. Tekhnol. (Minsk), 13, 7-14 (in russian) +# 79ede/sat Ederova, J., and Satava, V., 1979, Heat capacities of C3AH6, C4ASH12 and C6AS3H32: Thermochimica Acta, v. 31, p. 126-128 +# 79kru/rob Krupka, K.M., Robie, R.A., Hemingway, B.S., 1979. High-temperatur heat capacities of corundum, periclas, anorthite, CaAl2S2O8 glass, muscovite, pyrophyllite, KAlSi3O8 glass, grossular and NaAlSi3O8 glass. Am. Mineral., 64, p. 86-101 +# 79lan Langmuir D., 1979, Techniques of estimating thermodynamic properties for some aqueous complexes of geochemical interest, in Jenne, E.A., ed., Chemical Modeling in Aqueous systems: Speciation, Sorption, Solubility, and Kinetics: ACS Symp. Ser. 93, Amer. Ch +# 79lle Iler R.K., 1979. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. Wiley, New York. +# 79mat/spo Mattigod S.V., and Sposito G., 1979, Chemical modeling of trace metal equilibria in contaminated soil solutions using the computer program GEOCHEM. In: Chemical Modeling in Aqueous Systems: Speciation, Sorption, Solubility, and Kinetics, E.A. Jenne (Ed), +# 79may/hel May H.M., Helmke P.A., and Jackson M.L., 1979. Gibbsite solubility and thermodynamic properties of hydroxy aluminum ions in aqueous solution at 25C. Geochimica et Cosmochimica Acta, 43, 861 868. +# 79vie/tar Vieillard P., Tardy Y., Nahon D., 1979, Stability field of clays and aluminum phosphates: Parageneses in lateritic weathering of argillaceous phosphatic sediments. Am. Miner., 64, 626-634 +# 79vol Volkov A.I., 1979, Thermochemical study of 3d element orthophosphates. Khim. Khim. Tekhnol. (Minsk), 14, 58-64 (in russian) +# 80bal/nor Ball J.W., Nordstrom D.K., Everett A.J., 1980, Additional and revised thermochemical data and computer code for WATEQ 2. A computerized chemical model for trace and major element speciation and mineral equilibria of natural waters. US Geol. Surv. Wat. Res +# 80cle/joh Clever H.L. and Johnston F.J., 1980. The solubility of some sparingly soluble lead salts: An evaluation of the solubility in water and aqueous electrolyte solutions, J. Phys. Chem. Ref. Data, 9, p. 751 784. +# 80har/wea Harvie C.E., and Weare J.H., 1980. The prediction of mineral soluhilities in natural waters: the Na K Mg Ca Cl SO4 H2O system from zero to high concentration at 25C. Geochimica et Cosmochimica Acta, 44, p. 981 997. +# 80hem/mon Hemley J.J., Montoya J.W., Marinenko J.W., and Lute R.W., 1980. Equilibria in the system Al2O3 SiO2 H2O and some general implications for alteration/mineralization processes. Econ. Geol., 75, p. 210 228. +# 81bae/mes Baes Jr. C.F., and Mesmer R.E., 1981. The thermodynamics of cation hydrolysis. Am. J. Sci., 281, p. 935-962. +# 81tur/whi Turner D.R., Whitfield M. and Dickson A.G., 1981. The equilibrium speciation of dissolved components in freshwater and seawater at 25 C and 1 atm. pressure. Geochim. Cosmochim. Acta, 45, p. 855 881. +# 82bar/mcc Barbero J.A., McCurdy K.G., and Tremaine P.R., 1982. Apparent molal heat capacities and volumes of aqueous hydrogen sulphide and sodium hydrogen sulfide near 25C: The temperature dependence of H2S ionization. Canadian J. Chem., 60, p. 1872 1880. +# 82bil/sch Bilinski H., and Schindler P., 1982. Solubility and equilibrium constants of lead in carbonate solutions (25C, I = 0.3 mol dm 3). Geochimica et Cosmochimica Acta, 46, p. 921 928. +# 82cox/wag Cox J.D., Wagman D.D., et Medvedev V.A., 1989. CODATA Key Values for Thermodynamics.: editors. Hemisphere Publishing Corp.: New York. 279 pp. +# 82dek DeKock, C.W., 1982, Thermodynamic properties of selected transition metal sulfates and their hydrates: U.S. Bur. Mines Info. Circ. 8910, 45 p. +# 82far/fra V.C. Farmer and A.R. Fraser, Chemical and colloidal stability of sols in the Al2O3-Fe2O3-SiO2-H2O system: Their role in podzolization, J. Soil Sci. 33 (1982), pp. 737-742 +# 82joh/flo Johnson G. K., Flotow H. E., O'Hare P. A. G., and Wise W. S. (1982) Thermodynamic studies of zeolites : analcime and dehydrated analcime. American Mineralogist 67, 736-748. +# 82pan Pankratz L. B., 1982, Thermodynamic Properties of Elements and Oxides (U. S. Bureau of Mines Bulletin 672, 1982, 509 p). +# 82pat/slo Patterson C.S., Slocum G.H., Busey R.H., and Mesmer R.E., 1982. Carbonate equilibria in hydrothermal systems: first ionization of carbonic acid in NaCl media to 300C. Geochimica and Cosmochimica Acta, 46, p. 1653 +# 82plu/bus Plummer, L.N. and Busenberg, E., 1982. The Solubilities of Calcite, Aragonite, and Vaterite in CO2-H2O Solutions Between 0 and 90 C and an Evaluation of the Aqueous Model of the System CaCO3-CO2-H2O. Geochimica et Cosmochimica Acta, Vol. 46, p. 1011-1040. +# 82ric/bot Richet P., Bottinga Y., Denielon L., Petitet J.P., and Tequi C., 1982. Thermodynamics properties of quartz, cristobalite and amorphous SiO2: Drop calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K. Geochimica et Cosmochimica Acta, 46, p. 2639-2658. +# 82van Vanderzee C.E., 1982. Thermodynamic relations and equilibria in (Na2CO3 + NaHCO3 + H2O): Standard Gibbs energies of formation and other properties of sodium hydrogen carbonate, sodium carbonate heptahydrate, sodium carbonate decahydrate, trona: (Na2CO3CNaHCO3C2H2O), and Wegscheider's salt: (Na2CO3C3NaHCO3). J. Chem. Thermodynamics, 14, 219-238 +# 82wag/eva Wagman D.D., Evans W.H., Parker V.B., Schumm R.H., Halow I., Bailey S.M., Churney K.L., and Nutall R.L., 1982. The NBS Tables of Chemical Thermodynamic Properties. J. Phys. Chem. Ref. Data, 11, Suppl. 2. +# 83bow/hel Bowers, T.S., and Helgeson, H.C., 1983, Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O-CO2-NaCl on phase relations in geologic systems: Equation of state for H2O-CO2-NaCl fluids at high pressures and temperatures: Geochim. Cosmo. Acta, v. 47, pp. 1247-1275. +# 83joh/flo Johnson G. K., Flotow H. E., and O'Hare P. A. G. (1983) Thermodynamic studies of zeolites:natrolite mesolite and scolecite. American Mineralogist 68, 1137-1145 +# 83mic/deb Micskei K., Debreczeni F. and Nagypal I., 1983. Equilibria in aqueous solutions of some chromium (2+) complexes. J. Chem. Soc. Dalton Trans., p. 1335-1338. +# 83miy/kle Miyano T, Klein C (1983 a) Phase relations of orthopyroxene, olivine, and grunerite in high-grade metamorphic iron-formation.Am Mineral 68:699-716 +# 83san/bar Sangameshwar S.R., and Barnes H.L., 1983. Supergene processes in zinc lead silver sulfide ores in carbonates, Econ. Geol., 78, p 1379 1397. +# 84bus/plu Busenberg E., Plummer L.N. and Parker V.B., 1984. The solubility of strontianite (SrCO3) in CO2-H2O solutions between 2 and 91C, the association constants of SrHCO3+(aq) and SrCO3O(aq) between 5 and 80C, and an evaluation of the thermodynamic properties of Sr++(aq) and SrCO3(cr) at 25C and 1 atm total pressure. Geochim. et Cosmochim. Acta, 48, p. 2021-2035. +# 84har/mol Harvie C.E., Moller N., and Weare J.H.. 1984, The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25 C. Geochimica Cosmochimica Acta, 48, pp. 723-751. +# 84mak Makarov, T.I., Sidorov, Y.I., and Naumov, V.B. (1984) Formation conditions for iron minerals in ultrabasic-alkali metasomites. Geochemistry International, 21, 148-160. +# 84nan Nancollas G.H., 1984, The nucleation and growth of phosphate minerals, Chap. 2. In: Phosphate Minerals, J.O. Nriagu and P.B. Moore (Eds), Springer-Verlag, ISBN 3-540-12757-7, 318-329 +# 84nri Nriagu J.O., 1984, Formation and stability of base metal phosphates in soils and sediments, Chap. 10. In: Phosphate Minerals, J.O. Nriagu and P.B. Moore (Eds), Springer-Verlag, ISBN 3-540-12757-7, 318-329 +# 84pan Pankratz L. B., 1984, Thermodynamic Properties of Halides (U. S. Bureau of Mines Bulletin 674, 1984, 826 p). +# 84pan/stu L.B. Pankratz, J.M. Stuve, and N.A. Gokcen, 'Thermodynamic Data for Mineral Technology,' Bulletin 677, U.S. Bureau of Mines (1984). +# 84rob/hem Robie R. A. and Hemingway B. S., 1984. Heat capacities and entropies of phlogopite KMg3AlSi3O1O(OH)2 and paragonite NaAl2AlSi3O1O(OH)2 between 5 and 9OO K and estimates of the enthalpies and Gibbs free energies of formation. Amer. Miner., 69, p. 858-868. +# 84sew Seward T. M., 1984. The formation of lead (II) chloride complexes to 300C. A spectrophotometric study. Geochim. Cosmochim. Acta, 48, p. 121 134. +# 84tay/lop Taylor P., and Lopata V.J., 1984. Stability and solubility relationships between some solids in the system PbO CO2 H2O. Can. J. Chem., 62, p. 395 402. +# 84vie/tar Vieillard P., Tardy Y., 1984, Thermochemical properties of phosphates, Chap. 4. In: Phosphate Minerals, J.O. Nriagu and P.B. Moore (Eds), Springer-Verlag, New York, ISBN 3-540-12757-7, 171-198 +# 85bab/mat Babushkin, V.I., Matveyev, G.M., and Mchedlov-Petrossyan, O.P. 1985. Thermodynamics of Silicates. New York, New York: Springer-Verlag. NNA.19920401.0112 +# 85ber/bro Berman, R.G., Brown, T.H., 1985. Heat capacity of minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-AI2O3-SiO2-TiO2-H2O-CO2: representation, estimation and high temperature extrapolation. Contribution to Mineralogy and Petrolology 89, 168-183. +# 85cha/dav Chase, M. W., Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud 1985. JANAF Thermochemical Tables, 3rd. ed., J. Phys. Chem. Ref. Data 14, Suppl. 1, Am. Chem. Soc. and Am. Inst. of Physics, Washington, D. C. +# 85gol/par Goldberg R.N., and Parker V.B., 1985. Thermodynamics of solution of SO2(g) in water and of aqueous sulfur dioxide solutions. J. Res. Natl. Bur. Stand., 90, p. 341 358. +# 85hel Helgeson, H.C., 1985, Errata II. Thermodynamics of minerals, reactions, and aqueous solutions at high pressures and temperatures: Amer. Jour. Sci., v. 285, pp. 845-855. +# 85jac/hel Jackson, K.J., and Helgeson, H.C., 1985, Chemical and thermodynamic constraints on the hydrothermal transport and deposition of tin: II. Interpretation of phase relations in the Southeast Asian tin belt: Econ. Geol., v. 80, no. 5, pp. 1365-1378. +# 87fer Fernandez Guillermet A. (1987) Critical evaluation of the thermodynamic properties of cobalt. Int. J. Thermophys., 8 (4), 481-510 +# 87gar/par CODATA87 Garvin D., Parker V.B and White H.J., 1987. CODATA Series on Thermodynamic Properties, Hemisphere, Washington, DC. +# 87pan/mah Pankratz L. B., 1987, A. D. Mah, and S. W. Watson, Thermodynamic Properties of Sulfides (U. S. Bureau of Mines Bulletin 689, 1987, 427 p). +# 87rai/sas Rai D., Sass B.M. and Moore D.A., 1987. Chromium (III) hydrolysis constants and solubility of chromium (III) hydroxide. Inorg. Chem., 26, p. 345-349. +# 87sve Sverjensky, D.A., 1987, Calculations of the thermodynamic properties of aqueous species and the solubilities of minerals in supercritical electrolyte solutions, in Carmichael, I.S.E. and H.P. Eugster, eds., Thermodynamic Modeling of Geologic Materials: Minerals, Fluids and Melts: Mineral. Soc. Amer., Reviews in Mineralogy, v. 17, pp. 177-209. +# 87woo/gar Woods T. L. and Garrels R. M. (1987) Thermodynamic values at low temperature for natural inorganic materials. An uncritical summary. Oxford University Press, New York. +# 88cha/new Chandratillake M.R., Newton G.W.A. and Robinson V.J., 1988. Chemval project EUR11891 EN. Comparison of thermodynamic databases used in geochemical modelling., 19 p. +# 88eva/gug Evans B. and Guggenheim S. (1988) Talc, pyrophyllite, and related minerals, Hydrous Phyllosilicates (exclusive of micas). In: S.W. Bailey, Editor, Reviews in Mineralogy vol. 19 (1988), pp. 225-294. +# 88haa Haas J.L., Jr. (1988) Recommended standard electrochemical potentials and fugacities of oxygen for the solid buffers and thermodynamic data in the systems iron-silicon-oxygen, nickel-oxygen, and copper-oxygen. Preliminary report of January 17, 1988 to the CODATA Task Group on Chemical Thermodynamic Tables, U.S. Geological Survey, Reston, Virginia. +# 88mer Merlino, S., 1988, Gyrolite: its crystal structure and crystal chemistry. Mineralogical Magazine, v. 52, p. 377-387. +# 88mol Moller N., 1988. The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na Ca Cl SO4 H2O system, to high temperature and concentration. Geochirmica et Cosmochimica Acta, 52, p. 821 837. +# 88phi/hal Phillips, S.L., Hale, F.V., Silvester, L.F., and Siegel, M.D. (1988) Thermodynamic tables for nuclear waste isolation, an aqueous solutions database. vol 1, 181 p. Report NUREG/CR-4864, LBL-22860, SAND87-0323, Lawrence Berkeley Laboratory, Berkeley, California. +# 88rea Reardon E. (1988) J. Phys. Chem., 92, 6426-6431 +# 88rua Ruaya J.R., 1988. Estimation of instability constants of metal chloride complexes in hydrothermal solutions up to 300C. Geochimica et Cosmochimica Acta, 52, p. 1983 1996. +# 88sac/pas Sacerdoti M., Passaglia E. (1988) Neues Jb. Miner., Mh., H.10, 462-475 +# 88sho/hel Shock E.L. and Helgeson H.C., 1988. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic aqueous species and equation of state predictions to 5 kb and 1000C. Geochim. Cosmochim. Acta, 52, pp. 2009-2036. +# 88sto Stoessell, R. K. (1988) 25oC and 1 atm dissolution experiments of sepiolite and kerolite: Geochimica Cosmochimica Acta, 52, 365-374. +# 89asho/hel Shock, E.L., and Helgeson, H.C., 1989, Corrections to Shock and Helgeson (1988): Geochim. Cosmo. Acta, v. 53, p. 215. +# 89bar/sau Barin, I., F. Sauert, et al. (1989). Thermochemical Data of Pure Substances. Germany, VCH, Verlagsgesellschaft. +# 89bsho/hel Shock E.L., Helgeson H.C. and Sverjensky D.A., 1989. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of inorganic neutral species. Geochim. Cosmochim. Acta, 53, pp. 2157-2183. +# 89cox/wag Cox J.D., Wagman D.D., and Medvedev V.A., 1989. CODATA Key Values for Thermodynamics. Hemisphere Publishing Corp., New York, 279 p. +# 89mar/smi Martell A.E., and Smith R.M., 1989, Critical Stability Constants, Vol. 3: Other Organic Ligands (2nd printing). Plenum, New York, 495 p. +# 89pan/sus Pan P. and Susak N.J. (1989) Co(II)-chloride and -bromide complexes in aqueous solutions up to 5 m NaX and 90[deg]C: Spectrophotometric study and geological implications. Geochimica et Cosmochimica Acta 53(2), 327-341. +# 89sch/her Schwab R. G., Herold H., Costa M. L. D., and Oliveira N. P. (1989) The formation of aluminous phosphates through lateritic weathering of rocks. Weathering 2, 369-386. +# 90hem Hemingway B. S. (1990) Thermodynamic properties for bunsenite, NiO, magnetite, Fe3O4, and hematite, Fe2O3, with comments on selected oxygen buffer reactions. American Mineralogist 75(7-8), 781-790. +# 90hol/pow Holland T. J. B. and Powell R. (1990) An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O-Na2O-CaO-MgO-MnO-FeO-Fe2O3-Al2O3-TiO2-SiO2-C-H2-O2. Journal of Metamorphic Geology 8(1), 89-124. +# 90kun/kih Kuniaki Kihara (1990) Eur. J. Mineral., 2, 63-77 +# 90nor/plu Nordstrom D.K., Plummer L.N., Langmuir D., Busenberg E., May H.M., Jones B.F., and Parkhurst D.L., 1990. Revised chemical equilibrium data for major water-mineral reactions and their limitations, in Bassett, R.L. and Melchior, D. eds., Chemical modeling in aqueous systems II: Washington D.C., American Chemical Society Symposium Series 416, p. 398-413. +# 90pap/ber V.G. Papangelakis, D. Berk and G.P. Demopoulos, Mathematical modeling of an exothermic leaching reaction system: pressure oxidation of wide size arsenopyrite particulates. Metall. Trans. B, 21B (1990), pp. 827-837. +# 90rin/sac Rinaldi R., Sacerdoti M., Passaglia E. (1990) Eur. J. Mineral., 2, 841-849 +# 90rob/cam Roberts, Willard L., Campbell, Thomas J., and Rapp, George R.: Encyclopedia of Minerals. (Van Nostrand Reinhold Co., 2nd ed., 1990) +# 90sho/hel Shock, E.L., and Helgeson, H.C., 1990, Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of organic species: Geochim. Cosmo. Acta, v. 54, pp. 915-945. +# 90sto/cyg Stoffregen R. E., Cygan G.L. (1990). An experimental study of Na-K exchange between alunite and aqueous sulfate solutions. Am. Min., 75:209-220 +# 91all/bro Allison J.D., Brown D.S., and Novo-Gradac K.J. 1991. Minteqa2/prodefa2, a geochemical assessment model for environmental systems: version 3.0 user's manual, EPA/600/3-91/021, March 1991 by U.s. Environmental Protection Agency Athens, Georgia 30605. +# 91atk/gla Atkins, M., Glasser, F.P., Kindness, A., and MacPhee, D.E. 1991. Solubility Data for Cement Hydrate Phases (25C). Washington, District of Columbia: U.S. Department of Energy. (DOE/HMIP/RR/91/032) +# 91din Dinsdale A.T., 1991. SGTE Data for Pure Elements, CALPHAD, 15(4), p. 317-425. +# 91hem/rob Hemingway B.S., Robie R.A., and Apps J.A., 1991. Revised values for the thermodynamic properties of boehmite, AlO(OH), and related species and phases in the system Al O H. Am. Mineral., 76, p. 445-457. +# 91kna/kub O. Knacke, O. Kubaschewski and K. Hesselmann: Thermochemical Properties of Inorganic Substances, Second Edition, (Springer-Verlag, 1991) +# 91kon/hau Konigsberger E., Hausner R., and Gamsjager H., 1991. Solid solute phase equilibria in aqueous solution. V: The system CdC03 CaC03 C02 H20. Geochimica and Cosmochimica Acta, 55, p. 3505 3514. +# 91nag/las Nagy K.L., and Lasaga A.C., 1991. Dissolution and precipitation kinetics of gibbsite at 80C and pH 3: The dependence on solution saturation state. Geochimica et Cosmochimica Acta, 56, p. 3093 3111. +# 91pab/pit Pabalan R., Pitzer K. (1991) in: K. Pitzer (Ed.), Activity Coefficients in Electrolyte Solutions, Chapter 7. CRC Press, Boca Ration, FL +# 91rai/fel Rai D., Felmy A.R., and Szelmeczka R.W., 1991. Hydrolysis Constants and Ion Interaction Parameters For Cd(II) in Zero to High Concentrations of NaOH KOH, and the Solubility Product of Crystalline Cd(OH)2. Journal of Solution Chemistry, 20, p. 375 390. +# 91rob/hem Robie R.A. and Hemingway B.S. (1991) - Heat capacities of kaolinite from 7 to 380 K and of DSMO-intercalated kaolinite AI2Si20 (OH). Clays and Clay Minerals, 39, p. 362-368 +# 91sve/hem Sverjensky, D.A., Hemley, J.J., and D'Angelo, W.M., 1991, Thermodynamic assessment of hydrothermal alkali feldspar- mica-aluminosilicate equilibria: Geochim. Cosmo. Acta, v. 55, pp. 989-1004. +# 92ajoh Ref. 1+19 in slop98.dat: GEOPIG., 1998. Slop98.dat, http://geopig.asu.edu/supcrt_data.html, Washington University. +# 92bal/nor Ball J.W., and Nordstrom D.K., 1992. User's manual for WATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of major, trace and redox elements in natural waters. U.S. Geol. Survey Open-File Report 91-183 (revised and reprinted 1992), Menlo Park, California. 189 pp. +# 92bjoh Ref. 17 in slop98.dat: GEOPIG., 1998. Slop98.dat, http://geopig.asu.edu/supcrt_data.html, Washington University. +# 92bru/stu Bruno J., Stumm W., Wersin P., and Brandberg F. (1992) On the influence of carbonate in mineral dissolution: I. The thermodynamics and kinetics of hematite dissolution in bicarbonate solutions at T = 25C. Geochimica et Cosmochimica Acta 56(3), 1139-1147. +# 92bru/wer Bruno J., Wersin P., and Stumm W. (1992) On the influence of carbonate in mineral dissolution: II. The solubility of FeCO3 (s) at 25C and 1 atm total pressure. Geochimica et Cosmochimica Acta 56(3), 1149-1155. +# 92cir/nav Circone S. and Navrotsky A., 1992. Substitution of (6,4)Al in phlogopite : high pressure solution calorimetry , heat capacities and thermodynamic properties of the phlogopite -eastonite join. American Mineralogist, 77, p. 1191-1205. +# 92cjoh Ref. 7+9+19 in slop98.dat: GEOPIG., 1998. Slop98.dat, http://geopig.asu.edu/supcrt_data.html, Washington University. +# 92cle/der Clever L.H., Derrick E.M., and Johnson S.A., 1992. The solubility of Some Sparingly Soluble Salts on Zinc and Cadmium In water and in aqueous electrolyte solutions. J. Phys. Chem. Ref. Data, 21, p. 941 966. +# 92gre/fug Grenthe I., Fuger J., Konings R.J.M., Lemire R.J., Muller A.B., Nguyen Trung C., and Wanner H., 1992. Chemical Thermodynamics, Volume 1: Chemical Thermodynamics of Uranium. North Holland, Amsterdam, 1, 714 pp. +# 92joh/oel Johnson J.W., Oelkers E.H. and Helgeson H.C., 1992. SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000'C. Comput.Geosci., 18, p. 899 +# 92joh/tas Johnson G. K., Tasker I. R., Flotow H. E., and O'Hare P. A. G. (1992) Thermodynamic studies of mordenite,dehydrated mordenite and gibbsite. American Mineralogist 77(1-2), 85-93 +# 92pal/wes Palmer D.A., and Wesolowski D.J., 1992. Aluminum speciation and equilibria in aqueous solution: II. The solubility of gibbsite in acidic sodium chloride solutions from 30 to 70C. Geochimica et Cosmochimica Acta, 56, p. 1093 1111. +# 92plo/wic Plodinec M. J. and Wicks G. G. (1992) Applications of hydration thermodynamics to in-situ tests results. In: Proc. Workshop on In Situ Testiong of Radioactive Waste Forms and Engineered Barriers, Corsendonk, Belgium, oct. 13-16, 1992. +# 92sea/rob Seal R.R., Robie R.A., Barton P.B., and Hemingway B.S. (1992) Superambient heat capacities of synthetic stibnite, berthierite, and chalcostibnite: Revised thermodynamic properties and implications for phase equilibria. Econ. Geol. 87, 1911-1918. +# 92sho Shock, E.L., 1992, Stability of peptides in high-temperature aqueous solutions: Geochim. Cosmo. Acta, v. 56, pp. 3481-3491. +# 92sti/par Stipp S.L.S., Parks G.A., Nordstrom K.D., and Leckie J.O., 1992. Solubility product constant and thermodynamic properties for synthetic otavite, CdC03(s) and aqueous association constants for the Cd( II) C02 H20 system. Geochimica et Cosmochimica Acta, 57 +# 92tay Taylor, H. F. W., 1992, Cement Chemistry, third edition: London, Thomas Telford, 475 p. +# 92wol Wolery T.J., 1992. EQ3/6: A software Package for Geochemical Modelling of Aqueous Systems: Package Overview and Installation Guide. Technical Report UCRL-MA-110662 PT I ed., Lawrence Livermore National Laboratory (USA). +# 93bal/chr Balarew C., Christov C., Valyashko V., Petrenko S. (1993) J. Solution Chem., 22, 173-181 +# 93bar Barin, I. (1993) Thermochemical Data of Pure Substances, Weinheim, FRG, VCH. +# 93pal/wel Palmer D.A., and Wesolowski D.J., 1993. Aluminum speciation and equilibrium in aqueous solution: III. Potentiometric determination of the first hydrolysis constant of aluminum (III) in sodium chloride solutions to 125C. Geochim. Cosmochim. Acta, 57, p. 2 +# 93sax/cha Saxena S.K., Chaterjee N., Fei Y., Shen G. (1993) Thermodynamic data on oxides and silicates. Springer. New-York. +# 93sch/got Schwab R. G., Gotz C., Herold H., and Oliveira N. P. (1993) Compounds of the crandallite type-Thermodynamic properties of Caphosphates, Sr-phosphates, Ba-phosphates, Pb-phosphates, La-phosphates, Ce-phosphates to Gd-phosphates and Ca-arsenates, Ba-arsenates, Pb-arsenates, La-arsenates, Ce-arsenate.Srarsenates, Neues Jahrb Miner Monatsh. 12, 551-568. +# 93sch/sho Schulte, M.D., and Shock, E.L., 1993, Aldehydes in hydrothermal solution: Standard partial molal thermodynamic properties and relative stabilities at high temperatures and pressures: Geochim. Cosmo. Acta, v. 57, pp. 3835-3846. +# 93sho Shock, E.L., 1993, Hydrothermal dehydration of aqueous organic compounds: Geochim. Cosmo. Acta, v. 57, pp. 3341-2249. +# 93sho/kor Shock, E.L., and Koretsky, C.M., 1993, Metal-organic complexes in geochemical processes: Calculation of standard partial molal thermodynamic properties of aqueous acetate complexes at high pressures and temperatures: Geochim. Cosmo. Acta, v.57, pp. 4899-4 +# 93sho/mck Shock, E.L., and McKinnon, W.B., 1993, Hydrothermal Processing of Cometary Volatiles--Applications to Triton: Icarus, v. 106, pp. 464-477. +# 93sto Stoffregen R.E. (1993). Stability relations of jaroiste and natrojarosite. Geoch. And Cosmoch. Acta, 57, 2417-2419. +# 94aki/zot Akinfiev N.N., Zotov A.V., and Shikina N.D. (1994) Experimental investigation and thermodynamic correlation in the Sb(III)-S(II)-O-H system. Geochem. Intern. 31, 27-40. +# 94alb/tom Al-Borno, A., Tomson, M.B. (1994) The temperature dependence of the solubility product constant of vivianite. Geochim. Cosmochim. Acta 58, 5373-5378 +# 94dam/str Damidot, D., Stronach, S., Kindness, A., Atkins, M., and Glasser, F.P. 1994. Thermodynamic investigation of the CaO-Al2O3-CaCO3-H2O closed system at 25C and influence of Na2O. Cem. Concr. Res. 24(3):563-572. +# 94dia/kho I. Diakonov, I. Khodakovsky, J. Schott, E. Sergeeva (1994) Thermodynamic properties of iron oxides and hydroxides. I. Surface and bulk thermodynamic properties of goethite (alpha-FeOOH) up to 500 K. Eur. J. Mineral., 6(6), 967-983. +# 94pan Pankratz L. B., 1994, Thermodynamic Properties of Carbides, Nitrides, and Other Selected Substances (U. S. Bureau of Mines Bulletin 696, 1994, 957 p). +# 95ant/bid Anthony J.W., Bideaux R.A., Bladh K.W. and Nichols M.C., 1995. Handbook of Mineralogy, Volume II. Silica, Silicates. Mineral Data Publishing, Tucson, 904 pp., 2 vols. +# 95bev/pui Beverskog, B., Puigdomenech, I. (1995) Revised Pourbaix diagrams for iron at 25-300C; Corr. Sci. 38, p. 2121-2135. +# 95bou Bourbon X., 1995. Selection de donnees thermodynamiques afferentes aux corrections de Temperature sur les equilibres chimiques. I/II Analyse de bases de donnees. ANDRA Report, C RP O. HEM 95.001. +# 95dac/ben Dachs, E. and Benisek, A., 1995. The stability of annite+quartz: reversed experimental data for the reaction 2 annite+3 quartz=2 sanidine+3 fayalite+2 H2O. Contributions to Mineralogy and Petrology, 121, p. 380-387. +# 95dai/pos Dai, Y., and Post, J. E,. 1995, Crystal structure of hillebrandite: a natural analogue of calcium silicate hydrate (CSH) phases in Portland cement: American Mineralogist, v. 80, p. 841-844. +# 95haa/sho Haas, J.R., Shock, E.L., and Sassani, D.C., 1995, Rare earth elements in hydrothermal systems: Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures: Geochim. Cosmo. Acta, v. 59, no. 21, pp. 4329-4350. +# 95has/cyg Haselton H.T., Cygan G.L. and Jenkins D.M., 1995. Experimental study of muscovite stability in pure H 2 O and 1 molal KCl-HCl solutions. Geochimica et Cosmochimica Acta, 59, p. 429-442 +# 95jem/che Jemal M., Ben Cherifa A., Kattech I. and Ntahomvukiye I., 1995. Standard enthalpies of formation and mixing of hydroxy- and fluorapatites. Thermochimica Acta, 259, p. 13-21 +# 95mar/mac Marani D., Macchi G., and Pagano M., 1995. Lead precipitation in the presence of sulphate and carbonate : testing of thermodynamic predictions. Water Research, 29, p. 1085 1092. +# 95mir/kis Mironova V.E., Kiselev V.P., Egizaryan M.B., Golovnev N.N., Pashkov G.L. (1995) Ion association in aqueous solutions of calcium arsenate. Russ. J. Inorg. Chem., 40, 1690-1691 +# 95par/kho Parker, V.B., Khodakovsky, I.L. (1995) Thermodynamic properties of aqueous ions (2+ et 3+) of iron and the key compouds of iron. J. Phys. Chem. Ref. Data 24 (5) p. 1699-1745. +# 95pok/hel Pokrovskii, V.A., and Helgeson, H.C., 1995, Thermodynamic properties of aqueous species and the solubilities of minerals at high pressures and temperatures: The system Al2O3-H2O-NaCl: Amer. J. Sci., 295, 1255-1342. +# 95pok/sch Pokrovski G.S., Schott J. and Sergeyev A.S., 1995. Experimental determination of the stability constants of NaSO4minus and NaB (OH)40 in hydrothermal solutions using a new high-temperature sodium-selective glass electrode - Implications for boron isotopic fractionation. Chemical Geology, 124, p. 253-265. +# 95rob/hem Robie R.A., and Hemingway B.S., 1995. Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (105 Pascals) pressure and at higher temperatures. U.S. Geol. Survey Bull., 2131, 461 pp. +# 95sho Shock, E.L., 1995, Organic acids in hydrothermal solution: Standard molal thermodynamic properties of carboxylic acids and estimates of dissociation constants at high temperatures and pressures: Amer. Jour. Science, v. 295, pp. 496-580. +# 95sho/kor Shock, E.L., and Koretsky, C.M., 1995, Metal-organic complexes in geochemical processes: Estimation of standard partial molal thermodynamic properties of aqueous complexes between metal cations and monovalent organic acid ligands at high pressures and temperatures. Geochim. Cosmo. Acta, 59, pp. 1497-1532. +# 95sil/bid Silva R.J., Bidoglio G., Rand M.H, Robouch P.B., Wanner H., and Puigdomenech I., 1995. Chemical Thermodynamics Vol.2. Chemical Thermodynamics of Americium. NEA, Elsevier. +# 95tro Trotignon L. (1995) Critique et selection de donnees thermodynamiques en vue de modeliser les equilibres mineral-solution. Rapport annuel 1995 SESD95/49 +# 96abar/pal Baron D. and Palmer C. D., 1996a. Solubility of KFe3(CrO4)2(OH)6 at 4-35C. Geochim. Cosmochim. Acta, 60, pp. 3815-3824. +# 96arc Archer D.G., 1996. Thermodynamic Properties of Synthetic Otavite, CdCO3(cr): Enthalpy Increment Measurements from 4.5 K to 350 K. J. Chem. Eng. Data, 41, p. 852 858. +# 96bbar/pal Baron D. and Palmer C. D. (1996b) Solubility of jarosite at 4-35C. Geochim. Cosmochim. Acta 60, 185-195. +# 96bev/pui Beverskog, B., Puigdomenech, I., 1996. Revised pourbaix diagrams for iron at 25-300 C. Corros. Sci. 38, 2121-2135. +# 96bou Bourbon X., 1996. Selection de donnees thermodynamiques afferentes aux corrections de Temperature sur les equilibres chimiques (Sodium, Potassium, cesium, Magnesium, Calcium, Strontium, Cobalt, Nickel, Paladium). ANDRA Report, CRP OHEM 96.001. +# 96dia/sch Diakonov, I.I., Schott, J., Martin, F., Harrichourry, J.-C., Escalier, J., 1999. Iron (III) solubility and speciation in aqueous solutions. experimental study and modelling: part 1. hematite solubility from 60 to 300 C in NaOH-NaCl solutions and thermodynamic properties of Fe (OH) 4minus(aq). Geochimica et Cosmochimica Acta 63, 2247-2261. +# 96fal/rea Falck W.E., Read D. and Thomas J.B., 1996. Chemval2: thermodynamic database EUR16897 EN +# 96gal/boll Gal J.Y., Bollingerb J.C., Tolosa H., and Gache N., 1996. Calcium carbonate solubility: a reappraisal of scale formation and inhibition. Talanta, 43, p. 1497 1509. +# 96gem GEMBOCHS, 1996, THERMODYNAMIC DATABASE: thermo.com.V8.R6.full, generated by GEMBOCHS.V2-Jewel.src.R6 03-dec-1996 16:55:04 +# 96hud/str Hudson Lamb D.L., Strydom C.A., and Potgieter J.H., 1996. The thermal dehydration of natural gypsum and pure calcium sulphate dihydrate (gypsum). Thermochimica Acta, 282/283, p. 483 492. +# 96kis/nav Kiseleva I., Navrotsky A., Belitskii I. A., and Fursenko B. A. (1996) Thermochemistry and phase equilibria in calcium zeolites. American Mineralogist 81(5-6), 658-667 +# 96pok/gou Pokrovski G., Gout R., Schott J., Zotov A. and Harrichoury J.C., 1996. Thermodynamic properties and stoichiometry of As (III) hydroxide complexes at hydrothermal conditions. Geochimica et Cosmochimica Acta, 60, 737-749 +# 96rou/hov Roux J. and Hovis G. L., 1996. Thermodynamic mixing models for muscovite-paragonite solutions based on solution calorimetric and phase equilibrium data. Journal of Petrology, 37, p. 1241-1254 +# 96stu/mor Stumm, W., Morgan, J.J., 1996. Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley. +# 96su/har Su, C., and J.B. Harsh. 1996. Influence of soluble aluminosilicate complex formation on imogolite solubility determination. Geochim. Cosmochim. Acta 60:4275-4277. +# 97all/dol Allal K. M., Dolinger J.-C., and Martin G. (1997) Determination of thermodynamical data of calcium hydroxichloride. Revue de l'Institut Francais du Petrole 52(3), 361-368. +# 97apok/hel Pokrovskii V.A., and Helgeson H.C., 1997a. Thermodynamic properties of aqueous species and the solubilities of minerals at high pressures and temperatures: the system Al2O3 H2O KOH. Chemical Geology, 137, p. 221 242. +# 97asho/sas Shock, E.L., Sassani, D.C., Willis, M., and Sverjensky, D.A., 1997, Inorganic species in geologic fluids: Correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes: Geochim. Cosmo. Acta, v. 61, no. 5, pp. 907-950. +# 97ben/dia Benezeth P., Diakonov I.I., Pokrovski G.S., Dandurand J.L., Schott J. and Khodakovsky I.L., 1997. Gallium speciation in aqueous solution. Experimental study and modelling: Part 2. Solubility of alpha-GaOOH in acidic solutions from 150 to 250C and hydrolysis constants of gallium (III) to 300oC. Geochim. Cosmochim. Acta, 61, pp. 1345-1357 +# 97bon/hea Bond K. A., Heath T. G. and Tweed C. J., 1997. HATCHES: A Referenced Thermodynamic Database for Chemical Equilibrium Studies. Nirex Report NSS/R379 +# 97bpok/hel Pokrovskii V., and Helgeson H.C., 1997b. Calculation of the standard partial molal thermodynamic properties of KCl0 and activity coefficients of aqueous KC1 at temperatures and pressures to 1000C and 5 kbar. Geochimica et Cosmochimica Acta, 61, p. 2175-2183. +# 97bsho/sas Shock, E.L., Sassani, D.C., and Betz, H., 1997, Uranium in geologic fluids: Estimates of standard partial molal properties, oxidation potentials, and hydrolysis constants at high temperatures and pressures: Geohim. Cosmo. Acta, v. 61, no. 20, pp. 4245-426 +# 97coo/alb Coombs, D.S., Alberti, A., Armbruster, T., Artioli, G., Colella, C., Galli, E., Grice, J.D., Liebau, F., Mandarino, J.A., Minato, H., Nickel, E.H., Passaglia, E., Peacor, D.R., Quartieri, S., Rinaldi, R., Ross, M., Sheppard, R.A., Tillmanns, E., Vealini, G., 1997. Recommended nomenclature for zeolite minerals - report of the subcommittee on zeolites of the international mineralogical association, commission on new minerals and mineral names. Canadian Mineralogist, 35, 1571-1606. +# 97cro Cromieres L., 1997. Selection de donnees thermodynamiques le cadmium, le mercure et le bore, et evaluation de leur manche. Technical report Andra C.RP.AMAT.97.043 +# 97csho/sas Shock, E.L., Sassani, D.C., and Betz, H., 1997, Uranium in geologic fluids: Estimates of standard partial molal properties, oxidation potentials, and hydrolysis constants at high temperatures and pressures: Geohim. Cosmo. Acta, v. 61, no. 20, pp. 4245-4266 +# 97dal/sho Dale, J.D., Shock, E.L., MacLeod, G., Aplin, A.C., and Larter, S.R., 1997, Standard partial molal properties of aqueous alkylphenols at high pressures and temperatures: Geochim. Cosmo. Acta, v. 61, no. 19, pp. 4017-4024. +# 97got Gottschalk M. (1997) Internally consistent thermodynamic data set for rock forming minerals in the system SiO2-TiO2-Al2O3-Fe2O3-CaO-MgO-FeO-K2O-Na2O-H2O-CO2: an alternative approach. European Journal of Mineralogy, 9, p. 175-223. +# 97mcc/sho McCollom, T.M., and Shock, E.L., 1997, Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems: Geochim. Cosmo. Acta, v. 61, no. 20, pp. 4375-4391. +# 97pal/wes Palmer D.A., and Wesolowski D.J., 1997. Potentiometric measurements of the first hydrolysis quotient of magnesium(II) to 250C and 5 molal ionic strength. J. Sol. Chem., 26, p. 217-232. +# 97ply/wan Plyasunova, N.V., Wang, M., Zhang, Y., Muhammed, M., 1997. Critical evaluation of thermodynamics of complex formation of metal ions in aqueous solutions II. Hydrolysis and hydroxo-complexes of Cu2+ at 298.15 K. Hydrometallurgy 45, 37-51. +# 97rim Rimstidt D.J., 1997. Quartz solubility at low temperatures. Geochimica et Cosmochimica Acta, 61, p. 2553 2558. +# 97sho/sas Shock E.L., Sassani D.C., Willis M., and Sverjensky D.A., 1997. Inorganic species in geologic fluids: Correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochim. Cosmo. Acta, 61, p. 907 950. +# 97smi/mar Smith R. M., Martell A. E., and Motekaitis R. J. (1997) NIST Critically Selected Stability Constants of Metal Complexes Database, Version 4.0. NIST Standard Reference Database 46. U.S. Department of Commerce +# 97sul/sew Suleimenov O.M., and Seward T.M., 1997. A spectrophotometric study of hydrogen sulphide ionisation in aqueous solutions to 350C. Geochimica et Cosmochimica Acta, 61, p. 5187 5198. +# 97sve/sho Sverjensky, D.A., Shock, E.L., and Helgeson, H.C., 1997 Prediction of the thermodynamic properties of aqueous metal complexes to 1000 C and 5 kb: Geochim. Cosmo. Acta, v. 61, No. 7, pp. 1359-1412. +# 97tag/zot Tagirov B. R., Zotov A. V. and Akinfiev N. N., 1997. Experimental study of dissociation of HCl from 350 to 500C and from 500 to 2500 bars: Thermodynamic properties of HCl(aq). Geochimica et Cosmochimica Acta, 61, 4267-4280 +# 97tay Taylor H.F.W. , 1997 Cement Chemistry, 2nd. Ed., Thomas Telford, London. +# 98adia I.I. Diakonov (1998) Thermodynamic properties of iron oxides and hydroxides. II. Estimation of the surface and bulk thermodynamic properties of ordered and disordered maghemite (gamma-Fe2O3). Eur. J. Mineral., 10(1), 17-29. +# 98arc Archer D.G., 1998. Thermodynamic Properties of Import to Environmental Processes and Remediation. I. Previous Thermodynamic Property Values for Cadmium and Some of Its Compounds. Journal of Physical and Chemical Reference Data, 27, p. 915 +# 98bal/nor Ball J.W. and Nordstrom D.K., 1998. Critical evaluation and selection of standard state thermodynamic properties for chromium metal and its aqueous ions, hydrolysis species, oxides and hydroxides. J. Chem. Eng. Data 43, p. 895-918. +# 98bar/pal Baron D. and Palmer C. D., 1998. Solubility of KFe(CrO4)2-2H2O at 4-75C. Appl. Geochem., 12, pp. 961-973. +# 98bdia I.I. Diakonov (1998) Thermodynamic properties of iron oxides and hydroxides. III. Surface and bulk thermodynamic properties of lepidocrocite (gamma-FeOOH) to 500 K. Eur. J. Mineral., 10(1), 31-41. +# 98bre/lin Brennan, E.W., Lindsay, W.L. (1998) Reduction and oxidation effect on the solubility and transformation of iron oxides, Soil Sci. Soc. Am. J. 62, 930-937 +# 98cha Chase, M.W.J., 1998. NIST-JANAF Thermochemical Tables, Journal of Physical Chemistry Reference Data, Vol. 9, 4th Edition. National Institute of Standards and Technology, Washington DC, 1951 pp. +# 98cha/kru Chatterjee, N.D., Kruger, R., Haller, G., Olbricht, W., 1998. The Bayesian approach to an internally consistent thermodynamic database: theory, database, and generation of phase diagrams. Contributions to Mineralogy and Petrology 133, 149-168. +# 98fel/dix Felmy A.R., Dixon D.A., Rustad J.R., Mason M.J. and Onishi L.M., 1998. The Hydrolysis and Carbonate Complexation of Strontium and Calcium in Aqueous Electrolytes: Use of Molecular Modeling Calculations in the Development of Aqueous Thermodynamic Models. J. Chem. Thermodynamics, 30, p. 1103-1120 +# 98gam/kon Gamsjager H., Konigsberger E., and Preis W., 1998. Solubilities of metal carbonates. Pure and Appl. Chem., 70, p. 1913 1920. +# 98gla/tyr Glasser, F. P., Tyrer, M., Quillin, K., Ross, D., Pedersen, J., Goldthorpe, K., Bennett, D., and Atkins, M., 1998, The chemistry of blended cements and backfills intended for use in radioactive waste disposal: Research and development Technical Report P98, UK Environment Agency, 332 p. +# 98hol/pow Holland T.J.B., and Powell R., 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16, p. 309 343. +# 98kin King D. W. (1998) Role of Carbonate Speciation on the Oxidation Rate of Fe(II) in Aquatic Systems. Environ. Sci. Technol. 32(19), 2997-3003. +# 98mer/roc Mercy M.A., Rock P.A., Casey W.H., and Mokarram M.M., 1998. Gibbs energies of formation for hydrocerussite [Pb(OH)2.(PbCO3)2(s)] and hydrozincite {[Zn(OH)2]3.(ZnCO3)2(s)} at 298 K and 1 bar from electrochemical cell measurements. American Mineralogist, 83, p. 739-745. +# 98ply/zha Plyasunova N. V., Zhang Y., and Muhammed M. (1998) Critical evaluation of thermodynamics of complex formation of metal ions in aqueous solutions. V. hydrolysis and hydroxo-complexes of Co2+ at 298.15 K. Hydrometallurgy 48(2), 153-169. +# 98pok/sch Pokrovski G.S. and Schott J., 1998. Thermodynamic properties of aqueous Ge(IV) hydroxide complexes from 25 to 350C: Implications for the behavior of germanium and the Ge/Si ratio in hydrothermal fluids. Geochimica et Cosmochimica Acta, 62, 1631-1642 +# 98ras/eva RASMUSSEN G., EVANS B .W. and Kusmmn S.M. (1998): Low-temperature fayalite, greenalite, and minnesotaite from the Overlook gold deposit, Washington: phase relations in the system FeO-SiO2-H2O. Can. Mineral.36, 147-162 +# 98sal/pok Salvi S, Pokrovski G.S. and Schott J. 1998. Experimental investigation of aluminum-silica aqueous complexing at 300C. Chemical Geology, 151, 51-67 +# 98sas/sho Sassani, D.C., and Shock, E.L., Solubility and Transport of Platinum-Group Elements in Supercritical fluids: Estimates of standard partial molal properties, oxidation potentials, and hydrolysis constants at high temperatures and pressures: Geohim. Cosmo. Acta, v. 61, no. 20, pp. 4245-4266. +# 98sav Savage, D., 1998, Zeolite occurrence, stability and behaviour, in Maqarin, analogue study, Phase III, Smellie, J. A. T., editor, SKB Report TR 98-04, v. 1, p. 281-307. +# 98zie/jon Ziemniak S.E., Jones M.E. and Combs K.E.S. 1998. Solubility and phase behaviour of Cr(III) oxides in alkaline media at elevated temperatures. J. Solution Chemistry, Vol. 27, N1, p.33-66. +# 99aki/zot Akinfiev N. and Zotov A., 1999. Thermodynamic description of equilibria in mixed fluids (H2O-non-polar gas) over a wide range of temperature (25-700C) and pressure (1-5000 bars). Geochimica et Cosmochimica Acta, 63, 2025-2041 +# 99all Allison Geoscience Consultants, Inc., HydroGeoLogic, Inc., 1999, MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems: User manual supplement for version 4.0., U.S. Environmental Protection Agency, 76 p. +# 99bot/bro Bothe JV, Brown PW (1999) The stabilities of calcium arsenates at 23 C. J Hazard Mater B 69:197-207 +# 99dav/phi Davison W., Phillips N., and Tabner B. J. (1999) Soluble iron sulfide species in natural waters: Reappraisal of their stoichiometry and stability constants. Aquatic Sciences - Research Across Boundaries 61(1), 23-43. +# 99dia/sch Diakonov I.I., Schott J., Martin F., Harrichourry J.C. and Escalier J., 1999. Iron(III) solubility and speciation in aqueous solutions. experimental study and modelling: part 1. hematite solubility from 60 to 300C in NaOH-NaCl solutions and thermodynamic properties of Fe(OH)4-(aq) - Revised equation od state for the standard partial properties of ions and electrolytes. Geochimica et Cosmochimica Acta, Volume 63, Number 15, August 1999 , pp. 2247-2261(15) +# 99gra Grauer R., 1999. Solubility products of M(II) carbonates. Waste Management laboratory, PSI Bericht Nr. 99-04 January 1999 ISSN 1019-0643. +# 99kon/kon Konigsberger E., Konisberger L.C., and Gamsjager H., 1999. Low temperature thermodynamic model for the system Na2CO3 MgCO3 CaCO3 H2O. Geochimica et Cosmochimica Acta, 63, p. 3105-3119. +# 99lot/och Lothenbach B., Ochs M., Wanner H., and Yui M., 1999. Thermodynamic data for the speciation and solubility of Pd, Pb, Sn, Sb, Nb and Bi in aqueous solution. JNC TN8400 99 011. +# 99par/app Parkhurst D.L., and Appelo C.A.J., 1999. User's guide to Phreeqc (version 2)- a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculation. USGS WRI Report 99-4259, 312 pp. +# 99sav/sav Savenko V. S. and Savenko A. V. (1999) Solubility of cobalt(III) and the stability constant of the hydroxo complex Co(OH)30 in aqueous solution. Geochemistry International 37(4), 385-387. +# 99sch/bar Schoonen M.A.A, and Barnes H.L., 1988. An approximation of the second dissociation constant for H2S. Geochim. Cosmo. Acta, 52, p. 649-654. +# 99sch/nav Schoenitz, M., and Navrotsky, A., 1999, Enthalpy of Formation of Katoite Ca3Al2[(OH)4]3: Energetics of the Hydrogarnet Substitution. American Mineralogist, v. 84, p.389-391 +# 99wan/tes Wang F., and Tessier A., 1999. Cadmium Complexation with Bisulfide. Environ. Sci. Technol., 33, p. 4270 4277. +# 99yun/glu Yungman V.S., and Glusko V.P., 1999. Thermal constants of substances. Wiley, Begell House, New York. +# CODATA87 Garvin D., Parker V.B and White H.J., 1987. CODATA Series on Thermodynamic Properties, Hemisphere, Washington, DC. +# NIST46.4 NIST (1997) Critical stability constants of metal complexes database, NIST Standard Reference Database 46, v4.0. Website: http://www.nist.gov/srd/nist46.htm +# Piantone, pers. Comm.Piantone, pers. Comm., 2005 +# slop98 GEOPIG., 1998. Slop98.dat, http://geopig.asu.edu/supcrt_data.html, Washington University. +# unp unpublished data +# 18bla/bur Blanc, P., Burnol, A., Marty, N., Hellal, J., Guerin, V., Laperche, V., 2018. Methylmercury complexes: Selection of thermodynamic properties and application to the modelling of a column experiment. Science of The Total Environment 621, 368-375. +# 18las/bla Lassin, A., Blanc, P., 2018. Thermoddem : selection des proprietes thermodynamiques des complexes aqueux et des mineraux porteurs de zinc, p. 42. +# 14aki/tag Akinfiev, N., Tagirov, B., 2014. Zn in hydrothermal systems: thermodynamic description of hydroxide, chloride, and hydrosulfide complexes. Geochemistry International 52, 197-214. +# 12liu/bor Liu, W., Borg, S., Etschmann, B., Mei, Y., Brugger, J., 2012. An XAS study of speciation and thermodynamic properties of aqueous zinc bromide complexes at 25-150 C. Chemical Geology 298, 57-69. +# 13pow/bro Powell, K.J., Brown, P.L., Byrne, R.H., Gajda, T., Hefter, G., Leuz, A.-K., Sjoberg, S., Wanner, H., 2013. Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: The Zn2++ OH-, Cl-, CO32-, SO42-, and PO43-systems (IUPAC Technical Report). Pure and Applied Chemistry 85, 2249-2311. +# 19gai/bla Gailhanou, H., Blanc, P., Rogez, J., Mikaelian, G., Kawaji, H., Olives, J., Montouillout, V., Greneche, J.M., Vieillard, P., Gaucher, E.C., Fialips, C.I., Made, B., 2019. Thermodynamic properties of mixed-layer illite-smectite by calorimetric methods: Acquisition of the enthalpies of mixing of illite and smectite layers. The Journal of Chemical Thermodynamics 138, 78-97. +# 18roo/vie Roosz, C., Vieillard, P., Blanc, P., Gaboreau, S., Gailhanou, H., Braithwaite, D., Montouillout, V., Denoyel, R., Henocq, P., Made, B., 2018. Thermodynamic properties of C-S-H, C-A-S-H and M-S-H phases: Results from direct measurements and predictive modelling. Applied Geochemistry 92, 140-156. +# 19bla/lac Blanc, P., Lach, A., Guignot, S., 2019. Mineralogy and suitability of materials for geopolymer production. Brgm, p. 61. +# 99lan Europe, C.S.G.T., 1999. Thermodynamic Properties of Compounds, NdBr3 to SnBr4. Pure Substances. Part 2 _ Compounds from BeBr_g to ZrCl2_g, 125-150. +# 18sch/kre Scharrer, M., Kreissl, S., Markl, G., 2018. The mineralogical variability of hydrothermal native element bearing arsenide (Ag-Co-Ni-As-Bi ) mineralisations, Geosymposium of Quenstedt-Jahresfeier 2018, Tubingen, Germany + +END From 9b9ee1b061d2245ad878072c4cd01f6140ca11d8 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Sun, 26 Feb 2023 16:50:20 -0700 Subject: [PATCH 041/384] Closes usgs-coupled/phreeqcrm#12 (#13) * Closes usgs-coupled/phreeqcrm#12 * Added yaml-cpp install * Added yaml-cpp to PhreeqcRM link libraries * Added yaml-cpp install to cmake builds * Added compile feature cxx_std_11 * Added toolchain for windows cmake * Fix autotools build on macOS? * Changed to c++ headers for math.h and float.h * Updated 'Test install' step for autotools (macos-latest) --- phreeqcpp/Phreeqc.h | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/phreeqcpp/Phreeqc.h b/phreeqcpp/Phreeqc.h index 31d8c98f..36797428 100644 --- a/phreeqcpp/Phreeqc.h +++ b/phreeqcpp/Phreeqc.h @@ -29,9 +29,9 @@ typedef unsigned char boolean; #include #include #include -#include +#include #include -#include +#include #include "phrqtype.h" #include "cvdense.h" #include "runner.h" From 8925f6c3e593af286eddce71943a535afa7b7a3f Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Tue, 28 Feb 2023 22:21:43 -0700 Subject: [PATCH 042/384] updated RELEASE.TXT, revised PR_P and PR_PHI functions and the test case PR_error_incremental --- RELEASE.TXT | 166 ++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 166 insertions(+) diff --git a/RELEASE.TXT b/RELEASE.TXT index 318273ab..ced5abc2 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,4 +1,170 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + ----------------- + February 28, 2023 + ----------------- + PhreeqcRM: Revised names for PhreeqcRM test case source and output + files (Tests subdirectory of distribution). Added tests SimpleAdvect_cpp + and SimpleAdvect_f90, which produce the same results as Advect_cpp + and Advect_f90, but with a minimal set of PhreeqcRM method calls. + + ----------------- + February 26, 2023 + ----------------- + PhreeqcRM: Added method InitializeYAML to initialize a PhreeqcRM + instance. + + It is possible to use a YAML file to initialize the PhreeqcRM instance. + If a GUI is used to define model input, a YAML file could be used to + transfer the data from the GUI to a PhreeqcRM instance. The YAML file + contains names of PhreeqcRM methods and associated data, for example: + + RunFile: + workers: true + initial_phreeqc: true + utility: true + chemistry_name: advect.pqi + + InitializeYAML can be used to process the directives defined in + the YAML file. The method InitializeYAML is equivalent to BMI_Initialize. + + A C++ class named YAMLPhreeqcRM is included in the Tests subdirectory + of the PhreeqcRM distribution, which provides the capability to generate + a PhreeqcRM YAML file. The file WriteYAMLFile.cpp generates a YAML file + and advection_bmi_cpp.cpp reads and processes the file to initialize + a PhreeqcRM instance. + + ----------------- + February 26, 2023 + ----------------- + PhreeqcRM: Added a rudimentary BMI (Basic Model Interface) for C++. + The interface adds minimal capabilities to the other methods of + PhreeqcRM. The only new capabilities are (1) the capability to + retrieve units for the variables for BMI_GetValues and BMI_SetValues, + and (2) the capability to use YAML (YAML ain't Markup Language) + to initialize a PhreeqcRM instance with the method BMI_Initialize + (which is equivalent to the method InitializeYAML). The YAML + capability would be especially useful if a GUI (Graphical User Interface) + is used to set up model initial conditions. The GUI could write a YAML file + that contains directives for PhreeqcRM methods that need to be run and + the corresonding data needed to initialize a PhreeqcRM instance--for example, + setting units; running a PHREEQC input file to define initial and + boundary conditions; distribution of initial conditions to the model cells; + setting initial porosity, saturation, temperature, and pressure. + When a PhreeqcRM instance is created by the simulator, it can process + the YAML file with BMI_Initialize to execute the specified PhreeqcRM methods + to apply the data specified in the YAML file. + + The following is represents complete sequential, noniterative transport calculation: + + PhreeqcRM phreeqc_rm(nxyz, nthreads); + phreeqc_rm.BMI_Initialize("myfile.yaml"); + int ncomps; + phreeqc_rm.BMI_GetValue("ComponentCount", &ncomps); + int ngrid; + phreeqc_rm.BMI_GetValue("GridCellCount", ngrid); + std::vector c(ngrid*ncomps, 0.0); + phreeqc_rm.BMI_GetValue("Concentrations", c.data()); + phreeqc_rm.BMI_SetValue("TimeStep", 86400); + for(double time = 0; time < 864000; time+=86400) + { + // Take a transport time step here and update the vector c. + your_transport(c); + phreeqc_rm.BMI_SetValue("Time", time); + phreeqc_rm.BMI_SetValue("Concentrations", c.data()); + phreeqc_rm.BMI_Update(); + phreeqc_rm.BMI_GetValue("Concentrations", c.data()); + } + + The complete set of BMI methods is as follows: + + std::string BMI_GetComponentName() + Returns "PhreeqcRM". + + double BMI_GetCurrentTime() + Returns current time that has been set by the user. + + double BMI_GetEndTime() + Returns current time plus the time step. + + int BMI_GetInputItemCount() + Returns the number of variables that it is possible to set + with BMI_SetValue. + + std::vector BMI_GetInputVarNames() + Returns a list of the names of variables that can be set + with BMI_SetValue. + + int BMI_GetOutputItemCount() + Returns the number of variables that it is possible to retrieve + with BMI_GetValue. + + std::vector BMI_GetOutputVarNames() + Returns a list of the names of variables that can be retrieved + with BMI_GetValue. + + double BMI_GetTimeStep() + Returns the current time step that has been set by the user. + + std::string BMI_GetTimeUnits() + Returns "seconds". + + void BMI_GetValue(std::string name, void* dest) + Returns a value or vector of values for the variable identified by name. + + int BMI_GetVarItemsize(std::string name) + Returns the number of bytes needed for one element of the variable + identified by name. + + int BMI_GetVarNbytes(std::string name) + Returns the total number of bytes neded to store the value or vector + of values identified by name. + + std::string BMI_GetVarType(std::string name) + Returns the type of the variable identified by name: "int", "double", or + "string". + + std::string BMI_GetVarUnits(std::string name) + Returns the units associated with the variable identified by name. + + void BMI_Initialize(std::string config_file) + Same as InitializeYAML discussed above. + + void BMI_SetValue(std::string name, void* src) + Sets the value or vector of values for the variable identified by name. + + void BMI_Update(void) + Calculates chemical reactions for a time step. It is equivalent to + the method RunCells. Equilibrium will be calculated between the solution + and all equilibrium reactants (EQUILIBRIUM_PHASES, EXCHANGE, etc), and + KINETICS will be integrated for the time step. + + ----------------- + February 26, 2023 + ----------------- + PHREEQC: Fixed bug with Basic functions PR_P and PR_PHI. Values + were incorrect after the first step when INCREMENTAL_REACTIONS + was set to true. + + ----------------- + February 25, 2023 + ----------------- + ALL PROGRAMS: Added the latest version of the database Thermoddem to + the distributions of PHREEQC programs. The database was downloaded + from https://thermoddem.brgm.fr/. + + ----------------- + March 23, 2022 + ----------------- + PHREEQC: "MacInnes" was misspelled in one of the warning messages. + + ----------------- + December 18, 2021 + ----------------- + PHREEQC: Fixed transport bug where the end cell should not have + been processed in part of the calculation. + +Version 3.7.3: December 2, 2021 + ----------------- November 27, 2021 ----------------- From b4aa81fa76b81734261a1eba37c43570772575bf Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Sun, 5 Mar 2023 16:11:39 -0700 Subject: [PATCH 043/384] pre-commit changes use $ pre-commit run --all-files --- .gitlab-ci.yml | 2 +- Makefile.am | 2 +- phreeqcpp/.gitlab-ci.yml | 4 ++-- phreeqcpp/Makefile.am | 2 +- phreeqcpp/common/.gitlab-ci.yml | 4 ++-- 5 files changed, 7 insertions(+), 7 deletions(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 10dced62..436f26da 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -18,7 +18,7 @@ before_script: - chmod 644 ~/.ssh/known_hosts - git config --global user.email "darth@empire.com" - git config --global user.name "Darth Vader" - + subtree-sync: stage: sync diff --git a/Makefile.am b/Makefile.am index bd994e65..0df5eef3 100644 --- a/Makefile.am +++ b/Makefile.am @@ -21,7 +21,7 @@ EXTRA_DIST=\ phreeqcpp/CurveObject.h\ phreeqcpp/Form1.h\ phreeqcpp/Form1.resX\ - phreeqcpp/ZedGraph.dll + phreeqcpp/ZedGraph.dll AM_CPPFLAGS=-I$(top_srcdir)/src -I$(top_srcdir)/src/phreeqcpp -I$(top_srcdir)/src/phreeqcpp/common -I$(top_srcdir)/src/phreeqcpp/PhreeqcKeywords diff --git a/phreeqcpp/.gitlab-ci.yml b/phreeqcpp/.gitlab-ci.yml index 9c8a9fed..dd622b85 100644 --- a/phreeqcpp/.gitlab-ci.yml +++ b/phreeqcpp/.gitlab-ci.yml @@ -18,7 +18,7 @@ before_script: - chmod 644 ~/.ssh/known_hosts - git config --global user.email "darth@empire.com" - git config --global user.name "Darth Vader" - + subtree-sync: stage: sync @@ -34,7 +34,7 @@ subtree-sync: - master variables: - $GROUP - + script: ## ## Must re-clone in order for the subtree merge to work diff --git a/phreeqcpp/Makefile.am b/phreeqcpp/Makefile.am index a568ea8c..013912c0 100644 --- a/phreeqcpp/Makefile.am +++ b/phreeqcpp/Makefile.am @@ -8,7 +8,7 @@ EXTRA_DIST=\ Form1.h\ Form1.2005.resX\ Form1.resX\ - ZedGraph.dll + ZedGraph.dll AM_CPPFLAGS=-I$(top_srcdir)/src -I$(top_srcdir)/src/common -I$(top_srcdir)/src/PhreeqcKeywords diff --git a/phreeqcpp/common/.gitlab-ci.yml b/phreeqcpp/common/.gitlab-ci.yml index 408cc696..6487156b 100644 --- a/phreeqcpp/common/.gitlab-ci.yml +++ b/phreeqcpp/common/.gitlab-ci.yml @@ -16,7 +16,7 @@ before_script: - chmod 644 ~/.ssh/known_hosts - git config --global user.email "darth@empire.com" - git config --global user.name "Darth Vader" - + trigger-downstream: stage: trigger ## @@ -41,6 +41,6 @@ trigger-downstream: - curl -X POST -F token=${PHREEQC3_SRC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${PHREEQC3_SRC_ID}/trigger/pipeline - echo triggering wphast - curl -X POST -F token=${WPHAST_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${WPHAST_ID}/trigger/pipeline - + ## Upstream Projects ## none From 6b9245aef7baa935db1de98f8f1611c91da99711 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Sun, 5 Mar 2023 16:11:39 -0700 Subject: [PATCH 044/384] pre-commit changes use $ pre-commit run --all-files --- .gitlab-ci.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index d018b63d..a1598b4f 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -16,7 +16,7 @@ before_script: - chmod 644 ~/.ssh/known_hosts - git config --global user.email "darth@empire.com" - git config --global user.name "Darth Vader" - + trigger-downstream: stage: trigger ## From c85a9cde6d9bf3f7841b3bc9b87c18e1012df0c9 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Tue, 7 Mar 2023 00:42:18 +0000 Subject: [PATCH 045/384] Squashed 'phreeqcpp/' changes from e9db33b..0b60d1a 0b60d1a Closes usgs-coupled/phreeqcrm#12 (#13) git-subtree-dir: phreeqcpp git-subtree-split: 0b60d1aeccfdbd9d0f0c4959ee6a04e99d7725e4 --- Phreeqc.h | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/Phreeqc.h b/Phreeqc.h index 31d8c98f..36797428 100644 --- a/Phreeqc.h +++ b/Phreeqc.h @@ -29,9 +29,9 @@ typedef unsigned char boolean; #include #include #include -#include +#include #include -#include +#include #include "phrqtype.h" #include "cvdense.h" #include "runner.h" From bc9ab58d16539fa4c3580b66a7cd309db1c3568e Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Tue, 7 Mar 2023 01:00:20 +0000 Subject: [PATCH 046/384] Squashed 'phreeqcpp/' changes from 0b60d1a..f8cd55c f8cd55c Merge branch 'master' of code.chs.usgs.gov:coupled/phreeqc3 56731ea updated RELEASE.TXT, revised PR_P and PR_PHI functions and the test case PR_error_incremental 35190be added Thermoddem database. Fixed error in PR_P and PR_PHI. Added test case to check PR_P and PR_PHI are fixed. git-subtree-dir: phreeqcpp git-subtree-split: f8cd55c27c133f195a16f21cb6e07a46d280b2f3 --- basicsubs.cpp | 87 ++++++++++++++++++++++++++++++++++----------------- 1 file changed, 59 insertions(+), 28 deletions(-) diff --git a/basicsubs.cpp b/basicsubs.cpp index 69eed0ed..1a6d11df 100644 --- a/basicsubs.cpp +++ b/basicsubs.cpp @@ -1676,26 +1676,41 @@ molality(const char *species_name) } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -pr_pressure(const char *phase_name) +pr_pressure(const char* phase_name) /* ---------------------------------------------------------------------- */ { - class phase *phase_ptr; - int l; - phase_ptr = phase_bsearch(phase_name, &l, FALSE); - if (phase_ptr == NULL) + cxxGasPhase* gas_phase_ptr = use.Get_gas_phase_ptr(); + if (gas_phase_ptr != NULL) { - error_string = sformatf( "Gas %s, not found.", phase_name); - warning_msg(error_string); - return (1e-99); + int l; + class phase* phase_ptr = phase_bsearch(phase_name, &l, FALSE); + if (phase_ptr == NULL) + { + error_string = sformatf("Gas %s, not found.", phase_name); + warning_msg(error_string); + return (1e-99); + } + for (size_t i = 0; i < gas_phase_ptr->Get_gas_comps().size(); i++) + { + const cxxGasComp* gas_comp_ptr = &(gas_phase_ptr->Get_gas_comps()[i]); + int j; + class phase* phase_ptr_gas = phase_bsearch(gas_comp_ptr->Get_phase_name().c_str(), &j, FALSE); + if (phase_ptr == phase_ptr_gas) + { + if (gas_phase_ptr->Get_pr_in()) + { + return phase_ptr->pr_p; + } + else + { + return gas_comp_ptr->Get_p(); + } + } + } } - else if (phase_ptr->in != FALSE && phase_ptr->pr_in) - { - return phase_ptr->pr_p; - } - return (0.0); + return(0.0); } - /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: pressure(void) @@ -1703,26 +1718,42 @@ pressure(void) { return (patm_x); } + /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -pr_phi(const char *phase_name) +pr_phi(const char* phase_name) /* ---------------------------------------------------------------------- */ { - class phase *phase_ptr; - int l; - - phase_ptr = phase_bsearch(phase_name, &l, FALSE); - if (phase_ptr == NULL) + cxxGasPhase* gas_phase_ptr = use.Get_gas_phase_ptr(); + if (gas_phase_ptr != NULL) { - error_string = sformatf( "Gas %s, not found.", phase_name); - warning_msg(error_string); - return (1e-99); + int l; + class phase* phase_ptr = phase_bsearch(phase_name, &l, FALSE); + if (phase_ptr == NULL) + { + error_string = sformatf("Gas %s, not found.", phase_name); + warning_msg(error_string); + return (1e-99); + } + for (size_t i = 0; i < gas_phase_ptr->Get_gas_comps().size(); i++) + { + const cxxGasComp* gas_comp_ptr = &(gas_phase_ptr->Get_gas_comps()[i]); + int j; + class phase* phase_ptr_gas = phase_bsearch(gas_comp_ptr->Get_phase_name().c_str(), &j, FALSE); + if (phase_ptr == phase_ptr_gas) + { + if (gas_phase_ptr->Get_pr_in()) + { + return phase_ptr->pr_phi; + } + else + { + return gas_comp_ptr->Get_phi(); + } + } + } } - else if (phase_ptr->in != FALSE && phase_ptr->pr_in) - { - return phase_ptr->pr_phi; - } - return (1.0); + return(1.0); } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: From 772c30924fd12ad20b8be7c128ae7cc33bb7b170 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Tue, 7 Mar 2023 02:48:23 +0000 Subject: [PATCH 047/384] Squashed 'phreeqcpp/' changes from f8cd55c..eb35357 eb35357 Merge pull request #17 from scharlton2/bmi-working 26a26c1 pre-commit changes use $ pre-commit run --all-files git-subtree-dir: phreeqcpp git-subtree-split: eb35357c1291b425b97f8bae8a62d5a888a6d4e3 --- .gitlab-ci.yml | 4 ++-- Makefile.am | 2 +- common/.gitlab-ci.yml | 4 ++-- 3 files changed, 5 insertions(+), 5 deletions(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 9c8a9fed..dd622b85 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -18,7 +18,7 @@ before_script: - chmod 644 ~/.ssh/known_hosts - git config --global user.email "darth@empire.com" - git config --global user.name "Darth Vader" - + subtree-sync: stage: sync @@ -34,7 +34,7 @@ subtree-sync: - master variables: - $GROUP - + script: ## ## Must re-clone in order for the subtree merge to work diff --git a/Makefile.am b/Makefile.am index a568ea8c..013912c0 100644 --- a/Makefile.am +++ b/Makefile.am @@ -8,7 +8,7 @@ EXTRA_DIST=\ Form1.h\ Form1.2005.resX\ Form1.resX\ - ZedGraph.dll + ZedGraph.dll AM_CPPFLAGS=-I$(top_srcdir)/src -I$(top_srcdir)/src/common -I$(top_srcdir)/src/PhreeqcKeywords diff --git a/common/.gitlab-ci.yml b/common/.gitlab-ci.yml index 408cc696..6487156b 100644 --- a/common/.gitlab-ci.yml +++ b/common/.gitlab-ci.yml @@ -16,7 +16,7 @@ before_script: - chmod 644 ~/.ssh/known_hosts - git config --global user.email "darth@empire.com" - git config --global user.name "Darth Vader" - + trigger-downstream: stage: trigger ## @@ -41,6 +41,6 @@ trigger-downstream: - curl -X POST -F token=${PHREEQC3_SRC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${PHREEQC3_SRC_ID}/trigger/pipeline - echo triggering wphast - curl -X POST -F token=${WPHAST_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${WPHAST_ID}/trigger/pipeline - + ## Upstream Projects ## none From eeee6d3cce2549d37d7051ea3aebd78d77b944e8 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Tue, 7 Mar 2023 02:49:49 +0000 Subject: [PATCH 048/384] Squashed 'phreeqcpp/' changes from eb35357..11d588e 11d588e Merge commit '84dc8253eb8498cc204cacb6b24ee3b92f0a58b3' 84dc825 Squashed 'common/' changes from fb03f6a..04cb71a git-subtree-dir: phreeqcpp git-subtree-split: 11d588edde138d4961072f7b55c9bebc666189db From f0a661715fce41b7395400b718104b8d1018e945 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Tue, 7 Mar 2023 13:02:09 -0700 Subject: [PATCH 049/384] [webmod] webmod-dist-windows-git fails to build on jenkins --- IPhreeqc_interface_F.cpp | 1 + 1 file changed, 1 insertion(+) diff --git a/IPhreeqc_interface_F.cpp b/IPhreeqc_interface_F.cpp index 80c2ed14..e25590fb 100644 --- a/IPhreeqc_interface_F.cpp +++ b/IPhreeqc_interface_F.cpp @@ -7,6 +7,7 @@ #include #include "phrqtype.h" #include "IPhreeqc.h" +#include "Phreeqc.h" /* snprintf */ #include "IPhreeqc_interface_F.h" #ifdef SKIP From fe577a188cf0fc8102941d161bd4cc03c10881fe Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Tue, 7 Mar 2023 13:02:09 -0700 Subject: [PATCH 050/384] [webmod] webmod-dist-windows-git fails to build on jenkins --- IPhreeqc_interface_F.cpp | 1 + 1 file changed, 1 insertion(+) diff --git a/IPhreeqc_interface_F.cpp b/IPhreeqc_interface_F.cpp index 80c2ed14..e25590fb 100644 --- a/IPhreeqc_interface_F.cpp +++ b/IPhreeqc_interface_F.cpp @@ -7,6 +7,7 @@ #include #include "phrqtype.h" #include "IPhreeqc.h" +#include "Phreeqc.h" /* snprintf */ #include "IPhreeqc_interface_F.h" #ifdef SKIP From da9a093d9aaf63d9336fcf01bfeef5ea9e4f5a87 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Wed, 8 Mar 2023 12:51:02 -0700 Subject: [PATCH 051/384] Closes usgs-coupled/phast3#2 (#3) --- phreeqcpp/Phreeqc.h | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/phreeqcpp/Phreeqc.h b/phreeqcpp/Phreeqc.h index 36797428..a0e38bc0 100644 --- a/phreeqcpp/Phreeqc.h +++ b/phreeqcpp/Phreeqc.h @@ -1846,7 +1846,7 @@ isfinite handling # if __GNUC__ && (__cplusplus >= 201103L) # define PHR_ISFINITE(x) std::isfinite(x) # else -# define PHR_ISFINITE(x) isfinite(x) +# define PHR_ISFINITE(x) std::isfinite(x) /* changed when was changed to */ # endif #elif defined(HAVE_FINITE) # define PHR_ISFINITE(x) finite(x) From cb707ac2b79acb0dd01a80e37a0b3f3beb690957 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Wed, 8 Mar 2023 19:58:39 +0000 Subject: [PATCH 052/384] Squashed 'phreeqcpp/' changes from 11d588e..e1de8e8 e1de8e8 Closes usgs-coupled/phast3#2 (#3) git-subtree-dir: phreeqcpp git-subtree-split: e1de8e819060ecaf6d402694b29d70ffd0a3bf10 --- Phreeqc.h | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/Phreeqc.h b/Phreeqc.h index 36797428..a0e38bc0 100644 --- a/Phreeqc.h +++ b/Phreeqc.h @@ -1846,7 +1846,7 @@ isfinite handling # if __GNUC__ && (__cplusplus >= 201103L) # define PHR_ISFINITE(x) std::isfinite(x) # else -# define PHR_ISFINITE(x) isfinite(x) +# define PHR_ISFINITE(x) std::isfinite(x) /* changed when was changed to */ # endif #elif defined(HAVE_FINITE) # define PHR_ISFINITE(x) finite(x) From c3ed55b0e443c4ea3b85ecfc4fd8c78416a53321 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Wed, 8 Mar 2023 14:31:52 -0700 Subject: [PATCH 053/384] Introduce end-of-line normalization (#6) --- CMakeLists.txt | 46 +++++++++++++++++++++++----------------------- 1 file changed, 23 insertions(+), 23 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index 6b87c033..6d8f6659 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -1,23 +1,23 @@ -SET(phreeqc_ROOT -NOTICE -README -RELEASE -) - -SET(phreeqc_DOC -Phreeqc_2_1999_manual.pdf -Phreeqc_3_2013_manual.pdf -phreeqc3.chm -phreeqc.txt -wrir02-4172.pdf -) - -IF(WIN32) - foreach(file ${phreeqc_ROOT}) - install (FILES ${file} DESTINATION ${CMAKE_INSTALL_PREFIX} RENAME ${file}.txt) - endforeach() -ELSE() - install (FILES ${phreeqc_ROOT} DESTINATION ${CMAKE_INSTALL_DOCDIR}) -ENDIF() - -install (FILES ${phreeqc_DOC} DESTINATION ${CMAKE_INSTALL_DOCDIR}) +SET(phreeqc_ROOT +NOTICE +README +RELEASE +) + +SET(phreeqc_DOC +Phreeqc_2_1999_manual.pdf +Phreeqc_3_2013_manual.pdf +phreeqc3.chm +phreeqc.txt +wrir02-4172.pdf +) + +IF(WIN32) + foreach(file ${phreeqc_ROOT}) + install (FILES ${file} DESTINATION ${CMAKE_INSTALL_PREFIX} RENAME ${file}.txt) + endforeach() +ELSE() + install (FILES ${phreeqc_ROOT} DESTINATION ${CMAKE_INSTALL_DOCDIR}) +ENDIF() + +install (FILES ${phreeqc_DOC} DESTINATION ${CMAKE_INSTALL_DOCDIR}) From 91aa5fd89b2f211b1dc85020c227df1a35676318 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Wed, 8 Mar 2023 14:31:52 -0700 Subject: [PATCH 054/384] Introduce end-of-line normalization (#6) --- CMakeLists.txt | 58 +++++++++++++++++++++++++------------------------- 1 file changed, 29 insertions(+), 29 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index 8194f035..5e2e5457 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -1,29 +1,29 @@ -# set standard directory locations -include(GNUInstallDirs) - -set(phreeqc_DATABASE - Amm.dat - core10.dat - ColdChem.dat - frezchem.dat - iso.dat - llnl.dat - minteq.dat - minteq.v4.dat - phreeqc.dat - pitzer.dat - sit.dat - Tipping_Hurley.dat - wateq4f.dat - ) - -# for mytest tests -foreach(db ${phreeqc_DATABASE}) - configure_file(${db} ${db} COPYONLY) -endforeach() - -if (WIN32) - install (FILES ${phreeqc_DATABASE} DESTINATION database) -else() - install (FILES ${phreeqc_DATABASE} DESTINATION ${CMAKE_INSTALL_DOCDIR}/database) -endif() +# set standard directory locations +include(GNUInstallDirs) + +set(phreeqc_DATABASE + Amm.dat + core10.dat + ColdChem.dat + frezchem.dat + iso.dat + llnl.dat + minteq.dat + minteq.v4.dat + phreeqc.dat + pitzer.dat + sit.dat + Tipping_Hurley.dat + wateq4f.dat + ) + +# for mytest tests +foreach(db ${phreeqc_DATABASE}) + configure_file(${db} ${db} COPYONLY) +endforeach() + +if (WIN32) + install (FILES ${phreeqc_DATABASE} DESTINATION database) +else() + install (FILES ${phreeqc_DATABASE} DESTINATION ${CMAKE_INSTALL_DOCDIR}/database) +endif() From 540451234fbd09dd0fcd9947e126387d039c9a2a Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Fri, 24 Mar 2023 15:11:36 -0600 Subject: [PATCH 055/384] changed all double precision to real(kind=8) in all files. Compiles and runs test cases. --- IPhreeqc.h | 6 +++--- IPhreeqc.hpp | 2 +- IPhreeqc_interface.F90 | 10 +++++----- phreeqcpp/cl1.cpp | 2 +- phreeqcpp/sundialsmath.h | 4 ++-- phreeqcpp/sundialstypes.h | 2 +- 6 files changed, 13 insertions(+), 13 deletions(-) diff --git a/IPhreeqc.h b/IPhreeqc.h index 93adac90..4c04c426 100644 --- a/IPhreeqc.h +++ b/IPhreeqc.h @@ -1672,9 +1672,9 @@ Headings * FUNCTION SetBasicFortranCallback(ID,FCN) * INTEGER(KIND=4), INTENT(IN) :: ID * INTERFACE - * DOUBLE PRECISION FUNCTION FCN(x1, x2, str) - * DOUBLE PRECISION, INTENT(in) :: x1 - * DOUBLE PRECISION, INTENT(in) :: x2 + * real(kind=8) FUNCTION FCN(x1, x2, str) + * real(kind=8), INTENT(in) :: x1 + * real(kind=8), INTENT(in) :: x2 * CHARACTER(*), INTENT(in) :: str * END FUNCTION * END INTERFACE diff --git a/IPhreeqc.hpp b/IPhreeqc.hpp index 22bdf150..c79957b5 100644 --- a/IPhreeqc.hpp +++ b/IPhreeqc.hpp @@ -713,7 +713,7 @@ public: * Sets a Fortran callback function for Basic programs. The syntax for the Basic command is * 10 result = CALLBACK(x1, x2, string$) * The syntax for the Fortran function is - * double precision my_callback(x1, x2, string), where x1 and x2 are double precision and string is a character variable. + * real(kind=8) my_callback(x1, x2, string), where x1 and x2 are real(kind=8) and string is a character variable. * @param fcn The name of a user-defined function. * @see SetBasicCallback */ diff --git a/IPhreeqc_interface.F90 b/IPhreeqc_interface.F90 index 6c726c83..45e6db0c 100644 --- a/IPhreeqc_interface.F90 +++ b/IPhreeqc_interface.F90 @@ -688,7 +688,7 @@ INTEGER FUNCTION GetSelectedOutputValue(id, row, col, vtype, dvalue, svalue, sle END INTERFACE INTEGER, INTENT(in) :: id, row, col INTEGER, INTENT(out) :: vtype - DOUBLE PRECISION, INTENT(out) :: dvalue + real(kind=8), INTENT(out) :: dvalue CHARACTER(len=*), INTENT(out) :: svalue INTEGER, INTENT(out), OPTIONAL :: slength INTEGER :: sz, sz_fortran @@ -898,9 +898,9 @@ INTEGER FUNCTION SetBasicFortranCallback(id, fcn) IMPLICIT NONE INTEGER, INTENT(in) :: id INTERFACE - DOUBLE PRECISION FUNCTION fcn(x1, x2, str, l) + real(kind=8) FUNCTION fcn(x1, x2, str, l) INTEGER, INTENT(in) :: l - DOUBLE PRECISION, INTENT(in) :: x1, x2 + real(kind=8), INTENT(in) :: x1, x2 CHARACTER, INTENT(in) :: str(*) END FUNCTION fcn END INTERFACE @@ -908,9 +908,9 @@ INTEGER FUNCTION SetBasicFortranCallback(id, fcn) END INTERFACE INTEGER, INTENT(in) :: id INTERFACE - DOUBLE PRECISION FUNCTION fcn(x1, x2, str, l) + real(kind=8) FUNCTION fcn(x1, x2, str, l) INTEGER, INTENT(in) :: l - DOUBLE PRECISION, INTENT(in) :: x1, x2 + real(kind=8), INTENT(in) :: x1, x2 CHARACTER, INTENT(in) :: str(*) END FUNCTION fcn END INTERFACE diff --git a/phreeqcpp/cl1.cpp b/phreeqcpp/cl1.cpp index 107a8ad9..b0dd1be4 100644 --- a/phreeqcpp/cl1.cpp +++ b/phreeqcpp/cl1.cpp @@ -142,7 +142,7 @@ cl1(int k, int l, int m, int n, /* AT LEAST NKLMD COLUMNS USED FOR WORKSPACE. */ /* S INTEGER ARRAY OF SIZE AT LEAST KLMD, USED FOR */ /* WORKSPACE. */ -/* DOUBLE PRECISION DBLE */ +/* real(kind=8) DBLE */ /* REAL */ /* INITIALIZATION. */ diff --git a/phreeqcpp/sundialsmath.h b/phreeqcpp/sundialsmath.h index 59e49d3a..4f240e81 100644 --- a/phreeqcpp/sundialsmath.h +++ b/phreeqcpp/sundialsmath.h @@ -13,10 +13,10 @@ * listed here work with the type realtype as defined in * * sundialstypes.h. * * To do single precision floating point arithmetic, set the type * - * realtype to be float. To do double precision arithmetic, set * + * realtype to be float. To do real(kind=8) arithmetic, set * * the type realtype to be double. The default implementations * * for RPowerR and RSqrt call standard math library functions * - * which do double precision arithmetic. If this is unacceptable * + * which do real(kind=8) arithmetic. If this is unacceptable * * when realtype is float, then the user should re-implement * * these two routines by calling single precision routines * * available on his/her machine. * diff --git a/phreeqcpp/sundialstypes.h b/phreeqcpp/sundialstypes.h index 1003410f..ddf6c84a 100644 --- a/phreeqcpp/sundialstypes.h +++ b/phreeqcpp/sundialstypes.h @@ -25,7 +25,7 @@ * The types for realtype and integertype below have been set to * * double and long int, respectively. A user should modify these * * type declarations as he/she sees fit. For example, if a user * - * wants the work with type float because double precision * + * wants the work with type float because real(kind=8) * * floating point arithmetic is too expensive on the user's * * machine, then the definition below should be changed to: * * * From 3f24bf1780bc107238d758bbe802dcbb929b902f Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Thu, 30 Mar 2023 23:48:27 -0600 Subject: [PATCH 056/384] moved enum to RMVARS.h --- CVar.hxx | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/CVar.hxx b/CVar.hxx index e0ad3687..9f2d1a32 100644 --- a/CVar.hxx +++ b/CVar.hxx @@ -12,7 +12,7 @@ public: { ::VarInit(this); } - ~CVar(void) throw() + ~CVar(void) //throw() { Clear(); } From 25f2472130c22c1a63e15f0fa58f1021c83a7b4a Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Mon, 3 Apr 2023 03:27:21 -0600 Subject: [PATCH 057/384] fixed compiler warnings except NAN --- phreeqcpp/gases.cpp | 2 -- phreeqcpp/model.cpp | 5 ----- phreeqcpp/pitzer.cpp | 20 ++++++++++---------- phreeqcpp/prep.cpp | 7 ++----- phreeqcpp/spread.cpp | 4 +--- phreeqcpp/tally.cpp | 7 ------- 6 files changed, 13 insertions(+), 32 deletions(-) diff --git a/phreeqcpp/gases.cpp b/phreeqcpp/gases.cpp index d64d2c97..b373068a 100644 --- a/phreeqcpp/gases.cpp +++ b/phreeqcpp/gases.cpp @@ -624,7 +624,6 @@ int Phreeqc:: calc_fixed_volume_gas_pressures(void) /* ---------------------------------------------------------------------- */ { - int n_g = 0; LDBLE lp; class rxn_token *rxn_ptr; class phase *phase_ptr; @@ -645,7 +644,6 @@ calc_fixed_volume_gas_pressures(void) { if (!PR && phase_ptr->t_c > 0 && phase_ptr->p_c > 0) PR = true; - n_g++; } gas_phase_ptr->Set_total_moles(gas_phase_ptr->Get_total_moles() + gas_unknowns[i]->moles); } diff --git a/phreeqcpp/model.cpp b/phreeqcpp/model.cpp index 9bebfc87..bf8d8fd7 100644 --- a/phreeqcpp/model.cpp +++ b/phreeqcpp/model.cpp @@ -2543,7 +2543,6 @@ int Phreeqc:: calc_gas_pressures(void) /* ---------------------------------------------------------------------- */ { - int n_g = 0; LDBLE lp, V_m = 0; class rxn_token *rxn_ptr; std::vector phase_ptrs; @@ -2576,7 +2575,6 @@ calc_gas_pressures(void) phase_ptrs.push_back(phase_ptr); if (!PR && phase_ptr->t_c > 0 && phase_ptr->p_c > 0) PR = true; - n_g++; } if (iterations > 2 && gas_phase_ptr->Get_type() == cxxGasPhase::GP_VOLUME) { @@ -3778,7 +3776,6 @@ residuals(void) int converge; LDBLE l_toler; - LDBLE sum_residual; LDBLE sinh_constant; LDBLE sum, sum1; class master *master_ptr, *master_ptr1, *master_ptr2; @@ -3786,7 +3783,6 @@ residuals(void) int print_fail; std::vector cd_psi; print_fail = FALSE; - sum_residual = 0.0; sigmaddl = 0; sum = 0; /* @@ -4530,7 +4526,6 @@ residuals(void) * Store residuals in array */ my_array[((size_t)i + 1) * (count_unknowns + 1) - 1] = residual[i]; - sum_residual += fabs(residual[i]); } /* * Return diff --git a/phreeqcpp/pitzer.cpp b/phreeqcpp/pitzer.cpp index 77de08e5..b71f24d3 100644 --- a/phreeqcpp/pitzer.cpp +++ b/phreeqcpp/pitzer.cpp @@ -52,7 +52,7 @@ pitzer_tidy(void) const char *string1, *string2; int i, j, order; int i0, i1, i2; - int count_pos, count_neg, count_neut, count[3], jj; + int count_neut, count[3], jj; LDBLE z0, z1; class pitz_param *pzp_ptr; class theta_param *theta_param_ptr; @@ -339,21 +339,21 @@ pitzer_tidy(void) i0 = pitz_params[i]->ispec[0]; i1 = pitz_params[i]->ispec[1]; i2 = pitz_params[i]->ispec[2]; - count_pos = count_neg = count_neut = 0; + count_neut = 0; for (j = 0; j <= 2; j++) { - if (spec[pitz_params[i]->ispec[j]]->z > 0) - { - count_pos++; - } + //if (spec[pitz_params[i]->ispec[j]]->z > 0) + //{ + // count_pos++; + //} if (spec[pitz_params[i]->ispec[j]]->z == 0) { count_neut++; } - if (spec[pitz_params[i]->ispec[j]]->z < 0) - { - count_neg++; - } + //if (spec[pitz_params[i]->ispec[j]]->z < 0) + //{ + // count_neg++; + //} } /* All neutral */ if (count_neut == 3) diff --git a/phreeqcpp/prep.cpp b/phreeqcpp/prep.cpp index 82b3125c..0d26ba98 100644 --- a/phreeqcpp/prep.cpp +++ b/phreeqcpp/prep.cpp @@ -1980,14 +1980,13 @@ get_list_master_ptrs(const char* cptr, class master *master_ptr) * Output: space is allocated and a list of master species pointers is * returned. */ - int j, l, count_list; + int j, l; char token[MAX_LENGTH]; std::vector master_ptr_list; class master *master_ptr0; /* * Make list of master species pointers */ - count_list = 0; //master_ptr_list = unknown_alloc_master(); master_ptr0 = master_ptr; if (master_ptr0 == master_ptr->s->primary) @@ -2147,7 +2146,7 @@ mb_for_species_aq(int n) * by coef, usually moles. * mb_unknowns.coef - coefficient of s[n] in equation or relation */ - int i, j; + int i; class master *master_ptr; class unknown *unknown_ptr; @@ -2223,7 +2222,6 @@ mb_for_species_aq(int n) */ if (use.Get_surface_ptr() != NULL && s[n]->type < H2O && dl_type_x != cxxSurface::NO_DL) { - j = 0; for (i = 0; i < count_unknowns; i++) { if (x[i]->type == SURFACE_CB) @@ -2235,7 +2233,6 @@ mb_for_species_aq(int n) store_mb_unknowns(unknown_ptr, s_diff_layer[n][charge_ptr->Get_name()].Get_g_moles_address(), s[n]->z, s_diff_layer[n][charge_ptr->Get_name()].Get_dg_g_moles_address()); - j++; } } } diff --git a/phreeqcpp/spread.cpp b/phreeqcpp/spread.cpp index 77ada3e7..5d7137b5 100644 --- a/phreeqcpp/spread.cpp +++ b/phreeqcpp/spread.cpp @@ -1141,7 +1141,7 @@ copy_token_tab(std::string& token, const char **cptr) * EOL, * UNKNOWN. */ - int i, return_value; + int return_value; char c; /* * Strip leading spaces @@ -1180,7 +1180,6 @@ copy_token_tab(std::string& token, const char **cptr) /* * Begin copying to token */ - i = 0; for (;;) { c = **cptr; @@ -1197,7 +1196,6 @@ copy_token_tab(std::string& token, const char **cptr) { token.push_back(c); (*cptr)++; - i++; } } return (return_value); diff --git a/phreeqcpp/tally.cpp b/phreeqcpp/tally.cpp index 969b165d..131411e1 100644 --- a/phreeqcpp/tally.cpp +++ b/phreeqcpp/tally.cpp @@ -798,7 +798,6 @@ build_tally_table(void) */ int j, k, l, p, save_print_use; size_t n; - int count_tt_pure_phase, count_tt_ss_phase, count_tt_kinetics; class phase *phase_ptr; char token[MAX_LENGTH]; const char* cptr; @@ -871,7 +870,6 @@ build_tally_table(void) /* * Count pure phases */ - count_tt_pure_phase = 0; if (Rxn_pp_assemblage_map.size() > 0) { /* @@ -904,7 +902,6 @@ build_tally_table(void) /* * Add to table */ - count_tt_pure_phase++; n = count_tally_table_columns; extend_tally_table(); tally_table[n].name = phase_ptr->name; @@ -931,7 +928,6 @@ build_tally_table(void) /* * Add solid-solution pure phases */ - count_tt_ss_phase = 0; if (Rxn_ss_assemblage_map.size() > 0) { /* @@ -964,7 +960,6 @@ build_tally_table(void) /* * Add to table */ - count_tt_ss_phase++; n = count_tally_table_columns; extend_tally_table(); tally_table[n].name = phase_ptr->name; @@ -982,7 +977,6 @@ build_tally_table(void) /* * Add kinetic reactants */ - count_tt_kinetics = 0; if (Rxn_kinetics_map.size() > 0) { std::map::iterator it; @@ -1006,7 +1000,6 @@ build_tally_table(void) /* * Add to table */ - count_tt_kinetics++; n = count_tally_table_columns; extend_tally_table(); tally_table[n].name = string_hsave(kinetics_comp_ptr->Get_rate_name().c_str()); From cbf9cc1d2a7565808fe75ee09adf1aa1c50fb277 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Mon, 3 Apr 2023 18:31:48 -0600 Subject: [PATCH 058/384] Tony's viscosity with many examples --- RELEASE.TXT | 9 ++++++--- 1 file changed, 6 insertions(+), 3 deletions(-) diff --git a/RELEASE.TXT b/RELEASE.TXT index ced5abc2..98a4acbc 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -3,9 +3,12 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ February 28, 2023 ----------------- PhreeqcRM: Revised names for PhreeqcRM test case source and output - files (Tests subdirectory of distribution). Added tests SimpleAdvect_cpp - and SimpleAdvect_f90, which produce the same results as Advect_cpp - and Advect_f90, but with a minimal set of PhreeqcRM method calls. + files (Tests subdirectory of distribution). Added tests SimpleAdvect_cpp, + SimpleAdvect_c and SimpleAdvect_f90. All transport results are the same for + Advect_cpp, Advect_c, and Advect_f90, SimpleAdvect_cpp, + SimpleAdvect_c and SimpleAdvect_f90; however, the SimpleAdvect cases use + a minimal set of method calls, whereas the other cases demonstrate most + of the features of PhreeqcRM. ----------------- February 26, 2023 From fd9eb5ee8ab232613fc558fa2e11f2c37cc21c5f Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Mon, 3 Apr 2023 18:31:48 -0600 Subject: [PATCH 059/384] Tony's viscosity with many examples --- Amm.dat | 291 +++++++++++++++++++++++++++++++------------------- phreeqc.dat | 297 +++++++++++++++++++++++++++++++++------------------- pitzer.dat | 98 ++++++++++------- 3 files changed, 432 insertions(+), 254 deletions(-) diff --git a/Amm.dat b/Amm.dat index db9a8c37..3b7466d4 100644 --- a/Amm.dat +++ b/Amm.dat @@ -1,6 +1,5 @@ -# PHREEQC.DAT for calculating pressure dependence of reactions, with -# molal volumina of aqueous species and of minerals, and -# critical temperatures and pressures of gases used in Peng-Robinson's EOS. +# PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: +# diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. # Details are given at the end of this file. SOLUTION_MASTER_SPECIES @@ -64,38 +63,43 @@ SOLUTION_SPECIES H+ = H+ -gamma 9.0 0 -dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 3. -# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * TK * 0.89 / (298.15 * viscos) +# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc # Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75))) + -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 e- = e- H2O = H2O # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence Ca+2 = Ca+2 -gamma 5.0 0.1650 -dw 0.793e-9 97 3.4 24.6 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # ref. 1 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 + -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M Mg+2 = Mg+2 -gamma 5.5 0.20 -dw 0.705e-9 111 2.4 13.7 - -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 # ref. 1 + -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 Na+ = Na+ -gamma 4.0 0.075 -gamma 4.08 0.082 # halite solubility -dw 1.33e-9 122 1.52 3.70 - -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # ref. 1 + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # for calculating densities (rho) when I > 3... # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 + -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 K+ = K+ -gamma 3.5 0.015 -dw 1.96e-9 395 2.5 21 - -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 # ref. 1 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 + -viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028 Fe+2 = Fe+2 -gamma 6.0 0 -dw 0.719e-9 - -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 # ref. 1 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 Mn+2 = Mn+2 -gamma 6.0 0 -dw 0.688e-9 - -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # ref. 2 + -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 Al+3 = Al+3 -gamma 9.0 0 -dw 0.559e-9 @@ -103,12 +107,14 @@ Al+3 = Al+3 Ba+2 = Ba+2 -gamma 5.0 0 -gamma 4.0 0.153 # Barite solubility - -dw 0.848e-9 46 - -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 # ref. 1 + -dw 0.848e-9 100 + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 Sr+2 = Sr+2 -gamma 5.260 0.121 -dw 0.794e-9 161 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 # ref. 1 + -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 + -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 H4SiO4 = H4SiO4 -dw 1.10e-9 -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 @@ -116,56 +122,63 @@ Cl- = Cl- -gamma 3.5 0.015 -gamma 3.63 0.017 # cf. pitzer.dat -dw 2.03e-9 194 1.6 6.9 - -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 # ref. 1 + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -viscosity 0 0 0 0 0 0 1 # the reference solute CO3-2 = CO3-2 -gamma 5.4 0 - -dw 0.955e-9 0 1.12 2.84 - -Vm 5.95 0 0 -5.67 6.85 0 1.37 106 -0.0343 1 # ref. 1 + -dw 0.955e-9 27.4 13.7 94.1 + -Vm 8.61 -10.26 -19.54 -0.150 4.63 0 3.32 0 -3.56e-2 0.770 + -viscosity 0 0.289 3.70e-2 5e-5 -3.03e-2 2.013 -2.04 SO4-2 = SO4-2 -gamma 5.0 -0.04 - -dw 1.07e-9 34 2.08 13.4 - -Vm 8.0 2.3 -46.04 6.245 3.82 0 0 0 0 1 # ref. 1 + -dw 1.07e-9 187 2.64 22.6 + -Vm 9.379 3.26 0 -7.13 4.30 0 0 0 -3.73e-2 0 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC + -viscosity -1.83 1.907 4.8e-4 1.7e-3 -1.60e-2 4.40 -0.143 NO3- = NO3- -gamma 3.0 0 -dw 1.9e-9 184 1.85 3.85 - -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 # ref. 1 + -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 + -viscosity 8.37e-2 -0.458 1.54e-2 0.340 1.79e-2 5.02e-2 0.7381 AmmH+ = AmmH+ -gamma 2.5 0 -dw 1.98e-9 312 0.95 4.53 - -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 # ref. 1 + -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 + -viscosity 7.25e-2 -0.142 1.97e-2 8.44e-3 3.92e-2 0.945 H3BO3 = H3BO3 -dw 1.1e-9 -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt PO4-3 = PO4-3 -gamma 4.0 0 -dw 0.612e-9 - -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 # ref. 2 + -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 F- = F- -gamma 3.5 0 - -dw 1.46e-9 - -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 # ref. 2 + -dw 1.46e-9 10 + -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 Li+ = Li+ -gamma 6.0 0 -dw 1.03e-9 80 -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 + -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 Br- = Br- -gamma 3.0 0 -dw 2.01e-9 258 - -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 # ref. 2 + -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 + -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.820 Zn+2 = Zn+2 -gamma 5.0 0 -dw 0.715e-9 - -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 # ref. 2 + -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 Cd+2 = Cd+2 -dw 0.717e-9 - -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 # ref. 2 + -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 Pb+2 = Pb+2 -dw 0.945e-9 -Vm -.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt Cu+2 = Cu+2 -gamma 6.0 0 -dw 0.733e-9 - -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 # ref. 2 + -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 # redox-uncoupled gases Hdg = Hdg # H2 -dw 5.13e-9 @@ -175,19 +188,20 @@ Oxg = Oxg # O2 -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt Mtg = Mtg # CH4 -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 Ntg = Ntg # N2 -dw 1.96e-9 -Vm 7 # Pray et al., 1952, IEC 44. 1146 H2Sg = H2Sg # H2S -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 # aqueous species H2O = OH- + H+ -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 -gamma 3.5 0 -dw 5.27e-9 548 0.52 1e-10 - -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 # ref. 1 + -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 + -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH 2 H2O = O2 + 4 H+ + 4 e- -log_k -86.08 -delta_h 134.79 kcal @@ -198,19 +212,25 @@ H2O = OH- + H+ -delta_h -1.759 kcal -dw 5.13e-9 -Vm 6.52 0.78 0.12 # supcrt +H+ + Cl- = HCl + -log_k -0.5 + -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50C + -gamma 0 0.4256 + -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 CO3-2 + H+ = HCO3- -log_k 10.329 -delta_h -3.561 kcal - -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 + -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 -gamma 5.4 0 - -dw 1.18e-9 0 1.43 1e-10 - -Vm 8.472 0 -11.5 0 1.56 0 0 146 3.16e-3 1 # ref. 1 + -dw 1.18e-9 -163 0.808 -3.18 + -Vm 9.14 -1.64 -12.00 0 1.63 0 0 132 0 0.667 + -viscosity 0 0.670 1.03e-2 0 0 0 1.082 CO3-2 + 2 H+ = CO2 + H2O -log_k 16.681 -delta_h -5.738 kcal -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 -dw 1.92e-9 - -Vm 7.29 0.92 2.07 -1.23 -1.60 # ref. 1 + McBride et al. 2015, JCED 60, 171 + -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 2CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T -log_k -1.8 -analytical_expression 8.68 -0.0103 -2190 @@ -219,13 +239,13 @@ CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O -log_k 41.071 -delta_h -61.039 kcal -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 SO4-2 + H+ = HSO4- -log_k 1.988 -delta_h 3.85 kcal -analytic -56.889 0.006473 2307.9 19.8858 -dw 1.33e-9 - -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 # ref. 1 + -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 HS- = S-2 + H+ -log_k -12.918 -delta_h 12.1 kcal @@ -242,7 +262,7 @@ HS- + H+ = H2S -delta_h -5.30 kcal -analytical -11.17 0.02386 3279.0 -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 2H2S = (H2S)2 # activity correction for H2S solubility at high P, T -analytical_expression 10.227 -0.01384 -2200 -Vm 36.41 -71.95 0 0 2.58 @@ -272,16 +292,19 @@ AmmH+ = Amm + H+ -delta_h 12.48 kcal -analytic 0.6322 -0.001225 -2835.76 -dw 2.28e-9 - -Vm 6.69 2.8 3.58 -2.88 1.43 # ref. 2 + -Vm 6.69 2.8 3.58 -2.88 1.43 #NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O # -log_k 119.077 # -delta_h -187.055 kcal # -gamma 2.5 0 -# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 # ref. 1 - +# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 AmmH+ + SO4-2 = AmmHSO4- - -log_k 1.11 - -Vm 14.0 0 -35.2 0 0 0 12.3 0 -0.141 1 # ref. 2 + -log_k 1.1 + -delta_h -0.47 kcal + -gamma 0 0 + -Vm 13.69 0 -33.54 0 0 0 11.99 0 -0.134 1 + -dw 7.46e-10 + -viscosity -0.109 0.242 1.218e-3 -3.14e-2 8.9e-3 1.631 0.255 H3BO3 = H2BO3- + H+ -log_k -9.24 -delta_h 3.224 kcal @@ -302,17 +325,17 @@ PO4-3 + H+ = HPO4-2 -delta_h -3.530 kcal -gamma 5.0 0 -dw 0.69e-9 - -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 # ref. 2 + -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 PO4-3 + 2 H+ = H2PO4- -log_k 19.553 -delta_h -4.520 kcal -gamma 5.4 0 -dw 0.846e-9 - -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 # ref. 2 + -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 PO4-3 + 3H+ = H3PO4 log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 delta_h -10.1 kJ - -Vm 7.47 12.4 6.29 -3.29 0 # ref. 2 + -Vm 7.47 12.4 6.29 -3.29 0 H+ + F- = HF -log_k 3.18 -delta_h 3.18 kcal @@ -372,16 +395,25 @@ Mg+2 + CO3-2 = MgCO3 -Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt Mg+2 + H+ + CO3-2 = MgHCO3+ -log_k 11.399 - -delta_h -2.771 kcal + -delta_h -2.771 kcal -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 -gamma 4.0 0 -dw 4.78e-10 -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt Mg+2 + SO4-2 = MgSO4 - -log_k 2.37 - -delta_h 4.550 kcal - -dw 4.45e-10 - -Vm 2.4 -0.97 6.1 -2.74 # est'd + -log_k 2.42; -delta_h 19.0 kJ + -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -gamma 0 0.20 + -Vm 13.18 -25.67 -21.23 0 0.800 0 0 0 0 0 + -dw 4.45e-10 + -viscosity -0.590 0.768 -3.8e-4 0.283 1.1e-3 1.09 0 +SO4-2 + MgSO4 = Mg(SO4)2-2 + -log_k 0.52; -delta_h -13.6 kJ + -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -gamma 7 0.047 + -Vm 12.725 -28.73 0.219 0 -0.264 0 23.44 0 0.213 5.1e-2 + -Dw 1e-9 -2926 6.10e-2 -5.41 + -viscosity -0.162 9.6e-4 -4.65e-2 0.179 1.56e-2 1.66 0 Mg+2 + PO4-3 = MgPO4- -log_k 6.589 -delta_h 3.10 kcal @@ -400,40 +432,43 @@ Mg+2 + F- = MgF+ -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt Na+ + OH- = NaOH -log_k -10 # remove this complex -Na+ + CO3-2 = NaCO3- - -log_k 1.27 - -delta_h 8.91 kcal - -dw 1.2e-9 0 1e-10 1e-10 - -Vm 3.89 -8.23e-4 20 -9.44 3.02 9.05e-3 3.07 0 0.0233 1 # ref. 1 -Na+ + HCO3- = NaHCO3 - -log_k -0.25 - -delta_h -1 kcal - -dw 6.73e-10 - -Vm 0.431 # ref. 1 +# Na+ + CO3-2 = NaCO3- # the HCO3- and CO3-2 cmplxs are not necessary for the SC + # -log_k 1.27 + # -delta_h 8.91 kcal + # -dw 1.2e-9 -400 1e-10 1e-10 + # -Vm 3.812 0.196 20.0 -9.60 3.02 1e-5 2.65 0 2.54e-2 1 + # -viscosity 0.104 -1.65 0.169 8.66e-2 2.60e-2 1.76 -0.90 +# Na+ + HCO3- = NaHCO3 + # -log_k 0.14 + # -delta_h -6.71 kcal + # -dw 6.73e-10 -400 1e-10 1e-10 + # -Vm 6.22 + # -viscosity -0.026 0 0 -0.182 0 3 Na+ + SO4-2 = NaSO4- - -log_k 0.7 - -delta_h 1.120 kcal - -gamma 5.4 0 - -dw 1.33e-9 0 0.57 1e-10 - -Vm 1e-5 16.4 -0.0678 -1.05 4.14 0 6.86 0 0.0242 0.53 # ref. 1 + -log_k 0.6; -delta_h -14.4 kJ + -analytical_expression -7.99 1.637e-2 0 0 3.29e5 # mirabilite/thenardite solubilities, 0 - 200 oC + -gamma 0 0 + -Vm 9.993 -8.75 0 -2.95 2.59 0 8.40 0 -1.82e-2 0.672 + -dw 1.183e-9 438 1e-10 1e-10 + -viscosity 7.94e-2 6.96e-2 1.51e-2 7.62e-2 2.84e-2 1.74 0.120 Na+ + HPO4-2 = NaHPO4- -log_k 0.29 -gamma 5.4 0 - -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 # ref. 2 + -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 Na+ + F- = NaF -log_k -0.24 -Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt K+ + SO4-2 = KSO4- - -log_k 0.85 - -delta_h 2.250 kcal - -analytical 3.106 0.0 -673.6 - -gamma 5.4 0 - -dw 1.5e-9 0 1e-10 1e10 - -Vm 6.8 7.06 3.0 -2.07 1.1 0 0 0 0 1 # ref. 1 + -log_k 0.6; -delta_h -10.4 kJ + -analytical_expression -4.022 8.217e-3 0 0 1.90e5 # arcanite solubility, 0 - 200 oC + -gamma 0 8.3e-3 + -Vm 8.942 -5.05 -15.03 0 3.61 0 25.14 0 -5.06e-2 0.166 + -dw 5.11e-10 1694 -0.587 -4.43 + -viscosity -2.71 3.09 6e-4 -0.629 9.38e-2 0.778 0.975 K+ + HPO4-2 = KHPO4- -log_k 0.29 -gamma 5.4 0 - -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 # ref. 2 + -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 Fe+2 + H2O = FeOH+ + H+ -log_k -9.5 -delta_h 13.20 kcal @@ -451,7 +486,7 @@ Fe+2 + HCO3- = FeHCO3+ Fe+2 + SO4-2 = FeSO4 -log_k 2.25 -delta_h 3.230 kcal - -Vm -13 0 123 # ref. 2 + -Vm -13 0 123 Fe+2 + HSO4- = FeHSO4+ -log_k 1.08 Fe+2 + 2HS- = Fe(HS)2 @@ -539,14 +574,14 @@ Mn+2 + 3H2O = Mn(OH)3- + 3H+ Mn+2 + Cl- = MnCl+ -log_k 0.61 -gamma 5.0 0 - -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 # ref. 2 + -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 Mn+2 + 2 Cl- = MnCl2 -log_k 0.25 - -Vm 1e-5 0 144 # ref. 2 + -Vm 1e-5 0 144 Mn+2 + 3 Cl- = MnCl3- -log_k -0.31 -gamma 5.0 0 - -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 # ref. 2 + -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 Mn+2 + CO3-2 = MnCO3 -log_k 4.9 Mn+2 + HCO3- = MnHCO3+ @@ -555,11 +590,11 @@ Mn+2 + HCO3- = MnHCO3+ Mn+2 + SO4-2 = MnSO4 -log_k 2.25 -delta_h 3.370 kcal - -Vm -1.31 -1.83 62.3 -2.7 # ref. 2 + -Vm -1.31 -1.83 62.3 -2.7 Mn+2 + 2 NO3- = Mn(NO3)2 -log_k 0.6 -delta_h -0.396 kcal - -Vm 6.16 0 29.4 0 0.9 # ref. 2 + -Vm 6.16 0 29.4 0 0.9 Mn+2 + F- = MnF+ -log_k 0.84 -gamma 5.0 0 @@ -572,7 +607,7 @@ Al+3 + H2O = AlOH+2 + H+ -delta_h 11.49 kcal -analytic -38.253 0.0 -656.27 14.327 -gamma 5.4 0 - -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # ref. 2 and Barta and Hepler, 1986, Can. J. Chem. 64, 353. + -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353. Al+3 + 2 H2O = Al(OH)2+ + 2 H+ -log_k -10.1 -delta_h 26.90 kcal @@ -691,11 +726,11 @@ Cu+2 + Cl- = CuCl+ -log_k 0.43 -delta_h 8.65 kcal -gamma 4.0 0 - -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 # ref. 2 + -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 Cu+2 + 2Cl- = CuCl2 -log_k 0.16 -delta_h 10.56 kcal - -Vm 26.8 0 -136 # ref. 2 + -Vm 26.8 0 -136 Cu+2 + 3Cl- = CuCl3- -log_k -2.29 -delta_h 13.69 kcal @@ -723,7 +758,7 @@ Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ Cu+2 + SO4-2 = CuSO4 -log_k 2.31 -delta_h 1.220 kcal - -Vm 5.21 0 -14.6 # ref. 2 + -Vm 5.21 0 -14.6 Cu+2 + 3HS- = Cu(HS)3- -log_k 25.9 Zn+2 + H2O = ZnOH+ + H+ @@ -739,21 +774,21 @@ Zn+2 + Cl- = ZnCl+ -log_k 0.43 -delta_h 7.79 kcal -gamma 4.0 0 - -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 # ref. 2 + -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 Zn+2 + 2 Cl- = ZnCl2 -log_k 0.45 -delta_h 8.5 kcal - -Vm -10.1 4.57 241 -2.97 -1e-3 # ref. 2 + -Vm -10.1 4.57 241 -2.97 -1e-3 Zn+2 + 3Cl- = ZnCl3- -log_k 0.5 -delta_h 9.56 kcal -gamma 4.0 0 - -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 # ref. 2 + -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 Zn+2 + 4Cl- = ZnCl4-2 -log_k 0.2 -delta_h 10.96 kcal -gamma 5.0 0 - -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 # ref. 2 + -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 Zn+2 + H2O + Cl- = ZnOHCl + H+ -log_k -7.48 Zn+2 + 2HS- = Zn(HS)2 @@ -769,10 +804,10 @@ Zn+2 + HCO3- = ZnHCO3+ Zn+2 + SO4-2 = ZnSO4 -log_k 2.37 -delta_h 1.36 kcal - -Vm 2.51 0 18.8 # ref. 2 + -Vm 2.51 0 18.8 Zn+2 + 2SO4-2 = Zn(SO4)2-2 -log_k 3.28 - -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 # ref. 2 + -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 Zn+2 + Br- = ZnBr+ -log_k -0.58 Zn+2 + 2Br- = ZnBr2 @@ -798,19 +833,19 @@ Cd+2 + H2O + Cl- = CdOHCl + H+ Cd+2 + NO3- = CdNO3+ -log_k 0.4 -delta_h -5.2 kcal - -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 # ref. 2 + -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 Cd+2 + Cl- = CdCl+ -log_k 1.98 -delta_h 0.59 kcal - -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 # ref. 2 + -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 Cd+2 + 2 Cl- = CdCl2 -log_k 2.6 -delta_h 1.24 kcal - -Vm 5.53 # ref. 2 + -Vm 5.53 Cd+2 + 3 Cl- = CdCl3- -log_k 2.4 -delta_h 3.9 kcal - -Vm 4.6 0 83.9 0 0 0 0 0 0 1 # ref. 2 + -Vm 4.6 0 83.9 0 0 0 0 0 0 1 Cd+2 + CO3-2 = CdCO3 -log_k 2.9 Cd+2 + 2CO3-2 = Cd(CO3)2-2 @@ -820,10 +855,10 @@ Cd+2 + HCO3- = CdHCO3+ Cd+2 + SO4-2 = CdSO4 -log_k 2.46 -delta_h 1.08 kcal - -Vm 10.4 0 57.9 # ref. 2 + -Vm 10.4 0 57.9 Cd+2 + 2SO4-2 = Cd(SO4)2-2 -log_k 3.5 - -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 # ref. 2 + -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 Cd+2 + Br- = CdBr+ -log_k 2.17 -delta_h -0.81 kcal @@ -905,7 +940,7 @@ Calcite CaCO3 = CO3-2 + Ca+2 -log_k -8.48 -delta_h -2.297 kcal - -analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982 + -analytic 17.118 -0.046528 -3496 # 0 - 250C, Ellis, 1959, Plummer and Busenberg, 1982 -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3) Aragonite CaCO3 = CO3-2 + Ca+2 @@ -917,7 +952,7 @@ Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 -log_k -17.09 -delta_h -9.436 kcal - -analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50–175°C: Bénézeth et al., 2018, GCA 224, 262-275. + -analytic 31.283 -0.0898 -6438 # 25C: Hemingway and Robie, 1994; 50175C: Bnzeth et al., 2018, GCA 224, 262-275. -Vm 64.5 Siderite FeCO3 = Fe+2 + CO3-2 @@ -967,6 +1002,35 @@ Barite -delta_h 6.35 kcal -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 -Vm 52.9 +Arcanite + K2SO4 = SO4-2 + 2 K+ + log_k -1.776; -delta_h 5 kcal + -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 + # Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06 + -Vm 65.5 +Mirabilite + Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O + -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 + Vm 216 +Thenardite + Na2SO4 = 2 Na+ + SO4-2 + -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 + -Vm 52.9 +Epsomite + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -1.74; -delta_h 10.57 kJ + -analytical_expression -3.59 6.21e-3 + Vm 147 +Hexahydrite + MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O + log_k -1.57; -delta_h 2.35 kJ + -analytical_expression -1.978 1.38e-3 + Vm 132 +Kieserite + MgSO4:H2O = Mg+2 + SO4-2 + H2O + log_k -1.16; -delta_h 9.22 kJ + -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 + Vm 53.8 Hydroxyapatite Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 -log_k -3.421 @@ -1131,9 +1195,7 @@ CO2(g) H2O(g) H2O = H2O -log_k 1.506; delta_h -44.03 kJ - -T_c 647.3 - -P_c 217.60 - -Omega 0.344 + -T_c 647.3; -P_c 217.60; -Omega 0.344 -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 O2(g) O2 = O2 @@ -1155,12 +1217,12 @@ H2S(g) H2S = H+ + HS- log_k -7.93 -delta_h 9.1 - -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 -T_c 373.2; -P_c 88.20; -Omega 0.1 CH4(g) CH4 = CH4 -log_k -2.8 - -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100C -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 Amm(g) Amm = Amm @@ -1183,13 +1245,13 @@ Ntg(g) Mtg(g) Mtg = Mtg -log_k -2.8 - -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100C -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 H2Sg(g) H2Sg = H+ + HSg- log_k -7.93 -delta_h 9.1 - -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 -T_c 373.2 ; -P_c 88.20 ; -Omega 0.1 Melanterite FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 @@ -1827,15 +1889,28 @@ END # W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation, # W is fitted on measured solution densities. # z is charge of the solute species. -# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic). -# a0 is the ion-size parameter in the extended Debye-Hückel equation: +# Av is the Debye-Hckel limiting slope (DH_AV in PHREEQC basic). +# a0 is the ion-size parameter in the extended Debye-Hckel equation: # f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), # a0 = -gamma x for cations, = 0 for anions. # For details, consult ref. 1. +# ============================================================================================= +# The viscosity is calculated with a (modified) Jones-Dole equation: +# viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i) +# Parameters are for calculating the B and D terms: +# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 +# # b0 b1 b2 d1 d2 d3 tan +# z_i is absolute charge number, m_i is molality of i +# B_i = b0 + b1 exp(-b2 * tc) +# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions +# D_i = d1 + exp(-d2 tc) +# n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 m_i)d^3 / (2 + fI), fI is an ionic strength term. +# For details, consult ref. 4. # -# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. -# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725. +# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967. +# ref. 2: Procedures from ref. 1 using data compiled by Lalibert, 2009, J. Chem. Eng. Data 54, 1725. # ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113. +# ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp # # ============================================================================================= # It remains the responsibility of the user to check the calculated results, for example with diff --git a/phreeqc.dat b/phreeqc.dat index 9e69a187..4883650d 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -1,6 +1,5 @@ -# PHREEQC.DAT for calculating pressure dependence of reactions, with -# molal volumina of aqueous species and of minerals, and -# critical temperatures and pressures of gases used in Peng-Robinson's EOS. +# PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: +# diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. # Details are given at the end of this file. SOLUTION_MASTER_SPECIES @@ -40,7 +39,7 @@ N NO3- 0 N 14.0067 N(+5) NO3- 0 N N(+3) NO2- 0 N N(0) N2 0 N -N(-3) NH4+ 0 N 14.0067 +N(-3) NH4+ 0 N 14.0067 #Amm AmmH+ 0 AmmH 17.031 B H3BO3 0 B 10.81 P PO4-3 2.0 P 30.9738 @@ -64,38 +63,43 @@ SOLUTION_SPECIES H+ = H+ -gamma 9.0 0 -dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 3. -# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * TK * 0.89 / (298.15 * viscos) +# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc # Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75))) + -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 e- = e- H2O = H2O # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence Ca+2 = Ca+2 -gamma 5.0 0.1650 -dw 0.793e-9 97 3.4 24.6 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # ref. 1 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 + -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M Mg+2 = Mg+2 -gamma 5.5 0.20 -dw 0.705e-9 111 2.4 13.7 - -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 # ref. 1 + -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 Na+ = Na+ -gamma 4.0 0.075 -gamma 4.08 0.082 # halite solubility -dw 1.33e-9 122 1.52 3.70 - -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # ref. 1 + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # for calculating densities (rho) when I > 3... # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 + -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 K+ = K+ -gamma 3.5 0.015 -dw 1.96e-9 395 2.5 21 - -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 # ref. 1 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 + -viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028 Fe+2 = Fe+2 -gamma 6.0 0 -dw 0.719e-9 - -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 # ref. 1 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 Mn+2 = Mn+2 -gamma 6.0 0 -dw 0.688e-9 - -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # ref. 2 + -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 Al+3 = Al+3 -gamma 9.0 0 -dw 0.559e-9 @@ -103,12 +107,14 @@ Al+3 = Al+3 Ba+2 = Ba+2 -gamma 5.0 0 -gamma 4.0 0.153 # Barite solubility - -dw 0.848e-9 46 - -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 # ref. 1 + -dw 0.848e-9 100 + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 Sr+2 = Sr+2 -gamma 5.260 0.121 -dw 0.794e-9 161 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 # ref. 1 + -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 + -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 H4SiO4 = H4SiO4 -dw 1.10e-9 -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 @@ -116,56 +122,63 @@ Cl- = Cl- -gamma 3.5 0.015 -gamma 3.63 0.017 # cf. pitzer.dat -dw 2.03e-9 194 1.6 6.9 - -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 # ref. 1 + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -viscosity 0 0 0 0 0 0 1 # the reference solute CO3-2 = CO3-2 -gamma 5.4 0 - -dw 0.955e-9 0 1.12 2.84 - -Vm 5.95 0 0 -5.67 6.85 0 1.37 106 -0.0343 1 # ref. 1 + -dw 0.955e-9 27.4 13.7 94.1 + -Vm 8.61 -10.26 -19.54 -0.150 4.63 0 3.32 0 -3.56e-2 0.770 + -viscosity 0 0.289 3.70e-2 5e-5 -3.03e-2 2.013 -2.04 SO4-2 = SO4-2 -gamma 5.0 -0.04 - -dw 1.07e-9 34 2.08 13.4 - -Vm 8.0 2.3 -46.04 6.245 3.82 0 0 0 0 1 # ref. 1 + -dw 1.07e-9 187 2.64 22.6 + -Vm 9.379 3.26 0 -7.13 4.30 0 0 0 -3.73e-2 0 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC + -viscosity -1.83 1.907 4.8e-4 1.7e-3 -1.60e-2 4.40 -0.143 NO3- = NO3- -gamma 3.0 0 -dw 1.9e-9 184 1.85 3.85 - -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 # ref. 1 + -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 + -viscosity 8.37e-2 -0.458 1.54e-2 0.340 1.79e-2 5.02e-2 0.7381 #AmmH+ = AmmH+ # -gamma 2.5 0 # -dw 1.98e-9 312 0.95 4.53 -# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 # ref. 1 +# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 +# -viscosity 7.25e-2 -0.142 1.97e-2 8.44e-3 3.92e-2 0.945 H3BO3 = H3BO3 -dw 1.1e-9 -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt PO4-3 = PO4-3 -gamma 4.0 0 -dw 0.612e-9 - -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 # ref. 2 + -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 F- = F- -gamma 3.5 0 - -dw 1.46e-9 - -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 # ref. 2 + -dw 1.46e-9 10 + -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 Li+ = Li+ -gamma 6.0 0 -dw 1.03e-9 80 -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 + -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 Br- = Br- -gamma 3.0 0 -dw 2.01e-9 258 - -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 # ref. 2 + -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 + -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.820 Zn+2 = Zn+2 -gamma 5.0 0 -dw 0.715e-9 - -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 # ref. 2 + -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 Cd+2 = Cd+2 -dw 0.717e-9 - -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 # ref. 2 + -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 Pb+2 = Pb+2 -dw 0.945e-9 -Vm -.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt Cu+2 = Cu+2 -gamma 6.0 0 -dw 0.733e-9 - -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 # ref. 2 + -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 # redox-uncoupled gases Hdg = Hdg # H2 -dw 5.13e-9 @@ -175,19 +188,20 @@ Oxg = Oxg # O2 -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt Mtg = Mtg # CH4 -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 Ntg = Ntg # N2 -dw 1.96e-9 -Vm 7 # Pray et al., 1952, IEC 44. 1146 H2Sg = H2Sg # H2S -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 # aqueous species H2O = OH- + H+ -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 -gamma 3.5 0 -dw 5.27e-9 548 0.52 1e-10 - -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 # ref. 1 + -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 + -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH 2 H2O = O2 + 4 H+ + 4 e- -log_k -86.08 -delta_h 134.79 kcal @@ -198,19 +212,25 @@ H2O = OH- + H+ -delta_h -1.759 kcal -dw 5.13e-9 -Vm 6.52 0.78 0.12 # supcrt +H+ + Cl- = HCl + -log_k -0.5 + -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50C + -gamma 0 0.4256 + -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 CO3-2 + H+ = HCO3- -log_k 10.329 -delta_h -3.561 kcal - -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 + -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 -gamma 5.4 0 - -dw 1.18e-9 0 1.43 1e-10 - -Vm 8.472 0 -11.5 0 1.56 0 0 146 3.16e-3 1 # ref. 1 + -dw 1.18e-9 -163 0.808 -3.18 + -Vm 9.14 -1.64 -12.00 0 1.63 0 0 132 0 0.667 + -viscosity 0 0.670 1.03e-2 0 0 0 1.082 CO3-2 + 2 H+ = CO2 + H2O -log_k 16.681 -delta_h -5.738 kcal -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 -dw 1.92e-9 - -Vm 7.29 0.92 2.07 -1.23 -1.60 # ref. 1 + McBride et al. 2015, JCED 60, 171 + -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 2CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T -log_k -1.8 -analytical_expression 8.68 -0.0103 -2190 @@ -219,13 +239,13 @@ CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O -log_k 41.071 -delta_h -61.039 kcal -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 SO4-2 + H+ = HSO4- -log_k 1.988 -delta_h 3.85 kcal -analytic -56.889 0.006473 2307.9 19.8858 -dw 1.33e-9 - -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 # ref. 1 + -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 HS- = S-2 + H+ -log_k -12.918 -delta_h 12.1 kcal @@ -242,7 +262,7 @@ HS- + H+ = H2S -delta_h -5.30 kcal -analytical -11.17 0.02386 3279.0 -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 2H2S = (H2S)2 # activity correction for H2S solubility at high P, T -analytical_expression 10.227 -0.01384 -2200 -Vm 36.41 -71.95 0 0 2.58 @@ -267,29 +287,34 @@ NO3- + 2 H+ + 2 e- = NO2- + H2O -delta_h -312.130 kcal -dw 1.96e-9 -Vm 7 # Pray et al., 1952, IEC 44. 1146 +#AmmH+ = Amm + H+ NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O -log_k 119.077 -delta_h -187.055 kcal -gamma 2.5 0 -dw 1.98e-9 312 0.95 4.53 - -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 # ref. 1 + -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 + -viscosity 7.25e-2 -0.142 1.97e-2 8.44e-3 3.92e-2 0.945 NH4+ = NH3 + H+ -log_k -9.252 -delta_h 12.48 kcal -analytic 0.6322 -0.001225 -2835.76 -dw 2.28e-9 - -Vm 6.69 2.8 3.58 -2.88 1.43 # ref. 2 + -Vm 6.69 2.8 3.58 -2.88 1.43 #NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O # -log_k 119.077 # -delta_h -187.055 kcal # -gamma 2.5 0 -# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 # ref. 1 - +# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 #AmmH+ + SO4-2 = AmmHSO4- NH4+ + SO4-2 = NH4SO4- - -log_k 1.11 - -Vm 14.0 0 -35.2 0 0 0 12.3 0 -0.141 1 # ref. 2 + -log_k 1.1 + -delta_h -0.47 kcal + -gamma 0 0 + -Vm 13.69 0 -33.54 0 0 0 11.99 0 -0.134 1 + -dw 7.46e-10 + -viscosity -0.109 0.242 1.218e-3 -3.14e-2 8.9e-3 1.631 0.255 H3BO3 = H2BO3- + H+ -log_k -9.24 -delta_h 3.224 kcal @@ -310,17 +335,17 @@ PO4-3 + H+ = HPO4-2 -delta_h -3.530 kcal -gamma 5.0 0 -dw 0.69e-9 - -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 # ref. 2 + -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 PO4-3 + 2 H+ = H2PO4- -log_k 19.553 -delta_h -4.520 kcal -gamma 5.4 0 -dw 0.846e-9 - -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 # ref. 2 + -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 PO4-3 + 3H+ = H3PO4 log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 delta_h -10.1 kJ - -Vm 7.47 12.4 6.29 -3.29 0 # ref. 2 + -Vm 7.47 12.4 6.29 -3.29 0 H+ + F- = HF -log_k 3.18 -delta_h 3.18 kcal @@ -380,16 +405,25 @@ Mg+2 + CO3-2 = MgCO3 -Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt Mg+2 + H+ + CO3-2 = MgHCO3+ -log_k 11.399 - -delta_h -2.771 kcal + -delta_h -2.771 kcal -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 -gamma 4.0 0 -dw 4.78e-10 -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt Mg+2 + SO4-2 = MgSO4 - -log_k 2.37 - -delta_h 4.550 kcal - -dw 4.45e-10 - -Vm 2.4 -0.97 6.1 -2.74 # est'd + -log_k 2.42; -delta_h 19.0 kJ + -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -gamma 0 0.20 + -Vm 13.18 -25.67 -21.23 0 0.800 0 0 0 0 0 + -dw 4.45e-10 + -viscosity -0.590 0.768 -3.8e-4 0.283 1.1e-3 1.09 0 +SO4-2 + MgSO4 = Mg(SO4)2-2 + -log_k 0.52; -delta_h -13.6 kJ + -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -gamma 7 0.047 + -Vm 12.725 -28.73 0.219 0 -0.264 0 23.44 0 0.213 5.1e-2 + -Dw 1e-9 -2926 6.10e-2 -5.41 + -viscosity -0.162 9.6e-4 -4.65e-2 0.179 1.56e-2 1.66 0 Mg+2 + PO4-3 = MgPO4- -log_k 6.589 -delta_h 3.10 kcal @@ -408,40 +442,43 @@ Mg+2 + F- = MgF+ -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt Na+ + OH- = NaOH -log_k -10 # remove this complex -Na+ + CO3-2 = NaCO3- - -log_k 1.27 - -delta_h 8.91 kcal - -dw 1.2e-9 0 1e-10 1e-10 - -Vm 3.89 -8.23e-4 20 -9.44 3.02 9.05e-3 3.07 0 0.0233 1 # ref. 1 -Na+ + HCO3- = NaHCO3 - -log_k -0.25 - -delta_h -1 kcal - -dw 6.73e-10 - -Vm 0.431 # ref. 1 +# Na+ + CO3-2 = NaCO3- # the HCO3- and CO3-2 cmplxs are not necessary for the SC + # -log_k 1.27 + # -delta_h 8.91 kcal + # -dw 1.2e-9 -400 1e-10 1e-10 + # -Vm 3.812 0.196 20.0 -9.60 3.02 1e-5 2.65 0 2.54e-2 1 + # -viscosity 0.104 -1.65 0.169 8.66e-2 2.60e-2 1.76 -0.90 +# Na+ + HCO3- = NaHCO3 + # -log_k 0.14 + # -delta_h -6.71 kcal + # -dw 6.73e-10 -400 1e-10 1e-10 + # -Vm 6.22 + # -viscosity -0.026 0 0 -0.182 0 3 Na+ + SO4-2 = NaSO4- - -log_k 0.7 - -delta_h 1.120 kcal - -gamma 5.4 0 - -dw 1.33e-9 0 0.57 1e-10 - -Vm 1e-5 16.4 -0.0678 -1.05 4.14 0 6.86 0 0.0242 0.53 # ref. 1 + -log_k 0.6; -delta_h -14.4 kJ + -analytical_expression -7.99 1.637e-2 0 0 3.29e5 # mirabilite/thenardite solubilities, 0 - 200 oC + -gamma 0 0 + -Vm 9.993 -8.75 0 -2.95 2.59 0 8.40 0 -1.82e-2 0.672 + -dw 1.183e-9 438 1e-10 1e-10 + -viscosity 7.94e-2 6.96e-2 1.51e-2 7.62e-2 2.84e-2 1.74 0.120 Na+ + HPO4-2 = NaHPO4- -log_k 0.29 -gamma 5.4 0 - -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 # ref. 2 + -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 Na+ + F- = NaF -log_k -0.24 -Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt K+ + SO4-2 = KSO4- - -log_k 0.85 - -delta_h 2.250 kcal - -analytical 3.106 0.0 -673.6 - -gamma 5.4 0 - -dw 1.5e-9 0 1e-10 1e10 - -Vm 6.8 7.06 3.0 -2.07 1.1 0 0 0 0 1 # ref. 1 + -log_k 0.6; -delta_h -10.4 kJ + -analytical_expression -4.022 8.217e-3 0 0 1.90e5 # arcanite solubility, 0 - 200 oC + -gamma 0 8.3e-3 + -Vm 8.942 -5.05 -15.03 0 3.61 0 25.14 0 -5.06e-2 0.166 + -dw 5.11e-10 1694 -0.587 -4.43 + -viscosity -2.71 3.09 6e-4 -0.629 9.38e-2 0.778 0.975 K+ + HPO4-2 = KHPO4- -log_k 0.29 -gamma 5.4 0 - -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 # ref. 2 + -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 Fe+2 + H2O = FeOH+ + H+ -log_k -9.5 -delta_h 13.20 kcal @@ -459,7 +496,7 @@ Fe+2 + HCO3- = FeHCO3+ Fe+2 + SO4-2 = FeSO4 -log_k 2.25 -delta_h 3.230 kcal - -Vm -13 0 123 # ref. 2 + -Vm -13 0 123 Fe+2 + HSO4- = FeHSO4+ -log_k 1.08 Fe+2 + 2HS- = Fe(HS)2 @@ -547,14 +584,14 @@ Mn+2 + 3H2O = Mn(OH)3- + 3H+ Mn+2 + Cl- = MnCl+ -log_k 0.61 -gamma 5.0 0 - -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 # ref. 2 + -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 Mn+2 + 2 Cl- = MnCl2 -log_k 0.25 - -Vm 1e-5 0 144 # ref. 2 + -Vm 1e-5 0 144 Mn+2 + 3 Cl- = MnCl3- -log_k -0.31 -gamma 5.0 0 - -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 # ref. 2 + -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 Mn+2 + CO3-2 = MnCO3 -log_k 4.9 Mn+2 + HCO3- = MnHCO3+ @@ -563,11 +600,11 @@ Mn+2 + HCO3- = MnHCO3+ Mn+2 + SO4-2 = MnSO4 -log_k 2.25 -delta_h 3.370 kcal - -Vm -1.31 -1.83 62.3 -2.7 # ref. 2 + -Vm -1.31 -1.83 62.3 -2.7 Mn+2 + 2 NO3- = Mn(NO3)2 -log_k 0.6 -delta_h -0.396 kcal - -Vm 6.16 0 29.4 0 0.9 # ref. 2 + -Vm 6.16 0 29.4 0 0.9 Mn+2 + F- = MnF+ -log_k 0.84 -gamma 5.0 0 @@ -580,7 +617,7 @@ Al+3 + H2O = AlOH+2 + H+ -delta_h 11.49 kcal -analytic -38.253 0.0 -656.27 14.327 -gamma 5.4 0 - -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # ref. 2 and Barta and Hepler, 1986, Can. J. Chem. 64, 353. + -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353. Al+3 + 2 H2O = Al(OH)2+ + 2 H+ -log_k -10.1 -delta_h 26.90 kcal @@ -699,11 +736,11 @@ Cu+2 + Cl- = CuCl+ -log_k 0.43 -delta_h 8.65 kcal -gamma 4.0 0 - -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 # ref. 2 + -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 Cu+2 + 2Cl- = CuCl2 -log_k 0.16 -delta_h 10.56 kcal - -Vm 26.8 0 -136 # ref. 2 + -Vm 26.8 0 -136 Cu+2 + 3Cl- = CuCl3- -log_k -2.29 -delta_h 13.69 kcal @@ -731,7 +768,7 @@ Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ Cu+2 + SO4-2 = CuSO4 -log_k 2.31 -delta_h 1.220 kcal - -Vm 5.21 0 -14.6 # ref. 2 + -Vm 5.21 0 -14.6 Cu+2 + 3HS- = Cu(HS)3- -log_k 25.9 Zn+2 + H2O = ZnOH+ + H+ @@ -747,21 +784,21 @@ Zn+2 + Cl- = ZnCl+ -log_k 0.43 -delta_h 7.79 kcal -gamma 4.0 0 - -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 # ref. 2 + -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 Zn+2 + 2 Cl- = ZnCl2 -log_k 0.45 -delta_h 8.5 kcal - -Vm -10.1 4.57 241 -2.97 -1e-3 # ref. 2 + -Vm -10.1 4.57 241 -2.97 -1e-3 Zn+2 + 3Cl- = ZnCl3- -log_k 0.5 -delta_h 9.56 kcal -gamma 4.0 0 - -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 # ref. 2 + -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 Zn+2 + 4Cl- = ZnCl4-2 -log_k 0.2 -delta_h 10.96 kcal -gamma 5.0 0 - -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 # ref. 2 + -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 Zn+2 + H2O + Cl- = ZnOHCl + H+ -log_k -7.48 Zn+2 + 2HS- = Zn(HS)2 @@ -777,10 +814,10 @@ Zn+2 + HCO3- = ZnHCO3+ Zn+2 + SO4-2 = ZnSO4 -log_k 2.37 -delta_h 1.36 kcal - -Vm 2.51 0 18.8 # ref. 2 + -Vm 2.51 0 18.8 Zn+2 + 2SO4-2 = Zn(SO4)2-2 -log_k 3.28 - -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 # ref. 2 + -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 Zn+2 + Br- = ZnBr+ -log_k -0.58 Zn+2 + 2Br- = ZnBr2 @@ -806,19 +843,19 @@ Cd+2 + H2O + Cl- = CdOHCl + H+ Cd+2 + NO3- = CdNO3+ -log_k 0.4 -delta_h -5.2 kcal - -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 # ref. 2 + -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 Cd+2 + Cl- = CdCl+ -log_k 1.98 -delta_h 0.59 kcal - -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 # ref. 2 + -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 Cd+2 + 2 Cl- = CdCl2 -log_k 2.6 -delta_h 1.24 kcal - -Vm 5.53 # ref. 2 + -Vm 5.53 Cd+2 + 3 Cl- = CdCl3- -log_k 2.4 -delta_h 3.9 kcal - -Vm 4.6 0 83.9 0 0 0 0 0 0 1 # ref. 2 + -Vm 4.6 0 83.9 0 0 0 0 0 0 1 Cd+2 + CO3-2 = CdCO3 -log_k 2.9 Cd+2 + 2CO3-2 = Cd(CO3)2-2 @@ -828,10 +865,10 @@ Cd+2 + HCO3- = CdHCO3+ Cd+2 + SO4-2 = CdSO4 -log_k 2.46 -delta_h 1.08 kcal - -Vm 10.4 0 57.9 # ref. 2 + -Vm 10.4 0 57.9 Cd+2 + 2SO4-2 = Cd(SO4)2-2 -log_k 3.5 - -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 # ref. 2 + -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 Cd+2 + Br- = CdBr+ -log_k 2.17 -delta_h -0.81 kcal @@ -913,7 +950,7 @@ Calcite CaCO3 = CO3-2 + Ca+2 -log_k -8.48 -delta_h -2.297 kcal - -analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982 + -analytic 17.118 -0.046528 -3496 # 0 - 250C, Ellis, 1959, Plummer and Busenberg, 1982 -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3) Aragonite CaCO3 = CO3-2 + Ca+2 @@ -925,7 +962,7 @@ Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 -log_k -17.09 -delta_h -9.436 kcal - -analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50–175°C: Bénézeth et al., 2018, GCA 224, 262-275. + -analytic 31.283 -0.0898 -6438 # 25C: Hemingway and Robie, 1994; 50175C: Bnzeth et al., 2018, GCA 224, 262-275. -Vm 64.5 Siderite FeCO3 = Fe+2 + CO3-2 @@ -975,6 +1012,35 @@ Barite -delta_h 6.35 kcal -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 -Vm 52.9 +Arcanite + K2SO4 = SO4-2 + 2 K+ + log_k -1.776; -delta_h 5 kcal + -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 + # Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06 + -Vm 65.5 +Mirabilite + Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O + -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 + Vm 216 +Thenardite + Na2SO4 = 2 Na+ + SO4-2 + -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 + -Vm 52.9 +Epsomite + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -1.74; -delta_h 10.57 kJ + -analytical_expression -3.59 6.21e-3 + Vm 147 +Hexahydrite + MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O + log_k -1.57; -delta_h 2.35 kJ + -analytical_expression -1.978 1.38e-3 + Vm 132 +Kieserite + MgSO4:H2O = Mg+2 + SO4-2 + H2O + log_k -1.16; -delta_h 9.22 kJ + -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 + Vm 53.8 Hydroxyapatite Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 -log_k -3.421 @@ -1139,9 +1205,7 @@ CO2(g) H2O(g) H2O = H2O -log_k 1.506; delta_h -44.03 kJ - -T_c 647.3 - -P_c 217.60 - -Omega 0.344 + -T_c 647.3; -P_c 217.60; -Omega 0.344 -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 O2(g) O2 = O2 @@ -1163,12 +1227,12 @@ H2S(g) H2S = H+ + HS- log_k -7.93 -delta_h 9.1 - -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 -T_c 373.2; -P_c 88.20; -Omega 0.1 CH4(g) CH4 = CH4 -log_k -2.8 - -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100C -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 #Amm(g) # Amm = Amm @@ -1193,13 +1257,13 @@ Ntg(g) Mtg(g) Mtg = Mtg -log_k -2.8 - -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100C -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 H2Sg(g) H2Sg = H+ + HSg- log_k -7.93 -delta_h 9.1 - -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 -T_c 373.2 ; -P_c 88.20 ; -Omega 0.1 Melanterite FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 @@ -1838,15 +1902,28 @@ END # W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation, # W is fitted on measured solution densities. # z is charge of the solute species. -# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic). -# a0 is the ion-size parameter in the extended Debye-Hückel equation: +# Av is the Debye-Hckel limiting slope (DH_AV in PHREEQC basic). +# a0 is the ion-size parameter in the extended Debye-Hckel equation: # f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), # a0 = -gamma x for cations, = 0 for anions. # For details, consult ref. 1. +# ============================================================================================= +# The viscosity is calculated with a (modified) Jones-Dole equation: +# viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i) +# Parameters are for calculating the B and D terms: +# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 +# # b0 b1 b2 d1 d2 d3 tan +# z_i is absolute charge number, m_i is molality of i +# B_i = b0 + b1 exp(-b2 * tc) +# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions +# D_i = d1 + exp(-d2 tc) +# n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 m_i)d^3 / (2 + fI), fI is an ionic strength term. +# For details, consult ref. 4. # -# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. -# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725. +# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967. +# ref. 2: Procedures from ref. 1 using data compiled by Lalibert, 2009, J. Chem. Eng. Data 54, 1725. # ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113. +# ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp # # ============================================================================================= # It remains the responsibility of the user to check the calculated results, for example with diff --git a/pitzer.dat b/pitzer.dat index 138b78c8..87fd7095 100644 --- a/pitzer.dat +++ b/pitzer.dat @@ -1,8 +1,7 @@ -# Pitzer.DAT for calculating pressure dependence of reactions -# and temperature dependence to 200 °C. With -# molal volumina of aqueous species and of minerals, and -# critical temperatures and pressures of gases used in Peng-Robinson's EOS. +# Pitzer.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution, using +# diffusion coefficients of species, molal volumina of aqueous species and minerals, and critical temperatures and pressures of gases used in Peng-Robinson's EOS. # Details are given at the end of this file. + SOLUTION_MASTER_SPECIES Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05 B B(OH)3 0 B 10.81 @@ -37,54 +36,66 @@ Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ -dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 4. -# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * TK * 0.89 / (298.15 * viscos) +# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc # Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75))) + -viscosity 9.35e-2 -7.87e-2 2.89e-2 2.7e-4 3.42e-2 1.704 # for viscosity parameters see ref. 5 e- = e- H2O = H2O Li+ = Li+ -dw 1.03e-9 80 - -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # The apparent volume parameters are defined in ref. 1 & 2. For Li+ additional data from Ellis, 1968, J. Chem. Soc. A, 1138 + -viscosity 0.162 -2.41e-2 3.91e-2 9.6e-4 6.3e-4 2.094 Na+ = Na+ -dw 1.33e-9 122 1.52 3.70 - -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # ref. 1 + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # for calculating densities (rho) when I > 3... # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 + -viscosity 0.139 -8.71e-2 1.24e-2 1.45e-2 7.5e-3 1.062 K+ = K+ -dw 1.96e-9 395 2.5 21 - -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.70 0 1 # ref. 1 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.70 0 1 + -viscosity 0.114 -0.203 1.60e-2 2.42e-2 2.53e-2 0.682 Mg+2 = Mg+2 -dw 0.705e-9 111 2.4 13.7 - -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 # ref. 1 + -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.423 0 0 1.67e-3 8.1e-3 2.50 Ca+2 = Ca+2 - -dw 0.793e-9 97 3.4 24.6 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # ref. 1 + -dw 0.793e-9 97 3.4 24.6 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 + -viscosity 0.379 -0.171 3.59e-2 1.55e-3 9.0e-3 2.282 Sr+2 = Sr+2 -dw 0.794e-9 161 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 # ref. 1 + -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 + -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 Ba+2 = Ba+2 -dw 0.848e-9 46 - -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 # ref. 1 + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -viscosity 0.339 -0.226 1.38e-2 3.06e-2 0 0.768 Mn+2 = Mn+2 -dw 0.688e-9 -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # ref. 2 Fe+2 = Fe+2 -dw 0.719e-9 - -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 # ref. 1 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 Cl- = Cl- -dw 2.03e-9 194 1.6 6.9 - -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 # ref. 1 + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -viscosity 0 0 0 0 0 0 1 # the reference solute CO3-2 = CO3-2 - -dw 0.955e-9 0 1.12 2.84 - -Vm 4.91 0 0 -5.41 4.76 0 0.386 89.7 -1.57e-2 1 # ref. 1 + -dw 0.955e-9 225 1.002 3.96 + -Vm 8.569 -10.40 -19.38 3e-4 4.61 0 2.99 0 -3.23e-2 0.872 + -viscosity 0 0.296 3.63e-2 2e-4 -1.90e-2 1.881 -1.754 SO4-2 = SO4-2 - -dw 1.07e-9 34 4.46 25.9 - -Vm -7.77 43.17 141.1 -42.45 3.794 0 4.97 26.5 -5.77e-2 0.45 # ref. 1 + -dw 1.07e-9 138 3.95 25.9 + -Vm 8.75 5.48 0 -6.41 3.32 0 0 0 -9.33E-2 0 + -viscosity -7.63e-2 0.229 1.34e-2 1.76e-3 -1.52e-3 2.079 0.271 B(OH)3 = B(OH)3 -dw 1.1e-9 -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt Br- = Br- -dw 2.01e-9 258 -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 # ref. 2 + -viscosity -1.16e-2 -5.23e-2 5.54e-2 1.22e-2 0.119 0.9969 0.818 H4SiO4 = H4SiO4 -dw 1.10e-9 -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 @@ -97,36 +108,38 @@ Oxg = Oxg # O2 -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt Mtg = Mtg # CH4 -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 Ntg = Ntg # N2 -dw 1.96e-9 -Vm 7 # Pray et al., 1952, IEC 44. 1146 H2Sg = H2Sg # H2S -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # ref. 1 + Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 # aqueous species H2O = OH- + H+ -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 -dw 5.27e-9 548 0.52 1e-10 - -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 # ref. 1 + -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 + -viscosity -5.45e-2 0.142 1.45e-2 -3e-5 0 3.231 -1.791 # < 5 M Li,Na,KOH CO3-2 + H+ = HCO3- log_k 10.3393 delta_h -3.561 kcal -analytic 107.8975 0.03252849 -5151.79 -38.92561 563713.9 - -dw 1.18e-9 0 1.43 1e-10 - -Vm 8.54 0 -11.7 0 1.6 0 0 116 0 1 # ref. 1 + -dw 1.18e-9 -79.0 0.956 -3.29 + -Vm 9.463 -2.49 -11.92 0 1.63 0 0 130 0 0.691 + -viscosity 0 0.633 7.2e-3 0 0 0 1.087 CO3-2 + 2 H+ = CO2 + H2O log_k 16.6767 delta_h -5.738 kcal -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 -dw 1.92e-9 - -Vm 7.29 0.92 2.07 -1.23 -1.60 # ref. 1 + McBride et al. 2015, JCED 60, 171 + -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 SO4-2 + H+ = HSO4- log_k 1.979 delta_h 4.91 kcal -analytic -5.3585 0.0183412 557.2461 -dw 1.33e-9 - -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 # ref. 1 + -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 H2Sg = HSg- + H+ log_k -6.994 delta_h 5.30 kcal @@ -240,7 +253,7 @@ Calcite CaCO3 = CO3-2 + Ca+2 log_k -8.406 delta_h -2.297 kcal - -analytic 8.481 -0.032644 -2133 # ref. 3 + data from Ellis, 1959, Plummer and Busenberg, 1982 + -analytic 8.481 -0.032644 -2133 # ref. 3 with data from Ellis, 1959, Plummer and Busenberg, 1982 -Vm 36.9 Carnallite KMgCl3:6H2O = K+ + Mg+2 + 3Cl- + 6H2O @@ -271,7 +284,7 @@ Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 log_k -17.09 delta_h -9.436 kcal - -analytic -120.63 -0.1051 0 54.509 # 50–175°C, Bénézeth et al., 2018, GCA 224, 262-275. + -analytic -120.63 -0.1051 0 54.509 # 50175C, Bnzeth et al., 2018, GCA 224, 262-275. -Vm 64.5 Enstatite MgSiO3 + 2 H+ = - H2O + Mg+2 + H4SiO4 # llnl.dat @@ -481,11 +494,11 @@ Ntg(g) T_c 126.2 ; -P_c 33.50 ; -Omega 0.039 Mtg(g) Mtg = Mtg - -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100C T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 H2Sg(g) H2Sg = H+ + HSg- - -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 T_c 373.2 ; -P_c 88.20 ; -Omega 0.1 PITZER -B0 @@ -676,7 +689,7 @@ PITZER Cl- CO2 -0.005 Cl- H2Sg -0.005 Cl- (H2Sg)2 -0.005 - CO2 CO2 -1.34e-2 348 0.803 # new VM("CO2"), CO2 solubilities at high P, 0 - 150°C + CO2 CO2 -1.34e-2 348 0.803 # new VM("CO2"), CO2 solubilities at high P, 0 - 150C CO2 HSO4- -0.003 CO2 K+ 0.051 CO2 Mg+2 0.183 @@ -980,18 +993,31 @@ END # W * QBrn is the energy of solvation, QBrn is the pressure dependence of the Born equation, # W is fitted on measured solution densities. # z is charge of the solute species. -# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic). -# a0 is the ion-size parameter in the extended Debye-Hückel equation: +# Av is the Debye-Hckel limiting slope (DH_AV in PHREEQC basic). +# a0 is the ion-size parameter in the extended Debye-Hckel equation: # f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), # a0 = -gamma x for cations, = 0 for anions. # For details, consult ref. 1. +# ============================================================================================= +# The viscosity is calculated with a (modified) Jones-Dole equation: +# viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i) +# Parameters are for calculating the B and D terms: +# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 +# # b0 b1 b2 d1 d2 d3 tan +# z_i is absolute charge number, m_i is molality of i +# B_i = b0 + b1 exp(-b2 * tc) +# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions +# D_i = d1 + exp(-d2 tc) +# n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 m_i)d^3 / (2 + fI), fI is an ionic strength term. +# For details, consult ref. 5. # -# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. -# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725. -# ref. 3: Appelo, 2015, Appl. Geochem. 55, 62–71. +# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967. +# ref. 2: Procedures from ref. 1 using data compiled by Lalibert, 2009, J. Chem. Eng. Data 54, 1725. +# ref. 3: Appelo, 2015, Appl. Geochem. 55, 6271. # http://www.hydrochemistry.eu/pub/pitzer_db/appendix.zip contains example files # for the high P,T Pitzer model and improvements for Calcite. # ref. 4: Appelo, 2017, Cem. Concr. Res. 101, 102-113. +# ref. 5: Appelo and Parkhurst in prep., for parameters see subroutine viscosity in transport.cpp # # ============================================================================================= # It remains the responsibility of the user to check the calculated results, for example with From 399344e2d5f22d4edd69ebd5c71b43d15d5a13b9 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Tue, 4 Apr 2023 14:04:58 -0600 Subject: [PATCH 060/384] fixed surface.cxx correct_gc. tweaked P_Vm, but it is not too stable. --- RELEASE.TXT | 48 +++++++++++++++++++++++++++++++++++++++--------- 1 file changed, 39 insertions(+), 9 deletions(-) diff --git a/RELEASE.TXT b/RELEASE.TXT index 98a4acbc..391134bc 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,4 +1,24 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + ----------------- + April 3, 2023 + ----------------- + The viscosity of multi-species solutions is calculated with a (modified) + Jones-Dole equation: + + viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i) + + Parameters SOLUTION_SPECIES definitions are for calculating the B and D terms: + -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 + b0 b1 b2 d1 d2 d3 tan + + z_i is absolute charge number, m_i is molality of i + B_i = b0 + b1 exp(-b2 * tc) + fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions + D_i = d1 + exp(-d2 tc) + n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 m_i)d^3 / (2 + fI), fI is an ionic strength term. + For details, consult + Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp + ----------------- February 28, 2023 ----------------- @@ -39,14 +59,19 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ ----------------- February 26, 2023 ----------------- - PhreeqcRM: Added a rudimentary BMI (Basic Model Interface) for C++. - The interface adds minimal capabilities to the other methods of - PhreeqcRM. The only new capabilities are (1) the capability to + PhreeqcRM: Added a BMI (Basic Model Interface) for C++. + The interface is a repackaging of the available methods of + PhreeqcRM. All PhreeqcRM methods are available, in addition + to the BMI methods. + + New capabilities include (1) the capability to retrieve units for the variables for BMI_GetValues and BMI_SetValues, - and (2) the capability to use YAML (YAML ain't Markup Language) + (2) the capability to use YAML (YAML ain't Markup Language) to initialize a PhreeqcRM instance with the method BMI_Initialize - (which is equivalent to the method InitializeYAML). The YAML - capability would be especially useful if a GUI (Graphical User Interface) + (which is equivalent to the method InitializeYAML), and (3) the availability + of pointers that always point to current variable values. + + The YAML capability would be especially useful if a GUI (Graphical User Interface) is used to set up model initial conditions. The GUI could write a YAML file that contains directives for PhreeqcRM methods that need to be run and the corresonding data needed to initialize a PhreeqcRM instance--for example, @@ -57,7 +82,8 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ the YAML file with BMI_Initialize to execute the specified PhreeqcRM methods to apply the data specified in the YAML file. - The following is represents complete sequential, noniterative transport calculation: + The following is represents the way BMI methods would be used to implement + a sequential, noniterative transport calculation: PhreeqcRM phreeqc_rm(nxyz, nthreads); phreeqc_rm.BMI_Initialize("myfile.yaml"); @@ -78,7 +104,7 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ phreeqc_rm.BMI_GetValue("Concentrations", c.data()); } - The complete set of BMI methods is as follows: + The set of BMI methods is as follows: std::string BMI_GetComponentName() Returns "PhreeqcRM". @@ -112,7 +138,11 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ Returns "seconds". void BMI_GetValue(std::string name, void* dest) - Returns a value or vector of values for the variable identified by name. + Returns a value or vector of values for the variable identified by name + + void BMI_GetValuePtr(std::string name, void* dest) + Returns a pointer to current values of a variable. This method + is available for selected variables. int BMI_GetVarItemsize(std::string name) Returns the number of bytes needed for one element of the variable From 0a7874068e77f654f99f8a66b57f3963fea8ec0f Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Mon, 10 Apr 2023 03:21:02 +0000 Subject: [PATCH 061/384] Squashed 'phreeqcpp/' changes from e1de8e8..97a0327 97a0327 fixed compiler warnings except NAN ee1acc4 changed all double precision to real(kind=8) in all files. Compiles and runs test cases. git-subtree-dir: phreeqcpp git-subtree-split: 97a0327aa6a4017dcd2e0298f44d5e672b05288a --- cl1.cpp | 2 +- gases.cpp | 2 -- model.cpp | 5 ----- pitzer.cpp | 20 ++++++++++---------- prep.cpp | 7 ++----- spread.cpp | 4 +--- sundialsmath.h | 4 ++-- sundialstypes.h | 2 +- tally.cpp | 7 ------- 9 files changed, 17 insertions(+), 36 deletions(-) diff --git a/cl1.cpp b/cl1.cpp index 107a8ad9..b0dd1be4 100644 --- a/cl1.cpp +++ b/cl1.cpp @@ -142,7 +142,7 @@ cl1(int k, int l, int m, int n, /* AT LEAST NKLMD COLUMNS USED FOR WORKSPACE. */ /* S INTEGER ARRAY OF SIZE AT LEAST KLMD, USED FOR */ /* WORKSPACE. */ -/* DOUBLE PRECISION DBLE */ +/* real(kind=8) DBLE */ /* REAL */ /* INITIALIZATION. */ diff --git a/gases.cpp b/gases.cpp index d64d2c97..b373068a 100644 --- a/gases.cpp +++ b/gases.cpp @@ -624,7 +624,6 @@ int Phreeqc:: calc_fixed_volume_gas_pressures(void) /* ---------------------------------------------------------------------- */ { - int n_g = 0; LDBLE lp; class rxn_token *rxn_ptr; class phase *phase_ptr; @@ -645,7 +644,6 @@ calc_fixed_volume_gas_pressures(void) { if (!PR && phase_ptr->t_c > 0 && phase_ptr->p_c > 0) PR = true; - n_g++; } gas_phase_ptr->Set_total_moles(gas_phase_ptr->Get_total_moles() + gas_unknowns[i]->moles); } diff --git a/model.cpp b/model.cpp index 9bebfc87..bf8d8fd7 100644 --- a/model.cpp +++ b/model.cpp @@ -2543,7 +2543,6 @@ int Phreeqc:: calc_gas_pressures(void) /* ---------------------------------------------------------------------- */ { - int n_g = 0; LDBLE lp, V_m = 0; class rxn_token *rxn_ptr; std::vector phase_ptrs; @@ -2576,7 +2575,6 @@ calc_gas_pressures(void) phase_ptrs.push_back(phase_ptr); if (!PR && phase_ptr->t_c > 0 && phase_ptr->p_c > 0) PR = true; - n_g++; } if (iterations > 2 && gas_phase_ptr->Get_type() == cxxGasPhase::GP_VOLUME) { @@ -3778,7 +3776,6 @@ residuals(void) int converge; LDBLE l_toler; - LDBLE sum_residual; LDBLE sinh_constant; LDBLE sum, sum1; class master *master_ptr, *master_ptr1, *master_ptr2; @@ -3786,7 +3783,6 @@ residuals(void) int print_fail; std::vector cd_psi; print_fail = FALSE; - sum_residual = 0.0; sigmaddl = 0; sum = 0; /* @@ -4530,7 +4526,6 @@ residuals(void) * Store residuals in array */ my_array[((size_t)i + 1) * (count_unknowns + 1) - 1] = residual[i]; - sum_residual += fabs(residual[i]); } /* * Return diff --git a/pitzer.cpp b/pitzer.cpp index 77de08e5..b71f24d3 100644 --- a/pitzer.cpp +++ b/pitzer.cpp @@ -52,7 +52,7 @@ pitzer_tidy(void) const char *string1, *string2; int i, j, order; int i0, i1, i2; - int count_pos, count_neg, count_neut, count[3], jj; + int count_neut, count[3], jj; LDBLE z0, z1; class pitz_param *pzp_ptr; class theta_param *theta_param_ptr; @@ -339,21 +339,21 @@ pitzer_tidy(void) i0 = pitz_params[i]->ispec[0]; i1 = pitz_params[i]->ispec[1]; i2 = pitz_params[i]->ispec[2]; - count_pos = count_neg = count_neut = 0; + count_neut = 0; for (j = 0; j <= 2; j++) { - if (spec[pitz_params[i]->ispec[j]]->z > 0) - { - count_pos++; - } + //if (spec[pitz_params[i]->ispec[j]]->z > 0) + //{ + // count_pos++; + //} if (spec[pitz_params[i]->ispec[j]]->z == 0) { count_neut++; } - if (spec[pitz_params[i]->ispec[j]]->z < 0) - { - count_neg++; - } + //if (spec[pitz_params[i]->ispec[j]]->z < 0) + //{ + // count_neg++; + //} } /* All neutral */ if (count_neut == 3) diff --git a/prep.cpp b/prep.cpp index 82b3125c..0d26ba98 100644 --- a/prep.cpp +++ b/prep.cpp @@ -1980,14 +1980,13 @@ get_list_master_ptrs(const char* cptr, class master *master_ptr) * Output: space is allocated and a list of master species pointers is * returned. */ - int j, l, count_list; + int j, l; char token[MAX_LENGTH]; std::vector master_ptr_list; class master *master_ptr0; /* * Make list of master species pointers */ - count_list = 0; //master_ptr_list = unknown_alloc_master(); master_ptr0 = master_ptr; if (master_ptr0 == master_ptr->s->primary) @@ -2147,7 +2146,7 @@ mb_for_species_aq(int n) * by coef, usually moles. * mb_unknowns.coef - coefficient of s[n] in equation or relation */ - int i, j; + int i; class master *master_ptr; class unknown *unknown_ptr; @@ -2223,7 +2222,6 @@ mb_for_species_aq(int n) */ if (use.Get_surface_ptr() != NULL && s[n]->type < H2O && dl_type_x != cxxSurface::NO_DL) { - j = 0; for (i = 0; i < count_unknowns; i++) { if (x[i]->type == SURFACE_CB) @@ -2235,7 +2233,6 @@ mb_for_species_aq(int n) store_mb_unknowns(unknown_ptr, s_diff_layer[n][charge_ptr->Get_name()].Get_g_moles_address(), s[n]->z, s_diff_layer[n][charge_ptr->Get_name()].Get_dg_g_moles_address()); - j++; } } } diff --git a/spread.cpp b/spread.cpp index 77ada3e7..5d7137b5 100644 --- a/spread.cpp +++ b/spread.cpp @@ -1141,7 +1141,7 @@ copy_token_tab(std::string& token, const char **cptr) * EOL, * UNKNOWN. */ - int i, return_value; + int return_value; char c; /* * Strip leading spaces @@ -1180,7 +1180,6 @@ copy_token_tab(std::string& token, const char **cptr) /* * Begin copying to token */ - i = 0; for (;;) { c = **cptr; @@ -1197,7 +1196,6 @@ copy_token_tab(std::string& token, const char **cptr) { token.push_back(c); (*cptr)++; - i++; } } return (return_value); diff --git a/sundialsmath.h b/sundialsmath.h index 59e49d3a..4f240e81 100644 --- a/sundialsmath.h +++ b/sundialsmath.h @@ -13,10 +13,10 @@ * listed here work with the type realtype as defined in * * sundialstypes.h. * * To do single precision floating point arithmetic, set the type * - * realtype to be float. To do double precision arithmetic, set * + * realtype to be float. To do real(kind=8) arithmetic, set * * the type realtype to be double. The default implementations * * for RPowerR and RSqrt call standard math library functions * - * which do double precision arithmetic. If this is unacceptable * + * which do real(kind=8) arithmetic. If this is unacceptable * * when realtype is float, then the user should re-implement * * these two routines by calling single precision routines * * available on his/her machine. * diff --git a/sundialstypes.h b/sundialstypes.h index 1003410f..ddf6c84a 100644 --- a/sundialstypes.h +++ b/sundialstypes.h @@ -25,7 +25,7 @@ * The types for realtype and integertype below have been set to * * double and long int, respectively. A user should modify these * * type declarations as he/she sees fit. For example, if a user * - * wants the work with type float because double precision * + * wants the work with type float because real(kind=8) * * floating point arithmetic is too expensive on the user's * * machine, then the definition below should be changed to: * * * diff --git a/tally.cpp b/tally.cpp index 969b165d..131411e1 100644 --- a/tally.cpp +++ b/tally.cpp @@ -798,7 +798,6 @@ build_tally_table(void) */ int j, k, l, p, save_print_use; size_t n; - int count_tt_pure_phase, count_tt_ss_phase, count_tt_kinetics; class phase *phase_ptr; char token[MAX_LENGTH]; const char* cptr; @@ -871,7 +870,6 @@ build_tally_table(void) /* * Count pure phases */ - count_tt_pure_phase = 0; if (Rxn_pp_assemblage_map.size() > 0) { /* @@ -904,7 +902,6 @@ build_tally_table(void) /* * Add to table */ - count_tt_pure_phase++; n = count_tally_table_columns; extend_tally_table(); tally_table[n].name = phase_ptr->name; @@ -931,7 +928,6 @@ build_tally_table(void) /* * Add solid-solution pure phases */ - count_tt_ss_phase = 0; if (Rxn_ss_assemblage_map.size() > 0) { /* @@ -964,7 +960,6 @@ build_tally_table(void) /* * Add to table */ - count_tt_ss_phase++; n = count_tally_table_columns; extend_tally_table(); tally_table[n].name = phase_ptr->name; @@ -982,7 +977,6 @@ build_tally_table(void) /* * Add kinetic reactants */ - count_tt_kinetics = 0; if (Rxn_kinetics_map.size() > 0) { std::map::iterator it; @@ -1006,7 +1000,6 @@ build_tally_table(void) /* * Add to table */ - count_tt_kinetics++; n = count_tally_table_columns; extend_tally_table(); tally_table[n].name = string_hsave(kinetics_comp_ptr->Get_rate_name().c_str()); From aff166b18426080aa53a136931d221f7afa810d3 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Mon, 10 Apr 2023 18:27:31 +0000 Subject: [PATCH 062/384] Squashed 'phreeqcpp/' changes from 97a0327..e7c12e1 e7c12e1 Merge commit '823f839bc515d692be4dba290f43673b3c0493ab' 823f839 Squashed 'common/' changes from 04cb71a..6e625e5 c0c3f59 Merge remote-tracking branch 'github/master' 6a30753 changed math.h to cmath. 171ff7f ifdef for NAN f0839d1 fixed warnings from Intel C++ 2023 compiler 49d0a56 fixed surface.cxx correct_gc. tweaked P_Vm, but it is not too stable. f2b8caa added viscosity to solution.h, solution.cpp, and xsolution_save 7ff51aa Tony's viscosity with many examples git-subtree-dir: phreeqcpp git-subtree-split: e7c12e191414a87ddcedcf73f17d7765702cb75b --- ChartObject.cpp | 3 +- PBasic.cpp | 2 +- PBasic.h | 3 +- Phreeqc.h | 4 +- Solution.cxx | 23 ++- Solution.h | 3 + SolutionIsotope.cxx | 3 +- Surface.cxx | 31 +++- Surface.h | 4 + basicsubs.cpp | 215 ++++++++++++++++------- cl1.cpp | 3 +- class_main.cpp | 4 +- common/Utils.cxx | 3 +- gases.cpp | 2 + global_structures.h | 4 +- integrate.cpp | 407 ++++++++++++++++++++++++++------------------ inverse.cpp | 14 +- isotopes.cpp | 9 +- kinetics.cpp | 3 +- mainsubs.cpp | 10 +- model.cpp | 5 + pitzer.cpp | 18 +- prep.cpp | 5 + print.cpp | 12 +- read.cpp | 51 +++++- spread.cpp | 3 + sundialsmath.cpp | 3 +- tally.cpp | 7 + tidy.cpp | 12 +- transport.cpp | 54 +++--- 30 files changed, 614 insertions(+), 306 deletions(-) diff --git a/ChartObject.cpp b/ChartObject.cpp index 9d6513ce..018e3b25 100644 --- a/ChartObject.cpp +++ b/ChartObject.cpp @@ -11,7 +11,8 @@ #include "ChartObject.h" #include "Parser.h" #include -#include +//#include +#include #include #include "phqalloc.h" diff --git a/PBasic.cpp b/PBasic.cpp index 99b4661d..b76897ad 100644 --- a/PBasic.cpp +++ b/PBasic.cpp @@ -7215,7 +7215,7 @@ _NilCheck(void) return _Escape(-3); } -#ifdef SKIP +#ifdef NPP /* The following is suitable for the HP Pascal operating system. It might want to be revised when emulating another system. */ diff --git a/PBasic.h b/PBasic.h index 95d77db2..73321cc8 100644 --- a/PBasic.h +++ b/PBasic.h @@ -7,7 +7,8 @@ #include #include #include -#include +//#include +#include #include #include "phrqtype.h" #include "PHRQ_base.h" diff --git a/Phreeqc.h b/Phreeqc.h index a0e38bc0..9881c015 100644 --- a/Phreeqc.h +++ b/Phreeqc.h @@ -283,12 +283,12 @@ public: int sum_diffuse_layer(cxxSurfaceCharge* surface_charge_ptr1); int calc_all_donnan(void); int calc_init_donnan(void); + LDBLE calc_psi_avg(cxxSurfaceCharge * charge_ptr, LDBLE surf_chrg_eq, LDBLE nDbl, std::vector &zcorr); LDBLE g_function(LDBLE x_value); LDBLE midpnt(LDBLE x1, LDBLE x2, int n); void polint(LDBLE* xa, LDBLE* ya, int n, LDBLE xv, LDBLE* yv, LDBLE* dy); LDBLE qromb_midpnt(cxxSurfaceCharge* charge_ptr, LDBLE x1, LDBLE x2); - LDBLE calc_psi_avg(cxxSurfaceCharge* charge_ptr, LDBLE surf_chrg_eq); // inverse.cpp ------------------------------- int inverse_models(void); @@ -1851,7 +1851,7 @@ isfinite handling #elif defined(HAVE_FINITE) # define PHR_ISFINITE(x) finite(x) #elif defined(HAVE_ISNAN) -# define PHR_ISFINITE(x) ( ((x) == 0.0) || ((!isnan(x)) && ((x) != (2.0 * (x)))) ) +# define PHR_ISFINITE(x) ( ((x) == 0.0) || ((!std::isnan(x)) && ((x) != (2.0 * (x)))) ) #else # define PHR_ISFINITE(x) ( ((x) == 0.0) || (((x) == (x)) && ((x) != (2.0 * (x)))) ) #endif diff --git a/Solution.cxx b/Solution.cxx index cb2d2941..bc1bd80e 100644 --- a/Solution.cxx +++ b/Solution.cxx @@ -47,6 +47,7 @@ cxxSolution::cxxSolution(PHRQ_io * io) this->total_o = 55.55; this->cb = 0.0; this->density = 1.0; + this->viscosity = 1.0; this->mass_water = 1.0; this->soln_vol = 1.0; this->total_alkalinity = 0.0; @@ -80,6 +81,7 @@ cxxSolution::operator =(const cxxSolution &rhs) this->total_h = rhs.total_h; this->total_o = rhs.total_o; this->density = rhs.density; + this->viscosity = rhs.viscosity; this->cb = rhs.cb; this->mass_water = rhs.mass_water; this->soln_vol = rhs.soln_vol; @@ -269,6 +271,10 @@ cxxSolution::dump_raw(std::ostream & s_oss, unsigned int indent, int *n_out) con s_oss << indent1; s_oss << "-density " << this->density << "\n"; + // new identifier + s_oss << indent1; + s_oss << "-viscosity " << this->viscosity << "\n"; + // soln_total conc structures s_oss << indent1; s_oss << "-totals" << "\n"; @@ -1070,6 +1076,16 @@ cxxSolution::read_raw(CParser & parser, bool check) opt_save = 27; } break; + case 28: // viscosity + if (!(parser.get_iss() >> this->viscosity)) + { + this->viscosity = 1.0; + parser.incr_input_error(); + parser.error_msg("Expected numeric value for viscosity.", + PHRQ_io::OT_CONTINUE); + } + opt_save = CParser::OPT_DEFAULT; + break; } if (opt == CParser::OPT_EOF || opt == CParser::OPT_KEYWORD) break; @@ -1365,6 +1381,7 @@ cxxSolution::zero() this->total_o = 0.0; this->cb = 0.0; this->density = 1.0; + this->viscosity = 1.0; this->mass_water = 0.0; this->soln_vol = 0.0; this->total_alkalinity = 0.0; @@ -1397,6 +1414,7 @@ cxxSolution::add(const cxxSolution & addee, LDBLE extensive) this->total_o += addee.total_o * extensive; this->cb += addee.cb * extensive; this->density = f1 * this->density + f2 * addee.density; + this->viscosity = f1 * this->viscosity + f2 * addee.viscosity; this->patm = f1 * this->patm + f2 * addee.patm; // this->potV = f1 * this->potV + f2 * addee.potV; // appt this->mass_water += addee.mass_water * extensive; @@ -1574,6 +1592,7 @@ cxxSolution::Serialize(Dictionary & dictionary, std::vector < int >&ints, doubles.push_back(this->cb); doubles.push_back(this->mass_water); doubles.push_back(this->density); + doubles.push_back(this->viscosity); doubles.push_back(this->soln_vol); doubles.push_back(this->total_alkalinity); /* @@ -1660,6 +1679,7 @@ cxxSolution::Deserialize(Dictionary & dictionary, std::vector < int >&ints, std: this->cb = doubles[dd++]; this->mass_water = doubles[dd++]; this->density = doubles[dd++]; + this->viscosity = doubles[dd++]; this->soln_vol = doubles[dd++]; this->total_alkalinity = doubles[dd++]; /* @@ -1752,6 +1772,7 @@ const std::vector< std::string >::value_type temp_vopts[] = { std::vector< std::string >::value_type("species_map"), // 24 std::vector< std::string >::value_type("log_gamma_map"), // 25 std::vector< std::string >::value_type("potential"), // 26 - std::vector< std::string >::value_type("log_molalities_map") // 27 + std::vector< std::string >::value_type("log_molalities_map"), // 27 + std::vector< std::string >::value_type("viscosity") // 28 }; const std::vector< std::string > cxxSolution::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); diff --git a/Solution.h b/Solution.h index cecabe78..eef728d4 100644 --- a/Solution.h +++ b/Solution.h @@ -49,6 +49,8 @@ class cxxSolution:public cxxNumKeyword void Set_cb(LDBLE l_cb) {this->cb = l_cb;} LDBLE Get_density() const {return this->density;} void Set_density(LDBLE l_density) {this->density = l_density;} + LDBLE Get_viscosity() const { return this->viscosity; } + void Set_viscosity(LDBLE l_viscos) { this->viscosity = l_viscos; } LDBLE Get_mass_water() const {return this->mass_water;} void Set_mass_water(LDBLE l_mass_water) {this->mass_water = l_mass_water;} LDBLE Get_total_alkalinity() const {return this->total_alkalinity;} @@ -131,6 +133,7 @@ class cxxSolution:public cxxNumKeyword LDBLE cb; LDBLE mass_water; LDBLE density; + LDBLE viscosity; LDBLE soln_vol; LDBLE total_alkalinity; cxxNameDouble totals; diff --git a/SolutionIsotope.cxx b/SolutionIsotope.cxx index 78d832a5..4059b0b9 100644 --- a/SolutionIsotope.cxx +++ b/SolutionIsotope.cxx @@ -70,7 +70,8 @@ cxxSolutionIsotope::dump_xml(std::ostream & s_oss, unsigned int indent) const #ifdef NPP if (!isnan(this->ratio_uncertainty)) #else - if (this->ratio_uncertainty != NAN) + //if (this->ratio_uncertainty != NAN) + if (!std::isnan(this->ratio_uncertainty)) #endif { s_oss << indent1; diff --git a/Surface.cxx b/Surface.cxx index 40c8cc0f..ed55bb2d 100644 --- a/Surface.cxx +++ b/Surface.cxx @@ -36,6 +36,7 @@ cxxSurface::cxxSurface(PHRQ_io *io) dl_type = NO_DL; sites_units = SITES_ABSOLUTE; only_counter_ions = false; + correct_GC = false; thickness = 1e-8; debye_lengths = 0.0; DDL_viscosity = 1.0; @@ -55,6 +56,7 @@ cxxNumKeyword(io) dl_type = NO_DL; sites_units = SITES_ABSOLUTE; only_counter_ions = false; + correct_GC = false; thickness = 1e-8; debye_lengths = 0.0; DDL_viscosity = 1.0; @@ -128,6 +130,8 @@ cxxSurface::dump_raw(std::ostream & s_oss, unsigned int indent, int *n_out) cons s_oss << indent1; s_oss << "-only_counter_ions " << this->only_counter_ions << "\n"; s_oss << indent1; + s_oss << "-correct_GC " << this->correct_GC << "\n"; + s_oss << indent1; s_oss << "-thickness " << this->thickness << "\n"; s_oss << indent1; s_oss << "-debye_lengths " << this->debye_lengths << "\n"; @@ -189,6 +193,7 @@ cxxSurface::read_raw(CParser & parser, bool check) this->Set_tidied(true); bool only_counter_ions_defined(false); + //bool correct_GC_defined(false); bool thickness_defined(false); bool type_defined(false); bool dl_type_defined(false); @@ -468,6 +473,17 @@ cxxSurface::read_raw(CParser & parser, bool check) PHRQ_io::OT_CONTINUE); } break; + case 19: // correct_GC + if (!(parser.get_iss() >> this->correct_GC)) + { + this->correct_GC = false; + parser.incr_input_error(); + parser. + error_msg("Expected boolean value for correct_GC.", + PHRQ_io::OT_CONTINUE); + } + //correct_GC_defined = true; + break; } if (opt == CParser::OPT_EOF || opt == CParser::OPT_KEYWORD) break; @@ -482,6 +498,13 @@ cxxSurface::read_raw(CParser & parser, bool check) error_msg("Only_counter_ions not defined for SURFACE_RAW input.", PHRQ_io::OT_CONTINUE); } + //if (correct_GC_defined == false) + //{ + // parser.incr_input_error(); + // parser. + // error_msg("correct_GC not defined for SURFACE_RAW input.", + // PHRQ_io::OT_CONTINUE); + //} if (thickness_defined == false) { parser.incr_input_error(); @@ -559,6 +582,7 @@ cxxSurface::add(const cxxSurface & addee_in, LDBLE extensive) if (this->surface_comps.size() == 0) { this->only_counter_ions = addee.only_counter_ions; + this->correct_GC = addee.correct_GC; this->dl_type = addee.dl_type; this->type = addee.type; this->sites_units = addee.sites_units; @@ -730,6 +754,7 @@ cxxSurface::Serialize(Dictionary & dictionary, std::vector < int >&ints, doubles.push_back(this->debye_lengths); doubles.push_back(this->DDL_viscosity); doubles.push_back(this->DDL_limit); + ints.push_back(this->correct_GC ? 1 : 0); ints.push_back(this->transport ? 1 : 0); this->totals.Serialize(dictionary, ints, doubles); ints.push_back(this->solution_equilibria ? 1 : 0); @@ -776,6 +801,7 @@ cxxSurface::Deserialize(Dictionary & dictionary, std::vector < int >&ints, this->debye_lengths = doubles[dd++]; this->DDL_viscosity = doubles[dd++]; this->DDL_limit = doubles[dd++]; + this->correct_GC = (ints[ii++] != 0); this->transport = (ints[ii++] != 0); this->totals.Deserialize(dictionary, ints, doubles, ii, dd); this->solution_equilibria = (ints[ii++] != 0); @@ -803,6 +829,7 @@ const std::vector< std::string >::value_type temp_vopts[] = { std::vector< std::string >::value_type("solution_equilibria"), // 15 std::vector< std::string >::value_type("n_solution"), // 16 std::vector< std::string >::value_type("totals"), // 17 - std::vector< std::string >::value_type("tidied") // 18 -}; + std::vector< std::string >::value_type("tidied"), // 18 + std::vector< std::string >::value_type("correct_gc") // 19 +}; const std::vector< std::string > cxxSurface::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); diff --git a/Surface.h b/Surface.h index 7f97bce3..f01c716c 100644 --- a/Surface.h +++ b/Surface.h @@ -67,6 +67,9 @@ public: void Set_DDL_viscosity(LDBLE t) {DDL_viscosity = t;} LDBLE Get_DDL_limit(void) const {return DDL_limit;} void Set_DDL_limit(LDBLE t) {DDL_limit = t;} + bool Get_correct_GC(void) const { return correct_GC; } + void Set_correct_GC(bool tf) { correct_GC = tf; } + std::vector Donnan_factors; bool Get_transport(void) const {return transport;} void Set_transport(bool tf) {transport = tf;} cxxNameDouble & Get_totals() {return this->totals;} @@ -91,6 +94,7 @@ protected: LDBLE debye_lengths; LDBLE DDL_viscosity; LDBLE DDL_limit; + bool correct_GC; bool transport; cxxNameDouble totals; bool solution_equilibria; diff --git a/basicsubs.cpp b/basicsubs.cpp index 1a6d11df..3094c18b 100644 --- a/basicsubs.cpp +++ b/basicsubs.cpp @@ -187,21 +187,60 @@ diff_c(const char *species_name) /* ---------------------------------------------------------------------- */ { class species *s_ptr; - LDBLE g; + LDBLE ka, l_z, Dw, ff, sqrt_mu; + sqrt_mu = sqrt(mu_x); s_ptr = s_search(species_name); - if (s_ptr != NULL /*&& s_ptr->in != FALSE && s_ptr->type < EMINUS*/) + //LDBLE g; + //if (s_ptr != NULL /*&& s_ptr->in != FALSE && s_ptr->type < EMINUS*/) + //{ + // g = s_ptr->dw; + // if (s_ptr->dw_t) + // g *= exp(s_ptr->dw_t / tk_x - s_ptr->dw_t / 298.15); + // g *= viscos_0_25 / viscos * tk_x / 298.15; + //} + //else + //{ + // g = 0; + //} + //return (g); + if (s_ptr == NULL) + return(0); + if ((Dw = s_ptr->dw) == 0) { - g = s_ptr->dw; - if (s_ptr->dw_t) - g *= exp(s_ptr->dw_t / tk_x - s_ptr->dw_t / 298.15); - g *= viscos_0_25 / viscos * tk_x / 298.15; + if (correct_Dw) + Dw = default_Dw; + else + return(0); + } + if ((l_z = fabs(s_ptr->z)) == 0) + { + //l_z = 1; // only a 1st approximation for correct_Dw in electrical field } else { - g = 0; + if (s_ptr->dw_a2) + ka = DH_B * s_ptr->dw_a2 * sqrt_mu / (1 + pow(mu_x, 0.75)); + else + ka = DH_B * 4.73 * sqrt_mu / (1 + pow(mu_x, 0.75)); + if (s_ptr->dw_a) + { + ff = exp(-s_ptr->dw_a * DH_A * l_z * sqrt_mu / (1 + ka)); + //if (print_viscosity && s_ptr->dw_a_visc) + // ff *= pow((viscos_0 / viscos), s_ptr->dw_a_visc); + } + else + { + ff = exp(-1.6 * DH_A * l_z * sqrt_mu / (1 + ka)); + } + Dw *= ff; } - return (g); + + if (tk_x != 298.15 && s_ptr->dw_t) + Dw *= exp(s_ptr->dw_t / tk_x - s_ptr->dw_t / 298.15); + + s_ptr->dw_corr = Dw; + return (Dw * viscos_0_25 / viscos_0); } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: @@ -209,22 +248,58 @@ setdiff_c(const char *species_name, double d) /* ---------------------------------------------------------------------- */ { class species *s_ptr; - LDBLE g; + LDBLE ka, l_z, Dw, ff, sqrt_mu; + sqrt_mu = sqrt(mu_x); s_ptr = s_search(species_name); - if (s_ptr != NULL) + + //LDBLE g; + //s_ptr = s_search(species_name); + //if (s_ptr != NULL) + //{ + + // s_ptr->dw = d; + // g = s_ptr->dw; + // if (s_ptr->dw_t) + // g *= exp(s_ptr->dw_t / tk_x - s_ptr->dw_t / 298.15); + // g *= viscos_0_25 / viscos * tk_x / 298.15;; + //} + //else + //{ + // g = 0; + //} + //return (g); + if (s_ptr == NULL) + return(0); + Dw = s_ptr->dw = d; + if ((l_z = fabs(s_ptr->z)) == 0) { - s_ptr->dw = d; - g = s_ptr->dw; - if (s_ptr->dw_t) - g *= exp(s_ptr->dw_t / tk_x - s_ptr->dw_t / 298.15); - g *= viscos_0_25 / viscos * tk_x / 298.15;; + //l_z = 1; // only a 1st approximation for correct_Dw in electrical field } else { - g = 0; + if (s_ptr->dw_a2) + ka = DH_B * s_ptr->dw_a2 * sqrt_mu / (1 + pow(mu_x, 0.75)); + else + ka = DH_B * 4.73 * sqrt_mu / (1 + pow(mu_x, 0.75)); + if (s_ptr->dw_a) + { + ff = exp(-s_ptr->dw_a * DH_A * l_z * sqrt_mu / (1 + ka)); + //if (print_viscosity && s_ptr->dw_a_visc) + // ff *= pow((viscos_0 / viscos), s_ptr->dw_a_visc); + } + else + { + ff = exp(-1.6 * DH_A * l_z * sqrt_mu / (1 + ka)); + } + Dw *= ff; } - return (g); + + if (tk_x != 298.15 && s_ptr->dw_t) + Dw *= exp(s_ptr->dw_t / tk_x - s_ptr->dw_t / 298.15); + + s_ptr->dw_corr = Dw; + return (Dw * viscos_0_25 / viscos_0); } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: @@ -314,19 +389,18 @@ calc_SC(void) SC = 0; //LDBLE ta1, ta2, ta3, ta4; - for (i = 0; i < (int)this->s_x.size(); i++) - { - // ** for optimizing, get numbers from -analyt for H+ = H+... - //if (!strcmp(s_x[i]->name, "H+")) - //{ - // ta1 = s_x[i]->logk[2]; - // ta2 = s_x[i]->logk[3]; - // ta3 = s_x[i]->logk[4]; - // ta4 = s_x[i]->logk[5]; - // break; - //} - // - } + //for (i = 0; i < (int)this->s_x.size(); i++) + //{ + // // ** for optimizing, get numbers from -analyt for H+ = H+... + // if (!strcmp(s_x[i]->name, "H+")) + // { + // ta1 = s_x[i]->logk[2] * 1e15; + // ta2 = s_x[i]->logk[3] * 1e15; + // ta3 = s_x[i]->logk[4] * 1e15; + // ta4 = s_x[i]->logk[5] * 1e15; + // break; + // } + //} for (i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type != AQ && s_x[i]->type != HPLUS) @@ -338,43 +412,51 @@ calc_SC(void) else continue; } + if (s_x[i]->lm < min_dif_LM) + continue; if ((l_z = fabs(s_x[i]->z)) == 0) - l_z = 1; // only a 1st approximation for correct_Dw in electrical field - if (s_x[i]->dw_t) - Dw *= exp(s_x[i]->dw_t / tk_x - s_x[i]->dw_t / 298.15); // the viscosity multiplier is done in SC - if (s_x[i]->dw_a2) - ka = DH_B * s_x[i]->dw_a2 * sqrt_mu / (1 + pow(mu_x, 0.75)); + { + //l_z = 1; // only a 1st approximation for correct_Dw in electrical field + } else { - ka = DH_B * 4.73 * sqrt_mu / (1 + pow(mu_x , 0.75)); - //ka = DH_B * ta1 * sqrt_mu / (1 + pow(mu_x, ta2)); - //ka = DH_B * ta1 * sqrt_mu / (1 + mu_x / ta2); - } - if (s_x[i]->dw_a) - { - ff = exp(-s_x[i]->dw_a * DH_A * l_z * sqrt_mu / (1 + ka)); - if (print_viscosity) + if (s_x[i]->dw_a2) + ka = DH_B * s_x[i]->dw_a2 * sqrt_mu / (1 + pow(mu_x, 0.75)); + else { - ff *= pow((viscos_0 / viscos), s_x[i]->dw_a_visc); + ka = DH_B * 4.73 * sqrt_mu / (1 + pow(mu_x, 0.75)); + //ka = DH_B * ta1 * sqrt_mu / (1 + pow(mu_x, ta2)); + //ka = DH_B * ta1 * sqrt_mu / (1 + mu_x / ta2); } + if (s_x[i]->dw_a) + { + ff = exp(-s_x[i]->dw_a * DH_A * l_z * sqrt_mu / (1 + ka)); + //if (print_viscosity && s_x[i]->dw_a_visc) + // ff *= pow((viscos_0 / viscos), s_x[i]->dw_a_visc); + } + else + { + ff = exp(-1.6 * DH_A * l_z * sqrt_mu / (1 + ka)); + //ff = exp(-ta3 * DH_A * l_z * sqrt_mu / (1 + ka)); + } + Dw *= ff; } - else + if (tk_x != 298.15) { - ff = exp(-1.6 * DH_A * l_z * sqrt_mu / (1 + ka)); - //ff = exp(-ta3 * DH_A * l_z * sqrt_mu / (1 + ka)); + if (s_x[i]->dw_t) + Dw *= exp(s_x[i]->dw_t / tk_x - s_x[i]->dw_t / 298.15); + //else + //{ + // Dw *= exp(ta1 / tk_x - ta1 / 298.15); + //} } - Dw *= ff; s_x[i]->dw_corr = Dw; - if (s_x[i]->z == 0) - continue; s_x[i]->dw_t_SC = s_x[i]->moles / mass_water_aq_x * l_z * l_z * Dw; SC += s_x[i]->dw_t_SC; } SC *= 1e7 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298150.0); - /* correct for temperature dependency... - SC_T = SC_298 * (Dw_T / T) * (298 / Dw_298) and - Dw_T = Dw_298 * (T / 298) * (viscos_298 / viscos_T) give: + /* correct for viscosity dependency... SC_T = SC_298 * (viscos_298 / viscos_T) */ SC *= viscos_0_25 / viscos_0; @@ -1520,7 +1602,8 @@ get_calculate_value(const char *name) #ifdef NPP if (isnan(rate_moles)) #else - if (rate_moles == NAN) + //if (rate_moles == NAN) + if(std::isnan(rate_moles)) #endif { error_string = sformatf( "Calculated value not SAVEed for %s.", @@ -1721,22 +1804,22 @@ pressure(void) /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -pr_phi(const char* phase_name) +pr_phi(const char *phase_name) /* ---------------------------------------------------------------------- */ { cxxGasPhase* gas_phase_ptr = use.Get_gas_phase_ptr(); if (gas_phase_ptr != NULL) { - int l; + int l; class phase* phase_ptr = phase_bsearch(phase_name, &l, FALSE); - if (phase_ptr == NULL) - { - error_string = sformatf("Gas %s, not found.", phase_name); - warning_msg(error_string); - return (1e-99); - } + if (phase_ptr == NULL) + { + error_string = sformatf( "Gas %s, not found.", phase_name); + warning_msg(error_string); + return (1e-99); + } for (size_t i = 0; i < gas_phase_ptr->Get_gas_comps().size(); i++) - { + { const cxxGasComp* gas_comp_ptr = &(gas_phase_ptr->Get_gas_comps()[i]); int j; class phase* phase_ptr_gas = phase_bsearch(gas_comp_ptr->Get_phase_name().c_str(), &j, FALSE); @@ -1744,8 +1827,8 @@ pr_phi(const char* phase_name) { if (gas_phase_ptr->Get_pr_in()) { - return phase_ptr->pr_phi; - } + return phase_ptr->pr_phi; + } else { return gas_comp_ptr->Get_phi(); @@ -1753,7 +1836,7 @@ pr_phi(const char* phase_name) } } } - return(1.0); + return (1.0); } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: diff --git a/cl1.cpp b/cl1.cpp index b0dd1be4..4a3a8bbc 100644 --- a/cl1.cpp +++ b/cl1.cpp @@ -1,6 +1,7 @@ #include #include -#include +//#include +#include #include #include "Phreeqc.h" #include "phqalloc.h" diff --git a/class_main.cpp b/class_main.cpp index fe3d0e77..03fb3e40 100644 --- a/class_main.cpp +++ b/class_main.cpp @@ -323,7 +323,7 @@ write_banner(void) /* date */ #ifdef NPP - len = snprintf(buffer, sizeof(buffer), "%s", "July 5, 2021"); + len = snprintf(buffer, sizeof(buffer), "%s", "March 20, 2023"); #else len = snprintf(buffer, sizeof(buffer), "%s", "@VER_DATE@"); #endif @@ -507,7 +507,7 @@ process_file_names(int argc, char *argv[], std::istream **db_cookie, output_msg(sformatf(" Input file: %s\n", in_file.c_str())); output_msg(sformatf(" Output file: %s\n", out_file.c_str())); #ifdef NPP - output_msg(sformatf("Using PHREEQC: version 3.7.1, compiled July 5, 2021\n")); + output_msg(sformatf("Using PHREEQC: version 3.7.3, compiled March 20, 2023\n")); #endif output_msg(sformatf("Database file: %s\n\n", token.c_str())); #ifdef NPP diff --git a/common/Utils.cxx b/common/Utils.cxx index ad96a147..8495cd36 100644 --- a/common/Utils.cxx +++ b/common/Utils.cxx @@ -10,7 +10,8 @@ #include "Utils.h" #include "Parser.h" #include "float.h" -#include "math.h" +//#include +#include #if defined(PHREEQCI_GUI) #ifdef _DEBUG diff --git a/gases.cpp b/gases.cpp index b373068a..72d8fe12 100644 --- a/gases.cpp +++ b/gases.cpp @@ -624,6 +624,7 @@ int Phreeqc:: calc_fixed_volume_gas_pressures(void) /* ---------------------------------------------------------------------- */ { + //int n_g = 0; LDBLE lp; class rxn_token *rxn_ptr; class phase *phase_ptr; @@ -644,6 +645,7 @@ calc_fixed_volume_gas_pressures(void) { if (!PR && phase_ptr->t_c > 0 && phase_ptr->p_c > 0) PR = true; + //n_g++; } gas_phase_ptr->Set_total_moles(gas_phase_ptr->Get_total_moles() + gas_unknowns[i]->moles); } diff --git a/global_structures.h b/global_structures.h index 9d07f324..053dbfb4 100644 --- a/global_structures.h +++ b/global_structures.h @@ -5,8 +5,8 @@ /* ---------------------------------------------------------------------- * #define DEFINITIONS * ---------------------------------------------------------------------- */ -#ifndef NAN -# define NAN -99999999 +#if !defined(NAN) +#define NAN nan("1") #endif #define MISSING -9999.999 #include "NA.h" /* NA = not available */ diff --git a/integrate.cpp b/integrate.cpp index 1cfab335..03e1c304 100644 --- a/integrate.cpp +++ b/integrate.cpp @@ -25,9 +25,9 @@ calc_all_g(void) if (use.Get_surface_ptr() == NULL) return (OK); -/* - * calculate g for each surface - */ + /* + * calculate g for each surface + */ epsilon = convergence_tolerance; if (convergence_tolerance >= 1e-8) { @@ -45,7 +45,7 @@ calc_all_g(void) if (x[j]->type != SURFACE_CB) continue; if (debug_diffuse_layer == TRUE) - output_msg(sformatf( "Calc_all_g, X[%d]\n", j)); + output_msg(sformatf("Calc_all_g, X[%d]\n", j)); cxxSurfaceCharge *charge_ptr = use.Get_surface_ptr()->Find_charge(x[j]->surface_charge); std::map temp_g_map; cxxSurfDL temp_g; @@ -56,11 +56,11 @@ calc_all_g(void) /* 1000 J/kJ and 1000 L/m**3 */ //alpha_global = sqrt(EPSILON * EPSILON_ZERO * (R_KJ_DEG_MOL * 1000.0) * 1000.0 * // tk_x * 0.5); - alpha_global = sqrt(eps_r * EPSILON_ZERO * (R_KJ_DEG_MOL * 1000.0) * 1000.0 * - tk_x * 0.5); -/* - * calculate g for given surface for each species - */ + alpha_global = sqrt(eps_r * EPSILON_ZERO * (R_KJ_DEG_MOL * 1000.0) * 1000.0 * + tk_x * 0.5); + /* + * calculate g for given surface for each species + */ for (int i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type > HPLUS) @@ -70,10 +70,10 @@ calc_all_g(void) z_global = s_x[i]->z; if (charge_ptr->Get_grams() > 0.0) { - + if ((use.Get_surface_ptr()->Get_only_counter_ions() == false) || (((x[j]->master[0]->s->la > 0) && (z_global < 0)) - || ((x[j]->master[0]->s->la < 0) && (z_global > 0)))) + || ((x[j]->master[0]->s->la < 0) && (z_global > 0)))) { if (xd_global > 0.1) { @@ -180,11 +180,11 @@ calc_all_g(void) if (debug_diffuse_layer == TRUE) { output_msg(sformatf( - "\t%12f\t%12.4e\t%12.4e\t%12.4e\n", - (double) z_global, - (double) charge_ptr->Get_g_map()[z_global].Get_g(), - (double) new_g, - (double) (new_g - charge_ptr->Get_g_map()[z_global].Get_g()))); + "\t%12f\t%12.4e\t%12.4e\t%12.4e\n", + (double)z_global, + (double)charge_ptr->Get_g_map()[z_global].Get_g(), + (double)new_g, + (double)(new_g - charge_ptr->Get_g_map()[z_global].Get_g()))); } } charge_ptr->Get_g_map()[z_global].Set_g(new_g); @@ -201,7 +201,7 @@ calc_all_g(void) g_function(xd_global) / F_C_MOL; dg *= -2. / (exp(x[j]->master[0]->s->la * LOG_10) * - exp(x[j]->master[0]->s->la * LOG_10)); + exp(x[j]->master[0]->s->la * LOG_10)); if ((xd_global - 1) < 0.0) { dg *= -1.0; @@ -225,16 +225,16 @@ calc_all_g(void) if (debug_diffuse_layer == TRUE) { output_msg(sformatf("\nSurface component %d: charge,\tg,\tdg/dlny,\txd\n", - (int) charge_ptr->Get_g_map().size())); + (int)charge_ptr->Get_g_map().size())); std::map::iterator it; for (it = charge_ptr->Get_g_map().begin(); it != charge_ptr->Get_g_map().end(); it++) { output_msg(sformatf( - "\t%12f\t%12.4e\t%12.4e\t%12.4e\n", - (double) it->first, - (double) it->second.Get_g(), - (double) it->second.Get_dg(), - (double) xd_global)); + "\t%12f\t%12.4e\t%12.4e\t%12.4e\n", + (double)it->first, + (double)it->second.Get_g(), + (double)it->second.Get_dg(), + (double)xd_global)); } } } @@ -253,10 +253,10 @@ g_function(LDBLE x_value) return (0.0); sum = 0.0; ln_x_value = log(x_value); - + cxxSurfaceCharge *charge_ptr = &(use.Get_surface_ptr()->Get_surface_charges()[0]); std::map::iterator it = charge_ptr->Get_g_map().begin(); - for ( ; it != charge_ptr->Get_g_map().end(); it++) + for (; it != charge_ptr->Get_g_map().end(); it++) { it->second.Set_psi_to_z(exp(ln_x_value * it->first) - 1.0); } @@ -272,31 +272,31 @@ g_function(LDBLE x_value) sum = 0.0; sum1 = 0.0; output_msg(sformatf( - "Species\tmoles\tX**z-1\tsum\tsum charge\n")); + "Species\tmoles\tX**z-1\tsum\tsum charge\n")); for (i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type < H2O && s_x[i]->z != 0.0) { sum += s_x[i]->moles * (pow(x_value, s_x[i]->z) - 1.0); sum1 += s_x[i]->moles * s_x[i]->z; - output_msg(sformatf( "%s\t%e\t%e\t%e\t%e\n", - s_x[i]->name, (double) s_x[i]->moles, - (double) (pow((LDBLE) x_value, (LDBLE) s_x[i]->z) - - 1.0), (double) sum, (double) sum1)); + output_msg(sformatf("%s\t%e\t%e\t%e\t%e\n", + s_x[i]->name, (double)s_x[i]->moles, + (double)(pow((LDBLE)x_value, (LDBLE)s_x[i]->z) - + 1.0), (double)sum, (double)sum1)); } } - error_string = sformatf( "Negative sum in g_function, %e\t%e.", - (double) sum, (double) x_value); + error_string = sformatf("Negative sum in g_function, %e\t%e.", + (double)sum, (double)x_value); error_msg(error_string, CONTINUE); error_string = sformatf( - "Solutions must be charge balanced, charge imbalance is %e\n", - (double) sum1); + "Solutions must be charge balanced, charge imbalance is %e\n", + (double)sum1); error_msg(error_string, STOP); } return_value = (exp(ln_x_value * z_global) - - 1) / sqrt((x_value * x_value * mass_water_aq_x * sum)); + 1) / sqrt((x_value * x_value * mass_water_aq_x * sum)); return (return_value); } /* ---------------------------------------------------------------------- */ @@ -309,9 +309,9 @@ polint(LDBLE * xa, LDBLE * ya, int n, LDBLE xv, LDBLE * yv, LDBLE * dy) ns = 1; dif = fabs(xv - xa[1]); -/* - * Malloc work space - */ + /* + * Malloc work space + */ std::vector c, d; c.resize((size_t)n + 1); d.resize((size_t)n + 1); @@ -354,7 +354,7 @@ polint(LDBLE * xa, LDBLE * ya, int n, LDBLE xv, LDBLE * yv, LDBLE * dy) } *yv += *dy; -/* *yv += (*dy = (2 * ns < (n-m) ? c[ns+1] : d[ns--])); */ + /* *yv += (*dy = (2 * ns < (n-m) ? c[ns+1] : d[ns--])); */ } return; } @@ -376,7 +376,7 @@ midpnt(LDBLE x1, LDBLE x2, int n) { for (it = 1, j = 1; j < n - 1; j++) it *= 3; - tnm = (LDBLE) it; + tnm = (LDBLE)it; del = (x2 - x1) / (3 * tnm); ddel = del + del; xv = x1 + 0.5 * del; @@ -420,7 +420,7 @@ qromb_midpnt(cxxSurfaceCharge *charge_ptr, LDBLE x1, LDBLE x2) if (debug_diffuse_layer == TRUE) { output_msg(sformatf( - "Iterations in qromb_midpnt: %d\n", j)); + "Iterations in qromb_midpnt: %d\n", j)); } return (sv[j]); } @@ -436,7 +436,7 @@ qromb_midpnt(cxxSurfaceCharge *charge_ptr, LDBLE x1, LDBLE x2) if (debug_diffuse_layer == TRUE) { output_msg(sformatf( - "Iterations in qromb_midpnt: %d\n", j)); + "Iterations in qromb_midpnt: %d\n", j)); } return (ss); } @@ -444,7 +444,7 @@ qromb_midpnt(cxxSurfaceCharge *charge_ptr, LDBLE x1, LDBLE x2) } error_string = sformatf( - "\nToo many iterations integrating diffuse layer.\n"); + "\nToo many iterations integrating diffuse layer.\n"); error_msg(error_string, STOP); return (-999.9); } @@ -455,9 +455,9 @@ calc_init_g(void) { if (use.Get_surface_ptr() == NULL) return (OK); -/* - * calculate g for each surface - */ + /* + * calculate g for each surface + */ for (int j = 0; j < count_unknowns; j++) { if (x[j]->type != SURFACE_CB) @@ -468,7 +468,7 @@ calc_init_g(void) /* second 1000 is liters/m**3 */ //alpha_global = sqrt(EPSILON * EPSILON_ZERO * (R_KJ_DEG_MOL * 1000.0) * // 1000.0 * tk_x * 0.5); - alpha_global = sqrt(eps_r * EPSILON_ZERO * (R_KJ_DEG_MOL * 1000.0) * + alpha_global = sqrt(eps_r * EPSILON_ZERO * (R_KJ_DEG_MOL * 1000.0) * 1000.0 * tk_x * 0.5); if (charge_ptr->Get_g_map().size() == 0) @@ -476,9 +476,9 @@ calc_init_g(void) cxxSurfDL temp_g; charge_ptr->Get_g_map()[0.0] = temp_g; } -/* - * calculate g for given surface for each species - */ + /* + * calculate g for given surface for each species + */ for (int i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type > HPLUS) @@ -511,7 +511,7 @@ calc_init_g(void) { int is = s_x[i]->number; - assert (is < (int) s_diff_layer.size()); + assert(is < (int)s_diff_layer.size()); // species found in diff_layer s_diff_layer[is][charge_ptr->Get_name()].Set_g_moles(0); s_diff_layer[is][charge_ptr->Get_name()].Set_dg_g_moles(0); @@ -520,15 +520,15 @@ calc_init_g(void) if (debug_diffuse_layer == TRUE) { output_msg(sformatf( - "\nSurface component %d: charge,\tg,\tdg\n", - (int) charge_ptr->Get_g_map().size())); + "\nSurface component %d: charge,\tg,\tdg\n", + (int)charge_ptr->Get_g_map().size())); std::map::iterator it; for (it = charge_ptr->Get_g_map().begin(); it != charge_ptr->Get_g_map().end(); it++) { - output_msg(sformatf( "\t%12f\t%12.4e\t%12.4e\n", - (double) it->first, - (double) it->second.Get_g(), - (double) it->second.Get_dg())); + output_msg(sformatf("\t%12f\t%12.4e\t%12.4e\n", + (double)it->first, + (double)it->second.Get_g(), + (double)it->second.Get_dg())); } } } @@ -539,21 +539,21 @@ int Phreeqc:: initial_surface_water(void) /* ---------------------------------------------------------------------- */ { -/* - * In initial surface calculation, need to calculate - * mass of water in diffuse layer. - * diffuse layer water + aqueous solution water = bulk water. - * Ionic strength is fixed, so diffuse-layer water will not change - */ + /* + * In initial surface calculation, need to calculate + * mass of water in diffuse layer. + * diffuse layer water + aqueous solution water = bulk water. + * Ionic strength is fixed, so diffuse-layer water will not change + */ LDBLE debye_length, b, r, rd, ddl_limit, rd_limit, fraction, sum_surfs, l_s; LDBLE damp_aq; -/* - * Debye length = 1/k = sqrt[eta*eta_zero*R*T/(2*F**2*mu_x*1000)], Dzombak and Morel, p 36 - * - * 1000 converts kJ to J; 1000 converts Liters to meter**3; debye_length is in meters. - */ - //debye_length = (EPSILON * EPSILON_ZERO * R_KJ_DEG_MOL * 1000.0 * tk_x) - // / (2. * F_C_MOL * F_C_MOL * mu_x * 1000.); + /* + * Debye length = 1/k = sqrt[eta*eta_zero*R*T/(2*F**2*mu_x*1000)], Dzombak and Morel, p 36 + * + * 1000 converts kJ to J; 1000 converts Liters to meter**3; debye_length is in meters. + */ + //debye_length = (EPSILON * EPSILON_ZERO * R_KJ_DEG_MOL * 1000.0 * tk_x) + // / (2. * F_C_MOL * F_C_MOL * mu_x * 1000.); debye_length = (eps_r * EPSILON_ZERO * R_KJ_DEG_MOL * 1000.0 * tk_x) / (2. * F_C_MOL * F_C_MOL * mu_x * 1000.); debye_length = sqrt(debye_length); @@ -561,10 +561,10 @@ initial_surface_water(void) /* ddl is at most the fraction ddl_limit of bulk water */ ddl_limit = use.Get_surface_ptr()->Get_DDL_limit(); -/* - * Loop through all surface components, calculate each H2O surface (diffuse layer), - * H2O aq, and H2O bulk (diffuse layers plus aqueous). - */ + /* + * Loop through all surface components, calculate each H2O surface (diffuse layer), + * H2O aq, and H2O bulk (diffuse layers plus aqueous). + */ if (use.Get_surface_ptr()->Get_debye_lengths() > 0) { @@ -606,14 +606,14 @@ initial_surface_water(void) mass_water_surfaces_x = use.Get_solution_ptr()->Get_mass_water() * ddl_limit / (1 - ddl_limit); r = 0.002 * (mass_water_surfaces_x + - use.Get_solution_ptr()->Get_mass_water()) / sum_surfs; + use.Get_solution_ptr()->Get_mass_water()) / sum_surfs; rd_limit = (1 - sqrt(1 - ddl_limit)) * r; rd = rd_limit; use.Get_surface_ptr()->Set_thickness(rd); } else mass_water_surfaces_x = - (r * r / pow(r - rd, 2) - 1) * use.Get_solution_ptr()->Get_mass_water(); + (r * r / pow(r - rd, 2) - 1) * use.Get_solution_ptr()->Get_mass_water(); for (int i = 0; i < count_unknowns; i++) { if (x[i]->type != SURFACE_CB) @@ -692,14 +692,14 @@ sum_diffuse_layer(cxxSurfaceCharge *charge_ptr) if (use.Get_surface_ptr() == NULL) return (OK); -/* - * Find position of component in list of components - */ + /* + * Find position of component in list of components + */ -/* - * Loop through all surface components, calculate each H2O surface (diffuse layer), - * H2O aq, and H2O bulk (diffuse layers plus aqueous). - */ + /* + * Loop through all surface components, calculate each H2O surface (diffuse layer), + * H2O aq, and H2O bulk (diffuse layers plus aqueous). + */ count_elts = 0; paren_count = 0; mass_water_surface = charge_ptr->Get_mass_water(); @@ -717,9 +717,9 @@ sum_diffuse_layer(cxxSurfaceCharge *charge_ptr) } moles_excess = mass_water_aq_x * molality * g; moles_surface = mass_water_surface * molality + moles_excess; -/* - * Accumulate elements in diffuse layer - */ + /* + * Accumulate elements in diffuse layer + */ add_elt_list(s_x[j]->next_elt, moles_surface); } add_elt_list(s_h2o->next_elt, mass_water_surface / gfw_water); @@ -731,22 +731,33 @@ int Phreeqc:: calc_all_donnan(void) /* ---------------------------------------------------------------------- */ { - bool converge; + bool converge; int cd_m; - LDBLE new_g, f_psi, surf_chrg_eq, psi_avg, f_sinh, A_surf, ratio_aq, ratio_aq_tot; + LDBLE new_g, f_psi, surf_chrg_eq, psi_avg, f_sinh, A_surf, ratio_aq, ratio_aq_tot, co_ion; LDBLE new_g2, f_psi2, surf_chrg_eq2, psi_avg2, dif, var1; if (use.Get_surface_ptr() == NULL) return (OK); - //f_sinh = sqrt(8000.0 * EPSILON * EPSILON_ZERO * (R_KJ_DEG_MOL * 1000.0) * - // tk_x * mu_x); f_sinh = sqrt(8000.0 * eps_r * EPSILON_ZERO * (R_KJ_DEG_MOL * 1000.0) * - tk_x * mu_x); -/* - * calculate g for each surface... - */ - if (!calculating_deriv || use.Get_surface_ptr()->Get_debye_lengths()) // DL_pitz + tk_x * mu_x); + bool only_count = use.Get_surface_ptr()->Get_only_counter_ions(); + bool correct_GC = use.Get_surface_ptr()->Get_correct_GC(); + /* calculate g for each surface... + */ + if (!calculating_deriv || use.Get_surface_ptr()->Get_debye_lengths() || + correct_GC) // DL_pitz && correct_GC initial_surface_water(); + LDBLE nDbl = 1; + if (correct_GC) + { + if ((nDbl = use.Get_surface_ptr()->Get_debye_lengths()) == 0) + { + LDBLE debye_length = f_sinh / (F_C_MOL * mu_x * 4e3); + nDbl = use.Get_surface_ptr()->Get_thickness() / debye_length; + //use.Get_surface_ptr()->Set_debye_lengths(nDbl); + } + } + converge = TRUE; for (int j = 0; j < count_unknowns; j++) { @@ -755,10 +766,10 @@ calc_all_donnan(void) cxxSurfaceCharge *charge_ptr = use.Get_surface_ptr()->Find_charge(x[j]->surface_charge); if (debug_diffuse_layer == TRUE) - output_msg(sformatf( "Calc_all_g, X[%d]\n", j)); -/* - * sum eq of each charge number in solution... - */ + output_msg(sformatf("Calc_all_g, X[%d]\n", j)); + /* + * sum eq of each charge number in solution... + */ std::map::iterator it; for (it = charge_group_map.begin(); it != charge_group_map.end(); it++) { @@ -778,15 +789,18 @@ calc_all_donnan(void) f_psi = x[(size_t)j + 2]->master[0]->s->la * LOG_10; /* -FPsi/RT */ f_psi = f_psi / 2; cd_m = 1; - } else + } + else { f_psi = x[j]->master[0]->s->la * LOG_10; cd_m = -1; } surf_chrg_eq = A_surf * f_sinh * sinh(f_psi) / F_C_MOL; - if (fabs(surf_chrg_eq) > 5e3) + LDBLE lim_seq = 5e3; + if (correct_GC) lim_seq = 5e1; + if (fabs(surf_chrg_eq) > lim_seq) { - surf_chrg_eq = (surf_chrg_eq < 0 ? -5e3 : 5e3); + surf_chrg_eq = (surf_chrg_eq < 0 ? -lim_seq : lim_seq); var1 = surf_chrg_eq / (A_surf * f_sinh / F_C_MOL); var1 = (var1 + sqrt(var1 * var1 + 1)); f_psi = (var1 > 1e-8 ? log(var1) : -18.4); @@ -799,8 +813,11 @@ calc_all_donnan(void) surf_chrg_eq2 = A_surf * f_sinh * sinh(f_psi2) / F_C_MOL; /* find psi_avg that matches surface charge... */ - psi_avg = calc_psi_avg(charge_ptr, surf_chrg_eq); - psi_avg2 = calc_psi_avg(charge_ptr, surf_chrg_eq2); + std::vector zcorr(charge_group_map.size()); + std::vector zcorr2(charge_group_map.size()); + //LDBLE fD = 0; + psi_avg = calc_psi_avg(charge_ptr, surf_chrg_eq, nDbl, zcorr); + psi_avg2 = calc_psi_avg(charge_ptr, surf_chrg_eq2, nDbl, zcorr2); /*output_msg(sformatf( "psi's %e %e %e\n", f_psi, psi_avg, surf_chrg_eq)); */ @@ -808,9 +825,15 @@ calc_all_donnan(void) ratio_aq = charge_ptr->Get_mass_water() / mass_water_aq_x; ratio_aq_tot = charge_ptr->Get_mass_water() / mass_water_bulk_x; + int z_iter = 0; for (it = charge_group_map.begin(); it != charge_group_map.end(); it++) { - LDBLE z = it->first; + LDBLE z = it->first, z1 = z; + co_ion = surf_chrg_eq * z; + if (correct_GC) + z1 = zcorr[z_iter]; + //z1 *= cgc[0] * pow(z_factor, abs(z)); + if (!ratio_aq) { charge_ptr->Get_g_map()[z].Set_g(0); @@ -819,17 +842,13 @@ calc_all_donnan(void) converge = true; continue; } - new_g = ratio_aq * (exp(cd_m * z * psi_avg) - 1); - if (use.Get_surface_ptr()->Get_only_counter_ions() && surf_chrg_eq * z > 0) - //((surf_chrg_eq < 0 && z < 0) - // || (surf_chrg_eq > 0 && z > 0))) + new_g = ratio_aq * (exp(cd_m * z1 * psi_avg) - 1); + if (only_count && co_ion > 0) new_g = -ratio_aq; if (new_g <= -ratio_aq) new_g = -ratio_aq + G_TOL * 1e-3; - new_g2 = ratio_aq * (exp(cd_m * z * psi_avg2) - 1); - if (use.Get_surface_ptr()->Get_only_counter_ions() && surf_chrg_eq * z > 0) - //((surf_chrg_eq < 0 && z < 0) - // || (surf_chrg_eq > 0 && z > 0))) + new_g2 = ratio_aq * (exp(cd_m * z1 * psi_avg2) - 1); + if (only_count && co_ion > 0) new_g2 = -ratio_aq; if (new_g2 <= -ratio_aq) new_g2 = -ratio_aq + G_TOL * 1e-3; @@ -859,9 +878,9 @@ calc_all_donnan(void) /* save Boltzmann factor * water fraction for MCD calc's in transport */ if (converge) { - if (use.Get_surface_ptr()->Get_only_counter_ions()) + if (only_count) { - if (surf_chrg_eq * z > 0) // co-ions are not in the DL + if (co_ion > 0) // co-ions are not in the DL charge_ptr->Get_z_gMCD_map()[z] = 0; else // assume that counter-ions have the free water conc for diffusion charge_ptr->Get_z_gMCD_map()[z] = ratio_aq_tot; @@ -869,23 +888,27 @@ calc_all_donnan(void) else charge_ptr->Get_z_gMCD_map()[z] = (new_g / ratio_aq + 1) * ratio_aq_tot; } + z_iter++; } if (debug_diffuse_layer == TRUE) { - std::string name = x[j]->master[0]->elt->name; + std::string name = x[j]->master[0]->elt->name; Utilities::replace("_psi", "", name); output_msg(sformatf( - "\nDonnan all on %s (%d): charge, \tg, \tdg, Psi_surface = %8f V. \n", - name.c_str(), (int) charge_ptr->Get_g_map().size(), - x[j]->master[0]->s->la * 2 * LOG_10 * R_KJ_DEG_MOL * - tk_x / F_KJ_V_EQ)); + "\nDonnan all on %s (%d): charge, \tg, \tdg, \tzcorr, \tPsi_surface = %8f V, \tDebye lengths = %8f. \n", + name.c_str(), (int)charge_ptr->Get_g_map().size(), + x[j]->master[0]->s->la * 2 * LOG_10 * R_KJ_DEG_MOL * tk_x / F_KJ_V_EQ, + nDbl)); + int i = 0; for (std::map::iterator i_it = charge_ptr->Get_g_map().begin(); i_it != charge_ptr->Get_g_map().end(); i_it++) { - output_msg(sformatf( "\t%12f\t%12.4e\t%12.4e\n", - (double) i_it->first, - (double) i_it->second.Get_g(), - (double) i_it->second.Get_dg())); + output_msg(sformatf("\t%12f\t%12.4e\t%12.4e\t%12.4e\n", + (double)i_it->first, + (double)i_it->second.Get_g(), + (double)i_it->second.Get_dg(), + (double)zcorr[i])); + i++; } } } @@ -904,7 +927,7 @@ calc_init_donnan(void) //sqrt(8000.0 * EPSILON * EPSILON_ZERO * (R_KJ_DEG_MOL * 1000.0) * // tk_x * mu_x); sqrt(8000.0 * eps_r * EPSILON_ZERO * (R_KJ_DEG_MOL * 1000.0) * - tk_x * mu_x); + tk_x * mu_x); if (convergence_tolerance >= 1e-8) { G_TOL = 1e-9; @@ -913,9 +936,9 @@ calc_init_donnan(void) { G_TOL = 1e-13; } -/* - * sum eq of each charge number in solution... - */ + /* + * sum eq of each charge number in solution... + */ charge_group_map.clear(); charge_group_map[0.0] = 0.0; @@ -932,9 +955,10 @@ calc_init_donnan(void) charge_group_map[s_x[i]->z] = s_x[i]->z * s_x[i]->moles * s_x[i]->erm_ddl; } } -/* - * calculate g for each surface... - */ + std::vector zcorr(charge_group_map.size()); + /* + * calculate g for each surface... + */ for (int j = 0; j < count_unknowns; j++) { if (x[j]->type != SURFACE_CB) @@ -948,14 +972,13 @@ calc_init_donnan(void) { f_psi = x[(size_t)j + 2]->master[0]->s->la * LOG_10; /* -FPsi/RT */ f_psi = f_psi / 2; - } else + } + else f_psi = x[j]->master[0]->s->la * LOG_10; surf_chrg_eq = A_surf * f_sinh * sinh(f_psi) / F_C_MOL; /* find psi_avg that matches surface charge... */ -/* psi_avg = calc_psi_avg (0); - appt 7/9/8... may have to change above one */ - psi_avg = calc_psi_avg(charge_ptr, 0 * surf_chrg_eq); + psi_avg = calc_psi_avg(charge_ptr, 0 * surf_chrg_eq, 0, zcorr); /* fill in g's */ ratio_aq = charge_ptr->Get_mass_water() / mass_water_aq_x; @@ -975,7 +998,7 @@ calc_init_donnan(void) if (charge_ptr->Get_g_map()[z].Get_g() != 0) { - charge_ptr->Get_g_map()[z].Set_dg(-A_surf * f_sinh * cosh(f_psi) / + charge_ptr->Get_g_map()[z].Set_dg(-A_surf * f_sinh * cosh(f_psi) / (eq * F_C_MOL)); } else @@ -986,7 +1009,7 @@ calc_init_donnan(void) for (int i = 0; i < (int)this->s_x.size(); i++) { int is = s_x[i]->number; - assert (is < (int) s_diff_layer.size()); + assert(is < (int)s_diff_layer.size()); s_diff_layer[is][charge_ptr->Get_name()].Set_g_moles(0.0); s_diff_layer[is][charge_ptr->Get_name()].Set_dg_g_moles(0.0); @@ -997,17 +1020,17 @@ calc_init_donnan(void) std::string name = x[j]->master[0]->elt->name; Utilities::replace("_psi", "", name); output_msg(sformatf( - "\nDonnan init on %s : charge, \tg, \tdg, Psi_surface = %8f V. \n", - name.c_str(), - x[j]->master[0]->s->la * 2 * LOG_10 * R_KJ_DEG_MOL * - tk_x / F_KJ_V_EQ)); + "\nDonnan init on %s : charge, \tg, \tdg, \tzcorr, Psi_surface = %8f V. \n", + name.c_str(), + x[j]->master[0]->s->la * 2 * LOG_10 * R_KJ_DEG_MOL * + tk_x / F_KJ_V_EQ)); for (std::map::iterator i_it = charge_ptr->Get_g_map().begin(); i_it != charge_ptr->Get_g_map().end(); i_it++) { - output_msg(sformatf( "\t%12f\t%12.4e\t%12.4e\n", - (double) i_it->first, - (double) i_it->second.Get_g(), - (double) i_it->second.Get_dg())); + output_msg(sformatf("\t%12f\t%12.4e\t%12.4e\t%12.4e\n", + (double)i_it->first, + (double)i_it->second.Get_g(), + (double)i_it->second.Get_dg())); } } } @@ -1015,13 +1038,13 @@ calc_init_donnan(void) } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -calc_psi_avg(cxxSurfaceCharge *charge_ptr, LDBLE surf_chrg_eq) +calc_psi_avg(cxxSurfaceCharge *charge_ptr, LDBLE surf_chrg_eq, LDBLE nDbl, std::vector &zcorr) /* ---------------------------------------------------------------------- */ { -/* - * calculate the average (F * Psi / RT) that lets the DL charge counter the surface charge - */ - LDBLE fd, fd1, p, temp, ratio_aq; + /* + * calculate the average (F * Psi / RT) that lets the DL charge counter the surface charge + */ + LDBLE fd, fd1, p, /*psi_DL, */p_psi = R_KJ_DEG_MOL * tk_x / F_KJ_V_EQ, temp, ratio_aq, z, z1, z1_c, eq, co_ion, sum_counter, sum_co; ratio_aq = charge_ptr->Get_mass_water() / mass_water_aq_x; p = 0; @@ -1031,30 +1054,79 @@ calc_psi_avg(cxxSurfaceCharge *charge_ptr, LDBLE surf_chrg_eq) p = -0.5 * log(-surf_chrg_eq * ratio_aq / mu_x + 1); else if (surf_chrg_eq > 0) p = 0.5 * log(surf_chrg_eq * ratio_aq / mu_x + 1); -/* - * Optimize p in SS{s_x[i]->moles * z_i * g(p)} = -surf_chrg_eq - * g(p) = exp(-p * z_i) * ratio_aq - * Elsewhere in PHREEQC, g is the excess, after subtraction of conc's for p = 0: - * g(p) = (exp(-p *z_i) - 1) * ratio_aq - */ - int l_iter = 0; + /* + * Optimize p in SS{s_x[i]->moles * z_i * g(p)} = -surf_chrg_eq + * g(p) = exp(-p * z_i) * ratio_aq + * Elsewhere in PHREEQC, g is the excess, after subtraction of conc's for p = 0: + * g(p) = (exp(-p *z_i) - 1) * ratio_aq + * with correct_GC true: + * correct ions to better match the integrated concentrations: + z == 1? z *= 0.285 cgc[6] + z == 2? z *= 0.372 cgc[7] + z == -1? z *= cgc[0] * (mu_x**( cgc[1] * nDbl**cgc[2] * (abs(surf_chrg_eq / A_surf / 1e-6)**cgc[3] * I ** cgc[4]) + z == -2? z *= cgc[0] * (mu_x**(cgc[5] * cgc[1] * nDbl**cgc[2] * (abs(surf_chrg_eq / A_surf / 1e-6)**cgc[3] * I ** cgc[4]) + */ + + cxxSurface *surf_p = use.Get_surface_ptr(); + bool correct_GC = surf_p->Get_correct_GC(), local_correct_GC = correct_GC; + bool only_count = surf_p->Get_only_counter_ions(); + LDBLE Gamma = fabs(surf_chrg_eq) / (charge_ptr->Get_specific_area() * charge_ptr->Get_grams()) / 1e-6, + cgc[10] = { 0.36, 0.1721, 0.798, 0.287, 0.1457, 1.2, 0.285, 0.372 }; + + if (!surf_p->Donnan_factors.empty()) + std::copy(std::begin(surf_p->Donnan_factors), std::end(surf_p->Donnan_factors), cgc); + + cgc[1] *= pow(nDbl, cgc[2]) * pow(Gamma, cgc[3]) * pow(mu_x, cgc[4]); + + int l_iter = 0, z_iter; + sum_co = sum_counter = 0; do { fd = surf_chrg_eq; fd1 = 0.0; + z_iter = 0; + if (l_iter == 1 && local_correct_GC && fabs(sum_counter) < fabs(sum_co)) + { + local_correct_GC = false; + l_iter = 0; + } std::map::iterator it; for (it = charge_group_map.begin(); it != charge_group_map.end(); it++) { - LDBLE z = it->first; - if (!z || (use.Get_surface_ptr()->Get_only_counter_ions() && surf_chrg_eq * z > 0)) + z = it->first; + z1 = z; + if (l_iter == 0) zcorr[z_iter] = z; + co_ion = surf_chrg_eq * z; + if (!z || (only_count && co_ion > 0)) + { + z_iter++; continue; - LDBLE eq = it->second; - /* multiply with ratio_aq for multiplier options cp and cm - in calc_all_donnan (not used now)... */ - temp = exp(-z * p) * ratio_aq; + } + if (nDbl && local_correct_GC) + { + /*psi_DL = fabs(p * p_psi);*/ + if (co_ion < 0) + {//counter-ion + if (fabs(z) > 1) temp = cgc[7]; + else temp = cgc[6]; + sum_counter += z * temp; + } + else + {// co-ion + if (fabs(z) > 1) temp = cgc[0] * pow(mu_x, cgc[1] * cgc[5]); + else temp = cgc[0] * pow(mu_x, cgc[1]); + sum_co += z * temp; + } + zcorr[z_iter] = z * temp; + } + z1 = zcorr[z_iter]; + eq = it->second; + temp = exp(-z1 * p) * ratio_aq; fd += eq * temp; - fd1 -= z * eq * temp; + fd1 -= z1 * eq * temp; + if (z == 1) z1_c = z1; + z_iter++; } fd /= -fd1; p += (fd > 1) ? 1 : ((fd < -1) ? -1 : fd); @@ -1076,12 +1148,11 @@ calc_psi_avg(cxxSurfaceCharge *charge_ptr, LDBLE surf_chrg_eq) (double)surf_chrg_eq, (double)charge_ptr->Get_mass_water()); error_msg(error_string, STOP); } - } - while (fabs(fd) > 1e-12 && p != 0.0); + } while (fabs(fd) > 1e-12 && p != 0.0); if (debug_diffuse_layer == TRUE) output_msg(sformatf( - "iter in calc_psi_avg = %d. g(+1) = %8f. surface charge = %12.4e.\n", - l_iter, (double) (exp(-p) - 1), (double) surf_chrg_eq)); + "iter in calc_psi_avg = %d. g(+1) = %8f, surface charge = %12.4e, psi_DL = %12.3e V.\n", + l_iter, (double)(exp(-p) - 1), (double)surf_chrg_eq, (double)(p * z1_c * p_psi))); return (p); } diff --git a/inverse.cpp b/inverse.cpp index b9bbcd0d..7c0b63c9 100644 --- a/inverse.cpp +++ b/inverse.cpp @@ -3586,8 +3586,10 @@ check_isotopes(class inverse *inv_ptr) if (j < inv_ptr->i_u[i].uncertainties.size() && !isnan(inv_ptr->i_u[i].uncertainties[j])) #else + //if (j < inv_ptr->i_u[i].uncertainties.size() + // && inv_ptr->i_u[i].uncertainties[j] != NAN) if (j < inv_ptr->i_u[i].uncertainties.size() - && inv_ptr->i_u[i].uncertainties[j] != NAN) + && !std::isnan(inv_ptr->i_u[i].uncertainties[j])) #endif { kit->second.Set_x_ratio_uncertainty(inv_ptr->i_u[i].uncertainties[j]); @@ -3598,8 +3600,10 @@ check_isotopes(class inverse *inv_ptr) else if (inv_ptr->i_u[i].uncertainties.size() > 0 && !isnan(inv_ptr->i_u[i].uncertainties[inv_ptr->i_u[i].uncertainties.size() - 1])) #else + //else if (inv_ptr->i_u[i].uncertainties.size() > 0 + // && inv_ptr->i_u[i].uncertainties[(size_t)inv_ptr->i_u[i].uncertainties.size() - 1] != NAN) else if (inv_ptr->i_u[i].uncertainties.size() > 0 - && inv_ptr->i_u[i].uncertainties[(size_t)inv_ptr->i_u[i].uncertainties.size() - 1] != NAN) + && !std::isnan(inv_ptr->i_u[i].uncertainties[inv_ptr->i_u[i].uncertainties.size() - 1])) #endif { kit->second.Set_x_ratio_uncertainty(inv_ptr->i_u[i].uncertainties[inv_ptr->i_u[i].uncertainties.size() - 1]); @@ -3609,7 +3613,8 @@ check_isotopes(class inverse *inv_ptr) #ifdef NPP else if (!isnan(kit->second.Get_ratio_uncertainty())) #else - else if (kit->second.Get_ratio_uncertainty() != NAN) + //else if (kit->second.Get_ratio_uncertainty() != NAN) + else if (!std::isnan(kit->second.Get_ratio_uncertainty())) #endif { kit->second.Set_x_ratio_uncertainty( @@ -3641,7 +3646,8 @@ check_isotopes(class inverse *inv_ptr) #ifdef NPP if (isnan(kit->second.Get_x_ratio_uncertainty())) #else - if (kit->second.Get_x_ratio_uncertainty() == NAN) + //if (kit->second.Get_x_ratio_uncertainty() == NAN) + if (std::isnan(kit->second.Get_x_ratio_uncertainty())) #endif { error_string = sformatf( diff --git a/isotopes.cpp b/isotopes.cpp index 68570473..46e3c318 100644 --- a/isotopes.cpp +++ b/isotopes.cpp @@ -903,7 +903,8 @@ punch_calculate_values(void) #ifdef NPP if (isnan(rate_moles)) #else - if (rate_moles == NAN) + //if (rate_moles == NAN) + if (std::isnan(rate_moles)) #endif { error_string = sformatf( "Calculated value not SAVEed for %s.", @@ -1136,7 +1137,8 @@ calculate_values(void) #ifdef NPP if (isnan(rate_moles)) #else - if (rate_moles == NAN) + //if (rate_moles == NAN) + if (std::isnan(rate_moles)) #endif { error_string = sformatf( "Calculated value not SAVEed for %s.", @@ -1203,7 +1205,8 @@ calculate_values(void) #ifdef NPP if (isnan(rate_moles)) #else - if (rate_moles == NAN) + //if (rate_moles == NAN) + if (std::isnan(rate_moles)) #endif { error_string = sformatf( "Calculated value not SAVEed for %s.", diff --git a/kinetics.cpp b/kinetics.cpp index f6e02338..6e59bcb1 100644 --- a/kinetics.cpp +++ b/kinetics.cpp @@ -118,7 +118,8 @@ calc_kinetic_reaction(cxxKinetics *kinetics_ptr, LDBLE time_step) #ifdef NPP if (isnan(rate_moles)) #else - if (rate_moles == NAN) + //if (rate_moles == NAN) + if (std::isnan(rate_moles)) #endif { error_string = sformatf( "Moles of reaction not SAVEed for %s.", diff --git a/mainsubs.cpp b/mainsubs.cpp index 5cc76a3f..baa20e71 100644 --- a/mainsubs.cpp +++ b/mainsubs.cpp @@ -540,6 +540,8 @@ initial_exchangers(int print) viscosity(); species_list_sort(); print_exchange(); + if (pr.user_print) + print_user_print(); xexchange_save(n_user); punch_all(); /* free_model_allocs(); */ @@ -671,7 +673,9 @@ initial_gas_phases(int print) } print_gas_phase(); - if (PR /*&& use.Get_gas_phase_ptr()->total_p > 1.0*/) + if (pr.user_print) + print_user_print(); + if (PR /*&& use.Get_gas_phase_ptr()->total_p > 1.0*/) warning_msg("While initializing gas phase composition by equilibrating:\n" " Found definitions of gas` critical temperature and pressure.\n" " Going to use Peng-Robinson in subsequent calculations.\n"); @@ -745,7 +749,8 @@ initial_surfaces(int print) set_and_run_wrapper(-1, FALSE, FALSE, -1, 0.0); species_list_sort(); print_surface(); - /*print_all(); */ + if (pr.user_print) + print_user_print(); punch_all(); xsurface_save(n_user); /* free_model_allocs(); */ @@ -1257,6 +1262,7 @@ xsolution_save(int n_user) temp_solution.Set_ah2o(ah2o_x); //temp_solution.Set_density(density_x); temp_solution.Set_density(calc_dens()); + temp_solution.Set_viscosity(this->viscos); temp_solution.Set_total_h(total_h_x); temp_solution.Set_total_o(total_o_x); temp_solution.Set_cb(cb_x); /* cb_x does not include surface charge sfter sum_species */ diff --git a/model.cpp b/model.cpp index bf8d8fd7..eb5be6ab 100644 --- a/model.cpp +++ b/model.cpp @@ -2543,6 +2543,7 @@ int Phreeqc:: calc_gas_pressures(void) /* ---------------------------------------------------------------------- */ { + //int n_g = 0; LDBLE lp, V_m = 0; class rxn_token *rxn_ptr; std::vector phase_ptrs; @@ -2575,6 +2576,7 @@ calc_gas_pressures(void) phase_ptrs.push_back(phase_ptr); if (!PR && phase_ptr->t_c > 0 && phase_ptr->p_c > 0) PR = true; + //n_g++; } if (iterations > 2 && gas_phase_ptr->Get_type() == cxxGasPhase::GP_VOLUME) { @@ -3776,6 +3778,7 @@ residuals(void) int converge; LDBLE l_toler; + //LDBLE sum_residual; LDBLE sinh_constant; LDBLE sum, sum1; class master *master_ptr, *master_ptr1, *master_ptr2; @@ -3783,6 +3786,7 @@ residuals(void) int print_fail; std::vector cd_psi; print_fail = FALSE; + //sum_residual = 0.0; sigmaddl = 0; sum = 0; /* @@ -4526,6 +4530,7 @@ residuals(void) * Store residuals in array */ my_array[((size_t)i + 1) * (count_unknowns + 1) - 1] = residual[i]; + //sum_residual += fabs(residual[i]); } /* * Return diff --git a/pitzer.cpp b/pitzer.cpp index b71f24d3..35d494fc 100644 --- a/pitzer.cpp +++ b/pitzer.cpp @@ -52,6 +52,7 @@ pitzer_tidy(void) const char *string1, *string2; int i, j, order; int i0, i1, i2; + //int count_pos, count_neg, count_neut, count[3], jj; int count_neut, count[3], jj; LDBLE z0, z1; class pitz_param *pzp_ptr; @@ -339,21 +340,22 @@ pitzer_tidy(void) i0 = pitz_params[i]->ispec[0]; i1 = pitz_params[i]->ispec[1]; i2 = pitz_params[i]->ispec[2]; + //count_pos = count_neg = count_neut = 0; count_neut = 0; for (j = 0; j <= 2; j++) { - //if (spec[pitz_params[i]->ispec[j]]->z > 0) - //{ - // count_pos++; - //} + if (spec[pitz_params[i]->ispec[j]]->z > 0) + { + //count_pos++; + } if (spec[pitz_params[i]->ispec[j]]->z == 0) { count_neut++; } - //if (spec[pitz_params[i]->ispec[j]]->z < 0) - //{ - // count_neg++; - //} + if (spec[pitz_params[i]->ispec[j]]->z < 0) + { + //count_neg++; + } } /* All neutral */ if (count_neut == 3) diff --git a/prep.cpp b/prep.cpp index 0d26ba98..f98d584c 100644 --- a/prep.cpp +++ b/prep.cpp @@ -1980,6 +1980,7 @@ get_list_master_ptrs(const char* cptr, class master *master_ptr) * Output: space is allocated and a list of master species pointers is * returned. */ + //int j, l, count_list; int j, l; char token[MAX_LENGTH]; std::vector master_ptr_list; @@ -1987,6 +1988,7 @@ get_list_master_ptrs(const char* cptr, class master *master_ptr) /* * Make list of master species pointers */ + //count_list = 0; //master_ptr_list = unknown_alloc_master(); master_ptr0 = master_ptr; if (master_ptr0 == master_ptr->s->primary) @@ -2146,6 +2148,7 @@ mb_for_species_aq(int n) * by coef, usually moles. * mb_unknowns.coef - coefficient of s[n] in equation or relation */ + //int i, j; int i; class master *master_ptr; class unknown *unknown_ptr; @@ -2222,6 +2225,7 @@ mb_for_species_aq(int n) */ if (use.Get_surface_ptr() != NULL && s[n]->type < H2O && dl_type_x != cxxSurface::NO_DL) { + //j = 0; for (i = 0; i < count_unknowns; i++) { if (x[i]->type == SURFACE_CB) @@ -2233,6 +2237,7 @@ mb_for_species_aq(int n) store_mb_unknowns(unknown_ptr, s_diff_layer[n][charge_ptr->Get_name()].Get_g_moles_address(), s[n]->z, s_diff_layer[n][charge_ptr->Get_name()].Get_dg_g_moles_address()); + //j++; } } } diff --git a/print.cpp b/print.cpp index 612460be..e32714e9 100644 --- a/print.cpp +++ b/print.cpp @@ -339,8 +339,12 @@ print_diffuse_layer(cxxSurfaceCharge *charge_ptr) { LDBLE exp_g = charge_ptr->Get_g_map()[1].Get_g() * mass_water_aq_x / mass_water_surface + 1; LDBLE psi_DL = -log(exp_g) * R_KJ_DEG_MOL * tk_x / F_KJ_V_EQ; - output_msg(sformatf( - "\n\tTotal moles in diffuse layer (excluding water), Donnan calculation.")); + if (use.Get_surface_ptr()->Get_correct_GC()) + output_msg(sformatf( + "\n\tTotal moles in diffuse layer (excluding water), Donnan corrected to match Poisson-Boltzmann.")); + else + output_msg(sformatf( + "\n\tTotal moles in diffuse layer (excluding water), Donnan calculation.")); output_msg(sformatf( "\n\tDonnan Layer potential, psi_DL = %10.3e V.\n\tBoltzmann factor, exp(-psi_DL * F / RT) = %9.3e (= c_DL / c_free if z is +1).\n\n", psi_DL, exp_g)); @@ -2234,7 +2238,7 @@ print_totals(void) (double) calc_solution_volume())); } /* VP: Density End */ -#ifdef NPP +//#ifdef NPP if (print_viscosity) { output_msg(sformatf("%45s%9.5f", "Viscosity (mPa s) = ", @@ -2251,7 +2255,7 @@ print_totals(void) } else output_msg(sformatf("\n")); } -#endif +//#endif output_msg(sformatf("%45s%7.3f\n", "Activity of water = ", exp(s_h2o->la * LOG_10))); output_msg(sformatf("%45s%11.3e\n", "Ionic strength (mol/kgw) = ", diff --git a/read.cpp b/read.cpp index ba2a0b1c..3052877d 100644 --- a/read.cpp +++ b/read.cpp @@ -6283,7 +6283,7 @@ read_surface(void) * ERROR if error occurred reading data * */ - int n_user; + int n_user, i1; LDBLE conc; const char* cptr, *cptr1; std::string token, token1, name; @@ -6306,9 +6306,10 @@ read_surface(void) "ccm", /* 13 */ "equilibrium", /* 14 */ "site_units", /* 15 */ - "ddl" /* 16 */ + "ddl", /* 16 */ + "donnan_factors" /* 17 */ }; - int count_opt_list = 17; + int count_opt_list = 18; /* * kin_surf is for Surfaces, related to kinetically reacting minerals * they are defined if "sites" is followed by mineral name: @@ -6413,7 +6414,7 @@ read_surface(void) if (thickness != 0) { error_msg - ("You must enter EITHER thickness OR Debye lengths (1/k),\n and relative DDL viscosity, DDL limit.\nCorrect is (for example): -donnan 1e-8 viscosity 0.5\n or (default values): -donnan debye_lengths 1 viscosity 1 limit 0.8", + ("You must enter EITHER thickness OR Debye lengths (1/k),\n and relative DDL viscosity, DDL limit.\nCorrect is (for example): -donnan 1e-8 viscosity 0.5 limit 0.9 correct_GC true\n or (default values): -donnan debye_lengths 1 viscosity 1 limit 0.8 correct_GC false", CONTINUE); error_msg(line_save, CONTINUE); input_error++; @@ -6436,6 +6437,23 @@ read_surface(void) break; } } + else if (token[0] == 'C' || token[0] == 'c') + { + copy_token(token1, &next_char); + if (token1[0] == 'T' || token1[0] == 't' || token1[0] == 'F' || token1[0] == 'f') + { + temp_surface.Set_correct_GC(get_true_false(token1.c_str(), TRUE) == TRUE); + continue; + } else + { + error_msg + ("Expected True or False for correct_GC (which brings co-ion concentrations closer to their integrated double layer value).", + CONTINUE); + error_msg(line_save, CONTINUE); + input_error++; + break; + } + } else if (token[0] == 'V' || token[0] == 'v') { int j = copy_token(token1, &next_char); @@ -6570,6 +6588,31 @@ read_surface(void) case 16: /* ddl */ temp_surface.Set_type(cxxSurface::DDL); break; + case 17: /* Donnan_factors */ + temp_surface.Donnan_factors.clear(); + i1 = 0; + for (;;) + { + int i = copy_token(token, &next_char); + if (i == DIGIT && i1 < 8) + { + (void)sscanf(token.c_str(), SCANFORMAT, &dummy); + temp_surface.Donnan_factors.push_back(dummy); + i1++; + continue; + } + else if (i != EMPTY || i1 > 8) + { + error_msg + ("Expected at most 8 numbers for the Donnan_factors for co- and counter-ions,\n z *= cgc[0] * (mu_x**(cgc[1] * nDbl**cgc[2] * (abs(surf_chrg_eq / A_surf / 1e-6)**cgc[3] * mu_x**(cgc[4])", + CONTINUE); + error_msg(line_save, CONTINUE); + input_error++; + break; + } + break; + } + break; case OPTION_DEFAULT: /* * Read surface component diff --git a/spread.cpp b/spread.cpp index 5d7137b5..1f442138 100644 --- a/spread.cpp +++ b/spread.cpp @@ -1141,6 +1141,7 @@ copy_token_tab(std::string& token, const char **cptr) * EOL, * UNKNOWN. */ + //int i, return_value; int return_value; char c; /* @@ -1180,6 +1181,7 @@ copy_token_tab(std::string& token, const char **cptr) /* * Begin copying to token */ + //i = 0; for (;;) { c = **cptr; @@ -1196,6 +1198,7 @@ copy_token_tab(std::string& token, const char **cptr) { token.push_back(c); (*cptr)++; + //i++; } } return (return_value); diff --git a/sundialsmath.cpp b/sundialsmath.cpp index 0f0c4578..42487bb7 100644 --- a/sundialsmath.cpp +++ b/sundialsmath.cpp @@ -59,7 +59,8 @@ #include -#include + //#include +#include #include "sundialsmath.h" #include "sundialstypes.h" diff --git a/tally.cpp b/tally.cpp index 131411e1..8fdb0e6a 100644 --- a/tally.cpp +++ b/tally.cpp @@ -798,6 +798,7 @@ build_tally_table(void) */ int j, k, l, p, save_print_use; size_t n; + //int count_tt_pure_phase, count_tt_ss_phase, count_tt_kinetics; class phase *phase_ptr; char token[MAX_LENGTH]; const char* cptr; @@ -870,6 +871,7 @@ build_tally_table(void) /* * Count pure phases */ + //count_tt_pure_phase = 0; if (Rxn_pp_assemblage_map.size() > 0) { /* @@ -902,6 +904,7 @@ build_tally_table(void) /* * Add to table */ + //count_tt_pure_phase++; n = count_tally_table_columns; extend_tally_table(); tally_table[n].name = phase_ptr->name; @@ -928,6 +931,7 @@ build_tally_table(void) /* * Add solid-solution pure phases */ + //count_tt_ss_phase = 0; if (Rxn_ss_assemblage_map.size() > 0) { /* @@ -960,6 +964,7 @@ build_tally_table(void) /* * Add to table */ + //count_tt_ss_phase++; n = count_tally_table_columns; extend_tally_table(); tally_table[n].name = phase_ptr->name; @@ -977,6 +982,7 @@ build_tally_table(void) /* * Add kinetic reactants */ + //count_tt_kinetics = 0; if (Rxn_kinetics_map.size() > 0) { std::map::iterator it; @@ -1000,6 +1006,7 @@ build_tally_table(void) /* * Add to table */ + //count_tt_kinetics++; n = count_tally_table_columns; extend_tally_table(); tally_table[n].name = string_hsave(kinetics_comp_ptr->Get_rate_name().c_str()); diff --git a/tidy.cpp b/tidy.cpp index 71280107..db5574b1 100644 --- a/tidy.cpp +++ b/tidy.cpp @@ -982,7 +982,8 @@ tidy_gas_phase(void) #ifdef NPP if (!isnan(gas_phase_ptr->Get_gas_comps()[j].Get_p_read())) #else - if (gas_phase_ptr->Get_gas_comps()[j].Get_p_read() != NAN) + //if (gas_phase_ptr->Get_gas_comps()[j].Get_p_read() != NAN) + if (!std::isnan(gas_phase_ptr->Get_gas_comps()[j].Get_p_read())) #endif { P += gas_phase_ptr->Get_gas_comps()[j].Get_p_read(); @@ -1015,7 +1016,8 @@ tidy_gas_phase(void) #ifdef NPP if (!isnan(gas_phase_ptr->Get_gas_comps()[j].Get_p_read())) #else - if (gas_phase_ptr->Get_gas_comps()[j].Get_p_read() != NAN) + //if (gas_phase_ptr->Get_gas_comps()[j].Get_p_read() != NAN) + if (!std::isnan(gas_phase_ptr->Get_gas_comps()[j].Get_p_read())) #endif { P += gas_phase_ptr->Get_gas_comps()[j].Get_p_read(); @@ -1690,7 +1692,8 @@ tidy_ss_assemblage(void) #ifdef NPP if (isnan(comp_ptr->Get_moles())) #else - if (comp_ptr->Get_moles() == NAN) + //if (comp_ptr->Get_moles() == NAN) + if (std::isnan(comp_ptr->Get_moles())) #endif { input_error++; @@ -3021,7 +3024,8 @@ tidy_isotopes(void) #ifdef NPP if (!isnan(master[k]->isotope_ratio_uncertainty)) #else - if (master[k]->isotope_ratio_uncertainty != NAN) + //if (master[k]->isotope_ratio_uncertainty != NAN) + if (!std::isnan(master[k]->isotope_ratio_uncertainty)) #endif { temp_iso.Set_ratio_uncertainty_defined(true); diff --git a/transport.cpp b/transport.cpp index 36dda3cc..378d818b 100644 --- a/transport.cpp +++ b/transport.cpp @@ -1888,16 +1888,17 @@ fill_spec(int l_cell_no, int ref_cell) if (por_il < interlayer_Dpor_lim) por_il = viscos_il_f = 0.0; /* - * correct diffusion coefficient for temperature and viscosity, D_T = D_298 * Tk * viscos_298 / (298 * viscos) + * correct diffusion coefficient for temperature and viscosity, D_T = D_298 * viscos_298 / viscos * modify viscosity effect: Dw(TK) = Dw(298.15) * exp(dw_t / TK - dw_t / 298.15), SC data from Robinson and Stokes, 1959 */ viscos = viscos_0; /* * put temperature factor in por_factor which corrects for porous medium... */ - viscos_f *= tk_x * viscos_0_25 / (298.15 * viscos); - viscos_il_f *= tk_x * viscos_0_25 / (298.15 * viscos); - sol_D[l_cell_no].viscos_f = tk_x * viscos_0_25 / (298.15 * viscos); + dum = viscos_0_25 / viscos; + viscos_f *= dum; + viscos_il_f *= dum; + sol_D[l_cell_no].viscos_f = dum; count_spec = count_exch_spec = 0; /* @@ -1908,6 +1909,8 @@ fill_spec(int l_cell_no, int ref_cell) qsort(&species_list[0], species_list.size(), sizeof(class species_list), sort_species_name); } + if (correct_Dw) + calc_SC(); for (i = 0; i < (int)species_list.size(); i++) { @@ -2097,7 +2100,7 @@ fill_spec(int l_cell_no, int ref_cell) } if (correct_Dw) { - calc_SC(); // note that neutral species are corrected as if z = 1, but is viscosity-dependent + //calc_SC(); // removed that neutral species are corrected as if z = 1, but is viscosity-dependent sol_D[l_cell_no].spec[count_spec].Dwt = s_ptr->dw_corr * viscos_f; } if (l_cell_no <= count_cells + 1 && sol_D[l_cell_no].spec[count_spec].Dwt * pow(por, multi_Dn) > diffc_max) @@ -2962,20 +2965,20 @@ diffuse_implicit(LDBLE DDt, int stagnant) if (!strcmp(ct[icell].m_s[cp].name, "H")) { dummy = ct[icell].m_s[cp].tot1; - if (dV_dcell || (icell > 0 && icell <= ilast)) + if (dV_dcell || fix_current || (icell > 0 && icell <= ilast)) sptr1->Set_total_h(sptr1->Get_total_h() - dummy); - if (dV_dcell || (icell >= 0 && icell < ilast) || (icell == ilast && bcon_last == 2)) + if (dV_dcell || fix_current || (icell >= 0 && icell < ilast) || (icell == ilast && bcon_last == 2)) sptr2->Set_total_h(sptr2->Get_total_h() + dummy); if (sptr_stag) { dummy = ct[icell].m_s[cp].tot_stag; - if (dV_dcell || (icell > 0 && icell <= ilast)) + if (dV_dcell || fix_current || (icell > 0 && icell <= ilast)) sptr1->Set_total_h(sptr1->Get_total_h() - dummy); if (icell == c) { // mix the boundary solution with the stagnant column end-cell dummy += ct[icell + 1].m_s[cp].tot_stag; - if (dV_dcell) + if (dV_dcell || fix_current) sptr2->Set_total_h(sptr2->Get_total_h() - ct[icell + 1].m_s[cp].tot_stag); } sptr_stag->Set_total_h(sptr_stag->Get_total_h() + dummy); @@ -2985,19 +2988,19 @@ diffuse_implicit(LDBLE DDt, int stagnant) if (!strcmp(ct[icell].m_s[cp].name, "O")) { dummy = ct[icell].m_s[cp].tot1; - if (dV_dcell || (icell > 0 && icell <= ilast)) + if (dV_dcell || fix_current || (icell > 0 && icell <= ilast)) sptr1->Set_total_o(sptr1->Get_total_o() - dummy); - if (dV_dcell || (icell >= 0 && icell < ilast) || (icell == ilast && bcon_last == 2)) + if (dV_dcell || fix_current || (icell >= 0 && icell < ilast) || (icell == ilast && bcon_last == 2)) sptr2->Set_total_o(sptr2->Get_total_o() + dummy); if (sptr_stag) { dummy = ct[icell].m_s[cp].tot_stag; - if (dV_dcell || (icell > 0 && icell <= ilast)) + if (dV_dcell || fix_current || (icell > 0 && icell <= ilast)) sptr1->Set_total_o(sptr1->Get_total_o() - dummy); if (icell == c) { dummy += ct[icell + 1].m_s[cp].tot_stag; - if (dV_dcell) + if (dV_dcell || fix_current) sptr2->Set_total_o(sptr2->Get_total_o() - ct[icell + 1].m_s[cp].tot_stag); } sptr_stag->Set_total_o(sptr_stag->Get_total_o() + dummy); @@ -3018,7 +3021,7 @@ diffuse_implicit(LDBLE DDt, int stagnant) // check for negative moles, add moles from other redox states and the donnan layer when necessary and available... if (dum1 - ct[icell].m_s[cp].tot1 - ct[icell].m_s[cp].tot_stag < min_mol && - (dV_dcell || (icell > 0 && icell <= ilast))) + (dV_dcell || fix_current || (icell > 0 && icell <= ilast))) { dum1 = moles_from_redox_states(sptr1, ct[icell].m_s[cp].name); if (ct[icell].dl_s > 1e-8) @@ -3039,7 +3042,7 @@ diffuse_implicit(LDBLE DDt, int stagnant) if (icell == c && sptr_stag && ct[c1].m_s[cp].tot_stag) dum = ct[c1].m_s[cp].tot_stag; if (dum2 + ct[icell].m_s[cp].tot2 - dum < min_mol && - (dV_dcell || (icell >= 0 && icell < ilast) || (icell == ilast && bcon_last == 2))) + (dV_dcell || fix_current || (icell >= 0 && icell < ilast) || (icell == ilast && bcon_last == 2))) { dum2 = moles_from_redox_states(sptr2, ct[icell].m_s[cp].name); if (ct[icell + 1].dl_s > 1e-8) @@ -3057,7 +3060,7 @@ diffuse_implicit(LDBLE DDt, int stagnant) if (fabs(ct[icell].m_s[cp].tot2) < fabs(ct[icell].m_s[cp].tot1)) ct[icell].m_s[cp].tot1 = ct[icell].m_s[cp].tot2; - if (dV_dcell || (icell > 0 && icell <= ilast)) + if (dV_dcell || fix_current || (icell > 0 && icell <= ilast)) { dum = ct[icell].m_s[cp].tot1; if (stagnant) @@ -3078,10 +3081,10 @@ diffuse_implicit(LDBLE DDt, int stagnant) //ct[icell].J_ij_sum -= dum * ct[icell].m_s[cp].charge; } - if (dV_dcell || (icell >= 0 && icell < ilast) || (icell == ilast && bcon_last == 2)) + if (dV_dcell || fix_current || (icell >= 0 && icell < ilast) || (icell == ilast && bcon_last == 2)) { dum = ct[icell].m_s[cp].tot1; - if (stagnant && icell == c && dV_dcell) + if (stagnant && icell == c && (dV_dcell || fix_current)) dum -= ct[c1].m_s[cp].tot_stag; dum2 += dum; sptr2->Get_totals()[ct[icell].m_s[cp].name] = (dum2 > 0 ? dum2 : min_mol); @@ -3134,7 +3137,7 @@ diffuse_implicit(LDBLE DDt, int stagnant) } // reduce oscillations in the column-boundary cells, but not for H and O, and current_A is not adjusted... - if (dV_dcell && icell == il1 - incr && dV_dcell * ct[0].m_s[cp].charge < 0 && strcmp(ct[0].m_s[cp].name, "H") && strcmp(ct[0].m_s[cp].name, "O") && c > 3 && mixrun > 1) + if ((dV_dcell/* || fix_current*/) && icell == il1 - incr && dV_dcell * ct[0].m_s[cp].charge < 0 && strcmp(ct[0].m_s[cp].name, "H") && strcmp(ct[0].m_s[cp].name, "O") && c > 3 && mixrun > 1) { dummy = Utilities::Rxn_find(Rxn_solution_map, 0)->Get_totals()[ct[0].m_s[cp].name] / ct[0].kgw * (1 - ct[0].dl_s); if (dummy > 1e-6) @@ -4828,10 +4831,10 @@ Step (from cell 1 to count_cells + 1): cxxSurface *surface_ptr1, *surface_ptr2; LDBLE viscos_f; /* - * temperature and viscosity correction for MCD coefficient, D_T = D_298 * Tk * viscos_298 / (298 * viscos) + * temperature and viscosity correction for MCD coefficient, D_T = D_298 * viscos_298 / viscos */ viscos_f = viscos_0; - viscos_f = tk_x * viscos_0_25 / (298.15 * viscos_f); + viscos_f = viscos_0_25 / viscos_f; //n1 = 0; //n2 = n1 + 1; @@ -5502,7 +5505,7 @@ diff_stag_surf(int mobile_cell) * temperature and viscosity correction for MCD coefficient, D_T = D_298 * Tk * viscos_298 / (298 * viscos) */ viscos_f = viscos_0; - viscos_f = tk_x * viscos_0_25 / (298.15 * viscos_f); + viscos_f = viscos_0_25 / viscos_f; cxxSurface surface_n1, surface_n2; cxxSurface *surface_n1_ptr = &surface_n1; @@ -5991,8 +5994,7 @@ viscosity(void) } // find B * m and D * m * mu^d3 Bc += (s_x[i]->Jones_Dole[0] + - s_x[i]->Jones_Dole[1] * exp(-s_x[i]->Jones_Dole[2] * tc)) * - t1; + s_x[i]->Jones_Dole[1] * exp(-s_x[i]->Jones_Dole[2] * tc)) * t1; // define f_I from the exponent of the D * m^d3 term... if (s_x[i]->Jones_Dole[5] >= 1) t2 = mu_x / 3 / s_x[i]->Jones_Dole[5]; @@ -6074,8 +6076,8 @@ viscosity(void) viscos += (viscos_0 * (Bc + Dc)); if (viscos < 0) { - viscos = 0; - warning_msg("viscosity < 0, reset to 0."); + viscos = viscos_0; + warning_msg("viscosity < 0, reset to viscosity of pure water"); } return viscos; From 4234c11ed77ff9ea8f5a3a44dd1100770cd9903d Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Fri, 14 Apr 2023 15:25:45 -0600 Subject: [PATCH 063/384] Closes #48 -- Illegal character encoding in string literal (#49) --- phreeqcpp/encode_as_utf8.sh | 6 +++++ phreeqcpp/encode_as_windows1252.sh | 7 ++++++ phreeqcpp/print.cpp | 37 +++++++++++++++--------------- 3 files changed, 31 insertions(+), 19 deletions(-) create mode 100755 phreeqcpp/encode_as_utf8.sh create mode 100755 phreeqcpp/encode_as_windows1252.sh diff --git a/phreeqcpp/encode_as_utf8.sh b/phreeqcpp/encode_as_utf8.sh new file mode 100755 index 00000000..7894d1e8 --- /dev/null +++ b/phreeqcpp/encode_as_utf8.sh @@ -0,0 +1,6 @@ +#!/bin/sh +# see https://en.wikipedia.org/wiki/Windows-1252 +iconv --to-code=UTF-8 --from-code=WINDOWS-1252 print.cpp > print.utf-8.cpp +if grep -q '^// -\*- coding: windows-1252 -\*-$' print.utf-8.cpp; then + sed -i '1d' print.utf-8.cpp +fi diff --git a/phreeqcpp/encode_as_windows1252.sh b/phreeqcpp/encode_as_windows1252.sh new file mode 100755 index 00000000..cdc6b675 --- /dev/null +++ b/phreeqcpp/encode_as_windows1252.sh @@ -0,0 +1,7 @@ +#!/bin/sh +# see https://en.wikipedia.org/wiki/Windows-1252 +# and https://en.wikipedia.org/wiki/ISO/IEC_8859 +iconv --to-code=WINDOWS-1252 --from-code=UTF-8 print.cpp > print.windows-1252.cpp +grep -q '^// -\*- coding: windows-1252 -\*-$' print.windows-1252.cpp \ + || echo '// -*- coding: windows-1252 -*-' | cat - print.windows-1252.cpp > print.tmp.cpp \ + && mv print.tmp.cpp print.windows-1252.cpp \ No newline at end of file diff --git a/phreeqcpp/print.cpp b/phreeqcpp/print.cpp index e32714e9..f93d8299 100644 --- a/phreeqcpp/print.cpp +++ b/phreeqcpp/print.cpp @@ -1,4 +1,3 @@ -// -*- coding: windows-1252 -*- #include "Utils.h" #include "Phreeqc.h" #include "phqalloc.h" @@ -1462,7 +1461,7 @@ print_species(void) "Molality", "Activity", "Molality", "Activity", "Gamma", "cm3/mol")); #else output_msg(sformatf(" %-13s%12s%12s%10s%10s%10s%11s\n\n", "Species", - "Molality", "Activity", "Molality", "Activity", "Gamma", "cm/mol")); + "Molality", "Activity", "Molality", "Activity", "Gamma", "cm³/mol")); #endif /* * Print list of species @@ -1630,7 +1629,7 @@ print_surface(void) #ifdef NO_UTF8_ENCODING output_msg(sformatf("\t%11.3e sigma, C/m2\n", #else - output_msg(sformatf("\t%11.3e sigma, C/m\n", + output_msg(sformatf("\t%11.3e sigma, C/m²\n", #endif (double) (charge * F_C_MOL / (charge_ptr->Get_specific_area() * @@ -1641,7 +1640,7 @@ print_surface(void) #ifdef NO_UTF8_ENCODING output_msg(sformatf("\tundefined sigma, C/m2\n")); #else - output_msg(sformatf("\tundefined sigma, C/m\n")); + output_msg(sformatf("\tundefined sigma, C/m²\n")); #endif } if (use.Get_surface_ptr()->Get_type() == cxxSurface::CCM) @@ -1663,7 +1662,7 @@ print_surface(void) #ifdef NO_UTF8_ENCODING "\t%11.3e specific area, m2/mol %s\n", #else - "\t%11.3e specific area, m/mol %s\n", + "\t%11.3e specific area, m²/mol %s\n", #endif (double) charge_ptr->Get_specific_area(), comp_ptr->Get_phase_name().c_str())); @@ -1671,7 +1670,7 @@ print_surface(void) #ifdef NO_UTF8_ENCODING "\t%11.3e m2 for %11.3e moles of %s\n\n", #else - "\t%11.3e m for %11.3e moles of %s\n\n", + "\t%11.3e m² for %11.3e moles of %s\n\n", #endif (double) (charge_ptr->Get_grams() * charge_ptr->Get_specific_area()), @@ -1684,7 +1683,7 @@ print_surface(void) #ifdef NO_UTF8_ENCODING "\t%11.3e specific area, m2/mol %s\n", #else - "\t%11.3e specific area, m/mol %s\n", + "\t%11.3e specific area, m²/mol %s\n", #endif (double) charge_ptr->Get_specific_area(), comp_ptr->Get_rate_name().c_str())); @@ -1692,7 +1691,7 @@ print_surface(void) #ifdef NO_UTF8_ENCODING "\t%11.3e m2 for %11.3e moles of %s\n\n", #else - "\t%11.3e m for %11.3e moles of %s\n\n", + "\t%11.3e m² for %11.3e moles of %s\n\n", #endif (double) (charge_ptr->Get_grams() * charge_ptr->Get_specific_area()), @@ -1705,13 +1704,13 @@ print_surface(void) #ifdef NO_UTF8_ENCODING "\t%11.3e specific area, m2/g\n", #else - "\t%11.3e specific area, m/g\n", + "\t%11.3e specific area, m²/g\n", #endif (double) charge_ptr->Get_specific_area())); #ifdef NO_UTF8_ENCODING output_msg(sformatf("\t%11.3e m2 for %11.3e g\n\n", #else - output_msg(sformatf("\t%11.3e m for %11.3e g\n\n", + output_msg(sformatf("\t%11.3e m² for %11.3e g\n\n", #endif (double) (charge_ptr->Get_specific_area() * charge_ptr->Get_grams()), @@ -1926,28 +1925,28 @@ print_surface_cd_music(void) #ifdef NO_UTF8_ENCODING "\t%11.3e sigma, plane 0, C/m2\n", #else - "\t%11.3e sigma, plane 0, C/m\n", + "\t%11.3e sigma, plane 0, C/m²\n", #endif (double) charge_ptr->Get_sigma0())); output_msg(sformatf( #ifdef NO_UTF8_ENCODING "\t%11.3e sigma, plane 1, C/m2\n", #else - "\t%11.3e sigma, plane 1, C/m\n", + "\t%11.3e sigma, plane 1, C/m²\n", #endif (double) charge_ptr->Get_sigma1())); output_msg(sformatf( #ifdef NO_UTF8_ENCODING "\t%11.3e sigma, plane 2, C/m2\n", #else - "\t%11.3e sigma, plane 2, C/m\n", + "\t%11.3e sigma, plane 2, C/m²\n", #endif (double) charge_ptr->Get_sigma2())); output_msg(sformatf( #ifdef NO_UTF8_ENCODING "\t%11.3e sigma, diffuse layer, C/m2\n\n", #else - "\t%11.3e sigma, diffuse layer, C/m\n\n", + "\t%11.3e sigma, diffuse layer, C/m²\n\n", #endif (double) charge_ptr->Get_sigmaddl())); } @@ -1956,7 +1955,7 @@ print_surface_cd_music(void) #ifdef NO_UTF8_ENCODING output_msg(sformatf("\tundefined sigma, C/m2\n")); #else - output_msg(sformatf("\tundefined sigma, C/m\n")); + output_msg(sformatf("\tundefined sigma, C/m²\n")); #endif } output_msg(sformatf("\t%11.3e psi, plane 0, V\n", @@ -2215,7 +2214,7 @@ print_totals(void) "Specific Conductance (uS/cm, ", tc_x, "oC) = ", (int) SC)); #else output_msg(sformatf("%35s%3.0f%7s%i\n", - "Specific Conductance (S/cm, ", tc_x, "C) = ", (int) SC)); + "Specific Conductance (µS/cm, ", tc_x, "°C) = ", (int) SC)); #endif } /* VP: Density Start */ @@ -2225,7 +2224,7 @@ print_totals(void) #ifdef NO_UTF8_ENCODING output_msg(sformatf("%45s%9.5f", "Density (g/cm3) = ", #else - output_msg(sformatf("%45s%9.5f", "Density (g/cm) = ", + output_msg(sformatf("%45s%9.5f", "Density (g/cm³) = ", #endif (double) dens)); if (state == INITIAL_SOLUTION && use.Get_solution_ptr()->Get_initial_data()->Get_calc_density()) @@ -2250,7 +2249,7 @@ print_totals(void) " (solute contributions limited to 200 oC)")); #else output_msg(sformatf("%18s\n", - " (solute contributions limited to 200 C)")); + " (solute contributions limited to 200 °C)")); #endif } else output_msg(sformatf("\n")); @@ -2280,7 +2279,7 @@ print_totals(void) #ifdef NO_UTF8_ENCODING output_msg(sformatf("%45s%6.2f\n", "Temperature (oC) = ", #else - output_msg(sformatf("%45s%6.2f\n", "Temperature (C) = ", + output_msg(sformatf("%45s%6.2f\n", "Temperature (°C) = ", #endif (double) tc_x)); From 5278d54f1f525e42f2d873ba76705ea112d017fa Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Tue, 18 Apr 2023 16:58:45 -0600 Subject: [PATCH 064/384] Fixed Sg gfw and alkalinity in Amm.dat, phreeqc.dat, and pitzer.dat. Updated RELEASE.TXT --- Amm.dat | 2 +- phreeqc.dat | 2 +- pitzer.dat | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/Amm.dat b/Amm.dat index 3b7466d4..a787308a 100644 --- a/Amm.dat +++ b/Amm.dat @@ -56,7 +56,7 @@ Cu(+1) Cu+1 0 Cu Hdg Hdg 0 Hdg 2.016 # H2 gas Oxg Oxg 0 Oxg 32 # O2 gas Mtg Mtg 0 Mtg 16.032 # CH4 gas -Sg H2Sg 1.0 H2Sg 34.08 +Sg H2Sg 0.0 H2Sg 32.064 # H2S gas Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES diff --git a/phreeqc.dat b/phreeqc.dat index 4883650d..aec087ef 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -56,7 +56,7 @@ Cu(+1) Cu+1 0 Cu Hdg Hdg 0 Hdg 2.016 # H2 gas Oxg Oxg 0 Oxg 32 # O2 gas Mtg Mtg 0 Mtg 16.032 # CH4 gas -Sg H2Sg 1.0 H2Sg 34.08 +Sg H2Sg 0.0 H2Sg 32.064 # H2S gas Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES diff --git a/pitzer.dat b/pitzer.dat index 87fd7095..abb32e6d 100644 --- a/pitzer.dat +++ b/pitzer.dat @@ -30,7 +30,7 @@ Sr Sr+2 0 Sr 87.62 Hdg Hdg 0 Hdg 2.016 # H2 gas Oxg Oxg 0 Oxg 32 # Oxygen gas Mtg Mtg 0.0 Mtg 16.032 # CH4 gas -Sg H2Sg 1.0 H2Sg 34.08 # H2S gas +Sg H2Sg 0.0 H2Sg 32.064 # H2S gas Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES From ce92a0c10dd1fc980edaae6711bf81f9f0610dba Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Tue, 18 Apr 2023 16:58:45 -0600 Subject: [PATCH 065/384] Fixed Sg gfw and alkalinity in Amm.dat, phreeqc.dat, and pitzer.dat. Updated RELEASE.TXT --- RELEASE.TXT | 126 +++++++++++++++++++++++++++++++++++++++------------- 1 file changed, 94 insertions(+), 32 deletions(-) diff --git a/RELEASE.TXT b/RELEASE.TXT index 391134bc..b8b2fe3e 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,4 +1,62 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + + ----------------- + April 16, 2023 + ----------------- + PhreeqcRM: Added new methods to simplify getting and setting component and + aqueous species concentrations. + + New methods: + GetIthConcentration(int i, std::vector& c)--Gets the ith component concentration as + of the last RunCells calculation. Total number of components is retrieved with GetComponentCount. + GetIthSpeciesConcentration(int i, std::vector& c)--Gets the ith aqueous species concentration as + of the last RunCells calculation. Total number of aqueous species is retrieved with GetSpeciesCount. + This method is for use with multicomponent diffusion, and SetSpeciesSaveOn must be set to true. + SetIthConcentration(int i, std::vector& c)--Sets the ith component concentration; done after + transport calculations and before RunCells calculation. Total number of components is retrieved + with GetComponentCount. SetIthConcentration must be run for every component before RunCells is called. + SetIthConcentration(int i, std::vector& c)--Sets the ith aqueous species concentration; done after + transport calculations and before RunCells calculation. Total number of aqueous species is + retrieved with GetSpeciesCount. This method is for use with multicomponent diffusion, + and SetSpeciesSaveOn must be set to true. SetIthSpeciesConcentration must be run for every aqueous + species before RunCells is called. + + Fortran versions are + RM_GetIthConcentration(id, i, c) + RM_GetIthSpeciesConcentration(id, i, c) + RM_SetIthConcentration(id, i, c) + RM_SetIthSpeciesConcentration(id, i, c) + + ----------------- + April 14, 2023 + ----------------- + PhreeqcRM: Added new methods to simplify setting initial conditions. + + New initial conditions methods: + InitialEquilibriumPhases2Module(equilibrium_phases); + InitialExchanges2Module(exchanges); + InitialGasPhases2Module(gas_phases); + InitialKinetics2Module(kinetics); + InitialSolutions2Module(solutions); + InitialSolidSolutions2Module(solid_solutions); + InitialSurfaces2Module(surfaces); + + These methods are an alternative to InitialPhreeqc2Module, which used a 7 x nxyz array to + set all initial conditions in one method call. The new methods set only one reactant at a + time, and all methods use a single array of index numbers (referring to definitions in + the InitialPhreeqc instance) of length nxyz (the number of user grid cells). The methods + copy definitions from the InitialPhreeqc instance to define initial conditions in the + model cells. + + Fortran implementation is as follows: + RM_InitialEquilibriumPhases2Module(id, equilibrium_phases); + RM_InitialExchanges2Module(id, exchanges); + RM_InitialGasPhases2Module(id, gas_phases); + RM_InitialKinetics2Module(id, kinetics); + RM_InitialSolutions2Module(id, solutions); + RM_InitialSolidSolutions2Module(id, solid_solutions); + RM_InitialSurfaces2Module(id, surfaces); + ----------------- April 3, 2023 ----------------- @@ -82,95 +140,99 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ the YAML file with BMI_Initialize to execute the specified PhreeqcRM methods to apply the data specified in the YAML file. - The following is represents the way BMI methods would be used to implement + The following represents the way BMI methods would be used to implement a sequential, noniterative transport calculation: PhreeqcRM phreeqc_rm(nxyz, nthreads); - phreeqc_rm.BMI_Initialize("myfile.yaml"); + phreeqc_rm.Initialize("myfile.yaml"); int ncomps; - phreeqc_rm.BMI_GetValue("ComponentCount", &ncomps); + phreeqc_rm.GetValue("ComponentCount", &ncomps); int ngrid; - phreeqc_rm.BMI_GetValue("GridCellCount", ngrid); + phreeqc_rm.GetValue("GridCellCount", ngrid); std::vector c(ngrid*ncomps, 0.0); - phreeqc_rm.BMI_GetValue("Concentrations", c.data()); - phreeqc_rm.BMI_SetValue("TimeStep", 86400); + phreeqc_rm.GetValue("Concentrations", c.data()); + phreeqc_rm.SetValue("TimeStep", 86400); for(double time = 0; time < 864000; time+=86400) { // Take a transport time step here and update the vector c. your_transport(c); - phreeqc_rm.BMI_SetValue("Time", time); - phreeqc_rm.BMI_SetValue("Concentrations", c.data()); - phreeqc_rm.BMI_Update(); - phreeqc_rm.BMI_GetValue("Concentrations", c.data()); + phreeqc_rm.SetValue("Time", time); + phreeqc_rm.SetValue("Concentrations", c.data()); + phreeqc_rm.Update(); + phreeqc_rm.GetValue("Concentrations", c.data()); } The set of BMI methods is as follows: - std::string BMI_GetComponentName() + std::string GetComponentName() Returns "PhreeqcRM". - double BMI_GetCurrentTime() + double GetCurrentTime() Returns current time that has been set by the user. - double BMI_GetEndTime() + double GetEndTime() Returns current time plus the time step. - int BMI_GetInputItemCount() + int GetInputItemCount() Returns the number of variables that it is possible to set - with BMI_SetValue. + with SetValue. - std::vector BMI_GetInputVarNames() + std::vector GetInputVarNames() Returns a list of the names of variables that can be set - with BMI_SetValue. + with SetValue. - int BMI_GetOutputItemCount() + int GetOutputItemCount() Returns the number of variables that it is possible to retrieve - with BMI_GetValue. + with GetValue. - std::vector BMI_GetOutputVarNames() + std::vector GetOutputVarNames() Returns a list of the names of variables that can be retrieved - with BMI_GetValue. + with GetValue. - double BMI_GetTimeStep() + double GetTimeStep() Returns the current time step that has been set by the user. - std::string BMI_GetTimeUnits() + std::string GetTimeUnits() Returns "seconds". - void BMI_GetValue(std::string name, void* dest) + void GetValue(std::string name, void* dest) Returns a value or vector of values for the variable identified by name - void BMI_GetValuePtr(std::string name, void* dest) + void GetValuePtr(std::string name, void* dest) Returns a pointer to current values of a variable. This method is available for selected variables. - int BMI_GetVarItemsize(std::string name) + int GetVarItemsize(std::string name) Returns the number of bytes needed for one element of the variable identified by name. - int BMI_GetVarNbytes(std::string name) + int GetVarNbytes(std::string name) Returns the total number of bytes neded to store the value or vector of values identified by name. - std::string BMI_GetVarType(std::string name) + std::string GetVarType(std::string name) Returns the type of the variable identified by name: "int", "double", or "string". - std::string BMI_GetVarUnits(std::string name) + std::string GetVarUnits(std::string name) Returns the units associated with the variable identified by name. - void BMI_Initialize(std::string config_file) + void Initialize(std::string config_file) Same as InitializeYAML discussed above. - void BMI_SetValue(std::string name, void* src) + void SetValue(std::string name, void* src) Sets the value or vector of values for the variable identified by name. - void BMI_Update(void) + void Update(void) Calculates chemical reactions for a time step. It is equivalent to the method RunCells. Equilibrium will be calculated between the solution and all equilibrium reactants (EQUILIBRIUM_PHASES, EXCHANGE, etc), and KINETICS will be integrated for the time step. + BMI is implemented in Fortran with USE BMIPhreeqcRM. Methods are nemed with a + prefix "bmif" and have an additional initial argument to identify the instance of + BMIPhreeqcRM that is being used. + ----------------- February 26, 2023 ----------------- From 2f8712a3c94ee3c5300befc90aeeac8462e6ba18 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Wed, 19 Apr 2023 12:45:43 -0600 Subject: [PATCH 066/384] Tweaked RELEASE.TXT, fixed another GFW, this time redox.dat --- redox/redox.dat | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/redox/redox.dat b/redox/redox.dat index 794659a7..5147774a 100644 --- a/redox/redox.dat +++ b/redox/redox.dat @@ -23,8 +23,8 @@ SOLUTION_MASTER_SPECIES Cl Cl- 0 Cl 35.453 C CO3-2 2 HCO3 12.0111 C(4) CO3-2 2 HCO3 12.0111 - Methane MethaneH4 0 MethaneH4 16.0143 - Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05 + Methane MethaneH4 0 MethaneH4 12.0111 + Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05 Sulfate SulfateO4-2 0 SulfateO4 32.064 Sulfide HSulfide- 1 Sulfide 32.064 Nitrate NitrateO3- 0 Nitrate 14.0067 From 71aeaa16d713781e31d696c1e56ff5870ca51b1f Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Wed, 19 Apr 2023 12:45:43 -0600 Subject: [PATCH 067/384] Tweaked RELEASE.TXT, fixed another GFW, this time redox.dat --- RELEASE.TXT | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/RELEASE.TXT b/RELEASE.TXT index b8b2fe3e..6f40c5dd 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -117,9 +117,9 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ ----------------- February 26, 2023 ----------------- - PhreeqcRM: Added a BMI (Basic Model Interface) for C++. + PhreeqcRM: Added a BMI (Basic Model Interface) for C++ and Fortran. The interface is a repackaging of the available methods of - PhreeqcRM. All PhreeqcRM methods are available, in addition + PhreeqcRM. All PhreeqcRM methods are available in addition to the BMI methods. New capabilities include (1) the capability to From 91d35938de04f216499ceff49c1ac45549c224c9 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Sat, 22 Apr 2023 16:14:01 -0600 Subject: [PATCH 068/384] working on SelectedOutput for BMI --- phreeqcpp/Phreeqc.h | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/phreeqcpp/Phreeqc.h b/phreeqcpp/Phreeqc.h index 9881c015..4173da56 100644 --- a/phreeqcpp/Phreeqc.h +++ b/phreeqcpp/Phreeqc.h @@ -1593,6 +1593,12 @@ protected: int initial_solution_isotopes; std::vector calculate_value; std::map calculate_value_map; +public: + std::map& GetCalculateValueMap() + { + return this->calculate_value_map; + } +protected: std::vector isotope_ratio; std::map isotope_ratio_map; std::vector isotope_alpha; From f9d7fa2d92e20b208e1dafc7f3bf04ed33b19b2c Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Mon, 22 May 2023 11:36:02 -0600 Subject: [PATCH 069/384] Tony's changes May 5 and 7. --- Amm.dat | 52 +++++++++++++++++++++++++++++----------------------- phreeqc.dat | 53 +++++++++++++++++++++++++++++------------------------ pitzer.dat | 5 +++-- 3 files changed, 61 insertions(+), 49 deletions(-) diff --git a/Amm.dat b/Amm.dat index a787308a..e40c6bb2 100644 --- a/Amm.dat +++ b/Amm.dat @@ -126,9 +126,9 @@ Cl- = Cl- -viscosity 0 0 0 0 0 0 1 # the reference solute CO3-2 = CO3-2 -gamma 5.4 0 - -dw 0.955e-9 27.4 13.7 94.1 - -Vm 8.61 -10.26 -19.54 -0.150 4.63 0 3.32 0 -3.56e-2 0.770 - -viscosity 0 0.289 3.70e-2 5e-5 -3.03e-2 2.013 -2.04 + -dw 0.955e-9 28.9 14.3 98.1 + -Vm 8.69 -10.2 -20.31 -0.131 4.65 0 3.75 0 -4.04e-2 0.678 + -viscosity 0 0.301 4.12e-2 1.44e-3 1.41e-2 1.364 -2.00 SO4-2 = SO4-2 -gamma 5.0 -0.04 -dw 1.07e-9 187 2.64 22.6 @@ -143,7 +143,7 @@ AmmH+ = AmmH+ -gamma 2.5 0 -dw 1.98e-9 312 0.95 4.53 -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 - -viscosity 7.25e-2 -0.142 1.97e-2 8.44e-3 3.92e-2 0.945 + -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 H3BO3 = H3BO3 -dw 1.1e-9 -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt @@ -190,7 +190,7 @@ Mtg = Mtg # CH4 -dw 1.85e-9 -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 Ntg = Ntg # N2 - -dw 1.96e-9 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 -Vm 7 # Pray et al., 1952, IEC 44. 1146 H2Sg = H2Sg # H2S -dw 2.1e-9 @@ -222,18 +222,21 @@ CO3-2 + H+ = HCO3- -delta_h -3.561 kcal -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 -gamma 5.4 0 - -dw 1.18e-9 -163 0.808 -3.18 - -Vm 9.14 -1.64 -12.00 0 1.63 0 0 132 0 0.667 - -viscosity 0 0.670 1.03e-2 0 0 0 1.082 + -dw 1.18e-9 -182 0.351 -4.94 + -Vm 9.03 -7.03e-2 -13.38 0 2.05 0 0 128 0 0.8242 + -dw 1.18e-9 -182 0.351 -4.94 + -viscosity 0 0.117 -2.91e-2 0 0 0 0.896 CO3-2 + 2 H+ = CO2 + H2O -log_k 16.681 -delta_h -5.738 kcal -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 - -dw 1.92e-9 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 + -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 2CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T -log_k -1.8 -analytical_expression 8.68 -0.0103 -2190 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 -Vm 14.58 1.84 4.14 -2.46 -3.20 CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O -log_k 41.071 @@ -265,6 +268,7 @@ HS- + H+ = H2S -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 2H2S = (H2S)2 # activity correction for H2S solubility at high P, T -analytical_expression 10.227 -0.01384 -2200 + -dw 2.1e-9 -Vm 36.41 -71.95 0 0 2.58 H2Sg = HSg- + H+ -log_k -6.994 @@ -275,6 +279,7 @@ H2Sg = HSg- + H+ -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt 2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T -analytical_expression 10.227 -0.01384 -2200 + -dw 2.1e-9 -Vm 36.41 -71.95 0 0 2.58 NO3- + 2 H+ + 2 e- = NO2- + H2O -log_k 28.570 @@ -285,7 +290,7 @@ NO3- + 2 H+ + 2 e- = NO2- + H2O 2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O -log_k 207.08 -delta_h -312.130 kcal - -dw 1.96e-9 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 -Vm 7 # Pray et al., 1952, IEC 44. 1146 AmmH+ = Amm + H+ -log_k -9.252 @@ -293,18 +298,18 @@ AmmH+ = Amm + H+ -analytic 0.6322 -0.001225 -2835.76 -dw 2.28e-9 -Vm 6.69 2.8 3.58 -2.88 1.43 + -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 #NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O # -log_k 119.077 # -delta_h -187.055 kcal # -gamma 2.5 0 # -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 AmmH+ + SO4-2 = AmmHSO4- - -log_k 1.1 - -delta_h -0.47 kcal - -gamma 0 0 - -Vm 13.69 0 -33.54 0 0 0 11.99 0 -0.134 1 - -dw 7.46e-10 - -viscosity -0.109 0.242 1.218e-3 -3.14e-2 8.9e-3 1.631 0.255 + -log_k 1.11; -delta_h 13.2 kcal + -gamma 5 -0.163 + -Vm 13.56 0 -31.15 0 0 0 11.20 0 -0.1287 1 + -dw 1.1e-9 400 1.85 200 + -viscosity 0.262 0 0 9.49e-2 3.81e-2 0.438 0.507 H3BO3 = H2BO3- + H+ -log_k -9.24 -delta_h 3.224 kcal @@ -432,18 +437,19 @@ Mg+2 + F- = MgF+ -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt Na+ + OH- = NaOH -log_k -10 # remove this complex -# Na+ + CO3-2 = NaCO3- # the HCO3- and CO3-2 cmplxs are not necessary for the SC +# Na+ + CO3-2 = NaCO3- # the CO3-2 cmplx is not necessary for the SC # -log_k 1.27 # -delta_h 8.91 kcal # -dw 1.2e-9 -400 1e-10 1e-10 # -Vm 3.812 0.196 20.0 -9.60 3.02 1e-5 2.65 0 2.54e-2 1 # -viscosity 0.104 -1.65 0.169 8.66e-2 2.60e-2 1.76 -0.90 -# Na+ + HCO3- = NaHCO3 - # -log_k 0.14 - # -delta_h -6.71 kcal - # -dw 6.73e-10 -400 1e-10 1e-10 - # -Vm 6.22 - # -viscosity -0.026 0 0 -0.182 0 3 +Na+ + HCO3- = NaHCO3 + -log_k -0.18; -delta_h 27 kJ + -analytical_expression 0.1 -6.111e-3 -1600 2.794 # optimized with data in Appelo, 2015, Appl. Geochem. 55, 6271. + -gamma 0 0.23 + -dw 6.73e-10 -400 1e-10 1e-10 + -Vm 9 -6 + -viscosity 0 0 0 0.1 3e-2 Na+ + SO4-2 = NaSO4- -log_k 0.6; -delta_h -14.4 kJ -analytical_expression -7.99 1.637e-2 0 0 3.29e5 # mirabilite/thenardite solubilities, 0 - 200 oC diff --git a/phreeqc.dat b/phreeqc.dat index aec087ef..65c1656f 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -126,9 +126,9 @@ Cl- = Cl- -viscosity 0 0 0 0 0 0 1 # the reference solute CO3-2 = CO3-2 -gamma 5.4 0 - -dw 0.955e-9 27.4 13.7 94.1 - -Vm 8.61 -10.26 -19.54 -0.150 4.63 0 3.32 0 -3.56e-2 0.770 - -viscosity 0 0.289 3.70e-2 5e-5 -3.03e-2 2.013 -2.04 + -dw 0.955e-9 28.9 14.3 98.1 + -Vm 8.69 -10.2 -20.31 -0.131 4.65 0 3.75 0 -4.04e-2 0.678 + -viscosity 0 0.301 4.12e-2 1.44e-3 1.41e-2 1.364 -2.00 SO4-2 = SO4-2 -gamma 5.0 -0.04 -dw 1.07e-9 187 2.64 22.6 @@ -143,7 +143,7 @@ NO3- = NO3- # -gamma 2.5 0 # -dw 1.98e-9 312 0.95 4.53 # -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 -# -viscosity 7.25e-2 -0.142 1.97e-2 8.44e-3 3.92e-2 0.945 +# -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 H3BO3 = H3BO3 -dw 1.1e-9 -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt @@ -190,7 +190,7 @@ Mtg = Mtg # CH4 -dw 1.85e-9 -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 Ntg = Ntg # N2 - -dw 1.96e-9 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 -Vm 7 # Pray et al., 1952, IEC 44. 1146 H2Sg = H2Sg # H2S -dw 2.1e-9 @@ -222,18 +222,20 @@ CO3-2 + H+ = HCO3- -delta_h -3.561 kcal -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 -gamma 5.4 0 - -dw 1.18e-9 -163 0.808 -3.18 - -Vm 9.14 -1.64 -12.00 0 1.63 0 0 132 0 0.667 - -viscosity 0 0.670 1.03e-2 0 0 0 1.082 + -dw 1.18e-9 -182 0.351 -4.94 + -Vm 9.03 -7.03e-2 -13.38 0 2.05 0 0 128 0 0.8242 + -viscosity 0 0.117 -2.91e-2 0 0 0 0.896 CO3-2 + 2 H+ = CO2 + H2O -log_k 16.681 -delta_h -5.738 kcal -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 - -dw 1.92e-9 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 + -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 2CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T -log_k -1.8 -analytical_expression 8.68 -0.0103 -2190 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 -Vm 14.58 1.84 4.14 -2.46 -3.20 CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O -log_k 41.071 @@ -265,6 +267,7 @@ HS- + H+ = H2S -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 2H2S = (H2S)2 # activity correction for H2S solubility at high P, T -analytical_expression 10.227 -0.01384 -2200 + -dw 2.1e-9 -Vm 36.41 -71.95 0 0 2.58 H2Sg = HSg- + H+ -log_k -6.994 @@ -275,6 +278,7 @@ H2Sg = HSg- + H+ -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt 2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T -analytical_expression 10.227 -0.01384 -2200 + -dw 2.1e-9 -Vm 36.41 -71.95 0 0 2.58 NO3- + 2 H+ + 2 e- = NO2- + H2O -log_k 28.570 @@ -285,7 +289,7 @@ NO3- + 2 H+ + 2 e- = NO2- + H2O 2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O -log_k 207.08 -delta_h -312.130 kcal - -dw 1.96e-9 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 -Vm 7 # Pray et al., 1952, IEC 44. 1146 #AmmH+ = Amm + H+ NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O @@ -294,7 +298,7 @@ NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O -gamma 2.5 0 -dw 1.98e-9 312 0.95 4.53 -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 - -viscosity 7.25e-2 -0.142 1.97e-2 8.44e-3 3.92e-2 0.945 + -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 NH4+ = NH3 + H+ -log_k -9.252 @@ -302,6 +306,7 @@ NH4+ = NH3 + H+ -analytic 0.6322 -0.001225 -2835.76 -dw 2.28e-9 -Vm 6.69 2.8 3.58 -2.88 1.43 + -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 #NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O # -log_k 119.077 # -delta_h -187.055 kcal @@ -309,12 +314,11 @@ NH4+ = NH3 + H+ # -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 #AmmH+ + SO4-2 = AmmHSO4- NH4+ + SO4-2 = NH4SO4- - -log_k 1.1 - -delta_h -0.47 kcal - -gamma 0 0 - -Vm 13.69 0 -33.54 0 0 0 11.99 0 -0.134 1 - -dw 7.46e-10 - -viscosity -0.109 0.242 1.218e-3 -3.14e-2 8.9e-3 1.631 0.255 + -log_k 1.11; -delta_h 13.2 kcal + -gamma 5 -0.163 + -Vm 13.56 0 -31.15 0 0 0 11.20 0 -0.1287 1 + -dw 1.1e-9 400 1.85 200 + -viscosity 0.262 0 0 9.49e-2 3.81e-2 0.438 0.507 H3BO3 = H2BO3- + H+ -log_k -9.24 -delta_h 3.224 kcal @@ -442,18 +446,19 @@ Mg+2 + F- = MgF+ -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt Na+ + OH- = NaOH -log_k -10 # remove this complex -# Na+ + CO3-2 = NaCO3- # the HCO3- and CO3-2 cmplxs are not necessary for the SC +# Na+ + CO3-2 = NaCO3- # the CO3-2 cmplx is not necessary for the SC # -log_k 1.27 # -delta_h 8.91 kcal # -dw 1.2e-9 -400 1e-10 1e-10 # -Vm 3.812 0.196 20.0 -9.60 3.02 1e-5 2.65 0 2.54e-2 1 # -viscosity 0.104 -1.65 0.169 8.66e-2 2.60e-2 1.76 -0.90 -# Na+ + HCO3- = NaHCO3 - # -log_k 0.14 - # -delta_h -6.71 kcal - # -dw 6.73e-10 -400 1e-10 1e-10 - # -Vm 6.22 - # -viscosity -0.026 0 0 -0.182 0 3 +Na+ + HCO3- = NaHCO3 + -log_k -0.18; -delta_h 27 kJ + -analytical_expression 0.1 -6.111e-3 -1600 2.794 # optimized with data in Appelo, 2015, Appl. Geochem. 55, 6271. + -gamma 0 0.23 + -dw 6.73e-10 -400 1e-10 1e-10 + -Vm 9 -6 + -viscosity 0 0 0 0.1 3e-2 Na+ + SO4-2 = NaSO4- -log_k 0.6; -delta_h -14.4 kJ -analytical_expression -7.99 1.637e-2 0 0 3.29e5 # mirabilite/thenardite solubilities, 0 - 200 oC diff --git a/pitzer.dat b/pitzer.dat index abb32e6d..69274d1d 100644 --- a/pitzer.dat +++ b/pitzer.dat @@ -110,7 +110,7 @@ Mtg = Mtg # CH4 -dw 1.85e-9 -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 Ntg = Ntg # N2 - -dw 1.96e-9 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 -Vm 7 # Pray et al., 1952, IEC 44. 1146 H2Sg = H2Sg # H2S -dw 2.1e-9 @@ -132,7 +132,7 @@ CO3-2 + 2 H+ = CO2 + H2O log_k 16.6767 delta_h -5.738 kcal -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 - -dw 1.92e-9 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 SO4-2 + H+ = HSO4- log_k 1.979 @@ -148,6 +148,7 @@ H2Sg = HSg- + H+ -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt 2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T -analytical 10.227 -0.01384 -2200 + -dw 2.1e-9 -Vm 36.41 -71.95 0 0 2.58 B(OH)3 + H2O = B(OH)4- + H+ log_k -9.239 From 8cd33873638c9f2d0c46cef4c0b2b8e80af07506 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Mon, 22 May 2023 11:36:02 -0600 Subject: [PATCH 070/384] Tony's changes May 5 and 7. --- RELEASE.TXT | 149 ++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 149 insertions(+) diff --git a/RELEASE.TXT b/RELEASE.TXT index 6f40c5dd..880a075b 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,5 +1,154 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + ----------------- + May 22, 2023 + ----------------- + PHREEQC: (See https://hydrochemistry.eu/ph3/release.html for html version of changes.) + Added Basic function f_visc("H+") that returns the fractional contribution of a species to + viscosity of the solution when parameters are defined for the species with -viscosity. + Actually, it gives the contribution of the species to the B and D terms in the Jones-Dole + eqution, assuming that the A term is small. The fractional contribution can be negative, for + example f_visc("K+") is usually smaller than zero. + + Bug-fix: When -Vm parameters of SOLUTION_SPECIES were read after -viscosity parameters, the + first viscosity parameter was set to 0. + + Defined -analytical_expression and -gamma for Na2SO4, K2SO4 and MgSO4 and Mg(SO4)22- species in + PHREEQC.dat, fitting the activities from pitzer.dat from 0 - 200 C, and the solubilities of + mirabilite/thenardite (Na2SO4), arcanite (K2SO4), and epsomite, hexahydrite, kieserite (MgSO4 + and new species Mg(SO4)22-). The parameters for calculating the apparent volume (-Vm) and the + diffusion coefficients (-Dw) of the species were adapted using measured data of density and + conductance (SC). + + Removed the NaCO3- species in PHREEQC.dat since they are not necessary for the calculation of + the specific conductance (SC) and their origin is unknown. Defined parameters in the + -analytical_expression, -gamma, -dw, -Vm and -viscosity for the NaHCO3 species in PHREEQC.dat, + using the data in Appelo, 2015, Appl. Geochem. 55, 62-71. (These data were used for defining + interaction parameters in pitzer.dat.) The parameters for the apparent volume (-Vm), the + diffusion coefficient (-Dw) and the viscosity of CO32- and HCO3- were adapted using measured + data of density, conductance and viscosity of binary solutions. + + The viscosity of the solution at P, T is now calculated and printed in the output file, and can + be retrieved in Basic programs with the function viscos (in previous versions, viscos returned + the viscosity of pure water at P, T). + + The calculation uses a modified Jones-Dole equation which sums the contributions of individual + solutes: + + eta / eta0 = 1 + A sqrt(0.5 sum(zi*mi)) + sum fan (Bi*mi + Di*mi*ni), + + where eta is the viscosity of the solution (mPa s), eta0 is viscosity of pure water at the + temperature and pressure of the solution, mi is the molality of species i, made dimensionless + by dividing by 1 molal, and zi is the absolute charge number. A is derived from Debye-Hckel + theory, and fan, B, D and n are coefficients that incorporate volume, ionic strength and + temperature effects. The coefficients are: + + B = b0 + b1 exp(-b2 tC) + + where b0, b1, and b2 are coefficients, and tC is the temperature in C. The temperature is + limited to 200C. + + fan = (2 - tan * Van / VCl-) + + for anions, with tan a coefficient and Van the P, T and I dependent, apparent volume of the + anion relative to the one of Cl-, which is used as reference species. For cations, fan = 1 + and tan need not be defined. + + D = d1 exp(-d2 tC) + where d1 and d2 are coefficients. + + n = ((1 + fI)^d3 + ((zi^2 + zi) / 2 * mi)^d3 / (2 + fI) + + where fI averages ionic strength effects and d3 is a parameter. + The coefficients are fitted on measured viscosities of binary solutions and entered + with item -viscosity under keyword SOLUTION_SPECIES, for example for H+: + + SOLUTION_SPECIES + H+ = H+ + -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 + # b0 b1 b2 d1 d2 d3 tan + + When the solute concentrations are seawater-like or higher, the viscosity is different + from pure water (see figure at). To obtain a valid model for natural waters with phreeqc.dat, + the complexes of SO42- with the major cations were redefined, as noted above. + The A parameter in the Jones-Dole equation needs temperature dependent diffusion coefficients of the species, and therefore the parameters for calculating the I and T dependency of the diffusion coefficients (-dw parameters of SOLUTION_SPECIES) were refitted for SO42- and CO32- species. + Example files are in c:\phreeqc\viscosity. + + Implicit calculations with option -fix_current will now account for changing concentrations in + the boundary solutions of the column. + + Activated the print of statements defined in USER_PRINT when the initial EXCHANGE, SURFACE and + GAS_PHASE are calculated. + + Changed the dw_t parameter for CO3-2 to 30 (was 0) and for HCO3- to -150 (was 0) to better fit + McCleskey's data + + Bug fix: removed the factor (TK / 298.15) from the calculation of the temperature dependence of + the diffusion coefficient. For an example, see the calculation of Dw(TK) of H+ in the next + paragraph. + + Bug fixes in printing/punching of diffusion coefficients with diff_c and setdiff_c: the numbers + are now corrected for I and T effects when the appropriate factors are defined in keyword + SOLUTION_SPECIES, item -dw. For example: + + H+ = H+ + -gamma 9.0 0 + -dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in Appelo, 2017, CCR 101, 102-113. + + It will set Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc + and Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |zi| * I 0.5 / (1 + DH_B * I 0.5 * 1e-10 / (1 + I 0.75))), + + where viscos_0_25 is the viscosity of pure water at 25 C, viscos_0_tc is the viscosity of pure + water at the temperature of the solution. DH_A and DH_B are Debye-Hckel parameters, + retrievable with PHREEQC Basic. + + + The temperature correction is always applied in multicomponent, diffusive transport and for + calculating the viscosity. + + The ionic strength correction is for electromigration calculations (Appelo, 2017, CCR 101, 102). The correction is applied when the option is set true in TRANSPORT, item -multi_D: + -multi_d true 1e-9 0.3 0.05 1.0 true # multicomponent diffusion + + # true/false, default tracer diffusion coefficient (Dw = 1e-9 m2/s) in water at 25 C (used in + case -dw is not defined for a species), porosity (por = 0.3), limiting porosity (0.05) below + which diffusion stops, exponent n (1.0) used in calculating the porewater diffusion coefficient + Dp = Dw * por^n, true/false: correct Dw for ionic strength (false by default). + + ----------------- + May 19, 2023 + ----------------- + PhreeqcRM: + Renamed GetDensity and related functions to GetDensityCalculated. + Renamed SetDensity and related functions to SetDensityUser. + + Density is used to convert user-model concentrations to module solution definitions only if the + units of the user-model concentrations are specified to be parts per million. The density specified by + SetDensityUser is used by SetConcentrations to convert from per kg of solution to + per L of solution. For GetConcentrations, two options are available to convert from module solutions + to user-model concentrations, depending on the value used for the method SetUseSolutionDensityVolume: + (1) the module-calculated density is used to convert from the calculated volume of solution + to the mass (kg) of solution, or (2) the user-specified value of density is used to make the conversion. + Again, density is only used if the user-model concentration units are ppm. + + The change in method names is intended to emphasize the difference between the user-specified densities + and the module-calculated densities. + + Renamed GetSaturation and related functions to GetSaturationCalculated. + Renamed SetSaturation and related functions to SetSaturationUser. + + The values specified by SetSaturation are used to convert user-model concentrations to module solution definitions. + For SetConcentrations, the volume of solution is calculated to be the user-specified saturation * porosity * + representative volume. For GetConcentrations, two options are available to determine the solution volume, depending + on the value specified for SetUseSolutionDensityVolume: (1) the solution volume is calculated by the reaction module + and used to convert to user-model concentrations, or (2) the solution volume is again calculated by + user-specified saturation * porosity * representative volume, and those values are used to convert to user-model + concentrations. In either case, the values returned by GetSaturationCalculated are the calculated solution volume divided + by (porosity * representative volume). + + The change in method names is intended to emphasize the difference between the user-specified saturations and + and the module-calculated saturations. + + ----------------- April 16, 2023 ----------------- From 8a1e3f97118cf39d63ed4e6bcb9ee07ef30075b9 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Thu, 25 May 2023 20:24:19 -0600 Subject: [PATCH 071/384] Added sleeps after curl -X POST --- .gitlab-ci.yml | 3 +++ phreeqcpp/.gitlab-ci.yml | 2 ++ phreeqcpp/common/.gitlab-ci.yml | 2 ++ 3 files changed, 7 insertions(+) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 436f26da..ec6bb5c9 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -116,10 +116,13 @@ trigger-downstream: script: - echo triggering iphreeqc - curl -X POST -F token=${IPHREEQC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${IPHREEQC_ID}/trigger/pipeline + - sleep 180 - echo triggering iphreeqccom - curl -X POST -F token=${IPHREEQCCOM_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${IPHREEQCCOM_ID}/trigger/pipeline + - sleep 120 - echo triggering phreeqcrm-src - curl -X POST -F token=${PHREEQCRM_SRC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${PHREEQCRM_SRC_ID}/trigger/pipeline + - sleep 120 ## Upstream Projects ## phreeqc3-src https://code.chs.usgs.gov/coupled/subtrees/phreeqc3-src diff --git a/phreeqcpp/.gitlab-ci.yml b/phreeqcpp/.gitlab-ci.yml index dd622b85..542d5f8b 100644 --- a/phreeqcpp/.gitlab-ci.yml +++ b/phreeqcpp/.gitlab-ci.yml @@ -106,8 +106,10 @@ trigger-downstream: script: - echo triggering iphreeqc-src - curl -X POST -F token=${IPHREEQC_SRC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${IPHREEQC_SRC_ID}/trigger/pipeline + - sleep 120 - echo triggering phreeqc3 - curl -X POST -F token=${PHREEQC3_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${PHREEQC3_ID}/trigger/pipeline + - sleep 360 ## Upstream Projects ## phreeqc3-src-common https://code.chs.usgs.gov/coupled/subtrees/phreeqc3-src-common diff --git a/phreeqcpp/common/.gitlab-ci.yml b/phreeqcpp/common/.gitlab-ci.yml index 6487156b..484920a0 100644 --- a/phreeqcpp/common/.gitlab-ci.yml +++ b/phreeqcpp/common/.gitlab-ci.yml @@ -39,8 +39,10 @@ trigger-downstream: script: - echo triggering phreeqc3-src - curl -X POST -F token=${PHREEQC3_SRC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${PHREEQC3_SRC_ID}/trigger/pipeline + - sleep 120 - echo triggering wphast - curl -X POST -F token=${WPHAST_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${WPHAST_ID}/trigger/pipeline + - sleep 180 ## Upstream Projects ## none From 64d92a5a0bca60518e33cdec704fa47945796166 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Thu, 25 May 2023 20:24:19 -0600 Subject: [PATCH 072/384] Added sleeps after curl -X POST --- .gitlab-ci.yml | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index a1598b4f..4a67a46b 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -42,14 +42,19 @@ trigger-downstream: script: - echo triggering iphreeqc - curl -X POST -F token=${IPHREEQC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${IPHREEQC_ID}/trigger/pipeline + - sleep 180 - echo triggering iphreeqccom - curl -X POST -F token=${IPHREEQCCOM_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${IPHREEQCCOM_ID}/trigger/pipeline + - sleep 120 - echo triggering phreeqcrm - curl -X POST -F token=${PHREEQCRM_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${PHREEQCRM_ID}/trigger/pipeline + - sleep 120 - echo triggering phreeqc3 - curl -X POST -F token=${PHREEQC3_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${PHREEQC3_ID}/trigger/pipeline + - sleep 360 - echo triggering wphast - curl -X POST -F token=${WPHAST_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${WPHAST_ID}/trigger/pipeline + - sleep 180 ## Upstream Projects ## none From 35dec7bafcb86c2fb40acc463c51be5af1af21b4 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Fri, 26 May 2023 02:32:21 +0000 Subject: [PATCH 073/384] Squashed 'phreeqcpp/' changes from e7c12e1..b12de1f b12de1f Added sleeps after curl -X POST fb55642 working on SelectedOutput for BMI a050758 Closes #48 -- Illegal character encoding in string literal (#49) git-subtree-dir: phreeqcpp git-subtree-split: b12de1f7f0eadb7b6153bffca9d0412801d2e132 --- .gitlab-ci.yml | 2 ++ Phreeqc.h | 6 ++++++ common/.gitlab-ci.yml | 2 ++ encode_as_utf8.sh | 6 ++++++ encode_as_windows1252.sh | 7 +++++++ print.cpp | 37 ++++++++++++++++++------------------- 6 files changed, 41 insertions(+), 19 deletions(-) create mode 100755 encode_as_utf8.sh create mode 100755 encode_as_windows1252.sh diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index dd622b85..542d5f8b 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -106,8 +106,10 @@ trigger-downstream: script: - echo triggering iphreeqc-src - curl -X POST -F token=${IPHREEQC_SRC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${IPHREEQC_SRC_ID}/trigger/pipeline + - sleep 120 - echo triggering phreeqc3 - curl -X POST -F token=${PHREEQC3_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${PHREEQC3_ID}/trigger/pipeline + - sleep 360 ## Upstream Projects ## phreeqc3-src-common https://code.chs.usgs.gov/coupled/subtrees/phreeqc3-src-common diff --git a/Phreeqc.h b/Phreeqc.h index 9881c015..4173da56 100644 --- a/Phreeqc.h +++ b/Phreeqc.h @@ -1593,6 +1593,12 @@ protected: int initial_solution_isotopes; std::vector calculate_value; std::map calculate_value_map; +public: + std::map& GetCalculateValueMap() + { + return this->calculate_value_map; + } +protected: std::vector isotope_ratio; std::map isotope_ratio_map; std::vector isotope_alpha; diff --git a/common/.gitlab-ci.yml b/common/.gitlab-ci.yml index 6487156b..484920a0 100644 --- a/common/.gitlab-ci.yml +++ b/common/.gitlab-ci.yml @@ -39,8 +39,10 @@ trigger-downstream: script: - echo triggering phreeqc3-src - curl -X POST -F token=${PHREEQC3_SRC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${PHREEQC3_SRC_ID}/trigger/pipeline + - sleep 120 - echo triggering wphast - curl -X POST -F token=${WPHAST_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${WPHAST_ID}/trigger/pipeline + - sleep 180 ## Upstream Projects ## none diff --git a/encode_as_utf8.sh b/encode_as_utf8.sh new file mode 100755 index 00000000..7894d1e8 --- /dev/null +++ b/encode_as_utf8.sh @@ -0,0 +1,6 @@ +#!/bin/sh +# see https://en.wikipedia.org/wiki/Windows-1252 +iconv --to-code=UTF-8 --from-code=WINDOWS-1252 print.cpp > print.utf-8.cpp +if grep -q '^// -\*- coding: windows-1252 -\*-$' print.utf-8.cpp; then + sed -i '1d' print.utf-8.cpp +fi diff --git a/encode_as_windows1252.sh b/encode_as_windows1252.sh new file mode 100755 index 00000000..cdc6b675 --- /dev/null +++ b/encode_as_windows1252.sh @@ -0,0 +1,7 @@ +#!/bin/sh +# see https://en.wikipedia.org/wiki/Windows-1252 +# and https://en.wikipedia.org/wiki/ISO/IEC_8859 +iconv --to-code=WINDOWS-1252 --from-code=UTF-8 print.cpp > print.windows-1252.cpp +grep -q '^// -\*- coding: windows-1252 -\*-$' print.windows-1252.cpp \ + || echo '// -*- coding: windows-1252 -*-' | cat - print.windows-1252.cpp > print.tmp.cpp \ + && mv print.tmp.cpp print.windows-1252.cpp \ No newline at end of file diff --git a/print.cpp b/print.cpp index e32714e9..f93d8299 100644 --- a/print.cpp +++ b/print.cpp @@ -1,4 +1,3 @@ -// -*- coding: windows-1252 -*- #include "Utils.h" #include "Phreeqc.h" #include "phqalloc.h" @@ -1462,7 +1461,7 @@ print_species(void) "Molality", "Activity", "Molality", "Activity", "Gamma", "cm3/mol")); #else output_msg(sformatf(" %-13s%12s%12s%10s%10s%10s%11s\n\n", "Species", - "Molality", "Activity", "Molality", "Activity", "Gamma", "cm/mol")); + "Molality", "Activity", "Molality", "Activity", "Gamma", "cm³/mol")); #endif /* * Print list of species @@ -1630,7 +1629,7 @@ print_surface(void) #ifdef NO_UTF8_ENCODING output_msg(sformatf("\t%11.3e sigma, C/m2\n", #else - output_msg(sformatf("\t%11.3e sigma, C/m\n", + output_msg(sformatf("\t%11.3e sigma, C/m²\n", #endif (double) (charge * F_C_MOL / (charge_ptr->Get_specific_area() * @@ -1641,7 +1640,7 @@ print_surface(void) #ifdef NO_UTF8_ENCODING output_msg(sformatf("\tundefined sigma, C/m2\n")); #else - output_msg(sformatf("\tundefined sigma, C/m\n")); + output_msg(sformatf("\tundefined sigma, C/m²\n")); #endif } if (use.Get_surface_ptr()->Get_type() == cxxSurface::CCM) @@ -1663,7 +1662,7 @@ print_surface(void) #ifdef NO_UTF8_ENCODING "\t%11.3e specific area, m2/mol %s\n", #else - "\t%11.3e specific area, m/mol %s\n", + "\t%11.3e specific area, m²/mol %s\n", #endif (double) charge_ptr->Get_specific_area(), comp_ptr->Get_phase_name().c_str())); @@ -1671,7 +1670,7 @@ print_surface(void) #ifdef NO_UTF8_ENCODING "\t%11.3e m2 for %11.3e moles of %s\n\n", #else - "\t%11.3e m for %11.3e moles of %s\n\n", + "\t%11.3e m² for %11.3e moles of %s\n\n", #endif (double) (charge_ptr->Get_grams() * charge_ptr->Get_specific_area()), @@ -1684,7 +1683,7 @@ print_surface(void) #ifdef NO_UTF8_ENCODING "\t%11.3e specific area, m2/mol %s\n", #else - "\t%11.3e specific area, m/mol %s\n", + "\t%11.3e specific area, m²/mol %s\n", #endif (double) charge_ptr->Get_specific_area(), comp_ptr->Get_rate_name().c_str())); @@ -1692,7 +1691,7 @@ print_surface(void) #ifdef NO_UTF8_ENCODING "\t%11.3e m2 for %11.3e moles of %s\n\n", #else - "\t%11.3e m for %11.3e moles of %s\n\n", + "\t%11.3e m² for %11.3e moles of %s\n\n", #endif (double) (charge_ptr->Get_grams() * charge_ptr->Get_specific_area()), @@ -1705,13 +1704,13 @@ print_surface(void) #ifdef NO_UTF8_ENCODING "\t%11.3e specific area, m2/g\n", #else - "\t%11.3e specific area, m/g\n", + "\t%11.3e specific area, m²/g\n", #endif (double) charge_ptr->Get_specific_area())); #ifdef NO_UTF8_ENCODING output_msg(sformatf("\t%11.3e m2 for %11.3e g\n\n", #else - output_msg(sformatf("\t%11.3e m for %11.3e g\n\n", + output_msg(sformatf("\t%11.3e m² for %11.3e g\n\n", #endif (double) (charge_ptr->Get_specific_area() * charge_ptr->Get_grams()), @@ -1926,28 +1925,28 @@ print_surface_cd_music(void) #ifdef NO_UTF8_ENCODING "\t%11.3e sigma, plane 0, C/m2\n", #else - "\t%11.3e sigma, plane 0, C/m\n", + "\t%11.3e sigma, plane 0, C/m²\n", #endif (double) charge_ptr->Get_sigma0())); output_msg(sformatf( #ifdef NO_UTF8_ENCODING "\t%11.3e sigma, plane 1, C/m2\n", #else - "\t%11.3e sigma, plane 1, C/m\n", + "\t%11.3e sigma, plane 1, C/m²\n", #endif (double) charge_ptr->Get_sigma1())); output_msg(sformatf( #ifdef NO_UTF8_ENCODING "\t%11.3e sigma, plane 2, C/m2\n", #else - "\t%11.3e sigma, plane 2, C/m\n", + "\t%11.3e sigma, plane 2, C/m²\n", #endif (double) charge_ptr->Get_sigma2())); output_msg(sformatf( #ifdef NO_UTF8_ENCODING "\t%11.3e sigma, diffuse layer, C/m2\n\n", #else - "\t%11.3e sigma, diffuse layer, C/m\n\n", + "\t%11.3e sigma, diffuse layer, C/m²\n\n", #endif (double) charge_ptr->Get_sigmaddl())); } @@ -1956,7 +1955,7 @@ print_surface_cd_music(void) #ifdef NO_UTF8_ENCODING output_msg(sformatf("\tundefined sigma, C/m2\n")); #else - output_msg(sformatf("\tundefined sigma, C/m\n")); + output_msg(sformatf("\tundefined sigma, C/m²\n")); #endif } output_msg(sformatf("\t%11.3e psi, plane 0, V\n", @@ -2215,7 +2214,7 @@ print_totals(void) "Specific Conductance (uS/cm, ", tc_x, "oC) = ", (int) SC)); #else output_msg(sformatf("%35s%3.0f%7s%i\n", - "Specific Conductance (S/cm, ", tc_x, "C) = ", (int) SC)); + "Specific Conductance (µS/cm, ", tc_x, "°C) = ", (int) SC)); #endif } /* VP: Density Start */ @@ -2225,7 +2224,7 @@ print_totals(void) #ifdef NO_UTF8_ENCODING output_msg(sformatf("%45s%9.5f", "Density (g/cm3) = ", #else - output_msg(sformatf("%45s%9.5f", "Density (g/cm) = ", + output_msg(sformatf("%45s%9.5f", "Density (g/cm³) = ", #endif (double) dens)); if (state == INITIAL_SOLUTION && use.Get_solution_ptr()->Get_initial_data()->Get_calc_density()) @@ -2250,7 +2249,7 @@ print_totals(void) " (solute contributions limited to 200 oC)")); #else output_msg(sformatf("%18s\n", - " (solute contributions limited to 200 C)")); + " (solute contributions limited to 200 °C)")); #endif } else output_msg(sformatf("\n")); @@ -2280,7 +2279,7 @@ print_totals(void) #ifdef NO_UTF8_ENCODING output_msg(sformatf("%45s%6.2f\n", "Temperature (oC) = ", #else - output_msg(sformatf("%45s%6.2f\n", "Temperature (C) = ", + output_msg(sformatf("%45s%6.2f\n", "Temperature (°C) = ", #endif (double) tc_x)); From dc26aa2a8fe1111439df64025df25f8f01a615fe Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Fri, 26 May 2023 02:36:52 +0000 Subject: [PATCH 074/384] Squashed 'phreeqcpp/' changes from b12de1f..93ab5c9 93ab5c9 Merge commit '2841329ea39783ebc402e2644413de9e72904213' 2841329 Squashed 'common/' changes from 6e625e5..7c31f5b git-subtree-dir: phreeqcpp git-subtree-split: 93ab5c94e48156a2792207f284e9413df097c82f From 807a444465de4097998f93c807c3fb76bad18e6d Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Thu, 25 May 2023 22:19:16 -0600 Subject: [PATCH 075/384] Added sleeps after curl -X POST --- .gitlab-ci.yml | 2 ++ 1 file changed, 2 insertions(+) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index a56b4bc7..becffc43 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -39,8 +39,10 @@ trigger-downstream: script: - echo triggering iphreeqc - curl -X POST -F token=${IPHREEQC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${IPHREEQC_ID}/trigger/pipeline + - sleep 180 - echo triggering phreeqc3 - curl -X POST -F token=${PHREEQC3_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${PHREEQC3_ID}/trigger/pipeline + - sleep 360 ## Upstream Projects ## none From ae15b2118015838a2c3e780660a56ada9232cda9 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Thu, 25 May 2023 22:19:16 -0600 Subject: [PATCH 076/384] Added sleeps after curl -X POST --- .gitlab-ci.yml | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 45ffff7b..8f3a3913 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -41,12 +41,16 @@ trigger-downstream: script: - echo triggering iphreeqc - curl -X POST -F token=${IPHREEQC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${IPHREEQC_ID}/trigger/pipeline + - sleep 180 - echo triggering iphreeqccom - curl -X POST -F token=${IPHREEQCCOM_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${IPHREEQCCOM_ID}/trigger/pipeline + - sleep 120 - echo triggering phast3-doc PHAST3_DOC_TRIGGER PHAST3_DOC_ID - curl -X POST -F token=${PHAST3_DOC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${PHAST3_DOC_ID}/trigger/pipeline + - sleep 180 - echo triggering phreeqc3 PHREEQC3_TRIGGER PHREEQC3_ID - curl -X POST -F token=${PHREEQC3_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${PHREEQC3_ID}/trigger/pipeline + - sleep 360 ## Upstream Projects ## none From 050663209be623e2af35e3f93a41ac6f5ac1f18f Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Fri, 26 May 2023 04:27:58 +0000 Subject: [PATCH 077/384] Squashed 'phreeqcpp/' changes from 93ab5c9..82515f7 82515f7 Merge remote-tracking branch 'origin/master' 1cc4fa0 fix phi for water at high TP. Tony May, 2023 275b340 Tony's changes May 5 and 7. 0fb2509 cleaned up compiler warnings. removed math.h. cleaned up NAN git-subtree-dir: phreeqcpp git-subtree-split: 82515f7fecada9be373fd832dd0c5cdf53c79da7 --- ChartHandler.cpp | 9 ------- ChartObject.cpp | 1 - PBasic.cpp | 11 ++++++++ PBasic.h | 2 +- Phreeqc.h | 1 + SolutionIsotope.cxx | 5 ---- basicsubs.cpp | 64 ++++++++++++++++++++++++++++----------------- cl1.cpp | 1 - common/Utils.cxx | 1 - gases.cpp | 1 + global_structures.h | 2 ++ inverse.cpp | 24 ----------------- isotopes.cpp | 15 ----------- kinetics.cpp | 5 ---- prep.cpp | 1 + read.cpp | 8 +++--- sundialsmath.cpp | 1 - tidy.cpp | 20 -------------- transport.cpp | 31 ++++++++++++---------- 19 files changed, 78 insertions(+), 125 deletions(-) diff --git a/ChartHandler.cpp b/ChartHandler.cpp index b9236865..df2ee816 100644 --- a/ChartHandler.cpp +++ b/ChartHandler.cpp @@ -170,18 +170,14 @@ ChartHandler::End_timer() io->error_flush(); } } - size_t i(0), i2(0); for ( ; it != chart_map.end(); it++) { - i = 0; it->second->Rate_free(); if (it->second->Get_form_started()) { #if defined(__cplusplus_cli) while (0 != System::Threading::Interlocked::CompareExchange(it->second->usingResource, 6, 0)) { - //if (i > max_tries) break; - i++; System::Threading::Thread::Sleep(60); } #endif @@ -191,12 +187,8 @@ ChartHandler::End_timer() int n = System::Threading::Interlocked::Exchange(it->second->usingResource, 0); assert(n == 6); #endif - - i2 = 0; while (it->second->Get_done() != true) { - //if (i2 > max_tries) break; - i2++; #if defined(__cplusplus_cli) System::Threading::Thread::Sleep(60); #endif @@ -225,7 +217,6 @@ ChartHandler::dump(std::ostream & oss, unsigned int indent) std::map::iterator it = this->chart_map.begin(); for ( ; it != chart_map.end(); it++) { - size_t i = 0; it->second->dump(oss, indent); } return true; diff --git a/ChartObject.cpp b/ChartObject.cpp index 018e3b25..ae5004c9 100644 --- a/ChartObject.cpp +++ b/ChartObject.cpp @@ -11,7 +11,6 @@ #include "ChartObject.h" #include "Parser.h" #include -//#include #include #include #include "phqalloc.h" diff --git a/PBasic.cpp b/PBasic.cpp index b76897ad..a103b631 100644 --- a/PBasic.cpp +++ b/PBasic.cpp @@ -1558,6 +1558,9 @@ listtokens(FILE * f, tokenrec * l_buf) case tokt_sc: output_msg("T_SC"); break; + case tokf_visc: + output_msg("F_VISC"); + break; case toktc: output_msg("TC"); break; @@ -3904,6 +3907,13 @@ factor(struct LOC_exec * LINK) } break; + case tokf_visc: + { + const char* str = stringfactor(STR1, LINK); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->calc_f_visc(str); + } + break; + case toktc: { n.UU.val = PhreeqcPtr->tc_x; @@ -7518,6 +7528,7 @@ const std::map::value_type temp_tokens[] std::map::value_type("surf", PBasic::toksurf), std::map::value_type("sys", PBasic::toksys), std::map::value_type("t_sc", PBasic::tokt_sc), + std::map::value_type("f_visc", PBasic::tokf_visc), std::map::value_type("tc", PBasic::toktc), std::map::value_type("time", PBasic::toktime), std::map::value_type("title", PBasic::toktitle), diff --git a/PBasic.h b/PBasic.h index 73321cc8..3035ceb8 100644 --- a/PBasic.h +++ b/PBasic.h @@ -7,7 +7,6 @@ #include #include #include -//#include #include #include #include "phrqtype.h" @@ -338,6 +337,7 @@ public: toktotmol, toktotmoles, toktrim, + tokf_visc, tokviscos, tokviscos_0, tokvm, diff --git a/Phreeqc.h b/Phreeqc.h index 4173da56..f2ad5d52 100644 --- a/Phreeqc.h +++ b/Phreeqc.h @@ -996,6 +996,7 @@ public: int reformat_surf(const char* comp_name, LDBLE fraction, const char* new_comp_name, LDBLE new_Dw, int cell); LDBLE viscosity(void); + LDBLE calc_f_visc(const char *name); LDBLE calc_vm_Cl(void); int multi_D(LDBLE DDt, int mobile_cell, int stagnant); LDBLE find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant); diff --git a/SolutionIsotope.cxx b/SolutionIsotope.cxx index 4059b0b9..222d9110 100644 --- a/SolutionIsotope.cxx +++ b/SolutionIsotope.cxx @@ -67,12 +67,7 @@ cxxSolutionIsotope::dump_xml(std::ostream & s_oss, unsigned int indent) const s_oss << indent1; s_oss << "iso_ratio=\"" << this->ratio << "\"" << "\n"; -#ifdef NPP - if (!isnan(this->ratio_uncertainty)) -#else - //if (this->ratio_uncertainty != NAN) if (!std::isnan(this->ratio_uncertainty)) -#endif { s_oss << indent1; s_oss << "iso_ratio_uncertainty=\"" << this-> diff --git a/basicsubs.cpp b/basicsubs.cpp index 3094c18b..4e07a4e5 100644 --- a/basicsubs.cpp +++ b/basicsubs.cpp @@ -1252,6 +1252,24 @@ calc_t_sc(const char *name) return (-999.99); } +/* ---------------------------------------------------------------------- */ +LDBLE Phreeqc:: +calc_f_visc(const char *name) +/* ---------------------------------------------------------------------- */ +{ + char token[MAX_LENGTH]; + class species *s_ptr; + + if (print_viscosity) + { + strcpy(token, name); + s_ptr = s_search(token); + if (s_ptr != NULL) + return s_ptr->dw_t_visc; + } + return 0; +} + /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: equi_phase(const char *phase_name) @@ -1599,12 +1617,7 @@ get_calculate_value(const char *name) calculate_value_ptr->name); error_msg(error_string, STOP); } -#ifdef NPP - if (isnan(rate_moles)) -#else - //if (rate_moles == NAN) if(std::isnan(rate_moles)) -#endif { error_string = sformatf( "Calculated value not SAVEed for %s.", calculate_value_ptr->name); @@ -1762,18 +1775,17 @@ LDBLE Phreeqc:: pr_pressure(const char* phase_name) /* ---------------------------------------------------------------------- */ { - + int l; + class phase* phase_ptr = phase_bsearch(phase_name, &l, FALSE); + if (phase_ptr == NULL) + { + error_string = sformatf("Gas %s, not found.", phase_name); + warning_msg(error_string); + return (1e-99); + } cxxGasPhase* gas_phase_ptr = use.Get_gas_phase_ptr(); if (gas_phase_ptr != NULL) { - int l; - class phase* phase_ptr = phase_bsearch(phase_name, &l, FALSE); - if (phase_ptr == NULL) - { - error_string = sformatf("Gas %s, not found.", phase_name); - warning_msg(error_string); - return (1e-99); - } for (size_t i = 0; i < gas_phase_ptr->Get_gas_comps().size(); i++) { const cxxGasComp* gas_comp_ptr = &(gas_phase_ptr->Get_gas_comps()[i]); @@ -1792,6 +1804,10 @@ pr_pressure(const char* phase_name) } } } + else if (phase_ptr->in != FALSE && phase_ptr->pr_in) + { + return phase_ptr->pr_p; + } return(0.0); } /* ---------------------------------------------------------------------- */ @@ -1807,35 +1823,35 @@ LDBLE Phreeqc:: pr_phi(const char *phase_name) /* ---------------------------------------------------------------------- */ { - cxxGasPhase* gas_phase_ptr = use.Get_gas_phase_ptr(); - if (gas_phase_ptr != NULL) - { int l; - class phase* phase_ptr = phase_bsearch(phase_name, &l, FALSE); + class phase* phase_ptr = phase_bsearch(phase_name, &l, FALSE); if (phase_ptr == NULL) { error_string = sformatf( "Gas %s, not found.", phase_name); warning_msg(error_string); return (1e-99); } - for (size_t i = 0; i < gas_phase_ptr->Get_gas_comps().size(); i++) + cxxGasPhase* gas_phase_ptr = use.Get_gas_phase_ptr(); + if (gas_phase_ptr != NULL) { + for (size_t i = 0; i < gas_phase_ptr->Get_gas_comps().size(); i++) + { const cxxGasComp* gas_comp_ptr = &(gas_phase_ptr->Get_gas_comps()[i]); int j; class phase* phase_ptr_gas = phase_bsearch(gas_comp_ptr->Get_phase_name().c_str(), &j, FALSE); if (phase_ptr == phase_ptr_gas) { if (gas_phase_ptr->Get_pr_in()) - { - return phase_ptr->pr_phi; - } + return phase_ptr->pr_phi; else - { return gas_comp_ptr->Get_phi(); - } } } } + else if (phase_ptr->in != FALSE && phase_ptr->pr_in) + { + return phase_ptr->pr_phi; + } return (1.0); } /* ---------------------------------------------------------------------- */ diff --git a/cl1.cpp b/cl1.cpp index 4a3a8bbc..22a748e5 100644 --- a/cl1.cpp +++ b/cl1.cpp @@ -1,6 +1,5 @@ #include #include -//#include #include #include #include "Phreeqc.h" diff --git a/common/Utils.cxx b/common/Utils.cxx index 8495cd36..72fc8c2d 100644 --- a/common/Utils.cxx +++ b/common/Utils.cxx @@ -10,7 +10,6 @@ #include "Utils.h" #include "Parser.h" #include "float.h" -//#include #include #if defined(PHREEQCI_GUI) diff --git a/gases.cpp b/gases.cpp index 72d8fe12..9f71089f 100644 --- a/gases.cpp +++ b/gases.cpp @@ -607,6 +607,7 @@ calc_PR(void) phi = B_r * (rz - 1) - log(rz - B) + A / (2.828427 * B) * (B_r - 2.0 * phase_ptr->pr_aa_sum2 / a_aa_sum) * log((rz + 2.41421356 * B) / (rz - 0.41421356 * B)); //phi = (phi > 4.44 ? 4.44 : (phi < -3 ? -3 : phi)); + phi = (phi > 4.44 ? 4.44 : (phi < -4.6 ? -4.6 : phi)); } else phi = -3.0; // fugacity coefficient = 0.05 diff --git a/global_structures.h b/global_structures.h index 053dbfb4..98f16eef 100644 --- a/global_structures.h +++ b/global_structures.h @@ -715,6 +715,7 @@ public: dw_a2 = 0; dw_a_visc = 0; // viscosity correction of SC dw_t_SC = 0; // contribution to SC, for calc'ng transport number with BASIC + dw_t_visc = 0; // contribution to viscosity dw_corr = 0; // dw corrected for TK and mu erm_ddl = 0; // enrichment factor in DDL equiv = 0; // equivalents in exchange species @@ -776,6 +777,7 @@ public: LDBLE dw_a2; LDBLE dw_a_visc; LDBLE dw_t_SC; + LDBLE dw_t_visc; LDBLE dw_corr; LDBLE erm_ddl; LDBLE equiv; diff --git a/inverse.cpp b/inverse.cpp index 7c0b63c9..72dffe40 100644 --- a/inverse.cpp +++ b/inverse.cpp @@ -3582,40 +3582,21 @@ check_isotopes(class inverse *inv_ptr) i = ii; /* use inverse-defined uncertainties first */ -#ifdef NPP - if (j < inv_ptr->i_u[i].uncertainties.size() - && !isnan(inv_ptr->i_u[i].uncertainties[j])) -#else - //if (j < inv_ptr->i_u[i].uncertainties.size() - // && inv_ptr->i_u[i].uncertainties[j] != NAN) if (j < inv_ptr->i_u[i].uncertainties.size() && !std::isnan(inv_ptr->i_u[i].uncertainties[j])) -#endif { kit->second.Set_x_ratio_uncertainty(inv_ptr->i_u[i].uncertainties[j]); /* use solution-defined uncertainties second */ } -#ifdef NPP - else if (inv_ptr->i_u[i].uncertainties.size() > 0 - && !isnan(inv_ptr->i_u[i].uncertainties[inv_ptr->i_u[i].uncertainties.size() - 1])) -#else - //else if (inv_ptr->i_u[i].uncertainties.size() > 0 - // && inv_ptr->i_u[i].uncertainties[(size_t)inv_ptr->i_u[i].uncertainties.size() - 1] != NAN) else if (inv_ptr->i_u[i].uncertainties.size() > 0 && !std::isnan(inv_ptr->i_u[i].uncertainties[inv_ptr->i_u[i].uncertainties.size() - 1])) -#endif { kit->second.Set_x_ratio_uncertainty(inv_ptr->i_u[i].uncertainties[inv_ptr->i_u[i].uncertainties.size() - 1]); /* use solution-defined uncertainties second */ } -#ifdef NPP - else if (!isnan(kit->second.Get_ratio_uncertainty())) -#else - //else if (kit->second.Get_ratio_uncertainty() != NAN) else if (!std::isnan(kit->second.Get_ratio_uncertainty())) -#endif { kit->second.Set_x_ratio_uncertainty( kit->second.Get_ratio_uncertainty()); @@ -3643,12 +3624,7 @@ check_isotopes(class inverse *inv_ptr) } } } -#ifdef NPP - if (isnan(kit->second.Get_x_ratio_uncertainty())) -#else - //if (kit->second.Get_x_ratio_uncertainty() == NAN) if (std::isnan(kit->second.Get_x_ratio_uncertainty())) -#endif { error_string = sformatf( "In solution %d, isotope ratio uncertainty is needed for element: %g%s.", diff --git a/isotopes.cpp b/isotopes.cpp index 46e3c318..e09e43cb 100644 --- a/isotopes.cpp +++ b/isotopes.cpp @@ -900,12 +900,7 @@ punch_calculate_values(void) calculate_value_ptr->name); error_msg(error_string, STOP); } -#ifdef NPP - if (isnan(rate_moles)) -#else - //if (rate_moles == NAN) if (std::isnan(rate_moles)) -#endif { error_string = sformatf( "Calculated value not SAVEed for %s.", calculate_value_ptr->name); @@ -1134,12 +1129,7 @@ calculate_values(void) calculate_value_ptr->name); error_msg(error_string, STOP); } -#ifdef NPP - if (isnan(rate_moles)) -#else - //if (rate_moles == NAN) if (std::isnan(rate_moles)) -#endif { error_string = sformatf( "Calculated value not SAVEed for %s.", calculate_value_ptr->name); @@ -1202,12 +1192,7 @@ calculate_values(void) calculate_value_ptr->name); error_msg(error_string, STOP); } -#ifdef NPP - if (isnan(rate_moles)) -#else - //if (rate_moles == NAN) if (std::isnan(rate_moles)) -#endif { error_string = sformatf( "Calculated value not SAVEed for %s.", calculate_value_ptr->name); diff --git a/kinetics.cpp b/kinetics.cpp index 6e59bcb1..0472265c 100644 --- a/kinetics.cpp +++ b/kinetics.cpp @@ -115,12 +115,7 @@ calc_kinetic_reaction(cxxKinetics *kinetics_ptr, LDBLE time_step) kinetics_comp_ptr->Get_rate_name().c_str()); error_msg(error_string, STOP); } -#ifdef NPP - if (isnan(rate_moles)) -#else - //if (rate_moles == NAN) if (std::isnan(rate_moles)) -#endif { error_string = sformatf( "Moles of reaction not SAVEed for %s.", kinetics_comp_ptr->Get_rate_name().c_str()); diff --git a/prep.cpp b/prep.cpp index f98d584c..cc12fdc9 100644 --- a/prep.cpp +++ b/prep.cpp @@ -3997,6 +3997,7 @@ calc_PR(std::vector phase_ptrs, LDBLE P, LDBLE TK, LDBLE V_m) phi = B_r * (rz - 1) - log(rz - B) + A / (2.828427 * B) * (B_r - 2.0 * phase_ptr->pr_aa_sum2 / a_aa_sum) * log((rz + 2.41421356 * B) / (rz - 0.41421356 * B)); //phi = (phi > 4.44 ? 4.44 : (phi < -3 ? -3 : phi)); + phi = (phi > 4.44 ? 4.44 : (phi < -4.6 ? -4.6 : phi)); //if (phi > 4.44) // phi = 4.44; } diff --git a/read.cpp b/read.cpp index 3052877d..9e875eff 100644 --- a/read.cpp +++ b/read.cpp @@ -2699,7 +2699,7 @@ read_aq_species_vm_parms(const char* cptr, LDBLE * delta_v) /* * Read supcrt parms and Ionic strength terms */ - for (j = 0; j < 11; j++) + for (j = 0; j < 10; j++) { delta_v[j] = 0.0; } @@ -2707,7 +2707,7 @@ read_aq_species_vm_parms(const char* cptr, LDBLE * delta_v) /* Vmax, dmax... delta_v[10] = 999.0; delta_v[11] = 1.0; */ - j = sscanf(cptr, SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT , + j = sscanf(cptr, SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT/* SCANFORMAT SCANFORMAT*/ , /* a1..a4 */ &(delta_v[0]), &(delta_v[1]), &(delta_v[2]), &(delta_v[3]), /* wref */ @@ -2715,9 +2715,9 @@ read_aq_species_vm_parms(const char* cptr, LDBLE * delta_v) /* b_Av */ &(delta_v[5]), /* c1..c4 */ - &(delta_v[6]), &(delta_v[7]), &(delta_v[8]), &(delta_v[9]), + &(delta_v[6]), &(delta_v[7]), &(delta_v[8]), &(delta_v[9])/*, //vmP, exP - &(delta_v[10]), &(delta_v[11])); + &(delta_v[10]), &(delta_v[11])*/); if (j < 1) { input_error++; diff --git a/sundialsmath.cpp b/sundialsmath.cpp index 42487bb7..17143fa5 100644 --- a/sundialsmath.cpp +++ b/sundialsmath.cpp @@ -59,7 +59,6 @@ #include - //#include #include #include "sundialsmath.h" #include "sundialstypes.h" diff --git a/tidy.cpp b/tidy.cpp index db5574b1..2b038c22 100644 --- a/tidy.cpp +++ b/tidy.cpp @@ -979,12 +979,7 @@ tidy_gas_phase(void) error_msg(error_string, CONTINUE); } /* calculate moles */ -#ifdef NPP - if (!isnan(gas_phase_ptr->Get_gas_comps()[j].Get_p_read())) -#else - //if (gas_phase_ptr->Get_gas_comps()[j].Get_p_read() != NAN) if (!std::isnan(gas_phase_ptr->Get_gas_comps()[j].Get_p_read())) -#endif { P += gas_phase_ptr->Get_gas_comps()[j].Get_p_read(); if (!PR) @@ -1013,12 +1008,7 @@ tidy_gas_phase(void) */ if (!gas_phase_ptr->Get_solution_equilibria()) { -#ifdef NPP - if (!isnan(gas_phase_ptr->Get_gas_comps()[j].Get_p_read())) -#else - //if (gas_phase_ptr->Get_gas_comps()[j].Get_p_read() != NAN) if (!std::isnan(gas_phase_ptr->Get_gas_comps()[j].Get_p_read())) -#endif { P += gas_phase_ptr->Get_gas_comps()[j].Get_p_read(); if (!PR) @@ -1689,12 +1679,7 @@ tidy_ss_assemblage(void) phase_ptr->moles_x = 0; phase_ptr->fraction_x = 0; } -#ifdef NPP - if (isnan(comp_ptr->Get_moles())) -#else - //if (comp_ptr->Get_moles() == NAN) if (std::isnan(comp_ptr->Get_moles())) -#endif { input_error++; error_string = sformatf( @@ -3021,12 +3006,7 @@ tidy_isotopes(void) temp_iso.Set_total(0); temp_iso.Set_ratio(master[k]->isotope_ratio); temp_iso.Set_ratio_uncertainty(master[k]->isotope_ratio_uncertainty); -#ifdef NPP - if (!isnan(master[k]->isotope_ratio_uncertainty)) -#else - //if (master[k]->isotope_ratio_uncertainty != NAN) if (!std::isnan(master[k]->isotope_ratio_uncertainty)) -#endif { temp_iso.Set_ratio_uncertainty_defined(true); } diff --git a/transport.cpp b/transport.cpp index 378d818b..90f51054 100644 --- a/transport.cpp +++ b/transport.cpp @@ -5963,10 +5963,10 @@ viscosity(void) We use the harmonic mean of the Dw's, and the arithmetic mean of the z's, both weighted by the equivalent concentration. */ - LDBLE D1, D2, z1, z2, m_plus, m_min, eq_plus, eq_min, eq_dw_plus, eq_dw_min, t1, t2, ta; + LDBLE D1, D2, z1, z2, m_plus, m_min, eq_plus, eq_min, eq_dw_plus, eq_dw_min, t1, t2, t3, fan = 1; LDBLE A, psi, Bc = 0, Dc = 0, Dw = 0.0, l_z, f_z, lm, V_an, m_an, V_Cl, tc; - m_plus = m_min = eq_plus = eq_min = eq_dw_plus = eq_dw_min = V_an = m_an = V_Cl = ta = 0; + m_plus = m_min = eq_plus = eq_min = eq_dw_plus = eq_dw_min = V_an = m_an = V_Cl = 0; tc = (tc_x > 200) ? 200 : tc_x; @@ -5978,6 +5978,7 @@ viscosity(void) continue; if (s_x[i]->Jones_Dole[0] || s_x[i]->Jones_Dole[1] || s_x[i]->Jones_Dole[3]) { + s_x[i]->dw_t_visc = 0; t1 = s_x[i]->moles / mass_water_aq_x; l_z = fabs(s_x[i]->z); if (l_z) @@ -5993,8 +5994,9 @@ viscosity(void) s_x[i]->Jones_Dole[8] / exp(-s_x[i]->Jones_Dole[4] * 25.0); } // find B * m and D * m * mu^d3 - Bc += (s_x[i]->Jones_Dole[0] + + s_x[i]->dw_t_visc = (s_x[i]->Jones_Dole[0] + s_x[i]->Jones_Dole[1] * exp(-s_x[i]->Jones_Dole[2] * tc)) * t1; + Bc += s_x[i]->dw_t_visc; // define f_I from the exponent of the D * m^d3 term... if (s_x[i]->Jones_Dole[5] >= 1) t2 = mu_x / 3 / s_x[i]->Jones_Dole[5]; @@ -6002,8 +6004,10 @@ viscosity(void) t2 = -0.8 / s_x[i]->Jones_Dole[5]; else t2 = -1; - Dc += (s_x[i]->Jones_Dole[3] * exp(-s_x[i]->Jones_Dole[4] * tc)) * + t3 = (s_x[i]->Jones_Dole[3] * exp(-s_x[i]->Jones_Dole[4] * tc)) * t1 * (pow(mu_x, s_x[i]->Jones_Dole[5])*(1 + t2) + pow(t1 * f_z, s_x[i]->Jones_Dole[5])) / (2 + t2); + s_x[i]->dw_t_visc += t3; + Dc += t3; //output_msg(sformatf("\t%s\t%e\t%e\t%e\n", s_x[i]->name, t1, Bc, Dc )); } // parms for A... @@ -6023,13 +6027,11 @@ viscosity(void) { V_Cl = s_x[i]->logk[vm_tc]; V_an += V_Cl * s_x[i]->moles; - ta += s_x[i]->moles; m_an += s_x[i]->moles; } else// if (s_x[i]->Jones_Dole[6]) { V_an += s_x[i]->logk[vm_tc] * s_x[i]->Jones_Dole[6] * s_x[i]->moles; - ta += s_x[i]->moles; m_an += s_x[i]->moles; } if (Dw) @@ -6064,23 +6066,24 @@ viscosity(void) A = 0; viscos = viscos_0 + A * sqrt((eq_plus + eq_min) / 2 / mass_water_aq_x); if (m_an) - { V_an /= m_an; - ta /= m_an; - } if (!V_Cl) V_Cl = calc_vm_Cl(); - if (V_an && V_Cl && ta) - viscos += (viscos_0 * (2 - ta * V_an / V_Cl) * (Bc + Dc)); - else - viscos += (viscos_0 * (Bc + Dc)); + if (V_an) + fan = 2 - V_an / V_Cl; + //else + // fan = 1; + viscos += viscos_0 * fan * (Bc + Dc); if (viscos < 0) { viscos = viscos_0; warning_msg("viscosity < 0, reset to viscosity of pure water"); } + for (i = 0; i < (int)this->s_x.size(); i++) + { + s_x[i]->dw_t_visc /= (Bc + Dc); + } return viscos; - } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: From dd7aa466004fee2b8f0ddc5ba8c04e6199af7fc8 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Fri, 26 May 2023 04:32:50 +0000 Subject: [PATCH 078/384] Squashed 'phreeqcpp/' changes from 82515f7..6dade54 6dade54 Merge commit '4f698833b1b758cefb3440762b18bec08bb945b9' 4f69883 Squashed 'common/' changes from 7c31f5b..a088e29 git-subtree-dir: phreeqcpp git-subtree-split: 6dade54926bd93a4c9a2bcbd792a41b525784929 From bffad8cce526ada5939abdfb2f83b900ec4536c1 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Fri, 26 May 2023 14:28:22 -0600 Subject: [PATCH 079/384] Added sleeps after curl -X POST --- .gitlab-ci.yml | 3 +++ 1 file changed, 3 insertions(+) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 2ba5c9c8..0a612699 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -40,10 +40,13 @@ trigger-downstream: script: - echo triggering iphreeqc - curl -X POST -F token=${IPHREEQC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${IPHREEQC_ID}/trigger/pipeline + - sleep 180 - echo triggering iphreeqccom - curl -X POST -F token=${IPHREEQCCOM_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${IPHREEQCCOM_ID}/trigger/pipeline + - sleep 120 - echo triggering phreeqc - curl -X POST -F token=${PHREEQC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${PHREEQC_ID}/trigger/pipeline + - sleep 120 ## Upstream Projects ## none From a68a18618441ca8122cfe9cbf39ec227ac80088b Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Fri, 26 May 2023 14:28:22 -0600 Subject: [PATCH 080/384] Added sleeps after curl -X POST --- .gitlab-ci.yml | 3 +++ 1 file changed, 3 insertions(+) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 2ba5c9c8..0a612699 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -40,10 +40,13 @@ trigger-downstream: script: - echo triggering iphreeqc - curl -X POST -F token=${IPHREEQC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${IPHREEQC_ID}/trigger/pipeline + - sleep 180 - echo triggering iphreeqccom - curl -X POST -F token=${IPHREEQCCOM_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${IPHREEQCCOM_ID}/trigger/pipeline + - sleep 120 - echo triggering phreeqc - curl -X POST -F token=${PHREEQC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${PHREEQC_ID}/trigger/pipeline + - sleep 120 ## Upstream Projects ## none From 82c54e705487e1564621258cd9cf8f1bbd8dbf71 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Fri, 26 May 2023 14:28:22 -0600 Subject: [PATCH 081/384] Added sleeps after curl -X POST --- .gitlab-ci.yml | 3 +++ 1 file changed, 3 insertions(+) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index e8a831e0..2dfbfcdf 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -40,10 +40,13 @@ trigger-downstream: script: - echo triggering iphreeqc - curl -X POST -F token=${IPHREEQC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${IPHREEQC_ID}/trigger/pipeline + - sleep 180 - echo triggering iphreeqccom - curl -X POST -F token=${IPHREEQCCOM_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${IPHREEQCCOM_ID}/trigger/pipeline + - sleep 120 - echo triggering phreeqc - curl -X POST -F token=${PHREEQC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${PHREEQC_ID}/trigger/pipeline + - sleep 120 ## Upstream Projects ## none From 45020608bd33dc0379537be6488000f0401c8ac4 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Fri, 26 May 2023 14:28:22 -0600 Subject: [PATCH 082/384] Added sleeps after curl -X POST --- .gitlab-ci.yml | 3 +++ 1 file changed, 3 insertions(+) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index e4b2c77a..d63abdea 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -40,10 +40,13 @@ trigger-downstream: script: - echo triggering iphreeqc - curl -X POST -F token=${IPHREEQC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${IPHREEQC_ID}/trigger/pipeline + - sleep 180 - echo triggering iphreeqccom - curl -X POST -F token=${IPHREEQCCOM_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${IPHREEQCCOM_ID}/trigger/pipeline + - sleep 120 - echo triggering phreeqc - curl -X POST -F token=${PHREEQC_TRIGGER} -F ref=master https://code.chs.usgs.gov/api/v4/projects/${PHREEQC_ID}/trigger/pipeline + - sleep 120 ## Upstream Projects ## none From d037d5dd5e9f686a236886814fccc9c7421b24d3 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Sat, 27 May 2023 20:37:53 -0600 Subject: [PATCH 083/384] End of Run after --- CMakeLists.txt | 97 +- ex1.out | 286 +- ex10.out | 2248 ++-- ex10.sel | 1220 +- ex11.out | 41 +- ex11trn.sel | 96 +- ex12.out | 10 +- ex12.sel | 124 +- ex12a.out | 12 +- ex12a.sel | 162 +- ex13a.out | 46 +- ex13ac.out | 54 +- ex13b.out | 46 +- ex13c.out | 46 +- ex14.out | 694 +- ex14.sel | 402 +- ex15.out | 18 +- ex15.sel | 8 +- ex15a.out | 18 +- ex15b.out | 4 - ex16.out | 178 +- ex17.out | 56 +- ex17b.out | 2526 ++-- ex18.out | 381 +- ex19.out | 4 - ex19b.out | 4 - ex2.out | 1245 +- ex2.sel | 36 +- ex20-c13.tsv | 2 +- ex20-c14.tsv | 2 +- ex20a.out | 90 +- ex20b.out | 29025 +++++++++++++++++++++---------------------- ex21.out | 161 +- ex21_Cs_rad.tsv | 1608 +-- ex21_Na_tr_rad.tsv | 170 +- ex22.out | 5553 +++++---- ex2b.out | 4 - ex3.out | 687 +- ex4.out | 230 +- ex5.out | 924 +- ex5.sel | 12 +- ex6.out | 641 +- ex6A-B.sel | 22 +- ex7.out | 1065 +- ex7.sel | 46 +- ex8.out | 514 +- ex8.sel | 4 +- ex9.out | 748 +- ex9.sel | 22 +- 49 files changed, 25909 insertions(+), 25683 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index ef1dc5bb..8f5dac59 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -116,163 +116,196 @@ configure_file ( # # ex1 +configure_file(ex1 ex1 COPYONLY) add_test(NAME examples.ex1 -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex1 ex1.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex1.log + COMMAND $ ../examples/ex1 ex1.out ../database/phreeqc.dat ex1.log ) # ex2 +configure_file(ex2 ex2 COPYONLY) add_test(NAME examples.ex2 -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex2 ex2.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex2.log + COMMAND $ ../examples/ex2 ex2.out ../database/phreeqc.dat ex2.log ) # ex2b +configure_file(ex2b ex2b COPYONLY) add_test(NAME examples.ex2b -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex2b ex2b.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex2b.log + COMMAND $ ../examples/ex2b ex2b.out ../database/phreeqc.dat ex2b.log ) # ex3 +configure_file(ex3 ex3 COPYONLY) add_test(NAME examples.ex3 -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex3 ex3.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex3.log + COMMAND $ ../examples/ex3 ex3.out ../database/phreeqc.dat ex3.log ) # ex4 +configure_file(ex4 ex4 COPYONLY) add_test(NAME examples.ex4 -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex4 ex4.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex4.log + COMMAND $ ../examples/ex4 ex4.out ../database/phreeqc.dat ex4.log ) # ex5 +configure_file(ex5 ex5 COPYONLY) add_test(NAME examples.ex5 -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex5 ex5.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex5.log + COMMAND $ ../examples/ex5 ex5.out ../database/phreeqc.dat ex5.log ) # ex6 +configure_file(ex6 ex6 COPYONLY) add_test(NAME examples.ex6 -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex6 ex6.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex6.log + COMMAND $ ../examples/ex6 ex6.out ../database/phreeqc.dat ex6.log ) # ex7 +configure_file(ex7 ex7 COPYONLY) add_test(NAME examples.ex7 -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex7 ex7.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex7.log + COMMAND $ ../examples/ex7 ex7.out ../database/phreeqc.dat ex7.log ) # ex8 +configure_file(ex8 ex8 COPYONLY) add_test(NAME examples.ex8 -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex8 ex8.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex8.log + COMMAND $ ../examples/ex8 ex8.out ../database/phreeqc.dat ex8.log ) # ex9 +configure_file(ex9 ex9 COPYONLY) add_test(NAME examples.ex9 -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex9 ex9.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex9.log + COMMAND $ ../examples/ex9 ex9.out ../database/phreeqc.dat ex9.log ) # ex10 +configure_file(ex10 ex10 COPYONLY) add_test(NAME examples.ex10 -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex10 ex10.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex10.log + COMMAND $ ../examples/ex10 ex10.out ../database/phreeqc.dat ex10.log ) # ex11 +configure_file(ex11 ex11 COPYONLY) add_test(NAME examples.ex11 -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex11 ex11.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex11.log + COMMAND $ ../examples/ex11 ex11.out ../database/phreeqc.dat ex11.log ) # ex12 +configure_file(ex12 ex12 COPYONLY) add_test(NAME examples.ex12 -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex12 ex12.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex12.log + COMMAND $ ../examples/ex12 ex12.out ../database/phreeqc.dat ex12.log ) # ex12a +configure_file(ex12a ex12a COPYONLY) add_test(NAME examples.ex12a -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex12a ex12a.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex12a.log + COMMAND $ ../examples/ex12a ex12a.out ../database/phreeqc.dat ex12a.log ) # ex13a +configure_file(ex13a ex13a COPYONLY) add_test(NAME examples.ex13a -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex13a ex13a.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex13a.log + COMMAND $ ../examples/ex13a ex13a.out ../database/phreeqc.dat ex13a.log ) # ex13b +configure_file(ex13b ex13b COPYONLY) add_test(NAME examples.ex13b -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex13b ex13b.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex13b.log + COMMAND $ ../examples/ex13b ex13b.out ../database/phreeqc.dat ex13b.log ) # ex13c +configure_file(ex13c ex13c COPYONLY) add_test(NAME examples.ex13c -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex13c ex13c.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex13c.log + COMMAND $ ../examples/ex13c ex13c.out ../database/phreeqc.dat ex13c.log ) # ex13ac +configure_file(ex13ac ex13ac COPYONLY) add_test(NAME examples.ex13ac -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex13ac ex13ac.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex13ac.log + COMMAND $ ../examples/ex13ac ex13ac.out ../database/phreeqc.dat ex13ac.log ) # ex14 +configure_file(ex14 ex14 COPYONLY) add_test(NAME examples.ex14 -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex14 ex14.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex14.log + COMMAND $ ../examples/ex14 ex14.out ../database/phreeqc.dat ex14.log ) # ex15 +configure_file(ex15 ex15 COPYONLY) +configure_file(ex15.dat ex15.dat COPYONLY) add_test(NAME examples.ex15 -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex15 ex15.out ${PROJECT_SOURCE_DIR}/examples/ex15.dat ex15.log + COMMAND $ ../examples/ex15 ex15.out ../examples/ex15.dat ex15.log ) # ex15a +configure_file(ex15a ex15a COPYONLY) add_test(NAME examples.ex15a -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex15a ex15a.out ${PROJECT_SOURCE_DIR}/examples/ex15.dat ex15a.log + COMMAND $ ../examples/ex15a ex15a.out ../examples/ex15.dat ex15a.log ) # ex15b +configure_file(ex15b ex15b COPYONLY) add_test(NAME examples.ex15b -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex15b ex15b.out ${PROJECT_SOURCE_DIR}/examples/ex15.dat ex15b.log + COMMAND $ ../examples/ex15b ex15b.out ../examples/ex15.dat ex15b.log ) # ex16 +configure_file(ex16 ex16 COPYONLY) add_test(NAME examples.ex16 -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex16 ex16.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex16.log + COMMAND $ ../examples/ex16 ex16.out ../database/phreeqc.dat ex16.log ) # ex17 +configure_file(ex17 ex17 COPYONLY) add_test(NAME examples.ex17 -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex17 ex17.out ${PROJECT_SOURCE_DIR}/database/pitzer.dat ex17.log + COMMAND $ ../examples/ex17 ex17.out ../database/pitzer.dat ex17.log ) # ex17b +configure_file(ex17b ex17b COPYONLY) add_test(NAME examples.ex17b -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex17b ex17b.out ${PROJECT_SOURCE_DIR}/database/pitzer.dat ex17b.log + COMMAND $ ../examples/ex17b ex17b.out ../database/pitzer.dat ex17b.log ) # ex18 +configure_file(ex18 ex18 COPYONLY) add_test(NAME examples.ex18 -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex18 ex18.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex18.log + COMMAND $ ../examples/ex18 ex18.out ../database/phreeqc.dat ex18.log ) # ex19 +configure_file(ex19 ex19 COPYONLY) add_test(NAME examples.ex19 -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex19 ex19.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex19.log + COMMAND $ ../examples/ex19 ex19.out ../database/phreeqc.dat ex19.log ) # ex19b +configure_file(ex19b ex19b COPYONLY) add_test(NAME examples.ex19b -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex19b ex19b.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex19b.log + COMMAND $ ../examples/ex19b ex19b.out ../database/phreeqc.dat ex19b.log ) # ex20a +configure_file(ex20a ex20a COPYONLY) add_test(NAME examples.ex20a -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex20a ex20a.out ${PROJECT_SOURCE_DIR}/database/iso.dat ex20a.log + COMMAND $ ../examples/ex20a ex20a.out ../database/iso.dat ex20a.log ) # ex20b +configure_file(ex20b ex20b COPYONLY) add_test(NAME examples.ex20b -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex20b ex20b.out ${PROJECT_SOURCE_DIR}/database/iso.dat ex20b.log + COMMAND $ ../examples/ex20b ex20b.out ../database/iso.dat ex20b.log ) # ex21 +configure_file(ex21 ex21 COPYONLY) add_test(NAME examples.ex21 -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex21 ex21.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex21.log + COMMAND $ ../examples/ex21 ex21.out ../database/phreeqc.dat ex21.log ) # ex22 +configure_file(ex22 ex22 COPYONLY) add_test(NAME examples.ex22 -COMMAND $ ${PROJECT_SOURCE_DIR}/examples/ex22 ex22.out ${PROJECT_SOURCE_DIR}/database/phreeqc.dat ex22.log + COMMAND $ ../examples/ex22 ex22.out ../database/phreeqc.dat ex22.log ) # Note when setting labels we can't use the following: diff --git a/ex1.out b/ex1.out index 02122a81..be4a317d 100644 --- a/ex1.out +++ b/ex1.out @@ -111,7 +111,7 @@ Initial solution 1. SEAWATER FROM NORDSTROM AND OTHERS (1979) N(-3) 1.724e-06 1.724e-06 N(5) 4.847e-06 4.847e-06 Na 4.854e-01 4.854e-01 - O(0) 4.376e-04 4.376e-04 Equilibrium with O2(g) + O(0) 4.377e-04 4.377e-04 Equilibrium with O2(g) S(6) 2.926e-02 2.926e-02 Si 7.382e-05 7.382e-05 U 1.437e-08 1.437e-08 @@ -120,202 +120,210 @@ Initial solution 1. SEAWATER FROM NORDSTROM AND OTHERS (1979) pH = 8.220 pe = 8.451 - Specific Conductance (S/cm, 25C) = 52630 - Density (g/cm) = 1.02323 - Volume (L) = 1.01282 + Specific Conductance (µS/cm, 25°C) = 52731 + Density (g/cm³) = 1.02327 + Volume (L) = 1.01279 + Viscosity (mPa s) = 0.95702 Activity of water = 0.981 - Ionic strength (mol/kgw) = 6.747e-01 + Ionic strength (mol/kgw) = 6.741e-01 Mass of water (kg) = 1.000e+00 - Total carbon (mol/kg) = 2.182e-03 - Total CO2 (mol/kg) = 2.182e-03 - Temperature (C) = 25.00 + Total carbon (mol/kg) = 2.239e-03 + Total CO2 (mol/kg) = 2.239e-03 + Temperature (°C) = 25.00 Electrical balance (eq) = 7.936e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.07 Iterations = 7 - Total H = 1.110147e+02 - Total O = 5.563054e+01 + Total H = 1.110148e+02 + Total O = 5.563071e+01 ---------------------------------Redox couples--------------------------------- Redox couple pe Eh (volts) - N(-3)/N(5) 4.6750 0.2766 - O(-2)/O(0) 12.4062 0.7339 + N(-3)/N(5) 4.6754 0.2766 + O(-2)/O(0) 12.4061 0.7339 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 2.705e-06 1.647e-06 -5.568 -5.783 -0.215 -2.63 - H+ 7.984e-09 6.026e-09 -8.098 -8.220 -0.122 0.00 + H+ 7.983e-09 6.026e-09 -8.098 -8.220 -0.122 0.00 H2O 5.551e+01 9.806e-01 1.744 -0.009 0.000 18.07 -C(4) 2.182e-03 - HCO3- 1.485e-03 1.003e-03 -2.828 -2.999 -0.171 26.98 - MgHCO3+ 2.560e-04 1.610e-04 -3.592 -3.793 -0.201 5.82 - NaHCO3 1.658e-04 1.936e-04 -3.781 -3.713 0.067 1.80 - MgCO3 8.747e-05 1.022e-04 -4.058 -3.991 0.067 -17.09 - NaCO3- 6.682e-05 4.990e-05 -4.175 -4.302 -0.127 2.88 - CaHCO3+ 4.453e-05 3.081e-05 -4.351 -4.511 -0.160 9.96 - CO3-2 3.752e-05 7.803e-06 -4.426 -5.108 -0.682 -1.97 - CaCO3 2.703e-05 3.158e-05 -4.568 -4.501 0.067 -14.60 - CO2 1.186e-05 1.385e-05 -4.926 -4.858 0.067 34.43 - UO2(CO3)3-4 1.252e-08 1.173e-10 -7.902 -9.931 -2.028 (0) - UO2(CO3)2-2 1.837e-09 5.716e-10 -8.736 -9.243 -0.507 (0) - MnCO3 2.550e-10 2.979e-10 -9.593 -9.526 0.067 (0) - MnHCO3+ 6.475e-11 4.294e-11 -10.189 -10.367 -0.178 (0) - UO2CO3 7.662e-12 8.950e-12 -11.116 -11.048 0.067 (0) - (CO2)2 3.015e-12 3.522e-12 -11.521 -11.453 0.067 68.87 - FeCO3 1.796e-20 2.098e-20 -19.746 -19.678 0.067 (0) - FeHCO3+ 1.505e-20 1.124e-20 -19.823 -19.949 -0.127 (0) +C(4) 2.239e-03 + HCO3- 1.572e-03 1.062e-03 -2.804 -2.974 -0.170 26.61 + MgHCO3+ 2.743e-04 1.725e-04 -3.562 -3.763 -0.201 5.82 + NaHCO3 1.700e-04 2.429e-04 -3.770 -3.615 0.155 28.00 + MgCO3 9.375e-05 1.095e-04 -4.028 -3.961 0.067 -17.09 + CaHCO3+ 4.751e-05 3.287e-05 -4.323 -4.483 -0.160 9.96 + CO3-2 3.972e-05 8.263e-06 -4.401 -5.083 -0.682 -0.40 + CaCO3 2.884e-05 3.369e-05 -4.540 -4.473 0.067 -14.60 + CO2 1.324e-05 1.467e-05 -4.878 -4.834 0.044 34.43 + UO2(CO3)3-4 1.262e-08 1.180e-10 -7.899 -9.928 -2.029 (0) + UO2(CO3)2-2 1.746e-09 5.430e-10 -8.758 -9.265 -0.507 (0) + MnCO3 2.699e-10 3.153e-10 -9.569 -9.501 0.067 (0) + MnHCO3+ 6.852e-11 4.545e-11 -10.164 -10.342 -0.178 (0) + UO2CO3 6.874e-12 8.028e-12 -11.163 -11.095 0.067 (0) + (CO2)2 3.382e-12 3.949e-12 -11.471 -11.403 0.067 68.87 + FeCO3 1.902e-20 2.222e-20 -19.721 -19.653 0.067 (0) + FeHCO3+ 1.593e-20 1.190e-20 -19.798 -19.924 -0.127 (0) Ca 1.066e-02 - Ca+2 9.634e-03 2.409e-03 -2.016 -2.618 -0.602 -16.69 - CaSO4 9.548e-04 1.115e-03 -3.020 -2.953 0.067 7.50 - CaHCO3+ 4.453e-05 3.081e-05 -4.351 -4.511 -0.160 9.96 - CaCO3 2.703e-05 3.158e-05 -4.568 -4.501 0.067 -14.60 - CaOH+ 8.711e-08 6.505e-08 -7.060 -7.187 -0.127 (0) - CaHSO4+ 5.915e-11 4.418e-11 -10.228 -10.355 -0.127 (0) + Ca+2 9.706e-03 2.427e-03 -2.013 -2.615 -0.602 -16.70 + CaSO4 8.788e-04 1.026e-03 -3.056 -2.989 0.067 7.50 + CaHCO3+ 4.751e-05 3.287e-05 -4.323 -4.483 -0.160 9.96 + CaCO3 2.884e-05 3.369e-05 -4.540 -4.473 0.067 -14.60 + CaOH+ 8.777e-08 6.554e-08 -7.057 -7.183 -0.127 (0) + CaHSO4+ 5.444e-11 4.065e-11 -10.264 -10.391 -0.127 (0) Cl 5.657e-01 Cl- 5.657e-01 3.568e-01 -0.247 -0.448 -0.200 18.79 - MnCl+ 1.053e-09 6.985e-10 -8.977 -9.156 -0.178 -2.79 - MnCl2 9.314e-11 1.088e-10 -10.031 -9.963 0.067 85.89 + MnCl+ 1.053e-09 6.982e-10 -8.978 -9.156 -0.178 -2.79 + HCl 3.826e-10 7.407e-10 -9.417 -9.130 0.287 (0) + MnCl2 9.313e-11 1.088e-10 -10.031 -9.964 0.067 85.89 MnCl3- 1.612e-11 1.069e-11 -10.793 -10.971 -0.178 45.79 - FeCl+2 1.519e-18 2.939e-19 -17.818 -18.532 -0.713 (0) + FeCl+2 1.518e-18 2.939e-19 -17.819 -18.532 -0.713 (0) FeCl2+ 7.062e-19 4.684e-19 -18.151 -18.329 -0.178 (0) - FeCl+ 7.392e-20 5.521e-20 -19.131 -19.258 -0.127 (0) + FeCl+ 7.393e-20 5.521e-20 -19.131 -19.258 -0.127 (0) FeCl3 1.431e-20 1.671e-20 -19.844 -19.777 0.067 (0) -Fe(2) 6.492e-19 - Fe+2 4.892e-19 1.121e-19 -18.311 -18.950 -0.640 -20.71 - FeCl+ 7.392e-20 5.521e-20 -19.131 -19.258 -0.127 (0) - FeSO4 4.443e-20 5.190e-20 -19.352 -19.285 0.067 18.97 - FeCO3 1.796e-20 2.098e-20 -19.746 -19.678 0.067 (0) - FeHCO3+ 1.505e-20 1.124e-20 -19.823 -19.949 -0.127 (0) - FeOH+ 8.698e-21 5.768e-21 -20.061 -20.239 -0.178 (0) - Fe(OH)2 6.840e-24 7.990e-24 -23.165 -23.097 0.067 (0) - Fe(OH)3- 7.284e-26 4.831e-26 -25.138 -25.316 -0.178 (0) - FeHSO4+ 2.753e-27 2.056e-27 -26.560 -26.687 -0.127 (0) +Fe(2) 6.471e-19 + Fe+2 4.889e-19 1.121e-19 -18.311 -18.950 -0.640 -20.71 + FeCl+ 7.393e-20 5.521e-20 -19.131 -19.258 -0.127 (0) + FeSO4 4.059e-20 4.740e-20 -19.392 -19.324 0.067 18.97 + FeCO3 1.902e-20 2.222e-20 -19.721 -19.653 0.067 (0) + FeHCO3+ 1.593e-20 1.190e-20 -19.798 -19.924 -0.127 (0) + FeOH+ 8.696e-21 5.768e-21 -20.061 -20.239 -0.178 (0) + Fe(OH)2 6.840e-24 7.989e-24 -23.165 -23.098 0.067 (0) + Fe(OH)3- 7.282e-26 4.830e-26 -25.138 -25.316 -0.178 (0) + FeHSO4+ 2.514e-27 1.877e-27 -26.600 -26.726 -0.127 (0) Fe(3) 3.711e-08 Fe(OH)3 2.771e-08 3.237e-08 -7.557 -7.490 0.067 (0) - Fe(OH)4- 7.114e-09 4.804e-09 -8.148 -8.318 -0.171 (0) - Fe(OH)2+ 2.287e-09 1.544e-09 -8.641 -8.811 -0.171 (0) - FeOH+2 1.481e-13 2.866e-14 -12.829 -13.543 -0.713 (0) - FeCl+2 1.519e-18 2.939e-19 -17.818 -18.532 -0.713 (0) - FeSO4+ 1.174e-18 7.786e-19 -17.930 -18.109 -0.178 (0) + Fe(OH)4- 7.113e-09 4.804e-09 -8.148 -8.318 -0.170 (0) + Fe(OH)2+ 2.286e-09 1.544e-09 -8.641 -8.811 -0.170 (0) + FeOH+2 1.480e-13 2.865e-14 -12.830 -13.543 -0.713 (0) + FeCl+2 1.518e-18 2.939e-19 -17.819 -18.532 -0.713 (0) + FeSO4+ 1.072e-18 7.111e-19 -17.970 -18.148 -0.178 (0) FeCl2+ 7.062e-19 4.684e-19 -18.151 -18.329 -0.178 (0) - Fe+3 3.432e-19 2.727e-20 -18.464 -19.564 -1.100 (0) - Fe(SO4)2- 5.939e-20 4.436e-20 -19.226 -19.353 -0.127 (0) + Fe+3 3.430e-19 2.727e-20 -18.465 -19.564 -1.100 (0) + Fe(SO4)2- 4.955e-20 3.700e-20 -19.305 -19.432 -0.127 (0) FeCl3 1.431e-20 1.671e-20 -19.844 -19.777 0.067 (0) - Fe2(OH)2+4 2.359e-24 2.210e-26 -23.627 -25.656 -2.028 (0) - FeHSO4+2 4.038e-26 1.256e-26 -25.394 -25.901 -0.507 (0) - Fe3(OH)4+5 1.053e-29 7.130e-33 -28.978 -32.147 -3.169 (0) + Fe2(OH)2+4 2.362e-24 2.210e-26 -23.627 -25.656 -2.029 (0) + FeHSO4+2 3.689e-26 1.147e-26 -25.433 -25.940 -0.507 (0) + Fe3(OH)4+5 1.055e-29 7.127e-33 -28.977 -32.147 -3.170 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.470 -44.402 0.067 28.61 K 1.058e-02 - K+ 1.040e-02 6.483e-03 -1.983 -2.188 -0.205 9.66 - KSO4- 1.756e-04 1.186e-04 -3.755 -3.926 -0.171 34.85 + K+ 1.043e-02 6.501e-03 -1.982 -2.187 -0.205 9.66 + KSO4- 1.471e-04 5.683e-05 -3.832 -4.245 -0.413 32.21 Mg 5.507e-02 - Mg+2 4.754e-02 1.372e-02 -1.323 -1.863 -0.540 -20.41 - MgSO4 7.170e-03 8.375e-03 -2.144 -2.077 0.067 5.84 - MgHCO3+ 2.560e-04 1.610e-04 -3.592 -3.793 -0.201 5.82 - MgCO3 8.747e-05 1.022e-04 -4.058 -3.991 0.067 -17.09 - MgOH+ 1.151e-05 8.107e-06 -4.939 -5.091 -0.152 (0) + Mg+2 4.811e-02 1.389e-02 -1.318 -1.857 -0.540 -20.41 + MgSO4 6.339e-03 8.646e-03 -2.198 -2.063 0.135 -0.83 + MgHCO3+ 2.743e-04 1.725e-04 -3.562 -3.763 -0.201 5.82 + Mg(SO4)2-2 2.394e-04 6.773e-05 -3.621 -4.169 -0.548 48.54 + MgCO3 9.375e-05 1.095e-04 -4.028 -3.961 0.067 -17.09 + MgOH+ 1.164e-05 8.204e-06 -4.934 -5.086 -0.152 (0) Mn(2) 3.773e-09 - Mn+2 2.097e-09 4.806e-10 -8.678 -9.318 -0.640 -16.36 - MnCl+ 1.053e-09 6.985e-10 -8.977 -9.156 -0.178 -2.79 - MnCO3 2.550e-10 2.979e-10 -9.593 -9.526 0.067 (0) - MnSO4 1.905e-10 2.225e-10 -9.720 -9.653 0.067 22.54 - MnCl2 9.314e-11 1.088e-10 -10.031 -9.963 0.067 85.89 - MnHCO3+ 6.475e-11 4.294e-11 -10.189 -10.367 -0.178 (0) + Mn+2 2.095e-09 4.803e-10 -8.679 -9.318 -0.640 -16.36 + MnCl+ 1.053e-09 6.982e-10 -8.978 -9.156 -0.178 -2.79 + MnCO3 2.699e-10 3.153e-10 -9.569 -9.501 0.067 (0) + MnSO4 1.739e-10 2.031e-10 -9.760 -9.692 0.067 22.54 + MnCl2 9.313e-11 1.088e-10 -10.031 -9.964 0.067 85.89 + MnHCO3+ 6.852e-11 4.545e-11 -10.164 -10.342 -0.178 (0) MnCl3- 1.612e-11 1.069e-11 -10.793 -10.971 -0.178 45.79 - MnOH+ 3.031e-12 2.010e-12 -11.518 -11.697 -0.178 (0) - Mn(OH)3- 4.949e-20 3.282e-20 -19.305 -19.484 -0.178 (0) + MnOH+ 3.029e-12 2.009e-12 -11.519 -11.697 -0.178 (0) + Mn(OH)3- 4.946e-20 3.281e-20 -19.306 -19.484 -0.178 (0) Mn(NO3)2 1.325e-20 1.548e-20 -19.878 -19.810 0.067 41.04 -Mn(3) 5.279e-26 - Mn+3 5.279e-26 4.195e-27 -25.277 -26.377 -1.100 (0) +Mn(3) 5.274e-26 + Mn+3 5.274e-26 4.193e-27 -25.278 -26.377 -1.100 (0) N(-3) 1.724e-06 - NH4+ 1.610e-06 9.048e-07 -5.793 -6.043 -0.250 18.44 - NH3 7.326e-08 8.557e-08 -7.135 -7.068 0.067 24.42 - NH4SO4- 4.064e-08 3.035e-08 -7.391 -7.518 -0.127 39.98 + NH4+ 1.597e-06 8.981e-07 -5.797 -6.047 -0.250 18.44 + NH3 7.272e-08 8.494e-08 -7.138 -7.071 0.067 24.42 + NH4SO4- 5.343e-08 2.752e-08 -7.272 -7.560 -0.288 40.39 N(5) 4.847e-06 - NO3- 4.847e-06 2.844e-06 -5.314 -5.546 -0.232 30.29 + NO3- 4.847e-06 2.845e-06 -5.314 -5.546 -0.231 30.29 Mn(NO3)2 1.325e-20 1.548e-20 -19.878 -19.810 0.067 41.04 Na 4.854e-01 - Na+ 4.785e-01 3.434e-01 -0.320 -0.464 -0.144 -0.50 - NaSO4- 6.637e-03 4.482e-03 -2.178 -2.349 -0.171 21.21 - NaHCO3 1.658e-04 1.936e-04 -3.781 -3.713 0.067 1.80 - NaCO3- 6.682e-05 4.990e-05 -4.175 -4.302 -0.127 2.88 - NaOH 4.843e-17 5.657e-17 -16.315 -16.247 0.067 (0) -O(0) 4.376e-04 - O2 2.188e-04 2.556e-04 -3.660 -3.592 0.067 30.40 + Na+ 4.769e-01 3.422e-01 -0.322 -0.466 -0.144 -0.50 + NaSO4- 8.339e-03 3.180e-03 -2.079 -2.498 -0.419 20.67 + NaHCO3 1.700e-04 2.429e-04 -3.770 -3.615 0.155 28.00 + NaOH 4.827e-17 5.637e-17 -16.316 -16.249 0.067 (0) +O(0) 4.377e-04 + O2 2.189e-04 2.556e-04 -3.660 -3.592 0.067 30.40 S(6) 2.926e-02 - SO4-2 1.432e-02 2.604e-03 -1.844 -2.584 -0.740 17.49 - MgSO4 7.170e-03 8.375e-03 -2.144 -2.077 0.067 5.84 - NaSO4- 6.637e-03 4.482e-03 -2.178 -2.349 -0.171 21.21 - CaSO4 9.548e-04 1.115e-03 -3.020 -2.953 0.067 7.50 - KSO4- 1.756e-04 1.186e-04 -3.755 -3.926 -0.171 34.85 - NH4SO4- 4.064e-08 3.035e-08 -7.391 -7.518 -0.127 39.98 - HSO4- 2.042e-09 1.525e-09 -8.690 -8.817 -0.127 40.96 - MnSO4 1.905e-10 2.225e-10 -9.720 -9.653 0.067 22.54 - CaHSO4+ 5.915e-11 4.418e-11 -10.228 -10.355 -0.127 (0) - FeSO4+ 1.174e-18 7.786e-19 -17.930 -18.109 -0.178 (0) - Fe(SO4)2- 5.939e-20 4.436e-20 -19.226 -19.353 -0.127 (0) - FeSO4 4.443e-20 5.190e-20 -19.352 -19.285 0.067 18.97 - FeHSO4+2 4.038e-26 1.256e-26 -25.394 -25.901 -0.507 (0) - FeHSO4+ 2.753e-27 2.056e-27 -26.560 -26.687 -0.127 (0) + SO4-2 1.307e-02 2.378e-03 -1.884 -2.624 -0.740 17.77 + NaSO4- 8.339e-03 3.180e-03 -2.079 -2.498 -0.419 20.67 + MgSO4 6.339e-03 8.646e-03 -2.198 -2.063 0.135 -0.83 + CaSO4 8.788e-04 1.026e-03 -3.056 -2.989 0.067 7.50 + Mg(SO4)2-2 2.394e-04 6.773e-05 -3.621 -4.169 -0.548 48.54 + KSO4- 1.471e-04 5.683e-05 -3.832 -4.245 -0.413 32.21 + NH4SO4- 5.343e-08 2.752e-08 -7.272 -7.560 -0.288 40.39 + HSO4- 1.866e-09 1.393e-09 -8.729 -8.856 -0.127 40.96 + MnSO4 1.739e-10 2.031e-10 -9.760 -9.692 0.067 22.54 + CaHSO4+ 5.444e-11 4.065e-11 -10.264 -10.391 -0.127 (0) + FeSO4+ 1.072e-18 7.111e-19 -17.970 -18.148 -0.178 (0) + Fe(SO4)2- 4.955e-20 3.700e-20 -19.305 -19.432 -0.127 (0) + FeSO4 4.059e-20 4.740e-20 -19.392 -19.324 0.067 18.97 + FeHSO4+2 3.689e-26 1.147e-26 -25.433 -25.940 -0.507 (0) + FeHSO4+ 2.514e-27 1.877e-27 -26.600 -26.726 -0.127 (0) Si 7.382e-05 - H4SiO4 7.061e-05 8.248e-05 -4.151 -4.084 0.067 52.08 - H3SiO4- 3.210e-06 2.018e-06 -5.494 -5.695 -0.201 28.72 - H2SiO4-2 1.096e-10 2.279e-11 -9.960 -10.642 -0.682 (0) -U(4) 1.088e-21 - U(OH)5- 1.088e-21 8.128e-22 -20.963 -21.090 -0.127 (0) - U(OH)4 1.738e-25 2.030e-25 -24.760 -24.692 0.067 (0) - U+4 0.000e+00 0.000e+00 -46.972 -49.000 -2.028 (0) -U(5) 1.707e-18 - UO2+ 1.707e-18 1.275e-18 -17.768 -17.894 -0.127 (0) + H4SiO4 7.061e-05 8.247e-05 -4.151 -4.084 0.067 52.08 + H3SiO4- 3.209e-06 2.018e-06 -5.494 -5.695 -0.201 28.72 + H2SiO4-2 1.095e-10 2.278e-11 -9.961 -10.642 -0.682 (0) +U(4) 9.204e-22 + U(OH)5- 9.202e-22 6.872e-22 -21.036 -21.163 -0.127 (0) + U(OH)4 1.470e-25 1.716e-25 -24.833 -24.765 0.067 (0) + U+4 0.000e+00 0.000e+00 -47.044 -49.073 -2.029 (0) +U(5) 1.445e-18 + UO2+ 1.445e-18 1.079e-18 -17.840 -17.967 -0.127 (0) U(6) 1.437e-08 - UO2(CO3)3-4 1.252e-08 1.173e-10 -7.902 -9.931 -2.028 (0) - UO2(CO3)2-2 1.837e-09 5.716e-10 -8.736 -9.243 -0.507 (0) - UO2CO3 7.662e-12 8.950e-12 -11.116 -11.048 0.067 (0) - UO2OH+ 3.563e-14 2.661e-14 -13.448 -13.575 -0.127 (0) - UO2+2 3.182e-16 9.898e-17 -15.497 -16.004 -0.507 (0) - (UO2)2(OH)2+2 1.973e-21 6.139e-22 -20.705 -21.212 -0.507 (0) - (UO2)3(OH)5+ 3.387e-23 2.530e-23 -22.470 -22.597 -0.127 (0) + UO2(CO3)3-4 1.262e-08 1.180e-10 -7.899 -9.928 -2.029 (0) + UO2(CO3)2-2 1.746e-09 5.430e-10 -8.758 -9.265 -0.507 (0) + UO2CO3 6.874e-12 8.028e-12 -11.163 -11.095 0.067 (0) + UO2OH+ 3.018e-14 2.254e-14 -13.520 -13.647 -0.127 (0) + UO2+2 2.696e-16 8.384e-17 -15.569 -16.077 -0.507 (0) + (UO2)2(OH)2+2 1.416e-21 4.405e-22 -20.849 -21.356 -0.507 (0) + (UO2)3(OH)5+ 2.059e-23 1.538e-23 -22.686 -22.813 -0.127 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -0.93 -5.20 -4.28 CaSO4 - Aragonite 0.61 -7.73 -8.34 CaCO3 - Calcite 0.75 -7.73 -8.48 CaCO3 + Anhydrite -0.96 -5.24 -4.28 CaSO4 + Aragonite 0.64 -7.70 -8.34 CaCO3 + Arcanite -5.12 -7.00 -1.88 K2SO4 + Calcite 0.78 -7.70 -8.48 CaCO3 Chalcedony -0.52 -4.07 -3.55 SiO2 - Chrysotile 3.36 35.56 32.20 Mg3Si2O5(OH)4 - CO2(g) -3.39 -4.86 -1.47 CO2 - Dolomite 2.39 -14.70 -17.09 CaMg(CO3)2 + Chrysotile 3.37 35.57 32.20 Mg3Si2O5(OH)4 + CO2(g) -3.37 -4.83 -1.47 CO2 + Dolomite 2.45 -14.64 -17.08 CaMg(CO3)2 + Epsomite -2.80 -4.54 -1.74 MgSO4:7H2O Fe(OH)3(a) 0.18 5.07 4.89 Fe(OH)3 Goethite 6.08 5.08 -1.00 FeOOH - Gypsum -0.64 -5.22 -4.58 CaSO4:2H2O + Gypsum -0.67 -5.26 -4.58 CaSO4:2H2O H2(g) -41.30 -44.40 -3.10 H2 H2O(g) -1.51 -0.01 1.50 H2O Halite -2.48 -0.91 1.57 NaCl Hausmannite 1.55 62.58 61.03 Mn3O4 Hematite 14.17 10.17 -4.01 Fe2O3 - Jarosite-K -7.57 -16.78 -9.21 KFe3(SO4)2(OH)6 + Hexahydrite -2.97 -4.53 -1.57 MgSO4:6H2O + Jarosite-K -7.65 -16.86 -9.21 KFe3(SO4)2(OH)6 + Kieserite -3.33 -4.49 -1.16 MgSO4:H2O Manganite 2.39 27.73 25.34 MnOOH - Melanterite -19.39 -21.59 -2.21 FeSO4:7H2O - NH3(g) -8.86 -7.07 1.80 NH3 + Melanterite -19.42 -21.63 -2.21 FeSO4:7H2O + Mirabilite -2.40 -3.64 -1.24 Na2SO4:10H2O + NH3(g) -8.87 -7.07 1.80 NH3 O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000 Pyrochroite -8.10 7.10 15.20 Mn(OH)2 Pyrolusite 6.97 48.35 41.38 MnO2:H2O Quartz -0.09 -4.07 -3.98 SiO2 - Rhodochrosite -3.30 -14.43 -11.13 MnCO3 - Sepiolite 1.15 16.91 15.76 Mg2Si3O7.5OH:3H2O - Sepiolite(d) -1.75 16.91 18.66 Mg2Si3O7.5OH:3H2O - Siderite -13.17 -24.06 -10.89 FeCO3 + Rhodochrosite -3.27 -14.40 -11.13 MnCO3 + Sepiolite 1.16 16.92 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -1.74 16.92 18.66 Mg2Si3O7.5OH:3H2O + Siderite -13.14 -24.03 -10.89 FeCO3 SiO2(a) -1.35 -4.07 -2.71 SiO2 - Sylvite -3.54 -2.64 0.90 KCl - Talc 6.03 27.43 21.40 Mg3Si4O10(OH)2 - Uraninite -12.65 -16.14 -3.49 UO2 + Sylvite -3.53 -2.63 0.90 KCl + Talc 6.05 27.45 21.40 Mg3Si4O10(OH)2 + Thenardite -3.25 -3.56 -0.30 Na2SO4 + Uraninite -12.72 -16.21 -3.49 UO2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -328,7 +336,3 @@ End of simulation. Reading input data for simulation 2. ------------------------------------ -------------------------------- -End of Run after 0.015 Seconds. -------------------------------- - diff --git a/ex10.out b/ex10.out index bbd3cb42..14307fca 100644 --- a/ex10.out +++ b/ex10.out @@ -119,16 +119,17 @@ Initial solution 1. pH = 7.969 Charge balance pe = 4.000 - Specific Conductance (S/cm, 25C) = 661 - Density (g/cm) = 0.99755 + Specific Conductance (µS/cm, 25°C) = 676 + Density (g/cm³) = 0.99755 Volume (L) = 1.00309 + Viscosity (mPa s) = 0.89349 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.105e-02 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 7.864e-03 Total CO2 (mol/kg) = 7.864e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = -5.416e-15 + Temperature (°C) = 25.00 + Electrical balance (eq) = -5.380e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 8 Total H = 1.110200e+02 @@ -137,29 +138,29 @@ Initial solution 1. ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.051e-06 9.415e-07 -5.978 -6.026 -0.048 -4.03 - H+ 1.181e-08 1.075e-08 -7.928 -7.969 -0.041 0.00 + OH- 1.052e-06 9.419e-07 -5.978 -6.026 -0.048 -4.03 + H+ 1.180e-08 1.074e-08 -7.928 -7.969 -0.041 0.00 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -75.157 -75.156 0.001 35.46 + CH4 0.000e+00 0.000e+00 -75.159 -75.158 0.001 35.46 C(4) 7.864e-03 - HCO3- 7.326e-03 6.602e-03 -2.135 -2.180 -0.045 24.78 + HCO3- 7.326e-03 6.602e-03 -2.135 -2.180 -0.045 24.66 CaHCO3+ 2.211e-04 1.996e-04 -3.655 -3.700 -0.044 9.73 - CO2 1.592e-04 1.596e-04 -3.798 -3.797 0.001 34.43 - CaCO3 1.144e-04 1.147e-04 -3.942 -3.940 0.001 -14.60 - CO3-2 4.368e-05 2.880e-05 -4.360 -4.541 -0.181 -4.99 - (CO2)2 4.661e-10 4.673e-10 -9.331 -9.330 0.001 68.87 + CO2 1.592e-04 1.595e-04 -3.798 -3.797 0.001 34.43 + CaCO3 1.144e-04 1.147e-04 -3.941 -3.940 0.001 -14.60 + CO3-2 4.369e-05 2.882e-05 -4.360 -4.540 -0.181 -3.76 + (CO2)2 4.657e-10 4.669e-10 -9.332 -9.331 0.001 68.87 Ca 3.932e-03 Ca+2 3.596e-03 2.370e-03 -2.444 -2.625 -0.181 -17.91 CaHCO3+ 2.211e-04 1.996e-04 -3.655 -3.700 -0.044 9.73 - CaCO3 1.144e-04 1.147e-04 -3.942 -3.940 0.001 -14.60 - CaOH+ 4.076e-08 3.659e-08 -7.390 -7.437 -0.047 (0) -H(0) 1.631e-27 - H2 8.157e-28 8.178e-28 -27.088 -27.087 0.001 28.61 -O(0) 1.243e-38 - O2 6.214e-39 6.230e-39 -38.207 -38.205 0.001 30.40 + CaCO3 1.144e-04 1.147e-04 -3.941 -3.940 0.001 -14.60 + CaOH+ 4.077e-08 3.661e-08 -7.390 -7.436 -0.047 (0) +H(0) 1.630e-27 + H2 8.150e-28 8.171e-28 -27.089 -27.088 0.001 28.61 +O(0) 1.245e-38 + O2 6.225e-39 6.241e-39 -38.206 -38.205 0.001 30.40 ------------------------------Saturation indices------------------------------- @@ -167,11 +168,11 @@ O(0) 1.243e-38 Aragonite 1.17 -7.17 -8.34 CaCO3 Calcite 1.31 -7.17 -8.48 CaCO3 - CH4(g) -72.35 -75.16 -2.80 CH4 + CH4(g) -72.36 -75.16 -2.80 CH4 CO2(g) -2.33 -3.80 -1.47 CO2 H2(g) -23.99 -27.09 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - O2(g) -35.31 -38.21 -2.89 O2 + O2(g) -35.31 -38.20 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -191,60 +192,61 @@ Using pure phase assemblage 1. Phase SI log IAP log K(T, P) Initial Final Delta Aragonite 0.00 -8.34 -8.34 1.000e+01 9.993e+00 -6.582e-03 -CO2(g) -0.01 -1.48 -1.47 1.000e+01 9.961e+00 -3.926e-02 +CO2(g) -0.01 -1.48 -1.47 1.000e+01 9.961e+00 -3.934e-02 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 5.372e-02 5.371e-02 + C 5.379e-02 5.378e-02 Ca 1.051e-02 1.051e-02 ----------------------------Description of solution---------------------------- pH = 6.064 Charge balance - pe = 11.924 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 1646 - Density (g/cm) = 0.99872 + pe = 11.821 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 1713 + Density (g/cm³) = 0.99872 Volume (L) = 1.00431 + Viscosity (mPa s) = 0.89762 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.901e-02 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 2.103e-02 - Total CO2 (mol/kg) = 5.372e-02 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.622e-12 + Total CO2 (mol/kg) = 5.379e-02 + Temperature (°C) = 25.00 + Electrical balance (eq) = 2.415e-12 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 10 Total H = 1.110200e+02 - Total O = 5.562792e+01 + Total O = 5.562807e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 9.847e-07 8.621e-07 -6.007 -6.064 -0.058 0.00 OH- 1.386e-08 1.173e-08 -7.858 -7.931 -0.073 -3.95 H2O 5.551e+01 9.989e-01 1.744 -0.000 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -121.005 -121.002 0.003 35.46 -C(4) 5.372e-02 - CO2 3.265e-02 3.287e-02 -1.486 -1.483 0.003 34.43 - HCO3- 1.976e-02 1.694e-02 -1.704 -1.771 -0.067 24.88 + CH4 0.000e+00 0.000e+00 -120.181 -120.178 0.003 35.46 +C(4) 5.379e-02 + CO2 3.273e-02 3.287e-02 -1.485 -1.483 0.002 34.43 + HCO3- 1.976e-02 1.694e-02 -1.704 -1.771 -0.067 24.77 CaHCO3+ 1.257e-03 1.082e-03 -2.901 -2.966 -0.065 9.77 (CO2)2 1.970e-05 1.984e-05 -4.705 -4.703 0.003 68.87 CaCO3 7.698e-06 7.750e-06 -5.114 -5.111 0.003 -14.60 - CO3-2 1.704e-06 9.217e-07 -5.769 -6.035 -0.267 -4.74 + CO3-2 1.704e-06 9.217e-07 -5.769 -6.035 -0.267 -3.47 Ca 1.051e-02 Ca+2 9.251e-03 5.005e-03 -2.034 -2.301 -0.267 -17.74 CaHCO3+ 1.257e-03 1.082e-03 -2.901 -2.966 -0.065 9.77 CaCO3 7.698e-06 7.750e-06 -5.114 -5.111 0.003 -14.60 CaOH+ 1.130e-09 9.625e-10 -8.947 -9.017 -0.070 (0) -H(0) 1.481e-39 - H2 7.406e-40 7.455e-40 -39.130 -39.128 0.003 28.61 -O(0) 1.487e-14 - O2 7.435e-15 7.484e-15 -14.129 -14.126 0.003 30.40 +H(0) 2.380e-39 + H2 1.190e-39 1.198e-39 -38.924 -38.922 0.003 28.61 +O(0) 5.758e-15 + O2 2.879e-15 2.898e-15 -14.541 -14.538 0.003 30.40 ------------------------------Saturation indices------------------------------- @@ -252,11 +254,11 @@ O(0) 1.487e-14 Aragonite 0.00 -8.34 -8.34 CaCO3 Calcite 0.14 -8.34 -8.48 CaCO3 - CH4(g) -118.20 -121.00 -2.80 CH4 + CH4(g) -117.38 -120.18 -2.80 CH4 CO2(g) -0.01 -1.48 -1.47 CO2 Pressure 1.0 atm, phi 0.995 - H2(g) -36.03 -39.13 -3.10 H2 + H2(g) -35.82 -38.92 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - O2(g) -11.23 -14.13 -2.89 O2 + O2(g) -11.65 -14.54 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -355,7 +357,7 @@ Log Sigma pi: -8.3356e+00 XAragonite: 9.9996e-01 XStrontianite: 4.2174e-05 XCa: 9.9905e-01 -XSr: 9.5080e-04 +XSr: 9.5081e-04 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -392,7 +394,7 @@ Reaction step number: 4 SrCO3 added: 4.0000e-05 Log Sigma pi: -8.3345e+00 XAragonite: 9.9983e-01 -XStrontianite: 1.6935e-04 +XStrontianite: 1.6936e-04 XCa: 9.9620e-01 XSr: 3.7992e-03 Misc 1: 4.8032e-03 @@ -407,7 +409,7 @@ Log Sigma pi: -8.3341e+00 XAragonite: 9.9979e-01 XStrontianite: 2.1197e-04 XCa: 9.9525e-01 -XSr: 4.7472e-03 +XSr: 4.7473e-03 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -589,7 +591,7 @@ Log Sigma pi: -8.3286e+00 XAragonite: 9.9918e-01 XStrontianite: 8.2052e-04 XCa: 9.8205e-01 -XSr: 1.7949e-02 +XSr: 1.7950e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -600,7 +602,7 @@ Reaction step number: 20 SrCO3 added: 2.0000e-04 Log Sigma pi: -8.3283e+00 XAragonite: 9.9914e-01 -XStrontianite: 8.6486e-04 +XStrontianite: 8.6487e-04 XCa: 9.8111e-01 XSr: 1.8887e-02 Misc 1: 4.8032e-03 @@ -654,7 +656,7 @@ Log Sigma pi: -8.3267e+00 XAragonite: 9.9896e-01 XStrontianite: 1.0434e-03 XCa: 9.7737e-01 -XSr: 2.2632e-02 +XSr: 2.2633e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -719,7 +721,7 @@ Log Sigma pi: -8.3248e+00 XAragonite: 9.9873e-01 XStrontianite: 1.2693e-03 XCa: 9.7270e-01 -XSr: 2.7298e-02 +XSr: 2.7299e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -797,7 +799,7 @@ Log Sigma pi: -8.3224e+00 XAragonite: 9.9846e-01 XStrontianite: 1.5445e-03 XCa: 9.6712e-01 -XSr: 3.2875e-02 +XSr: 3.2876e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -808,7 +810,7 @@ Reaction step number: 36 SrCO3 added: 3.6000e-04 Log Sigma pi: -8.3220e+00 XAragonite: 9.9841e-01 -XStrontianite: 1.5908e-03 +XStrontianite: 1.5909e-03 XCa: 9.6620e-01 XSr: 3.3803e-02 Misc 1: 4.8032e-03 @@ -834,7 +836,7 @@ Reaction step number: 38 SrCO3 added: 3.8000e-04 Log Sigma pi: -8.3213e+00 XAragonite: 9.9832e-01 -XStrontianite: 1.6838e-03 +XStrontianite: 1.6839e-03 XCa: 9.6435e-01 XSr: 3.5655e-02 Misc 1: 4.8032e-03 @@ -901,7 +903,7 @@ Log Sigma pi: -8.3193e+00 XAragonite: 9.9808e-01 XStrontianite: 1.9186e-03 XCa: 9.5973e-01 -XSr: 4.0273e-02 +XSr: 4.0274e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -927,7 +929,7 @@ Log Sigma pi: -8.3185e+00 XAragonite: 9.9799e-01 XStrontianite: 2.0134e-03 XCa: 9.5788e-01 -XSr: 4.2116e-02 +XSr: 4.2117e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -938,7 +940,7 @@ Reaction step number: 46 SrCO3 added: 4.6000e-04 Log Sigma pi: -8.3182e+00 XAragonite: 9.9794e-01 -XStrontianite: 2.0610e-03 +XStrontianite: 2.0611e-03 XCa: 9.5696e-01 XSr: 4.3037e-02 Misc 1: 4.8032e-03 @@ -953,7 +955,7 @@ Log Sigma pi: -8.3178e+00 XAragonite: 9.9789e-01 XStrontianite: 2.1088e-03 XCa: 9.5604e-01 -XSr: 4.3956e-02 +XSr: 4.3957e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -966,7 +968,7 @@ Log Sigma pi: -8.3174e+00 XAragonite: 9.9784e-01 XStrontianite: 2.1567e-03 XCa: 9.5512e-01 -XSr: 4.4875e-02 +XSr: 4.4876e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -992,7 +994,7 @@ Log Sigma pi: -8.3166e+00 XAragonite: 9.9775e-01 XStrontianite: 2.2528e-03 XCa: 9.5329e-01 -XSr: 4.6711e-02 +XSr: 4.6712e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1005,7 +1007,7 @@ Log Sigma pi: -8.3162e+00 XAragonite: 9.9770e-01 XStrontianite: 2.3011e-03 XCa: 9.5237e-01 -XSr: 4.7628e-02 +XSr: 4.7629e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1016,7 +1018,7 @@ Reaction step number: 52 SrCO3 added: 5.2000e-04 Log Sigma pi: -8.3158e+00 XAragonite: 9.9765e-01 -XStrontianite: 2.3495e-03 +XStrontianite: 2.3496e-03 XCa: 9.5146e-01 XSr: 4.8545e-02 Misc 1: 4.8032e-03 @@ -1031,7 +1033,7 @@ Log Sigma pi: -8.3154e+00 XAragonite: 9.9760e-01 XStrontianite: 2.3981e-03 XCa: 9.5054e-01 -XSr: 4.9460e-02 +XSr: 4.9461e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1044,7 +1046,7 @@ Log Sigma pi: -8.3150e+00 XAragonite: 9.9755e-01 XStrontianite: 2.4468e-03 XCa: 9.4962e-01 -XSr: 5.0375e-02 +XSr: 5.0376e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1057,7 +1059,7 @@ Log Sigma pi: -8.3146e+00 XAragonite: 9.9750e-01 XStrontianite: 2.4956e-03 XCa: 9.4871e-01 -XSr: 5.1289e-02 +XSr: 5.1290e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1070,7 +1072,7 @@ Log Sigma pi: -8.3143e+00 XAragonite: 9.9746e-01 XStrontianite: 2.5446e-03 XCa: 9.4780e-01 -XSr: 5.2203e-02 +XSr: 5.2204e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1083,7 +1085,7 @@ Log Sigma pi: -8.3139e+00 XAragonite: 9.9741e-01 XStrontianite: 2.5937e-03 XCa: 9.4688e-01 -XSr: 5.3116e-02 +XSr: 5.3117e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1096,7 +1098,7 @@ Log Sigma pi: -8.3135e+00 XAragonite: 9.9736e-01 XStrontianite: 2.6430e-03 XCa: 9.4597e-01 -XSr: 5.4028e-02 +XSr: 5.4029e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1135,7 +1137,7 @@ Log Sigma pi: -8.3123e+00 XAragonite: 9.9721e-01 XStrontianite: 2.7916e-03 XCa: 9.4324e-01 -XSr: 5.6761e-02 +XSr: 5.6762e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1187,7 +1189,7 @@ Log Sigma pi: -8.3107e+00 XAragonite: 9.9701e-01 XStrontianite: 2.9918e-03 XCa: 9.3960e-01 -XSr: 6.0395e-02 +XSr: 6.0396e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1200,7 +1202,7 @@ Log Sigma pi: -8.3104e+00 XAragonite: 9.9696e-01 XStrontianite: 3.0422e-03 XCa: 9.3870e-01 -XSr: 6.1302e-02 +XSr: 6.1303e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1213,7 +1215,7 @@ Log Sigma pi: -8.3100e+00 XAragonite: 9.9691e-01 XStrontianite: 3.0927e-03 XCa: 9.3779e-01 -XSr: 6.2208e-02 +XSr: 6.2209e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1226,7 +1228,7 @@ Log Sigma pi: -8.3096e+00 XAragonite: 9.9686e-01 XStrontianite: 3.1434e-03 XCa: 9.3689e-01 -XSr: 6.3114e-02 +XSr: 6.3115e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1252,7 +1254,7 @@ Log Sigma pi: -8.3088e+00 XAragonite: 9.9675e-01 XStrontianite: 3.2453e-03 XCa: 9.3508e-01 -XSr: 6.4923e-02 +XSr: 6.4924e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1265,7 +1267,7 @@ Log Sigma pi: -8.3084e+00 XAragonite: 9.9670e-01 XStrontianite: 3.2964e-03 XCa: 9.3417e-01 -XSr: 6.5826e-02 +XSr: 6.5827e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1278,7 +1280,7 @@ Log Sigma pi: -8.3080e+00 XAragonite: 9.9665e-01 XStrontianite: 3.3477e-03 XCa: 9.3327e-01 -XSr: 6.6729e-02 +XSr: 6.6730e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1289,9 +1291,9 @@ Reaction step number: 73 SrCO3 added: 7.3000e-04 Log Sigma pi: -8.3076e+00 XAragonite: 9.9660e-01 -XStrontianite: 3.3991e-03 +XStrontianite: 3.3992e-03 XCa: 9.3237e-01 -XSr: 6.7631e-02 +XSr: 6.7632e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1302,9 +1304,9 @@ Reaction step number: 74 SrCO3 added: 7.4000e-04 Log Sigma pi: -8.3072e+00 XAragonite: 9.9655e-01 -XStrontianite: 3.4507e-03 +XStrontianite: 3.4508e-03 XCa: 9.3147e-01 -XSr: 6.8533e-02 +XSr: 6.8534e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1330,7 +1332,7 @@ Log Sigma pi: -8.3064e+00 XAragonite: 9.9645e-01 XStrontianite: 3.5544e-03 XCa: 9.2967e-01 -XSr: 7.0334e-02 +XSr: 7.0335e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1343,7 +1345,7 @@ Log Sigma pi: -8.3061e+00 XAragonite: 9.9639e-01 XStrontianite: 3.6065e-03 XCa: 9.2877e-01 -XSr: 7.1233e-02 +XSr: 7.1234e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1356,7 +1358,7 @@ Log Sigma pi: -8.3057e+00 XAragonite: 9.9634e-01 XStrontianite: 3.6587e-03 XCa: 9.2787e-01 -XSr: 7.2132e-02 +XSr: 7.2133e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1367,9 +1369,9 @@ Reaction step number: 79 SrCO3 added: 7.9000e-04 Log Sigma pi: -8.3053e+00 XAragonite: 9.9629e-01 -XStrontianite: 3.7110e-03 +XStrontianite: 3.7111e-03 XCa: 9.2697e-01 -XSr: 7.3030e-02 +XSr: 7.3031e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1394,8 +1396,8 @@ SrCO3 added: 8.1000e-04 Log Sigma pi: -8.3045e+00 XAragonite: 9.9618e-01 XStrontianite: 3.8163e-03 -XCa: 9.2518e-01 -XSr: 7.4824e-02 +XCa: 9.2517e-01 +XSr: 7.4825e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1408,7 +1410,7 @@ Log Sigma pi: -8.3041e+00 XAragonite: 9.9613e-01 XStrontianite: 3.8691e-03 XCa: 9.2428e-01 -XSr: 7.5720e-02 +XSr: 7.5721e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1421,7 +1423,7 @@ Log Sigma pi: -8.3037e+00 XAragonite: 9.9608e-01 XStrontianite: 3.9221e-03 XCa: 9.2338e-01 -XSr: 7.6616e-02 +XSr: 7.6617e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1446,8 +1448,8 @@ SrCO3 added: 8.5000e-04 Log Sigma pi: -8.3029e+00 XAragonite: 9.9597e-01 XStrontianite: 4.0286e-03 -XCa: 9.2160e-01 -XSr: 7.8405e-02 +XCa: 9.2159e-01 +XSr: 7.8406e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1460,7 +1462,7 @@ Log Sigma pi: -8.3025e+00 XAragonite: 9.9592e-01 XStrontianite: 4.0821e-03 XCa: 9.2070e-01 -XSr: 7.9298e-02 +XSr: 7.9299e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1471,9 +1473,9 @@ Reaction step number: 87 SrCO3 added: 8.7000e-04 Log Sigma pi: -8.3021e+00 XAragonite: 9.9586e-01 -XStrontianite: 4.1357e-03 +XStrontianite: 4.1358e-03 XCa: 9.1981e-01 -XSr: 8.0191e-02 +XSr: 8.0192e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1484,9 +1486,9 @@ Reaction step number: 88 SrCO3 added: 8.8000e-04 Log Sigma pi: -8.3017e+00 XAragonite: 9.9581e-01 -XStrontianite: 4.1895e-03 +XStrontianite: 4.1896e-03 XCa: 9.1892e-01 -XSr: 8.1083e-02 +XSr: 8.1084e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1498,8 +1500,8 @@ SrCO3 added: 8.9000e-04 Log Sigma pi: -8.3014e+00 XAragonite: 9.9576e-01 XStrontianite: 4.2435e-03 -XCa: 9.1803e-01 -XSr: 8.1974e-02 +XCa: 9.1802e-01 +XSr: 8.1975e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1510,9 +1512,9 @@ Reaction step number: 90 SrCO3 added: 9.0000e-04 Log Sigma pi: -8.3010e+00 XAragonite: 9.9570e-01 -XStrontianite: 4.2976e-03 -XCa: 9.1714e-01 -XSr: 8.2865e-02 +XStrontianite: 4.2977e-03 +XCa: 9.1713e-01 +XSr: 8.2866e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1523,9 +1525,9 @@ Reaction step number: 91 SrCO3 added: 9.1000e-04 Log Sigma pi: -8.3006e+00 XAragonite: 9.9565e-01 -XStrontianite: 4.3519e-03 -XCa: 9.1625e-01 -XSr: 8.3755e-02 +XStrontianite: 4.3520e-03 +XCa: 9.1624e-01 +XSr: 8.3756e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1537,8 +1539,8 @@ SrCO3 added: 9.2000e-04 Log Sigma pi: -8.3002e+00 XAragonite: 9.9559e-01 XStrontianite: 4.4064e-03 -XCa: 9.1536e-01 -XSr: 8.4644e-02 +XCa: 9.1535e-01 +XSr: 8.4645e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1549,9 +1551,9 @@ Reaction step number: 93 SrCO3 added: 9.3000e-04 Log Sigma pi: -8.2998e+00 XAragonite: 9.9554e-01 -XStrontianite: 4.4610e-03 +XStrontianite: 4.4611e-03 XCa: 9.1447e-01 -XSr: 8.5533e-02 +XSr: 8.5534e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1562,9 +1564,9 @@ Reaction step number: 94 SrCO3 added: 9.4000e-04 Log Sigma pi: -8.2994e+00 XAragonite: 9.9548e-01 -XStrontianite: 4.5158e-03 +XStrontianite: 4.5159e-03 XCa: 9.1358e-01 -XSr: 8.6421e-02 +XSr: 8.6422e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1577,7 +1579,7 @@ Log Sigma pi: -8.2990e+00 XAragonite: 9.9543e-01 XStrontianite: 4.5708e-03 XCa: 9.1269e-01 -XSr: 8.7308e-02 +XSr: 8.7309e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1588,9 +1590,9 @@ Reaction step number: 96 SrCO3 added: 9.6000e-04 Log Sigma pi: -8.2986e+00 XAragonite: 9.9537e-01 -XStrontianite: 4.6259e-03 -XCa: 9.1181e-01 -XSr: 8.8195e-02 +XStrontianite: 4.6260e-03 +XCa: 9.1180e-01 +XSr: 8.8196e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1601,9 +1603,9 @@ Reaction step number: 97 SrCO3 added: 9.7000e-04 Log Sigma pi: -8.2982e+00 XAragonite: 9.9532e-01 -XStrontianite: 4.6812e-03 +XStrontianite: 4.6813e-03 XCa: 9.1092e-01 -XSr: 8.9081e-02 +XSr: 8.9082e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1614,9 +1616,9 @@ Reaction step number: 98 SrCO3 added: 9.8000e-04 Log Sigma pi: -8.2978e+00 XAragonite: 9.9526e-01 -XStrontianite: 4.7367e-03 +XStrontianite: 4.7368e-03 XCa: 9.1003e-01 -XSr: 8.9966e-02 +XSr: 8.9967e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1629,7 +1631,7 @@ Log Sigma pi: -8.2974e+00 XAragonite: 9.9521e-01 XStrontianite: 4.7924e-03 XCa: 9.0915e-01 -XSr: 9.0851e-02 +XSr: 9.0852e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1639,8 +1641,8 @@ Simulation number: 4 Reaction step number: 100 SrCO3 added: 1.0000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 9.8286e-01 -XStrontianite: 1.7141e-02 +XAragonite: 9.8284e-01 +XStrontianite: 1.7161e-02 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -1652,8 +1654,8 @@ Simulation number: 4 Reaction step number: 101 SrCO3 added: 1.0100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 9.6796e-01 -XStrontianite: 3.2039e-02 +XAragonite: 9.6795e-01 +XStrontianite: 3.2055e-02 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -1665,8 +1667,8 @@ Simulation number: 4 Reaction step number: 102 SrCO3 added: 1.0200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 9.5351e-01 -XStrontianite: 4.6492e-02 +XAragonite: 9.5350e-01 +XStrontianite: 4.6504e-02 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -1678,8 +1680,8 @@ Simulation number: 4 Reaction step number: 103 SrCO3 added: 1.0300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 9.3948e-01 -XStrontianite: 6.0519e-02 +XAragonite: 9.3947e-01 +XStrontianite: 6.0528e-02 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -1691,8 +1693,8 @@ Simulation number: 4 Reaction step number: 104 SrCO3 added: 1.0400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 9.2586e-01 -XStrontianite: 7.4140e-02 +XAragonite: 9.2585e-01 +XStrontianite: 7.4146e-02 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -1705,7 +1707,7 @@ Reaction step number: 105 SrCO3 added: 1.0500e-03 Log Sigma pi: -8.2974e+00 XAragonite: 9.1263e-01 -XStrontianite: 8.7372e-02 +XStrontianite: 8.7374e-02 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -1743,8 +1745,8 @@ Simulation number: 4 Reaction step number: 108 SrCO3 added: 1.0800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 8.7511e-01 -XStrontianite: 1.2489e-01 +XAragonite: 8.7512e-01 +XStrontianite: 1.2488e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -1756,8 +1758,8 @@ Simulation number: 4 Reaction step number: 109 SrCO3 added: 1.0900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 8.6328e-01 -XStrontianite: 1.3672e-01 +XAragonite: 8.6329e-01 +XStrontianite: 1.3671e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -1769,8 +1771,8 @@ Simulation number: 4 Reaction step number: 110 SrCO3 added: 1.1000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 8.5176e-01 -XStrontianite: 1.4824e-01 +XAragonite: 8.5178e-01 +XStrontianite: 1.4822e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -1782,8 +1784,8 @@ Simulation number: 4 Reaction step number: 111 SrCO3 added: 1.1100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 8.4055e-01 -XStrontianite: 1.5945e-01 +XAragonite: 8.4057e-01 +XStrontianite: 1.5943e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -1795,8 +1797,8 @@ Simulation number: 4 Reaction step number: 112 SrCO3 added: 1.1200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 8.2963e-01 -XStrontianite: 1.7037e-01 +XAragonite: 8.2965e-01 +XStrontianite: 1.7035e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -1808,8 +1810,8 @@ Simulation number: 4 Reaction step number: 113 SrCO3 added: 1.1300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 8.1899e-01 -XStrontianite: 1.8101e-01 +XAragonite: 8.1901e-01 +XStrontianite: 1.8099e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -1821,8 +1823,8 @@ Simulation number: 4 Reaction step number: 114 SrCO3 added: 1.1400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 8.0862e-01 -XStrontianite: 1.9138e-01 +XAragonite: 8.0864e-01 +XStrontianite: 1.9136e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -1834,8 +1836,8 @@ Simulation number: 4 Reaction step number: 115 SrCO3 added: 1.1500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.9851e-01 -XStrontianite: 2.0149e-01 +XAragonite: 7.9853e-01 +XStrontianite: 2.0147e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -1847,8 +1849,8 @@ Simulation number: 4 Reaction step number: 116 SrCO3 added: 1.1600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.8865e-01 -XStrontianite: 2.1135e-01 +XAragonite: 7.8867e-01 +XStrontianite: 2.1133e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -1860,8 +1862,8 @@ Simulation number: 4 Reaction step number: 117 SrCO3 added: 1.1700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.7903e-01 -XStrontianite: 2.2097e-01 +XAragonite: 7.7905e-01 +XStrontianite: 2.2095e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -1873,8 +1875,8 @@ Simulation number: 4 Reaction step number: 118 SrCO3 added: 1.1800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.6964e-01 -XStrontianite: 2.3036e-01 +XAragonite: 7.6967e-01 +XStrontianite: 2.3033e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -1886,8 +1888,8 @@ Simulation number: 4 Reaction step number: 119 SrCO3 added: 1.1900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.6047e-01 -XStrontianite: 2.3953e-01 +XAragonite: 7.6050e-01 +XStrontianite: 2.3950e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -1899,8 +1901,8 @@ Simulation number: 4 Reaction step number: 120 SrCO3 added: 1.2000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.5152e-01 -XStrontianite: 2.4848e-01 +XAragonite: 7.5155e-01 +XStrontianite: 2.4845e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -1912,8 +1914,8 @@ Simulation number: 4 Reaction step number: 121 SrCO3 added: 1.2100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.4278e-01 -XStrontianite: 2.5722e-01 +XAragonite: 7.4281e-01 +XStrontianite: 2.5719e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -1925,8 +1927,8 @@ Simulation number: 4 Reaction step number: 122 SrCO3 added: 1.2200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.3424e-01 -XStrontianite: 2.6576e-01 +XAragonite: 7.3428e-01 +XStrontianite: 2.6572e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -1938,8 +1940,8 @@ Simulation number: 4 Reaction step number: 123 SrCO3 added: 1.2300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.2590e-01 -XStrontianite: 2.7410e-01 +XAragonite: 7.2593e-01 +XStrontianite: 2.7407e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -1951,8 +1953,8 @@ Simulation number: 4 Reaction step number: 124 SrCO3 added: 1.2400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.1774e-01 -XStrontianite: 2.8226e-01 +XAragonite: 7.1777e-01 +XStrontianite: 2.8223e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -1964,8 +1966,8 @@ Simulation number: 4 Reaction step number: 125 SrCO3 added: 1.2500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.0976e-01 -XStrontianite: 2.9024e-01 +XAragonite: 7.0980e-01 +XStrontianite: 2.9020e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -1977,8 +1979,8 @@ Simulation number: 4 Reaction step number: 126 SrCO3 added: 1.2600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.0196e-01 -XStrontianite: 2.9804e-01 +XAragonite: 7.0200e-01 +XStrontianite: 2.9800e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -1990,8 +1992,8 @@ Simulation number: 4 Reaction step number: 127 SrCO3 added: 1.2700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.9433e-01 -XStrontianite: 3.0567e-01 +XAragonite: 6.9436e-01 +XStrontianite: 3.0564e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2003,8 +2005,8 @@ Simulation number: 4 Reaction step number: 128 SrCO3 added: 1.2800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.8686e-01 -XStrontianite: 3.1314e-01 +XAragonite: 6.8690e-01 +XStrontianite: 3.1310e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2016,8 +2018,8 @@ Simulation number: 4 Reaction step number: 129 SrCO3 added: 1.2900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.7955e-01 -XStrontianite: 3.2045e-01 +XAragonite: 6.7959e-01 +XStrontianite: 3.2041e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2029,8 +2031,8 @@ Simulation number: 4 Reaction step number: 130 SrCO3 added: 1.3000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.7239e-01 -XStrontianite: 3.2761e-01 +XAragonite: 6.7243e-01 +XStrontianite: 3.2757e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2042,8 +2044,8 @@ Simulation number: 4 Reaction step number: 131 SrCO3 added: 1.3100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.6539e-01 -XStrontianite: 3.3461e-01 +XAragonite: 6.6543e-01 +XStrontianite: 3.3457e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2055,8 +2057,8 @@ Simulation number: 4 Reaction step number: 132 SrCO3 added: 1.3200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.5853e-01 -XStrontianite: 3.4147e-01 +XAragonite: 6.5857e-01 +XStrontianite: 3.4143e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2068,8 +2070,8 @@ Simulation number: 4 Reaction step number: 133 SrCO3 added: 1.3300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.5180e-01 -XStrontianite: 3.4820e-01 +XAragonite: 6.5185e-01 +XStrontianite: 3.4815e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2081,8 +2083,8 @@ Simulation number: 4 Reaction step number: 134 SrCO3 added: 1.3400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.4522e-01 -XStrontianite: 3.5478e-01 +XAragonite: 6.4526e-01 +XStrontianite: 3.5474e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2094,8 +2096,8 @@ Simulation number: 4 Reaction step number: 135 SrCO3 added: 1.3500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.3877e-01 -XStrontianite: 3.6123e-01 +XAragonite: 6.3881e-01 +XStrontianite: 3.6119e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2107,8 +2109,8 @@ Simulation number: 4 Reaction step number: 136 SrCO3 added: 1.3600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.3244e-01 -XStrontianite: 3.6756e-01 +XAragonite: 6.3248e-01 +XStrontianite: 3.6752e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2120,8 +2122,8 @@ Simulation number: 4 Reaction step number: 137 SrCO3 added: 1.3700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.2624e-01 -XStrontianite: 3.7376e-01 +XAragonite: 6.2628e-01 +XStrontianite: 3.7372e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2133,8 +2135,8 @@ Simulation number: 4 Reaction step number: 138 SrCO3 added: 1.3800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.2016e-01 -XStrontianite: 3.7984e-01 +XAragonite: 6.2020e-01 +XStrontianite: 3.7980e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2146,8 +2148,8 @@ Simulation number: 4 Reaction step number: 139 SrCO3 added: 1.3900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.1419e-01 -XStrontianite: 3.8581e-01 +XAragonite: 6.1424e-01 +XStrontianite: 3.8576e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2159,8 +2161,8 @@ Simulation number: 4 Reaction step number: 140 SrCO3 added: 1.4000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.0834e-01 -XStrontianite: 3.9166e-01 +XAragonite: 6.0839e-01 +XStrontianite: 3.9161e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2172,8 +2174,8 @@ Simulation number: 4 Reaction step number: 141 SrCO3 added: 1.4100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.0260e-01 -XStrontianite: 3.9740e-01 +XAragonite: 6.0265e-01 +XStrontianite: 3.9735e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2185,8 +2187,8 @@ Simulation number: 4 Reaction step number: 142 SrCO3 added: 1.4200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.9697e-01 -XStrontianite: 4.0303e-01 +XAragonite: 5.9701e-01 +XStrontianite: 4.0299e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2198,8 +2200,8 @@ Simulation number: 4 Reaction step number: 143 SrCO3 added: 1.4300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.9144e-01 -XStrontianite: 4.0856e-01 +XAragonite: 5.9149e-01 +XStrontianite: 4.0851e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2211,8 +2213,8 @@ Simulation number: 4 Reaction step number: 144 SrCO3 added: 1.4400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.8601e-01 -XStrontianite: 4.1399e-01 +XAragonite: 5.8606e-01 +XStrontianite: 4.1394e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2224,8 +2226,8 @@ Simulation number: 4 Reaction step number: 145 SrCO3 added: 1.4500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.8068e-01 -XStrontianite: 4.1932e-01 +XAragonite: 5.8073e-01 +XStrontianite: 4.1927e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2237,8 +2239,8 @@ Simulation number: 4 Reaction step number: 146 SrCO3 added: 1.4600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.7545e-01 -XStrontianite: 4.2455e-01 +XAragonite: 5.7550e-01 +XStrontianite: 4.2450e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2250,8 +2252,8 @@ Simulation number: 4 Reaction step number: 147 SrCO3 added: 1.4700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.7031e-01 -XStrontianite: 4.2969e-01 +XAragonite: 5.7036e-01 +XStrontianite: 4.2964e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2263,8 +2265,8 @@ Simulation number: 4 Reaction step number: 148 SrCO3 added: 1.4800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.6526e-01 -XStrontianite: 4.3474e-01 +XAragonite: 5.6531e-01 +XStrontianite: 4.3469e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2276,8 +2278,8 @@ Simulation number: 4 Reaction step number: 149 SrCO3 added: 1.4900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.6030e-01 -XStrontianite: 4.3970e-01 +XAragonite: 5.6035e-01 +XStrontianite: 4.3965e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2289,8 +2291,8 @@ Simulation number: 4 Reaction step number: 150 SrCO3 added: 1.5000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.5543e-01 -XStrontianite: 4.4457e-01 +XAragonite: 5.5548e-01 +XStrontianite: 4.4452e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2302,8 +2304,8 @@ Simulation number: 4 Reaction step number: 151 SrCO3 added: 1.5100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.5064e-01 -XStrontianite: 4.4936e-01 +XAragonite: 5.5069e-01 +XStrontianite: 4.4931e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2315,8 +2317,8 @@ Simulation number: 4 Reaction step number: 152 SrCO3 added: 1.5200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.4593e-01 -XStrontianite: 4.5407e-01 +XAragonite: 5.4598e-01 +XStrontianite: 4.5402e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2328,8 +2330,8 @@ Simulation number: 4 Reaction step number: 153 SrCO3 added: 1.5300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.4130e-01 -XStrontianite: 4.5870e-01 +XAragonite: 5.4136e-01 +XStrontianite: 4.5864e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2341,8 +2343,8 @@ Simulation number: 4 Reaction step number: 154 SrCO3 added: 1.5400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.3675e-01 -XStrontianite: 4.6325e-01 +XAragonite: 5.3681e-01 +XStrontianite: 4.6319e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2354,8 +2356,8 @@ Simulation number: 4 Reaction step number: 155 SrCO3 added: 1.5500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.3228e-01 -XStrontianite: 4.6772e-01 +XAragonite: 5.3233e-01 +XStrontianite: 4.6767e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2367,8 +2369,8 @@ Simulation number: 4 Reaction step number: 156 SrCO3 added: 1.5600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.2788e-01 -XStrontianite: 4.7212e-01 +XAragonite: 5.2793e-01 +XStrontianite: 4.7207e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2380,8 +2382,8 @@ Simulation number: 4 Reaction step number: 157 SrCO3 added: 1.5700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.2355e-01 -XStrontianite: 4.7645e-01 +XAragonite: 5.2360e-01 +XStrontianite: 4.7640e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2393,8 +2395,8 @@ Simulation number: 4 Reaction step number: 158 SrCO3 added: 1.5800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.1929e-01 -XStrontianite: 4.8071e-01 +XAragonite: 5.1935e-01 +XStrontianite: 4.8065e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2406,8 +2408,8 @@ Simulation number: 4 Reaction step number: 159 SrCO3 added: 1.5900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.1511e-01 -XStrontianite: 4.8489e-01 +XAragonite: 5.1516e-01 +XStrontianite: 4.8484e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2419,8 +2421,8 @@ Simulation number: 4 Reaction step number: 160 SrCO3 added: 1.6000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.1098e-01 -XStrontianite: 4.8902e-01 +XAragonite: 5.1104e-01 +XStrontianite: 4.8896e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2432,8 +2434,8 @@ Simulation number: 4 Reaction step number: 161 SrCO3 added: 1.6100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.0693e-01 -XStrontianite: 4.9307e-01 +XAragonite: 5.0698e-01 +XStrontianite: 4.9302e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2445,8 +2447,8 @@ Simulation number: 4 Reaction step number: 162 SrCO3 added: 1.6200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.0294e-01 -XStrontianite: 4.9706e-01 +XAragonite: 5.0299e-01 +XStrontianite: 4.9701e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2458,8 +2460,8 @@ Simulation number: 4 Reaction step number: 163 SrCO3 added: 1.6300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.9901e-01 -XStrontianite: 5.0099e-01 +XAragonite: 4.9906e-01 +XStrontianite: 5.0094e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2471,8 +2473,8 @@ Simulation number: 4 Reaction step number: 164 SrCO3 added: 1.6400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.9514e-01 -XStrontianite: 5.0486e-01 +XAragonite: 4.9519e-01 +XStrontianite: 5.0481e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2484,8 +2486,8 @@ Simulation number: 4 Reaction step number: 165 SrCO3 added: 1.6500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.9133e-01 -XStrontianite: 5.0867e-01 +XAragonite: 4.9138e-01 +XStrontianite: 5.0862e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2497,8 +2499,8 @@ Simulation number: 4 Reaction step number: 166 SrCO3 added: 1.6600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.8758e-01 -XStrontianite: 5.1242e-01 +XAragonite: 4.8763e-01 +XStrontianite: 5.1237e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2510,8 +2512,8 @@ Simulation number: 4 Reaction step number: 167 SrCO3 added: 1.6700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.8388e-01 -XStrontianite: 5.1612e-01 +XAragonite: 4.8393e-01 +XStrontianite: 5.1607e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2523,8 +2525,8 @@ Simulation number: 4 Reaction step number: 168 SrCO3 added: 1.6800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.8024e-01 -XStrontianite: 5.1976e-01 +XAragonite: 4.8030e-01 +XStrontianite: 5.1970e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2536,8 +2538,8 @@ Simulation number: 4 Reaction step number: 169 SrCO3 added: 1.6900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.7666e-01 -XStrontianite: 5.2334e-01 +XAragonite: 4.7671e-01 +XStrontianite: 5.2329e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2549,8 +2551,8 @@ Simulation number: 4 Reaction step number: 170 SrCO3 added: 1.7000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.7313e-01 -XStrontianite: 5.2687e-01 +XAragonite: 4.7318e-01 +XStrontianite: 5.2682e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2562,8 +2564,8 @@ Simulation number: 4 Reaction step number: 171 SrCO3 added: 1.7100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.6965e-01 -XStrontianite: 5.3035e-01 +XAragonite: 4.6970e-01 +XStrontianite: 5.3030e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2575,8 +2577,8 @@ Simulation number: 4 Reaction step number: 172 SrCO3 added: 1.7200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.6622e-01 -XStrontianite: 5.3378e-01 +XAragonite: 4.6627e-01 +XStrontianite: 5.3373e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2588,8 +2590,8 @@ Simulation number: 4 Reaction step number: 173 SrCO3 added: 1.7300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.6284e-01 -XStrontianite: 5.3716e-01 +XAragonite: 4.6289e-01 +XStrontianite: 5.3711e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2601,8 +2603,8 @@ Simulation number: 4 Reaction step number: 174 SrCO3 added: 1.7400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.5951e-01 -XStrontianite: 5.4049e-01 +XAragonite: 4.5956e-01 +XStrontianite: 5.4044e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2614,8 +2616,8 @@ Simulation number: 4 Reaction step number: 175 SrCO3 added: 1.7500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.5623e-01 -XStrontianite: 5.4377e-01 +XAragonite: 4.5628e-01 +XStrontianite: 5.4372e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2627,8 +2629,8 @@ Simulation number: 4 Reaction step number: 176 SrCO3 added: 1.7600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.5299e-01 -XStrontianite: 5.4701e-01 +XAragonite: 4.5304e-01 +XStrontianite: 5.4696e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2640,8 +2642,8 @@ Simulation number: 4 Reaction step number: 177 SrCO3 added: 1.7700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.4980e-01 -XStrontianite: 5.5020e-01 +XAragonite: 4.4985e-01 +XStrontianite: 5.5015e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2653,8 +2655,8 @@ Simulation number: 4 Reaction step number: 178 SrCO3 added: 1.7800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.4665e-01 -XStrontianite: 5.5335e-01 +XAragonite: 4.4671e-01 +XStrontianite: 5.5329e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2666,8 +2668,8 @@ Simulation number: 4 Reaction step number: 179 SrCO3 added: 1.7900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.4355e-01 -XStrontianite: 5.5645e-01 +XAragonite: 4.4360e-01 +XStrontianite: 5.5640e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2679,8 +2681,8 @@ Simulation number: 4 Reaction step number: 180 SrCO3 added: 1.8000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.4049e-01 -XStrontianite: 5.5951e-01 +XAragonite: 4.4054e-01 +XStrontianite: 5.5946e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2692,8 +2694,8 @@ Simulation number: 4 Reaction step number: 181 SrCO3 added: 1.8100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.3747e-01 -XStrontianite: 5.6253e-01 +XAragonite: 4.3753e-01 +XStrontianite: 5.6247e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2705,8 +2707,8 @@ Simulation number: 4 Reaction step number: 182 SrCO3 added: 1.8200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.3450e-01 -XStrontianite: 5.6550e-01 +XAragonite: 4.3455e-01 +XStrontianite: 5.6545e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2718,8 +2720,8 @@ Simulation number: 4 Reaction step number: 183 SrCO3 added: 1.8300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.3156e-01 -XStrontianite: 5.6844e-01 +XAragonite: 4.3161e-01 +XStrontianite: 5.6839e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2731,8 +2733,8 @@ Simulation number: 4 Reaction step number: 184 SrCO3 added: 1.8400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.2866e-01 -XStrontianite: 5.7134e-01 +XAragonite: 4.2872e-01 +XStrontianite: 5.7128e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2744,8 +2746,8 @@ Simulation number: 4 Reaction step number: 185 SrCO3 added: 1.8500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.2580e-01 -XStrontianite: 5.7420e-01 +XAragonite: 4.2586e-01 +XStrontianite: 5.7414e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2757,8 +2759,8 @@ Simulation number: 4 Reaction step number: 186 SrCO3 added: 1.8600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.2298e-01 -XStrontianite: 5.7702e-01 +XAragonite: 4.2304e-01 +XStrontianite: 5.7696e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2770,8 +2772,8 @@ Simulation number: 4 Reaction step number: 187 SrCO3 added: 1.8700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.2020e-01 -XStrontianite: 5.7980e-01 +XAragonite: 4.2025e-01 +XStrontianite: 5.7975e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2783,8 +2785,8 @@ Simulation number: 4 Reaction step number: 188 SrCO3 added: 1.8800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.1745e-01 -XStrontianite: 5.8255e-01 +XAragonite: 4.1751e-01 +XStrontianite: 5.8249e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2796,8 +2798,8 @@ Simulation number: 4 Reaction step number: 189 SrCO3 added: 1.8900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.1474e-01 -XStrontianite: 5.8526e-01 +XAragonite: 4.1480e-01 +XStrontianite: 5.8520e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2809,8 +2811,8 @@ Simulation number: 4 Reaction step number: 190 SrCO3 added: 1.9000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.1207e-01 -XStrontianite: 5.8793e-01 +XAragonite: 4.1212e-01 +XStrontianite: 5.8788e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2822,8 +2824,8 @@ Simulation number: 4 Reaction step number: 191 SrCO3 added: 1.9100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.0942e-01 -XStrontianite: 5.9058e-01 +XAragonite: 4.0948e-01 +XStrontianite: 5.9052e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2835,8 +2837,8 @@ Simulation number: 4 Reaction step number: 192 SrCO3 added: 1.9200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.0682e-01 -XStrontianite: 5.9318e-01 +XAragonite: 4.0687e-01 +XStrontianite: 5.9313e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2848,8 +2850,8 @@ Simulation number: 4 Reaction step number: 193 SrCO3 added: 1.9300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.0424e-01 -XStrontianite: 5.9576e-01 +XAragonite: 4.0429e-01 +XStrontianite: 5.9571e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2861,8 +2863,8 @@ Simulation number: 4 Reaction step number: 194 SrCO3 added: 1.9400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.0170e-01 -XStrontianite: 5.9830e-01 +XAragonite: 4.0175e-01 +XStrontianite: 5.9825e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2874,8 +2876,8 @@ Simulation number: 4 Reaction step number: 195 SrCO3 added: 1.9500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.9919e-01 -XStrontianite: 6.0081e-01 +XAragonite: 3.9924e-01 +XStrontianite: 6.0076e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2887,8 +2889,8 @@ Simulation number: 4 Reaction step number: 196 SrCO3 added: 1.9600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.9671e-01 -XStrontianite: 6.0329e-01 +XAragonite: 3.9676e-01 +XStrontianite: 6.0324e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2900,8 +2902,8 @@ Simulation number: 4 Reaction step number: 197 SrCO3 added: 1.9700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.9426e-01 -XStrontianite: 6.0574e-01 +XAragonite: 3.9431e-01 +XStrontianite: 6.0569e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2913,8 +2915,8 @@ Simulation number: 4 Reaction step number: 198 SrCO3 added: 1.9800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.9184e-01 -XStrontianite: 6.0816e-01 +XAragonite: 3.9189e-01 +XStrontianite: 6.0811e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2926,8 +2928,8 @@ Simulation number: 4 Reaction step number: 199 SrCO3 added: 1.9900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.8945e-01 -XStrontianite: 6.1055e-01 +XAragonite: 3.8950e-01 +XStrontianite: 6.1050e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2939,8 +2941,8 @@ Simulation number: 4 Reaction step number: 200 SrCO3 added: 2.0000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.8709e-01 -XStrontianite: 6.1291e-01 +XAragonite: 3.8714e-01 +XStrontianite: 6.1286e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2952,8 +2954,8 @@ Simulation number: 4 Reaction step number: 201 SrCO3 added: 2.0100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.8476e-01 -XStrontianite: 6.1524e-01 +XAragonite: 3.8481e-01 +XStrontianite: 6.1519e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2965,8 +2967,8 @@ Simulation number: 4 Reaction step number: 202 SrCO3 added: 2.0200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.8245e-01 -XStrontianite: 6.1755e-01 +XAragonite: 3.8250e-01 +XStrontianite: 6.1750e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2978,8 +2980,8 @@ Simulation number: 4 Reaction step number: 203 SrCO3 added: 2.0300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.8018e-01 -XStrontianite: 6.1982e-01 +XAragonite: 3.8023e-01 +XStrontianite: 6.1977e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -2991,8 +2993,8 @@ Simulation number: 4 Reaction step number: 204 SrCO3 added: 2.0400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.7793e-01 -XStrontianite: 6.2207e-01 +XAragonite: 3.7798e-01 +XStrontianite: 6.2202e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3004,8 +3006,8 @@ Simulation number: 4 Reaction step number: 205 SrCO3 added: 2.0500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.7570e-01 -XStrontianite: 6.2430e-01 +XAragonite: 3.7575e-01 +XStrontianite: 6.2425e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3017,8 +3019,8 @@ Simulation number: 4 Reaction step number: 206 SrCO3 added: 2.0600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.7350e-01 -XStrontianite: 6.2650e-01 +XAragonite: 3.7356e-01 +XStrontianite: 6.2644e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3030,8 +3032,8 @@ Simulation number: 4 Reaction step number: 207 SrCO3 added: 2.0700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.7133e-01 -XStrontianite: 6.2867e-01 +XAragonite: 3.7138e-01 +XStrontianite: 6.2862e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3043,8 +3045,8 @@ Simulation number: 4 Reaction step number: 208 SrCO3 added: 2.0800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.6919e-01 -XStrontianite: 6.3081e-01 +XAragonite: 3.6924e-01 +XStrontianite: 6.3076e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3056,8 +3058,8 @@ Simulation number: 4 Reaction step number: 209 SrCO3 added: 2.0900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.6706e-01 -XStrontianite: 6.3294e-01 +XAragonite: 3.6712e-01 +XStrontianite: 6.3288e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3069,8 +3071,8 @@ Simulation number: 4 Reaction step number: 210 SrCO3 added: 2.1000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.6497e-01 -XStrontianite: 6.3503e-01 +XAragonite: 3.6502e-01 +XStrontianite: 6.3498e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3082,8 +3084,8 @@ Simulation number: 4 Reaction step number: 211 SrCO3 added: 2.1100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.6289e-01 -XStrontianite: 6.3711e-01 +XAragonite: 3.6294e-01 +XStrontianite: 6.3706e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3095,8 +3097,8 @@ Simulation number: 4 Reaction step number: 212 SrCO3 added: 2.1200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.6084e-01 -XStrontianite: 6.3916e-01 +XAragonite: 3.6089e-01 +XStrontianite: 6.3911e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3108,8 +3110,8 @@ Simulation number: 4 Reaction step number: 213 SrCO3 added: 2.1300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.5881e-01 -XStrontianite: 6.4119e-01 +XAragonite: 3.5887e-01 +XStrontianite: 6.4113e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3121,8 +3123,8 @@ Simulation number: 4 Reaction step number: 214 SrCO3 added: 2.1400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.5681e-01 -XStrontianite: 6.4319e-01 +XAragonite: 3.5686e-01 +XStrontianite: 6.4314e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3134,8 +3136,8 @@ Simulation number: 4 Reaction step number: 215 SrCO3 added: 2.1500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.5483e-01 -XStrontianite: 6.4517e-01 +XAragonite: 3.5488e-01 +XStrontianite: 6.4512e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3147,8 +3149,8 @@ Simulation number: 4 Reaction step number: 216 SrCO3 added: 2.1600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.5287e-01 -XStrontianite: 6.4713e-01 +XAragonite: 3.5292e-01 +XStrontianite: 6.4708e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3160,8 +3162,8 @@ Simulation number: 4 Reaction step number: 217 SrCO3 added: 2.1700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.5093e-01 -XStrontianite: 6.4907e-01 +XAragonite: 3.5098e-01 +XStrontianite: 6.4902e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3173,8 +3175,8 @@ Simulation number: 4 Reaction step number: 218 SrCO3 added: 2.1800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.4901e-01 -XStrontianite: 6.5099e-01 +XAragonite: 3.4906e-01 +XStrontianite: 6.5094e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3186,8 +3188,8 @@ Simulation number: 4 Reaction step number: 219 SrCO3 added: 2.1900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.4711e-01 -XStrontianite: 6.5289e-01 +XAragonite: 3.4716e-01 +XStrontianite: 6.5284e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3199,8 +3201,8 @@ Simulation number: 4 Reaction step number: 220 SrCO3 added: 2.2000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.4524e-01 -XStrontianite: 6.5476e-01 +XAragonite: 3.4529e-01 +XStrontianite: 6.5471e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3212,8 +3214,8 @@ Simulation number: 4 Reaction step number: 221 SrCO3 added: 2.2100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.4338e-01 -XStrontianite: 6.5662e-01 +XAragonite: 3.4343e-01 +XStrontianite: 6.5657e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3225,8 +3227,8 @@ Simulation number: 4 Reaction step number: 222 SrCO3 added: 2.2200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.4154e-01 -XStrontianite: 6.5846e-01 +XAragonite: 3.4159e-01 +XStrontianite: 6.5841e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3238,8 +3240,8 @@ Simulation number: 4 Reaction step number: 223 SrCO3 added: 2.2300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.3973e-01 -XStrontianite: 6.6027e-01 +XAragonite: 3.3978e-01 +XStrontianite: 6.6022e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3251,8 +3253,8 @@ Simulation number: 4 Reaction step number: 224 SrCO3 added: 2.2400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.3793e-01 -XStrontianite: 6.6207e-01 +XAragonite: 3.3798e-01 +XStrontianite: 6.6202e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3264,8 +3266,8 @@ Simulation number: 4 Reaction step number: 225 SrCO3 added: 2.2500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.3615e-01 -XStrontianite: 6.6385e-01 +XAragonite: 3.3620e-01 +XStrontianite: 6.6380e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3277,8 +3279,8 @@ Simulation number: 4 Reaction step number: 226 SrCO3 added: 2.2600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.3439e-01 -XStrontianite: 6.6561e-01 +XAragonite: 3.3444e-01 +XStrontianite: 6.6556e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3290,8 +3292,8 @@ Simulation number: 4 Reaction step number: 227 SrCO3 added: 2.2700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.3265e-01 -XStrontianite: 6.6735e-01 +XAragonite: 3.3270e-01 +XStrontianite: 6.6730e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3303,8 +3305,8 @@ Simulation number: 4 Reaction step number: 228 SrCO3 added: 2.2800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.3092e-01 -XStrontianite: 6.6908e-01 +XAragonite: 3.3097e-01 +XStrontianite: 6.6903e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3316,8 +3318,8 @@ Simulation number: 4 Reaction step number: 229 SrCO3 added: 2.2900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.2922e-01 -XStrontianite: 6.7078e-01 +XAragonite: 3.2927e-01 +XStrontianite: 6.7073e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3329,8 +3331,8 @@ Simulation number: 4 Reaction step number: 230 SrCO3 added: 2.3000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.2753e-01 -XStrontianite: 6.7247e-01 +XAragonite: 3.2758e-01 +XStrontianite: 6.7242e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3342,8 +3344,8 @@ Simulation number: 4 Reaction step number: 231 SrCO3 added: 2.3100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.2586e-01 -XStrontianite: 6.7414e-01 +XAragonite: 3.2591e-01 +XStrontianite: 6.7409e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3355,8 +3357,8 @@ Simulation number: 4 Reaction step number: 232 SrCO3 added: 2.3200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.2420e-01 -XStrontianite: 6.7580e-01 +XAragonite: 3.2425e-01 +XStrontianite: 6.7575e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3368,8 +3370,8 @@ Simulation number: 4 Reaction step number: 233 SrCO3 added: 2.3300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.2257e-01 -XStrontianite: 6.7743e-01 +XAragonite: 3.2261e-01 +XStrontianite: 6.7739e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3381,8 +3383,8 @@ Simulation number: 4 Reaction step number: 234 SrCO3 added: 2.3400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.2094e-01 -XStrontianite: 6.7906e-01 +XAragonite: 3.2099e-01 +XStrontianite: 6.7901e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3394,8 +3396,8 @@ Simulation number: 4 Reaction step number: 235 SrCO3 added: 2.3500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.1934e-01 -XStrontianite: 6.8066e-01 +XAragonite: 3.1939e-01 +XStrontianite: 6.8061e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3407,8 +3409,8 @@ Simulation number: 4 Reaction step number: 236 SrCO3 added: 2.3600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.1775e-01 -XStrontianite: 6.8225e-01 +XAragonite: 3.1780e-01 +XStrontianite: 6.8220e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3420,8 +3422,8 @@ Simulation number: 4 Reaction step number: 237 SrCO3 added: 2.3700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.1618e-01 -XStrontianite: 6.8382e-01 +XAragonite: 3.1623e-01 +XStrontianite: 6.8377e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3433,8 +3435,8 @@ Simulation number: 4 Reaction step number: 238 SrCO3 added: 2.3800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.1462e-01 -XStrontianite: 6.8538e-01 +XAragonite: 3.1467e-01 +XStrontianite: 6.8533e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3446,8 +3448,8 @@ Simulation number: 4 Reaction step number: 239 SrCO3 added: 2.3900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.1308e-01 -XStrontianite: 6.8692e-01 +XAragonite: 3.1313e-01 +XStrontianite: 6.8687e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3459,8 +3461,8 @@ Simulation number: 4 Reaction step number: 240 SrCO3 added: 2.4000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.1155e-01 -XStrontianite: 6.8845e-01 +XAragonite: 3.1160e-01 +XStrontianite: 6.8840e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3472,8 +3474,8 @@ Simulation number: 4 Reaction step number: 241 SrCO3 added: 2.4100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.1004e-01 -XStrontianite: 6.8996e-01 +XAragonite: 3.1009e-01 +XStrontianite: 6.8991e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3485,8 +3487,8 @@ Simulation number: 4 Reaction step number: 242 SrCO3 added: 2.4200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.0854e-01 -XStrontianite: 6.9146e-01 +XAragonite: 3.0859e-01 +XStrontianite: 6.9141e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3498,8 +3500,8 @@ Simulation number: 4 Reaction step number: 243 SrCO3 added: 2.4300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.0706e-01 -XStrontianite: 6.9294e-01 +XAragonite: 3.0710e-01 +XStrontianite: 6.9290e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3511,8 +3513,8 @@ Simulation number: 4 Reaction step number: 244 SrCO3 added: 2.4400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.0559e-01 -XStrontianite: 6.9441e-01 +XAragonite: 3.0563e-01 +XStrontianite: 6.9437e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3524,8 +3526,8 @@ Simulation number: 4 Reaction step number: 245 SrCO3 added: 2.4500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.0413e-01 -XStrontianite: 6.9587e-01 +XAragonite: 3.0418e-01 +XStrontianite: 6.9582e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3537,8 +3539,8 @@ Simulation number: 4 Reaction step number: 246 SrCO3 added: 2.4600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.0269e-01 -XStrontianite: 6.9731e-01 +XAragonite: 3.0274e-01 +XStrontianite: 6.9726e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3550,8 +3552,8 @@ Simulation number: 4 Reaction step number: 247 SrCO3 added: 2.4700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.0126e-01 -XStrontianite: 6.9874e-01 +XAragonite: 3.0131e-01 +XStrontianite: 6.9869e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3563,8 +3565,8 @@ Simulation number: 4 Reaction step number: 248 SrCO3 added: 2.4800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.9985e-01 -XStrontianite: 7.0015e-01 +XAragonite: 2.9989e-01 +XStrontianite: 7.0011e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3576,8 +3578,8 @@ Simulation number: 4 Reaction step number: 249 SrCO3 added: 2.4900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.9845e-01 -XStrontianite: 7.0155e-01 +XAragonite: 2.9849e-01 +XStrontianite: 7.0151e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3589,8 +3591,8 @@ Simulation number: 4 Reaction step number: 250 SrCO3 added: 2.5000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.9706e-01 -XStrontianite: 7.0294e-01 +XAragonite: 2.9710e-01 +XStrontianite: 7.0290e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3602,8 +3604,8 @@ Simulation number: 4 Reaction step number: 251 SrCO3 added: 2.5100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.9568e-01 -XStrontianite: 7.0432e-01 +XAragonite: 2.9573e-01 +XStrontianite: 7.0427e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3615,8 +3617,8 @@ Simulation number: 4 Reaction step number: 252 SrCO3 added: 2.5200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.9432e-01 -XStrontianite: 7.0568e-01 +XAragonite: 2.9437e-01 +XStrontianite: 7.0563e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3628,8 +3630,8 @@ Simulation number: 4 Reaction step number: 253 SrCO3 added: 2.5300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.9297e-01 -XStrontianite: 7.0703e-01 +XAragonite: 2.9302e-01 +XStrontianite: 7.0698e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3641,8 +3643,8 @@ Simulation number: 4 Reaction step number: 254 SrCO3 added: 2.5400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.9163e-01 -XStrontianite: 7.0837e-01 +XAragonite: 2.9168e-01 +XStrontianite: 7.0832e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3654,8 +3656,8 @@ Simulation number: 4 Reaction step number: 255 SrCO3 added: 2.5500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.9030e-01 -XStrontianite: 7.0970e-01 +XAragonite: 2.9035e-01 +XStrontianite: 7.0965e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3667,8 +3669,8 @@ Simulation number: 4 Reaction step number: 256 SrCO3 added: 2.5600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.8899e-01 -XStrontianite: 7.1101e-01 +XAragonite: 2.8904e-01 +XStrontianite: 7.1096e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3680,8 +3682,8 @@ Simulation number: 4 Reaction step number: 257 SrCO3 added: 2.5700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.8769e-01 -XStrontianite: 7.1231e-01 +XAragonite: 2.8774e-01 +XStrontianite: 7.1226e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3693,8 +3695,8 @@ Simulation number: 4 Reaction step number: 258 SrCO3 added: 2.5800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.8640e-01 -XStrontianite: 7.1360e-01 +XAragonite: 2.8645e-01 +XStrontianite: 7.1355e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3706,8 +3708,8 @@ Simulation number: 4 Reaction step number: 259 SrCO3 added: 2.5900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.8512e-01 -XStrontianite: 7.1488e-01 +XAragonite: 2.8517e-01 +XStrontianite: 7.1483e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3719,8 +3721,8 @@ Simulation number: 4 Reaction step number: 260 SrCO3 added: 2.6000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.8385e-01 -XStrontianite: 7.1615e-01 +XAragonite: 2.8390e-01 +XStrontianite: 7.1610e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3732,8 +3734,8 @@ Simulation number: 4 Reaction step number: 261 SrCO3 added: 2.6100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.8260e-01 -XStrontianite: 7.1740e-01 +XAragonite: 2.8264e-01 +XStrontianite: 7.1736e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3745,8 +3747,8 @@ Simulation number: 4 Reaction step number: 262 SrCO3 added: 2.6200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.8135e-01 -XStrontianite: 7.1865e-01 +XAragonite: 2.8140e-01 +XStrontianite: 7.1860e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3758,8 +3760,8 @@ Simulation number: 4 Reaction step number: 263 SrCO3 added: 2.6300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.8012e-01 -XStrontianite: 7.1988e-01 +XAragonite: 2.8016e-01 +XStrontianite: 7.1984e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3771,8 +3773,8 @@ Simulation number: 4 Reaction step number: 264 SrCO3 added: 2.6400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.7889e-01 -XStrontianite: 7.2111e-01 +XAragonite: 2.7894e-01 +XStrontianite: 7.2106e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3784,8 +3786,8 @@ Simulation number: 4 Reaction step number: 265 SrCO3 added: 2.6500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.7768e-01 -XStrontianite: 7.2232e-01 +XAragonite: 2.7773e-01 +XStrontianite: 7.2227e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3797,8 +3799,8 @@ Simulation number: 4 Reaction step number: 266 SrCO3 added: 2.6600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.7648e-01 -XStrontianite: 7.2352e-01 +XAragonite: 2.7652e-01 +XStrontianite: 7.2348e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3810,8 +3812,8 @@ Simulation number: 4 Reaction step number: 267 SrCO3 added: 2.6700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.7529e-01 -XStrontianite: 7.2471e-01 +XAragonite: 2.7533e-01 +XStrontianite: 7.2467e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3823,8 +3825,8 @@ Simulation number: 4 Reaction step number: 268 SrCO3 added: 2.6800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.7411e-01 -XStrontianite: 7.2589e-01 +XAragonite: 2.7415e-01 +XStrontianite: 7.2585e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3836,8 +3838,8 @@ Simulation number: 4 Reaction step number: 269 SrCO3 added: 2.6900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.7293e-01 -XStrontianite: 7.2707e-01 +XAragonite: 2.7298e-01 +XStrontianite: 7.2702e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3849,8 +3851,8 @@ Simulation number: 4 Reaction step number: 270 SrCO3 added: 2.7000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.7177e-01 -XStrontianite: 7.2823e-01 +XAragonite: 2.7182e-01 +XStrontianite: 7.2818e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3862,8 +3864,8 @@ Simulation number: 4 Reaction step number: 271 SrCO3 added: 2.7100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.7062e-01 -XStrontianite: 7.2938e-01 +XAragonite: 2.7067e-01 +XStrontianite: 7.2933e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3875,8 +3877,8 @@ Simulation number: 4 Reaction step number: 272 SrCO3 added: 2.7200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.6948e-01 -XStrontianite: 7.3052e-01 +XAragonite: 2.6952e-01 +XStrontianite: 7.3048e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3888,8 +3890,8 @@ Simulation number: 4 Reaction step number: 273 SrCO3 added: 2.7300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.6835e-01 -XStrontianite: 7.3165e-01 +XAragonite: 2.6839e-01 +XStrontianite: 7.3161e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3901,8 +3903,8 @@ Simulation number: 4 Reaction step number: 274 SrCO3 added: 2.7400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.6722e-01 -XStrontianite: 7.3278e-01 +XAragonite: 2.6727e-01 +XStrontianite: 7.3273e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3914,8 +3916,8 @@ Simulation number: 4 Reaction step number: 275 SrCO3 added: 2.7500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.6611e-01 -XStrontianite: 7.3389e-01 +XAragonite: 2.6615e-01 +XStrontianite: 7.3385e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3927,8 +3929,8 @@ Simulation number: 4 Reaction step number: 276 SrCO3 added: 2.7600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.6501e-01 -XStrontianite: 7.3499e-01 +XAragonite: 2.6505e-01 +XStrontianite: 7.3495e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3940,8 +3942,8 @@ Simulation number: 4 Reaction step number: 277 SrCO3 added: 2.7700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.6391e-01 -XStrontianite: 7.3609e-01 +XAragonite: 2.6395e-01 +XStrontianite: 7.3605e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3953,8 +3955,8 @@ Simulation number: 4 Reaction step number: 278 SrCO3 added: 2.7800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.6282e-01 -XStrontianite: 7.3718e-01 +XAragonite: 2.6287e-01 +XStrontianite: 7.3713e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3966,8 +3968,8 @@ Simulation number: 4 Reaction step number: 279 SrCO3 added: 2.7900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.6175e-01 -XStrontianite: 7.3825e-01 +XAragonite: 2.6179e-01 +XStrontianite: 7.3821e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3979,8 +3981,8 @@ Simulation number: 4 Reaction step number: 280 SrCO3 added: 2.8000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.6068e-01 -XStrontianite: 7.3932e-01 +XAragonite: 2.6072e-01 +XStrontianite: 7.3928e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -3992,8 +3994,8 @@ Simulation number: 4 Reaction step number: 281 SrCO3 added: 2.8100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5962e-01 -XStrontianite: 7.4038e-01 +XAragonite: 2.5966e-01 +XStrontianite: 7.4034e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4005,8 +4007,8 @@ Simulation number: 4 Reaction step number: 282 SrCO3 added: 2.8200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5857e-01 -XStrontianite: 7.4143e-01 +XAragonite: 2.5861e-01 +XStrontianite: 7.4139e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4018,8 +4020,8 @@ Simulation number: 4 Reaction step number: 283 SrCO3 added: 2.8300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5752e-01 -XStrontianite: 7.4248e-01 +XAragonite: 2.5757e-01 +XStrontianite: 7.4243e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4031,8 +4033,8 @@ Simulation number: 4 Reaction step number: 284 SrCO3 added: 2.8400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5649e-01 -XStrontianite: 7.4351e-01 +XAragonite: 2.5653e-01 +XStrontianite: 7.4347e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4044,8 +4046,8 @@ Simulation number: 4 Reaction step number: 285 SrCO3 added: 2.8500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5546e-01 -XStrontianite: 7.4454e-01 +XAragonite: 2.5551e-01 +XStrontianite: 7.4449e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4057,8 +4059,8 @@ Simulation number: 4 Reaction step number: 286 SrCO3 added: 2.8600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5445e-01 -XStrontianite: 7.4555e-01 +XAragonite: 2.5449e-01 +XStrontianite: 7.4551e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4070,8 +4072,8 @@ Simulation number: 4 Reaction step number: 287 SrCO3 added: 2.8700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5344e-01 -XStrontianite: 7.4656e-01 +XAragonite: 2.5348e-01 +XStrontianite: 7.4652e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4083,8 +4085,8 @@ Simulation number: 4 Reaction step number: 288 SrCO3 added: 2.8800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5243e-01 -XStrontianite: 7.4757e-01 +XAragonite: 2.5248e-01 +XStrontianite: 7.4752e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4096,8 +4098,8 @@ Simulation number: 4 Reaction step number: 289 SrCO3 added: 2.8900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5144e-01 -XStrontianite: 7.4856e-01 +XAragonite: 2.5148e-01 +XStrontianite: 7.4852e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4109,8 +4111,8 @@ Simulation number: 4 Reaction step number: 290 SrCO3 added: 2.9000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5045e-01 -XStrontianite: 7.4955e-01 +XAragonite: 2.5050e-01 +XStrontianite: 7.4950e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4122,8 +4124,8 @@ Simulation number: 4 Reaction step number: 291 SrCO3 added: 2.9100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4948e-01 -XStrontianite: 7.5052e-01 +XAragonite: 2.4952e-01 +XStrontianite: 7.5048e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4135,8 +4137,8 @@ Simulation number: 4 Reaction step number: 292 SrCO3 added: 2.9200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4851e-01 -XStrontianite: 7.5149e-01 +XAragonite: 2.4855e-01 +XStrontianite: 7.5145e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4148,8 +4150,8 @@ Simulation number: 4 Reaction step number: 293 SrCO3 added: 2.9300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4754e-01 -XStrontianite: 7.5246e-01 +XAragonite: 2.4758e-01 +XStrontianite: 7.5242e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4161,8 +4163,8 @@ Simulation number: 4 Reaction step number: 294 SrCO3 added: 2.9400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4659e-01 -XStrontianite: 7.5341e-01 +XAragonite: 2.4663e-01 +XStrontianite: 7.5337e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4174,8 +4176,8 @@ Simulation number: 4 Reaction step number: 295 SrCO3 added: 2.9500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4564e-01 -XStrontianite: 7.5436e-01 +XAragonite: 2.4568e-01 +XStrontianite: 7.5432e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4187,8 +4189,8 @@ Simulation number: 4 Reaction step number: 296 SrCO3 added: 2.9600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4470e-01 -XStrontianite: 7.5530e-01 +XAragonite: 2.4474e-01 +XStrontianite: 7.5526e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4200,8 +4202,8 @@ Simulation number: 4 Reaction step number: 297 SrCO3 added: 2.9700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4376e-01 -XStrontianite: 7.5624e-01 +XAragonite: 2.4380e-01 +XStrontianite: 7.5620e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4213,8 +4215,8 @@ Simulation number: 4 Reaction step number: 298 SrCO3 added: 2.9800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4284e-01 -XStrontianite: 7.5716e-01 +XAragonite: 2.4288e-01 +XStrontianite: 7.5712e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4226,8 +4228,8 @@ Simulation number: 4 Reaction step number: 299 SrCO3 added: 2.9900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4192e-01 -XStrontianite: 7.5808e-01 +XAragonite: 2.4196e-01 +XStrontianite: 7.5804e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4239,8 +4241,8 @@ Simulation number: 4 Reaction step number: 300 SrCO3 added: 3.0000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4100e-01 -XStrontianite: 7.5900e-01 +XAragonite: 2.4104e-01 +XStrontianite: 7.5896e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4252,8 +4254,8 @@ Simulation number: 4 Reaction step number: 301 SrCO3 added: 3.0100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4010e-01 -XStrontianite: 7.5990e-01 +XAragonite: 2.4014e-01 +XStrontianite: 7.5986e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4265,8 +4267,8 @@ Simulation number: 4 Reaction step number: 302 SrCO3 added: 3.0200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3920e-01 -XStrontianite: 7.6080e-01 +XAragonite: 2.3924e-01 +XStrontianite: 7.6076e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4278,8 +4280,8 @@ Simulation number: 4 Reaction step number: 303 SrCO3 added: 3.0300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3830e-01 -XStrontianite: 7.6170e-01 +XAragonite: 2.3835e-01 +XStrontianite: 7.6165e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4291,8 +4293,8 @@ Simulation number: 4 Reaction step number: 304 SrCO3 added: 3.0400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3742e-01 -XStrontianite: 7.6258e-01 +XAragonite: 2.3746e-01 +XStrontianite: 7.6254e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4304,8 +4306,8 @@ Simulation number: 4 Reaction step number: 305 SrCO3 added: 3.0500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3654e-01 -XStrontianite: 7.6346e-01 +XAragonite: 2.3658e-01 +XStrontianite: 7.6342e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4317,8 +4319,8 @@ Simulation number: 4 Reaction step number: 306 SrCO3 added: 3.0600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3567e-01 -XStrontianite: 7.6433e-01 +XAragonite: 2.3571e-01 +XStrontianite: 7.6429e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4330,8 +4332,8 @@ Simulation number: 4 Reaction step number: 307 SrCO3 added: 3.0700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3480e-01 -XStrontianite: 7.6520e-01 +XAragonite: 2.3484e-01 +XStrontianite: 7.6516e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4343,8 +4345,8 @@ Simulation number: 4 Reaction step number: 308 SrCO3 added: 3.0800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3394e-01 -XStrontianite: 7.6606e-01 +XAragonite: 2.3398e-01 +XStrontianite: 7.6602e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4356,8 +4358,8 @@ Simulation number: 4 Reaction step number: 309 SrCO3 added: 3.0900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3309e-01 -XStrontianite: 7.6691e-01 +XAragonite: 2.3313e-01 +XStrontianite: 7.6687e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4369,8 +4371,8 @@ Simulation number: 4 Reaction step number: 310 SrCO3 added: 3.1000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3224e-01 -XStrontianite: 7.6776e-01 +XAragonite: 2.3228e-01 +XStrontianite: 7.6772e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4382,8 +4384,8 @@ Simulation number: 4 Reaction step number: 311 SrCO3 added: 3.1100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3140e-01 -XStrontianite: 7.6860e-01 +XAragonite: 2.3144e-01 +XStrontianite: 7.6856e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4395,8 +4397,8 @@ Simulation number: 4 Reaction step number: 312 SrCO3 added: 3.1200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3056e-01 -XStrontianite: 7.6944e-01 +XAragonite: 2.3060e-01 +XStrontianite: 7.6940e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4408,8 +4410,8 @@ Simulation number: 4 Reaction step number: 313 SrCO3 added: 3.1300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2973e-01 -XStrontianite: 7.7027e-01 +XAragonite: 2.2977e-01 +XStrontianite: 7.7023e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4421,8 +4423,8 @@ Simulation number: 4 Reaction step number: 314 SrCO3 added: 3.1400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2891e-01 -XStrontianite: 7.7109e-01 +XAragonite: 2.2895e-01 +XStrontianite: 7.7105e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4434,8 +4436,8 @@ Simulation number: 4 Reaction step number: 315 SrCO3 added: 3.1500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2809e-01 -XStrontianite: 7.7191e-01 +XAragonite: 2.2813e-01 +XStrontianite: 7.7187e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4447,8 +4449,8 @@ Simulation number: 4 Reaction step number: 316 SrCO3 added: 3.1600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2728e-01 -XStrontianite: 7.7272e-01 +XAragonite: 2.2732e-01 +XStrontianite: 7.7268e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4460,8 +4462,8 @@ Simulation number: 4 Reaction step number: 317 SrCO3 added: 3.1700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2647e-01 -XStrontianite: 7.7353e-01 +XAragonite: 2.2651e-01 +XStrontianite: 7.7349e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4473,8 +4475,8 @@ Simulation number: 4 Reaction step number: 318 SrCO3 added: 3.1800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2567e-01 -XStrontianite: 7.7433e-01 +XAragonite: 2.2571e-01 +XStrontianite: 7.7429e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4486,8 +4488,8 @@ Simulation number: 4 Reaction step number: 319 SrCO3 added: 3.1900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2488e-01 -XStrontianite: 7.7512e-01 +XAragonite: 2.2492e-01 +XStrontianite: 7.7508e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4499,8 +4501,8 @@ Simulation number: 4 Reaction step number: 320 SrCO3 added: 3.2000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2409e-01 -XStrontianite: 7.7591e-01 +XAragonite: 2.2413e-01 +XStrontianite: 7.7587e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4512,8 +4514,8 @@ Simulation number: 4 Reaction step number: 321 SrCO3 added: 3.2100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2330e-01 -XStrontianite: 7.7670e-01 +XAragonite: 2.2334e-01 +XStrontianite: 7.7666e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4525,8 +4527,8 @@ Simulation number: 4 Reaction step number: 322 SrCO3 added: 3.2200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2253e-01 -XStrontianite: 7.7747e-01 +XAragonite: 2.2257e-01 +XStrontianite: 7.7743e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4538,8 +4540,8 @@ Simulation number: 4 Reaction step number: 323 SrCO3 added: 3.2300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2175e-01 -XStrontianite: 7.7825e-01 +XAragonite: 2.2179e-01 +XStrontianite: 7.7821e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4551,8 +4553,8 @@ Simulation number: 4 Reaction step number: 324 SrCO3 added: 3.2400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2099e-01 -XStrontianite: 7.7901e-01 +XAragonite: 2.2103e-01 +XStrontianite: 7.7897e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4564,8 +4566,8 @@ Simulation number: 4 Reaction step number: 325 SrCO3 added: 3.2500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2022e-01 -XStrontianite: 7.7978e-01 +XAragonite: 2.2026e-01 +XStrontianite: 7.7974e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4577,8 +4579,8 @@ Simulation number: 4 Reaction step number: 326 SrCO3 added: 3.2600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1947e-01 -XStrontianite: 7.8053e-01 +XAragonite: 2.1951e-01 +XStrontianite: 7.8049e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4590,8 +4592,8 @@ Simulation number: 4 Reaction step number: 327 SrCO3 added: 3.2700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1872e-01 -XStrontianite: 7.8128e-01 +XAragonite: 2.1876e-01 +XStrontianite: 7.8124e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4603,8 +4605,8 @@ Simulation number: 4 Reaction step number: 328 SrCO3 added: 3.2800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1797e-01 -XStrontianite: 7.8203e-01 +XAragonite: 2.1801e-01 +XStrontianite: 7.8199e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4616,8 +4618,8 @@ Simulation number: 4 Reaction step number: 329 SrCO3 added: 3.2900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1723e-01 -XStrontianite: 7.8277e-01 +XAragonite: 2.1727e-01 +XStrontianite: 7.8273e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4629,8 +4631,8 @@ Simulation number: 4 Reaction step number: 330 SrCO3 added: 3.3000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1649e-01 -XStrontianite: 7.8351e-01 +XAragonite: 2.1653e-01 +XStrontianite: 7.8347e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4642,8 +4644,8 @@ Simulation number: 4 Reaction step number: 331 SrCO3 added: 3.3100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1576e-01 -XStrontianite: 7.8424e-01 +XAragonite: 2.1580e-01 +XStrontianite: 7.8420e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4655,8 +4657,8 @@ Simulation number: 4 Reaction step number: 332 SrCO3 added: 3.3200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1503e-01 -XStrontianite: 7.8497e-01 +XAragonite: 2.1507e-01 +XStrontianite: 7.8493e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4668,8 +4670,8 @@ Simulation number: 4 Reaction step number: 333 SrCO3 added: 3.3300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1431e-01 -XStrontianite: 7.8569e-01 +XAragonite: 2.1435e-01 +XStrontianite: 7.8565e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4681,8 +4683,8 @@ Simulation number: 4 Reaction step number: 334 SrCO3 added: 3.3400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1360e-01 -XStrontianite: 7.8640e-01 +XAragonite: 2.1363e-01 +XStrontianite: 7.8637e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4694,8 +4696,8 @@ Simulation number: 4 Reaction step number: 335 SrCO3 added: 3.3500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1288e-01 -XStrontianite: 7.8712e-01 +XAragonite: 2.1292e-01 +XStrontianite: 7.8708e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4707,8 +4709,8 @@ Simulation number: 4 Reaction step number: 336 SrCO3 added: 3.3600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1218e-01 -XStrontianite: 7.8782e-01 +XAragonite: 2.1221e-01 +XStrontianite: 7.8779e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4720,8 +4722,8 @@ Simulation number: 4 Reaction step number: 337 SrCO3 added: 3.3700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1147e-01 -XStrontianite: 7.8853e-01 +XAragonite: 2.1151e-01 +XStrontianite: 7.8849e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4733,8 +4735,8 @@ Simulation number: 4 Reaction step number: 338 SrCO3 added: 3.3800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1078e-01 -XStrontianite: 7.8922e-01 +XAragonite: 2.1081e-01 +XStrontianite: 7.8919e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4746,8 +4748,8 @@ Simulation number: 4 Reaction step number: 339 SrCO3 added: 3.3900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1008e-01 -XStrontianite: 7.8992e-01 +XAragonite: 2.1012e-01 +XStrontianite: 7.8988e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4759,8 +4761,8 @@ Simulation number: 4 Reaction step number: 340 SrCO3 added: 3.4000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0939e-01 -XStrontianite: 7.9061e-01 +XAragonite: 2.0943e-01 +XStrontianite: 7.9057e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4772,8 +4774,8 @@ Simulation number: 4 Reaction step number: 341 SrCO3 added: 3.4100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0871e-01 -XStrontianite: 7.9129e-01 +XAragonite: 2.0875e-01 +XStrontianite: 7.9125e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4785,8 +4787,8 @@ Simulation number: 4 Reaction step number: 342 SrCO3 added: 3.4200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0803e-01 -XStrontianite: 7.9197e-01 +XAragonite: 2.0807e-01 +XStrontianite: 7.9193e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4798,8 +4800,8 @@ Simulation number: 4 Reaction step number: 343 SrCO3 added: 3.4300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0735e-01 -XStrontianite: 7.9265e-01 +XAragonite: 2.0739e-01 +XStrontianite: 7.9261e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4811,8 +4813,8 @@ Simulation number: 4 Reaction step number: 344 SrCO3 added: 3.4400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0668e-01 -XStrontianite: 7.9332e-01 +XAragonite: 2.0672e-01 +XStrontianite: 7.9328e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4824,8 +4826,8 @@ Simulation number: 4 Reaction step number: 345 SrCO3 added: 3.4500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0602e-01 -XStrontianite: 7.9398e-01 +XAragonite: 2.0605e-01 +XStrontianite: 7.9395e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4837,8 +4839,8 @@ Simulation number: 4 Reaction step number: 346 SrCO3 added: 3.4600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0535e-01 -XStrontianite: 7.9465e-01 +XAragonite: 2.0539e-01 +XStrontianite: 7.9461e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4850,8 +4852,8 @@ Simulation number: 4 Reaction step number: 347 SrCO3 added: 3.4700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0469e-01 -XStrontianite: 7.9531e-01 +XAragonite: 2.0473e-01 +XStrontianite: 7.9527e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4863,8 +4865,8 @@ Simulation number: 4 Reaction step number: 348 SrCO3 added: 3.4800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0404e-01 -XStrontianite: 7.9596e-01 +XAragonite: 2.0408e-01 +XStrontianite: 7.9592e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4876,8 +4878,8 @@ Simulation number: 4 Reaction step number: 349 SrCO3 added: 3.4900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0339e-01 -XStrontianite: 7.9661e-01 +XAragonite: 2.0343e-01 +XStrontianite: 7.9657e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4889,8 +4891,8 @@ Simulation number: 4 Reaction step number: 350 SrCO3 added: 3.5000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0274e-01 -XStrontianite: 7.9726e-01 +XAragonite: 2.0278e-01 +XStrontianite: 7.9722e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4902,8 +4904,8 @@ Simulation number: 4 Reaction step number: 351 SrCO3 added: 3.5100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0210e-01 -XStrontianite: 7.9790e-01 +XAragonite: 2.0214e-01 +XStrontianite: 7.9786e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4915,8 +4917,8 @@ Simulation number: 4 Reaction step number: 352 SrCO3 added: 3.5200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0147e-01 -XStrontianite: 7.9853e-01 +XAragonite: 2.0150e-01 +XStrontianite: 7.9850e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4928,8 +4930,8 @@ Simulation number: 4 Reaction step number: 353 SrCO3 added: 3.5300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0083e-01 -XStrontianite: 7.9917e-01 +XAragonite: 2.0087e-01 +XStrontianite: 7.9913e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4941,8 +4943,8 @@ Simulation number: 4 Reaction step number: 354 SrCO3 added: 3.5400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0020e-01 -XStrontianite: 7.9980e-01 +XAragonite: 2.0024e-01 +XStrontianite: 7.9976e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4954,8 +4956,8 @@ Simulation number: 4 Reaction step number: 355 SrCO3 added: 3.5500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9958e-01 -XStrontianite: 8.0042e-01 +XAragonite: 1.9961e-01 +XStrontianite: 8.0039e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4967,8 +4969,8 @@ Simulation number: 4 Reaction step number: 356 SrCO3 added: 3.5600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9895e-01 -XStrontianite: 8.0105e-01 +XAragonite: 1.9899e-01 +XStrontianite: 8.0101e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4980,8 +4982,8 @@ Simulation number: 4 Reaction step number: 357 SrCO3 added: 3.5700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9834e-01 -XStrontianite: 8.0166e-01 +XAragonite: 1.9837e-01 +XStrontianite: 8.0163e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -4993,8 +4995,8 @@ Simulation number: 4 Reaction step number: 358 SrCO3 added: 3.5800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9772e-01 -XStrontianite: 8.0228e-01 +XAragonite: 1.9776e-01 +XStrontianite: 8.0224e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5006,8 +5008,8 @@ Simulation number: 4 Reaction step number: 359 SrCO3 added: 3.5900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9711e-01 -XStrontianite: 8.0289e-01 +XAragonite: 1.9715e-01 +XStrontianite: 8.0285e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5019,8 +5021,8 @@ Simulation number: 4 Reaction step number: 360 SrCO3 added: 3.6000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9651e-01 -XStrontianite: 8.0349e-01 +XAragonite: 1.9654e-01 +XStrontianite: 8.0346e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5032,8 +5034,8 @@ Simulation number: 4 Reaction step number: 361 SrCO3 added: 3.6100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9590e-01 -XStrontianite: 8.0410e-01 +XAragonite: 1.9594e-01 +XStrontianite: 8.0406e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5045,8 +5047,8 @@ Simulation number: 4 Reaction step number: 362 SrCO3 added: 3.6200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9530e-01 -XStrontianite: 8.0470e-01 +XAragonite: 1.9534e-01 +XStrontianite: 8.0466e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5058,8 +5060,8 @@ Simulation number: 4 Reaction step number: 363 SrCO3 added: 3.6300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9471e-01 -XStrontianite: 8.0529e-01 +XAragonite: 1.9474e-01 +XStrontianite: 8.0526e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5071,8 +5073,8 @@ Simulation number: 4 Reaction step number: 364 SrCO3 added: 3.6400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9412e-01 -XStrontianite: 8.0588e-01 +XAragonite: 1.9415e-01 +XStrontianite: 8.0585e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5084,8 +5086,8 @@ Simulation number: 4 Reaction step number: 365 SrCO3 added: 3.6500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9353e-01 -XStrontianite: 8.0647e-01 +XAragonite: 1.9356e-01 +XStrontianite: 8.0644e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5097,8 +5099,8 @@ Simulation number: 4 Reaction step number: 366 SrCO3 added: 3.6600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9294e-01 -XStrontianite: 8.0706e-01 +XAragonite: 1.9298e-01 +XStrontianite: 8.0702e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5110,8 +5112,8 @@ Simulation number: 4 Reaction step number: 367 SrCO3 added: 3.6700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9236e-01 -XStrontianite: 8.0764e-01 +XAragonite: 1.9240e-01 +XStrontianite: 8.0760e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5123,8 +5125,8 @@ Simulation number: 4 Reaction step number: 368 SrCO3 added: 3.6800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9178e-01 -XStrontianite: 8.0822e-01 +XAragonite: 1.9182e-01 +XStrontianite: 8.0818e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5136,8 +5138,8 @@ Simulation number: 4 Reaction step number: 369 SrCO3 added: 3.6900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9121e-01 -XStrontianite: 8.0879e-01 +XAragonite: 1.9125e-01 +XStrontianite: 8.0875e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5149,8 +5151,8 @@ Simulation number: 4 Reaction step number: 370 SrCO3 added: 3.7000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9064e-01 -XStrontianite: 8.0936e-01 +XAragonite: 1.9068e-01 +XStrontianite: 8.0932e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5162,8 +5164,8 @@ Simulation number: 4 Reaction step number: 371 SrCO3 added: 3.7100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9007e-01 -XStrontianite: 8.0993e-01 +XAragonite: 1.9011e-01 +XStrontianite: 8.0989e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5175,8 +5177,8 @@ Simulation number: 4 Reaction step number: 372 SrCO3 added: 3.7200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8951e-01 -XStrontianite: 8.1049e-01 +XAragonite: 1.8954e-01 +XStrontianite: 8.1046e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5188,8 +5190,8 @@ Simulation number: 4 Reaction step number: 373 SrCO3 added: 3.7300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8895e-01 -XStrontianite: 8.1105e-01 +XAragonite: 1.8898e-01 +XStrontianite: 8.1102e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5201,8 +5203,8 @@ Simulation number: 4 Reaction step number: 374 SrCO3 added: 3.7400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8839e-01 -XStrontianite: 8.1161e-01 +XAragonite: 1.8843e-01 +XStrontianite: 8.1157e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5214,8 +5216,8 @@ Simulation number: 4 Reaction step number: 375 SrCO3 added: 3.7500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8784e-01 -XStrontianite: 8.1216e-01 +XAragonite: 1.8787e-01 +XStrontianite: 8.1213e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5227,8 +5229,8 @@ Simulation number: 4 Reaction step number: 376 SrCO3 added: 3.7600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8729e-01 -XStrontianite: 8.1271e-01 +XAragonite: 1.8732e-01 +XStrontianite: 8.1268e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5240,8 +5242,8 @@ Simulation number: 4 Reaction step number: 377 SrCO3 added: 3.7700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8674e-01 -XStrontianite: 8.1326e-01 +XAragonite: 1.8677e-01 +XStrontianite: 8.1323e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5253,8 +5255,8 @@ Simulation number: 4 Reaction step number: 378 SrCO3 added: 3.7800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8619e-01 -XStrontianite: 8.1381e-01 +XAragonite: 1.8623e-01 +XStrontianite: 8.1377e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5266,8 +5268,8 @@ Simulation number: 4 Reaction step number: 379 SrCO3 added: 3.7900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8565e-01 -XStrontianite: 8.1435e-01 +XAragonite: 1.8569e-01 +XStrontianite: 8.1431e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5279,8 +5281,8 @@ Simulation number: 4 Reaction step number: 380 SrCO3 added: 3.8000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8511e-01 -XStrontianite: 8.1489e-01 +XAragonite: 1.8515e-01 +XStrontianite: 8.1485e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5292,8 +5294,8 @@ Simulation number: 4 Reaction step number: 381 SrCO3 added: 3.8100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8458e-01 -XStrontianite: 8.1542e-01 +XAragonite: 1.8461e-01 +XStrontianite: 8.1539e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5305,8 +5307,8 @@ Simulation number: 4 Reaction step number: 382 SrCO3 added: 3.8200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8405e-01 -XStrontianite: 8.1595e-01 +XAragonite: 1.8408e-01 +XStrontianite: 8.1592e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5318,8 +5320,8 @@ Simulation number: 4 Reaction step number: 383 SrCO3 added: 3.8300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8352e-01 -XStrontianite: 8.1648e-01 +XAragonite: 1.8355e-01 +XStrontianite: 8.1645e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5331,8 +5333,8 @@ Simulation number: 4 Reaction step number: 384 SrCO3 added: 3.8400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8299e-01 -XStrontianite: 8.1701e-01 +XAragonite: 1.8303e-01 +XStrontianite: 8.1697e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5344,8 +5346,8 @@ Simulation number: 4 Reaction step number: 385 SrCO3 added: 3.8500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8247e-01 -XStrontianite: 8.1753e-01 +XAragonite: 1.8250e-01 +XStrontianite: 8.1750e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5357,8 +5359,8 @@ Simulation number: 4 Reaction step number: 386 SrCO3 added: 3.8600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8195e-01 -XStrontianite: 8.1805e-01 +XAragonite: 1.8198e-01 +XStrontianite: 8.1802e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5370,8 +5372,8 @@ Simulation number: 4 Reaction step number: 387 SrCO3 added: 3.8700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8143e-01 -XStrontianite: 8.1857e-01 +XAragonite: 1.8147e-01 +XStrontianite: 8.1853e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5383,8 +5385,8 @@ Simulation number: 4 Reaction step number: 388 SrCO3 added: 3.8800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8092e-01 -XStrontianite: 8.1908e-01 +XAragonite: 1.8095e-01 +XStrontianite: 8.1905e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5396,8 +5398,8 @@ Simulation number: 4 Reaction step number: 389 SrCO3 added: 3.8900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8041e-01 -XStrontianite: 8.1959e-01 +XAragonite: 1.8044e-01 +XStrontianite: 8.1956e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5409,8 +5411,8 @@ Simulation number: 4 Reaction step number: 390 SrCO3 added: 3.9000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7990e-01 -XStrontianite: 8.2010e-01 +XAragonite: 1.7993e-01 +XStrontianite: 8.2007e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5422,8 +5424,8 @@ Simulation number: 4 Reaction step number: 391 SrCO3 added: 3.9100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7939e-01 -XStrontianite: 8.2061e-01 +XAragonite: 1.7943e-01 +XStrontianite: 8.2057e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5435,8 +5437,8 @@ Simulation number: 4 Reaction step number: 392 SrCO3 added: 3.9200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7889e-01 -XStrontianite: 8.2111e-01 +XAragonite: 1.7892e-01 +XStrontianite: 8.2108e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5448,8 +5450,8 @@ Simulation number: 4 Reaction step number: 393 SrCO3 added: 3.9300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7839e-01 -XStrontianite: 8.2161e-01 +XAragonite: 1.7842e-01 +XStrontianite: 8.2158e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5461,8 +5463,8 @@ Simulation number: 4 Reaction step number: 394 SrCO3 added: 3.9400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7789e-01 -XStrontianite: 8.2211e-01 +XAragonite: 1.7793e-01 +XStrontianite: 8.2207e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5474,8 +5476,8 @@ Simulation number: 4 Reaction step number: 395 SrCO3 added: 3.9500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7740e-01 -XStrontianite: 8.2260e-01 +XAragonite: 1.7743e-01 +XStrontianite: 8.2257e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5487,8 +5489,8 @@ Simulation number: 4 Reaction step number: 396 SrCO3 added: 3.9600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7691e-01 -XStrontianite: 8.2309e-01 +XAragonite: 1.7694e-01 +XStrontianite: 8.2306e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5500,8 +5502,8 @@ Simulation number: 4 Reaction step number: 397 SrCO3 added: 3.9700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7642e-01 -XStrontianite: 8.2358e-01 +XAragonite: 1.7645e-01 +XStrontianite: 8.2355e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5513,8 +5515,8 @@ Simulation number: 4 Reaction step number: 398 SrCO3 added: 3.9800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7593e-01 -XStrontianite: 8.2407e-01 +XAragonite: 1.7597e-01 +XStrontianite: 8.2403e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5526,8 +5528,8 @@ Simulation number: 4 Reaction step number: 399 SrCO3 added: 3.9900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7545e-01 -XStrontianite: 8.2455e-01 +XAragonite: 1.7548e-01 +XStrontianite: 8.2452e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5539,8 +5541,8 @@ Simulation number: 4 Reaction step number: 400 SrCO3 added: 4.0000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7497e-01 -XStrontianite: 8.2503e-01 +XAragonite: 1.7500e-01 +XStrontianite: 8.2500e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5552,8 +5554,8 @@ Simulation number: 4 Reaction step number: 401 SrCO3 added: 4.0100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7449e-01 -XStrontianite: 8.2551e-01 +XAragonite: 1.7452e-01 +XStrontianite: 8.2548e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5565,8 +5567,8 @@ Simulation number: 4 Reaction step number: 402 SrCO3 added: 4.0200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7402e-01 -XStrontianite: 8.2598e-01 +XAragonite: 1.7405e-01 +XStrontianite: 8.2595e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5578,8 +5580,8 @@ Simulation number: 4 Reaction step number: 403 SrCO3 added: 4.0300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7354e-01 -XStrontianite: 8.2646e-01 +XAragonite: 1.7358e-01 +XStrontianite: 8.2642e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5591,8 +5593,8 @@ Simulation number: 4 Reaction step number: 404 SrCO3 added: 4.0400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7307e-01 -XStrontianite: 8.2693e-01 +XAragonite: 1.7311e-01 +XStrontianite: 8.2689e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5604,8 +5606,8 @@ Simulation number: 4 Reaction step number: 405 SrCO3 added: 4.0500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7260e-01 -XStrontianite: 8.2740e-01 +XAragonite: 1.7264e-01 +XStrontianite: 8.2736e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5617,8 +5619,8 @@ Simulation number: 4 Reaction step number: 406 SrCO3 added: 4.0600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7214e-01 -XStrontianite: 8.2786e-01 +XAragonite: 1.7217e-01 +XStrontianite: 8.2783e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5630,8 +5632,8 @@ Simulation number: 4 Reaction step number: 407 SrCO3 added: 4.0700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7168e-01 -XStrontianite: 8.2832e-01 +XAragonite: 1.7171e-01 +XStrontianite: 8.2829e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5643,8 +5645,8 @@ Simulation number: 4 Reaction step number: 408 SrCO3 added: 4.0800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7122e-01 -XStrontianite: 8.2878e-01 +XAragonite: 1.7125e-01 +XStrontianite: 8.2875e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5656,8 +5658,8 @@ Simulation number: 4 Reaction step number: 409 SrCO3 added: 4.0900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7076e-01 -XStrontianite: 8.2924e-01 +XAragonite: 1.7079e-01 +XStrontianite: 8.2921e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5669,8 +5671,8 @@ Simulation number: 4 Reaction step number: 410 SrCO3 added: 4.1000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7030e-01 -XStrontianite: 8.2970e-01 +XAragonite: 1.7034e-01 +XStrontianite: 8.2966e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5682,8 +5684,8 @@ Simulation number: 4 Reaction step number: 411 SrCO3 added: 4.1100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6985e-01 -XStrontianite: 8.3015e-01 +XAragonite: 1.6988e-01 +XStrontianite: 8.3012e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5695,8 +5697,8 @@ Simulation number: 4 Reaction step number: 412 SrCO3 added: 4.1200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6940e-01 -XStrontianite: 8.3060e-01 +XAragonite: 1.6943e-01 +XStrontianite: 8.3057e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5708,8 +5710,8 @@ Simulation number: 4 Reaction step number: 413 SrCO3 added: 4.1300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6895e-01 -XStrontianite: 8.3105e-01 +XAragonite: 1.6898e-01 +XStrontianite: 8.3102e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5721,8 +5723,8 @@ Simulation number: 4 Reaction step number: 414 SrCO3 added: 4.1400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6851e-01 -XStrontianite: 8.3149e-01 +XAragonite: 1.6854e-01 +XStrontianite: 8.3146e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5734,8 +5736,8 @@ Simulation number: 4 Reaction step number: 415 SrCO3 added: 4.1500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6806e-01 -XStrontianite: 8.3194e-01 +XAragonite: 1.6809e-01 +XStrontianite: 8.3191e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5747,8 +5749,8 @@ Simulation number: 4 Reaction step number: 416 SrCO3 added: 4.1600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6762e-01 -XStrontianite: 8.3238e-01 +XAragonite: 1.6765e-01 +XStrontianite: 8.3235e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5760,8 +5762,8 @@ Simulation number: 4 Reaction step number: 417 SrCO3 added: 4.1700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6718e-01 -XStrontianite: 8.3282e-01 +XAragonite: 1.6721e-01 +XStrontianite: 8.3279e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5773,8 +5775,8 @@ Simulation number: 4 Reaction step number: 418 SrCO3 added: 4.1800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6675e-01 -XStrontianite: 8.3325e-01 +XAragonite: 1.6678e-01 +XStrontianite: 8.3322e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5786,8 +5788,8 @@ Simulation number: 4 Reaction step number: 419 SrCO3 added: 4.1900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6631e-01 -XStrontianite: 8.3369e-01 +XAragonite: 1.6634e-01 +XStrontianite: 8.3366e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5799,8 +5801,8 @@ Simulation number: 4 Reaction step number: 420 SrCO3 added: 4.2000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6588e-01 -XStrontianite: 8.3412e-01 +XAragonite: 1.6591e-01 +XStrontianite: 8.3409e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5812,8 +5814,8 @@ Simulation number: 4 Reaction step number: 421 SrCO3 added: 4.2100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6545e-01 -XStrontianite: 8.3455e-01 +XAragonite: 1.6548e-01 +XStrontianite: 8.3452e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5825,8 +5827,8 @@ Simulation number: 4 Reaction step number: 422 SrCO3 added: 4.2200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6502e-01 -XStrontianite: 8.3498e-01 +XAragonite: 1.6505e-01 +XStrontianite: 8.3495e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5838,8 +5840,8 @@ Simulation number: 4 Reaction step number: 423 SrCO3 added: 4.2300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6460e-01 -XStrontianite: 8.3540e-01 +XAragonite: 1.6463e-01 +XStrontianite: 8.3537e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5851,8 +5853,8 @@ Simulation number: 4 Reaction step number: 424 SrCO3 added: 4.2400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6417e-01 -XStrontianite: 8.3583e-01 +XAragonite: 1.6421e-01 +XStrontianite: 8.3579e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5864,8 +5866,8 @@ Simulation number: 4 Reaction step number: 425 SrCO3 added: 4.2500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6375e-01 -XStrontianite: 8.3625e-01 +XAragonite: 1.6378e-01 +XStrontianite: 8.3622e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5877,8 +5879,8 @@ Simulation number: 4 Reaction step number: 426 SrCO3 added: 4.2600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6333e-01 -XStrontianite: 8.3667e-01 +XAragonite: 1.6337e-01 +XStrontianite: 8.3663e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5890,8 +5892,8 @@ Simulation number: 4 Reaction step number: 427 SrCO3 added: 4.2700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6292e-01 -XStrontianite: 8.3708e-01 +XAragonite: 1.6295e-01 +XStrontianite: 8.3705e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5903,8 +5905,8 @@ Simulation number: 4 Reaction step number: 428 SrCO3 added: 4.2800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6250e-01 -XStrontianite: 8.3750e-01 +XAragonite: 1.6253e-01 +XStrontianite: 8.3747e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5916,8 +5918,8 @@ Simulation number: 4 Reaction step number: 429 SrCO3 added: 4.2900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6209e-01 -XStrontianite: 8.3791e-01 +XAragonite: 1.6212e-01 +XStrontianite: 8.3788e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5929,8 +5931,8 @@ Simulation number: 4 Reaction step number: 430 SrCO3 added: 4.3000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6168e-01 -XStrontianite: 8.3832e-01 +XAragonite: 1.6171e-01 +XStrontianite: 8.3829e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5942,8 +5944,8 @@ Simulation number: 4 Reaction step number: 431 SrCO3 added: 4.3100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6127e-01 -XStrontianite: 8.3873e-01 +XAragonite: 1.6130e-01 +XStrontianite: 8.3870e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5955,8 +5957,8 @@ Simulation number: 4 Reaction step number: 432 SrCO3 added: 4.3200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6087e-01 -XStrontianite: 8.3913e-01 +XAragonite: 1.6090e-01 +XStrontianite: 8.3910e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5968,8 +5970,8 @@ Simulation number: 4 Reaction step number: 433 SrCO3 added: 4.3300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6046e-01 -XStrontianite: 8.3954e-01 +XAragonite: 1.6049e-01 +XStrontianite: 8.3951e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5981,8 +5983,8 @@ Simulation number: 4 Reaction step number: 434 SrCO3 added: 4.3400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6006e-01 -XStrontianite: 8.3994e-01 +XAragonite: 1.6009e-01 +XStrontianite: 8.3991e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -5994,8 +5996,8 @@ Simulation number: 4 Reaction step number: 435 SrCO3 added: 4.3500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5966e-01 -XStrontianite: 8.4034e-01 +XAragonite: 1.5969e-01 +XStrontianite: 8.4031e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6007,8 +6009,8 @@ Simulation number: 4 Reaction step number: 436 SrCO3 added: 4.3600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5926e-01 -XStrontianite: 8.4074e-01 +XAragonite: 1.5929e-01 +XStrontianite: 8.4071e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6020,8 +6022,8 @@ Simulation number: 4 Reaction step number: 437 SrCO3 added: 4.3700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5886e-01 -XStrontianite: 8.4114e-01 +XAragonite: 1.5890e-01 +XStrontianite: 8.4110e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6033,8 +6035,8 @@ Simulation number: 4 Reaction step number: 438 SrCO3 added: 4.3800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5847e-01 -XStrontianite: 8.4153e-01 +XAragonite: 1.5850e-01 +XStrontianite: 8.4150e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6046,8 +6048,8 @@ Simulation number: 4 Reaction step number: 439 SrCO3 added: 4.3900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5808e-01 -XStrontianite: 8.4192e-01 +XAragonite: 1.5811e-01 +XStrontianite: 8.4189e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6059,8 +6061,8 @@ Simulation number: 4 Reaction step number: 440 SrCO3 added: 4.4000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5769e-01 -XStrontianite: 8.4231e-01 +XAragonite: 1.5772e-01 +XStrontianite: 8.4228e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6072,8 +6074,8 @@ Simulation number: 4 Reaction step number: 441 SrCO3 added: 4.4100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5730e-01 -XStrontianite: 8.4270e-01 +XAragonite: 1.5733e-01 +XStrontianite: 8.4267e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6085,8 +6087,8 @@ Simulation number: 4 Reaction step number: 442 SrCO3 added: 4.4200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5691e-01 -XStrontianite: 8.4309e-01 +XAragonite: 1.5694e-01 +XStrontianite: 8.4306e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6098,8 +6100,8 @@ Simulation number: 4 Reaction step number: 443 SrCO3 added: 4.4300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5653e-01 -XStrontianite: 8.4347e-01 +XAragonite: 1.5656e-01 +XStrontianite: 8.4344e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6111,8 +6113,8 @@ Simulation number: 4 Reaction step number: 444 SrCO3 added: 4.4400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5615e-01 -XStrontianite: 8.4385e-01 +XAragonite: 1.5618e-01 +XStrontianite: 8.4382e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6124,8 +6126,8 @@ Simulation number: 4 Reaction step number: 445 SrCO3 added: 4.4500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5576e-01 -XStrontianite: 8.4424e-01 +XAragonite: 1.5579e-01 +XStrontianite: 8.4421e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6137,8 +6139,8 @@ Simulation number: 4 Reaction step number: 446 SrCO3 added: 4.4600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5539e-01 -XStrontianite: 8.4461e-01 +XAragonite: 1.5542e-01 +XStrontianite: 8.4458e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6150,8 +6152,8 @@ Simulation number: 4 Reaction step number: 447 SrCO3 added: 4.4700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5501e-01 -XStrontianite: 8.4499e-01 +XAragonite: 1.5504e-01 +XStrontianite: 8.4496e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6163,8 +6165,8 @@ Simulation number: 4 Reaction step number: 448 SrCO3 added: 4.4800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5463e-01 -XStrontianite: 8.4537e-01 +XAragonite: 1.5466e-01 +XStrontianite: 8.4534e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6176,8 +6178,8 @@ Simulation number: 4 Reaction step number: 449 SrCO3 added: 4.4900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5426e-01 -XStrontianite: 8.4574e-01 +XAragonite: 1.5429e-01 +XStrontianite: 8.4571e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6189,8 +6191,8 @@ Simulation number: 4 Reaction step number: 450 SrCO3 added: 4.5000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5389e-01 -XStrontianite: 8.4611e-01 +XAragonite: 1.5392e-01 +XStrontianite: 8.4608e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6202,8 +6204,8 @@ Simulation number: 4 Reaction step number: 451 SrCO3 added: 4.5100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5352e-01 -XStrontianite: 8.4648e-01 +XAragonite: 1.5355e-01 +XStrontianite: 8.4645e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6215,8 +6217,8 @@ Simulation number: 4 Reaction step number: 452 SrCO3 added: 4.5200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5315e-01 -XStrontianite: 8.4685e-01 +XAragonite: 1.5318e-01 +XStrontianite: 8.4682e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6228,8 +6230,8 @@ Simulation number: 4 Reaction step number: 453 SrCO3 added: 4.5300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5278e-01 -XStrontianite: 8.4722e-01 +XAragonite: 1.5281e-01 +XStrontianite: 8.4719e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6241,8 +6243,8 @@ Simulation number: 4 Reaction step number: 454 SrCO3 added: 4.5400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5242e-01 -XStrontianite: 8.4758e-01 +XAragonite: 1.5245e-01 +XStrontianite: 8.4755e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6254,8 +6256,8 @@ Simulation number: 4 Reaction step number: 455 SrCO3 added: 4.5500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5206e-01 -XStrontianite: 8.4794e-01 +XAragonite: 1.5209e-01 +XStrontianite: 8.4791e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6267,8 +6269,8 @@ Simulation number: 4 Reaction step number: 456 SrCO3 added: 4.5600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5169e-01 -XStrontianite: 8.4831e-01 +XAragonite: 1.5172e-01 +XStrontianite: 8.4828e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6280,8 +6282,8 @@ Simulation number: 4 Reaction step number: 457 SrCO3 added: 4.5700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5133e-01 -XStrontianite: 8.4867e-01 +XAragonite: 1.5136e-01 +XStrontianite: 8.4864e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6293,8 +6295,8 @@ Simulation number: 4 Reaction step number: 458 SrCO3 added: 4.5800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5098e-01 -XStrontianite: 8.4902e-01 +XAragonite: 1.5101e-01 +XStrontianite: 8.4899e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6306,8 +6308,8 @@ Simulation number: 4 Reaction step number: 459 SrCO3 added: 4.5900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5062e-01 -XStrontianite: 8.4938e-01 +XAragonite: 1.5065e-01 +XStrontianite: 8.4935e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6319,8 +6321,8 @@ Simulation number: 4 Reaction step number: 460 SrCO3 added: 4.6000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5027e-01 -XStrontianite: 8.4973e-01 +XAragonite: 1.5030e-01 +XStrontianite: 8.4970e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6332,8 +6334,8 @@ Simulation number: 4 Reaction step number: 461 SrCO3 added: 4.6100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4991e-01 -XStrontianite: 8.5009e-01 +XAragonite: 1.4994e-01 +XStrontianite: 8.5006e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6345,8 +6347,8 @@ Simulation number: 4 Reaction step number: 462 SrCO3 added: 4.6200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4956e-01 -XStrontianite: 8.5044e-01 +XAragonite: 1.4959e-01 +XStrontianite: 8.5041e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6358,8 +6360,8 @@ Simulation number: 4 Reaction step number: 463 SrCO3 added: 4.6300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4921e-01 -XStrontianite: 8.5079e-01 +XAragonite: 1.4924e-01 +XStrontianite: 8.5076e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6371,8 +6373,8 @@ Simulation number: 4 Reaction step number: 464 SrCO3 added: 4.6400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4887e-01 -XStrontianite: 8.5113e-01 +XAragonite: 1.4889e-01 +XStrontianite: 8.5111e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6384,8 +6386,8 @@ Simulation number: 4 Reaction step number: 465 SrCO3 added: 4.6500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4852e-01 -XStrontianite: 8.5148e-01 +XAragonite: 1.4855e-01 +XStrontianite: 8.5145e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6397,8 +6399,8 @@ Simulation number: 4 Reaction step number: 466 SrCO3 added: 4.6600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4817e-01 -XStrontianite: 8.5183e-01 +XAragonite: 1.4820e-01 +XStrontianite: 8.5180e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6410,8 +6412,8 @@ Simulation number: 4 Reaction step number: 467 SrCO3 added: 4.6700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4783e-01 -XStrontianite: 8.5217e-01 +XAragonite: 1.4786e-01 +XStrontianite: 8.5214e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6423,8 +6425,8 @@ Simulation number: 4 Reaction step number: 468 SrCO3 added: 4.6800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4749e-01 -XStrontianite: 8.5251e-01 +XAragonite: 1.4752e-01 +XStrontianite: 8.5248e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6436,8 +6438,8 @@ Simulation number: 4 Reaction step number: 469 SrCO3 added: 4.6900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4715e-01 -XStrontianite: 8.5285e-01 +XAragonite: 1.4718e-01 +XStrontianite: 8.5282e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6449,8 +6451,8 @@ Simulation number: 4 Reaction step number: 470 SrCO3 added: 4.7000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4681e-01 -XStrontianite: 8.5319e-01 +XAragonite: 1.4684e-01 +XStrontianite: 8.5316e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6462,8 +6464,8 @@ Simulation number: 4 Reaction step number: 471 SrCO3 added: 4.7100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4648e-01 -XStrontianite: 8.5352e-01 +XAragonite: 1.4650e-01 +XStrontianite: 8.5350e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6475,8 +6477,8 @@ Simulation number: 4 Reaction step number: 472 SrCO3 added: 4.7200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4614e-01 -XStrontianite: 8.5386e-01 +XAragonite: 1.4617e-01 +XStrontianite: 8.5383e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6488,8 +6490,8 @@ Simulation number: 4 Reaction step number: 473 SrCO3 added: 4.7300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4581e-01 -XStrontianite: 8.5419e-01 +XAragonite: 1.4584e-01 +XStrontianite: 8.5416e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6501,8 +6503,8 @@ Simulation number: 4 Reaction step number: 474 SrCO3 added: 4.7400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4547e-01 -XStrontianite: 8.5453e-01 +XAragonite: 1.4550e-01 +XStrontianite: 8.5450e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6514,8 +6516,8 @@ Simulation number: 4 Reaction step number: 475 SrCO3 added: 4.7500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4514e-01 -XStrontianite: 8.5486e-01 +XAragonite: 1.4517e-01 +XStrontianite: 8.5483e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6527,8 +6529,8 @@ Simulation number: 4 Reaction step number: 476 SrCO3 added: 4.7600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4481e-01 -XStrontianite: 8.5519e-01 +XAragonite: 1.4484e-01 +XStrontianite: 8.5516e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6540,8 +6542,8 @@ Simulation number: 4 Reaction step number: 477 SrCO3 added: 4.7700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4449e-01 -XStrontianite: 8.5551e-01 +XAragonite: 1.4452e-01 +XStrontianite: 8.5548e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6553,8 +6555,8 @@ Simulation number: 4 Reaction step number: 478 SrCO3 added: 4.7800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4416e-01 -XStrontianite: 8.5584e-01 +XAragonite: 1.4419e-01 +XStrontianite: 8.5581e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6566,8 +6568,8 @@ Simulation number: 4 Reaction step number: 479 SrCO3 added: 4.7900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4384e-01 -XStrontianite: 8.5616e-01 +XAragonite: 1.4386e-01 +XStrontianite: 8.5614e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6579,8 +6581,8 @@ Simulation number: 4 Reaction step number: 480 SrCO3 added: 4.8000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4351e-01 -XStrontianite: 8.5649e-01 +XAragonite: 1.4354e-01 +XStrontianite: 8.5646e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6592,8 +6594,8 @@ Simulation number: 4 Reaction step number: 481 SrCO3 added: 4.8100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4319e-01 -XStrontianite: 8.5681e-01 +XAragonite: 1.4322e-01 +XStrontianite: 8.5678e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6605,8 +6607,8 @@ Simulation number: 4 Reaction step number: 482 SrCO3 added: 4.8200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4287e-01 -XStrontianite: 8.5713e-01 +XAragonite: 1.4290e-01 +XStrontianite: 8.5710e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6618,8 +6620,8 @@ Simulation number: 4 Reaction step number: 483 SrCO3 added: 4.8300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4255e-01 -XStrontianite: 8.5745e-01 +XAragonite: 1.4258e-01 +XStrontianite: 8.5742e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6631,8 +6633,8 @@ Simulation number: 4 Reaction step number: 484 SrCO3 added: 4.8400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4223e-01 -XStrontianite: 8.5777e-01 +XAragonite: 1.4226e-01 +XStrontianite: 8.5774e-01 XCa: 9.0898e-01 XSr: 9.1023e-02 Misc 1: 4.8032e-03 @@ -6647,7 +6649,7 @@ Log Sigma pi: -8.2974e+00 XAragonite: 1.4211e-01 XStrontianite: 8.5789e-01 XCa: 9.0896e-01 -XSr: 9.1045e-02 +XSr: 9.1042e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6659,8 +6661,8 @@ SrCO3 added: 4.8600e-03 Log Sigma pi: -8.2976e+00 XAragonite: 1.4207e-01 XStrontianite: 8.5793e-01 -XCa: 9.0892e-01 -XSr: 9.1077e-02 +XCa: 9.0893e-01 +XSr: 9.1074e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6670,10 +6672,10 @@ Simulation number: 4 Reaction step number: 487 SrCO3 added: 4.8700e-03 Log Sigma pi: -8.2977e+00 -XAragonite: 1.4202e-01 -XStrontianite: 8.5798e-01 +XAragonite: 1.4203e-01 +XStrontianite: 8.5797e-01 XCa: 9.0889e-01 -XSr: 9.1109e-02 +XSr: 9.1106e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6686,7 +6688,7 @@ Log Sigma pi: -8.2978e+00 XAragonite: 1.4198e-01 XStrontianite: 8.5802e-01 XCa: 9.0886e-01 -XSr: 9.1141e-02 +XSr: 9.1138e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6699,7 +6701,7 @@ Log Sigma pi: -8.2980e+00 XAragonite: 1.4194e-01 XStrontianite: 8.5806e-01 XCa: 9.0883e-01 -XSr: 9.1173e-02 +XSr: 9.1170e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6711,8 +6713,8 @@ SrCO3 added: 4.9000e-03 Log Sigma pi: -8.2981e+00 XAragonite: 1.4190e-01 XStrontianite: 8.5810e-01 -XCa: 9.0879e-01 -XSr: 9.1205e-02 +XCa: 9.0880e-01 +XSr: 9.1202e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6722,10 +6724,10 @@ Simulation number: 4 Reaction step number: 491 SrCO3 added: 4.9100e-03 Log Sigma pi: -8.2982e+00 -XAragonite: 1.4185e-01 -XStrontianite: 8.5815e-01 -XCa: 9.0876e-01 -XSr: 9.1237e-02 +XAragonite: 1.4186e-01 +XStrontianite: 8.5814e-01 +XCa: 9.0877e-01 +XSr: 9.1234e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6734,11 +6736,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 492 SrCO3 added: 4.9200e-03 -Log Sigma pi: -8.2984e+00 +Log Sigma pi: -8.2983e+00 XAragonite: 1.4181e-01 XStrontianite: 8.5819e-01 XCa: 9.0873e-01 -XSr: 9.1269e-02 +XSr: 9.1266e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6751,7 +6753,7 @@ Log Sigma pi: -8.2985e+00 XAragonite: 1.4177e-01 XStrontianite: 8.5823e-01 XCa: 9.0870e-01 -XSr: 9.1301e-02 +XSr: 9.1298e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6764,7 +6766,7 @@ Log Sigma pi: -8.2986e+00 XAragonite: 1.4173e-01 XStrontianite: 8.5827e-01 XCa: 9.0867e-01 -XSr: 9.1333e-02 +XSr: 9.1330e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6774,10 +6776,10 @@ Simulation number: 4 Reaction step number: 495 SrCO3 added: 4.9500e-03 Log Sigma pi: -8.2987e+00 -XAragonite: 1.4168e-01 -XStrontianite: 8.5832e-01 -XCa: 9.0863e-01 -XSr: 9.1365e-02 +XAragonite: 1.4169e-01 +XStrontianite: 8.5831e-01 +XCa: 9.0864e-01 +XSr: 9.1362e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6787,10 +6789,10 @@ Simulation number: 4 Reaction step number: 496 SrCO3 added: 4.9600e-03 Log Sigma pi: -8.2989e+00 -XAragonite: 1.4164e-01 -XStrontianite: 8.5836e-01 -XCa: 9.0860e-01 -XSr: 9.1397e-02 +XAragonite: 1.4165e-01 +XStrontianite: 8.5835e-01 +XCa: 9.0861e-01 +XSr: 9.1394e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6803,7 +6805,7 @@ Log Sigma pi: -8.2990e+00 XAragonite: 1.4160e-01 XStrontianite: 8.5840e-01 XCa: 9.0857e-01 -XSr: 9.1429e-02 +XSr: 9.1426e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6816,7 +6818,7 @@ Log Sigma pi: -8.2991e+00 XAragonite: 1.4156e-01 XStrontianite: 8.5844e-01 XCa: 9.0854e-01 -XSr: 9.1461e-02 +XSr: 9.1458e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6825,11 +6827,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 499 SrCO3 added: 4.9900e-03 -Log Sigma pi: -8.2993e+00 +Log Sigma pi: -8.2992e+00 XAragonite: 1.4152e-01 XStrontianite: 8.5848e-01 XCa: 9.0851e-01 -XSr: 9.1493e-02 +XSr: 9.1490e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6839,10 +6841,10 @@ Simulation number: 4 Reaction step number: 500 SrCO3 added: 5.0000e-03 Log Sigma pi: -8.2994e+00 -XAragonite: 1.4147e-01 -XStrontianite: 8.5853e-01 -XCa: 9.0847e-01 -XSr: 9.1525e-02 +XAragonite: 1.4148e-01 +XStrontianite: 8.5852e-01 +XCa: 9.0848e-01 +XSr: 9.1522e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6858,10 +6860,10 @@ Simulation number: 5 Reaction step number: 1 SrCO3 added: 5.0000e-03 Log Sigma pi: -8.2994e+00 -XAragonite: 1.4147e-01 -XStrontianite: 8.5853e-01 -XCa: 9.0847e-01 -XSr: 9.1525e-02 +XAragonite: 1.4148e-01 +XStrontianite: 8.5852e-01 +XCa: 9.0848e-01 +XSr: 9.1522e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6897,8 +6899,8 @@ Simulation number: 5 Reaction step number: 4 SrCO3 added: 2.0000e-02 Log Sigma pi: -8.4405e+00 -XAragonite: 1.0243e-01 -XStrontianite: 8.9757e-01 +XAragonite: 1.0242e-01 +XStrontianite: 8.9758e-01 XCa: 8.6700e-01 XSr: 1.3300e-01 Misc 1: 4.8032e-03 @@ -6910,10 +6912,10 @@ Simulation number: 5 Reaction step number: 5 SrCO3 added: 2.5000e-02 Log Sigma pi: -8.4739e+00 -XAragonite: 9.4793e-02 +XAragonite: 9.4788e-02 XStrontianite: 9.0521e-01 -XCa: 8.5502e-01 -XSr: 1.4498e-01 +XCa: 8.5501e-01 +XSr: 1.4499e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6923,10 +6925,10 @@ Simulation number: 5 Reaction step number: 6 SrCO3 added: 3.0000e-02 Log Sigma pi: -8.5033e+00 -XAragonite: 8.8460e-02 -XStrontianite: 9.1154e-01 -XCa: 8.4366e-01 -XSr: 1.5634e-01 +XAragonite: 8.8454e-02 +XStrontianite: 9.1155e-01 +XCa: 8.4365e-01 +XSr: 1.5635e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6936,10 +6938,10 @@ Simulation number: 5 Reaction step number: 7 SrCO3 added: 3.5000e-02 Log Sigma pi: -8.5296e+00 -XAragonite: 8.3090e-02 -XStrontianite: 9.1691e-01 -XCa: 8.3282e-01 -XSr: 1.6718e-01 +XAragonite: 8.3084e-02 +XStrontianite: 9.1692e-01 +XCa: 8.3281e-01 +XSr: 1.6719e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6949,10 +6951,10 @@ Simulation number: 5 Reaction step number: 8 SrCO3 added: 4.0000e-02 Log Sigma pi: -8.5534e+00 -XAragonite: 7.8458e-02 -XStrontianite: 9.2154e-01 -XCa: 8.2244e-01 -XSr: 1.7756e-01 +XAragonite: 7.8452e-02 +XStrontianite: 9.2155e-01 +XCa: 8.2242e-01 +XSr: 1.7758e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6961,11 +6963,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 9 SrCO3 added: 4.5000e-02 -Log Sigma pi: -8.5750e+00 -XAragonite: 7.4408e-02 -XStrontianite: 9.2559e-01 -XCa: 8.1246e-01 -XSr: 1.8754e-01 +Log Sigma pi: -8.5751e+00 +XAragonite: 7.4402e-02 +XStrontianite: 9.2560e-01 +XCa: 8.1245e-01 +XSr: 1.8755e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6975,10 +6977,10 @@ Simulation number: 5 Reaction step number: 10 SrCO3 added: 5.0000e-02 Log Sigma pi: -8.5949e+00 -XAragonite: 7.0827e-02 -XStrontianite: 9.2917e-01 -XCa: 8.0286e-01 -XSr: 1.9714e-01 +XAragonite: 7.0821e-02 +XStrontianite: 9.2918e-01 +XCa: 8.0284e-01 +XSr: 1.9716e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6988,10 +6990,10 @@ Simulation number: 5 Reaction step number: 11 SrCO3 added: 5.5000e-02 Log Sigma pi: -8.6133e+00 -XAragonite: 6.7631e-02 +XAragonite: 6.7625e-02 XStrontianite: 9.3237e-01 -XCa: 7.9359e-01 -XSr: 2.0641e-01 +XCa: 7.9357e-01 +XSr: 2.0643e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7001,10 +7003,10 @@ Simulation number: 5 Reaction step number: 12 SrCO3 added: 6.0000e-02 Log Sigma pi: -8.6303e+00 -XAragonite: 6.4756e-02 -XStrontianite: 9.3524e-01 -XCa: 7.8462e-01 -XSr: 2.1538e-01 +XAragonite: 6.4751e-02 +XStrontianite: 9.3525e-01 +XCa: 7.8460e-01 +XSr: 2.1540e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7014,10 +7016,10 @@ Simulation number: 5 Reaction step number: 13 SrCO3 added: 6.5000e-02 Log Sigma pi: -8.6462e+00 -XAragonite: 6.2153e-02 +XAragonite: 6.2147e-02 XStrontianite: 9.3785e-01 -XCa: 7.7595e-01 -XSr: 2.2405e-01 +XCa: 7.7593e-01 +XSr: 2.2407e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7027,10 +7029,10 @@ Simulation number: 5 Reaction step number: 14 SrCO3 added: 7.0000e-02 Log Sigma pi: -8.6610e+00 -XAragonite: 5.9781e-02 +XAragonite: 5.9776e-02 XStrontianite: 9.4022e-01 -XCa: 7.6753e-01 -XSr: 2.3247e-01 +XCa: 7.6751e-01 +XSr: 2.3249e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7040,10 +7042,10 @@ Simulation number: 5 Reaction step number: 15 SrCO3 added: 7.5000e-02 Log Sigma pi: -8.6750e+00 -XAragonite: 5.7610e-02 -XStrontianite: 9.4239e-01 -XCa: 7.5937e-01 -XSr: 2.4063e-01 +XAragonite: 5.7604e-02 +XStrontianite: 9.4240e-01 +XCa: 7.5935e-01 +XSr: 2.4065e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7053,10 +7055,10 @@ Simulation number: 5 Reaction step number: 16 SrCO3 added: 8.0000e-02 Log Sigma pi: -8.6881e+00 -XAragonite: 5.5612e-02 +XAragonite: 5.5606e-02 XStrontianite: 9.4439e-01 -XCa: 7.5144e-01 -XSr: 2.4856e-01 +XCa: 7.5142e-01 +XSr: 2.4858e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7066,10 +7068,10 @@ Simulation number: 5 Reaction step number: 17 SrCO3 added: 8.5000e-02 Log Sigma pi: -8.7005e+00 -XAragonite: 5.3766e-02 -XStrontianite: 9.4623e-01 -XCa: 7.4372e-01 -XSr: 2.5628e-01 +XAragonite: 5.3761e-02 +XStrontianite: 9.4624e-01 +XCa: 7.4370e-01 +XSr: 2.5630e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7079,10 +7081,10 @@ Simulation number: 5 Reaction step number: 18 SrCO3 added: 9.0000e-02 Log Sigma pi: -8.7122e+00 -XAragonite: 5.2054e-02 +XAragonite: 5.2050e-02 XStrontianite: 9.4795e-01 -XCa: 7.3622e-01 -XSr: 2.6378e-01 +XCa: 7.3619e-01 +XSr: 2.6381e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7091,11 +7093,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 19 SrCO3 added: 9.5000e-02 -Log Sigma pi: -8.7233e+00 -XAragonite: 5.0462e-02 +Log Sigma pi: -8.7234e+00 +XAragonite: 5.0457e-02 XStrontianite: 9.4954e-01 -XCa: 7.2891e-01 -XSr: 2.7109e-01 +XCa: 7.2888e-01 +XSr: 2.7112e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7105,10 +7107,10 @@ Simulation number: 5 Reaction step number: 20 SrCO3 added: 1.0000e-01 Log Sigma pi: -8.7339e+00 -XAragonite: 4.8976e-02 -XStrontianite: 9.5102e-01 -XCa: 7.2178e-01 -XSr: 2.7822e-01 +XAragonite: 4.8972e-02 +XStrontianite: 9.5103e-01 +XCa: 7.2176e-01 +XSr: 2.7824e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7124,10 +7126,10 @@ Simulation number: 6 Reaction step number: 1 SrCO3 added: 1.0000e-01 Log Sigma pi: -8.7339e+00 -XAragonite: 4.8976e-02 -XStrontianite: 9.5102e-01 -XCa: 7.2178e-01 -XSr: 2.7822e-01 +XAragonite: 4.8972e-02 +XStrontianite: 9.5103e-01 +XCa: 7.2176e-01 +XSr: 2.7824e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7137,10 +7139,10 @@ Simulation number: 6 Reaction step number: 2 SrCO3 added: 2.0000e-01 Log Sigma pi: -8.8751e+00 -XAragonite: 3.1479e-02 +XAragonite: 3.1476e-02 XStrontianite: 9.6852e-01 -XCa: 6.0794e-01 -XSr: 3.9206e-01 +XCa: 6.0792e-01 +XSr: 3.9208e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7149,11 +7151,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 3 SrCO3 added: 3.0000e-01 -Log Sigma pi: -8.9519e+00 -XAragonite: 2.3571e-02 +Log Sigma pi: -8.9520e+00 +XAragonite: 2.3569e-02 XStrontianite: 9.7643e-01 -XCa: 5.2860e-01 -XSr: 4.7140e-01 +XCa: 5.2858e-01 +XSr: 4.7142e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7163,10 +7165,10 @@ Simulation number: 6 Reaction step number: 4 SrCO3 added: 4.0000e-01 Log Sigma pi: -9.0019e+00 -XAragonite: 1.8958e-02 +XAragonite: 1.8957e-02 XStrontianite: 9.8104e-01 -XCa: 4.6901e-01 -XSr: 5.3099e-01 +XCa: 4.6899e-01 +XSr: 5.3101e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7176,10 +7178,10 @@ Simulation number: 6 Reaction step number: 5 SrCO3 added: 5.0000e-01 Log Sigma pi: -9.0375e+00 -XAragonite: 1.5905e-02 -XStrontianite: 9.8409e-01 -XCa: 4.2220e-01 -XSr: 5.7780e-01 +XAragonite: 1.5904e-02 +XStrontianite: 9.8410e-01 +XCa: 4.2219e-01 +XSr: 5.7781e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7189,10 +7191,10 @@ Simulation number: 6 Reaction step number: 6 SrCO3 added: 6.0000e-01 Log Sigma pi: -9.0643e+00 -XAragonite: 1.3724e-02 +XAragonite: 1.3723e-02 XStrontianite: 9.8628e-01 -XCa: 3.8428e-01 -XSr: 6.1572e-01 +XCa: 3.8427e-01 +XSr: 6.1573e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7202,10 +7204,10 @@ Simulation number: 6 Reaction step number: 7 SrCO3 added: 7.0000e-01 Log Sigma pi: -9.0854e+00 -XAragonite: 1.2082e-02 +XAragonite: 1.2081e-02 XStrontianite: 9.8792e-01 -XCa: 3.5285e-01 -XSr: 6.4715e-01 +XCa: 3.5284e-01 +XSr: 6.4716e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7217,8 +7219,8 @@ SrCO3 added: 8.0000e-01 Log Sigma pi: -9.1024e+00 XAragonite: 1.0798e-02 XStrontianite: 9.8920e-01 -XCa: 3.2632e-01 -XSr: 6.7368e-01 +XCa: 3.2631e-01 +XSr: 6.7369e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7228,10 +7230,10 @@ Simulation number: 6 Reaction step number: 9 SrCO3 added: 9.0000e-01 Log Sigma pi: -9.1165e+00 -XAragonite: 9.7664e-03 +XAragonite: 9.7659e-03 XStrontianite: 9.9023e-01 -XCa: 3.0360e-01 -XSr: 6.9640e-01 +XCa: 3.0358e-01 +XSr: 6.9642e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7241,10 +7243,10 @@ Simulation number: 6 Reaction step number: 10 SrCO3 added: 1 Log Sigma pi: -9.1284e+00 -XAragonite: 8.9175e-03 +XAragonite: 8.9171e-03 XStrontianite: 9.9108e-01 -XCa: 2.8390e-01 -XSr: 7.1610e-01 +XCa: 2.8389e-01 +XSr: 7.1611e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7254,10 +7256,10 @@ Simulation number: 6 Reaction step number: 11 SrCO3 added: 1.1000e+00 Log Sigma pi: -9.1385e+00 -XAragonite: 8.2065e-03 +XAragonite: 8.2062e-03 XStrontianite: 9.9179e-01 -XCa: 2.6665e-01 -XSr: 7.3335e-01 +XCa: 2.6664e-01 +XSr: 7.3336e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7267,10 +7269,10 @@ Simulation number: 6 Reaction step number: 12 SrCO3 added: 1.2000e+00 Log Sigma pi: -9.1472e+00 -XAragonite: 7.6019e-03 +XAragonite: 7.6017e-03 XStrontianite: 9.9240e-01 -XCa: 2.5141e-01 -XSr: 7.4859e-01 +XCa: 2.5140e-01 +XSr: 7.4860e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7280,10 +7282,10 @@ Simulation number: 6 Reaction step number: 13 SrCO3 added: 1.3000e+00 Log Sigma pi: -9.1549e+00 -XAragonite: 7.0814e-03 +XAragonite: 7.0811e-03 XStrontianite: 9.9292e-01 -XCa: 2.3785e-01 -XSr: 7.6215e-01 +XCa: 2.3784e-01 +XSr: 7.6216e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7293,10 +7295,10 @@ Simulation number: 6 Reaction step number: 14 SrCO3 added: 1.4000e+00 Log Sigma pi: -9.1616e+00 -XAragonite: 6.6283e-03 +XAragonite: 6.6281e-03 XStrontianite: 9.9337e-01 -XCa: 2.2569e-01 -XSr: 7.7431e-01 +XCa: 2.2568e-01 +XSr: 7.7432e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7306,10 +7308,10 @@ Simulation number: 6 Reaction step number: 15 SrCO3 added: 1.5000e+00 Log Sigma pi: -9.1676e+00 -XAragonite: 6.2303e-03 +XAragonite: 6.2301e-03 XStrontianite: 9.9377e-01 -XCa: 2.1473e-01 -XSr: 7.8527e-01 +XCa: 2.1472e-01 +XSr: 7.8528e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7319,7 +7321,7 @@ Simulation number: 6 Reaction step number: 16 SrCO3 added: 1.6000e+00 Log Sigma pi: -9.1730e+00 -XAragonite: 5.8778e-03 +XAragonite: 5.8776e-03 XStrontianite: 9.9412e-01 XCa: 2.0479e-01 XSr: 7.9521e-01 @@ -7332,10 +7334,10 @@ Simulation number: 6 Reaction step number: 17 SrCO3 added: 1.7000e+00 Log Sigma pi: -9.1778e+00 -XAragonite: 5.5634e-03 +XAragonite: 5.5632e-03 XStrontianite: 9.9444e-01 -XCa: 1.9575e-01 -XSr: 8.0425e-01 +XCa: 1.9574e-01 +XSr: 8.0426e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7345,7 +7347,7 @@ Simulation number: 6 Reaction step number: 18 SrCO3 added: 1.8000e+00 Log Sigma pi: -9.1822e+00 -XAragonite: 5.2812e-03 +XAragonite: 5.2810e-03 XStrontianite: 9.9472e-01 XCa: 1.8747e-01 XSr: 8.1253e-01 @@ -7358,7 +7360,7 @@ Simulation number: 6 Reaction step number: 19 SrCO3 added: 1.9000e+00 Log Sigma pi: -9.1861e+00 -XAragonite: 5.0264e-03 +XAragonite: 5.0263e-03 XStrontianite: 9.9497e-01 XCa: 1.7987e-01 XSr: 8.2013e-01 @@ -7371,7 +7373,7 @@ Simulation number: 6 Reaction step number: 20 SrCO3 added: 2 Log Sigma pi: -9.1898e+00 -XAragonite: 4.7952e-03 +XAragonite: 4.7951e-03 XStrontianite: 9.9520e-01 XCa: 1.7287e-01 XSr: 8.2713e-01 @@ -7384,7 +7386,7 @@ Simulation number: 6 Reaction step number: 21 SrCO3 added: 2.1000e+00 Log Sigma pi: -9.1931e+00 -XAragonite: 4.5845e-03 +XAragonite: 4.5844e-03 XStrontianite: 9.9542e-01 XCa: 1.6640e-01 XSr: 8.3360e-01 @@ -7397,7 +7399,7 @@ Simulation number: 6 Reaction step number: 22 SrCO3 added: 2.2000e+00 Log Sigma pi: -9.1962e+00 -XAragonite: 4.3917e-03 +XAragonite: 4.3916e-03 XStrontianite: 9.9561e-01 XCa: 1.6040e-01 XSr: 8.3960e-01 @@ -7410,10 +7412,10 @@ Simulation number: 6 Reaction step number: 23 SrCO3 added: 2.3000e+00 Log Sigma pi: -9.1990e+00 -XAragonite: 4.2145e-03 +XAragonite: 4.2144e-03 XStrontianite: 9.9579e-01 -XCa: 1.5482e-01 -XSr: 8.4518e-01 +XCa: 1.5481e-01 +XSr: 8.4519e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7423,7 +7425,7 @@ Simulation number: 6 Reaction step number: 24 SrCO3 added: 2.4000e+00 Log Sigma pi: -9.2016e+00 -XAragonite: 4.0511e-03 +XAragonite: 4.0510e-03 XStrontianite: 9.9595e-01 XCa: 1.4961e-01 XSr: 8.5039e-01 @@ -7462,10 +7464,10 @@ Simulation number: 6 Reaction step number: 27 SrCO3 added: 2.7000e+00 Log Sigma pi: -9.2084e+00 -XAragonite: 3.6293e-03 +XAragonite: 3.6292e-03 XStrontianite: 9.9637e-01 -XCa: 1.3592e-01 -XSr: 8.6408e-01 +XCa: 1.3591e-01 +XSr: 8.6409e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7475,7 +7477,7 @@ Simulation number: 6 Reaction step number: 28 SrCO3 added: 2.8000e+00 Log Sigma pi: -9.2104e+00 -XAragonite: 3.5077e-03 +XAragonite: 3.5076e-03 XStrontianite: 9.9649e-01 XCa: 1.3189e-01 XSr: 8.6811e-01 @@ -7501,10 +7503,10 @@ Simulation number: 6 Reaction step number: 30 SrCO3 added: 3 Log Sigma pi: -9.2140e+00 -XAragonite: 3.2874e-03 +XAragonite: 3.2873e-03 XStrontianite: 9.9671e-01 -XCa: 1.2453e-01 -XSr: 8.7547e-01 +XCa: 1.2452e-01 +XSr: 8.7548e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7527,7 +7529,7 @@ Simulation number: 6 Reaction step number: 32 SrCO3 added: 3.2000e+00 Log Sigma pi: -9.2172e+00 -XAragonite: 3.0932e-03 +XAragonite: 3.0931e-03 XStrontianite: 9.9691e-01 XCa: 1.1794e-01 XSr: 8.8206e-01 @@ -7540,7 +7542,7 @@ Simulation number: 6 Reaction step number: 33 SrCO3 added: 3.3000e+00 Log Sigma pi: -9.2187e+00 -XAragonite: 3.0045e-03 +XAragonite: 3.0044e-03 XStrontianite: 9.9700e-01 XCa: 1.1490e-01 XSr: 8.8510e-01 @@ -7568,8 +7570,8 @@ SrCO3 added: 3.5000e+00 Log Sigma pi: -9.2214e+00 XAragonite: 2.8415e-03 XStrontianite: 9.9716e-01 -XCa: 1.0928e-01 -XSr: 8.9072e-01 +XCa: 1.0927e-01 +XSr: 8.9073e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7594,8 +7596,8 @@ SrCO3 added: 3.7000e+00 Log Sigma pi: -9.2239e+00 XAragonite: 2.6954e-03 XStrontianite: 9.9730e-01 -XCa: 1.0418e-01 -XSr: 8.9582e-01 +XCa: 1.0417e-01 +XSr: 8.9583e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7605,7 +7607,7 @@ Simulation number: 6 Reaction step number: 38 SrCO3 added: 3.8000e+00 Log Sigma pi: -9.2250e+00 -XAragonite: 2.6279e-03 +XAragonite: 2.6278e-03 XStrontianite: 9.9737e-01 XCa: 1.0180e-01 XSr: 8.9820e-01 @@ -7620,7 +7622,7 @@ SrCO3 added: 3.9000e+00 Log Sigma pi: -9.2261e+00 XAragonite: 2.5636e-03 XStrontianite: 9.9744e-01 -XCa: 9.9531e-02 +XCa: 9.9529e-02 XSr: 9.0047e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7633,7 +7635,7 @@ SrCO3 added: 4 Log Sigma pi: -9.2271e+00 XAragonite: 2.5024e-03 XStrontianite: 9.9750e-01 -XCa: 9.7361e-02 +XCa: 9.7359e-02 XSr: 9.0264e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7646,7 +7648,7 @@ SrCO3 added: 4.1000e+00 Log Sigma pi: -9.2281e+00 XAragonite: 2.4441e-03 XStrontianite: 9.9756e-01 -XCa: 9.5284e-02 +XCa: 9.5282e-02 XSr: 9.0472e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7657,9 +7659,9 @@ Simulation number: 6 Reaction step number: 42 SrCO3 added: 4.2000e+00 Log Sigma pi: -9.2290e+00 -XAragonite: 2.3885e-03 +XAragonite: 2.3884e-03 XStrontianite: 9.9761e-01 -XCa: 9.3294e-02 +XCa: 9.3292e-02 XSr: 9.0671e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7672,8 +7674,8 @@ SrCO3 added: 4.3000e+00 Log Sigma pi: -9.2299e+00 XAragonite: 2.3353e-03 XStrontianite: 9.9766e-01 -XCa: 9.1385e-02 -XSr: 9.0861e-01 +XCa: 9.1384e-02 +XSr: 9.0862e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7683,9 +7685,9 @@ Simulation number: 6 Reaction step number: 44 SrCO3 added: 4.4000e+00 Log Sigma pi: -9.2308e+00 -XAragonite: 2.2845e-03 +XAragonite: 2.2844e-03 XStrontianite: 9.9772e-01 -XCa: 8.9553e-02 +XCa: 8.9552e-02 XSr: 9.1045e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7698,7 +7700,7 @@ SrCO3 added: 4.5000e+00 Log Sigma pi: -9.2316e+00 XAragonite: 2.2358e-03 XStrontianite: 9.9776e-01 -XCa: 8.7794e-02 +XCa: 8.7792e-02 XSr: 9.1221e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7711,7 +7713,7 @@ SrCO3 added: 4.6000e+00 Log Sigma pi: -9.2324e+00 XAragonite: 2.1891e-03 XStrontianite: 9.9781e-01 -XCa: 8.6102e-02 +XCa: 8.6101e-02 XSr: 9.1390e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7724,7 +7726,7 @@ SrCO3 added: 4.7000e+00 Log Sigma pi: -9.2332e+00 XAragonite: 2.1444e-03 XStrontianite: 9.9786e-01 -XCa: 8.4474e-02 +XCa: 8.4473e-02 XSr: 9.1553e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7735,9 +7737,9 @@ Simulation number: 6 Reaction step number: 48 SrCO3 added: 4.8000e+00 Log Sigma pi: -9.2339e+00 -XAragonite: 2.1015e-03 +XAragonite: 2.1014e-03 XStrontianite: 9.9790e-01 -XCa: 8.2907e-02 +XCa: 8.2906e-02 XSr: 9.1709e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7750,7 +7752,7 @@ SrCO3 added: 4.9000e+00 Log Sigma pi: -9.2346e+00 XAragonite: 2.0602e-03 XStrontianite: 9.9794e-01 -XCa: 8.1397e-02 +XCa: 8.1396e-02 XSr: 9.1860e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7761,9 +7763,9 @@ Simulation number: 6 Reaction step number: 50 SrCO3 added: 5 Log Sigma pi: -9.2353e+00 -XAragonite: 2.0206e-03 +XAragonite: 2.0205e-03 XStrontianite: 9.9798e-01 -XCa: 7.9941e-02 +XCa: 7.9940e-02 XSr: 9.2006e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7776,7 +7778,7 @@ SrCO3 added: 5.1000e+00 Log Sigma pi: -9.2359e+00 XAragonite: 1.9824e-03 XStrontianite: 9.9802e-01 -XCa: 7.8536e-02 +XCa: 7.8535e-02 XSr: 9.2146e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7787,9 +7789,9 @@ Simulation number: 6 Reaction step number: 52 SrCO3 added: 5.2000e+00 Log Sigma pi: -9.2366e+00 -XAragonite: 1.9457e-03 +XAragonite: 1.9456e-03 XStrontianite: 9.9805e-01 -XCa: 7.7180e-02 +XCa: 7.7179e-02 XSr: 9.2282e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7802,7 +7804,7 @@ SrCO3 added: 5.3000e+00 Log Sigma pi: -9.2372e+00 XAragonite: 1.9102e-03 XStrontianite: 9.9809e-01 -XCa: 7.5870e-02 +XCa: 7.5869e-02 XSr: 9.2413e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7815,7 +7817,7 @@ SrCO3 added: 5.4000e+00 Log Sigma pi: -9.2378e+00 XAragonite: 1.8761e-03 XStrontianite: 9.9812e-01 -XCa: 7.4604e-02 +XCa: 7.4603e-02 XSr: 9.2540e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7828,7 +7830,7 @@ SrCO3 added: 5.5000e+00 Log Sigma pi: -9.2383e+00 XAragonite: 1.8432e-03 XStrontianite: 9.9816e-01 -XCa: 7.3380e-02 +XCa: 7.3379e-02 XSr: 9.2662e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7841,7 +7843,7 @@ SrCO3 added: 5.6000e+00 Log Sigma pi: -9.2389e+00 XAragonite: 1.8114e-03 XStrontianite: 9.9819e-01 -XCa: 7.2195e-02 +XCa: 7.2194e-02 XSr: 9.2781e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7852,9 +7854,9 @@ Simulation number: 6 Reaction step number: 57 SrCO3 added: 5.7000e+00 Log Sigma pi: -9.2394e+00 -XAragonite: 1.7807e-03 +XAragonite: 1.7806e-03 XStrontianite: 9.9822e-01 -XCa: 7.1047e-02 +XCa: 7.1046e-02 XSr: 9.2895e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7865,9 +7867,9 @@ Simulation number: 6 Reaction step number: 58 SrCO3 added: 5.8000e+00 Log Sigma pi: -9.2399e+00 -XAragonite: 1.7510e-03 +XAragonite: 1.7509e-03 XStrontianite: 9.9825e-01 -XCa: 6.9936e-02 +XCa: 6.9935e-02 XSr: 9.3006e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7880,7 +7882,7 @@ SrCO3 added: 5.9000e+00 Log Sigma pi: -9.2404e+00 XAragonite: 1.7222e-03 XStrontianite: 9.9828e-01 -XCa: 6.8859e-02 +XCa: 6.8858e-02 XSr: 9.3114e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7891,9 +7893,9 @@ Simulation number: 6 Reaction step number: 60 SrCO3 added: 6 Log Sigma pi: -9.2409e+00 -XAragonite: 1.6945e-03 +XAragonite: 1.6944e-03 XStrontianite: 9.9831e-01 -XCa: 6.7815e-02 +XCa: 6.7814e-02 XSr: 9.3219e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7919,7 +7921,7 @@ SrCO3 added: 6.2000e+00 Log Sigma pi: -9.2418e+00 XAragonite: 1.6415e-03 XStrontianite: 9.9836e-01 -XCa: 6.5818e-02 +XCa: 6.5817e-02 XSr: 9.3418e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7932,7 +7934,7 @@ SrCO3 added: 6.3000e+00 Log Sigma pi: -9.2422e+00 XAragonite: 1.6162e-03 XStrontianite: 9.9838e-01 -XCa: 6.4864e-02 +XCa: 6.4863e-02 XSr: 9.3514e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7945,7 +7947,7 @@ SrCO3 added: 6.4000e+00 Log Sigma pi: -9.2427e+00 XAragonite: 1.5917e-03 XStrontianite: 9.9841e-01 -XCa: 6.3936e-02 +XCa: 6.3935e-02 XSr: 9.3606e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7958,7 +7960,7 @@ SrCO3 added: 6.5000e+00 Log Sigma pi: -9.2431e+00 XAragonite: 1.5680e-03 XStrontianite: 9.9843e-01 -XCa: 6.3035e-02 +XCa: 6.3034e-02 XSr: 9.3697e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7971,7 +7973,7 @@ SrCO3 added: 6.6000e+00 Log Sigma pi: -9.2435e+00 XAragonite: 1.5449e-03 XStrontianite: 9.9846e-01 -XCa: 6.2159e-02 +XCa: 6.2158e-02 XSr: 9.3784e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7984,7 +7986,7 @@ SrCO3 added: 6.7000e+00 Log Sigma pi: -9.2439e+00 XAragonite: 1.5225e-03 XStrontianite: 9.9848e-01 -XCa: 6.1307e-02 +XCa: 6.1306e-02 XSr: 9.3869e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7995,9 +7997,9 @@ Simulation number: 6 Reaction step number: 68 SrCO3 added: 6.8000e+00 Log Sigma pi: -9.2442e+00 -XAragonite: 1.5008e-03 +XAragonite: 1.5007e-03 XStrontianite: 9.9850e-01 -XCa: 6.0478e-02 +XCa: 6.0477e-02 XSr: 9.3952e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8010,7 +8012,7 @@ SrCO3 added: 6.9000e+00 Log Sigma pi: -9.2446e+00 XAragonite: 1.4796e-03 XStrontianite: 9.9852e-01 -XCa: 5.9671e-02 +XCa: 5.9670e-02 XSr: 9.4033e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8024,7 +8026,7 @@ Log Sigma pi: -9.2450e+00 XAragonite: 1.4591e-03 XStrontianite: 9.9854e-01 XCa: 5.8885e-02 -XSr: 9.4111e-01 +XSr: 9.4112e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8036,7 +8038,7 @@ SrCO3 added: 7.1000e+00 Log Sigma pi: -9.2453e+00 XAragonite: 1.4391e-03 XStrontianite: 9.9856e-01 -XCa: 5.8120e-02 +XCa: 5.8119e-02 XSr: 9.4188e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8049,7 +8051,7 @@ SrCO3 added: 7.2000e+00 Log Sigma pi: -9.2457e+00 XAragonite: 1.4196e-03 XStrontianite: 9.9858e-01 -XCa: 5.7375e-02 +XCa: 5.7374e-02 XSr: 9.4263e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8062,7 +8064,7 @@ SrCO3 added: 7.3000e+00 Log Sigma pi: -9.2460e+00 XAragonite: 1.4007e-03 XStrontianite: 9.9860e-01 -XCa: 5.6648e-02 +XCa: 5.6647e-02 XSr: 9.4335e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8088,7 +8090,7 @@ SrCO3 added: 7.5000e+00 Log Sigma pi: -9.2466e+00 XAragonite: 1.3643e-03 XStrontianite: 9.9864e-01 -XCa: 5.5249e-02 +XCa: 5.5248e-02 XSr: 9.4475e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8114,7 +8116,7 @@ SrCO3 added: 7.7000e+00 Log Sigma pi: -9.2472e+00 XAragonite: 1.3298e-03 XStrontianite: 9.9867e-01 -XCa: 5.3917e-02 +XCa: 5.3916e-02 XSr: 9.4608e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8125,9 +8127,9 @@ Simulation number: 6 Reaction step number: 78 SrCO3 added: 7.8000e+00 Log Sigma pi: -9.2475e+00 -XAragonite: 1.3132e-03 +XAragonite: 1.3131e-03 XStrontianite: 9.9869e-01 -XCa: 5.3275e-02 +XCa: 5.3274e-02 XSr: 9.4673e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8140,7 +8142,7 @@ SrCO3 added: 7.9000e+00 Log Sigma pi: -9.2478e+00 XAragonite: 1.2969e-03 XStrontianite: 9.9870e-01 -XCa: 5.2648e-02 +XCa: 5.2647e-02 XSr: 9.4735e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8154,7 +8156,7 @@ Log Sigma pi: -9.2481e+00 XAragonite: 1.2811e-03 XStrontianite: 9.9872e-01 XCa: 5.2035e-02 -XSr: 9.4796e-01 +XSr: 9.4797e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8166,7 +8168,7 @@ SrCO3 added: 8.1000e+00 Log Sigma pi: -9.2484e+00 XAragonite: 1.2657e-03 XStrontianite: 9.9873e-01 -XCa: 5.1437e-02 +XCa: 5.1436e-02 XSr: 9.4856e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8192,7 +8194,7 @@ SrCO3 added: 8.3000e+00 Log Sigma pi: -9.2489e+00 XAragonite: 1.2359e-03 XStrontianite: 9.9876e-01 -XCa: 5.0281e-02 +XCa: 5.0280e-02 XSr: 9.4972e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8203,9 +8205,9 @@ Simulation number: 6 Reaction step number: 84 SrCO3 added: 8.4000e+00 Log Sigma pi: -9.2491e+00 -XAragonite: 1.2216e-03 +XAragonite: 1.2215e-03 XStrontianite: 9.9878e-01 -XCa: 4.9722e-02 +XCa: 4.9721e-02 XSr: 9.5028e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8219,7 +8221,7 @@ Log Sigma pi: -9.2494e+00 XAragonite: 1.2075e-03 XStrontianite: 9.9879e-01 XCa: 4.9175e-02 -XSr: 9.5082e-01 +XSr: 9.5083e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8231,7 +8233,7 @@ SrCO3 added: 8.6000e+00 Log Sigma pi: -9.2496e+00 XAragonite: 1.1938e-03 XStrontianite: 9.9881e-01 -XCa: 4.8641e-02 +XCa: 4.8640e-02 XSr: 9.5136e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8283,7 +8285,7 @@ SrCO3 added: 9 Log Sigma pi: -9.2505e+00 XAragonite: 1.1419e-03 XStrontianite: 9.9886e-01 -XCa: 4.6614e-02 +XCa: 4.6613e-02 XSr: 9.5339e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8296,7 +8298,7 @@ SrCO3 added: 9.1000e+00 Log Sigma pi: -9.2507e+00 XAragonite: 1.1296e-03 XStrontianite: 9.9887e-01 -XCa: 4.6133e-02 +XCa: 4.6132e-02 XSr: 9.5387e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8320,9 +8322,9 @@ Simulation number: 6 Reaction step number: 93 SrCO3 added: 9.3000e+00 Log Sigma pi: -9.2512e+00 -XAragonite: 1.1059e-03 +XAragonite: 1.1058e-03 XStrontianite: 9.9889e-01 -XCa: 4.5201e-02 +XCa: 4.5200e-02 XSr: 9.5480e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8335,7 +8337,7 @@ SrCO3 added: 9.4000e+00 Log Sigma pi: -9.2514e+00 XAragonite: 1.0943e-03 XStrontianite: 9.9891e-01 -XCa: 4.4749e-02 +XCa: 4.4748e-02 XSr: 9.5525e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8346,9 +8348,9 @@ Simulation number: 6 Reaction step number: 95 SrCO3 added: 9.5000e+00 Log Sigma pi: -9.2516e+00 -XAragonite: 1.0831e-03 +XAragonite: 1.0830e-03 XStrontianite: 9.9892e-01 -XCa: 4.4306e-02 +XCa: 4.4305e-02 XSr: 9.5569e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8375,7 +8377,7 @@ Log Sigma pi: -9.2519e+00 XAragonite: 1.0612e-03 XStrontianite: 9.9894e-01 XCa: 4.3445e-02 -XSr: 9.5655e-01 +XSr: 9.5656e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8400,7 +8402,7 @@ SrCO3 added: 9.9000e+00 Log Sigma pi: -9.2523e+00 XAragonite: 1.0402e-03 XStrontianite: 9.9896e-01 -XCa: 4.2618e-02 +XCa: 4.2617e-02 XSr: 9.5738e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8418,7 +8420,3 @@ XSr: 9.5778e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 -------------------------------- -End of Run after 0.217 Seconds. -------------------------------- - diff --git a/ex10.sel b/ex10.sel index dfc85ca0..4d715b9c 100644 --- a/ex10.sel +++ b/ex10.sel @@ -1,621 +1,621 @@ reaction lg_SigmaPi X_Arag X_Stront X_Ca_aq X_Sr_aq mol_Misc1 mol_Misc2 mol_Arag mol_Stront - 1.0000e-05 -8.3356e+00 9.9996e-01 4.2174e-05 9.9905e-01 9.5080e-04 1.0000e-10 1.0000e-10 6.5436e-06 2.7598e-10 - 2.0000e-05 -8.3352e+00 9.9992e-01 8.4457e-05 9.9810e-01 1.9009e-03 1.0000e-10 1.0000e-10 1.3085e-05 1.1052e-09 - 3.0000e-05 -8.3348e+00 9.9987e-01 1.2685e-04 9.9715e-01 2.8504e-03 1.0000e-10 1.0000e-10 1.9624e-05 2.4897e-09 - 4.0000e-05 -8.3345e+00 9.9983e-01 1.6935e-04 9.9620e-01 3.7992e-03 1.0000e-10 1.0000e-10 2.6162e-05 4.4313e-09 - 5.0000e-05 -8.3341e+00 9.9979e-01 2.1197e-04 9.9525e-01 4.7472e-03 1.0000e-10 1.0000e-10 3.2697e-05 6.9322e-09 - 6.0000e-05 -8.3337e+00 9.9975e-01 2.5470e-04 9.9431e-01 5.6947e-03 1.0000e-10 1.0000e-10 3.9230e-05 9.9942e-09 - 7.0000e-05 -8.3333e+00 9.9970e-01 2.9754e-04 9.9336e-01 6.6414e-03 1.0000e-10 1.0000e-10 4.5761e-05 1.3619e-08 - 8.0000e-05 -8.3329e+00 9.9966e-01 3.4049e-04 9.9241e-01 7.5875e-03 1.0000e-10 1.0000e-10 5.2289e-05 1.7810e-08 - 9.0000e-05 -8.3325e+00 9.9962e-01 3.8355e-04 9.9147e-01 8.5329e-03 1.0000e-10 1.0000e-10 5.8816e-05 2.2568e-08 - 1.0000e-04 -8.3321e+00 9.9957e-01 4.2673e-04 9.9052e-01 9.4776e-03 1.0000e-10 1.0000e-10 6.5340e-05 2.7895e-08 - 1.1000e-04 -8.3317e+00 9.9953e-01 4.7002e-04 9.8958e-01 1.0422e-02 1.0000e-10 1.0000e-10 7.1863e-05 3.3793e-08 - 1.2000e-04 -8.3314e+00 9.9949e-01 5.1343e-04 9.8864e-01 1.1365e-02 1.0000e-10 1.0000e-10 7.8383e-05 4.0265e-08 - 1.3000e-04 -8.3310e+00 9.9944e-01 5.5695e-04 9.8769e-01 1.2308e-02 1.0000e-10 1.0000e-10 8.4901e-05 4.7312e-08 - 1.4000e-04 -8.3306e+00 9.9940e-01 6.0059e-04 9.8675e-01 1.3250e-02 1.0000e-10 1.0000e-10 9.1417e-05 5.4937e-08 - 1.5000e-04 -8.3302e+00 9.9936e-01 6.4434e-04 9.8581e-01 1.4191e-02 1.0000e-10 1.0000e-10 9.7931e-05 6.3142e-08 - 1.6000e-04 -8.3298e+00 9.9931e-01 6.8821e-04 9.8487e-01 1.5132e-02 1.0000e-10 1.0000e-10 1.0444e-04 7.1928e-08 - 1.7000e-04 -8.3294e+00 9.9927e-01 7.3220e-04 9.8393e-01 1.6072e-02 1.0000e-10 1.0000e-10 1.1095e-04 8.1298e-08 - 1.8000e-04 -8.3290e+00 9.9922e-01 7.7630e-04 9.8299e-01 1.7011e-02 1.0000e-10 1.0000e-10 1.1746e-04 9.1255e-08 - 1.9000e-04 -8.3286e+00 9.9918e-01 8.2052e-04 9.8205e-01 1.7949e-02 1.0000e-10 1.0000e-10 1.2397e-04 1.0180e-07 - 2.0000e-04 -8.3283e+00 9.9914e-01 8.6486e-04 9.8111e-01 1.8887e-02 1.0000e-10 1.0000e-10 1.3047e-04 1.1293e-07 - 2.1000e-04 -8.3279e+00 9.9909e-01 9.0932e-04 9.8018e-01 1.9825e-02 1.0000e-10 1.0000e-10 1.3697e-04 1.2466e-07 - 2.2000e-04 -8.3275e+00 9.9905e-01 9.5390e-04 9.7924e-01 2.0761e-02 1.0000e-10 1.0000e-10 1.4347e-04 1.3699e-07 - 2.3000e-04 -8.3271e+00 9.9900e-01 9.9860e-04 9.7830e-01 2.1697e-02 1.0000e-10 1.0000e-10 1.4997e-04 1.4990e-07 - 2.4000e-04 -8.3267e+00 9.9896e-01 1.0434e-03 9.7737e-01 2.2632e-02 1.0000e-10 1.0000e-10 1.5646e-04 1.6342e-07 - 2.5000e-04 -8.3263e+00 9.9891e-01 1.0884e-03 9.7643e-01 2.3567e-02 1.0000e-10 1.0000e-10 1.6295e-04 1.7754e-07 - 2.6000e-04 -8.3259e+00 9.9887e-01 1.1334e-03 9.7550e-01 2.4501e-02 1.0000e-10 1.0000e-10 1.6944e-04 1.9227e-07 - 2.7000e-04 -8.3255e+00 9.9882e-01 1.1786e-03 9.7457e-01 2.5434e-02 1.0000e-10 1.0000e-10 1.7593e-04 2.0760e-07 - 2.8000e-04 -8.3252e+00 9.9878e-01 1.2239e-03 9.7363e-01 2.6367e-02 1.0000e-10 1.0000e-10 1.8242e-04 2.2354e-07 - 2.9000e-04 -8.3248e+00 9.9873e-01 1.2693e-03 9.7270e-01 2.7298e-02 1.0000e-10 1.0000e-10 1.8890e-04 2.4008e-07 - 3.0000e-04 -8.3244e+00 9.9869e-01 1.3149e-03 9.7177e-01 2.8230e-02 1.0000e-10 1.0000e-10 1.9538e-04 2.5725e-07 - 3.1000e-04 -8.3240e+00 9.9864e-01 1.3606e-03 9.7084e-01 2.9160e-02 1.0000e-10 1.0000e-10 2.0186e-04 2.7502e-07 - 3.2000e-04 -8.3236e+00 9.9859e-01 1.4064e-03 9.6991e-01 3.0090e-02 1.0000e-10 1.0000e-10 2.0834e-04 2.9342e-07 - 3.3000e-04 -8.3232e+00 9.9855e-01 1.4523e-03 9.6898e-01 3.1019e-02 1.0000e-10 1.0000e-10 2.1481e-04 3.1243e-07 - 3.4000e-04 -8.3228e+00 9.9850e-01 1.4984e-03 9.6805e-01 3.1948e-02 1.0000e-10 1.0000e-10 2.2129e-04 3.3207e-07 - 3.5000e-04 -8.3224e+00 9.9846e-01 1.5445e-03 9.6712e-01 3.2875e-02 1.0000e-10 1.0000e-10 2.2776e-04 3.5233e-07 - 3.6000e-04 -8.3220e+00 9.9841e-01 1.5908e-03 9.6620e-01 3.3803e-02 1.0000e-10 1.0000e-10 2.3423e-04 3.7321e-07 - 3.7000e-04 -8.3217e+00 9.9836e-01 1.6373e-03 9.6527e-01 3.4729e-02 1.0000e-10 1.0000e-10 2.4069e-04 3.9473e-07 - 3.8000e-04 -8.3213e+00 9.9832e-01 1.6838e-03 9.6435e-01 3.5655e-02 1.0000e-10 1.0000e-10 2.4716e-04 4.1688e-07 - 3.9000e-04 -8.3209e+00 9.9827e-01 1.7305e-03 9.6342e-01 3.6580e-02 1.0000e-10 1.0000e-10 2.5362e-04 4.3966e-07 - 4.0000e-04 -8.3205e+00 9.9822e-01 1.7774e-03 9.6250e-01 3.7504e-02 1.0000e-10 1.0000e-10 2.6008e-04 4.6308e-07 - 4.1000e-04 -8.3201e+00 9.9818e-01 1.8243e-03 9.6157e-01 3.8428e-02 1.0000e-10 1.0000e-10 2.6654e-04 4.8714e-07 - 4.2000e-04 -8.3197e+00 9.9813e-01 1.8714e-03 9.6065e-01 3.9351e-02 1.0000e-10 1.0000e-10 2.7300e-04 5.1184e-07 - 4.3000e-04 -8.3193e+00 9.9808e-01 1.9186e-03 9.5973e-01 4.0273e-02 1.0000e-10 1.0000e-10 2.7945e-04 5.3718e-07 - 4.4000e-04 -8.3189e+00 9.9803e-01 1.9660e-03 9.5880e-01 4.1195e-02 1.0000e-10 1.0000e-10 2.8590e-04 5.6317e-07 - 4.5000e-04 -8.3185e+00 9.9799e-01 2.0134e-03 9.5788e-01 4.2116e-02 1.0000e-10 1.0000e-10 2.9235e-04 5.8981e-07 - 4.6000e-04 -8.3182e+00 9.9794e-01 2.0610e-03 9.5696e-01 4.3037e-02 1.0000e-10 1.0000e-10 2.9880e-04 6.1711e-07 - 4.7000e-04 -8.3178e+00 9.9789e-01 2.1088e-03 9.5604e-01 4.3956e-02 1.0000e-10 1.0000e-10 3.0524e-04 6.4505e-07 - 4.8000e-04 -8.3174e+00 9.9784e-01 2.1567e-03 9.5512e-01 4.4875e-02 1.0000e-10 1.0000e-10 3.1169e-04 6.7365e-07 - 4.9000e-04 -8.3170e+00 9.9780e-01 2.2047e-03 9.5421e-01 4.5794e-02 1.0000e-10 1.0000e-10 3.1813e-04 7.0292e-07 - 5.0000e-04 -8.3166e+00 9.9775e-01 2.2528e-03 9.5329e-01 4.6711e-02 1.0000e-10 1.0000e-10 3.2456e-04 7.3284e-07 - 5.1000e-04 -8.3162e+00 9.9770e-01 2.3011e-03 9.5237e-01 4.7628e-02 1.0000e-10 1.0000e-10 3.3100e-04 7.6343e-07 - 5.2000e-04 -8.3158e+00 9.9765e-01 2.3495e-03 9.5146e-01 4.8545e-02 1.0000e-10 1.0000e-10 3.3743e-04 7.9468e-07 - 5.3000e-04 -8.3154e+00 9.9760e-01 2.3981e-03 9.5054e-01 4.9460e-02 1.0000e-10 1.0000e-10 3.4387e-04 8.2661e-07 - 5.4000e-04 -8.3150e+00 9.9755e-01 2.4468e-03 9.4962e-01 5.0375e-02 1.0000e-10 1.0000e-10 3.5030e-04 8.5920e-07 - 5.5000e-04 -8.3146e+00 9.9750e-01 2.4956e-03 9.4871e-01 5.1289e-02 1.0000e-10 1.0000e-10 3.5672e-04 8.9248e-07 - 5.6000e-04 -8.3143e+00 9.9746e-01 2.5446e-03 9.4780e-01 5.2203e-02 1.0000e-10 1.0000e-10 3.6315e-04 9.2643e-07 - 5.7000e-04 -8.3139e+00 9.9741e-01 2.5937e-03 9.4688e-01 5.3116e-02 1.0000e-10 1.0000e-10 3.6957e-04 9.6106e-07 - 5.8000e-04 -8.3135e+00 9.9736e-01 2.6430e-03 9.4597e-01 5.4028e-02 1.0000e-10 1.0000e-10 3.7599e-04 9.9638e-07 - 5.9000e-04 -8.3131e+00 9.9731e-01 2.6924e-03 9.4506e-01 5.4940e-02 1.0000e-10 1.0000e-10 3.8241e-04 1.0324e-06 - 6.0000e-04 -8.3127e+00 9.9726e-01 2.7419e-03 9.4415e-01 5.5851e-02 1.0000e-10 1.0000e-10 3.8883e-04 1.0691e-06 - 6.1000e-04 -8.3123e+00 9.9721e-01 2.7916e-03 9.4324e-01 5.6761e-02 1.0000e-10 1.0000e-10 3.9524e-04 1.1064e-06 - 6.2000e-04 -8.3119e+00 9.9716e-01 2.8414e-03 9.4233e-01 5.7671e-02 1.0000e-10 1.0000e-10 4.0166e-04 1.1445e-06 - 6.3000e-04 -8.3115e+00 9.9711e-01 2.8914e-03 9.4142e-01 5.8580e-02 1.0000e-10 1.0000e-10 4.0807e-04 1.1833e-06 - 6.4000e-04 -8.3111e+00 9.9706e-01 2.9415e-03 9.4051e-01 5.9488e-02 1.0000e-10 1.0000e-10 4.1447e-04 1.2228e-06 - 6.5000e-04 -8.3107e+00 9.9701e-01 2.9918e-03 9.3960e-01 6.0395e-02 1.0000e-10 1.0000e-10 4.2088e-04 1.2629e-06 - 6.6000e-04 -8.3104e+00 9.9696e-01 3.0422e-03 9.3870e-01 6.1302e-02 1.0000e-10 1.0000e-10 4.2728e-04 1.3038e-06 - 6.7000e-04 -8.3100e+00 9.9691e-01 3.0927e-03 9.3779e-01 6.2208e-02 1.0000e-10 1.0000e-10 4.3369e-04 1.3454e-06 - 6.8000e-04 -8.3096e+00 9.9686e-01 3.1434e-03 9.3689e-01 6.3114e-02 1.0000e-10 1.0000e-10 4.4008e-04 1.3877e-06 - 6.9000e-04 -8.3092e+00 9.9681e-01 3.1943e-03 9.3598e-01 6.4019e-02 1.0000e-10 1.0000e-10 4.4648e-04 1.4307e-06 - 7.0000e-04 -8.3088e+00 9.9675e-01 3.2453e-03 9.3508e-01 6.4923e-02 1.0000e-10 1.0000e-10 4.5288e-04 1.4745e-06 - 7.1000e-04 -8.3084e+00 9.9670e-01 3.2964e-03 9.3417e-01 6.5826e-02 1.0000e-10 1.0000e-10 4.5927e-04 1.5189e-06 - 7.2000e-04 -8.3080e+00 9.9665e-01 3.3477e-03 9.3327e-01 6.6729e-02 1.0000e-10 1.0000e-10 4.6566e-04 1.5641e-06 - 7.3000e-04 -8.3076e+00 9.9660e-01 3.3991e-03 9.3237e-01 6.7631e-02 1.0000e-10 1.0000e-10 4.7205e-04 1.6100e-06 - 7.4000e-04 -8.3072e+00 9.9655e-01 3.4507e-03 9.3147e-01 6.8533e-02 1.0000e-10 1.0000e-10 4.7843e-04 1.6567e-06 - 7.5000e-04 -8.3068e+00 9.9650e-01 3.5025e-03 9.3057e-01 6.9434e-02 1.0000e-10 1.0000e-10 4.8482e-04 1.7040e-06 - 7.6000e-04 -8.3064e+00 9.9645e-01 3.5544e-03 9.2967e-01 7.0334e-02 1.0000e-10 1.0000e-10 4.9120e-04 1.7521e-06 - 7.7000e-04 -8.3061e+00 9.9639e-01 3.6065e-03 9.2877e-01 7.1233e-02 1.0000e-10 1.0000e-10 4.9758e-04 1.8010e-06 - 7.8000e-04 -8.3057e+00 9.9634e-01 3.6587e-03 9.2787e-01 7.2132e-02 1.0000e-10 1.0000e-10 5.0395e-04 1.8506e-06 - 7.9000e-04 -8.3053e+00 9.9629e-01 3.7110e-03 9.2697e-01 7.3030e-02 1.0000e-10 1.0000e-10 5.1033e-04 1.9009e-06 - 8.0000e-04 -8.3049e+00 9.9624e-01 3.7636e-03 9.2607e-01 7.3928e-02 1.0000e-10 1.0000e-10 5.1670e-04 1.9520e-06 - 8.1000e-04 -8.3045e+00 9.9618e-01 3.8163e-03 9.2518e-01 7.4824e-02 1.0000e-10 1.0000e-10 5.2307e-04 2.0038e-06 - 8.2000e-04 -8.3041e+00 9.9613e-01 3.8691e-03 9.2428e-01 7.5720e-02 1.0000e-10 1.0000e-10 5.2944e-04 2.0564e-06 - 8.3000e-04 -8.3037e+00 9.9608e-01 3.9221e-03 9.2338e-01 7.6616e-02 1.0000e-10 1.0000e-10 5.3581e-04 2.1098e-06 - 8.4000e-04 -8.3033e+00 9.9602e-01 3.9753e-03 9.2249e-01 7.7511e-02 1.0000e-10 1.0000e-10 5.4217e-04 2.1639e-06 - 8.5000e-04 -8.3029e+00 9.9597e-01 4.0286e-03 9.2160e-01 7.8405e-02 1.0000e-10 1.0000e-10 5.4853e-04 2.2187e-06 - 8.6000e-04 -8.3025e+00 9.9592e-01 4.0821e-03 9.2070e-01 7.9298e-02 1.0000e-10 1.0000e-10 5.5489e-04 2.2744e-06 - 8.7000e-04 -8.3021e+00 9.9586e-01 4.1357e-03 9.1981e-01 8.0191e-02 1.0000e-10 1.0000e-10 5.6125e-04 2.3308e-06 - 8.8000e-04 -8.3017e+00 9.9581e-01 4.1895e-03 9.1892e-01 8.1083e-02 1.0000e-10 1.0000e-10 5.6760e-04 2.3880e-06 - 8.9000e-04 -8.3014e+00 9.9576e-01 4.2435e-03 9.1803e-01 8.1974e-02 1.0000e-10 1.0000e-10 5.7396e-04 2.4459e-06 - 9.0000e-04 -8.3010e+00 9.9570e-01 4.2976e-03 9.1714e-01 8.2865e-02 1.0000e-10 1.0000e-10 5.8031e-04 2.5047e-06 - 9.1000e-04 -8.3006e+00 9.9565e-01 4.3519e-03 9.1625e-01 8.3755e-02 1.0000e-10 1.0000e-10 5.8666e-04 2.5642e-06 - 9.2000e-04 -8.3002e+00 9.9559e-01 4.4064e-03 9.1536e-01 8.4644e-02 1.0000e-10 1.0000e-10 5.9300e-04 2.6245e-06 - 9.3000e-04 -8.2998e+00 9.9554e-01 4.4610e-03 9.1447e-01 8.5533e-02 1.0000e-10 1.0000e-10 5.9934e-04 2.6857e-06 - 9.4000e-04 -8.2994e+00 9.9548e-01 4.5158e-03 9.1358e-01 8.6421e-02 1.0000e-10 1.0000e-10 6.0569e-04 2.7476e-06 - 9.5000e-04 -8.2990e+00 9.9543e-01 4.5708e-03 9.1269e-01 8.7308e-02 1.0000e-10 1.0000e-10 6.1203e-04 2.8103e-06 - 9.6000e-04 -8.2986e+00 9.9537e-01 4.6259e-03 9.1181e-01 8.8195e-02 1.0000e-10 1.0000e-10 6.1836e-04 2.8738e-06 - 9.7000e-04 -8.2982e+00 9.9532e-01 4.6812e-03 9.1092e-01 8.9081e-02 1.0000e-10 1.0000e-10 6.2470e-04 2.9381e-06 - 9.8000e-04 -8.2978e+00 9.9526e-01 4.7367e-03 9.1003e-01 8.9966e-02 1.0000e-10 1.0000e-10 6.3103e-04 3.0032e-06 - 9.9000e-04 -8.2974e+00 9.9521e-01 4.7924e-03 9.0915e-01 9.0851e-02 1.0000e-10 1.0000e-10 6.3736e-04 3.0692e-06 - 1.0000e-03 -8.2974e+00 9.8286e-01 1.7141e-02 9.0898e-01 9.1023e-02 6.4033e-04 9.3967e-06 6.3859e-04 1.1137e-05 - 1.0100e-03 -8.2974e+00 9.6796e-01 3.2039e-02 9.0898e-01 9.1023e-02 6.3867e-04 2.1063e-05 6.3859e-04 2.1137e-05 - 1.0200e-03 -8.2974e+00 9.5351e-01 4.6492e-02 9.0898e-01 9.1023e-02 6.3700e-04 3.2729e-05 6.3859e-04 3.1137e-05 - 1.0300e-03 -8.2974e+00 9.3948e-01 6.0519e-02 9.0898e-01 9.1023e-02 6.3533e-04 4.4395e-05 6.3859e-04 4.1137e-05 - 1.0400e-03 -8.2974e+00 9.2586e-01 7.4140e-02 9.0898e-01 9.1023e-02 6.3367e-04 5.6062e-05 6.3859e-04 5.1137e-05 - 1.0500e-03 -8.2974e+00 9.1263e-01 8.7372e-02 9.0898e-01 9.1023e-02 6.3200e-04 6.7728e-05 6.3859e-04 6.1137e-05 - 1.0600e-03 -8.2974e+00 8.9977e-01 1.0023e-01 9.0898e-01 9.1023e-02 6.3033e-04 7.9394e-05 6.3859e-04 7.1137e-05 - 1.0700e-03 -8.2974e+00 8.8727e-01 1.1273e-01 9.0898e-01 9.1023e-02 6.2867e-04 9.1060e-05 6.3859e-04 8.1137e-05 - 1.0800e-03 -8.2974e+00 8.7511e-01 1.2489e-01 9.0898e-01 9.1023e-02 6.2700e-04 1.0273e-04 6.3859e-04 9.1137e-05 - 1.0900e-03 -8.2974e+00 8.6328e-01 1.3672e-01 9.0898e-01 9.1023e-02 6.2534e-04 1.1439e-04 6.3859e-04 1.0114e-04 - 1.1000e-03 -8.2974e+00 8.5176e-01 1.4824e-01 9.0898e-01 9.1023e-02 6.2367e-04 1.2606e-04 6.3859e-04 1.1114e-04 - 1.1100e-03 -8.2974e+00 8.4055e-01 1.5945e-01 9.0898e-01 9.1023e-02 6.2200e-04 1.3772e-04 6.3859e-04 1.2114e-04 - 1.1200e-03 -8.2974e+00 8.2963e-01 1.7037e-01 9.0898e-01 9.1023e-02 6.2034e-04 1.4939e-04 6.3859e-04 1.3114e-04 - 1.1300e-03 -8.2974e+00 8.1899e-01 1.8101e-01 9.0898e-01 9.1023e-02 6.1867e-04 1.6106e-04 6.3859e-04 1.4114e-04 - 1.1400e-03 -8.2974e+00 8.0862e-01 1.9138e-01 9.0898e-01 9.1023e-02 6.1700e-04 1.7272e-04 6.3859e-04 1.5114e-04 - 1.1500e-03 -8.2974e+00 7.9851e-01 2.0149e-01 9.0898e-01 9.1023e-02 6.1534e-04 1.8439e-04 6.3859e-04 1.6114e-04 - 1.1600e-03 -8.2974e+00 7.8865e-01 2.1135e-01 9.0898e-01 9.1023e-02 6.1367e-04 1.9606e-04 6.3859e-04 1.7114e-04 - 1.1700e-03 -8.2974e+00 7.7903e-01 2.2097e-01 9.0898e-01 9.1023e-02 6.1201e-04 2.0772e-04 6.3859e-04 1.8114e-04 - 1.1800e-03 -8.2974e+00 7.6964e-01 2.3036e-01 9.0898e-01 9.1023e-02 6.1034e-04 2.1939e-04 6.3859e-04 1.9114e-04 - 1.1900e-03 -8.2974e+00 7.6047e-01 2.3953e-01 9.0898e-01 9.1023e-02 6.0867e-04 2.3105e-04 6.3859e-04 2.0114e-04 - 1.2000e-03 -8.2974e+00 7.5152e-01 2.4848e-01 9.0898e-01 9.1023e-02 6.0701e-04 2.4272e-04 6.3859e-04 2.1114e-04 - 1.2100e-03 -8.2974e+00 7.4278e-01 2.5722e-01 9.0898e-01 9.1023e-02 6.0534e-04 2.5439e-04 6.3859e-04 2.2114e-04 - 1.2200e-03 -8.2974e+00 7.3424e-01 2.6576e-01 9.0898e-01 9.1023e-02 6.0367e-04 2.6605e-04 6.3859e-04 2.3114e-04 - 1.2300e-03 -8.2974e+00 7.2590e-01 2.7410e-01 9.0898e-01 9.1023e-02 6.0201e-04 2.7772e-04 6.3859e-04 2.4114e-04 - 1.2400e-03 -8.2974e+00 7.1774e-01 2.8226e-01 9.0898e-01 9.1023e-02 6.0034e-04 2.8939e-04 6.3859e-04 2.5114e-04 - 1.2500e-03 -8.2974e+00 7.0976e-01 2.9024e-01 9.0898e-01 9.1023e-02 5.9868e-04 3.0105e-04 6.3859e-04 2.6114e-04 - 1.2600e-03 -8.2974e+00 7.0196e-01 2.9804e-01 9.0898e-01 9.1023e-02 5.9701e-04 3.1272e-04 6.3859e-04 2.7114e-04 - 1.2700e-03 -8.2974e+00 6.9433e-01 3.0567e-01 9.0898e-01 9.1023e-02 5.9534e-04 3.2438e-04 6.3859e-04 2.8114e-04 - 1.2800e-03 -8.2974e+00 6.8686e-01 3.1314e-01 9.0898e-01 9.1023e-02 5.9368e-04 3.3605e-04 6.3859e-04 2.9114e-04 - 1.2900e-03 -8.2974e+00 6.7955e-01 3.2045e-01 9.0898e-01 9.1023e-02 5.9201e-04 3.4772e-04 6.3859e-04 3.0114e-04 - 1.3000e-03 -8.2974e+00 6.7239e-01 3.2761e-01 9.0898e-01 9.1023e-02 5.9035e-04 3.5938e-04 6.3859e-04 3.1114e-04 - 1.3100e-03 -8.2974e+00 6.6539e-01 3.3461e-01 9.0898e-01 9.1023e-02 5.8868e-04 3.7105e-04 6.3859e-04 3.2114e-04 - 1.3200e-03 -8.2974e+00 6.5853e-01 3.4147e-01 9.0898e-01 9.1023e-02 5.8701e-04 3.8272e-04 6.3859e-04 3.3114e-04 - 1.3300e-03 -8.2974e+00 6.5180e-01 3.4820e-01 9.0898e-01 9.1023e-02 5.8535e-04 3.9438e-04 6.3859e-04 3.4114e-04 - 1.3400e-03 -8.2974e+00 6.4522e-01 3.5478e-01 9.0898e-01 9.1023e-02 5.8368e-04 4.0605e-04 6.3859e-04 3.5114e-04 - 1.3500e-03 -8.2974e+00 6.3877e-01 3.6123e-01 9.0898e-01 9.1023e-02 5.8201e-04 4.1771e-04 6.3859e-04 3.6114e-04 - 1.3600e-03 -8.2974e+00 6.3244e-01 3.6756e-01 9.0898e-01 9.1023e-02 5.8035e-04 4.2938e-04 6.3859e-04 3.7114e-04 - 1.3700e-03 -8.2974e+00 6.2624e-01 3.7376e-01 9.0898e-01 9.1023e-02 5.7868e-04 4.4105e-04 6.3859e-04 3.8114e-04 - 1.3800e-03 -8.2974e+00 6.2016e-01 3.7984e-01 9.0898e-01 9.1023e-02 5.7702e-04 4.5271e-04 6.3859e-04 3.9114e-04 - 1.3900e-03 -8.2974e+00 6.1419e-01 3.8581e-01 9.0898e-01 9.1023e-02 5.7535e-04 4.6438e-04 6.3859e-04 4.0114e-04 - 1.4000e-03 -8.2974e+00 6.0834e-01 3.9166e-01 9.0898e-01 9.1023e-02 5.7368e-04 4.7604e-04 6.3859e-04 4.1114e-04 - 1.4100e-03 -8.2974e+00 6.0260e-01 3.9740e-01 9.0898e-01 9.1023e-02 5.7202e-04 4.8771e-04 6.3859e-04 4.2114e-04 - 1.4200e-03 -8.2974e+00 5.9697e-01 4.0303e-01 9.0898e-01 9.1023e-02 5.7035e-04 4.9938e-04 6.3859e-04 4.3114e-04 - 1.4300e-03 -8.2974e+00 5.9144e-01 4.0856e-01 9.0898e-01 9.1023e-02 5.6868e-04 5.1104e-04 6.3859e-04 4.4114e-04 - 1.4400e-03 -8.2974e+00 5.8601e-01 4.1399e-01 9.0898e-01 9.1023e-02 5.6702e-04 5.2271e-04 6.3859e-04 4.5114e-04 - 1.4500e-03 -8.2974e+00 5.8068e-01 4.1932e-01 9.0898e-01 9.1023e-02 5.6535e-04 5.3438e-04 6.3859e-04 4.6114e-04 - 1.4600e-03 -8.2974e+00 5.7545e-01 4.2455e-01 9.0898e-01 9.1023e-02 5.6369e-04 5.4604e-04 6.3859e-04 4.7114e-04 - 1.4700e-03 -8.2974e+00 5.7031e-01 4.2969e-01 9.0898e-01 9.1023e-02 5.6202e-04 5.5771e-04 6.3859e-04 4.8114e-04 - 1.4800e-03 -8.2974e+00 5.6526e-01 4.3474e-01 9.0898e-01 9.1023e-02 5.6035e-04 5.6937e-04 6.3859e-04 4.9114e-04 - 1.4900e-03 -8.2974e+00 5.6030e-01 4.3970e-01 9.0898e-01 9.1023e-02 5.5869e-04 5.8104e-04 6.3859e-04 5.0114e-04 - 1.5000e-03 -8.2974e+00 5.5543e-01 4.4457e-01 9.0898e-01 9.1023e-02 5.5702e-04 5.9271e-04 6.3859e-04 5.1114e-04 - 1.5100e-03 -8.2974e+00 5.5064e-01 4.4936e-01 9.0898e-01 9.1023e-02 5.5536e-04 6.0437e-04 6.3859e-04 5.2114e-04 - 1.5200e-03 -8.2974e+00 5.4593e-01 4.5407e-01 9.0898e-01 9.1023e-02 5.5369e-04 6.1604e-04 6.3859e-04 5.3114e-04 - 1.5300e-03 -8.2974e+00 5.4130e-01 4.5870e-01 9.0898e-01 9.1023e-02 5.5202e-04 6.2771e-04 6.3859e-04 5.4114e-04 - 1.5400e-03 -8.2974e+00 5.3675e-01 4.6325e-01 9.0898e-01 9.1023e-02 5.5036e-04 6.3937e-04 6.3859e-04 5.5114e-04 - 1.5500e-03 -8.2974e+00 5.3228e-01 4.6772e-01 9.0898e-01 9.1023e-02 5.4869e-04 6.5104e-04 6.3859e-04 5.6114e-04 - 1.5600e-03 -8.2974e+00 5.2788e-01 4.7212e-01 9.0898e-01 9.1023e-02 5.4702e-04 6.6270e-04 6.3859e-04 5.7114e-04 - 1.5700e-03 -8.2974e+00 5.2355e-01 4.7645e-01 9.0898e-01 9.1023e-02 5.4536e-04 6.7437e-04 6.3859e-04 5.8114e-04 - 1.5800e-03 -8.2974e+00 5.1929e-01 4.8071e-01 9.0898e-01 9.1023e-02 5.4369e-04 6.8604e-04 6.3859e-04 5.9114e-04 - 1.5900e-03 -8.2974e+00 5.1511e-01 4.8489e-01 9.0898e-01 9.1023e-02 5.4203e-04 6.9770e-04 6.3859e-04 6.0114e-04 - 1.6000e-03 -8.2974e+00 5.1098e-01 4.8902e-01 9.0898e-01 9.1023e-02 5.4036e-04 7.0937e-04 6.3859e-04 6.1114e-04 - 1.6100e-03 -8.2974e+00 5.0693e-01 4.9307e-01 9.0898e-01 9.1023e-02 5.3869e-04 7.2104e-04 6.3859e-04 6.2114e-04 - 1.6200e-03 -8.2974e+00 5.0294e-01 4.9706e-01 9.0898e-01 9.1023e-02 5.3703e-04 7.3270e-04 6.3859e-04 6.3114e-04 - 1.6300e-03 -8.2974e+00 4.9901e-01 5.0099e-01 9.0898e-01 9.1023e-02 5.3536e-04 7.4437e-04 6.3859e-04 6.4114e-04 - 1.6400e-03 -8.2974e+00 4.9514e-01 5.0486e-01 9.0898e-01 9.1023e-02 5.3369e-04 7.5603e-04 6.3859e-04 6.5114e-04 - 1.6500e-03 -8.2974e+00 4.9133e-01 5.0867e-01 9.0898e-01 9.1023e-02 5.3203e-04 7.6770e-04 6.3859e-04 6.6114e-04 - 1.6600e-03 -8.2974e+00 4.8758e-01 5.1242e-01 9.0898e-01 9.1023e-02 5.3036e-04 7.7937e-04 6.3859e-04 6.7114e-04 - 1.6700e-03 -8.2974e+00 4.8388e-01 5.1612e-01 9.0898e-01 9.1023e-02 5.2870e-04 7.9103e-04 6.3859e-04 6.8114e-04 - 1.6800e-03 -8.2974e+00 4.8024e-01 5.1976e-01 9.0898e-01 9.1023e-02 5.2703e-04 8.0270e-04 6.3859e-04 6.9114e-04 - 1.6900e-03 -8.2974e+00 4.7666e-01 5.2334e-01 9.0898e-01 9.1023e-02 5.2536e-04 8.1436e-04 6.3859e-04 7.0114e-04 - 1.7000e-03 -8.2974e+00 4.7313e-01 5.2687e-01 9.0898e-01 9.1023e-02 5.2370e-04 8.2603e-04 6.3859e-04 7.1114e-04 - 1.7100e-03 -8.2974e+00 4.6965e-01 5.3035e-01 9.0898e-01 9.1023e-02 5.2203e-04 8.3770e-04 6.3859e-04 7.2114e-04 - 1.7200e-03 -8.2974e+00 4.6622e-01 5.3378e-01 9.0898e-01 9.1023e-02 5.2036e-04 8.4936e-04 6.3859e-04 7.3114e-04 - 1.7300e-03 -8.2974e+00 4.6284e-01 5.3716e-01 9.0898e-01 9.1023e-02 5.1870e-04 8.6103e-04 6.3859e-04 7.4114e-04 - 1.7400e-03 -8.2974e+00 4.5951e-01 5.4049e-01 9.0898e-01 9.1023e-02 5.1703e-04 8.7270e-04 6.3859e-04 7.5114e-04 - 1.7500e-03 -8.2974e+00 4.5623e-01 5.4377e-01 9.0898e-01 9.1023e-02 5.1537e-04 8.8436e-04 6.3859e-04 7.6114e-04 - 1.7600e-03 -8.2974e+00 4.5299e-01 5.4701e-01 9.0898e-01 9.1023e-02 5.1370e-04 8.9603e-04 6.3859e-04 7.7114e-04 - 1.7700e-03 -8.2974e+00 4.4980e-01 5.5020e-01 9.0898e-01 9.1023e-02 5.1203e-04 9.0769e-04 6.3859e-04 7.8114e-04 - 1.7800e-03 -8.2974e+00 4.4665e-01 5.5335e-01 9.0898e-01 9.1023e-02 5.1037e-04 9.1936e-04 6.3859e-04 7.9114e-04 - 1.7900e-03 -8.2974e+00 4.4355e-01 5.5645e-01 9.0898e-01 9.1023e-02 5.0870e-04 9.3103e-04 6.3859e-04 8.0114e-04 - 1.8000e-03 -8.2974e+00 4.4049e-01 5.5951e-01 9.0898e-01 9.1023e-02 5.0704e-04 9.4269e-04 6.3859e-04 8.1114e-04 - 1.8100e-03 -8.2974e+00 4.3747e-01 5.6253e-01 9.0898e-01 9.1023e-02 5.0537e-04 9.5436e-04 6.3859e-04 8.2114e-04 - 1.8200e-03 -8.2974e+00 4.3450e-01 5.6550e-01 9.0898e-01 9.1023e-02 5.0370e-04 9.6603e-04 6.3859e-04 8.3114e-04 - 1.8300e-03 -8.2974e+00 4.3156e-01 5.6844e-01 9.0898e-01 9.1023e-02 5.0204e-04 9.7769e-04 6.3859e-04 8.4114e-04 - 1.8400e-03 -8.2974e+00 4.2866e-01 5.7134e-01 9.0898e-01 9.1023e-02 5.0037e-04 9.8936e-04 6.3859e-04 8.5114e-04 - 1.8500e-03 -8.2974e+00 4.2580e-01 5.7420e-01 9.0898e-01 9.1023e-02 4.9870e-04 1.0010e-03 6.3859e-04 8.6114e-04 - 1.8600e-03 -8.2974e+00 4.2298e-01 5.7702e-01 9.0898e-01 9.1023e-02 4.9704e-04 1.0127e-03 6.3859e-04 8.7114e-04 - 1.8700e-03 -8.2974e+00 4.2020e-01 5.7980e-01 9.0898e-01 9.1023e-02 4.9537e-04 1.0244e-03 6.3859e-04 8.8114e-04 - 1.8800e-03 -8.2974e+00 4.1745e-01 5.8255e-01 9.0898e-01 9.1023e-02 4.9371e-04 1.0360e-03 6.3859e-04 8.9114e-04 - 1.8900e-03 -8.2974e+00 4.1474e-01 5.8526e-01 9.0898e-01 9.1023e-02 4.9204e-04 1.0477e-03 6.3859e-04 9.0114e-04 - 1.9000e-03 -8.2974e+00 4.1207e-01 5.8793e-01 9.0898e-01 9.1023e-02 4.9037e-04 1.0594e-03 6.3859e-04 9.1114e-04 - 1.9100e-03 -8.2974e+00 4.0942e-01 5.9058e-01 9.0898e-01 9.1023e-02 4.8871e-04 1.0710e-03 6.3859e-04 9.2114e-04 - 1.9200e-03 -8.2974e+00 4.0682e-01 5.9318e-01 9.0898e-01 9.1023e-02 4.8704e-04 1.0827e-03 6.3859e-04 9.3114e-04 - 1.9300e-03 -8.2974e+00 4.0424e-01 5.9576e-01 9.0898e-01 9.1023e-02 4.8537e-04 1.0944e-03 6.3859e-04 9.4114e-04 - 1.9400e-03 -8.2974e+00 4.0170e-01 5.9830e-01 9.0898e-01 9.1023e-02 4.8371e-04 1.1060e-03 6.3859e-04 9.5114e-04 - 1.9500e-03 -8.2974e+00 3.9919e-01 6.0081e-01 9.0898e-01 9.1023e-02 4.8204e-04 1.1177e-03 6.3859e-04 9.6114e-04 - 1.9600e-03 -8.2974e+00 3.9671e-01 6.0329e-01 9.0898e-01 9.1023e-02 4.8038e-04 1.1294e-03 6.3859e-04 9.7114e-04 - 1.9700e-03 -8.2974e+00 3.9426e-01 6.0574e-01 9.0898e-01 9.1023e-02 4.7871e-04 1.1410e-03 6.3859e-04 9.8114e-04 - 1.9800e-03 -8.2974e+00 3.9184e-01 6.0816e-01 9.0898e-01 9.1023e-02 4.7704e-04 1.1527e-03 6.3859e-04 9.9114e-04 - 1.9900e-03 -8.2974e+00 3.8945e-01 6.1055e-01 9.0898e-01 9.1023e-02 4.7538e-04 1.1644e-03 6.3859e-04 1.0011e-03 - 2.0000e-03 -8.2974e+00 3.8709e-01 6.1291e-01 9.0898e-01 9.1023e-02 4.7371e-04 1.1760e-03 6.3859e-04 1.0111e-03 - 2.0100e-03 -8.2974e+00 3.8476e-01 6.1524e-01 9.0898e-01 9.1023e-02 4.7205e-04 1.1877e-03 6.3859e-04 1.0211e-03 - 2.0200e-03 -8.2974e+00 3.8245e-01 6.1755e-01 9.0898e-01 9.1023e-02 4.7038e-04 1.1993e-03 6.3859e-04 1.0311e-03 - 2.0300e-03 -8.2974e+00 3.8018e-01 6.1982e-01 9.0898e-01 9.1023e-02 4.6871e-04 1.2110e-03 6.3859e-04 1.0411e-03 - 2.0400e-03 -8.2974e+00 3.7793e-01 6.2207e-01 9.0898e-01 9.1023e-02 4.6705e-04 1.2227e-03 6.3859e-04 1.0511e-03 - 2.0500e-03 -8.2974e+00 3.7570e-01 6.2430e-01 9.0898e-01 9.1023e-02 4.6538e-04 1.2343e-03 6.3859e-04 1.0611e-03 - 2.0600e-03 -8.2974e+00 3.7350e-01 6.2650e-01 9.0898e-01 9.1023e-02 4.6371e-04 1.2460e-03 6.3859e-04 1.0711e-03 - 2.0700e-03 -8.2974e+00 3.7133e-01 6.2867e-01 9.0898e-01 9.1023e-02 4.6205e-04 1.2577e-03 6.3859e-04 1.0811e-03 - 2.0800e-03 -8.2974e+00 3.6919e-01 6.3081e-01 9.0898e-01 9.1023e-02 4.6038e-04 1.2693e-03 6.3859e-04 1.0911e-03 - 2.0900e-03 -8.2974e+00 3.6706e-01 6.3294e-01 9.0898e-01 9.1023e-02 4.5872e-04 1.2810e-03 6.3859e-04 1.1011e-03 - 2.1000e-03 -8.2974e+00 3.6497e-01 6.3503e-01 9.0898e-01 9.1023e-02 4.5705e-04 1.2927e-03 6.3859e-04 1.1111e-03 - 2.1100e-03 -8.2974e+00 3.6289e-01 6.3711e-01 9.0898e-01 9.1023e-02 4.5538e-04 1.3043e-03 6.3859e-04 1.1211e-03 - 2.1200e-03 -8.2974e+00 3.6084e-01 6.3916e-01 9.0898e-01 9.1023e-02 4.5372e-04 1.3160e-03 6.3859e-04 1.1311e-03 - 2.1300e-03 -8.2974e+00 3.5881e-01 6.4119e-01 9.0898e-01 9.1023e-02 4.5205e-04 1.3277e-03 6.3859e-04 1.1411e-03 - 2.1400e-03 -8.2974e+00 3.5681e-01 6.4319e-01 9.0898e-01 9.1023e-02 4.5038e-04 1.3393e-03 6.3859e-04 1.1511e-03 - 2.1500e-03 -8.2974e+00 3.5483e-01 6.4517e-01 9.0898e-01 9.1023e-02 4.4872e-04 1.3510e-03 6.3859e-04 1.1611e-03 - 2.1600e-03 -8.2974e+00 3.5287e-01 6.4713e-01 9.0898e-01 9.1023e-02 4.4705e-04 1.3627e-03 6.3859e-04 1.1711e-03 - 2.1700e-03 -8.2974e+00 3.5093e-01 6.4907e-01 9.0898e-01 9.1023e-02 4.4539e-04 1.3743e-03 6.3859e-04 1.1811e-03 - 2.1800e-03 -8.2974e+00 3.4901e-01 6.5099e-01 9.0898e-01 9.1023e-02 4.4372e-04 1.3860e-03 6.3859e-04 1.1911e-03 - 2.1900e-03 -8.2974e+00 3.4711e-01 6.5289e-01 9.0898e-01 9.1023e-02 4.4205e-04 1.3977e-03 6.3859e-04 1.2011e-03 - 2.2000e-03 -8.2974e+00 3.4524e-01 6.5476e-01 9.0898e-01 9.1023e-02 4.4039e-04 1.4093e-03 6.3859e-04 1.2111e-03 - 2.2100e-03 -8.2974e+00 3.4338e-01 6.5662e-01 9.0898e-01 9.1023e-02 4.3872e-04 1.4210e-03 6.3859e-04 1.2211e-03 - 2.2200e-03 -8.2974e+00 3.4154e-01 6.5846e-01 9.0898e-01 9.1023e-02 4.3705e-04 1.4327e-03 6.3859e-04 1.2311e-03 - 2.2300e-03 -8.2974e+00 3.3973e-01 6.6027e-01 9.0898e-01 9.1023e-02 4.3539e-04 1.4443e-03 6.3859e-04 1.2411e-03 - 2.2400e-03 -8.2974e+00 3.3793e-01 6.6207e-01 9.0898e-01 9.1023e-02 4.3372e-04 1.4560e-03 6.3859e-04 1.2511e-03 - 2.2500e-03 -8.2974e+00 3.3615e-01 6.6385e-01 9.0898e-01 9.1023e-02 4.3206e-04 1.4677e-03 6.3859e-04 1.2611e-03 - 2.2600e-03 -8.2974e+00 3.3439e-01 6.6561e-01 9.0898e-01 9.1023e-02 4.3039e-04 1.4793e-03 6.3859e-04 1.2711e-03 - 2.2700e-03 -8.2974e+00 3.3265e-01 6.6735e-01 9.0898e-01 9.1023e-02 4.2872e-04 1.4910e-03 6.3859e-04 1.2811e-03 - 2.2800e-03 -8.2974e+00 3.3092e-01 6.6908e-01 9.0898e-01 9.1023e-02 4.2706e-04 1.5027e-03 6.3859e-04 1.2911e-03 - 2.2900e-03 -8.2974e+00 3.2922e-01 6.7078e-01 9.0898e-01 9.1023e-02 4.2539e-04 1.5143e-03 6.3859e-04 1.3011e-03 - 2.3000e-03 -8.2974e+00 3.2753e-01 6.7247e-01 9.0898e-01 9.1023e-02 4.2373e-04 1.5260e-03 6.3859e-04 1.3111e-03 - 2.3100e-03 -8.2974e+00 3.2586e-01 6.7414e-01 9.0898e-01 9.1023e-02 4.2206e-04 1.5377e-03 6.3859e-04 1.3211e-03 - 2.3200e-03 -8.2974e+00 3.2420e-01 6.7580e-01 9.0898e-01 9.1023e-02 4.2039e-04 1.5493e-03 6.3859e-04 1.3311e-03 - 2.3300e-03 -8.2974e+00 3.2257e-01 6.7743e-01 9.0898e-01 9.1023e-02 4.1873e-04 1.5610e-03 6.3859e-04 1.3411e-03 - 2.3400e-03 -8.2974e+00 3.2094e-01 6.7906e-01 9.0898e-01 9.1023e-02 4.1706e-04 1.5727e-03 6.3859e-04 1.3511e-03 - 2.3500e-03 -8.2974e+00 3.1934e-01 6.8066e-01 9.0898e-01 9.1023e-02 4.1539e-04 1.5843e-03 6.3859e-04 1.3611e-03 - 2.3600e-03 -8.2974e+00 3.1775e-01 6.8225e-01 9.0898e-01 9.1023e-02 4.1373e-04 1.5960e-03 6.3859e-04 1.3711e-03 - 2.3700e-03 -8.2974e+00 3.1618e-01 6.8382e-01 9.0898e-01 9.1023e-02 4.1206e-04 1.6077e-03 6.3859e-04 1.3811e-03 - 2.3800e-03 -8.2974e+00 3.1462e-01 6.8538e-01 9.0898e-01 9.1023e-02 4.1040e-04 1.6193e-03 6.3859e-04 1.3911e-03 - 2.3900e-03 -8.2974e+00 3.1308e-01 6.8692e-01 9.0898e-01 9.1023e-02 4.0873e-04 1.6310e-03 6.3859e-04 1.4011e-03 - 2.4000e-03 -8.2974e+00 3.1155e-01 6.8845e-01 9.0898e-01 9.1023e-02 4.0706e-04 1.6427e-03 6.3859e-04 1.4111e-03 - 2.4100e-03 -8.2974e+00 3.1004e-01 6.8996e-01 9.0898e-01 9.1023e-02 4.0540e-04 1.6543e-03 6.3859e-04 1.4211e-03 - 2.4200e-03 -8.2974e+00 3.0854e-01 6.9146e-01 9.0898e-01 9.1023e-02 4.0373e-04 1.6660e-03 6.3859e-04 1.4311e-03 - 2.4300e-03 -8.2974e+00 3.0706e-01 6.9294e-01 9.0898e-01 9.1023e-02 4.0206e-04 1.6777e-03 6.3859e-04 1.4411e-03 - 2.4400e-03 -8.2974e+00 3.0559e-01 6.9441e-01 9.0898e-01 9.1023e-02 4.0040e-04 1.6893e-03 6.3859e-04 1.4511e-03 - 2.4500e-03 -8.2974e+00 3.0413e-01 6.9587e-01 9.0898e-01 9.1023e-02 3.9873e-04 1.7010e-03 6.3859e-04 1.4611e-03 - 2.4600e-03 -8.2974e+00 3.0269e-01 6.9731e-01 9.0898e-01 9.1023e-02 3.9707e-04 1.7127e-03 6.3859e-04 1.4711e-03 - 2.4700e-03 -8.2974e+00 3.0126e-01 6.9874e-01 9.0898e-01 9.1023e-02 3.9540e-04 1.7243e-03 6.3859e-04 1.4811e-03 - 2.4800e-03 -8.2974e+00 2.9985e-01 7.0015e-01 9.0898e-01 9.1023e-02 3.9373e-04 1.7360e-03 6.3859e-04 1.4911e-03 - 2.4900e-03 -8.2974e+00 2.9845e-01 7.0155e-01 9.0898e-01 9.1023e-02 3.9207e-04 1.7477e-03 6.3859e-04 1.5011e-03 - 2.5000e-03 -8.2974e+00 2.9706e-01 7.0294e-01 9.0898e-01 9.1023e-02 3.9040e-04 1.7593e-03 6.3859e-04 1.5111e-03 - 2.5100e-03 -8.2974e+00 2.9568e-01 7.0432e-01 9.0898e-01 9.1023e-02 3.8873e-04 1.7710e-03 6.3859e-04 1.5211e-03 - 2.5200e-03 -8.2974e+00 2.9432e-01 7.0568e-01 9.0898e-01 9.1023e-02 3.8707e-04 1.7827e-03 6.3859e-04 1.5311e-03 - 2.5300e-03 -8.2974e+00 2.9297e-01 7.0703e-01 9.0898e-01 9.1023e-02 3.8540e-04 1.7943e-03 6.3859e-04 1.5411e-03 - 2.5400e-03 -8.2974e+00 2.9163e-01 7.0837e-01 9.0898e-01 9.1023e-02 3.8374e-04 1.8060e-03 6.3859e-04 1.5511e-03 - 2.5500e-03 -8.2974e+00 2.9030e-01 7.0970e-01 9.0898e-01 9.1023e-02 3.8207e-04 1.8177e-03 6.3859e-04 1.5611e-03 - 2.5600e-03 -8.2974e+00 2.8899e-01 7.1101e-01 9.0898e-01 9.1023e-02 3.8040e-04 1.8293e-03 6.3859e-04 1.5711e-03 - 2.5700e-03 -8.2974e+00 2.8769e-01 7.1231e-01 9.0898e-01 9.1023e-02 3.7874e-04 1.8410e-03 6.3859e-04 1.5811e-03 - 2.5800e-03 -8.2974e+00 2.8640e-01 7.1360e-01 9.0898e-01 9.1023e-02 3.7707e-04 1.8527e-03 6.3859e-04 1.5911e-03 - 2.5900e-03 -8.2974e+00 2.8512e-01 7.1488e-01 9.0898e-01 9.1023e-02 3.7541e-04 1.8643e-03 6.3859e-04 1.6011e-03 - 2.6000e-03 -8.2974e+00 2.8385e-01 7.1615e-01 9.0898e-01 9.1023e-02 3.7374e-04 1.8760e-03 6.3859e-04 1.6111e-03 - 2.6100e-03 -8.2974e+00 2.8260e-01 7.1740e-01 9.0898e-01 9.1023e-02 3.7207e-04 1.8877e-03 6.3859e-04 1.6211e-03 - 2.6200e-03 -8.2974e+00 2.8135e-01 7.1865e-01 9.0898e-01 9.1023e-02 3.7041e-04 1.8993e-03 6.3859e-04 1.6311e-03 - 2.6300e-03 -8.2974e+00 2.8012e-01 7.1988e-01 9.0898e-01 9.1023e-02 3.6874e-04 1.9110e-03 6.3859e-04 1.6411e-03 - 2.6400e-03 -8.2974e+00 2.7889e-01 7.2111e-01 9.0898e-01 9.1023e-02 3.6707e-04 1.9227e-03 6.3859e-04 1.6511e-03 - 2.6500e-03 -8.2974e+00 2.7768e-01 7.2232e-01 9.0898e-01 9.1023e-02 3.6541e-04 1.9343e-03 6.3859e-04 1.6611e-03 - 2.6600e-03 -8.2974e+00 2.7648e-01 7.2352e-01 9.0898e-01 9.1023e-02 3.6374e-04 1.9460e-03 6.3859e-04 1.6711e-03 - 2.6700e-03 -8.2974e+00 2.7529e-01 7.2471e-01 9.0898e-01 9.1023e-02 3.6208e-04 1.9577e-03 6.3859e-04 1.6811e-03 - 2.6800e-03 -8.2974e+00 2.7411e-01 7.2589e-01 9.0898e-01 9.1023e-02 3.6041e-04 1.9693e-03 6.3859e-04 1.6911e-03 - 2.6900e-03 -8.2974e+00 2.7293e-01 7.2707e-01 9.0898e-01 9.1023e-02 3.5874e-04 1.9810e-03 6.3859e-04 1.7011e-03 - 2.7000e-03 -8.2974e+00 2.7177e-01 7.2823e-01 9.0898e-01 9.1023e-02 3.5708e-04 1.9927e-03 6.3859e-04 1.7111e-03 - 2.7100e-03 -8.2974e+00 2.7062e-01 7.2938e-01 9.0898e-01 9.1023e-02 3.5541e-04 2.0043e-03 6.3859e-04 1.7211e-03 - 2.7200e-03 -8.2974e+00 2.6948e-01 7.3052e-01 9.0898e-01 9.1023e-02 3.5374e-04 2.0160e-03 6.3859e-04 1.7311e-03 - 2.7300e-03 -8.2974e+00 2.6835e-01 7.3165e-01 9.0898e-01 9.1023e-02 3.5208e-04 2.0276e-03 6.3859e-04 1.7411e-03 - 2.7400e-03 -8.2974e+00 2.6722e-01 7.3278e-01 9.0898e-01 9.1023e-02 3.5041e-04 2.0393e-03 6.3859e-04 1.7511e-03 - 2.7500e-03 -8.2974e+00 2.6611e-01 7.3389e-01 9.0898e-01 9.1023e-02 3.4875e-04 2.0510e-03 6.3859e-04 1.7611e-03 - 2.7600e-03 -8.2974e+00 2.6501e-01 7.3499e-01 9.0898e-01 9.1023e-02 3.4708e-04 2.0626e-03 6.3859e-04 1.7711e-03 - 2.7700e-03 -8.2974e+00 2.6391e-01 7.3609e-01 9.0898e-01 9.1023e-02 3.4541e-04 2.0743e-03 6.3859e-04 1.7811e-03 - 2.7800e-03 -8.2974e+00 2.6282e-01 7.3718e-01 9.0898e-01 9.1023e-02 3.4375e-04 2.0860e-03 6.3859e-04 1.7911e-03 - 2.7900e-03 -8.2974e+00 2.6175e-01 7.3825e-01 9.0898e-01 9.1023e-02 3.4208e-04 2.0976e-03 6.3859e-04 1.8011e-03 - 2.8000e-03 -8.2974e+00 2.6068e-01 7.3932e-01 9.0898e-01 9.1023e-02 3.4042e-04 2.1093e-03 6.3859e-04 1.8111e-03 - 2.8100e-03 -8.2974e+00 2.5962e-01 7.4038e-01 9.0898e-01 9.1023e-02 3.3875e-04 2.1210e-03 6.3859e-04 1.8211e-03 - 2.8200e-03 -8.2974e+00 2.5857e-01 7.4143e-01 9.0898e-01 9.1023e-02 3.3708e-04 2.1326e-03 6.3859e-04 1.8311e-03 - 2.8300e-03 -8.2974e+00 2.5752e-01 7.4248e-01 9.0898e-01 9.1023e-02 3.3542e-04 2.1443e-03 6.3859e-04 1.8411e-03 - 2.8400e-03 -8.2974e+00 2.5649e-01 7.4351e-01 9.0898e-01 9.1023e-02 3.3375e-04 2.1560e-03 6.3859e-04 1.8511e-03 - 2.8500e-03 -8.2974e+00 2.5546e-01 7.4454e-01 9.0898e-01 9.1023e-02 3.3208e-04 2.1676e-03 6.3859e-04 1.8611e-03 - 2.8600e-03 -8.2974e+00 2.5445e-01 7.4555e-01 9.0898e-01 9.1023e-02 3.3042e-04 2.1793e-03 6.3859e-04 1.8711e-03 - 2.8700e-03 -8.2974e+00 2.5344e-01 7.4656e-01 9.0898e-01 9.1023e-02 3.2875e-04 2.1910e-03 6.3859e-04 1.8811e-03 - 2.8800e-03 -8.2974e+00 2.5243e-01 7.4757e-01 9.0898e-01 9.1023e-02 3.2709e-04 2.2026e-03 6.3859e-04 1.8911e-03 - 2.8900e-03 -8.2974e+00 2.5144e-01 7.4856e-01 9.0898e-01 9.1023e-02 3.2542e-04 2.2143e-03 6.3859e-04 1.9011e-03 - 2.9000e-03 -8.2974e+00 2.5045e-01 7.4955e-01 9.0898e-01 9.1023e-02 3.2375e-04 2.2260e-03 6.3859e-04 1.9111e-03 - 2.9100e-03 -8.2974e+00 2.4948e-01 7.5052e-01 9.0898e-01 9.1023e-02 3.2209e-04 2.2376e-03 6.3859e-04 1.9211e-03 - 2.9200e-03 -8.2974e+00 2.4851e-01 7.5149e-01 9.0898e-01 9.1023e-02 3.2042e-04 2.2493e-03 6.3859e-04 1.9311e-03 - 2.9300e-03 -8.2974e+00 2.4754e-01 7.5246e-01 9.0898e-01 9.1023e-02 3.1875e-04 2.2610e-03 6.3859e-04 1.9411e-03 - 2.9400e-03 -8.2974e+00 2.4659e-01 7.5341e-01 9.0898e-01 9.1023e-02 3.1709e-04 2.2726e-03 6.3859e-04 1.9511e-03 - 2.9500e-03 -8.2974e+00 2.4564e-01 7.5436e-01 9.0898e-01 9.1023e-02 3.1542e-04 2.2843e-03 6.3859e-04 1.9611e-03 - 2.9600e-03 -8.2974e+00 2.4470e-01 7.5530e-01 9.0898e-01 9.1023e-02 3.1376e-04 2.2960e-03 6.3859e-04 1.9711e-03 - 2.9700e-03 -8.2974e+00 2.4376e-01 7.5624e-01 9.0898e-01 9.1023e-02 3.1209e-04 2.3076e-03 6.3859e-04 1.9811e-03 - 2.9800e-03 -8.2974e+00 2.4284e-01 7.5716e-01 9.0898e-01 9.1023e-02 3.1042e-04 2.3193e-03 6.3859e-04 1.9911e-03 - 2.9900e-03 -8.2974e+00 2.4192e-01 7.5808e-01 9.0898e-01 9.1023e-02 3.0876e-04 2.3310e-03 6.3859e-04 2.0011e-03 - 3.0000e-03 -8.2974e+00 2.4100e-01 7.5900e-01 9.0898e-01 9.1023e-02 3.0709e-04 2.3426e-03 6.3859e-04 2.0111e-03 - 3.0100e-03 -8.2974e+00 2.4010e-01 7.5990e-01 9.0898e-01 9.1023e-02 3.0542e-04 2.3543e-03 6.3859e-04 2.0211e-03 - 3.0200e-03 -8.2974e+00 2.3920e-01 7.6080e-01 9.0898e-01 9.1023e-02 3.0376e-04 2.3660e-03 6.3859e-04 2.0311e-03 - 3.0300e-03 -8.2974e+00 2.3830e-01 7.6170e-01 9.0898e-01 9.1023e-02 3.0209e-04 2.3776e-03 6.3859e-04 2.0411e-03 - 3.0400e-03 -8.2974e+00 2.3742e-01 7.6258e-01 9.0898e-01 9.1023e-02 3.0043e-04 2.3893e-03 6.3859e-04 2.0511e-03 - 3.0500e-03 -8.2974e+00 2.3654e-01 7.6346e-01 9.0898e-01 9.1023e-02 2.9876e-04 2.4010e-03 6.3859e-04 2.0611e-03 - 3.0600e-03 -8.2974e+00 2.3567e-01 7.6433e-01 9.0898e-01 9.1023e-02 2.9709e-04 2.4126e-03 6.3859e-04 2.0711e-03 - 3.0700e-03 -8.2974e+00 2.3480e-01 7.6520e-01 9.0898e-01 9.1023e-02 2.9543e-04 2.4243e-03 6.3859e-04 2.0811e-03 - 3.0800e-03 -8.2974e+00 2.3394e-01 7.6606e-01 9.0898e-01 9.1023e-02 2.9376e-04 2.4360e-03 6.3859e-04 2.0911e-03 - 3.0900e-03 -8.2974e+00 2.3309e-01 7.6691e-01 9.0898e-01 9.1023e-02 2.9210e-04 2.4476e-03 6.3859e-04 2.1011e-03 - 3.1000e-03 -8.2974e+00 2.3224e-01 7.6776e-01 9.0898e-01 9.1023e-02 2.9043e-04 2.4593e-03 6.3859e-04 2.1111e-03 - 3.1100e-03 -8.2974e+00 2.3140e-01 7.6860e-01 9.0898e-01 9.1023e-02 2.8876e-04 2.4710e-03 6.3859e-04 2.1211e-03 - 3.1200e-03 -8.2974e+00 2.3056e-01 7.6944e-01 9.0898e-01 9.1023e-02 2.8710e-04 2.4826e-03 6.3859e-04 2.1311e-03 - 3.1300e-03 -8.2974e+00 2.2973e-01 7.7027e-01 9.0898e-01 9.1023e-02 2.8543e-04 2.4943e-03 6.3859e-04 2.1411e-03 - 3.1400e-03 -8.2974e+00 2.2891e-01 7.7109e-01 9.0898e-01 9.1023e-02 2.8376e-04 2.5060e-03 6.3859e-04 2.1511e-03 - 3.1500e-03 -8.2974e+00 2.2809e-01 7.7191e-01 9.0898e-01 9.1023e-02 2.8210e-04 2.5176e-03 6.3859e-04 2.1611e-03 - 3.1600e-03 -8.2974e+00 2.2728e-01 7.7272e-01 9.0898e-01 9.1023e-02 2.8043e-04 2.5293e-03 6.3859e-04 2.1711e-03 - 3.1700e-03 -8.2974e+00 2.2647e-01 7.7353e-01 9.0898e-01 9.1023e-02 2.7877e-04 2.5410e-03 6.3859e-04 2.1811e-03 - 3.1800e-03 -8.2974e+00 2.2567e-01 7.7433e-01 9.0898e-01 9.1023e-02 2.7710e-04 2.5526e-03 6.3859e-04 2.1911e-03 - 3.1900e-03 -8.2974e+00 2.2488e-01 7.7512e-01 9.0898e-01 9.1023e-02 2.7543e-04 2.5643e-03 6.3859e-04 2.2011e-03 - 3.2000e-03 -8.2974e+00 2.2409e-01 7.7591e-01 9.0898e-01 9.1023e-02 2.7377e-04 2.5760e-03 6.3859e-04 2.2111e-03 - 3.2100e-03 -8.2974e+00 2.2330e-01 7.7670e-01 9.0898e-01 9.1023e-02 2.7210e-04 2.5876e-03 6.3859e-04 2.2211e-03 - 3.2200e-03 -8.2974e+00 2.2253e-01 7.7747e-01 9.0898e-01 9.1023e-02 2.7043e-04 2.5993e-03 6.3859e-04 2.2311e-03 - 3.2300e-03 -8.2974e+00 2.2175e-01 7.7825e-01 9.0898e-01 9.1023e-02 2.6877e-04 2.6110e-03 6.3859e-04 2.2411e-03 - 3.2400e-03 -8.2974e+00 2.2099e-01 7.7901e-01 9.0898e-01 9.1023e-02 2.6710e-04 2.6226e-03 6.3859e-04 2.2511e-03 - 3.2500e-03 -8.2974e+00 2.2022e-01 7.7978e-01 9.0898e-01 9.1023e-02 2.6544e-04 2.6343e-03 6.3859e-04 2.2611e-03 - 3.2600e-03 -8.2974e+00 2.1947e-01 7.8053e-01 9.0898e-01 9.1023e-02 2.6377e-04 2.6460e-03 6.3859e-04 2.2711e-03 - 3.2700e-03 -8.2974e+00 2.1872e-01 7.8128e-01 9.0898e-01 9.1023e-02 2.6210e-04 2.6576e-03 6.3859e-04 2.2811e-03 - 3.2800e-03 -8.2974e+00 2.1797e-01 7.8203e-01 9.0898e-01 9.1023e-02 2.6044e-04 2.6693e-03 6.3859e-04 2.2911e-03 - 3.2900e-03 -8.2974e+00 2.1723e-01 7.8277e-01 9.0898e-01 9.1023e-02 2.5877e-04 2.6810e-03 6.3859e-04 2.3011e-03 - 3.3000e-03 -8.2974e+00 2.1649e-01 7.8351e-01 9.0898e-01 9.1023e-02 2.5710e-04 2.6926e-03 6.3859e-04 2.3111e-03 - 3.3100e-03 -8.2974e+00 2.1576e-01 7.8424e-01 9.0898e-01 9.1023e-02 2.5544e-04 2.7043e-03 6.3859e-04 2.3211e-03 - 3.3200e-03 -8.2974e+00 2.1503e-01 7.8497e-01 9.0898e-01 9.1023e-02 2.5377e-04 2.7160e-03 6.3859e-04 2.3311e-03 - 3.3300e-03 -8.2974e+00 2.1431e-01 7.8569e-01 9.0898e-01 9.1023e-02 2.5211e-04 2.7276e-03 6.3859e-04 2.3411e-03 - 3.3400e-03 -8.2974e+00 2.1360e-01 7.8640e-01 9.0898e-01 9.1023e-02 2.5044e-04 2.7393e-03 6.3859e-04 2.3511e-03 - 3.3500e-03 -8.2974e+00 2.1288e-01 7.8712e-01 9.0898e-01 9.1023e-02 2.4877e-04 2.7510e-03 6.3859e-04 2.3611e-03 - 3.3600e-03 -8.2974e+00 2.1218e-01 7.8782e-01 9.0898e-01 9.1023e-02 2.4711e-04 2.7626e-03 6.3859e-04 2.3711e-03 - 3.3700e-03 -8.2974e+00 2.1147e-01 7.8853e-01 9.0898e-01 9.1023e-02 2.4544e-04 2.7743e-03 6.3859e-04 2.3811e-03 - 3.3800e-03 -8.2974e+00 2.1078e-01 7.8922e-01 9.0898e-01 9.1023e-02 2.4378e-04 2.7860e-03 6.3859e-04 2.3911e-03 - 3.3900e-03 -8.2974e+00 2.1008e-01 7.8992e-01 9.0898e-01 9.1023e-02 2.4211e-04 2.7976e-03 6.3859e-04 2.4011e-03 - 3.4000e-03 -8.2974e+00 2.0939e-01 7.9061e-01 9.0898e-01 9.1023e-02 2.4044e-04 2.8093e-03 6.3859e-04 2.4111e-03 - 3.4100e-03 -8.2974e+00 2.0871e-01 7.9129e-01 9.0898e-01 9.1023e-02 2.3878e-04 2.8210e-03 6.3859e-04 2.4211e-03 - 3.4200e-03 -8.2974e+00 2.0803e-01 7.9197e-01 9.0898e-01 9.1023e-02 2.3711e-04 2.8326e-03 6.3859e-04 2.4311e-03 - 3.4300e-03 -8.2974e+00 2.0735e-01 7.9265e-01 9.0898e-01 9.1023e-02 2.3544e-04 2.8443e-03 6.3859e-04 2.4411e-03 - 3.4400e-03 -8.2974e+00 2.0668e-01 7.9332e-01 9.0898e-01 9.1023e-02 2.3378e-04 2.8559e-03 6.3859e-04 2.4511e-03 - 3.4500e-03 -8.2974e+00 2.0602e-01 7.9398e-01 9.0898e-01 9.1023e-02 2.3211e-04 2.8676e-03 6.3859e-04 2.4611e-03 - 3.4600e-03 -8.2974e+00 2.0535e-01 7.9465e-01 9.0898e-01 9.1023e-02 2.3045e-04 2.8793e-03 6.3859e-04 2.4711e-03 - 3.4700e-03 -8.2974e+00 2.0469e-01 7.9531e-01 9.0898e-01 9.1023e-02 2.2878e-04 2.8909e-03 6.3859e-04 2.4811e-03 - 3.4800e-03 -8.2974e+00 2.0404e-01 7.9596e-01 9.0898e-01 9.1023e-02 2.2711e-04 2.9026e-03 6.3859e-04 2.4911e-03 - 3.4900e-03 -8.2974e+00 2.0339e-01 7.9661e-01 9.0898e-01 9.1023e-02 2.2545e-04 2.9143e-03 6.3859e-04 2.5011e-03 - 3.5000e-03 -8.2974e+00 2.0274e-01 7.9726e-01 9.0898e-01 9.1023e-02 2.2378e-04 2.9259e-03 6.3859e-04 2.5111e-03 - 3.5100e-03 -8.2974e+00 2.0210e-01 7.9790e-01 9.0898e-01 9.1023e-02 2.2211e-04 2.9376e-03 6.3859e-04 2.5211e-03 - 3.5200e-03 -8.2974e+00 2.0147e-01 7.9853e-01 9.0898e-01 9.1023e-02 2.2045e-04 2.9493e-03 6.3859e-04 2.5311e-03 - 3.5300e-03 -8.2974e+00 2.0083e-01 7.9917e-01 9.0898e-01 9.1023e-02 2.1878e-04 2.9609e-03 6.3859e-04 2.5411e-03 - 3.5400e-03 -8.2974e+00 2.0020e-01 7.9980e-01 9.0898e-01 9.1023e-02 2.1712e-04 2.9726e-03 6.3859e-04 2.5511e-03 - 3.5500e-03 -8.2974e+00 1.9958e-01 8.0042e-01 9.0898e-01 9.1023e-02 2.1545e-04 2.9843e-03 6.3859e-04 2.5611e-03 - 3.5600e-03 -8.2974e+00 1.9895e-01 8.0105e-01 9.0898e-01 9.1023e-02 2.1378e-04 2.9959e-03 6.3859e-04 2.5711e-03 - 3.5700e-03 -8.2974e+00 1.9834e-01 8.0166e-01 9.0898e-01 9.1023e-02 2.1212e-04 3.0076e-03 6.3859e-04 2.5811e-03 - 3.5800e-03 -8.2974e+00 1.9772e-01 8.0228e-01 9.0898e-01 9.1023e-02 2.1045e-04 3.0193e-03 6.3859e-04 2.5911e-03 - 3.5900e-03 -8.2974e+00 1.9711e-01 8.0289e-01 9.0898e-01 9.1023e-02 2.0879e-04 3.0309e-03 6.3859e-04 2.6011e-03 - 3.6000e-03 -8.2974e+00 1.9651e-01 8.0349e-01 9.0898e-01 9.1023e-02 2.0712e-04 3.0426e-03 6.3859e-04 2.6111e-03 - 3.6100e-03 -8.2974e+00 1.9590e-01 8.0410e-01 9.0898e-01 9.1023e-02 2.0545e-04 3.0543e-03 6.3859e-04 2.6211e-03 - 3.6200e-03 -8.2974e+00 1.9530e-01 8.0470e-01 9.0898e-01 9.1023e-02 2.0379e-04 3.0659e-03 6.3859e-04 2.6311e-03 - 3.6300e-03 -8.2974e+00 1.9471e-01 8.0529e-01 9.0898e-01 9.1023e-02 2.0212e-04 3.0776e-03 6.3859e-04 2.6411e-03 - 3.6400e-03 -8.2974e+00 1.9412e-01 8.0588e-01 9.0898e-01 9.1023e-02 2.0045e-04 3.0893e-03 6.3859e-04 2.6511e-03 - 3.6500e-03 -8.2974e+00 1.9353e-01 8.0647e-01 9.0898e-01 9.1023e-02 1.9879e-04 3.1009e-03 6.3859e-04 2.6611e-03 - 3.6600e-03 -8.2974e+00 1.9294e-01 8.0706e-01 9.0898e-01 9.1023e-02 1.9712e-04 3.1126e-03 6.3859e-04 2.6711e-03 - 3.6700e-03 -8.2974e+00 1.9236e-01 8.0764e-01 9.0898e-01 9.1023e-02 1.9546e-04 3.1243e-03 6.3859e-04 2.6811e-03 - 3.6800e-03 -8.2974e+00 1.9178e-01 8.0822e-01 9.0898e-01 9.1023e-02 1.9379e-04 3.1359e-03 6.3859e-04 2.6911e-03 - 3.6900e-03 -8.2974e+00 1.9121e-01 8.0879e-01 9.0898e-01 9.1023e-02 1.9212e-04 3.1476e-03 6.3859e-04 2.7011e-03 - 3.7000e-03 -8.2974e+00 1.9064e-01 8.0936e-01 9.0898e-01 9.1023e-02 1.9046e-04 3.1593e-03 6.3859e-04 2.7111e-03 - 3.7100e-03 -8.2974e+00 1.9007e-01 8.0993e-01 9.0898e-01 9.1023e-02 1.8879e-04 3.1709e-03 6.3859e-04 2.7211e-03 - 3.7200e-03 -8.2974e+00 1.8951e-01 8.1049e-01 9.0898e-01 9.1023e-02 1.8712e-04 3.1826e-03 6.3859e-04 2.7311e-03 - 3.7300e-03 -8.2974e+00 1.8895e-01 8.1105e-01 9.0898e-01 9.1023e-02 1.8546e-04 3.1943e-03 6.3859e-04 2.7411e-03 - 3.7400e-03 -8.2974e+00 1.8839e-01 8.1161e-01 9.0898e-01 9.1023e-02 1.8379e-04 3.2059e-03 6.3859e-04 2.7511e-03 - 3.7500e-03 -8.2974e+00 1.8784e-01 8.1216e-01 9.0898e-01 9.1023e-02 1.8213e-04 3.2176e-03 6.3859e-04 2.7611e-03 - 3.7600e-03 -8.2974e+00 1.8729e-01 8.1271e-01 9.0898e-01 9.1023e-02 1.8046e-04 3.2293e-03 6.3859e-04 2.7711e-03 - 3.7700e-03 -8.2974e+00 1.8674e-01 8.1326e-01 9.0898e-01 9.1023e-02 1.7879e-04 3.2409e-03 6.3859e-04 2.7811e-03 - 3.7800e-03 -8.2974e+00 1.8619e-01 8.1381e-01 9.0898e-01 9.1023e-02 1.7713e-04 3.2526e-03 6.3859e-04 2.7911e-03 - 3.7900e-03 -8.2974e+00 1.8565e-01 8.1435e-01 9.0898e-01 9.1023e-02 1.7546e-04 3.2643e-03 6.3859e-04 2.8011e-03 - 3.8000e-03 -8.2974e+00 1.8511e-01 8.1489e-01 9.0898e-01 9.1023e-02 1.7379e-04 3.2759e-03 6.3859e-04 2.8111e-03 - 3.8100e-03 -8.2974e+00 1.8458e-01 8.1542e-01 9.0898e-01 9.1023e-02 1.7213e-04 3.2876e-03 6.3859e-04 2.8211e-03 - 3.8200e-03 -8.2974e+00 1.8405e-01 8.1595e-01 9.0898e-01 9.1023e-02 1.7046e-04 3.2993e-03 6.3859e-04 2.8311e-03 - 3.8300e-03 -8.2974e+00 1.8352e-01 8.1648e-01 9.0898e-01 9.1023e-02 1.6880e-04 3.3109e-03 6.3859e-04 2.8411e-03 - 3.8400e-03 -8.2974e+00 1.8299e-01 8.1701e-01 9.0898e-01 9.1023e-02 1.6713e-04 3.3226e-03 6.3859e-04 2.8511e-03 - 3.8500e-03 -8.2974e+00 1.8247e-01 8.1753e-01 9.0898e-01 9.1023e-02 1.6546e-04 3.3343e-03 6.3859e-04 2.8611e-03 - 3.8600e-03 -8.2974e+00 1.8195e-01 8.1805e-01 9.0898e-01 9.1023e-02 1.6380e-04 3.3459e-03 6.3859e-04 2.8711e-03 - 3.8700e-03 -8.2974e+00 1.8143e-01 8.1857e-01 9.0898e-01 9.1023e-02 1.6213e-04 3.3576e-03 6.3859e-04 2.8811e-03 - 3.8800e-03 -8.2974e+00 1.8092e-01 8.1908e-01 9.0898e-01 9.1023e-02 1.6047e-04 3.3693e-03 6.3859e-04 2.8911e-03 - 3.8900e-03 -8.2974e+00 1.8041e-01 8.1959e-01 9.0898e-01 9.1023e-02 1.5880e-04 3.3809e-03 6.3859e-04 2.9011e-03 - 3.9000e-03 -8.2974e+00 1.7990e-01 8.2010e-01 9.0898e-01 9.1023e-02 1.5713e-04 3.3926e-03 6.3859e-04 2.9111e-03 - 3.9100e-03 -8.2974e+00 1.7939e-01 8.2061e-01 9.0898e-01 9.1023e-02 1.5547e-04 3.4043e-03 6.3859e-04 2.9211e-03 - 3.9200e-03 -8.2974e+00 1.7889e-01 8.2111e-01 9.0898e-01 9.1023e-02 1.5380e-04 3.4159e-03 6.3859e-04 2.9311e-03 - 3.9300e-03 -8.2974e+00 1.7839e-01 8.2161e-01 9.0898e-01 9.1023e-02 1.5213e-04 3.4276e-03 6.3859e-04 2.9411e-03 - 3.9400e-03 -8.2974e+00 1.7789e-01 8.2211e-01 9.0898e-01 9.1023e-02 1.5047e-04 3.4393e-03 6.3859e-04 2.9511e-03 - 3.9500e-03 -8.2974e+00 1.7740e-01 8.2260e-01 9.0898e-01 9.1023e-02 1.4880e-04 3.4509e-03 6.3859e-04 2.9611e-03 - 3.9600e-03 -8.2974e+00 1.7691e-01 8.2309e-01 9.0898e-01 9.1023e-02 1.4714e-04 3.4626e-03 6.3859e-04 2.9711e-03 - 3.9700e-03 -8.2974e+00 1.7642e-01 8.2358e-01 9.0898e-01 9.1023e-02 1.4547e-04 3.4743e-03 6.3859e-04 2.9811e-03 - 3.9800e-03 -8.2974e+00 1.7593e-01 8.2407e-01 9.0898e-01 9.1023e-02 1.4380e-04 3.4859e-03 6.3859e-04 2.9911e-03 - 3.9900e-03 -8.2974e+00 1.7545e-01 8.2455e-01 9.0898e-01 9.1023e-02 1.4214e-04 3.4976e-03 6.3859e-04 3.0011e-03 - 4.0000e-03 -8.2974e+00 1.7497e-01 8.2503e-01 9.0898e-01 9.1023e-02 1.4047e-04 3.5093e-03 6.3859e-04 3.0111e-03 - 4.0100e-03 -8.2974e+00 1.7449e-01 8.2551e-01 9.0898e-01 9.1023e-02 1.3880e-04 3.5209e-03 6.3859e-04 3.0211e-03 - 4.0200e-03 -8.2974e+00 1.7402e-01 8.2598e-01 9.0898e-01 9.1023e-02 1.3714e-04 3.5326e-03 6.3859e-04 3.0311e-03 - 4.0300e-03 -8.2974e+00 1.7354e-01 8.2646e-01 9.0898e-01 9.1023e-02 1.3547e-04 3.5443e-03 6.3859e-04 3.0411e-03 - 4.0400e-03 -8.2974e+00 1.7307e-01 8.2693e-01 9.0898e-01 9.1023e-02 1.3381e-04 3.5559e-03 6.3859e-04 3.0511e-03 - 4.0500e-03 -8.2974e+00 1.7260e-01 8.2740e-01 9.0898e-01 9.1023e-02 1.3214e-04 3.5676e-03 6.3859e-04 3.0611e-03 - 4.0600e-03 -8.2974e+00 1.7214e-01 8.2786e-01 9.0898e-01 9.1023e-02 1.3047e-04 3.5793e-03 6.3859e-04 3.0711e-03 - 4.0700e-03 -8.2974e+00 1.7168e-01 8.2832e-01 9.0898e-01 9.1023e-02 1.2881e-04 3.5909e-03 6.3859e-04 3.0811e-03 - 4.0800e-03 -8.2974e+00 1.7122e-01 8.2878e-01 9.0898e-01 9.1023e-02 1.2714e-04 3.6026e-03 6.3859e-04 3.0911e-03 - 4.0900e-03 -8.2974e+00 1.7076e-01 8.2924e-01 9.0898e-01 9.1023e-02 1.2548e-04 3.6143e-03 6.3859e-04 3.1011e-03 - 4.1000e-03 -8.2974e+00 1.7030e-01 8.2970e-01 9.0898e-01 9.1023e-02 1.2381e-04 3.6259e-03 6.3859e-04 3.1111e-03 - 4.1100e-03 -8.2974e+00 1.6985e-01 8.3015e-01 9.0898e-01 9.1023e-02 1.2214e-04 3.6376e-03 6.3859e-04 3.1211e-03 - 4.1200e-03 -8.2974e+00 1.6940e-01 8.3060e-01 9.0898e-01 9.1023e-02 1.2048e-04 3.6493e-03 6.3859e-04 3.1311e-03 - 4.1300e-03 -8.2974e+00 1.6895e-01 8.3105e-01 9.0898e-01 9.1023e-02 1.1881e-04 3.6609e-03 6.3859e-04 3.1411e-03 - 4.1400e-03 -8.2974e+00 1.6851e-01 8.3149e-01 9.0898e-01 9.1023e-02 1.1714e-04 3.6726e-03 6.3859e-04 3.1511e-03 - 4.1500e-03 -8.2974e+00 1.6806e-01 8.3194e-01 9.0898e-01 9.1023e-02 1.1548e-04 3.6843e-03 6.3859e-04 3.1611e-03 - 4.1600e-03 -8.2974e+00 1.6762e-01 8.3238e-01 9.0898e-01 9.1023e-02 1.1381e-04 3.6959e-03 6.3859e-04 3.1711e-03 - 4.1700e-03 -8.2974e+00 1.6718e-01 8.3282e-01 9.0898e-01 9.1023e-02 1.1215e-04 3.7076e-03 6.3859e-04 3.1811e-03 - 4.1800e-03 -8.2974e+00 1.6675e-01 8.3325e-01 9.0898e-01 9.1023e-02 1.1048e-04 3.7192e-03 6.3859e-04 3.1911e-03 - 4.1900e-03 -8.2974e+00 1.6631e-01 8.3369e-01 9.0898e-01 9.1023e-02 1.0881e-04 3.7309e-03 6.3859e-04 3.2011e-03 - 4.2000e-03 -8.2974e+00 1.6588e-01 8.3412e-01 9.0898e-01 9.1023e-02 1.0715e-04 3.7426e-03 6.3859e-04 3.2111e-03 - 4.2100e-03 -8.2974e+00 1.6545e-01 8.3455e-01 9.0898e-01 9.1023e-02 1.0548e-04 3.7542e-03 6.3859e-04 3.2211e-03 - 4.2200e-03 -8.2974e+00 1.6502e-01 8.3498e-01 9.0898e-01 9.1023e-02 1.0381e-04 3.7659e-03 6.3859e-04 3.2311e-03 - 4.2300e-03 -8.2974e+00 1.6460e-01 8.3540e-01 9.0898e-01 9.1023e-02 1.0215e-04 3.7776e-03 6.3859e-04 3.2411e-03 - 4.2400e-03 -8.2974e+00 1.6417e-01 8.3583e-01 9.0898e-01 9.1023e-02 1.0048e-04 3.7892e-03 6.3859e-04 3.2511e-03 - 4.2500e-03 -8.2974e+00 1.6375e-01 8.3625e-01 9.0898e-01 9.1023e-02 9.8816e-05 3.8009e-03 6.3859e-04 3.2611e-03 - 4.2600e-03 -8.2974e+00 1.6333e-01 8.3667e-01 9.0898e-01 9.1023e-02 9.7150e-05 3.8126e-03 6.3859e-04 3.2711e-03 - 4.2700e-03 -8.2974e+00 1.6292e-01 8.3708e-01 9.0898e-01 9.1023e-02 9.5483e-05 3.8242e-03 6.3859e-04 3.2811e-03 - 4.2800e-03 -8.2974e+00 1.6250e-01 8.3750e-01 9.0898e-01 9.1023e-02 9.3817e-05 3.8359e-03 6.3859e-04 3.2911e-03 - 4.2900e-03 -8.2974e+00 1.6209e-01 8.3791e-01 9.0898e-01 9.1023e-02 9.2151e-05 3.8476e-03 6.3859e-04 3.3011e-03 - 4.3000e-03 -8.2974e+00 1.6168e-01 8.3832e-01 9.0898e-01 9.1023e-02 9.0485e-05 3.8592e-03 6.3859e-04 3.3111e-03 - 4.3100e-03 -8.2974e+00 1.6127e-01 8.3873e-01 9.0898e-01 9.1023e-02 8.8819e-05 3.8709e-03 6.3859e-04 3.3211e-03 - 4.3200e-03 -8.2974e+00 1.6087e-01 8.3913e-01 9.0898e-01 9.1023e-02 8.7152e-05 3.8826e-03 6.3859e-04 3.3311e-03 - 4.3300e-03 -8.2974e+00 1.6046e-01 8.3954e-01 9.0898e-01 9.1023e-02 8.5486e-05 3.8942e-03 6.3859e-04 3.3411e-03 - 4.3400e-03 -8.2974e+00 1.6006e-01 8.3994e-01 9.0898e-01 9.1023e-02 8.3820e-05 3.9059e-03 6.3859e-04 3.3511e-03 - 4.3500e-03 -8.2974e+00 1.5966e-01 8.4034e-01 9.0898e-01 9.1023e-02 8.2154e-05 3.9176e-03 6.3859e-04 3.3611e-03 - 4.3600e-03 -8.2974e+00 1.5926e-01 8.4074e-01 9.0898e-01 9.1023e-02 8.0488e-05 3.9292e-03 6.3859e-04 3.3711e-03 - 4.3700e-03 -8.2974e+00 1.5886e-01 8.4114e-01 9.0898e-01 9.1023e-02 7.8821e-05 3.9409e-03 6.3859e-04 3.3811e-03 - 4.3800e-03 -8.2974e+00 1.5847e-01 8.4153e-01 9.0898e-01 9.1023e-02 7.7155e-05 3.9526e-03 6.3859e-04 3.3911e-03 - 4.3900e-03 -8.2974e+00 1.5808e-01 8.4192e-01 9.0898e-01 9.1023e-02 7.5489e-05 3.9642e-03 6.3859e-04 3.4011e-03 - 4.4000e-03 -8.2974e+00 1.5769e-01 8.4231e-01 9.0898e-01 9.1023e-02 7.3823e-05 3.9759e-03 6.3859e-04 3.4111e-03 - 4.4100e-03 -8.2974e+00 1.5730e-01 8.4270e-01 9.0898e-01 9.1023e-02 7.2157e-05 3.9876e-03 6.3859e-04 3.4211e-03 - 4.4200e-03 -8.2974e+00 1.5691e-01 8.4309e-01 9.0898e-01 9.1023e-02 7.0490e-05 3.9992e-03 6.3859e-04 3.4311e-03 - 4.4300e-03 -8.2974e+00 1.5653e-01 8.4347e-01 9.0898e-01 9.1023e-02 6.8824e-05 4.0109e-03 6.3859e-04 3.4411e-03 - 4.4400e-03 -8.2974e+00 1.5615e-01 8.4385e-01 9.0898e-01 9.1023e-02 6.7158e-05 4.0226e-03 6.3859e-04 3.4511e-03 - 4.4500e-03 -8.2974e+00 1.5576e-01 8.4424e-01 9.0898e-01 9.1023e-02 6.5492e-05 4.0342e-03 6.3859e-04 3.4611e-03 - 4.4600e-03 -8.2974e+00 1.5539e-01 8.4461e-01 9.0898e-01 9.1023e-02 6.3826e-05 4.0459e-03 6.3859e-04 3.4711e-03 - 4.4700e-03 -8.2974e+00 1.5501e-01 8.4499e-01 9.0898e-01 9.1023e-02 6.2159e-05 4.0576e-03 6.3859e-04 3.4811e-03 - 4.4800e-03 -8.2974e+00 1.5463e-01 8.4537e-01 9.0898e-01 9.1023e-02 6.0493e-05 4.0692e-03 6.3859e-04 3.4911e-03 - 4.4900e-03 -8.2974e+00 1.5426e-01 8.4574e-01 9.0898e-01 9.1023e-02 5.8827e-05 4.0809e-03 6.3859e-04 3.5011e-03 - 4.5000e-03 -8.2974e+00 1.5389e-01 8.4611e-01 9.0898e-01 9.1023e-02 5.7161e-05 4.0926e-03 6.3859e-04 3.5111e-03 - 4.5100e-03 -8.2974e+00 1.5352e-01 8.4648e-01 9.0898e-01 9.1023e-02 5.5495e-05 4.1042e-03 6.3859e-04 3.5211e-03 - 4.5200e-03 -8.2974e+00 1.5315e-01 8.4685e-01 9.0898e-01 9.1023e-02 5.3828e-05 4.1159e-03 6.3859e-04 3.5311e-03 - 4.5300e-03 -8.2974e+00 1.5278e-01 8.4722e-01 9.0898e-01 9.1023e-02 5.2162e-05 4.1276e-03 6.3859e-04 3.5411e-03 - 4.5400e-03 -8.2974e+00 1.5242e-01 8.4758e-01 9.0898e-01 9.1023e-02 5.0496e-05 4.1392e-03 6.3859e-04 3.5511e-03 - 4.5500e-03 -8.2974e+00 1.5206e-01 8.4794e-01 9.0898e-01 9.1023e-02 4.8830e-05 4.1509e-03 6.3859e-04 3.5611e-03 - 4.5600e-03 -8.2974e+00 1.5169e-01 8.4831e-01 9.0898e-01 9.1023e-02 4.7164e-05 4.1626e-03 6.3859e-04 3.5711e-03 - 4.5700e-03 -8.2974e+00 1.5133e-01 8.4867e-01 9.0898e-01 9.1023e-02 4.5497e-05 4.1742e-03 6.3859e-04 3.5811e-03 - 4.5800e-03 -8.2974e+00 1.5098e-01 8.4902e-01 9.0898e-01 9.1023e-02 4.3831e-05 4.1859e-03 6.3859e-04 3.5911e-03 - 4.5900e-03 -8.2974e+00 1.5062e-01 8.4938e-01 9.0898e-01 9.1023e-02 4.2165e-05 4.1976e-03 6.3859e-04 3.6011e-03 - 4.6000e-03 -8.2974e+00 1.5027e-01 8.4973e-01 9.0898e-01 9.1023e-02 4.0499e-05 4.2092e-03 6.3859e-04 3.6111e-03 - 4.6100e-03 -8.2974e+00 1.4991e-01 8.5009e-01 9.0898e-01 9.1023e-02 3.8833e-05 4.2209e-03 6.3859e-04 3.6211e-03 - 4.6200e-03 -8.2974e+00 1.4956e-01 8.5044e-01 9.0898e-01 9.1023e-02 3.7166e-05 4.2326e-03 6.3859e-04 3.6311e-03 - 4.6300e-03 -8.2974e+00 1.4921e-01 8.5079e-01 9.0898e-01 9.1023e-02 3.5500e-05 4.2442e-03 6.3859e-04 3.6411e-03 - 4.6400e-03 -8.2974e+00 1.4887e-01 8.5113e-01 9.0898e-01 9.1023e-02 3.3834e-05 4.2559e-03 6.3859e-04 3.6511e-03 - 4.6500e-03 -8.2974e+00 1.4852e-01 8.5148e-01 9.0898e-01 9.1023e-02 3.2168e-05 4.2676e-03 6.3859e-04 3.6611e-03 - 4.6600e-03 -8.2974e+00 1.4817e-01 8.5183e-01 9.0898e-01 9.1023e-02 3.0501e-05 4.2792e-03 6.3859e-04 3.6711e-03 - 4.6700e-03 -8.2974e+00 1.4783e-01 8.5217e-01 9.0898e-01 9.1023e-02 2.8835e-05 4.2909e-03 6.3859e-04 3.6811e-03 - 4.6800e-03 -8.2974e+00 1.4749e-01 8.5251e-01 9.0898e-01 9.1023e-02 2.7169e-05 4.3026e-03 6.3859e-04 3.6911e-03 - 4.6900e-03 -8.2974e+00 1.4715e-01 8.5285e-01 9.0898e-01 9.1023e-02 2.5503e-05 4.3142e-03 6.3859e-04 3.7011e-03 - 4.7000e-03 -8.2974e+00 1.4681e-01 8.5319e-01 9.0898e-01 9.1023e-02 2.3837e-05 4.3259e-03 6.3859e-04 3.7111e-03 - 4.7100e-03 -8.2974e+00 1.4648e-01 8.5352e-01 9.0898e-01 9.1023e-02 2.2170e-05 4.3376e-03 6.3859e-04 3.7211e-03 - 4.7200e-03 -8.2974e+00 1.4614e-01 8.5386e-01 9.0898e-01 9.1023e-02 2.0504e-05 4.3492e-03 6.3859e-04 3.7311e-03 - 4.7300e-03 -8.2974e+00 1.4581e-01 8.5419e-01 9.0898e-01 9.1023e-02 1.8838e-05 4.3609e-03 6.3859e-04 3.7411e-03 - 4.7400e-03 -8.2974e+00 1.4547e-01 8.5453e-01 9.0898e-01 9.1023e-02 1.7172e-05 4.3726e-03 6.3859e-04 3.7511e-03 - 4.7500e-03 -8.2974e+00 1.4514e-01 8.5486e-01 9.0898e-01 9.1023e-02 1.5506e-05 4.3842e-03 6.3859e-04 3.7611e-03 - 4.7600e-03 -8.2974e+00 1.4481e-01 8.5519e-01 9.0898e-01 9.1023e-02 1.3839e-05 4.3959e-03 6.3859e-04 3.7711e-03 - 4.7700e-03 -8.2974e+00 1.4449e-01 8.5551e-01 9.0898e-01 9.1023e-02 1.2173e-05 4.4076e-03 6.3859e-04 3.7811e-03 - 4.7800e-03 -8.2974e+00 1.4416e-01 8.5584e-01 9.0898e-01 9.1023e-02 1.0507e-05 4.4192e-03 6.3859e-04 3.7911e-03 - 4.7900e-03 -8.2974e+00 1.4384e-01 8.5616e-01 9.0898e-01 9.1023e-02 8.8408e-06 4.4309e-03 6.3859e-04 3.8011e-03 - 4.8000e-03 -8.2974e+00 1.4351e-01 8.5649e-01 9.0898e-01 9.1023e-02 7.1746e-06 4.4426e-03 6.3859e-04 3.8111e-03 - 4.8100e-03 -8.2974e+00 1.4319e-01 8.5681e-01 9.0898e-01 9.1023e-02 5.5084e-06 4.4542e-03 6.3859e-04 3.8211e-03 - 4.8200e-03 -8.2974e+00 1.4287e-01 8.5713e-01 9.0898e-01 9.1023e-02 3.8422e-06 4.4659e-03 6.3859e-04 3.8311e-03 - 4.8300e-03 -8.2974e+00 1.4255e-01 8.5745e-01 9.0898e-01 9.1023e-02 2.1760e-06 4.4776e-03 6.3859e-04 3.8411e-03 - 4.8400e-03 -8.2974e+00 1.4223e-01 8.5777e-01 9.0898e-01 9.1023e-02 5.0985e-07 4.4892e-03 6.3859e-04 3.8511e-03 - 4.8500e-03 -8.2974e+00 1.4211e-01 8.5789e-01 9.0896e-01 9.1045e-02 1.0000e-10 1.0000e-10 6.3956e-04 3.8610e-03 - 4.8600e-03 -8.2976e+00 1.4207e-01 8.5793e-01 9.0892e-01 9.1077e-02 1.0000e-10 1.0000e-10 6.4095e-04 3.8707e-03 - 4.8700e-03 -8.2977e+00 1.4202e-01 8.5798e-01 9.0889e-01 9.1109e-02 1.0000e-10 1.0000e-10 6.4234e-04 3.8805e-03 - 4.8800e-03 -8.2978e+00 1.4198e-01 8.5802e-01 9.0886e-01 9.1141e-02 1.0000e-10 1.0000e-10 6.4373e-04 3.8902e-03 - 4.8900e-03 -8.2980e+00 1.4194e-01 8.5806e-01 9.0883e-01 9.1173e-02 1.0000e-10 1.0000e-10 6.4512e-04 3.9000e-03 - 4.9000e-03 -8.2981e+00 1.4190e-01 8.5810e-01 9.0879e-01 9.1205e-02 1.0000e-10 1.0000e-10 6.4651e-04 3.9097e-03 - 4.9100e-03 -8.2982e+00 1.4185e-01 8.5815e-01 9.0876e-01 9.1237e-02 1.0000e-10 1.0000e-10 6.4790e-04 3.9195e-03 - 4.9200e-03 -8.2984e+00 1.4181e-01 8.5819e-01 9.0873e-01 9.1269e-02 1.0000e-10 1.0000e-10 6.4929e-04 3.9293e-03 - 4.9300e-03 -8.2985e+00 1.4177e-01 8.5823e-01 9.0870e-01 9.1301e-02 1.0000e-10 1.0000e-10 6.5068e-04 3.9390e-03 - 4.9400e-03 -8.2986e+00 1.4173e-01 8.5827e-01 9.0867e-01 9.1333e-02 1.0000e-10 1.0000e-10 6.5206e-04 3.9488e-03 - 4.9500e-03 -8.2987e+00 1.4168e-01 8.5832e-01 9.0863e-01 9.1365e-02 1.0000e-10 1.0000e-10 6.5345e-04 3.9585e-03 - 4.9600e-03 -8.2989e+00 1.4164e-01 8.5836e-01 9.0860e-01 9.1397e-02 1.0000e-10 1.0000e-10 6.5483e-04 3.9683e-03 - 4.9700e-03 -8.2990e+00 1.4160e-01 8.5840e-01 9.0857e-01 9.1429e-02 1.0000e-10 1.0000e-10 6.5621e-04 3.9780e-03 - 4.9800e-03 -8.2991e+00 1.4156e-01 8.5844e-01 9.0854e-01 9.1461e-02 1.0000e-10 1.0000e-10 6.5760e-04 3.9878e-03 - 4.9900e-03 -8.2993e+00 1.4152e-01 8.5848e-01 9.0851e-01 9.1493e-02 1.0000e-10 1.0000e-10 6.5898e-04 3.9976e-03 - 5.0000e-03 -8.2994e+00 1.4147e-01 8.5853e-01 9.0847e-01 9.1525e-02 1.0000e-10 1.0000e-10 6.6036e-04 4.0073e-03 - 5.0000e-03 -8.2994e+00 1.4147e-01 8.5853e-01 9.0847e-01 9.1525e-02 1.0000e-10 1.0000e-10 6.6036e-04 4.0073e-03 - 1.0000e-02 -8.3561e+00 1.2425e-01 8.7575e-01 8.9342e-01 1.0658e-01 1.0000e-10 1.0000e-10 1.2622e-03 8.8964e-03 - 1.5000e-02 -8.4019e+00 1.1192e-01 8.8808e-01 8.7973e-01 1.2027e-01 1.0000e-10 1.0000e-10 1.7392e-03 1.3800e-02 - 2.0000e-02 -8.4405e+00 1.0243e-01 8.9757e-01 8.6700e-01 1.3300e-01 1.0000e-10 1.0000e-10 2.1357e-03 1.8715e-02 - 2.5000e-02 -8.4739e+00 9.4793e-02 9.0521e-01 8.5502e-01 1.4498e-01 1.0000e-10 1.0000e-10 2.4753e-03 2.3637e-02 - 3.0000e-02 -8.5033e+00 8.8460e-02 9.1154e-01 8.4366e-01 1.5634e-01 1.0000e-10 1.0000e-10 2.7721e-03 2.8565e-02 - 3.5000e-02 -8.5296e+00 8.3090e-02 9.1691e-01 8.3282e-01 1.6718e-01 1.0000e-10 1.0000e-10 3.0357e-03 3.3499e-02 - 4.0000e-02 -8.5534e+00 7.8458e-02 9.2154e-01 8.2244e-01 1.7756e-01 1.0000e-10 1.0000e-10 3.2724e-03 3.8437e-02 - 4.5000e-02 -8.5750e+00 7.4408e-02 9.2559e-01 8.1246e-01 1.8754e-01 1.0000e-10 1.0000e-10 3.4872e-03 4.3378e-02 - 5.0000e-02 -8.5949e+00 7.0827e-02 9.2917e-01 8.0286e-01 1.9714e-01 1.0000e-10 1.0000e-10 3.6834e-03 4.8323e-02 - 5.5000e-02 -8.6133e+00 6.7631e-02 9.3237e-01 7.9359e-01 2.0641e-01 1.0000e-10 1.0000e-10 3.8641e-03 5.3270e-02 - 6.0000e-02 -8.6303e+00 6.4756e-02 9.3524e-01 7.8462e-01 2.1538e-01 1.0000e-10 1.0000e-10 4.0312e-03 5.8221e-02 - 6.5000e-02 -8.6462e+00 6.2153e-02 9.3785e-01 7.7595e-01 2.2405e-01 1.0000e-10 1.0000e-10 4.1866e-03 6.3173e-02 - 7.0000e-02 -8.6610e+00 5.9781e-02 9.4022e-01 7.6753e-01 2.3247e-01 1.0000e-10 1.0000e-10 4.3317e-03 6.8128e-02 - 7.5000e-02 -8.6750e+00 5.7610e-02 9.4239e-01 7.5937e-01 2.4063e-01 1.0000e-10 1.0000e-10 4.4677e-03 7.3084e-02 - 8.0000e-02 -8.6881e+00 5.5612e-02 9.4439e-01 7.5144e-01 2.4856e-01 1.0000e-10 1.0000e-10 4.5956e-03 7.8042e-02 - 8.5000e-02 -8.7005e+00 5.3766e-02 9.4623e-01 7.4372e-01 2.5628e-01 1.0000e-10 1.0000e-10 4.7163e-03 8.3002e-02 - 9.0000e-02 -8.7122e+00 5.2054e-02 9.4795e-01 7.3622e-01 2.6378e-01 1.0000e-10 1.0000e-10 4.8303e-03 8.7964e-02 - 9.5000e-02 -8.7233e+00 5.0462e-02 9.4954e-01 7.2891e-01 2.7109e-01 1.0000e-10 1.0000e-10 4.9385e-03 9.2926e-02 - 1.0000e-01 -8.7339e+00 4.8976e-02 9.5102e-01 7.2178e-01 2.7822e-01 1.0000e-10 1.0000e-10 5.0412e-03 9.7891e-02 - 1.0000e-01 -8.7339e+00 4.8976e-02 9.5102e-01 7.2178e-01 2.7822e-01 1.0000e-10 1.0000e-10 5.0412e-03 9.7891e-02 - 2.0000e-01 -8.8751e+00 3.1479e-02 9.6852e-01 6.0794e-01 3.9206e-01 1.0000e-10 1.0000e-10 6.4145e-03 1.9736e-01 - 3.0000e-01 -8.9519e+00 2.3571e-02 9.7643e-01 5.2860e-01 4.7140e-01 1.0000e-10 1.0000e-10 7.1699e-03 2.9702e-01 - 4.0000e-01 -9.0019e+00 1.8958e-02 9.8104e-01 4.6901e-01 5.3099e-01 1.0000e-10 1.0000e-10 7.6675e-03 3.9678e-01 - 5.0000e-01 -9.0375e+00 1.5905e-02 9.8409e-01 4.2220e-01 5.7780e-01 1.0000e-10 1.0000e-10 8.0262e-03 4.9660e-01 - 6.0000e-01 -9.0643e+00 1.3724e-02 9.8628e-01 3.8428e-01 6.1572e-01 1.0000e-10 1.0000e-10 8.2995e-03 5.9645e-01 - 7.0000e-01 -9.0854e+00 1.2082e-02 9.8792e-01 3.5285e-01 6.4715e-01 1.0000e-10 1.0000e-10 8.5159e-03 6.9634e-01 - 8.0000e-01 -9.1024e+00 1.0798e-02 9.8920e-01 3.2632e-01 6.7368e-01 1.0000e-10 1.0000e-10 8.6920e-03 7.9624e-01 - 9.0000e-01 -9.1165e+00 9.7664e-03 9.9023e-01 3.0360e-01 6.9640e-01 1.0000e-10 1.0000e-10 8.8385e-03 8.9616e-01 - 1.0000e+00 -9.1284e+00 8.9175e-03 9.9108e-01 2.8390e-01 7.1610e-01 1.0000e-10 1.0000e-10 8.9625e-03 9.9609e-01 - 1.1000e+00 -9.1385e+00 8.2065e-03 9.9179e-01 2.6665e-01 7.3335e-01 1.0000e-10 1.0000e-10 9.0689e-03 1.0960e+00 - 1.2000e+00 -9.1472e+00 7.6019e-03 9.9240e-01 2.5141e-01 7.4859e-01 1.0000e-10 1.0000e-10 9.1613e-03 1.1960e+00 - 1.3000e+00 -9.1549e+00 7.0814e-03 9.9292e-01 2.3785e-01 7.6215e-01 1.0000e-10 1.0000e-10 9.2424e-03 1.2959e+00 - 1.4000e+00 -9.1616e+00 6.6283e-03 9.9337e-01 2.2569e-01 7.7431e-01 1.0000e-10 1.0000e-10 9.3141e-03 1.3959e+00 - 1.5000e+00 -9.1676e+00 6.2303e-03 9.9377e-01 2.1473e-01 7.8527e-01 1.0000e-10 1.0000e-10 9.3780e-03 1.4958e+00 - 1.6000e+00 -9.1730e+00 5.8778e-03 9.9412e-01 2.0479e-01 7.9521e-01 1.0000e-10 1.0000e-10 9.4353e-03 1.5958e+00 - 1.7000e+00 -9.1778e+00 5.5634e-03 9.9444e-01 1.9575e-01 8.0425e-01 1.0000e-10 1.0000e-10 9.4871e-03 1.6958e+00 - 1.8000e+00 -9.1822e+00 5.2812e-03 9.9472e-01 1.8747e-01 8.1253e-01 1.0000e-10 1.0000e-10 9.5340e-03 1.7958e+00 - 1.9000e+00 -9.1861e+00 5.0264e-03 9.9497e-01 1.7987e-01 8.2013e-01 1.0000e-10 1.0000e-10 9.5768e-03 1.8957e+00 - 2.0000e+00 -9.1898e+00 4.7952e-03 9.9520e-01 1.7287e-01 8.2713e-01 1.0000e-10 1.0000e-10 9.6160e-03 1.9957e+00 - 2.1000e+00 -9.1931e+00 4.5845e-03 9.9542e-01 1.6640e-01 8.3360e-01 1.0000e-10 1.0000e-10 9.6520e-03 2.0957e+00 - 2.2000e+00 -9.1962e+00 4.3917e-03 9.9561e-01 1.6040e-01 8.3960e-01 1.0000e-10 1.0000e-10 9.6852e-03 2.1957e+00 - 2.3000e+00 -9.1990e+00 4.2145e-03 9.9579e-01 1.5482e-01 8.4518e-01 1.0000e-10 1.0000e-10 9.7159e-03 2.2956e+00 - 2.4000e+00 -9.2016e+00 4.0511e-03 9.9595e-01 1.4961e-01 8.5039e-01 1.0000e-10 1.0000e-10 9.7444e-03 2.3956e+00 - 2.5000e+00 -9.2040e+00 3.8999e-03 9.9610e-01 1.4475e-01 8.5525e-01 1.0000e-10 1.0000e-10 9.7709e-03 2.4956e+00 - 2.6000e+00 -9.2063e+00 3.7597e-03 9.9624e-01 1.4019e-01 8.5981e-01 1.0000e-10 1.0000e-10 9.7956e-03 2.5956e+00 - 2.7000e+00 -9.2084e+00 3.6293e-03 9.9637e-01 1.3592e-01 8.6408e-01 1.0000e-10 1.0000e-10 9.8187e-03 2.6956e+00 - 2.8000e+00 -9.2104e+00 3.5077e-03 9.9649e-01 1.3189e-01 8.6811e-01 1.0000e-10 1.0000e-10 9.8404e-03 2.7956e+00 - 2.9000e+00 -9.2123e+00 3.3939e-03 9.9661e-01 1.2810e-01 8.7190e-01 1.0000e-10 1.0000e-10 9.8608e-03 2.8956e+00 - 3.0000e+00 -9.2140e+00 3.2874e-03 9.9671e-01 1.2453e-01 8.7547e-01 1.0000e-10 1.0000e-10 9.8799e-03 2.9955e+00 - 3.1000e+00 -9.2157e+00 3.1873e-03 9.9681e-01 1.2114e-01 8.7886e-01 1.0000e-10 1.0000e-10 9.8980e-03 3.0955e+00 - 3.2000e+00 -9.2172e+00 3.0932e-03 9.9691e-01 1.1794e-01 8.8206e-01 1.0000e-10 1.0000e-10 9.9150e-03 3.1955e+00 - 3.3000e+00 -9.2187e+00 3.0045e-03 9.9700e-01 1.1490e-01 8.8510e-01 1.0000e-10 1.0000e-10 9.9311e-03 3.2955e+00 - 3.4000e+00 -9.2201e+00 2.9207e-03 9.9708e-01 1.1202e-01 8.8798e-01 1.0000e-10 1.0000e-10 9.9464e-03 3.3955e+00 - 3.5000e+00 -9.2214e+00 2.8415e-03 9.9716e-01 1.0928e-01 8.9072e-01 1.0000e-10 1.0000e-10 9.9609e-03 3.4955e+00 - 3.6000e+00 -9.2227e+00 2.7665e-03 9.9723e-01 1.0666e-01 8.9334e-01 1.0000e-10 1.0000e-10 9.9747e-03 3.5955e+00 - 3.7000e+00 -9.2239e+00 2.6954e-03 9.9730e-01 1.0418e-01 8.9582e-01 1.0000e-10 1.0000e-10 9.9878e-03 3.6955e+00 - 3.8000e+00 -9.2250e+00 2.6279e-03 9.9737e-01 1.0180e-01 8.9820e-01 1.0000e-10 1.0000e-10 1.0000e-02 3.7955e+00 - 3.9000e+00 -9.2261e+00 2.5636e-03 9.9744e-01 9.9531e-02 9.0047e-01 1.0000e-10 1.0000e-10 1.0012e-02 3.8955e+00 - 4.0000e+00 -9.2271e+00 2.5024e-03 9.9750e-01 9.7361e-02 9.0264e-01 1.0000e-10 1.0000e-10 1.0023e-02 3.9955e+00 - 4.1000e+00 -9.2281e+00 2.4441e-03 9.9756e-01 9.5284e-02 9.0472e-01 1.0000e-10 1.0000e-10 1.0034e-02 4.0954e+00 - 4.2000e+00 -9.2290e+00 2.3885e-03 9.9761e-01 9.3294e-02 9.0671e-01 1.0000e-10 1.0000e-10 1.0045e-02 4.1954e+00 - 4.3000e+00 -9.2299e+00 2.3353e-03 9.9766e-01 9.1385e-02 9.0861e-01 1.0000e-10 1.0000e-10 1.0055e-02 4.2954e+00 - 4.4000e+00 -9.2308e+00 2.2845e-03 9.9772e-01 8.9553e-02 9.1045e-01 1.0000e-10 1.0000e-10 1.0064e-02 4.3954e+00 - 4.5000e+00 -9.2316e+00 2.2358e-03 9.9776e-01 8.7794e-02 9.1221e-01 1.0000e-10 1.0000e-10 1.0073e-02 4.4954e+00 - 4.6000e+00 -9.2324e+00 2.1891e-03 9.9781e-01 8.6102e-02 9.1390e-01 1.0000e-10 1.0000e-10 1.0082e-02 4.5954e+00 - 4.7000e+00 -9.2332e+00 2.1444e-03 9.9786e-01 8.4474e-02 9.1553e-01 1.0000e-10 1.0000e-10 1.0090e-02 4.6954e+00 - 4.8000e+00 -9.2339e+00 2.1015e-03 9.9790e-01 8.2907e-02 9.1709e-01 1.0000e-10 1.0000e-10 1.0099e-02 4.7954e+00 - 4.9000e+00 -9.2346e+00 2.0602e-03 9.9794e-01 8.1397e-02 9.1860e-01 1.0000e-10 1.0000e-10 1.0106e-02 4.8954e+00 - 5.0000e+00 -9.2353e+00 2.0206e-03 9.9798e-01 7.9941e-02 9.2006e-01 1.0000e-10 1.0000e-10 1.0114e-02 4.9954e+00 - 5.1000e+00 -9.2359e+00 1.9824e-03 9.9802e-01 7.8536e-02 9.2146e-01 1.0000e-10 1.0000e-10 1.0121e-02 5.0954e+00 - 5.2000e+00 -9.2366e+00 1.9457e-03 9.9805e-01 7.7180e-02 9.2282e-01 1.0000e-10 1.0000e-10 1.0128e-02 5.1954e+00 - 5.3000e+00 -9.2372e+00 1.9102e-03 9.9809e-01 7.5870e-02 9.2413e-01 1.0000e-10 1.0000e-10 1.0135e-02 5.2954e+00 - 5.4000e+00 -9.2378e+00 1.8761e-03 9.9812e-01 7.4604e-02 9.2540e-01 1.0000e-10 1.0000e-10 1.0141e-02 5.3954e+00 - 5.5000e+00 -9.2383e+00 1.8432e-03 9.9816e-01 7.3380e-02 9.2662e-01 1.0000e-10 1.0000e-10 1.0148e-02 5.4954e+00 - 5.6000e+00 -9.2389e+00 1.8114e-03 9.9819e-01 7.2195e-02 9.2781e-01 1.0000e-10 1.0000e-10 1.0154e-02 5.5954e+00 - 5.7000e+00 -9.2394e+00 1.7807e-03 9.9822e-01 7.1047e-02 9.2895e-01 1.0000e-10 1.0000e-10 1.0160e-02 5.6954e+00 - 5.8000e+00 -9.2399e+00 1.7510e-03 9.9825e-01 6.9936e-02 9.3006e-01 1.0000e-10 1.0000e-10 1.0165e-02 5.7954e+00 - 5.9000e+00 -9.2404e+00 1.7222e-03 9.9828e-01 6.8859e-02 9.3114e-01 1.0000e-10 1.0000e-10 1.0171e-02 5.8954e+00 - 6.0000e+00 -9.2409e+00 1.6945e-03 9.9831e-01 6.7815e-02 9.3219e-01 1.0000e-10 1.0000e-10 1.0176e-02 5.9954e+00 + 1.0000e-05 -8.3356e+00 9.9996e-01 4.2174e-05 9.9905e-01 9.5081e-04 1.0000e-10 1.0000e-10 6.5452e-06 2.7605e-10 + 2.0000e-05 -8.3352e+00 9.9992e-01 8.4457e-05 9.9810e-01 1.9009e-03 1.0000e-10 1.0000e-10 1.3088e-05 1.1055e-09 + 3.0000e-05 -8.3348e+00 9.9987e-01 1.2685e-04 9.9715e-01 2.8504e-03 1.0000e-10 1.0000e-10 1.9629e-05 2.4903e-09 + 4.0000e-05 -8.3345e+00 9.9983e-01 1.6936e-04 9.9620e-01 3.7992e-03 1.0000e-10 1.0000e-10 2.6168e-05 4.4324e-09 + 5.0000e-05 -8.3341e+00 9.9979e-01 2.1197e-04 9.9525e-01 4.7473e-03 1.0000e-10 1.0000e-10 3.2705e-05 6.9339e-09 + 6.0000e-05 -8.3337e+00 9.9975e-01 2.5470e-04 9.9431e-01 5.6947e-03 1.0000e-10 1.0000e-10 3.9239e-05 9.9967e-09 + 7.0000e-05 -8.3333e+00 9.9970e-01 2.9754e-04 9.9336e-01 6.6414e-03 1.0000e-10 1.0000e-10 4.5772e-05 1.3623e-08 + 8.0000e-05 -8.3329e+00 9.9966e-01 3.4049e-04 9.9241e-01 7.5875e-03 1.0000e-10 1.0000e-10 5.2302e-05 1.7814e-08 + 9.0000e-05 -8.3325e+00 9.9962e-01 3.8355e-04 9.9147e-01 8.5329e-03 1.0000e-10 1.0000e-10 5.8831e-05 2.2573e-08 + 1.0000e-04 -8.3321e+00 9.9957e-01 4.2673e-04 9.9052e-01 9.4776e-03 1.0000e-10 1.0000e-10 6.5357e-05 2.7902e-08 + 1.1000e-04 -8.3317e+00 9.9953e-01 4.7002e-04 9.8958e-01 1.0422e-02 1.0000e-10 1.0000e-10 7.1881e-05 3.3801e-08 + 1.2000e-04 -8.3314e+00 9.9949e-01 5.1343e-04 9.8864e-01 1.1365e-02 1.0000e-10 1.0000e-10 7.8402e-05 4.0275e-08 + 1.3000e-04 -8.3310e+00 9.9944e-01 5.5695e-04 9.8769e-01 1.2308e-02 1.0000e-10 1.0000e-10 8.4922e-05 4.7324e-08 + 1.4000e-04 -8.3306e+00 9.9940e-01 6.0059e-04 9.8675e-01 1.3250e-02 1.0000e-10 1.0000e-10 9.1440e-05 5.4951e-08 + 1.5000e-04 -8.3302e+00 9.9936e-01 6.4434e-04 9.8581e-01 1.4191e-02 1.0000e-10 1.0000e-10 9.7955e-05 6.3157e-08 + 1.6000e-04 -8.3298e+00 9.9931e-01 6.8821e-04 9.8487e-01 1.5132e-02 1.0000e-10 1.0000e-10 1.0447e-04 7.1946e-08 + 1.7000e-04 -8.3294e+00 9.9927e-01 7.3220e-04 9.8393e-01 1.6072e-02 1.0000e-10 1.0000e-10 1.1098e-04 8.1319e-08 + 1.8000e-04 -8.3290e+00 9.9922e-01 7.7630e-04 9.8299e-01 1.7011e-02 1.0000e-10 1.0000e-10 1.1749e-04 9.1278e-08 + 1.9000e-04 -8.3286e+00 9.9918e-01 8.2052e-04 9.8205e-01 1.7950e-02 1.0000e-10 1.0000e-10 1.2400e-04 1.0183e-07 + 2.0000e-04 -8.3283e+00 9.9914e-01 8.6487e-04 9.8111e-01 1.8887e-02 1.0000e-10 1.0000e-10 1.3050e-04 1.1296e-07 + 2.1000e-04 -8.3279e+00 9.9909e-01 9.0932e-04 9.8018e-01 1.9825e-02 1.0000e-10 1.0000e-10 1.3700e-04 1.2469e-07 + 2.2000e-04 -8.3275e+00 9.9905e-01 9.5390e-04 9.7924e-01 2.0761e-02 1.0000e-10 1.0000e-10 1.4350e-04 1.3702e-07 + 2.3000e-04 -8.3271e+00 9.9900e-01 9.9860e-04 9.7830e-01 2.1697e-02 1.0000e-10 1.0000e-10 1.5000e-04 1.4994e-07 + 2.4000e-04 -8.3267e+00 9.9896e-01 1.0434e-03 9.7737e-01 2.2633e-02 1.0000e-10 1.0000e-10 1.5650e-04 1.6346e-07 + 2.5000e-04 -8.3263e+00 9.9891e-01 1.0884e-03 9.7643e-01 2.3567e-02 1.0000e-10 1.0000e-10 1.6299e-04 1.7759e-07 + 2.6000e-04 -8.3259e+00 9.9887e-01 1.1334e-03 9.7550e-01 2.4501e-02 1.0000e-10 1.0000e-10 1.6948e-04 1.9232e-07 + 2.7000e-04 -8.3255e+00 9.9882e-01 1.1786e-03 9.7457e-01 2.5434e-02 1.0000e-10 1.0000e-10 1.7597e-04 2.0765e-07 + 2.8000e-04 -8.3252e+00 9.9878e-01 1.2239e-03 9.7363e-01 2.6367e-02 1.0000e-10 1.0000e-10 1.8246e-04 2.2359e-07 + 2.9000e-04 -8.3248e+00 9.9873e-01 1.2693e-03 9.7270e-01 2.7299e-02 1.0000e-10 1.0000e-10 1.8895e-04 2.4014e-07 + 3.0000e-04 -8.3244e+00 9.9869e-01 1.3149e-03 9.7177e-01 2.8230e-02 1.0000e-10 1.0000e-10 1.9543e-04 2.5731e-07 + 3.1000e-04 -8.3240e+00 9.9864e-01 1.3606e-03 9.7084e-01 2.9160e-02 1.0000e-10 1.0000e-10 2.0191e-04 2.7509e-07 + 3.2000e-04 -8.3236e+00 9.9859e-01 1.4064e-03 9.6991e-01 3.0090e-02 1.0000e-10 1.0000e-10 2.0839e-04 2.9349e-07 + 3.3000e-04 -8.3232e+00 9.9855e-01 1.4523e-03 9.6898e-01 3.1019e-02 1.0000e-10 1.0000e-10 2.1487e-04 3.1251e-07 + 3.4000e-04 -8.3228e+00 9.9850e-01 1.4984e-03 9.6805e-01 3.1948e-02 1.0000e-10 1.0000e-10 2.2134e-04 3.3215e-07 + 3.5000e-04 -8.3224e+00 9.9846e-01 1.5445e-03 9.6712e-01 3.2876e-02 1.0000e-10 1.0000e-10 2.2782e-04 3.5242e-07 + 3.6000e-04 -8.3220e+00 9.9841e-01 1.5909e-03 9.6620e-01 3.3803e-02 1.0000e-10 1.0000e-10 2.3429e-04 3.7331e-07 + 3.7000e-04 -8.3217e+00 9.9836e-01 1.6373e-03 9.6527e-01 3.4729e-02 1.0000e-10 1.0000e-10 2.4075e-04 3.9483e-07 + 3.8000e-04 -8.3213e+00 9.9832e-01 1.6839e-03 9.6435e-01 3.5655e-02 1.0000e-10 1.0000e-10 2.4722e-04 4.1699e-07 + 3.9000e-04 -8.3209e+00 9.9827e-01 1.7305e-03 9.6342e-01 3.6580e-02 1.0000e-10 1.0000e-10 2.5368e-04 4.3977e-07 + 4.0000e-04 -8.3205e+00 9.9822e-01 1.7774e-03 9.6250e-01 3.7504e-02 1.0000e-10 1.0000e-10 2.6015e-04 4.6320e-07 + 4.1000e-04 -8.3201e+00 9.9818e-01 1.8243e-03 9.6157e-01 3.8428e-02 1.0000e-10 1.0000e-10 2.6661e-04 4.8726e-07 + 4.2000e-04 -8.3197e+00 9.9813e-01 1.8714e-03 9.6065e-01 3.9351e-02 1.0000e-10 1.0000e-10 2.7306e-04 5.1197e-07 + 4.3000e-04 -8.3193e+00 9.9808e-01 1.9186e-03 9.5973e-01 4.0274e-02 1.0000e-10 1.0000e-10 2.7952e-04 5.3732e-07 + 4.4000e-04 -8.3189e+00 9.9803e-01 1.9660e-03 9.5880e-01 4.1195e-02 1.0000e-10 1.0000e-10 2.8597e-04 5.6332e-07 + 4.5000e-04 -8.3185e+00 9.9799e-01 2.0134e-03 9.5788e-01 4.2117e-02 1.0000e-10 1.0000e-10 2.9242e-04 5.8997e-07 + 4.6000e-04 -8.3182e+00 9.9794e-01 2.0611e-03 9.5696e-01 4.3037e-02 1.0000e-10 1.0000e-10 2.9887e-04 6.1726e-07 + 4.7000e-04 -8.3178e+00 9.9789e-01 2.1088e-03 9.5604e-01 4.3957e-02 1.0000e-10 1.0000e-10 3.0532e-04 6.4522e-07 + 4.8000e-04 -8.3174e+00 9.9784e-01 2.1567e-03 9.5512e-01 4.4876e-02 1.0000e-10 1.0000e-10 3.1176e-04 6.7383e-07 + 4.9000e-04 -8.3170e+00 9.9780e-01 2.2047e-03 9.5421e-01 4.5794e-02 1.0000e-10 1.0000e-10 3.1821e-04 7.0310e-07 + 5.0000e-04 -8.3166e+00 9.9775e-01 2.2528e-03 9.5329e-01 4.6712e-02 1.0000e-10 1.0000e-10 3.2465e-04 7.3303e-07 + 5.1000e-04 -8.3162e+00 9.9770e-01 2.3011e-03 9.5237e-01 4.7629e-02 1.0000e-10 1.0000e-10 3.3108e-04 7.6362e-07 + 5.2000e-04 -8.3158e+00 9.9765e-01 2.3496e-03 9.5146e-01 4.8545e-02 1.0000e-10 1.0000e-10 3.3752e-04 7.9489e-07 + 5.3000e-04 -8.3154e+00 9.9760e-01 2.3981e-03 9.5054e-01 4.9461e-02 1.0000e-10 1.0000e-10 3.4395e-04 8.2682e-07 + 5.4000e-04 -8.3150e+00 9.9755e-01 2.4468e-03 9.4962e-01 5.0376e-02 1.0000e-10 1.0000e-10 3.5038e-04 8.5943e-07 + 5.5000e-04 -8.3146e+00 9.9750e-01 2.4956e-03 9.4871e-01 5.1290e-02 1.0000e-10 1.0000e-10 3.5681e-04 8.9271e-07 + 5.6000e-04 -8.3143e+00 9.9746e-01 2.5446e-03 9.4780e-01 5.2204e-02 1.0000e-10 1.0000e-10 3.6324e-04 9.2667e-07 + 5.7000e-04 -8.3139e+00 9.9741e-01 2.5937e-03 9.4688e-01 5.3117e-02 1.0000e-10 1.0000e-10 3.6967e-04 9.6131e-07 + 5.8000e-04 -8.3135e+00 9.9736e-01 2.6430e-03 9.4597e-01 5.4029e-02 1.0000e-10 1.0000e-10 3.7609e-04 9.9663e-07 + 5.9000e-04 -8.3131e+00 9.9731e-01 2.6924e-03 9.4506e-01 5.4940e-02 1.0000e-10 1.0000e-10 3.8251e-04 1.0326e-06 + 6.0000e-04 -8.3127e+00 9.9726e-01 2.7419e-03 9.4415e-01 5.5851e-02 1.0000e-10 1.0000e-10 3.8893e-04 1.0693e-06 + 6.1000e-04 -8.3123e+00 9.9721e-01 2.7916e-03 9.4324e-01 5.6762e-02 1.0000e-10 1.0000e-10 3.9534e-04 1.1067e-06 + 6.2000e-04 -8.3119e+00 9.9716e-01 2.8414e-03 9.4233e-01 5.7671e-02 1.0000e-10 1.0000e-10 4.0176e-04 1.1448e-06 + 6.3000e-04 -8.3115e+00 9.9711e-01 2.8914e-03 9.4142e-01 5.8580e-02 1.0000e-10 1.0000e-10 4.0817e-04 1.1836e-06 + 6.4000e-04 -8.3111e+00 9.9706e-01 2.9415e-03 9.4051e-01 5.9488e-02 1.0000e-10 1.0000e-10 4.1458e-04 1.2231e-06 + 6.5000e-04 -8.3107e+00 9.9701e-01 2.9918e-03 9.3960e-01 6.0396e-02 1.0000e-10 1.0000e-10 4.2099e-04 1.2633e-06 + 6.6000e-04 -8.3104e+00 9.9696e-01 3.0422e-03 9.3870e-01 6.1303e-02 1.0000e-10 1.0000e-10 4.2739e-04 1.3042e-06 + 6.7000e-04 -8.3100e+00 9.9691e-01 3.0927e-03 9.3779e-01 6.2209e-02 1.0000e-10 1.0000e-10 4.3379e-04 1.3458e-06 + 6.8000e-04 -8.3096e+00 9.9686e-01 3.1434e-03 9.3689e-01 6.3115e-02 1.0000e-10 1.0000e-10 4.4019e-04 1.3881e-06 + 6.9000e-04 -8.3092e+00 9.9681e-01 3.1943e-03 9.3598e-01 6.4019e-02 1.0000e-10 1.0000e-10 4.4659e-04 1.4311e-06 + 7.0000e-04 -8.3088e+00 9.9675e-01 3.2453e-03 9.3508e-01 6.4924e-02 1.0000e-10 1.0000e-10 4.5299e-04 1.4749e-06 + 7.1000e-04 -8.3084e+00 9.9670e-01 3.2964e-03 9.3417e-01 6.5827e-02 1.0000e-10 1.0000e-10 4.5938e-04 1.5193e-06 + 7.2000e-04 -8.3080e+00 9.9665e-01 3.3477e-03 9.3327e-01 6.6730e-02 1.0000e-10 1.0000e-10 4.6578e-04 1.5645e-06 + 7.3000e-04 -8.3076e+00 9.9660e-01 3.3992e-03 9.3237e-01 6.7632e-02 1.0000e-10 1.0000e-10 4.7217e-04 1.6105e-06 + 7.4000e-04 -8.3072e+00 9.9655e-01 3.4508e-03 9.3147e-01 6.8534e-02 1.0000e-10 1.0000e-10 4.7855e-04 1.6571e-06 + 7.5000e-04 -8.3068e+00 9.9650e-01 3.5025e-03 9.3057e-01 6.9434e-02 1.0000e-10 1.0000e-10 4.8494e-04 1.7045e-06 + 7.6000e-04 -8.3064e+00 9.9645e-01 3.5544e-03 9.2967e-01 7.0335e-02 1.0000e-10 1.0000e-10 4.9132e-04 1.7526e-06 + 7.7000e-04 -8.3061e+00 9.9639e-01 3.6065e-03 9.2877e-01 7.1234e-02 1.0000e-10 1.0000e-10 4.9770e-04 1.8015e-06 + 7.8000e-04 -8.3057e+00 9.9634e-01 3.6587e-03 9.2787e-01 7.2133e-02 1.0000e-10 1.0000e-10 5.0408e-04 1.8511e-06 + 7.9000e-04 -8.3053e+00 9.9629e-01 3.7111e-03 9.2697e-01 7.3031e-02 1.0000e-10 1.0000e-10 5.1046e-04 1.9014e-06 + 8.0000e-04 -8.3049e+00 9.9624e-01 3.7636e-03 9.2607e-01 7.3928e-02 1.0000e-10 1.0000e-10 5.1683e-04 1.9525e-06 + 8.1000e-04 -8.3045e+00 9.9618e-01 3.8163e-03 9.2517e-01 7.4825e-02 1.0000e-10 1.0000e-10 5.2320e-04 2.0044e-06 + 8.2000e-04 -8.3041e+00 9.9613e-01 3.8691e-03 9.2428e-01 7.5721e-02 1.0000e-10 1.0000e-10 5.2957e-04 2.0570e-06 + 8.3000e-04 -8.3037e+00 9.9608e-01 3.9221e-03 9.2338e-01 7.6617e-02 1.0000e-10 1.0000e-10 5.3594e-04 2.1103e-06 + 8.4000e-04 -8.3033e+00 9.9602e-01 3.9753e-03 9.2249e-01 7.7511e-02 1.0000e-10 1.0000e-10 5.4231e-04 2.1644e-06 + 8.5000e-04 -8.3029e+00 9.9597e-01 4.0286e-03 9.2159e-01 7.8406e-02 1.0000e-10 1.0000e-10 5.4867e-04 2.2193e-06 + 8.6000e-04 -8.3025e+00 9.9592e-01 4.0821e-03 9.2070e-01 7.9299e-02 1.0000e-10 1.0000e-10 5.5503e-04 2.2750e-06 + 8.7000e-04 -8.3021e+00 9.9586e-01 4.1358e-03 9.1981e-01 8.0192e-02 1.0000e-10 1.0000e-10 5.6139e-04 2.3314e-06 + 8.8000e-04 -8.3017e+00 9.9581e-01 4.1896e-03 9.1892e-01 8.1084e-02 1.0000e-10 1.0000e-10 5.6775e-04 2.3886e-06 + 8.9000e-04 -8.3014e+00 9.9576e-01 4.2435e-03 9.1802e-01 8.1975e-02 1.0000e-10 1.0000e-10 5.7410e-04 2.4466e-06 + 9.0000e-04 -8.3010e+00 9.9570e-01 4.2977e-03 9.1713e-01 8.2866e-02 1.0000e-10 1.0000e-10 5.8045e-04 2.5054e-06 + 9.1000e-04 -8.3006e+00 9.9565e-01 4.3520e-03 9.1624e-01 8.3756e-02 1.0000e-10 1.0000e-10 5.8680e-04 2.5649e-06 + 9.2000e-04 -8.3002e+00 9.9559e-01 4.4064e-03 9.1535e-01 8.4645e-02 1.0000e-10 1.0000e-10 5.9315e-04 2.6253e-06 + 9.3000e-04 -8.2998e+00 9.9554e-01 4.4611e-03 9.1447e-01 8.5534e-02 1.0000e-10 1.0000e-10 5.9950e-04 2.6864e-06 + 9.4000e-04 -8.2994e+00 9.9548e-01 4.5159e-03 9.1358e-01 8.6422e-02 1.0000e-10 1.0000e-10 6.0584e-04 2.7483e-06 + 9.5000e-04 -8.2990e+00 9.9543e-01 4.5708e-03 9.1269e-01 8.7309e-02 1.0000e-10 1.0000e-10 6.1218e-04 2.8110e-06 + 9.6000e-04 -8.2986e+00 9.9537e-01 4.6260e-03 9.1180e-01 8.8196e-02 1.0000e-10 1.0000e-10 6.1852e-04 2.8746e-06 + 9.7000e-04 -8.2982e+00 9.9532e-01 4.6813e-03 9.1092e-01 8.9082e-02 1.0000e-10 1.0000e-10 6.2485e-04 2.9389e-06 + 9.8000e-04 -8.2978e+00 9.9526e-01 4.7368e-03 9.1003e-01 8.9967e-02 1.0000e-10 1.0000e-10 6.3119e-04 3.0040e-06 + 9.9000e-04 -8.2974e+00 9.9521e-01 4.7924e-03 9.0915e-01 9.0852e-02 1.0000e-10 1.0000e-10 6.3752e-04 3.0700e-06 + 1.0000e-03 -8.2974e+00 9.8284e-01 1.7161e-02 9.0898e-01 9.1023e-02 6.4048e-04 9.4144e-06 6.3874e-04 1.1153e-05 + 1.0100e-03 -8.2974e+00 9.6795e-01 3.2055e-02 9.0898e-01 9.1023e-02 6.3881e-04 2.1081e-05 6.3874e-04 2.1153e-05 + 1.0200e-03 -8.2974e+00 9.5350e-01 4.6504e-02 9.0898e-01 9.1023e-02 6.3715e-04 3.2747e-05 6.3874e-04 3.1153e-05 + 1.0300e-03 -8.2974e+00 9.3947e-01 6.0528e-02 9.0898e-01 9.1023e-02 6.3548e-04 4.4413e-05 6.3874e-04 4.1153e-05 + 1.0400e-03 -8.2974e+00 9.2585e-01 7.4146e-02 9.0898e-01 9.1023e-02 6.3382e-04 5.6079e-05 6.3874e-04 5.1153e-05 + 1.0500e-03 -8.2974e+00 9.1263e-01 8.7374e-02 9.0898e-01 9.1023e-02 6.3215e-04 6.7745e-05 6.3874e-04 6.1153e-05 + 1.0600e-03 -8.2974e+00 8.9977e-01 1.0023e-01 9.0898e-01 9.1023e-02 6.3048e-04 7.9412e-05 6.3874e-04 7.1153e-05 + 1.0700e-03 -8.2974e+00 8.8727e-01 1.1273e-01 9.0898e-01 9.1023e-02 6.2882e-04 9.1078e-05 6.3874e-04 8.1153e-05 + 1.0800e-03 -8.2974e+00 8.7512e-01 1.2488e-01 9.0898e-01 9.1023e-02 6.2715e-04 1.0274e-04 6.3874e-04 9.1153e-05 + 1.0900e-03 -8.2974e+00 8.6329e-01 1.3671e-01 9.0898e-01 9.1023e-02 6.2549e-04 1.1441e-04 6.3874e-04 1.0115e-04 + 1.1000e-03 -8.2974e+00 8.5178e-01 1.4822e-01 9.0898e-01 9.1023e-02 6.2382e-04 1.2608e-04 6.3874e-04 1.1115e-04 + 1.1100e-03 -8.2974e+00 8.4057e-01 1.5943e-01 9.0898e-01 9.1023e-02 6.2215e-04 1.3774e-04 6.3874e-04 1.2115e-04 + 1.1200e-03 -8.2974e+00 8.2965e-01 1.7035e-01 9.0898e-01 9.1023e-02 6.2049e-04 1.4941e-04 6.3874e-04 1.3115e-04 + 1.1300e-03 -8.2974e+00 8.1901e-01 1.8099e-01 9.0898e-01 9.1023e-02 6.1882e-04 1.6108e-04 6.3874e-04 1.4115e-04 + 1.1400e-03 -8.2974e+00 8.0864e-01 1.9136e-01 9.0898e-01 9.1023e-02 6.1715e-04 1.7274e-04 6.3874e-04 1.5115e-04 + 1.1500e-03 -8.2974e+00 7.9853e-01 2.0147e-01 9.0898e-01 9.1023e-02 6.1549e-04 1.8441e-04 6.3874e-04 1.6115e-04 + 1.1600e-03 -8.2974e+00 7.8867e-01 2.1133e-01 9.0898e-01 9.1023e-02 6.1382e-04 1.9607e-04 6.3874e-04 1.7115e-04 + 1.1700e-03 -8.2974e+00 7.7905e-01 2.2095e-01 9.0898e-01 9.1023e-02 6.1216e-04 2.0774e-04 6.3874e-04 1.8115e-04 + 1.1800e-03 -8.2974e+00 7.6967e-01 2.3033e-01 9.0898e-01 9.1023e-02 6.1049e-04 2.1941e-04 6.3874e-04 1.9115e-04 + 1.1900e-03 -8.2974e+00 7.6050e-01 2.3950e-01 9.0898e-01 9.1023e-02 6.0882e-04 2.3107e-04 6.3874e-04 2.0115e-04 + 1.2000e-03 -8.2974e+00 7.5155e-01 2.4845e-01 9.0898e-01 9.1023e-02 6.0716e-04 2.4274e-04 6.3874e-04 2.1115e-04 + 1.2100e-03 -8.2974e+00 7.4281e-01 2.5719e-01 9.0898e-01 9.1023e-02 6.0549e-04 2.5440e-04 6.3874e-04 2.2115e-04 + 1.2200e-03 -8.2974e+00 7.3428e-01 2.6572e-01 9.0898e-01 9.1023e-02 6.0382e-04 2.6607e-04 6.3874e-04 2.3115e-04 + 1.2300e-03 -8.2974e+00 7.2593e-01 2.7407e-01 9.0898e-01 9.1023e-02 6.0216e-04 2.7774e-04 6.3874e-04 2.4115e-04 + 1.2400e-03 -8.2974e+00 7.1777e-01 2.8223e-01 9.0898e-01 9.1023e-02 6.0049e-04 2.8940e-04 6.3874e-04 2.5115e-04 + 1.2500e-03 -8.2974e+00 7.0980e-01 2.9020e-01 9.0898e-01 9.1023e-02 5.9883e-04 3.0107e-04 6.3874e-04 2.6115e-04 + 1.2600e-03 -8.2974e+00 7.0200e-01 2.9800e-01 9.0898e-01 9.1023e-02 5.9716e-04 3.1274e-04 6.3874e-04 2.7115e-04 + 1.2700e-03 -8.2974e+00 6.9436e-01 3.0564e-01 9.0898e-01 9.1023e-02 5.9549e-04 3.2440e-04 6.3874e-04 2.8115e-04 + 1.2800e-03 -8.2974e+00 6.8690e-01 3.1310e-01 9.0898e-01 9.1023e-02 5.9383e-04 3.3607e-04 6.3874e-04 2.9115e-04 + 1.2900e-03 -8.2974e+00 6.7959e-01 3.2041e-01 9.0898e-01 9.1023e-02 5.9216e-04 3.4773e-04 6.3874e-04 3.0115e-04 + 1.3000e-03 -8.2974e+00 6.7243e-01 3.2757e-01 9.0898e-01 9.1023e-02 5.9049e-04 3.5940e-04 6.3874e-04 3.1115e-04 + 1.3100e-03 -8.2974e+00 6.6543e-01 3.3457e-01 9.0898e-01 9.1023e-02 5.8883e-04 3.7107e-04 6.3874e-04 3.2115e-04 + 1.3200e-03 -8.2974e+00 6.5857e-01 3.4143e-01 9.0898e-01 9.1023e-02 5.8716e-04 3.8273e-04 6.3874e-04 3.3115e-04 + 1.3300e-03 -8.2974e+00 6.5185e-01 3.4815e-01 9.0898e-01 9.1023e-02 5.8550e-04 3.9440e-04 6.3874e-04 3.4115e-04 + 1.3400e-03 -8.2974e+00 6.4526e-01 3.5474e-01 9.0898e-01 9.1023e-02 5.8383e-04 4.0607e-04 6.3874e-04 3.5115e-04 + 1.3500e-03 -8.2974e+00 6.3881e-01 3.6119e-01 9.0898e-01 9.1023e-02 5.8216e-04 4.1773e-04 6.3874e-04 3.6115e-04 + 1.3600e-03 -8.2974e+00 6.3248e-01 3.6752e-01 9.0898e-01 9.1023e-02 5.8050e-04 4.2940e-04 6.3874e-04 3.7115e-04 + 1.3700e-03 -8.2974e+00 6.2628e-01 3.7372e-01 9.0898e-01 9.1023e-02 5.7883e-04 4.4106e-04 6.3874e-04 3.8115e-04 + 1.3800e-03 -8.2974e+00 6.2020e-01 3.7980e-01 9.0898e-01 9.1023e-02 5.7717e-04 4.5273e-04 6.3874e-04 3.9115e-04 + 1.3900e-03 -8.2974e+00 6.1424e-01 3.8576e-01 9.0898e-01 9.1023e-02 5.7550e-04 4.6440e-04 6.3874e-04 4.0115e-04 + 1.4000e-03 -8.2974e+00 6.0839e-01 3.9161e-01 9.0898e-01 9.1023e-02 5.7383e-04 4.7606e-04 6.3874e-04 4.1115e-04 + 1.4100e-03 -8.2974e+00 6.0265e-01 3.9735e-01 9.0898e-01 9.1023e-02 5.7217e-04 4.8773e-04 6.3874e-04 4.2115e-04 + 1.4200e-03 -8.2974e+00 5.9701e-01 4.0299e-01 9.0898e-01 9.1023e-02 5.7050e-04 4.9939e-04 6.3874e-04 4.3115e-04 + 1.4300e-03 -8.2974e+00 5.9149e-01 4.0851e-01 9.0898e-01 9.1023e-02 5.6883e-04 5.1106e-04 6.3874e-04 4.4115e-04 + 1.4400e-03 -8.2974e+00 5.8606e-01 4.1394e-01 9.0898e-01 9.1023e-02 5.6717e-04 5.2273e-04 6.3874e-04 4.5115e-04 + 1.4500e-03 -8.2974e+00 5.8073e-01 4.1927e-01 9.0898e-01 9.1023e-02 5.6550e-04 5.3439e-04 6.3874e-04 4.6115e-04 + 1.4600e-03 -8.2974e+00 5.7550e-01 4.2450e-01 9.0898e-01 9.1023e-02 5.6384e-04 5.4606e-04 6.3874e-04 4.7115e-04 + 1.4700e-03 -8.2974e+00 5.7036e-01 4.2964e-01 9.0898e-01 9.1023e-02 5.6217e-04 5.5773e-04 6.3874e-04 4.8115e-04 + 1.4800e-03 -8.2974e+00 5.6531e-01 4.3469e-01 9.0898e-01 9.1023e-02 5.6050e-04 5.6939e-04 6.3874e-04 4.9115e-04 + 1.4900e-03 -8.2974e+00 5.6035e-01 4.3965e-01 9.0898e-01 9.1023e-02 5.5884e-04 5.8106e-04 6.3874e-04 5.0115e-04 + 1.5000e-03 -8.2974e+00 5.5548e-01 4.4452e-01 9.0898e-01 9.1023e-02 5.5717e-04 5.9272e-04 6.3874e-04 5.1115e-04 + 1.5100e-03 -8.2974e+00 5.5069e-01 4.4931e-01 9.0898e-01 9.1023e-02 5.5550e-04 6.0439e-04 6.3874e-04 5.2115e-04 + 1.5200e-03 -8.2974e+00 5.4598e-01 4.5402e-01 9.0898e-01 9.1023e-02 5.5384e-04 6.1606e-04 6.3874e-04 5.3115e-04 + 1.5300e-03 -8.2974e+00 5.4136e-01 4.5864e-01 9.0898e-01 9.1023e-02 5.5217e-04 6.2772e-04 6.3874e-04 5.4115e-04 + 1.5400e-03 -8.2974e+00 5.3681e-01 4.6319e-01 9.0898e-01 9.1023e-02 5.5051e-04 6.3939e-04 6.3874e-04 5.5115e-04 + 1.5500e-03 -8.2974e+00 5.3233e-01 4.6767e-01 9.0898e-01 9.1023e-02 5.4884e-04 6.5106e-04 6.3874e-04 5.6115e-04 + 1.5600e-03 -8.2974e+00 5.2793e-01 4.7207e-01 9.0898e-01 9.1023e-02 5.4717e-04 6.6272e-04 6.3874e-04 5.7115e-04 + 1.5700e-03 -8.2974e+00 5.2360e-01 4.7640e-01 9.0898e-01 9.1023e-02 5.4551e-04 6.7439e-04 6.3874e-04 5.8115e-04 + 1.5800e-03 -8.2974e+00 5.1935e-01 4.8065e-01 9.0898e-01 9.1023e-02 5.4384e-04 6.8605e-04 6.3874e-04 5.9115e-04 + 1.5900e-03 -8.2974e+00 5.1516e-01 4.8484e-01 9.0898e-01 9.1023e-02 5.4218e-04 6.9772e-04 6.3874e-04 6.0115e-04 + 1.6000e-03 -8.2974e+00 5.1104e-01 4.8896e-01 9.0898e-01 9.1023e-02 5.4051e-04 7.0939e-04 6.3874e-04 6.1115e-04 + 1.6100e-03 -8.2974e+00 5.0698e-01 4.9302e-01 9.0898e-01 9.1023e-02 5.3884e-04 7.2105e-04 6.3874e-04 6.2115e-04 + 1.6200e-03 -8.2974e+00 5.0299e-01 4.9701e-01 9.0898e-01 9.1023e-02 5.3718e-04 7.3272e-04 6.3874e-04 6.3115e-04 + 1.6300e-03 -8.2974e+00 4.9906e-01 5.0094e-01 9.0898e-01 9.1023e-02 5.3551e-04 7.4439e-04 6.3874e-04 6.4115e-04 + 1.6400e-03 -8.2974e+00 4.9519e-01 5.0481e-01 9.0898e-01 9.1023e-02 5.3384e-04 7.5605e-04 6.3874e-04 6.5115e-04 + 1.6500e-03 -8.2974e+00 4.9138e-01 5.0862e-01 9.0898e-01 9.1023e-02 5.3218e-04 7.6772e-04 6.3874e-04 6.6115e-04 + 1.6600e-03 -8.2974e+00 4.8763e-01 5.1237e-01 9.0898e-01 9.1023e-02 5.3051e-04 7.7938e-04 6.3874e-04 6.7115e-04 + 1.6700e-03 -8.2974e+00 4.8393e-01 5.1607e-01 9.0898e-01 9.1023e-02 5.2885e-04 7.9105e-04 6.3874e-04 6.8115e-04 + 1.6800e-03 -8.2974e+00 4.8030e-01 5.1970e-01 9.0898e-01 9.1023e-02 5.2718e-04 8.0272e-04 6.3874e-04 6.9115e-04 + 1.6900e-03 -8.2974e+00 4.7671e-01 5.2329e-01 9.0898e-01 9.1023e-02 5.2551e-04 8.1438e-04 6.3874e-04 7.0115e-04 + 1.7000e-03 -8.2974e+00 4.7318e-01 5.2682e-01 9.0898e-01 9.1023e-02 5.2385e-04 8.2605e-04 6.3874e-04 7.1115e-04 + 1.7100e-03 -8.2974e+00 4.6970e-01 5.3030e-01 9.0898e-01 9.1023e-02 5.2218e-04 8.3771e-04 6.3874e-04 7.2115e-04 + 1.7200e-03 -8.2974e+00 4.6627e-01 5.3373e-01 9.0898e-01 9.1023e-02 5.2051e-04 8.4938e-04 6.3874e-04 7.3115e-04 + 1.7300e-03 -8.2974e+00 4.6289e-01 5.3711e-01 9.0898e-01 9.1023e-02 5.1885e-04 8.6105e-04 6.3874e-04 7.4115e-04 + 1.7400e-03 -8.2974e+00 4.5956e-01 5.4044e-01 9.0898e-01 9.1023e-02 5.1718e-04 8.7271e-04 6.3874e-04 7.5115e-04 + 1.7500e-03 -8.2974e+00 4.5628e-01 5.4372e-01 9.0898e-01 9.1023e-02 5.1552e-04 8.8438e-04 6.3874e-04 7.6115e-04 + 1.7600e-03 -8.2974e+00 4.5304e-01 5.4696e-01 9.0898e-01 9.1023e-02 5.1385e-04 8.9605e-04 6.3874e-04 7.7115e-04 + 1.7700e-03 -8.2974e+00 4.4985e-01 5.5015e-01 9.0898e-01 9.1023e-02 5.1218e-04 9.0771e-04 6.3874e-04 7.8115e-04 + 1.7800e-03 -8.2974e+00 4.4671e-01 5.5329e-01 9.0898e-01 9.1023e-02 5.1052e-04 9.1938e-04 6.3874e-04 7.9115e-04 + 1.7900e-03 -8.2974e+00 4.4360e-01 5.5640e-01 9.0898e-01 9.1023e-02 5.0885e-04 9.3104e-04 6.3874e-04 8.0115e-04 + 1.8000e-03 -8.2974e+00 4.4054e-01 5.5946e-01 9.0898e-01 9.1023e-02 5.0718e-04 9.4271e-04 6.3874e-04 8.1115e-04 + 1.8100e-03 -8.2974e+00 4.3753e-01 5.6247e-01 9.0898e-01 9.1023e-02 5.0552e-04 9.5438e-04 6.3874e-04 8.2115e-04 + 1.8200e-03 -8.2974e+00 4.3455e-01 5.6545e-01 9.0898e-01 9.1023e-02 5.0385e-04 9.6604e-04 6.3874e-04 8.3115e-04 + 1.8300e-03 -8.2974e+00 4.3161e-01 5.6839e-01 9.0898e-01 9.1023e-02 5.0219e-04 9.7771e-04 6.3874e-04 8.4115e-04 + 1.8400e-03 -8.2974e+00 4.2872e-01 5.7128e-01 9.0898e-01 9.1023e-02 5.0052e-04 9.8938e-04 6.3874e-04 8.5115e-04 + 1.8500e-03 -8.2974e+00 4.2586e-01 5.7414e-01 9.0898e-01 9.1023e-02 4.9885e-04 1.0010e-03 6.3874e-04 8.6115e-04 + 1.8600e-03 -8.2974e+00 4.2304e-01 5.7696e-01 9.0898e-01 9.1023e-02 4.9719e-04 1.0127e-03 6.3874e-04 8.7115e-04 + 1.8700e-03 -8.2974e+00 4.2025e-01 5.7975e-01 9.0898e-01 9.1023e-02 4.9552e-04 1.0244e-03 6.3874e-04 8.8115e-04 + 1.8800e-03 -8.2974e+00 4.1751e-01 5.8249e-01 9.0898e-01 9.1023e-02 4.9386e-04 1.0360e-03 6.3874e-04 8.9115e-04 + 1.8900e-03 -8.2974e+00 4.1480e-01 5.8520e-01 9.0898e-01 9.1023e-02 4.9219e-04 1.0477e-03 6.3874e-04 9.0115e-04 + 1.9000e-03 -8.2974e+00 4.1212e-01 5.8788e-01 9.0898e-01 9.1023e-02 4.9052e-04 1.0594e-03 6.3874e-04 9.1115e-04 + 1.9100e-03 -8.2974e+00 4.0948e-01 5.9052e-01 9.0898e-01 9.1023e-02 4.8886e-04 1.0710e-03 6.3874e-04 9.2115e-04 + 1.9200e-03 -8.2974e+00 4.0687e-01 5.9313e-01 9.0898e-01 9.1023e-02 4.8719e-04 1.0827e-03 6.3874e-04 9.3115e-04 + 1.9300e-03 -8.2974e+00 4.0429e-01 5.9571e-01 9.0898e-01 9.1023e-02 4.8552e-04 1.0944e-03 6.3874e-04 9.4115e-04 + 1.9400e-03 -8.2974e+00 4.0175e-01 5.9825e-01 9.0898e-01 9.1023e-02 4.8386e-04 1.1060e-03 6.3874e-04 9.5115e-04 + 1.9500e-03 -8.2974e+00 3.9924e-01 6.0076e-01 9.0898e-01 9.1023e-02 4.8219e-04 1.1177e-03 6.3874e-04 9.6115e-04 + 1.9600e-03 -8.2974e+00 3.9676e-01 6.0324e-01 9.0898e-01 9.1023e-02 4.8053e-04 1.1294e-03 6.3874e-04 9.7115e-04 + 1.9700e-03 -8.2974e+00 3.9431e-01 6.0569e-01 9.0898e-01 9.1023e-02 4.7886e-04 1.1410e-03 6.3874e-04 9.8115e-04 + 1.9800e-03 -8.2974e+00 3.9189e-01 6.0811e-01 9.0898e-01 9.1023e-02 4.7719e-04 1.1527e-03 6.3874e-04 9.9115e-04 + 1.9900e-03 -8.2974e+00 3.8950e-01 6.1050e-01 9.0898e-01 9.1023e-02 4.7553e-04 1.1644e-03 6.3874e-04 1.0012e-03 + 2.0000e-03 -8.2974e+00 3.8714e-01 6.1286e-01 9.0898e-01 9.1023e-02 4.7386e-04 1.1760e-03 6.3874e-04 1.0112e-03 + 2.0100e-03 -8.2974e+00 3.8481e-01 6.1519e-01 9.0898e-01 9.1023e-02 4.7219e-04 1.1877e-03 6.3874e-04 1.0212e-03 + 2.0200e-03 -8.2974e+00 3.8250e-01 6.1750e-01 9.0898e-01 9.1023e-02 4.7053e-04 1.1994e-03 6.3874e-04 1.0312e-03 + 2.0300e-03 -8.2974e+00 3.8023e-01 6.1977e-01 9.0898e-01 9.1023e-02 4.6886e-04 1.2110e-03 6.3874e-04 1.0412e-03 + 2.0400e-03 -8.2974e+00 3.7798e-01 6.2202e-01 9.0898e-01 9.1023e-02 4.6720e-04 1.2227e-03 6.3874e-04 1.0512e-03 + 2.0500e-03 -8.2974e+00 3.7575e-01 6.2425e-01 9.0898e-01 9.1023e-02 4.6553e-04 1.2344e-03 6.3874e-04 1.0612e-03 + 2.0600e-03 -8.2974e+00 3.7356e-01 6.2644e-01 9.0898e-01 9.1023e-02 4.6386e-04 1.2460e-03 6.3874e-04 1.0712e-03 + 2.0700e-03 -8.2974e+00 3.7138e-01 6.2862e-01 9.0898e-01 9.1023e-02 4.6220e-04 1.2577e-03 6.3874e-04 1.0812e-03 + 2.0800e-03 -8.2974e+00 3.6924e-01 6.3076e-01 9.0898e-01 9.1023e-02 4.6053e-04 1.2694e-03 6.3874e-04 1.0912e-03 + 2.0900e-03 -8.2974e+00 3.6712e-01 6.3288e-01 9.0898e-01 9.1023e-02 4.5887e-04 1.2810e-03 6.3874e-04 1.1012e-03 + 2.1000e-03 -8.2974e+00 3.6502e-01 6.3498e-01 9.0898e-01 9.1023e-02 4.5720e-04 1.2927e-03 6.3874e-04 1.1112e-03 + 2.1100e-03 -8.2974e+00 3.6294e-01 6.3706e-01 9.0898e-01 9.1023e-02 4.5553e-04 1.3044e-03 6.3874e-04 1.1212e-03 + 2.1200e-03 -8.2974e+00 3.6089e-01 6.3911e-01 9.0898e-01 9.1023e-02 4.5387e-04 1.3160e-03 6.3874e-04 1.1312e-03 + 2.1300e-03 -8.2974e+00 3.5887e-01 6.4113e-01 9.0898e-01 9.1023e-02 4.5220e-04 1.3277e-03 6.3874e-04 1.1412e-03 + 2.1400e-03 -8.2974e+00 3.5686e-01 6.4314e-01 9.0898e-01 9.1023e-02 4.5053e-04 1.3394e-03 6.3874e-04 1.1512e-03 + 2.1500e-03 -8.2974e+00 3.5488e-01 6.4512e-01 9.0898e-01 9.1023e-02 4.4887e-04 1.3510e-03 6.3874e-04 1.1612e-03 + 2.1600e-03 -8.2974e+00 3.5292e-01 6.4708e-01 9.0898e-01 9.1023e-02 4.4720e-04 1.3627e-03 6.3874e-04 1.1712e-03 + 2.1700e-03 -8.2974e+00 3.5098e-01 6.4902e-01 9.0898e-01 9.1023e-02 4.4554e-04 1.3744e-03 6.3874e-04 1.1812e-03 + 2.1800e-03 -8.2974e+00 3.4906e-01 6.5094e-01 9.0898e-01 9.1023e-02 4.4387e-04 1.3860e-03 6.3874e-04 1.1912e-03 + 2.1900e-03 -8.2974e+00 3.4716e-01 6.5284e-01 9.0898e-01 9.1023e-02 4.4220e-04 1.3977e-03 6.3874e-04 1.2012e-03 + 2.2000e-03 -8.2974e+00 3.4529e-01 6.5471e-01 9.0898e-01 9.1023e-02 4.4054e-04 1.4094e-03 6.3874e-04 1.2112e-03 + 2.2100e-03 -8.2974e+00 3.4343e-01 6.5657e-01 9.0898e-01 9.1023e-02 4.3887e-04 1.4210e-03 6.3874e-04 1.2212e-03 + 2.2200e-03 -8.2974e+00 3.4159e-01 6.5841e-01 9.0898e-01 9.1023e-02 4.3720e-04 1.4327e-03 6.3874e-04 1.2312e-03 + 2.2300e-03 -8.2974e+00 3.3978e-01 6.6022e-01 9.0898e-01 9.1023e-02 4.3554e-04 1.4444e-03 6.3874e-04 1.2412e-03 + 2.2400e-03 -8.2974e+00 3.3798e-01 6.6202e-01 9.0898e-01 9.1023e-02 4.3387e-04 1.4560e-03 6.3874e-04 1.2512e-03 + 2.2500e-03 -8.2974e+00 3.3620e-01 6.6380e-01 9.0898e-01 9.1023e-02 4.3221e-04 1.4677e-03 6.3874e-04 1.2612e-03 + 2.2600e-03 -8.2974e+00 3.3444e-01 6.6556e-01 9.0898e-01 9.1023e-02 4.3054e-04 1.4794e-03 6.3874e-04 1.2712e-03 + 2.2700e-03 -8.2974e+00 3.3270e-01 6.6730e-01 9.0898e-01 9.1023e-02 4.2887e-04 1.4910e-03 6.3874e-04 1.2812e-03 + 2.2800e-03 -8.2974e+00 3.3097e-01 6.6903e-01 9.0898e-01 9.1023e-02 4.2721e-04 1.5027e-03 6.3874e-04 1.2912e-03 + 2.2900e-03 -8.2974e+00 3.2927e-01 6.7073e-01 9.0898e-01 9.1023e-02 4.2554e-04 1.5144e-03 6.3874e-04 1.3012e-03 + 2.3000e-03 -8.2974e+00 3.2758e-01 6.7242e-01 9.0898e-01 9.1023e-02 4.2387e-04 1.5260e-03 6.3874e-04 1.3112e-03 + 2.3100e-03 -8.2974e+00 3.2591e-01 6.7409e-01 9.0898e-01 9.1023e-02 4.2221e-04 1.5377e-03 6.3874e-04 1.3212e-03 + 2.3200e-03 -8.2974e+00 3.2425e-01 6.7575e-01 9.0898e-01 9.1023e-02 4.2054e-04 1.5494e-03 6.3874e-04 1.3312e-03 + 2.3300e-03 -8.2974e+00 3.2261e-01 6.7739e-01 9.0898e-01 9.1023e-02 4.1888e-04 1.5610e-03 6.3874e-04 1.3412e-03 + 2.3400e-03 -8.2974e+00 3.2099e-01 6.7901e-01 9.0898e-01 9.1023e-02 4.1721e-04 1.5727e-03 6.3874e-04 1.3512e-03 + 2.3500e-03 -8.2974e+00 3.1939e-01 6.8061e-01 9.0898e-01 9.1023e-02 4.1554e-04 1.5844e-03 6.3874e-04 1.3612e-03 + 2.3600e-03 -8.2974e+00 3.1780e-01 6.8220e-01 9.0898e-01 9.1023e-02 4.1388e-04 1.5960e-03 6.3874e-04 1.3712e-03 + 2.3700e-03 -8.2974e+00 3.1623e-01 6.8377e-01 9.0898e-01 9.1023e-02 4.1221e-04 1.6077e-03 6.3874e-04 1.3812e-03 + 2.3800e-03 -8.2974e+00 3.1467e-01 6.8533e-01 9.0898e-01 9.1023e-02 4.1055e-04 1.6194e-03 6.3874e-04 1.3912e-03 + 2.3900e-03 -8.2974e+00 3.1313e-01 6.8687e-01 9.0898e-01 9.1023e-02 4.0888e-04 1.6310e-03 6.3874e-04 1.4012e-03 + 2.4000e-03 -8.2974e+00 3.1160e-01 6.8840e-01 9.0898e-01 9.1023e-02 4.0721e-04 1.6427e-03 6.3874e-04 1.4112e-03 + 2.4100e-03 -8.2974e+00 3.1009e-01 6.8991e-01 9.0898e-01 9.1023e-02 4.0555e-04 1.6543e-03 6.3874e-04 1.4212e-03 + 2.4200e-03 -8.2974e+00 3.0859e-01 6.9141e-01 9.0898e-01 9.1023e-02 4.0388e-04 1.6660e-03 6.3874e-04 1.4312e-03 + 2.4300e-03 -8.2974e+00 3.0710e-01 6.9290e-01 9.0898e-01 9.1023e-02 4.0221e-04 1.6777e-03 6.3874e-04 1.4412e-03 + 2.4400e-03 -8.2974e+00 3.0563e-01 6.9437e-01 9.0898e-01 9.1023e-02 4.0055e-04 1.6893e-03 6.3874e-04 1.4512e-03 + 2.4500e-03 -8.2974e+00 3.0418e-01 6.9582e-01 9.0898e-01 9.1023e-02 3.9888e-04 1.7010e-03 6.3874e-04 1.4612e-03 + 2.4600e-03 -8.2974e+00 3.0274e-01 6.9726e-01 9.0898e-01 9.1023e-02 3.9722e-04 1.7127e-03 6.3874e-04 1.4712e-03 + 2.4700e-03 -8.2974e+00 3.0131e-01 6.9869e-01 9.0898e-01 9.1023e-02 3.9555e-04 1.7243e-03 6.3874e-04 1.4812e-03 + 2.4800e-03 -8.2974e+00 2.9989e-01 7.0011e-01 9.0898e-01 9.1023e-02 3.9388e-04 1.7360e-03 6.3874e-04 1.4912e-03 + 2.4900e-03 -8.2974e+00 2.9849e-01 7.0151e-01 9.0898e-01 9.1023e-02 3.9222e-04 1.7477e-03 6.3874e-04 1.5012e-03 + 2.5000e-03 -8.2974e+00 2.9710e-01 7.0290e-01 9.0898e-01 9.1023e-02 3.9055e-04 1.7593e-03 6.3874e-04 1.5112e-03 + 2.5100e-03 -8.2974e+00 2.9573e-01 7.0427e-01 9.0898e-01 9.1023e-02 3.8888e-04 1.7710e-03 6.3874e-04 1.5212e-03 + 2.5200e-03 -8.2974e+00 2.9437e-01 7.0563e-01 9.0898e-01 9.1023e-02 3.8722e-04 1.7827e-03 6.3874e-04 1.5312e-03 + 2.5300e-03 -8.2974e+00 2.9302e-01 7.0698e-01 9.0898e-01 9.1023e-02 3.8555e-04 1.7943e-03 6.3874e-04 1.5412e-03 + 2.5400e-03 -8.2974e+00 2.9168e-01 7.0832e-01 9.0898e-01 9.1023e-02 3.8389e-04 1.8060e-03 6.3874e-04 1.5512e-03 + 2.5500e-03 -8.2974e+00 2.9035e-01 7.0965e-01 9.0898e-01 9.1023e-02 3.8222e-04 1.8177e-03 6.3874e-04 1.5612e-03 + 2.5600e-03 -8.2974e+00 2.8904e-01 7.1096e-01 9.0898e-01 9.1023e-02 3.8055e-04 1.8293e-03 6.3874e-04 1.5712e-03 + 2.5700e-03 -8.2974e+00 2.8774e-01 7.1226e-01 9.0898e-01 9.1023e-02 3.7889e-04 1.8410e-03 6.3874e-04 1.5812e-03 + 2.5800e-03 -8.2974e+00 2.8645e-01 7.1355e-01 9.0898e-01 9.1023e-02 3.7722e-04 1.8527e-03 6.3874e-04 1.5912e-03 + 2.5900e-03 -8.2974e+00 2.8517e-01 7.1483e-01 9.0898e-01 9.1023e-02 3.7555e-04 1.8643e-03 6.3874e-04 1.6012e-03 + 2.6000e-03 -8.2974e+00 2.8390e-01 7.1610e-01 9.0898e-01 9.1023e-02 3.7389e-04 1.8760e-03 6.3874e-04 1.6112e-03 + 2.6100e-03 -8.2974e+00 2.8264e-01 7.1736e-01 9.0898e-01 9.1023e-02 3.7222e-04 1.8877e-03 6.3874e-04 1.6212e-03 + 2.6200e-03 -8.2974e+00 2.8140e-01 7.1860e-01 9.0898e-01 9.1023e-02 3.7056e-04 1.8993e-03 6.3874e-04 1.6312e-03 + 2.6300e-03 -8.2974e+00 2.8016e-01 7.1984e-01 9.0898e-01 9.1023e-02 3.6889e-04 1.9110e-03 6.3874e-04 1.6412e-03 + 2.6400e-03 -8.2974e+00 2.7894e-01 7.2106e-01 9.0898e-01 9.1023e-02 3.6722e-04 1.9227e-03 6.3874e-04 1.6512e-03 + 2.6500e-03 -8.2974e+00 2.7773e-01 7.2227e-01 9.0898e-01 9.1023e-02 3.6556e-04 1.9343e-03 6.3874e-04 1.6612e-03 + 2.6600e-03 -8.2974e+00 2.7652e-01 7.2348e-01 9.0898e-01 9.1023e-02 3.6389e-04 1.9460e-03 6.3874e-04 1.6712e-03 + 2.6700e-03 -8.2974e+00 2.7533e-01 7.2467e-01 9.0898e-01 9.1023e-02 3.6223e-04 1.9577e-03 6.3874e-04 1.6812e-03 + 2.6800e-03 -8.2974e+00 2.7415e-01 7.2585e-01 9.0898e-01 9.1023e-02 3.6056e-04 1.9693e-03 6.3874e-04 1.6912e-03 + 2.6900e-03 -8.2974e+00 2.7298e-01 7.2702e-01 9.0898e-01 9.1023e-02 3.5889e-04 1.9810e-03 6.3874e-04 1.7012e-03 + 2.7000e-03 -8.2974e+00 2.7182e-01 7.2818e-01 9.0898e-01 9.1023e-02 3.5723e-04 1.9927e-03 6.3874e-04 1.7112e-03 + 2.7100e-03 -8.2974e+00 2.7067e-01 7.2933e-01 9.0898e-01 9.1023e-02 3.5556e-04 2.0043e-03 6.3874e-04 1.7212e-03 + 2.7200e-03 -8.2974e+00 2.6952e-01 7.3048e-01 9.0898e-01 9.1023e-02 3.5389e-04 2.0160e-03 6.3874e-04 1.7312e-03 + 2.7300e-03 -8.2974e+00 2.6839e-01 7.3161e-01 9.0898e-01 9.1023e-02 3.5223e-04 2.0277e-03 6.3874e-04 1.7412e-03 + 2.7400e-03 -8.2974e+00 2.6727e-01 7.3273e-01 9.0898e-01 9.1023e-02 3.5056e-04 2.0393e-03 6.3874e-04 1.7512e-03 + 2.7500e-03 -8.2974e+00 2.6615e-01 7.3385e-01 9.0898e-01 9.1023e-02 3.4890e-04 2.0510e-03 6.3874e-04 1.7612e-03 + 2.7600e-03 -8.2974e+00 2.6505e-01 7.3495e-01 9.0898e-01 9.1023e-02 3.4723e-04 2.0627e-03 6.3874e-04 1.7712e-03 + 2.7700e-03 -8.2974e+00 2.6395e-01 7.3605e-01 9.0898e-01 9.1023e-02 3.4556e-04 2.0743e-03 6.3874e-04 1.7812e-03 + 2.7800e-03 -8.2974e+00 2.6287e-01 7.3713e-01 9.0898e-01 9.1023e-02 3.4390e-04 2.0860e-03 6.3874e-04 1.7912e-03 + 2.7900e-03 -8.2974e+00 2.6179e-01 7.3821e-01 9.0898e-01 9.1023e-02 3.4223e-04 2.0977e-03 6.3874e-04 1.8012e-03 + 2.8000e-03 -8.2974e+00 2.6072e-01 7.3928e-01 9.0898e-01 9.1023e-02 3.4056e-04 2.1093e-03 6.3874e-04 1.8112e-03 + 2.8100e-03 -8.2974e+00 2.5966e-01 7.4034e-01 9.0898e-01 9.1023e-02 3.3890e-04 2.1210e-03 6.3874e-04 1.8212e-03 + 2.8200e-03 -8.2974e+00 2.5861e-01 7.4139e-01 9.0898e-01 9.1023e-02 3.3723e-04 2.1327e-03 6.3874e-04 1.8312e-03 + 2.8300e-03 -8.2974e+00 2.5757e-01 7.4243e-01 9.0898e-01 9.1023e-02 3.3557e-04 2.1443e-03 6.3874e-04 1.8412e-03 + 2.8400e-03 -8.2974e+00 2.5653e-01 7.4347e-01 9.0898e-01 9.1023e-02 3.3390e-04 2.1560e-03 6.3874e-04 1.8512e-03 + 2.8500e-03 -8.2974e+00 2.5551e-01 7.4449e-01 9.0898e-01 9.1023e-02 3.3223e-04 2.1677e-03 6.3874e-04 1.8612e-03 + 2.8600e-03 -8.2974e+00 2.5449e-01 7.4551e-01 9.0898e-01 9.1023e-02 3.3057e-04 2.1793e-03 6.3874e-04 1.8712e-03 + 2.8700e-03 -8.2974e+00 2.5348e-01 7.4652e-01 9.0898e-01 9.1023e-02 3.2890e-04 2.1910e-03 6.3874e-04 1.8812e-03 + 2.8800e-03 -8.2974e+00 2.5248e-01 7.4752e-01 9.0898e-01 9.1023e-02 3.2724e-04 2.2027e-03 6.3874e-04 1.8912e-03 + 2.8900e-03 -8.2974e+00 2.5148e-01 7.4852e-01 9.0898e-01 9.1023e-02 3.2557e-04 2.2143e-03 6.3874e-04 1.9012e-03 + 2.9000e-03 -8.2974e+00 2.5050e-01 7.4950e-01 9.0898e-01 9.1023e-02 3.2390e-04 2.2260e-03 6.3874e-04 1.9112e-03 + 2.9100e-03 -8.2974e+00 2.4952e-01 7.5048e-01 9.0898e-01 9.1023e-02 3.2224e-04 2.2377e-03 6.3874e-04 1.9212e-03 + 2.9200e-03 -8.2974e+00 2.4855e-01 7.5145e-01 9.0898e-01 9.1023e-02 3.2057e-04 2.2493e-03 6.3874e-04 1.9312e-03 + 2.9300e-03 -8.2974e+00 2.4758e-01 7.5242e-01 9.0898e-01 9.1023e-02 3.1890e-04 2.2610e-03 6.3874e-04 1.9412e-03 + 2.9400e-03 -8.2974e+00 2.4663e-01 7.5337e-01 9.0898e-01 9.1023e-02 3.1724e-04 2.2727e-03 6.3874e-04 1.9512e-03 + 2.9500e-03 -8.2974e+00 2.4568e-01 7.5432e-01 9.0898e-01 9.1023e-02 3.1557e-04 2.2843e-03 6.3874e-04 1.9612e-03 + 2.9600e-03 -8.2974e+00 2.4474e-01 7.5526e-01 9.0898e-01 9.1023e-02 3.1391e-04 2.2960e-03 6.3874e-04 1.9712e-03 + 2.9700e-03 -8.2974e+00 2.4380e-01 7.5620e-01 9.0898e-01 9.1023e-02 3.1224e-04 2.3077e-03 6.3874e-04 1.9812e-03 + 2.9800e-03 -8.2974e+00 2.4288e-01 7.5712e-01 9.0898e-01 9.1023e-02 3.1057e-04 2.3193e-03 6.3874e-04 1.9912e-03 + 2.9900e-03 -8.2974e+00 2.4196e-01 7.5804e-01 9.0898e-01 9.1023e-02 3.0891e-04 2.3310e-03 6.3874e-04 2.0012e-03 + 3.0000e-03 -8.2974e+00 2.4104e-01 7.5896e-01 9.0898e-01 9.1023e-02 3.0724e-04 2.3427e-03 6.3874e-04 2.0112e-03 + 3.0100e-03 -8.2974e+00 2.4014e-01 7.5986e-01 9.0898e-01 9.1023e-02 3.0557e-04 2.3543e-03 6.3874e-04 2.0212e-03 + 3.0200e-03 -8.2974e+00 2.3924e-01 7.6076e-01 9.0898e-01 9.1023e-02 3.0391e-04 2.3660e-03 6.3874e-04 2.0312e-03 + 3.0300e-03 -8.2974e+00 2.3835e-01 7.6165e-01 9.0898e-01 9.1023e-02 3.0224e-04 2.3777e-03 6.3874e-04 2.0412e-03 + 3.0400e-03 -8.2974e+00 2.3746e-01 7.6254e-01 9.0898e-01 9.1023e-02 3.0058e-04 2.3893e-03 6.3874e-04 2.0512e-03 + 3.0500e-03 -8.2974e+00 2.3658e-01 7.6342e-01 9.0898e-01 9.1023e-02 2.9891e-04 2.4010e-03 6.3874e-04 2.0612e-03 + 3.0600e-03 -8.2974e+00 2.3571e-01 7.6429e-01 9.0898e-01 9.1023e-02 2.9724e-04 2.4127e-03 6.3874e-04 2.0712e-03 + 3.0700e-03 -8.2974e+00 2.3484e-01 7.6516e-01 9.0898e-01 9.1023e-02 2.9558e-04 2.4243e-03 6.3874e-04 2.0812e-03 + 3.0800e-03 -8.2974e+00 2.3398e-01 7.6602e-01 9.0898e-01 9.1023e-02 2.9391e-04 2.4360e-03 6.3874e-04 2.0912e-03 + 3.0900e-03 -8.2974e+00 2.3313e-01 7.6687e-01 9.0898e-01 9.1023e-02 2.9224e-04 2.4477e-03 6.3874e-04 2.1012e-03 + 3.1000e-03 -8.2974e+00 2.3228e-01 7.6772e-01 9.0898e-01 9.1023e-02 2.9058e-04 2.4593e-03 6.3874e-04 2.1112e-03 + 3.1100e-03 -8.2974e+00 2.3144e-01 7.6856e-01 9.0898e-01 9.1023e-02 2.8891e-04 2.4710e-03 6.3874e-04 2.1212e-03 + 3.1200e-03 -8.2974e+00 2.3060e-01 7.6940e-01 9.0898e-01 9.1023e-02 2.8725e-04 2.4826e-03 6.3874e-04 2.1312e-03 + 3.1300e-03 -8.2974e+00 2.2977e-01 7.7023e-01 9.0898e-01 9.1023e-02 2.8558e-04 2.4943e-03 6.3874e-04 2.1412e-03 + 3.1400e-03 -8.2974e+00 2.2895e-01 7.7105e-01 9.0898e-01 9.1023e-02 2.8391e-04 2.5060e-03 6.3874e-04 2.1512e-03 + 3.1500e-03 -8.2974e+00 2.2813e-01 7.7187e-01 9.0898e-01 9.1023e-02 2.8225e-04 2.5176e-03 6.3874e-04 2.1612e-03 + 3.1600e-03 -8.2974e+00 2.2732e-01 7.7268e-01 9.0898e-01 9.1023e-02 2.8058e-04 2.5293e-03 6.3874e-04 2.1712e-03 + 3.1700e-03 -8.2974e+00 2.2651e-01 7.7349e-01 9.0898e-01 9.1023e-02 2.7892e-04 2.5410e-03 6.3874e-04 2.1812e-03 + 3.1800e-03 -8.2974e+00 2.2571e-01 7.7429e-01 9.0898e-01 9.1023e-02 2.7725e-04 2.5526e-03 6.3874e-04 2.1912e-03 + 3.1900e-03 -8.2974e+00 2.2492e-01 7.7508e-01 9.0898e-01 9.1023e-02 2.7558e-04 2.5643e-03 6.3874e-04 2.2012e-03 + 3.2000e-03 -8.2974e+00 2.2413e-01 7.7587e-01 9.0898e-01 9.1023e-02 2.7392e-04 2.5760e-03 6.3874e-04 2.2112e-03 + 3.2100e-03 -8.2974e+00 2.2334e-01 7.7666e-01 9.0898e-01 9.1023e-02 2.7225e-04 2.5876e-03 6.3874e-04 2.2212e-03 + 3.2200e-03 -8.2974e+00 2.2257e-01 7.7743e-01 9.0898e-01 9.1023e-02 2.7058e-04 2.5993e-03 6.3874e-04 2.2312e-03 + 3.2300e-03 -8.2974e+00 2.2179e-01 7.7821e-01 9.0898e-01 9.1023e-02 2.6892e-04 2.6110e-03 6.3874e-04 2.2412e-03 + 3.2400e-03 -8.2974e+00 2.2103e-01 7.7897e-01 9.0898e-01 9.1023e-02 2.6725e-04 2.6226e-03 6.3874e-04 2.2512e-03 + 3.2500e-03 -8.2974e+00 2.2026e-01 7.7974e-01 9.0898e-01 9.1023e-02 2.6559e-04 2.6343e-03 6.3874e-04 2.2612e-03 + 3.2600e-03 -8.2974e+00 2.1951e-01 7.8049e-01 9.0898e-01 9.1023e-02 2.6392e-04 2.6460e-03 6.3874e-04 2.2712e-03 + 3.2700e-03 -8.2974e+00 2.1876e-01 7.8124e-01 9.0898e-01 9.1023e-02 2.6225e-04 2.6576e-03 6.3874e-04 2.2812e-03 + 3.2800e-03 -8.2974e+00 2.1801e-01 7.8199e-01 9.0898e-01 9.1023e-02 2.6059e-04 2.6693e-03 6.3874e-04 2.2912e-03 + 3.2900e-03 -8.2974e+00 2.1727e-01 7.8273e-01 9.0898e-01 9.1023e-02 2.5892e-04 2.6810e-03 6.3874e-04 2.3012e-03 + 3.3000e-03 -8.2974e+00 2.1653e-01 7.8347e-01 9.0898e-01 9.1023e-02 2.5725e-04 2.6926e-03 6.3874e-04 2.3112e-03 + 3.3100e-03 -8.2974e+00 2.1580e-01 7.8420e-01 9.0898e-01 9.1023e-02 2.5559e-04 2.7043e-03 6.3874e-04 2.3212e-03 + 3.3200e-03 -8.2974e+00 2.1507e-01 7.8493e-01 9.0898e-01 9.1023e-02 2.5392e-04 2.7160e-03 6.3874e-04 2.3312e-03 + 3.3300e-03 -8.2974e+00 2.1435e-01 7.8565e-01 9.0898e-01 9.1023e-02 2.5226e-04 2.7276e-03 6.3874e-04 2.3412e-03 + 3.3400e-03 -8.2974e+00 2.1363e-01 7.8637e-01 9.0898e-01 9.1023e-02 2.5059e-04 2.7393e-03 6.3874e-04 2.3512e-03 + 3.3500e-03 -8.2974e+00 2.1292e-01 7.8708e-01 9.0898e-01 9.1023e-02 2.4892e-04 2.7510e-03 6.3874e-04 2.3612e-03 + 3.3600e-03 -8.2974e+00 2.1221e-01 7.8779e-01 9.0898e-01 9.1023e-02 2.4726e-04 2.7626e-03 6.3874e-04 2.3712e-03 + 3.3700e-03 -8.2974e+00 2.1151e-01 7.8849e-01 9.0898e-01 9.1023e-02 2.4559e-04 2.7743e-03 6.3874e-04 2.3812e-03 + 3.3800e-03 -8.2974e+00 2.1081e-01 7.8919e-01 9.0898e-01 9.1023e-02 2.4392e-04 2.7860e-03 6.3874e-04 2.3912e-03 + 3.3900e-03 -8.2974e+00 2.1012e-01 7.8988e-01 9.0898e-01 9.1023e-02 2.4226e-04 2.7976e-03 6.3874e-04 2.4012e-03 + 3.4000e-03 -8.2974e+00 2.0943e-01 7.9057e-01 9.0898e-01 9.1023e-02 2.4059e-04 2.8093e-03 6.3874e-04 2.4112e-03 + 3.4100e-03 -8.2974e+00 2.0875e-01 7.9125e-01 9.0898e-01 9.1023e-02 2.3893e-04 2.8210e-03 6.3874e-04 2.4212e-03 + 3.4200e-03 -8.2974e+00 2.0807e-01 7.9193e-01 9.0898e-01 9.1023e-02 2.3726e-04 2.8326e-03 6.3874e-04 2.4312e-03 + 3.4300e-03 -8.2974e+00 2.0739e-01 7.9261e-01 9.0898e-01 9.1023e-02 2.3559e-04 2.8443e-03 6.3874e-04 2.4412e-03 + 3.4400e-03 -8.2974e+00 2.0672e-01 7.9328e-01 9.0898e-01 9.1023e-02 2.3393e-04 2.8560e-03 6.3874e-04 2.4512e-03 + 3.4500e-03 -8.2974e+00 2.0605e-01 7.9395e-01 9.0898e-01 9.1023e-02 2.3226e-04 2.8676e-03 6.3874e-04 2.4612e-03 + 3.4600e-03 -8.2974e+00 2.0539e-01 7.9461e-01 9.0898e-01 9.1023e-02 2.3060e-04 2.8793e-03 6.3874e-04 2.4712e-03 + 3.4700e-03 -8.2974e+00 2.0473e-01 7.9527e-01 9.0898e-01 9.1023e-02 2.2893e-04 2.8910e-03 6.3874e-04 2.4812e-03 + 3.4800e-03 -8.2974e+00 2.0408e-01 7.9592e-01 9.0898e-01 9.1023e-02 2.2726e-04 2.9026e-03 6.3874e-04 2.4912e-03 + 3.4900e-03 -8.2974e+00 2.0343e-01 7.9657e-01 9.0898e-01 9.1023e-02 2.2560e-04 2.9143e-03 6.3874e-04 2.5012e-03 + 3.5000e-03 -8.2974e+00 2.0278e-01 7.9722e-01 9.0898e-01 9.1023e-02 2.2393e-04 2.9260e-03 6.3874e-04 2.5112e-03 + 3.5100e-03 -8.2974e+00 2.0214e-01 7.9786e-01 9.0898e-01 9.1023e-02 2.2226e-04 2.9376e-03 6.3874e-04 2.5212e-03 + 3.5200e-03 -8.2974e+00 2.0150e-01 7.9850e-01 9.0898e-01 9.1023e-02 2.2060e-04 2.9493e-03 6.3874e-04 2.5312e-03 + 3.5300e-03 -8.2974e+00 2.0087e-01 7.9913e-01 9.0898e-01 9.1023e-02 2.1893e-04 2.9610e-03 6.3874e-04 2.5412e-03 + 3.5400e-03 -8.2974e+00 2.0024e-01 7.9976e-01 9.0898e-01 9.1023e-02 2.1727e-04 2.9726e-03 6.3874e-04 2.5512e-03 + 3.5500e-03 -8.2974e+00 1.9961e-01 8.0039e-01 9.0898e-01 9.1023e-02 2.1560e-04 2.9843e-03 6.3874e-04 2.5612e-03 + 3.5600e-03 -8.2974e+00 1.9899e-01 8.0101e-01 9.0898e-01 9.1023e-02 2.1393e-04 2.9960e-03 6.3874e-04 2.5712e-03 + 3.5700e-03 -8.2974e+00 1.9837e-01 8.0163e-01 9.0898e-01 9.1023e-02 2.1227e-04 3.0076e-03 6.3874e-04 2.5812e-03 + 3.5800e-03 -8.2974e+00 1.9776e-01 8.0224e-01 9.0898e-01 9.1023e-02 2.1060e-04 3.0193e-03 6.3874e-04 2.5912e-03 + 3.5900e-03 -8.2974e+00 1.9715e-01 8.0285e-01 9.0898e-01 9.1023e-02 2.0893e-04 3.0310e-03 6.3874e-04 2.6012e-03 + 3.6000e-03 -8.2974e+00 1.9654e-01 8.0346e-01 9.0898e-01 9.1023e-02 2.0727e-04 3.0426e-03 6.3874e-04 2.6112e-03 + 3.6100e-03 -8.2974e+00 1.9594e-01 8.0406e-01 9.0898e-01 9.1023e-02 2.0560e-04 3.0543e-03 6.3874e-04 2.6212e-03 + 3.6200e-03 -8.2974e+00 1.9534e-01 8.0466e-01 9.0898e-01 9.1023e-02 2.0394e-04 3.0660e-03 6.3874e-04 2.6312e-03 + 3.6300e-03 -8.2974e+00 1.9474e-01 8.0526e-01 9.0898e-01 9.1023e-02 2.0227e-04 3.0776e-03 6.3874e-04 2.6412e-03 + 3.6400e-03 -8.2974e+00 1.9415e-01 8.0585e-01 9.0898e-01 9.1023e-02 2.0060e-04 3.0893e-03 6.3874e-04 2.6512e-03 + 3.6500e-03 -8.2974e+00 1.9356e-01 8.0644e-01 9.0898e-01 9.1023e-02 1.9894e-04 3.1010e-03 6.3874e-04 2.6612e-03 + 3.6600e-03 -8.2974e+00 1.9298e-01 8.0702e-01 9.0898e-01 9.1023e-02 1.9727e-04 3.1126e-03 6.3874e-04 2.6712e-03 + 3.6700e-03 -8.2974e+00 1.9240e-01 8.0760e-01 9.0898e-01 9.1023e-02 1.9561e-04 3.1243e-03 6.3874e-04 2.6812e-03 + 3.6800e-03 -8.2974e+00 1.9182e-01 8.0818e-01 9.0898e-01 9.1023e-02 1.9394e-04 3.1360e-03 6.3874e-04 2.6912e-03 + 3.6900e-03 -8.2974e+00 1.9125e-01 8.0875e-01 9.0898e-01 9.1023e-02 1.9227e-04 3.1476e-03 6.3874e-04 2.7012e-03 + 3.7000e-03 -8.2974e+00 1.9068e-01 8.0932e-01 9.0898e-01 9.1023e-02 1.9061e-04 3.1593e-03 6.3874e-04 2.7112e-03 + 3.7100e-03 -8.2974e+00 1.9011e-01 8.0989e-01 9.0898e-01 9.1023e-02 1.8894e-04 3.1710e-03 6.3874e-04 2.7212e-03 + 3.7200e-03 -8.2974e+00 1.8954e-01 8.1046e-01 9.0898e-01 9.1023e-02 1.8727e-04 3.1826e-03 6.3874e-04 2.7312e-03 + 3.7300e-03 -8.2974e+00 1.8898e-01 8.1102e-01 9.0898e-01 9.1023e-02 1.8561e-04 3.1943e-03 6.3874e-04 2.7412e-03 + 3.7400e-03 -8.2974e+00 1.8843e-01 8.1157e-01 9.0898e-01 9.1023e-02 1.8394e-04 3.2060e-03 6.3874e-04 2.7512e-03 + 3.7500e-03 -8.2974e+00 1.8787e-01 8.1213e-01 9.0898e-01 9.1023e-02 1.8228e-04 3.2176e-03 6.3874e-04 2.7612e-03 + 3.7600e-03 -8.2974e+00 1.8732e-01 8.1268e-01 9.0898e-01 9.1023e-02 1.8061e-04 3.2293e-03 6.3874e-04 2.7712e-03 + 3.7700e-03 -8.2974e+00 1.8677e-01 8.1323e-01 9.0898e-01 9.1023e-02 1.7894e-04 3.2410e-03 6.3874e-04 2.7812e-03 + 3.7800e-03 -8.2974e+00 1.8623e-01 8.1377e-01 9.0898e-01 9.1023e-02 1.7728e-04 3.2526e-03 6.3874e-04 2.7912e-03 + 3.7900e-03 -8.2974e+00 1.8569e-01 8.1431e-01 9.0898e-01 9.1023e-02 1.7561e-04 3.2643e-03 6.3874e-04 2.8012e-03 + 3.8000e-03 -8.2974e+00 1.8515e-01 8.1485e-01 9.0898e-01 9.1023e-02 1.7394e-04 3.2760e-03 6.3874e-04 2.8112e-03 + 3.8100e-03 -8.2974e+00 1.8461e-01 8.1539e-01 9.0898e-01 9.1023e-02 1.7228e-04 3.2876e-03 6.3874e-04 2.8212e-03 + 3.8200e-03 -8.2974e+00 1.8408e-01 8.1592e-01 9.0898e-01 9.1023e-02 1.7061e-04 3.2993e-03 6.3874e-04 2.8312e-03 + 3.8300e-03 -8.2974e+00 1.8355e-01 8.1645e-01 9.0898e-01 9.1023e-02 1.6895e-04 3.3109e-03 6.3874e-04 2.8412e-03 + 3.8400e-03 -8.2974e+00 1.8303e-01 8.1697e-01 9.0898e-01 9.1023e-02 1.6728e-04 3.3226e-03 6.3874e-04 2.8512e-03 + 3.8500e-03 -8.2974e+00 1.8250e-01 8.1750e-01 9.0898e-01 9.1023e-02 1.6561e-04 3.3343e-03 6.3874e-04 2.8612e-03 + 3.8600e-03 -8.2974e+00 1.8198e-01 8.1802e-01 9.0898e-01 9.1023e-02 1.6395e-04 3.3459e-03 6.3874e-04 2.8712e-03 + 3.8700e-03 -8.2974e+00 1.8147e-01 8.1853e-01 9.0898e-01 9.1023e-02 1.6228e-04 3.3576e-03 6.3874e-04 2.8812e-03 + 3.8800e-03 -8.2974e+00 1.8095e-01 8.1905e-01 9.0898e-01 9.1023e-02 1.6061e-04 3.3693e-03 6.3874e-04 2.8912e-03 + 3.8900e-03 -8.2974e+00 1.8044e-01 8.1956e-01 9.0898e-01 9.1023e-02 1.5895e-04 3.3809e-03 6.3874e-04 2.9012e-03 + 3.9000e-03 -8.2974e+00 1.7993e-01 8.2007e-01 9.0898e-01 9.1023e-02 1.5728e-04 3.3926e-03 6.3874e-04 2.9112e-03 + 3.9100e-03 -8.2974e+00 1.7943e-01 8.2057e-01 9.0898e-01 9.1023e-02 1.5562e-04 3.4043e-03 6.3874e-04 2.9212e-03 + 3.9200e-03 -8.2974e+00 1.7892e-01 8.2108e-01 9.0898e-01 9.1023e-02 1.5395e-04 3.4159e-03 6.3874e-04 2.9312e-03 + 3.9300e-03 -8.2974e+00 1.7842e-01 8.2158e-01 9.0898e-01 9.1023e-02 1.5228e-04 3.4276e-03 6.3874e-04 2.9412e-03 + 3.9400e-03 -8.2974e+00 1.7793e-01 8.2207e-01 9.0898e-01 9.1023e-02 1.5062e-04 3.4393e-03 6.3874e-04 2.9512e-03 + 3.9500e-03 -8.2974e+00 1.7743e-01 8.2257e-01 9.0898e-01 9.1023e-02 1.4895e-04 3.4509e-03 6.3874e-04 2.9612e-03 + 3.9600e-03 -8.2974e+00 1.7694e-01 8.2306e-01 9.0898e-01 9.1023e-02 1.4729e-04 3.4626e-03 6.3874e-04 2.9712e-03 + 3.9700e-03 -8.2974e+00 1.7645e-01 8.2355e-01 9.0898e-01 9.1023e-02 1.4562e-04 3.4743e-03 6.3874e-04 2.9812e-03 + 3.9800e-03 -8.2974e+00 1.7597e-01 8.2403e-01 9.0898e-01 9.1023e-02 1.4395e-04 3.4859e-03 6.3874e-04 2.9912e-03 + 3.9900e-03 -8.2974e+00 1.7548e-01 8.2452e-01 9.0898e-01 9.1023e-02 1.4229e-04 3.4976e-03 6.3874e-04 3.0012e-03 + 4.0000e-03 -8.2974e+00 1.7500e-01 8.2500e-01 9.0898e-01 9.1023e-02 1.4062e-04 3.5093e-03 6.3874e-04 3.0112e-03 + 4.0100e-03 -8.2974e+00 1.7452e-01 8.2548e-01 9.0898e-01 9.1023e-02 1.3895e-04 3.5209e-03 6.3874e-04 3.0212e-03 + 4.0200e-03 -8.2974e+00 1.7405e-01 8.2595e-01 9.0898e-01 9.1023e-02 1.3729e-04 3.5326e-03 6.3874e-04 3.0312e-03 + 4.0300e-03 -8.2974e+00 1.7358e-01 8.2642e-01 9.0898e-01 9.1023e-02 1.3562e-04 3.5443e-03 6.3874e-04 3.0412e-03 + 4.0400e-03 -8.2974e+00 1.7311e-01 8.2689e-01 9.0898e-01 9.1023e-02 1.3396e-04 3.5559e-03 6.3874e-04 3.0512e-03 + 4.0500e-03 -8.2974e+00 1.7264e-01 8.2736e-01 9.0898e-01 9.1023e-02 1.3229e-04 3.5676e-03 6.3874e-04 3.0612e-03 + 4.0600e-03 -8.2974e+00 1.7217e-01 8.2783e-01 9.0898e-01 9.1023e-02 1.3062e-04 3.5793e-03 6.3874e-04 3.0712e-03 + 4.0700e-03 -8.2974e+00 1.7171e-01 8.2829e-01 9.0898e-01 9.1023e-02 1.2896e-04 3.5909e-03 6.3874e-04 3.0812e-03 + 4.0800e-03 -8.2974e+00 1.7125e-01 8.2875e-01 9.0898e-01 9.1023e-02 1.2729e-04 3.6026e-03 6.3874e-04 3.0912e-03 + 4.0900e-03 -8.2974e+00 1.7079e-01 8.2921e-01 9.0898e-01 9.1023e-02 1.2562e-04 3.6143e-03 6.3874e-04 3.1012e-03 + 4.1000e-03 -8.2974e+00 1.7034e-01 8.2966e-01 9.0898e-01 9.1023e-02 1.2396e-04 3.6259e-03 6.3874e-04 3.1112e-03 + 4.1100e-03 -8.2974e+00 1.6988e-01 8.3012e-01 9.0898e-01 9.1023e-02 1.2229e-04 3.6376e-03 6.3874e-04 3.1212e-03 + 4.1200e-03 -8.2974e+00 1.6943e-01 8.3057e-01 9.0898e-01 9.1023e-02 1.2063e-04 3.6493e-03 6.3874e-04 3.1312e-03 + 4.1300e-03 -8.2974e+00 1.6898e-01 8.3102e-01 9.0898e-01 9.1023e-02 1.1896e-04 3.6609e-03 6.3874e-04 3.1412e-03 + 4.1400e-03 -8.2974e+00 1.6854e-01 8.3146e-01 9.0898e-01 9.1023e-02 1.1729e-04 3.6726e-03 6.3874e-04 3.1512e-03 + 4.1500e-03 -8.2974e+00 1.6809e-01 8.3191e-01 9.0898e-01 9.1023e-02 1.1563e-04 3.6843e-03 6.3874e-04 3.1612e-03 + 4.1600e-03 -8.2974e+00 1.6765e-01 8.3235e-01 9.0898e-01 9.1023e-02 1.1396e-04 3.6959e-03 6.3874e-04 3.1712e-03 + 4.1700e-03 -8.2974e+00 1.6721e-01 8.3279e-01 9.0898e-01 9.1023e-02 1.1230e-04 3.7076e-03 6.3874e-04 3.1812e-03 + 4.1800e-03 -8.2974e+00 1.6678e-01 8.3322e-01 9.0898e-01 9.1023e-02 1.1063e-04 3.7193e-03 6.3874e-04 3.1912e-03 + 4.1900e-03 -8.2974e+00 1.6634e-01 8.3366e-01 9.0898e-01 9.1023e-02 1.0896e-04 3.7309e-03 6.3874e-04 3.2012e-03 + 4.2000e-03 -8.2974e+00 1.6591e-01 8.3409e-01 9.0898e-01 9.1023e-02 1.0730e-04 3.7426e-03 6.3874e-04 3.2112e-03 + 4.2100e-03 -8.2974e+00 1.6548e-01 8.3452e-01 9.0898e-01 9.1023e-02 1.0563e-04 3.7543e-03 6.3874e-04 3.2212e-03 + 4.2200e-03 -8.2974e+00 1.6505e-01 8.3495e-01 9.0898e-01 9.1023e-02 1.0396e-04 3.7659e-03 6.3874e-04 3.2312e-03 + 4.2300e-03 -8.2974e+00 1.6463e-01 8.3537e-01 9.0898e-01 9.1023e-02 1.0230e-04 3.7776e-03 6.3874e-04 3.2412e-03 + 4.2400e-03 -8.2974e+00 1.6421e-01 8.3579e-01 9.0898e-01 9.1023e-02 1.0063e-04 3.7893e-03 6.3874e-04 3.2512e-03 + 4.2500e-03 -8.2974e+00 1.6378e-01 8.3622e-01 9.0898e-01 9.1023e-02 9.8965e-05 3.8009e-03 6.3874e-04 3.2612e-03 + 4.2600e-03 -8.2974e+00 1.6337e-01 8.3663e-01 9.0898e-01 9.1023e-02 9.7299e-05 3.8126e-03 6.3874e-04 3.2712e-03 + 4.2700e-03 -8.2974e+00 1.6295e-01 8.3705e-01 9.0898e-01 9.1023e-02 9.5633e-05 3.8243e-03 6.3874e-04 3.2812e-03 + 4.2800e-03 -8.2974e+00 1.6253e-01 8.3747e-01 9.0898e-01 9.1023e-02 9.3967e-05 3.8359e-03 6.3874e-04 3.2912e-03 + 4.2900e-03 -8.2974e+00 1.6212e-01 8.3788e-01 9.0898e-01 9.1023e-02 9.2301e-05 3.8476e-03 6.3874e-04 3.3012e-03 + 4.3000e-03 -8.2974e+00 1.6171e-01 8.3829e-01 9.0898e-01 9.1023e-02 9.0634e-05 3.8593e-03 6.3874e-04 3.3112e-03 + 4.3100e-03 -8.2974e+00 1.6130e-01 8.3870e-01 9.0898e-01 9.1023e-02 8.8968e-05 3.8709e-03 6.3874e-04 3.3212e-03 + 4.3200e-03 -8.2974e+00 1.6090e-01 8.3910e-01 9.0898e-01 9.1023e-02 8.7302e-05 3.8826e-03 6.3874e-04 3.3312e-03 + 4.3300e-03 -8.2974e+00 1.6049e-01 8.3951e-01 9.0898e-01 9.1023e-02 8.5636e-05 3.8943e-03 6.3874e-04 3.3412e-03 + 4.3400e-03 -8.2974e+00 1.6009e-01 8.3991e-01 9.0898e-01 9.1023e-02 8.3970e-05 3.9059e-03 6.3874e-04 3.3512e-03 + 4.3500e-03 -8.2974e+00 1.5969e-01 8.4031e-01 9.0898e-01 9.1023e-02 8.2303e-05 3.9176e-03 6.3874e-04 3.3612e-03 + 4.3600e-03 -8.2974e+00 1.5929e-01 8.4071e-01 9.0898e-01 9.1023e-02 8.0637e-05 3.9293e-03 6.3874e-04 3.3712e-03 + 4.3700e-03 -8.2974e+00 1.5890e-01 8.4110e-01 9.0898e-01 9.1023e-02 7.8971e-05 3.9409e-03 6.3874e-04 3.3812e-03 + 4.3800e-03 -8.2974e+00 1.5850e-01 8.4150e-01 9.0898e-01 9.1023e-02 7.7305e-05 3.9526e-03 6.3874e-04 3.3912e-03 + 4.3900e-03 -8.2974e+00 1.5811e-01 8.4189e-01 9.0898e-01 9.1023e-02 7.5639e-05 3.9643e-03 6.3874e-04 3.4012e-03 + 4.4000e-03 -8.2974e+00 1.5772e-01 8.4228e-01 9.0898e-01 9.1023e-02 7.3972e-05 3.9759e-03 6.3874e-04 3.4112e-03 + 4.4100e-03 -8.2974e+00 1.5733e-01 8.4267e-01 9.0898e-01 9.1023e-02 7.2306e-05 3.9876e-03 6.3874e-04 3.4212e-03 + 4.4200e-03 -8.2974e+00 1.5694e-01 8.4306e-01 9.0898e-01 9.1023e-02 7.0640e-05 3.9993e-03 6.3874e-04 3.4312e-03 + 4.4300e-03 -8.2974e+00 1.5656e-01 8.4344e-01 9.0898e-01 9.1023e-02 6.8974e-05 4.0109e-03 6.3874e-04 3.4412e-03 + 4.4400e-03 -8.2974e+00 1.5618e-01 8.4382e-01 9.0898e-01 9.1023e-02 6.7308e-05 4.0226e-03 6.3874e-04 3.4512e-03 + 4.4500e-03 -8.2974e+00 1.5579e-01 8.4421e-01 9.0898e-01 9.1023e-02 6.5641e-05 4.0343e-03 6.3874e-04 3.4612e-03 + 4.4600e-03 -8.2974e+00 1.5542e-01 8.4458e-01 9.0898e-01 9.1023e-02 6.3975e-05 4.0459e-03 6.3874e-04 3.4712e-03 + 4.4700e-03 -8.2974e+00 1.5504e-01 8.4496e-01 9.0898e-01 9.1023e-02 6.2309e-05 4.0576e-03 6.3874e-04 3.4812e-03 + 4.4800e-03 -8.2974e+00 1.5466e-01 8.4534e-01 9.0898e-01 9.1023e-02 6.0643e-05 4.0693e-03 6.3874e-04 3.4912e-03 + 4.4900e-03 -8.2974e+00 1.5429e-01 8.4571e-01 9.0898e-01 9.1023e-02 5.8977e-05 4.0809e-03 6.3874e-04 3.5012e-03 + 4.5000e-03 -8.2974e+00 1.5392e-01 8.4608e-01 9.0898e-01 9.1023e-02 5.7310e-05 4.0926e-03 6.3874e-04 3.5112e-03 + 4.5100e-03 -8.2974e+00 1.5355e-01 8.4645e-01 9.0898e-01 9.1023e-02 5.5644e-05 4.1043e-03 6.3874e-04 3.5212e-03 + 4.5200e-03 -8.2974e+00 1.5318e-01 8.4682e-01 9.0898e-01 9.1023e-02 5.3978e-05 4.1159e-03 6.3874e-04 3.5312e-03 + 4.5300e-03 -8.2974e+00 1.5281e-01 8.4719e-01 9.0898e-01 9.1023e-02 5.2312e-05 4.1276e-03 6.3874e-04 3.5412e-03 + 4.5400e-03 -8.2974e+00 1.5245e-01 8.4755e-01 9.0898e-01 9.1023e-02 5.0646e-05 4.1392e-03 6.3874e-04 3.5512e-03 + 4.5500e-03 -8.2974e+00 1.5209e-01 8.4791e-01 9.0898e-01 9.1023e-02 4.8979e-05 4.1509e-03 6.3874e-04 3.5612e-03 + 4.5600e-03 -8.2974e+00 1.5172e-01 8.4828e-01 9.0898e-01 9.1023e-02 4.7313e-05 4.1626e-03 6.3874e-04 3.5712e-03 + 4.5700e-03 -8.2974e+00 1.5136e-01 8.4864e-01 9.0898e-01 9.1023e-02 4.5647e-05 4.1742e-03 6.3874e-04 3.5812e-03 + 4.5800e-03 -8.2974e+00 1.5101e-01 8.4899e-01 9.0898e-01 9.1023e-02 4.3981e-05 4.1859e-03 6.3874e-04 3.5912e-03 + 4.5900e-03 -8.2974e+00 1.5065e-01 8.4935e-01 9.0898e-01 9.1023e-02 4.2315e-05 4.1976e-03 6.3874e-04 3.6012e-03 + 4.6000e-03 -8.2974e+00 1.5030e-01 8.4970e-01 9.0898e-01 9.1023e-02 4.0648e-05 4.2092e-03 6.3874e-04 3.6112e-03 + 4.6100e-03 -8.2974e+00 1.4994e-01 8.5006e-01 9.0898e-01 9.1023e-02 3.8982e-05 4.2209e-03 6.3874e-04 3.6212e-03 + 4.6200e-03 -8.2974e+00 1.4959e-01 8.5041e-01 9.0898e-01 9.1023e-02 3.7316e-05 4.2326e-03 6.3874e-04 3.6312e-03 + 4.6300e-03 -8.2974e+00 1.4924e-01 8.5076e-01 9.0898e-01 9.1023e-02 3.5650e-05 4.2442e-03 6.3874e-04 3.6412e-03 + 4.6400e-03 -8.2974e+00 1.4889e-01 8.5111e-01 9.0898e-01 9.1023e-02 3.3984e-05 4.2559e-03 6.3874e-04 3.6512e-03 + 4.6500e-03 -8.2974e+00 1.4855e-01 8.5145e-01 9.0898e-01 9.1023e-02 3.2317e-05 4.2676e-03 6.3874e-04 3.6612e-03 + 4.6600e-03 -8.2974e+00 1.4820e-01 8.5180e-01 9.0898e-01 9.1023e-02 3.0651e-05 4.2792e-03 6.3874e-04 3.6712e-03 + 4.6700e-03 -8.2974e+00 1.4786e-01 8.5214e-01 9.0898e-01 9.1023e-02 2.8985e-05 4.2909e-03 6.3874e-04 3.6812e-03 + 4.6800e-03 -8.2974e+00 1.4752e-01 8.5248e-01 9.0898e-01 9.1023e-02 2.7319e-05 4.3026e-03 6.3874e-04 3.6912e-03 + 4.6900e-03 -8.2974e+00 1.4718e-01 8.5282e-01 9.0898e-01 9.1023e-02 2.5653e-05 4.3142e-03 6.3874e-04 3.7012e-03 + 4.7000e-03 -8.2974e+00 1.4684e-01 8.5316e-01 9.0898e-01 9.1023e-02 2.3986e-05 4.3259e-03 6.3874e-04 3.7112e-03 + 4.7100e-03 -8.2974e+00 1.4650e-01 8.5350e-01 9.0898e-01 9.1023e-02 2.2320e-05 4.3376e-03 6.3874e-04 3.7212e-03 + 4.7200e-03 -8.2974e+00 1.4617e-01 8.5383e-01 9.0898e-01 9.1023e-02 2.0654e-05 4.3492e-03 6.3874e-04 3.7312e-03 + 4.7300e-03 -8.2974e+00 1.4584e-01 8.5416e-01 9.0898e-01 9.1023e-02 1.8988e-05 4.3609e-03 6.3874e-04 3.7412e-03 + 4.7400e-03 -8.2974e+00 1.4550e-01 8.5450e-01 9.0898e-01 9.1023e-02 1.7321e-05 4.3726e-03 6.3874e-04 3.7512e-03 + 4.7500e-03 -8.2974e+00 1.4517e-01 8.5483e-01 9.0898e-01 9.1023e-02 1.5655e-05 4.3842e-03 6.3874e-04 3.7612e-03 + 4.7600e-03 -8.2974e+00 1.4484e-01 8.5516e-01 9.0898e-01 9.1023e-02 1.3989e-05 4.3959e-03 6.3874e-04 3.7712e-03 + 4.7700e-03 -8.2974e+00 1.4452e-01 8.5548e-01 9.0898e-01 9.1023e-02 1.2323e-05 4.4076e-03 6.3874e-04 3.7812e-03 + 4.7800e-03 -8.2974e+00 1.4419e-01 8.5581e-01 9.0898e-01 9.1023e-02 1.0657e-05 4.4192e-03 6.3874e-04 3.7912e-03 + 4.7900e-03 -8.2974e+00 1.4386e-01 8.5614e-01 9.0898e-01 9.1023e-02 8.9905e-06 4.4309e-03 6.3874e-04 3.8012e-03 + 4.8000e-03 -8.2974e+00 1.4354e-01 8.5646e-01 9.0898e-01 9.1023e-02 7.3243e-06 4.4426e-03 6.3874e-04 3.8112e-03 + 4.8100e-03 -8.2974e+00 1.4322e-01 8.5678e-01 9.0898e-01 9.1023e-02 5.6581e-06 4.4542e-03 6.3874e-04 3.8212e-03 + 4.8200e-03 -8.2974e+00 1.4290e-01 8.5710e-01 9.0898e-01 9.1023e-02 3.9919e-06 4.4659e-03 6.3874e-04 3.8312e-03 + 4.8300e-03 -8.2974e+00 1.4258e-01 8.5742e-01 9.0898e-01 9.1023e-02 2.3257e-06 4.4776e-03 6.3874e-04 3.8412e-03 + 4.8400e-03 -8.2974e+00 1.4226e-01 8.5774e-01 9.0898e-01 9.1023e-02 6.5947e-07 4.4892e-03 6.3874e-04 3.8512e-03 + 4.8500e-03 -8.2974e+00 1.4211e-01 8.5789e-01 9.0896e-01 9.1042e-02 1.0000e-10 1.0000e-10 6.3958e-04 3.8610e-03 + 4.8600e-03 -8.2976e+00 1.4207e-01 8.5793e-01 9.0893e-01 9.1074e-02 1.0000e-10 1.0000e-10 6.4098e-04 3.8708e-03 + 4.8700e-03 -8.2977e+00 1.4203e-01 8.5797e-01 9.0889e-01 9.1106e-02 1.0000e-10 1.0000e-10 6.4237e-04 3.8805e-03 + 4.8800e-03 -8.2978e+00 1.4198e-01 8.5802e-01 9.0886e-01 9.1138e-02 1.0000e-10 1.0000e-10 6.4376e-04 3.8903e-03 + 4.8900e-03 -8.2980e+00 1.4194e-01 8.5806e-01 9.0883e-01 9.1170e-02 1.0000e-10 1.0000e-10 6.4515e-04 3.9000e-03 + 4.9000e-03 -8.2981e+00 1.4190e-01 8.5810e-01 9.0880e-01 9.1202e-02 1.0000e-10 1.0000e-10 6.4654e-04 3.9098e-03 + 4.9100e-03 -8.2982e+00 1.4186e-01 8.5814e-01 9.0877e-01 9.1234e-02 1.0000e-10 1.0000e-10 6.4793e-04 3.9195e-03 + 4.9200e-03 -8.2983e+00 1.4181e-01 8.5819e-01 9.0873e-01 9.1266e-02 1.0000e-10 1.0000e-10 6.4932e-04 3.9293e-03 + 4.9300e-03 -8.2985e+00 1.4177e-01 8.5823e-01 9.0870e-01 9.1298e-02 1.0000e-10 1.0000e-10 6.5070e-04 3.9391e-03 + 4.9400e-03 -8.2986e+00 1.4173e-01 8.5827e-01 9.0867e-01 9.1330e-02 1.0000e-10 1.0000e-10 6.5209e-04 3.9488e-03 + 4.9500e-03 -8.2987e+00 1.4169e-01 8.5831e-01 9.0864e-01 9.1362e-02 1.0000e-10 1.0000e-10 6.5347e-04 3.9586e-03 + 4.9600e-03 -8.2989e+00 1.4165e-01 8.5835e-01 9.0861e-01 9.1394e-02 1.0000e-10 1.0000e-10 6.5486e-04 3.9683e-03 + 4.9700e-03 -8.2990e+00 1.4160e-01 8.5840e-01 9.0857e-01 9.1426e-02 1.0000e-10 1.0000e-10 6.5624e-04 3.9781e-03 + 4.9800e-03 -8.2991e+00 1.4156e-01 8.5844e-01 9.0854e-01 9.1458e-02 1.0000e-10 1.0000e-10 6.5762e-04 3.9878e-03 + 4.9900e-03 -8.2992e+00 1.4152e-01 8.5848e-01 9.0851e-01 9.1490e-02 1.0000e-10 1.0000e-10 6.5900e-04 3.9976e-03 + 5.0000e-03 -8.2994e+00 1.4148e-01 8.5852e-01 9.0848e-01 9.1522e-02 1.0000e-10 1.0000e-10 6.6038e-04 4.0074e-03 + 5.0000e-03 -8.2994e+00 1.4148e-01 8.5852e-01 9.0848e-01 9.1522e-02 1.0000e-10 1.0000e-10 6.6038e-04 4.0074e-03 + 1.0000e-02 -8.3561e+00 1.2425e-01 8.7575e-01 8.9342e-01 1.0658e-01 1.0000e-10 1.0000e-10 1.2622e-03 8.8963e-03 + 1.5000e-02 -8.4019e+00 1.1192e-01 8.8808e-01 8.7973e-01 1.2027e-01 1.0000e-10 1.0000e-10 1.7391e-03 1.3800e-02 + 2.0000e-02 -8.4405e+00 1.0242e-01 8.9758e-01 8.6700e-01 1.3300e-01 1.0000e-10 1.0000e-10 2.1356e-03 1.8715e-02 + 2.5000e-02 -8.4739e+00 9.4788e-02 9.0521e-01 8.5501e-01 1.4499e-01 1.0000e-10 1.0000e-10 2.4751e-03 2.3637e-02 + 3.0000e-02 -8.5033e+00 8.8454e-02 9.1155e-01 8.4365e-01 1.5635e-01 1.0000e-10 1.0000e-10 2.7719e-03 2.8565e-02 + 3.5000e-02 -8.5296e+00 8.3084e-02 9.1692e-01 8.3281e-01 1.6719e-01 1.0000e-10 1.0000e-10 3.0354e-03 3.3499e-02 + 4.0000e-02 -8.5534e+00 7.8452e-02 9.2155e-01 8.2242e-01 1.7758e-01 1.0000e-10 1.0000e-10 3.2721e-03 3.8436e-02 + 4.5000e-02 -8.5751e+00 7.4402e-02 9.2560e-01 8.1245e-01 1.8755e-01 1.0000e-10 1.0000e-10 3.4868e-03 4.3378e-02 + 5.0000e-02 -8.5949e+00 7.0821e-02 9.2918e-01 8.0284e-01 1.9716e-01 1.0000e-10 1.0000e-10 3.6831e-03 4.8323e-02 + 5.5000e-02 -8.6133e+00 6.7625e-02 9.3237e-01 7.9357e-01 2.0643e-01 1.0000e-10 1.0000e-10 3.8637e-03 5.3270e-02 + 6.0000e-02 -8.6303e+00 6.4751e-02 9.3525e-01 7.8460e-01 2.1540e-01 1.0000e-10 1.0000e-10 4.0308e-03 5.8220e-02 + 6.5000e-02 -8.6462e+00 6.2147e-02 9.3785e-01 7.7593e-01 2.2407e-01 1.0000e-10 1.0000e-10 4.1862e-03 6.3173e-02 + 7.0000e-02 -8.6610e+00 5.9776e-02 9.4022e-01 7.6751e-01 2.3249e-01 1.0000e-10 1.0000e-10 4.3313e-03 6.8127e-02 + 7.5000e-02 -8.6750e+00 5.7604e-02 9.4240e-01 7.5935e-01 2.4065e-01 1.0000e-10 1.0000e-10 4.4673e-03 7.3084e-02 + 8.0000e-02 -8.6881e+00 5.5606e-02 9.4439e-01 7.5142e-01 2.4858e-01 1.0000e-10 1.0000e-10 4.5952e-03 7.8042e-02 + 8.5000e-02 -8.7005e+00 5.3761e-02 9.4624e-01 7.4370e-01 2.5630e-01 1.0000e-10 1.0000e-10 4.7158e-03 8.3002e-02 + 9.0000e-02 -8.7122e+00 5.2050e-02 9.4795e-01 7.3619e-01 2.6381e-01 1.0000e-10 1.0000e-10 4.8298e-03 8.7963e-02 + 9.5000e-02 -8.7234e+00 5.0457e-02 9.4954e-01 7.2888e-01 2.7112e-01 1.0000e-10 1.0000e-10 4.9380e-03 9.2926e-02 + 1.0000e-01 -8.7339e+00 4.8972e-02 9.5103e-01 7.2176e-01 2.7824e-01 1.0000e-10 1.0000e-10 5.0407e-03 9.7890e-02 + 1.0000e-01 -8.7339e+00 4.8972e-02 9.5103e-01 7.2176e-01 2.7824e-01 1.0000e-10 1.0000e-10 5.0407e-03 9.7890e-02 + 2.0000e-01 -8.8751e+00 3.1476e-02 9.6852e-01 6.0792e-01 3.9208e-01 1.0000e-10 1.0000e-10 6.4139e-03 1.9736e-01 + 3.0000e-01 -8.9520e+00 2.3569e-02 9.7643e-01 5.2858e-01 4.7142e-01 1.0000e-10 1.0000e-10 7.1693e-03 2.9702e-01 + 4.0000e-01 -9.0019e+00 1.8957e-02 9.8104e-01 4.6899e-01 5.3101e-01 1.0000e-10 1.0000e-10 7.6669e-03 3.9678e-01 + 5.0000e-01 -9.0375e+00 1.5904e-02 9.8410e-01 4.2219e-01 5.7781e-01 1.0000e-10 1.0000e-10 8.0256e-03 4.9659e-01 + 6.0000e-01 -9.0643e+00 1.3723e-02 9.8628e-01 3.8427e-01 6.1573e-01 1.0000e-10 1.0000e-10 8.2990e-03 5.9645e-01 + 7.0000e-01 -9.0854e+00 1.2081e-02 9.8792e-01 3.5284e-01 6.4716e-01 1.0000e-10 1.0000e-10 8.5154e-03 6.9633e-01 + 8.0000e-01 -9.1024e+00 1.0798e-02 9.8920e-01 3.2631e-01 6.7369e-01 1.0000e-10 1.0000e-10 8.6916e-03 7.9624e-01 + 9.0000e-01 -9.1165e+00 9.7659e-03 9.9023e-01 3.0358e-01 6.9642e-01 1.0000e-10 1.0000e-10 8.8381e-03 8.9616e-01 + 1.0000e+00 -9.1284e+00 8.9171e-03 9.9108e-01 2.8389e-01 7.1611e-01 1.0000e-10 1.0000e-10 8.9621e-03 9.9609e-01 + 1.1000e+00 -9.1385e+00 8.2062e-03 9.9179e-01 2.6664e-01 7.3336e-01 1.0000e-10 1.0000e-10 9.0686e-03 1.0960e+00 + 1.2000e+00 -9.1472e+00 7.6017e-03 9.9240e-01 2.5140e-01 7.4860e-01 1.0000e-10 1.0000e-10 9.1610e-03 1.1960e+00 + 1.3000e+00 -9.1549e+00 7.0811e-03 9.9292e-01 2.3784e-01 7.6216e-01 1.0000e-10 1.0000e-10 9.2421e-03 1.2959e+00 + 1.4000e+00 -9.1616e+00 6.6281e-03 9.9337e-01 2.2568e-01 7.7432e-01 1.0000e-10 1.0000e-10 9.3138e-03 1.3959e+00 + 1.5000e+00 -9.1676e+00 6.2301e-03 9.9377e-01 2.1472e-01 7.8528e-01 1.0000e-10 1.0000e-10 9.3777e-03 1.4958e+00 + 1.6000e+00 -9.1730e+00 5.8776e-03 9.9412e-01 2.0479e-01 7.9521e-01 1.0000e-10 1.0000e-10 9.4351e-03 1.5958e+00 + 1.7000e+00 -9.1778e+00 5.5632e-03 9.9444e-01 1.9574e-01 8.0426e-01 1.0000e-10 1.0000e-10 9.4868e-03 1.6958e+00 + 1.8000e+00 -9.1822e+00 5.2810e-03 9.9472e-01 1.8747e-01 8.1253e-01 1.0000e-10 1.0000e-10 9.5338e-03 1.7958e+00 + 1.9000e+00 -9.1861e+00 5.0263e-03 9.9497e-01 1.7987e-01 8.2013e-01 1.0000e-10 1.0000e-10 9.5766e-03 1.8957e+00 + 2.0000e+00 -9.1898e+00 4.7951e-03 9.9520e-01 1.7287e-01 8.2713e-01 1.0000e-10 1.0000e-10 9.6157e-03 1.9957e+00 + 2.1000e+00 -9.1931e+00 4.5844e-03 9.9542e-01 1.6640e-01 8.3360e-01 1.0000e-10 1.0000e-10 9.6517e-03 2.0957e+00 + 2.2000e+00 -9.1962e+00 4.3916e-03 9.9561e-01 1.6040e-01 8.3960e-01 1.0000e-10 1.0000e-10 9.6849e-03 2.1957e+00 + 2.3000e+00 -9.1990e+00 4.2144e-03 9.9579e-01 1.5481e-01 8.4519e-01 1.0000e-10 1.0000e-10 9.7156e-03 2.2956e+00 + 2.4000e+00 -9.2016e+00 4.0510e-03 9.9595e-01 1.4961e-01 8.5039e-01 1.0000e-10 1.0000e-10 9.7441e-03 2.3956e+00 + 2.5000e+00 -9.2040e+00 3.8999e-03 9.9610e-01 1.4475e-01 8.5525e-01 1.0000e-10 1.0000e-10 9.7707e-03 2.4956e+00 + 2.6000e+00 -9.2063e+00 3.7597e-03 9.9624e-01 1.4019e-01 8.5981e-01 1.0000e-10 1.0000e-10 9.7954e-03 2.5956e+00 + 2.7000e+00 -9.2084e+00 3.6292e-03 9.9637e-01 1.3591e-01 8.6409e-01 1.0000e-10 1.0000e-10 9.8185e-03 2.6956e+00 + 2.8000e+00 -9.2104e+00 3.5076e-03 9.9649e-01 1.3189e-01 8.6811e-01 1.0000e-10 1.0000e-10 9.8402e-03 2.7956e+00 + 2.9000e+00 -9.2123e+00 3.3939e-03 9.9661e-01 1.2810e-01 8.7190e-01 1.0000e-10 1.0000e-10 9.8606e-03 2.8956e+00 + 3.0000e+00 -9.2140e+00 3.2873e-03 9.9671e-01 1.2452e-01 8.7548e-01 1.0000e-10 1.0000e-10 9.8797e-03 2.9955e+00 + 3.1000e+00 -9.2157e+00 3.1873e-03 9.9681e-01 1.2114e-01 8.7886e-01 1.0000e-10 1.0000e-10 9.8978e-03 3.0955e+00 + 3.2000e+00 -9.2172e+00 3.0931e-03 9.9691e-01 1.1794e-01 8.8206e-01 1.0000e-10 1.0000e-10 9.9148e-03 3.1955e+00 + 3.3000e+00 -9.2187e+00 3.0044e-03 9.9700e-01 1.1490e-01 8.8510e-01 1.0000e-10 1.0000e-10 9.9310e-03 3.2955e+00 + 3.4000e+00 -9.2201e+00 2.9207e-03 9.9708e-01 1.1202e-01 8.8798e-01 1.0000e-10 1.0000e-10 9.9462e-03 3.3955e+00 + 3.5000e+00 -9.2214e+00 2.8415e-03 9.9716e-01 1.0927e-01 8.9073e-01 1.0000e-10 1.0000e-10 9.9607e-03 3.4955e+00 + 3.6000e+00 -9.2227e+00 2.7665e-03 9.9723e-01 1.0666e-01 8.9334e-01 1.0000e-10 1.0000e-10 9.9745e-03 3.5955e+00 + 3.7000e+00 -9.2239e+00 2.6954e-03 9.9730e-01 1.0417e-01 8.9583e-01 1.0000e-10 1.0000e-10 9.9876e-03 3.6955e+00 + 3.8000e+00 -9.2250e+00 2.6278e-03 9.9737e-01 1.0180e-01 8.9820e-01 1.0000e-10 1.0000e-10 1.0000e-02 3.7955e+00 + 3.9000e+00 -9.2261e+00 2.5636e-03 9.9744e-01 9.9529e-02 9.0047e-01 1.0000e-10 1.0000e-10 1.0012e-02 3.8955e+00 + 4.0000e+00 -9.2271e+00 2.5024e-03 9.9750e-01 9.7359e-02 9.0264e-01 1.0000e-10 1.0000e-10 1.0023e-02 3.9955e+00 + 4.1000e+00 -9.2281e+00 2.4441e-03 9.9756e-01 9.5282e-02 9.0472e-01 1.0000e-10 1.0000e-10 1.0034e-02 4.0954e+00 + 4.2000e+00 -9.2290e+00 2.3884e-03 9.9761e-01 9.3292e-02 9.0671e-01 1.0000e-10 1.0000e-10 1.0045e-02 4.1954e+00 + 4.3000e+00 -9.2299e+00 2.3353e-03 9.9766e-01 9.1384e-02 9.0862e-01 1.0000e-10 1.0000e-10 1.0055e-02 4.2954e+00 + 4.4000e+00 -9.2308e+00 2.2844e-03 9.9772e-01 8.9552e-02 9.1045e-01 1.0000e-10 1.0000e-10 1.0064e-02 4.3954e+00 + 4.5000e+00 -9.2316e+00 2.2358e-03 9.9776e-01 8.7792e-02 9.1221e-01 1.0000e-10 1.0000e-10 1.0073e-02 4.4954e+00 + 4.6000e+00 -9.2324e+00 2.1891e-03 9.9781e-01 8.6101e-02 9.1390e-01 1.0000e-10 1.0000e-10 1.0082e-02 4.5954e+00 + 4.7000e+00 -9.2332e+00 2.1444e-03 9.9786e-01 8.4473e-02 9.1553e-01 1.0000e-10 1.0000e-10 1.0090e-02 4.6954e+00 + 4.8000e+00 -9.2339e+00 2.1014e-03 9.9790e-01 8.2906e-02 9.1709e-01 1.0000e-10 1.0000e-10 1.0098e-02 4.7954e+00 + 4.9000e+00 -9.2346e+00 2.0602e-03 9.9794e-01 8.1396e-02 9.1860e-01 1.0000e-10 1.0000e-10 1.0106e-02 4.8954e+00 + 5.0000e+00 -9.2353e+00 2.0205e-03 9.9798e-01 7.9940e-02 9.2006e-01 1.0000e-10 1.0000e-10 1.0114e-02 4.9954e+00 + 5.1000e+00 -9.2359e+00 1.9824e-03 9.9802e-01 7.8535e-02 9.2146e-01 1.0000e-10 1.0000e-10 1.0121e-02 5.0954e+00 + 5.2000e+00 -9.2366e+00 1.9456e-03 9.9805e-01 7.7179e-02 9.2282e-01 1.0000e-10 1.0000e-10 1.0128e-02 5.1954e+00 + 5.3000e+00 -9.2372e+00 1.9102e-03 9.9809e-01 7.5869e-02 9.2413e-01 1.0000e-10 1.0000e-10 1.0135e-02 5.2954e+00 + 5.4000e+00 -9.2378e+00 1.8761e-03 9.9812e-01 7.4603e-02 9.2540e-01 1.0000e-10 1.0000e-10 1.0141e-02 5.3954e+00 + 5.5000e+00 -9.2383e+00 1.8432e-03 9.9816e-01 7.3379e-02 9.2662e-01 1.0000e-10 1.0000e-10 1.0148e-02 5.4954e+00 + 5.6000e+00 -9.2389e+00 1.8114e-03 9.9819e-01 7.2194e-02 9.2781e-01 1.0000e-10 1.0000e-10 1.0154e-02 5.5954e+00 + 5.7000e+00 -9.2394e+00 1.7806e-03 9.9822e-01 7.1046e-02 9.2895e-01 1.0000e-10 1.0000e-10 1.0159e-02 5.6954e+00 + 5.8000e+00 -9.2399e+00 1.7509e-03 9.9825e-01 6.9935e-02 9.3006e-01 1.0000e-10 1.0000e-10 1.0165e-02 5.7954e+00 + 5.9000e+00 -9.2404e+00 1.7222e-03 9.9828e-01 6.8858e-02 9.3114e-01 1.0000e-10 1.0000e-10 1.0171e-02 5.8954e+00 + 6.0000e+00 -9.2409e+00 1.6944e-03 9.9831e-01 6.7814e-02 9.3219e-01 1.0000e-10 1.0000e-10 1.0176e-02 5.9954e+00 6.1000e+00 -9.2414e+00 1.6675e-03 9.9833e-01 6.6801e-02 9.3320e-01 1.0000e-10 1.0000e-10 1.0181e-02 6.0954e+00 - 6.2000e+00 -9.2418e+00 1.6415e-03 9.9836e-01 6.5818e-02 9.3418e-01 1.0000e-10 1.0000e-10 1.0186e-02 6.1954e+00 - 6.3000e+00 -9.2422e+00 1.6162e-03 9.9838e-01 6.4864e-02 9.3514e-01 1.0000e-10 1.0000e-10 1.0191e-02 6.2954e+00 - 6.4000e+00 -9.2427e+00 1.5917e-03 9.9841e-01 6.3936e-02 9.3606e-01 1.0000e-10 1.0000e-10 1.0196e-02 6.3953e+00 - 6.5000e+00 -9.2431e+00 1.5680e-03 9.9843e-01 6.3035e-02 9.3697e-01 1.0000e-10 1.0000e-10 1.0200e-02 6.4953e+00 - 6.6000e+00 -9.2435e+00 1.5449e-03 9.9846e-01 6.2159e-02 9.3784e-01 1.0000e-10 1.0000e-10 1.0205e-02 6.5953e+00 - 6.7000e+00 -9.2439e+00 1.5225e-03 9.9848e-01 6.1307e-02 9.3869e-01 1.0000e-10 1.0000e-10 1.0209e-02 6.6953e+00 - 6.8000e+00 -9.2442e+00 1.5008e-03 9.9850e-01 6.0478e-02 9.3952e-01 1.0000e-10 1.0000e-10 1.0213e-02 6.7953e+00 - 6.9000e+00 -9.2446e+00 1.4796e-03 9.9852e-01 5.9671e-02 9.4033e-01 1.0000e-10 1.0000e-10 1.0218e-02 6.8953e+00 - 7.0000e+00 -9.2450e+00 1.4591e-03 9.9854e-01 5.8885e-02 9.4111e-01 1.0000e-10 1.0000e-10 1.0222e-02 6.9953e+00 - 7.1000e+00 -9.2453e+00 1.4391e-03 9.9856e-01 5.8120e-02 9.4188e-01 1.0000e-10 1.0000e-10 1.0225e-02 7.0953e+00 - 7.2000e+00 -9.2457e+00 1.4196e-03 9.9858e-01 5.7375e-02 9.4263e-01 1.0000e-10 1.0000e-10 1.0229e-02 7.1953e+00 - 7.3000e+00 -9.2460e+00 1.4007e-03 9.9860e-01 5.6648e-02 9.4335e-01 1.0000e-10 1.0000e-10 1.0233e-02 7.2953e+00 + 6.2000e+00 -9.2418e+00 1.6415e-03 9.9836e-01 6.5817e-02 9.3418e-01 1.0000e-10 1.0000e-10 1.0186e-02 6.1954e+00 + 6.3000e+00 -9.2422e+00 1.6162e-03 9.9838e-01 6.4863e-02 9.3514e-01 1.0000e-10 1.0000e-10 1.0191e-02 6.2953e+00 + 6.4000e+00 -9.2427e+00 1.5917e-03 9.9841e-01 6.3935e-02 9.3606e-01 1.0000e-10 1.0000e-10 1.0196e-02 6.3953e+00 + 6.5000e+00 -9.2431e+00 1.5680e-03 9.9843e-01 6.3034e-02 9.3697e-01 1.0000e-10 1.0000e-10 1.0200e-02 6.4953e+00 + 6.6000e+00 -9.2435e+00 1.5449e-03 9.9846e-01 6.2158e-02 9.3784e-01 1.0000e-10 1.0000e-10 1.0205e-02 6.5953e+00 + 6.7000e+00 -9.2439e+00 1.5225e-03 9.9848e-01 6.1306e-02 9.3869e-01 1.0000e-10 1.0000e-10 1.0209e-02 6.6953e+00 + 6.8000e+00 -9.2442e+00 1.5007e-03 9.9850e-01 6.0477e-02 9.3952e-01 1.0000e-10 1.0000e-10 1.0213e-02 6.7953e+00 + 6.9000e+00 -9.2446e+00 1.4796e-03 9.9852e-01 5.9670e-02 9.4033e-01 1.0000e-10 1.0000e-10 1.0217e-02 6.8953e+00 + 7.0000e+00 -9.2450e+00 1.4591e-03 9.9854e-01 5.8885e-02 9.4112e-01 1.0000e-10 1.0000e-10 1.0221e-02 6.9953e+00 + 7.1000e+00 -9.2453e+00 1.4391e-03 9.9856e-01 5.8119e-02 9.4188e-01 1.0000e-10 1.0000e-10 1.0225e-02 7.0953e+00 + 7.2000e+00 -9.2457e+00 1.4196e-03 9.9858e-01 5.7374e-02 9.4263e-01 1.0000e-10 1.0000e-10 1.0229e-02 7.1953e+00 + 7.3000e+00 -9.2460e+00 1.4007e-03 9.9860e-01 5.6647e-02 9.4335e-01 1.0000e-10 1.0000e-10 1.0233e-02 7.2953e+00 7.4000e+00 -9.2463e+00 1.3823e-03 9.9862e-01 5.5939e-02 9.4406e-01 1.0000e-10 1.0000e-10 1.0236e-02 7.3953e+00 - 7.5000e+00 -9.2466e+00 1.3643e-03 9.9864e-01 5.5249e-02 9.4475e-01 1.0000e-10 1.0000e-10 1.0240e-02 7.4953e+00 + 7.5000e+00 -9.2466e+00 1.3643e-03 9.9864e-01 5.5248e-02 9.4475e-01 1.0000e-10 1.0000e-10 1.0240e-02 7.4953e+00 7.6000e+00 -9.2469e+00 1.3468e-03 9.9865e-01 5.4574e-02 9.4543e-01 1.0000e-10 1.0000e-10 1.0243e-02 7.5953e+00 - 7.7000e+00 -9.2472e+00 1.3298e-03 9.9867e-01 5.3917e-02 9.4608e-01 1.0000e-10 1.0000e-10 1.0247e-02 7.6953e+00 - 7.8000e+00 -9.2475e+00 1.3132e-03 9.9869e-01 5.3275e-02 9.4673e-01 1.0000e-10 1.0000e-10 1.0250e-02 7.7953e+00 - 7.9000e+00 -9.2478e+00 1.2969e-03 9.9870e-01 5.2648e-02 9.4735e-01 1.0000e-10 1.0000e-10 1.0253e-02 7.8953e+00 - 8.0000e+00 -9.2481e+00 1.2811e-03 9.9872e-01 5.2035e-02 9.4796e-01 1.0000e-10 1.0000e-10 1.0256e-02 7.9953e+00 - 8.1000e+00 -9.2484e+00 1.2657e-03 9.9873e-01 5.1437e-02 9.4856e-01 1.0000e-10 1.0000e-10 1.0259e-02 8.0953e+00 + 7.7000e+00 -9.2472e+00 1.3298e-03 9.9867e-01 5.3916e-02 9.4608e-01 1.0000e-10 1.0000e-10 1.0247e-02 7.6953e+00 + 7.8000e+00 -9.2475e+00 1.3131e-03 9.9869e-01 5.3274e-02 9.4673e-01 1.0000e-10 1.0000e-10 1.0250e-02 7.7953e+00 + 7.9000e+00 -9.2478e+00 1.2969e-03 9.9870e-01 5.2647e-02 9.4735e-01 1.0000e-10 1.0000e-10 1.0253e-02 7.8953e+00 + 8.0000e+00 -9.2481e+00 1.2811e-03 9.9872e-01 5.2035e-02 9.4797e-01 1.0000e-10 1.0000e-10 1.0256e-02 7.9953e+00 + 8.1000e+00 -9.2484e+00 1.2657e-03 9.9873e-01 5.1436e-02 9.4856e-01 1.0000e-10 1.0000e-10 1.0259e-02 8.0953e+00 8.2000e+00 -9.2486e+00 1.2506e-03 9.9875e-01 5.0852e-02 9.4915e-01 1.0000e-10 1.0000e-10 1.0262e-02 8.1953e+00 - 8.3000e+00 -9.2489e+00 1.2359e-03 9.9876e-01 5.0281e-02 9.4972e-01 1.0000e-10 1.0000e-10 1.0265e-02 8.2953e+00 - 8.4000e+00 -9.2491e+00 1.2216e-03 9.9878e-01 4.9722e-02 9.5028e-01 1.0000e-10 1.0000e-10 1.0268e-02 8.3953e+00 - 8.5000e+00 -9.2494e+00 1.2075e-03 9.9879e-01 4.9175e-02 9.5082e-01 1.0000e-10 1.0000e-10 1.0271e-02 8.4953e+00 - 8.6000e+00 -9.2496e+00 1.1938e-03 9.9881e-01 4.8641e-02 9.5136e-01 1.0000e-10 1.0000e-10 1.0273e-02 8.5953e+00 + 8.3000e+00 -9.2489e+00 1.2359e-03 9.9876e-01 5.0280e-02 9.4972e-01 1.0000e-10 1.0000e-10 1.0265e-02 8.2953e+00 + 8.4000e+00 -9.2491e+00 1.2215e-03 9.9878e-01 4.9721e-02 9.5028e-01 1.0000e-10 1.0000e-10 1.0268e-02 8.3953e+00 + 8.5000e+00 -9.2494e+00 1.2075e-03 9.9879e-01 4.9175e-02 9.5083e-01 1.0000e-10 1.0000e-10 1.0271e-02 8.4953e+00 + 8.6000e+00 -9.2496e+00 1.1938e-03 9.9881e-01 4.8640e-02 9.5136e-01 1.0000e-10 1.0000e-10 1.0273e-02 8.5953e+00 8.7000e+00 -9.2499e+00 1.1804e-03 9.9882e-01 4.8117e-02 9.5188e-01 1.0000e-10 1.0000e-10 1.0276e-02 8.6953e+00 8.8000e+00 -9.2501e+00 1.1673e-03 9.9883e-01 4.7605e-02 9.5239e-01 1.0000e-10 1.0000e-10 1.0278e-02 8.7953e+00 8.9000e+00 -9.2503e+00 1.1544e-03 9.9885e-01 4.7104e-02 9.5290e-01 1.0000e-10 1.0000e-10 1.0281e-02 8.8953e+00 - 9.0000e+00 -9.2505e+00 1.1419e-03 9.9886e-01 4.6614e-02 9.5339e-01 1.0000e-10 1.0000e-10 1.0283e-02 8.9953e+00 - 9.1000e+00 -9.2507e+00 1.1296e-03 9.9887e-01 4.6133e-02 9.5387e-01 1.0000e-10 1.0000e-10 1.0286e-02 9.0953e+00 + 9.0000e+00 -9.2505e+00 1.1419e-03 9.9886e-01 4.6613e-02 9.5339e-01 1.0000e-10 1.0000e-10 1.0283e-02 8.9953e+00 + 9.1000e+00 -9.2507e+00 1.1296e-03 9.9887e-01 4.6132e-02 9.5387e-01 1.0000e-10 1.0000e-10 1.0286e-02 9.0953e+00 9.2000e+00 -9.2510e+00 1.1176e-03 9.9888e-01 4.5662e-02 9.5434e-01 1.0000e-10 1.0000e-10 1.0288e-02 9.1953e+00 - 9.3000e+00 -9.2512e+00 1.1059e-03 9.9889e-01 4.5201e-02 9.5480e-01 1.0000e-10 1.0000e-10 1.0291e-02 9.2953e+00 - 9.4000e+00 -9.2514e+00 1.0943e-03 9.9891e-01 4.4749e-02 9.5525e-01 1.0000e-10 1.0000e-10 1.0293e-02 9.3953e+00 - 9.5000e+00 -9.2516e+00 1.0831e-03 9.9892e-01 4.4306e-02 9.5569e-01 1.0000e-10 1.0000e-10 1.0295e-02 9.4953e+00 + 9.3000e+00 -9.2512e+00 1.1058e-03 9.9889e-01 4.5200e-02 9.5480e-01 1.0000e-10 1.0000e-10 1.0291e-02 9.2953e+00 + 9.4000e+00 -9.2514e+00 1.0943e-03 9.9891e-01 4.4748e-02 9.5525e-01 1.0000e-10 1.0000e-10 1.0293e-02 9.3953e+00 + 9.5000e+00 -9.2516e+00 1.0830e-03 9.9892e-01 4.4305e-02 9.5569e-01 1.0000e-10 1.0000e-10 1.0295e-02 9.4953e+00 9.6000e+00 -9.2518e+00 1.0720e-03 9.9893e-01 4.3871e-02 9.5613e-01 1.0000e-10 1.0000e-10 1.0297e-02 9.5953e+00 - 9.7000e+00 -9.2519e+00 1.0612e-03 9.9894e-01 4.3445e-02 9.5655e-01 1.0000e-10 1.0000e-10 1.0299e-02 9.6953e+00 + 9.7000e+00 -9.2519e+00 1.0612e-03 9.9894e-01 4.3445e-02 9.5656e-01 1.0000e-10 1.0000e-10 1.0299e-02 9.6953e+00 9.8000e+00 -9.2521e+00 1.0506e-03 9.9895e-01 4.3027e-02 9.5697e-01 1.0000e-10 1.0000e-10 1.0301e-02 9.7953e+00 - 9.9000e+00 -9.2523e+00 1.0402e-03 9.9896e-01 4.2618e-02 9.5738e-01 1.0000e-10 1.0000e-10 1.0304e-02 9.8953e+00 - 1.0000e+01 -9.2525e+00 1.0300e-03 9.9897e-01 4.2215e-02 9.5778e-01 1.0000e-10 1.0000e-10 1.0306e-02 9.9953e+00 + 9.9000e+00 -9.2523e+00 1.0402e-03 9.9896e-01 4.2617e-02 9.5738e-01 1.0000e-10 1.0000e-10 1.0303e-02 9.8953e+00 + 1.0000e+01 -9.2525e+00 1.0300e-03 9.9897e-01 4.2215e-02 9.5778e-01 1.0000e-10 1.0000e-10 1.0305e-02 9.9953e+00 diff --git a/ex11.out b/ex11.out index 6bb0667a..b95f8075 100644 --- a/ex11.out +++ b/ex11.out @@ -59,17 +59,16 @@ Initial solution 0. CaCl2 pH = 6.995 Charge balance pe = 13.632 Equilibrium with O2(g) - Specific Conductance (S/cm, 25C) = 152 - Density (g/cm) = 0.99710 + Specific Conductance (µS/cm, 25°C) = 152 + Density (g/cm³) = 0.99710 Volume (L) = 1.00298 + Viscosity (mPa s) = 0.89067 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.800e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 6.950e-20 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 - Electrical balance (eq) = 4.519e-18 + Total alkalinity (eq/kg) = 2.687e-21 + Temperature (°C) = 25.00 + Electrical balance (eq) = 4.260e-18 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 4 Total H = 1.110124e+02 @@ -78,16 +77,17 @@ Initial solution 0. CaCl2 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.058e-07 1.012e-07 -6.976 -6.995 -0.019 0.00 - OH- 1.049e-07 1.000e-07 -6.979 -7.000 -0.021 -4.10 + H+ 1.057e-07 1.012e-07 -6.976 -6.995 -0.019 0.00 + OH- 1.049e-07 1.001e-07 -6.979 -7.000 -0.021 -4.10 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 Ca 6.000e-04 Ca+2 6.000e-04 4.983e-04 -3.222 -3.302 -0.081 -18.10 - CaOH+ 8.569e-10 8.174e-10 -9.067 -9.088 -0.020 (0) + CaOH+ 8.570e-10 8.175e-10 -9.067 -9.087 -0.020 (0) Cl 1.200e-03 Cl- 1.200e-03 1.144e-03 -2.921 -2.941 -0.021 18.08 + HCl 3.981e-11 3.988e-11 -10.400 -10.399 0.001 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.404 -44.404 0.000 28.61 O(0) 5.351e-04 @@ -118,26 +118,25 @@ Initial solution 1. Initial solution for column pH = 6.997 Charge balance pe = 13.630 Equilibrium with O2(g) - Specific Conductance (S/cm, 25C) = 145 - Density (g/cm) = 0.99711 + Specific Conductance (µS/cm, 25°C) = 145 + Density (g/cm³) = 0.99711 Volume (L) = 1.00301 + Viscosity (mPa s) = 0.89020 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.200e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = -9.247e-19 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -9.243e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 3 + Iterations = 3 (7 overall) Total H = 1.110124e+02 Total O = 5.551035e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.045e-07 1.007e-07 -6.981 -6.997 -0.016 0.00 OH- 1.045e-07 1.005e-07 -6.981 -6.998 -0.017 -4.10 @@ -211,7 +210,7 @@ Reading input data for simulation 3. reset false WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 40. WARNING: Dispersivities were read for 1 cells. Last value is used till cell 40. -------------------------------- -End of Run after 1.969 Seconds. -------------------------------- +WARNING: +Calculating transport: 40 (mobile) cells, 100 shifts, 4 mixruns... + diff --git a/ex11trn.sel b/ex11trn.sel index c147c07b..3b0c3ea9 100644 --- a/ex11trn.sel +++ b/ex11trn.sel @@ -52,51 +52,51 @@ 50 9.689960048286e-04 1.051253532901e-03 2.310039951582e-04 0.000000000000e+00 1.262500000000e+00 51 9.549633447245e-04 1.071800523379e-03 2.450366552621e-04 0.000000000000e+00 1.287500000000e+00 52 9.356347670799e-04 1.089900980030e-03 2.643652329064e-04 0.000000000000e+00 1.312500000000e+00 - 53 9.097384638239e-04 1.105766147280e-03 2.902615361621e-04 0.000000000000e+00 1.337500000000e+00 - 54 8.761960899973e-04 1.119606249493e-03 3.238039099883e-04 0.000000000000e+00 1.362500000000e+00 - 55 8.344533301406e-04 1.131625845338e-03 3.655466698447e-04 0.000000000000e+00 1.387500000000e+00 - 56 7.847919650473e-04 1.142020362046e-03 4.152080349376e-04 0.000000000000e+00 1.412500000000e+00 - 57 7.284538372957e-04 1.150973656035e-03 4.715461626889e-04 3.531139638933e-28 1.437500000000e+00 - 58 6.674661295228e-04 1.158656441394e-03 5.325338704614e-04 4.216133165437e-26 1.462500000000e+00 - 59 6.042301758575e-04 1.165225432017e-03 5.957698241264e-04 2.112623923727e-24 1.487500000000e+00 - 60 5.410707042899e-04 1.170823053924e-03 6.589292956936e-04 9.154192216180e-23 1.512500000000e+00 - 61 4.799177066703e-04 1.175577598780e-03 7.200822933128e-04 3.514353862126e-21 1.537500000000e+00 - 62 4.221746364517e-04 1.179603706072e-03 7.778253635310e-04 1.207213751775e-19 1.562500000000e+00 - 63 3.687296865687e-04 1.183003078326e-03 8.312703134136e-04 3.694071260171e-18 1.587500000000e+00 - 64 3.200378094464e-04 1.185865350144e-03 8.799621905353e-04 1.035721722426e-16 1.612500000000e+00 - 65 2.762284431581e-04 1.188269047043e-03 9.237715568180e-04 2.657316482822e-15 1.637500000000e+00 - 66 2.371960440987e-04 1.190282583742e-03 9.628039557569e-04 6.272120668585e-14 1.662500000000e+00 - 67 2.026802660674e-04 1.191965263410e-03 9.973197311050e-04 1.404108204584e-12 1.687500000000e+00 - 68 1.723175379751e-04 1.193368249525e-03 1.027682402586e-03 2.970943174902e-11 1.712500000000e+00 - 69 1.456986526363e-04 1.194535490349e-03 1.054300174205e-03 5.865691826211e-10 1.737500000000e+00 - 70 1.223834694922e-04 1.195504582884e-03 1.077593516928e-03 1.150677987307e-08 1.762500000000e+00 - 71 1.019262303182e-04 1.196307568531e-03 1.097657241061e-03 2.082643004041e-07 1.787500000000e+00 - 72 8.381480436918e-05 1.196971656899e-03 1.109525476379e-03 3.329859615687e-06 1.812500000000e+00 - 73 6.668225222814e-05 1.197519877322e-03 1.024937206814e-03 5.419027046984e-05 1.837500000000e+00 - 74 5.053198367602e-05 1.197971659937e-03 7.350507107170e-04 2.072086527979e-04 1.862500000000e+00 - 75 3.879701357378e-05 1.198343349753e-03 5.356918142764e-04 3.127555860714e-04 1.887500000000e+00 - 76 3.007678322702e-05 1.198648658204e-03 4.021188008050e-04 3.839022079816e-04 1.912500000000e+00 - 77 2.344463549462e-05 1.198899057198e-03 3.068522371353e-04 4.348515636834e-04 1.937500000000e+00 - 78 1.834047972287e-05 1.199104120994e-03 2.366187847883e-04 4.725203677434e-04 1.962500000000e+00 - 79 1.438416333564e-05 1.199271821253e-03 1.838015689026e-04 5.009071338802e-04 1.987500000000e+00 - 80 1.130287552739e-05 1.199408780438e-03 1.435541337098e-04 5.225714953810e-04 2.012500000000e+00 - 81 8.894854153962e-06 1.199520488471e-03 1.125953626029e-04 5.392548916213e-04 2.037500000000e+00 - 82 7.008145850693e-06 1.199611487223e-03 8.861328634916e-05 5.521892839000e-04 2.062500000000e+00 - 83 5.526939767786e-06 1.199685527006e-03 6.993373976925e-05 5.622696602315e-04 2.087500000000e+00 - 84 4.362237388587e-06 1.199745698858e-03 5.532050326413e-05 5.701586296738e-04 2.112500000000e+00 - 85 3.445231625545e-06 1.199794545991e-03 4.384740221973e-05 5.763536830775e-04 2.137500000000e+00 - 86 2.722483623453e-06 1.199834157394e-03 3.481279241042e-05 5.812323619841e-04 2.162500000000e+00 - 87 2.152343734104e-06 1.199866246233e-03 2.768046311988e-05 5.850835965738e-04 2.187500000000e+00 - 88 1.702259901960e-06 1.199892215323e-03 2.203774543465e-05 5.881299973329e-04 2.212500000000e+00 - 89 1.346733078573e-06 1.199913211686e-03 1.756522033577e-05 5.905440232939e-04 2.237500000000e+00 - 90 1.065752199265e-06 1.199930171882e-03 1.401446577203e-05 5.924598910153e-04 2.262500000000e+00 - 91 8.435890597541e-07 1.199943859609e-03 1.119149963090e-05 5.939824556558e-04 2.287500000000e+00 - 92 6.678659094570e-07 1.199954896813e-03 8.944331672510e-06 5.951939012101e-04 2.312500000000e+00 - 93 5.288312745831e-07 1.199963789378e-03 7.153523667569e-06 5.961588225299e-04 2.337500000000e+00 - 94 4.187957414297e-07 1.199970948302e-03 5.724978920851e-06 5.969281126697e-04 2.362500000000e+00 - 95 3.316912256301e-07 1.199976707113e-03 4.584400974209e-06 5.975419539008e-04 2.387500000000e+00 - 96 2.627259549669e-07 1.199981336185e-03 3.673012861141e-06 5.980321305926e-04 2.412500000000e+00 - 97 2.081138874062e-07 1.199985054463e-03 2.944235324056e-06 5.984238253949e-04 2.437500000000e+00 - 98 1.648621779906e-07 1.199988039067e-03 2.361099156762e-06 5.987370193332e-04 2.462500000000e+00 - 99 1.306040218668e-07 1.199990433149e-03 1.894222603771e-06 5.989875866877e-04 2.487500000000e+00 - 100 1.034670378707e-07 1.199992352295e-03 1.520225735774e-06 5.991881536137e-04 2.512500000000e+00 + 53 9.097384638238e-04 1.105766147280e-03 2.902615361621e-04 0.000000000000e+00 1.337500000000e+00 + 54 8.761960899973e-04 1.119606249493e-03 3.238039099884e-04 0.000000000000e+00 1.362500000000e+00 + 55 8.344533301405e-04 1.131625845338e-03 3.655466698448e-04 0.000000000000e+00 1.387500000000e+00 + 56 7.847919650473e-04 1.142020362046e-03 4.152080349377e-04 0.000000000000e+00 1.412500000000e+00 + 57 7.284538372956e-04 1.150973656035e-03 4.715461626890e-04 3.531139650447e-28 1.437500000000e+00 + 58 6.674661295227e-04 1.158656441394e-03 5.325338704615e-04 4.216133178628e-26 1.462500000000e+00 + 59 6.042301758574e-04 1.165225432017e-03 5.957698241264e-04 2.112623929983e-24 1.487500000000e+00 + 60 5.410707042898e-04 1.170823053924e-03 6.589292956936e-04 9.154192241727e-23 1.512500000000e+00 + 61 4.799177066702e-04 1.175577598780e-03 7.200822933128e-04 3.514353871319e-21 1.537500000000e+00 + 62 4.221746364517e-04 1.179603706072e-03 7.778253635310e-04 1.207213754715e-19 1.562500000000e+00 + 63 3.687296865687e-04 1.183003078326e-03 8.312703134136e-04 3.694071268522e-18 1.587500000000e+00 + 64 3.200378094464e-04 1.185865350144e-03 8.799621905353e-04 1.035721724574e-16 1.612500000000e+00 + 65 2.762284431581e-04 1.188269047043e-03 9.237715568181e-04 2.657316487854e-15 1.637500000000e+00 + 66 2.371960440987e-04 1.190282583742e-03 9.628039557569e-04 6.272120679345e-14 1.662500000000e+00 + 67 2.026802660674e-04 1.191965263410e-03 9.973197311050e-04 1.404108206719e-12 1.687500000000e+00 + 68 1.723175379750e-04 1.193368249525e-03 1.027682402586e-03 2.970943178905e-11 1.712500000000e+00 + 69 1.456986526363e-04 1.194535490349e-03 1.054300174205e-03 5.865691832992e-10 1.737500000000e+00 + 70 1.223834694922e-04 1.195504582884e-03 1.077593516928e-03 1.150677988409e-08 1.762500000000e+00 + 71 1.019262303181e-04 1.196307568531e-03 1.097657241060e-03 2.082643005687e-07 1.787500000000e+00 + 72 8.381480436901e-05 1.196971656899e-03 1.109525476375e-03 3.329859617620e-06 1.812500000000e+00 + 73 6.668225222763e-05 1.197519877322e-03 1.024937206780e-03 5.419027048699e-05 1.837500000000e+00 + 74 5.053198367588e-05 1.197971659937e-03 7.350507107017e-04 2.072086528056e-04 1.862500000000e+00 + 75 3.879701357384e-05 1.198343349753e-03 5.356918142740e-04 3.127555860725e-04 1.887500000000e+00 + 76 3.007678322714e-05 1.198648658204e-03 4.021188008075e-04 3.839022079803e-04 1.912500000000e+00 + 77 2.344463549477e-05 1.198899057198e-03 3.068522371398e-04 4.348515636811e-04 1.937500000000e+00 + 78 1.834047972303e-05 1.199104120994e-03 2.366187847935e-04 4.725203677407e-04 1.962500000000e+00 + 79 1.438416333579e-05 1.199271821253e-03 1.838015689079e-04 5.009071338775e-04 1.987500000000e+00 + 80 1.130287552752e-05 1.199408780438e-03 1.435541337147e-04 5.225714953785e-04 2.012500000000e+00 + 81 8.894854154079e-06 1.199520488471e-03 1.125953626074e-04 5.392548916190e-04 2.037500000000e+00 + 82 7.008145850795e-06 1.199611487223e-03 8.861328635320e-05 5.521892838979e-04 2.062500000000e+00 + 83 5.526939767874e-06 1.199685527006e-03 6.993373977280e-05 5.622696602297e-04 2.087500000000e+00 + 84 4.362237388662e-06 1.199745698858e-03 5.532050326723e-05 5.701586296722e-04 2.112500000000e+00 + 85 3.445231625609e-06 1.199794545991e-03 4.384740222240e-05 5.763536830762e-04 2.137500000000e+00 + 86 2.722483623507e-06 1.199834157394e-03 3.481279241271e-05 5.812323619830e-04 2.162500000000e+00 + 87 2.152343734149e-06 1.199866246233e-03 2.768046312183e-05 5.850835965728e-04 2.187500000000e+00 + 88 1.702259901998e-06 1.199892215323e-03 2.203774543631e-05 5.881299973321e-04 2.212500000000e+00 + 89 1.346733078605e-06 1.199913211686e-03 1.756522033718e-05 5.905440232932e-04 2.237500000000e+00 + 90 1.065752199291e-06 1.199930171882e-03 1.401446577322e-05 5.924598910147e-04 2.262500000000e+00 + 91 8.435890597760e-07 1.199943859609e-03 1.119149963190e-05 5.939824556553e-04 2.287500000000e+00 + 92 6.678659094751e-07 1.199954896813e-03 8.944331673348e-06 5.951939012097e-04 2.312500000000e+00 + 93 5.288312745980e-07 1.199963789378e-03 7.153523668271e-06 5.961588225295e-04 2.337500000000e+00 + 94 4.187957414419e-07 1.199970948302e-03 5.724978921438e-06 5.969281126694e-04 2.362500000000e+00 + 95 3.316912256402e-07 1.199976707113e-03 4.584400974699e-06 5.975419539006e-04 2.387500000000e+00 + 96 2.627259549752e-07 1.199981336185e-03 3.673012861550e-06 5.980321305924e-04 2.412500000000e+00 + 97 2.081138874130e-07 1.199985054463e-03 2.944235324396e-06 5.984238253947e-04 2.437500000000e+00 + 98 1.648621779962e-07 1.199988039067e-03 2.361099157045e-06 5.987370193330e-04 2.462500000000e+00 + 99 1.306040218714e-07 1.199990433149e-03 1.894222604006e-06 5.989875866876e-04 2.487500000000e+00 + 100 1.034670378744e-07 1.199992352295e-03 1.520225735969e-06 5.991881536136e-04 2.512500000000e+00 diff --git a/ex12.out b/ex12.out index cdc1e3be..b7047e21 100644 --- a/ex12.out +++ b/ex12.out @@ -52,7 +52,11 @@ Reading input data for simulation 1. reset false WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 60. WARNING: Dispersivities were read for 1 cells. Last value is used till cell 60. -------------------------------- -End of Run after 0.695 Seconds. -------------------------------- +WARNING: +Calculating transport: 60 (mobile) cells, 60 shifts, 0 mixruns... + + +WARNING: +Calculating transport: 60 (mobile) cells, 1 shifts, 122 mixruns... + diff --git a/ex12.sel b/ex12.sel index ef0cd86c..3aeab6d2 100644 --- a/ex12.sel +++ b/ex12.sel @@ -2,7 +2,8 @@ -99 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 -99 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 -99 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 - 0.166667 0.000000000000e+00 0.000000000000e+00 2.400000000000e+01 0.000000000000e+00 + 0 2.400000000000e+01 2.400000000001e+01 0.000000000000e+00 2.400000000001e+01 + 0.166666 0.000000000000e+00 0.000000000000e+00 2.400000000000e+01 0.000000000000e+00 0.499999 0.000000000000e+00 0.000000000000e+00 2.400000000000e+01 0.000000000000e+00 0.833333 0.000000000000e+00 0.000000000000e+00 2.400000000000e+01 0.000000000000e+00 1.16667 0.000000000000e+00 0.000000000000e+00 2.400000000000e+01 0.000000000000e+00 @@ -62,63 +63,64 @@ 19.1666 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 19.5 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 19.8333 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 - 0.166667 2.173421535788e+01 2.173403615954e+01 2.265963837557e+00 2.269804797034e+01 - 0.499999 1.732877881413e+01 1.732819001088e+01 6.671809981458e+00 2.011807085414e+01 - 0.833333 1.328084086748e+01 1.327978568454e+01 1.072021430460e+01 1.760856603206e+01 - 1.16667 9.764795286473e+00 9.763307030582e+00 1.423669295686e+01 1.521227157408e+01 - 1.5 6.876991640216e+00 6.875215357905e+00 1.712478462910e+01 1.296595961052e+01 - 1.83333 4.633455928133e+00 4.631602980051e+00 1.936839700749e+01 1.089879733964e+01 - 2.16666 2.983966658034e+00 2.982242889567e+00 2.101775709912e+01 9.031344427786e+00 - 2.5 1.835677067050e+00 1.834226374342e+00 2.216577361582e+01 7.375229710913e+00 - 2.83333 1.078314727713e+00 1.077198297068e+00 2.292280169465e+01 5.933476222847e+00 - 3.16666 6.047305557783e-01 6.039382767880e-01 2.339606171644e+01 4.701379781822e+00 - 3.5 3.237709470080e-01 3.232490525611e-01 2.367675094204e+01 3.667800399955e+00 - 3.83333 1.655104664086e-01 1.651896627990e-01 2.383481033299e+01 2.816701882845e+00 - 4.16666 8.080257204240e-02 8.061777229689e-02 2.391938222449e+01 2.128773573946e+00 - 4.5 3.768568646672e-02 3.758557520644e-02 2.396241442239e+01 1.582986272154e+00 - 4.83333 1.679767756894e-02 1.674652868444e-02 2.398325346955e+01 1.157966472263e+00 - 5.16666 7.158752063679e-03 7.134045500715e-03 2.399286595323e+01 8.331126368302e-01 - 5.49999 2.918449214332e-03 2.907143229927e-03 2.399709285587e+01 5.894176946330e-01 - 5.83333 1.138722696040e-03 1.133812460274e-03 2.399886618691e+01 4.099979928623e-01 - 6.16666 4.254688736287e-04 4.234417524551e-04 2.399957655782e+01 2.803568840130e-01 - 6.49999 1.523139982618e-04 1.515173752161e-04 2.399984848234e+01 1.884293356575e-01 - 6.83333 5.227267557720e-05 5.197429168579e-05 2.399994802552e+01 1.244625136586e-01 - 7.16666 1.720732480116e-05 1.710067686693e-05 2.399998289920e+01 8.078763518550e-02 - 7.49999 5.436192373459e-06 5.399780020706e-06 2.399999460014e+01 5.153271367857e-02 - 7.83333 1.649130959657e-06 1.637243353841e-06 2.399999836271e+01 3.231654723820e-02 - 8.16666 4.806491381349e-07 4.769347036498e-07 2.399999952304e+01 1.995365519989e-02 - 8.49999 1.346725366297e-07 1.335606226384e-07 2.399999986642e+01 1.218958904341e-02 - 8.83332 3.634765898121e-08 3.602792250397e-08 2.399999996396e+01 7.477287156792e-03 - 9.16666 9.688623034758e-09 9.597781456108e-09 2.399999999040e+01 4.798487471579e-03 - 9.49999 3.521368975345e-09 3.486221174468e-09 2.399999999651e+01 3.529761278079e-03 - 9.83332 5.266906600210e-09 5.215747970437e-09 2.399999999478e+01 3.350250042338e-03 - 10.1667 1.826871464229e-08 1.810246493761e-08 2.399999998189e+01 4.187235209478e-03 - 10.5 6.734356349056e-08 6.676736728795e-08 2.399999993323e+01 6.195716015130e-03 - 10.8333 2.402639314420e-07 2.383343475316e-07 2.399999976165e+01 9.768664014259e-03 - 11.1667 8.242843018529e-07 8.180891310040e-07 2.399999918189e+01 1.557505013667e-02 - 11.5 2.716922549622e-06 2.697877300163e-06 2.399999730209e+01 2.462264894765e-02 - 11.8333 8.598959192629e-06 8.542946913445e-06 2.399999145700e+01 3.834165440595e-02 - 12.1667 2.611819663843e-05 2.596074280433e-05 2.399997403917e+01 5.868305693760e-02 - 12.5 7.608967015818e-05 7.566701745557e-05 2.399992433285e+01 8.822247450201e-02 - 12.8333 2.124941138159e-04 2.114118449108e-04 2.399978858796e+01 1.302558794738e-01 - 13.1667 5.685367828663e-04 5.658959587642e-04 2.399943410375e+01 1.888688939345e-01 - 13.5 1.456506511045e-03 1.450373187812e-03 2.399854962640e+01 2.689568433456e-01 - 13.8333 3.570772369452e-03 3.557230846941e-03 2.399644276858e+01 3.761696764504e-01 - 14.1667 8.372702446682e-03 8.344318209058e-03 2.399165568100e+01 5.167554989993e-01 - 14.5 1.876668623423e-02 1.871028306249e-02 2.398128971588e+01 6.972801618698e-01 - 14.8333 4.018855158439e-02 4.008246069508e-02 2.395991753791e+01 9.242091443387e-01 - 15.1667 8.218587185627e-02 8.199729506133e-02 2.391800270314e+01 1.203352315083e+00 - 15.5 1.604262488969e-01 1.601100284707e-01 2.383988996926e+01 1.539191520809e+00 - 15.8333 2.987859018573e-01 2.982865097082e-01 2.370171348750e+01 1.934133647612e+00 - 16.1667 5.307585250720e-01 5.300169112920e-01 2.346998308535e+01 2.387754908519e+00 - 16.5 8.989956902916e-01 8.979611508040e-01 2.310203884529e+01 2.896121734266e+00 - 16.8333 1.451582042996e+00 1.450226361448e+00 2.254977363415e+01 3.451285434102e+00 - 17.1666 2.233972730862e+00 2.232300602870e+00 2.176769939235e+01 4.041047732562e+00 - 17.5 3.276610346604e+00 3.274658958326e+00 2.072534103672e+01 4.649079608378e+00 - 17.8333 4.580032365347e+00 4.577856581111e+00 1.942214341403e+01 5.255445898757e+00 - 18.1666 6.101263069883e+00 6.098911107791e+00 1.790108888776e+01 5.837544906627e+00 - 18.5 7.746550873541e+00 7.744044086572e+00 1.625595590971e+01 6.371420572385e+00 - 18.8333 9.375124349924e+00 9.372456106626e+00 1.462754389062e+01 6.833351769771e+00 - 19.1666 1.081616435699e+01 1.081332243662e+01 1.318667756165e+01 7.201577340318e+00 - 19.5 1.189711477283e+01 1.189411416970e+01 1.210588582945e+01 7.457984760712e+00 - 19.8333 1.247718192302e+01 1.247408415260e+01 1.152591584705e+01 7.589581188890e+00 + 0 2.400000000000e+01 2.400000000001e+01 0.000000000000e+00 2.400000000001e+01 + 0.166666 2.173421535788e+01 2.173403615953e+01 2.265963837555e+00 2.269804797033e+01 + 0.499999 1.732877881413e+01 1.732819001088e+01 6.671809981450e+00 2.011807085413e+01 + 0.833333 1.328084086748e+01 1.327978568454e+01 1.072021430459e+01 1.760856603205e+01 + 1.16667 9.764795286473e+00 9.763307030588e+00 1.423669295684e+01 1.521227157407e+01 + 1.5 6.876991640216e+00 6.875215357914e+00 1.712478462909e+01 1.296595961052e+01 + 1.83333 4.633455928133e+00 4.631602980060e+00 1.936839700748e+01 1.089879733963e+01 + 2.16666 2.983966658034e+00 2.982242889576e+00 2.101775709911e+01 9.031344427785e+00 + 2.5 1.835677067050e+00 1.834226374349e+00 2.216577361581e+01 7.375229710913e+00 + 2.83333 1.078314727713e+00 1.077198297073e+00 2.292280169465e+01 5.933476222847e+00 + 3.16666 6.047305557783e-01 6.039382767912e-01 2.339606171644e+01 4.701379781822e+00 + 3.5 3.237709470080e-01 3.232490525631e-01 2.367675094204e+01 3.667800399955e+00 + 3.83333 1.655104664086e-01 1.651896628001e-01 2.383481033299e+01 2.816701882845e+00 + 4.16666 8.080257204240e-02 8.061777229747e-02 2.391938222449e+01 2.128773573946e+00 + 4.5 3.768568646672e-02 3.758557520673e-02 2.396241442239e+01 1.582986272154e+00 + 4.83333 1.679767756894e-02 1.674652868457e-02 2.398325346955e+01 1.157966472263e+00 + 5.16666 7.158752063679e-03 7.134045500772e-03 2.399286595323e+01 8.331126368302e-01 + 5.49999 2.918449214332e-03 2.907143229950e-03 2.399709285587e+01 5.894176946330e-01 + 5.83333 1.138722696040e-03 1.133812460283e-03 2.399886618691e+01 4.099979928623e-01 + 6.16666 4.254688736287e-04 4.234417524586e-04 2.399957655782e+01 2.803568840130e-01 + 6.49999 1.523139982618e-04 1.515173752174e-04 2.399984848234e+01 1.884293356575e-01 + 6.83333 5.227267557720e-05 5.197429168621e-05 2.399994802552e+01 1.244625136586e-01 + 7.16666 1.720732480116e-05 1.710067686707e-05 2.399998289920e+01 8.078763518550e-02 + 7.49999 5.436192373459e-06 5.399780020750e-06 2.399999460014e+01 5.153271367857e-02 + 7.83333 1.649130959657e-06 1.637243353855e-06 2.399999836271e+01 3.231654723820e-02 + 8.16666 4.806491381349e-07 4.769347036536e-07 2.399999952304e+01 1.995365519989e-02 + 8.49999 1.346725366297e-07 1.335606226395e-07 2.399999986642e+01 1.218958904341e-02 + 8.83332 3.634765898121e-08 3.602792250425e-08 2.399999996396e+01 7.477287156792e-03 + 9.16666 9.688623034758e-09 9.597781456181e-09 2.399999999040e+01 4.798487471579e-03 + 9.49999 3.521368975345e-09 3.486221174492e-09 2.399999999651e+01 3.529761278079e-03 + 9.83332 5.266906600210e-09 5.215747970469e-09 2.399999999478e+01 3.350250042338e-03 + 10.1667 1.826871464229e-08 1.810246493771e-08 2.399999998189e+01 4.187235209478e-03 + 10.5 6.734356349056e-08 6.676736728834e-08 2.399999993323e+01 6.195716015130e-03 + 10.8333 2.402639314420e-07 2.383343475330e-07 2.399999976165e+01 9.768664014259e-03 + 11.1667 8.242843018529e-07 8.180891310089e-07 2.399999918189e+01 1.557505013667e-02 + 11.5 2.716922549622e-06 2.697877300180e-06 2.399999730209e+01 2.462264894765e-02 + 11.8333 8.598959192629e-06 8.542946913497e-06 2.399999145700e+01 3.834165440595e-02 + 12.1667 2.611819663843e-05 2.596074280449e-05 2.399997403917e+01 5.868305693760e-02 + 12.5 7.608967015818e-05 7.566701745603e-05 2.399992433285e+01 8.822247450201e-02 + 12.8333 2.124941138159e-04 2.114118449121e-04 2.399978858796e+01 1.302558794738e-01 + 13.1667 5.685367828663e-04 5.658959587677e-04 2.399943410375e+01 1.888688939345e-01 + 13.5 1.456506511045e-03 1.450373187820e-03 2.399854962640e+01 2.689568433456e-01 + 13.8333 3.570772369452e-03 3.557230846963e-03 2.399644276858e+01 3.761696764504e-01 + 14.1667 8.372702446682e-03 8.344318209107e-03 2.399165568100e+01 5.167554989993e-01 + 14.5 1.876668623423e-02 1.871028306260e-02 2.398128971588e+01 6.972801618698e-01 + 14.8333 4.018855158439e-02 4.008246069530e-02 2.395991753791e+01 9.242091443387e-01 + 15.1667 8.218587185627e-02 8.199729506176e-02 2.391800270314e+01 1.203352315083e+00 + 15.5 1.604262488969e-01 1.601100284715e-01 2.383988996926e+01 1.539191520809e+00 + 15.8333 2.987859018573e-01 2.982865097096e-01 2.370171348749e+01 1.934133647612e+00 + 16.1667 5.307585250720e-01 5.300169112942e-01 2.346998308535e+01 2.387754908519e+00 + 16.5 8.989956902916e-01 8.979611508073e-01 2.310203884528e+01 2.896121734266e+00 + 16.8333 1.451582042996e+00 1.450226361452e+00 2.254977363414e+01 3.451285434102e+00 + 17.1666 2.233972730862e+00 2.232300602876e+00 2.176769939234e+01 4.041047732562e+00 + 17.5 3.276610346604e+00 3.274658958333e+00 2.072534103671e+01 4.649079608378e+00 + 17.8333 4.580032365347e+00 4.577856581120e+00 1.942214341402e+01 5.255445898757e+00 + 18.1666 6.101263069883e+00 6.098911107801e+00 1.790108888776e+01 5.837544906627e+00 + 18.5 7.746550873541e+00 7.744044086582e+00 1.625595590970e+01 6.371420572386e+00 + 18.8333 9.375124349924e+00 9.372456106636e+00 1.462754389061e+01 6.833351769771e+00 + 19.1666 1.081616435699e+01 1.081332243663e+01 1.318667756164e+01 7.201577340319e+00 + 19.5 1.189711477283e+01 1.189411416971e+01 1.210588582944e+01 7.457984760712e+00 + 19.8333 1.247718192302e+01 1.247408415261e+01 1.152591584704e+01 7.589581188890e+00 diff --git a/ex12a.out b/ex12a.out index c01b5c9d..a208c7c7 100644 --- a/ex12a.out +++ b/ex12a.out @@ -113,6 +113,10 @@ WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. 2060 erfc = b * (a1 + b * (a2 + b * (a3 + b * (a4 + b * a5)))) * EXP(-(z * z)) 2080 RETURN END +WARNING: +Calculating transport: 20 (mobile) cells, 1 shifts, 14 mixruns... + + SELECTED_OUTPUT active false # See also PRINT; selected_output false SOLUTION 1-57 24.0 mM KNO3 @@ -134,6 +138,10 @@ WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 60. WARNING: No dispersivities were read; disp = 0 assumed. active true # See also PRINT; selected_output false END +WARNING: +Calculating transport: 60 (mobile) cells, 1 shifts, 122 mixruns... + + SOLUTION # Initial solution calculation for pure water PRINT reset false # Initial solution calculation not printed @@ -164,7 +172,3 @@ WARNING: No dispersivities were read; disp = 0 assumed. 7.5000e+00 1.0547e-05 1.2626e-06 -3.9008e-08 -2.6645e-09 8.5000e+00 3.8231e-06 2.9867e-07 -2.2212e-09 -8.8983e-11 -------------------------------- -End of Run after 0.619 Seconds. -------------------------------- - diff --git a/ex12a.sel b/ex12a.sel index 9a045c61..737186d3 100644 --- a/ex12a.sel +++ b/ex12a.sel @@ -1,4 +1,5 @@ dist_x temp Na_mmol K_mmol Cl_mmol error_Cl error_Na + 0 2.400000000000e+01 2.400000000001e+01 0.000000000000e+00 2.400000000001e+01 0.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 1.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 2.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 @@ -19,26 +20,27 @@ 17.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 18.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 19.5 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 - 0.5 1.686181418415e+01 1.686133609178e+01 7.138663899864e+00 2.011377529321e+01 4.381717835986e-06 5.068336357331e-04 - 1.5 6.421492325960e+00 6.419558988183e+00 1.758044099843e+01 1.294968671941e+01 1.730376475377e-05 5.127073405375e-04 - 2.5 1.759908541854e+00 1.758534659754e+00 2.224146533045e+01 7.342808261289e+00 3.561257293184e-05 9.186006161569e-05 - 3.5 3.571924631562e-01 3.567054178249e-01 2.364329457694e+01 3.623408283677e+00 4.959925524361e-05 -3.682506955192e-05 - 4.5 5.490209781371e-02 5.479279662390e-02 2.394520720114e+01 1.538555967128e+00 5.006313596799e-05 -1.968447681390e-05 - 5.5 6.484238380348e-03 6.467124486967e-03 2.399353287476e+01 5.556625533108e-01 3.820767165765e-05 -4.051252484583e-06 - 6.5 5.926340095484e-04 5.906785140003e-04 2.399940932133e+01 1.684990632467e-01 2.262672987214e-05 -4.873052767750e-07 - 7.5 4.190926756604e-05 4.174299654809e-05 2.399995825704e+01 4.224784404202e-02 1.054699173426e-05 -3.900783491533e-08 - 8.5 2.276345750780e-06 2.265781717003e-06 2.399999773430e+01 8.664946370890e-03 3.823149392512e-06 -2.221207693054e-09 - 9.5 1.396593677778e-07 1.389123928270e-07 2.399999986118e+01 2.055609847092e-03 - 10.5 1.138869021831e-06 1.133447609647e-06 2.399999886664e+01 4.374443607422e-03 - 11.5 2.090811414205e-05 2.082226931291e-05 2.399997917780e+01 2.044715368546e-02 - 12.5 2.951795282278e-04 2.941575641991e-04 2.399970584241e+01 7.995922685932e-02 - 13.5 3.221164570742e-03 3.212049565180e-03 2.399678795014e+01 2.567109777338e-01 - 14.5 2.715473190226e-02 2.709461903664e-02 2.397290538002e+01 6.850286499837e-01 - 15.5 1.753541123879e-01 1.750694114102e-01 2.382493058642e+01 1.533872870595e+00 - 16.5 8.525032220200e-01 8.515834471021e-01 2.314841654903e+01 2.902126148036e+00 - 17.5 3.032149931402e+00 3.030261194913e+00 2.096973880001e+01 4.663139220088e+00 - 18.5 7.550952821146e+00 7.548456392614e+00 1.645154360353e+01 6.385483516912e+00 - 19.5 1.235834674495e+01 1.235529368930e+01 1.164470631042e+01 7.468268986450e+00 + 0 2.400000000000e+01 2.400000000001e+01 0.000000000000e+00 2.400000000001e+01 -2.401100845928e-11 -2.401057130896e-11 + 0.5 1.686181418415e+01 1.686133609178e+01 7.138663899854e+00 2.011377529319e+01 4.381717848272e-06 5.068336357383e-04 + 1.5 6.421492325960e+00 6.419558988193e+00 1.758044099841e+01 1.294968671941e+01 1.730376475858e-05 5.127073405275e-04 + 2.5 1.759908541854e+00 1.758534659760e+00 2.224146533044e+01 7.342808261289e+00 3.561257293223e-05 9.186006160917e-05 + 3.5 3.571924631562e-01 3.567054178267e-01 2.364329457694e+01 3.623408283677e+00 4.959925524357e-05 -3.682506955372e-05 + 4.5 5.490209781371e-02 5.479279662420e-02 2.394520720114e+01 1.538555967128e+00 5.006313596798e-05 -1.968447681420e-05 + 5.5 6.484238380348e-03 6.467124487003e-03 2.399353287476e+01 5.556625533108e-01 3.820767165765e-05 -4.051252484619e-06 + 6.5 5.926340095484e-04 5.906785140034e-04 2.399940932133e+01 1.684990632467e-01 2.262672987214e-05 -4.873052767781e-07 + 7.5 4.190926756604e-05 4.174299654829e-05 2.399995825704e+01 4.224784404202e-02 1.054699173426e-05 -3.900783491554e-08 + 8.5 2.276345750780e-06 2.265781717013e-06 2.399999773430e+01 8.664946370890e-03 3.823149392512e-06 -2.221207693064e-09 + 9.5 1.396593677778e-07 1.389123928276e-07 2.399999986118e+01 2.055609847092e-03 + 10.5 1.138869021831e-06 1.133447609651e-06 2.399999886664e+01 4.374443607422e-03 + 11.5 2.090811414205e-05 2.082226931298e-05 2.399997917780e+01 2.044715368546e-02 + 12.5 2.951795282278e-04 2.941575642002e-04 2.399970584241e+01 7.995922685932e-02 + 13.5 3.221164570742e-03 3.212049565193e-03 2.399678795014e+01 2.567109777338e-01 + 14.5 2.715473190226e-02 2.709461903675e-02 2.397290538002e+01 6.850286499837e-01 + 15.5 1.753541123879e-01 1.750694114109e-01 2.382493058642e+01 1.533872870595e+00 + 16.5 8.525032220200e-01 8.515834471049e-01 2.314841654903e+01 2.902126148036e+00 + 17.5 3.032149931402e+00 3.030261194920e+00 2.096973880000e+01 4.663139220088e+00 + 18.5 7.550952821146e+00 7.548456392624e+00 1.645154360352e+01 6.385483516912e+00 + 19.5 1.235834674495e+01 1.235529368931e+01 1.164470631041e+01 7.468268986451e+00 0.166667 0.000000000000e+00 0.000000000000e+00 2.400000000000e+01 0.000000000000e+00 0.5 0.000000000000e+00 0.000000000000e+00 2.400000000000e+01 0.000000000000e+00 0.833333 0.000000000000e+00 0.000000000000e+00 2.400000000000e+01 0.000000000000e+00 @@ -99,64 +101,64 @@ 19.1667 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 19.5 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 19.8333 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 - 0.166667 2.173421305916e+01 2.173403386064e+01 2.265966136455e+00 2.269804666232e+01 - 0.5 1.732877230198e+01 1.732818349807e+01 6.671816494274e+00 2.011806700220e+01 9.000883903140e-08 3.998622944698e-05 - 0.833333 1.328083118787e+01 1.327977600374e+01 1.072022398540e+01 1.760855984597e+01 - 1.16667 9.764783869793e+00 9.763295612550e+00 1.423670437489e+01 1.521226338239e+01 - 1.5 6.876979954453e+00 6.875203671268e+00 1.712479631574e+01 1.296594983171e+01 1.040652460309e-06 5.706265745225e-05 - 1.83333 4.633445178532e+00 4.631592230621e+00 1.936840775692e+01 1.089878644682e+01 - 2.16667 2.983957613764e+00 2.982233846709e+00 2.101776614198e+01 9.031332911156e+00 - 2.5 1.835670035272e+00 1.834219344978e+00 2.216578064518e+01 7.375218041926e+00 3.202792295669e-06 1.617537639093e-05 - 2.83333 1.078309641703e+00 1.077193213976e+00 2.292280677774e+01 5.933464823770e+00 - 3.16667 6.047271172834e-01 6.039348411878e-01 2.339606515204e+01 4.701369003158e+00 - 3.5 3.237687663205e-01 3.232468743662e-01 2.367675312023e+01 3.667790507030e+00 5.217031890564e-06 -3.366526093211e-06 - 3.83333 1.655091653734e-01 1.651883636801e-01 2.383481163211e+01 2.816693051605e+00 - 4.16667 8.080184009388e-02 8.061704168636e-02 2.391938295510e+01 2.128765894912e+00 - 4.5 3.768529738011e-02 3.758518697799e-02 2.396241481061e+01 1.582979760725e+00 5.639342371778e-06 -2.476867167992e-06 - 4.83333 1.679748179371e-02 1.674633341890e-02 2.398325366481e+01 1.157961083143e+00 - 5.16667 7.158658672534e-03 7.133952391592e-03 2.399286604633e+01 8.331082803358e-01 - 5.5 2.918406916536e-03 2.907101078191e-03 2.399709289802e+01 5.894142528792e-01 4.455972089243e-06 -4.912290758068e-07 - 5.83333 1.138704483513e-03 1.133794318814e-03 2.399886620505e+01 4.099953343115e-01 - 6.16667 4.254614091982e-04 4.234343206106e-04 2.399957656525e+01 2.803548753978e-01 - 6.5 1.523110828883e-04 1.515144739596e-04 2.399984848524e+01 1.884278508359e-01 2.697942282987e-06 -4.814123673435e-08 - 6.83333 5.227158933236e-05 5.197321123209e-05 2.399994802660e+01 1.244614394111e-01 - 7.16667 1.720693831522e-05 1.710029263492e-05 2.399998289958e+01 8.078687428985e-02 - 7.5 5.436060934909e-06 5.399649415859e-06 2.399999460027e+01 5.153218579106e-02 1.262649985228e-06 -2.664487783102e-09 - 7.83333 1.649088195275e-06 1.637200882983e-06 2.399999836275e+01 3.231618817632e-02 - 8.16667 4.806358157844e-07 4.769214798001e-07 2.399999952305e+01 1.995341519605e-02 - 8.5 1.346685590700e-07 1.335566766303e-07 2.399999986642e+01 1.218943044883e-02 2.986653145740e-07 -8.898265268152e-11 - 8.83333 3.634651793240e-08 3.602679113519e-08 2.399999996396e+01 7.477181955867e-03 - 9.16667 9.688299803978e-09 9.597461159179e-09 2.399999999040e+01 4.798414843919e-03 - 9.5 3.521245209155e-09 3.486098607328e-09 2.399999999651e+01 3.529705336617e-03 - 9.83333 5.266729325119e-09 5.215572366246e-09 2.399999999478e+01 3.350197792357e-03 - 10.1667 1.826814042878e-08 1.810189577515e-08 2.399999998189e+01 4.187174719459e-03 - 10.5 6.734157441183e-08 6.676539459846e-08 2.399999993322e+01 6.195634766519e-03 - 10.8333 2.402572726136e-07 2.383277400047e-07 2.399999976166e+01 9.768547401637e-03 - 11.1667 8.242629300769e-07 8.180679126515e-07 2.399999918191e+01 1.557488011882e-02 - 11.5 2.716856871595e-06 2.697812059715e-06 2.399999730215e+01 2.462240289906e-02 - 11.8333 8.598766106045e-06 8.542755015490e-06 2.399999145719e+01 3.834130428025e-02 - 12.1667 2.611765408526e-05 2.596020332196e-05 2.399997403971e+01 5.868256892109e-02 - 12.5 7.608821445992e-05 7.566556929096e-05 2.399992433429e+01 8.822180939210e-02 - 12.8333 2.124903882618e-04 2.114081368778e-04 2.399978859166e+01 1.302549940497e-01 - 13.1667 5.685276979853e-04 5.658869124388e-04 2.399943411280e+01 1.888677435760e-01 - 13.5 1.456485427866e-03 1.450352184734e-03 2.399854964740e+01 2.689553860820e-01 - 13.8333 3.570725867122e-03 3.557184501335e-03 2.399644281492e+01 3.761678784768e-01 - 14.1667 8.372605102191e-03 8.344221152514e-03 2.399165577806e+01 5.167533414733e-01 - 14.5 1.876649314861e-02 1.871009047197e-02 2.398128990847e+01 6.972776485204e-01 - 14.8333 4.018818934234e-02 4.008209924639e-02 2.395991789936e+01 9.242063091065e-01 - 15.1667 8.218523044497e-02 8.199665482891e-02 2.391800334337e+01 1.203349228727e+00 - 15.5 1.604251797020e-01 1.601089608901e-01 2.383989103684e+01 1.539188295218e+00 - 15.8333 2.987842293055e-01 2.982848391773e-01 2.370171515802e+01 1.934130436525e+00 - 16.1667 5.307560799548e-01 5.300144684649e-01 2.346998552818e+01 2.387751903539e+00 - 16.5 8.989923689458e-01 8.979578317768e-01 2.310204216431e+01 2.896119155486e+00 - 16.8333 1.451577886835e+00 1.450222207351e+00 2.254977778824e+01 3.451283515303e+00 - 17.1667 2.233968006579e+00 2.232295880171e+00 2.176770411505e+01 4.041046701772e+00 - 17.5 3.276605594066e+00 3.274654206819e+00 2.072534578822e+01 4.649079665430e+00 - 17.8333 4.580028376255e+00 4.577852592589e+00 1.942214740255e+01 5.255447192243e+00 - 18.1667 6.101260773083e+00 6.098908811265e+00 1.790109118429e+01 5.837547513121e+00 - 18.5 7.746551133352e+00 7.744044346449e+00 1.625595564983e+01 6.371424480908e+00 - 18.8333 9.375127722697e+00 9.372459479182e+00 1.462754051806e+01 6.833356874076e+00 - 19.1667 1.081617088116e+01 1.081332896012e+01 1.318667103815e+01 7.201583440737e+00 - 19.5 1.189712387179e+01 1.189412326747e+01 1.210587673168e+01 7.457991576091e+00 - 19.8333 1.247719247117e+01 1.247409469918e+01 1.152590530046e+01 7.589588377779e+00 + 0.166667 2.173421305916e+01 2.173403386064e+01 2.265966136453e+00 2.269804666232e+01 + 0.5 1.732877230198e+01 1.732818349806e+01 6.671816494266e+00 2.011806700219e+01 9.000885020996e-08 3.998622945188e-05 + 0.833333 1.328083118787e+01 1.327977600374e+01 1.072022398538e+01 1.760855984596e+01 + 1.16667 9.764783869793e+00 9.763295612556e+00 1.423670437487e+01 1.521226338238e+01 + 1.5 6.876979954453e+00 6.875203671277e+00 1.712479631572e+01 1.296594983170e+01 1.040652464979e-06 5.706265744324e-05 + 1.83333 4.633445178532e+00 4.631592230631e+00 1.936840775690e+01 1.089878644682e+01 + 2.16667 2.983957613764e+00 2.982233846718e+00 2.101776614197e+01 9.031332911154e+00 + 2.5 1.835670035272e+00 1.834219344985e+00 2.216578064517e+01 7.375218041925e+00 3.202792296072e-06 1.617537638391e-05 + 2.83333 1.078309641703e+00 1.077193213981e+00 2.292280677774e+01 5.933464823770e+00 + 3.16667 6.047271172834e-01 6.039348411910e-01 2.339606515204e+01 4.701369003158e+00 + 3.5 3.237687663205e-01 3.232468743681e-01 2.367675312023e+01 3.667790507030e+00 5.217031890525e-06 -3.366526095183e-06 + 3.83333 1.655091653734e-01 1.651883636812e-01 2.383481163211e+01 2.816693051605e+00 + 4.16667 8.080184009388e-02 8.061704168694e-02 2.391938295510e+01 2.128765894912e+00 + 4.5 3.768529738011e-02 3.758518697828e-02 2.396241481061e+01 1.582979760725e+00 5.639342371762e-06 -2.476867168276e-06 + 4.83333 1.679748179371e-02 1.674633341903e-02 2.398325366481e+01 1.157961083143e+00 + 5.16667 7.158658672534e-03 7.133952391650e-03 2.399286604633e+01 8.331082803358e-01 + 5.5 2.918406916536e-03 2.907101078214e-03 2.399709289802e+01 5.894142528792e-01 4.455972089240e-06 -4.912290758305e-07 + 5.83333 1.138704483513e-03 1.133794318824e-03 2.399886620505e+01 4.099953343115e-01 + 6.16667 4.254614091982e-04 4.234343206141e-04 2.399957656525e+01 2.803548753978e-01 + 6.5 1.523110828883e-04 1.515144739609e-04 2.399984848524e+01 1.884278508359e-01 2.697942282987e-06 -4.814123673560e-08 + 6.83333 5.227158933236e-05 5.197321123251e-05 2.399994802660e+01 1.244614394111e-01 + 7.16667 1.720693831522e-05 1.710029263506e-05 2.399998289958e+01 8.078687428985e-02 + 7.5 5.436060934909e-06 5.399649415902e-06 2.399999460027e+01 5.153218579106e-02 1.262649985228e-06 -2.664487783145e-09 + 7.83333 1.649088195275e-06 1.637200882996e-06 2.399999836275e+01 3.231618817632e-02 + 8.16667 4.806358157844e-07 4.769214798039e-07 2.399999952305e+01 1.995341519605e-02 + 8.5 1.346685590700e-07 1.335566766313e-07 2.399999986642e+01 1.218943044883e-02 2.986653145740e-07 -8.898265268258e-11 + 8.83333 3.634651793240e-08 3.602679113547e-08 2.399999996396e+01 7.477181955867e-03 + 9.16667 9.688299803978e-09 9.597461159252e-09 2.399999999040e+01 4.798414843919e-03 + 9.5 3.521245209155e-09 3.486098607352e-09 2.399999999651e+01 3.529705336617e-03 + 9.83333 5.266729325119e-09 5.215572366277e-09 2.399999999478e+01 3.350197792357e-03 + 10.1667 1.826814042878e-08 1.810189577526e-08 2.399999998189e+01 4.187174719459e-03 + 10.5 6.734157441183e-08 6.676539459885e-08 2.399999993322e+01 6.195634766519e-03 + 10.8333 2.402572726136e-07 2.383277400061e-07 2.399999976166e+01 9.768547401637e-03 + 11.1667 8.242629300769e-07 8.180679126565e-07 2.399999918191e+01 1.557488011882e-02 + 11.5 2.716856871595e-06 2.697812059732e-06 2.399999730215e+01 2.462240289906e-02 + 11.8333 8.598766106045e-06 8.542755015542e-06 2.399999145719e+01 3.834130428025e-02 + 12.1667 2.611765408526e-05 2.596020332212e-05 2.399997403971e+01 5.868256892109e-02 + 12.5 7.608821445992e-05 7.566556929143e-05 2.399992433429e+01 8.822180939210e-02 + 12.8333 2.124903882618e-04 2.114081368791e-04 2.399978859166e+01 1.302549940497e-01 + 13.1667 5.685276979853e-04 5.658869124423e-04 2.399943411280e+01 1.888677435760e-01 + 13.5 1.456485427866e-03 1.450352184743e-03 2.399854964740e+01 2.689553860821e-01 + 13.8333 3.570725867122e-03 3.557184501357e-03 2.399644281492e+01 3.761678784769e-01 + 14.1667 8.372605102191e-03 8.344221152563e-03 2.399165577806e+01 5.167533414733e-01 + 14.5 1.876649314861e-02 1.871009047208e-02 2.398128990847e+01 6.972776485204e-01 + 14.8333 4.018818934234e-02 4.008209924661e-02 2.395991789936e+01 9.242063091066e-01 + 15.1667 8.218523044497e-02 8.199665482934e-02 2.391800334337e+01 1.203349228728e+00 + 15.5 1.604251797020e-01 1.601089608909e-01 2.383989103683e+01 1.539188295218e+00 + 15.8333 2.987842293055e-01 2.982848391787e-01 2.370171515802e+01 1.934130436525e+00 + 16.1667 5.307560799548e-01 5.300144684670e-01 2.346998552818e+01 2.387751903539e+00 + 16.5 8.989923689458e-01 8.979578317801e-01 2.310204216431e+01 2.896119155486e+00 + 16.8333 1.451577886835e+00 1.450222207355e+00 2.254977778824e+01 3.451283515303e+00 + 17.1667 2.233968006579e+00 2.232295880177e+00 2.176770411504e+01 4.041046701772e+00 + 17.5 3.276605594066e+00 3.274654206826e+00 2.072534578822e+01 4.649079665430e+00 + 17.8333 4.580028376255e+00 4.577852592597e+00 1.942214740254e+01 5.255447192243e+00 + 18.1667 6.101260773083e+00 6.098908811274e+00 1.790109118428e+01 5.837547513122e+00 + 18.5 7.746551133352e+00 7.744044346459e+00 1.625595564982e+01 6.371424480909e+00 + 18.8333 9.375127722697e+00 9.372459479193e+00 1.462754051805e+01 6.833356874077e+00 + 19.1667 1.081617088116e+01 1.081332896013e+01 1.318667103814e+01 7.201583440738e+00 + 19.5 1.189712387179e+01 1.189412326748e+01 1.210587673167e+01 7.457991576092e+00 + 19.8333 1.247719247117e+01 1.247409469920e+01 1.152590530045e+01 7.589588377780e+00 -99 2.500000000000e+01 0.000000000000e+00 0.000000000000e+00 0.000000000000e+00 diff --git a/ex13a.out b/ex13a.out index adfca8f5..687ebc49 100644 --- a/ex13a.out +++ b/ex13a.out @@ -54,16 +54,15 @@ Initial solution 0. pH = 7.000 pe = 13.622 Equilibrium with O2(g) - Specific Conductance (S/cm, 25C) = 191 - Density (g/cm) = 0.99712 + Specific Conductance (µS/cm, 25°C) = 191 + Density (g/cm³) = 0.99712 Volume (L) = 1.00302 + Viscosity (mPa s) = 0.89024 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.500e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 1.549e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 1.516e-09 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.000e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -33.33 Iterations = 3 @@ -73,13 +72,14 @@ Initial solution 0. ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.057e-07 1.012e-07 -6.976 -6.995 -0.019 -4.10 H+ 1.042e-07 1.000e-07 -6.982 -7.000 -0.018 0.00 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 Cl 1.000e-03 Cl- 1.000e-03 9.576e-04 -3.000 -3.019 -0.019 18.08 + HCl 3.294e-11 3.299e-11 -10.482 -10.482 0.001 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.394 -44.394 0.000 28.61 N(5) 1.000e-03 @@ -141,16 +141,15 @@ Initial solution 1. pH = 7.000 pe = 13.622 Equilibrium with O2(g) - Specific Conductance (S/cm, 25C) = 140 - Density (g/cm) = 0.99711 + Specific Conductance (µS/cm, 25°C) = 140 + Density (g/cm³) = 0.99711 Volume (L) = 1.00301 + Viscosity (mPa s) = 0.89011 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.000e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.450e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.450e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 3 @@ -160,7 +159,7 @@ Initial solution 1. ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.049e-07 1.012e-07 -6.979 -6.995 -0.016 -4.11 H+ 1.035e-07 1.000e-07 -6.985 -7.000 -0.015 0.00 @@ -228,16 +227,15 @@ X 1.000e-03 mol pH = 7.000 Charge balance pe = 13.622 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 140 - Density (g/cm) = 0.99711 + Specific Conductance (µS/cm, 25°C) = 140 + Density (g/cm³) = 0.99711 Volume (L) = 1.00301 + Viscosity (mPa s) = 0.89011 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.000e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.450e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.450e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 0 @@ -247,7 +245,7 @@ X 1.000e-03 mol ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.049e-07 1.012e-07 -6.979 -6.995 -0.016 -4.11 H+ 1.035e-07 1.000e-07 -6.985 -7.000 -0.015 0.00 @@ -305,6 +303,10 @@ Reading input data for simulation 3. END WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. +WARNING: +Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... + + SOLUTION 0 # Original solution with KNO3 reenters units mmol/l pH 7.0 @@ -336,7 +338,7 @@ WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. 20 GRAPH_Y TOT("Na")*1000 TOT("Cl")*1000 -end END -------------------------------- -End of Run after 0.107 Seconds. -------------------------------- +WARNING: +Calculating transport: 20 (mobile) cells, 10 shifts, 1 mixruns... + diff --git a/ex13ac.out b/ex13ac.out index 70a088a7..c1ffbb60 100644 --- a/ex13ac.out +++ b/ex13ac.out @@ -54,16 +54,15 @@ Initial solution 0. pH = 7.000 pe = 13.622 Equilibrium with O2(g) - Specific Conductance (S/cm, 25C) = 191 - Density (g/cm) = 0.99712 + Specific Conductance (µS/cm, 25°C) = 191 + Density (g/cm³) = 0.99712 Volume (L) = 1.00302 + Viscosity (mPa s) = 0.89024 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.500e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 1.549e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 1.516e-09 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.000e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -33.33 Iterations = 3 @@ -73,13 +72,14 @@ Initial solution 0. ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.057e-07 1.012e-07 -6.976 -6.995 -0.019 -4.10 H+ 1.042e-07 1.000e-07 -6.982 -7.000 -0.018 0.00 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 Cl 1.000e-03 Cl- 1.000e-03 9.576e-04 -3.000 -3.019 -0.019 18.08 + HCl 3.294e-11 3.299e-11 -10.482 -10.482 0.001 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.394 -44.394 0.000 28.61 N(5) 1.000e-03 @@ -141,16 +141,15 @@ Initial solution 1. pH = 7.000 pe = 13.622 Equilibrium with O2(g) - Specific Conductance (S/cm, 25C) = 140 - Density (g/cm) = 0.99711 + Specific Conductance (µS/cm, 25°C) = 140 + Density (g/cm³) = 0.99711 Volume (L) = 1.00301 + Viscosity (mPa s) = 0.89011 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.000e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.450e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.450e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 3 @@ -160,7 +159,7 @@ Initial solution 1. ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.049e-07 1.012e-07 -6.979 -6.995 -0.016 -4.11 H+ 1.035e-07 1.000e-07 -6.985 -7.000 -0.015 0.00 @@ -228,16 +227,15 @@ X 1.000e-03 mol pH = 7.000 Charge balance pe = 13.622 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 140 - Density (g/cm) = 0.99711 + Specific Conductance (µS/cm, 25°C) = 140 + Density (g/cm³) = 0.99711 Volume (L) = 1.00301 + Viscosity (mPa s) = 0.89011 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.000e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.450e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.450e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 0 @@ -247,7 +245,7 @@ X 1.000e-03 mol ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.049e-07 1.012e-07 -6.979 -6.995 -0.016 -4.11 H+ 1.035e-07 1.000e-07 -6.985 -7.000 -0.015 0.00 @@ -305,6 +303,10 @@ Reading input data for simulation 3. END WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. +WARNING: +Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... + + SOLUTION 0 # Original solution with KNO3 reenters units mmol/l pH 7.0 @@ -337,6 +339,10 @@ WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. 30 plot_xy dist, TOT("Cl")*1000, color = Green, symbol = Diamond, symbol_size = 7 -end END +WARNING: +Calculating transport: 20 (mobile) cells, 10 shifts, 1 mixruns... + + PRINT user_graph false TITLE Example 13C.--1 mmol/l NaCl/NO3 enters column with stagnant zones. @@ -818,6 +824,10 @@ WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. END WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. +WARNING: +Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... + + SOLUTION 0 # Original solution reenters units mmol/l pH 7.0 @@ -847,7 +857,7 @@ WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. 30 plot_xy dist, TOT("Cl")*1000, color = Green, symbol = Plus -end END -------------------------------- -End of Run after 0.315 Seconds. -------------------------------- +WARNING: +Calculating transport: 20 (mobile) cells, 10 shifts, 1 mixruns... + diff --git a/ex13b.out b/ex13b.out index 43cb049e..d3c45b2c 100644 --- a/ex13b.out +++ b/ex13b.out @@ -54,16 +54,15 @@ Initial solution 0. pH = 7.000 pe = 13.622 Equilibrium with O2(g) - Specific Conductance (S/cm, 25C) = 191 - Density (g/cm) = 0.99712 + Specific Conductance (µS/cm, 25°C) = 191 + Density (g/cm³) = 0.99712 Volume (L) = 1.00302 + Viscosity (mPa s) = 0.89024 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.500e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 1.549e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 1.516e-09 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.000e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -33.33 Iterations = 3 @@ -73,13 +72,14 @@ Initial solution 0. ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.057e-07 1.012e-07 -6.976 -6.995 -0.019 -4.10 H+ 1.042e-07 1.000e-07 -6.982 -7.000 -0.018 0.00 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 Cl 1.000e-03 Cl- 1.000e-03 9.576e-04 -3.000 -3.019 -0.019 18.08 + HCl 3.294e-11 3.299e-11 -10.482 -10.482 0.001 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.394 -44.394 0.000 28.61 N(5) 1.000e-03 @@ -141,16 +141,15 @@ Initial solution 1. pH = 7.000 pe = 13.622 Equilibrium with O2(g) - Specific Conductance (S/cm, 25C) = 140 - Density (g/cm) = 0.99711 + Specific Conductance (µS/cm, 25°C) = 140 + Density (g/cm³) = 0.99711 Volume (L) = 1.00301 + Viscosity (mPa s) = 0.89011 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.000e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.450e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.450e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 3 @@ -160,7 +159,7 @@ Initial solution 1. ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.049e-07 1.012e-07 -6.979 -6.995 -0.016 -4.11 H+ 1.035e-07 1.000e-07 -6.985 -7.000 -0.015 0.00 @@ -228,16 +227,15 @@ X 1.000e-03 mol pH = 7.000 Charge balance pe = 13.622 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 140 - Density (g/cm) = 0.99711 + Specific Conductance (µS/cm, 25°C) = 140 + Density (g/cm³) = 0.99711 Volume (L) = 1.00301 + Viscosity (mPa s) = 0.89011 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.000e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.450e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.450e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 0 @@ -247,7 +245,7 @@ X 1.000e-03 mol ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.049e-07 1.012e-07 -6.979 -6.995 -0.016 -4.11 H+ 1.035e-07 1.000e-07 -6.985 -7.000 -0.015 0.00 @@ -425,6 +423,10 @@ Reading input data for simulation 3. END WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. +WARNING: +Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... + + SOLUTION 0 # Original solution reenters units mmol/l pH 7.0 @@ -456,7 +458,7 @@ WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. 20 GRAPH_Y TOT("Na")*1000 TOT("Cl")*1000 -end END -------------------------------- -End of Run after 0.114 Seconds. -------------------------------- +WARNING: +Calculating transport: 20 (mobile) cells, 10 shifts, 1 mixruns... + diff --git a/ex13c.out b/ex13c.out index 8f9b288e..5b39c4a4 100644 --- a/ex13c.out +++ b/ex13c.out @@ -54,16 +54,15 @@ Initial solution 0. pH = 7.000 pe = 13.622 Equilibrium with O2(g) - Specific Conductance (S/cm, 25C) = 191 - Density (g/cm) = 0.99712 + Specific Conductance (µS/cm, 25°C) = 191 + Density (g/cm³) = 0.99712 Volume (L) = 1.00302 + Viscosity (mPa s) = 0.89024 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.500e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 1.549e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 1.516e-09 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.000e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -33.33 Iterations = 3 @@ -73,13 +72,14 @@ Initial solution 0. ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.057e-07 1.012e-07 -6.976 -6.995 -0.019 -4.10 H+ 1.042e-07 1.000e-07 -6.982 -7.000 -0.018 0.00 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 Cl 1.000e-03 Cl- 1.000e-03 9.576e-04 -3.000 -3.019 -0.019 18.08 + HCl 3.294e-11 3.299e-11 -10.482 -10.482 0.001 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.394 -44.394 0.000 28.61 N(5) 1.000e-03 @@ -141,16 +141,15 @@ Initial solution 1. pH = 7.000 pe = 13.622 Equilibrium with O2(g) - Specific Conductance (S/cm, 25C) = 140 - Density (g/cm) = 0.99711 + Specific Conductance (µS/cm, 25°C) = 140 + Density (g/cm³) = 0.99711 Volume (L) = 1.00301 + Viscosity (mPa s) = 0.89011 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.000e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.450e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.450e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 3 @@ -160,7 +159,7 @@ Initial solution 1. ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.049e-07 1.012e-07 -6.979 -6.995 -0.016 -4.11 H+ 1.035e-07 1.000e-07 -6.985 -7.000 -0.015 0.00 @@ -228,16 +227,15 @@ X 1.000e-03 mol pH = 7.000 Charge balance pe = 13.622 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 140 - Density (g/cm) = 0.99711 + Specific Conductance (µS/cm, 25°C) = 140 + Density (g/cm³) = 0.99711 Volume (L) = 1.00301 + Viscosity (mPa s) = 0.89011 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.000e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.450e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.450e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 0 @@ -247,7 +245,7 @@ X 1.000e-03 mol ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.049e-07 1.012e-07 -6.979 -6.995 -0.016 -4.11 H+ 1.035e-07 1.000e-07 -6.985 -7.000 -0.015 0.00 @@ -745,6 +743,10 @@ Reading input data for simulation 3. END WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. +WARNING: +Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... + + SOLUTION 0 # Original solution reenters units mmol/l pH 7.0 @@ -776,7 +778,7 @@ WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. 20 GRAPH_Y TOT("Na")*1000 TOT("Cl")*1000 -end END -------------------------------- -End of Run after 0.207 Seconds. -------------------------------- +WARNING: +Calculating transport: 20 (mobile) cells, 10 shifts, 1 mixruns... + diff --git a/ex14.out b/ex14.out index 73183ed5..f83c0560 100644 --- a/ex14.out +++ b/ex14.out @@ -87,101 +87,109 @@ Initial solution 1. Brine pH = 5.713 pe = 14.962 Equilibrium with O2(g) - Specific Conductance (S/cm, 25C) = 264030 - Density (g/cm) = 1.21643 - Volume (L) = 1.13687 + Specific Conductance (µS/cm, 25°C) = 264118 + Density (g/cm³) = 1.21637 + Volume (L) = 1.13692 + Viscosity (mPa s) = 1.95530 Activity of water = 0.785 - Ionic strength (mol/kgw) = 7.268e+00 + Ionic strength (mol/kgw) = 7.269e+00 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 3.827e-03 + Total alkalinity (eq/kg) = 3.725e-03 Total CO2 (mol/kg) = 3.960e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = -2.444e-14 + Temperature (°C) = 25.00 + Electrical balance (eq) = -2.164e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 12 - Total H = 1.110163e+02 - Total O = 5.553696e+01 + Total H = 1.110162e+02 + Total O = 5.553686e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 2.756e-06 1.936e-06 -5.560 -5.713 -0.153 0.00 OH- 8.878e-09 4.101e-09 -8.052 -8.387 -0.335 6.33 H2O 5.551e+01 7.846e-01 1.744 -0.105 0.000 18.07 As 2.500e-08 - H2AsO4- 2.498e-08 1.373e-07 -7.602 -6.862 0.740 (0) - H3AsO4 8.667e-12 4.620e-11 -11.062 -10.335 0.727 (0) - HAsO4-2 8.524e-12 7.774e-09 -11.069 -8.109 2.960 (0) - AsO4-3 2.777e-21 1.270e-14 -20.556 -13.896 6.660 (0) + H2AsO4- 2.498e-08 1.374e-07 -7.602 -6.862 0.740 (0) + H3AsO4 8.668e-12 4.623e-11 -11.062 -10.335 0.727 (0) + HAsO4-2 8.510e-12 7.778e-09 -11.070 -8.109 2.961 (0) + AsO4-3 2.765e-21 1.270e-14 -20.558 -13.896 6.662 (0) C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -144.673 -143.947 0.727 35.46 + CH4 0.000e+00 0.000e+00 -144.672 -143.945 0.727 35.46 C(4) 3.960e-03 - CaHCO3+ 1.904e-03 1.153e-03 -2.720 -2.938 -0.218 10.08 - MgHCO3+ 1.559e-03 7.763e-04 -2.807 -3.110 -0.303 6.01 - HCO3- 2.200e-04 1.272e-04 -3.658 -3.895 -0.238 43.93 - NaHCO3 1.439e-04 7.671e-04 -3.842 -3.115 0.727 1.80 - CO2 1.325e-04 7.061e-04 -3.878 -3.151 0.727 34.43 - CaCO3 6.898e-07 3.677e-06 -6.161 -5.435 0.727 -14.60 - MgCO3 2.876e-07 1.533e-06 -6.541 -5.814 0.727 -17.09 - NaCO3- 1.119e-07 6.152e-07 -6.951 -6.211 0.740 35.65 - CO3-2 2.754e-08 3.082e-09 -7.560 -8.511 -0.951 8.23 - (CO2)2 1.717e-09 9.151e-09 -8.765 -8.039 0.727 68.87 + CaHCO3+ 1.913e-03 1.159e-03 -2.718 -2.936 -0.218 10.08 + MgHCO3+ 1.571e-03 7.824e-04 -2.804 -3.107 -0.303 6.01 + CO2 2.346e-04 7.083e-04 -3.630 -3.150 0.480 34.43 + HCO3- 2.207e-04 1.276e-04 -3.656 -3.894 -0.238 36.42 + NaHCO3 1.947e-05 9.149e-04 -4.711 -3.039 1.672 28.00 + CaCO3 6.929e-07 3.695e-06 -6.159 -5.432 0.727 -14.60 + MgCO3 2.898e-07 1.545e-06 -6.538 -5.811 0.727 -17.09 + CO3-2 2.763e-08 3.091e-09 -7.559 -8.510 -0.951 9.50 + (CO2)2 1.727e-09 9.208e-09 -8.763 -8.036 0.727 68.87 Ca 4.655e-01 - Ca+2 4.629e-01 7.102e-01 -0.335 -0.149 0.186 -13.79 - CaHCO3+ 1.904e-03 1.153e-03 -2.720 -2.938 -0.218 10.08 - CaSO4 7.012e-04 3.738e-03 -3.154 -2.427 0.727 7.50 - CaCO3 6.898e-07 3.677e-06 -6.161 -5.435 0.727 -14.60 - CaOH+ 8.691e-09 4.776e-08 -8.061 -7.321 0.740 (0) - CaHSO4+ 8.657e-09 4.758e-08 -8.063 -7.323 0.740 (0) + Ca+2 4.635e-01 7.115e-01 -0.334 -0.148 0.186 -13.79 + CaHCO3+ 1.913e-03 1.159e-03 -2.718 -2.936 -0.218 10.08 + CaSO4 1.076e-04 5.737e-04 -3.968 -3.241 0.727 7.50 + CaCO3 6.929e-07 3.695e-06 -6.159 -5.432 0.727 -14.60 + CaOH+ 8.702e-09 4.785e-08 -8.060 -7.320 0.740 (0) + CaHSO4+ 1.328e-09 7.302e-09 -8.877 -8.137 0.740 (0) Cl 6.642e+00 Cl- 6.642e+00 4.165e+00 0.822 0.620 -0.203 20.27 + HCl 2.238e-09 2.778e-06 -8.650 -5.556 3.094 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -45.226 -44.499 0.727 28.61 Mg 1.609e-01 - Mg+2 1.587e-01 5.214e-01 -0.800 -0.283 0.517 -17.22 - MgHCO3+ 1.559e-03 7.763e-04 -2.807 -3.110 -0.303 6.01 - MgSO4 6.786e-04 3.617e-03 -3.168 -2.442 0.727 5.84 - MgOH+ 1.226e-06 7.671e-07 -5.912 -6.115 -0.204 (0) - MgCO3 2.876e-07 1.533e-06 -6.541 -5.814 0.727 -17.09 + Mg+2 1.593e-01 5.239e-01 -0.798 -0.281 0.517 -17.22 + MgHCO3+ 1.571e-03 7.824e-04 -2.804 -3.107 -0.303 6.01 + MgSO4 2.187e-05 6.220e-04 -4.660 -3.206 1.454 -0.83 + MgOH+ 1.231e-06 7.707e-07 -5.910 -6.113 -0.204 (0) + MgCO3 2.898e-07 1.545e-06 -6.538 -5.811 0.727 -17.09 + Mg(SO4)2-2 2.456e-08 9.289e-09 -7.610 -8.032 -0.422 60.47 Na 5.402e+00 - Na+ 5.399e+00 1.072e+01 0.732 1.030 0.298 1.52 - NaSO4- 2.749e-03 1.590e-03 -2.561 -2.799 -0.238 40.51 - NaHCO3 1.439e-04 7.671e-04 -3.842 -3.115 0.727 1.80 - NaCO3- 1.119e-07 6.152e-07 -6.951 -6.211 0.740 35.65 - NaOH 8.248e-19 4.397e-18 -18.084 -17.357 0.727 (0) -O(0) 9.590e-05 - O2 4.795e-05 2.556e-04 -4.319 -3.592 0.727 30.40 + Na+ 5.397e+00 1.072e+01 0.732 1.030 0.298 1.52 + NaSO4- 4.504e-03 1.899e-04 -2.346 -3.722 -1.375 44.00 + NaHCO3 1.947e-05 9.149e-04 -4.711 -3.039 1.672 28.00 + NaOH 8.245e-19 4.397e-18 -18.084 -17.357 0.727 (0) +O(0) 9.586e-05 + O2 4.793e-05 2.556e-04 -4.319 -3.592 0.727 30.40 S(-2) 0.000e+00 - H2S 0.000e+00 0.000e+00 -141.065 -140.338 0.727 37.16 - HS- 0.000e+00 0.000e+00 -141.232 -141.567 -0.335 23.12 - S-2 0.000e+00 0.000e+00 -147.759 -148.772 -1.013 (0) + H2S 0.000e+00 0.000e+00 -141.880 -141.153 0.727 36.27 + HS- 0.000e+00 0.000e+00 -142.046 -142.382 -0.335 23.12 + S-2 0.000e+00 0.000e+00 -148.573 -149.587 -1.013 (0) + (H2S)2 0.000e+00 0.000e+00 -284.311 -283.584 0.727 30.09 S(6) 4.725e-03 - NaSO4- 2.749e-03 1.590e-03 -2.561 -2.799 -0.238 40.51 - CaSO4 7.012e-04 3.738e-03 -3.154 -2.427 0.727 7.50 - MgSO4 6.786e-04 3.617e-03 -3.168 -2.442 0.727 5.84 - SO4-2 5.959e-04 2.959e-05 -3.225 -4.529 -1.304 24.57 - CaHSO4+ 8.657e-09 4.758e-08 -8.063 -7.323 0.740 (0) - HSO4- 1.014e-09 5.572e-09 -8.994 -8.254 0.740 42.16 + NaSO4- 4.504e-03 1.899e-04 -2.346 -3.722 -1.375 44.00 + CaSO4 1.076e-04 5.737e-04 -3.968 -3.241 0.727 7.50 + SO4-2 9.132e-05 4.534e-06 -4.039 -5.344 -1.304 24.85 + MgSO4 2.187e-05 6.220e-04 -4.660 -3.206 1.454 -0.83 + Mg(SO4)2-2 2.456e-08 9.289e-09 -7.610 -8.032 -0.422 60.47 + CaHSO4+ 1.328e-09 7.302e-09 -8.877 -8.137 0.740 (0) + HSO4- 1.553e-10 8.536e-10 -9.809 -9.069 0.740 42.16 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -0.40 -4.68 -4.28 CaSO4 + Anhydrite -1.21 -5.49 -4.28 CaSO4 Aragonite -0.32 -8.66 -8.34 CaCO3 Calcite -0.18 -8.66 -8.48 CaCO3 CH4(g) -141.14 -143.95 -2.80 CH4 CO2(g) -1.68 -3.15 -1.47 CO2 - Dolomite -0.36 -17.45 -17.09 CaMg(CO3)2 - Gypsum -0.31 -4.89 -4.58 CaSO4:2H2O + Dolomite -0.36 -17.45 -17.08 CaMg(CO3)2 + Epsomite -4.62 -6.36 -1.74 MgSO4:7H2O + Gypsum -1.12 -5.70 -4.58 CaSO4:2H2O H2(g) -41.40 -44.50 -3.10 H2 H2O(g) -1.61 -0.11 1.50 H2O - H2S(g) -139.29 -147.28 -7.99 H2S + H2S(g) -140.16 -148.09 -7.94 H2S Halite 0.08 1.65 1.57 NaCl + Hexahydrite -4.69 -6.26 -1.57 MgSO4:6H2O + Kieserite -4.57 -5.73 -1.16 MgSO4:H2O + Mirabilite -3.10 -4.34 -1.24 Na2SO4:10H2O O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000 - Sulfur -103.87 -98.99 4.88 S + Sulfur -104.69 -99.80 4.88 S + Thenardite -2.98 -3.28 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -221,120 +229,128 @@ Using pure phase assemblage 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Calcite 0.00 -8.48 -8.48 1.000e-01 1.021e-01 2.144e-03 -Dolomite 0.00 -17.09 -17.09 1.600e+00 1.599e+00 -1.094e-03 +Calcite 0.00 -8.48 -8.48 1.000e-01 1.049e-01 4.907e-03 +Dolomite 0.00 -17.08 -17.08 1.600e+00 1.598e+00 -2.489e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles As 2.500e-08 2.500e-08 - C 4.004e-03 4.004e-03 - Ca 4.644e-01 4.644e-01 + C 4.031e-03 4.031e-03 + Ca 4.631e-01 4.631e-01 Cl 6.642e+00 6.642e+00 - Mg 1.620e-01 1.620e-01 + Mg 1.634e-01 1.634e-01 Na 5.402e+00 5.402e+00 S 4.725e-03 4.725e-03 ----------------------------Description of solution---------------------------- - pH = 5.885 Charge balance - pe = 14.789 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 264025 - Density (g/cm) = 1.21642 - Volume (L) = 1.13687 + pH = 5.879 Charge balance + pe = 14.796 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 264107 + Density (g/cm³) = 1.21635 + Volume (L) = 1.13691 + Viscosity (mPa s) = 1.95565 Activity of water = 0.785 - Ionic strength (mol/kgw) = 7.268e+00 + Ionic strength (mol/kgw) = 7.269e+00 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 3.914e-03 - Total CO2 (mol/kg) = 4.004e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 1.056e-13 + Total alkalinity (eq/kg) = 3.867e-03 + Total CO2 (mol/kg) = 4.031e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 7.756e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 - Total H = 1.110163e+02 - Total O = 5.553709e+01 + Total H = 1.110162e+02 + Total O = 5.553707e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.854e-06 1.303e-06 -5.732 -5.885 -0.153 0.00 - OH- 1.320e-08 6.096e-09 -7.880 -8.215 -0.335 6.33 + H+ 1.882e-06 1.322e-06 -5.725 -5.879 -0.153 0.00 + OH- 1.300e-08 6.005e-09 -7.886 -8.221 -0.335 6.33 H2O 5.551e+01 7.846e-01 1.744 -0.105 0.000 18.07 As 2.500e-08 - H2AsO4- 2.498e-08 1.373e-07 -7.602 -6.862 0.740 (0) - HAsO4-2 1.267e-11 1.156e-08 -10.897 -7.937 2.960 (0) - H3AsO4 5.830e-12 3.108e-11 -11.234 -10.508 0.727 (0) - AsO4-3 6.137e-21 2.805e-14 -20.212 -13.552 6.660 (0) + H2AsO4- 2.498e-08 1.374e-07 -7.602 -6.862 0.740 (0) + HAsO4-2 1.246e-11 1.139e-08 -10.904 -7.944 2.961 (0) + H3AsO4 5.919e-12 3.157e-11 -11.228 -10.501 0.727 (0) + AsO4-3 5.930e-21 2.724e-14 -20.227 -13.565 6.662 (0) C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -144.837 -144.110 0.727 35.46 -C(4) 4.004e-03 - CaHCO3+ 1.938e-03 1.174e-03 -2.713 -2.930 -0.218 10.08 - MgHCO3+ 1.601e-03 7.975e-04 -2.796 -3.098 -0.303 6.01 - HCO3- 2.245e-04 1.299e-04 -3.649 -3.887 -0.238 43.93 - NaHCO3 1.469e-04 7.829e-04 -3.833 -3.106 0.727 1.80 - CO2 9.094e-05 4.848e-04 -4.041 -3.314 0.727 34.43 - CaCO3 1.044e-06 5.565e-06 -5.981 -5.255 0.727 -14.60 - MgCO3 4.392e-07 2.341e-06 -6.357 -5.631 0.727 -17.09 - NaCO3- 1.698e-07 9.333e-07 -6.770 -6.030 0.740 35.65 - CO3-2 4.178e-08 4.675e-09 -7.379 -8.330 -0.951 8.24 - (CO2)2 8.092e-10 4.313e-09 -9.092 -8.365 0.727 68.87 -Ca 4.644e-01 - Ca+2 4.618e-01 7.086e-01 -0.336 -0.150 0.186 -13.79 - CaHCO3+ 1.938e-03 1.174e-03 -2.713 -2.930 -0.218 10.08 - CaSO4 6.991e-04 3.727e-03 -3.155 -2.429 0.727 7.50 - CaCO3 1.044e-06 5.565e-06 -5.981 -5.255 0.727 -14.60 - CaOH+ 1.289e-08 7.083e-08 -7.890 -7.150 0.740 (0) - CaHSO4+ 5.807e-09 3.191e-08 -8.236 -7.496 0.740 (0) + CH4 0.000e+00 0.000e+00 -144.824 -144.097 0.727 35.46 +C(4) 4.031e-03 + CaHCO3+ 1.967e-03 1.191e-03 -2.706 -2.924 -0.218 10.08 + MgHCO3+ 1.648e-03 8.210e-04 -2.783 -3.086 -0.303 6.01 + HCO3- 2.281e-04 1.319e-04 -3.642 -3.880 -0.238 36.42 + CO2 1.656e-04 5.000e-04 -3.781 -3.301 0.480 34.43 + NaHCO3 2.013e-05 9.457e-04 -4.696 -3.024 1.672 28.00 + CaCO3 1.043e-06 5.563e-06 -5.982 -5.255 0.727 -14.60 + MgCO3 4.453e-07 2.375e-06 -6.351 -5.624 0.727 -17.09 + CO3-2 4.182e-08 4.679e-09 -7.379 -8.330 -0.951 9.50 + (CO2)2 8.605e-10 4.588e-09 -9.065 -8.338 0.727 68.87 +Ca 4.631e-01 + Ca+2 4.610e-01 7.077e-01 -0.336 -0.150 0.186 -13.79 + CaHCO3+ 1.967e-03 1.191e-03 -2.706 -2.924 -0.218 10.08 + CaSO4 1.070e-04 5.707e-04 -3.971 -3.244 0.727 7.50 + CaCO3 1.043e-06 5.563e-06 -5.982 -5.255 0.727 -14.60 + CaOH+ 1.267e-08 6.969e-08 -7.897 -7.157 0.740 (0) + CaHSO4+ 9.022e-10 4.961e-09 -9.045 -8.304 0.740 (0) Cl 6.642e+00 Cl- 6.642e+00 4.165e+00 0.822 0.620 -0.203 20.27 + HCl 1.529e-09 1.897e-06 -8.816 -5.722 3.094 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -45.226 -44.499 0.727 28.61 -Mg 1.620e-01 - Mg+2 1.597e-01 5.249e-01 -0.797 -0.280 0.517 -17.22 - MgHCO3+ 1.601e-03 7.975e-04 -2.796 -3.098 -0.303 6.01 - MgSO4 6.827e-04 3.639e-03 -3.166 -2.439 0.727 5.84 - MgOH+ 1.834e-06 1.148e-06 -5.737 -5.940 -0.204 (0) - MgCO3 4.392e-07 2.341e-06 -6.357 -5.631 0.727 -17.09 +Mg 1.634e-01 + Mg+2 1.617e-01 5.318e-01 -0.791 -0.274 0.517 -17.22 + MgHCO3+ 1.648e-03 8.210e-04 -2.783 -3.086 -0.303 6.01 + MgSO4 2.220e-05 6.314e-04 -4.654 -3.200 1.454 -0.83 + MgOH+ 1.831e-06 1.146e-06 -5.737 -5.941 -0.204 (0) + MgCO3 4.453e-07 2.375e-06 -6.351 -5.624 0.727 -17.09 + Mg(SO4)2-2 2.494e-08 9.431e-09 -7.603 -8.025 -0.422 60.47 Na 5.402e+00 - Na+ 5.399e+00 1.072e+01 0.732 1.030 0.298 1.52 - NaSO4- 2.748e-03 1.589e-03 -2.561 -2.799 -0.238 40.52 - NaHCO3 1.469e-04 7.829e-04 -3.833 -3.106 0.727 1.80 - NaCO3- 1.698e-07 9.333e-07 -6.770 -6.030 0.740 35.65 - NaOH 1.226e-18 6.536e-18 -17.911 -17.185 0.727 (0) -O(0) 9.590e-05 - O2 4.795e-05 2.556e-04 -4.319 -3.592 0.727 30.40 + Na+ 5.397e+00 1.072e+01 0.732 1.030 0.298 1.52 + NaSO4- 4.504e-03 1.899e-04 -2.346 -3.721 -1.375 43.99 + NaHCO3 2.013e-05 9.457e-04 -4.696 -3.024 1.672 28.00 + NaOH 1.207e-18 6.438e-18 -17.918 -17.191 0.727 (0) +O(0) 9.586e-05 + O2 4.793e-05 2.556e-04 -4.319 -3.592 0.727 30.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -141.404 -141.739 -0.335 23.12 - H2S 0.000e+00 0.000e+00 -141.410 -140.683 0.727 37.16 - S-2 0.000e+00 0.000e+00 -147.759 -148.772 -1.013 (0) + H2S 0.000e+00 0.000e+00 -142.211 -141.484 0.727 36.27 + HS- 0.000e+00 0.000e+00 -142.212 -142.547 -0.335 23.12 + S-2 0.000e+00 0.000e+00 -148.573 -149.587 -1.013 (0) + (H2S)2 0.000e+00 0.000e+00 -284.974 -284.247 0.727 30.09 S(6) 4.725e-03 - NaSO4- 2.748e-03 1.589e-03 -2.561 -2.799 -0.238 40.52 - CaSO4 6.991e-04 3.727e-03 -3.155 -2.429 0.727 7.50 - MgSO4 6.827e-04 3.639e-03 -3.166 -2.439 0.727 5.84 - SO4-2 5.956e-04 2.958e-05 -3.225 -4.529 -1.304 24.57 - CaHSO4+ 5.807e-09 3.191e-08 -8.236 -7.496 0.740 (0) - HSO4- 6.816e-10 3.746e-09 -9.166 -8.426 0.740 42.16 + NaSO4- 4.504e-03 1.899e-04 -2.346 -3.721 -1.375 43.99 + CaSO4 1.070e-04 5.707e-04 -3.971 -3.244 0.727 7.50 + SO4-2 9.132e-05 4.534e-06 -4.039 -5.343 -1.304 24.85 + MgSO4 2.220e-05 6.314e-04 -4.654 -3.200 1.454 -0.83 + Mg(SO4)2-2 2.494e-08 9.431e-09 -7.603 -8.025 -0.422 60.47 + CaHSO4+ 9.022e-10 4.961e-09 -9.045 -8.304 0.740 (0) + HSO4- 1.060e-10 5.830e-10 -9.975 -9.234 0.740 42.16 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -0.40 -4.68 -4.28 CaSO4 + Anhydrite -1.22 -5.49 -4.28 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -141.31 -144.11 -2.80 CH4 - CO2(g) -1.85 -3.31 -1.47 CO2 - Dolomite 0.00 -17.09 -17.09 CaMg(CO3)2 - Gypsum -0.31 -4.89 -4.58 CaSO4:2H2O + CH4(g) -141.29 -144.10 -2.80 CH4 + CO2(g) -1.83 -3.30 -1.47 CO2 + Dolomite 0.00 -17.08 -17.08 CaMg(CO3)2 + Epsomite -4.62 -6.36 -1.74 MgSO4:7H2O + Gypsum -1.12 -5.70 -4.58 CaSO4:2H2O H2(g) -41.40 -44.50 -3.10 H2 H2O(g) -1.61 -0.11 1.50 H2O - H2S(g) -139.63 -147.62 -7.99 H2S + H2S(g) -140.49 -148.43 -7.94 H2S Halite 0.08 1.65 1.57 NaCl + Hexahydrite -4.68 -6.25 -1.57 MgSO4:6H2O + Kieserite -4.56 -5.72 -1.16 MgSO4:H2O + Mirabilite -3.10 -4.34 -1.24 Na2SO4:10H2O O2(g) -0.70 -3.59 -2.89 O2 - Sulfur -104.22 -99.33 4.88 S + Sulfur -105.02 -100.14 4.88 S + Thenardite -2.98 -3.28 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -367,9 +383,9 @@ X 1.000e+00 mol Equiv- Equivalent Log Species Moles alents Fraction Gamma - NaX 9.011e-01 9.011e-01 9.011e-01 0.298 - CaX2 4.058e-02 8.117e-02 8.117e-02 0.186 - MgX2 8.856e-03 1.771e-02 1.771e-02 0.517 + NaX 9.010e-01 9.010e-01 9.010e-01 0.298 + CaX2 4.053e-02 8.105e-02 8.105e-02 0.186 + MgX2 8.970e-03 1.794e-02 1.794e-02 0.517 ------------------------------------------------------ Beginning of initial surface-composition calculations. @@ -380,13 +396,13 @@ Surface 1. Diffuse Double Layer Surface-Complexation Model Surf - 5.159e-02 Surface charge, eq - 2.765e-01 sigma, C/m - 4.058e-02 psi, V - -1.579e+00 -F*psi/RT - 2.061e-01 exp(-F*psi/RT) - 6.000e+02 specific area, m/g - 1.800e+04 m for 3.000e+01 g + 5.179e-02 Surface charge, eq + 2.776e-01 sigma, C/m² + 4.071e-02 psi, V + -1.584e+00 -F*psi/RT + 2.051e-01 exp(-F*psi/RT) + 6.000e+02 specific area, m²/g + 1.800e+04 m² for 3.000e+01 g Surf @@ -394,12 +410,12 @@ Surf Mole Log Species Moles Fraction Molality Molality - SurfOH2+ 5.662e-02 0.809 5.662e-02 -1.247 - SurfOH 1.081e-02 0.154 1.081e-02 -1.966 - SurfOHAsO4-3 1.317e-03 0.019 1.317e-03 -2.880 - SurfHAsO4- 1.030e-03 0.015 1.030e-03 -2.987 - SurfH2AsO4 1.745e-04 0.002 1.745e-04 -3.758 - SurfO- 4.732e-05 0.001 4.732e-05 -4.325 + SurfOH2+ 5.673e-02 0.810 5.673e-02 -1.246 + SurfOH 1.073e-02 0.153 1.073e-02 -1.969 + SurfOHAsO4-3 1.289e-03 0.018 1.289e-03 -2.890 + SurfHAsO4- 1.028e-03 0.015 1.028e-03 -2.988 + SurfH2AsO4 1.759e-04 0.003 1.759e-04 -3.755 + SurfO- 4.649e-05 0.001 4.649e-05 -4.333 ------------------ End of simulation. @@ -447,16 +463,17 @@ Initial solution 0. 20 x precipitation pH = 4.600 pe = 16.022 Equilibrium with O2(g) - Specific Conductance (S/cm, 25C) = 83 - Density (g/cm) = 0.99708 + Specific Conductance (µS/cm, 25°C) = 82 + Density (g/cm³) = 0.99708 Volume (L) = 1.00298 + Viscosity (mPa s) = 0.89051 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.037e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = -2.630e-05 Total CO2 (mol/kg) = 1.096e-05 - Temperature (C) = 25.00 - Electrical balance (eq) = 7.536e-16 + Temperature (°C) = 25.00 + Electrical balance (eq) = 7.501e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 9 Total H = 1.110125e+02 @@ -465,7 +482,7 @@ Initial solution 0. 20 x precipitation ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 2.600e-05 2.512e-05 -4.585 -4.600 -0.015 0.00 OH- 4.179e-10 4.029e-10 -9.379 -9.395 -0.016 -4.11 @@ -474,51 +491,53 @@ C(-4) 0.000e+00 CH4 0.000e+00 0.000e+00 -145.553 -145.553 0.000 35.46 C(4) 1.096e-05 CO2 1.076e-05 1.076e-05 -4.968 -4.968 0.000 34.43 - HCO3- 1.975e-07 1.906e-07 -6.704 -6.720 -0.016 24.68 + HCO3- 1.975e-07 1.906e-07 -6.704 -6.720 -0.016 24.55 CaHCO3+ 4.061e-10 3.919e-10 -9.391 -9.407 -0.015 9.67 - MgHCO3+ 6.903e-11 6.657e-11 -10.161 -10.177 -0.016 5.48 - NaHCO3 1.267e-11 1.267e-11 -10.897 -10.897 0.000 1.80 + MgHCO3+ 6.871e-11 6.627e-11 -10.163 -10.179 -0.016 5.48 + NaHCO3 1.506e-11 1.507e-11 -10.822 -10.822 0.000 28.00 (CO2)2 2.126e-12 2.127e-12 -11.672 -11.672 0.000 68.87 - CO3-2 4.106e-13 3.559e-13 -12.387 -12.449 -0.062 -5.27 - CaCO3 9.631e-14 9.634e-14 -13.016 -13.016 0.000 -14.60 - MgCO3 1.013e-14 1.014e-14 -13.994 -13.994 0.000 -17.09 - NaCO3- 8.122e-16 7.833e-16 -15.090 -15.106 -0.016 -1.03 + CO3-2 4.106e-13 3.558e-13 -12.387 -12.449 -0.062 -4.07 + CaCO3 9.631e-14 9.633e-14 -13.016 -13.016 0.000 -14.60 + MgCO3 1.009e-14 1.009e-14 -13.996 -13.996 0.000 -17.09 Ca 1.916e-04 Ca+2 1.860e-04 1.612e-04 -3.731 -3.793 -0.062 -18.14 - CaSO4 5.643e-06 5.644e-06 -5.248 -5.248 0.000 7.50 - CaHSO4+ 9.664e-10 9.319e-10 -9.015 -9.031 -0.016 (0) + CaSO4 5.640e-06 5.642e-06 -5.249 -5.249 0.000 7.50 + CaHSO4+ 9.659e-10 9.315e-10 -9.015 -9.031 -0.016 (0) CaHCO3+ 4.061e-10 3.919e-10 -9.391 -9.407 -0.015 9.67 CaOH+ 1.104e-12 1.065e-12 -11.957 -11.973 -0.016 (0) - CaCO3 9.631e-14 9.634e-14 -13.016 -13.016 0.000 -14.60 + CaCO3 9.631e-14 9.633e-14 -13.016 -13.016 0.000 -14.60 Cl 1.337e-04 Cl- 1.337e-04 1.289e-04 -3.874 -3.890 -0.016 18.08 + HCl 1.114e-09 1.116e-09 -8.953 -8.952 0.000 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.394 -44.394 0.000 28.61 Mg 3.580e-05 - Mg+2 3.442e-05 2.985e-05 -4.463 -4.525 -0.062 -21.82 - MgSO4 1.378e-06 1.378e-06 -5.861 -5.861 0.000 5.84 - MgHCO3+ 6.903e-11 6.657e-11 -10.161 -10.177 -0.016 5.48 - MgOH+ 4.470e-12 4.314e-12 -11.350 -11.365 -0.015 (0) - MgCO3 1.013e-14 1.014e-14 -13.994 -13.994 0.000 -17.09 + Mg+2 3.426e-05 2.972e-05 -4.465 -4.527 -0.062 -21.82 + MgSO4 1.531e-06 1.532e-06 -5.815 -5.815 0.000 -0.83 + Mg(SO4)2-2 1.143e-09 9.931e-10 -8.942 -9.003 -0.061 34.98 + MgHCO3+ 6.871e-11 6.627e-11 -10.163 -10.179 -0.016 5.48 + MgOH+ 4.450e-12 4.295e-12 -11.352 -11.367 -0.015 (0) + MgCO3 1.009e-14 1.009e-14 -13.996 -13.996 0.000 -17.09 Na 1.227e-04 - Na+ 1.225e-04 1.182e-04 -3.912 -3.927 -0.016 -1.48 - NaSO4- 1.209e-07 1.167e-07 -6.917 -6.933 -0.016 13.74 - NaHCO3 1.267e-11 1.267e-11 -10.897 -10.897 0.000 1.80 - NaCO3- 8.122e-16 7.833e-16 -15.090 -15.106 -0.016 -1.03 - NaOH 4.762e-24 4.763e-24 -23.322 -23.322 0.000 (0) + Na+ 1.226e-04 1.182e-04 -3.912 -3.927 -0.016 -1.48 + NaSO4- 9.443e-08 9.092e-08 -7.025 -7.041 -0.016 14.54 + NaHCO3 1.506e-11 1.507e-11 -10.822 -10.822 0.000 28.00 + NaOH 4.763e-24 4.764e-24 -23.322 -23.322 0.000 (0) O(0) 5.111e-04 O2 2.555e-04 2.556e-04 -3.593 -3.592 0.000 30.40 S(-2) 0.000e+00 - H2S 0.000e+00 0.000e+00 -137.289 -137.289 0.000 37.16 + H2S 0.000e+00 0.000e+00 -137.289 -137.289 0.000 36.27 HS- 0.000e+00 0.000e+00 -139.615 -139.631 -0.016 20.60 - S-2 0.000e+00 0.000e+00 -147.886 -147.949 -0.062 (0) + S-2 0.000e+00 0.000e+00 -147.887 -147.949 -0.062 (0) + (H2S)2 0.000e+00 0.000e+00 -275.857 -275.857 0.000 30.09 S(6) 2.351e-04 - SO4-2 2.274e-04 1.970e-04 -3.643 -3.706 -0.062 14.51 - CaSO4 5.643e-06 5.644e-06 -5.248 -5.248 0.000 7.50 - MgSO4 1.378e-06 1.378e-06 -5.861 -5.861 0.000 5.84 - HSO4- 4.988e-07 4.810e-07 -6.302 -6.318 -0.016 40.28 - NaSO4- 1.209e-07 1.167e-07 -6.917 -6.933 -0.016 13.74 - CaHSO4+ 9.664e-10 9.319e-10 -9.015 -9.031 -0.016 (0) + SO4-2 2.273e-04 1.969e-04 -3.643 -3.706 -0.062 14.79 + CaSO4 5.640e-06 5.642e-06 -5.249 -5.249 0.000 7.50 + MgSO4 1.531e-06 1.532e-06 -5.815 -5.815 0.000 -0.83 + HSO4- 4.985e-07 4.808e-07 -6.302 -6.318 -0.016 40.28 + NaSO4- 9.443e-08 9.092e-08 -7.025 -7.041 -0.016 14.54 + Mg(SO4)2-2 1.143e-09 9.931e-10 -8.942 -9.003 -0.061 34.98 + CaHSO4+ 9.659e-10 9.315e-10 -9.015 -9.031 -0.016 (0) ------------------------------Saturation indices------------------------------- @@ -529,14 +548,19 @@ S(6) 2.351e-04 Calcite -7.76 -16.24 -8.48 CaCO3 CH4(g) -142.75 -145.55 -2.80 CH4 CO2(g) -3.50 -4.97 -1.47 CO2 - Dolomite -16.13 -33.22 -17.09 CaMg(CO3)2 + Dolomite -16.13 -33.22 -17.08 CaMg(CO3)2 + Epsomite -6.49 -8.23 -1.74 MgSO4:7H2O Gypsum -2.92 -7.50 -4.58 CaSO4:2H2O H2(g) -41.29 -44.39 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -136.24 -144.23 -7.99 H2S + H2S(g) -136.29 -144.23 -7.94 H2S Halite -9.39 -7.82 1.57 NaCl + Hexahydrite -6.67 -8.23 -1.57 MgSO4:6H2O + Kieserite -7.07 -8.23 -1.16 MgSO4:H2O + Mirabilite -10.32 -11.56 -1.24 Na2SO4:10H2O O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000 Sulfur -100.93 -96.05 4.88 S + Thenardite -11.26 -11.56 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -555,115 +579,123 @@ Using pure phase assemblage 0. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -CO2(g) -1.50 -2.97 -1.47 1.000e+01 9.996e+00 -4.065e-03 -Calcite 0.00 -8.48 -8.48 1.000e-01 9.966e-02 -3.411e-04 -Dolomite 0.00 -17.09 -17.09 1.600e+00 1.599e+00 -1.350e-03 +CO2(g) -1.50 -2.97 -1.47 1.000e+01 9.996e+00 -4.073e-03 +Calcite 0.00 -8.48 -8.48 1.000e-01 9.968e-02 -3.160e-04 +Dolomite 0.00 -17.08 -17.08 1.600e+00 1.599e+00 -1.366e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 7.117e-03 7.117e-03 - Ca 1.883e-03 1.883e-03 + C 7.132e-03 7.132e-03 + Ca 1.874e-03 1.874e-03 Cl 1.337e-04 1.337e-04 - Mg 1.386e-03 1.386e-03 + Mg 1.402e-03 1.402e-03 Na 1.227e-04 1.227e-04 S 2.351e-04 2.351e-04 ----------------------------Description of solution---------------------------- - pH = 7.047 Charge balance - pe = 13.575 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 575 - Density (g/cm) = 0.99747 + pH = 7.048 Charge balance + pe = 13.574 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 588 + Density (g/cm³) = 0.99747 Volume (L) = 1.00305 + Viscosity (mPa s) = 0.89326 Activity of water = 1.000 - Ionic strength (mol/kgw) = 9.638e-03 + Ionic strength (mol/kgw) = 9.649e-03 Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 6.056e-03 - Total CO2 (mol/kg) = 7.117e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 2.056e-15 + Total alkalinity (eq/kg) = 6.070e-03 + Total CO2 (mol/kg) = 7.132e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 2.096e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 9 Total H = 1.110125e+02 - Total O = 5.552494e+01 + Total O = 5.552498e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.251e-07 1.128e-07 -6.903 -6.948 -0.045 -4.04 - H+ 9.812e-08 8.974e-08 -7.008 -7.047 -0.039 0.00 + OH- 1.254e-07 1.130e-07 -6.902 -6.947 -0.045 -4.04 + H+ 9.790e-08 8.953e-08 -7.009 -7.048 -0.039 0.00 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 0.000e+00 CH4 0.000e+00 0.000e+00 -143.556 -143.555 0.001 35.46 -C(4) 7.117e-03 - HCO3- 5.881e-03 5.331e-03 -2.231 -2.273 -0.043 24.77 - CO2 1.073e-03 1.076e-03 -2.969 -2.968 0.001 34.43 - CaHCO3+ 8.907e-05 8.087e-05 -4.050 -4.092 -0.042 9.72 - MgHCO3+ 6.084e-05 5.494e-05 -4.216 -4.260 -0.044 5.53 - CaCO3 5.553e-06 5.565e-06 -5.256 -5.255 0.001 -14.60 - CO3-2 4.127e-06 2.786e-06 -5.384 -5.555 -0.171 -5.02 - MgCO3 2.336e-06 2.341e-06 -5.631 -5.631 0.001 -17.09 - NaHCO3 3.309e-07 3.316e-07 -6.480 -6.479 0.001 1.80 +C(4) 7.132e-03 + HCO3- 5.895e-03 5.344e-03 -2.229 -2.272 -0.043 24.65 + CO2 1.074e-03 1.076e-03 -2.969 -2.968 0.001 34.43 + CaHCO3+ 8.885e-05 8.066e-05 -4.051 -4.093 -0.042 9.72 + MgHCO3+ 6.157e-05 5.559e-05 -4.211 -4.255 -0.044 5.53 + CaCO3 5.551e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 + CO3-2 4.146e-06 2.799e-06 -5.382 -5.553 -0.171 -3.79 + MgCO3 2.369e-06 2.375e-06 -5.625 -5.624 0.001 -17.09 + NaHCO3 3.930e-07 3.951e-07 -6.406 -6.403 0.002 28.00 (CO2)2 2.120e-08 2.125e-08 -7.674 -7.673 0.001 68.87 - NaCO3- 6.353e-09 5.739e-09 -8.197 -8.241 -0.044 -0.93 -Ca 1.883e-03 - Ca+2 1.762e-03 1.189e-03 -2.754 -2.925 -0.171 -17.93 - CaHCO3+ 8.907e-05 8.087e-05 -4.050 -4.092 -0.042 9.72 - CaSO4 2.601e-05 2.607e-05 -4.585 -4.584 0.001 7.50 - CaCO3 5.553e-06 5.565e-06 -5.256 -5.255 0.001 -14.60 - CaOH+ 2.433e-09 2.198e-09 -8.614 -8.658 -0.044 (0) - CaHSO4+ 1.702e-11 1.538e-11 -10.769 -10.813 -0.044 (0) +Ca 1.874e-03 + Ca+2 1.754e-03 1.183e-03 -2.756 -2.927 -0.171 -17.93 + CaHCO3+ 8.885e-05 8.066e-05 -4.051 -4.093 -0.042 9.72 + CaSO4 2.555e-05 2.560e-05 -4.593 -4.592 0.001 7.50 + CaCO3 5.551e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 + CaOH+ 2.427e-09 2.193e-09 -8.615 -8.659 -0.044 (0) + CaHSO4+ 1.668e-11 1.507e-11 -10.778 -10.822 -0.044 (0) Cl 1.337e-04 - Cl- 1.337e-04 1.206e-04 -3.874 -3.918 -0.045 18.14 + Cl- 1.337e-04 1.206e-04 -3.874 -3.919 -0.045 18.14 + HCl 3.686e-12 3.721e-12 -11.433 -11.429 0.004 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.395 -44.394 0.001 28.61 -Mg 1.386e-03 - Mg+2 1.297e-03 8.807e-04 -2.887 -3.055 -0.168 -21.62 - MgHCO3+ 6.084e-05 5.494e-05 -4.216 -4.260 -0.044 5.53 - MgSO4 2.540e-05 2.546e-05 -4.595 -4.594 0.001 5.84 - MgCO3 2.336e-06 2.341e-06 -5.631 -5.631 0.001 -17.09 - MgOH+ 3.919e-08 3.563e-08 -7.407 -7.448 -0.041 (0) +Mg 1.402e-03 + Mg+2 1.310e-03 8.890e-04 -2.883 -3.051 -0.168 -21.62 + MgHCO3+ 6.157e-05 5.559e-05 -4.211 -4.255 -0.044 5.53 + MgSO4 2.820e-05 2.833e-05 -4.550 -4.548 0.002 -0.83 + MgCO3 2.369e-06 2.375e-06 -5.625 -5.624 0.001 -17.09 + MgOH+ 3.965e-08 3.605e-08 -7.402 -7.443 -0.041 (0) + Mg(SO4)2-2 1.653e-08 1.136e-08 -7.782 -7.945 -0.163 38.49 Na 1.227e-04 - Na+ 1.223e-04 1.106e-04 -3.913 -3.956 -0.043 -1.38 - NaHCO3 3.309e-07 3.316e-07 -6.480 -6.479 0.001 1.80 - NaSO4- 7.541e-08 6.836e-08 -7.123 -7.165 -0.043 14.31 - NaCO3- 6.353e-09 5.739e-09 -8.197 -8.241 -0.044 -0.93 - NaOH 1.245e-21 1.247e-21 -20.905 -20.904 0.001 (0) + Na+ 1.222e-04 1.106e-04 -3.913 -3.956 -0.043 -1.38 + NaHCO3 3.930e-07 3.951e-07 -6.406 -6.403 0.002 28.00 + NaSO4- 5.900e-08 5.257e-08 -7.229 -7.279 -0.050 14.84 + NaOH 1.247e-21 1.250e-21 -20.904 -20.903 0.001 (0) O(0) 5.111e-04 O2 2.556e-04 2.561e-04 -3.593 -3.592 0.001 30.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -142.238 -142.283 -0.045 20.67 - H2S 0.000e+00 0.000e+00 -142.389 -142.388 0.001 37.16 - S-2 0.000e+00 0.000e+00 -147.981 -148.154 -0.172 (0) + HS- 0.000e+00 0.000e+00 -142.245 -142.290 -0.045 20.67 + H2S 0.000e+00 0.000e+00 -142.397 -142.396 0.001 36.27 + S-2 0.000e+00 0.000e+00 -147.987 -148.160 -0.173 (0) + (H2S)2 0.000e+00 0.000e+00 -286.071 -286.070 0.001 30.09 S(6) 2.351e-04 - SO4-2 1.836e-04 1.233e-04 -3.736 -3.909 -0.173 14.76 - CaSO4 2.601e-05 2.607e-05 -4.585 -4.584 0.001 7.50 - MgSO4 2.540e-05 2.546e-05 -4.595 -4.594 0.001 5.84 - NaSO4- 7.541e-08 6.836e-08 -7.123 -7.165 -0.043 14.31 - HSO4- 1.191e-09 1.076e-09 -8.924 -8.968 -0.044 40.34 - CaHSO4+ 1.702e-11 1.538e-11 -10.769 -10.813 -0.044 (0) + SO4-2 1.812e-04 1.217e-04 -3.742 -3.915 -0.173 15.04 + MgSO4 2.820e-05 2.833e-05 -4.550 -4.548 0.002 -0.83 + CaSO4 2.555e-05 2.560e-05 -4.593 -4.592 0.001 7.50 + NaSO4- 5.900e-08 5.257e-08 -7.229 -7.279 -0.050 14.84 + Mg(SO4)2-2 1.653e-08 1.136e-08 -7.782 -7.945 -0.163 38.49 + HSO4- 1.173e-09 1.059e-09 -8.931 -8.975 -0.044 40.34 + CaHSO4+ 1.668e-11 1.507e-11 -10.778 -10.822 -0.044 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -2.56 -6.83 -4.28 CaSO4 + Anhydrite -2.56 -6.84 -4.28 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 Calcite 0.00 -8.48 -8.48 CaCO3 CH4(g) -140.75 -143.56 -2.80 CH4 CO2(g) -1.50 -2.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 - Dolomite 0.00 -17.09 -17.09 CaMg(CO3)2 - Gypsum -2.25 -6.83 -4.58 CaSO4:2H2O + Dolomite 0.00 -17.08 -17.08 CaMg(CO3)2 + Epsomite -5.23 -6.97 -1.74 MgSO4:7H2O + Gypsum -2.26 -6.84 -4.58 CaSO4:2H2O H2(g) -41.29 -44.39 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -141.34 -149.33 -7.99 H2S + H2S(g) -141.40 -149.34 -7.94 H2S Halite -9.44 -7.87 1.57 NaCl + Hexahydrite -5.40 -6.97 -1.57 MgSO4:6H2O + Kieserite -5.80 -6.97 -1.16 MgSO4:H2O + Mirabilite -10.59 -11.83 -1.24 Na2SO4:10H2O O2(g) -0.70 -3.59 -2.89 O2 - Sulfur -106.03 -101.14 4.88 S + Sulfur -106.03 -101.15 4.88 S + Thenardite -11.53 -11.83 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -911,20 +943,20 @@ Using pure phase assemblage 1. Pure-phase assemblage after simulation 5. Phase SI log IAP log K(T, P) Initial Final Delta Calcite -0.00 -8.48 -8.48 0.000e+00 0 0.000e+00 -Dolomite 0.00 -17.09 -17.09 1.568e+00 1.568e+00 3.623e-07 +Dolomite 0.00 -17.08 -17.08 1.569e+00 1.569e+00 3.047e-07 ------------------------------Surface composition------------------------------ Diffuse Double Layer Surface-Complexation Model Surf - 2.268e-03 Surface charge, eq - 1.216e-02 sigma, C/m - 4.728e-02 psi, V - -1.840e+00 -F*psi/RT - 1.587e-01 exp(-F*psi/RT) - 6.000e+02 specific area, m/g - 1.800e+04 m for 3.000e+01 g + 2.274e-03 Surface charge, eq + 1.219e-02 sigma, C/m² + 4.736e-02 psi, V + -1.843e+00 -F*psi/RT + 1.583e-01 exp(-F*psi/RT) + 6.000e+02 specific area, m²/g + 1.800e+04 m² for 3.000e+01 g Surf @@ -932,12 +964,12 @@ Surf Mole Log Species Moles Fraction Molality Molality - SurfOH 4.963e-02 0.709 4.963e-02 -1.304 - SurfOH2+ 1.380e-02 0.197 1.380e-02 -1.860 - SurfO- 4.090e-03 0.058 4.090e-03 -2.388 - SurfOHAsO4-3 2.478e-03 0.035 2.478e-03 -2.606 - SurfHAsO4- 4.289e-06 0.000 4.289e-06 -5.368 - SurfH2AsO4 3.858e-08 0.000 3.858e-08 -7.414 + SurfOH 4.969e-02 0.710 4.969e-02 -1.304 + SurfOH2+ 1.374e-02 0.196 1.374e-02 -1.862 + SurfO- 4.117e-03 0.059 4.117e-03 -2.385 + SurfOHAsO4-3 2.448e-03 0.035 2.448e-03 -2.611 + SurfHAsO4- 4.191e-06 0.000 4.191e-06 -5.378 + SurfH2AsO4 3.750e-08 0.000 3.750e-08 -7.426 -----------------------------Exchange composition------------------------------ @@ -946,121 +978,129 @@ X 1.000e+00 mol Equiv- Equivalent Log Species Moles alents Fraction Gamma - CaX2 3.393e-01 6.785e-01 6.785e-01 -0.171 - MgX2 1.603e-01 3.205e-01 3.205e-01 -0.168 - NaX 9.588e-04 9.588e-04 9.588e-04 -0.043 + CaX2 3.379e-01 6.758e-01 6.758e-01 -0.171 + MgX2 1.616e-01 3.232e-01 3.232e-01 -0.168 + NaX 9.585e-04 9.585e-04 9.585e-04 -0.043 -----------------------------Solution composition------------------------------ Elements Molality Moles - As 3.594e-10 3.593e-10 - C 7.117e-03 7.116e-03 - Ca 1.869e-03 1.869e-03 + As 3.503e-10 3.503e-10 + C 7.132e-03 7.131e-03 + Ca 1.862e-03 1.861e-03 Cl 1.337e-04 1.337e-04 - Mg 1.399e-03 1.399e-03 + Mg 1.414e-03 1.414e-03 Na 1.227e-04 1.227e-04 S 2.351e-04 2.351e-04 ----------------------------Description of solution---------------------------- - pH = 7.047 Charge balance - pe = 13.575 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 575 - Density (g/cm) = 0.99747 + pH = 7.048 Charge balance + pe = 13.574 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 588 + Density (g/cm³) = 0.99747 Volume (L) = 1.00305 + Viscosity (mPa s) = 0.89326 Activity of water = 1.000 - Ionic strength (mol/kgw) = 9.636e-03 + Ionic strength (mol/kgw) = 9.647e-03 Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 6.054e-03 - Total CO2 (mol/kg) = 7.117e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 6.817e-09 + Total alkalinity (eq/kg) = 6.069e-03 + Total CO2 (mol/kg) = 7.132e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 5.593e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 13 Total H = 1.110125e+02 - Total O = 5.552494e+01 + Total O = 5.552498e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.250e-07 1.127e-07 -6.903 -6.948 -0.045 -4.04 - H+ 9.821e-08 8.981e-08 -7.008 -7.047 -0.039 0.00 + OH- 1.253e-07 1.129e-07 -6.902 -6.947 -0.045 -4.04 + H+ 9.797e-08 8.960e-08 -7.009 -7.048 -0.039 0.00 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 -As 3.594e-10 - HAsO4-2 2.240e-10 1.492e-10 -9.650 -9.826 -0.176 (0) - H2AsO4- 1.353e-10 1.222e-10 -9.869 -9.913 -0.044 (0) - AsO4-3 1.311e-14 5.254e-15 -13.882 -14.279 -0.397 (0) - H3AsO4 1.904e-15 1.908e-15 -14.720 -14.719 0.001 (0) +As 3.503e-10 + HAsO4-2 2.186e-10 1.456e-10 -9.660 -9.837 -0.177 (0) + H2AsO4- 1.317e-10 1.190e-10 -9.880 -9.925 -0.044 (0) + AsO4-3 1.282e-14 5.138e-15 -13.892 -14.289 -0.397 (0) + H3AsO4 1.848e-15 1.852e-15 -14.733 -14.732 0.001 (0) C(-4) 0.000e+00 CH4 0.000e+00 0.000e+00 -143.556 -143.555 0.001 35.46 -C(4) 7.117e-03 - HCO3- 5.880e-03 5.330e-03 -2.231 -2.273 -0.043 24.77 - CO2 1.074e-03 1.077e-03 -2.969 -2.968 0.001 34.43 - CaHCO3+ 8.840e-05 8.026e-05 -4.054 -4.096 -0.042 9.72 - MgHCO3+ 6.141e-05 5.545e-05 -4.212 -4.256 -0.044 5.53 - CaCO3 5.506e-06 5.518e-06 -5.259 -5.258 0.001 -14.60 - CO3-2 4.122e-06 2.783e-06 -5.385 -5.555 -0.171 -5.02 - MgCO3 2.356e-06 2.361e-06 -5.628 -5.627 0.001 -17.09 - NaHCO3 3.309e-07 3.316e-07 -6.480 -6.479 0.001 1.80 - (CO2)2 2.123e-08 2.127e-08 -7.673 -7.672 0.001 68.87 - NaCO3- 6.347e-09 5.734e-09 -8.197 -8.242 -0.044 -0.93 -Ca 1.869e-03 - Ca+2 1.749e-03 1.180e-03 -2.757 -2.928 -0.171 -17.93 - CaHCO3+ 8.840e-05 8.026e-05 -4.054 -4.096 -0.042 9.72 - CaSO4 2.582e-05 2.587e-05 -4.588 -4.587 0.001 7.50 - CaCO3 5.506e-06 5.518e-06 -5.259 -5.258 0.001 -14.60 - CaOH+ 2.413e-09 2.180e-09 -8.617 -8.661 -0.044 (0) - CaHSO4+ 1.691e-11 1.527e-11 -10.772 -10.816 -0.044 (0) +C(4) 7.132e-03 + HCO3- 5.894e-03 5.343e-03 -2.230 -2.272 -0.043 24.65 + CO2 1.075e-03 1.076e-03 -2.969 -2.968 0.001 34.43 + CaHCO3+ 8.825e-05 8.012e-05 -4.054 -4.096 -0.042 9.72 + MgHCO3+ 6.207e-05 5.604e-05 -4.207 -4.251 -0.044 5.53 + CaCO3 5.510e-06 5.522e-06 -5.259 -5.258 0.001 -14.60 + CO3-2 4.143e-06 2.797e-06 -5.383 -5.553 -0.171 -3.79 + MgCO3 2.387e-06 2.392e-06 -5.622 -5.621 0.001 -17.09 + NaHCO3 3.930e-07 3.951e-07 -6.406 -6.403 0.002 28.00 + (CO2)2 2.122e-08 2.127e-08 -7.673 -7.672 0.001 68.87 +Ca 1.862e-03 + Ca+2 1.742e-03 1.175e-03 -2.759 -2.930 -0.171 -17.93 + CaHCO3+ 8.825e-05 8.012e-05 -4.054 -4.096 -0.042 9.72 + CaSO4 2.537e-05 2.543e-05 -4.596 -4.595 0.001 7.50 + CaCO3 5.510e-06 5.522e-06 -5.259 -5.258 0.001 -14.60 + CaOH+ 2.410e-09 2.177e-09 -8.618 -8.662 -0.044 (0) + CaHSO4+ 1.658e-11 1.498e-11 -10.780 -10.825 -0.044 (0) Cl 1.337e-04 - Cl- 1.337e-04 1.206e-04 -3.874 -3.918 -0.045 18.14 + Cl- 1.337e-04 1.206e-04 -3.874 -3.919 -0.045 18.14 + HCl 3.688e-12 3.723e-12 -11.433 -11.429 0.004 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.395 -44.394 0.001 28.61 -Mg 1.399e-03 - Mg+2 1.310e-03 8.891e-04 -2.883 -3.051 -0.168 -21.62 - MgHCO3+ 6.141e-05 5.545e-05 -4.212 -4.256 -0.044 5.53 - MgSO4 2.564e-05 2.569e-05 -4.591 -4.590 0.001 5.84 - MgCO3 2.356e-06 2.361e-06 -5.628 -5.627 0.001 -17.09 - MgOH+ 3.953e-08 3.593e-08 -7.403 -7.444 -0.041 (0) +Mg 1.414e-03 + Mg+2 1.321e-03 8.965e-04 -2.879 -3.047 -0.168 -21.62 + MgHCO3+ 6.207e-05 5.604e-05 -4.207 -4.251 -0.044 5.53 + MgSO4 2.843e-05 2.856e-05 -4.546 -4.544 0.002 -0.83 + MgCO3 2.387e-06 2.392e-06 -5.622 -5.621 0.001 -17.09 + MgOH+ 3.996e-08 3.632e-08 -7.398 -7.440 -0.041 (0) + Mg(SO4)2-2 1.666e-08 1.144e-08 -7.778 -7.941 -0.163 38.49 Na 1.227e-04 - Na+ 1.223e-04 1.106e-04 -3.913 -3.956 -0.043 -1.38 - NaHCO3 3.309e-07 3.316e-07 -6.480 -6.479 0.001 1.80 - NaSO4- 7.541e-08 6.836e-08 -7.123 -7.165 -0.043 14.31 - NaCO3- 6.347e-09 5.734e-09 -8.197 -8.242 -0.044 -0.93 - NaOH 1.244e-21 1.247e-21 -20.905 -20.904 0.001 (0) + Na+ 1.222e-04 1.106e-04 -3.913 -3.956 -0.043 -1.38 + NaHCO3 3.930e-07 3.951e-07 -6.406 -6.403 0.002 28.00 + NaSO4- 5.899e-08 5.256e-08 -7.229 -7.279 -0.050 14.84 + NaOH 1.246e-21 1.249e-21 -20.904 -20.903 0.001 (0) O(0) 5.111e-04 O2 2.556e-04 2.561e-04 -3.593 -3.592 0.001 30.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -142.238 -142.283 -0.045 20.67 - H2S 0.000e+00 0.000e+00 -142.389 -142.388 0.001 37.16 - S-2 0.000e+00 0.000e+00 -147.982 -148.154 -0.172 (0) + HS- 0.000e+00 0.000e+00 -142.244 -142.289 -0.045 20.67 + H2S 0.000e+00 0.000e+00 -142.396 -142.395 0.001 36.27 + S-2 0.000e+00 0.000e+00 -147.987 -148.160 -0.173 (0) + (H2S)2 0.000e+00 0.000e+00 -286.070 -286.069 0.001 30.09 S(6) 2.351e-04 - SO4-2 1.835e-04 1.233e-04 -3.736 -3.909 -0.173 14.76 - CaSO4 2.582e-05 2.587e-05 -4.588 -4.587 0.001 7.50 - MgSO4 2.564e-05 2.569e-05 -4.591 -4.590 0.001 5.84 - NaSO4- 7.541e-08 6.836e-08 -7.123 -7.165 -0.043 14.31 - HSO4- 1.192e-09 1.076e-09 -8.924 -8.968 -0.044 40.34 - CaHSO4+ 1.691e-11 1.527e-11 -10.772 -10.816 -0.044 (0) + SO4-2 1.812e-04 1.217e-04 -3.742 -3.915 -0.173 15.04 + MgSO4 2.843e-05 2.856e-05 -4.546 -4.544 0.002 -0.83 + CaSO4 2.537e-05 2.543e-05 -4.596 -4.595 0.001 7.50 + NaSO4- 5.899e-08 5.256e-08 -7.229 -7.279 -0.050 14.84 + Mg(SO4)2-2 1.666e-08 1.144e-08 -7.778 -7.941 -0.163 38.49 + HSO4- 1.173e-09 1.060e-09 -8.931 -8.975 -0.044 40.34 + CaHSO4+ 1.658e-11 1.498e-11 -10.780 -10.825 -0.044 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -2.56 -6.84 -4.28 CaSO4 + Anhydrite -2.57 -6.84 -4.28 CaSO4 Aragonite -0.15 -8.48 -8.34 CaCO3 Calcite -0.00 -8.48 -8.48 CaCO3 CH4(g) -140.75 -143.55 -2.80 CH4 CO2(g) -1.50 -2.97 -1.47 CO2 - Dolomite 0.00 -17.09 -17.09 CaMg(CO3)2 - Gypsum -2.25 -6.84 -4.58 CaSO4:2H2O + Dolomite 0.00 -17.08 -17.08 CaMg(CO3)2 + Epsomite -5.22 -6.96 -1.74 MgSO4:7H2O + Gypsum -2.26 -6.84 -4.58 CaSO4:2H2O H2(g) -41.29 -44.39 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -141.34 -149.33 -7.99 H2S + H2S(g) -141.40 -149.34 -7.94 H2S Halite -9.44 -7.87 1.57 NaCl + Hexahydrite -5.40 -6.96 -1.57 MgSO4:6H2O + Kieserite -5.80 -6.96 -1.16 MgSO4:H2O + Mirabilite -10.59 -11.83 -1.24 Na2SO4:10H2O O2(g) -0.70 -3.59 -2.89 O2 - Sulfur -106.03 -101.14 4.88 S + Sulfur -106.03 -101.15 4.88 S + Thenardite -11.53 -11.83 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1073,7 +1113,3 @@ End of simulation. Reading input data for simulation 6. ------------------------------------ -------------------------------- -End of Run after 0.106 Seconds. -------------------------------- - diff --git a/ex14.sel b/ex14.sel index 21dc20cc..bbfcec5b 100644 --- a/ex14.sel +++ b/ex14.sel @@ -1,202 +1,202 @@ step m_Ca m_Mg m_Na umol_As pH mmol_sorbedAs - 1 4.6445e-01 1.6199e-01 5.4020e+00 2.5000e-02 5.8852e+00 0.0000e+00 - 1 3.4330e-04 2.4396e-04 9.3322e-02 1.5374e-03 7.2244e+00 2.5220e+00 - 2 2.8378e-05 1.9029e-05 2.3438e-02 1.8099e-01 8.6638e+00 2.5218e+00 - 3 1.5125e-05 9.3869e-06 1.4671e-02 1.1874e+00 9.1652e+00 2.5206e+00 - 4 1.3203e-05 7.9863e-06 1.2636e-02 1.9995e+00 9.3067e+00 2.5186e+00 - 5 1.2796e-05 7.6909e-06 1.1843e-02 2.3254e+00 9.3475e+00 2.5163e+00 - 6 1.2832e-05 7.7187e-06 1.1443e-02 2.3686e+00 9.3517e+00 2.5139e+00 - 7 1.3044e-05 7.8764e-06 1.1198e-02 2.2855e+00 9.3410e+00 2.5117e+00 - 8 1.3342e-05 8.0957e-06 1.1024e-02 2.1549e+00 9.3241e+00 2.5095e+00 - 9 1.3684e-05 8.3485e-06 1.0885e-02 2.0118e+00 9.3045e+00 2.5075e+00 - 10 1.4056e-05 8.6224e-06 1.0764e-02 1.8704e+00 9.2840e+00 2.5056e+00 - 11 1.4449e-05 8.9121e-06 1.0655e-02 1.7362e+00 9.2632e+00 2.5039e+00 - 12 1.4861e-05 9.2154e-06 1.0554e-02 1.6107e+00 9.2424e+00 2.5023e+00 - 13 1.5290e-05 9.5320e-06 1.0459e-02 1.4941e+00 9.2216e+00 2.5008e+00 - 14 1.5738e-05 9.8619e-06 1.0370e-02 1.3860e+00 9.2011e+00 2.4994e+00 - 15 1.6204e-05 1.0206e-05 1.0285e-02 1.2857e+00 9.1806e+00 2.4981e+00 - 16 1.6691e-05 1.0564e-05 1.0205e-02 1.1928e+00 9.1602e+00 2.4969e+00 - 17 1.7198e-05 1.0938e-05 1.0128e-02 1.1065e+00 9.1400e+00 2.4958e+00 - 18 1.7728e-05 1.1329e-05 1.0055e-02 1.0264e+00 9.1198e+00 2.4948e+00 - 19 1.8282e-05 1.1737e-05 9.9848e-03 9.5190e-01 9.0996e+00 2.4938e+00 - 20 1.8861e-05 1.2164e-05 9.9179e-03 8.8267e-01 9.0795e+00 2.4929e+00 - 21 1.9467e-05 1.2611e-05 9.8538e-03 8.1826e-01 9.0595e+00 2.4921e+00 - 22 2.0103e-05 1.3079e-05 9.7923e-03 7.5833e-01 9.0394e+00 2.4914e+00 - 23 2.0768e-05 1.3570e-05 9.7333e-03 7.0254e-01 9.0193e+00 2.4907e+00 - 24 2.1467e-05 1.4084e-05 9.6765e-03 6.5060e-01 8.9992e+00 2.4900e+00 - 25 2.2200e-05 1.4625e-05 9.6219e-03 6.0224e-01 8.9790e+00 2.4894e+00 - 26 2.2971e-05 1.5193e-05 9.5693e-03 5.5721e-01 8.9588e+00 2.4889e+00 - 27 2.3781e-05 1.5790e-05 9.5185e-03 5.1528e-01 8.9385e+00 2.4883e+00 - 28 2.4634e-05 1.6419e-05 9.4694e-03 4.7623e-01 8.9182e+00 2.4879e+00 - 29 2.5532e-05 1.7081e-05 9.4220e-03 4.3988e-01 8.8977e+00 2.4874e+00 - 30 2.6478e-05 1.7779e-05 9.3760e-03 4.0605e-01 8.8772e+00 2.4870e+00 - 31 2.7477e-05 1.8515e-05 9.3315e-03 3.7456e-01 8.8565e+00 2.4866e+00 - 32 2.8531e-05 1.9292e-05 9.2883e-03 3.4527e-01 8.8357e+00 2.4863e+00 - 33 2.9645e-05 2.0113e-05 9.2462e-03 3.1803e-01 8.8148e+00 2.4860e+00 - 34 3.0822e-05 2.0981e-05 9.2053e-03 2.9271e-01 8.7938e+00 2.4857e+00 - 35 3.2069e-05 2.1900e-05 9.1654e-03 2.6918e-01 8.7726e+00 2.4854e+00 - 36 3.3389e-05 2.2873e-05 9.1264e-03 2.4733e-01 8.7512e+00 2.4852e+00 - 37 3.4788e-05 2.3904e-05 9.0883e-03 2.2705e-01 8.7296e+00 2.4849e+00 - 38 3.6272e-05 2.4998e-05 9.0509e-03 2.0824e-01 8.7079e+00 2.4847e+00 - 39 3.7849e-05 2.6161e-05 9.0142e-03 1.9080e-01 8.6859e+00 2.4845e+00 - 40 3.9524e-05 2.7396e-05 8.9781e-03 1.7464e-01 8.6638e+00 2.4844e+00 - 41 4.1307e-05 2.8710e-05 8.9424e-03 1.5969e-01 8.6414e+00 2.4842e+00 - 42 4.3204e-05 3.0109e-05 8.9072e-03 1.4586e-01 8.6188e+00 2.4841e+00 - 43 4.5227e-05 3.1600e-05 8.8723e-03 1.3308e-01 8.5960e+00 2.4839e+00 - 44 4.7385e-05 3.3190e-05 8.8375e-03 1.2128e-01 8.5729e+00 2.4838e+00 - 45 4.9689e-05 3.4889e-05 8.8029e-03 1.1039e-01 8.5496e+00 2.4837e+00 - 46 5.2151e-05 3.6704e-05 8.7684e-03 1.0036e-01 8.5260e+00 2.4836e+00 - 47 5.4786e-05 3.8647e-05 8.7337e-03 9.1131e-02 8.5021e+00 2.4835e+00 - 48 5.7607e-05 4.0727e-05 8.6988e-03 8.2642e-02 8.4779e+00 2.4834e+00 - 49 6.0632e-05 4.2957e-05 8.6636e-03 7.4844e-02 8.4535e+00 2.4834e+00 - 50 6.3879e-05 4.5350e-05 8.6280e-03 6.7692e-02 8.4287e+00 2.4833e+00 - 51 6.7366e-05 4.7921e-05 8.5918e-03 6.1139e-02 8.4036e+00 2.4832e+00 - 52 7.1116e-05 5.0686e-05 8.5549e-03 5.5143e-02 8.3782e+00 2.4832e+00 - 53 7.5154e-05 5.3663e-05 8.5170e-03 4.9665e-02 8.3525e+00 2.4831e+00 - 54 7.9505e-05 5.6870e-05 8.4782e-03 4.4666e-02 8.3264e+00 2.4831e+00 - 55 8.4198e-05 6.0331e-05 8.4382e-03 4.0112e-02 8.2999e+00 2.4830e+00 - 56 8.9267e-05 6.4068e-05 8.3967e-03 3.5970e-02 8.2732e+00 2.4830e+00 - 57 9.4747e-05 6.8108e-05 8.3536e-03 3.2207e-02 8.2460e+00 2.4830e+00 - 58 1.0068e-04 7.2479e-05 8.3087e-03 2.8796e-02 8.2185e+00 2.4829e+00 - 59 1.0710e-04 7.7215e-05 8.2618e-03 2.5708e-02 8.1906e+00 2.4829e+00 - 60 1.1406e-04 8.2350e-05 8.2125e-03 2.2918e-02 8.1624e+00 2.4829e+00 - 61 1.2162e-04 8.7923e-05 8.1606e-03 2.0401e-02 8.1338e+00 2.4829e+00 - 62 1.2983e-04 9.3976e-05 8.1057e-03 1.8135e-02 8.1048e+00 2.4828e+00 - 63 1.3876e-04 1.0056e-04 8.0477e-03 1.6100e-02 8.0754e+00 2.4828e+00 - 64 1.4847e-04 1.0772e-04 7.9860e-03 1.4274e-02 8.0457e+00 2.4828e+00 - 65 1.5904e-04 1.1551e-04 7.9203e-03 1.2640e-02 8.0156e+00 2.4828e+00 - 66 1.7055e-04 1.2400e-04 7.8503e-03 1.1180e-02 7.9852e+00 2.4828e+00 - 67 1.8310e-04 1.3326e-04 7.7754e-03 9.8787e-03 7.9545e+00 2.4828e+00 - 68 1.9678e-04 1.4334e-04 7.6953e-03 8.7213e-03 7.9235e+00 2.4828e+00 - 69 2.1170e-04 1.5434e-04 7.6094e-03 7.6939e-03 7.8922e+00 2.4828e+00 - 70 2.2795e-04 1.6633e-04 7.5173e-03 6.7838e-03 7.8607e+00 2.4828e+00 - 71 2.4567e-04 1.7939e-04 7.4184e-03 5.9792e-03 7.8290e+00 2.4828e+00 - 72 2.6497e-04 1.9363e-04 7.3122e-03 5.2695e-03 7.7972e+00 2.4828e+00 - 73 2.8598e-04 2.0912e-04 7.1983e-03 4.6446e-03 7.7652e+00 2.4827e+00 - 74 3.0883e-04 2.2596e-04 7.0761e-03 4.0956e-03 7.7332e+00 2.4827e+00 - 75 3.3363e-04 2.4425e-04 6.9451e-03 3.6140e-03 7.7013e+00 2.4827e+00 - 76 3.6051e-04 2.6408e-04 6.8049e-03 3.1925e-03 7.6694e+00 2.4827e+00 - 77 3.8959e-04 2.8552e-04 6.6552e-03 2.8241e-03 7.6377e+00 2.4827e+00 - 78 4.2095e-04 3.0865e-04 6.4957e-03 2.5027e-03 7.6063e+00 2.4827e+00 - 79 4.5468e-04 3.3352e-04 6.3263e-03 2.2226e-03 7.5752e+00 2.4827e+00 - 80 4.9083e-04 3.6018e-04 6.1469e-03 1.9789e-03 7.5446e+00 2.4827e+00 - 81 5.2942e-04 3.8864e-04 5.9576e-03 1.7671e-03 7.5145e+00 2.4827e+00 - 82 5.7044e-04 4.1888e-04 5.7588e-03 1.5832e-03 7.4850e+00 2.4827e+00 - 83 6.1382e-04 4.5087e-04 5.5509e-03 1.4236e-03 7.4563e+00 2.4827e+00 - 84 6.5945e-04 4.8452e-04 5.3348e-03 1.2852e-03 7.4284e+00 2.4827e+00 - 85 7.0691e-04 5.1999e-04 5.1110e-03 1.1651e-03 7.4014e+00 2.4827e+00 - 86 7.5562e-04 5.5750e-04 4.8807e-03 1.0607e-03 7.3753e+00 2.4827e+00 - 87 8.0589e-04 5.9627e-04 4.6455e-03 9.7033e-04 7.3503e+00 2.4827e+00 - 88 8.5741e-04 6.3604e-04 4.4070e-03 8.9199e-04 7.3265e+00 2.4827e+00 - 89 9.0983e-04 6.7656e-04 4.1667e-03 8.2410e-04 7.3038e+00 2.4827e+00 - 90 9.6276e-04 7.1752e-04 3.9262e-03 7.6524e-04 7.2824e+00 2.4827e+00 - 91 1.0158e-03 7.5861e-04 3.6873e-03 7.1415e-04 7.2623e+00 2.4827e+00 - 92 1.0686e-03 7.9954e-04 3.4516e-03 6.6979e-04 7.2433e+00 2.4827e+00 - 93 1.1208e-03 8.3999e-04 3.2206e-03 6.3123e-04 7.2257e+00 2.4827e+00 - 94 1.1719e-03 8.7967e-04 2.9958e-03 5.9767e-04 7.2093e+00 2.4827e+00 - 95 1.2217e-03 9.1831e-04 2.7786e-03 5.6844e-04 7.1940e+00 2.4827e+00 - 96 1.2698e-03 9.5569e-04 2.5700e-03 5.4295e-04 7.1800e+00 2.4827e+00 - 97 1.3160e-03 9.9158e-04 2.3709e-03 5.2070e-04 7.1671e+00 2.4827e+00 - 98 1.3601e-03 1.0258e-03 2.1821e-03 5.0126e-04 7.1552e+00 2.4827e+00 - 99 1.4019e-03 1.0583e-03 2.0039e-03 4.8424e-04 7.1444e+00 2.4827e+00 - 100 1.4413e-03 1.0889e-03 1.8368e-03 4.6934e-04 7.1345e+00 2.4827e+00 - 101 1.4783e-03 1.1176e-03 1.6808e-03 4.5628e-04 7.1255e+00 2.4827e+00 - 102 1.5129e-03 1.1444e-03 1.5358e-03 4.4482e-04 7.1173e+00 2.4827e+00 - 103 1.5449e-03 1.1693e-03 1.4017e-03 4.3475e-04 7.1100e+00 2.4827e+00 - 104 1.5746e-03 1.1923e-03 1.2781e-03 4.2590e-04 7.1033e+00 2.4827e+00 - 105 1.6019e-03 1.2134e-03 1.1647e-03 4.1811e-04 7.0973e+00 2.4827e+00 - 106 1.6270e-03 1.2328e-03 1.0608e-03 4.1125e-04 7.0919e+00 2.4827e+00 - 107 1.6500e-03 1.2505e-03 9.6613e-04 4.0521e-04 7.0870e+00 2.4827e+00 - 108 1.6710e-03 1.2667e-03 8.7997e-04 3.9988e-04 7.0826e+00 2.4827e+00 - 109 1.6900e-03 1.2813e-03 8.0180e-04 3.9517e-04 7.0787e+00 2.4827e+00 - 110 1.7074e-03 1.2946e-03 7.3103e-04 3.9102e-04 7.0752e+00 2.4827e+00 - 111 1.7231e-03 1.3066e-03 6.6710e-04 3.8736e-04 7.0720e+00 2.4827e+00 - 112 1.7372e-03 1.3175e-03 6.0946e-04 3.8412e-04 7.0692e+00 2.4827e+00 - 113 1.7500e-03 1.3272e-03 5.5757e-04 3.8125e-04 7.0667e+00 2.4827e+00 - 114 1.7616e-03 1.3359e-03 5.1093e-04 3.7872e-04 7.0645e+00 2.4827e+00 - 115 1.7720e-03 1.3438e-03 4.6907e-04 3.7648e-04 7.0625e+00 2.4827e+00 - 116 1.7813e-03 1.3508e-03 4.3155e-04 3.7450e-04 7.0607e+00 2.4827e+00 - 117 1.7897e-03 1.3571e-03 3.9794e-04 3.7274e-04 7.0591e+00 2.4827e+00 - 118 1.7972e-03 1.3627e-03 3.6788e-04 3.7119e-04 7.0577e+00 2.4827e+00 - 119 1.8040e-03 1.3676e-03 3.4101e-04 3.6982e-04 7.0565e+00 2.4827e+00 - 120 1.8100e-03 1.3721e-03 3.1702e-04 3.6860e-04 7.0553e+00 2.4827e+00 - 121 1.8155e-03 1.3760e-03 2.9560e-04 3.6752e-04 7.0543e+00 2.4827e+00 - 122 1.8203e-03 1.3795e-03 2.7650e-04 3.6656e-04 7.0535e+00 2.4827e+00 - 123 1.8247e-03 1.3826e-03 2.5947e-04 3.6572e-04 7.0527e+00 2.4827e+00 - 124 1.8286e-03 1.3854e-03 2.4430e-04 3.6497e-04 7.0520e+00 2.4827e+00 - 125 1.8321e-03 1.3878e-03 2.3079e-04 3.6430e-04 7.0514e+00 2.4827e+00 - 126 1.8352e-03 1.3900e-03 2.1876e-04 3.6372e-04 7.0508e+00 2.4827e+00 - 127 1.8380e-03 1.3919e-03 2.0806e-04 3.6320e-04 7.0503e+00 2.4827e+00 - 128 1.8405e-03 1.3935e-03 1.9854e-04 3.6273e-04 7.0499e+00 2.4827e+00 - 129 1.8427e-03 1.3950e-03 1.9007e-04 3.6233e-04 7.0495e+00 2.4827e+00 - 130 1.8448e-03 1.3963e-03 1.8254e-04 3.6196e-04 7.0492e+00 2.4827e+00 - 131 1.8466e-03 1.3974e-03 1.7584e-04 3.6164e-04 7.0488e+00 2.4827e+00 - 132 1.8482e-03 1.3984e-03 1.6989e-04 3.6136e-04 7.0486e+00 2.4827e+00 - 133 1.8497e-03 1.3993e-03 1.6461e-04 3.6111e-04 7.0483e+00 2.4827e+00 - 134 1.8510e-03 1.4000e-03 1.5991e-04 3.6088e-04 7.0481e+00 2.4827e+00 - 135 1.8522e-03 1.4007e-03 1.5573e-04 3.6069e-04 7.0479e+00 2.4827e+00 - 136 1.8533e-03 1.4012e-03 1.5203e-04 3.6051e-04 7.0478e+00 2.4827e+00 - 137 1.8542e-03 1.4017e-03 1.4873e-04 3.6036e-04 7.0476e+00 2.4827e+00 - 138 1.8551e-03 1.4021e-03 1.4581e-04 3.6022e-04 7.0475e+00 2.4827e+00 - 139 1.8559e-03 1.4025e-03 1.4321e-04 3.6010e-04 7.0474e+00 2.4827e+00 - 140 1.8566e-03 1.4028e-03 1.4091e-04 3.6000e-04 7.0473e+00 2.4827e+00 - 141 1.8573e-03 1.4030e-03 1.3886e-04 3.5990e-04 7.0472e+00 2.4827e+00 - 142 1.8579e-03 1.4032e-03 1.3704e-04 3.5982e-04 7.0471e+00 2.4827e+00 - 143 1.8585e-03 1.4034e-03 1.3543e-04 3.5975e-04 7.0471e+00 2.4827e+00 - 144 1.8590e-03 1.4035e-03 1.3399e-04 3.5968e-04 7.0470e+00 2.4827e+00 - 145 1.8594e-03 1.4036e-03 1.3272e-04 3.5963e-04 7.0469e+00 2.4827e+00 - 146 1.8599e-03 1.4037e-03 1.3159e-04 3.5958e-04 7.0469e+00 2.4827e+00 - 147 1.8603e-03 1.4037e-03 1.3059e-04 3.5953e-04 7.0468e+00 2.4827e+00 - 148 1.8606e-03 1.4037e-03 1.2970e-04 3.5950e-04 7.0468e+00 2.4827e+00 - 149 1.8610e-03 1.4038e-03 1.2891e-04 3.5946e-04 7.0468e+00 2.4827e+00 - 150 1.8613e-03 1.4037e-03 1.2821e-04 3.5943e-04 7.0467e+00 2.4827e+00 - 151 1.8616e-03 1.4037e-03 1.2759e-04 3.5941e-04 7.0467e+00 2.4827e+00 - 152 1.8619e-03 1.4037e-03 1.2704e-04 3.5938e-04 7.0467e+00 2.4827e+00 - 153 1.8621e-03 1.4037e-03 1.2655e-04 3.5937e-04 7.0467e+00 2.4827e+00 - 154 1.8624e-03 1.4036e-03 1.2611e-04 3.5935e-04 7.0467e+00 2.4827e+00 - 155 1.8626e-03 1.4035e-03 1.2573e-04 3.5933e-04 7.0467e+00 2.4827e+00 - 156 1.8629e-03 1.4035e-03 1.2538e-04 3.5932e-04 7.0466e+00 2.4827e+00 - 157 1.8631e-03 1.4034e-03 1.2508e-04 3.5931e-04 7.0466e+00 2.4827e+00 - 158 1.8633e-03 1.4033e-03 1.2481e-04 3.5930e-04 7.0466e+00 2.4827e+00 - 159 1.8635e-03 1.4032e-03 1.2457e-04 3.5930e-04 7.0466e+00 2.4827e+00 - 160 1.8637e-03 1.4031e-03 1.2436e-04 3.5929e-04 7.0466e+00 2.4827e+00 - 161 1.8639e-03 1.4030e-03 1.2417e-04 3.5928e-04 7.0466e+00 2.4827e+00 - 162 1.8640e-03 1.4030e-03 1.2400e-04 3.5928e-04 7.0466e+00 2.4827e+00 - 163 1.8642e-03 1.4029e-03 1.2385e-04 3.5928e-04 7.0466e+00 2.4827e+00 - 164 1.8644e-03 1.4028e-03 1.2372e-04 3.5928e-04 7.0466e+00 2.4827e+00 - 165 1.8645e-03 1.4026e-03 1.2361e-04 3.5927e-04 7.0466e+00 2.4827e+00 - 166 1.8647e-03 1.4025e-03 1.2350e-04 3.5927e-04 7.0466e+00 2.4827e+00 - 167 1.8648e-03 1.4024e-03 1.2341e-04 3.5927e-04 7.0466e+00 2.4827e+00 - 168 1.8650e-03 1.4023e-03 1.2333e-04 3.5927e-04 7.0466e+00 2.4827e+00 - 169 1.8651e-03 1.4022e-03 1.2326e-04 3.5927e-04 7.0466e+00 2.4827e+00 - 170 1.8653e-03 1.4021e-03 1.2319e-04 3.5927e-04 7.0466e+00 2.4827e+00 - 171 1.8654e-03 1.4020e-03 1.2313e-04 3.5927e-04 7.0466e+00 2.4827e+00 - 172 1.8656e-03 1.4019e-03 1.2308e-04 3.5928e-04 7.0466e+00 2.4827e+00 - 173 1.8657e-03 1.4018e-03 1.2304e-04 3.5928e-04 7.0466e+00 2.4827e+00 - 174 1.8658e-03 1.4017e-03 1.2300e-04 3.5928e-04 7.0466e+00 2.4827e+00 - 175 1.8660e-03 1.4016e-03 1.2296e-04 3.5928e-04 7.0466e+00 2.4827e+00 - 176 1.8661e-03 1.4015e-03 1.2293e-04 3.5928e-04 7.0466e+00 2.4827e+00 - 177 1.8662e-03 1.4013e-03 1.2290e-04 3.5928e-04 7.0466e+00 2.4827e+00 - 178 1.8663e-03 1.4012e-03 1.2288e-04 3.5929e-04 7.0466e+00 2.4827e+00 - 179 1.8665e-03 1.4011e-03 1.2286e-04 3.5929e-04 7.0466e+00 2.4827e+00 - 180 1.8666e-03 1.4010e-03 1.2284e-04 3.5929e-04 7.0466e+00 2.4827e+00 - 181 1.8667e-03 1.4009e-03 1.2282e-04 3.5930e-04 7.0466e+00 2.4827e+00 - 182 1.8668e-03 1.4008e-03 1.2280e-04 3.5930e-04 7.0466e+00 2.4827e+00 - 183 1.8670e-03 1.4007e-03 1.2279e-04 3.5930e-04 7.0466e+00 2.4827e+00 - 184 1.8671e-03 1.4006e-03 1.2278e-04 3.5930e-04 7.0466e+00 2.4827e+00 - 185 1.8672e-03 1.4005e-03 1.2277e-04 3.5931e-04 7.0466e+00 2.4827e+00 - 186 1.8673e-03 1.4004e-03 1.2276e-04 3.5931e-04 7.0466e+00 2.4827e+00 - 187 1.8674e-03 1.4003e-03 1.2275e-04 3.5931e-04 7.0466e+00 2.4827e+00 - 188 1.8675e-03 1.4002e-03 1.2274e-04 3.5932e-04 7.0466e+00 2.4827e+00 - 189 1.8676e-03 1.4001e-03 1.2274e-04 3.5932e-04 7.0466e+00 2.4827e+00 - 190 1.8678e-03 1.4000e-03 1.2273e-04 3.5932e-04 7.0466e+00 2.4827e+00 - 191 1.8679e-03 1.3999e-03 1.2272e-04 3.5932e-04 7.0466e+00 2.4827e+00 - 192 1.8680e-03 1.3997e-03 1.2272e-04 3.5933e-04 7.0466e+00 2.4827e+00 - 193 1.8681e-03 1.3996e-03 1.2272e-04 3.5933e-04 7.0466e+00 2.4827e+00 - 194 1.8682e-03 1.3995e-03 1.2271e-04 3.5933e-04 7.0466e+00 2.4827e+00 - 195 1.8683e-03 1.3994e-03 1.2271e-04 3.5934e-04 7.0466e+00 2.4827e+00 - 196 1.8684e-03 1.3993e-03 1.2271e-04 3.5934e-04 7.0466e+00 2.4827e+00 - 197 1.8685e-03 1.3992e-03 1.2270e-04 3.5934e-04 7.0466e+00 2.4827e+00 - 198 1.8686e-03 1.3991e-03 1.2270e-04 3.5935e-04 7.0467e+00 2.4827e+00 - 199 1.8687e-03 1.3991e-03 1.2270e-04 3.5935e-04 7.0467e+00 2.4827e+00 - 200 1.8688e-03 1.3990e-03 1.2270e-04 3.5935e-04 7.0467e+00 2.4827e+00 + 1 4.6308e-01 1.6339e-01 5.4020e+00 2.5000e-02 5.8786e+00 0.0000e+00 + 1 3.4327e-04 2.4766e-04 9.3588e-02 1.4981e-03 7.2249e+00 2.4922e+00 + 2 2.8134e-05 1.9155e-05 2.3251e-02 1.7865e-01 8.6678e+00 2.4920e+00 + 3 1.4944e-05 9.4043e-06 1.4415e-02 1.1859e+00 9.1722e+00 2.4908e+00 + 4 1.3035e-05 7.9897e-06 1.2375e-02 2.0059e+00 9.3149e+00 2.4888e+00 + 5 1.2625e-05 7.6873e-06 1.1591e-02 2.3392e+00 9.3565e+00 2.4865e+00 + 6 1.2652e-05 7.7097e-06 1.1203e-02 2.3871e+00 9.3613e+00 2.4841e+00 + 7 1.2855e-05 7.8626e-06 1.0972e-02 2.3063e+00 9.3510e+00 2.4818e+00 + 8 1.3141e-05 8.0776e-06 1.0812e-02 2.1765e+00 9.3343e+00 2.4796e+00 + 9 1.3473e-05 8.3263e-06 1.0686e-02 2.0333e+00 9.3149e+00 2.4776e+00 + 10 1.3833e-05 8.5963e-06 1.0578e-02 1.8915e+00 9.2945e+00 2.4757e+00 + 11 1.4214e-05 8.8822e-06 1.0481e-02 1.7565e+00 9.2738e+00 2.4739e+00 + 12 1.4614e-05 9.1817e-06 1.0391e-02 1.6301e+00 9.2531e+00 2.4723e+00 + 13 1.5031e-05 9.4944e-06 1.0306e-02 1.5127e+00 9.2325e+00 2.4708e+00 + 14 1.5466e-05 9.8202e-06 1.0226e-02 1.4036e+00 9.2119e+00 2.4694e+00 + 15 1.5919e-05 1.0160e-05 1.0151e-02 1.3025e+00 9.1915e+00 2.4681e+00 + 16 1.6391e-05 1.0514e-05 1.0078e-02 1.2086e+00 9.1712e+00 2.4669e+00 + 17 1.6884e-05 1.0884e-05 1.0009e-02 1.1215e+00 9.1510e+00 2.4658e+00 + 18 1.7399e-05 1.1270e-05 9.9436e-03 1.0406e+00 9.1309e+00 2.4647e+00 + 19 1.7937e-05 1.1673e-05 9.8806e-03 9.6530e-01 9.1108e+00 2.4638e+00 + 20 1.8500e-05 1.2095e-05 9.8202e-03 8.9530e-01 9.0907e+00 2.4629e+00 + 21 1.9088e-05 1.2536e-05 9.7623e-03 8.3017e-01 9.0707e+00 2.4620e+00 + 22 1.9705e-05 1.2999e-05 9.7066e-03 7.6955e-01 9.0507e+00 2.4613e+00 + 23 2.0352e-05 1.3483e-05 9.6531e-03 7.1311e-01 9.0306e+00 2.4605e+00 + 24 2.1030e-05 1.3992e-05 9.6016e-03 6.6055e-01 9.0106e+00 2.4599e+00 + 25 2.1742e-05 1.4526e-05 9.5519e-03 6.1160e-01 8.9904e+00 2.4593e+00 + 26 2.2490e-05 1.5086e-05 9.5040e-03 5.6601e-01 8.9703e+00 2.4587e+00 + 27 2.3276e-05 1.5676e-05 9.4577e-03 5.2355e-01 8.9501e+00 2.4582e+00 + 28 2.4103e-05 1.6296e-05 9.4129e-03 4.8400e-01 8.9297e+00 2.4577e+00 + 29 2.4975e-05 1.6950e-05 9.3695e-03 4.4718e-01 8.9094e+00 2.4573e+00 + 30 2.5893e-05 1.7638e-05 9.3274e-03 4.1289e-01 8.8889e+00 2.4568e+00 + 31 2.6861e-05 1.8364e-05 9.2866e-03 3.8098e-01 8.8683e+00 2.4565e+00 + 32 2.7883e-05 1.9130e-05 9.2469e-03 3.5129e-01 8.8475e+00 2.4561e+00 + 33 2.8962e-05 1.9940e-05 9.2083e-03 3.2367e-01 8.8267e+00 2.4558e+00 + 34 3.0104e-05 2.0795e-05 9.1706e-03 2.9799e-01 8.8057e+00 2.4555e+00 + 35 3.1311e-05 2.1701e-05 9.1338e-03 2.7413e-01 8.7845e+00 2.4552e+00 + 36 3.2589e-05 2.2659e-05 9.0978e-03 2.5196e-01 8.7632e+00 2.4550e+00 + 37 3.3944e-05 2.3675e-05 9.0625e-03 2.3138e-01 8.7417e+00 2.4547e+00 + 38 3.5381e-05 2.4752e-05 9.0279e-03 2.1228e-01 8.7200e+00 2.4545e+00 + 39 3.6906e-05 2.5896e-05 8.9938e-03 1.9457e-01 8.6982e+00 2.4543e+00 + 40 3.8527e-05 2.7111e-05 8.9603e-03 1.7817e-01 8.6761e+00 2.4541e+00 + 41 4.0250e-05 2.8404e-05 8.9271e-03 1.6297e-01 8.6538e+00 2.4540e+00 + 42 4.2085e-05 2.9779e-05 8.8942e-03 1.4892e-01 8.6313e+00 2.4538e+00 + 43 4.4039e-05 3.1245e-05 8.8616e-03 1.3593e-01 8.6085e+00 2.4537e+00 + 44 4.6123e-05 3.2808e-05 8.8292e-03 1.2393e-01 8.5856e+00 2.4536e+00 + 45 4.8348e-05 3.4476e-05 8.7967e-03 1.1285e-01 8.5623e+00 2.4535e+00 + 46 5.0725e-05 3.6258e-05 8.7643e-03 1.0265e-01 8.5388e+00 2.4534e+00 + 47 5.3267e-05 3.8165e-05 8.7317e-03 9.3246e-02 8.5150e+00 2.4533e+00 + 48 5.5988e-05 4.0205e-05 8.6989e-03 8.4599e-02 8.4910e+00 2.4532e+00 + 49 5.8905e-05 4.2392e-05 8.6657e-03 7.6655e-02 8.4666e+00 2.4531e+00 + 50 6.2033e-05 4.4738e-05 8.6320e-03 6.9364e-02 8.4420e+00 2.4530e+00 + 51 6.5393e-05 4.7257e-05 8.5977e-03 6.2681e-02 8.4170e+00 2.4530e+00 + 52 6.9004e-05 4.9965e-05 8.5627e-03 5.6563e-02 8.3917e+00 2.4529e+00 + 53 7.2890e-05 5.2879e-05 8.5268e-03 5.0970e-02 8.3661e+00 2.4529e+00 + 54 7.7076e-05 5.6019e-05 8.4899e-03 4.5865e-02 8.3401e+00 2.4528e+00 + 55 8.1590e-05 5.9404e-05 8.4518e-03 4.1211e-02 8.3138e+00 2.4528e+00 + 56 8.6463e-05 6.3058e-05 8.4123e-03 3.6975e-02 8.2872e+00 2.4527e+00 + 57 9.1728e-05 6.7006e-05 8.3712e-03 3.3125e-02 8.2602e+00 2.4527e+00 + 58 9.7424e-05 7.1277e-05 8.3283e-03 2.9633e-02 8.2328e+00 2.4527e+00 + 59 1.0359e-04 7.5902e-05 8.2834e-03 2.6469e-02 8.2051e+00 2.4526e+00 + 60 1.1028e-04 8.0915e-05 8.2362e-03 2.3609e-02 8.1769e+00 2.4526e+00 + 61 1.1753e-04 8.6353e-05 8.1864e-03 2.1027e-02 8.1485e+00 2.4526e+00 + 62 1.2540e-04 9.2259e-05 8.1338e-03 1.8701e-02 8.1196e+00 2.4526e+00 + 63 1.3396e-04 9.8677e-05 8.0781e-03 1.6609e-02 8.0904e+00 2.4526e+00 + 64 1.4327e-04 1.0566e-04 8.0188e-03 1.4732e-02 8.0608e+00 2.4526e+00 + 65 1.5340e-04 1.1326e-04 7.9557e-03 1.3050e-02 8.0308e+00 2.4525e+00 + 66 1.6443e-04 1.2153e-04 7.8884e-03 1.1547e-02 8.0006e+00 2.4525e+00 + 67 1.7646e-04 1.3055e-04 7.8163e-03 1.0206e-02 7.9700e+00 2.4525e+00 + 68 1.8956e-04 1.4037e-04 7.7391e-03 9.0127e-03 7.9391e+00 2.4525e+00 + 69 2.0385e-04 1.5109e-04 7.6564e-03 7.9523e-03 7.9079e+00 2.4525e+00 + 70 2.1943e-04 1.6277e-04 7.5675e-03 7.0121e-03 7.8764e+00 2.4525e+00 + 71 2.3641e-04 1.7551e-04 7.4721e-03 6.1803e-03 7.8448e+00 2.4525e+00 + 72 2.5491e-04 1.8938e-04 7.3695e-03 5.4460e-03 7.8129e+00 2.4525e+00 + 73 2.7506e-04 2.0449e-04 7.2594e-03 4.7990e-03 7.7810e+00 2.4525e+00 + 74 2.9698e-04 2.2093e-04 7.1411e-03 4.2301e-03 7.7490e+00 2.4525e+00 + 75 3.2079e-04 2.3879e-04 7.0142e-03 3.7309e-03 7.7170e+00 2.4525e+00 + 76 3.4663e-04 2.5817e-04 6.8783e-03 3.2935e-03 7.6850e+00 2.4525e+00 + 77 3.7460e-04 2.7915e-04 6.7329e-03 2.9111e-03 7.6532e+00 2.4525e+00 + 78 4.0481e-04 3.0180e-04 6.5777e-03 2.5772e-03 7.6216e+00 2.4525e+00 + 79 4.3735e-04 3.2620e-04 6.4126e-03 2.2861e-03 7.5903e+00 2.4525e+00 + 80 4.7228e-04 3.5239e-04 6.2375e-03 2.0328e-03 7.5594e+00 2.4525e+00 + 81 5.0964e-04 3.8040e-04 6.0523e-03 1.8125e-03 7.5290e+00 2.4525e+00 + 82 5.4942e-04 4.1023e-04 5.8574e-03 1.6212e-03 7.4993e+00 2.4525e+00 + 83 5.9159e-04 4.4185e-04 5.6532e-03 1.4552e-03 7.4702e+00 2.4525e+00 + 84 6.3606e-04 4.7519e-04 5.4403e-03 1.3112e-03 7.4419e+00 2.4525e+00 + 85 6.8269e-04 5.1015e-04 5.2195e-03 1.1863e-03 7.4144e+00 2.4524e+00 + 86 7.3129e-04 5.4658e-04 4.9919e-03 1.0781e-03 7.3880e+00 2.4524e+00 + 87 7.8148e-04 5.8445e-04 4.7587e-03 9.8433e-04 7.3626e+00 2.4524e+00 + 88 8.3234e-04 6.2418e-04 4.5208e-03 9.0282e-04 7.3382e+00 2.4524e+00 + 89 8.8427e-04 6.6480e-04 4.2805e-03 8.3217e-04 7.3150e+00 2.4524e+00 + 90 9.3689e-04 7.0600e-04 4.0393e-03 7.7092e-04 7.2930e+00 2.4524e+00 + 91 9.8982e-04 7.4749e-04 3.7990e-03 7.1779e-04 7.2722e+00 2.4524e+00 + 92 1.0426e-03 7.8893e-04 3.5610e-03 6.7168e-04 7.2528e+00 2.4524e+00 + 93 1.0950e-03 8.3003e-04 3.3272e-03 6.3161e-04 7.2345e+00 2.4524e+00 + 94 1.1465e-03 8.7047e-04 3.0990e-03 5.9677e-04 7.2175e+00 2.4524e+00 + 95 1.1967e-03 9.0999e-04 2.8778e-03 5.6644e-04 7.2018e+00 2.4524e+00 + 96 1.2455e-03 9.4832e-04 2.6648e-03 5.4001e-04 7.1872e+00 2.4524e+00 + 97 1.2924e-03 9.8524e-04 2.4609e-03 5.1695e-04 7.1738e+00 2.4524e+00 + 98 1.3373e-03 1.0206e-03 2.2671e-03 4.9681e-04 7.1614e+00 2.4524e+00 + 99 1.3800e-03 1.0542e-03 2.0838e-03 4.7920e-04 7.1502e+00 2.4524e+00 + 100 1.4204e-03 1.0859e-03 1.9114e-03 4.6379e-04 7.1398e+00 2.4524e+00 + 101 1.4583e-03 1.1157e-03 1.7502e-03 4.5028e-04 7.1305e+00 2.4524e+00 + 102 1.4938e-03 1.1436e-03 1.6001e-03 4.3843e-04 7.1219e+00 2.4524e+00 + 103 1.5268e-03 1.1696e-03 1.4610e-03 4.2803e-04 7.1142e+00 2.4524e+00 + 104 1.5574e-03 1.1936e-03 1.3326e-03 4.1889e-04 7.1072e+00 2.4524e+00 + 105 1.5857e-03 1.2158e-03 1.2145e-03 4.1085e-04 7.1009e+00 2.4524e+00 + 106 1.6116e-03 1.2361e-03 1.1063e-03 4.0378e-04 7.0953e+00 2.4524e+00 + 107 1.6354e-03 1.2547e-03 1.0075e-03 3.9755e-04 7.0902e+00 2.4524e+00 + 108 1.6572e-03 1.2717e-03 9.1753e-04 3.9205e-04 7.0856e+00 2.4524e+00 + 109 1.6770e-03 1.2872e-03 8.3580e-04 3.8721e-04 7.0815e+00 2.4524e+00 + 110 1.6949e-03 1.3012e-03 7.6174e-04 3.8293e-04 7.0778e+00 2.4524e+00 + 111 1.7112e-03 1.3139e-03 6.9479e-04 3.7915e-04 7.0745e+00 2.4524e+00 + 112 1.7260e-03 1.3253e-03 6.3437e-04 3.7582e-04 7.0715e+00 2.4524e+00 + 113 1.7393e-03 1.3356e-03 5.7995e-04 3.7287e-04 7.0689e+00 2.4524e+00 + 114 1.7513e-03 1.3449e-03 5.3101e-04 3.7026e-04 7.0665e+00 2.4524e+00 + 115 1.7621e-03 1.3532e-03 4.8706e-04 3.6796e-04 7.0644e+00 2.4524e+00 + 116 1.7719e-03 1.3606e-03 4.4765e-04 3.6592e-04 7.0626e+00 2.4524e+00 + 117 1.7806e-03 1.3673e-03 4.1234e-04 3.6411e-04 7.0609e+00 2.4524e+00 + 118 1.7884e-03 1.3732e-03 3.8074e-04 3.6251e-04 7.0594e+00 2.4524e+00 + 119 1.7955e-03 1.3785e-03 3.5249e-04 3.6110e-04 7.0581e+00 2.4524e+00 + 120 1.8018e-03 1.3833e-03 3.2725e-04 3.5985e-04 7.0569e+00 2.4524e+00 + 121 1.8074e-03 1.3875e-03 3.0472e-04 3.5874e-04 7.0559e+00 2.4524e+00 + 122 1.8125e-03 1.3912e-03 2.8462e-04 3.5776e-04 7.0549e+00 2.4524e+00 + 123 1.8170e-03 1.3945e-03 2.6670e-04 3.5689e-04 7.0541e+00 2.4524e+00 + 124 1.8211e-03 1.3975e-03 2.5074e-04 3.5611e-04 7.0534e+00 2.4524e+00 + 125 1.8247e-03 1.4001e-03 2.3651e-04 3.5543e-04 7.0527e+00 2.4524e+00 + 126 1.8279e-03 1.4024e-03 2.2385e-04 3.5483e-04 7.0521e+00 2.4524e+00 + 127 1.8308e-03 1.4044e-03 2.1258e-04 3.5429e-04 7.0516e+00 2.4524e+00 + 128 1.8334e-03 1.4062e-03 2.0256e-04 3.5382e-04 7.0512e+00 2.4524e+00 + 129 1.8358e-03 1.4078e-03 1.9364e-04 3.5339e-04 7.0507e+00 2.4524e+00 + 130 1.8378e-03 1.4092e-03 1.8571e-04 3.5302e-04 7.0504e+00 2.4524e+00 + 131 1.8397e-03 1.4104e-03 1.7866e-04 3.5269e-04 7.0501e+00 2.4524e+00 + 132 1.8414e-03 1.4115e-03 1.7239e-04 3.5240e-04 7.0498e+00 2.4524e+00 + 133 1.8429e-03 1.4125e-03 1.6682e-04 3.5214e-04 7.0495e+00 2.4524e+00 + 134 1.8443e-03 1.4133e-03 1.6187e-04 3.5191e-04 7.0493e+00 2.4524e+00 + 135 1.8455e-03 1.4140e-03 1.5748e-04 3.5171e-04 7.0491e+00 2.4524e+00 + 136 1.8466e-03 1.4146e-03 1.5357e-04 3.5153e-04 7.0489e+00 2.4524e+00 + 137 1.8476e-03 1.4152e-03 1.5011e-04 3.5137e-04 7.0488e+00 2.4524e+00 + 138 1.8485e-03 1.4156e-03 1.4703e-04 3.5123e-04 7.0486e+00 2.4524e+00 + 139 1.8493e-03 1.4160e-03 1.4429e-04 3.5110e-04 7.0485e+00 2.4524e+00 + 140 1.8500e-03 1.4164e-03 1.4186e-04 3.5099e-04 7.0484e+00 2.4524e+00 + 141 1.8507e-03 1.4166e-03 1.3971e-04 3.5090e-04 7.0483e+00 2.4524e+00 + 142 1.8513e-03 1.4169e-03 1.3779e-04 3.5081e-04 7.0482e+00 2.4524e+00 + 143 1.8518e-03 1.4171e-03 1.3609e-04 3.5074e-04 7.0482e+00 2.4524e+00 + 144 1.8524e-03 1.4172e-03 1.3459e-04 3.5067e-04 7.0481e+00 2.4524e+00 + 145 1.8528e-03 1.4174e-03 1.3325e-04 3.5061e-04 7.0480e+00 2.4524e+00 + 146 1.8532e-03 1.4175e-03 1.3206e-04 3.5056e-04 7.0480e+00 2.4524e+00 + 147 1.8536e-03 1.4176e-03 1.3100e-04 3.5051e-04 7.0479e+00 2.4524e+00 + 148 1.8540e-03 1.4176e-03 1.3007e-04 3.5047e-04 7.0479e+00 2.4524e+00 + 149 1.8543e-03 1.4176e-03 1.2924e-04 3.5044e-04 7.0479e+00 2.4524e+00 + 150 1.8546e-03 1.4177e-03 1.2850e-04 3.5041e-04 7.0478e+00 2.4524e+00 + 151 1.8549e-03 1.4177e-03 1.2784e-04 3.5038e-04 7.0478e+00 2.4524e+00 + 152 1.8552e-03 1.4177e-03 1.2726e-04 3.5036e-04 7.0478e+00 2.4524e+00 + 153 1.8555e-03 1.4176e-03 1.2675e-04 3.5033e-04 7.0478e+00 2.4524e+00 + 154 1.8557e-03 1.4176e-03 1.2629e-04 3.5032e-04 7.0478e+00 2.4524e+00 + 155 1.8559e-03 1.4176e-03 1.2588e-04 3.5030e-04 7.0477e+00 2.4524e+00 + 156 1.8561e-03 1.4175e-03 1.2552e-04 3.5029e-04 7.0477e+00 2.4524e+00 + 157 1.8563e-03 1.4175e-03 1.2520e-04 3.5028e-04 7.0477e+00 2.4524e+00 + 158 1.8565e-03 1.4174e-03 1.2492e-04 3.5027e-04 7.0477e+00 2.4524e+00 + 159 1.8567e-03 1.4173e-03 1.2467e-04 3.5026e-04 7.0477e+00 2.4524e+00 + 160 1.8569e-03 1.4173e-03 1.2444e-04 3.5025e-04 7.0477e+00 2.4524e+00 + 161 1.8571e-03 1.4172e-03 1.2425e-04 3.5025e-04 7.0477e+00 2.4524e+00 + 162 1.8572e-03 1.4171e-03 1.2407e-04 3.5024e-04 7.0477e+00 2.4524e+00 + 163 1.8574e-03 1.4170e-03 1.2391e-04 3.5024e-04 7.0477e+00 2.4524e+00 + 164 1.8575e-03 1.4169e-03 1.2377e-04 3.5023e-04 7.0477e+00 2.4524e+00 + 165 1.8577e-03 1.4168e-03 1.2365e-04 3.5023e-04 7.0477e+00 2.4524e+00 + 166 1.8578e-03 1.4168e-03 1.2354e-04 3.5023e-04 7.0477e+00 2.4524e+00 + 167 1.8580e-03 1.4167e-03 1.2345e-04 3.5023e-04 7.0477e+00 2.4524e+00 + 168 1.8581e-03 1.4166e-03 1.2336e-04 3.5023e-04 7.0477e+00 2.4524e+00 + 169 1.8582e-03 1.4165e-03 1.2328e-04 3.5023e-04 7.0477e+00 2.4524e+00 + 170 1.8583e-03 1.4164e-03 1.2322e-04 3.5023e-04 7.0477e+00 2.4524e+00 + 171 1.8585e-03 1.4163e-03 1.2316e-04 3.5023e-04 7.0477e+00 2.4524e+00 + 172 1.8586e-03 1.4162e-03 1.2310e-04 3.5023e-04 7.0477e+00 2.4524e+00 + 173 1.8587e-03 1.4161e-03 1.2306e-04 3.5023e-04 7.0477e+00 2.4524e+00 + 174 1.8588e-03 1.4160e-03 1.2301e-04 3.5023e-04 7.0477e+00 2.4524e+00 + 175 1.8590e-03 1.4159e-03 1.2298e-04 3.5023e-04 7.0477e+00 2.4524e+00 + 176 1.8591e-03 1.4158e-03 1.2294e-04 3.5023e-04 7.0477e+00 2.4524e+00 + 177 1.8592e-03 1.4157e-03 1.2291e-04 3.5023e-04 7.0477e+00 2.4524e+00 + 178 1.8593e-03 1.4156e-03 1.2289e-04 3.5023e-04 7.0477e+00 2.4524e+00 + 179 1.8594e-03 1.4155e-03 1.2286e-04 3.5024e-04 7.0477e+00 2.4524e+00 + 180 1.8595e-03 1.4154e-03 1.2284e-04 3.5024e-04 7.0477e+00 2.4524e+00 + 181 1.8596e-03 1.4153e-03 1.2283e-04 3.5024e-04 7.0477e+00 2.4524e+00 + 182 1.8597e-03 1.4152e-03 1.2281e-04 3.5024e-04 7.0477e+00 2.4524e+00 + 183 1.8598e-03 1.4151e-03 1.2279e-04 3.5024e-04 7.0477e+00 2.4524e+00 + 184 1.8599e-03 1.4150e-03 1.2278e-04 3.5025e-04 7.0477e+00 2.4524e+00 + 185 1.8601e-03 1.4150e-03 1.2277e-04 3.5025e-04 7.0477e+00 2.4524e+00 + 186 1.8602e-03 1.4149e-03 1.2276e-04 3.5025e-04 7.0477e+00 2.4524e+00 + 187 1.8603e-03 1.4148e-03 1.2275e-04 3.5025e-04 7.0477e+00 2.4524e+00 + 188 1.8604e-03 1.4147e-03 1.2274e-04 3.5026e-04 7.0477e+00 2.4524e+00 + 189 1.8605e-03 1.4146e-03 1.2274e-04 3.5026e-04 7.0477e+00 2.4524e+00 + 190 1.8606e-03 1.4145e-03 1.2273e-04 3.5026e-04 7.0477e+00 2.4524e+00 + 191 1.8607e-03 1.4144e-03 1.2273e-04 3.5026e-04 7.0477e+00 2.4524e+00 + 192 1.8608e-03 1.4143e-03 1.2272e-04 3.5027e-04 7.0477e+00 2.4524e+00 + 193 1.8608e-03 1.4142e-03 1.2272e-04 3.5027e-04 7.0477e+00 2.4524e+00 + 194 1.8609e-03 1.4141e-03 1.2271e-04 3.5027e-04 7.0477e+00 2.4524e+00 + 195 1.8610e-03 1.4140e-03 1.2271e-04 3.5027e-04 7.0477e+00 2.4524e+00 + 196 1.8611e-03 1.4140e-03 1.2271e-04 3.5028e-04 7.0477e+00 2.4524e+00 + 197 1.8612e-03 1.4139e-03 1.2270e-04 3.5028e-04 7.0477e+00 2.4524e+00 + 198 1.8613e-03 1.4138e-03 1.2270e-04 3.5028e-04 7.0477e+00 2.4524e+00 + 199 1.8614e-03 1.4137e-03 1.2270e-04 3.5028e-04 7.0477e+00 2.4524e+00 + 200 1.8615e-03 1.4136e-03 1.2270e-04 3.5028e-04 7.0477e+00 2.4524e+00 diff --git a/ex15.out b/ex15.out index 075ae196..9a9a3664 100644 --- a/ex15.out +++ b/ex15.out @@ -157,11 +157,19 @@ Reading input data for simulation 1. WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 10. WARNING: Dispersivities were read for 1 cells. Last value is used till cell 10. END +WARNING: +Calculating transport: 10 (mobile) cells, 20 shifts, 1 mixruns... + + TRANSPORT Last 55 hours with background infilling solution shifts 55 COPY cell 100 0 # for the 20 cell model... COPY cell 101 1-20 END +WARNING: +Calculating transport: 10 (mobile) cells, 55 shifts, 1 mixruns... + + USER_PUNCH start 10 punch TOTAL_TIME/3600 + 3600/4/3600 @@ -209,10 +217,14 @@ WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. END WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. +WARNING: +Calculating transport: 20 (mobile) cells, 40 shifts, 1 mixruns... + + TRANSPORT Last 55 hours with background infilling solution shifts 110 END -------------------------------- -End of Run after 5.485 Seconds. -------------------------------- +WARNING: +Calculating transport: 20 (mobile) cells, 110 shifts, 1 mixruns... + diff --git a/ex15.sel b/ex15.sel index 961a8602..5e9063e5 100644 --- a/ex15.sel +++ b/ex15.sel @@ -1,5 +1,5 @@ sim state soln dist_x time step pH pe m_Nta-3 m_CoNta- m_HNta-2 m_Co+2 hours Co_sorb CoNta_sorb Biomass - 1 transp 10 9.5 0 0 6 14.3937 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 5.0000e-01 0.0000e+00 0.0000e+00 0.0000e+00 + 1 transp 10 9.5 0 0 6 14.3937 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 5.0000e-01 0.0000e+00 0.0000e+00 1.3600e-04 1 transp 10 9.5 3600 1 6 14.3937 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 1.5000e+00 0.0000e+00 0.0000e+00 1.3572e-04 1 transp 10 9.5 7200 2 6 14.3937 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 2.5000e+00 0.0000e+00 0.0000e+00 1.3544e-04 1 transp 10 9.5 10800 3 6 14.3937 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 3.5000e+00 0.0000e+00 0.0000e+00 1.3515e-04 @@ -20,7 +20,7 @@ 1 transp 10 9.5 64800 18 6.50914 13.8808 4.1316e-11 4.4051e-07 2.5526e-07 2.1274e-08 1.8500e+01 2.2982e-11 1.9215e-10 1.5306e-04 1 transp 10 9.5 68400 19 6.52519 13.8647 4.4065e-11 5.5820e-07 2.6236e-07 2.5276e-08 1.9500e+01 2.9022e-11 2.4826e-10 1.5586e-04 1 transp 10 9.5 72000 20 6.53959 13.8502 4.6562e-11 6.8880e-07 2.6819e-07 2.9517e-08 2.0500e+01 3.5915e-11 3.1170e-10 1.5876e-04 - 2 transp 10 9.5 72000 0 6.53959 13.8502 4.6562e-11 6.8880e-07 2.6819e-07 2.9517e-08 2.0500e+01 0.0000e+00 0.0000e+00 0.0000e+00 + 2 transp 10 9.5 72000 0 6.53959 13.8502 4.6562e-11 6.8880e-07 2.6819e-07 2.9517e-08 2.0500e+01 3.5915e-11 3.1170e-10 1.5876e-04 2 transp 10 9.5 75600 1 6.55254 13.8371 4.8804e-11 8.3068e-07 2.7284e-07 3.3961e-08 2.1500e+01 4.3669e-11 3.8179e-10 1.6174e-04 2 transp 10 9.5 79200 2 6.56419 13.8254 5.0791e-11 9.8198e-07 2.7644e-07 3.8576e-08 2.2500e+01 5.2280e-11 4.5769e-10 1.6481e-04 2 transp 10 9.5 82800 3 6.57469 13.8148 5.2526e-11 1.1406e-06 2.7905e-07 4.3329e-08 2.3500e+01 6.1739e-11 5.3842e-10 1.6796e-04 @@ -76,7 +76,7 @@ 2 transp 10 9.5 262800 53 6.00741 14.3863 3.2200e-13 2.4501e-08 6.3161e-09 1.5182e-07 7.3500e+01 7.3678e-10 1.7238e-11 2.6756e-04 2 transp 10 9.5 266400 54 6.00603 14.3877 2.6398e-13 2.0046e-08 5.1944e-09 1.5152e-07 7.4500e+01 7.3880e-10 1.4145e-11 2.6713e-04 2 transp 10 9.5 270000 55 6.0049 14.3888 2.1600e-13 1.6379e-08 4.2615e-09 1.5130e-07 7.5500e+01 7.4066e-10 1.1589e-11 2.6667e-04 - 3 transp 20 9.75 0 0 6 14.3937 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 2.5000e-01 0.0000e+00 0.0000e+00 0.0000e+00 + 3 transp 20 9.75 0 0 6 14.3937 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 2.5000e-01 0.0000e+00 0.0000e+00 1.3600e-04 3 transp 20 9.75 3600 2 6 14.3937 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 1.2500e+00 0.0000e+00 0.0000e+00 1.3572e-04 3 transp 20 9.75 7200 4 6 14.3937 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 2.2500e+00 0.0000e+00 0.0000e+00 1.3544e-04 3 transp 20 9.75 10800 6 6 14.3937 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 3.2500e+00 0.0000e+00 0.0000e+00 1.3515e-04 @@ -97,7 +97,7 @@ 3 transp 20 9.75 64800 36 6.50373 13.8863 4.0006e-11 3.5884e-07 2.5026e-07 1.7897e-08 1.8250e+01 1.6082e-11 1.3490e-10 1.5046e-04 3 transp 20 9.75 68400 38 6.52082 13.8691 4.2945e-11 4.6679e-07 2.5828e-07 2.1688e-08 1.9250e+01 2.0945e-11 1.8130e-10 1.5310e-04 3 transp 20 9.75 72000 40 6.53617 13.8536 4.5647e-11 5.8950e-07 2.6500e-07 2.5768e-08 2.0250e+01 2.6637e-11 2.3572e-10 1.5584e-04 - 4 transp 20 9.75 72000 0 6.53617 13.8536 4.5647e-11 5.8950e-07 2.6500e-07 2.5768e-08 2.0250e+01 0.0000e+00 0.0000e+00 0.0000e+00 + 4 transp 20 9.75 72000 0 6.53617 13.8536 4.5647e-11 5.8950e-07 2.6500e-07 2.5768e-08 2.0250e+01 2.6637e-11 2.3572e-10 1.5584e-04 4 transp 20 9.75 75600 2 6.54997 13.8397 4.8105e-11 7.2569e-07 2.7053e-07 3.0100e-08 2.1250e+01 3.3181e-11 2.9788e-10 1.5869e-04 4 transp 20 9.75 79200 4 6.5624 13.8272 5.0312e-11 8.7369e-07 2.7496e-07 3.4649e-08 2.2250e+01 4.0590e-11 3.6721e-10 1.6162e-04 4 transp 20 9.75 82800 6 6.57359 13.8159 5.2265e-11 1.0315e-06 2.7837e-07 3.9378e-08 2.3250e+01 4.8869e-11 4.4295e-10 1.6463e-04 diff --git a/ex15a.out b/ex15a.out index 64c3ed37..0c18f49f 100644 --- a/ex15a.out +++ b/ex15a.out @@ -143,11 +143,19 @@ Reading input data for simulation 1. WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 10. WARNING: Dispersivities were read for 1 cells. Last value is used till cell 10. END +WARNING: +Calculating transport: 10 (mobile) cells, 20 shifts, 1 mixruns... + + TRANSPORT Last 55 hours with background infilling solution shifts 55 COPY cell 100 0 # for the 20 cell model... COPY cell 101 1-20 END +WARNING: +Calculating transport: 10 (mobile) cells, 55 shifts, 1 mixruns... + + USER_PUNCH start 10 punch TOTAL_TIME/3600 + 3600/4/3600 @@ -186,10 +194,14 @@ WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. END WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. +WARNING: +Calculating transport: 20 (mobile) cells, 40 shifts, 1 mixruns... + + TRANSPORT Last 55 hours with background infilling solution shifts 110 END -------------------------------- -End of Run after 5.233 Seconds. -------------------------------- +WARNING: +Calculating transport: 20 (mobile) cells, 110 shifts, 1 mixruns... + diff --git a/ex15b.out b/ex15b.out index 30931b46..3b5dcddd 100644 --- a/ex15b.out +++ b/ex15b.out @@ -186,7 +186,3 @@ WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. TRANSPORT Last 55 hours with background infilling solution shifts 110 END -------------------------------- -End of Run after 5.211 Seconds. -------------------------------- - diff --git a/ex16.out b/ex16.out index ada64762..3e9887f3 100644 --- a/ex16.out +++ b/ex16.out @@ -78,15 +78,16 @@ Initial solution 1. pH = 6.200 pe = 4.000 - Specific Conductance (S/cm, 25C) = 37 - Density (g/cm) = 0.99708 + Specific Conductance (µS/cm, 25°C) = 37 + Density (g/cm³) = 0.99708 Volume (L) = 1.00300 + Viscosity (mPa s) = 0.89033 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.852e-04 Mass of water (kg) = 1.000e+00 Total carbon (mol/kg) = 7.825e-04 Total CO2 (mol/kg) = 7.825e-04 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = 1.400e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.90 Iterations = 7 @@ -96,58 +97,59 @@ Initial solution 1. ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 6.465e-07 6.310e-07 -6.189 -6.200 -0.011 0.00 OH- 1.645e-08 1.604e-08 -7.784 -7.795 -0.011 -4.12 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 C(4) 7.825e-04 CO2 4.540e-04 4.540e-04 -3.343 -3.343 0.000 34.43 - HCO3- 3.281e-04 3.200e-04 -3.484 -3.495 -0.011 24.67 + HCO3- 3.281e-04 3.200e-04 -3.484 -3.495 -0.011 24.54 CaHCO3+ 2.940e-07 2.868e-07 -6.532 -6.542 -0.011 9.66 - MgHCO3+ 1.003e-07 9.781e-08 -6.999 -7.010 -0.011 5.47 - CO3-2 2.628e-08 2.379e-08 -7.580 -7.624 -0.043 -5.31 - NaHCO3 2.351e-08 2.352e-08 -7.629 -7.629 0.000 1.80 - (CO2)2 3.783e-09 3.784e-09 -8.422 -8.422 0.000 68.87 + MgHCO3+ 1.003e-07 9.779e-08 -6.999 -7.010 -0.011 5.47 + NaHCO3 2.795e-08 2.796e-08 -7.554 -7.554 0.000 28.00 + CO3-2 2.628e-08 2.379e-08 -7.580 -7.624 -0.043 -4.11 + (CO2)2 3.783e-09 3.783e-09 -8.422 -8.422 0.000 68.87 CaCO3 2.806e-09 2.807e-09 -8.552 -8.552 0.000 -14.60 - MgCO3 5.928e-10 5.929e-10 -9.227 -9.227 0.000 -17.09 - NaCO3- 5.935e-11 5.788e-11 -10.227 -10.238 -0.011 -1.04 + MgCO3 5.927e-10 5.927e-10 -9.227 -9.227 0.000 -17.09 Ca 7.800e-05 Ca+2 7.760e-05 7.023e-05 -4.110 -4.153 -0.043 -18.17 CaHCO3+ 2.940e-07 2.868e-07 -6.532 -6.542 -0.011 9.66 - CaSO4 1.110e-07 1.111e-07 -6.954 -6.954 0.000 7.50 + CaSO4 1.110e-07 1.110e-07 -6.955 -6.955 0.000 7.50 CaCO3 2.806e-09 2.807e-09 -8.552 -8.552 0.000 -14.60 CaOH+ 1.894e-11 1.847e-11 -10.723 -10.733 -0.011 (0) - CaHSO4+ 4.723e-13 4.606e-13 -12.326 -12.337 -0.011 (0) + CaHSO4+ 4.721e-13 4.604e-13 -12.326 -12.337 -0.011 (0) Cl 1.400e-05 Cl- 1.400e-05 1.365e-05 -4.854 -4.865 -0.011 18.07 + HCl 2.966e-12 2.967e-12 -11.528 -11.528 0.000 (0) H(0) 5.636e-24 H2 2.818e-24 2.818e-24 -23.550 -23.550 0.000 28.61 K 2.800e-05 K+ 2.800e-05 2.730e-05 -4.553 -4.564 -0.011 9.00 - KSO4- 1.749e-09 1.706e-09 -8.757 -8.768 -0.011 34.10 + KSO4- 9.153e-10 8.919e-10 -9.038 -9.050 -0.011 17.32 Mg 2.900e-05 - Mg+2 2.885e-05 2.612e-05 -4.540 -4.583 -0.043 -21.86 - MgHCO3+ 1.003e-07 9.781e-08 -6.999 -7.010 -0.011 5.47 - MgSO4 5.444e-08 5.445e-08 -7.264 -7.264 0.000 5.84 - MgCO3 5.928e-10 5.929e-10 -9.227 -9.227 0.000 -17.09 - MgOH+ 1.541e-10 1.503e-10 -9.812 -9.823 -0.011 (0) + Mg+2 2.884e-05 2.611e-05 -4.540 -4.583 -0.043 -21.86 + MgHCO3+ 1.003e-07 9.779e-08 -6.999 -7.010 -0.011 5.47 + MgSO4 6.076e-08 6.077e-08 -7.216 -7.216 0.000 -0.83 + MgCO3 5.927e-10 5.927e-10 -9.227 -9.227 0.000 -17.09 + MgOH+ 1.540e-10 1.503e-10 -9.812 -9.823 -0.011 (0) + Mg(SO4)2-2 1.963e-12 1.779e-12 -11.707 -11.750 -0.043 33.91 Na 1.340e-04 Na+ 1.340e-04 1.307e-04 -3.873 -3.884 -0.011 -1.49 - NaHCO3 2.351e-08 2.352e-08 -7.629 -7.629 0.000 1.80 - NaSO4- 5.970e-09 5.823e-09 -8.224 -8.235 -0.011 13.66 - NaCO3- 5.935e-11 5.788e-11 -10.227 -10.238 -0.011 -1.04 + NaHCO3 2.795e-08 2.796e-08 -7.554 -7.554 0.000 28.00 + NaSO4- 4.656e-09 4.537e-09 -8.332 -8.343 -0.011 14.50 NaOH 2.096e-22 2.096e-22 -21.679 -21.679 0.000 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -45.280 -45.280 0.000 30.40 S(6) 1.000e-05 - SO4-2 9.827e-06 8.892e-06 -5.008 -5.051 -0.043 14.48 - CaSO4 1.110e-07 1.111e-07 -6.954 -6.954 0.000 7.50 - MgSO4 5.444e-08 5.445e-08 -7.264 -7.264 0.000 5.84 - NaSO4- 5.970e-09 5.823e-09 -8.224 -8.235 -0.011 13.66 - KSO4- 1.749e-09 1.706e-09 -8.757 -8.768 -0.011 34.10 - HSO4- 5.594e-10 5.455e-10 -9.252 -9.263 -0.011 40.27 - CaHSO4+ 4.723e-13 4.606e-13 -12.326 -12.337 -0.011 (0) + SO4-2 9.823e-06 8.889e-06 -5.008 -5.051 -0.043 14.75 + CaSO4 1.110e-07 1.110e-07 -6.955 -6.955 0.000 7.50 + MgSO4 6.076e-08 6.077e-08 -7.216 -7.216 0.000 -0.83 + NaSO4- 4.656e-09 4.537e-09 -8.332 -8.343 -0.011 14.50 + KSO4- 9.153e-10 8.919e-10 -9.038 -9.050 -0.011 17.32 + HSO4- 5.592e-10 5.453e-10 -9.252 -9.263 -0.011 40.27 + Mg(SO4)2-2 1.963e-12 1.779e-12 -11.707 -11.750 -0.043 33.91 + CaHSO4+ 4.721e-13 4.604e-13 -12.326 -12.337 -0.011 (0) Si 2.730e-04 H4SiO4 2.729e-04 2.730e-04 -3.564 -3.564 0.000 52.08 H3SiO4- 6.542e-08 6.379e-08 -7.184 -7.195 -0.011 27.96 @@ -159,15 +161,20 @@ Si 2.730e-04 Anhydrite -4.93 -9.20 -4.28 CaSO4 Aragonite -3.44 -11.78 -8.34 CaCO3 + Arcanite -12.30 -14.18 -1.88 K2SO4 Calcite -3.30 -11.78 -8.48 CaCO3 Chalcedony -0.01 -3.56 -3.55 SiO2 Chrysotile -15.88 16.32 32.20 Mg3Si2O5(OH)4 CO2(g) -1.87 -3.34 -1.47 CO2 - Dolomite -6.89 -23.98 -17.09 CaMg(CO3)2 + Dolomite -6.90 -23.98 -17.08 CaMg(CO3)2 + Epsomite -7.90 -9.63 -1.74 MgSO4:7H2O Gypsum -4.62 -9.20 -4.58 CaSO4:2H2O H2(g) -20.45 -23.55 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -10.32 -8.75 1.57 NaCl + Hexahydrite -8.07 -9.63 -1.57 MgSO4:6H2O + Kieserite -8.47 -9.63 -1.16 MgSO4:H2O + Mirabilite -11.58 -12.82 -1.24 Na2SO4:10H2O O2(g) -42.39 -45.28 -2.89 O2 Quartz 0.42 -3.56 -3.98 SiO2 Sepiolite -10.82 4.94 15.76 Mg2Si3O7.5OH:3H2O @@ -175,6 +182,7 @@ Si 2.730e-04 SiO2(a) -0.85 -3.56 -2.71 SiO2 Sylvite -10.33 -9.43 0.90 KCl Talc -12.20 9.20 21.40 Mg3Si4O10(OH)2 + Thenardite -12.52 -12.82 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -198,76 +206,78 @@ Initial solution 2. pH = 6.800 pe = 4.000 - Specific Conductance (S/cm, 25C) = 94 - Density (g/cm) = 0.99712 + Specific Conductance (µS/cm, 25°C) = 95 + Density (g/cm³) = 0.99712 Volume (L) = 1.00301 + Viscosity (mPa s) = 0.89066 Activity of water = 1.000 - Ionic strength (mol/kgw) = 1.314e-03 + Ionic strength (mol/kgw) = 1.313e-03 Mass of water (kg) = 1.000e+00 Total carbon (mol/kg) = 1.199e-03 Total CO2 (mol/kg) = 1.199e-03 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.400e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.73 - Iterations = 6 + Iterations = 6 (13 overall) Total H = 1.110150e+02 Total O = 5.551125e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.647e-07 1.585e-07 -6.783 -6.800 -0.017 0.00 OH- 6.652e-08 6.386e-08 -7.177 -7.195 -0.018 -4.10 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 C(4) 1.199e-03 - HCO3- 8.907e-04 8.558e-04 -3.050 -3.068 -0.017 24.69 + HCO3- 8.907e-04 8.558e-04 -3.050 -3.068 -0.017 24.56 CO2 3.049e-04 3.050e-04 -3.516 -3.516 0.000 34.43 CaHCO3+ 2.484e-06 2.388e-06 -5.605 -5.622 -0.017 9.68 - MgHCO3+ 6.233e-07 5.985e-07 -6.205 -6.223 -0.018 5.48 - CO3-2 2.972e-07 2.532e-07 -6.527 -6.596 -0.069 -5.25 - NaHCO3 1.196e-07 1.197e-07 -6.922 -6.922 0.000 1.80 + MgHCO3+ 6.230e-07 5.982e-07 -6.205 -6.223 -0.018 5.48 + CO3-2 2.972e-07 2.532e-07 -6.527 -6.596 -0.069 -4.05 + NaHCO3 1.422e-07 1.423e-07 -6.847 -6.847 0.000 28.00 CaCO3 9.300e-08 9.302e-08 -7.032 -7.031 0.000 -14.60 - MgCO3 1.444e-08 1.444e-08 -7.840 -7.840 0.000 -17.09 + MgCO3 1.443e-08 1.444e-08 -7.841 -7.841 0.000 -17.09 (CO2)2 1.707e-09 1.707e-09 -8.768 -8.768 0.000 68.87 - NaCO3- 1.221e-09 1.172e-09 -8.913 -8.931 -0.018 -1.02 Ca 2.600e-04 Ca+2 2.567e-04 2.187e-04 -3.591 -3.660 -0.070 -18.13 CaHCO3+ 2.484e-06 2.388e-06 -5.605 -5.622 -0.017 9.68 - CaSO4 7.909e-07 7.911e-07 -6.102 -6.102 0.000 7.50 + CaSO4 7.901e-07 7.903e-07 -6.102 -6.102 0.000 7.50 CaCO3 9.300e-08 9.302e-08 -7.032 -7.031 0.000 -14.60 CaOH+ 2.385e-10 2.290e-10 -9.623 -9.640 -0.018 (0) - CaHSO4+ 8.583e-13 8.242e-13 -12.066 -12.084 -0.018 (0) + CaHSO4+ 8.575e-13 8.234e-13 -12.067 -12.084 -0.018 (0) Cl 3.000e-05 Cl- 3.000e-05 2.880e-05 -4.523 -4.541 -0.018 18.08 + HCl 1.571e-12 1.573e-12 -11.804 -11.803 0.001 (0) H(0) 3.555e-25 H2 1.778e-25 1.778e-25 -24.750 -24.750 0.000 28.61 K 4.000e-05 K+ 4.000e-05 3.840e-05 -4.398 -4.416 -0.018 9.01 - KSO4- 5.713e-09 5.489e-09 -8.243 -8.261 -0.017 34.11 + KSO4- 2.993e-09 2.869e-09 -8.524 -8.542 -0.018 18.43 Mg 7.101e-05 - Mg+2 7.008e-05 5.977e-05 -4.154 -4.224 -0.069 -21.81 - MgHCO3+ 6.233e-07 5.985e-07 -6.205 -6.223 -0.018 5.48 - MgSO4 2.850e-07 2.851e-07 -6.545 -6.545 0.000 5.84 - MgCO3 1.444e-08 1.444e-08 -7.840 -7.840 0.000 -17.09 - MgOH+ 1.424e-09 1.369e-09 -8.846 -8.864 -0.017 (0) + Mg+2 7.005e-05 5.974e-05 -4.155 -4.224 -0.069 -21.81 + MgHCO3+ 6.230e-07 5.982e-07 -6.205 -6.223 -0.018 5.48 + MgSO4 3.177e-07 3.179e-07 -6.498 -6.498 0.000 -0.83 + MgCO3 1.443e-08 1.444e-08 -7.841 -7.841 0.000 -17.09 + MgOH+ 1.424e-09 1.369e-09 -8.847 -8.864 -0.017 (0) + Mg(SO4)2-2 2.490e-11 2.128e-11 -10.604 -10.672 -0.068 35.32 Na 2.590e-04 Na+ 2.589e-04 2.486e-04 -3.587 -3.604 -0.018 -1.47 - NaHCO3 1.196e-07 1.197e-07 -6.922 -6.922 0.000 1.80 - NaSO4- 2.639e-08 2.535e-08 -7.579 -7.596 -0.017 13.77 - NaCO3- 1.221e-09 1.172e-09 -8.913 -8.931 -0.018 -1.02 + NaHCO3 1.422e-07 1.423e-07 -6.847 -6.847 0.000 28.00 + NaSO4- 2.060e-08 1.974e-08 -7.686 -7.705 -0.018 14.55 NaOH 1.587e-21 1.588e-21 -20.799 -20.799 0.000 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -42.880 -42.880 0.000 30.40 S(6) 2.500e-05 - SO4-2 2.389e-05 2.034e-05 -4.622 -4.692 -0.070 14.53 - CaSO4 7.909e-07 7.911e-07 -6.102 -6.102 0.000 7.50 - MgSO4 2.850e-07 2.851e-07 -6.545 -6.545 0.000 5.84 - NaSO4- 2.639e-08 2.535e-08 -7.579 -7.596 -0.017 13.77 - KSO4- 5.713e-09 5.489e-09 -8.243 -8.261 -0.017 34.11 - HSO4- 3.265e-10 3.135e-10 -9.486 -9.504 -0.018 40.28 - CaHSO4+ 8.583e-13 8.242e-13 -12.066 -12.084 -0.018 (0) + SO4-2 2.387e-05 2.032e-05 -4.622 -4.692 -0.070 14.81 + CaSO4 7.901e-07 7.903e-07 -6.102 -6.102 0.000 7.50 + MgSO4 3.177e-07 3.179e-07 -6.498 -6.498 0.000 -0.83 + NaSO4- 2.060e-08 1.974e-08 -7.686 -7.705 -0.018 14.55 + KSO4- 2.993e-09 2.869e-09 -8.524 -8.542 -0.018 18.43 + HSO4- 3.262e-10 3.132e-10 -9.487 -9.504 -0.018 40.28 + Mg(SO4)2-2 2.490e-11 2.128e-11 -10.604 -10.672 -0.068 35.32 + CaHSO4+ 8.575e-13 8.234e-13 -12.067 -12.084 -0.018 (0) Si 4.100e-04 H4SiO4 4.096e-04 4.098e-04 -3.388 -3.387 0.000 52.08 H3SiO4- 3.970e-07 3.812e-07 -6.401 -6.419 -0.018 27.98 @@ -279,15 +289,20 @@ Si 4.100e-04 Anhydrite -4.07 -8.35 -4.28 CaSO4 Aragonite -1.92 -10.26 -8.34 CaCO3 + Arcanite -11.64 -13.52 -1.88 K2SO4 Calcite -1.78 -10.26 -8.48 CaCO3 Chalcedony 0.16 -3.39 -3.55 SiO2 Chrysotile -10.85 21.35 32.20 Mg3Si2O5(OH)4 CO2(g) -2.05 -3.52 -1.47 CO2 - Dolomite -3.99 -21.08 -17.09 CaMg(CO3)2 + Dolomite -3.99 -21.08 -17.08 CaMg(CO3)2 + Epsomite -7.18 -8.92 -1.74 MgSO4:7H2O Gypsum -3.77 -8.35 -4.58 CaSO4:2H2O H2(g) -21.65 -24.75 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -9.71 -8.14 1.57 NaCl + Hexahydrite -7.35 -8.92 -1.57 MgSO4:6H2O + Kieserite -7.75 -8.92 -1.16 MgSO4:H2O + Mirabilite -10.66 -11.90 -1.24 Na2SO4:10H2O O2(g) -39.99 -42.88 -2.89 O2 Quartz 0.59 -3.39 -3.98 SiO2 Sepiolite -7.17 8.59 15.76 Mg2Si3O7.5OH:3H2O @@ -295,6 +310,7 @@ Si 4.100e-04 SiO2(a) -0.68 -3.39 -2.71 SiO2 Sylvite -9.86 -8.96 0.90 KCl Talc -6.82 14.58 21.40 Mg3Si4O10(OH)2 + Thenardite -11.60 -11.90 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -347,15 +363,15 @@ Solution fractions: Minimum Maximum Solution 1 1.000e+00 1.000e+00 1.000e+00 Solution 2 1.000e+00 1.000e+00 1.000e+00 -Phase mole transfers: Minimum Maximum - Halite 1.600e-05 1.490e-05 1.710e-05 NaCl - Gypsum 1.500e-05 1.413e-05 1.588e-05 CaSO4:2H2O - Kaolinite -3.392e-05 -5.587e-05 -1.224e-05 Al2Si2O5(OH)4 -Ca-Montmorillon -8.090e-05 -1.100e-04 -5.154e-05 Ca0.165Al2.33Si3.67O10(OH)2 - CO2(g) 3.006e-04 2.363e-04 3.655e-04 CO2 - Calcite 1.161e-04 1.007e-04 1.309e-04 CaCO3 - Biotite 1.370e-05 1.317e-05 1.370e-05 KMg3AlSi3O10(OH)2 - Plagioclase 1.758e-04 1.582e-04 1.935e-04 Na0.62Ca0.38Al1.38Si2.62O8 +Phase mole transfers: Minimum Maximum Formula (Approximate SI in solution 1, 2 at 298 K, 1 atm) + Halite 1.600e-05 1.490e-05 1.710e-05 NaCl (-10.32, -9.71) + Gypsum 1.500e-05 1.413e-05 1.588e-05 CaSO4:2H2O ( -4.62, -3.77) + Kaolinite -3.392e-05 -5.587e-05 -1.224e-05 Al2Si2O5(OH)4 ( , ) +Ca-Montmorillon -8.090e-05 -1.100e-04 -5.154e-05 Ca0.165Al2.33Si3.67O10(OH ( , ) + CO2(g) 3.006e-04 2.363e-04 3.656e-04 CO2 ( -1.87, -2.05) + Calcite 1.161e-04 1.007e-04 1.309e-04 CaCO3 ( -3.30, -1.78) + Biotite 1.370e-05 1.317e-05 1.370e-05 KMg3AlSi3O10(OH)2 ( , ) + Plagioclase 1.758e-04 1.582e-04 1.935e-04 Na0.62Ca0.38Al1.38Si2.62O ( , ) Redox mole transfers: @@ -409,15 +425,15 @@ Solution fractions: Minimum Maximum Solution 1 1.000e+00 1.000e+00 1.000e+00 Solution 2 1.000e+00 1.000e+00 1.000e+00 -Phase mole transfers: Minimum Maximum - Halite 1.600e-05 1.490e-05 1.710e-05 NaCl - Gypsum 1.500e-05 1.413e-05 1.588e-05 CaSO4:2H2O - Kaolinite -1.282e-04 -1.403e-04 -1.159e-04 Al2Si2O5(OH)4 - CO2(g) 3.140e-04 2.490e-04 3.795e-04 CO2 - Calcite 1.028e-04 8.680e-05 1.182e-04 CaCO3 - Chalcedony -1.084e-04 -1.473e-04 -6.906e-05 SiO2 - Biotite 1.370e-05 1.317e-05 1.370e-05 KMg3AlSi3O10(OH)2 - Plagioclase 1.758e-04 1.582e-04 1.935e-04 Na0.62Ca0.38Al1.38Si2.62O8 +Phase mole transfers: Minimum Maximum Formula (Approximate SI in solution 1, 2 at 298 K, 1 atm) + Halite 1.600e-05 1.490e-05 1.710e-05 NaCl (-10.32, -9.71) + Gypsum 1.500e-05 1.413e-05 1.588e-05 CaSO4:2H2O ( -4.62, -3.77) + Kaolinite -1.282e-04 -1.403e-04 -1.159e-04 Al2Si2O5(OH)4 ( , ) + CO2(g) 3.140e-04 2.490e-04 3.795e-04 CO2 ( -1.87, -2.05) + Calcite 1.028e-04 8.680e-05 1.182e-04 CaCO3 ( -3.30, -1.78) + Chalcedony -1.084e-04 -1.473e-04 -6.906e-05 SiO2 ( -0.01, 0.16) + Biotite 1.370e-05 1.317e-05 1.370e-05 KMg3AlSi3O10(OH)2 ( , ) + Plagioclase 1.758e-04 1.582e-04 1.935e-04 Na0.62Ca0.38Al1.38Si2.62O ( , ) Redox mole transfers: @@ -443,7 +459,3 @@ End of simulation. Reading input data for simulation 2. ------------------------------------ -------------------------------- -End of Run after 0.019 Seconds. -------------------------------- - diff --git a/ex17.out b/ex17.out index 513b547b..7665baae 100644 --- a/ex17.out +++ b/ex17.out @@ -90,15 +90,16 @@ Initial solution 1. Black Sea water pH = 8.000 pe = 4.000 - Specific Conductance (S/cm, 25C) = 30387 - Density (g/cm) = 1.01092 - Volume (L) = 1.00789 + Specific Conductance (µS/cm, 25°C) = 30482 + Density (g/cm³) = 1.01090 + Volume (L) = 1.00790 + Viscosity (mPa s) = 0.92638 Activity of water = 0.990 Ionic strength (mol/kgw) = 3.751e-01 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 7.601e-04 Total CO2 (mol/kg) = 7.375e-04 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.36 Iterations = 8 @@ -112,7 +113,7 @@ Initial solution 1. Black Sea water MacInnes MacInnes MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.669e-06 1.002e-06 -5.777 -5.999 -0.222 -3.15 H+ 1.290e-08 1.000e-08 -7.890 -8.000 -0.110 0.00 @@ -120,8 +121,8 @@ Initial solution 1. Black Sea water Br 4.401e-04 Br- 4.401e-04 3.007e-04 -3.356 -3.522 -0.165 25.07 C(4) 7.375e-04 - HCO3- 6.974e-04 4.854e-04 -3.157 -3.314 -0.157 25.91 - CO3-2 1.577e-05 2.223e-06 -4.802 -5.653 -0.851 -1.35 + HCO3- 6.974e-04 4.854e-04 -3.157 -3.314 -0.157 25.88 + CO3-2 1.577e-05 2.223e-06 -4.802 -5.653 -0.851 -1.45 MgCO3 1.412e-05 1.412e-05 -4.850 -4.850 0.000 -17.09 CO2 1.018e-05 1.076e-05 -4.992 -4.968 0.024 34.43 Ca 5.841e-03 @@ -137,7 +138,7 @@ Mg 2.807e-02 Na 2.544e-01 Na+ 2.544e-01 1.837e-01 -0.595 -0.736 -0.141 -0.74 S(6) 1.527e-02 - SO4-2 1.527e-02 2.084e-03 -1.816 -2.681 -0.865 17.32 + SO4-2 1.527e-02 2.084e-03 -1.816 -2.681 -0.865 18.12 HSO4- 2.901e-09 1.985e-09 -8.537 -8.702 -0.165 40.79 ------------------------------Saturation indices------------------------------- @@ -152,10 +153,10 @@ S(6) 1.527e-02 Bloedite -6.63 -8.98 -2.35 Na2Mg(SO4)2:4H2O Brucite -3.24 -14.12 -10.88 Mg(OH)2 Burkeite -14.66 -15.43 -0.77 Na6CO3(SO4)2 - Calcite 0.01 -8.49 -8.50 CaCO3 + Calcite -0.09 -8.49 -8.41 CaCO3 Carnallite -11.16 -6.74 4.42 KMgCl3:6H2O CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 - Dolomite 0.81 -16.27 -17.08 CaMg(CO3)2 + Dolomite 0.82 -16.27 -17.09 CaMg(CO3)2 Epsomite -2.99 -4.84 -1.85 MgSO4:7H2O Gaylussite -6.22 -15.64 -9.42 CaNa2(CO3)2:5H2O Glaserite -9.69 -13.50 -3.80 NaK3(SO4)2 @@ -211,18 +212,19 @@ Initial solution 2. Composition during halite precipitation pH = 5.000 pe = 4.000 - Specific Conductance (S/cm, 25C) = 187052 - Density (g/cm) = 1.27230 - Volume (L) = 1.13169 + Specific Conductance (µS/cm, 25°C) = 189938 + Density (g/cm³) = 1.27454 + Volume (L) = 1.12971 + Viscosity (mPa s) = 3.68619 Activity of water = 0.678 Ionic strength (mol/kgw) = 1.111e+01 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 7.522e-06 Total CO2 (mol/kg) = 6.950e-06 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = 4.629e-02 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.29 - Iterations = 16 + Iterations = 16 (24 overall) Gamma iterations = 7 Osmotic coefficient = 1.72913 Density of water = 0.99704 @@ -233,7 +235,7 @@ Initial solution 2. Composition during halite precipitation MacInnes MacInnes MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 5.437e-07 1.000e-05 -6.265 -5.000 1.265 0.00 OH- 1.211e-08 6.863e-10 -7.917 -9.163 -1.246 11.12 @@ -241,10 +243,10 @@ Initial solution 2. Composition during halite precipitation Br 3.785e-02 Br- 3.785e-02 4.933e-02 -1.422 -1.307 0.115 26.52 C(4) 6.950e-06 - HCO3- 4.243e-06 3.324e-07 -5.372 -6.478 -1.106 46.24 + HCO3- 4.243e-06 3.324e-07 -5.372 -6.478 -1.106 37.30 CO2 2.631e-06 1.076e-05 -5.580 -4.968 0.612 34.43 MgCO3 7.035e-08 7.035e-08 -7.153 -7.153 0.000 -17.09 - CO3-2 5.753e-09 1.522e-12 -8.240 -11.818 -3.578 14.97 + CO3-2 5.753e-09 1.522e-12 -8.240 -11.818 -3.578 14.43 Cl 6.004e+00 Cl- 6.004e+00 4.547e+00 0.778 0.658 -0.121 20.71 K 4.578e-01 @@ -256,7 +258,7 @@ Mg 2.354e+00 Na 2.720e+00 Na+ 2.720e+00 8.832e+00 0.435 0.946 0.511 2.22 S(6) 8.986e-01 - SO4-2 8.986e-01 2.396e-03 -0.046 -2.621 -2.574 30.60 + SO4-2 8.986e-01 2.396e-03 -0.046 -2.621 -2.574 28.39 HSO4- 2.838e-06 2.282e-06 -5.547 -5.642 -0.095 42.44 ------------------------------Saturation indices------------------------------- @@ -336,12 +338,12 @@ Solution fractions: Minimum Maximum Solution 1 8.815e+01 8.780e+01 8.815e+01 Solution 2 1.000e+00 1.000e+00 1.000e+00 -Phase mole transfers: Minimum Maximum - H2O(g) -4.837e+03 -4.817e+03 -4.817e+03 H2O - Calcite -3.350e-02 -3.434e-02 -3.253e-02 CaCO3 - CO2(g) -3.151e-02 -3.397e-02 -2.893e-02 CO2 - Gypsum -4.814e-01 -4.951e-01 -4.658e-01 CaSO4:2H2O - Halite -1.975e+01 -2.033e+01 -1.902e+01 NaCl +Phase mole transfers: Minimum Maximum Formula (Approximate SI in solution 1, 2 at 298 K, 1 atm) + H2O(g) -4.837e+03 -4.817e+03 -4.817e+03 H2O ( -1.51, -1.67) + Calcite -3.350e-02 -3.434e-02 -3.253e-02 CaCO3 ( -0.09, ) + CO2(g) -3.151e-02 -3.397e-02 -2.893e-02 CO2 ( -3.50, -3.50) + Gypsum -4.814e-01 -4.951e-01 -4.658e-01 CaSO4:2H2O ( -0.93, ) + Halite -1.975e+01 -2.033e+01 -1.902e+01 NaCl ( -3.02, 0.02) Redox mole transfers: @@ -367,7 +369,3 @@ End of simulation. Reading input data for simulation 2. ------------------------------------ -------------------------------- -End of Run after 0.017 Seconds. -------------------------------- - diff --git a/ex17b.out b/ex17b.out index 0dd079ed..eddc464d 100644 --- a/ex17b.out +++ b/ex17b.out @@ -92,15 +92,16 @@ Initial solution 1. Black Sea water pH = 8.000 pe = 4.000 - Specific Conductance (S/cm, 25C) = 30387 - Density (g/cm) = 1.01092 - Volume (L) = 1.00789 + Specific Conductance (µS/cm, 25°C) = 30482 + Density (g/cm³) = 1.01090 + Volume (L) = 1.00790 + Viscosity (mPa s) = 0.92638 Activity of water = 0.990 Ionic strength (mol/kgw) = 3.751e-01 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 7.601e-04 Total CO2 (mol/kg) = 7.375e-04 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.36 Iterations = 8 @@ -114,7 +115,7 @@ Initial solution 1. Black Sea water MacInnes MacInnes MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.669e-06 1.002e-06 -5.777 -5.999 -0.222 -3.15 H+ 1.290e-08 1.000e-08 -7.890 -8.000 -0.110 0.00 @@ -122,8 +123,8 @@ Initial solution 1. Black Sea water Br 4.401e-04 Br- 4.401e-04 3.007e-04 -3.356 -3.522 -0.165 25.07 C(4) 7.375e-04 - HCO3- 6.974e-04 4.854e-04 -3.157 -3.314 -0.157 25.91 - CO3-2 1.577e-05 2.223e-06 -4.802 -5.653 -0.851 -1.35 + HCO3- 6.974e-04 4.854e-04 -3.157 -3.314 -0.157 25.88 + CO3-2 1.577e-05 2.223e-06 -4.802 -5.653 -0.851 -1.45 MgCO3 1.412e-05 1.412e-05 -4.850 -4.850 0.000 -17.09 CO2 1.018e-05 1.076e-05 -4.992 -4.968 0.024 34.43 Ca 5.841e-03 @@ -139,7 +140,7 @@ Mg 2.807e-02 Na 2.544e-01 Na+ 2.544e-01 1.837e-01 -0.595 -0.736 -0.141 -0.74 S(6) 1.527e-02 - SO4-2 1.527e-02 2.084e-03 -1.816 -2.681 -0.865 17.32 + SO4-2 1.527e-02 2.084e-03 -1.816 -2.681 -0.865 18.12 HSO4- 2.901e-09 1.985e-09 -8.537 -8.702 -0.165 40.79 ------------------------------Saturation indices------------------------------- @@ -154,10 +155,10 @@ S(6) 1.527e-02 Bloedite -6.63 -8.98 -2.35 Na2Mg(SO4)2:4H2O Brucite -3.24 -14.12 -10.88 Mg(OH)2 Burkeite -14.66 -15.43 -0.77 Na6CO3(SO4)2 - Calcite 0.01 -8.49 -8.50 CaCO3 + Calcite -0.09 -8.49 -8.41 CaCO3 Carnallite -11.16 -6.74 4.42 KMgCl3:6H2O CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 - Dolomite 0.81 -16.27 -17.08 CaMg(CO3)2 + Dolomite 0.82 -16.27 -17.09 CaMg(CO3)2 Epsomite -2.99 -4.84 -1.85 MgSO4:7H2O Gaylussite -6.22 -15.64 -9.42 CaNa2(CO3)2:5H2O Glaserite -9.69 -13.50 -3.80 NaK3(SO4)2 @@ -226,8 +227,8 @@ Phase SI log IAP log K(T, P) Initial Final Delta Anhydrite -1.27 -5.52 -4.25 0.000e+00 0 0.000e+00 Bischofite -8.16 -3.56 4.59 0.000e+00 0 0.000e+00 -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 3.300e-06 -Calcite 0.00 -8.50 -8.50 0.000e+00 3.893e-06 3.893e-06 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 0.000e+00 +Calcite -0.09 -8.49 -8.41 0.000e+00 0 0.000e+00 Carnallite -11.16 -6.74 4.42 0.000e+00 0 0.000e+00 Epsomite -2.99 -4.84 -1.85 0.000e+00 0 0.000e+00 Glauberite -4.32 -9.67 -5.35 0.000e+00 0 0.000e+00 @@ -242,8 +243,8 @@ Polyhalite -9.73 -23.47 -13.74 0.000e+00 0 0.000e+00 Elements Molality Moles Br 4.401e-04 4.401e-04 - C 7.303e-04 7.303e-04 - Ca 5.837e-03 5.837e-03 + C 7.375e-04 7.375e-04 + Ca 5.841e-03 5.841e-03 Cl 2.930e-01 2.930e-01 K 4.960e-03 4.960e-03 Mg 2.807e-02 2.807e-02 @@ -252,76 +253,77 @@ Polyhalite -9.73 -23.47 -13.74 0.000e+00 0 0.000e+00 ----------------------------Description of solution---------------------------- - pH = 7.996 Charge balance + pH = 8.000 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 30386 - Density (g/cm) = 1.01092 - Volume (L) = 1.00789 + Specific Conductance (µS/cm, 25°C) = 30482 + Density (g/cm³) = 1.01090 + Volume (L) = 1.00790 + Viscosity (mPa s) = 0.92638 Activity of water = 0.990 Ionic strength (mol/kgw) = 3.751e-01 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 7.523e-04 - Total CO2 (mol/kg) = 7.303e-04 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 7.601e-04 + Total CO2 (mol/kg) = 7.375e-04 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.36 - Iterations = 3 - Gamma iterations = 2 + Iterations = 1 + Gamma iterations = 1 Osmotic coefficient = 0.89867 Density of water = 0.99704 Total H = 1.110131e+02 - Total O = 5.556949e+01 + Total O = 5.556951e+01 ----------------------------Distribution of species---------------------------- MacInnes MacInnes MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.653e-06 9.928e-07 -5.782 -6.003 -0.222 -3.15 - H+ 1.302e-08 1.010e-08 -7.885 -7.996 -0.110 0.00 + OH- 1.669e-06 1.002e-06 -5.777 -5.999 -0.222 -3.15 + H+ 1.290e-08 1.000e-08 -7.890 -8.000 -0.110 0.00 H2O 5.551e+01 9.903e-01 1.744 -0.004 0.000 18.07 Br 4.401e-04 Br- 4.401e-04 3.007e-04 -3.356 -3.522 -0.165 25.07 -C(4) 7.303e-04 - HCO3- 6.908e-04 4.808e-04 -3.161 -3.318 -0.157 25.91 - CO3-2 1.547e-05 2.181e-06 -4.810 -5.661 -0.851 -1.35 - MgCO3 1.386e-05 1.386e-05 -4.858 -4.858 0.000 -17.09 +C(4) 7.375e-04 + HCO3- 6.974e-04 4.854e-04 -3.157 -3.314 -0.157 25.88 + CO3-2 1.577e-05 2.223e-06 -4.802 -5.653 -0.851 -1.45 + MgCO3 1.412e-05 1.412e-05 -4.850 -4.850 0.000 -17.09 CO2 1.018e-05 1.076e-05 -4.992 -4.968 0.024 34.43 -Ca 5.837e-03 - Ca+2 5.837e-03 1.445e-03 -2.234 -2.840 -0.606 -16.97 +Ca 5.841e-03 + Ca+2 5.841e-03 1.446e-03 -2.233 -2.840 -0.606 -16.97 Cl 2.930e-01 Cl- 2.930e-01 1.964e-01 -0.533 -0.707 -0.174 18.61 K 4.960e-03 K+ 4.960e-03 3.419e-03 -2.305 -2.466 -0.162 9.48 Mg 2.807e-02 - Mg+2 2.806e-02 7.498e-03 -1.552 -2.125 -0.573 -20.69 - MgCO3 1.386e-05 1.386e-05 -4.858 -4.858 0.000 -17.09 - MgOH+ 1.229e-06 1.142e-06 -5.910 -5.942 -0.032 (0) + Mg+2 2.805e-02 7.498e-03 -1.552 -2.125 -0.573 -20.69 + MgCO3 1.412e-05 1.412e-05 -4.850 -4.850 0.000 -17.09 + MgOH+ 1.241e-06 1.153e-06 -5.906 -5.938 -0.032 (0) Na 2.544e-01 Na+ 2.544e-01 1.837e-01 -0.595 -0.736 -0.141 -0.74 S(6) 1.527e-02 - SO4-2 1.527e-02 2.084e-03 -1.816 -2.681 -0.865 17.32 - HSO4- 2.929e-09 2.004e-09 -8.533 -8.698 -0.165 40.79 + SO4-2 1.527e-02 2.084e-03 -1.816 -2.681 -0.865 18.12 + HSO4- 2.901e-09 1.985e-09 -8.537 -8.702 -0.165 40.79 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) Anhydrite -1.27 -5.52 -4.25 CaSO4 - Aragonite -0.28 -8.50 -8.22 CaCO3 + Aragonite -0.27 -8.49 -8.22 CaCO3 Arcanite -5.73 -7.61 -1.88 K2SO4 - Artinite -3.26 16.40 19.66 Mg2CO3(OH)2:3H2O + Artinite -3.25 16.41 19.66 Mg2CO3(OH)2:3H2O Bischofite -8.16 -3.56 4.59 MgCl2:6H2O Bloedite -6.63 -8.98 -2.35 Na2Mg(SO4)2:4H2O - Brucite -3.25 -14.13 -10.88 Mg(OH)2 - Burkeite -14.67 -15.44 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.50 -8.50 CaCO3 + Brucite -3.24 -14.12 -10.88 Mg(OH)2 + Burkeite -14.66 -15.43 -0.77 Na6CO3(SO4)2 + Calcite -0.09 -8.49 -8.41 CaCO3 Carnallite -11.16 -6.74 4.42 KMgCl3:6H2O CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 - Dolomite 0.80 -16.29 -17.08 CaMg(CO3)2 + Dolomite 0.82 -16.27 -17.09 CaMg(CO3)2 Epsomite -2.99 -4.84 -1.85 MgSO4:7H2O - Gaylussite -6.23 -15.66 -9.42 CaNa2(CO3)2:5H2O + Gaylussite -6.22 -15.64 -9.42 CaNa2(CO3)2:5H2O Glaserite -9.69 -13.50 -3.80 NaK3(SO4)2 Glauberite -4.32 -9.67 -5.35 Na2Ca(SO4)2 Goergeyite -5.85 -35.22 -29.37 K2Ca5(SO4)6H2O @@ -329,30 +331,30 @@ S(6) 1.527e-02 H2O(g) -1.51 -0.00 1.50 H2O Halite -3.02 -1.44 1.58 NaCl Hexahydrite -3.26 -4.83 -1.57 MgSO4:6H2O - Huntite -0.75 9.50 10.24 CaMg3(CO3)4 + Huntite -0.71 9.53 10.24 CaMg3(CO3)4 Kainite -7.80 -7.99 -0.19 KMgClSO4:3H2O Kalicinite -6.18 -16.12 -9.94 KHCO3 Kieserite -4.54 -4.81 -0.27 MgSO4:H2O - Labile_S -8.16 -13.84 -5.67 Na4Ca(SO4)3:2H2O + Labile_S -8.16 -13.83 -5.67 Na4Ca(SO4)3:2H2O Leonhardite -3.94 -4.82 -0.89 MgSO4:4H2O Leonite -8.46 -12.44 -3.98 K2Mg(SO4)2:4H2O - Magnesite 0.05 -7.79 -7.83 MgCO3 + Magnesite 0.06 -7.78 -7.83 MgCO3 MgCl2_2H2O -18.10 -3.55 14.56 MgCl2:2H2O MgCl2_4H2O -10.53 -3.56 6.98 MgCl2:4H2O Mirabilite -2.96 -4.20 -1.24 Na2SO4:10H2O - Misenite -75.67 -86.47 -10.81 K8H6(SO4)7 + Misenite -75.69 -86.50 -10.81 K8H6(SO4)7 Nahcolite -3.65 -14.39 -10.74 NaHCO3 - Natron -6.35 -7.18 -0.82 Na2CO3:10H2O - Nesquehonite -2.63 -7.80 -5.17 MgCO3:3H2O + Natron -6.34 -7.17 -0.82 Na2CO3:10H2O + Nesquehonite -2.62 -7.79 -5.17 MgCO3:3H2O Pentahydrite -3.54 -4.83 -1.28 MgSO4:5H2O - Pirssonite -6.41 -15.64 -9.23 Na2Ca(CO3)2:2H2O + Pirssonite -6.39 -15.63 -9.23 Na2Ca(CO3)2:2H2O Polyhalite -9.73 -23.47 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.66 -14.85 -5.19 Ca(OH)2 + Portlandite -9.65 -14.84 -5.19 Ca(OH)2 Schoenite -8.12 -12.44 -4.33 K2Mg(SO4)2:6H2O Sylvite -4.07 -3.17 0.90 KCl Syngenite -6.71 -13.14 -6.43 K2Ca(SO4)2:H2O Thenardite -3.85 -4.15 -0.30 Na2SO4 - Trona -10.15 -21.53 -11.38 Na3H(CO3)2:2H2O + Trona -10.14 -21.52 -11.38 Na3H(CO3)2:2H2O **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -384,11 +386,11 @@ Phase SI log IAP log K(T, P) Initial Final Delta Anhydrite -0.77 -5.02 -4.25 0.000e+00 0 0.000e+00 Bischofite -6.95 -2.36 4.59 0.000e+00 0 0.000e+00 -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 2.551e-04 -Calcite 0.00 -8.50 -8.50 3.893e-06 2.723e-04 2.684e-04 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 2.474e-04 +Calcite 0.00 -8.41 -8.41 0.000e+00 2.586e-04 2.586e-04 Carnallite -9.13 -4.71 4.42 0.000e+00 0 0.000e+00 Epsomite -2.50 -4.35 -1.85 0.000e+00 0 0.000e+00 -Glauberite -2.83 -8.18 -5.35 0.000e+00 0 0.000e+00 +Glauberite -2.82 -8.17 -5.35 0.000e+00 0 0.000e+00 Gypsum -0.44 -5.04 -4.60 0.000e+00 0 0.000e+00 Halite -2.17 -0.59 1.58 0.000e+00 0 0.000e+00 Hexahydrite -2.77 -4.34 -1.57 0.000e+00 0 0.000e+00 @@ -400,8 +402,8 @@ Polyhalite -7.26 -21.00 -13.74 0.000e+00 0 0.000e+00 Elements Molality Moles Br 1.252e-03 4.401e-04 - C 5.884e-04 2.068e-04 - Ca 1.585e-02 5.569e-03 + C 6.589e-04 2.315e-04 + Ca 1.589e-02 5.583e-03 Cl 8.339e-01 2.930e-01 K 1.411e-02 4.960e-03 Mg 7.987e-02 2.807e-02 @@ -410,17 +412,18 @@ Polyhalite -7.26 -21.00 -13.74 0.000e+00 0 0.000e+00 ----------------------------Description of solution---------------------------- - pH = 7.801 Charge balance + pH = 7.848 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 73477 - Density (g/cm) = 1.03527 + Specific Conductance (µS/cm, 25°C) = 73783 + Density (g/cm³) = 1.03526 Volume (L) = 0.35767 + Viscosity (mPa s) = 0.99317 Activity of water = 0.972 Ionic strength (mol/kgw) = 1.065e+00 Mass of water (kg) = 3.514e-01 - Total alkalinity (eq/kg) = 6.131e-04 - Total CO2 (mol/kg) = 5.884e-04 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 6.913e-04 + Total CO2 (mol/kg) = 6.589e-04 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.36 Iterations = 14 @@ -428,89 +431,89 @@ Polyhalite -7.26 -21.00 -13.74 0.000e+00 0 0.000e+00 Osmotic coefficient = 0.91503 Density of water = 0.99704 Total H = 3.901313e+01 - Total O = 1.956817e+01 + Total O = 1.956824e+01 ----------------------------Distribution of species---------------------------- MacInnes MacInnes MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.323e-06 6.219e-07 -5.878 -6.206 -0.328 -2.00 - H+ 1.804e-08 1.582e-08 -7.744 -7.801 -0.057 0.00 + OH- 1.475e-06 6.933e-07 -5.831 -6.159 -0.328 -2.00 + H+ 1.618e-08 1.419e-08 -7.791 -7.848 -0.057 0.00 H2O 5.551e+01 9.722e-01 1.744 -0.012 0.000 18.07 Br 1.252e-03 Br- 1.252e-03 7.919e-04 -2.902 -3.101 -0.199 25.39 -C(4) 5.884e-04 - HCO3- 5.487e-04 3.012e-04 -3.261 -3.521 -0.260 27.45 - CO3-2 1.542e-05 8.715e-07 -4.812 -6.060 -1.248 0.62 - MgCO3 1.516e-05 1.516e-05 -4.819 -4.819 0.000 -17.09 +C(4) 6.589e-04 + HCO3- 6.116e-04 3.357e-04 -3.214 -3.474 -0.260 27.27 + CO3-2 1.917e-05 1.083e-06 -4.717 -5.965 -1.248 0.59 + MgCO3 1.884e-05 1.884e-05 -4.725 -4.725 0.000 -17.09 CO2 9.195e-06 1.076e-05 -5.036 -4.968 0.068 34.43 -Ca 1.585e-02 - Ca+2 1.585e-02 3.617e-03 -1.800 -2.442 -0.642 -16.43 +Ca 1.589e-02 + Ca+2 1.589e-02 3.626e-03 -1.799 -2.441 -0.642 -16.43 Cl 8.339e-01 - Cl- 8.339e-01 5.010e-01 -0.079 -0.300 -0.221 18.97 + Cl- 8.339e-01 5.009e-01 -0.079 -0.300 -0.221 18.97 K 1.411e-02 K+ 1.411e-02 8.943e-03 -1.850 -2.049 -0.198 9.88 Mg 7.987e-02 - Mg+2 7.986e-02 2.053e-02 -1.098 -1.688 -0.590 -20.14 - MgCO3 1.516e-05 1.516e-05 -4.819 -4.819 0.000 -17.09 - MgOH+ 1.983e-06 1.958e-06 -5.703 -5.708 -0.006 (0) + Mg+2 7.985e-02 2.053e-02 -1.098 -1.688 -0.590 -20.14 + MgCO3 1.884e-05 1.884e-05 -4.725 -4.725 0.000 -17.09 + MgOH+ 2.211e-06 2.182e-06 -5.655 -5.661 -0.006 (0) Na 7.238e-01 Na+ 7.238e-01 5.140e-01 -0.140 -0.289 -0.149 -0.27 S(6) 4.345e-02 - SO4-2 4.345e-02 2.642e-03 -1.362 -2.578 -1.216 19.41 - HSO4- 6.518e-09 3.983e-09 -8.186 -8.400 -0.214 41.13 + SO4-2 4.345e-02 2.642e-03 -1.362 -2.578 -1.216 19.70 + HSO4- 5.845e-09 3.572e-09 -8.233 -8.447 -0.214 41.13 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) Anhydrite -0.77 -5.02 -4.25 CaSO4 - Aragonite -0.28 -8.50 -8.22 CaCO3 + Aragonite -0.19 -8.41 -8.22 CaCO3 Arcanite -4.80 -6.68 -1.88 K2SO4 - Artinite -3.22 16.44 19.66 Mg2CO3(OH)2:3H2O + Artinite -3.03 16.63 19.66 Mg2CO3(OH)2:3H2O Bischofite -6.95 -2.36 4.59 MgCl2:6H2O Bloedite -5.12 -7.47 -2.35 Na2Mg(SO4)2:4H2O - Brucite -3.22 -14.10 -10.88 Mg(OH)2 - Burkeite -12.18 -12.95 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.50 -8.50 CaCO3 + Brucite -3.13 -14.01 -10.88 Mg(OH)2 + Burkeite -12.08 -12.86 -0.77 Na6CO3(SO4)2 + Calcite 0.00 -8.41 -8.41 CaCO3 Carnallite -9.13 -4.71 4.42 KMgCl3:6H2O CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 - Dolomite 0.83 -16.25 -17.08 CaMg(CO3)2 + Dolomite 1.03 -16.06 -17.09 CaMg(CO3)2 Epsomite -2.50 -4.35 -1.85 MgSO4:7H2O - Gaylussite -5.78 -15.20 -9.42 CaNa2(CO3)2:5H2O + Gaylussite -5.59 -15.01 -9.42 CaNa2(CO3)2:5H2O Glaserite -7.79 -11.59 -3.80 NaK3(SO4)2 - Glauberite -2.83 -8.18 -5.35 Na2Ca(SO4)2 - Goergeyite -2.42 -31.79 -29.37 K2Ca5(SO4)6H2O + Glauberite -2.82 -8.17 -5.35 Na2Ca(SO4)2 + Goergeyite -2.41 -31.78 -29.37 K2Ca5(SO4)6H2O Gypsum -0.44 -5.04 -4.60 CaSO4:2H2O H2O(g) -1.52 -0.01 1.50 H2O Halite -2.17 -0.59 1.58 NaCl Hexahydrite -2.77 -4.34 -1.57 MgSO4:6H2O - Huntite -0.63 9.61 10.24 CaMg3(CO3)4 + Huntite -0.25 9.99 10.24 CaMg3(CO3)4 Kainite -6.46 -6.65 -0.19 KMgClSO4:3H2O - Kalicinite -5.97 -15.91 -9.94 KHCO3 + Kalicinite -5.92 -15.86 -9.94 KHCO3 Kieserite -4.01 -4.28 -0.27 MgSO4:H2O Labile_S -5.68 -11.36 -5.67 Na4Ca(SO4)3:2H2O Leonhardite -3.43 -4.31 -0.89 MgSO4:4H2O Leonite -7.01 -10.99 -3.98 K2Mg(SO4)2:4H2O - Magnesite 0.09 -7.75 -7.83 MgCO3 + Magnesite 0.18 -7.65 -7.83 MgCO3 MgCl2_2H2O -16.87 -2.31 14.56 MgCl2:2H2O MgCl2_4H2O -9.32 -2.34 6.98 MgCl2:4H2O Mirabilite -2.04 -3.28 -1.24 Na2SO4:10H2O - Misenite -70.43 -81.24 -10.81 K8H6(SO4)7 - Nahcolite -3.41 -14.15 -10.74 NaHCO3 - Natron -5.94 -6.76 -0.82 Na2CO3:10H2O - Nesquehonite -2.62 -7.78 -5.17 MgCO3:3H2O + Misenite -70.72 -81.52 -10.81 K8H6(SO4)7 + Nahcolite -3.36 -14.10 -10.74 NaHCO3 + Natron -5.84 -6.67 -0.82 Na2CO3:10H2O + Nesquehonite -2.52 -7.69 -5.17 MgCO3:3H2O Pentahydrite -3.04 -4.33 -1.28 MgSO4:5H2O - Pirssonite -5.93 -15.16 -9.23 Na2Ca(CO3)2:2H2O + Pirssonite -5.74 -14.97 -9.23 Na2Ca(CO3)2:2H2O Polyhalite -7.26 -21.00 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.66 -14.85 -5.19 Ca(OH)2 + Portlandite -9.57 -14.76 -5.19 Ca(OH)2 Schoenite -6.69 -11.01 -4.33 K2Mg(SO4)2:6H2O Sylvite -3.25 -2.35 0.90 KCl Syngenite -5.28 -11.71 -6.43 K2Ca(SO4)2:H2O Thenardite -2.86 -3.16 -0.30 Na2SO4 - Trona -9.43 -20.81 -11.38 Na3H(CO3)2:2H2O + Trona -9.29 -20.67 -11.38 Na3H(CO3)2:2H2O **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -542,8 +545,8 @@ Phase SI log IAP log K(T, P) Initial Final Delta Anhydrite -0.65 -4.90 -4.25 0.000e+00 0 0.000e+00 Bischofite -6.67 -2.08 4.59 0.000e+00 0 0.000e+00 -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 2.582e-05 -Calcite 0.00 -8.50 -8.50 2.723e-04 2.997e-04 2.738e-05 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 2.868e-05 +Calcite 0.00 -8.41 -8.41 2.586e-04 2.893e-04 3.077e-05 Carnallite -8.66 -4.24 4.42 0.000e+00 0 0.000e+00 Epsomite -2.40 -4.24 -1.85 0.000e+00 0 0.000e+00 Glauberite -2.49 -7.84 -5.35 0.000e+00 0 0.000e+00 @@ -558,8 +561,8 @@ Polyhalite -6.70 -20.44 -13.74 0.000e+00 0 0.000e+00 Elements Molality Moles Br 1.575e-03 4.401e-04 - C 5.498e-04 1.536e-04 - Ca 1.984e-02 5.541e-03 + C 6.160e-04 1.721e-04 + Ca 1.987e-02 5.552e-03 Cl 1.049e+00 2.930e-01 K 1.775e-02 4.960e-03 Mg 1.005e-01 2.807e-02 @@ -568,17 +571,18 @@ Polyhalite -6.70 -20.44 -13.74 0.000e+00 0 0.000e+00 ----------------------------Description of solution---------------------------- - pH = 7.745 Charge balance + pH = 7.793 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 87888 - Density (g/cm) = 1.04464 + Specific Conductance (µS/cm, 25°C) = 88277 + Density (g/cm³) = 1.04463 Volume (L) = 0.28547 + Viscosity (mPa s) = 1.02147 Activity of water = 0.965 Ionic strength (mol/kgw) = 1.340e+00 Mass of water (kg) = 2.794e-01 - Total alkalinity (eq/kg) = 5.752e-04 - Total CO2 (mol/kg) = 5.498e-04 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 6.494e-04 + Total CO2 (mol/kg) = 6.160e-04 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.36 Iterations = 7 @@ -586,58 +590,58 @@ Polyhalite -6.70 -20.44 -13.74 0.000e+00 0 0.000e+00 Osmotic coefficient = 0.92645 Density of water = 0.99704 Total H = 3.101313e+01 - Total O = 1.556804e+01 + Total O = 1.556809e+01 ----------------------------Distribution of species---------------------------- MacInnes MacInnes MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.237e-06 5.433e-07 -5.908 -6.265 -0.357 -1.59 - H+ 1.911e-08 1.797e-08 -7.719 -7.745 -0.027 0.00 + OH- 1.379e-06 6.059e-07 -5.860 -6.218 -0.357 -1.59 + H+ 1.714e-08 1.612e-08 -7.766 -7.793 -0.027 0.00 H2O 5.551e+01 9.647e-01 1.744 -0.016 0.000 18.07 Br 1.575e-03 Br- 1.575e-03 9.887e-04 -2.803 -3.005 -0.202 25.48 -C(4) 5.498e-04 - HCO3- 5.102e-04 2.631e-04 -3.292 -3.580 -0.288 28.02 - MgCO3 1.551e-05 1.551e-05 -4.809 -4.809 0.000 -17.09 - CO3-2 1.526e-05 6.704e-07 -4.817 -6.174 -1.357 1.25 +C(4) 6.160e-04 + HCO3- 5.689e-04 2.934e-04 -3.245 -3.532 -0.288 27.73 + MgCO3 1.929e-05 1.929e-05 -4.715 -4.715 0.000 -17.09 + CO3-2 1.898e-05 8.338e-07 -4.722 -6.079 -1.357 1.24 CO2 8.831e-06 1.076e-05 -5.054 -4.968 0.086 34.43 -Ca 1.984e-02 - Ca+2 1.984e-02 4.701e-03 -1.703 -2.328 -0.625 -16.27 +Ca 1.987e-02 + Ca+2 1.987e-02 4.710e-03 -1.702 -2.327 -0.625 -16.27 Cl 1.049e+00 Cl- 1.049e+00 6.177e-01 0.021 -0.209 -0.230 19.08 K 1.775e-02 K+ 1.775e-02 1.111e-02 -1.751 -1.954 -0.203 10.02 Mg 1.005e-01 Mg+2 1.005e-01 2.730e-02 -0.998 -1.564 -0.566 -19.97 - MgCO3 1.551e-05 1.551e-05 -4.809 -4.809 0.000 -17.09 - MgOH+ 2.307e-06 2.275e-06 -5.637 -5.643 -0.006 (0) + MgCO3 1.929e-05 1.929e-05 -4.715 -4.715 0.000 -17.09 + MgOH+ 2.573e-06 2.537e-06 -5.590 -5.596 -0.006 (0) Na 9.105e-01 Na+ 9.105e-01 6.552e-01 -0.041 -0.184 -0.143 -0.14 S(6) 5.466e-02 - SO4-2 5.466e-02 2.684e-03 -1.262 -2.571 -1.309 20.03 - HSO4- 7.722e-09 4.594e-09 -8.112 -8.338 -0.226 41.22 + SO4-2 5.466e-02 2.683e-03 -1.262 -2.571 -1.309 20.17 + HSO4- 6.924e-09 4.119e-09 -8.160 -8.385 -0.226 41.22 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) Anhydrite -0.65 -4.90 -4.25 CaSO4 - Aragonite -0.28 -8.50 -8.22 CaCO3 + Aragonite -0.19 -8.41 -8.22 CaCO3 Arcanite -4.60 -6.48 -1.88 K2SO4 - Artinite -3.21 16.45 19.66 Mg2CO3(OH)2:3H2O + Artinite -3.02 16.64 19.66 Mg2CO3(OH)2:3H2O Bischofite -6.67 -2.08 4.59 MgCl2:6H2O Bloedite -4.79 -7.14 -2.35 Na2Mg(SO4)2:4H2O - Brucite -3.21 -14.09 -10.88 Mg(OH)2 - Burkeite -11.65 -12.42 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.50 -8.50 CaCO3 + Brucite -3.12 -14.00 -10.88 Mg(OH)2 + Burkeite -11.55 -12.32 -0.77 Na6CO3(SO4)2 + Calcite 0.00 -8.41 -8.41 CaCO3 Carnallite -8.66 -4.24 4.42 KMgCl3:6H2O CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 - Dolomite 0.84 -16.24 -17.08 CaMg(CO3)2 + Dolomite 1.04 -16.05 -17.09 CaMg(CO3)2 Epsomite -2.40 -4.24 -1.85 MgSO4:7H2O - Gaylussite -5.70 -15.12 -9.42 CaNa2(CO3)2:5H2O + Gaylussite -5.51 -14.93 -9.42 CaNa2(CO3)2:5H2O Glaserite -7.39 -11.19 -3.80 NaK3(SO4)2 Glauberite -2.49 -7.84 -5.35 Na2Ca(SO4)2 Goergeyite -1.62 -30.99 -29.37 K2Ca5(SO4)6H2O @@ -645,30 +649,30 @@ S(6) 5.466e-02 H2O(g) -1.52 -0.02 1.50 H2O Halite -1.97 -0.39 1.58 NaCl Hexahydrite -2.66 -4.23 -1.57 MgSO4:6H2O - Huntite -0.60 9.64 10.24 CaMg3(CO3)4 + Huntite -0.22 10.02 10.24 CaMg3(CO3)4 Kainite -6.15 -6.35 -0.19 KMgClSO4:3H2O - Kalicinite -5.93 -15.87 -9.94 KHCO3 + Kalicinite -5.89 -15.83 -9.94 KHCO3 Kieserite -3.88 -4.15 -0.27 MgSO4:H2O - Labile_S -5.14 -10.81 -5.67 Na4Ca(SO4)3:2H2O + Labile_S -5.13 -10.81 -5.67 Na4Ca(SO4)3:2H2O Leonhardite -3.31 -4.20 -0.89 MgSO4:4H2O Leonite -6.70 -10.68 -3.98 K2Mg(SO4)2:4H2O - Magnesite 0.10 -7.74 -7.83 MgCO3 + Magnesite 0.19 -7.64 -7.83 MgCO3 MgCl2_2H2O -16.57 -2.01 14.56 MgCl2:2H2O MgCl2_4H2O -9.02 -2.04 6.98 MgCl2:4H2O Mirabilite -1.85 -3.09 -1.24 Na2SO4:10H2O - Misenite -69.30 -80.10 -10.81 K8H6(SO4)7 - Nahcolite -3.36 -14.10 -10.74 NaHCO3 - Natron -5.87 -6.70 -0.82 Na2CO3:10H2O - Nesquehonite -2.62 -7.78 -5.17 MgCO3:3H2O + Misenite -69.58 -80.39 -10.81 K8H6(SO4)7 + Nahcolite -3.31 -14.06 -10.74 NaHCO3 + Natron -5.78 -6.60 -0.82 Na2CO3:10H2O + Nesquehonite -2.52 -7.69 -5.17 MgCO3:3H2O Pentahydrite -2.93 -4.21 -1.28 MgSO4:5H2O - Pirssonite -5.84 -15.07 -9.23 Na2Ca(CO3)2:2H2O + Pirssonite -5.65 -14.88 -9.23 Na2Ca(CO3)2:2H2O Polyhalite -6.70 -20.44 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.67 -14.86 -5.19 Ca(OH)2 + Portlandite -9.57 -14.76 -5.19 Ca(OH)2 Schoenite -6.38 -10.71 -4.33 K2Mg(SO4)2:6H2O Sylvite -3.06 -2.16 0.90 KCl Syngenite -4.96 -11.39 -6.43 K2Ca(SO4)2:H2O Thenardite -2.64 -2.94 -0.30 Na2SO4 - Trona -9.29 -20.67 -11.38 Na3H(CO3)2:2H2O + Trona -9.15 -20.53 -11.38 Na3H(CO3)2:2H2O **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -700,8 +704,8 @@ Phase SI log IAP log K(T, P) Initial Final Delta Anhydrite -0.48 -4.73 -4.25 0.000e+00 0 0.000e+00 Bischofite -6.28 -1.68 4.59 0.000e+00 0 0.000e+00 -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 2.489e-05 -Calcite 0.00 -8.50 -8.50 2.997e-04 3.262e-04 2.648e-05 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 2.765e-05 +Calcite 0.00 -8.41 -8.41 2.893e-04 3.191e-04 2.979e-05 Carnallite -8.02 -3.60 4.42 0.000e+00 0 0.000e+00 Epsomite -2.25 -4.10 -1.85 0.000e+00 0 0.000e+00 Glauberite -2.03 -7.38 -5.35 0.000e+00 0 0.000e+00 @@ -709,15 +713,15 @@ Gypsum -0.17 -4.77 -4.60 0.000e+00 0 0.000e+00 Halite -1.71 -0.13 1.58 0.000e+00 0 0.000e+00 Hexahydrite -2.51 -4.08 -1.57 0.000e+00 0 0.000e+00 Kieserite -3.70 -3.97 -0.27 0.000e+00 0 0.000e+00 -Polyhalite -5.94 -19.68 -13.74 0.000e+00 0 0.000e+00 +Polyhalite -5.93 -19.68 -13.74 0.000e+00 0 0.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles Br 2.123e-03 4.401e-04 - C 4.931e-04 1.022e-04 - Ca 2.660e-02 5.515e-03 + C 5.530e-04 1.146e-04 + Ca 2.664e-02 5.522e-03 Cl 1.414e+00 2.930e-01 K 2.393e-02 4.960e-03 Mg 1.354e-01 2.807e-02 @@ -726,17 +730,18 @@ Polyhalite -5.94 -19.68 -13.74 0.000e+00 0 0.000e+00 ----------------------------Description of solution---------------------------- - pH = 7.663 Charge balance + pH = 7.710 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 109691 - Density (g/cm) = 1.06016 + Specific Conductance (µS/cm, 25°C) = 110217 + Density (g/cm³) = 1.06017 Volume (L) = 0.21331 + Viscosity (mPa s) = 1.07209 Activity of water = 0.952 Ionic strength (mol/kgw) = 1.805e+00 Mass of water (kg) = 2.073e-01 - Total alkalinity (eq/kg) = 5.197e-04 - Total CO2 (mol/kg) = 4.931e-04 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 5.877e-04 + Total CO2 (mol/kg) = 5.530e-04 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.36 Iterations = 9 @@ -744,89 +749,89 @@ Polyhalite -5.94 -19.68 -13.74 0.000e+00 0 0.000e+00 Osmotic coefficient = 0.94910 Density of water = 0.99704 Total H = 2.301313e+01 - Total O = 1.156791e+01 + Total O = 1.156794e+01 ----------------------------Distribution of species---------------------------- MacInnes MacInnes MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.110e-06 4.428e-07 -5.955 -6.354 -0.399 -0.90 - H+ 2.030e-08 2.175e-08 -7.692 -7.663 0.030 0.00 + OH- 1.238e-06 4.940e-07 -5.907 -6.306 -0.399 -0.90 + H+ 1.820e-08 1.950e-08 -7.740 -7.710 0.030 0.00 H2O 5.551e+01 9.516e-01 1.744 -0.022 0.000 18.07 Br 2.123e-03 Br- 2.123e-03 1.333e-03 -2.673 -2.875 -0.202 25.61 -C(4) 4.931e-04 - HCO3- 4.540e-04 2.145e-04 -3.343 -3.669 -0.326 28.97 - MgCO3 1.611e-05 1.611e-05 -4.793 -4.793 0.000 -17.09 - CO3-2 1.473e-05 4.515e-07 -4.832 -6.345 -1.514 2.21 +C(4) 5.530e-04 + HCO3- 5.064e-04 2.392e-04 -3.295 -3.621 -0.326 28.42 + MgCO3 2.004e-05 2.004e-05 -4.698 -4.698 0.000 -17.09 + CO3-2 1.833e-05 5.618e-07 -4.737 -6.250 -1.514 2.21 CO2 8.248e-06 1.076e-05 -5.084 -4.968 0.115 34.43 -Ca 2.660e-02 - Ca+2 2.660e-02 6.981e-03 -1.575 -2.156 -0.581 -16.03 +Ca 2.664e-02 + Ca+2 2.664e-02 6.991e-03 -1.575 -2.155 -0.581 -16.03 Cl 1.414e+00 Cl- 1.414e+00 8.154e-01 0.150 -0.089 -0.239 19.23 K 2.393e-02 K+ 2.393e-02 1.486e-02 -1.621 -1.828 -0.207 10.24 Mg 1.354e-01 Mg+2 1.354e-01 4.210e-02 -0.868 -1.376 -0.507 -19.72 - MgCO3 1.611e-05 1.611e-05 -4.793 -4.793 0.000 -17.09 - MgOH+ 2.953e-06 2.859e-06 -5.530 -5.544 -0.014 (0) + MgCO3 2.004e-05 2.004e-05 -4.698 -4.698 0.000 -17.09 + MgOH+ 3.294e-06 3.189e-06 -5.482 -5.496 -0.014 (0) Na 1.227e+00 Na+ 1.227e+00 9.140e-01 0.089 -0.039 -0.128 0.06 S(6) 7.367e-02 - SO4-2 7.367e-02 2.673e-03 -1.133 -2.573 -1.440 20.94 - HSO4- 9.655e-09 5.538e-09 -8.015 -8.257 -0.241 41.36 + SO4-2 7.367e-02 2.673e-03 -1.133 -2.573 -1.440 20.87 + HSO4- 8.654e-09 4.964e-09 -8.063 -8.304 -0.241 41.36 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) Anhydrite -0.48 -4.73 -4.25 CaSO4 - Aragonite -0.28 -8.50 -8.22 CaCO3 + Aragonite -0.19 -8.41 -8.22 CaCO3 Arcanite -4.35 -6.23 -1.88 K2SO4 - Artinite -3.20 16.46 19.66 Mg2CO3(OH)2:3H2O + Artinite -3.01 16.65 19.66 Mg2CO3(OH)2:3H2O Bischofite -6.28 -1.68 4.59 MgCl2:6H2O Bloedite -4.34 -6.69 -2.35 Na2Mg(SO4)2:4H2O - Brucite -3.20 -14.08 -10.88 Mg(OH)2 - Burkeite -10.95 -11.73 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.50 -8.50 CaCO3 + Brucite -3.11 -13.99 -10.88 Mg(OH)2 + Burkeite -10.86 -11.63 -0.77 Na6CO3(SO4)2 + Calcite 0.00 -8.41 -8.41 CaCO3 Carnallite -8.02 -3.60 4.42 KMgCl3:6H2O CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 - Dolomite 0.86 -16.22 -17.08 CaMg(CO3)2 + Dolomite 1.05 -16.03 -17.09 CaMg(CO3)2 Epsomite -2.25 -4.10 -1.85 MgSO4:7H2O - Gaylussite -5.61 -15.03 -9.42 CaNa2(CO3)2:5H2O + Gaylussite -5.42 -14.84 -9.42 CaNa2(CO3)2:5H2O Glaserite -6.87 -10.67 -3.80 NaK3(SO4)2 Glauberite -2.03 -7.38 -5.35 Na2Ca(SO4)2 - Goergeyite -0.53 -29.90 -29.37 K2Ca5(SO4)6H2O + Goergeyite -0.52 -29.89 -29.37 K2Ca5(SO4)6H2O Gypsum -0.17 -4.77 -4.60 CaSO4:2H2O H2O(g) -1.52 -0.02 1.50 H2O Halite -1.71 -0.13 1.58 NaCl Hexahydrite -2.51 -4.08 -1.57 MgSO4:6H2O - Huntite -0.55 9.69 10.24 CaMg3(CO3)4 + Huntite -0.17 10.07 10.24 CaMg3(CO3)4 Kainite -5.74 -5.93 -0.19 KMgClSO4:3H2O - Kalicinite -5.90 -15.84 -9.94 KHCO3 + Kalicinite -5.85 -15.79 -9.94 KHCO3 Kieserite -3.70 -3.97 -0.27 MgSO4:H2O Labile_S -4.40 -10.07 -5.67 Na4Ca(SO4)3:2H2O Leonhardite -3.15 -4.04 -0.89 MgSO4:4H2O - Leonite -6.28 -10.26 -3.98 K2Mg(SO4)2:4H2O - Magnesite 0.11 -7.72 -7.83 MgCO3 + Leonite -6.29 -10.26 -3.98 K2Mg(SO4)2:4H2O + Magnesite 0.21 -7.63 -7.83 MgCO3 MgCl2_2H2O -16.15 -1.60 14.56 MgCl2:2H2O MgCl2_4H2O -8.62 -1.64 6.98 MgCl2:4H2O Mirabilite -1.63 -2.87 -1.24 Na2SO4:10H2O - Misenite -67.80 -78.61 -10.81 K8H6(SO4)7 - Nahcolite -3.30 -14.05 -10.74 NaHCO3 - Natron -5.81 -6.64 -0.82 Na2CO3:10H2O - Nesquehonite -2.62 -7.79 -5.17 MgCO3:3H2O + Misenite -68.09 -78.90 -10.81 K8H6(SO4)7 + Nahcolite -3.26 -14.00 -10.74 NaHCO3 + Natron -5.72 -6.54 -0.82 Na2CO3:10H2O + Nesquehonite -2.52 -7.69 -5.17 MgCO3:3H2O Pentahydrite -2.77 -4.06 -1.28 MgSO4:5H2O - Pirssonite -5.73 -14.97 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite -5.94 -19.68 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.67 -14.86 -5.19 Ca(OH)2 + Pirssonite -5.54 -14.78 -9.23 Na2Ca(CO3)2:2H2O + Polyhalite -5.93 -19.68 -13.74 K2MgCa2(SO4)4:2H2O + Portlandite -9.58 -14.77 -5.19 Ca(OH)2 Schoenite -5.98 -10.31 -4.33 K2Mg(SO4)2:6H2O Sylvite -2.82 -1.92 0.90 KCl Syngenite -4.55 -10.98 -6.43 K2Ca(SO4)2:H2O Thenardite -2.35 -2.65 -0.30 Na2SO4 - Trona -9.13 -20.51 -11.38 Na3H(CO3)2:2H2O + Trona -8.99 -20.37 -11.38 Na3H(CO3)2:2H2O **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -858,12 +863,12 @@ Phase SI log IAP log K(T, P) Initial Final Delta Anhydrite -0.28 -4.53 -4.25 0.000e+00 0 0.000e+00 Bischofite -5.64 -1.05 4.59 0.000e+00 0 0.000e+00 -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 2.132e-05 -Calcite 0.00 -8.50 -8.50 3.262e-04 3.484e-04 2.220e-05 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 2.369e-05 +Calcite 0.00 -8.41 -8.41 3.191e-04 3.441e-04 2.495e-05 Carnallite -7.02 -2.60 4.42 0.000e+00 0 0.000e+00 Epsomite -2.04 -3.89 -1.85 0.000e+00 0 0.000e+00 Glauberite -1.42 -6.77 -5.35 0.000e+00 0 0.000e+00 -Gypsum 0.00 -4.60 -4.60 0.000e+00 8.380e-04 8.380e-04 +Gypsum 0.00 -4.60 -4.60 0.000e+00 8.414e-04 8.414e-04 Halite -1.30 0.28 1.58 0.000e+00 0 0.000e+00 Hexahydrite -2.29 -3.85 -1.57 0.000e+00 0 0.000e+00 Kieserite -3.41 -3.68 -0.27 0.000e+00 0 0.000e+00 @@ -874,8 +879,8 @@ Polyhalite -4.92 -18.67 -13.74 0.000e+00 0 0.000e+00 Elements Molality Moles Br 3.255e-03 4.401e-04 - C 4.341e-04 5.869e-05 - Ca 3.443e-02 4.655e-03 + C 4.882e-04 6.601e-05 + Ca 3.443e-02 4.656e-03 Cl 2.167e+00 2.930e-01 K 3.668e-02 4.960e-03 Mg 2.076e-01 2.807e-02 @@ -884,76 +889,77 @@ Polyhalite -4.92 -18.67 -13.74 0.000e+00 0 0.000e+00 ----------------------------Description of solution---------------------------- - pH = 7.547 Charge balance + pH = 7.595 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 146607 - Density (g/cm) = 1.09019 - Volume (L) = 0.14120 + Specific Conductance (µS/cm, 25°C) = 147344 + Density (g/cm³) = 1.09024 + Volume (L) = 0.14119 + Viscosity (mPa s) = 1.18521 Activity of water = 0.923 Ionic strength (mol/kgw) = 2.742e+00 Mass of water (kg) = 1.352e-01 - Total alkalinity (eq/kg) = 4.684e-04 - Total CO2 (mol/kg) = 4.341e-04 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 5.320e-04 + Total CO2 (mol/kg) = 4.882e-04 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.36 - Iterations = 11 + Iterations = 12 Gamma iterations = 4 Osmotic coefficient = 1.00553 Density of water = 0.99704 - Total H = 1.500978e+01 - Total O = 7.562772e+00 + Total H = 1.500977e+01 + Total O = 7.562770e+00 ----------------------------Distribution of species---------------------------- MacInnes MacInnes MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 9.606e-07 3.290e-07 -6.017 -6.483 -0.465 0.41 - H+ 1.960e-08 2.839e-08 -7.708 -7.547 0.161 0.00 + OH- 1.072e-06 3.672e-07 -5.970 -6.435 -0.465 0.41 + H+ 1.756e-08 2.543e-08 -7.756 -7.595 0.161 0.00 H2O 5.551e+01 9.228e-01 1.744 -0.035 0.000 18.07 Br 3.255e-03 Br- 3.255e-03 2.105e-03 -2.487 -2.677 -0.189 25.81 -C(4) 4.341e-04 - HCO3- 3.915e-04 1.593e-04 -3.407 -3.798 -0.390 30.81 - MgCO3 2.054e-05 2.054e-05 -4.687 -4.687 0.000 -17.09 - CO3-2 1.483e-05 2.570e-07 -4.829 -6.590 -1.761 3.92 +C(4) 4.882e-04 + HCO3- 4.370e-04 1.778e-04 -3.360 -3.750 -0.390 29.65 + MgCO3 2.558e-05 2.558e-05 -4.592 -4.592 0.000 -17.09 + CO3-2 1.848e-05 3.201e-07 -4.733 -6.495 -1.761 3.92 CO2 7.188e-06 1.076e-05 -5.143 -4.968 0.175 34.43 Ca 3.443e-02 - Ca+2 3.443e-02 1.226e-02 -1.463 -1.911 -0.448 -15.60 + Ca+2 3.443e-02 1.227e-02 -1.463 -1.911 -0.448 -15.60 Cl 2.167e+00 Cl- 2.167e+00 1.234e+00 0.336 0.091 -0.245 19.49 K 3.668e-02 K+ 3.668e-02 2.314e-02 -1.436 -1.636 -0.200 10.68 Mg 2.076e-01 Mg+2 2.076e-01 9.429e-02 -0.683 -1.026 -0.343 -19.25 - MgCO3 2.054e-05 2.054e-05 -4.687 -4.687 0.000 -17.09 - MgOH+ 5.220e-06 4.758e-06 -5.282 -5.323 -0.040 (0) + MgCO3 2.558e-05 2.558e-05 -4.592 -4.592 0.000 -17.09 + MgOH+ 5.826e-06 5.310e-06 -5.235 -5.275 -0.040 (0) Na 1.881e+00 Na+ 1.881e+00 1.553e+00 0.274 0.191 -0.083 0.40 S(6) 1.067e-01 - SO4-2 1.067e-01 2.403e-03 -0.972 -2.619 -1.648 22.47 - HSO4- 1.199e-08 6.498e-09 -7.921 -8.187 -0.266 41.57 + SO4-2 1.067e-01 2.402e-03 -0.972 -2.619 -1.648 22.05 + HSO4- 1.074e-08 5.820e-09 -7.969 -8.235 -0.266 41.57 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) Anhydrite -0.28 -4.53 -4.25 CaSO4 - Aragonite -0.28 -8.50 -8.22 CaCO3 + Aragonite -0.19 -8.41 -8.22 CaCO3 Arcanite -4.01 -5.89 -1.88 K2SO4 - Artinite -3.04 16.62 19.66 Mg2CO3(OH)2:3H2O + Artinite -2.85 16.81 19.66 Mg2CO3(OH)2:3H2O Bischofite -5.64 -1.05 4.59 MgCl2:6H2O Bloedite -3.67 -6.02 -2.35 Na2Mg(SO4)2:4H2O - Brucite -3.11 -13.99 -10.88 Mg(OH)2 - Burkeite -9.91 -10.68 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.50 -8.50 CaCO3 + Brucite -3.02 -13.90 -10.88 Mg(OH)2 + Burkeite -9.81 -10.59 -0.77 Na6CO3(SO4)2 + Calcite 0.00 -8.41 -8.41 CaCO3 Carnallite -7.02 -2.60 4.42 KMgCl3:6H2O CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 - Dolomite 0.97 -16.12 -17.08 CaMg(CO3)2 + Dolomite 1.16 -15.93 -17.09 CaMg(CO3)2 Epsomite -2.04 -3.89 -1.85 MgSO4:7H2O - Gaylussite -5.46 -14.88 -9.42 CaNa2(CO3)2:5H2O + Gaylussite -5.27 -14.69 -9.42 CaNa2(CO3)2:5H2O Glaserite -6.15 -9.95 -3.80 NaK3(SO4)2 Glauberite -1.42 -6.77 -5.35 Na2Ca(SO4)2 Goergeyite 0.79 -28.58 -29.37 K2Ca5(SO4)6H2O @@ -961,30 +967,30 @@ S(6) 1.067e-01 H2O(g) -1.54 -0.03 1.50 H2O Halite -1.30 0.28 1.58 NaCl Hexahydrite -2.29 -3.85 -1.57 MgSO4:6H2O - Huntite -0.23 10.01 10.24 CaMg3(CO3)4 + Huntite 0.15 10.39 10.24 CaMg3(CO3)4 Kainite -5.10 -5.29 -0.19 KMgClSO4:3H2O - Kalicinite -5.83 -15.77 -9.94 KHCO3 + Kalicinite -5.78 -15.72 -9.94 KHCO3 Kieserite -3.41 -3.68 -0.27 MgSO4:H2O Labile_S -3.40 -9.07 -5.67 Na4Ca(SO4)3:2H2O Leonhardite -2.90 -3.78 -0.89 MgSO4:4H2O Leonite -5.70 -9.68 -3.98 K2Mg(SO4)2:4H2O - Magnesite 0.22 -7.62 -7.83 MgCO3 + Magnesite 0.31 -7.52 -7.83 MgCO3 MgCl2_2H2O -15.47 -0.91 14.56 MgCl2:2H2O MgCl2_4H2O -7.96 -0.98 6.98 MgCl2:4H2O Mirabilite -1.35 -2.59 -1.24 Na2SO4:10H2O - Misenite -65.90 -76.70 -10.81 K8H6(SO4)7 - Nahcolite -3.20 -13.95 -10.74 NaHCO3 - Natron -5.73 -6.56 -0.82 Na2CO3:10H2O - Nesquehonite -2.55 -7.72 -5.17 MgCO3:3H2O + Misenite -66.18 -76.99 -10.81 K8H6(SO4)7 + Nahcolite -3.16 -13.90 -10.74 NaHCO3 + Natron -5.64 -6.46 -0.82 Na2CO3:10H2O + Nesquehonite -2.46 -7.62 -5.17 MgCO3:3H2O Pentahydrite -2.53 -3.82 -1.28 MgSO4:5H2O - Pirssonite -5.54 -14.78 -9.23 Na2Ca(CO3)2:2H2O + Pirssonite -5.35 -14.59 -9.23 Na2Ca(CO3)2:2H2O Polyhalite -4.92 -18.67 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.69 -14.88 -5.19 Ca(OH)2 - Schoenite -5.42 -9.74 -4.33 K2Mg(SO4)2:6H2O + Portlandite -9.59 -14.78 -5.19 Ca(OH)2 + Schoenite -5.42 -9.75 -4.33 K2Mg(SO4)2:6H2O Sylvite -2.45 -1.54 0.90 KCl Syngenite -4.03 -10.46 -6.43 K2Ca(SO4)2:H2O Thenardite -1.94 -2.24 -0.30 Na2SO4 - Trona -8.84 -20.22 -11.38 Na3H(CO3)2:2H2O + Trona -8.70 -20.08 -11.38 Na3H(CO3)2:2H2O **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1016,12 +1022,12 @@ Phase SI log IAP log K(T, P) Initial Final Delta Anhydrite -0.27 -4.52 -4.25 0.000e+00 0 0.000e+00 Bischofite -5.41 -0.82 4.59 0.000e+00 0 0.000e+00 -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 3.819e-06 -Calcite 0.00 -8.50 -8.50 3.484e-04 3.518e-04 3.409e-06 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 4.242e-06 +Calcite 0.00 -8.41 -8.41 3.441e-04 3.479e-04 3.788e-06 Carnallite -6.65 -2.23 4.42 0.000e+00 0 0.000e+00 Epsomite -1.97 -3.82 -1.85 0.000e+00 0 0.000e+00 Glauberite -1.27 -6.62 -5.35 0.000e+00 0 0.000e+00 -Gypsum 0.00 -4.60 -4.60 8.380e-04 1.653e-03 8.149e-04 +Gypsum 0.00 -4.60 -4.60 8.414e-04 1.656e-03 8.147e-04 Halite -1.15 0.43 1.58 0.000e+00 0 0.000e+00 Hexahydrite -2.21 -3.78 -1.57 0.000e+00 0 0.000e+00 Kieserite -3.31 -3.58 -0.27 0.000e+00 0 0.000e+00 @@ -1032,86 +1038,87 @@ Polyhalite -4.70 -18.44 -13.74 0.000e+00 0 0.000e+00 Elements Molality Moles Br 3.757e-03 4.401e-04 - C 4.392e-04 5.146e-05 - Ca 3.275e-02 3.836e-03 + C 4.949e-04 5.798e-05 + Ca 3.275e-02 3.837e-03 Cl 2.501e+00 2.930e-01 K 4.233e-02 4.960e-03 Mg 2.396e-01 2.807e-02 Na 2.171e+00 2.544e-01 - S 1.162e-01 1.362e-02 + S 1.162e-01 1.361e-02 ----------------------------Description of solution---------------------------- - pH = 7.526 Charge balance + pH = 7.573 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 160317 - Density (g/cm) = 1.10238 - Volume (L) = 0.12317 + Specific Conductance (µS/cm, 25°C) = 161102 + Density (g/cm³) = 1.10245 + Volume (L) = 0.12316 + Viscosity (mPa s) = 1.23782 Activity of water = 0.909 Ionic strength (mol/kgw) = 3.136e+00 Mass of water (kg) = 1.172e-01 - Total alkalinity (eq/kg) = 4.824e-04 - Total CO2 (mol/kg) = 4.392e-04 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 5.492e-04 + Total CO2 (mol/kg) = 4.949e-04 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.37 Iterations = 8 Gamma iterations = 3 Osmotic coefficient = 1.03331 Density of water = 0.99704 - Total H = 1.300652e+01 - Total O = 6.557864e+00 + Total H = 1.300651e+01 + Total O = 6.557862e+00 ----------------------------Distribution of species---------------------------- MacInnes MacInnes MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 9.486e-07 3.087e-07 -6.023 -6.510 -0.488 0.95 - H+ 1.785e-08 2.982e-08 -7.748 -7.526 0.223 0.00 + OH- 1.059e-06 3.445e-07 -5.975 -6.463 -0.488 0.95 + H+ 1.599e-08 2.671e-08 -7.796 -7.573 0.223 0.00 H2O 5.551e+01 9.093e-01 1.744 -0.041 0.000 18.07 Br 3.757e-03 Br- 3.757e-03 2.478e-03 -2.425 -2.606 -0.181 25.87 -C(4) 4.392e-04 - HCO3- 3.905e-04 1.495e-04 -3.408 -3.825 -0.417 31.57 - MgCO3 2.576e-05 2.576e-05 -4.589 -4.589 0.000 -17.09 - CO3-2 1.617e-05 2.296e-07 -4.791 -6.639 -1.848 4.58 +C(4) 4.949e-04 + HCO3- 4.359e-04 1.669e-04 -3.361 -3.778 -0.417 30.12 + MgCO3 3.208e-05 3.208e-05 -4.494 -4.494 0.000 -17.09 + CO3-2 2.014e-05 2.860e-07 -4.696 -6.544 -1.848 4.58 CO2 6.781e-06 1.076e-05 -5.169 -4.968 0.201 34.43 Ca 3.275e-02 - Ca+2 3.275e-02 1.373e-02 -1.485 -1.862 -0.378 -15.43 + Ca+2 3.275e-02 1.373e-02 -1.485 -1.862 -0.377 -15.43 Cl 2.501e+00 Cl- 2.501e+00 1.427e+00 0.398 0.154 -0.244 19.58 K 4.233e-02 K+ 4.233e-02 2.714e-02 -1.373 -1.566 -0.193 10.86 Mg 2.396e-01 - Mg+2 2.396e-01 1.324e-01 -0.621 -0.878 -0.258 -19.06 - MgCO3 2.576e-05 2.576e-05 -4.589 -4.589 0.000 -17.09 - MgOH+ 7.060e-06 6.268e-06 -5.151 -5.203 -0.052 (0) + Mg+2 2.395e-01 1.324e-01 -0.621 -0.878 -0.258 -19.06 + MgCO3 3.208e-05 3.208e-05 -4.494 -4.494 0.000 -17.09 + MgOH+ 7.879e-06 6.995e-06 -5.104 -5.155 -0.052 (0) Na 2.171e+00 Na+ 2.171e+00 1.894e+00 0.337 0.277 -0.059 0.52 S(6) 1.162e-01 - SO4-2 1.162e-01 2.210e-03 -0.935 -2.656 -1.721 23.03 - HSO4- 1.183e-08 6.278e-09 -7.927 -8.202 -0.275 41.65 + SO4-2 1.162e-01 2.210e-03 -0.935 -2.656 -1.721 22.49 + HSO4- 1.060e-08 5.624e-09 -7.975 -8.250 -0.275 41.65 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) Anhydrite -0.27 -4.52 -4.25 CaSO4 - Aragonite -0.28 -8.50 -8.22 CaCO3 + Aragonite -0.19 -8.41 -8.22 CaCO3 Arcanite -3.91 -5.79 -1.88 K2SO4 - Artinite -2.87 16.79 19.66 Mg2CO3(OH)2:3H2O + Artinite -2.68 16.98 19.66 Mg2CO3(OH)2:3H2O Bischofite -5.41 -0.82 4.59 MgCl2:6H2O Bloedite -3.45 -5.80 -2.35 Na2Mg(SO4)2:4H2O - Brucite -3.02 -13.90 -10.88 Mg(OH)2 - Burkeite -9.51 -10.29 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.50 -8.50 CaCO3 + Brucite -2.92 -13.80 -10.88 Mg(OH)2 + Burkeite -9.42 -10.19 -0.77 Na6CO3(SO4)2 + Calcite 0.00 -8.41 -8.41 CaCO3 Carnallite -6.65 -2.23 4.42 KMgCl3:6H2O CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 - Dolomite 1.06 -16.02 -17.08 CaMg(CO3)2 + Dolomite 1.26 -15.83 -17.09 CaMg(CO3)2 Epsomite -1.97 -3.82 -1.85 MgSO4:7H2O - Gaylussite -5.37 -14.79 -9.42 CaNa2(CO3)2:5H2O + Gaylussite -5.18 -14.60 -9.42 CaNa2(CO3)2:5H2O Glaserite -5.93 -9.73 -3.80 NaK3(SO4)2 Glauberite -1.27 -6.62 -5.35 Na2Ca(SO4)2 Goergeyite 0.95 -28.42 -29.37 K2Ca5(SO4)6H2O @@ -1119,30 +1126,30 @@ S(6) 1.162e-01 H2O(g) -1.54 -0.04 1.50 H2O Halite -1.15 0.43 1.58 NaCl Hexahydrite -2.21 -3.78 -1.57 MgSO4:6H2O - Huntite 0.06 10.30 10.24 CaMg3(CO3)4 + Huntite 0.44 10.69 10.24 CaMg3(CO3)4 Kainite -4.88 -5.07 -0.19 KMgClSO4:3H2O - Kalicinite -5.79 -15.73 -9.94 KHCO3 + Kalicinite -5.74 -15.68 -9.94 KHCO3 Kieserite -3.31 -3.58 -0.27 MgSO4:H2O Labile_S -3.13 -8.80 -5.67 Na4Ca(SO4)3:2H2O Leonhardite -2.81 -3.70 -0.89 MgSO4:4H2O Leonite -5.51 -9.49 -3.98 K2Mg(SO4)2:4H2O - Magnesite 0.32 -7.52 -7.83 MgCO3 + Magnesite 0.41 -7.42 -7.83 MgCO3 MgCl2_2H2O -15.21 -0.65 14.56 MgCl2:2H2O MgCl2_4H2O -7.71 -0.73 6.98 MgCl2:4H2O Mirabilite -1.27 -2.51 -1.24 Na2SO4:10H2O - Misenite -65.47 -76.27 -10.81 K8H6(SO4)7 - Nahcolite -3.15 -13.89 -10.74 NaHCO3 - Natron -5.67 -6.50 -0.82 Na2CO3:10H2O - Nesquehonite -2.47 -7.64 -5.17 MgCO3:3H2O + Misenite -65.75 -76.56 -10.81 K8H6(SO4)7 + Nahcolite -3.10 -13.84 -10.74 NaHCO3 + Natron -5.58 -6.40 -0.82 Na2CO3:10H2O + Nesquehonite -2.38 -7.55 -5.17 MgCO3:3H2O Pentahydrite -2.46 -3.74 -1.28 MgSO4:5H2O - Pirssonite -5.43 -14.67 -9.23 Na2Ca(CO3)2:2H2O + Pirssonite -5.24 -14.48 -9.23 Na2Ca(CO3)2:2H2O Polyhalite -4.70 -18.44 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.69 -14.88 -5.19 Ca(OH)2 + Portlandite -9.60 -14.79 -5.19 Ca(OH)2 Schoenite -5.24 -9.57 -4.33 K2Mg(SO4)2:6H2O Sylvite -2.31 -1.41 0.90 KCl Syngenite -3.92 -10.35 -6.43 K2Ca(SO4)2:H2O Thenardite -1.80 -2.10 -0.30 Na2SO4 - Trona -8.67 -20.05 -11.38 Na3H(CO3)2:2H2O + Trona -8.53 -19.91 -11.38 Na3H(CO3)2:2H2O **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1174,12 +1181,12 @@ Phase SI log IAP log K(T, P) Initial Final Delta Anhydrite -0.25 -4.50 -4.25 0.000e+00 0 0.000e+00 Bischofite -5.12 -0.52 4.59 0.000e+00 0 0.000e+00 -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 3.889e-06 -Calcite 0.00 -8.50 -8.50 3.518e-04 3.550e-04 3.195e-06 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 4.321e-06 +Calcite 0.00 -8.41 -8.41 3.479e-04 3.514e-04 3.525e-06 Carnallite -6.20 -1.78 4.42 0.000e+00 0 0.000e+00 Epsomite -1.89 -3.74 -1.85 0.000e+00 0 0.000e+00 Glauberite -1.08 -6.43 -5.35 0.000e+00 0 0.000e+00 -Gypsum 0.00 -4.60 -4.60 1.653e-03 2.515e-03 8.620e-04 +Gypsum 0.00 -4.60 -4.60 1.656e-03 2.518e-03 8.618e-04 Halite -0.97 0.62 1.58 0.000e+00 0 0.000e+00 Hexahydrite -2.12 -3.69 -1.57 0.000e+00 0 0.000e+00 Kieserite -3.17 -3.43 -0.27 0.000e+00 0 0.000e+00 @@ -1189,52 +1196,53 @@ Polyhalite -4.40 -18.15 -13.74 0.000e+00 0 0.000e+00 Elements Molality Moles - Br 4.440e-03 4.401e-04 - C 4.478e-04 4.438e-05 - Ca 2.998e-02 2.971e-03 + Br 4.441e-03 4.401e-04 + C 5.058e-04 5.014e-05 + Ca 2.998e-02 2.972e-03 Cl 2.957e+00 2.930e-01 K 5.004e-02 4.960e-03 Mg 2.832e-01 2.807e-02 Na 2.566e+00 2.544e-01 - S 1.287e-01 1.276e-02 + S 1.287e-01 1.275e-02 ----------------------------Description of solution---------------------------- - pH = 7.498 Charge balance + pH = 7.546 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 177034 - Density (g/cm) = 1.11851 - Volume (L) = 0.10515 + Specific Conductance (µS/cm, 25°C) = 177871 + Density (g/cm³) = 1.11861 + Volume (L) = 0.10514 + Viscosity (mPa s) = 1.31475 Activity of water = 0.890 Ionic strength (mol/kgw) = 3.673e+00 Mass of water (kg) = 9.912e-02 - Total alkalinity (eq/kg) = 5.057e-04 - Total CO2 (mol/kg) = 4.478e-04 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 5.781e-04 + Total CO2 (mol/kg) = 5.058e-04 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.37 Iterations = 8 Gamma iterations = 3 Osmotic coefficient = 1.07288 Density of water = 0.99704 - Total H = 1.100307e+01 - Total O = 5.552675e+00 + Total H = 1.100306e+01 + Total O = 5.552672e+00 ----------------------------Distribution of species---------------------------- MacInnes MacInnes MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 9.297e-07 2.836e-07 -6.032 -6.547 -0.516 1.67 - H+ 1.558e-08 3.177e-08 -7.808 -7.498 0.310 0.00 + OH- 1.038e-06 3.165e-07 -5.984 -6.500 -0.516 1.67 + H+ 1.396e-08 2.847e-08 -7.855 -7.546 0.310 0.00 H2O 5.551e+01 8.902e-01 1.744 -0.051 0.000 18.07 -Br 4.440e-03 - Br- 4.440e-03 3.024e-03 -2.353 -2.519 -0.167 25.96 -C(4) 4.478e-04 - HCO3- 3.888e-04 1.373e-04 -3.410 -3.862 -0.452 32.59 - MgCO3 3.493e-05 3.493e-05 -4.457 -4.457 0.000 -17.09 - CO3-2 1.781e-05 1.979e-07 -4.749 -6.704 -1.954 5.43 +Br 4.441e-03 + Br- 4.441e-03 3.024e-03 -2.353 -2.519 -0.167 25.96 +C(4) 5.058e-04 + HCO3- 4.339e-04 1.533e-04 -3.363 -3.815 -0.452 30.72 + MgCO3 4.351e-05 4.351e-05 -4.361 -4.361 0.000 -17.09 + CO3-2 2.218e-05 2.465e-07 -4.654 -6.608 -1.954 5.41 CO2 6.266e-06 1.076e-05 -5.203 -4.968 0.235 34.43 Ca 2.998e-02 Ca+2 2.998e-02 1.593e-02 -1.523 -1.798 -0.275 -15.20 @@ -1244,32 +1252,32 @@ K 5.004e-02 K+ 5.004e-02 3.298e-02 -1.301 -1.482 -0.181 11.10 Mg 2.832e-01 Mg+2 2.832e-01 2.083e-01 -0.548 -0.681 -0.133 -18.81 - MgCO3 3.493e-05 3.493e-05 -4.457 -4.457 0.000 -17.09 - MgOH+ 1.061e-05 9.058e-06 -4.974 -5.043 -0.069 (0) + MgCO3 4.351e-05 4.351e-05 -4.361 -4.361 0.000 -17.09 + MgOH+ 1.184e-05 1.011e-05 -4.927 -4.995 -0.069 (0) Na 2.566e+00 Na+ 2.566e+00 2.428e+00 0.409 0.385 -0.024 0.68 S(6) 1.287e-01 - SO4-2 1.287e-01 1.988e-03 -0.890 -2.702 -1.811 23.74 - HSO4- 1.165e-08 6.018e-09 -7.934 -8.221 -0.287 41.74 + SO4-2 1.287e-01 1.987e-03 -0.891 -2.702 -1.811 23.04 + HSO4- 1.044e-08 5.390e-09 -7.981 -8.268 -0.287 41.74 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) Anhydrite -0.25 -4.50 -4.25 CaSO4 - Aragonite -0.28 -8.50 -8.22 CaCO3 + Aragonite -0.19 -8.41 -8.22 CaCO3 Arcanite -3.79 -5.67 -1.88 K2SO4 - Artinite -2.64 17.02 19.66 Mg2CO3(OH)2:3H2O + Artinite -2.45 17.21 19.66 Mg2CO3(OH)2:3H2O Bischofite -5.12 -0.52 4.59 MgCl2:6H2O Bloedite -3.17 -5.52 -2.35 Na2Mg(SO4)2:4H2O - Brucite -2.90 -13.78 -10.88 Mg(OH)2 - Burkeite -9.02 -9.80 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.50 -8.50 CaCO3 + Brucite -2.80 -13.68 -10.88 Mg(OH)2 + Burkeite -8.93 -9.70 -0.77 Na6CO3(SO4)2 + Calcite 0.00 -8.41 -8.41 CaCO3 Carnallite -6.20 -1.78 4.42 KMgCl3:6H2O CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 - Dolomite 1.20 -15.89 -17.08 CaMg(CO3)2 + Dolomite 1.39 -15.70 -17.09 CaMg(CO3)2 Epsomite -1.89 -3.74 -1.85 MgSO4:7H2O - Gaylussite -5.27 -14.69 -9.42 CaNa2(CO3)2:5H2O + Gaylussite -5.08 -14.50 -9.42 CaNa2(CO3)2:5H2O Glaserite -5.66 -9.46 -3.80 NaK3(SO4)2 Glauberite -1.08 -6.43 -5.35 Na2Ca(SO4)2 Goergeyite 1.16 -28.21 -29.37 K2Ca5(SO4)6H2O @@ -1277,30 +1285,30 @@ S(6) 1.287e-01 H2O(g) -1.55 -0.05 1.50 H2O Halite -0.97 0.62 1.58 NaCl Hexahydrite -2.12 -3.69 -1.57 MgSO4:6H2O - Huntite 0.46 10.70 10.24 CaMg3(CO3)4 + Huntite 0.84 11.08 10.24 CaMg3(CO3)4 Kainite -4.59 -4.79 -0.19 KMgClSO4:3H2O - Kalicinite -5.74 -15.68 -9.94 KHCO3 + Kalicinite -5.70 -15.64 -9.94 KHCO3 Kieserite -3.17 -3.43 -0.27 MgSO4:H2O Labile_S -2.79 -8.46 -5.67 Na4Ca(SO4)3:2H2O Leonhardite -2.70 -3.59 -0.89 MgSO4:4H2O Leonite -5.27 -9.25 -3.98 K2Mg(SO4)2:4H2O - Magnesite 0.45 -7.38 -7.83 MgCO3 + Magnesite 0.54 -7.29 -7.83 MgCO3 MgCl2_2H2O -14.88 -0.32 14.56 MgCl2:2H2O MgCl2_4H2O -7.40 -0.42 6.98 MgCl2:4H2O Mirabilite -1.20 -2.44 -1.24 Na2SO4:10H2O - Misenite -64.95 -75.75 -10.81 K8H6(SO4)7 - Nahcolite -3.07 -13.82 -10.74 NaHCO3 - Natron -5.61 -6.44 -0.82 Na2CO3:10H2O - Nesquehonite -2.37 -7.54 -5.17 MgCO3:3H2O + Misenite -65.23 -76.04 -10.81 K8H6(SO4)7 + Nahcolite -3.03 -13.77 -10.74 NaHCO3 + Natron -5.52 -6.34 -0.82 Na2CO3:10H2O + Nesquehonite -2.27 -7.44 -5.17 MgCO3:3H2O Pentahydrite -2.35 -3.64 -1.28 MgSO4:5H2O - Pirssonite -5.30 -14.54 -9.23 Na2Ca(CO3)2:2H2O + Pirssonite -5.11 -14.34 -9.23 Na2Ca(CO3)2:2H2O Polyhalite -4.40 -18.15 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.70 -14.89 -5.19 Ca(OH)2 + Portlandite -9.61 -14.80 -5.19 Ca(OH)2 Schoenite -5.02 -9.35 -4.33 K2Mg(SO4)2:6H2O Sylvite -2.15 -1.25 0.90 KCl Syngenite -3.79 -10.22 -6.43 K2Ca(SO4)2:H2O Thenardite -1.63 -1.93 -0.30 Na2SO4 - Trona -8.47 -19.85 -11.38 Na3H(CO3)2:2H2O + Trona -8.32 -19.71 -11.38 Na3H(CO3)2:2H2O **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1332,12 +1340,12 @@ Phase SI log IAP log K(T, P) Initial Final Delta Anhydrite -0.22 -4.47 -4.25 0.000e+00 0 0.000e+00 Bischofite -4.74 -0.14 4.59 0.000e+00 0 0.000e+00 -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 4.009e-06 -Calcite 0.00 -8.50 -8.50 3.550e-04 3.576e-04 2.597e-06 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 4.454e-06 +Calcite 0.00 -8.41 -8.41 3.514e-04 3.542e-04 2.799e-06 Carnallite -5.62 -1.19 4.42 0.000e+00 0 0.000e+00 Epsomite -1.77 -3.62 -1.85 0.000e+00 0 0.000e+00 Glauberite -0.83 -6.18 -5.35 0.000e+00 0 0.000e+00 -Gypsum 0.00 -4.60 -4.60 2.515e-03 3.410e-03 8.953e-04 +Gypsum 0.00 -4.60 -4.60 2.518e-03 3.413e-03 8.953e-04 Halite -0.73 0.85 1.58 0.000e+00 0 0.000e+00 Hexahydrite -1.99 -3.55 -1.57 0.000e+00 0 0.000e+00 Kieserite -2.96 -3.23 -0.27 0.000e+00 0 0.000e+00 @@ -1348,8 +1356,8 @@ Polyhalite -4.00 -17.74 -13.74 0.000e+00 0 0.000e+00 Elements Molality Moles Br 5.429e-03 4.401e-04 - C 4.660e-04 3.777e-05 - Ca 2.558e-02 2.073e-03 + C 5.290e-04 4.288e-05 + Ca 2.558e-02 2.074e-03 Cl 3.615e+00 2.930e-01 K 6.118e-02 4.960e-03 Mg 3.463e-01 2.807e-02 @@ -1358,41 +1366,42 @@ Polyhalite -4.00 -17.74 -13.74 0.000e+00 0 0.000e+00 ----------------------------Description of solution---------------------------- - pH = 7.460 Charge balance + pH = 7.508 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 197772 - Density (g/cm) = 1.14090 - Volume (L) = 0.08716 + Specific Conductance (µS/cm, 25°C) = 198669 + Density (g/cm³) = 1.14104 + Volume (L) = 0.08715 + Viscosity (mPa s) = 1.43745 Activity of water = 0.861 Ionic strength (mol/kgw) = 4.446e+00 Mass of water (kg) = 8.107e-02 - Total alkalinity (eq/kg) = 5.543e-04 - Total CO2 (mol/kg) = 4.660e-04 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 6.378e-04 + Total CO2 (mol/kg) = 5.290e-04 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.37 Iterations = 9 Gamma iterations = 4 Osmotic coefficient = 1.13296 Density of water = 0.99704 - Total H = 8.999493e+00 - Total O = 4.547287e+00 + Total H = 8.999481e+00 + Total O = 4.547283e+00 ----------------------------Distribution of species---------------------------- MacInnes MacInnes MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 9.003e-07 2.516e-07 -6.046 -6.599 -0.554 2.70 - H+ 1.261e-08 3.463e-08 -7.899 -7.460 0.439 0.00 + OH- 1.005e-06 2.808e-07 -5.998 -6.552 -0.554 2.70 + H+ 1.130e-08 3.103e-08 -7.947 -7.508 0.439 0.00 H2O 5.551e+01 8.609e-01 1.744 -0.065 0.000 18.07 Br 5.429e-03 Br- 5.429e-03 3.898e-03 -2.265 -2.409 -0.144 26.06 -C(4) 4.660e-04 - HCO3- 3.864e-04 1.218e-04 -3.413 -3.914 -0.501 34.06 - MgCO3 5.416e-05 5.416e-05 -4.266 -4.266 0.000 -17.09 - CO3-2 1.983e-05 1.611e-07 -4.703 -6.793 -2.090 6.59 +C(4) 5.290e-04 + HCO3- 4.312e-04 1.360e-04 -3.365 -3.866 -0.501 31.55 + MgCO3 6.746e-05 6.746e-05 -4.171 -4.171 0.000 -17.09 + CO3-2 2.470e-05 2.007e-07 -4.607 -6.698 -2.090 6.55 CO2 5.592e-06 1.076e-05 -5.252 -4.968 0.284 34.43 Ca 2.558e-02 Ca+2 2.558e-02 1.957e-02 -1.592 -1.708 -0.116 -14.89 @@ -1402,32 +1411,32 @@ K 6.118e-02 K+ 6.118e-02 4.233e-02 -1.213 -1.373 -0.160 11.44 Mg 3.463e-01 Mg+2 3.462e-01 3.968e-01 -0.461 -0.401 0.059 -18.46 - MgCO3 5.416e-05 5.416e-05 -4.266 -4.266 0.000 -17.09 - MgOH+ 1.903e-05 1.531e-05 -4.721 -4.815 -0.094 (0) + MgCO3 6.746e-05 6.746e-05 -4.171 -4.171 0.000 -17.09 + MgOH+ 2.123e-05 1.709e-05 -4.673 -4.767 -0.094 (0) Na 3.138e+00 Na+ 3.138e+00 3.377e+00 0.497 0.529 0.032 0.88 S(6) 1.463e-01 - SO4-2 1.463e-01 1.730e-03 -0.835 -2.762 -1.927 24.68 - HSO4- 1.148e-08 5.708e-09 -7.940 -8.243 -0.303 41.85 + SO4-2 1.463e-01 1.730e-03 -0.835 -2.762 -1.927 23.76 + HSO4- 1.028e-08 5.113e-09 -7.988 -8.291 -0.303 41.85 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) Anhydrite -0.22 -4.47 -4.25 CaSO4 - Aragonite -0.28 -8.50 -8.22 CaCO3 + Aragonite -0.19 -8.41 -8.22 CaCO3 Arcanite -3.63 -5.51 -1.88 K2SO4 - Artinite -2.32 17.34 19.66 Mg2CO3(OH)2:3H2O + Artinite -2.13 17.53 19.66 Mg2CO3(OH)2:3H2O Bischofite -4.74 -0.14 4.59 MgCl2:6H2O Bloedite -2.78 -5.13 -2.35 Na2Mg(SO4)2:4H2O - Brucite -2.72 -13.60 -10.88 Mg(OH)2 - Burkeite -8.37 -9.15 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.50 -8.50 CaCO3 + Brucite -2.62 -13.50 -10.88 Mg(OH)2 + Burkeite -8.28 -9.05 -0.77 Na6CO3(SO4)2 + Calcite 0.00 -8.41 -8.41 CaCO3 Carnallite -5.62 -1.19 4.42 KMgCl3:6H2O CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 - Dolomite 1.39 -15.70 -17.08 CaMg(CO3)2 + Dolomite 1.58 -15.50 -17.09 CaMg(CO3)2 Epsomite -1.77 -3.62 -1.85 MgSO4:7H2O - Gaylussite -5.14 -14.56 -9.42 CaNa2(CO3)2:5H2O + Gaylussite -4.95 -14.37 -9.42 CaNa2(CO3)2:5H2O Glaserite -5.31 -9.12 -3.80 NaK3(SO4)2 Glauberite -0.83 -6.18 -5.35 Na2Ca(SO4)2 Goergeyite 1.44 -27.93 -29.37 K2Ca5(SO4)6H2O @@ -1435,30 +1444,30 @@ S(6) 1.463e-01 H2O(g) -1.57 -0.07 1.50 H2O Halite -0.73 0.85 1.58 NaCl Hexahydrite -1.99 -3.55 -1.57 MgSO4:6H2O - Huntite 1.03 11.27 10.24 CaMg3(CO3)4 + Huntite 1.41 11.65 10.24 CaMg3(CO3)4 Kainite -4.21 -4.41 -0.19 KMgClSO4:3H2O - Kalicinite -5.69 -15.63 -9.94 KHCO3 + Kalicinite -5.64 -15.58 -9.94 KHCO3 Kieserite -2.96 -3.23 -0.27 MgSO4:H2O Labile_S -2.34 -8.01 -5.67 Na4Ca(SO4)3:2H2O Leonhardite -2.54 -3.42 -0.89 MgSO4:4H2O Leonite -4.95 -8.93 -3.98 K2Mg(SO4)2:4H2O - Magnesite 0.64 -7.19 -7.83 MgCO3 + Magnesite 0.73 -7.10 -7.83 MgCO3 MgCl2_2H2O -14.44 0.12 14.56 MgCl2:2H2O MgCl2_4H2O -6.99 -0.01 6.98 MgCl2:4H2O Mirabilite -1.12 -2.36 -1.24 Na2SO4:10H2O - Misenite -64.28 -75.08 -10.81 K8H6(SO4)7 - Nahcolite -2.98 -13.72 -10.74 NaHCO3 - Natron -5.56 -6.39 -0.82 Na2CO3:10H2O - Nesquehonite -2.22 -7.39 -5.17 MgCO3:3H2O + Misenite -64.56 -75.37 -10.81 K8H6(SO4)7 + Nahcolite -2.94 -13.68 -10.74 NaHCO3 + Natron -5.47 -6.29 -0.82 Na2CO3:10H2O + Nesquehonite -2.13 -7.29 -5.17 MgCO3:3H2O Pentahydrite -2.20 -3.49 -1.28 MgSO4:5H2O - Pirssonite -5.13 -14.37 -9.23 Na2Ca(CO3)2:2H2O + Pirssonite -4.94 -14.18 -9.23 Na2Ca(CO3)2:2H2O Polyhalite -4.00 -17.74 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.72 -14.91 -5.19 Ca(OH)2 + Portlandite -9.62 -14.81 -5.19 Ca(OH)2 Schoenite -4.73 -9.06 -4.33 K2Mg(SO4)2:6H2O Sylvite -1.95 -1.05 0.90 KCl Syngenite -3.61 -10.04 -6.43 K2Ca(SO4)2:H2O Thenardite -1.40 -1.70 -0.30 Na2SO4 - Trona -8.21 -19.59 -11.38 Na3H(CO3)2:2H2O + Trona -8.06 -19.45 -11.38 Na3H(CO3)2:2H2O **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1490,12 +1499,12 @@ Phase SI log IAP log K(T, P) Initial Final Delta Anhydrite -0.17 -4.42 -4.25 0.000e+00 0 0.000e+00 Bischofite -4.20 0.39 4.59 0.000e+00 0 0.000e+00 -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 4.405e-06 -Calcite 0.00 -8.50 -8.50 3.576e-04 3.582e-04 5.822e-07 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 4.898e-06 +Calcite 0.00 -8.41 -8.41 3.542e-04 3.546e-04 3.607e-07 Carnallite -4.81 -0.39 4.42 0.000e+00 0 0.000e+00 Epsomite -1.60 -3.45 -1.85 0.000e+00 0 0.000e+00 Glauberite -0.44 -5.79 -5.35 0.000e+00 0 0.000e+00 -Gypsum 0.00 -4.60 -4.60 3.410e-03 4.289e-03 8.786e-04 +Gypsum 0.00 -4.60 -4.60 3.413e-03 4.292e-03 8.790e-04 Halite -0.40 1.19 1.58 0.000e+00 0 0.000e+00 Hexahydrite -1.79 -3.35 -1.57 0.000e+00 0 0.000e+00 Kieserite -2.63 -2.90 -0.27 0.000e+00 0 0.000e+00 @@ -1506,86 +1515,87 @@ Polyhalite -3.38 -17.12 -13.74 0.000e+00 0 0.000e+00 Elements Molality Moles Br 6.984e-03 4.401e-04 - C 5.203e-04 3.279e-05 + C 5.970e-04 3.762e-05 Ca 1.895e-02 1.194e-03 Cl 4.650e+00 2.930e-01 K 7.870e-02 4.960e-03 Mg 4.454e-01 2.807e-02 Na 4.036e+00 2.544e-01 - S 1.743e-01 1.098e-02 + S 1.742e-01 1.098e-02 ----------------------------Description of solution---------------------------- - pH = 7.406 Charge balance + pH = 7.454 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 223801 - Density (g/cm) = 1.17419 - Volume (L) = 0.06922 + Specific Conductance (µS/cm, 25°C) = 224762 + Density (g/cm³) = 1.17441 + Volume (L) = 0.06920 + Viscosity (mPa s) = 1.66148 Activity of water = 0.811 Ionic strength (mol/kgw) = 5.663e+00 Mass of water (kg) = 6.302e-02 - Total alkalinity (eq/kg) = 6.945e-04 - Total CO2 (mol/kg) = 5.203e-04 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 8.090e-04 + Total CO2 (mol/kg) = 5.970e-04 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.37 Iterations = 11 Gamma iterations = 4 Osmotic coefficient = 1.23315 Density of water = 0.99704 - Total H = 6.995978e+00 - Total O = 3.542005e+00 + Total H = 6.995965e+00 + Total O = 3.541998e+00 ----------------------------Distribution of species---------------------------- MacInnes MacInnes MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 8.525e-07 2.092e-07 -6.069 -6.679 -0.610 4.28 - H+ 8.812e-09 3.925e-08 -8.055 -7.406 0.649 0.00 + OH- 9.515e-07 2.335e-07 -6.022 -6.632 -0.610 4.28 + H+ 7.896e-09 3.517e-08 -8.103 -7.454 0.649 0.00 H2O 5.551e+01 8.113e-01 1.744 -0.091 0.000 18.07 Br 6.984e-03 Br- 6.984e-03 5.510e-03 -2.156 -2.259 -0.103 26.19 -C(4) 5.203e-04 - HCO3- 3.848e-04 1.013e-04 -3.415 -3.994 -0.580 36.32 - MgCO3 1.086e-04 1.086e-04 -3.964 -3.964 0.000 -17.09 - CO3-2 2.217e-05 1.182e-07 -4.654 -6.927 -2.273 8.30 +C(4) 5.970e-04 + HCO3- 4.295e-04 1.131e-04 -3.367 -3.947 -0.580 32.75 + MgCO3 1.353e-04 1.353e-04 -3.869 -3.869 0.000 -17.09 + CO3-2 2.762e-05 1.472e-07 -4.559 -6.832 -2.273 8.20 CO2 4.677e-06 1.076e-05 -5.330 -4.968 0.362 34.43 Ca 1.895e-02 - Ca+2 1.895e-02 2.666e-02 -1.722 -1.574 0.148 -14.41 + Ca+2 1.895e-02 2.667e-02 -1.722 -1.574 0.148 -14.41 Cl 4.650e+00 Cl- 4.650e+00 2.815e+00 0.667 0.450 -0.218 20.04 K 7.870e-02 K+ 7.870e-02 5.966e-02 -1.104 -1.224 -0.120 11.98 Mg 4.454e-01 - Mg+2 4.453e-01 1.084e+00 -0.351 0.035 0.386 -17.92 - MgCO3 1.086e-04 1.086e-04 -3.964 -3.964 0.000 -17.09 - MgOH+ 4.732e-05 3.479e-05 -4.325 -4.459 -0.134 (0) + Mg+2 4.452e-01 1.084e+00 -0.351 0.035 0.386 -17.92 + MgCO3 1.353e-04 1.353e-04 -3.869 -3.869 0.000 -17.09 + MgOH+ 5.280e-05 3.883e-05 -4.277 -4.411 -0.134 (0) Na 4.036e+00 Na+ 4.036e+00 5.442e+00 0.606 0.736 0.130 1.18 -S(6) 1.743e-01 - SO4-2 1.743e-01 1.429e-03 -0.759 -2.845 -2.086 25.99 - HSO4- 1.142e-08 5.345e-09 -7.942 -8.272 -0.330 42.00 +S(6) 1.742e-01 + SO4-2 1.742e-01 1.429e-03 -0.759 -2.845 -2.086 24.79 + HSO4- 1.023e-08 4.788e-09 -7.990 -8.320 -0.330 42.00 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) Anhydrite -0.17 -4.42 -4.25 CaSO4 - Aragonite -0.28 -8.50 -8.22 CaCO3 + Aragonite -0.19 -8.41 -8.22 CaCO3 Arcanite -3.41 -5.29 -1.88 K2SO4 - Artinite -1.82 17.84 19.66 Mg2CO3(OH)2:3H2O + Artinite -1.63 18.03 19.66 Mg2CO3(OH)2:3H2O Bischofite -4.20 0.39 4.59 MgCl2:6H2O Bloedite -2.20 -4.55 -2.35 Na2Mg(SO4)2:4H2O - Brucite -2.44 -13.32 -10.88 Mg(OH)2 - Burkeite -7.43 -8.20 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.50 -8.50 CaCO3 + Brucite -2.35 -13.23 -10.88 Mg(OH)2 + Burkeite -7.34 -8.11 -0.77 Na6CO3(SO4)2 + Calcite 0.00 -8.41 -8.41 CaCO3 Carnallite -4.81 -0.39 4.42 KMgCl3:6H2O CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 - Dolomite 1.69 -15.39 -17.08 CaMg(CO3)2 + Dolomite 1.88 -15.20 -17.09 CaMg(CO3)2 Epsomite -1.60 -3.45 -1.85 MgSO4:7H2O - Gaylussite -4.99 -14.41 -9.42 CaNa2(CO3)2:5H2O + Gaylussite -4.80 -14.22 -9.42 CaNa2(CO3)2:5H2O Glaserite -4.82 -8.63 -3.80 NaK3(SO4)2 Glauberite -0.44 -5.79 -5.35 Na2Ca(SO4)2 Goergeyite 1.89 -27.48 -29.37 K2Ca5(SO4)6H2O @@ -1593,30 +1603,30 @@ S(6) 1.743e-01 H2O(g) -1.59 -0.09 1.50 H2O Halite -0.40 1.19 1.58 NaCl Hexahydrite -1.79 -3.35 -1.57 MgSO4:6H2O - Huntite 1.94 12.18 10.24 CaMg3(CO3)4 + Huntite 2.32 12.56 10.24 CaMg3(CO3)4 Kainite -3.66 -3.86 -0.19 KMgClSO4:3H2O - Kalicinite -5.62 -15.56 -9.94 KHCO3 + Kalicinite -5.57 -15.51 -9.94 KHCO3 Kieserite -2.63 -2.90 -0.27 MgSO4:H2O Labile_S -1.68 -7.35 -5.67 Na4Ca(SO4)3:2H2O Leonhardite -2.29 -3.17 -0.89 MgSO4:4H2O Leonite -4.49 -8.47 -3.98 K2Mg(SO4)2:4H2O - Magnesite 0.94 -6.89 -7.83 MgCO3 + Magnesite 1.04 -6.80 -7.83 MgCO3 MgCl2_2H2O -13.80 0.75 14.56 MgCl2:2H2O MgCl2_4H2O -6.41 0.57 6.98 MgCl2:4H2O Mirabilite -1.04 -2.28 -1.24 Na2SO4:10H2O - Misenite -63.34 -74.15 -10.81 K8H6(SO4)7 - Nahcolite -2.86 -13.60 -10.74 NaHCO3 - Natron -5.54 -6.36 -0.82 Na2CO3:10H2O - Nesquehonite -2.00 -7.16 -5.17 MgCO3:3H2O + Misenite -63.63 -74.43 -10.81 K8H6(SO4)7 + Nahcolite -2.81 -13.55 -10.74 NaHCO3 + Natron -5.44 -6.27 -0.82 Na2CO3:10H2O + Nesquehonite -1.90 -7.07 -5.17 MgCO3:3H2O Pentahydrite -1.98 -3.26 -1.28 MgSO4:5H2O - Pirssonite -4.90 -14.14 -9.23 Na2Ca(CO3)2:2H2O + Pirssonite -4.71 -13.95 -9.23 Na2Ca(CO3)2:2H2O Polyhalite -3.38 -17.12 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.74 -14.93 -5.19 Ca(OH)2 + Portlandite -9.65 -14.84 -5.19 Ca(OH)2 Schoenite -4.32 -8.65 -4.33 K2Mg(SO4)2:6H2O Sylvite -1.68 -0.77 0.90 KCl Syngenite -3.37 -9.80 -6.43 K2Ca(SO4)2:H2O Thenardite -1.07 -1.37 -0.30 Na2SO4 - Trona -7.85 -19.24 -11.38 Na3H(CO3)2:2H2O + Trona -7.71 -19.09 -11.38 Na3H(CO3)2:2H2O **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1648,13 +1658,13 @@ Phase SI log IAP log K(T, P) Initial Final Delta Anhydrite -0.09 -4.34 -4.25 0.000e+00 0 0.000e+00 Bischofite -3.53 1.06 4.59 0.000e+00 0 0.000e+00 -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 6.103e-06 -Calcite -0.00 -8.50 -8.50 3.582e-04 3.549e-04 -3.293e-06 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 6.795e-06 +Calcite 0.00 -8.41 -8.41 3.546e-04 3.502e-04 -4.331e-06 Carnallite -3.79 0.64 4.42 0.000e+00 0 0.000e+00 Epsomite -1.40 -3.25 -1.85 0.000e+00 0 0.000e+00 -Glauberite 0.00 -5.35 -5.35 0.000e+00 1.745e-03 1.745e-03 -Gypsum 0.00 -4.60 -4.60 4.289e-03 3.150e-03 -1.139e-03 -Halite 0.00 1.58 1.58 0.000e+00 2.036e-02 2.036e-02 +Glauberite 0.00 -5.35 -5.35 0.000e+00 1.741e-03 1.741e-03 +Gypsum 0.00 -4.60 -4.60 4.292e-03 3.159e-03 -1.133e-03 +Halite 0.00 1.58 1.58 0.000e+00 2.037e-02 2.037e-02 Hexahydrite -1.55 -3.12 -1.57 0.000e+00 0 0.000e+00 Kieserite -2.19 -2.46 -0.27 0.000e+00 0 0.000e+00 Polyhalite -2.55 -16.29 -13.74 0.000e+00 0 0.000e+00 @@ -1664,51 +1674,52 @@ Polyhalite -2.55 -16.29 -13.74 0.000e+00 0 0.000e+00 Elements Molality Moles Br 9.771e-03 4.401e-04 - C 6.655e-04 2.998e-05 + C 7.806e-04 3.516e-05 Ca 1.312e-02 5.911e-04 Cl 6.054e+00 2.727e-01 K 1.101e-01 4.960e-03 Mg 6.232e-01 2.807e-02 - Na 5.117e+00 2.305e-01 - S 1.916e-01 8.631e-03 + Na 5.118e+00 2.305e-01 + S 1.916e-01 8.630e-03 ----------------------------Description of solution---------------------------- - pH = 7.311 Charge balance + pH = 7.359 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 248441 - Density (g/cm) = 1.21416 - Volume (L) = 0.05088 + Specific Conductance (µS/cm, 25°C) = 249347 + Density (g/cm³) = 1.21449 + Volume (L) = 0.05087 + Viscosity (mPa s) = 2.02761 Activity of water = 0.739 Ionic strength (mol/kgw) = 7.301e+00 Mass of water (kg) = 4.504e-02 - Total alkalinity (eq/kg) = 1.118e-03 - Total CO2 (mol/kg) = 6.655e-04 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 1.324e-03 + Total CO2 (mol/kg) = 7.806e-04 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.40 Iterations = 15 Gamma iterations = 5 - Osmotic coefficient = 1.38502 + Osmotic coefficient = 1.38500 Density of water = 0.99704 - Total H = 5.000533e+00 - Total O = 2.534874e+00 + Total H = 5.000497e+00 + Total O = 2.534870e+00 ----------------------------Distribution of species---------------------------- MacInnes MacInnes MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 7.704e-07 1.531e-07 -6.113 -6.815 -0.702 6.37 - H+ 5.540e-09 4.885e-08 -8.257 -7.311 0.945 0.00 + OH- 8.599e-07 1.709e-07 -6.066 -6.767 -0.702 6.37 + H+ 4.963e-09 4.376e-08 -8.304 -7.359 0.945 0.00 H2O 5.551e+01 7.390e-01 1.744 -0.131 0.000 18.07 Br 9.771e-03 Br- 9.771e-03 8.918e-03 -2.010 -2.050 -0.040 26.32 -C(4) 6.655e-04 - HCO3- 3.670e-04 7.416e-05 -3.435 -4.130 -0.694 39.34 - MgCO3 2.722e-04 2.722e-04 -3.565 -3.565 0.000 -17.09 - CO3-2 2.255e-05 6.952e-08 -4.647 -7.158 -2.511 10.44 +C(4) 7.806e-04 + HCO3- 4.097e-04 8.278e-05 -3.388 -4.082 -0.694 34.23 + MgCO3 3.391e-04 3.391e-04 -3.470 -3.470 0.000 -17.09 + CO3-2 2.809e-05 8.661e-08 -4.551 -7.062 -2.511 10.23 CO2 3.700e-06 1.076e-05 -5.432 -4.968 0.464 34.43 Ca 1.312e-02 Ca+2 1.312e-02 4.534e-02 -1.882 -1.344 0.538 -13.78 @@ -1717,33 +1728,33 @@ Cl 6.054e+00 K 1.101e-01 K+ 1.101e-01 9.697e-02 -0.958 -1.013 -0.055 12.69 Mg 6.232e-01 - Mg+2 6.227e-01 4.621e+00 -0.206 0.665 0.870 -17.21 - MgCO3 2.722e-04 2.722e-04 -3.565 -3.565 0.000 -17.09 - MgOH+ 1.605e-04 1.085e-04 -3.794 -3.964 -0.170 (0) -Na 5.117e+00 - Na+ 5.117e+00 9.795e+00 0.709 0.991 0.282 1.53 + Mg+2 6.227e-01 4.620e+00 -0.206 0.665 0.870 -17.21 + MgCO3 3.391e-04 3.391e-04 -3.470 -3.470 0.000 -17.09 + MgOH+ 1.792e-04 1.211e-04 -3.747 -3.917 -0.170 (0) +Na 5.118e+00 + Na+ 5.118e+00 9.795e+00 0.709 0.991 0.282 1.53 S(6) 1.916e-01 - SO4-2 1.916e-01 1.013e-03 -0.718 -2.994 -2.277 27.55 - HSO4- 1.077e-08 4.715e-09 -7.968 -8.327 -0.359 42.17 + SO4-2 1.916e-01 1.013e-03 -0.718 -2.994 -2.277 26.00 + HSO4- 9.651e-09 4.224e-09 -8.015 -8.374 -0.359 42.17 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) Anhydrite -0.09 -4.34 -4.25 CaSO4 - Aragonite -0.28 -8.50 -8.22 CaCO3 + Aragonite -0.19 -8.41 -8.22 CaCO3 Arcanite -3.14 -5.02 -1.88 K2SO4 - Artinite -1.18 18.48 19.66 Mg2CO3(OH)2:3H2O + Artinite -0.99 18.67 19.66 Mg2CO3(OH)2:3H2O Bischofite -3.53 1.06 4.59 MgCl2:6H2O Bloedite -1.52 -3.87 -2.35 Na2Mg(SO4)2:4H2O - Brucite -2.09 -12.97 -10.88 Mg(OH)2 - Burkeite -6.43 -7.20 -0.77 Na6CO3(SO4)2 - Calcite -0.00 -8.50 -8.50 CaCO3 + Brucite -1.99 -12.87 -10.88 Mg(OH)2 + Burkeite -6.33 -7.11 -0.77 Na6CO3(SO4)2 + Calcite 0.00 -8.41 -8.41 CaCO3 Carnallite -3.79 0.64 4.42 KMgCl3:6H2O CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 - Dolomite 2.09 -14.99 -17.08 CaMg(CO3)2 + Dolomite 2.28 -14.80 -17.09 CaMg(CO3)2 Epsomite -1.40 -3.25 -1.85 MgSO4:7H2O - Gaylussite -4.91 -14.33 -9.42 CaNa2(CO3)2:5H2O + Gaylussite -4.72 -14.14 -9.42 CaNa2(CO3)2:5H2O Glaserite -4.23 -8.04 -3.80 NaK3(SO4)2 Glauberite 0.00 -5.35 -5.35 Na2Ca(SO4)2 Goergeyite 2.53 -26.84 -29.37 K2Ca5(SO4)6H2O @@ -1751,30 +1762,30 @@ S(6) 1.916e-01 H2O(g) -1.63 -0.13 1.50 H2O Halite 0.00 1.58 1.58 NaCl Hexahydrite -1.55 -3.12 -1.57 MgSO4:6H2O - Huntite 3.13 13.38 10.24 CaMg3(CO3)4 + Huntite 3.52 13.76 10.24 CaMg3(CO3)4 Kainite -2.95 -3.15 -0.19 KMgClSO4:3H2O - Kalicinite -5.54 -15.48 -9.94 KHCO3 + Kalicinite -5.49 -15.43 -9.94 KHCO3 Kieserite -2.19 -2.46 -0.27 MgSO4:H2O Labile_S -0.95 -6.63 -5.67 Na4Ca(SO4)3:2H2O - Leonhardite -1.97 -2.85 -0.89 MgSO4:4H2O + Leonhardite -1.97 -2.86 -0.89 MgSO4:4H2O Leonite -3.90 -7.88 -3.98 K2Mg(SO4)2:4H2O - Magnesite 1.34 -6.49 -7.83 MgCO3 + Magnesite 1.44 -6.40 -7.83 MgCO3 MgCl2_2H2O -12.97 1.58 14.56 MgCl2:2H2O MgCl2_4H2O -5.66 1.32 6.98 MgCl2:4H2O Mirabilite -1.09 -2.33 -1.24 Na2SO4:10H2O - Misenite -62.13 -72.93 -10.81 K8H6(SO4)7 - Nahcolite -2.74 -13.48 -10.74 NaHCO3 - Natron -5.66 -6.49 -0.82 Na2CO3:10H2O - Nesquehonite -1.72 -6.89 -5.17 MgCO3:3H2O + Misenite -62.41 -73.22 -10.81 K8H6(SO4)7 + Nahcolite -2.69 -13.43 -10.74 NaHCO3 + Natron -5.57 -6.39 -0.82 Na2CO3:10H2O + Nesquehonite -1.62 -6.79 -5.17 MgCO3:3H2O Pentahydrite -1.70 -2.99 -1.28 MgSO4:5H2O - Pirssonite -4.71 -13.94 -9.23 Na2Ca(CO3)2:2H2O + Pirssonite -4.52 -13.75 -9.23 Na2Ca(CO3)2:2H2O Polyhalite -2.55 -16.29 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.78 -14.97 -5.19 Ca(OH)2 + Portlandite -9.69 -14.88 -5.19 Ca(OH)2 Schoenite -3.81 -8.14 -4.33 K2Mg(SO4)2:6H2O Sylvite -1.32 -0.42 0.90 KCl Syngenite -3.06 -9.49 -6.43 K2Ca(SO4)2:H2O Thenardite -0.71 -1.01 -0.30 Na2SO4 - Trona -7.53 -18.92 -11.38 Na3H(CO3)2:2H2O + Trona -7.39 -18.77 -11.38 Na3H(CO3)2:2H2O **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1805,14 +1816,14 @@ Reaction 1. Phase SI log IAP log K(T, P) Initial Final Delta Anhydrite -0.07 -4.33 -4.25 0.000e+00 0 0.000e+00 -Bischofite -3.21 1.38 4.59 0.000e+00 0 0.000e+00 -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 3.194e-06 -Calcite 0.00 -8.50 -8.50 3.549e-04 3.529e-04 -1.955e-06 +Bischofite -3.22 1.38 4.59 0.000e+00 0 0.000e+00 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 3.557e-06 +Calcite 0.00 -8.41 -8.41 3.502e-04 3.476e-04 -2.664e-06 Carnallite -3.21 1.21 4.42 0.000e+00 0 0.000e+00 Epsomite -1.10 -2.95 -1.85 0.000e+00 0 0.000e+00 -Glauberite 0.00 -5.35 -5.35 1.745e-03 3.818e-03 2.073e-03 -Gypsum 0.00 -4.60 -4.60 3.150e-03 1.370e-03 -1.780e-03 -Halite 0.00 1.58 1.58 2.036e-02 1.278e-01 1.074e-01 +Glauberite 0.00 -5.35 -5.35 1.741e-03 3.813e-03 2.072e-03 +Gypsum 0.00 -4.60 -4.60 3.159e-03 1.380e-03 -1.779e-03 +Halite 0.00 1.58 1.58 2.037e-02 1.278e-01 1.074e-01 Hexahydrite -1.24 -2.81 -1.57 0.000e+00 0 0.000e+00 Kieserite -1.86 -2.12 -0.27 0.000e+00 0 0.000e+00 Polyhalite -1.68 -15.43 -13.74 0.000e+00 0 0.000e+00 @@ -1821,8 +1832,8 @@ Polyhalite -1.68 -15.43 -13.74 0.000e+00 0 0.000e+00 Elements Molality Moles - Br 1.624e-02 4.401e-04 - C 1.061e-03 2.874e-05 + Br 1.625e-02 4.401e-04 + C 1.265e-03 3.427e-05 Ca 1.108e-02 3.003e-04 Cl 6.100e+00 1.653e-01 K 1.831e-01 4.960e-03 @@ -1832,41 +1843,42 @@ Polyhalite -1.68 -15.43 -13.74 0.000e+00 0 0.000e+00 ----------------------------Description of solution---------------------------- - pH = 7.316 Charge balance + pH = 7.364 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 235893 - Density (g/cm) = 1.21994 - Volume (L) = 0.03051 + Specific Conductance (µS/cm, 25°C) = 236925 + Density (g/cm³) = 1.22037 + Volume (L) = 0.03049 + Viscosity (mPa s) = 2.19147 Activity of water = 0.729 Ionic strength (mol/kgw) = 7.901e+00 Mass of water (kg) = 2.709e-02 - Total alkalinity (eq/kg) = 2.003e-03 - Total CO2 (mol/kg) = 1.061e-03 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 2.398e-03 + Total CO2 (mol/kg) = 1.265e-03 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.66 Iterations = 12 Gamma iterations = 4 - Osmotic coefficient = 1.46458 + Osmotic coefficient = 1.46453 Density of water = 0.99704 - Total H = 3.007653e+00 - Total O = 1.528972e+00 + Total H = 3.007612e+00 + Total O = 1.528966e+00 ----------------------------Distribution of species---------------------------- MacInnes MacInnes MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.067e-06 1.529e-07 -5.972 -6.816 -0.844 7.13 - H+ 4.797e-09 4.827e-08 -8.319 -7.316 1.003 0.00 + OH- 1.191e-06 1.707e-07 -5.924 -6.768 -0.844 7.13 + H+ 4.298e-09 4.324e-08 -8.367 -7.364 1.003 0.00 H2O 5.551e+01 7.292e-01 1.744 -0.137 0.000 18.07 -Br 1.624e-02 - Br- 1.624e-02 1.601e-02 -1.789 -1.796 -0.006 26.36 -C(4) 1.061e-03 - MgCO3 5.839e-04 5.839e-04 -3.234 -3.234 0.000 -17.09 - HCO3- 4.288e-04 7.406e-05 -3.368 -4.130 -0.763 40.43 - CO3-2 4.438e-05 7.026e-08 -4.353 -7.153 -2.801 11.19 +Br 1.625e-02 + Br- 1.625e-02 1.601e-02 -1.789 -1.796 -0.006 26.36 +C(4) 1.265e-03 + MgCO3 7.273e-04 7.273e-04 -3.138 -3.138 0.000 -17.09 + HCO3- 4.786e-04 8.267e-05 -3.320 -4.083 -0.763 34.75 + CO3-2 5.529e-05 8.754e-08 -4.257 -7.058 -2.800 10.93 CO2 3.559e-06 1.076e-05 -5.449 -4.968 0.481 34.43 Ca 1.108e-02 Ca+2 1.108e-02 4.486e-02 -1.955 -1.348 0.607 -13.55 @@ -1875,33 +1887,33 @@ Cl 6.100e+00 K 1.831e-01 K+ 1.831e-01 1.708e-01 -0.737 -0.767 -0.030 12.95 Mg 1.036e+00 - Mg+2 1.035e+00 9.808e+00 0.015 0.992 0.977 -16.95 - MgCO3 5.839e-04 5.839e-04 -3.234 -3.234 0.000 -17.09 - MgOH+ 3.164e-04 2.300e-04 -3.500 -3.638 -0.138 (0) + Mg+2 1.035e+00 9.805e+00 0.015 0.991 0.977 -16.95 + MgCO3 7.273e-04 7.273e-04 -3.138 -3.138 0.000 -17.09 + MgOH+ 3.531e-04 2.567e-04 -3.452 -3.591 -0.138 (0) Na 4.391e+00 Na+ 4.391e+00 9.485e+00 0.643 0.977 0.334 1.64 S(6) 2.312e-01 - SO4-2 2.312e-01 1.052e-03 -0.636 -2.978 -2.342 28.08 - HSO4- 9.246e-09 4.836e-09 -8.034 -8.316 -0.281 42.22 + SO4-2 2.312e-01 1.052e-03 -0.636 -2.978 -2.342 26.41 + HSO4- 8.284e-09 4.332e-09 -8.082 -8.363 -0.281 42.22 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) Anhydrite -0.07 -4.33 -4.25 CaSO4 - Aragonite -0.28 -8.50 -8.22 CaCO3 + Aragonite -0.19 -8.41 -8.22 CaCO3 Arcanite -2.63 -4.51 -1.88 K2SO4 - Artinite -0.54 19.12 19.66 Mg2CO3(OH)2:3H2O - Bischofite -3.21 1.38 4.59 MgCl2:6H2O + Artinite -0.35 19.31 19.66 Mg2CO3(OH)2:3H2O + Bischofite -3.22 1.38 4.59 MgCl2:6H2O Bloedite -1.21 -3.56 -2.35 Na2Mg(SO4)2:4H2O - Brucite -1.76 -12.64 -10.88 Mg(OH)2 - Burkeite -6.48 -7.25 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.50 -8.50 CaCO3 + Brucite -1.66 -12.54 -10.88 Mg(OH)2 + Burkeite -6.38 -7.15 -0.77 Na6CO3(SO4)2 + Calcite 0.00 -8.41 -8.41 CaCO3 Carnallite -3.21 1.21 4.42 KMgCl3:6H2O CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 - Dolomite 2.42 -14.66 -17.08 CaMg(CO3)2 + Dolomite 2.61 -14.47 -17.09 CaMg(CO3)2 Epsomite -1.10 -2.95 -1.85 MgSO4:7H2O - Gaylussite -4.97 -14.39 -9.42 CaNa2(CO3)2:5H2O + Gaylussite -4.77 -14.20 -9.42 CaNa2(CO3)2:5H2O Glaserite -3.48 -7.28 -3.80 NaK3(SO4)2 Glauberite 0.00 -5.35 -5.35 Na2Ca(SO4)2 Goergeyite 3.09 -26.28 -29.37 K2Ca5(SO4)6H2O @@ -1909,30 +1921,30 @@ S(6) 2.312e-01 H2O(g) -1.64 -0.14 1.50 H2O Halite 0.00 1.58 1.58 NaCl Hexahydrite -1.24 -2.81 -1.57 MgSO4:6H2O - Huntite 4.13 14.37 10.24 CaMg3(CO3)4 + Huntite 4.51 14.75 10.24 CaMg3(CO3)4 Kainite -2.37 -2.56 -0.19 KMgClSO4:3H2O - Kalicinite -5.30 -15.24 -9.94 KHCO3 + Kalicinite -5.25 -15.19 -9.94 KHCO3 Kieserite -1.86 -2.12 -0.27 MgSO4:H2O Labile_S -0.98 -6.65 -5.67 Na4Ca(SO4)3:2H2O Leonhardite -1.65 -2.54 -0.89 MgSO4:4H2O Leonite -3.07 -7.05 -3.98 K2Mg(SO4)2:4H2O - Magnesite 1.67 -6.16 -7.83 MgCO3 + Magnesite 1.77 -6.07 -7.83 MgCO3 MgCl2_2H2O -12.63 1.93 14.56 MgCl2:2H2O MgCl2_4H2O -5.33 1.65 6.98 MgCl2:4H2O Mirabilite -1.16 -2.40 -1.24 Na2SO4:10H2O - Misenite -60.08 -70.88 -10.81 K8H6(SO4)7 - Nahcolite -2.75 -13.49 -10.74 NaHCO3 - Natron -5.75 -6.57 -0.82 Na2CO3:10H2O - Nesquehonite -1.41 -6.57 -5.17 MgCO3:3H2O + Misenite -60.36 -71.17 -10.81 K8H6(SO4)7 + Nahcolite -2.70 -13.44 -10.74 NaHCO3 + Natron -5.65 -6.48 -0.82 Na2CO3:10H2O + Nesquehonite -1.31 -6.48 -5.17 MgCO3:3H2O Pentahydrite -1.39 -2.67 -1.28 MgSO4:5H2O - Pirssonite -4.74 -13.97 -9.23 Na2Ca(CO3)2:2H2O + Pirssonite -4.55 -13.78 -9.23 Na2Ca(CO3)2:2H2O Polyhalite -1.68 -15.43 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.79 -14.98 -5.19 Ca(OH)2 + Portlandite -9.69 -14.88 -5.19 Ca(OH)2 Schoenite -2.99 -7.32 -4.33 K2Mg(SO4)2:6H2O Sylvite -1.06 -0.16 0.90 KCl Syngenite -2.55 -8.98 -6.43 K2Ca(SO4)2:H2O Thenardite -0.72 -1.02 -0.30 Na2SO4 - Trona -7.58 -18.97 -11.38 Na3H(CO3)2:2H2O + Trona -7.44 -18.82 -11.38 Na3H(CO3)2:2H2O **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1964,12 +1976,12 @@ Phase SI log IAP log K(T, P) Initial Final Delta Anhydrite -0.07 -4.32 -4.25 0.000e+00 0 0.000e+00 Bischofite -3.08 1.51 4.59 0.000e+00 0 0.000e+00 -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 9.663e-07 -Calcite 0.00 -8.50 -8.50 3.529e-04 3.505e-04 -2.377e-06 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 1.076e-06 +Calcite 0.00 -8.41 -8.41 3.476e-04 3.446e-04 -2.976e-06 Carnallite -2.98 1.45 4.42 0.000e+00 0 0.000e+00 Epsomite -0.98 -2.83 -1.85 0.000e+00 0 0.000e+00 -Glauberite 0.00 -5.35 -5.35 3.818e-03 4.237e-03 4.189e-04 -Gypsum 0.00 -4.60 -4.60 1.370e-03 1.025e-03 -3.451e-04 +Glauberite 0.00 -5.35 -5.35 3.813e-03 4.231e-03 4.185e-04 +Gypsum 0.00 -4.60 -4.60 1.380e-03 1.036e-03 -3.441e-04 Halite 0.00 1.58 1.58 1.278e-01 1.545e-01 2.675e-02 Hexahydrite -1.12 -2.68 -1.57 0.000e+00 0 0.000e+00 Kieserite -1.71 -1.98 -0.27 0.000e+00 0 0.000e+00 @@ -1980,7 +1992,7 @@ Polyhalite -1.34 -15.08 -13.74 0.000e+00 0 0.000e+00 Elements Molality Moles Br 1.947e-02 4.401e-04 - C 1.334e-03 3.015e-05 + C 1.600e-03 3.617e-05 Ca 1.013e-02 2.289e-04 Cl 6.129e+00 1.385e-01 K 2.195e-01 4.960e-03 @@ -1990,76 +2002,77 @@ Polyhalite -1.34 -15.08 -13.74 0.000e+00 0 0.000e+00 ----------------------------Description of solution---------------------------- - pH = 7.319 Charge balance + pH = 7.367 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 229901 - Density (g/cm) = 1.22333 - Volume (L) = 0.02541 + Specific Conductance (µS/cm, 25°C) = 231007 + Density (g/cm³) = 1.22383 + Volume (L) = 0.02540 + Viscosity (mPa s) = 2.29181 Activity of water = 0.724 Ionic strength (mol/kgw) = 8.219e+00 Mass of water (kg) = 2.260e-02 - Total alkalinity (eq/kg) = 2.611e-03 - Total CO2 (mol/kg) = 1.334e-03 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 3.138e-03 + Total CO2 (mol/kg) = 1.600e-03 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.78 Iterations = 9 Gamma iterations = 3 - Osmotic coefficient = 1.50724 + Osmotic coefficient = 1.50717 Density of water = 0.99704 - Total H = 2.509033e+00 - Total O = 1.277696e+00 + Total H = 2.508989e+00 + Total O = 1.277689e+00 ----------------------------Distribution of species---------------------------- MacInnes MacInnes MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.251e-06 1.527e-07 -5.903 -6.816 -0.914 7.52 - H+ 4.429e-09 4.797e-08 -8.354 -7.319 1.035 0.00 + OH- 1.396e-06 1.704e-07 -5.855 -6.768 -0.913 7.52 + H+ 3.969e-09 4.297e-08 -8.401 -7.367 1.035 0.00 H2O 5.551e+01 7.235e-01 1.744 -0.141 0.000 18.07 Br 1.947e-02 Br- 1.947e-02 1.992e-02 -1.711 -1.701 0.010 26.38 -C(4) 1.334e-03 - MgCO3 8.030e-04 8.030e-04 -3.095 -3.095 0.000 -17.09 - HCO3- 4.658e-04 7.394e-05 -3.332 -4.131 -0.799 41.01 - CO3-2 6.159e-05 7.058e-08 -4.210 -7.151 -2.941 11.58 - CO2 3.479e-06 1.076e-05 -5.459 -4.968 0.490 34.43 +C(4) 1.600e-03 + MgCO3 1.000e-03 1.000e-03 -3.000 -3.000 0.000 -17.09 + HCO3- 5.199e-04 8.253e-05 -3.284 -4.083 -0.799 35.01 + CO3-2 7.672e-05 8.794e-08 -4.115 -7.056 -2.941 11.30 + CO2 3.479e-06 1.076e-05 -5.458 -4.968 0.490 34.43 Ca 1.013e-02 - Ca+2 1.013e-02 4.466e-02 -1.995 -1.350 0.644 -13.43 + Ca+2 1.013e-02 4.466e-02 -1.994 -1.350 0.644 -13.43 Cl 6.129e+00 Cl- 6.129e+00 4.096e+00 0.787 0.612 -0.175 20.39 K 2.195e-01 K+ 2.195e-01 2.113e-01 -0.659 -0.675 -0.016 13.09 Mg 1.242e+00 - Mg+2 1.241e+00 1.343e+01 0.094 1.128 1.034 -16.82 - MgCO3 8.030e-04 8.030e-04 -3.095 -3.095 0.000 -17.09 - MgOH+ 4.149e-04 3.144e-04 -3.382 -3.503 -0.121 (0) + Mg+2 1.241e+00 1.342e+01 0.094 1.128 1.034 -16.82 + MgCO3 1.000e-03 1.000e-03 -3.000 -3.000 0.000 -17.09 + MgOH+ 4.630e-04 3.508e-04 -3.334 -3.455 -0.121 (0) Na 4.043e+00 - Na+ 4.043e+00 9.316e+00 0.607 0.969 0.363 1.71 + Na+ 4.043e+00 9.316e+00 0.607 0.969 0.362 1.71 S(6) 2.554e-01 - SO4-2 2.554e-01 1.073e-03 -0.593 -2.969 -2.377 28.35 - HSO4- 8.607e-09 4.904e-09 -8.065 -8.309 -0.244 42.24 + SO4-2 2.554e-01 1.073e-03 -0.593 -2.969 -2.376 26.62 + HSO4- 7.711e-09 4.394e-09 -8.113 -8.357 -0.244 42.24 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) Anhydrite -0.07 -4.32 -4.25 CaSO4 - Aragonite -0.28 -8.50 -8.22 CaCO3 + Aragonite -0.19 -8.41 -8.22 CaCO3 Arcanite -2.44 -4.32 -1.88 K2SO4 - Artinite -0.28 19.38 19.66 Mg2CO3(OH)2:3H2O + Artinite -0.09 19.57 19.66 Mg2CO3(OH)2:3H2O Bischofite -3.08 1.51 4.59 MgCl2:6H2O Bloedite -1.09 -3.43 -2.35 Na2Mg(SO4)2:4H2O - Brucite -1.62 -12.50 -10.88 Mg(OH)2 - Burkeite -6.50 -7.27 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.50 -8.50 CaCO3 + Brucite -1.53 -12.41 -10.88 Mg(OH)2 + Burkeite -6.41 -7.18 -0.77 Na6CO3(SO4)2 + Calcite 0.00 -8.41 -8.41 CaCO3 Carnallite -2.98 1.45 4.42 KMgCl3:6H2O CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 - Dolomite 2.56 -14.52 -17.08 CaMg(CO3)2 + Dolomite 2.75 -14.33 -17.09 CaMg(CO3)2 Epsomite -0.98 -2.83 -1.85 MgSO4:7H2O - Gaylussite -5.00 -14.42 -9.42 CaNa2(CO3)2:5H2O + Gaylussite -4.81 -14.23 -9.42 CaNa2(CO3)2:5H2O Glaserite -3.19 -6.99 -3.80 NaK3(SO4)2 Glauberite 0.00 -5.35 -5.35 Na2Ca(SO4)2 Goergeyite 3.31 -26.06 -29.37 K2Ca5(SO4)6H2O @@ -2067,30 +2080,30 @@ S(6) 2.554e-01 H2O(g) -1.64 -0.14 1.50 H2O Halite 0.00 1.58 1.58 NaCl Hexahydrite -1.12 -2.68 -1.57 MgSO4:6H2O - Huntite 4.54 14.79 10.24 CaMg3(CO3)4 + Huntite 4.92 15.17 10.24 CaMg3(CO3)4 Kainite -2.13 -2.33 -0.19 KMgClSO4:3H2O - Kalicinite -5.21 -15.15 -9.94 KHCO3 + Kalicinite -5.16 -15.10 -9.94 KHCO3 Kieserite -1.71 -1.98 -0.27 MgSO4:H2O Labile_S -0.99 -6.66 -5.67 Na4Ca(SO4)3:2H2O Leonhardite -1.52 -2.40 -0.89 MgSO4:4H2O Leonite -2.74 -6.72 -3.98 K2Mg(SO4)2:4H2O - Magnesite 1.81 -6.02 -7.83 MgCO3 + Magnesite 1.91 -5.93 -7.83 MgCO3 MgCl2_2H2O -12.49 2.07 14.56 MgCl2:2H2O MgCl2_4H2O -5.19 1.79 6.98 MgCl2:4H2O Mirabilite -1.20 -2.44 -1.24 Na2SO4:10H2O - Misenite -59.29 -70.10 -10.81 K8H6(SO4)7 - Nahcolite -2.76 -13.50 -10.74 NaHCO3 - Natron -5.79 -6.62 -0.82 Na2CO3:10H2O - Nesquehonite -1.28 -6.45 -5.17 MgCO3:3H2O + Misenite -59.58 -70.39 -10.81 K8H6(SO4)7 + Nahcolite -2.71 -13.45 -10.74 NaHCO3 + Natron -5.70 -6.52 -0.82 Na2CO3:10H2O + Nesquehonite -1.18 -6.35 -5.17 MgCO3:3H2O Pentahydrite -1.26 -2.54 -1.28 MgSO4:5H2O - Pirssonite -4.76 -14.00 -9.23 Na2Ca(CO3)2:2H2O + Pirssonite -4.57 -13.80 -9.23 Na2Ca(CO3)2:2H2O Polyhalite -1.34 -15.08 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.79 -14.98 -5.19 Ca(OH)2 + Portlandite -9.70 -14.89 -5.19 Ca(OH)2 Schoenite -2.68 -7.00 -4.33 K2Mg(SO4)2:6H2O Sylvite -0.96 -0.06 0.90 KCl Syngenite -2.35 -8.78 -6.43 K2Ca(SO4)2:H2O Thenardite -0.73 -1.03 -0.30 Na2SO4 - Trona -7.61 -19.00 -11.38 Na3H(CO3)2:2H2O + Trona -7.47 -18.85 -11.38 Na3H(CO3)2:2H2O **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2122,12 +2135,12 @@ Phase SI log IAP log K(T, P) Initial Final Delta Anhydrite -0.06 -4.31 -4.25 0.000e+00 0 0.000e+00 Bischofite -2.90 1.69 4.59 0.000e+00 0 0.000e+00 -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 1.190e-06 -Calcite 0.00 -8.50 -8.50 3.505e-04 3.454e-04 -5.140e-06 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 1.326e-06 +Calcite 0.00 -8.41 -8.41 3.446e-04 3.382e-04 -6.361e-06 Carnallite -2.67 1.76 4.42 0.000e+00 0 0.000e+00 Epsomite -0.81 -2.66 -1.85 0.000e+00 0 0.000e+00 -Glauberite 0.00 -5.35 -5.35 4.237e-03 4.528e-03 2.916e-04 -Gypsum 0.00 -4.60 -4.60 1.025e-03 8.085e-04 -2.166e-04 +Glauberite 0.00 -5.35 -5.35 4.231e-03 4.522e-03 2.908e-04 +Gypsum 0.00 -4.60 -4.60 1.036e-03 8.218e-04 -2.145e-04 Halite 0.00 1.58 1.58 1.545e-01 1.812e-01 2.664e-02 Hexahydrite -0.95 -2.52 -1.57 0.000e+00 0 0.000e+00 Kieserite -1.52 -1.78 -0.27 0.000e+00 0 0.000e+00 @@ -2138,86 +2151,87 @@ Polyhalite -0.87 -14.62 -13.74 0.000e+00 0 0.000e+00 Elements Molality Moles Br 2.431e-02 4.401e-04 - C 1.883e-03 3.410e-05 - Ca 8.778e-03 1.589e-04 + C 2.276e-03 4.120e-05 + Ca 8.780e-03 1.590e-04 Cl 6.180e+00 1.119e-01 K 2.740e-01 4.960e-03 Mg 1.550e+00 2.807e-02 - Na 3.544e+00 6.416e-02 - S 2.986e-01 5.406e-03 + Na 3.544e+00 6.417e-02 + S 2.985e-01 5.405e-03 ----------------------------Description of solution---------------------------- - pH = 7.323 Charge balance + pH = 7.371 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 221228 - Density (g/cm) = 1.22912 - Volume (L) = 0.02033 + Specific Conductance (µS/cm, 25°C) = 222459 + Density (g/cm³) = 1.22975 + Volume (L) = 0.02032 + Viscosity (mPa s) = 2.47250 Activity of water = 0.714 - Ionic strength (mol/kgw) = 8.724e+00 + Ionic strength (mol/kgw) = 8.723e+00 Mass of water (kg) = 1.810e-02 - Total alkalinity (eq/kg) = 3.827e-03 - Total CO2 (mol/kg) = 1.883e-03 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 4.620e-03 + Total CO2 (mol/kg) = 2.276e-03 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.95 Iterations = 10 Gamma iterations = 4 - Osmotic coefficient = 1.57491 + Osmotic coefficient = 1.57480 Density of water = 0.99704 - Total H = 2.009900e+00 - Total O = 1.026675e+00 + Total H = 2.009846e+00 + Total O = 1.026666e+00 ----------------------------Distribution of species---------------------------- MacInnes MacInnes MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.582e-06 1.521e-07 -5.801 -6.818 -1.017 8.16 - H+ 3.887e-09 4.751e-08 -8.410 -7.323 1.087 0.00 - H2O 5.551e+01 7.138e-01 1.744 -0.146 0.000 18.07 + OH- 1.766e-06 1.697e-07 -5.753 -6.770 -1.017 8.16 + H+ 3.483e-09 4.257e-08 -8.458 -7.371 1.087 0.00 + H2O 5.551e+01 7.139e-01 1.744 -0.146 0.000 18.07 Br 2.431e-02 Br- 2.431e-02 2.628e-02 -1.614 -1.580 0.034 26.41 -C(4) 1.883e-03 - MgCO3 1.249e-03 1.249e-03 -2.903 -2.903 0.000 -17.09 - HCO3- 5.316e-04 7.365e-05 -3.274 -4.133 -0.858 41.94 - CO3-2 9.940e-05 7.097e-08 -4.003 -7.149 -3.146 12.20 +C(4) 2.276e-03 + MgCO3 1.555e-03 1.555e-03 -2.808 -2.808 0.000 -17.09 + HCO3- 5.932e-04 8.221e-05 -3.227 -4.085 -0.858 35.43 + CO3-2 1.238e-04 8.843e-08 -3.907 -7.053 -3.146 11.87 CO2 3.348e-06 1.076e-05 -5.475 -4.968 0.507 34.43 -Ca 8.778e-03 - Ca+2 8.778e-03 4.441e-02 -2.057 -1.353 0.704 -13.24 +Ca 8.780e-03 + Ca+2 8.780e-03 4.441e-02 -2.057 -1.353 0.704 -13.24 Cl 6.180e+00 Cl- 6.180e+00 4.219e+00 0.791 0.625 -0.166 20.45 K 2.740e-01 - K+ 2.740e-01 2.772e-01 -0.562 -0.557 0.005 13.31 + K+ 2.740e-01 2.771e-01 -0.562 -0.557 0.005 13.31 Mg 1.550e+00 - Mg+2 1.549e+00 2.077e+01 0.190 1.317 1.127 -16.60 - MgCO3 1.249e-03 1.249e-03 -2.903 -2.903 0.000 -17.09 - MgOH+ 5.975e-04 4.844e-04 -3.224 -3.315 -0.091 (0) + Mg+2 1.548e+00 2.076e+01 0.190 1.317 1.127 -16.60 + MgCO3 1.555e-03 1.555e-03 -2.808 -2.808 0.000 -17.09 + MgOH+ 6.667e-04 5.404e-04 -3.176 -3.267 -0.091 (0) Na 3.544e+00 - Na+ 3.544e+00 9.044e+00 0.549 0.956 0.407 1.80 -S(6) 2.986e-01 - SO4-2 2.986e-01 1.109e-03 -0.525 -2.955 -2.430 28.77 - HSO4- 7.779e-09 5.018e-09 -8.109 -8.299 -0.190 42.28 + Na+ 3.544e+00 9.044e+00 0.550 0.956 0.407 1.80 +S(6) 2.985e-01 + SO4-2 2.985e-01 1.109e-03 -0.525 -2.955 -2.430 26.96 + HSO4- 6.970e-09 4.496e-09 -8.157 -8.347 -0.190 42.28 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) Anhydrite -0.06 -4.31 -4.25 CaSO4 - Aragonite -0.28 -8.50 -8.22 CaCO3 + Aragonite -0.19 -8.41 -8.22 CaCO3 Arcanite -2.19 -4.07 -1.88 K2SO4 - Artinite 0.08 19.74 19.66 Mg2CO3(OH)2:3H2O + Artinite 0.27 19.93 19.66 Mg2CO3(OH)2:3H2O Bischofite -2.90 1.69 4.59 MgCl2:6H2O Bloedite -0.92 -3.27 -2.35 Na2Mg(SO4)2:4H2O - Brucite -1.44 -12.32 -10.88 Mg(OH)2 - Burkeite -6.55 -7.32 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.50 -8.50 CaCO3 + Brucite -1.34 -12.22 -10.88 Mg(OH)2 + Burkeite -6.45 -7.23 -0.77 Na6CO3(SO4)2 + Calcite 0.00 -8.41 -8.41 CaCO3 Carnallite -2.67 1.76 4.42 KMgCl3:6H2O CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 - Dolomite 2.75 -14.33 -17.08 CaMg(CO3)2 + Dolomite 2.94 -14.14 -17.09 CaMg(CO3)2 Epsomite -0.81 -2.66 -1.85 MgSO4:7H2O - Gaylussite -5.05 -14.47 -9.42 CaNa2(CO3)2:5H2O + Gaylussite -4.86 -14.28 -9.42 CaNa2(CO3)2:5H2O Glaserite -2.82 -6.63 -3.80 NaK3(SO4)2 Glauberite 0.00 -5.35 -5.35 Na2Ca(SO4)2 Goergeyite 3.61 -25.75 -29.37 K2Ca5(SO4)6H2O @@ -2225,30 +2239,30 @@ S(6) 2.986e-01 H2O(g) -1.65 -0.15 1.50 H2O Halite 0.00 1.58 1.58 NaCl Hexahydrite -0.95 -2.52 -1.57 MgSO4:6H2O - Huntite 5.12 15.36 10.24 CaMg3(CO3)4 + Huntite 5.50 15.74 10.24 CaMg3(CO3)4 Kainite -1.82 -2.01 -0.19 KMgClSO4:3H2O - Kalicinite -5.09 -15.03 -9.94 KHCO3 + Kalicinite -5.04 -14.98 -9.94 KHCO3 Kieserite -1.52 -1.78 -0.27 MgSO4:H2O Labile_S -1.01 -6.69 -5.67 Na4Ca(SO4)3:2H2O Leonhardite -1.34 -2.22 -0.89 MgSO4:4H2O Leonite -2.31 -6.29 -3.98 K2Mg(SO4)2:4H2O - Magnesite 2.00 -5.83 -7.83 MgCO3 - MgCl2_2H2O -12.28 2.28 14.56 MgCl2:2H2O + Magnesite 2.10 -5.74 -7.83 MgCO3 + MgCl2_2H2O -12.28 2.27 14.56 MgCl2:2H2O MgCl2_4H2O -5.00 1.98 6.98 MgCl2:4H2O Mirabilite -1.27 -2.51 -1.24 Na2SO4:10H2O - Misenite -58.28 -69.08 -10.81 K8H6(SO4)7 - Nahcolite -2.77 -13.52 -10.74 NaHCO3 - Natron -5.88 -6.70 -0.82 Na2CO3:10H2O - Nesquehonite -1.10 -6.27 -5.17 MgCO3:3H2O - Pentahydrite -1.08 -2.37 -1.28 MgSO4:5H2O - Pirssonite -4.80 -14.03 -9.23 Na2Ca(CO3)2:2H2O + Misenite -58.56 -69.37 -10.81 K8H6(SO4)7 + Nahcolite -2.73 -13.47 -10.74 NaHCO3 + Natron -5.78 -6.60 -0.82 Na2CO3:10H2O + Nesquehonite -1.01 -6.18 -5.17 MgCO3:3H2O + Pentahydrite -1.09 -2.37 -1.28 MgSO4:5H2O + Pirssonite -4.61 -13.84 -9.23 Na2Ca(CO3)2:2H2O Polyhalite -0.87 -14.62 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.80 -14.99 -5.19 Ca(OH)2 + Portlandite -9.70 -14.89 -5.19 Ca(OH)2 Schoenite -2.26 -6.59 -4.33 K2Mg(SO4)2:6H2O Sylvite -0.83 0.07 0.90 KCl Syngenite -2.09 -8.52 -6.43 K2Ca(SO4)2:H2O Thenardite -0.74 -1.04 -0.30 Na2SO4 - Trona -7.66 -19.04 -11.38 Na3H(CO3)2:2H2O + Trona -7.52 -18.90 -11.38 Na3H(CO3)2:2H2O **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2280,12 +2294,12 @@ Phase SI log IAP log K(T, P) Initial Final Delta Anhydrite -0.04 -4.29 -4.25 0.000e+00 0 0.000e+00 Bischofite -2.72 1.87 4.59 0.000e+00 0 0.000e+00 -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 1.162e-06 -Calcite 0.00 -8.50 -8.50 3.454e-04 3.374e-04 -7.976e-06 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 1.294e-06 +Calcite 0.00 -8.41 -8.41 3.382e-04 3.284e-04 -9.817e-06 Carnallite -2.36 2.06 4.42 0.000e+00 0 0.000e+00 Epsomite -0.66 -2.51 -1.85 0.000e+00 0 0.000e+00 -Glauberite 0.00 -5.35 -5.35 4.528e-03 4.559e-03 3.078e-05 -Gypsum 0.00 -4.60 -4.60 8.085e-04 8.332e-04 2.465e-05 +Glauberite 0.00 -5.35 -5.35 4.522e-03 4.552e-03 2.955e-05 +Gypsum 0.00 -4.60 -4.60 8.218e-04 8.495e-04 2.772e-05 Halite 0.00 1.58 1.58 1.812e-01 1.998e-01 1.864e-02 Hexahydrite -0.78 -2.35 -1.57 0.000e+00 0 0.000e+00 Kieserite -1.32 -1.58 -0.27 0.000e+00 0 0.000e+00 @@ -2296,86 +2310,87 @@ Polyhalite -0.42 -14.16 -13.74 0.000e+00 0 0.000e+00 Elements Molality Moles Br 2.947e-02 4.401e-04 - C 2.740e-03 4.091e-05 - Ca 7.465e-03 1.115e-04 - Cl 6.245e+00 9.326e-02 - K 3.321e-01 4.960e-03 + C 3.330e-03 4.972e-05 + Ca 7.467e-03 1.115e-04 + Cl 6.245e+00 9.325e-02 + K 3.322e-01 4.960e-03 Mg 1.880e+00 2.807e-02 - Na 3.044e+00 4.545e-02 - S 3.562e-01 5.319e-03 + Na 3.045e+00 4.546e-02 + S 3.561e-01 5.318e-03 ----------------------------Description of solution---------------------------- - pH = 7.328 Charge balance + pH = 7.375 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 212314 - Density (g/cm) = 1.23648 - Volume (L) = 0.01675 + Specific Conductance (µS/cm, 25°C) = 213703 + Density (g/cm³) = 1.23728 + Volume (L) = 0.01674 + Viscosity (mPa s) = 2.71674 Activity of water = 0.702 Ionic strength (mol/kgw) = 9.307e+00 Mass of water (kg) = 1.493e-02 - Total alkalinity (eq/kg) = 5.709e-03 - Total CO2 (mol/kg) = 2.740e-03 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 6.916e-03 + Total CO2 (mol/kg) = 3.330e-03 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.12 Iterations = 10 Gamma iterations = 4 - Osmotic coefficient = 1.65205 + Osmotic coefficient = 1.65187 Density of water = 0.99704 - Total H = 1.657801e+00 - Total O = 8.503029e-01 + Total H = 1.657736e+00 + Total O = 8.502905e-01 ----------------------------Distribution of species---------------------------- MacInnes MacInnes MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 2.020e-06 1.510e-07 -5.695 -6.821 -1.126 8.89 - H+ 3.328e-09 4.704e-08 -8.478 -7.328 1.150 0.00 + OH- 2.254e-06 1.686e-07 -5.647 -6.773 -1.126 8.89 + H+ 2.982e-09 4.214e-08 -8.525 -7.375 1.150 0.00 H2O 5.551e+01 7.019e-01 1.744 -0.154 0.000 18.07 Br 2.947e-02 Br- 2.947e-02 3.381e-02 -1.531 -1.471 0.060 26.44 -C(4) 2.740e-03 - MgCO3 1.953e-03 1.953e-03 -2.709 -2.709 0.000 -17.09 - HCO3- 6.205e-04 7.314e-05 -3.207 -4.136 -0.929 42.99 - CO3-2 1.629e-04 7.119e-08 -3.788 -7.148 -3.360 12.89 - CO2 3.190e-06 1.076e-05 -5.496 -4.968 0.528 34.43 -Ca 7.465e-03 - Ca+2 7.465e-03 4.427e-02 -2.127 -1.354 0.773 -13.02 +C(4) 3.330e-03 + MgCO3 2.432e-03 2.432e-03 -2.614 -2.614 0.000 -17.09 + HCO3- 6.924e-04 8.164e-05 -3.160 -4.088 -0.928 35.90 + CO3-2 2.028e-04 8.870e-08 -3.693 -7.052 -3.359 12.52 + CO2 3.191e-06 1.076e-05 -5.496 -4.968 0.528 34.43 +Ca 7.467e-03 + Ca+2 7.467e-03 4.427e-02 -2.127 -1.354 0.773 -13.02 Cl 6.245e+00 Cl- 6.245e+00 4.371e+00 0.796 0.641 -0.155 20.52 -K 3.321e-01 - K+ 3.321e-01 3.554e-01 -0.479 -0.449 0.029 13.56 +K 3.322e-01 + K+ 3.322e-01 3.554e-01 -0.479 -0.449 0.029 13.56 Mg 1.880e+00 - Mg+2 1.877e+00 3.237e+01 0.273 1.510 1.237 -16.35 - MgCO3 1.953e-03 1.953e-03 -2.709 -2.709 0.000 -17.09 - MgOH+ 8.542e-04 7.498e-04 -3.068 -3.125 -0.057 (0) -Na 3.044e+00 - Na+ 3.044e+00 8.729e+00 0.483 0.941 0.458 1.91 -S(6) 3.562e-01 - SO4-2 3.562e-01 1.150e-03 -0.448 -2.939 -2.491 29.24 - HSO4- 7.047e-09 5.155e-09 -8.152 -8.288 -0.136 42.32 + Mg+2 1.876e+00 3.235e+01 0.273 1.510 1.237 -16.35 + MgCO3 2.432e-03 2.432e-03 -2.614 -2.614 0.000 -17.09 + MgOH+ 9.530e-04 8.364e-04 -3.021 -3.078 -0.057 (0) +Na 3.045e+00 + Na+ 3.045e+00 8.730e+00 0.484 0.941 0.457 1.91 +S(6) 3.561e-01 + SO4-2 3.561e-01 1.150e-03 -0.448 -2.939 -2.491 27.32 + HSO4- 6.314e-09 4.618e-09 -8.200 -8.336 -0.136 42.32 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) Anhydrite -0.04 -4.29 -4.25 CaSO4 - Aragonite -0.28 -8.50 -8.22 CaCO3 + Aragonite -0.19 -8.41 -8.22 CaCO3 Arcanite -1.96 -3.84 -1.88 K2SO4 - Artinite 0.44 20.10 19.66 Mg2CO3(OH)2:3H2O + Artinite 0.63 20.29 19.66 Mg2CO3(OH)2:3H2O Bischofite -2.72 1.87 4.59 MgCl2:6H2O Bloedite -0.75 -3.10 -2.35 Na2Mg(SO4)2:4H2O - Brucite -1.25 -12.13 -10.88 Mg(OH)2 - Burkeite -6.61 -7.38 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.50 -8.50 CaCO3 + Brucite -1.16 -12.04 -10.88 Mg(OH)2 + Burkeite -6.51 -7.28 -0.77 Na6CO3(SO4)2 + Calcite 0.00 -8.41 -8.41 CaCO3 Carnallite -2.36 2.06 4.42 KMgCl3:6H2O CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 - Dolomite 2.94 -14.14 -17.08 CaMg(CO3)2 + Dolomite 3.14 -13.95 -17.09 CaMg(CO3)2 Epsomite -0.66 -2.51 -1.85 MgSO4:7H2O - Gaylussite -5.11 -14.54 -9.42 CaNa2(CO3)2:5H2O + Gaylussite -4.92 -14.34 -9.42 CaNa2(CO3)2:5H2O Glaserite -2.48 -6.29 -3.80 NaK3(SO4)2 Glauberite 0.00 -5.35 -5.35 Na2Ca(SO4)2 Goergeyite 3.91 -25.46 -29.37 K2Ca5(SO4)6H2O @@ -2383,30 +2398,30 @@ S(6) 3.562e-01 H2O(g) -1.66 -0.15 1.50 H2O Halite 0.00 1.58 1.58 NaCl Hexahydrite -0.78 -2.35 -1.57 MgSO4:6H2O - Huntite 5.70 15.94 10.24 CaMg3(CO3)4 + Huntite 6.08 16.32 10.24 CaMg3(CO3)4 Kainite -1.51 -1.70 -0.19 KMgClSO4:3H2O - Kalicinite -4.98 -14.92 -9.94 KHCO3 + Kalicinite -4.94 -14.88 -9.94 KHCO3 Kieserite -1.32 -1.58 -0.27 MgSO4:H2O Labile_S -1.04 -6.71 -5.67 Na4Ca(SO4)3:2H2O Leonhardite -1.16 -2.04 -0.89 MgSO4:4H2O Leonite -1.90 -5.88 -3.98 K2Mg(SO4)2:4H2O - Magnesite 2.20 -5.64 -7.83 MgCO3 + Magnesite 2.29 -5.54 -7.83 MgCO3 MgCl2_2H2O -12.07 2.48 14.56 MgCl2:2H2O MgCl2_4H2O -4.80 2.18 6.98 MgCl2:4H2O Mirabilite -1.35 -2.59 -1.24 Na2SO4:10H2O - Misenite -57.33 -68.13 -10.81 K8H6(SO4)7 - Nahcolite -2.79 -13.53 -10.74 NaHCO3 - Natron -5.98 -6.80 -0.82 Na2CO3:10H2O - Nesquehonite -0.93 -6.10 -5.17 MgCO3:3H2O + Misenite -57.61 -68.42 -10.81 K8H6(SO4)7 + Nahcolite -2.74 -13.49 -10.74 NaHCO3 + Natron -5.88 -6.71 -0.82 Na2CO3:10H2O + Nesquehonite -0.84 -6.00 -5.17 MgCO3:3H2O Pentahydrite -0.91 -2.20 -1.28 MgSO4:5H2O - Pirssonite -4.84 -14.07 -9.23 Na2Ca(CO3)2:2H2O + Pirssonite -4.65 -13.88 -9.23 Na2Ca(CO3)2:2H2O Polyhalite -0.42 -14.16 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.81 -15.00 -5.19 Ca(OH)2 + Portlandite -9.71 -14.90 -5.19 Ca(OH)2 Schoenite -1.86 -6.19 -4.33 K2Mg(SO4)2:6H2O Sylvite -0.71 0.19 0.90 KCl Syngenite -1.85 -8.28 -6.43 K2Ca(SO4)2:H2O Thenardite -0.76 -1.06 -0.30 Na2SO4 - Trona -7.72 -19.11 -11.38 Na3H(CO3)2:2H2O + Trona -7.58 -18.96 -11.38 Na3H(CO3)2:2H2O **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2438,13 +2453,13 @@ Phase SI log IAP log K(T, P) Initial Final Delta Anhydrite -0.04 -4.29 -4.25 0.000e+00 0 0.000e+00 Bischofite -2.66 1.93 4.59 0.000e+00 0 0.000e+00 -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 4.313e-07 -Calcite 0.00 -8.50 -8.50 3.374e-04 3.337e-04 -3.734e-06 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 4.803e-07 +Calcite 0.00 -8.41 -8.41 3.284e-04 3.238e-04 -4.588e-06 Carnallite -2.26 2.17 4.42 0.000e+00 0 0.000e+00 Epsomite -0.60 -2.45 -1.85 0.000e+00 0 0.000e+00 -Glauberite 0.00 -5.35 -5.35 4.559e-03 4.516e-03 -4.299e-05 -Gypsum 0.00 -4.60 -4.60 8.332e-04 8.929e-04 5.973e-05 -Halite 0.00 1.58 1.58 1.998e-01 2.051e-01 5.273e-03 +Glauberite 0.00 -5.35 -5.35 4.552e-03 4.508e-03 -4.353e-05 +Gypsum 0.00 -4.60 -4.60 8.495e-04 9.107e-04 6.112e-05 +Halite 0.00 1.58 1.58 1.998e-01 2.051e-01 5.274e-03 Hexahydrite -0.73 -2.29 -1.57 0.000e+00 0 0.000e+00 Kieserite -1.24 -1.51 -0.27 0.000e+00 0 0.000e+00 Polyhalite -0.26 -14.00 -13.74 0.000e+00 0 0.000e+00 @@ -2454,86 +2469,87 @@ Polyhalite -0.26 -14.00 -13.74 0.000e+00 0 0.000e+00 Elements Molality Moles Br 3.137e-02 4.401e-04 - C 3.151e-03 4.421e-05 - Ca 7.018e-03 9.847e-05 + C 3.837e-03 5.383e-05 + Ca 7.021e-03 9.850e-05 Cl 6.271e+00 8.798e-02 K 3.535e-01 4.960e-03 Mg 2.001e+00 2.807e-02 - Na 2.870e+00 4.027e-02 - S 3.810e-01 5.346e-03 + Na 2.871e+00 4.028e-02 + S 3.809e-01 5.344e-03 ----------------------------Description of solution---------------------------- - pH = 7.329 Charge balance + pH = 7.377 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 209114 - Density (g/cm) = 1.23953 - Volume (L) = 0.01574 + Specific Conductance (µS/cm, 25°C) = 210567 + Density (g/cm³) = 1.24041 + Volume (L) = 0.01573 + Viscosity (mPa s) = 2.82291 Activity of water = 0.697 - Ionic strength (mol/kgw) = 9.535e+00 + Ionic strength (mol/kgw) = 9.534e+00 Mass of water (kg) = 1.403e-02 - Total alkalinity (eq/kg) = 6.608e-03 - Total CO2 (mol/kg) = 3.151e-03 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 8.016e-03 + Total CO2 (mol/kg) = 3.837e-03 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.18 - Iterations = 8 - Gamma iterations = 3 - Osmotic coefficient = 1.68161 + Iterations = 32 + Gamma iterations = 6 + Osmotic coefficient = 1.68139 Density of water = 0.99704 - Total H = 1.557562e+00 - Total O = 8.002988e-01 + Total H = 1.557491e+00 + Total O = 8.002848e-01 ----------------------------Distribution of species---------------------------- MacInnes MacInnes MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 2.206e-06 1.505e-07 -5.656 -6.822 -1.166 9.17 - H+ 3.129e-09 4.687e-08 -8.505 -7.329 1.176 0.00 + OH- 2.461e-06 1.680e-07 -5.609 -6.775 -1.166 9.17 + H+ 2.804e-09 4.199e-08 -8.552 -7.377 1.175 0.00 H2O 5.551e+01 6.970e-01 1.744 -0.157 0.000 18.07 Br 3.137e-02 Br- 3.137e-02 3.679e-02 -1.503 -1.434 0.069 26.45 -C(4) 3.151e-03 - MgCO3 2.294e-03 2.294e-03 -2.639 -2.639 0.000 -17.09 - HCO3- 6.595e-04 7.289e-05 -3.181 -4.137 -0.957 43.39 - CO3-2 1.944e-04 7.120e-08 -3.711 -7.147 -3.436 13.15 +C(4) 3.837e-03 + MgCO3 2.856e-03 2.856e-03 -2.544 -2.544 0.000 -17.09 + HCO3- 7.360e-04 8.136e-05 -3.133 -4.090 -0.956 36.08 + CO3-2 2.420e-04 8.872e-08 -3.616 -7.052 -3.436 12.76 CO2 3.128e-06 1.076e-05 -5.505 -4.968 0.537 34.43 -Ca 7.018e-03 - Ca+2 7.018e-03 4.426e-02 -2.154 -1.354 0.800 -12.93 +Ca 7.021e-03 + Ca+2 7.021e-03 4.427e-02 -2.154 -1.354 0.800 -12.93 Cl 6.271e+00 Cl- 6.271e+00 4.433e+00 0.797 0.647 -0.151 20.54 K 3.535e-01 K+ 3.535e-01 3.865e-01 -0.452 -0.413 0.039 13.66 Mg 2.001e+00 - Mg+2 1.997e+00 3.802e+01 0.300 1.580 1.280 -16.26 - MgCO3 2.294e-03 2.294e-03 -2.639 -2.639 0.000 -17.09 - MgOH+ 9.692e-04 8.777e-04 -3.014 -3.057 -0.043 (0) -Na 2.870e+00 - Na+ 2.870e+00 8.608e+00 0.458 0.935 0.477 1.95 -S(6) 3.810e-01 - SO4-2 3.810e-01 1.167e-03 -0.419 -2.933 -2.514 29.42 - HSO4- 6.812e-09 5.210e-09 -8.167 -8.283 -0.116 42.34 + Mg+2 1.997e+00 3.799e+01 0.300 1.580 1.279 -16.26 + MgCO3 2.856e-03 2.856e-03 -2.544 -2.544 0.000 -17.09 + MgOH+ 1.081e-03 9.789e-04 -2.966 -3.009 -0.043 (0) +Na 2.871e+00 + Na+ 2.871e+00 8.608e+00 0.458 0.935 0.477 1.95 +S(6) 3.809e-01 + SO4-2 3.809e-01 1.167e-03 -0.419 -2.933 -2.514 27.46 + HSO4- 6.104e-09 4.667e-09 -8.214 -8.331 -0.117 42.34 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) Anhydrite -0.04 -4.29 -4.25 CaSO4 - Aragonite -0.28 -8.50 -8.22 CaCO3 + Aragonite -0.19 -8.41 -8.22 CaCO3 Arcanite -1.88 -3.76 -1.88 K2SO4 - Artinite 0.57 20.23 19.66 Mg2CO3(OH)2:3H2O + Artinite 0.76 20.42 19.66 Mg2CO3(OH)2:3H2O Bischofite -2.66 1.93 4.59 MgCl2:6H2O Bloedite -0.70 -3.04 -2.35 Na2Mg(SO4)2:4H2O - Brucite -1.18 -12.06 -10.88 Mg(OH)2 - Burkeite -6.63 -7.40 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.50 -8.50 CaCO3 + Brucite -1.09 -11.97 -10.88 Mg(OH)2 + Burkeite -6.54 -7.31 -0.77 Na6CO3(SO4)2 + Calcite 0.00 -8.41 -8.41 CaCO3 Carnallite -2.26 2.17 4.42 KMgCl3:6H2O CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 - Dolomite 3.01 -14.07 -17.08 CaMg(CO3)2 + Dolomite 3.21 -13.88 -17.09 CaMg(CO3)2 Epsomite -0.60 -2.45 -1.85 MgSO4:7H2O - Gaylussite -5.14 -14.56 -9.42 CaNa2(CO3)2:5H2O + Gaylussite -4.95 -14.37 -9.42 CaNa2(CO3)2:5H2O Glaserite -2.37 -6.17 -3.80 NaK3(SO4)2 Glauberite 0.00 -5.35 -5.35 Na2Ca(SO4)2 Goergeyite 4.02 -25.35 -29.37 K2Ca5(SO4)6H2O @@ -2541,30 +2557,30 @@ S(6) 3.810e-01 H2O(g) -1.66 -0.16 1.50 H2O Halite 0.00 1.58 1.58 NaCl Hexahydrite -0.73 -2.29 -1.57 MgSO4:6H2O - Huntite 5.91 16.15 10.24 CaMg3(CO3)4 + Huntite 6.29 16.53 10.24 CaMg3(CO3)4 Kainite -1.40 -1.59 -0.19 KMgClSO4:3H2O - Kalicinite -4.95 -14.89 -9.94 KHCO3 + Kalicinite -4.90 -14.84 -9.94 KHCO3 Kieserite -1.24 -1.51 -0.27 MgSO4:H2O - Labile_S -1.06 -6.73 -5.67 Na4Ca(SO4)3:2H2O + Labile_S -1.05 -6.73 -5.67 Na4Ca(SO4)3:2H2O Leonhardite -1.09 -1.98 -0.89 MgSO4:4H2O Leonite -1.76 -5.74 -3.98 K2Mg(SO4)2:4H2O - Magnesite 2.27 -5.57 -7.83 MgCO3 + Magnesite 2.36 -5.47 -7.83 MgCO3 MgCl2_2H2O -12.00 2.56 14.56 MgCl2:2H2O MgCl2_4H2O -4.73 2.25 6.98 MgCl2:4H2O Mirabilite -1.39 -2.63 -1.24 Na2SO4:10H2O - Misenite -57.00 -67.81 -10.81 K8H6(SO4)7 - Nahcolite -2.80 -13.54 -10.74 NaHCO3 - Natron -6.02 -6.85 -0.82 Na2CO3:10H2O - Nesquehonite -0.87 -6.04 -5.17 MgCO3:3H2O + Misenite -57.29 -68.10 -10.81 K8H6(SO4)7 + Nahcolite -2.75 -13.49 -10.74 NaHCO3 + Natron -5.92 -6.75 -0.82 Na2CO3:10H2O + Nesquehonite -0.78 -5.94 -5.17 MgCO3:3H2O Pentahydrite -0.85 -2.14 -1.28 MgSO4:5H2O - Pirssonite -4.86 -14.09 -9.23 Na2Ca(CO3)2:2H2O + Pirssonite -4.67 -13.90 -9.23 Na2Ca(CO3)2:2H2O Polyhalite -0.26 -14.00 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.81 -15.00 -5.19 Ca(OH)2 + Portlandite -9.71 -14.90 -5.19 Ca(OH)2 Schoenite -1.72 -6.05 -4.33 K2Mg(SO4)2:6H2O Sylvite -0.67 0.23 0.90 KCl Syngenite -1.77 -8.20 -6.43 K2Ca(SO4)2:H2O Thenardite -0.76 -1.06 -0.30 Na2SO4 - Trona -7.75 -19.13 -11.38 Na3H(CO3)2:2H2O + Trona -7.61 -18.99 -11.38 Na3H(CO3)2:2H2O **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2596,102 +2612,103 @@ Phase SI log IAP log K(T, P) Initial Final Delta Anhydrite -0.03 -4.28 -4.25 0.000e+00 0 0.000e+00 Bischofite -2.59 2.00 4.59 0.000e+00 0 0.000e+00 -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 5.063e-07 -Calcite 0.00 -8.50 -8.50 3.337e-04 3.288e-04 -4.891e-06 -Carnallite -2.14 2.29 4.42 0.000e+00 0 0.000e+00 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 5.638e-07 +Calcite 0.00 -8.41 -8.41 3.238e-04 3.178e-04 -6.007e-06 +Carnallite -2.14 2.28 4.42 0.000e+00 0 0.000e+00 Epsomite -0.54 -2.39 -1.85 0.000e+00 0 0.000e+00 -Glauberite 0.00 -5.35 -5.35 4.516e-03 4.436e-03 -7.966e-05 -Gypsum 0.00 -4.60 -4.60 8.929e-04 9.902e-04 9.726e-05 -Halite 0.00 1.58 1.58 2.051e-01 2.103e-01 5.263e-03 +Glauberite 0.00 -5.35 -5.35 4.508e-03 4.428e-03 -8.034e-05 +Gypsum 0.00 -4.60 -4.60 9.107e-04 1.010e-03 9.904e-05 +Halite 0.00 1.58 1.58 2.051e-01 2.103e-01 5.264e-03 Hexahydrite -0.66 -2.23 -1.57 0.000e+00 0 0.000e+00 Kieserite -1.16 -1.43 -0.27 0.000e+00 0 0.000e+00 -Polyhalite -0.07 -13.82 -13.74 0.000e+00 0 0.000e+00 +Polyhalite -0.08 -13.82 -13.74 0.000e+00 0 0.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles Br 3.353e-02 4.401e-04 - C 3.703e-03 4.860e-05 - Ca 6.534e-03 8.577e-05 - Cl 6.302e+00 8.272e-02 + C 4.516e-03 5.928e-05 + Ca 6.537e-03 8.580e-05 + Cl 6.302e+00 8.271e-02 K 3.779e-01 4.960e-03 Mg 2.139e+00 2.807e-02 - Na 2.679e+00 3.516e-02 - S 4.120e-01 5.408e-03 + Na 2.680e+00 3.517e-02 + S 4.118e-01 5.405e-03 ----------------------------Description of solution---------------------------- - pH = 7.331 Charge balance + pH = 7.379 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 205505 - Density (g/cm) = 1.24323 - Volume (L) = 0.01472 + Specific Conductance (µS/cm, 25°C) = 207036 + Density (g/cm³) = 1.24421 + Volume (L) = 0.01471 + Viscosity (mPa s) = 2.95651 Activity of water = 0.691 - Ionic strength (mol/kgw) = 9.804e+00 + Ionic strength (mol/kgw) = 9.803e+00 Mass of water (kg) = 1.313e-02 - Total alkalinity (eq/kg) = 7.809e-03 - Total CO2 (mol/kg) = 3.703e-03 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 9.483e-03 + Total CO2 (mol/kg) = 4.516e-03 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.24 Iterations = 9 Gamma iterations = 3 - Osmotic coefficient = 1.71603 + Osmotic coefficient = 1.71576 Density of water = 0.99704 - Total H = 1.457173e+00 - Total O = 7.503662e-01 + Total H = 1.457095e+00 + Total O = 7.503501e-01 ----------------------------Distribution of species---------------------------- MacInnes MacInnes MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 2.435e-06 1.498e-07 -5.613 -6.824 -1.211 9.50 - H+ 2.908e-09 4.669e-08 -8.536 -7.331 1.206 0.00 + OH- 2.717e-06 1.672e-07 -5.566 -6.777 -1.211 9.50 + H+ 2.606e-09 4.183e-08 -8.584 -7.379 1.205 0.00 H2O 5.551e+01 6.911e-01 1.744 -0.160 0.000 18.07 Br 3.353e-02 Br- 3.353e-02 4.033e-02 -1.475 -1.394 0.080 26.46 -C(4) 3.703e-03 - MgCO3 2.753e-03 2.753e-03 -2.560 -2.560 0.000 -17.09 - HCO3- 7.092e-04 7.256e-05 -3.149 -4.139 -0.990 43.88 - CO3-2 2.370e-04 7.116e-08 -3.625 -7.148 -3.523 13.47 +C(4) 4.516e-03 + MgCO3 3.427e-03 3.427e-03 -2.465 -2.465 0.000 -17.09 + HCO3- 7.913e-04 8.099e-05 -3.102 -4.092 -0.990 36.29 + CO3-2 2.950e-04 8.866e-08 -3.530 -7.052 -3.522 13.05 CO2 3.053e-06 1.076e-05 -5.515 -4.968 0.547 34.43 -Ca 6.534e-03 - Ca+2 6.534e-03 4.429e-02 -2.185 -1.354 0.831 -12.83 +Ca 6.537e-03 + Ca+2 6.537e-03 4.429e-02 -2.185 -1.354 0.831 -12.83 Cl 6.302e+00 Cl- 6.302e+00 4.507e+00 0.799 0.654 -0.146 20.57 K 3.779e-01 - K+ 3.779e-01 4.235e-01 -0.423 -0.373 0.049 13.77 + K+ 3.779e-01 4.234e-01 -0.423 -0.373 0.049 13.77 Mg 2.139e+00 - Mg+2 2.135e+00 4.566e+01 0.329 1.660 1.330 -16.14 - MgCO3 2.753e-03 2.753e-03 -2.560 -2.560 0.000 -17.09 - MgOH+ 1.117e-03 1.049e-03 -2.952 -2.979 -0.027 (0) -Na 2.679e+00 - Na+ 2.679e+00 8.466e+00 0.428 0.928 0.500 2.00 -S(6) 4.120e-01 - SO4-2 4.120e-01 1.186e-03 -0.385 -2.926 -2.541 29.62 - HSO4- 6.566e-09 5.275e-09 -8.183 -8.278 -0.095 42.36 + Mg+2 2.134e+00 4.561e+01 0.329 1.659 1.330 -16.14 + MgCO3 3.427e-03 3.427e-03 -2.465 -2.465 0.000 -17.09 + MgOH+ 1.246e-03 1.170e-03 -2.905 -2.932 -0.027 (0) +Na 2.680e+00 + Na+ 2.680e+00 8.467e+00 0.428 0.928 0.500 1.99 +S(6) 4.118e-01 + SO4-2 4.118e-01 1.186e-03 -0.385 -2.926 -2.541 27.62 + HSO4- 5.883e-09 4.725e-09 -8.230 -8.326 -0.095 42.36 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) Anhydrite -0.03 -4.28 -4.25 CaSO4 - Aragonite -0.28 -8.50 -8.22 CaCO3 + Aragonite -0.19 -8.41 -8.22 CaCO3 Arcanite -1.79 -3.67 -1.88 K2SO4 - Artinite 0.71 20.37 19.66 Mg2CO3(OH)2:3H2O + Artinite 0.90 20.56 19.66 Mg2CO3(OH)2:3H2O Bischofite -2.59 2.00 4.59 MgCl2:6H2O Bloedite -0.63 -2.98 -2.35 Na2Mg(SO4)2:4H2O - Brucite -1.11 -11.99 -10.88 Mg(OH)2 - Burkeite -6.66 -7.43 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.50 -8.50 CaCO3 - Carnallite -2.14 2.29 4.42 KMgCl3:6H2O + Brucite -1.01 -11.89 -10.88 Mg(OH)2 + Burkeite -6.57 -7.34 -0.77 Na6CO3(SO4)2 + Calcite 0.00 -8.41 -8.41 CaCO3 + Carnallite -2.14 2.28 4.42 KMgCl3:6H2O CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 - Dolomite 3.09 -13.99 -17.08 CaMg(CO3)2 + Dolomite 3.29 -13.80 -17.09 CaMg(CO3)2 Epsomite -0.54 -2.39 -1.85 MgSO4:7H2O - Gaylussite -5.18 -14.60 -9.42 CaNa2(CO3)2:5H2O + Gaylussite -4.98 -14.40 -9.42 CaNa2(CO3)2:5H2O Glaserite -2.24 -6.04 -3.80 NaK3(SO4)2 Glauberite 0.00 -5.35 -5.35 Na2Ca(SO4)2 Goergeyite 4.14 -25.23 -29.37 K2Ca5(SO4)6H2O @@ -2699,30 +2716,30 @@ S(6) 4.120e-01 H2O(g) -1.66 -0.16 1.50 H2O Halite 0.00 1.58 1.58 NaCl Hexahydrite -0.66 -2.23 -1.57 MgSO4:6H2O - Huntite 6.15 16.39 10.24 CaMg3(CO3)4 + Huntite 6.53 16.77 10.24 CaMg3(CO3)4 Kainite -1.27 -1.47 -0.19 KMgClSO4:3H2O - Kalicinite -4.91 -14.85 -9.94 KHCO3 + Kalicinite -4.86 -14.80 -9.94 KHCO3 Kieserite -1.16 -1.43 -0.27 MgSO4:H2O Labile_S -1.07 -6.74 -5.67 Na4Ca(SO4)3:2H2O Leonhardite -1.02 -1.91 -0.89 MgSO4:4H2O Leonite -1.60 -5.58 -3.98 K2Mg(SO4)2:4H2O - Magnesite 2.35 -5.49 -7.83 MgCO3 + Magnesite 2.44 -5.39 -7.83 MgCO3 MgCl2_2H2O -11.91 2.65 14.56 MgCl2:2H2O MgCl2_4H2O -4.65 2.33 6.98 MgCl2:4H2O - Mirabilite -1.44 -2.68 -1.24 Na2SO4:10H2O - Misenite -56.65 -67.45 -10.81 K8H6(SO4)7 - Nahcolite -2.81 -13.55 -10.74 NaHCO3 - Natron -6.07 -6.90 -0.82 Na2CO3:10H2O - Nesquehonite -0.80 -5.97 -5.17 MgCO3:3H2O + Mirabilite -1.43 -2.67 -1.24 Na2SO4:10H2O + Misenite -56.93 -67.74 -10.81 K8H6(SO4)7 + Nahcolite -2.76 -13.50 -10.74 NaHCO3 + Natron -5.98 -6.80 -0.82 Na2CO3:10H2O + Nesquehonite -0.71 -5.87 -5.17 MgCO3:3H2O Pentahydrite -0.78 -2.07 -1.28 MgSO4:5H2O - Pirssonite -4.88 -14.11 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite -0.07 -13.82 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.81 -15.00 -5.19 Ca(OH)2 + Pirssonite -4.69 -13.92 -9.23 Na2Ca(CO3)2:2H2O + Polyhalite -0.08 -13.82 -13.74 K2MgCa2(SO4)4:2H2O + Portlandite -9.72 -14.91 -5.19 Ca(OH)2 Schoenite -1.57 -5.90 -4.33 K2Mg(SO4)2:6H2O Sylvite -0.62 0.28 0.90 KCl Syngenite -1.68 -8.11 -6.43 K2Ca(SO4)2:H2O Thenardite -0.77 -1.07 -0.30 Na2SO4 - Trona -7.78 -19.16 -11.38 Na3H(CO3)2:2H2O + Trona -7.64 -19.02 -11.38 Na3H(CO3)2:2H2O **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2754,102 +2771,103 @@ Phase SI log IAP log K(T, P) Initial Final Delta Anhydrite -0.02 -4.27 -4.25 0.000e+00 0 0.000e+00 Bischofite -2.52 2.07 4.59 0.000e+00 0 0.000e+00 -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 4.336e-07 -Calcite 0.00 -8.50 -8.50 3.288e-04 3.241e-04 -4.656e-06 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 4.836e-07 +Calcite 0.00 -8.41 -8.41 3.178e-04 3.121e-04 -5.742e-06 Carnallite -2.07 2.35 4.42 0.000e+00 0 0.000e+00 Epsomite -0.48 -2.33 -1.85 0.000e+00 0 0.000e+00 -Glauberite 0.00 -5.35 -5.35 4.436e-03 3.876e-03 -5.604e-04 -Gypsum 0.00 -4.60 -4.60 9.902e-04 1.015e-03 2.437e-05 -Halite 0.00 1.58 1.58 2.103e-01 2.160e-01 5.650e-03 +Glauberite 0.00 -5.35 -5.35 4.428e-03 3.869e-03 -5.587e-04 +Gypsum 0.00 -4.60 -4.60 1.010e-03 1.036e-03 2.671e-05 +Halite 0.00 1.58 1.58 2.103e-01 2.160e-01 5.648e-03 Hexahydrite -0.60 -2.17 -1.57 0.000e+00 0 0.000e+00 Kieserite -1.08 -1.35 -0.27 0.000e+00 0 0.000e+00 -Polyhalite 0.00 -13.74 -13.74 0.000e+00 2.761e-04 2.761e-04 +Polyhalite 0.00 -13.74 -13.74 0.000e+00 2.746e-04 2.746e-04 -----------------------------Solution composition------------------------------ Elements Molality Moles - Br 3.603e-02 4.401e-04 - C 4.325e-03 5.282e-05 - Ca 6.074e-03 7.419e-05 - Cl 6.310e+00 7.707e-02 - K 3.609e-01 4.408e-03 - Mg 2.276e+00 2.779e-02 - Na 2.508e+00 3.063e-02 - S 4.421e-01 5.400e-03 + Br 3.604e-02 4.401e-04 + C 5.284e-03 6.454e-05 + Ca 6.077e-03 7.423e-05 + Cl 6.310e+00 7.706e-02 + K 3.611e-01 4.411e-03 + Mg 2.276e+00 2.780e-02 + Na 2.509e+00 3.064e-02 + S 4.419e-01 5.398e-03 ----------------------------Description of solution---------------------------- - pH = 7.331 Charge balance + pH = 7.379 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 200893 - Density (g/cm) = 1.24627 - Volume (L) = 0.01369 + Specific Conductance (µS/cm, 25°C) = 202501 + Density (g/cm³) = 1.24735 + Volume (L) = 0.01368 + Viscosity (mPa s) = 3.09874 Activity of water = 0.686 Ionic strength (mol/kgw) = 1.005e+01 Mass of water (kg) = 1.221e-02 - Total alkalinity (eq/kg) = 9.154e-03 - Total CO2 (mol/kg) = 4.325e-03 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 1.113e-02 + Total CO2 (mol/kg) = 5.284e-03 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.32 - Iterations = 9 - Gamma iterations = 3 - Osmotic coefficient = 1.75342 + Iterations = 23 + Gamma iterations = 5 + Osmotic coefficient = 1.75312 Density of water = 0.99704 - Total H = 1.355971e+00 - Total O = 6.997460e-01 + Total H = 1.355889e+00 + Total O = 6.997319e-01 ----------------------------Distribution of species---------------------------- MacInnes MacInnes MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 2.697e-06 1.487e-07 -5.569 -6.828 -1.259 9.80 - H+ 2.724e-09 4.668e-08 -8.565 -7.331 1.234 0.00 + OH- 3.009e-06 1.660e-07 -5.522 -6.780 -1.258 9.80 + H+ 2.441e-09 4.182e-08 -8.612 -7.379 1.234 0.00 H2O 5.551e+01 6.858e-01 1.744 -0.164 0.000 18.07 -Br 3.603e-02 - Br- 3.603e-02 4.433e-02 -1.443 -1.353 0.090 26.47 -C(4) 4.325e-03 - MgCO3 3.270e-03 3.270e-03 -2.485 -2.485 0.000 -17.09 - HCO3- 7.609e-04 7.202e-05 -3.119 -4.143 -1.024 44.32 - CO3-2 2.905e-04 7.065e-08 -3.537 -7.151 -3.614 13.75 - CO2 2.982e-06 1.076e-05 -5.525 -4.968 0.557 34.43 -Ca 6.074e-03 - Ca+2 6.074e-03 4.461e-02 -2.217 -1.351 0.866 -12.74 +Br 3.604e-02 + Br- 3.604e-02 4.433e-02 -1.443 -1.353 0.090 26.47 +C(4) 5.284e-03 + MgCO3 4.070e-03 4.070e-03 -2.390 -2.390 0.000 -17.09 + HCO3- 8.491e-04 8.039e-05 -3.071 -4.095 -1.024 36.48 + CO3-2 3.616e-04 8.803e-08 -3.442 -7.055 -3.614 13.31 + CO2 2.983e-06 1.076e-05 -5.525 -4.968 0.557 34.43 +Ca 6.077e-03 + Ca+2 6.077e-03 4.461e-02 -2.216 -1.351 0.866 -12.74 Cl 6.310e+00 Cl- 6.310e+00 4.561e+00 0.800 0.659 -0.141 20.60 -K 3.609e-01 - K+ 3.609e-01 4.154e-01 -0.443 -0.382 0.061 13.88 +K 3.611e-01 + K+ 3.611e-01 4.156e-01 -0.442 -0.381 0.061 13.88 Mg 2.276e+00 - Mg+2 2.271e+00 5.462e+01 0.356 1.737 1.381 -16.04 - MgCO3 3.270e-03 3.270e-03 -2.485 -2.485 0.000 -17.09 - MgOH+ 1.269e-03 1.246e-03 -2.896 -2.905 -0.008 (0) -Na 2.508e+00 - Na+ 2.508e+00 8.367e+00 0.399 0.923 0.523 2.04 -S(6) 4.421e-01 - SO4-2 4.421e-01 1.196e-03 -0.354 -2.922 -2.568 29.81 - HSO4- 6.296e-09 5.317e-09 -8.201 -8.274 -0.073 42.37 + Mg+2 2.270e+00 5.457e+01 0.356 1.737 1.381 -16.04 + MgCO3 4.070e-03 4.070e-03 -2.390 -2.390 0.000 -17.09 + MgOH+ 1.416e-03 1.389e-03 -2.849 -2.857 -0.008 (0) +Na 2.509e+00 + Na+ 2.509e+00 8.367e+00 0.399 0.923 0.523 2.04 +S(6) 4.419e-01 + SO4-2 4.419e-01 1.196e-03 -0.355 -2.922 -2.568 27.77 + HSO4- 5.641e-09 4.763e-09 -8.249 -8.322 -0.074 42.37 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) Anhydrite -0.02 -4.27 -4.25 CaSO4 - Aragonite -0.28 -8.50 -8.22 CaCO3 + Aragonite -0.19 -8.41 -8.22 CaCO3 Arcanite -1.81 -3.69 -1.88 K2SO4 - Artinite 0.85 20.51 19.66 Mg2CO3(OH)2:3H2O + Artinite 1.04 20.70 19.66 Mg2CO3(OH)2:3H2O Bischofite -2.52 2.07 4.59 MgCl2:6H2O Bloedite -0.57 -2.92 -2.35 Na2Mg(SO4)2:4H2O - Brucite -1.04 -11.92 -10.88 Mg(OH)2 - Burkeite -6.69 -7.46 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.50 -8.50 CaCO3 + Brucite -0.94 -11.82 -10.88 Mg(OH)2 + Burkeite -6.59 -7.36 -0.77 Na6CO3(SO4)2 + Calcite 0.00 -8.41 -8.41 CaCO3 Carnallite -2.07 2.35 4.42 KMgCl3:6H2O CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 - Dolomite 3.17 -13.91 -17.08 CaMg(CO3)2 + Dolomite 3.36 -13.72 -17.09 CaMg(CO3)2 Epsomite -0.48 -2.33 -1.85 MgSO4:7H2O - Gaylussite -5.21 -14.63 -9.42 CaNa2(CO3)2:5H2O + Gaylussite -5.01 -14.44 -9.42 CaNa2(CO3)2:5H2O Glaserite -2.26 -6.07 -3.80 NaK3(SO4)2 Glauberite 0.00 -5.35 -5.35 Na2Ca(SO4)2 Goergeyite 4.15 -25.21 -29.37 K2Ca5(SO4)6H2O @@ -2857,30 +2875,30 @@ S(6) 4.421e-01 H2O(g) -1.67 -0.16 1.50 H2O Halite 0.00 1.58 1.58 NaCl Hexahydrite -0.60 -2.17 -1.57 MgSO4:6H2O - Huntite 6.37 16.61 10.24 CaMg3(CO3)4 + Huntite 6.75 17.00 10.24 CaMg3(CO3)4 Kainite -1.21 -1.40 -0.19 KMgClSO4:3H2O - Kalicinite -4.92 -14.86 -9.94 KHCO3 + Kalicinite -4.88 -14.82 -9.94 KHCO3 Kieserite -1.08 -1.35 -0.27 MgSO4:H2O Labile_S -1.08 -6.76 -5.67 Na4Ca(SO4)3:2H2O Leonhardite -0.95 -1.84 -0.89 MgSO4:4H2O Leonite -1.55 -5.53 -3.98 K2Mg(SO4)2:4H2O - Magnesite 2.42 -5.41 -7.83 MgCO3 + Magnesite 2.52 -5.32 -7.83 MgCO3 MgCl2_2H2O -11.83 2.73 14.56 MgCl2:2H2O MgCl2_4H2O -4.58 2.40 6.98 MgCl2:4H2O Mirabilite -1.48 -2.72 -1.24 Na2SO4:10H2O - Misenite -56.69 -67.49 -10.81 K8H6(SO4)7 - Nahcolite -2.82 -13.56 -10.74 NaHCO3 - Natron -6.12 -6.94 -0.82 Na2CO3:10H2O - Nesquehonite -0.74 -5.90 -5.17 MgCO3:3H2O + Misenite -56.97 -67.78 -10.81 K8H6(SO4)7 + Nahcolite -2.77 -13.51 -10.74 NaHCO3 + Natron -6.02 -6.85 -0.82 Na2CO3:10H2O + Nesquehonite -0.64 -5.81 -5.17 MgCO3:3H2O Pentahydrite -0.72 -2.00 -1.28 MgSO4:5H2O - Pirssonite -4.90 -14.13 -9.23 Na2Ca(CO3)2:2H2O + Pirssonite -4.71 -13.94 -9.23 Na2Ca(CO3)2:2H2O Polyhalite 0.00 -13.74 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.82 -15.01 -5.19 Ca(OH)2 + Portlandite -9.72 -14.91 -5.19 Ca(OH)2 Schoenite -1.53 -5.85 -4.33 K2Mg(SO4)2:6H2O Sylvite -0.62 0.28 0.90 KCl Syngenite -1.69 -8.12 -6.43 K2Ca(SO4)2:H2O Thenardite -0.78 -1.08 -0.30 Na2SO4 - Trona -7.81 -19.19 -11.38 Na3H(CO3)2:2H2O + Trona -7.67 -19.05 -11.38 Na3H(CO3)2:2H2O **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2912,133 +2930,134 @@ Phase SI log IAP log K(T, P) Initial Final Delta Anhydrite -0.01 -4.27 -4.25 0.000e+00 0 0.000e+00 Bischofite -2.45 2.14 4.59 0.000e+00 0 0.000e+00 -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 4.151e-07 -Calcite 0.00 -8.50 -8.50 3.241e-04 3.190e-04 -5.120e-06 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 4.618e-07 +Calcite 0.00 -8.41 -8.41 3.121e-04 3.058e-04 -6.308e-06 Carnallite -2.05 2.38 4.42 0.000e+00 0 0.000e+00 Epsomite -0.42 -2.27 -1.85 0.000e+00 0 0.000e+00 -Glauberite -0.00 -5.35 -5.35 3.876e-03 3.045e-03 -8.309e-04 -Gypsum 0.00 -4.60 -4.60 1.015e-03 1.009e-03 -5.479e-06 -Halite 0.00 1.58 1.58 2.160e-01 2.218e-01 5.862e-03 +Glauberite -0.00 -5.35 -5.35 3.869e-03 3.038e-03 -8.316e-04 +Gypsum 0.00 -4.60 -4.60 1.036e-03 1.033e-03 -3.627e-06 +Halite 0.00 1.58 1.58 2.160e-01 2.218e-01 5.863e-03 Hexahydrite -0.54 -2.10 -1.57 0.000e+00 0 0.000e+00 Kieserite -1.00 -1.27 -0.27 0.000e+00 0 0.000e+00 -Polyhalite 0.00 -13.74 -13.74 2.761e-04 7.023e-04 4.262e-04 +Polyhalite 0.00 -13.74 -13.74 2.746e-04 7.008e-04 4.262e-04 -----------------------------Solution composition------------------------------ Elements Molality Moles - Br 3.895e-02 4.401e-04 - C 5.092e-03 5.753e-05 - Ca 5.607e-03 6.335e-05 - Cl 6.302e+00 7.121e-02 - K 3.147e-01 3.555e-03 - Mg 2.422e+00 2.737e-02 - Na 2.340e+00 2.643e-02 - S 4.746e-01 5.362e-03 + Br 3.896e-02 4.401e-04 + C 6.230e-03 7.038e-05 + Ca 5.610e-03 6.338e-05 + Cl 6.302e+00 7.120e-02 + K 3.150e-01 3.558e-03 + Mg 2.423e+00 2.737e-02 + Na 2.341e+00 2.644e-02 + S 4.744e-01 5.360e-03 ----------------------------Description of solution---------------------------- - pH = 7.330 Charge balance + pH = 7.378 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 195304 - Density (g/cm) = 1.24918 - Volume (L) = 0.01264 + Specific Conductance (µS/cm, 25°C) = 196990 + Density (g/cm³) = 1.25038 + Volume (L) = 0.01263 + Viscosity (mPa s) = 3.26247 Activity of water = 0.680 Ionic strength (mol/kgw) = 1.029e+01 Mass of water (kg) = 1.130e-02 - Total alkalinity (eq/kg) = 1.080e-02 - Total CO2 (mol/kg) = 5.092e-03 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 1.315e-02 + Total CO2 (mol/kg) = 6.230e-03 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.41 Iterations = 9 Gamma iterations = 3 - Osmotic coefficient = 1.79630 + Osmotic coefficient = 1.79594 Density of water = 0.99704 - Total H = 1.254288e+00 - Total O = 6.487695e-01 + Total H = 1.254199e+00 + Total O = 6.487531e-01 ----------------------------Distribution of species---------------------------- MacInnes MacInnes MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 3.016e-06 1.472e-07 -5.521 -6.832 -1.312 10.11 - H+ 2.552e-09 4.678e-08 -8.593 -7.330 1.263 0.00 + OH- 3.364e-06 1.643e-07 -5.473 -6.784 -1.311 10.11 + H+ 2.287e-09 4.191e-08 -8.641 -7.378 1.263 0.00 H2O 5.551e+01 6.804e-01 1.744 -0.167 0.000 18.07 -Br 3.895e-02 - Br- 3.895e-02 4.901e-02 -1.409 -1.310 0.100 26.49 -C(4) 5.092e-03 - MgCO3 3.906e-03 3.906e-03 -2.408 -2.408 0.000 -17.09 - HCO3- 8.199e-04 7.129e-05 -3.086 -4.147 -1.061 44.76 - CO3-2 3.626e-04 6.977e-08 -3.441 -7.156 -3.716 14.03 - CO2 2.909e-06 1.076e-05 -5.536 -4.968 0.568 34.43 -Ca 5.607e-03 - Ca+2 5.607e-03 4.517e-02 -2.251 -1.345 0.906 -12.65 +Br 3.896e-02 + Br- 3.896e-02 4.901e-02 -1.409 -1.310 0.100 26.49 +C(4) 6.230e-03 + MgCO3 4.861e-03 4.861e-03 -2.313 -2.313 0.000 -17.09 + HCO3- 9.148e-04 7.958e-05 -3.039 -4.099 -1.061 36.67 + CO3-2 4.512e-04 8.693e-08 -3.346 -7.061 -3.715 13.57 + CO2 2.910e-06 1.076e-05 -5.536 -4.968 0.568 34.43 +Ca 5.610e-03 + Ca+2 5.610e-03 4.517e-02 -2.251 -1.345 0.906 -12.65 Cl 6.302e+00 - Cl- 6.302e+00 4.605e+00 0.800 0.663 -0.136 20.62 -K 3.147e-01 - K+ 3.147e-01 3.735e-01 -0.502 -0.428 0.074 13.98 -Mg 2.422e+00 - Mg+2 2.417e+00 6.607e+01 0.383 1.820 1.437 -15.94 - MgCO3 3.906e-03 3.906e-03 -2.408 -2.408 0.000 -17.09 - MgOH+ 1.442e-03 1.492e-03 -2.841 -2.826 0.015 (0) -Na 2.340e+00 - Na+ 2.340e+00 8.287e+00 0.369 0.918 0.549 2.08 -S(6) 4.746e-01 - SO4-2 4.746e-01 1.200e-03 -0.324 -2.921 -2.597 30.00 - HSO4- 6.001e-09 5.347e-09 -8.222 -8.272 -0.050 42.39 + Cl- 6.302e+00 4.605e+00 0.799 0.663 -0.136 20.62 +K 3.150e-01 + K+ 3.150e-01 3.737e-01 -0.502 -0.427 0.074 13.98 +Mg 2.423e+00 + Mg+2 2.416e+00 6.598e+01 0.383 1.819 1.436 -15.94 + MgCO3 4.861e-03 4.861e-03 -2.313 -2.313 0.000 -17.09 + MgOH+ 1.608e-03 1.663e-03 -2.794 -2.779 0.014 (0) +Na 2.341e+00 + Na+ 2.341e+00 8.287e+00 0.369 0.918 0.549 2.08 +S(6) 4.744e-01 + SO4-2 4.744e-01 1.200e-03 -0.324 -2.921 -2.597 27.91 + HSO4- 5.377e-09 4.790e-09 -8.269 -8.320 -0.050 42.39 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) Anhydrite -0.01 -4.27 -4.25 CaSO4 - Aragonite -0.28 -8.50 -8.22 CaCO3 + Aragonite -0.19 -8.41 -8.22 CaCO3 Arcanite -1.90 -3.78 -1.88 K2SO4 - Artinite 0.99 20.65 19.66 Mg2CO3(OH)2:3H2O + Artinite 1.18 20.84 19.66 Mg2CO3(OH)2:3H2O Bischofite -2.45 2.14 4.59 MgCl2:6H2O Bloedite -0.51 -2.85 -2.35 Na2Mg(SO4)2:4H2O - Brucite -0.96 -11.84 -10.88 Mg(OH)2 - Burkeite -6.72 -7.49 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.50 -8.50 CaCO3 + Brucite -0.87 -11.75 -10.88 Mg(OH)2 + Burkeite -6.62 -7.39 -0.77 Na6CO3(SO4)2 + Calcite 0.00 -8.41 -8.41 CaCO3 Carnallite -2.05 2.38 4.42 KMgCl3:6H2O CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 - Dolomite 3.25 -13.84 -17.08 CaMg(CO3)2 + Dolomite 3.44 -13.65 -17.09 CaMg(CO3)2 Epsomite -0.42 -2.27 -1.85 MgSO4:7H2O - Gaylussite -5.24 -14.66 -9.42 CaNa2(CO3)2:5H2O + Gaylussite -5.05 -14.47 -9.42 CaNa2(CO3)2:5H2O Glaserite -2.40 -6.21 -3.80 NaK3(SO4)2 Glauberite -0.00 -5.35 -5.35 Na2Ca(SO4)2 - Goergeyite 4.09 -25.27 -29.37 K2Ca5(SO4)6H2O + Goergeyite 4.10 -25.27 -29.37 K2Ca5(SO4)6H2O Gypsum 0.00 -4.60 -4.60 CaSO4:2H2O H2O(g) -1.67 -0.17 1.50 H2O Halite 0.00 1.58 1.58 NaCl Hexahydrite -0.54 -2.10 -1.57 MgSO4:6H2O - Huntite 6.60 16.85 10.24 CaMg3(CO3)4 + Huntite 6.98 17.23 10.24 CaMg3(CO3)4 Kainite -1.17 -1.37 -0.19 KMgClSO4:3H2O - Kalicinite -4.97 -14.91 -9.94 KHCO3 + Kalicinite -4.93 -14.87 -9.94 KHCO3 Kieserite -1.00 -1.27 -0.27 MgSO4:H2O Labile_S -1.10 -6.77 -5.67 Na4Ca(SO4)3:2H2O Leonhardite -0.88 -1.77 -0.89 MgSO4:4H2O Leonite -1.57 -5.55 -3.98 K2Mg(SO4)2:4H2O - Magnesite 2.50 -5.34 -7.83 MgCO3 - MgCl2_2H2O -11.74 2.81 14.56 MgCl2:2H2O + Magnesite 2.59 -5.24 -7.83 MgCO3 + MgCl2_2H2O -11.75 2.81 14.56 MgCl2:2H2O MgCl2_4H2O -4.50 2.48 6.98 MgCl2:4H2O Mirabilite -1.52 -2.76 -1.24 Na2SO4:10H2O - Misenite -57.04 -67.85 -10.81 K8H6(SO4)7 - Nahcolite -2.83 -13.57 -10.74 NaHCO3 - Natron -6.17 -6.99 -0.82 Na2CO3:10H2O - Nesquehonite -0.67 -5.84 -5.17 MgCO3:3H2O + Misenite -57.33 -68.13 -10.81 K8H6(SO4)7 + Nahcolite -2.78 -13.52 -10.74 NaHCO3 + Natron -6.07 -6.90 -0.82 Na2CO3:10H2O + Nesquehonite -0.58 -5.74 -5.17 MgCO3:3H2O Pentahydrite -0.65 -1.94 -1.28 MgSO4:5H2O - Pirssonite -4.92 -14.16 -9.23 Na2Ca(CO3)2:2H2O + Pirssonite -4.73 -13.96 -9.23 Na2Ca(CO3)2:2H2O Polyhalite 0.00 -13.74 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.82 -15.01 -5.19 Ca(OH)2 + Portlandite -9.72 -14.91 -5.19 Ca(OH)2 Schoenite -1.55 -5.88 -4.33 K2Mg(SO4)2:6H2O Sylvite -0.67 0.24 0.90 KCl Syngenite -1.78 -8.21 -6.43 K2Ca(SO4)2:H2O Thenardite -0.78 -1.08 -0.30 Na2SO4 - Trona -7.84 -19.22 -11.38 Na3H(CO3)2:2H2O + Trona -7.69 -19.08 -11.38 Na3H(CO3)2:2H2O **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3070,133 +3089,134 @@ Phase SI log IAP log K(T, P) Initial Final Delta Anhydrite -0.01 -4.26 -4.25 0.000e+00 0 0.000e+00 Bischofite -2.40 2.19 4.59 0.000e+00 0 0.000e+00 -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 3.030e-07 -Calcite 0.00 -8.50 -8.50 3.190e-04 3.149e-04 -4.125e-06 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 3.369e-07 +Calcite 0.00 -8.41 -8.41 3.058e-04 3.007e-04 -5.076e-06 Carnallite -2.03 2.40 4.42 0.000e+00 0 0.000e+00 Epsomite -0.38 -2.23 -1.85 0.000e+00 0 0.000e+00 -Glauberite 0.00 -5.35 -5.35 3.045e-03 2.548e-03 -4.971e-04 -Gypsum 0.00 -4.60 -4.60 1.009e-03 1.033e-03 2.420e-05 -Halite 0.00 1.58 1.58 2.218e-01 2.253e-01 3.498e-03 +Glauberite -0.00 -5.35 -5.35 3.038e-03 2.540e-03 -4.976e-04 +Gypsum 0.00 -4.60 -4.60 1.033e-03 1.058e-03 2.566e-05 +Halite 0.00 1.58 1.58 2.218e-01 2.253e-01 3.499e-03 Hexahydrite -0.49 -2.06 -1.57 0.000e+00 0 0.000e+00 -Kieserite -0.94 -1.21 -0.27 0.000e+00 0 0.000e+00 -Polyhalite 0.00 -13.74 -13.74 7.023e-04 9.440e-04 2.417e-04 +Kieserite -0.95 -1.21 -0.27 0.000e+00 0 0.000e+00 +Polyhalite 0.00 -13.74 -13.74 7.008e-04 9.425e-04 2.417e-04 -----------------------------Solution composition------------------------------ Elements Molality Moles Br 4.095e-02 4.401e-04 - C 5.708e-03 6.135e-05 - Ca 5.301e-03 5.698e-05 - Cl 6.299e+00 6.771e-02 - K 2.858e-01 3.072e-03 + C 6.990e-03 7.512e-05 + Ca 5.305e-03 5.701e-05 + Cl 6.299e+00 6.770e-02 + K 2.861e-01 3.075e-03 Mg 2.524e+00 2.713e-02 - Na 2.226e+00 2.393e-02 - S 4.992e-01 5.366e-03 + Na 2.227e+00 2.394e-02 + S 4.989e-01 5.362e-03 ----------------------------Description of solution---------------------------- - pH = 7.329 Charge balance + pH = 7.377 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 191562 - Density (g/cm) = 1.25141 - Volume (L) = 0.01201 + Specific Conductance (µS/cm, 25°C) = 193305 + Density (g/cm³) = 1.25269 + Volume (L) = 0.01200 + Viscosity (mPa s) = 3.38595 Activity of water = 0.676 Ionic strength (mol/kgw) = 1.047e+01 Mass of water (kg) = 1.075e-02 - Total alkalinity (eq/kg) = 1.212e-02 - Total CO2 (mol/kg) = 5.708e-03 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 1.477e-02 + Total CO2 (mol/kg) = 6.990e-03 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.47 Iterations = 8 Gamma iterations = 3 - Osmotic coefficient = 1.82649 + Osmotic coefficient = 1.82606 Density of water = 0.99704 - Total H = 1.193225e+00 - Total O = 6.182624e-01 + Total H = 1.193130e+00 + Total O = 6.182440e-01 ----------------------------Distribution of species---------------------------- MacInnes MacInnes MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 3.254e-06 1.461e-07 -5.488 -6.835 -1.348 10.33 - H+ 2.434e-09 4.686e-08 -8.614 -7.329 1.284 0.00 + OH- 3.630e-06 1.631e-07 -5.440 -6.788 -1.347 10.33 + H+ 2.182e-09 4.198e-08 -8.661 -7.377 1.284 0.00 H2O 5.551e+01 6.764e-01 1.744 -0.170 0.000 18.07 Br 4.095e-02 - Br- 4.095e-02 5.233e-02 -1.388 -1.281 0.107 26.49 -C(4) 5.708e-03 - MgCO3 4.418e-03 4.418e-03 -2.355 -2.355 0.000 -17.09 - HCO3- 8.652e-04 7.076e-05 -3.063 -4.150 -1.087 45.09 - CO3-2 4.216e-04 6.915e-08 -3.375 -7.160 -3.785 14.24 - CO2 2.856e-06 1.076e-05 -5.544 -4.968 0.576 34.43 -Ca 5.301e-03 - Ca+2 5.301e-03 4.558e-02 -2.276 -1.341 0.934 -12.59 + Br- 4.095e-02 5.233e-02 -1.388 -1.281 0.106 26.49 +C(4) 6.990e-03 + MgCO3 5.497e-03 5.497e-03 -2.260 -2.260 0.000 -17.09 + HCO3- 9.652e-04 7.899e-05 -3.015 -4.102 -1.087 36.81 + CO3-2 5.245e-04 8.616e-08 -3.280 -7.065 -3.784 13.76 + CO2 2.857e-06 1.076e-05 -5.544 -4.968 0.576 34.43 +Ca 5.305e-03 + Ca+2 5.305e-03 4.558e-02 -2.275 -1.341 0.934 -12.59 Cl 6.299e+00 Cl- 6.299e+00 4.639e+00 0.799 0.666 -0.133 20.64 -K 2.858e-01 - K+ 2.858e-01 3.465e-01 -0.544 -0.460 0.084 14.06 +K 2.861e-01 + K+ 2.861e-01 3.468e-01 -0.543 -0.460 0.084 14.06 Mg 2.524e+00 - Mg+2 2.518e+00 7.540e+01 0.401 1.877 1.476 -15.86 - MgCO3 4.418e-03 4.418e-03 -2.355 -2.355 0.000 -17.09 - MgOH+ 1.575e-03 1.690e-03 -2.803 -2.772 0.030 (0) -Na 2.226e+00 - Na+ 2.226e+00 8.226e+00 0.348 0.915 0.568 2.11 -S(6) 4.992e-01 - SO4-2 4.992e-01 1.203e-03 -0.302 -2.920 -2.618 30.13 - HSO4- 5.815e-09 5.370e-09 -8.235 -8.270 -0.035 42.40 + Mg+2 2.517e+00 7.529e+01 0.401 1.877 1.476 -15.86 + MgCO3 5.497e-03 5.497e-03 -2.260 -2.260 0.000 -17.09 + MgOH+ 1.756e-03 1.883e-03 -2.755 -2.725 0.030 (0) +Na 2.227e+00 + Na+ 2.227e+00 8.227e+00 0.348 0.915 0.567 2.11 +S(6) 4.989e-01 + SO4-2 4.989e-01 1.203e-03 -0.302 -2.920 -2.618 28.02 + HSO4- 5.210e-09 4.811e-09 -8.283 -8.318 -0.035 42.40 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) Anhydrite -0.01 -4.26 -4.25 CaSO4 - Aragonite -0.28 -8.50 -8.22 CaCO3 + Aragonite -0.19 -8.41 -8.22 CaCO3 Arcanite -1.96 -3.84 -1.88 K2SO4 - Artinite 1.08 20.74 19.66 Mg2CO3(OH)2:3H2O + Artinite 1.27 20.93 19.66 Mg2CO3(OH)2:3H2O Bischofite -2.40 2.19 4.59 MgCl2:6H2O Bloedite -0.46 -2.81 -2.35 Na2Mg(SO4)2:4H2O - Brucite -0.91 -11.79 -10.88 Mg(OH)2 - Burkeite -6.74 -7.51 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.50 -8.50 CaCO3 + Brucite -0.82 -11.70 -10.88 Mg(OH)2 + Burkeite -6.64 -7.41 -0.77 Na6CO3(SO4)2 + Calcite 0.00 -8.41 -8.41 CaCO3 Carnallite -2.03 2.40 4.42 KMgCl3:6H2O CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 - Dolomite 3.30 -13.78 -17.08 CaMg(CO3)2 + Dolomite 3.49 -13.59 -17.09 CaMg(CO3)2 Epsomite -0.38 -2.23 -1.85 MgSO4:7H2O - Gaylussite -5.26 -14.68 -9.42 CaNa2(CO3)2:5H2O + Gaylussite -5.07 -14.49 -9.42 CaNa2(CO3)2:5H2O Glaserite -2.50 -6.30 -3.80 NaK3(SO4)2 - Glauberite 0.00 -5.35 -5.35 Na2Ca(SO4)2 + Glauberite -0.00 -5.35 -5.35 Na2Ca(SO4)2 Goergeyite 4.05 -25.31 -29.37 K2Ca5(SO4)6H2O Gypsum 0.00 -4.60 -4.60 CaSO4:2H2O H2O(g) -1.67 -0.17 1.50 H2O Halite 0.00 1.58 1.58 NaCl Hexahydrite -0.49 -2.06 -1.57 MgSO4:6H2O - Huntite 6.76 17.01 10.24 CaMg3(CO3)4 + Huntite 7.15 17.39 10.24 CaMg3(CO3)4 Kainite -1.15 -1.35 -0.19 KMgClSO4:3H2O - Kalicinite -5.01 -14.95 -9.94 KHCO3 - Kieserite -0.94 -1.21 -0.27 MgSO4:H2O + Kalicinite -4.96 -14.90 -9.94 KHCO3 + Kieserite -0.95 -1.21 -0.27 MgSO4:H2O Labile_S -1.11 -6.78 -5.67 Na4Ca(SO4)3:2H2O - Leonhardite -0.83 -1.72 -0.89 MgSO4:4H2O + Leonhardite -0.84 -1.72 -0.89 MgSO4:4H2O Leonite -1.58 -5.56 -3.98 K2Mg(SO4)2:4H2O - Magnesite 2.55 -5.28 -7.83 MgCO3 + Magnesite 2.65 -5.19 -7.83 MgCO3 MgCl2_2H2O -11.69 2.87 14.56 MgCl2:2H2O MgCl2_4H2O -4.45 2.53 6.98 MgCl2:4H2O Mirabilite -1.55 -2.79 -1.24 Na2SO4:10H2O - Misenite -57.29 -68.10 -10.81 K8H6(SO4)7 - Nahcolite -2.83 -13.57 -10.74 NaHCO3 - Natron -6.20 -7.03 -0.82 Na2CO3:10H2O - Nesquehonite -0.63 -5.79 -5.17 MgCO3:3H2O + Misenite -57.57 -68.38 -10.81 K8H6(SO4)7 + Nahcolite -2.78 -13.53 -10.74 NaHCO3 + Natron -6.11 -6.93 -0.82 Na2CO3:10H2O + Nesquehonite -0.53 -5.70 -5.17 MgCO3:3H2O Pentahydrite -0.61 -1.89 -1.28 MgSO4:5H2O - Pirssonite -4.94 -14.17 -9.23 Na2Ca(CO3)2:2H2O + Pirssonite -4.75 -13.98 -9.23 Na2Ca(CO3)2:2H2O Polyhalite 0.00 -13.74 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.82 -15.01 -5.19 Ca(OH)2 + Portlandite -9.73 -14.92 -5.19 Ca(OH)2 Schoenite -1.57 -5.90 -4.33 K2Mg(SO4)2:6H2O - Sylvite -0.70 0.21 0.90 KCl + Sylvite -0.69 0.21 0.90 KCl Syngenite -1.84 -8.27 -6.43 K2Ca(SO4)2:H2O Thenardite -0.79 -1.09 -0.30 Na2SO4 - Trona -7.86 -19.24 -11.38 Na3H(CO3)2:2H2O + Trona -7.72 -19.10 -11.38 Na3H(CO3)2:2H2O **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3227,103 +3247,104 @@ Reaction 1. Phase SI log IAP log K(T, P) Initial Final Delta Anhydrite -0.00 -4.25 -4.25 0.000e+00 0 0.000e+00 -Bischofite -2.35 2.25 4.59 0.000e+00 0 0.000e+00 -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 3.579e-07 -Calcite 0.00 -8.50 -8.50 3.149e-04 3.096e-04 -5.250e-06 +Bischofite -2.35 2.24 4.59 0.000e+00 0 0.000e+00 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 3.978e-07 +Calcite 0.00 -8.41 -8.41 3.007e-04 2.942e-04 -6.456e-06 Carnallite -2.01 2.42 4.42 0.000e+00 0 0.000e+00 Epsomite -0.34 -2.19 -1.85 0.000e+00 0 0.000e+00 -Glauberite -0.00 -5.35 -5.35 2.548e-03 2.049e-03 -4.992e-04 -Gypsum 0.00 -4.60 -4.60 1.033e-03 1.085e-03 5.149e-05 +Glauberite -0.00 -5.35 -5.35 2.540e-03 2.040e-03 -4.999e-04 +Gypsum 0.00 -4.60 -4.60 1.058e-03 1.112e-03 5.332e-05 Halite 0.00 1.58 1.58 2.253e-01 2.288e-01 3.484e-03 Hexahydrite -0.45 -2.01 -1.57 0.000e+00 0 0.000e+00 Kieserite -0.88 -1.15 -0.27 0.000e+00 0 0.000e+00 -Polyhalite 0.00 -13.74 -13.74 9.440e-04 1.174e-03 2.296e-04 +Polyhalite -0.00 -13.74 -13.74 9.425e-04 1.172e-03 2.296e-04 -----------------------------Solution composition------------------------------ Elements Molality Moles Br 4.316e-02 4.401e-04 - C 6.496e-03 6.624e-05 - Ca 4.976e-03 5.074e-05 + C 7.961e-03 8.118e-05 + Ca 4.980e-03 5.078e-05 Cl 6.298e+00 6.422e-02 - K 2.562e-01 2.613e-03 + K 2.565e-01 2.616e-03 Mg 2.638e+00 2.690e-02 - Na 2.103e+00 2.144e-02 - S 5.289e-01 5.394e-03 + Na 2.104e+00 2.146e-02 + S 5.286e-01 5.390e-03 ----------------------------Description of solution---------------------------- - pH = 7.329 Charge balance + pH = 7.376 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 187477 - Density (g/cm) = 1.25413 - Volume (L) = 0.01139 + Specific Conductance (µS/cm, 25°C) = 189287 + Density (g/cm³) = 1.25552 + Volume (L) = 0.01138 + Viscosity (mPa s) = 3.53535 Activity of water = 0.672 Ionic strength (mol/kgw) = 1.068e+01 Mass of water (kg) = 1.020e-02 - Total alkalinity (eq/kg) = 1.381e-02 - Total CO2 (mol/kg) = 6.496e-03 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 1.683e-02 + Total CO2 (mol/kg) = 7.961e-03 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.54 Iterations = 8 Gamma iterations = 3 - Osmotic coefficient = 1.86079 + Osmotic coefficient = 1.86030 Density of water = 0.99704 - Total H = 1.132100e+00 - Total O = 5.878292e-01 + Total H = 1.131998e+00 + Total O = 5.878084e-01 ----------------------------Distribution of species---------------------------- MacInnes MacInnes MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 3.539e-06 1.448e-07 -5.451 -6.839 -1.388 10.59 - H+ 2.303e-09 4.693e-08 -8.638 -7.329 1.309 0.00 + OH- 3.946e-06 1.617e-07 -5.404 -6.791 -1.388 10.59 + H+ 2.065e-09 4.205e-08 -8.685 -7.376 1.309 0.00 H2O 5.551e+01 6.717e-01 1.744 -0.173 0.000 18.07 Br 4.316e-02 Br- 4.316e-02 5.613e-02 -1.365 -1.251 0.114 26.50 -C(4) 6.496e-03 - MgCO3 5.074e-03 5.074e-03 -2.295 -2.295 0.000 -17.09 - HCO3- 9.208e-04 7.015e-05 -3.036 -4.154 -1.118 45.46 - CO3-2 4.977e-04 6.844e-08 -3.303 -7.165 -3.862 14.48 - CO2 2.795e-06 1.076e-05 -5.554 -4.968 0.585 34.43 -Ca 4.976e-03 - Ca+2 4.976e-03 4.605e-02 -2.303 -1.337 0.966 -12.51 +C(4) 7.961e-03 + MgCO3 6.312e-03 6.312e-03 -2.200 -2.200 0.000 -17.09 + HCO3- 1.027e-03 7.831e-05 -2.988 -4.106 -1.118 36.97 + CO3-2 6.191e-04 8.527e-08 -3.208 -7.069 -3.861 13.98 + CO2 2.796e-06 1.076e-05 -5.553 -4.968 0.585 34.43 +Ca 4.980e-03 + Ca+2 4.980e-03 4.605e-02 -2.303 -1.337 0.966 -12.51 Cl 6.298e+00 Cl- 6.298e+00 4.680e+00 0.799 0.670 -0.129 20.66 -K 2.562e-01 - K+ 2.562e-01 3.182e-01 -0.591 -0.497 0.094 14.15 +K 2.565e-01 + K+ 2.565e-01 3.185e-01 -0.591 -0.497 0.094 14.15 Mg 2.638e+00 - Mg+2 2.631e+00 8.750e+01 0.420 1.942 1.522 -15.77 - MgCO3 5.074e-03 5.074e-03 -2.295 -2.295 0.000 -17.09 - MgOH+ 1.739e-03 1.944e-03 -2.760 -2.711 0.048 (0) -Na 2.103e+00 - Na+ 2.103e+00 8.153e+00 0.323 0.911 0.589 2.15 -S(6) 5.289e-01 - SO4-2 5.289e-01 1.208e-03 -0.277 -2.918 -2.641 30.29 - HSO4- 5.622e-09 5.399e-09 -8.250 -8.268 -0.018 42.41 + Mg+2 2.630e+00 8.735e+01 0.420 1.941 1.521 -15.77 + MgCO3 6.312e-03 6.312e-03 -2.200 -2.200 0.000 -17.09 + MgOH+ 1.939e-03 2.166e-03 -2.713 -2.664 0.048 (0) +Na 2.104e+00 + Na+ 2.104e+00 8.154e+00 0.323 0.911 0.588 2.15 +S(6) 5.286e-01 + SO4-2 5.286e-01 1.207e-03 -0.277 -2.918 -2.641 28.14 + HSO4- 5.038e-09 4.837e-09 -8.298 -8.315 -0.018 42.41 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) Anhydrite -0.00 -4.25 -4.25 CaSO4 - Aragonite -0.28 -8.50 -8.22 CaCO3 + Aragonite -0.19 -8.41 -8.22 CaCO3 Arcanite -2.03 -3.91 -1.88 K2SO4 - Artinite 1.19 20.85 19.66 Mg2CO3(OH)2:3H2O - Bischofite -2.35 2.25 4.59 MgCl2:6H2O + Artinite 1.38 21.04 19.66 Mg2CO3(OH)2:3H2O + Bischofite -2.35 2.24 4.59 MgCl2:6H2O Bloedite -0.42 -2.76 -2.35 Na2Mg(SO4)2:4H2O - Brucite -0.86 -11.74 -10.88 Mg(OH)2 - Burkeite -6.76 -7.53 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.50 -8.50 CaCO3 + Brucite -0.76 -11.64 -10.88 Mg(OH)2 + Burkeite -6.67 -7.44 -0.77 Na6CO3(SO4)2 + Calcite 0.00 -8.41 -8.41 CaCO3 Carnallite -2.01 2.42 4.42 KMgCl3:6H2O CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 - Dolomite 3.36 -13.72 -17.08 CaMg(CO3)2 + Dolomite 3.55 -13.53 -17.09 CaMg(CO3)2 Epsomite -0.34 -2.19 -1.85 MgSO4:7H2O - Gaylussite -5.29 -14.71 -9.42 CaNa2(CO3)2:5H2O + Gaylussite -5.10 -14.52 -9.42 CaNa2(CO3)2:5H2O Glaserite -2.61 -6.42 -3.80 NaK3(SO4)2 Glauberite -0.00 -5.35 -5.35 Na2Ca(SO4)2 Goergeyite 4.01 -25.36 -29.37 K2Ca5(SO4)6H2O @@ -3331,30 +3352,30 @@ S(6) 5.289e-01 H2O(g) -1.68 -0.17 1.50 H2O Halite 0.00 1.58 1.58 NaCl Hexahydrite -0.45 -2.01 -1.57 MgSO4:6H2O - Huntite 6.95 17.19 10.24 CaMg3(CO3)4 + Huntite 7.33 17.57 10.24 CaMg3(CO3)4 Kainite -1.13 -1.32 -0.19 KMgClSO4:3H2O - Kalicinite -5.05 -14.99 -9.94 KHCO3 + Kalicinite -5.00 -14.94 -9.94 KHCO3 Kieserite -0.88 -1.15 -0.27 MgSO4:H2O Labile_S -1.12 -6.79 -5.67 Na4Ca(SO4)3:2H2O Leonhardite -0.78 -1.67 -0.89 MgSO4:4H2O Leonite -1.60 -5.58 -3.98 K2Mg(SO4)2:4H2O - Magnesite 2.61 -5.22 -7.83 MgCO3 + Magnesite 2.71 -5.13 -7.83 MgCO3 MgCl2_2H2O -11.62 2.94 14.56 MgCl2:2H2O MgCl2_4H2O -4.39 2.59 6.98 MgCl2:4H2O Mirabilite -1.58 -2.82 -1.24 Na2SO4:10H2O - Misenite -57.57 -68.38 -10.81 K8H6(SO4)7 - Nahcolite -2.84 -13.58 -10.74 NaHCO3 - Natron -6.25 -7.07 -0.82 Na2CO3:10H2O - Nesquehonite -0.57 -5.74 -5.17 MgCO3:3H2O + Misenite -57.85 -68.66 -10.81 K8H6(SO4)7 + Nahcolite -2.79 -13.53 -10.74 NaHCO3 + Natron -6.15 -6.97 -0.82 Na2CO3:10H2O + Nesquehonite -0.48 -5.65 -5.17 MgCO3:3H2O Pentahydrite -0.56 -1.84 -1.28 MgSO4:5H2O - Pirssonite -4.96 -14.19 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite 0.00 -13.74 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.82 -15.01 -5.19 Ca(OH)2 + Pirssonite -4.76 -14.00 -9.23 Na2Ca(CO3)2:2H2O + Polyhalite -0.00 -13.74 -13.74 K2MgCa2(SO4)4:2H2O + Portlandite -9.73 -14.92 -5.19 Ca(OH)2 Schoenite -1.60 -5.93 -4.33 K2Mg(SO4)2:6H2O Sylvite -0.73 0.17 0.90 KCl Syngenite -1.91 -8.34 -6.43 K2Ca(SO4)2:H2O Thenardite -0.80 -1.10 -0.30 Na2SO4 - Trona -7.89 -19.27 -11.38 Na3H(CO3)2:2H2O + Trona -7.74 -19.13 -11.38 Na3H(CO3)2:2H2O **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3384,135 +3405,136 @@ Reaction 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite 0.00 -4.25 -4.25 0.000e+00 1.200e-03 1.200e-03 +Anhydrite 0.00 -4.25 -4.25 0.000e+00 1.228e-03 1.228e-03 Bischofite -2.29 2.30 4.59 0.000e+00 0 0.000e+00 -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 4.124e-07 -Calcite 0.00 -8.50 -8.50 3.096e-04 3.026e-04 -7.062e-06 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 4.567e-07 +Calcite 0.00 -8.41 -8.41 2.942e-04 2.856e-04 -8.634e-06 Carnallite -1.98 2.44 4.42 0.000e+00 0 0.000e+00 Epsomite -0.29 -2.14 -1.85 0.000e+00 0 0.000e+00 -Glauberite 0.00 -5.35 -5.35 2.049e-03 1.552e-03 -4.966e-04 -Gypsum -0.00 -4.60 -4.60 1.085e-03 0 -1.085e-03 -Halite 0.00 1.58 1.58 2.288e-01 2.321e-01 3.242e-03 -Hexahydrite -0.39 -1.96 -1.57 0.000e+00 0 0.000e+00 +Glauberite 0.00 -5.35 -5.35 2.040e-03 1.544e-03 -4.957e-04 +Gypsum -0.00 -4.60 -4.60 1.112e-03 0 -1.112e-03 +Halite 0.00 1.58 1.58 2.288e-01 2.321e-01 3.235e-03 +Hexahydrite -0.40 -1.96 -1.57 0.000e+00 0 0.000e+00 Kieserite -0.81 -1.08 -0.27 0.000e+00 0 0.000e+00 -Polyhalite 0.00 -13.74 -13.74 1.174e-03 1.371e-03 1.973e-04 +Polyhalite 0.00 -13.74 -13.74 1.172e-03 1.369e-03 1.969e-04 -----------------------------Solution composition------------------------------ Elements Molality Moles Br 4.542e-02 4.401e-04 - C 7.523e-03 7.289e-05 - Ca 4.611e-03 4.468e-05 + C 9.222e-03 8.936e-05 + Ca 4.617e-03 4.474e-05 Cl 6.294e+00 6.098e-02 - K 2.289e-01 2.218e-03 + K 2.293e-01 2.222e-03 Mg 2.756e+00 2.670e-02 - Na 1.981e+00 1.920e-02 - S 5.659e-01 5.483e-03 + Na 1.983e+00 1.921e-02 + S 5.653e-01 5.478e-03 ----------------------------Description of solution---------------------------- - pH = 7.331 Charge balance + pH = 7.378 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 183236 - Density (g/cm) = 1.25741 - Volume (L) = 0.01081 - Activity of water = 0.666 + Specific Conductance (µS/cm, 25°C) = 185142 + Density (g/cm³) = 1.25892 + Volume (L) = 0.01080 + Viscosity (mPa s) = 3.70710 + Activity of water = 0.667 Ionic strength (mol/kgw) = 1.091e+01 Mass of water (kg) = 9.689e-03 - Total alkalinity (eq/kg) = 1.599e-02 - Total CO2 (mol/kg) = 7.523e-03 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 1.950e-02 + Total CO2 (mol/kg) = 9.222e-03 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.60 - Iterations = 10 + Iterations = 13 Gamma iterations = 4 - Osmotic coefficient = 1.89626 + Osmotic coefficient = 1.89560 Density of water = 0.99704 - Total H = 1.075650e+00 - Total O = 5.599801e-01 + Total H = 1.075657e+00 + Total O = 5.600119e-01 ----------------------------Distribution of species---------------------------- MacInnes MacInnes MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 3.878e-06 1.445e-07 -5.411 -6.840 -1.429 10.86 - H+ 2.157e-09 4.669e-08 -8.666 -7.331 1.335 0.00 + OH- 4.322e-06 1.613e-07 -5.364 -6.792 -1.428 10.86 + H+ 1.934e-09 4.184e-08 -8.713 -7.378 1.335 0.00 H2O 5.551e+01 6.665e-01 1.744 -0.176 0.000 18.07 Br 4.542e-02 - Br- 4.542e-02 6.020e-02 -1.343 -1.220 0.122 26.51 -C(4) 7.523e-03 - MgCO3 5.931e-03 5.931e-03 -2.227 -2.227 0.000 -17.09 - HCO3- 9.926e-04 6.997e-05 -3.003 -4.155 -1.152 45.86 - CO3-2 5.965e-04 6.862e-08 -3.224 -7.164 -3.939 14.73 - CO2 2.727e-06 1.076e-05 -5.564 -4.968 0.596 34.43 -Ca 4.611e-03 - Ca+2 4.611e-03 4.593e-02 -2.336 -1.338 0.998 -12.42 + Br- 4.542e-02 6.019e-02 -1.343 -1.220 0.122 26.51 +C(4) 9.222e-03 + MgCO3 7.372e-03 7.372e-03 -2.132 -2.132 0.000 -17.09 + HCO3- 1.107e-03 7.810e-05 -2.956 -4.107 -1.151 37.14 + CO3-2 7.413e-04 8.547e-08 -3.130 -7.068 -3.938 14.21 + CO2 2.728e-06 1.076e-05 -5.564 -4.968 0.596 34.43 +Ca 4.617e-03 + Ca+2 4.617e-03 4.595e-02 -2.336 -1.338 0.998 -12.43 Cl 6.294e+00 - Cl- 6.294e+00 4.725e+00 0.799 0.674 -0.125 20.69 -K 2.289e-01 - K+ 2.289e-01 2.914e-01 -0.640 -0.535 0.105 14.25 + Cl- 6.294e+00 4.724e+00 0.799 0.674 -0.125 20.69 +K 2.293e-01 + K+ 2.293e-01 2.918e-01 -0.640 -0.535 0.105 14.24 Mg 2.756e+00 - Mg+2 2.748e+00 1.020e+02 0.439 2.009 1.570 -15.68 - MgCO3 5.931e-03 5.931e-03 -2.227 -2.227 0.000 -17.09 - MgOH+ 1.938e-03 2.260e-03 -2.713 -2.646 0.067 (0) -Na 1.981e+00 - Na+ 1.981e+00 8.076e+00 0.297 0.907 0.610 2.18 -S(6) 5.659e-01 - SO4-2 5.659e-01 1.221e-03 -0.247 -2.913 -2.666 30.45 - HSO4- 5.439e-09 5.430e-09 -8.264 -8.265 -0.001 42.42 + Mg+2 2.746e+00 1.018e+02 0.439 2.008 1.569 -15.68 + MgCO3 7.372e-03 7.372e-03 -2.132 -2.132 0.000 -17.09 + MgOH+ 2.160e-03 2.517e-03 -2.666 -2.599 0.067 (0) +Na 1.983e+00 + Na+ 1.983e+00 8.077e+00 0.297 0.907 0.610 2.18 +S(6) 5.653e-01 + SO4-2 5.653e-01 1.220e-03 -0.248 -2.913 -2.666 28.27 + HSO4- 4.875e-09 4.864e-09 -8.312 -8.313 -0.001 42.42 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) Anhydrite 0.00 -4.25 -4.25 CaSO4 - Aragonite -0.28 -8.50 -8.22 CaCO3 + Aragonite -0.19 -8.41 -8.22 CaCO3 Arcanite -2.10 -3.98 -1.88 K2SO4 - Artinite 1.31 20.97 19.66 Mg2CO3(OH)2:3H2O + Artinite 1.50 21.16 19.66 Mg2CO3(OH)2:3H2O Bischofite -2.29 2.30 4.59 MgCl2:6H2O Bloedite -0.36 -2.71 -2.35 Na2Mg(SO4)2:4H2O - Brucite -0.79 -11.67 -10.88 Mg(OH)2 - Burkeite -6.78 -7.55 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.50 -8.50 CaCO3 + Brucite -0.70 -11.58 -10.88 Mg(OH)2 + Burkeite -6.68 -7.45 -0.77 Na6CO3(SO4)2 + Calcite 0.00 -8.41 -8.41 CaCO3 Carnallite -1.98 2.44 4.42 KMgCl3:6H2O CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 - Dolomite 3.43 -13.66 -17.08 CaMg(CO3)2 + Dolomite 3.62 -13.47 -17.09 CaMg(CO3)2 Epsomite -0.29 -2.14 -1.85 MgSO4:7H2O - Gaylussite -5.31 -14.73 -9.42 CaNa2(CO3)2:5H2O - Glaserite -2.72 -6.53 -3.80 NaK3(SO4)2 + Gaylussite -5.12 -14.54 -9.42 CaNa2(CO3)2:5H2O + Glaserite -2.72 -6.52 -3.80 NaK3(SO4)2 Glauberite 0.00 -5.35 -5.35 Na2Ca(SO4)2 Goergeyite 3.95 -25.42 -29.37 K2Ca5(SO4)6H2O Gypsum -0.00 -4.60 -4.60 CaSO4:2H2O H2O(g) -1.68 -0.18 1.50 H2O Halite 0.00 1.58 1.58 NaCl - Hexahydrite -0.39 -1.96 -1.57 MgSO4:6H2O - Huntite 7.15 17.39 10.24 CaMg3(CO3)4 + Hexahydrite -0.40 -1.96 -1.57 MgSO4:6H2O + Huntite 7.53 17.77 10.24 CaMg3(CO3)4 Kainite -1.10 -1.29 -0.19 KMgClSO4:3H2O - Kalicinite -5.09 -15.03 -9.94 KHCO3 + Kalicinite -5.04 -14.98 -9.94 KHCO3 Kieserite -0.81 -1.08 -0.27 MgSO4:H2O Labile_S -1.13 -6.80 -5.67 Na4Ca(SO4)3:2H2O Leonhardite -0.72 -1.61 -0.89 MgSO4:4H2O Leonite -1.61 -5.59 -3.98 K2Mg(SO4)2:4H2O - Magnesite 2.68 -5.15 -7.83 MgCO3 + Magnesite 2.77 -5.06 -7.83 MgCO3 MgCl2_2H2O -11.55 3.00 14.56 MgCl2:2H2O MgCl2_4H2O -4.33 2.65 6.98 MgCl2:4H2O Mirabilite -1.62 -2.86 -1.24 Na2SO4:10H2O - Misenite -57.86 -68.66 -10.81 K8H6(SO4)7 - Nahcolite -2.85 -13.59 -10.74 NaHCO3 - Natron -6.29 -7.11 -0.82 Na2CO3:10H2O - Nesquehonite -0.52 -5.68 -5.17 MgCO3:3H2O + Misenite -58.14 -68.94 -10.81 K8H6(SO4)7 + Nahcolite -2.80 -13.54 -10.74 NaHCO3 + Natron -6.19 -7.02 -0.82 Na2CO3:10H2O + Nesquehonite -0.42 -5.59 -5.17 MgCO3:3H2O Pentahydrite -0.50 -1.79 -1.28 MgSO4:5H2O - Pirssonite -4.97 -14.20 -9.23 Na2Ca(CO3)2:2H2O + Pirssonite -4.78 -14.01 -9.23 Na2Ca(CO3)2:2H2O Polyhalite 0.00 -13.74 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.83 -15.02 -5.19 Ca(OH)2 + Portlandite -9.73 -14.92 -5.19 Ca(OH)2 Schoenite -1.62 -5.95 -4.33 K2Mg(SO4)2:6H2O Sylvite -0.76 0.14 0.90 KCl Syngenite -1.98 -8.41 -6.43 K2Ca(SO4)2:H2O Thenardite -0.80 -1.10 -0.30 Na2SO4 - Trona -7.90 -19.29 -11.38 Na3H(CO3)2:2H2O + Trona -7.76 -19.15 -11.38 Na3H(CO3)2:2H2O **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3542,135 +3564,136 @@ Reaction 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite 0.00 -4.25 -4.25 1.200e-03 1.428e-03 2.283e-04 +Anhydrite 0.00 -4.25 -4.25 1.228e-03 1.460e-03 2.317e-04 Bischofite -2.23 2.36 4.59 0.000e+00 0 0.000e+00 -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 5.666e-07 -Calcite 0.00 -8.50 -8.50 3.026e-04 2.912e-04 -1.140e-05 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 6.284e-07 +Calcite 0.00 -8.41 -8.41 2.856e-04 2.716e-04 -1.398e-05 Carnallite -1.96 2.46 4.42 0.000e+00 0 0.000e+00 Epsomite -0.23 -2.08 -1.85 0.000e+00 0 0.000e+00 -Glauberite -0.00 -5.35 -5.35 1.552e-03 9.538e-04 -5.985e-04 +Glauberite 0.00 -5.35 -5.35 1.544e-03 9.450e-04 -5.993e-04 Gypsum -0.01 -4.61 -4.60 0.000e+00 0 0.000e+00 Halite 0.00 1.58 1.58 2.321e-01 2.356e-01 3.547e-03 Hexahydrite -0.33 -1.90 -1.57 0.000e+00 0 0.000e+00 Kieserite -0.73 -1.00 -0.27 0.000e+00 0 0.000e+00 -Polyhalite -0.00 -13.74 -13.74 1.371e-03 1.565e-03 1.942e-04 +Polyhalite 0.00 -13.74 -13.74 1.369e-03 1.563e-03 1.942e-04 -----------------------------Solution composition------------------------------ Elements Molality Moles Br 4.814e-02 4.401e-04 - C 9.159e-03 8.373e-05 - Ca 4.145e-03 3.789e-05 + C 1.123e-02 1.027e-04 + Ca 4.151e-03 3.795e-05 Cl 6.283e+00 5.744e-02 - K 2.001e-01 1.830e-03 - Mg 2.899e+00 2.651e-02 - Na 1.843e+00 1.685e-02 - S 6.208e-01 5.675e-03 + K 2.005e-01 1.833e-03 + Mg 2.900e+00 2.651e-02 + Na 1.845e+00 1.686e-02 + S 6.200e-01 5.668e-03 ----------------------------Description of solution---------------------------- - pH = 7.338 Charge balance + pH = 7.386 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 178009 - Density (g/cm) = 1.26201 - Volume (L) = 0.01020 + Specific Conductance (µS/cm, 25°C) = 180044 + Density (g/cm³) = 1.26371 + Volume (L) = 0.01018 + Viscosity (mPa s) = 3.94431 Activity of water = 0.660 Ionic strength (mol/kgw) = 1.122e+01 Mass of water (kg) = 9.142e-03 - Total alkalinity (eq/kg) = 1.944e-02 - Total CO2 (mol/kg) = 9.159e-03 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 2.372e-02 + Total CO2 (mol/kg) = 1.123e-02 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.67 - Iterations = 8 + Iterations = 9 Gamma iterations = 3 - Osmotic coefficient = 1.93884 + Osmotic coefficient = 1.93803 Density of water = 0.99704 - Total H = 1.014873e+00 - Total O = 5.303921e-01 + Total H = 1.014881e+00 + Total O = 5.304248e-01 ----------------------------Distribution of species---------------------------- MacInnes MacInnes MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 4.363e-06 1.454e-07 -5.360 -6.837 -1.477 11.25 - H+ 1.967e-09 4.592e-08 -8.706 -7.338 1.368 0.00 - H2O 5.551e+01 6.599e-01 1.744 -0.181 0.000 18.07 + OH- 4.862e-06 1.623e-07 -5.313 -6.790 -1.476 11.24 + H+ 1.765e-09 4.115e-08 -8.753 -7.386 1.368 0.00 + H2O 5.551e+01 6.600e-01 1.744 -0.180 0.000 18.07 Br 4.814e-02 - Br- 4.814e-02 6.534e-02 -1.317 -1.185 0.133 26.52 -C(4) 9.159e-03 - MgCO3 7.298e-03 7.298e-03 -2.137 -2.137 0.000 -17.09 - HCO3- 1.105e-03 7.044e-05 -2.957 -4.152 -1.195 46.42 - CO3-2 7.532e-04 7.023e-08 -3.123 -7.153 -4.030 15.09 - CO2 2.638e-06 1.076e-05 -5.579 -4.968 0.611 34.43 -Ca 4.145e-03 - Ca+2 4.145e-03 4.488e-02 -2.383 -1.348 1.035 -12.31 + Br- 4.814e-02 6.533e-02 -1.317 -1.185 0.133 26.52 +C(4) 1.123e-02 + MgCO3 9.066e-03 9.066e-03 -2.043 -2.043 0.000 -17.09 + HCO3- 1.231e-03 7.862e-05 -2.910 -4.104 -1.195 37.37 + CO3-2 9.355e-04 8.747e-08 -3.029 -7.058 -4.029 14.53 + CO2 2.639e-06 1.076e-05 -5.579 -4.968 0.610 34.43 +Ca 4.151e-03 + Ca+2 4.151e-03 4.490e-02 -2.382 -1.348 1.034 -12.31 Cl 6.283e+00 - Cl- 6.283e+00 4.780e+00 0.798 0.679 -0.119 20.72 -K 2.001e-01 - K+ 2.001e-01 2.623e-01 -0.699 -0.581 0.117 14.38 -Mg 2.899e+00 - Mg+2 2.890e+00 1.226e+02 0.461 2.089 1.628 -15.55 - MgCO3 7.298e-03 7.298e-03 -2.137 -2.137 0.000 -17.09 - MgOH+ 2.230e-03 2.736e-03 -2.652 -2.563 0.089 (0) -Na 1.843e+00 - Na+ 1.843e+00 7.983e+00 0.265 0.902 0.637 2.24 -S(6) 6.208e-01 - SO4-2 6.208e-01 1.249e-03 -0.207 -2.903 -2.696 30.68 - HSO4- 5.238e-09 5.466e-09 -8.281 -8.262 0.018 42.44 + Cl- 6.283e+00 4.779e+00 0.798 0.679 -0.119 20.72 +K 2.005e-01 + K+ 2.005e-01 2.627e-01 -0.698 -0.581 0.117 14.38 +Mg 2.900e+00 + Mg+2 2.888e+00 1.223e+02 0.461 2.087 1.627 -15.55 + MgCO3 9.066e-03 9.066e-03 -2.043 -2.043 0.000 -17.09 + MgOH+ 2.484e-03 3.045e-03 -2.605 -2.516 0.088 (0) +Na 1.845e+00 + Na+ 1.845e+00 7.984e+00 0.266 0.902 0.636 2.24 +S(6) 6.200e-01 + SO4-2 6.200e-01 1.249e-03 -0.208 -2.903 -2.696 28.44 + HSO4- 4.695e-09 4.896e-09 -8.328 -8.310 0.018 42.44 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) Anhydrite 0.00 -4.25 -4.25 CaSO4 - Aragonite -0.28 -8.50 -8.22 CaCO3 - Arcanite -2.19 -4.07 -1.88 K2SO4 - Artinite 1.48 21.14 19.66 Mg2CO3(OH)2:3H2O + Aragonite -0.19 -8.41 -8.22 CaCO3 + Arcanite -2.19 -4.06 -1.88 K2SO4 + Artinite 1.66 21.32 19.66 Mg2CO3(OH)2:3H2O Bischofite -2.23 2.36 4.59 MgCl2:6H2O Bloedite -0.29 -2.64 -2.35 Na2Mg(SO4)2:4H2O - Brucite -0.71 -11.59 -10.88 Mg(OH)2 - Burkeite -6.78 -7.55 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.50 -8.50 CaCO3 + Brucite -0.61 -11.49 -10.88 Mg(OH)2 + Burkeite -6.68 -7.45 -0.77 Na6CO3(SO4)2 + Calcite 0.00 -8.41 -8.41 CaCO3 Carnallite -1.96 2.46 4.42 KMgCl3:6H2O CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 - Dolomite 3.52 -13.57 -17.08 CaMg(CO3)2 + Dolomite 3.71 -13.38 -17.09 CaMg(CO3)2 Epsomite -0.23 -2.08 -1.85 MgSO4:7H2O - Gaylussite -5.33 -14.75 -9.42 CaNa2(CO3)2:5H2O - Glaserite -2.85 -6.65 -3.80 NaK3(SO4)2 - Glauberite -0.00 -5.35 -5.35 Na2Ca(SO4)2 + Gaylussite -5.14 -14.56 -9.42 CaNa2(CO3)2:5H2O + Glaserite -2.84 -6.65 -3.80 NaK3(SO4)2 + Glauberite 0.00 -5.35 -5.35 Na2Ca(SO4)2 Goergeyite 3.87 -25.50 -29.37 K2Ca5(SO4)6H2O Gypsum -0.01 -4.61 -4.60 CaSO4:2H2O H2O(g) -1.68 -0.18 1.50 H2O Halite 0.00 1.58 1.58 NaCl Hexahydrite -0.33 -1.90 -1.57 MgSO4:6H2O - Huntite 7.42 17.66 10.24 CaMg3(CO3)4 + Huntite 7.80 18.04 10.24 CaMg3(CO3)4 Kainite -1.07 -1.26 -0.19 KMgClSO4:3H2O - Kalicinite -5.13 -15.07 -9.94 KHCO3 + Kalicinite -5.08 -15.02 -9.94 KHCO3 Kieserite -0.73 -1.00 -0.27 MgSO4:H2O Labile_S -1.14 -6.81 -5.67 Na4Ca(SO4)3:2H2O Leonhardite -0.65 -1.54 -0.89 MgSO4:4H2O Leonite -1.62 -5.60 -3.98 K2Mg(SO4)2:4H2O - Magnesite 2.77 -5.06 -7.83 MgCO3 + Magnesite 2.86 -4.97 -7.83 MgCO3 MgCl2_2H2O -11.47 3.09 14.56 MgCl2:2H2O - MgCl2_4H2O -4.25 2.73 6.98 MgCl2:4H2O + MgCl2_4H2O -4.25 2.72 6.98 MgCl2:4H2O Mirabilite -1.66 -2.90 -1.24 Na2SO4:10H2O - Misenite -58.19 -69.00 -10.81 K8H6(SO4)7 - Nahcolite -2.85 -13.59 -10.74 NaHCO3 - Natron -6.33 -7.15 -0.82 Na2CO3:10H2O - Nesquehonite -0.44 -5.61 -5.17 MgCO3:3H2O + Misenite -58.48 -69.28 -10.81 K8H6(SO4)7 + Nahcolite -2.80 -13.54 -10.74 NaHCO3 + Natron -6.23 -7.06 -0.82 Na2CO3:10H2O + Nesquehonite -0.35 -5.51 -5.17 MgCO3:3H2O Pentahydrite -0.43 -1.72 -1.28 MgSO4:5H2O - Pirssonite -4.98 -14.21 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite -0.00 -13.74 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.83 -15.02 -5.19 Ca(OH)2 + Pirssonite -4.79 -14.02 -9.23 Na2Ca(CO3)2:2H2O + Polyhalite 0.00 -13.74 -13.74 K2MgCa2(SO4)4:2H2O + Portlandite -9.74 -14.93 -5.19 Ca(OH)2 Schoenite -1.64 -5.96 -4.33 K2Mg(SO4)2:6H2O Sylvite -0.80 0.10 0.90 KCl Syngenite -2.07 -8.50 -6.43 K2Ca(SO4)2:H2O Thenardite -0.80 -1.10 -0.30 Na2SO4 - Trona -7.92 -19.30 -11.38 Na3H(CO3)2:2H2O + Trona -7.77 -19.16 -11.38 Na3H(CO3)2:2H2O **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3700,135 +3723,136 @@ Reaction 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite 0.00 -4.25 -4.25 1.428e-03 1.738e-03 3.101e-04 -Bischofite -2.16 2.44 4.59 0.000e+00 0 0.000e+00 -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 7.012e-07 -Calcite 0.00 -8.50 -8.50 2.912e-04 2.754e-04 -1.574e-05 +Anhydrite 0.00 -4.25 -4.25 1.460e-03 1.775e-03 3.145e-04 +Bischofite -2.16 2.43 4.59 0.000e+00 0 0.000e+00 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 7.767e-07 +Calcite 0.00 -8.41 -8.41 2.716e-04 2.523e-04 -1.927e-05 Carnallite -1.94 2.49 4.42 0.000e+00 0 0.000e+00 -Epsomite -0.16 -2.01 -1.85 0.000e+00 0 0.000e+00 -Glauberite 0.00 -5.35 -5.35 9.538e-04 3.122e-04 -6.416e-04 +Epsomite -0.17 -2.01 -1.85 0.000e+00 0 0.000e+00 +Glauberite 0.00 -5.35 -5.35 9.450e-04 3.026e-04 -6.425e-04 Gypsum -0.02 -4.62 -4.60 0.000e+00 0 0.000e+00 -Halite 0.00 1.58 1.58 2.356e-01 2.392e-01 3.565e-03 +Halite 0.00 1.58 1.58 2.356e-01 2.392e-01 3.564e-03 Hexahydrite -0.26 -1.83 -1.57 0.000e+00 0 0.000e+00 Kieserite -0.63 -0.90 -0.27 0.000e+00 0 0.000e+00 -Polyhalite 0.00 -13.74 -13.74 1.565e-03 1.742e-03 1.768e-04 +Polyhalite 0.00 -13.74 -13.74 1.563e-03 1.740e-03 1.768e-04 -----------------------------Solution composition------------------------------ Elements Molality Moles Br 5.121e-02 4.401e-04 - C 1.149e-02 9.877e-05 - Ca 3.669e-03 3.153e-05 + C 1.410e-02 1.212e-04 + Ca 3.676e-03 3.160e-05 Cl 6.268e+00 5.387e-02 - K 1.717e-01 1.476e-03 + K 1.722e-01 1.480e-03 Mg 3.063e+00 2.633e-02 - Na 1.695e+00 1.456e-02 - S 6.912e-01 5.941e-03 + Na 1.697e+00 1.458e-02 + S 6.901e-01 5.931e-03 ----------------------------Description of solution---------------------------- - pH = 7.347 Charge balance + pH = 7.394 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 172130 - Density (g/cm) = 1.26782 - Volume (L) = 0.00958 + Specific Conductance (µS/cm, 25°C) = 174324 + Density (g/cm³) = 1.26978 + Volume (L) = 0.00957 + Viscosity (mPa s) = 4.24936 Activity of water = 0.652 - Ionic strength (mol/kgw) = 1.159e+01 + Ionic strength (mol/kgw) = 1.158e+01 Mass of water (kg) = 8.595e-03 - Total alkalinity (eq/kg) = 2.434e-02 - Total CO2 (mol/kg) = 1.149e-02 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 2.972e-02 + Total CO2 (mol/kg) = 1.410e-02 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.75 - Iterations = 8 + Iterations = 9 Gamma iterations = 3 - Osmotic coefficient = 1.98737 + Osmotic coefficient = 1.98633 Density of water = 0.99704 - Total H = 9.541661e-01 - Total O = 5.011480e-01 + Total H = 9.541735e-01 + Total O = 5.011807e-01 ----------------------------Distribution of species---------------------------- MacInnes MacInnes MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 4.978e-06 1.466e-07 -5.303 -6.834 -1.531 11.70 - H+ 1.763e-09 4.503e-08 -8.754 -7.347 1.407 0.00 - H2O 5.551e+01 6.520e-01 1.744 -0.186 0.000 18.07 + OH- 5.545e-06 1.636e-07 -5.256 -6.786 -1.530 11.70 + H+ 1.583e-09 4.035e-08 -8.801 -7.394 1.406 0.00 + H2O 5.551e+01 6.521e-01 1.744 -0.186 0.000 18.07 Br 5.121e-02 - Br- 5.121e-02 7.146e-02 -1.291 -1.146 0.145 26.54 -C(4) 1.149e-02 - MgCO3 9.255e-03 9.255e-03 -2.034 -2.034 0.000 -17.09 - HCO3- 1.256e-03 7.098e-05 -2.901 -4.149 -1.248 47.08 - CO3-2 9.775e-04 7.219e-08 -3.010 -7.142 -4.132 15.50 - CO2 2.531e-06 1.076e-05 -5.597 -4.968 0.629 34.43 -Ca 3.669e-03 - Ca+2 3.669e-03 4.366e-02 -2.435 -1.360 1.076 -12.17 + Br- 5.121e-02 7.144e-02 -1.291 -1.146 0.145 26.54 +C(4) 1.410e-02 + MgCO3 1.149e-02 1.149e-02 -1.940 -1.940 0.000 -17.09 + HCO3- 1.399e-03 7.922e-05 -2.854 -4.101 -1.247 37.64 + CO3-2 1.213e-03 8.990e-08 -2.916 -7.046 -4.130 14.91 + CO2 2.533e-06 1.076e-05 -5.596 -4.968 0.628 34.43 +Ca 3.676e-03 + Ca+2 3.676e-03 4.368e-02 -2.435 -1.360 1.075 -12.17 Cl 6.268e+00 - Cl- 6.268e+00 4.846e+00 0.797 0.685 -0.112 20.75 -K 1.717e-01 - K+ 1.717e-01 2.325e-01 -0.765 -0.634 0.132 14.54 + Cl- 6.268e+00 4.845e+00 0.797 0.685 -0.112 20.75 +K 1.722e-01 + K+ 1.722e-01 2.330e-01 -0.764 -0.633 0.131 14.54 Mg 3.063e+00 - Mg+2 3.051e+00 1.513e+02 0.485 2.180 1.695 -15.39 - MgCO3 9.255e-03 9.255e-03 -2.034 -2.034 0.000 -17.09 - MgOH+ 2.615e-03 3.401e-03 -2.582 -2.468 0.114 (0) -Na 1.695e+00 - Na+ 1.695e+00 7.874e+00 0.229 0.896 0.667 2.30 -S(6) 6.912e-01 - SO4-2 6.912e-01 1.284e-03 -0.160 -2.891 -2.731 30.94 - HSO4- 5.034e-09 5.508e-09 -8.298 -8.259 0.039 42.46 + Mg+2 3.049e+00 1.508e+02 0.484 2.178 1.694 -15.39 + MgCO3 1.149e-02 1.149e-02 -1.940 -1.940 0.000 -17.09 + MgOH+ 2.911e-03 3.783e-03 -2.536 -2.422 0.114 (0) +Na 1.697e+00 + Na+ 1.697e+00 7.876e+00 0.230 0.896 0.667 2.30 +S(6) 6.901e-01 + SO4-2 6.901e-01 1.284e-03 -0.161 -2.892 -2.730 28.65 + HSO4- 4.512e-09 4.934e-09 -8.346 -8.307 0.039 42.46 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) Anhydrite 0.00 -4.25 -4.25 CaSO4 - Aragonite -0.28 -8.50 -8.22 CaCO3 + Aragonite -0.19 -8.41 -8.22 CaCO3 Arcanite -2.28 -4.16 -1.88 K2SO4 - Artinite 1.66 21.32 19.66 Mg2CO3(OH)2:3H2O - Bischofite -2.16 2.44 4.59 MgCl2:6H2O + Artinite 1.85 21.51 19.66 Mg2CO3(OH)2:3H2O + Bischofite -2.16 2.43 4.59 MgCl2:6H2O Bloedite -0.21 -2.55 -2.35 Na2Mg(SO4)2:4H2O - Brucite -0.61 -11.49 -10.88 Mg(OH)2 - Burkeite -6.78 -7.55 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.50 -8.50 CaCO3 + Brucite -0.51 -11.39 -10.88 Mg(OH)2 + Burkeite -6.68 -7.45 -0.77 Na6CO3(SO4)2 + Calcite 0.00 -8.41 -8.41 CaCO3 Carnallite -1.94 2.49 4.42 KMgCl3:6H2O CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 - Dolomite 3.62 -13.46 -17.08 CaMg(CO3)2 - Epsomite -0.16 -2.01 -1.85 MgSO4:7H2O - Gaylussite -5.36 -14.78 -9.42 CaNa2(CO3)2:5H2O - Glaserite -2.98 -6.79 -3.80 NaK3(SO4)2 + Dolomite 3.81 -13.27 -17.09 CaMg(CO3)2 + Epsomite -0.17 -2.01 -1.85 MgSO4:7H2O + Gaylussite -5.17 -14.59 -9.42 CaNa2(CO3)2:5H2O + Glaserite -2.98 -6.78 -3.80 NaK3(SO4)2 Glauberite 0.00 -5.35 -5.35 Na2Ca(SO4)2 Goergeyite 3.77 -25.60 -29.37 K2Ca5(SO4)6H2O Gypsum -0.02 -4.62 -4.60 CaSO4:2H2O H2O(g) -1.69 -0.19 1.50 H2O Halite 0.00 1.58 1.58 NaCl Hexahydrite -0.26 -1.83 -1.57 MgSO4:6H2O - Huntite 7.73 17.97 10.24 CaMg3(CO3)4 + Huntite 8.11 18.35 10.24 CaMg3(CO3)4 Kainite -1.02 -1.22 -0.19 KMgClSO4:3H2O - Kalicinite -5.18 -15.12 -9.94 KHCO3 + Kalicinite -5.13 -15.07 -9.94 KHCO3 Kieserite -0.63 -0.90 -0.27 MgSO4:H2O Labile_S -1.15 -6.82 -5.67 Na4Ca(SO4)3:2H2O - Leonhardite -0.57 -1.45 -0.89 MgSO4:4H2O + Leonhardite -0.57 -1.46 -0.89 MgSO4:4H2O Leonite -1.63 -5.61 -3.98 K2Mg(SO4)2:4H2O - Magnesite 2.87 -4.96 -7.83 MgCO3 + Magnesite 2.97 -4.87 -7.83 MgCO3 MgCl2_2H2O -11.38 3.18 14.56 MgCl2:2H2O MgCl2_4H2O -4.17 2.81 6.98 MgCl2:4H2O Mirabilite -1.72 -2.96 -1.24 Na2SO4:10H2O - Misenite -58.58 -69.39 -10.81 K8H6(SO4)7 - Nahcolite -2.85 -13.59 -10.74 NaHCO3 - Natron -6.38 -7.21 -0.82 Na2CO3:10H2O - Nesquehonite -0.35 -5.52 -5.17 MgCO3:3H2O + Misenite -58.86 -69.67 -10.81 K8H6(SO4)7 + Nahcolite -2.80 -13.54 -10.74 NaHCO3 + Natron -6.29 -7.11 -0.82 Na2CO3:10H2O + Nesquehonite -0.26 -5.42 -5.17 MgCO3:3H2O Pentahydrite -0.36 -1.64 -1.28 MgSO4:5H2O - Pirssonite -4.99 -14.22 -9.23 Na2Ca(CO3)2:2H2O + Pirssonite -4.80 -14.03 -9.23 Na2Ca(CO3)2:2H2O Polyhalite 0.00 -13.74 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.84 -15.03 -5.19 Ca(OH)2 + Portlandite -9.74 -14.93 -5.19 Ca(OH)2 Schoenite -1.66 -5.98 -4.33 K2Mg(SO4)2:6H2O Sylvite -0.85 0.05 0.90 KCl - Syngenite -2.17 -8.60 -6.43 K2Ca(SO4)2:H2O + Syngenite -2.16 -8.59 -6.43 K2Ca(SO4)2:H2O Thenardite -0.80 -1.10 -0.30 Na2SO4 - Trona -7.93 -19.31 -11.38 Na3H(CO3)2:2H2O + Trona -7.79 -19.17 -11.38 Na3H(CO3)2:2H2O **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3841,7 +3865,3 @@ End of simulation. Reading input data for simulation 2. ------------------------------------ -------------------------------- -End of Run after 0.057 Seconds. -------------------------------- - diff --git a/ex18.out b/ex18.out index 72831b48..e92ed683 100644 --- a/ex18.out +++ b/ex18.out @@ -117,16 +117,17 @@ Initial solution 1. Recharge number 3 pH = 7.550 pe = 0.000 - Specific Conductance (S/cm, 10C) = 270 - Density (g/cm) = 0.99999 + Specific Conductance (µS/cm, 10°C) = 271 + Density (g/cm³) = 0.99999 Volume (L) = 1.00035 + Viscosity (mPa s) = 1.31276 Activity of water = 1.000 - Ionic strength (mol/kgw) = 6.547e-03 + Ionic strength (mol/kgw) = 6.543e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 4.016e-03 Total CO2 (mol/kg) = 4.300e-03 - Temperature (C) = 9.90 - Electrical balance (eq) = 1.061e-04 + Temperature (°C) = 9.90 + Electrical balance (eq) = 1.063e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.24 Iterations = 8 Total H = 1.110164e+02 @@ -135,73 +136,74 @@ Initial solution 1. Recharge number 3 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.126e-07 1.034e-07 -6.948 -6.985 -0.037 -4.98 H+ 3.038e-08 2.818e-08 -7.517 -7.550 -0.033 0.00 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.02 C(4) 4.300e-03 - HCO3- 3.929e-03 3.622e-03 -2.406 -2.441 -0.035 23.19 - CO2 2.970e-04 2.974e-04 -3.527 -3.527 0.001 33.66 - MgHCO3+ 3.098e-05 2.848e-05 -4.509 -4.545 -0.036 4.93 - CaHCO3+ 3.026e-05 2.793e-05 -4.519 -4.554 -0.035 8.96 - CO3-2 5.766e-06 4.167e-06 -5.239 -5.380 -0.141 -7.22 - CaCO3 4.729e-06 4.736e-06 -5.325 -5.325 0.001 -14.66 - MgCO3 2.207e-06 2.210e-06 -5.656 -5.656 0.001 -17.07 + HCO3- 3.929e-03 3.622e-03 -2.406 -2.441 -0.035 22.87 + CO2 2.971e-04 2.974e-04 -3.527 -3.527 0.000 33.66 + MgHCO3+ 3.094e-05 2.845e-05 -4.510 -4.546 -0.036 4.93 + CaHCO3+ 3.027e-05 2.794e-05 -4.519 -4.554 -0.035 8.96 + CO3-2 5.766e-06 4.167e-06 -5.239 -5.380 -0.141 -6.29 + CaCO3 4.730e-06 4.737e-06 -5.325 -5.324 0.001 -14.66 + MgCO3 2.204e-06 2.208e-06 -5.657 -5.656 0.001 -17.07 FeHCO3+ 2.086e-07 1.919e-07 -6.681 -6.717 -0.036 (0) - FeCO3 5.287e-08 5.295e-08 -7.277 -7.276 0.001 (0) - NaHCO3 4.088e-08 4.095e-08 -7.388 -7.388 0.001 1.80 + FeCO3 5.288e-08 5.296e-08 -7.277 -7.276 0.001 (0) + NaHCO3 2.455e-08 2.463e-08 -7.610 -7.608 0.002 28.00 (CO2)2 9.408e-10 9.423e-10 -9.026 -9.026 0.001 67.31 - NaCO3- 6.948e-10 6.391e-10 -9.158 -9.194 -0.036 -2.99 Ca 1.200e-03 - Ca+2 1.152e-03 8.322e-04 -2.939 -3.080 -0.141 -18.31 - CaHCO3+ 3.026e-05 2.793e-05 -4.519 -4.554 -0.035 8.96 - CaSO4 1.288e-05 1.290e-05 -4.890 -4.889 0.001 6.78 - CaCO3 4.729e-06 4.736e-06 -5.325 -5.325 0.001 -14.66 - CaOH+ 5.327e-09 4.900e-09 -8.274 -8.310 -0.036 (0) - CaHSO4+ 2.152e-12 1.980e-12 -11.667 -11.703 -0.036 (0) + Ca+2 1.152e-03 8.324e-04 -2.938 -3.080 -0.141 -18.31 + CaHCO3+ 3.027e-05 2.794e-05 -4.519 -4.554 -0.035 8.96 + CaSO4 1.277e-05 1.279e-05 -4.894 -4.893 0.001 6.78 + CaCO3 4.730e-06 4.737e-06 -5.325 -5.324 0.001 -14.66 + CaOH+ 5.328e-09 4.901e-09 -8.273 -8.310 -0.036 (0) + CaHSO4+ 2.133e-12 1.962e-12 -11.671 -11.707 -0.036 (0) Cl 2.000e-05 Cl- 2.000e-05 1.838e-05 -4.699 -4.736 -0.037 17.40 FeCl+ 1.461e-11 1.344e-11 -10.835 -10.872 -0.036 (0) + HCl 1.948e-13 1.960e-13 -12.711 -12.708 0.003 (0) Fe(2) 1.000e-06 - Fe+2 7.296e-07 5.297e-07 -6.137 -6.276 -0.139 -23.20 + Fe+2 7.297e-07 5.298e-07 -6.137 -6.276 -0.139 -23.20 FeHCO3+ 2.086e-07 1.919e-07 -6.681 -6.717 -0.036 (0) - FeCO3 5.287e-08 5.295e-08 -7.277 -7.276 0.001 (0) - FeSO4 6.907e-09 6.917e-09 -8.161 -8.160 0.001 39.09 + FeCO3 5.288e-08 5.296e-08 -7.277 -7.276 0.001 (0) + FeSO4 6.846e-09 6.856e-09 -8.165 -8.164 0.001 39.09 FeOH+ 1.965e-09 1.811e-09 -8.707 -8.742 -0.036 (0) FeCl+ 1.461e-11 1.344e-11 -10.835 -10.872 -0.036 (0) Fe(OH)2 1.369e-13 1.371e-13 -12.864 -12.863 0.001 (0) - FeHSO4+ 1.370e-15 1.260e-15 -14.863 -14.900 -0.036 (0) - Fe(OH)3- 1.677e-16 1.545e-16 -15.775 -15.811 -0.036 (0) + FeHSO4+ 1.358e-15 1.249e-15 -14.867 -14.903 -0.036 (0) + Fe(OH)3- 1.678e-16 1.546e-16 -15.775 -15.811 -0.036 (0) H(0) 1.316e-18 H2 6.579e-19 6.588e-19 -18.182 -18.181 0.001 28.63 K 2.000e-05 K+ 1.999e-05 1.837e-05 -4.699 -4.736 -0.037 8.43 - KSO4- 1.042e-08 9.604e-09 -7.982 -8.018 -0.035 33.57 + KSO4- 9.288e-09 8.467e-09 -8.032 -8.072 -0.040 19.30 Mg 1.010e-03 - Mg+2 9.661e-04 7.009e-04 -3.015 -3.154 -0.139 -21.10 - MgHCO3+ 3.098e-05 2.848e-05 -4.509 -4.545 -0.036 4.93 - MgSO4 1.070e-05 1.071e-05 -4.971 -4.970 0.001 5.11 - MgCO3 2.207e-06 2.210e-06 -5.656 -5.656 0.001 -17.07 - MgOH+ 2.324e-08 2.147e-08 -7.634 -7.668 -0.034 (0) + Mg+2 9.648e-04 7.000e-04 -3.016 -3.155 -0.139 -21.10 + MgHCO3+ 3.094e-05 2.845e-05 -4.510 -4.546 -0.036 4.93 + MgSO4 1.203e-05 1.206e-05 -4.920 -4.918 0.001 -4.13 + MgCO3 2.204e-06 2.208e-06 -5.657 -5.656 0.001 -17.07 + MgOH+ 2.321e-08 2.144e-08 -7.634 -7.669 -0.034 (0) + Mg(SO4)2-2 7.112e-09 5.204e-09 -8.148 -8.284 -0.136 35.28 Na 2.000e-05 - Na+ 1.995e-05 1.837e-05 -4.700 -4.736 -0.036 -2.42 - NaHCO3 4.088e-08 4.095e-08 -7.388 -7.388 0.001 1.80 - NaSO4- 8.867e-09 8.175e-09 -8.052 -8.087 -0.035 14.34 - NaCO3- 6.948e-10 6.391e-10 -9.158 -9.194 -0.036 -2.99 - NaOH 1.897e-22 1.900e-22 -21.722 -21.721 0.001 (0) + Na+ 1.996e-05 1.838e-05 -4.700 -4.736 -0.036 -2.42 + NaHCO3 2.455e-08 2.463e-08 -7.610 -7.608 0.002 28.00 + NaSO4- 1.104e-08 1.006e-08 -7.957 -7.997 -0.040 13.45 + NaOH 1.899e-22 1.902e-22 -21.722 -21.721 0.001 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -61.151 -61.151 0.001 28.94 S(6) 1.600e-04 - SO4-2 1.364e-04 9.822e-05 -3.865 -4.008 -0.143 11.87 - CaSO4 1.288e-05 1.290e-05 -4.890 -4.889 0.001 6.78 - MgSO4 1.070e-05 1.071e-05 -4.971 -4.970 0.001 5.11 - KSO4- 1.042e-08 9.604e-09 -7.982 -8.018 -0.035 33.57 - NaSO4- 8.867e-09 8.175e-09 -8.052 -8.087 -0.035 14.34 - FeSO4 6.907e-09 6.917e-09 -8.161 -8.160 0.001 39.09 - HSO4- 2.151e-10 1.978e-10 -9.667 -9.704 -0.036 38.92 - CaHSO4+ 2.152e-12 1.980e-12 -11.667 -11.703 -0.036 (0) - FeHSO4+ 1.370e-15 1.260e-15 -14.863 -14.900 -0.036 (0) + SO4-2 1.352e-04 9.734e-05 -3.869 -4.012 -0.143 11.93 + CaSO4 1.277e-05 1.279e-05 -4.894 -4.893 0.001 6.78 + MgSO4 1.203e-05 1.206e-05 -4.920 -4.918 0.001 -4.13 + NaSO4- 1.104e-08 1.006e-08 -7.957 -7.997 -0.040 13.45 + KSO4- 9.288e-09 8.467e-09 -8.032 -8.072 -0.040 19.30 + Mg(SO4)2-2 7.112e-09 5.204e-09 -8.148 -8.284 -0.136 35.28 + FeSO4 6.846e-09 6.856e-09 -8.165 -8.164 0.001 39.09 + HSO4- 2.132e-10 1.961e-10 -9.671 -9.708 -0.036 38.92 + CaHSO4+ 2.133e-12 1.962e-12 -11.671 -11.707 -0.036 (0) + FeHSO4+ 1.358e-15 1.249e-15 -14.867 -14.903 -0.036 (0) ------------------------------Saturation indices------------------------------- @@ -209,18 +211,24 @@ S(6) 1.600e-04 Anhydrite -2.97 -7.09 -4.12 CaSO4 Aragonite -0.20 -8.46 -8.25 CaCO3 - Calcite -0.05 -8.46 -8.41 CaCO3 + Arcanite -11.37 -13.48 -2.11 K2SO4 + Calcite -0.06 -8.46 -8.40 CaCO3 CH2O -33.73 -33.73 0.00 CH2O CO2(g) -2.26 -3.53 -1.27 CO2 - Dolomite -0.27 -16.99 -16.72 CaMg(CO3)2 + Dolomite -0.11 -16.99 -16.88 CaMg(CO3)2 + Epsomite -5.33 -7.17 -1.83 MgSO4:7H2O Gypsum -2.49 -7.09 -4.60 CaSO4:2H2O H2(g) -15.13 -18.18 -3.05 H2 H2O(g) -1.91 -0.00 1.91 H2O Halite -11.03 -9.47 1.56 NaCl - Melanterite -7.87 -10.28 -2.41 FeSO4:7H2O + Hexahydrite -5.58 -7.17 -1.59 MgSO4:6H2O + Kieserite -5.85 -7.17 -1.32 MgSO4:H2O + Melanterite -7.88 -10.29 -2.41 FeSO4:7H2O + Mirabilite -11.51 -13.48 -1.97 Na2SO4:10H2O O2(g) -58.39 -61.15 -2.76 O2 Siderite -0.86 -11.66 -10.79 FeCO3 Sylvite -9.47 -9.47 0.00 KCl + Thenardite -13.25 -13.48 -0.23 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -245,129 +253,138 @@ Initial solution 2. Mysse pH = 6.610 pe = 0.000 - Specific Conductance (S/cm, 63C) = 9945 - Density (g/cm) = 0.98524 - Volume (L) = 1.01938 + Specific Conductance (µS/cm, 63°C) = 9924 + Density (g/cm³) = 0.98525 + Volume (L) = 1.01937 + Viscosity (mPa s) = 0.45381 Activity of water = 0.999 - Ionic strength (mol/kgw) = 7.403e-02 + Ionic strength (mol/kgw) = 7.390e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.262e-03 + Total alkalinity (eq/kg) = 5.286e-03 Total CO2 (mol/kg) = 6.870e-03 - Temperature (C) = 63.00 - Electrical balance (eq) = 3.239e-03 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 3.15 - Iterations = 8 + Temperature (°C) = 63.00 + Electrical balance (eq) = 3.215e-03 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 3.14 + Iterations = 8 (16 overall) Total H = 1.110179e+02 - Total O = 5.560449e+01 + Total O = 5.560451e+01 ---------------------------------Redox couples--------------------------------- Redox couple pe Eh (volts) - S(-2)/S(6) -3.6474 -0.2433 + S(-2)/S(6) -3.6464 -0.2432 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 5.981e-07 4.607e-07 -6.223 -6.337 -0.113 -3.62 - H+ 2.966e-07 2.455e-07 -6.528 -6.610 -0.082 0.00 + OH- 5.980e-07 4.607e-07 -6.223 -6.337 -0.113 -3.62 + H+ 2.965e-07 2.455e-07 -6.528 -6.610 -0.082 0.00 H2O 5.551e+01 9.985e-01 1.744 -0.001 0.000 18.35 C(4) 6.870e-03 - HCO3- 4.713e-03 3.742e-03 -2.327 -2.427 -0.100 26.22 - CO2 1.781e-03 1.812e-03 -2.749 -2.742 0.007 36.36 - CaHCO3+ 2.439e-04 1.952e-04 -3.613 -3.709 -0.097 10.66 - MgHCO3+ 6.553e-05 5.092e-05 -4.184 -4.293 -0.110 6.11 - NaHCO3 4.167e-05 4.238e-05 -4.380 -4.373 0.007 1.80 - CaCO3 1.631e-05 1.659e-05 -4.787 -4.780 0.007 -14.51 - NaCO3- 3.516e-06 2.759e-06 -5.454 -5.559 -0.105 0.55 - CO3-2 2.794e-06 1.110e-06 -5.554 -5.955 -0.401 -5.31 - MgCO3 1.617e-06 1.645e-06 -5.791 -5.784 0.007 -17.09 - (CO2)2 1.628e-07 1.656e-07 -6.788 -6.781 0.007 72.72 - FeHCO3+ 1.176e-08 9.224e-09 -7.930 -8.035 -0.105 (0) - FeCO3 6.455e-10 6.566e-10 -9.190 -9.183 0.007 (0) + HCO3- 4.610e-03 3.661e-03 -2.336 -2.436 -0.100 26.07 + CO2 1.753e-03 1.773e-03 -2.756 -2.751 0.005 36.36 + CaHCO3+ 2.375e-04 1.901e-04 -3.624 -3.721 -0.097 10.66 + NaHCO3 1.921e-04 1.997e-04 -3.717 -3.700 0.017 28.00 + MgHCO3+ 5.656e-05 4.396e-05 -4.247 -4.357 -0.109 6.11 + CaCO3 1.588e-05 1.616e-05 -4.799 -4.792 0.007 -14.51 + CO3-2 2.732e-06 1.086e-06 -5.563 -5.964 -0.401 -2.45 + MgCO3 1.396e-06 1.420e-06 -5.855 -5.848 0.007 -17.09 + (CO2)2 1.558e-07 1.585e-07 -6.807 -6.800 0.007 72.72 + FeHCO3+ 1.149e-08 9.014e-09 -7.940 -8.045 -0.105 (0) + FeCO3 6.308e-10 6.417e-10 -9.200 -9.193 0.007 (0) Ca 1.128e-02 - Ca+2 7.602e-03 3.036e-03 -2.119 -2.518 -0.399 -17.56 - CaSO4 3.418e-03 3.476e-03 -2.466 -2.459 0.007 8.42 - CaHCO3+ 2.439e-04 1.952e-04 -3.613 -3.709 -0.097 10.66 - CaCO3 1.631e-05 1.659e-05 -4.787 -4.780 0.007 -14.51 - CaHSO4+ 1.417e-08 1.112e-08 -7.849 -7.954 -0.105 (0) - CaOH+ 2.612e-09 2.050e-09 -8.583 -8.688 -0.105 (0) + Ca+2 7.562e-03 3.022e-03 -2.121 -2.520 -0.398 -17.56 + CaSO4 3.465e-03 3.524e-03 -2.460 -2.453 0.007 8.42 + CaHCO3+ 2.375e-04 1.901e-04 -3.624 -3.721 -0.097 10.66 + CaCO3 1.588e-05 1.616e-05 -4.799 -4.792 0.007 -14.51 + CaHSO4+ 1.436e-08 1.127e-08 -7.843 -7.948 -0.105 (0) + CaOH+ 2.600e-09 2.040e-09 -8.585 -8.690 -0.105 (0) Cl 1.785e-02 Cl- 1.785e-02 1.382e-02 -1.748 -1.859 -0.111 18.29 - FeCl+ 5.994e-10 4.703e-10 -9.222 -9.328 -0.105 (0) + HCl 8.590e-10 9.235e-10 -9.066 -9.035 0.031 (0) + FeCl+ 5.987e-10 4.698e-10 -9.223 -9.328 -0.105 (0) Fe(2) 4.000e-07 - Fe(HS)2 2.820e-07 2.869e-07 -6.550 -6.542 0.007 (0) - Fe+2 6.004e-08 2.465e-08 -7.222 -7.608 -0.387 -19.93 - FeSO4 3.991e-08 4.059e-08 -7.399 -7.392 0.007 -6.81 - FeHCO3+ 1.176e-08 9.224e-09 -7.930 -8.035 -0.105 (0) - Fe(HS)3- 4.549e-09 3.569e-09 -8.342 -8.447 -0.105 (0) - FeCO3 6.455e-10 6.566e-10 -9.190 -9.183 0.007 (0) - FeCl+ 5.994e-10 4.703e-10 -9.222 -9.328 -0.105 (0) - FeOH+ 4.985e-10 3.935e-10 -9.302 -9.405 -0.103 (0) - Fe(OH)2 2.512e-13 2.555e-13 -12.600 -12.593 0.007 (0) - FeHSO4+ 1.150e-13 9.027e-14 -12.939 -13.044 -0.105 (0) - Fe(OH)3- 6.811e-17 5.377e-17 -16.167 -16.269 -0.103 (0) -H(0) 1.182e-09 - H2 5.912e-10 6.014e-10 -9.228 -9.221 0.007 28.58 + Fe(HS)2 2.817e-07 2.865e-07 -6.550 -6.543 0.007 (0) + Fe+2 5.993e-08 2.462e-08 -7.222 -7.609 -0.386 -19.94 + FeSO4 4.060e-08 4.130e-08 -7.391 -7.384 0.007 -6.81 + FeHCO3+ 1.149e-08 9.014e-09 -7.940 -8.045 -0.105 (0) + Fe(HS)3- 4.544e-09 3.566e-09 -8.343 -8.448 -0.105 (0) + FeCO3 6.308e-10 6.417e-10 -9.200 -9.193 0.007 (0) + FeCl+ 5.987e-10 4.698e-10 -9.223 -9.328 -0.105 (0) + FeOH+ 4.978e-10 3.930e-10 -9.303 -9.406 -0.103 (0) + Fe(OH)2 2.509e-13 2.552e-13 -12.601 -12.593 0.007 (0) + FeHSO4+ 1.170e-13 9.183e-14 -12.932 -13.037 -0.105 (0) + Fe(OH)3- 6.802e-17 5.370e-17 -16.167 -16.270 -0.103 (0) +H(0) 1.177e-09 + H2 5.885e-10 5.986e-10 -9.230 -9.223 0.007 28.58 K 2.540e-03 - K+ 2.393e-03 1.848e-03 -2.621 -2.733 -0.112 10.02 - KSO4- 1.472e-04 1.169e-04 -3.832 -3.932 -0.100 34.54 + K+ 2.503e-03 1.934e-03 -2.601 -2.714 -0.112 10.02 + KSO4- 3.662e-05 2.600e-05 -4.436 -4.585 -0.149 24.41 Mg 4.540e-03 - MgSO4 2.378e-03 2.419e-03 -2.624 -2.616 0.007 6.77 - Mg+2 2.095e-03 8.661e-04 -2.679 -3.062 -0.384 -22.47 - MgHCO3+ 6.553e-05 5.092e-05 -4.184 -4.293 -0.110 6.11 - MgCO3 1.617e-06 1.645e-06 -5.791 -5.784 0.007 -17.09 - MgOH+ 3.331e-07 2.684e-07 -6.477 -6.571 -0.094 (0) + MgSO4 2.578e-03 2.668e-03 -2.589 -2.574 0.015 2.94 + Mg+2 1.847e-03 7.643e-04 -2.733 -3.117 -0.383 -22.47 + MgHCO3+ 5.656e-05 4.396e-05 -4.247 -4.357 -0.109 6.11 + Mg(SO4)2-2 5.602e-05 2.438e-05 -4.252 -4.613 -0.361 50.17 + MgCO3 1.396e-06 1.420e-06 -5.855 -5.848 0.007 -17.09 + MgOH+ 2.939e-07 2.368e-07 -6.532 -6.626 -0.094 (0) Na 3.189e-02 - Na+ 3.089e-02 2.437e-02 -1.510 -1.613 -0.103 0.10 - NaSO4- 9.526e-04 7.564e-04 -3.021 -3.121 -0.100 13.56 - NaHCO3 4.167e-05 4.238e-05 -4.380 -4.373 0.007 1.80 - NaCO3- 3.516e-06 2.759e-06 -5.454 -5.559 -0.105 0.55 - NaOH 1.104e-18 1.123e-18 -17.957 -17.950 0.007 (0) + Na+ 3.123e-02 2.464e-02 -1.505 -1.608 -0.103 0.10 + NaSO4- 4.703e-04 3.335e-04 -3.328 -3.477 -0.149 16.08 + NaHCO3 1.921e-04 1.997e-04 -3.717 -3.700 0.017 28.00 + NaOH 1.116e-18 1.135e-18 -17.952 -17.945 0.007 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.070 -63.062 0.007 32.51 + O2 0.000e+00 0.000e+00 -63.066 -63.058 0.007 32.51 S(-2) 2.600e-04 HS- 1.483e-04 1.143e-04 -3.829 -3.942 -0.113 21.39 - H2S 1.111e-04 1.130e-04 -3.954 -3.947 0.007 37.26 - Fe(HS)2 2.820e-07 2.869e-07 -6.550 -6.542 0.007 (0) - Fe(HS)3- 4.549e-09 3.569e-09 -8.342 -8.447 -0.105 (0) - S-2 1.457e-09 5.656e-10 -8.837 -9.247 -0.411 (0) + H2S 1.111e-04 1.130e-04 -3.954 -3.947 0.007 42.59 + Fe(HS)2 2.817e-07 2.865e-07 -6.550 -6.543 0.007 (0) + Fe(HS)3- 4.544e-09 3.566e-09 -8.343 -8.448 -0.105 (0) + S-2 1.456e-09 5.657e-10 -8.837 -9.247 -0.411 (0) + (H2S)2 1.345e-09 1.368e-09 -8.871 -8.864 0.007 27.88 S(6) 1.986e-02 - SO4-2 1.296e-02 5.000e-03 -1.887 -2.301 -0.414 17.22 - CaSO4 3.418e-03 3.476e-03 -2.466 -2.459 0.007 8.42 - MgSO4 2.378e-03 2.419e-03 -2.624 -2.616 0.007 6.77 - NaSO4- 9.526e-04 7.564e-04 -3.021 -3.121 -0.100 13.56 - KSO4- 1.472e-04 1.169e-04 -3.832 -3.932 -0.100 34.54 - HSO4- 3.882e-07 3.046e-07 -6.411 -6.516 -0.105 41.70 - FeSO4 3.991e-08 4.059e-08 -7.399 -7.392 0.007 -6.81 - CaHSO4+ 1.417e-08 1.112e-08 -7.849 -7.954 -0.105 (0) - FeHSO4+ 1.150e-13 9.027e-14 -12.939 -13.044 -0.105 (0) + SO4-2 1.320e-02 5.093e-03 -1.880 -2.293 -0.414 16.79 + CaSO4 3.465e-03 3.524e-03 -2.460 -2.453 0.007 8.42 + MgSO4 2.578e-03 2.668e-03 -2.589 -2.574 0.015 2.94 + NaSO4- 4.703e-04 3.335e-04 -3.328 -3.477 -0.149 16.08 + Mg(SO4)2-2 5.602e-05 2.438e-05 -4.252 -4.613 -0.361 50.17 + KSO4- 3.662e-05 2.600e-05 -4.436 -4.585 -0.149 24.41 + HSO4- 3.953e-07 3.102e-07 -6.403 -6.508 -0.105 41.70 + FeSO4 4.060e-08 4.130e-08 -7.391 -7.384 0.007 -6.81 + CaHSO4+ 1.436e-08 1.127e-08 -7.843 -7.948 -0.105 (0) + FeHSO4+ 1.170e-13 9.183e-14 -12.932 -13.037 -0.105 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(336 K, 1 atm) - Anhydrite -0.07 -4.82 -4.75 CaSO4 - Aragonite 0.20 -8.47 -8.67 CaCO3 - Calcite 0.32 -8.47 -8.79 CaCO3 - CH2O -14.59 -14.59 0.00 CH2O - CO2(g) -0.94 -2.74 -1.80 CO2 - Dolomite 0.38 -17.49 -17.87 CaMg(CO3)2 + Anhydrite -0.07 -4.81 -4.75 CaSO4 + Aragonite 0.19 -8.48 -8.67 CaCO3 + Arcanite -6.17 -7.72 -1.55 K2SO4 + Calcite 0.44 -8.48 -8.92 CaCO3 + CH2O -14.60 -14.60 0.00 CH2O + CO2(g) -0.95 -2.75 -1.80 CO2 + Dolomite 0.49 -17.56 -18.06 CaMg(CO3)2 + Epsomite -3.91 -5.41 -1.50 MgSO4:7H2O FeS(ppt) -1.03 -4.94 -3.92 FeS - Gypsum -0.16 -4.82 -4.66 CaSO4:2H2O + Gypsum -0.15 -4.81 -4.66 CaSO4:2H2O H2(g) -6.08 -9.22 -3.14 H2 H2O(g) -0.65 -0.00 0.65 H2O - H2S(g) -2.62 -10.55 -7.94 H2S - Halite -5.07 -3.47 1.60 NaCl + H2S(g) -2.63 -10.55 -7.92 H2S + Halite -5.06 -3.47 1.60 NaCl + Hexahydrite -3.90 -5.41 -1.51 MgSO4:6H2O + Kieserite -4.09 -5.41 -1.32 MgSO4:H2O Mackinawite -0.29 -4.94 -4.65 FeS - Melanterite -8.06 -9.91 -1.85 FeSO4:7H2O + Melanterite -8.05 -9.91 -1.85 FeSO4:7H2O + Mirabilite -5.46 -5.52 -0.06 Na2SO4:10H2O O2(g) -59.99 -63.06 -3.07 O2 Pyrite 7.98 -9.57 -17.54 FeS2 - Siderite -2.47 -13.56 -11.10 FeCO3 - Sulfur -2.12 1.98 4.09 S - Sylvite -4.59 -4.59 0.00 KCl + Siderite -2.48 -13.57 -11.10 FeCO3 + Sulfur -2.11 1.98 4.09 S + Sylvite -4.57 -4.57 0.00 KCl + Thenardite -5.02 -5.51 -0.49 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -382,7 +399,7 @@ Solution 1: Recharge number 3 Input Delta Input+Delta pH 7.550e+00 + 0.000e+00 = 7.550e+00 - Alkalinity 4.016e-03 + 1.061e-04 = 4.122e-03 + Alkalinity 4.016e-03 + 1.063e-04 = 4.122e-03 C(-4) 0.000e+00 + 0.000e+00 = 0.000e+00 C(4) 4.300e-03 + 0.000e+00 = 4.300e-03 Ca 1.200e-03 + 0.000e+00 = 1.200e-03 @@ -406,17 +423,17 @@ Solution 2: Mysse Input Delta Input+Delta pH 6.610e+00 + 0.000e+00 = 6.610e+00 - Alkalinity 5.262e-03 + 0.000e+00 = 5.262e-03 + Alkalinity 5.286e-03 + 0.000e+00 = 5.286e-03 C(-4) 0.000e+00 + 0.000e+00 = 0.000e+00 C(4) 6.870e-03 + 0.000e+00 = 6.870e-03 Ca 1.128e-02 + 0.000e+00 = 1.128e-02 Cl 1.785e-02 + 0.000e+00 = 1.785e-02 Fe(2) 4.000e-07 + 0.000e+00 = 4.000e-07 Fe(3) 0.000e+00 + 0.000e+00 = 0.000e+00 - H(0) 1.182e-09 + 0.000e+00 = 1.182e-09 + H(0) 1.177e-09 + 0.000e+00 = 1.177e-09 K 2.540e-03 + 0.000e+00 = 2.540e-03 Mg 4.540e-03 + 0.000e+00 = 4.540e-03 - Na 3.189e-02 + -1.253e-03 = 3.064e-02 + Na 3.189e-02 + -1.229e-03 = 3.066e-02 O(0) 0.000e+00 + 0.000e+00 = 0.000e+00 S(-2) 2.600e-04 + 0.000e+00 = 2.600e-04 S(6) 1.986e-02 + 9.930e-04 = 2.085e-02 @@ -429,33 +446,33 @@ Solution 2: Mysse Isotopic composition of phases: 13C Dolomite 3 + 0 = 3 13C Calcite -1.5 + 0 = -1.5 - 34S Anhydrite 13.5 + -0.735333 = 12.7647 - 13C CH2O -25 + 4.07955 = -20.9205 + 34S Anhydrite 13.5 + -0.715702 = 12.7843 + 13C CH2O -25 + 3.93546 = -21.0645 34S Pyrite -22 + 2 = -20 Solution fractions: Minimum Maximum Solution 1 1.000e+00 9.999e-01 1.000e+00 Solution 2 1.000e+00 1.000e+00 1.000e+00 -Phase mole transfers: Minimum Maximum - Dolomite 1.118e-02 1.022e-02 1.193e-02 CaMg(CO3)2 - Calcite -2.404e-02 -2.597e-02 -2.115e-02 CaCO3 - Anhydrite 2.294e-02 2.040e-02 2.380e-02 CaSO4 - CH2O 4.248e-03 2.509e-03 5.833e-03 CH2O - Goethite 9.936e-04 5.218e-04 1.424e-03 FeOOH - Pyrite -9.942e-04 -1.424e-03 -5.235e-04 FeS2 - MgX2 -7.653e-03 -8.578e-03 -6.972e-03 MgX2 - NaX 1.531e-02 1.394e-02 1.716e-02 NaX - Halite 1.531e-02 1.429e-02 1.633e-02 NaCl - Sylvite 2.520e-03 2.392e-03 2.648e-03 KCl +Phase mole transfers: Minimum Maximum Formula (Approximate SI in solution 1, 2 at 336 K, 1 atm) + Dolomite 1.120e-02 1.022e-02 1.194e-02 CaMg(CO3)2 ( 1.06, 0.49) + Calcite -2.404e-02 -2.597e-02 -2.113e-02 CaCO3 ( 0.46, 0.44) + Anhydrite 2.293e-02 2.037e-02 2.378e-02 CaSO4 ( -2.35, -0.07) + CH2O 4.222e-03 2.482e-03 5.808e-03 CH2O ( , ) + Goethite 9.867e-04 5.146e-04 1.418e-03 FeOOH ( , ) + Pyrite -9.873e-04 -1.417e-03 -5.163e-04 FeS2 ( , ) + MgX2 -7.665e-03 -8.591e-03 -6.972e-03 MgX2 ( , ) + NaX 1.533e-02 1.394e-02 1.718e-02 NaX ( , ) + Halite 1.531e-02 1.429e-02 1.633e-02 NaCl (-11.07, -5.06) + Sylvite 2.520e-03 2.392e-03 2.648e-03 KCl ( -9.47, -4.57) Redox mole transfers: - Fe(3) 9.936e-04 - H(0) -1.182e-09 - S(-2) -2.248e-03 + Fe(3) 9.867e-04 + H(0) -1.177e-09 + S(-2) -2.235e-03 -Sum of residuals (epsilons in documentation): 2.327e+00 -Sum of delta/uncertainty limit: 4.498e+00 +Sum of residuals (epsilons in documentation): 2.313e+00 +Sum of delta/uncertainty limit: 4.445e+00 Maximum fractional error in element concentration: 5.000e-02 Model contains minimum number of phases. @@ -466,7 +483,7 @@ Solution 1: Recharge number 3 Input Delta Input+Delta pH 7.550e+00 + 0.000e+00 = 7.550e+00 - Alkalinity 4.016e-03 + 1.061e-04 = 4.122e-03 + Alkalinity 4.016e-03 + 1.063e-04 = 4.122e-03 C(-4) 0.000e+00 + 0.000e+00 = 0.000e+00 C(4) 4.300e-03 + 0.000e+00 = 4.300e-03 Ca 1.200e-03 + 0.000e+00 = 1.200e-03 @@ -490,17 +507,17 @@ Solution 2: Mysse Input Delta Input+Delta pH 6.610e+00 + 0.000e+00 = 6.610e+00 - Alkalinity 5.262e-03 + 0.000e+00 = 5.262e-03 + Alkalinity 5.286e-03 + 0.000e+00 = 5.286e-03 C(-4) 0.000e+00 + 0.000e+00 = 0.000e+00 - C(4) 6.870e-03 + -3.435e-04 = 6.527e-03 - Ca 1.128e-02 + -1.232e-04 = 1.116e-02 + C(4) 6.870e-03 + -3.426e-04 = 6.527e-03 + Ca 1.128e-02 + 0.000e+00 = 1.128e-02 Cl 1.785e-02 + 0.000e+00 = 1.785e-02 Fe(2) 4.000e-07 + 0.000e+00 = 4.000e-07 Fe(3) 0.000e+00 + 0.000e+00 = 0.000e+00 - H(0) 1.182e-09 + 0.000e+00 = 1.182e-09 + H(0) 1.177e-09 + 0.000e+00 = 1.177e-09 K 2.540e-03 + 0.000e+00 = 2.540e-03 Mg 4.540e-03 + 0.000e+00 = 4.540e-03 - Na 3.189e-02 + -1.007e-03 = 3.088e-02 + Na 3.189e-02 + -1.229e-03 = 3.066e-02 O(0) 0.000e+00 + 0.000e+00 = 0.000e+00 S(-2) 2.600e-04 + 0.000e+00 = 2.600e-04 S(6) 1.986e-02 + 9.930e-04 = 2.085e-02 @@ -513,7 +530,7 @@ Solution 2: Mysse Isotopic composition of phases: 13C Dolomite 3 + 2 = 5 13C Calcite -1.5 + -1 = -2.5 - 34S Anhydrite 13.5 + -0.164871 = 13.3351 + 34S Anhydrite 13.5 + -0.146069 = 13.3539 13C CH2O -25 + 5 = -20 34S Pyrite -22 + 2 = -20 @@ -521,25 +538,25 @@ Solution fractions: Minimum Maximum Solution 1 1.000e+00 1.000e+00 1.000e+00 Solution 2 1.000e+00 1.000e+00 1.000e+00 -Phase mole transfers: Minimum Maximum - Dolomite 5.474e-03 4.995e-03 5.839e-03 CaMg(CO3)2 - Calcite -1.223e-02 -1.337e-02 -1.069e-02 CaCO3 - Anhydrite 2.255e-02 2.040e-02 2.298e-02 CaSO4 - CH2O 3.512e-03 2.509e-03 4.299e-03 CH2O - Goethite 7.973e-04 5.218e-04 1.015e-03 FeOOH - Pyrite -7.979e-04 -1.015e-03 -5.235e-04 FeS2 - Ca.75Mg.25X2 -7.777e-03 -8.578e-03 -6.972e-03 Ca.75Mg.25X2 - NaX 1.555e-02 1.394e-02 1.716e-02 NaX - Halite 1.531e-02 1.429e-02 1.633e-02 NaCl - Sylvite 2.520e-03 2.392e-03 2.648e-03 KCl +Phase mole transfers: Minimum Maximum Formula (Approximate SI in solution 1, 2 at 336 K, 1 atm) + Dolomite 5.446e-03 4.995e-03 5.842e-03 CaMg(CO3)2 ( 1.06, 0.49) + Calcite -1.215e-02 -1.337e-02 -1.066e-02 CaCO3 ( 0.46, 0.44) + Anhydrite 2.254e-02 2.037e-02 2.298e-02 CaSO4 ( -2.35, -0.07) + CH2O 3.488e-03 2.482e-03 4.301e-03 CH2O ( , ) + Goethite 7.909e-04 5.146e-04 1.016e-03 FeOOH ( , ) + Pyrite -7.915e-04 -1.015e-03 -5.163e-04 FeS2 ( , ) + Ca.75Mg.25X2 -7.665e-03 -8.591e-03 -6.972e-03 Ca.75Mg.25X2 ( , ) + NaX 1.533e-02 1.394e-02 1.718e-02 NaX ( , ) + Halite 1.531e-02 1.429e-02 1.633e-02 NaCl (-11.07, -5.06) + Sylvite 2.520e-03 2.392e-03 2.648e-03 KCl ( -9.47, -4.57) Redox mole transfers: - Fe(3) 7.973e-04 - H(0) -1.182e-09 - S(-2) -1.856e-03 + Fe(3) 7.909e-04 + H(0) -1.177e-09 + S(-2) -1.843e-03 -Sum of residuals (epsilons in documentation): 3.402e+00 -Sum of delta/uncertainty limit: 7.461e+00 +Sum of residuals (epsilons in documentation): 3.321e+00 +Sum of delta/uncertainty limit: 7.370e+00 Maximum fractional error in element concentration: 5.000e-02 Model contains minimum number of phases. @@ -560,7 +577,3 @@ End of simulation. Reading input data for simulation 2. ------------------------------------ -------------------------------- -End of Run after 0.038 Seconds. -------------------------------- - diff --git a/ex19.out b/ex19.out index 3919e247..32b57c60 100644 --- a/ex19.out +++ b/ex19.out @@ -68,7 +68,3 @@ Reading input data for simulation 1. -end PRINT reset false -------------------------------- -End of Run after 0.016 Seconds. -------------------------------- - diff --git a/ex19b.out b/ex19b.out index f623be52..effb8a87 100644 --- a/ex19b.out +++ b/ex19b.out @@ -22,7 +22,3 @@ Reading input data for simulation 1. TITLE Example 19B.--Cd sorption on X, Hfo and OC in loamy soil PRINT reset false -------------------------------- -End of Run after 0.049 Seconds. -------------------------------- - diff --git a/ex2.out b/ex2.out index ed2bf1c6..ef3ccc3c 100644 --- a/ex2.out +++ b/ex2.out @@ -68,16 +68,15 @@ Initial solution 1. Pure water pH = 7.000 pe = 4.000 - Specific Conductance (S/cm, 25C) = 0 - Density (g/cm) = 0.99704 + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89002 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.007e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.217e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.60 Iterations = 0 @@ -87,7 +86,7 @@ Initial solution 1. Pure water ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.013e-07 1.012e-07 -6.995 -6.995 -0.000 -4.14 H+ 1.001e-07 1.000e-07 -7.000 -7.000 -0.000 0.00 @@ -137,16 +136,15 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.855e-01 pH = 7.066 Charge balance pe = 10.745 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 2259 - Density (g/cm) = 0.99908 + Specific Conductance (µS/cm, 25°C) = 2269 + Density (g/cm³) = 0.99907 Volume (L) = 0.96736 + Viscosity (mPa s) = 0.89989 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.174e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 17 @@ -156,7 +154,7 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.855e-01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.431e-07 1.178e-07 -6.845 -6.929 -0.084 -3.90 H+ 9.975e-08 8.589e-08 -7.001 -7.066 -0.065 0.00 @@ -172,10 +170,11 @@ O(0) 2.879e-15 O2 1.439e-15 1.453e-15 -14.842 -14.838 0.004 30.40 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -118.112 -118.196 -0.084 20.77 - H2S 0.000e+00 0.000e+00 -118.325 -118.320 0.004 37.16 + H2S 0.000e+00 0.000e+00 -118.325 -118.320 0.004 36.27 S-2 0.000e+00 0.000e+00 -123.736 -124.048 -0.312 (0) + (H2S)2 0.000e+00 0.000e+00 -237.923 -237.919 0.004 30.09 S(6) 1.505e-02 - SO4-2 1.043e-02 5.067e-03 -1.982 -2.295 -0.314 15.16 + SO4-2 1.043e-02 5.067e-03 -1.982 -2.295 -0.314 15.44 CaSO4 4.611e-03 4.656e-03 -2.336 -2.332 0.004 7.50 HSO4- 5.088e-08 4.231e-08 -7.293 -7.374 -0.080 40.44 CaHSO4+ 3.161e-09 2.629e-09 -8.500 -8.580 -0.080 (0) @@ -188,7 +187,7 @@ S(6) 1.505e-02 Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O H2(g) -35.67 -38.77 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -117.27 -125.26 -7.99 H2S + H2S(g) -117.33 -125.26 -7.94 H2S O2(g) -11.95 -14.84 -2.89 O2 Sulfur -87.58 -82.70 4.88 S @@ -220,16 +219,15 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.854e-01 pH = 7.052 Charge balance pe = 10.676 Adjusted to redox equilibrium - Specific Conductance (S/cm, 26C) = 2312 - Density (g/cm) = 0.99882 + Specific Conductance (µS/cm, 26°C) = 2320 + Density (g/cm³) = 0.99882 Volume (L) = 0.96762 + Viscosity (mPa s) = 0.87981 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.180e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 26.00 + Temperature (°C) = 26.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 17 @@ -239,7 +237,7 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.854e-01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.496e-07 1.231e-07 -6.825 -6.910 -0.085 -3.86 H+ 1.030e-07 8.863e-08 -6.987 -7.052 -0.065 0.00 @@ -255,10 +253,11 @@ O(0) 2.878e-15 O2 1.439e-15 1.453e-15 -14.842 -14.838 0.004 30.48 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -117.584 -117.669 -0.085 20.81 - H2S 0.000e+00 0.000e+00 -117.797 -117.793 0.004 37.17 + H2S 0.000e+00 0.000e+00 -117.797 -117.793 0.004 36.51 S-2 0.000e+00 0.000e+00 -123.192 -123.505 -0.313 (0) + (H2S)2 0.000e+00 0.000e+00 -236.857 -236.853 0.004 30.05 S(6) 1.509e-02 - SO4-2 1.045e-02 5.066e-03 -1.981 -2.295 -0.314 15.29 + SO4-2 1.045e-02 5.066e-03 -1.981 -2.295 -0.314 15.57 CaSO4 4.645e-03 4.690e-03 -2.333 -2.329 0.004 7.54 HSO4- 5.369e-08 4.462e-08 -7.270 -7.350 -0.080 40.50 CaHSO4+ 3.335e-09 2.772e-09 -8.477 -8.557 -0.080 (0) @@ -271,7 +270,7 @@ S(6) 1.509e-02 Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O H2(g) -35.51 -38.61 -3.10 H2 H2O(g) -1.48 -0.00 1.48 H2O - H2S(g) -116.73 -124.72 -7.99 H2S + H2S(g) -116.79 -124.72 -7.93 H2S O2(g) -11.94 -14.84 -2.90 O2 Sulfur -87.20 -82.34 4.86 S @@ -302,17 +301,16 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.854e-01 ----------------------------Description of solution---------------------------- pH = 7.039 Charge balance - pe = 10.608 Adjusted to redox equilibrium - Specific Conductance (S/cm, 27C) = 2364 - Density (g/cm) = 0.99855 - Volume (L) = 0.96788 + pe = 10.607 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 27°C) = 2370 + Density (g/cm³) = 0.99855 + Volume (L) = 0.96789 + Viscosity (mPa s) = 0.86044 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.185e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 27.00 + Temperature (°C) = 27.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 20 @@ -322,7 +320,7 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.854e-01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.564e-07 1.287e-07 -6.806 -6.891 -0.085 -3.83 H+ 1.063e-07 9.144e-08 -6.974 -7.039 -0.065 0.00 @@ -332,16 +330,17 @@ Ca 1.514e-02 CaSO4 4.677e-03 4.722e-03 -2.330 -2.326 0.004 7.57 CaOH+ 1.128e-08 9.371e-09 -7.948 -8.028 -0.080 (0) CaHSO4+ 3.517e-09 2.922e-09 -8.454 -8.534 -0.080 (0) -H(0) 7.005e-39 - H2 3.503e-39 3.537e-39 -38.456 -38.451 0.004 28.60 -O(0) 2.887e-15 - O2 1.443e-15 1.457e-15 -14.841 -14.836 0.004 30.55 +H(0) 7.029e-39 + H2 3.515e-39 3.549e-39 -38.454 -38.450 0.004 28.60 +O(0) 2.867e-15 + O2 1.434e-15 1.448e-15 -14.844 -14.839 0.004 30.55 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -117.064 -117.149 -0.085 20.85 - H2S 0.000e+00 0.000e+00 -117.275 -117.271 0.004 37.17 - S-2 0.000e+00 0.000e+00 -122.655 -122.969 -0.313 (0) + HS- 0.000e+00 0.000e+00 -117.058 -117.143 -0.085 20.85 + H2S 0.000e+00 0.000e+00 -117.270 -117.265 0.004 36.75 + S-2 0.000e+00 0.000e+00 -122.649 -122.963 -0.313 (0) + (H2S)2 0.000e+00 0.000e+00 -235.792 -235.787 0.004 30.00 S(6) 1.514e-02 - SO4-2 1.046e-02 5.065e-03 -1.980 -2.295 -0.315 15.42 + SO4-2 1.046e-02 5.065e-03 -1.980 -2.295 -0.315 15.69 CaSO4 4.677e-03 4.722e-03 -2.330 -2.326 0.004 7.57 HSO4- 5.663e-08 4.705e-08 -7.247 -7.327 -0.080 40.57 CaHSO4+ 3.517e-09 2.922e-09 -8.454 -8.534 -0.080 (0) @@ -352,11 +351,11 @@ S(6) 1.514e-02 Anhydrite -0.28 -4.58 -4.30 CaSO4 Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2(g) -35.35 -38.45 -3.11 H2 + H2(g) -35.34 -38.45 -3.11 H2 H2O(g) -1.45 -0.00 1.45 H2O - H2S(g) -116.20 -124.19 -7.99 H2S + H2S(g) -116.25 -124.18 -7.93 H2S O2(g) -11.93 -14.84 -2.91 O2 - Sulfur -86.81 -81.98 4.84 S + Sulfur -86.81 -81.97 4.84 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -386,16 +385,15 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.854e-01 pH = 7.025 Charge balance pe = 10.539 Adjusted to redox equilibrium - Specific Conductance (S/cm, 28C) = 2417 - Density (g/cm) = 0.99828 + Specific Conductance (µS/cm, 28°C) = 2420 + Density (g/cm³) = 0.99827 Volume (L) = 0.96816 + Viscosity (mPa s) = 0.84175 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.189e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 28.00 + Temperature (°C) = 28.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 21 @@ -405,7 +403,7 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.854e-01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.634e-07 1.344e-07 -6.787 -6.872 -0.085 -3.79 H+ 1.096e-07 9.432e-08 -6.960 -7.025 -0.065 0.00 @@ -421,10 +419,11 @@ O(0) 2.870e-15 O2 1.435e-15 1.449e-15 -14.843 -14.839 0.004 30.63 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -116.539 -116.624 -0.085 20.89 - H2S 0.000e+00 0.000e+00 -116.750 -116.745 0.004 37.18 + H2S 0.000e+00 0.000e+00 -116.750 -116.745 0.004 36.98 S-2 0.000e+00 0.000e+00 -122.114 -122.428 -0.314 (0) + (H2S)2 0.000e+00 0.000e+00 -234.741 -234.737 0.004 29.96 S(6) 1.518e-02 - SO4-2 1.047e-02 5.063e-03 -1.980 -2.296 -0.316 15.53 + SO4-2 1.047e-02 5.063e-03 -1.980 -2.296 -0.316 15.80 CaSO4 4.708e-03 4.754e-03 -2.327 -2.323 0.004 7.61 HSO4- 5.973e-08 4.961e-08 -7.224 -7.304 -0.081 40.63 CaHSO4+ 3.708e-09 3.080e-09 -8.431 -8.511 -0.081 (0) @@ -437,7 +436,7 @@ S(6) 1.518e-02 Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O H2(g) -35.18 -38.29 -3.11 H2 H2O(g) -1.43 -0.00 1.43 H2O - H2S(g) -115.66 -123.65 -7.99 H2S + H2S(g) -115.72 -123.65 -7.93 H2S O2(g) -11.93 -14.84 -2.91 O2 Sulfur -86.43 -81.62 4.81 S @@ -469,16 +468,15 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.853e-01 pH = 7.012 Charge balance pe = 10.472 Adjusted to redox equilibrium - Specific Conductance (S/cm, 29C) = 2469 - Density (g/cm) = 0.99799 + Specific Conductance (µS/cm, 29°C) = 2470 + Density (g/cm³) = 0.99799 Volume (L) = 0.96844 + Viscosity (mPa s) = 0.82371 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.193e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 29.00 + Temperature (°C) = 29.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 17 @@ -488,7 +486,7 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.853e-01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.706e-07 1.403e-07 -6.768 -6.853 -0.085 -3.76 H+ 1.131e-07 9.726e-08 -6.947 -7.012 -0.065 0.00 @@ -504,10 +502,11 @@ O(0) 2.887e-15 O2 1.444e-15 1.458e-15 -14.841 -14.836 0.004 30.70 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -116.028 -116.113 -0.085 20.93 - H2S 0.000e+00 0.000e+00 -116.238 -116.233 0.004 37.18 + H2S 0.000e+00 0.000e+00 -116.238 -116.233 0.004 37.21 S-2 0.000e+00 0.000e+00 -121.587 -121.901 -0.315 (0) + (H2S)2 0.000e+00 0.000e+00 -233.707 -233.703 0.004 29.91 S(6) 1.522e-02 - SO4-2 1.048e-02 5.060e-03 -1.980 -2.296 -0.316 15.64 + SO4-2 1.048e-02 5.060e-03 -1.980 -2.296 -0.316 15.91 CaSO4 4.738e-03 4.783e-03 -2.324 -2.320 0.004 7.64 HSO4- 6.298e-08 5.228e-08 -7.201 -7.282 -0.081 40.69 CaHSO4+ 3.908e-09 3.244e-09 -8.408 -8.489 -0.081 (0) @@ -520,7 +519,7 @@ S(6) 1.522e-02 Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O H2(g) -35.03 -38.14 -3.11 H2 H2O(g) -1.40 -0.00 1.40 H2O - H2S(g) -115.14 -123.12 -7.98 H2S + H2S(g) -115.20 -123.12 -7.93 H2S O2(g) -11.92 -14.84 -2.92 O2 Sulfur -86.06 -81.27 4.79 S @@ -551,17 +550,16 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.853e-01 ----------------------------Description of solution---------------------------- pH = 6.999 Charge balance - pe = 10.405 Adjusted to redox equilibrium - Specific Conductance (S/cm, 30C) = 2522 - Density (g/cm) = 0.99770 - Volume (L) = 0.96873 + pe = 10.404 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 30°C) = 2521 + Density (g/cm³) = 0.99769 + Volume (L) = 0.96874 + Viscosity (mPa s) = 0.80628 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.196e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 30.00 + Temperature (°C) = 30.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 17 @@ -571,7 +569,7 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.853e-01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.781e-07 1.463e-07 -6.749 -6.835 -0.085 -3.73 H+ 1.166e-07 1.003e-07 -6.933 -6.999 -0.066 0.00 @@ -581,16 +579,17 @@ Ca 1.526e-02 CaSO4 4.766e-03 4.812e-03 -2.322 -2.318 0.004 7.68 CaOH+ 1.028e-08 8.533e-09 -7.988 -8.069 -0.081 (0) CaHSO4+ 4.117e-09 3.416e-09 -8.385 -8.466 -0.081 (0) -H(0) 2.082e-38 - H2 1.041e-38 1.051e-38 -37.983 -37.978 0.004 28.60 -O(0) 2.885e-15 - O2 1.443e-15 1.457e-15 -14.841 -14.837 0.004 30.77 +H(0) 2.086e-38 + H2 1.043e-38 1.053e-38 -37.982 -37.977 0.004 28.60 +O(0) 2.873e-15 + O2 1.436e-15 1.450e-15 -14.843 -14.839 0.004 30.77 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -115.514 -115.600 -0.085 20.97 - H2S 0.000e+00 0.000e+00 -115.723 -115.719 0.004 37.18 - S-2 0.000e+00 0.000e+00 -121.057 -121.373 -0.315 (0) + HS- 0.000e+00 0.000e+00 -115.511 -115.596 -0.085 20.97 + H2S 0.000e+00 0.000e+00 -115.719 -115.715 0.004 37.42 + S-2 0.000e+00 0.000e+00 -121.054 -121.369 -0.315 (0) + (H2S)2 0.000e+00 0.000e+00 -232.660 -232.656 0.004 29.87 S(6) 1.526e-02 - SO4-2 1.049e-02 5.056e-03 -1.979 -2.296 -0.317 15.75 + SO4-2 1.049e-02 5.056e-03 -1.979 -2.296 -0.317 16.01 CaSO4 4.766e-03 4.812e-03 -2.322 -2.318 0.004 7.68 HSO4- 6.639e-08 5.509e-08 -7.178 -7.259 -0.081 40.74 CaHSO4+ 4.117e-09 3.416e-09 -8.385 -8.466 -0.081 (0) @@ -603,7 +602,7 @@ S(6) 1.526e-02 Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O H2(g) -34.87 -37.98 -3.11 H2 H2O(g) -1.38 -0.00 1.38 H2O - H2S(g) -114.62 -122.60 -7.98 H2S + H2S(g) -114.67 -122.59 -7.93 H2S O2(g) -11.91 -14.84 -2.93 O2 Sulfur -85.68 -80.91 4.77 S @@ -635,16 +634,15 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.853e-01 pH = 6.986 Charge balance pe = 10.338 Adjusted to redox equilibrium - Specific Conductance (S/cm, 31C) = 2574 - Density (g/cm) = 0.99739 - Volume (L) = 0.96903 + Specific Conductance (µS/cm, 31°C) = 2571 + Density (g/cm³) = 0.99739 + Volume (L) = 0.96904 + Viscosity (mPa s) = 0.78944 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.198e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 31.00 + Temperature (°C) = 31.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 17 @@ -654,7 +652,7 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.853e-01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.858e-07 1.526e-07 -6.731 -6.816 -0.085 -3.71 H+ 1.202e-07 1.033e-07 -6.920 -6.986 -0.066 0.00 @@ -670,10 +668,11 @@ O(0) 2.890e-15 O2 1.445e-15 1.459e-15 -14.840 -14.836 0.004 30.84 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -115.007 -115.092 -0.085 21.00 - H2S 0.000e+00 0.000e+00 -115.214 -115.210 0.004 37.19 + H2S 0.000e+00 0.000e+00 -115.214 -115.210 0.004 37.64 S-2 0.000e+00 0.000e+00 -120.533 -120.849 -0.316 (0) + (H2S)2 0.000e+00 0.000e+00 -231.640 -231.635 0.004 29.82 S(6) 1.529e-02 - SO4-2 1.050e-02 5.052e-03 -1.979 -2.297 -0.318 15.85 + SO4-2 1.050e-02 5.052e-03 -1.979 -2.297 -0.318 16.11 CaSO4 4.792e-03 4.839e-03 -2.319 -2.315 0.004 7.71 HSO4- 6.997e-08 5.804e-08 -7.155 -7.236 -0.081 40.80 CaHSO4+ 4.335e-09 3.596e-09 -8.363 -8.444 -0.081 (0) @@ -686,7 +685,7 @@ S(6) 1.529e-02 Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O H2(g) -34.71 -37.82 -3.11 H2 H2O(g) -1.35 -0.00 1.35 H2O - H2S(g) -114.10 -122.08 -7.98 H2S + H2S(g) -114.15 -122.08 -7.93 H2S O2(g) -11.90 -14.84 -2.93 O2 Sulfur -85.31 -80.56 4.74 S @@ -718,16 +717,15 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.852e-01 pH = 6.973 Charge balance pe = 10.271 Adjusted to redox equilibrium - Specific Conductance (S/cm, 32C) = 2627 - Density (g/cm) = 0.99708 - Volume (L) = 0.96934 + Specific Conductance (µS/cm, 32°C) = 2620 + Density (g/cm³) = 0.99708 + Volume (L) = 0.96935 + Viscosity (mPa s) = 0.77316 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.200e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 32.00 + Temperature (°C) = 32.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 17 @@ -737,7 +735,7 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.852e-01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.938e-07 1.591e-07 -6.713 -6.798 -0.086 -3.68 H+ 1.239e-07 1.065e-07 -6.907 -6.973 -0.066 0.00 @@ -753,10 +751,11 @@ O(0) 2.873e-15 O2 1.436e-15 1.450e-15 -14.843 -14.839 0.004 30.91 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -114.495 -114.581 -0.086 21.04 - H2S 0.000e+00 0.000e+00 -114.702 -114.697 0.004 37.19 + H2S 0.000e+00 0.000e+00 -114.702 -114.697 0.004 37.85 S-2 0.000e+00 0.000e+00 -120.006 -120.323 -0.316 (0) + (H2S)2 0.000e+00 0.000e+00 -230.605 -230.601 0.004 29.78 S(6) 1.532e-02 - SO4-2 1.050e-02 5.047e-03 -1.979 -2.297 -0.318 15.94 + SO4-2 1.050e-02 5.047e-03 -1.979 -2.297 -0.318 16.19 CaSO4 4.818e-03 4.864e-03 -2.317 -2.313 0.004 7.74 HSO4- 7.372e-08 6.113e-08 -7.132 -7.214 -0.081 40.85 CaHSO4+ 4.563e-09 3.784e-09 -8.341 -8.422 -0.081 (0) @@ -769,7 +768,7 @@ S(6) 1.532e-02 Gypsum 0.00 -4.59 -4.59 CaSO4:2H2O H2(g) -34.55 -37.67 -3.12 H2 H2O(g) -1.33 -0.00 1.33 H2O - H2S(g) -113.58 -121.55 -7.98 H2S + H2S(g) -113.63 -121.55 -7.92 H2S O2(g) -11.90 -14.84 -2.94 O2 Sulfur -84.93 -80.21 4.72 S @@ -801,16 +800,15 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.852e-01 pH = 6.960 Charge balance pe = 10.206 Adjusted to redox equilibrium - Specific Conductance (S/cm, 33C) = 2679 - Density (g/cm) = 0.99676 + Specific Conductance (µS/cm, 33°C) = 2670 + Density (g/cm³) = 0.99675 Volume (L) = 0.96966 + Viscosity (mPa s) = 0.75742 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.201e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 33.00 + Temperature (°C) = 33.00 Electrical balance (eq) = -1.207e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 20 @@ -820,7 +818,7 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.852e-01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 2.020e-07 1.658e-07 -6.695 -6.780 -0.086 -3.66 H+ 1.276e-07 1.097e-07 -6.894 -6.960 -0.066 0.00 @@ -836,10 +834,11 @@ O(0) 2.888e-15 O2 1.444e-15 1.458e-15 -14.840 -14.836 0.004 30.97 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -113.998 -114.083 -0.086 21.07 - H2S 0.000e+00 0.000e+00 -114.202 -114.198 0.004 37.19 + H2S 0.000e+00 0.000e+00 -114.202 -114.198 0.004 38.05 S-2 0.000e+00 0.000e+00 -119.493 -119.810 -0.317 (0) + (H2S)2 0.000e+00 0.000e+00 -229.596 -229.592 0.004 29.73 S(6) 1.534e-02 - SO4-2 1.050e-02 5.042e-03 -1.979 -2.297 -0.319 16.03 + SO4-2 1.050e-02 5.042e-03 -1.979 -2.297 -0.319 16.27 CaSO4 4.841e-03 4.889e-03 -2.315 -2.311 0.004 7.77 HSO4- 7.765e-08 6.436e-08 -7.110 -7.191 -0.081 40.90 CaHSO4+ 4.801e-09 3.980e-09 -8.319 -8.400 -0.081 (0) @@ -852,7 +851,7 @@ S(6) 1.534e-02 Gypsum 0.00 -4.59 -4.59 CaSO4:2H2O H2(g) -34.40 -37.51 -3.12 H2 H2O(g) -1.30 -0.00 1.30 H2O - H2S(g) -113.07 -121.04 -7.97 H2S + H2S(g) -113.12 -121.04 -7.92 H2S O2(g) -11.89 -14.84 -2.95 O2 Sulfur -84.57 -79.87 4.70 S @@ -884,16 +883,15 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.852e-01 pH = 6.947 Charge balance pe = 10.140 Adjusted to redox equilibrium - Specific Conductance (S/cm, 34C) = 2731 - Density (g/cm) = 0.99643 + Specific Conductance (µS/cm, 34°C) = 2720 + Density (g/cm³) = 0.99642 Volume (L) = 0.96999 + Viscosity (mPa s) = 0.74219 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.201e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 34.00 + Temperature (°C) = 34.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 17 @@ -903,7 +901,7 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.852e-01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 2.104e-07 1.727e-07 -6.677 -6.763 -0.086 -3.64 H+ 1.315e-07 1.129e-07 -6.881 -6.947 -0.066 0.00 @@ -919,10 +917,11 @@ O(0) 2.881e-15 O2 1.440e-15 1.454e-15 -14.842 -14.837 0.004 31.04 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -113.496 -113.582 -0.086 21.10 - H2S 0.000e+00 0.000e+00 -113.699 -113.695 0.004 37.20 + H2S 0.000e+00 0.000e+00 -113.699 -113.695 0.004 38.25 S-2 0.000e+00 0.000e+00 -118.976 -119.293 -0.318 (0) + (H2S)2 0.000e+00 0.000e+00 -228.581 -228.577 0.004 29.68 S(6) 1.537e-02 - SO4-2 1.050e-02 5.036e-03 -1.979 -2.298 -0.319 16.12 + SO4-2 1.050e-02 5.036e-03 -1.979 -2.298 -0.319 16.35 CaSO4 4.864e-03 4.911e-03 -2.313 -2.309 0.004 7.80 HSO4- 8.176e-08 6.775e-08 -7.087 -7.169 -0.082 40.95 CaHSO4+ 5.049e-09 4.184e-09 -8.297 -8.378 -0.082 (0) @@ -935,7 +934,7 @@ S(6) 1.537e-02 Gypsum 0.00 -4.59 -4.59 CaSO4:2H2O H2(g) -34.24 -37.36 -3.12 H2 H2O(g) -1.28 -0.00 1.28 H2O - H2S(g) -112.56 -120.53 -7.97 H2S + H2S(g) -112.61 -120.53 -7.92 H2S O2(g) -11.89 -14.84 -2.95 O2 Sulfur -84.20 -79.52 4.68 S @@ -967,16 +966,15 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.852e-01 pH = 6.935 Charge balance pe = 10.074 Adjusted to redox equilibrium - Specific Conductance (S/cm, 35C) = 2784 - Density (g/cm) = 0.99609 + Specific Conductance (µS/cm, 35°C) = 2769 + Density (g/cm³) = 0.99608 Volume (L) = 0.97032 + Viscosity (mPa s) = 0.72744 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.200e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 35.00 + Temperature (°C) = 35.00 Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 20 @@ -986,7 +984,7 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.852e-01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 2.192e-07 1.798e-07 -6.659 -6.745 -0.086 -3.62 H+ 1.354e-07 1.163e-07 -6.868 -6.935 -0.066 0.00 @@ -1002,10 +1000,11 @@ O(0) 2.875e-15 O2 1.437e-15 1.451e-15 -14.842 -14.838 0.004 31.10 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -112.999 -113.085 -0.086 21.12 - H2S 0.000e+00 0.000e+00 -113.200 -113.196 0.004 37.20 + H2S 0.000e+00 0.000e+00 -113.200 -113.196 0.004 38.44 S-2 0.000e+00 0.000e+00 -118.462 -118.780 -0.318 (0) + (H2S)2 0.000e+00 0.000e+00 -227.574 -227.569 0.004 29.63 S(6) 1.539e-02 - SO4-2 1.050e-02 5.029e-03 -1.979 -2.299 -0.320 16.20 + SO4-2 1.050e-02 5.029e-03 -1.979 -2.299 -0.320 16.42 CaSO4 4.885e-03 4.932e-03 -2.311 -2.307 0.004 7.83 HSO4- 8.607e-08 7.130e-08 -7.065 -7.147 -0.082 40.99 CaHSO4+ 5.308e-09 4.397e-09 -8.275 -8.357 -0.082 (0) @@ -1018,7 +1017,7 @@ S(6) 1.539e-02 Gypsum 0.00 -4.59 -4.59 CaSO4:2H2O H2(g) -34.09 -37.21 -3.12 H2 H2O(g) -1.26 -0.00 1.26 H2O - H2S(g) -112.05 -120.02 -7.97 H2S + H2S(g) -112.10 -120.02 -7.92 H2S O2(g) -11.88 -14.84 -2.96 O2 Sulfur -83.83 -79.18 4.66 S @@ -1050,26 +1049,25 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.851e-01 pH = 6.922 Charge balance pe = 10.010 Adjusted to redox equilibrium - Specific Conductance (S/cm, 36C) = 2836 - Density (g/cm) = 0.99574 + Specific Conductance (µS/cm, 36°C) = 2818 + Density (g/cm³) = 0.99574 Volume (L) = 0.97066 + Viscosity (mPa s) = 0.71317 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.199e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 36.00 - Electrical balance (eq) = -1.211e-09 + Temperature (°C) = 36.00 + Electrical balance (eq) = -1.209e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 18 + Iterations = 16 Total H = 1.070719e+02 Total O = 5.359535e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 2.282e-07 1.871e-07 -6.642 -6.728 -0.086 -3.60 H+ 1.394e-07 1.196e-07 -6.856 -6.922 -0.066 0.00 @@ -1080,15 +1078,16 @@ Ca 1.540e-02 CaOH+ 8.576e-09 7.102e-09 -8.067 -8.149 -0.082 (0) CaHSO4+ 5.578e-09 4.619e-09 -8.254 -8.335 -0.082 (0) H(0) 1.728e-37 - H2 8.642e-38 8.726e-38 -37.063 -37.059 0.004 28.60 -O(0) 2.874e-15 - O2 1.437e-15 1.451e-15 -14.843 -14.838 0.004 31.16 + H2 8.638e-38 8.722e-38 -37.064 -37.059 0.004 28.60 +O(0) 2.877e-15 + O2 1.438e-15 1.452e-15 -14.842 -14.838 0.004 31.16 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -112.506 -112.592 -0.086 21.15 - H2S 0.000e+00 0.000e+00 -112.706 -112.702 0.004 37.20 - S-2 0.000e+00 0.000e+00 -117.954 -118.273 -0.319 (0) + HS- 0.000e+00 0.000e+00 -112.507 -112.593 -0.086 21.15 + H2S 0.000e+00 0.000e+00 -112.707 -112.702 0.004 38.63 + S-2 0.000e+00 0.000e+00 -117.955 -118.273 -0.319 (0) + (H2S)2 0.000e+00 0.000e+00 -226.577 -226.573 0.004 29.58 S(6) 1.540e-02 - SO4-2 1.050e-02 5.021e-03 -1.979 -2.299 -0.320 16.27 + SO4-2 1.050e-02 5.021e-03 -1.979 -2.299 -0.320 16.48 CaSO4 4.905e-03 4.952e-03 -2.309 -2.305 0.004 7.86 HSO4- 9.058e-08 7.501e-08 -7.043 -7.125 -0.082 41.04 CaHSO4+ 5.578e-09 4.619e-09 -8.254 -8.335 -0.082 (0) @@ -1101,7 +1100,7 @@ S(6) 1.540e-02 Gypsum 0.00 -4.59 -4.59 CaSO4:2H2O H2(g) -33.94 -37.06 -3.12 H2 H2O(g) -1.23 -0.00 1.23 H2O - H2S(g) -111.55 -119.51 -7.97 H2S + H2S(g) -111.60 -119.52 -7.92 H2S O2(g) -11.88 -14.84 -2.96 O2 Sulfur -83.47 -78.84 4.63 S @@ -1133,26 +1132,25 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.851e-01 pH = 6.910 Charge balance pe = -1.777 Adjusted to redox equilibrium - Specific Conductance (S/cm, 37C) = 2888 - Density (g/cm) = 0.99538 + Specific Conductance (µS/cm, 37°C) = 2867 + Density (g/cm³) = 0.99538 Volume (L) = 0.97101 + Viscosity (mPa s) = 0.69934 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.197e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 37.00 - Electrical balance (eq) = -1.216e-09 + Temperature (°C) = 37.00 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 54 + Iterations = 50 Total H = 1.070719e+02 Total O = 5.359542e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 2.375e-07 1.947e-07 -6.624 -6.711 -0.086 -3.59 H+ 1.434e-07 1.231e-07 -6.843 -6.910 -0.066 0.00 @@ -1162,16 +1160,17 @@ Ca 1.541e-02 CaSO4 4.923e-03 4.971e-03 -2.308 -2.304 0.004 7.88 CaOH+ 8.325e-09 6.892e-09 -8.080 -8.162 -0.082 (0) CaHSO4+ 5.859e-09 4.850e-09 -8.232 -8.314 -0.082 (0) -H(0) 6.796e-14 +H(0) 6.797e-14 H2 3.398e-14 3.431e-14 -13.469 -13.465 0.004 28.60 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -61.733 -61.728 0.004 31.22 -S(-2) 9.472e-19 - HS- 5.796e-19 4.752e-19 -18.237 -18.323 -0.086 21.17 - H2S 3.676e-19 3.711e-19 -18.435 -18.430 0.004 37.20 +S(-2) 9.473e-19 + HS- 5.797e-19 4.752e-19 -18.237 -18.323 -0.086 21.17 + H2S 3.676e-19 3.712e-19 -18.435 -18.430 0.004 38.82 S-2 2.142e-24 1.028e-24 -23.669 -23.988 -0.319 (0) + (H2S)2 9.464e-39 9.556e-39 -38.024 -38.020 0.004 29.53 S(6) 1.541e-02 - SO4-2 1.049e-02 5.013e-03 -1.979 -2.300 -0.321 16.34 + SO4-2 1.049e-02 5.013e-03 -1.979 -2.300 -0.321 16.54 CaSO4 4.923e-03 4.971e-03 -2.308 -2.304 0.004 7.88 HSO4- 9.530e-08 7.889e-08 -7.021 -7.103 -0.082 41.08 CaHSO4+ 5.859e-09 4.850e-09 -8.232 -8.314 -0.082 (0) @@ -1184,7 +1183,7 @@ S(6) 1.541e-02 Gypsum 0.00 -4.59 -4.59 CaSO4:2H2O H2(g) -10.34 -13.46 -3.12 H2 H2O(g) -1.21 -0.00 1.21 H2O - H2S(g) -17.27 -25.23 -7.97 H2S + H2S(g) -17.31 -25.23 -7.92 H2S O2(g) -58.76 -61.73 -2.97 O2 Sulfur -12.78 -8.17 4.61 S @@ -1216,16 +1215,15 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.851e-01 pH = 6.898 Charge balance pe = 9.881 Adjusted to redox equilibrium - Specific Conductance (S/cm, 38C) = 2939 - Density (g/cm) = 0.99502 + Specific Conductance (µS/cm, 38°C) = 2916 + Density (g/cm³) = 0.99502 Volume (L) = 0.97137 + Viscosity (mPa s) = 0.68594 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.194e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 38.00 + Temperature (°C) = 38.00 Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 17 @@ -1235,7 +1233,7 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.851e-01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 2.471e-07 2.025e-07 -6.607 -6.694 -0.086 -3.58 H+ 1.475e-07 1.266e-07 -6.831 -6.898 -0.066 0.00 @@ -1251,10 +1249,11 @@ O(0) 2.873e-15 O2 1.436e-15 1.450e-15 -14.843 -14.839 0.004 31.28 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -111.531 -111.617 -0.086 21.19 - H2S 0.000e+00 0.000e+00 -111.727 -111.722 0.004 37.21 + H2S 0.000e+00 0.000e+00 -111.727 -111.722 0.004 39.00 S-2 0.000e+00 0.000e+00 -116.947 -117.267 -0.320 (0) + (H2S)2 0.000e+00 0.000e+00 -224.599 -224.595 0.004 29.47 S(6) 1.543e-02 - SO4-2 1.049e-02 5.005e-03 -1.979 -2.301 -0.321 16.41 + SO4-2 1.049e-02 5.005e-03 -1.979 -2.301 -0.321 16.59 CaSO4 4.940e-03 4.988e-03 -2.306 -2.302 0.004 7.91 HSO4- 1.002e-07 8.295e-08 -6.999 -7.081 -0.082 41.12 CaHSO4+ 6.152e-09 5.091e-09 -8.211 -8.293 -0.082 (0) @@ -1267,7 +1266,7 @@ S(6) 1.543e-02 Gypsum 0.00 -4.59 -4.59 CaSO4:2H2O H2(g) -33.64 -36.76 -3.13 H2 H2O(g) -1.18 -0.00 1.18 H2O - H2S(g) -110.55 -118.51 -7.97 H2S + H2S(g) -110.60 -118.51 -7.92 H2S O2(g) -11.86 -14.84 -2.97 O2 Sulfur -82.76 -78.17 4.59 S @@ -1299,16 +1298,15 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.851e-01 pH = 6.886 Charge balance pe = 9.848 Adjusted to redox equilibrium - Specific Conductance (S/cm, 39C) = 2991 - Density (g/cm) = 0.99465 + Specific Conductance (µS/cm, 39°C) = 2964 + Density (g/cm³) = 0.99465 Volume (L) = 0.97173 + Viscosity (mPa s) = 0.67295 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.191e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 39.00 + Temperature (°C) = 39.00 Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 15 @@ -1318,7 +1316,7 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.851e-01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 2.570e-07 2.105e-07 -6.590 -6.677 -0.087 -3.56 H+ 1.517e-07 1.301e-07 -6.819 -6.886 -0.067 0.00 @@ -1334,10 +1332,11 @@ O(0) 3.801e-15 O2 1.901e-15 1.919e-15 -14.721 -14.717 0.004 31.34 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -111.291 -111.378 -0.087 21.21 - H2S 0.000e+00 0.000e+00 -111.485 -111.481 0.004 37.21 + H2S 0.000e+00 0.000e+00 -111.485 -111.481 0.004 39.18 S-2 0.000e+00 0.000e+00 -116.693 -117.013 -0.320 (0) + (H2S)2 0.000e+00 0.000e+00 -224.107 -224.103 0.004 29.42 S(6) 1.543e-02 - SO4-2 1.048e-02 4.995e-03 -1.980 -2.301 -0.322 16.47 + SO4-2 1.048e-02 4.995e-03 -1.980 -2.301 -0.322 16.63 CaSO4 4.955e-03 5.003e-03 -2.305 -2.301 0.004 7.94 HSO4- 1.054e-07 8.720e-08 -6.977 -7.060 -0.082 41.15 CaHSO4+ 6.456e-09 5.341e-09 -8.190 -8.272 -0.082 (0) @@ -1350,7 +1349,7 @@ S(6) 1.543e-02 Gypsum 0.00 -4.59 -4.59 CaSO4:2H2O H2(g) -33.55 -36.67 -3.13 H2 H2O(g) -1.16 -0.00 1.16 H2O - H2S(g) -110.30 -118.26 -7.96 H2S + H2S(g) -110.35 -118.26 -7.92 H2S O2(g) -11.74 -14.72 -2.98 O2 Sulfur -82.58 -78.01 4.57 S @@ -1382,16 +1381,15 @@ Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 pH = 6.874 Charge balance pe = 9.755 Adjusted to redox equilibrium - Specific Conductance (S/cm, 40C) = 3042 - Density (g/cm) = 0.99427 - Volume (L) = 0.97210 + Specific Conductance (µS/cm, 40°C) = 3012 + Density (g/cm³) = 0.99427 + Volume (L) = 0.97211 + Viscosity (mPa s) = 0.66036 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.187e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 40.00 + Temperature (°C) = 40.00 Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 17 @@ -1401,7 +1399,7 @@ Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 2.671e-07 2.188e-07 -6.573 -6.660 -0.087 -3.55 H+ 1.559e-07 1.338e-07 -6.807 -6.874 -0.067 0.00 @@ -1417,10 +1415,11 @@ O(0) 2.896e-15 O2 1.448e-15 1.462e-15 -14.839 -14.835 0.004 31.40 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -110.576 -110.662 -0.087 21.23 - H2S 0.000e+00 0.000e+00 -110.767 -110.763 0.004 37.21 + H2S 0.000e+00 0.000e+00 -110.767 -110.763 0.004 39.35 S-2 0.000e+00 0.000e+00 -115.961 -116.282 -0.320 (0) + (H2S)2 0.000e+00 0.000e+00 -222.663 -222.659 0.004 29.37 S(6) 1.544e-02 - SO4-2 1.047e-02 4.985e-03 -1.980 -2.302 -0.322 16.53 + SO4-2 1.047e-02 4.985e-03 -1.980 -2.302 -0.322 16.67 CaSO4 4.969e-03 5.017e-03 -2.304 -2.300 0.004 7.96 HSO4- 1.108e-07 9.163e-08 -6.956 -7.038 -0.082 41.19 CaHSO4+ 6.773e-09 5.602e-09 -8.169 -8.252 -0.082 (0) @@ -1433,7 +1432,7 @@ S(6) 1.544e-02 Gypsum 0.00 -4.60 -4.60 CaSO4:2H2O H2(g) -33.34 -36.47 -3.13 H2 H2O(g) -1.14 -0.00 1.14 H2O - H2S(g) -109.57 -117.54 -7.96 H2S + H2S(g) -109.62 -117.54 -7.92 H2S O2(g) -11.85 -14.84 -2.98 O2 Sulfur -82.06 -77.51 4.55 S @@ -1465,16 +1464,15 @@ Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 pH = 6.862 Charge balance pe = 9.691 Adjusted to redox equilibrium - Specific Conductance (S/cm, 41C) = 3093 - Density (g/cm) = 0.99388 + Specific Conductance (µS/cm, 41°C) = 3060 + Density (g/cm³) = 0.99388 Volume (L) = 0.97248 + Viscosity (mPa s) = 0.64814 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.182e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 41.00 + Temperature (°C) = 41.00 Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 15 @@ -1484,7 +1482,7 @@ Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 2.776e-07 2.273e-07 -6.557 -6.643 -0.087 -3.55 H+ 1.603e-07 1.374e-07 -6.795 -6.862 -0.067 0.00 @@ -1500,10 +1498,11 @@ O(0) 2.876e-15 O2 1.438e-15 1.452e-15 -14.842 -14.838 0.004 31.46 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -110.093 -110.180 -0.087 21.25 - H2S 0.000e+00 0.000e+00 -110.283 -110.279 0.004 37.22 + H2S 0.000e+00 0.000e+00 -110.283 -110.279 0.004 39.52 S-2 0.000e+00 0.000e+00 -115.464 -115.785 -0.321 (0) + (H2S)2 0.000e+00 0.000e+00 -221.686 -221.681 0.004 29.31 S(6) 1.544e-02 - SO4-2 1.046e-02 4.975e-03 -1.981 -2.303 -0.323 16.58 + SO4-2 1.046e-02 4.975e-03 -1.981 -2.303 -0.323 16.71 CaSO4 4.982e-03 5.030e-03 -2.303 -2.298 0.004 7.99 HSO4- 1.164e-07 9.626e-08 -6.934 -7.017 -0.083 41.22 CaHSO4+ 7.102e-09 5.872e-09 -8.149 -8.231 -0.083 (0) @@ -1516,7 +1515,7 @@ S(6) 1.544e-02 Gypsum 0.00 -4.60 -4.60 CaSO4:2H2O H2(g) -33.19 -36.32 -3.13 H2 H2O(g) -1.12 -0.00 1.12 H2O - H2S(g) -109.08 -117.04 -7.96 H2S + H2S(g) -109.13 -117.04 -7.92 H2S O2(g) -11.85 -14.84 -2.99 O2 Sulfur -81.70 -77.17 4.53 S @@ -1548,16 +1547,15 @@ Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 pH = 6.850 Charge balance pe = 9.628 Adjusted to redox equilibrium - Specific Conductance (S/cm, 42C) = 3144 - Density (g/cm) = 0.99348 + Specific Conductance (µS/cm, 42°C) = 3108 + Density (g/cm³) = 0.99348 Volume (L) = 0.97287 + Viscosity (mPa s) = 0.63629 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.177e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 42.00 + Temperature (°C) = 42.00 Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 15 @@ -1567,7 +1565,7 @@ Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 2.884e-07 2.361e-07 -6.540 -6.627 -0.087 -3.54 H+ 1.646e-07 1.412e-07 -6.783 -6.850 -0.067 0.00 @@ -1577,16 +1575,17 @@ Ca 1.544e-02 CaSO4 4.993e-03 5.042e-03 -2.302 -2.297 0.004 8.01 CaHSO4+ 7.443e-09 6.153e-09 -8.128 -8.211 -0.083 (0) CaOH+ 7.197e-09 5.949e-09 -8.143 -8.226 -0.083 (0) -H(0) 1.320e-36 - H2 6.602e-37 6.665e-37 -36.180 -36.176 0.004 28.59 -O(0) 2.879e-15 - O2 1.439e-15 1.453e-15 -14.842 -14.838 0.004 31.51 +H(0) 1.318e-36 + H2 6.588e-37 6.652e-37 -36.181 -36.177 0.004 28.59 +O(0) 2.890e-15 + O2 1.445e-15 1.459e-15 -14.840 -14.836 0.004 31.51 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -109.621 -109.708 -0.087 21.27 - H2S 0.000e+00 0.000e+00 -109.808 -109.804 0.004 37.22 - S-2 0.000e+00 0.000e+00 -114.976 -115.297 -0.321 (0) + HS- 0.000e+00 0.000e+00 -109.625 -109.712 -0.087 21.27 + H2S 0.000e+00 0.000e+00 -109.812 -109.808 0.004 39.69 + S-2 0.000e+00 0.000e+00 -114.980 -115.301 -0.321 (0) + (H2S)2 0.000e+00 0.000e+00 -220.735 -220.731 0.004 29.26 S(6) 1.544e-02 - SO4-2 1.044e-02 4.964e-03 -1.981 -2.304 -0.323 16.63 + SO4-2 1.044e-02 4.964e-03 -1.981 -2.304 -0.323 16.74 CaSO4 4.993e-03 5.042e-03 -2.302 -2.297 0.004 8.01 HSO4- 1.223e-07 1.011e-07 -6.913 -6.995 -0.083 41.26 CaHSO4+ 7.443e-09 6.153e-09 -8.128 -8.211 -0.083 (0) @@ -1599,9 +1598,9 @@ S(6) 1.544e-02 Gypsum 0.00 -4.60 -4.60 CaSO4:2H2O H2(g) -33.05 -36.18 -3.13 H2 H2O(g) -1.09 -0.00 1.09 H2O - H2S(g) -108.60 -116.56 -7.96 H2S + H2S(g) -108.65 -116.56 -7.92 H2S O2(g) -11.84 -14.84 -2.99 O2 - Sulfur -81.35 -76.85 4.51 S + Sulfur -81.36 -76.85 4.51 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1631,16 +1630,15 @@ Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 pH = 6.839 Charge balance pe = 9.566 Adjusted to redox equilibrium - Specific Conductance (S/cm, 43C) = 3194 - Density (g/cm) = 0.99308 + Specific Conductance (µS/cm, 43°C) = 3155 + Density (g/cm³) = 0.99308 Volume (L) = 0.97326 + Viscosity (mPa s) = 0.62478 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.171e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 43.00 + Temperature (°C) = 43.00 Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 15 @@ -1650,7 +1648,7 @@ Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 2.996e-07 2.452e-07 -6.523 -6.611 -0.087 -3.54 H+ 1.691e-07 1.450e-07 -6.772 -6.839 -0.067 0.00 @@ -1666,10 +1664,11 @@ O(0) 2.879e-15 O2 1.439e-15 1.453e-15 -14.842 -14.838 0.004 31.57 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -109.151 -109.238 -0.087 21.28 - H2S 0.000e+00 0.000e+00 -109.336 -109.332 0.004 37.22 + H2S 0.000e+00 0.000e+00 -109.336 -109.332 0.004 39.86 S-2 0.000e+00 0.000e+00 -114.491 -114.813 -0.322 (0) + (H2S)2 0.000e+00 0.000e+00 -219.775 -219.771 0.004 29.20 S(6) 1.543e-02 - SO4-2 1.043e-02 4.952e-03 -1.982 -2.305 -0.323 16.67 + SO4-2 1.043e-02 4.952e-03 -1.982 -2.305 -0.323 16.77 CaSO4 5.003e-03 5.052e-03 -2.301 -2.297 0.004 8.04 HSO4- 1.284e-07 1.061e-07 -6.891 -6.974 -0.083 41.29 CaHSO4+ 7.798e-09 6.445e-09 -8.108 -8.191 -0.083 (0) @@ -1682,7 +1681,7 @@ S(6) 1.543e-02 Gypsum 0.00 -4.60 -4.60 CaSO4:2H2O H2(g) -32.90 -36.03 -3.13 H2 H2O(g) -1.07 -0.00 1.07 H2O - H2S(g) -108.12 -116.08 -7.96 H2S + H2S(g) -108.16 -116.08 -7.92 H2S O2(g) -11.84 -14.84 -3.00 O2 Sulfur -81.01 -76.52 4.49 S @@ -1714,16 +1713,15 @@ Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 pH = 6.827 Charge balance pe = 9.503 Adjusted to redox equilibrium - Specific Conductance (S/cm, 44C) = 3245 - Density (g/cm) = 0.99267 - Volume (L) = 0.97366 + Specific Conductance (µS/cm, 44°C) = 3201 + Density (g/cm³) = 0.99267 + Volume (L) = 0.97367 + Viscosity (mPa s) = 0.61361 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.165e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 44.00 + Temperature (°C) = 44.00 Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 15 @@ -1733,7 +1731,7 @@ Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 3.111e-07 2.545e-07 -6.507 -6.594 -0.087 -3.53 H+ 1.736e-07 1.488e-07 -6.760 -6.827 -0.067 0.00 @@ -1749,10 +1747,11 @@ O(0) 2.875e-15 O2 1.438e-15 1.451e-15 -14.842 -14.838 0.004 31.62 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -108.683 -108.770 -0.087 21.29 - H2S 0.000e+00 0.000e+00 -108.866 -108.862 0.004 37.22 + H2S 0.000e+00 0.000e+00 -108.866 -108.862 0.004 40.02 S-2 0.000e+00 0.000e+00 -114.007 -114.330 -0.322 (0) + (H2S)2 0.000e+00 0.000e+00 -218.827 -218.822 0.004 29.14 S(6) 1.542e-02 - SO4-2 1.041e-02 4.940e-03 -1.982 -2.306 -0.324 16.71 + SO4-2 1.041e-02 4.940e-03 -1.982 -2.306 -0.324 16.79 CaSO4 5.012e-03 5.060e-03 -2.300 -2.296 0.004 8.06 HSO4- 1.348e-07 1.114e-07 -6.870 -6.953 -0.083 41.32 CaHSO4+ 8.167e-09 6.747e-09 -8.088 -8.171 -0.083 (0) @@ -1765,7 +1764,7 @@ S(6) 1.542e-02 Gypsum 0.00 -4.60 -4.60 CaSO4:2H2O H2(g) -32.76 -35.89 -3.13 H2 H2O(g) -1.05 -0.00 1.05 H2O - H2S(g) -107.64 -115.60 -7.96 H2S + H2S(g) -107.68 -115.60 -7.91 H2S O2(g) -11.83 -14.84 -3.00 O2 Sulfur -80.66 -76.20 4.46 S @@ -1797,16 +1796,15 @@ Gypsum 0.00 -4.61 -4.61 1.000e+00 1.985e+00 9.851e-01 pH = 6.816 Charge balance pe = 9.442 Adjusted to redox equilibrium - Specific Conductance (S/cm, 45C) = 3294 - Density (g/cm) = 0.99225 + Specific Conductance (µS/cm, 45°C) = 3248 + Density (g/cm³) = 0.99225 Volume (L) = 0.97407 + Viscosity (mPa s) = 0.60276 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.158e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 45.00 + Temperature (°C) = 45.00 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 20 @@ -1816,7 +1814,7 @@ Gypsum 0.00 -4.61 -4.61 1.000e+00 1.985e+00 9.851e-01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 3.229e-07 2.641e-07 -6.491 -6.578 -0.087 -3.53 H+ 1.782e-07 1.527e-07 -6.749 -6.816 -0.067 0.00 @@ -1826,16 +1824,17 @@ Ca 1.541e-02 CaSO4 5.019e-03 5.068e-03 -2.299 -2.295 0.004 8.08 CaHSO4+ 8.549e-09 7.061e-09 -8.068 -8.151 -0.083 (0) CaOH+ 6.610e-09 5.460e-09 -8.180 -8.263 -0.083 (0) -H(0) 3.550e-36 - H2 1.775e-36 1.792e-36 -35.751 -35.747 0.004 28.59 -O(0) 2.874e-15 - O2 1.437e-15 1.451e-15 -14.843 -14.838 0.004 31.67 +H(0) 3.538e-36 + H2 1.769e-36 1.786e-36 -35.752 -35.748 0.004 28.59 +O(0) 2.894e-15 + O2 1.447e-15 1.461e-15 -14.840 -14.835 0.004 31.67 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -108.219 -108.306 -0.087 21.30 - H2S 0.000e+00 0.000e+00 -108.399 -108.395 0.004 37.23 - S-2 0.000e+00 0.000e+00 -113.528 -113.850 -0.323 (0) + HS- 0.000e+00 0.000e+00 -108.225 -108.312 -0.087 21.30 + H2S 0.000e+00 0.000e+00 -108.405 -108.401 0.004 40.17 + S-2 0.000e+00 0.000e+00 -113.534 -113.856 -0.323 (0) + (H2S)2 0.000e+00 0.000e+00 -217.897 -217.893 0.004 29.09 S(6) 1.541e-02 - SO4-2 1.040e-02 4.927e-03 -1.983 -2.307 -0.324 16.75 + SO4-2 1.040e-02 4.927e-03 -1.983 -2.307 -0.324 16.81 CaSO4 5.019e-03 5.068e-03 -2.299 -2.295 0.004 8.08 HSO4- 1.415e-07 1.169e-07 -6.849 -6.932 -0.083 41.35 CaHSO4+ 8.549e-09 7.061e-09 -8.068 -8.151 -0.083 (0) @@ -1846,11 +1845,11 @@ S(6) 1.541e-02 Anhydrite -0.09 -4.61 -4.51 CaSO4 Gypsum 0.00 -4.61 -4.61 CaSO4:2H2O - H2(g) -32.61 -35.75 -3.13 H2 + H2(g) -32.62 -35.75 -3.13 H2 H2O(g) -1.03 -0.00 1.03 H2O - H2S(g) -107.17 -115.12 -7.95 H2S + H2S(g) -107.21 -115.13 -7.91 H2S O2(g) -11.83 -14.84 -3.01 O2 - Sulfur -80.32 -75.88 4.44 S + Sulfur -80.33 -75.88 4.44 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1879,17 +1878,16 @@ Gypsum 0.00 -4.61 -4.61 1.000e+00 1.985e+00 9.851e-01 ----------------------------Description of solution---------------------------- pH = 6.805 Charge balance - pe = 9.380 Adjusted to redox equilibrium - Specific Conductance (S/cm, 46C) = 3344 - Density (g/cm) = 0.99183 + pe = 9.381 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 46°C) = 3294 + Density (g/cm³) = 0.99183 Volume (L) = 0.97449 + Viscosity (mPa s) = 0.59222 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.151e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 46.00 + Temperature (°C) = 46.00 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 21 @@ -1899,7 +1897,7 @@ Gypsum 0.00 -4.61 -4.61 1.000e+00 1.985e+00 9.851e-01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 3.350e-07 2.740e-07 -6.475 -6.562 -0.087 -3.53 H+ 1.828e-07 1.566e-07 -6.738 -6.805 -0.067 0.00 @@ -1909,16 +1907,17 @@ Ca 1.540e-02 CaSO4 5.025e-03 5.073e-03 -2.299 -2.295 0.004 8.11 CaHSO4+ 8.945e-09 7.386e-09 -8.048 -8.132 -0.083 (0) CaOH+ 6.428e-09 5.308e-09 -8.192 -8.275 -0.083 (0) -H(0) 4.913e-36 - H2 2.456e-36 2.480e-36 -35.610 -35.606 0.004 28.59 -O(0) 2.877e-15 - O2 1.438e-15 1.452e-15 -14.842 -14.838 0.004 31.72 +H(0) 4.904e-36 + H2 2.452e-36 2.475e-36 -35.611 -35.606 0.004 28.59 +O(0) 2.887e-15 + O2 1.444e-15 1.458e-15 -14.841 -14.836 0.004 31.72 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -107.759 -107.846 -0.087 21.31 - H2S 0.000e+00 0.000e+00 -107.937 -107.933 0.004 37.23 - S-2 0.000e+00 0.000e+00 -113.053 -113.376 -0.323 (0) + HS- 0.000e+00 0.000e+00 -107.762 -107.850 -0.087 21.31 + H2S 0.000e+00 0.000e+00 -107.940 -107.936 0.004 40.33 + S-2 0.000e+00 0.000e+00 -113.056 -113.379 -0.323 (0) + (H2S)2 0.000e+00 0.000e+00 -216.959 -216.955 0.004 29.03 S(6) 1.540e-02 - SO4-2 1.038e-02 4.914e-03 -1.984 -2.309 -0.325 16.78 + SO4-2 1.038e-02 4.914e-03 -1.984 -2.309 -0.325 16.82 CaSO4 5.025e-03 5.073e-03 -2.299 -2.295 0.004 8.11 HSO4- 1.485e-07 1.226e-07 -6.828 -6.912 -0.083 41.37 CaHSO4+ 8.945e-09 7.386e-09 -8.048 -8.132 -0.083 (0) @@ -1931,7 +1930,7 @@ S(6) 1.540e-02 Gypsum 0.00 -4.61 -4.61 CaSO4:2H2O H2(g) -32.47 -35.61 -3.13 H2 H2O(g) -1.00 -0.00 1.00 H2O - H2S(g) -106.70 -114.65 -7.95 H2S + H2S(g) -106.74 -114.65 -7.91 H2S O2(g) -11.82 -14.84 -3.01 O2 Sulfur -79.99 -75.56 4.42 S @@ -1963,16 +1962,15 @@ Gypsum 0.00 -4.61 -4.61 1.000e+00 1.985e+00 9.852e-01 pH = 6.794 Charge balance pe = 9.319 Adjusted to redox equilibrium - Specific Conductance (S/cm, 47C) = 3393 - Density (g/cm) = 0.99140 + Specific Conductance (µS/cm, 47°C) = 3339 + Density (g/cm³) = 0.99140 Volume (L) = 0.97491 + Viscosity (mPa s) = 0.58198 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.142e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 47.00 + Temperature (°C) = 47.00 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 19 @@ -1982,7 +1980,7 @@ Gypsum 0.00 -4.61 -4.61 1.000e+00 1.985e+00 9.852e-01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 3.476e-07 2.842e-07 -6.459 -6.546 -0.087 -3.53 H+ 1.875e-07 1.606e-07 -6.727 -6.794 -0.067 0.00 @@ -1992,16 +1990,17 @@ Ca 1.539e-02 CaSO4 5.030e-03 5.078e-03 -2.298 -2.294 0.004 8.13 CaHSO4+ 9.355e-09 7.723e-09 -8.029 -8.112 -0.083 (0) CaOH+ 6.252e-09 5.162e-09 -8.204 -8.287 -0.083 (0) -H(0) 6.789e-36 - H2 3.395e-36 3.427e-36 -35.469 -35.465 0.004 28.59 -O(0) 2.875e-15 - O2 1.438e-15 1.451e-15 -14.842 -14.838 0.004 31.77 +H(0) 6.791e-36 + H2 3.396e-36 3.428e-36 -35.469 -35.465 0.004 28.59 +O(0) 2.874e-15 + O2 1.437e-15 1.451e-15 -14.843 -14.838 0.004 31.77 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -107.301 -107.388 -0.087 21.32 - H2S 0.000e+00 0.000e+00 -107.476 -107.472 0.004 37.23 - S-2 0.000e+00 0.000e+00 -112.579 -112.903 -0.323 (0) + HS- 0.000e+00 0.000e+00 -107.300 -107.388 -0.087 21.32 + H2S 0.000e+00 0.000e+00 -107.475 -107.471 0.004 40.48 + S-2 0.000e+00 0.000e+00 -112.579 -112.902 -0.323 (0) + (H2S)2 0.000e+00 0.000e+00 -216.022 -216.018 0.004 28.97 S(6) 1.539e-02 - SO4-2 1.036e-02 4.900e-03 -1.985 -2.310 -0.325 16.81 + SO4-2 1.036e-02 4.900e-03 -1.985 -2.310 -0.325 16.82 CaSO4 5.030e-03 5.078e-03 -2.298 -2.294 0.004 8.13 HSO4- 1.557e-07 1.286e-07 -6.808 -6.891 -0.083 41.40 CaHSO4+ 9.355e-09 7.723e-09 -8.029 -8.112 -0.083 (0) @@ -2012,11 +2011,11 @@ S(6) 1.539e-02 Anhydrite -0.07 -4.61 -4.54 CaSO4 Gypsum 0.00 -4.61 -4.61 CaSO4:2H2O - H2(g) -32.33 -35.47 -3.13 H2 + H2(g) -32.33 -35.46 -3.13 H2 H2O(g) -0.98 -0.00 0.98 H2O - H2S(g) -106.23 -114.18 -7.95 H2S + H2S(g) -106.27 -114.18 -7.91 H2S O2(g) -11.82 -14.84 -3.02 O2 - Sulfur -79.65 -75.25 4.40 S + Sulfur -79.65 -75.24 4.40 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2045,17 +2044,16 @@ Gypsum 0.00 -4.61 -4.61 1.000e+00 1.985e+00 9.852e-01 ----------------------------Description of solution---------------------------- pH = 6.783 Charge balance - pe = 9.257 Adjusted to redox equilibrium - Specific Conductance (S/cm, 48C) = 3442 - Density (g/cm) = 0.99096 + pe = 9.288 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 48°C) = 3384 + Density (g/cm³) = 0.99096 Volume (L) = 0.97534 + Viscosity (mPa s) = 0.57202 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.134e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 48.00 + Temperature (°C) = 48.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 18 @@ -2065,7 +2063,7 @@ Gypsum 0.00 -4.61 -4.61 1.000e+00 1.985e+00 9.852e-01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 3.605e-07 2.947e-07 -6.443 -6.531 -0.088 -3.54 H+ 1.922e-07 1.646e-07 -6.716 -6.783 -0.067 0.00 @@ -2075,16 +2073,17 @@ Ca 1.537e-02 CaSO4 5.033e-03 5.081e-03 -2.298 -2.294 0.004 8.15 CaHSO4+ 9.781e-09 8.072e-09 -8.010 -8.093 -0.083 (0) CaOH+ 6.083e-09 5.020e-09 -8.216 -8.299 -0.083 (0) -H(0) 9.405e-36 - H2 4.702e-36 4.747e-36 -35.328 -35.324 0.004 28.59 -O(0) 2.849e-15 - O2 1.424e-15 1.438e-15 -14.846 -14.842 0.004 31.83 +H(0) 8.174e-36 + H2 4.087e-36 4.126e-36 -35.389 -35.384 0.004 28.59 +O(0) 3.771e-15 + O2 1.886e-15 1.904e-15 -14.725 -14.720 0.004 31.83 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -106.838 -106.926 -0.088 21.33 - H2S 0.000e+00 0.000e+00 -107.010 -107.006 0.004 37.23 - S-2 0.000e+00 0.000e+00 -112.101 -112.425 -0.324 (0) + HS- 0.000e+00 0.000e+00 -107.082 -107.169 -0.088 21.33 + H2S 0.000e+00 0.000e+00 -107.254 -107.250 0.004 40.63 + S-2 0.000e+00 0.000e+00 -112.345 -112.669 -0.324 (0) + (H2S)2 0.000e+00 0.000e+00 -215.572 -215.568 0.004 28.91 S(6) 1.537e-02 - SO4-2 1.033e-02 4.886e-03 -1.986 -2.311 -0.325 16.84 + SO4-2 1.033e-02 4.886e-03 -1.986 -2.311 -0.325 16.83 CaSO4 5.033e-03 5.081e-03 -2.298 -2.294 0.004 8.15 HSO4- 1.633e-07 1.348e-07 -6.787 -6.870 -0.083 41.42 CaHSO4+ 9.781e-09 8.072e-09 -8.010 -8.093 -0.083 (0) @@ -2095,11 +2094,11 @@ S(6) 1.537e-02 Anhydrite -0.06 -4.61 -4.55 CaSO4 Gypsum 0.00 -4.61 -4.61 CaSO4:2H2O - H2(g) -32.19 -35.32 -3.14 H2 + H2(g) -32.25 -35.38 -3.14 H2 H2O(g) -0.96 -0.00 0.96 H2O - H2S(g) -105.76 -113.71 -7.95 H2S - O2(g) -11.82 -14.84 -3.02 O2 - Sulfur -79.31 -74.93 4.38 S + H2S(g) -106.04 -113.95 -7.91 H2S + O2(g) -11.70 -14.72 -3.02 O2 + Sulfur -79.49 -75.11 4.38 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2129,16 +2128,15 @@ Gypsum 0.00 -4.62 -4.62 1.000e+00 1.985e+00 9.852e-01 pH = 6.773 Charge balance pe = 9.197 Adjusted to redox equilibrium - Specific Conductance (S/cm, 49C) = 3490 - Density (g/cm) = 0.99051 + Specific Conductance (µS/cm, 49°C) = 3429 + Density (g/cm³) = 0.99051 Volume (L) = 0.97578 + Viscosity (mPa s) = 0.56234 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.125e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 49.00 + Temperature (°C) = 49.00 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 18 @@ -2148,7 +2146,7 @@ Gypsum 0.00 -4.62 -4.62 1.000e+00 1.985e+00 9.852e-01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 3.737e-07 3.054e-07 -6.427 -6.515 -0.088 -3.54 H+ 1.970e-07 1.687e-07 -6.705 -6.773 -0.067 0.00 @@ -2164,10 +2162,11 @@ O(0) 2.849e-15 O2 1.424e-15 1.438e-15 -14.846 -14.842 0.004 31.88 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -106.386 -106.474 -0.088 21.33 - H2S 0.000e+00 0.000e+00 -106.556 -106.552 0.004 37.23 + H2S 0.000e+00 0.000e+00 -106.556 -106.552 0.004 40.78 S-2 0.000e+00 0.000e+00 -111.634 -111.958 -0.324 (0) + (H2S)2 0.000e+00 0.000e+00 -214.168 -214.164 0.004 28.84 S(6) 1.535e-02 - SO4-2 1.031e-02 4.872e-03 -1.987 -2.312 -0.326 16.86 + SO4-2 1.031e-02 4.872e-03 -1.987 -2.312 -0.326 16.83 CaSO4 5.035e-03 5.083e-03 -2.298 -2.294 0.004 8.17 HSO4- 1.711e-07 1.412e-07 -6.767 -6.850 -0.083 41.44 CaHSO4+ 1.022e-08 8.434e-09 -7.991 -8.074 -0.083 (0) @@ -2180,7 +2179,7 @@ S(6) 1.535e-02 Gypsum 0.00 -4.62 -4.62 CaSO4:2H2O H2(g) -32.05 -35.18 -3.14 H2 H2O(g) -0.94 -0.00 0.94 H2O - H2S(g) -105.30 -113.25 -7.95 H2S + H2S(g) -105.33 -113.25 -7.91 H2S O2(g) -11.82 -14.84 -3.03 O2 Sulfur -78.98 -74.61 4.36 S @@ -2212,17 +2211,16 @@ Gypsum 0.00 -4.62 -4.62 1.000e+00 1.985e+00 9.852e-01 pH = 6.762 Charge balance pe = -1.655 Adjusted to redox equilibrium - Specific Conductance (S/cm, 50C) = 3538 - Density (g/cm) = 0.99006 + Specific Conductance (µS/cm, 50°C) = 3473 + Density (g/cm³) = 0.99006 Volume (L) = 0.97622 + Viscosity (mPa s) = 0.55292 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.115e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 50.00 - Electrical balance (eq) = -1.208e-09 + Temperature (°C) = 50.00 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 48 Total H = 1.070716e+02 @@ -2231,7 +2229,7 @@ Gypsum 0.00 -4.62 -4.62 1.000e+00 1.985e+00 9.852e-01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 3.874e-07 3.165e-07 -6.412 -6.500 -0.088 -3.55 H+ 2.019e-07 1.728e-07 -6.695 -6.762 -0.067 0.00 @@ -2242,15 +2240,16 @@ Ca 1.532e-02 CaHSO4+ 1.068e-08 8.808e-09 -7.972 -8.055 -0.084 (0) CaOH+ 5.761e-09 4.752e-09 -8.240 -8.323 -0.084 (0) H(0) 6.798e-14 - H2 3.399e-14 3.431e-14 -13.469 -13.465 0.004 28.59 + H2 3.399e-14 3.432e-14 -13.469 -13.465 0.004 28.59 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -58.011 -58.007 0.004 31.92 -S(-2) 4.155e-20 + O2 0.000e+00 0.000e+00 -58.012 -58.007 0.004 31.92 +S(-2) 4.156e-20 HS- 2.472e-20 2.020e-20 -19.607 -19.695 -0.088 21.34 - H2S 1.683e-20 1.699e-20 -19.774 -19.770 0.004 37.24 - S-2 1.446e-25 6.851e-26 -24.840 -25.164 -0.324 (0) + H2S 1.684e-20 1.700e-20 -19.774 -19.770 0.004 40.92 + S-2 1.446e-25 6.853e-26 -24.840 -25.164 -0.324 (0) + (H2S)2 0.000e+00 0.000e+00 -40.597 -40.593 0.004 28.78 S(6) 1.532e-02 - SO4-2 1.029e-02 4.856e-03 -1.988 -2.314 -0.326 16.88 + SO4-2 1.029e-02 4.856e-03 -1.988 -2.314 -0.326 16.82 CaSO4 5.036e-03 5.084e-03 -2.298 -2.294 0.004 8.19 HSO4- 1.793e-07 1.479e-07 -6.746 -6.830 -0.084 41.46 CaHSO4+ 1.068e-08 8.808e-09 -7.972 -8.055 -0.084 (0) @@ -2263,7 +2262,7 @@ S(6) 1.532e-02 Gypsum 0.00 -4.62 -4.62 CaSO4:2H2O H2(g) -10.33 -13.46 -3.14 H2 H2O(g) -0.92 -0.00 0.92 H2O - H2S(g) -18.51 -26.46 -7.95 H2S + H2S(g) -18.54 -26.46 -7.91 H2S O2(g) -54.98 -58.01 -3.03 O2 Sulfur -13.90 -9.55 4.34 S @@ -2295,16 +2294,15 @@ Gypsum 0.00 -4.62 -4.62 1.000e+00 1.985e+00 9.852e-01 pH = 6.752 Charge balance pe = 9.078 Adjusted to redox equilibrium - Specific Conductance (S/cm, 51C) = 3586 - Density (g/cm) = 0.98960 + Specific Conductance (µS/cm, 51°C) = 3517 + Density (g/cm³) = 0.98960 Volume (L) = 0.97667 + Viscosity (mPa s) = 0.54376 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.105e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 51.00 + Temperature (°C) = 51.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 17 @@ -2314,7 +2312,7 @@ Gypsum 0.00 -4.62 -4.62 1.000e+00 1.985e+00 9.852e-01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 4.014e-07 3.280e-07 -6.396 -6.484 -0.088 -3.56 H+ 2.068e-07 1.770e-07 -6.684 -6.752 -0.068 0.00 @@ -2330,10 +2328,11 @@ O(0) 2.880e-15 O2 1.440e-15 1.454e-15 -14.842 -14.838 0.004 31.97 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -105.501 -105.588 -0.088 21.34 - H2S 0.000e+00 0.000e+00 -105.665 -105.661 0.004 37.24 + H2S 0.000e+00 0.000e+00 -105.665 -105.661 0.004 41.06 S-2 0.000e+00 0.000e+00 -110.718 -111.043 -0.325 (0) + (H2S)2 0.000e+00 0.000e+00 -212.371 -212.367 0.004 28.72 S(6) 1.530e-02 - SO4-2 1.026e-02 4.841e-03 -1.989 -2.315 -0.326 16.89 + SO4-2 1.026e-02 4.841e-03 -1.989 -2.315 -0.326 16.81 CaSO4 5.036e-03 5.083e-03 -2.298 -2.294 0.004 8.21 HSO4- 1.879e-07 1.549e-07 -6.726 -6.810 -0.084 41.48 CaHSO4+ 1.115e-08 9.194e-09 -7.953 -8.036 -0.084 (0) @@ -2346,7 +2345,7 @@ S(6) 1.530e-02 Gypsum 0.00 -4.62 -4.62 CaSO4:2H2O H2(g) -31.78 -34.91 -3.14 H2 H2O(g) -0.89 -0.00 0.89 H2O - H2S(g) -104.39 -112.34 -7.95 H2S + H2S(g) -104.43 -112.34 -7.91 H2S O2(g) -11.80 -14.84 -3.03 O2 Sulfur -78.32 -74.00 4.32 S @@ -2378,16 +2377,15 @@ Gypsum 0.00 -4.63 -4.63 1.000e+00 1.985e+00 9.853e-01 pH = 6.742 Charge balance pe = 9.047 Adjusted to redox equilibrium - Specific Conductance (S/cm, 52C) = 3633 - Density (g/cm) = 0.98913 + Specific Conductance (µS/cm, 52°C) = 3560 + Density (g/cm³) = 0.98913 Volume (L) = 0.97712 + Viscosity (mPa s) = 0.53485 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.094e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 52.00 + Temperature (°C) = 52.00 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 18 @@ -2397,7 +2395,7 @@ Gypsum 0.00 -4.63 -4.63 1.000e+00 1.985e+00 9.853e-01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 4.159e-07 3.397e-07 -6.381 -6.469 -0.088 -3.57 H+ 2.117e-07 1.812e-07 -6.674 -6.742 -0.068 0.00 @@ -2413,10 +2411,11 @@ O(0) 3.761e-15 O2 1.880e-15 1.898e-15 -14.726 -14.722 0.004 32.02 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -105.289 -105.377 -0.088 21.34 - H2S 0.000e+00 0.000e+00 -105.450 -105.446 0.004 37.24 + H2S 0.000e+00 0.000e+00 -105.450 -105.446 0.004 41.20 S-2 0.000e+00 0.000e+00 -110.492 -110.817 -0.325 (0) + (H2S)2 0.000e+00 0.000e+00 -211.936 -211.932 0.004 28.65 S(6) 1.527e-02 - SO4-2 1.023e-02 4.825e-03 -1.990 -2.317 -0.327 16.90 + SO4-2 1.023e-02 4.825e-03 -1.990 -2.317 -0.327 16.80 CaSO4 5.034e-03 5.082e-03 -2.298 -2.294 0.004 8.23 HSO4- 1.967e-07 1.622e-07 -6.706 -6.790 -0.084 41.50 CaHSO4+ 1.163e-08 9.594e-09 -7.934 -8.018 -0.084 (0) @@ -2429,7 +2428,7 @@ S(6) 1.527e-02 Gypsum 0.00 -4.63 -4.63 CaSO4:2H2O H2(g) -31.70 -34.83 -3.14 H2 H2O(g) -0.87 -0.00 0.87 H2O - H2S(g) -104.17 -112.12 -7.94 H2S + H2S(g) -104.20 -112.12 -7.91 H2S O2(g) -11.68 -14.72 -3.04 O2 Sulfur -78.17 -73.87 4.30 S @@ -2460,17 +2459,16 @@ Gypsum 0.00 -4.63 -4.63 1.000e+00 1.985e+00 9.853e-01 ----------------------------Description of solution---------------------------- pH = 6.732 Charge balance - pe = 8.957 Adjusted to redox equilibrium - Specific Conductance (S/cm, 53C) = 3679 - Density (g/cm) = 0.98866 + pe = 8.915 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 53°C) = 3602 + Density (g/cm³) = 0.98866 Volume (L) = 0.97759 + Viscosity (mPa s) = 0.52617 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.083e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 53.00 + Temperature (°C) = 53.00 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 18 @@ -2480,7 +2478,7 @@ Gypsum 0.00 -4.63 -4.63 1.000e+00 1.985e+00 9.853e-01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 4.308e-07 3.518e-07 -6.366 -6.454 -0.088 -3.58 H+ 2.167e-07 1.855e-07 -6.664 -6.732 -0.068 0.00 @@ -2490,16 +2488,17 @@ Ca 1.524e-02 CaSO4 5.031e-03 5.078e-03 -2.298 -2.294 0.004 8.25 CaHSO4+ 1.214e-08 1.001e-08 -7.916 -8.000 -0.084 (0) CaOH+ 5.318e-09 4.384e-09 -8.274 -8.358 -0.084 (0) -H(0) 4.556e-35 - H2 2.278e-35 2.300e-35 -34.642 -34.638 0.004 28.59 -O(0) 2.843e-15 - O2 1.422e-15 1.435e-15 -14.847 -14.843 0.004 32.07 +H(0) 5.522e-35 + H2 2.761e-35 2.787e-35 -34.559 -34.555 0.004 28.59 +O(0) 1.936e-15 + O2 9.678e-16 9.770e-16 -15.014 -15.010 0.004 32.07 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -104.606 -104.694 -0.088 21.34 - H2S 0.000e+00 0.000e+00 -104.764 -104.760 0.004 37.24 - S-2 0.000e+00 0.000e+00 -109.794 -110.119 -0.325 (0) + HS- 0.000e+00 0.000e+00 -104.272 -104.360 -0.088 21.34 + H2S 0.000e+00 0.000e+00 -104.430 -104.426 0.004 41.34 + S-2 0.000e+00 0.000e+00 -109.460 -109.785 -0.325 (0) + (H2S)2 0.000e+00 0.000e+00 -209.889 -209.885 0.004 28.59 S(6) 1.524e-02 - SO4-2 1.021e-02 4.808e-03 -1.991 -2.318 -0.327 16.91 + SO4-2 1.021e-02 4.808e-03 -1.991 -2.318 -0.327 16.78 CaSO4 5.031e-03 5.078e-03 -2.298 -2.294 0.004 8.25 HSO4- 2.059e-07 1.698e-07 -6.686 -6.770 -0.084 41.52 CaHSO4+ 1.214e-08 1.001e-08 -7.916 -8.000 -0.084 (0) @@ -2510,11 +2509,11 @@ S(6) 1.524e-02 Anhydrite -0.01 -4.63 -4.61 CaSO4 Gypsum 0.00 -4.63 -4.63 CaSO4:2H2O - H2(g) -31.50 -34.64 -3.14 H2 + H2(g) -31.42 -34.55 -3.14 H2 H2O(g) -0.85 -0.00 0.85 H2O - H2S(g) -103.48 -111.43 -7.94 H2S - O2(g) -11.80 -14.84 -3.04 O2 - Sulfur -77.67 -73.38 4.28 S + H2S(g) -103.18 -111.09 -7.91 H2S + O2(g) -11.97 -15.01 -3.04 O2 + Sulfur -77.42 -73.13 4.28 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2544,26 +2543,25 @@ Gypsum 0.00 -4.63 -4.63 1.000e+00 1.985e+00 9.853e-01 pH = 6.722 Charge balance pe = -1.622 Adjusted to redox equilibrium - Specific Conductance (S/cm, 54C) = 3726 - Density (g/cm) = 0.98818 + Specific Conductance (µS/cm, 54°C) = 3644 + Density (g/cm³) = 0.98818 Volume (L) = 0.97806 + Viscosity (mPa s) = 0.51773 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.071e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 54.00 - Electrical balance (eq) = -1.012e-09 + Temperature (°C) = 54.00 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 46 + Iterations = 47 Total H = 1.070711e+02 Total O = 5.359420e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 4.461e-07 3.642e-07 -6.351 -6.439 -0.088 -3.59 H+ 2.218e-07 1.898e-07 -6.654 -6.722 -0.068 0.00 @@ -2578,11 +2576,12 @@ H(0) 6.798e-14 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -56.926 -56.922 0.004 32.11 S(-2) 1.656e-20 - HS- 9.745e-21 7.957e-21 -20.011 -20.099 -0.088 21.34 - H2S 6.817e-21 6.881e-21 -20.166 -20.162 0.004 37.24 - S-2 6.551e-26 3.096e-26 -25.184 -25.509 -0.326 (0) + HS- 9.742e-21 7.955e-21 -20.011 -20.099 -0.088 21.34 + H2S 6.815e-21 6.879e-21 -20.167 -20.162 0.004 41.47 + S-2 6.549e-26 3.095e-26 -25.184 -25.509 -0.326 (0) + (H2S)2 0.000e+00 0.000e+00 -41.355 -41.350 0.004 28.52 S(6) 1.520e-02 - SO4-2 1.018e-02 4.791e-03 -1.992 -2.320 -0.327 16.92 + SO4-2 1.018e-02 4.791e-03 -1.992 -2.320 -0.327 16.76 CaSO4 5.027e-03 5.074e-03 -2.299 -2.295 0.004 8.27 HSO4- 2.155e-07 1.777e-07 -6.666 -6.750 -0.084 41.53 CaHSO4+ 1.266e-08 1.043e-08 -7.898 -7.982 -0.084 (0) @@ -2595,7 +2594,7 @@ S(6) 1.520e-02 Gypsum 0.00 -4.63 -4.63 CaSO4:2H2O H2(g) -10.33 -13.46 -3.14 H2 H2O(g) -0.83 -0.00 0.83 H2O - H2S(g) -18.88 -26.82 -7.94 H2S + H2S(g) -18.91 -26.82 -7.91 H2S O2(g) -53.88 -56.92 -3.05 O2 Sulfur -14.23 -9.96 4.26 S @@ -2627,16 +2626,15 @@ Gypsum -0.01 -4.64 -4.63 1.000e+00 0 -1.000e+00 pH = 6.711 Charge balance pe = 8.832 Adjusted to redox equilibrium - Specific Conductance (S/cm, 55C) = 3738 - Density (g/cm) = 0.98767 + Specific Conductance (µS/cm, 55°C) = 3653 + Density (g/cm³) = 0.98767 Volume (L) = 1.05111 + Viscosity (mPa s) = 0.50945 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.020e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 55.00 + Temperature (°C) = 55.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 18 @@ -2646,7 +2644,7 @@ Gypsum -0.01 -4.64 -4.63 1.000e+00 0 -1.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 4.606e-07 3.763e-07 -6.337 -6.424 -0.088 -3.60 H+ 2.272e-07 1.944e-07 -6.644 -6.711 -0.068 0.00 @@ -2662,10 +2660,11 @@ O(0) 2.654e-15 O2 1.327e-15 1.339e-15 -14.877 -14.873 0.004 32.16 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -103.677 -103.764 -0.088 21.34 - H2S 0.000e+00 0.000e+00 -103.828 -103.824 0.004 37.25 + H2S 0.000e+00 0.000e+00 -103.828 -103.824 0.004 41.61 S-2 0.000e+00 0.000e+00 -108.836 -109.160 -0.325 (0) + (H2S)2 0.000e+00 0.000e+00 -208.670 -208.666 0.004 28.46 S(6) 1.500e-02 - SO4-2 1.005e-02 4.742e-03 -1.998 -2.324 -0.326 16.91 + SO4-2 1.005e-02 4.742e-03 -1.998 -2.324 -0.326 16.73 CaSO4 4.953e-03 4.999e-03 -2.305 -2.301 0.004 8.29 HSO4- 2.242e-07 1.849e-07 -6.649 -6.733 -0.084 41.54 CaHSO4+ 1.303e-08 1.074e-08 -7.885 -7.969 -0.084 (0) @@ -2678,7 +2677,7 @@ S(6) 1.500e-02 Gypsum -0.01 -4.64 -4.63 CaSO4:2H2O H2(g) -31.22 -34.36 -3.14 H2 H2O(g) -0.81 -0.00 0.81 H2O - H2S(g) -102.53 -110.48 -7.94 H2S + H2S(g) -102.56 -110.48 -7.92 H2S O2(g) -11.82 -14.87 -3.05 O2 Sulfur -76.98 -72.74 4.25 S @@ -2710,16 +2709,15 @@ Gypsum -0.02 -4.65 -4.64 1.000e+00 0 -1.000e+00 pH = 6.700 Charge balance pe = 8.775 Adjusted to redox equilibrium - Specific Conductance (S/cm, 56C) = 3729 - Density (g/cm) = 0.98714 + Specific Conductance (µS/cm, 56°C) = 3641 + Density (g/cm³) = 0.98714 Volume (L) = 1.05163 + Viscosity (mPa s) = 0.50137 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.946e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 56.00 + Temperature (°C) = 56.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 18 @@ -2729,7 +2727,7 @@ Gypsum -0.02 -4.65 -4.64 1.000e+00 0 -1.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 4.748e-07 3.883e-07 -6.324 -6.411 -0.087 -3.62 H+ 2.328e-07 1.993e-07 -6.633 -6.700 -0.067 0.00 @@ -2745,10 +2743,11 @@ O(0) 2.644e-15 O2 1.322e-15 1.334e-15 -14.879 -14.875 0.004 32.20 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -103.245 -103.333 -0.087 21.34 - H2S 0.000e+00 0.000e+00 -103.391 -103.387 0.004 37.25 + H2S 0.000e+00 0.000e+00 -103.391 -103.387 0.004 41.74 S-2 0.000e+00 0.000e+00 -108.392 -108.715 -0.323 (0) + (H2S)2 0.000e+00 0.000e+00 -207.791 -207.787 0.004 28.39 S(6) 1.470e-02 - SO4-2 9.866e-03 4.672e-03 -2.006 -2.330 -0.325 16.90 + SO4-2 9.866e-03 4.672e-03 -2.006 -2.330 -0.325 16.69 CaSO4 4.838e-03 4.882e-03 -2.315 -2.311 0.004 8.31 HSO4- 2.323e-07 1.918e-07 -6.634 -6.717 -0.083 41.55 CaHSO4+ 1.330e-08 1.098e-08 -7.876 -7.960 -0.083 (0) @@ -2761,7 +2760,7 @@ S(6) 1.470e-02 Gypsum -0.02 -4.65 -4.64 CaSO4:2H2O H2(g) -31.08 -34.22 -3.14 H2 H2O(g) -0.79 -0.00 0.79 H2O - H2S(g) -102.09 -110.03 -7.94 H2S + H2S(g) -102.12 -110.03 -7.92 H2S O2(g) -11.82 -14.87 -3.05 O2 Sulfur -76.66 -72.44 4.23 S @@ -2793,16 +2792,15 @@ Gypsum -0.03 -4.67 -4.64 1.000e+00 0 -1.000e+00 pH = 6.690 Charge balance pe = 8.718 Adjusted to redox equilibrium - Specific Conductance (S/cm, 57C) = 3719 - Density (g/cm) = 0.98661 - Volume (L) = 1.05216 + Specific Conductance (µS/cm, 57°C) = 3628 + Density (g/cm³) = 0.98661 + Volume (L) = 1.05215 + Viscosity (mPa s) = 0.49349 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.874e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 57.00 + Temperature (°C) = 57.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 18 @@ -2812,7 +2810,7 @@ Gypsum -0.03 -4.67 -4.64 1.000e+00 0 -1.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 4.893e-07 4.006e-07 -6.310 -6.397 -0.087 -3.64 H+ 2.385e-07 2.043e-07 -6.623 -6.690 -0.067 0.00 @@ -2828,10 +2826,11 @@ O(0) 2.663e-15 O2 1.332e-15 1.343e-15 -14.876 -14.872 0.004 32.25 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -102.827 -102.913 -0.087 21.33 - H2S 0.000e+00 0.000e+00 -102.968 -102.964 0.004 37.25 + H2S 0.000e+00 0.000e+00 -102.968 -102.964 0.004 41.86 S-2 0.000e+00 0.000e+00 -107.961 -108.282 -0.321 (0) + (H2S)2 0.000e+00 0.000e+00 -206.937 -206.934 0.004 28.32 S(6) 1.441e-02 - SO4-2 9.684e-03 4.603e-03 -2.014 -2.337 -0.323 16.89 + SO4-2 9.684e-03 4.603e-03 -2.014 -2.337 -0.323 16.65 CaSO4 4.725e-03 4.767e-03 -2.326 -2.322 0.004 8.32 HSO4- 2.407e-07 1.989e-07 -6.619 -6.701 -0.083 41.56 CaHSO4+ 1.357e-08 1.121e-08 -7.868 -7.950 -0.083 (0) @@ -2844,7 +2843,7 @@ S(6) 1.441e-02 Gypsum -0.03 -4.67 -4.64 CaSO4:2H2O H2(g) -30.95 -34.09 -3.14 H2 H2O(g) -0.77 -0.00 0.77 H2O - H2S(g) -101.66 -109.60 -7.94 H2S + H2S(g) -101.69 -109.60 -7.92 H2S O2(g) -11.82 -14.87 -3.06 O2 Sulfur -76.35 -72.15 4.21 S @@ -2875,17 +2874,16 @@ Gypsum -0.04 -4.68 -4.64 1.000e+00 0 -1.000e+00 ----------------------------Description of solution---------------------------- pH = 6.679 Charge balance - pe = 8.691 Adjusted to redox equilibrium - Specific Conductance (S/cm, 58C) = 3709 - Density (g/cm) = 0.98607 + pe = 8.661 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 58°C) = 3614 + Density (g/cm³) = 0.98607 Volume (L) = 1.05269 + Viscosity (mPa s) = 0.48582 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.802e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 58.00 + Temperature (°C) = 58.00 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 17 @@ -2895,7 +2893,7 @@ Gypsum -0.04 -4.68 -4.64 1.000e+00 0 -1.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 5.041e-07 4.132e-07 -6.298 -6.384 -0.086 -3.66 H+ 2.442e-07 2.094e-07 -6.612 -6.679 -0.067 0.00 @@ -2905,16 +2903,17 @@ Ca 1.412e-02 CaSO4 4.613e-03 4.654e-03 -2.336 -2.332 0.004 8.34 CaHSO4+ 1.384e-08 1.144e-08 -7.859 -7.941 -0.082 (0) CaOH+ 4.424e-09 3.658e-09 -8.354 -8.437 -0.082 (0) -H(0) 1.896e-34 - H2 9.479e-35 9.562e-35 -34.023 -34.019 0.004 28.58 -O(0) 3.503e-15 - O2 1.751e-15 1.767e-15 -14.757 -14.753 0.004 32.29 +H(0) 2.181e-34 + H2 1.091e-34 1.100e-34 -33.962 -33.959 0.004 28.58 +O(0) 2.646e-15 + O2 1.323e-15 1.334e-15 -14.878 -14.875 0.004 32.29 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -102.642 -102.728 -0.086 21.32 - H2S 0.000e+00 0.000e+00 -102.778 -102.774 0.004 37.25 - S-2 0.000e+00 0.000e+00 -107.764 -108.084 -0.320 (0) + HS- 0.000e+00 0.000e+00 -102.398 -102.485 -0.086 21.32 + H2S 0.000e+00 0.000e+00 -102.534 -102.531 0.004 41.99 + S-2 0.000e+00 0.000e+00 -107.520 -107.840 -0.320 (0) + (H2S)2 0.000e+00 0.000e+00 -206.065 -206.061 0.004 28.25 S(6) 1.412e-02 - SO4-2 9.504e-03 4.535e-03 -2.022 -2.343 -0.321 16.88 + SO4-2 9.504e-03 4.535e-03 -2.022 -2.343 -0.321 16.61 CaSO4 4.613e-03 4.654e-03 -2.336 -2.332 0.004 8.34 HSO4- 2.493e-07 2.061e-07 -6.603 -6.686 -0.082 41.57 CaHSO4+ 1.384e-08 1.144e-08 -7.859 -7.941 -0.082 (0) @@ -2925,11 +2924,11 @@ S(6) 1.412e-02 Anhydrite 0.00 -4.68 -4.68 CaSO4 Gypsum -0.04 -4.68 -4.64 CaSO4:2H2O - H2(g) -30.88 -34.02 -3.14 H2 + H2(g) -30.82 -33.96 -3.14 H2 H2O(g) -0.75 -0.00 0.75 H2O - H2S(g) -101.47 -109.41 -7.94 H2S - O2(g) -11.69 -14.75 -3.06 O2 - Sulfur -76.22 -72.03 4.19 S + H2S(g) -101.25 -109.16 -7.92 H2S + O2(g) -11.82 -14.87 -3.06 O2 + Sulfur -76.04 -71.85 4.19 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2958,17 +2957,16 @@ Gypsum -0.04 -4.69 -4.65 1.000e+00 0 -1.000e+00 ----------------------------Description of solution---------------------------- pH = 6.669 Charge balance - pe = 8.635 Adjusted to redox equilibrium - Specific Conductance (S/cm, 59C) = 3697 - Density (g/cm) = 0.98553 + pe = 8.605 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 59°C) = 3599 + Density (g/cm³) = 0.98553 Volume (L) = 1.05323 + Viscosity (mPa s) = 0.47834 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.731e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 59.00 + Temperature (°C) = 59.00 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 17 @@ -2978,7 +2976,7 @@ Gypsum -0.04 -4.69 -4.65 1.000e+00 0 -1.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 5.192e-07 4.261e-07 -6.285 -6.370 -0.086 -3.68 H+ 2.500e-07 2.145e-07 -6.602 -6.669 -0.067 0.00 @@ -2988,16 +2986,17 @@ Ca 1.383e-02 CaSO4 4.504e-03 4.543e-03 -2.346 -2.343 0.004 8.36 CaHSO4+ 1.411e-08 1.168e-08 -7.850 -7.932 -0.082 (0) CaOH+ 4.249e-09 3.517e-09 -8.372 -8.454 -0.082 (0) -H(0) 2.558e-34 - H2 1.279e-34 1.290e-34 -33.893 -33.889 0.004 28.58 -O(0) 3.508e-15 - O2 1.754e-15 1.769e-15 -14.756 -14.752 0.004 32.34 +H(0) 2.942e-34 + H2 1.471e-34 1.484e-34 -33.832 -33.829 0.004 28.58 +O(0) 2.652e-15 + O2 1.326e-15 1.338e-15 -14.877 -14.874 0.004 32.34 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -102.224 -102.310 -0.086 21.31 - H2S 0.000e+00 0.000e+00 -102.355 -102.351 0.004 37.25 - S-2 0.000e+00 0.000e+00 -107.333 -107.651 -0.318 (0) + HS- 0.000e+00 0.000e+00 -101.981 -102.067 -0.086 21.31 + H2S 0.000e+00 0.000e+00 -102.112 -102.108 0.004 42.11 + S-2 0.000e+00 0.000e+00 -107.090 -107.408 -0.318 (0) + (H2S)2 0.000e+00 0.000e+00 -205.213 -205.210 0.004 28.18 S(6) 1.383e-02 - SO4-2 9.328e-03 4.468e-03 -2.030 -2.350 -0.320 16.86 + SO4-2 9.328e-03 4.468e-03 -2.030 -2.350 -0.320 16.56 CaSO4 4.504e-03 4.543e-03 -2.346 -2.343 0.004 8.36 HSO4- 2.581e-07 2.137e-07 -6.588 -6.670 -0.082 41.58 CaHSO4+ 1.411e-08 1.168e-08 -7.850 -7.932 -0.082 (0) @@ -3008,11 +3007,11 @@ S(6) 1.383e-02 Anhydrite 0.00 -4.69 -4.69 CaSO4 Gypsum -0.04 -4.69 -4.65 CaSO4:2H2O - H2(g) -30.75 -33.89 -3.14 H2 + H2(g) -30.69 -33.83 -3.14 H2 H2O(g) -0.73 -0.00 0.73 H2O - H2S(g) -101.04 -108.98 -7.94 H2S - O2(g) -11.69 -14.75 -3.06 O2 - Sulfur -75.91 -71.74 4.17 S + H2S(g) -100.82 -108.74 -7.92 H2S + O2(g) -11.81 -14.87 -3.06 O2 + Sulfur -75.73 -71.56 4.17 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3042,16 +3041,15 @@ Gypsum -0.05 -4.71 -4.65 1.000e+00 0 -1.000e+00 pH = 6.658 Charge balance pe = 8.548 Adjusted to redox equilibrium - Specific Conductance (S/cm, 60C) = 3685 - Density (g/cm) = 0.98498 - Volume (L) = 1.05378 + Specific Conductance (µS/cm, 60°C) = 3584 + Density (g/cm³) = 0.98498 + Volume (L) = 1.05377 + Viscosity (mPa s) = 0.47105 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.662e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 60.00 + Temperature (°C) = 60.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 17 @@ -3061,7 +3059,7 @@ Gypsum -0.05 -4.71 -4.65 1.000e+00 0 -1.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 5.346e-07 4.392e-07 -6.272 -6.357 -0.085 -3.70 H+ 2.559e-07 2.197e-07 -6.592 -6.658 -0.066 0.00 @@ -3077,10 +3075,11 @@ O(0) 2.644e-15 O2 1.322e-15 1.333e-15 -14.879 -14.875 0.004 32.38 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -101.561 -101.646 -0.085 21.30 - H2S 0.000e+00 0.000e+00 -101.687 -101.683 0.004 37.26 + H2S 0.000e+00 0.000e+00 -101.687 -101.683 0.004 42.24 S-2 0.000e+00 0.000e+00 -106.658 -106.974 -0.317 (0) + (H2S)2 0.000e+00 0.000e+00 -204.357 -204.354 0.004 28.10 S(6) 1.355e-02 - SO4-2 9.154e-03 4.402e-03 -2.038 -2.356 -0.318 16.83 + SO4-2 9.154e-03 4.402e-03 -2.038 -2.356 -0.318 16.50 CaSO4 4.397e-03 4.434e-03 -2.357 -2.353 0.004 8.37 HSO4- 2.672e-07 2.214e-07 -6.573 -6.655 -0.082 41.58 CaHSO4+ 1.439e-08 1.192e-08 -7.842 -7.924 -0.082 (0) @@ -3093,7 +3092,7 @@ S(6) 1.355e-02 Gypsum -0.05 -4.71 -4.65 CaSO4:2H2O H2(g) -30.56 -33.70 -3.14 H2 H2O(g) -0.71 -0.00 0.71 H2O - H2S(g) -100.37 -108.30 -7.94 H2S + H2S(g) -100.39 -108.30 -7.92 H2S O2(g) -11.81 -14.88 -3.06 O2 Sulfur -75.42 -71.27 4.15 S @@ -3125,16 +3124,15 @@ Gypsum -0.06 -4.72 -4.66 1.000e+00 0 -1.000e+00 pH = 6.648 Charge balance pe = 8.493 Adjusted to redox equilibrium - Specific Conductance (S/cm, 61C) = 3673 - Density (g/cm) = 0.98442 + Specific Conductance (µS/cm, 61°C) = 3568 + Density (g/cm³) = 0.98442 Volume (L) = 1.05433 + Viscosity (mPa s) = 0.46394 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.594e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 61.00 + Temperature (°C) = 61.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 17 @@ -3144,7 +3142,7 @@ Gypsum -0.06 -4.72 -4.66 1.000e+00 0 -1.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 5.504e-07 4.527e-07 -6.259 -6.344 -0.085 -3.73 H+ 2.619e-07 2.250e-07 -6.582 -6.648 -0.066 0.00 @@ -3160,10 +3158,11 @@ O(0) 2.672e-15 O2 1.336e-15 1.347e-15 -14.874 -14.871 0.004 32.42 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -101.156 -101.240 -0.085 21.29 - H2S 0.000e+00 0.000e+00 -101.276 -101.273 0.004 37.26 + H2S 0.000e+00 0.000e+00 -101.276 -101.273 0.004 42.36 S-2 0.000e+00 0.000e+00 -106.240 -106.555 -0.315 (0) + (H2S)2 0.000e+00 0.000e+00 -203.530 -203.527 0.004 28.03 S(6) 1.328e-02 - SO4-2 8.984e-03 4.336e-03 -2.047 -2.363 -0.316 16.81 + SO4-2 8.984e-03 4.336e-03 -2.047 -2.363 -0.316 16.45 CaSO4 4.291e-03 4.327e-03 -2.367 -2.364 0.004 8.39 HSO4- 2.766e-07 2.294e-07 -6.558 -6.639 -0.081 41.59 CaHSO4+ 1.466e-08 1.216e-08 -7.834 -7.915 -0.081 (0) @@ -3176,7 +3175,7 @@ S(6) 1.328e-02 Gypsum -0.06 -4.72 -4.66 CaSO4:2H2O H2(g) -30.43 -33.57 -3.14 H2 H2O(g) -0.69 -0.00 0.69 H2O - H2S(g) -99.95 -107.89 -7.94 H2S + H2S(g) -99.97 -107.89 -7.92 H2S O2(g) -11.80 -14.87 -3.07 O2 Sulfur -75.12 -70.99 4.13 S @@ -3208,16 +3207,15 @@ Gypsum -0.07 -4.73 -4.66 1.000e+00 0 -1.000e+00 pH = 6.638 Charge balance pe = 8.437 Adjusted to redox equilibrium - Specific Conductance (S/cm, 62C) = 3659 - Density (g/cm) = 0.98386 + Specific Conductance (µS/cm, 62°C) = 3552 + Density (g/cm³) = 0.98387 Volume (L) = 1.05489 + Viscosity (mPa s) = 0.45701 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.526e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 62.00 + Temperature (°C) = 62.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 17 @@ -3227,7 +3225,7 @@ Gypsum -0.07 -4.73 -4.66 1.000e+00 0 -1.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 5.665e-07 4.664e-07 -6.247 -6.331 -0.084 -3.75 H+ 2.679e-07 2.303e-07 -6.572 -6.638 -0.066 0.00 @@ -3237,16 +3235,17 @@ Ca 1.300e-02 CaSO4 4.188e-03 4.222e-03 -2.378 -2.375 0.004 8.41 CaHSO4+ 1.494e-08 1.240e-08 -7.826 -7.906 -0.081 (0) CaOH+ 3.769e-09 3.128e-09 -8.424 -8.505 -0.081 (0) -H(0) 7.164e-34 - H2 3.582e-34 3.611e-34 -33.446 -33.442 0.004 28.58 -O(0) 2.657e-15 - O2 1.329e-15 1.340e-15 -14.877 -14.873 0.004 32.47 +H(0) 7.178e-34 + H2 3.589e-34 3.618e-34 -33.445 -33.441 0.004 28.58 +O(0) 2.647e-15 + O2 1.323e-15 1.334e-15 -14.878 -14.875 0.004 32.47 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -100.739 -100.823 -0.084 21.28 - H2S 0.000e+00 0.000e+00 -100.854 -100.851 0.004 37.26 - S-2 0.000e+00 0.000e+00 -105.811 -106.124 -0.313 (0) + HS- 0.000e+00 0.000e+00 -100.735 -100.820 -0.084 21.28 + H2S 0.000e+00 0.000e+00 -100.851 -100.847 0.004 42.48 + S-2 0.000e+00 0.000e+00 -105.808 -106.121 -0.313 (0) + (H2S)2 0.000e+00 0.000e+00 -202.673 -202.670 0.004 27.96 S(6) 1.300e-02 - SO4-2 8.816e-03 4.271e-03 -2.055 -2.369 -0.315 16.78 + SO4-2 8.816e-03 4.271e-03 -2.055 -2.369 -0.315 16.39 CaSO4 4.188e-03 4.222e-03 -2.378 -2.375 0.004 8.41 HSO4- 2.862e-07 2.376e-07 -6.543 -6.624 -0.081 41.59 CaHSO4+ 1.494e-08 1.240e-08 -7.826 -7.906 -0.081 (0) @@ -3259,7 +3258,7 @@ S(6) 1.300e-02 Gypsum -0.07 -4.73 -4.66 CaSO4:2H2O H2(g) -30.30 -33.44 -3.14 H2 H2O(g) -0.67 -0.00 0.67 H2O - H2S(g) -99.53 -107.46 -7.94 H2S + H2S(g) -99.54 -107.46 -7.92 H2S O2(g) -11.80 -14.87 -3.07 O2 Sulfur -74.81 -70.70 4.11 S @@ -3291,16 +3290,15 @@ Gypsum -0.08 -4.75 -4.66 1.000e+00 0 -1.000e+00 pH = 6.628 Charge balance pe = 8.383 Adjusted to redox equilibrium - Specific Conductance (S/cm, 63C) = 3645 - Density (g/cm) = 0.98330 - Volume (L) = 1.05546 + Specific Conductance (µS/cm, 63°C) = 3535 + Density (g/cm³) = 0.98330 + Volume (L) = 1.05545 + Viscosity (mPa s) = 0.45025 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.460e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 63.00 + Temperature (°C) = 63.00 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 14 @@ -3310,7 +3308,7 @@ Gypsum -0.08 -4.75 -4.66 1.000e+00 0 -1.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 5.829e-07 4.805e-07 -6.234 -6.318 -0.084 -3.78 H+ 2.740e-07 2.357e-07 -6.562 -6.628 -0.065 0.00 @@ -3326,10 +3324,11 @@ O(0) 2.681e-15 O2 1.340e-15 1.351e-15 -14.873 -14.869 0.003 32.51 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -100.337 -100.421 -0.084 21.27 - H2S 0.000e+00 0.000e+00 -100.447 -100.443 0.003 37.26 + H2S 0.000e+00 0.000e+00 -100.447 -100.443 0.003 42.59 S-2 0.000e+00 0.000e+00 -105.397 -105.709 -0.312 (0) + (H2S)2 0.000e+00 0.000e+00 -201.860 -201.857 0.003 27.88 S(6) 1.274e-02 - SO4-2 8.650e-03 4.207e-03 -2.063 -2.376 -0.313 16.75 + SO4-2 8.650e-03 4.207e-03 -2.063 -2.376 -0.313 16.33 CaSO4 4.086e-03 4.119e-03 -2.389 -2.385 0.003 8.42 HSO4- 2.961e-07 2.460e-07 -6.529 -6.609 -0.080 41.59 CaHSO4+ 1.522e-08 1.265e-08 -7.818 -7.898 -0.080 (0) @@ -3342,7 +3341,7 @@ S(6) 1.274e-02 Gypsum -0.08 -4.75 -4.66 CaSO4:2H2O H2(g) -30.18 -33.32 -3.14 H2 H2O(g) -0.65 -0.00 0.65 H2O - H2S(g) -99.11 -107.05 -7.94 H2S + H2S(g) -99.13 -107.05 -7.92 H2S O2(g) -11.80 -14.87 -3.07 O2 Sulfur -74.52 -70.42 4.09 S @@ -3374,16 +3373,15 @@ Gypsum -0.09 -4.76 -4.67 1.000e+00 0 -1.000e+00 pH = 6.618 Charge balance pe = 8.328 Adjusted to redox equilibrium - Specific Conductance (S/cm, 64C) = 3630 - Density (g/cm) = 0.98273 + Specific Conductance (µS/cm, 64°C) = 3517 + Density (g/cm³) = 0.98273 Volume (L) = 1.05603 + Viscosity (mPa s) = 0.44366 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.395e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 64.00 + Temperature (°C) = 64.00 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 14 @@ -3393,7 +3391,7 @@ Gypsum -0.09 -4.76 -4.67 1.000e+00 0 -1.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 5.996e-07 4.948e-07 -6.222 -6.306 -0.083 -3.81 H+ 2.802e-07 2.411e-07 -6.553 -6.618 -0.065 0.00 @@ -3409,10 +3407,11 @@ O(0) 2.677e-15 O2 1.338e-15 1.349e-15 -14.873 -14.870 0.003 32.55 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -99.929 -100.012 -0.083 21.25 - H2S 0.000e+00 0.000e+00 -100.034 -100.030 0.003 37.26 + H2S 0.000e+00 0.000e+00 -100.034 -100.030 0.003 42.71 S-2 0.000e+00 0.000e+00 -104.977 -105.287 -0.310 (0) + (H2S)2 0.000e+00 0.000e+00 -201.028 -201.025 0.003 27.81 S(6) 1.247e-02 - SO4-2 8.488e-03 4.143e-03 -2.071 -2.383 -0.311 16.72 + SO4-2 8.488e-03 4.143e-03 -2.071 -2.383 -0.311 16.26 CaSO4 3.986e-03 4.018e-03 -2.399 -2.396 0.003 8.44 HSO4- 3.062e-07 2.547e-07 -6.514 -6.594 -0.080 41.59 CaHSO4+ 1.550e-08 1.289e-08 -7.810 -7.890 -0.080 (0) @@ -3425,7 +3424,7 @@ S(6) 1.247e-02 Gypsum -0.09 -4.76 -4.67 CaSO4:2H2O H2(g) -30.05 -33.19 -3.14 H2 H2O(g) -0.63 -0.00 0.63 H2O - H2S(g) -98.70 -106.63 -7.93 H2S + H2S(g) -98.71 -106.63 -7.92 H2S O2(g) -11.79 -14.87 -3.08 O2 Sulfur -74.22 -70.14 4.08 S @@ -3457,16 +3456,15 @@ Gypsum -0.10 -4.77 -4.67 1.000e+00 0 -1.000e+00 pH = 6.608 Charge balance pe = 8.273 Adjusted to redox equilibrium - Specific Conductance (S/cm, 65C) = 3615 - Density (g/cm) = 0.98215 + Specific Conductance (µS/cm, 65°C) = 3499 + Density (g/cm³) = 0.98216 Volume (L) = 1.05661 + Viscosity (mPa s) = 0.43723 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.331e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 65.00 + Temperature (°C) = 65.00 Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 14 @@ -3476,7 +3474,7 @@ Gypsum -0.10 -4.77 -4.67 1.000e+00 0 -1.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 6.167e-07 5.095e-07 -6.210 -6.293 -0.083 -3.84 H+ 2.864e-07 2.466e-07 -6.543 -6.608 -0.065 0.00 @@ -3486,16 +3484,17 @@ Ca 1.222e-02 CaSO4 3.888e-03 3.918e-03 -2.410 -2.407 0.003 8.45 CaHSO4+ 1.578e-08 1.314e-08 -7.802 -7.881 -0.080 (0) CaOH+ 3.350e-09 2.789e-09 -8.475 -8.555 -0.080 (0) -H(0) 1.711e-33 - H2 8.557e-34 8.623e-34 -33.068 -33.064 0.003 28.58 +H(0) 1.712e-33 + H2 8.558e-34 8.624e-34 -33.068 -33.064 0.003 28.58 O(0) 2.679e-15 - O2 1.340e-15 1.350e-15 -14.873 -14.870 0.003 32.59 + O2 1.339e-15 1.350e-15 -14.873 -14.870 0.003 32.59 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -99.525 -99.608 -0.083 21.24 - H2S 0.000e+00 0.000e+00 -99.625 -99.621 0.003 37.26 + H2S 0.000e+00 0.000e+00 -99.624 -99.621 0.003 42.82 S-2 0.000e+00 0.000e+00 -104.561 -104.869 -0.308 (0) + (H2S)2 0.000e+00 0.000e+00 -200.205 -200.201 0.003 27.73 S(6) 1.222e-02 - SO4-2 8.328e-03 4.080e-03 -2.079 -2.389 -0.310 16.68 + SO4-2 8.328e-03 4.080e-03 -2.079 -2.389 -0.310 16.19 CaSO4 3.888e-03 3.918e-03 -2.410 -2.407 0.003 8.45 HSO4- 3.167e-07 2.636e-07 -6.499 -6.579 -0.080 41.59 CaHSO4+ 1.578e-08 1.314e-08 -7.802 -7.881 -0.080 (0) @@ -3508,7 +3507,7 @@ S(6) 1.222e-02 Gypsum -0.10 -4.77 -4.67 CaSO4:2H2O H2(g) -29.93 -33.06 -3.14 H2 H2O(g) -0.61 -0.00 0.61 H2O - H2S(g) -98.28 -106.22 -7.93 H2S + H2S(g) -98.29 -106.22 -7.92 H2S O2(g) -11.79 -14.87 -3.08 O2 Sulfur -73.92 -69.86 4.06 S @@ -3540,16 +3539,15 @@ Gypsum -0.11 -4.79 -4.67 1.000e+00 0 -1.000e+00 pH = 6.598 Charge balance pe = 8.218 Adjusted to redox equilibrium - Specific Conductance (S/cm, 66C) = 3599 - Density (g/cm) = 0.98157 + Specific Conductance (µS/cm, 66°C) = 3481 + Density (g/cm³) = 0.98158 Volume (L) = 1.05720 + Viscosity (mPa s) = 0.43095 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.268e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 66.00 + Temperature (°C) = 66.00 Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 14 @@ -3559,7 +3557,7 @@ Gypsum -0.11 -4.79 -4.67 1.000e+00 0 -1.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 6.341e-07 5.244e-07 -6.198 -6.280 -0.082 -3.87 H+ 2.927e-07 2.522e-07 -6.534 -6.598 -0.065 0.00 @@ -3569,16 +3567,17 @@ Ca 1.196e-02 CaSO4 3.793e-03 3.821e-03 -2.421 -2.418 0.003 8.47 CaHSO4+ 1.606e-08 1.338e-08 -7.794 -7.873 -0.079 (0) CaOH+ 3.222e-09 2.685e-09 -8.492 -8.571 -0.079 (0) -H(0) 2.288e-33 - H2 1.144e-33 1.152e-33 -32.942 -32.938 0.003 28.58 -O(0) 2.669e-15 - O2 1.335e-15 1.345e-15 -14.875 -14.871 0.003 32.63 +H(0) 2.284e-33 + H2 1.142e-33 1.151e-33 -32.942 -32.939 0.003 28.58 +O(0) 2.676e-15 + O2 1.338e-15 1.348e-15 -14.873 -14.870 0.003 32.63 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -99.120 -99.203 -0.082 21.22 - H2S 0.000e+00 0.000e+00 -99.214 -99.211 0.003 37.27 - S-2 0.000e+00 0.000e+00 -104.143 -104.450 -0.307 (0) + HS- 0.000e+00 0.000e+00 -99.123 -99.205 -0.082 21.22 + H2S 0.000e+00 0.000e+00 -99.216 -99.213 0.003 42.94 + S-2 0.000e+00 0.000e+00 -104.146 -104.453 -0.307 (0) + (H2S)2 0.000e+00 0.000e+00 -199.383 -199.380 0.003 27.65 S(6) 1.196e-02 - SO4-2 8.170e-03 4.018e-03 -2.088 -2.396 -0.308 16.64 + SO4-2 8.170e-03 4.018e-03 -2.088 -2.396 -0.308 16.11 CaSO4 3.793e-03 3.821e-03 -2.421 -2.418 0.003 8.47 HSO4- 3.274e-07 2.728e-07 -6.485 -6.564 -0.079 41.59 CaHSO4+ 1.606e-08 1.338e-08 -7.794 -7.873 -0.079 (0) @@ -3591,7 +3590,7 @@ S(6) 1.196e-02 Gypsum -0.11 -4.79 -4.67 CaSO4:2H2O H2(g) -29.80 -32.94 -3.14 H2 H2O(g) -0.59 -0.00 0.59 H2O - H2S(g) -97.87 -105.80 -7.93 H2S + H2S(g) -97.88 -105.80 -7.92 H2S O2(g) -11.79 -14.87 -3.08 O2 Sulfur -73.62 -69.58 4.04 S @@ -3623,16 +3622,15 @@ Gypsum -0.12 -4.80 -4.68 1.000e+00 0 -1.000e+00 pH = 6.589 Charge balance pe = 8.164 Adjusted to redox equilibrium - Specific Conductance (S/cm, 67C) = 3583 - Density (g/cm) = 0.98099 + Specific Conductance (µS/cm, 67°C) = 3461 + Density (g/cm³) = 0.98099 Volume (L) = 1.05779 + Viscosity (mPa s) = 0.42482 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.206e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 67.00 + Temperature (°C) = 67.00 Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 14 @@ -3642,7 +3640,7 @@ Gypsum -0.12 -4.80 -4.68 1.000e+00 0 -1.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 6.519e-07 5.397e-07 -6.186 -6.268 -0.082 -3.90 H+ 2.990e-07 2.578e-07 -6.524 -6.589 -0.064 0.00 @@ -3658,10 +3656,11 @@ O(0) 2.684e-15 O2 1.342e-15 1.352e-15 -14.872 -14.869 0.003 32.67 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -98.726 -98.808 -0.082 21.21 - H2S 0.000e+00 0.000e+00 -98.814 -98.811 0.003 37.27 + H2S 0.000e+00 0.000e+00 -98.814 -98.811 0.003 43.05 S-2 0.000e+00 0.000e+00 -103.737 -104.042 -0.305 (0) + (H2S)2 0.000e+00 0.000e+00 -198.573 -198.570 0.003 27.57 S(6) 1.171e-02 - SO4-2 8.015e-03 3.957e-03 -2.096 -2.403 -0.307 16.59 + SO4-2 8.015e-03 3.957e-03 -2.096 -2.403 -0.307 16.04 CaSO4 3.699e-03 3.726e-03 -2.432 -2.429 0.003 8.48 HSO4- 3.384e-07 2.823e-07 -6.471 -6.549 -0.079 41.59 CaHSO4+ 1.635e-08 1.363e-08 -7.787 -7.865 -0.079 (0) @@ -3674,7 +3673,7 @@ S(6) 1.171e-02 Gypsum -0.12 -4.80 -4.68 CaSO4:2H2O H2(g) -29.68 -32.82 -3.14 H2 H2O(g) -0.57 -0.00 0.57 H2O - H2S(g) -97.46 -105.40 -7.93 H2S + H2S(g) -97.47 -105.40 -7.93 H2S O2(g) -11.79 -14.87 -3.08 O2 Sulfur -73.33 -69.30 4.02 S @@ -3706,16 +3705,15 @@ Gypsum -0.13 -4.81 -4.68 1.000e+00 0 -1.000e+00 pH = 6.579 Charge balance pe = 8.110 Adjusted to redox equilibrium - Specific Conductance (S/cm, 68C) = 3566 - Density (g/cm) = 0.98040 - Volume (L) = 1.05840 + Specific Conductance (µS/cm, 68°C) = 3442 + Density (g/cm³) = 0.98040 + Volume (L) = 1.05839 + Viscosity (mPa s) = 0.41884 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.145e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 68.00 + Temperature (°C) = 68.00 Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 14 @@ -3725,7 +3723,7 @@ Gypsum -0.13 -4.81 -4.68 1.000e+00 0 -1.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 6.700e-07 5.553e-07 -6.174 -6.255 -0.082 -3.93 H+ 3.054e-07 2.634e-07 -6.515 -6.579 -0.064 0.00 @@ -3741,10 +3739,11 @@ O(0) 2.677e-15 O2 1.338e-15 1.348e-15 -14.873 -14.870 0.003 32.71 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -98.327 -98.408 -0.082 21.19 - H2S 0.000e+00 0.000e+00 -98.409 -98.406 0.003 37.27 + H2S 0.000e+00 0.000e+00 -98.409 -98.406 0.003 43.16 S-2 0.000e+00 0.000e+00 -103.325 -103.629 -0.304 (0) + (H2S)2 0.000e+00 0.000e+00 -197.759 -197.755 0.003 27.49 S(6) 1.147e-02 - SO4-2 7.863e-03 3.896e-03 -2.104 -2.409 -0.305 16.55 + SO4-2 7.863e-03 3.896e-03 -2.104 -2.409 -0.305 15.96 CaSO4 3.606e-03 3.633e-03 -2.443 -2.440 0.003 8.50 HSO4- 3.498e-07 2.920e-07 -6.456 -6.535 -0.078 41.59 CaHSO4+ 1.663e-08 1.388e-08 -7.779 -7.858 -0.078 (0) @@ -3757,7 +3756,7 @@ S(6) 1.147e-02 Gypsum -0.13 -4.81 -4.68 CaSO4:2H2O H2(g) -29.55 -32.69 -3.14 H2 H2O(g) -0.55 -0.00 0.55 H2O - H2S(g) -97.05 -104.99 -7.93 H2S + H2S(g) -97.06 -104.99 -7.93 H2S O2(g) -11.79 -14.87 -3.08 O2 Sulfur -73.03 -69.03 4.00 S @@ -3789,16 +3788,15 @@ Gypsum -0.14 -4.83 -4.69 1.000e+00 0 -1.000e+00 pH = 6.570 Charge balance pe = 8.057 Adjusted to redox equilibrium - Specific Conductance (S/cm, 69C) = 3548 - Density (g/cm) = 0.97980 + Specific Conductance (µS/cm, 69°C) = 3422 + Density (g/cm³) = 0.97981 Volume (L) = 1.05900 + Viscosity (mPa s) = 0.41299 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.086e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 69.00 + Temperature (°C) = 69.00 Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 14 @@ -3808,7 +3806,7 @@ Gypsum -0.14 -4.83 -4.69 1.000e+00 0 -1.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 6.884e-07 5.712e-07 -6.162 -6.243 -0.081 -3.97 H+ 3.118e-07 2.692e-07 -6.506 -6.570 -0.064 0.00 @@ -3824,10 +3822,11 @@ O(0) 2.685e-15 O2 1.343e-15 1.352e-15 -14.872 -14.869 0.003 32.75 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -97.935 -98.016 -0.081 21.17 - H2S 0.000e+00 0.000e+00 -98.012 -98.009 0.003 37.27 + H2S 0.000e+00 0.000e+00 -98.012 -98.009 0.003 43.27 S-2 0.000e+00 0.000e+00 -102.922 -103.224 -0.302 (0) + (H2S)2 0.000e+00 0.000e+00 -196.959 -196.956 0.003 27.41 S(6) 1.123e-02 - SO4-2 7.714e-03 3.837e-03 -2.113 -2.416 -0.303 16.50 + SO4-2 7.714e-03 3.837e-03 -2.113 -2.416 -0.303 15.87 CaSO4 3.516e-03 3.541e-03 -2.454 -2.451 0.003 8.51 HSO4- 3.614e-07 3.019e-07 -6.442 -6.520 -0.078 41.58 CaHSO4+ 1.692e-08 1.413e-08 -7.772 -7.850 -0.078 (0) @@ -3840,7 +3839,7 @@ S(6) 1.123e-02 Gypsum -0.14 -4.83 -4.69 CaSO4:2H2O H2(g) -29.43 -32.57 -3.14 H2 H2O(g) -0.53 -0.00 0.53 H2O - H2S(g) -96.65 -104.59 -7.93 H2S + H2S(g) -96.66 -104.59 -7.93 H2S O2(g) -11.78 -14.87 -3.09 O2 Sulfur -72.74 -68.76 3.99 S @@ -3872,16 +3871,15 @@ Gypsum -0.15 -4.84 -4.69 1.000e+00 0 -1.000e+00 pH = 6.561 Charge balance pe = 8.003 Adjusted to redox equilibrium - Specific Conductance (S/cm, 70C) = 3530 - Density (g/cm) = 0.97921 - Volume (L) = 1.05962 + Specific Conductance (µS/cm, 70°C) = 3401 + Density (g/cm³) = 0.97921 + Volume (L) = 1.05961 + Viscosity (mPa s) = 0.40729 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.027e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 70.00 + Temperature (°C) = 70.00 Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 14 @@ -3891,7 +3889,7 @@ Gypsum -0.15 -4.84 -4.69 1.000e+00 0 -1.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 7.072e-07 5.874e-07 -6.150 -6.231 -0.081 -4.00 H+ 3.183e-07 2.749e-07 -6.497 -6.561 -0.064 0.00 @@ -3907,10 +3905,11 @@ O(0) 2.685e-15 O2 1.343e-15 1.352e-15 -14.872 -14.869 0.003 32.79 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -97.543 -97.624 -0.081 21.15 - H2S 0.000e+00 0.000e+00 -97.614 -97.611 0.003 37.27 + H2S 0.000e+00 0.000e+00 -97.614 -97.611 0.003 43.37 S-2 0.000e+00 0.000e+00 -102.517 -102.818 -0.300 (0) + (H2S)2 0.000e+00 0.000e+00 -196.159 -196.156 0.003 27.32 S(6) 1.099e-02 - SO4-2 7.567e-03 3.778e-03 -2.121 -2.423 -0.302 16.45 + SO4-2 7.567e-03 3.778e-03 -2.121 -2.423 -0.302 15.78 CaSO4 3.428e-03 3.452e-03 -2.465 -2.462 0.003 8.53 HSO4- 3.733e-07 3.122e-07 -6.428 -6.506 -0.078 41.58 CaHSO4+ 1.720e-08 1.438e-08 -7.764 -7.842 -0.078 (0) @@ -3955,16 +3954,15 @@ Gypsum -0.16 -4.85 -4.70 1.000e+00 0 -1.000e+00 pH = 6.552 Charge balance pe = 7.950 Adjusted to redox equilibrium - Specific Conductance (S/cm, 71C) = 3511 - Density (g/cm) = 0.97860 - Volume (L) = 1.06024 + Specific Conductance (µS/cm, 71°C) = 3380 + Density (g/cm³) = 0.97861 + Volume (L) = 1.06023 + Viscosity (mPa s) = 0.40171 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.969e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 71.00 + Temperature (°C) = 71.00 Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 16 @@ -3974,7 +3972,7 @@ Gypsum -0.16 -4.85 -4.70 1.000e+00 0 -1.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 7.264e-07 6.040e-07 -6.139 -6.219 -0.080 -4.04 H+ 3.249e-07 2.808e-07 -6.488 -6.552 -0.063 0.00 @@ -3990,10 +3988,11 @@ O(0) 2.683e-15 O2 1.342e-15 1.351e-15 -14.872 -14.869 0.003 32.83 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -97.153 -97.233 -0.080 21.12 - H2S 0.000e+00 0.000e+00 -97.218 -97.215 0.003 37.27 + H2S 0.000e+00 0.000e+00 -97.218 -97.215 0.003 43.48 S-2 0.000e+00 0.000e+00 -102.115 -102.414 -0.299 (0) + (H2S)2 0.000e+00 0.000e+00 -195.362 -195.359 0.003 27.24 S(6) 1.076e-02 - SO4-2 7.422e-03 3.719e-03 -2.129 -2.430 -0.300 16.39 + SO4-2 7.422e-03 3.719e-03 -2.129 -2.430 -0.300 15.69 CaSO4 3.341e-03 3.364e-03 -2.476 -2.473 0.003 8.54 HSO4- 3.856e-07 3.227e-07 -6.414 -6.491 -0.077 41.57 CaHSO4+ 1.748e-08 1.464e-08 -7.757 -7.835 -0.077 (0) @@ -4037,17 +4036,16 @@ Gypsum -0.17 -4.87 -4.70 1.000e+00 0 -1.000e+00 ----------------------------Description of solution---------------------------- pH = 6.543 Charge balance - pe = 7.895 Adjusted to redox equilibrium - Specific Conductance (S/cm, 72C) = 3492 - Density (g/cm) = 0.97799 - Volume (L) = 1.06087 + pe = 7.926 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 72°C) = 3359 + Density (g/cm³) = 0.97800 + Volume (L) = 1.06086 + Viscosity (mPa s) = 0.39627 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.912e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 72.00 + Temperature (°C) = 72.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 17 @@ -4057,7 +4055,7 @@ Gypsum -0.17 -4.87 -4.70 1.000e+00 0 -1.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 7.459e-07 6.209e-07 -6.127 -6.207 -0.080 -4.08 H+ 3.314e-07 2.866e-07 -6.480 -6.543 -0.063 0.00 @@ -4067,16 +4065,17 @@ Ca 1.054e-02 CaSO4 3.256e-03 3.278e-03 -2.487 -2.484 0.003 8.55 CaHSO4+ 1.777e-08 1.489e-08 -7.750 -7.827 -0.077 (0) CaOH+ 2.565e-09 2.149e-09 -8.591 -8.668 -0.077 (0) -H(0) 1.249e-32 - H2 6.247e-33 6.289e-33 -32.204 -32.201 0.003 28.58 -O(0) 2.650e-15 - O2 1.325e-15 1.334e-15 -14.878 -14.875 0.003 32.87 +H(0) 1.086e-32 + H2 5.432e-33 5.469e-33 -32.265 -32.262 0.003 28.58 +O(0) 3.505e-15 + O2 1.752e-15 1.764e-15 -14.756 -14.753 0.003 32.87 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -96.755 -96.835 -0.080 21.10 - H2S 0.000e+00 0.000e+00 -96.815 -96.812 0.003 37.27 - S-2 0.000e+00 0.000e+00 -101.705 -102.002 -0.297 (0) + HS- 0.000e+00 0.000e+00 -96.998 -97.077 -0.080 21.10 + H2S 0.000e+00 0.000e+00 -97.057 -97.055 0.003 43.59 + S-2 0.000e+00 0.000e+00 -101.948 -102.245 -0.297 (0) + (H2S)2 0.000e+00 0.000e+00 -195.036 -195.033 0.003 27.16 S(6) 1.054e-02 - SO4-2 7.280e-03 3.662e-03 -2.138 -2.436 -0.298 16.33 + SO4-2 7.280e-03 3.662e-03 -2.138 -2.436 -0.298 15.60 CaSO4 3.256e-03 3.278e-03 -2.487 -2.484 0.003 8.55 HSO4- 3.981e-07 3.336e-07 -6.400 -6.477 -0.077 41.56 CaHSO4+ 1.777e-08 1.489e-08 -7.750 -7.827 -0.077 (0) @@ -4087,11 +4086,11 @@ S(6) 1.054e-02 Anhydrite 0.00 -4.87 -4.87 CaSO4 Gypsum -0.17 -4.87 -4.70 CaSO4:2H2O - H2(g) -29.07 -32.20 -3.13 H2 + H2(g) -29.13 -32.26 -3.13 H2 H2O(g) -0.48 -0.00 0.48 H2O - H2S(g) -95.45 -103.38 -7.93 H2S - O2(g) -11.78 -14.87 -3.09 O2 - Sulfur -71.87 -67.94 3.93 S + H2S(g) -95.69 -103.62 -7.93 H2S + O2(g) -11.66 -14.75 -3.09 O2 + Sulfur -72.05 -68.12 3.93 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4120,17 +4119,16 @@ Gypsum -0.18 -4.88 -4.70 1.000e+00 0 -1.000e+00 ----------------------------Description of solution---------------------------- pH = 6.534 Charge balance - pe = 7.843 Adjusted to redox equilibrium - Specific Conductance (S/cm, 73C) = 3473 - Density (g/cm) = 0.97738 - Volume (L) = 1.06150 + pe = 7.873 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 73°C) = 3337 + Density (g/cm³) = 0.97738 + Volume (L) = 1.06149 + Viscosity (mPa s) = 0.39095 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.856e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 73.00 + Temperature (°C) = 73.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 17 @@ -4140,7 +4138,7 @@ Gypsum -0.18 -4.88 -4.70 1.000e+00 0 -1.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 7.658e-07 6.382e-07 -6.116 -6.195 -0.079 -4.12 H+ 3.381e-07 2.926e-07 -6.471 -6.534 -0.063 0.00 @@ -4150,16 +4148,17 @@ Ca 1.031e-02 CaSO4 3.173e-03 3.194e-03 -2.499 -2.496 0.003 8.57 CaHSO4+ 1.806e-08 1.514e-08 -7.743 -7.820 -0.076 (0) CaOH+ 2.471e-09 2.072e-09 -8.607 -8.684 -0.076 (0) -H(0) 1.648e-32 - H2 8.238e-33 8.292e-33 -32.084 -32.081 0.003 28.58 -O(0) 2.650e-15 - O2 1.325e-15 1.334e-15 -14.878 -14.875 0.003 32.91 +H(0) 1.433e-32 + H2 7.164e-33 7.211e-33 -32.145 -32.142 0.003 28.58 +O(0) 3.504e-15 + O2 1.752e-15 1.764e-15 -14.756 -14.754 0.003 32.91 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -96.370 -96.449 -0.079 21.08 - H2S 0.000e+00 0.000e+00 -96.424 -96.421 0.003 37.28 - S-2 0.000e+00 0.000e+00 -101.308 -101.604 -0.296 (0) + HS- 0.000e+00 0.000e+00 -96.613 -96.692 -0.079 21.08 + H2S 0.000e+00 0.000e+00 -96.667 -96.664 0.003 43.69 + S-2 0.000e+00 0.000e+00 -101.551 -101.846 -0.296 (0) + (H2S)2 0.000e+00 0.000e+00 -194.250 -194.247 0.003 27.07 S(6) 1.031e-02 - SO4-2 7.141e-03 3.605e-03 -2.146 -2.443 -0.297 16.27 + SO4-2 7.141e-03 3.605e-03 -2.146 -2.443 -0.297 15.50 CaSO4 3.173e-03 3.194e-03 -2.499 -2.496 0.003 8.57 HSO4- 4.110e-07 3.447e-07 -6.386 -6.463 -0.076 41.55 CaHSO4+ 1.806e-08 1.514e-08 -7.743 -7.820 -0.076 (0) @@ -4170,11 +4169,11 @@ S(6) 1.031e-02 Anhydrite 0.00 -4.88 -4.88 CaSO4 Gypsum -0.18 -4.88 -4.70 CaSO4:2H2O - H2(g) -28.95 -32.08 -3.13 H2 + H2(g) -29.01 -32.14 -3.13 H2 H2O(g) -0.46 -0.00 0.46 H2O - H2S(g) -95.05 -102.98 -7.93 H2S - O2(g) -11.78 -14.87 -3.09 O2 - Sulfur -71.59 -67.67 3.92 S + H2S(g) -95.29 -103.23 -7.94 H2S + O2(g) -11.66 -14.75 -3.09 O2 + Sulfur -71.77 -67.85 3.92 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4204,16 +4203,15 @@ Gypsum -0.18 -4.89 -4.71 1.000e+00 0 -1.000e+00 pH = 6.525 Charge balance pe = 7.790 Adjusted to redox equilibrium - Specific Conductance (S/cm, 74C) = 3453 - Density (g/cm) = 0.97676 - Volume (L) = 1.06214 + Specific Conductance (µS/cm, 74°C) = 3315 + Density (g/cm³) = 0.97677 + Volume (L) = 1.06213 + Viscosity (mPa s) = 0.38575 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.802e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 74.00 + Temperature (°C) = 74.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 17 @@ -4223,7 +4221,7 @@ Gypsum -0.18 -4.89 -4.71 1.000e+00 0 -1.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 7.861e-07 6.558e-07 -6.105 -6.183 -0.079 -4.16 H+ 3.448e-07 2.985e-07 -6.462 -6.525 -0.063 0.00 @@ -4239,10 +4237,11 @@ O(0) 2.656e-15 O2 1.328e-15 1.336e-15 -14.877 -14.874 0.003 32.95 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -95.989 -96.068 -0.079 21.05 - H2S 0.000e+00 0.000e+00 -96.037 -96.035 0.003 37.28 + H2S 0.000e+00 0.000e+00 -96.037 -96.035 0.003 43.79 S-2 0.000e+00 0.000e+00 -100.915 -101.209 -0.294 (0) + (H2S)2 0.000e+00 0.000e+00 -192.987 -192.984 0.003 26.98 S(6) 1.010e-02 - SO4-2 7.004e-03 3.549e-03 -2.155 -2.450 -0.295 16.21 + SO4-2 7.004e-03 3.549e-03 -2.155 -2.450 -0.295 15.40 CaSO4 3.092e-03 3.112e-03 -2.510 -2.507 0.003 8.58 HSO4- 4.242e-07 3.561e-07 -6.372 -6.448 -0.076 41.54 CaHSO4+ 1.834e-08 1.540e-08 -7.737 -7.813 -0.076 (0) @@ -4255,7 +4254,7 @@ S(6) 1.010e-02 Gypsum -0.18 -4.89 -4.71 CaSO4:2H2O H2(g) -28.83 -31.96 -3.13 H2 H2O(g) -0.44 -0.00 0.44 H2O - H2S(g) -94.66 -102.59 -7.93 H2S + H2S(g) -94.66 -102.59 -7.94 H2S O2(g) -11.78 -14.87 -3.10 O2 Sulfur -71.30 -67.40 3.90 S @@ -4287,16 +4286,15 @@ Gypsum -0.19 -4.91 -4.71 1.000e+00 0 -1.000e+00 pH = 6.516 Charge balance pe = 7.738 Adjusted to redox equilibrium - Specific Conductance (S/cm, 75C) = 3433 - Density (g/cm) = 0.97614 - Volume (L) = 1.06279 + Specific Conductance (µS/cm, 75°C) = 3292 + Density (g/cm³) = 0.97614 + Volume (L) = 1.06278 + Viscosity (mPa s) = 0.38066 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.748e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 75.00 + Temperature (°C) = 75.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 17 @@ -4306,7 +4304,7 @@ Gypsum -0.19 -4.91 -4.71 1.000e+00 0 -1.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 8.067e-07 6.737e-07 -6.093 -6.172 -0.078 -4.20 H+ 3.515e-07 3.046e-07 -6.454 -6.516 -0.062 0.00 @@ -4322,10 +4320,11 @@ O(0) 2.650e-15 O2 1.325e-15 1.333e-15 -14.878 -14.875 0.003 32.99 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -95.607 -95.685 -0.078 21.03 - H2S 0.000e+00 0.000e+00 -95.649 -95.647 0.003 37.28 + H2S 0.000e+00 0.000e+00 -95.649 -95.647 0.003 43.89 S-2 0.000e+00 0.000e+00 -100.521 -100.813 -0.293 (0) + (H2S)2 0.000e+00 0.000e+00 -192.206 -192.204 0.003 26.89 S(6) 9.882e-03 - SO4-2 6.869e-03 3.493e-03 -2.163 -2.457 -0.294 16.14 + SO4-2 6.869e-03 3.493e-03 -2.163 -2.457 -0.294 15.29 CaSO4 3.012e-03 3.031e-03 -2.521 -2.518 0.003 8.59 HSO4- 4.377e-07 3.678e-07 -6.359 -6.434 -0.076 41.53 CaHSO4+ 1.863e-08 1.565e-08 -7.730 -7.805 -0.076 (0) @@ -4338,7 +4337,7 @@ S(6) 9.882e-03 Gypsum -0.19 -4.91 -4.71 CaSO4:2H2O H2(g) -28.71 -31.84 -3.13 H2 H2O(g) -0.42 -0.00 0.42 H2O - H2S(g) -94.27 -102.20 -7.93 H2S + H2S(g) -94.26 -102.20 -7.94 H2S O2(g) -11.78 -14.88 -3.10 O2 Sulfur -71.02 -67.14 3.88 S @@ -4353,7 +4352,3 @@ End of simulation. Reading input data for simulation 2. ------------------------------------ -------------------------------- -End of Run after 0.037 Seconds. -------------------------------- - diff --git a/ex2.sel b/ex2.sel index 820ff96e..7ec7fa6f 100644 --- a/ex2.sel +++ b/ex2.sel @@ -2,52 +2,52 @@ 1 i_soln 1 -99 -99 -99 7 4 25.000 -999.9990 -999.9990 1 react 1 -99 0 1 7.06605 10.7446 25.000 -0.3045 0.0000 1 react 1 -99 0 2 7.0524 10.6757 26.000 -0.2935 0.0000 - 1 react 1 -99 0 3 7.03885 10.6076 27.000 -0.2825 0.0000 + 1 react 1 -99 0 3 7.03885 10.6068 27.000 -0.2825 0.0000 1 react 1 -99 0 4 7.0254 10.5389 28.000 -0.2716 0.0000 1 react 1 -99 0 5 7.01206 10.472 29.000 -0.2608 0.0000 - 1 react 1 -99 0 6 6.99884 10.4047 30.000 -0.2500 0.0000 + 1 react 1 -99 0 6 6.99884 10.4042 30.000 -0.2500 0.0000 1 react 1 -99 0 7 6.98574 10.3381 31.000 -0.2392 0.0000 1 react 1 -99 0 8 6.97276 10.2711 32.000 -0.2285 0.0000 1 react 1 -99 0 9 6.95991 10.2057 33.000 -0.2179 0.0000 1 react 1 -99 0 10 6.94718 10.1398 34.000 -0.2073 0.0000 1 react 1 -99 0 11 6.93459 10.0744 35.000 -0.1967 0.0000 - 1 react 1 -99 0 12 6.92213 10.0095 36.000 -0.1862 0.0000 + 1 react 1 -99 0 12 6.92213 10.0096 36.000 -0.1862 0.0000 1 react 1 -99 0 13 6.90981 -1.77748 37.000 -0.1757 0.0000 1 react 1 -99 0 14 6.89762 9.88087 38.000 -0.1653 0.0000 1 react 1 -99 0 15 6.88557 9.8475 39.000 -0.1549 0.0000 1 react 1 -99 0 16 6.87366 9.75454 40.000 -0.1445 0.0000 1 react 1 -99 0 17 6.86189 9.6907 41.000 -0.1342 0.0000 - 1 react 1 -99 0 18 6.85026 9.62805 42.000 -0.1239 0.0000 + 1 react 1 -99 0 18 6.85026 9.62849 42.000 -0.1239 0.0000 1 react 1 -99 0 19 6.83878 9.56563 43.000 -0.1137 0.0000 1 react 1 -99 0 20 6.82743 9.50339 44.000 -0.1035 0.0000 - 1 react 1 -99 0 21 6.81623 9.44156 45.000 -0.0934 0.0000 - 1 react 1 -99 0 22 6.80517 9.38019 46.000 -0.0833 0.0000 - 1 react 1 -99 0 23 6.79425 9.31898 47.000 -0.0732 0.0000 - 1 react 1 -99 0 24 6.78347 9.25713 48.000 -0.0632 0.0000 + 1 react 1 -99 0 21 6.81623 9.4423 45.000 -0.0934 0.0000 + 1 react 1 -99 0 22 6.80517 9.38059 46.000 -0.0833 0.0000 + 1 react 1 -99 0 23 6.79425 9.31892 47.000 -0.0732 0.0000 + 1 react 1 -99 0 24 6.78347 9.28758 48.000 -0.0632 0.0000 1 react 1 -99 0 25 6.77284 9.19657 49.000 -0.0532 0.0000 - 1 react 1 -99 0 26 6.76235 -1.65496 50.000 -0.0432 0.0000 + 1 react 1 -99 0 26 6.76235 -1.65497 50.000 -0.0432 0.0000 1 react 1 -99 0 27 6.752 9.07753 51.000 -0.0333 0.0000 1 react 1 -99 0 28 6.7418 9.04685 52.000 -0.0234 0.0000 - 1 react 1 -99 0 29 6.73173 8.9571 53.000 -0.0136 0.0000 - 1 react 1 -99 0 30 6.72181 -1.62168 54.000 -0.0038 0.0000 + 1 react 1 -99 0 29 6.73173 8.91536 53.000 -0.0136 0.0000 + 1 react 1 -99 0 30 6.72181 -1.62166 54.000 -0.0038 0.0000 1 react 1 -99 0 31 6.71125 8.83248 55.000 0.0000 -0.0060 1 react 1 -99 0 32 6.70039 8.7747 56.000 0.0000 -0.0157 1 react 1 -99 0 33 6.68965 8.71845 57.000 0.0000 -0.0254 - 1 react 1 -99 0 34 6.67903 8.69145 58.000 0.0000 -0.0350 - 1 react 1 -99 0 35 6.66853 8.63516 59.000 0.0000 -0.0446 + 1 react 1 -99 0 34 6.67903 8.66099 58.000 0.0000 -0.0350 + 1 react 1 -99 0 35 6.66853 8.60479 59.000 0.0000 -0.0446 1 react 1 -99 0 36 6.65815 8.54826 60.000 0.0000 -0.0542 1 react 1 -99 0 37 6.64789 8.4935 61.000 0.0000 -0.0638 - 1 react 1 -99 0 38 6.63774 8.43727 62.000 0.0000 -0.0733 + 1 react 1 -99 0 38 6.63774 8.43683 62.000 0.0000 -0.0733 1 react 1 -99 0 39 6.62771 8.38286 63.000 0.0000 -0.0828 1 react 1 -99 0 40 6.6178 8.32762 64.000 0.0000 -0.0922 - 1 react 1 -99 0 41 6.608 8.2729 65.000 0.0000 -0.1016 - 1 react 1 -99 0 42 6.59833 8.21794 66.000 0.0000 -0.1110 + 1 react 1 -99 0 41 6.608 8.27289 65.000 0.0000 -0.1016 + 1 react 1 -99 0 42 6.59833 8.21823 66.000 0.0000 -0.1110 1 react 1 -99 0 43 6.58876 8.16425 67.000 0.0000 -0.1204 1 react 1 -99 0 44 6.57931 8.10992 68.000 0.0000 -0.1297 1 react 1 -99 0 45 6.56998 8.05651 69.000 0.0000 -0.1390 1 react 1 -99 0 46 6.56075 8.00299 70.000 0.0000 -0.1483 1 react 1 -99 0 47 6.55165 7.94963 71.000 0.0000 -0.1575 - 1 react 1 -99 0 48 6.54265 7.89527 72.000 0.0000 -0.1667 - 1 react 1 -99 0 49 6.53376 7.84251 73.000 0.0000 -0.1758 + 1 react 1 -99 0 48 6.54265 7.92563 72.000 0.0000 -0.1667 + 1 react 1 -99 0 49 6.53376 7.87284 73.000 0.0000 -0.1758 1 react 1 -99 0 50 6.52499 7.79021 74.000 0.0000 -0.1850 1 react 1 -99 0 51 6.51633 7.73768 75.000 0.0000 -0.1941 diff --git a/ex20-c13.tsv b/ex20-c13.tsv index e3f905bf..98d55bca 100644 --- a/ex20-c13.tsv +++ b/ex20-c13.tsv @@ -5,4 +5,4 @@ X Netpath 0.020 -1.96 0.030 -1.46 0.040 -1.37 -0.050 -1.355 \ No newline at end of file +0.050 -1.355 diff --git a/ex20-c14.tsv b/ex20-c14.tsv index c1f05442..2244d215 100644 --- a/ex20-c14.tsv +++ b/ex20-c14.tsv @@ -5,4 +5,4 @@ X Netpath 0.020 2.87 0.030 0.51 0.040 0.09 -0.050 0.017 \ No newline at end of file +0.050 0.017 diff --git a/ex20a.out b/ex20a.out index a851f897..629dc8c7 100644 --- a/ex20a.out +++ b/ex20a.out @@ -83,7 +83,7 @@ Initial solution 1. Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.998e-03 Total CO2 (mol/kg) = 2.000e-03 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = 1.667e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 8 @@ -93,7 +93,7 @@ Initial solution 1. ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.673e-06 1.586e-06 -5.776 -5.800 -0.023 (0) H3O+ 6.628e-09 6.310e-09 -8.179 -8.200 -0.021 0.00 @@ -217,8 +217,8 @@ Calcite 2.54e-07 Isotope Ratio Ratio Input Units - R(D) 1.55760e-04 2.2204e-13 permil - R(18O) 2.00520e-03 -3.9446e-07 permil + R(D) 1.55760e-04 -1.3101e-11 permil + R(18O) 2.00520e-03 -3.9447e-07 permil R(13C) 1.11802e-02 -0.00026756 permil R(D) H2O(l) 1.55760e-04 1.138e-05 permil R(18O) H2O(l) 2.00520e-03 -3.9132e-05 permil @@ -249,15 +249,15 @@ Alpha D OH-/H2O(l) 0.23812 -1435 -1435 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha D H3O+/H2O(l) 1.0417 40.82 40.82 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha D H2(aq)/H2O(l) 1 -3.3307e-12 0 +Alpha D H2(aq)/H2O(l) 1 5.7732e-12 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha D HCO3-/H2O(l) 1 2.254e-09 0 -Alpha 18O HCO3-/H2O(l) 1 -2.1094e-12 0 +Alpha D HCO3-/H2O(l) 1 2.2555e-09 0 +Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 18O CO3-2/H2O(l) 1 -1.5682e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5554e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha D CH4(aq)/H2O(l) 1 -3.7478e-09 0 -Alpha 13C CH4(aq)/CO2(aq) 1 -6.2172e-12 0 +Alpha D CH4(aq)/H2O(l) 1 -3.7507e-09 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -4.2188e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 @@ -281,33 +281,33 @@ Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Mass of water (kg) = 9.968e-01 Total alkalinity (eq/kg) = 2.004e-03 Total CO2 (mol/kg) = 1.984e-03 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = 1.667e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 28 + Iterations = 64 Total H = 1.109971e+02 Total O = 5.540110e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.661e-06 1.575e-06 -5.780 -5.803 -0.023 (0) H3O+ 6.648e-09 6.328e-09 -8.177 -8.199 -0.021 0.00 H2O 5.556e+01 9.977e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.764e-27 - CH4 2.763e-27 2.764e-27 -26.559 -26.558 0.000 (0) - CH3D 1.721e-30 1.722e-30 -29.764 -29.764 0.000 (0) +C(-4) 2.777e-27 + CH4 2.775e-27 2.777e-27 -26.557 -26.556 0.000 (0) + CH3D 1.729e-30 1.730e-30 -29.762 -29.762 0.000 (0) C(4) 1.984e-03 HCO3- 1.916e-03 1.817e-03 -2.718 -2.741 -0.023 (0) CO2 2.597e-05 2.598e-05 -4.586 -4.585 0.000 (0) CO3-2 1.661e-05 1.344e-05 -4.780 -4.872 -0.092 (0) CaHCO3+ 5.917e-06 5.618e-06 -5.228 -5.250 -0.023 (0) CaCO3 5.466e-06 5.469e-06 -5.262 -5.262 0.000 (0) + HCO2[18O]- 3.842e-06 3.644e-06 -5.415 -5.438 -0.023 (0) HCO[18O]O- 3.842e-06 3.644e-06 -5.415 -5.438 -0.023 (0) HC[18O]O2- 3.842e-06 3.644e-06 -5.415 -5.438 -0.023 (0) - HCO2[18O]- 3.842e-06 3.644e-06 -5.415 -5.438 -0.023 (0) NaHCO3 1.340e-06 1.341e-06 -5.873 -5.873 0.000 (0) NaCO3- 3.463e-07 3.284e-07 -6.461 -6.484 -0.023 (0) DCO3- 2.985e-07 2.831e-07 -6.525 -6.548 -0.023 (0) @@ -315,14 +315,14 @@ C(4) 1.984e-03 CO2[18O]-2 9.993e-08 8.086e-08 -7.000 -7.092 -0.092 (0) CaCO2[18O] 3.288e-08 3.290e-08 -7.483 -7.483 0.000 (0) CaHCO2[18O]+ 1.186e-08 1.126e-08 -7.926 -7.948 -0.023 (0) - CaHC[18O]O2+ 1.186e-08 1.126e-08 -7.926 -7.948 -0.023 (0) CaHCO[18O]O+ 1.186e-08 1.126e-08 -7.926 -7.948 -0.023 (0) + CaHC[18O]O2+ 1.186e-08 1.126e-08 -7.926 -7.948 -0.023 (0) HCO[18O]2- 7.705e-09 7.307e-09 -8.113 -8.136 -0.023 (0) HC[18O]2O- 7.705e-09 7.307e-09 -8.113 -8.136 -0.023 (0) HC[18O]O[18O]- 7.705e-09 7.307e-09 -8.113 -8.136 -0.023 (0) - NaHC[18O]O2 2.687e-09 2.689e-09 -8.571 -8.570 0.000 (0) NaHCO2[18O] 2.687e-09 2.689e-09 -8.571 -8.570 0.000 (0) NaHCO[18O]O 2.687e-09 2.689e-09 -8.571 -8.570 0.000 (0) + NaHC[18O]O2 2.687e-09 2.689e-09 -8.571 -8.570 0.000 (0) NaCO2[18O]- 2.083e-09 1.976e-09 -8.681 -8.704 -0.023 (0) Ca 3.098e-04 Ca+2 2.982e-04 2.422e-04 -3.525 -3.616 -0.090 (0) @@ -332,21 +332,21 @@ Ca 3.098e-04 Ca[13C]O3 6.104e-08 6.107e-08 -7.214 -7.214 0.000 (0) CaCO2[18O] 3.288e-08 3.290e-08 -7.483 -7.483 0.000 (0) CaHCO2[18O]+ 1.186e-08 1.126e-08 -7.926 -7.948 -0.023 (0) - CaHC[18O]O2+ 1.186e-08 1.126e-08 -7.926 -7.948 -0.023 (0) CaHCO[18O]O+ 1.186e-08 1.126e-08 -7.926 -7.948 -0.023 (0) + CaHC[18O]O2+ 1.186e-08 1.126e-08 -7.926 -7.948 -0.023 (0) CaDCO3+ 9.216e-10 8.750e-10 -9.035 -9.058 -0.023 (0) Ca[13C]O2[18O] 3.672e-10 3.674e-10 -9.435 -9.435 0.000 (0) -D(0) 5.649e-19 - HD 5.648e-19 5.651e-19 -18.248 -18.248 0.000 (0) - D2 4.399e-23 4.401e-23 -22.357 -22.356 0.000 (0) +D(0) 5.656e-19 + HD 5.655e-19 5.658e-19 -18.248 -18.247 0.000 (0) + D2 4.404e-23 4.406e-23 -22.356 -22.356 0.000 (0) D(1) 1.734e-02 HDO 1.731e-02 3.108e-04 -1.762 -3.507 -1.746 (0) HD[18O] 3.470e-05 6.233e-07 -4.460 -6.205 -1.746 (0) D2O 1.348e-06 2.421e-08 -5.870 -7.616 -1.746 (0) DCO3- 2.985e-07 2.831e-07 -6.525 -6.548 -0.023 (0) -H(0) 3.627e-15 - H2 1.813e-15 1.814e-15 -14.742 -14.741 0.000 (0) - HD 5.648e-19 5.651e-19 -18.248 -18.248 0.000 (0) +H(0) 3.632e-15 + H2 1.815e-15 1.816e-15 -14.741 -14.741 0.000 (0) + HD 5.655e-19 5.658e-19 -18.248 -18.247 0.000 (0) Na 1.385e-03 Na+ 1.383e-03 1.312e-03 -2.859 -2.882 -0.023 (0) NaHCO3 1.340e-06 1.341e-06 -5.873 -5.873 0.000 (0) @@ -358,11 +358,11 @@ Na 1.385e-03 NaHC[18O]O2 2.687e-09 2.689e-09 -8.571 -8.570 0.000 (0) NaCO2[18O]- 2.083e-09 1.976e-09 -8.681 -8.704 -0.023 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -62.900 -62.899 0.000 (0) - O[18O] 0.000e+00 0.000e+00 -65.296 -65.296 0.000 (0) -[13C](-4) 3.064e-29 - [13C]H4 3.062e-29 3.064e-29 -28.514 -28.514 0.000 (0) - [13C]H3D 1.908e-32 1.909e-32 -31.719 -31.719 0.000 (0) + O2 0.000e+00 0.000e+00 -62.901 -62.900 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -65.297 -65.297 0.000 (0) +[13C](-4) 3.079e-29 + [13C]H4 3.077e-29 3.078e-29 -28.512 -28.512 0.000 (0) + [13C]H3D 1.917e-32 1.918e-32 -31.717 -31.717 0.000 (0) [13C](4) 2.218e-05 H[13C]O3- 2.143e-05 2.032e-05 -4.669 -4.692 -0.023 (0) [13C]O2 2.878e-07 2.880e-07 -6.541 -6.541 0.000 (0) @@ -370,20 +370,20 @@ O(0) 0.000e+00 CaH[13C]O3+ 6.616e-08 6.281e-08 -7.179 -7.202 -0.023 (0) Ca[13C]O3 6.104e-08 6.107e-08 -7.214 -7.214 0.000 (0) H[13C]O2[18O]- 4.296e-08 4.075e-08 -7.367 -7.390 -0.023 (0) - H[13C][18O]O2- 4.296e-08 4.075e-08 -7.367 -7.390 -0.023 (0) H[13C]O[18O]O- 4.296e-08 4.075e-08 -7.367 -7.390 -0.023 (0) + H[13C][18O]O2- 4.296e-08 4.075e-08 -7.367 -7.390 -0.023 (0) NaH[13C]O3 1.499e-08 1.499e-08 -7.824 -7.824 0.000 (0) Na[13C]O3- 3.866e-09 3.667e-09 -8.413 -8.436 -0.023 (0) D[13C]O3- 3.337e-09 3.165e-09 -8.477 -8.500 -0.023 (0) [13C]O[18O] 1.203e-09 1.204e-09 -8.920 -8.920 0.000 (0) [13C]O2[18O]-2 1.116e-09 9.028e-10 -8.952 -9.044 -0.092 (0) Ca[13C]O2[18O] 3.672e-10 3.674e-10 -9.435 -9.435 0.000 (0) - CaH[13C][18O]O2+ 1.327e-10 1.260e-10 -9.877 -9.900 -0.023 (0) - CaH[13C]O[18O]O+ 1.327e-10 1.260e-10 -9.877 -9.900 -0.023 (0) CaH[13C]O2[18O]+ 1.327e-10 1.260e-10 -9.877 -9.900 -0.023 (0) + CaH[13C]O[18O]O+ 1.327e-10 1.260e-10 -9.877 -9.900 -0.023 (0) + CaH[13C][18O]O2+ 1.327e-10 1.260e-10 -9.877 -9.900 -0.023 (0) + H[13C]O[18O]2- 8.615e-11 8.171e-11 -10.065 -10.088 -0.023 (0) H[13C][18O]2O- 8.615e-11 8.171e-11 -10.065 -10.088 -0.023 (0) H[13C][18O]O[18O]- 8.615e-11 8.171e-11 -10.065 -10.088 -0.023 (0) - H[13C]O[18O]2- 8.615e-11 8.171e-11 -10.065 -10.088 -0.023 (0) NaH[13C]O2[18O] 3.005e-11 3.007e-11 -10.522 -10.522 0.000 (0) NaH[13C]O[18O]O 3.005e-11 3.007e-11 -10.522 -10.522 0.000 (0) NaH[13C][18O]O2 3.005e-11 3.007e-11 -10.522 -10.522 0.000 (0) @@ -392,11 +392,11 @@ O(0) 0.000e+00 H2[18O] 1.114e-01 2.001e-03 -0.953 -2.699 -1.746 (0) HD[18O] 3.470e-05 6.233e-07 -4.460 -6.205 -1.746 (0) HCO2[18O]- 3.842e-06 3.644e-06 -5.415 -5.438 -0.023 (0) - HC[18O]O2- 3.842e-06 3.644e-06 -5.415 -5.438 -0.023 (0) HCO[18O]O- 3.842e-06 3.644e-06 -5.415 -5.438 -0.023 (0) + HC[18O]O2- 3.842e-06 3.644e-06 -5.415 -5.438 -0.023 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -65.296 -65.296 0.000 (0) - [18O]2 0.000e+00 0.000e+00 -68.295 -68.295 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -65.297 -65.297 0.000 (0) + [18O]2 0.000e+00 0.000e+00 -68.296 -68.296 0.000 (0) ------------------------------Saturation indices------------------------------- @@ -407,10 +407,10 @@ O(0) 0.000e+00 [13C]H2D2(g) -32.49 -36.13 -3.64 [13C]H2D2 [13C]H3D(g) -28.86 -32.32 -3.46 [13C]H3D [13C]H4(g) -25.65 -28.51 -2.86 [13C]H4 - [13C]HD3(g) -36.47 -39.94 -3.46 [13C]HD3 + [13C]HD3(g) -36.47 -39.93 -3.46 [13C]HD3 [13C]O2(g) -5.07 -6.54 -1.47 [13C]O2 [13C]O[18O](g) -7.45 -9.24 -1.79 [13C]O[18O] - [18O]2(g) -66.00 -68.29 -2.29 [18O]2 + [18O]2(g) -66.01 -68.30 -2.29 [18O]2 C[18O]2(g) -8.48 -9.98 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.01 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -421,8 +421,8 @@ O(0) 0.000e+00 CaCO[18O]2(s) -4.90 2.80 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 CD4(g) -38.93 -41.79 -2.86 CD4 - CH2D2(g) -30.54 -34.17 -3.64 CH2D2 - CH3D(g) -26.90 -30.37 -3.46 CH3D + CH2D2(g) -30.53 -34.17 -3.64 CH2D2 + CH3D(g) -26.90 -30.36 -3.46 CH3D CH4(g) -23.70 -26.56 -2.86 CH4 CHD3(g) -34.52 -37.98 -3.46 CHD3 CO2(g) -3.12 -4.59 -1.47 CO2 @@ -437,7 +437,7 @@ O(0) 0.000e+00 HD[18O](g) -7.75 -6.51 1.25 HD[18O] HDO(g) -5.05 -3.81 1.24 HDO O2(g) -60.01 -62.90 -2.89 O2 - O[18O](g) -62.70 -65.60 -2.89 O[18O] + O[18O](g) -62.71 -65.60 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -450,7 +450,3 @@ End of simulation. Reading input data for simulation 4. ------------------------------------ -------------------------------- -End of Run after 0.089 Seconds. -------------------------------- - diff --git a/ex20b.out b/ex20b.out index f3dbe40a..70043349 100644 --- a/ex20b.out +++ b/ex20b.out @@ -202,7 +202,7 @@ Calcite added: 0 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.366e-18 Total CO2 (mol/kg) = 3.444e-03 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.366e-18 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 7 @@ -212,7 +212,7 @@ Calcite added: 0 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 3.919e-05 3.891e-05 -4.407 -4.410 -0.003 0.00 OH- 2.592e-10 2.573e-10 -9.586 -9.590 -0.003 (0) @@ -354,14 +354,14 @@ Calcite 0.00e+00 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 4.4409e-13 0 +Alpha 18O HCO3-/H2O(l) 1 1.5543e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 3.6702e-09 0 +Alpha 18O CO3-2/H2O(l) 1 3.6713e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 2.2204e-13 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -4.1078e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.3323e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -7.7716e-13 0 -----------------------------Solution composition------------------------------ @@ -376,14 +376,14 @@ Alpha 14C CH4(aq)/CO2(aq) 1 -4.1078e-12 0 ----------------------------Description of solution---------------------------- pH = 5.863 Charge balance - pe = 0.291 Adjusted to redox equilibrium + pe = 0.247 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 1.495e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 1.003e-03 Total CO2 (mol/kg) = 3.912e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.320e-14 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.367e-14 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 18 Total H = 1.110126e+02 @@ -392,49 +392,49 @@ Alpha 14C CH4(aq)/CO2(aq) 1 -4.1078e-12 0 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.426e-06 1.369e-06 -5.846 -5.863 -0.018 0.00 OH- 7.606e-09 7.282e-09 -8.119 -8.138 -0.019 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.255e-28 - CH4 4.255e-28 4.256e-28 -27.371 -27.371 0.000 (0) +C(-4) 9.506e-28 + CH4 9.506e-28 9.510e-28 -27.022 -27.022 0.000 (0) C(4) 3.912e-03 CO2 2.907e-03 2.908e-03 -2.537 -2.536 0.000 (0) HCO3- 9.821e-04 9.406e-04 -3.008 -3.027 -0.019 (0) CO[18O] 1.209e-05 1.209e-05 -4.918 -4.918 0.000 (0) CaHCO3+ 5.241e-06 5.023e-06 -5.281 -5.299 -0.018 (0) - HC[18O]O2- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) - HCO[18O]O- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) HCO2[18O]- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) + HCO[18O]O- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) + HC[18O]O2- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) CO3-2 3.822e-08 3.216e-08 -7.418 -7.493 -0.075 (0) CaCO3 2.260e-08 2.261e-08 -7.646 -7.646 0.000 (0) C[18O]2 1.257e-08 1.257e-08 -7.901 -7.901 0.000 (0) CaHCO2[18O]+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) - CaHC[18O]O2+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) CaHCO[18O]O+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) + CaHC[18O]O2+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) Ca 5.014e-04 Ca+2 4.961e-04 4.184e-04 -3.304 -3.378 -0.074 (0) CaHCO3+ 5.241e-06 5.023e-06 -5.281 -5.299 -0.018 (0) CaH[13C]O3+ 5.770e-08 5.530e-08 -7.239 -7.257 -0.018 (0) CaCO3 2.260e-08 2.261e-08 -7.646 -7.646 0.000 (0) CaHCO2[18O]+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) - CaHC[18O]O2+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) CaHCO[18O]O+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) -H(0) 6.986e-16 - H2 3.493e-16 3.494e-16 -15.457 -15.457 0.000 (0) + CaHC[18O]O2+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) +H(0) 8.541e-16 + H2 4.271e-16 4.272e-16 -15.370 -15.369 0.000 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -61.469 -61.468 0.000 (0) - O[18O] 0.000e+00 0.000e+00 -63.868 -63.867 0.000 (0) -[13C](-4) 4.644e-30 - [13C]H4 4.644e-30 4.646e-30 -29.333 -29.333 0.000 (0) + O2 0.000e+00 0.000e+00 -61.643 -61.643 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -64.042 -64.042 0.000 (0) +[13C](-4) 1.038e-29 + [13C]H4 1.038e-29 1.038e-29 -28.984 -28.984 0.000 (0) [13C](4) 4.280e-05 [13C]O2 3.173e-05 3.174e-05 -4.499 -4.498 0.000 (0) H[13C]O3- 1.081e-05 1.036e-05 -4.966 -4.985 -0.019 (0) [13C]O[18O] 1.319e-07 1.320e-07 -6.880 -6.879 0.000 (0) CaH[13C]O3+ 5.770e-08 5.530e-08 -7.239 -7.257 -0.018 (0) - H[13C]O[18O]O- 2.157e-08 2.066e-08 -7.666 -7.685 -0.019 (0) H[13C]O2[18O]- 2.157e-08 2.066e-08 -7.666 -7.685 -0.019 (0) + H[13C]O[18O]O- 2.157e-08 2.066e-08 -7.666 -7.685 -0.019 (0) H[13C][18O]O2- 2.157e-08 2.066e-08 -7.666 -7.685 -0.019 (0) [13C]O3-2 4.202e-10 3.535e-10 -9.377 -9.452 -0.075 (0) Ca[13C]O3 2.484e-10 2.485e-10 -9.605 -9.605 0.000 (0) @@ -442,52 +442,52 @@ O(0) 0.000e+00 CaH[13C]O2[18O]+ 1.151e-10 1.103e-10 -9.939 -9.957 -0.018 (0) CaH[13C]O[18O]O+ 1.151e-10 1.103e-10 -9.939 -9.957 -0.018 (0) CaH[13C][18O]O2+ 1.151e-10 1.103e-10 -9.939 -9.957 -0.018 (0) + H[13C]O[18O]2- 4.304e-11 4.122e-11 -10.366 -10.385 -0.019 (0) H[13C][18O]2O- 4.304e-11 4.122e-11 -10.366 -10.385 -0.019 (0) H[13C][18O]O[18O]- 4.304e-11 4.122e-11 -10.366 -10.385 -0.019 (0) - H[13C]O[18O]2- 4.304e-11 4.122e-11 -10.366 -10.385 -0.019 (0) -[14C](-4) 4.397e-40 - [14C]H4 4.397e-40 4.398e-40 -39.357 -39.357 0.000 (0) +[14C](-4) 9.824e-40 + [14C]H4 9.824e-40 9.828e-40 -39.008 -39.008 0.000 (0) [14C](4) 4.061e-15 [14C]O2 3.004e-15 3.005e-15 -14.522 -14.522 0.000 (0) H[14C]O3- 1.033e-15 9.890e-16 -14.986 -15.005 -0.019 (0) [14C]O[18O] 1.249e-17 1.250e-17 -16.903 -16.903 0.000 (0) CaH[14C]O3+ 5.511e-18 5.281e-18 -17.259 -17.277 -0.018 (0) - H[14C][18O]O2- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) - H[14C]O[18O]O- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) H[14C]O2[18O]- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) + H[14C]O[18O]O- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) + H[14C][18O]O2- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) [14C]O3-2 4.008e-20 3.372e-20 -19.397 -19.472 -0.075 (0) Ca[14C]O3 2.369e-20 2.370e-20 -19.625 -19.625 0.000 (0) [14C][18O]2 1.299e-20 1.299e-20 -19.887 -19.886 0.000 (0) CaH[14C]O2[18O]+ 1.099e-20 1.054e-20 -19.959 -19.977 -0.018 (0) - CaH[14C][18O]O2+ 1.099e-20 1.054e-20 -19.959 -19.977 -0.018 (0) CaH[14C]O[18O]O+ 1.099e-20 1.054e-20 -19.959 -19.977 -0.018 (0) + CaH[14C][18O]O2+ 1.099e-20 1.054e-20 -19.959 -19.977 -0.018 (0) H[14C]O[18O]2- 4.111e-21 3.937e-21 -20.386 -20.405 -0.019 (0) - H[14C][18O]O[18O]- 4.111e-21 3.937e-21 -20.386 -20.405 -0.019 (0) H[14C][18O]2O- 4.111e-21 3.937e-21 -20.386 -20.405 -0.019 (0) + H[14C][18O]O[18O]- 4.111e-21 3.937e-21 -20.386 -20.405 -0.019 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) CO[18O] 1.209e-05 1.209e-05 -4.918 -4.918 0.000 (0) - HCO[18O]O- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) HCO2[18O]- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) + HCO[18O]O- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) HC[18O]O2- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) [13C]O[18O] 1.319e-07 1.320e-07 -6.880 -6.879 0.000 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -63.868 -63.867 0.000 (0) - [18O]2 0.000e+00 0.000e+00 -66.869 -66.868 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -64.042 -64.042 0.000 (0) + [18O]2 0.000e+00 0.000e+00 -67.043 -67.043 0.000 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.40 -9.90 -1.50 [13C][18O]2 - [13C]H4(g) -26.47 -29.33 -2.86 [13C]H4 + [13C]H4(g) -26.12 -28.98 -2.86 [13C]H4 [13C]O2(g) -3.03 -4.50 -1.47 [13C]O2 [13C]O[18O](g) -5.41 -7.20 -1.79 [13C]O[18O] [14C][18O]2(g) -18.42 -19.92 -1.50 [14C][18O]2 - [14C]H4(g) -36.50 -39.36 -2.86 [14C]H4 + [14C]H4(g) -36.15 -39.01 -2.86 [14C]H4 [14C]O2(g) -13.05 -14.52 -1.47 [14C]O2 [14C]O[18O](g) -15.44 -17.22 -1.79 [14C]O[18O] - [18O]2(g) -64.58 -66.87 -2.29 [18O]2 + [18O]2(g) -64.75 -67.04 -2.29 [18O]2 C[18O]2(g) -6.43 -7.94 -1.50 C[18O]2 Ca[13C][18O]3(s) -12.41 -4.25 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -6.56 1.15 7.71 Ca[13C]O2[18O] @@ -501,14 +501,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -4.60 3.11 7.71 CaCO2[18O] CaCO[18O]2(s) -7.29 0.41 7.70 CaCO[18O]2 Calcite -2.39 -10.87 -8.48 CaCO3 - CH4(g) -24.51 -27.37 -2.86 CH4 + CH4(g) -24.16 -27.02 -2.86 CH4 CO2(g) -1.07 -2.54 -1.47 CO2 CO[18O](g) -3.45 -5.24 -1.79 CO[18O] - H2(g) -12.31 -15.46 -3.15 H2 + H2(g) -12.22 -15.37 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -58.58 -61.47 -2.89 O2 - O[18O](g) -61.28 -64.17 -2.89 O[18O] + O2(g) -58.75 -61.64 -2.89 O2 + O[18O](g) -61.45 -64.34 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -593,7 +593,6 @@ Calcite 0.00e+00 R(18O) H2O(l) 1.99517e-03 -5.0019 permil R(18O) OH- 1.92120e-03 -41.889 permil R(18O) H3O+ 2.04131e-03 18.006 permil - R(18O) O2(aq) 1.99517e-03 -5.0019 permil R(13C) CO2(aq) 1.09260e-02 -22.736 permil R(14C) CO2(aq) 9.14074e-13 77.735 pmc R(18O) CO2(aq) 2.07914e-03 36.872 permil @@ -603,6 +602,8 @@ Calcite 0.00e+00 R(18O) CO3-2 1.99517e-03 -5.0019 permil R(13C) CO3-2 1.10052e-02 -15.648 permil R(14C) CO3-2 9.27381e-13 78.866 pmc + R(13C) CH4(aq) 1.09260e-02 -22.736 permil + R(14C) CH4(aq) 0.00000e+00 0 pmc --------------------------------Isotope Alphas--------------------------------- @@ -612,14 +613,15 @@ Calcite 0.00e+00 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2563e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.2307e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.9496e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 0 0 +Alpha 14C CH4(aq)/CO2(aq) 0 -1000 0 -----------------------------Solution composition------------------------------ @@ -634,122 +636,122 @@ Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 ----------------------------Description of solution---------------------------- pH = 6.235 Charge balance - pe = 11.669 Adjusted to redox equilibrium + pe = 0.081 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 2.970e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 2.006e-03 Total CO2 (mol/kg) = 4.408e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.429e-14 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.501e-14 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 16 + Iterations = 5 Total H = 1.110126e+02 Total O = 5.540564e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 6.146e-07 5.816e-07 -6.211 -6.235 -0.024 0.00 OH- 1.821e-08 1.714e-08 -7.740 -7.766 -0.026 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -121.450 -121.450 0.000 (0) +C(-4) 1.780e-29 + CH4 1.780e-29 1.781e-29 -28.750 -28.749 0.000 (0) C(4) 4.408e-03 CO2 2.414e-03 2.416e-03 -2.617 -2.617 0.000 (0) HCO3- 1.953e-03 1.840e-03 -2.709 -2.735 -0.026 (0) CaHCO3+ 1.936e-05 1.827e-05 -4.713 -4.738 -0.025 (0) CO[18O] 1.004e-05 1.005e-05 -4.998 -4.998 0.000 (0) - HCO[18O]O- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) HCO2[18O]- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) + HCO[18O]O- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) HC[18O]O2- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) CaCO3 1.934e-07 1.935e-07 -6.714 -6.713 0.000 (0) CO3-2 1.880e-07 1.481e-07 -6.726 -6.830 -0.104 (0) CaHCO2[18O]+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) - CaHC[18O]O2+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) CaHCO[18O]O+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) + CaHC[18O]O2+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) C[18O]2 1.044e-08 1.044e-08 -7.981 -7.981 0.000 (0) HCO[18O]2- 7.773e-09 7.323e-09 -8.109 -8.135 -0.026 (0) - HC[18O]O[18O]- 7.773e-09 7.323e-09 -8.109 -8.135 -0.026 (0) HC[18O]2O- 7.773e-09 7.323e-09 -8.109 -8.135 -0.026 (0) + HC[18O]O[18O]- 7.773e-09 7.323e-09 -8.109 -8.135 -0.026 (0) Ca 1.003e-03 Ca+2 9.830e-04 7.781e-04 -3.007 -3.109 -0.102 (0) CaHCO3+ 1.936e-05 1.827e-05 -4.713 -4.738 -0.025 (0) CaH[13C]O3+ 2.134e-07 2.013e-07 -6.671 -6.696 -0.025 (0) CaCO3 1.934e-07 1.935e-07 -6.714 -6.713 0.000 (0) CaHCO2[18O]+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) - CaHC[18O]O2+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) CaHCO[18O]O+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) + CaHC[18O]O2+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) Ca[13C]O3 2.128e-09 2.130e-09 -8.672 -8.672 0.000 (0) CaCO2[18O] 1.158e-09 1.158e-09 -8.936 -8.936 0.000 (0) -H(0) 2.210e-39 - H2 1.105e-39 1.106e-39 -38.957 -38.956 0.000 (0) -O(0) 6.812e-15 - O2 3.393e-15 3.395e-15 -14.469 -14.469 0.000 (0) - O[18O] 1.354e-17 1.355e-17 -16.868 -16.868 0.000 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -123.412 -123.412 0.000 (0) +H(0) 3.309e-16 + H2 1.654e-16 1.656e-16 -15.781 -15.781 0.000 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -60.820 -60.820 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -63.219 -63.219 0.000 (0) +[13C](-4) 1.945e-31 + [13C]H4 1.945e-31 1.946e-31 -30.711 -30.711 0.000 (0) [13C](4) 4.835e-05 [13C]O2 2.638e-05 2.639e-05 -4.579 -4.578 0.000 (0) H[13C]O3- 2.152e-05 2.027e-05 -4.667 -4.693 -0.026 (0) CaH[13C]O3+ 2.134e-07 2.013e-07 -6.671 -6.696 -0.025 (0) [13C]O[18O] 1.097e-07 1.098e-07 -6.960 -6.960 0.000 (0) H[13C]O2[18O]- 4.294e-08 4.045e-08 -7.367 -7.393 -0.026 (0) - H[13C][18O]O2- 4.294e-08 4.045e-08 -7.367 -7.393 -0.026 (0) H[13C]O[18O]O- 4.294e-08 4.045e-08 -7.367 -7.393 -0.026 (0) + H[13C][18O]O2- 4.294e-08 4.045e-08 -7.367 -7.393 -0.026 (0) Ca[13C]O3 2.128e-09 2.130e-09 -8.672 -8.672 0.000 (0) [13C]O3-2 2.069e-09 1.629e-09 -8.684 -8.788 -0.104 (0) CaH[13C]O2[18O]+ 4.258e-10 4.016e-10 -9.371 -9.396 -0.025 (0) CaH[13C]O[18O]O+ 4.258e-10 4.016e-10 -9.371 -9.396 -0.025 (0) CaH[13C][18O]O2+ 4.258e-10 4.016e-10 -9.371 -9.396 -0.025 (0) [13C][18O]2 1.140e-10 1.141e-10 -9.943 -9.943 0.000 (0) + H[13C]O[18O]2- 8.566e-11 8.070e-11 -10.067 -10.093 -0.026 (0) H[13C][18O]2O- 8.566e-11 8.070e-11 -10.067 -10.093 -0.026 (0) H[13C][18O]O[18O]- 8.566e-11 8.070e-11 -10.067 -10.093 -0.026 (0) - H[13C]O[18O]2- 8.566e-11 8.070e-11 -10.067 -10.093 -0.026 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -133.489 -133.489 0.000 (0) + [14C]H4 0.000e+00 0.000e+00 -40.789 -40.788 0.000 (0) [14C](4) 4.061e-15 [14C]O2 2.207e-15 2.208e-15 -14.656 -14.656 0.000 (0) H[14C]O3- 1.816e-15 1.711e-15 -14.741 -14.767 -0.026 (0) CaH[14C]O3+ 1.801e-17 1.699e-17 -16.745 -16.770 -0.025 (0) [14C]O[18O] 9.176e-18 9.182e-18 -17.037 -17.037 0.000 (0) - H[14C]O[18O]O- 3.623e-18 3.413e-18 -17.441 -17.467 -0.026 (0) H[14C]O2[18O]- 3.623e-18 3.413e-18 -17.441 -17.467 -0.026 (0) + H[14C]O[18O]O- 3.623e-18 3.413e-18 -17.441 -17.467 -0.026 (0) H[14C][18O]O2- 3.623e-18 3.413e-18 -17.441 -17.467 -0.026 (0) Ca[14C]O3 1.794e-19 1.795e-19 -18.746 -18.746 0.000 (0) [14C]O3-2 1.743e-19 1.373e-19 -18.759 -18.862 -0.104 (0) - CaH[14C]O[18O]O+ 3.593e-20 3.389e-20 -19.445 -19.470 -0.025 (0) CaH[14C]O2[18O]+ 3.593e-20 3.389e-20 -19.445 -19.470 -0.025 (0) + CaH[14C]O[18O]O+ 3.593e-20 3.389e-20 -19.445 -19.470 -0.025 (0) CaH[14C][18O]O2+ 3.593e-20 3.389e-20 -19.445 -19.470 -0.025 (0) [14C][18O]2 9.539e-21 9.545e-21 -20.021 -20.020 0.000 (0) - H[14C][18O]O[18O]- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) - H[14C][18O]2O- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) H[14C]O[18O]2- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) + H[14C][18O]2O- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) + H[14C][18O]O[18O]- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) CO[18O] 1.004e-05 1.005e-05 -4.998 -4.998 0.000 (0) HCO2[18O]- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) - HC[18O]O2- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) HCO[18O]O- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) -[18O](0) 1.356e-17 - O[18O] 1.354e-17 1.355e-17 -16.868 -16.868 0.000 (0) - [18O]2 1.351e-20 1.351e-20 -19.869 -19.869 0.000 (0) + HC[18O]O2- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -63.219 -63.219 0.000 (0) + [18O]2 0.000e+00 0.000e+00 -66.220 -66.220 0.000 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.48 -9.98 -1.50 [13C][18O]2 - [13C]H4(g) -120.55 -123.41 -2.86 [13C]H4 + [13C]H4(g) -27.85 -30.71 -2.86 [13C]H4 [13C]O2(g) -3.11 -4.58 -1.47 [13C]O2 [13C]O[18O](g) -5.49 -7.28 -1.79 [13C]O[18O] [14C][18O]2(g) -18.55 -20.06 -1.50 [14C][18O]2 - [14C]H4(g) -130.63 -133.49 -2.86 [14C]H4 + [14C]H4(g) -37.93 -40.79 -2.86 [14C]H4 [14C]O2(g) -13.19 -14.66 -1.47 [14C]O2 [14C]O[18O](g) -15.57 -17.36 -1.79 [14C]O[18O] - [18O]2(g) -17.58 -19.87 -2.29 [18O]2 + [18O]2(g) -63.93 -66.22 -2.29 [18O]2 C[18O]2(g) -6.51 -8.02 -1.50 C[18O]2 Ca[13C][18O]3(s) -11.48 -3.32 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -5.63 2.08 7.71 Ca[13C]O2[18O] @@ -763,14 +765,14 @@ O(0) 6.812e-15 CaCO2[18O](s) -3.67 4.04 7.71 CaCO2[18O] CaCO[18O]2(s) -6.36 1.34 7.70 CaCO[18O]2 Calcite -1.46 -9.94 -8.48 CaCO3 - CH4(g) -118.59 -121.45 -2.86 CH4 + CH4(g) -25.89 -28.75 -2.86 CH4 CO2(g) -1.15 -2.62 -1.47 CO2 CO[18O](g) -3.53 -5.32 -1.79 CO[18O] - H2(g) -35.81 -38.96 -3.15 H2 + H2(g) -12.63 -15.78 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.58 -14.47 -2.89 O2 - O[18O](g) -14.28 -17.17 -2.89 O[18O] + O2(g) -57.93 -60.82 -2.89 O2 + O[18O](g) -60.63 -63.52 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -874,12 +876,12 @@ Calcite 0.00e+00 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2328e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2373e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -2.4686e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.9934e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 @@ -896,44 +898,44 @@ Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 ----------------------------Description of solution---------------------------- pH = 6.503 Charge balance - pe = 11.530 Adjusted to redox equilibrium + pe = 11.499 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 4.428e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 3.009e-03 Total CO2 (mol/kg) = 4.904e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.478e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.766e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 4 + Iterations = 17 Total H = 1.110126e+02 Total O = 5.540714e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 3.351e-07 3.139e-07 -6.475 -6.503 -0.028 0.00 OH- 3.415e-08 3.176e-08 -7.467 -7.498 -0.032 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.581 -122.581 0.000 (0) + CH4 0.000e+00 0.000e+00 -122.333 -122.333 0.000 (0) C(4) 4.904e-03 HCO3- 2.915e-03 2.713e-03 -2.535 -2.567 -0.031 (0) CO2 1.921e-03 1.923e-03 -2.716 -2.716 0.000 (0) CaHCO3+ 4.102e-05 3.825e-05 -4.387 -4.417 -0.030 (0) CO[18O] 7.989e-06 7.997e-06 -5.097 -5.097 0.000 (0) HCO2[18O]- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) - HC[18O]O2- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) HCO[18O]O- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) + HC[18O]O2- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) CaCO3 7.501e-07 7.509e-07 -6.125 -6.124 0.000 (0) CO3-2 5.390e-07 4.046e-07 -6.268 -6.393 -0.125 (0) CaHCO2[18O]+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) CaHCO[18O]O+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) CaHC[18O]O2+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) - HC[18O]2O- 1.160e-08 1.080e-08 -7.935 -7.967 -0.031 (0) HCO[18O]2- 1.160e-08 1.080e-08 -7.935 -7.967 -0.031 (0) + HC[18O]2O- 1.160e-08 1.080e-08 -7.935 -7.967 -0.031 (0) HC[18O]O[18O]- 1.160e-08 1.080e-08 -7.935 -7.967 -0.031 (0) C[18O]2 8.305e-09 8.314e-09 -8.081 -8.080 0.000 (0) Ca 1.504e-03 @@ -942,76 +944,76 @@ Ca 1.504e-03 CaCO3 7.501e-07 7.509e-07 -6.125 -6.124 0.000 (0) CaH[13C]O3+ 4.525e-07 4.219e-07 -6.344 -6.375 -0.030 (0) CaHCO2[18O]+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) - CaHC[18O]O2+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) CaHCO[18O]O+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) + CaHC[18O]O2+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) Ca[13C]O3 8.262e-09 8.270e-09 -8.083 -8.082 0.000 (0) CaCO2[18O] 4.490e-09 4.494e-09 -8.348 -8.347 0.000 (0) -H(0) 1.220e-39 - H2 6.100e-40 6.106e-40 -39.215 -39.214 0.000 (0) -O(0) 2.234e-14 - O2 1.112e-14 1.114e-14 -13.954 -13.953 0.000 (0) - O[18O] 4.439e-17 4.443e-17 -16.353 -16.352 0.000 (0) +H(0) 1.407e-39 + H2 7.037e-40 7.044e-40 -39.153 -39.152 0.000 (0) +O(0) 1.679e-14 + O2 8.360e-15 8.369e-15 -14.078 -14.077 0.000 (0) + O[18O] 3.336e-17 3.339e-17 -16.477 -16.476 0.000 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.542 -124.542 0.000 (0) + [13C]H4 0.000e+00 0.000e+00 -124.294 -124.294 0.000 (0) [13C](4) 5.391e-05 H[13C]O3- 3.215e-05 2.993e-05 -4.493 -4.524 -0.031 (0) [13C]O2 2.101e-05 2.103e-05 -4.678 -4.677 0.000 (0) CaH[13C]O3+ 4.525e-07 4.219e-07 -6.344 -6.375 -0.030 (0) [13C]O[18O] 8.736e-08 8.745e-08 -7.059 -7.058 0.000 (0) H[13C]O2[18O]- 6.415e-08 5.971e-08 -7.193 -7.224 -0.031 (0) - H[13C][18O]O2- 6.415e-08 5.971e-08 -7.193 -7.224 -0.031 (0) H[13C]O[18O]O- 6.415e-08 5.971e-08 -7.193 -7.224 -0.031 (0) + H[13C][18O]O2- 6.415e-08 5.971e-08 -7.193 -7.224 -0.031 (0) Ca[13C]O3 8.262e-09 8.270e-09 -8.083 -8.082 0.000 (0) [13C]O3-2 5.937e-09 4.456e-09 -8.226 -8.351 -0.125 (0) + CaH[13C]O2[18O]+ 9.027e-10 8.418e-10 -9.044 -9.075 -0.030 (0) CaH[13C]O[18O]O+ 9.027e-10 8.418e-10 -9.044 -9.075 -0.030 (0) CaH[13C][18O]O2+ 9.027e-10 8.418e-10 -9.044 -9.075 -0.030 (0) - CaH[13C]O2[18O]+ 9.027e-10 8.418e-10 -9.044 -9.075 -0.030 (0) H[13C]O[18O]2- 1.280e-10 1.191e-10 -9.893 -9.924 -0.031 (0) H[13C][18O]2O- 1.280e-10 1.191e-10 -9.893 -9.924 -0.031 (0) H[13C][18O]O[18O]- 1.280e-10 1.191e-10 -9.893 -9.924 -0.031 (0) [13C][18O]2 9.082e-11 9.091e-11 -10.042 -10.041 0.000 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.668 -134.667 0.000 (0) + [14C]H4 0.000e+00 0.000e+00 -134.420 -134.419 0.000 (0) [14C](4) 4.061e-15 H[14C]O3- 2.430e-15 2.262e-15 -14.614 -14.645 -0.031 (0) [14C]O2 1.574e-15 1.576e-15 -14.803 -14.802 0.000 (0) CaH[14C]O3+ 3.420e-17 3.189e-17 -16.466 -16.496 -0.030 (0) [14C]O[18O] 6.547e-18 6.553e-18 -17.184 -17.184 0.000 (0) - H[14C]O[18O]O- 4.849e-18 4.513e-18 -17.314 -17.346 -0.031 (0) H[14C]O2[18O]- 4.849e-18 4.513e-18 -17.314 -17.346 -0.031 (0) + H[14C]O[18O]O- 4.849e-18 4.513e-18 -17.314 -17.346 -0.031 (0) H[14C][18O]O2- 4.849e-18 4.513e-18 -17.314 -17.346 -0.031 (0) Ca[14C]O3 6.236e-19 6.242e-19 -18.205 -18.205 0.000 (0) [14C]O3-2 4.481e-19 3.364e-19 -18.349 -18.473 -0.125 (0) CaH[14C]O2[18O]+ 6.824e-20 6.363e-20 -19.166 -19.196 -0.030 (0) - CaH[14C][18O]O2+ 6.824e-20 6.363e-20 -19.166 -19.196 -0.030 (0) CaH[14C]O[18O]O+ 6.824e-20 6.363e-20 -19.166 -19.196 -0.030 (0) + CaH[14C][18O]O2+ 6.824e-20 6.363e-20 -19.166 -19.196 -0.030 (0) H[14C]O[18O]2- 9.674e-21 9.005e-21 -20.014 -20.046 -0.031 (0) - H[14C][18O]O[18O]- 9.674e-21 9.005e-21 -20.014 -20.046 -0.031 (0) H[14C][18O]2O- 9.674e-21 9.005e-21 -20.014 -20.046 -0.031 (0) + H[14C][18O]O[18O]- 9.674e-21 9.005e-21 -20.014 -20.046 -0.031 (0) [14C][18O]2 6.806e-21 6.813e-21 -20.167 -20.167 0.000 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) CO[18O] 7.989e-06 7.997e-06 -5.097 -5.097 0.000 (0) - HC[18O]O2- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) - HCO[18O]O- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) HCO2[18O]- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) -[18O](0) 4.448e-17 - O[18O] 4.439e-17 4.443e-17 -16.353 -16.352 0.000 (0) - [18O]2 4.428e-20 4.433e-20 -19.354 -19.353 0.000 (0) + HCO[18O]O- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) + HC[18O]O2- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) +[18O](0) 3.343e-17 + O[18O] 3.336e-17 3.339e-17 -16.477 -16.476 0.000 (0) + [18O]2 3.328e-20 3.331e-20 -19.478 -19.477 0.000 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.57 -10.08 -1.50 [13C][18O]2 - [13C]H4(g) -121.68 -124.54 -2.86 [13C]H4 + [13C]H4(g) -121.43 -124.29 -2.86 [13C]H4 [13C]O2(g) -3.21 -4.68 -1.47 [13C]O2 [13C]O[18O](g) -5.59 -7.38 -1.79 [13C]O[18O] [14C][18O]2(g) -18.70 -20.20 -1.50 [14C][18O]2 - [14C]H4(g) -131.81 -134.67 -2.86 [14C]H4 + [14C]H4(g) -131.56 -134.42 -2.86 [14C]H4 [14C]O2(g) -13.33 -14.80 -1.47 [14C]O2 [14C]O[18O](g) -15.72 -17.50 -1.79 [14C]O[18O] - [18O]2(g) -17.06 -19.35 -2.29 [18O]2 + [18O]2(g) -17.19 -19.48 -2.29 [18O]2 C[18O]2(g) -6.61 -8.12 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.89 -2.73 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -5.04 2.67 7.71 Ca[13C]O2[18O] @@ -1025,14 +1027,14 @@ O(0) 2.234e-14 CaCO2[18O](s) -3.08 4.63 7.71 CaCO2[18O] CaCO[18O]2(s) -5.77 1.93 7.70 CaCO[18O]2 Calcite -0.87 -9.35 -8.48 CaCO3 - CH4(g) -119.72 -122.58 -2.86 CH4 + CH4(g) -119.47 -122.33 -2.86 CH4 CO2(g) -1.25 -2.72 -1.47 CO2 CO[18O](g) -3.63 -5.42 -1.79 CO[18O] - H2(g) -36.06 -39.21 -3.15 H2 + H2(g) -36.00 -39.15 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.06 -13.95 -2.89 O2 - O[18O](g) -13.76 -16.65 -2.89 O[18O] + O2(g) -11.18 -14.08 -2.89 O2 + O[18O](g) -13.89 -16.78 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1136,12 +1138,12 @@ Calcite 0.00e+00 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2736e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2771e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.9482e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -2.0204e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 @@ -1158,14 +1160,14 @@ Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 ----------------------------Description of solution---------------------------- pH = 6.750 Charge balance - pe = 11.307 Adjusted to redox equilibrium + pe = 11.241 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 5.871e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.012e-03 Total CO2 (mol/kg) = 5.400e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 4 Total H = 1.110126e+02 @@ -1174,28 +1176,28 @@ Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.914e-07 1.778e-07 -6.718 -6.750 -0.032 0.00 OH- 6.090e-08 5.607e-08 -7.215 -7.251 -0.036 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.902 -122.902 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.370 -122.369 0.001 (0) C(4) 5.400e-03 HCO3- 3.868e-03 3.565e-03 -2.413 -2.448 -0.035 (0) CO2 1.430e-03 1.432e-03 -2.845 -2.844 0.001 (0) CaHCO3+ 6.931e-05 6.403e-05 -4.159 -4.194 -0.034 (0) HCO2[18O]- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) - HC[18O]O2- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) HCO[18O]O- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) + HC[18O]O2- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) CO[18O] 5.945e-06 5.953e-06 -5.226 -5.225 0.001 (0) CaCO3 2.216e-06 2.219e-06 -5.654 -5.654 0.001 (0) CO3-2 1.300e-06 9.385e-07 -5.886 -6.028 -0.142 (0) CaHCO2[18O]+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) - CaHC[18O]O2+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) - HC[18O]2O- 1.540e-08 1.419e-08 -7.813 -7.848 -0.035 (0) + CaHC[18O]O2+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) HCO[18O]2- 1.540e-08 1.419e-08 -7.813 -7.848 -0.035 (0) + HC[18O]2O- 1.540e-08 1.419e-08 -7.813 -7.848 -0.035 (0) HC[18O]O[18O]- 1.540e-08 1.419e-08 -7.813 -7.848 -0.035 (0) CaCO2[18O] 1.326e-08 1.328e-08 -7.877 -7.877 0.001 (0) CO2[18O]-2 7.783e-09 5.618e-09 -8.109 -8.250 -0.142 (0) @@ -1206,30 +1208,30 @@ Ca 2.006e-03 CaCO3 2.216e-06 2.219e-06 -5.654 -5.654 0.001 (0) CaH[13C]O3+ 7.650e-07 7.067e-07 -6.116 -6.151 -0.034 (0) CaHCO2[18O]+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) - CaHC[18O]O2+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) + CaHC[18O]O2+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) Ca[13C]O3 2.442e-08 2.445e-08 -7.612 -7.612 0.001 (0) CaCO2[18O] 1.326e-08 1.328e-08 -7.877 -7.877 0.001 (0) -H(0) 1.092e-39 - H2 5.458e-40 5.466e-40 -39.263 -39.262 0.001 (0) -O(0) 2.787e-14 - O2 1.388e-14 1.390e-14 -13.858 -13.857 0.001 (0) - O[18O] 5.539e-17 5.546e-17 -16.257 -16.256 0.001 (0) +H(0) 1.483e-39 + H2 7.415e-40 7.425e-40 -39.130 -39.129 0.001 (0) +O(0) 1.510e-14 + O2 7.521e-15 7.531e-15 -14.124 -14.123 0.001 (0) + O[18O] 3.001e-17 3.005e-17 -16.523 -16.522 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.863 -124.862 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.331 -124.330 0.001 (0) [13C](4) 5.947e-05 H[13C]O3- 4.269e-05 3.935e-05 -4.370 -4.405 -0.035 (0) [13C]O2 1.564e-05 1.566e-05 -4.806 -4.805 0.001 (0) CaH[13C]O3+ 7.650e-07 7.067e-07 -6.116 -6.151 -0.034 (0) H[13C]O2[18O]- 8.518e-08 7.851e-08 -7.070 -7.105 -0.035 (0) - H[13C][18O]O2- 8.518e-08 7.851e-08 -7.070 -7.105 -0.035 (0) H[13C]O[18O]O- 8.518e-08 7.851e-08 -7.070 -7.105 -0.035 (0) + H[13C][18O]O2- 8.518e-08 7.851e-08 -7.070 -7.105 -0.035 (0) [13C]O[18O] 6.505e-08 6.514e-08 -7.187 -7.186 0.001 (0) Ca[13C]O3 2.442e-08 2.445e-08 -7.612 -7.612 0.001 (0) [13C]O3-2 1.433e-08 1.034e-08 -7.844 -7.985 -0.142 (0) - CaH[13C][18O]O2+ 1.526e-09 1.410e-09 -8.816 -8.851 -0.034 (0) CaH[13C]O2[18O]+ 1.526e-09 1.410e-09 -8.816 -8.851 -0.034 (0) CaH[13C]O[18O]O+ 1.526e-09 1.410e-09 -8.816 -8.851 -0.034 (0) + CaH[13C][18O]O2+ 1.526e-09 1.410e-09 -8.816 -8.851 -0.034 (0) H[13C]O[18O]2- 1.699e-10 1.566e-10 -9.770 -9.805 -0.035 (0) H[13C][18O]2O- 1.699e-10 1.566e-10 -9.770 -9.805 -0.035 (0) H[13C][18O]O[18O]- 1.699e-10 1.566e-10 -9.770 -9.805 -0.035 (0) @@ -1237,52 +1239,52 @@ O(0) 2.787e-14 [13C]O2[18O]-2 8.578e-11 6.191e-11 -10.067 -10.208 -0.142 (0) [13C][18O]2 6.763e-11 6.772e-11 -10.170 -10.169 0.001 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -135.031 -135.031 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -134.499 -134.499 0.001 (0) [14C](4) 4.061e-15 H[14C]O3- 2.922e-15 2.694e-15 -14.534 -14.570 -0.035 (0) [14C]O2 1.062e-15 1.063e-15 -14.974 -14.973 0.001 (0) CaH[14C]O3+ 5.236e-17 4.837e-17 -16.281 -16.315 -0.034 (0) - H[14C][18O]O2- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) - H[14C]O[18O]O- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) H[14C]O2[18O]- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) + H[14C]O[18O]O- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) + H[14C][18O]O2- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) [14C]O[18O] 4.414e-18 4.420e-18 -17.355 -17.355 0.001 (0) Ca[14C]O3 1.669e-18 1.671e-18 -17.777 -17.777 0.001 (0) [14C]O3-2 9.796e-19 7.070e-19 -18.009 -18.151 -0.142 (0) CaH[14C]O2[18O]+ 1.045e-19 9.651e-20 -18.981 -19.015 -0.034 (0) - CaH[14C][18O]O2+ 1.045e-19 9.651e-20 -18.981 -19.015 -0.034 (0) CaH[14C]O[18O]O+ 1.045e-19 9.651e-20 -18.981 -19.015 -0.034 (0) - H[14C][18O]O[18O]- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) - H[14C][18O]2O- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) + CaH[14C][18O]O2+ 1.045e-19 9.651e-20 -18.981 -19.015 -0.034 (0) H[14C]O[18O]2- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) + H[14C][18O]2O- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) + H[14C][18O]O[18O]- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) Ca[14C]O2[18O] 9.991e-21 1.000e-20 -20.000 -20.000 0.001 (0) [14C]O2[18O]-2 5.863e-21 4.232e-21 -20.232 -20.373 -0.142 (0) [14C][18O]2 4.589e-21 4.595e-21 -20.338 -20.338 0.001 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) - HC[18O]O2- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) HCO[18O]O- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) + HC[18O]O2- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) CO[18O] 5.945e-06 5.953e-06 -5.226 -5.225 0.001 (0) CaHCO2[18O]+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) CaHC[18O]O2+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) -[18O](0) 5.550e-17 - O[18O] 5.539e-17 5.546e-17 -16.257 -16.256 0.001 (0) - [18O]2 5.525e-20 5.533e-20 -19.258 -19.257 0.001 (0) +[18O](0) 3.007e-17 + O[18O] 3.001e-17 3.005e-17 -16.523 -16.522 0.001 (0) + [18O]2 2.994e-20 2.998e-20 -19.524 -19.523 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.70 -10.21 -1.50 [13C][18O]2 - [13C]H4(g) -122.00 -124.86 -2.86 [13C]H4 + [13C]H4(g) -121.47 -124.33 -2.86 [13C]H4 [13C]O2(g) -3.34 -4.81 -1.47 [13C]O2 [13C]O[18O](g) -5.72 -7.51 -1.79 [13C]O[18O] [14C][18O]2(g) -18.87 -20.37 -1.50 [14C][18O]2 - [14C]H4(g) -132.17 -135.03 -2.86 [14C]H4 + [14C]H4(g) -131.64 -134.50 -2.86 [14C]H4 [14C]O2(g) -13.50 -14.97 -1.47 [14C]O2 [14C]O[18O](g) -15.89 -17.67 -1.79 [14C]O[18O] - [18O]2(g) -16.97 -19.26 -2.29 [18O]2 + [18O]2(g) -17.23 -19.52 -2.29 [18O]2 C[18O]2(g) -6.74 -8.24 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.42 -2.26 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.57 3.14 7.71 Ca[13C]O2[18O] @@ -1296,14 +1298,14 @@ O(0) 2.787e-14 CaCO2[18O](s) -2.61 5.10 7.71 CaCO2[18O] CaCO[18O]2(s) -5.30 2.40 7.70 CaCO[18O]2 Calcite -0.40 -8.88 -8.48 CaCO3 - CH4(g) -120.04 -122.90 -2.86 CH4 + CH4(g) -119.51 -122.37 -2.86 CH4 CO2(g) -1.38 -2.84 -1.47 CO2 CO[18O](g) -3.76 -5.54 -1.79 CO[18O] - H2(g) -36.11 -39.26 -3.15 H2 + H2(g) -35.98 -39.13 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.96 -13.86 -2.89 O2 - O[18O](g) -13.66 -16.56 -2.89 O[18O] + O2(g) -11.23 -14.12 -2.89 O2 + O[18O](g) -13.93 -16.82 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1364,43 +1366,43 @@ Calcite added: 0 Solid solution Component Moles Delta moles Mole fract -Calcite 1.05e-25 - Calcite 1.00e-27 0.00e+00 9.49e-03 - CaCO2[18O](s) 1.00e-27 0.00e+00 9.49e-03 - CaCO[18O]2(s) 1.00e-27 0.00e+00 9.49e-03 - CaC[18O]3(s) 1.00e-27 0.00e+00 9.49e-03 - Ca[13C]O3(s) 1.00e-27 0.00e+00 9.49e-03 - Ca[13C]O2[18O](s) 1.00e-27 0.00e+00 9.49e-03 - Ca[13C]O[18O]2(s) 1.00e-27 0.00e+00 9.49e-03 - Ca[13C][18O]3(s) 1.00e-27 0.00e+00 9.49e-03 - Ca[14C]O3(s) 1.00e-27 0.00e+00 9.49e-03 - Ca[14C]O2[18O](s) 1.00e-27 0.00e+00 9.49e-03 - Ca[14C]O[18O]2(s) 1.00e-27 0.00e+00 9.49e-03 - Ca[14C][18O]3(s) 9.44e-26 9.34e-26 8.96e-01 +Calcite 5.60e-05 + Calcite 5.50e-05 5.50e-05 9.83e-01 + CaCO2[18O](s) 3.39e-07 3.39e-07 6.05e-03 + CaCO[18O]2(s) 6.96e-10 6.96e-10 1.24e-05 + CaC[18O]3(s) 4.76e-13 4.76e-13 8.50e-09 + Ca[13C]O3(s) 6.09e-07 6.09e-07 1.09e-02 + Ca[13C]O2[18O](s) 3.75e-09 3.75e-09 6.70e-05 + Ca[13C]O[18O]2(s) 7.70e-12 7.70e-12 1.37e-07 + Ca[13C][18O]3(s) 5.27e-15 5.27e-15 9.41e-11 + Ca[14C]O3(s) 3.82e-17 3.82e-17 6.82e-13 + Ca[14C]O2[18O](s) 2.35e-19 2.35e-19 4.20e-15 + Ca[14C]O[18O]2(s) 4.82e-22 4.82e-22 8.62e-18 + Ca[14C][18O]3(s) 3.30e-25 3.29e-25 5.90e-21 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99518e-03 -4.9954 permil - R(13C) 1.10280e-02 -13.615 permil - R(14C) 6.88807e-13 58.578 pmc - R(18O) H2O(l) 1.99518e-03 -4.9969 permil + R(18O) 1.99518e-03 -4.9955 permil + R(13C) 1.10276e-02 -13.647 permil + R(14C) 6.88762e-13 58.574 pmc + R(18O) H2O(l) 1.99518e-03 -4.997 permil R(18O) OH- 1.92121e-03 -41.884 permil R(18O) H3O+ 2.04132e-03 18.011 permil - R(18O) O2(aq) 1.99518e-03 -4.9969 permil - R(13C) CO2(aq) 1.09480e-02 -20.766 permil - R(14C) CO2(aq) 6.78849e-13 57.731 pmc + R(18O) O2(aq) 1.99518e-03 -4.997 permil + R(13C) CO2(aq) 1.09487e-02 -20.706 permil + R(14C) CO2(aq) 6.78931e-13 57.738 pmc R(18O) CO2(aq) 2.07915e-03 36.877 permil - R(18O) HCO3- 1.99518e-03 -4.9969 permil - R(13C) HCO3- 1.10433e-02 -12.247 permil - R(14C) HCO3- 6.90712e-13 58.74 pmc - R(18O) CO3-2 1.99518e-03 -4.9969 permil - R(13C) CO3-2 1.10274e-02 -13.664 permil - R(14C) CO3-2 6.88731e-13 58.571 pmc - R(18O) Calcite 1.65715e+01 8.2632e+06 permil - R(13C) Calcite 1.00000e+00 88444 permil - R(14C) Calcite 2.43572e+01 2.0714e+15 pmc + R(18O) HCO3- 1.99518e-03 -4.997 permil + R(13C) HCO3- 1.10440e-02 -12.187 permil + R(14C) HCO3- 6.90796e-13 58.747 pmc + R(18O) CO3-2 1.99518e-03 -4.997 permil + R(13C) CO3-2 1.10281e-02 -13.604 permil + R(14C) CO3-2 6.88815e-13 58.578 pmc + R(18O) Calcite 2.05262e-03 23.649 permil + R(13C) Calcite 1.10658e-02 -10.23 permil + R(14C) Calcite 6.93535e-13 58.98 pmc --------------------------------Isotope Alphas--------------------------------- @@ -1410,174 +1412,174 @@ Calcite 1.05e-25 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2562e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2738e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 +Alpha 18O HCO3-/H2O(l) 1 8.8818e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7646e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7115e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 8305.8 9024.7 28.383 -Alpha 13C Calcite/CO2(aq) 91.341 4514.6 10.641 -Alpha 14C Calcite/CO2(aq) 3.588e+13 31211 21.282 +Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 +Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 +Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 5.896e-03 5.879e-03 - Ca 2.507e-03 2.500e-03 - [13C] 6.502e-05 6.483e-05 - [14C] 4.061e-15 4.049e-15 + C 5.841e-03 5.824e-03 + Ca 2.451e-03 2.444e-03 + [13C] 6.441e-05 6.422e-05 + [14C] 4.023e-15 4.011e-15 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- - pH = 7.022 Charge balance - pe = 10.939 Adjusted to redox equilibrium + pH = 6.989 Charge balance + pe = 10.984 Adjusted to redox equilibrium Activity of water = 0.998 - Ionic strength (mol/kgw) = 7.296e-03 + Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 - Total alkalinity (eq/kg) = 5.015e-03 - Total CO2 (mol/kg) = 5.896e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Total alkalinity (eq/kg) = 4.902e-03 + Total CO2 (mol/kg) = 5.841e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 88 + Iterations = 73 Total H = 1.110126e+02 - Total O = 5.541013e+01 + Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.149e-07 1.049e-07 -6.940 -6.979 -0.040 (0) - H3O+ 1.030e-07 9.503e-08 -6.987 -7.022 -0.035 0.00 + H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 + OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.317 -122.317 0.001 (0) -C(4) 5.896e-03 - HCO3- 4.808e-03 4.395e-03 -2.318 -2.357 -0.039 (0) - CO2 9.416e-04 9.432e-04 -3.026 -3.025 0.001 (0) - CaHCO3+ 1.034e-04 9.479e-05 -3.985 -4.023 -0.038 (0) - HC[18O]O2- 9.594e-06 8.769e-06 -5.018 -5.057 -0.039 (0) - HCO[18O]O- 9.594e-06 8.769e-06 -5.018 -5.057 -0.039 (0) - HCO2[18O]- 9.594e-06 8.769e-06 -5.018 -5.057 -0.039 (0) - CaCO3 6.136e-06 6.146e-06 -5.212 -5.211 0.001 (0) - CO[18O] 3.915e-06 3.922e-06 -5.407 -5.406 0.001 (0) - CO3-2 3.101e-06 2.165e-06 -5.508 -5.665 -0.156 (0) - CaHCO2[18O]+ 2.063e-07 1.891e-07 -6.685 -6.723 -0.038 (0) - CaHC[18O]O2+ 2.063e-07 1.891e-07 -6.685 -6.723 -0.038 (0) - CaHCO[18O]O+ 2.063e-07 1.891e-07 -6.685 -6.723 -0.038 (0) - CaCO2[18O] 3.673e-08 3.679e-08 -7.435 -7.434 0.001 (0) - HC[18O]O[18O]- 1.914e-08 1.750e-08 -7.718 -7.757 -0.039 (0) - HCO[18O]2- 1.914e-08 1.750e-08 -7.718 -7.757 -0.039 (0) - HC[18O]2O- 1.914e-08 1.750e-08 -7.718 -7.757 -0.039 (0) - CO2[18O]-2 1.856e-08 1.296e-08 -7.731 -7.887 -0.156 (0) -Ca 2.507e-03 - Ca+2 2.396e-03 1.690e-03 -2.621 -2.772 -0.152 (0) - CaHCO3+ 1.034e-04 9.479e-05 -3.985 -4.023 -0.038 (0) - CaCO3 6.136e-06 6.146e-06 -5.212 -5.211 0.001 (0) - CaH[13C]O3+ 1.142e-06 1.047e-06 -5.942 -5.980 -0.038 (0) - CaHCO2[18O]+ 2.063e-07 1.891e-07 -6.685 -6.723 -0.038 (0) - CaHC[18O]O2+ 2.063e-07 1.891e-07 -6.685 -6.723 -0.038 (0) - CaHCO[18O]O+ 2.063e-07 1.891e-07 -6.685 -6.723 -0.038 (0) - Ca[13C]O3 6.766e-08 6.778e-08 -7.170 -7.169 0.001 (0) - CaCO2[18O] 3.673e-08 3.679e-08 -7.435 -7.434 0.001 (0) -H(0) 1.696e-39 - H2 8.482e-40 8.496e-40 -39.072 -39.071 0.001 (0) -O(0) 1.153e-14 - O2 5.742e-15 5.752e-15 -14.241 -14.240 0.001 (0) - O[18O] 2.291e-17 2.295e-17 -16.640 -16.639 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.385 -122.384 0.001 (0) +C(4) 5.841e-03 + HCO3- 4.704e-03 4.304e-03 -2.328 -2.366 -0.039 (0) + CO2 9.959e-04 9.976e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CO3-2 2.802e-06 1.963e-06 -5.553 -5.707 -0.155 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HCO[18O]2- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) +Ca 2.451e-03 + Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) + CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) + CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) + CaH[13C]O3+ 1.097e-06 1.006e-06 -5.960 -5.997 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.023e-08 6.033e-08 -7.220 -7.219 0.001 (0) + CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 1.609e-39 + H2 8.044e-40 8.057e-40 -39.095 -39.094 0.001 (0) +O(0) 1.282e-14 + O2 6.385e-15 6.396e-15 -14.195 -14.194 0.001 (0) + O[18O] 2.548e-17 2.552e-17 -16.594 -16.593 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.278 -124.277 0.001 (0) -[13C](4) 6.502e-05 - H[13C]O3- 5.310e-05 4.854e-05 -4.275 -4.314 -0.039 (0) - [13C]O2 1.031e-05 1.033e-05 -4.987 -4.986 0.001 (0) - CaH[13C]O3+ 1.142e-06 1.047e-06 -5.942 -5.980 -0.038 (0) - H[13C][18O]O2- 1.059e-07 9.684e-08 -6.975 -7.014 -0.039 (0) - H[13C]O[18O]O- 1.059e-07 9.684e-08 -6.975 -7.014 -0.039 (0) - H[13C]O2[18O]- 1.059e-07 9.684e-08 -6.975 -7.014 -0.039 (0) - Ca[13C]O3 6.766e-08 6.778e-08 -7.170 -7.169 0.001 (0) - [13C]O[18O] 4.287e-08 4.294e-08 -7.368 -7.367 0.001 (0) - [13C]O3-2 3.420e-08 2.388e-08 -7.466 -7.622 -0.156 (0) - CaH[13C][18O]O2+ 2.279e-09 2.088e-09 -8.642 -8.680 -0.038 (0) - CaH[13C]O2[18O]+ 2.279e-09 2.088e-09 -8.642 -8.680 -0.038 (0) - CaH[13C]O[18O]O+ 2.279e-09 2.088e-09 -8.642 -8.680 -0.038 (0) - Ca[13C]O2[18O] 4.050e-10 4.057e-10 -9.393 -9.392 0.001 (0) - H[13C][18O]O[18O]- 2.114e-10 1.932e-10 -9.675 -9.714 -0.039 (0) - H[13C][18O]2O- 2.114e-10 1.932e-10 -9.675 -9.714 -0.039 (0) - H[13C]O[18O]2- 2.114e-10 1.932e-10 -9.675 -9.714 -0.039 (0) - [13C]O2[18O]-2 2.047e-10 1.429e-10 -9.689 -9.845 -0.156 (0) + [13C]H4 0.000e+00 0.000e+00 -124.346 -124.345 0.001 (0) +[13C](4) 6.441e-05 + H[13C]O3- 5.195e-05 4.753e-05 -4.284 -4.323 -0.039 (0) + [13C]O2 1.090e-05 1.092e-05 -4.962 -4.962 0.001 (0) + CaH[13C]O3+ 1.097e-06 1.006e-06 -5.960 -5.997 -0.037 (0) + H[13C]O2[18O]- 1.037e-07 9.483e-08 -6.984 -7.023 -0.039 (0) + H[13C]O[18O]O- 1.037e-07 9.483e-08 -6.984 -7.023 -0.039 (0) + H[13C][18O]O2- 1.037e-07 9.483e-08 -6.984 -7.023 -0.039 (0) + Ca[13C]O3 6.023e-08 6.033e-08 -7.220 -7.219 0.001 (0) + [13C]O[18O] 4.534e-08 4.542e-08 -7.343 -7.343 0.001 (0) + [13C]O3-2 3.090e-08 2.164e-08 -7.510 -7.665 -0.155 (0) + CaH[13C]O2[18O]+ 2.189e-09 2.008e-09 -8.660 -8.697 -0.037 (0) + CaH[13C]O[18O]O+ 2.189e-09 2.008e-09 -8.660 -8.697 -0.037 (0) + CaH[13C][18O]O2+ 2.189e-09 2.008e-09 -8.660 -8.697 -0.037 (0) + Ca[13C]O2[18O] 3.605e-10 3.611e-10 -9.443 -9.442 0.001 (0) + H[13C]O[18O]2- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) + H[13C][18O]2O- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) + H[13C][18O]O[18O]- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) + [13C]O2[18O]-2 1.849e-10 1.295e-10 -9.733 -9.888 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.485 -134.485 0.001 (0) -[14C](4) 4.061e-15 - H[14C]O3- 3.321e-15 3.036e-15 -14.479 -14.518 -0.039 (0) - [14C]O2 6.392e-16 6.403e-16 -15.194 -15.194 0.001 (0) - CaH[14C]O3+ 7.143e-17 6.547e-17 -16.146 -16.184 -0.038 (0) - H[14C][18O]O2- 6.626e-18 6.057e-18 -17.179 -17.218 -0.039 (0) - H[14C]O[18O]O- 6.626e-18 6.057e-18 -17.179 -17.218 -0.039 (0) - H[14C]O2[18O]- 6.626e-18 6.057e-18 -17.179 -17.218 -0.039 (0) - Ca[14C]O3 4.226e-18 4.233e-18 -17.374 -17.373 0.001 (0) - [14C]O[18O] 2.658e-18 2.662e-18 -17.575 -17.575 0.001 (0) - [14C]O3-2 2.136e-18 1.491e-18 -17.670 -17.826 -0.156 (0) - CaH[14C]O2[18O]+ 1.425e-19 1.306e-19 -18.846 -18.884 -0.038 (0) - CaH[14C][18O]O2+ 1.425e-19 1.306e-19 -18.846 -18.884 -0.038 (0) - CaH[14C]O[18O]O+ 1.425e-19 1.306e-19 -18.846 -18.884 -0.038 (0) - Ca[14C]O2[18O] 2.530e-20 2.534e-20 -19.597 -19.596 0.001 (0) - H[14C]O[18O]2- 1.322e-20 1.208e-20 -19.879 -19.918 -0.039 (0) - H[14C][18O]2O- 1.322e-20 1.208e-20 -19.879 -19.918 -0.039 (0) - H[14C][18O]O[18O]- 1.322e-20 1.208e-20 -19.879 -19.918 -0.039 (0) - [14C]O2[18O]-2 1.279e-20 8.925e-21 -19.893 -20.049 -0.156 (0) + [14C]H4 0.000e+00 0.000e+00 -134.553 -134.552 0.001 (0) +[14C](4) 4.023e-15 + H[14C]O3- 3.250e-15 2.973e-15 -14.488 -14.527 -0.039 (0) + [14C]O2 6.762e-16 6.773e-16 -15.170 -15.169 0.001 (0) + CaH[14C]O3+ 6.862e-17 6.295e-17 -16.164 -16.201 -0.037 (0) + H[14C]O2[18O]- 6.483e-18 5.931e-18 -17.188 -17.227 -0.039 (0) + H[14C]O[18O]O- 6.483e-18 5.931e-18 -17.188 -17.227 -0.039 (0) + H[14C][18O]O2- 6.483e-18 5.931e-18 -17.188 -17.227 -0.039 (0) + Ca[14C]O3 3.762e-18 3.768e-18 -17.425 -17.424 0.001 (0) + [14C]O[18O] 2.812e-18 2.816e-18 -17.551 -17.550 0.001 (0) + [14C]O3-2 1.930e-18 1.352e-18 -17.715 -17.869 -0.155 (0) + CaH[14C]O2[18O]+ 1.369e-19 1.256e-19 -18.864 -18.901 -0.037 (0) + CaH[14C]O[18O]O+ 1.369e-19 1.256e-19 -18.864 -18.901 -0.037 (0) + CaH[14C][18O]O2+ 1.369e-19 1.256e-19 -18.864 -18.901 -0.037 (0) + Ca[14C]O2[18O] 2.252e-20 2.255e-20 -19.648 -19.647 0.001 (0) + H[14C]O[18O]2- 1.294e-20 1.183e-20 -19.888 -19.927 -0.039 (0) + H[14C][18O]2O- 1.294e-20 1.183e-20 -19.888 -19.927 -0.039 (0) + H[14C][18O]O[18O]- 1.294e-20 1.183e-20 -19.888 -19.927 -0.039 (0) + [14C]O2[18O]-2 1.155e-20 8.092e-21 -19.937 -20.092 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.594e-06 8.769e-06 -5.018 -5.057 -0.039 (0) - HC[18O]O2- 9.594e-06 8.769e-06 -5.018 -5.057 -0.039 (0) - HCO[18O]O- 9.594e-06 8.769e-06 -5.018 -5.057 -0.039 (0) - CO[18O] 3.915e-06 3.922e-06 -5.407 -5.406 0.001 (0) - CaHCO2[18O]+ 2.063e-07 1.891e-07 -6.685 -6.723 -0.038 (0) - CaHC[18O]O2+ 2.063e-07 1.891e-07 -6.685 -6.723 -0.038 (0) - CaHCO[18O]O+ 2.063e-07 1.891e-07 -6.685 -6.723 -0.038 (0) -[18O](0) 2.296e-17 - O[18O] 2.291e-17 2.295e-17 -16.640 -16.639 0.001 (0) - [18O]2 2.286e-20 2.290e-20 -19.641 -19.640 0.001 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.553e-17 + O[18O] 2.548e-17 2.552e-17 -16.594 -16.593 0.001 (0) + [18O]2 2.542e-20 2.546e-20 -19.595 -19.594 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.88 -10.39 -1.50 [13C][18O]2 - [13C]H4(g) -121.42 -124.28 -2.86 [13C]H4 - [13C]O2(g) -3.52 -4.99 -1.47 [13C]O2 - [13C]O[18O](g) -5.90 -7.69 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.09 -20.59 -1.50 [14C][18O]2 - [14C]H4(g) -131.62 -134.48 -2.86 [14C]H4 - [14C]O2(g) -13.72 -15.19 -1.47 [14C]O2 - [14C]O[18O](g) -16.11 -17.89 -1.79 [14C]O[18O] - [18O]2(g) -17.35 -19.64 -2.29 [18O]2 - C[18O]2(g) -6.92 -8.43 -1.50 C[18O]2 - Ca[13C][18O]3(s) -9.98 -1.82 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.12 3.58 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.91 6.28 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.81 0.88 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.18 -12.02 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.33 -6.62 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.12 -3.92 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.01 -9.32 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.02 0.14 8.16 CaC[18O]3 - CaCO2[18O](s) -2.17 5.54 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.86 2.84 7.70 CaCO[18O]2 - Calcite 0.04 -8.44 -8.48 CaCO3 - CH4(g) -119.46 -122.32 -2.86 CH4 - CO2(g) -1.56 -3.03 -1.47 CO2 - CO[18O](g) -3.94 -5.73 -1.79 CO[18O] - H2(g) -35.92 -39.07 -3.15 H2 + [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -121.48 -124.34 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] + [14C][18O]2(g) -19.07 -20.57 -1.50 [14C][18O]2 + [14C]H4(g) -131.69 -134.55 -2.86 [14C]H4 + [14C]O2(g) -13.70 -15.17 -1.47 [14C]O2 + [14C]O[18O](g) -16.08 -17.87 -1.79 [14C]O[18O] + [18O]2(g) -17.30 -19.59 -2.29 [18O]2 + C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 + Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 + Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.23 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.83 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -20.23 -12.07 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -14.38 -6.67 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -12.17 -3.97 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -17.06 -9.37 7.69 Ca[14C]O[18O]2 + CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 + CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] + CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 + Calcite -0.01 -8.49 -8.48 CaCO3 + CH4(g) -119.52 -122.38 -2.86 CH4 + CO2(g) -1.53 -3.00 -1.47 CO2 + CO[18O](g) -3.91 -5.70 -1.79 CO[18O] + H2(g) -35.94 -39.09 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.35 -14.24 -2.89 O2 - O[18O](g) -14.05 -16.94 -2.89 O[18O] + O2(g) -11.30 -14.19 -2.89 O2 + O[18O](g) -14.00 -16.89 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1601,12 +1603,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 12. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -1644,44 +1640,43 @@ Calcite added: 0 Solid solution Component Moles Delta moles Mole fract -Calcite 5.56e-04 - Calcite 5.47e-04 5.47e-04 9.83e-01 - CaCO2[18O](s) 3.37e-06 3.37e-06 6.05e-03 - CaCO[18O]2(s) 6.91e-09 6.91e-09 1.24e-05 - CaC[18O]3(s) 4.73e-12 4.73e-12 8.50e-09 - Ca[13C]O3(s) 6.05e-06 6.05e-06 1.09e-02 - Ca[13C]O2[18O](s) 3.73e-08 3.73e-08 6.70e-05 - Ca[13C]O[18O]2(s) 7.65e-11 7.65e-11 1.38e-07 - Ca[13C][18O]3(s) 5.24e-14 5.24e-14 9.42e-11 - Ca[14C]O3(s) 3.49e-16 3.49e-16 6.29e-13 - Ca[14C]O2[18O](s) 2.15e-18 2.15e-18 3.87e-15 - Ca[14C]O[18O]2(s) 4.42e-21 4.42e-21 7.94e-18 - Ca[14C][18O]3(s) 1.00e-27 0.00e+00 1.80e-24 +Calcite 5.00e-04 + Calcite 4.91e-04 4.91e-04 9.83e-01 + CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 + CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 + CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 + Ca[13C]O3(s) 5.44e-06 5.44e-06 1.09e-02 + Ca[13C]O2[18O](s) 3.35e-08 3.35e-08 6.70e-05 + Ca[13C]O[18O]2(s) 6.88e-11 6.88e-11 1.38e-07 + Ca[13C][18O]3(s) 4.71e-14 4.71e-14 9.42e-11 + Ca[14C]O3(s) 3.14e-16 3.14e-16 6.28e-13 + Ca[14C]O2[18O](s) 1.93e-18 1.93e-18 3.87e-15 + Ca[14C]O[18O]2(s) 3.97e-21 3.97e-21 7.94e-18 + Ca[14C][18O]3(s) 2.72e-24 2.71e-24 5.43e-21 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units R(18O) 1.99518e-03 -4.9954 permil - R(13C) 1.10383e-02 -12.693 permil - R(14C) 6.34987e-13 54.001 pmc + R(13C) 1.10384e-02 -12.685 permil + R(14C) 6.34513e-13 53.96 pmc R(18O) H2O(l) 1.99518e-03 -4.9969 permil R(18O) OH- 1.92121e-03 -41.884 permil R(18O) H3O+ 2.04132e-03 18.011 permil - R(13C) CO2(aq) 1.09593e-02 -19.759 permil - R(14C) CO2(aq) 6.25925e-13 53.23 pmc + R(18O) O2(aq) 1.99518e-03 -4.9969 permil + R(13C) CO2(aq) 1.09594e-02 -19.751 permil + R(14C) CO2(aq) 6.25457e-13 53.19 pmc R(18O) CO2(aq) 2.07915e-03 36.877 permil R(18O) HCO3- 1.99518e-03 -4.9969 permil - R(13C) HCO3- 1.10546e-02 -11.231 permil - R(14C) HCO3- 6.36863e-13 54.16 pmc + R(13C) HCO3- 1.10547e-02 -11.223 permil + R(14C) HCO3- 6.36387e-13 54.12 pmc R(18O) CO3-2 1.99518e-03 -4.9969 permil - R(13C) CO3-2 1.10388e-02 -12.65 permil - R(14C) CO3-2 6.35036e-13 54.005 pmc - R(13C) CH4(aq) 1.09593e-02 -19.759 permil - R(14C) CH4(aq) 6.25925e-13 53.23 pmc + R(13C) CO3-2 1.10389e-02 -12.642 permil + R(14C) CO3-2 6.34562e-13 53.964 pmc R(18O) Calcite 2.05262e-03 23.649 permil - R(13C) Calcite 1.10765e-02 -9.2726 permil - R(14C) Calcite 6.39388e-13 54.375 pmc + R(13C) Calcite 1.10766e-02 -9.2642 permil + R(14C) Calcite 6.38911e-13 54.334 pmc --------------------------------Isotope Alphas--------------------------------- @@ -1691,15 +1686,14 @@ Calcite 5.56e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 +Alpha 18O O2(aq)/H2O(l) 1 -2.2267e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.6605e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.56e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7817e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.3323e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.7764e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -1711,41 +1705,41 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.841e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.447e-05 6.428e-05 - [14C] 3.709e-15 3.698e-15 + [14C] 3.706e-15 3.695e-15 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.658 Adjusted to redox equilibrium + pe = 10.946 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.841e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 41 (142 overall) + Iterations = 71 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 5.620e-22 - CH4 5.620e-22 5.629e-22 -21.250 -21.250 0.001 (0) +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -122.078 -122.078 0.001 (0) C(4) 5.841e-03 HCO3- 4.704e-03 4.304e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -1754,9 +1748,9 @@ C(4) 5.841e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -1764,87 +1758,87 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.098e-06 1.007e-06 -5.959 -5.997 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.028e-08 6.038e-08 -7.220 -7.219 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.092e-14 - H2 1.546e-14 1.548e-14 -13.811 -13.810 0.001 (0) -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.762 -64.762 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.161 -67.160 0.001 (0) -[13C](-4) 6.159e-24 - [13C]H4 6.159e-24 6.169e-24 -23.210 -23.210 0.001 (0) +H(0) 1.919e-39 + H2 9.597e-40 9.612e-40 -39.018 -39.017 0.001 (0) +O(0) 9.008e-15 + O2 4.486e-15 4.493e-15 -14.348 -14.347 0.001 (0) + O[18O] 1.790e-17 1.793e-17 -16.747 -16.746 0.001 (0) +[13C](-4) 0.000e+00 + [13C]H4 0.000e+00 0.000e+00 -124.039 -124.038 0.001 (0) [13C](4) 6.447e-05 H[13C]O3- 5.200e-05 4.757e-05 -4.284 -4.323 -0.039 (0) [13C]O2 1.091e-05 1.093e-05 -4.962 -4.961 0.001 (0) CaH[13C]O3+ 1.098e-06 1.007e-06 -5.959 -5.997 -0.037 (0) - H[13C]O[18O]O- 1.038e-07 9.492e-08 -6.984 -7.023 -0.039 (0) H[13C]O2[18O]- 1.038e-07 9.492e-08 -6.984 -7.023 -0.039 (0) + H[13C]O[18O]O- 1.038e-07 9.492e-08 -6.984 -7.023 -0.039 (0) H[13C][18O]O2- 1.038e-07 9.492e-08 -6.984 -7.023 -0.039 (0) Ca[13C]O3 6.028e-08 6.038e-08 -7.220 -7.219 0.001 (0) [13C]O[18O] 4.539e-08 4.546e-08 -7.343 -7.342 0.001 (0) - [13C]O3-2 3.092e-08 2.166e-08 -7.510 -7.664 -0.155 (0) + [13C]O3-2 3.093e-08 2.166e-08 -7.510 -7.664 -0.155 (0) CaH[13C]O2[18O]+ 2.191e-09 2.010e-09 -8.659 -8.697 -0.037 (0) CaH[13C]O[18O]O+ 2.191e-09 2.010e-09 -8.659 -8.697 -0.037 (0) CaH[13C][18O]O2+ 2.191e-09 2.010e-09 -8.659 -8.697 -0.037 (0) Ca[13C]O2[18O] 3.608e-10 3.614e-10 -9.443 -9.442 0.001 (0) - H[13C][18O]O[18O]- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) - H[13C][18O]2O- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) H[13C]O[18O]2- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) + H[13C][18O]2O- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) + H[13C][18O]O[18O]- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) [13C]O2[18O]-2 1.851e-10 1.297e-10 -9.733 -9.887 -0.155 (0) -[14C](-4) 3.518e-34 - [14C]H4 3.518e-34 3.524e-34 -33.454 -33.453 0.001 (0) -[14C](4) 3.709e-15 - H[14C]O3- 2.996e-15 2.741e-15 -14.523 -14.562 -0.039 (0) - [14C]O2 6.234e-16 6.244e-16 -15.205 -15.205 0.001 (0) - CaH[14C]O3+ 6.326e-17 5.803e-17 -16.199 -16.236 -0.037 (0) - H[14C][18O]O2- 5.977e-18 5.468e-18 -17.224 -17.262 -0.039 (0) - H[14C]O[18O]O- 5.977e-18 5.468e-18 -17.224 -17.262 -0.039 (0) - H[14C]O2[18O]- 5.977e-18 5.468e-18 -17.224 -17.262 -0.039 (0) - Ca[14C]O3 3.468e-18 3.474e-18 -17.460 -17.459 0.001 (0) - [14C]O[18O] 2.592e-18 2.596e-18 -17.586 -17.586 0.001 (0) - [14C]O3-2 1.779e-18 1.246e-18 -17.750 -17.904 -0.155 (0) - CaH[14C]O2[18O]+ 1.262e-19 1.158e-19 -18.899 -18.936 -0.037 (0) - CaH[14C][18O]O2+ 1.262e-19 1.158e-19 -18.899 -18.936 -0.037 (0) - CaH[14C]O[18O]O+ 1.262e-19 1.158e-19 -18.899 -18.936 -0.037 (0) - Ca[14C]O2[18O] 2.076e-20 2.079e-20 -19.683 -19.682 0.001 (0) - H[14C][18O]2O- 1.193e-20 1.091e-20 -19.924 -19.962 -0.039 (0) - H[14C][18O]O[18O]- 1.193e-20 1.091e-20 -19.924 -19.962 -0.039 (0) - H[14C]O[18O]2- 1.193e-20 1.091e-20 -19.924 -19.962 -0.039 (0) - [14C]O2[18O]-2 1.065e-20 7.460e-21 -19.973 -20.127 -0.155 (0) +[14C](-4) 0.000e+00 + [14C]H4 0.000e+00 0.000e+00 -134.282 -134.281 0.001 (0) +[14C](4) 3.706e-15 + H[14C]O3- 2.994e-15 2.739e-15 -14.524 -14.562 -0.039 (0) + [14C]O2 6.229e-16 6.239e-16 -15.206 -15.205 0.001 (0) + CaH[14C]O3+ 6.321e-17 5.799e-17 -16.199 -16.237 -0.037 (0) + H[14C]O2[18O]- 5.973e-18 5.464e-18 -17.224 -17.262 -0.039 (0) + H[14C]O[18O]O- 5.973e-18 5.464e-18 -17.224 -17.262 -0.039 (0) + H[14C][18O]O2- 5.973e-18 5.464e-18 -17.224 -17.262 -0.039 (0) + Ca[14C]O3 3.465e-18 3.471e-18 -17.460 -17.460 0.001 (0) + [14C]O[18O] 2.590e-18 2.594e-18 -17.587 -17.586 0.001 (0) + [14C]O3-2 1.778e-18 1.245e-18 -17.750 -17.905 -0.155 (0) + CaH[14C]O2[18O]+ 1.261e-19 1.157e-19 -18.899 -18.937 -0.037 (0) + CaH[14C]O[18O]O+ 1.261e-19 1.157e-19 -18.899 -18.937 -0.037 (0) + CaH[14C][18O]O2+ 1.261e-19 1.157e-19 -18.899 -18.937 -0.037 (0) + Ca[14C]O2[18O] 2.074e-20 2.078e-20 -19.683 -19.682 0.001 (0) + H[14C]O[18O]2- 1.192e-20 1.090e-20 -19.924 -19.962 -0.039 (0) + H[14C][18O]2O- 1.192e-20 1.090e-20 -19.924 -19.962 -0.039 (0) + H[14C][18O]O[18O]- 1.192e-20 1.090e-20 -19.924 -19.962 -0.039 (0) + [14C]O2[18O]-2 1.064e-20 7.454e-21 -19.973 -20.128 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.161 -67.160 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.162 -70.162 0.001 (0) +[18O](0) 1.794e-17 + O[18O] 1.790e-17 1.793e-17 -16.747 -16.746 0.001 (0) + [18O]2 1.786e-20 1.789e-20 -19.748 -19.747 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -20.35 -23.21 -2.86 [13C]H4 + [13C]H4(g) -121.18 -124.04 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.10 -20.60 -1.50 [14C][18O]2 - [14C]H4(g) -30.59 -33.45 -2.86 [14C]H4 + [14C]H4(g) -131.42 -134.28 -2.86 [14C]H4 [14C]O2(g) -13.74 -15.20 -1.47 [14C]O2 [14C]O[18O](g) -16.12 -17.90 -1.79 [14C]O[18O] - [18O]2(g) -67.87 -70.16 -2.29 [18O]2 + [18O]2(g) -17.46 -19.75 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.23 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.83 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.26 -12.11 8.15 Ca[14C][18O]3 + Ca[14C][18O]3(s) -20.27 -12.11 8.15 Ca[14C][18O]3 Ca[14C]O2[18O](s) -14.41 -6.71 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -12.20 -4.01 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -17.10 -9.41 7.69 Ca[14C]O[18O]2 @@ -1852,14 +1846,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -18.39 -21.25 -2.86 CH4 + CH4(g) -119.22 -122.08 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.66 -13.81 -3.15 H2 + H2(g) -35.87 -39.02 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -61.87 -64.76 -2.89 O2 - O[18O](g) -64.57 -67.46 -2.89 O[18O] + O2(g) -11.46 -14.35 -2.89 O2 + O[18O](g) -14.16 -17.05 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1936,33 +1930,34 @@ Calcite 5.00e-04 Ca[13C]O[18O]2(s) 6.89e-11 6.89e-11 1.38e-07 Ca[13C][18O]3(s) 4.71e-14 4.71e-14 9.42e-11 Ca[14C]O3(s) 2.89e-16 2.89e-16 5.79e-13 - Ca[14C]O2[18O](s) 1.78e-18 1.78e-18 3.57e-15 - Ca[14C]O[18O]2(s) 3.66e-21 3.66e-21 7.32e-18 - Ca[14C][18O]3(s) 2.50e-24 2.50e-24 5.01e-21 + Ca[14C]O2[18O](s) 1.78e-18 1.78e-18 3.56e-15 + Ca[14C]O[18O]2(s) 3.66e-21 3.66e-21 7.31e-18 + Ca[14C][18O]3(s) 2.50e-24 2.50e-24 5.00e-21 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units R(18O) 1.99518e-03 -4.9952 permil - R(13C) 1.10482e-02 -11.806 permil - R(14C) 5.84974e-13 49.747 pmc + R(13C) 1.10483e-02 -11.798 permil + R(14C) 5.84537e-13 49.71 pmc R(18O) H2O(l) 1.99518e-03 -4.9968 permil R(18O) OH- 1.92121e-03 -41.884 permil R(18O) H3O+ 2.04132e-03 18.011 permil - R(18O) O2(aq) 1.99518e-03 -4.9968 permil - R(13C) CO2(aq) 1.09691e-02 -18.878 permil - R(14C) CO2(aq) 5.76625e-13 49.037 pmc + R(13C) CO2(aq) 1.09692e-02 -18.87 permil + R(14C) CO2(aq) 5.76194e-13 49.001 pmc R(18O) CO2(aq) 2.07915e-03 36.877 permil R(18O) HCO3- 1.99518e-03 -4.9968 permil - R(13C) HCO3- 1.10646e-02 -10.342 permil - R(14C) HCO3- 5.86701e-13 49.894 pmc + R(13C) HCO3- 1.10647e-02 -10.334 permil + R(14C) HCO3- 5.86263e-13 49.857 pmc R(18O) CO3-2 1.99518e-03 -4.9968 permil - R(13C) CO3-2 1.10487e-02 -11.762 permil - R(14C) CO3-2 5.85019e-13 49.751 pmc + R(13C) CO3-2 1.10488e-02 -11.755 permil + R(14C) CO3-2 5.84582e-13 49.714 pmc + R(13C) CH4(aq) 1.09692e-02 -18.87 permil + R(14C) CH4(aq) 5.76194e-13 49.001 pmc R(18O) Calcite 2.05262e-03 23.649 permil - R(13C) Calcite 1.10865e-02 -8.3819 permil - R(14C) Calcite 5.89028e-13 50.092 pmc + R(13C) Calcite 1.10866e-02 -8.3742 permil + R(14C) Calcite 5.88588e-13 50.055 pmc --------------------------------Isotope Alphas--------------------------------- @@ -1972,14 +1967,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2184e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.4385e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7957e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6691e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 7.1054e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.5321e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -1991,52 +1987,52 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.453e-05 6.434e-05 - [14C] 3.417e-15 3.407e-15 + [14C] 3.414e-15 3.404e-15 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.010 Adjusted to redox equilibrium + pe = -1.710 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 28 (129 overall) + Iterations = 66 (167 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.590 -122.590 0.001 (0) +C(-4) 1.477e-21 + CH4 1.477e-21 1.480e-21 -20.831 -20.830 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.304e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.963e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -2044,81 +2040,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.099e-06 1.008e-06 -5.959 -5.996 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.034e-08 6.044e-08 -7.219 -7.219 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.429e-39 - H2 7.147e-40 7.159e-40 -39.146 -39.145 0.001 (0) -O(0) 1.624e-14 - O2 8.087e-15 8.101e-15 -14.092 -14.091 0.001 (0) - O[18O] 3.227e-17 3.232e-17 -16.491 -16.490 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.550 -124.549 0.001 (0) +H(0) 3.936e-14 + H2 1.968e-14 1.971e-14 -13.706 -13.705 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -64.972 -64.971 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.371 -67.370 0.001 (0) +[13C](-4) 1.620e-23 + [13C]H4 1.620e-23 1.623e-23 -22.790 -22.790 0.001 (0) [13C](4) 6.453e-05 H[13C]O3- 5.205e-05 4.762e-05 -4.284 -4.322 -0.039 (0) [13C]O2 1.092e-05 1.094e-05 -4.962 -4.961 0.001 (0) CaH[13C]O3+ 1.099e-06 1.008e-06 -5.959 -5.996 -0.037 (0) H[13C]O2[18O]- 1.038e-07 9.500e-08 -6.984 -7.022 -0.039 (0) - H[13C][18O]O2- 1.038e-07 9.500e-08 -6.984 -7.022 -0.039 (0) H[13C]O[18O]O- 1.038e-07 9.500e-08 -6.984 -7.022 -0.039 (0) + H[13C][18O]O2- 1.038e-07 9.500e-08 -6.984 -7.022 -0.039 (0) Ca[13C]O3 6.034e-08 6.044e-08 -7.219 -7.219 0.001 (0) [13C]O[18O] 4.543e-08 4.550e-08 -7.343 -7.342 0.001 (0) [13C]O3-2 3.095e-08 2.168e-08 -7.509 -7.664 -0.155 (0) + CaH[13C]O2[18O]+ 2.193e-09 2.012e-09 -8.659 -8.696 -0.037 (0) CaH[13C]O[18O]O+ 2.193e-09 2.012e-09 -8.659 -8.696 -0.037 (0) CaH[13C][18O]O2+ 2.193e-09 2.012e-09 -8.659 -8.696 -0.037 (0) - CaH[13C]O2[18O]+ 2.193e-09 2.012e-09 -8.659 -8.696 -0.037 (0) - Ca[13C]O2[18O] 3.612e-10 3.617e-10 -9.442 -9.442 0.001 (0) - H[13C][18O]O[18O]- 2.072e-10 1.895e-10 -9.684 -9.722 -0.039 (0) - H[13C][18O]2O- 2.072e-10 1.895e-10 -9.684 -9.722 -0.039 (0) - H[13C]O[18O]2- 2.072e-10 1.895e-10 -9.684 -9.722 -0.039 (0) + Ca[13C]O2[18O] 3.612e-10 3.618e-10 -9.442 -9.442 0.001 (0) + H[13C]O[18O]2- 2.072e-10 1.896e-10 -9.684 -9.722 -0.039 (0) + H[13C][18O]2O- 2.072e-10 1.896e-10 -9.684 -9.722 -0.039 (0) + H[13C][18O]O[18O]- 2.072e-10 1.896e-10 -9.684 -9.722 -0.039 (0) [13C]O2[18O]-2 1.853e-10 1.298e-10 -9.732 -9.887 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.829 -134.829 0.001 (0) -[14C](4) 3.417e-15 - H[14C]O3- 2.760e-15 2.525e-15 -14.559 -14.598 -0.039 (0) - [14C]O2 5.743e-16 5.752e-16 -15.241 -15.240 0.001 (0) - CaH[14C]O3+ 5.828e-17 5.346e-17 -16.234 -16.272 -0.037 (0) - H[14C][18O]O2- 5.506e-18 5.038e-18 -17.259 -17.298 -0.039 (0) - H[14C]O[18O]O- 5.506e-18 5.038e-18 -17.259 -17.298 -0.039 (0) - H[14C]O2[18O]- 5.506e-18 5.038e-18 -17.259 -17.298 -0.039 (0) - Ca[14C]O3 3.195e-18 3.200e-18 -17.496 -17.495 0.001 (0) - [14C]O[18O] 2.388e-18 2.392e-18 -17.622 -17.621 0.001 (0) - [14C]O3-2 1.639e-18 1.148e-18 -17.785 -17.940 -0.155 (0) - CaH[14C]O2[18O]+ 1.163e-19 1.067e-19 -18.935 -18.972 -0.037 (0) - CaH[14C][18O]O2+ 1.163e-19 1.067e-19 -18.935 -18.972 -0.037 (0) - CaH[14C]O[18O]O+ 1.163e-19 1.067e-19 -18.935 -18.972 -0.037 (0) - Ca[14C]O2[18O] 1.912e-20 1.915e-20 -19.718 -19.718 0.001 (0) - H[14C][18O]O[18O]- 1.099e-20 1.005e-20 -19.959 -19.998 -0.039 (0) - H[14C]O[18O]2- 1.099e-20 1.005e-20 -19.959 -19.998 -0.039 (0) - H[14C][18O]2O- 1.099e-20 1.005e-20 -19.959 -19.998 -0.039 (0) - [14C]O2[18O]-2 9.810e-21 6.872e-21 -20.008 -20.163 -0.155 (0) +[14C](-4) 8.511e-34 + [14C]H4 8.511e-34 8.525e-34 -33.070 -33.069 0.001 (0) +[14C](4) 3.414e-15 + H[14C]O3- 2.758e-15 2.523e-15 -14.559 -14.598 -0.039 (0) + [14C]O2 5.738e-16 5.748e-16 -15.241 -15.241 0.001 (0) + CaH[14C]O3+ 5.823e-17 5.342e-17 -16.235 -16.272 -0.037 (0) + H[14C]O2[18O]- 5.502e-18 5.034e-18 -17.259 -17.298 -0.039 (0) + H[14C]O[18O]O- 5.502e-18 5.034e-18 -17.259 -17.298 -0.039 (0) + H[14C][18O]O2- 5.502e-18 5.034e-18 -17.259 -17.298 -0.039 (0) + Ca[14C]O3 3.192e-18 3.198e-18 -17.496 -17.495 0.001 (0) + [14C]O[18O] 2.386e-18 2.390e-18 -17.622 -17.622 0.001 (0) + [14C]O3-2 1.638e-18 1.147e-18 -17.786 -17.940 -0.155 (0) + CaH[14C]O2[18O]+ 1.162e-19 1.066e-19 -18.935 -18.972 -0.037 (0) + CaH[14C]O[18O]O+ 1.162e-19 1.066e-19 -18.935 -18.972 -0.037 (0) + CaH[14C][18O]O2+ 1.162e-19 1.066e-19 -18.935 -18.972 -0.037 (0) + Ca[14C]O2[18O] 1.911e-20 1.914e-20 -19.719 -19.718 0.001 (0) + H[14C]O[18O]2- 1.098e-20 1.004e-20 -19.959 -19.998 -0.039 (0) + H[14C][18O]2O- 1.098e-20 1.004e-20 -19.959 -19.998 -0.039 (0) + H[14C][18O]O[18O]- 1.098e-20 1.004e-20 -19.959 -19.998 -0.039 (0) + [14C]O2[18O]-2 9.802e-21 6.867e-21 -20.009 -20.163 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.234e-17 - O[18O] 3.227e-17 3.232e-17 -16.491 -16.490 0.001 (0) - [18O]2 3.219e-20 3.225e-20 -19.492 -19.492 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -67.371 -67.370 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.372 -70.371 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.69 -124.55 -2.86 [13C]H4 + [13C]H4(g) -19.93 -22.79 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.14 -20.64 -1.50 [14C][18O]2 - [14C]H4(g) -131.97 -134.83 -2.86 [14C]H4 + [14C]H4(g) -30.21 -33.07 -2.86 [14C]H4 [14C]O2(g) -13.77 -15.24 -1.47 [14C]O2 [14C]O[18O](g) -16.15 -17.94 -1.79 [14C]O[18O] - [18O]2(g) -17.20 -19.49 -2.29 [18O]2 + [18O]2(g) -68.08 -70.37 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -2132,14 +2128,14 @@ O(0) 1.624e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.73 -122.59 -2.86 CH4 + CH4(g) -17.97 -20.83 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.00 -39.15 -3.15 H2 + H2(g) -10.56 -13.71 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.20 -14.09 -2.89 O2 - O[18O](g) -13.90 -16.79 -2.89 O[18O] + O2(g) -62.08 -64.97 -2.89 O2 + O[18O](g) -64.78 -67.67 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2163,6 +2159,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 14. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -2209,34 +2211,35 @@ Calcite 5.00e-04 Ca[13C]O2[18O](s) 3.36e-08 3.36e-08 6.72e-05 Ca[13C]O[18O]2(s) 6.89e-11 6.89e-11 1.38e-07 Ca[13C][18O]3(s) 4.72e-14 4.72e-14 9.43e-11 - Ca[14C]O3(s) 2.67e-16 2.67e-16 5.33e-13 + Ca[14C]O3(s) 2.66e-16 2.66e-16 5.33e-13 Ca[14C]O2[18O](s) 1.64e-18 1.64e-18 3.28e-15 Ca[14C]O[18O]2(s) 3.37e-21 3.37e-21 6.74e-18 - Ca[14C][18O]3(s) 1.00e-27 0.00e+00 2.00e-24 + Ca[14C][18O]3(s) 2.30e-24 2.30e-24 4.61e-21 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units R(18O) 1.99518e-03 -4.9951 permil - R(13C) 1.10574e-02 -10.988 permil - R(14C) 5.38899e-13 45.829 pmc + R(13C) 1.10574e-02 -10.981 permil + R(14C) 5.38496e-13 45.795 pmc R(18O) H2O(l) 1.99518e-03 -4.9966 permil R(18O) OH- 1.92121e-03 -41.884 permil R(18O) H3O+ 2.04132e-03 18.011 permil - R(18O) O2(aq) 1.99518e-03 -4.9966 permil - R(13C) CO2(aq) 1.09782e-02 -18.066 permil - R(14C) CO2(aq) 5.31207e-13 45.175 pmc + R(13C) CO2(aq) 1.09783e-02 -18.059 permil + R(14C) CO2(aq) 5.30811e-13 45.141 pmc R(18O) CO2(aq) 2.07915e-03 36.877 permil R(18O) HCO3- 1.99518e-03 -4.9966 permil - R(13C) HCO3- 1.10737e-02 -9.523 permil - R(14C) HCO3- 5.40491e-13 45.964 pmc + R(13C) HCO3- 1.10738e-02 -9.5159 permil + R(14C) HCO3- 5.40087e-13 45.93 pmc R(18O) CO3-2 1.99518e-03 -4.9966 permil - R(13C) CO3-2 1.10578e-02 -10.944 permil - R(14C) CO3-2 5.38940e-13 45.833 pmc + R(13C) CO3-2 1.10579e-02 -10.937 permil + R(14C) CO3-2 5.38538e-13 45.798 pmc + R(13C) CH4(aq) 1.09783e-02 -18.059 permil + R(14C) CH4(aq) 5.30811e-13 45.141 pmc R(18O) Calcite 2.05262e-03 23.65 permil - R(13C) Calcite 1.10957e-02 -7.5612 permil - R(14C) Calcite 5.42634e-13 46.147 pmc + R(13C) Calcite 1.10957e-02 -7.554 permil + R(14C) Calcite 5.42228e-13 46.112 pmc --------------------------------Isotope Alphas--------------------------------- @@ -2246,14 +2249,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2498e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8524e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6441e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -3.3307e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -9.992e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -2265,42 +2269,42 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.458e-05 6.439e-05 - [14C] 3.147e-15 3.138e-15 + [14C] 3.145e-15 3.136e-15 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.059 Adjusted to redox equilibrium + pe = -1.918 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 26 + Iterations = 176 (277 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.985 -122.984 0.001 (0) +C(-4) 6.803e-20 + CH4 6.803e-20 6.814e-20 -19.167 -19.167 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.963e-06 -5.553 -5.707 -0.155 (0) @@ -2308,9 +2312,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -2318,81 +2322,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.100e-06 1.009e-06 -5.959 -5.996 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.039e-08 6.049e-08 -7.219 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.139e-39 - H2 5.694e-40 5.704e-40 -39.245 -39.244 0.001 (0) -O(0) 2.559e-14 - O2 1.274e-14 1.276e-14 -13.895 -13.894 0.001 (0) - O[18O] 5.084e-17 5.093e-17 -16.294 -16.293 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.945 -124.944 0.001 (0) +H(0) 1.025e-13 + H2 5.127e-14 5.136e-14 -13.290 -13.289 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.804 -65.803 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.203 -68.202 0.001 (0) +[13C](-4) 7.468e-22 + [13C]H4 7.468e-22 7.481e-22 -21.127 -21.126 0.001 (0) [13C](4) 6.458e-05 H[13C]O3- 5.209e-05 4.766e-05 -4.283 -4.322 -0.039 (0) [13C]O2 1.093e-05 1.095e-05 -4.961 -4.961 0.001 (0) CaH[13C]O3+ 1.100e-06 1.009e-06 -5.959 -5.996 -0.037 (0) - H[13C][18O]O2- 1.039e-07 9.508e-08 -6.983 -7.022 -0.039 (0) - H[13C]O[18O]O- 1.039e-07 9.508e-08 -6.983 -7.022 -0.039 (0) H[13C]O2[18O]- 1.039e-07 9.508e-08 -6.983 -7.022 -0.039 (0) + H[13C]O[18O]O- 1.039e-07 9.508e-08 -6.983 -7.022 -0.039 (0) + H[13C][18O]O2- 1.039e-07 9.508e-08 -6.983 -7.022 -0.039 (0) Ca[13C]O3 6.039e-08 6.049e-08 -7.219 -7.218 0.001 (0) [13C]O[18O] 4.546e-08 4.554e-08 -7.342 -7.342 0.001 (0) [13C]O3-2 3.098e-08 2.170e-08 -7.509 -7.664 -0.155 (0) - CaH[13C][18O]O2+ 2.195e-09 2.013e-09 -8.659 -8.696 -0.037 (0) CaH[13C]O2[18O]+ 2.195e-09 2.013e-09 -8.659 -8.696 -0.037 (0) CaH[13C]O[18O]O+ 2.195e-09 2.013e-09 -8.659 -8.696 -0.037 (0) + CaH[13C][18O]O2+ 2.195e-09 2.013e-09 -8.659 -8.696 -0.037 (0) Ca[13C]O2[18O] 3.615e-10 3.620e-10 -9.442 -9.441 0.001 (0) - H[13C][18O]O[18O]- 2.074e-10 1.897e-10 -9.683 -9.722 -0.039 (0) - H[13C][18O]2O- 2.074e-10 1.897e-10 -9.683 -9.722 -0.039 (0) H[13C]O[18O]2- 2.074e-10 1.897e-10 -9.683 -9.722 -0.039 (0) + H[13C][18O]2O- 2.074e-10 1.897e-10 -9.683 -9.722 -0.039 (0) + H[13C][18O]O[18O]- 2.074e-10 1.897e-10 -9.683 -9.722 -0.039 (0) [13C]O2[18O]-2 1.854e-10 1.299e-10 -9.732 -9.886 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -135.260 -135.259 0.001 (0) -[14C](4) 3.147e-15 - H[14C]O3- 2.542e-15 2.326e-15 -14.595 -14.633 -0.039 (0) - [14C]O2 5.290e-16 5.299e-16 -15.277 -15.276 0.001 (0) - CaH[14C]O3+ 5.369e-17 4.925e-17 -16.270 -16.308 -0.037 (0) - H[14C][18O]O2- 5.073e-18 4.641e-18 -17.295 -17.333 -0.039 (0) - H[14C]O[18O]O- 5.073e-18 4.641e-18 -17.295 -17.333 -0.039 (0) - H[14C]O2[18O]- 5.073e-18 4.641e-18 -17.295 -17.333 -0.039 (0) - Ca[14C]O3 2.943e-18 2.948e-18 -17.531 -17.530 0.001 (0) - [14C]O[18O] 2.200e-18 2.203e-18 -17.658 -17.657 0.001 (0) - [14C]O3-2 1.510e-18 1.058e-18 -17.821 -17.976 -0.155 (0) - CaH[14C]O2[18O]+ 1.071e-19 9.826e-20 -18.970 -19.008 -0.037 (0) - CaH[14C][18O]O2+ 1.071e-19 9.826e-20 -18.970 -19.008 -0.037 (0) - CaH[14C]O[18O]O+ 1.071e-19 9.826e-20 -18.970 -19.008 -0.037 (0) - Ca[14C]O2[18O] 1.762e-20 1.765e-20 -19.754 -19.753 0.001 (0) - H[14C]O[18O]2- 1.012e-20 9.259e-21 -19.995 -20.033 -0.039 (0) - H[14C][18O]2O- 1.012e-20 9.259e-21 -19.995 -20.033 -0.039 (0) - H[14C][18O]O[18O]- 1.012e-20 9.259e-21 -19.995 -20.033 -0.039 (0) - [14C]O2[18O]-2 9.037e-21 6.331e-21 -20.044 -20.199 -0.155 (0) +[14C](-4) 3.611e-32 + [14C]H4 3.611e-32 3.617e-32 -31.442 -31.442 0.001 (0) +[14C](4) 3.145e-15 + H[14C]O3- 2.541e-15 2.324e-15 -14.595 -14.634 -0.039 (0) + [14C]O2 5.286e-16 5.295e-16 -15.277 -15.276 0.001 (0) + CaH[14C]O3+ 5.365e-17 4.921e-17 -16.270 -16.308 -0.037 (0) + H[14C]O2[18O]- 5.069e-18 4.637e-18 -17.295 -17.334 -0.039 (0) + H[14C]O[18O]O- 5.069e-18 4.637e-18 -17.295 -17.334 -0.039 (0) + H[14C][18O]O2- 5.069e-18 4.637e-18 -17.295 -17.334 -0.039 (0) + Ca[14C]O3 2.941e-18 2.946e-18 -17.532 -17.531 0.001 (0) + [14C]O[18O] 2.198e-18 2.202e-18 -17.658 -17.657 0.001 (0) + [14C]O3-2 1.509e-18 1.057e-18 -17.821 -17.976 -0.155 (0) + CaH[14C]O2[18O]+ 1.070e-19 9.819e-20 -18.970 -19.008 -0.037 (0) + CaH[14C]O[18O]O+ 1.070e-19 9.819e-20 -18.970 -19.008 -0.037 (0) + CaH[14C][18O]O2+ 1.070e-19 9.819e-20 -18.970 -19.008 -0.037 (0) + Ca[14C]O2[18O] 1.760e-20 1.763e-20 -19.754 -19.754 0.001 (0) + H[14C]O[18O]2- 1.011e-20 9.252e-21 -19.995 -20.034 -0.039 (0) + H[14C][18O]2O- 1.011e-20 9.252e-21 -19.995 -20.034 -0.039 (0) + H[14C][18O]O[18O]- 1.011e-20 9.252e-21 -19.995 -20.034 -0.039 (0) + [14C]O2[18O]-2 9.030e-21 6.326e-21 -20.044 -20.199 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.095e-17 - O[18O] 5.084e-17 5.093e-17 -16.294 -16.293 0.001 (0) - [18O]2 5.072e-20 5.081e-20 -19.295 -19.294 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -68.203 -68.202 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.204 -71.203 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.08 -124.94 -2.86 [13C]H4 + [13C]H4(g) -18.27 -21.13 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.17 -20.68 -1.50 [14C][18O]2 - [14C]H4(g) -132.40 -135.26 -2.86 [14C]H4 + [14C]H4(g) -28.58 -31.44 -2.86 [14C]H4 [14C]O2(g) -13.81 -15.28 -1.47 [14C]O2 [14C]O[18O](g) -16.19 -17.98 -1.79 [14C]O[18O] - [18O]2(g) -17.00 -19.29 -2.29 [18O]2 + [18O]2(g) -68.91 -71.20 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -2406,14 +2410,14 @@ O(0) 2.559e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.12 -122.98 -2.86 CH4 + CH4(g) -16.31 -19.17 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.09 -39.24 -3.15 H2 + H2(g) -10.14 -13.29 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.00 -13.89 -2.89 O2 - O[18O](g) -13.70 -16.59 -2.89 O[18O] + O2(g) -62.91 -65.80 -2.89 O2 + O[18O](g) -65.61 -68.50 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2437,12 +2441,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 15. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -2490,8 +2488,8 @@ Calcite 5.00e-04 Ca[13C]O[18O]2(s) 6.90e-11 6.90e-11 1.38e-07 Ca[13C][18O]3(s) 4.72e-14 4.72e-14 9.44e-11 Ca[14C]O3(s) 2.46e-16 2.46e-16 4.91e-13 - Ca[14C]O2[18O](s) 1.51e-18 1.51e-18 3.03e-15 - Ca[14C]O[18O]2(s) 3.11e-21 3.11e-21 6.21e-18 + Ca[14C]O2[18O](s) 1.51e-18 1.51e-18 3.02e-15 + Ca[14C]O[18O]2(s) 3.10e-21 3.10e-21 6.21e-18 Ca[14C][18O]3(s) 2.12e-24 2.12e-24 4.25e-21 --------------------------------Isotope Ratios--------------------------------- @@ -2499,24 +2497,25 @@ Calcite 5.00e-04 Isotope Ratio Ratio Input Units R(18O) 1.99518e-03 -4.995 permil - R(13C) 1.10658e-02 -10.234 permil - R(14C) 4.96453e-13 42.219 pmc + R(13C) 1.10659e-02 -10.227 permil + R(14C) 4.96082e-13 42.188 pmc R(18O) H2O(l) 1.99518e-03 -4.9965 permil R(18O) OH- 1.92121e-03 -41.884 permil R(18O) H3O+ 2.04132e-03 18.011 permil - R(18O) O2(aq) 1.99518e-03 -4.9965 permil - R(13C) CO2(aq) 1.09866e-02 -17.317 permil - R(14C) CO2(aq) 4.89367e-13 41.617 pmc + R(13C) CO2(aq) 1.09867e-02 -17.311 permil + R(14C) CO2(aq) 4.89002e-13 41.586 pmc R(18O) CO2(aq) 2.07915e-03 36.877 permil R(18O) HCO3- 1.99518e-03 -4.9965 permil - R(13C) HCO3- 1.10822e-02 -8.7682 permil - R(14C) HCO3- 4.97919e-13 42.344 pmc + R(13C) HCO3- 1.10822e-02 -8.7616 permil + R(14C) HCO3- 4.97547e-13 42.312 pmc R(18O) CO3-2 1.99518e-03 -4.9965 permil - R(13C) CO3-2 1.10663e-02 -10.191 permil - R(14C) CO3-2 4.96491e-13 42.223 pmc + R(13C) CO3-2 1.10663e-02 -10.184 permil + R(14C) CO3-2 4.96120e-13 42.191 pmc + R(13C) CH4(aq) 1.09867e-02 -17.311 permil + R(14C) CH4(aq) 4.89002e-13 41.586 pmc R(18O) Calcite 2.05262e-03 23.65 permil - R(13C) Calcite 1.11041e-02 -6.8049 permil - R(14C) Calcite 4.99893e-13 42.512 pmc + R(13C) Calcite 1.11042e-02 -6.7983 permil + R(14C) Calcite 4.99520e-13 42.48 pmc --------------------------------Isotope Alphas--------------------------------- @@ -2526,14 +2525,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2434e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7615e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6498e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 1.1102e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 8.8818e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -2545,52 +2545,52 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.463e-05 6.444e-05 - [14C] 2.899e-15 2.891e-15 + [14C] 2.897e-15 2.889e-15 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.120 Adjusted to redox equilibrium + pe = -1.984 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.829e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 47 (148 overall) + Iterations = 47 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.468 -123.468 0.001 (0) +C(-4) 2.274e-19 + CH4 2.274e-19 2.277e-19 -18.643 -18.643 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.963e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -2598,23 +2598,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.101e-06 1.010e-06 -5.958 -5.996 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.043e-08 6.053e-08 -7.219 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 8.623e-40 - H2 4.311e-40 4.319e-40 -39.365 -39.365 0.001 (0) -O(0) 4.463e-14 - O2 2.223e-14 2.226e-14 -13.653 -13.652 0.001 (0) - O[18O] 8.869e-17 8.883e-17 -16.052 -16.051 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.428 -125.427 0.001 (0) +H(0) 1.387e-13 + H2 6.933e-14 6.944e-14 -13.159 -13.158 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -66.066 -66.065 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.465 -68.464 0.001 (0) +[13C](-4) 2.498e-21 + [13C]H4 2.498e-21 2.502e-21 -20.602 -20.602 0.001 (0) [13C](4) 6.463e-05 H[13C]O3- 5.213e-05 4.769e-05 -4.283 -4.322 -0.039 (0) [13C]O2 1.094e-05 1.096e-05 -4.961 -4.960 0.001 (0) CaH[13C]O3+ 1.101e-06 1.010e-06 -5.958 -5.996 -0.037 (0) - H[13C]O[18O]O- 1.040e-07 9.515e-08 -6.983 -7.022 -0.039 (0) H[13C]O2[18O]- 1.040e-07 9.515e-08 -6.983 -7.022 -0.039 (0) + H[13C]O[18O]O- 1.040e-07 9.515e-08 -6.983 -7.022 -0.039 (0) H[13C][18O]O2- 1.040e-07 9.515e-08 -6.983 -7.022 -0.039 (0) Ca[13C]O3 6.043e-08 6.053e-08 -7.219 -7.218 0.001 (0) [13C]O[18O] 4.550e-08 4.557e-08 -7.342 -7.341 0.001 (0) @@ -2623,56 +2623,56 @@ O(0) 4.463e-14 CaH[13C]O[18O]O+ 2.196e-09 2.015e-09 -8.658 -8.696 -0.037 (0) CaH[13C][18O]O2+ 2.196e-09 2.015e-09 -8.658 -8.696 -0.037 (0) Ca[13C]O2[18O] 3.617e-10 3.623e-10 -9.442 -9.441 0.001 (0) - H[13C][18O]O[18O]- 2.075e-10 1.898e-10 -9.683 -9.722 -0.039 (0) - H[13C][18O]2O- 2.075e-10 1.898e-10 -9.683 -9.722 -0.039 (0) H[13C]O[18O]2- 2.075e-10 1.898e-10 -9.683 -9.722 -0.039 (0) + H[13C][18O]2O- 2.075e-10 1.898e-10 -9.683 -9.722 -0.039 (0) + H[13C][18O]O[18O]- 2.075e-10 1.898e-10 -9.683 -9.722 -0.039 (0) [13C]O2[18O]-2 1.856e-10 1.300e-10 -9.732 -9.886 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -135.779 -135.778 0.001 (0) -[14C](4) 2.899e-15 - H[14C]O3- 2.342e-15 2.143e-15 -14.630 -14.669 -0.039 (0) - [14C]O2 4.874e-16 4.882e-16 -15.312 -15.311 0.001 (0) - CaH[14C]O3+ 4.946e-17 4.537e-17 -16.306 -16.343 -0.037 (0) - H[14C][18O]O2- 4.673e-18 4.275e-18 -17.330 -17.369 -0.039 (0) - H[14C]O[18O]O- 4.673e-18 4.275e-18 -17.330 -17.369 -0.039 (0) - H[14C]O2[18O]- 4.673e-18 4.275e-18 -17.330 -17.369 -0.039 (0) - Ca[14C]O3 2.711e-18 2.716e-18 -17.567 -17.566 0.001 (0) - [14C]O[18O] 2.027e-18 2.030e-18 -17.693 -17.693 0.001 (0) - [14C]O3-2 1.391e-18 9.744e-19 -17.857 -18.011 -0.155 (0) - CaH[14C]O2[18O]+ 9.868e-20 9.052e-20 -19.006 -19.043 -0.037 (0) - CaH[14C][18O]O2+ 9.868e-20 9.052e-20 -19.006 -19.043 -0.037 (0) - CaH[14C]O[18O]O+ 9.868e-20 9.052e-20 -19.006 -19.043 -0.037 (0) - Ca[14C]O2[18O] 1.623e-20 1.626e-20 -19.790 -19.789 0.001 (0) - H[14C][18O]2O- 9.323e-21 8.530e-21 -20.030 -20.069 -0.039 (0) - H[14C][18O]O[18O]- 9.323e-21 8.530e-21 -20.030 -20.069 -0.039 (0) - H[14C]O[18O]2- 9.323e-21 8.530e-21 -20.030 -20.069 -0.039 (0) - [14C]O2[18O]-2 8.325e-21 5.832e-21 -20.080 -20.234 -0.155 (0) +[14C](-4) 1.112e-31 + [14C]H4 1.112e-31 1.114e-31 -30.954 -30.953 0.001 (0) +[14C](4) 2.897e-15 + H[14C]O3- 2.340e-15 2.141e-15 -14.631 -14.669 -0.039 (0) + [14C]O2 4.870e-16 4.878e-16 -15.312 -15.312 0.001 (0) + CaH[14C]O3+ 4.942e-17 4.534e-17 -16.306 -16.344 -0.037 (0) + H[14C]O2[18O]- 4.670e-18 4.272e-18 -17.331 -17.369 -0.039 (0) + H[14C]O[18O]O- 4.670e-18 4.272e-18 -17.331 -17.369 -0.039 (0) + H[14C][18O]O2- 4.670e-18 4.272e-18 -17.331 -17.369 -0.039 (0) + Ca[14C]O3 2.709e-18 2.714e-18 -17.567 -17.566 0.001 (0) + [14C]O[18O] 2.025e-18 2.028e-18 -17.694 -17.693 0.001 (0) + [14C]O3-2 1.390e-18 9.736e-19 -17.857 -18.012 -0.155 (0) + CaH[14C]O2[18O]+ 9.861e-20 9.045e-20 -19.006 -19.044 -0.037 (0) + CaH[14C]O[18O]O+ 9.861e-20 9.045e-20 -19.006 -19.044 -0.037 (0) + CaH[14C][18O]O2+ 9.861e-20 9.045e-20 -19.006 -19.044 -0.037 (0) + Ca[14C]O2[18O] 1.622e-20 1.624e-20 -19.790 -19.789 0.001 (0) + H[14C]O[18O]2- 9.317e-21 8.523e-21 -20.031 -20.069 -0.039 (0) + H[14C][18O]2O- 9.317e-21 8.523e-21 -20.031 -20.069 -0.039 (0) + H[14C][18O]O[18O]- 9.317e-21 8.523e-21 -20.031 -20.069 -0.039 (0) + [14C]O2[18O]-2 8.319e-21 5.828e-21 -20.080 -20.234 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 8.886e-17 - O[18O] 8.869e-17 8.883e-17 -16.052 -16.051 0.001 (0) - [18O]2 8.847e-20 8.862e-20 -19.053 -19.052 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -68.465 -68.464 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.466 -71.465 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.57 -125.43 -2.86 [13C]H4 + [13C]H4(g) -17.74 -20.60 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.21 -20.71 -1.50 [14C][18O]2 - [14C]H4(g) -132.92 -135.78 -2.86 [14C]H4 + [14C]H4(g) -28.09 -30.95 -2.86 [14C]H4 [14C]O2(g) -13.84 -15.31 -1.47 [14C]O2 [14C]O[18O](g) -16.22 -18.01 -1.79 [14C]O[18O] - [18O]2(g) -16.76 -19.05 -2.29 [18O]2 + [18O]2(g) -69.17 -71.47 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -2686,14 +2686,14 @@ O(0) 4.463e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.61 -123.47 -2.86 CH4 + CH4(g) -15.78 -18.64 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.21 -39.36 -3.15 H2 + H2(g) -10.01 -13.16 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.76 -13.65 -2.89 O2 - O[18O](g) -13.46 -16.35 -2.89 O[18O] + O2(g) -63.17 -66.06 -2.89 O2 + O[18O](g) -65.87 -68.77 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2763,34 +2763,35 @@ Calcite 5.00e-04 Ca[13C]O2[18O](s) 3.36e-08 3.36e-08 6.73e-05 Ca[13C]O[18O]2(s) 6.90e-11 6.90e-11 1.38e-07 Ca[13C][18O]3(s) 4.72e-14 4.72e-14 9.45e-11 - Ca[14C]O3(s) 2.26e-16 2.26e-16 4.53e-13 + Ca[14C]O3(s) 2.26e-16 2.26e-16 4.52e-13 Ca[14C]O2[18O](s) 1.39e-18 1.39e-18 2.79e-15 Ca[14C]O[18O]2(s) 2.86e-21 2.86e-21 5.72e-18 - Ca[14C][18O]3(s) 1.96e-24 1.96e-24 3.91e-21 + Ca[14C][18O]3(s) 1.96e-24 1.95e-24 3.91e-21 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units R(18O) 1.99518e-03 -4.9948 permil - R(13C) 1.10735e-02 -9.5395 permil - R(14C) 4.57349e-13 38.894 pmc + R(13C) 1.10736e-02 -9.5335 permil + R(14C) 4.57008e-13 38.865 pmc R(18O) H2O(l) 1.99518e-03 -4.9963 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.011 permil - R(18O) O2(aq) 1.99518e-03 -4.9963 permil - R(13C) CO2(aq) 1.09943e-02 -16.628 permil - R(14C) CO2(aq) 4.50822e-13 38.339 pmc + R(13C) CO2(aq) 1.09944e-02 -16.622 permil + R(14C) CO2(aq) 4.50485e-13 38.31 pmc R(18O) CO2(aq) 2.07915e-03 36.877 permil R(18O) HCO3- 1.99518e-03 -4.9963 permil - R(13C) HCO3- 1.10899e-02 -8.0726 permil - R(14C) HCO3- 4.58700e-13 39.009 pmc + R(13C) HCO3- 1.10900e-02 -8.0665 permil + R(14C) HCO3- 4.58358e-13 38.98 pmc R(18O) CO3-2 1.99518e-03 -4.9963 permil - R(13C) CO3-2 1.10740e-02 -9.4961 permil - R(14C) CO3-2 4.57385e-13 38.897 pmc + R(13C) CO3-2 1.10741e-02 -9.4901 permil + R(14C) CO3-2 4.57043e-13 38.868 pmc + R(13C) CH4(aq) 1.09944e-02 -16.622 permil + R(14C) CH4(aq) 4.50485e-13 38.31 pmc R(18O) Calcite 2.05262e-03 23.65 permil - R(13C) Calcite 1.11119e-02 -6.1079 permil - R(14C) Calcite 4.60519e-13 39.164 pmc + R(13C) Calcite 1.11120e-02 -6.1019 permil + R(14C) Calcite 4.60175e-13 39.134 pmc --------------------------------Isotope Alphas--------------------------------- @@ -2800,14 +2801,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2623e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6007e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6473e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.2101e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.0214e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -2819,42 +2821,42 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.467e-05 6.448e-05 - [14C] 2.671e-15 2.663e-15 + [14C] 2.669e-15 2.661e-15 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.140 Adjusted to redox equilibrium + pe = -1.979 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.828e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 25 + Iterations = 51 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.628 -123.628 0.001 (0) +C(-4) 2.099e-19 + CH4 2.099e-19 2.102e-19 -18.678 -18.677 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.963e-06 -5.553 -5.707 -0.155 (0) @@ -2862,112 +2864,112 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.102e-06 1.010e-06 -5.958 -5.995 -0.037 (0) + CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.047e-08 6.057e-08 -7.218 -7.218 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.048e-08 6.057e-08 -7.218 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.865e-40 - H2 3.932e-40 3.939e-40 -39.405 -39.405 0.001 (0) -O(0) 5.364e-14 - O2 2.672e-14 2.676e-14 -13.573 -13.573 0.001 (0) - O[18O] 1.066e-16 1.068e-16 -15.972 -15.972 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.587 -125.586 0.001 (0) +H(0) 1.359e-13 + H2 6.796e-14 6.807e-14 -13.168 -13.167 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -66.048 -66.048 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.447 -68.447 0.001 (0) +[13C](-4) 2.308e-21 + [13C]H4 2.308e-21 2.312e-21 -20.637 -20.636 0.001 (0) [13C](4) 6.467e-05 H[13C]O3- 5.217e-05 4.772e-05 -4.283 -4.321 -0.039 (0) [13C]O2 1.095e-05 1.097e-05 -4.961 -4.960 0.001 (0) - CaH[13C]O3+ 1.102e-06 1.010e-06 -5.958 -5.995 -0.037 (0) + CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) H[13C]O2[18O]- 1.041e-07 9.522e-08 -6.983 -7.021 -0.039 (0) - H[13C][18O]O2- 1.041e-07 9.522e-08 -6.983 -7.021 -0.039 (0) H[13C]O[18O]O- 1.041e-07 9.522e-08 -6.983 -7.021 -0.039 (0) - Ca[13C]O3 6.047e-08 6.057e-08 -7.218 -7.218 0.001 (0) + H[13C][18O]O2- 1.041e-07 9.522e-08 -6.983 -7.021 -0.039 (0) + Ca[13C]O3 6.048e-08 6.057e-08 -7.218 -7.218 0.001 (0) [13C]O[18O] 4.553e-08 4.560e-08 -7.342 -7.341 0.001 (0) [13C]O3-2 3.102e-08 2.173e-08 -7.508 -7.663 -0.155 (0) + CaH[13C]O2[18O]+ 2.198e-09 2.016e-09 -8.658 -8.695 -0.037 (0) CaH[13C]O[18O]O+ 2.198e-09 2.016e-09 -8.658 -8.695 -0.037 (0) CaH[13C][18O]O2+ 2.198e-09 2.016e-09 -8.658 -8.695 -0.037 (0) - CaH[13C]O2[18O]+ 2.198e-09 2.016e-09 -8.658 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.620e-10 3.626e-10 -9.441 -9.441 0.001 (0) - H[13C][18O]O[18O]- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) - H[13C][18O]2O- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) H[13C]O[18O]2- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) + H[13C][18O]2O- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) + H[13C][18O]O[18O]- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) [13C]O2[18O]-2 1.857e-10 1.301e-10 -9.731 -9.886 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -135.974 -135.974 0.001 (0) -[14C](4) 2.671e-15 - H[14C]O3- 2.158e-15 1.974e-15 -14.666 -14.705 -0.039 (0) - [14C]O2 4.490e-16 4.497e-16 -15.348 -15.347 0.001 (0) - CaH[14C]O3+ 4.556e-17 4.180e-17 -16.341 -16.379 -0.037 (0) - H[14C][18O]O2- 4.305e-18 3.938e-18 -17.366 -17.405 -0.039 (0) - H[14C]O[18O]O- 4.305e-18 3.938e-18 -17.366 -17.405 -0.039 (0) - H[14C]O2[18O]- 4.305e-18 3.938e-18 -17.366 -17.405 -0.039 (0) - Ca[14C]O3 2.498e-18 2.502e-18 -17.602 -17.602 0.001 (0) - [14C]O[18O] 1.867e-18 1.870e-18 -17.729 -17.728 0.001 (0) - [14C]O3-2 1.281e-18 8.976e-19 -17.892 -18.047 -0.155 (0) - CaH[14C]O2[18O]+ 9.091e-20 8.339e-20 -19.041 -19.079 -0.037 (0) - CaH[14C][18O]O2+ 9.091e-20 8.339e-20 -19.041 -19.079 -0.037 (0) - CaH[14C]O[18O]O+ 9.091e-20 8.339e-20 -19.041 -19.079 -0.037 (0) - Ca[14C]O2[18O] 1.495e-20 1.498e-20 -19.825 -19.825 0.001 (0) - H[14C][18O]O[18O]- 8.589e-21 7.858e-21 -20.066 -20.105 -0.039 (0) - H[14C]O[18O]2- 8.589e-21 7.858e-21 -20.066 -20.105 -0.039 (0) - H[14C][18O]2O- 8.589e-21 7.858e-21 -20.066 -20.105 -0.039 (0) - [14C]O2[18O]-2 7.669e-21 5.373e-21 -20.115 -20.270 -0.155 (0) +[14C](-4) 9.456e-32 + [14C]H4 9.456e-32 9.471e-32 -31.024 -31.024 0.001 (0) +[14C](4) 2.669e-15 + H[14C]O3- 2.156e-15 1.972e-15 -14.666 -14.705 -0.039 (0) + [14C]O2 4.486e-16 4.494e-16 -15.348 -15.347 0.001 (0) + CaH[14C]O3+ 4.553e-17 4.176e-17 -16.342 -16.379 -0.037 (0) + H[14C]O2[18O]- 4.302e-18 3.935e-18 -17.366 -17.405 -0.039 (0) + H[14C]O[18O]O- 4.302e-18 3.935e-18 -17.366 -17.405 -0.039 (0) + H[14C][18O]O2- 4.302e-18 3.935e-18 -17.366 -17.405 -0.039 (0) + Ca[14C]O3 2.496e-18 2.500e-18 -17.603 -17.602 0.001 (0) + [14C]O[18O] 1.866e-18 1.869e-18 -17.729 -17.728 0.001 (0) + [14C]O3-2 1.280e-18 8.969e-19 -17.893 -18.047 -0.155 (0) + CaH[14C]O2[18O]+ 9.084e-20 8.333e-20 -19.042 -19.079 -0.037 (0) + CaH[14C]O[18O]O+ 9.084e-20 8.333e-20 -19.042 -19.079 -0.037 (0) + CaH[14C][18O]O2+ 9.084e-20 8.333e-20 -19.042 -19.079 -0.037 (0) + Ca[14C]O2[18O] 1.494e-20 1.496e-20 -19.826 -19.825 0.001 (0) + H[14C]O[18O]2- 8.583e-21 7.852e-21 -20.066 -20.105 -0.039 (0) + H[14C][18O]2O- 8.583e-21 7.852e-21 -20.066 -20.105 -0.039 (0) + H[14C][18O]O[18O]- 8.583e-21 7.852e-21 -20.066 -20.105 -0.039 (0) + [14C]O2[18O]-2 7.664e-21 5.369e-21 -20.116 -20.270 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.068e-16 - O[18O] 1.066e-16 1.068e-16 -15.972 -15.972 0.001 (0) - [18O]2 1.063e-19 1.065e-19 -18.973 -18.973 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -68.447 -68.447 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.448 -71.448 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.73 -125.59 -2.86 [13C]H4 + [13C]H4(g) -17.78 -20.64 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.24 -20.75 -1.50 [14C][18O]2 - [14C]H4(g) -133.11 -135.97 -2.86 [14C]H4 + [14C]H4(g) -28.16 -31.02 -2.86 [14C]H4 [14C]O2(g) -13.88 -15.35 -1.47 [14C]O2 [14C]O[18O](g) -16.26 -18.05 -1.79 [14C]O[18O] - [18O]2(g) -16.68 -18.97 -2.29 [18O]2 + [18O]2(g) -69.16 -71.45 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.23 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.83 7.69 Ca[13C]O[18O]2 Ca[14C][18O]3(s) -20.41 -12.25 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.55 -6.85 7.70 Ca[14C]O2[18O] + Ca[14C]O2[18O](s) -14.56 -6.85 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -12.34 -4.15 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -17.24 -9.55 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.77 -123.63 -2.86 CH4 + CH4(g) -15.82 -18.68 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.25 -39.40 -3.15 H2 + H2(g) -10.02 -13.17 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.68 -13.57 -2.89 O2 - O[18O](g) -13.38 -16.27 -2.89 O[18O] + O2(g) -63.16 -66.05 -2.89 O2 + O[18O](g) -65.86 -68.75 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3037,34 +3039,35 @@ Calcite 5.00e-04 Ca[13C]O2[18O](s) 3.37e-08 3.37e-08 6.73e-05 Ca[13C]O[18O]2(s) 6.91e-11 6.91e-11 1.38e-07 Ca[13C][18O]3(s) 4.73e-14 4.73e-14 9.45e-11 - Ca[14C]O3(s) 2.09e-16 2.09e-16 4.17e-13 + Ca[14C]O3(s) 2.08e-16 2.08e-16 4.17e-13 Ca[14C]O2[18O](s) 1.28e-18 1.28e-18 2.57e-15 - Ca[14C]O[18O]2(s) 2.64e-21 2.64e-21 5.27e-18 - Ca[14C][18O]3(s) 1.00e-27 0.00e+00 2.00e-24 + Ca[14C]O[18O]2(s) 2.63e-21 2.63e-21 5.27e-18 + Ca[14C][18O]3(s) 1.80e-24 1.80e-24 3.60e-21 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units R(18O) 1.99518e-03 -4.9947 permil - R(13C) 1.10807e-02 -8.8995 permil - R(14C) 4.21326e-13 35.83 pmc + R(13C) 1.10808e-02 -8.8939 permil + R(14C) 4.21011e-13 35.804 pmc R(18O) H2O(l) 1.99518e-03 -4.9962 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.012 permil - R(18O) O2(aq) 1.99518e-03 -4.9962 permil - R(13C) CO2(aq) 1.10014e-02 -15.992 permil - R(14C) CO2(aq) 4.15313e-13 35.319 pmc + R(13C) CO2(aq) 1.10015e-02 -15.987 permil + R(14C) CO2(aq) 4.15002e-13 35.293 pmc R(18O) CO2(aq) 2.07915e-03 36.878 permil R(18O) HCO3- 1.99518e-03 -4.9962 permil - R(13C) HCO3- 1.10971e-02 -7.4316 permil - R(14C) HCO3- 4.22570e-13 35.936 pmc + R(13C) HCO3- 1.10972e-02 -7.4261 permil + R(14C) HCO3- 4.22255e-13 35.909 pmc R(18O) CO3-2 1.99518e-03 -4.9962 permil - R(13C) CO3-2 1.10812e-02 -8.8561 permil - R(14C) CO3-2 4.21358e-13 35.833 pmc + R(13C) CO3-2 1.10812e-02 -8.8505 permil + R(14C) CO3-2 4.21044e-13 35.806 pmc + R(13C) CH4(aq) 1.10015e-02 -15.987 permil + R(14C) CH4(aq) 4.15002e-13 35.293 pmc R(18O) Calcite 2.05262e-03 23.65 permil - R(13C) Calcite 1.11191e-02 -5.4657 permil - R(14C) Calcite 4.24246e-13 36.079 pmc + R(13C) Calcite 1.11192e-02 -5.4601 permil + R(14C) Calcite 4.23929e-13 36.052 pmc --------------------------------Isotope Alphas--------------------------------- @@ -3074,14 +3077,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2752e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5922e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7083e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.5099e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.3434e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -3093,52 +3097,52 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.471e-05 6.453e-05 - [14C] 2.461e-15 2.453e-15 + [14C] 2.459e-15 2.452e-15 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.186 Adjusted to redox equilibrium + pe = -1.882 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.828e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 21 + Iterations = 56 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.996 -123.995 0.001 (0) +C(-4) 3.521e-20 + CH4 3.521e-20 3.527e-20 -19.453 -19.453 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -3146,81 +3150,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.051e-08 6.061e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.364e-40 - H2 3.182e-40 3.187e-40 -39.497 -39.497 0.001 (0) -O(0) 8.194e-14 - O2 4.081e-14 4.088e-14 -13.389 -13.389 0.001 (0) - O[18O] 1.628e-16 1.631e-16 -15.788 -15.788 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.955 -125.954 0.001 (0) +H(0) 8.698e-14 + H2 4.349e-14 4.356e-14 -13.362 -13.361 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.661 -65.660 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.060 -68.059 0.001 (0) +[13C](-4) 3.874e-22 + [13C]H4 3.874e-22 3.881e-22 -21.412 -21.411 0.001 (0) [13C](4) 6.471e-05 - H[13C]O3- 5.220e-05 4.775e-05 -4.282 -4.321 -0.039 (0) + H[13C]O3- 5.220e-05 4.776e-05 -4.282 -4.321 -0.039 (0) [13C]O2 1.096e-05 1.097e-05 -4.960 -4.960 0.001 (0) CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) - H[13C][18O]O2- 1.041e-07 9.528e-08 -6.982 -7.021 -0.039 (0) - H[13C]O[18O]O- 1.041e-07 9.528e-08 -6.982 -7.021 -0.039 (0) H[13C]O2[18O]- 1.041e-07 9.528e-08 -6.982 -7.021 -0.039 (0) + H[13C]O[18O]O- 1.041e-07 9.528e-08 -6.982 -7.021 -0.039 (0) + H[13C][18O]O2- 1.041e-07 9.528e-08 -6.982 -7.021 -0.039 (0) Ca[13C]O3 6.051e-08 6.061e-08 -7.218 -7.217 0.001 (0) [13C]O[18O] 4.556e-08 4.563e-08 -7.341 -7.341 0.001 (0) [13C]O3-2 3.104e-08 2.175e-08 -7.508 -7.663 -0.155 (0) - CaH[13C][18O]O2+ 2.199e-09 2.017e-09 -8.658 -8.695 -0.037 (0) CaH[13C]O2[18O]+ 2.199e-09 2.017e-09 -8.658 -8.695 -0.037 (0) CaH[13C]O[18O]O+ 2.199e-09 2.017e-09 -8.658 -8.695 -0.037 (0) + CaH[13C][18O]O2+ 2.199e-09 2.017e-09 -8.658 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.622e-10 3.628e-10 -9.441 -9.440 0.001 (0) - H[13C][18O]O[18O]- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) H[13C]O[18O]2- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]2O- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]O[18O]- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.858e-10 1.302e-10 -9.731 -9.886 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.378 -136.377 0.001 (0) -[14C](4) 2.461e-15 - H[14C]O3- 1.988e-15 1.818e-15 -14.702 -14.740 -0.039 (0) - [14C]O2 4.136e-16 4.143e-16 -15.383 -15.383 0.001 (0) - CaH[14C]O3+ 4.197e-17 3.850e-17 -16.377 -16.414 -0.037 (0) - H[14C][18O]O2- 3.966e-18 3.628e-18 -17.402 -17.440 -0.039 (0) - H[14C]O[18O]O- 3.966e-18 3.628e-18 -17.402 -17.440 -0.039 (0) - H[14C]O2[18O]- 3.966e-18 3.628e-18 -17.402 -17.440 -0.039 (0) - Ca[14C]O3 2.301e-18 2.305e-18 -17.638 -17.637 0.001 (0) - [14C]O[18O] 1.720e-18 1.723e-18 -17.765 -17.764 0.001 (0) - [14C]O3-2 1.180e-18 8.269e-19 -17.928 -18.083 -0.155 (0) - CaH[14C]O2[18O]+ 8.374e-20 7.682e-20 -19.077 -19.115 -0.037 (0) - CaH[14C][18O]O2+ 8.374e-20 7.682e-20 -19.077 -19.115 -0.037 (0) - CaH[14C]O[18O]O+ 8.374e-20 7.682e-20 -19.077 -19.115 -0.037 (0) - Ca[14C]O2[18O] 1.377e-20 1.380e-20 -19.861 -19.860 0.001 (0) - H[14C]O[18O]2- 7.912e-21 7.239e-21 -20.102 -20.140 -0.039 (0) - H[14C][18O]2O- 7.912e-21 7.239e-21 -20.102 -20.140 -0.039 (0) - H[14C][18O]O[18O]- 7.912e-21 7.239e-21 -20.102 -20.140 -0.039 (0) - [14C]O2[18O]-2 7.065e-21 4.950e-21 -20.151 -20.305 -0.155 (0) +[14C](-4) 1.461e-32 + [14C]H4 1.461e-32 1.464e-32 -31.835 -31.835 0.001 (0) +[14C](4) 2.459e-15 + H[14C]O3- 1.986e-15 1.817e-15 -14.702 -14.741 -0.039 (0) + [14C]O2 4.133e-16 4.140e-16 -15.384 -15.383 0.001 (0) + CaH[14C]O3+ 4.194e-17 3.847e-17 -16.377 -16.415 -0.037 (0) + H[14C]O2[18O]- 3.963e-18 3.625e-18 -17.402 -17.441 -0.039 (0) + H[14C]O[18O]O- 3.963e-18 3.625e-18 -17.402 -17.441 -0.039 (0) + H[14C][18O]O2- 3.963e-18 3.625e-18 -17.402 -17.441 -0.039 (0) + Ca[14C]O3 2.299e-18 2.303e-18 -17.638 -17.638 0.001 (0) + [14C]O[18O] 1.719e-18 1.721e-18 -17.765 -17.764 0.001 (0) + [14C]O3-2 1.179e-18 8.263e-19 -17.928 -18.083 -0.155 (0) + CaH[14C]O2[18O]+ 8.368e-20 7.676e-20 -19.077 -19.115 -0.037 (0) + CaH[14C]O[18O]O+ 8.368e-20 7.676e-20 -19.077 -19.115 -0.037 (0) + CaH[14C][18O]O2+ 8.368e-20 7.676e-20 -19.077 -19.115 -0.037 (0) + Ca[14C]O2[18O] 1.376e-20 1.379e-20 -19.861 -19.861 0.001 (0) + H[14C]O[18O]2- 7.907e-21 7.233e-21 -20.102 -20.141 -0.039 (0) + H[14C][18O]2O- 7.907e-21 7.233e-21 -20.102 -20.141 -0.039 (0) + H[14C][18O]O[18O]- 7.907e-21 7.233e-21 -20.102 -20.141 -0.039 (0) + [14C]O2[18O]-2 7.060e-21 4.946e-21 -20.151 -20.306 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.632e-16 - O[18O] 1.628e-16 1.631e-16 -15.788 -15.788 0.001 (0) - [18O]2 1.624e-19 1.627e-19 -18.789 -18.789 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -68.060 -68.059 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.061 -71.060 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.09 -125.95 -2.86 [13C]H4 + [13C]H4(g) -18.55 -21.41 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.28 -20.78 -1.50 [14C][18O]2 - [14C]H4(g) -133.52 -136.38 -2.86 [14C]H4 + [14C]H4(g) -28.97 -31.83 -2.86 [14C]H4 [14C]O2(g) -13.91 -15.38 -1.47 [14C]O2 [14C]O[18O](g) -16.30 -18.08 -1.79 [14C]O[18O] - [18O]2(g) -16.50 -18.79 -2.29 [18O]2 + [18O]2(g) -68.77 -71.06 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -3234,14 +3238,14 @@ O(0) 8.194e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.14 -124.00 -2.86 CH4 + CH4(g) -16.59 -19.45 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.35 -39.50 -3.15 H2 + H2(g) -10.21 -13.36 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.50 -13.39 -2.89 O2 - O[18O](g) -13.20 -16.09 -2.89 O[18O] + O2(g) -62.77 -65.66 -2.89 O2 + O[18O](g) -65.47 -68.36 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3265,12 +3269,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 18. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -3318,33 +3316,34 @@ Calcite 5.00e-04 Ca[13C]O[18O]2(s) 6.91e-11 6.91e-11 1.38e-07 Ca[13C][18O]3(s) 4.73e-14 4.73e-14 9.46e-11 Ca[14C]O3(s) 1.92e-16 1.92e-16 3.84e-13 - Ca[14C]O2[18O](s) 1.18e-18 1.18e-18 2.37e-15 - Ca[14C]O[18O]2(s) 2.43e-21 2.43e-21 4.86e-18 - Ca[14C][18O]3(s) 1.00e-27 0.00e+00 2.00e-24 + Ca[14C]O2[18O](s) 1.18e-18 1.18e-18 2.36e-15 + Ca[14C]O[18O]2(s) 2.43e-21 2.43e-21 4.85e-18 + Ca[14C][18O]3(s) 1.66e-24 1.66e-24 3.32e-21 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units R(18O) 1.99518e-03 -4.9946 permil - R(13C) 1.10873e-02 -8.3097 permil - R(14C) 3.88140e-13 33.008 pmc + R(13C) 1.10874e-02 -8.3046 permil + R(14C) 3.87850e-13 32.984 pmc R(18O) H2O(l) 1.99518e-03 -4.9961 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.012 permil - R(18O) O2(aq) 1.99518e-03 -4.9961 permil - R(13C) CO2(aq) 1.10079e-02 -15.407 permil - R(14C) CO2(aq) 3.82600e-13 32.537 pmc + R(13C) CO2(aq) 1.10080e-02 -15.402 permil + R(14C) CO2(aq) 3.82314e-13 32.513 pmc R(18O) CO2(aq) 2.07915e-03 36.878 permil R(18O) HCO3- 1.99518e-03 -4.9961 permil - R(13C) HCO3- 1.11037e-02 -6.841 permil - R(14C) HCO3- 3.89286e-13 33.106 pmc + R(13C) HCO3- 1.11038e-02 -6.8359 permil + R(14C) HCO3- 3.88995e-13 33.081 pmc R(18O) CO3-2 1.99518e-03 -4.9961 permil - R(13C) CO3-2 1.10878e-02 -8.2663 permil - R(14C) CO3-2 3.88170e-13 33.011 pmc + R(13C) CO3-2 1.10878e-02 -8.2611 permil + R(14C) CO3-2 3.87880e-13 32.986 pmc + R(13C) CH4(aq) 1.10080e-02 -15.402 permil + R(14C) CH4(aq) 3.82314e-13 32.513 pmc R(18O) Calcite 2.05262e-03 23.65 permil - R(13C) Calcite 1.11257e-02 -4.8739 permil - R(14C) Calcite 3.90830e-13 33.237 pmc + R(13C) Calcite 1.11258e-02 -4.8688 permil + R(14C) Calcite 3.90538e-13 33.212 pmc --------------------------------Isotope Alphas--------------------------------- @@ -3354,14 +3353,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2832e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 +Alpha 18O HCO3-/H2O(l) 1 0 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5939e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5409e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 9.992e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.2212e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -3373,41 +3373,41 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.475e-05 6.456e-05 - [14C] 2.267e-15 2.260e-15 + [14C] 2.265e-15 2.259e-15 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.208 Adjusted to redox equilibrium + pe = -1.901 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.828e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 36 (137 overall) + Iterations = 77 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.174 -124.173 0.001 (0) +C(-4) 5.008e-20 + CH4 5.008e-20 5.016e-20 -19.300 -19.300 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -3416,9 +3416,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -3426,81 +3426,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.103e-06 1.012e-06 -5.957 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.055e-08 6.065e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.746e-40 - H2 2.873e-40 2.878e-40 -39.542 -39.541 0.001 (0) -O(0) 1.005e-13 - O2 5.005e-14 5.014e-14 -13.301 -13.300 0.001 (0) - O[18O] 1.997e-16 2.001e-16 -15.700 -15.699 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.132 -126.131 0.001 (0) +H(0) 9.499e-14 + H2 4.749e-14 4.757e-14 -13.323 -13.323 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.737 -65.736 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.136 -68.135 0.001 (0) +[13C](-4) 5.513e-22 + [13C]H4 5.513e-22 5.522e-22 -21.259 -21.258 0.001 (0) [13C](4) 6.475e-05 H[13C]O3- 5.223e-05 4.778e-05 -4.282 -4.321 -0.039 (0) [13C]O2 1.096e-05 1.098e-05 -4.960 -4.959 0.001 (0) CaH[13C]O3+ 1.103e-06 1.012e-06 -5.957 -5.995 -0.037 (0) - H[13C]O[18O]O- 1.042e-07 9.534e-08 -6.982 -7.021 -0.039 (0) H[13C]O2[18O]- 1.042e-07 9.534e-08 -6.982 -7.021 -0.039 (0) + H[13C]O[18O]O- 1.042e-07 9.534e-08 -6.982 -7.021 -0.039 (0) H[13C][18O]O2- 1.042e-07 9.534e-08 -6.982 -7.021 -0.039 (0) Ca[13C]O3 6.055e-08 6.065e-08 -7.218 -7.217 0.001 (0) - [13C]O[18O] 4.558e-08 4.566e-08 -7.341 -7.340 0.001 (0) + [13C]O[18O] 4.559e-08 4.566e-08 -7.341 -7.340 0.001 (0) [13C]O3-2 3.106e-08 2.176e-08 -7.508 -7.662 -0.155 (0) CaH[13C]O2[18O]+ 2.201e-09 2.019e-09 -8.657 -8.695 -0.037 (0) CaH[13C]O[18O]O+ 2.201e-09 2.019e-09 -8.657 -8.695 -0.037 (0) CaH[13C][18O]O2+ 2.201e-09 2.019e-09 -8.657 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.624e-10 3.630e-10 -9.441 -9.440 0.001 (0) - H[13C][18O]O[18O]- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) H[13C]O[18O]2- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]2O- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]O[18O]- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.859e-10 1.302e-10 -9.731 -9.885 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.591 -136.590 0.001 (0) -[14C](4) 2.267e-15 - H[14C]O3- 1.831e-15 1.675e-15 -14.737 -14.776 -0.039 (0) - [14C]O2 3.810e-16 3.816e-16 -15.419 -15.418 0.001 (0) - CaH[14C]O3+ 3.867e-17 3.547e-17 -16.413 -16.450 -0.037 (0) - H[14C][18O]O2- 3.653e-18 3.342e-18 -17.437 -17.476 -0.039 (0) - H[14C]O[18O]O- 3.653e-18 3.342e-18 -17.437 -17.476 -0.039 (0) - H[14C]O2[18O]- 3.653e-18 3.342e-18 -17.437 -17.476 -0.039 (0) - Ca[14C]O3 2.120e-18 2.123e-18 -17.674 -17.673 0.001 (0) - [14C]O[18O] 1.584e-18 1.587e-18 -17.800 -17.799 0.001 (0) - [14C]O3-2 1.087e-18 7.618e-19 -17.964 -18.118 -0.155 (0) - CaH[14C]O2[18O]+ 7.715e-20 7.077e-20 -19.113 -19.150 -0.037 (0) - CaH[14C][18O]O2+ 7.715e-20 7.077e-20 -19.113 -19.150 -0.037 (0) - CaH[14C]O[18O]O+ 7.715e-20 7.077e-20 -19.113 -19.150 -0.037 (0) - Ca[14C]O2[18O] 1.269e-20 1.271e-20 -19.897 -19.896 0.001 (0) - H[14C][18O]2O- 7.289e-21 6.669e-21 -20.137 -20.176 -0.039 (0) - H[14C][18O]O[18O]- 7.289e-21 6.669e-21 -20.137 -20.176 -0.039 (0) - H[14C]O[18O]2- 7.289e-21 6.669e-21 -20.137 -20.176 -0.039 (0) - [14C]O2[18O]-2 6.509e-21 4.560e-21 -20.187 -20.341 -0.155 (0) +[14C](-4) 1.915e-32 + [14C]H4 1.915e-32 1.918e-32 -31.718 -31.717 0.001 (0) +[14C](4) 2.265e-15 + H[14C]O3- 1.830e-15 1.674e-15 -14.738 -14.776 -0.039 (0) + [14C]O2 3.807e-16 3.814e-16 -15.419 -15.419 0.001 (0) + CaH[14C]O3+ 3.864e-17 3.544e-17 -16.413 -16.450 -0.037 (0) + H[14C]O2[18O]- 3.651e-18 3.340e-18 -17.438 -17.476 -0.039 (0) + H[14C]O[18O]O- 3.651e-18 3.340e-18 -17.438 -17.476 -0.039 (0) + H[14C][18O]O2- 3.651e-18 3.340e-18 -17.438 -17.476 -0.039 (0) + Ca[14C]O3 2.118e-18 2.122e-18 -17.674 -17.673 0.001 (0) + [14C]O[18O] 1.583e-18 1.586e-18 -17.800 -17.800 0.001 (0) + [14C]O3-2 1.087e-18 7.612e-19 -17.964 -18.118 -0.155 (0) + CaH[14C]O2[18O]+ 7.709e-20 7.072e-20 -19.113 -19.150 -0.037 (0) + CaH[14C]O[18O]O+ 7.709e-20 7.072e-20 -19.113 -19.150 -0.037 (0) + CaH[14C][18O]O2+ 7.709e-20 7.072e-20 -19.113 -19.150 -0.037 (0) + Ca[14C]O2[18O] 1.268e-20 1.270e-20 -19.897 -19.896 0.001 (0) + H[14C]O[18O]2- 7.284e-21 6.664e-21 -20.138 -20.176 -0.039 (0) + H[14C][18O]2O- 7.284e-21 6.664e-21 -20.138 -20.176 -0.039 (0) + H[14C][18O]O[18O]- 7.284e-21 6.664e-21 -20.138 -20.176 -0.039 (0) + [14C]O2[18O]-2 6.504e-21 4.556e-21 -20.187 -20.341 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.001e-16 - O[18O] 1.997e-16 2.001e-16 -15.700 -15.699 0.001 (0) - [18O]2 1.992e-19 1.996e-19 -18.701 -18.700 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -68.136 -68.135 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.137 -71.137 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.27 -126.13 -2.86 [13C]H4 + [13C]H4(g) -18.40 -21.26 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.31 -20.82 -1.50 [14C][18O]2 - [14C]H4(g) -133.73 -136.59 -2.86 [14C]H4 + [14C][18O]2(g) -19.32 -20.82 -1.50 [14C][18O]2 + [14C]H4(g) -28.86 -31.72 -2.86 [14C]H4 [14C]O2(g) -13.95 -15.42 -1.47 [14C]O2 [14C]O[18O](g) -16.33 -18.12 -1.79 [14C]O[18O] - [18O]2(g) -16.41 -18.70 -2.29 [18O]2 + [18O]2(g) -68.85 -71.14 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -3514,14 +3514,14 @@ O(0) 1.005e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.31 -124.17 -2.86 CH4 + CH4(g) -16.44 -19.30 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.39 -39.54 -3.15 H2 + H2(g) -10.17 -13.32 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.41 -13.30 -2.89 O2 - O[18O](g) -13.11 -16.00 -2.89 O[18O] + O2(g) -62.84 -65.74 -2.89 O2 + O[18O](g) -65.54 -68.44 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3545,12 +3545,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 19. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -3599,32 +3593,33 @@ Calcite 5.00e-04 Ca[13C][18O]3(s) 4.73e-14 4.73e-14 9.46e-11 Ca[14C]O3(s) 1.77e-16 1.77e-16 3.54e-13 Ca[14C]O2[18O](s) 1.09e-18 1.09e-18 2.18e-15 - Ca[14C]O[18O]2(s) 2.24e-21 2.24e-21 4.47e-18 - Ca[14C][18O]3(s) 1.01e-27 1.00e-29 2.02e-24 + Ca[14C]O[18O]2(s) 2.23e-21 2.23e-21 4.47e-18 + Ca[14C][18O]3(s) 1.53e-24 1.53e-24 3.06e-21 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units R(18O) 1.99519e-03 -4.9944 permil - R(13C) 1.10934e-02 -7.7663 permil - R(14C) 3.57567e-13 30.408 pmc + R(13C) 1.10934e-02 -7.7616 permil + R(14C) 3.57300e-13 30.386 pmc R(18O) H2O(l) 1.99518e-03 -4.9959 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.012 permil - R(18O) O2(aq) 1.99518e-03 -4.9959 permil - R(13C) CO2(aq) 1.10140e-02 -14.867 permil - R(14C) CO2(aq) 3.52464e-13 29.974 pmc + R(13C) CO2(aq) 1.10140e-02 -14.863 permil + R(14C) CO2(aq) 3.52201e-13 29.952 pmc R(18O) CO2(aq) 2.07915e-03 36.878 permil R(18O) HCO3- 1.99518e-03 -4.9959 permil - R(13C) HCO3- 1.11098e-02 -6.2967 permil - R(14C) HCO3- 3.58623e-13 30.498 pmc + R(13C) HCO3- 1.11099e-02 -6.292 permil + R(14C) HCO3- 3.58355e-13 30.475 pmc R(18O) CO3-2 1.99518e-03 -4.9959 permil - R(13C) CO3-2 1.10939e-02 -7.7228 permil - R(14C) CO3-2 3.57595e-13 30.411 pmc + R(13C) CO3-2 1.10939e-02 -7.7181 permil + R(14C) CO3-2 3.57328e-13 30.388 pmc + R(13C) CH4(aq) 1.10140e-02 -14.863 permil + R(14C) CH4(aq) 3.52201e-13 29.952 pmc R(18O) Calcite 2.05262e-03 23.65 permil - R(13C) Calcite 1.11318e-02 -4.3286 permil - R(14C) Calcite 3.60045e-13 30.619 pmc + R(13C) Calcite 1.11319e-02 -4.3238 permil + R(14C) Calcite 3.59776e-13 30.596 pmc --------------------------------Isotope Alphas--------------------------------- @@ -3634,14 +3629,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2856e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6789e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6324e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 3.1086e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 7.3275e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -3653,52 +3649,52 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.479e-05 6.460e-05 - [14C] 2.088e-15 2.082e-15 + [14C] 2.087e-15 2.081e-15 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.243 Adjusted to redox equilibrium + pe = -1.911 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.828e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 102 (203 overall) + Iterations = 97 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.453 -124.453 0.001 (0) +C(-4) 6.028e-20 + CH4 6.028e-20 6.038e-20 -19.220 -19.219 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -3706,81 +3702,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.104e-06 1.012e-06 -5.957 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.058e-08 6.068e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.891e-40 - H2 2.446e-40 2.450e-40 -39.612 -39.611 0.001 (0) -O(0) 1.387e-13 - O2 6.907e-14 6.919e-14 -13.161 -13.160 0.001 (0) - O[18O] 2.756e-16 2.761e-16 -15.560 -15.559 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.411 -126.411 0.001 (0) +H(0) 9.950e-14 + H2 4.975e-14 4.983e-14 -13.303 -13.303 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.777 -65.777 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.176 -68.176 0.001 (0) +[13C](-4) 6.640e-22 + [13C]H4 6.640e-22 6.651e-22 -21.178 -21.177 0.001 (0) [13C](4) 6.479e-05 H[13C]O3- 5.226e-05 4.781e-05 -4.282 -4.320 -0.039 (0) [13C]O2 1.097e-05 1.099e-05 -4.960 -4.959 0.001 (0) CaH[13C]O3+ 1.104e-06 1.012e-06 -5.957 -5.995 -0.037 (0) H[13C]O2[18O]- 1.043e-07 9.539e-08 -6.982 -7.021 -0.039 (0) - H[13C][18O]O2- 1.043e-07 9.539e-08 -6.982 -7.021 -0.039 (0) H[13C]O[18O]O- 1.043e-07 9.539e-08 -6.982 -7.021 -0.039 (0) + H[13C][18O]O2- 1.043e-07 9.539e-08 -6.982 -7.021 -0.039 (0) Ca[13C]O3 6.058e-08 6.068e-08 -7.218 -7.217 0.001 (0) [13C]O[18O] 4.561e-08 4.568e-08 -7.341 -7.340 0.001 (0) [13C]O3-2 3.108e-08 2.177e-08 -7.508 -7.662 -0.155 (0) + CaH[13C]O2[18O]+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) CaH[13C]O[18O]O+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) CaH[13C][18O]O2+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) - CaH[13C]O2[18O]+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.626e-10 3.632e-10 -9.441 -9.440 0.001 (0) - H[13C][18O]O[18O]- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) H[13C]O[18O]2- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]2O- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]O[18O]- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.860e-10 1.303e-10 -9.730 -9.885 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.906 -136.905 0.001 (0) -[14C](4) 2.088e-15 - H[14C]O3- 1.687e-15 1.543e-15 -14.773 -14.812 -0.039 (0) - [14C]O2 3.510e-16 3.516e-16 -15.455 -15.454 0.001 (0) - CaH[14C]O3+ 3.562e-17 3.268e-17 -16.448 -16.486 -0.037 (0) - H[14C][18O]O2- 3.366e-18 3.079e-18 -17.473 -17.512 -0.039 (0) - H[14C]O[18O]O- 3.366e-18 3.079e-18 -17.473 -17.512 -0.039 (0) - H[14C]O2[18O]- 3.366e-18 3.079e-18 -17.473 -17.512 -0.039 (0) - Ca[14C]O3 1.953e-18 1.956e-18 -17.709 -17.709 0.001 (0) - [14C]O[18O] 1.460e-18 1.462e-18 -17.836 -17.835 0.001 (0) - [14C]O3-2 1.002e-18 7.018e-19 -17.999 -18.154 -0.155 (0) - CaH[14C]O2[18O]+ 7.107e-20 6.520e-20 -19.148 -19.186 -0.037 (0) - CaH[14C][18O]O2+ 7.107e-20 6.520e-20 -19.148 -19.186 -0.037 (0) - CaH[14C]O[18O]O+ 7.107e-20 6.520e-20 -19.148 -19.186 -0.037 (0) - Ca[14C]O2[18O] 1.169e-20 1.171e-20 -19.932 -19.932 0.001 (0) - H[14C][18O]O[18O]- 6.715e-21 6.143e-21 -20.173 -20.212 -0.039 (0) - H[14C]O[18O]2- 6.715e-21 6.143e-21 -20.173 -20.212 -0.039 (0) - H[14C][18O]2O- 6.715e-21 6.143e-21 -20.173 -20.212 -0.039 (0) - [14C]O2[18O]-2 5.996e-21 4.200e-21 -20.222 -20.377 -0.155 (0) +[14C](-4) 2.123e-32 + [14C]H4 2.123e-32 2.127e-32 -31.673 -31.672 0.001 (0) +[14C](4) 2.087e-15 + H[14C]O3- 1.686e-15 1.542e-15 -14.773 -14.812 -0.039 (0) + [14C]O2 3.507e-16 3.513e-16 -15.455 -15.454 0.001 (0) + CaH[14C]O3+ 3.559e-17 3.265e-17 -16.449 -16.486 -0.037 (0) + H[14C]O2[18O]- 3.363e-18 3.077e-18 -17.473 -17.512 -0.039 (0) + H[14C]O[18O]O- 3.363e-18 3.077e-18 -17.473 -17.512 -0.039 (0) + H[14C][18O]O2- 3.363e-18 3.077e-18 -17.473 -17.512 -0.039 (0) + Ca[14C]O3 1.951e-18 1.955e-18 -17.710 -17.709 0.001 (0) + [14C]O[18O] 1.458e-18 1.461e-18 -17.836 -17.835 0.001 (0) + [14C]O3-2 1.001e-18 7.012e-19 -18.000 -18.154 -0.155 (0) + CaH[14C]O2[18O]+ 7.102e-20 6.515e-20 -19.149 -19.186 -0.037 (0) + CaH[14C]O[18O]O+ 7.102e-20 6.515e-20 -19.149 -19.186 -0.037 (0) + CaH[14C][18O]O2+ 7.102e-20 6.515e-20 -19.149 -19.186 -0.037 (0) + Ca[14C]O2[18O] 1.168e-20 1.170e-20 -19.933 -19.932 0.001 (0) + H[14C]O[18O]2- 6.710e-21 6.139e-21 -20.173 -20.212 -0.039 (0) + H[14C][18O]2O- 6.710e-21 6.139e-21 -20.173 -20.212 -0.039 (0) + H[14C][18O]O[18O]- 6.710e-21 6.139e-21 -20.173 -20.212 -0.039 (0) + [14C]O2[18O]-2 5.991e-21 4.197e-21 -20.222 -20.377 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.762e-16 - O[18O] 2.756e-16 2.761e-16 -15.560 -15.559 0.001 (0) - [18O]2 2.750e-19 2.754e-19 -18.561 -18.560 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -68.176 -68.176 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.177 -71.177 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.55 -126.41 -2.86 [13C]H4 + [13C]H4(g) -18.32 -21.18 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.35 -20.85 -1.50 [14C][18O]2 - [14C]H4(g) -134.05 -136.91 -2.86 [14C]H4 + [14C]H4(g) -28.81 -31.67 -2.86 [14C]H4 [14C]O2(g) -13.99 -15.45 -1.47 [14C]O2 [14C]O[18O](g) -16.37 -18.15 -1.79 [14C]O[18O] - [18O]2(g) -16.27 -18.56 -2.29 [18O]2 + [18O]2(g) -68.89 -71.18 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -3794,14 +3790,14 @@ O(0) 1.387e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.59 -124.45 -2.86 CH4 + CH4(g) -16.36 -19.22 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.46 -39.61 -3.15 H2 + H2(g) -10.15 -13.30 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.27 -13.16 -2.89 O2 - O[18O](g) -12.97 -15.86 -2.89 O[18O] + O2(g) -62.88 -65.78 -2.89 O2 + O[18O](g) -65.58 -68.48 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3825,6 +3821,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 20. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -3874,31 +3876,32 @@ Calcite 5.00e-04 Ca[14C]O3(s) 1.63e-16 1.63e-16 3.26e-13 Ca[14C]O2[18O](s) 1.00e-18 1.00e-18 2.01e-15 Ca[14C]O[18O]2(s) 2.06e-21 2.06e-21 4.12e-18 - Ca[14C][18O]3(s) 1.00e-27 0.00e+00 2.00e-24 + Ca[14C][18O]3(s) 1.41e-24 1.41e-24 2.82e-21 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units R(18O) 1.99519e-03 -4.9943 permil - R(13C) 1.10990e-02 -7.2655 permil - R(14C) 3.29403e-13 28.013 pmc + R(13C) 1.10990e-02 -7.2611 permil + R(14C) 3.29157e-13 27.992 pmc R(18O) H2O(l) 1.99518e-03 -4.9958 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.012 permil - R(18O) O2(aq) 1.99518e-03 -4.9958 permil - R(13C) CO2(aq) 1.10195e-02 -14.37 permil - R(14C) CO2(aq) 3.24701e-13 27.613 pmc + R(13C) CO2(aq) 1.10196e-02 -14.366 permil + R(14C) CO2(aq) 3.24459e-13 27.593 pmc R(18O) CO2(aq) 2.07915e-03 36.878 permil R(18O) HCO3- 1.99518e-03 -4.9958 permil - R(13C) HCO3- 1.11154e-02 -5.7952 permil - R(14C) HCO3- 3.30376e-13 28.096 pmc + R(13C) HCO3- 1.11155e-02 -5.7908 permil + R(14C) HCO3- 3.30129e-13 28.075 pmc R(18O) CO3-2 1.99518e-03 -4.9958 permil - R(13C) CO3-2 1.10995e-02 -7.222 permil - R(14C) CO3-2 3.29428e-13 28.015 pmc + R(13C) CO3-2 1.10995e-02 -7.2176 permil + R(14C) CO3-2 3.29182e-13 27.994 pmc + R(13C) CH4(aq) 1.10196e-02 -14.366 permil + R(14C) CH4(aq) 3.24459e-13 27.593 pmc R(18O) Calcite 2.05262e-03 23.65 permil - R(13C) Calcite 1.11374e-02 -3.826 permil - R(14C) Calcite 3.31686e-13 28.207 pmc + R(13C) Calcite 1.11375e-02 -3.8217 permil + R(14C) Calcite 3.31438e-13 28.186 pmc --------------------------------Isotope Alphas--------------------------------- @@ -3908,14 +3911,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2508e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.9944e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6444e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7133e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.9984e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.8541e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -3927,42 +3931,42 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.482e-05 6.463e-05 - [14C] 1.924e-15 1.918e-15 + [14C] 1.922e-15 1.917e-15 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.225 Adjusted to redox equilibrium + pe = -1.943 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.828e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 63 + Iterations = 93 (194 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.313 -124.313 0.001 (0) +C(-4) 1.074e-19 + CH4 1.074e-19 1.076e-19 -18.969 -18.968 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -3970,9 +3974,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -3980,81 +3984,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.104e-06 1.013e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.061e-08 6.071e-08 -7.217 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.302e-40 - H2 2.651e-40 2.655e-40 -39.577 -39.576 0.001 (0) -O(0) 1.181e-13 - O2 5.879e-14 5.889e-14 -13.231 -13.230 0.001 (0) - O[18O] 2.346e-16 2.350e-16 -15.630 -15.629 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.271 -126.270 0.001 (0) +H(0) 1.149e-13 + H2 5.747e-14 5.757e-14 -13.241 -13.240 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.903 -65.902 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.302 -68.301 0.001 (0) +[13C](-4) 1.183e-21 + [13C]H4 1.183e-21 1.185e-21 -20.927 -20.926 0.001 (0) [13C](4) 6.482e-05 H[13C]O3- 5.228e-05 4.783e-05 -4.282 -4.320 -0.039 (0) [13C]O2 1.097e-05 1.099e-05 -4.960 -4.959 0.001 (0) CaH[13C]O3+ 1.104e-06 1.013e-06 -5.957 -5.994 -0.037 (0) - H[13C][18O]O2- 1.043e-07 9.544e-08 -6.982 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.043e-07 9.544e-08 -6.982 -7.020 -0.039 (0) H[13C]O2[18O]- 1.043e-07 9.544e-08 -6.982 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.043e-07 9.544e-08 -6.982 -7.020 -0.039 (0) + H[13C][18O]O2- 1.043e-07 9.544e-08 -6.982 -7.020 -0.039 (0) Ca[13C]O3 6.061e-08 6.071e-08 -7.217 -7.217 0.001 (0) [13C]O[18O] 4.563e-08 4.571e-08 -7.341 -7.340 0.001 (0) [13C]O3-2 3.109e-08 2.178e-08 -7.507 -7.662 -0.155 (0) - CaH[13C][18O]O2+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) CaH[13C]O2[18O]+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) + CaH[13C][18O]O2+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.628e-10 3.634e-10 -9.440 -9.440 0.001 (0) - H[13C][18O]O[18O]- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) - H[13C][18O]2O- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) H[13C]O[18O]2- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) + H[13C][18O]2O- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) + H[13C][18O]O[18O]- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) [13C]O2[18O]-2 1.861e-10 1.304e-10 -9.730 -9.885 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.802 -136.801 0.001 (0) -[14C](4) 1.924e-15 - H[14C]O3- 1.554e-15 1.422e-15 -14.809 -14.847 -0.039 (0) - [14C]O2 3.234e-16 3.239e-16 -15.490 -15.490 0.001 (0) - CaH[14C]O3+ 3.282e-17 3.010e-17 -16.484 -16.521 -0.037 (0) - H[14C][18O]O2- 3.101e-18 2.837e-18 -17.509 -17.547 -0.039 (0) - H[14C]O[18O]O- 3.101e-18 2.837e-18 -17.509 -17.547 -0.039 (0) - H[14C]O2[18O]- 3.101e-18 2.837e-18 -17.509 -17.547 -0.039 (0) - Ca[14C]O3 1.799e-18 1.802e-18 -17.745 -17.744 0.001 (0) - [14C]O[18O] 1.345e-18 1.347e-18 -17.871 -17.871 0.001 (0) - [14C]O3-2 9.228e-19 6.465e-19 -18.035 -18.189 -0.155 (0) - CaH[14C]O2[18O]+ 6.547e-20 6.006e-20 -19.184 -19.221 -0.037 (0) - CaH[14C][18O]O2+ 6.547e-20 6.006e-20 -19.184 -19.221 -0.037 (0) - CaH[14C]O[18O]O+ 6.547e-20 6.006e-20 -19.184 -19.221 -0.037 (0) - Ca[14C]O2[18O] 1.077e-20 1.079e-20 -19.968 -19.967 0.001 (0) - H[14C]O[18O]2- 6.186e-21 5.659e-21 -20.209 -20.247 -0.039 (0) - H[14C][18O]2O- 6.186e-21 5.659e-21 -20.209 -20.247 -0.039 (0) - H[14C][18O]O[18O]- 6.186e-21 5.659e-21 -20.209 -20.247 -0.039 (0) - [14C]O2[18O]-2 5.524e-21 3.870e-21 -20.258 -20.412 -0.155 (0) +[14C](-4) 3.485e-32 + [14C]H4 3.485e-32 3.490e-32 -31.458 -31.457 0.001 (0) +[14C](4) 1.922e-15 + H[14C]O3- 1.553e-15 1.421e-15 -14.809 -14.848 -0.039 (0) + [14C]O2 3.231e-16 3.236e-16 -15.491 -15.490 0.001 (0) + CaH[14C]O3+ 3.279e-17 3.008e-17 -16.484 -16.522 -0.037 (0) + H[14C]O2[18O]- 3.098e-18 2.834e-18 -17.509 -17.548 -0.039 (0) + H[14C]O[18O]O- 3.098e-18 2.834e-18 -17.509 -17.548 -0.039 (0) + H[14C][18O]O2- 3.098e-18 2.834e-18 -17.509 -17.548 -0.039 (0) + Ca[14C]O3 1.798e-18 1.801e-18 -17.745 -17.745 0.001 (0) + [14C]O[18O] 1.344e-18 1.346e-18 -17.872 -17.871 0.001 (0) + [14C]O3-2 9.221e-19 6.460e-19 -18.035 -18.190 -0.155 (0) + CaH[14C]O2[18O]+ 6.542e-20 6.002e-20 -19.184 -19.222 -0.037 (0) + CaH[14C]O[18O]O+ 6.542e-20 6.002e-20 -19.184 -19.222 -0.037 (0) + CaH[14C][18O]O2+ 6.542e-20 6.002e-20 -19.184 -19.222 -0.037 (0) + Ca[14C]O2[18O] 1.076e-20 1.078e-20 -19.968 -19.967 0.001 (0) + H[14C]O[18O]2- 6.181e-21 5.655e-21 -20.209 -20.248 -0.039 (0) + H[14C][18O]2O- 6.181e-21 5.655e-21 -20.209 -20.248 -0.039 (0) + H[14C][18O]O[18O]- 6.181e-21 5.655e-21 -20.209 -20.248 -0.039 (0) + [14C]O2[18O]-2 5.520e-21 3.867e-21 -20.258 -20.413 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.351e-16 - O[18O] 2.346e-16 2.350e-16 -15.630 -15.629 0.001 (0) - [18O]2 2.340e-19 2.344e-19 -18.631 -18.630 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -68.302 -68.301 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.303 -71.302 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.41 -126.27 -2.86 [13C]H4 + [13C]H4(g) -18.07 -20.93 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.39 -20.89 -1.50 [14C][18O]2 - [14C]H4(g) -133.94 -136.80 -2.86 [14C]H4 + [14C]H4(g) -28.60 -31.46 -2.86 [14C]H4 [14C]O2(g) -14.02 -15.49 -1.47 [14C]O2 [14C]O[18O](g) -16.40 -18.19 -1.79 [14C]O[18O] - [18O]2(g) -16.34 -18.63 -2.29 [18O]2 + [18O]2(g) -69.01 -71.30 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -4068,14 +4072,14 @@ O(0) 1.181e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.45 -124.31 -2.86 CH4 + CH4(g) -16.11 -18.97 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.43 -39.58 -3.15 H2 + H2(g) -10.09 -13.24 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.34 -13.23 -2.89 O2 - O[18O](g) -13.04 -15.93 -2.89 O[18O] + O2(g) -63.01 -65.90 -2.89 O2 + O[18O](g) -65.71 -68.60 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4146,8 +4150,8 @@ Calcite 5.00e-04 Ca[13C]O[18O]2(s) 6.92e-11 6.92e-11 1.38e-07 Ca[13C][18O]3(s) 4.74e-14 4.74e-14 9.47e-11 Ca[14C]O3(s) 1.50e-16 1.50e-16 3.00e-13 - Ca[14C]O2[18O](s) 9.25e-19 9.25e-19 1.85e-15 - Ca[14C]O[18O]2(s) 1.90e-21 1.90e-21 3.80e-18 + Ca[14C]O2[18O](s) 9.24e-19 9.24e-19 1.85e-15 + Ca[14C]O[18O]2(s) 1.90e-21 1.90e-21 3.79e-18 Ca[14C][18O]3(s) 1.30e-24 1.30e-24 2.60e-21 --------------------------------Isotope Ratios--------------------------------- @@ -4155,24 +4159,25 @@ Calcite 5.00e-04 Isotope Ratio Ratio Input Units R(18O) 1.99519e-03 -4.9941 permil - R(13C) 1.11041e-02 -6.804 permil - R(14C) 3.03456e-13 25.807 pmc + R(13C) 1.11042e-02 -6.8 permil + R(14C) 3.03230e-13 25.787 pmc R(18O) H2O(l) 1.99518e-03 -4.9957 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.012 permil - R(18O) O2(aq) 1.99518e-03 -4.9957 permil - R(13C) CO2(aq) 1.10247e-02 -13.912 permil - R(14C) CO2(aq) 2.99125e-13 25.438 pmc + R(13C) CO2(aq) 1.10247e-02 -13.908 permil + R(14C) CO2(aq) 2.98902e-13 25.419 pmc R(18O) CO2(aq) 2.07915e-03 36.878 permil R(18O) HCO3- 1.99518e-03 -4.9957 permil - R(13C) HCO3- 1.11206e-02 -5.333 permil - R(14C) HCO3- 3.04353e-13 25.883 pmc + R(13C) HCO3- 1.11206e-02 -5.329 permil + R(14C) HCO3- 3.04125e-13 25.863 pmc R(18O) CO3-2 1.99518e-03 -4.9957 permil - R(13C) CO3-2 1.11046e-02 -6.7605 permil - R(14C) CO3-2 3.03480e-13 25.809 pmc + R(13C) CO3-2 1.11047e-02 -6.7565 permil + R(14C) CO3-2 3.03253e-13 25.789 pmc + R(13C) CH4(aq) 1.10247e-02 -13.908 permil + R(14C) CH4(aq) 2.98902e-13 25.419 pmc R(18O) Calcite 2.05262e-03 23.651 permil - R(13C) Calcite 1.11426e-02 -3.363 permil - R(14C) Calcite 3.05559e-13 25.985 pmc + R(13C) Calcite 1.11426e-02 -3.3589 permil + R(14C) Calcite 3.05331e-13 25.966 pmc --------------------------------Isotope Alphas--------------------------------- @@ -4182,14 +4187,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2761e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7396e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6426e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.8874e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -6.1062e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -4201,52 +4207,52 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.485e-05 6.466e-05 - [14C] 1.772e-15 1.767e-15 + [14C] 1.771e-15 1.766e-15 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.234 Adjusted to redox equilibrium + pe = -1.923 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.844e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 25 + Iterations = 44 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.381 -124.380 0.001 (0) +C(-4) 7.443e-20 + CH4 7.443e-20 7.455e-20 -19.128 -19.128 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -4254,23 +4260,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.105e-06 1.013e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.064e-08 6.074e-08 -7.217 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.099e-40 - H2 2.550e-40 2.554e-40 -39.594 -39.593 0.001 (0) -O(0) 1.276e-13 - O2 6.356e-14 6.366e-14 -13.197 -13.196 0.001 (0) - O[18O] 2.536e-16 2.540e-16 -15.596 -15.595 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.339 -126.338 0.001 (0) +H(0) 1.049e-13 + H2 5.244e-14 5.253e-14 -13.280 -13.280 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.823 -65.823 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.222 -68.222 0.001 (0) +[13C](-4) 8.206e-22 + [13C]H4 8.206e-22 8.219e-22 -21.086 -21.085 0.001 (0) [13C](4) 6.485e-05 - H[13C]O3- 5.231e-05 4.785e-05 -4.281 -4.320 -0.039 (0) + H[13C]O3- 5.231e-05 4.786e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.098e-05 1.100e-05 -4.959 -4.959 0.001 (0) CaH[13C]O3+ 1.105e-06 1.013e-06 -5.957 -5.994 -0.037 (0) - H[13C]O[18O]O- 1.044e-07 9.548e-08 -6.981 -7.020 -0.039 (0) H[13C]O2[18O]- 1.044e-07 9.548e-08 -6.981 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.044e-07 9.548e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.044e-07 9.548e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.064e-08 6.074e-08 -7.217 -7.217 0.001 (0) [13C]O[18O] 4.565e-08 4.573e-08 -7.341 -7.340 0.001 (0) @@ -4279,56 +4285,56 @@ O(0) 1.276e-13 CaH[13C]O[18O]O+ 2.204e-09 2.022e-09 -8.657 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.204e-09 2.022e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.630e-10 3.636e-10 -9.440 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) H[13C]O[18O]2- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]O[18O]- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.862e-10 1.304e-10 -9.730 -9.885 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.905 -136.904 0.001 (0) -[14C](4) 1.772e-15 - H[14C]O3- 1.432e-15 1.310e-15 -14.844 -14.883 -0.039 (0) - [14C]O2 2.979e-16 2.984e-16 -15.526 -15.525 0.001 (0) - CaH[14C]O3+ 3.023e-17 2.773e-17 -16.520 -16.557 -0.037 (0) - H[14C][18O]O2- 2.856e-18 2.613e-18 -17.544 -17.583 -0.039 (0) - H[14C]O[18O]O- 2.856e-18 2.613e-18 -17.544 -17.583 -0.039 (0) - H[14C]O2[18O]- 2.856e-18 2.613e-18 -17.544 -17.583 -0.039 (0) - Ca[14C]O3 1.657e-18 1.660e-18 -17.781 -17.780 0.001 (0) - [14C]O[18O] 1.239e-18 1.241e-18 -17.907 -17.906 0.001 (0) - [14C]O3-2 8.501e-19 5.956e-19 -18.071 -18.225 -0.155 (0) - CaH[14C]O2[18O]+ 6.032e-20 5.533e-20 -19.220 -19.257 -0.037 (0) - CaH[14C][18O]O2+ 6.032e-20 5.533e-20 -19.220 -19.257 -0.037 (0) - CaH[14C]O[18O]O+ 6.032e-20 5.533e-20 -19.220 -19.257 -0.037 (0) - Ca[14C]O2[18O] 9.919e-21 9.936e-21 -20.004 -20.003 0.001 (0) - H[14C][18O]2O- 5.699e-21 5.214e-21 -20.244 -20.283 -0.039 (0) - H[14C][18O]O[18O]- 5.699e-21 5.214e-21 -20.244 -20.283 -0.039 (0) - H[14C]O[18O]2- 5.699e-21 5.214e-21 -20.244 -20.283 -0.039 (0) - [14C]O2[18O]-2 5.089e-21 3.565e-21 -20.293 -20.448 -0.155 (0) +[14C](-4) 2.225e-32 + [14C]H4 2.225e-32 2.228e-32 -31.653 -31.652 0.001 (0) +[14C](4) 1.771e-15 + H[14C]O3- 1.431e-15 1.309e-15 -14.845 -14.883 -0.039 (0) + [14C]O2 2.977e-16 2.981e-16 -15.526 -15.526 0.001 (0) + CaH[14C]O3+ 3.021e-17 2.771e-17 -16.520 -16.557 -0.037 (0) + H[14C]O2[18O]- 2.854e-18 2.611e-18 -17.545 -17.583 -0.039 (0) + H[14C]O[18O]O- 2.854e-18 2.611e-18 -17.545 -17.583 -0.039 (0) + H[14C][18O]O2- 2.854e-18 2.611e-18 -17.545 -17.583 -0.039 (0) + Ca[14C]O3 1.656e-18 1.659e-18 -17.781 -17.780 0.001 (0) + [14C]O[18O] 1.238e-18 1.240e-18 -17.907 -17.907 0.001 (0) + [14C]O3-2 8.495e-19 5.951e-19 -18.071 -18.225 -0.155 (0) + CaH[14C]O2[18O]+ 6.027e-20 5.529e-20 -19.220 -19.257 -0.037 (0) + CaH[14C]O[18O]O+ 6.027e-20 5.529e-20 -19.220 -19.257 -0.037 (0) + CaH[14C][18O]O2+ 6.027e-20 5.529e-20 -19.220 -19.257 -0.037 (0) + Ca[14C]O2[18O] 9.912e-21 9.928e-21 -20.004 -20.003 0.001 (0) + H[14C]O[18O]2- 5.695e-21 5.210e-21 -20.245 -20.283 -0.039 (0) + H[14C][18O]2O- 5.695e-21 5.210e-21 -20.245 -20.283 -0.039 (0) + H[14C][18O]O[18O]- 5.695e-21 5.210e-21 -20.245 -20.283 -0.039 (0) + [14C]O2[18O]-2 5.085e-21 3.562e-21 -20.294 -20.448 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.541e-16 - O[18O] 2.536e-16 2.540e-16 -15.596 -15.595 0.001 (0) - [18O]2 2.530e-19 2.534e-19 -18.597 -18.596 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -68.222 -68.222 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.223 -71.223 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.48 -126.34 -2.86 [13C]H4 + [13C]H4(g) -18.23 -21.09 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.42 -20.93 -1.50 [14C][18O]2 - [14C]H4(g) -134.04 -136.90 -2.86 [14C]H4 + [14C]H4(g) -28.79 -31.65 -2.86 [14C]H4 [14C]O2(g) -14.06 -15.53 -1.47 [14C]O2 [14C]O[18O](g) -16.44 -18.23 -1.79 [14C]O[18O] - [18O]2(g) -16.31 -18.60 -2.29 [18O]2 + [18O]2(g) -68.93 -71.22 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -4342,14 +4348,14 @@ O(0) 1.276e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.52 -124.38 -2.86 CH4 + CH4(g) -16.27 -19.13 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.44 -39.59 -3.15 H2 + H2(g) -10.13 -13.28 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.30 -13.20 -2.89 O2 - O[18O](g) -13.00 -15.90 -2.89 O[18O] + O2(g) -62.93 -65.82 -2.89 O2 + O[18O](g) -65.63 -68.52 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4425,34 +4431,35 @@ Calcite 5.00e-04 Ca[13C]O2[18O](s) 3.37e-08 3.37e-08 6.75e-05 Ca[13C]O[18O]2(s) 6.92e-11 6.92e-11 1.38e-07 Ca[13C][18O]3(s) 4.74e-14 4.74e-14 9.48e-11 - Ca[14C]O3(s) 1.38e-16 1.38e-16 2.77e-13 - Ca[14C]O2[18O](s) 8.52e-19 8.52e-19 1.70e-15 - Ca[14C]O[18O]2(s) 1.75e-21 1.75e-21 3.50e-18 - Ca[14C][18O]3(s) 1.20e-24 1.20e-24 2.39e-21 + Ca[14C]O3(s) 1.38e-16 1.38e-16 2.76e-13 + Ca[14C]O2[18O](s) 8.51e-19 8.51e-19 1.70e-15 + Ca[14C]O[18O]2(s) 1.75e-21 1.75e-21 3.49e-18 + Ca[14C][18O]3(s) 1.20e-24 1.19e-24 2.39e-21 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units R(18O) 1.99519e-03 -4.994 permil - R(13C) 1.11089e-02 -6.3788 permil - R(14C) 2.79554e-13 23.774 pmc + R(13C) 1.11089e-02 -6.3751 permil + R(14C) 2.79345e-13 23.756 pmc R(18O) H2O(l) 1.99518e-03 -4.9955 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.012 permil - R(18O) O2(aq) 1.99518e-03 -4.9955 permil - R(13C) CO2(aq) 1.10294e-02 -13.49 permil - R(14C) CO2(aq) 2.75564e-13 23.435 pmc + R(13C) CO2(aq) 1.10294e-02 -13.486 permil + R(14C) CO2(aq) 2.75358e-13 23.417 pmc R(18O) CO2(aq) 2.07915e-03 36.878 permil R(18O) HCO3- 1.99518e-03 -4.9955 permil - R(13C) HCO3- 1.11253e-02 -4.9072 permil - R(14C) HCO3- 2.80379e-13 23.844 pmc + R(13C) HCO3- 1.11254e-02 -4.9035 permil + R(14C) HCO3- 2.80170e-13 23.826 pmc R(18O) CO3-2 1.99518e-03 -4.9955 permil - R(13C) CO3-2 1.11094e-02 -6.3352 permil - R(14C) CO3-2 2.79575e-13 23.776 pmc + R(13C) CO3-2 1.11094e-02 -6.3315 permil + R(14C) CO3-2 2.79366e-13 23.758 pmc + R(13C) CH4(aq) 1.10294e-02 -13.486 permil + R(14C) CH4(aq) 2.75358e-13 23.417 pmc R(18O) Calcite 2.05262e-03 23.651 permil - R(13C) Calcite 1.11474e-02 -2.9362 permil - R(14C) Calcite 2.81491e-13 23.939 pmc + R(13C) Calcite 1.11474e-02 -2.9325 permil + R(14C) Calcite 2.81281e-13 23.921 pmc --------------------------------Isotope Alphas--------------------------------- @@ -4462,14 +4469,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2656e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.6605e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.69e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6652e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -3.3307e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 4.2188e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -4481,42 +4489,42 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.488e-05 6.469e-05 - [14C] 1.633e-15 1.628e-15 + [14C] 1.631e-15 1.627e-15 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.241 Adjusted to redox equilibrium + pe = -1.837 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.844e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 35 (136 overall) + Iterations = 90 (191 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.436 -124.435 0.001 (0) +C(-4) 1.531e-20 + CH4 1.531e-20 1.533e-20 -19.815 -19.814 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -4524,9 +4532,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -4534,81 +4542,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.067e-08 6.077e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.940e-40 - H2 2.470e-40 2.474e-40 -39.607 -39.607 0.001 (0) -O(0) 1.360e-13 - O2 6.772e-14 6.783e-14 -13.169 -13.169 0.001 (0) - O[18O] 2.702e-16 2.707e-16 -15.568 -15.568 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.394 -126.393 0.001 (0) +H(0) 7.063e-14 + H2 3.531e-14 3.537e-14 -13.452 -13.451 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.480 -65.479 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.879 -67.878 0.001 (0) +[13C](-4) 1.688e-22 + [13C]H4 1.688e-22 1.691e-22 -21.773 -21.772 0.001 (0) [13C](4) 6.488e-05 H[13C]O3- 5.233e-05 4.788e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.098e-05 1.100e-05 -4.959 -4.959 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.957 -5.994 -0.037 (0) H[13C]O2[18O]- 1.044e-07 9.552e-08 -6.981 -7.020 -0.039 (0) - H[13C][18O]O2- 1.044e-07 9.552e-08 -6.981 -7.020 -0.039 (0) H[13C]O[18O]O- 1.044e-07 9.552e-08 -6.981 -7.020 -0.039 (0) + H[13C][18O]O2- 1.044e-07 9.552e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.067e-08 6.077e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.567e-08 4.575e-08 -7.340 -7.340 0.001 (0) [13C]O3-2 3.112e-08 2.180e-08 -7.507 -7.662 -0.155 (0) + CaH[13C]O2[18O]+ 2.205e-09 2.022e-09 -8.657 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.205e-09 2.022e-09 -8.657 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.205e-09 2.022e-09 -8.657 -8.694 -0.037 (0) - CaH[13C]O2[18O]+ 2.205e-09 2.022e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.631e-10 3.637e-10 -9.440 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) H[13C]O[18O]2- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]O[18O]- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.863e-10 1.305e-10 -9.730 -9.884 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.996 -136.995 0.001 (0) -[14C](4) 1.633e-15 - H[14C]O3- 1.319e-15 1.207e-15 -14.880 -14.918 -0.039 (0) - [14C]O2 2.744e-16 2.749e-16 -15.562 -15.561 0.001 (0) - CaH[14C]O3+ 2.785e-17 2.555e-17 -16.555 -16.593 -0.037 (0) - H[14C][18O]O2- 2.631e-18 2.407e-18 -17.580 -17.618 -0.039 (0) - H[14C]O[18O]O- 2.631e-18 2.407e-18 -17.580 -17.618 -0.039 (0) - H[14C]O2[18O]- 2.631e-18 2.407e-18 -17.580 -17.618 -0.039 (0) - Ca[14C]O3 1.527e-18 1.529e-18 -17.816 -17.816 0.001 (0) - [14C]O[18O] 1.141e-18 1.143e-18 -17.943 -17.942 0.001 (0) - [14C]O3-2 7.832e-19 5.486e-19 -18.106 -18.261 -0.155 (0) - CaH[14C]O2[18O]+ 5.556e-20 5.097e-20 -19.255 -19.293 -0.037 (0) - CaH[14C][18O]O2+ 5.556e-20 5.097e-20 -19.255 -19.293 -0.037 (0) - CaH[14C]O[18O]O+ 5.556e-20 5.097e-20 -19.255 -19.293 -0.037 (0) - Ca[14C]O2[18O] 9.138e-21 9.153e-21 -20.039 -20.038 0.001 (0) - H[14C][18O]O[18O]- 5.250e-21 4.803e-21 -20.280 -20.318 -0.039 (0) - H[14C]O[18O]2- 5.250e-21 4.803e-21 -20.280 -20.318 -0.039 (0) - H[14C][18O]2O- 5.250e-21 4.803e-21 -20.280 -20.318 -0.039 (0) - [14C]O2[18O]-2 4.688e-21 3.284e-21 -20.329 -20.484 -0.155 (0) +[14C](-4) 4.215e-33 + [14C]H4 4.215e-33 4.222e-33 -32.375 -32.374 0.001 (0) +[14C](4) 1.631e-15 + H[14C]O3- 1.318e-15 1.206e-15 -14.880 -14.919 -0.039 (0) + [14C]O2 2.742e-16 2.747e-16 -15.562 -15.561 0.001 (0) + CaH[14C]O3+ 2.783e-17 2.553e-17 -16.556 -16.593 -0.037 (0) + H[14C]O2[18O]- 2.629e-18 2.405e-18 -17.580 -17.619 -0.039 (0) + H[14C]O[18O]O- 2.629e-18 2.405e-18 -17.580 -17.619 -0.039 (0) + H[14C][18O]O2- 2.629e-18 2.405e-18 -17.580 -17.619 -0.039 (0) + Ca[14C]O3 1.526e-18 1.528e-18 -17.817 -17.816 0.001 (0) + [14C]O[18O] 1.140e-18 1.142e-18 -17.943 -17.942 0.001 (0) + [14C]O3-2 7.826e-19 5.482e-19 -18.106 -18.261 -0.155 (0) + CaH[14C]O2[18O]+ 5.552e-20 5.093e-20 -19.256 -19.293 -0.037 (0) + CaH[14C]O[18O]O+ 5.552e-20 5.093e-20 -19.256 -19.293 -0.037 (0) + CaH[14C][18O]O2+ 5.552e-20 5.093e-20 -19.256 -19.293 -0.037 (0) + Ca[14C]O2[18O] 9.131e-21 9.146e-21 -20.039 -20.039 0.001 (0) + H[14C]O[18O]2- 5.246e-21 4.799e-21 -20.280 -20.319 -0.039 (0) + H[14C][18O]2O- 5.246e-21 4.799e-21 -20.280 -20.319 -0.039 (0) + H[14C][18O]O[18O]- 5.246e-21 4.799e-21 -20.280 -20.319 -0.039 (0) + [14C]O2[18O]-2 4.684e-21 3.282e-21 -20.329 -20.484 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.708e-16 - O[18O] 2.702e-16 2.707e-16 -15.568 -15.568 0.001 (0) - [18O]2 2.696e-19 2.700e-19 -18.569 -18.569 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -67.879 -67.878 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.880 -70.879 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.53 -126.39 -2.86 [13C]H4 + [13C]H4(g) -18.91 -21.77 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.46 -20.96 -1.50 [14C][18O]2 - [14C]H4(g) -134.14 -137.00 -2.86 [14C]H4 + [14C]H4(g) -29.51 -32.37 -2.86 [14C]H4 [14C]O2(g) -14.09 -15.56 -1.47 [14C]O2 [14C]O[18O](g) -16.47 -18.26 -1.79 [14C]O[18O] - [18O]2(g) -16.28 -18.57 -2.29 [18O]2 + [18O]2(g) -68.59 -70.88 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -4622,14 +4630,14 @@ O(0) 1.360e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.58 -124.44 -2.86 CH4 + CH4(g) -16.95 -19.81 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.46 -39.61 -3.15 H2 + H2(g) -10.30 -13.45 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.28 -13.17 -2.89 O2 - O[18O](g) -12.98 -15.87 -2.89 O[18O] + O2(g) -62.59 -65.48 -2.89 O2 + O[18O](g) -65.29 -68.18 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4700,7 +4708,7 @@ Calcite 5.00e-04 Ca[13C]O[18O]2(s) 6.93e-11 6.93e-11 1.39e-07 Ca[13C][18O]3(s) 4.74e-14 4.74e-14 9.48e-11 Ca[14C]O3(s) 1.27e-16 1.27e-16 2.55e-13 - Ca[14C]O2[18O](s) 7.85e-19 7.85e-19 1.57e-15 + Ca[14C]O2[18O](s) 7.84e-19 7.84e-19 1.57e-15 Ca[14C]O[18O]2(s) 1.61e-21 1.61e-21 3.22e-18 Ca[14C][18O]3(s) 1.10e-24 1.10e-24 2.20e-21 @@ -4709,24 +4717,25 @@ Calcite 5.00e-04 Isotope Ratio Ratio Input Units R(18O) 1.99519e-03 -4.9939 permil - R(13C) 1.11133e-02 -5.9869 permil - R(14C) 2.57534e-13 21.901 pmc + R(13C) 1.11133e-02 -5.9835 permil + R(14C) 2.57341e-13 21.885 pmc R(18O) H2O(l) 1.99518e-03 -4.9954 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.012 permil - R(18O) O2(aq) 1.99518e-03 -4.9954 permil - R(13C) CO2(aq) 1.10337e-02 -13.101 permil - R(14C) CO2(aq) 2.53858e-13 21.589 pmc + R(13C) CO2(aq) 1.10338e-02 -13.097 permil + R(14C) CO2(aq) 2.53668e-13 21.573 pmc R(18O) CO2(aq) 2.07915e-03 36.878 permil R(18O) HCO3- 1.99518e-03 -4.9954 permil - R(13C) HCO3- 1.11297e-02 -4.5147 permil - R(14C) HCO3- 2.58294e-13 21.966 pmc + R(13C) HCO3- 1.11298e-02 -4.5113 permil + R(14C) HCO3- 2.58101e-13 21.949 pmc R(18O) CO3-2 1.99518e-03 -4.9954 permil - R(13C) CO3-2 1.11138e-02 -5.9433 permil - R(14C) CO3-2 2.57554e-13 21.903 pmc + R(13C) CO3-2 1.11138e-02 -5.9399 permil + R(14C) CO3-2 2.57361e-13 21.887 pmc + R(13C) CH4(aq) 1.10338e-02 -13.097 permil + R(14C) CH4(aq) 2.53668e-13 21.573 pmc R(18O) Calcite 2.05262e-03 23.651 permil - R(13C) Calcite 1.11518e-02 -2.543 permil - R(14C) Calcite 2.59319e-13 22.053 pmc + R(13C) Calcite 1.11518e-02 -2.5396 permil + R(14C) Calcite 2.59125e-13 22.037 pmc --------------------------------Isotope Alphas--------------------------------- @@ -4736,14 +4745,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.253e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.9936e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5685e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6596e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 1.1102e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -2.7756e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -4755,52 +4765,52 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.490e-05 6.471e-05 - [14C] 1.504e-15 1.500e-15 + [14C] 1.503e-15 1.499e-15 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.231 Adjusted to redox equilibrium + pe = -1.891 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.843e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 45 + Iterations = 94 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.361 -124.360 0.001 (0) +C(-4) 4.135e-20 + CH4 4.135e-20 4.142e-20 -19.384 -19.383 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -4808,81 +4818,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.069e-08 6.079e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.158e-40 - H2 2.579e-40 2.583e-40 -39.589 -39.588 0.001 (0) -O(0) 1.247e-13 - O2 6.211e-14 6.221e-14 -13.207 -13.206 0.001 (0) - O[18O] 2.478e-16 2.482e-16 -15.606 -15.605 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.318 -126.318 0.001 (0) +H(0) 9.055e-14 + H2 4.527e-14 4.535e-14 -13.344 -13.343 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.696 -65.695 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.095 -68.094 0.001 (0) +[13C](-4) 4.563e-22 + [13C]H4 4.563e-22 4.570e-22 -21.341 -21.340 0.001 (0) [13C](4) 6.490e-05 H[13C]O3- 5.235e-05 4.789e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.956 -5.994 -0.037 (0) - H[13C][18O]O2- 1.044e-07 9.556e-08 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.044e-07 9.556e-08 -6.981 -7.020 -0.039 (0) H[13C]O2[18O]- 1.044e-07 9.556e-08 -6.981 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.044e-07 9.556e-08 -6.981 -7.020 -0.039 (0) + H[13C][18O]O2- 1.044e-07 9.556e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.069e-08 6.079e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.569e-08 4.577e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.113e-08 2.181e-08 -7.507 -7.661 -0.155 (0) - CaH[13C][18O]O2+ 2.206e-09 2.023e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O2[18O]+ 2.206e-09 2.023e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.206e-09 2.023e-09 -8.656 -8.694 -0.037 (0) + CaH[13C][18O]O2+ 2.206e-09 2.023e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.633e-10 3.639e-10 -9.440 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) H[13C]O[18O]2- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]O[18O]- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.863e-10 1.305e-10 -9.730 -9.884 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.956 -136.956 0.001 (0) -[14C](4) 1.504e-15 - H[14C]O3- 1.215e-15 1.112e-15 -14.915 -14.954 -0.039 (0) - [14C]O2 2.528e-16 2.532e-16 -15.597 -15.597 0.001 (0) - CaH[14C]O3+ 2.566e-17 2.353e-17 -16.591 -16.628 -0.037 (0) - H[14C][18O]O2- 2.424e-18 2.218e-18 -17.615 -17.654 -0.039 (0) - H[14C]O[18O]O- 2.424e-18 2.218e-18 -17.615 -17.654 -0.039 (0) - H[14C]O2[18O]- 2.424e-18 2.218e-18 -17.615 -17.654 -0.039 (0) - Ca[14C]O3 1.406e-18 1.409e-18 -17.852 -17.851 0.001 (0) - [14C]O[18O] 1.051e-18 1.053e-18 -17.978 -17.978 0.001 (0) - [14C]O3-2 7.215e-19 5.054e-19 -18.142 -18.296 -0.155 (0) - CaH[14C]O2[18O]+ 5.119e-20 4.696e-20 -19.291 -19.328 -0.037 (0) - CaH[14C][18O]O2+ 5.119e-20 4.696e-20 -19.291 -19.328 -0.037 (0) - CaH[14C]O[18O]O+ 5.119e-20 4.696e-20 -19.291 -19.328 -0.037 (0) - Ca[14C]O2[18O] 8.418e-21 8.432e-21 -20.075 -20.074 0.001 (0) - H[14C]O[18O]2- 4.836e-21 4.425e-21 -20.315 -20.354 -0.039 (0) - H[14C][18O]2O- 4.836e-21 4.425e-21 -20.315 -20.354 -0.039 (0) - H[14C][18O]O[18O]- 4.836e-21 4.425e-21 -20.315 -20.354 -0.039 (0) - [14C]O2[18O]-2 4.318e-21 3.025e-21 -20.365 -20.519 -0.155 (0) +[14C](-4) 1.049e-32 + [14C]H4 1.049e-32 1.051e-32 -31.979 -31.979 0.001 (0) +[14C](4) 1.503e-15 + H[14C]O3- 1.214e-15 1.111e-15 -14.916 -14.954 -0.039 (0) + [14C]O2 2.526e-16 2.530e-16 -15.598 -15.597 0.001 (0) + CaH[14C]O3+ 2.564e-17 2.352e-17 -16.591 -16.629 -0.037 (0) + H[14C]O2[18O]- 2.422e-18 2.216e-18 -17.616 -17.654 -0.039 (0) + H[14C]O[18O]O- 2.422e-18 2.216e-18 -17.616 -17.654 -0.039 (0) + H[14C][18O]O2- 2.422e-18 2.216e-18 -17.616 -17.654 -0.039 (0) + Ca[14C]O3 1.405e-18 1.408e-18 -17.852 -17.851 0.001 (0) + [14C]O[18O] 1.050e-18 1.052e-18 -17.979 -17.978 0.001 (0) + [14C]O3-2 7.209e-19 5.051e-19 -18.142 -18.297 -0.155 (0) + CaH[14C]O2[18O]+ 5.115e-20 4.692e-20 -19.291 -19.329 -0.037 (0) + CaH[14C]O[18O]O+ 5.115e-20 4.692e-20 -19.291 -19.329 -0.037 (0) + CaH[14C][18O]O2+ 5.115e-20 4.692e-20 -19.291 -19.329 -0.037 (0) + Ca[14C]O2[18O] 8.412e-21 8.426e-21 -20.075 -20.074 0.001 (0) + H[14C]O[18O]2- 4.833e-21 4.421e-21 -20.316 -20.354 -0.039 (0) + H[14C][18O]2O- 4.833e-21 4.421e-21 -20.316 -20.354 -0.039 (0) + H[14C][18O]O[18O]- 4.833e-21 4.421e-21 -20.316 -20.354 -0.039 (0) + [14C]O2[18O]-2 4.315e-21 3.023e-21 -20.365 -20.520 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.483e-16 - O[18O] 2.478e-16 2.482e-16 -15.606 -15.605 0.001 (0) - [18O]2 2.472e-19 2.476e-19 -18.607 -18.606 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -68.095 -68.094 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.096 -71.095 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.46 -126.32 -2.86 [13C]H4 + [13C]H4(g) -18.48 -21.34 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.49 -21.00 -1.50 [14C][18O]2 - [14C]H4(g) -134.10 -136.96 -2.86 [14C]H4 + [14C]H4(g) -29.12 -31.98 -2.86 [14C]H4 [14C]O2(g) -14.13 -15.60 -1.47 [14C]O2 [14C]O[18O](g) -16.51 -18.30 -1.79 [14C]O[18O] - [18O]2(g) -16.32 -18.61 -2.29 [18O]2 + [18O]2(g) -68.80 -71.09 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -4896,14 +4906,14 @@ O(0) 1.247e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.50 -124.36 -2.86 CH4 + CH4(g) -16.52 -19.38 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.44 -39.59 -3.15 H2 + H2(g) -10.19 -13.34 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.31 -13.21 -2.89 O2 - O[18O](g) -13.01 -15.91 -2.89 O[18O] + O2(g) -62.80 -65.69 -2.89 O2 + O[18O](g) -65.50 -68.39 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4980,33 +4990,34 @@ Calcite 5.00e-04 Ca[13C]O[18O]2(s) 6.93e-11 6.93e-11 1.39e-07 Ca[13C][18O]3(s) 4.74e-14 4.74e-14 9.48e-11 Ca[14C]O3(s) 1.17e-16 1.17e-16 2.35e-13 - Ca[14C]O2[18O](s) 1.00e-27 0.00e+00 2.00e-24 + Ca[14C]O2[18O](s) 7.22e-19 7.22e-19 1.44e-15 Ca[14C]O[18O]2(s) 1.48e-21 1.48e-21 2.97e-18 - Ca[14C][18O]3(s) 1.02e-24 1.01e-24 2.03e-21 + Ca[14C][18O]3(s) 1.01e-24 1.01e-24 2.03e-21 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units R(18O) 1.99519e-03 -4.9937 permil - R(13C) 1.11173e-02 -5.6258 permil - R(14C) 2.37363e-13 20.186 pmc + R(13C) 1.11173e-02 -5.6227 permil + R(14C) 2.37071e-13 20.161 pmc R(18O) H2O(l) 1.99518e-03 -4.9952 permil R(18O) OH- 1.92122e-03 -41.882 permil R(18O) H3O+ 2.04132e-03 18.013 permil - R(18O) O2(aq) 1.99518e-03 -4.9952 permil - R(13C) CO2(aq) 1.10377e-02 -12.742 permil - R(14C) CO2(aq) 2.33975e-13 19.898 pmc + R(13C) CO2(aq) 1.10378e-02 -12.739 permil + R(14C) CO2(aq) 2.33687e-13 19.873 pmc R(18O) CO2(aq) 2.07915e-03 36.879 permil R(18O) HCO3- 1.99518e-03 -4.9952 permil - R(13C) HCO3- 1.11338e-02 -4.1531 permil - R(14C) HCO3- 2.38064e-13 20.245 pmc + R(13C) HCO3- 1.11338e-02 -4.15 permil + R(14C) HCO3- 2.37771e-13 20.221 pmc R(18O) CO3-2 1.99518e-03 -4.9952 permil - R(13C) CO3-2 1.11178e-02 -5.5822 permil - R(14C) CO3-2 2.37381e-13 20.187 pmc + R(13C) CO3-2 1.11178e-02 -5.5791 permil + R(14C) CO3-2 2.37089e-13 20.163 pmc + R(13C) CH4(aq) 1.10378e-02 -12.739 permil + R(14C) CH4(aq) 2.33687e-13 19.873 pmc R(18O) Calcite 2.05262e-03 23.651 permil - R(13C) Calcite 1.11558e-02 -2.1807 permil - R(14C) Calcite 2.37545e-13 20.201 pmc + R(13C) Calcite 1.11559e-02 -2.1775 permil + R(14C) Calcite 2.38714e-13 20.301 pmc --------------------------------Isotope Alphas--------------------------------- @@ -5016,17 +5027,18 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2684e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7022e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7513e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -7.7716e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 7.3275e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0153 15.143 21.282 +Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ @@ -5035,41 +5047,41 @@ Alpha 14C Calcite/CO2(aq) 1.0153 15.143 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.493e-05 6.474e-05 - [14C] 1.386e-15 1.382e-15 + [14C] 1.385e-15 1.380e-15 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.228 Adjusted to redox equilibrium + pe = -1.767 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.843e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 36 (137 overall) + Iterations = 98 (199 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.338 -124.337 0.001 (0) +C(-4) 4.221e-21 + CH4 4.221e-21 4.228e-21 -20.375 -20.374 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -5078,9 +5090,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -5088,23 +5100,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.014e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.071e-08 6.081e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.227e-40 - H2 2.613e-40 2.618e-40 -39.583 -39.582 0.001 (0) -O(0) 1.215e-13 - O2 6.049e-14 6.059e-14 -13.218 -13.218 0.001 (0) - O[18O] 2.414e-16 2.418e-16 -15.617 -15.617 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.295 -126.294 0.001 (0) +H(0) 5.118e-14 + H2 2.559e-14 2.563e-14 -13.592 -13.591 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.200 -65.199 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.599 -67.598 0.001 (0) +[13C](-4) 4.659e-23 + [13C]H4 4.659e-23 4.667e-23 -22.332 -22.331 0.001 (0) [13C](4) 6.493e-05 H[13C]O3- 5.237e-05 4.791e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.014e-06 -5.956 -5.994 -0.037 (0) - H[13C]O[18O]O- 1.045e-07 9.559e-08 -6.981 -7.020 -0.039 (0) H[13C]O2[18O]- 1.045e-07 9.559e-08 -6.981 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.045e-07 9.559e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.045e-07 9.559e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.071e-08 6.081e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.571e-08 4.578e-08 -7.340 -7.339 0.001 (0) @@ -5113,56 +5125,56 @@ O(0) 1.215e-13 CaH[13C]O[18O]O+ 2.206e-09 2.024e-09 -8.656 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.206e-09 2.024e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.634e-10 3.640e-10 -9.440 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) H[13C]O[18O]2- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]O[18O]- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.864e-10 1.306e-10 -9.730 -9.884 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.969 -136.968 0.001 (0) -[14C](4) 1.386e-15 - H[14C]O3- 1.120e-15 1.024e-15 -14.951 -14.990 -0.039 (0) - [14C]O2 2.330e-16 2.334e-16 -15.633 -15.632 0.001 (0) - CaH[14C]O3+ 2.365e-17 2.169e-17 -16.626 -16.664 -0.037 (0) - H[14C][18O]O2- 2.234e-18 2.044e-18 -17.651 -17.690 -0.039 (0) - H[14C]O[18O]O- 2.234e-18 2.044e-18 -17.651 -17.690 -0.039 (0) - H[14C]O2[18O]- 2.234e-18 2.044e-18 -17.651 -17.690 -0.039 (0) - Ca[14C]O3 1.296e-18 1.298e-18 -17.887 -17.887 0.001 (0) - [14C]O[18O] 9.689e-19 9.705e-19 -18.014 -18.013 0.001 (0) - [14C]O3-2 6.650e-19 4.658e-19 -18.177 -18.332 -0.155 (0) - CaH[14C]O2[18O]+ 4.718e-20 4.328e-20 -19.326 -19.364 -0.037 (0) - CaH[14C][18O]O2+ 4.718e-20 4.328e-20 -19.326 -19.364 -0.037 (0) - CaH[14C]O[18O]O+ 4.718e-20 4.328e-20 -19.326 -19.364 -0.037 (0) - Ca[14C]O2[18O] 7.759e-21 7.772e-21 -20.110 -20.109 0.001 (0) - H[14C][18O]2O- 4.458e-21 4.078e-21 -20.351 -20.390 -0.039 (0) - H[14C][18O]O[18O]- 4.458e-21 4.078e-21 -20.351 -20.390 -0.039 (0) - H[14C]O[18O]2- 4.458e-21 4.078e-21 -20.351 -20.390 -0.039 (0) - [14C]O2[18O]-2 3.980e-21 2.788e-21 -20.400 -20.555 -0.155 (0) +[14C](-4) 9.864e-34 + [14C]H4 9.864e-34 9.880e-34 -33.006 -33.005 0.001 (0) +[14C](4) 1.385e-15 + H[14C]O3- 1.118e-15 1.023e-15 -14.951 -14.990 -0.039 (0) + [14C]O2 2.327e-16 2.331e-16 -15.633 -15.632 0.001 (0) + CaH[14C]O3+ 2.362e-17 2.166e-17 -16.627 -16.664 -0.037 (0) + H[14C]O2[18O]- 2.231e-18 2.041e-18 -17.651 -17.690 -0.039 (0) + H[14C]O[18O]O- 2.231e-18 2.041e-18 -17.651 -17.690 -0.039 (0) + H[14C][18O]O2- 2.231e-18 2.041e-18 -17.651 -17.690 -0.039 (0) + Ca[14C]O3 1.295e-18 1.297e-18 -17.888 -17.887 0.001 (0) + [14C]O[18O] 9.677e-19 9.693e-19 -18.014 -18.014 0.001 (0) + [14C]O3-2 6.641e-19 4.653e-19 -18.178 -18.332 -0.155 (0) + CaH[14C]O2[18O]+ 4.712e-20 4.322e-20 -19.327 -19.364 -0.037 (0) + CaH[14C]O[18O]O+ 4.712e-20 4.322e-20 -19.327 -19.364 -0.037 (0) + CaH[14C][18O]O2+ 4.712e-20 4.322e-20 -19.327 -19.364 -0.037 (0) + Ca[14C]O2[18O] 7.749e-21 7.762e-21 -20.111 -20.110 0.001 (0) + H[14C]O[18O]2- 4.452e-21 4.073e-21 -20.351 -20.390 -0.039 (0) + H[14C][18O]2O- 4.452e-21 4.073e-21 -20.351 -20.390 -0.039 (0) + H[14C][18O]O[18O]- 4.452e-21 4.073e-21 -20.351 -20.390 -0.039 (0) + [14C]O2[18O]-2 3.975e-21 2.785e-21 -20.401 -20.555 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.418e-16 - O[18O] 2.414e-16 2.418e-16 -15.617 -15.617 0.001 (0) - [18O]2 2.408e-19 2.412e-19 -18.618 -18.618 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -67.599 -67.598 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.600 -70.599 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.43 -126.29 -2.86 [13C]H4 + [13C]H4(g) -19.47 -22.33 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.53 -21.03 -1.50 [14C][18O]2 - [14C]H4(g) -134.11 -136.97 -2.86 [14C]H4 + [14C]H4(g) -30.15 -33.01 -2.86 [14C]H4 [14C]O2(g) -14.16 -15.63 -1.47 [14C]O2 - [14C]O[18O](g) -16.54 -18.33 -1.79 [14C]O[18O] - [18O]2(g) -16.33 -18.62 -2.29 [18O]2 + [14C]O[18O](g) -16.55 -18.33 -1.79 [14C]O[18O] + [18O]2(g) -68.31 -70.60 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -5176,14 +5188,14 @@ O(0) 1.215e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.48 -124.34 -2.86 CH4 + CH4(g) -17.51 -20.37 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.43 -39.58 -3.15 H2 + H2(g) -10.44 -13.59 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.33 -13.22 -2.89 O2 - O[18O](g) -13.03 -15.92 -2.89 O[18O] + O2(g) -62.31 -65.20 -2.89 O2 + O[18O](g) -65.01 -67.90 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5207,12 +5219,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 25. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -5261,32 +5267,33 @@ Calcite 5.00e-04 Ca[13C][18O]3(s) 4.74e-14 4.74e-14 9.49e-11 Ca[14C]O3(s) 1.08e-16 1.08e-16 2.16e-13 Ca[14C]O2[18O](s) 6.66e-19 6.66e-19 1.33e-15 - Ca[14C]O[18O]2(s) 1.37e-21 1.37e-21 2.74e-18 - Ca[14C][18O]3(s) 9.36e-25 9.35e-25 1.87e-21 + Ca[14C]O[18O]2(s) 1.37e-21 1.37e-21 2.73e-18 + Ca[14C][18O]3(s) 9.35e-25 9.34e-25 1.87e-21 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units R(18O) 1.99519e-03 -4.9936 permil - R(13C) 1.11210e-02 -5.2931 permil - R(14C) 2.18666e-13 18.596 pmc + R(13C) 1.11211e-02 -5.2902 permil + R(14C) 2.18397e-13 18.573 pmc R(18O) H2O(l) 1.99518e-03 -4.9951 permil R(18O) OH- 1.92122e-03 -41.882 permil R(18O) H3O+ 2.04132e-03 18.013 permil - R(18O) O2(aq) 1.99518e-03 -4.9951 permil - R(13C) CO2(aq) 1.10414e-02 -12.412 permil - R(14C) CO2(aq) 2.15545e-13 18.33 pmc + R(13C) CO2(aq) 1.10415e-02 -12.409 permil + R(14C) CO2(aq) 2.15280e-13 18.308 pmc R(18O) CO2(aq) 2.07915e-03 36.879 permil R(18O) HCO3- 1.99518e-03 -4.9951 permil - R(13C) HCO3- 1.11375e-02 -3.8199 permil - R(14C) HCO3- 2.19312e-13 18.651 pmc + R(13C) HCO3- 1.11375e-02 -3.817 permil + R(14C) HCO3- 2.19042e-13 18.628 pmc R(18O) CO3-2 1.99518e-03 -4.9951 permil - R(13C) CO3-2 1.11215e-02 -5.2495 permil - R(14C) CO3-2 2.18683e-13 18.597 pmc + R(13C) CO3-2 1.11215e-02 -5.2466 permil + R(14C) CO3-2 2.18414e-13 18.574 pmc + R(13C) CH4(aq) 1.10415e-02 -12.409 permil + R(14C) CH4(aq) 2.15280e-13 18.308 pmc R(18O) Calcite 2.05263e-03 23.651 permil - R(13C) Calcite 1.11596e-02 -1.8468 permil - R(14C) Calcite 2.20181e-13 18.725 pmc + R(13C) Calcite 1.11596e-02 -1.8439 permil + R(14C) Calcite 2.19911e-13 18.702 pmc --------------------------------Isotope Alphas--------------------------------- @@ -5296,14 +5303,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2471e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7135e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6316e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -6.1062e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 6.2172e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -5315,52 +5323,52 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.495e-05 6.476e-05 - [14C] 1.277e-15 1.273e-15 + [14C] 1.275e-15 1.272e-15 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.227 Adjusted to redox equilibrium + pe = -1.633 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.844e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 38 (139 overall) + Iterations = 77 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.328 -124.328 0.001 (0) +C(-4) 3.551e-22 + CH4 3.551e-22 3.556e-22 -21.450 -21.449 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -5368,81 +5376,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.073e-08 6.083e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.257e-40 - H2 2.628e-40 2.633e-40 -39.580 -39.580 0.001 (0) -O(0) 1.201e-13 - O2 5.981e-14 5.991e-14 -13.223 -13.223 0.001 (0) - O[18O] 2.387e-16 2.390e-16 -15.622 -15.622 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.285 -126.285 0.001 (0) +H(0) 2.756e-14 + H2 1.378e-14 1.380e-14 -13.861 -13.860 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -64.663 -64.662 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.062 -67.061 0.001 (0) +[13C](-4) 3.920e-24 + [13C]H4 3.920e-24 3.927e-24 -23.407 -23.406 0.001 (0) [13C](4) 6.495e-05 H[13C]O3- 5.239e-05 4.793e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) H[13C]O2[18O]- 1.045e-07 9.562e-08 -6.981 -7.019 -0.039 (0) - H[13C][18O]O2- 1.045e-07 9.562e-08 -6.981 -7.019 -0.039 (0) H[13C]O[18O]O- 1.045e-07 9.562e-08 -6.981 -7.019 -0.039 (0) + H[13C][18O]O2- 1.045e-07 9.562e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.073e-08 6.083e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.572e-08 4.580e-08 -7.340 -7.339 0.001 (0) - [13C]O3-2 3.115e-08 2.182e-08 -7.506 -7.661 -0.155 (0) + [13C]O3-2 3.115e-08 2.183e-08 -7.506 -7.661 -0.155 (0) + CaH[13C]O2[18O]+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) - CaH[13C]O2[18O]+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.635e-10 3.641e-10 -9.439 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) H[13C]O[18O]2- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.865e-10 1.306e-10 -9.729 -9.884 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.995 -136.994 0.001 (0) -[14C](4) 1.277e-15 - H[14C]O3- 1.032e-15 9.437e-16 -14.987 -15.025 -0.039 (0) - [14C]O2 2.146e-16 2.150e-16 -15.668 -15.668 0.001 (0) - CaH[14C]O3+ 2.178e-17 1.998e-17 -16.662 -16.699 -0.037 (0) - H[14C][18O]O2- 2.058e-18 1.883e-18 -17.687 -17.725 -0.039 (0) - H[14C]O[18O]O- 2.058e-18 1.883e-18 -17.687 -17.725 -0.039 (0) - H[14C]O2[18O]- 2.058e-18 1.883e-18 -17.687 -17.725 -0.039 (0) - Ca[14C]O3 1.194e-18 1.196e-18 -17.923 -17.922 0.001 (0) - [14C]O[18O] 8.926e-19 8.940e-19 -18.049 -18.049 0.001 (0) - [14C]O3-2 6.126e-19 4.291e-19 -18.213 -18.367 -0.155 (0) - CaH[14C]O2[18O]+ 4.346e-20 3.987e-20 -19.362 -19.399 -0.037 (0) - CaH[14C][18O]O2+ 4.346e-20 3.987e-20 -19.362 -19.399 -0.037 (0) - CaH[14C]O[18O]O+ 4.346e-20 3.987e-20 -19.362 -19.399 -0.037 (0) - Ca[14C]O2[18O] 7.148e-21 7.159e-21 -20.146 -20.145 0.001 (0) - H[14C][18O]O[18O]- 4.106e-21 3.757e-21 -20.387 -20.425 -0.039 (0) - H[14C]O[18O]2- 4.106e-21 3.757e-21 -20.387 -20.425 -0.039 (0) - H[14C][18O]2O- 4.106e-21 3.757e-21 -20.387 -20.425 -0.039 (0) - [14C]O2[18O]-2 3.667e-21 2.569e-21 -20.436 -20.590 -0.155 (0) +[14C](-4) 7.644e-35 + [14C]H4 7.644e-35 7.656e-35 -34.117 -34.116 0.001 (0) +[14C](4) 1.275e-15 + H[14C]O3- 1.030e-15 9.426e-16 -14.987 -15.026 -0.039 (0) + [14C]O2 2.144e-16 2.147e-16 -15.669 -15.668 0.001 (0) + CaH[14C]O3+ 2.176e-17 1.996e-17 -16.662 -16.700 -0.037 (0) + H[14C]O2[18O]- 2.056e-18 1.881e-18 -17.687 -17.726 -0.039 (0) + H[14C]O[18O]O- 2.056e-18 1.881e-18 -17.687 -17.726 -0.039 (0) + H[14C][18O]O2- 2.056e-18 1.881e-18 -17.687 -17.726 -0.039 (0) + Ca[14C]O3 1.193e-18 1.195e-18 -17.923 -17.923 0.001 (0) + [14C]O[18O] 8.915e-19 8.929e-19 -18.050 -18.049 0.001 (0) + [14C]O3-2 6.118e-19 4.286e-19 -18.213 -18.368 -0.155 (0) + CaH[14C]O2[18O]+ 4.341e-20 3.982e-20 -19.362 -19.400 -0.037 (0) + CaH[14C]O[18O]O+ 4.341e-20 3.982e-20 -19.362 -19.400 -0.037 (0) + CaH[14C][18O]O2+ 4.341e-20 3.982e-20 -19.362 -19.400 -0.037 (0) + Ca[14C]O2[18O] 7.139e-21 7.151e-21 -20.146 -20.146 0.001 (0) + H[14C]O[18O]2- 4.101e-21 3.752e-21 -20.387 -20.426 -0.039 (0) + H[14C][18O]2O- 4.101e-21 3.752e-21 -20.387 -20.426 -0.039 (0) + H[14C][18O]O[18O]- 4.101e-21 3.752e-21 -20.387 -20.426 -0.039 (0) + [14C]O2[18O]-2 3.662e-21 2.566e-21 -20.436 -20.591 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.391e-16 - O[18O] 2.387e-16 2.390e-16 -15.622 -15.622 0.001 (0) - [18O]2 2.381e-19 2.385e-19 -18.623 -18.623 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -67.062 -67.061 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.063 -70.062 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.42 -126.28 -2.86 [13C]H4 + [13C]H4(g) -20.55 -23.41 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.56 -21.07 -1.50 [14C][18O]2 - [14C]H4(g) -134.13 -136.99 -2.86 [14C]H4 + [14C]H4(g) -31.26 -34.12 -2.86 [14C]H4 [14C]O2(g) -14.20 -15.67 -1.47 [14C]O2 [14C]O[18O](g) -16.58 -18.37 -1.79 [14C]O[18O] - [18O]2(g) -16.33 -18.62 -2.29 [18O]2 + [18O]2(g) -67.77 -70.06 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -5450,20 +5458,20 @@ O(0) 1.201e-13 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 Ca[14C][18O]3(s) -20.73 -12.57 8.15 Ca[14C][18O]3 Ca[14C]O2[18O](s) -14.88 -7.17 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.66 -4.47 8.19 Ca[14C]O3 + Ca[14C]O3(s) -12.67 -4.47 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -17.56 -9.87 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.47 -124.33 -2.86 CH4 + CH4(g) -18.59 -21.45 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.43 -39.58 -3.15 H2 + H2(g) -10.71 -13.86 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.33 -13.22 -2.89 O2 - O[18O](g) -13.03 -15.92 -2.89 O[18O] + O2(g) -61.77 -64.66 -2.89 O2 + O[18O](g) -64.47 -67.36 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5487,12 +5495,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 26. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -5539,34 +5541,34 @@ Calcite 5.00e-04 Ca[13C]O2[18O](s) 3.38e-08 3.38e-08 6.76e-05 Ca[13C]O[18O]2(s) 6.93e-11 6.93e-11 1.39e-07 Ca[13C][18O]3(s) 4.74e-14 4.74e-14 9.49e-11 - Ca[14C]O3(s) 9.97e-17 9.97e-17 1.99e-13 - Ca[14C]O2[18O](s) 6.14e-19 6.14e-19 1.23e-15 + Ca[14C]O3(s) 9.96e-17 9.96e-17 1.99e-13 + Ca[14C]O2[18O](s) 6.13e-19 6.13e-19 1.23e-15 Ca[14C]O[18O]2(s) 1.26e-21 1.26e-21 2.52e-18 - Ca[14C][18O]3(s) 1.00e-27 0.00e+00 2.00e-24 + Ca[14C][18O]3(s) 8.61e-25 8.60e-25 1.72e-21 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units R(18O) 1.99519e-03 -4.9934 permil - R(13C) 1.11245e-02 -4.9864 permil - R(14C) 2.01442e-13 17.131 pmc + R(13C) 1.11245e-02 -4.9838 permil + R(14C) 2.01194e-13 17.11 pmc R(18O) H2O(l) 1.99518e-03 -4.995 permil R(18O) OH- 1.92122e-03 -41.882 permil R(18O) H3O+ 2.04132e-03 18.013 permil R(18O) O2(aq) 1.99518e-03 -4.995 permil - R(13C) CO2(aq) 1.10448e-02 -12.107 permil - R(14C) CO2(aq) 1.98567e-13 16.887 pmc + R(13C) CO2(aq) 1.10449e-02 -12.105 permil + R(14C) CO2(aq) 1.98323e-13 16.866 pmc R(18O) CO2(aq) 2.07915e-03 36.879 permil R(18O) HCO3- 1.99518e-03 -4.995 permil - R(13C) HCO3- 1.11409e-02 -3.5128 permil - R(14C) HCO3- 2.02037e-13 17.182 pmc + R(13C) HCO3- 1.11410e-02 -3.5101 permil + R(14C) HCO3- 2.01788e-13 17.161 pmc R(18O) CO3-2 1.99518e-03 -4.995 permil - R(13C) CO3-2 1.11249e-02 -4.9428 permil - R(14C) CO3-2 2.01457e-13 17.132 pmc + R(13C) CO3-2 1.11250e-02 -4.9402 permil + R(14C) CO3-2 2.01210e-13 17.111 pmc R(18O) Calcite 2.05263e-03 23.651 permil - R(13C) Calcite 1.11630e-02 -1.5391 permil - R(14C) Calcite 2.02838e-13 17.25 pmc + R(13C) Calcite 1.11630e-02 -1.5364 permil + R(14C) Calcite 2.02589e-13 17.229 pmc --------------------------------Isotope Alphas--------------------------------- @@ -5576,12 +5578,12 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2571e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2489e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 +Alpha 18O HCO3-/H2O(l) 1 1.1102e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7292e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7759e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -5595,42 +5597,42 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.497e-05 6.478e-05 - [14C] 1.176e-15 1.173e-15 + [14C] 1.175e-15 1.172e-15 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.228 Adjusted to redox equilibrium + pe = 10.895 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.843e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 41 (142 overall) + Iterations = 59 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.337 -124.336 0.001 (0) + CH4 0.000e+00 0.000e+00 -121.670 -121.669 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -5638,9 +5640,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -5648,81 +5650,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.075e-08 6.085e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.230e-40 - H2 2.615e-40 2.619e-40 -39.583 -39.582 0.001 (0) -O(0) 1.213e-13 - O2 6.041e-14 6.051e-14 -13.219 -13.218 0.001 (0) - O[18O] 2.411e-16 2.415e-16 -15.618 -15.617 0.001 (0) +H(0) 2.428e-39 + H2 1.214e-39 1.216e-39 -38.916 -38.915 0.001 (0) +O(0) 5.627e-15 + O2 2.803e-15 2.807e-15 -14.552 -14.552 0.001 (0) + O[18O] 1.118e-17 1.120e-17 -16.951 -16.951 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.294 -126.293 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -123.627 -123.626 0.001 (0) [13C](4) 6.497e-05 H[13C]O3- 5.240e-05 4.794e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) - H[13C][18O]O2- 1.046e-07 9.565e-08 -6.981 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.565e-08 -6.981 -7.019 -0.039 (0) H[13C]O2[18O]- 1.046e-07 9.565e-08 -6.981 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.565e-08 -6.981 -7.019 -0.039 (0) + H[13C][18O]O2- 1.046e-07 9.565e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.075e-08 6.085e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.574e-08 4.581e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.116e-08 2.183e-08 -7.506 -7.661 -0.155 (0) - CaH[13C][18O]O2+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O2[18O]+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) + CaH[13C][18O]O2+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.636e-10 3.642e-10 -9.439 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) H[13C]O[18O]2- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.865e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.039 -137.038 0.001 (0) -[14C](4) 1.176e-15 - H[14C]O3- 9.503e-16 8.694e-16 -15.022 -15.061 -0.039 (0) - [14C]O2 1.977e-16 1.981e-16 -15.704 -15.703 0.001 (0) - CaH[14C]O3+ 2.007e-17 1.841e-17 -16.698 -16.735 -0.037 (0) - H[14C][18O]O2- 1.896e-18 1.735e-18 -17.722 -17.761 -0.039 (0) - H[14C]O[18O]O- 1.896e-18 1.735e-18 -17.722 -17.761 -0.039 (0) - H[14C]O2[18O]- 1.896e-18 1.735e-18 -17.722 -17.761 -0.039 (0) - Ca[14C]O3 1.100e-18 1.102e-18 -17.959 -17.958 0.001 (0) - [14C]O[18O] 8.223e-19 8.236e-19 -18.085 -18.084 0.001 (0) - [14C]O3-2 5.643e-19 3.953e-19 -18.248 -18.403 -0.155 (0) - CaH[14C]O2[18O]+ 4.004e-20 3.673e-20 -19.398 -19.435 -0.037 (0) - CaH[14C][18O]O2+ 4.004e-20 3.673e-20 -19.398 -19.435 -0.037 (0) - CaH[14C]O[18O]O+ 4.004e-20 3.673e-20 -19.398 -19.435 -0.037 (0) - Ca[14C]O2[18O] 6.585e-21 6.596e-21 -20.181 -20.181 0.001 (0) - H[14C]O[18O]2- 3.783e-21 3.461e-21 -20.422 -20.461 -0.039 (0) - H[14C][18O]2O- 3.783e-21 3.461e-21 -20.422 -20.461 -0.039 (0) - H[14C][18O]O[18O]- 3.783e-21 3.461e-21 -20.422 -20.461 -0.039 (0) - [14C]O2[18O]-2 3.378e-21 2.366e-21 -20.471 -20.626 -0.155 (0) + [14C]H4 0.000e+00 0.000e+00 -134.372 -134.372 0.001 (0) +[14C](4) 1.175e-15 + H[14C]O3- 9.491e-16 8.683e-16 -15.023 -15.061 -0.039 (0) + [14C]O2 1.975e-16 1.978e-16 -15.704 -15.704 0.001 (0) + CaH[14C]O3+ 2.004e-17 1.839e-17 -16.698 -16.736 -0.037 (0) + H[14C]O2[18O]- 1.894e-18 1.732e-18 -17.723 -17.761 -0.039 (0) + H[14C]O[18O]O- 1.894e-18 1.732e-18 -17.723 -17.761 -0.039 (0) + H[14C][18O]O2- 1.894e-18 1.732e-18 -17.723 -17.761 -0.039 (0) + Ca[14C]O3 1.099e-18 1.101e-18 -17.959 -17.958 0.001 (0) + [14C]O[18O] 8.212e-19 8.226e-19 -18.086 -18.085 0.001 (0) + [14C]O3-2 5.636e-19 3.949e-19 -18.249 -18.404 -0.155 (0) + CaH[14C]O2[18O]+ 3.999e-20 3.668e-20 -19.398 -19.436 -0.037 (0) + CaH[14C]O[18O]O+ 3.999e-20 3.668e-20 -19.398 -19.436 -0.037 (0) + CaH[14C][18O]O2+ 3.999e-20 3.668e-20 -19.398 -19.436 -0.037 (0) + Ca[14C]O2[18O] 6.577e-21 6.587e-21 -20.182 -20.181 0.001 (0) + H[14C]O[18O]2- 3.778e-21 3.457e-21 -20.423 -20.461 -0.039 (0) + H[14C][18O]2O- 3.778e-21 3.457e-21 -20.423 -20.461 -0.039 (0) + H[14C][18O]O[18O]- 3.778e-21 3.457e-21 -20.423 -20.461 -0.039 (0) + [14C]O2[18O]-2 3.374e-21 2.363e-21 -20.472 -20.626 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.415e-16 - O[18O] 2.411e-16 2.415e-16 -15.618 -15.617 0.001 (0) - [18O]2 2.405e-19 2.409e-19 -18.619 -18.618 0.001 (0) +[18O](0) 1.121e-17 + O[18O] 1.118e-17 1.120e-17 -16.951 -16.951 0.001 (0) + [18O]2 1.116e-20 1.117e-20 -19.952 -19.952 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.43 -126.29 -2.86 [13C]H4 + [13C]H4(g) -120.77 -123.63 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.60 -21.10 -1.50 [14C][18O]2 - [14C]H4(g) -134.18 -137.04 -2.86 [14C]H4 - [14C]O2(g) -14.23 -15.70 -1.47 [14C]O2 + [14C]H4(g) -131.51 -134.37 -2.86 [14C]H4 + [14C]O2(g) -14.24 -15.70 -1.47 [14C]O2 [14C]O[18O](g) -16.62 -18.40 -1.79 [14C]O[18O] - [18O]2(g) -16.33 -18.62 -2.29 [18O]2 + [18O]2(g) -17.66 -19.95 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -5736,14 +5738,14 @@ O(0) 1.213e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.48 -124.34 -2.86 CH4 + CH4(g) -118.81 -121.67 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.43 -39.58 -3.15 H2 + H2(g) -35.77 -38.92 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.33 -13.22 -2.89 O2 - O[18O](g) -13.03 -15.92 -2.89 O[18O] + O2(g) -11.66 -14.55 -2.89 O2 + O[18O](g) -14.36 -17.25 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5767,12 +5769,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 27. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -5819,34 +5815,34 @@ Calcite 5.00e-04 Ca[13C]O2[18O](s) 3.38e-08 3.38e-08 6.76e-05 Ca[13C]O[18O]2(s) 6.94e-11 6.94e-11 1.39e-07 Ca[13C][18O]3(s) 4.75e-14 4.75e-14 9.49e-11 - Ca[14C]O3(s) 9.18e-17 9.18e-17 1.84e-13 + Ca[14C]O3(s) 9.17e-17 9.17e-17 1.83e-13 Ca[14C]O2[18O](s) 5.65e-19 5.65e-19 1.13e-15 Ca[14C]O[18O]2(s) 1.16e-21 1.16e-21 2.32e-18 - Ca[14C][18O]3(s) 1.00e-27 0.00e+00 2.00e-24 + Ca[14C][18O]3(s) 7.93e-25 7.92e-25 1.59e-21 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units R(18O) 1.99519e-03 -4.9933 permil - R(13C) 1.11276e-02 -4.7039 permil - R(14C) 1.85574e-13 15.782 pmc + R(13C) 1.11276e-02 -4.7014 permil + R(14C) 1.85346e-13 15.762 pmc R(18O) H2O(l) 1.99518e-03 -4.9948 permil R(18O) OH- 1.92122e-03 -41.882 permil R(18O) H3O+ 2.04132e-03 18.013 permil R(18O) O2(aq) 1.99518e-03 -4.9948 permil - R(13C) CO2(aq) 1.10480e-02 -11.827 permil - R(14C) CO2(aq) 1.82926e-13 15.556 pmc + R(13C) CO2(aq) 1.10480e-02 -11.824 permil + R(14C) CO2(aq) 1.82701e-13 15.537 pmc R(18O) CO2(aq) 2.07915e-03 36.879 permil R(18O) HCO3- 1.99518e-03 -4.9948 permil - R(13C) HCO3- 1.11441e-02 -3.2298 permil - R(14C) HCO3- 1.86122e-13 15.828 pmc + R(13C) HCO3- 1.11441e-02 -3.2274 permil + R(14C) HCO3- 1.85894e-13 15.809 pmc R(18O) CO3-2 1.99518e-03 -4.9948 permil - R(13C) CO3-2 1.11281e-02 -4.6603 permil - R(14C) CO3-2 1.85589e-13 15.783 pmc + R(13C) CO3-2 1.11281e-02 -4.6578 permil + R(14C) CO3-2 1.85360e-13 15.763 pmc R(18O) Calcite 2.05263e-03 23.651 permil - R(13C) Calcite 1.11662e-02 -1.2556 permil - R(14C) Calcite 1.86860e-13 15.891 pmc + R(13C) Calcite 1.11662e-02 -1.2531 permil + R(14C) Calcite 1.86631e-13 15.871 pmc --------------------------------Isotope Alphas--------------------------------- @@ -5856,12 +5852,12 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2645e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2571e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6884e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7135e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -5875,52 +5871,52 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.499e-05 6.480e-05 - [14C] 1.084e-15 1.081e-15 + [14C] 1.082e-15 1.079e-15 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.243 Adjusted to redox equilibrium + pe = 11.019 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.843e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 78 (179 overall) + Iterations = 87 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.452 -124.452 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.665 -122.664 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -5928,23 +5924,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.077e-08 6.087e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.894e-40 - H2 2.447e-40 2.451e-40 -39.611 -39.611 0.001 (0) -O(0) 1.385e-13 - O2 6.900e-14 6.911e-14 -13.161 -13.160 0.001 (0) - O[18O] 2.753e-16 2.758e-16 -15.560 -15.559 0.001 (0) +H(0) 1.370e-39 + H2 6.848e-40 6.859e-40 -39.164 -39.164 0.001 (0) +O(0) 1.769e-14 + O2 8.810e-15 8.824e-15 -14.055 -14.054 0.001 (0) + O[18O] 3.515e-17 3.521e-17 -16.454 -16.453 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.409 -126.408 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.621 -124.621 0.001 (0) [13C](4) 6.499e-05 - H[13C]O3- 5.242e-05 4.795e-05 -4.281 -4.319 -0.039 (0) + H[13C]O3- 5.242e-05 4.796e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.046e-07 9.568e-08 -6.981 -7.019 -0.039 (0) H[13C]O2[18O]- 1.046e-07 9.568e-08 -6.981 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.568e-08 -6.981 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.568e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.077e-08 6.087e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.575e-08 4.582e-08 -7.340 -7.339 0.001 (0) @@ -5953,56 +5949,56 @@ O(0) 1.385e-13 CaH[13C]O[18O]O+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.637e-10 3.643e-10 -9.439 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.190 -137.189 0.001 (0) -[14C](4) 1.084e-15 - H[14C]O3- 8.754e-16 8.009e-16 -15.058 -15.096 -0.039 (0) - [14C]O2 1.822e-16 1.825e-16 -15.740 -15.739 0.001 (0) - CaH[14C]O3+ 1.849e-17 1.696e-17 -16.733 -16.771 -0.037 (0) - H[14C][18O]O2- 1.747e-18 1.598e-18 -17.758 -17.796 -0.039 (0) - H[14C]O[18O]O- 1.747e-18 1.598e-18 -17.758 -17.796 -0.039 (0) - H[14C]O2[18O]- 1.747e-18 1.598e-18 -17.758 -17.796 -0.039 (0) - Ca[14C]O3 1.013e-18 1.015e-18 -17.994 -17.993 0.001 (0) - [14C]O[18O] 7.575e-19 7.587e-19 -18.121 -18.120 0.001 (0) - [14C]O3-2 5.199e-19 3.642e-19 -18.284 -18.439 -0.155 (0) - CaH[14C]O2[18O]+ 3.688e-20 3.383e-20 -19.433 -19.471 -0.037 (0) - CaH[14C][18O]O2+ 3.688e-20 3.383e-20 -19.433 -19.471 -0.037 (0) - CaH[14C]O[18O]O+ 3.688e-20 3.383e-20 -19.433 -19.471 -0.037 (0) - Ca[14C]O2[18O] 6.066e-21 6.076e-21 -20.217 -20.216 0.001 (0) - H[14C][18O]2O- 3.485e-21 3.188e-21 -20.458 -20.496 -0.039 (0) - H[14C][18O]O[18O]- 3.485e-21 3.188e-21 -20.458 -20.496 -0.039 (0) - H[14C]O[18O]2- 3.485e-21 3.188e-21 -20.458 -20.496 -0.039 (0) - [14C]O2[18O]-2 3.112e-21 2.180e-21 -20.507 -20.662 -0.155 (0) + [14C]H4 0.000e+00 0.000e+00 -135.403 -135.402 0.001 (0) +[14C](4) 1.082e-15 + H[14C]O3- 8.744e-16 7.999e-16 -15.058 -15.097 -0.039 (0) + [14C]O2 1.819e-16 1.822e-16 -15.740 -15.739 0.001 (0) + CaH[14C]O3+ 1.846e-17 1.694e-17 -16.734 -16.771 -0.037 (0) + H[14C]O2[18O]- 1.745e-18 1.596e-18 -17.758 -17.797 -0.039 (0) + H[14C]O[18O]O- 1.745e-18 1.596e-18 -17.758 -17.797 -0.039 (0) + H[14C][18O]O2- 1.745e-18 1.596e-18 -17.758 -17.797 -0.039 (0) + Ca[14C]O3 1.012e-18 1.014e-18 -17.995 -17.994 0.001 (0) + [14C]O[18O] 7.565e-19 7.578e-19 -18.121 -18.120 0.001 (0) + [14C]O3-2 5.192e-19 3.638e-19 -18.285 -18.439 -0.155 (0) + CaH[14C]O2[18O]+ 3.684e-20 3.379e-20 -19.434 -19.471 -0.037 (0) + CaH[14C]O[18O]O+ 3.684e-20 3.379e-20 -19.434 -19.471 -0.037 (0) + CaH[14C][18O]O2+ 3.684e-20 3.379e-20 -19.434 -19.471 -0.037 (0) + Ca[14C]O2[18O] 6.059e-21 6.068e-21 -20.218 -20.217 0.001 (0) + H[14C]O[18O]2- 3.481e-21 3.184e-21 -20.458 -20.497 -0.039 (0) + H[14C][18O]2O- 3.481e-21 3.184e-21 -20.458 -20.497 -0.039 (0) + H[14C][18O]O[18O]- 3.481e-21 3.184e-21 -20.458 -20.497 -0.039 (0) + [14C]O2[18O]-2 3.108e-21 2.177e-21 -20.508 -20.662 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.759e-16 - O[18O] 2.753e-16 2.758e-16 -15.560 -15.559 0.001 (0) - [18O]2 2.747e-19 2.751e-19 -18.561 -18.560 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 3.522e-17 + O[18O] 3.515e-17 3.521e-17 -16.454 -16.453 0.001 (0) + [18O]2 3.507e-20 3.513e-20 -19.455 -19.454 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.55 -126.41 -2.86 [13C]H4 + [13C]H4(g) -121.76 -124.62 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.64 -21.14 -1.50 [14C][18O]2 - [14C]H4(g) -134.33 -137.19 -2.86 [14C]H4 + [14C]H4(g) -132.54 -135.40 -2.86 [14C]H4 [14C]O2(g) -14.27 -15.74 -1.47 [14C]O2 [14C]O[18O](g) -16.65 -18.44 -1.79 [14C]O[18O] - [18O]2(g) -16.27 -18.56 -2.29 [18O]2 + [18O]2(g) -17.16 -19.45 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -6016,14 +6012,14 @@ O(0) 1.385e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.59 -124.45 -2.86 CH4 + CH4(g) -119.80 -122.66 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.46 -39.61 -3.15 H2 + H2(g) -36.01 -39.16 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.27 -13.16 -2.89 O2 - O[18O](g) -12.97 -15.86 -2.89 O[18O] + O2(g) -11.16 -14.05 -2.89 O2 + O[18O](g) -13.86 -16.75 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6047,12 +6043,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 28. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -6099,34 +6089,34 @@ Calcite 5.00e-04 Ca[13C]O2[18O](s) 3.38e-08 3.38e-08 6.76e-05 Ca[13C]O[18O]2(s) 6.94e-11 6.94e-11 1.39e-07 Ca[13C][18O]3(s) 4.75e-14 4.75e-14 9.49e-11 - Ca[14C]O3(s) 8.46e-17 8.46e-17 1.69e-13 - Ca[14C]O2[18O](s) 1.00e-27 0.00e+00 2.00e-24 + Ca[14C]O3(s) 8.45e-17 8.45e-17 1.69e-13 + Ca[14C]O2[18O](s) 5.20e-19 5.20e-19 1.04e-15 Ca[14C]O[18O]2(s) 1.07e-21 1.07e-21 2.14e-18 - Ca[14C][18O]3(s) 7.32e-25 7.31e-25 1.46e-21 + Ca[14C][18O]3(s) 7.31e-25 7.30e-25 1.46e-21 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units R(18O) 1.99519e-03 -4.9932 permil - R(13C) 1.11305e-02 -4.4435 permil - R(14C) 1.71039e-13 14.546 pmc + R(13C) 1.11305e-02 -4.4413 permil + R(14C) 1.70747e-13 14.521 pmc R(18O) H2O(l) 1.99518e-03 -4.9947 permil R(18O) OH- 1.92122e-03 -41.882 permil R(18O) H3O+ 2.04132e-03 18.013 permil R(18O) O2(aq) 1.99518e-03 -4.9947 permil - R(13C) CO2(aq) 1.10509e-02 -11.568 permil - R(14C) CO2(aq) 1.68598e-13 14.338 pmc + R(13C) CO2(aq) 1.10509e-02 -11.566 permil + R(14C) CO2(aq) 1.68310e-13 14.313 pmc R(18O) CO2(aq) 2.07915e-03 36.879 permil R(18O) HCO3- 1.99518e-03 -4.9947 permil - R(13C) HCO3- 1.11470e-02 -2.9691 permil - R(14C) HCO3- 1.71544e-13 14.588 pmc + R(13C) HCO3- 1.11470e-02 -2.9668 permil + R(14C) HCO3- 1.71251e-13 14.564 pmc R(18O) CO3-2 1.99518e-03 -4.9947 permil - R(13C) CO3-2 1.11310e-02 -4.3999 permil - R(14C) CO3-2 1.71052e-13 14.547 pmc + R(13C) CO3-2 1.11310e-02 -4.3976 permil + R(14C) CO3-2 1.70760e-13 14.522 pmc R(18O) Calcite 2.05263e-03 23.652 permil - R(13C) Calcite 1.11691e-02 -0.99432 permil - R(14C) Calcite 1.71170e-13 14.557 pmc + R(13C) Calcite 1.11691e-02 -0.99203 permil + R(14C) Calcite 1.71930e-13 14.621 pmc --------------------------------Isotope Alphas--------------------------------- @@ -6136,17 +6126,17 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2714e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2639e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6674e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.72e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0153 15.143 21.282 +Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ @@ -6155,42 +6145,42 @@ Alpha 14C Calcite/CO2(aq) 1.0153 15.143 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.500e-05 6.481e-05 - [14C] 9.989e-16 9.959e-16 + [14C] 9.972e-16 9.942e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.237 Adjusted to redox equilibrium + pe = 11.020 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.844e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 84 (185 overall) + Iterations = 73 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.407 -124.406 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.673 -122.673 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -6198,9 +6188,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -6208,87 +6198,87 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.078e-08 6.088e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.024e-40 - H2 2.512e-40 2.516e-40 -39.600 -39.599 0.001 (0) -O(0) 1.315e-13 - O2 6.548e-14 6.559e-14 -13.184 -13.183 0.001 (0) - O[18O] 2.613e-16 2.617e-16 -15.583 -15.582 0.001 (0) +H(0) 1.363e-39 + H2 6.814e-40 6.825e-40 -39.167 -39.166 0.001 (0) +O(0) 1.787e-14 + O2 8.897e-15 8.912e-15 -14.051 -14.050 0.001 (0) + O[18O] 3.550e-17 3.556e-17 -16.450 -16.449 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.364 -126.363 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.630 -124.629 0.001 (0) [13C](4) 6.500e-05 H[13C]O3- 5.243e-05 4.797e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) H[13C]O2[18O]- 1.046e-07 9.570e-08 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.046e-07 9.570e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.046e-07 9.570e-08 -6.980 -7.019 -0.039 (0) + H[13C][18O]O2- 1.046e-07 9.570e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.078e-08 6.088e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.576e-08 4.584e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.118e-08 2.184e-08 -7.506 -7.661 -0.155 (0) + CaH[13C]O2[18O]+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.638e-10 3.644e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.180 -137.179 0.001 (0) -[14C](4) 9.989e-16 - H[14C]O3- 8.069e-16 7.382e-16 -15.093 -15.132 -0.039 (0) - [14C]O2 1.679e-16 1.682e-16 -15.775 -15.774 0.001 (0) - CaH[14C]O3+ 1.704e-17 1.563e-17 -16.769 -16.806 -0.037 (0) - H[14C][18O]O2- 1.610e-18 1.473e-18 -17.793 -17.832 -0.039 (0) - H[14C]O[18O]O- 1.610e-18 1.473e-18 -17.793 -17.832 -0.039 (0) - H[14C]O2[18O]- 1.610e-18 1.473e-18 -17.793 -17.832 -0.039 (0) - Ca[14C]O3 9.341e-19 9.356e-19 -18.030 -18.029 0.001 (0) - [14C]O[18O] 6.981e-19 6.993e-19 -18.156 -18.155 0.001 (0) - [14C]O3-2 4.792e-19 3.357e-19 -18.320 -18.474 -0.155 (0) - CaH[14C]O2[18O]+ 3.399e-20 3.118e-20 -19.469 -19.506 -0.037 (0) - CaH[14C][18O]O2+ 3.399e-20 3.118e-20 -19.469 -19.506 -0.037 (0) - CaH[14C]O[18O]O+ 3.399e-20 3.118e-20 -19.469 -19.506 -0.037 (0) - Ca[14C]O2[18O] 5.591e-21 5.600e-21 -20.253 -20.252 0.001 (0) - H[14C][18O]O[18O]- 3.212e-21 2.939e-21 -20.493 -20.532 -0.039 (0) - H[14C]O[18O]2- 3.212e-21 2.939e-21 -20.493 -20.532 -0.039 (0) - H[14C][18O]2O- 3.212e-21 2.939e-21 -20.493 -20.532 -0.039 (0) - [14C]O2[18O]-2 2.868e-21 2.009e-21 -20.542 -20.697 -0.155 (0) + [14C]H4 0.000e+00 0.000e+00 -135.447 -135.446 0.001 (0) +[14C](4) 9.972e-16 + H[14C]O3- 8.055e-16 7.369e-16 -15.094 -15.133 -0.039 (0) + [14C]O2 1.676e-16 1.679e-16 -15.776 -15.775 0.001 (0) + CaH[14C]O3+ 1.701e-17 1.560e-17 -16.769 -16.807 -0.037 (0) + H[14C]O2[18O]- 1.607e-18 1.470e-18 -17.794 -17.833 -0.039 (0) + H[14C]O[18O]O- 1.607e-18 1.470e-18 -17.794 -17.833 -0.039 (0) + H[14C][18O]O2- 1.607e-18 1.470e-18 -17.794 -17.833 -0.039 (0) + Ca[14C]O3 9.325e-19 9.340e-19 -18.030 -18.030 0.001 (0) + [14C]O[18O] 6.970e-19 6.981e-19 -18.157 -18.156 0.001 (0) + [14C]O3-2 4.783e-19 3.351e-19 -18.320 -18.475 -0.155 (0) + CaH[14C]O2[18O]+ 3.394e-20 3.113e-20 -19.469 -19.507 -0.037 (0) + CaH[14C]O[18O]O+ 3.394e-20 3.113e-20 -19.469 -19.507 -0.037 (0) + CaH[14C][18O]O2+ 3.394e-20 3.113e-20 -19.469 -19.507 -0.037 (0) + Ca[14C]O2[18O] 5.581e-21 5.590e-21 -20.253 -20.253 0.001 (0) + H[14C]O[18O]2- 3.206e-21 2.934e-21 -20.494 -20.533 -0.039 (0) + H[14C][18O]2O- 3.206e-21 2.934e-21 -20.494 -20.533 -0.039 (0) + H[14C][18O]O[18O]- 3.206e-21 2.934e-21 -20.494 -20.533 -0.039 (0) + [14C]O2[18O]-2 2.863e-21 2.006e-21 -20.543 -20.698 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.618e-16 - O[18O] 2.613e-16 2.617e-16 -15.583 -15.582 0.001 (0) - [18O]2 2.607e-19 2.611e-19 -18.584 -18.583 0.001 (0) +[18O](0) 3.557e-17 + O[18O] 3.550e-17 3.556e-17 -16.450 -16.449 0.001 (0) + [18O]2 3.542e-20 3.548e-20 -19.451 -19.450 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.50 -126.36 -2.86 [13C]H4 + [13C]H4(g) -121.77 -124.63 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.67 -21.17 -1.50 [14C][18O]2 - [14C]H4(g) -134.32 -137.18 -2.86 [14C]H4 + [14C][18O]2(g) -19.67 -21.18 -1.50 [14C][18O]2 + [14C]H4(g) -132.59 -135.45 -2.86 [14C]H4 [14C]O2(g) -14.31 -15.77 -1.47 [14C]O2 - [14C]O[18O](g) -16.69 -18.47 -1.79 [14C]O[18O] - [18O]2(g) -16.29 -18.58 -2.29 [18O]2 + [14C]O[18O](g) -16.69 -18.48 -1.79 [14C]O[18O] + [18O]2(g) -17.16 -19.45 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.83 -12.68 8.15 Ca[14C][18O]3 + Ca[14C][18O]3(s) -20.84 -12.68 8.15 Ca[14C][18O]3 Ca[14C]O2[18O](s) -14.98 -7.28 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -12.77 -4.58 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -17.67 -9.98 7.69 Ca[14C]O[18O]2 @@ -6296,14 +6286,14 @@ O(0) 1.315e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.55 -124.41 -2.86 CH4 + CH4(g) -119.81 -122.67 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.45 -39.60 -3.15 H2 + H2(g) -36.02 -39.17 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.29 -13.18 -2.89 O2 - O[18O](g) -12.99 -15.88 -2.89 O[18O] + O2(g) -11.16 -14.05 -2.89 O2 + O[18O](g) -13.86 -16.75 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6327,6 +6317,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 29. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -6373,34 +6369,34 @@ Calcite 5.00e-04 Ca[13C]O2[18O](s) 3.38e-08 3.38e-08 6.76e-05 Ca[13C]O[18O]2(s) 6.94e-11 6.94e-11 1.39e-07 Ca[13C][18O]3(s) 4.75e-14 4.75e-14 9.50e-11 - Ca[14C]O3(s) 7.80e-17 7.80e-17 1.56e-13 - Ca[14C]O2[18O](s) 4.80e-19 4.80e-19 9.60e-16 - Ca[14C]O[18O]2(s) 9.86e-22 9.86e-22 1.97e-18 - Ca[14C][18O]3(s) 6.74e-25 6.73e-25 1.35e-21 + Ca[14C]O3(s) 7.78e-17 7.78e-17 1.56e-13 + Ca[14C]O2[18O](s) 4.79e-19 4.79e-19 9.59e-16 + Ca[14C]O[18O]2(s) 9.84e-22 9.84e-22 1.97e-18 + Ca[14C][18O]3(s) 6.73e-25 6.72e-25 1.35e-21 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units R(18O) 1.99519e-03 -4.993 permil - R(13C) 1.11332e-02 -4.2036 permil - R(14C) 1.57566e-13 13.4 pmc + R(13C) 1.11332e-02 -4.2015 permil + R(14C) 1.57297e-13 13.377 pmc R(18O) H2O(l) 1.99518e-03 -4.9945 permil R(18O) OH- 1.92122e-03 -41.882 permil R(18O) H3O+ 2.04132e-03 18.013 permil R(18O) O2(aq) 1.99518e-03 -4.9945 permil - R(13C) CO2(aq) 1.10535e-02 -11.33 permil - R(14C) CO2(aq) 1.55317e-13 13.209 pmc + R(13C) CO2(aq) 1.10536e-02 -11.328 permil + R(14C) CO2(aq) 1.55052e-13 13.186 pmc R(18O) CO2(aq) 2.07915e-03 36.879 permil R(18O) HCO3- 1.99518e-03 -4.9945 permil - R(13C) HCO3- 1.11497e-02 -2.7288 permil - R(14C) HCO3- 1.58032e-13 13.439 pmc + R(13C) HCO3- 1.11497e-02 -2.7267 permil + R(14C) HCO3- 1.57761e-13 13.416 pmc R(18O) CO3-2 1.99518e-03 -4.9945 permil - R(13C) CO3-2 1.11337e-02 -4.16 permil - R(14C) CO3-2 1.57578e-13 13.401 pmc + R(13C) CO3-2 1.11337e-02 -4.1579 permil + R(14C) CO3-2 1.57309e-13 13.378 pmc R(18O) Calcite 2.05263e-03 23.652 permil - R(13C) Calcite 1.11718e-02 -0.75356 permil - R(14C) Calcite 1.58658e-13 13.493 pmc + R(13C) Calcite 1.11718e-02 -0.75146 permil + R(14C) Calcite 1.58387e-13 13.47 pmc --------------------------------Isotope Alphas--------------------------------- @@ -6410,12 +6406,12 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2432e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2684e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7276e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.663e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -6429,52 +6425,52 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.502e-05 6.483e-05 - [14C] 9.202e-16 9.175e-16 + [14C] 9.186e-16 9.159e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.249 Adjusted to redox equilibrium + pe = 10.972 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.843e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 32 + Iterations = 112 (213 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.508 -124.507 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.285 -122.284 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -6482,81 +6478,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.080e-08 6.090e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.741e-40 - H2 2.370e-40 2.374e-40 -39.625 -39.624 0.001 (0) -O(0) 1.476e-13 - O2 7.353e-14 7.365e-14 -13.134 -13.133 0.001 (0) - O[18O] 2.934e-16 2.939e-16 -15.533 -15.532 0.001 (0) +H(0) 1.704e-39 + H2 8.522e-40 8.536e-40 -39.069 -39.069 0.001 (0) +O(0) 1.142e-14 + O2 5.689e-15 5.698e-15 -14.245 -14.244 0.001 (0) + O[18O] 2.270e-17 2.274e-17 -16.644 -16.643 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.464 -126.463 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.241 -124.241 0.001 (0) [13C](4) 6.502e-05 H[13C]O3- 5.244e-05 4.798e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C][18O]O2- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) H[13C]O2[18O]- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) + H[13C][18O]O2- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.080e-08 6.090e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.577e-08 4.585e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.119e-08 2.185e-08 -7.506 -7.661 -0.155 (0) - CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) + CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.639e-10 3.645e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.316 -137.316 0.001 (0) -[14C](4) 9.202e-16 - H[14C]O3- 7.433e-16 6.800e-16 -15.129 -15.167 -0.039 (0) - [14C]O2 1.547e-16 1.549e-16 -15.811 -15.810 0.001 (0) - CaH[14C]O3+ 1.570e-17 1.440e-17 -16.804 -16.842 -0.037 (0) - H[14C][18O]O2- 1.483e-18 1.357e-18 -17.829 -17.867 -0.039 (0) - H[14C]O[18O]O- 1.483e-18 1.357e-18 -17.829 -17.867 -0.039 (0) - H[14C]O2[18O]- 1.483e-18 1.357e-18 -17.829 -17.867 -0.039 (0) - Ca[14C]O3 8.605e-19 8.619e-19 -18.065 -18.065 0.001 (0) - [14C]O[18O] 6.432e-19 6.442e-19 -18.192 -18.191 0.001 (0) - [14C]O3-2 4.414e-19 3.092e-19 -18.355 -18.510 -0.155 (0) - CaH[14C]O2[18O]+ 3.132e-20 2.873e-20 -19.504 -19.542 -0.037 (0) - CaH[14C][18O]O2+ 3.132e-20 2.873e-20 -19.504 -19.542 -0.037 (0) - CaH[14C]O[18O]O+ 3.132e-20 2.873e-20 -19.504 -19.542 -0.037 (0) - Ca[14C]O2[18O] 5.150e-21 5.159e-21 -20.288 -20.287 0.001 (0) - H[14C]O[18O]2- 2.959e-21 2.707e-21 -20.529 -20.568 -0.039 (0) - H[14C][18O]2O- 2.959e-21 2.707e-21 -20.529 -20.568 -0.039 (0) - H[14C][18O]O[18O]- 2.959e-21 2.707e-21 -20.529 -20.568 -0.039 (0) - [14C]O2[18O]-2 2.642e-21 1.851e-21 -20.578 -20.733 -0.155 (0) + [14C]H4 0.000e+00 0.000e+00 -135.094 -135.094 0.001 (0) +[14C](4) 9.186e-16 + H[14C]O3- 7.420e-16 6.789e-16 -15.130 -15.168 -0.039 (0) + [14C]O2 1.544e-16 1.547e-16 -15.811 -15.811 0.001 (0) + CaH[14C]O3+ 1.567e-17 1.437e-17 -16.805 -16.842 -0.037 (0) + H[14C]O2[18O]- 1.481e-18 1.354e-18 -17.830 -17.868 -0.039 (0) + H[14C]O[18O]O- 1.481e-18 1.354e-18 -17.830 -17.868 -0.039 (0) + H[14C][18O]O2- 1.481e-18 1.354e-18 -17.830 -17.868 -0.039 (0) + Ca[14C]O3 8.590e-19 8.604e-19 -18.066 -18.065 0.001 (0) + [14C]O[18O] 6.421e-19 6.431e-19 -18.192 -18.192 0.001 (0) + [14C]O3-2 4.407e-19 3.087e-19 -18.356 -18.510 -0.155 (0) + CaH[14C]O2[18O]+ 3.126e-20 2.868e-20 -19.505 -19.542 -0.037 (0) + CaH[14C]O[18O]O+ 3.126e-20 2.868e-20 -19.505 -19.542 -0.037 (0) + CaH[14C][18O]O2+ 3.126e-20 2.868e-20 -19.505 -19.542 -0.037 (0) + Ca[14C]O2[18O] 5.142e-21 5.150e-21 -20.289 -20.288 0.001 (0) + H[14C]O[18O]2- 2.954e-21 2.702e-21 -20.530 -20.568 -0.039 (0) + H[14C][18O]2O- 2.954e-21 2.702e-21 -20.530 -20.568 -0.039 (0) + H[14C][18O]O[18O]- 2.954e-21 2.702e-21 -20.530 -20.568 -0.039 (0) + [14C]O2[18O]-2 2.638e-21 1.848e-21 -20.579 -20.733 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.940e-16 - O[18O] 2.934e-16 2.939e-16 -15.533 -15.532 0.001 (0) - [18O]2 2.927e-19 2.932e-19 -18.534 -18.533 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.274e-17 + O[18O] 2.270e-17 2.274e-17 -16.644 -16.643 0.001 (0) + [18O]2 2.264e-20 2.268e-20 -19.645 -19.644 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.60 -126.46 -2.86 [13C]H4 + [13C]H4(g) -121.38 -124.24 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.71 -21.21 -1.50 [14C][18O]2 - [14C]H4(g) -134.46 -137.32 -2.86 [14C]H4 + [14C]H4(g) -132.23 -135.09 -2.86 [14C]H4 [14C]O2(g) -14.34 -15.81 -1.47 [14C]O2 [14C]O[18O](g) -16.72 -18.51 -1.79 [14C]O[18O] - [18O]2(g) -16.24 -18.53 -2.29 [18O]2 + [18O]2(g) -17.35 -19.64 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -6570,14 +6566,14 @@ O(0) 1.476e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.65 -124.51 -2.86 CH4 + CH4(g) -119.42 -122.28 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.47 -39.62 -3.15 H2 + H2(g) -35.92 -39.07 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.24 -13.13 -2.89 O2 - O[18O](g) -12.94 -15.83 -2.89 O[18O] + O2(g) -11.35 -14.24 -2.89 O2 + O[18O](g) -14.05 -16.94 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6601,12 +6597,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 30. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -6653,34 +6643,35 @@ Calcite 5.00e-04 Ca[13C]O2[18O](s) 3.38e-08 3.38e-08 6.76e-05 Ca[13C]O[18O]2(s) 6.94e-11 6.94e-11 1.39e-07 Ca[13C][18O]3(s) 4.75e-14 4.75e-14 9.50e-11 - Ca[14C]O3(s) 7.18e-17 7.18e-17 1.44e-13 - Ca[14C]O2[18O](s) 4.42e-19 4.42e-19 8.85e-16 - Ca[14C]O[18O]2(s) 9.08e-22 9.08e-22 1.82e-18 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[14C]O3(s) 7.17e-17 7.17e-17 1.43e-13 + Ca[14C]O2[18O](s) 4.42e-19 4.42e-19 8.83e-16 + Ca[14C]O[18O]2(s) 9.06e-22 9.06e-22 1.81e-18 + Ca[14C][18O]3(s) 6.20e-25 6.19e-25 1.24e-21 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units R(18O) 1.99519e-03 -4.9929 permil - R(13C) 1.11357e-02 -3.9825 permil - R(14C) 1.45155e-13 12.344 pmc + R(13C) 1.11357e-02 -3.9806 permil + R(14C) 1.44907e-13 12.323 pmc R(18O) H2O(l) 1.99519e-03 -4.9944 permil R(18O) OH- 1.92122e-03 -41.882 permil R(18O) H3O+ 2.04132e-03 18.013 permil - R(18O) O2(aq) 1.99519e-03 -4.9944 permil - R(13C) CO2(aq) 1.10560e-02 -11.111 permil - R(14C) CO2(aq) 1.43083e-13 12.168 pmc + R(13C) CO2(aq) 1.10560e-02 -11.109 permil + R(14C) CO2(aq) 1.42838e-13 12.147 pmc R(18O) CO2(aq) 2.07915e-03 36.879 permil R(18O) HCO3- 1.99519e-03 -4.9944 permil - R(13C) HCO3- 1.11522e-02 -2.5074 permil - R(14C) HCO3- 1.45584e-13 12.381 pmc + R(13C) HCO3- 1.11522e-02 -2.5055 permil + R(14C) HCO3- 1.45335e-13 12.36 pmc R(18O) CO3-2 1.99519e-03 -4.9944 permil - R(13C) CO3-2 1.11362e-02 -3.9389 permil - R(14C) CO3-2 1.45166e-13 12.345 pmc + R(13C) CO3-2 1.11362e-02 -3.937 permil + R(14C) CO3-2 1.44918e-13 12.324 pmc + R(13C) CH4(aq) 1.10560e-02 -11.109 permil + R(14C) CH4(aq) 1.42838e-13 12.147 pmc R(18O) Calcite 2.05263e-03 23.652 permil - R(13C) Calcite 1.11743e-02 -0.53171 permil - R(14C) Calcite 1.46161e-13 12.43 pmc + R(13C) Calcite 1.11743e-02 -0.52978 permil + R(14C) Calcite 1.45911e-13 12.409 pmc --------------------------------Isotope Alphas--------------------------------- @@ -6690,14 +6681,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2791e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7167e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7228e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 6.4393e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -6.2172e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -6709,41 +6701,41 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.503e-05 6.484e-05 - [14C] 8.477e-16 8.452e-16 + [14C] 8.462e-16 8.438e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.229 Adjusted to redox equilibrium + pe = -1.294 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.843e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 42 (143 overall) + Iterations = 77 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.341 -124.341 0.001 (0) +C(-4) 6.922e-25 + CH4 6.922e-25 6.933e-25 -24.160 -24.159 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -6752,9 +6744,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -6762,23 +6754,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.081e-08 6.091e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.217e-40 - H2 2.608e-40 2.613e-40 -39.584 -39.583 0.001 (0) -O(0) 1.219e-13 - O2 6.073e-14 6.083e-14 -13.217 -13.216 0.001 (0) - O[18O] 2.423e-16 2.427e-16 -15.616 -15.615 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.298 -126.297 0.001 (0) +H(0) 5.792e-15 + H2 2.896e-15 2.901e-15 -14.538 -14.537 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -63.307 -63.307 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -65.706 -65.706 0.001 (0) +[13C](-4) 7.653e-27 + [13C]H4 7.653e-27 7.665e-27 -26.116 -26.115 0.001 (0) [13C](4) 6.503e-05 H[13C]O3- 5.245e-05 4.799e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) H[13C]O2[18O]- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.081e-08 6.091e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.578e-08 4.586e-08 -7.339 -7.339 0.001 (0) @@ -6787,56 +6779,56 @@ O(0) 1.219e-13 CaH[13C]O[18O]O+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.640e-10 3.646e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.186 -137.185 0.001 (0) -[14C](4) 8.477e-16 - H[14C]O3- 6.848e-16 6.265e-16 -15.164 -15.203 -0.039 (0) - [14C]O2 1.425e-16 1.427e-16 -15.846 -15.846 0.001 (0) - CaH[14C]O3+ 1.446e-17 1.326e-17 -16.840 -16.877 -0.037 (0) - H[14C][18O]O2- 1.366e-18 1.250e-18 -17.864 -17.903 -0.039 (0) - H[14C]O[18O]O- 1.366e-18 1.250e-18 -17.864 -17.903 -0.039 (0) - H[14C]O2[18O]- 1.366e-18 1.250e-18 -17.864 -17.903 -0.039 (0) - Ca[14C]O3 7.927e-19 7.940e-19 -18.101 -18.100 0.001 (0) - [14C]O[18O] 5.925e-19 5.935e-19 -18.227 -18.227 0.001 (0) - [14C]O3-2 4.066e-19 2.849e-19 -18.391 -18.545 -0.155 (0) - CaH[14C]O2[18O]+ 2.885e-20 2.647e-20 -19.540 -19.577 -0.037 (0) - CaH[14C][18O]O2+ 2.885e-20 2.647e-20 -19.540 -19.577 -0.037 (0) - CaH[14C]O[18O]O+ 2.885e-20 2.647e-20 -19.540 -19.577 -0.037 (0) - Ca[14C]O2[18O] 4.745e-21 4.753e-21 -20.324 -20.323 0.001 (0) - H[14C][18O]2O- 2.726e-21 2.494e-21 -20.564 -20.603 -0.039 (0) - H[14C][18O]O[18O]- 2.726e-21 2.494e-21 -20.564 -20.603 -0.039 (0) - H[14C]O[18O]2- 2.726e-21 2.494e-21 -20.564 -20.603 -0.039 (0) - [14C]O2[18O]-2 2.434e-21 1.705e-21 -20.614 -20.768 -0.155 (0) +[14C](-4) 9.887e-38 + [14C]H4 9.887e-38 9.903e-38 -37.005 -37.004 0.001 (0) +[14C](4) 8.462e-16 + H[14C]O3- 6.836e-16 6.254e-16 -15.165 -15.204 -0.039 (0) + [14C]O2 1.422e-16 1.425e-16 -15.847 -15.846 0.001 (0) + CaH[14C]O3+ 1.444e-17 1.324e-17 -16.841 -16.878 -0.037 (0) + H[14C]O2[18O]- 1.364e-18 1.248e-18 -17.865 -17.904 -0.039 (0) + H[14C]O[18O]O- 1.364e-18 1.248e-18 -17.865 -17.904 -0.039 (0) + H[14C][18O]O2- 1.364e-18 1.248e-18 -17.865 -17.904 -0.039 (0) + Ca[14C]O3 7.913e-19 7.926e-19 -18.102 -18.101 0.001 (0) + [14C]O[18O] 5.915e-19 5.925e-19 -18.228 -18.227 0.001 (0) + [14C]O3-2 4.059e-19 2.844e-19 -18.392 -18.546 -0.155 (0) + CaH[14C]O2[18O]+ 2.880e-20 2.642e-20 -19.541 -19.578 -0.037 (0) + CaH[14C]O[18O]O+ 2.880e-20 2.642e-20 -19.541 -19.578 -0.037 (0) + CaH[14C][18O]O2+ 2.880e-20 2.642e-20 -19.541 -19.578 -0.037 (0) + Ca[14C]O2[18O] 4.737e-21 4.744e-21 -20.325 -20.324 0.001 (0) + H[14C]O[18O]2- 2.721e-21 2.490e-21 -20.565 -20.604 -0.039 (0) + H[14C][18O]2O- 2.721e-21 2.490e-21 -20.565 -20.604 -0.039 (0) + H[14C][18O]O[18O]- 2.721e-21 2.490e-21 -20.565 -20.604 -0.039 (0) + [14C]O2[18O]-2 2.430e-21 1.702e-21 -20.614 -20.769 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.428e-16 - O[18O] 2.423e-16 2.427e-16 -15.616 -15.615 0.001 (0) - [18O]2 2.417e-19 2.421e-19 -18.617 -18.616 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -65.706 -65.706 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -68.708 -68.707 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.44 -126.30 -2.86 [13C]H4 + [13C]H4(g) -23.26 -26.12 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.74 -21.25 -1.50 [14C][18O]2 - [14C]H4(g) -134.33 -137.19 -2.86 [14C]H4 + [14C]H4(g) -34.14 -37.00 -2.86 [14C]H4 [14C]O2(g) -14.38 -15.85 -1.47 [14C]O2 [14C]O[18O](g) -16.76 -18.55 -1.79 [14C]O[18O] - [18O]2(g) -16.33 -18.62 -2.29 [18O]2 + [18O]2(g) -66.42 -68.71 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -6850,14 +6842,14 @@ O(0) 1.219e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.48 -124.34 -2.86 CH4 + CH4(g) -21.30 -24.16 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.43 -39.58 -3.15 H2 + H2(g) -11.39 -14.54 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.32 -13.22 -2.89 O2 - O[18O](g) -13.02 -15.92 -2.89 O[18O] + O2(g) -60.41 -63.31 -2.89 O2 + O[18O](g) -63.11 -66.01 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6887,30 +6879,6 @@ WARNING: Numerical method failed with this set of convergence parameters. WARNING: Trying reduced tolerance 1e-16 ... -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying increased tolerance 1e-14 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying diagonal scaling ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying diagonal scaling and reduced tolerance 1e-16 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying scaling pure_phase columns 1e-10 ... - Using solution 1. Solution after simulation 31. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -6948,43 +6916,44 @@ Calcite added: 0 Solid solution Component Moles Delta moles Mole fract -Calcite 1.21e-26 - Calcite 1.01e-27 1.01e-29 8.33e-02 - CaCO2[18O](s) 1.01e-27 1.01e-29 8.33e-02 - CaCO[18O]2(s) 1.01e-27 1.01e-29 8.33e-02 - CaC[18O]3(s) 1.01e-27 1.01e-29 8.33e-02 - Ca[13C]O3(s) 1.01e-27 1.01e-29 8.33e-02 - Ca[13C]O2[18O](s) 1.01e-27 1.01e-29 8.33e-02 - Ca[13C]O[18O]2(s) 1.01e-27 1.01e-29 8.33e-02 - Ca[13C][18O]3(s) 1.01e-27 1.01e-29 8.33e-02 - Ca[14C]O3(s) 1.01e-27 1.01e-29 8.33e-02 - Ca[14C]O2[18O](s) 1.01e-27 1.01e-29 8.33e-02 - Ca[14C]O[18O]2(s) 1.01e-27 1.01e-29 8.33e-02 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 8.33e-02 +Calcite 5.00e-04 + Calcite 4.91e-04 4.91e-04 9.83e-01 + CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 + CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 + CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 + Ca[13C]O3(s) 5.49e-06 5.49e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.38e-08 3.38e-08 6.76e-05 + Ca[13C]O[18O]2(s) 6.94e-11 6.94e-11 1.39e-07 + Ca[13C][18O]3(s) 4.75e-14 4.75e-14 9.50e-11 + Ca[14C]O3(s) 6.61e-17 6.61e-17 1.32e-13 + Ca[14C]O2[18O](s) 4.07e-19 4.07e-19 8.14e-16 + Ca[14C]O[18O]2(s) 8.35e-22 8.35e-22 1.67e-18 + Ca[14C][18O]3(s) 5.71e-25 5.70e-25 1.14e-21 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99519e-03 -4.992 permil - R(13C) 1.11410e-02 -3.5087 permil - R(14C) 1.33793e-13 11.378 pmc - R(18O) H2O(l) 1.99519e-03 -4.9928 permil - R(18O) OH- 1.92122e-03 -41.88 permil - R(18O) H3O+ 2.04132e-03 18.015 permil - R(18O) O2(aq) 1.99519e-03 -4.9928 permil - R(13C) CO2(aq) 1.10528e-02 -11.397 permil - R(14C) CO2(aq) 1.31683e-13 11.199 pmc - R(18O) CO2(aq) 2.07915e-03 36.881 permil - R(18O) HCO3- 1.99519e-03 -4.9928 permil - R(13C) HCO3- 1.11489e-02 -2.7959 permil - R(14C) HCO3- 1.33984e-13 11.394 pmc - R(18O) CO3-2 1.99519e-03 -4.9928 permil - R(13C) CO3-2 1.11329e-02 -4.227 permil - R(14C) CO3-2 1.33600e-13 11.362 pmc - R(18O) Calcite 9.99999e-01 4.977e+05 permil - R(13C) Calcite 1.00000e+00 88444 permil - R(14C) Calcite 1.00000e+00 8.5042e+13 pmc + R(18O) 1.99519e-03 -4.9927 permil + R(13C) 1.11380e-02 -3.777 permil + R(14C) 1.33492e-13 11.352 pmc + R(18O) H2O(l) 1.99519e-03 -4.9943 permil + R(18O) OH- 1.92122e-03 -41.881 permil + R(18O) H3O+ 2.04132e-03 18.014 permil + R(13C) CO2(aq) 1.10583e-02 -10.907 permil + R(14C) CO2(aq) 1.31587e-13 11.19 pmc + R(18O) CO2(aq) 2.07915e-03 36.88 permil + R(18O) HCO3- 1.99519e-03 -4.9943 permil + R(13C) HCO3- 1.11545e-02 -2.3016 permil + R(14C) HCO3- 1.33887e-13 11.386 pmc + R(18O) CO3-2 1.99519e-03 -4.9943 permil + R(13C) CO3-2 1.11385e-02 -3.7334 permil + R(14C) CO3-2 1.33503e-13 11.353 pmc + R(13C) CH4(aq) 1.10583e-02 -10.907 permil + R(14C) CH4(aq) 1.31587e-13 11.19 pmc + R(18O) Calcite 2.05263e-03 23.652 permil + R(13C) Calcite 1.11766e-02 -0.3255 permil + R(14C) Calcite 1.34417e-13 11.431 pmc --------------------------------Isotope Alphas--------------------------------- @@ -6994,180 +6963,175 @@ Calcite 1.21e-26 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2575e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6058e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5865e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 501.21 6217 28.383 -Alpha 13C Calcite/CO2(aq) 90.475 4505.1 10.641 -Alpha 14C Calcite/CO2(aq) 7.594e+12 29658 21.282 +Alpha 13C CH4(aq)/CO2(aq) 1 -7.3275e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -7.1054e-12 0 +Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 +Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 +Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 6.336e-03 6.317e-03 - Ca 2.953e-03 2.944e-03 - [13C] 7.059e-05 7.038e-05 - [14C] 8.477e-16 8.452e-16 + C 5.840e-03 5.823e-03 + Ca 2.451e-03 2.444e-03 + [13C] 6.505e-05 6.486e-05 + [14C] 7.796e-16 7.773e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- - pH = 7.346 Charge balance - pe = 10.886 Adjusted to redox equilibrium + pH = 6.989 Charge balance + pe = -1.706 Adjusted to redox equilibrium Activity of water = 0.998 - Ionic strength (mol/kgw) = 8.534e-03 + Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 - Total alkalinity (eq/kg) = 5.905e-03 - Total CO2 (mol/kg) = 6.336e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Total alkalinity (eq/kg) = 4.902e-03 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.843e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 67 (972 overall) + Iterations = 86 (187 overall) Total H = 1.110126e+02 - Total O = 5.541146e+01 + Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 2.438e-07 2.210e-07 -6.613 -6.656 -0.043 (0) - H3O+ 4.912e-08 4.511e-08 -7.309 -7.346 -0.037 0.00 + H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 + OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.737 -124.736 0.001 (0) -C(4) 6.336e-03 - HCO3- 5.618e-03 5.102e-03 -2.250 -2.292 -0.042 (0) - CO2 5.187e-04 5.197e-04 -3.285 -3.284 0.001 (0) - CaHCO3+ 1.375e-04 1.253e-04 -3.862 -3.902 -0.040 (0) - CaCO3 1.708e-05 1.711e-05 -4.768 -4.767 0.001 (0) - HC[18O]O2- 1.121e-05 1.018e-05 -4.950 -4.992 -0.042 (0) - HCO2[18O]- 1.121e-05 1.018e-05 -4.950 -4.992 -0.042 (0) - HCO[18O]O- 1.121e-05 1.018e-05 -4.950 -4.992 -0.042 (0) - CO3-2 7.783e-06 5.295e-06 -5.109 -5.276 -0.167 (0) - CO[18O] 2.157e-06 2.161e-06 -5.666 -5.665 0.001 (0) - CaHCO2[18O]+ 2.744e-07 2.500e-07 -6.562 -6.602 -0.040 (0) - CaHC[18O]O2+ 2.744e-07 2.500e-07 -6.562 -6.602 -0.040 (0) - CaHCO[18O]O+ 2.744e-07 2.500e-07 -6.562 -6.602 -0.040 (0) - CaCO2[18O] 1.022e-07 1.024e-07 -6.990 -6.990 0.001 (0) - CO2[18O]-2 4.658e-08 3.169e-08 -7.332 -7.499 -0.167 (0) - HC[18O]2O- 2.236e-08 2.031e-08 -7.650 -7.692 -0.042 (0) - HCO[18O]2- 2.236e-08 2.031e-08 -7.650 -7.692 -0.042 (0) - HC[18O]O[18O]- 2.236e-08 2.031e-08 -7.650 -7.692 -0.042 (0) -Ca 2.953e-03 - Ca+2 2.795e-03 1.924e-03 -2.554 -2.716 -0.162 (0) - CaHCO3+ 1.375e-04 1.253e-04 -3.862 -3.902 -0.040 (0) - CaCO3 1.708e-05 1.711e-05 -4.768 -4.767 0.001 (0) - CaH[13C]O3+ 1.533e-06 1.397e-06 -5.814 -5.855 -0.040 (0) - CaHCO2[18O]+ 2.744e-07 2.500e-07 -6.562 -6.602 -0.040 (0) - CaHC[18O]O2+ 2.744e-07 2.500e-07 -6.562 -6.602 -0.040 (0) - CaHCO[18O]O+ 2.744e-07 2.500e-07 -6.562 -6.602 -0.040 (0) - Ca[13C]O3 1.901e-07 1.905e-07 -6.721 -6.720 0.001 (0) - CaCO2[18O] 1.022e-07 1.024e-07 -6.990 -6.990 0.001 (0) - CaH[13C]O[18O]O+ 3.059e-09 2.787e-09 -8.514 -8.555 -0.040 (0) - CaH[13C]O2[18O]+ 3.059e-09 2.787e-09 -8.514 -8.555 -0.040 (0) - CaH[13C][18O]O2+ 3.059e-09 2.787e-09 -8.514 -8.555 -0.040 (0) -H(0) 4.889e-40 - H2 2.445e-40 2.449e-40 -39.612 -39.611 0.001 (0) -O(0) 1.387e-13 - O2 6.906e-14 6.920e-14 -13.161 -13.160 0.001 (0) - O[18O] 2.756e-16 2.761e-16 -15.560 -15.559 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.693 -126.692 0.001 (0) -[13C](4) 7.059e-05 - H[13C]O3- 6.263e-05 5.688e-05 -4.203 -4.245 -0.042 (0) - [13C]O2 5.733e-06 5.745e-06 -5.242 -5.241 0.001 (0) - CaH[13C]O3+ 1.533e-06 1.397e-06 -5.814 -5.855 -0.040 (0) - Ca[13C]O3 1.901e-07 1.905e-07 -6.721 -6.720 0.001 (0) - H[13C][18O]O2- 1.250e-07 1.135e-07 -6.903 -6.945 -0.042 (0) - H[13C]O2[18O]- 1.250e-07 1.135e-07 -6.903 -6.945 -0.042 (0) - H[13C]O[18O]O- 1.250e-07 1.135e-07 -6.903 -6.945 -0.042 (0) - [13C]O3-2 8.665e-08 5.894e-08 -7.062 -7.230 -0.167 (0) - [13C]O[18O] 2.384e-08 2.389e-08 -7.623 -7.622 0.001 (0) - CaH[13C]O2[18O]+ 3.059e-09 2.787e-09 -8.514 -8.555 -0.040 (0) - CaH[13C]O[18O]O+ 3.059e-09 2.787e-09 -8.514 -8.555 -0.040 (0) - CaH[13C][18O]O2+ 3.059e-09 2.787e-09 -8.514 -8.555 -0.040 (0) - Ca[13C]O2[18O] 1.138e-09 1.140e-09 -8.944 -8.943 0.001 (0) - [13C]O2[18O]-2 5.186e-10 3.528e-10 -9.285 -9.452 -0.167 (0) - H[13C]O[18O]2- 2.493e-10 2.264e-10 -9.603 -9.645 -0.042 (0) - H[13C][18O]2O- 2.493e-10 2.264e-10 -9.603 -9.645 -0.042 (0) - H[13C][18O]O[18O]- 2.493e-10 2.264e-10 -9.603 -9.645 -0.042 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.617 -137.616 0.001 (0) -[14C](4) 8.477e-16 - H[14C]O3- 7.527e-16 6.836e-16 -15.123 -15.165 -0.042 (0) - [14C]O2 6.831e-17 6.844e-17 -16.166 -16.165 0.001 (0) - CaH[14C]O3+ 1.843e-17 1.679e-17 -16.735 -16.775 -0.040 (0) - Ca[14C]O3 2.282e-18 2.286e-18 -17.642 -17.641 0.001 (0) - H[14C]O2[18O]- 1.502e-18 1.364e-18 -17.823 -17.865 -0.042 (0) - H[14C]O[18O]O- 1.502e-18 1.364e-18 -17.823 -17.865 -0.042 (0) - H[14C][18O]O2- 1.502e-18 1.364e-18 -17.823 -17.865 -0.042 (0) - [14C]O3-2 1.040e-18 7.074e-19 -17.983 -18.150 -0.167 (0) - [14C]O[18O] 2.840e-19 2.846e-19 -18.547 -18.546 0.001 (0) - CaH[14C][18O]O2+ 3.676e-20 3.349e-20 -19.435 -19.475 -0.040 (0) - CaH[14C]O[18O]O+ 3.676e-20 3.349e-20 -19.435 -19.475 -0.040 (0) - CaH[14C]O2[18O]+ 3.676e-20 3.349e-20 -19.435 -19.475 -0.040 (0) - Ca[14C]O2[18O] 1.366e-20 1.369e-20 -19.865 -19.864 0.001 (0) - [14C]O2[18O]-2 6.224e-21 4.234e-21 -20.206 -20.373 -0.167 (0) - H[14C]O[18O]2- 2.996e-21 2.721e-21 -20.523 -20.565 -0.042 (0) - H[14C][18O]O[18O]- 2.996e-21 2.721e-21 -20.523 -20.565 -0.042 (0) - H[14C][18O]2O- 2.996e-21 2.721e-21 -20.523 -20.565 -0.042 (0) +C(-4) 1.370e-21 + CH4 1.370e-21 1.373e-21 -20.863 -20.862 0.001 (0) +C(4) 5.840e-03 + HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) +Ca 2.451e-03 + Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) + CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 3.863e-14 + H2 1.932e-14 1.935e-14 -13.714 -13.713 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -64.956 -64.955 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.355 -67.354 0.001 (0) +[13C](-4) 1.515e-23 + [13C]H4 1.515e-23 1.518e-23 -22.819 -22.819 0.001 (0) +[13C](4) 6.505e-05 + H[13C]O3- 5.247e-05 4.800e-05 -4.280 -4.319 -0.039 (0) + [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) + CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) + H[13C]O2[18O]- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) + H[13C][18O]O2- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) + Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) + [13C]O[18O] 4.579e-08 4.587e-08 -7.339 -7.339 0.001 (0) + [13C]O3-2 3.120e-08 2.186e-08 -7.506 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) + CaH[13C]O[18O]O+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) + CaH[13C][18O]O2+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) + Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + [13C]O2[18O]-2 1.868e-10 1.308e-10 -9.729 -9.883 -0.155 (0) +[14C](-4) 1.803e-34 + [14C]H4 1.803e-34 1.806e-34 -33.744 -33.743 0.001 (0) +[14C](4) 7.796e-16 + H[14C]O3- 6.297e-16 5.761e-16 -15.201 -15.239 -0.039 (0) + [14C]O2 1.310e-16 1.313e-16 -15.883 -15.882 0.001 (0) + CaH[14C]O3+ 1.330e-17 1.220e-17 -16.876 -16.914 -0.037 (0) + H[14C]O2[18O]- 1.256e-18 1.149e-18 -17.901 -17.939 -0.039 (0) + H[14C]O[18O]O- 1.256e-18 1.149e-18 -17.901 -17.939 -0.039 (0) + H[14C][18O]O2- 1.256e-18 1.149e-18 -17.901 -17.939 -0.039 (0) + Ca[14C]O3 7.290e-19 7.302e-19 -18.137 -18.137 0.001 (0) + [14C]O[18O] 5.449e-19 5.458e-19 -18.264 -18.263 0.001 (0) + [14C]O3-2 3.740e-19 2.620e-19 -18.427 -18.582 -0.155 (0) + CaH[14C]O2[18O]+ 2.653e-20 2.434e-20 -19.576 -19.614 -0.037 (0) + CaH[14C]O[18O]O+ 2.653e-20 2.434e-20 -19.576 -19.614 -0.037 (0) + CaH[14C][18O]O2+ 2.653e-20 2.434e-20 -19.576 -19.614 -0.037 (0) + Ca[14C]O2[18O] 4.364e-21 4.371e-21 -20.360 -20.359 0.001 (0) + H[14C]O[18O]2- 2.507e-21 2.293e-21 -20.601 -20.640 -0.039 (0) + H[14C][18O]2O- 2.507e-21 2.293e-21 -20.601 -20.640 -0.039 (0) + H[14C][18O]O[18O]- 2.507e-21 2.293e-21 -20.601 -20.640 -0.039 (0) + [14C]O2[18O]-2 2.238e-21 1.568e-21 -20.650 -20.805 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HC[18O]O2- 1.121e-05 1.018e-05 -4.950 -4.992 -0.042 (0) - HCO[18O]O- 1.121e-05 1.018e-05 -4.950 -4.992 -0.042 (0) - HCO2[18O]- 1.121e-05 1.018e-05 -4.950 -4.992 -0.042 (0) - CO[18O] 2.157e-06 2.161e-06 -5.666 -5.665 0.001 (0) - CaHCO2[18O]+ 2.744e-07 2.500e-07 -6.562 -6.602 -0.040 (0) - CaHC[18O]O2+ 2.744e-07 2.500e-07 -6.562 -6.602 -0.040 (0) - CaHCO[18O]O+ 2.744e-07 2.500e-07 -6.562 -6.602 -0.040 (0) - H[13C]O2[18O]- 1.250e-07 1.135e-07 -6.903 -6.945 -0.042 (0) - H[13C][18O]O2- 1.250e-07 1.135e-07 -6.903 -6.945 -0.042 (0) - H[13C]O[18O]O- 1.250e-07 1.135e-07 -6.903 -6.945 -0.042 (0) -[18O](0) 2.761e-16 - O[18O] 2.756e-16 2.761e-16 -15.560 -15.559 0.001 (0) - [18O]2 2.749e-19 2.755e-19 -18.561 -18.560 0.001 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -67.355 -67.354 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.356 -70.355 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -9.14 -10.64 -1.50 [13C][18O]2 - [13C]H4(g) -123.83 -126.69 -2.86 [13C]H4 - [13C]O2(g) -3.77 -5.24 -1.47 [13C]O2 - [13C]O[18O](g) -6.15 -7.94 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.06 -21.56 -1.50 [14C][18O]2 - [14C]H4(g) -134.76 -137.62 -2.86 [14C]H4 - [14C]O2(g) -14.70 -16.16 -1.47 [14C]O2 - [14C]O[18O](g) -17.08 -18.86 -1.79 [14C]O[18O] - [18O]2(g) -16.27 -18.56 -2.29 [18O]2 - C[18O]2(g) -7.18 -8.68 -1.50 C[18O]2 - Ca[13C][18O]3(s) -9.53 -1.37 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -3.67 4.03 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.46 6.73 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.36 1.33 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.45 -12.29 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.59 -6.89 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.38 -4.19 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.28 -9.59 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -7.58 0.59 8.16 CaC[18O]3 - CaCO2[18O](s) -1.72 5.99 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.41 3.29 7.70 CaCO[18O]2 - Calcite 0.49 -7.99 -8.48 CaCO3 - CH4(g) -121.88 -124.74 -2.86 CH4 - CO2(g) -1.82 -3.28 -1.47 CO2 - CO[18O](g) -4.20 -5.98 -1.79 CO[18O] - H2(g) -36.46 -39.61 -3.15 H2 + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -19.96 -22.82 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] + [14C][18O]2(g) -19.78 -21.28 -1.50 [14C][18O]2 + [14C]H4(g) -30.88 -33.74 -2.86 [14C]H4 + [14C]O2(g) -14.41 -15.88 -1.47 [14C]O2 + [14C]O[18O](g) -16.79 -18.58 -1.79 [14C]O[18O] + [18O]2(g) -68.06 -70.36 -2.29 [18O]2 + C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 + Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 + Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -20.94 -12.79 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -15.09 -7.39 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -12.88 -4.69 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -17.78 -10.09 7.69 Ca[14C]O[18O]2 + CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 + CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] + CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 + Calcite -0.01 -8.49 -8.48 CaCO3 + CH4(g) -18.00 -20.86 -2.86 CH4 + CO2(g) -1.53 -3.00 -1.47 CO2 + CO[18O](g) -3.91 -5.70 -1.79 CO[18O] + H2(g) -10.56 -13.71 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.27 -13.16 -2.89 O2 - O[18O](g) -12.97 -15.86 -2.89 O[18O] + O2(g) -62.06 -64.96 -2.89 O2 + O[18O](g) -64.76 -67.66 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7191,30 +7155,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying increased tolerance 1e-14 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying diagonal scaling ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying diagonal scaling and reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 32. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -7252,43 +7192,44 @@ Calcite added: 0 Solid solution Component Moles Delta moles Mole fract -Calcite 1.00e-03 - Calcite 9.83e-04 9.83e-04 9.83e-01 - CaCO2[18O](s) 6.05e-06 6.05e-06 6.05e-03 - CaCO[18O]2(s) 1.24e-08 1.24e-08 1.24e-05 - CaC[18O]3(s) 8.50e-12 8.50e-12 8.50e-09 - Ca[13C]O3(s) 1.10e-05 1.10e-05 1.10e-02 - Ca[13C]O2[18O](s) 6.77e-08 6.77e-08 6.77e-05 - Ca[13C]O[18O]2(s) 1.39e-10 1.39e-10 1.39e-07 - Ca[13C][18O]3(s) 9.50e-14 9.50e-14 9.50e-11 - Ca[14C]O3(s) 1.23e-16 1.23e-16 1.23e-13 - Ca[14C]O2[18O](s) 7.55e-19 7.55e-19 7.55e-16 - Ca[14C]O[18O]2(s) 1.55e-21 1.55e-21 1.55e-18 - Ca[14C][18O]3(s) 1.00e-27 0.00e+00 1.00e-24 +Calcite 5.00e-04 + Calcite 4.91e-04 4.91e-04 9.83e-01 + CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 + CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 + CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 + Ca[13C]O3(s) 5.49e-06 5.49e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.38e-08 3.38e-08 6.77e-05 + Ca[13C]O[18O]2(s) 6.94e-11 6.94e-11 1.39e-07 + Ca[13C][18O]3(s) 4.75e-14 4.75e-14 9.50e-11 + Ca[14C]O3(s) 6.09e-17 6.09e-17 1.22e-13 + Ca[14C]O2[18O](s) 3.75e-19 3.75e-19 7.49e-16 + Ca[14C]O[18O]2(s) 7.69e-22 7.69e-22 1.54e-18 + Ca[14C][18O]3(s) 5.26e-25 5.25e-25 1.05e-21 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units R(18O) 1.99519e-03 -4.9926 permil - R(13C) 1.11399e-02 -3.6048 permil - R(14C) 1.23957e-13 10.542 pmc + R(13C) 1.11401e-02 -3.5895 permil + R(14C) 1.22977e-13 10.458 pmc R(18O) H2O(l) 1.99519e-03 -4.9941 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.014 permil - R(18O) O2(aq) 1.99519e-03 -4.9941 permil - R(13C) CO2(aq) 1.10602e-02 -10.736 permil - R(14C) CO2(aq) 1.22188e-13 10.391 pmc + R(13C) CO2(aq) 1.10603e-02 -10.72 permil + R(14C) CO2(aq) 1.21222e-13 10.309 pmc R(18O) CO2(aq) 2.07915e-03 36.88 permil R(18O) HCO3- 1.99519e-03 -4.9941 permil - R(13C) HCO3- 1.11564e-02 -2.1291 permil - R(14C) HCO3- 1.24323e-13 10.573 pmc + R(13C) HCO3- 1.11566e-02 -2.1137 permil + R(14C) HCO3- 1.23340e-13 10.489 pmc R(18O) CO3-2 1.99519e-03 -4.9941 permil - R(13C) CO3-2 1.11404e-02 -3.5611 permil - R(14C) CO3-2 1.23966e-13 10.542 pmc + R(13C) CO3-2 1.11406e-02 -3.5458 permil + R(14C) CO3-2 1.22986e-13 10.459 pmc + R(13C) CH4(aq) 1.10603e-02 -10.72 permil + R(14C) CH4(aq) 1.21222e-13 10.309 pmc R(18O) Calcite 2.05263e-03 23.652 permil - R(13C) Calcite 1.11785e-02 -0.15262 permil - R(14C) Calcite 1.24816e-13 10.615 pmc + R(13C) Calcite 1.11787e-02 -0.13726 permil + R(14C) Calcite 1.23829e-13 10.531 pmc --------------------------------Isotope Alphas--------------------------------- @@ -7298,14 +7239,15 @@ Calcite 1.00e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2373e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6317e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7131e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.0214e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.8541e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -7317,42 +7259,42 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.506e-05 6.487e-05 - [14C] 7.239e-16 7.218e-16 + [14C] 7.182e-16 7.161e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.244 Adjusted to redox equilibrium + pe = -1.821 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.843e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 94 (798 overall) + Iterations = 92 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.462 -124.461 0.001 (0) +C(-4) 1.143e-20 + CH4 1.143e-20 1.145e-20 -19.942 -19.941 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -7360,112 +7302,112 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) + CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.868e-40 - H2 2.434e-40 2.438e-40 -39.614 -39.613 0.001 (0) -O(0) 1.400e-13 - O2 6.973e-14 6.985e-14 -13.157 -13.156 0.001 (0) - O[18O] 2.783e-16 2.787e-16 -15.556 -15.555 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.418 -126.417 0.001 (0) +H(0) 6.566e-14 + H2 3.283e-14 3.288e-14 -13.484 -13.483 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.416 -65.416 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.815 -67.815 0.001 (0) +[13C](-4) 1.264e-22 + [13C]H4 1.264e-22 1.266e-22 -21.898 -21.897 0.001 (0) [13C](4) 6.506e-05 - H[13C]O3- 5.247e-05 4.801e-05 -4.280 -4.319 -0.039 (0) + H[13C]O3- 5.248e-05 4.801e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) + CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) + H[13C][18O]O2- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.580e-08 4.587e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.121e-08 2.186e-08 -7.506 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.375 -137.374 0.001 (0) -[14C](4) 7.239e-16 - H[14C]O3- 5.848e-16 5.350e-16 -15.233 -15.272 -0.039 (0) - [14C]O2 1.217e-16 1.219e-16 -15.915 -15.914 0.001 (0) - CaH[14C]O3+ 1.235e-17 1.133e-17 -16.908 -16.946 -0.037 (0) - H[14C][18O]O2- 1.167e-18 1.067e-18 -17.933 -17.972 -0.039 (0) - H[14C]O2[18O]- 1.167e-18 1.067e-18 -17.933 -17.972 -0.039 (0) - H[14C]O[18O]O- 1.167e-18 1.067e-18 -17.933 -17.972 -0.039 (0) - Ca[14C]O3 6.769e-19 6.780e-19 -18.169 -18.169 0.001 (0) - [14C]O[18O] 5.060e-19 5.068e-19 -18.296 -18.295 0.001 (0) - [14C]O3-2 3.473e-19 2.433e-19 -18.459 -18.614 -0.155 (0) - CaH[14C][18O]O2+ 2.464e-20 2.260e-20 -19.608 -19.646 -0.037 (0) - CaH[14C]O[18O]O+ 2.464e-20 2.260e-20 -19.608 -19.646 -0.037 (0) - CaH[14C]O2[18O]+ 2.464e-20 2.260e-20 -19.608 -19.646 -0.037 (0) - Ca[14C]O2[18O] 4.052e-21 4.058e-21 -20.392 -20.392 0.001 (0) - H[14C]O[18O]2- 2.328e-21 2.130e-21 -20.633 -20.672 -0.039 (0) - H[14C][18O]O[18O]- 2.328e-21 2.130e-21 -20.633 -20.672 -0.039 (0) - H[14C][18O]2O- 2.328e-21 2.130e-21 -20.633 -20.672 -0.039 (0) - [14C]O2[18O]-2 2.079e-21 1.456e-21 -20.682 -20.837 -0.155 (0) +[14C](-4) 1.386e-33 + [14C]H4 1.386e-33 1.388e-33 -32.858 -32.858 0.001 (0) +[14C](4) 7.182e-16 + H[14C]O3- 5.801e-16 5.307e-16 -15.236 -15.275 -0.039 (0) + [14C]O2 1.207e-16 1.209e-16 -15.918 -15.918 0.001 (0) + CaH[14C]O3+ 1.225e-17 1.124e-17 -16.912 -16.949 -0.037 (0) + H[14C]O2[18O]- 1.157e-18 1.059e-18 -17.936 -17.975 -0.039 (0) + H[14C]O[18O]O- 1.157e-18 1.059e-18 -17.936 -17.975 -0.039 (0) + H[14C][18O]O2- 1.157e-18 1.059e-18 -17.936 -17.975 -0.039 (0) + Ca[14C]O3 6.716e-19 6.727e-19 -18.173 -18.172 0.001 (0) + [14C]O[18O] 5.020e-19 5.028e-19 -18.299 -18.299 0.001 (0) + [14C]O3-2 3.445e-19 2.413e-19 -18.463 -18.617 -0.155 (0) + CaH[14C]O2[18O]+ 2.444e-20 2.242e-20 -19.612 -19.649 -0.037 (0) + CaH[14C]O[18O]O+ 2.444e-20 2.242e-20 -19.612 -19.649 -0.037 (0) + CaH[14C][18O]O2+ 2.444e-20 2.242e-20 -19.612 -19.649 -0.037 (0) + Ca[14C]O2[18O] 4.020e-21 4.026e-21 -20.396 -20.395 0.001 (0) + H[14C]O[18O]2- 2.309e-21 2.113e-21 -20.637 -20.675 -0.039 (0) + H[14C][18O]2O- 2.309e-21 2.113e-21 -20.637 -20.675 -0.039 (0) + H[14C][18O]O[18O]- 2.309e-21 2.113e-21 -20.637 -20.675 -0.039 (0) + [14C]O2[18O]-2 2.062e-21 1.445e-21 -20.686 -20.840 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.788e-16 - O[18O] 2.783e-16 2.787e-16 -15.556 -15.555 0.001 (0) - [18O]2 2.776e-19 2.781e-19 -18.557 -18.556 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -67.815 -67.815 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.816 -70.816 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.56 -126.42 -2.86 [13C]H4 + [13C]H4(g) -19.04 -21.90 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.81 -21.31 -1.50 [14C][18O]2 - [14C]H4(g) -134.51 -137.37 -2.86 [14C]H4 - [14C]O2(g) -14.45 -15.91 -1.47 [14C]O2 - [14C]O[18O](g) -16.83 -18.61 -1.79 [14C]O[18O] - [18O]2(g) -16.27 -18.56 -2.29 [18O]2 + [14C][18O]2(g) -19.81 -21.32 -1.50 [14C][18O]2 + [14C]H4(g) -30.00 -32.86 -2.86 [14C]H4 + [14C]O2(g) -14.45 -15.92 -1.47 [14C]O2 + [14C]O[18O](g) -16.83 -18.62 -1.79 [14C]O[18O] + [18O]2(g) -68.53 -70.82 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.97 -12.82 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.12 -7.42 7.70 Ca[14C]O2[18O] + Ca[14C][18O]3(s) -20.98 -12.82 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -15.13 -7.42 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -12.91 -4.72 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -17.81 -10.12 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.60 -124.46 -2.86 CH4 + CH4(g) -17.08 -19.94 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.46 -39.61 -3.15 H2 + H2(g) -10.33 -13.48 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.26 -13.16 -2.89 O2 - O[18O](g) -12.96 -15.86 -2.89 O[18O] + O2(g) -62.52 -65.42 -2.89 O2 + O[18O](g) -65.22 -68.12 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7541,34 +7483,35 @@ Calcite 5.00e-04 Ca[13C]O2[18O](s) 3.38e-08 3.38e-08 6.77e-05 Ca[13C]O[18O]2(s) 6.95e-11 6.95e-11 1.39e-07 Ca[13C][18O]3(s) 4.75e-14 4.75e-14 9.50e-11 - Ca[14C]O3(s) 5.65e-17 5.65e-17 1.13e-13 - Ca[14C]O2[18O](s) 3.48e-19 3.48e-19 6.96e-16 - Ca[14C]O[18O]2(s) 7.14e-22 7.14e-22 1.43e-18 - Ca[14C][18O]3(s) 4.89e-25 4.88e-25 9.77e-22 + Ca[14C]O3(s) 5.61e-17 5.61e-17 1.12e-13 + Ca[14C]O2[18O](s) 3.45e-19 3.45e-19 6.90e-16 + Ca[14C]O[18O]2(s) 7.09e-22 7.09e-22 1.42e-18 + Ca[14C][18O]3(s) 4.85e-25 4.84e-25 9.70e-22 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units R(18O) 1.99519e-03 -4.9925 permil - R(13C) 1.11418e-02 -3.4307 permil - R(14C) 1.14193e-13 9.7112 pmc + R(13C) 1.11420e-02 -3.4166 permil + R(14C) 1.13290e-13 9.6344 pmc R(18O) H2O(l) 1.99519e-03 -4.994 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.014 permil - R(18O) O2(aq) 1.99519e-03 -4.994 permil - R(13C) CO2(aq) 1.10621e-02 -10.563 permil - R(14C) CO2(aq) 1.12563e-13 9.5726 pmc + R(13C) CO2(aq) 1.10623e-02 -10.549 permil + R(14C) CO2(aq) 1.11673e-13 9.4969 pmc R(18O) CO2(aq) 2.07915e-03 36.88 permil R(18O) HCO3- 1.99519e-03 -4.994 permil - R(13C) HCO3- 1.11583e-02 -1.9547 permil - R(14C) HCO3- 1.14530e-13 9.7399 pmc + R(13C) HCO3- 1.11585e-02 -1.9406 permil + R(14C) HCO3- 1.13625e-13 9.6629 pmc R(18O) CO3-2 1.99519e-03 -4.994 permil - R(13C) CO3-2 1.11423e-02 -3.387 permil - R(14C) CO3-2 1.14202e-13 9.7119 pmc + R(13C) CO3-2 1.11425e-02 -3.3729 permil + R(14C) CO3-2 1.13299e-13 9.6352 pmc + R(13C) CH4(aq) 1.10623e-02 -10.549 permil + R(14C) CH4(aq) 1.11673e-13 9.4969 pmc R(18O) Calcite 2.05263e-03 23.652 permil - R(13C) Calcite 1.11804e-02 0.022049 permil - R(14C) Calcite 1.14984e-13 9.7785 pmc + R(13C) Calcite 1.11806e-02 0.036198 permil + R(14C) Calcite 1.14075e-13 9.7012 pmc --------------------------------Isotope Alphas--------------------------------- @@ -7578,14 +7521,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2716e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.608e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6374e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -9.2149e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -5.3291e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -7597,35 +7541,35 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.507e-05 6.488e-05 - [14C] 6.669e-16 6.649e-16 + [14C] 6.616e-16 6.597e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.258 Adjusted to redox equilibrium + pe = -1.829 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.296e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 29 (130 overall) + Iterations = 51 (152 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.578 -124.578 0.001 (0) +C(-4) 1.310e-20 + CH4 1.310e-20 1.312e-20 -19.883 -19.882 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -7637,11 +7581,11 @@ C(4) 5.840e-03 CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 @@ -7650,17 +7594,17 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.551e-40 - H2 2.276e-40 2.279e-40 -39.643 -39.642 0.001 (0) -O(0) 1.602e-13 - O2 7.978e-14 7.991e-14 -13.098 -13.097 0.001 (0) - O[18O] 3.183e-16 3.189e-16 -15.497 -15.496 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.535 -126.534 0.001 (0) +H(0) 6.793e-14 + H2 3.397e-14 3.402e-14 -13.469 -13.468 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.446 -65.445 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.845 -67.844 0.001 (0) +[13C](-4) 1.449e-22 + [13C]H4 1.449e-22 1.452e-22 -21.839 -21.838 0.001 (0) [13C](4) 6.507e-05 H[13C]O3- 5.248e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.103e-05 -4.958 -4.957 0.001 (0) @@ -7671,60 +7615,60 @@ O(0) 1.602e-13 Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.588e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.121e-08 2.187e-08 -7.506 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) + CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.527 -137.526 0.001 (0) -[14C](4) 6.669e-16 - H[14C]O3- 5.387e-16 4.928e-16 -15.269 -15.307 -0.039 (0) - [14C]O2 1.121e-16 1.123e-16 -15.950 -15.950 0.001 (0) - CaH[14C]O3+ 1.138e-17 1.044e-17 -16.944 -16.982 -0.037 (0) - H[14C][18O]O2- 1.075e-18 9.833e-19 -17.969 -18.007 -0.039 (0) - H[14C]O2[18O]- 1.075e-18 9.833e-19 -17.969 -18.007 -0.039 (0) - H[14C]O[18O]O- 1.075e-18 9.833e-19 -17.969 -18.007 -0.039 (0) - Ca[14C]O3 6.236e-19 6.246e-19 -18.205 -18.204 0.001 (0) - [14C]O[18O] 4.661e-19 4.669e-19 -18.332 -18.331 0.001 (0) - [14C]O3-2 3.199e-19 2.241e-19 -18.495 -18.650 -0.155 (0) - CaH[14C][18O]O2+ 2.270e-20 2.082e-20 -19.644 -19.682 -0.037 (0) - CaH[14C]O[18O]O+ 2.270e-20 2.082e-20 -19.644 -19.682 -0.037 (0) - CaH[14C]O2[18O]+ 2.270e-20 2.082e-20 -19.644 -19.682 -0.037 (0) - Ca[14C]O2[18O] 3.733e-21 3.739e-21 -20.428 -20.427 0.001 (0) - H[14C][18O]O[18O]- 2.144e-21 1.962e-21 -20.669 -20.707 -0.039 (0) - H[14C][18O]2O- 2.144e-21 1.962e-21 -20.669 -20.707 -0.039 (0) - H[14C]O[18O]2- 2.144e-21 1.962e-21 -20.669 -20.707 -0.039 (0) - [14C]O2[18O]-2 1.915e-21 1.341e-21 -20.718 -20.872 -0.155 (0) +[14C](-4) 1.463e-33 + [14C]H4 1.463e-33 1.465e-33 -32.835 -32.834 0.001 (0) +[14C](4) 6.616e-16 + H[14C]O3- 5.344e-16 4.889e-16 -15.272 -15.311 -0.039 (0) + [14C]O2 1.112e-16 1.114e-16 -15.954 -15.953 0.001 (0) + CaH[14C]O3+ 1.129e-17 1.035e-17 -16.947 -16.985 -0.037 (0) + H[14C]O2[18O]- 1.066e-18 9.755e-19 -17.972 -18.011 -0.039 (0) + H[14C]O[18O]O- 1.066e-18 9.755e-19 -17.972 -18.011 -0.039 (0) + H[14C][18O]O2- 1.066e-18 9.755e-19 -17.972 -18.011 -0.039 (0) + Ca[14C]O3 6.187e-19 6.197e-19 -18.209 -18.208 0.001 (0) + [14C]O[18O] 4.624e-19 4.632e-19 -18.335 -18.334 0.001 (0) + [14C]O3-2 3.174e-19 2.223e-19 -18.498 -18.653 -0.155 (0) + CaH[14C]O2[18O]+ 2.252e-20 2.066e-20 -19.647 -19.685 -0.037 (0) + CaH[14C]O[18O]O+ 2.252e-20 2.066e-20 -19.647 -19.685 -0.037 (0) + CaH[14C][18O]O2+ 2.252e-20 2.066e-20 -19.647 -19.685 -0.037 (0) + Ca[14C]O2[18O] 3.703e-21 3.709e-21 -20.431 -20.431 0.001 (0) + H[14C]O[18O]2- 2.127e-21 1.946e-21 -20.672 -20.711 -0.039 (0) + H[14C][18O]2O- 2.127e-21 1.946e-21 -20.672 -20.711 -0.039 (0) + H[14C][18O]O[18O]- 2.127e-21 1.946e-21 -20.672 -20.711 -0.039 (0) + [14C]O2[18O]-2 1.900e-21 1.331e-21 -20.721 -20.876 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.190e-16 - O[18O] 3.183e-16 3.189e-16 -15.497 -15.496 0.001 (0) - [18O]2 3.176e-19 3.181e-19 -18.498 -18.497 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -67.845 -67.844 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.846 -70.845 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.67 -126.53 -2.86 [13C]H4 + [13C]H4(g) -18.98 -21.84 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.85 -21.35 -1.50 [14C][18O]2 - [14C]H4(g) -134.67 -137.53 -2.86 [14C]H4 + [14C]H4(g) -29.97 -32.83 -2.86 [14C]H4 [14C]O2(g) -14.48 -15.95 -1.47 [14C]O2 - [14C]O[18O](g) -16.86 -18.65 -1.79 [14C]O[18O] - [18O]2(g) -16.21 -18.50 -2.29 [18O]2 + [14C]O[18O](g) -16.87 -18.65 -1.79 [14C]O[18O] + [18O]2(g) -68.56 -70.85 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -7738,14 +7682,14 @@ O(0) 1.602e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.72 -124.58 -2.86 CH4 + CH4(g) -17.02 -19.88 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.49 -39.64 -3.15 H2 + H2(g) -10.32 -13.47 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.21 -13.10 -2.89 O2 - O[18O](g) -12.91 -15.80 -2.89 O[18O] + O2(g) -62.55 -65.45 -2.89 O2 + O[18O](g) -65.25 -68.15 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7821,34 +7765,35 @@ Calcite 5.00e-04 Ca[13C]O2[18O](s) 3.38e-08 3.38e-08 6.77e-05 Ca[13C]O[18O]2(s) 6.95e-11 6.95e-11 1.39e-07 Ca[13C][18O]3(s) 4.75e-14 4.75e-14 9.51e-11 - Ca[14C]O3(s) 5.21e-17 5.21e-17 1.04e-13 - Ca[14C]O2[18O](s) 3.21e-19 3.21e-19 6.41e-16 - Ca[14C]O[18O]2(s) 6.58e-22 6.58e-22 1.32e-18 - Ca[14C][18O]3(s) 1.00e-27 0.00e+00 2.00e-24 + Ca[14C]O3(s) 5.16e-17 5.16e-17 1.03e-13 + Ca[14C]O2[18O](s) 3.18e-19 3.18e-19 6.36e-16 + Ca[14C]O[18O]2(s) 6.53e-22 6.53e-22 1.31e-18 + Ca[14C][18O]3(s) 4.47e-25 4.46e-25 8.93e-22 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units R(18O) 1.99519e-03 -4.9923 permil - R(13C) 1.11436e-02 -3.2703 permil - R(14C) 1.05198e-13 8.9462 pmc + R(13C) 1.11438e-02 -3.2573 permil + R(14C) 1.04366e-13 8.8755 pmc R(18O) H2O(l) 1.99519e-03 -4.9939 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.014 permil - R(18O) O2(aq) 1.99519e-03 -4.9939 permil - R(13C) CO2(aq) 1.10639e-02 -10.403 permil - R(14C) CO2(aq) 1.03696e-13 8.8186 pmc + R(13C) CO2(aq) 1.10640e-02 -10.391 permil + R(14C) CO2(aq) 1.02877e-13 8.7488 pmc R(18O) CO2(aq) 2.07915e-03 36.88 permil R(18O) HCO3- 1.99519e-03 -4.9939 permil - R(13C) HCO3- 1.11601e-02 -1.7941 permil - R(14C) HCO3- 1.05508e-13 8.9727 pmc + R(13C) HCO3- 1.11603e-02 -1.7811 permil + R(14C) HCO3- 1.04674e-13 8.9017 pmc R(18O) CO3-2 1.99519e-03 -4.9939 permil - R(13C) CO3-2 1.11441e-02 -3.2266 permil - R(14C) CO3-2 1.05206e-13 8.9469 pmc + R(13C) CO3-2 1.11443e-02 -3.2136 permil + R(14C) CO3-2 1.04374e-13 8.8762 pmc + R(13C) CH4(aq) 1.10640e-02 -10.391 permil + R(14C) CH4(aq) 1.02877e-13 8.7488 pmc R(18O) Calcite 2.05263e-03 23.652 permil - R(13C) Calcite 1.11822e-02 0.18301 permil - R(14C) Calcite 1.05927e-13 9.0082 pmc + R(13C) Calcite 1.11824e-02 0.19604 permil + R(14C) Calcite 1.05089e-13 8.937 pmc --------------------------------Isotope Alphas--------------------------------- @@ -7858,14 +7803,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2725e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6237e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6239e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -8.4377e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.2546e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -7877,42 +7823,42 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.508e-05 6.489e-05 - [14C] 6.143e-16 6.126e-16 + [14C] 6.095e-16 6.077e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.277 Adjusted to redox equilibrium + pe = -1.784 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.295e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 92 (193 overall) + Iterations = 118 (219 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.724 -124.723 0.001 (0) +C(-4) 5.806e-21 + CH4 5.806e-21 5.815e-21 -20.236 -20.235 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -7920,8 +7866,8 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 @@ -7930,24 +7876,24 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.186e-40 - H2 2.093e-40 2.096e-40 -39.679 -39.679 0.001 (0) -O(0) 1.894e-13 - O2 9.433e-14 9.448e-14 -13.025 -13.025 0.001 (0) - O[18O] 3.764e-16 3.770e-16 -15.424 -15.424 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.680 -126.679 0.001 (0) +H(0) 5.543e-14 + H2 2.771e-14 2.776e-14 -13.557 -13.557 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.269 -65.269 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.668 -67.668 0.001 (0) +[13C](-4) 6.423e-23 + [13C]H4 6.423e-23 6.434e-23 -22.192 -22.192 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.249e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) + H[13C]O2[18O]- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.589e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) @@ -7955,77 +7901,77 @@ O(0) 1.894e-13 CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.708 -137.708 0.001 (0) -[14C](4) 6.143e-16 - H[14C]O3- 4.963e-16 4.540e-16 -15.304 -15.343 -0.039 (0) - [14C]O2 1.033e-16 1.034e-16 -15.986 -15.985 0.001 (0) - CaH[14C]O3+ 1.048e-17 9.613e-18 -16.980 -17.017 -0.037 (0) - H[14C][18O]O2- 9.901e-19 9.058e-19 -18.004 -18.043 -0.039 (0) - H[14C]O2[18O]- 9.901e-19 9.058e-19 -18.004 -18.043 -0.039 (0) - H[14C]O[18O]O- 9.901e-19 9.058e-19 -18.004 -18.043 -0.039 (0) - Ca[14C]O3 5.745e-19 5.754e-19 -18.241 -18.240 0.001 (0) - [14C]O[18O] 4.294e-19 4.301e-19 -18.367 -18.366 0.001 (0) - [14C]O3-2 2.947e-19 2.065e-19 -18.531 -18.685 -0.155 (0) - CaH[14C][18O]O2+ 2.091e-20 1.918e-20 -19.680 -19.717 -0.037 (0) - CaH[14C]O[18O]O+ 2.091e-20 1.918e-20 -19.680 -19.717 -0.037 (0) - CaH[14C]O2[18O]+ 2.091e-20 1.918e-20 -19.680 -19.717 -0.037 (0) - Ca[14C]O2[18O] 3.439e-21 3.444e-21 -20.464 -20.463 0.001 (0) - H[14C][18O]2O- 1.975e-21 1.807e-21 -20.704 -20.743 -0.039 (0) - H[14C]O[18O]2- 1.975e-21 1.807e-21 -20.704 -20.743 -0.039 (0) - H[14C][18O]O[18O]- 1.975e-21 1.807e-21 -20.704 -20.743 -0.039 (0) - [14C]O2[18O]-2 1.764e-21 1.236e-21 -20.754 -20.908 -0.155 (0) + H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.729 -9.883 -0.155 (0) +[14C](-4) 5.973e-34 + [14C]H4 5.973e-34 5.983e-34 -33.224 -33.223 0.001 (0) +[14C](4) 6.095e-16 + H[14C]O3- 4.923e-16 4.504e-16 -15.308 -15.346 -0.039 (0) + [14C]O2 1.024e-16 1.026e-16 -15.990 -15.989 0.001 (0) + CaH[14C]O3+ 1.040e-17 9.537e-18 -16.983 -17.021 -0.037 (0) + H[14C]O2[18O]- 9.823e-19 8.987e-19 -18.008 -18.046 -0.039 (0) + H[14C]O[18O]O- 9.823e-19 8.987e-19 -18.008 -18.046 -0.039 (0) + H[14C][18O]O2- 9.823e-19 8.987e-19 -18.008 -18.046 -0.039 (0) + Ca[14C]O3 5.699e-19 5.709e-19 -18.244 -18.243 0.001 (0) + [14C]O[18O] 4.260e-19 4.267e-19 -18.371 -18.370 0.001 (0) + [14C]O3-2 2.924e-19 2.048e-19 -18.534 -18.689 -0.155 (0) + CaH[14C]O2[18O]+ 2.074e-20 1.903e-20 -19.683 -19.721 -0.037 (0) + CaH[14C]O[18O]O+ 2.074e-20 1.903e-20 -19.683 -19.721 -0.037 (0) + CaH[14C][18O]O2+ 2.074e-20 1.903e-20 -19.683 -19.721 -0.037 (0) + Ca[14C]O2[18O] 3.411e-21 3.417e-21 -20.467 -20.466 0.001 (0) + H[14C]O[18O]2- 1.960e-21 1.793e-21 -20.708 -20.746 -0.039 (0) + H[14C][18O]2O- 1.960e-21 1.793e-21 -20.708 -20.746 -0.039 (0) + H[14C][18O]O[18O]- 1.960e-21 1.793e-21 -20.708 -20.746 -0.039 (0) + [14C]O2[18O]-2 1.750e-21 1.226e-21 -20.757 -20.912 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.772e-16 - O[18O] 3.764e-16 3.770e-16 -15.424 -15.424 0.001 (0) - [18O]2 3.755e-19 3.761e-19 -18.425 -18.425 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -67.668 -67.668 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.669 -70.669 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.82 -126.68 -2.86 [13C]H4 + [13C]H4(g) -19.33 -22.19 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.88 -21.39 -1.50 [14C][18O]2 - [14C]H4(g) -134.85 -137.71 -2.86 [14C]H4 + [14C][18O]2(g) -19.89 -21.39 -1.50 [14C][18O]2 + [14C]H4(g) -30.36 -33.22 -2.86 [14C]H4 [14C]O2(g) -14.52 -15.99 -1.47 [14C]O2 [14C]O[18O](g) -16.90 -18.69 -1.79 [14C]O[18O] - [18O]2(g) -16.13 -18.42 -2.29 [18O]2 + [18O]2(g) -68.38 -70.67 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 Ca[14C][18O]3(s) -21.05 -12.89 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.19 -7.49 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.98 -4.79 8.19 Ca[14C]O3 + Ca[14C]O2[18O](s) -15.20 -7.49 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -12.99 -4.79 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -17.88 -10.19 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.86 -124.72 -2.86 CH4 + CH4(g) -17.38 -20.24 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.53 -39.68 -3.15 H2 + H2(g) -10.41 -13.56 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.13 -13.02 -2.89 O2 - O[18O](g) -12.83 -15.72 -2.89 O[18O] + O2(g) -62.38 -65.27 -2.89 O2 + O[18O](g) -65.08 -67.97 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8101,34 +8047,35 @@ Calcite 5.00e-04 Ca[13C]O2[18O](s) 3.38e-08 3.38e-08 6.77e-05 Ca[13C]O[18O]2(s) 6.95e-11 6.95e-11 1.39e-07 Ca[13C][18O]3(s) 4.75e-14 4.75e-14 9.51e-11 - Ca[14C]O3(s) 4.80e-17 4.80e-17 9.59e-14 - Ca[14C]O2[18O](s) 2.95e-19 2.95e-19 5.91e-16 - Ca[14C]O[18O]2(s) 6.06e-22 6.06e-22 1.21e-18 - Ca[14C][18O]3(s) 4.15e-25 4.14e-25 8.29e-22 + Ca[14C]O3(s) 4.76e-17 4.76e-17 9.52e-14 + Ca[14C]O2[18O](s) 2.93e-19 2.93e-19 5.86e-16 + Ca[14C]O[18O]2(s) 6.01e-22 6.01e-22 1.20e-18 + Ca[14C][18O]3(s) 4.11e-25 4.10e-25 8.23e-22 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units R(18O) 1.99519e-03 -4.9922 permil - R(13C) 1.11453e-02 -3.1225 permil - R(14C) 9.69112e-14 8.2415 pmc + R(13C) 1.11454e-02 -3.1105 permil + R(14C) 9.61451e-14 8.1764 pmc R(18O) H2O(l) 1.99519e-03 -4.9937 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.014 permil - R(18O) O2(aq) 1.99519e-03 -4.9937 permil - R(13C) CO2(aq) 1.10655e-02 -10.257 permil - R(14C) CO2(aq) 9.55280e-14 8.1239 pmc + R(13C) CO2(aq) 1.10657e-02 -10.245 permil + R(14C) CO2(aq) 9.47729e-14 8.0597 pmc R(18O) CO2(aq) 2.07915e-03 36.88 permil R(18O) HCO3- 1.99519e-03 -4.9937 permil - R(13C) HCO3- 1.11618e-02 -1.6461 permil - R(14C) HCO3- 9.71974e-14 8.2659 pmc + R(13C) HCO3- 1.11619e-02 -1.6341 permil + R(14C) HCO3- 9.64291e-14 8.2005 pmc R(18O) CO3-2 1.99519e-03 -4.9937 permil - R(13C) CO3-2 1.11458e-02 -3.0788 permil - R(14C) CO3-2 9.69186e-14 8.2422 pmc + R(13C) CO3-2 1.11459e-02 -3.0668 permil + R(14C) CO3-2 9.61525e-14 8.177 pmc + R(13C) CH4(aq) 1.10657e-02 -10.245 permil + R(14C) CH4(aq) 9.47729e-14 8.0597 pmc R(18O) Calcite 2.05263e-03 23.653 permil - R(13C) Calcite 1.11839e-02 0.33131 permil - R(14C) Calcite 9.75828e-14 8.2987 pmc + R(13C) Calcite 1.11840e-02 0.34333 permil + R(14C) Calcite 9.68115e-14 8.2331 pmc --------------------------------Isotope Alphas--------------------------------- @@ -8138,14 +8085,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2743e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6394e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6355e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -4.996e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.1213e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -8157,51 +8105,51 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.509e-05 6.490e-05 - [14C] 5.660e-16 5.643e-16 + [14C] 5.615e-16 5.598e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.269 Adjusted to redox equilibrium + pe = -1.775 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.295e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 35 (136 overall) + Iterations = 113 (214 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.668 -124.667 0.001 (0) +C(-4) 4.840e-21 + CH4 4.840e-21 4.848e-21 -20.315 -20.314 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 @@ -8210,81 +8158,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.324e-40 - H2 2.162e-40 2.165e-40 -39.665 -39.664 0.001 (0) -O(0) 1.775e-13 - O2 8.841e-14 8.855e-14 -13.054 -13.053 0.001 (0) - O[18O] 3.528e-16 3.534e-16 -15.453 -15.452 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.624 -126.623 0.001 (0) +H(0) 5.296e-14 + H2 2.648e-14 2.653e-14 -13.577 -13.576 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.230 -65.229 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.629 -67.628 0.001 (0) +[13C](-4) 5.356e-23 + [13C]H4 5.356e-23 5.365e-23 -22.271 -22.270 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.047e-07 9.583e-08 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.047e-07 9.583e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.583e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) + H[13C][18O]O2- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.590e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.688 -137.687 0.001 (0) -[14C](4) 5.660e-16 - H[14C]O3- 4.572e-16 4.182e-16 -15.340 -15.379 -0.039 (0) - [14C]O2 9.513e-17 9.528e-17 -16.022 -16.021 0.001 (0) - CaH[14C]O3+ 9.654e-18 8.856e-18 -17.015 -17.053 -0.037 (0) - H[14C][18O]O2- 9.121e-19 8.345e-19 -18.040 -18.079 -0.039 (0) - H[14C]O2[18O]- 9.121e-19 8.345e-19 -18.040 -18.079 -0.039 (0) - H[14C]O[18O]O- 9.121e-19 8.345e-19 -18.040 -18.079 -0.039 (0) - Ca[14C]O3 5.292e-19 5.301e-19 -18.276 -18.276 0.001 (0) - [14C]O[18O] 3.956e-19 3.962e-19 -18.403 -18.402 0.001 (0) - [14C]O3-2 2.715e-19 1.902e-19 -18.566 -18.721 -0.155 (0) - CaH[14C][18O]O2+ 1.926e-20 1.767e-20 -19.715 -19.753 -0.037 (0) - CaH[14C]O[18O]O+ 1.926e-20 1.767e-20 -19.715 -19.753 -0.037 (0) - CaH[14C]O2[18O]+ 1.926e-20 1.767e-20 -19.715 -19.753 -0.037 (0) - Ca[14C]O2[18O] 3.168e-21 3.173e-21 -20.499 -20.499 0.001 (0) - H[14C]O[18O]2- 1.820e-21 1.665e-21 -20.740 -20.779 -0.039 (0) - H[14C][18O]O[18O]- 1.820e-21 1.665e-21 -20.740 -20.779 -0.039 (0) - H[14C][18O]2O- 1.820e-21 1.665e-21 -20.740 -20.779 -0.039 (0) - [14C]O2[18O]-2 1.625e-21 1.138e-21 -20.789 -20.944 -0.155 (0) +[14C](-4) 4.587e-34 + [14C]H4 4.587e-34 4.595e-34 -33.338 -33.338 0.001 (0) +[14C](4) 5.615e-16 + H[14C]O3- 4.536e-16 4.149e-16 -15.343 -15.382 -0.039 (0) + [14C]O2 9.438e-17 9.453e-17 -16.025 -16.024 0.001 (0) + CaH[14C]O3+ 9.578e-18 8.786e-18 -17.019 -17.056 -0.037 (0) + H[14C]O2[18O]- 9.049e-19 8.279e-19 -18.043 -18.082 -0.039 (0) + H[14C]O[18O]O- 9.049e-19 8.279e-19 -18.043 -18.082 -0.039 (0) + H[14C][18O]O2- 9.049e-19 8.279e-19 -18.043 -18.082 -0.039 (0) + Ca[14C]O3 5.250e-19 5.259e-19 -18.280 -18.279 0.001 (0) + [14C]O[18O] 3.924e-19 3.931e-19 -18.406 -18.406 0.001 (0) + [14C]O3-2 2.693e-19 1.887e-19 -18.570 -18.724 -0.155 (0) + CaH[14C]O2[18O]+ 1.911e-20 1.753e-20 -19.719 -19.756 -0.037 (0) + CaH[14C]O[18O]O+ 1.911e-20 1.753e-20 -19.719 -19.756 -0.037 (0) + CaH[14C][18O]O2+ 1.911e-20 1.753e-20 -19.719 -19.756 -0.037 (0) + Ca[14C]O2[18O] 3.143e-21 3.148e-21 -20.503 -20.502 0.001 (0) + H[14C]O[18O]2- 1.805e-21 1.652e-21 -20.743 -20.782 -0.039 (0) + H[14C][18O]2O- 1.805e-21 1.652e-21 -20.743 -20.782 -0.039 (0) + H[14C][18O]O[18O]- 1.805e-21 1.652e-21 -20.743 -20.782 -0.039 (0) + [14C]O2[18O]-2 1.612e-21 1.129e-21 -20.793 -20.947 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.535e-16 - O[18O] 3.528e-16 3.534e-16 -15.453 -15.452 0.001 (0) - [18O]2 3.519e-19 3.525e-19 -18.454 -18.453 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -67.629 -67.628 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.630 -70.629 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.76 -126.62 -2.86 [13C]H4 + [13C]H4(g) -19.41 -22.27 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.92 -21.42 -1.50 [14C][18O]2 - [14C]H4(g) -134.83 -137.69 -2.86 [14C]H4 - [14C]O2(g) -14.55 -16.02 -1.47 [14C]O2 - [14C]O[18O](g) -16.93 -18.72 -1.79 [14C]O[18O] - [18O]2(g) -16.16 -18.45 -2.29 [18O]2 + [14C]H4(g) -30.48 -33.34 -2.86 [14C]H4 + [14C]O2(g) -14.56 -16.02 -1.47 [14C]O2 + [14C]O[18O](g) -16.94 -18.72 -1.79 [14C]O[18O] + [18O]2(g) -68.34 -70.63 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -8298,14 +8246,14 @@ O(0) 1.775e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.81 -124.67 -2.86 CH4 + CH4(g) -17.45 -20.31 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.51 -39.66 -3.15 H2 + H2(g) -10.43 -13.58 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.16 -13.05 -2.89 O2 - O[18O](g) -12.86 -15.75 -2.89 O[18O] + O2(g) -62.34 -65.23 -2.89 O2 + O[18O](g) -65.04 -67.93 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8381,34 +8329,34 @@ Calcite 5.00e-04 Ca[13C]O2[18O](s) 3.38e-08 3.38e-08 6.77e-05 Ca[13C]O[18O]2(s) 6.95e-11 6.95e-11 1.39e-07 Ca[13C][18O]3(s) 4.75e-14 4.75e-14 9.51e-11 - Ca[14C]O3(s) 4.42e-17 4.42e-17 8.84e-14 - Ca[14C]O2[18O](s) 2.72e-19 2.72e-19 5.44e-16 - Ca[14C]O[18O]2(s) 5.58e-22 5.58e-22 1.12e-18 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[14C]O3(s) 4.38e-17 4.38e-17 8.77e-14 + Ca[14C]O2[18O](s) 2.70e-19 2.70e-19 5.40e-16 + Ca[14C]O[18O]2(s) 5.54e-22 5.54e-22 1.11e-18 + Ca[14C][18O]3(s) 3.79e-25 3.78e-25 7.58e-22 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units R(18O) 1.99519e-03 -4.9921 permil - R(13C) 1.11468e-02 -2.9863 permil - R(14C) 8.92774e-14 7.5923 pmc + R(13C) 1.11469e-02 -2.9753 permil + R(14C) 8.85717e-14 7.5323 pmc R(18O) H2O(l) 1.99519e-03 -4.9936 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.014 permil R(18O) O2(aq) 1.99519e-03 -4.9936 permil - R(13C) CO2(aq) 1.10670e-02 -10.122 permil - R(14C) CO2(aq) 8.80032e-14 7.484 pmc + R(13C) CO2(aq) 1.10672e-02 -10.111 permil + R(14C) CO2(aq) 8.73076e-14 7.4248 pmc R(18O) CO2(aq) 2.07915e-03 36.88 permil R(18O) HCO3- 1.99519e-03 -4.9936 permil - R(13C) HCO3- 1.11633e-02 -1.5097 permil - R(14C) HCO3- 8.95411e-14 7.6148 pmc + R(13C) HCO3- 1.11634e-02 -1.4986 permil + R(14C) HCO3- 8.88333e-14 7.5546 pmc R(18O) CO3-2 1.99519e-03 -4.9936 permil - R(13C) CO3-2 1.11473e-02 -2.9426 permil - R(14C) CO3-2 8.92843e-14 7.5929 pmc + R(13C) CO3-2 1.11474e-02 -2.9316 permil + R(14C) CO3-2 8.85785e-14 7.5329 pmc R(18O) Calcite 2.05263e-03 23.653 permil - R(13C) Calcite 1.11854e-02 0.46798 permil - R(14C) Calcite 8.98961e-14 7.645 pmc + R(13C) Calcite 1.11856e-02 0.47905 permil + R(14C) Calcite 8.91855e-14 7.5845 pmc --------------------------------Isotope Alphas--------------------------------- @@ -8418,12 +8366,12 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2351e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2539e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5361e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6162e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -8437,35 +8385,35 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.510e-05 6.491e-05 - [14C] 5.214e-16 5.198e-16 + [14C] 5.172e-16 5.157e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.278 Adjusted to redox equilibrium + pe = 10.740 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.295e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 54 (155 overall) + Iterations = 81 (182 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.738 -124.737 0.001 (0) + CH4 0.000e+00 0.000e+00 -120.436 -120.435 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -8480,8 +8428,8 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 @@ -8490,17 +8438,17 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.152e-40 - H2 2.076e-40 2.079e-40 -39.683 -39.682 0.001 (0) -O(0) 1.925e-13 - O2 9.587e-14 9.603e-14 -13.018 -13.018 0.001 (0) - O[18O] 3.826e-16 3.832e-16 -15.417 -15.417 0.001 (0) +H(0) 4.942e-39 + H2 2.471e-39 2.475e-39 -38.607 -38.606 0.001 (0) +O(0) 1.359e-15 + O2 6.767e-16 6.779e-16 -15.170 -15.169 0.001 (0) + O[18O] 2.700e-18 2.705e-18 -17.569 -17.568 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.694 -126.693 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -122.392 -122.391 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -8510,82 +8458,82 @@ O(0) 1.925e-13 H[13C][18O]O2- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.590e-08 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.123e-08 2.187e-08 -7.505 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) + [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) + CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.794 -137.793 0.001 (0) -[14C](4) 5.214e-16 - H[14C]O3- 4.212e-16 3.853e-16 -15.376 -15.414 -0.039 (0) - [14C]O2 8.763e-17 8.778e-17 -16.057 -16.057 0.001 (0) - CaH[14C]O3+ 8.893e-18 8.158e-18 -17.051 -17.088 -0.037 (0) - H[14C][18O]O2- 8.403e-19 7.688e-19 -18.076 -18.114 -0.039 (0) - H[14C]O2[18O]- 8.403e-19 7.688e-19 -18.076 -18.114 -0.039 (0) - H[14C]O[18O]O- 8.403e-19 7.688e-19 -18.076 -18.114 -0.039 (0) - Ca[14C]O3 4.875e-19 4.883e-19 -18.312 -18.311 0.001 (0) - [14C]O[18O] 3.644e-19 3.650e-19 -18.438 -18.438 0.001 (0) - [14C]O3-2 2.501e-19 1.752e-19 -18.602 -18.756 -0.155 (0) - CaH[14C][18O]O2+ 1.774e-20 1.628e-20 -19.751 -19.788 -0.037 (0) - CaH[14C]O[18O]O+ 1.774e-20 1.628e-20 -19.751 -19.788 -0.037 (0) - CaH[14C]O2[18O]+ 1.774e-20 1.628e-20 -19.751 -19.788 -0.037 (0) - Ca[14C]O2[18O] 2.918e-21 2.923e-21 -20.535 -20.534 0.001 (0) - H[14C][18O]O[18O]- 1.677e-21 1.534e-21 -20.776 -20.814 -0.039 (0) - H[14C][18O]2O- 1.677e-21 1.534e-21 -20.776 -20.814 -0.039 (0) - H[14C]O[18O]2- 1.677e-21 1.534e-21 -20.776 -20.814 -0.039 (0) - [14C]O2[18O]-2 1.497e-21 1.049e-21 -20.825 -20.979 -0.155 (0) + [14C]H4 0.000e+00 0.000e+00 -133.495 -133.494 0.001 (0) +[14C](4) 5.172e-16 + H[14C]O3- 4.178e-16 3.823e-16 -15.379 -15.418 -0.039 (0) + [14C]O2 8.694e-17 8.708e-17 -16.061 -16.060 0.001 (0) + CaH[14C]O3+ 8.823e-18 8.094e-18 -17.054 -17.092 -0.037 (0) + H[14C]O2[18O]- 8.336e-19 7.627e-19 -18.079 -18.118 -0.039 (0) + H[14C]O[18O]O- 8.336e-19 7.627e-19 -18.079 -18.118 -0.039 (0) + H[14C][18O]O2- 8.336e-19 7.627e-19 -18.079 -18.118 -0.039 (0) + Ca[14C]O3 4.837e-19 4.845e-19 -18.315 -18.315 0.001 (0) + [14C]O[18O] 3.615e-19 3.621e-19 -18.442 -18.441 0.001 (0) + [14C]O3-2 2.481e-19 1.738e-19 -18.605 -18.760 -0.155 (0) + CaH[14C]O2[18O]+ 1.760e-20 1.615e-20 -19.754 -19.792 -0.037 (0) + CaH[14C]O[18O]O+ 1.760e-20 1.615e-20 -19.754 -19.792 -0.037 (0) + CaH[14C][18O]O2+ 1.760e-20 1.615e-20 -19.754 -19.792 -0.037 (0) + Ca[14C]O2[18O] 2.895e-21 2.900e-21 -20.538 -20.538 0.001 (0) + H[14C]O[18O]2- 1.663e-21 1.522e-21 -20.779 -20.818 -0.039 (0) + H[14C][18O]2O- 1.663e-21 1.522e-21 -20.779 -20.818 -0.039 (0) + H[14C][18O]O[18O]- 1.663e-21 1.522e-21 -20.779 -20.818 -0.039 (0) + [14C]O2[18O]-2 1.485e-21 1.040e-21 -20.828 -20.983 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.833e-16 - O[18O] 3.826e-16 3.832e-16 -15.417 -15.417 0.001 (0) - [18O]2 3.816e-19 3.823e-19 -18.418 -18.418 0.001 (0) +[18O](0) 2.706e-18 + O[18O] 2.700e-18 2.705e-18 -17.569 -17.568 0.001 (0) + [18O]2 2.694e-21 2.698e-21 -20.570 -20.569 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.83 -126.69 -2.86 [13C]H4 + [13C]H4(g) -119.53 -122.39 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.95 -21.46 -1.50 [14C][18O]2 - [14C]H4(g) -134.93 -137.79 -2.86 [14C]H4 + [14C][18O]2(g) -19.96 -21.46 -1.50 [14C][18O]2 + [14C]H4(g) -130.63 -133.49 -2.86 [14C]H4 [14C]O2(g) -14.59 -16.06 -1.47 [14C]O2 [14C]O[18O](g) -16.97 -18.76 -1.79 [14C]O[18O] - [18O]2(g) -16.13 -18.42 -2.29 [18O]2 + [18O]2(g) -18.28 -20.57 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.12 -12.96 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.26 -7.56 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.05 -4.86 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.95 -10.26 7.69 Ca[14C]O[18O]2 + Ca[14C][18O]3(s) -21.12 -12.97 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -15.27 -7.57 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -13.06 -4.87 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -17.96 -10.27 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.88 -124.74 -2.86 CH4 + CH4(g) -117.57 -120.43 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.53 -39.68 -3.15 H2 + H2(g) -35.46 -38.61 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.13 -13.02 -2.89 O2 - O[18O](g) -12.83 -15.72 -2.89 O[18O] + O2(g) -12.28 -15.17 -2.89 O2 + O[18O](g) -14.98 -17.87 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8655,34 +8603,35 @@ Calcite 5.00e-04 Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.77e-05 Ca[13C]O[18O]2(s) 6.95e-11 6.95e-11 1.39e-07 Ca[13C][18O]3(s) 4.75e-14 4.75e-14 9.51e-11 - Ca[14C]O3(s) 4.07e-17 4.07e-17 8.14e-14 - Ca[14C]O2[18O](s) 2.51e-19 2.51e-19 5.01e-16 - Ca[14C]O[18O]2(s) 5.14e-22 5.14e-22 1.03e-18 - Ca[14C][18O]3(s) 1.00e-27 0.00e+00 2.00e-24 + Ca[14C]O3(s) 4.04e-17 4.04e-17 8.08e-14 + Ca[14C]O2[18O](s) 2.49e-19 2.49e-19 4.97e-16 + Ca[14C]O[18O]2(s) 5.10e-22 5.10e-22 1.02e-18 + Ca[14C][18O]3(s) 3.49e-25 3.48e-25 6.98e-22 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units R(18O) 1.99519e-03 -4.9919 permil - R(13C) 1.11482e-02 -2.8608 permil - R(14C) 8.22449e-14 6.9943 pmc + R(13C) 1.11483e-02 -2.8506 permil + R(14C) 8.15948e-14 6.939 pmc R(18O) H2O(l) 1.99519e-03 -4.9934 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.014 permil - R(18O) O2(aq) 1.99519e-03 -4.9934 permil - R(13C) CO2(aq) 1.10684e-02 -9.9969 permil - R(14C) CO2(aq) 8.10711e-14 6.8945 pmc + R(13C) CO2(aq) 1.10685e-02 -9.9868 permil + R(14C) CO2(aq) 8.04302e-14 6.84 pmc R(18O) CO2(aq) 2.07915e-03 36.88 permil R(18O) HCO3- 1.99519e-03 -4.9934 permil - R(13C) HCO3- 1.11647e-02 -1.384 permil - R(14C) HCO3- 8.24878e-14 7.0149 pmc + R(13C) HCO3- 1.11648e-02 -1.3738 permil + R(14C) HCO3- 8.18358e-14 6.9595 pmc R(18O) CO3-2 1.99519e-03 -4.9934 permil - R(13C) CO3-2 1.11487e-02 -2.8171 permil - R(14C) CO3-2 8.22513e-14 6.9948 pmc + R(13C) CO3-2 1.11488e-02 -2.8069 permil + R(14C) CO3-2 8.16011e-14 6.9395 pmc + R(13C) CH4(aq) 1.10685e-02 -9.9868 permil + R(14C) CH4(aq) 8.04302e-14 6.84 pmc R(18O) Calcite 2.05263e-03 23.653 permil - R(13C) Calcite 1.11868e-02 0.59393 permil - R(14C) Calcite 8.28149e-14 7.0428 pmc + R(13C) Calcite 1.11870e-02 0.60412 permil + R(14C) Calcite 8.21603e-14 6.9871 pmc --------------------------------Isotope Alphas--------------------------------- @@ -8692,14 +8641,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.261e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6698e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6684e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 9.3259e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.1102e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -8711,51 +8661,51 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.510e-05 6.491e-05 - [14C] 4.803e-16 4.789e-16 + [14C] 4.765e-16 4.751e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.282 Adjusted to redox equilibrium + pe = -1.375 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.295e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 64 + Iterations = 71 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.767 -124.766 0.001 (0) +C(-4) 3.093e-24 + CH4 3.093e-24 3.099e-24 -23.510 -23.509 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 @@ -8764,87 +8714,87 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.083e-40 - H2 2.042e-40 2.045e-40 -39.690 -39.689 0.001 (0) -O(0) 1.990e-13 - O2 9.912e-14 9.928e-14 -13.004 -13.003 0.001 (0) - O[18O] 3.955e-16 3.962e-16 -15.403 -15.402 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.723 -126.722 0.001 (0) +H(0) 8.421e-15 + H2 4.211e-15 4.218e-15 -14.376 -14.375 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -63.633 -63.632 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.032 -66.031 0.001 (0) +[13C](-4) 3.424e-26 + [13C]H4 3.424e-26 3.430e-26 -25.465 -25.465 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) + CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.858 -137.857 0.001 (0) -[14C](4) 4.803e-16 - H[14C]O3- 3.880e-16 3.550e-16 -15.411 -15.450 -0.039 (0) - [14C]O2 8.073e-17 8.086e-17 -16.093 -16.092 0.001 (0) - CaH[14C]O3+ 8.193e-18 7.516e-18 -17.087 -17.124 -0.037 (0) - H[14C][18O]O2- 7.741e-19 7.082e-19 -18.111 -18.150 -0.039 (0) - H[14C]O2[18O]- 7.741e-19 7.082e-19 -18.111 -18.150 -0.039 (0) - H[14C]O[18O]O- 7.741e-19 7.082e-19 -18.111 -18.150 -0.039 (0) - Ca[14C]O3 4.491e-19 4.499e-19 -18.348 -18.347 0.001 (0) - [14C]O[18O] 3.357e-19 3.363e-19 -18.474 -18.473 0.001 (0) - [14C]O3-2 2.304e-19 1.614e-19 -18.638 -18.792 -0.155 (0) - CaH[14C][18O]O2+ 1.635e-20 1.500e-20 -19.787 -19.824 -0.037 (0) - CaH[14C]O[18O]O+ 1.635e-20 1.500e-20 -19.787 -19.824 -0.037 (0) - CaH[14C]O2[18O]+ 1.635e-20 1.500e-20 -19.787 -19.824 -0.037 (0) - Ca[14C]O2[18O] 2.688e-21 2.693e-21 -20.571 -20.570 0.001 (0) - H[14C][18O]2O- 1.544e-21 1.413e-21 -20.811 -20.850 -0.039 (0) - H[14C]O[18O]2- 1.544e-21 1.413e-21 -20.811 -20.850 -0.039 (0) - H[14C][18O]O[18O]- 1.544e-21 1.413e-21 -20.811 -20.850 -0.039 (0) - [14C]O2[18O]-2 1.379e-21 9.661e-22 -20.860 -21.015 -0.155 (0) +[14C](-4) 2.488e-37 + [14C]H4 2.488e-37 2.492e-37 -36.604 -36.603 0.001 (0) +[14C](4) 4.765e-16 + H[14C]O3- 3.849e-16 3.521e-16 -15.415 -15.453 -0.039 (0) + [14C]O2 8.009e-17 8.022e-17 -16.096 -16.096 0.001 (0) + CaH[14C]O3+ 8.128e-18 7.456e-18 -17.090 -17.127 -0.037 (0) + H[14C]O2[18O]- 7.680e-19 7.026e-19 -18.115 -18.153 -0.039 (0) + H[14C]O[18O]O- 7.680e-19 7.026e-19 -18.115 -18.153 -0.039 (0) + H[14C][18O]O2- 7.680e-19 7.026e-19 -18.115 -18.153 -0.039 (0) + Ca[14C]O3 4.456e-19 4.463e-19 -18.351 -18.350 0.001 (0) + [14C]O[18O] 3.330e-19 3.336e-19 -18.477 -18.477 0.001 (0) + [14C]O3-2 2.286e-19 1.601e-19 -18.641 -18.796 -0.155 (0) + CaH[14C]O2[18O]+ 1.622e-20 1.488e-20 -19.790 -19.827 -0.037 (0) + CaH[14C]O[18O]O+ 1.622e-20 1.488e-20 -19.790 -19.827 -0.037 (0) + CaH[14C][18O]O2+ 1.622e-20 1.488e-20 -19.790 -19.827 -0.037 (0) + Ca[14C]O2[18O] 2.667e-21 2.671e-21 -20.574 -20.573 0.001 (0) + H[14C]O[18O]2- 1.532e-21 1.402e-21 -20.815 -20.853 -0.039 (0) + H[14C][18O]2O- 1.532e-21 1.402e-21 -20.815 -20.853 -0.039 (0) + H[14C][18O]O[18O]- 1.532e-21 1.402e-21 -20.815 -20.853 -0.039 (0) + [14C]O2[18O]-2 1.368e-21 9.585e-22 -20.864 -21.018 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.963e-16 - O[18O] 3.955e-16 3.962e-16 -15.403 -15.402 0.001 (0) - [18O]2 3.946e-19 3.952e-19 -18.404 -18.403 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -66.032 -66.031 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -69.033 -69.032 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.86 -126.72 -2.86 [13C]H4 + [13C]H4(g) -22.60 -25.46 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.99 -21.49 -1.50 [14C][18O]2 - [14C]H4(g) -135.00 -137.86 -2.86 [14C]H4 - [14C]O2(g) -14.62 -16.09 -1.47 [14C]O2 - [14C]O[18O](g) -17.01 -18.79 -1.79 [14C]O[18O] - [18O]2(g) -16.11 -18.40 -2.29 [18O]2 + [14C][18O]2(g) -19.99 -21.50 -1.50 [14C][18O]2 + [14C]H4(g) -33.74 -36.60 -2.86 [14C]H4 + [14C]O2(g) -14.63 -16.10 -1.47 [14C]O2 + [14C]O[18O](g) -17.01 -18.80 -1.79 [14C]O[18O] + [18O]2(g) -66.74 -69.03 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.15 -13.00 8.15 Ca[14C][18O]3 + Ca[14C][18O]3(s) -21.16 -13.00 8.15 Ca[14C][18O]3 Ca[14C]O2[18O](s) -15.30 -7.60 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -13.09 -4.90 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -17.99 -10.30 7.69 Ca[14C]O[18O]2 @@ -8852,14 +8802,14 @@ O(0) 1.990e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.91 -124.77 -2.86 CH4 + CH4(g) -20.65 -23.51 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.54 -39.69 -3.15 H2 + H2(g) -11.22 -14.37 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.11 -13.00 -2.89 O2 - O[18O](g) -12.81 -15.70 -2.89 O[18O] + O2(g) -60.74 -63.63 -2.89 O2 + O[18O](g) -63.44 -66.33 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8883,12 +8833,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 38. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -8935,34 +8879,34 @@ Calcite 5.00e-04 Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.77e-05 Ca[13C]O[18O]2(s) 6.95e-11 6.95e-11 1.39e-07 Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.51e-11 - Ca[14C]O3(s) 3.75e-17 3.75e-17 7.50e-14 - Ca[14C]O2[18O](s) 2.31e-19 2.31e-19 4.62e-16 - Ca[14C]O[18O]2(s) 4.74e-22 4.74e-22 9.48e-19 - Ca[14C][18O]3(s) 1.01e-27 1.00e-29 2.02e-24 + Ca[14C]O3(s) 3.72e-17 3.72e-17 7.44e-14 + Ca[14C]O2[18O](s) 2.29e-19 2.29e-19 4.58e-16 + Ca[14C]O[18O]2(s) 4.70e-22 4.70e-22 9.40e-19 + Ca[14C][18O]3(s) 3.22e-25 3.21e-25 6.43e-22 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units R(18O) 1.99519e-03 -4.9918 permil - R(13C) 1.11495e-02 -2.7451 permil - R(14C) 7.57664e-14 6.4433 pmc + R(13C) 1.11496e-02 -2.7358 permil + R(14C) 7.51675e-14 6.3924 pmc R(18O) H2O(l) 1.99519e-03 -4.9933 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.015 permil R(18O) O2(aq) 1.99519e-03 -4.9933 permil - R(13C) CO2(aq) 1.10697e-02 -9.8821 permil - R(14C) CO2(aq) 7.46850e-14 6.3514 pmc + R(13C) CO2(aq) 1.10698e-02 -9.8728 permil + R(14C) CO2(aq) 7.40947e-14 6.3012 pmc R(18O) CO2(aq) 2.07915e-03 36.881 permil R(18O) HCO3- 1.99519e-03 -4.9933 permil - R(13C) HCO3- 1.11660e-02 -1.2682 permil - R(14C) HCO3- 7.59902e-14 6.4624 pmc + R(13C) HCO3- 1.11661e-02 -1.2588 permil + R(14C) HCO3- 7.53895e-14 6.4113 pmc R(18O) CO3-2 1.99519e-03 -4.9933 permil - R(13C) CO3-2 1.11500e-02 -2.7014 permil - R(14C) CO3-2 7.57722e-14 6.4438 pmc + R(13C) CO3-2 1.11501e-02 -2.6921 permil + R(14C) CO3-2 7.51733e-14 6.3929 pmc R(18O) Calcite 2.05263e-03 23.653 permil - R(13C) Calcite 1.11881e-02 0.70997 permil - R(14C) Calcite 7.62915e-14 6.488 pmc + R(13C) Calcite 1.11882e-02 0.71937 permil + R(14C) Calcite 7.56884e-14 6.4367 pmc --------------------------------Isotope Alphas--------------------------------- @@ -8972,12 +8916,12 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2554e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2675e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6704e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6194e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -8991,42 +8935,42 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.511e-05 6.492e-05 - [14C] 4.425e-16 4.412e-16 + [14C] 4.390e-16 4.377e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.266 Adjusted to redox equilibrium + pe = 11.034 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.296e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 67 (168 overall) + Iterations = 100 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.640 -124.640 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.787 -122.786 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -9034,8 +8978,8 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 @@ -9044,102 +8988,102 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.089e-08 6.099e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.392e-40 - H2 2.196e-40 2.200e-40 -39.658 -39.658 0.001 (0) -O(0) 1.720e-13 - O2 8.566e-14 8.580e-14 -13.067 -13.067 0.001 (0) - O[18O] 3.418e-16 3.424e-16 -15.466 -15.465 0.001 (0) +H(0) 1.277e-39 + H2 6.384e-40 6.394e-40 -39.195 -39.194 0.001 (0) +O(0) 2.036e-14 + O2 1.014e-14 1.015e-14 -13.994 -13.993 0.001 (0) + O[18O] 4.045e-17 4.052e-17 -16.393 -16.392 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.596 -126.595 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.742 -124.742 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.252e-05 4.805e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.048e-07 9.587e-08 -6.980 -7.018 -0.039 (0) H[13C]O2[18O]- 1.048e-07 9.587e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.587e-08 -6.980 -7.018 -0.039 (0) + H[13C][18O]O2- 1.048e-07 9.587e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.089e-08 6.099e-08 -7.215 -7.215 0.001 (0) [13C]O[18O] 4.584e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.767 -137.766 0.001 (0) -[14C](4) 4.425e-16 - H[14C]O3- 3.574e-16 3.270e-16 -15.447 -15.485 -0.039 (0) - [14C]O2 7.437e-17 7.449e-17 -16.129 -16.128 0.001 (0) - CaH[14C]O3+ 7.548e-18 6.924e-18 -17.122 -17.160 -0.037 (0) - H[14C][18O]O2- 7.131e-19 6.524e-19 -18.147 -18.185 -0.039 (0) - H[14C]O2[18O]- 7.131e-19 6.524e-19 -18.147 -18.185 -0.039 (0) - H[14C]O[18O]O- 7.131e-19 6.524e-19 -18.147 -18.185 -0.039 (0) - Ca[14C]O3 4.138e-19 4.144e-19 -18.383 -18.383 0.001 (0) - [14C]O[18O] 3.093e-19 3.098e-19 -18.510 -18.509 0.001 (0) - [14C]O3-2 2.123e-19 1.487e-19 -18.673 -18.828 -0.155 (0) - CaH[14C][18O]O2+ 1.506e-20 1.381e-20 -19.822 -19.860 -0.037 (0) - CaH[14C]O[18O]O+ 1.506e-20 1.381e-20 -19.822 -19.860 -0.037 (0) - CaH[14C]O2[18O]+ 1.506e-20 1.381e-20 -19.822 -19.860 -0.037 (0) - Ca[14C]O2[18O] 2.477e-21 2.481e-21 -20.606 -20.605 0.001 (0) - H[14C]O[18O]2- 1.423e-21 1.302e-21 -20.847 -20.885 -0.039 (0) - H[14C][18O]O[18O]- 1.423e-21 1.302e-21 -20.847 -20.885 -0.039 (0) - H[14C][18O]2O- 1.423e-21 1.302e-21 -20.847 -20.885 -0.039 (0) - [14C]O2[18O]-2 1.270e-21 8.900e-22 -20.896 -21.051 -0.155 (0) + [14C]H4 0.000e+00 0.000e+00 -135.917 -135.916 0.001 (0) +[14C](4) 4.390e-16 + H[14C]O3- 3.546e-16 3.244e-16 -15.450 -15.489 -0.039 (0) + [14C]O2 7.378e-17 7.390e-17 -16.132 -16.131 0.001 (0) + CaH[14C]O3+ 7.488e-18 6.869e-18 -17.126 -17.163 -0.037 (0) + H[14C]O2[18O]- 7.075e-19 6.473e-19 -18.150 -18.189 -0.039 (0) + H[14C]O[18O]O- 7.075e-19 6.473e-19 -18.150 -18.189 -0.039 (0) + H[14C][18O]O2- 7.075e-19 6.473e-19 -18.150 -18.189 -0.039 (0) + Ca[14C]O3 4.105e-19 4.112e-19 -18.387 -18.386 0.001 (0) + [14C]O[18O] 3.068e-19 3.073e-19 -18.513 -18.512 0.001 (0) + [14C]O3-2 2.106e-19 1.475e-19 -18.677 -18.831 -0.155 (0) + CaH[14C]O2[18O]+ 1.494e-20 1.370e-20 -19.826 -19.863 -0.037 (0) + CaH[14C]O[18O]O+ 1.494e-20 1.370e-20 -19.826 -19.863 -0.037 (0) + CaH[14C][18O]O2+ 1.494e-20 1.370e-20 -19.826 -19.863 -0.037 (0) + Ca[14C]O2[18O] 2.457e-21 2.461e-21 -20.610 -20.609 0.001 (0) + H[14C]O[18O]2- 1.412e-21 1.291e-21 -20.850 -20.889 -0.039 (0) + H[14C][18O]2O- 1.412e-21 1.291e-21 -20.850 -20.889 -0.039 (0) + H[14C][18O]O[18O]- 1.412e-21 1.291e-21 -20.850 -20.889 -0.039 (0) + [14C]O2[18O]-2 1.260e-21 8.830e-22 -20.899 -21.054 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.425e-16 - O[18O] 3.418e-16 3.424e-16 -15.466 -15.465 0.001 (0) - [18O]2 3.410e-19 3.416e-19 -18.467 -18.467 0.001 (0) +[18O](0) 4.053e-17 + O[18O] 4.045e-17 4.052e-17 -16.393 -16.392 0.001 (0) + [18O]2 4.035e-20 4.042e-20 -19.394 -19.393 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.74 -126.60 -2.86 [13C]H4 + [13C]H4(g) -121.88 -124.74 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.02 -21.53 -1.50 [14C][18O]2 - [14C]H4(g) -134.91 -137.77 -2.86 [14C]H4 + [14C][18O]2(g) -20.03 -21.53 -1.50 [14C][18O]2 + [14C]H4(g) -133.06 -135.92 -2.86 [14C]H4 [14C]O2(g) -14.66 -16.13 -1.47 [14C]O2 [14C]O[18O](g) -17.04 -18.83 -1.79 [14C]O[18O] - [18O]2(g) -16.18 -18.47 -2.29 [18O]2 + [18O]2(g) -17.10 -19.39 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.19 -13.03 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.34 -7.63 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.13 -4.93 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.02 -10.33 7.69 Ca[14C]O[18O]2 + Ca[14C][18O]3(s) -21.19 -13.04 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -15.34 -7.64 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -13.13 -4.94 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -18.03 -10.34 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.78 -124.64 -2.86 CH4 + CH4(g) -119.93 -122.79 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.51 -39.66 -3.15 H2 + H2(g) -36.04 -39.19 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.17 -13.07 -2.89 O2 - O[18O](g) -12.87 -15.77 -2.89 O[18O] + O2(g) -11.10 -13.99 -2.89 O2 + O[18O](g) -13.80 -16.69 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9163,12 +9107,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 39. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -9215,34 +9153,34 @@ Calcite 5.00e-04 Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.77e-05 Ca[13C]O[18O]2(s) 6.95e-11 6.95e-11 1.39e-07 Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.51e-11 - Ca[14C]O3(s) 3.45e-17 3.45e-17 6.91e-14 - Ca[14C]O2[18O](s) 2.13e-19 2.13e-19 4.25e-16 - Ca[14C]O[18O]2(s) 4.37e-22 4.37e-22 8.73e-19 - Ca[14C][18O]3(s) 1.01e-27 1.00e-29 2.02e-24 + Ca[14C]O3(s) 3.43e-17 3.43e-17 6.85e-14 + Ca[14C]O2[18O](s) 2.11e-19 2.11e-19 4.22e-16 + Ca[14C]O[18O]2(s) 4.33e-22 4.33e-22 8.66e-19 + Ca[14C][18O]3(s) 2.96e-25 2.95e-25 5.93e-22 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units R(18O) 1.99519e-03 -4.9916 permil - R(13C) 1.11507e-02 -2.6386 permil - R(14C) 6.97982e-14 5.9358 pmc + R(13C) 1.11508e-02 -2.6299 permil + R(14C) 6.92465e-14 5.8889 pmc R(18O) H2O(l) 1.99519e-03 -4.9932 permil R(18O) OH- 1.92122e-03 -41.88 permil R(18O) H3O+ 2.04132e-03 18.015 permil R(18O) O2(aq) 1.99519e-03 -4.9932 permil - R(13C) CO2(aq) 1.10709e-02 -9.7763 permil - R(14C) CO2(aq) 6.88020e-14 5.8511 pmc + R(13C) CO2(aq) 1.10710e-02 -9.7677 permil + R(14C) CO2(aq) 6.82581e-14 5.8048 pmc R(18O) CO2(aq) 2.07915e-03 36.881 permil R(18O) HCO3- 1.99519e-03 -4.9932 permil - R(13C) HCO3- 1.11672e-02 -1.1614 permil - R(14C) HCO3- 7.00043e-14 5.9533 pmc + R(13C) HCO3- 1.11673e-02 -1.1528 permil + R(14C) HCO3- 6.94510e-14 5.9063 pmc R(18O) CO3-2 1.99519e-03 -4.9932 permil - R(13C) CO3-2 1.11512e-02 -2.5949 permil - R(14C) CO3-2 6.98036e-14 5.9362 pmc + R(13C) CO3-2 1.11513e-02 -2.5862 permil + R(14C) CO3-2 6.92518e-14 5.8893 pmc R(18O) Calcite 2.05263e-03 23.653 permil - R(13C) Calcite 1.11893e-02 0.8169 permil - R(14C) Calcite 7.02819e-14 5.9769 pmc + R(13C) Calcite 1.11894e-02 0.82557 permil + R(14C) Calcite 6.97264e-14 5.9297 pmc --------------------------------Isotope Alphas--------------------------------- @@ -9252,12 +9190,12 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2512e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.241e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6426e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.758e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -9271,35 +9209,35 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.512e-05 6.493e-05 - [14C] 4.076e-16 4.064e-16 + [14C] 4.044e-16 4.032e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.235 Adjusted to redox equilibrium + pe = 11.084 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.295e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 61 (162 overall) + Iterations = 70 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.389 -124.389 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.182 -123.181 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -9311,11 +9249,11 @@ C(4) 5.840e-03 CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 @@ -9324,19 +9262,19 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.089e-08 6.099e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.075e-40 - H2 2.537e-40 2.542e-40 -39.596 -39.595 0.001 (0) -O(0) 1.288e-13 - O2 6.416e-14 6.427e-14 -13.193 -13.192 0.001 (0) - O[18O] 2.560e-16 2.565e-16 -15.592 -15.591 0.001 (0) +H(0) 1.017e-39 + H2 5.084e-40 5.093e-40 -39.294 -39.293 0.001 (0) +O(0) 3.209e-14 + O2 1.598e-14 1.601e-14 -13.796 -13.796 0.001 (0) + O[18O] 6.377e-17 6.388e-17 -16.195 -16.195 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.345 -126.344 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.138 -125.137 0.001 (0) [13C](4) 6.512e-05 - H[13C]O3- 5.252e-05 4.805e-05 -4.280 -4.318 -0.039 (0) + H[13C]O3- 5.253e-05 4.805e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.992 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.588e-08 -6.980 -7.018 -0.039 (0) @@ -9345,66 +9283,66 @@ O(0) 1.288e-13 Ca[13C]O3 6.089e-08 6.099e-08 -7.215 -7.215 0.001 (0) [13C]O[18O] 4.584e-08 4.592e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.124e-08 2.188e-08 -7.505 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.645e-10 3.651e-10 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.870e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.552 -137.551 0.001 (0) -[14C](4) 4.076e-16 - H[14C]O3- 3.293e-16 3.012e-16 -15.482 -15.521 -0.039 (0) - [14C]O2 6.851e-17 6.863e-17 -16.164 -16.164 0.001 (0) - CaH[14C]O3+ 6.953e-18 6.378e-18 -17.158 -17.195 -0.037 (0) - H[14C][18O]O2- 6.569e-19 6.010e-19 -18.182 -18.221 -0.039 (0) - H[14C]O2[18O]- 6.569e-19 6.010e-19 -18.182 -18.221 -0.039 (0) - H[14C]O[18O]O- 6.569e-19 6.010e-19 -18.182 -18.221 -0.039 (0) - Ca[14C]O3 3.812e-19 3.818e-19 -18.419 -18.418 0.001 (0) - [14C]O[18O] 2.849e-19 2.854e-19 -18.545 -18.545 0.001 (0) - [14C]O3-2 1.955e-19 1.370e-19 -18.709 -18.863 -0.155 (0) - CaH[14C][18O]O2+ 1.387e-20 1.273e-20 -19.858 -19.895 -0.037 (0) - CaH[14C]O[18O]O+ 1.387e-20 1.273e-20 -19.858 -19.895 -0.037 (0) - CaH[14C]O2[18O]+ 1.387e-20 1.273e-20 -19.858 -19.895 -0.037 (0) - Ca[14C]O2[18O] 2.281e-21 2.285e-21 -20.642 -20.641 0.001 (0) - H[14C][18O]O[18O]- 1.311e-21 1.199e-21 -20.882 -20.921 -0.039 (0) - H[14C][18O]2O- 1.311e-21 1.199e-21 -20.882 -20.921 -0.039 (0) - H[14C]O[18O]2- 1.311e-21 1.199e-21 -20.882 -20.921 -0.039 (0) - [14C]O2[18O]-2 1.170e-21 8.199e-22 -20.932 -21.086 -0.155 (0) + [14C]H4 0.000e+00 0.000e+00 -136.348 -136.347 0.001 (0) +[14C](4) 4.044e-16 + H[14C]O3- 3.267e-16 2.989e-16 -15.486 -15.525 -0.039 (0) + [14C]O2 6.797e-17 6.808e-17 -16.168 -16.167 0.001 (0) + CaH[14C]O3+ 6.898e-18 6.328e-18 -17.161 -17.199 -0.037 (0) + H[14C]O2[18O]- 6.518e-19 5.963e-19 -18.186 -18.225 -0.039 (0) + H[14C]O[18O]O- 6.518e-19 5.963e-19 -18.186 -18.225 -0.039 (0) + H[14C][18O]O2- 6.518e-19 5.963e-19 -18.186 -18.225 -0.039 (0) + Ca[14C]O3 3.782e-19 3.788e-19 -18.422 -18.422 0.001 (0) + [14C]O[18O] 2.826e-19 2.831e-19 -18.549 -18.548 0.001 (0) + [14C]O3-2 1.940e-19 1.359e-19 -18.712 -18.867 -0.155 (0) + CaH[14C]O2[18O]+ 1.376e-20 1.263e-20 -19.861 -19.899 -0.037 (0) + CaH[14C]O[18O]O+ 1.376e-20 1.263e-20 -19.861 -19.899 -0.037 (0) + CaH[14C][18O]O2+ 1.376e-20 1.263e-20 -19.861 -19.899 -0.037 (0) + Ca[14C]O2[18O] 2.263e-21 2.267e-21 -20.645 -20.645 0.001 (0) + H[14C]O[18O]2- 1.300e-21 1.190e-21 -20.886 -20.925 -0.039 (0) + H[14C][18O]2O- 1.300e-21 1.190e-21 -20.886 -20.925 -0.039 (0) + H[14C][18O]O[18O]- 1.300e-21 1.190e-21 -20.886 -20.925 -0.039 (0) + [14C]O2[18O]-2 1.161e-21 8.134e-22 -20.935 -21.090 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.566e-16 - O[18O] 2.560e-16 2.565e-16 -15.592 -15.591 0.001 (0) - [18O]2 2.554e-19 2.558e-19 -18.593 -18.592 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 6.390e-17 + O[18O] 6.377e-17 6.388e-17 -16.195 -16.195 0.001 (0) + [18O]2 6.362e-20 6.372e-20 -19.196 -19.196 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.48 -126.34 -2.86 [13C]H4 + [13C]H4(g) -122.28 -125.14 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.06 -21.56 -1.50 [14C][18O]2 - [14C]H4(g) -134.69 -137.55 -2.86 [14C]H4 - [14C]O2(g) -14.69 -16.16 -1.47 [14C]O2 - [14C]O[18O](g) -17.08 -18.86 -1.79 [14C]O[18O] - [18O]2(g) -16.30 -18.59 -2.29 [18O]2 + [14C][18O]2(g) -20.06 -21.57 -1.50 [14C][18O]2 + [14C]H4(g) -133.49 -136.35 -2.86 [14C]H4 + [14C]O2(g) -14.70 -16.17 -1.47 [14C]O2 + [14C]O[18O](g) -17.08 -18.87 -1.79 [14C]O[18O] + [18O]2(g) -16.91 -19.20 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.22 -13.07 8.15 Ca[14C][18O]3 + Ca[14C][18O]3(s) -21.23 -13.07 8.15 Ca[14C][18O]3 Ca[14C]O2[18O](s) -15.37 -7.67 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -13.16 -4.97 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -18.06 -10.37 7.69 Ca[14C]O[18O]2 @@ -9412,14 +9350,14 @@ O(0) 1.288e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.53 -124.39 -2.86 CH4 + CH4(g) -120.32 -123.18 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.44 -39.59 -3.15 H2 + H2(g) -36.14 -39.29 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.30 -13.19 -2.89 O2 - O[18O](g) -13.00 -15.89 -2.89 O[18O] + O2(g) -10.90 -13.80 -2.89 O2 + O[18O](g) -13.60 -16.50 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9486,43 +9424,43 @@ Calcite added: 0 Solid solution Component Moles Delta moles Mole fract -Calcite 4.94e-04 - Calcite 4.91e-04 4.91e-04 9.94e-01 - CaCO2[18O](s) 3.02e-06 3.02e-06 6.12e-03 - CaCO[18O]2(s) 6.21e-09 6.21e-09 1.26e-05 - CaC[18O]3(s) 4.25e-12 4.25e-12 8.59e-09 - Ca[13C]O3(s) 1.00e-27 0.00e+00 2.02e-24 - Ca[13C]O2[18O](s) 3.67e-08 3.67e-08 7.43e-05 - Ca[13C]O[18O]2(s) 7.53e-11 7.53e-11 1.52e-07 - Ca[13C][18O]3(s) 5.16e-14 5.16e-14 1.04e-10 - Ca[14C]O3(s) 3.18e-17 3.18e-17 6.43e-14 - Ca[14C]O2[18O](s) 1.96e-19 1.96e-19 3.96e-16 - Ca[14C]O[18O]2(s) 4.02e-22 4.02e-22 8.13e-19 - Ca[14C][18O]3(s) 2.75e-25 2.74e-25 5.56e-22 +Calcite 5.00e-04 + Calcite 4.91e-04 4.91e-04 9.83e-01 + CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 + CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 + CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 + Ca[13C]O3(s) 5.50e-06 5.50e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.77e-05 + Ca[13C]O[18O]2(s) 6.95e-11 6.95e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.51e-11 + Ca[14C]O3(s) 3.16e-17 3.16e-17 6.31e-14 + Ca[14C]O2[18O](s) 1.94e-19 1.94e-19 3.89e-16 + Ca[14C]O[18O]2(s) 3.99e-22 3.99e-22 7.98e-19 + Ca[14C][18O]3(s) 2.73e-25 2.72e-25 5.46e-22 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99519e-03 -4.9918 permil - R(13C) 1.20951e-02 81.836 permil - R(14C) 6.43002e-14 5.4682 pmc - R(18O) H2O(l) 1.99519e-03 -4.9933 permil - R(18O) OH- 1.92122e-03 -41.881 permil - R(18O) H3O+ 2.04132e-03 18.014 permil - R(18O) O2(aq) 1.99519e-03 -4.9933 permil - R(13C) CO2(aq) 1.20085e-02 74.084 permil - R(14C) CO2(aq) 6.33813e-14 5.3901 pmc + R(18O) 1.99519e-03 -4.9915 permil + R(13C) 1.11519e-02 -2.5324 permil + R(14C) 6.37918e-14 5.425 pmc + R(18O) H2O(l) 1.99519e-03 -4.993 permil + R(18O) OH- 1.92122e-03 -41.88 permil + R(18O) H3O+ 2.04132e-03 18.015 permil + R(18O) O2(aq) 1.99519e-03 -4.993 permil + R(13C) CO2(aq) 1.10721e-02 -9.6709 permil + R(14C) CO2(aq) 6.28814e-14 5.3476 pmc R(18O) CO2(aq) 2.07915e-03 36.881 permil - R(18O) HCO3- 1.99519e-03 -4.9933 permil - R(13C) HCO3- 1.21129e-02 83.428 permil - R(14C) HCO3- 6.44889e-14 5.4843 pmc - R(18O) CO3-2 1.99519e-03 -4.9933 permil - R(13C) CO3-2 1.20956e-02 81.873 permil - R(14C) CO3-2 6.43039e-14 5.4685 pmc - R(18O) Calcite 2.07744e-03 36.026 permil - R(13C) Calcite 7.44321e-05 -993.34 permil - R(14C) Calcite 6.47446e-14 5.506 pmc + R(18O) HCO3- 1.99519e-03 -4.993 permil + R(13C) HCO3- 1.11684e-02 -1.0551 permil + R(14C) HCO3- 6.39802e-14 5.441 pmc + R(18O) CO3-2 1.99519e-03 -4.993 permil + R(13C) CO3-2 1.11524e-02 -2.4887 permil + R(14C) CO3-2 6.37967e-14 5.4254 pmc + R(18O) Calcite 2.05263e-03 23.653 permil + R(13C) Calcite 1.11905e-02 0.92343 permil + R(14C) Calcite 6.42339e-14 5.4626 pmc --------------------------------Isotope Alphas--------------------------------- @@ -9532,16 +9470,16 @@ Calcite 4.94e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2586e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2811e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5365e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.753e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0412 40.398 28.383 -Alpha 13C Calcite/CO2(aq) 0.0061983 -5083.5 10.641 +Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 +Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ @@ -9549,160 +9487,157 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 Elements Molality Moles C 5.840e-03 5.823e-03 - Ca 2.457e-03 2.450e-03 - [13C] 7.064e-05 7.043e-05 - [14C] 3.755e-16 3.744e-16 + Ca 2.451e-03 2.444e-03 + [13C] 6.513e-05 6.494e-05 + [14C] 3.725e-16 3.714e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- - pH = 6.992 Charge balance - pe = 11.225 Adjusted to redox equilibrium + pH = 6.989 Charge balance + pe = 10.786 Adjusted to redox equilibrium Activity of water = 0.998 - Ionic strength (mol/kgw) = 7.154e-03 + Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 - Total alkalinity (eq/kg) = 4.914e-03 + Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.295e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 62 (163 overall) + Iterations = 163 (264 overall) Total H = 1.110126e+02 - Total O = 5.540998e+01 + Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H3O+ 1.103e-07 1.018e-07 -6.958 -6.992 -0.035 0.00 - OH- 1.072e-07 9.789e-08 -6.970 -7.009 -0.039 (0) + H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 + OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.341 -124.341 0.001 (0) + CH4 0.000e+00 0.000e+00 -120.803 -120.802 0.001 (0) C(4) 5.840e-03 - HCO3- 4.710e-03 4.309e-03 -2.327 -2.366 -0.039 (0) - CO2 9.893e-04 9.909e-04 -3.005 -3.004 0.001 (0) - CaHCO3+ 9.965e-05 9.140e-05 -4.002 -4.039 -0.038 (0) - HCO[18O]O- 9.397e-06 8.596e-06 -5.027 -5.066 -0.039 (0) - HC[18O]O2- 9.397e-06 8.596e-06 -5.027 -5.066 -0.039 (0) - HCO2[18O]- 9.397e-06 8.596e-06 -5.027 -5.066 -0.039 (0) - CaCO3 5.521e-06 5.530e-06 -5.258 -5.257 0.001 (0) - CO[18O] 4.114e-06 4.120e-06 -5.386 -5.385 0.001 (0) - CO3-2 2.828e-06 1.980e-06 -5.549 -5.703 -0.155 (0) - CaHCO2[18O]+ 1.988e-07 1.824e-07 -6.702 -6.739 -0.038 (0) - CaHCO[18O]O+ 1.988e-07 1.824e-07 -6.702 -6.739 -0.038 (0) - CaHC[18O]O2+ 1.988e-07 1.824e-07 -6.702 -6.739 -0.038 (0) - CaCO2[18O] 3.305e-08 3.310e-08 -7.481 -7.480 0.001 (0) - HC[18O]2O- 1.875e-08 1.715e-08 -7.727 -7.766 -0.039 (0) - HCO[18O]2- 1.875e-08 1.715e-08 -7.727 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.875e-08 1.715e-08 -7.727 -7.766 -0.039 (0) - CO2[18O]-2 1.693e-08 1.185e-08 -7.771 -7.926 -0.155 (0) -Ca 2.457e-03 - Ca+2 2.350e-03 1.662e-03 -2.629 -2.779 -0.150 (0) - CaHCO3+ 9.965e-05 9.140e-05 -4.002 -4.039 -0.038 (0) - CaCO3 5.521e-06 5.530e-06 -5.258 -5.257 0.001 (0) - CaH[13C]O3+ 1.207e-06 1.107e-06 -5.918 -5.956 -0.038 (0) - CaHCO2[18O]+ 1.988e-07 1.824e-07 -6.702 -6.739 -0.038 (0) - CaHC[18O]O2+ 1.988e-07 1.824e-07 -6.702 -6.739 -0.038 (0) - CaHCO[18O]O+ 1.988e-07 1.824e-07 -6.702 -6.739 -0.038 (0) - Ca[13C]O3 6.678e-08 6.689e-08 -7.175 -7.175 0.001 (0) - CaCO2[18O] 3.305e-08 3.310e-08 -7.481 -7.480 0.001 (0) -H(0) 5.226e-40 - H2 2.613e-40 2.617e-40 -39.583 -39.582 0.001 (0) -O(0) 1.215e-13 - O2 6.051e-14 6.061e-14 -13.218 -13.217 0.001 (0) - O[18O] 2.415e-16 2.419e-16 -15.617 -15.616 0.001 (0) + HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) +Ca 2.451e-03 + Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) + CaH[13C]O3+ 1.109e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.090e-08 6.100e-08 -7.215 -7.215 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 4.000e-39 + H2 2.000e-39 2.003e-39 -38.699 -38.698 0.001 (0) +O(0) 2.074e-15 + O2 1.033e-15 1.035e-15 -14.986 -14.985 0.001 (0) + O[18O] 4.122e-18 4.129e-18 -17.385 -17.384 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.262 -126.261 0.001 (0) -[13C](4) 7.064e-05 - H[13C]O3- 5.705e-05 5.219e-05 -4.244 -4.282 -0.039 (0) - [13C]O2 1.188e-05 1.190e-05 -4.925 -4.924 0.001 (0) - CaH[13C]O3+ 1.207e-06 1.107e-06 -5.918 -5.956 -0.038 (0) - H[13C]O[18O]O- 1.138e-07 1.041e-07 -6.944 -6.982 -0.039 (0) - H[13C][18O]O2- 1.138e-07 1.041e-07 -6.944 -6.982 -0.039 (0) - H[13C]O2[18O]- 1.138e-07 1.041e-07 -6.944 -6.982 -0.039 (0) - Ca[13C]O3 6.678e-08 6.689e-08 -7.175 -7.175 0.001 (0) - [13C]O[18O] 4.940e-08 4.948e-08 -7.306 -7.306 0.001 (0) - [13C]O3-2 3.420e-08 2.395e-08 -7.466 -7.621 -0.155 (0) - CaH[13C]O2[18O]+ 2.408e-09 2.209e-09 -8.618 -8.656 -0.038 (0) - CaH[13C]O[18O]O+ 2.408e-09 2.209e-09 -8.618 -8.656 -0.038 (0) - CaH[13C][18O]O2+ 2.408e-09 2.209e-09 -8.618 -8.656 -0.038 (0) - Ca[13C]O2[18O] 3.997e-10 4.004e-10 -9.398 -9.398 0.001 (0) - H[13C][18O]O[18O]- 2.271e-10 2.078e-10 -9.644 -9.682 -0.039 (0) - H[13C]O[18O]2- 2.271e-10 2.078e-10 -9.644 -9.682 -0.039 (0) - H[13C][18O]2O- 2.271e-10 2.078e-10 -9.644 -9.682 -0.039 (0) - [13C]O2[18O]-2 2.047e-10 1.434e-10 -9.689 -9.844 -0.155 (0) + [13C]H4 0.000e+00 0.000e+00 -122.759 -122.758 0.001 (0) +[13C](4) 6.513e-05 + H[13C]O3- 5.253e-05 4.806e-05 -4.280 -4.318 -0.039 (0) + [13C]O2 1.103e-05 1.104e-05 -4.958 -4.957 0.001 (0) + CaH[13C]O3+ 1.109e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.048e-07 9.589e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.589e-08 -6.980 -7.018 -0.039 (0) + H[13C][18O]O2- 1.048e-07 9.589e-08 -6.980 -7.018 -0.039 (0) + Ca[13C]O3 6.090e-08 6.100e-08 -7.215 -7.215 0.001 (0) + [13C]O[18O] 4.585e-08 4.592e-08 -7.339 -7.338 0.001 (0) + [13C]O3-2 3.124e-08 2.188e-08 -7.505 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.645e-10 3.651e-10 -9.438 -9.438 0.001 (0) + H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.870e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.539 -137.539 0.001 (0) -[14C](4) 3.755e-16 - H[14C]O3- 3.037e-16 2.779e-16 -15.518 -15.556 -0.039 (0) - [14C]O2 6.270e-17 6.280e-17 -16.203 -16.202 0.001 (0) - CaH[14C]O3+ 6.426e-18 5.894e-18 -17.192 -17.230 -0.038 (0) - H[14C][18O]O2- 6.060e-19 5.544e-19 -18.218 -18.256 -0.039 (0) - H[14C]O2[18O]- 6.060e-19 5.544e-19 -18.218 -18.256 -0.039 (0) - H[14C]O[18O]O- 6.060e-19 5.544e-19 -18.218 -18.256 -0.039 (0) - Ca[14C]O3 3.550e-19 3.556e-19 -18.450 -18.449 0.001 (0) - [14C]O[18O] 2.607e-19 2.612e-19 -18.584 -18.583 0.001 (0) - [14C]O3-2 1.818e-19 1.273e-19 -18.740 -18.895 -0.155 (0) - CaH[14C]O[18O]O+ 1.282e-20 1.176e-20 -19.892 -19.930 -0.038 (0) - CaH[14C]O2[18O]+ 1.282e-20 1.176e-20 -19.892 -19.930 -0.038 (0) - CaH[14C][18O]O2+ 1.282e-20 1.176e-20 -19.892 -19.930 -0.038 (0) - Ca[14C]O2[18O] 2.125e-21 2.129e-21 -20.673 -20.672 0.001 (0) - H[14C][18O]2O- 1.209e-21 1.106e-21 -20.918 -20.956 -0.039 (0) - H[14C]O[18O]2- 1.209e-21 1.106e-21 -20.918 -20.956 -0.039 (0) - H[14C][18O]O[18O]- 1.209e-21 1.106e-21 -20.918 -20.956 -0.039 (0) - [14C]O2[18O]-2 1.088e-21 7.622e-22 -20.963 -21.118 -0.155 (0) + [14C]H4 0.000e+00 0.000e+00 -134.004 -134.004 0.001 (0) +[14C](4) 3.725e-16 + H[14C]O3- 3.009e-16 2.753e-16 -15.522 -15.560 -0.039 (0) + [14C]O2 6.262e-17 6.272e-17 -16.203 -16.203 0.001 (0) + CaH[14C]O3+ 6.355e-18 5.829e-18 -17.197 -17.234 -0.037 (0) + H[14C]O2[18O]- 6.004e-19 5.493e-19 -18.222 -18.260 -0.039 (0) + H[14C]O[18O]O- 6.004e-19 5.493e-19 -18.222 -18.260 -0.039 (0) + H[14C][18O]O2- 6.004e-19 5.493e-19 -18.222 -18.260 -0.039 (0) + Ca[14C]O3 3.484e-19 3.489e-19 -18.458 -18.457 0.001 (0) + [14C]O[18O] 2.604e-19 2.608e-19 -18.584 -18.584 0.001 (0) + [14C]O3-2 1.787e-19 1.252e-19 -18.748 -18.902 -0.155 (0) + CaH[14C]O2[18O]+ 1.268e-20 1.163e-20 -19.897 -19.934 -0.037 (0) + CaH[14C]O[18O]O+ 1.268e-20 1.163e-20 -19.897 -19.934 -0.037 (0) + CaH[14C][18O]O2+ 1.268e-20 1.163e-20 -19.897 -19.934 -0.037 (0) + Ca[14C]O2[18O] 2.085e-21 2.089e-21 -20.681 -20.680 0.001 (0) + H[14C]O[18O]2- 1.198e-21 1.096e-21 -20.922 -20.960 -0.039 (0) + H[14C][18O]2O- 1.198e-21 1.096e-21 -20.922 -20.960 -0.039 (0) + H[14C][18O]O[18O]- 1.198e-21 1.096e-21 -20.922 -20.960 -0.039 (0) + [14C]O2[18O]-2 1.070e-21 7.493e-22 -20.971 -21.125 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.397e-06 8.596e-06 -5.027 -5.066 -0.039 (0) - HCO2[18O]- 9.397e-06 8.596e-06 -5.027 -5.066 -0.039 (0) - HC[18O]O2- 9.397e-06 8.596e-06 -5.027 -5.066 -0.039 (0) - CO[18O] 4.114e-06 4.120e-06 -5.386 -5.385 0.001 (0) - CaHCO2[18O]+ 1.988e-07 1.824e-07 -6.702 -6.739 -0.038 (0) - CaHCO[18O]O+ 1.988e-07 1.824e-07 -6.702 -6.739 -0.038 (0) - CaHC[18O]O2+ 1.988e-07 1.824e-07 -6.702 -6.739 -0.038 (0) - H[13C][18O]O2- 1.138e-07 1.041e-07 -6.944 -6.982 -0.039 (0) - H[13C]O[18O]O- 1.138e-07 1.041e-07 -6.944 -6.982 -0.039 (0) - H[13C]O2[18O]- 1.138e-07 1.041e-07 -6.944 -6.982 -0.039 (0) -[18O](0) 2.419e-16 - O[18O] 2.415e-16 2.419e-16 -15.617 -15.616 0.001 (0) - [18O]2 2.409e-19 2.413e-19 -18.618 -18.617 0.001 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 4.131e-18 + O[18O] 4.122e-18 4.129e-18 -17.385 -17.384 0.001 (0) + [18O]2 4.112e-21 4.119e-21 -20.386 -20.385 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.82 -10.32 -1.50 [13C][18O]2 - [13C]H4(g) -123.40 -126.26 -2.86 [13C]H4 - [13C]O2(g) -3.46 -4.92 -1.47 [13C]O2 - [13C]O[18O](g) -5.84 -7.62 -1.79 [13C]O[18O] + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -119.90 -122.76 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.10 -21.60 -1.50 [14C][18O]2 - [14C]H4(g) -134.68 -137.54 -2.86 [14C]H4 + [14C]H4(g) -131.14 -134.00 -2.86 [14C]H4 [14C]O2(g) -14.73 -16.20 -1.47 [14C]O2 - [14C]O[18O](g) -17.11 -18.90 -1.79 [14C]O[18O] - [18O]2(g) -16.33 -18.62 -2.29 [18O]2 + [14C]O[18O](g) -17.12 -18.90 -1.79 [14C]O[18O] + [18O]2(g) -18.09 -20.39 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -9.98 -1.82 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.13 3.58 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.92 6.28 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.82 0.88 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.25 -13.10 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.40 -7.70 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.19 -5.00 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.09 -10.40 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.10 8.16 CaC[18O]3 - CaCO2[18O](s) -2.21 5.50 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.90 2.80 7.70 CaCO[18O]2 - Calcite -0.00 -8.48 -8.48 CaCO3 - CH4(g) -121.48 -124.34 -2.86 CH4 - CO2(g) -1.54 -3.00 -1.47 CO2 - CO[18O](g) -3.92 -5.70 -1.79 CO[18O] - H2(g) -36.43 -39.58 -3.15 H2 + Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 + Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -21.26 -13.11 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -15.41 -7.71 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -13.20 -5.01 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -18.10 -10.41 7.69 Ca[14C]O[18O]2 + CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 + CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] + CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 + Calcite -0.01 -8.49 -8.48 CaCO3 + CH4(g) -117.94 -120.80 -2.86 CH4 + CO2(g) -1.53 -3.00 -1.47 CO2 + CO[18O](g) -3.91 -5.70 -1.79 CO[18O] + H2(g) -35.55 -38.70 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.33 -13.22 -2.89 O2 - O[18O](g) -13.03 -15.92 -2.89 O[18O] + O2(g) -12.09 -14.99 -2.89 O2 + O[18O](g) -14.79 -17.69 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9726,6 +9661,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 41. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -9763,43 +9704,44 @@ Calcite added: 0 Solid solution Component Moles Delta moles Mole fract -Calcite 5.06e-04 - Calcite 4.97e-04 4.97e-04 9.82e-01 - CaCO2[18O](s) 3.06e-06 3.06e-06 6.05e-03 - CaCO[18O]2(s) 6.28e-09 6.28e-09 1.24e-05 - CaC[18O]3(s) 4.30e-12 4.30e-12 8.49e-09 - Ca[13C]O3(s) 5.99e-06 5.99e-06 1.18e-02 - Ca[13C]O2[18O](s) 3.69e-08 3.69e-08 7.30e-05 - Ca[13C]O[18O]2(s) 7.57e-11 7.57e-11 1.50e-07 - Ca[13C][18O]3(s) 5.18e-14 5.18e-14 1.02e-10 - Ca[14C]O3(s) 2.96e-17 2.96e-17 5.86e-14 - Ca[14C]O2[18O](s) 1.82e-19 1.82e-19 3.61e-16 - Ca[14C]O[18O]2(s) 1.01e-27 1.01e-29 2.00e-24 - Ca[14C][18O]3(s) 2.56e-25 2.55e-25 5.07e-22 +Calcite 5.00e-04 + Calcite 4.91e-04 4.91e-04 9.83e-01 + CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 + CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 + CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 + Ca[13C]O3(s) 5.50e-06 5.50e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.77e-05 + Ca[13C]O[18O]2(s) 6.95e-11 6.95e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.51e-11 + Ca[14C]O3(s) 2.91e-17 2.91e-17 5.82e-14 + Ca[14C]O2[18O](s) 1.79e-19 1.79e-19 3.58e-16 + Ca[14C]O[18O]2(s) 3.68e-22 3.68e-22 7.35e-19 + Ca[14C][18O]3(s) 2.51e-25 2.50e-25 5.03e-22 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99519e-03 -4.9917 permil - R(13C) 1.20221e-02 75.299 permil - R(14C) 5.92351e-14 5.0375 pmc - R(18O) H2O(l) 1.99519e-03 -4.9932 permil + R(18O) 1.99519e-03 -4.9914 permil + R(13C) 1.11529e-02 -2.4426 permil + R(14C) 5.87668e-14 4.9977 pmc + R(18O) H2O(l) 1.99519e-03 -4.9929 permil R(18O) OH- 1.92122e-03 -41.88 permil R(18O) H3O+ 2.04132e-03 18.015 permil - R(18O) O2(aq) 1.99519e-03 -4.9932 permil - R(13C) CO2(aq) 1.19360e-02 67.603 permil - R(14C) CO2(aq) 5.83897e-14 4.9656 pmc + R(13C) CO2(aq) 1.10731e-02 -9.5817 permil + R(14C) CO2(aq) 5.79281e-14 4.9263 pmc R(18O) CO2(aq) 2.07915e-03 36.881 permil - R(18O) HCO3- 1.99519e-03 -4.9932 permil - R(13C) HCO3- 1.20399e-02 76.891 permil - R(14C) HCO3- 5.94101e-14 5.0524 pmc - R(18O) CO3-2 1.99519e-03 -4.9932 permil - R(13C) CO3-2 1.20226e-02 75.346 permil - R(14C) CO3-2 5.92397e-14 5.0379 pmc + R(18O) HCO3- 1.99519e-03 -4.9929 permil + R(13C) HCO3- 1.11694e-02 -0.96514 permil + R(14C) HCO3- 5.89404e-14 5.0124 pmc + R(18O) CO3-2 1.99519e-03 -4.9929 permil + R(13C) CO3-2 1.11534e-02 -2.3988 permil + R(14C) CO3-2 5.87714e-14 4.998 pmc + R(13C) CH4(aq) 1.10731e-02 -9.5817 permil + R(14C) CH4(aq) 5.79281e-14 4.9263 pmc R(18O) Calcite 2.05263e-03 23.653 permil - R(13C) Calcite 1.20637e-02 79.024 permil - R(14C) Calcite 5.96449e-14 5.0723 pmc + R(13C) Calcite 1.11915e-02 1.0136 permil + R(14C) Calcite 5.91741e-14 5.0323 pmc --------------------------------Isotope Alphas--------------------------------- @@ -9809,177 +9751,175 @@ Calcite 5.06e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2419e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 0 0 +Alpha 18O HCO3-/H2O(l) 1 1.5543e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7542e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7878e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.4988e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.1324e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.269 21.282 +Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 5.835e-03 5.818e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 7.015e-05 6.994e-05 - [14C] 3.456e-16 3.446e-16 + [13C] 6.513e-05 6.494e-05 + [14C] 3.432e-16 3.422e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.236 Adjusted to redox equilibrium + pe = -1.842 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.835e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.295e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 56 + Iterations = 65 (166 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.401 -124.400 0.001 (0) -C(4) 5.835e-03 - HCO3- 4.699e-03 4.299e-03 -2.328 -2.367 -0.039 (0) - CO2 9.949e-04 9.966e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.924e-05 9.103e-05 -4.003 -4.041 -0.037 (0) - HC[18O]O2- 9.376e-06 8.578e-06 -5.028 -5.067 -0.039 (0) - HCO2[18O]- 9.376e-06 8.578e-06 -5.028 -5.067 -0.039 (0) - HCO[18O]O- 9.376e-06 8.578e-06 -5.028 -5.067 -0.039 (0) - CaCO3 5.456e-06 5.465e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.137e-06 4.144e-06 -5.383 -5.383 0.001 (0) - CO3-2 2.799e-06 1.961e-06 -5.553 -5.708 -0.155 (0) - CaHCO2[18O]+ 1.980e-07 1.816e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.980e-07 1.816e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.980e-07 1.816e-07 -6.703 -6.741 -0.037 (0) - CaCO2[18O] 3.266e-08 3.271e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.871e-08 1.711e-08 -7.728 -7.767 -0.039 (0) - HCO[18O]2- 1.871e-08 1.711e-08 -7.728 -7.767 -0.039 (0) - HC[18O]O[18O]- 1.871e-08 1.711e-08 -7.728 -7.767 -0.039 (0) - CO2[18O]-2 1.675e-08 1.174e-08 -7.776 -7.930 -0.155 (0) +C(-4) 1.685e-20 + CH4 1.685e-20 1.687e-20 -19.774 -19.773 0.001 (0) +C(4) 5.840e-03 + HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.924e-05 9.103e-05 -4.003 -4.041 -0.037 (0) - CaCO3 5.456e-06 5.465e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.195e-06 1.096e-06 -5.923 -5.960 -0.037 (0) - CaHCO2[18O]+ 1.980e-07 1.816e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.980e-07 1.816e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.980e-07 1.816e-07 -6.703 -6.741 -0.037 (0) - Ca[13C]O3 6.559e-08 6.570e-08 -7.183 -7.182 0.001 (0) - CaCO2[18O] 3.266e-08 3.271e-08 -7.486 -7.485 0.001 (0) -H(0) 5.043e-40 - H2 2.522e-40 2.526e-40 -39.598 -39.598 0.001 (0) -O(0) 1.305e-13 - O2 6.497e-14 6.508e-14 -13.187 -13.187 0.001 (0) - O[18O] 2.592e-16 2.597e-16 -15.586 -15.586 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.324 -126.323 0.001 (0) -[13C](4) 7.015e-05 - H[13C]O3- 5.658e-05 5.176e-05 -4.247 -4.286 -0.039 (0) - [13C]O2 1.188e-05 1.190e-05 -4.925 -4.925 0.001 (0) - CaH[13C]O3+ 1.195e-06 1.096e-06 -5.923 -5.960 -0.037 (0) - H[13C][18O]O2- 1.129e-07 1.033e-07 -6.947 -6.986 -0.039 (0) - H[13C]O2[18O]- 1.129e-07 1.033e-07 -6.947 -6.986 -0.039 (0) - H[13C]O[18O]O- 1.129e-07 1.033e-07 -6.947 -6.986 -0.039 (0) - Ca[13C]O3 6.559e-08 6.570e-08 -7.183 -7.182 0.001 (0) - [13C]O[18O] 4.938e-08 4.946e-08 -7.306 -7.306 0.001 (0) - [13C]O3-2 3.365e-08 2.357e-08 -7.473 -7.628 -0.155 (0) - CaH[13C]O[18O]O+ 2.384e-09 2.187e-09 -8.623 -8.660 -0.037 (0) - CaH[13C][18O]O2+ 2.384e-09 2.187e-09 -8.623 -8.660 -0.037 (0) - CaH[13C]O2[18O]+ 2.384e-09 2.187e-09 -8.623 -8.660 -0.037 (0) - Ca[13C]O2[18O] 3.926e-10 3.933e-10 -9.406 -9.405 0.001 (0) - H[13C][18O]O[18O]- 2.252e-10 2.061e-10 -9.647 -9.686 -0.039 (0) - H[13C]O[18O]2- 2.252e-10 2.061e-10 -9.647 -9.686 -0.039 (0) - H[13C][18O]2O- 2.252e-10 2.061e-10 -9.647 -9.686 -0.039 (0) - [13C]O2[18O]-2 2.014e-10 1.411e-10 -9.696 -9.850 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.634 -137.633 0.001 (0) -[14C](4) 3.456e-16 - H[14C]O3- 2.792e-16 2.554e-16 -15.554 -15.593 -0.039 (0) - [14C]O2 5.809e-17 5.819e-17 -16.236 -16.235 0.001 (0) - CaH[14C]O3+ 5.896e-18 5.408e-18 -17.229 -17.267 -0.037 (0) - H[14C][18O]O2- 5.570e-19 5.096e-19 -18.254 -18.293 -0.039 (0) - H[14C]O2[18O]- 5.570e-19 5.096e-19 -18.254 -18.293 -0.039 (0) - H[14C]O[18O]O- 5.570e-19 5.096e-19 -18.254 -18.293 -0.039 (0) - Ca[14C]O3 3.232e-19 3.237e-19 -18.491 -18.490 0.001 (0) - [14C]O[18O] 2.416e-19 2.420e-19 -18.617 -18.616 0.001 (0) - [14C]O3-2 1.658e-19 1.161e-19 -18.780 -18.935 -0.155 (0) - CaH[14C]O[18O]O+ 1.176e-20 1.079e-20 -19.929 -19.967 -0.037 (0) - CaH[14C]O2[18O]+ 1.176e-20 1.079e-20 -19.929 -19.967 -0.037 (0) - CaH[14C][18O]O2+ 1.176e-20 1.079e-20 -19.929 -19.967 -0.037 (0) - Ca[14C]O2[18O] 1.935e-21 1.938e-21 -20.713 -20.713 0.001 (0) - H[14C]O[18O]2- 1.111e-21 1.017e-21 -20.954 -20.993 -0.039 (0) - H[14C][18O]O[18O]- 1.111e-21 1.017e-21 -20.954 -20.993 -0.039 (0) - H[14C][18O]2O- 1.111e-21 1.017e-21 -20.954 -20.993 -0.039 (0) - [14C]O2[18O]-2 9.924e-22 6.952e-22 -21.003 -21.158 -0.155 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) + CaH[13C]O3+ 1.109e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.090e-08 6.100e-08 -7.215 -7.215 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 7.234e-14 + H2 3.617e-14 3.623e-14 -13.442 -13.441 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.501 -65.500 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.900 -67.899 0.001 (0) +[13C](-4) 1.865e-22 + [13C]H4 1.865e-22 1.868e-22 -21.729 -21.729 0.001 (0) +[13C](4) 6.513e-05 + H[13C]O3- 5.253e-05 4.806e-05 -4.280 -4.318 -0.039 (0) + [13C]O2 1.103e-05 1.104e-05 -4.958 -4.957 0.001 (0) + CaH[13C]O3+ 1.109e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.048e-07 9.589e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.589e-08 -6.980 -7.018 -0.039 (0) + H[13C][18O]O2- 1.048e-07 9.589e-08 -6.980 -7.018 -0.039 (0) + Ca[13C]O3 6.090e-08 6.100e-08 -7.215 -7.215 0.001 (0) + [13C]O[18O] 4.585e-08 4.593e-08 -7.339 -7.338 0.001 (0) + [13C]O3-2 3.124e-08 2.189e-08 -7.505 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.645e-10 3.651e-10 -9.438 -9.438 0.001 (0) + H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.870e-10 1.310e-10 -9.728 -9.883 -0.155 (0) +[14C](-4) 9.758e-34 + [14C]H4 9.758e-34 9.774e-34 -33.011 -33.010 0.001 (0) +[14C](4) 3.432e-16 + H[14C]O3- 2.772e-16 2.536e-16 -15.557 -15.596 -0.039 (0) + [14C]O2 5.768e-17 5.778e-17 -16.239 -16.238 0.001 (0) + CaH[14C]O3+ 5.854e-18 5.370e-18 -17.233 -17.270 -0.037 (0) + H[14C]O2[18O]- 5.531e-19 5.060e-19 -18.257 -18.296 -0.039 (0) + H[14C]O[18O]O- 5.531e-19 5.060e-19 -18.257 -18.296 -0.039 (0) + H[14C][18O]O2- 5.531e-19 5.060e-19 -18.257 -18.296 -0.039 (0) + Ca[14C]O3 3.209e-19 3.215e-19 -18.494 -18.493 0.001 (0) + [14C]O[18O] 2.399e-19 2.403e-19 -18.620 -18.619 0.001 (0) + [14C]O3-2 1.646e-19 1.153e-19 -18.783 -18.938 -0.155 (0) + CaH[14C]O2[18O]+ 1.168e-20 1.071e-20 -19.933 -19.970 -0.037 (0) + CaH[14C]O[18O]O+ 1.168e-20 1.071e-20 -19.933 -19.970 -0.037 (0) + CaH[14C][18O]O2+ 1.168e-20 1.071e-20 -19.933 -19.970 -0.037 (0) + Ca[14C]O2[18O] 1.921e-21 1.924e-21 -20.716 -20.716 0.001 (0) + H[14C]O[18O]2- 1.104e-21 1.010e-21 -20.957 -20.996 -0.039 (0) + H[14C][18O]2O- 1.104e-21 1.010e-21 -20.957 -20.996 -0.039 (0) + H[14C][18O]O[18O]- 1.104e-21 1.010e-21 -20.957 -20.996 -0.039 (0) + [14C]O2[18O]-2 9.854e-22 6.903e-22 -21.006 -21.161 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.376e-06 8.578e-06 -5.028 -5.067 -0.039 (0) - HCO2[18O]- 9.376e-06 8.578e-06 -5.028 -5.067 -0.039 (0) - HC[18O]O2- 9.376e-06 8.578e-06 -5.028 -5.067 -0.039 (0) - CO[18O] 4.137e-06 4.144e-06 -5.383 -5.383 0.001 (0) - CaHCO2[18O]+ 1.980e-07 1.816e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.980e-07 1.816e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.980e-07 1.816e-07 -6.703 -6.741 -0.037 (0) - H[13C][18O]O2- 1.129e-07 1.033e-07 -6.947 -6.986 -0.039 (0) - H[13C]O[18O]O- 1.129e-07 1.033e-07 -6.947 -6.986 -0.039 (0) - H[13C]O2[18O]- 1.129e-07 1.033e-07 -6.947 -6.986 -0.039 (0) -[18O](0) 2.598e-16 - O[18O] 2.592e-16 2.597e-16 -15.586 -15.586 0.001 (0) - [18O]2 2.586e-19 2.591e-19 -18.587 -18.587 0.001 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -67.900 -67.899 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.901 -70.900 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.82 -10.32 -1.50 [13C][18O]2 - [13C]H4(g) -123.46 -126.32 -2.86 [13C]H4 - [13C]O2(g) -3.46 -4.92 -1.47 [13C]O2 - [13C]O[18O](g) -5.84 -7.62 -1.79 [13C]O[18O] + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -18.87 -21.73 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.13 -21.64 -1.50 [14C][18O]2 - [14C]H4(g) -134.77 -137.63 -2.86 [14C]H4 + [14C]H4(g) -30.15 -33.01 -2.86 [14C]H4 [14C]O2(g) -14.77 -16.24 -1.47 [14C]O2 [14C]O[18O](g) -17.15 -18.94 -1.79 [14C]O[18O] - [18O]2(g) -16.30 -18.59 -2.29 [18O]2 + [18O]2(g) -68.61 -70.90 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -9.99 -1.83 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.14 3.57 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.93 6.27 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.82 0.87 7.69 Ca[13C]O[18O]2 + Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 + Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 Ca[14C][18O]3(s) -21.30 -13.14 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.44 -7.74 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.23 -5.04 8.19 Ca[14C]O3 + Ca[14C]O2[18O](s) -15.45 -7.74 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -13.24 -5.04 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -18.13 -10.44 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.54 -124.40 -2.86 CH4 + CH4(g) -16.91 -19.77 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.92 -5.70 -1.79 CO[18O] - H2(g) -36.45 -39.60 -3.15 H2 + CO[18O](g) -3.91 -5.70 -1.79 CO[18O] + H2(g) -10.29 -13.44 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.29 -13.19 -2.89 O2 - O[18O](g) -12.99 -15.89 -2.89 O[18O] + O2(g) -62.61 -65.50 -2.89 O2 + O[18O](g) -65.31 -68.20 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10003,12 +9943,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 42. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -10047,42 +9981,43 @@ Calcite added: 0 Solid solution Component Moles Delta moles Mole fract Calcite 5.00e-04 - Calcite 4.91e-04 4.91e-04 9.82e-01 - CaCO2[18O](s) 3.02e-06 3.02e-06 6.05e-03 + Calcite 4.91e-04 4.91e-04 9.83e-01 + CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 - CaC[18O]3(s) 4.25e-12 4.25e-12 8.49e-09 - Ca[13C]O3(s) 5.89e-06 5.89e-06 1.18e-02 - Ca[13C]O2[18O](s) 3.63e-08 3.63e-08 7.25e-05 - Ca[13C]O[18O]2(s) 7.45e-11 7.45e-11 1.49e-07 - Ca[13C][18O]3(s) 5.09e-14 5.09e-14 1.02e-10 - Ca[14C]O3(s) 2.70e-17 2.70e-17 5.40e-14 - Ca[14C]O2[18O](s) 1.66e-19 1.66e-19 3.32e-16 - Ca[14C]O[18O]2(s) 3.41e-22 3.41e-22 6.82e-19 - Ca[14C][18O]3(s) 1.01e-27 1.00e-29 2.02e-24 + CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 + Ca[13C]O3(s) 5.50e-06 5.50e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.77e-05 + Ca[13C]O[18O]2(s) 6.95e-11 6.95e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.51e-11 + Ca[14C]O3(s) 2.68e-17 2.68e-17 5.36e-14 + Ca[14C]O2[18O](s) 1.65e-19 1.65e-19 3.30e-16 + Ca[14C]O[18O]2(s) 3.39e-22 3.39e-22 6.77e-19 + Ca[14C][18O]3(s) 2.32e-25 2.31e-25 4.63e-22 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99519e-03 -4.9916 permil - R(13C) 1.19547e-02 69.273 permil - R(14C) 5.45654e-14 4.6404 pmc - R(18O) H2O(l) 1.99519e-03 -4.9931 permil + R(18O) 1.99519e-03 -4.9912 permil + R(13C) 1.11538e-02 -2.3598 permil + R(14C) 5.41377e-14 4.604 pmc + R(18O) H2O(l) 1.99519e-03 -4.9927 permil R(18O) OH- 1.92122e-03 -41.88 permil R(18O) H3O+ 2.04132e-03 18.015 permil - R(18O) O2(aq) 1.99519e-03 -4.9931 permil - R(13C) CO2(aq) 1.18691e-02 61.62 permil - R(14C) CO2(aq) 5.37867e-14 4.5741 pmc + R(13C) CO2(aq) 1.10740e-02 -9.4994 permil + R(14C) CO2(aq) 5.33650e-14 4.5383 pmc R(18O) CO2(aq) 2.07915e-03 36.881 permil - R(18O) HCO3- 1.99519e-03 -4.9931 permil - R(13C) HCO3- 1.19724e-02 70.856 permil - R(14C) HCO3- 5.47266e-14 4.6541 pmc - R(18O) CO3-2 1.99519e-03 -4.9931 permil - R(13C) CO3-2 1.19552e-02 69.319 permil - R(14C) CO3-2 5.45696e-14 4.6407 pmc - R(18O) Calcite 2.05263e-03 23.653 permil - R(13C) Calcite 1.19961e-02 72.977 permil - R(14C) Calcite 5.49436e-14 4.6725 pmc + R(18O) HCO3- 1.99519e-03 -4.9927 permil + R(13C) HCO3- 1.11703e-02 -0.88221 permil + R(14C) HCO3- 5.42976e-14 4.6176 pmc + R(18O) CO3-2 1.99519e-03 -4.9927 permil + R(13C) CO3-2 1.11543e-02 -2.316 permil + R(14C) CO3-2 5.41419e-14 4.6043 pmc + R(13C) CH4(aq) 1.10740e-02 -9.4994 permil + R(14C) CH4(aq) 5.33650e-14 4.5383 pmc + R(18O) Calcite 2.05263e-03 23.654 permil + R(13C) Calcite 1.11925e-02 1.0967 permil + R(14C) Calcite 5.45129e-14 4.6359 pmc --------------------------------Isotope Alphas--------------------------------- @@ -10092,14 +10027,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2621e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5894e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6321e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -9.992e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.4322e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -10108,145 +10044,142 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 Elements Molality Moles - C 5.835e-03 5.818e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.976e-05 6.955e-05 - [14C] 3.184e-16 3.175e-16 + [13C] 6.514e-05 6.495e-05 + [14C] 3.162e-16 3.152e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.188 Adjusted to redox equilibrium + pe = -1.910 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.835e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.295e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 52 (153 overall) + Iterations = 57 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.017 -124.016 0.001 (0) -C(4) 5.835e-03 - HCO3- 4.700e-03 4.300e-03 -2.328 -2.367 -0.039 (0) - CO2 9.950e-04 9.966e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.924e-05 9.104e-05 -4.003 -4.041 -0.037 (0) - HCO2[18O]- 9.377e-06 8.579e-06 -5.028 -5.067 -0.039 (0) - HCO[18O]O- 9.377e-06 8.579e-06 -5.028 -5.067 -0.039 (0) - HC[18O]O2- 9.377e-06 8.579e-06 -5.028 -5.067 -0.039 (0) - CaCO3 5.456e-06 5.465e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.138e-06 4.144e-06 -5.383 -5.383 0.001 (0) - CO3-2 2.799e-06 1.961e-06 -5.553 -5.708 -0.155 (0) - CaHCO2[18O]+ 1.980e-07 1.816e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.980e-07 1.816e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.980e-07 1.816e-07 -6.703 -6.741 -0.037 (0) - CaCO2[18O] 3.266e-08 3.271e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.871e-08 1.712e-08 -7.728 -7.767 -0.039 (0) - HCO[18O]2- 1.871e-08 1.712e-08 -7.728 -7.767 -0.039 (0) - HC[18O]O[18O]- 1.871e-08 1.712e-08 -7.728 -7.767 -0.039 (0) - CO2[18O]-2 1.675e-08 1.174e-08 -7.776 -7.930 -0.155 (0) +C(-4) 5.915e-20 + CH4 5.915e-20 5.925e-20 -19.228 -19.227 0.001 (0) +C(4) 5.840e-03 + HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.924e-05 9.104e-05 -4.003 -4.041 -0.037 (0) - CaCO3 5.456e-06 5.465e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.188e-06 1.090e-06 -5.925 -5.963 -0.037 (0) - CaHCO2[18O]+ 1.980e-07 1.816e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.980e-07 1.816e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.980e-07 1.816e-07 -6.703 -6.741 -0.037 (0) - Ca[13C]O3 6.523e-08 6.534e-08 -7.186 -7.185 0.001 (0) - CaCO2[18O] 3.266e-08 3.271e-08 -7.486 -7.485 0.001 (0) -H(0) 6.291e-40 - H2 3.145e-40 3.151e-40 -39.502 -39.502 0.001 (0) -O(0) 8.385e-14 - O2 4.176e-14 4.183e-14 -13.379 -13.379 0.001 (0) - O[18O] 1.666e-16 1.669e-16 -15.778 -15.778 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.942 -125.941 0.001 (0) -[13C](4) 6.976e-05 - H[13C]O3- 5.627e-05 5.148e-05 -4.250 -4.288 -0.039 (0) - [13C]O2 1.181e-05 1.183e-05 -4.928 -4.927 0.001 (0) - CaH[13C]O3+ 1.188e-06 1.090e-06 -5.925 -5.963 -0.037 (0) - H[13C]O2[18O]- 1.123e-07 1.027e-07 -6.950 -6.988 -0.039 (0) - H[13C]O[18O]O- 1.123e-07 1.027e-07 -6.950 -6.988 -0.039 (0) - H[13C][18O]O2- 1.123e-07 1.027e-07 -6.950 -6.988 -0.039 (0) - Ca[13C]O3 6.523e-08 6.534e-08 -7.186 -7.185 0.001 (0) - [13C]O[18O] 4.911e-08 4.919e-08 -7.309 -7.308 0.001 (0) - [13C]O3-2 3.346e-08 2.344e-08 -7.475 -7.630 -0.155 (0) - CaH[13C][18O]O2+ 2.371e-09 2.175e-09 -8.625 -8.663 -0.037 (0) - CaH[13C]O2[18O]+ 2.371e-09 2.175e-09 -8.625 -8.663 -0.037 (0) - CaH[13C]O[18O]O+ 2.371e-09 2.175e-09 -8.625 -8.663 -0.037 (0) - Ca[13C]O2[18O] 3.904e-10 3.911e-10 -9.408 -9.408 0.001 (0) - H[13C][18O]O[18O]- 2.240e-10 2.049e-10 -9.650 -9.688 -0.039 (0) - H[13C]O[18O]2- 2.240e-10 2.049e-10 -9.650 -9.688 -0.039 (0) - H[13C][18O]2O- 2.240e-10 2.049e-10 -9.650 -9.688 -0.039 (0) - [13C]O2[18O]-2 2.003e-10 1.403e-10 -9.698 -9.853 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.286 -137.285 0.001 (0) -[14C](4) 3.184e-16 - H[14C]O3- 2.572e-16 2.353e-16 -15.590 -15.628 -0.039 (0) - [14C]O2 5.352e-17 5.361e-17 -16.271 -16.271 0.001 (0) - CaH[14C]O3+ 5.431e-18 4.982e-18 -17.265 -17.303 -0.037 (0) - H[14C][18O]O2- 5.132e-19 4.695e-19 -18.290 -18.328 -0.039 (0) - H[14C]O2[18O]- 5.132e-19 4.695e-19 -18.290 -18.328 -0.039 (0) - H[14C]O[18O]O- 5.132e-19 4.695e-19 -18.290 -18.328 -0.039 (0) - Ca[14C]O3 2.977e-19 2.982e-19 -18.526 -18.525 0.001 (0) - [14C]O[18O] 2.225e-19 2.229e-19 -18.653 -18.652 0.001 (0) - [14C]O3-2 1.527e-19 1.070e-19 -18.816 -18.971 -0.155 (0) - CaH[14C]O[18O]O+ 1.084e-20 9.941e-21 -19.965 -20.003 -0.037 (0) - CaH[14C]O2[18O]+ 1.084e-20 9.941e-21 -19.965 -20.003 -0.037 (0) - CaH[14C][18O]O2+ 1.084e-20 9.941e-21 -19.965 -20.003 -0.037 (0) - Ca[14C]O2[18O] 1.782e-21 1.785e-21 -20.749 -20.748 0.001 (0) - H[14C][18O]O[18O]- 1.024e-21 9.367e-22 -20.990 -21.028 -0.039 (0) - H[14C][18O]2O- 1.024e-21 9.367e-22 -20.990 -21.028 -0.039 (0) - H[14C]O[18O]2- 1.024e-21 9.367e-22 -20.990 -21.028 -0.039 (0) - [14C]O2[18O]-2 9.142e-22 6.405e-22 -21.039 -21.194 -0.155 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) + CaH[13C]O3+ 1.109e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.091e-08 6.101e-08 -7.215 -7.215 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 9.903e-14 + H2 4.951e-14 4.960e-14 -13.305 -13.305 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.773 -65.773 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.172 -68.172 0.001 (0) +[13C](-4) 6.551e-22 + [13C]H4 6.551e-22 6.561e-22 -21.184 -21.183 0.001 (0) +[13C](4) 6.514e-05 + H[13C]O3- 5.254e-05 4.807e-05 -4.280 -4.318 -0.039 (0) + [13C]O2 1.103e-05 1.105e-05 -4.958 -4.957 0.001 (0) + CaH[13C]O3+ 1.109e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.048e-07 9.590e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.590e-08 -6.980 -7.018 -0.039 (0) + H[13C][18O]O2- 1.048e-07 9.590e-08 -6.980 -7.018 -0.039 (0) + Ca[13C]O3 6.091e-08 6.101e-08 -7.215 -7.215 0.001 (0) + [13C]O[18O] 4.586e-08 4.593e-08 -7.339 -7.338 0.001 (0) + [13C]O3-2 3.124e-08 2.189e-08 -7.505 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.646e-10 3.652e-10 -9.438 -9.438 0.001 (0) + H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.870e-10 1.310e-10 -9.728 -9.883 -0.155 (0) +[14C](-4) 3.157e-33 + [14C]H4 3.157e-33 3.162e-33 -32.501 -32.500 0.001 (0) +[14C](4) 3.162e-16 + H[14C]O3- 2.554e-16 2.336e-16 -15.593 -15.631 -0.039 (0) + [14C]O2 5.314e-17 5.323e-17 -16.275 -16.274 0.001 (0) + CaH[14C]O3+ 5.393e-18 4.947e-18 -17.268 -17.306 -0.037 (0) + H[14C]O2[18O]- 5.095e-19 4.662e-19 -18.293 -18.331 -0.039 (0) + H[14C]O[18O]O- 5.095e-19 4.662e-19 -18.293 -18.331 -0.039 (0) + H[14C][18O]O2- 5.095e-19 4.662e-19 -18.293 -18.331 -0.039 (0) + Ca[14C]O3 2.956e-19 2.961e-19 -18.529 -18.529 0.001 (0) + [14C]O[18O] 2.210e-19 2.213e-19 -18.656 -18.655 0.001 (0) + [14C]O3-2 1.517e-19 1.062e-19 -18.819 -18.974 -0.155 (0) + CaH[14C]O2[18O]+ 1.076e-20 9.870e-21 -19.968 -20.006 -0.037 (0) + CaH[14C]O[18O]O+ 1.076e-20 9.870e-21 -19.968 -20.006 -0.037 (0) + CaH[14C][18O]O2+ 1.076e-20 9.870e-21 -19.968 -20.006 -0.037 (0) + Ca[14C]O2[18O] 1.770e-21 1.773e-21 -20.752 -20.751 0.001 (0) + H[14C]O[18O]2- 1.017e-21 9.301e-22 -20.993 -21.031 -0.039 (0) + H[14C][18O]2O- 1.017e-21 9.301e-22 -20.993 -21.031 -0.039 (0) + H[14C][18O]O[18O]- 1.017e-21 9.301e-22 -20.993 -21.031 -0.039 (0) + [14C]O2[18O]-2 9.078e-22 6.359e-22 -21.042 -21.197 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.377e-06 8.579e-06 -5.028 -5.067 -0.039 (0) - HCO2[18O]- 9.377e-06 8.579e-06 -5.028 -5.067 -0.039 (0) - HC[18O]O2- 9.377e-06 8.579e-06 -5.028 -5.067 -0.039 (0) - CO[18O] 4.138e-06 4.144e-06 -5.383 -5.383 0.001 (0) - CaHCO2[18O]+ 1.980e-07 1.816e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.980e-07 1.816e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.980e-07 1.816e-07 -6.703 -6.741 -0.037 (0) - H[13C][18O]O2- 1.123e-07 1.027e-07 -6.950 -6.988 -0.039 (0) - H[13C]O[18O]O- 1.123e-07 1.027e-07 -6.950 -6.988 -0.039 (0) - H[13C]O2[18O]- 1.123e-07 1.027e-07 -6.950 -6.988 -0.039 (0) -[18O](0) 1.670e-16 - O[18O] 1.666e-16 1.669e-16 -15.778 -15.778 0.001 (0) - [18O]2 1.662e-19 1.665e-19 -18.779 -18.779 0.001 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -68.172 -68.172 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.173 -71.173 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.82 -10.33 -1.50 [13C][18O]2 - [13C]H4(g) -123.08 -125.94 -2.86 [13C]H4 - [13C]O2(g) -3.46 -4.93 -1.47 [13C]O2 - [13C]O[18O](g) -5.84 -7.63 -1.79 [13C]O[18O] + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -18.32 -21.18 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.17 -21.67 -1.50 [14C][18O]2 - [14C]H4(g) -134.43 -137.29 -2.86 [14C]H4 - [14C]O2(g) -14.80 -16.27 -1.47 [14C]O2 - [14C]O[18O](g) -17.18 -18.97 -1.79 [14C]O[18O] - [18O]2(g) -16.49 -18.78 -2.29 [18O]2 + [14C]H4(g) -29.64 -32.50 -2.86 [14C]H4 + [14C]O2(g) -14.81 -16.27 -1.47 [14C]O2 + [14C]O[18O](g) -17.19 -18.97 -1.79 [14C]O[18O] + [18O]2(g) -68.88 -71.17 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -9.99 -1.83 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.14 3.57 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.93 6.27 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.83 0.87 7.69 Ca[13C]O[18O]2 + Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 + Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 Ca[14C][18O]3(s) -21.33 -13.18 8.15 Ca[14C][18O]3 Ca[14C]O2[18O](s) -15.48 -7.78 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -13.27 -5.08 8.19 Ca[14C]O3 @@ -10255,14 +10188,14 @@ O(0) 8.385e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.16 -124.02 -2.86 CH4 + CH4(g) -16.37 -19.23 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.92 -5.70 -1.79 CO[18O] - H2(g) -36.35 -39.50 -3.15 H2 + CO[18O](g) -3.91 -5.70 -1.79 CO[18O] + H2(g) -10.15 -13.30 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.49 -13.38 -2.89 O2 - O[18O](g) -13.19 -16.08 -2.89 O[18O] + O2(g) -62.88 -65.77 -2.89 O2 + O[18O](g) -65.58 -68.47 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10330,42 +10263,43 @@ Calcite added: 0 Solid solution Component Moles Delta moles Mole fract Calcite 5.00e-04 - Calcite 4.91e-04 4.91e-04 9.82e-01 - CaCO2[18O](s) 3.02e-06 3.02e-06 6.05e-03 + Calcite 4.91e-04 4.91e-04 9.83e-01 + CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 - CaC[18O]3(s) 4.25e-12 4.25e-12 8.49e-09 - Ca[13C]O3(s) 5.86e-06 5.86e-06 1.17e-02 - Ca[13C]O2[18O](s) 3.61e-08 3.61e-08 7.22e-05 - Ca[13C]O[18O]2(s) 7.41e-11 7.41e-11 1.48e-07 - Ca[13C][18O]3(s) 5.07e-14 5.07e-14 1.01e-10 - Ca[14C]O3(s) 2.49e-17 2.49e-17 4.97e-14 - Ca[14C]O2[18O](s) 1.53e-19 1.53e-19 3.06e-16 - Ca[14C]O[18O]2(s) 3.14e-22 3.14e-22 6.28e-19 - Ca[14C][18O]3(s) 1.00e-27 0.00e+00 2.00e-24 + CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 + Ca[13C]O3(s) 5.50e-06 5.50e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.77e-05 + Ca[13C]O[18O]2(s) 6.95e-11 6.95e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.51e-11 + Ca[14C]O3(s) 2.47e-17 2.47e-17 4.94e-14 + Ca[14C]O2[18O](s) 1.52e-19 1.52e-19 3.04e-16 + Ca[14C]O[18O]2(s) 3.12e-22 3.12e-22 6.24e-19 + Ca[14C][18O]3(s) 2.13e-25 2.12e-25 4.27e-22 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99519e-03 -4.9914 permil - R(13C) 1.18926e-02 63.72 permil - R(14C) 5.02641e-14 4.2746 pmc - R(18O) H2O(l) 1.99519e-03 -4.9929 permil + R(18O) 1.99519e-03 -4.9911 permil + R(13C) 1.11547e-02 -2.2834 permil + R(14C) 4.98732e-14 4.2413 pmc + R(18O) H2O(l) 1.99519e-03 -4.9926 permil R(18O) OH- 1.92122e-03 -41.88 permil R(18O) H3O+ 2.04132e-03 18.015 permil - R(18O) O2(aq) 1.99519e-03 -4.9929 permil - R(13C) CO2(aq) 1.18075e-02 56.108 permil - R(14C) CO2(aq) 4.95467e-14 4.2136 pmc + R(13C) CO2(aq) 1.10748e-02 -9.4237 permil + R(14C) CO2(aq) 4.91614e-14 4.1808 pmc R(18O) CO2(aq) 2.07915e-03 36.881 permil - R(18O) HCO3- 1.99519e-03 -4.9929 permil - R(13C) HCO3- 1.19102e-02 65.296 permil - R(14C) HCO3- 5.04126e-14 4.2872 pmc - R(18O) CO3-2 1.99519e-03 -4.9929 permil - R(13C) CO3-2 1.18931e-02 63.767 permil - R(14C) CO3-2 5.02680e-14 4.2749 pmc - R(18O) Calcite 2.05263e-03 23.653 permil - R(13C) Calcite 1.19338e-02 67.406 permil - R(14C) Calcite 5.06125e-14 4.3042 pmc + R(18O) HCO3- 1.99519e-03 -4.9926 permil + R(13C) HCO3- 1.11712e-02 -0.80578 permil + R(14C) HCO3- 5.00205e-14 4.2539 pmc + R(18O) CO3-2 1.99519e-03 -4.9926 permil + R(13C) CO3-2 1.11552e-02 -2.2397 permil + R(14C) CO3-2 4.98770e-14 4.2416 pmc + R(13C) CH4(aq) 1.10748e-02 -9.4237 permil + R(14C) CH4(aq) 4.91614e-14 4.1808 pmc + R(18O) Calcite 2.05263e-03 23.654 permil + R(13C) Calcite 1.11933e-02 1.1733 permil + R(14C) Calcite 5.02188e-14 4.2707 pmc --------------------------------Isotope Alphas--------------------------------- @@ -10375,14 +10309,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2695e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6622e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7408e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.4433e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -6.2172e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -10391,161 +10326,158 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 Elements Molality Moles - C 5.836e-03 5.819e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.940e-05 6.920e-05 - [14C] 2.933e-16 2.925e-16 + [13C] 6.514e-05 6.495e-05 + [14C] 2.913e-16 2.904e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.166 Adjusted to redox equilibrium + pe = -1.907 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.836e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.295e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 74 (175 overall) + Iterations = 96 (197 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.838 -123.837 0.001 (0) -C(4) 5.836e-03 - HCO3- 4.700e-03 4.300e-03 -2.328 -2.367 -0.039 (0) - CO2 9.951e-04 9.967e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.925e-05 9.104e-05 -4.003 -4.041 -0.037 (0) - HCO[18O]O- 9.377e-06 8.579e-06 -5.028 -5.067 -0.039 (0) - HC[18O]O2- 9.377e-06 8.579e-06 -5.028 -5.067 -0.039 (0) - HCO2[18O]- 9.377e-06 8.579e-06 -5.028 -5.067 -0.039 (0) - CaCO3 5.457e-06 5.465e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.138e-06 4.145e-06 -5.383 -5.383 0.001 (0) - CO3-2 2.799e-06 1.961e-06 -5.553 -5.708 -0.155 (0) - CaHCO2[18O]+ 1.980e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.980e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.980e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaCO2[18O] 3.266e-08 3.271e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.871e-08 1.712e-08 -7.728 -7.767 -0.039 (0) - HCO[18O]2- 1.871e-08 1.712e-08 -7.728 -7.767 -0.039 (0) - HC[18O]O[18O]- 1.871e-08 1.712e-08 -7.728 -7.767 -0.039 (0) - CO2[18O]-2 1.675e-08 1.174e-08 -7.776 -7.930 -0.155 (0) +C(-4) 5.580e-20 + CH4 5.580e-20 5.589e-20 -19.253 -19.253 0.001 (0) +C(4) 5.840e-03 + HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.925e-05 9.104e-05 -4.003 -4.041 -0.037 (0) - CaCO3 5.457e-06 5.465e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.182e-06 1.084e-06 -5.927 -5.965 -0.037 (0) - CaHCO2[18O]+ 1.980e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.980e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.980e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - Ca[13C]O3 6.490e-08 6.500e-08 -7.188 -7.187 0.001 (0) - CaCO2[18O] 3.266e-08 3.271e-08 -7.486 -7.485 0.001 (0) -H(0) 6.973e-40 - H2 3.487e-40 3.492e-40 -39.458 -39.457 0.001 (0) -O(0) 6.824e-14 - O2 3.399e-14 3.404e-14 -13.469 -13.468 0.001 (0) - O[18O] 1.356e-16 1.358e-16 -15.868 -15.867 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.765 -125.765 0.001 (0) -[13C](4) 6.940e-05 - H[13C]O3- 5.598e-05 5.121e-05 -4.252 -4.291 -0.039 (0) - [13C]O2 1.175e-05 1.177e-05 -4.930 -4.929 0.001 (0) - CaH[13C]O3+ 1.182e-06 1.084e-06 -5.927 -5.965 -0.037 (0) - H[13C]O[18O]O- 1.117e-07 1.022e-07 -6.952 -6.991 -0.039 (0) - H[13C][18O]O2- 1.117e-07 1.022e-07 -6.952 -6.991 -0.039 (0) - H[13C]O2[18O]- 1.117e-07 1.022e-07 -6.952 -6.991 -0.039 (0) - Ca[13C]O3 6.490e-08 6.500e-08 -7.188 -7.187 0.001 (0) - [13C]O[18O] 4.886e-08 4.894e-08 -7.311 -7.310 0.001 (0) - [13C]O3-2 3.329e-08 2.332e-08 -7.478 -7.632 -0.155 (0) - CaH[13C]O2[18O]+ 2.358e-09 2.164e-09 -8.627 -8.665 -0.037 (0) - CaH[13C]O[18O]O+ 2.358e-09 2.164e-09 -8.627 -8.665 -0.037 (0) - CaH[13C][18O]O2+ 2.358e-09 2.164e-09 -8.627 -8.665 -0.037 (0) - Ca[13C]O2[18O] 3.884e-10 3.891e-10 -9.411 -9.410 0.001 (0) - H[13C][18O]O[18O]- 2.228e-10 2.039e-10 -9.652 -9.691 -0.039 (0) - H[13C]O[18O]2- 2.228e-10 2.039e-10 -9.652 -9.691 -0.039 (0) - H[13C][18O]2O- 2.228e-10 2.039e-10 -9.652 -9.691 -0.039 (0) - [13C]O2[18O]-2 1.993e-10 1.396e-10 -9.701 -9.855 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.143 -137.142 0.001 (0) -[14C](4) 2.933e-16 - H[14C]O3- 2.369e-16 2.168e-16 -15.625 -15.664 -0.039 (0) - [14C]O2 4.930e-17 4.938e-17 -16.307 -16.306 0.001 (0) - CaH[14C]O3+ 5.003e-18 4.590e-18 -17.301 -17.338 -0.037 (0) - H[14C][18O]O2- 4.727e-19 4.325e-19 -18.325 -18.364 -0.039 (0) - H[14C]O2[18O]- 4.727e-19 4.325e-19 -18.325 -18.364 -0.039 (0) - H[14C]O[18O]O- 4.727e-19 4.325e-19 -18.325 -18.364 -0.039 (0) - Ca[14C]O3 2.743e-19 2.747e-19 -18.562 -18.561 0.001 (0) - [14C]O[18O] 2.050e-19 2.054e-19 -18.688 -18.688 0.001 (0) - [14C]O3-2 1.407e-19 9.857e-20 -18.852 -19.006 -0.155 (0) - CaH[14C]O[18O]O+ 9.983e-21 9.158e-21 -20.001 -20.038 -0.037 (0) - CaH[14C]O2[18O]+ 9.983e-21 9.158e-21 -20.001 -20.038 -0.037 (0) - CaH[14C][18O]O2+ 9.983e-21 9.158e-21 -20.001 -20.038 -0.037 (0) - Ca[14C]O2[18O] 1.642e-21 1.644e-21 -20.785 -20.784 0.001 (0) - H[14C][18O]2O- 9.432e-22 8.629e-22 -21.025 -21.064 -0.039 (0) - H[14C]O[18O]2- 9.432e-22 8.629e-22 -21.025 -21.064 -0.039 (0) - H[14C][18O]O[18O]- 9.432e-22 8.629e-22 -21.025 -21.064 -0.039 (0) - [14C]O2[18O]-2 8.422e-22 5.900e-22 -21.075 -21.229 -0.155 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.091e-08 6.101e-08 -7.215 -7.215 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 9.759e-14 + H2 4.880e-14 4.888e-14 -13.312 -13.311 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.761 -65.760 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.160 -68.159 0.001 (0) +[13C](-4) 6.179e-22 + [13C]H4 6.179e-22 6.189e-22 -21.209 -21.208 0.001 (0) +[13C](4) 6.514e-05 + H[13C]O3- 5.254e-05 4.807e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.048e-07 9.591e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.591e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.048e-07 9.591e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.091e-08 6.101e-08 -7.215 -7.215 0.001 (0) + [13C]O[18O] 4.586e-08 4.593e-08 -7.339 -7.338 0.001 (0) + [13C]O3-2 3.125e-08 2.189e-08 -7.505 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.646e-10 3.652e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.092e-10 1.914e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.092e-10 1.914e-10 -9.680 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.870e-10 1.310e-10 -9.728 -9.883 -0.155 (0) +[14C](-4) 2.743e-33 + [14C]H4 2.743e-33 2.748e-33 -32.562 -32.561 0.001 (0) +[14C](4) 2.913e-16 + H[14C]O3- 2.353e-16 2.152e-16 -15.628 -15.667 -0.039 (0) + [14C]O2 4.895e-17 4.904e-17 -16.310 -16.309 0.001 (0) + CaH[14C]O3+ 4.968e-18 4.557e-18 -17.304 -17.341 -0.037 (0) + H[14C]O2[18O]- 4.694e-19 4.294e-19 -18.328 -18.367 -0.039 (0) + H[14C]O[18O]O- 4.694e-19 4.294e-19 -18.328 -18.367 -0.039 (0) + H[14C][18O]O2- 4.694e-19 4.294e-19 -18.328 -18.367 -0.039 (0) + Ca[14C]O3 2.724e-19 2.728e-19 -18.565 -18.564 0.001 (0) + [14C]O[18O] 2.036e-19 2.039e-19 -18.691 -18.691 0.001 (0) + [14C]O3-2 1.397e-19 9.788e-20 -18.855 -19.009 -0.155 (0) + CaH[14C]O2[18O]+ 9.912e-21 9.093e-21 -20.004 -20.041 -0.037 (0) + CaH[14C]O[18O]O+ 9.912e-21 9.093e-21 -20.004 -20.041 -0.037 (0) + CaH[14C][18O]O2+ 9.912e-21 9.093e-21 -20.004 -20.041 -0.037 (0) + Ca[14C]O2[18O] 1.630e-21 1.633e-21 -20.788 -20.787 0.001 (0) + H[14C]O[18O]2- 9.366e-22 8.568e-22 -21.028 -21.067 -0.039 (0) + H[14C][18O]2O- 9.366e-22 8.568e-22 -21.028 -21.067 -0.039 (0) + H[14C][18O]O[18O]- 9.366e-22 8.568e-22 -21.028 -21.067 -0.039 (0) + [14C]O2[18O]-2 8.363e-22 5.858e-22 -21.078 -21.232 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.377e-06 8.579e-06 -5.028 -5.067 -0.039 (0) - HCO2[18O]- 9.377e-06 8.579e-06 -5.028 -5.067 -0.039 (0) - HC[18O]O2- 9.377e-06 8.579e-06 -5.028 -5.067 -0.039 (0) - CO[18O] 4.138e-06 4.145e-06 -5.383 -5.383 0.001 (0) - CaHCO2[18O]+ 1.980e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.980e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.980e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - H[13C][18O]O2- 1.117e-07 1.022e-07 -6.952 -6.991 -0.039 (0) - H[13C]O[18O]O- 1.117e-07 1.022e-07 -6.952 -6.991 -0.039 (0) - H[13C]O2[18O]- 1.117e-07 1.022e-07 -6.952 -6.991 -0.039 (0) -[18O](0) 1.359e-16 - O[18O] 1.356e-16 1.358e-16 -15.868 -15.867 0.001 (0) - [18O]2 1.353e-19 1.355e-19 -18.869 -18.868 0.001 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -68.160 -68.159 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.161 -71.160 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.83 -10.33 -1.50 [13C][18O]2 - [13C]H4(g) -122.90 -125.76 -2.86 [13C]H4 - [13C]O2(g) -3.46 -4.93 -1.47 [13C]O2 - [13C]O[18O](g) -5.84 -7.63 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.20 -21.71 -1.50 [14C][18O]2 - [14C]H4(g) -134.28 -137.14 -2.86 [14C]H4 + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -18.35 -21.21 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] + [14C][18O]2(g) -20.21 -21.71 -1.50 [14C][18O]2 + [14C]H4(g) -29.70 -32.56 -2.86 [14C]H4 [14C]O2(g) -14.84 -16.31 -1.47 [14C]O2 [14C]O[18O](g) -17.22 -19.01 -1.79 [14C]O[18O] - [18O]2(g) -16.58 -18.87 -2.29 [18O]2 + [18O]2(g) -68.87 -71.16 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -9.99 -1.83 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.14 3.57 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.93 6.27 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.83 0.87 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.37 -13.21 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.51 -7.81 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.30 -5.11 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.20 -10.51 7.69 Ca[14C]O[18O]2 + Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 + Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -21.37 -13.22 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -15.52 -7.82 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -13.31 -5.11 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -18.20 -10.52 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.98 -123.84 -2.86 CH4 + CH4(g) -16.39 -19.25 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.92 -5.70 -1.79 CO[18O] - H2(g) -36.31 -39.46 -3.15 H2 + CO[18O](g) -3.91 -5.70 -1.79 CO[18O] + H2(g) -10.16 -13.31 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.58 -13.47 -2.89 O2 - O[18O](g) -13.28 -16.17 -2.89 O[18O] + O2(g) -62.87 -65.76 -2.89 O2 + O[18O](g) -65.57 -68.46 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10569,6 +10501,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 44. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -10607,42 +10545,43 @@ Calcite added: 0 Solid solution Component Moles Delta moles Mole fract Calcite 5.00e-04 - Calcite 4.91e-04 4.91e-04 9.82e-01 - CaCO2[18O](s) 3.02e-06 3.02e-06 6.05e-03 + Calcite 4.91e-04 4.91e-04 9.83e-01 + CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 - CaC[18O]3(s) 4.25e-12 4.25e-12 8.49e-09 - Ca[13C]O3(s) 5.83e-06 5.83e-06 1.17e-02 - Ca[13C]O2[18O](s) 3.59e-08 3.59e-08 7.18e-05 - Ca[13C]O[18O]2(s) 7.37e-11 7.37e-11 1.47e-07 - Ca[13C][18O]3(s) 5.04e-14 5.04e-14 1.01e-10 - Ca[14C]O3(s) 2.29e-17 2.29e-17 4.58e-14 - Ca[14C]O2[18O](s) 1.41e-19 1.41e-19 2.82e-16 - Ca[14C]O[18O]2(s) 2.89e-22 2.89e-22 5.79e-19 - Ca[14C][18O]3(s) 1.01e-27 1.00e-29 2.02e-24 + CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 + Ca[13C]O3(s) 5.50e-06 5.50e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.95e-11 6.95e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 2.27e-17 2.27e-17 4.55e-14 + Ca[14C]O2[18O](s) 1.40e-19 1.40e-19 2.80e-16 + Ca[14C]O[18O]2(s) 2.87e-22 2.87e-22 5.75e-19 + Ca[14C][18O]3(s) 1.97e-25 1.96e-25 3.93e-22 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99519e-03 -4.9913 permil - R(13C) 1.18354e-02 58.605 permil - R(14C) 4.63021e-14 3.9376 pmc - R(18O) H2O(l) 1.99519e-03 -4.9928 permil + R(18O) 1.99519e-03 -4.9909 permil + R(13C) 1.11555e-02 -2.2131 permil + R(14C) 4.59446e-14 3.9072 pmc + R(18O) H2O(l) 1.99519e-03 -4.9925 permil R(18O) OH- 1.92122e-03 -41.88 permil R(18O) H3O+ 2.04132e-03 18.015 permil - R(18O) O2(aq) 1.99519e-03 -4.9928 permil - R(13C) CO2(aq) 1.17507e-02 51.029 permil - R(14C) CO2(aq) 4.56413e-14 3.8814 pmc + R(13C) CO2(aq) 1.10756e-02 -9.3539 permil + R(14C) CO2(aq) 4.52889e-14 3.8515 pmc R(18O) CO2(aq) 2.07915e-03 36.881 permil - R(18O) HCO3- 1.99519e-03 -4.9928 permil - R(13C) HCO3- 1.18529e-02 60.172 permil - R(14C) HCO3- 4.64389e-14 3.9493 pmc - R(18O) CO3-2 1.99519e-03 -4.9928 permil - R(13C) CO3-2 1.18359e-02 58.651 permil - R(14C) CO3-2 4.63057e-14 3.9379 pmc + R(18O) HCO3- 1.99519e-03 -4.9925 permil + R(13C) HCO3- 1.11720e-02 -0.73536 permil + R(14C) HCO3- 4.60803e-14 3.9188 pmc + R(18O) CO3-2 1.99519e-03 -4.9925 permil + R(13C) CO3-2 1.11559e-02 -2.1694 permil + R(14C) CO3-2 4.59481e-14 3.9075 pmc + R(13C) CH4(aq) 1.10756e-02 -9.3539 permil + R(14C) CH4(aq) 4.52889e-14 3.8515 pmc R(18O) Calcite 2.05263e-03 23.654 permil - R(13C) Calcite 1.18764e-02 62.272 permil - R(14C) Calcite 4.66230e-14 3.9649 pmc + R(13C) Calcite 1.11941e-02 1.2438 permil + R(14C) Calcite 4.62630e-14 3.9343 pmc --------------------------------Isotope Alphas--------------------------------- @@ -10652,14 +10591,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2914e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5559e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6745e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 3.9968e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.2212e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -10668,146 +10608,143 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 Elements Molality Moles - C 5.836e-03 5.819e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.907e-05 6.887e-05 - [14C] 2.702e-16 2.694e-16 + [13C] 6.515e-05 6.496e-05 + [14C] 2.683e-16 2.675e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.165 Adjusted to redox equilibrium + pe = -1.847 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.836e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.295e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 38 + Iterations = 115 (216 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.829 -123.828 0.001 (0) -C(4) 5.836e-03 - HCO3- 4.700e-03 4.300e-03 -2.328 -2.367 -0.039 (0) - CO2 9.951e-04 9.968e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.926e-05 9.105e-05 -4.003 -4.041 -0.037 (0) - HC[18O]O2- 9.378e-06 8.580e-06 -5.028 -5.067 -0.039 (0) - HCO2[18O]- 9.378e-06 8.580e-06 -5.028 -5.067 -0.039 (0) - HCO[18O]O- 9.378e-06 8.580e-06 -5.028 -5.067 -0.039 (0) - CaCO3 5.457e-06 5.466e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.138e-06 4.145e-06 -5.383 -5.382 0.001 (0) - CO3-2 2.799e-06 1.961e-06 -5.553 -5.708 -0.155 (0) - CaHCO2[18O]+ 1.980e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.980e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.980e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaCO2[18O] 3.266e-08 3.272e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.871e-08 1.712e-08 -7.728 -7.767 -0.039 (0) - HCO[18O]2- 1.871e-08 1.712e-08 -7.728 -7.767 -0.039 (0) - HC[18O]O[18O]- 1.871e-08 1.712e-08 -7.728 -7.767 -0.039 (0) - CO2[18O]-2 1.676e-08 1.174e-08 -7.776 -7.930 -0.155 (0) +C(-4) 1.831e-20 + CH4 1.831e-20 1.834e-20 -19.737 -19.737 0.001 (0) +C(4) 5.840e-03 + HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.926e-05 9.105e-05 -4.003 -4.041 -0.037 (0) - CaCO3 5.457e-06 5.466e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.176e-06 1.079e-06 -5.929 -5.967 -0.037 (0) - CaHCO2[18O]+ 1.980e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.980e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.980e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - Ca[13C]O3 6.459e-08 6.469e-08 -7.190 -7.189 0.001 (0) - CaCO2[18O] 3.266e-08 3.272e-08 -7.486 -7.485 0.001 (0) -H(0) 7.008e-40 - H2 3.504e-40 3.510e-40 -39.455 -39.455 0.001 (0) -O(0) 6.757e-14 - O2 3.365e-14 3.371e-14 -13.473 -13.472 0.001 (0) - O[18O] 1.343e-16 1.345e-16 -15.872 -15.871 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.759 -125.758 0.001 (0) -[13C](4) 6.907e-05 - H[13C]O3- 5.571e-05 5.097e-05 -4.254 -4.293 -0.039 (0) - [13C]O2 1.169e-05 1.171e-05 -4.932 -4.931 0.001 (0) - CaH[13C]O3+ 1.176e-06 1.079e-06 -5.929 -5.967 -0.037 (0) - H[13C][18O]O2- 1.112e-07 1.017e-07 -6.954 -6.993 -0.039 (0) - H[13C]O2[18O]- 1.112e-07 1.017e-07 -6.954 -6.993 -0.039 (0) - H[13C]O[18O]O- 1.112e-07 1.017e-07 -6.954 -6.993 -0.039 (0) - Ca[13C]O3 6.459e-08 6.469e-08 -7.190 -7.189 0.001 (0) - [13C]O[18O] 4.862e-08 4.870e-08 -7.313 -7.312 0.001 (0) - [13C]O3-2 3.313e-08 2.321e-08 -7.480 -7.634 -0.155 (0) - CaH[13C]O[18O]O+ 2.347e-09 2.153e-09 -8.629 -8.667 -0.037 (0) - CaH[13C][18O]O2+ 2.347e-09 2.153e-09 -8.629 -8.667 -0.037 (0) - CaH[13C]O2[18O]+ 2.347e-09 2.153e-09 -8.629 -8.667 -0.037 (0) - Ca[13C]O2[18O] 3.866e-10 3.872e-10 -9.413 -9.412 0.001 (0) - H[13C][18O]O[18O]- 2.218e-10 2.029e-10 -9.654 -9.693 -0.039 (0) - H[13C]O[18O]2- 2.218e-10 2.029e-10 -9.654 -9.693 -0.039 (0) - H[13C][18O]2O- 2.218e-10 2.029e-10 -9.654 -9.693 -0.039 (0) - [13C]O2[18O]-2 1.983e-10 1.389e-10 -9.703 -9.857 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.170 -137.169 0.001 (0) -[14C](4) 2.702e-16 - H[14C]O3- 2.183e-16 1.997e-16 -15.661 -15.700 -0.039 (0) - [14C]O2 4.542e-17 4.549e-17 -16.343 -16.342 0.001 (0) - CaH[14C]O3+ 4.609e-18 4.228e-18 -17.336 -17.374 -0.037 (0) - H[14C][18O]O2- 4.355e-19 3.984e-19 -18.361 -18.400 -0.039 (0) - H[14C]O2[18O]- 4.355e-19 3.984e-19 -18.361 -18.400 -0.039 (0) - H[14C]O[18O]O- 4.355e-19 3.984e-19 -18.361 -18.400 -0.039 (0) - Ca[14C]O3 2.527e-19 2.531e-19 -18.597 -18.597 0.001 (0) - [14C]O[18O] 1.889e-19 1.892e-19 -18.724 -18.723 0.001 (0) - [14C]O3-2 1.296e-19 9.081e-20 -18.887 -19.042 -0.155 (0) - CaH[14C]O[18O]O+ 9.196e-21 8.436e-21 -20.036 -20.074 -0.037 (0) - CaH[14C]O2[18O]+ 9.196e-21 8.436e-21 -20.036 -20.074 -0.037 (0) - CaH[14C][18O]O2+ 9.196e-21 8.436e-21 -20.036 -20.074 -0.037 (0) - Ca[14C]O2[18O] 1.512e-21 1.515e-21 -20.820 -20.820 0.001 (0) - H[14C]O[18O]2- 8.689e-22 7.949e-22 -21.061 -21.100 -0.039 (0) - H[14C][18O]O[18O]- 8.689e-22 7.949e-22 -21.061 -21.100 -0.039 (0) - H[14C][18O]2O- 8.689e-22 7.949e-22 -21.061 -21.100 -0.039 (0) - [14C]O2[18O]-2 7.759e-22 5.435e-22 -21.110 -21.265 -0.155 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.092e-08 6.102e-08 -7.215 -7.215 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 7.387e-14 + H2 3.693e-14 3.699e-14 -13.433 -13.432 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.519 -65.518 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.918 -67.917 0.001 (0) +[13C](-4) 2.028e-22 + [13C]H4 2.028e-22 2.032e-22 -21.693 -21.692 0.001 (0) +[13C](4) 6.515e-05 + H[13C]O3- 5.255e-05 4.807e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.048e-07 9.592e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.592e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.048e-07 9.592e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.092e-08 6.102e-08 -7.215 -7.215 0.001 (0) + [13C]O[18O] 4.586e-08 4.594e-08 -7.339 -7.338 0.001 (0) + [13C]O3-2 3.125e-08 2.189e-08 -7.505 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.646e-10 3.652e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.870e-10 1.310e-10 -9.728 -9.883 -0.155 (0) +[14C](-4) 8.294e-34 + [14C]H4 8.294e-34 8.308e-34 -33.081 -33.081 0.001 (0) +[14C](4) 2.683e-16 + H[14C]O3- 2.167e-16 1.983e-16 -15.664 -15.703 -0.039 (0) + [14C]O2 4.510e-17 4.517e-17 -16.346 -16.345 0.001 (0) + CaH[14C]O3+ 4.577e-18 4.198e-18 -17.339 -17.377 -0.037 (0) + H[14C]O2[18O]- 4.324e-19 3.956e-19 -18.364 -18.403 -0.039 (0) + H[14C]O[18O]O- 4.324e-19 3.956e-19 -18.364 -18.403 -0.039 (0) + H[14C][18O]O2- 4.324e-19 3.956e-19 -18.364 -18.403 -0.039 (0) + Ca[14C]O3 2.509e-19 2.513e-19 -18.600 -18.600 0.001 (0) + [14C]O[18O] 1.875e-19 1.878e-19 -18.727 -18.726 0.001 (0) + [14C]O3-2 1.287e-19 9.017e-20 -18.890 -19.045 -0.155 (0) + CaH[14C]O2[18O]+ 9.132e-21 8.377e-21 -20.039 -20.077 -0.037 (0) + CaH[14C]O[18O]O+ 9.132e-21 8.377e-21 -20.039 -20.077 -0.037 (0) + CaH[14C][18O]O2+ 9.132e-21 8.377e-21 -20.039 -20.077 -0.037 (0) + Ca[14C]O2[18O] 1.502e-21 1.504e-21 -20.823 -20.823 0.001 (0) + H[14C]O[18O]2- 8.628e-22 7.893e-22 -21.064 -21.103 -0.039 (0) + H[14C][18O]2O- 8.628e-22 7.893e-22 -21.064 -21.103 -0.039 (0) + H[14C][18O]O[18O]- 8.628e-22 7.893e-22 -21.064 -21.103 -0.039 (0) + [14C]O2[18O]-2 7.704e-22 5.397e-22 -21.113 -21.268 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.378e-06 8.580e-06 -5.028 -5.067 -0.039 (0) - HCO2[18O]- 9.378e-06 8.580e-06 -5.028 -5.067 -0.039 (0) - HC[18O]O2- 9.378e-06 8.580e-06 -5.028 -5.067 -0.039 (0) - CO[18O] 4.138e-06 4.145e-06 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.980e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.980e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.980e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - H[13C][18O]O2- 1.112e-07 1.017e-07 -6.954 -6.993 -0.039 (0) - H[13C]O[18O]O- 1.112e-07 1.017e-07 -6.954 -6.993 -0.039 (0) - H[13C]O2[18O]- 1.112e-07 1.017e-07 -6.954 -6.993 -0.039 (0) -[18O](0) 1.346e-16 - O[18O] 1.343e-16 1.345e-16 -15.872 -15.871 0.001 (0) - [18O]2 1.340e-19 1.342e-19 -18.873 -18.872 0.001 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -67.918 -67.917 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.919 -70.918 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.83 -10.33 -1.50 [13C][18O]2 - [13C]H4(g) -122.90 -125.76 -2.86 [13C]H4 - [13C]O2(g) -3.46 -4.93 -1.47 [13C]O2 - [13C]O[18O](g) -5.84 -7.63 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.24 -21.74 -1.50 [14C][18O]2 - [14C]H4(g) -134.31 -137.17 -2.86 [14C]H4 - [14C]O2(g) -14.87 -16.34 -1.47 [14C]O2 - [14C]O[18O](g) -17.25 -19.04 -1.79 [14C]O[18O] - [18O]2(g) -16.58 -18.87 -2.29 [18O]2 + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -18.83 -21.69 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] + [14C][18O]2(g) -20.24 -21.75 -1.50 [14C][18O]2 + [14C]H4(g) -30.22 -33.08 -2.86 [14C]H4 + [14C]O2(g) -14.88 -16.35 -1.47 [14C]O2 + [14C]O[18O](g) -17.26 -19.05 -1.79 [14C]O[18O] + [18O]2(g) -68.63 -70.92 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.00 -1.84 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.14 3.56 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.93 6.26 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.83 0.86 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.40 -13.25 8.15 Ca[14C][18O]3 + Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 + Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -21.41 -13.25 8.15 Ca[14C][18O]3 Ca[14C]O2[18O](s) -15.55 -7.85 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -13.34 -5.15 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -18.24 -10.55 7.69 Ca[14C]O[18O]2 @@ -10815,14 +10752,14 @@ O(0) 6.757e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.97 -123.83 -2.86 CH4 + CH4(g) -16.88 -19.74 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.92 -5.70 -1.79 CO[18O] - H2(g) -36.30 -39.45 -3.15 H2 + CO[18O](g) -3.91 -5.70 -1.79 CO[18O] + H2(g) -10.28 -13.43 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.58 -13.47 -2.89 O2 - O[18O](g) -13.28 -16.17 -2.89 O[18O] + O2(g) -62.63 -65.52 -2.89 O2 + O[18O](g) -65.33 -68.22 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10846,12 +10783,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 45. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -10890,42 +10821,43 @@ Calcite added: 0 Solid solution Component Moles Delta moles Mole fract Calcite 5.00e-04 - Calcite 4.91e-04 4.91e-04 9.82e-01 - CaCO2[18O](s) 3.02e-06 3.02e-06 6.05e-03 + Calcite 4.91e-04 4.91e-04 9.83e-01 + CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 - CaC[18O]3(s) 4.25e-12 4.25e-12 8.49e-09 - Ca[13C]O3(s) 5.81e-06 5.81e-06 1.16e-02 - Ca[13C]O2[18O](s) 3.58e-08 3.58e-08 7.15e-05 - Ca[13C]O[18O]2(s) 7.34e-11 7.34e-11 1.47e-07 - Ca[13C][18O]3(s) 5.02e-14 5.02e-14 1.00e-10 - Ca[14C]O3(s) 2.11e-17 2.11e-17 4.22e-14 - Ca[14C]O2[18O](s) 1.01e-27 1.00e-29 2.02e-24 - Ca[14C]O[18O]2(s) 2.67e-22 2.67e-22 5.33e-19 - Ca[14C][18O]3(s) 1.01e-27 1.00e-29 2.02e-24 + CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 + Ca[13C]O3(s) 5.50e-06 5.50e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.95e-11 6.95e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 2.09e-17 2.09e-17 4.19e-14 + Ca[14C]O2[18O](s) 1.29e-19 1.29e-19 2.58e-16 + Ca[14C]O[18O]2(s) 2.65e-22 2.65e-22 5.29e-19 + Ca[14C][18O]3(s) 1.81e-25 1.80e-25 3.62e-22 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99519e-03 -4.9911 permil - R(13C) 1.17827e-02 53.891 permil - R(14C) 4.26731e-14 3.629 pmc - R(18O) H2O(l) 1.99519e-03 -4.9927 permil + R(18O) 1.99519e-03 -4.9908 permil + R(13C) 1.11562e-02 -2.1483 permil + R(14C) 4.23255e-14 3.5994 pmc + R(18O) H2O(l) 1.99519e-03 -4.9923 permil R(18O) OH- 1.92122e-03 -41.88 permil - R(18O) H3O+ 2.04132e-03 18.015 permil - R(18O) O2(aq) 1.99519e-03 -4.9927 permil - R(13C) CO2(aq) 1.16984e-02 46.349 permil - R(14C) CO2(aq) 4.20641e-14 3.5772 pmc - R(18O) CO2(aq) 2.07915e-03 36.881 permil - R(18O) HCO3- 1.99519e-03 -4.9927 permil - R(13C) HCO3- 1.18002e-02 55.452 permil - R(14C) HCO3- 4.27992e-14 3.6397 pmc - R(18O) CO3-2 1.99519e-03 -4.9927 permil - R(13C) CO3-2 1.17832e-02 53.937 permil - R(14C) CO3-2 4.26764e-14 3.6293 pmc + R(18O) H3O+ 2.04132e-03 18.016 permil + R(13C) CO2(aq) 1.10763e-02 -9.2895 permil + R(14C) CO2(aq) 4.17214e-14 3.5481 pmc + R(18O) CO2(aq) 2.07916e-03 36.882 permil + R(18O) HCO3- 1.99519e-03 -4.9923 permil + R(13C) HCO3- 1.11727e-02 -0.67047 permil + R(14C) HCO3- 4.24505e-14 3.6101 pmc + R(18O) CO3-2 1.99519e-03 -4.9923 permil + R(13C) CO3-2 1.11567e-02 -2.1046 permil + R(14C) CO3-2 4.23287e-14 3.5997 pmc + R(13C) CH4(aq) 1.10763e-02 -9.2895 permil + R(14C) CH4(aq) 4.17214e-14 3.5481 pmc R(18O) Calcite 2.05263e-03 23.654 permil - R(13C) Calcite 1.18235e-02 57.543 permil - R(14C) Calcite 4.27059e-14 3.6318 pmc + R(13C) Calcite 1.11948e-02 1.3089 permil + R(14C) Calcite 4.26188e-14 3.6244 pmc --------------------------------Isotope Alphas--------------------------------- @@ -10935,174 +10867,175 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2328e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6934e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6444e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 1.2212e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 4.2188e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0153 15.143 21.282 +Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 5.836e-03 5.819e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.877e-05 6.857e-05 - [14C] 2.490e-16 2.483e-16 + [13C] 6.515e-05 6.496e-05 + [14C] 2.472e-16 2.465e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.134 Adjusted to redox equilibrium + pe = -1.882 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.836e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.295e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 75 (176 overall) + Iterations = 49 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.586 -123.585 0.001 (0) -C(4) 5.836e-03 - HCO3- 4.701e-03 4.300e-03 -2.328 -2.366 -0.039 (0) - CO2 9.952e-04 9.968e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.926e-05 9.105e-05 -4.003 -4.041 -0.037 (0) - HCO2[18O]- 9.378e-06 8.580e-06 -5.028 -5.067 -0.039 (0) - HCO[18O]O- 9.378e-06 8.580e-06 -5.028 -5.067 -0.039 (0) - HC[18O]O2- 9.378e-06 8.580e-06 -5.028 -5.067 -0.039 (0) - CaCO3 5.457e-06 5.466e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.138e-06 4.145e-06 -5.383 -5.382 0.001 (0) - CO3-2 2.799e-06 1.961e-06 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.980e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.980e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.980e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaCO2[18O] 3.266e-08 3.272e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.871e-08 1.712e-08 -7.728 -7.767 -0.039 (0) - HCO[18O]2- 1.871e-08 1.712e-08 -7.728 -7.767 -0.039 (0) - HC[18O]O[18O]- 1.871e-08 1.712e-08 -7.728 -7.767 -0.039 (0) - CO2[18O]-2 1.676e-08 1.174e-08 -7.776 -7.930 -0.155 (0) +C(-4) 3.534e-20 + CH4 3.534e-20 3.540e-20 -19.452 -19.451 0.001 (0) +C(4) 5.840e-03 + HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.926e-05 9.105e-05 -4.003 -4.041 -0.037 (0) - CaCO3 5.457e-06 5.466e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.171e-06 1.074e-06 -5.931 -5.969 -0.037 (0) - CaHCO2[18O]+ 1.980e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.980e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.980e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - Ca[13C]O3 6.430e-08 6.441e-08 -7.192 -7.191 0.001 (0) - CaCO2[18O] 3.266e-08 3.272e-08 -7.486 -7.485 0.001 (0) -H(0) 8.060e-40 - H2 4.030e-40 4.036e-40 -39.395 -39.394 0.001 (0) -O(0) 5.108e-14 - O2 2.544e-14 2.548e-14 -13.594 -13.594 0.001 (0) - O[18O] 1.015e-16 1.017e-16 -15.993 -15.993 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.518 -125.517 0.001 (0) -[13C](4) 6.877e-05 - H[13C]O3- 5.547e-05 5.075e-05 -4.256 -4.295 -0.039 (0) - [13C]O2 1.164e-05 1.166e-05 -4.934 -4.933 0.001 (0) - CaH[13C]O3+ 1.171e-06 1.074e-06 -5.931 -5.969 -0.037 (0) - H[13C]O2[18O]- 1.107e-07 1.012e-07 -6.956 -6.995 -0.039 (0) - H[13C]O[18O]O- 1.107e-07 1.012e-07 -6.956 -6.995 -0.039 (0) - H[13C][18O]O2- 1.107e-07 1.012e-07 -6.956 -6.995 -0.039 (0) - Ca[13C]O3 6.430e-08 6.441e-08 -7.192 -7.191 0.001 (0) - [13C]O[18O] 4.841e-08 4.849e-08 -7.315 -7.314 0.001 (0) - [13C]O3-2 3.299e-08 2.311e-08 -7.482 -7.636 -0.155 (0) - CaH[13C][18O]O2+ 2.337e-09 2.144e-09 -8.631 -8.669 -0.037 (0) - CaH[13C]O2[18O]+ 2.337e-09 2.144e-09 -8.631 -8.669 -0.037 (0) - CaH[13C]O[18O]O+ 2.337e-09 2.144e-09 -8.631 -8.669 -0.037 (0) - Ca[13C]O2[18O] 3.849e-10 3.855e-10 -9.415 -9.414 0.001 (0) - H[13C][18O]O[18O]- 2.208e-10 2.020e-10 -9.656 -9.695 -0.039 (0) - H[13C]O[18O]2- 2.208e-10 2.020e-10 -9.656 -9.695 -0.039 (0) - H[13C][18O]2O- 2.208e-10 2.020e-10 -9.656 -9.695 -0.039 (0) - [13C]O2[18O]-2 1.974e-10 1.383e-10 -9.705 -9.859 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.962 -136.961 0.001 (0) -[14C](4) 2.490e-16 - H[14C]O3- 2.012e-16 1.841e-16 -15.696 -15.735 -0.039 (0) - [14C]O2 4.186e-17 4.193e-17 -16.378 -16.377 0.001 (0) - CaH[14C]O3+ 4.248e-18 3.897e-18 -17.372 -17.409 -0.037 (0) - H[14C][18O]O2- 4.014e-19 3.672e-19 -18.396 -18.435 -0.039 (0) - H[14C]O2[18O]- 4.014e-19 3.672e-19 -18.396 -18.435 -0.039 (0) - H[14C]O[18O]O- 4.014e-19 3.672e-19 -18.396 -18.435 -0.039 (0) - Ca[14C]O3 2.329e-19 2.333e-19 -18.633 -18.632 0.001 (0) - [14C]O[18O] 1.741e-19 1.744e-19 -18.759 -18.759 0.001 (0) - [14C]O3-2 1.195e-19 8.369e-20 -18.923 -19.077 -0.155 (0) - CaH[14C]O[18O]O+ 8.476e-21 7.775e-21 -20.072 -20.109 -0.037 (0) - CaH[14C]O2[18O]+ 8.476e-21 7.775e-21 -20.072 -20.109 -0.037 (0) - CaH[14C][18O]O2+ 8.476e-21 7.775e-21 -20.072 -20.109 -0.037 (0) - Ca[14C]O2[18O] 1.394e-21 1.396e-21 -20.856 -20.855 0.001 (0) - H[14C][18O]O[18O]- 8.008e-22 7.327e-22 -21.096 -21.135 -0.039 (0) - H[14C][18O]2O- 8.008e-22 7.327e-22 -21.096 -21.135 -0.039 (0) - H[14C]O[18O]2- 8.008e-22 7.327e-22 -21.096 -21.135 -0.039 (0) - [14C]O2[18O]-2 7.151e-22 5.010e-22 -21.146 -21.300 -0.155 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.092e-08 6.102e-08 -7.215 -7.215 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 8.706e-14 + H2 4.353e-14 4.360e-14 -13.361 -13.360 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.661 -65.661 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.060 -68.060 0.001 (0) +[13C](-4) 3.914e-22 + [13C]H4 3.914e-22 3.921e-22 -21.407 -21.407 0.001 (0) +[13C](4) 6.515e-05 + H[13C]O3- 5.255e-05 4.808e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.048e-07 9.592e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.592e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.048e-07 9.592e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.092e-08 6.102e-08 -7.215 -7.215 0.001 (0) + [13C]O[18O] 4.587e-08 4.594e-08 -7.339 -7.338 0.001 (0) + [13C]O3-2 3.125e-08 2.189e-08 -7.505 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.646e-10 3.652e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.871e-10 1.310e-10 -9.728 -9.883 -0.155 (0) +[14C](-4) 1.474e-33 + [14C]H4 1.474e-33 1.477e-33 -32.831 -32.831 0.001 (0) +[14C](4) 2.472e-16 + H[14C]O3- 1.997e-16 1.827e-16 -15.700 -15.738 -0.039 (0) + [14C]O2 4.155e-17 4.161e-17 -16.381 -16.381 0.001 (0) + CaH[14C]O3+ 4.216e-18 3.868e-18 -17.375 -17.413 -0.037 (0) + H[14C]O2[18O]- 3.984e-19 3.645e-19 -18.400 -18.438 -0.039 (0) + H[14C]O[18O]O- 3.984e-19 3.645e-19 -18.400 -18.438 -0.039 (0) + H[14C][18O]O2- 3.984e-19 3.645e-19 -18.400 -18.438 -0.039 (0) + Ca[14C]O3 2.311e-19 2.315e-19 -18.636 -18.635 0.001 (0) + [14C]O[18O] 1.728e-19 1.730e-19 -18.763 -18.762 0.001 (0) + [14C]O3-2 1.186e-19 8.306e-20 -18.926 -19.081 -0.155 (0) + CaH[14C]O2[18O]+ 8.412e-21 7.717e-21 -20.075 -20.113 -0.037 (0) + CaH[14C]O[18O]O+ 8.412e-21 7.717e-21 -20.075 -20.113 -0.037 (0) + CaH[14C][18O]O2+ 8.412e-21 7.717e-21 -20.075 -20.113 -0.037 (0) + Ca[14C]O2[18O] 1.383e-21 1.386e-21 -20.859 -20.858 0.001 (0) + H[14C]O[18O]2- 7.948e-22 7.272e-22 -21.100 -21.138 -0.039 (0) + H[14C][18O]2O- 7.948e-22 7.272e-22 -21.100 -21.138 -0.039 (0) + H[14C][18O]O[18O]- 7.948e-22 7.272e-22 -21.100 -21.138 -0.039 (0) + [14C]O2[18O]-2 7.097e-22 4.972e-22 -21.149 -21.303 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.378e-06 8.580e-06 -5.028 -5.067 -0.039 (0) - HCO2[18O]- 9.378e-06 8.580e-06 -5.028 -5.067 -0.039 (0) - HC[18O]O2- 9.378e-06 8.580e-06 -5.028 -5.067 -0.039 (0) - CO[18O] 4.138e-06 4.145e-06 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.980e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.980e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.980e-07 1.817e-07 -6.703 -6.741 -0.037 (0) -[18O](0) 1.017e-16 - O[18O] 1.015e-16 1.017e-16 -15.993 -15.993 0.001 (0) - [18O]2 1.013e-19 1.014e-19 -18.994 -18.994 0.001 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -68.060 -68.060 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.062 -71.061 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.83 -10.33 -1.50 [13C][18O]2 - [13C]H4(g) -122.66 -125.52 -2.86 [13C]H4 - [13C]O2(g) -3.46 -4.93 -1.47 [13C]O2 - [13C]O[18O](g) -5.85 -7.63 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.27 -21.78 -1.50 [14C][18O]2 - [14C]H4(g) -134.10 -136.96 -2.86 [14C]H4 + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -18.55 -21.41 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] + [14C][18O]2(g) -20.28 -21.78 -1.50 [14C][18O]2 + [14C]H4(g) -29.97 -32.83 -2.86 [14C]H4 [14C]O2(g) -14.91 -16.38 -1.47 [14C]O2 [14C]O[18O](g) -17.29 -19.08 -1.79 [14C]O[18O] - [18O]2(g) -16.70 -18.99 -2.29 [18O]2 + [18O]2(g) -68.77 -71.06 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.00 -1.84 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.15 3.56 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.94 6.26 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.83 0.86 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.44 -13.28 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.59 -7.88 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.37 -5.18 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.27 -10.58 7.69 Ca[14C]O[18O]2 + Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 + Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -21.44 -13.29 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -15.59 -7.89 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -13.38 -5.19 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -18.28 -10.59 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.73 -123.59 -2.86 CH4 + CH4(g) -16.59 -19.45 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.24 -39.39 -3.15 H2 + H2(g) -10.21 -13.36 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.70 -13.59 -2.89 O2 - O[18O](g) -13.40 -16.29 -2.89 O[18O] + O2(g) -62.77 -65.66 -2.89 O2 + O[18O](g) -65.47 -68.36 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11126,12 +11059,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 46. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -11170,42 +11097,43 @@ Calcite added: 0 Solid solution Component Moles Delta moles Mole fract Calcite 5.00e-04 - Calcite 4.91e-04 4.91e-04 9.82e-01 - CaCO2[18O](s) 3.02e-06 3.02e-06 6.05e-03 + Calcite 4.91e-04 4.91e-04 9.83e-01 + CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.78e-06 5.78e-06 1.16e-02 - Ca[13C]O2[18O](s) 3.56e-08 3.56e-08 7.12e-05 - Ca[13C]O[18O]2(s) 7.31e-11 7.31e-11 1.46e-07 - Ca[13C][18O]3(s) 5.00e-14 5.00e-14 1.00e-10 - Ca[14C]O3(s) 1.94e-17 1.94e-17 3.89e-14 - Ca[14C]O2[18O](s) 1.20e-19 1.20e-19 2.39e-16 - Ca[14C]O[18O]2(s) 2.46e-22 2.46e-22 4.91e-19 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C]O3(s) 5.50e-06 5.50e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.95e-11 6.95e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 1.93e-17 1.93e-17 3.86e-14 + Ca[14C]O2[18O](s) 1.19e-19 1.19e-19 2.38e-16 + Ca[14C]O[18O]2(s) 2.44e-22 2.44e-22 4.88e-19 + Ca[14C][18O]3(s) 1.67e-25 1.66e-25 3.34e-22 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99519e-03 -4.991 permil - R(13C) 1.17342e-02 49.548 permil - R(14C) 3.93098e-14 3.343 pmc - R(18O) H2O(l) 1.99519e-03 -4.9925 permil - R(18O) OH- 1.92122e-03 -41.88 permil - R(18O) H3O+ 2.04132e-03 18.015 permil - R(18O) O2(aq) 1.99519e-03 -4.9925 permil - R(13C) CO2(aq) 1.16502e-02 42.037 permil - R(14C) CO2(aq) 3.87488e-14 3.2953 pmc - R(18O) CO2(aq) 2.07915e-03 36.881 permil - R(18O) HCO3- 1.99519e-03 -4.9925 permil - R(13C) HCO3- 1.17515e-02 51.103 permil - R(14C) HCO3- 3.94259e-14 3.3529 pmc - R(18O) CO3-2 1.99519e-03 -4.9925 permil - R(13C) CO3-2 1.17347e-02 49.594 permil - R(14C) CO3-2 3.93128e-14 3.3432 pmc + R(18O) 1.99519e-03 -4.9907 permil + R(13C) 1.11568e-02 -2.0886 permil + R(14C) 3.89914e-14 3.3159 pmc + R(18O) H2O(l) 1.99519e-03 -4.9922 permil + R(18O) OH- 1.92122e-03 -41.879 permil + R(18O) H3O+ 2.04133e-03 18.016 permil + R(13C) CO2(aq) 1.10770e-02 -9.2303 permil + R(14C) CO2(aq) 3.84349e-14 3.2686 pmc + R(18O) CO2(aq) 2.07916e-03 36.882 permil + R(18O) HCO3- 1.99519e-03 -4.9922 permil + R(13C) HCO3- 1.11734e-02 -0.61068 permil + R(14C) HCO3- 3.91066e-14 3.3257 pmc + R(18O) CO3-2 1.99519e-03 -4.9922 permil + R(13C) CO3-2 1.11573e-02 -2.0449 permil + R(14C) CO3-2 3.89944e-14 3.3162 pmc + R(13C) CH4(aq) 1.10770e-02 -9.2303 permil + R(14C) CH4(aq) 3.84349e-14 3.2686 pmc R(18O) Calcite 2.05263e-03 23.654 permil - R(13C) Calcite 1.17748e-02 53.185 permil - R(14C) Calcite 3.95822e-14 3.3662 pmc + R(13C) Calcite 1.11955e-02 1.3688 permil + R(14C) Calcite 3.92617e-14 3.3389 pmc --------------------------------Isotope Alphas--------------------------------- @@ -11215,14 +11143,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2417e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 2.2204e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7308e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6011e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 1.9984e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 3.9968e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -11231,143 +11160,143 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 Elements Molality Moles - C 5.836e-03 5.819e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.849e-05 6.829e-05 - [14C] 2.294e-16 2.288e-16 + [13C] 6.515e-05 6.496e-05 + [14C] 2.277e-16 2.270e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.934 Adjusted to redox equilibrium + pe = -1.928 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.836e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.295e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 38 (139 overall) + Iterations = 58 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -121.987 -121.986 0.001 (0) -C(4) 5.836e-03 - HCO3- 4.701e-03 4.301e-03 -2.328 -2.366 -0.039 (0) - CO2 9.952e-04 9.969e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.926e-05 9.106e-05 -4.003 -4.041 -0.037 (0) - HCO[18O]O- 9.379e-06 8.580e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.379e-06 8.580e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.379e-06 8.580e-06 -5.028 -5.066 -0.039 (0) - CaCO3 5.457e-06 5.466e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.138e-06 4.145e-06 -5.383 -5.382 0.001 (0) - CO3-2 2.800e-06 1.961e-06 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaCO2[18O] 3.267e-08 3.272e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.871e-08 1.712e-08 -7.728 -7.767 -0.039 (0) - HCO[18O]2- 1.871e-08 1.712e-08 -7.728 -7.767 -0.039 (0) - HC[18O]O[18O]- 1.871e-08 1.712e-08 -7.728 -7.767 -0.039 (0) - CO2[18O]-2 1.676e-08 1.174e-08 -7.776 -7.930 -0.155 (0) +C(-4) 8.216e-20 + CH4 8.216e-20 8.229e-20 -19.085 -19.085 0.001 (0) +C(4) 5.840e-03 + HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.926e-05 9.106e-05 -4.003 -4.041 -0.037 (0) - CaCO3 5.457e-06 5.466e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.167e-06 1.070e-06 -5.933 -5.971 -0.037 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - Ca[13C]O3 6.404e-08 6.415e-08 -7.194 -7.193 0.001 (0) - CaCO2[18O] 3.267e-08 3.272e-08 -7.486 -7.485 0.001 (0) -H(0) 2.024e-39 - H2 1.012e-39 1.014e-39 -38.995 -38.994 0.001 (0) -O(0) 8.101e-15 - O2 4.035e-15 4.041e-15 -14.394 -14.393 0.001 (0) - O[18O] 1.610e-17 1.613e-17 -16.793 -16.792 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -123.920 -123.920 0.001 (0) -[13C](4) 6.849e-05 - H[13C]O3- 5.524e-05 5.054e-05 -4.258 -4.296 -0.039 (0) - [13C]O2 1.159e-05 1.161e-05 -4.936 -4.935 0.001 (0) - CaH[13C]O3+ 1.167e-06 1.070e-06 -5.933 -5.971 -0.037 (0) - H[13C]O[18O]O- 1.102e-07 1.008e-07 -6.958 -6.996 -0.039 (0) - H[13C][18O]O2- 1.102e-07 1.008e-07 -6.958 -6.996 -0.039 (0) - H[13C]O2[18O]- 1.102e-07 1.008e-07 -6.958 -6.996 -0.039 (0) - Ca[13C]O3 6.404e-08 6.415e-08 -7.194 -7.193 0.001 (0) - [13C]O[18O] 4.821e-08 4.829e-08 -7.317 -7.316 0.001 (0) - [13C]O3-2 3.285e-08 2.301e-08 -7.483 -7.638 -0.155 (0) - CaH[13C]O2[18O]+ 2.327e-09 2.135e-09 -8.633 -8.671 -0.037 (0) - CaH[13C]O[18O]O+ 2.327e-09 2.135e-09 -8.633 -8.671 -0.037 (0) - CaH[13C][18O]O2+ 2.327e-09 2.135e-09 -8.633 -8.671 -0.037 (0) - Ca[13C]O2[18O] 3.833e-10 3.839e-10 -9.416 -9.416 0.001 (0) - H[13C][18O]O[18O]- 2.199e-10 2.012e-10 -9.658 -9.696 -0.039 (0) - H[13C]O[18O]2- 2.199e-10 2.012e-10 -9.658 -9.696 -0.039 (0) - H[13C][18O]2O- 2.199e-10 2.012e-10 -9.658 -9.696 -0.039 (0) - [13C]O2[18O]-2 1.966e-10 1.378e-10 -9.706 -9.861 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -135.398 -135.398 0.001 (0) -[14C](4) 2.294e-16 - H[14C]O3- 1.853e-16 1.696e-16 -15.732 -15.771 -0.039 (0) - [14C]O2 3.856e-17 3.863e-17 -16.414 -16.413 0.001 (0) - CaH[14C]O3+ 3.914e-18 3.590e-18 -17.407 -17.445 -0.037 (0) - H[14C][18O]O2- 3.698e-19 3.383e-19 -18.432 -18.471 -0.039 (0) - H[14C]O2[18O]- 3.698e-19 3.383e-19 -18.432 -18.471 -0.039 (0) - H[14C]O[18O]O- 3.698e-19 3.383e-19 -18.432 -18.471 -0.039 (0) - Ca[14C]O3 2.145e-19 2.149e-19 -18.668 -18.668 0.001 (0) - [14C]O[18O] 1.604e-19 1.606e-19 -18.795 -18.794 0.001 (0) - [14C]O3-2 1.101e-19 7.710e-20 -18.958 -19.113 -0.155 (0) - CaH[14C]O[18O]O+ 7.808e-21 7.163e-21 -20.107 -20.145 -0.037 (0) - CaH[14C]O2[18O]+ 7.808e-21 7.163e-21 -20.107 -20.145 -0.037 (0) - CaH[14C][18O]O2+ 7.808e-21 7.163e-21 -20.107 -20.145 -0.037 (0) - Ca[14C]O2[18O] 1.284e-21 1.286e-21 -20.891 -20.891 0.001 (0) - H[14C][18O]2O- 7.378e-22 6.750e-22 -21.132 -21.171 -0.039 (0) - H[14C]O[18O]2- 7.378e-22 6.750e-22 -21.132 -21.171 -0.039 (0) - H[14C][18O]O[18O]- 7.378e-22 6.750e-22 -21.132 -21.171 -0.039 (0) - [14C]O2[18O]-2 6.588e-22 4.615e-22 -21.181 -21.336 -0.155 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.092e-08 6.102e-08 -7.215 -7.214 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 1.075e-13 + H2 5.375e-14 5.384e-14 -13.270 -13.269 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.845 -65.844 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.244 -68.243 0.001 (0) +[13C](-4) 9.101e-22 + [13C]H4 9.101e-22 9.116e-22 -21.041 -21.040 0.001 (0) +[13C](4) 6.515e-05 + H[13C]O3- 5.255e-05 4.808e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.593e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.593e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.593e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.092e-08 6.102e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.587e-08 4.594e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.125e-08 2.189e-08 -7.505 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.647e-10 3.653e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.883 -0.155 (0) +[14C](-4) 3.158e-33 + [14C]H4 3.158e-33 3.163e-33 -32.501 -32.500 0.001 (0) +[14C](4) 2.277e-16 + H[14C]O3- 1.839e-16 1.683e-16 -15.735 -15.774 -0.039 (0) + [14C]O2 3.827e-17 3.834e-17 -16.417 -16.416 0.001 (0) + CaH[14C]O3+ 3.884e-18 3.563e-18 -17.411 -17.448 -0.037 (0) + H[14C]O2[18O]- 3.670e-19 3.357e-19 -18.435 -18.474 -0.039 (0) + H[14C]O[18O]O- 3.670e-19 3.357e-19 -18.435 -18.474 -0.039 (0) + H[14C][18O]O2- 3.670e-19 3.357e-19 -18.435 -18.474 -0.039 (0) + Ca[14C]O3 2.129e-19 2.133e-19 -18.672 -18.671 0.001 (0) + [14C]O[18O] 1.592e-19 1.594e-19 -18.798 -18.797 0.001 (0) + [14C]O3-2 1.092e-19 7.652e-20 -18.962 -19.116 -0.155 (0) + CaH[14C]O2[18O]+ 7.750e-21 7.109e-21 -20.111 -20.148 -0.037 (0) + CaH[14C]O[18O]O+ 7.750e-21 7.109e-21 -20.111 -20.148 -0.037 (0) + CaH[14C][18O]O2+ 7.750e-21 7.109e-21 -20.111 -20.148 -0.037 (0) + Ca[14C]O2[18O] 1.275e-21 1.277e-21 -20.895 -20.894 0.001 (0) + H[14C]O[18O]2- 7.322e-22 6.699e-22 -21.135 -21.174 -0.039 (0) + H[14C][18O]2O- 7.322e-22 6.699e-22 -21.135 -21.174 -0.039 (0) + H[14C][18O]O[18O]- 7.322e-22 6.699e-22 -21.135 -21.174 -0.039 (0) + [14C]O2[18O]-2 6.538e-22 4.580e-22 -21.185 -21.339 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.379e-06 8.580e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.379e-06 8.580e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.379e-06 8.580e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.138e-06 4.145e-06 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) -[18O](0) 1.613e-17 - O[18O] 1.610e-17 1.613e-17 -16.793 -16.792 0.001 (0) - [18O]2 1.606e-20 1.609e-20 -19.794 -19.794 0.001 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -68.244 -68.243 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.245 -71.244 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.83 -10.34 -1.50 [13C][18O]2 - [13C]H4(g) -121.06 -123.92 -2.86 [13C]H4 - [13C]O2(g) -3.47 -4.94 -1.47 [13C]O2 - [13C]O[18O](g) -5.85 -7.64 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.31 -21.81 -1.50 [14C][18O]2 - [14C]H4(g) -132.54 -135.40 -2.86 [14C]H4 - [14C]O2(g) -14.94 -16.41 -1.47 [14C]O2 - [14C]O[18O](g) -17.33 -19.11 -1.79 [14C]O[18O] - [18O]2(g) -17.50 -19.79 -2.29 [18O]2 + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -18.18 -21.04 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] + [14C][18O]2(g) -20.31 -21.82 -1.50 [14C][18O]2 + [14C]H4(g) -29.64 -32.50 -2.86 [14C]H4 + [14C]O2(g) -14.95 -16.42 -1.47 [14C]O2 + [14C]O[18O](g) -17.33 -19.12 -1.79 [14C]O[18O] + [18O]2(g) -68.95 -71.24 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.00 -1.84 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.15 3.56 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.94 6.26 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.84 0.86 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.47 -13.32 8.15 Ca[14C][18O]3 + Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 + Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -21.48 -13.32 8.15 Ca[14C][18O]3 Ca[14C]O2[18O](s) -15.62 -7.92 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -13.41 -5.22 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -18.31 -10.62 7.69 Ca[14C]O[18O]2 @@ -11375,14 +11304,14 @@ O(0) 8.101e-15 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.13 -121.99 -2.86 CH4 + CH4(g) -16.22 -19.08 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.84 -38.99 -3.15 H2 + H2(g) -10.12 -13.27 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.50 -14.39 -2.89 O2 - O[18O](g) -14.20 -17.09 -2.89 O[18O] + O2(g) -62.95 -65.84 -2.89 O2 + O[18O](g) -65.65 -68.54 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11406,12 +11335,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 47. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -11450,43 +11373,43 @@ Calcite added: 0 Solid solution Component Moles Delta moles Mole fract Calcite 5.00e-04 - Calcite 4.91e-04 4.91e-04 9.82e-01 - CaCO2[18O](s) 3.02e-06 3.02e-06 6.05e-03 + Calcite 4.91e-04 4.91e-04 9.83e-01 + CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.76e-06 5.76e-06 1.15e-02 - Ca[13C]O2[18O](s) 3.55e-08 3.55e-08 7.10e-05 - Ca[13C]O[18O]2(s) 7.28e-11 7.28e-11 1.46e-07 - Ca[13C][18O]3(s) 4.98e-14 4.98e-14 9.97e-11 - Ca[14C]O3(s) 1.79e-17 1.79e-17 3.58e-14 - Ca[14C]O2[18O](s) 1.00e-27 0.00e+00 2.00e-24 - Ca[14C]O[18O]2(s) 2.26e-22 2.26e-22 4.53e-19 - Ca[14C][18O]3(s) 1.00e-27 0.00e+00 2.00e-24 + Ca[13C]O3(s) 5.50e-06 5.50e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.95e-11 6.95e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 1.78e-17 1.78e-17 3.55e-14 + Ca[14C]O2[18O](s) 1.09e-19 1.09e-19 2.19e-16 + Ca[14C]O[18O]2(s) 2.25e-22 2.25e-22 4.49e-19 + Ca[14C][18O]3(s) 1.54e-25 1.53e-25 3.07e-22 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99519e-03 -4.9909 permil - R(13C) 1.16894e-02 45.547 permil - R(14C) 3.62291e-14 3.081 pmc - R(18O) H2O(l) 1.99519e-03 -4.9924 permil - R(18O) OH- 1.92122e-03 -41.88 permil - R(18O) H3O+ 2.04132e-03 18.015 permil - R(13C) CO2(aq) 1.16058e-02 38.064 permil - R(14C) CO2(aq) 3.57121e-14 3.037 pmc - R(18O) CO2(aq) 2.07915e-03 36.882 permil - R(18O) HCO3- 1.99519e-03 -4.9924 permil - R(13C) HCO3- 1.17067e-02 47.095 permil - R(14C) HCO3- 3.63362e-14 3.0901 pmc - R(18O) CO3-2 1.99519e-03 -4.9924 permil - R(13C) CO3-2 1.16899e-02 45.593 permil - R(14C) CO3-2 3.62319e-14 3.0812 pmc - R(13C) CH4(aq) 1.16058e-02 38.064 permil - R(14C) CH4(aq) 3.57121e-14 3.037 pmc + R(18O) 1.99519e-03 -4.9905 permil + R(13C) 1.11575e-02 -2.0336 permil + R(14C) 3.59200e-14 3.0547 pmc + R(18O) H2O(l) 1.99519e-03 -4.9921 permil + R(18O) OH- 1.92122e-03 -41.879 permil + R(18O) H3O+ 2.04133e-03 18.016 permil + R(13C) CO2(aq) 1.10776e-02 -9.1756 permil + R(14C) CO2(aq) 3.54073e-14 3.0111 pmc + R(18O) CO2(aq) 2.07916e-03 36.882 permil + R(18O) HCO3- 1.99519e-03 -4.9921 permil + R(13C) HCO3- 1.11740e-02 -0.55558 permil + R(14C) HCO3- 3.60261e-14 3.0637 pmc + R(18O) CO3-2 1.99519e-03 -4.9921 permil + R(13C) CO3-2 1.11580e-02 -1.9899 permil + R(14C) CO3-2 3.59228e-14 3.0549 pmc + R(13C) CH4(aq) 1.10776e-02 -9.1756 permil + R(14C) CH4(aq) 3.54073e-14 3.0111 pmc R(18O) Calcite 2.05263e-03 23.654 permil - R(13C) Calcite 1.17299e-02 49.169 permil - R(14C) Calcite 3.62570e-14 3.0834 pmc + R(13C) Calcite 1.11961e-02 1.424 permil + R(14C) Calcite 3.61689e-14 3.0759 pmc --------------------------------Isotope Alphas--------------------------------- @@ -11497,174 +11420,174 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 2.2204e-13 0 +Alpha 18O HCO3-/H2O(l) 1 0 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6048e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6854e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.4544e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -4.1078e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 4.2188e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -6.1062e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0153 15.143 21.282 +Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 5.837e-03 5.820e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.823e-05 6.803e-05 - [14C] 2.115e-16 2.108e-16 + [13C] 6.516e-05 6.497e-05 + [14C] 2.098e-16 2.092e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.755 Adjusted to redox equilibrium + pe = -1.845 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.837e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.316e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 184 (285 overall) + Iterations = 55 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.362e-21 - CH4 3.362e-21 3.368e-21 -20.473 -20.473 0.001 (0) -C(4) 5.837e-03 - HCO3- 4.701e-03 4.301e-03 -2.328 -2.366 -0.039 (0) - CO2 9.953e-04 9.969e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.927e-05 9.106e-05 -4.003 -4.041 -0.037 (0) - HC[18O]O2- 9.379e-06 8.581e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.379e-06 8.581e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.379e-06 8.581e-06 -5.028 -5.066 -0.039 (0) - CaCO3 5.458e-06 5.467e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.139e-06 4.145e-06 -5.383 -5.382 0.001 (0) - CO3-2 2.800e-06 1.961e-06 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaCO2[18O] 3.267e-08 3.272e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.871e-08 1.712e-08 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.871e-08 1.712e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.871e-08 1.712e-08 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.676e-08 1.174e-08 -7.776 -7.930 -0.155 (0) +C(-4) 1.773e-20 + CH4 1.773e-20 1.775e-20 -19.751 -19.751 0.001 (0) +C(4) 5.840e-03 + HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.927e-05 9.106e-05 -4.003 -4.041 -0.037 (0) - CaCO3 5.458e-06 5.467e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.162e-06 1.066e-06 -5.935 -5.972 -0.037 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - Ca[13C]O3 6.380e-08 6.390e-08 -7.195 -7.194 0.001 (0) - CaCO2[18O] 3.267e-08 3.272e-08 -7.486 -7.485 0.001 (0) -H(0) 4.836e-14 - H2 2.418e-14 2.422e-14 -13.617 -13.616 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.093e-08 6.103e-08 -7.215 -7.214 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 7.327e-14 + H2 3.663e-14 3.669e-14 -13.436 -13.435 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.151 -65.150 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.550 -67.549 0.001 (0) -[13C](-4) 3.902e-23 - [13C]H4 3.902e-23 3.909e-23 -22.409 -22.408 0.001 (0) -[13C](4) 6.823e-05 - H[13C]O3- 5.503e-05 5.035e-05 -4.259 -4.298 -0.039 (0) - [13C]O2 1.155e-05 1.157e-05 -4.937 -4.937 0.001 (0) - CaH[13C]O3+ 1.162e-06 1.066e-06 -5.935 -5.972 -0.037 (0) - H[13C][18O]O2- 1.098e-07 1.005e-07 -6.959 -6.998 -0.039 (0) - H[13C]O2[18O]- 1.098e-07 1.005e-07 -6.959 -6.998 -0.039 (0) - H[13C]O[18O]O- 1.098e-07 1.005e-07 -6.959 -6.998 -0.039 (0) - Ca[13C]O3 6.380e-08 6.390e-08 -7.195 -7.194 0.001 (0) - [13C]O[18O] 4.803e-08 4.811e-08 -7.318 -7.318 0.001 (0) - [13C]O3-2 3.273e-08 2.293e-08 -7.485 -7.640 -0.155 (0) - CaH[13C]O[18O]O+ 2.319e-09 2.127e-09 -8.635 -8.672 -0.037 (0) - CaH[13C][18O]O2+ 2.319e-09 2.127e-09 -8.635 -8.672 -0.037 (0) - CaH[13C]O2[18O]+ 2.319e-09 2.127e-09 -8.635 -8.672 -0.037 (0) - Ca[13C]O2[18O] 3.819e-10 3.825e-10 -9.418 -9.417 0.001 (0) - H[13C][18O]O[18O]- 2.191e-10 2.004e-10 -9.659 -9.698 -0.039 (0) - H[13C]O[18O]2- 2.191e-10 2.004e-10 -9.659 -9.698 -0.039 (0) - H[13C][18O]2O- 2.191e-10 2.004e-10 -9.659 -9.698 -0.039 (0) - [13C]O2[18O]-2 1.959e-10 1.372e-10 -9.708 -9.863 -0.155 (0) -[14C](-4) 1.201e-34 - [14C]H4 1.201e-34 1.203e-34 -33.921 -33.920 0.001 (0) -[14C](4) 2.115e-16 - H[14C]O3- 1.708e-16 1.563e-16 -15.767 -15.806 -0.039 (0) - [14C]O2 3.554e-17 3.560e-17 -16.449 -16.449 0.001 (0) - CaH[14C]O3+ 3.607e-18 3.309e-18 -17.443 -17.480 -0.037 (0) - H[14C][18O]O2- 3.408e-19 3.118e-19 -18.467 -18.506 -0.039 (0) - H[14C]O2[18O]- 3.408e-19 3.118e-19 -18.467 -18.506 -0.039 (0) - H[14C]O[18O]O- 3.408e-19 3.118e-19 -18.467 -18.506 -0.039 (0) - Ca[14C]O3 1.977e-19 1.981e-19 -18.704 -18.703 0.001 (0) - [14C]O[18O] 1.478e-19 1.480e-19 -18.830 -18.830 0.001 (0) - [14C]O3-2 1.014e-19 7.106e-20 -18.994 -19.148 -0.155 (0) - CaH[14C]O[18O]O+ 7.197e-21 6.602e-21 -20.143 -20.180 -0.037 (0) - CaH[14C]O2[18O]+ 7.197e-21 6.602e-21 -20.143 -20.180 -0.037 (0) - CaH[14C][18O]O2+ 7.197e-21 6.602e-21 -20.143 -20.180 -0.037 (0) - Ca[14C]O2[18O] 1.184e-21 1.186e-21 -20.927 -20.926 0.001 (0) - H[14C]O[18O]2- 6.800e-22 6.221e-22 -21.168 -21.206 -0.039 (0) - H[14C][18O]O[18O]- 6.800e-22 6.221e-22 -21.168 -21.206 -0.039 (0) - H[14C][18O]2O- 6.800e-22 6.221e-22 -21.168 -21.206 -0.039 (0) - [14C]O2[18O]-2 6.072e-22 4.253e-22 -21.217 -21.371 -0.155 (0) + O2 0.000e+00 0.000e+00 -65.512 -65.511 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.911 -67.910 0.001 (0) +[13C](-4) 1.964e-22 + [13C]H4 1.964e-22 1.967e-22 -21.707 -21.706 0.001 (0) +[13C](4) 6.516e-05 + H[13C]O3- 5.256e-05 4.808e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.593e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.593e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.593e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.093e-08 6.103e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.587e-08 4.595e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.126e-08 2.190e-08 -7.505 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.647e-10 3.653e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.883 -0.155 (0) +[14C](-4) 6.276e-34 + [14C]H4 6.276e-34 6.286e-34 -33.202 -33.202 0.001 (0) +[14C](4) 2.098e-16 + H[14C]O3- 1.694e-16 1.550e-16 -15.771 -15.810 -0.039 (0) + [14C]O2 3.526e-17 3.532e-17 -16.453 -16.452 0.001 (0) + CaH[14C]O3+ 3.578e-18 3.282e-18 -17.446 -17.484 -0.037 (0) + H[14C]O2[18O]- 3.381e-19 3.093e-19 -18.471 -18.510 -0.039 (0) + H[14C]O[18O]O- 3.381e-19 3.093e-19 -18.471 -18.510 -0.039 (0) + H[14C][18O]O2- 3.381e-19 3.093e-19 -18.471 -18.510 -0.039 (0) + Ca[14C]O3 1.962e-19 1.965e-19 -18.707 -18.707 0.001 (0) + [14C]O[18O] 1.466e-19 1.469e-19 -18.834 -18.833 0.001 (0) + [14C]O3-2 1.006e-19 7.049e-20 -18.997 -19.152 -0.155 (0) + CaH[14C]O2[18O]+ 7.139e-21 6.549e-21 -20.146 -20.184 -0.037 (0) + CaH[14C]O[18O]O+ 7.139e-21 6.549e-21 -20.146 -20.184 -0.037 (0) + CaH[14C][18O]O2+ 7.139e-21 6.549e-21 -20.146 -20.184 -0.037 (0) + Ca[14C]O2[18O] 1.174e-21 1.176e-21 -20.930 -20.930 0.001 (0) + H[14C]O[18O]2- 6.745e-22 6.171e-22 -21.171 -21.210 -0.039 (0) + H[14C][18O]2O- 6.745e-22 6.171e-22 -21.171 -21.210 -0.039 (0) + H[14C][18O]O[18O]- 6.745e-22 6.171e-22 -21.171 -21.210 -0.039 (0) + [14C]O2[18O]-2 6.023e-22 4.219e-22 -21.220 -21.375 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.379e-06 8.581e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.379e-06 8.581e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.379e-06 8.581e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.139e-06 4.145e-06 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.550 -67.549 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.551 -70.550 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.911 -67.910 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.912 -70.911 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.83 -10.34 -1.50 [13C][18O]2 - [13C]H4(g) -19.55 -22.41 -2.86 [13C]H4 - [13C]O2(g) -3.47 -4.94 -1.47 [13C]O2 - [13C]O[18O](g) -5.85 -7.64 -1.79 [13C]O[18O] + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -18.85 -21.71 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.35 -21.85 -1.50 [14C][18O]2 - [14C]H4(g) -31.06 -33.92 -2.86 [14C]H4 + [14C]H4(g) -30.34 -33.20 -2.86 [14C]H4 [14C]O2(g) -14.98 -16.45 -1.47 [14C]O2 [14C]O[18O](g) -17.36 -19.15 -1.79 [14C]O[18O] - [18O]2(g) -68.26 -70.55 -2.29 [18O]2 + [18O]2(g) -68.62 -70.91 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.00 -1.84 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.15 3.56 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.94 6.26 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.84 0.86 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.51 -13.35 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.66 -7.95 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.45 -5.25 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.34 -10.65 7.69 Ca[14C]O[18O]2 + Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 + Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -21.51 -13.36 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -15.66 -7.96 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -13.45 -5.26 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -18.35 -10.66 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.61 -20.47 -2.86 CH4 + CH4(g) -16.89 -19.75 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.47 -13.62 -3.15 H2 + H2(g) -10.29 -13.44 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.26 -65.15 -2.89 O2 - O[18O](g) -64.96 -67.85 -2.89 O[18O] + O2(g) -62.62 -65.51 -2.89 O2 + O[18O](g) -65.32 -68.21 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11732,43 +11655,43 @@ Calcite added: 0 Solid solution Component Moles Delta moles Mole fract Calcite 5.00e-04 - Calcite 4.91e-04 4.91e-04 9.82e-01 - CaCO2[18O](s) 3.02e-06 3.02e-06 6.05e-03 + Calcite 4.91e-04 4.91e-04 9.83e-01 + CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.74e-06 5.74e-06 1.15e-02 - Ca[13C]O2[18O](s) 3.54e-08 3.54e-08 7.07e-05 - Ca[13C]O[18O]2(s) 7.26e-11 7.26e-11 1.45e-07 - Ca[13C][18O]3(s) 4.97e-14 4.97e-14 9.93e-11 - Ca[14C]O3(s) 1.65e-17 1.65e-17 3.30e-14 - Ca[14C]O2[18O](s) 1.02e-19 1.02e-19 2.03e-16 - Ca[14C]O[18O]2(s) 2.09e-22 2.09e-22 4.17e-19 - Ca[14C][18O]3(s) 1.01e-27 1.00e-29 2.02e-24 + Ca[13C]O3(s) 5.50e-06 5.50e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 1.64e-17 1.64e-17 3.27e-14 + Ca[14C]O2[18O](s) 1.01e-19 1.01e-19 2.02e-16 + Ca[14C]O[18O]2(s) 2.07e-22 2.07e-22 4.14e-19 + Ca[14C][18O]3(s) 1.42e-25 1.41e-25 2.83e-22 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99519e-03 -4.9907 permil - R(13C) 1.16482e-02 41.86 permil - R(14C) 3.33739e-14 2.8382 pmc - R(18O) H2O(l) 1.99519e-03 -4.9922 permil - R(18O) OH- 1.92122e-03 -41.88 permil - R(18O) H3O+ 2.04132e-03 18.016 permil - R(13C) CO2(aq) 1.15648e-02 34.404 permil - R(14C) CO2(aq) 3.28976e-14 2.7977 pmc + R(18O) 1.99519e-03 -4.9904 permil + R(13C) 1.11580e-02 -1.9829 permil + R(14C) 3.30905e-14 2.8141 pmc + R(18O) H2O(l) 1.99519e-03 -4.9919 permil + R(18O) OH- 1.92122e-03 -41.879 permil + R(18O) H3O+ 2.04133e-03 18.016 permil + R(13C) CO2(aq) 1.10782e-02 -9.1253 permil + R(14C) CO2(aq) 3.26182e-14 2.7739 pmc R(18O) CO2(aq) 2.07916e-03 36.882 permil - R(18O) HCO3- 1.99519e-03 -4.9922 permil - R(13C) HCO3- 1.16655e-02 43.403 permil - R(14C) HCO3- 3.34725e-14 2.8466 pmc - R(18O) CO3-2 1.99519e-03 -4.9922 permil - R(13C) CO3-2 1.16487e-02 41.905 permil - R(14C) CO3-2 3.33765e-14 2.8384 pmc - R(13C) CH4(aq) 1.15648e-02 34.404 permil - R(14C) CH4(aq) 3.28976e-14 2.7977 pmc + R(18O) HCO3- 1.99519e-03 -4.9919 permil + R(13C) HCO3- 1.11746e-02 -0.5048 permil + R(14C) HCO3- 3.31883e-14 2.8224 pmc + R(18O) CO3-2 1.99519e-03 -4.9919 permil + R(13C) CO3-2 1.11585e-02 -1.9392 permil + R(14C) CO3-2 3.30931e-14 2.8143 pmc + R(13C) CH4(aq) 1.10782e-02 -9.1253 permil + R(14C) CH4(aq) 3.26182e-14 2.7739 pmc R(18O) Calcite 2.05263e-03 23.654 permil - R(13C) Calcite 1.16886e-02 45.469 permil - R(14C) Calcite 3.36052e-14 2.8579 pmc + R(13C) Calcite 1.11967e-02 1.4749 permil + R(14C) Calcite 3.33199e-14 2.8336 pmc --------------------------------Isotope Alphas--------------------------------- @@ -11779,14 +11702,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 +Alpha 18O HCO3-/H2O(l) 1 2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7917e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6611e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -7.7716e-13 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.2879e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -3.5527e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -5.7732e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -11795,158 +11718,158 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 Elements Molality Moles - C 5.837e-03 5.820e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.799e-05 6.779e-05 - [14C] 1.948e-16 1.942e-16 + [13C] 6.516e-05 6.497e-05 + [14C] 1.932e-16 1.927e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.560 Adjusted to redox equilibrium + pe = -1.895 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.837e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 61 (162 overall) + Iterations = 65 (166 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 9.243e-23 - CH4 9.243e-23 9.259e-23 -22.034 -22.033 0.001 (0) -C(4) 5.837e-03 - HCO3- 4.701e-03 4.301e-03 -2.328 -2.366 -0.039 (0) - CO2 9.953e-04 9.969e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.927e-05 9.107e-05 -4.003 -4.041 -0.037 (0) - HCO2[18O]- 9.380e-06 8.581e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.380e-06 8.581e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.380e-06 8.581e-06 -5.028 -5.066 -0.039 (0) - CaCO3 5.458e-06 5.467e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.139e-06 4.146e-06 -5.383 -5.382 0.001 (0) - CO3-2 2.800e-06 1.961e-06 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaCO2[18O] 3.267e-08 3.272e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.871e-08 1.712e-08 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.871e-08 1.712e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.871e-08 1.712e-08 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.676e-08 1.174e-08 -7.776 -7.930 -0.155 (0) +C(-4) 4.432e-20 + CH4 4.432e-20 4.439e-20 -19.353 -19.353 0.001 (0) +C(4) 5.840e-03 + HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.927e-05 9.107e-05 -4.003 -4.041 -0.037 (0) - CaCO3 5.458e-06 5.467e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.158e-06 1.062e-06 -5.936 -5.974 -0.037 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - Ca[13C]O3 6.358e-08 6.368e-08 -7.197 -7.196 0.001 (0) - CaCO2[18O] 3.267e-08 3.272e-08 -7.486 -7.485 0.001 (0) -H(0) 1.969e-14 - H2 9.846e-15 9.862e-15 -14.007 -14.006 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.093e-08 6.103e-08 -7.215 -7.214 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 9.213e-14 + H2 4.607e-14 4.614e-14 -13.337 -13.336 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.370 -64.370 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -66.769 -66.769 0.001 (0) -[13C](-4) 1.069e-24 - [13C]H4 1.069e-24 1.071e-24 -23.971 -23.970 0.001 (0) -[13C](4) 6.799e-05 - H[13C]O3- 5.484e-05 5.017e-05 -4.261 -4.300 -0.039 (0) - [13C]O2 1.151e-05 1.153e-05 -4.939 -4.938 0.001 (0) - CaH[13C]O3+ 1.158e-06 1.062e-06 -5.936 -5.974 -0.037 (0) - H[13C]O2[18O]- 1.094e-07 1.001e-07 -6.961 -7.000 -0.039 (0) - H[13C]O[18O]O- 1.094e-07 1.001e-07 -6.961 -7.000 -0.039 (0) - H[13C][18O]O2- 1.094e-07 1.001e-07 -6.961 -7.000 -0.039 (0) - Ca[13C]O3 6.358e-08 6.368e-08 -7.197 -7.196 0.001 (0) - [13C]O[18O] 4.786e-08 4.794e-08 -7.320 -7.319 0.001 (0) - [13C]O3-2 3.261e-08 2.285e-08 -7.487 -7.641 -0.155 (0) - CaH[13C][18O]O2+ 2.311e-09 2.120e-09 -8.636 -8.674 -0.037 (0) - CaH[13C]O2[18O]+ 2.311e-09 2.120e-09 -8.636 -8.674 -0.037 (0) - CaH[13C]O[18O]O+ 2.311e-09 2.120e-09 -8.636 -8.674 -0.037 (0) - Ca[13C]O2[18O] 3.805e-10 3.812e-10 -9.420 -9.419 0.001 (0) - H[13C][18O]O[18O]- 2.183e-10 1.997e-10 -9.661 -9.700 -0.039 (0) - H[13C]O[18O]2- 2.183e-10 1.997e-10 -9.661 -9.700 -0.039 (0) - H[13C][18O]2O- 2.183e-10 1.997e-10 -9.661 -9.700 -0.039 (0) - [13C]O2[18O]-2 1.952e-10 1.368e-10 -9.709 -9.864 -0.155 (0) -[14C](-4) 3.041e-36 - [14C]H4 3.041e-36 3.046e-36 -35.517 -35.516 0.001 (0) -[14C](4) 1.948e-16 - H[14C]O3- 1.574e-16 1.440e-16 -15.803 -15.842 -0.039 (0) - [14C]O2 3.274e-17 3.280e-17 -16.485 -16.484 0.001 (0) - CaH[14C]O3+ 3.323e-18 3.048e-18 -17.478 -17.516 -0.037 (0) - H[14C][18O]O2- 3.140e-19 2.872e-19 -18.503 -18.542 -0.039 (0) - H[14C]O2[18O]- 3.140e-19 2.872e-19 -18.503 -18.542 -0.039 (0) - H[14C]O[18O]O- 3.140e-19 2.872e-19 -18.503 -18.542 -0.039 (0) - Ca[14C]O3 1.822e-19 1.825e-19 -18.740 -18.739 0.001 (0) - [14C]O[18O] 1.362e-19 1.364e-19 -18.866 -18.865 0.001 (0) - [14C]O3-2 9.345e-20 6.546e-20 -19.029 -19.184 -0.155 (0) - CaH[14C]O[18O]O+ 6.630e-21 6.082e-21 -20.178 -20.216 -0.037 (0) - CaH[14C]O2[18O]+ 6.630e-21 6.082e-21 -20.178 -20.216 -0.037 (0) - CaH[14C][18O]O2+ 6.630e-21 6.082e-21 -20.178 -20.216 -0.037 (0) - Ca[14C]O2[18O] 1.090e-21 1.092e-21 -20.962 -20.962 0.001 (0) - H[14C][18O]O[18O]- 6.264e-22 5.731e-22 -21.203 -21.242 -0.039 (0) - H[14C][18O]2O- 6.264e-22 5.731e-22 -21.203 -21.242 -0.039 (0) - H[14C]O[18O]2- 6.264e-22 5.731e-22 -21.203 -21.242 -0.039 (0) - [14C]O2[18O]-2 5.593e-22 3.918e-22 -21.252 -21.407 -0.155 (0) + O2 0.000e+00 0.000e+00 -65.711 -65.710 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.110 -68.109 0.001 (0) +[13C](-4) 4.910e-22 + [13C]H4 4.910e-22 4.918e-22 -21.309 -21.308 0.001 (0) +[13C](4) 6.516e-05 + H[13C]O3- 5.256e-05 4.808e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.594e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.594e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.594e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.093e-08 6.103e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.587e-08 4.595e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.126e-08 2.190e-08 -7.505 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.647e-10 3.653e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.883 -0.155 (0) +[14C](-4) 1.446e-33 + [14C]H4 1.446e-33 1.448e-33 -32.840 -32.839 0.001 (0) +[14C](4) 1.932e-16 + H[14C]O3- 1.561e-16 1.428e-16 -15.807 -15.845 -0.039 (0) + [14C]O2 3.248e-17 3.253e-17 -16.488 -16.488 0.001 (0) + CaH[14C]O3+ 3.296e-18 3.024e-18 -17.482 -17.519 -0.037 (0) + H[14C]O2[18O]- 3.114e-19 2.849e-19 -18.507 -18.545 -0.039 (0) + H[14C]O[18O]O- 3.114e-19 2.849e-19 -18.507 -18.545 -0.039 (0) + H[14C][18O]O2- 3.114e-19 2.849e-19 -18.507 -18.545 -0.039 (0) + Ca[14C]O3 1.807e-19 1.810e-19 -18.743 -18.742 0.001 (0) + [14C]O[18O] 1.351e-19 1.353e-19 -18.869 -18.869 0.001 (0) + [14C]O3-2 9.270e-20 6.494e-20 -19.033 -19.187 -0.155 (0) + CaH[14C]O2[18O]+ 6.577e-21 6.033e-21 -20.182 -20.219 -0.037 (0) + CaH[14C]O[18O]O+ 6.577e-21 6.033e-21 -20.182 -20.219 -0.037 (0) + CaH[14C][18O]O2+ 6.577e-21 6.033e-21 -20.182 -20.219 -0.037 (0) + Ca[14C]O2[18O] 1.082e-21 1.083e-21 -20.966 -20.965 0.001 (0) + H[14C]O[18O]2- 6.214e-22 5.685e-22 -21.207 -21.245 -0.039 (0) + H[14C][18O]2O- 6.214e-22 5.685e-22 -21.207 -21.245 -0.039 (0) + H[14C][18O]O[18O]- 6.214e-22 5.685e-22 -21.207 -21.245 -0.039 (0) + [14C]O2[18O]-2 5.549e-22 3.887e-22 -21.256 -21.410 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.380e-06 8.581e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.380e-06 8.581e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.380e-06 8.581e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.139e-06 4.146e-06 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -66.769 -66.769 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -69.770 -69.770 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.110 -68.109 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.111 -71.110 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.84 -10.34 -1.50 [13C][18O]2 - [13C]H4(g) -21.11 -23.97 -2.86 [13C]H4 - [13C]O2(g) -3.47 -4.94 -1.47 [13C]O2 - [13C]O[18O](g) -5.85 -7.64 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.38 -21.88 -1.50 [14C][18O]2 - [14C]H4(g) -32.66 -35.52 -2.86 [14C]H4 - [14C]O2(g) -15.02 -16.48 -1.47 [14C]O2 - [14C]O[18O](g) -17.40 -19.18 -1.79 [14C]O[18O] - [18O]2(g) -67.48 -69.77 -2.29 [18O]2 + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -18.45 -21.31 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] + [14C][18O]2(g) -20.38 -21.89 -1.50 [14C][18O]2 + [14C]H4(g) -29.98 -32.84 -2.86 [14C]H4 + [14C]O2(g) -15.02 -16.49 -1.47 [14C]O2 + [14C]O[18O](g) -17.40 -19.19 -1.79 [14C]O[18O] + [18O]2(g) -68.82 -71.11 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.00 -1.84 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.15 3.56 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.94 6.26 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.84 0.86 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.54 -13.39 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.69 -7.99 7.70 Ca[14C]O2[18O] + Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 + Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -21.55 -13.39 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -15.70 -7.99 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -13.48 -5.29 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -18.38 -10.69 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -19.17 -22.03 -2.86 CH4 + CH4(g) -16.49 -19.35 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.86 -14.01 -3.15 H2 + H2(g) -10.19 -13.34 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -61.48 -64.37 -2.89 O2 - O[18O](g) -64.18 -67.07 -2.89 O[18O] + O2(g) -62.82 -65.71 -2.89 O2 + O[18O](g) -65.52 -68.41 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11970,12 +11893,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 49. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -12014,42 +11931,43 @@ Calcite added: 0 Solid solution Component Moles Delta moles Mole fract Calcite 5.00e-04 - Calcite 4.91e-04 4.91e-04 9.82e-01 - CaCO2[18O](s) 3.02e-06 3.02e-06 6.05e-03 + Calcite 4.91e-04 4.91e-04 9.83e-01 + CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.72e-06 5.72e-06 1.14e-02 - Ca[13C]O2[18O](s) 3.52e-08 3.52e-08 7.05e-05 - Ca[13C]O[18O]2(s) 7.23e-11 7.23e-11 1.45e-07 - Ca[13C][18O]3(s) 4.95e-14 4.95e-14 9.90e-11 - Ca[14C]O3(s) 1.52e-17 1.52e-17 3.04e-14 - Ca[14C]O2[18O](s) 9.36e-20 9.36e-20 1.87e-16 - Ca[14C]O[18O]2(s) 1.92e-22 1.92e-22 3.84e-19 - Ca[14C][18O]3(s) 1.01e-27 1.00e-29 2.02e-24 + Ca[13C]O3(s) 5.50e-06 5.50e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 1.51e-17 1.51e-17 3.02e-14 + Ca[14C]O2[18O](s) 9.29e-20 9.29e-20 1.86e-16 + Ca[14C]O[18O]2(s) 1.91e-22 1.91e-22 3.81e-19 + Ca[14C][18O]3(s) 1.30e-25 1.29e-25 2.61e-22 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99519e-03 -4.9906 permil - R(13C) 1.16102e-02 38.462 permil - R(14C) 3.07438e-14 2.6145 pmc - R(18O) H2O(l) 1.99519e-03 -4.9921 permil + R(18O) 1.99519e-03 -4.9903 permil + R(13C) 1.11586e-02 -1.9362 permil + R(14C) 3.04839e-14 2.5924 pmc + R(18O) H2O(l) 1.99519e-03 -4.9918 permil R(18O) OH- 1.92122e-03 -41.879 permil R(18O) H3O+ 2.04133e-03 18.016 permil - R(18O) O2(aq) 1.99519e-03 -4.9921 permil - R(13C) CO2(aq) 1.15271e-02 31.031 permil - R(14C) CO2(aq) 3.03051e-14 2.5772 pmc + R(13C) CO2(aq) 1.10787e-02 -9.0789 permil + R(14C) CO2(aq) 3.00488e-14 2.5554 pmc R(18O) CO2(aq) 2.07916e-03 36.882 permil - R(18O) HCO3- 1.99519e-03 -4.9921 permil - R(13C) HCO3- 1.16274e-02 40 permil - R(14C) HCO3- 3.08347e-14 2.6222 pmc - R(18O) CO3-2 1.99519e-03 -4.9921 permil - R(13C) CO3-2 1.16107e-02 38.508 permil - R(14C) CO3-2 3.07462e-14 2.6147 pmc - R(18O) Calcite 2.05263e-03 23.654 permil - R(13C) Calcite 1.16504e-02 42.06 permil - R(14C) Calcite 3.09569e-14 2.6326 pmc + R(18O) HCO3- 1.99519e-03 -4.9918 permil + R(13C) HCO3- 1.11751e-02 -0.45802 permil + R(14C) HCO3- 3.05740e-14 2.6001 pmc + R(18O) CO3-2 1.99519e-03 -4.9918 permil + R(13C) CO3-2 1.11590e-02 -1.8924 permil + R(14C) CO3-2 3.04863e-14 2.5926 pmc + R(13C) CH4(aq) 1.10787e-02 -9.0789 permil + R(14C) CH4(aq) 3.00488e-14 2.5554 pmc + R(18O) Calcite 2.05263e-03 23.655 permil + R(13C) Calcite 1.11972e-02 1.5217 permil + R(14C) Calcite 3.06952e-14 2.6104 pmc --------------------------------Isotope Alphas--------------------------------- @@ -12059,14 +11977,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2627e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6516e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8272e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -5.9952e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.6209e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -12075,142 +11994,142 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 Elements Molality Moles - C 5.837e-03 5.820e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.777e-05 6.757e-05 - [14C] 1.795e-16 1.789e-16 + [13C] 6.516e-05 6.497e-05 + [14C] 1.780e-16 1.775e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.054 Adjusted to redox equilibrium + pe = -1.930 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.837e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 70 (171 overall) + Iterations = 62 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.946 -122.945 0.001 (0) -C(4) 5.837e-03 - HCO3- 4.701e-03 4.301e-03 -2.328 -2.366 -0.039 (0) - CO2 9.953e-04 9.970e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.928e-05 9.107e-05 -4.003 -4.041 -0.037 (0) - HCO[18O]O- 9.380e-06 8.582e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.380e-06 8.582e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.380e-06 8.582e-06 -5.028 -5.066 -0.039 (0) - CaCO3 5.458e-06 5.467e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.139e-06 4.146e-06 -5.383 -5.382 0.001 (0) - CO3-2 2.800e-06 1.961e-06 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaCO2[18O] 3.267e-08 3.272e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.712e-08 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-08 1.712e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.712e-08 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.676e-08 1.174e-08 -7.776 -7.930 -0.155 (0) +C(-4) 8.431e-20 + CH4 8.431e-20 8.445e-20 -19.074 -19.073 0.001 (0) +C(4) 5.840e-03 + HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.928e-05 9.107e-05 -4.003 -4.041 -0.037 (0) - CaCO3 5.458e-06 5.467e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.154e-06 1.059e-06 -5.938 -5.975 -0.037 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - Ca[13C]O3 6.337e-08 6.348e-08 -7.198 -7.197 0.001 (0) - CaCO2[18O] 3.267e-08 3.272e-08 -7.486 -7.485 0.001 (0) -H(0) 1.165e-39 - H2 5.825e-40 5.834e-40 -39.235 -39.234 0.001 (0) -O(0) 2.445e-14 - O2 1.218e-14 1.220e-14 -13.914 -13.914 0.001 (0) - O[18O] 4.859e-17 4.867e-17 -16.313 -16.313 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.884 -124.884 0.001 (0) -[13C](4) 6.777e-05 - H[13C]O3- 5.466e-05 5.001e-05 -4.262 -4.301 -0.039 (0) - [13C]O2 1.147e-05 1.149e-05 -4.940 -4.940 0.001 (0) - CaH[13C]O3+ 1.154e-06 1.059e-06 -5.938 -5.975 -0.037 (0) - H[13C]O[18O]O- 1.091e-07 9.978e-08 -6.962 -7.001 -0.039 (0) - H[13C][18O]O2- 1.091e-07 9.978e-08 -6.962 -7.001 -0.039 (0) - H[13C]O2[18O]- 1.091e-07 9.978e-08 -6.962 -7.001 -0.039 (0) - Ca[13C]O3 6.337e-08 6.348e-08 -7.198 -7.197 0.001 (0) - [13C]O[18O] 4.771e-08 4.779e-08 -7.321 -7.321 0.001 (0) - [13C]O3-2 3.251e-08 2.277e-08 -7.488 -7.643 -0.155 (0) - CaH[13C]O2[18O]+ 2.303e-09 2.113e-09 -8.638 -8.675 -0.037 (0) - CaH[13C]O[18O]O+ 2.303e-09 2.113e-09 -8.638 -8.675 -0.037 (0) - CaH[13C][18O]O2+ 2.303e-09 2.113e-09 -8.638 -8.675 -0.037 (0) - Ca[13C]O2[18O] 3.793e-10 3.799e-10 -9.421 -9.420 0.001 (0) - H[13C][18O]O[18O]- 2.176e-10 1.991e-10 -9.662 -9.701 -0.039 (0) - H[13C]O[18O]2- 2.176e-10 1.991e-10 -9.662 -9.701 -0.039 (0) - H[13C][18O]2O- 2.176e-10 1.991e-10 -9.662 -9.701 -0.039 (0) - [13C]O2[18O]-2 1.946e-10 1.363e-10 -9.711 -9.865 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.465 -136.464 0.001 (0) -[14C](4) 1.795e-16 - H[14C]O3- 1.450e-16 1.326e-16 -15.839 -15.877 -0.039 (0) - [14C]O2 3.016e-17 3.021e-17 -16.521 -16.520 0.001 (0) - CaH[14C]O3+ 3.061e-18 2.808e-18 -17.514 -17.552 -0.037 (0) - H[14C][18O]O2- 2.892e-19 2.646e-19 -18.539 -18.577 -0.039 (0) - H[14C]O2[18O]- 2.892e-19 2.646e-19 -18.539 -18.577 -0.039 (0) - H[14C]O[18O]O- 2.892e-19 2.646e-19 -18.539 -18.577 -0.039 (0) - Ca[14C]O3 1.678e-19 1.681e-19 -18.775 -18.774 0.001 (0) - [14C]O[18O] 1.254e-19 1.256e-19 -18.902 -18.901 0.001 (0) - [14C]O3-2 8.609e-20 6.031e-20 -19.065 -19.220 -0.155 (0) - CaH[14C]O[18O]O+ 6.108e-21 5.603e-21 -20.214 -20.252 -0.037 (0) - CaH[14C]O2[18O]+ 6.108e-21 5.603e-21 -20.214 -20.252 -0.037 (0) - CaH[14C][18O]O2+ 6.108e-21 5.603e-21 -20.214 -20.252 -0.037 (0) - Ca[14C]O2[18O] 1.004e-21 1.006e-21 -20.998 -20.997 0.001 (0) - H[14C][18O]2O- 5.771e-22 5.279e-22 -21.239 -21.277 -0.039 (0) - H[14C]O[18O]2- 5.771e-22 5.279e-22 -21.239 -21.277 -0.039 (0) - H[14C][18O]O[18O]- 5.771e-22 5.279e-22 -21.239 -21.277 -0.039 (0) - [14C]O2[18O]-2 5.153e-22 3.610e-22 -21.288 -21.443 -0.155 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.093e-08 6.103e-08 -7.215 -7.214 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 1.082e-13 + H2 5.410e-14 5.419e-14 -13.267 -13.266 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.850 -65.850 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.249 -68.249 0.001 (0) +[13C](-4) 9.341e-22 + [13C]H4 9.341e-22 9.356e-22 -21.030 -21.029 0.001 (0) +[13C](4) 6.516e-05 + H[13C]O3- 5.256e-05 4.809e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.594e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.594e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.594e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.093e-08 6.103e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.587e-08 4.595e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.126e-08 2.190e-08 -7.505 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.215e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.215e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.647e-10 3.653e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 2.533e-33 + [14C]H4 2.533e-33 2.538e-33 -32.596 -32.596 0.001 (0) +[14C](4) 1.780e-16 + H[14C]O3- 1.438e-16 1.316e-16 -15.842 -15.881 -0.039 (0) + [14C]O2 2.992e-17 2.997e-17 -16.524 -16.523 0.001 (0) + CaH[14C]O3+ 3.037e-18 2.786e-18 -17.518 -17.555 -0.037 (0) + H[14C]O2[18O]- 2.869e-19 2.625e-19 -18.542 -18.581 -0.039 (0) + H[14C]O[18O]O- 2.869e-19 2.625e-19 -18.542 -18.581 -0.039 (0) + H[14C][18O]O2- 2.869e-19 2.625e-19 -18.542 -18.581 -0.039 (0) + Ca[14C]O3 1.665e-19 1.667e-19 -18.779 -18.778 0.001 (0) + [14C]O[18O] 1.244e-19 1.246e-19 -18.905 -18.904 0.001 (0) + [14C]O3-2 8.540e-20 5.982e-20 -19.069 -19.223 -0.155 (0) + CaH[14C]O2[18O]+ 6.059e-21 5.558e-21 -20.218 -20.255 -0.037 (0) + CaH[14C]O[18O]O+ 6.059e-21 5.558e-21 -20.218 -20.255 -0.037 (0) + CaH[14C][18O]O2+ 6.059e-21 5.558e-21 -20.218 -20.255 -0.037 (0) + Ca[14C]O2[18O] 9.964e-22 9.981e-22 -21.002 -21.001 0.001 (0) + H[14C]O[18O]2- 5.724e-22 5.237e-22 -21.242 -21.281 -0.039 (0) + H[14C][18O]2O- 5.724e-22 5.237e-22 -21.242 -21.281 -0.039 (0) + H[14C][18O]O[18O]- 5.724e-22 5.237e-22 -21.242 -21.281 -0.039 (0) + [14C]O2[18O]-2 5.111e-22 3.581e-22 -21.291 -21.446 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.380e-06 8.582e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.380e-06 8.582e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.380e-06 8.582e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.139e-06 4.146e-06 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) -[18O](0) 4.869e-17 - O[18O] 4.859e-17 4.867e-17 -16.313 -16.313 0.001 (0) - [18O]2 4.848e-20 4.856e-20 -19.314 -19.314 0.001 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -68.249 -68.249 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.250 -71.250 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.84 -10.34 -1.50 [13C][18O]2 - [13C]H4(g) -122.02 -124.88 -2.86 [13C]H4 - [13C]O2(g) -3.47 -4.94 -1.47 [13C]O2 - [13C]O[18O](g) -5.85 -7.64 -1.79 [13C]O[18O] + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -18.17 -21.03 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.42 -21.92 -1.50 [14C][18O]2 - [14C]H4(g) -133.60 -136.46 -2.86 [14C]H4 + [14C]H4(g) -29.74 -32.60 -2.86 [14C]H4 [14C]O2(g) -15.05 -16.52 -1.47 [14C]O2 - [14C]O[18O](g) -17.43 -19.22 -1.79 [14C]O[18O] - [18O]2(g) -17.02 -19.31 -2.29 [18O]2 + [14C]O[18O](g) -17.44 -19.22 -1.79 [14C]O[18O] + [18O]2(g) -68.96 -71.25 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.00 -1.85 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.15 3.55 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.94 6.25 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.84 0.85 7.69 Ca[13C]O[18O]2 + Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 + Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 Ca[14C][18O]3(s) -21.58 -13.43 8.15 Ca[14C][18O]3 Ca[14C]O2[18O](s) -15.73 -8.03 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -13.52 -5.33 8.19 Ca[14C]O3 @@ -12219,14 +12138,14 @@ O(0) 2.445e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.09 -122.95 -2.86 CH4 + CH4(g) -16.21 -19.07 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.08 -39.23 -3.15 H2 + H2(g) -10.12 -13.27 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.02 -13.91 -2.89 O2 - O[18O](g) -13.72 -16.61 -2.89 O[18O] + O2(g) -62.96 -65.85 -2.89 O2 + O[18O](g) -65.66 -68.55 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12288,43 +12207,43 @@ Calcite added: 0 Solid solution Component Moles Delta moles Mole fract Calcite 5.00e-04 - Calcite 4.91e-04 4.91e-04 9.82e-01 - CaCO2[18O](s) 3.02e-06 3.02e-06 6.05e-03 + Calcite 4.91e-04 4.91e-04 9.83e-01 + CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.71e-06 5.71e-06 1.14e-02 - Ca[13C]O2[18O](s) 3.51e-08 3.51e-08 7.03e-05 - Ca[13C]O[18O]2(s) 7.21e-11 7.21e-11 1.44e-07 - Ca[13C][18O]3(s) 4.93e-14 4.93e-14 9.87e-11 - Ca[14C]O3(s) 1.40e-17 1.40e-17 2.80e-14 - Ca[14C]O2[18O](s) 8.63e-20 8.63e-20 1.73e-16 - Ca[14C]O[18O]2(s) 1.77e-22 1.77e-22 3.54e-19 - Ca[14C][18O]3(s) 1.00e-27 0.00e+00 2.00e-24 + Ca[13C]O3(s) 5.50e-06 5.50e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 1.39e-17 1.39e-17 2.78e-14 + Ca[14C]O2[18O](s) 8.56e-20 8.56e-20 1.71e-16 + Ca[14C]O[18O]2(s) 1.76e-22 1.76e-22 3.51e-19 + Ca[14C][18O]3(s) 1.20e-25 1.19e-25 2.40e-22 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99519e-03 -4.9904 permil - R(13C) 1.15752e-02 35.332 permil - R(14C) 2.83211e-14 2.4085 pmc - R(18O) H2O(l) 1.99519e-03 -4.992 permil + R(18O) 1.99519e-03 -4.9901 permil + R(13C) 1.11590e-02 -1.8931 permil + R(14C) 2.80826e-14 2.3882 pmc + R(18O) H2O(l) 1.99519e-03 -4.9916 permil R(18O) OH- 1.92122e-03 -41.879 permil R(18O) H3O+ 2.04133e-03 18.016 permil - R(13C) CO2(aq) 1.14924e-02 27.923 permil - R(14C) CO2(aq) 2.79169e-14 2.3741 pmc + R(13C) CO2(aq) 1.10792e-02 -9.0362 permil + R(14C) CO2(aq) 2.76818e-14 2.3541 pmc R(18O) CO2(aq) 2.07916e-03 36.882 permil - R(18O) HCO3- 1.99519e-03 -4.992 permil - R(13C) HCO3- 1.15924e-02 36.865 permil - R(14C) HCO3- 2.84048e-14 2.4156 pmc - R(18O) CO3-2 1.99519e-03 -4.992 permil - R(13C) CO3-2 1.15757e-02 35.377 permil - R(14C) CO3-2 2.83233e-14 2.4087 pmc - R(13C) CH4(aq) 1.14924e-02 27.923 permil - R(14C) CH4(aq) 2.79169e-14 2.3741 pmc - R(18O) Calcite 2.05263e-03 23.654 permil - R(13C) Calcite 1.16153e-02 38.919 permil - R(14C) Calcite 2.85174e-14 2.4252 pmc + R(18O) HCO3- 1.99519e-03 -4.9916 permil + R(13C) HCO3- 1.11756e-02 -0.4149 permil + R(14C) HCO3- 2.81656e-14 2.3953 pmc + R(18O) CO3-2 1.99519e-03 -4.9916 permil + R(13C) CO3-2 1.11595e-02 -1.8494 permil + R(14C) CO3-2 2.80848e-14 2.3884 pmc + R(13C) CH4(aq) 1.10792e-02 -9.0362 permil + R(14C) CH4(aq) 2.76818e-14 2.3541 pmc + R(18O) Calcite 2.05263e-03 23.655 permil + R(13C) Calcite 1.11977e-02 1.5649 permil + R(14C) Calcite 2.82773e-14 2.4048 pmc --------------------------------Isotope Alphas--------------------------------- @@ -12335,14 +12254,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8737e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6657e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.6431e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.4433e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.4544e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.6542e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -12351,158 +12270,158 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 Elements Molality Moles - C 5.837e-03 5.820e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.757e-05 6.737e-05 - [14C] 1.653e-16 1.648e-16 + [13C] 6.517e-05 6.498e-05 + [14C] 1.640e-16 1.635e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.494 Adjusted to redox equilibrium + pe = -1.851 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.837e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 54 + Iterations = 51 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.754e-23 - CH4 2.754e-23 2.758e-23 -22.560 -22.559 0.001 (0) -C(4) 5.837e-03 - HCO3- 4.702e-03 4.301e-03 -2.328 -2.366 -0.039 (0) - CO2 9.954e-04 9.970e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.928e-05 9.107e-05 -4.003 -4.041 -0.037 (0) - HC[18O]O2- 9.380e-06 8.582e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.380e-06 8.582e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.380e-06 8.582e-06 -5.028 -5.066 -0.039 (0) - CaCO3 5.458e-06 5.467e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.139e-06 4.146e-06 -5.383 -5.382 0.001 (0) - CO3-2 2.800e-06 1.962e-06 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaCO2[18O] 3.267e-08 3.272e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.712e-08 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-08 1.712e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.712e-08 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.676e-08 1.174e-08 -7.776 -7.930 -0.155 (0) +C(-4) 1.973e-20 + CH4 1.973e-20 1.976e-20 -19.705 -19.704 0.001 (0) +C(4) 5.840e-03 + HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.928e-05 9.107e-05 -4.003 -4.041 -0.037 (0) - CaCO3 5.458e-06 5.467e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.151e-06 1.056e-06 -5.939 -5.976 -0.037 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - Ca[13C]O3 6.318e-08 6.329e-08 -7.199 -7.199 0.001 (0) - CaCO2[18O] 3.267e-08 3.272e-08 -7.486 -7.485 0.001 (0) -H(0) 1.455e-14 - H2 7.274e-15 7.286e-15 -14.138 -14.138 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.094e-08 6.104e-08 -7.215 -7.214 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 7.526e-14 + H2 3.763e-14 3.769e-14 -13.424 -13.424 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.107 -64.107 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -66.506 -66.506 0.001 (0) -[13C](-4) 3.165e-25 - [13C]H4 3.165e-25 3.170e-25 -24.500 -24.499 0.001 (0) -[13C](4) 6.757e-05 - H[13C]O3- 5.450e-05 4.986e-05 -4.264 -4.302 -0.039 (0) - [13C]O2 1.144e-05 1.146e-05 -4.942 -4.941 0.001 (0) - CaH[13C]O3+ 1.151e-06 1.056e-06 -5.939 -5.976 -0.037 (0) - H[13C][18O]O2- 1.087e-07 9.948e-08 -6.964 -7.002 -0.039 (0) - H[13C]O2[18O]- 1.087e-07 9.948e-08 -6.964 -7.002 -0.039 (0) - H[13C]O[18O]O- 1.087e-07 9.948e-08 -6.964 -7.002 -0.039 (0) - Ca[13C]O3 6.318e-08 6.329e-08 -7.199 -7.199 0.001 (0) - [13C]O[18O] 4.757e-08 4.765e-08 -7.323 -7.322 0.001 (0) - [13C]O3-2 3.241e-08 2.271e-08 -7.489 -7.644 -0.155 (0) - CaH[13C]O[18O]O+ 2.296e-09 2.106e-09 -8.639 -8.676 -0.037 (0) - CaH[13C][18O]O2+ 2.296e-09 2.106e-09 -8.639 -8.676 -0.037 (0) - CaH[13C]O2[18O]+ 2.296e-09 2.106e-09 -8.639 -8.676 -0.037 (0) - Ca[13C]O2[18O] 3.782e-10 3.788e-10 -9.422 -9.422 0.001 (0) - H[13C][18O]O[18O]- 2.170e-10 1.985e-10 -9.664 -9.702 -0.039 (0) - H[13C]O[18O]2- 2.170e-10 1.985e-10 -9.664 -9.702 -0.039 (0) - H[13C][18O]2O- 2.170e-10 1.985e-10 -9.664 -9.702 -0.039 (0) - [13C]O2[18O]-2 1.940e-10 1.359e-10 -9.712 -9.867 -0.155 (0) -[14C](-4) 7.688e-37 - [14C]H4 7.688e-37 7.701e-37 -36.114 -36.113 0.001 (0) -[14C](4) 1.653e-16 - H[14C]O3- 1.335e-16 1.222e-16 -15.874 -15.913 -0.039 (0) - [14C]O2 2.779e-17 2.783e-17 -16.556 -16.555 0.001 (0) - CaH[14C]O3+ 2.820e-18 2.587e-18 -17.550 -17.587 -0.037 (0) - H[14C][18O]O2- 2.664e-19 2.438e-19 -18.574 -18.613 -0.039 (0) - H[14C]O2[18O]- 2.664e-19 2.438e-19 -18.574 -18.613 -0.039 (0) - H[14C]O[18O]O- 2.664e-19 2.438e-19 -18.574 -18.613 -0.039 (0) - Ca[14C]O3 1.546e-19 1.548e-19 -18.811 -18.810 0.001 (0) - [14C]O[18O] 1.156e-19 1.157e-19 -18.937 -18.937 0.001 (0) - [14C]O3-2 7.930e-20 5.556e-20 -19.101 -19.255 -0.155 (0) - CaH[14C]O[18O]O+ 5.627e-21 5.161e-21 -20.250 -20.287 -0.037 (0) - CaH[14C]O2[18O]+ 5.627e-21 5.161e-21 -20.250 -20.287 -0.037 (0) - CaH[14C][18O]O2+ 5.627e-21 5.161e-21 -20.250 -20.287 -0.037 (0) - Ca[14C]O2[18O] 9.253e-22 9.269e-22 -21.034 -21.033 0.001 (0) - H[14C]O[18O]2- 5.316e-22 4.864e-22 -21.274 -21.313 -0.039 (0) - H[14C][18O]O[18O]- 5.316e-22 4.864e-22 -21.274 -21.313 -0.039 (0) - H[14C][18O]2O- 5.316e-22 4.864e-22 -21.274 -21.313 -0.039 (0) - [14C]O2[18O]-2 4.747e-22 3.325e-22 -21.324 -21.478 -0.155 (0) + O2 0.000e+00 0.000e+00 -65.535 -65.534 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.934 -67.933 0.001 (0) +[13C](-4) 2.186e-22 + [13C]H4 2.186e-22 2.189e-22 -21.660 -21.660 0.001 (0) +[13C](4) 6.517e-05 + H[13C]O3- 5.256e-05 4.809e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.094e-08 6.104e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.588e-08 4.595e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.126e-08 2.190e-08 -7.505 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.647e-10 3.653e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 5.461e-34 + [14C]H4 5.461e-34 5.470e-34 -33.263 -33.262 0.001 (0) +[14C](4) 1.640e-16 + H[14C]O3- 1.325e-16 1.212e-16 -15.878 -15.917 -0.039 (0) + [14C]O2 2.757e-17 2.761e-17 -16.560 -16.559 0.001 (0) + CaH[14C]O3+ 2.797e-18 2.566e-18 -17.553 -17.591 -0.037 (0) + H[14C]O2[18O]- 2.643e-19 2.418e-19 -18.578 -18.617 -0.039 (0) + H[14C]O[18O]O- 2.643e-19 2.418e-19 -18.578 -18.617 -0.039 (0) + H[14C][18O]O2- 2.643e-19 2.418e-19 -18.578 -18.617 -0.039 (0) + Ca[14C]O3 1.534e-19 1.536e-19 -18.814 -18.814 0.001 (0) + [14C]O[18O] 1.146e-19 1.148e-19 -18.941 -18.940 0.001 (0) + [14C]O3-2 7.867e-20 5.511e-20 -19.104 -19.259 -0.155 (0) + CaH[14C]O2[18O]+ 5.581e-21 5.120e-21 -20.253 -20.291 -0.037 (0) + CaH[14C]O[18O]O+ 5.581e-21 5.120e-21 -20.253 -20.291 -0.037 (0) + CaH[14C][18O]O2+ 5.581e-21 5.120e-21 -20.253 -20.291 -0.037 (0) + Ca[14C]O2[18O] 9.179e-22 9.194e-22 -21.037 -21.036 0.001 (0) + H[14C]O[18O]2- 5.274e-22 4.825e-22 -21.278 -21.317 -0.039 (0) + H[14C][18O]2O- 5.274e-22 4.825e-22 -21.278 -21.317 -0.039 (0) + H[14C][18O]O[18O]- 5.274e-22 4.825e-22 -21.278 -21.317 -0.039 (0) + [14C]O2[18O]-2 4.709e-22 3.299e-22 -21.327 -21.482 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.380e-06 8.582e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.380e-06 8.582e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.380e-06 8.582e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.139e-06 4.146e-06 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -66.506 -66.506 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -69.507 -69.507 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.934 -67.933 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.935 -70.934 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.84 -10.34 -1.50 [13C][18O]2 - [13C]H4(g) -21.64 -24.50 -2.86 [13C]H4 - [13C]O2(g) -3.47 -4.94 -1.47 [13C]O2 - [13C]O[18O](g) -5.85 -7.64 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.45 -21.96 -1.50 [14C][18O]2 - [14C]H4(g) -33.25 -36.11 -2.86 [14C]H4 + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -18.80 -21.66 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] + [14C][18O]2(g) -20.46 -21.96 -1.50 [14C][18O]2 + [14C]H4(g) -30.40 -33.26 -2.86 [14C]H4 [14C]O2(g) -15.09 -16.56 -1.47 [14C]O2 [14C]O[18O](g) -17.47 -19.26 -1.79 [14C]O[18O] - [18O]2(g) -67.22 -69.51 -2.29 [18O]2 + [18O]2(g) -68.64 -70.93 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.01 -1.85 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.15 3.55 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.94 6.25 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.84 0.85 7.69 Ca[13C]O[18O]2 + Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 + Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 Ca[14C][18O]3(s) -21.62 -13.46 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.76 -8.06 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.55 -5.36 8.19 Ca[14C]O3 + Ca[14C]O2[18O](s) -15.77 -8.06 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -13.56 -5.36 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -18.45 -10.76 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -19.70 -22.56 -2.86 CH4 + CH4(g) -16.84 -19.70 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.99 -14.14 -3.15 H2 + H2(g) -10.27 -13.42 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -61.21 -64.11 -2.89 O2 - O[18O](g) -63.91 -66.81 -2.89 O[18O] + O2(g) -62.64 -65.53 -2.89 O2 + O[18O](g) -65.34 -68.23 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12564,43 +12483,43 @@ Calcite added: 0 Solid solution Component Moles Delta moles Mole fract Calcite 5.00e-04 - Calcite 4.91e-04 4.91e-04 9.82e-01 + Calcite 4.91e-04 4.91e-04 9.83e-01 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.69e-06 5.69e-06 1.14e-02 - Ca[13C]O2[18O](s) 3.50e-08 3.50e-08 7.01e-05 - Ca[13C]O[18O]2(s) 7.19e-11 7.19e-11 1.44e-07 - Ca[13C][18O]3(s) 4.92e-14 4.92e-14 9.84e-11 - Ca[14C]O3(s) 1.29e-17 1.29e-17 2.58e-14 - Ca[14C]O2[18O](s) 7.95e-20 7.95e-20 1.59e-16 - Ca[14C]O[18O]2(s) 1.01e-27 1.00e-29 2.02e-24 - Ca[14C][18O]3(s) 1.33e-27 3.32e-28 2.66e-24 + Ca[13C]O3(s) 5.50e-06 5.50e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 1.28e-17 1.28e-17 2.56e-14 + Ca[14C]O2[18O](s) 7.88e-20 7.88e-20 1.58e-16 + Ca[14C]O[18O]2(s) 1.62e-22 1.62e-22 3.24e-19 + Ca[14C][18O]3(s) 1.11e-25 1.10e-25 2.21e-22 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99519e-03 -4.9903 permil - R(13C) 1.15430e-02 32.448 permil - R(14C) 2.60894e-14 2.2187 pmc - R(18O) H2O(l) 1.99519e-03 -4.9918 permil + R(18O) 1.99519e-03 -4.99 permil + R(13C) 1.11595e-02 -1.8535 permil + R(14C) 2.58705e-14 2.2001 pmc + R(18O) H2O(l) 1.99519e-03 -4.9915 permil R(18O) OH- 1.92122e-03 -41.879 permil R(18O) H3O+ 2.04133e-03 18.016 permil - R(13C) CO2(aq) 1.14604e-02 25.059 permil - R(14C) CO2(aq) 2.57170e-14 2.187 pmc + R(13C) CO2(aq) 1.10796e-02 -8.9968 permil + R(14C) CO2(aq) 2.55013e-14 2.1687 pmc R(18O) CO2(aq) 2.07916e-03 36.882 permil - R(18O) HCO3- 1.99519e-03 -4.9918 permil - R(13C) HCO3- 1.15601e-02 33.977 permil - R(14C) HCO3- 2.61664e-14 2.2253 pmc - R(18O) CO3-2 1.99519e-03 -4.9918 permil - R(13C) CO3-2 1.15435e-02 32.493 permil - R(14C) CO3-2 2.60914e-14 2.2189 pmc - R(13C) CH4(aq) 1.14604e-02 25.059 permil - R(14C) CH4(aq) 2.57170e-14 2.187 pmc + R(18O) HCO3- 1.99519e-03 -4.9915 permil + R(13C) HCO3- 1.11760e-02 -0.37517 permil + R(14C) HCO3- 2.59469e-14 2.2066 pmc + R(18O) CO3-2 1.99519e-03 -4.9915 permil + R(13C) CO3-2 1.11600e-02 -1.8097 permil + R(14C) CO3-2 2.58725e-14 2.2003 pmc + R(13C) CH4(aq) 1.10796e-02 -8.9968 permil + R(14C) CH4(aq) 2.55013e-14 2.1687 pmc R(18O) Calcite 2.05263e-03 23.655 permil - R(13C) Calcite 1.15830e-02 36.025 permil - R(14C) Calcite 2.62699e-14 2.234 pmc + R(13C) Calcite 1.11981e-02 1.6047 permil + R(14C) Calcite 2.60498e-14 2.2153 pmc --------------------------------Isotope Alphas--------------------------------- @@ -12611,158 +12530,158 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7428e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6761e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.3101e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 9.1038e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -2.3315e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.0325e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.269 21.282 +Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 5.838e-03 5.821e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.738e-05 6.719e-05 - [14C] 1.523e-16 1.519e-16 + [13C] 6.517e-05 6.498e-05 + [14C] 1.511e-16 1.506e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.827 Adjusted to redox equilibrium + pe = -1.884 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.838e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 47 + Iterations = 53 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.261e-20 - CH4 1.261e-20 1.263e-20 -19.899 -19.899 0.001 (0) -C(4) 5.838e-03 - HCO3- 4.702e-03 4.301e-03 -2.328 -2.366 -0.039 (0) - CO2 9.954e-04 9.971e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.928e-05 9.108e-05 -4.003 -4.041 -0.037 (0) - HCO2[18O]- 9.381e-06 8.582e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.381e-06 8.582e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.381e-06 8.582e-06 -5.028 -5.066 -0.039 (0) - CaCO3 5.458e-06 5.467e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.139e-06 4.146e-06 -5.383 -5.382 0.001 (0) - CO3-2 2.800e-06 1.962e-06 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaCO2[18O] 3.267e-08 3.273e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.712e-08 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-08 1.712e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.712e-08 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.676e-08 1.174e-08 -7.776 -7.930 -0.155 (0) +C(-4) 3.605e-20 + CH4 3.605e-20 3.610e-20 -19.443 -19.442 0.001 (0) +C(4) 5.840e-03 + HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.928e-05 9.108e-05 -4.003 -4.041 -0.037 (0) - CaCO3 5.458e-06 5.467e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.148e-06 1.053e-06 -5.940 -5.978 -0.037 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - Ca[13C]O3 6.301e-08 6.311e-08 -7.201 -7.200 0.001 (0) - CaCO2[18O] 3.267e-08 3.273e-08 -7.486 -7.485 0.001 (0) -H(0) 6.729e-14 - H2 3.365e-14 3.370e-14 -13.473 -13.472 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.094e-08 6.104e-08 -7.215 -7.214 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 8.749e-14 + H2 4.375e-14 4.382e-14 -13.359 -13.358 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.438 -65.437 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.837 -67.836 0.001 (0) -[13C](-4) 1.445e-22 - [13C]H4 1.445e-22 1.447e-22 -21.840 -21.839 0.001 (0) -[13C](4) 6.738e-05 - H[13C]O3- 5.435e-05 4.972e-05 -4.265 -4.303 -0.039 (0) - [13C]O2 1.141e-05 1.143e-05 -4.943 -4.942 0.001 (0) - CaH[13C]O3+ 1.148e-06 1.053e-06 -5.940 -5.978 -0.037 (0) - H[13C]O2[18O]- 1.084e-07 9.921e-08 -6.965 -7.003 -0.039 (0) - H[13C]O[18O]O- 1.084e-07 9.921e-08 -6.965 -7.003 -0.039 (0) - H[13C][18O]O2- 1.084e-07 9.921e-08 -6.965 -7.003 -0.039 (0) - Ca[13C]O3 6.301e-08 6.311e-08 -7.201 -7.200 0.001 (0) - [13C]O[18O] 4.744e-08 4.752e-08 -7.324 -7.323 0.001 (0) - [13C]O3-2 3.232e-08 2.264e-08 -7.490 -7.645 -0.155 (0) - CaH[13C][18O]O2+ 2.290e-09 2.101e-09 -8.640 -8.678 -0.037 (0) - CaH[13C]O2[18O]+ 2.290e-09 2.101e-09 -8.640 -8.678 -0.037 (0) - CaH[13C]O[18O]O+ 2.290e-09 2.101e-09 -8.640 -8.678 -0.037 (0) - Ca[13C]O2[18O] 3.771e-10 3.778e-10 -9.423 -9.423 0.001 (0) - H[13C][18O]O[18O]- 2.164e-10 1.979e-10 -9.665 -9.703 -0.039 (0) - H[13C]O[18O]2- 2.164e-10 1.979e-10 -9.665 -9.703 -0.039 (0) - H[13C][18O]2O- 2.164e-10 1.979e-10 -9.665 -9.703 -0.039 (0) - [13C]O2[18O]-2 1.935e-10 1.355e-10 -9.713 -9.868 -0.155 (0) -[14C](-4) 3.242e-34 - [14C]H4 3.242e-34 3.248e-34 -33.489 -33.488 0.001 (0) -[14C](4) 1.523e-16 - H[14C]O3- 1.230e-16 1.126e-16 -15.910 -15.949 -0.039 (0) - [14C]O2 2.560e-17 2.564e-17 -16.592 -16.591 0.001 (0) - CaH[14C]O3+ 2.598e-18 2.383e-18 -17.585 -17.623 -0.037 (0) - H[14C][18O]O2- 2.455e-19 2.246e-19 -18.610 -18.649 -0.039 (0) - H[14C]O2[18O]- 2.455e-19 2.246e-19 -18.610 -18.649 -0.039 (0) - H[14C]O[18O]O- 2.455e-19 2.246e-19 -18.610 -18.649 -0.039 (0) - Ca[14C]O3 1.424e-19 1.427e-19 -18.846 -18.846 0.001 (0) - [14C]O[18O] 1.064e-19 1.066e-19 -18.973 -18.972 0.001 (0) - [14C]O3-2 7.306e-20 5.118e-20 -19.136 -19.291 -0.155 (0) - CaH[14C]O[18O]O+ 5.183e-21 4.755e-21 -20.285 -20.323 -0.037 (0) - CaH[14C]O2[18O]+ 5.183e-21 4.755e-21 -20.285 -20.323 -0.037 (0) - CaH[14C][18O]O2+ 5.183e-21 4.755e-21 -20.285 -20.323 -0.037 (0) - Ca[14C]O2[18O] 8.525e-22 8.539e-22 -21.069 -21.069 0.001 (0) - H[14C][18O]O[18O]- 4.897e-22 4.480e-22 -21.310 -21.349 -0.039 (0) - H[14C][18O]2O- 4.897e-22 4.480e-22 -21.310 -21.349 -0.039 (0) - H[14C]O[18O]2- 4.897e-22 4.480e-22 -21.310 -21.349 -0.039 (0) - [14C]O2[18O]-2 4.373e-22 3.063e-22 -21.359 -21.514 -0.155 (0) + O2 0.000e+00 0.000e+00 -65.666 -65.665 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.065 -68.064 0.001 (0) +[13C](-4) 3.994e-22 + [13C]H4 3.994e-22 4.000e-22 -21.399 -21.398 0.001 (0) +[13C](4) 6.517e-05 + H[13C]O3- 5.257e-05 4.809e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.094e-08 6.104e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.588e-08 4.595e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.126e-08 2.190e-08 -7.505 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 9.192e-34 + [14C]H4 9.192e-34 9.207e-34 -33.037 -33.036 0.001 (0) +[14C](4) 1.511e-16 + H[14C]O3- 1.220e-16 1.117e-16 -15.913 -15.952 -0.039 (0) + [14C]O2 2.539e-17 2.544e-17 -16.595 -16.595 0.001 (0) + CaH[14C]O3+ 2.577e-18 2.364e-18 -17.589 -17.626 -0.037 (0) + H[14C]O2[18O]- 2.435e-19 2.228e-19 -18.614 -18.652 -0.039 (0) + H[14C]O[18O]O- 2.435e-19 2.228e-19 -18.614 -18.652 -0.039 (0) + H[14C][18O]O2- 2.435e-19 2.228e-19 -18.614 -18.652 -0.039 (0) + Ca[14C]O3 1.413e-19 1.415e-19 -18.850 -18.849 0.001 (0) + [14C]O[18O] 1.056e-19 1.058e-19 -18.976 -18.976 0.001 (0) + [14C]O3-2 7.247e-20 5.077e-20 -19.140 -19.294 -0.155 (0) + CaH[14C]O2[18O]+ 5.142e-21 4.717e-21 -20.289 -20.326 -0.037 (0) + CaH[14C]O[18O]O+ 5.142e-21 4.717e-21 -20.289 -20.326 -0.037 (0) + CaH[14C][18O]O2+ 5.142e-21 4.717e-21 -20.289 -20.326 -0.037 (0) + Ca[14C]O2[18O] 8.456e-22 8.470e-22 -21.073 -21.072 0.001 (0) + H[14C]O[18O]2- 4.858e-22 4.445e-22 -21.314 -21.352 -0.039 (0) + H[14C][18O]2O- 4.858e-22 4.445e-22 -21.314 -21.352 -0.039 (0) + H[14C][18O]O[18O]- 4.858e-22 4.445e-22 -21.314 -21.352 -0.039 (0) + [14C]O2[18O]-2 4.338e-22 3.039e-22 -21.363 -21.517 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.381e-06 8.582e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.381e-06 8.582e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.381e-06 8.582e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.139e-06 4.146e-06 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.837 -67.836 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.838 -70.837 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.065 -68.064 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.066 -71.065 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.84 -10.34 -1.50 [13C][18O]2 - [13C]H4(g) -18.98 -21.84 -2.86 [13C]H4 - [13C]O2(g) -3.47 -4.94 -1.47 [13C]O2 - [13C]O[18O](g) -5.86 -7.64 -1.79 [13C]O[18O] + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -18.54 -21.40 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.49 -21.99 -1.50 [14C][18O]2 - [14C]H4(g) -30.63 -33.49 -2.86 [14C]H4 - [14C]O2(g) -15.12 -16.59 -1.47 [14C]O2 - [14C]O[18O](g) -17.50 -19.29 -1.79 [14C]O[18O] - [18O]2(g) -68.55 -70.84 -2.29 [18O]2 + [14C]H4(g) -30.18 -33.04 -2.86 [14C]H4 + [14C]O2(g) -15.13 -16.59 -1.47 [14C]O2 + [14C]O[18O](g) -17.51 -19.29 -1.79 [14C]O[18O] + [18O]2(g) -68.77 -71.07 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.01 -1.85 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.15 3.55 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.94 6.25 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.84 0.85 7.69 Ca[13C]O[18O]2 + Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 + Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 Ca[14C][18O]3(s) -21.65 -13.50 8.15 Ca[14C][18O]3 Ca[14C]O2[18O](s) -15.80 -8.10 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -13.59 -5.40 8.19 Ca[14C]O3 @@ -12771,14 +12690,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.04 -19.90 -2.86 CH4 + CH4(g) -16.58 -19.44 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.32 -13.47 -3.15 H2 + H2(g) -10.21 -13.36 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.54 -65.44 -2.89 O2 - O[18O](g) -65.24 -68.14 -2.89 O[18O] + O2(g) -62.77 -65.67 -2.89 O2 + O[18O](g) -65.47 -68.37 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12844,39 +12763,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.68e-06 5.68e-06 1.14e-02 - Ca[13C]O2[18O](s) 3.49e-08 3.49e-08 6.99e-05 - Ca[13C]O[18O]2(s) 7.17e-11 7.17e-11 1.43e-07 - Ca[13C][18O]3(s) 4.91e-14 4.91e-14 9.82e-11 - Ca[14C]O3(s) 1.19e-17 1.19e-17 2.38e-14 - Ca[14C]O2[18O](s) 7.32e-20 7.32e-20 1.46e-16 - Ca[14C]O[18O]2(s) 1.01e-27 1.01e-29 2.02e-24 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C]O3(s) 5.50e-06 5.50e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 1.18e-17 1.18e-17 2.36e-14 + Ca[14C]O2[18O](s) 7.26e-20 7.26e-20 1.45e-16 + Ca[14C]O[18O]2(s) 1.49e-22 1.49e-22 2.98e-19 + Ca[14C][18O]3(s) 1.02e-25 1.01e-25 2.04e-22 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99519e-03 -4.9902 permil - R(13C) 1.15133e-02 29.79 permil - R(14C) 2.40336e-14 2.0439 pmc - R(18O) H2O(l) 1.99519e-03 -4.9917 permil + R(18O) 1.99519e-03 -4.9898 permil + R(13C) 1.11599e-02 -1.8169 permil + R(14C) 2.38327e-14 2.0268 pmc + R(18O) H2O(l) 1.99519e-03 -4.9914 permil R(18O) OH- 1.92122e-03 -41.879 permil - R(18O) H3O+ 2.04133e-03 18.016 permil - R(13C) CO2(aq) 1.14309e-02 22.42 permil - R(14C) CO2(aq) 2.36906e-14 2.0147 pmc - R(18O) CO2(aq) 2.07916e-03 36.882 permil - R(18O) HCO3- 1.99519e-03 -4.9917 permil - R(13C) HCO3- 1.15303e-02 31.315 permil - R(14C) HCO3- 2.41046e-14 2.0499 pmc - R(18O) CO3-2 1.99519e-03 -4.9917 permil - R(13C) CO3-2 1.15138e-02 29.835 permil - R(14C) CO3-2 2.40354e-14 2.044 pmc - R(13C) CH4(aq) 1.14309e-02 22.42 permil - R(14C) CH4(aq) 2.36906e-14 2.0147 pmc + R(18O) H3O+ 2.04133e-03 18.017 permil + R(13C) CO2(aq) 1.10800e-02 -8.9605 permil + R(14C) CO2(aq) 2.34925e-14 1.9979 pmc + R(18O) CO2(aq) 2.07916e-03 36.883 permil + R(18O) HCO3- 1.99519e-03 -4.9914 permil + R(13C) HCO3- 1.11764e-02 -0.33856 permil + R(14C) HCO3- 2.39030e-14 2.0328 pmc + R(18O) CO3-2 1.99519e-03 -4.9914 permil + R(13C) CO3-2 1.11604e-02 -1.7732 permil + R(14C) CO3-2 2.38345e-14 2.0269 pmc + R(13C) CH4(aq) 1.10800e-02 -8.9605 permil + R(14C) CH4(aq) 2.34925e-14 1.9979 pmc R(18O) Calcite 2.05263e-03 23.655 permil - R(13C) Calcite 1.15531e-02 33.358 permil - R(14C) Calcite 2.41998e-14 2.058 pmc + R(13C) Calcite 1.11986e-02 1.6414 permil + R(14C) Calcite 2.39978e-14 2.0408 pmc --------------------------------Isotope Alphas--------------------------------- @@ -12887,174 +12806,174 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6324e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6332e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -6.1062e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 6.4393e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 6.8834e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 9.1038e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.269 21.282 +Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 5.838e-03 5.821e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.721e-05 6.702e-05 - [14C] 1.403e-16 1.399e-16 + [13C] 6.517e-05 6.498e-05 + [14C] 1.392e-16 1.388e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.927 Adjusted to redox equilibrium + pe = -1.808 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.838e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.451e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 47 + Iterations = 91 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 8.041e-20 - CH4 8.041e-20 8.055e-20 -19.095 -19.094 0.001 (0) -C(4) 5.838e-03 - HCO3- 4.702e-03 4.302e-03 -2.328 -2.366 -0.039 (0) - CO2 9.954e-04 9.971e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.929e-05 9.108e-05 -4.003 -4.041 -0.037 (0) - HCO[18O]O- 9.381e-06 8.582e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.381e-06 8.582e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.381e-06 8.582e-06 -5.028 -5.066 -0.039 (0) - CaCO3 5.459e-06 5.468e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.139e-06 4.146e-06 -5.383 -5.382 0.001 (0) - CO3-2 2.800e-06 1.962e-06 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaCO2[18O] 3.267e-08 3.273e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.712e-08 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-08 1.712e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.712e-08 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.676e-08 1.174e-08 -7.776 -7.930 -0.155 (0) +C(-4) 9.033e-21 + CH4 9.033e-21 9.048e-21 -20.044 -20.043 0.001 (0) +C(4) 5.840e-03 + HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.929e-05 9.108e-05 -4.003 -4.041 -0.037 (0) - CaCO3 5.459e-06 5.468e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.145e-06 1.050e-06 -5.941 -5.979 -0.037 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - Ca[13C]O3 6.285e-08 6.295e-08 -7.202 -7.201 0.001 (0) - CaCO2[18O] 3.267e-08 3.273e-08 -7.486 -7.485 0.001 (0) -H(0) 1.069e-13 - H2 5.347e-14 5.356e-14 -13.272 -13.271 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.094e-08 6.104e-08 -7.215 -7.214 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 6.190e-14 + H2 3.095e-14 3.100e-14 -13.509 -13.509 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.840 -65.839 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.239 -68.238 0.001 (0) -[13C](-4) 9.192e-22 - [13C]H4 9.192e-22 9.207e-22 -21.037 -21.036 0.001 (0) -[13C](4) 6.721e-05 - H[13C]O3- 5.421e-05 4.960e-05 -4.266 -4.305 -0.039 (0) - [13C]O2 1.138e-05 1.140e-05 -4.944 -4.943 0.001 (0) - CaH[13C]O3+ 1.145e-06 1.050e-06 -5.941 -5.979 -0.037 (0) - H[13C]O[18O]O- 1.082e-07 9.896e-08 -6.966 -7.005 -0.039 (0) - H[13C][18O]O2- 1.082e-07 9.896e-08 -6.966 -7.005 -0.039 (0) - H[13C]O2[18O]- 1.082e-07 9.896e-08 -6.966 -7.005 -0.039 (0) - Ca[13C]O3 6.285e-08 6.295e-08 -7.202 -7.201 0.001 (0) - [13C]O[18O] 4.732e-08 4.739e-08 -7.325 -7.324 0.001 (0) - [13C]O3-2 3.224e-08 2.259e-08 -7.492 -7.646 -0.155 (0) - CaH[13C]O2[18O]+ 2.284e-09 2.095e-09 -8.641 -8.679 -0.037 (0) - CaH[13C]O[18O]O+ 2.284e-09 2.095e-09 -8.641 -8.679 -0.037 (0) - CaH[13C][18O]O2+ 2.284e-09 2.095e-09 -8.641 -8.679 -0.037 (0) - Ca[13C]O2[18O] 3.762e-10 3.768e-10 -9.425 -9.424 0.001 (0) - H[13C][18O]O[18O]- 2.158e-10 1.974e-10 -9.666 -9.705 -0.039 (0) - H[13C]O[18O]2- 2.158e-10 1.974e-10 -9.666 -9.705 -0.039 (0) - H[13C][18O]2O- 2.158e-10 1.974e-10 -9.666 -9.705 -0.039 (0) - [13C]O2[18O]-2 1.930e-10 1.352e-10 -9.714 -9.869 -0.155 (0) -[14C](-4) 1.905e-33 - [14C]H4 1.905e-33 1.908e-33 -32.720 -32.719 0.001 (0) -[14C](4) 1.403e-16 - H[14C]O3- 1.133e-16 1.037e-16 -15.946 -15.984 -0.039 (0) - [14C]O2 2.358e-17 2.362e-17 -16.627 -16.627 0.001 (0) - CaH[14C]O3+ 2.393e-18 2.195e-18 -17.621 -17.658 -0.037 (0) - H[14C][18O]O2- 2.261e-19 2.069e-19 -18.646 -18.684 -0.039 (0) - H[14C]O2[18O]- 2.261e-19 2.069e-19 -18.646 -18.684 -0.039 (0) - H[14C]O[18O]O- 2.261e-19 2.069e-19 -18.646 -18.684 -0.039 (0) - Ca[14C]O3 1.312e-19 1.314e-19 -18.882 -18.881 0.001 (0) - [14C]O[18O] 9.806e-20 9.823e-20 -19.008 -19.008 0.001 (0) - [14C]O3-2 6.730e-20 4.715e-20 -19.172 -19.327 -0.155 (0) - CaH[14C]O[18O]O+ 4.775e-21 4.380e-21 -20.321 -20.358 -0.037 (0) - CaH[14C]O2[18O]+ 4.775e-21 4.380e-21 -20.321 -20.358 -0.037 (0) - CaH[14C][18O]O2+ 4.775e-21 4.380e-21 -20.321 -20.358 -0.037 (0) - Ca[14C]O2[18O] 7.853e-22 7.866e-22 -21.105 -21.104 0.001 (0) - H[14C][18O]2O- 4.512e-22 4.128e-22 -21.346 -21.384 -0.039 (0) - H[14C]O[18O]2- 4.512e-22 4.128e-22 -21.346 -21.384 -0.039 (0) - H[14C][18O]O[18O]- 4.512e-22 4.128e-22 -21.346 -21.384 -0.039 (0) - [14C]O2[18O]-2 4.028e-22 2.822e-22 -21.395 -21.549 -0.155 (0) + O2 0.000e+00 0.000e+00 -65.365 -65.365 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.764 -67.764 0.001 (0) +[13C](-4) 1.001e-22 + [13C]H4 1.001e-22 1.002e-22 -22.000 -21.999 0.001 (0) +[13C](4) 6.517e-05 + H[13C]O3- 5.257e-05 4.809e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.094e-08 6.104e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.588e-08 4.596e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.126e-08 2.190e-08 -7.505 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 2.122e-34 + [14C]H4 2.122e-34 2.126e-34 -33.673 -33.673 0.001 (0) +[14C](4) 1.392e-16 + H[14C]O3- 1.124e-16 1.029e-16 -15.949 -15.988 -0.039 (0) + [14C]O2 2.339e-17 2.343e-17 -16.631 -16.630 0.001 (0) + CaH[14C]O3+ 2.374e-18 2.178e-18 -17.625 -17.662 -0.037 (0) + H[14C]O2[18O]- 2.243e-19 2.052e-19 -18.649 -18.688 -0.039 (0) + H[14C]O[18O]O- 2.243e-19 2.052e-19 -18.649 -18.688 -0.039 (0) + H[14C][18O]O2- 2.243e-19 2.052e-19 -18.649 -18.688 -0.039 (0) + Ca[14C]O3 1.301e-19 1.304e-19 -18.886 -18.885 0.001 (0) + [14C]O[18O] 9.728e-20 9.744e-20 -19.012 -19.011 0.001 (0) + [14C]O3-2 6.676e-20 4.677e-20 -19.175 -19.330 -0.155 (0) + CaH[14C]O2[18O]+ 4.737e-21 4.345e-21 -20.325 -20.362 -0.037 (0) + CaH[14C]O[18O]O+ 4.737e-21 4.345e-21 -20.325 -20.362 -0.037 (0) + CaH[14C][18O]O2+ 4.737e-21 4.345e-21 -20.325 -20.362 -0.037 (0) + Ca[14C]O2[18O] 7.790e-22 7.803e-22 -21.108 -21.108 0.001 (0) + H[14C]O[18O]2- 4.475e-22 4.094e-22 -21.349 -21.388 -0.039 (0) + H[14C][18O]2O- 4.475e-22 4.094e-22 -21.349 -21.388 -0.039 (0) + H[14C][18O]O[18O]- 4.475e-22 4.094e-22 -21.349 -21.388 -0.039 (0) + [14C]O2[18O]-2 3.996e-22 2.800e-22 -21.398 -21.553 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.381e-06 8.582e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.381e-06 8.582e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.381e-06 8.582e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.139e-06 4.146e-06 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.239 -68.238 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.240 -71.239 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.764 -67.764 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.765 -70.765 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.84 -10.34 -1.50 [13C][18O]2 - [13C]H4(g) -18.18 -21.04 -2.86 [13C]H4 - [13C]O2(g) -3.47 -4.94 -1.47 [13C]O2 - [13C]O[18O](g) -5.86 -7.64 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.52 -22.03 -1.50 [14C][18O]2 - [14C]H4(g) -29.86 -32.72 -2.86 [14C]H4 + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -19.14 -22.00 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] + [14C][18O]2(g) -20.53 -22.03 -1.50 [14C][18O]2 + [14C]H4(g) -30.81 -33.67 -2.86 [14C]H4 [14C]O2(g) -15.16 -16.63 -1.47 [14C]O2 [14C]O[18O](g) -17.54 -19.33 -1.79 [14C]O[18O] - [18O]2(g) -68.95 -71.24 -2.29 [18O]2 + [18O]2(g) -68.47 -70.76 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.01 -1.85 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.16 3.55 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.94 6.25 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.84 0.85 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.69 -13.53 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.83 -8.13 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.62 -5.43 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.52 -10.83 7.69 Ca[14C]O[18O]2 + Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 + Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -21.69 -13.54 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -15.84 -8.14 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -13.63 -5.44 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -18.53 -10.84 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.23 -19.09 -2.86 CH4 + CH4(g) -17.18 -20.04 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.12 -13.27 -3.15 H2 + H2(g) -10.36 -13.51 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.95 -65.84 -2.89 O2 - O[18O](g) -65.65 -68.54 -2.89 O[18O] + O2(g) -62.47 -65.36 -2.89 O2 + O[18O](g) -65.17 -68.06 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13078,6 +12997,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 53. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -13120,39 +13045,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.66e-06 5.66e-06 1.13e-02 - Ca[13C]O2[18O](s) 3.49e-08 3.49e-08 6.97e-05 - Ca[13C]O[18O]2(s) 7.16e-11 7.16e-11 1.43e-07 - Ca[13C][18O]3(s) 4.90e-14 4.90e-14 9.79e-11 - Ca[14C]O3(s) 1.10e-17 1.10e-17 2.19e-14 - Ca[14C]O2[18O](s) 6.74e-20 6.74e-20 1.35e-16 - Ca[14C]O[18O]2(s) 1.38e-22 1.38e-22 2.77e-19 - Ca[14C][18O]3(s) 1.00e-27 0.00e+00 2.00e-24 + Ca[13C]O3(s) 5.50e-06 5.50e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 1.09e-17 1.09e-17 2.17e-14 + Ca[14C]O2[18O](s) 6.69e-20 6.69e-20 1.34e-16 + Ca[14C]O[18O]2(s) 1.37e-22 1.37e-22 2.75e-19 + Ca[14C][18O]3(s) 9.40e-26 9.30e-26 1.88e-22 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99519e-03 -4.99 permil - R(13C) 1.14859e-02 27.341 permil - R(14C) 2.21398e-14 1.8828 pmc - R(18O) H2O(l) 1.99519e-03 -4.9915 permil - R(18O) OH- 1.92122e-03 -41.879 permil - R(18O) H3O+ 2.04133e-03 18.016 permil - R(13C) CO2(aq) 1.14037e-02 19.989 permil - R(14C) CO2(aq) 2.18238e-14 1.8559 pmc - R(18O) CO2(aq) 2.07916e-03 36.882 permil - R(18O) HCO3- 1.99519e-03 -4.9915 permil - R(13C) HCO3- 1.15029e-02 28.863 permil - R(14C) HCO3- 2.22052e-14 1.8884 pmc - R(18O) CO3-2 1.99519e-03 -4.9915 permil - R(13C) CO3-2 1.14864e-02 27.386 permil - R(14C) CO3-2 2.21415e-14 1.883 pmc - R(13C) CH4(aq) 1.14037e-02 19.989 permil - R(14C) CH4(aq) 2.18238e-14 1.8559 pmc + R(18O) 1.99519e-03 -4.9897 permil + R(13C) 1.11603e-02 -1.7832 permil + R(14C) 2.19553e-14 1.8671 pmc + R(18O) H2O(l) 1.99519e-03 -4.9912 permil + R(18O) OH- 1.92123e-03 -41.879 permil + R(18O) H3O+ 2.04133e-03 18.017 permil + R(13C) CO2(aq) 1.10804e-02 -8.927 permil + R(14C) CO2(aq) 2.16420e-14 1.8405 pmc + R(18O) CO2(aq) 2.07916e-03 36.883 permil + R(18O) HCO3- 1.99519e-03 -4.9912 permil + R(13C) HCO3- 1.11768e-02 -0.30483 permil + R(14C) HCO3- 2.20202e-14 1.8726 pmc + R(18O) CO3-2 1.99519e-03 -4.9912 permil + R(13C) CO3-2 1.11608e-02 -1.7395 permil + R(14C) CO3-2 2.19570e-14 1.8673 pmc + R(13C) CH4(aq) 1.10804e-02 -8.927 permil + R(14C) CH4(aq) 2.16420e-14 1.8405 pmc R(18O) Calcite 2.05263e-03 23.655 permil - R(13C) Calcite 1.15257e-02 30.901 permil - R(14C) Calcite 2.22932e-14 1.8959 pmc + R(13C) Calcite 1.11989e-02 1.6752 permil + R(14C) Calcite 2.21075e-14 1.8801 pmc --------------------------------Isotope Alphas--------------------------------- @@ -13163,14 +13088,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.8842e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.697e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5992e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -8.3267e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.8541e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -4.996e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.1102e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -13179,143 +13104,143 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 Elements Molality Moles - C 5.838e-03 5.821e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.705e-05 6.686e-05 - [14C] 1.293e-16 1.289e-16 + [13C] 6.517e-05 6.498e-05 + [14C] 1.282e-16 1.278e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.844 Adjusted to redox equilibrium + pe = -1.821 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.838e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.451e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 53 + Iterations = 102 (203 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.748e-20 - CH4 1.748e-20 1.751e-20 -19.757 -19.757 0.001 (0) -C(4) 5.838e-03 - HCO3- 4.702e-03 4.302e-03 -2.328 -2.366 -0.039 (0) - CO2 9.955e-04 9.971e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.929e-05 9.108e-05 -4.003 -4.041 -0.037 (0) - HC[18O]O2- 9.381e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.381e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.381e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - CaCO3 5.459e-06 5.468e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.139e-06 4.146e-06 -5.383 -5.382 0.001 (0) - CO3-2 2.800e-06 1.962e-06 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaCO2[18O] 3.267e-08 3.273e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.712e-08 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-08 1.712e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.712e-08 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.676e-08 1.174e-08 -7.776 -7.930 -0.155 (0) +C(-4) 1.138e-20 + CH4 1.138e-20 1.140e-20 -19.944 -19.943 0.001 (0) +C(4) 5.840e-03 + HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.929e-05 9.108e-05 -4.003 -4.041 -0.037 (0) - CaCO3 5.459e-06 5.468e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.142e-06 1.048e-06 -5.942 -5.980 -0.037 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - Ca[13C]O3 6.270e-08 6.280e-08 -7.203 -7.202 0.001 (0) - CaCO2[18O] 3.267e-08 3.273e-08 -7.486 -7.485 0.001 (0) -H(0) 7.302e-14 - H2 3.651e-14 3.657e-14 -13.438 -13.437 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.094e-08 6.104e-08 -7.215 -7.214 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 6.559e-14 + H2 3.279e-14 3.285e-14 -13.484 -13.484 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.509 -65.508 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.908 -67.907 0.001 (0) -[13C](-4) 1.994e-22 - [13C]H4 1.994e-22 1.997e-22 -21.700 -21.700 0.001 (0) -[13C](4) 6.705e-05 - H[13C]O3- 5.409e-05 4.948e-05 -4.267 -4.306 -0.039 (0) - [13C]O2 1.135e-05 1.137e-05 -4.945 -4.944 0.001 (0) - CaH[13C]O3+ 1.142e-06 1.048e-06 -5.942 -5.980 -0.037 (0) - H[13C][18O]O2- 1.079e-07 9.872e-08 -6.967 -7.006 -0.039 (0) - H[13C]O2[18O]- 1.079e-07 9.872e-08 -6.967 -7.006 -0.039 (0) - H[13C]O[18O]O- 1.079e-07 9.872e-08 -6.967 -7.006 -0.039 (0) - Ca[13C]O3 6.270e-08 6.280e-08 -7.203 -7.202 0.001 (0) - [13C]O[18O] 4.721e-08 4.728e-08 -7.326 -7.325 0.001 (0) - [13C]O3-2 3.216e-08 2.253e-08 -7.493 -7.647 -0.155 (0) - CaH[13C]O[18O]O+ 2.279e-09 2.090e-09 -8.642 -8.680 -0.037 (0) - CaH[13C][18O]O2+ 2.279e-09 2.090e-09 -8.642 -8.680 -0.037 (0) - CaH[13C]O2[18O]+ 2.279e-09 2.090e-09 -8.642 -8.680 -0.037 (0) - Ca[13C]O2[18O] 3.753e-10 3.759e-10 -9.426 -9.425 0.001 (0) - H[13C][18O]O[18O]- 2.153e-10 1.970e-10 -9.667 -9.706 -0.039 (0) - H[13C]O[18O]2- 2.153e-10 1.970e-10 -9.667 -9.706 -0.039 (0) - H[13C][18O]2O- 2.153e-10 1.970e-10 -9.667 -9.706 -0.039 (0) - [13C]O2[18O]-2 1.925e-10 1.349e-10 -9.716 -9.870 -0.155 (0) -[14C](-4) 3.815e-34 - [14C]H4 3.815e-34 3.822e-34 -33.418 -33.418 0.001 (0) -[14C](4) 1.293e-16 - H[14C]O3- 1.044e-16 9.552e-17 -15.981 -16.020 -0.039 (0) - [14C]O2 2.172e-17 2.176e-17 -16.663 -16.662 0.001 (0) - CaH[14C]O3+ 2.205e-18 2.022e-18 -17.657 -17.694 -0.037 (0) - H[14C][18O]O2- 2.083e-19 1.906e-19 -18.681 -18.720 -0.039 (0) - H[14C]O2[18O]- 2.083e-19 1.906e-19 -18.681 -18.720 -0.039 (0) - H[14C]O[18O]O- 2.083e-19 1.906e-19 -18.681 -18.720 -0.039 (0) - Ca[14C]O3 1.209e-19 1.211e-19 -18.918 -18.917 0.001 (0) - [14C]O[18O] 9.034e-20 9.049e-20 -19.044 -19.043 0.001 (0) - [14C]O3-2 6.200e-20 4.343e-20 -19.208 -19.362 -0.155 (0) - CaH[14C]O[18O]O+ 4.399e-21 4.035e-21 -20.357 -20.394 -0.037 (0) - CaH[14C]O2[18O]+ 4.399e-21 4.035e-21 -20.357 -20.394 -0.037 (0) - CaH[14C][18O]O2+ 4.399e-21 4.035e-21 -20.357 -20.394 -0.037 (0) - Ca[14C]O2[18O] 7.234e-22 7.246e-22 -21.141 -21.140 0.001 (0) - H[14C]O[18O]2- 4.156e-22 3.802e-22 -21.381 -21.420 -0.039 (0) - H[14C][18O]O[18O]- 4.156e-22 3.802e-22 -21.381 -21.420 -0.039 (0) - H[14C][18O]2O- 4.156e-22 3.802e-22 -21.381 -21.420 -0.039 (0) - [14C]O2[18O]-2 3.711e-22 2.600e-22 -21.430 -21.585 -0.155 (0) + O2 0.000e+00 0.000e+00 -65.415 -65.415 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.814 -67.814 0.001 (0) +[13C](-4) 1.261e-22 + [13C]H4 1.261e-22 1.263e-22 -21.899 -21.899 0.001 (0) +[13C](4) 6.517e-05 + H[13C]O3- 5.257e-05 4.809e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.094e-08 6.104e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.588e-08 4.596e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.126e-08 2.190e-08 -7.505 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 2.463e-34 + [14C]H4 2.463e-34 2.467e-34 -33.609 -33.608 0.001 (0) +[14C](4) 1.282e-16 + H[14C]O3- 1.036e-16 9.475e-17 -15.985 -16.023 -0.039 (0) + [14C]O2 2.155e-17 2.159e-17 -16.667 -16.666 0.001 (0) + CaH[14C]O3+ 2.187e-18 2.006e-18 -17.660 -17.698 -0.037 (0) + H[14C]O2[18O]- 2.066e-19 1.891e-19 -18.685 -18.723 -0.039 (0) + H[14C]O[18O]O- 2.066e-19 1.891e-19 -18.685 -18.723 -0.039 (0) + H[14C][18O]O2- 2.066e-19 1.891e-19 -18.685 -18.723 -0.039 (0) + Ca[14C]O3 1.199e-19 1.201e-19 -18.921 -18.920 0.001 (0) + [14C]O[18O] 8.962e-20 8.976e-20 -19.048 -19.047 0.001 (0) + [14C]O3-2 6.150e-20 4.309e-20 -19.211 -19.366 -0.155 (0) + CaH[14C]O2[18O]+ 4.364e-21 4.003e-21 -20.360 -20.398 -0.037 (0) + CaH[14C]O[18O]O+ 4.364e-21 4.003e-21 -20.360 -20.398 -0.037 (0) + CaH[14C][18O]O2+ 4.364e-21 4.003e-21 -20.360 -20.398 -0.037 (0) + Ca[14C]O2[18O] 7.176e-22 7.188e-22 -21.144 -21.143 0.001 (0) + H[14C]O[18O]2- 4.123e-22 3.772e-22 -21.385 -21.423 -0.039 (0) + H[14C][18O]2O- 4.123e-22 3.772e-22 -21.385 -21.423 -0.039 (0) + H[14C][18O]O[18O]- 4.123e-22 3.772e-22 -21.385 -21.423 -0.039 (0) + [14C]O2[18O]-2 3.681e-22 2.579e-22 -21.434 -21.589 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.381e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.381e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.381e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.139e-06 4.146e-06 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.908 -67.907 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.909 -70.908 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.814 -67.814 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.815 -70.815 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.84 -10.34 -1.50 [13C][18O]2 - [13C]H4(g) -18.84 -21.70 -2.86 [13C]H4 - [13C]O2(g) -3.48 -4.94 -1.47 [13C]O2 - [13C]O[18O](g) -5.86 -7.64 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.56 -22.06 -1.50 [14C][18O]2 - [14C]H4(g) -30.56 -33.42 -2.86 [14C]H4 - [14C]O2(g) -15.19 -16.66 -1.47 [14C]O2 - [14C]O[18O](g) -17.58 -19.36 -1.79 [14C]O[18O] - [18O]2(g) -68.62 -70.91 -2.29 [18O]2 + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -19.04 -21.90 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] + [14C][18O]2(g) -20.56 -22.07 -1.50 [14C][18O]2 + [14C]H4(g) -30.75 -33.61 -2.86 [14C]H4 + [14C]O2(g) -15.20 -16.67 -1.47 [14C]O2 + [14C]O[18O](g) -17.58 -19.37 -1.79 [14C]O[18O] + [18O]2(g) -68.52 -70.81 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.01 -1.85 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.16 3.55 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.95 6.25 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.84 0.85 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.72 -13.57 8.15 Ca[14C][18O]3 + Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 + Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -21.73 -13.57 8.15 Ca[14C][18O]3 Ca[14C]O2[18O](s) -15.87 -8.17 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -13.66 -5.47 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -18.56 -10.87 7.69 Ca[14C]O[18O]2 @@ -13323,14 +13248,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.90 -19.76 -2.86 CH4 + CH4(g) -17.08 -19.94 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.29 -13.44 -3.15 H2 + H2(g) -10.33 -13.48 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.62 -65.51 -2.89 O2 - O[18O](g) -65.32 -68.21 -2.89 O[18O] + O2(g) -62.52 -65.41 -2.89 O2 + O[18O](g) -65.22 -68.11 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13354,12 +13279,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 54. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -13402,39 +13321,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.65e-06 5.65e-06 1.13e-02 - Ca[13C]O2[18O](s) 3.48e-08 3.48e-08 6.96e-05 - Ca[13C]O[18O]2(s) 7.14e-11 7.14e-11 1.43e-07 - Ca[13C][18O]3(s) 4.89e-14 4.89e-14 9.77e-11 - Ca[14C]O3(s) 1.01e-17 1.01e-17 2.02e-14 - Ca[14C]O2[18O](s) 6.21e-20 6.21e-20 1.24e-16 - Ca[14C]O[18O]2(s) 1.01e-27 9.09e-30 2.02e-24 - Ca[14C][18O]3(s) 1.00e-27 0.00e+00 2.00e-24 + Ca[13C]O3(s) 5.50e-06 5.50e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 1.00e-17 1.00e-17 2.00e-14 + Ca[14C]O2[18O](s) 6.16e-20 6.16e-20 1.23e-16 + Ca[14C]O[18O]2(s) 1.27e-22 1.27e-22 2.53e-19 + Ca[14C][18O]3(s) 8.66e-26 8.56e-26 1.73e-22 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99519e-03 -4.9899 permil - R(13C) 1.14607e-02 25.085 permil - R(14C) 2.03953e-14 1.7345 pmc - R(18O) H2O(l) 1.99519e-03 -4.9914 permil - R(18O) OH- 1.92122e-03 -41.879 permil - R(18O) H3O+ 2.04133e-03 18.016 permil - R(13C) CO2(aq) 1.13786e-02 17.749 permil - R(14C) CO2(aq) 2.01042e-14 1.7097 pmc + R(18O) 1.99519e-03 -4.9896 permil + R(13C) 1.11606e-02 -1.7522 permil + R(14C) 2.02258e-14 1.72 pmc + R(18O) H2O(l) 1.99519e-03 -4.9911 permil + R(18O) OH- 1.92123e-03 -41.878 permil + R(18O) H3O+ 2.04133e-03 18.017 permil + R(13C) CO2(aq) 1.10807e-02 -8.8962 permil + R(14C) CO2(aq) 1.99372e-14 1.6955 pmc R(18O) CO2(aq) 2.07916e-03 36.883 permil - R(18O) HCO3- 1.99519e-03 -4.9914 permil - R(13C) HCO3- 1.14776e-02 26.603 permil - R(14C) HCO3- 2.04556e-14 1.7396 pmc - R(18O) CO3-2 1.99519e-03 -4.9914 permil - R(13C) CO3-2 1.14612e-02 25.13 permil - R(14C) CO3-2 2.03969e-14 1.7346 pmc - R(13C) CH4(aq) 1.13786e-02 17.749 permil - R(14C) CH4(aq) 2.01042e-14 1.7097 pmc + R(18O) HCO3- 1.99519e-03 -4.9911 permil + R(13C) HCO3- 1.11771e-02 -0.27374 permil + R(14C) HCO3- 2.02856e-14 1.7251 pmc + R(18O) CO3-2 1.99519e-03 -4.9911 permil + R(13C) CO3-2 1.11611e-02 -1.7084 permil + R(14C) CO3-2 2.02274e-14 1.7202 pmc + R(13C) CH4(aq) 1.10807e-02 -8.8962 permil + R(14C) CH4(aq) 1.99372e-14 1.6955 pmc R(18O) Calcite 2.05263e-03 23.655 permil - R(13C) Calcite 1.15004e-02 28.636 permil - R(14C) Calcite 2.05364e-14 1.7465 pmc + R(13C) Calcite 1.11993e-02 1.7064 permil + R(14C) Calcite 2.03660e-14 1.732 pmc --------------------------------Isotope Alphas--------------------------------- @@ -13445,174 +13364,174 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5068e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7167e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -2.1205e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.3212e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 8.8818e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.2212e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.269 21.282 +Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 5.838e-03 5.821e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.691e-05 6.671e-05 - [14C] 1.191e-16 1.187e-16 + [13C] 6.518e-05 6.499e-05 + [14C] 1.181e-16 1.178e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.239 Adjusted to redox equilibrium + pe = -1.862 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.838e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.451e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 114 (215 overall) + Iterations = 98 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.503e-25 - CH4 2.503e-25 2.507e-25 -24.602 -24.601 0.001 (0) -C(4) 5.838e-03 - HCO3- 4.702e-03 4.302e-03 -2.328 -2.366 -0.039 (0) - CO2 9.955e-04 9.971e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.929e-05 9.108e-05 -4.003 -4.041 -0.037 (0) - HCO2[18O]- 9.381e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.381e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.381e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - CaCO3 5.459e-06 5.468e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.140e-06 4.146e-06 -5.383 -5.382 0.001 (0) - CO3-2 2.800e-06 1.962e-06 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaCO2[18O] 3.267e-08 3.273e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.712e-08 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-08 1.712e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.712e-08 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.676e-08 1.174e-08 -7.776 -7.930 -0.155 (0) +C(-4) 2.418e-20 + CH4 2.418e-20 2.422e-20 -19.617 -19.616 0.001 (0) +C(4) 5.840e-03 + HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.929e-05 9.108e-05 -4.003 -4.041 -0.037 (0) - CaCO3 5.459e-06 5.468e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.140e-06 1.045e-06 -5.943 -5.981 -0.037 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - Ca[13C]O3 6.256e-08 6.267e-08 -7.204 -7.203 0.001 (0) - CaCO2[18O] 3.267e-08 3.273e-08 -7.486 -7.485 0.001 (0) -H(0) 4.492e-15 - H2 2.246e-15 2.250e-15 -14.649 -14.648 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 7.918e-14 + H2 3.959e-14 3.966e-14 -13.402 -13.402 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.087 -63.086 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -65.486 -65.485 0.001 (0) -[13C](-4) 2.848e-27 - [13C]H4 2.848e-27 2.853e-27 -26.545 -26.545 0.001 (0) -[13C](4) 6.691e-05 - H[13C]O3- 5.397e-05 4.937e-05 -4.268 -4.307 -0.039 (0) - [13C]O2 1.133e-05 1.135e-05 -4.946 -4.945 0.001 (0) - CaH[13C]O3+ 1.140e-06 1.045e-06 -5.943 -5.981 -0.037 (0) - H[13C]O2[18O]- 1.077e-07 9.851e-08 -6.968 -7.007 -0.039 (0) - H[13C]O[18O]O- 1.077e-07 9.851e-08 -6.968 -7.007 -0.039 (0) - H[13C][18O]O2- 1.077e-07 9.851e-08 -6.968 -7.007 -0.039 (0) - Ca[13C]O3 6.256e-08 6.267e-08 -7.204 -7.203 0.001 (0) - [13C]O[18O] 4.710e-08 4.718e-08 -7.327 -7.326 0.001 (0) - [13C]O3-2 3.209e-08 2.248e-08 -7.494 -7.648 -0.155 (0) - CaH[13C][18O]O2+ 2.274e-09 2.086e-09 -8.643 -8.681 -0.037 (0) - CaH[13C]O2[18O]+ 2.274e-09 2.086e-09 -8.643 -8.681 -0.037 (0) - CaH[13C]O[18O]O+ 2.274e-09 2.086e-09 -8.643 -8.681 -0.037 (0) - Ca[13C]O2[18O] 3.745e-10 3.751e-10 -9.427 -9.426 0.001 (0) - H[13C][18O]O[18O]- 2.148e-10 1.965e-10 -9.668 -9.707 -0.039 (0) - H[13C]O[18O]2- 2.148e-10 1.965e-10 -9.668 -9.707 -0.039 (0) - H[13C][18O]2O- 2.148e-10 1.965e-10 -9.668 -9.707 -0.039 (0) - [13C]O2[18O]-2 1.921e-10 1.346e-10 -9.716 -9.871 -0.155 (0) -[14C](-4) 5.032e-39 - [14C]H4 5.032e-39 5.040e-39 -38.298 -38.298 0.001 (0) -[14C](4) 1.191e-16 - H[14C]O3- 9.618e-17 8.799e-17 -16.017 -16.056 -0.039 (0) - [14C]O2 2.001e-17 2.005e-17 -16.699 -16.698 0.001 (0) - CaH[14C]O3+ 2.031e-18 1.863e-18 -17.692 -17.730 -0.037 (0) - H[14C][18O]O2- 1.919e-19 1.756e-19 -18.717 -18.756 -0.039 (0) - H[14C]O2[18O]- 1.919e-19 1.756e-19 -18.717 -18.756 -0.039 (0) - H[14C]O[18O]O- 1.919e-19 1.756e-19 -18.717 -18.756 -0.039 (0) - Ca[14C]O3 1.113e-19 1.115e-19 -18.953 -18.953 0.001 (0) - [14C]O[18O] 8.322e-20 8.336e-20 -19.080 -19.079 0.001 (0) - [14C]O3-2 5.712e-20 4.001e-20 -19.243 -19.398 -0.155 (0) - CaH[14C]O[18O]O+ 4.052e-21 3.717e-21 -20.392 -20.430 -0.037 (0) - CaH[14C]O2[18O]+ 4.052e-21 3.717e-21 -20.392 -20.430 -0.037 (0) - CaH[14C][18O]O2+ 4.052e-21 3.717e-21 -20.392 -20.430 -0.037 (0) - Ca[14C]O2[18O] 6.665e-22 6.676e-22 -21.176 -21.176 0.001 (0) - H[14C][18O]O[18O]- 3.829e-22 3.503e-22 -21.417 -21.456 -0.039 (0) - H[14C][18O]2O- 3.829e-22 3.503e-22 -21.417 -21.456 -0.039 (0) - H[14C]O[18O]2- 3.829e-22 3.503e-22 -21.417 -21.456 -0.039 (0) - [14C]O2[18O]-2 3.419e-22 2.395e-22 -21.466 -21.621 -0.155 (0) + O2 0.000e+00 0.000e+00 -65.579 -65.578 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.978 -67.977 0.001 (0) +[13C](-4) 2.679e-22 + [13C]H4 2.679e-22 2.684e-22 -21.572 -21.571 0.001 (0) +[13C](4) 6.518e-05 + H[13C]O3- 5.257e-05 4.810e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.588e-08 4.596e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.126e-08 2.190e-08 -7.505 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 4.821e-34 + [14C]H4 4.821e-34 4.829e-34 -33.317 -33.316 0.001 (0) +[14C](4) 1.181e-16 + H[14C]O3- 9.541e-17 8.729e-17 -16.020 -16.059 -0.039 (0) + [14C]O2 1.985e-17 1.989e-17 -16.702 -16.701 0.001 (0) + CaH[14C]O3+ 2.015e-18 1.848e-18 -17.696 -17.733 -0.037 (0) + H[14C]O2[18O]- 1.904e-19 1.742e-19 -18.720 -18.759 -0.039 (0) + H[14C]O[18O]O- 1.904e-19 1.742e-19 -18.720 -18.759 -0.039 (0) + H[14C][18O]O2- 1.904e-19 1.742e-19 -18.720 -18.759 -0.039 (0) + Ca[14C]O3 1.105e-19 1.106e-19 -18.957 -18.956 0.001 (0) + [14C]O[18O] 8.256e-20 8.269e-20 -19.083 -19.083 0.001 (0) + [14C]O3-2 5.666e-20 3.969e-20 -19.247 -19.401 -0.155 (0) + CaH[14C]O2[18O]+ 4.020e-21 3.688e-21 -20.396 -20.433 -0.037 (0) + CaH[14C]O[18O]O+ 4.020e-21 3.688e-21 -20.396 -20.433 -0.037 (0) + CaH[14C][18O]O2+ 4.020e-21 3.688e-21 -20.396 -20.433 -0.037 (0) + Ca[14C]O2[18O] 6.611e-22 6.622e-22 -21.180 -21.179 0.001 (0) + H[14C]O[18O]2- 3.798e-22 3.475e-22 -21.420 -21.459 -0.039 (0) + H[14C][18O]2O- 3.798e-22 3.475e-22 -21.420 -21.459 -0.039 (0) + H[14C][18O]O[18O]- 3.798e-22 3.475e-22 -21.420 -21.459 -0.039 (0) + [14C]O2[18O]-2 3.391e-22 2.376e-22 -21.470 -21.624 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.381e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.381e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.381e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.140e-06 4.146e-06 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -65.486 -65.485 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -68.487 -68.486 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.978 -67.977 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.979 -70.978 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.84 -10.35 -1.50 [13C][18O]2 - [13C]H4(g) -23.68 -26.54 -2.86 [13C]H4 - [13C]O2(g) -3.48 -4.95 -1.47 [13C]O2 - [13C]O[18O](g) -5.86 -7.65 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.59 -22.10 -1.50 [14C][18O]2 - [14C]H4(g) -35.44 -38.30 -2.86 [14C]H4 + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -18.71 -21.57 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] + [14C][18O]2(g) -20.60 -22.10 -1.50 [14C][18O]2 + [14C]H4(g) -30.46 -33.32 -2.86 [14C]H4 [14C]O2(g) -15.23 -16.70 -1.47 [14C]O2 [14C]O[18O](g) -17.61 -19.40 -1.79 [14C]O[18O] - [18O]2(g) -66.20 -68.49 -2.29 [18O]2 + [18O]2(g) -68.69 -70.98 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.01 -1.85 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.16 3.55 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.95 6.25 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.85 0.85 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.76 -13.60 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.91 -8.20 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.70 -5.50 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.59 -10.90 7.69 Ca[14C]O[18O]2 + Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 + Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -21.76 -13.61 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -15.91 -8.21 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -13.70 -5.51 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -18.60 -10.91 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -21.74 -24.60 -2.86 CH4 + CH4(g) -16.76 -19.62 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -11.50 -14.65 -3.15 H2 + H2(g) -10.25 -13.40 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -60.19 -63.09 -2.89 O2 - O[18O](g) -62.89 -65.79 -2.89 O[18O] + O2(g) -62.69 -65.58 -2.89 O2 + O[18O](g) -65.39 -68.28 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13678,38 +13597,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.64e-06 5.64e-06 1.13e-02 - Ca[13C]O2[18O](s) 3.47e-08 3.47e-08 6.94e-05 - Ca[13C]O[18O]2(s) 7.13e-11 7.13e-11 1.43e-07 - Ca[13C][18O]3(s) 4.88e-14 4.88e-14 9.75e-11 - Ca[14C]O3(s) 9.29e-18 9.29e-18 1.86e-14 - Ca[14C]O2[18O](s) 5.72e-20 5.72e-20 1.14e-16 - Ca[14C]O[18O]2(s) 1.17e-22 1.17e-22 2.35e-19 - Ca[14C][18O]3(s) 1.01e-27 1.00e-29 2.02e-24 + Ca[13C]O3(s) 5.50e-06 5.50e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 9.22e-18 9.22e-18 1.84e-14 + Ca[14C]O2[18O](s) 5.68e-20 5.68e-20 1.14e-16 + Ca[14C]O[18O]2(s) 1.17e-22 1.17e-22 2.33e-19 + Ca[14C][18O]3(s) 7.97e-26 7.87e-26 1.59e-22 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99519e-03 -4.9898 permil - R(13C) 1.14374e-02 23.006 permil - R(14C) 1.87883e-14 1.5978 pmc - R(18O) H2O(l) 1.99519e-03 -4.9913 permil - R(18O) OH- 1.92123e-03 -41.879 permil + R(18O) 1.99520e-03 -4.9894 permil + R(13C) 1.11609e-02 -1.7236 permil + R(14C) 1.86326e-14 1.5846 pmc + R(18O) H2O(l) 1.99519e-03 -4.9909 permil + R(18O) OH- 1.92123e-03 -41.878 permil R(18O) H3O+ 2.04133e-03 18.017 permil - R(18O) O2(aq) 1.99519e-03 -4.9913 permil - R(13C) CO2(aq) 1.13556e-02 15.684 permil - R(14C) CO2(aq) 1.85201e-14 1.575 pmc + R(13C) CO2(aq) 1.10811e-02 -8.8678 permil + R(14C) CO2(aq) 1.83667e-14 1.5619 pmc R(18O) CO2(aq) 2.07916e-03 36.883 permil - R(18O) HCO3- 1.99519e-03 -4.9913 permil - R(13C) HCO3- 1.14543e-02 24.521 permil - R(14C) HCO3- 1.88438e-14 1.6025 pmc - R(18O) CO3-2 1.99519e-03 -4.9913 permil - R(13C) CO3-2 1.14379e-02 23.05 permil - R(14C) CO3-2 1.87897e-14 1.5979 pmc + R(18O) HCO3- 1.99519e-03 -4.9909 permil + R(13C) HCO3- 1.11775e-02 -0.2451 permil + R(14C) HCO3- 1.86876e-14 1.5892 pmc + R(18O) CO3-2 1.99519e-03 -4.9909 permil + R(13C) CO3-2 1.11614e-02 -1.6798 permil + R(14C) CO3-2 1.86341e-14 1.5847 pmc + R(13C) CH4(aq) 1.10811e-02 -8.8678 permil + R(14C) CH4(aq) 1.83667e-14 1.5619 pmc R(18O) Calcite 2.05263e-03 23.655 permil - R(13C) Calcite 1.14770e-02 26.55 permil - R(14C) Calcite 1.89185e-14 1.6089 pmc + R(13C) Calcite 1.11996e-02 1.7351 permil + R(14C) Calcite 1.87617e-14 1.5955 pmc --------------------------------Isotope Alphas--------------------------------- @@ -13719,14 +13639,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2436e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.522e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6732e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -7.7716e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -9.992e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -13735,143 +13656,143 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 Elements Molality Moles - C 5.838e-03 5.821e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.677e-05 6.658e-05 - [14C] 1.097e-16 1.094e-16 + [13C] 6.518e-05 6.499e-05 + [14C] 1.088e-16 1.085e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.042 Adjusted to redox equilibrium + pe = -1.893 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.838e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 28 + Iterations = 96 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.850 -122.850 0.001 (0) -C(4) 5.838e-03 - HCO3- 4.702e-03 4.302e-03 -2.328 -2.366 -0.039 (0) - CO2 9.955e-04 9.972e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.929e-05 9.109e-05 -4.003 -4.041 -0.037 (0) - HCO[18O]O- 9.382e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.382e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.382e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - CaCO3 5.459e-06 5.468e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.140e-06 4.146e-06 -5.383 -5.382 0.001 (0) - CO3-2 2.800e-06 1.962e-06 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaCO2[18O] 3.268e-08 3.273e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.712e-08 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-08 1.712e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.712e-08 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.676e-08 1.174e-08 -7.776 -7.930 -0.155 (0) +C(-4) 4.323e-20 + CH4 4.323e-20 4.330e-20 -19.364 -19.363 0.001 (0) +C(4) 5.840e-03 + HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.929e-05 9.109e-05 -4.003 -4.041 -0.037 (0) - CaCO3 5.459e-06 5.468e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.137e-06 1.043e-06 -5.944 -5.982 -0.037 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - Ca[13C]O3 6.244e-08 6.254e-08 -7.205 -7.204 0.001 (0) - CaCO2[18O] 3.268e-08 3.273e-08 -7.486 -7.485 0.001 (0) -H(0) 1.231e-39 - H2 6.154e-40 6.164e-40 -39.211 -39.210 0.001 (0) -O(0) 2.190e-14 - O2 1.091e-14 1.093e-14 -13.962 -13.962 0.001 (0) - O[18O] 4.353e-17 4.360e-17 -16.361 -16.361 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.795 -124.794 0.001 (0) -[13C](4) 6.677e-05 - H[13C]O3- 5.386e-05 4.927e-05 -4.269 -4.307 -0.039 (0) - [13C]O2 1.130e-05 1.132e-05 -4.947 -4.946 0.001 (0) - CaH[13C]O3+ 1.137e-06 1.043e-06 -5.944 -5.982 -0.037 (0) - H[13C]O[18O]O- 1.075e-07 9.831e-08 -6.969 -7.007 -0.039 (0) - H[13C][18O]O2- 1.075e-07 9.831e-08 -6.969 -7.007 -0.039 (0) - H[13C]O2[18O]- 1.075e-07 9.831e-08 -6.969 -7.007 -0.039 (0) - Ca[13C]O3 6.244e-08 6.254e-08 -7.205 -7.204 0.001 (0) - [13C]O[18O] 4.701e-08 4.709e-08 -7.328 -7.327 0.001 (0) - [13C]O3-2 3.203e-08 2.244e-08 -7.494 -7.649 -0.155 (0) - CaH[13C]O2[18O]+ 2.269e-09 2.082e-09 -8.644 -8.682 -0.037 (0) - CaH[13C]O[18O]O+ 2.269e-09 2.082e-09 -8.644 -8.682 -0.037 (0) - CaH[13C][18O]O2+ 2.269e-09 2.082e-09 -8.644 -8.682 -0.037 (0) - Ca[13C]O2[18O] 3.737e-10 3.744e-10 -9.427 -9.427 0.001 (0) - H[13C][18O]O[18O]- 2.144e-10 1.962e-10 -9.669 -9.707 -0.039 (0) - H[13C]O[18O]2- 2.144e-10 1.962e-10 -9.669 -9.707 -0.039 (0) - H[13C][18O]2O- 2.144e-10 1.962e-10 -9.669 -9.707 -0.039 (0) - [13C]O2[18O]-2 1.917e-10 1.343e-10 -9.717 -9.872 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.583 -136.582 0.001 (0) -[14C](4) 1.097e-16 - H[14C]O3- 8.861e-17 8.106e-17 -16.053 -16.091 -0.039 (0) - [14C]O2 1.844e-17 1.847e-17 -16.734 -16.734 0.001 (0) - CaH[14C]O3+ 1.871e-18 1.716e-18 -17.728 -17.765 -0.037 (0) - H[14C][18O]O2- 1.768e-19 1.617e-19 -18.753 -18.791 -0.039 (0) - H[14C]O2[18O]- 1.768e-19 1.617e-19 -18.753 -18.791 -0.039 (0) - H[14C]O[18O]O- 1.768e-19 1.617e-19 -18.753 -18.791 -0.039 (0) - Ca[14C]O3 1.026e-19 1.027e-19 -18.989 -18.988 0.001 (0) - [14C]O[18O] 7.667e-20 7.679e-20 -19.115 -19.115 0.001 (0) - [14C]O3-2 5.262e-20 3.686e-20 -19.279 -19.433 -0.155 (0) - CaH[14C]O[18O]O+ 3.733e-21 3.425e-21 -20.428 -20.465 -0.037 (0) - CaH[14C]O2[18O]+ 3.733e-21 3.425e-21 -20.428 -20.465 -0.037 (0) - CaH[14C][18O]O2+ 3.733e-21 3.425e-21 -20.428 -20.465 -0.037 (0) - Ca[14C]O2[18O] 6.140e-22 6.150e-22 -21.212 -21.211 0.001 (0) - H[14C][18O]2O- 3.527e-22 3.227e-22 -21.453 -21.491 -0.039 (0) - H[14C]O[18O]2- 3.527e-22 3.227e-22 -21.453 -21.491 -0.039 (0) - H[14C][18O]O[18O]- 3.527e-22 3.227e-22 -21.453 -21.491 -0.039 (0) - [14C]O2[18O]-2 3.150e-22 2.206e-22 -21.502 -21.656 -0.155 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 9.156e-14 + H2 4.578e-14 4.586e-14 -13.339 -13.339 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.705 -65.705 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.104 -68.104 0.001 (0) +[13C](-4) 4.791e-22 + [13C]H4 4.791e-22 4.799e-22 -21.320 -21.319 0.001 (0) +[13C](4) 6.518e-05 + H[13C]O3- 5.257e-05 4.810e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.588e-08 4.596e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.126e-08 2.190e-08 -7.505 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 7.941e-34 + [14C]H4 7.941e-34 7.954e-34 -33.100 -33.099 0.001 (0) +[14C](4) 1.088e-16 + H[14C]O3- 8.790e-17 8.041e-17 -16.056 -16.095 -0.039 (0) + [14C]O2 1.829e-17 1.832e-17 -16.738 -16.737 0.001 (0) + CaH[14C]O3+ 1.856e-18 1.703e-18 -17.731 -17.769 -0.037 (0) + H[14C]O2[18O]- 1.754e-19 1.604e-19 -18.756 -18.795 -0.039 (0) + H[14C]O[18O]O- 1.754e-19 1.604e-19 -18.756 -18.795 -0.039 (0) + H[14C][18O]O2- 1.754e-19 1.604e-19 -18.756 -18.795 -0.039 (0) + Ca[14C]O3 1.018e-19 1.019e-19 -18.992 -18.992 0.001 (0) + [14C]O[18O] 7.605e-20 7.618e-20 -19.119 -19.118 0.001 (0) + [14C]O3-2 5.220e-20 3.657e-20 -19.282 -19.437 -0.155 (0) + CaH[14C]O2[18O]+ 3.703e-21 3.397e-21 -20.431 -20.469 -0.037 (0) + CaH[14C]O[18O]O+ 3.703e-21 3.397e-21 -20.431 -20.469 -0.037 (0) + CaH[14C][18O]O2+ 3.703e-21 3.397e-21 -20.431 -20.469 -0.037 (0) + Ca[14C]O2[18O] 6.090e-22 6.100e-22 -21.215 -21.215 0.001 (0) + H[14C]O[18O]2- 3.499e-22 3.201e-22 -21.456 -21.495 -0.039 (0) + H[14C][18O]2O- 3.499e-22 3.201e-22 -21.456 -21.495 -0.039 (0) + H[14C][18O]O[18O]- 3.499e-22 3.201e-22 -21.456 -21.495 -0.039 (0) + [14C]O2[18O]-2 3.124e-22 2.189e-22 -21.505 -21.660 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.382e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.382e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.382e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.140e-06 4.146e-06 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) -[18O](0) 4.362e-17 - O[18O] 4.353e-17 4.360e-17 -16.361 -16.361 0.001 (0) - [18O]2 4.342e-20 4.350e-20 -19.362 -19.362 0.001 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -68.104 -68.104 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.105 -71.105 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.84 -10.35 -1.50 [13C][18O]2 - [13C]H4(g) -121.93 -124.79 -2.86 [13C]H4 - [13C]O2(g) -3.48 -4.95 -1.47 [13C]O2 - [13C]O[18O](g) -5.86 -7.65 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.63 -22.13 -1.50 [14C][18O]2 - [14C]H4(g) -133.72 -136.58 -2.86 [14C]H4 - [14C]O2(g) -15.26 -16.73 -1.47 [14C]O2 - [14C]O[18O](g) -17.65 -19.43 -1.79 [14C]O[18O] - [18O]2(g) -17.07 -19.36 -2.29 [18O]2 + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -18.46 -21.32 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] + [14C][18O]2(g) -20.63 -22.14 -1.50 [14C][18O]2 + [14C]H4(g) -30.24 -33.10 -2.86 [14C]H4 + [14C]O2(g) -15.27 -16.74 -1.47 [14C]O2 + [14C]O[18O](g) -17.65 -19.44 -1.79 [14C]O[18O] + [18O]2(g) -68.81 -71.10 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.01 -1.85 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.16 3.55 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.95 6.25 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.85 0.85 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.79 -13.64 8.15 Ca[14C][18O]3 + Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 + Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -21.80 -13.64 8.15 Ca[14C][18O]3 Ca[14C]O2[18O](s) -15.94 -8.24 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -13.73 -5.54 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -18.63 -10.94 7.69 Ca[14C]O[18O]2 @@ -13879,14 +13800,14 @@ O(0) 2.190e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.99 -122.85 -2.86 CH4 + CH4(g) -16.50 -19.36 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.06 -39.21 -3.15 H2 + H2(g) -10.19 -13.34 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.07 -13.96 -2.89 O2 - O[18O](g) -13.77 -16.66 -2.89 O[18O] + O2(g) -62.81 -65.70 -2.89 O2 + O[18O](g) -65.51 -68.40 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13910,18 +13831,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying increased tolerance 1e-14 ... - Using solution 1. Solution after simulation 56. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -13964,38 +13873,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.63e-06 5.63e-06 1.13e-02 - Ca[13C]O2[18O](s) 3.47e-08 3.47e-08 6.93e-05 - Ca[13C]O[18O]2(s) 7.11e-11 7.11e-11 1.42e-07 - Ca[13C][18O]3(s) 4.87e-14 4.87e-14 9.73e-11 - Ca[14C]O3(s) 8.56e-18 8.56e-18 1.71e-14 - Ca[14C]O2[18O](s) 5.27e-20 5.27e-20 1.05e-16 - Ca[14C]O[18O]2(s) 1.08e-22 1.08e-22 2.16e-19 - Ca[14C][18O]3(s) 1.00e-27 0.00e+00 2.00e-24 + Ca[13C]O3(s) 5.50e-06 5.50e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 8.49e-18 8.49e-18 1.70e-14 + Ca[14C]O2[18O](s) 5.23e-20 5.23e-20 1.05e-16 + Ca[14C]O[18O]2(s) 1.07e-22 1.07e-22 2.15e-19 + Ca[14C][18O]3(s) 7.35e-26 7.25e-26 1.47e-22 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99519e-03 -4.9896 permil - R(13C) 1.14160e-02 21.09 permil - R(14C) 1.73079e-14 1.4719 pmc - R(18O) H2O(l) 1.99519e-03 -4.9911 permil + R(18O) 1.99520e-03 -4.9893 permil + R(13C) 1.11612e-02 -1.6972 permil + R(14C) 1.71649e-14 1.4597 pmc + R(18O) H2O(l) 1.99519e-03 -4.9908 permil R(18O) OH- 1.92123e-03 -41.878 permil R(18O) H3O+ 2.04133e-03 18.017 permil - R(18O) O2(aq) 1.99519e-03 -4.9911 permil - R(13C) CO2(aq) 1.13343e-02 13.782 permil - R(14C) CO2(aq) 1.70609e-14 1.4509 pmc + R(13C) CO2(aq) 1.10813e-02 -8.8417 permil + R(14C) CO2(aq) 1.69199e-14 1.4389 pmc R(18O) CO2(aq) 2.07916e-03 36.883 permil - R(18O) HCO3- 1.99519e-03 -4.9911 permil - R(13C) HCO3- 1.14329e-02 22.602 permil - R(14C) HCO3- 1.73591e-14 1.4763 pmc - R(18O) CO3-2 1.99519e-03 -4.9911 permil - R(13C) CO3-2 1.14165e-02 21.134 permil - R(14C) CO3-2 1.73093e-14 1.472 pmc - R(18O) Calcite 2.05263e-03 23.655 permil - R(13C) Calcite 1.14555e-02 24.627 permil - R(14C) Calcite 1.74279e-14 1.4821 pmc + R(18O) HCO3- 1.99519e-03 -4.9908 permil + R(13C) HCO3- 1.11778e-02 -0.2187 permil + R(14C) HCO3- 1.72156e-14 1.4641 pmc + R(18O) CO3-2 1.99519e-03 -4.9908 permil + R(13C) CO3-2 1.11617e-02 -1.6535 permil + R(14C) CO3-2 1.71662e-14 1.4599 pmc + R(13C) CH4(aq) 1.10813e-02 -8.8417 permil + R(14C) CH4(aq) 1.69199e-14 1.4389 pmc + R(18O) Calcite 2.05263e-03 23.656 permil + R(13C) Calcite 1.11999e-02 1.7615 permil + R(14C) Calcite 1.72838e-14 1.4699 pmc --------------------------------Isotope Alphas--------------------------------- @@ -14005,14 +13915,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2441e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6563e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6446e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.632e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.6431e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -14021,158 +13932,158 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 Elements Molality Moles - C 5.838e-03 5.821e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.665e-05 6.646e-05 - [14C] 1.010e-16 1.008e-16 + [13C] 6.518e-05 6.499e-05 + [14C] 1.002e-16 9.995e-17 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.995 Adjusted to redox equilibrium + pe = -1.993 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.838e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 142 (444 overall) + Iterations = 79 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.471 -122.470 0.001 (0) -C(4) 5.838e-03 - HCO3- 4.702e-03 4.302e-03 -2.328 -2.366 -0.039 (0) - CO2 9.955e-04 9.972e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.930e-05 9.109e-05 -4.003 -4.041 -0.037 (0) - HC[18O]O2- 9.382e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.382e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.382e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - CaCO3 5.459e-06 5.468e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) - CO3-2 2.800e-06 1.962e-06 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaCO2[18O] 3.268e-08 3.273e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) +C(-4) 2.725e-19 + CH4 2.725e-19 2.730e-19 -18.565 -18.564 0.001 (0) +C(4) 5.840e-03 + HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.676e-08 1.174e-08 -7.776 -7.930 -0.155 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.930e-05 9.109e-05 -4.003 -4.041 -0.037 (0) - CaCO3 5.459e-06 5.468e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.135e-06 1.041e-06 -5.945 -5.982 -0.037 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - Ca[13C]O3 6.232e-08 6.243e-08 -7.205 -7.205 0.001 (0) - CaCO2[18O] 3.268e-08 3.273e-08 -7.486 -7.485 0.001 (0) -H(0) 1.532e-39 - H2 7.658e-40 7.671e-40 -39.116 -39.115 0.001 (0) -O(0) 1.414e-14 - O2 7.044e-15 7.056e-15 -14.152 -14.151 0.001 (0) - O[18O] 2.811e-17 2.815e-17 -16.551 -16.550 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.416 -124.415 0.001 (0) -[13C](4) 6.665e-05 - H[13C]O3- 5.376e-05 4.918e-05 -4.270 -4.308 -0.039 (0) - [13C]O2 1.128e-05 1.130e-05 -4.948 -4.947 0.001 (0) - CaH[13C]O3+ 1.135e-06 1.041e-06 -5.945 -5.982 -0.037 (0) - H[13C][18O]O2- 1.073e-07 9.813e-08 -6.970 -7.008 -0.039 (0) - H[13C]O2[18O]- 1.073e-07 9.813e-08 -6.970 -7.008 -0.039 (0) - H[13C]O[18O]O- 1.073e-07 9.813e-08 -6.970 -7.008 -0.039 (0) - Ca[13C]O3 6.232e-08 6.243e-08 -7.205 -7.205 0.001 (0) - [13C]O[18O] 4.692e-08 4.700e-08 -7.329 -7.328 0.001 (0) - [13C]O3-2 3.197e-08 2.240e-08 -7.495 -7.650 -0.155 (0) - CaH[13C]O[18O]O+ 2.265e-09 2.078e-09 -8.645 -8.682 -0.037 (0) - CaH[13C][18O]O2+ 2.265e-09 2.078e-09 -8.645 -8.682 -0.037 (0) - CaH[13C]O2[18O]+ 2.265e-09 2.078e-09 -8.645 -8.682 -0.037 (0) - Ca[13C]O2[18O] 3.730e-10 3.737e-10 -9.428 -9.428 0.001 (0) - H[13C][18O]O[18O]- 2.140e-10 1.958e-10 -9.670 -9.708 -0.039 (0) - H[13C]O[18O]2- 2.140e-10 1.958e-10 -9.670 -9.708 -0.039 (0) - H[13C][18O]2O- 2.140e-10 1.958e-10 -9.670 -9.708 -0.039 (0) - [13C]O2[18O]-2 1.914e-10 1.341e-10 -9.718 -9.873 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.238 -136.238 0.001 (0) -[14C](4) 1.010e-16 - H[14C]O3- 8.163e-17 7.468e-17 -16.088 -16.127 -0.039 (0) - [14C]O2 1.698e-17 1.701e-17 -16.770 -16.769 0.001 (0) - CaH[14C]O3+ 1.724e-18 1.581e-18 -17.764 -17.801 -0.037 (0) - H[14C][18O]O2- 1.629e-19 1.490e-19 -18.788 -18.827 -0.039 (0) - H[14C]O2[18O]- 1.629e-19 1.490e-19 -18.788 -18.827 -0.039 (0) - H[14C]O[18O]O- 1.629e-19 1.490e-19 -18.788 -18.827 -0.039 (0) - Ca[14C]O3 9.449e-20 9.465e-20 -19.025 -19.024 0.001 (0) - [14C]O[18O] 7.063e-20 7.074e-20 -19.151 -19.150 0.001 (0) - [14C]O3-2 4.847e-20 3.396e-20 -19.314 -19.469 -0.155 (0) - CaH[14C]O[18O]O+ 3.439e-21 3.155e-21 -20.464 -20.501 -0.037 (0) - CaH[14C]O2[18O]+ 3.439e-21 3.155e-21 -20.464 -20.501 -0.037 (0) - CaH[14C][18O]O2+ 3.439e-21 3.155e-21 -20.464 -20.501 -0.037 (0) - Ca[14C]O2[18O] 5.656e-22 5.665e-22 -21.247 -21.247 0.001 (0) - H[14C]O[18O]2- 3.249e-22 2.973e-22 -21.488 -21.527 -0.039 (0) - H[14C][18O]O[18O]- 3.249e-22 2.973e-22 -21.488 -21.527 -0.039 (0) - H[14C][18O]2O- 3.249e-22 2.973e-22 -21.488 -21.527 -0.039 (0) - [14C]O2[18O]-2 2.901e-22 2.033e-22 -21.537 -21.692 -0.155 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 1.451e-13 + H2 7.254e-14 7.266e-14 -13.139 -13.139 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -66.105 -66.104 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.504 -68.503 0.001 (0) +[13C](-4) 3.020e-21 + [13C]H4 3.020e-21 3.025e-21 -20.520 -20.519 0.001 (0) +[13C](4) 6.518e-05 + H[13C]O3- 5.257e-05 4.810e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.589e-08 4.596e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.127e-08 2.190e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 4.611e-33 + [14C]H4 4.611e-33 4.619e-33 -32.336 -32.335 0.001 (0) +[14C](4) 1.002e-16 + H[14C]O3- 8.097e-17 7.408e-17 -16.092 -16.130 -0.039 (0) + [14C]O2 1.685e-17 1.688e-17 -16.773 -16.773 0.001 (0) + CaH[14C]O3+ 1.710e-18 1.569e-18 -17.767 -17.805 -0.037 (0) + H[14C]O2[18O]- 1.616e-19 1.478e-19 -18.792 -18.830 -0.039 (0) + H[14C]O[18O]O- 1.616e-19 1.478e-19 -18.792 -18.830 -0.039 (0) + H[14C][18O]O2- 1.616e-19 1.478e-19 -18.792 -18.830 -0.039 (0) + Ca[14C]O3 9.374e-20 9.389e-20 -19.028 -19.027 0.001 (0) + [14C]O[18O] 7.006e-20 7.018e-20 -19.155 -19.154 0.001 (0) + [14C]O3-2 4.808e-20 3.369e-20 -19.318 -19.473 -0.155 (0) + CaH[14C]O2[18O]+ 3.412e-21 3.129e-21 -20.467 -20.505 -0.037 (0) + CaH[14C]O[18O]O+ 3.412e-21 3.129e-21 -20.467 -20.505 -0.037 (0) + CaH[14C][18O]O2+ 3.412e-21 3.129e-21 -20.467 -20.505 -0.037 (0) + Ca[14C]O2[18O] 5.611e-22 5.620e-22 -21.251 -21.250 0.001 (0) + H[14C]O[18O]2- 3.223e-22 2.949e-22 -21.492 -21.530 -0.039 (0) + H[14C][18O]2O- 3.223e-22 2.949e-22 -21.492 -21.530 -0.039 (0) + H[14C][18O]O[18O]- 3.223e-22 2.949e-22 -21.492 -21.530 -0.039 (0) + [14C]O2[18O]-2 2.878e-22 2.016e-22 -21.541 -21.695 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.382e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.382e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.382e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) -[18O](0) 2.816e-17 - O[18O] 2.811e-17 2.815e-17 -16.551 -16.550 0.001 (0) - [18O]2 2.804e-20 2.809e-20 -19.552 -19.551 0.001 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -68.504 -68.503 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.505 -71.504 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.84 -10.35 -1.50 [13C][18O]2 - [13C]H4(g) -121.56 -124.42 -2.86 [13C]H4 - [13C]O2(g) -3.48 -4.95 -1.47 [13C]O2 - [13C]O[18O](g) -5.86 -7.65 -1.79 [13C]O[18O] + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -17.66 -20.52 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.67 -22.17 -1.50 [14C][18O]2 - [14C]H4(g) -133.38 -136.24 -2.86 [14C]H4 + [14C]H4(g) -29.48 -32.34 -2.86 [14C]H4 [14C]O2(g) -15.30 -16.77 -1.47 [14C]O2 - [14C]O[18O](g) -17.68 -19.47 -1.79 [14C]O[18O] - [18O]2(g) -17.26 -19.55 -2.29 [18O]2 + [14C]O[18O](g) -17.69 -19.47 -1.79 [14C]O[18O] + [18O]2(g) -69.21 -71.50 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.01 -1.85 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.16 3.55 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.95 6.25 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.85 0.85 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.83 -13.67 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.98 -8.27 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.77 -5.57 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.66 -10.97 7.69 Ca[14C]O[18O]2 + Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 + Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -21.83 -13.68 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -15.98 -8.28 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -13.77 -5.58 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -18.67 -10.98 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.61 -122.47 -2.86 CH4 + CH4(g) -15.70 -18.56 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.97 -39.12 -3.15 H2 + H2(g) -9.99 -13.14 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.26 -14.15 -2.89 O2 - O[18O](g) -13.96 -16.85 -2.89 O[18O] + O2(g) -63.21 -66.10 -2.89 O2 + O[18O](g) -65.91 -68.80 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -14238,39 +14149,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.62e-06 5.62e-06 1.12e-02 - Ca[13C]O2[18O](s) 3.46e-08 3.46e-08 6.92e-05 - Ca[13C]O[18O]2(s) 7.10e-11 7.10e-11 1.42e-07 - Ca[13C][18O]3(s) 4.86e-14 4.86e-14 9.72e-11 - Ca[14C]O3(s) 7.89e-18 7.89e-18 1.58e-14 - Ca[14C]O2[18O](s) 4.86e-20 4.86e-20 9.71e-17 - Ca[14C]O[18O]2(s) 9.97e-23 9.97e-23 1.99e-19 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C]O3(s) 5.50e-06 5.50e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 7.82e-18 7.82e-18 1.56e-14 + Ca[14C]O2[18O](s) 4.82e-20 4.82e-20 9.64e-17 + Ca[14C]O[18O]2(s) 9.89e-23 9.89e-23 1.98e-19 + Ca[14C][18O]3(s) 6.77e-26 6.67e-26 1.35e-22 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9895 permil - R(13C) 1.13963e-02 19.324 permil - R(14C) 1.59442e-14 1.3559 pmc - R(18O) H2O(l) 1.99519e-03 -4.991 permil + R(18O) 1.99520e-03 -4.9891 permil + R(13C) 1.11615e-02 -1.6729 permil + R(14C) 1.58128e-14 1.3448 pmc + R(18O) H2O(l) 1.99519e-03 -4.9907 permil R(18O) OH- 1.92123e-03 -41.878 permil R(18O) H3O+ 2.04133e-03 18.017 permil - R(13C) CO2(aq) 1.13147e-02 12.03 permil - R(14C) CO2(aq) 1.57167e-14 1.3366 pmc + R(13C) CO2(aq) 1.10816e-02 -8.8175 permil + R(14C) CO2(aq) 1.55871e-14 1.3256 pmc R(18O) CO2(aq) 2.07916e-03 36.883 permil - R(18O) HCO3- 1.99519e-03 -4.991 permil - R(13C) HCO3- 1.14131e-02 20.834 permil - R(14C) HCO3- 1.59913e-14 1.3599 pmc - R(18O) CO3-2 1.99519e-03 -4.991 permil - R(13C) CO3-2 1.13968e-02 19.369 permil - R(14C) CO3-2 1.59455e-14 1.356 pmc - R(13C) CH4(aq) 1.13147e-02 12.03 permil - R(14C) CH4(aq) 1.57167e-14 1.3366 pmc - R(18O) Calcite 2.05263e-03 23.655 permil - R(13C) Calcite 1.14357e-02 22.856 permil - R(14C) Calcite 1.60547e-14 1.3653 pmc + R(18O) HCO3- 1.99519e-03 -4.9907 permil + R(13C) HCO3- 1.11780e-02 -0.19438 permil + R(14C) HCO3- 1.58595e-14 1.3487 pmc + R(18O) CO3-2 1.99519e-03 -4.9907 permil + R(13C) CO3-2 1.11620e-02 -1.6292 permil + R(14C) CO3-2 1.58140e-14 1.3449 pmc + R(13C) CH4(aq) 1.10816e-02 -8.8175 permil + R(14C) CH4(aq) 1.55871e-14 1.3256 pmc + R(18O) Calcite 2.05263e-03 23.656 permil + R(13C) Calcite 1.12002e-02 1.7859 permil + R(14C) Calcite 1.59224e-14 1.3541 pmc --------------------------------Isotope Alphas--------------------------------- @@ -14284,11 +14195,11 @@ Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6398e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5483e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -6.3283e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.0436e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.7764e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 3.7748e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -14297,158 +14208,158 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 Elements Molality Moles - C 5.838e-03 5.821e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.654e-05 6.634e-05 - [14C] 9.309e-17 9.282e-17 + [13C] 6.518e-05 6.499e-05 + [14C] 9.234e-17 9.207e-17 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.616 Adjusted to redox equilibrium + pe = -2.040 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.838e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.451e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 78 + Iterations = 99 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.626e-22 - CH4 2.626e-22 2.631e-22 -21.581 -21.580 0.001 (0) -C(4) 5.838e-03 - HCO3- 4.702e-03 4.302e-03 -2.328 -2.366 -0.039 (0) - CO2 9.956e-04 9.972e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.930e-05 9.109e-05 -4.003 -4.041 -0.037 (0) - HCO2[18O]- 9.382e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.382e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.382e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - CaCO3 5.459e-06 5.468e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) - CO3-2 2.800e-06 1.962e-06 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaCO2[18O] 3.268e-08 3.273e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) +C(-4) 6.455e-19 + CH4 6.455e-19 6.466e-19 -18.190 -18.189 0.001 (0) +C(4) 5.840e-03 + HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.676e-08 1.174e-08 -7.776 -7.930 -0.155 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.930e-05 9.109e-05 -4.003 -4.041 -0.037 (0) - CaCO3 5.459e-06 5.468e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.133e-06 1.040e-06 -5.946 -5.983 -0.037 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - Ca[13C]O3 6.222e-08 6.232e-08 -7.206 -7.205 0.001 (0) - CaCO2[18O] 3.268e-08 3.273e-08 -7.486 -7.485 0.001 (0) -H(0) 2.556e-14 - H2 1.278e-14 1.280e-14 -13.893 -13.893 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 1.800e-13 + H2 8.999e-14 9.014e-14 -13.046 -13.045 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.597 -64.596 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -66.996 -66.995 0.001 (0) -[13C](-4) 2.972e-24 - [13C]H4 2.972e-24 2.977e-24 -23.527 -23.526 0.001 (0) -[13C](4) 6.654e-05 - H[13C]O3- 5.367e-05 4.910e-05 -4.270 -4.309 -0.039 (0) - [13C]O2 1.126e-05 1.128e-05 -4.948 -4.948 0.001 (0) - CaH[13C]O3+ 1.133e-06 1.040e-06 -5.946 -5.983 -0.037 (0) - H[13C]O2[18O]- 1.071e-07 9.796e-08 -6.970 -7.009 -0.039 (0) - H[13C]O[18O]O- 1.071e-07 9.796e-08 -6.970 -7.009 -0.039 (0) - H[13C][18O]O2- 1.071e-07 9.796e-08 -6.970 -7.009 -0.039 (0) - Ca[13C]O3 6.222e-08 6.232e-08 -7.206 -7.205 0.001 (0) - [13C]O[18O] 4.684e-08 4.692e-08 -7.329 -7.329 0.001 (0) - [13C]O3-2 3.192e-08 2.236e-08 -7.496 -7.651 -0.155 (0) - CaH[13C][18O]O2+ 2.261e-09 2.074e-09 -8.646 -8.683 -0.037 (0) - CaH[13C]O2[18O]+ 2.261e-09 2.074e-09 -8.646 -8.683 -0.037 (0) - CaH[13C]O[18O]O+ 2.261e-09 2.074e-09 -8.646 -8.683 -0.037 (0) - Ca[13C]O2[18O] 3.724e-10 3.730e-10 -9.429 -9.428 0.001 (0) - H[13C][18O]O[18O]- 2.136e-10 1.955e-10 -9.670 -9.709 -0.039 (0) - H[13C]O[18O]2- 2.136e-10 1.955e-10 -9.670 -9.709 -0.039 (0) - H[13C][18O]2O- 2.136e-10 1.955e-10 -9.670 -9.709 -0.039 (0) - [13C]O2[18O]-2 1.910e-10 1.338e-10 -9.719 -9.873 -0.155 (0) -[14C](-4) 4.128e-36 - [14C]H4 4.128e-36 4.135e-36 -35.384 -35.384 0.001 (0) -[14C](4) 9.309e-17 - H[14C]O3- 7.520e-17 6.880e-17 -16.124 -16.162 -0.039 (0) - [14C]O2 1.565e-17 1.567e-17 -16.806 -16.805 0.001 (0) - CaH[14C]O3+ 1.588e-18 1.457e-18 -17.799 -17.837 -0.037 (0) - H[14C][18O]O2- 1.500e-19 1.373e-19 -18.824 -18.862 -0.039 (0) - H[14C]O2[18O]- 1.500e-19 1.373e-19 -18.824 -18.862 -0.039 (0) - H[14C]O[18O]O- 1.500e-19 1.373e-19 -18.824 -18.862 -0.039 (0) - Ca[14C]O3 8.705e-20 8.719e-20 -19.060 -19.060 0.001 (0) - [14C]O[18O] 6.506e-20 6.517e-20 -19.187 -19.186 0.001 (0) - [14C]O3-2 4.466e-20 3.128e-20 -19.350 -19.505 -0.155 (0) - CaH[14C]O[18O]O+ 3.168e-21 2.906e-21 -20.499 -20.537 -0.037 (0) - CaH[14C]O2[18O]+ 3.168e-21 2.906e-21 -20.499 -20.537 -0.037 (0) - CaH[14C][18O]O2+ 3.168e-21 2.906e-21 -20.499 -20.537 -0.037 (0) - Ca[14C]O2[18O] 5.210e-22 5.219e-22 -21.283 -21.282 0.001 (0) - H[14C][18O]O[18O]- 2.993e-22 2.739e-22 -21.524 -21.562 -0.039 (0) - H[14C][18O]2O- 2.993e-22 2.739e-22 -21.524 -21.562 -0.039 (0) - H[14C]O[18O]2- 2.993e-22 2.739e-22 -21.524 -21.562 -0.039 (0) - [14C]O2[18O]-2 2.673e-22 1.872e-22 -21.573 -21.728 -0.155 (0) + O2 0.000e+00 0.000e+00 -66.292 -66.292 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.691 -68.691 0.001 (0) +[13C](-4) 7.154e-21 + [13C]H4 7.154e-21 7.165e-21 -20.145 -20.145 0.001 (0) +[13C](4) 6.518e-05 + H[13C]O3- 5.258e-05 4.810e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.589e-08 4.596e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.127e-08 2.190e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 1.006e-32 + [14C]H4 1.006e-32 1.008e-32 -31.997 -31.997 0.001 (0) +[14C](4) 9.234e-17 + H[14C]O3- 7.459e-17 6.824e-17 -16.127 -16.166 -0.039 (0) + [14C]O2 1.552e-17 1.555e-17 -16.809 -16.808 0.001 (0) + CaH[14C]O3+ 1.575e-18 1.445e-18 -17.803 -17.840 -0.037 (0) + H[14C]O2[18O]- 1.488e-19 1.362e-19 -18.827 -18.866 -0.039 (0) + H[14C]O[18O]O- 1.488e-19 1.362e-19 -18.827 -18.866 -0.039 (0) + H[14C][18O]O2- 1.488e-19 1.362e-19 -18.827 -18.866 -0.039 (0) + Ca[14C]O3 8.635e-20 8.649e-20 -19.064 -19.063 0.001 (0) + [14C]O[18O] 6.454e-20 6.465e-20 -19.190 -19.189 0.001 (0) + [14C]O3-2 4.430e-20 3.103e-20 -19.354 -19.508 -0.155 (0) + CaH[14C]O2[18O]+ 3.143e-21 2.883e-21 -20.503 -20.540 -0.037 (0) + CaH[14C]O[18O]O+ 3.143e-21 2.883e-21 -20.503 -20.540 -0.037 (0) + CaH[14C][18O]O2+ 3.143e-21 2.883e-21 -20.503 -20.540 -0.037 (0) + Ca[14C]O2[18O] 5.169e-22 5.177e-22 -21.287 -21.286 0.001 (0) + H[14C]O[18O]2- 2.969e-22 2.717e-22 -21.527 -21.566 -0.039 (0) + H[14C][18O]2O- 2.969e-22 2.717e-22 -21.527 -21.566 -0.039 (0) + H[14C][18O]O[18O]- 2.969e-22 2.717e-22 -21.527 -21.566 -0.039 (0) + [14C]O2[18O]-2 2.651e-22 1.857e-22 -21.577 -21.731 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.382e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.382e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.382e-06 8.583e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -66.996 -66.995 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -69.997 -69.996 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.691 -68.691 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.692 -71.692 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.84 -10.35 -1.50 [13C][18O]2 - [13C]H4(g) -20.67 -23.53 -2.86 [13C]H4 - [13C]O2(g) -3.48 -4.95 -1.47 [13C]O2 - [13C]O[18O](g) -5.86 -7.65 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.70 -22.20 -1.50 [14C][18O]2 - [14C]H4(g) -32.52 -35.38 -2.86 [14C]H4 - [14C]O2(g) -15.34 -16.80 -1.47 [14C]O2 - [14C]O[18O](g) -17.72 -19.50 -1.79 [14C]O[18O] - [18O]2(g) -67.71 -70.00 -2.29 [18O]2 + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -17.28 -20.14 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] + [14C][18O]2(g) -20.70 -22.21 -1.50 [14C][18O]2 + [14C]H4(g) -29.14 -32.00 -2.86 [14C]H4 + [14C]O2(g) -15.34 -16.81 -1.47 [14C]O2 + [14C]O[18O](g) -17.72 -19.51 -1.79 [14C]O[18O] + [18O]2(g) -69.40 -71.69 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.01 -1.85 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.16 3.55 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.95 6.25 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.85 0.85 7.69 Ca[13C]O[18O]2 + Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 + Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 Ca[14C][18O]3(s) -21.87 -13.71 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.01 -8.31 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.80 -5.61 8.19 Ca[14C]O3 + Ca[14C]O2[18O](s) -16.02 -8.31 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -13.81 -5.61 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -18.70 -11.01 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -18.72 -21.58 -2.86 CH4 + CH4(g) -15.33 -18.19 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.74 -13.89 -3.15 H2 + H2(g) -9.90 -13.05 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -61.70 -64.60 -2.89 O2 - O[18O](g) -64.40 -67.30 -2.89 O[18O] + O2(g) -63.40 -66.29 -2.89 O2 + O[18O](g) -66.10 -68.99 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -14472,12 +14383,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 58. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -14520,39 +14425,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.61e-06 5.61e-06 1.12e-02 - Ca[13C]O2[18O](s) 3.45e-08 3.45e-08 6.91e-05 - Ca[13C]O[18O]2(s) 7.09e-11 7.09e-11 1.42e-07 - Ca[13C][18O]3(s) 4.85e-14 4.85e-14 9.70e-11 - Ca[14C]O3(s) 7.27e-18 7.27e-18 1.45e-14 - Ca[14C]O2[18O](s) 4.47e-20 4.47e-20 8.95e-17 - Ca[14C]O[18O]2(s) 9.18e-23 9.18e-23 1.84e-19 - Ca[14C][18O]3(s) 1.00e-27 0.00e+00 2.00e-24 + Ca[13C]O3(s) 5.50e-06 5.50e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 7.21e-18 7.21e-18 1.44e-14 + Ca[14C]O2[18O](s) 4.44e-20 4.44e-20 8.88e-17 + Ca[14C]O[18O]2(s) 9.11e-23 9.11e-23 1.82e-19 + Ca[14C][18O]3(s) 6.23e-26 6.13e-26 1.25e-22 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9893 permil - R(13C) 1.13781e-02 17.698 permil - R(14C) 1.46880e-14 1.2491 pmc - R(18O) H2O(l) 1.99519e-03 -4.9909 permil + R(18O) 1.99520e-03 -4.989 permil + R(13C) 1.11617e-02 -1.6506 permil + R(14C) 1.45672e-14 1.2388 pmc + R(18O) H2O(l) 1.99519e-03 -4.9905 permil R(18O) OH- 1.92123e-03 -41.878 permil R(18O) H3O+ 2.04133e-03 18.017 permil - R(13C) CO2(aq) 1.12966e-02 10.415 permil - R(14C) CO2(aq) 1.44784e-14 1.2313 pmc + R(13C) CO2(aq) 1.10819e-02 -8.7953 permil + R(14C) CO2(aq) 1.43593e-14 1.2211 pmc R(18O) CO2(aq) 2.07916e-03 36.883 permil - R(18O) HCO3- 1.99519e-03 -4.9909 permil - R(13C) HCO3- 1.13949e-02 19.205 permil - R(14C) HCO3- 1.47314e-14 1.2528 pmc - R(18O) CO3-2 1.99519e-03 -4.9909 permil - R(13C) CO3-2 1.13786e-02 17.742 permil - R(14C) CO3-2 1.46891e-14 1.2492 pmc - R(13C) CH4(aq) 1.12966e-02 10.415 permil - R(14C) CH4(aq) 1.44784e-14 1.2313 pmc + R(18O) HCO3- 1.99519e-03 -4.9905 permil + R(13C) HCO3- 1.11783e-02 -0.17197 permil + R(14C) HCO3- 1.46102e-14 1.2425 pmc + R(18O) CO3-2 1.99519e-03 -4.9905 permil + R(13C) CO3-2 1.11622e-02 -1.6068 permil + R(14C) CO3-2 1.45683e-14 1.2389 pmc + R(13C) CH4(aq) 1.10819e-02 -8.7953 permil + R(14C) CH4(aq) 1.43593e-14 1.2211 pmc R(18O) Calcite 2.05263e-03 23.656 permil - R(13C) Calcite 1.14175e-02 21.224 permil - R(14C) Calcite 1.47898e-14 1.2578 pmc + R(13C) Calcite 1.12004e-02 1.8083 permil + R(14C) Calcite 1.46681e-14 1.2474 pmc --------------------------------Isotope Alphas--------------------------------- @@ -14563,14 +14468,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 6.6613e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6278e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5798e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 5.9952e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -2.4425e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -4.3299e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -8.3267e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -14579,142 +14484,142 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 Elements Molality Moles - C 5.839e-03 5.821e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.643e-05 6.624e-05 - [14C] 8.576e-17 8.551e-17 + [13C] 6.518e-05 6.499e-05 + [14C] 8.507e-17 8.482e-17 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.849 Adjusted to redox equilibrium + pe = -2.143 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.839e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.451e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 51 (152 overall) + Iterations = 96 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.902e-20 - CH4 1.902e-20 1.905e-20 -19.721 -19.720 0.001 (0) -C(4) 5.839e-03 - HCO3- 4.702e-03 4.302e-03 -2.328 -2.366 -0.039 (0) - CO2 9.956e-04 9.972e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.930e-05 9.109e-05 -4.003 -4.041 -0.037 (0) - HCO[18O]O- 9.382e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.382e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.382e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - CaCO3 5.459e-06 5.468e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) +C(-4) 4.282e-18 + CH4 4.282e-18 4.289e-18 -17.368 -17.368 0.001 (0) +C(4) 5.840e-03 + HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaCO2[18O] 3.268e-08 3.273e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.676e-08 1.174e-08 -7.776 -7.930 -0.155 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.930e-05 9.109e-05 -4.003 -4.041 -0.037 (0) - CaCO3 5.459e-06 5.468e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.132e-06 1.038e-06 -5.946 -5.984 -0.037 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - Ca[13C]O3 6.212e-08 6.222e-08 -7.207 -7.206 0.001 (0) - CaCO2[18O] 3.268e-08 3.273e-08 -7.486 -7.485 0.001 (0) -H(0) 7.457e-14 - H2 3.729e-14 3.735e-14 -13.428 -13.428 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 2.889e-13 + H2 1.444e-13 1.447e-13 -12.840 -12.840 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.527 -65.526 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.926 -67.925 0.001 (0) -[13C](-4) 2.148e-22 - [13C]H4 2.148e-22 2.152e-22 -21.668 -21.667 0.001 (0) -[13C](4) 6.643e-05 - H[13C]O3- 5.358e-05 4.902e-05 -4.271 -4.310 -0.039 (0) - [13C]O2 1.125e-05 1.127e-05 -4.949 -4.948 0.001 (0) - CaH[13C]O3+ 1.132e-06 1.038e-06 -5.946 -5.984 -0.037 (0) - H[13C]O[18O]O- 1.069e-07 9.781e-08 -6.971 -7.010 -0.039 (0) - H[13C][18O]O2- 1.069e-07 9.781e-08 -6.971 -7.010 -0.039 (0) - H[13C]O2[18O]- 1.069e-07 9.781e-08 -6.971 -7.010 -0.039 (0) - Ca[13C]O3 6.212e-08 6.222e-08 -7.207 -7.206 0.001 (0) - [13C]O[18O] 4.677e-08 4.684e-08 -7.330 -7.329 0.001 (0) - [13C]O3-2 3.187e-08 2.232e-08 -7.497 -7.651 -0.155 (0) - CaH[13C]O2[18O]+ 2.258e-09 2.071e-09 -8.646 -8.684 -0.037 (0) - CaH[13C]O[18O]O+ 2.258e-09 2.071e-09 -8.646 -8.684 -0.037 (0) - CaH[13C][18O]O2+ 2.258e-09 2.071e-09 -8.646 -8.684 -0.037 (0) - Ca[13C]O2[18O] 3.718e-10 3.724e-10 -9.430 -9.429 0.001 (0) - H[13C][18O]O[18O]- 2.133e-10 1.951e-10 -9.671 -9.710 -0.039 (0) - H[13C]O[18O]2- 2.133e-10 1.951e-10 -9.671 -9.710 -0.039 (0) - H[13C][18O]2O- 2.133e-10 1.951e-10 -9.671 -9.710 -0.039 (0) - [13C]O2[18O]-2 1.907e-10 1.336e-10 -9.720 -9.874 -0.155 (0) -[14C](-4) 2.753e-34 - [14C]H4 2.753e-34 2.758e-34 -33.560 -33.559 0.001 (0) -[14C](4) 8.576e-17 - H[14C]O3- 6.927e-17 6.338e-17 -16.159 -16.198 -0.039 (0) - [14C]O2 1.441e-17 1.444e-17 -16.841 -16.840 0.001 (0) - CaH[14C]O3+ 1.463e-18 1.342e-18 -17.835 -17.872 -0.037 (0) - H[14C][18O]O2- 1.382e-19 1.264e-19 -18.859 -18.898 -0.039 (0) - H[14C]O2[18O]- 1.382e-19 1.264e-19 -18.859 -18.898 -0.039 (0) - H[14C]O[18O]O- 1.382e-19 1.264e-19 -18.859 -18.898 -0.039 (0) - Ca[14C]O3 8.019e-20 8.032e-20 -19.096 -19.095 0.001 (0) - [14C]O[18O] 5.994e-20 6.004e-20 -19.222 -19.222 0.001 (0) - [14C]O3-2 4.114e-20 2.882e-20 -19.386 -19.540 -0.155 (0) - CaH[14C]O[18O]O+ 2.919e-21 2.677e-21 -20.535 -20.572 -0.037 (0) - CaH[14C]O2[18O]+ 2.919e-21 2.677e-21 -20.535 -20.572 -0.037 (0) - CaH[14C][18O]O2+ 2.919e-21 2.677e-21 -20.535 -20.572 -0.037 (0) - Ca[14C]O2[18O] 4.800e-22 4.808e-22 -21.319 -21.318 0.001 (0) - H[14C][18O]2O- 2.758e-22 2.523e-22 -21.559 -21.598 -0.039 (0) - H[14C]O[18O]2- 2.758e-22 2.523e-22 -21.559 -21.598 -0.039 (0) - H[14C][18O]O[18O]- 2.758e-22 2.523e-22 -21.559 -21.598 -0.039 (0) - [14C]O2[18O]-2 2.462e-22 1.725e-22 -21.609 -21.763 -0.155 (0) + O2 0.000e+00 0.000e+00 -66.703 -66.702 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.102 -69.101 0.001 (0) +[13C](-4) 4.746e-20 + [13C]H4 4.746e-20 4.753e-20 -19.324 -19.323 0.001 (0) +[13C](4) 6.518e-05 + H[13C]O3- 5.258e-05 4.810e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.105e-05 -4.957 -4.957 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.589e-08 4.596e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.127e-08 2.190e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 6.149e-32 + [14C]H4 6.149e-32 6.159e-32 -31.211 -31.210 0.001 (0) +[14C](4) 8.507e-17 + H[14C]O3- 6.872e-17 6.287e-17 -16.163 -16.202 -0.039 (0) + [14C]O2 1.430e-17 1.432e-17 -16.845 -16.844 0.001 (0) + CaH[14C]O3+ 1.451e-18 1.331e-18 -17.838 -17.876 -0.037 (0) + H[14C]O2[18O]- 1.371e-19 1.254e-19 -18.863 -18.902 -0.039 (0) + H[14C]O[18O]O- 1.371e-19 1.254e-19 -18.863 -18.902 -0.039 (0) + H[14C][18O]O2- 1.371e-19 1.254e-19 -18.863 -18.902 -0.039 (0) + Ca[14C]O3 7.955e-20 7.968e-20 -19.099 -19.099 0.001 (0) + [14C]O[18O] 5.946e-20 5.956e-20 -19.226 -19.225 0.001 (0) + [14C]O3-2 4.081e-20 2.859e-20 -19.389 -19.544 -0.155 (0) + CaH[14C]O2[18O]+ 2.895e-21 2.656e-21 -20.538 -20.576 -0.037 (0) + CaH[14C]O[18O]O+ 2.895e-21 2.656e-21 -20.538 -20.576 -0.037 (0) + CaH[14C][18O]O2+ 2.895e-21 2.656e-21 -20.538 -20.576 -0.037 (0) + Ca[14C]O2[18O] 4.762e-22 4.769e-22 -21.322 -21.322 0.001 (0) + H[14C]O[18O]2- 2.736e-22 2.503e-22 -21.563 -21.602 -0.039 (0) + H[14C][18O]2O- 2.736e-22 2.503e-22 -21.563 -21.602 -0.039 (0) + H[14C][18O]O[18O]- 2.736e-22 2.503e-22 -21.563 -21.602 -0.039 (0) + [14C]O2[18O]-2 2.443e-22 1.711e-22 -21.612 -21.767 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.382e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.382e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.382e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.926 -67.925 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.927 -70.926 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.102 -69.101 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.103 -72.103 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.85 -10.35 -1.50 [13C][18O]2 - [13C]H4(g) -18.81 -21.67 -2.86 [13C]H4 - [13C]O2(g) -3.48 -4.95 -1.47 [13C]O2 - [13C]O[18O](g) -5.86 -7.65 -1.79 [13C]O[18O] + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -16.46 -19.32 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.74 -22.24 -1.50 [14C][18O]2 - [14C]H4(g) -30.70 -33.56 -2.86 [14C]H4 - [14C]O2(g) -15.37 -16.84 -1.47 [14C]O2 - [14C]O[18O](g) -17.75 -19.54 -1.79 [14C]O[18O] - [18O]2(g) -68.64 -70.93 -2.29 [18O]2 + [14C]H4(g) -28.35 -31.21 -2.86 [14C]H4 + [14C]O2(g) -15.38 -16.84 -1.47 [14C]O2 + [14C]O[18O](g) -17.76 -19.54 -1.79 [14C]O[18O] + [18O]2(g) -69.81 -72.10 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.01 -1.85 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.16 3.55 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.95 6.25 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.85 0.85 7.69 Ca[13C]O[18O]2 + Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 + Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 Ca[14C][18O]3(s) -21.90 -13.75 8.15 Ca[14C][18O]3 Ca[14C]O2[18O](s) -16.05 -8.35 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -13.84 -5.65 8.19 Ca[14C]O3 @@ -14723,14 +14628,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.86 -19.72 -2.86 CH4 + CH4(g) -14.51 -17.37 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.28 -13.43 -3.15 H2 + H2(g) -9.69 -12.84 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.63 -65.53 -2.89 O2 - O[18O](g) -65.33 -68.23 -2.89 O[18O] + O2(g) -63.81 -66.70 -2.89 O2 + O[18O](g) -66.51 -69.40 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -14802,39 +14707,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.60e-06 5.60e-06 1.12e-02 - Ca[13C]O2[18O](s) 3.45e-08 3.45e-08 6.90e-05 - Ca[13C]O[18O]2(s) 7.08e-11 7.08e-11 1.42e-07 - Ca[13C][18O]3(s) 4.84e-14 4.84e-14 9.69e-11 - Ca[14C]O3(s) 6.69e-18 6.69e-18 1.34e-14 - Ca[14C]O2[18O](s) 4.12e-20 4.12e-20 8.24e-17 - Ca[14C]O[18O]2(s) 8.46e-23 8.46e-23 1.69e-19 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C]O3(s) 5.50e-06 5.50e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 6.64e-18 6.64e-18 1.33e-14 + Ca[14C]O2[18O](s) 4.09e-20 4.09e-20 8.18e-17 + Ca[14C]O[18O]2(s) 8.39e-23 8.39e-23 1.68e-19 + Ca[14C][18O]3(s) 5.74e-26 5.64e-26 1.15e-22 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9892 permil - R(13C) 1.13613e-02 16.199 permil - R(14C) 1.35308e-14 1.1507 pmc - R(18O) H2O(l) 1.99519e-03 -4.9907 permil + R(18O) 1.99520e-03 -4.9889 permil + R(13C) 1.11620e-02 -1.6299 permil + R(14C) 1.34197e-14 1.1412 pmc + R(18O) H2O(l) 1.99519e-03 -4.9904 permil R(18O) OH- 1.92123e-03 -41.878 permil - R(18O) H3O+ 2.04133e-03 18.017 permil - R(13C) CO2(aq) 1.12800e-02 8.9263 permil - R(14C) CO2(aq) 1.33377e-14 1.1343 pmc - R(18O) CO2(aq) 2.07916e-03 36.883 permil - R(18O) HCO3- 1.99519e-03 -4.9907 permil - R(13C) HCO3- 1.13781e-02 17.704 permil - R(14C) HCO3- 1.35707e-14 1.1541 pmc - R(18O) CO3-2 1.99519e-03 -4.9907 permil - R(13C) CO3-2 1.13618e-02 16.243 permil - R(14C) CO3-2 1.35318e-14 1.1508 pmc - R(13C) CH4(aq) 1.12800e-02 8.9263 permil - R(14C) CH4(aq) 1.33377e-14 1.1343 pmc + R(18O) H3O+ 2.04133e-03 18.018 permil + R(13C) CO2(aq) 1.10821e-02 -8.7748 permil + R(14C) CO2(aq) 1.32282e-14 1.125 pmc + R(18O) CO2(aq) 2.07916e-03 36.884 permil + R(18O) HCO3- 1.99519e-03 -4.9904 permil + R(13C) HCO3- 1.11785e-02 -0.15131 permil + R(14C) HCO3- 1.34593e-14 1.1446 pmc + R(18O) CO3-2 1.99519e-03 -4.9904 permil + R(13C) CO3-2 1.11625e-02 -1.5862 permil + R(14C) CO3-2 1.34207e-14 1.1413 pmc + R(13C) CH4(aq) 1.10821e-02 -8.7748 permil + R(14C) CH4(aq) 1.32282e-14 1.125 pmc R(18O) Calcite 2.05263e-03 23.656 permil - R(13C) Calcite 1.14007e-02 19.72 permil - R(14C) Calcite 1.36246e-14 1.1587 pmc + R(13C) Calcite 1.12006e-02 1.829 permil + R(14C) Calcite 1.35127e-14 1.1491 pmc --------------------------------Isotope Alphas--------------------------------- @@ -14845,14 +14750,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 +Alpha 18O HCO3-/H2O(l) 1 6.6613e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6355e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6852e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 7.1054e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.1102e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 8.8818e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 7.1054e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -14861,158 +14766,158 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 Elements Molality Moles - C 5.839e-03 5.822e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.633e-05 6.614e-05 - [14C] 7.900e-17 7.877e-17 + [13C] 6.518e-05 6.499e-05 + [14C] 7.837e-17 7.814e-17 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.985 Adjusted to redox equilibrium + pe = -2.193 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.839e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.451e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 48 (149 overall) + Iterations = 113 (214 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.355e-19 - CH4 2.355e-19 2.359e-19 -18.628 -18.627 0.001 (0) -C(4) 5.839e-03 - HCO3- 4.702e-03 4.302e-03 -2.328 -2.366 -0.039 (0) - CO2 9.956e-04 9.972e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.930e-05 9.109e-05 -4.003 -4.041 -0.037 (0) - HC[18O]O2- 9.382e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.382e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.382e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - CaCO3 5.459e-06 5.468e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) +C(-4) 1.078e-17 + CH4 1.078e-17 1.080e-17 -16.967 -16.967 0.001 (0) +C(4) 5.840e-03 + HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaCO2[18O] 3.268e-08 3.273e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.676e-08 1.174e-08 -7.776 -7.930 -0.155 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.930e-05 9.109e-05 -4.003 -4.041 -0.037 (0) - CaCO3 5.459e-06 5.468e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.130e-06 1.036e-06 -5.947 -5.984 -0.037 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - Ca[13C]O3 6.203e-08 6.213e-08 -7.207 -7.207 0.001 (0) - CaCO2[18O] 3.268e-08 3.273e-08 -7.486 -7.485 0.001 (0) -H(0) 1.399e-13 - H2 6.995e-14 7.006e-14 -13.155 -13.155 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 3.639e-13 + H2 1.819e-13 1.822e-13 -12.740 -12.739 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.073 -66.073 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.472 -68.472 0.001 (0) -[13C](-4) 2.657e-21 - [13C]H4 2.657e-21 2.661e-21 -20.576 -20.575 0.001 (0) -[13C](4) 6.633e-05 - H[13C]O3- 5.351e-05 4.895e-05 -4.272 -4.310 -0.039 (0) - [13C]O2 1.123e-05 1.125e-05 -4.950 -4.949 0.001 (0) - CaH[13C]O3+ 1.130e-06 1.036e-06 -5.947 -5.984 -0.037 (0) - H[13C][18O]O2- 1.068e-07 9.767e-08 -6.972 -7.010 -0.039 (0) - H[13C]O2[18O]- 1.068e-07 9.767e-08 -6.972 -7.010 -0.039 (0) - H[13C]O[18O]O- 1.068e-07 9.767e-08 -6.972 -7.010 -0.039 (0) - Ca[13C]O3 6.203e-08 6.213e-08 -7.207 -7.207 0.001 (0) - [13C]O[18O] 4.670e-08 4.678e-08 -7.331 -7.330 0.001 (0) - [13C]O3-2 3.182e-08 2.229e-08 -7.497 -7.652 -0.155 (0) - CaH[13C]O[18O]O+ 2.254e-09 2.068e-09 -8.647 -8.684 -0.037 (0) - CaH[13C][18O]O2+ 2.254e-09 2.068e-09 -8.647 -8.684 -0.037 (0) - CaH[13C]O2[18O]+ 2.254e-09 2.068e-09 -8.647 -8.684 -0.037 (0) - Ca[13C]O2[18O] 3.713e-10 3.719e-10 -9.430 -9.430 0.001 (0) - H[13C][18O]O[18O]- 2.130e-10 1.949e-10 -9.672 -9.710 -0.039 (0) - H[13C]O[18O]2- 2.130e-10 1.949e-10 -9.672 -9.710 -0.039 (0) - H[13C][18O]2O- 2.130e-10 1.949e-10 -9.672 -9.710 -0.039 (0) - [13C]O2[18O]-2 1.905e-10 1.334e-10 -9.720 -9.875 -0.155 (0) -[14C](-4) 3.141e-33 - [14C]H4 3.141e-33 3.147e-33 -32.503 -32.502 0.001 (0) -[14C](4) 7.900e-17 - H[14C]O3- 6.382e-17 5.838e-17 -16.195 -16.234 -0.039 (0) - [14C]O2 1.328e-17 1.330e-17 -16.877 -16.876 0.001 (0) - CaH[14C]O3+ 1.348e-18 1.236e-18 -17.870 -17.908 -0.037 (0) - H[14C][18O]O2- 1.273e-19 1.165e-19 -18.895 -18.934 -0.039 (0) - H[14C]O2[18O]- 1.273e-19 1.165e-19 -18.895 -18.934 -0.039 (0) - H[14C]O[18O]O- 1.273e-19 1.165e-19 -18.895 -18.934 -0.039 (0) - Ca[14C]O3 7.388e-20 7.400e-20 -19.131 -19.131 0.001 (0) - [14C]O[18O] 5.522e-20 5.531e-20 -19.258 -19.257 0.001 (0) - [14C]O3-2 3.790e-20 2.655e-20 -19.421 -19.576 -0.155 (0) - CaH[14C]O[18O]O+ 2.689e-21 2.466e-21 -20.570 -20.608 -0.037 (0) - CaH[14C]O2[18O]+ 2.689e-21 2.466e-21 -20.570 -20.608 -0.037 (0) - CaH[14C][18O]O2+ 2.689e-21 2.466e-21 -20.570 -20.608 -0.037 (0) - Ca[14C]O2[18O] 4.422e-22 4.429e-22 -21.354 -21.354 0.001 (0) - H[14C]O[18O]2- 2.540e-22 2.324e-22 -21.595 -21.634 -0.039 (0) - H[14C][18O]O[18O]- 2.540e-22 2.324e-22 -21.595 -21.634 -0.039 (0) - H[14C][18O]2O- 2.540e-22 2.324e-22 -21.595 -21.634 -0.039 (0) - [14C]O2[18O]-2 2.268e-22 1.589e-22 -21.644 -21.799 -0.155 (0) + O2 0.000e+00 0.000e+00 -66.904 -66.903 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.303 -69.302 0.001 (0) +[13C](-4) 1.195e-19 + [13C]H4 1.195e-19 1.197e-19 -18.923 -18.922 0.001 (0) +[13C](4) 6.518e-05 + H[13C]O3- 5.258e-05 4.810e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.589e-08 4.596e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.127e-08 2.190e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 1.426e-31 + [14C]H4 1.426e-31 1.428e-31 -30.846 -30.845 0.001 (0) +[14C](4) 7.837e-17 + H[14C]O3- 6.330e-17 5.792e-17 -16.199 -16.237 -0.039 (0) + [14C]O2 1.317e-17 1.319e-17 -16.880 -16.880 0.001 (0) + CaH[14C]O3+ 1.337e-18 1.226e-18 -17.874 -17.911 -0.037 (0) + H[14C]O2[18O]- 1.263e-19 1.156e-19 -18.899 -18.937 -0.039 (0) + H[14C]O[18O]O- 1.263e-19 1.156e-19 -18.899 -18.937 -0.039 (0) + H[14C][18O]O2- 1.263e-19 1.156e-19 -18.899 -18.937 -0.039 (0) + Ca[14C]O3 7.328e-20 7.340e-20 -19.135 -19.134 0.001 (0) + [14C]O[18O] 5.478e-20 5.487e-20 -19.261 -19.261 0.001 (0) + [14C]O3-2 3.759e-20 2.634e-20 -19.425 -19.579 -0.155 (0) + CaH[14C]O2[18O]+ 2.667e-21 2.447e-21 -20.574 -20.611 -0.037 (0) + CaH[14C]O[18O]O+ 2.667e-21 2.447e-21 -20.574 -20.611 -0.037 (0) + CaH[14C][18O]O2+ 2.667e-21 2.447e-21 -20.574 -20.611 -0.037 (0) + Ca[14C]O2[18O] 4.386e-22 4.394e-22 -21.358 -21.357 0.001 (0) + H[14C]O[18O]2- 2.520e-22 2.306e-22 -21.599 -21.637 -0.039 (0) + H[14C][18O]2O- 2.520e-22 2.306e-22 -21.599 -21.637 -0.039 (0) + H[14C][18O]O[18O]- 2.520e-22 2.306e-22 -21.599 -21.637 -0.039 (0) + [14C]O2[18O]-2 2.250e-22 1.576e-22 -21.648 -21.802 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.382e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.382e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.382e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.472 -68.472 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.473 -71.473 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.303 -69.302 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.304 -72.303 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.85 -10.35 -1.50 [13C][18O]2 - [13C]H4(g) -17.71 -20.57 -2.86 [13C]H4 - [13C]O2(g) -3.48 -4.95 -1.47 [13C]O2 - [13C]O[18O](g) -5.86 -7.65 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.77 -22.28 -1.50 [14C][18O]2 - [14C]H4(g) -29.64 -32.50 -2.86 [14C]H4 + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -16.06 -18.92 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] + [14C][18O]2(g) -20.78 -22.28 -1.50 [14C][18O]2 + [14C]H4(g) -27.99 -30.85 -2.86 [14C]H4 [14C]O2(g) -15.41 -16.88 -1.47 [14C]O2 [14C]O[18O](g) -17.79 -19.58 -1.79 [14C]O[18O] - [18O]2(g) -69.18 -71.47 -2.29 [18O]2 + [18O]2(g) -70.01 -72.30 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.01 -1.85 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.16 3.55 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.95 6.25 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.85 0.85 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.94 -13.78 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.08 -8.38 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.87 -5.68 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.77 -11.08 7.69 Ca[14C]O[18O]2 + Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 + Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -21.94 -13.79 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -16.09 -8.39 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -13.88 -5.69 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -18.78 -11.09 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.77 -18.63 -2.86 CH4 + CH4(g) -14.11 -16.97 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.00 -13.15 -3.15 H2 + H2(g) -9.59 -12.74 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.18 -66.07 -2.89 O2 - O[18O](g) -65.88 -68.77 -2.89 O[18O] + O2(g) -64.01 -66.90 -2.89 O2 + O[18O](g) -66.71 -69.60 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -15036,6 +14941,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 60. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -15078,39 +14989,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.59e-06 5.59e-06 1.12e-02 - Ca[13C]O2[18O](s) 3.44e-08 3.44e-08 6.89e-05 - Ca[13C]O[18O]2(s) 7.07e-11 7.07e-11 1.41e-07 - Ca[13C][18O]3(s) 4.84e-14 4.84e-14 9.68e-11 - Ca[14C]O3(s) 6.17e-18 6.17e-18 1.23e-14 - Ca[14C]O2[18O](s) 3.80e-20 3.80e-20 7.60e-17 - Ca[14C]O[18O]2(s) 1.01e-27 1.01e-29 2.02e-24 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C]O3(s) 5.50e-06 5.50e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 6.12e-18 6.12e-18 1.22e-14 + Ca[14C]O2[18O](s) 3.77e-20 3.77e-20 7.53e-17 + Ca[14C]O[18O]2(s) 7.73e-23 7.73e-23 1.55e-19 + Ca[14C][18O]3(s) 5.29e-26 5.19e-26 1.06e-22 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9891 permil - R(13C) 1.13459e-02 14.818 permil - R(14C) 1.24648e-14 1.06 pmc - R(18O) H2O(l) 1.99519e-03 -4.9906 permil + R(18O) 1.99520e-03 -4.9887 permil + R(13C) 1.11622e-02 -1.6109 permil + R(14C) 1.23626e-14 1.0513 pmc + R(18O) H2O(l) 1.99519e-03 -4.9902 permil R(18O) OH- 1.92123e-03 -41.878 permil - R(18O) H3O+ 2.04133e-03 18.017 permil - R(13C) CO2(aq) 1.12647e-02 7.5551 permil - R(14C) CO2(aq) 1.22869e-14 1.0449 pmc - R(18O) CO2(aq) 2.07916e-03 36.883 permil - R(18O) HCO3- 1.99519e-03 -4.9906 permil - R(13C) HCO3- 1.13627e-02 16.321 permil - R(14C) HCO3- 1.25016e-14 1.0632 pmc - R(18O) CO3-2 1.99519e-03 -4.9906 permil - R(13C) CO3-2 1.13464e-02 14.862 permil - R(14C) CO3-2 1.24657e-14 1.0601 pmc - R(13C) CH4(aq) 1.12647e-02 7.5551 permil - R(14C) CH4(aq) 1.22869e-14 1.0449 pmc - R(18O) Calcite 2.05263e-03 23.656 permil - R(13C) Calcite 1.13852e-02 18.334 permil - R(14C) Calcite 1.25510e-14 1.0674 pmc + R(18O) H3O+ 2.04133e-03 18.018 permil + R(13C) CO2(aq) 1.10823e-02 -8.756 permil + R(14C) CO2(aq) 1.21861e-14 1.0363 pmc + R(18O) CO2(aq) 2.07916e-03 36.884 permil + R(18O) HCO3- 1.99519e-03 -4.9902 permil + R(13C) HCO3- 1.11787e-02 -0.13228 permil + R(14C) HCO3- 1.23991e-14 1.0544 pmc + R(18O) CO3-2 1.99519e-03 -4.9902 permil + R(13C) CO3-2 1.11627e-02 -1.5672 permil + R(14C) CO3-2 1.23635e-14 1.0514 pmc + R(13C) CH4(aq) 1.10823e-02 -8.756 permil + R(14C) CH4(aq) 1.21861e-14 1.0363 pmc + R(18O) Calcite 2.05264e-03 23.656 permil + R(13C) Calcite 1.12009e-02 1.8481 permil + R(14C) Calcite 1.24483e-14 1.0586 pmc --------------------------------Isotope Alphas--------------------------------- @@ -15121,159 +15032,159 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.1102e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.4385e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6618e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7426e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 7.1054e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -2.9976e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -3.7748e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 4.4409e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.269 21.282 +Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 5.839e-03 5.822e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.625e-05 6.605e-05 - [14C] 7.278e-17 7.257e-17 + [13C] 6.518e-05 6.499e-05 + [14C] 7.219e-17 7.198e-17 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.708 Adjusted to redox equilibrium + pe = -2.201 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.839e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.451e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 44 + Iterations = 128 (229 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.432e-21 - CH4 1.432e-21 1.435e-21 -20.844 -20.843 0.001 (0) -C(4) 5.839e-03 - HCO3- 4.703e-03 4.302e-03 -2.328 -2.366 -0.039 (0) - CO2 9.956e-04 9.972e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.930e-05 9.109e-05 -4.003 -4.041 -0.037 (0) - HCO2[18O]- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - CaCO3 5.459e-06 5.468e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) +C(-4) 1.246e-17 + CH4 1.246e-17 1.248e-17 -16.905 -16.904 0.001 (0) +C(4) 5.840e-03 + HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaCO2[18O] 3.268e-08 3.273e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.676e-08 1.174e-08 -7.776 -7.930 -0.155 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.930e-05 9.109e-05 -4.003 -4.041 -0.037 (0) - CaCO3 5.459e-06 5.468e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.128e-06 1.035e-06 -5.948 -5.985 -0.037 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - Ca[13C]O3 6.195e-08 6.205e-08 -7.208 -7.207 0.001 (0) - CaCO2[18O] 3.268e-08 3.273e-08 -7.486 -7.485 0.001 (0) -H(0) 3.907e-14 - H2 1.953e-14 1.956e-14 -13.709 -13.709 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 3.772e-13 + H2 1.886e-13 1.889e-13 -12.724 -12.724 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.965 -64.965 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.364 -67.364 0.001 (0) -[13C](-4) 1.613e-23 - [13C]H4 1.613e-23 1.616e-23 -22.792 -22.792 0.001 (0) -[13C](4) 6.625e-05 - H[13C]O3- 5.343e-05 4.888e-05 -4.272 -4.311 -0.039 (0) - [13C]O2 1.122e-05 1.123e-05 -4.950 -4.949 0.001 (0) - CaH[13C]O3+ 1.128e-06 1.035e-06 -5.948 -5.985 -0.037 (0) - H[13C]O2[18O]- 1.066e-07 9.753e-08 -6.972 -7.011 -0.039 (0) - H[13C]O[18O]O- 1.066e-07 9.753e-08 -6.972 -7.011 -0.039 (0) - H[13C][18O]O2- 1.066e-07 9.753e-08 -6.972 -7.011 -0.039 (0) - Ca[13C]O3 6.195e-08 6.205e-08 -7.208 -7.207 0.001 (0) - [13C]O[18O] 4.664e-08 4.671e-08 -7.331 -7.331 0.001 (0) - [13C]O3-2 3.178e-08 2.226e-08 -7.498 -7.652 -0.155 (0) - CaH[13C][18O]O2+ 2.251e-09 2.065e-09 -8.648 -8.685 -0.037 (0) - CaH[13C]O2[18O]+ 2.251e-09 2.065e-09 -8.648 -8.685 -0.037 (0) - CaH[13C]O[18O]O+ 2.251e-09 2.065e-09 -8.648 -8.685 -0.037 (0) - Ca[13C]O2[18O] 3.708e-10 3.714e-10 -9.431 -9.430 0.001 (0) - H[13C][18O]O[18O]- 2.127e-10 1.946e-10 -9.672 -9.711 -0.039 (0) - H[13C]O[18O]2- 2.127e-10 1.946e-10 -9.672 -9.711 -0.039 (0) - H[13C][18O]2O- 2.127e-10 1.946e-10 -9.672 -9.711 -0.039 (0) - [13C]O2[18O]-2 1.902e-10 1.332e-10 -9.721 -9.875 -0.155 (0) -[14C](-4) 1.760e-35 - [14C]H4 1.760e-35 1.763e-35 -34.755 -34.754 0.001 (0) -[14C](4) 7.278e-17 - H[14C]O3- 5.879e-17 5.378e-17 -16.231 -16.269 -0.039 (0) - [14C]O2 1.223e-17 1.225e-17 -16.912 -16.912 0.001 (0) - CaH[14C]O3+ 1.241e-18 1.139e-18 -17.906 -17.944 -0.037 (0) - H[14C][18O]O2- 1.173e-19 1.073e-19 -18.931 -18.969 -0.039 (0) - H[14C]O2[18O]- 1.173e-19 1.073e-19 -18.931 -18.969 -0.039 (0) - H[14C]O[18O]O- 1.173e-19 1.073e-19 -18.931 -18.969 -0.039 (0) - Ca[14C]O3 6.806e-20 6.817e-20 -19.167 -19.166 0.001 (0) - [14C]O[18O] 5.087e-20 5.095e-20 -19.294 -19.293 0.001 (0) - [14C]O3-2 3.491e-20 2.446e-20 -19.457 -19.612 -0.155 (0) - CaH[14C]O[18O]O+ 2.477e-21 2.272e-21 -20.606 -20.644 -0.037 (0) - CaH[14C]O2[18O]+ 2.477e-21 2.272e-21 -20.606 -20.644 -0.037 (0) - CaH[14C][18O]O2+ 2.477e-21 2.272e-21 -20.606 -20.644 -0.037 (0) - Ca[14C]O2[18O] 4.074e-22 4.080e-22 -21.390 -21.389 0.001 (0) - H[14C][18O]O[18O]- 2.340e-22 2.141e-22 -21.631 -21.669 -0.039 (0) - H[14C][18O]2O- 2.340e-22 2.141e-22 -21.631 -21.669 -0.039 (0) - H[14C]O[18O]2- 2.340e-22 2.141e-22 -21.631 -21.669 -0.039 (0) - [14C]O2[18O]-2 2.090e-22 1.464e-22 -21.680 -21.834 -0.155 (0) + O2 0.000e+00 0.000e+00 -66.935 -66.934 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.334 -69.333 0.001 (0) +[13C](-4) 1.381e-19 + [13C]H4 1.381e-19 1.383e-19 -18.860 -18.859 0.001 (0) +[13C](4) 6.518e-05 + H[13C]O3- 5.258e-05 4.810e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.127e-08 2.190e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 1.518e-31 + [14C]H4 1.518e-31 1.521e-31 -30.819 -30.818 0.001 (0) +[14C](4) 7.219e-17 + H[14C]O3- 5.832e-17 5.335e-17 -16.234 -16.273 -0.039 (0) + [14C]O2 1.213e-17 1.215e-17 -16.916 -16.915 0.001 (0) + CaH[14C]O3+ 1.231e-18 1.130e-18 -17.910 -17.947 -0.037 (0) + H[14C]O2[18O]- 1.164e-19 1.065e-19 -18.934 -18.973 -0.039 (0) + H[14C]O[18O]O- 1.164e-19 1.065e-19 -18.934 -18.973 -0.039 (0) + H[14C][18O]O2- 1.164e-19 1.065e-19 -18.934 -18.973 -0.039 (0) + Ca[14C]O3 6.751e-20 6.762e-20 -19.171 -19.170 0.001 (0) + [14C]O[18O] 5.046e-20 5.054e-20 -19.297 -19.296 0.001 (0) + [14C]O3-2 3.463e-20 2.426e-20 -19.461 -19.615 -0.155 (0) + CaH[14C]O2[18O]+ 2.457e-21 2.254e-21 -20.610 -20.647 -0.037 (0) + CaH[14C]O[18O]O+ 2.457e-21 2.254e-21 -20.610 -20.647 -0.037 (0) + CaH[14C][18O]O2+ 2.457e-21 2.254e-21 -20.610 -20.647 -0.037 (0) + Ca[14C]O2[18O] 4.041e-22 4.048e-22 -21.394 -21.393 0.001 (0) + H[14C]O[18O]2- 2.322e-22 2.124e-22 -21.634 -21.673 -0.039 (0) + H[14C][18O]2O- 2.322e-22 2.124e-22 -21.634 -21.673 -0.039 (0) + H[14C][18O]O[18O]- 2.322e-22 2.124e-22 -21.634 -21.673 -0.039 (0) + [14C]O2[18O]-2 2.073e-22 1.452e-22 -21.683 -21.838 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.817e-07 -6.703 -6.741 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.364 -67.364 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.365 -70.365 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.334 -69.333 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.335 -72.334 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.85 -10.35 -1.50 [13C][18O]2 - [13C]H4(g) -19.93 -22.79 -2.86 [13C]H4 - [13C]O2(g) -3.48 -4.95 -1.47 [13C]O2 - [13C]O[18O](g) -5.86 -7.65 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.81 -22.31 -1.50 [14C][18O]2 - [14C]H4(g) -31.89 -34.75 -2.86 [14C]H4 - [14C]O2(g) -15.44 -16.91 -1.47 [14C]O2 - [14C]O[18O](g) -17.82 -19.61 -1.79 [14C]O[18O] - [18O]2(g) -68.07 -70.36 -2.29 [18O]2 + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -16.00 -18.86 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] + [14C][18O]2(g) -20.81 -22.32 -1.50 [14C][18O]2 + [14C]H4(g) -27.96 -30.82 -2.86 [14C]H4 + [14C]O2(g) -15.45 -16.92 -1.47 [14C]O2 + [14C]O[18O](g) -17.83 -19.62 -1.79 [14C]O[18O] + [18O]2(g) -70.04 -72.33 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.01 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.16 3.55 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.95 6.25 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.85 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.97 -13.82 8.15 Ca[14C][18O]3 + Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 + Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -21.98 -13.82 8.15 Ca[14C][18O]3 Ca[14C]O2[18O](s) -16.12 -8.42 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -13.91 -5.72 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -18.81 -11.12 7.69 Ca[14C]O[18O]2 @@ -15281,14 +15192,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.98 -20.84 -2.86 CH4 + CH4(g) -14.04 -16.90 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.56 -13.71 -3.15 H2 + H2(g) -9.57 -12.72 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.07 -64.96 -2.89 O2 - O[18O](g) -64.77 -67.66 -2.89 O[18O] + O2(g) -64.04 -66.93 -2.89 O2 + O[18O](g) -66.74 -69.63 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -15360,39 +15271,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.59e-06 5.59e-06 1.12e-02 - Ca[13C]O2[18O](s) 3.44e-08 3.44e-08 6.88e-05 - Ca[13C]O[18O]2(s) 7.06e-11 7.06e-11 1.41e-07 - Ca[13C][18O]3(s) 4.83e-14 4.83e-14 9.66e-11 - Ca[14C]O3(s) 5.68e-18 5.68e-18 1.14e-14 - Ca[14C]O2[18O](s) 3.50e-20 3.50e-20 7.00e-17 - Ca[14C]O[18O]2(s) 1.00e-27 0.00e+00 2.00e-24 - Ca[14C][18O]3(s) 1.00e-27 0.00e+00 2.00e-24 + Ca[13C]O3(s) 5.50e-06 5.50e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 5.64e-18 5.64e-18 1.13e-14 + Ca[14C]O2[18O](s) 3.47e-20 3.47e-20 6.94e-17 + Ca[14C]O[18O]2(s) 7.12e-23 7.12e-23 1.42e-19 + Ca[14C][18O]3(s) 4.87e-26 4.77e-26 9.75e-23 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9889 permil - R(13C) 1.13316e-02 13.545 permil - R(14C) 1.14827e-14 0.97652 pmc - R(18O) H2O(l) 1.99519e-03 -4.9904 permil - R(18O) OH- 1.92123e-03 -41.878 permil - R(18O) H3O+ 2.04133e-03 18.017 permil - R(13C) CO2(aq) 1.12505e-02 6.2915 permil - R(14C) CO2(aq) 1.13188e-14 0.96258 pmc + R(18O) 1.99520e-03 -4.9886 permil + R(13C) 1.11624e-02 -1.5934 permil + R(14C) 1.13888e-14 0.96852 pmc + R(18O) H2O(l) 1.99519e-03 -4.9901 permil + R(18O) OH- 1.92123e-03 -41.877 permil + R(18O) H3O+ 2.04133e-03 18.018 permil + R(13C) CO2(aq) 1.10825e-02 -8.7386 permil + R(14C) CO2(aq) 1.12262e-14 0.9547 pmc R(18O) CO2(aq) 2.07916e-03 36.884 permil - R(18O) HCO3- 1.99519e-03 -4.9904 permil - R(13C) HCO3- 1.13484e-02 15.046 permil - R(14C) HCO3- 1.15166e-14 0.9794 pmc - R(18O) CO3-2 1.99519e-03 -4.9904 permil - R(13C) CO3-2 1.13321e-02 13.589 permil - R(14C) CO3-2 1.14836e-14 0.97659 pmc - R(13C) CH4(aq) 1.12505e-02 6.2915 permil - R(14C) CH4(aq) 1.13188e-14 0.96258 pmc - R(18O) Calcite 2.05263e-03 23.656 permil - R(13C) Calcite 1.13709e-02 17.057 permil - R(14C) Calcite 1.15622e-14 0.98327 pmc + R(18O) HCO3- 1.99519e-03 -4.9901 permil + R(13C) HCO3- 1.11789e-02 -0.11474 permil + R(14C) HCO3- 1.14224e-14 0.97139 pmc + R(18O) CO3-2 1.99519e-03 -4.9901 permil + R(13C) CO3-2 1.11629e-02 -1.5497 permil + R(14C) CO3-2 1.13896e-14 0.9686 pmc + R(13C) CH4(aq) 1.10825e-02 -8.7386 permil + R(14C) CH4(aq) 1.12262e-14 0.9547 pmc + R(18O) Calcite 2.05264e-03 23.656 permil + R(13C) Calcite 1.12011e-02 1.8657 permil + R(14C) Calcite 1.14677e-14 0.97524 pmc --------------------------------Isotope Alphas--------------------------------- @@ -15403,174 +15314,174 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.5503e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.507e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5726e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.1102e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.1102e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -8.1046e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -6.2172e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.269 21.282 +Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 5.839e-03 5.822e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.616e-05 6.597e-05 - [14C] 6.705e-17 6.685e-17 + [13C] 6.519e-05 6.500e-05 + [14C] 6.651e-17 6.631e-17 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.830 Adjusted to redox equilibrium + pe = -2.198 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.839e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.451e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 117 (218 overall) + Iterations = 97 (198 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.354e-20 - CH4 1.354e-20 1.356e-20 -19.868 -19.868 0.001 (0) -C(4) 5.839e-03 - HCO3- 4.703e-03 4.302e-03 -2.328 -2.366 -0.039 (0) - CO2 9.956e-04 9.973e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.930e-05 9.110e-05 -4.003 -4.041 -0.037 (0) - HCO[18O]O- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) +C(-4) 1.184e-17 + CH4 1.184e-17 1.185e-17 -16.927 -16.926 0.001 (0) +C(4) 5.840e-03 + HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - CaCO2[18O] 3.268e-08 3.273e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.676e-08 1.174e-08 -7.776 -7.930 -0.155 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.930e-05 9.110e-05 -4.003 -4.041 -0.037 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.127e-06 1.034e-06 -5.948 -5.986 -0.037 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - Ca[13C]O3 6.187e-08 6.197e-08 -7.209 -7.208 0.001 (0) - CaCO2[18O] 3.268e-08 3.273e-08 -7.486 -7.485 0.001 (0) -H(0) 6.850e-14 - H2 3.425e-14 3.431e-14 -13.465 -13.465 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 3.724e-13 + H2 1.862e-13 1.865e-13 -12.730 -12.729 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.453 -65.453 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.852 -67.852 0.001 (0) -[13C](-4) 1.523e-22 - [13C]H4 1.523e-22 1.526e-22 -21.817 -21.816 0.001 (0) -[13C](4) 6.616e-05 - H[13C]O3- 5.337e-05 4.882e-05 -4.273 -4.311 -0.039 (0) - [13C]O2 1.120e-05 1.122e-05 -4.951 -4.950 0.001 (0) - CaH[13C]O3+ 1.127e-06 1.034e-06 -5.948 -5.986 -0.037 (0) - H[13C]O[18O]O- 1.065e-07 9.741e-08 -6.973 -7.011 -0.039 (0) - H[13C][18O]O2- 1.065e-07 9.741e-08 -6.973 -7.011 -0.039 (0) - H[13C]O2[18O]- 1.065e-07 9.741e-08 -6.973 -7.011 -0.039 (0) - Ca[13C]O3 6.187e-08 6.197e-08 -7.209 -7.208 0.001 (0) - [13C]O[18O] 4.658e-08 4.666e-08 -7.332 -7.331 0.001 (0) - [13C]O3-2 3.174e-08 2.223e-08 -7.498 -7.653 -0.155 (0) - CaH[13C]O2[18O]+ 2.248e-09 2.063e-09 -8.648 -8.686 -0.037 (0) - CaH[13C]O[18O]O+ 2.248e-09 2.063e-09 -8.648 -8.686 -0.037 (0) - CaH[13C][18O]O2+ 2.248e-09 2.063e-09 -8.648 -8.686 -0.037 (0) - Ca[13C]O2[18O] 3.703e-10 3.709e-10 -9.431 -9.431 0.001 (0) - H[13C][18O]O[18O]- 2.124e-10 1.944e-10 -9.673 -9.711 -0.039 (0) - H[13C]O[18O]2- 2.124e-10 1.944e-10 -9.673 -9.711 -0.039 (0) - H[13C][18O]2O- 2.124e-10 1.944e-10 -9.673 -9.711 -0.039 (0) - [13C]O2[18O]-2 1.900e-10 1.331e-10 -9.721 -9.876 -0.155 (0) -[14C](-4) 1.533e-34 - [14C]H4 1.533e-34 1.535e-34 -33.815 -33.814 0.001 (0) -[14C](4) 6.705e-17 - H[14C]O3- 5.416e-17 4.955e-17 -16.266 -16.305 -0.039 (0) - [14C]O2 1.127e-17 1.129e-17 -16.948 -16.947 0.001 (0) - CaH[14C]O3+ 1.144e-18 1.049e-18 -17.942 -17.979 -0.037 (0) - H[14C][18O]O2- 1.081e-19 9.886e-20 -18.966 -19.005 -0.039 (0) - H[14C]O2[18O]- 1.081e-19 9.886e-20 -18.966 -19.005 -0.039 (0) - H[14C]O[18O]O- 1.081e-19 9.886e-20 -18.966 -19.005 -0.039 (0) - Ca[14C]O3 6.270e-20 6.280e-20 -19.203 -19.202 0.001 (0) - [14C]O[18O] 4.686e-20 4.694e-20 -19.329 -19.328 0.001 (0) - [14C]O3-2 3.216e-20 2.253e-20 -19.493 -19.647 -0.155 (0) - CaH[14C]O[18O]O+ 2.282e-21 2.093e-21 -20.642 -20.679 -0.037 (0) - CaH[14C]O2[18O]+ 2.282e-21 2.093e-21 -20.642 -20.679 -0.037 (0) - CaH[14C][18O]O2+ 2.282e-21 2.093e-21 -20.642 -20.679 -0.037 (0) - Ca[14C]O2[18O] 3.753e-22 3.759e-22 -21.426 -21.425 0.001 (0) - H[14C][18O]2O- 2.156e-22 1.972e-22 -21.666 -21.705 -0.039 (0) - H[14C]O[18O]2- 2.156e-22 1.972e-22 -21.666 -21.705 -0.039 (0) - H[14C][18O]O[18O]- 2.156e-22 1.972e-22 -21.666 -21.705 -0.039 (0) - [14C]O2[18O]-2 1.925e-22 1.349e-22 -21.716 -21.870 -0.155 (0) + O2 0.000e+00 0.000e+00 -66.924 -66.923 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.323 -69.322 0.001 (0) +[13C](-4) 1.312e-19 + [13C]H4 1.312e-19 1.314e-19 -18.882 -18.881 0.001 (0) +[13C](4) 6.519e-05 + H[13C]O3- 5.258e-05 4.810e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 1.329e-31 + [14C]H4 1.329e-31 1.331e-31 -30.877 -30.876 0.001 (0) +[14C](4) 6.651e-17 + H[14C]O3- 5.372e-17 4.915e-17 -16.270 -16.308 -0.039 (0) + [14C]O2 1.118e-17 1.120e-17 -16.952 -16.951 0.001 (0) + CaH[14C]O3+ 1.134e-18 1.041e-18 -17.945 -17.983 -0.037 (0) + H[14C]O2[18O]- 1.072e-19 9.807e-20 -18.970 -19.008 -0.039 (0) + H[14C]O[18O]O- 1.072e-19 9.807e-20 -18.970 -19.008 -0.039 (0) + H[14C][18O]O2- 1.072e-19 9.807e-20 -18.970 -19.008 -0.039 (0) + Ca[14C]O3 6.219e-20 6.230e-20 -19.206 -19.206 0.001 (0) + [14C]O[18O] 4.649e-20 4.656e-20 -19.333 -19.332 0.001 (0) + [14C]O3-2 3.190e-20 2.235e-20 -19.496 -19.651 -0.155 (0) + CaH[14C]O2[18O]+ 2.264e-21 2.076e-21 -20.645 -20.683 -0.037 (0) + CaH[14C]O[18O]O+ 2.264e-21 2.076e-21 -20.645 -20.683 -0.037 (0) + CaH[14C][18O]O2+ 2.264e-21 2.076e-21 -20.645 -20.683 -0.037 (0) + Ca[14C]O2[18O] 3.723e-22 3.729e-22 -21.429 -21.428 0.001 (0) + H[14C]O[18O]2- 2.139e-22 1.957e-22 -21.670 -21.708 -0.039 (0) + H[14C][18O]2O- 2.139e-22 1.957e-22 -21.670 -21.708 -0.039 (0) + H[14C][18O]O[18O]- 2.139e-22 1.957e-22 -21.670 -21.708 -0.039 (0) + [14C]O2[18O]-2 1.910e-22 1.338e-22 -21.719 -21.874 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.852 -67.852 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.853 -70.853 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.323 -69.322 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.324 -72.323 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.85 -10.35 -1.50 [13C][18O]2 - [13C]H4(g) -18.96 -21.82 -2.86 [13C]H4 - [13C]O2(g) -3.48 -4.95 -1.47 [13C]O2 - [13C]O[18O](g) -5.86 -7.65 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.84 -22.35 -1.50 [14C][18O]2 - [14C]H4(g) -30.95 -33.81 -2.86 [14C]H4 + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -16.02 -18.88 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] + [14C][18O]2(g) -20.85 -22.35 -1.50 [14C][18O]2 + [14C]H4(g) -28.02 -30.88 -2.86 [14C]H4 [14C]O2(g) -15.48 -16.95 -1.47 [14C]O2 [14C]O[18O](g) -17.86 -19.65 -1.79 [14C]O[18O] - [18O]2(g) -68.56 -70.85 -2.29 [18O]2 + [18O]2(g) -70.03 -72.32 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.01 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.16 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.95 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.85 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.01 -13.85 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.16 -8.45 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.94 -5.75 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.84 -11.15 7.69 Ca[14C]O[18O]2 + Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 + Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -22.01 -13.86 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -16.16 -8.46 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -13.95 -5.76 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -18.85 -11.16 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.01 -19.87 -2.86 CH4 + CH4(g) -14.07 -16.93 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.31 -13.46 -3.15 H2 + H2(g) -9.58 -12.73 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.56 -65.45 -2.89 O2 - O[18O](g) -65.26 -68.15 -2.89 O[18O] + O2(g) -64.03 -66.92 -2.89 O2 + O[18O](g) -66.73 -69.62 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -15594,12 +15505,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 62. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -15642,39 +15547,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.58e-06 5.58e-06 1.12e-02 - Ca[13C]O2[18O](s) 3.44e-08 3.44e-08 6.87e-05 - Ca[13C]O[18O]2(s) 7.05e-11 7.05e-11 1.41e-07 - Ca[13C][18O]3(s) 4.83e-14 4.83e-14 9.65e-11 - Ca[14C]O3(s) 5.23e-18 5.23e-18 1.05e-14 - Ca[14C]O2[18O](s) 3.22e-20 3.22e-20 6.45e-17 - Ca[14C]O[18O]2(s) 6.62e-23 6.62e-23 1.32e-19 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C]O3(s) 5.50e-06 5.50e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 5.19e-18 5.19e-18 1.04e-14 + Ca[14C]O2[18O](s) 3.20e-20 3.20e-20 6.39e-17 + Ca[14C]O[18O]2(s) 6.56e-23 6.56e-23 1.31e-19 + Ca[14C][18O]3(s) 4.49e-26 4.39e-26 8.98e-23 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9888 permil - R(13C) 1.13185e-02 12.372 permil - R(14C) 1.05781e-14 0.89958 pmc - R(18O) H2O(l) 1.99519e-03 -4.9903 permil - R(18O) OH- 1.92123e-03 -41.878 permil + R(18O) 1.99520e-03 -4.9885 permil + R(13C) 1.11626e-02 -1.5773 permil + R(14C) 1.04916e-14 0.89223 pmc + R(18O) H2O(l) 1.99519e-03 -4.99 permil + R(18O) OH- 1.92123e-03 -41.877 permil R(18O) H3O+ 2.04133e-03 18.018 permil - R(13C) CO2(aq) 1.12375e-02 5.1272 permil - R(14C) CO2(aq) 1.04271e-14 0.88674 pmc + R(13C) CO2(aq) 1.10827e-02 -8.7226 permil + R(14C) CO2(aq) 1.03419e-14 0.8795 pmc R(18O) CO2(aq) 2.07916e-03 36.884 permil - R(18O) HCO3- 1.99519e-03 -4.9903 permil - R(13C) HCO3- 1.13353e-02 13.872 permil - R(14C) HCO3- 1.06093e-14 0.90224 pmc - R(18O) CO3-2 1.99519e-03 -4.9903 permil - R(13C) CO3-2 1.13190e-02 12.417 permil - R(14C) CO3-2 1.05789e-14 0.89965 pmc - R(13C) CH4(aq) 1.12375e-02 5.1272 permil - R(14C) CH4(aq) 1.04271e-14 0.88674 pmc + R(18O) HCO3- 1.99519e-03 -4.99 permil + R(13C) HCO3- 1.11791e-02 -0.098584 permil + R(14C) HCO3- 1.05226e-14 0.89487 pmc + R(18O) CO3-2 1.99519e-03 -4.99 permil + R(13C) CO3-2 1.11631e-02 -1.5335 permil + R(14C) CO3-2 1.04925e-14 0.8923 pmc + R(13C) CH4(aq) 1.10827e-02 -8.7226 permil + R(14C) CH4(aq) 1.03419e-14 0.8795 pmc R(18O) Calcite 2.05264e-03 23.656 permil - R(13C) Calcite 1.13577e-02 15.88 permil - R(14C) Calcite 1.06514e-14 0.90582 pmc + R(13C) Calcite 1.12012e-02 1.8819 permil + R(14C) Calcite 1.05644e-14 0.89842 pmc --------------------------------Isotope Alphas--------------------------------- @@ -15685,14 +15590,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8137e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.623e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -2.3315e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -6.3283e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.521e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -9.1038e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -15701,143 +15606,143 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 Elements Molality Moles - C 5.839e-03 5.822e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.609e-05 6.589e-05 - [14C] 6.176e-17 6.158e-17 + [13C] 6.519e-05 6.500e-05 + [14C] 6.127e-17 6.109e-17 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.858 Adjusted to redox equilibrium + pe = -2.200 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.839e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 29 (130 overall) + Iterations = 77 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.244e-20 - CH4 2.244e-20 2.248e-20 -19.649 -19.648 0.001 (0) -C(4) 5.839e-03 - HCO3- 4.703e-03 4.302e-03 -2.328 -2.366 -0.039 (0) - CO2 9.956e-04 9.973e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.931e-05 9.110e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) +C(-4) 1.220e-17 + CH4 1.220e-17 1.222e-17 -16.914 -16.913 0.001 (0) +C(4) 5.840e-03 + HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - CaCO2[18O] 3.268e-08 3.273e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.676e-08 1.174e-08 -7.776 -7.930 -0.155 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.931e-05 9.110e-05 -4.003 -4.040 -0.037 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.126e-06 1.033e-06 -5.949 -5.986 -0.037 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - Ca[13C]O3 6.180e-08 6.190e-08 -7.209 -7.208 0.001 (0) - CaCO2[18O] 3.268e-08 3.273e-08 -7.486 -7.485 0.001 (0) -H(0) 7.772e-14 - H2 3.886e-14 3.893e-14 -13.410 -13.410 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 3.753e-13 + H2 1.876e-13 1.880e-13 -12.727 -12.726 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.563 -65.562 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.962 -67.961 0.001 (0) -[13C](-4) 2.522e-22 - [13C]H4 2.522e-22 2.526e-22 -21.598 -21.597 0.001 (0) -[13C](4) 6.609e-05 - H[13C]O3- 5.331e-05 4.877e-05 -4.273 -4.312 -0.039 (0) - [13C]O2 1.119e-05 1.121e-05 -4.951 -4.951 0.001 (0) - CaH[13C]O3+ 1.126e-06 1.033e-06 -5.949 -5.986 -0.037 (0) - H[13C][18O]O2- 1.064e-07 9.730e-08 -6.973 -7.012 -0.039 (0) - H[13C]O2[18O]- 1.064e-07 9.730e-08 -6.973 -7.012 -0.039 (0) - H[13C]O[18O]O- 1.064e-07 9.730e-08 -6.973 -7.012 -0.039 (0) - Ca[13C]O3 6.180e-08 6.190e-08 -7.209 -7.208 0.001 (0) - [13C]O[18O] 4.653e-08 4.660e-08 -7.332 -7.332 0.001 (0) - [13C]O3-2 3.170e-08 2.221e-08 -7.499 -7.653 -0.155 (0) - CaH[13C]O[18O]O+ 2.246e-09 2.060e-09 -8.649 -8.686 -0.037 (0) - CaH[13C][18O]O2+ 2.246e-09 2.060e-09 -8.649 -8.686 -0.037 (0) - CaH[13C]O2[18O]+ 2.246e-09 2.060e-09 -8.649 -8.686 -0.037 (0) - Ca[13C]O2[18O] 3.699e-10 3.705e-10 -9.432 -9.431 0.001 (0) - H[13C][18O]O[18O]- 2.122e-10 1.941e-10 -9.673 -9.712 -0.039 (0) - H[13C]O[18O]2- 2.122e-10 1.941e-10 -9.673 -9.712 -0.039 (0) - H[13C][18O]2O- 2.122e-10 1.941e-10 -9.673 -9.712 -0.039 (0) - [13C]O2[18O]-2 1.898e-10 1.329e-10 -9.722 -9.876 -0.155 (0) -[14C](-4) 2.340e-34 - [14C]H4 2.340e-34 2.344e-34 -33.631 -33.630 0.001 (0) -[14C](4) 6.176e-17 - H[14C]O3- 4.989e-17 4.565e-17 -16.302 -16.341 -0.039 (0) - [14C]O2 1.038e-17 1.040e-17 -16.984 -16.983 0.001 (0) - CaH[14C]O3+ 1.054e-18 9.665e-19 -17.977 -18.015 -0.037 (0) - H[14C][18O]O2- 9.954e-20 9.107e-20 -19.002 -19.041 -0.039 (0) - H[14C]O2[18O]- 9.954e-20 9.107e-20 -19.002 -19.041 -0.039 (0) - H[14C]O[18O]O- 9.954e-20 9.107e-20 -19.002 -19.041 -0.039 (0) - Ca[14C]O3 5.776e-20 5.785e-20 -19.238 -19.238 0.001 (0) - [14C]O[18O] 4.317e-20 4.324e-20 -19.365 -19.364 0.001 (0) - [14C]O3-2 2.963e-20 2.076e-20 -19.528 -19.683 -0.155 (0) - CaH[14C]O[18O]O+ 2.102e-21 1.928e-21 -20.677 -20.715 -0.037 (0) - CaH[14C]O2[18O]+ 2.102e-21 1.928e-21 -20.677 -20.715 -0.037 (0) - CaH[14C][18O]O2+ 2.102e-21 1.928e-21 -20.677 -20.715 -0.037 (0) - Ca[14C]O2[18O] 3.457e-22 3.463e-22 -21.461 -21.461 0.001 (0) - H[14C]O[18O]2- 1.986e-22 1.817e-22 -21.702 -21.741 -0.039 (0) - H[14C][18O]O[18O]- 1.986e-22 1.817e-22 -21.702 -21.741 -0.039 (0) - H[14C][18O]2O- 1.986e-22 1.817e-22 -21.702 -21.741 -0.039 (0) - [14C]O2[18O]-2 1.773e-22 1.242e-22 -21.751 -21.906 -0.155 (0) + O2 0.000e+00 0.000e+00 -66.931 -66.930 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.330 -69.329 0.001 (0) +[13C](-4) 1.352e-19 + [13C]H4 1.352e-19 1.354e-19 -18.869 -18.868 0.001 (0) +[13C](4) 6.519e-05 + H[13C]O3- 5.258e-05 4.810e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 1.262e-31 + [14C]H4 1.262e-31 1.264e-31 -30.899 -30.898 0.001 (0) +[14C](4) 6.127e-17 + H[14C]O3- 4.949e-17 4.528e-17 -16.305 -16.344 -0.039 (0) + [14C]O2 1.030e-17 1.032e-17 -16.987 -16.987 0.001 (0) + CaH[14C]O3+ 1.045e-18 9.587e-19 -17.981 -18.018 -0.037 (0) + H[14C]O2[18O]- 9.875e-20 9.034e-20 -19.005 -19.044 -0.039 (0) + H[14C]O[18O]O- 9.875e-20 9.034e-20 -19.005 -19.044 -0.039 (0) + H[14C][18O]O2- 9.875e-20 9.034e-20 -19.005 -19.044 -0.039 (0) + Ca[14C]O3 5.729e-20 5.739e-20 -19.242 -19.241 0.001 (0) + [14C]O[18O] 4.282e-20 4.289e-20 -19.368 -19.368 0.001 (0) + [14C]O3-2 2.939e-20 2.059e-20 -19.532 -19.686 -0.155 (0) + CaH[14C]O2[18O]+ 2.085e-21 1.913e-21 -20.681 -20.718 -0.037 (0) + CaH[14C]O[18O]O+ 2.085e-21 1.913e-21 -20.681 -20.718 -0.037 (0) + CaH[14C][18O]O2+ 2.085e-21 1.913e-21 -20.681 -20.718 -0.037 (0) + Ca[14C]O2[18O] 3.429e-22 3.435e-22 -21.465 -21.464 0.001 (0) + H[14C]O[18O]2- 1.970e-22 1.802e-22 -21.705 -21.744 -0.039 (0) + H[14C][18O]2O- 1.970e-22 1.802e-22 -21.705 -21.744 -0.039 (0) + H[14C][18O]O[18O]- 1.970e-22 1.802e-22 -21.705 -21.744 -0.039 (0) + [14C]O2[18O]-2 1.759e-22 1.232e-22 -21.755 -21.909 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.962 -67.961 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.963 -70.962 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.330 -69.329 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.331 -72.330 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.85 -10.35 -1.50 [13C][18O]2 - [13C]H4(g) -18.74 -21.60 -2.86 [13C]H4 - [13C]O2(g) -3.48 -4.95 -1.47 [13C]O2 - [13C]O[18O](g) -5.86 -7.65 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.88 -22.38 -1.50 [14C][18O]2 - [14C]H4(g) -30.77 -33.63 -2.86 [14C]H4 - [14C]O2(g) -15.51 -16.98 -1.47 [14C]O2 - [14C]O[18O](g) -17.90 -19.68 -1.79 [14C]O[18O] - [18O]2(g) -68.67 -70.96 -2.29 [18O]2 + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -16.01 -18.87 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] + [14C][18O]2(g) -20.88 -22.39 -1.50 [14C][18O]2 + [14C]H4(g) -28.04 -30.90 -2.86 [14C]H4 + [14C]O2(g) -15.52 -16.99 -1.47 [14C]O2 + [14C]O[18O](g) -17.90 -19.69 -1.79 [14C]O[18O] + [18O]2(g) -70.04 -72.33 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.16 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.95 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.85 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.04 -13.89 8.15 Ca[14C][18O]3 + Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -22.05 -13.89 8.15 Ca[14C][18O]3 Ca[14C]O2[18O](s) -16.19 -8.49 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -13.98 -5.79 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -18.88 -11.19 7.69 Ca[14C]O[18O]2 @@ -15845,14 +15750,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.79 -19.65 -2.86 CH4 + CH4(g) -14.05 -16.91 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.26 -13.41 -3.15 H2 + H2(g) -9.58 -12.73 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.67 -65.56 -2.89 O2 - O[18O](g) -65.37 -68.26 -2.89 O[18O] + O2(g) -64.04 -66.93 -2.89 O2 + O[18O](g) -66.74 -69.63 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -15924,39 +15829,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.57e-06 5.57e-06 1.11e-02 - Ca[13C]O2[18O](s) 3.43e-08 3.43e-08 6.87e-05 - Ca[13C]O[18O]2(s) 7.05e-11 7.05e-11 1.41e-07 - Ca[13C][18O]3(s) 4.82e-14 4.82e-14 9.64e-11 - Ca[14C]O3(s) 4.82e-18 4.82e-18 9.64e-15 - Ca[14C]O2[18O](s) 2.97e-20 2.97e-20 5.94e-17 - Ca[14C]O[18O]2(s) 1.01e-27 1.01e-29 2.02e-24 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C]O3(s) 5.50e-06 5.50e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 4.78e-18 4.78e-18 9.57e-15 + Ca[14C]O2[18O](s) 2.95e-20 2.95e-20 5.89e-17 + Ca[14C]O[18O]2(s) 6.05e-23 6.05e-23 1.21e-19 + Ca[14C][18O]3(s) 4.14e-26 4.04e-26 8.27e-23 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9886 permil - R(13C) 1.13064e-02 11.292 permil - R(14C) 9.74471e-15 0.82871 pmc - R(18O) H2O(l) 1.99519e-03 -4.9902 permil - R(18O) OH- 1.92123e-03 -41.878 permil + R(18O) 1.99520e-03 -4.9883 permil + R(13C) 1.11627e-02 -1.5624 permil + R(14C) 9.66519e-15 0.82195 pmc + R(18O) H2O(l) 1.99519e-03 -4.9898 permil + R(18O) OH- 1.92123e-03 -41.877 permil R(18O) H3O+ 2.04133e-03 18.018 permil - R(13C) CO2(aq) 1.12255e-02 4.0543 permil - R(14C) CO2(aq) 9.60563e-15 0.81688 pmc + R(13C) CO2(aq) 1.10828e-02 -8.7078 permil + R(14C) CO2(aq) 9.52725e-15 0.81022 pmc R(18O) CO2(aq) 2.07916e-03 36.884 permil - R(18O) HCO3- 1.99519e-03 -4.9902 permil - R(13C) HCO3- 1.13232e-02 12.789 permil - R(14C) HCO3- 9.77349e-15 0.83116 pmc - R(18O) CO3-2 1.99519e-03 -4.9902 permil - R(13C) CO3-2 1.13069e-02 11.336 permil - R(14C) CO3-2 9.74546e-15 0.82877 pmc - R(13C) CH4(aq) 1.12255e-02 4.0543 permil - R(14C) CH4(aq) 9.60563e-15 0.81688 pmc - R(18O) Calcite 2.05264e-03 23.656 permil - R(13C) Calcite 1.13456e-02 14.795 permil - R(14C) Calcite 9.81212e-15 0.83444 pmc + R(18O) HCO3- 1.99519e-03 -4.9898 permil + R(13C) HCO3- 1.11793e-02 -0.083693 permil + R(14C) HCO3- 9.69374e-15 0.82438 pmc + R(18O) CO3-2 1.99519e-03 -4.9898 permil + R(13C) CO3-2 1.11632e-02 -1.5187 permil + R(14C) CO3-2 9.66594e-15 0.82201 pmc + R(13C) CH4(aq) 1.10828e-02 -8.7078 permil + R(14C) CH4(aq) 9.52725e-15 0.81022 pmc + R(18O) Calcite 2.05264e-03 23.657 permil + R(13C) Calcite 1.12014e-02 1.8968 permil + R(14C) Calcite 9.73218e-15 0.82765 pmc --------------------------------Isotope Alphas--------------------------------- @@ -15967,174 +15872,174 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.678e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6628e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.1102e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 3.3307e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -3.3307e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.1213e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.269 21.282 +Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 5.839e-03 5.822e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.602e-05 6.583e-05 - [14C] 5.690e-17 5.673e-17 + [13C] 6.519e-05 6.500e-05 + [14C] 5.644e-17 5.628e-17 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.911 Adjusted to redox equilibrium + pe = -2.227 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.839e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 34 (135 overall) + Iterations = 78 (179 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 5.993e-20 - CH4 5.993e-20 6.002e-20 -19.222 -19.222 0.001 (0) -C(4) 5.839e-03 - HCO3- 4.703e-03 4.302e-03 -2.328 -2.366 -0.039 (0) - CO2 9.956e-04 9.973e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.931e-05 9.110e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) +C(-4) 2.004e-17 + CH4 2.004e-17 2.007e-17 -16.698 -16.697 0.001 (0) +C(4) 5.840e-03 + HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - CaCO2[18O] 3.268e-08 3.273e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.676e-08 1.174e-08 -7.776 -7.930 -0.155 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.931e-05 9.110e-05 -4.003 -4.040 -0.037 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.124e-06 1.032e-06 -5.949 -5.987 -0.037 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - Ca[13C]O3 6.173e-08 6.183e-08 -7.209 -7.209 0.001 (0) - CaCO2[18O] 3.268e-08 3.273e-08 -7.486 -7.485 0.001 (0) -H(0) 9.935e-14 - H2 4.968e-14 4.976e-14 -13.304 -13.303 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 4.248e-13 + H2 2.124e-13 2.128e-13 -12.673 -12.672 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.776 -65.775 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.175 -68.174 0.001 (0) -[13C](-4) 6.727e-22 - [13C]H4 6.727e-22 6.738e-22 -21.172 -21.171 0.001 (0) -[13C](4) 6.602e-05 - H[13C]O3- 5.325e-05 4.872e-05 -4.274 -4.312 -0.039 (0) - [13C]O2 1.118e-05 1.120e-05 -4.952 -4.951 0.001 (0) - CaH[13C]O3+ 1.124e-06 1.032e-06 -5.949 -5.987 -0.037 (0) - H[13C]O2[18O]- 1.062e-07 9.720e-08 -6.974 -7.012 -0.039 (0) - H[13C]O[18O]O- 1.062e-07 9.720e-08 -6.974 -7.012 -0.039 (0) - H[13C][18O]O2- 1.062e-07 9.720e-08 -6.974 -7.012 -0.039 (0) - Ca[13C]O3 6.173e-08 6.183e-08 -7.209 -7.209 0.001 (0) - [13C]O[18O] 4.648e-08 4.655e-08 -7.333 -7.332 0.001 (0) - [13C]O3-2 3.167e-08 2.218e-08 -7.499 -7.654 -0.155 (0) - CaH[13C][18O]O2+ 2.244e-09 2.058e-09 -8.649 -8.687 -0.037 (0) - CaH[13C]O2[18O]+ 2.244e-09 2.058e-09 -8.649 -8.687 -0.037 (0) - CaH[13C]O[18O]O+ 2.244e-09 2.058e-09 -8.649 -8.687 -0.037 (0) - Ca[13C]O2[18O] 3.695e-10 3.701e-10 -9.432 -9.432 0.001 (0) - H[13C][18O]O[18O]- 2.120e-10 1.939e-10 -9.674 -9.712 -0.039 (0) - H[13C]O[18O]2- 2.120e-10 1.939e-10 -9.674 -9.712 -0.039 (0) - H[13C][18O]2O- 2.120e-10 1.939e-10 -9.674 -9.712 -0.039 (0) - [13C]O2[18O]-2 1.895e-10 1.328e-10 -9.722 -9.877 -0.155 (0) -[14C](-4) 5.756e-34 - [14C]H4 5.756e-34 5.766e-34 -33.240 -33.239 0.001 (0) -[14C](4) 5.690e-17 - H[14C]O3- 4.596e-17 4.205e-17 -16.338 -16.376 -0.039 (0) - [14C]O2 9.564e-18 9.580e-18 -17.019 -17.019 0.001 (0) - CaH[14C]O3+ 9.706e-19 8.903e-19 -18.013 -18.050 -0.037 (0) - H[14C][18O]O2- 9.170e-20 8.390e-20 -19.038 -19.076 -0.039 (0) - H[14C]O2[18O]- 9.170e-20 8.390e-20 -19.038 -19.076 -0.039 (0) - H[14C]O[18O]O- 9.170e-20 8.390e-20 -19.038 -19.076 -0.039 (0) - Ca[14C]O3 5.321e-20 5.329e-20 -19.274 -19.273 0.001 (0) - [14C]O[18O] 3.977e-20 3.983e-20 -19.400 -19.400 0.001 (0) - [14C]O3-2 2.729e-20 1.912e-20 -19.564 -19.718 -0.155 (0) - CaH[14C]O[18O]O+ 1.936e-21 1.776e-21 -20.713 -20.750 -0.037 (0) - CaH[14C]O2[18O]+ 1.936e-21 1.776e-21 -20.713 -20.750 -0.037 (0) - CaH[14C][18O]O2+ 1.936e-21 1.776e-21 -20.713 -20.750 -0.037 (0) - Ca[14C]O2[18O] 3.185e-22 3.190e-22 -21.497 -21.496 0.001 (0) - H[14C][18O]O[18O]- 1.830e-22 1.674e-22 -21.738 -21.776 -0.039 (0) - H[14C][18O]2O- 1.830e-22 1.674e-22 -21.738 -21.776 -0.039 (0) - H[14C]O[18O]2- 1.830e-22 1.674e-22 -21.738 -21.776 -0.039 (0) - [14C]O2[18O]-2 1.634e-22 1.145e-22 -21.787 -21.941 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.038 -67.038 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.437 -69.437 0.001 (0) +[13C](-4) 2.221e-19 + [13C]H4 2.221e-19 2.224e-19 -18.653 -18.653 0.001 (0) +[13C](4) 6.519e-05 + H[13C]O3- 5.258e-05 4.810e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 1.909e-31 + [14C]H4 1.909e-31 1.912e-31 -30.719 -30.718 0.001 (0) +[14C](4) 5.644e-17 + H[14C]O3- 4.559e-17 4.171e-17 -16.341 -16.380 -0.039 (0) + [14C]O2 9.487e-18 9.503e-18 -17.023 -17.022 0.001 (0) + CaH[14C]O3+ 9.628e-19 8.832e-19 -18.016 -18.054 -0.037 (0) + H[14C]O2[18O]- 9.097e-20 8.322e-20 -19.041 -19.080 -0.039 (0) + H[14C]O[18O]O- 9.097e-20 8.322e-20 -19.041 -19.080 -0.039 (0) + H[14C][18O]O2- 9.097e-20 8.322e-20 -19.041 -19.080 -0.039 (0) + Ca[14C]O3 5.278e-20 5.287e-20 -19.278 -19.277 0.001 (0) + [14C]O[18O] 3.945e-20 3.952e-20 -19.404 -19.403 0.001 (0) + [14C]O3-2 2.708e-20 1.897e-20 -19.567 -19.722 -0.155 (0) + CaH[14C]O2[18O]+ 1.921e-21 1.762e-21 -20.716 -20.754 -0.037 (0) + CaH[14C]O[18O]O+ 1.921e-21 1.762e-21 -20.716 -20.754 -0.037 (0) + CaH[14C][18O]O2+ 1.921e-21 1.762e-21 -20.716 -20.754 -0.037 (0) + Ca[14C]O2[18O] 3.159e-22 3.164e-22 -21.500 -21.500 0.001 (0) + H[14C]O[18O]2- 1.815e-22 1.660e-22 -21.741 -21.780 -0.039 (0) + H[14C][18O]2O- 1.815e-22 1.660e-22 -21.741 -21.780 -0.039 (0) + H[14C][18O]O[18O]- 1.815e-22 1.660e-22 -21.741 -21.780 -0.039 (0) + [14C]O2[18O]-2 1.621e-22 1.135e-22 -21.790 -21.945 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.175 -68.174 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.176 -71.176 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.437 -69.437 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.438 -72.438 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.85 -10.35 -1.50 [13C][18O]2 - [13C]H4(g) -18.31 -21.17 -2.86 [13C]H4 - [13C]O2(g) -3.48 -4.95 -1.47 [13C]O2 - [13C]O[18O](g) -5.86 -7.65 -1.79 [13C]O[18O] + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -15.79 -18.65 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.92 -22.42 -1.50 [14C][18O]2 - [14C]H4(g) -30.38 -33.24 -2.86 [14C]H4 + [14C]H4(g) -27.86 -30.72 -2.86 [14C]H4 [14C]O2(g) -15.55 -17.02 -1.47 [14C]O2 - [14C]O[18O](g) -17.93 -19.72 -1.79 [14C]O[18O] - [18O]2(g) -68.89 -71.18 -2.29 [18O]2 + [14C]O[18O](g) -17.94 -19.72 -1.79 [14C]O[18O] + [18O]2(g) -70.15 -72.44 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.16 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.95 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.85 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.08 -13.92 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.23 -8.52 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.02 -5.82 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.91 -11.22 7.69 Ca[14C]O[18O]2 + Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -22.08 -13.93 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -16.23 -8.53 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -14.02 -5.83 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -18.92 -11.23 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.36 -19.22 -2.86 CH4 + CH4(g) -13.84 -16.70 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.15 -13.30 -3.15 H2 + H2(g) -9.52 -12.67 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.88 -65.78 -2.89 O2 - O[18O](g) -65.58 -68.48 -2.89 O[18O] + O2(g) -64.15 -67.04 -2.89 O2 + O[18O](g) -66.85 -69.74 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -16200,39 +16105,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.57e-06 5.57e-06 1.11e-02 - Ca[13C]O2[18O](s) 3.43e-08 3.43e-08 6.86e-05 - Ca[13C]O[18O]2(s) 7.04e-11 7.04e-11 1.41e-07 - Ca[13C][18O]3(s) 4.82e-14 4.82e-14 9.63e-11 - Ca[14C]O3(s) 4.44e-18 4.44e-18 8.88e-15 - Ca[14C]O2[18O](s) 2.74e-20 2.74e-20 5.47e-17 - Ca[14C]O[18O]2(s) 5.61e-23 5.61e-23 1.12e-19 - Ca[14C][18O]3(s) 1.01e-27 1.00e-29 2.02e-24 + Ca[13C]O3(s) 5.50e-06 5.50e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 4.41e-18 4.41e-18 8.81e-15 + Ca[14C]O2[18O](s) 2.71e-20 2.71e-20 5.43e-17 + Ca[14C]O[18O]2(s) 5.57e-23 5.57e-23 1.11e-19 + Ca[14C][18O]3(s) 3.81e-26 3.71e-26 7.62e-23 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9885 permil - R(13C) 1.12953e-02 10.296 permil - R(14C) 8.97700e-15 0.76342 pmc - R(18O) H2O(l) 1.99519e-03 -4.99 permil + R(18O) 1.99520e-03 -4.9882 permil + R(13C) 1.11629e-02 -1.5487 permil + R(14C) 8.90384e-15 0.7572 pmc + R(18O) H2O(l) 1.99519e-03 -4.9897 permil R(18O) OH- 1.92123e-03 -41.877 permil R(18O) H3O+ 2.04133e-03 18.018 permil - R(13C) CO2(aq) 1.12145e-02 3.0657 permil - R(14C) CO2(aq) 8.84887e-15 0.75253 pmc + R(13C) CO2(aq) 1.10830e-02 -8.6942 permil + R(14C) CO2(aq) 8.77677e-15 0.74639 pmc R(18O) CO2(aq) 2.07916e-03 36.884 permil - R(18O) HCO3- 1.99519e-03 -4.99 permil - R(13C) HCO3- 1.13120e-02 11.792 permil - R(14C) HCO3- 9.00351e-15 0.76568 pmc - R(18O) CO3-2 1.99519e-03 -4.99 permil - R(13C) CO3-2 1.12958e-02 10.34 permil - R(14C) CO3-2 8.97769e-15 0.76348 pmc - R(13C) CH4(aq) 1.12145e-02 3.0657 permil - R(14C) CH4(aq) 8.84887e-15 0.75253 pmc - R(18O) Calcite 2.05264e-03 23.656 permil - R(13C) Calcite 1.13344e-02 13.796 permil - R(14C) Calcite 9.03921e-15 0.76871 pmc + R(18O) HCO3- 1.99519e-03 -4.9897 permil + R(13C) HCO3- 1.11794e-02 -0.06997 permil + R(14C) HCO3- 8.93014e-15 0.75944 pmc + R(18O) CO3-2 1.99519e-03 -4.9897 permil + R(13C) CO3-2 1.11634e-02 -1.505 permil + R(14C) CO3-2 8.90453e-15 0.75726 pmc + R(13C) CH4(aq) 1.10830e-02 -8.6942 permil + R(14C) CH4(aq) 8.77677e-15 0.74639 pmc + R(18O) Calcite 2.05264e-03 23.657 permil + R(13C) Calcite 1.12016e-02 1.9105 permil + R(14C) Calcite 8.96555e-15 0.76245 pmc --------------------------------Isotope Alphas--------------------------------- @@ -16243,14 +16148,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.72e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6089e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 9.992e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 9.77e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 2.2204e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 8.2157e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -16259,158 +16164,158 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 Elements Molality Moles - C 5.839e-03 5.822e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.595e-05 6.576e-05 - [14C] 5.242e-17 5.226e-17 + [13C] 6.519e-05 6.500e-05 + [14C] 5.200e-17 5.184e-17 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.029 Adjusted to redox equilibrium + pe = -2.256 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.839e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 24 + Iterations = 51 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 5.255e-19 - CH4 5.255e-19 5.264e-19 -18.279 -18.279 0.001 (0) -C(4) 5.839e-03 - HCO3- 4.703e-03 4.302e-03 -2.328 -2.366 -0.039 (0) - CO2 9.957e-04 9.973e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.931e-05 9.110e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) +C(-4) 3.407e-17 + CH4 3.407e-17 3.413e-17 -16.468 -16.467 0.001 (0) +C(4) 5.840e-03 + HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - CaCO2[18O] 3.268e-08 3.273e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.676e-08 1.174e-08 -7.776 -7.930 -0.155 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.931e-05 9.110e-05 -4.003 -4.040 -0.037 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.123e-06 1.031e-06 -5.949 -5.987 -0.037 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - Ca[13C]O3 6.167e-08 6.177e-08 -7.210 -7.209 0.001 (0) - CaCO2[18O] 3.268e-08 3.273e-08 -7.486 -7.485 0.001 (0) -H(0) 1.710e-13 - H2 8.549e-14 8.563e-14 -13.068 -13.067 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 4.851e-13 + H2 2.426e-13 2.430e-13 -12.615 -12.614 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.248 -66.247 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.647 -68.646 0.001 (0) -[13C](-4) 5.893e-21 - [13C]H4 5.893e-21 5.903e-21 -20.230 -20.229 0.001 (0) -[13C](4) 6.595e-05 - H[13C]O3- 5.320e-05 4.867e-05 -4.274 -4.313 -0.039 (0) - [13C]O2 1.117e-05 1.118e-05 -4.952 -4.951 0.001 (0) - CaH[13C]O3+ 1.123e-06 1.031e-06 -5.949 -5.987 -0.037 (0) - H[13C]O[18O]O- 1.061e-07 9.711e-08 -6.974 -7.013 -0.039 (0) - H[13C][18O]O2- 1.061e-07 9.711e-08 -6.974 -7.013 -0.039 (0) - H[13C]O2[18O]- 1.061e-07 9.711e-08 -6.974 -7.013 -0.039 (0) - Ca[13C]O3 6.167e-08 6.177e-08 -7.210 -7.209 0.001 (0) - [13C]O[18O] 4.643e-08 4.651e-08 -7.333 -7.332 0.001 (0) - [13C]O3-2 3.164e-08 2.216e-08 -7.500 -7.654 -0.155 (0) - CaH[13C]O2[18O]+ 2.241e-09 2.056e-09 -8.649 -8.687 -0.037 (0) - CaH[13C]O[18O]O+ 2.241e-09 2.056e-09 -8.649 -8.687 -0.037 (0) - CaH[13C][18O]O2+ 2.241e-09 2.056e-09 -8.649 -8.687 -0.037 (0) - Ca[13C]O2[18O] 3.691e-10 3.698e-10 -9.433 -9.432 0.001 (0) - H[13C][18O]O[18O]- 2.118e-10 1.937e-10 -9.674 -9.713 -0.039 (0) - H[13C]O[18O]2- 2.118e-10 1.937e-10 -9.674 -9.713 -0.039 (0) - H[13C][18O]2O- 2.118e-10 1.937e-10 -9.674 -9.713 -0.039 (0) - [13C]O2[18O]-2 1.894e-10 1.327e-10 -9.723 -9.877 -0.155 (0) -[14C](-4) 4.650e-33 - [14C]H4 4.650e-33 4.658e-33 -32.333 -32.332 0.001 (0) -[14C](4) 5.242e-17 - H[14C]O3- 4.234e-17 3.874e-17 -16.373 -16.412 -0.039 (0) - [14C]O2 8.810e-18 8.825e-18 -17.055 -17.054 0.001 (0) - CaH[14C]O3+ 8.941e-19 8.202e-19 -18.049 -18.086 -0.037 (0) - H[14C][18O]O2- 8.448e-20 7.729e-20 -19.073 -19.112 -0.039 (0) - H[14C]O2[18O]- 8.448e-20 7.729e-20 -19.073 -19.112 -0.039 (0) - H[14C]O[18O]O- 8.448e-20 7.729e-20 -19.073 -19.112 -0.039 (0) - Ca[14C]O3 4.902e-20 4.910e-20 -19.310 -19.309 0.001 (0) - [14C]O[18O] 3.664e-20 3.670e-20 -19.436 -19.435 0.001 (0) - [14C]O3-2 2.514e-20 1.761e-20 -19.600 -19.754 -0.155 (0) - CaH[14C]O[18O]O+ 1.784e-21 1.636e-21 -20.749 -20.786 -0.037 (0) - CaH[14C]O2[18O]+ 1.784e-21 1.636e-21 -20.749 -20.786 -0.037 (0) - CaH[14C][18O]O2+ 1.784e-21 1.636e-21 -20.749 -20.786 -0.037 (0) - Ca[14C]O2[18O] 2.934e-22 2.939e-22 -21.533 -21.532 0.001 (0) - H[14C][18O]2O- 1.686e-22 1.542e-22 -21.773 -21.812 -0.039 (0) - H[14C]O[18O]2- 1.686e-22 1.542e-22 -21.773 -21.812 -0.039 (0) - H[14C][18O]O[18O]- 1.686e-22 1.542e-22 -21.773 -21.812 -0.039 (0) - [14C]O2[18O]-2 1.505e-22 1.054e-22 -21.822 -21.977 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.154 -67.153 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.553 -69.552 0.001 (0) +[13C](-4) 3.776e-19 + [13C]H4 3.776e-19 3.782e-19 -18.423 -18.422 0.001 (0) +[13C](4) 6.519e-05 + H[13C]O3- 5.258e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 2.990e-31 + [14C]H4 2.990e-31 2.995e-31 -30.524 -30.524 0.001 (0) +[14C](4) 5.200e-17 + H[14C]O3- 4.200e-17 3.843e-17 -16.377 -16.415 -0.039 (0) + [14C]O2 8.740e-18 8.754e-18 -17.058 -17.058 0.001 (0) + CaH[14C]O3+ 8.870e-19 8.136e-19 -18.052 -18.090 -0.037 (0) + H[14C]O2[18O]- 8.380e-20 7.667e-20 -19.077 -19.115 -0.039 (0) + H[14C]O[18O]O- 8.380e-20 7.667e-20 -19.077 -19.115 -0.039 (0) + H[14C][18O]O2- 8.380e-20 7.667e-20 -19.077 -19.115 -0.039 (0) + Ca[14C]O3 4.862e-20 4.870e-20 -19.313 -19.312 0.001 (0) + [14C]O[18O] 3.634e-20 3.640e-20 -19.440 -19.439 0.001 (0) + [14C]O3-2 2.494e-20 1.747e-20 -19.603 -19.758 -0.155 (0) + CaH[14C]O2[18O]+ 1.770e-21 1.623e-21 -20.752 -20.790 -0.037 (0) + CaH[14C]O[18O]O+ 1.770e-21 1.623e-21 -20.752 -20.790 -0.037 (0) + CaH[14C][18O]O2+ 1.770e-21 1.623e-21 -20.752 -20.790 -0.037 (0) + Ca[14C]O2[18O] 2.910e-22 2.915e-22 -21.536 -21.535 0.001 (0) + H[14C]O[18O]2- 1.672e-22 1.530e-22 -21.777 -21.815 -0.039 (0) + H[14C][18O]2O- 1.672e-22 1.530e-22 -21.777 -21.815 -0.039 (0) + H[14C][18O]O[18O]- 1.672e-22 1.530e-22 -21.777 -21.815 -0.039 (0) + [14C]O2[18O]-2 1.493e-22 1.046e-22 -21.826 -21.981 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.741 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.647 -68.646 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.648 -71.647 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.553 -69.552 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.554 -72.553 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.85 -10.35 -1.50 [13C][18O]2 - [13C]H4(g) -17.37 -20.23 -2.86 [13C]H4 - [13C]O2(g) -3.48 -4.95 -1.47 [13C]O2 - [13C]O[18O](g) -5.86 -7.65 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.95 -22.45 -1.50 [14C][18O]2 - [14C]H4(g) -29.47 -32.33 -2.86 [14C]H4 - [14C]O2(g) -15.59 -17.05 -1.47 [14C]O2 - [14C]O[18O](g) -17.97 -19.75 -1.79 [14C]O[18O] - [18O]2(g) -69.36 -71.65 -2.29 [18O]2 + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -15.56 -18.42 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] + [14C][18O]2(g) -20.95 -22.46 -1.50 [14C][18O]2 + [14C]H4(g) -27.66 -30.52 -2.86 [14C]H4 + [14C]O2(g) -15.59 -17.06 -1.47 [14C]O2 + [14C]O[18O](g) -17.97 -19.76 -1.79 [14C]O[18O] + [18O]2(g) -70.26 -72.55 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.16 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.95 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.85 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.11 -13.96 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.26 -8.56 7.70 Ca[14C]O2[18O] + Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -22.12 -13.96 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -16.27 -8.56 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -14.05 -5.86 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -18.95 -11.26 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.42 -18.28 -2.86 CH4 + CH4(g) -13.61 -16.47 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.92 -13.07 -3.15 H2 + H2(g) -9.46 -12.61 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.35 -66.25 -2.89 O2 - O[18O](g) -66.05 -68.95 -2.89 O[18O] + O2(g) -64.26 -67.15 -2.89 O2 + O[18O](g) -66.96 -69.85 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -16434,6 +16339,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 65. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -16476,39 +16387,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.56e-06 5.56e-06 1.11e-02 - Ca[13C]O2[18O](s) 3.43e-08 3.43e-08 6.85e-05 - Ca[13C]O[18O]2(s) 7.03e-11 7.03e-11 1.41e-07 - Ca[13C][18O]3(s) 4.81e-14 4.81e-14 9.62e-11 - Ca[14C]O3(s) 4.09e-18 4.09e-18 8.18e-15 - Ca[14C]O2[18O](s) 2.52e-20 2.52e-20 5.04e-17 - Ca[14C]O[18O]2(s) 5.17e-23 5.17e-23 1.03e-19 - Ca[14C][18O]3(s) 1.00e-27 0.00e+00 2.00e-24 + Ca[13C]O3(s) 5.50e-06 5.50e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 4.06e-18 4.06e-18 8.12e-15 + Ca[14C]O2[18O](s) 2.50e-20 2.50e-20 5.00e-17 + Ca[14C]O[18O]2(s) 5.13e-23 5.13e-23 1.03e-19 + Ca[14C][18O]3(s) 3.51e-26 3.41e-26 7.02e-23 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9884 permil - R(13C) 1.12851e-02 9.3785 permil - R(14C) 8.26977e-15 0.70328 pmc - R(18O) H2O(l) 1.99519e-03 -4.9899 permil + R(18O) 1.99520e-03 -4.988 permil + R(13C) 1.11630e-02 -1.5361 permil + R(14C) 8.20247e-15 0.69756 pmc + R(18O) H2O(l) 1.99519e-03 -4.9896 permil R(18O) OH- 1.92123e-03 -41.877 permil R(18O) H3O+ 2.04133e-03 18.018 permil - R(13C) CO2(aq) 1.12043e-02 2.1548 permil - R(14C) CO2(aq) 8.15174e-15 0.69324 pmc + R(13C) CO2(aq) 1.10831e-02 -8.6817 permil + R(14C) CO2(aq) 8.08540e-15 0.6876 pmc R(18O) CO2(aq) 2.07916e-03 36.884 permil - R(18O) HCO3- 1.99519e-03 -4.9899 permil - R(13C) HCO3- 1.13018e-02 10.873 permil - R(14C) HCO3- 8.29420e-15 0.70536 pmc - R(18O) CO3-2 1.99519e-03 -4.9899 permil - R(13C) CO3-2 1.12855e-02 9.4227 permil - R(14C) CO3-2 8.27041e-15 0.70333 pmc - R(13C) CH4(aq) 1.12043e-02 2.1548 permil - R(14C) CH4(aq) 8.15174e-15 0.69324 pmc + R(18O) HCO3- 1.99519e-03 -4.9896 permil + R(13C) HCO3- 1.11796e-02 -0.057326 permil + R(14C) HCO3- 8.22670e-15 0.69962 pmc + R(18O) CO3-2 1.99519e-03 -4.9896 permil + R(13C) CO3-2 1.11635e-02 -1.4923 permil + R(14C) CO3-2 8.20310e-15 0.69761 pmc + R(13C) CH4(aq) 1.10831e-02 -8.6817 permil + R(14C) CH4(aq) 8.08540e-15 0.6876 pmc R(18O) Calcite 2.05264e-03 23.657 permil - R(13C) Calcite 1.13242e-02 12.876 permil - R(14C) Calcite 8.32709e-15 0.70815 pmc + R(13C) Calcite 1.12017e-02 1.9232 permil + R(14C) Calcite 8.25932e-15 0.70239 pmc --------------------------------Isotope Alphas--------------------------------- @@ -16519,14 +16430,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7313e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7167e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.5099e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.9096e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -3.3307e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 8.8818e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -16535,142 +16446,142 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 Elements Molality Moles - C 5.839e-03 5.822e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.589e-05 6.570e-05 - [14C] 4.829e-17 4.815e-17 + [13C] 6.519e-05 6.500e-05 + [14C] 4.790e-17 4.776e-17 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.081 Adjusted to redox equilibrium + pe = -2.217 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.839e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 53 + Iterations = 119 (220 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.376e-18 - CH4 1.376e-18 1.378e-18 -17.861 -17.861 0.001 (0) -C(4) 5.839e-03 - HCO3- 4.703e-03 4.302e-03 -2.328 -2.366 -0.039 (0) - CO2 9.957e-04 9.973e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.931e-05 9.110e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) +C(-4) 1.684e-17 + CH4 1.684e-17 1.687e-17 -16.774 -16.773 0.001 (0) +C(4) 5.840e-03 + HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-08 3.273e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.676e-08 1.174e-08 -7.776 -7.930 -0.155 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.931e-05 9.110e-05 -4.003 -4.040 -0.037 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.122e-06 1.030e-06 -5.950 -5.987 -0.037 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.162e-08 6.172e-08 -7.210 -7.210 0.001 (0) - CaCO2[18O] 3.268e-08 3.273e-08 -7.486 -7.485 0.001 (0) -H(0) 2.175e-13 - H2 1.087e-13 1.089e-13 -12.964 -12.963 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 4.068e-13 + H2 2.034e-13 2.037e-13 -12.692 -12.691 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.457 -66.456 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.856 -68.855 0.001 (0) -[13C](-4) 1.542e-20 - [13C]H4 1.542e-20 1.544e-20 -19.812 -19.811 0.001 (0) -[13C](4) 6.589e-05 - H[13C]O3- 5.315e-05 4.863e-05 -4.274 -4.313 -0.039 (0) - [13C]O2 1.116e-05 1.117e-05 -4.953 -4.952 0.001 (0) - CaH[13C]O3+ 1.122e-06 1.030e-06 -5.950 -5.987 -0.037 (0) - H[13C][18O]O2- 1.060e-07 9.702e-08 -6.975 -7.013 -0.039 (0) - H[13C]O2[18O]- 1.060e-07 9.702e-08 -6.975 -7.013 -0.039 (0) - H[13C]O[18O]O- 1.060e-07 9.702e-08 -6.975 -7.013 -0.039 (0) - Ca[13C]O3 6.162e-08 6.172e-08 -7.210 -7.210 0.001 (0) - [13C]O[18O] 4.639e-08 4.647e-08 -7.334 -7.333 0.001 (0) - [13C]O3-2 3.161e-08 2.214e-08 -7.500 -7.655 -0.155 (0) - CaH[13C]O[18O]O+ 2.239e-09 2.054e-09 -8.650 -8.687 -0.037 (0) - CaH[13C][18O]O2+ 2.239e-09 2.054e-09 -8.650 -8.687 -0.037 (0) - CaH[13C]O2[18O]+ 2.239e-09 2.054e-09 -8.650 -8.687 -0.037 (0) - Ca[13C]O2[18O] 3.688e-10 3.694e-10 -9.433 -9.432 0.001 (0) - H[13C][18O]O[18O]- 2.116e-10 1.936e-10 -9.675 -9.713 -0.039 (0) - H[13C]O[18O]2- 2.116e-10 1.936e-10 -9.675 -9.713 -0.039 (0) - H[13C][18O]2O- 2.116e-10 1.936e-10 -9.675 -9.713 -0.039 (0) - [13C]O2[18O]-2 1.892e-10 1.325e-10 -9.723 -9.878 -0.155 (0) -[14C](-4) 1.122e-32 - [14C]H4 1.122e-32 1.123e-32 -31.950 -31.949 0.001 (0) -[14C](4) 4.829e-17 - H[14C]O3- 3.901e-17 3.569e-17 -16.409 -16.448 -0.039 (0) - [14C]O2 8.116e-18 8.130e-18 -17.091 -17.090 0.001 (0) - CaH[14C]O3+ 8.237e-19 7.556e-19 -18.084 -18.122 -0.037 (0) - H[14C][18O]O2- 7.783e-20 7.120e-20 -19.109 -19.148 -0.039 (0) - H[14C]O2[18O]- 7.783e-20 7.120e-20 -19.109 -19.148 -0.039 (0) - H[14C]O[18O]O- 7.783e-20 7.120e-20 -19.109 -19.148 -0.039 (0) - Ca[14C]O3 4.515e-20 4.523e-20 -19.345 -19.345 0.001 (0) - [14C]O[18O] 3.375e-20 3.381e-20 -19.472 -19.471 0.001 (0) - [14C]O3-2 2.316e-20 1.623e-20 -19.635 -19.790 -0.155 (0) - CaH[14C]O[18O]O+ 1.643e-21 1.508e-21 -20.784 -20.822 -0.037 (0) - CaH[14C]O2[18O]+ 1.643e-21 1.508e-21 -20.784 -20.822 -0.037 (0) - CaH[14C][18O]O2+ 1.643e-21 1.508e-21 -20.784 -20.822 -0.037 (0) - Ca[14C]O2[18O] 2.703e-22 2.707e-22 -21.568 -21.567 0.001 (0) - H[14C]O[18O]2- 1.553e-22 1.421e-22 -21.809 -21.848 -0.039 (0) - H[14C][18O]O[18O]- 1.553e-22 1.421e-22 -21.809 -21.848 -0.039 (0) - H[14C][18O]2O- 1.553e-22 1.421e-22 -21.809 -21.848 -0.039 (0) - [14C]O2[18O]-2 1.386e-22 9.713e-23 -21.858 -22.013 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.001 -67.000 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.400 -69.399 0.001 (0) +[13C](-4) 1.866e-19 + [13C]H4 1.866e-19 1.869e-19 -18.729 -18.728 0.001 (0) +[13C](4) 6.519e-05 + H[13C]O3- 5.258e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 1.362e-31 + [14C]H4 1.362e-31 1.364e-31 -30.866 -30.865 0.001 (0) +[14C](4) 4.790e-17 + H[14C]O3- 3.869e-17 3.540e-17 -16.412 -16.451 -0.039 (0) + [14C]O2 8.051e-18 8.065e-18 -17.094 -17.093 0.001 (0) + CaH[14C]O3+ 8.171e-19 7.495e-19 -18.088 -18.125 -0.037 (0) + H[14C]O2[18O]- 7.720e-20 7.063e-20 -19.112 -19.151 -0.039 (0) + H[14C]O[18O]O- 7.720e-20 7.063e-20 -19.112 -19.151 -0.039 (0) + H[14C][18O]O2- 7.720e-20 7.063e-20 -19.112 -19.151 -0.039 (0) + Ca[14C]O3 4.479e-20 4.487e-20 -19.349 -19.348 0.001 (0) + [14C]O[18O] 3.348e-20 3.354e-20 -19.475 -19.475 0.001 (0) + [14C]O3-2 2.298e-20 1.610e-20 -19.639 -19.793 -0.155 (0) + CaH[14C]O2[18O]+ 1.630e-21 1.495e-21 -20.788 -20.825 -0.037 (0) + CaH[14C]O[18O]O+ 1.630e-21 1.495e-21 -20.788 -20.825 -0.037 (0) + CaH[14C][18O]O2+ 1.630e-21 1.495e-21 -20.788 -20.825 -0.037 (0) + Ca[14C]O2[18O] 2.681e-22 2.686e-22 -21.572 -21.571 0.001 (0) + H[14C]O[18O]2- 1.540e-22 1.409e-22 -21.812 -21.851 -0.039 (0) + H[14C][18O]2O- 1.540e-22 1.409e-22 -21.812 -21.851 -0.039 (0) + H[14C][18O]O[18O]- 1.540e-22 1.409e-22 -21.812 -21.851 -0.039 (0) + [14C]O2[18O]-2 1.375e-22 9.635e-23 -21.862 -22.016 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.856 -68.855 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.857 -71.856 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.400 -69.399 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.401 -72.400 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.85 -10.35 -1.50 [13C][18O]2 - [13C]H4(g) -16.95 -19.81 -2.86 [13C]H4 - [13C]O2(g) -3.48 -4.95 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.65 -1.79 [13C]O[18O] + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -15.87 -18.73 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.99 -22.49 -1.50 [14C][18O]2 - [14C]H4(g) -29.09 -31.95 -2.86 [14C]H4 + [14C]H4(g) -28.01 -30.87 -2.86 [14C]H4 [14C]O2(g) -15.62 -17.09 -1.47 [14C]O2 - [14C]O[18O](g) -18.00 -19.79 -1.79 [14C]O[18O] - [18O]2(g) -69.57 -71.86 -2.29 [18O]2 + [14C]O[18O](g) -18.01 -19.79 -1.79 [14C]O[18O] + [18O]2(g) -70.11 -72.40 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.16 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.95 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.85 0.84 7.69 Ca[13C]O[18O]2 + Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 Ca[14C][18O]3(s) -22.15 -14.00 8.15 Ca[14C][18O]3 Ca[14C]O2[18O](s) -16.30 -8.60 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -14.09 -5.90 8.19 Ca[14C]O3 @@ -16679,14 +16590,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.00 -17.86 -2.86 CH4 + CH4(g) -13.91 -16.77 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.81 -12.96 -3.15 H2 + H2(g) -9.54 -12.69 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.56 -66.46 -2.89 O2 - O[18O](g) -66.26 -69.16 -2.89 O[18O] + O2(g) -64.11 -67.00 -2.89 O2 + O[18O](g) -66.81 -69.70 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -16710,6 +16621,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 66. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -16752,39 +16669,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.56e-06 5.56e-06 1.11e-02 - Ca[13C]O2[18O](s) 3.42e-08 3.42e-08 6.85e-05 - Ca[13C]O[18O]2(s) 7.03e-11 7.03e-11 1.41e-07 - Ca[13C][18O]3(s) 4.81e-14 4.81e-14 9.62e-11 - Ca[14C]O3(s) 3.77e-18 3.77e-18 7.54e-15 - Ca[14C]O2[18O](s) 2.32e-20 2.32e-20 4.64e-17 - Ca[14C]O[18O]2(s) 1.01e-27 1.01e-29 2.02e-24 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C]O3(s) 5.50e-06 5.50e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 3.74e-18 3.74e-18 7.48e-15 + Ca[14C]O2[18O](s) 2.30e-20 2.30e-20 4.61e-17 + Ca[14C]O[18O]2(s) 4.73e-23 4.73e-23 9.45e-20 + Ca[14C][18O]3(s) 3.23e-26 3.13e-26 6.47e-23 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9882 permil - R(13C) 1.12756e-02 8.533 permil - R(14C) 7.61828e-15 0.64787 pmc - R(18O) H2O(l) 1.99519e-03 -4.9897 permil + R(18O) 1.99520e-03 -4.9879 permil + R(13C) 1.11632e-02 -1.5245 permil + R(14C) 7.55634e-15 0.64261 pmc + R(18O) H2O(l) 1.99520e-03 -4.9894 permil R(18O) OH- 1.92123e-03 -41.877 permil - R(18O) H3O+ 2.04133e-03 18.018 permil - R(13C) CO2(aq) 1.11949e-02 1.3154 permil - R(14C) CO2(aq) 7.50955e-15 0.63863 pmc - R(18O) CO2(aq) 2.07916e-03 36.884 permil - R(18O) HCO3- 1.99519e-03 -4.9897 permil - R(13C) HCO3- 1.12923e-02 10.027 permil - R(14C) HCO3- 7.64078e-15 0.64979 pmc - R(18O) CO3-2 1.99519e-03 -4.9897 permil - R(13C) CO3-2 1.12761e-02 8.5772 permil - R(14C) CO3-2 7.61887e-15 0.64792 pmc - R(13C) CH4(aq) 1.11949e-02 1.3154 permil - R(14C) CH4(aq) 7.50955e-15 0.63863 pmc + R(18O) H3O+ 2.04133e-03 18.019 permil + R(13C) CO2(aq) 1.10833e-02 -8.6701 permil + R(14C) CO2(aq) 7.44850e-15 0.63344 pmc + R(18O) CO2(aq) 2.07916e-03 36.885 permil + R(18O) HCO3- 1.99520e-03 -4.9894 permil + R(13C) HCO3- 1.11797e-02 -0.045674 permil + R(14C) HCO3- 7.57866e-15 0.64451 pmc + R(18O) CO3-2 1.99520e-03 -4.9894 permil + R(13C) CO3-2 1.11636e-02 -1.4807 permil + R(14C) CO3-2 7.55693e-15 0.64266 pmc + R(13C) CH4(aq) 1.10833e-02 -8.6701 permil + R(14C) CH4(aq) 7.44850e-15 0.63344 pmc R(18O) Calcite 2.05264e-03 23.657 permil - R(13C) Calcite 1.13147e-02 12.027 permil - R(14C) Calcite 7.67098e-15 0.65236 pmc + R(13C) Calcite 1.12018e-02 1.9349 permil + R(14C) Calcite 7.60871e-15 0.64706 pmc --------------------------------Isotope Alphas--------------------------------- @@ -16795,174 +16712,174 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6782e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.785e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -5.218e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -4.996e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 7.1054e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -5.3291e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.269 21.282 +Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 5.839e-03 5.822e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.584e-05 6.565e-05 - [14C] 4.448e-17 4.435e-17 + [13C] 6.519e-05 6.500e-05 + [14C] 4.413e-17 4.400e-17 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.056 Adjusted to redox equilibrium + pe = -2.218 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.839e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 40 + Iterations = 59 (160 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 8.577e-19 - CH4 8.577e-19 8.591e-19 -18.067 -18.066 0.001 (0) -C(4) 5.839e-03 +C(-4) 1.697e-17 + CH4 1.697e-17 1.699e-17 -16.770 -16.770 0.001 (0) +C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) - CO2 9.957e-04 9.973e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.931e-05 9.110e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-08 3.273e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.676e-08 1.174e-08 -7.776 -7.930 -0.155 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.931e-05 9.110e-05 -4.003 -4.040 -0.037 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.121e-06 1.029e-06 -5.950 -5.988 -0.037 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.157e-08 6.167e-08 -7.211 -7.210 0.001 (0) - CaCO2[18O] 3.268e-08 3.273e-08 -7.486 -7.485 0.001 (0) -H(0) 1.932e-13 - H2 9.662e-14 9.678e-14 -13.015 -13.014 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 4.075e-13 + H2 2.038e-13 2.041e-13 -12.691 -12.690 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.354 -66.353 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.753 -68.752 0.001 (0) -[13C](-4) 9.601e-21 - [13C]H4 9.601e-21 9.617e-21 -20.018 -20.017 0.001 (0) -[13C](4) 6.584e-05 - H[13C]O3- 5.311e-05 4.859e-05 -4.275 -4.313 -0.039 (0) - [13C]O2 1.115e-05 1.116e-05 -4.953 -4.952 0.001 (0) - CaH[13C]O3+ 1.121e-06 1.029e-06 -5.950 -5.988 -0.037 (0) - H[13C]O2[18O]- 1.060e-07 9.694e-08 -6.975 -7.014 -0.039 (0) - H[13C]O[18O]O- 1.060e-07 9.694e-08 -6.975 -7.014 -0.039 (0) - H[13C][18O]O2- 1.060e-07 9.694e-08 -6.975 -7.014 -0.039 (0) - Ca[13C]O3 6.157e-08 6.167e-08 -7.211 -7.210 0.001 (0) - [13C]O[18O] 4.635e-08 4.643e-08 -7.334 -7.333 0.001 (0) - [13C]O3-2 3.158e-08 2.212e-08 -7.501 -7.655 -0.155 (0) - CaH[13C][18O]O2+ 2.237e-09 2.053e-09 -8.650 -8.688 -0.037 (0) - CaH[13C]O2[18O]+ 2.237e-09 2.053e-09 -8.650 -8.688 -0.037 (0) - CaH[13C]O[18O]O+ 2.237e-09 2.053e-09 -8.650 -8.688 -0.037 (0) - Ca[13C]O2[18O] 3.685e-10 3.691e-10 -9.434 -9.433 0.001 (0) - H[13C][18O]O[18O]- 2.114e-10 1.934e-10 -9.675 -9.714 -0.039 (0) - H[13C]O[18O]2- 2.114e-10 1.934e-10 -9.675 -9.714 -0.039 (0) - H[13C][18O]2O- 2.114e-10 1.934e-10 -9.675 -9.714 -0.039 (0) - [13C]O2[18O]-2 1.890e-10 1.324e-10 -9.723 -9.878 -0.155 (0) -[14C](-4) 6.441e-33 - [14C]H4 6.441e-33 6.451e-33 -32.191 -32.190 0.001 (0) -[14C](4) 4.448e-17 - H[14C]O3- 3.593e-17 3.287e-17 -16.444 -16.483 -0.039 (0) - [14C]O2 7.477e-18 7.489e-18 -17.126 -17.126 0.001 (0) - CaH[14C]O3+ 7.588e-19 6.961e-19 -18.120 -18.157 -0.037 (0) - H[14C][18O]O2- 7.169e-20 6.559e-20 -19.145 -19.183 -0.039 (0) - H[14C]O2[18O]- 7.169e-20 6.559e-20 -19.145 -19.183 -0.039 (0) - H[14C]O[18O]O- 7.169e-20 6.559e-20 -19.145 -19.183 -0.039 (0) - Ca[14C]O3 4.160e-20 4.167e-20 -19.381 -19.380 0.001 (0) - [14C]O[18O] 3.109e-20 3.114e-20 -19.507 -19.507 0.001 (0) - [14C]O3-2 2.134e-20 1.495e-20 -19.671 -19.825 -0.155 (0) - CaH[14C]O[18O]O+ 1.514e-21 1.389e-21 -20.820 -20.857 -0.037 (0) - CaH[14C]O2[18O]+ 1.514e-21 1.389e-21 -20.820 -20.857 -0.037 (0) - CaH[14C][18O]O2+ 1.514e-21 1.389e-21 -20.820 -20.857 -0.037 (0) - Ca[14C]O2[18O] 2.490e-22 2.494e-22 -21.604 -21.603 0.001 (0) - H[14C][18O]O[18O]- 1.430e-22 1.309e-22 -21.845 -21.883 -0.039 (0) - H[14C][18O]2O- 1.430e-22 1.309e-22 -21.845 -21.883 -0.039 (0) - H[14C]O[18O]2- 1.430e-22 1.309e-22 -21.845 -21.883 -0.039 (0) - [14C]O2[18O]-2 1.277e-22 8.948e-23 -21.894 -22.048 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.002 -67.001 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.401 -69.400 0.001 (0) +[13C](-4) 1.880e-19 + [13C]H4 1.880e-19 1.883e-19 -18.726 -18.725 0.001 (0) +[13C](4) 6.519e-05 + H[13C]O3- 5.258e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 1.264e-31 + [14C]H4 1.264e-31 1.266e-31 -30.898 -30.898 0.001 (0) +[14C](4) 4.413e-17 + H[14C]O3- 3.565e-17 3.261e-17 -16.448 -16.487 -0.039 (0) + [14C]O2 7.417e-18 7.429e-18 -17.130 -17.129 0.001 (0) + CaH[14C]O3+ 7.527e-19 6.905e-19 -18.123 -18.161 -0.037 (0) + H[14C]O2[18O]- 7.112e-20 6.507e-20 -19.148 -19.187 -0.039 (0) + H[14C]O[18O]O- 7.112e-20 6.507e-20 -19.148 -19.187 -0.039 (0) + H[14C][18O]O2- 7.112e-20 6.507e-20 -19.148 -19.187 -0.039 (0) + Ca[14C]O3 4.126e-20 4.133e-20 -19.384 -19.384 0.001 (0) + [14C]O[18O] 3.084e-20 3.089e-20 -19.511 -19.510 0.001 (0) + [14C]O3-2 2.117e-20 1.483e-20 -19.674 -19.829 -0.155 (0) + CaH[14C]O2[18O]+ 1.502e-21 1.378e-21 -20.823 -20.861 -0.037 (0) + CaH[14C]O[18O]O+ 1.502e-21 1.378e-21 -20.823 -20.861 -0.037 (0) + CaH[14C][18O]O2+ 1.502e-21 1.378e-21 -20.823 -20.861 -0.037 (0) + Ca[14C]O2[18O] 2.470e-22 2.474e-22 -21.607 -21.607 0.001 (0) + H[14C]O[18O]2- 1.419e-22 1.298e-22 -21.848 -21.887 -0.039 (0) + H[14C][18O]2O- 1.419e-22 1.298e-22 -21.848 -21.887 -0.039 (0) + H[14C][18O]O[18O]- 1.419e-22 1.298e-22 -21.848 -21.887 -0.039 (0) + [14C]O2[18O]-2 1.267e-22 8.876e-23 -21.897 -22.052 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.753 -68.752 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.754 -71.753 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.401 -69.400 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.402 -72.401 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.85 -10.35 -1.50 [13C][18O]2 - [13C]H4(g) -17.16 -20.02 -2.86 [13C]H4 - [13C]O2(g) -3.48 -4.95 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.65 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.02 -22.53 -1.50 [14C][18O]2 - [14C]H4(g) -29.33 -32.19 -2.86 [14C]H4 + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -15.87 -18.73 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] + [14C][18O]2(g) -21.03 -22.53 -1.50 [14C][18O]2 + [14C]H4(g) -28.04 -30.90 -2.86 [14C]H4 [14C]O2(g) -15.66 -17.13 -1.47 [14C]O2 [14C]O[18O](g) -18.04 -19.83 -1.79 [14C]O[18O] - [18O]2(g) -69.46 -71.75 -2.29 [18O]2 + [18O]2(g) -70.11 -72.40 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.16 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.95 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.85 0.84 7.69 Ca[13C]O[18O]2 + Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 Ca[14C][18O]3(s) -22.19 -14.03 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.33 -8.63 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.12 -5.93 8.19 Ca[14C]O3 + Ca[14C]O2[18O](s) -16.34 -8.63 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -14.13 -5.93 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -19.02 -11.33 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.21 -18.07 -2.86 CH4 + CH4(g) -13.91 -16.77 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.86 -13.01 -3.15 H2 + H2(g) -9.54 -12.69 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.46 -66.35 -2.89 O2 - O[18O](g) -66.16 -69.05 -2.89 O[18O] + O2(g) -64.11 -67.00 -2.89 O2 + O[18O](g) -66.81 -69.70 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -17028,39 +16945,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.56e-06 5.56e-06 1.11e-02 - Ca[13C]O2[18O](s) 3.42e-08 3.42e-08 6.84e-05 - Ca[13C]O[18O]2(s) 7.02e-11 7.02e-11 1.40e-07 - Ca[13C][18O]3(s) 4.80e-14 4.80e-14 9.61e-11 - Ca[14C]O3(s) 3.47e-18 3.47e-18 6.95e-15 - Ca[14C]O2[18O](s) 1.01e-27 1.01e-29 2.02e-24 - Ca[14C]O[18O]2(s) 4.39e-23 4.39e-23 8.78e-20 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C]O3(s) 5.50e-06 5.50e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 3.44e-18 3.44e-18 6.89e-15 + Ca[14C]O2[18O](s) 2.12e-20 2.12e-20 4.24e-17 + Ca[14C]O[18O]2(s) 4.35e-23 4.35e-23 8.71e-20 + Ca[14C][18O]3(s) 2.98e-26 2.88e-26 5.96e-23 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9881 permil - R(13C) 1.12669e-02 7.7539 permil - R(14C) 7.02150e-15 0.59712 pmc - R(18O) H2O(l) 1.99519e-03 -4.9896 permil + R(18O) 1.99520e-03 -4.9878 permil + R(13C) 1.11633e-02 -1.5137 permil + R(14C) 6.96111e-15 0.59199 pmc + R(18O) H2O(l) 1.99520e-03 -4.9893 permil R(18O) OH- 1.92123e-03 -41.877 permil - R(18O) H3O+ 2.04133e-03 18.018 permil - R(13C) CO2(aq) 1.11863e-02 0.54187 permil - R(14C) CO2(aq) 6.92128e-15 0.5886 pmc - R(18O) CO2(aq) 2.07916e-03 36.884 permil - R(18O) HCO3- 1.99519e-03 -4.9896 permil - R(13C) HCO3- 1.12836e-02 9.2465 permil - R(14C) HCO3- 7.04224e-15 0.59889 pmc - R(18O) CO3-2 1.99519e-03 -4.9896 permil - R(13C) CO3-2 1.12674e-02 7.7981 permil - R(14C) CO3-2 7.02204e-15 0.59717 pmc - R(13C) CH4(aq) 1.11863e-02 0.54187 permil - R(14C) CH4(aq) 6.92128e-15 0.5886 pmc + R(18O) H3O+ 2.04133e-03 18.019 permil + R(13C) CO2(aq) 1.10834e-02 -8.6595 permil + R(14C) CO2(aq) 6.86176e-15 0.58354 pmc + R(18O) CO2(aq) 2.07916e-03 36.885 permil + R(18O) HCO3- 1.99520e-03 -4.9893 permil + R(13C) HCO3- 1.11798e-02 -0.034937 permil + R(14C) HCO3- 6.98167e-15 0.59374 pmc + R(18O) CO3-2 1.99520e-03 -4.9893 permil + R(13C) CO3-2 1.11638e-02 -1.47 permil + R(14C) CO3-2 6.96165e-15 0.59203 pmc + R(13C) CH4(aq) 1.10834e-02 -8.6595 permil + R(14C) CH4(aq) 6.86176e-15 0.58354 pmc R(18O) Calcite 2.05264e-03 23.657 permil - R(13C) Calcite 1.13059e-02 11.245 permil - R(14C) Calcite 7.02689e-15 0.59758 pmc + R(13C) Calcite 1.12020e-02 1.9456 permil + R(14C) Calcite 7.00936e-15 0.59609 pmc --------------------------------Isotope Alphas--------------------------------- @@ -17071,158 +16988,158 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7252e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6065e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -4.774e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 5.3291e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -4.1078e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -5.9952e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0153 15.143 21.282 +Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 5.839e-03 5.822e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.579e-05 6.560e-05 - [14C] 4.100e-17 4.088e-17 + [13C] 6.519e-05 6.500e-05 + [14C] 4.065e-17 4.053e-17 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.095 Adjusted to redox equilibrium + pe = -2.245 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.839e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 34 + Iterations = 54 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.755e-18 - CH4 1.755e-18 1.758e-18 -17.756 -17.755 0.001 (0) -C(4) 5.839e-03 +C(-4) 2.803e-17 + CH4 2.803e-17 2.808e-17 -16.552 -16.552 0.001 (0) +C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) - CO2 9.957e-04 9.973e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.931e-05 9.110e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-08 3.273e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.676e-08 1.174e-08 -7.776 -7.930 -0.155 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.931e-05 9.110e-05 -4.003 -4.040 -0.037 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.121e-06 1.028e-06 -5.951 -5.988 -0.037 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.152e-08 6.162e-08 -7.211 -7.210 0.001 (0) - CaCO2[18O] 3.268e-08 3.273e-08 -7.486 -7.485 0.001 (0) -H(0) 2.311e-13 - H2 1.156e-13 1.158e-13 -12.937 -12.936 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 4.620e-13 + H2 2.310e-13 2.314e-13 -12.636 -12.636 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.510 -66.509 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.909 -68.908 0.001 (0) -[13C](-4) 1.963e-20 - [13C]H4 1.963e-20 1.966e-20 -19.707 -19.706 0.001 (0) -[13C](4) 6.579e-05 - H[13C]O3- 5.307e-05 4.855e-05 -4.275 -4.314 -0.039 (0) - [13C]O2 1.114e-05 1.116e-05 -4.953 -4.952 0.001 (0) - CaH[13C]O3+ 1.121e-06 1.028e-06 -5.951 -5.988 -0.037 (0) - H[13C]O[18O]O- 1.059e-07 9.686e-08 -6.975 -7.014 -0.039 (0) - H[13C][18O]O2- 1.059e-07 9.686e-08 -6.975 -7.014 -0.039 (0) - H[13C]O2[18O]- 1.059e-07 9.686e-08 -6.975 -7.014 -0.039 (0) - Ca[13C]O3 6.152e-08 6.162e-08 -7.211 -7.210 0.001 (0) - [13C]O[18O] 4.632e-08 4.639e-08 -7.334 -7.334 0.001 (0) - [13C]O3-2 3.156e-08 2.211e-08 -7.501 -7.655 -0.155 (0) - CaH[13C]O2[18O]+ 2.236e-09 2.051e-09 -8.651 -8.688 -0.037 (0) - CaH[13C]O[18O]O+ 2.236e-09 2.051e-09 -8.651 -8.688 -0.037 (0) - CaH[13C][18O]O2+ 2.236e-09 2.051e-09 -8.651 -8.688 -0.037 (0) - Ca[13C]O2[18O] 3.682e-10 3.688e-10 -9.434 -9.433 0.001 (0) - H[13C][18O]O[18O]- 2.112e-10 1.933e-10 -9.675 -9.714 -0.039 (0) - H[13C]O[18O]2- 2.112e-10 1.933e-10 -9.675 -9.714 -0.039 (0) - H[13C][18O]2O- 2.112e-10 1.933e-10 -9.675 -9.714 -0.039 (0) - [13C]O2[18O]-2 1.889e-10 1.323e-10 -9.724 -9.878 -0.155 (0) -[14C](-4) 1.215e-32 - [14C]H4 1.215e-32 1.217e-32 -31.916 -31.915 0.001 (0) -[14C](4) 4.100e-17 - H[14C]O3- 3.312e-17 3.030e-17 -16.480 -16.519 -0.039 (0) - [14C]O2 6.891e-18 6.903e-18 -17.162 -17.161 0.001 (0) - CaH[14C]O3+ 6.994e-19 6.416e-19 -18.155 -18.193 -0.037 (0) - H[14C][18O]O2- 6.608e-20 6.045e-20 -19.180 -19.219 -0.039 (0) - H[14C]O2[18O]- 6.608e-20 6.045e-20 -19.180 -19.219 -0.039 (0) - H[14C]O[18O]O- 6.608e-20 6.045e-20 -19.180 -19.219 -0.039 (0) - Ca[14C]O3 3.834e-20 3.840e-20 -19.416 -19.416 0.001 (0) - [14C]O[18O] 2.866e-20 2.870e-20 -19.543 -19.542 0.001 (0) - [14C]O3-2 1.967e-20 1.378e-20 -19.706 -19.861 -0.155 (0) - CaH[14C]O[18O]O+ 1.395e-21 1.280e-21 -20.855 -20.893 -0.037 (0) - CaH[14C]O2[18O]+ 1.395e-21 1.280e-21 -20.855 -20.893 -0.037 (0) - CaH[14C][18O]O2+ 1.395e-21 1.280e-21 -20.855 -20.893 -0.037 (0) - Ca[14C]O2[18O] 2.295e-22 2.299e-22 -21.639 -21.639 0.001 (0) - H[14C][18O]2O- 1.318e-22 1.206e-22 -21.880 -21.919 -0.039 (0) - H[14C]O[18O]2- 1.318e-22 1.206e-22 -21.880 -21.919 -0.039 (0) - H[14C][18O]O[18O]- 1.318e-22 1.206e-22 -21.880 -21.919 -0.039 (0) - [14C]O2[18O]-2 1.177e-22 8.247e-23 -21.929 -22.084 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.111 -67.110 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.510 -69.509 0.001 (0) +[13C](-4) 3.107e-19 + [13C]H4 3.107e-19 3.112e-19 -18.508 -18.507 0.001 (0) +[13C](4) 6.519e-05 + H[13C]O3- 5.258e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 1.924e-31 + [14C]H4 1.924e-31 1.927e-31 -30.716 -30.715 0.001 (0) +[14C](4) 4.065e-17 + H[14C]O3- 3.284e-17 3.004e-17 -16.484 -16.522 -0.039 (0) + [14C]O2 6.833e-18 6.844e-18 -17.165 -17.165 0.001 (0) + CaH[14C]O3+ 6.934e-19 6.361e-19 -18.159 -18.196 -0.037 (0) + H[14C]O2[18O]- 6.552e-20 5.994e-20 -19.184 -19.222 -0.039 (0) + H[14C]O[18O]O- 6.552e-20 5.994e-20 -19.184 -19.222 -0.039 (0) + H[14C][18O]O2- 6.552e-20 5.994e-20 -19.184 -19.222 -0.039 (0) + Ca[14C]O3 3.801e-20 3.808e-20 -19.420 -19.419 0.001 (0) + [14C]O[18O] 2.841e-20 2.846e-20 -19.546 -19.546 0.001 (0) + [14C]O3-2 1.950e-20 1.366e-20 -19.710 -19.865 -0.155 (0) + CaH[14C]O2[18O]+ 1.384e-21 1.269e-21 -20.859 -20.896 -0.037 (0) + CaH[14C]O[18O]O+ 1.384e-21 1.269e-21 -20.859 -20.896 -0.037 (0) + CaH[14C][18O]O2+ 1.384e-21 1.269e-21 -20.859 -20.896 -0.037 (0) + Ca[14C]O2[18O] 2.275e-22 2.279e-22 -21.643 -21.642 0.001 (0) + H[14C]O[18O]2- 1.307e-22 1.196e-22 -21.884 -21.922 -0.039 (0) + H[14C][18O]2O- 1.307e-22 1.196e-22 -21.884 -21.922 -0.039 (0) + H[14C][18O]O[18O]- 1.307e-22 1.196e-22 -21.884 -21.922 -0.039 (0) + [14C]O2[18O]-2 1.167e-22 8.177e-23 -21.933 -22.087 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.383e-06 8.584e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.909 -68.908 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.910 -71.909 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.510 -69.509 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.511 -72.511 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.85 -10.35 -1.50 [13C][18O]2 - [13C]H4(g) -16.85 -19.71 -2.86 [13C]H4 - [13C]O2(g) -3.48 -4.95 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.65 -1.79 [13C]O[18O] + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -15.65 -18.51 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.06 -22.56 -1.50 [14C][18O]2 - [14C]H4(g) -29.05 -31.91 -2.86 [14C]H4 - [14C]O2(g) -15.69 -17.16 -1.47 [14C]O2 - [14C]O[18O](g) -18.07 -19.86 -1.79 [14C]O[18O] - [18O]2(g) -69.62 -71.91 -2.29 [18O]2 + [14C]H4(g) -27.86 -30.72 -2.86 [14C]H4 + [14C]O2(g) -15.70 -17.16 -1.47 [14C]O2 + [14C]O[18O](g) -18.08 -19.86 -1.79 [14C]O[18O] + [18O]2(g) -70.22 -72.51 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.16 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.95 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.85 0.84 7.69 Ca[13C]O[18O]2 + Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 Ca[14C][18O]3(s) -22.22 -14.07 8.15 Ca[14C][18O]3 Ca[14C]O2[18O](s) -16.37 -8.67 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -14.16 -5.97 8.19 Ca[14C]O3 @@ -17231,14 +17148,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.90 -17.76 -2.86 CH4 + CH4(g) -13.69 -16.55 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.79 -12.94 -3.15 H2 + H2(g) -9.49 -12.64 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.62 -66.51 -2.89 O2 - O[18O](g) -66.32 -69.21 -2.89 O[18O] + O2(g) -64.22 -67.11 -2.89 O2 + O[18O](g) -66.92 -69.81 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -17262,6 +17179,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 68. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -17304,39 +17227,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.55e-06 5.55e-06 1.11e-02 - Ca[13C]O2[18O](s) 3.42e-08 3.42e-08 6.84e-05 - Ca[13C]O[18O]2(s) 7.02e-11 7.02e-11 1.40e-07 - Ca[13C][18O]3(s) 4.80e-14 4.80e-14 9.60e-11 - Ca[14C]O3(s) 3.20e-18 3.20e-18 6.40e-15 - Ca[14C]O2[18O](s) 1.97e-20 1.97e-20 3.94e-17 - Ca[14C]O[18O]2(s) 1.00e-27 0.00e+00 2.00e-24 - Ca[14C][18O]3(s) 1.00e-27 0.00e+00 2.00e-24 + Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 3.17e-18 3.17e-18 6.35e-15 + Ca[14C]O2[18O](s) 1.95e-20 1.95e-20 3.91e-17 + Ca[14C]O[18O]2(s) 4.01e-23 4.01e-23 8.02e-20 + Ca[14C][18O]3(s) 2.74e-26 2.64e-26 5.49e-23 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9879 permil - R(13C) 1.12589e-02 7.036 permil - R(14C) 6.46835e-15 0.55008 pmc - R(18O) H2O(l) 1.99520e-03 -4.9895 permil + R(18O) 1.99520e-03 -4.9876 permil + R(13C) 1.11634e-02 -1.5039 permil + R(14C) 6.41277e-15 0.54536 pmc + R(18O) H2O(l) 1.99520e-03 -4.9891 permil R(18O) OH- 1.92123e-03 -41.877 permil - R(18O) H3O+ 2.04133e-03 18.018 permil - R(13C) CO2(aq) 1.11783e-02 -0.17088 permil - R(14C) CO2(aq) 6.37603e-15 0.54223 pmc + R(18O) H3O+ 2.04133e-03 18.019 permil + R(13C) CO2(aq) 1.10835e-02 -8.6497 permil + R(14C) CO2(aq) 6.32125e-15 0.53757 pmc R(18O) CO2(aq) 2.07916e-03 36.885 permil - R(18O) HCO3- 1.99520e-03 -4.9895 permil - R(13C) HCO3- 1.12755e-02 8.5275 permil - R(14C) HCO3- 6.48746e-15 0.55171 pmc - R(18O) CO3-2 1.99520e-03 -4.9895 permil - R(13C) CO3-2 1.12594e-02 7.0802 permil - R(14C) CO3-2 6.46885e-15 0.55012 pmc - R(13C) CH4(aq) 1.11783e-02 -0.17088 permil - R(14C) CH4(aq) 6.37603e-15 0.54223 pmc + R(18O) HCO3- 1.99520e-03 -4.9891 permil + R(13C) HCO3- 1.11799e-02 -0.025043 permil + R(14C) HCO3- 6.43171e-15 0.54697 pmc + R(18O) CO3-2 1.99520e-03 -4.9891 permil + R(13C) CO3-2 1.11639e-02 -1.4601 permil + R(14C) CO3-2 6.41327e-15 0.5454 pmc + R(13C) CH4(aq) 1.10835e-02 -8.6497 permil + R(14C) CH4(aq) 6.32125e-15 0.53757 pmc R(18O) Calcite 2.05264e-03 23.657 permil - R(13C) Calcite 1.12979e-02 10.525 permil - R(14C) Calcite 6.51310e-15 0.55389 pmc + R(13C) Calcite 1.12021e-02 1.9556 permil + R(14C) Calcite 6.45722e-15 0.54914 pmc --------------------------------Isotope Alphas--------------------------------- @@ -17347,174 +17270,174 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 4.4409e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6092e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5252e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -8.1046e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -2.0428e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.1324e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 5.3291e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.269 21.282 +Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 5.839e-03 5.822e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.574e-05 6.555e-05 - [14C] 3.777e-17 3.766e-17 + [13C] 6.519e-05 6.500e-05 + [14C] 3.745e-17 3.734e-17 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.073 Adjusted to redox equilibrium + pe = -2.243 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.839e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 83 + Iterations = 128 (229 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.178e-18 - CH4 1.178e-18 1.180e-18 -17.929 -17.928 0.001 (0) -C(4) 5.839e-03 +C(-4) 2.708e-17 + CH4 2.708e-17 2.712e-17 -16.567 -16.567 0.001 (0) +C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) - CO2 9.957e-04 9.973e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.931e-05 9.110e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.383e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.383e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.383e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-08 3.273e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.676e-08 1.174e-08 -7.776 -7.930 -0.155 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.931e-05 9.110e-05 -4.003 -4.040 -0.037 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.120e-06 1.027e-06 -5.951 -5.988 -0.037 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.148e-08 6.158e-08 -7.211 -7.211 0.001 (0) - CaCO2[18O] 3.268e-08 3.273e-08 -7.486 -7.485 0.001 (0) -H(0) 2.092e-13 - H2 1.046e-13 1.048e-13 -12.980 -12.980 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) + CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) +H(0) 4.581e-13 + H2 2.290e-13 2.294e-13 -12.640 -12.639 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.423 -66.422 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.822 -68.821 0.001 (0) -[13C](-4) 1.317e-20 - [13C]H4 1.317e-20 1.319e-20 -19.881 -19.880 0.001 (0) -[13C](4) 6.574e-05 - H[13C]O3- 5.303e-05 4.851e-05 -4.275 -4.314 -0.039 (0) - [13C]O2 1.113e-05 1.115e-05 -4.953 -4.953 0.001 (0) - CaH[13C]O3+ 1.120e-06 1.027e-06 -5.951 -5.988 -0.037 (0) - H[13C][18O]O2- 1.058e-07 9.680e-08 -6.976 -7.014 -0.039 (0) - H[13C]O2[18O]- 1.058e-07 9.680e-08 -6.976 -7.014 -0.039 (0) - H[13C]O[18O]O- 1.058e-07 9.680e-08 -6.976 -7.014 -0.039 (0) - Ca[13C]O3 6.148e-08 6.158e-08 -7.211 -7.211 0.001 (0) - [13C]O[18O] 4.628e-08 4.636e-08 -7.335 -7.334 0.001 (0) - [13C]O3-2 3.154e-08 2.209e-08 -7.501 -7.656 -0.155 (0) - CaH[13C]O[18O]O+ 2.234e-09 2.050e-09 -8.651 -8.688 -0.037 (0) - CaH[13C][18O]O2+ 2.234e-09 2.050e-09 -8.651 -8.688 -0.037 (0) - CaH[13C]O2[18O]+ 2.234e-09 2.050e-09 -8.651 -8.688 -0.037 (0) - Ca[13C]O2[18O] 3.680e-10 3.686e-10 -9.434 -9.433 0.001 (0) - H[13C][18O]O[18O]- 2.111e-10 1.931e-10 -9.676 -9.714 -0.039 (0) - H[13C]O[18O]2- 2.111e-10 1.931e-10 -9.676 -9.714 -0.039 (0) - H[13C][18O]2O- 2.111e-10 1.931e-10 -9.676 -9.714 -0.039 (0) - [13C]O2[18O]-2 1.888e-10 1.322e-10 -9.724 -9.879 -0.155 (0) -[14C](-4) 7.511e-33 - [14C]H4 7.511e-33 7.523e-33 -32.124 -32.124 0.001 (0) -[14C](4) 3.777e-17 - H[14C]O3- 3.051e-17 2.791e-17 -16.516 -16.554 -0.039 (0) - [14C]O2 6.349e-18 6.359e-18 -17.197 -17.197 0.001 (0) - CaH[14C]O3+ 6.443e-19 5.910e-19 -18.191 -18.228 -0.037 (0) - H[14C][18O]O2- 6.087e-20 5.569e-20 -19.216 -19.254 -0.039 (0) - H[14C]O2[18O]- 6.087e-20 5.569e-20 -19.216 -19.254 -0.039 (0) - H[14C]O[18O]O- 6.087e-20 5.569e-20 -19.216 -19.254 -0.039 (0) - Ca[14C]O3 3.532e-20 3.538e-20 -19.452 -19.451 0.001 (0) - [14C]O[18O] 2.640e-20 2.644e-20 -19.578 -19.578 0.001 (0) - [14C]O3-2 1.812e-20 1.269e-20 -19.742 -19.896 -0.155 (0) - CaH[14C]O[18O]O+ 1.285e-21 1.179e-21 -20.891 -20.928 -0.037 (0) - CaH[14C]O2[18O]+ 1.285e-21 1.179e-21 -20.891 -20.928 -0.037 (0) - CaH[14C][18O]O2+ 1.285e-21 1.179e-21 -20.891 -20.928 -0.037 (0) - Ca[14C]O2[18O] 2.114e-22 2.118e-22 -21.675 -21.674 0.001 (0) - H[14C]O[18O]2- 1.215e-22 1.111e-22 -21.916 -21.954 -0.039 (0) - H[14C][18O]O[18O]- 1.215e-22 1.111e-22 -21.916 -21.954 -0.039 (0) - H[14C][18O]2O- 1.215e-22 1.111e-22 -21.916 -21.954 -0.039 (0) - [14C]O2[18O]-2 1.084e-22 7.597e-23 -21.965 -22.119 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.104 -67.103 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.503 -69.502 0.001 (0) +[13C](-4) 3.001e-19 + [13C]H4 3.001e-19 3.006e-19 -18.523 -18.522 0.001 (0) +[13C](4) 6.519e-05 + H[13C]O3- 5.258e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 1.712e-31 + [14C]H4 1.712e-31 1.714e-31 -30.767 -30.766 0.001 (0) +[14C](4) 3.745e-17 + H[14C]O3- 3.025e-17 2.768e-17 -16.519 -16.558 -0.039 (0) + [14C]O2 6.295e-18 6.305e-18 -17.201 -17.200 0.001 (0) + CaH[14C]O3+ 6.388e-19 5.860e-19 -18.195 -18.232 -0.037 (0) + H[14C]O2[18O]- 6.036e-20 5.522e-20 -19.219 -19.258 -0.039 (0) + H[14C]O[18O]O- 6.036e-20 5.522e-20 -19.219 -19.258 -0.039 (0) + H[14C][18O]O2- 6.036e-20 5.522e-20 -19.219 -19.258 -0.039 (0) + Ca[14C]O3 3.502e-20 3.508e-20 -19.456 -19.455 0.001 (0) + [14C]O[18O] 2.618e-20 2.622e-20 -19.582 -19.581 0.001 (0) + [14C]O3-2 1.796e-20 1.258e-20 -19.746 -19.900 -0.155 (0) + CaH[14C]O2[18O]+ 1.275e-21 1.169e-21 -20.895 -20.932 -0.037 (0) + CaH[14C]O[18O]O+ 1.275e-21 1.169e-21 -20.895 -20.932 -0.037 (0) + CaH[14C][18O]O2+ 1.275e-21 1.169e-21 -20.895 -20.932 -0.037 (0) + Ca[14C]O2[18O] 2.096e-22 2.100e-22 -21.679 -21.678 0.001 (0) + H[14C]O[18O]2- 1.204e-22 1.102e-22 -21.919 -21.958 -0.039 (0) + H[14C][18O]2O- 1.204e-22 1.102e-22 -21.919 -21.958 -0.039 (0) + H[14C][18O]O[18O]- 1.204e-22 1.102e-22 -21.919 -21.958 -0.039 (0) + [14C]O2[18O]-2 1.075e-22 7.533e-23 -21.968 -22.123 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.383e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.383e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.383e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.822 -68.821 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.823 -71.822 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.503 -69.502 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.504 -72.503 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.85 -10.35 -1.50 [13C][18O]2 - [13C]H4(g) -17.02 -19.88 -2.86 [13C]H4 - [13C]O2(g) -3.48 -4.95 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.65 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.09 -22.60 -1.50 [14C][18O]2 - [14C]H4(g) -29.26 -32.12 -2.86 [14C]H4 + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -15.66 -18.52 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] + [14C][18O]2(g) -21.10 -22.60 -1.50 [14C][18O]2 + [14C]H4(g) -27.91 -30.77 -2.86 [14C]H4 [14C]O2(g) -15.73 -17.20 -1.47 [14C]O2 [14C]O[18O](g) -18.11 -19.90 -1.79 [14C]O[18O] - [18O]2(g) -69.53 -71.82 -2.29 [18O]2 + [18O]2(g) -70.21 -72.50 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.95 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.85 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.26 -14.10 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.40 -8.70 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.19 -6.00 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.09 -11.40 7.69 Ca[14C]O[18O]2 + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -22.26 -14.11 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -16.41 -8.71 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -14.20 -6.01 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -19.10 -11.41 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.07 -17.93 -2.86 CH4 + CH4(g) -13.71 -16.57 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.83 -12.98 -3.15 H2 + H2(g) -9.49 -12.64 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.53 -66.42 -2.89 O2 - O[18O](g) -66.23 -69.12 -2.89 O[18O] + O2(g) -64.21 -67.10 -2.89 O2 + O[18O](g) -66.91 -69.80 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -17580,39 +17503,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.55e-06 5.55e-06 1.11e-02 - Ca[13C]O2[18O](s) 3.42e-08 3.42e-08 6.83e-05 - Ca[13C]O[18O]2(s) 7.01e-11 7.01e-11 1.40e-07 - Ca[13C][18O]3(s) 4.80e-14 4.80e-14 9.60e-11 - Ca[14C]O3(s) 2.95e-18 2.95e-18 5.90e-15 - Ca[14C]O2[18O](s) 1.82e-20 1.82e-20 3.63e-17 - Ca[14C]O[18O]2(s) 3.73e-23 3.73e-23 7.45e-20 - Ca[14C][18O]3(s) 1.00e-27 0.00e+00 2.00e-24 + Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 2.92e-18 2.92e-18 5.85e-15 + Ca[14C]O2[18O](s) 1.80e-20 1.80e-20 3.60e-17 + Ca[14C]O[18O]2(s) 3.70e-23 3.69e-23 7.39e-20 + Ca[14C][18O]3(s) 2.53e-26 2.43e-26 5.06e-23 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9878 permil - R(13C) 1.12515e-02 6.3745 permil - R(14C) 5.95878e-15 0.50675 pmc - R(18O) H2O(l) 1.99520e-03 -4.9893 permil - R(18O) OH- 1.92123e-03 -41.877 permil + R(18O) 1.99520e-03 -4.9875 permil + R(13C) 1.11635e-02 -1.4948 permil + R(14C) 5.90762e-15 0.5024 pmc + R(18O) H2O(l) 1.99520e-03 -4.989 permil + R(18O) OH- 1.92123e-03 -41.876 permil R(18O) H3O+ 2.04133e-03 18.019 permil - R(13C) CO2(aq) 1.11709e-02 -0.82765 permil - R(14C) CO2(aq) 5.87374e-15 0.49952 pmc + R(13C) CO2(aq) 1.10836e-02 -8.6406 permil + R(14C) CO2(aq) 5.82331e-15 0.49523 pmc R(18O) CO2(aq) 2.07916e-03 36.885 permil - R(18O) HCO3- 1.99520e-03 -4.9893 permil - R(13C) HCO3- 1.12681e-02 7.865 permil - R(14C) HCO3- 5.97638e-15 0.50824 pmc - R(18O) CO3-2 1.99520e-03 -4.9893 permil - R(13C) CO3-2 1.12520e-02 6.4187 permil - R(14C) CO3-2 5.95924e-15 0.50679 pmc - R(13C) CH4(aq) 1.11709e-02 -0.82765 permil - R(14C) CH4(aq) 5.87374e-15 0.49952 pmc + R(18O) HCO3- 1.99520e-03 -4.989 permil + R(13C) HCO3- 1.11800e-02 -0.015926 permil + R(14C) HCO3- 5.92507e-15 0.50388 pmc + R(18O) CO3-2 1.99520e-03 -4.989 permil + R(13C) CO3-2 1.11640e-02 -1.451 permil + R(14C) CO3-2 5.90808e-15 0.50244 pmc + R(13C) CH4(aq) 1.10836e-02 -8.6406 permil + R(14C) CH4(aq) 5.82331e-15 0.49523 pmc R(18O) Calcite 2.05264e-03 23.657 permil - R(13C) Calcite 1.12905e-02 9.8613 permil - R(14C) Calcite 6.00008e-15 0.51026 pmc + R(13C) Calcite 1.12022e-02 1.9647 permil + R(14C) Calcite 5.94857e-15 0.50588 pmc --------------------------------Isotope Alphas--------------------------------- @@ -17623,14 +17546,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7095e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6285e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -2.9976e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.1102e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -6.2172e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -5.9952e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -17639,143 +17562,143 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 Elements Molality Moles - C 5.839e-03 5.822e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.570e-05 6.551e-05 - [14C] 3.479e-17 3.469e-17 + [13C] 6.519e-05 6.500e-05 + [14C] 3.450e-17 3.440e-17 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.122 Adjusted to redox equilibrium + pe = -2.272 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.839e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 52 + Iterations = 100 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.922e-18 - CH4 2.922e-18 2.927e-18 -17.534 -17.534 0.001 (0) -C(4) 5.839e-03 +C(-4) 4.638e-17 + CH4 4.638e-17 4.646e-17 -16.334 -16.333 0.001 (0) +C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) - CO2 9.957e-04 9.973e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.931e-05 9.110e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.383e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.383e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.383e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.676e-08 1.174e-08 -7.776 -7.930 -0.155 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.931e-05 9.110e-05 -4.003 -4.040 -0.037 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.119e-06 1.027e-06 -5.951 -5.989 -0.037 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.144e-08 6.154e-08 -7.212 -7.211 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.625e-13 - H2 1.313e-13 1.315e-13 -12.882 -12.881 0.001 (0) +H(0) 5.240e-13 + H2 2.620e-13 2.624e-13 -12.582 -12.581 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.620 -66.620 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.019 -69.019 0.001 (0) -[13C](-4) 3.265e-20 - [13C]H4 3.265e-20 3.270e-20 -19.486 -19.485 0.001 (0) -[13C](4) 6.570e-05 - H[13C]O3- 5.299e-05 4.848e-05 -4.276 -4.314 -0.039 (0) - [13C]O2 1.112e-05 1.114e-05 -4.954 -4.953 0.001 (0) - CaH[13C]O3+ 1.119e-06 1.027e-06 -5.951 -5.989 -0.037 (0) - H[13C]O2[18O]- 1.057e-07 9.673e-08 -6.976 -7.014 -0.039 (0) - H[13C]O[18O]O- 1.057e-07 9.673e-08 -6.976 -7.014 -0.039 (0) - H[13C][18O]O2- 1.057e-07 9.673e-08 -6.976 -7.014 -0.039 (0) - Ca[13C]O3 6.144e-08 6.154e-08 -7.212 -7.211 0.001 (0) - [13C]O[18O] 4.625e-08 4.633e-08 -7.335 -7.334 0.001 (0) - [13C]O3-2 3.152e-08 2.208e-08 -7.501 -7.656 -0.155 (0) - CaH[13C][18O]O2+ 2.233e-09 2.048e-09 -8.651 -8.689 -0.037 (0) - CaH[13C]O2[18O]+ 2.233e-09 2.048e-09 -8.651 -8.689 -0.037 (0) - CaH[13C]O[18O]O+ 2.233e-09 2.048e-09 -8.651 -8.689 -0.037 (0) - Ca[13C]O2[18O] 3.677e-10 3.683e-10 -9.434 -9.434 0.001 (0) - H[13C][18O]O[18O]- 2.110e-10 1.930e-10 -9.676 -9.714 -0.039 (0) - H[13C]O[18O]2- 2.110e-10 1.930e-10 -9.676 -9.714 -0.039 (0) - H[13C][18O]2O- 2.110e-10 1.930e-10 -9.676 -9.714 -0.039 (0) - [13C]O2[18O]-2 1.886e-10 1.322e-10 -9.724 -9.879 -0.155 (0) -[14C](-4) 1.717e-32 - [14C]H4 1.717e-32 1.719e-32 -31.765 -31.765 0.001 (0) -[14C](4) 3.479e-17 - H[14C]O3- 2.811e-17 2.571e-17 -16.551 -16.590 -0.039 (0) - [14C]O2 5.848e-18 5.858e-18 -17.233 -17.232 0.001 (0) - CaH[14C]O3+ 5.935e-19 5.445e-19 -18.227 -18.264 -0.037 (0) - H[14C][18O]O2- 5.608e-20 5.130e-20 -19.251 -19.290 -0.039 (0) - H[14C]O2[18O]- 5.608e-20 5.130e-20 -19.251 -19.290 -0.039 (0) - H[14C]O[18O]O- 5.608e-20 5.130e-20 -19.251 -19.290 -0.039 (0) - Ca[14C]O3 3.254e-20 3.259e-20 -19.488 -19.487 0.001 (0) - [14C]O[18O] 2.432e-20 2.436e-20 -19.614 -19.613 0.001 (0) - [14C]O3-2 1.669e-20 1.169e-20 -19.778 -19.932 -0.155 (0) - CaH[14C]O[18O]O+ 1.184e-21 1.086e-21 -20.927 -20.964 -0.037 (0) - CaH[14C]O2[18O]+ 1.184e-21 1.086e-21 -20.927 -20.964 -0.037 (0) - CaH[14C][18O]O2+ 1.184e-21 1.086e-21 -20.927 -20.964 -0.037 (0) - Ca[14C]O2[18O] 1.948e-22 1.951e-22 -21.711 -21.710 0.001 (0) - H[14C][18O]O[18O]- 1.119e-22 1.024e-22 -21.951 -21.990 -0.039 (0) - H[14C][18O]2O- 1.119e-22 1.024e-22 -21.951 -21.990 -0.039 (0) - H[14C]O[18O]2- 1.119e-22 1.024e-22 -21.951 -21.990 -0.039 (0) - [14C]O2[18O]-2 9.991e-23 6.999e-23 -22.000 -22.155 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.221 -67.220 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.620 -69.619 0.001 (0) +[13C](-4) 5.141e-19 + [13C]H4 5.141e-19 5.149e-19 -18.289 -18.288 0.001 (0) +[13C](4) 6.519e-05 + H[13C]O3- 5.258e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 2.701e-31 + [14C]H4 2.701e-31 2.705e-31 -30.568 -30.568 0.001 (0) +[14C](4) 3.450e-17 + H[14C]O3- 2.787e-17 2.550e-17 -16.555 -16.594 -0.039 (0) + [14C]O2 5.799e-18 5.808e-18 -17.237 -17.236 0.001 (0) + CaH[14C]O3+ 5.885e-19 5.398e-19 -18.230 -18.268 -0.037 (0) + H[14C]O2[18O]- 5.560e-20 5.087e-20 -19.255 -19.294 -0.039 (0) + H[14C]O[18O]O- 5.560e-20 5.087e-20 -19.255 -19.294 -0.039 (0) + H[14C][18O]O2- 5.560e-20 5.087e-20 -19.255 -19.294 -0.039 (0) + Ca[14C]O3 3.226e-20 3.231e-20 -19.491 -19.491 0.001 (0) + [14C]O[18O] 2.411e-20 2.415e-20 -19.618 -19.617 0.001 (0) + [14C]O3-2 1.655e-20 1.159e-20 -19.781 -19.936 -0.155 (0) + CaH[14C]O2[18O]+ 1.174e-21 1.077e-21 -20.930 -20.968 -0.037 (0) + CaH[14C]O[18O]O+ 1.174e-21 1.077e-21 -20.930 -20.968 -0.037 (0) + CaH[14C][18O]O2+ 1.174e-21 1.077e-21 -20.930 -20.968 -0.037 (0) + Ca[14C]O2[18O] 1.931e-22 1.934e-22 -21.714 -21.714 0.001 (0) + H[14C]O[18O]2- 1.109e-22 1.015e-22 -21.955 -21.994 -0.039 (0) + H[14C][18O]2O- 1.109e-22 1.015e-22 -21.955 -21.994 -0.039 (0) + H[14C][18O]O[18O]- 1.109e-22 1.015e-22 -21.955 -21.994 -0.039 (0) + [14C]O2[18O]-2 9.906e-23 6.939e-23 -22.004 -22.159 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.383e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.383e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.383e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.019 -69.019 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.020 -72.020 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.620 -69.619 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.621 -72.620 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.85 -10.35 -1.50 [13C][18O]2 - [13C]H4(g) -16.63 -19.49 -2.86 [13C]H4 - [13C]O2(g) -3.48 -4.95 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.65 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.13 -22.63 -1.50 [14C][18O]2 - [14C]H4(g) -28.90 -31.76 -2.86 [14C]H4 - [14C]O2(g) -15.76 -17.23 -1.47 [14C]O2 - [14C]O[18O](g) -18.15 -19.93 -1.79 [14C]O[18O] - [18O]2(g) -69.73 -72.02 -2.29 [18O]2 + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -15.43 -18.29 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] + [14C][18O]2(g) -21.13 -22.64 -1.50 [14C][18O]2 + [14C]H4(g) -27.71 -30.57 -2.86 [14C]H4 + [14C]O2(g) -15.77 -17.24 -1.47 [14C]O2 + [14C]O[18O](g) -18.15 -19.94 -1.79 [14C]O[18O] + [18O]2(g) -70.33 -72.62 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.95 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.85 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.29 -14.14 8.15 Ca[14C][18O]3 + Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -22.30 -14.14 8.15 Ca[14C][18O]3 Ca[14C]O2[18O](s) -16.44 -8.74 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -14.23 -6.04 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -19.13 -11.44 7.69 Ca[14C]O[18O]2 @@ -17783,14 +17706,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.67 -17.53 -2.86 CH4 + CH4(g) -13.47 -16.33 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.73 -12.88 -3.15 H2 + H2(g) -9.43 -12.58 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.73 -66.62 -2.89 O2 - O[18O](g) -66.43 -69.32 -2.89 O[18O] + O2(g) -64.33 -67.22 -2.89 O2 + O[18O](g) -67.03 -69.92 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -17862,39 +17785,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.54e-06 5.54e-06 1.11e-02 - Ca[13C]O2[18O](s) 3.41e-08 3.41e-08 6.83e-05 - Ca[13C]O[18O]2(s) 7.01e-11 7.01e-11 1.40e-07 - Ca[13C][18O]3(s) 4.80e-14 4.80e-14 9.59e-11 - Ca[14C]O3(s) 2.72e-18 2.72e-18 5.43e-15 - Ca[14C]O2[18O](s) 1.67e-20 1.67e-20 3.35e-17 - Ca[14C]O[18O]2(s) 3.43e-23 3.43e-23 6.87e-20 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 2.69e-18 2.69e-18 5.39e-15 + Ca[14C]O2[18O](s) 1.66e-20 1.66e-20 3.32e-17 + Ca[14C]O[18O]2(s) 3.40e-23 3.40e-23 6.81e-20 + Ca[14C][18O]3(s) 2.33e-26 2.23e-26 4.66e-23 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9877 permil - R(13C) 1.12447e-02 5.765 permil - R(14C) 5.48936e-15 0.46683 pmc - R(18O) H2O(l) 1.99520e-03 -4.9892 permil - R(18O) OH- 1.92123e-03 -41.877 permil + R(18O) 1.99520e-03 -4.9873 permil + R(13C) 1.11636e-02 -1.4864 permil + R(14C) 5.44227e-15 0.46282 pmc + R(18O) H2O(l) 1.99520e-03 -4.9889 permil + R(18O) OH- 1.92123e-03 -41.876 permil R(18O) H3O+ 2.04133e-03 18.019 permil - R(13C) CO2(aq) 1.11642e-02 -1.4328 permil - R(14C) CO2(aq) 5.41101e-15 0.46016 pmc + R(13C) CO2(aq) 1.10837e-02 -8.6323 permil + R(14C) CO2(aq) 5.36459e-15 0.45622 pmc R(18O) CO2(aq) 2.07916e-03 36.885 permil - R(18O) HCO3- 1.99520e-03 -4.9892 permil - R(13C) HCO3- 1.12613e-02 7.2546 permil - R(14C) HCO3- 5.50557e-15 0.46821 pmc - R(18O) CO3-2 1.99520e-03 -4.9892 permil - R(13C) CO3-2 1.12451e-02 5.8091 permil - R(14C) CO3-2 5.48978e-15 0.46686 pmc - R(13C) CH4(aq) 1.11642e-02 -1.4328 permil - R(14C) CH4(aq) 5.41101e-15 0.46016 pmc - R(18O) Calcite 2.05264e-03 23.657 permil - R(13C) Calcite 1.12836e-02 9.2496 permil - R(14C) Calcite 5.52740e-15 0.47006 pmc + R(18O) HCO3- 1.99520e-03 -4.9889 permil + R(13C) HCO3- 1.11801e-02 -0.0075245 permil + R(14C) HCO3- 5.45834e-15 0.46419 pmc + R(18O) CO3-2 1.99520e-03 -4.9889 permil + R(13C) CO3-2 1.11641e-02 -1.4426 permil + R(14C) CO3-2 5.44269e-15 0.46286 pmc + R(13C) CH4(aq) 1.10837e-02 -8.6323 permil + R(14C) CH4(aq) 5.36459e-15 0.45622 pmc + R(18O) Calcite 2.05264e-03 23.658 permil + R(13C) Calcite 1.12023e-02 1.9731 permil + R(14C) Calcite 5.47999e-15 0.46603 pmc --------------------------------Isotope Alphas--------------------------------- @@ -17905,14 +17828,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 +Alpha 18O HCO3-/H2O(l) 1 8.8818e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7487e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6535e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.1213e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -2.3426e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.4211e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -4.2188e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -17921,158 +17844,158 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 Elements Molality Moles - C 5.839e-03 5.822e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.566e-05 6.547e-05 - [14C] 3.205e-17 3.196e-17 + [13C] 6.519e-05 6.500e-05 + [14C] 3.178e-17 3.169e-17 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.163 Adjusted to redox equilibrium + pe = -2.275 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.839e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.451e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 21 (122 overall) + Iterations = 78 (179 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 6.167e-18 - CH4 6.167e-18 6.177e-18 -17.210 -17.209 0.001 (0) -C(4) 5.839e-03 +C(-4) 4.914e-17 + CH4 4.914e-17 4.923e-17 -16.309 -16.308 0.001 (0) +C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) - CO2 9.957e-04 9.973e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.931e-05 9.110e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.383e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.383e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.383e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-08 1.174e-08 -7.776 -7.930 -0.155 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.931e-05 9.110e-05 -4.003 -4.040 -0.037 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.118e-06 1.026e-06 -5.951 -5.989 -0.037 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.140e-08 6.150e-08 -7.212 -7.211 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.164e-13 - H2 1.582e-13 1.585e-13 -12.801 -12.800 0.001 (0) +H(0) 5.317e-13 + H2 2.658e-13 2.663e-13 -12.575 -12.575 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.782 -66.782 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.181 -69.181 0.001 (0) -[13C](-4) 6.885e-20 - [13C]H4 6.885e-20 6.896e-20 -19.162 -19.161 0.001 (0) -[13C](4) 6.566e-05 - H[13C]O3- 5.296e-05 4.845e-05 -4.276 -4.315 -0.039 (0) - [13C]O2 1.112e-05 1.113e-05 -4.954 -4.953 0.001 (0) - CaH[13C]O3+ 1.118e-06 1.026e-06 -5.951 -5.989 -0.037 (0) - H[13C]O[18O]O- 1.057e-07 9.667e-08 -6.976 -7.015 -0.039 (0) - H[13C][18O]O2- 1.057e-07 9.667e-08 -6.976 -7.015 -0.039 (0) - H[13C]O2[18O]- 1.057e-07 9.667e-08 -6.976 -7.015 -0.039 (0) - Ca[13C]O3 6.140e-08 6.150e-08 -7.212 -7.211 0.001 (0) - [13C]O[18O] 4.622e-08 4.630e-08 -7.335 -7.334 0.001 (0) - [13C]O3-2 3.150e-08 2.206e-08 -7.502 -7.656 -0.155 (0) - CaH[13C]O2[18O]+ 2.231e-09 2.047e-09 -8.651 -8.689 -0.037 (0) - CaH[13C]O[18O]O+ 2.231e-09 2.047e-09 -8.651 -8.689 -0.037 (0) - CaH[13C][18O]O2+ 2.231e-09 2.047e-09 -8.651 -8.689 -0.037 (0) - Ca[13C]O2[18O] 3.675e-10 3.681e-10 -9.435 -9.434 0.001 (0) - H[13C][18O]O[18O]- 2.108e-10 1.929e-10 -9.676 -9.715 -0.039 (0) - H[13C]O[18O]2- 2.108e-10 1.929e-10 -9.676 -9.715 -0.039 (0) - H[13C][18O]2O- 2.108e-10 1.929e-10 -9.676 -9.715 -0.039 (0) - [13C]O2[18O]-2 1.885e-10 1.321e-10 -9.725 -9.879 -0.155 (0) -[14C](-4) 3.337e-32 - [14C]H4 3.337e-32 3.343e-32 -31.477 -31.476 0.001 (0) -[14C](4) 3.205e-17 - H[14C]O3- 2.589e-17 2.369e-17 -16.587 -16.625 -0.039 (0) - [14C]O2 5.388e-18 5.397e-18 -17.269 -17.268 0.001 (0) - CaH[14C]O3+ 5.468e-19 5.016e-19 -18.262 -18.300 -0.037 (0) - H[14C][18O]O2- 5.166e-20 4.726e-20 -19.287 -19.325 -0.039 (0) - H[14C]O2[18O]- 5.166e-20 4.726e-20 -19.287 -19.325 -0.039 (0) - H[14C]O[18O]O- 5.166e-20 4.726e-20 -19.287 -19.325 -0.039 (0) - Ca[14C]O3 2.997e-20 3.002e-20 -19.523 -19.523 0.001 (0) - [14C]O[18O] 2.240e-20 2.244e-20 -19.650 -19.649 0.001 (0) - [14C]O3-2 1.538e-20 1.077e-20 -19.813 -19.968 -0.155 (0) - CaH[14C]O[18O]O+ 1.091e-21 1.001e-21 -20.962 -21.000 -0.037 (0) - CaH[14C]O2[18O]+ 1.091e-21 1.001e-21 -20.962 -21.000 -0.037 (0) - CaH[14C][18O]O2+ 1.091e-21 1.001e-21 -20.962 -21.000 -0.037 (0) - Ca[14C]O2[18O] 1.794e-22 1.797e-22 -21.746 -21.745 0.001 (0) - H[14C][18O]2O- 1.031e-22 9.430e-23 -21.987 -22.025 -0.039 (0) - H[14C]O[18O]2- 1.031e-22 9.430e-23 -21.987 -22.025 -0.039 (0) - H[14C][18O]O[18O]- 1.031e-22 9.430e-23 -21.987 -22.025 -0.039 (0) - [14C]O2[18O]-2 9.204e-23 6.448e-23 -22.036 -22.191 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.233 -67.232 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.632 -69.631 0.001 (0) +[13C](-4) 5.447e-19 + [13C]H4 5.447e-19 5.456e-19 -18.264 -18.263 0.001 (0) +[13C](4) 6.519e-05 + H[13C]O3- 5.258e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 2.636e-31 + [14C]H4 2.636e-31 2.641e-31 -30.579 -30.578 0.001 (0) +[14C](4) 3.178e-17 + H[14C]O3- 2.567e-17 2.349e-17 -16.591 -16.629 -0.039 (0) + [14C]O2 5.342e-18 5.351e-18 -17.272 -17.272 0.001 (0) + CaH[14C]O3+ 5.421e-19 4.973e-19 -18.266 -18.303 -0.037 (0) + H[14C]O2[18O]- 5.122e-20 4.686e-20 -19.291 -19.329 -0.039 (0) + H[14C]O[18O]O- 5.122e-20 4.686e-20 -19.291 -19.329 -0.039 (0) + H[14C][18O]O2- 5.122e-20 4.686e-20 -19.291 -19.329 -0.039 (0) + Ca[14C]O3 2.972e-20 2.977e-20 -19.527 -19.526 0.001 (0) + [14C]O[18O] 2.221e-20 2.225e-20 -19.653 -19.653 0.001 (0) + [14C]O3-2 1.525e-20 1.068e-20 -19.817 -19.971 -0.155 (0) + CaH[14C]O2[18O]+ 1.082e-21 9.922e-22 -20.966 -21.003 -0.037 (0) + CaH[14C]O[18O]O+ 1.082e-21 9.922e-22 -20.966 -21.003 -0.037 (0) + CaH[14C][18O]O2+ 1.082e-21 9.922e-22 -20.966 -21.003 -0.037 (0) + Ca[14C]O2[18O] 1.779e-22 1.782e-22 -21.750 -21.749 0.001 (0) + H[14C]O[18O]2- 1.022e-22 9.350e-23 -21.991 -22.029 -0.039 (0) + H[14C][18O]2O- 1.022e-22 9.350e-23 -21.991 -22.029 -0.039 (0) + H[14C][18O]O[18O]- 1.022e-22 9.350e-23 -21.991 -22.029 -0.039 (0) + [14C]O2[18O]-2 9.125e-23 6.393e-23 -22.040 -22.194 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.383e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.383e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.383e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.181 -69.181 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.182 -72.182 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.632 -69.631 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.633 -72.632 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.85 -10.35 -1.50 [13C][18O]2 - [13C]H4(g) -16.30 -19.16 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.95 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.65 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.16 -22.67 -1.50 [14C][18O]2 - [14C]H4(g) -28.62 -31.48 -2.86 [14C]H4 + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -15.40 -18.26 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] + [14C][18O]2(g) -21.17 -22.67 -1.50 [14C][18O]2 + [14C]H4(g) -27.72 -30.58 -2.86 [14C]H4 [14C]O2(g) -15.80 -17.27 -1.47 [14C]O2 [14C]O[18O](g) -18.18 -19.97 -1.79 [14C]O[18O] - [18O]2(g) -69.89 -72.18 -2.29 [18O]2 + [18O]2(g) -70.34 -72.63 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.85 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.33 -14.17 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.48 -8.77 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.27 -6.07 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.16 -11.47 7.69 Ca[14C]O[18O]2 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -22.33 -14.18 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -16.48 -8.78 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -14.27 -6.08 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -19.17 -11.48 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.35 -17.21 -2.86 CH4 + CH4(g) -13.45 -16.31 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.65 -12.80 -3.15 H2 + H2(g) -9.42 -12.57 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.89 -66.78 -2.89 O2 - O[18O](g) -66.59 -69.48 -2.89 O[18O] + O2(g) -64.34 -67.23 -2.89 O2 + O[18O](g) -67.04 -69.93 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -18096,12 +18019,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 71. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -18144,39 +18061,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.54e-06 5.54e-06 1.11e-02 - Ca[13C]O2[18O](s) 3.41e-08 3.41e-08 6.82e-05 - Ca[13C]O[18O]2(s) 7.00e-11 7.00e-11 1.40e-07 - Ca[13C][18O]3(s) 4.79e-14 4.79e-14 9.59e-11 - Ca[14C]O3(s) 2.50e-18 2.50e-18 5.00e-15 - Ca[14C]O2[18O](s) 1.54e-20 1.54e-20 3.08e-17 - Ca[14C]O[18O]2(s) 1.01e-27 1.01e-29 2.02e-24 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 2.48e-18 2.48e-18 4.96e-15 + Ca[14C]O2[18O](s) 1.53e-20 1.53e-20 3.06e-17 + Ca[14C]O[18O]2(s) 3.14e-23 3.14e-23 6.27e-20 + Ca[14C][18O]3(s) 2.15e-26 2.05e-26 4.29e-23 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9875 permil - R(13C) 1.12384e-02 5.2033 permil - R(14C) 5.05692e-15 0.43005 pmc - R(18O) H2O(l) 1.99520e-03 -4.9891 permil + R(18O) 1.99520e-03 -4.9872 permil + R(13C) 1.11637e-02 -1.4786 permil + R(14C) 5.01357e-15 0.42636 pmc + R(18O) H2O(l) 1.99520e-03 -4.9887 permil R(18O) OH- 1.92123e-03 -41.876 permil R(18O) H3O+ 2.04133e-03 18.019 permil - R(13C) CO2(aq) 1.11579e-02 -1.9905 permil - R(14C) CO2(aq) 4.98475e-15 0.42391 pmc + R(13C) CO2(aq) 1.10838e-02 -8.6246 permil + R(14C) CO2(aq) 4.94201e-15 0.42028 pmc R(18O) CO2(aq) 2.07916e-03 36.885 permil - R(18O) HCO3- 1.99520e-03 -4.9891 permil - R(13C) HCO3- 1.12550e-02 6.6921 permil - R(14C) HCO3- 5.07186e-15 0.43132 pmc - R(18O) CO3-2 1.99520e-03 -4.9891 permil - R(13C) CO3-2 1.12389e-02 5.2474 permil - R(14C) CO3-2 5.05731e-15 0.43008 pmc - R(13C) CH4(aq) 1.11579e-02 -1.9905 permil - R(14C) CH4(aq) 4.98475e-15 0.42391 pmc - R(18O) Calcite 2.05264e-03 23.657 permil - R(13C) Calcite 1.12773e-02 8.686 permil - R(14C) Calcite 5.09191e-15 0.43303 pmc + R(18O) HCO3- 1.99520e-03 -4.9887 permil + R(13C) HCO3- 1.11802e-02 0.00021706 permil + R(14C) HCO3- 5.02838e-15 0.42762 pmc + R(18O) CO3-2 1.99520e-03 -4.9887 permil + R(13C) CO3-2 1.11642e-02 -1.4349 permil + R(14C) CO3-2 5.01395e-15 0.4264 pmc + R(13C) CH4(aq) 1.10838e-02 -8.6246 permil + R(14C) CH4(aq) 4.94201e-15 0.42028 pmc + R(18O) Calcite 2.05264e-03 23.658 permil + R(13C) Calcite 1.12023e-02 1.9809 permil + R(14C) Calcite 5.04831e-15 0.42932 pmc --------------------------------Isotope Alphas--------------------------------- @@ -18187,159 +18104,159 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.9936e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6063e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7574e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 5.9952e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -4.5519e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.5321e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 8.8818e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.269 21.282 +Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 5.839e-03 5.822e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.562e-05 6.543e-05 - [14C] 2.953e-17 2.944e-17 + [13C] 6.519e-05 6.500e-05 + [14C] 2.928e-17 2.919e-17 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.199 Adjusted to redox equilibrium + pe = -2.265 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.839e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.449e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 37 (138 overall) + Iterations = 76 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.210e-17 - CH4 1.210e-17 1.212e-17 -16.917 -16.917 0.001 (0) -C(4) 5.839e-03 +C(-4) 4.078e-17 + CH4 4.078e-17 4.085e-17 -16.390 -16.389 0.001 (0) +C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) - CO2 9.957e-04 9.973e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.931e-05 9.110e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-08 1.174e-08 -7.776 -7.930 -0.155 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.931e-05 9.110e-05 -4.003 -4.040 -0.037 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.118e-06 1.025e-06 -5.952 -5.989 -0.037 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.136e-08 6.147e-08 -7.212 -7.211 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.745e-13 - H2 1.872e-13 1.876e-13 -12.728 -12.727 0.001 (0) +H(0) 5.074e-13 + H2 2.537e-13 2.541e-13 -12.596 -12.595 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.929 -66.928 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.328 -69.327 0.001 (0) -[13C](-4) 1.350e-19 - [13C]H4 1.350e-19 1.352e-19 -18.870 -18.869 0.001 (0) -[13C](4) 6.562e-05 - H[13C]O3- 5.293e-05 4.843e-05 -4.276 -4.315 -0.039 (0) - [13C]O2 1.111e-05 1.113e-05 -4.954 -4.954 0.001 (0) - CaH[13C]O3+ 1.118e-06 1.025e-06 -5.952 -5.989 -0.037 (0) - H[13C][18O]O2- 1.056e-07 9.662e-08 -6.976 -7.015 -0.039 (0) - H[13C]O2[18O]- 1.056e-07 9.662e-08 -6.976 -7.015 -0.039 (0) - H[13C]O[18O]O- 1.056e-07 9.662e-08 -6.976 -7.015 -0.039 (0) - Ca[13C]O3 6.136e-08 6.147e-08 -7.212 -7.211 0.001 (0) - [13C]O[18O] 4.620e-08 4.628e-08 -7.335 -7.335 0.001 (0) - [13C]O3-2 3.148e-08 2.205e-08 -7.502 -7.657 -0.155 (0) - CaH[13C]O[18O]O+ 2.230e-09 2.046e-09 -8.652 -8.689 -0.037 (0) - CaH[13C][18O]O2+ 2.230e-09 2.046e-09 -8.652 -8.689 -0.037 (0) - CaH[13C]O2[18O]+ 2.230e-09 2.046e-09 -8.652 -8.689 -0.037 (0) - Ca[13C]O2[18O] 3.673e-10 3.679e-10 -9.435 -9.434 0.001 (0) - H[13C][18O]O[18O]- 2.107e-10 1.928e-10 -9.676 -9.715 -0.039 (0) - H[13C]O[18O]2- 2.107e-10 1.928e-10 -9.676 -9.715 -0.039 (0) - H[13C][18O]2O- 2.107e-10 1.928e-10 -9.676 -9.715 -0.039 (0) - [13C]O2[18O]-2 1.884e-10 1.320e-10 -9.725 -9.879 -0.155 (0) -[14C](-4) 6.030e-32 - [14C]H4 6.030e-32 6.040e-32 -31.220 -31.219 0.001 (0) -[14C](4) 2.953e-17 - H[14C]O3- 2.385e-17 2.182e-17 -16.622 -16.661 -0.039 (0) - [14C]O2 4.963e-18 4.972e-18 -17.304 -17.304 0.001 (0) - CaH[14C]O3+ 5.037e-19 4.621e-19 -18.298 -18.335 -0.037 (0) - H[14C][18O]O2- 4.759e-20 4.354e-20 -19.322 -19.361 -0.039 (0) - H[14C]O2[18O]- 4.759e-20 4.354e-20 -19.322 -19.361 -0.039 (0) - H[14C]O[18O]O- 4.759e-20 4.354e-20 -19.322 -19.361 -0.039 (0) - Ca[14C]O3 2.761e-20 2.766e-20 -19.559 -19.558 0.001 (0) - [14C]O[18O] 2.064e-20 2.067e-20 -19.685 -19.685 0.001 (0) - [14C]O3-2 1.417e-20 9.923e-21 -19.849 -20.003 -0.155 (0) - CaH[14C]O[18O]O+ 1.005e-21 9.219e-22 -20.998 -21.035 -0.037 (0) - CaH[14C]O2[18O]+ 1.005e-21 9.219e-22 -20.998 -21.035 -0.037 (0) - CaH[14C][18O]O2+ 1.005e-21 9.219e-22 -20.998 -21.035 -0.037 (0) - Ca[14C]O2[18O] 1.653e-22 1.656e-22 -21.782 -21.781 0.001 (0) - H[14C]O[18O]2- 9.496e-23 8.687e-23 -22.022 -22.061 -0.039 (0) - H[14C][18O]O[18O]- 9.496e-23 8.687e-23 -22.022 -22.061 -0.039 (0) - H[14C][18O]2O- 9.496e-23 8.687e-23 -22.022 -22.061 -0.039 (0) - [14C]O2[18O]-2 8.479e-23 5.940e-23 -22.072 -22.226 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.193 -67.192 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.592 -69.591 0.001 (0) +[13C](-4) 4.520e-19 + [13C]H4 4.520e-19 4.528e-19 -18.345 -18.344 0.001 (0) +[13C](4) 6.519e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 2.016e-31 + [14C]H4 2.016e-31 2.019e-31 -30.696 -30.695 0.001 (0) +[14C](4) 2.928e-17 + H[14C]O3- 2.365e-17 2.164e-17 -16.626 -16.665 -0.039 (0) + [14C]O2 4.921e-18 4.929e-18 -17.308 -17.307 0.001 (0) + CaH[14C]O3+ 4.994e-19 4.581e-19 -18.302 -18.339 -0.037 (0) + H[14C]O2[18O]- 4.719e-20 4.317e-20 -19.326 -19.365 -0.039 (0) + H[14C]O[18O]O- 4.719e-20 4.317e-20 -19.326 -19.365 -0.039 (0) + H[14C][18O]O2- 4.719e-20 4.317e-20 -19.326 -19.365 -0.039 (0) + Ca[14C]O3 2.738e-20 2.742e-20 -19.563 -19.562 0.001 (0) + [14C]O[18O] 2.046e-20 2.050e-20 -19.689 -19.688 0.001 (0) + [14C]O3-2 1.404e-20 9.839e-21 -19.852 -20.007 -0.155 (0) + CaH[14C]O2[18O]+ 9.964e-22 9.141e-22 -21.002 -21.039 -0.037 (0) + CaH[14C]O[18O]O+ 9.964e-22 9.141e-22 -21.002 -21.039 -0.037 (0) + CaH[14C][18O]O2+ 9.964e-22 9.141e-22 -21.002 -21.039 -0.037 (0) + Ca[14C]O2[18O] 1.639e-22 1.641e-22 -21.785 -21.785 0.001 (0) + H[14C]O[18O]2- 9.415e-23 8.613e-23 -22.026 -22.065 -0.039 (0) + H[14C][18O]2O- 9.415e-23 8.613e-23 -22.026 -22.065 -0.039 (0) + H[14C][18O]O[18O]- 9.415e-23 8.613e-23 -22.026 -22.065 -0.039 (0) + [14C]O2[18O]-2 8.407e-23 5.889e-23 -22.075 -22.230 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.140e-06 4.147e-06 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.981e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) + CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.328 -69.327 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.329 -72.328 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.592 -69.591 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.593 -72.592 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.85 -10.35 -1.50 [13C][18O]2 - [13C]H4(g) -16.01 -18.87 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.95 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.65 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.20 -22.70 -1.50 [14C][18O]2 - [14C]H4(g) -28.36 -31.22 -2.86 [14C]H4 - [14C]O2(g) -15.83 -17.30 -1.47 [14C]O2 - [14C]O[18O](g) -18.22 -20.00 -1.79 [14C]O[18O] - [18O]2(g) -70.04 -72.33 -2.29 [18O]2 + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -15.48 -18.34 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] + [14C][18O]2(g) -21.20 -22.71 -1.50 [14C][18O]2 + [14C]H4(g) -27.83 -30.69 -2.86 [14C]H4 + [14C]O2(g) -15.84 -17.31 -1.47 [14C]O2 + [14C]O[18O](g) -18.22 -20.01 -1.79 [14C]O[18O] + [18O]2(g) -70.30 -72.59 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.85 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.36 -14.21 8.15 Ca[14C][18O]3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -22.37 -14.21 8.15 Ca[14C][18O]3 Ca[14C]O2[18O](s) -16.51 -8.81 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -14.30 -6.11 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -19.20 -11.51 7.69 Ca[14C]O[18O]2 @@ -18347,14 +18264,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.06 -16.92 -2.86 CH4 + CH4(g) -13.53 -16.39 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.58 -12.73 -3.15 H2 + H2(g) -9.44 -12.59 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.04 -66.93 -2.89 O2 - O[18O](g) -66.74 -69.63 -2.89 O[18O] + O2(g) -64.30 -67.19 -2.89 O2 + O[18O](g) -67.00 -69.89 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -18426,39 +18343,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.54e-06 5.54e-06 1.11e-02 - Ca[13C]O2[18O](s) 3.41e-08 3.41e-08 6.82e-05 - Ca[13C]O[18O]2(s) 7.00e-11 7.00e-11 1.40e-07 - Ca[13C][18O]3(s) 4.79e-14 4.79e-14 9.58e-11 - Ca[14C]O3(s) 2.31e-18 2.31e-18 4.61e-15 - Ca[14C]O2[18O](s) 1.42e-20 1.42e-20 2.84e-17 - Ca[14C]O[18O]2(s) 2.91e-23 2.91e-23 5.83e-20 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 2.29e-18 2.29e-18 4.57e-15 + Ca[14C]O2[18O](s) 1.41e-20 1.41e-20 2.81e-17 + Ca[14C]O[18O]2(s) 2.89e-23 2.89e-23 5.78e-20 + Ca[14C][18O]3(s) 1.98e-26 1.88e-26 3.95e-23 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9874 permil - R(13C) 1.12326e-02 4.6857 permil - R(14C) 4.65855e-15 0.39617 pmc - R(18O) H2O(l) 1.99520e-03 -4.9889 permil + R(18O) 1.99520e-03 -4.9871 permil + R(13C) 1.11637e-02 -1.4715 permil + R(14C) 4.61864e-15 0.39278 pmc + R(18O) H2O(l) 1.99520e-03 -4.9886 permil R(18O) OH- 1.92123e-03 -41.876 permil R(18O) H3O+ 2.04133e-03 18.019 permil - R(13C) CO2(aq) 1.11522e-02 -2.5044 permil - R(14C) CO2(aq) 4.59206e-15 0.39052 pmc - R(18O) CO2(aq) 2.07916e-03 36.885 permil - R(18O) HCO3- 1.99520e-03 -4.9889 permil - R(13C) HCO3- 1.12492e-02 6.1737 permil - R(14C) HCO3- 4.67231e-15 0.39734 pmc - R(18O) CO3-2 1.99520e-03 -4.9889 permil - R(13C) CO3-2 1.12331e-02 4.7298 permil - R(14C) CO3-2 4.65891e-15 0.3962 pmc - R(13C) CH4(aq) 1.11522e-02 -2.5044 permil - R(14C) CH4(aq) 4.59206e-15 0.39052 pmc + R(13C) CO2(aq) 1.10839e-02 -8.6176 permil + R(14C) CO2(aq) 4.55272e-15 0.38717 pmc + R(18O) CO2(aq) 2.07916e-03 36.886 permil + R(18O) HCO3- 1.99520e-03 -4.9886 permil + R(13C) HCO3- 1.11803e-02 0.0073507 permil + R(14C) HCO3- 4.63228e-15 0.39394 pmc + R(18O) CO3-2 1.99520e-03 -4.9886 permil + R(13C) CO3-2 1.11642e-02 -1.4277 permil + R(14C) CO3-2 4.61899e-15 0.39281 pmc + R(13C) CH4(aq) 1.10839e-02 -8.6176 permil + R(14C) CH4(aq) 4.55272e-15 0.38717 pmc R(18O) Calcite 2.05264e-03 23.658 permil - R(13C) Calcite 1.12715e-02 8.1666 permil - R(14C) Calcite 4.69084e-15 0.39892 pmc + R(13C) Calcite 1.12024e-02 1.988 permil + R(14C) Calcite 4.65065e-15 0.3955 pmc --------------------------------Isotope Alphas--------------------------------- @@ -18469,14 +18386,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 6.6613e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7628e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6239e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.8874e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 8.4377e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -2.7756e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -2.9976e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -18485,158 +18402,158 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 Elements Molality Moles - C 5.839e-03 5.822e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.559e-05 6.540e-05 - [14C] 2.720e-17 2.712e-17 + [13C] 6.519e-05 6.500e-05 + [14C] 2.697e-17 2.689e-17 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.240 Adjusted to redox equilibrium + pe = -2.259 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.839e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.449e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 44 (145 overall) + Iterations = 69 (170 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.547e-17 - CH4 2.547e-17 2.552e-17 -16.594 -16.593 0.001 (0) -C(4) 5.839e-03 +C(-4) 3.600e-17 + CH4 3.600e-17 3.606e-17 -16.444 -16.443 0.001 (0) +C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) - CO2 9.957e-04 9.974e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.931e-05 9.110e-05 -4.003 -4.040 -0.037 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-08 1.174e-08 -7.776 -7.930 -0.155 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.931e-05 9.110e-05 -4.003 -4.040 -0.037 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.117e-06 1.025e-06 -5.952 -5.989 -0.037 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.133e-08 6.143e-08 -7.212 -7.212 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.511e-13 - H2 2.256e-13 2.259e-13 -12.647 -12.646 0.001 (0) +H(0) 4.919e-13 + H2 2.459e-13 2.463e-13 -12.609 -12.608 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.090 -67.090 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.489 -69.489 0.001 (0) -[13C](-4) 2.841e-19 - [13C]H4 2.841e-19 2.846e-19 -18.547 -18.546 0.001 (0) -[13C](4) 6.559e-05 - H[13C]O3- 5.291e-05 4.840e-05 -4.276 -4.315 -0.039 (0) - [13C]O2 1.110e-05 1.112e-05 -4.955 -4.954 0.001 (0) - CaH[13C]O3+ 1.117e-06 1.025e-06 -5.952 -5.989 -0.037 (0) - H[13C]O2[18O]- 1.056e-07 9.657e-08 -6.977 -7.015 -0.039 (0) - H[13C]O[18O]O- 1.056e-07 9.657e-08 -6.977 -7.015 -0.039 (0) - H[13C][18O]O2- 1.056e-07 9.657e-08 -6.977 -7.015 -0.039 (0) - Ca[13C]O3 6.133e-08 6.143e-08 -7.212 -7.212 0.001 (0) - [13C]O[18O] 4.618e-08 4.625e-08 -7.336 -7.335 0.001 (0) - [13C]O3-2 3.146e-08 2.204e-08 -7.502 -7.657 -0.155 (0) - CaH[13C][18O]O2+ 2.229e-09 2.045e-09 -8.652 -8.689 -0.037 (0) - CaH[13C]O2[18O]+ 2.229e-09 2.045e-09 -8.652 -8.689 -0.037 (0) - CaH[13C]O[18O]O+ 2.229e-09 2.045e-09 -8.652 -8.689 -0.037 (0) - Ca[13C]O2[18O] 3.671e-10 3.677e-10 -9.435 -9.434 0.001 (0) - H[13C][18O]O[18O]- 2.106e-10 1.927e-10 -9.677 -9.715 -0.039 (0) - H[13C]O[18O]2- 2.106e-10 1.927e-10 -9.677 -9.715 -0.039 (0) - H[13C][18O]2O- 2.106e-10 1.927e-10 -9.677 -9.715 -0.039 (0) - [13C]O2[18O]-2 1.883e-10 1.319e-10 -9.725 -9.880 -0.155 (0) -[14C](-4) 1.170e-31 - [14C]H4 1.170e-31 1.172e-31 -30.932 -30.931 0.001 (0) -[14C](4) 2.720e-17 - H[14C]O3- 2.197e-17 2.010e-17 -16.658 -16.697 -0.039 (0) - [14C]O2 4.572e-18 4.580e-18 -17.340 -17.339 0.001 (0) - CaH[14C]O3+ 4.640e-19 4.257e-19 -18.333 -18.371 -0.037 (0) - H[14C][18O]O2- 4.384e-20 4.011e-20 -19.358 -19.397 -0.039 (0) - H[14C]O2[18O]- 4.384e-20 4.011e-20 -19.358 -19.397 -0.039 (0) - H[14C]O[18O]O- 4.384e-20 4.011e-20 -19.358 -19.397 -0.039 (0) - Ca[14C]O3 2.544e-20 2.548e-20 -19.595 -19.594 0.001 (0) - [14C]O[18O] 1.901e-20 1.904e-20 -19.721 -19.720 0.001 (0) - [14C]O3-2 1.305e-20 9.142e-21 -19.884 -20.039 -0.155 (0) - CaH[14C]O[18O]O+ 9.258e-22 8.493e-22 -21.033 -21.071 -0.037 (0) - CaH[14C]O2[18O]+ 9.258e-22 8.493e-22 -21.033 -21.071 -0.037 (0) - CaH[14C][18O]O2+ 9.258e-22 8.493e-22 -21.033 -21.071 -0.037 (0) - Ca[14C]O2[18O] 1.523e-22 1.525e-22 -21.817 -21.817 0.001 (0) - H[14C][18O]O[18O]- 8.748e-23 8.003e-23 -22.058 -22.097 -0.039 (0) - H[14C][18O]2O- 8.748e-23 8.003e-23 -22.058 -22.097 -0.039 (0) - H[14C]O[18O]2- 8.748e-23 8.003e-23 -22.058 -22.097 -0.039 (0) - [14C]O2[18O]-2 7.811e-23 5.472e-23 -22.107 -22.262 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.166 -67.165 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.565 -69.564 0.001 (0) +[13C](-4) 3.990e-19 + [13C]H4 3.990e-19 3.997e-19 -18.399 -18.398 0.001 (0) +[13C](4) 6.519e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 1.639e-31 + [14C]H4 1.639e-31 1.642e-31 -30.785 -30.785 0.001 (0) +[14C](4) 2.697e-17 + H[14C]O3- 2.179e-17 1.993e-17 -16.662 -16.700 -0.039 (0) + [14C]O2 4.534e-18 4.541e-18 -17.344 -17.343 0.001 (0) + CaH[14C]O3+ 4.601e-19 4.220e-19 -18.337 -18.375 -0.037 (0) + H[14C]O2[18O]- 4.347e-20 3.977e-20 -19.362 -19.400 -0.039 (0) + H[14C]O[18O]O- 4.347e-20 3.977e-20 -19.362 -19.400 -0.039 (0) + H[14C][18O]O2- 4.347e-20 3.977e-20 -19.362 -19.400 -0.039 (0) + Ca[14C]O3 2.522e-20 2.526e-20 -19.598 -19.598 0.001 (0) + [14C]O[18O] 1.885e-20 1.888e-20 -19.725 -19.724 0.001 (0) + [14C]O3-2 1.294e-20 9.064e-21 -19.888 -20.043 -0.155 (0) + CaH[14C]O2[18O]+ 9.180e-22 8.421e-22 -21.037 -21.075 -0.037 (0) + CaH[14C]O[18O]O+ 9.180e-22 8.421e-22 -21.037 -21.075 -0.037 (0) + CaH[14C][18O]O2+ 9.180e-22 8.421e-22 -21.037 -21.075 -0.037 (0) + Ca[14C]O2[18O] 1.510e-22 1.512e-22 -21.821 -21.820 0.001 (0) + H[14C]O[18O]2- 8.673e-23 7.935e-23 -22.062 -22.100 -0.039 (0) + H[14C][18O]2O- 8.673e-23 7.935e-23 -22.062 -22.100 -0.039 (0) + H[14C][18O]O[18O]- 8.673e-23 7.935e-23 -22.062 -22.100 -0.039 (0) + [14C]O2[18O]-2 7.744e-23 5.425e-23 -22.111 -22.266 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.489 -69.489 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.490 -72.490 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.565 -69.564 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.566 -72.565 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.85 -10.35 -1.50 [13C][18O]2 - [13C]H4(g) -15.69 -18.55 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.95 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.65 -1.79 [13C]O[18O] + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -15.54 -18.40 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.24 -22.74 -1.50 [14C][18O]2 - [14C]H4(g) -28.07 -30.93 -2.86 [14C]H4 + [14C]H4(g) -27.92 -30.78 -2.86 [14C]H4 [14C]O2(g) -15.87 -17.34 -1.47 [14C]O2 - [14C]O[18O](g) -18.25 -20.04 -1.79 [14C]O[18O] - [18O]2(g) -70.20 -72.49 -2.29 [18O]2 + [14C]O[18O](g) -18.26 -20.04 -1.79 [14C]O[18O] + [18O]2(g) -70.27 -72.56 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.85 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.40 -14.24 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.55 -8.84 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.34 -6.14 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.23 -11.54 7.69 Ca[14C]O[18O]2 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -22.40 -14.25 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -16.55 -8.85 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -14.34 -6.15 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -19.24 -11.55 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.73 -16.59 -2.86 CH4 + CH4(g) -13.58 -16.44 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.50 -12.65 -3.15 H2 + H2(g) -9.46 -12.61 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.20 -67.09 -2.89 O2 - O[18O](g) -66.90 -69.79 -2.89 O[18O] + O2(g) -64.27 -67.16 -2.89 O2 + O[18O](g) -66.97 -69.86 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -18708,39 +18625,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.54e-06 5.54e-06 1.11e-02 - Ca[13C]O2[18O](s) 3.41e-08 3.41e-08 6.82e-05 - Ca[13C]O[18O]2(s) 7.00e-11 7.00e-11 1.40e-07 - Ca[13C][18O]3(s) 4.79e-14 4.79e-14 9.58e-11 - Ca[14C]O3(s) 2.12e-18 2.12e-18 4.25e-15 - Ca[14C]O2[18O](s) 1.31e-20 1.31e-20 2.62e-17 - Ca[14C]O[18O]2(s) 2.68e-23 2.68e-23 5.37e-20 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 2.11e-18 2.11e-18 4.21e-15 + Ca[14C]O2[18O](s) 1.30e-20 1.30e-20 2.59e-17 + Ca[14C]O[18O]2(s) 2.66e-23 2.66e-23 5.32e-20 + Ca[14C][18O]3(s) 1.82e-26 1.72e-26 3.64e-23 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9873 permil - R(13C) 1.12273e-02 4.2088 permil - R(14C) 4.29156e-15 0.36496 pmc - R(18O) H2O(l) 1.99520e-03 -4.9888 permil + R(18O) 1.99520e-03 -4.9869 permil + R(13C) 1.11638e-02 -1.4649 permil + R(14C) 4.25482e-15 0.36184 pmc + R(18O) H2O(l) 1.99520e-03 -4.9884 permil R(18O) OH- 1.92123e-03 -41.876 permil R(18O) H3O+ 2.04133e-03 18.019 permil - R(13C) CO2(aq) 1.11469e-02 -2.9779 permil - R(14C) CO2(aq) 4.23031e-15 0.35975 pmc - R(18O) CO2(aq) 2.07916e-03 36.885 permil - R(18O) HCO3- 1.99520e-03 -4.9888 permil - R(13C) HCO3- 1.12439e-02 5.6961 permil - R(14C) HCO3- 4.30424e-15 0.36604 pmc - R(18O) CO3-2 1.99520e-03 -4.9888 permil - R(13C) CO3-2 1.12277e-02 4.2528 permil - R(14C) CO3-2 4.29189e-15 0.36499 pmc - R(13C) CH4(aq) 1.11469e-02 -2.9779 permil - R(14C) CH4(aq) 4.23031e-15 0.35975 pmc + R(13C) CO2(aq) 1.10839e-02 -8.611 permil + R(14C) CO2(aq) 4.19409e-15 0.35667 pmc + R(18O) CO2(aq) 2.07916e-03 36.886 permil + R(18O) HCO3- 1.99520e-03 -4.9884 permil + R(13C) HCO3- 1.11804e-02 0.013924 permil + R(14C) HCO3- 4.26738e-15 0.36291 pmc + R(18O) CO3-2 1.99520e-03 -4.9884 permil + R(13C) CO3-2 1.11643e-02 -1.4212 permil + R(14C) CO3-2 4.25515e-15 0.36187 pmc + R(13C) CH4(aq) 1.10839e-02 -8.611 permil + R(14C) CH4(aq) 4.19409e-15 0.35667 pmc R(18O) Calcite 2.05264e-03 23.658 permil - R(13C) Calcite 1.12662e-02 7.688 permil - R(14C) Calcite 4.32131e-15 0.36749 pmc + R(13C) Calcite 1.12025e-02 1.9946 permil + R(14C) Calcite 4.28431e-15 0.36435 pmc --------------------------------Isotope Alphas--------------------------------- @@ -18751,14 +18668,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.667e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5529e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 8.2157e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 5.9952e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 9.3259e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -3.2196e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -18767,158 +18684,158 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 Elements Molality Moles - C 5.839e-03 5.822e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.556e-05 6.537e-05 - [14C] 2.506e-17 2.499e-17 + [13C] 6.519e-05 6.500e-05 + [14C] 2.485e-17 2.477e-17 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.236 Adjusted to redox equilibrium + pe = -2.247 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.839e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.449e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 35 (136 overall) + Iterations = 117 (218 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.398e-17 - CH4 2.398e-17 2.402e-17 -16.620 -16.619 0.001 (0) -C(4) 5.839e-03 +C(-4) 2.910e-17 + CH4 2.910e-17 2.915e-17 -16.536 -16.535 0.001 (0) +C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) - CO2 9.957e-04 9.974e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.931e-05 9.110e-05 -4.003 -4.040 -0.037 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-08 1.174e-08 -7.776 -7.930 -0.155 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.931e-05 9.110e-05 -4.003 -4.040 -0.037 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.117e-06 1.024e-06 -5.952 -5.990 -0.037 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.130e-08 6.141e-08 -7.213 -7.212 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.444e-13 - H2 2.222e-13 2.226e-13 -12.653 -12.653 0.001 (0) +H(0) 4.664e-13 + H2 2.332e-13 2.336e-13 -12.632 -12.632 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.077 -67.077 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.476 -69.476 0.001 (0) -[13C](-4) 2.673e-19 - [13C]H4 2.673e-19 2.678e-19 -18.573 -18.572 0.001 (0) -[13C](4) 6.556e-05 - H[13C]O3- 5.288e-05 4.838e-05 -4.277 -4.315 -0.039 (0) - [13C]O2 1.110e-05 1.112e-05 -4.955 -4.954 0.001 (0) - CaH[13C]O3+ 1.117e-06 1.024e-06 -5.952 -5.990 -0.037 (0) - H[13C]O[18O]O- 1.055e-07 9.653e-08 -6.977 -7.015 -0.039 (0) - H[13C][18O]O2- 1.055e-07 9.653e-08 -6.977 -7.015 -0.039 (0) - H[13C]O2[18O]- 1.055e-07 9.653e-08 -6.977 -7.015 -0.039 (0) - Ca[13C]O3 6.130e-08 6.141e-08 -7.213 -7.212 0.001 (0) - [13C]O[18O] 4.615e-08 4.623e-08 -7.336 -7.335 0.001 (0) - [13C]O3-2 3.145e-08 2.203e-08 -7.502 -7.657 -0.155 (0) - CaH[13C]O2[18O]+ 2.228e-09 2.044e-09 -8.652 -8.690 -0.037 (0) - CaH[13C]O[18O]O+ 2.228e-09 2.044e-09 -8.652 -8.690 -0.037 (0) - CaH[13C][18O]O2+ 2.228e-09 2.044e-09 -8.652 -8.690 -0.037 (0) - Ca[13C]O2[18O] 3.669e-10 3.675e-10 -9.435 -9.435 0.001 (0) - H[13C][18O]O[18O]- 2.105e-10 1.926e-10 -9.677 -9.715 -0.039 (0) - H[13C]O[18O]2- 2.105e-10 1.926e-10 -9.677 -9.715 -0.039 (0) - H[13C][18O]2O- 2.105e-10 1.926e-10 -9.677 -9.715 -0.039 (0) - [13C]O2[18O]-2 1.882e-10 1.319e-10 -9.725 -9.880 -0.155 (0) -[14C](-4) 1.015e-31 - [14C]H4 1.015e-31 1.016e-31 -30.994 -30.993 0.001 (0) -[14C](4) 2.506e-17 - H[14C]O3- 2.024e-17 1.852e-17 -16.694 -16.732 -0.039 (0) - [14C]O2 4.212e-18 4.219e-18 -17.375 -17.375 0.001 (0) - CaH[14C]O3+ 4.275e-19 3.921e-19 -18.369 -18.407 -0.037 (0) - H[14C][18O]O2- 4.039e-20 3.695e-20 -19.394 -19.432 -0.039 (0) - H[14C]O2[18O]- 4.039e-20 3.695e-20 -19.394 -19.432 -0.039 (0) - H[14C]O[18O]O- 4.039e-20 3.695e-20 -19.394 -19.432 -0.039 (0) - Ca[14C]O3 2.343e-20 2.347e-20 -19.630 -19.629 0.001 (0) - [14C]O[18O] 1.752e-20 1.754e-20 -19.757 -19.756 0.001 (0) - [14C]O3-2 1.202e-20 8.422e-21 -19.920 -20.075 -0.155 (0) - CaH[14C]O[18O]O+ 8.529e-22 7.824e-22 -21.069 -21.107 -0.037 (0) - CaH[14C]O2[18O]+ 8.529e-22 7.824e-22 -21.069 -21.107 -0.037 (0) - CaH[14C][18O]O2+ 8.529e-22 7.824e-22 -21.069 -21.107 -0.037 (0) - Ca[14C]O2[18O] 1.403e-22 1.405e-22 -21.853 -21.852 0.001 (0) - H[14C][18O]2O- 8.058e-23 7.372e-23 -22.094 -22.132 -0.039 (0) - H[14C]O[18O]2- 8.058e-23 7.372e-23 -22.094 -22.132 -0.039 (0) - H[14C][18O]O[18O]- 8.058e-23 7.372e-23 -22.094 -22.132 -0.039 (0) - [14C]O2[18O]-2 7.196e-23 5.041e-23 -22.143 -22.298 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.119 -67.119 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.518 -69.518 0.001 (0) +[13C](-4) 3.226e-19 + [13C]H4 3.226e-19 3.231e-19 -18.491 -18.491 0.001 (0) +[13C](4) 6.519e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 1.221e-31 + [14C]H4 1.221e-31 1.223e-31 -30.913 -30.913 0.001 (0) +[14C](4) 2.485e-17 + H[14C]O3- 2.007e-17 1.836e-17 -16.697 -16.736 -0.039 (0) + [14C]O2 4.176e-18 4.183e-18 -17.379 -17.378 0.001 (0) + CaH[14C]O3+ 4.238e-19 3.888e-19 -18.373 -18.410 -0.037 (0) + H[14C]O2[18O]- 4.005e-20 3.664e-20 -19.397 -19.436 -0.039 (0) + H[14C]O[18O]O- 4.005e-20 3.664e-20 -19.397 -19.436 -0.039 (0) + H[14C][18O]O2- 4.005e-20 3.664e-20 -19.397 -19.436 -0.039 (0) + Ca[14C]O3 2.324e-20 2.327e-20 -19.634 -19.633 0.001 (0) + [14C]O[18O] 1.737e-20 1.740e-20 -19.760 -19.760 0.001 (0) + [14C]O3-2 1.192e-20 8.350e-21 -19.924 -20.078 -0.155 (0) + CaH[14C]O2[18O]+ 8.456e-22 7.757e-22 -21.073 -21.110 -0.037 (0) + CaH[14C]O[18O]O+ 8.456e-22 7.757e-22 -21.073 -21.110 -0.037 (0) + CaH[14C][18O]O2+ 8.456e-22 7.757e-22 -21.073 -21.110 -0.037 (0) + Ca[14C]O2[18O] 1.391e-22 1.393e-22 -21.857 -21.856 0.001 (0) + H[14C]O[18O]2- 7.990e-23 7.310e-23 -22.097 -22.136 -0.039 (0) + H[14C][18O]2O- 7.990e-23 7.310e-23 -22.097 -22.136 -0.039 (0) + H[14C][18O]O[18O]- 7.990e-23 7.310e-23 -22.097 -22.136 -0.039 (0) + [14C]O2[18O]-2 7.134e-23 4.998e-23 -22.147 -22.301 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.476 -69.476 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.477 -72.477 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.518 -69.518 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.519 -72.519 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.85 -10.35 -1.50 [13C][18O]2 - [13C]H4(g) -15.71 -18.57 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.95 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.65 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.27 -22.77 -1.50 [14C][18O]2 - [14C]H4(g) -28.13 -30.99 -2.86 [14C]H4 - [14C]O2(g) -15.91 -17.37 -1.47 [14C]O2 - [14C]O[18O](g) -18.29 -20.07 -1.79 [14C]O[18O] - [18O]2(g) -70.19 -72.48 -2.29 [18O]2 + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -15.63 -18.49 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] + [14C][18O]2(g) -21.27 -22.78 -1.50 [14C][18O]2 + [14C]H4(g) -28.05 -30.91 -2.86 [14C]H4 + [14C]O2(g) -15.91 -17.38 -1.47 [14C]O2 + [14C]O[18O](g) -18.29 -20.08 -1.79 [14C]O[18O] + [18O]2(g) -70.23 -72.52 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.85 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.43 -14.28 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.58 -8.88 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.37 -6.18 8.19 Ca[14C]O3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -22.44 -14.28 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -16.59 -8.88 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -14.38 -6.18 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -19.27 -11.58 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.76 -16.62 -2.86 CH4 + CH4(g) -13.68 -16.54 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.50 -12.65 -3.15 H2 + H2(g) -9.48 -12.63 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.18 -67.08 -2.89 O2 - O[18O](g) -66.88 -69.78 -2.89 O[18O] + O2(g) -64.23 -67.12 -2.89 O2 + O[18O](g) -66.93 -69.82 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -18990,39 +18907,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.53e-06 5.53e-06 1.11e-02 - Ca[13C]O2[18O](s) 3.41e-08 3.41e-08 6.82e-05 - Ca[13C]O[18O]2(s) 6.99e-11 6.99e-11 1.40e-07 - Ca[13C][18O]3(s) 4.79e-14 4.79e-14 9.57e-11 - Ca[14C]O3(s) 1.96e-18 1.96e-18 3.91e-15 - Ca[14C]O2[18O](s) 1.20e-20 1.20e-20 2.41e-17 - Ca[14C]O[18O]2(s) 1.01e-27 1.01e-29 2.02e-24 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 1.94e-18 1.94e-18 3.88e-15 + Ca[14C]O2[18O](s) 1.19e-20 1.19e-20 2.39e-17 + Ca[14C]O[18O]2(s) 2.45e-23 2.45e-23 4.90e-20 + Ca[14C][18O]3(s) 1.68e-26 1.58e-26 3.35e-23 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9871 permil - R(13C) 1.12223e-02 3.7693 permil - R(14C) 3.95349e-15 0.33621 pmc - R(18O) H2O(l) 1.99520e-03 -4.9886 permil + R(18O) 1.99520e-03 -4.9868 permil + R(13C) 1.11639e-02 -1.4589 permil + R(14C) 3.91966e-15 0.33334 pmc + R(18O) H2O(l) 1.99520e-03 -4.9883 permil R(18O) OH- 1.92123e-03 -41.876 permil - R(18O) H3O+ 2.04133e-03 18.019 permil - R(13C) CO2(aq) 1.11420e-02 -3.4142 permil - R(14C) CO2(aq) 3.89707e-15 0.33141 pmc - R(18O) CO2(aq) 2.07916e-03 36.885 permil - R(18O) HCO3- 1.99520e-03 -4.9886 permil - R(13C) HCO3- 1.12390e-02 5.2559 permil - R(14C) HCO3- 3.96517e-15 0.33721 pmc - R(18O) CO3-2 1.99520e-03 -4.9886 permil - R(13C) CO3-2 1.12228e-02 3.8133 permil - R(14C) CO3-2 3.95380e-15 0.33624 pmc - R(13C) CH4(aq) 1.11420e-02 -3.4142 permil - R(14C) CH4(aq) 3.89707e-15 0.33141 pmc + R(18O) H3O+ 2.04133e-03 18.02 permil + R(13C) CO2(aq) 1.10840e-02 -8.605 permil + R(14C) CO2(aq) 3.86371e-15 0.32858 pmc + R(18O) CO2(aq) 2.07916e-03 36.886 permil + R(18O) HCO3- 1.99520e-03 -4.9883 permil + R(13C) HCO3- 1.11804e-02 0.019982 permil + R(14C) HCO3- 3.93123e-15 0.33432 pmc + R(18O) CO3-2 1.99520e-03 -4.9883 permil + R(13C) CO3-2 1.11644e-02 -1.4151 permil + R(14C) CO3-2 3.91996e-15 0.33336 pmc + R(13C) CH4(aq) 1.10840e-02 -8.605 permil + R(14C) CH4(aq) 3.86371e-15 0.32858 pmc R(18O) Calcite 2.05264e-03 23.658 permil - R(13C) Calcite 1.12612e-02 7.247 permil - R(14C) Calcite 3.98084e-15 0.33854 pmc + R(13C) Calcite 1.12026e-02 2.0007 permil + R(14C) Calcite 3.94682e-15 0.33565 pmc --------------------------------Isotope Alphas--------------------------------- @@ -19033,158 +18950,158 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 +Alpha 18O HCO3-/H2O(l) 1 1.3323e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6634e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7137e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -3.2196e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -9.992e-13 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -5.218e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.7319e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.269 21.282 +Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 5.839e-03 5.822e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.553e-05 6.534e-05 - [14C] 2.309e-17 2.302e-17 + [13C] 6.519e-05 6.500e-05 + [14C] 2.289e-17 2.282e-17 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.257 Adjusted to redox equilibrium + pe = -2.273 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.839e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.449e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 40 (141 overall) + Iterations = 128 (229 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.492e-17 - CH4 3.492e-17 3.498e-17 -16.457 -16.456 0.001 (0) -C(4) 5.839e-03 +C(-4) 4.715e-17 + CH4 4.715e-17 4.723e-17 -16.326 -16.326 0.001 (0) +C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) - CO2 9.957e-04 9.974e-04 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-05 9.110e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-08 1.174e-08 -7.776 -7.930 -0.155 (0) + CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-05 9.110e-05 -4.003 -4.040 -0.037 (0) + CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.116e-06 1.024e-06 -5.952 -5.990 -0.037 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.128e-08 6.138e-08 -7.213 -7.212 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.881e-13 - H2 2.441e-13 2.445e-13 -12.612 -12.612 0.001 (0) +H(0) 5.262e-13 + H2 2.631e-13 2.635e-13 -12.580 -12.579 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.159 -67.158 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.558 -69.557 0.001 (0) -[13C](-4) 3.891e-19 - [13C]H4 3.891e-19 3.897e-19 -18.410 -18.409 0.001 (0) -[13C](4) 6.553e-05 - H[13C]O3- 5.286e-05 4.836e-05 -4.277 -4.316 -0.039 (0) - [13C]O2 1.109e-05 1.111e-05 -4.955 -4.954 0.001 (0) - CaH[13C]O3+ 1.116e-06 1.024e-06 -5.952 -5.990 -0.037 (0) - H[13C][18O]O2- 1.055e-07 9.648e-08 -6.977 -7.016 -0.039 (0) - H[13C]O2[18O]- 1.055e-07 9.648e-08 -6.977 -7.016 -0.039 (0) - H[13C]O[18O]O- 1.055e-07 9.648e-08 -6.977 -7.016 -0.039 (0) - Ca[13C]O3 6.128e-08 6.138e-08 -7.213 -7.212 0.001 (0) - [13C]O[18O] 4.613e-08 4.621e-08 -7.336 -7.335 0.001 (0) - [13C]O3-2 3.143e-08 2.202e-08 -7.503 -7.657 -0.155 (0) - CaH[13C]O[18O]O+ 2.227e-09 2.043e-09 -8.652 -8.690 -0.037 (0) - CaH[13C][18O]O2+ 2.227e-09 2.043e-09 -8.652 -8.690 -0.037 (0) - CaH[13C]O2[18O]+ 2.227e-09 2.043e-09 -8.652 -8.690 -0.037 (0) - Ca[13C]O2[18O] 3.668e-10 3.674e-10 -9.436 -9.435 0.001 (0) - H[13C][18O]O[18O]- 2.104e-10 1.925e-10 -9.677 -9.716 -0.039 (0) - H[13C]O[18O]2- 2.104e-10 1.925e-10 -9.677 -9.716 -0.039 (0) - H[13C][18O]2O- 2.104e-10 1.925e-10 -9.677 -9.716 -0.039 (0) - [13C]O2[18O]-2 1.882e-10 1.318e-10 -9.725 -9.880 -0.155 (0) -[14C](-4) 1.361e-31 - [14C]H4 1.361e-31 1.363e-31 -30.866 -30.865 0.001 (0) -[14C](4) 2.309e-17 - H[14C]O3- 1.865e-17 1.706e-17 -16.729 -16.768 -0.039 (0) - [14C]O2 3.880e-18 3.887e-18 -17.411 -17.410 0.001 (0) - CaH[14C]O3+ 3.938e-19 3.612e-19 -18.405 -18.442 -0.037 (0) - H[14C][18O]O2- 3.721e-20 3.404e-20 -19.429 -19.468 -0.039 (0) - H[14C]O2[18O]- 3.721e-20 3.404e-20 -19.429 -19.468 -0.039 (0) - H[14C]O[18O]O- 3.721e-20 3.404e-20 -19.429 -19.468 -0.039 (0) - Ca[14C]O3 2.159e-20 2.162e-20 -19.666 -19.665 0.001 (0) - [14C]O[18O] 1.614e-20 1.616e-20 -19.792 -19.791 0.001 (0) - [14C]O3-2 1.107e-20 7.758e-21 -19.956 -20.110 -0.155 (0) - CaH[14C]O[18O]O+ 7.857e-22 7.208e-22 -21.105 -21.142 -0.037 (0) - CaH[14C]O2[18O]+ 7.857e-22 7.208e-22 -21.105 -21.142 -0.037 (0) - CaH[14C][18O]O2+ 7.857e-22 7.208e-22 -21.105 -21.142 -0.037 (0) - Ca[14C]O2[18O] 1.292e-22 1.294e-22 -21.889 -21.888 0.001 (0) - H[14C]O[18O]2- 7.424e-23 6.792e-23 -22.129 -22.168 -0.039 (0) - H[14C][18O]O[18O]- 7.424e-23 6.792e-23 -22.129 -22.168 -0.039 (0) - H[14C][18O]2O- 7.424e-23 6.792e-23 -22.129 -22.168 -0.039 (0) - [14C]O2[18O]-2 6.629e-23 4.644e-23 -22.179 -22.333 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.224 -67.223 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.623 -69.622 0.001 (0) +[13C](-4) 5.227e-19 + [13C]H4 5.227e-19 5.235e-19 -18.282 -18.281 0.001 (0) +[13C](4) 6.519e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 1.822e-31 + [14C]H4 1.822e-31 1.825e-31 -30.739 -30.739 0.001 (0) +[14C](4) 2.289e-17 + H[14C]O3- 1.849e-17 1.692e-17 -16.733 -16.772 -0.039 (0) + [14C]O2 3.847e-18 3.854e-18 -17.415 -17.414 0.001 (0) + CaH[14C]O3+ 3.905e-19 3.582e-19 -18.408 -18.446 -0.037 (0) + H[14C]O2[18O]- 3.689e-20 3.375e-20 -19.433 -19.472 -0.039 (0) + H[14C]O[18O]O- 3.689e-20 3.375e-20 -19.433 -19.472 -0.039 (0) + H[14C][18O]O2- 3.689e-20 3.375e-20 -19.433 -19.472 -0.039 (0) + Ca[14C]O3 2.140e-20 2.144e-20 -19.669 -19.669 0.001 (0) + [14C]O[18O] 1.600e-20 1.603e-20 -19.796 -19.795 0.001 (0) + [14C]O3-2 1.098e-20 7.692e-21 -19.959 -20.114 -0.155 (0) + CaH[14C]O2[18O]+ 7.790e-22 7.146e-22 -21.108 -21.146 -0.037 (0) + CaH[14C]O[18O]O+ 7.790e-22 7.146e-22 -21.108 -21.146 -0.037 (0) + CaH[14C][18O]O2+ 7.790e-22 7.146e-22 -21.108 -21.146 -0.037 (0) + Ca[14C]O2[18O] 1.281e-22 1.283e-22 -21.892 -21.892 0.001 (0) + H[14C]O[18O]2- 7.361e-23 6.734e-23 -22.133 -22.172 -0.039 (0) + H[14C][18O]2O- 7.361e-23 6.734e-23 -22.133 -22.172 -0.039 (0) + H[14C][18O]O[18O]- 7.361e-23 6.734e-23 -22.133 -22.172 -0.039 (0) + [14C]O2[18O]-2 6.572e-23 4.604e-23 -22.182 -22.337 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.558 -69.557 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.559 -72.558 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.623 -69.622 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.624 -72.623 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.85 -10.35 -1.50 [13C][18O]2 - [13C]H4(g) -15.55 -18.41 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.95 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.65 -1.79 [13C]O[18O] + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -15.42 -18.28 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.31 -22.81 -1.50 [14C][18O]2 - [14C]H4(g) -28.01 -30.87 -2.86 [14C]H4 - [14C]O2(g) -15.94 -17.41 -1.47 [14C]O2 - [14C]O[18O](g) -18.32 -20.11 -1.79 [14C]O[18O] - [18O]2(g) -70.27 -72.56 -2.29 [18O]2 + [14C]H4(g) -27.88 -30.74 -2.86 [14C]H4 + [14C]O2(g) -15.95 -17.41 -1.47 [14C]O2 + [14C]O[18O](g) -18.33 -20.11 -1.79 [14C]O[18O] + [18O]2(g) -70.33 -72.62 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.85 0.84 7.69 Ca[13C]O[18O]2 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 Ca[14C][18O]3(s) -22.47 -14.32 8.15 Ca[14C][18O]3 Ca[14C]O2[18O](s) -16.62 -8.92 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -14.41 -6.22 8.19 Ca[14C]O3 @@ -19193,14 +19110,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.60 -16.46 -2.86 CH4 + CH4(g) -13.47 -16.33 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.46 -12.61 -3.15 H2 + H2(g) -9.43 -12.58 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.27 -67.16 -2.89 O2 - O[18O](g) -66.97 -69.86 -2.89 O[18O] + O2(g) -64.33 -67.22 -2.89 O2 + O[18O](g) -67.03 -69.92 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -19224,6 +19141,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 75. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -19266,39 +19189,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.53e-06 5.53e-06 1.11e-02 - Ca[13C]O2[18O](s) 3.41e-08 3.41e-08 6.81e-05 - Ca[13C]O[18O]2(s) 6.99e-11 6.99e-11 1.40e-07 - Ca[13C][18O]3(s) 4.78e-14 4.78e-14 9.57e-11 - Ca[14C]O3(s) 1.80e-18 1.80e-18 3.60e-15 - Ca[14C]O2[18O](s) 1.11e-20 1.11e-20 2.22e-17 - Ca[14C]O[18O]2(s) 2.28e-23 2.28e-23 4.56e-20 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 1.79e-18 1.79e-18 3.57e-15 + Ca[14C]O2[18O](s) 1.10e-20 1.10e-20 2.20e-17 + Ca[14C]O[18O]2(s) 2.26e-23 2.26e-23 4.52e-20 + Ca[14C][18O]3(s) 1.55e-26 1.45e-26 3.09e-23 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.987 permil - R(13C) 1.12178e-02 3.3644 permil - R(14C) 3.64205e-15 0.30973 pmc - R(18O) H2O(l) 1.99520e-03 -4.9885 permil + R(18O) 1.99520e-03 -4.9867 permil + R(13C) 1.11640e-02 -1.4533 permil + R(14C) 3.61090e-15 0.30708 pmc + R(18O) H2O(l) 1.99520e-03 -4.9882 permil R(18O) OH- 1.92123e-03 -41.876 permil - R(18O) H3O+ 2.04133e-03 18.019 permil - R(13C) CO2(aq) 1.11375e-02 -3.8163 permil - R(14C) CO2(aq) 3.59007e-15 0.30531 pmc + R(18O) H3O+ 2.04133e-03 18.02 permil + R(13C) CO2(aq) 1.10841e-02 -8.5995 permil + R(14C) CO2(aq) 3.55936e-15 0.3027 pmc R(18O) CO2(aq) 2.07916e-03 36.886 permil - R(18O) HCO3- 1.99520e-03 -4.9885 permil - R(13C) HCO3- 1.12344e-02 4.8504 permil - R(14C) HCO3- 3.65281e-15 0.31064 pmc - R(18O) CO3-2 1.99520e-03 -4.9885 permil - R(13C) CO3-2 1.12183e-02 3.4083 permil - R(14C) CO3-2 3.64233e-15 0.30975 pmc - R(13C) CH4(aq) 1.11375e-02 -3.8163 permil - R(14C) CH4(aq) 3.59007e-15 0.30531 pmc + R(18O) HCO3- 1.99520e-03 -4.9882 permil + R(13C) HCO3- 1.11805e-02 0.025563 permil + R(14C) HCO3- 3.62156e-15 0.30799 pmc + R(18O) CO3-2 1.99520e-03 -4.9882 permil + R(13C) CO3-2 1.11644e-02 -1.4096 permil + R(14C) CO3-2 3.61117e-15 0.3071 pmc + R(13C) CH4(aq) 1.10841e-02 -8.5995 permil + R(14C) CH4(aq) 3.55936e-15 0.3027 pmc R(18O) Calcite 2.05264e-03 23.658 permil - R(13C) Calcite 1.12567e-02 6.8406 permil - R(14C) Calcite 3.66729e-15 0.31187 pmc + R(13C) Calcite 1.12026e-02 2.0063 permil + R(14C) Calcite 3.63592e-15 0.30921 pmc --------------------------------Isotope Alphas--------------------------------- @@ -19309,14 +19232,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7254e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6207e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -3.1086e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.1102e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.2101e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.7764e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -19325,158 +19248,158 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 Elements Molality Moles - C 5.839e-03 5.822e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.551e-05 6.531e-05 - [14C] 2.127e-17 2.121e-17 + [13C] 6.520e-05 6.500e-05 + [14C] 2.109e-17 2.103e-17 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.275 Adjusted to redox equilibrium + pe = -2.289 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.839e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.455e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 40 + Iterations = 52 (153 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.860e-17 - CH4 4.860e-17 4.868e-17 -16.313 -16.313 0.001 (0) -C(4) 5.839e-03 +C(-4) 6.330e-17 + CH4 6.330e-17 6.341e-17 -16.199 -16.198 0.001 (0) +C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) - CO2 9.957e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.116e-06 1.024e-06 -5.952 -5.990 -0.037 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.125e-08 6.135e-08 -7.213 -7.212 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.302e-13 - H2 2.651e-13 2.655e-13 -12.577 -12.576 0.001 (0) +H(0) 5.664e-13 + H2 2.832e-13 2.837e-13 -12.548 -12.547 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.231 -67.230 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.630 -69.629 0.001 (0) -[13C](-4) 5.413e-19 - [13C]H4 5.413e-19 5.422e-19 -18.267 -18.266 0.001 (0) -[13C](4) 6.551e-05 - H[13C]O3- 5.284e-05 4.834e-05 -4.277 -4.316 -0.039 (0) - [13C]O2 1.109e-05 1.111e-05 -4.955 -4.954 0.001 (0) - CaH[13C]O3+ 1.116e-06 1.024e-06 -5.952 -5.990 -0.037 (0) - H[13C]O2[18O]- 1.054e-07 9.645e-08 -6.977 -7.016 -0.039 (0) - H[13C]O[18O]O- 1.054e-07 9.645e-08 -6.977 -7.016 -0.039 (0) - H[13C][18O]O2- 1.054e-07 9.645e-08 -6.977 -7.016 -0.039 (0) - Ca[13C]O3 6.125e-08 6.135e-08 -7.213 -7.212 0.001 (0) - [13C]O[18O] 4.612e-08 4.619e-08 -7.336 -7.335 0.001 (0) - [13C]O3-2 3.142e-08 2.201e-08 -7.503 -7.657 -0.155 (0) - CaH[13C][18O]O2+ 2.226e-09 2.042e-09 -8.652 -8.690 -0.037 (0) - CaH[13C]O2[18O]+ 2.226e-09 2.042e-09 -8.652 -8.690 -0.037 (0) - CaH[13C]O[18O]O+ 2.226e-09 2.042e-09 -8.652 -8.690 -0.037 (0) - Ca[13C]O2[18O] 3.666e-10 3.672e-10 -9.436 -9.435 0.001 (0) - H[13C][18O]O[18O]- 2.103e-10 1.924e-10 -9.677 -9.716 -0.039 (0) - H[13C]O[18O]2- 2.103e-10 1.924e-10 -9.677 -9.716 -0.039 (0) - H[13C][18O]2O- 2.103e-10 1.924e-10 -9.677 -9.716 -0.039 (0) - [13C]O2[18O]-2 1.881e-10 1.318e-10 -9.726 -9.880 -0.155 (0) -[14C](-4) 1.745e-31 - [14C]H4 1.745e-31 1.748e-31 -30.758 -30.758 0.001 (0) -[14C](4) 2.127e-17 - H[14C]O3- 1.718e-17 1.572e-17 -16.765 -16.804 -0.039 (0) - [14C]O2 3.575e-18 3.581e-18 -17.447 -17.446 0.001 (0) - CaH[14C]O3+ 3.628e-19 3.328e-19 -18.440 -18.478 -0.037 (0) - H[14C][18O]O2- 3.428e-20 3.136e-20 -19.465 -19.504 -0.039 (0) - H[14C]O2[18O]- 3.428e-20 3.136e-20 -19.465 -19.504 -0.039 (0) - H[14C]O[18O]O- 3.428e-20 3.136e-20 -19.465 -19.504 -0.039 (0) - Ca[14C]O3 1.989e-20 1.992e-20 -19.701 -19.701 0.001 (0) - [14C]O[18O] 1.486e-20 1.489e-20 -19.828 -19.827 0.001 (0) - [14C]O3-2 1.020e-20 7.147e-21 -19.991 -20.146 -0.155 (0) - CaH[14C]O[18O]O+ 7.238e-22 6.640e-22 -21.140 -21.178 -0.037 (0) - CaH[14C]O2[18O]+ 7.238e-22 6.640e-22 -21.140 -21.178 -0.037 (0) - CaH[14C][18O]O2+ 7.238e-22 6.640e-22 -21.140 -21.178 -0.037 (0) - Ca[14C]O2[18O] 1.190e-22 1.192e-22 -21.924 -21.924 0.001 (0) - H[14C][18O]O[18O]- 6.839e-23 6.257e-23 -22.165 -22.204 -0.039 (0) - H[14C][18O]2O- 6.839e-23 6.257e-23 -22.165 -22.204 -0.039 (0) - H[14C]O[18O]2- 6.839e-23 6.257e-23 -22.165 -22.204 -0.039 (0) - [14C]O2[18O]-2 6.107e-23 4.278e-23 -22.214 -22.369 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.288 -67.287 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.687 -69.686 0.001 (0) +[13C](-4) 7.017e-19 + [13C]H4 7.017e-19 7.028e-19 -18.154 -18.153 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 2.253e-31 + [14C]H4 2.253e-31 2.257e-31 -30.647 -30.646 0.001 (0) +[14C](4) 2.109e-17 + H[14C]O3- 1.703e-17 1.558e-17 -16.769 -16.807 -0.039 (0) + [14C]O2 3.544e-18 3.550e-18 -17.450 -17.450 0.001 (0) + CaH[14C]O3+ 3.597e-19 3.300e-19 -18.444 -18.482 -0.037 (0) + H[14C]O2[18O]- 3.399e-20 3.109e-20 -19.469 -19.507 -0.039 (0) + H[14C]O[18O]O- 3.399e-20 3.109e-20 -19.469 -19.507 -0.039 (0) + H[14C][18O]O2- 3.399e-20 3.109e-20 -19.469 -19.507 -0.039 (0) + Ca[14C]O3 1.972e-20 1.975e-20 -19.705 -19.704 0.001 (0) + [14C]O[18O] 1.474e-20 1.476e-20 -19.832 -19.831 0.001 (0) + [14C]O3-2 1.012e-20 7.086e-21 -19.995 -20.150 -0.155 (0) + CaH[14C]O2[18O]+ 7.177e-22 6.583e-22 -21.144 -21.182 -0.037 (0) + CaH[14C]O[18O]O+ 7.177e-22 6.583e-22 -21.144 -21.182 -0.037 (0) + CaH[14C][18O]O2+ 7.177e-22 6.583e-22 -21.144 -21.182 -0.037 (0) + Ca[14C]O2[18O] 1.180e-22 1.182e-22 -21.928 -21.927 0.001 (0) + H[14C]O[18O]2- 6.781e-23 6.204e-23 -22.169 -22.207 -0.039 (0) + H[14C][18O]2O- 6.781e-23 6.204e-23 -22.169 -22.207 -0.039 (0) + H[14C][18O]O[18O]- 6.781e-23 6.204e-23 -22.169 -22.207 -0.039 (0) + [14C]O2[18O]-2 6.055e-23 4.242e-23 -22.218 -22.372 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.630 -69.629 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.631 -72.630 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.687 -69.686 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.688 -72.687 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.85 -10.35 -1.50 [13C][18O]2 - [13C]H4(g) -15.41 -18.27 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.95 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.65 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.34 -22.85 -1.50 [14C][18O]2 - [14C]H4(g) -27.90 -30.76 -2.86 [14C]H4 + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -15.29 -18.15 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] + [14C][18O]2(g) -21.35 -22.85 -1.50 [14C][18O]2 + [14C]H4(g) -27.79 -30.65 -2.86 [14C]H4 [14C]O2(g) -15.98 -17.45 -1.47 [14C]O2 [14C]O[18O](g) -18.36 -20.15 -1.79 [14C]O[18O] - [18O]2(g) -70.34 -72.63 -2.29 [18O]2 + [18O]2(g) -70.40 -72.69 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.85 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.51 -14.35 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.65 -8.95 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.44 -6.25 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.34 -11.65 7.69 Ca[14C]O[18O]2 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -22.51 -14.36 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -16.66 -8.96 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -14.45 -6.26 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -19.35 -11.66 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.45 -16.31 -2.86 CH4 + CH4(g) -13.34 -16.20 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.43 -12.58 -3.15 H2 + H2(g) -9.40 -12.55 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.34 -67.23 -2.89 O2 - O[18O](g) -67.04 -69.93 -2.89 O[18O] + O2(g) -64.40 -67.29 -2.89 O2 + O[18O](g) -67.10 -69.99 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -19500,6 +19423,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 76. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -19542,39 +19471,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.53e-06 5.53e-06 1.11e-02 - Ca[13C]O2[18O](s) 3.41e-08 3.41e-08 6.81e-05 - Ca[13C]O[18O]2(s) 6.99e-11 6.99e-11 1.40e-07 - Ca[13C][18O]3(s) 4.78e-14 4.78e-14 9.56e-11 - Ca[14C]O3(s) 1.66e-18 1.66e-18 3.32e-15 - Ca[14C]O2[18O](s) 1.01e-27 1.01e-29 2.02e-24 - Ca[14C]O[18O]2(s) 2.10e-23 2.10e-23 4.20e-20 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 1.65e-18 1.65e-18 3.29e-15 + Ca[14C]O2[18O](s) 1.01e-20 1.01e-20 2.03e-17 + Ca[14C]O[18O]2(s) 2.08e-23 2.08e-23 4.16e-20 + Ca[14C][18O]3(s) 1.42e-26 1.32e-26 2.85e-23 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9868 permil - R(13C) 1.12136e-02 2.9912 permil - R(14C) 3.35676e-15 0.28547 pmc - R(18O) H2O(l) 1.99520e-03 -4.9884 permil - R(18O) OH- 1.92123e-03 -41.876 permil + R(18O) 1.99520e-03 -4.9865 permil + R(13C) 1.11640e-02 -1.4482 permil + R(14C) 3.32646e-15 0.28289 pmc + R(18O) H2O(l) 1.99520e-03 -4.988 permil + R(18O) OH- 1.92123e-03 -41.875 permil R(18O) H3O+ 2.04133e-03 18.02 permil - R(13C) CO2(aq) 1.11334e-02 -4.1868 permil - R(14C) CO2(aq) 3.30885e-15 0.28139 pmc + R(13C) CO2(aq) 1.10841e-02 -8.5944 permil + R(14C) CO2(aq) 3.27898e-15 0.27885 pmc R(18O) CO2(aq) 2.07916e-03 36.886 permil - R(18O) HCO3- 1.99520e-03 -4.9884 permil - R(13C) HCO3- 1.12302e-02 4.4767 permil - R(14C) HCO3- 3.36668e-15 0.28631 pmc - R(18O) CO3-2 1.99520e-03 -4.9884 permil - R(13C) CO3-2 1.12141e-02 3.0352 permil - R(14C) CO3-2 3.35702e-15 0.28549 pmc - R(13C) CH4(aq) 1.11334e-02 -4.1868 permil - R(14C) CH4(aq) 3.30885e-15 0.28139 pmc + R(18O) HCO3- 1.99520e-03 -4.988 permil + R(13C) HCO3- 1.11805e-02 0.030707 permil + R(14C) HCO3- 3.33628e-15 0.28372 pmc + R(18O) CO3-2 1.99520e-03 -4.988 permil + R(13C) CO3-2 1.11645e-02 -1.4044 permil + R(14C) CO3-2 3.32671e-15 0.28291 pmc + R(13C) CH4(aq) 1.10841e-02 -8.5944 permil + R(14C) CH4(aq) 3.27898e-15 0.27885 pmc R(18O) Calcite 2.05264e-03 23.658 permil - R(13C) Calcite 1.12525e-02 6.4662 permil - R(14C) Calcite 3.35934e-15 0.28569 pmc + R(13C) Calcite 1.12027e-02 2.0114 permil + R(14C) Calcite 3.34951e-15 0.28485 pmc --------------------------------Isotope Alphas--------------------------------- @@ -19585,159 +19514,159 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.692e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6571e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -6.9944e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.1102e-11 0 Alpha 14C CH4(aq)/CO2(aq) 1 3.1086e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0153 15.143 21.282 +Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 5.839e-03 5.822e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.548e-05 6.529e-05 - [14C] 1.960e-17 1.954e-17 + [13C] 6.520e-05 6.501e-05 + [14C] 1.943e-17 1.937e-17 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.257 Adjusted to redox equilibrium + pe = -2.300 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 - Total CO2 (mol/kg) = 5.839e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Total CO2 (mol/kg) = 5.840e-03 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 43 + Iterations = 107 (208 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.507e-17 - CH4 3.507e-17 3.513e-17 -16.455 -16.454 0.001 (0) -C(4) 5.839e-03 +C(-4) 7.700e-17 + CH4 7.700e-17 7.713e-17 -16.114 -16.113 0.001 (0) +C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) - CO2 9.957e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.115e-06 1.023e-06 -5.953 -5.990 -0.037 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.123e-08 6.133e-08 -7.213 -7.212 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.887e-13 - H2 2.443e-13 2.447e-13 -12.612 -12.611 0.001 (0) +H(0) 5.948e-13 + H2 2.974e-13 2.979e-13 -12.527 -12.526 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.160 -67.159 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.559 -69.558 0.001 (0) -[13C](-4) 3.904e-19 - [13C]H4 3.904e-19 3.911e-19 -18.408 -18.408 0.001 (0) -[13C](4) 6.548e-05 - H[13C]O3- 5.282e-05 4.832e-05 -4.277 -4.316 -0.039 (0) - [13C]O2 1.109e-05 1.110e-05 -4.955 -4.955 0.001 (0) - CaH[13C]O3+ 1.115e-06 1.023e-06 -5.953 -5.990 -0.037 (0) - H[13C]O[18O]O- 1.054e-07 9.641e-08 -6.977 -7.016 -0.039 (0) - H[13C][18O]O2- 1.054e-07 9.641e-08 -6.977 -7.016 -0.039 (0) - H[13C]O2[18O]- 1.054e-07 9.641e-08 -6.977 -7.016 -0.039 (0) - Ca[13C]O3 6.123e-08 6.133e-08 -7.213 -7.212 0.001 (0) - [13C]O[18O] 4.610e-08 4.617e-08 -7.336 -7.336 0.001 (0) - [13C]O3-2 3.141e-08 2.200e-08 -7.503 -7.657 -0.155 (0) - CaH[13C]O2[18O]+ 2.225e-09 2.041e-09 -8.653 -8.690 -0.037 (0) - CaH[13C]O[18O]O+ 2.225e-09 2.041e-09 -8.653 -8.690 -0.037 (0) - CaH[13C][18O]O2+ 2.225e-09 2.041e-09 -8.653 -8.690 -0.037 (0) - Ca[13C]O2[18O] 3.665e-10 3.671e-10 -9.436 -9.435 0.001 (0) - H[13C][18O]O[18O]- 2.103e-10 1.924e-10 -9.677 -9.716 -0.039 (0) - H[13C]O[18O]2- 2.103e-10 1.924e-10 -9.677 -9.716 -0.039 (0) - H[13C][18O]2O- 2.103e-10 1.924e-10 -9.677 -9.716 -0.039 (0) - [13C]O2[18O]-2 1.880e-10 1.317e-10 -9.726 -9.880 -0.155 (0) -[14C](-4) 1.160e-31 - [14C]H4 1.160e-31 1.162e-31 -30.935 -30.935 0.001 (0) -[14C](4) 1.960e-17 - H[14C]O3- 1.583e-17 1.449e-17 -16.800 -16.839 -0.039 (0) - [14C]O2 3.295e-18 3.300e-18 -17.482 -17.481 0.001 (0) - CaH[14C]O3+ 3.344e-19 3.067e-19 -18.476 -18.513 -0.037 (0) - H[14C][18O]O2- 3.159e-20 2.890e-20 -19.500 -19.539 -0.039 (0) - H[14C]O2[18O]- 3.159e-20 2.890e-20 -19.500 -19.539 -0.039 (0) - H[14C]O[18O]O- 3.159e-20 2.890e-20 -19.500 -19.539 -0.039 (0) - Ca[14C]O3 1.833e-20 1.836e-20 -19.737 -19.736 0.001 (0) - [14C]O[18O] 1.370e-20 1.372e-20 -19.863 -19.863 0.001 (0) - [14C]O3-2 9.403e-21 6.587e-21 -20.027 -20.181 -0.155 (0) - CaH[14C]O[18O]O+ 6.671e-22 6.120e-22 -21.176 -21.213 -0.037 (0) - CaH[14C]O2[18O]+ 6.671e-22 6.120e-22 -21.176 -21.213 -0.037 (0) - CaH[14C][18O]O2+ 6.671e-22 6.120e-22 -21.176 -21.213 -0.037 (0) - Ca[14C]O2[18O] 1.097e-22 1.099e-22 -21.960 -21.959 0.001 (0) - H[14C][18O]2O- 6.303e-23 5.767e-23 -22.200 -22.239 -0.039 (0) - H[14C]O[18O]2- 6.303e-23 5.767e-23 -22.200 -22.239 -0.039 (0) - H[14C][18O]O[18O]- 6.303e-23 5.767e-23 -22.200 -22.239 -0.039 (0) - [14C]O2[18O]-2 5.628e-23 3.943e-23 -22.250 -22.404 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.331 -67.330 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.730 -69.729 0.001 (0) +[13C](-4) 8.535e-19 + [13C]H4 8.535e-19 8.549e-19 -18.069 -18.068 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.338 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 2.525e-31 + [14C]H4 2.525e-31 2.529e-31 -30.598 -30.597 0.001 (0) +[14C](4) 1.943e-17 + H[14C]O3- 1.569e-17 1.436e-17 -16.804 -16.843 -0.039 (0) + [14C]O2 3.265e-18 3.271e-18 -17.486 -17.485 0.001 (0) + CaH[14C]O3+ 3.314e-19 3.040e-19 -18.480 -18.517 -0.037 (0) + H[14C]O2[18O]- 3.131e-20 2.864e-20 -19.504 -19.543 -0.039 (0) + H[14C]O[18O]O- 3.131e-20 2.864e-20 -19.504 -19.543 -0.039 (0) + H[14C][18O]O2- 3.131e-20 2.864e-20 -19.504 -19.543 -0.039 (0) + Ca[14C]O3 1.817e-20 1.820e-20 -19.741 -19.740 0.001 (0) + [14C]O[18O] 1.358e-20 1.360e-20 -19.867 -19.866 0.001 (0) + [14C]O3-2 9.319e-21 6.528e-21 -20.031 -20.185 -0.155 (0) + CaH[14C]O2[18O]+ 6.611e-22 6.065e-22 -21.180 -21.217 -0.037 (0) + CaH[14C]O[18O]O+ 6.611e-22 6.065e-22 -21.180 -21.217 -0.037 (0) + CaH[14C][18O]O2+ 6.611e-22 6.065e-22 -21.180 -21.217 -0.037 (0) + Ca[14C]O2[18O] 1.087e-22 1.089e-22 -21.964 -21.963 0.001 (0) + H[14C]O[18O]2- 6.247e-23 5.715e-23 -22.204 -22.243 -0.039 (0) + H[14C][18O]2O- 6.247e-23 5.715e-23 -22.204 -22.243 -0.039 (0) + H[14C][18O]O[18O]- 6.247e-23 5.715e-23 -22.204 -22.243 -0.039 (0) + [14C]O2[18O]-2 5.578e-23 3.907e-23 -22.254 -22.408 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.559 -69.558 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.560 -72.559 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.730 -69.729 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.731 -72.730 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.85 -10.35 -1.50 [13C][18O]2 - [13C]H4(g) -15.55 -18.41 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.95 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.65 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.38 -22.88 -1.50 [14C][18O]2 - [14C]H4(g) -28.07 -30.93 -2.86 [14C]H4 - [14C]O2(g) -16.01 -17.48 -1.47 [14C]O2 - [14C]O[18O](g) -18.39 -20.18 -1.79 [14C]O[18O] - [18O]2(g) -70.27 -72.56 -2.29 [18O]2 + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -15.21 -18.07 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] + [14C][18O]2(g) -21.38 -22.89 -1.50 [14C][18O]2 + [14C]H4(g) -27.74 -30.60 -2.86 [14C]H4 + [14C]O2(g) -16.02 -17.49 -1.47 [14C]O2 + [14C]O[18O](g) -18.40 -20.19 -1.79 [14C]O[18O] + [18O]2(g) -70.44 -72.73 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.85 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.54 -14.39 8.15 Ca[14C][18O]3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -22.55 -14.39 8.15 Ca[14C][18O]3 Ca[14C]O2[18O](s) -16.69 -8.99 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -14.48 -6.29 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -19.38 -11.69 7.69 Ca[14C]O[18O]2 @@ -19745,14 +19674,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.59 -16.45 -2.86 CH4 + CH4(g) -13.25 -16.11 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.46 -12.61 -3.15 H2 + H2(g) -9.38 -12.53 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.27 -67.16 -2.89 O2 - O[18O](g) -66.97 -69.86 -2.89 O[18O] + O2(g) -64.44 -67.33 -2.89 O2 + O[18O](g) -67.14 -70.03 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -19824,39 +19753,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.53e-06 5.53e-06 1.11e-02 - Ca[13C]O2[18O](s) 3.40e-08 3.40e-08 6.81e-05 - Ca[13C]O[18O]2(s) 6.99e-11 6.99e-11 1.40e-07 - Ca[13C][18O]3(s) 4.78e-14 4.78e-14 9.56e-11 - Ca[14C]O3(s) 1.53e-18 1.53e-18 3.06e-15 - Ca[14C]O2[18O](s) 9.42e-21 9.42e-21 1.88e-17 - Ca[14C]O[18O]2(s) 1.93e-23 1.93e-23 3.87e-20 - Ca[14C][18O]3(s) 1.01e-27 1.00e-29 2.02e-24 + Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 1.52e-18 1.52e-18 3.03e-15 + Ca[14C]O2[18O](s) 9.34e-21 9.34e-21 1.87e-17 + Ca[14C]O[18O]2(s) 1.92e-23 1.92e-23 3.83e-20 + Ca[14C][18O]3(s) 1.31e-26 1.21e-26 2.62e-23 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9867 permil - R(13C) 1.12098e-02 2.6473 permil - R(14C) 3.09233e-15 0.26298 pmc - R(18O) H2O(l) 1.99520e-03 -4.9882 permil - R(18O) OH- 1.92123e-03 -41.876 permil + R(18O) 1.99520e-03 -4.9864 permil + R(13C) 1.11641e-02 -1.4435 permil + R(14C) 3.06443e-15 0.26061 pmc + R(18O) H2O(l) 1.99520e-03 -4.9879 permil + R(18O) OH- 1.92123e-03 -41.875 permil R(18O) H3O+ 2.04133e-03 18.02 permil - R(13C) CO2(aq) 1.11296e-02 -4.5282 permil - R(14C) CO2(aq) 3.04820e-15 0.25923 pmc + R(13C) CO2(aq) 1.10842e-02 -8.5897 permil + R(14C) CO2(aq) 3.02069e-15 0.25689 pmc R(18O) CO2(aq) 2.07916e-03 36.886 permil - R(18O) HCO3- 1.99520e-03 -4.9882 permil - R(13C) HCO3- 1.12264e-02 4.1323 permil - R(14C) HCO3- 3.10146e-15 0.26376 pmc - R(18O) CO3-2 1.99520e-03 -4.9882 permil - R(13C) CO3-2 1.12103e-02 2.6913 permil - R(14C) CO3-2 3.09257e-15 0.263 pmc - R(13C) CH4(aq) 1.11296e-02 -4.5282 permil - R(14C) CH4(aq) 3.04820e-15 0.25923 pmc - R(18O) Calcite 2.05264e-03 23.658 permil - R(13C) Calcite 1.12486e-02 6.1211 permil - R(14C) Calcite 3.11376e-15 0.2648 pmc + R(18O) HCO3- 1.99520e-03 -4.9879 permil + R(13C) HCO3- 1.11806e-02 0.035447 permil + R(14C) HCO3- 3.07348e-15 0.26138 pmc + R(18O) CO3-2 1.99520e-03 -4.9879 permil + R(13C) CO3-2 1.11646e-02 -1.3997 permil + R(14C) CO3-2 3.06466e-15 0.26063 pmc + R(13C) CH4(aq) 1.10842e-02 -8.5897 permil + R(14C) CH4(aq) 3.02069e-15 0.25689 pmc + R(18O) Calcite 2.05264e-03 23.659 permil + R(13C) Calcite 1.12027e-02 2.0162 permil + R(14C) Calcite 3.08566e-15 0.26241 pmc --------------------------------Isotope Alphas--------------------------------- @@ -19867,14 +19796,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6628e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5545e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -3.8858e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.8874e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -8.1046e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.0214e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -19883,158 +19812,158 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 Elements Molality Moles - C 5.840e-03 5.822e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.546e-05 6.527e-05 - [14C] 1.806e-17 1.800e-17 + [13C] 6.520e-05 6.501e-05 + [14C] 1.790e-17 1.784e-17 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.223 Adjusted to redox equilibrium + pe = -2.319 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.451e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 42 (143 overall) + Iterations = 60 (161 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.870e-17 - CH4 1.870e-17 1.873e-17 -16.728 -16.728 0.001 (0) +C(-4) 1.091e-16 + CH4 1.091e-16 1.093e-16 -15.962 -15.962 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) - CO2 9.957e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.115e-06 1.023e-06 -5.953 -5.990 -0.037 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.121e-08 6.131e-08 -7.213 -7.212 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.175e-13 - H2 2.088e-13 2.091e-13 -12.680 -12.680 0.001 (0) +H(0) 6.489e-13 + H2 3.245e-13 3.250e-13 -12.489 -12.488 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.023 -67.023 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.422 -69.422 0.001 (0) -[13C](-4) 2.081e-19 - [13C]H4 2.081e-19 2.084e-19 -18.682 -18.681 0.001 (0) -[13C](4) 6.546e-05 - H[13C]O3- 5.280e-05 4.831e-05 -4.277 -4.316 -0.039 (0) - [13C]O2 1.108e-05 1.110e-05 -4.955 -4.955 0.001 (0) - CaH[13C]O3+ 1.115e-06 1.023e-06 -5.953 -5.990 -0.037 (0) - H[13C][18O]O2- 1.053e-07 9.638e-08 -6.977 -7.016 -0.039 (0) - H[13C]O2[18O]- 1.053e-07 9.638e-08 -6.977 -7.016 -0.039 (0) - H[13C]O[18O]O- 1.053e-07 9.638e-08 -6.977 -7.016 -0.039 (0) - Ca[13C]O3 6.121e-08 6.131e-08 -7.213 -7.212 0.001 (0) - [13C]O[18O] 4.608e-08 4.616e-08 -7.336 -7.336 0.001 (0) - [13C]O3-2 3.140e-08 2.200e-08 -7.503 -7.658 -0.155 (0) - CaH[13C]O[18O]O+ 2.225e-09 2.041e-09 -8.653 -8.690 -0.037 (0) - CaH[13C][18O]O2+ 2.225e-09 2.041e-09 -8.653 -8.690 -0.037 (0) - CaH[13C]O2[18O]+ 2.225e-09 2.041e-09 -8.653 -8.690 -0.037 (0) - Ca[13C]O2[18O] 3.664e-10 3.670e-10 -9.436 -9.435 0.001 (0) - H[13C][18O]O[18O]- 2.102e-10 1.923e-10 -9.677 -9.716 -0.039 (0) - H[13C]O[18O]2- 2.102e-10 1.923e-10 -9.677 -9.716 -0.039 (0) - H[13C][18O]2O- 2.102e-10 1.923e-10 -9.677 -9.716 -0.039 (0) - [13C]O2[18O]-2 1.879e-10 1.317e-10 -9.726 -9.881 -0.155 (0) -[14C](-4) 5.699e-32 - [14C]H4 5.699e-32 5.708e-32 -31.244 -31.244 0.001 (0) -[14C](4) 1.806e-17 - H[14C]O3- 1.459e-17 1.335e-17 -16.836 -16.875 -0.039 (0) - [14C]O2 3.035e-18 3.040e-18 -17.518 -17.517 0.001 (0) - CaH[14C]O3+ 3.080e-19 2.826e-19 -18.511 -18.549 -0.037 (0) - H[14C][18O]O2- 2.910e-20 2.663e-20 -19.536 -19.575 -0.039 (0) - H[14C]O2[18O]- 2.910e-20 2.663e-20 -19.536 -19.575 -0.039 (0) - H[14C]O[18O]O- 2.910e-20 2.663e-20 -19.536 -19.575 -0.039 (0) - Ca[14C]O3 1.689e-20 1.691e-20 -19.772 -19.772 0.001 (0) - [14C]O[18O] 1.262e-20 1.264e-20 -19.899 -19.898 0.001 (0) - [14C]O3-2 8.662e-21 6.068e-21 -20.062 -20.217 -0.155 (0) - CaH[14C]O[18O]O+ 6.146e-22 5.638e-22 -21.211 -21.249 -0.037 (0) - CaH[14C]O2[18O]+ 6.146e-22 5.638e-22 -21.211 -21.249 -0.037 (0) - CaH[14C][18O]O2+ 6.146e-22 5.638e-22 -21.211 -21.249 -0.037 (0) - Ca[14C]O2[18O] 1.011e-22 1.012e-22 -21.995 -21.995 0.001 (0) - H[14C]O[18O]2- 5.807e-23 5.312e-23 -22.236 -22.275 -0.039 (0) - H[14C][18O]O[18O]- 5.807e-23 5.312e-23 -22.236 -22.275 -0.039 (0) - H[14C][18O]2O- 5.807e-23 5.312e-23 -22.236 -22.275 -0.039 (0) - [14C]O2[18O]-2 5.185e-23 3.632e-23 -22.285 -22.440 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.406 -67.406 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.805 -69.805 0.001 (0) +[13C](-4) 1.209e-18 + [13C]H4 1.209e-18 1.211e-18 -17.918 -17.917 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 3.295e-31 + [14C]H4 3.295e-31 3.300e-31 -30.482 -30.481 0.001 (0) +[14C](4) 1.790e-17 + H[14C]O3- 1.446e-17 1.323e-17 -16.840 -16.879 -0.039 (0) + [14C]O2 3.008e-18 3.013e-18 -17.522 -17.521 0.001 (0) + CaH[14C]O3+ 3.053e-19 2.800e-19 -18.515 -18.553 -0.037 (0) + H[14C]O2[18O]- 2.884e-20 2.639e-20 -19.540 -19.579 -0.039 (0) + H[14C]O[18O]O- 2.884e-20 2.639e-20 -19.540 -19.579 -0.039 (0) + H[14C][18O]O2- 2.884e-20 2.639e-20 -19.540 -19.579 -0.039 (0) + Ca[14C]O3 1.673e-20 1.676e-20 -19.776 -19.776 0.001 (0) + [14C]O[18O] 1.251e-20 1.253e-20 -19.903 -19.902 0.001 (0) + [14C]O3-2 8.585e-21 6.014e-21 -20.066 -20.221 -0.155 (0) + CaH[14C]O2[18O]+ 6.091e-22 5.587e-22 -21.215 -21.253 -0.037 (0) + CaH[14C]O[18O]O+ 6.091e-22 5.587e-22 -21.215 -21.253 -0.037 (0) + CaH[14C][18O]O2+ 6.091e-22 5.587e-22 -21.215 -21.253 -0.037 (0) + Ca[14C]O2[18O] 1.002e-22 1.003e-22 -21.999 -21.999 0.001 (0) + H[14C]O[18O]2- 5.755e-23 5.265e-23 -22.240 -22.279 -0.039 (0) + H[14C][18O]2O- 5.755e-23 5.265e-23 -22.240 -22.279 -0.039 (0) + H[14C][18O]O[18O]- 5.755e-23 5.265e-23 -22.240 -22.279 -0.039 (0) + [14C]O2[18O]-2 5.138e-23 3.600e-23 -22.289 -22.444 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.422 -69.422 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.423 -72.423 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.805 -69.805 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.806 -72.806 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.85 -10.35 -1.50 [13C][18O]2 - [13C]H4(g) -15.82 -18.68 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.95 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.65 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.41 -22.92 -1.50 [14C][18O]2 - [14C]H4(g) -28.38 -31.24 -2.86 [14C]H4 + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -15.06 -17.92 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] + [14C][18O]2(g) -21.42 -22.92 -1.50 [14C][18O]2 + [14C]H4(g) -27.62 -30.48 -2.86 [14C]H4 [14C]O2(g) -16.05 -17.52 -1.47 [14C]O2 [14C]O[18O](g) -18.43 -20.22 -1.79 [14C]O[18O] - [18O]2(g) -70.13 -72.42 -2.29 [18O]2 + [18O]2(g) -70.52 -72.81 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.85 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.58 -14.42 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.72 -9.02 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.51 -6.32 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.41 -11.72 7.69 Ca[14C]O[18O]2 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -22.58 -14.43 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -16.73 -9.03 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -14.52 -6.33 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -19.42 -11.73 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.87 -16.73 -2.86 CH4 + CH4(g) -13.10 -15.96 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.53 -12.68 -3.15 H2 + H2(g) -9.34 -12.49 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.13 -67.02 -2.89 O2 - O[18O](g) -66.83 -69.72 -2.89 O[18O] + O2(g) -64.51 -67.41 -2.89 O2 + O[18O](g) -67.21 -70.11 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -20058,6 +19987,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 78. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -20100,39 +20035,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.53e-06 5.53e-06 1.11e-02 - Ca[13C]O2[18O](s) 3.40e-08 3.40e-08 6.81e-05 - Ca[13C]O[18O]2(s) 6.98e-11 6.98e-11 1.40e-07 - Ca[13C][18O]3(s) 4.78e-14 4.78e-14 9.56e-11 - Ca[14C]O3(s) 1.41e-18 1.41e-18 2.82e-15 - Ca[14C]O2[18O](s) 8.68e-21 8.68e-21 1.74e-17 - Ca[14C]O[18O]2(s) 1.01e-27 1.01e-29 2.02e-24 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 1.40e-18 1.40e-18 2.79e-15 + Ca[14C]O2[18O](s) 8.60e-21 8.60e-21 1.72e-17 + Ca[14C]O[18O]2(s) 1.77e-23 1.77e-23 3.53e-20 + Ca[14C][18O]3(s) 1.21e-26 1.11e-26 2.42e-23 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9866 permil - R(13C) 1.12063e-02 2.3305 permil - R(14C) 2.84873e-15 0.24226 pmc - R(18O) H2O(l) 1.99520e-03 -4.9881 permil - R(18O) OH- 1.92123e-03 -41.876 permil + R(18O) 1.99520e-03 -4.9862 permil + R(13C) 1.11641e-02 -1.4391 permil + R(14C) 2.82303e-15 0.24008 pmc + R(18O) H2O(l) 1.99520e-03 -4.9878 permil + R(18O) OH- 1.92123e-03 -41.875 permil R(18O) H3O+ 2.04133e-03 18.02 permil - R(13C) CO2(aq) 1.11261e-02 -4.8428 permil - R(14C) CO2(aq) 2.80808e-15 0.2388 pmc + R(13C) CO2(aq) 1.10842e-02 -8.5854 permil + R(14C) CO2(aq) 2.78274e-15 0.23665 pmc R(18O) CO2(aq) 2.07916e-03 36.886 permil - R(18O) HCO3- 1.99520e-03 -4.9881 permil - R(13C) HCO3- 1.12229e-02 3.815 permil - R(14C) HCO3- 2.85715e-15 0.24298 pmc - R(18O) CO3-2 1.99520e-03 -4.9881 permil - R(13C) CO3-2 1.12067e-02 2.3744 permil - R(14C) CO3-2 2.84895e-15 0.24228 pmc - R(13C) CH4(aq) 1.11261e-02 -4.8428 permil - R(14C) CH4(aq) 2.80808e-15 0.2388 pmc - R(18O) Calcite 2.05264e-03 23.658 permil - R(13C) Calcite 1.12451e-02 5.8032 permil - R(14C) Calcite 2.86844e-15 0.24394 pmc + R(18O) HCO3- 1.99520e-03 -4.9878 permil + R(13C) HCO3- 1.11806e-02 0.039814 permil + R(14C) HCO3- 2.83137e-15 0.24079 pmc + R(18O) CO3-2 1.99520e-03 -4.9878 permil + R(13C) CO3-2 1.11646e-02 -1.3953 permil + R(14C) CO3-2 2.82325e-15 0.2401 pmc + R(13C) CH4(aq) 1.10842e-02 -8.5854 permil + R(14C) CH4(aq) 2.78274e-15 0.23665 pmc + R(18O) Calcite 2.05264e-03 23.659 permil + R(13C) Calcite 1.12028e-02 2.0205 permil + R(14C) Calcite 2.84260e-15 0.24174 pmc --------------------------------Isotope Alphas--------------------------------- @@ -20143,159 +20078,159 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.8842e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7311e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5581e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.8874e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -5.9952e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 3.3307e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 7.3275e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.269 21.282 +Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 5.840e-03 5.822e-03 + C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.544e-05 6.525e-05 - [14C] 1.664e-17 1.659e-17 + [13C] 6.520e-05 6.501e-05 + [14C] 1.649e-17 1.644e-17 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.214 Adjusted to redox equilibrium + pe = -2.337 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.451e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 42 + Iterations = 154 (255 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.597e-17 - CH4 1.597e-17 1.600e-17 -16.797 -16.796 0.001 (0) +C(-4) 1.533e-16 + CH4 1.533e-16 1.535e-16 -15.814 -15.814 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) - CO2 9.957e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.115e-06 1.022e-06 -5.953 -5.990 -0.037 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.119e-08 6.129e-08 -7.213 -7.213 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.014e-13 - H2 2.007e-13 2.010e-13 -12.697 -12.697 0.001 (0) +H(0) 7.066e-13 + H2 3.533e-13 3.539e-13 -12.452 -12.451 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.989 -66.988 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.388 -69.387 0.001 (0) -[13C](-4) 1.777e-19 - [13C]H4 1.777e-19 1.780e-19 -18.750 -18.750 0.001 (0) -[13C](4) 6.544e-05 - H[13C]O3- 5.278e-05 4.829e-05 -4.278 -4.316 -0.039 (0) - [13C]O2 1.108e-05 1.110e-05 -4.956 -4.955 0.001 (0) - CaH[13C]O3+ 1.115e-06 1.022e-06 -5.953 -5.990 -0.037 (0) - H[13C]O2[18O]- 1.053e-07 9.635e-08 -6.978 -7.016 -0.039 (0) - H[13C]O[18O]O- 1.053e-07 9.635e-08 -6.978 -7.016 -0.039 (0) - H[13C][18O]O2- 1.053e-07 9.635e-08 -6.978 -7.016 -0.039 (0) - Ca[13C]O3 6.119e-08 6.129e-08 -7.213 -7.213 0.001 (0) - [13C]O[18O] 4.607e-08 4.614e-08 -7.337 -7.336 0.001 (0) - [13C]O3-2 3.139e-08 2.199e-08 -7.503 -7.658 -0.155 (0) - CaH[13C][18O]O2+ 2.224e-09 2.040e-09 -8.653 -8.690 -0.037 (0) - CaH[13C]O2[18O]+ 2.224e-09 2.040e-09 -8.653 -8.690 -0.037 (0) - CaH[13C]O[18O]O+ 2.224e-09 2.040e-09 -8.653 -8.690 -0.037 (0) - Ca[13C]O2[18O] 3.663e-10 3.669e-10 -9.436 -9.435 0.001 (0) - H[13C][18O]O[18O]- 2.101e-10 1.922e-10 -9.678 -9.716 -0.039 (0) - H[13C]O[18O]2- 2.101e-10 1.922e-10 -9.678 -9.716 -0.039 (0) - H[13C][18O]2O- 2.101e-10 1.922e-10 -9.678 -9.716 -0.039 (0) - [13C]O2[18O]-2 1.879e-10 1.316e-10 -9.726 -9.881 -0.155 (0) -[14C](-4) 4.485e-32 - [14C]H4 4.485e-32 4.492e-32 -31.348 -31.348 0.001 (0) -[14C](4) 1.664e-17 - H[14C]O3- 1.344e-17 1.229e-17 -16.872 -16.910 -0.039 (0) - [14C]O2 2.796e-18 2.801e-18 -17.553 -17.553 0.001 (0) - CaH[14C]O3+ 2.838e-19 2.603e-19 -18.547 -18.585 -0.037 (0) - H[14C][18O]O2- 2.681e-20 2.453e-20 -19.572 -19.610 -0.039 (0) - H[14C]O2[18O]- 2.681e-20 2.453e-20 -19.572 -19.610 -0.039 (0) - H[14C]O[18O]O- 2.681e-20 2.453e-20 -19.572 -19.610 -0.039 (0) - Ca[14C]O3 1.556e-20 1.558e-20 -19.808 -19.807 0.001 (0) - [14C]O[18O] 1.163e-20 1.165e-20 -19.935 -19.934 0.001 (0) - [14C]O3-2 7.980e-21 5.590e-21 -20.098 -20.253 -0.155 (0) - CaH[14C]O[18O]O+ 5.662e-22 5.194e-22 -21.247 -21.285 -0.037 (0) - CaH[14C]O2[18O]+ 5.662e-22 5.194e-22 -21.247 -21.285 -0.037 (0) - CaH[14C][18O]O2+ 5.662e-22 5.194e-22 -21.247 -21.285 -0.037 (0) - Ca[14C]O2[18O] 9.311e-23 9.326e-23 -22.031 -22.030 0.001 (0) - H[14C][18O]O[18O]- 5.349e-23 4.894e-23 -22.272 -22.310 -0.039 (0) - H[14C][18O]2O- 5.349e-23 4.894e-23 -22.272 -22.310 -0.039 (0) - H[14C]O[18O]2- 5.349e-23 4.894e-23 -22.272 -22.310 -0.039 (0) - [14C]O2[18O]-2 4.776e-23 3.346e-23 -22.321 -22.475 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.480 -67.479 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.879 -69.878 0.001 (0) +[13C](-4) 1.699e-18 + [13C]H4 1.699e-18 1.702e-18 -17.770 -17.769 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 4.266e-31 + [14C]H4 4.266e-31 4.273e-31 -30.370 -30.369 0.001 (0) +[14C](4) 1.649e-17 + H[14C]O3- 1.332e-17 1.218e-17 -16.876 -16.914 -0.039 (0) + [14C]O2 2.771e-18 2.776e-18 -17.557 -17.557 0.001 (0) + CaH[14C]O3+ 2.812e-19 2.580e-19 -18.551 -18.588 -0.037 (0) + H[14C]O2[18O]- 2.657e-20 2.431e-20 -19.576 -19.614 -0.039 (0) + H[14C]O[18O]O- 2.657e-20 2.431e-20 -19.576 -19.614 -0.039 (0) + H[14C][18O]O2- 2.657e-20 2.431e-20 -19.576 -19.614 -0.039 (0) + Ca[14C]O3 1.542e-20 1.544e-20 -19.812 -19.811 0.001 (0) + [14C]O[18O] 1.152e-20 1.154e-20 -19.938 -19.938 0.001 (0) + [14C]O3-2 7.908e-21 5.540e-21 -20.102 -20.256 -0.155 (0) + CaH[14C]O2[18O]+ 5.611e-22 5.147e-22 -21.251 -21.288 -0.037 (0) + CaH[14C]O[18O]O+ 5.611e-22 5.147e-22 -21.251 -21.288 -0.037 (0) + CaH[14C][18O]O2+ 5.611e-22 5.147e-22 -21.251 -21.288 -0.037 (0) + Ca[14C]O2[18O] 9.228e-23 9.243e-23 -22.035 -22.034 0.001 (0) + H[14C]O[18O]2- 5.301e-23 4.850e-23 -22.276 -22.314 -0.039 (0) + H[14C][18O]2O- 5.301e-23 4.850e-23 -22.276 -22.314 -0.039 (0) + H[14C][18O]O[18O]- 5.301e-23 4.850e-23 -22.276 -22.314 -0.039 (0) + [14C]O2[18O]-2 4.734e-23 3.316e-23 -22.325 -22.479 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.388 -69.387 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.389 -72.388 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.879 -69.878 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.880 -72.879 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.85 -10.35 -1.50 [13C][18O]2 - [13C]H4(g) -15.89 -18.75 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.95 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.65 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.45 -22.95 -1.50 [14C][18O]2 - [14C]H4(g) -28.49 -31.35 -2.86 [14C]H4 - [14C]O2(g) -16.08 -17.55 -1.47 [14C]O2 - [14C]O[18O](g) -18.47 -20.25 -1.79 [14C]O[18O] - [18O]2(g) -70.10 -72.39 -2.29 [18O]2 + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -14.91 -17.77 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] + [14C][18O]2(g) -21.45 -22.96 -1.50 [14C][18O]2 + [14C]H4(g) -27.51 -30.37 -2.86 [14C]H4 + [14C]O2(g) -16.09 -17.56 -1.47 [14C]O2 + [14C]O[18O](g) -18.47 -20.26 -1.79 [14C]O[18O] + [18O]2(g) -70.59 -72.88 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.85 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.61 -14.46 8.15 Ca[14C][18O]3 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -22.62 -14.46 8.15 Ca[14C][18O]3 Ca[14C]O2[18O](s) -16.76 -9.06 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -14.55 -6.36 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -19.45 -11.76 7.69 Ca[14C]O[18O]2 @@ -20303,14 +20238,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.94 -16.80 -2.86 CH4 + CH4(g) -12.95 -15.81 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.55 -12.70 -3.15 H2 + H2(g) -9.30 -12.45 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.10 -66.99 -2.89 O2 - O[18O](g) -66.80 -69.69 -2.89 O[18O] + O2(g) -64.59 -67.48 -2.89 O2 + O[18O](g) -67.29 -70.18 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -20382,39 +20317,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.52e-06 5.52e-06 1.10e-02 - Ca[13C]O2[18O](s) 3.40e-08 3.40e-08 6.80e-05 - Ca[13C]O[18O]2(s) 6.98e-11 6.98e-11 1.40e-07 - Ca[13C][18O]3(s) 4.78e-14 4.78e-14 9.56e-11 - Ca[14C]O3(s) 1.30e-18 1.30e-18 2.60e-15 - Ca[14C]O2[18O](s) 8.00e-21 8.00e-21 1.60e-17 - Ca[14C]O[18O]2(s) 1.64e-23 1.64e-23 3.28e-20 - Ca[14C][18O]3(s) 1.01e-27 1.02e-29 2.02e-24 + Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 1.29e-18 1.29e-18 2.57e-15 + Ca[14C]O2[18O](s) 7.92e-21 7.92e-21 1.58e-17 + Ca[14C]O[18O]2(s) 1.63e-23 1.63e-23 3.25e-20 + Ca[14C][18O]3(s) 1.11e-26 1.01e-26 2.23e-23 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9864 permil - R(13C) 1.12030e-02 2.0385 permil - R(14C) 2.62432e-15 0.22318 pmc - R(18O) H2O(l) 1.99520e-03 -4.9879 permil + R(18O) 1.99520e-03 -4.9861 permil + R(13C) 1.11642e-02 -1.4351 permil + R(14C) 2.60066e-15 0.22117 pmc + R(18O) H2O(l) 1.99520e-03 -4.9876 permil R(18O) OH- 1.92123e-03 -41.875 permil R(18O) H3O+ 2.04133e-03 18.02 permil - R(13C) CO2(aq) 1.11228e-02 -5.1327 permil - R(14C) CO2(aq) 2.58687e-15 0.21999 pmc - R(18O) CO2(aq) 2.07916e-03 36.886 permil - R(18O) HCO3- 1.99520e-03 -4.9879 permil - R(13C) HCO3- 1.12196e-02 3.5226 permil - R(14C) HCO3- 2.63208e-15 0.22384 pmc - R(18O) CO3-2 1.99520e-03 -4.9879 permil - R(13C) CO3-2 1.12035e-02 2.0824 permil - R(14C) CO3-2 2.62453e-15 0.2232 pmc - R(13C) CH4(aq) 1.11228e-02 -5.1327 permil - R(14C) CH4(aq) 2.58687e-15 0.21999 pmc + R(13C) CO2(aq) 1.10843e-02 -8.5814 permil + R(14C) CO2(aq) 2.56354e-15 0.21801 pmc + R(18O) CO2(aq) 2.07916e-03 36.887 permil + R(18O) HCO3- 1.99520e-03 -4.9876 permil + R(13C) HCO3- 1.11807e-02 0.043839 permil + R(14C) HCO3- 2.60834e-15 0.22182 pmc + R(18O) CO3-2 1.99520e-03 -4.9876 permil + R(13C) CO3-2 1.11646e-02 -1.3913 permil + R(14C) CO3-2 2.60086e-15 0.22118 pmc + R(13C) CH4(aq) 1.10843e-02 -8.5814 permil + R(14C) CH4(aq) 2.56354e-15 0.21801 pmc R(18O) Calcite 2.05264e-03 23.659 permil - R(13C) Calcite 1.12418e-02 5.5102 permil - R(14C) Calcite 2.64251e-15 0.22472 pmc + R(13C) Calcite 1.12028e-02 2.0246 permil + R(14C) Calcite 2.61868e-15 0.2227 pmc --------------------------------Isotope Alphas--------------------------------- @@ -20428,11 +20363,11 @@ Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6167e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7081e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -6.2172e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 5.7732e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.1546e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -9.2149e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -20443,156 +20378,156 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.542e-05 6.523e-05 - [14C] 1.532e-17 1.528e-17 + [13C] 6.520e-05 6.501e-05 + [14C] 1.519e-17 1.514e-17 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.229 Adjusted to redox equilibrium + pe = -2.340 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.451e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 37 (138 overall) + Iterations = 54 (155 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.096e-17 - CH4 2.096e-17 2.100e-17 -16.679 -16.678 0.001 (0) +C(-4) 1.629e-16 + CH4 1.629e-16 1.631e-16 -15.788 -15.787 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) - CO2 9.957e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.114e-06 1.022e-06 -5.953 -5.990 -0.037 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.117e-08 6.127e-08 -7.213 -7.213 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.297e-13 - H2 2.148e-13 2.152e-13 -12.668 -12.667 0.001 (0) +H(0) 7.173e-13 + H2 3.587e-13 3.593e-13 -12.445 -12.445 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.048 -67.047 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.447 -69.446 0.001 (0) -[13C](-4) 2.332e-19 - [13C]H4 2.332e-19 2.335e-19 -18.632 -18.632 0.001 (0) -[13C](4) 6.542e-05 - H[13C]O3- 5.277e-05 4.828e-05 -4.278 -4.316 -0.039 (0) - [13C]O2 1.108e-05 1.109e-05 -4.956 -4.955 0.001 (0) - CaH[13C]O3+ 1.114e-06 1.022e-06 -5.953 -5.990 -0.037 (0) - H[13C]O[18O]O- 1.053e-07 9.632e-08 -6.978 -7.016 -0.039 (0) - H[13C][18O]O2- 1.053e-07 9.632e-08 -6.978 -7.016 -0.039 (0) - H[13C]O2[18O]- 1.053e-07 9.632e-08 -6.978 -7.016 -0.039 (0) - Ca[13C]O3 6.117e-08 6.127e-08 -7.213 -7.213 0.001 (0) - [13C]O[18O] 4.606e-08 4.613e-08 -7.337 -7.336 0.001 (0) - [13C]O3-2 3.138e-08 2.198e-08 -7.503 -7.658 -0.155 (0) - CaH[13C]O2[18O]+ 2.223e-09 2.039e-09 -8.653 -8.690 -0.037 (0) - CaH[13C]O[18O]O+ 2.223e-09 2.039e-09 -8.653 -8.690 -0.037 (0) - CaH[13C][18O]O2+ 2.223e-09 2.039e-09 -8.653 -8.690 -0.037 (0) - Ca[13C]O2[18O] 3.662e-10 3.668e-10 -9.436 -9.436 0.001 (0) - H[13C][18O]O[18O]- 2.101e-10 1.922e-10 -9.678 -9.716 -0.039 (0) - H[13C]O[18O]2- 2.101e-10 1.922e-10 -9.678 -9.716 -0.039 (0) - H[13C][18O]2O- 2.101e-10 1.922e-10 -9.678 -9.716 -0.039 (0) - [13C]O2[18O]-2 1.878e-10 1.316e-10 -9.726 -9.881 -0.155 (0) -[14C](-4) 5.423e-32 - [14C]H4 5.423e-32 5.431e-32 -31.266 -31.265 0.001 (0) -[14C](4) 1.532e-17 - H[14C]O3- 1.238e-17 1.133e-17 -16.907 -16.946 -0.039 (0) - [14C]O2 2.576e-18 2.580e-18 -17.589 -17.588 0.001 (0) - CaH[14C]O3+ 2.614e-19 2.398e-19 -18.583 -18.620 -0.037 (0) - H[14C][18O]O2- 2.470e-20 2.260e-20 -19.607 -19.646 -0.039 (0) - H[14C]O2[18O]- 2.470e-20 2.260e-20 -19.607 -19.646 -0.039 (0) - H[14C]O[18O]O- 2.470e-20 2.260e-20 -19.607 -19.646 -0.039 (0) - Ca[14C]O3 1.433e-20 1.435e-20 -19.844 -19.843 0.001 (0) - [14C]O[18O] 1.071e-20 1.073e-20 -19.970 -19.969 0.001 (0) - [14C]O3-2 7.351e-21 5.150e-21 -20.134 -20.288 -0.155 (0) - CaH[14C]O[18O]O+ 5.216e-22 4.784e-22 -21.283 -21.320 -0.037 (0) - CaH[14C]O2[18O]+ 5.216e-22 4.784e-22 -21.283 -21.320 -0.037 (0) - CaH[14C][18O]O2+ 5.216e-22 4.784e-22 -21.283 -21.320 -0.037 (0) - Ca[14C]O2[18O] 8.578e-23 8.592e-23 -22.067 -22.066 0.001 (0) - H[14C][18O]2O- 4.928e-23 4.508e-23 -22.307 -22.346 -0.039 (0) - H[14C]O[18O]2- 4.928e-23 4.508e-23 -22.307 -22.346 -0.039 (0) - H[14C][18O]O[18O]- 4.928e-23 4.508e-23 -22.307 -22.346 -0.039 (0) - [14C]O2[18O]-2 4.400e-23 3.083e-23 -22.357 -22.511 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.493 -67.493 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.892 -69.892 0.001 (0) +[13C](-4) 1.805e-18 + [13C]H4 1.805e-18 1.808e-18 -17.743 -17.743 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 4.175e-31 + [14C]H4 4.175e-31 4.182e-31 -30.379 -30.379 0.001 (0) +[14C](4) 1.519e-17 + H[14C]O3- 1.227e-17 1.122e-17 -16.911 -16.950 -0.039 (0) + [14C]O2 2.553e-18 2.557e-18 -17.593 -17.592 0.001 (0) + CaH[14C]O3+ 2.591e-19 2.376e-19 -18.587 -18.624 -0.037 (0) + H[14C]O2[18O]- 2.448e-20 2.239e-20 -19.611 -19.650 -0.039 (0) + H[14C]O[18O]O- 2.448e-20 2.239e-20 -19.611 -19.650 -0.039 (0) + H[14C][18O]O2- 2.448e-20 2.239e-20 -19.611 -19.650 -0.039 (0) + Ca[14C]O3 1.420e-20 1.423e-20 -19.848 -19.847 0.001 (0) + [14C]O[18O] 1.062e-20 1.063e-20 -19.974 -19.973 0.001 (0) + [14C]O3-2 7.285e-21 5.104e-21 -20.138 -20.292 -0.155 (0) + CaH[14C]O2[18O]+ 5.169e-22 4.742e-22 -21.287 -21.324 -0.037 (0) + CaH[14C]O[18O]O+ 5.169e-22 4.742e-22 -21.287 -21.324 -0.037 (0) + CaH[14C][18O]O2+ 5.169e-22 4.742e-22 -21.287 -21.324 -0.037 (0) + Ca[14C]O2[18O] 8.501e-23 8.515e-23 -22.071 -22.070 0.001 (0) + H[14C]O[18O]2- 4.884e-23 4.468e-23 -22.311 -22.350 -0.039 (0) + H[14C][18O]2O- 4.884e-23 4.468e-23 -22.311 -22.350 -0.039 (0) + H[14C][18O]O[18O]- 4.884e-23 4.468e-23 -22.311 -22.350 -0.039 (0) + [14C]O2[18O]-2 4.361e-23 3.055e-23 -22.360 -22.515 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.447 -69.446 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.448 -72.447 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.892 -69.892 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.893 -72.893 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - [13C][18O]2(g) -8.85 -10.35 -1.50 [13C][18O]2 - [13C]H4(g) -15.77 -18.63 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.95 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.65 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.48 -22.99 -1.50 [14C][18O]2 - [14C]H4(g) -28.41 -31.27 -2.86 [14C]H4 + [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 + [13C]H4(g) -14.88 -17.74 -2.86 [13C]H4 + [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 + [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] + [14C][18O]2(g) -21.49 -22.99 -1.50 [14C][18O]2 + [14C]H4(g) -27.52 -30.38 -2.86 [14C]H4 [14C]O2(g) -16.12 -17.59 -1.47 [14C]O2 - [14C]O[18O](g) -18.50 -20.29 -1.79 [14C]O[18O] - [18O]2(g) -70.16 -72.45 -2.29 [18O]2 + [14C]O[18O](g) -18.51 -20.29 -1.79 [14C]O[18O] + [18O]2(g) -70.60 -72.89 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.85 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.65 -14.49 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.80 -9.09 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.59 -6.39 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.48 -11.79 7.69 Ca[14C]O[18O]2 + Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 + Ca[14C][18O]3(s) -22.65 -14.50 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -16.80 -9.10 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -14.59 -6.40 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -19.49 -11.80 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.82 -16.68 -2.86 CH4 + CH4(g) -12.93 -15.79 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.52 -12.67 -3.15 H2 + H2(g) -9.29 -12.44 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.16 -67.05 -2.89 O2 - O[18O](g) -66.86 -69.75 -2.89 O[18O] + O2(g) -64.60 -67.49 -2.89 O2 + O[18O](g) -67.30 -70.19 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -20616,6 +20551,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 80. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -20658,39 +20599,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.52e-06 5.52e-06 1.10e-02 - Ca[13C]O2[18O](s) 3.40e-08 3.40e-08 6.80e-05 - Ca[13C]O[18O]2(s) 6.98e-11 6.98e-11 1.40e-07 - Ca[13C][18O]3(s) 4.78e-14 4.78e-14 9.55e-11 - Ca[14C]O3(s) 1.20e-18 1.20e-18 2.39e-15 - Ca[14C]O2[18O](s) 7.37e-21 7.37e-21 1.47e-17 - Ca[14C]O[18O]2(s) 1.51e-23 1.51e-23 3.02e-20 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 1.19e-18 1.19e-18 2.37e-15 + Ca[14C]O2[18O](s) 7.30e-21 7.30e-21 1.46e-17 + Ca[14C]O[18O]2(s) 1.50e-23 1.50e-23 3.00e-20 + Ca[14C][18O]3(s) 1.03e-26 9.25e-27 2.05e-23 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9863 permil - R(13C) 1.12000e-02 1.7694 permil - R(14C) 2.41759e-15 0.2056 pmc - R(18O) H2O(l) 1.99520e-03 -4.9878 permil + R(18O) 1.99520e-03 -4.986 permil + R(13C) 1.11642e-02 -1.4314 permil + R(14C) 2.39580e-15 0.20374 pmc + R(18O) H2O(l) 1.99520e-03 -4.9875 permil R(18O) OH- 1.92123e-03 -41.875 permil R(18O) H3O+ 2.04133e-03 18.02 permil - R(13C) CO2(aq) 1.11198e-02 -5.3998 permil - R(14C) CO2(aq) 2.38309e-15 0.20266 pmc - R(18O) CO2(aq) 2.07916e-03 36.886 permil - R(18O) HCO3- 1.99520e-03 -4.9878 permil - R(13C) HCO3- 1.12166e-02 3.2531 permil - R(14C) HCO3- 2.42473e-15 0.2062 pmc - R(18O) CO3-2 1.99520e-03 -4.9878 permil - R(13C) CO3-2 1.12005e-02 1.8133 permil - R(14C) CO3-2 2.41778e-15 0.20561 pmc - R(13C) CH4(aq) 1.11198e-02 -5.3998 permil - R(14C) CH4(aq) 2.38309e-15 0.20266 pmc + R(13C) CO2(aq) 1.10843e-02 -8.5777 permil + R(14C) CO2(aq) 2.36160e-15 0.20084 pmc + R(18O) CO2(aq) 2.07917e-03 36.887 permil + R(18O) HCO3- 1.99520e-03 -4.9875 permil + R(13C) HCO3- 1.11807e-02 0.047547 permil + R(14C) HCO3- 2.40287e-15 0.20435 pmc + R(18O) CO3-2 1.99520e-03 -4.9875 permil + R(13C) CO3-2 1.11647e-02 -1.3876 permil + R(14C) CO3-2 2.39598e-15 0.20376 pmc + R(13C) CH4(aq) 1.10843e-02 -8.5777 permil + R(14C) CH4(aq) 2.36160e-15 0.20084 pmc R(18O) Calcite 2.05264e-03 23.659 permil - R(13C) Calcite 1.12388e-02 5.2402 permil - R(14C) Calcite 2.43435e-15 0.20702 pmc + R(13C) Calcite 1.12029e-02 2.0283 permil + R(14C) Calcite 2.41240e-15 0.20516 pmc --------------------------------Isotope Alphas--------------------------------- @@ -20701,14 +20642,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6346e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6467e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -6.2172e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -8.3267e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 6.4393e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 2.2204e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -20719,156 +20660,156 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.540e-05 6.521e-05 - [14C] 1.412e-17 1.408e-17 + [13C] 6.520e-05 6.501e-05 + [14C] 1.399e-17 1.395e-17 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.224 Adjusted to redox equilibrium + pe = -2.340 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.451e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 28 + Iterations = 78 (179 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.904e-17 - CH4 1.904e-17 1.907e-17 -16.720 -16.720 0.001 (0) +C(-4) 1.621e-16 + CH4 1.621e-16 1.624e-16 -15.790 -15.789 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) - CO2 9.957e-04 9.974e-04 -3.002 -3.001 0.001 (0) + CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.114e-06 1.022e-06 -5.953 -5.991 -0.037 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.116e-08 6.126e-08 -7.214 -7.213 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.194e-13 - H2 2.097e-13 2.101e-13 -12.678 -12.678 0.001 (0) +H(0) 7.165e-13 + H2 3.583e-13 3.588e-13 -12.446 -12.445 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.027 -67.026 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.426 -69.425 0.001 (0) -[13C](-4) 2.117e-19 - [13C]H4 2.117e-19 2.121e-19 -18.674 -18.674 0.001 (0) -[13C](4) 6.540e-05 - H[13C]O3- 5.275e-05 4.826e-05 -4.278 -4.316 -0.039 (0) - [13C]O2 1.107e-05 1.109e-05 -4.956 -4.955 0.001 (0) - CaH[13C]O3+ 1.114e-06 1.022e-06 -5.953 -5.991 -0.037 (0) - H[13C][18O]O2- 1.053e-07 9.629e-08 -6.978 -7.016 -0.039 (0) - H[13C]O2[18O]- 1.053e-07 9.629e-08 -6.978 -7.016 -0.039 (0) - H[13C]O[18O]O- 1.053e-07 9.629e-08 -6.978 -7.016 -0.039 (0) - Ca[13C]O3 6.116e-08 6.126e-08 -7.214 -7.213 0.001 (0) - [13C]O[18O] 4.604e-08 4.612e-08 -7.337 -7.336 0.001 (0) - [13C]O3-2 3.137e-08 2.198e-08 -7.503 -7.658 -0.155 (0) - CaH[13C]O[18O]O+ 2.223e-09 2.039e-09 -8.653 -8.691 -0.037 (0) - CaH[13C][18O]O2+ 2.223e-09 2.039e-09 -8.653 -8.691 -0.037 (0) - CaH[13C]O2[18O]+ 2.223e-09 2.039e-09 -8.653 -8.691 -0.037 (0) - Ca[13C]O2[18O] 3.661e-10 3.667e-10 -9.436 -9.436 0.001 (0) - H[13C][18O]O[18O]- 2.100e-10 1.921e-10 -9.678 -9.716 -0.039 (0) - H[13C]O[18O]2- 2.100e-10 1.921e-10 -9.678 -9.716 -0.039 (0) - H[13C][18O]2O- 2.100e-10 1.921e-10 -9.678 -9.716 -0.039 (0) - [13C]O2[18O]-2 1.878e-10 1.316e-10 -9.726 -9.881 -0.155 (0) -[14C](-4) 4.537e-32 - [14C]H4 4.537e-32 4.545e-32 -31.343 -31.342 0.001 (0) -[14C](4) 1.412e-17 - H[14C]O3- 1.140e-17 1.043e-17 -16.943 -16.982 -0.039 (0) - [14C]O2 2.373e-18 2.377e-18 -17.625 -17.624 0.001 (0) - CaH[14C]O3+ 2.408e-19 2.209e-19 -18.618 -18.656 -0.037 (0) - H[14C][18O]O2- 2.275e-20 2.082e-20 -19.643 -19.682 -0.039 (0) - H[14C]O2[18O]- 2.275e-20 2.082e-20 -19.643 -19.682 -0.039 (0) - H[14C]O[18O]O- 2.275e-20 2.082e-20 -19.643 -19.682 -0.039 (0) - Ca[14C]O3 1.320e-20 1.322e-20 -19.879 -19.879 0.001 (0) - [14C]O[18O] 9.868e-21 9.884e-21 -20.006 -20.005 0.001 (0) - [14C]O3-2 6.772e-21 4.744e-21 -20.169 -20.324 -0.155 (0) - CaH[14C]O[18O]O+ 4.805e-22 4.408e-22 -21.318 -21.356 -0.037 (0) - CaH[14C]O2[18O]+ 4.805e-22 4.408e-22 -21.318 -21.356 -0.037 (0) - CaH[14C][18O]O2+ 4.805e-22 4.408e-22 -21.318 -21.356 -0.037 (0) - Ca[14C]O2[18O] 7.902e-23 7.915e-23 -22.102 -22.102 0.001 (0) - H[14C]O[18O]2- 4.540e-23 4.153e-23 -22.343 -22.382 -0.039 (0) - H[14C][18O]O[18O]- 4.540e-23 4.153e-23 -22.343 -22.382 -0.039 (0) - H[14C][18O]2O- 4.540e-23 4.153e-23 -22.343 -22.382 -0.039 (0) - [14C]O2[18O]-2 4.054e-23 2.840e-23 -22.392 -22.547 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.492 -67.492 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.891 -69.891 0.001 (0) +[13C](-4) 1.797e-18 + [13C]H4 1.797e-18 1.800e-18 -17.745 -17.745 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 3.829e-31 + [14C]H4 3.829e-31 3.835e-31 -30.417 -30.416 0.001 (0) +[14C](4) 1.399e-17 + H[14C]O3- 1.130e-17 1.034e-17 -16.947 -16.985 -0.039 (0) + [14C]O2 2.352e-18 2.356e-18 -17.629 -17.628 0.001 (0) + CaH[14C]O3+ 2.387e-19 2.189e-19 -18.622 -18.660 -0.037 (0) + H[14C]O2[18O]- 2.255e-20 2.063e-20 -19.647 -19.686 -0.039 (0) + H[14C]O[18O]O- 2.255e-20 2.063e-20 -19.647 -19.686 -0.039 (0) + H[14C][18O]O2- 2.255e-20 2.063e-20 -19.647 -19.686 -0.039 (0) + Ca[14C]O3 1.308e-20 1.310e-20 -19.883 -19.883 0.001 (0) + [14C]O[18O] 9.779e-21 9.795e-21 -20.010 -20.009 0.001 (0) + [14C]O3-2 6.711e-21 4.702e-21 -20.173 -20.328 -0.155 (0) + CaH[14C]O2[18O]+ 4.762e-22 4.368e-22 -21.322 -21.360 -0.037 (0) + CaH[14C]O[18O]O+ 4.762e-22 4.368e-22 -21.322 -21.360 -0.037 (0) + CaH[14C][18O]O2+ 4.762e-22 4.368e-22 -21.322 -21.360 -0.037 (0) + Ca[14C]O2[18O] 7.831e-23 7.844e-23 -22.106 -22.105 0.001 (0) + H[14C]O[18O]2- 4.499e-23 4.116e-23 -22.347 -22.386 -0.039 (0) + H[14C][18O]2O- 4.499e-23 4.116e-23 -22.347 -22.386 -0.039 (0) + H[14C][18O]O[18O]- 4.499e-23 4.116e-23 -22.347 -22.386 -0.039 (0) + [14C]O2[18O]-2 4.017e-23 2.814e-23 -22.396 -22.551 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.426 -69.425 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.427 -72.427 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.891 -69.891 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.892 -72.892 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.81 -18.67 -2.86 [13C]H4 + [13C]H4(g) -14.88 -17.74 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.52 -23.02 -1.50 [14C][18O]2 - [14C]H4(g) -28.48 -31.34 -2.86 [14C]H4 - [14C]O2(g) -16.16 -17.62 -1.47 [14C]O2 - [14C]O[18O](g) -18.54 -20.32 -1.79 [14C]O[18O] - [18O]2(g) -70.14 -72.43 -2.29 [18O]2 + [14C][18O]2(g) -21.52 -23.03 -1.50 [14C][18O]2 + [14C]H4(g) -27.56 -30.42 -2.86 [14C]H4 + [14C]O2(g) -16.16 -17.63 -1.47 [14C]O2 + [14C]O[18O](g) -18.54 -20.33 -1.79 [14C]O[18O] + [18O]2(g) -70.60 -72.89 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.68 -14.53 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.83 -9.13 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.62 -6.43 8.19 Ca[14C]O3 + Ca[14C][18O]3(s) -22.69 -14.53 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -16.84 -9.13 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -14.63 -6.43 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -19.52 -11.83 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.86 -16.72 -2.86 CH4 + CH4(g) -12.93 -15.79 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.53 -12.68 -3.15 H2 + H2(g) -9.30 -12.45 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.13 -67.03 -2.89 O2 - O[18O](g) -66.83 -69.73 -2.89 O[18O] + O2(g) -64.60 -67.49 -2.89 O2 + O[18O](g) -67.30 -70.19 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -20892,6 +20833,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 81. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -20934,39 +20881,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.52e-06 5.52e-06 1.10e-02 - Ca[13C]O2[18O](s) 3.40e-08 3.40e-08 6.80e-05 - Ca[13C]O[18O]2(s) 6.98e-11 6.98e-11 1.40e-07 - Ca[13C][18O]3(s) 4.78e-14 4.78e-14 9.55e-11 - Ca[14C]O3(s) 1.10e-18 1.10e-18 2.20e-15 - Ca[14C]O2[18O](s) 6.79e-21 6.79e-21 1.36e-17 - Ca[14C]O[18O]2(s) 1.01e-27 1.01e-29 2.02e-24 - Ca[14C][18O]3(s) 1.02e-27 2.47e-29 2.05e-24 + Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 1.09e-18 1.09e-18 2.18e-15 + Ca[14C]O2[18O](s) 6.73e-21 6.73e-21 1.35e-17 + Ca[14C]O[18O]2(s) 1.38e-23 1.38e-23 2.76e-20 + Ca[14C][18O]3(s) 9.45e-27 8.45e-27 1.89e-23 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9861 permil - R(13C) 1.11972e-02 1.5215 permil - R(14C) 2.22715e-15 0.1894 pmc - R(18O) H2O(l) 1.99520e-03 -4.9877 permil + R(18O) 1.99520e-03 -4.9858 permil + R(13C) 1.11642e-02 -1.428 permil + R(14C) 2.20708e-15 0.18769 pmc + R(18O) H2O(l) 1.99520e-03 -4.9873 permil R(18O) OH- 1.92123e-03 -41.875 permil - R(18O) H3O+ 2.04133e-03 18.02 permil - R(13C) CO2(aq) 1.11171e-02 -5.6459 permil - R(14C) CO2(aq) 2.19536e-15 0.1867 pmc - R(18O) CO2(aq) 2.07916e-03 36.886 permil - R(18O) HCO3- 1.99520e-03 -4.9877 permil - R(13C) HCO3- 1.12138e-02 3.0048 permil - R(14C) HCO3- 2.23373e-15 0.18996 pmc - R(18O) CO3-2 1.99520e-03 -4.9877 permil - R(13C) CO3-2 1.11977e-02 1.5654 permil - R(14C) CO3-2 2.22732e-15 0.18942 pmc - R(13C) CH4(aq) 1.11171e-02 -5.6459 permil - R(14C) CH4(aq) 2.19536e-15 0.1867 pmc + R(18O) H3O+ 2.04133e-03 18.021 permil + R(13C) CO2(aq) 1.10843e-02 -8.5743 permil + R(14C) CO2(aq) 2.17557e-15 0.18502 pmc + R(18O) CO2(aq) 2.07917e-03 36.887 permil + R(18O) HCO3- 1.99520e-03 -4.9873 permil + R(13C) HCO3- 1.11808e-02 0.050964 permil + R(14C) HCO3- 2.21359e-15 0.18825 pmc + R(18O) CO3-2 1.99520e-03 -4.9873 permil + R(13C) CO3-2 1.11647e-02 -1.3842 permil + R(14C) CO3-2 2.20725e-15 0.18771 pmc + R(13C) CH4(aq) 1.10843e-02 -8.5743 permil + R(14C) CH4(aq) 2.17557e-15 0.18502 pmc R(18O) Calcite 2.05264e-03 23.659 permil - R(13C) Calcite 1.12360e-02 4.9914 permil - R(14C) Calcite 2.24256e-15 0.19071 pmc + R(13C) Calcite 1.12029e-02 2.0317 permil + R(14C) Calcite 2.22237e-15 0.189 pmc --------------------------------Isotope Alphas--------------------------------- @@ -20977,17 +20924,17 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.6613e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7017e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7571e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 5.5511e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.1546e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.199e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.8208e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.269 21.282 +Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ @@ -20995,36 +20942,36 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.269 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.539e-05 6.520e-05 - [14C] 1.301e-17 1.297e-17 + [13C] 6.520e-05 6.501e-05 + [14C] 1.289e-17 1.285e-17 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.234 Adjusted to redox equilibrium + pe = -2.333 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 32 + Iterations = 118 (219 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.309e-17 - CH4 2.309e-17 2.313e-17 -16.637 -16.636 0.001 (0) +C(-4) 1.426e-16 + CH4 1.426e-16 1.429e-16 -15.846 -15.845 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -21033,97 +20980,97 @@ C(4) 5.840e-03 HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.114e-06 1.022e-06 -5.953 -5.991 -0.037 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.114e-08 6.124e-08 -7.214 -7.213 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.402e-13 - H2 2.201e-13 2.205e-13 -12.657 -12.657 0.001 (0) +H(0) 6.939e-13 + H2 3.470e-13 3.475e-13 -12.460 -12.459 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.069 -67.068 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.468 -69.467 0.001 (0) -[13C](-4) 2.567e-19 - [13C]H4 2.567e-19 2.571e-19 -18.591 -18.590 0.001 (0) -[13C](4) 6.539e-05 - H[13C]O3- 5.274e-05 4.825e-05 -4.278 -4.316 -0.039 (0) - [13C]O2 1.107e-05 1.109e-05 -4.956 -4.955 0.001 (0) - CaH[13C]O3+ 1.114e-06 1.022e-06 -5.953 -5.991 -0.037 (0) - H[13C]O2[18O]- 1.052e-07 9.627e-08 -6.978 -7.017 -0.039 (0) - H[13C]O[18O]O- 1.052e-07 9.627e-08 -6.978 -7.017 -0.039 (0) - H[13C][18O]O2- 1.052e-07 9.627e-08 -6.978 -7.017 -0.039 (0) - Ca[13C]O3 6.114e-08 6.124e-08 -7.214 -7.213 0.001 (0) - [13C]O[18O] 4.603e-08 4.611e-08 -7.337 -7.336 0.001 (0) - [13C]O3-2 3.137e-08 2.197e-08 -7.504 -7.658 -0.155 (0) - CaH[13C][18O]O2+ 2.222e-09 2.038e-09 -8.653 -8.691 -0.037 (0) - CaH[13C]O2[18O]+ 2.222e-09 2.038e-09 -8.653 -8.691 -0.037 (0) - CaH[13C]O[18O]O+ 2.222e-09 2.038e-09 -8.653 -8.691 -0.037 (0) - Ca[13C]O2[18O] 3.660e-10 3.666e-10 -9.437 -9.436 0.001 (0) - H[13C][18O]O[18O]- 2.100e-10 1.921e-10 -9.678 -9.717 -0.039 (0) - H[13C]O[18O]2- 2.100e-10 1.921e-10 -9.678 -9.717 -0.039 (0) - H[13C][18O]2O- 2.100e-10 1.921e-10 -9.678 -9.717 -0.039 (0) - [13C]O2[18O]-2 1.877e-10 1.315e-10 -9.726 -9.881 -0.155 (0) -[14C](-4) 5.069e-32 - [14C]H4 5.069e-32 5.078e-32 -31.295 -31.294 0.001 (0) -[14C](4) 1.301e-17 - H[14C]O3- 1.051e-17 9.611e-18 -16.979 -17.017 -0.039 (0) - [14C]O2 2.186e-18 2.190e-18 -17.660 -17.660 0.001 (0) - CaH[14C]O3+ 2.218e-19 2.035e-19 -18.654 -18.691 -0.037 (0) - H[14C][18O]O2- 2.096e-20 1.918e-20 -19.679 -19.717 -0.039 (0) - H[14C]O2[18O]- 2.096e-20 1.918e-20 -19.679 -19.717 -0.039 (0) - H[14C]O[18O]O- 2.096e-20 1.918e-20 -19.679 -19.717 -0.039 (0) - Ca[14C]O3 1.216e-20 1.218e-20 -19.915 -19.914 0.001 (0) - [14C]O[18O] 9.090e-21 9.105e-21 -20.041 -20.041 0.001 (0) - [14C]O3-2 6.239e-21 4.371e-21 -20.205 -20.359 -0.155 (0) - CaH[14C]O[18O]O+ 4.426e-22 4.060e-22 -21.354 -21.391 -0.037 (0) - CaH[14C]O2[18O]+ 4.426e-22 4.060e-22 -21.354 -21.391 -0.037 (0) - CaH[14C][18O]O2+ 4.426e-22 4.060e-22 -21.354 -21.391 -0.037 (0) - Ca[14C]O2[18O] 7.280e-23 7.292e-23 -22.138 -22.137 0.001 (0) - H[14C][18O]O[18O]- 4.182e-23 3.826e-23 -22.379 -22.417 -0.039 (0) - H[14C][18O]2O- 4.182e-23 3.826e-23 -22.379 -22.417 -0.039 (0) - H[14C]O[18O]2- 4.182e-23 3.826e-23 -22.379 -22.417 -0.039 (0) - [14C]O2[18O]-2 3.734e-23 2.616e-23 -22.428 -22.582 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.464 -67.464 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.863 -69.863 0.001 (0) +[13C](-4) 1.581e-18 + [13C]H4 1.581e-18 1.584e-18 -17.801 -17.800 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 3.103e-31 + [14C]H4 3.103e-31 3.108e-31 -30.508 -30.507 0.001 (0) +[14C](4) 1.289e-17 + H[14C]O3- 1.041e-17 9.525e-18 -16.982 -17.021 -0.039 (0) + [14C]O2 2.166e-18 2.170e-18 -17.664 -17.664 0.001 (0) + CaH[14C]O3+ 2.199e-19 2.017e-19 -18.658 -18.695 -0.037 (0) + H[14C]O2[18O]- 2.077e-20 1.900e-20 -19.683 -19.721 -0.039 (0) + H[14C]O[18O]O- 2.077e-20 1.900e-20 -19.683 -19.721 -0.039 (0) + H[14C][18O]O2- 2.077e-20 1.900e-20 -19.683 -19.721 -0.039 (0) + Ca[14C]O3 1.205e-20 1.207e-20 -19.919 -19.918 0.001 (0) + [14C]O[18O] 9.009e-21 9.023e-21 -20.045 -20.045 0.001 (0) + [14C]O3-2 6.183e-21 4.331e-21 -20.209 -20.363 -0.155 (0) + CaH[14C]O2[18O]+ 4.387e-22 4.024e-22 -21.358 -21.395 -0.037 (0) + CaH[14C]O[18O]O+ 4.387e-22 4.024e-22 -21.358 -21.395 -0.037 (0) + CaH[14C][18O]O2+ 4.387e-22 4.024e-22 -21.358 -21.395 -0.037 (0) + Ca[14C]O2[18O] 7.214e-23 7.226e-23 -22.142 -22.141 0.001 (0) + H[14C]O[18O]2- 4.145e-23 3.792e-23 -22.383 -22.421 -0.039 (0) + H[14C][18O]2O- 4.145e-23 3.792e-23 -22.383 -22.421 -0.039 (0) + H[14C][18O]O[18O]- 4.145e-23 3.792e-23 -22.383 -22.421 -0.039 (0) + [14C]O2[18O]-2 3.701e-23 2.593e-23 -22.432 -22.586 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.468 -69.467 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.469 -72.468 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.863 -69.863 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.865 -72.864 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.73 -18.59 -2.86 [13C]H4 + [13C]H4(g) -14.94 -17.80 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.56 -23.06 -1.50 [14C][18O]2 - [14C]H4(g) -28.43 -31.29 -2.86 [14C]H4 + [14C]H4(g) -27.65 -30.51 -2.86 [14C]H4 [14C]O2(g) -16.19 -17.66 -1.47 [14C]O2 - [14C]O[18O](g) -18.57 -20.36 -1.79 [14C]O[18O] - [18O]2(g) -70.18 -72.47 -2.29 [18O]2 + [14C]O[18O](g) -18.58 -20.36 -1.79 [14C]O[18O] + [18O]2(g) -70.57 -72.86 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -21137,14 +21084,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.78 -16.64 -2.86 CH4 + CH4(g) -12.99 -15.85 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.51 -12.66 -3.15 H2 + H2(g) -9.31 -12.46 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.18 -67.07 -2.89 O2 - O[18O](g) -66.88 -69.77 -2.89 O[18O] + O2(g) -64.57 -67.46 -2.89 O2 + O[18O](g) -67.27 -70.16 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -21216,39 +21163,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.52e-06 5.52e-06 1.10e-02 - Ca[13C]O2[18O](s) 3.40e-08 3.40e-08 6.80e-05 - Ca[13C]O[18O]2(s) 6.98e-11 6.98e-11 1.40e-07 - Ca[13C][18O]3(s) 4.77e-14 4.77e-14 9.55e-11 - Ca[14C]O3(s) 1.02e-18 1.02e-18 2.03e-15 - Ca[14C]O2[18O](s) 6.25e-21 6.25e-21 1.25e-17 - Ca[14C]O[18O]2(s) 1.28e-23 1.28e-23 2.57e-20 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 1.01e-18 1.01e-18 2.01e-15 + Ca[14C]O2[18O](s) 6.20e-21 6.20e-21 1.24e-17 + Ca[14C]O[18O]2(s) 1.27e-23 1.27e-23 2.54e-20 + Ca[14C][18O]3(s) 8.70e-27 7.70e-27 1.74e-23 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.986 permil - R(13C) 1.11947e-02 1.2931 permil - R(14C) 2.05171e-15 0.17448 pmc - R(18O) H2O(l) 1.99520e-03 -4.9875 permil + R(18O) 1.99520e-03 -4.9857 permil + R(13C) 1.11643e-02 -1.4248 permil + R(14C) 2.03322e-15 0.17291 pmc + R(18O) H2O(l) 1.99520e-03 -4.9872 permil R(18O) OH- 1.92123e-03 -41.875 permil - R(18O) H3O+ 2.04133e-03 18.02 permil - R(13C) CO2(aq) 1.11145e-02 -5.8728 permil - R(14C) CO2(aq) 2.02242e-15 0.17199 pmc + R(18O) H3O+ 2.04134e-03 18.021 permil + R(13C) CO2(aq) 1.10844e-02 -8.5712 permil + R(14C) CO2(aq) 2.00420e-15 0.17044 pmc R(18O) CO2(aq) 2.07917e-03 36.887 permil - R(18O) HCO3- 1.99520e-03 -4.9875 permil - R(13C) HCO3- 1.12112e-02 2.776 permil - R(14C) HCO3- 2.05777e-15 0.175 pmc - R(18O) CO3-2 1.99520e-03 -4.9875 permil - R(13C) CO3-2 1.11951e-02 1.337 permil - R(14C) CO3-2 2.05186e-15 0.17449 pmc - R(13C) CH4(aq) 1.11145e-02 -5.8728 permil - R(14C) CH4(aq) 2.02242e-15 0.17199 pmc + R(18O) HCO3- 1.99520e-03 -4.9872 permil + R(13C) HCO3- 1.11808e-02 0.054113 permil + R(14C) HCO3- 2.03922e-15 0.17342 pmc + R(18O) CO3-2 1.99520e-03 -4.9872 permil + R(13C) CO3-2 1.11648e-02 -1.3811 permil + R(14C) CO3-2 2.03338e-15 0.17292 pmc + R(13C) CH4(aq) 1.10844e-02 -8.5712 permil + R(14C) CH4(aq) 2.00420e-15 0.17044 pmc R(18O) Calcite 2.05264e-03 23.659 permil - R(13C) Calcite 1.12334e-02 4.7622 permil - R(14C) Calcite 2.06593e-15 0.17569 pmc + R(13C) Calcite 1.12030e-02 2.0349 permil + R(14C) Calcite 2.04731e-15 0.17411 pmc --------------------------------Isotope Alphas--------------------------------- @@ -21259,14 +21206,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5894e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6768e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 3.9968e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.199e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.1324e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -9.992e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -21277,156 +21224,156 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.537e-05 6.518e-05 - [14C] 1.198e-17 1.195e-17 + [13C] 6.520e-05 6.501e-05 + [14C] 1.187e-17 1.184e-17 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.245 Adjusted to redox equilibrium + pe = -2.335 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 41 (142 overall) + Iterations = 111 (212 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.832e-17 - CH4 2.832e-17 2.837e-17 -16.548 -16.547 0.001 (0) +C(-4) 1.460e-16 + CH4 1.460e-16 1.463e-16 -15.836 -15.835 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.113e-06 1.021e-06 -5.953 -5.991 -0.037 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.113e-08 6.123e-08 -7.214 -7.213 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.096e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.632e-13 - H2 2.316e-13 2.320e-13 -12.635 -12.635 0.001 (0) +H(0) 6.980e-13 + H2 3.490e-13 3.496e-13 -12.457 -12.456 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.113 -67.113 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.512 -69.512 0.001 (0) -[13C](-4) 3.148e-19 - [13C]H4 3.148e-19 3.153e-19 -18.502 -18.501 0.001 (0) -[13C](4) 6.537e-05 - H[13C]O3- 5.273e-05 4.824e-05 -4.278 -4.317 -0.039 (0) - [13C]O2 1.107e-05 1.109e-05 -4.956 -4.955 0.001 (0) - CaH[13C]O3+ 1.113e-06 1.021e-06 -5.953 -5.991 -0.037 (0) - H[13C]O[18O]O- 1.052e-07 9.625e-08 -6.978 -7.017 -0.039 (0) - H[13C][18O]O2- 1.052e-07 9.625e-08 -6.978 -7.017 -0.039 (0) - H[13C]O2[18O]- 1.052e-07 9.625e-08 -6.978 -7.017 -0.039 (0) - Ca[13C]O3 6.113e-08 6.123e-08 -7.214 -7.213 0.001 (0) - [13C]O[18O] 4.602e-08 4.610e-08 -7.337 -7.336 0.001 (0) - [13C]O3-2 3.136e-08 2.197e-08 -7.504 -7.658 -0.155 (0) - CaH[13C]O2[18O]+ 2.222e-09 2.038e-09 -8.653 -8.691 -0.037 (0) - CaH[13C]O[18O]O+ 2.222e-09 2.038e-09 -8.653 -8.691 -0.037 (0) - CaH[13C][18O]O2+ 2.222e-09 2.038e-09 -8.653 -8.691 -0.037 (0) - Ca[13C]O2[18O] 3.659e-10 3.665e-10 -9.437 -9.436 0.001 (0) - H[13C][18O]O[18O]- 2.099e-10 1.920e-10 -9.678 -9.717 -0.039 (0) - H[13C]O[18O]2- 2.099e-10 1.920e-10 -9.678 -9.717 -0.039 (0) - H[13C][18O]2O- 2.099e-10 1.920e-10 -9.678 -9.717 -0.039 (0) - [13C]O2[18O]-2 1.877e-10 1.315e-10 -9.727 -9.881 -0.155 (0) -[14C](-4) 5.728e-32 - [14C]H4 5.728e-32 5.737e-32 -31.242 -31.241 0.001 (0) -[14C](4) 1.198e-17 - H[14C]O3- 9.678e-18 8.854e-18 -17.014 -17.053 -0.039 (0) - [14C]O2 2.014e-18 2.017e-18 -17.696 -17.695 0.001 (0) - CaH[14C]O3+ 2.044e-19 1.875e-19 -18.690 -18.727 -0.037 (0) - H[14C][18O]O2- 1.931e-20 1.767e-20 -19.714 -19.753 -0.039 (0) - H[14C]O2[18O]- 1.931e-20 1.767e-20 -19.714 -19.753 -0.039 (0) - H[14C]O[18O]O- 1.931e-20 1.767e-20 -19.714 -19.753 -0.039 (0) - Ca[14C]O3 1.120e-20 1.122e-20 -19.951 -19.950 0.001 (0) - [14C]O[18O] 8.374e-21 8.388e-21 -20.077 -20.076 0.001 (0) - [14C]O3-2 5.747e-21 4.026e-21 -20.241 -20.395 -0.155 (0) - CaH[14C]O[18O]O+ 4.078e-22 3.741e-22 -21.390 -21.427 -0.037 (0) - CaH[14C]O2[18O]+ 4.078e-22 3.741e-22 -21.390 -21.427 -0.037 (0) - CaH[14C][18O]O2+ 4.078e-22 3.741e-22 -21.390 -21.427 -0.037 (0) - Ca[14C]O2[18O] 6.706e-23 6.717e-23 -22.174 -22.173 0.001 (0) - H[14C][18O]2O- 3.853e-23 3.525e-23 -22.414 -22.453 -0.039 (0) - H[14C]O[18O]2- 3.853e-23 3.525e-23 -22.414 -22.453 -0.039 (0) - H[14C][18O]O[18O]- 3.853e-23 3.525e-23 -22.414 -22.453 -0.039 (0) - [14C]O2[18O]-2 3.440e-23 2.410e-23 -22.463 -22.618 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.470 -67.469 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.869 -69.868 0.001 (0) +[13C](-4) 1.619e-18 + [13C]H4 1.619e-18 1.621e-18 -17.791 -17.790 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.096e-08 6.107e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 2.927e-31 + [14C]H4 2.927e-31 2.932e-31 -30.534 -30.533 0.001 (0) +[14C](4) 1.187e-17 + H[14C]O3- 9.591e-18 8.775e-18 -17.018 -17.057 -0.039 (0) + [14C]O2 1.996e-18 1.999e-18 -17.700 -17.699 0.001 (0) + CaH[14C]O3+ 2.025e-19 1.858e-19 -18.693 -18.731 -0.037 (0) + H[14C]O2[18O]- 1.914e-20 1.751e-20 -19.718 -19.757 -0.039 (0) + H[14C]O[18O]O- 1.914e-20 1.751e-20 -19.718 -19.757 -0.039 (0) + H[14C][18O]O2- 1.914e-20 1.751e-20 -19.718 -19.757 -0.039 (0) + Ca[14C]O3 1.110e-20 1.112e-20 -19.955 -19.954 0.001 (0) + [14C]O[18O] 8.299e-21 8.313e-21 -20.081 -20.080 0.001 (0) + [14C]O3-2 5.696e-21 3.990e-21 -20.244 -20.399 -0.155 (0) + CaH[14C]O2[18O]+ 4.041e-22 3.707e-22 -21.394 -21.431 -0.037 (0) + CaH[14C]O[18O]O+ 4.041e-22 3.707e-22 -21.394 -21.431 -0.037 (0) + CaH[14C][18O]O2+ 4.041e-22 3.707e-22 -21.394 -21.431 -0.037 (0) + Ca[14C]O2[18O] 6.646e-23 6.657e-23 -22.177 -22.177 0.001 (0) + H[14C]O[18O]2- 3.818e-23 3.493e-23 -22.418 -22.457 -0.039 (0) + H[14C][18O]2O- 3.818e-23 3.493e-23 -22.418 -22.457 -0.039 (0) + H[14C][18O]O[18O]- 3.818e-23 3.493e-23 -22.418 -22.457 -0.039 (0) + [14C]O2[18O]-2 3.409e-23 2.388e-23 -22.467 -22.622 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.512 -69.512 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.513 -72.513 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.869 -69.868 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.870 -72.869 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.64 -18.50 -2.86 [13C]H4 + [13C]H4(g) -14.93 -17.79 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.59 -23.10 -1.50 [14C][18O]2 - [14C]H4(g) -28.38 -31.24 -2.86 [14C]H4 + [14C][18O]2(g) -21.60 -23.10 -1.50 [14C][18O]2 + [14C]H4(g) -27.67 -30.53 -2.86 [14C]H4 [14C]O2(g) -16.23 -17.70 -1.47 [14C]O2 [14C]O[18O](g) -18.61 -20.40 -1.79 [14C]O[18O] - [18O]2(g) -70.22 -72.51 -2.29 [18O]2 + [18O]2(g) -70.58 -72.87 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 Ca[14C][18O]3(s) -22.76 -14.60 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.90 -9.20 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.69 -6.50 8.19 Ca[14C]O3 + Ca[14C]O2[18O](s) -16.91 -9.20 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -14.70 -6.50 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -19.59 -11.90 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.69 -16.55 -2.86 CH4 + CH4(g) -12.97 -15.83 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.48 -12.63 -3.15 H2 + H2(g) -9.31 -12.46 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.22 -67.11 -2.89 O2 - O[18O](g) -66.92 -69.81 -2.89 O[18O] + O2(g) -64.58 -67.47 -2.89 O2 + O[18O](g) -67.28 -70.17 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -21492,39 +21439,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.52e-06 5.52e-06 1.10e-02 - Ca[13C]O2[18O](s) 3.40e-08 3.40e-08 6.80e-05 - Ca[13C]O[18O]2(s) 6.98e-11 6.98e-11 1.40e-07 - Ca[13C][18O]3(s) 4.77e-14 4.77e-14 9.55e-11 - Ca[14C]O3(s) 9.35e-19 9.35e-19 1.87e-15 - Ca[14C]O2[18O](s) 5.76e-21 5.76e-21 1.15e-17 - Ca[14C]O[18O]2(s) 1.18e-23 1.18e-23 2.36e-20 - Ca[14C][18O]3(s) 1.01e-27 1.00e-29 2.02e-24 + Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 9.27e-19 9.27e-19 1.85e-15 + Ca[14C]O2[18O](s) 5.71e-21 5.71e-21 1.14e-17 + Ca[14C]O[18O]2(s) 1.17e-23 1.17e-23 2.34e-20 + Ca[14C][18O]3(s) 8.02e-27 7.02e-27 1.60e-23 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9859 permil - R(13C) 1.11923e-02 1.0826 permil - R(14C) 1.89008e-15 0.16074 pmc - R(18O) H2O(l) 1.99520e-03 -4.9874 permil + R(18O) 1.99520e-03 -4.9855 permil + R(13C) 1.11643e-02 -1.4219 permil + R(14C) 1.87306e-15 0.15929 pmc + R(18O) H2O(l) 1.99520e-03 -4.9871 permil R(18O) OH- 1.92123e-03 -41.875 permil - R(18O) H3O+ 2.04133e-03 18.021 permil - R(13C) CO2(aq) 1.11122e-02 -6.0818 permil - R(14C) CO2(aq) 1.86311e-15 0.15844 pmc + R(18O) H3O+ 2.04134e-03 18.021 permil + R(13C) CO2(aq) 1.10844e-02 -8.5683 permil + R(14C) CO2(aq) 1.84632e-15 0.15702 pmc R(18O) CO2(aq) 2.07917e-03 36.887 permil - R(18O) HCO3- 1.99520e-03 -4.9874 permil - R(13C) HCO3- 1.12089e-02 2.5652 permil - R(14C) HCO3- 1.89567e-15 0.16121 pmc - R(18O) CO3-2 1.99520e-03 -4.9874 permil - R(13C) CO3-2 1.11928e-02 1.1264 permil - R(14C) CO3-2 1.89023e-15 0.16075 pmc - R(13C) CH4(aq) 1.11122e-02 -6.0818 permil - R(14C) CH4(aq) 1.86311e-15 0.15844 pmc + R(18O) HCO3- 1.99520e-03 -4.9871 permil + R(13C) HCO3- 1.11808e-02 0.057015 permil + R(14C) HCO3- 1.87859e-15 0.15976 pmc + R(18O) CO3-2 1.99520e-03 -4.9871 permil + R(13C) CO3-2 1.11648e-02 -1.3782 permil + R(14C) CO3-2 1.87320e-15 0.1593 pmc + R(13C) CH4(aq) 1.10844e-02 -8.5683 permil + R(14C) CH4(aq) 1.84632e-15 0.15702 pmc R(18O) Calcite 2.05264e-03 23.659 permil - R(13C) Calcite 1.12311e-02 4.5509 permil - R(14C) Calcite 1.90318e-15 0.16185 pmc + R(13C) Calcite 1.12030e-02 2.0378 permil + R(14C) Calcite 1.88604e-15 0.16039 pmc --------------------------------Isotope Alphas--------------------------------- @@ -21535,14 +21482,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5692e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6898e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -3.8858e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.6653e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.8874e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.9984e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -21553,141 +21500,141 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.536e-05 6.517e-05 - [14C] 1.104e-17 1.101e-17 + [13C] 6.520e-05 6.501e-05 + [14C] 1.094e-17 1.091e-17 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.272 Adjusted to redox equilibrium + pe = -2.349 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 30 + Iterations = 59 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.580e-17 - CH4 4.580e-17 4.588e-17 -16.339 -16.338 0.001 (0) +C(-4) 1.918e-16 + CH4 1.918e-16 1.921e-16 -15.717 -15.716 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.113e-06 1.021e-06 -5.953 -5.991 -0.037 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.112e-08 6.122e-08 -7.214 -7.213 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.096e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.224e-13 - H2 2.612e-13 2.616e-13 -12.583 -12.582 0.001 (0) +H(0) 7.473e-13 + H2 3.736e-13 3.743e-13 -12.428 -12.427 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.218 -67.217 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.617 -69.616 0.001 (0) -[13C](-4) 5.090e-19 - [13C]H4 5.090e-19 5.098e-19 -18.293 -18.293 0.001 (0) -[13C](4) 6.536e-05 - H[13C]O3- 5.272e-05 4.823e-05 -4.278 -4.317 -0.039 (0) - [13C]O2 1.107e-05 1.108e-05 -4.956 -4.955 0.001 (0) - CaH[13C]O3+ 1.113e-06 1.021e-06 -5.953 -5.991 -0.037 (0) - H[13C][18O]O2- 1.052e-07 9.623e-08 -6.978 -7.017 -0.039 (0) - H[13C]O2[18O]- 1.052e-07 9.623e-08 -6.978 -7.017 -0.039 (0) - H[13C]O[18O]O- 1.052e-07 9.623e-08 -6.978 -7.017 -0.039 (0) - Ca[13C]O3 6.112e-08 6.122e-08 -7.214 -7.213 0.001 (0) - [13C]O[18O] 4.601e-08 4.609e-08 -7.337 -7.336 0.001 (0) - [13C]O3-2 3.135e-08 2.196e-08 -7.504 -7.658 -0.155 (0) - CaH[13C]O[18O]O+ 2.221e-09 2.038e-09 -8.653 -8.691 -0.037 (0) - CaH[13C][18O]O2+ 2.221e-09 2.038e-09 -8.653 -8.691 -0.037 (0) - CaH[13C]O2[18O]+ 2.221e-09 2.038e-09 -8.653 -8.691 -0.037 (0) - Ca[13C]O2[18O] 3.658e-10 3.664e-10 -9.437 -9.436 0.001 (0) - H[13C][18O]O[18O]- 2.099e-10 1.920e-10 -9.678 -9.717 -0.039 (0) - H[13C]O[18O]2- 2.099e-10 1.920e-10 -9.678 -9.717 -0.039 (0) - H[13C][18O]2O- 2.099e-10 1.920e-10 -9.678 -9.717 -0.039 (0) - [13C]O2[18O]-2 1.877e-10 1.315e-10 -9.727 -9.881 -0.155 (0) -[14C](-4) 8.534e-32 - [14C]H4 8.534e-32 8.548e-32 -31.069 -31.068 0.001 (0) -[14C](4) 1.104e-17 - H[14C]O3- 8.916e-18 8.157e-18 -17.050 -17.088 -0.039 (0) - [14C]O2 1.855e-18 1.858e-18 -17.732 -17.731 0.001 (0) - CaH[14C]O3+ 1.883e-19 1.727e-19 -18.725 -18.763 -0.037 (0) - H[14C][18O]O2- 1.779e-20 1.627e-20 -19.750 -19.788 -0.039 (0) - H[14C]O2[18O]- 1.779e-20 1.627e-20 -19.750 -19.788 -0.039 (0) - H[14C]O[18O]O- 1.779e-20 1.627e-20 -19.750 -19.788 -0.039 (0) - Ca[14C]O3 1.032e-20 1.034e-20 -19.986 -19.986 0.001 (0) - [14C]O[18O] 7.715e-21 7.727e-21 -20.113 -20.112 0.001 (0) - [14C]O3-2 5.295e-21 3.709e-21 -20.276 -20.431 -0.155 (0) - CaH[14C]O[18O]O+ 3.756e-22 3.446e-22 -21.425 -21.463 -0.037 (0) - CaH[14C]O2[18O]+ 3.756e-22 3.446e-22 -21.425 -21.463 -0.037 (0) - CaH[14C][18O]O2+ 3.756e-22 3.446e-22 -21.425 -21.463 -0.037 (0) - Ca[14C]O2[18O] 6.178e-23 6.188e-23 -22.209 -22.208 0.001 (0) - H[14C]O[18O]2- 3.549e-23 3.247e-23 -22.450 -22.489 -0.039 (0) - H[14C][18O]O[18O]- 3.549e-23 3.247e-23 -22.450 -22.489 -0.039 (0) - H[14C][18O]2O- 3.549e-23 3.247e-23 -22.450 -22.489 -0.039 (0) - [14C]O2[18O]-2 3.169e-23 2.220e-23 -22.499 -22.654 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.529 -67.528 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.928 -69.927 0.001 (0) +[13C](-4) 2.126e-18 + [13C]H4 2.126e-18 2.130e-18 -17.672 -17.672 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.096e-08 6.107e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.654 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.654 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 3.542e-31 + [14C]H4 3.542e-31 3.547e-31 -30.451 -30.450 0.001 (0) +[14C](4) 1.094e-17 + H[14C]O3- 8.836e-18 8.084e-18 -17.054 -17.092 -0.039 (0) + [14C]O2 1.839e-18 1.842e-18 -17.736 -17.735 0.001 (0) + CaH[14C]O3+ 1.866e-19 1.712e-19 -18.729 -18.767 -0.037 (0) + H[14C]O2[18O]- 1.763e-20 1.613e-20 -19.754 -19.792 -0.039 (0) + H[14C]O[18O]O- 1.763e-20 1.613e-20 -19.754 -19.792 -0.039 (0) + H[14C][18O]O2- 1.763e-20 1.613e-20 -19.754 -19.792 -0.039 (0) + Ca[14C]O3 1.023e-20 1.025e-20 -19.990 -19.989 0.001 (0) + [14C]O[18O] 7.645e-21 7.658e-21 -20.117 -20.116 0.001 (0) + [14C]O3-2 5.247e-21 3.676e-21 -20.280 -20.435 -0.155 (0) + CaH[14C]O2[18O]+ 3.723e-22 3.415e-22 -21.429 -21.467 -0.037 (0) + CaH[14C]O[18O]O+ 3.723e-22 3.415e-22 -21.429 -21.467 -0.037 (0) + CaH[14C][18O]O2+ 3.723e-22 3.415e-22 -21.429 -21.467 -0.037 (0) + Ca[14C]O2[18O] 6.122e-23 6.132e-23 -22.213 -22.212 0.001 (0) + H[14C]O[18O]2- 3.517e-23 3.218e-23 -22.454 -22.492 -0.039 (0) + H[14C][18O]2O- 3.517e-23 3.218e-23 -22.454 -22.492 -0.039 (0) + H[14C][18O]O[18O]- 3.517e-23 3.218e-23 -22.454 -22.492 -0.039 (0) + [14C]O2[18O]-2 3.141e-23 2.200e-23 -22.503 -22.658 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-06 4.147e-06 -5.383 -5.382 0.001 (0) + CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.617 -69.616 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.618 -72.617 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.928 -69.927 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.929 -72.928 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.43 -18.29 -2.86 [13C]H4 + [13C]H4(g) -14.81 -17.67 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.63 -23.13 -1.50 [14C][18O]2 - [14C]H4(g) -28.21 -31.07 -2.86 [14C]H4 - [14C]O2(g) -16.26 -17.73 -1.47 [14C]O2 - [14C]O[18O](g) -18.64 -20.43 -1.79 [14C]O[18O] - [18O]2(g) -70.33 -72.62 -2.29 [18O]2 + [14C]H4(g) -27.59 -30.45 -2.86 [14C]H4 + [14C]O2(g) -16.27 -17.73 -1.47 [14C]O2 + [14C]O[18O](g) -18.65 -20.43 -1.79 [14C]O[18O] + [18O]2(g) -70.64 -72.93 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.79 -14.64 8.15 Ca[14C][18O]3 + Ca[14C][18O]3(s) -22.80 -14.64 8.15 Ca[14C][18O]3 Ca[14C]O2[18O](s) -16.94 -9.24 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -14.73 -6.54 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -19.63 -11.94 7.69 Ca[14C]O[18O]2 @@ -21695,14 +21642,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.48 -16.34 -2.86 CH4 + CH4(g) -12.86 -15.72 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.43 -12.58 -3.15 H2 + H2(g) -9.28 -12.43 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.32 -67.22 -2.89 O2 - O[18O](g) -67.02 -69.92 -2.89 O[18O] + O2(g) -64.64 -67.53 -2.89 O2 + O[18O](g) -67.34 -70.23 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -21726,6 +21673,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 84. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -21768,39 +21721,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.52e-06 5.52e-06 1.10e-02 - Ca[13C]O2[18O](s) 3.40e-08 3.40e-08 6.80e-05 - Ca[13C]O[18O]2(s) 6.97e-11 6.97e-11 1.39e-07 - Ca[13C][18O]3(s) 4.77e-14 4.77e-14 9.54e-11 - Ca[14C]O3(s) 8.62e-19 8.62e-19 1.72e-15 - Ca[14C]O2[18O](s) 1.01e-27 1.01e-29 2.02e-24 - Ca[14C]O[18O]2(s) 1.09e-23 1.09e-23 2.18e-20 - Ca[14C][18O]3(s) 1.01e-27 1.00e-29 2.02e-24 + Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 8.54e-19 8.54e-19 1.71e-15 + Ca[14C]O2[18O](s) 5.26e-21 5.26e-21 1.05e-17 + Ca[14C]O[18O]2(s) 1.08e-23 1.08e-23 2.16e-20 + Ca[14C][18O]3(s) 7.38e-27 6.38e-27 1.48e-23 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9857 permil - R(13C) 1.11901e-02 0.88857 permil - R(14C) 1.74203e-15 0.14815 pmc - R(18O) H2O(l) 1.99520e-03 -4.9873 permil - R(18O) OH- 1.92123e-03 -41.875 permil + R(18O) 1.99520e-03 -4.9854 permil + R(13C) 1.11643e-02 -1.4192 permil + R(14C) 1.72551e-15 0.14674 pmc + R(18O) H2O(l) 1.99520e-03 -4.9869 permil + R(18O) OH- 1.92123e-03 -41.874 permil R(18O) H3O+ 2.04134e-03 18.021 permil - R(13C) CO2(aq) 1.11101e-02 -6.2744 permil - R(14C) CO2(aq) 1.71717e-15 0.14603 pmc + R(13C) CO2(aq) 1.10844e-02 -8.5657 permil + R(14C) CO2(aq) 1.70089e-15 0.14465 pmc R(18O) CO2(aq) 2.07917e-03 36.887 permil - R(18O) HCO3- 1.99520e-03 -4.9873 permil - R(13C) HCO3- 1.12067e-02 2.3709 permil - R(14C) HCO3- 1.74718e-15 0.14858 pmc - R(18O) CO3-2 1.99520e-03 -4.9873 permil - R(13C) CO3-2 1.11906e-02 0.93243 permil - R(14C) CO3-2 1.74217e-15 0.14816 pmc - R(13C) CH4(aq) 1.11101e-02 -6.2744 permil - R(14C) CH4(aq) 1.71717e-15 0.14603 pmc - R(18O) Calcite 2.05264e-03 23.659 permil - R(13C) Calcite 1.12289e-02 4.3563 permil - R(14C) Calcite 1.74337e-15 0.14826 pmc + R(18O) HCO3- 1.99520e-03 -4.9869 permil + R(13C) HCO3- 1.11809e-02 0.059689 permil + R(14C) HCO3- 1.73061e-15 0.14717 pmc + R(18O) CO3-2 1.99520e-03 -4.9869 permil + R(13C) CO3-2 1.11648e-02 -1.3755 permil + R(14C) CO3-2 1.72565e-15 0.14675 pmc + R(13C) CH4(aq) 1.10844e-02 -8.5657 permil + R(14C) CH4(aq) 1.70089e-15 0.14465 pmc + R(18O) Calcite 2.05264e-03 23.66 permil + R(13C) Calcite 1.12030e-02 2.0405 permil + R(14C) Calcite 1.73747e-15 0.14776 pmc --------------------------------Isotope Alphas--------------------------------- @@ -21811,17 +21764,17 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6811e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7969e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.1102e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -3.1086e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.2101e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -5.9952e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0153 15.143 21.282 +Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ @@ -21829,36 +21782,36 @@ Alpha 14C Calcite/CO2(aq) 1.0153 15.143 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.535e-05 6.516e-05 - [14C] 1.017e-17 1.014e-17 + [13C] 6.520e-05 6.501e-05 + [14C] 1.008e-17 1.005e-17 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.294 Adjusted to redox equilibrium + pe = -2.340 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.317e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 48 + Iterations = 111 (212 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 6.883e-17 - CH4 6.883e-17 6.895e-17 -16.162 -16.161 0.001 (0) +C(-4) 1.604e-16 + CH4 1.604e-16 1.607e-16 -15.795 -15.794 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -21873,112 +21826,112 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.113e-06 1.021e-06 -5.953 -5.991 -0.037 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.110e-08 6.120e-08 -7.214 -7.213 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.784e-13 - H2 2.892e-13 2.897e-13 -12.539 -12.538 0.001 (0) +H(0) 7.146e-13 + H2 3.573e-13 3.579e-13 -12.447 -12.446 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.306 -67.306 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.705 -69.705 0.001 (0) -[13C](-4) 7.647e-19 - [13C]H4 7.647e-19 7.660e-19 -18.116 -18.116 0.001 (0) -[13C](4) 6.535e-05 - H[13C]O3- 5.271e-05 4.822e-05 -4.278 -4.317 -0.039 (0) - [13C]O2 1.106e-05 1.108e-05 -4.956 -4.955 0.001 (0) - CaH[13C]O3+ 1.113e-06 1.021e-06 -5.953 -5.991 -0.037 (0) - H[13C]O2[18O]- 1.052e-07 9.621e-08 -6.978 -7.017 -0.039 (0) - H[13C]O[18O]O- 1.052e-07 9.621e-08 -6.978 -7.017 -0.039 (0) - H[13C][18O]O2- 1.052e-07 9.621e-08 -6.978 -7.017 -0.039 (0) - Ca[13C]O3 6.110e-08 6.120e-08 -7.214 -7.213 0.001 (0) - [13C]O[18O] 4.600e-08 4.608e-08 -7.337 -7.336 0.001 (0) - [13C]O3-2 3.135e-08 2.196e-08 -7.504 -7.658 -0.155 (0) - CaH[13C][18O]O2+ 2.221e-09 2.037e-09 -8.654 -8.691 -0.037 (0) - CaH[13C]O2[18O]+ 2.221e-09 2.037e-09 -8.654 -8.691 -0.037 (0) - CaH[13C]O[18O]O+ 2.221e-09 2.037e-09 -8.654 -8.691 -0.037 (0) - Ca[13C]O2[18O] 3.657e-10 3.663e-10 -9.437 -9.436 0.001 (0) - H[13C][18O]O[18O]- 2.098e-10 1.920e-10 -9.678 -9.717 -0.039 (0) - H[13C]O[18O]2- 2.098e-10 1.920e-10 -9.678 -9.717 -0.039 (0) - H[13C][18O]2O- 2.098e-10 1.920e-10 -9.678 -9.717 -0.039 (0) - [13C]O2[18O]-2 1.876e-10 1.314e-10 -9.727 -9.881 -0.155 (0) -[14C](-4) 1.182e-31 - [14C]H4 1.182e-31 1.184e-31 -30.927 -30.927 0.001 (0) -[14C](4) 1.017e-17 - H[14C]O3- 8.218e-18 7.518e-18 -17.085 -17.124 -0.039 (0) - [14C]O2 1.710e-18 1.713e-18 -17.767 -17.766 0.001 (0) - CaH[14C]O3+ 1.735e-19 1.592e-19 -18.761 -18.798 -0.037 (0) - H[14C][18O]O2- 1.640e-20 1.500e-20 -19.785 -19.824 -0.039 (0) - H[14C]O2[18O]- 1.640e-20 1.500e-20 -19.785 -19.824 -0.039 (0) - H[14C]O[18O]O- 1.640e-20 1.500e-20 -19.785 -19.824 -0.039 (0) - Ca[14C]O3 9.513e-21 9.528e-21 -20.022 -20.021 0.001 (0) - [14C]O[18O] 7.110e-21 7.122e-21 -20.148 -20.147 0.001 (0) - [14C]O3-2 4.880e-21 3.419e-21 -20.312 -20.466 -0.155 (0) - CaH[14C]O[18O]O+ 3.462e-22 3.176e-22 -21.461 -21.498 -0.037 (0) - CaH[14C]O2[18O]+ 3.462e-22 3.176e-22 -21.461 -21.498 -0.037 (0) - CaH[14C][18O]O2+ 3.462e-22 3.176e-22 -21.461 -21.498 -0.037 (0) - Ca[14C]O2[18O] 5.694e-23 5.703e-23 -22.245 -22.244 0.001 (0) - H[14C][18O]O[18O]- 3.271e-23 2.993e-23 -22.485 -22.524 -0.039 (0) - H[14C][18O]2O- 3.271e-23 2.993e-23 -22.485 -22.524 -0.039 (0) - H[14C]O[18O]2- 3.271e-23 2.993e-23 -22.485 -22.524 -0.039 (0) - [14C]O2[18O]-2 2.921e-23 2.046e-23 -22.534 -22.689 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.490 -67.489 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.889 -69.888 0.001 (0) +[13C](-4) 1.778e-18 + [13C]H4 1.778e-18 1.781e-18 -17.750 -17.749 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.654 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.654 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 2.729e-31 + [14C]H4 2.729e-31 2.733e-31 -30.564 -30.563 0.001 (0) +[14C](4) 1.008e-17 + H[14C]O3- 8.140e-18 7.447e-18 -17.089 -17.128 -0.039 (0) + [14C]O2 1.694e-18 1.697e-18 -17.771 -17.770 0.001 (0) + CaH[14C]O3+ 1.719e-19 1.577e-19 -18.765 -18.802 -0.037 (0) + H[14C]O2[18O]- 1.624e-20 1.486e-20 -19.789 -19.828 -0.039 (0) + H[14C]O[18O]O- 1.624e-20 1.486e-20 -19.789 -19.828 -0.039 (0) + H[14C][18O]O2- 1.624e-20 1.486e-20 -19.789 -19.828 -0.039 (0) + Ca[14C]O3 9.423e-21 9.438e-21 -20.026 -20.025 0.001 (0) + [14C]O[18O] 7.043e-21 7.055e-21 -20.152 -20.152 0.001 (0) + [14C]O3-2 4.834e-21 3.386e-21 -20.316 -20.470 -0.155 (0) + CaH[14C]O2[18O]+ 3.429e-22 3.146e-22 -21.465 -21.502 -0.037 (0) + CaH[14C]O[18O]O+ 3.429e-22 3.146e-22 -21.465 -21.502 -0.037 (0) + CaH[14C][18O]O2+ 3.429e-22 3.146e-22 -21.465 -21.502 -0.037 (0) + Ca[14C]O2[18O] 5.640e-23 5.649e-23 -22.249 -22.248 0.001 (0) + H[14C]O[18O]2- 3.240e-23 2.964e-23 -22.489 -22.528 -0.039 (0) + H[14C][18O]2O- 3.240e-23 2.964e-23 -22.489 -22.528 -0.039 (0) + H[14C][18O]O[18O]- 3.240e-23 2.964e-23 -22.489 -22.528 -0.039 (0) + [14C]O2[18O]-2 2.893e-23 2.027e-23 -22.539 -22.693 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.705 -69.705 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.706 -72.706 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.889 -69.888 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.890 -72.889 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.26 -18.12 -2.86 [13C]H4 + [13C]H4(g) -14.89 -17.75 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.66 -23.17 -1.50 [14C][18O]2 - [14C]H4(g) -28.07 -30.93 -2.86 [14C]H4 + [14C][18O]2(g) -21.67 -23.17 -1.50 [14C][18O]2 + [14C]H4(g) -27.70 -30.56 -2.86 [14C]H4 [14C]O2(g) -16.30 -17.77 -1.47 [14C]O2 [14C]O[18O](g) -18.68 -20.47 -1.79 [14C]O[18O] - [18O]2(g) -70.42 -72.71 -2.29 [18O]2 + [18O]2(g) -70.60 -72.89 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.83 -14.67 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.97 -9.27 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.76 -6.57 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.66 -11.97 7.69 Ca[14C]O[18O]2 + Ca[14C][18O]3(s) -22.83 -14.68 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -16.98 -9.28 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -14.77 -6.58 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -19.67 -11.98 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.30 -16.16 -2.86 CH4 + CH4(g) -12.93 -15.79 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.39 -12.54 -3.15 H2 + H2(g) -9.30 -12.45 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.41 -67.31 -2.89 O2 - O[18O](g) -67.11 -70.01 -2.89 O[18O] + O2(g) -64.60 -67.49 -2.89 O2 + O[18O](g) -67.30 -70.19 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -22002,12 +21955,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 85. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -22050,39 +21997,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.52e-06 5.52e-06 1.10e-02 - Ca[13C]O2[18O](s) 3.40e-08 3.40e-08 6.79e-05 - Ca[13C]O[18O]2(s) 6.97e-11 6.97e-11 1.39e-07 - Ca[13C][18O]3(s) 4.77e-14 4.77e-14 9.54e-11 - Ca[14C]O3(s) 7.94e-19 7.94e-19 1.59e-15 - Ca[14C]O2[18O](s) 4.89e-21 4.89e-21 9.78e-18 - Ca[14C]O[18O]2(s) 1.00e-23 1.00e-23 2.01e-20 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 7.87e-19 7.87e-19 1.57e-15 + Ca[14C]O2[18O](s) 4.84e-21 4.84e-21 9.69e-18 + Ca[14C]O[18O]2(s) 9.94e-24 9.94e-24 1.99e-20 + Ca[14C][18O]3(s) 6.80e-27 5.80e-27 1.36e-23 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9856 permil - R(13C) 1.11881e-02 0.70981 permil - R(14C) 1.60481e-15 0.13648 pmc - R(18O) H2O(l) 1.99520e-03 -4.9871 permil - R(18O) OH- 1.92123e-03 -41.875 permil + R(18O) 1.99520e-03 -4.9853 permil + R(13C) 1.11644e-02 -1.4168 permil + R(14C) 1.58959e-15 0.13518 pmc + R(18O) H2O(l) 1.99520e-03 -4.9868 permil + R(18O) OH- 1.92123e-03 -41.874 permil R(18O) H3O+ 2.04134e-03 18.021 permil - R(13C) CO2(aq) 1.11081e-02 -6.4518 permil - R(14C) CO2(aq) 1.58190e-15 0.13453 pmc + R(13C) CO2(aq) 1.10845e-02 -8.5632 permil + R(14C) CO2(aq) 1.56690e-15 0.13325 pmc R(18O) CO2(aq) 2.07917e-03 36.887 permil - R(18O) HCO3- 1.99520e-03 -4.9871 permil - R(13C) HCO3- 1.12047e-02 2.1919 permil - R(14C) HCO3- 1.60955e-15 0.13688 pmc - R(18O) CO3-2 1.99520e-03 -4.9871 permil - R(13C) CO3-2 1.11886e-02 0.75367 permil - R(14C) CO3-2 1.60493e-15 0.13649 pmc - R(13C) CH4(aq) 1.11081e-02 -6.4518 permil - R(14C) CH4(aq) 1.58190e-15 0.13453 pmc - R(18O) Calcite 2.05264e-03 23.659 permil - R(13C) Calcite 1.12269e-02 4.1769 permil - R(14C) Calcite 1.61593e-15 0.13742 pmc + R(18O) HCO3- 1.99520e-03 -4.9868 permil + R(13C) HCO3- 1.11809e-02 0.062154 permil + R(14C) HCO3- 1.59429e-15 0.13558 pmc + R(18O) CO3-2 1.99520e-03 -4.9868 permil + R(13C) CO3-2 1.11648e-02 -1.373 permil + R(14C) CO3-2 1.58971e-15 0.13519 pmc + R(13C) CH4(aq) 1.10845e-02 -8.5632 permil + R(14C) CH4(aq) 1.56690e-15 0.13325 pmc + R(18O) Calcite 2.05264e-03 23.66 permil + R(13C) Calcite 1.12030e-02 2.0429 permil + R(14C) Calcite 1.60061e-15 0.13612 pmc --------------------------------Isotope Alphas--------------------------------- @@ -22093,14 +22040,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5752e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5747e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -2.2204e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 0 0 +Alpha 13C CH4(aq)/CO2(aq) 1 8.8818e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 2.8866e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -22111,141 +22058,141 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.533e-05 6.514e-05 - [14C] 9.372e-18 9.344e-18 + [13C] 6.520e-05 6.501e-05 + [14C] 9.283e-18 9.256e-18 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.288 Adjusted to redox equilibrium + pe = -2.339 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.392e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 29 (130 overall) + Iterations = 73 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 6.176e-17 - CH4 6.176e-17 6.187e-17 -16.209 -16.209 0.001 (0) +C(-4) 1.575e-16 + CH4 1.575e-16 1.577e-16 -15.803 -15.802 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.113e-06 1.021e-06 -5.954 -5.991 -0.037 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.109e-08 6.119e-08 -7.214 -7.213 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.629e-13 - H2 2.815e-13 2.819e-13 -12.551 -12.550 0.001 (0) +H(0) 7.113e-13 + H2 3.557e-13 3.562e-13 -12.449 -12.448 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.283 -67.282 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.682 -69.681 0.001 (0) -[13C](-4) 6.861e-19 - [13C]H4 6.861e-19 6.872e-19 -18.164 -18.163 0.001 (0) -[13C](4) 6.533e-05 - H[13C]O3- 5.270e-05 4.821e-05 -4.278 -4.317 -0.039 (0) - [13C]O2 1.106e-05 1.108e-05 -4.956 -4.955 0.001 (0) - CaH[13C]O3+ 1.113e-06 1.021e-06 -5.954 -5.991 -0.037 (0) - H[13C]O[18O]O- 1.051e-07 9.619e-08 -6.978 -7.017 -0.039 (0) - H[13C][18O]O2- 1.051e-07 9.619e-08 -6.978 -7.017 -0.039 (0) - H[13C]O2[18O]- 1.051e-07 9.619e-08 -6.978 -7.017 -0.039 (0) - Ca[13C]O3 6.109e-08 6.119e-08 -7.214 -7.213 0.001 (0) - [13C]O[18O] 4.600e-08 4.607e-08 -7.337 -7.337 0.001 (0) - [13C]O3-2 3.134e-08 2.196e-08 -7.504 -7.658 -0.155 (0) - CaH[13C]O2[18O]+ 2.220e-09 2.037e-09 -8.654 -8.691 -0.037 (0) - CaH[13C]O[18O]O+ 2.220e-09 2.037e-09 -8.654 -8.691 -0.037 (0) - CaH[13C][18O]O2+ 2.220e-09 2.037e-09 -8.654 -8.691 -0.037 (0) - Ca[13C]O2[18O] 3.657e-10 3.663e-10 -9.437 -9.436 0.001 (0) - H[13C][18O]O[18O]- 2.098e-10 1.919e-10 -9.678 -9.717 -0.039 (0) - H[13C]O[18O]2- 2.098e-10 1.919e-10 -9.678 -9.717 -0.039 (0) - H[13C][18O]2O- 2.098e-10 1.919e-10 -9.678 -9.717 -0.039 (0) - [13C]O2[18O]-2 1.876e-10 1.314e-10 -9.727 -9.881 -0.155 (0) -[14C](-4) 9.771e-32 - [14C]H4 9.771e-32 9.787e-32 -31.010 -31.009 0.001 (0) -[14C](4) 9.372e-18 - H[14C]O3- 7.570e-18 6.926e-18 -17.121 -17.160 -0.039 (0) - [14C]O2 1.575e-18 1.578e-18 -17.803 -17.802 0.001 (0) - CaH[14C]O3+ 1.599e-19 1.466e-19 -18.796 -18.834 -0.037 (0) - H[14C][18O]O2- 1.510e-20 1.382e-20 -19.821 -19.860 -0.039 (0) - H[14C]O2[18O]- 1.510e-20 1.382e-20 -19.821 -19.860 -0.039 (0) - H[14C]O[18O]O- 1.510e-20 1.382e-20 -19.821 -19.860 -0.039 (0) - Ca[14C]O3 8.763e-21 8.778e-21 -20.057 -20.057 0.001 (0) - [14C]O[18O] 6.550e-21 6.561e-21 -20.184 -20.183 0.001 (0) - [14C]O3-2 4.496e-21 3.149e-21 -20.347 -20.502 -0.155 (0) - CaH[14C]O[18O]O+ 3.189e-22 2.926e-22 -21.496 -21.534 -0.037 (0) - CaH[14C]O2[18O]+ 3.189e-22 2.926e-22 -21.496 -21.534 -0.037 (0) - CaH[14C][18O]O2+ 3.189e-22 2.926e-22 -21.496 -21.534 -0.037 (0) - Ca[14C]O2[18O] 5.245e-23 5.254e-23 -22.280 -22.280 0.001 (0) - H[14C][18O]2O- 3.014e-23 2.757e-23 -22.521 -22.560 -0.039 (0) - H[14C]O[18O]2- 3.014e-23 2.757e-23 -22.521 -22.560 -0.039 (0) - H[14C][18O]O[18O]- 3.014e-23 2.757e-23 -22.521 -22.560 -0.039 (0) - [14C]O2[18O]-2 2.691e-23 1.885e-23 -22.570 -22.725 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.486 -67.485 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.885 -69.884 0.001 (0) +[13C](-4) 1.746e-18 + [13C]H4 1.746e-18 1.748e-18 -17.758 -17.757 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.654 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.654 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 2.467e-31 + [14C]H4 2.467e-31 2.472e-31 -30.608 -30.607 0.001 (0) +[14C](4) 9.283e-18 + H[14C]O3- 7.499e-18 6.860e-18 -17.125 -17.164 -0.039 (0) + [14C]O2 1.560e-18 1.563e-18 -17.807 -17.806 0.001 (0) + CaH[14C]O3+ 1.583e-19 1.453e-19 -18.800 -18.838 -0.037 (0) + H[14C]O2[18O]- 1.496e-20 1.369e-20 -19.825 -19.864 -0.039 (0) + H[14C]O[18O]O- 1.496e-20 1.369e-20 -19.825 -19.864 -0.039 (0) + H[14C][18O]O2- 1.496e-20 1.369e-20 -19.825 -19.864 -0.039 (0) + Ca[14C]O3 8.681e-21 8.695e-21 -20.061 -20.061 0.001 (0) + [14C]O[18O] 6.488e-21 6.499e-21 -20.188 -20.187 0.001 (0) + [14C]O3-2 4.453e-21 3.120e-21 -20.351 -20.506 -0.155 (0) + CaH[14C]O2[18O]+ 3.159e-22 2.898e-22 -21.500 -21.538 -0.037 (0) + CaH[14C]O[18O]O+ 3.159e-22 2.898e-22 -21.500 -21.538 -0.037 (0) + CaH[14C][18O]O2+ 3.159e-22 2.898e-22 -21.500 -21.538 -0.037 (0) + Ca[14C]O2[18O] 5.196e-23 5.204e-23 -22.284 -22.284 0.001 (0) + H[14C]O[18O]2- 2.985e-23 2.731e-23 -22.525 -22.564 -0.039 (0) + H[14C][18O]2O- 2.985e-23 2.731e-23 -22.525 -22.564 -0.039 (0) + H[14C][18O]O[18O]- 2.985e-23 2.731e-23 -22.525 -22.564 -0.039 (0) + [14C]O2[18O]-2 2.665e-23 1.867e-23 -22.574 -22.729 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.682 -69.681 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.683 -72.682 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.885 -69.884 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.886 -72.885 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.30 -18.16 -2.86 [13C]H4 + [13C]H4(g) -14.90 -17.76 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.70 -23.20 -1.50 [14C][18O]2 - [14C]H4(g) -28.15 -31.01 -2.86 [14C]H4 - [14C]O2(g) -16.33 -17.80 -1.47 [14C]O2 - [14C]O[18O](g) -18.71 -20.50 -1.79 [14C]O[18O] - [18O]2(g) -70.39 -72.68 -2.29 [18O]2 + [14C][18O]2(g) -21.70 -23.21 -1.50 [14C][18O]2 + [14C]H4(g) -27.75 -30.61 -2.86 [14C]H4 + [14C]O2(g) -16.34 -17.81 -1.47 [14C]O2 + [14C]O[18O](g) -18.72 -20.51 -1.79 [14C]O[18O] + [18O]2(g) -70.59 -72.89 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.86 -14.71 8.15 Ca[14C][18O]3 + Ca[14C][18O]3(s) -22.87 -14.71 8.15 Ca[14C][18O]3 Ca[14C]O2[18O](s) -17.01 -9.31 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -14.80 -6.61 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -19.70 -12.01 7.69 Ca[14C]O[18O]2 @@ -22253,14 +22200,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.35 -16.21 -2.86 CH4 + CH4(g) -12.94 -15.80 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.40 -12.55 -3.15 H2 + H2(g) -9.30 -12.45 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.39 -67.28 -2.89 O2 - O[18O](g) -67.09 -69.98 -2.89 O[18O] + O2(g) -64.59 -67.49 -2.89 O2 + O[18O](g) -67.29 -70.19 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -22326,39 +22273,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.52e-06 5.52e-06 1.10e-02 - Ca[13C]O2[18O](s) 3.40e-08 3.40e-08 6.79e-05 - Ca[13C]O[18O]2(s) 6.97e-11 6.97e-11 1.39e-07 - Ca[13C][18O]3(s) 4.77e-14 4.77e-14 9.54e-11 - Ca[14C]O3(s) 7.32e-19 7.32e-19 1.46e-15 - Ca[14C]O2[18O](s) 4.50e-21 4.50e-21 9.01e-18 - Ca[14C]O[18O]2(s) 9.25e-24 9.25e-24 1.85e-20 - Ca[14C][18O]3(s) 1.00e-27 0.00e+00 2.00e-24 + Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 7.25e-19 7.25e-19 1.45e-15 + Ca[14C]O2[18O](s) 4.46e-21 4.46e-21 8.92e-18 + Ca[14C]O[18O]2(s) 9.16e-24 9.16e-24 1.83e-20 + Ca[14C][18O]3(s) 6.27e-27 5.27e-27 1.25e-23 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9855 permil - R(13C) 1.11863e-02 0.5451 permil - R(14C) 1.47839e-15 0.12573 pmc - R(18O) H2O(l) 1.99520e-03 -4.987 permil + R(18O) 1.99520e-03 -4.9851 permil + R(13C) 1.11644e-02 -1.4145 permil + R(14C) 1.46437e-15 0.12453 pmc + R(18O) H2O(l) 1.99520e-03 -4.9866 permil R(18O) OH- 1.92123e-03 -41.874 permil R(18O) H3O+ 2.04134e-03 18.021 permil - R(13C) CO2(aq) 1.11062e-02 -6.6154 permil - R(14C) CO2(aq) 1.45729e-15 0.12393 pmc - R(18O) CO2(aq) 2.07917e-03 36.887 permil - R(18O) HCO3- 1.99520e-03 -4.987 permil - R(13C) HCO3- 1.12029e-02 2.0269 permil - R(14C) HCO3- 1.48276e-15 0.1261 pmc - R(18O) CO3-2 1.99520e-03 -4.987 permil - R(13C) CO3-2 1.11868e-02 0.58895 permil - R(14C) CO3-2 1.47850e-15 0.12574 pmc - R(13C) CH4(aq) 1.11062e-02 -6.6154 permil - R(14C) CH4(aq) 1.45729e-15 0.12393 pmc + R(13C) CO2(aq) 1.10845e-02 -8.561 permil + R(14C) CO2(aq) 1.44347e-15 0.12276 pmc + R(18O) CO2(aq) 2.07917e-03 36.888 permil + R(18O) HCO3- 1.99520e-03 -4.9866 permil + R(13C) HCO3- 1.11809e-02 0.064424 permil + R(14C) HCO3- 1.46870e-15 0.1249 pmc + R(18O) CO3-2 1.99520e-03 -4.9866 permil + R(13C) CO3-2 1.11649e-02 -1.3708 permil + R(14C) CO3-2 1.46449e-15 0.12454 pmc + R(13C) CH4(aq) 1.10845e-02 -8.561 permil + R(14C) CH4(aq) 1.44347e-15 0.12276 pmc R(18O) Calcite 2.05264e-03 23.66 permil - R(13C) Calcite 1.12251e-02 4.0116 permil - R(14C) Calcite 1.48864e-15 0.1266 pmc + R(13C) Calcite 1.12031e-02 2.0452 permil + R(14C) Calcite 1.47452e-15 0.1254 pmc --------------------------------Isotope Alphas--------------------------------- @@ -22369,14 +22316,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6511e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6341e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 9.3259e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -9.1038e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -6.1062e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.843e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -22387,43 +22334,43 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.532e-05 6.513e-05 - [14C] 8.633e-18 8.608e-18 + [13C] 6.520e-05 6.501e-05 + [14C] 8.552e-18 8.527e-18 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.271 Adjusted to redox equilibrium + pe = -2.330 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.392e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 79 + Iterations = 61 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.496e-17 - CH4 4.496e-17 4.504e-17 -16.347 -16.346 0.001 (0) +C(-4) 1.340e-16 + CH4 1.340e-16 1.342e-16 -15.873 -15.872 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -22431,112 +22378,112 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.113e-06 1.021e-06 -5.954 -5.991 -0.037 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.108e-08 6.118e-08 -7.214 -7.213 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.200e-13 - H2 2.600e-13 2.604e-13 -12.585 -12.584 0.001 (0) +H(0) 6.832e-13 + H2 3.416e-13 3.422e-13 -12.466 -12.466 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.214 -67.213 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.613 -69.612 0.001 (0) -[13C](-4) 4.994e-19 - [13C]H4 4.994e-19 5.002e-19 -18.302 -18.301 0.001 (0) -[13C](4) 6.532e-05 - H[13C]O3- 5.269e-05 4.821e-05 -4.278 -4.317 -0.039 (0) - [13C]O2 1.106e-05 1.108e-05 -4.956 -4.956 0.001 (0) - CaH[13C]O3+ 1.113e-06 1.021e-06 -5.954 -5.991 -0.037 (0) - H[13C][18O]O2- 1.051e-07 9.618e-08 -6.978 -7.017 -0.039 (0) - H[13C]O2[18O]- 1.051e-07 9.618e-08 -6.978 -7.017 -0.039 (0) - H[13C]O[18O]O- 1.051e-07 9.618e-08 -6.978 -7.017 -0.039 (0) - Ca[13C]O3 6.108e-08 6.118e-08 -7.214 -7.213 0.001 (0) - [13C]O[18O] 4.599e-08 4.606e-08 -7.337 -7.337 0.001 (0) - [13C]O3-2 3.133e-08 2.195e-08 -7.504 -7.659 -0.155 (0) - CaH[13C]O[18O]O+ 2.220e-09 2.036e-09 -8.654 -8.691 -0.037 (0) - CaH[13C][18O]O2+ 2.220e-09 2.036e-09 -8.654 -8.691 -0.037 (0) - CaH[13C]O2[18O]+ 2.220e-09 2.036e-09 -8.654 -8.691 -0.037 (0) - Ca[13C]O2[18O] 3.656e-10 3.662e-10 -9.437 -9.436 0.001 (0) - H[13C][18O]O[18O]- 2.098e-10 1.919e-10 -9.678 -9.717 -0.039 (0) - H[13C]O[18O]2- 2.098e-10 1.919e-10 -9.678 -9.717 -0.039 (0) - H[13C][18O]2O- 2.098e-10 1.919e-10 -9.678 -9.717 -0.039 (0) - [13C]O2[18O]-2 1.876e-10 1.314e-10 -9.727 -9.881 -0.155 (0) -[14C](-4) 6.553e-32 - [14C]H4 6.553e-32 6.563e-32 -31.184 -31.183 0.001 (0) -[14C](4) 8.633e-18 - H[14C]O3- 6.974e-18 6.380e-18 -17.157 -17.195 -0.039 (0) - [14C]O2 1.451e-18 1.454e-18 -17.838 -17.838 0.001 (0) - CaH[14C]O3+ 1.473e-19 1.351e-19 -18.832 -18.869 -0.037 (0) - H[14C][18O]O2- 1.391e-20 1.273e-20 -19.857 -19.895 -0.039 (0) - H[14C]O2[18O]- 1.391e-20 1.273e-20 -19.857 -19.895 -0.039 (0) - H[14C]O[18O]O- 1.391e-20 1.273e-20 -19.857 -19.895 -0.039 (0) - Ca[14C]O3 8.073e-21 8.086e-21 -20.093 -20.092 0.001 (0) - [14C]O[18O] 6.034e-21 6.044e-21 -20.219 -20.219 0.001 (0) - [14C]O3-2 4.141e-21 2.901e-21 -20.383 -20.537 -0.155 (0) - CaH[14C]O[18O]O+ 2.938e-22 2.695e-22 -21.532 -21.569 -0.037 (0) - CaH[14C]O2[18O]+ 2.938e-22 2.695e-22 -21.532 -21.569 -0.037 (0) - CaH[14C][18O]O2+ 2.938e-22 2.695e-22 -21.532 -21.569 -0.037 (0) - Ca[14C]O2[18O] 4.832e-23 4.840e-23 -22.316 -22.315 0.001 (0) - H[14C]O[18O]2- 2.776e-23 2.540e-23 -22.557 -22.595 -0.039 (0) - H[14C][18O]O[18O]- 2.776e-23 2.540e-23 -22.557 -22.595 -0.039 (0) - H[14C][18O]2O- 2.776e-23 2.540e-23 -22.557 -22.595 -0.039 (0) - [14C]O2[18O]-2 2.479e-23 1.737e-23 -22.606 -22.760 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.451 -67.450 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.850 -69.849 0.001 (0) +[13C](-4) 1.485e-18 + [13C]H4 1.485e-18 1.488e-18 -17.828 -17.827 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 1.934e-31 + [14C]H4 1.934e-31 1.938e-31 -30.713 -30.713 0.001 (0) +[14C](4) 8.552e-18 + H[14C]O3- 6.908e-18 6.320e-18 -17.161 -17.199 -0.039 (0) + [14C]O2 1.437e-18 1.440e-18 -17.842 -17.842 0.001 (0) + CaH[14C]O3+ 1.459e-19 1.338e-19 -18.836 -18.874 -0.037 (0) + H[14C]O2[18O]- 1.378e-20 1.261e-20 -19.861 -19.899 -0.039 (0) + H[14C]O[18O]O- 1.378e-20 1.261e-20 -19.861 -19.899 -0.039 (0) + H[14C][18O]O2- 1.378e-20 1.261e-20 -19.861 -19.899 -0.039 (0) + Ca[14C]O3 7.997e-21 8.010e-21 -20.097 -20.096 0.001 (0) + [14C]O[18O] 5.977e-21 5.987e-21 -20.224 -20.223 0.001 (0) + [14C]O3-2 4.102e-21 2.874e-21 -20.387 -20.542 -0.155 (0) + CaH[14C]O2[18O]+ 2.910e-22 2.670e-22 -21.536 -21.574 -0.037 (0) + CaH[14C]O[18O]O+ 2.910e-22 2.670e-22 -21.536 -21.574 -0.037 (0) + CaH[14C][18O]O2+ 2.910e-22 2.670e-22 -21.536 -21.574 -0.037 (0) + Ca[14C]O2[18O] 4.787e-23 4.794e-23 -22.320 -22.319 0.001 (0) + H[14C]O[18O]2- 2.750e-23 2.516e-23 -22.561 -22.599 -0.039 (0) + H[14C][18O]2O- 2.750e-23 2.516e-23 -22.561 -22.599 -0.039 (0) + H[14C][18O]O[18O]- 2.750e-23 2.516e-23 -22.561 -22.599 -0.039 (0) + [14C]O2[18O]-2 2.455e-23 1.720e-23 -22.610 -22.764 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.613 -69.612 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.614 -72.613 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.850 -69.849 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.851 -72.850 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.44 -18.30 -2.86 [13C]H4 + [13C]H4(g) -14.97 -17.83 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.73 -23.24 -1.50 [14C][18O]2 - [14C]H4(g) -28.32 -31.18 -2.86 [14C]H4 + [14C][18O]2(g) -21.74 -23.24 -1.50 [14C][18O]2 + [14C]H4(g) -27.85 -30.71 -2.86 [14C]H4 [14C]O2(g) -16.37 -17.84 -1.47 [14C]O2 [14C]O[18O](g) -18.75 -20.54 -1.79 [14C]O[18O] - [18O]2(g) -70.32 -72.61 -2.29 [18O]2 + [18O]2(g) -70.56 -72.85 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.90 -14.74 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.05 -9.34 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.83 -6.64 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.73 -12.04 7.69 Ca[14C]O[18O]2 + Ca[14C][18O]3(s) -22.90 -14.75 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -17.05 -9.35 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -14.84 -6.65 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -19.74 -12.05 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.49 -16.35 -2.86 CH4 + CH4(g) -13.01 -15.87 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.43 -12.58 -3.15 H2 + H2(g) -9.32 -12.47 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.32 -67.21 -2.89 O2 - O[18O](g) -67.02 -69.91 -2.89 O[18O] + O2(g) -64.56 -67.45 -2.89 O2 + O[18O](g) -67.26 -70.15 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -22560,12 +22507,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 87. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -22608,39 +22549,39 @@ Calcite 5.00e-04 CaCO2[18O](s) 3.03e-06 3.03e-06 6.05e-03 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 - Ca[13C]O3(s) 5.52e-06 5.52e-06 1.10e-02 - Ca[13C]O2[18O](s) 3.40e-08 3.40e-08 6.79e-05 - Ca[13C]O[18O]2(s) 6.97e-11 6.97e-11 1.39e-07 - Ca[13C][18O]3(s) 4.77e-14 4.77e-14 9.54e-11 - Ca[14C]O3(s) 6.74e-19 6.74e-19 1.35e-15 - Ca[14C]O2[18O](s) 4.15e-21 4.15e-21 8.30e-18 - Ca[14C]O[18O]2(s) 8.52e-24 8.52e-24 1.70e-20 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 6.68e-19 6.68e-19 1.34e-15 + Ca[14C]O2[18O](s) 4.11e-21 4.11e-21 8.22e-18 + Ca[14C]O[18O]2(s) 8.44e-24 8.44e-24 1.69e-20 + Ca[14C][18O]3(s) 5.77e-27 4.77e-27 1.15e-23 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9853 permil - R(13C) 1.11846e-02 0.39331 permil - R(14C) 1.36193e-15 0.11582 pmc - R(18O) H2O(l) 1.99520e-03 -4.9868 permil + R(18O) 1.99520e-03 -4.985 permil + R(13C) 1.11644e-02 -1.4124 permil + R(14C) 1.34902e-15 0.11472 pmc + R(18O) H2O(l) 1.99520e-03 -4.9865 permil R(18O) OH- 1.92123e-03 -41.874 permil R(18O) H3O+ 2.04134e-03 18.021 permil - R(13C) CO2(aq) 1.11046e-02 -6.7661 permil - R(14C) CO2(aq) 1.34249e-15 0.11417 pmc - R(18O) CO2(aq) 2.07917e-03 36.887 permil - R(18O) HCO3- 1.99520e-03 -4.9868 permil - R(13C) HCO3- 1.12012e-02 1.8749 permil - R(14C) HCO3- 1.36595e-15 0.11616 pmc - R(18O) CO3-2 1.99520e-03 -4.9868 permil - R(13C) CO3-2 1.11851e-02 0.43716 permil - R(14C) CO3-2 1.36204e-15 0.11583 pmc - R(13C) CH4(aq) 1.11046e-02 -6.7661 permil - R(14C) CH4(aq) 1.34249e-15 0.11417 pmc + R(13C) CO2(aq) 1.10845e-02 -8.5589 permil + R(14C) CO2(aq) 1.32977e-15 0.11309 pmc + R(18O) CO2(aq) 2.07917e-03 36.888 permil + R(18O) HCO3- 1.99520e-03 -4.9865 permil + R(13C) HCO3- 1.11809e-02 0.066516 permil + R(14C) HCO3- 1.35301e-15 0.11506 pmc + R(18O) CO3-2 1.99520e-03 -4.9865 permil + R(13C) CO3-2 1.11649e-02 -1.3687 permil + R(14C) CO3-2 1.34913e-15 0.11473 pmc + R(13C) CH4(aq) 1.10845e-02 -8.5589 permil + R(14C) CH4(aq) 1.32977e-15 0.11309 pmc R(18O) Calcite 2.05264e-03 23.66 permil - R(13C) Calcite 1.12233e-02 3.8593 permil - R(14C) Calcite 1.37137e-15 0.11662 pmc + R(13C) Calcite 1.12031e-02 2.0473 permil + R(14C) Calcite 1.35837e-15 0.11552 pmc --------------------------------Isotope Alphas--------------------------------- @@ -22651,14 +22592,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5709e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6013e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.2212e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 2.8866e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.5099e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 3.1086e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -22669,36 +22610,36 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.531e-05 6.512e-05 - [14C] 7.953e-18 7.930e-18 + [13C] 6.520e-05 6.501e-05 + [14C] 7.878e-18 7.855e-18 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.262 Adjusted to redox equilibrium + pe = -2.319 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.392e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 47 (148 overall) + Iterations = 91 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.831e-17 - CH4 3.831e-17 3.837e-17 -16.417 -16.416 0.001 (0) +C(-4) 1.107e-16 + CH4 1.107e-16 1.109e-16 -15.956 -15.955 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -22710,115 +22651,115 @@ C(4) 5.840e-03 CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.112e-06 1.021e-06 -5.954 -5.991 -0.037 (0) + CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.107e-08 6.118e-08 -7.214 -7.213 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.996e-13 - H2 2.498e-13 2.502e-13 -12.602 -12.602 0.001 (0) +H(0) 6.514e-13 + H2 3.257e-13 3.262e-13 -12.487 -12.486 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.179 -67.178 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.578 -69.577 0.001 (0) -[13C](-4) 4.254e-19 - [13C]H4 4.254e-19 4.261e-19 -18.371 -18.370 0.001 (0) -[13C](4) 6.531e-05 - H[13C]O3- 5.268e-05 4.820e-05 -4.278 -4.317 -0.039 (0) - [13C]O2 1.106e-05 1.108e-05 -4.956 -4.956 0.001 (0) - CaH[13C]O3+ 1.112e-06 1.021e-06 -5.954 -5.991 -0.037 (0) - H[13C]O2[18O]- 1.051e-07 9.616e-08 -6.978 -7.017 -0.039 (0) - H[13C]O[18O]O- 1.051e-07 9.616e-08 -6.978 -7.017 -0.039 (0) - H[13C][18O]O2- 1.051e-07 9.616e-08 -6.978 -7.017 -0.039 (0) - Ca[13C]O3 6.107e-08 6.118e-08 -7.214 -7.213 0.001 (0) - [13C]O[18O] 4.598e-08 4.606e-08 -7.337 -7.337 0.001 (0) - [13C]O3-2 3.133e-08 2.195e-08 -7.504 -7.659 -0.155 (0) - CaH[13C][18O]O2+ 2.220e-09 2.036e-09 -8.654 -8.691 -0.037 (0) - CaH[13C]O2[18O]+ 2.220e-09 2.036e-09 -8.654 -8.691 -0.037 (0) - CaH[13C]O[18O]O+ 2.220e-09 2.036e-09 -8.654 -8.691 -0.037 (0) - Ca[13C]O2[18O] 3.656e-10 3.662e-10 -9.437 -9.436 0.001 (0) - H[13C][18O]O[18O]- 2.097e-10 1.919e-10 -9.678 -9.717 -0.039 (0) - H[13C]O[18O]2- 2.097e-10 1.919e-10 -9.678 -9.717 -0.039 (0) - H[13C][18O]2O- 2.097e-10 1.919e-10 -9.678 -9.717 -0.039 (0) - [13C]O2[18O]-2 1.875e-10 1.314e-10 -9.727 -9.881 -0.155 (0) -[14C](-4) 5.143e-32 - [14C]H4 5.143e-32 5.152e-32 -31.289 -31.288 0.001 (0) -[14C](4) 7.953e-18 - H[14C]O3- 6.425e-18 5.878e-18 -17.192 -17.231 -0.039 (0) - [14C]O2 1.337e-18 1.339e-18 -17.874 -17.873 0.001 (0) - CaH[14C]O3+ 1.357e-19 1.244e-19 -18.868 -18.905 -0.037 (0) - H[14C][18O]O2- 1.282e-20 1.173e-20 -19.892 -19.931 -0.039 (0) - H[14C]O2[18O]- 1.282e-20 1.173e-20 -19.892 -19.931 -0.039 (0) - H[14C]O[18O]O- 1.282e-20 1.173e-20 -19.892 -19.931 -0.039 (0) - Ca[14C]O3 7.437e-21 7.449e-21 -20.129 -20.128 0.001 (0) - [14C]O[18O] 5.559e-21 5.568e-21 -20.255 -20.254 0.001 (0) - [14C]O3-2 3.815e-21 2.673e-21 -20.418 -20.573 -0.155 (0) - CaH[14C]O[18O]O+ 2.707e-22 2.483e-22 -21.568 -21.605 -0.037 (0) - CaH[14C]O2[18O]+ 2.707e-22 2.483e-22 -21.568 -21.605 -0.037 (0) - CaH[14C][18O]O2+ 2.707e-22 2.483e-22 -21.568 -21.605 -0.037 (0) - Ca[14C]O2[18O] 4.452e-23 4.459e-23 -22.351 -22.351 0.001 (0) - H[14C][18O]O[18O]- 2.557e-23 2.340e-23 -22.592 -22.631 -0.039 (0) - H[14C][18O]2O- 2.557e-23 2.340e-23 -22.592 -22.631 -0.039 (0) - H[14C]O[18O]2- 2.557e-23 2.340e-23 -22.592 -22.631 -0.039 (0) - [14C]O2[18O]-2 2.284e-23 1.600e-23 -22.641 -22.796 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.409 -67.409 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.808 -69.808 0.001 (0) +[13C](-4) 1.227e-18 + [13C]H4 1.227e-18 1.229e-18 -17.911 -17.910 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 1.472e-31 + [14C]H4 1.472e-31 1.475e-31 -30.832 -30.831 0.001 (0) +[14C](4) 7.878e-18 + H[14C]O3- 6.364e-18 5.822e-18 -17.196 -17.235 -0.039 (0) + [14C]O2 1.324e-18 1.326e-18 -17.878 -17.877 0.001 (0) + CaH[14C]O3+ 1.344e-19 1.233e-19 -18.872 -18.909 -0.037 (0) + H[14C]O2[18O]- 1.270e-20 1.162e-20 -19.896 -19.935 -0.039 (0) + H[14C]O[18O]O- 1.270e-20 1.162e-20 -19.896 -19.935 -0.039 (0) + H[14C][18O]O2- 1.270e-20 1.162e-20 -19.896 -19.935 -0.039 (0) + Ca[14C]O3 7.367e-21 7.379e-21 -20.133 -20.132 0.001 (0) + [14C]O[18O] 5.506e-21 5.515e-21 -20.259 -20.258 0.001 (0) + [14C]O3-2 3.779e-21 2.647e-21 -20.423 -20.577 -0.155 (0) + CaH[14C]O2[18O]+ 2.681e-22 2.460e-22 -21.572 -21.609 -0.037 (0) + CaH[14C]O[18O]O+ 2.681e-22 2.460e-22 -21.572 -21.609 -0.037 (0) + CaH[14C][18O]O2+ 2.681e-22 2.460e-22 -21.572 -21.609 -0.037 (0) + Ca[14C]O2[18O] 4.410e-23 4.417e-23 -22.356 -22.355 0.001 (0) + H[14C]O[18O]2- 2.533e-23 2.318e-23 -22.596 -22.635 -0.039 (0) + H[14C][18O]2O- 2.533e-23 2.318e-23 -22.596 -22.635 -0.039 (0) + H[14C][18O]O[18O]- 2.533e-23 2.318e-23 -22.596 -22.635 -0.039 (0) + [14C]O2[18O]-2 2.262e-23 1.585e-23 -22.646 -22.800 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.578 -69.577 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.579 -72.578 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.808 -69.808 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.810 -72.809 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.51 -18.37 -2.86 [13C]H4 + [13C]H4(g) -15.05 -17.91 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.77 -23.27 -1.50 [14C][18O]2 - [14C]H4(g) -28.43 -31.29 -2.86 [14C]H4 - [14C]O2(g) -16.40 -17.87 -1.47 [14C]O2 - [14C]O[18O](g) -18.79 -20.57 -1.79 [14C]O[18O] - [18O]2(g) -70.29 -72.58 -2.29 [18O]2 + [14C][18O]2(g) -21.77 -23.28 -1.50 [14C][18O]2 + [14C]H4(g) -27.97 -30.83 -2.86 [14C]H4 + [14C]O2(g) -16.41 -17.88 -1.47 [14C]O2 + [14C]O[18O](g) -18.79 -20.58 -1.79 [14C]O[18O] + [18O]2(g) -70.52 -72.81 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.93 -14.78 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.08 -9.38 7.70 Ca[14C]O2[18O] + Ca[14C][18O]3(s) -22.94 -14.78 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -17.09 -9.38 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -14.87 -6.68 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -19.77 -12.08 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.56 -16.42 -2.86 CH4 + CH4(g) -13.10 -15.96 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.45 -12.60 -3.15 H2 + H2(g) -9.34 -12.49 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.29 -67.18 -2.89 O2 - O[18O](g) -66.99 -69.88 -2.89 O[18O] + O2(g) -64.52 -67.41 -2.89 O2 + O[18O](g) -67.22 -70.11 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -22842,30 +22783,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying increased tolerance 1e-14 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying diagonal scaling ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying diagonal scaling and reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 88. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -22909,38 +22826,38 @@ Calcite 5.00e-04 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 - Ca[13C]O2[18O](s) 3.40e-08 3.40e-08 6.79e-05 - Ca[13C]O[18O]2(s) 6.97e-11 6.97e-11 1.39e-07 - Ca[13C][18O]3(s) 4.77e-14 4.77e-14 9.54e-11 - Ca[14C]O3(s) 6.21e-19 6.21e-19 1.24e-15 - Ca[14C]O2[18O](s) 3.82e-21 3.82e-21 7.65e-18 - Ca[14C]O[18O]2(s) 1.01e-27 1.01e-29 2.02e-24 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 6.15e-19 6.15e-19 1.23e-15 + Ca[14C]O2[18O](s) 3.79e-21 3.79e-21 7.57e-18 + Ca[14C]O[18O]2(s) 7.77e-24 7.77e-24 1.55e-20 + Ca[14C][18O]3(s) 5.32e-27 4.32e-27 1.06e-23 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9852 permil - R(13C) 1.11830e-02 0.25345 permil - R(14C) 1.25465e-15 0.1067 pmc - R(18O) H2O(l) 1.99520e-03 -4.9867 permil + R(18O) 1.99520e-03 -4.9849 permil + R(13C) 1.11644e-02 -1.4105 permil + R(14C) 1.24276e-15 0.10569 pmc + R(18O) H2O(l) 1.99520e-03 -4.9864 permil R(18O) OH- 1.92123e-03 -41.874 permil - R(18O) H3O+ 2.04134e-03 18.021 permil - R(13C) CO2(aq) 1.11030e-02 -6.9049 permil - R(14C) CO2(aq) 1.23674e-15 0.10518 pmc - R(18O) CO2(aq) 2.07917e-03 36.887 permil - R(18O) HCO3- 1.99520e-03 -4.9867 permil - R(13C) HCO3- 1.11996e-02 1.7349 permil - R(14C) HCO3- 1.25835e-15 0.10701 pmc - R(18O) CO3-2 1.99520e-03 -4.9867 permil - R(13C) CO3-2 1.11835e-02 0.29729 permil - R(14C) CO3-2 1.25475e-15 0.10671 pmc - R(13C) CH4(aq) 1.11030e-02 -6.9049 permil - R(14C) CH4(aq) 1.23674e-15 0.10518 pmc + R(18O) H3O+ 2.04134e-03 18.022 permil + R(13C) CO2(aq) 1.10845e-02 -8.557 permil + R(14C) CO2(aq) 1.22502e-15 0.10418 pmc + R(18O) CO2(aq) 2.07917e-03 36.888 permil + R(18O) HCO3- 1.99520e-03 -4.9864 permil + R(13C) HCO3- 1.11810e-02 0.068444 permil + R(14C) HCO3- 1.24643e-15 0.106 pmc + R(18O) CO3-2 1.99520e-03 -4.9864 permil + R(13C) CO3-2 1.11649e-02 -1.3667 permil + R(14C) CO3-2 1.24285e-15 0.10569 pmc + R(13C) CH4(aq) 1.10845e-02 -8.557 permil + R(14C) CH4(aq) 1.22502e-15 0.10418 pmc R(18O) Calcite 2.05264e-03 23.66 permil - R(13C) Calcite 1.12218e-02 3.719 permil - R(14C) Calcite 1.26333e-15 0.10744 pmc + R(13C) Calcite 1.12031e-02 2.0492 permil + R(14C) Calcite 1.25137e-15 0.10642 pmc --------------------------------Isotope Alphas--------------------------------- @@ -22951,17 +22868,17 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 4.4409e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7476e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.4966e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -5.3291e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.3101e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.1102e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.0214e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.269 21.282 +Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ @@ -22969,43 +22886,43 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.269 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.531e-05 6.511e-05 - [14C] 7.327e-18 7.305e-18 + [13C] 6.520e-05 6.501e-05 + [14C] 7.257e-18 7.236e-18 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.282 Adjusted to redox equilibrium + pe = -2.322 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.392e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 67 (771 overall) + Iterations = 78 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 5.530e-17 - CH4 5.530e-17 5.539e-17 -16.257 -16.257 0.001 (0) +C(-4) 1.162e-16 + CH4 1.162e-16 1.164e-16 -15.935 -15.934 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -23013,112 +22930,112 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.112e-06 1.020e-06 -5.954 -5.991 -0.037 (0) + CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.107e-08 6.117e-08 -7.214 -7.213 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.476e-13 - H2 2.738e-13 2.742e-13 -12.563 -12.562 0.001 (0) +H(0) 6.592e-13 + H2 3.296e-13 3.302e-13 -12.482 -12.481 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.259 -67.258 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.658 -69.657 0.001 (0) -[13C](-4) 6.140e-19 - [13C]H4 6.140e-19 6.150e-19 -18.212 -18.211 0.001 (0) -[13C](4) 6.531e-05 - H[13C]O3- 5.268e-05 4.819e-05 -4.278 -4.317 -0.039 (0) - [13C]O2 1.106e-05 1.107e-05 -4.956 -4.956 0.001 (0) - CaH[13C]O3+ 1.112e-06 1.020e-06 -5.954 -5.991 -0.037 (0) - H[13C]O[18O]O- 1.051e-07 9.615e-08 -6.978 -7.017 -0.039 (0) - H[13C][18O]O2- 1.051e-07 9.615e-08 -6.978 -7.017 -0.039 (0) - H[13C]O2[18O]- 1.051e-07 9.615e-08 -6.978 -7.017 -0.039 (0) - Ca[13C]O3 6.107e-08 6.117e-08 -7.214 -7.213 0.001 (0) - [13C]O[18O] 4.597e-08 4.605e-08 -7.337 -7.337 0.001 (0) - [13C]O3-2 3.133e-08 2.195e-08 -7.504 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.219e-09 2.036e-09 -8.654 -8.691 -0.037 (0) - CaH[13C]O[18O]O+ 2.219e-09 2.036e-09 -8.654 -8.691 -0.037 (0) - CaH[13C][18O]O2+ 2.219e-09 2.036e-09 -8.654 -8.691 -0.037 (0) - Ca[13C]O2[18O] 3.655e-10 3.661e-10 -9.437 -9.436 0.001 (0) - H[13C][18O]O[18O]- 2.097e-10 1.918e-10 -9.678 -9.717 -0.039 (0) - H[13C]O[18O]2- 2.097e-10 1.918e-10 -9.678 -9.717 -0.039 (0) - H[13C][18O]2O- 2.097e-10 1.918e-10 -9.678 -9.717 -0.039 (0) - [13C]O2[18O]-2 1.875e-10 1.314e-10 -9.727 -9.882 -0.155 (0) -[14C](-4) 6.839e-32 - [14C]H4 6.839e-32 6.850e-32 -31.165 -31.164 0.001 (0) -[14C](4) 7.327e-18 - H[14C]O3- 5.918e-18 5.415e-18 -17.228 -17.266 -0.039 (0) - [14C]O2 1.232e-18 1.234e-18 -17.910 -17.909 0.001 (0) - CaH[14C]O3+ 1.250e-19 1.146e-19 -18.903 -18.941 -0.037 (0) - H[14C][18O]O2- 1.181e-20 1.080e-20 -19.928 -19.966 -0.039 (0) - H[14C]O2[18O]- 1.181e-20 1.080e-20 -19.928 -19.966 -0.039 (0) - H[14C]O[18O]O- 1.181e-20 1.080e-20 -19.928 -19.966 -0.039 (0) - Ca[14C]O3 6.851e-21 6.863e-21 -20.164 -20.164 0.001 (0) - [14C]O[18O] 5.121e-21 5.129e-21 -20.291 -20.290 0.001 (0) - [14C]O3-2 3.515e-21 2.462e-21 -20.454 -20.609 -0.155 (0) - CaH[14C]O[18O]O+ 2.494e-22 2.287e-22 -21.603 -21.641 -0.037 (0) - CaH[14C]O2[18O]+ 2.494e-22 2.287e-22 -21.603 -21.641 -0.037 (0) - CaH[14C][18O]O2+ 2.494e-22 2.287e-22 -21.603 -21.641 -0.037 (0) - Ca[14C]O2[18O] 4.101e-23 4.108e-23 -22.387 -22.386 0.001 (0) - H[14C][18O]2O- 2.356e-23 2.155e-23 -22.628 -22.666 -0.039 (0) - H[14C]O[18O]2- 2.356e-23 2.155e-23 -22.628 -22.666 -0.039 (0) - H[14C][18O]O[18O]- 2.356e-23 2.155e-23 -22.628 -22.666 -0.039 (0) - [14C]O2[18O]-2 2.104e-23 1.474e-23 -22.677 -22.832 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.420 -67.419 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.819 -69.818 0.001 (0) +[13C](-4) 1.288e-18 + [13C]H4 1.288e-18 1.290e-18 -17.890 -17.889 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 1.423e-31 + [14C]H4 1.423e-31 1.426e-31 -30.847 -30.846 0.001 (0) +[14C](4) 7.257e-18 + H[14C]O3- 5.862e-18 5.363e-18 -17.232 -17.271 -0.039 (0) + [14C]O2 1.220e-18 1.222e-18 -17.914 -17.913 0.001 (0) + CaH[14C]O3+ 1.238e-19 1.136e-19 -18.907 -18.945 -0.037 (0) + H[14C]O2[18O]- 1.170e-20 1.070e-20 -19.932 -19.971 -0.039 (0) + H[14C]O[18O]O- 1.170e-20 1.070e-20 -19.932 -19.971 -0.039 (0) + H[14C][18O]O2- 1.170e-20 1.070e-20 -19.932 -19.971 -0.039 (0) + Ca[14C]O3 6.787e-21 6.798e-21 -20.168 -20.168 0.001 (0) + [14C]O[18O] 5.073e-21 5.081e-21 -20.295 -20.294 0.001 (0) + [14C]O3-2 3.481e-21 2.439e-21 -20.458 -20.613 -0.155 (0) + CaH[14C]O2[18O]+ 2.470e-22 2.266e-22 -21.607 -21.645 -0.037 (0) + CaH[14C]O[18O]O+ 2.470e-22 2.266e-22 -21.607 -21.645 -0.037 (0) + CaH[14C][18O]O2+ 2.470e-22 2.266e-22 -21.607 -21.645 -0.037 (0) + Ca[14C]O2[18O] 4.062e-23 4.069e-23 -22.391 -22.391 0.001 (0) + H[14C]O[18O]2- 2.334e-23 2.135e-23 -22.632 -22.671 -0.039 (0) + H[14C][18O]2O- 2.334e-23 2.135e-23 -22.632 -22.671 -0.039 (0) + H[14C][18O]O[18O]- 2.334e-23 2.135e-23 -22.632 -22.671 -0.039 (0) + [14C]O2[18O]-2 2.084e-23 1.460e-23 -22.681 -22.836 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.658 -69.657 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.659 -72.658 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.819 -69.818 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.820 -72.819 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.35 -18.21 -2.86 [13C]H4 + [13C]H4(g) -15.03 -17.89 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.81 -23.31 -1.50 [14C][18O]2 - [14C]H4(g) -28.30 -31.16 -2.86 [14C]H4 + [14C]H4(g) -27.99 -30.85 -2.86 [14C]H4 [14C]O2(g) -16.44 -17.91 -1.47 [14C]O2 - [14C]O[18O](g) -18.82 -20.61 -1.79 [14C]O[18O] - [18O]2(g) -70.37 -72.66 -2.29 [18O]2 + [14C]O[18O](g) -18.83 -20.61 -1.79 [14C]O[18O] + [18O]2(g) -70.53 -72.82 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.97 -14.81 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.12 -9.41 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.91 -6.71 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.80 -12.11 7.69 Ca[14C]O[18O]2 + Ca[14C][18O]3(s) -22.97 -14.82 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -17.12 -9.42 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -14.91 -6.72 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -19.81 -12.12 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.40 -16.26 -2.86 CH4 + CH4(g) -13.07 -15.93 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.41 -12.56 -3.15 H2 + H2(g) -9.33 -12.48 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.37 -67.26 -2.89 O2 - O[18O](g) -67.07 -69.96 -2.89 O[18O] + O2(g) -64.53 -67.42 -2.89 O2 + O[18O](g) -67.23 -70.12 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -23142,6 +23059,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 89. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -23185,38 +23108,38 @@ Calcite 5.00e-04 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 - Ca[13C]O2[18O](s) 3.40e-08 3.40e-08 6.79e-05 - Ca[13C]O[18O]2(s) 6.97e-11 6.97e-11 1.39e-07 - Ca[13C][18O]3(s) 4.77e-14 4.77e-14 9.54e-11 - Ca[14C]O3(s) 5.72e-19 5.72e-19 1.14e-15 - Ca[14C]O2[18O](s) 3.52e-21 3.52e-21 7.04e-18 - Ca[14C]O[18O]2(s) 7.23e-24 7.23e-24 1.45e-20 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 5.67e-19 5.67e-19 1.13e-15 + Ca[14C]O2[18O](s) 3.49e-21 3.49e-21 6.98e-18 + Ca[14C]O[18O]2(s) 7.16e-24 7.16e-24 1.43e-20 + Ca[14C][18O]3(s) 4.90e-27 3.90e-27 9.80e-24 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.985 permil - R(13C) 1.11816e-02 0.12457 permil - R(14C) 1.15582e-15 0.098293 pmc - R(18O) H2O(l) 1.99520e-03 -4.9866 permil + R(18O) 1.99520e-03 -4.9847 permil + R(13C) 1.11645e-02 -1.4087 permil + R(14C) 1.14486e-15 0.097362 pmc + R(18O) H2O(l) 1.99520e-03 -4.9862 permil R(18O) OH- 1.92123e-03 -41.874 permil - R(18O) H3O+ 2.04134e-03 18.021 permil - R(13C) CO2(aq) 1.11016e-02 -7.0329 permil - R(14C) CO2(aq) 1.13932e-15 0.09689 pmc + R(18O) H3O+ 2.04134e-03 18.022 permil + R(13C) CO2(aq) 1.10846e-02 -8.5552 permil + R(14C) CO2(aq) 1.12852e-15 0.095972 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil - R(18O) HCO3- 1.99520e-03 -4.9866 permil - R(13C) HCO3- 1.11982e-02 1.6058 permil - R(14C) HCO3- 1.15923e-15 0.098583 pmc - R(18O) CO3-2 1.99520e-03 -4.9866 permil - R(13C) CO3-2 1.11821e-02 0.1684 permil - R(14C) CO3-2 1.15590e-15 0.098301 pmc - R(13C) CH4(aq) 1.11016e-02 -7.0329 permil - R(14C) CH4(aq) 1.13932e-15 0.09689 pmc + R(18O) HCO3- 1.99520e-03 -4.9862 permil + R(13C) HCO3- 1.11810e-02 0.070221 permil + R(14C) HCO3- 1.14824e-15 0.097649 pmc + R(18O) CO3-2 1.99520e-03 -4.9862 permil + R(13C) CO3-2 1.11649e-02 -1.365 permil + R(14C) CO3-2 1.14495e-15 0.097369 pmc + R(13C) CH4(aq) 1.10846e-02 -8.5552 permil + R(14C) CH4(aq) 1.12852e-15 0.095972 pmc R(18O) Calcite 2.05264e-03 23.66 permil - R(13C) Calcite 1.12203e-02 3.5896 permil - R(14C) Calcite 1.16383e-15 0.098974 pmc + R(13C) Calcite 1.12031e-02 2.051 permil + R(14C) Calcite 1.15280e-15 0.098036 pmc --------------------------------Isotope Alphas--------------------------------- @@ -23227,14 +23150,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.4409e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5152e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7502e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 6.2172e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 6.2172e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.0436e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.6431e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -23245,156 +23168,156 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.530e-05 6.511e-05 - [14C] 6.750e-18 6.730e-18 + [13C] 6.520e-05 6.501e-05 + [14C] 6.686e-18 6.666e-18 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.306 Adjusted to redox equilibrium + pe = -2.337 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.425e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 29 + Iterations = 53 (154 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 8.661e-17 - CH4 8.661e-17 8.675e-17 -16.062 -16.062 0.001 (0) +C(-4) 1.517e-16 + CH4 1.517e-16 1.520e-16 -15.819 -15.818 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.112e-06 1.020e-06 -5.954 -5.991 -0.037 (0) + CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.106e-08 6.116e-08 -7.214 -7.214 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.126e-13 - H2 3.063e-13 3.068e-13 -12.514 -12.513 0.001 (0) +H(0) 7.047e-13 + H2 3.524e-13 3.530e-13 -12.453 -12.452 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.356 -67.355 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.755 -69.754 0.001 (0) -[13C](-4) 9.615e-19 - [13C]H4 9.615e-19 9.631e-19 -18.017 -18.016 0.001 (0) -[13C](4) 6.530e-05 - H[13C]O3- 5.267e-05 4.818e-05 -4.278 -4.317 -0.039 (0) - [13C]O2 1.105e-05 1.107e-05 -4.956 -4.956 0.001 (0) - CaH[13C]O3+ 1.112e-06 1.020e-06 -5.954 -5.991 -0.037 (0) - H[13C][18O]O2- 1.051e-07 9.614e-08 -6.978 -7.017 -0.039 (0) - H[13C]O2[18O]- 1.051e-07 9.614e-08 -6.978 -7.017 -0.039 (0) - H[13C]O[18O]O- 1.051e-07 9.614e-08 -6.978 -7.017 -0.039 (0) - Ca[13C]O3 6.106e-08 6.116e-08 -7.214 -7.214 0.001 (0) - [13C]O[18O] 4.597e-08 4.604e-08 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.132e-08 2.194e-08 -7.504 -7.659 -0.155 (0) - CaH[13C]O[18O]O+ 2.219e-09 2.036e-09 -8.654 -8.691 -0.037 (0) - CaH[13C][18O]O2+ 2.219e-09 2.036e-09 -8.654 -8.691 -0.037 (0) - CaH[13C]O2[18O]+ 2.219e-09 2.036e-09 -8.654 -8.691 -0.037 (0) - Ca[13C]O2[18O] 3.655e-10 3.661e-10 -9.437 -9.436 0.001 (0) - H[13C][18O]O[18O]- 2.097e-10 1.918e-10 -9.678 -9.717 -0.039 (0) - H[13C]O[18O]2- 2.097e-10 1.918e-10 -9.678 -9.717 -0.039 (0) - H[13C][18O]2O- 2.097e-10 1.918e-10 -9.678 -9.717 -0.039 (0) - [13C]O2[18O]-2 1.875e-10 1.313e-10 -9.727 -9.882 -0.155 (0) -[14C](-4) 9.867e-32 - [14C]H4 9.867e-32 9.883e-32 -31.006 -31.005 0.001 (0) -[14C](4) 6.750e-18 - H[14C]O3- 5.452e-18 4.988e-18 -17.263 -17.302 -0.039 (0) - [14C]O2 1.134e-18 1.136e-18 -17.945 -17.944 0.001 (0) - CaH[14C]O3+ 1.151e-19 1.056e-19 -18.939 -18.976 -0.037 (0) - H[14C][18O]O2- 1.088e-20 9.952e-21 -19.963 -20.002 -0.039 (0) - H[14C]O2[18O]- 1.088e-20 9.952e-21 -19.963 -20.002 -0.039 (0) - H[14C]O[18O]O- 1.088e-20 9.952e-21 -19.963 -20.002 -0.039 (0) - Ca[14C]O3 6.312e-21 6.322e-21 -20.200 -20.199 0.001 (0) - [14C]O[18O] 4.718e-21 4.725e-21 -20.326 -20.326 0.001 (0) - [14C]O3-2 3.238e-21 2.268e-21 -20.490 -20.644 -0.155 (0) - CaH[14C]O[18O]O+ 2.297e-22 2.107e-22 -21.639 -21.676 -0.037 (0) - CaH[14C]O2[18O]+ 2.297e-22 2.107e-22 -21.639 -21.676 -0.037 (0) - CaH[14C][18O]O2+ 2.297e-22 2.107e-22 -21.639 -21.676 -0.037 (0) - Ca[14C]O2[18O] 3.778e-23 3.784e-23 -22.423 -22.422 0.001 (0) - H[14C]O[18O]2- 2.170e-23 1.986e-23 -22.663 -22.702 -0.039 (0) - H[14C][18O]O[18O]- 2.170e-23 1.986e-23 -22.663 -22.702 -0.039 (0) - H[14C][18O]2O- 2.170e-23 1.986e-23 -22.663 -22.702 -0.039 (0) - [14C]O2[18O]-2 1.938e-23 1.358e-23 -22.713 -22.867 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.478 -67.477 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.877 -69.876 0.001 (0) +[13C](-4) 1.682e-18 + [13C]H4 1.682e-18 1.685e-18 -17.774 -17.773 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 1.712e-31 + [14C]H4 1.712e-31 1.715e-31 -30.766 -30.766 0.001 (0) +[14C](4) 6.686e-18 + H[14C]O3- 5.401e-18 4.941e-18 -17.268 -17.306 -0.039 (0) + [14C]O2 1.124e-18 1.126e-18 -17.949 -17.949 0.001 (0) + CaH[14C]O3+ 1.140e-19 1.046e-19 -18.943 -18.980 -0.037 (0) + H[14C]O2[18O]- 1.078e-20 9.858e-21 -19.968 -20.006 -0.039 (0) + H[14C]O[18O]O- 1.078e-20 9.858e-21 -19.968 -20.006 -0.039 (0) + H[14C][18O]O2- 1.078e-20 9.858e-21 -19.968 -20.006 -0.039 (0) + Ca[14C]O3 6.252e-21 6.262e-21 -20.204 -20.203 0.001 (0) + [14C]O[18O] 4.673e-21 4.681e-21 -20.330 -20.330 0.001 (0) + [14C]O3-2 3.207e-21 2.247e-21 -20.494 -20.648 -0.155 (0) + CaH[14C]O2[18O]+ 2.275e-22 2.087e-22 -21.643 -21.680 -0.037 (0) + CaH[14C]O[18O]O+ 2.275e-22 2.087e-22 -21.643 -21.680 -0.037 (0) + CaH[14C][18O]O2+ 2.275e-22 2.087e-22 -21.643 -21.680 -0.037 (0) + Ca[14C]O2[18O] 3.742e-23 3.748e-23 -22.427 -22.426 0.001 (0) + H[14C]O[18O]2- 2.150e-23 1.967e-23 -22.668 -22.706 -0.039 (0) + H[14C][18O]2O- 2.150e-23 1.967e-23 -22.668 -22.706 -0.039 (0) + H[14C][18O]O[18O]- 2.150e-23 1.967e-23 -22.668 -22.706 -0.039 (0) + [14C]O2[18O]-2 1.920e-23 1.345e-23 -22.717 -22.871 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.755 -69.754 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.756 -72.755 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.877 -69.876 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.878 -72.877 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.16 -18.02 -2.86 [13C]H4 + [13C]H4(g) -14.91 -17.77 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.84 -23.34 -1.50 [14C][18O]2 - [14C]H4(g) -28.15 -31.01 -2.86 [14C]H4 - [14C]O2(g) -16.48 -17.94 -1.47 [14C]O2 - [14C]O[18O](g) -18.86 -20.64 -1.79 [14C]O[18O] - [18O]2(g) -70.47 -72.76 -2.29 [18O]2 + [14C][18O]2(g) -21.85 -23.35 -1.50 [14C][18O]2 + [14C]H4(g) -27.91 -30.77 -2.86 [14C]H4 + [14C]O2(g) -16.48 -17.95 -1.47 [14C]O2 + [14C]O[18O](g) -18.86 -20.65 -1.79 [14C]O[18O] + [18O]2(g) -70.59 -72.88 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.00 -14.85 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.15 -9.45 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.94 -6.75 8.19 Ca[14C]O3 + Ca[14C][18O]3(s) -23.01 -14.85 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -17.16 -9.45 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -14.95 -6.75 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -19.84 -12.15 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.20 -16.06 -2.86 CH4 + CH4(g) -12.96 -15.82 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.36 -12.51 -3.15 H2 + H2(g) -9.30 -12.45 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.46 -67.36 -2.89 O2 - O[18O](g) -67.16 -70.06 -2.89 O[18O] + O2(g) -64.58 -67.48 -2.89 O2 + O[18O](g) -67.28 -70.18 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -23418,6 +23341,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 90. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -23461,38 +23390,38 @@ Calcite 5.00e-04 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 - Ca[13C]O2[18O](s) 3.40e-08 3.40e-08 6.79e-05 - Ca[13C]O[18O]2(s) 6.97e-11 6.97e-11 1.39e-07 - Ca[13C][18O]3(s) 4.77e-14 4.77e-14 9.54e-11 - Ca[14C]O3(s) 5.27e-19 5.27e-19 1.05e-15 - Ca[14C]O2[18O](s) 3.24e-21 3.24e-21 6.49e-18 - Ca[14C]O[18O]2(s) 6.66e-24 6.66e-24 1.33e-20 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 5.22e-19 5.22e-19 1.04e-15 + Ca[14C]O2[18O](s) 3.21e-21 3.21e-21 6.43e-18 + Ca[14C]O[18O]2(s) 6.60e-24 6.60e-24 1.32e-20 + Ca[14C][18O]3(s) 4.51e-27 3.51e-27 9.03e-24 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9849 permil - R(13C) 1.11803e-02 0.0058073 permil - R(14C) 1.06477e-15 0.09055 pmc - R(18O) H2O(l) 1.99520e-03 -4.9864 permil - R(18O) OH- 1.92123e-03 -41.874 permil + R(18O) 1.99520e-03 -4.9846 permil + R(13C) 1.11645e-02 -1.4071 permil + R(14C) 1.05468e-15 0.089692 pmc + R(18O) H2O(l) 1.99520e-03 -4.9861 permil + R(18O) OH- 1.92124e-03 -41.874 permil R(18O) H3O+ 2.04134e-03 18.022 permil - R(13C) CO2(aq) 1.11003e-02 -7.1508 permil - R(14C) CO2(aq) 1.04957e-15 0.089258 pmc + R(13C) CO2(aq) 1.10846e-02 -8.5536 permil + R(14C) CO2(aq) 1.03963e-15 0.088412 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil - R(18O) HCO3- 1.99520e-03 -4.9864 permil - R(13C) HCO3- 1.11968e-02 1.4869 permil - R(14C) HCO3- 1.06791e-15 0.090818 pmc - R(18O) CO3-2 1.99520e-03 -4.9864 permil - R(13C) CO3-2 1.11808e-02 0.049634 permil - R(14C) CO3-2 1.06485e-15 0.090557 pmc - R(13C) CH4(aq) 1.11003e-02 -7.1508 permil - R(14C) CH4(aq) 1.04957e-15 0.089258 pmc + R(18O) HCO3- 1.99520e-03 -4.9861 permil + R(13C) HCO3- 1.11810e-02 0.071858 permil + R(14C) HCO3- 1.05779e-15 0.089957 pmc + R(18O) CO3-2 1.99520e-03 -4.9861 permil + R(13C) CO3-2 1.11650e-02 -1.3633 permil + R(14C) CO3-2 1.05476e-15 0.089699 pmc + R(13C) CH4(aq) 1.10846e-02 -8.5536 permil + R(14C) CH4(aq) 1.03963e-15 0.088412 pmc R(18O) Calcite 2.05264e-03 23.66 permil - R(13C) Calcite 1.12190e-02 3.4705 permil - R(14C) Calcite 1.07215e-15 0.091178 pmc + R(13C) Calcite 1.12031e-02 2.0527 permil + R(14C) Calcite 1.06199e-15 0.090314 pmc --------------------------------Isotope Alphas--------------------------------- @@ -23503,14 +23432,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8223e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.692e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 7.1054e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 9.1038e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.3323e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 7.1054e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -23521,36 +23450,36 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.529e-05 6.510e-05 - [14C] 6.218e-18 6.200e-18 + [13C] 6.520e-05 6.501e-05 + [14C] 6.159e-18 6.141e-18 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.317 Adjusted to redox equilibrium + pe = -2.315 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.452e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.424e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 34 + Iterations = 122 (223 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.061e-16 - CH4 1.061e-16 1.063e-16 -15.974 -15.973 0.001 (0) +C(-4) 1.020e-16 + CH4 1.020e-16 1.022e-16 -15.991 -15.991 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -23565,91 +23494,91 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.112e-06 1.020e-06 -5.954 -5.991 -0.037 (0) + CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.105e-08 6.115e-08 -7.214 -7.214 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.445e-13 - H2 3.223e-13 3.228e-13 -12.492 -12.491 0.001 (0) +H(0) 6.381e-13 + H2 3.191e-13 3.196e-13 -12.496 -12.495 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.400 -67.400 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.799 -69.799 0.001 (0) -[13C](-4) 1.178e-18 - [13C]H4 1.178e-18 1.180e-18 -17.929 -17.928 0.001 (0) -[13C](4) 6.529e-05 - H[13C]O3- 5.266e-05 4.818e-05 -4.278 -4.317 -0.039 (0) - [13C]O2 1.105e-05 1.107e-05 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.112e-06 1.020e-06 -5.954 -5.991 -0.037 (0) - H[13C]O2[18O]- 1.051e-07 9.613e-08 -6.979 -7.017 -0.039 (0) - H[13C]O[18O]O- 1.051e-07 9.613e-08 -6.979 -7.017 -0.039 (0) - H[13C][18O]O2- 1.051e-07 9.613e-08 -6.979 -7.017 -0.039 (0) - Ca[13C]O3 6.105e-08 6.115e-08 -7.214 -7.214 0.001 (0) - [13C]O[18O] 4.596e-08 4.604e-08 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.132e-08 2.194e-08 -7.504 -7.659 -0.155 (0) - CaH[13C][18O]O2+ 2.219e-09 2.035e-09 -8.654 -8.691 -0.037 (0) - CaH[13C]O2[18O]+ 2.219e-09 2.035e-09 -8.654 -8.691 -0.037 (0) - CaH[13C]O[18O]O+ 2.219e-09 2.035e-09 -8.654 -8.691 -0.037 (0) - Ca[13C]O2[18O] 3.654e-10 3.660e-10 -9.437 -9.436 0.001 (0) - H[13C][18O]O[18O]- 2.096e-10 1.918e-10 -9.679 -9.717 -0.039 (0) - H[13C]O[18O]2- 2.096e-10 1.918e-10 -9.679 -9.717 -0.039 (0) - H[13C][18O]2O- 2.096e-10 1.918e-10 -9.679 -9.717 -0.039 (0) - [13C]O2[18O]-2 1.875e-10 1.313e-10 -9.727 -9.882 -0.155 (0) -[14C](-4) 1.114e-31 - [14C]H4 1.114e-31 1.116e-31 -30.953 -30.952 0.001 (0) -[14C](4) 6.218e-18 - H[14C]O3- 5.023e-18 4.595e-18 -17.299 -17.338 -0.039 (0) - [14C]O2 1.045e-18 1.047e-18 -17.981 -17.980 0.001 (0) - CaH[14C]O3+ 1.061e-19 9.730e-20 -18.974 -19.012 -0.037 (0) - H[14C][18O]O2- 1.002e-20 9.168e-21 -19.999 -20.038 -0.039 (0) - H[14C]O2[18O]- 1.002e-20 9.168e-21 -19.999 -20.038 -0.039 (0) - H[14C]O[18O]O- 1.002e-20 9.168e-21 -19.999 -20.038 -0.039 (0) - Ca[14C]O3 5.814e-21 5.824e-21 -20.235 -20.235 0.001 (0) - [14C]O[18O] 4.346e-21 4.353e-21 -20.362 -20.361 0.001 (0) - [14C]O3-2 2.983e-21 2.090e-21 -20.525 -20.680 -0.155 (0) - CaH[14C]O[18O]O+ 2.116e-22 1.941e-22 -21.674 -21.712 -0.037 (0) - CaH[14C]O2[18O]+ 2.116e-22 1.941e-22 -21.674 -21.712 -0.037 (0) - CaH[14C][18O]O2+ 2.116e-22 1.941e-22 -21.674 -21.712 -0.037 (0) - Ca[14C]O2[18O] 3.480e-23 3.486e-23 -22.458 -22.458 0.001 (0) - H[14C][18O]O[18O]- 1.999e-23 1.829e-23 -22.699 -22.738 -0.039 (0) - H[14C][18O]2O- 1.999e-23 1.829e-23 -22.699 -22.738 -0.039 (0) - H[14C]O[18O]2- 1.999e-23 1.829e-23 -22.699 -22.738 -0.039 (0) - [14C]O2[18O]-2 1.785e-23 1.251e-23 -22.748 -22.903 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.392 -67.391 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.791 -69.790 0.001 (0) +[13C](-4) 1.131e-18 + [13C]H4 1.131e-18 1.132e-18 -17.947 -17.946 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 1.060e-31 + [14C]H4 1.060e-31 1.062e-31 -30.975 -30.974 0.001 (0) +[14C](4) 6.159e-18 + H[14C]O3- 4.975e-18 4.552e-18 -17.303 -17.342 -0.039 (0) + [14C]O2 1.035e-18 1.037e-18 -17.985 -17.984 0.001 (0) + CaH[14C]O3+ 1.051e-19 9.638e-20 -18.979 -19.016 -0.037 (0) + H[14C]O2[18O]- 9.927e-21 9.082e-21 -20.003 -20.042 -0.039 (0) + H[14C]O[18O]O- 9.927e-21 9.082e-21 -20.003 -20.042 -0.039 (0) + H[14C][18O]O2- 9.927e-21 9.082e-21 -20.003 -20.042 -0.039 (0) + Ca[14C]O3 5.759e-21 5.769e-21 -20.240 -20.239 0.001 (0) + [14C]O[18O] 4.305e-21 4.312e-21 -20.366 -20.365 0.001 (0) + [14C]O3-2 2.955e-21 2.070e-21 -20.530 -20.684 -0.155 (0) + CaH[14C]O2[18O]+ 2.096e-22 1.923e-22 -21.679 -21.716 -0.037 (0) + CaH[14C]O[18O]O+ 2.096e-22 1.923e-22 -21.679 -21.716 -0.037 (0) + CaH[14C][18O]O2+ 2.096e-22 1.923e-22 -21.679 -21.716 -0.037 (0) + Ca[14C]O2[18O] 3.447e-23 3.453e-23 -22.463 -22.462 0.001 (0) + H[14C]O[18O]2- 1.981e-23 1.812e-23 -22.703 -22.742 -0.039 (0) + H[14C][18O]2O- 1.981e-23 1.812e-23 -22.703 -22.742 -0.039 (0) + H[14C][18O]O[18O]- 1.981e-23 1.812e-23 -22.703 -22.742 -0.039 (0) + [14C]O2[18O]-2 1.768e-23 1.239e-23 -22.752 -22.907 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.799 -69.799 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.800 -72.800 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.791 -69.790 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.792 -72.791 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.07 -17.93 -2.86 [13C]H4 + [13C]H4(g) -15.09 -17.95 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.88 -23.38 -1.50 [14C][18O]2 - [14C]H4(g) -28.09 -30.95 -2.86 [14C]H4 - [14C]O2(g) -16.51 -17.98 -1.47 [14C]O2 - [14C]O[18O](g) -18.89 -20.68 -1.79 [14C]O[18O] - [18O]2(g) -70.51 -72.80 -2.29 [18O]2 + [14C]H4(g) -28.11 -30.97 -2.86 [14C]H4 + [14C]O2(g) -16.52 -17.98 -1.47 [14C]O2 + [14C]O[18O](g) -18.90 -20.68 -1.79 [14C]O[18O] + [18O]2(g) -70.50 -72.79 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -23663,14 +23592,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.11 -15.97 -2.86 CH4 + CH4(g) -13.13 -15.99 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.34 -12.49 -3.15 H2 + H2(g) -9.35 -12.50 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.51 -67.40 -2.89 O2 - O[18O](g) -67.21 -70.10 -2.89 O[18O] + O2(g) -64.50 -67.39 -2.89 O2 + O[18O](g) -67.20 -70.09 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -23737,38 +23666,38 @@ Calcite 5.00e-04 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 - Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.79e-05 - Ca[13C]O[18O]2(s) 6.97e-11 6.97e-11 1.39e-07 - Ca[13C][18O]3(s) 4.77e-14 4.77e-14 9.54e-11 - Ca[14C]O3(s) 4.86e-19 4.86e-19 9.71e-16 - Ca[14C]O2[18O](s) 1.01e-27 1.01e-29 2.02e-24 - Ca[14C]O[18O]2(s) 1.01e-27 1.01e-29 2.02e-24 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 4.81e-19 4.81e-19 9.62e-16 + Ca[14C]O2[18O](s) 2.96e-21 2.96e-21 5.92e-18 + Ca[14C]O[18O]2(s) 6.08e-24 6.08e-24 1.22e-20 + Ca[14C][18O]3(s) 4.16e-27 3.16e-27 8.32e-24 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9848 permil - R(13C) 1.11790e-02 -0.10363 permil - R(14C) 9.81367e-16 0.083458 pmc - R(18O) H2O(l) 1.99520e-03 -4.9863 permil - R(18O) OH- 1.92123e-03 -41.874 permil + R(18O) 1.99521e-03 -4.9844 permil + R(13C) 1.11645e-02 -1.4056 permil + R(14C) 9.71599e-16 0.082627 pmc + R(18O) H2O(l) 1.99520e-03 -4.986 permil + R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.022 permil - R(13C) CO2(aq) 1.10990e-02 -7.2595 permil - R(14C) CO2(aq) 9.67360e-16 0.082266 pmc + R(13C) CO2(aq) 1.10846e-02 -8.5521 permil + R(14C) CO2(aq) 9.57732e-16 0.081448 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil - R(18O) HCO3- 1.99520e-03 -4.9863 permil - R(13C) HCO3- 1.11956e-02 1.3773 permil - R(14C) HCO3- 9.84265e-16 0.083704 pmc - R(18O) CO3-2 1.99520e-03 -4.9863 permil - R(13C) CO3-2 1.11795e-02 -0.059806 permil - R(14C) CO3-2 9.81442e-16 0.083464 pmc - R(13C) CH4(aq) 1.10990e-02 -7.2595 permil - R(14C) CH4(aq) 9.67360e-16 0.082266 pmc - R(18O) Calcite 2.05264e-03 23.66 permil - R(13C) Calcite 1.12178e-02 3.3606 permil - R(14C) Calcite 9.82108e-16 0.083521 pmc + R(18O) HCO3- 1.99520e-03 -4.986 permil + R(13C) HCO3- 1.11810e-02 0.073366 permil + R(14C) HCO3- 9.74469e-16 0.082871 pmc + R(18O) CO3-2 1.99520e-03 -4.986 permil + R(13C) CO3-2 1.11650e-02 -1.3618 permil + R(14C) CO3-2 9.71674e-16 0.082633 pmc + R(13C) CH4(aq) 1.10846e-02 -8.5521 permil + R(14C) CH4(aq) 9.57732e-16 0.081448 pmc + R(18O) Calcite 2.05264e-03 23.661 permil + R(13C) Calcite 1.12032e-02 2.0542 permil + R(14C) Calcite 9.78333e-16 0.0832 pmc --------------------------------Isotope Alphas--------------------------------- @@ -23779,17 +23708,17 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6402e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5146e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -8.3267e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.4433e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -7.7716e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -8.2157e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0152 15.13 21.282 +Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ @@ -23797,156 +23726,156 @@ Alpha 14C Calcite/CO2(aq) 1.0152 15.13 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.528e-05 6.509e-05 - [14C] 5.731e-18 5.714e-18 + [13C] 6.520e-05 6.501e-05 + [14C] 5.674e-18 5.657e-18 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.289 Adjusted to redox equilibrium + pe = -2.333 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.458e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.424e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 55 + Iterations = 92 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 6.295e-17 - CH4 6.295e-17 6.306e-17 -16.201 -16.200 0.001 (0) +C(-4) 1.424e-16 + CH4 1.424e-16 1.426e-16 -15.847 -15.846 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.112e-06 1.020e-06 -5.954 -5.991 -0.037 (0) + CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.104e-08 6.114e-08 -7.214 -7.214 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.656e-13 - H2 2.828e-13 2.833e-13 -12.549 -12.548 0.001 (0) +H(0) 6.936e-13 + H2 3.468e-13 3.474e-13 -12.460 -12.459 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.287 -67.286 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.686 -69.685 0.001 (0) -[13C](-4) 6.987e-19 - [13C]H4 6.987e-19 6.999e-19 -18.156 -18.155 0.001 (0) -[13C](4) 6.528e-05 - H[13C]O3- 5.266e-05 4.817e-05 -4.279 -4.317 -0.039 (0) - [13C]O2 1.105e-05 1.107e-05 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.112e-06 1.020e-06 -5.954 -5.991 -0.037 (0) - H[13C]O[18O]O- 1.051e-07 9.612e-08 -6.979 -7.017 -0.039 (0) - H[13C][18O]O2- 1.051e-07 9.612e-08 -6.979 -7.017 -0.039 (0) - H[13C]O2[18O]- 1.051e-07 9.612e-08 -6.979 -7.017 -0.039 (0) - Ca[13C]O3 6.104e-08 6.114e-08 -7.214 -7.214 0.001 (0) - [13C]O[18O] 4.596e-08 4.603e-08 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.131e-08 2.194e-08 -7.504 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.219e-09 2.035e-09 -8.654 -8.691 -0.037 (0) - CaH[13C]O[18O]O+ 2.219e-09 2.035e-09 -8.654 -8.691 -0.037 (0) - CaH[13C][18O]O2+ 2.219e-09 2.035e-09 -8.654 -8.691 -0.037 (0) - Ca[13C]O2[18O] 3.654e-10 3.660e-10 -9.437 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.096e-10 1.918e-10 -9.679 -9.717 -0.039 (0) - H[13C]O[18O]2- 2.096e-10 1.918e-10 -9.679 -9.717 -0.039 (0) - H[13C][18O]2O- 2.096e-10 1.918e-10 -9.679 -9.717 -0.039 (0) - [13C]O2[18O]-2 1.874e-10 1.313e-10 -9.727 -9.882 -0.155 (0) -[14C](-4) 6.090e-32 - [14C]H4 6.090e-32 6.100e-32 -31.215 -31.215 0.001 (0) -[14C](4) 5.731e-18 - H[14C]O3- 4.629e-18 4.235e-18 -17.334 -17.373 -0.039 (0) - [14C]O2 9.633e-19 9.649e-19 -18.016 -18.016 0.001 (0) - CaH[14C]O3+ 9.776e-20 8.968e-20 -19.010 -19.047 -0.037 (0) - H[14C][18O]O2- 9.236e-21 8.450e-21 -20.034 -20.073 -0.039 (0) - H[14C]O2[18O]- 9.236e-21 8.450e-21 -20.034 -20.073 -0.039 (0) - H[14C]O[18O]O- 9.236e-21 8.450e-21 -20.034 -20.073 -0.039 (0) - Ca[14C]O3 5.359e-21 5.368e-21 -20.271 -20.270 0.001 (0) - [14C]O[18O] 4.006e-21 4.012e-21 -20.397 -20.397 0.001 (0) - [14C]O3-2 2.749e-21 1.926e-21 -20.561 -20.715 -0.155 (0) - CaH[14C]O[18O]O+ 1.950e-22 1.789e-22 -21.710 -21.747 -0.037 (0) - CaH[14C]O2[18O]+ 1.950e-22 1.789e-22 -21.710 -21.747 -0.037 (0) - CaH[14C][18O]O2+ 1.950e-22 1.789e-22 -21.710 -21.747 -0.037 (0) - Ca[14C]O2[18O] 3.208e-23 3.213e-23 -22.494 -22.493 0.001 (0) - H[14C][18O]2O- 1.843e-23 1.686e-23 -22.735 -22.773 -0.039 (0) - H[14C]O[18O]2- 1.843e-23 1.686e-23 -22.735 -22.773 -0.039 (0) - H[14C][18O]O[18O]- 1.843e-23 1.686e-23 -22.735 -22.773 -0.039 (0) - [14C]O2[18O]-2 1.646e-23 1.153e-23 -22.784 -22.938 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.464 -67.463 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.863 -69.862 0.001 (0) +[13C](-4) 1.578e-18 + [13C]H4 1.578e-18 1.581e-18 -17.802 -17.801 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 1.363e-31 + [14C]H4 1.363e-31 1.366e-31 -30.865 -30.865 0.001 (0) +[14C](4) 5.674e-18 + H[14C]O3- 4.583e-18 4.193e-18 -17.339 -17.377 -0.039 (0) + [14C]O2 9.537e-19 9.553e-19 -18.021 -18.020 0.001 (0) + CaH[14C]O3+ 9.679e-20 8.878e-20 -19.014 -19.052 -0.037 (0) + H[14C]O2[18O]- 9.145e-21 8.366e-21 -20.039 -20.077 -0.039 (0) + H[14C]O[18O]O- 9.145e-21 8.366e-21 -20.039 -20.077 -0.039 (0) + H[14C][18O]O2- 9.145e-21 8.366e-21 -20.039 -20.077 -0.039 (0) + Ca[14C]O3 5.306e-21 5.315e-21 -20.275 -20.275 0.001 (0) + [14C]O[18O] 3.966e-21 3.972e-21 -20.402 -20.401 0.001 (0) + [14C]O3-2 2.722e-21 1.907e-21 -20.565 -20.720 -0.155 (0) + CaH[14C]O2[18O]+ 1.931e-22 1.771e-22 -21.714 -21.752 -0.037 (0) + CaH[14C]O[18O]O+ 1.931e-22 1.771e-22 -21.714 -21.752 -0.037 (0) + CaH[14C][18O]O2+ 1.931e-22 1.771e-22 -21.714 -21.752 -0.037 (0) + Ca[14C]O2[18O] 3.176e-23 3.181e-23 -22.498 -22.497 0.001 (0) + H[14C]O[18O]2- 1.825e-23 1.669e-23 -22.739 -22.777 -0.039 (0) + H[14C][18O]2O- 1.825e-23 1.669e-23 -22.739 -22.777 -0.039 (0) + H[14C][18O]O[18O]- 1.825e-23 1.669e-23 -22.739 -22.777 -0.039 (0) + [14C]O2[18O]-2 1.629e-23 1.141e-23 -22.788 -22.943 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.686 -69.685 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.687 -72.686 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.863 -69.862 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.864 -72.863 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.29 -18.15 -2.86 [13C]H4 + [13C]H4(g) -14.94 -17.80 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.91 -23.42 -1.50 [14C][18O]2 - [14C]H4(g) -28.35 -31.21 -2.86 [14C]H4 + [14C][18O]2(g) -21.92 -23.42 -1.50 [14C][18O]2 + [14C]H4(g) -28.00 -30.86 -2.86 [14C]H4 [14C]O2(g) -16.55 -18.02 -1.47 [14C]O2 [14C]O[18O](g) -18.93 -20.72 -1.79 [14C]O[18O] - [18O]2(g) -70.40 -72.69 -2.29 [18O]2 + [18O]2(g) -70.57 -72.86 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.08 -14.92 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.22 -9.52 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.01 -6.82 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.91 -12.22 7.69 Ca[14C]O[18O]2 + Ca[14C][18O]3(s) -23.08 -14.93 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -17.23 -9.53 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -15.02 -6.83 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -19.92 -12.23 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.34 -16.20 -2.86 CH4 + CH4(g) -12.99 -15.85 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.40 -12.55 -3.15 H2 + H2(g) -9.31 -12.46 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.39 -67.29 -2.89 O2 - O[18O](g) -67.09 -69.99 -2.89 O[18O] + O2(g) -64.57 -67.46 -2.89 O2 + O[18O](g) -67.27 -70.16 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -23970,6 +23899,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 92. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -24013,38 +23948,38 @@ Calcite 5.00e-04 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 - Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.79e-05 - Ca[13C]O[18O]2(s) 6.97e-11 6.97e-11 1.39e-07 - Ca[13C][18O]3(s) 4.77e-14 4.77e-14 9.53e-11 - Ca[14C]O3(s) 4.47e-19 4.47e-19 8.95e-16 - Ca[14C]O2[18O](s) 2.75e-21 2.75e-21 5.51e-18 - Ca[14C]O[18O]2(s) 5.65e-24 5.65e-24 1.13e-20 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 4.43e-19 4.43e-19 8.86e-16 + Ca[14C]O2[18O](s) 2.73e-21 2.73e-21 5.45e-18 + Ca[14C]O[18O]2(s) 5.60e-24 5.60e-24 1.12e-20 + Ca[14C][18O]3(s) 3.83e-27 2.83e-27 7.66e-24 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99520e-03 -4.9846 permil - R(13C) 1.11779e-02 -0.20447 permil - R(14C) 9.04061e-16 0.076883 pmc - R(18O) H2O(l) 1.99520e-03 -4.9861 permil - R(18O) OH- 1.92123e-03 -41.874 permil + R(18O) 1.99521e-03 -4.9843 permil + R(13C) 1.11645e-02 -1.4042 permil + R(14C) 8.95064e-16 0.076118 pmc + R(18O) H2O(l) 1.99520e-03 -4.9858 permil + R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.022 permil - R(13C) CO2(aq) 1.10979e-02 -7.3596 permil - R(14C) CO2(aq) 8.91158e-16 0.075786 pmc + R(13C) CO2(aq) 1.10846e-02 -8.5507 permil + R(14C) CO2(aq) 8.82289e-16 0.075032 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil - R(18O) HCO3- 1.99520e-03 -4.9861 permil - R(13C) HCO3- 1.11945e-02 1.2763 permil - R(14C) HCO3- 9.06731e-16 0.07711 pmc - R(18O) CO3-2 1.99520e-03 -4.9861 permil - R(13C) CO3-2 1.11784e-02 -0.16065 permil - R(14C) CO3-2 9.04131e-16 0.076889 pmc - R(13C) CH4(aq) 1.10979e-02 -7.3596 permil - R(14C) CH4(aq) 8.91158e-16 0.075786 pmc - R(18O) Calcite 2.05264e-03 23.66 permil - R(13C) Calcite 1.12166e-02 3.2594 permil - R(14C) Calcite 9.10327e-16 0.077416 pmc + R(18O) HCO3- 1.99520e-03 -4.9858 permil + R(13C) HCO3- 1.11810e-02 0.074756 permil + R(14C) HCO3- 8.97708e-16 0.076343 pmc + R(18O) CO3-2 1.99520e-03 -4.9858 permil + R(13C) CO3-2 1.11650e-02 -1.3604 permil + R(14C) CO3-2 8.95133e-16 0.076124 pmc + R(13C) CH4(aq) 1.10846e-02 -8.5507 permil + R(14C) CH4(aq) 8.82289e-16 0.075032 pmc + R(18O) Calcite 2.05264e-03 23.661 permil + R(13C) Calcite 1.12032e-02 2.0556 permil + R(14C) Calcite 9.01268e-16 0.076646 pmc --------------------------------Isotope Alphas--------------------------------- @@ -24055,14 +23990,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5967e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6337e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.0325e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.9984e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.1102e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.3323e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -24073,43 +24008,43 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.528e-05 6.509e-05 - [14C] 5.279e-18 5.264e-18 + [13C] 6.520e-05 6.501e-05 + [14C] 5.227e-18 5.212e-18 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.276 Adjusted to redox equilibrium + pe = -2.343 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.457e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.424e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 29 + Iterations = 109 (210 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.926e-17 - CH4 4.926e-17 4.934e-17 -16.308 -16.307 0.001 (0) +C(-4) 1.712e-16 + CH4 1.712e-16 1.715e-16 -15.767 -15.766 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -24117,97 +24052,97 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.112e-06 1.020e-06 -5.954 -5.991 -0.037 (0) + CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.104e-08 6.114e-08 -7.214 -7.214 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.320e-13 - H2 2.660e-13 2.664e-13 -12.575 -12.574 0.001 (0) +H(0) 7.263e-13 + H2 3.632e-13 3.638e-13 -12.440 -12.439 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.234 -67.233 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.633 -69.632 0.001 (0) -[13C](-4) 5.466e-19 - [13C]H4 5.466e-19 5.475e-19 -18.262 -18.262 0.001 (0) -[13C](4) 6.528e-05 - H[13C]O3- 5.265e-05 4.817e-05 -4.279 -4.317 -0.039 (0) - [13C]O2 1.105e-05 1.107e-05 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.112e-06 1.020e-06 -5.954 -5.991 -0.037 (0) - H[13C][18O]O2- 1.051e-07 9.611e-08 -6.979 -7.017 -0.039 (0) - H[13C]O2[18O]- 1.051e-07 9.611e-08 -6.979 -7.017 -0.039 (0) - H[13C]O[18O]O- 1.051e-07 9.611e-08 -6.979 -7.017 -0.039 (0) - Ca[13C]O3 6.104e-08 6.114e-08 -7.214 -7.214 0.001 (0) - [13C]O[18O] 4.595e-08 4.603e-08 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.131e-08 2.194e-08 -7.504 -7.659 -0.155 (0) - CaH[13C]O[18O]O+ 2.218e-09 2.035e-09 -8.654 -8.691 -0.037 (0) - CaH[13C][18O]O2+ 2.218e-09 2.035e-09 -8.654 -8.691 -0.037 (0) - CaH[13C]O2[18O]+ 2.218e-09 2.035e-09 -8.654 -8.691 -0.037 (0) - Ca[13C]O2[18O] 3.654e-10 3.660e-10 -9.437 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.096e-10 1.918e-10 -9.679 -9.717 -0.039 (0) - H[13C]O[18O]2- 2.096e-10 1.918e-10 -9.679 -9.717 -0.039 (0) - H[13C][18O]2O- 2.096e-10 1.918e-10 -9.679 -9.717 -0.039 (0) - [13C]O2[18O]-2 1.874e-10 1.313e-10 -9.727 -9.882 -0.155 (0) -[14C](-4) 4.389e-32 - [14C]H4 4.389e-32 4.397e-32 -31.358 -31.357 0.001 (0) -[14C](4) 5.279e-18 - H[14C]O3- 4.265e-18 3.902e-18 -17.370 -17.409 -0.039 (0) - [14C]O2 8.874e-19 8.888e-19 -18.052 -18.051 0.001 (0) - CaH[14C]O3+ 9.006e-20 8.261e-20 -19.045 -19.083 -0.037 (0) - H[14C][18O]O2- 8.509e-21 7.785e-21 -20.070 -20.109 -0.039 (0) - H[14C]O2[18O]- 8.509e-21 7.785e-21 -20.070 -20.109 -0.039 (0) - H[14C]O[18O]O- 8.509e-21 7.785e-21 -20.070 -20.109 -0.039 (0) - Ca[14C]O3 4.937e-21 4.945e-21 -20.307 -20.306 0.001 (0) - [14C]O[18O] 3.690e-21 3.696e-21 -20.433 -20.432 0.001 (0) - [14C]O3-2 2.533e-21 1.774e-21 -20.596 -20.751 -0.155 (0) - CaH[14C]O[18O]O+ 1.797e-22 1.648e-22 -21.746 -21.783 -0.037 (0) - CaH[14C]O2[18O]+ 1.797e-22 1.648e-22 -21.746 -21.783 -0.037 (0) - CaH[14C][18O]O2+ 1.797e-22 1.648e-22 -21.746 -21.783 -0.037 (0) - Ca[14C]O2[18O] 2.955e-23 2.960e-23 -22.529 -22.529 0.001 (0) - H[14C]O[18O]2- 1.698e-23 1.553e-23 -22.770 -22.809 -0.039 (0) - H[14C][18O]O[18O]- 1.698e-23 1.553e-23 -22.770 -22.809 -0.039 (0) - H[14C][18O]2O- 1.698e-23 1.553e-23 -22.770 -22.809 -0.039 (0) - [14C]O2[18O]-2 1.516e-23 1.062e-23 -22.819 -22.974 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.504 -67.503 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.903 -69.902 0.001 (0) +[13C](-4) 1.898e-18 + [13C]H4 1.898e-18 1.901e-18 -17.722 -17.721 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 1.510e-31 + [14C]H4 1.510e-31 1.513e-31 -30.821 -30.820 0.001 (0) +[14C](4) 5.227e-18 + H[14C]O3- 4.222e-18 3.863e-18 -17.374 -17.413 -0.039 (0) + [14C]O2 8.786e-19 8.800e-19 -18.056 -18.056 0.001 (0) + CaH[14C]O3+ 8.916e-20 8.179e-20 -19.050 -19.087 -0.037 (0) + H[14C]O2[18O]- 8.424e-21 7.707e-21 -20.074 -20.113 -0.039 (0) + H[14C]O[18O]O- 8.424e-21 7.707e-21 -20.074 -20.113 -0.039 (0) + H[14C][18O]O2- 8.424e-21 7.707e-21 -20.074 -20.113 -0.039 (0) + Ca[14C]O3 4.888e-21 4.896e-21 -20.311 -20.310 0.001 (0) + [14C]O[18O] 3.653e-21 3.659e-21 -20.437 -20.437 0.001 (0) + [14C]O3-2 2.507e-21 1.757e-21 -20.601 -20.755 -0.155 (0) + CaH[14C]O2[18O]+ 1.779e-22 1.632e-22 -21.750 -21.787 -0.037 (0) + CaH[14C]O[18O]O+ 1.779e-22 1.632e-22 -21.750 -21.787 -0.037 (0) + CaH[14C][18O]O2+ 1.779e-22 1.632e-22 -21.750 -21.787 -0.037 (0) + Ca[14C]O2[18O] 2.926e-23 2.930e-23 -22.534 -22.533 0.001 (0) + H[14C]O[18O]2- 1.681e-23 1.538e-23 -22.774 -22.813 -0.039 (0) + H[14C][18O]2O- 1.681e-23 1.538e-23 -22.774 -22.813 -0.039 (0) + H[14C][18O]O[18O]- 1.681e-23 1.538e-23 -22.774 -22.813 -0.039 (0) + [14C]O2[18O]-2 1.501e-23 1.051e-23 -22.824 -22.978 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.633 -69.632 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.634 -72.633 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.903 -69.902 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.904 -72.903 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.40 -18.26 -2.86 [13C]H4 + [13C]H4(g) -14.86 -17.72 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.95 -23.45 -1.50 [14C][18O]2 - [14C]H4(g) -28.50 -31.36 -2.86 [14C]H4 - [14C]O2(g) -16.58 -18.05 -1.47 [14C]O2 - [14C]O[18O](g) -18.96 -20.75 -1.79 [14C]O[18O] - [18O]2(g) -70.34 -72.63 -2.29 [18O]2 + [14C][18O]2(g) -21.95 -23.46 -1.50 [14C][18O]2 + [14C]H4(g) -27.96 -30.82 -2.86 [14C]H4 + [14C]O2(g) -16.59 -18.06 -1.47 [14C]O2 + [14C]O[18O](g) -18.97 -20.76 -1.79 [14C]O[18O] + [18O]2(g) -70.61 -72.90 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.11 -14.96 8.15 Ca[14C][18O]3 + Ca[14C][18O]3(s) -23.12 -14.96 8.15 Ca[14C][18O]3 Ca[14C]O2[18O](s) -17.26 -9.56 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -15.05 -6.86 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -19.95 -12.26 7.69 Ca[14C]O[18O]2 @@ -24215,14 +24150,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.45 -16.31 -2.86 CH4 + CH4(g) -12.91 -15.77 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.42 -12.57 -3.15 H2 + H2(g) -9.29 -12.44 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.34 -67.23 -2.89 O2 - O[18O](g) -67.04 -69.93 -2.89 O[18O] + O2(g) -64.61 -67.50 -2.89 O2 + O[18O](g) -67.31 -70.20 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -24295,38 +24230,38 @@ Calcite 5.00e-04 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 - Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.79e-05 - Ca[13C]O[18O]2(s) 6.97e-11 6.97e-11 1.39e-07 - Ca[13C][18O]3(s) 4.77e-14 4.77e-14 9.53e-11 - Ca[14C]O3(s) 4.12e-19 4.12e-19 8.24e-16 - Ca[14C]O2[18O](s) 2.54e-21 2.54e-21 5.08e-18 - Ca[14C]O[18O]2(s) 5.21e-24 5.21e-24 1.04e-20 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 4.08e-19 4.08e-19 8.16e-16 + Ca[14C]O2[18O](s) 2.51e-21 2.51e-21 5.03e-18 + Ca[14C]O[18O]2(s) 5.16e-24 5.16e-24 1.03e-20 + Ca[14C][18O]3(s) 3.53e-27 2.53e-27 7.06e-24 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99521e-03 -4.9845 permil - R(13C) 1.11769e-02 -0.2974 permil - R(14C) 8.32845e-16 0.070827 pmc - R(18O) H2O(l) 1.99520e-03 -4.986 permil - R(18O) OH- 1.92124e-03 -41.874 permil + R(18O) 1.99521e-03 -4.9842 permil + R(13C) 1.11645e-02 -1.4029 permil + R(14C) 8.24558e-16 0.070122 pmc + R(18O) H2O(l) 1.99520e-03 -4.9857 permil + R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.022 permil - R(13C) CO2(aq) 1.10969e-02 -7.4518 permil - R(14C) CO2(aq) 8.20959e-16 0.069816 pmc - R(18O) CO2(aq) 2.07917e-03 36.888 permil - R(18O) HCO3- 1.99520e-03 -4.986 permil - R(13C) HCO3- 1.11934e-02 1.1832 permil - R(14C) HCO3- 8.35305e-16 0.071036 pmc - R(18O) CO3-2 1.99520e-03 -4.986 permil - R(13C) CO3-2 1.11774e-02 -0.25358 permil - R(14C) CO3-2 8.32909e-16 0.070832 pmc - R(13C) CH4(aq) 1.10969e-02 -7.4518 permil - R(14C) CH4(aq) 8.20959e-16 0.069816 pmc - R(18O) Calcite 2.05264e-03 23.66 permil - R(13C) Calcite 1.12156e-02 3.1662 permil - R(14C) Calcite 8.38617e-16 0.071318 pmc + R(13C) CO2(aq) 1.10846e-02 -8.5495 permil + R(14C) CO2(aq) 8.12790e-16 0.069121 pmc + R(18O) CO2(aq) 2.07917e-03 36.889 permil + R(18O) HCO3- 1.99520e-03 -4.9857 permil + R(13C) HCO3- 1.11811e-02 0.076037 permil + R(14C) HCO3- 8.26993e-16 0.070329 pmc + R(18O) CO3-2 1.99520e-03 -4.9857 permil + R(13C) CO3-2 1.11650e-02 -1.3592 permil + R(14C) CO3-2 8.24621e-16 0.070128 pmc + R(13C) CH4(aq) 1.10846e-02 -8.5495 permil + R(14C) CH4(aq) 8.12790e-16 0.069121 pmc + R(18O) Calcite 2.05264e-03 23.661 permil + R(13C) Calcite 1.12032e-02 2.0568 permil + R(14C) Calcite 8.30273e-16 0.070608 pmc --------------------------------Isotope Alphas--------------------------------- @@ -24337,14 +24272,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.5503e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.758e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6092e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -3.3307e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.3323e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 7.1054e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.1324e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -24355,36 +24290,36 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.527e-05 6.508e-05 - [14C] 4.864e-18 4.849e-18 + [13C] 6.520e-05 6.501e-05 + [14C] 4.815e-18 4.801e-18 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.264 Adjusted to redox equilibrium + pe = -2.346 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.457e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.424e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 26 (127 overall) + Iterations = 80 (181 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.971e-17 - CH4 3.971e-17 3.978e-17 -16.401 -16.400 0.001 (0) +C(-4) 1.806e-16 + CH4 1.806e-16 1.809e-16 -15.743 -15.743 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -24396,115 +24331,115 @@ C(4) 5.840e-03 CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.112e-06 1.020e-06 -5.954 -5.991 -0.037 (0) + CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.103e-08 6.113e-08 -7.214 -7.214 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.041e-13 - H2 2.520e-13 2.525e-13 -12.599 -12.598 0.001 (0) +H(0) 7.361e-13 + H2 3.681e-13 3.687e-13 -12.434 -12.433 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.187 -67.186 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.586 -69.585 0.001 (0) -[13C](-4) 4.407e-19 - [13C]H4 4.407e-19 4.414e-19 -18.356 -18.355 0.001 (0) -[13C](4) 6.527e-05 - H[13C]O3- 5.265e-05 4.816e-05 -4.279 -4.317 -0.039 (0) - [13C]O2 1.105e-05 1.107e-05 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.112e-06 1.020e-06 -5.954 -5.991 -0.037 (0) - H[13C]O2[18O]- 1.050e-07 9.610e-08 -6.979 -7.017 -0.039 (0) - H[13C]O[18O]O- 1.050e-07 9.610e-08 -6.979 -7.017 -0.039 (0) - H[13C][18O]O2- 1.050e-07 9.610e-08 -6.979 -7.017 -0.039 (0) - Ca[13C]O3 6.103e-08 6.113e-08 -7.214 -7.214 0.001 (0) - [13C]O[18O] 4.595e-08 4.603e-08 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.131e-08 2.193e-08 -7.504 -7.659 -0.155 (0) - CaH[13C][18O]O2+ 2.218e-09 2.035e-09 -8.654 -8.691 -0.037 (0) - CaH[13C]O2[18O]+ 2.218e-09 2.035e-09 -8.654 -8.691 -0.037 (0) - CaH[13C]O[18O]O+ 2.218e-09 2.035e-09 -8.654 -8.691 -0.037 (0) - Ca[13C]O2[18O] 3.653e-10 3.659e-10 -9.437 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.096e-10 1.917e-10 -9.679 -9.717 -0.039 (0) - H[13C]O[18O]2- 2.096e-10 1.917e-10 -9.679 -9.717 -0.039 (0) - H[13C][18O]2O- 2.096e-10 1.917e-10 -9.679 -9.717 -0.039 (0) - [13C]O2[18O]-2 1.874e-10 1.313e-10 -9.727 -9.882 -0.155 (0) -[14C](-4) 3.260e-32 - [14C]H4 3.260e-32 3.266e-32 -31.487 -31.486 0.001 (0) -[14C](4) 4.864e-18 - H[14C]O3- 3.929e-18 3.594e-18 -17.406 -17.444 -0.039 (0) - [14C]O2 8.175e-19 8.188e-19 -18.088 -18.087 0.001 (0) - CaH[14C]O3+ 8.296e-20 7.610e-20 -19.081 -19.119 -0.037 (0) - H[14C][18O]O2- 7.839e-21 7.171e-21 -20.106 -20.144 -0.039 (0) - H[14C]O2[18O]- 7.839e-21 7.171e-21 -20.106 -20.144 -0.039 (0) - H[14C]O[18O]O- 7.839e-21 7.171e-21 -20.106 -20.144 -0.039 (0) - Ca[14C]O3 4.548e-21 4.555e-21 -20.342 -20.341 0.001 (0) - [14C]O[18O] 3.399e-21 3.405e-21 -20.469 -20.468 0.001 (0) - [14C]O3-2 2.333e-21 1.634e-21 -20.632 -20.787 -0.155 (0) - CaH[14C]O[18O]O+ 1.655e-22 1.518e-22 -21.781 -21.819 -0.037 (0) - CaH[14C]O2[18O]+ 1.655e-22 1.518e-22 -21.781 -21.819 -0.037 (0) - CaH[14C][18O]O2+ 1.655e-22 1.518e-22 -21.781 -21.819 -0.037 (0) - Ca[14C]O2[18O] 2.722e-23 2.727e-23 -22.565 -22.564 0.001 (0) - H[14C][18O]O[18O]- 1.564e-23 1.431e-23 -22.806 -22.844 -0.039 (0) - H[14C][18O]2O- 1.564e-23 1.431e-23 -22.806 -22.844 -0.039 (0) - H[14C]O[18O]2- 1.564e-23 1.431e-23 -22.806 -22.844 -0.039 (0) - [14C]O2[18O]-2 1.396e-23 9.783e-24 -22.855 -23.010 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.516 -67.515 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.915 -69.914 0.001 (0) +[13C](-4) 2.002e-18 + [13C]H4 2.002e-18 2.005e-18 -17.699 -17.698 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 1.468e-31 + [14C]H4 1.468e-31 1.471e-31 -30.833 -30.833 0.001 (0) +[14C](4) 4.815e-18 + H[14C]O3- 3.890e-18 3.559e-18 -17.410 -17.449 -0.039 (0) + [14C]O2 8.094e-19 8.107e-19 -18.092 -18.091 0.001 (0) + CaH[14C]O3+ 8.214e-20 7.535e-20 -19.085 -19.123 -0.037 (0) + H[14C]O2[18O]- 7.761e-21 7.100e-21 -20.110 -20.149 -0.039 (0) + H[14C]O[18O]O- 7.761e-21 7.100e-21 -20.110 -20.149 -0.039 (0) + H[14C][18O]O2- 7.761e-21 7.100e-21 -20.110 -20.149 -0.039 (0) + Ca[14C]O3 4.503e-21 4.510e-21 -20.347 -20.346 0.001 (0) + [14C]O[18O] 3.366e-21 3.371e-21 -20.473 -20.472 0.001 (0) + [14C]O3-2 2.310e-21 1.618e-21 -20.636 -20.791 -0.155 (0) + CaH[14C]O2[18O]+ 1.639e-22 1.503e-22 -21.785 -21.823 -0.037 (0) + CaH[14C]O[18O]O+ 1.639e-22 1.503e-22 -21.785 -21.823 -0.037 (0) + CaH[14C][18O]O2+ 1.639e-22 1.503e-22 -21.785 -21.823 -0.037 (0) + Ca[14C]O2[18O] 2.695e-23 2.700e-23 -22.569 -22.569 0.001 (0) + H[14C]O[18O]2- 1.548e-23 1.417e-23 -22.810 -22.849 -0.039 (0) + H[14C][18O]2O- 1.548e-23 1.417e-23 -22.810 -22.849 -0.039 (0) + H[14C][18O]O[18O]- 1.548e-23 1.417e-23 -22.810 -22.849 -0.039 (0) + [14C]O2[18O]-2 1.383e-23 9.686e-24 -22.859 -23.014 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.586 -69.585 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.587 -72.586 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.915 -69.914 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.916 -72.915 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.50 -18.36 -2.86 [13C]H4 + [13C]H4(g) -14.84 -17.70 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.98 -23.49 -1.50 [14C][18O]2 - [14C]H4(g) -28.63 -31.49 -2.86 [14C]H4 + [14C][18O]2(g) -21.99 -23.49 -1.50 [14C][18O]2 + [14C]H4(g) -27.97 -30.83 -2.86 [14C]H4 [14C]O2(g) -16.62 -18.09 -1.47 [14C]O2 [14C]O[18O](g) -19.00 -20.79 -1.79 [14C]O[18O] - [18O]2(g) -70.30 -72.59 -2.29 [18O]2 + [18O]2(g) -70.62 -72.92 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.15 -14.99 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.29 -9.59 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.08 -6.89 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.98 -12.29 7.69 Ca[14C]O[18O]2 + Ca[14C][18O]3(s) -23.15 -15.00 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -17.30 -9.60 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -15.09 -6.90 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -19.99 -12.30 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.54 -16.40 -2.86 CH4 + CH4(g) -12.88 -15.74 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.45 -12.60 -3.15 H2 + H2(g) -9.28 -12.43 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.29 -67.19 -2.89 O2 - O[18O](g) -66.99 -69.89 -2.89 O[18O] + O2(g) -64.62 -67.52 -2.89 O2 + O[18O](g) -67.32 -70.22 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -24577,38 +24512,38 @@ Calcite 5.00e-04 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 - Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.79e-05 - Ca[13C]O[18O]2(s) 6.97e-11 6.97e-11 1.39e-07 - Ca[13C][18O]3(s) 4.77e-14 4.77e-14 9.53e-11 - Ca[14C]O3(s) 3.80e-19 3.80e-19 7.59e-16 - Ca[14C]O2[18O](s) 2.34e-21 2.34e-21 4.68e-18 - Ca[14C]O[18O]2(s) 1.01e-27 1.00e-29 2.02e-24 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 3.76e-19 3.76e-19 7.52e-16 + Ca[14C]O2[18O](s) 2.31e-21 2.31e-21 4.63e-18 + Ca[14C]O[18O]2(s) 4.75e-24 4.75e-24 9.50e-21 + Ca[14C][18O]3(s) 3.25e-27 2.25e-27 6.50e-24 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99521e-03 -4.9843 permil - R(13C) 1.11759e-02 -0.38302 permil - R(14C) 7.67240e-16 0.065248 pmc - R(18O) H2O(l) 1.99520e-03 -4.9859 permil + R(18O) 1.99521e-03 -4.984 permil + R(13C) 1.11645e-02 -1.4017 permil + R(14C) 7.59606e-16 0.064598 pmc + R(18O) H2O(l) 1.99520e-03 -4.9855 permil R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.022 permil - R(13C) CO2(aq) 1.10959e-02 -7.5369 permil - R(14C) CO2(aq) 7.56290e-16 0.064317 pmc - R(18O) CO2(aq) 2.07917e-03 36.888 permil - R(18O) HCO3- 1.99520e-03 -4.9859 permil - R(13C) HCO3- 1.11925e-02 1.0974 permil - R(14C) HCO3- 7.69506e-16 0.06544 pmc - R(18O) CO3-2 1.99520e-03 -4.9859 permil - R(13C) CO3-2 1.11764e-02 -0.33921 permil - R(14C) CO3-2 7.67299e-16 0.065253 pmc - R(13C) CH4(aq) 1.10959e-02 -7.5369 permil - R(14C) CH4(aq) 7.56290e-16 0.064317 pmc + R(13C) CO2(aq) 1.10846e-02 -8.5483 permil + R(14C) CO2(aq) 7.48764e-16 0.063677 pmc + R(18O) CO2(aq) 2.07917e-03 36.889 permil + R(18O) HCO3- 1.99520e-03 -4.9855 permil + R(13C) HCO3- 1.11811e-02 0.077218 permil + R(14C) HCO3- 7.61849e-16 0.064789 pmc + R(18O) CO3-2 1.99520e-03 -4.9855 permil + R(13C) CO3-2 1.11650e-02 -1.358 permil + R(14C) CO3-2 7.59664e-16 0.064603 pmc + R(13C) CH4(aq) 1.10846e-02 -8.5483 permil + R(14C) CH4(aq) 7.48764e-16 0.063677 pmc R(18O) Calcite 2.05264e-03 23.661 permil - R(13C) Calcite 1.12146e-02 3.0803 permil - R(14C) Calcite 7.72548e-16 0.065699 pmc + R(13C) Calcite 1.12032e-02 2.058 permil + R(14C) Calcite 7.64870e-16 0.065046 pmc --------------------------------Isotope Alphas--------------------------------- @@ -24619,17 +24554,17 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.547e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6176e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.0214e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 0 0 +Alpha 13C CH4(aq)/CO2(aq) 1 3.9968e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.1102e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.269 21.282 +Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ @@ -24637,43 +24572,43 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.269 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.526e-05 6.507e-05 - [14C] 4.480e-18 4.467e-18 + [13C] 6.520e-05 6.501e-05 + [14C] 4.436e-18 4.423e-18 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.274 Adjusted to redox equilibrium + pe = -2.344 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.457e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.424e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 145 (246 overall) + Iterations = 118 (219 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.831e-17 - CH4 4.831e-17 4.838e-17 -16.316 -16.315 0.001 (0) +C(-4) 1.741e-16 + CH4 1.741e-16 1.743e-16 -15.759 -15.759 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -24681,97 +24616,97 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.112e-06 1.020e-06 -5.954 -5.992 -0.037 (0) + CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.103e-08 6.113e-08 -7.214 -7.214 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.294e-13 - H2 2.647e-13 2.651e-13 -12.577 -12.577 0.001 (0) +H(0) 7.294e-13 + H2 3.647e-13 3.653e-13 -12.438 -12.437 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.229 -67.229 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.628 -69.628 0.001 (0) -[13C](-4) 5.360e-19 - [13C]H4 5.360e-19 5.369e-19 -18.271 -18.270 0.001 (0) -[13C](4) 6.526e-05 - H[13C]O3- 5.264e-05 4.816e-05 -4.279 -4.317 -0.039 (0) - [13C]O2 1.105e-05 1.107e-05 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.112e-06 1.020e-06 -5.954 -5.992 -0.037 (0) - H[13C]O[18O]O- 1.050e-07 9.609e-08 -6.979 -7.017 -0.039 (0) - H[13C][18O]O2- 1.050e-07 9.609e-08 -6.979 -7.017 -0.039 (0) - H[13C]O2[18O]- 1.050e-07 9.609e-08 -6.979 -7.017 -0.039 (0) - Ca[13C]O3 6.103e-08 6.113e-08 -7.214 -7.214 0.001 (0) - [13C]O[18O] 4.595e-08 4.602e-08 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.131e-08 2.193e-08 -7.504 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.218e-09 2.035e-09 -8.654 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.218e-09 2.035e-09 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.218e-09 2.035e-09 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.653e-10 3.659e-10 -9.437 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.096e-10 1.917e-10 -9.679 -9.717 -0.039 (0) - H[13C]O[18O]2- 2.096e-10 1.917e-10 -9.679 -9.717 -0.039 (0) - H[13C][18O]2O- 2.096e-10 1.917e-10 -9.679 -9.717 -0.039 (0) - [13C]O2[18O]-2 1.874e-10 1.313e-10 -9.727 -9.882 -0.155 (0) -[14C](-4) 3.653e-32 - [14C]H4 3.653e-32 3.659e-32 -31.437 -31.437 0.001 (0) -[14C](4) 4.480e-18 - H[14C]O3- 3.619e-18 3.311e-18 -17.441 -17.480 -0.039 (0) - [14C]O2 7.531e-19 7.543e-19 -18.123 -18.122 0.001 (0) - CaH[14C]O3+ 7.643e-20 7.011e-20 -19.117 -19.154 -0.037 (0) - H[14C][18O]O2- 7.221e-21 6.606e-21 -20.141 -20.180 -0.039 (0) - H[14C]O2[18O]- 7.221e-21 6.606e-21 -20.141 -20.180 -0.039 (0) - H[14C]O[18O]O- 7.221e-21 6.606e-21 -20.141 -20.180 -0.039 (0) - Ca[14C]O3 4.190e-21 4.197e-21 -20.378 -20.377 0.001 (0) - [14C]O[18O] 3.132e-21 3.137e-21 -20.504 -20.504 0.001 (0) - [14C]O3-2 2.149e-21 1.506e-21 -20.668 -20.822 -0.155 (0) - CaH[14C]O[18O]O+ 1.525e-22 1.399e-22 -21.817 -21.854 -0.037 (0) - CaH[14C]O2[18O]+ 1.525e-22 1.399e-22 -21.817 -21.854 -0.037 (0) - CaH[14C][18O]O2+ 1.525e-22 1.399e-22 -21.817 -21.854 -0.037 (0) - Ca[14C]O2[18O] 2.508e-23 2.512e-23 -22.601 -22.600 0.001 (0) - H[14C][18O]2O- 1.441e-23 1.318e-23 -22.841 -22.880 -0.039 (0) - H[14C]O[18O]2- 1.441e-23 1.318e-23 -22.841 -22.880 -0.039 (0) - H[14C][18O]O[18O]- 1.441e-23 1.318e-23 -22.841 -22.880 -0.039 (0) - [14C]O2[18O]-2 1.286e-23 9.012e-24 -22.891 -23.045 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.508 -67.507 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.907 -69.906 0.001 (0) +[13C](-4) 1.929e-18 + [13C]H4 1.929e-18 1.933e-18 -17.715 -17.714 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 1.303e-31 + [14C]H4 1.303e-31 1.305e-31 -30.885 -30.884 0.001 (0) +[14C](4) 4.436e-18 + H[14C]O3- 3.583e-18 3.278e-18 -17.446 -17.484 -0.039 (0) + [14C]O2 7.456e-19 7.468e-19 -18.127 -18.127 0.001 (0) + CaH[14C]O3+ 7.567e-20 6.941e-20 -19.121 -19.159 -0.037 (0) + H[14C]O2[18O]- 7.149e-21 6.541e-21 -20.146 -20.184 -0.039 (0) + H[14C]O[18O]O- 7.149e-21 6.541e-21 -20.146 -20.184 -0.039 (0) + H[14C][18O]O2- 7.149e-21 6.541e-21 -20.146 -20.184 -0.039 (0) + Ca[14C]O3 4.148e-21 4.155e-21 -20.382 -20.381 0.001 (0) + [14C]O[18O] 3.100e-21 3.106e-21 -20.509 -20.508 0.001 (0) + [14C]O3-2 2.128e-21 1.491e-21 -20.672 -20.827 -0.155 (0) + CaH[14C]O2[18O]+ 1.510e-22 1.385e-22 -21.821 -21.859 -0.037 (0) + CaH[14C]O[18O]O+ 1.510e-22 1.385e-22 -21.821 -21.859 -0.037 (0) + CaH[14C][18O]O2+ 1.510e-22 1.385e-22 -21.821 -21.859 -0.037 (0) + Ca[14C]O2[18O] 2.483e-23 2.487e-23 -22.605 -22.604 0.001 (0) + H[14C]O[18O]2- 1.426e-23 1.305e-23 -22.846 -22.884 -0.039 (0) + H[14C][18O]2O- 1.426e-23 1.305e-23 -22.846 -22.884 -0.039 (0) + H[14C][18O]O[18O]- 1.426e-23 1.305e-23 -22.846 -22.884 -0.039 (0) + [14C]O2[18O]-2 1.274e-23 8.923e-24 -22.895 -23.049 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.628 -69.628 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.629 -72.629 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.907 -69.906 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.908 -72.907 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.41 -18.27 -2.86 [13C]H4 + [13C]H4(g) -14.85 -17.71 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -22.02 -23.52 -1.50 [14C][18O]2 - [14C]H4(g) -28.58 -31.44 -2.86 [14C]H4 - [14C]O2(g) -16.65 -18.12 -1.47 [14C]O2 - [14C]O[18O](g) -19.04 -20.82 -1.79 [14C]O[18O] - [18O]2(g) -70.34 -72.63 -2.29 [18O]2 + [14C][18O]2(g) -22.02 -23.53 -1.50 [14C][18O]2 + [14C]H4(g) -28.02 -30.88 -2.86 [14C]H4 + [14C]O2(g) -16.66 -18.13 -1.47 [14C]O2 + [14C]O[18O](g) -19.04 -20.83 -1.79 [14C]O[18O] + [18O]2(g) -70.62 -72.91 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.18 -15.03 8.15 Ca[14C][18O]3 + Ca[14C][18O]3(s) -23.19 -15.03 8.15 Ca[14C][18O]3 Ca[14C]O2[18O](s) -17.33 -9.63 7.70 Ca[14C]O2[18O] Ca[14C]O3(s) -15.12 -6.93 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -20.02 -12.33 7.69 Ca[14C]O[18O]2 @@ -24779,14 +24714,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.46 -16.32 -2.86 CH4 + CH4(g) -12.90 -15.76 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.43 -12.58 -3.15 H2 + H2(g) -9.29 -12.44 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.34 -67.23 -2.89 O2 - O[18O](g) -67.04 -69.93 -2.89 O[18O] + O2(g) -64.61 -67.51 -2.89 O2 + O[18O](g) -67.31 -70.21 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -24859,38 +24794,38 @@ Calcite 5.00e-04 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 - Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.79e-05 - Ca[13C]O[18O]2(s) 6.97e-11 6.97e-11 1.39e-07 - Ca[13C][18O]3(s) 4.77e-14 4.77e-14 9.53e-11 - Ca[14C]O3(s) 3.50e-19 3.50e-19 6.99e-16 - Ca[14C]O2[18O](s) 2.15e-21 2.15e-21 4.31e-18 - Ca[14C]O[18O]2(s) 4.47e-26 4.37e-26 8.95e-23 - Ca[14C][18O]3(s) 1.01e-27 1.02e-29 2.02e-24 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 3.46e-19 3.46e-19 6.93e-16 + Ca[14C]O2[18O](s) 2.13e-21 2.13e-21 4.26e-18 + Ca[14C]O[18O]2(s) 4.38e-24 4.38e-24 8.75e-21 + Ca[14C][18O]3(s) 2.99e-27 1.99e-27 5.99e-24 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99521e-03 -4.9842 permil - R(13C) 1.11750e-02 -0.46193 permil - R(14C) 7.06803e-16 0.060108 pmc - R(18O) H2O(l) 1.99520e-03 -4.9857 permil + R(18O) 1.99521e-03 -4.9839 permil + R(13C) 1.11645e-02 -1.4007 permil + R(14C) 6.99770e-16 0.05951 pmc + R(18O) H2O(l) 1.99520e-03 -4.9854 permil R(18O) OH- 1.92124e-03 -41.873 permil - R(18O) H3O+ 2.04134e-03 18.022 permil - R(13C) CO2(aq) 1.10951e-02 -7.6152 permil - R(14C) CO2(aq) 6.96715e-16 0.05925 pmc - R(18O) CO2(aq) 2.07917e-03 36.888 permil - R(18O) HCO3- 1.99520e-03 -4.9857 permil - R(13C) HCO3- 1.11916e-02 1.0184 permil - R(14C) HCO3- 7.08891e-16 0.060286 pmc - R(18O) CO3-2 1.99520e-03 -4.9857 permil - R(13C) CO3-2 1.11755e-02 -0.41812 permil - R(14C) CO3-2 7.06858e-16 0.060113 pmc - R(13C) CH4(aq) 1.10951e-02 -7.6152 permil - R(14C) CH4(aq) 6.96715e-16 0.05925 pmc - R(18O) Calcite 2.05264e-03 23.661 permil - R(13C) Calcite 1.12138e-02 3.0011 permil - R(14C) Calcite 7.11693e-16 0.060524 pmc + R(18O) H3O+ 2.04134e-03 18.023 permil + R(13C) CO2(aq) 1.10846e-02 -8.5472 permil + R(14C) CO2(aq) 6.89782e-16 0.058661 pmc + R(18O) CO2(aq) 2.07917e-03 36.889 permil + R(18O) HCO3- 1.99520e-03 -4.9854 permil + R(13C) HCO3- 1.11811e-02 0.078305 permil + R(14C) HCO3- 7.01837e-16 0.059686 pmc + R(18O) CO3-2 1.99520e-03 -4.9854 permil + R(13C) CO3-2 1.11650e-02 -1.3569 permil + R(14C) CO3-2 6.99824e-16 0.059515 pmc + R(13C) CH4(aq) 1.10846e-02 -8.5472 permil + R(14C) CH4(aq) 6.89782e-16 0.058661 pmc + R(18O) Calcite 2.05265e-03 23.661 permil + R(13C) Calcite 1.12032e-02 2.0591 permil + R(14C) Calcite 7.04620e-16 0.059922 pmc --------------------------------Isotope Alphas--------------------------------- @@ -24901,17 +24836,17 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.2164e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6013e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5629e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.1324e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -4.996e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 2.6645e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 7.1054e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.269 21.282 +Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ @@ -24919,156 +24854,156 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.269 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.526e-05 6.507e-05 - [14C] 4.128e-18 4.115e-18 + [13C] 6.520e-05 6.501e-05 + [14C] 4.087e-18 4.075e-18 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.264 Adjusted to redox equilibrium + pe = -2.363 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.457e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.424e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 49 (150 overall) + Iterations = 99 (200 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.959e-17 - CH4 3.959e-17 3.966e-17 -16.402 -16.402 0.001 (0) +C(-4) 2.476e-16 + CH4 2.476e-16 2.480e-16 -15.606 -15.606 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.112e-06 1.020e-06 -5.954 -5.992 -0.037 (0) + CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.102e-08 6.112e-08 -7.215 -7.214 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.037e-13 - H2 2.518e-13 2.523e-13 -12.599 -12.598 0.001 (0) +H(0) 7.965e-13 + H2 3.982e-13 3.989e-13 -12.400 -12.399 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.186 -67.185 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.585 -69.584 0.001 (0) -[13C](-4) 4.393e-19 - [13C]H4 4.393e-19 4.400e-19 -18.357 -18.357 0.001 (0) -[13C](4) 6.526e-05 - H[13C]O3- 5.264e-05 4.816e-05 -4.279 -4.317 -0.039 (0) - [13C]O2 1.105e-05 1.107e-05 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.112e-06 1.020e-06 -5.954 -5.992 -0.037 (0) - H[13C][18O]O2- 1.050e-07 9.608e-08 -6.979 -7.017 -0.039 (0) - H[13C]O2[18O]- 1.050e-07 9.608e-08 -6.979 -7.017 -0.039 (0) - H[13C]O[18O]O- 1.050e-07 9.608e-08 -6.979 -7.017 -0.039 (0) - Ca[13C]O3 6.102e-08 6.112e-08 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.594e-08 4.602e-08 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.130e-08 2.193e-08 -7.504 -7.659 -0.155 (0) - CaH[13C]O[18O]O+ 2.218e-09 2.034e-09 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.218e-09 2.034e-09 -8.654 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.218e-09 2.034e-09 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.653e-10 3.659e-10 -9.437 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.095e-10 1.917e-10 -9.679 -9.717 -0.039 (0) - H[13C]O[18O]2- 2.095e-10 1.917e-10 -9.679 -9.717 -0.039 (0) - H[13C][18O]2O- 2.095e-10 1.917e-10 -9.679 -9.717 -0.039 (0) - [13C]O2[18O]-2 1.874e-10 1.313e-10 -9.727 -9.882 -0.155 (0) -[14C](-4) 2.758e-32 - [14C]H4 2.758e-32 2.763e-32 -31.559 -31.559 0.001 (0) -[14C](4) 4.128e-18 - H[14C]O3- 3.334e-18 3.050e-18 -17.477 -17.516 -0.039 (0) - [14C]O2 6.938e-19 6.949e-19 -18.159 -18.158 0.001 (0) - CaH[14C]O3+ 7.041e-20 6.459e-20 -19.152 -19.190 -0.037 (0) - H[14C][18O]O2- 6.652e-21 6.086e-21 -20.177 -20.216 -0.039 (0) - H[14C]O2[18O]- 6.652e-21 6.086e-21 -20.177 -20.216 -0.039 (0) - H[14C]O[18O]O- 6.652e-21 6.086e-21 -20.177 -20.216 -0.039 (0) - Ca[14C]O3 3.860e-21 3.866e-21 -20.413 -20.413 0.001 (0) - [14C]O[18O] 2.885e-21 2.890e-21 -20.540 -20.539 0.001 (0) - [14C]O3-2 1.980e-21 1.387e-21 -20.703 -20.858 -0.155 (0) - CaH[14C]O[18O]O+ 1.405e-22 1.289e-22 -21.852 -21.890 -0.037 (0) - CaH[14C]O2[18O]+ 1.405e-22 1.289e-22 -21.852 -21.890 -0.037 (0) - CaH[14C][18O]O2+ 1.405e-22 1.289e-22 -21.852 -21.890 -0.037 (0) - Ca[14C]O2[18O] 2.310e-23 2.314e-23 -22.636 -22.636 0.001 (0) - H[14C]O[18O]2- 1.327e-23 1.214e-23 -22.877 -22.916 -0.039 (0) - H[14C][18O]O[18O]- 1.327e-23 1.214e-23 -22.877 -22.916 -0.039 (0) - H[14C][18O]2O- 1.327e-23 1.214e-23 -22.877 -22.916 -0.039 (0) - [14C]O2[18O]-2 1.185e-23 8.302e-24 -22.926 -23.081 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.584 -67.583 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.983 -69.982 0.001 (0) +[13C](-4) 2.744e-18 + [13C]H4 2.744e-18 2.749e-18 -17.562 -17.561 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 1.708e-31 + [14C]H4 1.708e-31 1.710e-31 -30.768 -30.767 0.001 (0) +[14C](4) 4.087e-18 + H[14C]O3- 3.301e-18 3.020e-18 -17.481 -17.520 -0.039 (0) + [14C]O2 6.869e-19 6.880e-19 -18.163 -18.162 0.001 (0) + CaH[14C]O3+ 6.971e-20 6.394e-20 -19.157 -19.194 -0.037 (0) + H[14C]O2[18O]- 6.586e-21 6.026e-21 -20.181 -20.220 -0.039 (0) + H[14C]O[18O]O- 6.586e-21 6.026e-21 -20.181 -20.220 -0.039 (0) + H[14C][18O]O2- 6.586e-21 6.026e-21 -20.181 -20.220 -0.039 (0) + Ca[14C]O3 3.821e-21 3.828e-21 -20.418 -20.417 0.001 (0) + [14C]O[18O] 2.856e-21 2.861e-21 -20.544 -20.543 0.001 (0) + [14C]O3-2 1.960e-21 1.373e-21 -20.708 -20.862 -0.155 (0) + CaH[14C]O2[18O]+ 1.391e-22 1.276e-22 -21.857 -21.894 -0.037 (0) + CaH[14C]O[18O]O+ 1.391e-22 1.276e-22 -21.857 -21.894 -0.037 (0) + CaH[14C][18O]O2+ 1.391e-22 1.276e-22 -21.857 -21.894 -0.037 (0) + Ca[14C]O2[18O] 2.287e-23 2.291e-23 -22.641 -22.640 0.001 (0) + H[14C]O[18O]2- 1.314e-23 1.202e-23 -22.881 -22.920 -0.039 (0) + H[14C][18O]2O- 1.314e-23 1.202e-23 -22.881 -22.920 -0.039 (0) + H[14C][18O]O[18O]- 1.314e-23 1.202e-23 -22.881 -22.920 -0.039 (0) + [14C]O2[18O]-2 1.173e-23 8.220e-24 -22.931 -23.085 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.585 -69.584 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.586 -72.585 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.983 -69.982 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.984 -72.984 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.50 -18.36 -2.86 [13C]H4 + [13C]H4(g) -14.70 -17.56 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -22.05 -23.56 -1.50 [14C][18O]2 - [14C]H4(g) -28.70 -31.56 -2.86 [14C]H4 + [14C][18O]2(g) -22.06 -23.56 -1.50 [14C][18O]2 + [14C]H4(g) -27.91 -30.77 -2.86 [14C]H4 [14C]O2(g) -16.69 -18.16 -1.47 [14C]O2 - [14C]O[18O](g) -19.07 -20.86 -1.79 [14C]O[18O] - [18O]2(g) -70.30 -72.59 -2.29 [18O]2 + [14C]O[18O](g) -19.08 -20.86 -1.79 [14C]O[18O] + [18O]2(g) -70.69 -72.98 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.22 -15.06 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.37 -9.66 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.16 -6.96 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -20.05 -12.36 7.69 Ca[14C]O[18O]2 + Ca[14C][18O]3(s) -23.22 -15.07 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -17.37 -9.67 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -15.16 -6.97 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -20.06 -12.37 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.54 -16.40 -2.86 CH4 + CH4(g) -12.75 -15.61 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.45 -12.60 -3.15 H2 + H2(g) -9.25 -12.40 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.29 -67.19 -2.89 O2 - O[18O](g) -66.99 -69.89 -2.89 O[18O] + O2(g) -64.69 -67.58 -2.89 O2 + O[18O](g) -67.39 -70.28 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -25135,38 +25070,38 @@ Calcite 5.00e-04 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 - Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.79e-05 - Ca[13C]O[18O]2(s) 6.97e-11 6.97e-11 1.39e-07 - Ca[13C][18O]3(s) 4.77e-14 4.77e-14 9.53e-11 - Ca[14C]O3(s) 3.22e-19 3.22e-19 6.44e-16 - Ca[14C]O2[18O](s) 1.98e-21 1.98e-21 3.97e-18 - Ca[14C]O[18O]2(s) 4.07e-24 4.07e-24 8.15e-21 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 + Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 3.19e-19 3.19e-19 6.38e-16 + Ca[14C]O2[18O](s) 1.96e-21 1.96e-21 3.93e-18 + Ca[14C]O[18O]2(s) 4.03e-24 4.03e-24 8.06e-21 + Ca[14C][18O]3(s) 2.76e-27 1.76e-27 5.52e-24 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99521e-03 -4.9841 permil - R(13C) 1.11742e-02 -0.53464 permil - R(14C) 6.51126e-16 0.055373 pmc - R(18O) H2O(l) 1.99520e-03 -4.9856 permil + R(18O) 1.99521e-03 -4.9837 permil + R(13C) 1.11646e-02 -1.3997 permil + R(14C) 6.44647e-16 0.054822 pmc + R(18O) H2O(l) 1.99520e-03 -4.9853 permil R(18O) OH- 1.92124e-03 -41.873 permil - R(18O) H3O+ 2.04134e-03 18.022 permil - R(13C) CO2(aq) 1.10943e-02 -7.6874 permil - R(14C) CO2(aq) 6.41833e-16 0.054583 pmc + R(18O) H3O+ 2.04134e-03 18.023 permil + R(13C) CO2(aq) 1.10847e-02 -8.5462 permil + R(14C) CO2(aq) 6.35447e-16 0.05404 pmc R(18O) CO2(aq) 2.07917e-03 36.889 permil - R(18O) HCO3- 1.99520e-03 -4.9856 permil - R(13C) HCO3- 1.11908e-02 0.94561 permil - R(14C) HCO3- 6.53049e-16 0.055537 pmc - R(18O) CO3-2 1.99520e-03 -4.9856 permil - R(13C) CO3-2 1.11747e-02 -0.49083 permil - R(14C) CO3-2 6.51176e-16 0.055377 pmc - R(13C) CH4(aq) 1.10943e-02 -7.6874 permil - R(14C) CH4(aq) 6.41833e-16 0.054583 pmc - R(18O) Calcite 2.05264e-03 23.661 permil - R(13C) Calcite 1.12129e-02 2.9281 permil - R(14C) Calcite 6.55639e-16 0.055757 pmc + R(18O) HCO3- 1.99520e-03 -4.9853 permil + R(13C) HCO3- 1.11811e-02 0.079307 permil + R(14C) HCO3- 6.46551e-16 0.054984 pmc + R(18O) CO3-2 1.99520e-03 -4.9853 permil + R(13C) CO3-2 1.11650e-02 -1.3559 permil + R(14C) CO3-2 6.44697e-16 0.054826 pmc + R(13C) CH4(aq) 1.10847e-02 -8.5462 permil + R(14C) CH4(aq) 6.35447e-16 0.05404 pmc + R(18O) Calcite 2.05265e-03 23.661 permil + R(13C) Calcite 1.12032e-02 2.0601 permil + R(14C) Calcite 6.49115e-16 0.055202 pmc --------------------------------Isotope Alphas--------------------------------- @@ -25177,14 +25112,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.6613e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6889e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7717e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 4.2188e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 4.2188e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -5.9952e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -4.2188e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -25195,36 +25130,36 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.525e-05 6.506e-05 - [14C] 3.802e-18 3.791e-18 + [13C] 6.520e-05 6.501e-05 + [14C] 3.765e-18 3.754e-18 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.253 Adjusted to redox equilibrium + pe = -2.357 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.457e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.429e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 39 + Iterations = 64 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.271e-17 - CH4 3.271e-17 3.276e-17 -16.485 -16.485 0.001 (0) +C(-4) 2.213e-16 + CH4 2.213e-16 2.217e-16 -15.655 -15.654 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -25239,112 +25174,112 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.111e-06 1.020e-06 -5.954 -5.992 -0.037 (0) + CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.102e-08 6.112e-08 -7.215 -7.214 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.802e-13 - H2 2.401e-13 2.405e-13 -12.620 -12.619 0.001 (0) +H(0) 7.745e-13 + H2 3.872e-13 3.879e-13 -12.412 -12.411 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.145 -67.144 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.544 -69.543 0.001 (0) -[13C](-4) 3.628e-19 - [13C]H4 3.628e-19 3.634e-19 -18.440 -18.440 0.001 (0) -[13C](4) 6.525e-05 - H[13C]O3- 5.263e-05 4.815e-05 -4.279 -4.317 -0.039 (0) - [13C]O2 1.105e-05 1.107e-05 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.111e-06 1.020e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.050e-07 9.608e-08 -6.979 -7.017 -0.039 (0) - H[13C]O[18O]O- 1.050e-07 9.608e-08 -6.979 -7.017 -0.039 (0) - H[13C][18O]O2- 1.050e-07 9.608e-08 -6.979 -7.017 -0.039 (0) - Ca[13C]O3 6.102e-08 6.112e-08 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.594e-08 4.601e-08 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.130e-08 2.193e-08 -7.504 -7.659 -0.155 (0) - CaH[13C][18O]O2+ 2.218e-09 2.034e-09 -8.654 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.218e-09 2.034e-09 -8.654 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.218e-09 2.034e-09 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.652e-10 3.658e-10 -9.437 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.095e-10 1.917e-10 -9.679 -9.717 -0.039 (0) - H[13C]O[18O]2- 2.095e-10 1.917e-10 -9.679 -9.717 -0.039 (0) - H[13C][18O]2O- 2.095e-10 1.917e-10 -9.679 -9.717 -0.039 (0) - [13C]O2[18O]-2 1.874e-10 1.313e-10 -9.727 -9.882 -0.155 (0) -[14C](-4) 2.099e-32 - [14C]H4 2.099e-32 2.103e-32 -31.678 -31.677 0.001 (0) -[14C](4) 3.802e-18 - H[14C]O3- 3.072e-18 2.810e-18 -17.513 -17.551 -0.039 (0) - [14C]O2 6.391e-19 6.402e-19 -18.194 -18.194 0.001 (0) - CaH[14C]O3+ 6.486e-20 5.950e-20 -19.188 -19.225 -0.037 (0) - H[14C][18O]O2- 6.128e-21 5.607e-21 -20.213 -20.251 -0.039 (0) - H[14C]O2[18O]- 6.128e-21 5.607e-21 -20.213 -20.251 -0.039 (0) - H[14C]O[18O]O- 6.128e-21 5.607e-21 -20.213 -20.251 -0.039 (0) - Ca[14C]O3 3.556e-21 3.562e-21 -20.449 -20.448 0.001 (0) - [14C]O[18O] 2.658e-21 2.662e-21 -20.575 -20.575 0.001 (0) - [14C]O3-2 1.824e-21 1.278e-21 -20.739 -20.894 -0.155 (0) - CaH[14C]O[18O]O+ 1.294e-22 1.187e-22 -21.888 -21.926 -0.037 (0) - CaH[14C]O2[18O]+ 1.294e-22 1.187e-22 -21.888 -21.926 -0.037 (0) - CaH[14C][18O]O2+ 1.294e-22 1.187e-22 -21.888 -21.926 -0.037 (0) - Ca[14C]O2[18O] 2.128e-23 2.132e-23 -22.672 -22.671 0.001 (0) - H[14C][18O]O[18O]- 1.223e-23 1.119e-23 -22.913 -22.951 -0.039 (0) - H[14C][18O]2O- 1.223e-23 1.119e-23 -22.913 -22.951 -0.039 (0) - H[14C]O[18O]2- 1.223e-23 1.119e-23 -22.913 -22.951 -0.039 (0) - [14C]O2[18O]-2 1.092e-23 7.648e-24 -22.962 -23.116 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.560 -67.559 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.959 -69.958 0.001 (0) +[13C](-4) 2.453e-18 + [13C]H4 2.453e-18 2.457e-18 -17.610 -17.610 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 1.406e-31 + [14C]H4 1.406e-31 1.409e-31 -30.852 -30.851 0.001 (0) +[14C](4) 3.765e-18 + H[14C]O3- 3.041e-18 2.782e-18 -17.517 -17.556 -0.039 (0) + [14C]O2 6.328e-19 6.338e-19 -18.199 -18.198 0.001 (0) + CaH[14C]O3+ 6.422e-20 5.891e-20 -19.192 -19.230 -0.037 (0) + H[14C]O2[18O]- 6.067e-21 5.551e-21 -20.217 -20.256 -0.039 (0) + H[14C]O[18O]O- 6.067e-21 5.551e-21 -20.217 -20.256 -0.039 (0) + H[14C][18O]O2- 6.067e-21 5.551e-21 -20.217 -20.256 -0.039 (0) + Ca[14C]O3 3.520e-21 3.526e-21 -20.453 -20.453 0.001 (0) + [14C]O[18O] 2.631e-21 2.636e-21 -20.580 -20.579 0.001 (0) + [14C]O3-2 1.806e-21 1.265e-21 -20.743 -20.898 -0.155 (0) + CaH[14C]O2[18O]+ 1.281e-22 1.175e-22 -21.892 -21.930 -0.037 (0) + CaH[14C]O[18O]O+ 1.281e-22 1.175e-22 -21.892 -21.930 -0.037 (0) + CaH[14C][18O]O2+ 1.281e-22 1.175e-22 -21.892 -21.930 -0.037 (0) + Ca[14C]O2[18O] 2.107e-23 2.111e-23 -22.676 -22.676 0.001 (0) + H[14C]O[18O]2- 1.211e-23 1.108e-23 -22.917 -22.956 -0.039 (0) + H[14C][18O]2O- 1.211e-23 1.108e-23 -22.917 -22.956 -0.039 (0) + H[14C][18O]O[18O]- 1.211e-23 1.108e-23 -22.917 -22.956 -0.039 (0) + [14C]O2[18O]-2 1.081e-23 7.572e-24 -22.966 -23.121 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.544 -69.543 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.545 -72.544 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.959 -69.958 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.960 -72.959 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.58 -18.44 -2.86 [13C]H4 + [13C]H4(g) -14.75 -17.61 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -22.09 -23.59 -1.50 [14C][18O]2 - [14C]H4(g) -28.82 -31.68 -2.86 [14C]H4 - [14C]O2(g) -16.73 -18.19 -1.47 [14C]O2 - [14C]O[18O](g) -19.11 -20.89 -1.79 [14C]O[18O] - [18O]2(g) -70.25 -72.54 -2.29 [18O]2 + [14C][18O]2(g) -22.09 -23.60 -1.50 [14C][18O]2 + [14C]H4(g) -27.99 -30.85 -2.86 [14C]H4 + [14C]O2(g) -16.73 -18.20 -1.47 [14C]O2 + [14C]O[18O](g) -19.11 -20.90 -1.79 [14C]O[18O] + [18O]2(g) -70.67 -72.96 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.25 -15.10 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.40 -9.70 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.19 -7.00 8.19 Ca[14C]O3 + Ca[14C][18O]3(s) -23.26 -15.10 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -17.41 -9.70 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -15.20 -7.00 8.19 Ca[14C]O3 Ca[14C]O[18O]2(s) -20.09 -12.40 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.62 -16.48 -2.86 CH4 + CH4(g) -12.79 -15.65 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.47 -12.62 -3.15 H2 + H2(g) -9.26 -12.41 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.25 -67.14 -2.89 O2 - O[18O](g) -66.95 -69.84 -2.89 O[18O] + O2(g) -64.67 -67.56 -2.89 O2 + O[18O](g) -67.37 -70.26 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -25411,38 +25346,38 @@ Calcite 5.00e-04 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 - Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.79e-05 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 - Ca[13C][18O]3(s) 4.77e-14 4.77e-14 9.53e-11 - Ca[14C]O3(s) 2.97e-19 2.97e-19 5.94e-16 - Ca[14C]O2[18O](s) 1.83e-21 1.83e-21 3.66e-18 - Ca[14C]O[18O]2(s) 3.75e-24 3.75e-24 7.50e-21 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 2.94e-19 2.94e-19 5.88e-16 + Ca[14C]O2[18O](s) 1.81e-21 1.81e-21 3.62e-18 + Ca[14C]O[18O]2(s) 3.71e-24 3.71e-24 7.43e-21 + Ca[14C][18O]3(s) 2.54e-27 1.54e-27 5.08e-24 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99521e-03 -4.9839 permil - R(13C) 1.11735e-02 -0.60164 permil - R(14C) 5.99835e-16 0.051011 pmc - R(18O) H2O(l) 1.99520e-03 -4.9855 permil + R(18O) 1.99521e-03 -4.9836 permil + R(13C) 1.11646e-02 -1.3987 permil + R(14C) 5.93867e-16 0.050504 pmc + R(18O) H2O(l) 1.99520e-03 -4.9851 permil R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.023 permil - R(13C) CO2(aq) 1.10935e-02 -7.7539 permil - R(14C) CO2(aq) 5.91274e-16 0.050283 pmc + R(13C) CO2(aq) 1.10847e-02 -8.5453 permil + R(14C) CO2(aq) 5.85391e-16 0.049783 pmc R(18O) CO2(aq) 2.07917e-03 36.889 permil - R(18O) HCO3- 1.99520e-03 -4.9855 permil - R(13C) HCO3- 1.11900e-02 0.87851 permil - R(14C) HCO3- 6.01607e-16 0.051162 pmc - R(18O) CO3-2 1.99520e-03 -4.9855 permil - R(13C) CO3-2 1.11740e-02 -0.55784 permil - R(14C) CO3-2 5.99881e-16 0.051015 pmc - R(13C) CH4(aq) 1.10935e-02 -7.7539 permil - R(14C) CH4(aq) 5.91274e-16 0.050283 pmc + R(18O) HCO3- 1.99520e-03 -4.9851 permil + R(13C) HCO3- 1.11811e-02 0.080231 permil + R(14C) HCO3- 5.95621e-16 0.050653 pmc + R(18O) CO3-2 1.99520e-03 -4.9851 permil + R(13C) CO3-2 1.11651e-02 -1.355 permil + R(14C) CO3-2 5.93913e-16 0.050508 pmc + R(13C) CH4(aq) 1.10847e-02 -8.5453 permil + R(14C) CH4(aq) 5.85391e-16 0.049783 pmc R(18O) Calcite 2.05265e-03 23.661 permil - R(13C) Calcite 1.12122e-02 2.8609 permil - R(14C) Calcite 6.03992e-16 0.051365 pmc + R(13C) Calcite 1.12032e-02 2.061 permil + R(14C) Calcite 5.97983e-16 0.050854 pmc --------------------------------Isotope Alphas--------------------------------- @@ -25453,14 +25388,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7552e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6959e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.1324e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.1324e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.5321e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 9.1038e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -25471,156 +25406,156 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.525e-05 6.506e-05 - [14C] 3.503e-18 3.493e-18 + [13C] 6.520e-05 6.501e-05 + [14C] 3.468e-18 3.458e-18 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.246 Adjusted to redox equilibrium + pe = -2.372 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.457e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.429e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 26 + Iterations = 60 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.860e-17 - CH4 2.860e-17 2.865e-17 -16.544 -16.543 0.001 (0) +C(-4) 2.914e-16 + CH4 2.914e-16 2.918e-16 -15.536 -15.535 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.111e-06 1.020e-06 -5.954 -5.992 -0.037 (0) + CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.101e-08 6.111e-08 -7.215 -7.214 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.644e-13 - H2 2.322e-13 2.326e-13 -12.634 -12.633 0.001 (0) +H(0) 8.296e-13 + H2 4.148e-13 4.155e-13 -12.382 -12.381 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.116 -67.115 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.515 -69.514 0.001 (0) -[13C](-4) 3.173e-19 - [13C]H4 3.173e-19 3.178e-19 -18.499 -18.498 0.001 (0) -[13C](4) 6.525e-05 - H[13C]O3- 5.263e-05 4.815e-05 -4.279 -4.317 -0.039 (0) - [13C]O2 1.105e-05 1.106e-05 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.111e-06 1.020e-06 -5.954 -5.992 -0.037 (0) - H[13C]O[18O]O- 1.050e-07 9.607e-08 -6.979 -7.017 -0.039 (0) - H[13C][18O]O2- 1.050e-07 9.607e-08 -6.979 -7.017 -0.039 (0) - H[13C]O2[18O]- 1.050e-07 9.607e-08 -6.979 -7.017 -0.039 (0) - Ca[13C]O3 6.101e-08 6.111e-08 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.594e-08 4.601e-08 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.130e-08 2.193e-08 -7.504 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.217e-09 2.034e-09 -8.654 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.217e-09 2.034e-09 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.217e-09 2.034e-09 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.652e-10 3.658e-10 -9.437 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.095e-10 1.917e-10 -9.679 -9.717 -0.039 (0) - H[13C]O[18O]2- 2.095e-10 1.917e-10 -9.679 -9.717 -0.039 (0) - H[13C][18O]2O- 2.095e-10 1.917e-10 -9.679 -9.717 -0.039 (0) - [13C]O2[18O]-2 1.873e-10 1.312e-10 -9.727 -9.882 -0.155 (0) -[14C](-4) 1.691e-32 - [14C]H4 1.691e-32 1.694e-32 -31.772 -31.771 0.001 (0) -[14C](4) 3.503e-18 - H[14C]O3- 2.830e-18 2.589e-18 -17.548 -17.587 -0.039 (0) - [14C]O2 5.888e-19 5.897e-19 -18.230 -18.229 0.001 (0) - CaH[14C]O3+ 5.975e-20 5.481e-20 -19.224 -19.261 -0.037 (0) - H[14C][18O]O2- 5.646e-21 5.165e-21 -20.248 -20.287 -0.039 (0) - H[14C]O2[18O]- 5.646e-21 5.165e-21 -20.248 -20.287 -0.039 (0) - H[14C]O[18O]O- 5.646e-21 5.165e-21 -20.248 -20.287 -0.039 (0) - Ca[14C]O3 3.276e-21 3.281e-21 -20.485 -20.484 0.001 (0) - [14C]O[18O] 2.448e-21 2.452e-21 -20.611 -20.610 0.001 (0) - [14C]O3-2 1.680e-21 1.177e-21 -20.775 -20.929 -0.155 (0) - CaH[14C]O[18O]O+ 1.192e-22 1.094e-22 -21.924 -21.961 -0.037 (0) - CaH[14C]O2[18O]+ 1.192e-22 1.094e-22 -21.924 -21.961 -0.037 (0) - CaH[14C][18O]O2+ 1.192e-22 1.094e-22 -21.924 -21.961 -0.037 (0) - Ca[14C]O2[18O] 1.961e-23 1.964e-23 -22.708 -22.707 0.001 (0) - H[14C][18O]2O- 1.126e-23 1.031e-23 -22.948 -22.987 -0.039 (0) - H[14C]O[18O]2- 1.126e-23 1.031e-23 -22.948 -22.987 -0.039 (0) - H[14C][18O]O[18O]- 1.126e-23 1.031e-23 -22.948 -22.987 -0.039 (0) - [14C]O2[18O]-2 1.006e-23 7.046e-24 -22.997 -23.152 -0.155 (0) + O2 0.000e+00 0.000e+00 -67.620 -67.619 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -70.019 -70.018 0.001 (0) +[13C](-4) 3.230e-18 + [13C]H4 3.230e-18 3.235e-18 -17.491 -17.490 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) + CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 1.706e-31 + [14C]H4 1.706e-31 1.708e-31 -30.768 -30.767 0.001 (0) +[14C](4) 3.468e-18 + H[14C]O3- 2.801e-18 2.563e-18 -17.553 -17.591 -0.039 (0) + [14C]O2 5.829e-19 5.839e-19 -18.234 -18.234 0.001 (0) + CaH[14C]O3+ 5.916e-20 5.427e-20 -19.228 -19.265 -0.037 (0) + H[14C]O2[18O]- 5.589e-21 5.114e-21 -20.253 -20.291 -0.039 (0) + H[14C]O[18O]O- 5.589e-21 5.114e-21 -20.253 -20.291 -0.039 (0) + H[14C][18O]O2- 5.589e-21 5.114e-21 -20.253 -20.291 -0.039 (0) + Ca[14C]O3 3.243e-21 3.248e-21 -20.489 -20.488 0.001 (0) + [14C]O[18O] 2.424e-21 2.428e-21 -20.615 -20.615 0.001 (0) + [14C]O3-2 1.664e-21 1.165e-21 -20.779 -20.934 -0.155 (0) + CaH[14C]O2[18O]+ 1.180e-22 1.083e-22 -21.928 -21.965 -0.037 (0) + CaH[14C]O[18O]O+ 1.180e-22 1.083e-22 -21.928 -21.965 -0.037 (0) + CaH[14C][18O]O2+ 1.180e-22 1.083e-22 -21.928 -21.965 -0.037 (0) + Ca[14C]O2[18O] 1.941e-23 1.944e-23 -22.712 -22.711 0.001 (0) + H[14C]O[18O]2- 1.115e-23 1.020e-23 -22.953 -22.991 -0.039 (0) + H[14C][18O]2O- 1.115e-23 1.020e-23 -22.953 -22.991 -0.039 (0) + H[14C][18O]O[18O]- 1.115e-23 1.020e-23 -22.953 -22.991 -0.039 (0) + [14C]O2[18O]-2 9.958e-24 6.976e-24 -23.002 -23.156 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.515 -69.514 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.516 -72.515 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -70.019 -70.018 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -73.020 -73.019 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.64 -18.50 -2.86 [13C]H4 + [13C]H4(g) -14.63 -17.49 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.13 -23.63 -1.50 [14C][18O]2 - [14C]H4(g) -28.91 -31.77 -2.86 [14C]H4 - [14C]O2(g) -16.76 -18.23 -1.47 [14C]O2 - [14C]O[18O](g) -19.14 -20.93 -1.79 [14C]O[18O] - [18O]2(g) -70.22 -72.51 -2.29 [18O]2 + [14C]H4(g) -27.91 -30.77 -2.86 [14C]H4 + [14C]O2(g) -16.77 -18.23 -1.47 [14C]O2 + [14C]O[18O](g) -19.15 -20.93 -1.79 [14C]O[18O] + [18O]2(g) -70.73 -73.02 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.29 -15.13 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.44 -9.73 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.23 -7.03 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -20.12 -12.43 7.69 Ca[14C]O[18O]2 + Ca[14C][18O]3(s) -23.29 -15.14 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -17.44 -9.74 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -15.23 -7.04 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -20.13 -12.44 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.68 -16.54 -2.86 CH4 + CH4(g) -12.67 -15.53 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.48 -12.63 -3.15 H2 + H2(g) -9.23 -12.38 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.22 -67.11 -2.89 O2 - O[18O](g) -66.92 -69.81 -2.89 O[18O] + O2(g) -64.73 -67.62 -2.89 O2 + O[18O](g) -67.43 -70.32 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -25644,6 +25579,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 98. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -25687,38 +25628,38 @@ Calcite 5.00e-04 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 - Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.79e-05 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 - Ca[13C][18O]3(s) 4.77e-14 4.77e-14 9.53e-11 - Ca[14C]O3(s) 1.01e-27 1.00e-29 2.02e-24 - Ca[14C]O2[18O](s) 1.83e-21 1.83e-21 3.65e-18 - Ca[14C]O[18O]2(s) 1.01e-27 1.01e-29 2.02e-24 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 2.71e-19 2.71e-19 5.41e-16 + Ca[14C]O2[18O](s) 1.67e-21 1.67e-21 3.33e-18 + Ca[14C]O[18O]2(s) 3.42e-24 3.42e-24 6.84e-21 + Ca[14C][18O]3(s) 2.34e-27 1.34e-27 4.68e-24 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99521e-03 -4.9838 permil - R(13C) 1.11728e-02 -0.66338 permil - R(14C) 5.99521e-16 0.050985 pmc - R(18O) H2O(l) 1.99520e-03 -4.9853 permil + R(18O) 1.99521e-03 -4.9835 permil + R(13C) 1.11646e-02 -1.3979 permil + R(14C) 5.47087e-16 0.046525 pmc + R(18O) H2O(l) 1.99520e-03 -4.985 permil R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.023 permil - R(13C) CO2(aq) 1.10928e-02 -7.8152 permil - R(14C) CO2(aq) 5.90964e-16 0.050257 pmc + R(13C) CO2(aq) 1.10847e-02 -8.5445 permil + R(14C) CO2(aq) 5.39279e-16 0.045861 pmc R(18O) CO2(aq) 2.07917e-03 36.889 permil - R(18O) HCO3- 1.99520e-03 -4.9853 permil - R(13C) HCO3- 1.11893e-02 0.81668 permil - R(14C) HCO3- 6.01292e-16 0.051135 pmc - R(18O) CO3-2 1.99520e-03 -4.9853 permil - R(13C) CO3-2 1.11733e-02 -0.61958 permil - R(14C) CO3-2 5.99567e-16 0.050988 pmc - R(13C) CH4(aq) 1.10928e-02 -7.8152 permil - R(14C) CH4(aq) 5.90964e-16 0.050257 pmc - R(18O) Calcite 2.05265e-03 23.661 permil - R(13C) Calcite 1.12115e-02 2.799 permil - R(14C) Calcite 3.69461e-18 0.0003142 pmc + R(18O) HCO3- 1.99520e-03 -4.985 permil + R(13C) HCO3- 1.11811e-02 0.081082 permil + R(14C) HCO3- 5.48703e-16 0.046663 pmc + R(18O) CO3-2 1.99520e-03 -4.985 permil + R(13C) CO3-2 1.11651e-02 -1.3541 permil + R(14C) CO3-2 5.47129e-16 0.046529 pmc + R(13C) CH4(aq) 1.10847e-02 -8.5445 permil + R(14C) CH4(aq) 5.39279e-16 0.045861 pmc + R(18O) Calcite 2.05265e-03 23.662 permil + R(13C) Calcite 1.12033e-02 2.0619 permil + R(14C) Calcite 5.50878e-16 0.046848 pmc --------------------------------Isotope Alphas--------------------------------- @@ -25729,17 +25670,17 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.5503e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5735e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6843e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -7.2164e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -5.218e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.8874e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -3.9968e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 0.0062518 -5074.9 21.282 +Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ @@ -25747,43 +25688,43 @@ Alpha 14C Calcite/CO2(aq) 0.0062518 -5074.9 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.525e-05 6.506e-05 - [14C] 3.501e-18 3.491e-18 + [13C] 6.520e-05 6.501e-05 + [14C] 3.195e-18 3.186e-18 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.285 Adjusted to redox equilibrium + pe = -2.387 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.457e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.431e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 39 + Iterations = 57 (158 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 5.847e-17 - CH4 5.847e-17 5.856e-17 -16.233 -16.232 0.001 (0) +C(-4) 3.806e-16 + CH4 3.806e-16 3.812e-16 -15.420 -15.419 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -25791,8 +25732,8 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 @@ -25801,102 +25742,102 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.101e-08 6.111e-08 -7.215 -7.214 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.553e-13 - H2 2.776e-13 2.781e-13 -12.557 -12.556 0.001 (0) +H(0) 8.869e-13 + H2 4.435e-13 4.442e-13 -12.353 -12.352 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.271 -67.270 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.670 -69.669 0.001 (0) -[13C](-4) 6.486e-19 - [13C]H4 6.486e-19 6.496e-19 -18.188 -18.187 0.001 (0) -[13C](4) 6.525e-05 - H[13C]O3- 5.263e-05 4.815e-05 -4.279 -4.317 -0.039 (0) - [13C]O2 1.105e-05 1.106e-05 -4.957 -4.956 0.001 (0) + O2 0.000e+00 0.000e+00 -67.678 -67.677 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -70.077 -70.076 0.001 (0) +[13C](-4) 4.219e-18 + [13C]H4 4.219e-18 4.226e-18 -17.375 -17.374 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C][18O]O2- 1.050e-07 9.606e-08 -6.979 -7.017 -0.039 (0) - H[13C]O2[18O]- 1.050e-07 9.606e-08 -6.979 -7.017 -0.039 (0) - H[13C]O[18O]O- 1.050e-07 9.606e-08 -6.979 -7.017 -0.039 (0) - Ca[13C]O3 6.101e-08 6.111e-08 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.593e-08 4.601e-08 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.130e-08 2.193e-08 -7.504 -7.659 -0.155 (0) - CaH[13C]O[18O]O+ 2.217e-09 2.034e-09 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.217e-09 2.034e-09 -8.654 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.217e-09 2.034e-09 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.652e-10 3.658e-10 -9.437 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.095e-10 1.917e-10 -9.679 -9.717 -0.039 (0) - H[13C]O[18O]2- 2.095e-10 1.917e-10 -9.679 -9.717 -0.039 (0) - H[13C][18O]2O- 2.095e-10 1.917e-10 -9.679 -9.717 -0.039 (0) - [13C]O2[18O]-2 1.873e-10 1.312e-10 -9.727 -9.882 -0.155 (0) -[14C](-4) 3.455e-32 - [14C]H4 3.455e-32 3.461e-32 -31.462 -31.461 0.001 (0) -[14C](4) 3.501e-18 - H[14C]O3- 2.828e-18 2.587e-18 -17.549 -17.587 -0.039 (0) - [14C]O2 5.885e-19 5.894e-19 -18.230 -18.230 0.001 (0) - CaH[14C]O3+ 5.972e-20 5.478e-20 -19.224 -19.261 -0.037 (0) - H[14C][18O]O2- 5.643e-21 5.162e-21 -20.249 -20.287 -0.039 (0) - H[14C]O2[18O]- 5.643e-21 5.162e-21 -20.249 -20.287 -0.039 (0) - H[14C]O[18O]O- 5.643e-21 5.162e-21 -20.249 -20.287 -0.039 (0) - Ca[14C]O3 3.274e-21 3.279e-21 -20.485 -20.484 0.001 (0) - [14C]O[18O] 2.447e-21 2.451e-21 -20.611 -20.611 0.001 (0) - [14C]O3-2 1.679e-21 1.177e-21 -20.775 -20.929 -0.155 (0) - CaH[14C]O[18O]O+ 1.192e-22 1.093e-22 -21.924 -21.961 -0.037 (0) - CaH[14C]O2[18O]+ 1.192e-22 1.093e-22 -21.924 -21.961 -0.037 (0) - CaH[14C][18O]O2+ 1.192e-22 1.093e-22 -21.924 -21.961 -0.037 (0) - Ca[14C]O2[18O] 1.960e-23 1.963e-23 -22.708 -22.707 0.001 (0) - H[14C]O[18O]2- 1.126e-23 1.030e-23 -22.949 -22.987 -0.039 (0) - H[14C][18O]O[18O]- 1.126e-23 1.030e-23 -22.949 -22.987 -0.039 (0) - H[14C][18O]2O- 1.126e-23 1.030e-23 -22.949 -22.987 -0.039 (0) - [14C]O2[18O]-2 1.005e-23 7.042e-24 -22.998 -23.152 -0.155 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.598e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 2.053e-31 + [14C]H4 2.053e-31 2.056e-31 -30.688 -30.687 0.001 (0) +[14C](4) 3.195e-18 + H[14C]O3- 2.581e-18 2.361e-18 -17.588 -17.627 -0.039 (0) + [14C]O2 5.370e-19 5.379e-19 -18.270 -18.269 0.001 (0) + CaH[14C]O3+ 5.450e-20 4.999e-20 -19.264 -19.301 -0.037 (0) + H[14C]O2[18O]- 5.149e-21 4.711e-21 -20.288 -20.327 -0.039 (0) + H[14C]O[18O]O- 5.149e-21 4.711e-21 -20.288 -20.327 -0.039 (0) + H[14C][18O]O2- 5.149e-21 4.711e-21 -20.288 -20.327 -0.039 (0) + Ca[14C]O3 2.988e-21 2.992e-21 -20.525 -20.524 0.001 (0) + [14C]O[18O] 2.233e-21 2.237e-21 -20.651 -20.650 0.001 (0) + [14C]O3-2 1.533e-21 1.074e-21 -20.815 -20.969 -0.155 (0) + CaH[14C]O2[18O]+ 1.087e-22 9.974e-23 -21.964 -22.001 -0.037 (0) + CaH[14C]O[18O]O+ 1.087e-22 9.974e-23 -21.964 -22.001 -0.037 (0) + CaH[14C][18O]O2+ 1.087e-22 9.974e-23 -21.964 -22.001 -0.037 (0) + Ca[14C]O2[18O] 1.788e-23 1.791e-23 -22.748 -22.747 0.001 (0) + H[14C]O[18O]2- 1.027e-23 9.399e-24 -22.988 -23.027 -0.039 (0) + H[14C][18O]2O- 1.027e-23 9.399e-24 -22.988 -23.027 -0.039 (0) + H[14C][18O]O[18O]- 1.027e-23 9.399e-24 -22.988 -23.027 -0.039 (0) + [14C]O2[18O]-2 9.173e-24 6.426e-24 -23.037 -23.192 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.670 -69.669 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.671 -72.670 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -70.077 -70.076 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -73.078 -73.077 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.33 -18.19 -2.86 [13C]H4 + [13C]H4(g) -14.51 -17.37 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -22.13 -23.63 -1.50 [14C][18O]2 - [14C]H4(g) -28.60 -31.46 -2.86 [14C]H4 - [14C]O2(g) -16.76 -18.23 -1.47 [14C]O2 - [14C]O[18O](g) -19.14 -20.93 -1.79 [14C]O[18O] - [18O]2(g) -70.38 -72.67 -2.29 [18O]2 + [14C][18O]2(g) -22.17 -23.67 -1.50 [14C][18O]2 + [14C]H4(g) -27.83 -30.69 -2.86 [14C]H4 + [14C]O2(g) -16.80 -18.27 -1.47 [14C]O2 + [14C]O[18O](g) -19.18 -20.97 -1.79 [14C]O[18O] + [18O]2(g) -70.79 -73.08 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.29 -15.14 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.44 -9.74 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.23 -7.04 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -20.12 -12.44 7.69 Ca[14C]O[18O]2 + Ca[14C][18O]3(s) -23.33 -15.17 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -17.48 -9.77 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -15.27 -7.07 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -20.16 -12.47 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.37 -16.23 -2.86 CH4 + CH4(g) -12.56 -15.42 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.41 -12.56 -3.15 H2 + H2(g) -9.20 -12.35 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.38 -67.27 -2.89 O2 - O[18O](g) -67.08 -69.97 -2.89 O[18O] + O2(g) -64.78 -67.68 -2.89 O2 + O[18O](g) -67.48 -70.38 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -25963,38 +25904,38 @@ Calcite 5.00e-04 CaCO[18O]2(s) 6.21e-09 6.21e-09 1.24e-05 CaC[18O]3(s) 4.25e-12 4.25e-12 8.50e-09 Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 - Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.79e-05 + Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 - Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.53e-11 - Ca[14C]O3(s) 2.73e-19 2.73e-19 5.47e-16 - Ca[14C]O2[18O](s) 1.68e-21 1.68e-21 3.37e-18 - Ca[14C]O[18O]2(s) 3.45e-24 3.45e-24 6.91e-21 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 2.49e-19 2.49e-19 4.99e-16 + Ca[14C]O2[18O](s) 1.54e-21 1.54e-21 3.07e-18 + Ca[14C]O[18O]2(s) 3.15e-24 3.15e-24 6.30e-21 + Ca[14C][18O]3(s) 2.16e-27 1.16e-27 4.31e-24 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99521e-03 -4.9837 permil - R(13C) 1.11721e-02 -0.72027 permil - R(14C) 5.52295e-16 0.046968 pmc - R(18O) H2O(l) 1.99520e-03 -4.9852 permil - R(18O) OH- 1.92124e-03 -41.873 permil + R(18O) 1.99521e-03 -4.9833 permil + R(13C) 1.11646e-02 -1.3971 permil + R(14C) 5.03991e-16 0.042861 pmc + R(18O) H2O(l) 1.99520e-03 -4.9848 permil + R(18O) OH- 1.92124e-03 -41.872 permil R(18O) H3O+ 2.04134e-03 18.023 permil - R(13C) CO2(aq) 1.10922e-02 -7.8717 permil - R(14C) CO2(aq) 5.44412e-16 0.046298 pmc + R(13C) CO2(aq) 1.10847e-02 -8.5437 permil + R(14C) CO2(aq) 4.96798e-16 0.042249 pmc R(18O) CO2(aq) 2.07917e-03 36.889 permil - R(18O) HCO3- 1.99520e-03 -4.9852 permil - R(13C) HCO3- 1.11887e-02 0.75971 permil - R(14C) HCO3- 5.53926e-16 0.047107 pmc - R(18O) CO3-2 1.99520e-03 -4.9852 permil - R(13C) CO3-2 1.11726e-02 -0.67647 permil - R(14C) CO3-2 5.52337e-16 0.046972 pmc - R(13C) CH4(aq) 1.10922e-02 -7.8717 permil - R(14C) CH4(aq) 5.44412e-16 0.046298 pmc - R(18O) Calcite 2.05265e-03 23.661 permil - R(13C) Calcite 1.12109e-02 2.7419 permil - R(14C) Calcite 5.56123e-16 0.047294 pmc + R(18O) HCO3- 1.99520e-03 -4.9848 permil + R(13C) HCO3- 1.11811e-02 0.081866 permil + R(14C) HCO3- 5.05480e-16 0.042987 pmc + R(18O) CO3-2 1.99520e-03 -4.9848 permil + R(13C) CO3-2 1.11651e-02 -1.3533 permil + R(14C) CO3-2 5.04030e-16 0.042864 pmc + R(13C) CH4(aq) 1.10847e-02 -8.5437 permil + R(14C) CH4(aq) 4.96798e-16 0.042249 pmc + R(18O) Calcite 2.05265e-03 23.662 permil + R(13C) Calcite 1.12033e-02 2.0627 permil + R(14C) Calcite 5.07484e-16 0.043158 pmc --------------------------------Isotope Alphas--------------------------------- @@ -26005,14 +25946,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6673e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6285e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -7.9936e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.2101e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -4.996e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.1324e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -26023,36 +25964,36 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.524e-05 6.505e-05 - [14C] 3.225e-18 3.216e-18 + [13C] 6.520e-05 6.501e-05 + [14C] 2.943e-18 2.935e-18 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.270 Adjusted to redox equilibrium + pe = -2.397 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.457e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.431e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 31 + Iterations = 89 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.447e-17 - CH4 4.447e-17 4.454e-17 -16.352 -16.351 0.001 (0) +C(-4) 4.625e-16 + CH4 4.625e-16 4.633e-16 -15.335 -15.334 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -26064,11 +26005,11 @@ C(4) 5.840e-03 CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 @@ -26077,102 +26018,102 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.101e-08 6.111e-08 -7.215 -7.214 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.185e-13 - H2 2.593e-13 2.597e-13 -12.586 -12.586 0.001 (0) +H(0) 9.312e-13 + H2 4.656e-13 4.664e-13 -12.332 -12.331 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.211 -67.211 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.610 -69.610 0.001 (0) -[13C](-4) 4.932e-19 - [13C]H4 4.932e-19 4.941e-19 -18.307 -18.306 0.001 (0) -[13C](4) 6.524e-05 - H[13C]O3- 5.262e-05 4.814e-05 -4.279 -4.317 -0.039 (0) - [13C]O2 1.105e-05 1.106e-05 -4.957 -4.956 0.001 (0) + O2 0.000e+00 0.000e+00 -67.720 -67.719 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -70.119 -70.118 0.001 (0) +[13C](-4) 5.127e-18 + [13C]H4 5.127e-18 5.135e-18 -17.290 -17.289 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) + [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.050e-07 9.606e-08 -6.979 -7.017 -0.039 (0) - H[13C]O[18O]O- 1.050e-07 9.606e-08 -6.979 -7.017 -0.039 (0) - H[13C][18O]O2- 1.050e-07 9.606e-08 -6.979 -7.017 -0.039 (0) - Ca[13C]O3 6.101e-08 6.111e-08 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.593e-08 4.601e-08 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.130e-08 2.192e-08 -7.505 -7.659 -0.155 (0) - CaH[13C][18O]O2+ 2.217e-09 2.034e-09 -8.654 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.217e-09 2.034e-09 -8.654 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.217e-09 2.034e-09 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.652e-10 3.658e-10 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.095e-10 1.917e-10 -9.679 -9.717 -0.039 (0) - H[13C]O[18O]2- 2.095e-10 1.917e-10 -9.679 -9.717 -0.039 (0) - H[13C][18O]2O- 2.095e-10 1.917e-10 -9.679 -9.717 -0.039 (0) - [13C]O2[18O]-2 1.873e-10 1.312e-10 -9.727 -9.882 -0.155 (0) -[14C](-4) 2.421e-32 - [14C]H4 2.421e-32 2.425e-32 -31.616 -31.615 0.001 (0) -[14C](4) 3.225e-18 - H[14C]O3- 2.605e-18 2.384e-18 -17.584 -17.623 -0.039 (0) - [14C]O2 5.421e-19 5.430e-19 -18.266 -18.265 0.001 (0) - CaH[14C]O3+ 5.502e-20 5.047e-20 -19.260 -19.297 -0.037 (0) - H[14C][18O]O2- 5.198e-21 4.756e-21 -20.284 -20.323 -0.039 (0) - H[14C]O2[18O]- 5.198e-21 4.756e-21 -20.284 -20.323 -0.039 (0) - H[14C]O[18O]O- 5.198e-21 4.756e-21 -20.284 -20.323 -0.039 (0) - Ca[14C]O3 3.016e-21 3.021e-21 -20.521 -20.520 0.001 (0) - [14C]O[18O] 2.254e-21 2.258e-21 -20.647 -20.646 0.001 (0) - [14C]O3-2 1.547e-21 1.084e-21 -20.810 -20.965 -0.155 (0) - CaH[14C]O[18O]O+ 1.098e-22 1.007e-22 -21.960 -21.997 -0.037 (0) - CaH[14C]O2[18O]+ 1.098e-22 1.007e-22 -21.960 -21.997 -0.037 (0) - CaH[14C][18O]O2+ 1.098e-22 1.007e-22 -21.960 -21.997 -0.037 (0) - Ca[14C]O2[18O] 1.805e-23 1.808e-23 -22.743 -22.743 0.001 (0) - H[14C][18O]O[18O]- 1.037e-23 9.488e-24 -22.984 -23.023 -0.039 (0) - H[14C][18O]2O- 1.037e-23 9.488e-24 -22.984 -23.023 -0.039 (0) - H[14C]O[18O]2- 1.037e-23 9.488e-24 -22.984 -23.023 -0.039 (0) - [14C]O2[18O]-2 9.261e-24 6.488e-24 -23.033 -23.188 -0.155 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.598e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 2.298e-31 + [14C]H4 2.298e-31 2.302e-31 -30.639 -30.638 0.001 (0) +[14C](4) 2.943e-18 + H[14C]O3- 2.377e-18 2.175e-18 -17.624 -17.663 -0.039 (0) + [14C]O2 4.947e-19 4.955e-19 -18.306 -18.305 0.001 (0) + CaH[14C]O3+ 5.020e-20 4.605e-20 -19.299 -19.337 -0.037 (0) + H[14C]O2[18O]- 4.744e-21 4.340e-21 -20.324 -20.363 -0.039 (0) + H[14C]O[18O]O- 4.744e-21 4.340e-21 -20.324 -20.363 -0.039 (0) + H[14C][18O]O2- 4.744e-21 4.340e-21 -20.324 -20.363 -0.039 (0) + Ca[14C]O3 2.752e-21 2.757e-21 -20.560 -20.560 0.001 (0) + [14C]O[18O] 2.057e-21 2.061e-21 -20.687 -20.686 0.001 (0) + [14C]O3-2 1.412e-21 9.891e-22 -20.850 -21.005 -0.155 (0) + CaH[14C]O2[18O]+ 1.002e-22 9.189e-23 -21.999 -22.037 -0.037 (0) + CaH[14C]O[18O]O+ 1.002e-22 9.189e-23 -21.999 -22.037 -0.037 (0) + CaH[14C][18O]O2+ 1.002e-22 9.189e-23 -21.999 -22.037 -0.037 (0) + Ca[14C]O2[18O] 1.647e-23 1.650e-23 -22.783 -22.782 0.001 (0) + H[14C]O[18O]2- 9.464e-24 8.659e-24 -23.024 -23.063 -0.039 (0) + H[14C][18O]2O- 9.464e-24 8.659e-24 -23.024 -23.063 -0.039 (0) + H[14C][18O]O[18O]- 9.464e-24 8.659e-24 -23.024 -23.063 -0.039 (0) + [14C]O2[18O]-2 8.451e-24 5.920e-24 -23.073 -23.228 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.610 -69.610 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.611 -72.611 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -70.119 -70.118 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -73.120 -73.119 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.45 -18.31 -2.86 [13C]H4 + [13C]H4(g) -14.43 -17.29 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -22.16 -23.67 -1.50 [14C][18O]2 - [14C]H4(g) -28.76 -31.62 -2.86 [14C]H4 - [14C]O2(g) -16.80 -18.27 -1.47 [14C]O2 - [14C]O[18O](g) -19.18 -20.97 -1.79 [14C]O[18O] - [18O]2(g) -70.32 -72.61 -2.29 [18O]2 + [14C][18O]2(g) -22.20 -23.70 -1.50 [14C][18O]2 + [14C]H4(g) -27.78 -30.64 -2.86 [14C]H4 + [14C]O2(g) -16.84 -18.30 -1.47 [14C]O2 + [14C]O[18O](g) -19.22 -21.00 -1.79 [14C]O[18O] + [18O]2(g) -70.83 -73.12 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.33 -15.17 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.47 -9.77 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.26 -7.07 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -20.16 -12.47 7.69 Ca[14C]O[18O]2 + Ca[14C][18O]3(s) -23.37 -15.21 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -17.51 -9.81 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -15.30 -7.11 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -20.20 -12.51 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.49 -16.35 -2.86 CH4 + CH4(g) -12.47 -15.33 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.44 -12.59 -3.15 H2 + H2(g) -9.18 -12.33 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.32 -67.21 -2.89 O2 - O[18O](g) -67.02 -69.91 -2.89 O[18O] + O2(g) -64.83 -67.72 -2.89 O2 + O[18O](g) -67.53 -70.42 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -26196,6 +26137,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 100. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -26241,36 +26188,36 @@ Calcite 5.00e-04 Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 - Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.53e-11 - Ca[14C]O3(s) 2.52e-19 2.52e-19 5.04e-16 - Ca[14C]O2[18O](s) 1.55e-21 1.55e-21 3.10e-18 - Ca[14C]O[18O]2(s) 3.18e-24 3.18e-24 6.36e-21 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 2.30e-19 2.30e-19 4.59e-16 + Ca[14C]O2[18O](s) 1.41e-21 1.41e-21 2.83e-18 + Ca[14C]O[18O]2(s) 2.90e-24 2.90e-24 5.81e-21 + Ca[14C][18O]3(s) 1.99e-27 9.87e-28 3.97e-24 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99521e-03 -4.9835 permil - R(13C) 1.11716e-02 -0.77269 permil - R(14C) 5.08789e-16 0.043269 pmc - R(18O) H2O(l) 1.99520e-03 -4.985 permil - R(18O) OH- 1.92124e-03 -41.873 permil + R(18O) 1.99521e-03 -4.9832 permil + R(13C) 1.11646e-02 -1.3964 permil + R(14C) 4.64291e-16 0.039484 pmc + R(18O) H2O(l) 1.99520e-03 -4.9847 permil + R(18O) OH- 1.92124e-03 -41.872 permil R(18O) H3O+ 2.04134e-03 18.023 permil - R(13C) CO2(aq) 1.10916e-02 -7.9237 permil - R(14C) CO2(aq) 5.01527e-16 0.042651 pmc - R(18O) CO2(aq) 2.07917e-03 36.889 permil - R(18O) HCO3- 1.99520e-03 -4.985 permil - R(13C) HCO3- 1.11881e-02 0.7072 permil - R(14C) HCO3- 5.10292e-16 0.043396 pmc - R(18O) CO3-2 1.99520e-03 -4.985 permil - R(13C) CO3-2 1.11721e-02 -0.7289 permil - R(14C) CO3-2 5.08828e-16 0.043272 pmc - R(13C) CH4(aq) 1.10916e-02 -7.9237 permil - R(14C) CH4(aq) 5.01527e-16 0.042651 pmc - R(18O) Calcite 2.05265e-03 23.661 permil - R(13C) Calcite 1.12103e-02 2.6893 permil - R(14C) Calcite 5.12315e-16 0.043568 pmc + R(13C) CO2(aq) 1.10847e-02 -8.543 permil + R(14C) CO2(aq) 4.57664e-16 0.038921 pmc + R(18O) CO2(aq) 2.07917e-03 36.89 permil + R(18O) HCO3- 1.99520e-03 -4.9847 permil + R(13C) HCO3- 1.11811e-02 0.082589 permil + R(14C) HCO3- 4.65662e-16 0.039601 pmc + R(18O) CO3-2 1.99520e-03 -4.9847 permil + R(13C) CO3-2 1.11651e-02 -1.3526 permil + R(14C) CO3-2 4.64327e-16 0.039487 pmc + R(13C) CH4(aq) 1.10847e-02 -8.543 permil + R(14C) CH4(aq) 4.57664e-16 0.038921 pmc + R(18O) Calcite 2.05265e-03 23.662 permil + R(13C) Calcite 1.12033e-02 2.0634 permil + R(14C) Calcite 4.67509e-16 0.039758 pmc --------------------------------Isotope Alphas--------------------------------- @@ -26281,14 +26228,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6178e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6439e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -9.4369e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.7319e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 8.2157e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.6431e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -26299,43 +26246,43 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.524e-05 6.505e-05 - [14C] 2.971e-18 2.963e-18 + [13C] 6.520e-05 6.501e-05 + [14C] 2.711e-18 2.703e-18 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.299 Adjusted to redox equilibrium + pe = -2.397 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.457e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.431e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 31 + Iterations = 149 (250 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 7.536e-17 - CH4 7.536e-17 7.548e-17 -16.123 -16.122 0.001 (0) +C(-4) 4.613e-16 + CH4 4.613e-16 4.621e-16 -15.336 -15.335 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -26343,8 +26290,8 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 @@ -26353,102 +26300,102 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.100e-08 6.110e-08 -7.215 -7.214 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.916e-13 - H2 2.958e-13 2.963e-13 -12.529 -12.528 0.001 (0) +H(0) 9.306e-13 + H2 4.653e-13 4.661e-13 -12.332 -12.332 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.326 -67.325 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.725 -69.724 0.001 (0) -[13C](-4) 8.358e-19 - [13C]H4 8.358e-19 8.372e-19 -18.078 -18.077 0.001 (0) -[13C](4) 6.524e-05 - H[13C]O3- 5.262e-05 4.814e-05 -4.279 -4.317 -0.039 (0) + O2 0.000e+00 0.000e+00 -67.719 -67.719 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -70.118 -70.118 0.001 (0) +[13C](-4) 5.114e-18 + [13C]H4 5.114e-18 5.122e-18 -17.291 -17.291 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O[18O]O- 1.050e-07 9.605e-08 -6.979 -7.017 -0.039 (0) - H[13C][18O]O2- 1.050e-07 9.605e-08 -6.979 -7.017 -0.039 (0) - H[13C]O2[18O]- 1.050e-07 9.605e-08 -6.979 -7.017 -0.039 (0) - Ca[13C]O3 6.100e-08 6.110e-08 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.593e-08 4.600e-08 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.129e-08 2.192e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.217e-09 2.034e-09 -8.654 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.217e-09 2.034e-09 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.217e-09 2.034e-09 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.651e-10 3.657e-10 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.095e-10 1.916e-10 -9.679 -9.717 -0.039 (0) - H[13C]O[18O]2- 2.095e-10 1.916e-10 -9.679 -9.717 -0.039 (0) - H[13C][18O]2O- 2.095e-10 1.916e-10 -9.679 -9.717 -0.039 (0) - [13C]O2[18O]-2 1.873e-10 1.312e-10 -9.727 -9.882 -0.155 (0) -[14C](-4) 3.779e-32 - [14C]H4 3.779e-32 3.786e-32 -31.423 -31.422 0.001 (0) -[14C](4) 2.971e-18 - H[14C]O3- 2.400e-18 2.196e-18 -17.620 -17.658 -0.039 (0) - [14C]O2 4.994e-19 5.002e-19 -18.302 -18.301 0.001 (0) - CaH[14C]O3+ 5.068e-20 4.649e-20 -19.295 -19.333 -0.037 (0) - H[14C][18O]O2- 4.789e-21 4.381e-21 -20.320 -20.358 -0.039 (0) - H[14C]O2[18O]- 4.789e-21 4.381e-21 -20.320 -20.358 -0.039 (0) - H[14C]O[18O]O- 4.789e-21 4.381e-21 -20.320 -20.358 -0.039 (0) - Ca[14C]O3 2.778e-21 2.783e-21 -20.556 -20.555 0.001 (0) - [14C]O[18O] 2.077e-21 2.080e-21 -20.683 -20.682 0.001 (0) - [14C]O3-2 1.425e-21 9.985e-22 -20.846 -21.001 -0.155 (0) - CaH[14C]O[18O]O+ 1.011e-22 9.276e-23 -21.995 -22.033 -0.037 (0) - CaH[14C]O2[18O]+ 1.011e-22 9.276e-23 -21.995 -22.033 -0.037 (0) - CaH[14C][18O]O2+ 1.011e-22 9.276e-23 -21.995 -22.033 -0.037 (0) - Ca[14C]O2[18O] 1.663e-23 1.666e-23 -22.779 -22.778 0.001 (0) - H[14C][18O]2O- 9.554e-24 8.741e-24 -23.020 -23.058 -0.039 (0) - H[14C]O[18O]2- 9.554e-24 8.741e-24 -23.020 -23.058 -0.039 (0) - H[14C][18O]O[18O]- 9.554e-24 8.741e-24 -23.020 -23.058 -0.039 (0) - [14C]O2[18O]-2 8.531e-24 5.977e-24 -23.069 -23.224 -0.155 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.598e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 2.111e-31 + [14C]H4 2.111e-31 2.115e-31 -30.675 -30.675 0.001 (0) +[14C](4) 2.711e-18 + H[14C]O3- 2.190e-18 2.004e-18 -17.660 -17.698 -0.039 (0) + [14C]O2 4.557e-19 4.565e-19 -18.341 -18.341 0.001 (0) + CaH[14C]O3+ 4.625e-20 4.243e-20 -19.335 -19.372 -0.037 (0) + H[14C]O2[18O]- 4.370e-21 3.998e-21 -20.360 -20.398 -0.039 (0) + H[14C]O[18O]O- 4.370e-21 3.998e-21 -20.360 -20.398 -0.039 (0) + H[14C][18O]O2- 4.370e-21 3.998e-21 -20.360 -20.398 -0.039 (0) + Ca[14C]O3 2.535e-21 2.540e-21 -20.596 -20.595 0.001 (0) + [14C]O[18O] 1.895e-21 1.898e-21 -20.722 -20.722 0.001 (0) + [14C]O3-2 1.301e-21 9.112e-22 -20.886 -21.040 -0.155 (0) + CaH[14C]O2[18O]+ 9.228e-23 8.465e-23 -22.035 -22.072 -0.037 (0) + CaH[14C]O[18O]O+ 9.228e-23 8.465e-23 -22.035 -22.072 -0.037 (0) + CaH[14C][18O]O2+ 9.228e-23 8.465e-23 -22.035 -22.072 -0.037 (0) + Ca[14C]O2[18O] 1.518e-23 1.520e-23 -22.819 -22.818 0.001 (0) + H[14C]O[18O]2- 8.719e-24 7.977e-24 -23.060 -23.098 -0.039 (0) + H[14C][18O]2O- 8.719e-24 7.977e-24 -23.060 -23.098 -0.039 (0) + H[14C][18O]O[18O]- 8.719e-24 7.977e-24 -23.060 -23.098 -0.039 (0) + [14C]O2[18O]-2 7.785e-24 5.454e-24 -23.109 -23.263 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.725 -69.724 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.726 -72.725 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -70.118 -70.118 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -73.119 -73.119 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.22 -18.08 -2.86 [13C]H4 + [13C]H4(g) -14.43 -17.29 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -22.20 -23.70 -1.50 [14C][18O]2 - [14C]H4(g) -28.56 -31.42 -2.86 [14C]H4 - [14C]O2(g) -16.83 -18.30 -1.47 [14C]O2 - [14C]O[18O](g) -19.21 -21.00 -1.79 [14C]O[18O] - [18O]2(g) -70.43 -72.73 -2.29 [18O]2 + [14C][18O]2(g) -22.24 -23.74 -1.50 [14C][18O]2 + [14C]H4(g) -27.81 -30.67 -2.86 [14C]H4 + [14C]O2(g) -16.87 -18.34 -1.47 [14C]O2 + [14C]O[18O](g) -19.25 -21.04 -1.79 [14C]O[18O] + [18O]2(g) -70.83 -73.12 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.36 -15.21 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.51 -9.81 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.30 -7.11 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -20.20 -12.51 7.69 Ca[14C]O[18O]2 + Ca[14C][18O]3(s) -23.40 -15.25 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -17.55 -9.85 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -15.34 -7.15 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -20.24 -12.55 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.26 -16.12 -2.86 CH4 + CH4(g) -12.48 -15.34 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.38 -12.53 -3.15 H2 + H2(g) -9.18 -12.33 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.43 -67.33 -2.89 O2 - O[18O](g) -67.13 -70.03 -2.89 O[18O] + O2(g) -64.83 -67.72 -2.89 O2 + O[18O](g) -67.53 -70.42 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -26523,36 +26470,36 @@ Calcite 5.00e-04 Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 - Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.53e-11 - Ca[14C]O3(s) 2.32e-19 2.32e-19 4.64e-16 - Ca[14C]O2[18O](s) 1.43e-21 1.43e-21 2.86e-18 - Ca[14C]O[18O]2(s) 2.93e-24 2.93e-24 5.86e-21 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 2.12e-19 2.12e-19 4.23e-16 + Ca[14C]O2[18O](s) 1.30e-21 1.30e-21 2.61e-18 + Ca[14C]O[18O]2(s) 2.68e-24 2.67e-24 5.35e-21 + Ca[14C][18O]3(s) 1.83e-27 8.30e-28 3.66e-24 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99521e-03 -4.9834 permil - R(13C) 1.11710e-02 -0.821 permil - R(14C) 4.68710e-16 0.03986 pmc - R(18O) H2O(l) 1.99520e-03 -4.9849 permil + R(18O) 1.99521e-03 -4.9831 permil + R(13C) 1.11646e-02 -1.3957 permil + R(14C) 4.27718e-16 0.036374 pmc + R(18O) H2O(l) 1.99520e-03 -4.9846 permil R(18O) OH- 1.92124e-03 -41.872 permil R(18O) H3O+ 2.04134e-03 18.023 permil - R(13C) CO2(aq) 1.10911e-02 -7.9717 permil - R(14C) CO2(aq) 4.62021e-16 0.039291 pmc - R(18O) CO2(aq) 2.07917e-03 36.889 permil - R(18O) HCO3- 1.99520e-03 -4.9849 permil - R(13C) HCO3- 1.11876e-02 0.65883 permil - R(14C) HCO3- 4.70095e-16 0.039978 pmc - R(18O) CO3-2 1.99520e-03 -4.9849 permil - R(13C) CO3-2 1.11715e-02 -0.77721 permil - R(14C) CO3-2 4.68746e-16 0.039863 pmc - R(13C) CH4(aq) 1.10911e-02 -7.9717 permil - R(14C) CH4(aq) 4.62021e-16 0.039291 pmc + R(13C) CO2(aq) 1.10847e-02 -8.5423 permil + R(14C) CO2(aq) 4.21613e-16 0.035855 pmc + R(18O) CO2(aq) 2.07917e-03 36.89 permil + R(18O) HCO3- 1.99520e-03 -4.9846 permil + R(13C) HCO3- 1.11811e-02 0.083255 permil + R(14C) HCO3- 4.28981e-16 0.036481 pmc + R(18O) CO3-2 1.99520e-03 -4.9846 permil + R(13C) CO3-2 1.11651e-02 -1.352 permil + R(14C) CO3-2 4.27751e-16 0.036377 pmc + R(13C) CH4(aq) 1.10847e-02 -8.5423 permil + R(14C) CH4(aq) 4.21613e-16 0.035855 pmc R(18O) Calcite 2.05265e-03 23.662 permil - R(13C) Calcite 1.12097e-02 2.6408 permil - R(14C) Calcite 4.71959e-16 0.040136 pmc + R(13C) Calcite 1.12033e-02 2.0641 permil + R(14C) Calcite 4.30682e-16 0.036626 pmc --------------------------------Isotope Alphas--------------------------------- @@ -26563,14 +26510,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.4385e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7472e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6328e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -3.1086e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 2.8866e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -5.218e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -2.9976e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -26581,52 +26528,52 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.524e-05 6.505e-05 - [14C] 2.737e-18 2.729e-18 + [13C] 6.520e-05 6.501e-05 + [14C] 2.498e-18 2.490e-18 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.314 Adjusted to redox equilibrium + pe = -2.411 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.457e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.431e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 36 (137 overall) + Iterations = 96 (197 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 9.943e-17 - CH4 9.943e-17 9.959e-17 -16.003 -16.002 0.001 (0) +C(-4) 5.956e-16 + CH4 5.956e-16 5.966e-16 -15.225 -15.224 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 @@ -26635,102 +26582,102 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.100e-08 6.110e-08 -7.215 -7.214 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.341e-13 - H2 3.170e-13 3.176e-13 -12.499 -12.498 0.001 (0) +H(0) 9.920e-13 + H2 4.960e-13 4.968e-13 -12.305 -12.304 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.386 -67.385 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.785 -69.784 0.001 (0) -[13C](-4) 1.103e-18 - [13C]H4 1.103e-18 1.105e-18 -17.958 -17.957 0.001 (0) -[13C](4) 6.524e-05 - H[13C]O3- 5.262e-05 4.814e-05 -4.279 -4.317 -0.039 (0) + O2 0.000e+00 0.000e+00 -67.775 -67.774 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -70.174 -70.173 0.001 (0) +[13C](-4) 6.602e-18 + [13C]H4 6.602e-18 6.613e-18 -17.180 -17.180 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C][18O]O2- 1.050e-07 9.605e-08 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.050e-07 9.605e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.050e-07 9.605e-08 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.100e-08 6.110e-08 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.593e-08 4.600e-08 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.129e-08 2.192e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O[18O]O+ 2.217e-09 2.034e-09 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.217e-09 2.034e-09 -8.654 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.217e-09 2.034e-09 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.651e-10 3.657e-10 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.095e-10 1.916e-10 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.095e-10 1.916e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.095e-10 1.916e-10 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.873e-10 1.312e-10 -9.727 -9.882 -0.155 (0) -[14C](-4) 4.594e-32 - [14C]H4 4.594e-32 4.601e-32 -31.338 -31.337 0.001 (0) -[14C](4) 2.737e-18 - H[14C]O3- 2.211e-18 2.023e-18 -17.655 -17.694 -0.039 (0) - [14C]O2 4.601e-19 4.608e-19 -18.337 -18.336 0.001 (0) - CaH[14C]O3+ 4.669e-20 4.283e-20 -19.331 -19.368 -0.037 (0) - H[14C][18O]O2- 4.411e-21 4.036e-21 -20.355 -20.394 -0.039 (0) - H[14C]O2[18O]- 4.411e-21 4.036e-21 -20.355 -20.394 -0.039 (0) - H[14C]O[18O]O- 4.411e-21 4.036e-21 -20.355 -20.394 -0.039 (0) - Ca[14C]O3 2.560e-21 2.564e-21 -20.592 -20.591 0.001 (0) - [14C]O[18O] 1.913e-21 1.916e-21 -20.718 -20.718 0.001 (0) - [14C]O3-2 1.313e-21 9.198e-22 -20.882 -21.036 -0.155 (0) - CaH[14C]O[18O]O+ 9.316e-23 8.545e-23 -22.031 -22.068 -0.037 (0) - CaH[14C]O2[18O]+ 9.316e-23 8.545e-23 -22.031 -22.068 -0.037 (0) - CaH[14C][18O]O2+ 9.316e-23 8.545e-23 -22.031 -22.068 -0.037 (0) - Ca[14C]O2[18O] 1.532e-23 1.535e-23 -22.815 -22.814 0.001 (0) - H[14C]O[18O]2- 8.802e-24 8.052e-24 -23.055 -23.094 -0.039 (0) - H[14C][18O]O[18O]- 8.802e-24 8.052e-24 -23.055 -23.094 -0.039 (0) - H[14C][18O]2O- 8.802e-24 8.052e-24 -23.055 -23.094 -0.039 (0) - [14C]O2[18O]-2 7.859e-24 5.506e-24 -23.105 -23.259 -0.155 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.598e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 2.511e-31 + [14C]H4 2.511e-31 2.515e-31 -30.600 -30.599 0.001 (0) +[14C](4) 2.498e-18 + H[14C]O3- 2.018e-18 1.846e-18 -17.695 -17.734 -0.039 (0) + [14C]O2 4.198e-19 4.205e-19 -18.377 -18.376 0.001 (0) + CaH[14C]O3+ 4.261e-20 3.908e-20 -19.371 -19.408 -0.037 (0) + H[14C]O2[18O]- 4.026e-21 3.683e-21 -20.395 -20.434 -0.039 (0) + H[14C]O[18O]O- 4.026e-21 3.683e-21 -20.395 -20.434 -0.039 (0) + H[14C][18O]O2- 4.026e-21 3.683e-21 -20.395 -20.434 -0.039 (0) + Ca[14C]O3 2.336e-21 2.340e-21 -20.632 -20.631 0.001 (0) + [14C]O[18O] 1.746e-21 1.749e-21 -20.758 -20.757 0.001 (0) + [14C]O3-2 1.198e-21 8.394e-22 -20.921 -21.076 -0.155 (0) + CaH[14C]O2[18O]+ 8.501e-23 7.798e-23 -22.071 -22.108 -0.037 (0) + CaH[14C]O[18O]O+ 8.501e-23 7.798e-23 -22.071 -22.108 -0.037 (0) + CaH[14C][18O]O2+ 8.501e-23 7.798e-23 -22.071 -22.108 -0.037 (0) + Ca[14C]O2[18O] 1.398e-23 1.400e-23 -22.854 -22.854 0.001 (0) + H[14C]O[18O]2- 8.032e-24 7.348e-24 -23.095 -23.134 -0.039 (0) + H[14C][18O]2O- 8.032e-24 7.348e-24 -23.095 -23.134 -0.039 (0) + H[14C][18O]O[18O]- 8.032e-24 7.348e-24 -23.095 -23.134 -0.039 (0) + [14C]O2[18O]-2 7.172e-24 5.024e-24 -23.144 -23.299 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.785 -69.784 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.786 -72.785 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -70.174 -70.173 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -73.175 -73.174 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.10 -17.96 -2.86 [13C]H4 + [13C]H4(g) -14.32 -17.18 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -22.23 -23.74 -1.50 [14C][18O]2 - [14C]H4(g) -28.48 -31.34 -2.86 [14C]H4 - [14C]O2(g) -16.87 -18.34 -1.47 [14C]O2 - [14C]O[18O](g) -19.25 -21.04 -1.79 [14C]O[18O] - [18O]2(g) -70.50 -72.79 -2.29 [18O]2 + [14C][18O]2(g) -22.27 -23.78 -1.50 [14C][18O]2 + [14C]H4(g) -27.74 -30.60 -2.86 [14C]H4 + [14C]O2(g) -16.91 -18.38 -1.47 [14C]O2 + [14C]O[18O](g) -19.29 -21.08 -1.79 [14C]O[18O] + [18O]2(g) -70.88 -73.17 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.40 -15.24 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.54 -9.84 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.33 -7.14 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -20.23 -12.54 7.69 Ca[14C]O[18O]2 + Ca[14C][18O]3(s) -23.44 -15.28 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -17.58 -9.88 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -15.37 -7.18 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -20.27 -12.58 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.14 -16.00 -2.86 CH4 + CH4(g) -12.36 -15.22 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.35 -12.50 -3.15 H2 + H2(g) -9.15 -12.30 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.49 -67.39 -2.89 O2 - O[18O](g) -67.19 -70.09 -2.89 O[18O] + O2(g) -64.88 -67.77 -2.89 O2 + O[18O](g) -67.58 -70.47 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -26754,6 +26701,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 102. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -26799,36 +26752,36 @@ Calcite 5.00e-04 Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 - Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.53e-11 - Ca[14C]O3(s) 2.14e-19 2.14e-19 4.28e-16 - Ca[14C]O2[18O](s) 1.01e-27 1.01e-29 2.02e-24 - Ca[14C]O[18O]2(s) 1.01e-27 1.01e-29 2.02e-24 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 1.95e-19 1.95e-19 3.90e-16 + Ca[14C]O2[18O](s) 1.20e-21 1.20e-21 2.40e-18 + Ca[14C]O[18O]2(s) 2.46e-24 2.46e-24 4.93e-21 + Ca[14C][18O]3(s) 1.69e-27 6.86e-28 3.37e-24 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99521e-03 -4.9832 permil - R(13C) 1.11705e-02 -0.86551 permil - R(14C) 4.31997e-16 0.036738 pmc - R(18O) H2O(l) 1.99520e-03 -4.9848 permil + R(18O) 1.99521e-03 -4.9829 permil + R(13C) 1.11646e-02 -1.3951 permil + R(14C) 3.94025e-16 0.033509 pmc + R(18O) H2O(l) 1.99521e-03 -4.9844 permil R(18O) OH- 1.92124e-03 -41.872 permil - R(18O) H3O+ 2.04134e-03 18.023 permil - R(13C) CO2(aq) 1.10906e-02 -8.0159 permil - R(14C) CO2(aq) 4.25832e-16 0.036214 pmc - R(18O) CO2(aq) 2.07917e-03 36.889 permil - R(18O) HCO3- 1.99520e-03 -4.9848 permil - R(13C) HCO3- 1.11871e-02 0.61425 permil - R(14C) HCO3- 4.33273e-16 0.036846 pmc - R(18O) CO3-2 1.99520e-03 -4.9848 permil - R(13C) CO3-2 1.11710e-02 -0.82172 permil - R(14C) CO3-2 4.32031e-16 0.036741 pmc - R(13C) CH4(aq) 1.10906e-02 -8.0159 permil - R(14C) CH4(aq) 4.25832e-16 0.036214 pmc + R(18O) H3O+ 2.04134e-03 18.024 permil + R(13C) CO2(aq) 1.10847e-02 -8.5417 permil + R(14C) CO2(aq) 3.88402e-16 0.033031 pmc + R(18O) CO2(aq) 2.07917e-03 36.89 permil + R(18O) HCO3- 1.99521e-03 -4.9844 permil + R(13C) HCO3- 1.11811e-02 0.083868 permil + R(14C) HCO3- 3.95189e-16 0.033608 pmc + R(18O) CO3-2 1.99521e-03 -4.9844 permil + R(13C) CO3-2 1.11651e-02 -1.3513 permil + R(14C) CO3-2 3.94056e-16 0.033511 pmc + R(13C) CH4(aq) 1.10847e-02 -8.5417 permil + R(14C) CH4(aq) 3.88402e-16 0.033031 pmc R(18O) Calcite 2.05265e-03 23.662 permil - R(13C) Calcite 1.12092e-02 2.5961 permil - R(14C) Calcite 4.32324e-16 0.036766 pmc + R(13C) Calcite 1.12033e-02 2.0647 permil + R(14C) Calcite 3.96756e-16 0.033741 pmc --------------------------------Isotope Alphas--------------------------------- @@ -26839,17 +26792,17 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6754e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7261e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.0769e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.3101e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -9.4369e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 3.1086e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0152 15.13 21.282 +Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ @@ -26857,36 +26810,36 @@ Alpha 14C Calcite/CO2(aq) 1.0152 15.13 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.523e-05 6.504e-05 - [14C] 2.523e-18 2.515e-18 + [13C] 6.520e-05 6.501e-05 + [14C] 2.301e-18 2.294e-18 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.319 Adjusted to redox equilibrium + pe = -2.436 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.457e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.431e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 41 + Iterations = 160 (261 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.099e-16 - CH4 1.099e-16 1.101e-16 -15.959 -15.958 0.001 (0) +C(-4) 9.393e-16 + CH4 9.393e-16 9.409e-16 -15.027 -15.026 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -26901,8 +26854,8 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 @@ -26911,102 +26864,102 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.100e-08 6.110e-08 -7.215 -7.214 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.502e-13 - H2 3.251e-13 3.256e-13 -12.488 -12.487 0.001 (0) +H(0) 1.112e-12 + H2 5.558e-13 5.567e-13 -12.255 -12.254 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.408 -67.407 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.807 -69.806 0.001 (0) -[13C](-4) 1.219e-18 - [13C]H4 1.219e-18 1.221e-18 -17.914 -17.913 0.001 (0) -[13C](4) 6.523e-05 - H[13C]O3- 5.262e-05 4.814e-05 -4.279 -4.318 -0.039 (0) + O2 0.000e+00 0.000e+00 -67.874 -67.873 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -70.273 -70.272 0.001 (0) +[13C](-4) 1.041e-17 + [13C]H4 1.041e-17 1.043e-17 -16.982 -16.982 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.050e-07 9.604e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.050e-07 9.604e-08 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.050e-07 9.604e-08 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.100e-08 6.110e-08 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.592e-08 4.600e-08 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.129e-08 2.192e-08 -7.505 -7.659 -0.155 (0) - CaH[13C][18O]O2+ 2.217e-09 2.034e-09 -8.654 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.217e-09 2.034e-09 -8.654 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.217e-09 2.034e-09 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.651e-10 3.657e-10 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.095e-10 1.916e-10 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.095e-10 1.916e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.095e-10 1.916e-10 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.873e-10 1.312e-10 -9.727 -9.882 -0.155 (0) -[14C](-4) 4.681e-32 - [14C]H4 4.681e-32 4.689e-32 -31.330 -31.329 0.001 (0) -[14C](4) 2.523e-18 - H[14C]O3- 2.038e-18 1.864e-18 -17.691 -17.729 -0.039 (0) - [14C]O2 4.240e-19 4.247e-19 -18.373 -18.372 0.001 (0) - CaH[14C]O3+ 4.303e-20 3.948e-20 -19.366 -19.404 -0.037 (0) - H[14C][18O]O2- 4.066e-21 3.720e-21 -20.391 -20.429 -0.039 (0) - H[14C]O2[18O]- 4.066e-21 3.720e-21 -20.391 -20.429 -0.039 (0) - H[14C]O[18O]O- 4.066e-21 3.720e-21 -20.391 -20.429 -0.039 (0) - Ca[14C]O3 2.359e-21 2.363e-21 -20.627 -20.627 0.001 (0) - [14C]O[18O] 1.763e-21 1.766e-21 -20.754 -20.753 0.001 (0) - [14C]O3-2 1.210e-21 8.478e-22 -20.917 -21.072 -0.155 (0) - CaH[14C]O[18O]O+ 8.586e-23 7.876e-23 -22.066 -22.104 -0.037 (0) - CaH[14C]O2[18O]+ 8.586e-23 7.876e-23 -22.066 -22.104 -0.037 (0) - CaH[14C][18O]O2+ 8.586e-23 7.876e-23 -22.066 -22.104 -0.037 (0) - Ca[14C]O2[18O] 1.412e-23 1.414e-23 -22.850 -22.849 0.001 (0) - H[14C][18O]O[18O]- 8.112e-24 7.422e-24 -23.091 -23.129 -0.039 (0) - H[14C][18O]2O- 8.112e-24 7.422e-24 -23.091 -23.129 -0.039 (0) - H[14C]O[18O]2- 8.112e-24 7.422e-24 -23.091 -23.129 -0.039 (0) - [14C]O2[18O]-2 7.244e-24 5.074e-24 -23.140 -23.295 -0.155 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.598e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 3.648e-31 + [14C]H4 3.648e-31 3.654e-31 -30.438 -30.437 0.001 (0) +[14C](4) 2.301e-18 + H[14C]O3- 1.859e-18 1.701e-18 -17.731 -17.769 -0.039 (0) + [14C]O2 3.868e-19 3.874e-19 -18.413 -18.412 0.001 (0) + CaH[14C]O3+ 3.925e-20 3.601e-20 -19.406 -19.444 -0.037 (0) + H[14C]O2[18O]- 3.709e-21 3.393e-21 -20.431 -20.469 -0.039 (0) + H[14C]O[18O]O- 3.709e-21 3.393e-21 -20.431 -20.469 -0.039 (0) + H[14C][18O]O2- 3.709e-21 3.393e-21 -20.431 -20.469 -0.039 (0) + Ca[14C]O3 2.152e-21 2.155e-21 -20.667 -20.666 0.001 (0) + [14C]O[18O] 1.608e-21 1.611e-21 -20.794 -20.793 0.001 (0) + [14C]O3-2 1.104e-21 7.733e-22 -20.957 -21.112 -0.155 (0) + CaH[14C]O2[18O]+ 7.831e-23 7.184e-23 -22.106 -22.144 -0.037 (0) + CaH[14C]O[18O]O+ 7.831e-23 7.184e-23 -22.106 -22.144 -0.037 (0) + CaH[14C][18O]O2+ 7.831e-23 7.184e-23 -22.106 -22.144 -0.037 (0) + Ca[14C]O2[18O] 1.288e-23 1.290e-23 -22.890 -22.889 0.001 (0) + H[14C]O[18O]2- 7.399e-24 6.769e-24 -23.131 -23.169 -0.039 (0) + H[14C][18O]2O- 7.399e-24 6.769e-24 -23.131 -23.169 -0.039 (0) + H[14C][18O]O[18O]- 7.399e-24 6.769e-24 -23.131 -23.169 -0.039 (0) + [14C]O2[18O]-2 6.607e-24 4.628e-24 -23.180 -23.335 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.807 -69.806 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.808 -72.807 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -70.273 -70.272 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -73.274 -73.273 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.05 -17.91 -2.86 [13C]H4 + [13C]H4(g) -14.12 -16.98 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -22.27 -23.77 -1.50 [14C][18O]2 - [14C]H4(g) -28.47 -31.33 -2.86 [14C]H4 - [14C]O2(g) -16.90 -18.37 -1.47 [14C]O2 - [14C]O[18O](g) -19.28 -21.07 -1.79 [14C]O[18O] - [18O]2(g) -70.52 -72.81 -2.29 [18O]2 + [14C][18O]2(g) -22.31 -23.81 -1.50 [14C][18O]2 + [14C]H4(g) -27.58 -30.44 -2.86 [14C]H4 + [14C]O2(g) -16.94 -18.41 -1.47 [14C]O2 + [14C]O[18O](g) -19.32 -21.11 -1.79 [14C]O[18O] + [18O]2(g) -70.98 -73.27 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.43 -15.28 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.58 -9.88 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.37 -7.18 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -20.27 -12.58 7.69 Ca[14C]O[18O]2 + Ca[14C][18O]3(s) -23.47 -15.32 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -17.62 -9.92 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -15.41 -7.22 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -20.31 -12.62 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.10 -15.96 -2.86 CH4 + CH4(g) -12.17 -15.03 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.34 -12.49 -3.15 H2 + H2(g) -9.10 -12.25 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.51 -67.41 -2.89 O2 - O[18O](g) -67.21 -70.11 -2.89 O[18O] + O2(g) -64.98 -67.87 -2.89 O2 + O[18O](g) -67.68 -70.57 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -27081,36 +27034,36 @@ Calcite 5.00e-04 Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 - Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.53e-11 - Ca[14C]O3(s) 1.97e-19 1.97e-19 3.94e-16 - Ca[14C]O2[18O](s) 1.21e-21 1.21e-21 2.43e-18 - Ca[14C]O[18O]2(s) 2.49e-24 2.49e-24 4.98e-21 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 1.80e-19 1.80e-19 3.59e-16 + Ca[14C]O2[18O](s) 1.11e-21 1.11e-21 2.21e-18 + Ca[14C]O[18O]2(s) 2.27e-24 2.27e-24 4.54e-21 + Ca[14C][18O]3(s) 1.55e-27 5.53e-28 3.11e-24 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99521e-03 -4.9831 permil - R(13C) 1.11701e-02 -0.90653 permil - R(14C) 3.97968e-16 0.033844 pmc - R(18O) H2O(l) 1.99520e-03 -4.9846 permil + R(18O) 1.99521e-03 -4.9828 permil + R(13C) 1.11646e-02 -1.3945 permil + R(14C) 3.62987e-16 0.030869 pmc + R(18O) H2O(l) 1.99521e-03 -4.9843 permil R(18O) OH- 1.92124e-03 -41.872 permil - R(18O) H3O+ 2.04134e-03 18.023 permil - R(13C) CO2(aq) 1.10901e-02 -8.0566 permil - R(14C) CO2(aq) 3.92288e-16 0.033361 pmc + R(18O) H3O+ 2.04134e-03 18.024 permil + R(13C) CO2(aq) 1.10847e-02 -8.5411 permil + R(14C) CO2(aq) 3.57806e-16 0.030429 pmc R(18O) CO2(aq) 2.07917e-03 36.89 permil - R(18O) HCO3- 1.99520e-03 -4.9846 permil - R(13C) HCO3- 1.11866e-02 0.57317 permil - R(14C) HCO3- 3.99143e-16 0.033944 pmc - R(18O) CO3-2 1.99520e-03 -4.9846 permil - R(13C) CO3-2 1.11706e-02 -0.86275 permil - R(14C) CO3-2 3.97998e-16 0.033847 pmc - R(13C) CH4(aq) 1.10901e-02 -8.0566 permil - R(14C) CH4(aq) 3.92288e-16 0.033361 pmc + R(18O) HCO3- 1.99521e-03 -4.9843 permil + R(13C) HCO3- 1.11811e-02 0.084434 permil + R(14C) HCO3- 3.64059e-16 0.03096 pmc + R(18O) CO3-2 1.99521e-03 -4.9843 permil + R(13C) CO3-2 1.11651e-02 -1.3508 permil + R(14C) CO3-2 3.63015e-16 0.030872 pmc + R(13C) CH4(aq) 1.10847e-02 -8.5411 permil + R(14C) CH4(aq) 3.57806e-16 0.030429 pmc R(18O) Calcite 2.05265e-03 23.662 permil - R(13C) Calcite 1.12088e-02 2.555 permil - R(14C) Calcite 4.00726e-16 0.034079 pmc + R(13C) Calcite 1.12033e-02 2.0653 permil + R(14C) Calcite 3.65503e-16 0.031083 pmc --------------------------------Isotope Alphas--------------------------------- @@ -27121,14 +27074,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 +Alpha 18O HCO3-/H2O(l) 1 2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6441e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6498e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.9984e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 7.9936e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 3.9968e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.0103e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -27139,52 +27092,52 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.523e-05 6.504e-05 - [14C] 2.324e-18 2.317e-18 + [13C] 6.520e-05 6.501e-05 + [14C] 2.120e-18 2.114e-18 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.306 Adjusted to redox equilibrium + pe = -2.443 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.457e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.431e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 25 (126 overall) + Iterations = 115 (216 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 8.684e-17 - CH4 8.684e-17 8.698e-17 -16.061 -16.061 0.001 (0) +C(-4) 1.078e-15 + CH4 1.078e-15 1.079e-15 -14.968 -14.967 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 @@ -27193,102 +27146,102 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.100e-08 6.110e-08 -7.215 -7.214 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.130e-13 - H2 3.065e-13 3.070e-13 -12.514 -12.513 0.001 (0) +H(0) 1.150e-12 + H2 5.752e-13 5.762e-13 -12.240 -12.239 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.357 -67.356 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.756 -69.755 0.001 (0) -[13C](-4) 9.630e-19 - [13C]H4 9.630e-19 9.646e-19 -18.016 -18.016 0.001 (0) -[13C](4) 6.523e-05 - H[13C]O3- 5.261e-05 4.814e-05 -4.279 -4.318 -0.039 (0) + O2 0.000e+00 0.000e+00 -67.904 -67.903 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -70.303 -70.302 0.001 (0) +[13C](-4) 1.194e-17 + [13C]H4 1.194e-17 1.196e-17 -16.923 -16.922 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O[18O]O- 1.050e-07 9.604e-08 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.050e-07 9.604e-08 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.050e-07 9.604e-08 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.100e-08 6.110e-08 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.592e-08 4.600e-08 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.129e-08 2.192e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.217e-09 2.034e-09 -8.654 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.217e-09 2.034e-09 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.217e-09 2.034e-09 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.651e-10 3.657e-10 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.095e-10 1.916e-10 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.095e-10 1.916e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.095e-10 1.916e-10 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.873e-10 1.312e-10 -9.727 -9.882 -0.155 (0) -[14C](-4) 3.406e-32 - [14C]H4 3.406e-32 3.412e-32 -31.468 -31.467 0.001 (0) -[14C](4) 2.324e-18 - H[14C]O3- 1.877e-18 1.718e-18 -17.726 -17.765 -0.039 (0) - [14C]O2 3.906e-19 3.913e-19 -18.408 -18.408 0.001 (0) - CaH[14C]O3+ 3.964e-20 3.637e-20 -19.402 -19.439 -0.037 (0) - H[14C][18O]O2- 3.746e-21 3.427e-21 -20.426 -20.465 -0.039 (0) - H[14C]O2[18O]- 3.746e-21 3.427e-21 -20.426 -20.465 -0.039 (0) - H[14C]O[18O]O- 3.746e-21 3.427e-21 -20.426 -20.465 -0.039 (0) - Ca[14C]O3 2.173e-21 2.177e-21 -20.663 -20.662 0.001 (0) - [14C]O[18O] 1.624e-21 1.627e-21 -20.789 -20.789 0.001 (0) - [14C]O3-2 1.115e-21 7.810e-22 -20.953 -21.107 -0.155 (0) - CaH[14C]O[18O]O+ 7.910e-23 7.256e-23 -22.102 -22.139 -0.037 (0) - CaH[14C]O2[18O]+ 7.910e-23 7.256e-23 -22.102 -22.139 -0.037 (0) - CaH[14C][18O]O2+ 7.910e-23 7.256e-23 -22.102 -22.139 -0.037 (0) - Ca[14C]O2[18O] 1.301e-23 1.303e-23 -22.886 -22.885 0.001 (0) - H[14C][18O]2O- 7.473e-24 6.837e-24 -23.126 -23.165 -0.039 (0) - H[14C]O[18O]2- 7.473e-24 6.837e-24 -23.126 -23.165 -0.039 (0) - H[14C][18O]O[18O]- 7.473e-24 6.837e-24 -23.126 -23.165 -0.039 (0) - [14C]O2[18O]-2 6.673e-24 4.675e-24 -23.176 -23.330 -0.155 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.598e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 3.856e-31 + [14C]H4 3.856e-31 3.862e-31 -30.414 -30.413 0.001 (0) +[14C](4) 2.120e-18 + H[14C]O3- 1.712e-18 1.567e-18 -17.766 -17.805 -0.039 (0) + [14C]O2 3.563e-19 3.569e-19 -18.448 -18.447 0.001 (0) + CaH[14C]O3+ 3.616e-20 3.317e-20 -19.442 -19.479 -0.037 (0) + H[14C]O2[18O]- 3.416e-21 3.126e-21 -20.466 -20.505 -0.039 (0) + H[14C]O[18O]O- 3.416e-21 3.126e-21 -20.466 -20.505 -0.039 (0) + H[14C][18O]O2- 3.416e-21 3.126e-21 -20.466 -20.505 -0.039 (0) + Ca[14C]O3 1.982e-21 1.985e-21 -20.703 -20.702 0.001 (0) + [14C]O[18O] 1.482e-21 1.484e-21 -20.829 -20.829 0.001 (0) + [14C]O3-2 1.017e-21 7.124e-22 -20.993 -21.147 -0.155 (0) + CaH[14C]O2[18O]+ 7.214e-23 6.618e-23 -22.142 -22.179 -0.037 (0) + CaH[14C]O[18O]O+ 7.214e-23 6.618e-23 -22.142 -22.179 -0.037 (0) + CaH[14C][18O]O2+ 7.214e-23 6.618e-23 -22.142 -22.179 -0.037 (0) + Ca[14C]O2[18O] 1.186e-23 1.188e-23 -22.926 -22.925 0.001 (0) + H[14C]O[18O]2- 6.816e-24 6.236e-24 -23.166 -23.205 -0.039 (0) + H[14C][18O]2O- 6.816e-24 6.236e-24 -23.166 -23.205 -0.039 (0) + H[14C][18O]O[18O]- 6.816e-24 6.236e-24 -23.166 -23.205 -0.039 (0) + [14C]O2[18O]-2 6.086e-24 4.264e-24 -23.216 -23.370 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.756 -69.755 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.757 -72.756 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -70.303 -70.302 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -73.304 -73.303 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.16 -18.02 -2.86 [13C]H4 + [13C]H4(g) -14.06 -16.92 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -22.30 -23.81 -1.50 [14C][18O]2 - [14C]H4(g) -28.61 -31.47 -2.86 [14C]H4 - [14C]O2(g) -16.94 -18.41 -1.47 [14C]O2 - [14C]O[18O](g) -19.32 -21.11 -1.79 [14C]O[18O] - [18O]2(g) -70.47 -72.76 -2.29 [18O]2 + [14C][18O]2(g) -22.34 -23.85 -1.50 [14C][18O]2 + [14C]H4(g) -27.55 -30.41 -2.86 [14C]H4 + [14C]O2(g) -16.98 -18.45 -1.47 [14C]O2 + [14C]O[18O](g) -19.36 -21.15 -1.79 [14C]O[18O] + [18O]2(g) -71.01 -73.30 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.47 -15.31 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.62 -9.91 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.40 -7.21 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -20.30 -12.61 7.69 Ca[14C]O[18O]2 + Ca[14C][18O]3(s) -23.51 -15.35 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -17.66 -9.95 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -15.44 -7.25 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -20.34 -12.65 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.20 -16.06 -2.86 CH4 + CH4(g) -12.11 -14.97 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.36 -12.51 -3.15 H2 + H2(g) -9.09 -12.24 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.46 -67.36 -2.89 O2 - O[18O](g) -67.16 -70.06 -2.89 O[18O] + O2(g) -65.01 -67.90 -2.89 O2 + O[18O](g) -67.71 -70.60 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -27312,6 +27265,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 104. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -27357,36 +27316,36 @@ Calcite 5.00e-04 Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 - Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.53e-11 - Ca[14C]O3(s) 1.81e-19 1.81e-19 3.63e-16 - Ca[14C]O2[18O](s) 1.12e-21 1.12e-21 2.23e-18 - Ca[14C]O[18O]2(s) 2.29e-24 2.29e-24 4.59e-21 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 1.65e-19 1.65e-19 3.31e-16 + Ca[14C]O2[18O](s) 1.02e-21 1.02e-21 2.04e-18 + Ca[14C]O[18O]2(s) 2.09e-24 2.09e-24 4.18e-21 + Ca[14C][18O]3(s) 1.43e-27 4.31e-28 2.86e-24 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99521e-03 -4.983 permil - R(13C) 1.11696e-02 -0.94433 permil - R(14C) 3.66619e-16 0.031178 pmc - R(18O) H2O(l) 1.99521e-03 -4.9845 permil + R(18O) 1.99521e-03 -4.9826 permil + R(13C) 1.11646e-02 -1.394 permil + R(14C) 3.34394e-16 0.028438 pmc + R(18O) H2O(l) 1.99521e-03 -4.9842 permil R(18O) OH- 1.92124e-03 -41.872 permil R(18O) H3O+ 2.04134e-03 18.024 permil - R(13C) CO2(aq) 1.10897e-02 -8.0941 permil - R(14C) CO2(aq) 3.61386e-16 0.030733 pmc + R(13C) CO2(aq) 1.10847e-02 -8.5406 permil + R(14C) CO2(aq) 3.29621e-16 0.028032 pmc R(18O) CO2(aq) 2.07917e-03 36.89 permil - R(18O) HCO3- 1.99521e-03 -4.9845 permil - R(13C) HCO3- 1.11862e-02 0.53531 permil - R(14C) HCO3- 3.67702e-16 0.03127 pmc - R(18O) CO3-2 1.99521e-03 -4.9845 permil - R(13C) CO3-2 1.11701e-02 -0.90054 permil - R(14C) CO3-2 3.66647e-16 0.03118 pmc - R(13C) CH4(aq) 1.10897e-02 -8.0941 permil - R(14C) CH4(aq) 3.61386e-16 0.030733 pmc + R(18O) HCO3- 1.99521e-03 -4.9842 permil + R(13C) HCO3- 1.11811e-02 0.084955 permil + R(14C) HCO3- 3.35381e-16 0.028522 pmc + R(18O) CO3-2 1.99521e-03 -4.9842 permil + R(13C) CO3-2 1.11651e-02 -1.3503 permil + R(14C) CO3-2 3.34420e-16 0.02844 pmc + R(13C) CH4(aq) 1.10847e-02 -8.5406 permil + R(14C) CH4(aq) 3.29621e-16 0.028032 pmc R(18O) Calcite 2.05265e-03 23.662 permil - R(13C) Calcite 1.12083e-02 2.517 permil - R(14C) Calcite 3.69160e-16 0.031394 pmc + R(13C) Calcite 1.12033e-02 2.0658 permil + R(14C) Calcite 3.36711e-16 0.028635 pmc --------------------------------Isotope Alphas--------------------------------- @@ -27397,14 +27356,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.7724e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.8842e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7024e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6696e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -2.9976e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.1768e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.5321e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.4988e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -27415,43 +27374,43 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.523e-05 6.504e-05 - [14C] 2.141e-18 2.135e-18 + [13C] 6.520e-05 6.501e-05 + [14C] 1.953e-18 1.947e-18 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.301 Adjusted to redox equilibrium + pe = -2.438 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.457e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.431e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 57 + Iterations = 110 (211 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 7.940e-17 - CH4 7.940e-17 7.953e-17 -16.100 -16.099 0.001 (0) +C(-4) 9.892e-16 + CH4 9.892e-16 9.908e-16 -15.005 -15.004 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -27459,8 +27418,8 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 @@ -27469,102 +27428,102 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.099e-08 6.109e-08 -7.215 -7.214 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.994e-13 - H2 2.997e-13 3.002e-13 -12.523 -12.523 0.001 (0) +H(0) 1.126e-12 + H2 5.631e-13 5.640e-13 -12.249 -12.249 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.337 -67.337 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.736 -69.736 0.001 (0) -[13C](-4) 8.806e-19 - [13C]H4 8.806e-19 8.820e-19 -18.055 -18.055 0.001 (0) -[13C](4) 6.523e-05 - H[13C]O3- 5.261e-05 4.813e-05 -4.279 -4.318 -0.039 (0) + O2 0.000e+00 0.000e+00 -67.885 -67.884 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -70.284 -70.283 0.001 (0) +[13C](-4) 1.096e-17 + [13C]H4 1.096e-17 1.098e-17 -16.960 -16.959 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C][18O]O2- 1.050e-07 9.604e-08 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.050e-07 9.604e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.050e-07 9.604e-08 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.099e-08 6.109e-08 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.592e-08 4.600e-08 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.129e-08 2.192e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O[18O]O+ 2.217e-09 2.033e-09 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.217e-09 2.033e-09 -8.654 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.217e-09 2.033e-09 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.651e-10 3.657e-10 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.094e-10 1.916e-10 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.094e-10 1.916e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.094e-10 1.916e-10 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.873e-10 1.312e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.870e-32 - [14C]H4 2.870e-32 2.874e-32 -31.542 -31.541 0.001 (0) -[14C](4) 2.141e-18 - H[14C]O3- 1.729e-18 1.582e-18 -17.762 -17.801 -0.039 (0) - [14C]O2 3.599e-19 3.605e-19 -18.444 -18.443 0.001 (0) - CaH[14C]O3+ 3.652e-20 3.350e-20 -19.437 -19.475 -0.037 (0) - H[14C][18O]O2- 3.451e-21 3.157e-21 -20.462 -20.501 -0.039 (0) - H[14C]O2[18O]- 3.451e-21 3.157e-21 -20.462 -20.501 -0.039 (0) - H[14C]O[18O]O- 3.451e-21 3.157e-21 -20.462 -20.501 -0.039 (0) - Ca[14C]O3 2.002e-21 2.005e-21 -20.699 -20.698 0.001 (0) - [14C]O[18O] 1.496e-21 1.499e-21 -20.825 -20.824 0.001 (0) - [14C]O3-2 1.027e-21 7.195e-22 -20.988 -21.143 -0.155 (0) - CaH[14C]O[18O]O+ 7.287e-23 6.684e-23 -22.137 -22.175 -0.037 (0) - CaH[14C]O2[18O]+ 7.287e-23 6.684e-23 -22.137 -22.175 -0.037 (0) - CaH[14C][18O]O2+ 7.287e-23 6.684e-23 -22.137 -22.175 -0.037 (0) - Ca[14C]O2[18O] 1.198e-23 1.200e-23 -22.921 -22.921 0.001 (0) - H[14C]O[18O]2- 6.885e-24 6.299e-24 -23.162 -23.201 -0.039 (0) - H[14C][18O]O[18O]- 6.885e-24 6.299e-24 -23.162 -23.201 -0.039 (0) - H[14C][18O]2O- 6.885e-24 6.299e-24 -23.162 -23.201 -0.039 (0) - [14C]O2[18O]-2 6.147e-24 4.307e-24 -23.211 -23.366 -0.155 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.598e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 3.261e-31 + [14C]H4 3.261e-31 3.266e-31 -30.487 -30.486 0.001 (0) +[14C](4) 1.953e-18 + H[14C]O3- 1.577e-18 1.443e-18 -17.802 -17.841 -0.039 (0) + [14C]O2 3.282e-19 3.288e-19 -18.484 -18.483 0.001 (0) + CaH[14C]O3+ 3.331e-20 3.056e-20 -19.477 -19.515 -0.037 (0) + H[14C]O2[18O]- 3.147e-21 2.879e-21 -20.502 -20.541 -0.039 (0) + H[14C]O[18O]O- 3.147e-21 2.879e-21 -20.502 -20.541 -0.039 (0) + H[14C][18O]O2- 3.147e-21 2.879e-21 -20.502 -20.541 -0.039 (0) + Ca[14C]O3 1.826e-21 1.829e-21 -20.738 -20.738 0.001 (0) + [14C]O[18O] 1.365e-21 1.367e-21 -20.865 -20.864 0.001 (0) + [14C]O3-2 9.368e-22 6.562e-22 -21.028 -21.183 -0.155 (0) + CaH[14C]O2[18O]+ 6.646e-23 6.097e-23 -22.177 -22.215 -0.037 (0) + CaH[14C]O[18O]O+ 6.646e-23 6.097e-23 -22.177 -22.215 -0.037 (0) + CaH[14C][18O]O2+ 6.646e-23 6.097e-23 -22.177 -22.215 -0.037 (0) + Ca[14C]O2[18O] 1.093e-23 1.095e-23 -22.961 -22.961 0.001 (0) + H[14C]O[18O]2- 6.280e-24 5.745e-24 -23.202 -23.241 -0.039 (0) + H[14C][18O]2O- 6.280e-24 5.745e-24 -23.202 -23.241 -0.039 (0) + H[14C][18O]O[18O]- 6.280e-24 5.745e-24 -23.202 -23.241 -0.039 (0) + [14C]O2[18O]-2 5.607e-24 3.928e-24 -23.251 -23.406 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.736 -69.736 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.737 -72.737 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -70.284 -70.283 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -73.285 -73.284 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.19 -18.05 -2.86 [13C]H4 + [13C]H4(g) -14.10 -16.96 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -22.34 -23.84 -1.50 [14C][18O]2 - [14C]H4(g) -28.68 -31.54 -2.86 [14C]H4 - [14C]O2(g) -16.97 -18.44 -1.47 [14C]O2 - [14C]O[18O](g) -19.36 -21.14 -1.79 [14C]O[18O] - [18O]2(g) -70.45 -72.74 -2.29 [18O]2 + [14C][18O]2(g) -22.38 -23.88 -1.50 [14C][18O]2 + [14C]H4(g) -27.63 -30.49 -2.86 [14C]H4 + [14C]O2(g) -17.01 -18.48 -1.47 [14C]O2 + [14C]O[18O](g) -19.40 -21.18 -1.79 [14C]O[18O] + [18O]2(g) -70.99 -73.28 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.50 -15.35 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.65 -9.95 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.44 -7.25 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -20.34 -12.65 7.69 Ca[14C]O[18O]2 + Ca[14C][18O]3(s) -23.54 -15.39 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -17.69 -9.99 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -15.48 -7.29 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -20.38 -12.69 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.24 -16.10 -2.86 CH4 + CH4(g) -12.14 -15.00 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.37 -12.52 -3.15 H2 + H2(g) -9.10 -12.25 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.44 -67.34 -2.89 O2 - O[18O](g) -67.14 -70.04 -2.89 O[18O] + O2(g) -64.99 -67.88 -2.89 O2 + O[18O](g) -67.69 -70.58 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -27639,36 +27598,36 @@ Calcite 5.00e-04 Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 - Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.53e-11 - Ca[14C]O3(s) 1.67e-19 1.67e-19 3.34e-16 - Ca[14C]O2[18O](s) 1.03e-21 1.03e-21 2.06e-18 - Ca[14C]O[18O]2(s) 2.11e-24 2.11e-24 4.22e-21 - Ca[14C][18O]3(s) 1.01e-27 1.01e-29 2.02e-24 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 1.52e-19 1.52e-19 3.05e-16 + Ca[14C]O2[18O](s) 9.39e-22 9.39e-22 1.88e-18 + Ca[14C]O[18O]2(s) 1.93e-24 1.93e-24 3.85e-21 + Ca[14C][18O]3(s) 1.32e-27 3.18e-28 2.64e-24 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99521e-03 -4.9828 permil - R(13C) 1.11693e-02 -0.97916 permil - R(14C) 3.37739e-16 0.028722 pmc - R(18O) H2O(l) 1.99521e-03 -4.9843 permil + R(18O) 1.99521e-03 -4.9825 permil + R(13C) 1.11646e-02 -1.3935 permil + R(14C) 3.08053e-16 0.026197 pmc + R(18O) H2O(l) 1.99521e-03 -4.984 permil R(18O) OH- 1.92124e-03 -41.872 permil R(18O) H3O+ 2.04134e-03 18.024 permil - R(13C) CO2(aq) 1.10893e-02 -8.1287 permil - R(14C) CO2(aq) 3.32919e-16 0.028312 pmc + R(13C) CO2(aq) 1.10847e-02 -8.5401 permil + R(14C) CO2(aq) 3.03656e-16 0.025824 pmc R(18O) CO2(aq) 2.07917e-03 36.89 permil - R(18O) HCO3- 1.99521e-03 -4.9843 permil - R(13C) HCO3- 1.11858e-02 0.50043 permil - R(14C) HCO3- 3.38737e-16 0.028807 pmc - R(18O) CO3-2 1.99521e-03 -4.9843 permil - R(13C) CO3-2 1.11697e-02 -0.93538 permil - R(14C) CO3-2 3.37765e-16 0.028724 pmc - R(13C) CH4(aq) 1.10893e-02 -8.1287 permil - R(14C) CH4(aq) 3.32919e-16 0.028312 pmc - R(18O) Calcite 2.05265e-03 23.662 permil - R(13C) Calcite 1.12080e-02 2.4821 permil - R(14C) Calcite 3.40080e-16 0.028921 pmc + R(18O) HCO3- 1.99521e-03 -4.984 permil + R(13C) HCO3- 1.11812e-02 0.085435 permil + R(14C) HCO3- 3.08963e-16 0.026275 pmc + R(18O) CO3-2 1.99521e-03 -4.984 permil + R(13C) CO3-2 1.11651e-02 -1.3498 permil + R(14C) CO3-2 3.08077e-16 0.026199 pmc + R(13C) CH4(aq) 1.10847e-02 -8.5401 permil + R(14C) CH4(aq) 3.03656e-16 0.025824 pmc + R(18O) Calcite 2.05265e-03 23.663 permil + R(13C) Calcite 1.12033e-02 2.0663 permil + R(14C) Calcite 3.10188e-16 0.026379 pmc --------------------------------Isotope Alphas--------------------------------- @@ -27679,14 +27638,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.8842e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.63e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6515e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -9.1038e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 7.3275e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 4.2188e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.2212e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -27697,36 +27656,36 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.523e-05 6.504e-05 - [14C] 1.972e-18 1.967e-18 + [13C] 6.520e-05 6.501e-05 + [14C] 1.799e-18 1.794e-18 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.293 Adjusted to redox equilibrium + pe = -2.448 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.478e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.431e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 32 (133 overall) + Iterations = 111 (212 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 6.812e-17 - CH4 6.812e-17 6.823e-17 -16.167 -16.166 0.001 (0) +C(-4) 1.179e-15 + CH4 1.179e-15 1.181e-15 -14.929 -14.928 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -27738,11 +27697,11 @@ C(4) 5.840e-03 CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 @@ -27751,102 +27710,102 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.099e-08 6.109e-08 -7.215 -7.214 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.769e-13 - H2 2.884e-13 2.889e-13 -12.540 -12.539 0.001 (0) +H(0) 1.177e-12 + H2 5.883e-13 5.892e-13 -12.230 -12.230 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.304 -67.303 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.703 -69.702 0.001 (0) -[13C](-4) 7.554e-19 - [13C]H4 7.554e-19 7.566e-19 -18.122 -18.121 0.001 (0) -[13C](4) 6.523e-05 - H[13C]O3- 5.261e-05 4.813e-05 -4.279 -4.318 -0.039 (0) + O2 0.000e+00 0.000e+00 -67.923 -67.922 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -70.322 -70.321 0.001 (0) +[13C](-4) 1.307e-17 + [13C]H4 1.307e-17 1.309e-17 -16.884 -16.883 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.050e-07 9.603e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.050e-07 9.603e-08 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.050e-07 9.603e-08 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.099e-08 6.109e-08 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.592e-08 4.599e-08 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.129e-08 2.192e-08 -7.505 -7.659 -0.155 (0) - CaH[13C][18O]O2+ 2.217e-09 2.033e-09 -8.654 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.217e-09 2.033e-09 -8.654 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.217e-09 2.033e-09 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.651e-10 3.657e-10 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.094e-10 1.916e-10 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.094e-10 1.916e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.094e-10 1.916e-10 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.873e-10 1.312e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.268e-32 - [14C]H4 2.268e-32 2.271e-32 -31.644 -31.644 0.001 (0) -[14C](4) 1.972e-18 - H[14C]O3- 1.593e-18 1.458e-18 -17.798 -17.836 -0.039 (0) - [14C]O2 3.315e-19 3.321e-19 -18.479 -18.479 0.001 (0) - CaH[14C]O3+ 3.364e-20 3.086e-20 -19.473 -19.511 -0.037 (0) - H[14C][18O]O2- 3.179e-21 2.908e-21 -20.498 -20.536 -0.039 (0) - H[14C]O2[18O]- 3.179e-21 2.908e-21 -20.498 -20.536 -0.039 (0) - H[14C]O[18O]O- 3.179e-21 2.908e-21 -20.498 -20.536 -0.039 (0) - Ca[14C]O3 1.844e-21 1.847e-21 -20.734 -20.733 0.001 (0) - [14C]O[18O] 1.379e-21 1.381e-21 -20.861 -20.860 0.001 (0) - [14C]O3-2 9.461e-22 6.628e-22 -21.024 -21.179 -0.155 (0) - CaH[14C]O[18O]O+ 6.713e-23 6.158e-23 -22.173 -22.211 -0.037 (0) - CaH[14C]O2[18O]+ 6.713e-23 6.158e-23 -22.173 -22.211 -0.037 (0) - CaH[14C][18O]O2+ 6.713e-23 6.158e-23 -22.173 -22.211 -0.037 (0) - Ca[14C]O2[18O] 1.104e-23 1.106e-23 -22.957 -22.956 0.001 (0) - H[14C][18O]O[18O]- 6.342e-24 5.802e-24 -23.198 -23.236 -0.039 (0) - H[14C][18O]2O- 6.342e-24 5.802e-24 -23.198 -23.236 -0.039 (0) - H[14C]O[18O]2- 6.342e-24 5.802e-24 -23.198 -23.236 -0.039 (0) - [14C]O2[18O]-2 5.663e-24 3.967e-24 -23.247 -23.402 -0.155 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.598e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 3.579e-31 + [14C]H4 3.579e-31 3.585e-31 -30.446 -30.446 0.001 (0) +[14C](4) 1.799e-18 + H[14C]O3- 1.453e-18 1.329e-18 -17.838 -17.876 -0.039 (0) + [14C]O2 3.024e-19 3.029e-19 -18.519 -18.519 0.001 (0) + CaH[14C]O3+ 3.069e-20 2.815e-20 -19.513 -19.551 -0.037 (0) + H[14C]O2[18O]- 2.899e-21 2.653e-21 -20.538 -20.576 -0.039 (0) + H[14C]O[18O]O- 2.899e-21 2.653e-21 -20.538 -20.576 -0.039 (0) + H[14C][18O]O2- 2.899e-21 2.653e-21 -20.538 -20.576 -0.039 (0) + Ca[14C]O3 1.682e-21 1.685e-21 -20.774 -20.773 0.001 (0) + [14C]O[18O] 1.257e-21 1.259e-21 -20.901 -20.900 0.001 (0) + [14C]O3-2 8.630e-22 6.045e-22 -21.064 -21.219 -0.155 (0) + CaH[14C]O2[18O]+ 6.123e-23 5.616e-23 -22.213 -22.251 -0.037 (0) + CaH[14C]O[18O]O+ 6.123e-23 5.616e-23 -22.213 -22.251 -0.037 (0) + CaH[14C][18O]O2+ 6.123e-23 5.616e-23 -22.213 -22.251 -0.037 (0) + Ca[14C]O2[18O] 1.007e-23 1.009e-23 -22.997 -22.996 0.001 (0) + H[14C]O[18O]2- 5.785e-24 5.292e-24 -23.238 -23.276 -0.039 (0) + H[14C][18O]2O- 5.785e-24 5.292e-24 -23.238 -23.276 -0.039 (0) + H[14C][18O]O[18O]- 5.785e-24 5.292e-24 -23.238 -23.276 -0.039 (0) + [14C]O2[18O]-2 5.165e-24 3.619e-24 -23.287 -23.441 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.703 -69.702 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.704 -72.703 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -70.322 -70.321 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -73.323 -73.322 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.26 -18.12 -2.86 [13C]H4 + [13C]H4(g) -14.02 -16.88 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -22.38 -23.88 -1.50 [14C][18O]2 - [14C]H4(g) -28.78 -31.64 -2.86 [14C]H4 - [14C]O2(g) -17.01 -18.48 -1.47 [14C]O2 - [14C]O[18O](g) -19.39 -21.18 -1.79 [14C]O[18O] - [18O]2(g) -70.41 -72.70 -2.29 [18O]2 + [14C][18O]2(g) -22.42 -23.92 -1.50 [14C][18O]2 + [14C]H4(g) -27.59 -30.45 -2.86 [14C]H4 + [14C]O2(g) -17.05 -18.52 -1.47 [14C]O2 + [14C]O[18O](g) -19.43 -21.22 -1.79 [14C]O[18O] + [18O]2(g) -71.03 -73.32 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.54 -15.38 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.69 -9.98 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.48 -7.28 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -20.37 -12.68 7.69 Ca[14C]O[18O]2 + Ca[14C][18O]3(s) -23.58 -15.42 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -17.73 -10.02 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -15.52 -7.32 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -20.41 -12.72 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.31 -16.17 -2.86 CH4 + CH4(g) -12.07 -14.93 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.39 -12.54 -3.15 H2 + H2(g) -9.08 -12.23 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.41 -67.30 -2.89 O2 - O[18O](g) -67.11 -70.00 -2.89 O[18O] + O2(g) -65.03 -67.92 -2.89 O2 + O[18O](g) -67.73 -70.62 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -27870,6 +27829,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 106. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -27915,36 +27880,36 @@ Calcite 5.00e-04 Ca[13C]O3(s) 5.51e-06 5.51e-06 1.10e-02 Ca[13C]O2[18O](s) 3.39e-08 3.39e-08 6.78e-05 Ca[13C]O[18O]2(s) 6.96e-11 6.96e-11 1.39e-07 - Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.53e-11 - Ca[14C]O3(s) 1.54e-19 1.54e-19 3.08e-16 - Ca[14C]O2[18O](s) 9.48e-22 9.48e-22 1.90e-18 - Ca[14C]O[18O]2(s) 1.01e-27 1.00e-29 2.02e-24 - Ca[14C][18O]3(s) 1.01e-27 1.00e-29 2.02e-24 + Ca[13C][18O]3(s) 4.76e-14 4.76e-14 9.52e-11 + Ca[14C]O3(s) 1.40e-19 1.40e-19 2.81e-16 + Ca[14C]O2[18O](s) 8.65e-22 8.65e-22 1.73e-18 + Ca[14C]O[18O]2(s) 1.78e-24 1.77e-24 3.55e-21 + Ca[14C][18O]3(s) 1.21e-27 2.14e-28 2.43e-24 --------------------------------Isotope Ratios--------------------------------- Isotope Ratio Ratio Input Units - R(18O) 1.99521e-03 -4.9827 permil - R(13C) 1.11689e-02 -1.0113 permil - R(14C) 3.11135e-16 0.02646 pmc - R(18O) H2O(l) 1.99521e-03 -4.9842 permil - R(18O) OH- 1.92124e-03 -41.872 permil + R(18O) 1.99521e-03 -4.9824 permil + R(13C) 1.11646e-02 -1.3931 permil + R(14C) 2.83787e-16 0.024134 pmc + R(18O) H2O(l) 1.99521e-03 -4.9839 permil + R(18O) OH- 1.92124e-03 -41.871 permil R(18O) H3O+ 2.04134e-03 18.024 permil - R(13C) CO2(aq) 1.10890e-02 -8.1606 permil - R(14C) CO2(aq) 3.06694e-16 0.026082 pmc + R(13C) CO2(aq) 1.10847e-02 -8.5397 permil + R(14C) CO2(aq) 2.79737e-16 0.023789 pmc R(18O) CO2(aq) 2.07917e-03 36.89 permil - R(18O) HCO3- 1.99521e-03 -4.9842 permil - R(13C) HCO3- 1.11854e-02 0.46829 permil - R(14C) HCO3- 3.12054e-16 0.026538 pmc - R(18O) CO3-2 1.99521e-03 -4.9842 permil - R(13C) CO3-2 1.11694e-02 -0.96747 permil - R(14C) CO3-2 3.11159e-16 0.026462 pmc - R(13C) CH4(aq) 1.10890e-02 -8.1606 permil - R(14C) CH4(aq) 3.06694e-16 0.026082 pmc - R(18O) Calcite 2.05265e-03 23.662 permil - R(13C) Calcite 1.12076e-02 2.4499 permil - R(14C) Calcite 3.13287e-16 0.026643 pmc + R(18O) HCO3- 1.99521e-03 -4.9839 permil + R(13C) HCO3- 1.11812e-02 0.085877 permil + R(14C) HCO3- 2.84625e-16 0.024205 pmc + R(18O) CO3-2 1.99521e-03 -4.9839 permil + R(13C) CO3-2 1.11651e-02 -1.3493 permil + R(14C) CO3-2 2.83809e-16 0.024136 pmc + R(13C) CH4(aq) 1.10847e-02 -8.5397 permil + R(14C) CH4(aq) 2.79737e-16 0.023789 pmc + R(18O) Calcite 2.05265e-03 23.663 permil + R(13C) Calcite 1.12033e-02 2.0667 permil + R(14C) Calcite 2.85754e-16 0.024301 pmc --------------------------------Isotope Alphas--------------------------------- @@ -27955,17 +27920,17 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6069e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7256e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -7.7716e-13 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -3.1086e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.1324e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 7.3275e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.269 21.282 +Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 -----------------------------Solution composition------------------------------ @@ -27973,43 +27938,43 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.269 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 - [13C] 6.522e-05 6.503e-05 - [14C] 1.817e-18 1.812e-18 + [13C] 6.520e-05 6.501e-05 + [14C] 1.657e-18 1.652e-18 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.302 Adjusted to redox equilibrium + pe = -2.455 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.478e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.431e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 74 + Iterations = 103 (204 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 8.031e-17 - CH4 8.031e-17 8.045e-17 -16.095 -16.094 0.001 (0) +C(-4) 1.355e-15 + CH4 1.355e-15 1.357e-15 -14.868 -14.867 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -28017,8 +27982,8 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 @@ -28027,102 +27992,102 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.099e-08 6.109e-08 -7.215 -7.214 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.011e-13 - H2 3.006e-13 3.011e-13 -12.522 -12.521 0.001 (0) +H(0) 1.218e-12 + H2 6.091e-13 6.101e-13 -12.215 -12.215 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.340 -67.339 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.739 -69.738 0.001 (0) -[13C](-4) 8.906e-19 - [13C]H4 8.906e-19 8.921e-19 -18.050 -18.050 0.001 (0) -[13C](4) 6.522e-05 - H[13C]O3- 5.261e-05 4.813e-05 -4.279 -4.318 -0.039 (0) + O2 0.000e+00 0.000e+00 -67.953 -67.953 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -70.352 -70.352 0.001 (0) +[13C](-4) 1.502e-17 + [13C]H4 1.502e-17 1.504e-17 -16.823 -16.823 0.001 (0) +[13C](4) 6.520e-05 + H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O[18O]O- 1.050e-07 9.603e-08 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.050e-07 9.603e-08 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.050e-07 9.603e-08 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.099e-08 6.109e-08 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.592e-08 4.599e-08 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.129e-08 2.192e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.217e-09 2.033e-09 -8.654 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.217e-09 2.033e-09 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.217e-09 2.033e-09 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.651e-10 3.657e-10 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.094e-10 1.916e-10 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.094e-10 1.916e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.094e-10 1.916e-10 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.873e-10 1.312e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.463e-32 - [14C]H4 2.463e-32 2.467e-32 -31.608 -31.608 0.001 (0) -[14C](4) 1.817e-18 - H[14C]O3- 1.468e-18 1.343e-18 -17.833 -17.872 -0.039 (0) - [14C]O2 3.054e-19 3.059e-19 -18.515 -18.514 0.001 (0) - CaH[14C]O3+ 3.099e-20 2.843e-20 -19.509 -19.546 -0.037 (0) - H[14C][18O]O2- 2.928e-21 2.679e-21 -20.533 -20.572 -0.039 (0) - H[14C]O2[18O]- 2.928e-21 2.679e-21 -20.533 -20.572 -0.039 (0) - H[14C]O[18O]O- 2.928e-21 2.679e-21 -20.533 -20.572 -0.039 (0) - Ca[14C]O3 1.699e-21 1.702e-21 -20.770 -20.769 0.001 (0) - [14C]O[18O] 1.270e-21 1.272e-21 -20.896 -20.895 0.001 (0) - [14C]O3-2 8.716e-22 6.106e-22 -21.060 -21.214 -0.155 (0) - CaH[14C]O[18O]O+ 6.184e-23 5.673e-23 -22.209 -22.246 -0.037 (0) - CaH[14C]O2[18O]+ 6.184e-23 5.673e-23 -22.209 -22.246 -0.037 (0) - CaH[14C][18O]O2+ 6.184e-23 5.673e-23 -22.209 -22.246 -0.037 (0) - Ca[14C]O2[18O] 1.017e-23 1.019e-23 -22.993 -22.992 0.001 (0) - H[14C][18O]2O- 5.843e-24 5.345e-24 -23.233 -23.272 -0.039 (0) - H[14C]O[18O]2- 5.843e-24 5.345e-24 -23.233 -23.272 -0.039 (0) - H[14C][18O]O[18O]- 5.843e-24 5.345e-24 -23.233 -23.272 -0.039 (0) - [14C]O2[18O]-2 5.217e-24 3.655e-24 -23.283 -23.437 -0.155 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) + [13C]O[18O] 4.590e-08 4.598e-08 -7.338 -7.337 0.001 (0) + [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) + H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) +[14C](-4) 3.790e-31 + [14C]H4 3.790e-31 3.796e-31 -30.421 -30.421 0.001 (0) +[14C](4) 1.657e-18 + H[14C]O3- 1.339e-18 1.225e-18 -17.873 -17.912 -0.039 (0) + [14C]O2 2.786e-19 2.790e-19 -18.555 -18.554 0.001 (0) + CaH[14C]O3+ 2.827e-20 2.593e-20 -19.549 -19.586 -0.037 (0) + H[14C]O2[18O]- 2.671e-21 2.444e-21 -20.573 -20.612 -0.039 (0) + H[14C]O[18O]O- 2.671e-21 2.444e-21 -20.573 -20.612 -0.039 (0) + H[14C][18O]O2- 2.671e-21 2.444e-21 -20.573 -20.612 -0.039 (0) + Ca[14C]O3 1.550e-21 1.552e-21 -20.810 -20.809 0.001 (0) + [14C]O[18O] 1.158e-21 1.160e-21 -20.936 -20.935 0.001 (0) + [14C]O3-2 7.950e-22 5.569e-22 -21.100 -21.254 -0.155 (0) + CaH[14C]O2[18O]+ 5.640e-23 5.174e-23 -22.249 -22.286 -0.037 (0) + CaH[14C]O[18O]O+ 5.640e-23 5.174e-23 -22.249 -22.286 -0.037 (0) + CaH[14C][18O]O2+ 5.640e-23 5.174e-23 -22.249 -22.286 -0.037 (0) + Ca[14C]O2[18O] 9.276e-24 9.291e-24 -23.033 -23.032 0.001 (0) + H[14C]O[18O]2- 5.329e-24 4.876e-24 -23.273 -23.312 -0.039 (0) + H[14C][18O]2O- 5.329e-24 4.876e-24 -23.273 -23.312 -0.039 (0) + H[14C][18O]O[18O]- 5.329e-24 4.876e-24 -23.273 -23.312 -0.039 (0) + [14C]O2[18O]-2 4.758e-24 3.334e-24 -23.323 -23.477 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.739 -69.738 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.740 -72.739 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -70.352 -70.352 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -73.353 -73.353 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.19 -18.05 -2.86 [13C]H4 + [13C]H4(g) -13.96 -16.82 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -22.41 -23.91 -1.50 [14C][18O]2 - [14C]H4(g) -28.75 -31.61 -2.86 [14C]H4 - [14C]O2(g) -17.05 -18.51 -1.47 [14C]O2 - [14C]O[18O](g) -19.43 -21.21 -1.79 [14C]O[18O] - [18O]2(g) -70.45 -72.74 -2.29 [18O]2 + [14C][18O]2(g) -22.45 -23.95 -1.50 [14C][18O]2 + [14C]H4(g) -27.56 -30.42 -2.86 [14C]H4 + [14C]O2(g) -17.09 -18.55 -1.47 [14C]O2 + [14C]O[18O](g) -19.47 -21.25 -1.79 [14C]O[18O] + [18O]2(g) -71.06 -73.35 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.57 -15.42 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.72 -10.02 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.51 -7.32 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -20.41 -12.72 7.69 Ca[14C]O[18O]2 + Ca[14C][18O]3(s) -23.61 -15.46 8.15 Ca[14C][18O]3 + Ca[14C]O2[18O](s) -17.76 -10.06 7.70 Ca[14C]O2[18O] + Ca[14C]O3(s) -15.55 -7.36 8.19 Ca[14C]O3 + Ca[14C]O[18O]2(s) -20.45 -12.76 7.69 Ca[14C]O[18O]2 CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.23 -16.09 -2.86 CH4 + CH4(g) -12.01 -14.87 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.37 -12.52 -3.15 H2 + H2(g) -9.06 -12.21 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.45 -67.34 -2.89 O2 - O[18O](g) -67.15 -70.04 -2.89 O[18O] + O2(g) -65.06 -67.95 -2.89 O2 + O[18O](g) -67.76 -70.65 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -28236,7 +28201,7 @@ Calcite added: 0 0 0 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.366e-18 Total CO2 (mol/kg) = 3.444e-03 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.366e-18 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 7 @@ -28246,7 +28211,7 @@ Calcite added: 0 0 0 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 3.919e-05 3.891e-05 -4.407 -4.410 -0.003 0.00 OH- 2.592e-10 2.573e-10 -9.586 -9.590 -0.003 (0) @@ -28388,14 +28353,14 @@ Calcite 0.00e+00 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 4.4409e-13 0 +Alpha 18O HCO3-/H2O(l) 1 1.5543e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 3.6702e-09 0 +Alpha 18O CO3-2/H2O(l) 1 3.6713e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 2.2204e-13 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -4.1078e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.3323e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -7.7716e-13 0 -----------------------------Solution composition------------------------------ @@ -28410,14 +28375,14 @@ Alpha 14C CH4(aq)/CO2(aq) 1 -4.1078e-12 0 ----------------------------Description of solution---------------------------- pH = 5.863 Charge balance - pe = 0.291 Adjusted to redox equilibrium + pe = 0.247 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 1.495e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 1.003e-03 Total CO2 (mol/kg) = 3.912e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.320e-14 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.367e-14 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 18 Total H = 1.110126e+02 @@ -28426,49 +28391,49 @@ Alpha 14C CH4(aq)/CO2(aq) 1 -4.1078e-12 0 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.426e-06 1.369e-06 -5.846 -5.863 -0.018 0.00 OH- 7.606e-09 7.282e-09 -8.119 -8.138 -0.019 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.255e-28 - CH4 4.255e-28 4.256e-28 -27.371 -27.371 0.000 (0) +C(-4) 9.506e-28 + CH4 9.506e-28 9.510e-28 -27.022 -27.022 0.000 (0) C(4) 3.912e-03 CO2 2.907e-03 2.908e-03 -2.537 -2.536 0.000 (0) HCO3- 9.821e-04 9.406e-04 -3.008 -3.027 -0.019 (0) CO[18O] 1.209e-05 1.209e-05 -4.918 -4.918 0.000 (0) CaHCO3+ 5.241e-06 5.023e-06 -5.281 -5.299 -0.018 (0) - HC[18O]O2- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) - HCO[18O]O- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) HCO2[18O]- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) + HCO[18O]O- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) + HC[18O]O2- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) CO3-2 3.822e-08 3.216e-08 -7.418 -7.493 -0.075 (0) CaCO3 2.260e-08 2.261e-08 -7.646 -7.646 0.000 (0) C[18O]2 1.257e-08 1.257e-08 -7.901 -7.901 0.000 (0) CaHCO2[18O]+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) - CaHC[18O]O2+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) CaHCO[18O]O+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) + CaHC[18O]O2+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) Ca 5.014e-04 Ca+2 4.961e-04 4.184e-04 -3.304 -3.378 -0.074 (0) CaHCO3+ 5.241e-06 5.023e-06 -5.281 -5.299 -0.018 (0) CaH[13C]O3+ 5.770e-08 5.530e-08 -7.239 -7.257 -0.018 (0) CaCO3 2.260e-08 2.261e-08 -7.646 -7.646 0.000 (0) CaHCO2[18O]+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) - CaHC[18O]O2+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) CaHCO[18O]O+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) -H(0) 6.986e-16 - H2 3.493e-16 3.494e-16 -15.457 -15.457 0.000 (0) + CaHC[18O]O2+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) +H(0) 8.541e-16 + H2 4.271e-16 4.272e-16 -15.370 -15.369 0.000 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -61.469 -61.468 0.000 (0) - O[18O] 0.000e+00 0.000e+00 -63.868 -63.867 0.000 (0) -[13C](-4) 4.644e-30 - [13C]H4 4.644e-30 4.646e-30 -29.333 -29.333 0.000 (0) + O2 0.000e+00 0.000e+00 -61.643 -61.643 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -64.042 -64.042 0.000 (0) +[13C](-4) 1.038e-29 + [13C]H4 1.038e-29 1.038e-29 -28.984 -28.984 0.000 (0) [13C](4) 4.280e-05 [13C]O2 3.173e-05 3.174e-05 -4.499 -4.498 0.000 (0) H[13C]O3- 1.081e-05 1.036e-05 -4.966 -4.985 -0.019 (0) [13C]O[18O] 1.319e-07 1.320e-07 -6.880 -6.879 0.000 (0) CaH[13C]O3+ 5.770e-08 5.530e-08 -7.239 -7.257 -0.018 (0) - H[13C]O[18O]O- 2.157e-08 2.066e-08 -7.666 -7.685 -0.019 (0) H[13C]O2[18O]- 2.157e-08 2.066e-08 -7.666 -7.685 -0.019 (0) + H[13C]O[18O]O- 2.157e-08 2.066e-08 -7.666 -7.685 -0.019 (0) H[13C][18O]O2- 2.157e-08 2.066e-08 -7.666 -7.685 -0.019 (0) [13C]O3-2 4.202e-10 3.535e-10 -9.377 -9.452 -0.075 (0) Ca[13C]O3 2.484e-10 2.485e-10 -9.605 -9.605 0.000 (0) @@ -28476,52 +28441,52 @@ O(0) 0.000e+00 CaH[13C]O2[18O]+ 1.151e-10 1.103e-10 -9.939 -9.957 -0.018 (0) CaH[13C]O[18O]O+ 1.151e-10 1.103e-10 -9.939 -9.957 -0.018 (0) CaH[13C][18O]O2+ 1.151e-10 1.103e-10 -9.939 -9.957 -0.018 (0) + H[13C]O[18O]2- 4.304e-11 4.122e-11 -10.366 -10.385 -0.019 (0) H[13C][18O]2O- 4.304e-11 4.122e-11 -10.366 -10.385 -0.019 (0) H[13C][18O]O[18O]- 4.304e-11 4.122e-11 -10.366 -10.385 -0.019 (0) - H[13C]O[18O]2- 4.304e-11 4.122e-11 -10.366 -10.385 -0.019 (0) -[14C](-4) 4.397e-40 - [14C]H4 4.397e-40 4.398e-40 -39.357 -39.357 0.000 (0) +[14C](-4) 9.824e-40 + [14C]H4 9.824e-40 9.828e-40 -39.008 -39.008 0.000 (0) [14C](4) 4.061e-15 [14C]O2 3.004e-15 3.005e-15 -14.522 -14.522 0.000 (0) H[14C]O3- 1.033e-15 9.890e-16 -14.986 -15.005 -0.019 (0) [14C]O[18O] 1.249e-17 1.250e-17 -16.903 -16.903 0.000 (0) CaH[14C]O3+ 5.511e-18 5.281e-18 -17.259 -17.277 -0.018 (0) - H[14C][18O]O2- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) - H[14C]O[18O]O- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) H[14C]O2[18O]- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) + H[14C]O[18O]O- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) + H[14C][18O]O2- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) [14C]O3-2 4.008e-20 3.372e-20 -19.397 -19.472 -0.075 (0) Ca[14C]O3 2.369e-20 2.370e-20 -19.625 -19.625 0.000 (0) [14C][18O]2 1.299e-20 1.299e-20 -19.887 -19.886 0.000 (0) CaH[14C]O2[18O]+ 1.099e-20 1.054e-20 -19.959 -19.977 -0.018 (0) - CaH[14C][18O]O2+ 1.099e-20 1.054e-20 -19.959 -19.977 -0.018 (0) CaH[14C]O[18O]O+ 1.099e-20 1.054e-20 -19.959 -19.977 -0.018 (0) + CaH[14C][18O]O2+ 1.099e-20 1.054e-20 -19.959 -19.977 -0.018 (0) H[14C]O[18O]2- 4.111e-21 3.937e-21 -20.386 -20.405 -0.019 (0) - H[14C][18O]O[18O]- 4.111e-21 3.937e-21 -20.386 -20.405 -0.019 (0) H[14C][18O]2O- 4.111e-21 3.937e-21 -20.386 -20.405 -0.019 (0) + H[14C][18O]O[18O]- 4.111e-21 3.937e-21 -20.386 -20.405 -0.019 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) CO[18O] 1.209e-05 1.209e-05 -4.918 -4.918 0.000 (0) - HCO[18O]O- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) HCO2[18O]- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) + HCO[18O]O- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) HC[18O]O2- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) [13C]O[18O] 1.319e-07 1.320e-07 -6.880 -6.879 0.000 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -63.868 -63.867 0.000 (0) - [18O]2 0.000e+00 0.000e+00 -66.869 -66.868 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -64.042 -64.042 0.000 (0) + [18O]2 0.000e+00 0.000e+00 -67.043 -67.043 0.000 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.40 -9.90 -1.50 [13C][18O]2 - [13C]H4(g) -26.47 -29.33 -2.86 [13C]H4 + [13C]H4(g) -26.12 -28.98 -2.86 [13C]H4 [13C]O2(g) -3.03 -4.50 -1.47 [13C]O2 [13C]O[18O](g) -5.41 -7.20 -1.79 [13C]O[18O] [14C][18O]2(g) -18.42 -19.92 -1.50 [14C][18O]2 - [14C]H4(g) -36.50 -39.36 -2.86 [14C]H4 + [14C]H4(g) -36.15 -39.01 -2.86 [14C]H4 [14C]O2(g) -13.05 -14.52 -1.47 [14C]O2 [14C]O[18O](g) -15.44 -17.22 -1.79 [14C]O[18O] - [18O]2(g) -64.58 -66.87 -2.29 [18O]2 + [18O]2(g) -64.75 -67.04 -2.29 [18O]2 C[18O]2(g) -6.43 -7.94 -1.50 C[18O]2 Ca[13C][18O]3(s) -12.41 -4.25 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -6.56 1.15 7.71 Ca[13C]O2[18O] @@ -28535,14 +28500,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -4.60 3.11 7.71 CaCO2[18O] CaCO[18O]2(s) -7.29 0.41 7.70 CaCO[18O]2 Calcite -2.39 -10.87 -8.48 CaCO3 - CH4(g) -24.51 -27.37 -2.86 CH4 + CH4(g) -24.16 -27.02 -2.86 CH4 CO2(g) -1.07 -2.54 -1.47 CO2 CO[18O](g) -3.45 -5.24 -1.79 CO[18O] - H2(g) -12.31 -15.46 -3.15 H2 + H2(g) -12.22 -15.37 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -58.58 -61.47 -2.89 O2 - O[18O](g) -61.28 -64.17 -2.89 O[18O] + O2(g) -58.75 -61.64 -2.89 O2 + O[18O](g) -61.45 -64.34 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -28610,7 +28575,6 @@ Calcite 0.00e+00 R(18O) H2O(l) 1.99517e-03 -5.0019 permil R(18O) OH- 1.92120e-03 -41.889 permil R(18O) H3O+ 2.04131e-03 18.006 permil - R(18O) O2(aq) 1.99517e-03 -5.0019 permil R(13C) CO2(aq) 1.09260e-02 -22.736 permil R(14C) CO2(aq) 9.14074e-13 77.735 pmc R(18O) CO2(aq) 2.07914e-03 36.872 permil @@ -28620,6 +28584,8 @@ Calcite 0.00e+00 R(18O) CO3-2 1.99517e-03 -5.0019 permil R(13C) CO3-2 1.10052e-02 -15.648 permil R(14C) CO3-2 9.27381e-13 78.866 pmc + R(13C) CH4(aq) 1.09260e-02 -22.736 permil + R(14C) CH4(aq) 0.00000e+00 0 pmc --------------------------------Isotope Alphas--------------------------------- @@ -28629,14 +28595,15 @@ Calcite 0.00e+00 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2563e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.2307e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.9496e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 0 0 +Alpha 14C CH4(aq)/CO2(aq) 0 -1000 0 -----------------------------Solution composition------------------------------ @@ -28651,122 +28618,122 @@ Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 ----------------------------Description of solution---------------------------- pH = 6.235 Charge balance - pe = 11.669 Adjusted to redox equilibrium + pe = 0.081 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 2.970e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 2.006e-03 Total CO2 (mol/kg) = 4.408e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.429e-14 + Temperature (°C) = 25.00 + Electrical balance (eq) = 3.501e-14 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 16 + Iterations = 5 Total H = 1.110126e+02 Total O = 5.540564e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 6.146e-07 5.816e-07 -6.211 -6.235 -0.024 0.00 OH- 1.821e-08 1.714e-08 -7.740 -7.766 -0.026 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -121.450 -121.450 0.000 (0) +C(-4) 1.780e-29 + CH4 1.780e-29 1.781e-29 -28.750 -28.749 0.000 (0) C(4) 4.408e-03 CO2 2.414e-03 2.416e-03 -2.617 -2.617 0.000 (0) HCO3- 1.953e-03 1.840e-03 -2.709 -2.735 -0.026 (0) CaHCO3+ 1.936e-05 1.827e-05 -4.713 -4.738 -0.025 (0) CO[18O] 1.004e-05 1.005e-05 -4.998 -4.998 0.000 (0) - HCO[18O]O- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) HCO2[18O]- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) + HCO[18O]O- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) HC[18O]O2- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) CaCO3 1.934e-07 1.935e-07 -6.714 -6.713 0.000 (0) CO3-2 1.880e-07 1.481e-07 -6.726 -6.830 -0.104 (0) CaHCO2[18O]+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) - CaHC[18O]O2+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) CaHCO[18O]O+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) + CaHC[18O]O2+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) C[18O]2 1.044e-08 1.044e-08 -7.981 -7.981 0.000 (0) HCO[18O]2- 7.773e-09 7.323e-09 -8.109 -8.135 -0.026 (0) - HC[18O]O[18O]- 7.773e-09 7.323e-09 -8.109 -8.135 -0.026 (0) HC[18O]2O- 7.773e-09 7.323e-09 -8.109 -8.135 -0.026 (0) + HC[18O]O[18O]- 7.773e-09 7.323e-09 -8.109 -8.135 -0.026 (0) Ca 1.003e-03 Ca+2 9.830e-04 7.781e-04 -3.007 -3.109 -0.102 (0) CaHCO3+ 1.936e-05 1.827e-05 -4.713 -4.738 -0.025 (0) CaH[13C]O3+ 2.134e-07 2.013e-07 -6.671 -6.696 -0.025 (0) CaCO3 1.934e-07 1.935e-07 -6.714 -6.713 0.000 (0) CaHCO2[18O]+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) - CaHC[18O]O2+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) CaHCO[18O]O+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) + CaHC[18O]O2+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) Ca[13C]O3 2.128e-09 2.130e-09 -8.672 -8.672 0.000 (0) CaCO2[18O] 1.158e-09 1.158e-09 -8.936 -8.936 0.000 (0) -H(0) 2.210e-39 - H2 1.105e-39 1.106e-39 -38.957 -38.956 0.000 (0) -O(0) 6.812e-15 - O2 3.393e-15 3.395e-15 -14.469 -14.469 0.000 (0) - O[18O] 1.354e-17 1.355e-17 -16.868 -16.868 0.000 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -123.412 -123.412 0.000 (0) +H(0) 3.309e-16 + H2 1.654e-16 1.656e-16 -15.781 -15.781 0.000 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -60.820 -60.820 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -63.219 -63.219 0.000 (0) +[13C](-4) 1.945e-31 + [13C]H4 1.945e-31 1.946e-31 -30.711 -30.711 0.000 (0) [13C](4) 4.835e-05 [13C]O2 2.638e-05 2.639e-05 -4.579 -4.578 0.000 (0) H[13C]O3- 2.152e-05 2.027e-05 -4.667 -4.693 -0.026 (0) CaH[13C]O3+ 2.134e-07 2.013e-07 -6.671 -6.696 -0.025 (0) [13C]O[18O] 1.097e-07 1.098e-07 -6.960 -6.960 0.000 (0) H[13C]O2[18O]- 4.294e-08 4.045e-08 -7.367 -7.393 -0.026 (0) - H[13C][18O]O2- 4.294e-08 4.045e-08 -7.367 -7.393 -0.026 (0) H[13C]O[18O]O- 4.294e-08 4.045e-08 -7.367 -7.393 -0.026 (0) + H[13C][18O]O2- 4.294e-08 4.045e-08 -7.367 -7.393 -0.026 (0) Ca[13C]O3 2.128e-09 2.130e-09 -8.672 -8.672 0.000 (0) [13C]O3-2 2.069e-09 1.629e-09 -8.684 -8.788 -0.104 (0) CaH[13C]O2[18O]+ 4.258e-10 4.016e-10 -9.371 -9.396 -0.025 (0) CaH[13C]O[18O]O+ 4.258e-10 4.016e-10 -9.371 -9.396 -0.025 (0) CaH[13C][18O]O2+ 4.258e-10 4.016e-10 -9.371 -9.396 -0.025 (0) [13C][18O]2 1.140e-10 1.141e-10 -9.943 -9.943 0.000 (0) + H[13C]O[18O]2- 8.566e-11 8.070e-11 -10.067 -10.093 -0.026 (0) H[13C][18O]2O- 8.566e-11 8.070e-11 -10.067 -10.093 -0.026 (0) H[13C][18O]O[18O]- 8.566e-11 8.070e-11 -10.067 -10.093 -0.026 (0) - H[13C]O[18O]2- 8.566e-11 8.070e-11 -10.067 -10.093 -0.026 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -133.489 -133.489 0.000 (0) + [14C]H4 0.000e+00 0.000e+00 -40.789 -40.788 0.000 (0) [14C](4) 4.061e-15 [14C]O2 2.207e-15 2.208e-15 -14.656 -14.656 0.000 (0) H[14C]O3- 1.816e-15 1.711e-15 -14.741 -14.767 -0.026 (0) CaH[14C]O3+ 1.801e-17 1.699e-17 -16.745 -16.770 -0.025 (0) [14C]O[18O] 9.176e-18 9.182e-18 -17.037 -17.037 0.000 (0) - H[14C]O[18O]O- 3.623e-18 3.413e-18 -17.441 -17.467 -0.026 (0) H[14C]O2[18O]- 3.623e-18 3.413e-18 -17.441 -17.467 -0.026 (0) + H[14C]O[18O]O- 3.623e-18 3.413e-18 -17.441 -17.467 -0.026 (0) H[14C][18O]O2- 3.623e-18 3.413e-18 -17.441 -17.467 -0.026 (0) Ca[14C]O3 1.794e-19 1.795e-19 -18.746 -18.746 0.000 (0) [14C]O3-2 1.743e-19 1.373e-19 -18.759 -18.862 -0.104 (0) - CaH[14C]O[18O]O+ 3.593e-20 3.389e-20 -19.445 -19.470 -0.025 (0) CaH[14C]O2[18O]+ 3.593e-20 3.389e-20 -19.445 -19.470 -0.025 (0) + CaH[14C]O[18O]O+ 3.593e-20 3.389e-20 -19.445 -19.470 -0.025 (0) CaH[14C][18O]O2+ 3.593e-20 3.389e-20 -19.445 -19.470 -0.025 (0) [14C][18O]2 9.539e-21 9.545e-21 -20.021 -20.020 0.000 (0) - H[14C][18O]O[18O]- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) - H[14C][18O]2O- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) H[14C]O[18O]2- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) + H[14C][18O]2O- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) + H[14C][18O]O[18O]- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) CO[18O] 1.004e-05 1.005e-05 -4.998 -4.998 0.000 (0) HCO2[18O]- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) - HC[18O]O2- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) HCO[18O]O- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) -[18O](0) 1.356e-17 - O[18O] 1.354e-17 1.355e-17 -16.868 -16.868 0.000 (0) - [18O]2 1.351e-20 1.351e-20 -19.869 -19.869 0.000 (0) + HC[18O]O2- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -63.219 -63.219 0.000 (0) + [18O]2 0.000e+00 0.000e+00 -66.220 -66.220 0.000 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.48 -9.98 -1.50 [13C][18O]2 - [13C]H4(g) -120.55 -123.41 -2.86 [13C]H4 + [13C]H4(g) -27.85 -30.71 -2.86 [13C]H4 [13C]O2(g) -3.11 -4.58 -1.47 [13C]O2 [13C]O[18O](g) -5.49 -7.28 -1.79 [13C]O[18O] [14C][18O]2(g) -18.55 -20.06 -1.50 [14C][18O]2 - [14C]H4(g) -130.63 -133.49 -2.86 [14C]H4 + [14C]H4(g) -37.93 -40.79 -2.86 [14C]H4 [14C]O2(g) -13.19 -14.66 -1.47 [14C]O2 [14C]O[18O](g) -15.57 -17.36 -1.79 [14C]O[18O] - [18O]2(g) -17.58 -19.87 -2.29 [18O]2 + [18O]2(g) -63.93 -66.22 -2.29 [18O]2 C[18O]2(g) -6.51 -8.02 -1.50 C[18O]2 Ca[13C][18O]3(s) -11.48 -3.32 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -5.63 2.08 7.71 Ca[13C]O2[18O] @@ -28780,14 +28747,14 @@ O(0) 6.812e-15 CaCO2[18O](s) -3.67 4.04 7.71 CaCO2[18O] CaCO[18O]2(s) -6.36 1.34 7.70 CaCO[18O]2 Calcite -1.46 -9.94 -8.48 CaCO3 - CH4(g) -118.59 -121.45 -2.86 CH4 + CH4(g) -25.89 -28.75 -2.86 CH4 CO2(g) -1.15 -2.62 -1.47 CO2 CO[18O](g) -3.53 -5.32 -1.79 CO[18O] - H2(g) -35.81 -38.96 -3.15 H2 + H2(g) -12.63 -15.78 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.58 -14.47 -2.89 O2 - O[18O](g) -14.28 -17.17 -2.89 O[18O] + O2(g) -57.93 -60.82 -2.89 O2 + O[18O](g) -60.63 -63.52 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -28874,12 +28841,12 @@ Calcite 0.00e+00 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2328e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2373e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -2.4686e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.9934e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 @@ -28896,44 +28863,44 @@ Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 ----------------------------Description of solution---------------------------- pH = 6.503 Charge balance - pe = 11.530 Adjusted to redox equilibrium + pe = 11.499 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 4.428e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 3.009e-03 Total CO2 (mol/kg) = 4.904e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.478e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.766e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 4 + Iterations = 17 Total H = 1.110126e+02 Total O = 5.540714e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 3.351e-07 3.139e-07 -6.475 -6.503 -0.028 0.00 OH- 3.415e-08 3.176e-08 -7.467 -7.498 -0.032 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.581 -122.581 0.000 (0) + CH4 0.000e+00 0.000e+00 -122.333 -122.333 0.000 (0) C(4) 4.904e-03 HCO3- 2.915e-03 2.713e-03 -2.535 -2.567 -0.031 (0) CO2 1.921e-03 1.923e-03 -2.716 -2.716 0.000 (0) CaHCO3+ 4.102e-05 3.825e-05 -4.387 -4.417 -0.030 (0) CO[18O] 7.989e-06 7.997e-06 -5.097 -5.097 0.000 (0) HCO2[18O]- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) - HC[18O]O2- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) HCO[18O]O- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) + HC[18O]O2- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) CaCO3 7.501e-07 7.509e-07 -6.125 -6.124 0.000 (0) CO3-2 5.390e-07 4.046e-07 -6.268 -6.393 -0.125 (0) CaHCO2[18O]+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) CaHCO[18O]O+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) CaHC[18O]O2+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) - HC[18O]2O- 1.160e-08 1.080e-08 -7.935 -7.967 -0.031 (0) HCO[18O]2- 1.160e-08 1.080e-08 -7.935 -7.967 -0.031 (0) + HC[18O]2O- 1.160e-08 1.080e-08 -7.935 -7.967 -0.031 (0) HC[18O]O[18O]- 1.160e-08 1.080e-08 -7.935 -7.967 -0.031 (0) C[18O]2 8.305e-09 8.314e-09 -8.081 -8.080 0.000 (0) Ca 1.504e-03 @@ -28942,76 +28909,76 @@ Ca 1.504e-03 CaCO3 7.501e-07 7.509e-07 -6.125 -6.124 0.000 (0) CaH[13C]O3+ 4.525e-07 4.219e-07 -6.344 -6.375 -0.030 (0) CaHCO2[18O]+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) - CaHC[18O]O2+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) CaHCO[18O]O+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) + CaHC[18O]O2+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) Ca[13C]O3 8.262e-09 8.270e-09 -8.083 -8.082 0.000 (0) CaCO2[18O] 4.490e-09 4.494e-09 -8.348 -8.347 0.000 (0) -H(0) 1.220e-39 - H2 6.100e-40 6.106e-40 -39.215 -39.214 0.000 (0) -O(0) 2.234e-14 - O2 1.112e-14 1.114e-14 -13.954 -13.953 0.000 (0) - O[18O] 4.439e-17 4.443e-17 -16.353 -16.352 0.000 (0) +H(0) 1.407e-39 + H2 7.037e-40 7.044e-40 -39.153 -39.152 0.000 (0) +O(0) 1.679e-14 + O2 8.360e-15 8.369e-15 -14.078 -14.077 0.000 (0) + O[18O] 3.336e-17 3.339e-17 -16.477 -16.476 0.000 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.542 -124.542 0.000 (0) + [13C]H4 0.000e+00 0.000e+00 -124.294 -124.294 0.000 (0) [13C](4) 5.391e-05 H[13C]O3- 3.215e-05 2.993e-05 -4.493 -4.524 -0.031 (0) [13C]O2 2.101e-05 2.103e-05 -4.678 -4.677 0.000 (0) CaH[13C]O3+ 4.525e-07 4.219e-07 -6.344 -6.375 -0.030 (0) [13C]O[18O] 8.736e-08 8.745e-08 -7.059 -7.058 0.000 (0) H[13C]O2[18O]- 6.415e-08 5.971e-08 -7.193 -7.224 -0.031 (0) - H[13C][18O]O2- 6.415e-08 5.971e-08 -7.193 -7.224 -0.031 (0) H[13C]O[18O]O- 6.415e-08 5.971e-08 -7.193 -7.224 -0.031 (0) + H[13C][18O]O2- 6.415e-08 5.971e-08 -7.193 -7.224 -0.031 (0) Ca[13C]O3 8.262e-09 8.270e-09 -8.083 -8.082 0.000 (0) [13C]O3-2 5.937e-09 4.456e-09 -8.226 -8.351 -0.125 (0) + CaH[13C]O2[18O]+ 9.027e-10 8.418e-10 -9.044 -9.075 -0.030 (0) CaH[13C]O[18O]O+ 9.027e-10 8.418e-10 -9.044 -9.075 -0.030 (0) CaH[13C][18O]O2+ 9.027e-10 8.418e-10 -9.044 -9.075 -0.030 (0) - CaH[13C]O2[18O]+ 9.027e-10 8.418e-10 -9.044 -9.075 -0.030 (0) H[13C]O[18O]2- 1.280e-10 1.191e-10 -9.893 -9.924 -0.031 (0) H[13C][18O]2O- 1.280e-10 1.191e-10 -9.893 -9.924 -0.031 (0) H[13C][18O]O[18O]- 1.280e-10 1.191e-10 -9.893 -9.924 -0.031 (0) [13C][18O]2 9.082e-11 9.091e-11 -10.042 -10.041 0.000 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.668 -134.667 0.000 (0) + [14C]H4 0.000e+00 0.000e+00 -134.420 -134.419 0.000 (0) [14C](4) 4.061e-15 H[14C]O3- 2.430e-15 2.262e-15 -14.614 -14.645 -0.031 (0) [14C]O2 1.574e-15 1.576e-15 -14.803 -14.802 0.000 (0) CaH[14C]O3+ 3.420e-17 3.189e-17 -16.466 -16.496 -0.030 (0) [14C]O[18O] 6.547e-18 6.553e-18 -17.184 -17.184 0.000 (0) - H[14C]O[18O]O- 4.849e-18 4.513e-18 -17.314 -17.346 -0.031 (0) H[14C]O2[18O]- 4.849e-18 4.513e-18 -17.314 -17.346 -0.031 (0) + H[14C]O[18O]O- 4.849e-18 4.513e-18 -17.314 -17.346 -0.031 (0) H[14C][18O]O2- 4.849e-18 4.513e-18 -17.314 -17.346 -0.031 (0) Ca[14C]O3 6.236e-19 6.242e-19 -18.205 -18.205 0.000 (0) [14C]O3-2 4.481e-19 3.364e-19 -18.349 -18.473 -0.125 (0) CaH[14C]O2[18O]+ 6.824e-20 6.363e-20 -19.166 -19.196 -0.030 (0) - CaH[14C][18O]O2+ 6.824e-20 6.363e-20 -19.166 -19.196 -0.030 (0) CaH[14C]O[18O]O+ 6.824e-20 6.363e-20 -19.166 -19.196 -0.030 (0) + CaH[14C][18O]O2+ 6.824e-20 6.363e-20 -19.166 -19.196 -0.030 (0) H[14C]O[18O]2- 9.674e-21 9.005e-21 -20.014 -20.046 -0.031 (0) - H[14C][18O]O[18O]- 9.674e-21 9.005e-21 -20.014 -20.046 -0.031 (0) H[14C][18O]2O- 9.674e-21 9.005e-21 -20.014 -20.046 -0.031 (0) + H[14C][18O]O[18O]- 9.674e-21 9.005e-21 -20.014 -20.046 -0.031 (0) [14C][18O]2 6.806e-21 6.813e-21 -20.167 -20.167 0.000 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) CO[18O] 7.989e-06 7.997e-06 -5.097 -5.097 0.000 (0) - HC[18O]O2- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) - HCO[18O]O- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) HCO2[18O]- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) -[18O](0) 4.448e-17 - O[18O] 4.439e-17 4.443e-17 -16.353 -16.352 0.000 (0) - [18O]2 4.428e-20 4.433e-20 -19.354 -19.353 0.000 (0) + HCO[18O]O- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) + HC[18O]O2- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) +[18O](0) 3.343e-17 + O[18O] 3.336e-17 3.339e-17 -16.477 -16.476 0.000 (0) + [18O]2 3.328e-20 3.331e-20 -19.478 -19.477 0.000 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.57 -10.08 -1.50 [13C][18O]2 - [13C]H4(g) -121.68 -124.54 -2.86 [13C]H4 + [13C]H4(g) -121.43 -124.29 -2.86 [13C]H4 [13C]O2(g) -3.21 -4.68 -1.47 [13C]O2 [13C]O[18O](g) -5.59 -7.38 -1.79 [13C]O[18O] [14C][18O]2(g) -18.70 -20.20 -1.50 [14C][18O]2 - [14C]H4(g) -131.81 -134.67 -2.86 [14C]H4 + [14C]H4(g) -131.56 -134.42 -2.86 [14C]H4 [14C]O2(g) -13.33 -14.80 -1.47 [14C]O2 [14C]O[18O](g) -15.72 -17.50 -1.79 [14C]O[18O] - [18O]2(g) -17.06 -19.35 -2.29 [18O]2 + [18O]2(g) -17.19 -19.48 -2.29 [18O]2 C[18O]2(g) -6.61 -8.12 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.89 -2.73 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -5.04 2.67 7.71 Ca[13C]O2[18O] @@ -29025,14 +28992,14 @@ O(0) 2.234e-14 CaCO2[18O](s) -3.08 4.63 7.71 CaCO2[18O] CaCO[18O]2(s) -5.77 1.93 7.70 CaCO[18O]2 Calcite -0.87 -9.35 -8.48 CaCO3 - CH4(g) -119.72 -122.58 -2.86 CH4 + CH4(g) -119.47 -122.33 -2.86 CH4 CO2(g) -1.25 -2.72 -1.47 CO2 CO[18O](g) -3.63 -5.42 -1.79 CO[18O] - H2(g) -36.06 -39.21 -3.15 H2 + H2(g) -36.00 -39.15 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.06 -13.95 -2.89 O2 - O[18O](g) -13.76 -16.65 -2.89 O[18O] + O2(g) -11.18 -14.08 -2.89 O2 + O[18O](g) -13.89 -16.78 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -29119,12 +29086,12 @@ Calcite 0.00e+00 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2736e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2771e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.9482e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -2.0204e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 @@ -29141,14 +29108,14 @@ Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 ----------------------------Description of solution---------------------------- pH = 6.750 Charge balance - pe = 11.307 Adjusted to redox equilibrium + pe = 11.241 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 5.871e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.012e-03 Total CO2 (mol/kg) = 5.400e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 4 Total H = 1.110126e+02 @@ -29157,28 +29124,28 @@ Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.914e-07 1.778e-07 -6.718 -6.750 -0.032 0.00 OH- 6.090e-08 5.607e-08 -7.215 -7.251 -0.036 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.902 -122.902 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.370 -122.369 0.001 (0) C(4) 5.400e-03 HCO3- 3.868e-03 3.565e-03 -2.413 -2.448 -0.035 (0) CO2 1.430e-03 1.432e-03 -2.845 -2.844 0.001 (0) CaHCO3+ 6.931e-05 6.403e-05 -4.159 -4.194 -0.034 (0) HCO2[18O]- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) - HC[18O]O2- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) HCO[18O]O- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) + HC[18O]O2- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) CO[18O] 5.945e-06 5.953e-06 -5.226 -5.225 0.001 (0) CaCO3 2.216e-06 2.219e-06 -5.654 -5.654 0.001 (0) CO3-2 1.300e-06 9.385e-07 -5.886 -6.028 -0.142 (0) CaHCO2[18O]+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) - CaHC[18O]O2+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) - HC[18O]2O- 1.540e-08 1.419e-08 -7.813 -7.848 -0.035 (0) + CaHC[18O]O2+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) HCO[18O]2- 1.540e-08 1.419e-08 -7.813 -7.848 -0.035 (0) + HC[18O]2O- 1.540e-08 1.419e-08 -7.813 -7.848 -0.035 (0) HC[18O]O[18O]- 1.540e-08 1.419e-08 -7.813 -7.848 -0.035 (0) CaCO2[18O] 1.326e-08 1.328e-08 -7.877 -7.877 0.001 (0) CO2[18O]-2 7.783e-09 5.618e-09 -8.109 -8.250 -0.142 (0) @@ -29189,30 +29156,30 @@ Ca 2.006e-03 CaCO3 2.216e-06 2.219e-06 -5.654 -5.654 0.001 (0) CaH[13C]O3+ 7.650e-07 7.067e-07 -6.116 -6.151 -0.034 (0) CaHCO2[18O]+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) - CaHC[18O]O2+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) + CaHC[18O]O2+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) Ca[13C]O3 2.442e-08 2.445e-08 -7.612 -7.612 0.001 (0) CaCO2[18O] 1.326e-08 1.328e-08 -7.877 -7.877 0.001 (0) -H(0) 1.092e-39 - H2 5.458e-40 5.466e-40 -39.263 -39.262 0.001 (0) -O(0) 2.787e-14 - O2 1.388e-14 1.390e-14 -13.858 -13.857 0.001 (0) - O[18O] 5.539e-17 5.546e-17 -16.257 -16.256 0.001 (0) +H(0) 1.483e-39 + H2 7.415e-40 7.425e-40 -39.130 -39.129 0.001 (0) +O(0) 1.510e-14 + O2 7.521e-15 7.531e-15 -14.124 -14.123 0.001 (0) + O[18O] 3.001e-17 3.005e-17 -16.523 -16.522 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.863 -124.862 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.331 -124.330 0.001 (0) [13C](4) 5.947e-05 H[13C]O3- 4.269e-05 3.935e-05 -4.370 -4.405 -0.035 (0) [13C]O2 1.564e-05 1.566e-05 -4.806 -4.805 0.001 (0) CaH[13C]O3+ 7.650e-07 7.067e-07 -6.116 -6.151 -0.034 (0) H[13C]O2[18O]- 8.518e-08 7.851e-08 -7.070 -7.105 -0.035 (0) - H[13C][18O]O2- 8.518e-08 7.851e-08 -7.070 -7.105 -0.035 (0) H[13C]O[18O]O- 8.518e-08 7.851e-08 -7.070 -7.105 -0.035 (0) + H[13C][18O]O2- 8.518e-08 7.851e-08 -7.070 -7.105 -0.035 (0) [13C]O[18O] 6.505e-08 6.514e-08 -7.187 -7.186 0.001 (0) Ca[13C]O3 2.442e-08 2.445e-08 -7.612 -7.612 0.001 (0) [13C]O3-2 1.433e-08 1.034e-08 -7.844 -7.985 -0.142 (0) - CaH[13C][18O]O2+ 1.526e-09 1.410e-09 -8.816 -8.851 -0.034 (0) CaH[13C]O2[18O]+ 1.526e-09 1.410e-09 -8.816 -8.851 -0.034 (0) CaH[13C]O[18O]O+ 1.526e-09 1.410e-09 -8.816 -8.851 -0.034 (0) + CaH[13C][18O]O2+ 1.526e-09 1.410e-09 -8.816 -8.851 -0.034 (0) H[13C]O[18O]2- 1.699e-10 1.566e-10 -9.770 -9.805 -0.035 (0) H[13C][18O]2O- 1.699e-10 1.566e-10 -9.770 -9.805 -0.035 (0) H[13C][18O]O[18O]- 1.699e-10 1.566e-10 -9.770 -9.805 -0.035 (0) @@ -29220,52 +29187,52 @@ O(0) 2.787e-14 [13C]O2[18O]-2 8.578e-11 6.191e-11 -10.067 -10.208 -0.142 (0) [13C][18O]2 6.763e-11 6.772e-11 -10.170 -10.169 0.001 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -135.031 -135.031 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -134.499 -134.499 0.001 (0) [14C](4) 4.061e-15 H[14C]O3- 2.922e-15 2.694e-15 -14.534 -14.570 -0.035 (0) [14C]O2 1.062e-15 1.063e-15 -14.974 -14.973 0.001 (0) CaH[14C]O3+ 5.236e-17 4.837e-17 -16.281 -16.315 -0.034 (0) - H[14C][18O]O2- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) - H[14C]O[18O]O- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) H[14C]O2[18O]- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) + H[14C]O[18O]O- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) + H[14C][18O]O2- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) [14C]O[18O] 4.414e-18 4.420e-18 -17.355 -17.355 0.001 (0) Ca[14C]O3 1.669e-18 1.671e-18 -17.777 -17.777 0.001 (0) [14C]O3-2 9.796e-19 7.070e-19 -18.009 -18.151 -0.142 (0) CaH[14C]O2[18O]+ 1.045e-19 9.651e-20 -18.981 -19.015 -0.034 (0) - CaH[14C][18O]O2+ 1.045e-19 9.651e-20 -18.981 -19.015 -0.034 (0) CaH[14C]O[18O]O+ 1.045e-19 9.651e-20 -18.981 -19.015 -0.034 (0) - H[14C][18O]O[18O]- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) - H[14C][18O]2O- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) + CaH[14C][18O]O2+ 1.045e-19 9.651e-20 -18.981 -19.015 -0.034 (0) H[14C]O[18O]2- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) + H[14C][18O]2O- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) + H[14C][18O]O[18O]- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) Ca[14C]O2[18O] 9.991e-21 1.000e-20 -20.000 -20.000 0.001 (0) [14C]O2[18O]-2 5.863e-21 4.232e-21 -20.232 -20.373 -0.142 (0) [14C][18O]2 4.589e-21 4.595e-21 -20.338 -20.338 0.001 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) - HC[18O]O2- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) HCO[18O]O- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) + HC[18O]O2- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) CO[18O] 5.945e-06 5.953e-06 -5.226 -5.225 0.001 (0) CaHCO2[18O]+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) CaHC[18O]O2+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) -[18O](0) 5.550e-17 - O[18O] 5.539e-17 5.546e-17 -16.257 -16.256 0.001 (0) - [18O]2 5.525e-20 5.533e-20 -19.258 -19.257 0.001 (0) +[18O](0) 3.007e-17 + O[18O] 3.001e-17 3.005e-17 -16.523 -16.522 0.001 (0) + [18O]2 2.994e-20 2.998e-20 -19.524 -19.523 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.70 -10.21 -1.50 [13C][18O]2 - [13C]H4(g) -122.00 -124.86 -2.86 [13C]H4 + [13C]H4(g) -121.47 -124.33 -2.86 [13C]H4 [13C]O2(g) -3.34 -4.81 -1.47 [13C]O2 [13C]O[18O](g) -5.72 -7.51 -1.79 [13C]O[18O] [14C][18O]2(g) -18.87 -20.37 -1.50 [14C][18O]2 - [14C]H4(g) -132.17 -135.03 -2.86 [14C]H4 + [14C]H4(g) -131.64 -134.50 -2.86 [14C]H4 [14C]O2(g) -13.50 -14.97 -1.47 [14C]O2 [14C]O[18O](g) -15.89 -17.67 -1.79 [14C]O[18O] - [18O]2(g) -16.97 -19.26 -2.29 [18O]2 + [18O]2(g) -17.23 -19.52 -2.29 [18O]2 C[18O]2(g) -6.74 -8.24 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.42 -2.26 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.57 3.14 7.71 Ca[13C]O2[18O] @@ -29279,26 +29246,20 @@ O(0) 2.787e-14 CaCO2[18O](s) -2.61 5.10 7.71 CaCO2[18O] CaCO[18O]2(s) -5.30 2.40 7.70 CaCO[18O]2 Calcite -0.40 -8.88 -8.48 CaCO3 - CH4(g) -120.04 -122.90 -2.86 CH4 + CH4(g) -119.51 -122.37 -2.86 CH4 CO2(g) -1.38 -2.84 -1.47 CO2 CO[18O](g) -3.76 -5.54 -1.79 CO[18O] - H2(g) -36.11 -39.26 -3.15 H2 + H2(g) -35.98 -39.13 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.96 -13.86 -2.89 O2 - O[18O](g) -13.66 -16.56 -2.89 O[18O] + O2(g) -11.23 -14.12 -2.89 O2 + O[18O](g) -13.93 -16.82 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. Reaction step 5. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -29382,12 +29343,12 @@ Calcite 5.60e-05 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2434e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2455e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 +Alpha 18O HCO3-/H2O(l) 1 8.8818e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6328e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6868e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -29407,46 +29368,46 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.973 Adjusted to redox equilibrium + pe = 10.983 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.841e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 102 (203 overall) + Iterations = 80 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.294 -122.294 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.379 -122.378 0.001 (0) C(4) 5.841e-03 HCO3- 4.704e-03 4.304e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.976e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.802e-06 1.963e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -29454,50 +29415,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.097e-06 1.006e-06 -5.960 -5.997 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.023e-08 6.033e-08 -7.220 -7.219 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.695e-39 - H2 8.475e-40 8.489e-40 -39.072 -39.071 0.001 (0) -O(0) 1.155e-14 - O2 5.753e-15 5.762e-15 -14.240 -14.239 0.001 (0) - O[18O] 2.295e-17 2.299e-17 -16.639 -16.638 0.001 (0) +H(0) 1.614e-39 + H2 8.071e-40 8.085e-40 -39.093 -39.092 0.001 (0) +O(0) 1.273e-14 + O2 6.342e-15 6.352e-15 -14.198 -14.197 0.001 (0) + O[18O] 2.531e-17 2.535e-17 -16.597 -16.596 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.255 -124.254 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.340 -124.339 0.001 (0) [13C](4) 6.441e-05 H[13C]O3- 5.195e-05 4.753e-05 -4.284 -4.323 -0.039 (0) [13C]O2 1.090e-05 1.092e-05 -4.962 -4.962 0.001 (0) CaH[13C]O3+ 1.097e-06 1.006e-06 -5.960 -5.997 -0.037 (0) - H[13C][18O]O2- 1.037e-07 9.483e-08 -6.984 -7.023 -0.039 (0) - H[13C]O[18O]O- 1.037e-07 9.483e-08 -6.984 -7.023 -0.039 (0) H[13C]O2[18O]- 1.037e-07 9.483e-08 -6.984 -7.023 -0.039 (0) + H[13C]O[18O]O- 1.037e-07 9.483e-08 -6.984 -7.023 -0.039 (0) + H[13C][18O]O2- 1.037e-07 9.483e-08 -6.984 -7.023 -0.039 (0) Ca[13C]O3 6.023e-08 6.033e-08 -7.220 -7.219 0.001 (0) [13C]O[18O] 4.534e-08 4.542e-08 -7.343 -7.343 0.001 (0) [13C]O3-2 3.090e-08 2.164e-08 -7.510 -7.665 -0.155 (0) - CaH[13C][18O]O2+ 2.189e-09 2.008e-09 -8.660 -8.697 -0.037 (0) CaH[13C]O2[18O]+ 2.189e-09 2.008e-09 -8.660 -8.697 -0.037 (0) CaH[13C]O[18O]O+ 2.189e-09 2.008e-09 -8.660 -8.697 -0.037 (0) + CaH[13C][18O]O2+ 2.189e-09 2.008e-09 -8.660 -8.697 -0.037 (0) Ca[13C]O2[18O] 3.605e-10 3.611e-10 -9.443 -9.442 0.001 (0) - H[13C][18O]O[18O]- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) - H[13C][18O]2O- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) H[13C]O[18O]2- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) + H[13C][18O]2O- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) + H[13C][18O]O[18O]- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) [13C]O2[18O]-2 1.849e-10 1.295e-10 -9.733 -9.888 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.463 -134.462 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -134.547 -134.547 0.001 (0) [14C](4) 4.023e-15 H[14C]O3- 3.250e-15 2.973e-15 -14.488 -14.527 -0.039 (0) [14C]O2 6.762e-16 6.773e-16 -15.170 -15.169 0.001 (0) CaH[14C]O3+ 6.862e-17 6.295e-17 -16.164 -16.201 -0.037 (0) - H[14C][18O]O2- 6.483e-18 5.931e-18 -17.188 -17.227 -0.039 (0) - H[14C]O[18O]O- 6.483e-18 5.931e-18 -17.188 -17.227 -0.039 (0) H[14C]O2[18O]- 6.483e-18 5.931e-18 -17.188 -17.227 -0.039 (0) + H[14C]O[18O]O- 6.483e-18 5.931e-18 -17.188 -17.227 -0.039 (0) + H[14C][18O]O2- 6.483e-18 5.931e-18 -17.188 -17.227 -0.039 (0) Ca[14C]O3 3.762e-18 3.768e-18 -17.425 -17.424 0.001 (0) [14C]O[18O] 2.812e-18 2.816e-18 -17.551 -17.550 0.001 (0) [14C]O3-2 1.930e-18 1.352e-18 -17.715 -17.869 -0.155 (0) CaH[14C]O2[18O]+ 1.369e-19 1.256e-19 -18.864 -18.901 -0.037 (0) - CaH[14C][18O]O2+ 1.369e-19 1.256e-19 -18.864 -18.901 -0.037 (0) CaH[14C]O[18O]O+ 1.369e-19 1.256e-19 -18.864 -18.901 -0.037 (0) + CaH[14C][18O]O2+ 1.369e-19 1.256e-19 -18.864 -18.901 -0.037 (0) Ca[14C]O2[18O] 2.252e-20 2.255e-20 -19.648 -19.647 0.001 (0) H[14C]O[18O]2- 1.294e-20 1.183e-20 -19.888 -19.927 -0.039 (0) H[14C][18O]2O- 1.294e-20 1.183e-20 -19.888 -19.927 -0.039 (0) @@ -29506,29 +29467,29 @@ O(0) 1.155e-14 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.300e-17 - O[18O] 2.295e-17 2.299e-17 -16.639 -16.638 0.001 (0) - [18O]2 2.290e-20 2.294e-20 -19.640 -19.639 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.536e-17 + O[18O] 2.531e-17 2.535e-17 -16.597 -16.596 0.001 (0) + [18O]2 2.524e-20 2.529e-20 -19.598 -19.597 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.39 -124.25 -2.86 [13C]H4 + [13C]H4(g) -121.48 -124.34 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.07 -20.57 -1.50 [14C][18O]2 - [14C]H4(g) -131.60 -134.46 -2.86 [14C]H4 + [14C]H4(g) -131.69 -134.55 -2.86 [14C]H4 [14C]O2(g) -13.70 -15.17 -1.47 [14C]O2 [14C]O[18O](g) -16.08 -17.87 -1.79 [14C]O[18O] - [18O]2(g) -17.35 -19.64 -2.29 [18O]2 + [18O]2(g) -17.31 -19.60 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -29542,14 +29503,14 @@ O(0) 1.155e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.43 -122.29 -2.86 CH4 + CH4(g) -119.52 -122.38 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.92 -39.07 -3.15 H2 + H2(g) -35.94 -39.09 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.35 -14.24 -2.89 O2 - O[18O](g) -14.05 -16.94 -2.89 O[18O] + O2(g) -11.30 -14.20 -2.89 O2 + O[18O](g) -14.00 -16.90 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -29639,12 +29600,12 @@ Calcite 5.56e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2541e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2552e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6117e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5969e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -29664,35 +29625,35 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.754 Adjusted to redox equilibrium + pe = 10.893 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.841e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 4 + Iterations = 5 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.543 -120.542 0.001 (0) + CH4 0.000e+00 0.000e+00 -121.655 -121.655 0.001 (0) C(4) 5.841e-03 HCO3- 4.704e-03 4.304e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -29701,9 +29662,9 @@ C(4) 5.841e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -29711,23 +29672,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.098e-06 1.007e-06 -5.959 -5.997 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.028e-08 6.038e-08 -7.220 -7.219 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.645e-39 - H2 2.322e-39 2.326e-39 -38.634 -38.633 0.001 (0) -O(0) 1.538e-15 - O2 7.659e-16 7.672e-16 -15.116 -15.115 0.001 (0) - O[18O] 3.056e-18 3.061e-18 -17.515 -17.514 0.001 (0) +H(0) 2.449e-39 + H2 1.224e-39 1.226e-39 -38.912 -38.911 0.001 (0) +O(0) 5.535e-15 + O2 2.756e-15 2.761e-15 -14.560 -14.559 0.001 (0) + O[18O] 1.100e-17 1.102e-17 -16.959 -16.958 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -122.503 -122.503 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -123.616 -123.615 0.001 (0) [13C](4) 6.447e-05 H[13C]O3- 5.200e-05 4.757e-05 -4.284 -4.323 -0.039 (0) [13C]O2 1.091e-05 1.093e-05 -4.962 -4.961 0.001 (0) CaH[13C]O3+ 1.098e-06 1.007e-06 -5.959 -5.997 -0.037 (0) - H[13C]O[18O]O- 1.038e-07 9.492e-08 -6.984 -7.023 -0.039 (0) H[13C]O2[18O]- 1.038e-07 9.492e-08 -6.984 -7.023 -0.039 (0) + H[13C]O[18O]O- 1.038e-07 9.492e-08 -6.984 -7.023 -0.039 (0) H[13C][18O]O2- 1.038e-07 9.492e-08 -6.984 -7.023 -0.039 (0) Ca[13C]O3 6.028e-08 6.038e-08 -7.220 -7.219 0.001 (0) [13C]O[18O] 4.539e-08 4.546e-08 -7.343 -7.342 0.001 (0) @@ -29736,56 +29697,56 @@ O(0) 1.538e-15 CaH[13C]O[18O]O+ 2.191e-09 2.010e-09 -8.659 -8.697 -0.037 (0) CaH[13C][18O]O2+ 2.191e-09 2.010e-09 -8.659 -8.697 -0.037 (0) Ca[13C]O2[18O] 3.608e-10 3.614e-10 -9.443 -9.442 0.001 (0) - H[13C][18O]O[18O]- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) - H[13C][18O]2O- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) H[13C]O[18O]2- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) + H[13C][18O]2O- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) + H[13C][18O]O[18O]- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) [13C]O2[18O]-2 1.851e-10 1.297e-10 -9.733 -9.887 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -132.747 -132.746 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -133.859 -133.858 0.001 (0) [14C](4) 3.709e-15 H[14C]O3- 2.996e-15 2.741e-15 -14.523 -14.562 -0.039 (0) [14C]O2 6.234e-16 6.244e-16 -15.205 -15.205 0.001 (0) CaH[14C]O3+ 6.326e-17 5.803e-17 -16.199 -16.236 -0.037 (0) - H[14C][18O]O2- 5.977e-18 5.468e-18 -17.224 -17.262 -0.039 (0) - H[14C]O[18O]O- 5.977e-18 5.468e-18 -17.224 -17.262 -0.039 (0) H[14C]O2[18O]- 5.977e-18 5.468e-18 -17.224 -17.262 -0.039 (0) + H[14C]O[18O]O- 5.977e-18 5.468e-18 -17.224 -17.262 -0.039 (0) + H[14C][18O]O2- 5.977e-18 5.468e-18 -17.224 -17.262 -0.039 (0) Ca[14C]O3 3.468e-18 3.474e-18 -17.460 -17.459 0.001 (0) [14C]O[18O] 2.592e-18 2.596e-18 -17.586 -17.586 0.001 (0) [14C]O3-2 1.779e-18 1.246e-18 -17.750 -17.904 -0.155 (0) CaH[14C]O2[18O]+ 1.262e-19 1.158e-19 -18.899 -18.936 -0.037 (0) - CaH[14C][18O]O2+ 1.262e-19 1.158e-19 -18.899 -18.936 -0.037 (0) CaH[14C]O[18O]O+ 1.262e-19 1.158e-19 -18.899 -18.936 -0.037 (0) + CaH[14C][18O]O2+ 1.262e-19 1.158e-19 -18.899 -18.936 -0.037 (0) Ca[14C]O2[18O] 2.076e-20 2.079e-20 -19.683 -19.682 0.001 (0) + H[14C]O[18O]2- 1.193e-20 1.091e-20 -19.924 -19.962 -0.039 (0) H[14C][18O]2O- 1.193e-20 1.091e-20 -19.924 -19.962 -0.039 (0) H[14C][18O]O[18O]- 1.193e-20 1.091e-20 -19.924 -19.962 -0.039 (0) - H[14C]O[18O]2- 1.193e-20 1.091e-20 -19.924 -19.962 -0.039 (0) [14C]O2[18O]-2 1.065e-20 7.460e-21 -19.973 -20.127 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.062e-18 - O[18O] 3.056e-18 3.061e-18 -17.515 -17.514 0.001 (0) - [18O]2 3.049e-21 3.054e-21 -20.516 -20.515 0.001 (0) +[18O](0) 1.102e-17 + O[18O] 1.100e-17 1.102e-17 -16.959 -16.958 0.001 (0) + [18O]2 1.097e-20 1.099e-20 -19.960 -19.959 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -119.64 -122.50 -2.86 [13C]H4 + [13C]H4(g) -120.75 -123.61 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.10 -20.60 -1.50 [14C][18O]2 - [14C]H4(g) -129.89 -132.75 -2.86 [14C]H4 + [14C]H4(g) -131.00 -133.86 -2.86 [14C]H4 [14C]O2(g) -13.74 -15.20 -1.47 [14C]O2 [14C]O[18O](g) -16.12 -17.90 -1.79 [14C]O[18O] - [18O]2(g) -18.22 -20.52 -2.29 [18O]2 + [18O]2(g) -17.67 -19.96 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -29799,14 +29760,14 @@ O(0) 1.538e-15 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -117.68 -120.54 -2.86 CH4 + CH4(g) -118.79 -121.65 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.48 -38.63 -3.15 H2 + H2(g) -35.76 -38.91 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -12.22 -15.12 -2.89 O2 - O[18O](g) -14.92 -17.82 -2.89 O[18O] + O2(g) -11.67 -14.56 -2.89 O2 + O[18O](g) -14.37 -17.26 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -29896,12 +29857,12 @@ Calcite 1.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2671e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2345e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6585e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6426e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -29921,46 +29882,46 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.447 Adjusted to redox equilibrium + pe = 11.211 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 + Iterations = 4 Total H = 1.110126e+02 Total O = 5.540996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.088 -126.087 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.198 -124.198 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.304e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.963e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -29968,81 +29929,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.099e-06 1.008e-06 -5.959 -5.996 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.033e-08 6.043e-08 -7.219 -7.219 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.020 -40.020 0.001 (0) -O(0) 9.106e-13 - O2 4.535e-13 4.542e-13 -12.343 -12.343 0.001 (0) - O[18O] 1.810e-15 1.813e-15 -14.742 -14.742 0.001 (0) +H(0) 5.664e-40 + H2 2.832e-40 2.837e-40 -39.548 -39.547 0.001 (0) +O(0) 1.034e-13 + O2 5.150e-14 5.159e-14 -13.288 -13.287 0.001 (0) + O[18O] 2.055e-16 2.059e-16 -15.687 -15.686 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.048 -128.047 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.158 -126.158 0.001 (0) [13C](4) 6.452e-05 H[13C]O3- 5.204e-05 4.761e-05 -4.284 -4.322 -0.039 (0) [13C]O2 1.092e-05 1.094e-05 -4.962 -4.961 0.001 (0) CaH[13C]O3+ 1.099e-06 1.008e-06 -5.959 -5.996 -0.037 (0) H[13C]O2[18O]- 1.038e-07 9.500e-08 -6.984 -7.022 -0.039 (0) - H[13C][18O]O2- 1.038e-07 9.500e-08 -6.984 -7.022 -0.039 (0) H[13C]O[18O]O- 1.038e-07 9.500e-08 -6.984 -7.022 -0.039 (0) + H[13C][18O]O2- 1.038e-07 9.500e-08 -6.984 -7.022 -0.039 (0) Ca[13C]O3 6.033e-08 6.043e-08 -7.219 -7.219 0.001 (0) [13C]O[18O] 4.542e-08 4.550e-08 -7.343 -7.342 0.001 (0) [13C]O3-2 3.095e-08 2.168e-08 -7.509 -7.664 -0.155 (0) + CaH[13C]O2[18O]+ 2.193e-09 2.011e-09 -8.659 -8.696 -0.037 (0) CaH[13C]O[18O]O+ 2.193e-09 2.011e-09 -8.659 -8.696 -0.037 (0) CaH[13C][18O]O2+ 2.193e-09 2.011e-09 -8.659 -8.696 -0.037 (0) - CaH[13C]O2[18O]+ 2.193e-09 2.011e-09 -8.659 -8.696 -0.037 (0) Ca[13C]O2[18O] 3.611e-10 3.617e-10 -9.442 -9.442 0.001 (0) - H[13C][18O]O[18O]- 2.072e-10 1.895e-10 -9.684 -9.722 -0.039 (0) - H[13C][18O]2O- 2.072e-10 1.895e-10 -9.684 -9.722 -0.039 (0) H[13C]O[18O]2- 2.072e-10 1.895e-10 -9.684 -9.722 -0.039 (0) + H[13C][18O]2O- 2.072e-10 1.895e-10 -9.684 -9.722 -0.039 (0) + H[13C][18O]O[18O]- 2.072e-10 1.895e-10 -9.684 -9.722 -0.039 (0) [13C]O2[18O]-2 1.853e-10 1.298e-10 -9.732 -9.887 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.324 -138.323 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.435 -136.434 0.001 (0) [14C](4) 3.440e-15 H[14C]O3- 2.779e-15 2.542e-15 -14.556 -14.595 -0.039 (0) [14C]O2 5.782e-16 5.792e-16 -15.238 -15.237 0.001 (0) CaH[14C]O3+ 5.868e-17 5.383e-17 -16.232 -16.269 -0.037 (0) - H[14C][18O]O2- 5.544e-18 5.072e-18 -17.256 -17.295 -0.039 (0) - H[14C]O[18O]O- 5.544e-18 5.072e-18 -17.256 -17.295 -0.039 (0) H[14C]O2[18O]- 5.544e-18 5.072e-18 -17.256 -17.295 -0.039 (0) + H[14C]O[18O]O- 5.544e-18 5.072e-18 -17.256 -17.295 -0.039 (0) + H[14C][18O]O2- 5.544e-18 5.072e-18 -17.256 -17.295 -0.039 (0) Ca[14C]O3 3.217e-18 3.222e-18 -17.493 -17.492 0.001 (0) [14C]O[18O] 2.404e-18 2.408e-18 -17.619 -17.618 0.001 (0) [14C]O3-2 1.650e-18 1.156e-18 -17.782 -17.937 -0.155 (0) CaH[14C]O2[18O]+ 1.171e-19 1.074e-19 -18.932 -18.969 -0.037 (0) - CaH[14C][18O]O2+ 1.171e-19 1.074e-19 -18.932 -18.969 -0.037 (0) CaH[14C]O[18O]O+ 1.171e-19 1.074e-19 -18.932 -18.969 -0.037 (0) + CaH[14C][18O]O2+ 1.171e-19 1.074e-19 -18.932 -18.969 -0.037 (0) Ca[14C]O2[18O] 1.925e-20 1.929e-20 -19.715 -19.715 0.001 (0) - H[14C][18O]O[18O]- 1.106e-20 1.012e-20 -19.956 -19.995 -0.039 (0) H[14C]O[18O]2- 1.106e-20 1.012e-20 -19.956 -19.995 -0.039 (0) H[14C][18O]2O- 1.106e-20 1.012e-20 -19.956 -19.995 -0.039 (0) + H[14C][18O]O[18O]- 1.106e-20 1.012e-20 -19.956 -19.995 -0.039 (0) [14C]O2[18O]-2 9.877e-21 6.919e-21 -20.005 -20.160 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.813e-15 - O[18O] 1.810e-15 1.813e-15 -14.742 -14.742 0.001 (0) - [18O]2 1.805e-18 1.808e-18 -17.743 -17.743 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.059e-16 + O[18O] 2.055e-16 2.059e-16 -15.687 -15.686 0.001 (0) + [18O]2 2.050e-19 2.054e-19 -18.688 -18.687 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.19 -128.05 -2.86 [13C]H4 + [13C]H4(g) -123.30 -126.16 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.13 -20.64 -1.50 [14C][18O]2 - [14C]H4(g) -135.46 -138.32 -2.86 [14C]H4 + [14C]H4(g) -133.57 -136.43 -2.86 [14C]H4 [14C]O2(g) -13.77 -15.24 -1.47 [14C]O2 [14C]O[18O](g) -16.15 -17.94 -1.79 [14C]O[18O] - [18O]2(g) -15.45 -17.74 -2.29 [18O]2 + [18O]2(g) -16.40 -18.69 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -30056,14 +30017,14 @@ O(0) 9.106e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.23 -126.09 -2.86 CH4 + CH4(g) -121.34 -124.20 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.87 -40.02 -3.15 H2 + H2(g) -36.40 -39.55 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.45 -12.34 -2.89 O2 - O[18O](g) -12.15 -15.04 -2.89 O[18O] + O2(g) -10.40 -13.29 -2.89 O2 + O[18O](g) -13.10 -15.99 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -30155,10 +30116,10 @@ Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O O2(aq)/H2O(l) 1 -2.2536e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6956e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6112e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -30178,14 +30139,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.447 Adjusted to redox equilibrium + pe = 11.207 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 4 Total H = 1.110126e+02 @@ -30194,20 +30155,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.087 -126.087 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.168 -124.167 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.963e-06 -5.553 -5.707 -0.155 (0) @@ -30215,9 +30176,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -30225,50 +30186,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.100e-06 1.009e-06 -5.959 -5.996 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.038e-08 6.048e-08 -7.219 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.020 -40.019 0.001 (0) -O(0) 9.101e-13 - O2 4.532e-13 4.540e-13 -12.344 -12.343 0.001 (0) - O[18O] 1.809e-15 1.812e-15 -14.743 -14.742 0.001 (0) +H(0) 5.764e-40 + H2 2.882e-40 2.887e-40 -39.540 -39.540 0.001 (0) +O(0) 9.987e-14 + O2 4.974e-14 4.982e-14 -13.303 -13.303 0.001 (0) + O[18O] 1.985e-16 1.988e-16 -15.702 -15.702 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.047 -128.046 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.128 -126.127 0.001 (0) [13C](4) 6.457e-05 H[13C]O3- 5.208e-05 4.765e-05 -4.283 -4.322 -0.039 (0) [13C]O2 1.093e-05 1.095e-05 -4.961 -4.961 0.001 (0) CaH[13C]O3+ 1.100e-06 1.009e-06 -5.959 -5.996 -0.037 (0) - H[13C][18O]O2- 1.039e-07 9.506e-08 -6.983 -7.022 -0.039 (0) - H[13C]O[18O]O- 1.039e-07 9.506e-08 -6.983 -7.022 -0.039 (0) H[13C]O2[18O]- 1.039e-07 9.506e-08 -6.983 -7.022 -0.039 (0) + H[13C]O[18O]O- 1.039e-07 9.506e-08 -6.983 -7.022 -0.039 (0) + H[13C][18O]O2- 1.039e-07 9.506e-08 -6.983 -7.022 -0.039 (0) Ca[13C]O3 6.038e-08 6.048e-08 -7.219 -7.218 0.001 (0) [13C]O[18O] 4.545e-08 4.553e-08 -7.342 -7.342 0.001 (0) [13C]O3-2 3.097e-08 2.170e-08 -7.509 -7.664 -0.155 (0) - CaH[13C][18O]O2+ 2.194e-09 2.013e-09 -8.659 -8.696 -0.037 (0) CaH[13C]O2[18O]+ 2.194e-09 2.013e-09 -8.659 -8.696 -0.037 (0) CaH[13C]O[18O]O+ 2.194e-09 2.013e-09 -8.659 -8.696 -0.037 (0) + CaH[13C][18O]O2+ 2.194e-09 2.013e-09 -8.659 -8.696 -0.037 (0) Ca[13C]O2[18O] 3.614e-10 3.620e-10 -9.442 -9.441 0.001 (0) - H[13C][18O]O[18O]- 2.073e-10 1.897e-10 -9.683 -9.722 -0.039 (0) - H[13C][18O]2O- 2.073e-10 1.897e-10 -9.683 -9.722 -0.039 (0) H[13C]O[18O]2- 2.073e-10 1.897e-10 -9.683 -9.722 -0.039 (0) + H[13C][18O]2O- 2.073e-10 1.897e-10 -9.683 -9.722 -0.039 (0) + H[13C][18O]O[18O]- 2.073e-10 1.897e-10 -9.683 -9.722 -0.039 (0) [13C]O2[18O]-2 1.854e-10 1.299e-10 -9.732 -9.886 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.354 -138.353 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.435 -136.434 0.001 (0) [14C](4) 3.208e-15 H[14C]O3- 2.591e-15 2.371e-15 -14.587 -14.625 -0.039 (0) [14C]O2 5.392e-16 5.401e-16 -15.268 -15.268 0.001 (0) CaH[14C]O3+ 5.472e-17 5.019e-17 -16.262 -16.299 -0.037 (0) - H[14C][18O]O2- 5.170e-18 4.730e-18 -17.287 -17.325 -0.039 (0) - H[14C]O[18O]O- 5.170e-18 4.730e-18 -17.287 -17.325 -0.039 (0) H[14C]O2[18O]- 5.170e-18 4.730e-18 -17.287 -17.325 -0.039 (0) + H[14C]O[18O]O- 5.170e-18 4.730e-18 -17.287 -17.325 -0.039 (0) + H[14C][18O]O2- 5.170e-18 4.730e-18 -17.287 -17.325 -0.039 (0) Ca[14C]O3 3.000e-18 3.005e-18 -17.523 -17.522 0.001 (0) [14C]O[18O] 2.242e-18 2.246e-18 -17.649 -17.649 0.001 (0) [14C]O3-2 1.539e-18 1.078e-18 -17.813 -17.967 -0.155 (0) CaH[14C]O2[18O]+ 1.092e-19 1.001e-19 -18.962 -18.999 -0.037 (0) - CaH[14C][18O]O2+ 1.092e-19 1.001e-19 -18.962 -18.999 -0.037 (0) CaH[14C]O[18O]O+ 1.092e-19 1.001e-19 -18.962 -18.999 -0.037 (0) + CaH[14C][18O]O2+ 1.092e-19 1.001e-19 -18.962 -18.999 -0.037 (0) Ca[14C]O2[18O] 1.795e-20 1.798e-20 -19.746 -19.745 0.001 (0) H[14C]O[18O]2- 1.031e-20 9.437e-21 -19.987 -20.025 -0.039 (0) H[14C][18O]2O- 1.031e-20 9.437e-21 -19.987 -20.025 -0.039 (0) @@ -30277,29 +30238,29 @@ O(0) 9.101e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.812e-15 - O[18O] 1.809e-15 1.812e-15 -14.743 -14.742 0.001 (0) - [18O]2 1.804e-18 1.807e-18 -17.744 -17.743 0.001 (0) +[18O](0) 1.989e-16 + O[18O] 1.985e-16 1.988e-16 -15.702 -15.702 0.001 (0) + [18O]2 1.980e-19 1.983e-19 -18.703 -18.703 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.19 -128.05 -2.86 [13C]H4 + [13C]H4(g) -123.27 -126.13 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.16 -20.67 -1.50 [14C][18O]2 - [14C]H4(g) -135.49 -138.35 -2.86 [14C]H4 + [14C]H4(g) -133.57 -136.43 -2.86 [14C]H4 [14C]O2(g) -13.80 -15.27 -1.47 [14C]O2 [14C]O[18O](g) -16.18 -17.97 -1.79 [14C]O[18O] - [18O]2(g) -15.45 -17.74 -2.29 [18O]2 + [18O]2(g) -16.41 -18.70 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -30313,14 +30274,14 @@ O(0) 9.101e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.23 -126.09 -2.86 CH4 + CH4(g) -121.31 -124.17 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.87 -40.02 -3.15 H2 + H2(g) -36.39 -39.54 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.45 -12.34 -2.89 O2 - O[18O](g) -12.15 -15.04 -2.89 O[18O] + O2(g) -10.41 -13.30 -2.89 O2 + O[18O](g) -13.11 -16.00 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -30410,12 +30371,12 @@ Calcite 2.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.248e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2489e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7782e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6954e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -30435,14 +30396,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.448 Adjusted to redox equilibrium + pe = 11.221 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.823e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -30451,30 +30412,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.094 -126.093 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.281 -124.280 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.963e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -30482,23 +30443,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.100e-06 1.009e-06 -5.958 -5.996 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.041e-08 6.051e-08 -7.219 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.022 -40.021 0.001 (0) -O(0) 9.169e-13 - O2 4.566e-13 4.574e-13 -12.340 -12.340 0.001 (0) - O[18O] 1.822e-15 1.825e-15 -14.739 -14.739 0.001 (0) +H(0) 5.403e-40 + H2 2.701e-40 2.706e-40 -39.568 -39.568 0.001 (0) +O(0) 1.137e-13 + O2 5.662e-14 5.671e-14 -13.247 -13.246 0.001 (0) + O[18O] 2.259e-16 2.263e-16 -15.646 -15.645 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.053 -128.052 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.240 -126.239 0.001 (0) [13C](4) 6.461e-05 H[13C]O3- 5.211e-05 4.768e-05 -4.283 -4.322 -0.039 (0) [13C]O2 1.094e-05 1.096e-05 -4.961 -4.960 0.001 (0) CaH[13C]O3+ 1.100e-06 1.009e-06 -5.958 -5.996 -0.037 (0) - H[13C]O[18O]O- 1.040e-07 9.512e-08 -6.983 -7.022 -0.039 (0) H[13C]O2[18O]- 1.040e-07 9.512e-08 -6.983 -7.022 -0.039 (0) + H[13C]O[18O]O- 1.040e-07 9.512e-08 -6.983 -7.022 -0.039 (0) H[13C][18O]O2- 1.040e-07 9.512e-08 -6.983 -7.022 -0.039 (0) Ca[13C]O3 6.041e-08 6.051e-08 -7.219 -7.218 0.001 (0) [13C]O[18O] 4.548e-08 4.556e-08 -7.342 -7.341 0.001 (0) @@ -30507,56 +30468,56 @@ O(0) 9.169e-13 CaH[13C]O[18O]O+ 2.196e-09 2.014e-09 -8.658 -8.696 -0.037 (0) CaH[13C][18O]O2+ 2.196e-09 2.014e-09 -8.658 -8.696 -0.037 (0) Ca[13C]O2[18O] 3.616e-10 3.622e-10 -9.442 -9.441 0.001 (0) - H[13C][18O]O[18O]- 2.074e-10 1.898e-10 -9.683 -9.722 -0.039 (0) - H[13C][18O]2O- 2.074e-10 1.898e-10 -9.683 -9.722 -0.039 (0) H[13C]O[18O]2- 2.074e-10 1.898e-10 -9.683 -9.722 -0.039 (0) + H[13C][18O]2O- 2.074e-10 1.898e-10 -9.683 -9.722 -0.039 (0) + H[13C][18O]O[18O]- 2.074e-10 1.898e-10 -9.683 -9.722 -0.039 (0) [13C]O2[18O]-2 1.855e-10 1.300e-10 -9.732 -9.886 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.389 -138.388 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.575 -136.575 0.001 (0) [14C](4) 3.005e-15 H[14C]O3- 2.427e-15 2.221e-15 -14.615 -14.654 -0.039 (0) [14C]O2 5.051e-16 5.059e-16 -15.297 -15.296 0.001 (0) CaH[14C]O3+ 5.126e-17 4.702e-17 -16.290 -16.328 -0.037 (0) - H[14C][18O]O2- 4.843e-18 4.430e-18 -17.315 -17.354 -0.039 (0) - H[14C]O[18O]O- 4.843e-18 4.430e-18 -17.315 -17.354 -0.039 (0) H[14C]O2[18O]- 4.843e-18 4.430e-18 -17.315 -17.354 -0.039 (0) + H[14C]O[18O]O- 4.843e-18 4.430e-18 -17.315 -17.354 -0.039 (0) + H[14C][18O]O2- 4.843e-18 4.430e-18 -17.315 -17.354 -0.039 (0) Ca[14C]O3 2.810e-18 2.814e-18 -17.551 -17.551 0.001 (0) [14C]O[18O] 2.100e-18 2.104e-18 -17.678 -17.677 0.001 (0) [14C]O3-2 1.441e-18 1.010e-18 -17.841 -17.996 -0.155 (0) CaH[14C]O2[18O]+ 1.023e-19 9.381e-20 -18.990 -19.028 -0.037 (0) - CaH[14C][18O]O2+ 1.023e-19 9.381e-20 -18.990 -19.028 -0.037 (0) CaH[14C]O[18O]O+ 1.023e-19 9.381e-20 -18.990 -19.028 -0.037 (0) + CaH[14C][18O]O2+ 1.023e-19 9.381e-20 -18.990 -19.028 -0.037 (0) Ca[14C]O2[18O] 1.682e-20 1.685e-20 -19.774 -19.774 0.001 (0) + H[14C]O[18O]2- 9.662e-21 8.840e-21 -20.015 -20.054 -0.039 (0) H[14C][18O]2O- 9.662e-21 8.840e-21 -20.015 -20.054 -0.039 (0) H[14C][18O]O[18O]- 9.662e-21 8.840e-21 -20.015 -20.054 -0.039 (0) - H[14C]O[18O]2- 9.662e-21 8.840e-21 -20.015 -20.054 -0.039 (0) [14C]O2[18O]-2 8.628e-21 6.044e-21 -20.064 -20.219 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.826e-15 - O[18O] 1.822e-15 1.825e-15 -14.739 -14.739 0.001 (0) - [18O]2 1.818e-18 1.821e-18 -17.740 -17.740 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.264e-16 + O[18O] 2.259e-16 2.263e-16 -15.646 -15.645 0.001 (0) + [18O]2 2.254e-19 2.257e-19 -18.647 -18.646 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.19 -128.05 -2.86 [13C]H4 + [13C]H4(g) -123.38 -126.24 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.19 -20.70 -1.50 [14C][18O]2 - [14C]H4(g) -135.53 -138.39 -2.86 [14C]H4 + [14C]H4(g) -133.71 -136.57 -2.86 [14C]H4 [14C]O2(g) -13.83 -15.30 -1.47 [14C]O2 [14C]O[18O](g) -16.21 -18.00 -1.79 [14C]O[18O] - [18O]2(g) -15.45 -17.74 -2.29 [18O]2 + [18O]2(g) -16.36 -18.65 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -30570,14 +30531,14 @@ O(0) 9.169e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.23 -126.09 -2.86 CH4 + CH4(g) -121.42 -124.28 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.87 -40.02 -3.15 H2 + H2(g) -36.42 -39.57 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.45 -12.34 -2.89 O2 - O[18O](g) -12.15 -15.04 -2.89 O[18O] + O2(g) -10.35 -13.25 -2.89 O2 + O[18O](g) -13.05 -15.95 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -30651,7 +30612,7 @@ Calcite 2.56e-03 R(18O) CO2(aq) 2.07915e-03 36.877 permil R(18O) HCO3- 1.99518e-03 -4.9963 permil R(13C) HCO3- 1.10847e-02 -8.5432 permil - R(14C) HCO3- 4.85305e-13 41.271 pmc + R(14C) HCO3- 4.85304e-13 41.271 pmc R(18O) CO3-2 1.99518e-03 -4.9963 permil R(13C) CO3-2 1.10688e-02 -9.966 permil R(14C) CO3-2 4.83913e-13 41.153 pmc @@ -30667,12 +30628,12 @@ Calcite 2.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2539e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2545e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6535e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5706e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -30692,14 +30653,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.451 Adjusted to redox equilibrium + pe = 11.242 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.823e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -30708,20 +30669,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.116 -126.116 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.447 -124.446 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.963e-06 -5.553 -5.707 -0.155 (0) @@ -30729,9 +30690,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -30739,81 +30700,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.101e-06 1.010e-06 -5.958 -5.996 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.045e-08 6.055e-08 -7.219 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.027 -40.027 0.001 (0) -O(0) 9.409e-13 - O2 4.686e-13 4.694e-13 -12.329 -12.328 0.001 (0) - O[18O] 1.870e-15 1.873e-15 -14.728 -14.727 0.001 (0) +H(0) 4.909e-40 + H2 2.454e-40 2.459e-40 -39.610 -39.609 0.001 (0) +O(0) 1.377e-13 + O2 6.858e-14 6.869e-14 -13.164 -13.163 0.001 (0) + O[18O] 2.736e-16 2.741e-16 -15.563 -15.562 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.075 -128.075 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.406 -126.405 0.001 (0) [13C](4) 6.464e-05 H[13C]O3- 5.214e-05 4.770e-05 -4.283 -4.321 -0.039 (0) [13C]O2 1.094e-05 1.096e-05 -4.961 -4.960 0.001 (0) CaH[13C]O3+ 1.101e-06 1.010e-06 -5.958 -5.996 -0.037 (0) H[13C]O2[18O]- 1.040e-07 9.517e-08 -6.983 -7.021 -0.039 (0) - H[13C][18O]O2- 1.040e-07 9.517e-08 -6.983 -7.021 -0.039 (0) H[13C]O[18O]O- 1.040e-07 9.517e-08 -6.983 -7.021 -0.039 (0) + H[13C][18O]O2- 1.040e-07 9.517e-08 -6.983 -7.021 -0.039 (0) Ca[13C]O3 6.045e-08 6.055e-08 -7.219 -7.218 0.001 (0) [13C]O[18O] 4.551e-08 4.558e-08 -7.342 -7.341 0.001 (0) [13C]O3-2 3.101e-08 2.172e-08 -7.509 -7.663 -0.155 (0) + CaH[13C]O2[18O]+ 2.197e-09 2.015e-09 -8.658 -8.696 -0.037 (0) CaH[13C]O[18O]O+ 2.197e-09 2.015e-09 -8.658 -8.696 -0.037 (0) CaH[13C][18O]O2+ 2.197e-09 2.015e-09 -8.658 -8.696 -0.037 (0) - CaH[13C]O2[18O]+ 2.197e-09 2.015e-09 -8.658 -8.696 -0.037 (0) Ca[13C]O2[18O] 3.618e-10 3.624e-10 -9.442 -9.441 0.001 (0) - H[13C][18O]O[18O]- 2.076e-10 1.899e-10 -9.683 -9.721 -0.039 (0) - H[13C][18O]2O- 2.076e-10 1.899e-10 -9.683 -9.721 -0.039 (0) H[13C]O[18O]2- 2.076e-10 1.899e-10 -9.683 -9.721 -0.039 (0) + H[13C][18O]2O- 2.076e-10 1.899e-10 -9.683 -9.721 -0.039 (0) + H[13C][18O]O[18O]- 2.076e-10 1.899e-10 -9.683 -9.721 -0.039 (0) [13C]O2[18O]-2 1.856e-10 1.300e-10 -9.731 -9.886 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.438 -138.437 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.769 -136.768 0.001 (0) [14C](4) 2.826e-15 H[14C]O3- 2.283e-15 2.088e-15 -14.642 -14.680 -0.039 (0) [14C]O2 4.750e-16 4.758e-16 -15.323 -15.323 0.001 (0) CaH[14C]O3+ 4.821e-17 4.422e-17 -16.317 -16.354 -0.037 (0) - H[14C][18O]O2- 4.555e-18 4.167e-18 -17.342 -17.380 -0.039 (0) - H[14C]O[18O]O- 4.555e-18 4.167e-18 -17.342 -17.380 -0.039 (0) H[14C]O2[18O]- 4.555e-18 4.167e-18 -17.342 -17.380 -0.039 (0) + H[14C]O[18O]O- 4.555e-18 4.167e-18 -17.342 -17.380 -0.039 (0) + H[14C][18O]O2- 4.555e-18 4.167e-18 -17.342 -17.380 -0.039 (0) Ca[14C]O3 2.643e-18 2.647e-18 -17.578 -17.577 0.001 (0) [14C]O[18O] 1.975e-18 1.978e-18 -17.704 -17.704 0.001 (0) [14C]O3-2 1.356e-18 9.497e-19 -17.868 -18.022 -0.155 (0) CaH[14C]O2[18O]+ 9.618e-20 8.823e-20 -19.017 -19.054 -0.037 (0) - CaH[14C][18O]O2+ 9.618e-20 8.823e-20 -19.017 -19.054 -0.037 (0) CaH[14C]O[18O]O+ 9.618e-20 8.823e-20 -19.017 -19.054 -0.037 (0) + CaH[14C][18O]O2+ 9.618e-20 8.823e-20 -19.017 -19.054 -0.037 (0) Ca[14C]O2[18O] 1.582e-20 1.584e-20 -19.801 -19.800 0.001 (0) - H[14C][18O]O[18O]- 9.087e-21 8.314e-21 -20.042 -20.080 -0.039 (0) H[14C]O[18O]2- 9.087e-21 8.314e-21 -20.042 -20.080 -0.039 (0) H[14C][18O]2O- 9.087e-21 8.314e-21 -20.042 -20.080 -0.039 (0) + H[14C][18O]O[18O]- 9.087e-21 8.314e-21 -20.042 -20.080 -0.039 (0) [14C]O2[18O]-2 8.114e-21 5.684e-21 -20.091 -20.245 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.874e-15 - O[18O] 1.870e-15 1.873e-15 -14.728 -14.727 0.001 (0) - [18O]2 1.865e-18 1.868e-18 -17.729 -17.729 0.001 (0) +[18O](0) 2.742e-16 + O[18O] 2.736e-16 2.741e-16 -15.563 -15.562 0.001 (0) + [18O]2 2.730e-19 2.734e-19 -18.564 -18.563 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.21 -128.07 -2.86 [13C]H4 + [13C]H4(g) -123.55 -126.41 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.22 -20.72 -1.50 [14C][18O]2 - [14C]H4(g) -135.58 -138.44 -2.86 [14C]H4 + [14C]H4(g) -133.91 -136.77 -2.86 [14C]H4 [14C]O2(g) -13.85 -15.32 -1.47 [14C]O2 [14C]O[18O](g) -16.24 -18.02 -1.79 [14C]O[18O] - [18O]2(g) -15.44 -17.73 -2.29 [18O]2 + [18O]2(g) -16.27 -18.56 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -30827,14 +30788,14 @@ O(0) 9.409e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.26 -126.12 -2.86 CH4 + CH4(g) -121.59 -124.45 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.88 -40.03 -3.15 H2 + H2(g) -36.46 -39.61 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.44 -12.33 -2.89 O2 - O[18O](g) -12.14 -15.03 -2.89 O[18O] + O2(g) -10.27 -13.16 -2.89 O2 + O[18O](g) -12.97 -15.86 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -30924,12 +30885,12 @@ Calcite 3.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2745e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2752e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 0 0 +Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.618e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6707e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -30949,14 +30910,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.449 Adjusted to redox equilibrium + pe = 11.233 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.823e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -30965,30 +30926,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.107 -126.106 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.379 -124.378 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.963e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -30996,50 +30957,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.048e-08 6.058e-08 -7.218 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.025 -40.024 0.001 (0) -O(0) 9.304e-13 - O2 4.633e-13 4.641e-13 -12.334 -12.333 0.001 (0) - O[18O] 1.849e-15 1.852e-15 -14.733 -14.732 0.001 (0) +H(0) 5.105e-40 + H2 2.553e-40 2.557e-40 -39.593 -39.592 0.001 (0) +O(0) 1.273e-13 + O2 6.341e-14 6.351e-14 -13.198 -13.197 0.001 (0) + O[18O] 2.530e-16 2.534e-16 -15.597 -15.596 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.065 -128.065 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.338 -126.337 0.001 (0) [13C](4) 6.467e-05 H[13C]O3- 5.217e-05 4.773e-05 -4.283 -4.321 -0.039 (0) [13C]O2 1.095e-05 1.097e-05 -4.961 -4.960 0.001 (0) CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) - H[13C][18O]O2- 1.041e-07 9.522e-08 -6.983 -7.021 -0.039 (0) - H[13C]O[18O]O- 1.041e-07 9.522e-08 -6.983 -7.021 -0.039 (0) H[13C]O2[18O]- 1.041e-07 9.522e-08 -6.983 -7.021 -0.039 (0) + H[13C]O[18O]O- 1.041e-07 9.522e-08 -6.983 -7.021 -0.039 (0) + H[13C][18O]O2- 1.041e-07 9.522e-08 -6.983 -7.021 -0.039 (0) Ca[13C]O3 6.048e-08 6.058e-08 -7.218 -7.218 0.001 (0) [13C]O[18O] 4.553e-08 4.560e-08 -7.342 -7.341 0.001 (0) [13C]O3-2 3.102e-08 2.173e-08 -7.508 -7.663 -0.155 (0) - CaH[13C][18O]O2+ 2.198e-09 2.016e-09 -8.658 -8.695 -0.037 (0) CaH[13C]O2[18O]+ 2.198e-09 2.016e-09 -8.658 -8.695 -0.037 (0) CaH[13C]O[18O]O+ 2.198e-09 2.016e-09 -8.658 -8.695 -0.037 (0) + CaH[13C][18O]O2+ 2.198e-09 2.016e-09 -8.658 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.620e-10 3.626e-10 -9.441 -9.441 0.001 (0) - H[13C][18O]O[18O]- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) - H[13C][18O]2O- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) H[13C]O[18O]2- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) + H[13C][18O]2O- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) + H[13C][18O]O[18O]- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) [13C]O2[18O]-2 1.857e-10 1.301e-10 -9.731 -9.886 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.453 -138.452 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.726 -136.725 0.001 (0) [14C](4) 2.667e-15 H[14C]O3- 2.155e-15 1.971e-15 -14.667 -14.705 -0.039 (0) [14C]O2 4.483e-16 4.491e-16 -15.348 -15.348 0.001 (0) CaH[14C]O3+ 4.550e-17 4.174e-17 -16.342 -16.379 -0.037 (0) - H[14C][18O]O2- 4.299e-18 3.933e-18 -17.367 -17.405 -0.039 (0) - H[14C]O[18O]O- 4.299e-18 3.933e-18 -17.367 -17.405 -0.039 (0) H[14C]O2[18O]- 4.299e-18 3.933e-18 -17.367 -17.405 -0.039 (0) + H[14C]O[18O]O- 4.299e-18 3.933e-18 -17.367 -17.405 -0.039 (0) + H[14C][18O]O2- 4.299e-18 3.933e-18 -17.367 -17.405 -0.039 (0) Ca[14C]O3 2.494e-18 2.498e-18 -17.603 -17.602 0.001 (0) [14C]O[18O] 1.864e-18 1.867e-18 -17.729 -17.729 0.001 (0) [14C]O3-2 1.280e-18 8.964e-19 -17.893 -18.048 -0.155 (0) CaH[14C]O2[18O]+ 9.078e-20 8.327e-20 -19.042 -19.079 -0.037 (0) - CaH[14C][18O]O2+ 9.078e-20 8.327e-20 -19.042 -19.079 -0.037 (0) CaH[14C]O[18O]O+ 9.078e-20 8.327e-20 -19.042 -19.079 -0.037 (0) + CaH[14C][18O]O2+ 9.078e-20 8.327e-20 -19.042 -19.079 -0.037 (0) Ca[14C]O2[18O] 1.493e-20 1.495e-20 -19.826 -19.825 0.001 (0) H[14C]O[18O]2- 8.577e-21 7.847e-21 -20.067 -20.105 -0.039 (0) H[14C][18O]2O- 8.577e-21 7.847e-21 -20.067 -20.105 -0.039 (0) @@ -31048,29 +31009,29 @@ O(0) 9.304e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.853e-15 - O[18O] 1.849e-15 1.852e-15 -14.733 -14.732 0.001 (0) - [18O]2 1.844e-18 1.847e-18 -17.734 -17.733 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.535e-16 + O[18O] 2.530e-16 2.534e-16 -15.597 -15.596 0.001 (0) + [18O]2 2.524e-19 2.528e-19 -18.598 -18.597 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.20 -128.06 -2.86 [13C]H4 + [13C]H4(g) -123.48 -126.34 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.24 -20.75 -1.50 [14C][18O]2 - [14C]H4(g) -135.59 -138.45 -2.86 [14C]H4 + [14C]H4(g) -133.86 -136.72 -2.86 [14C]H4 [14C]O2(g) -13.88 -15.35 -1.47 [14C]O2 [14C]O[18O](g) -16.26 -18.05 -1.79 [14C]O[18O] - [18O]2(g) -15.44 -17.73 -2.29 [18O]2 + [18O]2(g) -16.31 -18.60 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -31084,14 +31045,14 @@ O(0) 9.304e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.25 -126.11 -2.86 CH4 + CH4(g) -121.52 -124.38 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.87 -40.02 -3.15 H2 + H2(g) -36.44 -39.59 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.44 -12.33 -2.89 O2 - O[18O](g) -12.14 -15.03 -2.89 O[18O] + O2(g) -10.30 -13.20 -2.89 O2 + O[18O](g) -13.00 -15.90 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -31161,14 +31122,14 @@ Calcite 3.56e-03 R(18O) H3O+ 2.04132e-03 18.012 permil R(18O) O2(aq) 1.99518e-03 -4.9961 permil R(13C) CO2(aq) 1.09992e-02 -16.186 permil - R(14C) CO2(aq) 4.26251e-13 36.249 pmc + R(14C) CO2(aq) 4.26250e-13 36.249 pmc R(18O) CO2(aq) 2.07915e-03 36.878 permil R(18O) HCO3- 1.99518e-03 -4.9961 permil R(13C) HCO3- 1.10949e-02 -7.627 permil R(14C) HCO3- 4.33699e-13 36.883 pmc R(18O) CO3-2 1.99518e-03 -4.9961 permil R(13C) CO3-2 1.10790e-02 -9.0512 permil - R(14C) CO3-2 4.32456e-13 36.777 pmc + R(14C) CO3-2 4.32455e-13 36.777 pmc R(18O) Calcite 2.05262e-03 23.65 permil R(13C) Calcite 1.11169e-02 -5.6615 permil R(14C) Calcite 4.35419e-13 37.029 pmc @@ -31181,12 +31142,12 @@ Calcite 3.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2797e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2464e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7613e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.745e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -31206,14 +31167,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.447 Adjusted to redox equilibrium + pe = 11.219 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -31222,19 +31183,19 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.085 -126.084 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.263 -124.262 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -31243,9 +31204,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -31253,23 +31214,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.050e-08 6.060e-08 -7.218 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.019 -40.019 0.001 (0) -O(0) 9.074e-13 - O2 4.519e-13 4.526e-13 -12.345 -12.344 0.001 (0) - O[18O] 1.803e-15 1.806e-15 -14.744 -14.743 0.001 (0) +H(0) 5.459e-40 + H2 2.730e-40 2.734e-40 -39.564 -39.563 0.001 (0) +O(0) 1.113e-13 + O2 5.545e-14 5.554e-14 -13.256 -13.255 0.001 (0) + O[18O] 2.213e-16 2.216e-16 -15.655 -15.654 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.043 -128.043 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.221 -126.220 0.001 (0) [13C](4) 6.470e-05 H[13C]O3- 5.219e-05 4.775e-05 -4.282 -4.321 -0.039 (0) [13C]O2 1.095e-05 1.097e-05 -4.960 -4.960 0.001 (0) CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) - H[13C]O[18O]O- 1.041e-07 9.526e-08 -6.982 -7.021 -0.039 (0) H[13C]O2[18O]- 1.041e-07 9.526e-08 -6.982 -7.021 -0.039 (0) + H[13C]O[18O]O- 1.041e-07 9.526e-08 -6.982 -7.021 -0.039 (0) H[13C][18O]O2- 1.041e-07 9.526e-08 -6.982 -7.021 -0.039 (0) Ca[13C]O3 6.050e-08 6.060e-08 -7.218 -7.218 0.001 (0) [13C]O[18O] 4.555e-08 4.562e-08 -7.342 -7.341 0.001 (0) @@ -31278,56 +31239,56 @@ O(0) 9.074e-13 CaH[13C]O[18O]O+ 2.199e-09 2.017e-09 -8.658 -8.695 -0.037 (0) CaH[13C][18O]O2+ 2.199e-09 2.017e-09 -8.658 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.621e-10 3.627e-10 -9.441 -9.440 0.001 (0) - H[13C][18O]O[18O]- 2.077e-10 1.901e-10 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.077e-10 1.901e-10 -9.682 -9.721 -0.039 (0) H[13C]O[18O]2- 2.077e-10 1.901e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]2O- 2.077e-10 1.901e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]O[18O]- 2.077e-10 1.901e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.858e-10 1.301e-10 -9.731 -9.886 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.455 -138.454 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.633 -136.632 0.001 (0) [14C](4) 2.525e-15 H[14C]O3- 2.040e-15 1.866e-15 -14.690 -14.729 -0.039 (0) [14C]O2 4.245e-16 4.252e-16 -15.372 -15.371 0.001 (0) CaH[14C]O3+ 4.308e-17 3.952e-17 -16.366 -16.403 -0.037 (0) - H[14C][18O]O2- 4.070e-18 3.724e-18 -17.390 -17.429 -0.039 (0) - H[14C]O[18O]O- 4.070e-18 3.724e-18 -17.390 -17.429 -0.039 (0) H[14C]O2[18O]- 4.070e-18 3.724e-18 -17.390 -17.429 -0.039 (0) + H[14C]O[18O]O- 4.070e-18 3.724e-18 -17.390 -17.429 -0.039 (0) + H[14C][18O]O2- 4.070e-18 3.724e-18 -17.390 -17.429 -0.039 (0) Ca[14C]O3 2.362e-18 2.365e-18 -17.627 -17.626 0.001 (0) [14C]O[18O] 1.765e-18 1.768e-18 -17.753 -17.753 0.001 (0) [14C]O3-2 1.211e-18 8.487e-19 -17.917 -18.071 -0.155 (0) CaH[14C]O2[18O]+ 8.595e-20 7.885e-20 -19.066 -19.103 -0.037 (0) - CaH[14C][18O]O2+ 8.595e-20 7.885e-20 -19.066 -19.103 -0.037 (0) CaH[14C]O[18O]O+ 8.595e-20 7.885e-20 -19.066 -19.103 -0.037 (0) + CaH[14C][18O]O2+ 8.595e-20 7.885e-20 -19.066 -19.103 -0.037 (0) Ca[14C]O2[18O] 1.414e-20 1.416e-20 -19.850 -19.849 0.001 (0) + H[14C]O[18O]2- 8.121e-21 7.430e-21 -20.090 -20.129 -0.039 (0) H[14C][18O]2O- 8.121e-21 7.430e-21 -20.090 -20.129 -0.039 (0) H[14C][18O]O[18O]- 8.121e-21 7.430e-21 -20.090 -20.129 -0.039 (0) - H[14C]O[18O]2- 8.121e-21 7.430e-21 -20.090 -20.129 -0.039 (0) [14C]O2[18O]-2 7.251e-21 5.080e-21 -20.140 -20.294 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.807e-15 - O[18O] 1.803e-15 1.806e-15 -14.744 -14.743 0.001 (0) - [18O]2 1.799e-18 1.802e-18 -17.745 -17.744 0.001 (0) +[18O](0) 2.217e-16 + O[18O] 2.213e-16 2.216e-16 -15.655 -15.654 0.001 (0) + [18O]2 2.207e-19 2.211e-19 -18.656 -18.655 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.18 -128.04 -2.86 [13C]H4 + [13C]H4(g) -123.36 -126.22 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.27 -20.77 -1.50 [14C][18O]2 - [14C]H4(g) -135.59 -138.45 -2.86 [14C]H4 + [14C]H4(g) -133.77 -136.63 -2.86 [14C]H4 [14C]O2(g) -13.90 -15.37 -1.47 [14C]O2 [14C]O[18O](g) -16.28 -18.07 -1.79 [14C]O[18O] - [18O]2(g) -15.45 -17.74 -2.29 [18O]2 + [18O]2(g) -16.37 -18.66 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -31341,14 +31302,14 @@ O(0) 9.074e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.22 -126.08 -2.86 CH4 + CH4(g) -121.40 -124.26 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.87 -40.02 -3.15 H2 + H2(g) -36.41 -39.56 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.45 -12.34 -2.89 O2 - O[18O](g) -12.15 -15.04 -2.89 O[18O] + O2(g) -10.36 -13.26 -2.89 O2 + O[18O](g) -13.06 -15.96 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -31438,12 +31399,12 @@ Calcite 4.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2677e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2669e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6089e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5905e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -31463,14 +31424,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.447 Adjusted to redox equilibrium + pe = 11.231 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -31479,30 +31440,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.091 -126.090 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.361 -124.361 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -31510,81 +31471,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.053e-08 6.062e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.021 -40.020 0.001 (0) -O(0) 9.138e-13 - O2 4.551e-13 4.558e-13 -12.342 -12.341 0.001 (0) - O[18O] 1.816e-15 1.819e-15 -14.741 -14.740 0.001 (0) +H(0) 5.157e-40 + H2 2.579e-40 2.583e-40 -39.589 -39.588 0.001 (0) +O(0) 1.248e-13 + O2 6.213e-14 6.224e-14 -13.207 -13.206 0.001 (0) + O[18O] 2.479e-16 2.483e-16 -15.606 -15.605 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.049 -128.049 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.320 -126.319 0.001 (0) [13C](4) 6.473e-05 H[13C]O3- 5.221e-05 4.776e-05 -4.282 -4.321 -0.039 (0) [13C]O2 1.096e-05 1.098e-05 -4.960 -4.960 0.001 (0) CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) H[13C]O2[18O]- 1.042e-07 9.530e-08 -6.982 -7.021 -0.039 (0) - H[13C][18O]O2- 1.042e-07 9.530e-08 -6.982 -7.021 -0.039 (0) H[13C]O[18O]O- 1.042e-07 9.530e-08 -6.982 -7.021 -0.039 (0) + H[13C][18O]O2- 1.042e-07 9.530e-08 -6.982 -7.021 -0.039 (0) Ca[13C]O3 6.053e-08 6.062e-08 -7.218 -7.217 0.001 (0) [13C]O[18O] 4.557e-08 4.564e-08 -7.341 -7.341 0.001 (0) [13C]O3-2 3.105e-08 2.175e-08 -7.508 -7.663 -0.155 (0) + CaH[13C]O2[18O]+ 2.200e-09 2.018e-09 -8.658 -8.695 -0.037 (0) CaH[13C]O[18O]O+ 2.200e-09 2.018e-09 -8.658 -8.695 -0.037 (0) CaH[13C][18O]O2+ 2.200e-09 2.018e-09 -8.658 -8.695 -0.037 (0) - CaH[13C]O2[18O]+ 2.200e-09 2.018e-09 -8.658 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.623e-10 3.629e-10 -9.441 -9.440 0.001 (0) - H[13C][18O]O[18O]- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) H[13C]O[18O]2- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]2O- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]O[18O]- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.858e-10 1.302e-10 -9.731 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.484 -138.483 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.754 -136.753 0.001 (0) [14C](4) 2.398e-15 H[14C]O3- 1.937e-15 1.772e-15 -14.713 -14.752 -0.039 (0) [14C]O2 4.031e-16 4.037e-16 -15.395 -15.394 0.001 (0) CaH[14C]O3+ 4.090e-17 3.752e-17 -16.388 -16.426 -0.037 (0) - H[14C][18O]O2- 3.865e-18 3.536e-18 -17.413 -17.452 -0.039 (0) - H[14C]O[18O]O- 3.865e-18 3.536e-18 -17.413 -17.452 -0.039 (0) H[14C]O2[18O]- 3.865e-18 3.536e-18 -17.413 -17.452 -0.039 (0) + H[14C]O[18O]O- 3.865e-18 3.536e-18 -17.413 -17.452 -0.039 (0) + H[14C][18O]O2- 3.865e-18 3.536e-18 -17.413 -17.452 -0.039 (0) Ca[14C]O3 2.242e-18 2.246e-18 -17.649 -17.649 0.001 (0) [14C]O[18O] 1.676e-18 1.679e-18 -17.776 -17.775 0.001 (0) [14C]O3-2 1.150e-18 8.058e-19 -17.939 -18.094 -0.155 (0) CaH[14C]O2[18O]+ 8.161e-20 7.486e-20 -19.088 -19.126 -0.037 (0) - CaH[14C][18O]O2+ 8.161e-20 7.486e-20 -19.088 -19.126 -0.037 (0) CaH[14C]O[18O]O+ 8.161e-20 7.486e-20 -19.088 -19.126 -0.037 (0) + CaH[14C][18O]O2+ 8.161e-20 7.486e-20 -19.088 -19.126 -0.037 (0) Ca[14C]O2[18O] 1.342e-20 1.344e-20 -19.872 -19.871 0.001 (0) - H[14C][18O]O[18O]- 7.711e-21 7.054e-21 -20.113 -20.152 -0.039 (0) H[14C]O[18O]2- 7.711e-21 7.054e-21 -20.113 -20.152 -0.039 (0) H[14C][18O]2O- 7.711e-21 7.054e-21 -20.113 -20.152 -0.039 (0) + H[14C][18O]O[18O]- 7.711e-21 7.054e-21 -20.113 -20.152 -0.039 (0) [14C]O2[18O]-2 6.885e-21 4.823e-21 -20.162 -20.317 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.819e-15 - O[18O] 1.816e-15 1.819e-15 -14.741 -14.740 0.001 (0) - [18O]2 1.811e-18 1.814e-18 -17.742 -17.741 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.484e-16 + O[18O] 2.479e-16 2.483e-16 -15.606 -15.605 0.001 (0) + [18O]2 2.473e-19 2.477e-19 -18.607 -18.606 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.19 -128.05 -2.86 [13C]H4 + [13C]H4(g) -123.46 -126.32 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.29 -20.79 -1.50 [14C][18O]2 - [14C]H4(g) -135.62 -138.48 -2.86 [14C]H4 + [14C]H4(g) -133.89 -136.75 -2.86 [14C]H4 [14C]O2(g) -13.93 -15.39 -1.47 [14C]O2 [14C]O[18O](g) -16.31 -18.09 -1.79 [14C]O[18O] - [18O]2(g) -15.45 -17.74 -2.29 [18O]2 + [18O]2(g) -16.32 -18.61 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -31598,14 +31559,14 @@ O(0) 9.138e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.23 -126.09 -2.86 CH4 + CH4(g) -121.50 -124.36 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.87 -40.02 -3.15 H2 + H2(g) -36.44 -39.59 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.45 -12.34 -2.89 O2 - O[18O](g) -12.15 -15.04 -2.89 O[18O] + O2(g) -10.31 -13.21 -2.89 O2 + O[18O](g) -13.01 -15.91 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -31695,12 +31656,12 @@ Calcite 4.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2414e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2405e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6266e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6779e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -31720,14 +31681,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.443 Adjusted to redox equilibrium + pe = 11.211 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -31736,20 +31697,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.057 -126.056 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.201 -124.201 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -31757,9 +31718,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -31767,50 +31728,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.103e-06 1.012e-06 -5.957 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.055e-08 6.065e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.012 -40.012 0.001 (0) -O(0) 8.785e-13 - O2 4.375e-13 4.382e-13 -12.359 -12.358 0.001 (0) - O[18O] 1.746e-15 1.749e-15 -14.758 -14.757 0.001 (0) +H(0) 5.655e-40 + H2 2.828e-40 2.832e-40 -39.549 -39.548 0.001 (0) +O(0) 1.038e-13 + O2 5.167e-14 5.176e-14 -13.287 -13.286 0.001 (0) + O[18O] 2.062e-16 2.065e-16 -15.686 -15.685 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.015 -128.014 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.160 -126.159 0.001 (0) [13C](4) 6.475e-05 H[13C]O3- 5.223e-05 4.778e-05 -4.282 -4.321 -0.039 (0) [13C]O2 1.096e-05 1.098e-05 -4.960 -4.959 0.001 (0) CaH[13C]O3+ 1.103e-06 1.012e-06 -5.957 -5.995 -0.037 (0) - H[13C][18O]O2- 1.042e-07 9.533e-08 -6.982 -7.021 -0.039 (0) - H[13C]O[18O]O- 1.042e-07 9.533e-08 -6.982 -7.021 -0.039 (0) H[13C]O2[18O]- 1.042e-07 9.533e-08 -6.982 -7.021 -0.039 (0) + H[13C]O[18O]O- 1.042e-07 9.533e-08 -6.982 -7.021 -0.039 (0) + H[13C][18O]O2- 1.042e-07 9.533e-08 -6.982 -7.021 -0.039 (0) Ca[13C]O3 6.055e-08 6.065e-08 -7.218 -7.217 0.001 (0) [13C]O[18O] 4.558e-08 4.566e-08 -7.341 -7.340 0.001 (0) [13C]O3-2 3.106e-08 2.176e-08 -7.508 -7.662 -0.155 (0) - CaH[13C][18O]O2+ 2.200e-09 2.019e-09 -8.657 -8.695 -0.037 (0) CaH[13C]O2[18O]+ 2.200e-09 2.019e-09 -8.657 -8.695 -0.037 (0) CaH[13C]O[18O]O+ 2.200e-09 2.019e-09 -8.657 -8.695 -0.037 (0) + CaH[13C][18O]O2+ 2.200e-09 2.019e-09 -8.657 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.624e-10 3.630e-10 -9.441 -9.440 0.001 (0) - H[13C][18O]O[18O]- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) H[13C]O[18O]2- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]2O- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]O[18O]- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.859e-10 1.302e-10 -9.731 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.471 -138.470 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.615 -136.615 0.001 (0) [14C](4) 2.283e-15 H[14C]O3- 1.844e-15 1.687e-15 -14.734 -14.773 -0.039 (0) [14C]O2 3.837e-16 3.843e-16 -15.416 -15.415 0.001 (0) CaH[14C]O3+ 3.894e-17 3.572e-17 -16.410 -16.447 -0.037 (0) - H[14C][18O]O2- 3.679e-18 3.366e-18 -17.434 -17.473 -0.039 (0) - H[14C]O[18O]O- 3.679e-18 3.366e-18 -17.434 -17.473 -0.039 (0) H[14C]O2[18O]- 3.679e-18 3.366e-18 -17.434 -17.473 -0.039 (0) + H[14C]O[18O]O- 3.679e-18 3.366e-18 -17.434 -17.473 -0.039 (0) + H[14C][18O]O2- 3.679e-18 3.366e-18 -17.434 -17.473 -0.039 (0) Ca[14C]O3 2.135e-18 2.138e-18 -17.671 -17.670 0.001 (0) [14C]O[18O] 1.595e-18 1.598e-18 -17.797 -17.796 0.001 (0) [14C]O3-2 1.095e-18 7.671e-19 -17.961 -18.115 -0.155 (0) CaH[14C]O2[18O]+ 7.769e-20 7.127e-20 -19.110 -19.147 -0.037 (0) - CaH[14C][18O]O2+ 7.769e-20 7.127e-20 -19.110 -19.147 -0.037 (0) CaH[14C]O[18O]O+ 7.769e-20 7.127e-20 -19.110 -19.147 -0.037 (0) + CaH[14C][18O]O2+ 7.769e-20 7.127e-20 -19.110 -19.147 -0.037 (0) Ca[14C]O2[18O] 1.278e-20 1.280e-20 -19.894 -19.893 0.001 (0) H[14C]O[18O]2- 7.340e-21 6.715e-21 -20.134 -20.173 -0.039 (0) H[14C][18O]2O- 7.340e-21 6.715e-21 -20.134 -20.173 -0.039 (0) @@ -31819,29 +31780,29 @@ O(0) 8.785e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.749e-15 - O[18O] 1.746e-15 1.749e-15 -14.758 -14.757 0.001 (0) - [18O]2 1.742e-18 1.744e-18 -17.759 -17.758 0.001 (0) +[18O](0) 2.066e-16 + O[18O] 2.062e-16 2.065e-16 -15.686 -15.685 0.001 (0) + [18O]2 2.057e-19 2.060e-19 -18.687 -18.686 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.15 -128.01 -2.86 [13C]H4 + [13C]H4(g) -123.30 -126.16 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.31 -20.82 -1.50 [14C][18O]2 - [14C]H4(g) -135.61 -138.47 -2.86 [14C]H4 + [14C]H4(g) -133.75 -136.61 -2.86 [14C]H4 [14C]O2(g) -13.95 -15.42 -1.47 [14C]O2 [14C]O[18O](g) -16.33 -18.12 -1.79 [14C]O[18O] - [18O]2(g) -15.47 -17.76 -2.29 [18O]2 + [18O]2(g) -16.40 -18.69 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -31855,14 +31816,14 @@ O(0) 8.785e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.20 -126.06 -2.86 CH4 + CH4(g) -121.34 -124.20 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.86 -40.01 -3.15 H2 + H2(g) -36.40 -39.55 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.47 -12.36 -2.89 O2 - O[18O](g) -12.17 -15.06 -2.89 O[18O] + O2(g) -10.39 -13.29 -2.89 O2 + O[18O](g) -13.09 -15.99 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -31952,12 +31913,12 @@ Calcite 5.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.268e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2669e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.4964e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6164e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -31977,14 +31938,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.443 Adjusted to redox equilibrium + pe = 11.217 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -31993,30 +31954,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.055 -126.055 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.249 -124.249 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -32024,23 +31985,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.103e-06 1.012e-06 -5.957 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.057e-08 6.067e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.012 -40.011 0.001 (0) -O(0) 8.772e-13 - O2 4.369e-13 4.376e-13 -12.360 -12.359 0.001 (0) - O[18O] 1.743e-15 1.746e-15 -14.759 -14.758 0.001 (0) +H(0) 5.500e-40 + H2 2.750e-40 2.755e-40 -39.561 -39.560 0.001 (0) +O(0) 1.097e-13 + O2 5.462e-14 5.471e-14 -13.263 -13.262 0.001 (0) + O[18O] 2.180e-16 2.183e-16 -15.662 -15.661 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.014 -128.013 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.208 -126.207 0.001 (0) [13C](4) 6.477e-05 H[13C]O3- 5.224e-05 4.780e-05 -4.282 -4.321 -0.039 (0) [13C]O2 1.097e-05 1.098e-05 -4.960 -4.959 0.001 (0) CaH[13C]O3+ 1.103e-06 1.012e-06 -5.957 -5.995 -0.037 (0) - H[13C]O[18O]O- 1.042e-07 9.536e-08 -6.982 -7.021 -0.039 (0) H[13C]O2[18O]- 1.042e-07 9.536e-08 -6.982 -7.021 -0.039 (0) + H[13C]O[18O]O- 1.042e-07 9.536e-08 -6.982 -7.021 -0.039 (0) H[13C][18O]O2- 1.042e-07 9.536e-08 -6.982 -7.021 -0.039 (0) Ca[13C]O3 6.057e-08 6.067e-08 -7.218 -7.217 0.001 (0) [13C]O[18O] 4.560e-08 4.567e-08 -7.341 -7.340 0.001 (0) @@ -32049,56 +32010,56 @@ O(0) 8.772e-13 CaH[13C]O[18O]O+ 2.201e-09 2.019e-09 -8.657 -8.695 -0.037 (0) CaH[13C][18O]O2+ 2.201e-09 2.019e-09 -8.657 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.625e-10 3.631e-10 -9.441 -9.440 0.001 (0) - H[13C][18O]O[18O]- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) H[13C]O[18O]2- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]2O- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]O[18O]- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.860e-10 1.303e-10 -9.731 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.490 -138.489 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.684 -136.683 0.001 (0) [14C](4) 2.178e-15 H[14C]O3- 1.759e-15 1.610e-15 -14.755 -14.793 -0.039 (0) [14C]O2 3.661e-16 3.667e-16 -15.436 -15.436 0.001 (0) CaH[14C]O3+ 3.715e-17 3.408e-17 -16.430 -16.467 -0.037 (0) - H[14C][18O]O2- 3.510e-18 3.211e-18 -17.455 -17.493 -0.039 (0) - H[14C]O[18O]O- 3.510e-18 3.211e-18 -17.455 -17.493 -0.039 (0) H[14C]O2[18O]- 3.510e-18 3.211e-18 -17.455 -17.493 -0.039 (0) + H[14C]O[18O]O- 3.510e-18 3.211e-18 -17.455 -17.493 -0.039 (0) + H[14C][18O]O2- 3.510e-18 3.211e-18 -17.455 -17.493 -0.039 (0) Ca[14C]O3 2.037e-18 2.040e-18 -17.691 -17.690 0.001 (0) [14C]O[18O] 1.522e-18 1.525e-18 -17.817 -17.817 0.001 (0) [14C]O3-2 1.045e-18 7.319e-19 -17.981 -18.136 -0.155 (0) CaH[14C]O2[18O]+ 7.413e-20 6.800e-20 -19.130 -19.168 -0.037 (0) - CaH[14C][18O]O2+ 7.413e-20 6.800e-20 -19.130 -19.168 -0.037 (0) CaH[14C]O[18O]O+ 7.413e-20 6.800e-20 -19.130 -19.168 -0.037 (0) + CaH[14C][18O]O2+ 7.413e-20 6.800e-20 -19.130 -19.168 -0.037 (0) Ca[14C]O2[18O] 1.219e-20 1.221e-20 -19.914 -19.913 0.001 (0) + H[14C]O[18O]2- 7.004e-21 6.407e-21 -20.155 -20.193 -0.039 (0) H[14C][18O]2O- 7.004e-21 6.407e-21 -20.155 -20.193 -0.039 (0) H[14C][18O]O[18O]- 7.004e-21 6.407e-21 -20.155 -20.193 -0.039 (0) - H[14C]O[18O]2- 7.004e-21 6.407e-21 -20.155 -20.193 -0.039 (0) [14C]O2[18O]-2 6.254e-21 4.381e-21 -20.204 -20.358 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.747e-15 - O[18O] 1.743e-15 1.746e-15 -14.759 -14.758 0.001 (0) - [18O]2 1.739e-18 1.742e-18 -17.760 -17.759 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.184e-16 + O[18O] 2.180e-16 2.183e-16 -15.662 -15.661 0.001 (0) + [18O]2 2.174e-19 2.178e-19 -18.663 -18.662 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.15 -128.01 -2.86 [13C]H4 + [13C]H4(g) -123.35 -126.21 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.33 -20.84 -1.50 [14C][18O]2 - [14C]H4(g) -135.63 -138.49 -2.86 [14C]H4 + [14C]H4(g) -133.82 -136.68 -2.86 [14C]H4 [14C]O2(g) -13.97 -15.44 -1.47 [14C]O2 [14C]O[18O](g) -16.35 -18.14 -1.79 [14C]O[18O] - [18O]2(g) -15.47 -17.76 -2.29 [18O]2 + [18O]2(g) -16.37 -18.66 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -32112,14 +32073,14 @@ O(0) 8.772e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.19 -126.05 -2.86 CH4 + CH4(g) -121.39 -124.25 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.86 -40.01 -3.15 H2 + H2(g) -36.41 -39.56 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.47 -12.36 -2.89 O2 - O[18O](g) -12.17 -15.06 -2.89 O[18O] + O2(g) -10.37 -13.26 -2.89 O2 + O[18O](g) -13.07 -15.96 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -32209,12 +32170,12 @@ Calcite 5.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.248e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2466e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6765e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6591e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -32234,14 +32195,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.447 Adjusted to redox equilibrium + pe = 11.241 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -32250,20 +32211,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.088 -126.087 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.437 -124.436 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -32271,9 +32232,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -32281,81 +32242,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.104e-06 1.012e-06 -5.957 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.058e-08 6.068e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.020 -40.020 0.001 (0) -O(0) 9.108e-13 - O2 4.536e-13 4.543e-13 -12.343 -12.343 0.001 (0) - O[18O] 1.810e-15 1.813e-15 -14.742 -14.742 0.001 (0) +H(0) 4.937e-40 + H2 2.468e-40 2.473e-40 -39.608 -39.607 0.001 (0) +O(0) 1.361e-13 + O2 6.780e-14 6.791e-14 -13.169 -13.168 0.001 (0) + O[18O] 2.706e-16 2.710e-16 -15.568 -15.567 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.046 -128.045 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.395 -126.395 0.001 (0) [13C](4) 6.479e-05 H[13C]O3- 5.226e-05 4.781e-05 -4.282 -4.320 -0.039 (0) [13C]O2 1.097e-05 1.099e-05 -4.960 -4.959 0.001 (0) CaH[13C]O3+ 1.104e-06 1.012e-06 -5.957 -5.995 -0.037 (0) H[13C]O2[18O]- 1.043e-07 9.539e-08 -6.982 -7.020 -0.039 (0) - H[13C][18O]O2- 1.043e-07 9.539e-08 -6.982 -7.020 -0.039 (0) H[13C]O[18O]O- 1.043e-07 9.539e-08 -6.982 -7.020 -0.039 (0) + H[13C][18O]O2- 1.043e-07 9.539e-08 -6.982 -7.020 -0.039 (0) Ca[13C]O3 6.058e-08 6.068e-08 -7.218 -7.217 0.001 (0) [13C]O[18O] 4.561e-08 4.569e-08 -7.341 -7.340 0.001 (0) [13C]O3-2 3.108e-08 2.177e-08 -7.508 -7.662 -0.155 (0) + CaH[13C]O2[18O]+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) CaH[13C]O[18O]O+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) CaH[13C][18O]O2+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) - CaH[13C]O2[18O]+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.626e-10 3.632e-10 -9.441 -9.440 0.001 (0) - H[13C][18O]O[18O]- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) H[13C]O[18O]2- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]2O- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]O[18O]- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.860e-10 1.303e-10 -9.730 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.542 -138.541 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.891 -136.891 0.001 (0) [14C](4) 2.083e-15 H[14C]O3- 1.682e-15 1.539e-15 -14.774 -14.813 -0.039 (0) [14C]O2 3.500e-16 3.506e-16 -15.456 -15.455 0.001 (0) CaH[14C]O3+ 3.552e-17 3.259e-17 -16.449 -16.487 -0.037 (0) - H[14C][18O]O2- 3.356e-18 3.071e-18 -17.474 -17.513 -0.039 (0) - H[14C]O[18O]O- 3.356e-18 3.071e-18 -17.474 -17.513 -0.039 (0) H[14C]O2[18O]- 3.356e-18 3.071e-18 -17.474 -17.513 -0.039 (0) + H[14C]O[18O]O- 3.356e-18 3.071e-18 -17.474 -17.513 -0.039 (0) + H[14C][18O]O2- 3.356e-18 3.071e-18 -17.474 -17.513 -0.039 (0) Ca[14C]O3 1.947e-18 1.951e-18 -17.711 -17.710 0.001 (0) [14C]O[18O] 1.456e-18 1.458e-18 -17.837 -17.836 0.001 (0) [14C]O3-2 9.990e-19 6.998e-19 -18.000 -18.155 -0.155 (0) CaH[14C]O2[18O]+ 7.088e-20 6.502e-20 -19.150 -19.187 -0.037 (0) - CaH[14C][18O]O2+ 7.088e-20 6.502e-20 -19.150 -19.187 -0.037 (0) CaH[14C]O[18O]O+ 7.088e-20 6.502e-20 -19.150 -19.187 -0.037 (0) + CaH[14C][18O]O2+ 7.088e-20 6.502e-20 -19.150 -19.187 -0.037 (0) Ca[14C]O2[18O] 1.166e-20 1.168e-20 -19.933 -19.933 0.001 (0) - H[14C][18O]O[18O]- 6.697e-21 6.127e-21 -20.174 -20.213 -0.039 (0) H[14C]O[18O]2- 6.697e-21 6.127e-21 -20.174 -20.213 -0.039 (0) H[14C][18O]2O- 6.697e-21 6.127e-21 -20.174 -20.213 -0.039 (0) + H[14C][18O]O[18O]- 6.697e-21 6.127e-21 -20.174 -20.213 -0.039 (0) [14C]O2[18O]-2 5.980e-21 4.189e-21 -20.223 -20.378 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.814e-15 - O[18O] 1.810e-15 1.813e-15 -14.742 -14.742 0.001 (0) - [18O]2 1.806e-18 1.809e-18 -17.743 -17.743 0.001 (0) +[18O](0) 2.711e-16 + O[18O] 2.706e-16 2.710e-16 -15.568 -15.567 0.001 (0) + [18O]2 2.699e-19 2.703e-19 -18.569 -18.568 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.19 -128.05 -2.86 [13C]H4 + [13C]H4(g) -123.53 -126.39 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.35 -20.86 -1.50 [14C][18O]2 - [14C]H4(g) -135.68 -138.54 -2.86 [14C]H4 + [14C]H4(g) -134.03 -136.89 -2.86 [14C]H4 [14C]O2(g) -13.99 -15.46 -1.47 [14C]O2 [14C]O[18O](g) -16.37 -18.16 -1.79 [14C]O[18O] - [18O]2(g) -15.45 -17.74 -2.29 [18O]2 + [18O]2(g) -16.28 -18.57 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -32369,14 +32330,14 @@ O(0) 9.108e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.23 -126.09 -2.86 CH4 + CH4(g) -121.58 -124.44 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.87 -40.02 -3.15 H2 + H2(g) -36.46 -39.61 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.45 -12.34 -2.89 O2 - O[18O](g) -12.15 -15.04 -2.89 O[18O] + O2(g) -10.28 -13.17 -2.89 O2 + O[18O](g) -12.98 -15.87 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -32466,12 +32427,12 @@ Calcite 6.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2493e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2469e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.4385e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7258e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7744e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -32491,14 +32452,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.449 Adjusted to redox equilibrium + pe = 11.269 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -32507,30 +32468,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.106 -126.105 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.661 -124.661 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -32538,50 +32499,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.104e-06 1.013e-06 -5.957 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.060e-08 6.070e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.025 -40.024 0.001 (0) -O(0) 9.297e-13 - O2 4.630e-13 4.637e-13 -12.334 -12.334 0.001 (0) - O[18O] 1.847e-15 1.851e-15 -14.733 -14.733 0.001 (0) +H(0) 4.339e-40 + H2 2.170e-40 2.173e-40 -39.664 -39.663 0.001 (0) +O(0) 1.762e-13 + O2 8.777e-14 8.792e-14 -13.057 -13.056 0.001 (0) + O[18O] 3.502e-16 3.508e-16 -15.456 -15.455 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.064 -128.063 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.619 -126.619 0.001 (0) [13C](4) 6.481e-05 H[13C]O3- 5.227e-05 4.782e-05 -4.282 -4.320 -0.039 (0) [13C]O2 1.097e-05 1.099e-05 -4.960 -4.959 0.001 (0) CaH[13C]O3+ 1.104e-06 1.013e-06 -5.957 -5.995 -0.037 (0) - H[13C][18O]O2- 1.043e-07 9.541e-08 -6.982 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.043e-07 9.541e-08 -6.982 -7.020 -0.039 (0) H[13C]O2[18O]- 1.043e-07 9.541e-08 -6.982 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.043e-07 9.541e-08 -6.982 -7.020 -0.039 (0) + H[13C][18O]O2- 1.043e-07 9.541e-08 -6.982 -7.020 -0.039 (0) Ca[13C]O3 6.060e-08 6.070e-08 -7.218 -7.217 0.001 (0) [13C]O[18O] 4.562e-08 4.570e-08 -7.341 -7.340 0.001 (0) [13C]O3-2 3.109e-08 2.178e-08 -7.507 -7.662 -0.155 (0) - CaH[13C][18O]O2+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) CaH[13C]O2[18O]+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) CaH[13C]O[18O]O+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) + CaH[13C][18O]O2+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.627e-10 3.633e-10 -9.440 -9.440 0.001 (0) - H[13C][18O]O[18O]- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) - H[13C][18O]2O- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) H[13C]O[18O]2- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) + H[13C][18O]2O- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) + H[13C][18O]O[18O]- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) [13C]O2[18O]-2 1.861e-10 1.304e-10 -9.730 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.579 -138.578 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.134 -137.133 0.001 (0) [14C](4) 1.995e-15 H[14C]O3- 1.612e-15 1.474e-15 -14.793 -14.831 -0.039 (0) [14C]O2 3.353e-16 3.359e-16 -15.475 -15.474 0.001 (0) CaH[14C]O3+ 3.403e-17 3.122e-17 -16.468 -16.506 -0.037 (0) - H[14C][18O]O2- 3.215e-18 2.942e-18 -17.493 -17.531 -0.039 (0) - H[14C]O[18O]O- 3.215e-18 2.942e-18 -17.493 -17.531 -0.039 (0) H[14C]O2[18O]- 3.215e-18 2.942e-18 -17.493 -17.531 -0.039 (0) + H[14C]O[18O]O- 3.215e-18 2.942e-18 -17.493 -17.531 -0.039 (0) + H[14C][18O]O2- 3.215e-18 2.942e-18 -17.493 -17.531 -0.039 (0) Ca[14C]O3 1.866e-18 1.869e-18 -17.729 -17.728 0.001 (0) [14C]O[18O] 1.394e-18 1.397e-18 -17.856 -17.855 0.001 (0) [14C]O3-2 9.570e-19 6.704e-19 -18.019 -18.174 -0.155 (0) CaH[14C]O2[18O]+ 6.790e-20 6.229e-20 -19.168 -19.206 -0.037 (0) - CaH[14C][18O]O2+ 6.790e-20 6.229e-20 -19.168 -19.206 -0.037 (0) CaH[14C]O[18O]O+ 6.790e-20 6.229e-20 -19.168 -19.206 -0.037 (0) + CaH[14C][18O]O2+ 6.790e-20 6.229e-20 -19.168 -19.206 -0.037 (0) Ca[14C]O2[18O] 1.117e-20 1.119e-20 -19.952 -19.951 0.001 (0) H[14C]O[18O]2- 6.415e-21 5.869e-21 -20.193 -20.231 -0.039 (0) H[14C][18O]2O- 6.415e-21 5.869e-21 -20.193 -20.231 -0.039 (0) @@ -32590,29 +32551,29 @@ O(0) 9.297e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.851e-15 - O[18O] 1.847e-15 1.851e-15 -14.733 -14.733 0.001 (0) - [18O]2 1.843e-18 1.846e-18 -17.734 -17.734 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 3.509e-16 + O[18O] 3.502e-16 3.508e-16 -15.456 -15.455 0.001 (0) + [18O]2 3.494e-19 3.500e-19 -18.457 -18.456 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.20 -128.06 -2.86 [13C]H4 + [13C]H4(g) -123.76 -126.62 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.37 -20.87 -1.50 [14C][18O]2 - [14C]H4(g) -135.72 -138.58 -2.86 [14C]H4 + [14C]H4(g) -134.27 -137.13 -2.86 [14C]H4 [14C]O2(g) -14.01 -15.47 -1.47 [14C]O2 [14C]O[18O](g) -16.39 -18.17 -1.79 [14C]O[18O] - [18O]2(g) -15.44 -17.73 -2.29 [18O]2 + [18O]2(g) -16.17 -18.46 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -32626,14 +32587,14 @@ O(0) 9.297e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.25 -126.11 -2.86 CH4 + CH4(g) -121.80 -124.66 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.87 -40.02 -3.15 H2 + H2(g) -36.51 -39.66 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.44 -12.33 -2.89 O2 - O[18O](g) -12.14 -15.03 -2.89 O[18O] + O2(g) -10.16 -13.06 -2.89 O2 + O[18O](g) -12.86 -15.76 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -32723,12 +32684,12 @@ Calcite 6.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2401e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2711e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.4409e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6316e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8168e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -32748,14 +32709,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.448 Adjusted to redox equilibrium + pe = 11.264 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -32764,19 +32725,19 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.098 -126.098 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.621 -124.621 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -32785,9 +32746,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -32795,23 +32756,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.104e-06 1.013e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.061e-08 6.071e-08 -7.217 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.023 -40.022 0.001 (0) -O(0) 9.217e-13 - O2 4.590e-13 4.598e-13 -12.338 -12.337 0.001 (0) - O[18O] 1.832e-15 1.835e-15 -14.737 -14.736 0.001 (0) +H(0) 4.440e-40 + H2 2.220e-40 2.224e-40 -39.654 -39.653 0.001 (0) +O(0) 1.683e-13 + O2 8.381e-14 8.395e-14 -13.077 -13.076 0.001 (0) + O[18O] 3.344e-16 3.350e-16 -15.476 -15.475 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.056 -128.056 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.579 -126.578 0.001 (0) [13C](4) 6.482e-05 H[13C]O3- 5.229e-05 4.783e-05 -4.282 -4.320 -0.039 (0) [13C]O2 1.097e-05 1.099e-05 -4.960 -4.959 0.001 (0) CaH[13C]O3+ 1.104e-06 1.013e-06 -5.957 -5.994 -0.037 (0) - H[13C]O[18O]O- 1.043e-07 9.544e-08 -6.982 -7.020 -0.039 (0) H[13C]O2[18O]- 1.043e-07 9.544e-08 -6.982 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.043e-07 9.544e-08 -6.982 -7.020 -0.039 (0) H[13C][18O]O2- 1.043e-07 9.544e-08 -6.982 -7.020 -0.039 (0) Ca[13C]O3 6.061e-08 6.071e-08 -7.217 -7.217 0.001 (0) [13C]O[18O] 4.563e-08 4.571e-08 -7.341 -7.340 0.001 (0) @@ -32820,56 +32781,56 @@ O(0) 9.217e-13 CaH[13C]O[18O]O+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.628e-10 3.634e-10 -9.440 -9.440 0.001 (0) - H[13C][18O]O[18O]- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) - H[13C][18O]2O- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) H[13C]O[18O]2- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) + H[13C][18O]2O- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) + H[13C][18O]O[18O]- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) [13C]O2[18O]-2 1.861e-10 1.304e-10 -9.730 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.589 -138.588 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.112 -137.111 0.001 (0) [14C](4) 1.915e-15 H[14C]O3- 1.547e-15 1.415e-15 -14.811 -14.849 -0.039 (0) [14C]O2 3.218e-16 3.223e-16 -15.492 -15.492 0.001 (0) CaH[14C]O3+ 3.266e-17 2.996e-17 -16.486 -16.523 -0.037 (0) - H[14C][18O]O2- 3.086e-18 2.823e-18 -17.511 -17.549 -0.039 (0) - H[14C]O[18O]O- 3.086e-18 2.823e-18 -17.511 -17.549 -0.039 (0) H[14C]O2[18O]- 3.086e-18 2.823e-18 -17.511 -17.549 -0.039 (0) + H[14C]O[18O]O- 3.086e-18 2.823e-18 -17.511 -17.549 -0.039 (0) + H[14C][18O]O2- 3.086e-18 2.823e-18 -17.511 -17.549 -0.039 (0) Ca[14C]O3 1.790e-18 1.793e-18 -17.747 -17.746 0.001 (0) [14C]O[18O] 1.338e-18 1.340e-18 -17.873 -17.873 0.001 (0) [14C]O3-2 9.185e-19 6.434e-19 -18.037 -18.192 -0.155 (0) CaH[14C]O2[18O]+ 6.516e-20 5.977e-20 -19.186 -19.223 -0.037 (0) - CaH[14C][18O]O2+ 6.516e-20 5.977e-20 -19.186 -19.223 -0.037 (0) CaH[14C]O[18O]O+ 6.516e-20 5.977e-20 -19.186 -19.223 -0.037 (0) + CaH[14C][18O]O2+ 6.516e-20 5.977e-20 -19.186 -19.223 -0.037 (0) Ca[14C]O2[18O] 1.072e-20 1.073e-20 -19.970 -19.969 0.001 (0) + H[14C]O[18O]2- 6.157e-21 5.633e-21 -20.211 -20.249 -0.039 (0) H[14C][18O]2O- 6.157e-21 5.633e-21 -20.211 -20.249 -0.039 (0) H[14C][18O]O[18O]- 6.157e-21 5.633e-21 -20.211 -20.249 -0.039 (0) - H[14C]O[18O]2- 6.157e-21 5.633e-21 -20.211 -20.249 -0.039 (0) [14C]O2[18O]-2 5.497e-21 3.851e-21 -20.260 -20.414 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.835e-15 - O[18O] 1.832e-15 1.835e-15 -14.737 -14.736 0.001 (0) - [18O]2 1.827e-18 1.830e-18 -17.738 -17.737 0.001 (0) +[18O](0) 3.351e-16 + O[18O] 3.344e-16 3.350e-16 -15.476 -15.475 0.001 (0) + [18O]2 3.336e-19 3.342e-19 -18.477 -18.476 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.20 -128.06 -2.86 [13C]H4 + [13C]H4(g) -123.72 -126.58 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.39 -20.89 -1.50 [14C][18O]2 - [14C]H4(g) -135.73 -138.59 -2.86 [14C]H4 + [14C]H4(g) -134.25 -137.11 -2.86 [14C]H4 [14C]O2(g) -14.02 -15.49 -1.47 [14C]O2 [14C]O[18O](g) -16.40 -18.19 -1.79 [14C]O[18O] - [18O]2(g) -15.45 -17.74 -2.29 [18O]2 + [18O]2(g) -16.19 -18.48 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -32883,14 +32844,14 @@ O(0) 9.217e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.24 -126.10 -2.86 CH4 + CH4(g) -121.76 -124.62 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.87 -40.02 -3.15 H2 + H2(g) -36.50 -39.65 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.45 -12.34 -2.89 O2 - O[18O](g) -12.15 -15.04 -2.89 O[18O] + O2(g) -10.18 -13.08 -2.89 O2 + O[18O](g) -12.88 -15.78 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -32954,7 +32915,7 @@ Calcite 7.06e-03 R(18O) 1.99519e-03 -4.9936 permil R(13C) 1.11019e-02 -7.0076 permil - R(14C) 3.15137e-13 26.8 pmc + R(14C) 3.15136e-13 26.8 pmc R(18O) H2O(l) 1.99518e-03 -4.9951 permil R(18O) OH- 1.92122e-03 -41.882 permil R(18O) H3O+ 2.04132e-03 18.013 permil @@ -32980,12 +32941,12 @@ Calcite 7.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2558e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2536e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7006e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7503e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -33005,14 +32966,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.454 Adjusted to redox equilibrium + pe = 11.294 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -33021,30 +32982,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.141 -126.141 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.863 -124.862 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -33052,81 +33013,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.104e-06 1.013e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.063e-08 6.073e-08 -7.217 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.034 -40.033 0.001 (0) -O(0) 9.686e-13 - O2 4.824e-13 4.832e-13 -12.317 -12.316 0.001 (0) - O[18O] 1.925e-15 1.928e-15 -14.716 -14.715 0.001 (0) +H(0) 3.864e-40 + H2 1.932e-40 1.935e-40 -39.714 -39.713 0.001 (0) +O(0) 2.223e-13 + O2 1.107e-13 1.109e-13 -12.956 -12.955 0.001 (0) + O[18O] 4.417e-16 4.424e-16 -15.355 -15.354 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.099 -128.099 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.821 -126.820 0.001 (0) [13C](4) 6.484e-05 H[13C]O3- 5.230e-05 4.785e-05 -4.282 -4.320 -0.039 (0) [13C]O2 1.098e-05 1.099e-05 -4.960 -4.959 0.001 (0) CaH[13C]O3+ 1.104e-06 1.013e-06 -5.957 -5.994 -0.037 (0) H[13C]O2[18O]- 1.043e-07 9.546e-08 -6.982 -7.020 -0.039 (0) - H[13C][18O]O2- 1.043e-07 9.546e-08 -6.982 -7.020 -0.039 (0) H[13C]O[18O]O- 1.043e-07 9.546e-08 -6.982 -7.020 -0.039 (0) + H[13C][18O]O2- 1.043e-07 9.546e-08 -6.982 -7.020 -0.039 (0) Ca[13C]O3 6.063e-08 6.073e-08 -7.217 -7.217 0.001 (0) [13C]O[18O] 4.564e-08 4.572e-08 -7.341 -7.340 0.001 (0) [13C]O3-2 3.110e-08 2.179e-08 -7.507 -7.662 -0.155 (0) + CaH[13C]O2[18O]+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) - CaH[13C]O2[18O]+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.629e-10 3.635e-10 -9.440 -9.440 0.001 (0) - H[13C][18O]O[18O]- 2.082e-10 1.905e-10 -9.682 -9.720 -0.039 (0) - H[13C][18O]2O- 2.082e-10 1.905e-10 -9.682 -9.720 -0.039 (0) H[13C]O[18O]2- 2.082e-10 1.905e-10 -9.682 -9.720 -0.039 (0) + H[13C][18O]2O- 2.082e-10 1.905e-10 -9.682 -9.720 -0.039 (0) + H[13C][18O]O[18O]- 2.082e-10 1.905e-10 -9.682 -9.720 -0.039 (0) [13C]O2[18O]-2 1.862e-10 1.304e-10 -9.730 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.649 -138.649 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.371 -137.370 0.001 (0) [14C](4) 1.840e-15 H[14C]O3- 1.487e-15 1.360e-15 -14.828 -14.866 -0.039 (0) [14C]O2 3.093e-16 3.099e-16 -15.510 -15.509 0.001 (0) CaH[14C]O3+ 3.139e-17 2.880e-17 -16.503 -16.541 -0.037 (0) - H[14C][18O]O2- 2.966e-18 2.714e-18 -17.528 -17.566 -0.039 (0) - H[14C]O[18O]O- 2.966e-18 2.714e-18 -17.528 -17.566 -0.039 (0) H[14C]O2[18O]- 2.966e-18 2.714e-18 -17.528 -17.566 -0.039 (0) + H[14C]O[18O]O- 2.966e-18 2.714e-18 -17.528 -17.566 -0.039 (0) + H[14C][18O]O2- 2.966e-18 2.714e-18 -17.528 -17.566 -0.039 (0) Ca[14C]O3 1.721e-18 1.724e-18 -17.764 -17.763 0.001 (0) [14C]O[18O] 1.286e-18 1.288e-18 -17.891 -17.890 0.001 (0) [14C]O3-2 8.829e-19 6.185e-19 -18.054 -18.209 -0.155 (0) CaH[14C]O2[18O]+ 6.264e-20 5.746e-20 -19.203 -19.241 -0.037 (0) - CaH[14C][18O]O2+ 6.264e-20 5.746e-20 -19.203 -19.241 -0.037 (0) CaH[14C]O[18O]O+ 6.264e-20 5.746e-20 -19.203 -19.241 -0.037 (0) + CaH[14C][18O]O2+ 6.264e-20 5.746e-20 -19.203 -19.241 -0.037 (0) Ca[14C]O2[18O] 1.030e-20 1.032e-20 -19.987 -19.986 0.001 (0) - H[14C][18O]O[18O]- 5.918e-21 5.414e-21 -20.228 -20.266 -0.039 (0) H[14C]O[18O]2- 5.918e-21 5.414e-21 -20.228 -20.266 -0.039 (0) H[14C][18O]2O- 5.918e-21 5.414e-21 -20.228 -20.266 -0.039 (0) + H[14C][18O]O[18O]- 5.918e-21 5.414e-21 -20.228 -20.266 -0.039 (0) [14C]O2[18O]-2 5.284e-21 3.702e-21 -20.277 -20.432 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.929e-15 - O[18O] 1.925e-15 1.928e-15 -14.716 -14.715 0.001 (0) - [18O]2 1.920e-18 1.923e-18 -17.717 -17.716 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 4.426e-16 + O[18O] 4.417e-16 4.424e-16 -15.355 -15.354 0.001 (0) + [18O]2 4.406e-19 4.413e-19 -18.356 -18.355 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.24 -128.10 -2.86 [13C]H4 + [13C]H4(g) -123.96 -126.82 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.41 -20.91 -1.50 [14C][18O]2 - [14C]H4(g) -135.79 -138.65 -2.86 [14C]H4 + [14C]H4(g) -134.51 -137.37 -2.86 [14C]H4 [14C]O2(g) -14.04 -15.51 -1.47 [14C]O2 [14C]O[18O](g) -16.42 -18.21 -1.79 [14C]O[18O] - [18O]2(g) -15.43 -17.72 -2.29 [18O]2 + [18O]2(g) -16.06 -18.36 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -33140,14 +33101,14 @@ O(0) 9.686e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.28 -126.14 -2.86 CH4 + CH4(g) -122.00 -124.86 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.88 -40.03 -3.15 H2 + H2(g) -36.56 -39.71 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.42 -12.32 -2.89 O2 - O[18O](g) -12.12 -15.02 -2.89 O[18O] + O2(g) -10.06 -12.96 -2.89 O2 + O[18O](g) -12.76 -15.66 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -33237,12 +33198,12 @@ Calcite 7.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2627e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2589e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6768e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6561e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -33262,14 +33223,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.456 Adjusted to redox equilibrium + pe = 11.302 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.823e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -33278,20 +33239,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.156 -126.155 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.924 -124.924 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -33299,9 +33260,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -33309,50 +33270,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.105e-06 1.013e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.064e-08 6.074e-08 -7.217 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.037 -40.037 0.001 (0) -O(0) 9.849e-13 - O2 4.905e-13 4.913e-13 -12.309 -12.309 0.001 (0) - O[18O] 1.957e-15 1.960e-15 -14.708 -14.708 0.001 (0) +H(0) 3.730e-40 + H2 1.865e-40 1.868e-40 -39.729 -39.729 0.001 (0) +O(0) 2.386e-13 + O2 1.188e-13 1.190e-13 -12.925 -12.924 0.001 (0) + O[18O] 4.741e-16 4.749e-16 -15.324 -15.323 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.114 -128.113 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.882 -126.881 0.001 (0) [13C](4) 6.485e-05 H[13C]O3- 5.231e-05 4.786e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.098e-05 1.100e-05 -4.959 -4.959 0.001 (0) CaH[13C]O3+ 1.105e-06 1.013e-06 -5.957 -5.994 -0.037 (0) - H[13C][18O]O2- 1.044e-07 9.548e-08 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.044e-07 9.548e-08 -6.981 -7.020 -0.039 (0) H[13C]O2[18O]- 1.044e-07 9.548e-08 -6.981 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.044e-07 9.548e-08 -6.981 -7.020 -0.039 (0) + H[13C][18O]O2- 1.044e-07 9.548e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.064e-08 6.074e-08 -7.217 -7.217 0.001 (0) [13C]O[18O] 4.565e-08 4.573e-08 -7.341 -7.340 0.001 (0) [13C]O3-2 3.111e-08 2.179e-08 -7.507 -7.662 -0.155 (0) - CaH[13C][18O]O2+ 2.204e-09 2.022e-09 -8.657 -8.694 -0.037 (0) CaH[13C]O2[18O]+ 2.204e-09 2.022e-09 -8.657 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.204e-09 2.022e-09 -8.657 -8.694 -0.037 (0) + CaH[13C][18O]O2+ 2.204e-09 2.022e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.630e-10 3.636e-10 -9.440 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) H[13C]O[18O]2- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]O[18O]- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.862e-10 1.304e-10 -9.730 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.680 -138.680 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.449 -137.448 0.001 (0) [14C](4) 1.772e-15 H[14C]O3- 1.431e-15 1.309e-15 -14.844 -14.883 -0.039 (0) [14C]O2 2.978e-16 2.983e-16 -15.526 -15.525 0.001 (0) CaH[14C]O3+ 3.022e-17 2.772e-17 -16.520 -16.557 -0.037 (0) - H[14C][18O]O2- 2.856e-18 2.612e-18 -17.544 -17.583 -0.039 (0) - H[14C]O[18O]O- 2.856e-18 2.612e-18 -17.544 -17.583 -0.039 (0) H[14C]O2[18O]- 2.856e-18 2.612e-18 -17.544 -17.583 -0.039 (0) + H[14C]O[18O]O- 2.856e-18 2.612e-18 -17.544 -17.583 -0.039 (0) + H[14C][18O]O2- 2.856e-18 2.612e-18 -17.544 -17.583 -0.039 (0) Ca[14C]O3 1.657e-18 1.660e-18 -17.781 -17.780 0.001 (0) [14C]O[18O] 1.238e-18 1.240e-18 -17.907 -17.906 0.001 (0) [14C]O3-2 8.499e-19 5.954e-19 -18.071 -18.225 -0.155 (0) CaH[14C]O2[18O]+ 6.030e-20 5.532e-20 -19.220 -19.257 -0.037 (0) - CaH[14C][18O]O2+ 6.030e-20 5.532e-20 -19.220 -19.257 -0.037 (0) CaH[14C]O[18O]O+ 6.030e-20 5.532e-20 -19.220 -19.257 -0.037 (0) + CaH[14C][18O]O2+ 6.030e-20 5.532e-20 -19.220 -19.257 -0.037 (0) Ca[14C]O2[18O] 9.917e-21 9.933e-21 -20.004 -20.003 0.001 (0) H[14C]O[18O]2- 5.697e-21 5.212e-21 -20.244 -20.283 -0.039 (0) H[14C][18O]2O- 5.697e-21 5.212e-21 -20.244 -20.283 -0.039 (0) @@ -33361,29 +33322,29 @@ O(0) 9.849e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.961e-15 - O[18O] 1.957e-15 1.960e-15 -14.708 -14.708 0.001 (0) - [18O]2 1.953e-18 1.956e-18 -17.709 -17.709 0.001 (0) +[18O](0) 4.750e-16 + O[18O] 4.741e-16 4.749e-16 -15.324 -15.323 0.001 (0) + [18O]2 4.729e-19 4.737e-19 -18.325 -18.324 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.25 -128.11 -2.86 [13C]H4 + [13C]H4(g) -124.02 -126.88 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.42 -20.93 -1.50 [14C][18O]2 - [14C]H4(g) -135.82 -138.68 -2.86 [14C]H4 + [14C]H4(g) -134.59 -137.45 -2.86 [14C]H4 [14C]O2(g) -14.06 -15.53 -1.47 [14C]O2 [14C]O[18O](g) -16.44 -18.23 -1.79 [14C]O[18O] - [18O]2(g) -15.42 -17.71 -2.29 [18O]2 + [18O]2(g) -16.03 -18.32 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -33397,14 +33358,14 @@ O(0) 9.849e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.30 -126.16 -2.86 CH4 + CH4(g) -122.06 -124.92 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.89 -40.04 -3.15 H2 + H2(g) -36.58 -39.73 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.42 -12.31 -2.89 O2 - O[18O](g) -12.12 -15.01 -2.89 O[18O] + O2(g) -10.03 -12.92 -2.89 O2 + O[18O](g) -12.73 -15.62 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -33478,7 +33439,7 @@ Calcite 8.06e-03 R(18O) CO2(aq) 2.07915e-03 36.879 permil R(18O) HCO3- 1.99518e-03 -4.9948 permil R(13C) HCO3- 1.11228e-02 -5.1328 permil - R(14C) HCO3- 2.93336e-13 24.946 pmc + R(14C) HCO3- 2.93335e-13 24.946 pmc R(18O) CO3-2 1.99518e-03 -4.9948 permil R(13C) CO3-2 1.11069e-02 -6.5605 permil R(14C) CO3-2 2.92494e-13 24.874 pmc @@ -33494,12 +33455,12 @@ Calcite 8.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.228e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2575e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.6605e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7665e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6124e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -33519,14 +33480,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.455 Adjusted to redox equilibrium + pe = 11.296 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.823e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -33535,30 +33496,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.152 -126.152 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.882 -124.881 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -33566,23 +33527,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.105e-06 1.013e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.065e-08 6.075e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.036 -40.036 0.001 (0) -O(0) 9.807e-13 - O2 4.884e-13 4.892e-13 -12.311 -12.310 0.001 (0) - O[18O] 1.949e-15 1.952e-15 -14.710 -14.709 0.001 (0) +H(0) 3.822e-40 + H2 1.911e-40 1.914e-40 -39.719 -39.718 0.001 (0) +O(0) 2.271e-13 + O2 1.131e-13 1.133e-13 -12.946 -12.946 0.001 (0) + O[18O] 4.514e-16 4.521e-16 -15.345 -15.345 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.110 -128.109 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.839 -126.839 0.001 (0) [13C](4) 6.486e-05 H[13C]O3- 5.232e-05 4.786e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.098e-05 1.100e-05 -4.959 -4.959 0.001 (0) CaH[13C]O3+ 1.105e-06 1.013e-06 -5.957 -5.994 -0.037 (0) - H[13C]O[18O]O- 1.044e-07 9.550e-08 -6.981 -7.020 -0.039 (0) H[13C]O2[18O]- 1.044e-07 9.550e-08 -6.981 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.044e-07 9.550e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.044e-07 9.550e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.065e-08 6.075e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.566e-08 4.574e-08 -7.340 -7.340 0.001 (0) @@ -33591,56 +33552,56 @@ O(0) 9.807e-13 CaH[13C]O[18O]O+ 2.204e-09 2.022e-09 -8.657 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.204e-09 2.022e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.630e-10 3.636e-10 -9.440 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.083e-10 1.905e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.083e-10 1.905e-10 -9.681 -9.720 -0.039 (0) H[13C]O[18O]2- 2.083e-10 1.905e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.083e-10 1.905e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]O[18O]- 2.083e-10 1.905e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.862e-10 1.305e-10 -9.730 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.692 -138.692 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.422 -137.421 0.001 (0) [14C](4) 1.708e-15 H[14C]O3- 1.380e-15 1.262e-15 -14.860 -14.899 -0.039 (0) [14C]O2 2.871e-16 2.876e-16 -15.542 -15.541 0.001 (0) CaH[14C]O3+ 2.914e-17 2.673e-17 -16.536 -16.573 -0.037 (0) - H[14C][18O]O2- 2.753e-18 2.519e-18 -17.560 -17.599 -0.039 (0) - H[14C]O[18O]O- 2.753e-18 2.519e-18 -17.560 -17.599 -0.039 (0) H[14C]O2[18O]- 2.753e-18 2.519e-18 -17.560 -17.599 -0.039 (0) + H[14C]O[18O]O- 2.753e-18 2.519e-18 -17.560 -17.599 -0.039 (0) + H[14C][18O]O2- 2.753e-18 2.519e-18 -17.560 -17.599 -0.039 (0) Ca[14C]O3 1.597e-18 1.600e-18 -17.797 -17.796 0.001 (0) [14C]O[18O] 1.194e-18 1.196e-18 -17.923 -17.922 0.001 (0) [14C]O3-2 8.194e-19 5.740e-19 -18.087 -18.241 -0.155 (0) CaH[14C]O2[18O]+ 5.813e-20 5.333e-20 -19.236 -19.273 -0.037 (0) - CaH[14C][18O]O2+ 5.813e-20 5.333e-20 -19.236 -19.273 -0.037 (0) CaH[14C]O[18O]O+ 5.813e-20 5.333e-20 -19.236 -19.273 -0.037 (0) + CaH[14C][18O]O2+ 5.813e-20 5.333e-20 -19.236 -19.273 -0.037 (0) Ca[14C]O2[18O] 9.560e-21 9.576e-21 -20.020 -20.019 0.001 (0) + H[14C]O[18O]2- 5.492e-21 5.025e-21 -20.260 -20.299 -0.039 (0) H[14C][18O]2O- 5.492e-21 5.025e-21 -20.260 -20.299 -0.039 (0) H[14C][18O]O[18O]- 5.492e-21 5.025e-21 -20.260 -20.299 -0.039 (0) - H[14C]O[18O]2- 5.492e-21 5.025e-21 -20.260 -20.299 -0.039 (0) [14C]O2[18O]-2 4.904e-21 3.436e-21 -20.309 -20.464 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.953e-15 - O[18O] 1.949e-15 1.952e-15 -14.710 -14.709 0.001 (0) - [18O]2 1.944e-18 1.947e-18 -17.711 -17.711 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 4.523e-16 + O[18O] 4.514e-16 4.521e-16 -15.345 -15.345 0.001 (0) + [18O]2 4.503e-19 4.510e-19 -18.346 -18.346 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.25 -128.11 -2.86 [13C]H4 + [13C]H4(g) -123.98 -126.84 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.44 -20.94 -1.50 [14C][18O]2 - [14C]H4(g) -135.83 -138.69 -2.86 [14C]H4 + [14C]H4(g) -134.56 -137.42 -2.86 [14C]H4 [14C]O2(g) -14.07 -15.54 -1.47 [14C]O2 [14C]O[18O](g) -16.45 -18.24 -1.79 [14C]O[18O] - [18O]2(g) -15.42 -17.71 -2.29 [18O]2 + [18O]2(g) -16.06 -18.35 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -33654,14 +33615,14 @@ O(0) 9.807e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.29 -126.15 -2.86 CH4 + CH4(g) -122.02 -124.88 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.89 -40.04 -3.15 H2 + H2(g) -36.57 -39.72 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.42 -12.31 -2.89 O2 - O[18O](g) -12.12 -15.01 -2.89 O[18O] + O2(g) -10.05 -12.95 -2.89 O2 + O[18O](g) -12.75 -15.65 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -33751,12 +33712,12 @@ Calcite 8.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2521e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2502e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.8842e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5802e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5609e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -33776,14 +33737,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.457 Adjusted to redox equilibrium + pe = 11.304 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.823e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -33792,20 +33753,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.167 -126.166 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.943 -124.942 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -33813,9 +33774,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -33823,81 +33784,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.066e-08 6.076e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.040 -40.039 0.001 (0) -O(0) 9.973e-13 - O2 4.967e-13 4.975e-13 -12.304 -12.303 0.001 (0) - O[18O] 1.982e-15 1.985e-15 -14.703 -14.702 0.001 (0) +H(0) 3.690e-40 + H2 1.845e-40 1.848e-40 -39.734 -39.733 0.001 (0) +O(0) 2.438e-13 + O2 1.214e-13 1.216e-13 -12.916 -12.915 0.001 (0) + O[18O] 4.844e-16 4.852e-16 -15.315 -15.314 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.124 -128.124 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.901 -126.900 0.001 (0) [13C](4) 6.487e-05 H[13C]O3- 5.233e-05 4.787e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.098e-05 1.100e-05 -4.959 -4.959 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.957 -5.994 -0.037 (0) H[13C]O2[18O]- 1.044e-07 9.552e-08 -6.981 -7.020 -0.039 (0) - H[13C][18O]O2- 1.044e-07 9.552e-08 -6.981 -7.020 -0.039 (0) H[13C]O[18O]O- 1.044e-07 9.552e-08 -6.981 -7.020 -0.039 (0) + H[13C][18O]O2- 1.044e-07 9.552e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.066e-08 6.076e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.567e-08 4.575e-08 -7.340 -7.340 0.001 (0) [13C]O3-2 3.112e-08 2.180e-08 -7.507 -7.662 -0.155 (0) + CaH[13C]O2[18O]+ 2.205e-09 2.022e-09 -8.657 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.205e-09 2.022e-09 -8.657 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.205e-09 2.022e-09 -8.657 -8.694 -0.037 (0) - CaH[13C]O2[18O]+ 2.205e-09 2.022e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.631e-10 3.637e-10 -9.440 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) H[13C]O[18O]2- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]O[18O]- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.863e-10 1.305e-10 -9.730 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.722 -138.722 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.499 -137.498 0.001 (0) [14C](4) 1.649e-15 H[14C]O3- 1.332e-15 1.218e-15 -14.876 -14.914 -0.039 (0) [14C]O2 2.771e-16 2.776e-16 -15.557 -15.557 0.001 (0) CaH[14C]O3+ 2.812e-17 2.580e-17 -16.551 -16.588 -0.037 (0) - H[14C][18O]O2- 2.657e-18 2.431e-18 -17.576 -17.614 -0.039 (0) - H[14C]O[18O]O- 2.657e-18 2.431e-18 -17.576 -17.614 -0.039 (0) H[14C]O2[18O]- 2.657e-18 2.431e-18 -17.576 -17.614 -0.039 (0) + H[14C]O[18O]O- 2.657e-18 2.431e-18 -17.576 -17.614 -0.039 (0) + H[14C][18O]O2- 2.657e-18 2.431e-18 -17.576 -17.614 -0.039 (0) Ca[14C]O3 1.542e-18 1.544e-18 -17.812 -17.811 0.001 (0) [14C]O[18O] 1.152e-18 1.154e-18 -17.938 -17.938 0.001 (0) [14C]O3-2 7.909e-19 5.541e-19 -18.102 -18.256 -0.155 (0) CaH[14C]O2[18O]+ 5.611e-20 5.147e-20 -19.251 -19.288 -0.037 (0) - CaH[14C][18O]O2+ 5.611e-20 5.147e-20 -19.251 -19.288 -0.037 (0) CaH[14C]O[18O]O+ 5.611e-20 5.147e-20 -19.251 -19.288 -0.037 (0) + CaH[14C][18O]O2+ 5.611e-20 5.147e-20 -19.251 -19.288 -0.037 (0) Ca[14C]O2[18O] 9.229e-21 9.244e-21 -20.035 -20.034 0.001 (0) - H[14C][18O]O[18O]- 5.302e-21 4.850e-21 -20.276 -20.314 -0.039 (0) H[14C]O[18O]2- 5.302e-21 4.850e-21 -20.276 -20.314 -0.039 (0) H[14C][18O]2O- 5.302e-21 4.850e-21 -20.276 -20.314 -0.039 (0) + H[14C][18O]O[18O]- 5.302e-21 4.850e-21 -20.276 -20.314 -0.039 (0) [14C]O2[18O]-2 4.734e-21 3.316e-21 -20.325 -20.479 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.986e-15 - O[18O] 1.982e-15 1.985e-15 -14.703 -14.702 0.001 (0) - [18O]2 1.977e-18 1.980e-18 -17.704 -17.703 0.001 (0) +[18O](0) 4.854e-16 + O[18O] 4.844e-16 4.852e-16 -15.315 -15.314 0.001 (0) + [18O]2 4.832e-19 4.840e-19 -18.316 -18.315 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.26 -128.12 -2.86 [13C]H4 + [13C]H4(g) -124.04 -126.90 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.45 -20.96 -1.50 [14C][18O]2 - [14C]H4(g) -135.86 -138.72 -2.86 [14C]H4 + [14C]H4(g) -134.64 -137.50 -2.86 [14C]H4 [14C]O2(g) -14.09 -15.56 -1.47 [14C]O2 [14C]O[18O](g) -16.47 -18.26 -1.79 [14C]O[18O] - [18O]2(g) -15.41 -17.70 -2.29 [18O]2 + [18O]2(g) -16.02 -18.32 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -33911,14 +33872,14 @@ O(0) 9.973e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.31 -126.17 -2.86 CH4 + CH4(g) -122.08 -124.94 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.89 -40.04 -3.15 H2 + H2(g) -36.58 -39.73 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.41 -12.30 -2.89 O2 - O[18O](g) -12.11 -15.00 -2.89 O[18O] + O2(g) -10.02 -12.92 -2.89 O2 + O[18O](g) -12.72 -15.62 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -34008,12 +33969,12 @@ Calcite 9.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2704e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2348e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.6613e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5872e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7715e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -34033,14 +33994,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.459 Adjusted to redox equilibrium + pe = 11.315 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.823e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -34049,30 +34010,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.183 -126.183 0.001 (0) + CH4 0.000e+00 0.000e+00 -125.032 -125.031 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -34080,50 +34041,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.067e-08 6.077e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.044 -40.043 0.001 (0) -O(0) 1.016e-12 - O2 5.061e-13 5.069e-13 -12.296 -12.295 0.001 (0) - O[18O] 2.020e-15 2.023e-15 -14.695 -14.694 0.001 (0) +H(0) 3.506e-40 + H2 1.753e-40 1.756e-40 -39.756 -39.755 0.001 (0) +O(0) 2.699e-13 + O2 1.344e-13 1.346e-13 -12.872 -12.871 0.001 (0) + O[18O] 5.363e-16 5.372e-16 -15.271 -15.270 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.141 -128.140 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.989 -126.988 0.001 (0) [13C](4) 6.489e-05 H[13C]O3- 5.234e-05 4.788e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.098e-05 1.100e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.957 -5.994 -0.037 (0) - H[13C][18O]O2- 1.044e-07 9.553e-08 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.044e-07 9.553e-08 -6.981 -7.020 -0.039 (0) H[13C]O2[18O]- 1.044e-07 9.553e-08 -6.981 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.044e-07 9.553e-08 -6.981 -7.020 -0.039 (0) + H[13C][18O]O2- 1.044e-07 9.553e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.067e-08 6.077e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.568e-08 4.575e-08 -7.340 -7.340 0.001 (0) [13C]O3-2 3.112e-08 2.180e-08 -7.507 -7.661 -0.155 (0) - CaH[13C][18O]O2+ 2.205e-09 2.023e-09 -8.657 -8.694 -0.037 (0) CaH[13C]O2[18O]+ 2.205e-09 2.023e-09 -8.657 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.205e-09 2.023e-09 -8.657 -8.694 -0.037 (0) + CaH[13C][18O]O2+ 2.205e-09 2.023e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.632e-10 3.638e-10 -9.440 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) H[13C]O[18O]2- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]O[18O]- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.863e-10 1.305e-10 -9.730 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.754 -138.753 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.602 -137.601 0.001 (0) [14C](4) 1.593e-15 H[14C]O3- 1.287e-15 1.178e-15 -14.890 -14.929 -0.039 (0) [14C]O2 2.678e-16 2.683e-16 -15.572 -15.571 0.001 (0) CaH[14C]O3+ 2.718e-17 2.493e-17 -16.566 -16.603 -0.037 (0) - H[14C][18O]O2- 2.568e-18 2.350e-18 -17.590 -17.629 -0.039 (0) - H[14C]O[18O]O- 2.568e-18 2.350e-18 -17.590 -17.629 -0.039 (0) H[14C]O2[18O]- 2.568e-18 2.350e-18 -17.590 -17.629 -0.039 (0) + H[14C]O[18O]O- 2.568e-18 2.350e-18 -17.590 -17.629 -0.039 (0) + H[14C][18O]O2- 2.568e-18 2.350e-18 -17.590 -17.629 -0.039 (0) Ca[14C]O3 1.490e-18 1.493e-18 -17.827 -17.826 0.001 (0) [14C]O[18O] 1.114e-18 1.116e-18 -17.953 -17.953 0.001 (0) [14C]O3-2 7.644e-19 5.355e-19 -18.117 -18.271 -0.155 (0) CaH[14C]O2[18O]+ 5.423e-20 4.975e-20 -19.266 -19.303 -0.037 (0) - CaH[14C][18O]O2+ 5.423e-20 4.975e-20 -19.266 -19.303 -0.037 (0) CaH[14C]O[18O]O+ 5.423e-20 4.975e-20 -19.266 -19.303 -0.037 (0) + CaH[14C][18O]O2+ 5.423e-20 4.975e-20 -19.266 -19.303 -0.037 (0) Ca[14C]O2[18O] 8.919e-21 8.934e-21 -20.050 -20.049 0.001 (0) H[14C]O[18O]2- 5.124e-21 4.688e-21 -20.290 -20.329 -0.039 (0) H[14C][18O]2O- 5.124e-21 4.688e-21 -20.290 -20.329 -0.039 (0) @@ -34132,29 +34093,29 @@ O(0) 1.016e-12 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.024e-15 - O[18O] 2.020e-15 2.023e-15 -14.695 -14.694 0.001 (0) - [18O]2 2.015e-18 2.018e-18 -17.696 -17.695 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 5.374e-16 + O[18O] 5.363e-16 5.372e-16 -15.271 -15.270 0.001 (0) + [18O]2 5.350e-19 5.359e-19 -18.272 -18.271 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.28 -128.14 -2.86 [13C]H4 + [13C]H4(g) -124.13 -126.99 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.47 -20.97 -1.50 [14C][18O]2 - [14C]H4(g) -135.89 -138.75 -2.86 [14C]H4 + [14C]H4(g) -134.74 -137.60 -2.86 [14C]H4 [14C]O2(g) -14.10 -15.57 -1.47 [14C]O2 [14C]O[18O](g) -16.48 -18.27 -1.79 [14C]O[18O] - [18O]2(g) -15.40 -17.70 -2.29 [18O]2 + [18O]2(g) -15.98 -18.27 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -34168,14 +34129,14 @@ O(0) 1.016e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.32 -126.18 -2.86 CH4 + CH4(g) -122.17 -125.03 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.89 -40.04 -3.15 H2 + H2(g) -36.61 -39.76 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.40 -12.30 -2.89 O2 - O[18O](g) -12.10 -15.00 -2.89 O[18O] + O2(g) -9.98 -12.87 -2.89 O2 + O[18O](g) -12.68 -15.57 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -34265,12 +34226,12 @@ Calcite 9.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.251e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2471e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6559e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5683e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -34290,14 +34251,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.458 Adjusted to redox equilibrium + pe = 11.316 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -34306,19 +34267,19 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.174 -126.173 0.001 (0) + CH4 0.000e+00 0.000e+00 -125.042 -125.041 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -34327,9 +34288,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -34337,23 +34298,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.068e-08 6.078e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.042 -40.041 0.001 (0) -O(0) 1.005e-12 - O2 5.007e-13 5.015e-13 -12.300 -12.300 0.001 (0) - O[18O] 1.998e-15 2.001e-15 -14.699 -14.699 0.001 (0) +H(0) 3.486e-40 + H2 1.743e-40 1.746e-40 -39.759 -39.758 0.001 (0) +O(0) 2.731e-13 + O2 1.360e-13 1.362e-13 -12.867 -12.866 0.001 (0) + O[18O] 5.426e-16 5.435e-16 -15.265 -15.265 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.131 -128.130 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.999 -126.998 0.001 (0) [13C](4) 6.490e-05 H[13C]O3- 5.234e-05 4.789e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.099e-05 1.100e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.957 -5.994 -0.037 (0) - H[13C]O[18O]O- 1.044e-07 9.555e-08 -6.981 -7.020 -0.039 (0) H[13C]O2[18O]- 1.044e-07 9.555e-08 -6.981 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.044e-07 9.555e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.044e-07 9.555e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.068e-08 6.078e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.569e-08 4.576e-08 -7.340 -7.340 0.001 (0) @@ -34362,56 +34323,56 @@ O(0) 1.005e-12 CaH[13C]O[18O]O+ 2.205e-09 2.023e-09 -8.657 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.205e-09 2.023e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.632e-10 3.638e-10 -9.440 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.084e-10 1.906e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.084e-10 1.906e-10 -9.681 -9.720 -0.039 (0) H[13C]O[18O]2- 2.084e-10 1.906e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.084e-10 1.906e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]O[18O]- 2.084e-10 1.906e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.863e-10 1.305e-10 -9.730 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.758 -138.758 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.626 -137.626 0.001 (0) [14C](4) 1.542e-15 H[14C]O3- 1.245e-15 1.139e-15 -14.905 -14.943 -0.039 (0) [14C]O2 2.591e-16 2.596e-16 -15.586 -15.586 0.001 (0) CaH[14C]O3+ 2.630e-17 2.412e-17 -16.580 -16.618 -0.037 (0) - H[14C][18O]O2- 2.485e-18 2.273e-18 -17.605 -17.643 -0.039 (0) - H[14C]O[18O]O- 2.485e-18 2.273e-18 -17.605 -17.643 -0.039 (0) H[14C]O2[18O]- 2.485e-18 2.273e-18 -17.605 -17.643 -0.039 (0) + H[14C]O[18O]O- 2.485e-18 2.273e-18 -17.605 -17.643 -0.039 (0) + H[14C][18O]O2- 2.485e-18 2.273e-18 -17.605 -17.643 -0.039 (0) Ca[14C]O3 1.442e-18 1.444e-18 -17.841 -17.840 0.001 (0) [14C]O[18O] 1.078e-18 1.079e-18 -17.968 -17.967 0.001 (0) [14C]O3-2 7.396e-19 5.181e-19 -18.131 -18.286 -0.155 (0) CaH[14C]O2[18O]+ 5.247e-20 4.813e-20 -19.280 -19.318 -0.037 (0) - CaH[14C][18O]O2+ 5.247e-20 4.813e-20 -19.280 -19.318 -0.037 (0) CaH[14C]O[18O]O+ 5.247e-20 4.813e-20 -19.280 -19.318 -0.037 (0) + CaH[14C][18O]O2+ 5.247e-20 4.813e-20 -19.280 -19.318 -0.037 (0) Ca[14C]O2[18O] 8.629e-21 8.644e-21 -20.064 -20.063 0.001 (0) + H[14C]O[18O]2- 4.958e-21 4.536e-21 -20.305 -20.343 -0.039 (0) H[14C][18O]2O- 4.958e-21 4.536e-21 -20.305 -20.343 -0.039 (0) H[14C][18O]O[18O]- 4.958e-21 4.536e-21 -20.305 -20.343 -0.039 (0) - H[14C]O[18O]2- 4.958e-21 4.536e-21 -20.305 -20.343 -0.039 (0) [14C]O2[18O]-2 4.427e-21 3.101e-21 -20.354 -20.508 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.002e-15 - O[18O] 1.998e-15 2.001e-15 -14.699 -14.699 0.001 (0) - [18O]2 1.993e-18 1.996e-18 -17.700 -17.700 0.001 (0) +[18O](0) 5.437e-16 + O[18O] 5.426e-16 5.435e-16 -15.265 -15.265 0.001 (0) + [18O]2 5.413e-19 5.422e-19 -18.267 -18.266 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.27 -128.13 -2.86 [13C]H4 + [13C]H4(g) -124.14 -127.00 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.48 -20.99 -1.50 [14C][18O]2 - [14C]H4(g) -135.90 -138.76 -2.86 [14C]H4 + [14C]H4(g) -134.77 -137.63 -2.86 [14C]H4 [14C]O2(g) -14.12 -15.59 -1.47 [14C]O2 [14C]O[18O](g) -16.50 -18.29 -1.79 [14C]O[18O] - [18O]2(g) -15.41 -17.70 -2.29 [18O]2 + [18O]2(g) -15.98 -18.27 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -34425,14 +34386,14 @@ O(0) 1.005e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.31 -126.17 -2.86 CH4 + CH4(g) -122.18 -125.04 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.89 -40.04 -3.15 H2 + H2(g) -36.61 -39.76 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.41 -12.30 -2.89 O2 - O[18O](g) -12.11 -15.00 -2.89 O[18O] + O2(g) -9.97 -12.87 -2.89 O2 + O[18O](g) -12.67 -15.57 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -34522,12 +34483,12 @@ Calcite 1.01e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2584e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2536e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.6605e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7889e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6993e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -34547,14 +34508,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.460 Adjusted to redox equilibrium + pe = 11.320 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -34563,30 +34524,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.194 -126.193 0.001 (0) + CH4 0.000e+00 0.000e+00 -125.070 -125.069 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -34594,81 +34555,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.014e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.069e-08 6.079e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.047 -40.046 0.001 (0) -O(0) 1.029e-12 - O2 5.122e-13 5.131e-13 -12.291 -12.290 0.001 (0) - O[18O] 2.044e-15 2.047e-15 -14.690 -14.689 0.001 (0) +H(0) 3.430e-40 + H2 1.715e-40 1.718e-40 -39.766 -39.765 0.001 (0) +O(0) 2.821e-13 + O2 1.405e-13 1.407e-13 -12.852 -12.852 0.001 (0) + O[18O] 5.605e-16 5.614e-16 -15.251 -15.251 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.151 -128.150 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -127.027 -127.026 0.001 (0) [13C](4) 6.490e-05 H[13C]O3- 5.235e-05 4.790e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.014e-06 -5.956 -5.994 -0.037 (0) H[13C]O2[18O]- 1.045e-07 9.556e-08 -6.981 -7.020 -0.039 (0) - H[13C][18O]O2- 1.045e-07 9.556e-08 -6.981 -7.020 -0.039 (0) H[13C]O[18O]O- 1.045e-07 9.556e-08 -6.981 -7.020 -0.039 (0) + H[13C][18O]O2- 1.045e-07 9.556e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.069e-08 6.079e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.569e-08 4.577e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.113e-08 2.181e-08 -7.507 -7.661 -0.155 (0) + CaH[13C]O2[18O]+ 2.206e-09 2.023e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.206e-09 2.023e-09 -8.656 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.206e-09 2.023e-09 -8.656 -8.694 -0.037 (0) - CaH[13C]O2[18O]+ 2.206e-09 2.023e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.633e-10 3.639e-10 -9.440 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) H[13C]O[18O]2- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]O[18O]- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.864e-10 1.305e-10 -9.730 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.792 -138.791 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.668 -137.668 0.001 (0) [14C](4) 1.493e-15 H[14C]O3- 1.206e-15 1.104e-15 -14.919 -14.957 -0.039 (0) [14C]O2 2.510e-16 2.514e-16 -15.600 -15.600 0.001 (0) CaH[14C]O3+ 2.547e-17 2.337e-17 -16.594 -16.631 -0.037 (0) - H[14C][18O]O2- 2.407e-18 2.202e-18 -17.619 -17.657 -0.039 (0) - H[14C]O[18O]O- 2.407e-18 2.202e-18 -17.619 -17.657 -0.039 (0) H[14C]O2[18O]- 2.407e-18 2.202e-18 -17.619 -17.657 -0.039 (0) + H[14C]O[18O]O- 2.407e-18 2.202e-18 -17.619 -17.657 -0.039 (0) + H[14C][18O]O2- 2.407e-18 2.202e-18 -17.619 -17.657 -0.039 (0) Ca[14C]O3 1.396e-18 1.399e-18 -17.855 -17.854 0.001 (0) [14C]O[18O] 1.044e-18 1.045e-18 -17.981 -17.981 0.001 (0) [14C]O3-2 7.163e-19 5.018e-19 -18.145 -18.299 -0.155 (0) CaH[14C]O2[18O]+ 5.082e-20 4.662e-20 -19.294 -19.331 -0.037 (0) - CaH[14C][18O]O2+ 5.082e-20 4.662e-20 -19.294 -19.331 -0.037 (0) CaH[14C]O[18O]O+ 5.082e-20 4.662e-20 -19.294 -19.331 -0.037 (0) + CaH[14C][18O]O2+ 5.082e-20 4.662e-20 -19.294 -19.331 -0.037 (0) Ca[14C]O2[18O] 8.358e-21 8.372e-21 -20.078 -20.077 0.001 (0) - H[14C][18O]O[18O]- 4.802e-21 4.393e-21 -20.319 -20.357 -0.039 (0) H[14C]O[18O]2- 4.802e-21 4.393e-21 -20.319 -20.357 -0.039 (0) H[14C][18O]2O- 4.802e-21 4.393e-21 -20.319 -20.357 -0.039 (0) + H[14C][18O]O[18O]- 4.802e-21 4.393e-21 -20.319 -20.357 -0.039 (0) [14C]O2[18O]-2 4.288e-21 3.004e-21 -20.368 -20.522 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.048e-15 - O[18O] 2.044e-15 2.047e-15 -14.690 -14.689 0.001 (0) - [18O]2 2.039e-18 2.042e-18 -17.691 -17.690 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 5.616e-16 + O[18O] 5.605e-16 5.614e-16 -15.251 -15.251 0.001 (0) + [18O]2 5.592e-19 5.601e-19 -18.252 -18.252 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.29 -128.15 -2.86 [13C]H4 + [13C]H4(g) -124.17 -127.03 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.50 -21.00 -1.50 [14C][18O]2 - [14C]H4(g) -135.93 -138.79 -2.86 [14C]H4 + [14C]H4(g) -134.81 -137.67 -2.86 [14C]H4 [14C]O2(g) -14.13 -15.60 -1.47 [14C]O2 [14C]O[18O](g) -16.51 -18.30 -1.79 [14C]O[18O] - [18O]2(g) -15.40 -17.69 -2.29 [18O]2 + [18O]2(g) -15.96 -18.25 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -34682,14 +34643,14 @@ O(0) 1.029e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.33 -126.19 -2.86 CH4 + CH4(g) -122.21 -125.07 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.90 -40.05 -3.15 H2 + H2(g) -36.62 -39.77 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.40 -12.29 -2.89 O2 - O[18O](g) -12.10 -14.99 -2.89 O[18O] + O2(g) -9.96 -12.85 -2.89 O2 + O[18O](g) -12.66 -15.55 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -34779,12 +34740,12 @@ Calcite 1.06e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2636e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2582e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6137e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7283e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -34804,14 +34765,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.460 Adjusted to redox equilibrium + pe = 11.317 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -34820,20 +34781,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.189 -126.188 0.001 (0) + CH4 0.000e+00 0.000e+00 -125.051 -125.051 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -34841,9 +34802,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -34851,50 +34812,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.014e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.070e-08 6.080e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.045 -40.045 0.001 (0) -O(0) 1.023e-12 - O2 5.093e-13 5.101e-13 -12.293 -12.292 0.001 (0) - O[18O] 2.032e-15 2.036e-15 -14.692 -14.691 0.001 (0) +H(0) 3.467e-40 + H2 1.733e-40 1.736e-40 -39.761 -39.760 0.001 (0) +O(0) 2.761e-13 + O2 1.375e-13 1.377e-13 -12.862 -12.861 0.001 (0) + O[18O] 5.487e-16 5.496e-16 -15.261 -15.260 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.146 -128.145 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -127.009 -127.008 0.001 (0) [13C](4) 6.491e-05 H[13C]O3- 5.236e-05 4.790e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.014e-06 -5.956 -5.994 -0.037 (0) - H[13C][18O]O2- 1.045e-07 9.557e-08 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.045e-07 9.557e-08 -6.981 -7.020 -0.039 (0) H[13C]O2[18O]- 1.045e-07 9.557e-08 -6.981 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.045e-07 9.557e-08 -6.981 -7.020 -0.039 (0) + H[13C][18O]O2- 1.045e-07 9.557e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.070e-08 6.080e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.570e-08 4.577e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.114e-08 2.181e-08 -7.507 -7.661 -0.155 (0) - CaH[13C][18O]O2+ 2.206e-09 2.024e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O2[18O]+ 2.206e-09 2.024e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.206e-09 2.024e-09 -8.656 -8.694 -0.037 (0) + CaH[13C][18O]O2+ 2.206e-09 2.024e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.633e-10 3.639e-10 -9.440 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) H[13C]O[18O]2- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]O[18O]- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.864e-10 1.306e-10 -9.730 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.801 -138.800 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.663 -137.663 0.001 (0) [14C](4) 1.448e-15 H[14C]O3- 1.169e-15 1.070e-15 -14.932 -14.971 -0.039 (0) [14C]O2 2.433e-16 2.437e-16 -15.614 -15.613 0.001 (0) CaH[14C]O3+ 2.470e-17 2.265e-17 -16.607 -16.645 -0.037 (0) - H[14C][18O]O2- 2.333e-18 2.135e-18 -17.632 -17.671 -0.039 (0) - H[14C]O[18O]O- 2.333e-18 2.135e-18 -17.632 -17.671 -0.039 (0) H[14C]O2[18O]- 2.333e-18 2.135e-18 -17.632 -17.671 -0.039 (0) + H[14C]O[18O]O- 2.333e-18 2.135e-18 -17.632 -17.671 -0.039 (0) + H[14C][18O]O2- 2.333e-18 2.135e-18 -17.632 -17.671 -0.039 (0) Ca[14C]O3 1.354e-18 1.356e-18 -17.868 -17.868 0.001 (0) [14C]O[18O] 1.012e-18 1.014e-18 -17.995 -17.994 0.001 (0) [14C]O3-2 6.945e-19 4.865e-19 -18.158 -18.313 -0.155 (0) CaH[14C]O2[18O]+ 4.927e-20 4.520e-20 -19.307 -19.345 -0.037 (0) - CaH[14C][18O]O2+ 4.927e-20 4.520e-20 -19.307 -19.345 -0.037 (0) CaH[14C]O[18O]O+ 4.927e-20 4.520e-20 -19.307 -19.345 -0.037 (0) + CaH[14C][18O]O2+ 4.927e-20 4.520e-20 -19.307 -19.345 -0.037 (0) Ca[14C]O2[18O] 8.103e-21 8.117e-21 -20.091 -20.091 0.001 (0) H[14C]O[18O]2- 4.655e-21 4.259e-21 -20.332 -20.371 -0.039 (0) H[14C][18O]2O- 4.655e-21 4.259e-21 -20.332 -20.371 -0.039 (0) @@ -34903,29 +34864,29 @@ O(0) 1.023e-12 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.036e-15 - O[18O] 2.032e-15 2.036e-15 -14.692 -14.691 0.001 (0) - [18O]2 2.027e-18 2.031e-18 -17.693 -17.692 0.001 (0) +[18O](0) 5.498e-16 + O[18O] 5.487e-16 5.496e-16 -15.261 -15.260 0.001 (0) + [18O]2 5.473e-19 5.482e-19 -18.262 -18.261 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.29 -128.15 -2.86 [13C]H4 + [13C]H4(g) -124.15 -127.01 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.51 -21.01 -1.50 [14C][18O]2 - [14C]H4(g) -135.94 -138.80 -2.86 [14C]H4 + [14C]H4(g) -134.80 -137.66 -2.86 [14C]H4 [14C]O2(g) -14.14 -15.61 -1.47 [14C]O2 [14C]O[18O](g) -16.53 -18.31 -1.79 [14C]O[18O] - [18O]2(g) -15.40 -17.69 -2.29 [18O]2 + [18O]2(g) -15.97 -18.26 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -34939,14 +34900,14 @@ O(0) 1.023e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.33 -126.19 -2.86 CH4 + CH4(g) -122.19 -125.05 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.89 -40.04 -3.15 H2 + H2(g) -36.61 -39.76 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.40 -12.29 -2.89 O2 - O[18O](g) -12.10 -14.99 -2.89 O[18O] + O2(g) -9.97 -12.86 -2.89 O2 + O[18O](g) -12.67 -15.56 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -35010,7 +34971,7 @@ Calcite 1.11e-02 R(18O) 1.99519e-03 -4.9925 permil R(13C) 1.11167e-02 -5.6794 permil - R(14C) 2.40567e-13 20.458 pmc + R(14C) 2.40566e-13 20.458 pmc R(18O) H2O(l) 1.99519e-03 -4.994 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.014 permil @@ -35036,12 +34997,12 @@ Calcite 1.11e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2639e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.226e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.8842e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5348e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6491e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -35061,14 +35022,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.460 Adjusted to redox equilibrium + pe = 11.320 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -35077,30 +35038,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.195 -126.194 0.001 (0) + CH4 0.000e+00 0.000e+00 -125.074 -125.073 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -35108,23 +35069,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.014e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.071e-08 6.081e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.047 -40.046 0.001 (0) -O(0) 1.030e-12 - O2 5.129e-13 5.138e-13 -12.290 -12.289 0.001 (0) - O[18O] 2.047e-15 2.050e-15 -14.689 -14.688 0.001 (0) +H(0) 3.422e-40 + H2 1.711e-40 1.714e-40 -39.767 -39.766 0.001 (0) +O(0) 2.834e-13 + O2 1.411e-13 1.414e-13 -12.850 -12.850 0.001 (0) + O[18O] 5.631e-16 5.641e-16 -15.249 -15.249 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.152 -128.151 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -127.031 -127.030 0.001 (0) [13C](4) 6.492e-05 H[13C]O3- 5.237e-05 4.791e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.014e-06 -5.956 -5.994 -0.037 (0) - H[13C]O[18O]O- 1.045e-07 9.559e-08 -6.981 -7.020 -0.039 (0) H[13C]O2[18O]- 1.045e-07 9.559e-08 -6.981 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.045e-07 9.559e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.045e-07 9.559e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.071e-08 6.081e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.570e-08 4.578e-08 -7.340 -7.339 0.001 (0) @@ -35133,56 +35094,56 @@ O(0) 1.030e-12 CaH[13C]O[18O]O+ 2.206e-09 2.024e-09 -8.656 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.206e-09 2.024e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.634e-10 3.640e-10 -9.440 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) H[13C]O[18O]2- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]O[18O]- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.864e-10 1.306e-10 -9.730 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.820 -138.819 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.699 -137.698 0.001 (0) [14C](4) 1.405e-15 H[14C]O3- 1.135e-15 1.038e-15 -14.945 -14.984 -0.039 (0) [14C]O2 2.361e-16 2.365e-16 -15.627 -15.626 0.001 (0) CaH[14C]O3+ 2.396e-17 2.198e-17 -16.620 -16.658 -0.037 (0) - H[14C][18O]O2- 2.264e-18 2.072e-18 -17.645 -17.684 -0.039 (0) - H[14C]O[18O]O- 2.264e-18 2.072e-18 -17.645 -17.684 -0.039 (0) H[14C]O2[18O]- 2.264e-18 2.072e-18 -17.645 -17.684 -0.039 (0) + H[14C]O[18O]O- 2.264e-18 2.072e-18 -17.645 -17.684 -0.039 (0) + H[14C][18O]O2- 2.264e-18 2.072e-18 -17.645 -17.684 -0.039 (0) Ca[14C]O3 1.314e-18 1.316e-18 -17.881 -17.881 0.001 (0) [14C]O[18O] 9.820e-19 9.836e-19 -18.008 -18.007 0.001 (0) [14C]O3-2 6.739e-19 4.721e-19 -18.171 -18.326 -0.155 (0) CaH[14C]O2[18O]+ 4.781e-20 4.386e-20 -19.320 -19.358 -0.037 (0) - CaH[14C][18O]O2+ 4.781e-20 4.386e-20 -19.320 -19.358 -0.037 (0) CaH[14C]O[18O]O+ 4.781e-20 4.386e-20 -19.320 -19.358 -0.037 (0) + CaH[14C][18O]O2+ 4.781e-20 4.386e-20 -19.320 -19.358 -0.037 (0) Ca[14C]O2[18O] 7.864e-21 7.877e-21 -20.104 -20.104 0.001 (0) + H[14C]O[18O]2- 4.518e-21 4.133e-21 -20.345 -20.384 -0.039 (0) H[14C][18O]2O- 4.518e-21 4.133e-21 -20.345 -20.384 -0.039 (0) H[14C][18O]O[18O]- 4.518e-21 4.133e-21 -20.345 -20.384 -0.039 (0) - H[14C]O[18O]2- 4.518e-21 4.133e-21 -20.345 -20.384 -0.039 (0) [14C]O2[18O]-2 4.034e-21 2.826e-21 -20.394 -20.549 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.051e-15 - O[18O] 2.047e-15 2.050e-15 -14.689 -14.688 0.001 (0) - [18O]2 2.042e-18 2.045e-18 -17.690 -17.689 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 5.643e-16 + O[18O] 5.631e-16 5.641e-16 -15.249 -15.249 0.001 (0) + [18O]2 5.618e-19 5.627e-19 -18.250 -18.250 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.29 -128.15 -2.86 [13C]H4 + [13C]H4(g) -124.17 -127.03 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.52 -21.03 -1.50 [14C][18O]2 - [14C]H4(g) -135.96 -138.82 -2.86 [14C]H4 + [14C]H4(g) -134.84 -137.70 -2.86 [14C]H4 [14C]O2(g) -14.16 -15.63 -1.47 [14C]O2 [14C]O[18O](g) -16.54 -18.33 -1.79 [14C]O[18O] - [18O]2(g) -15.40 -17.69 -2.29 [18O]2 + [18O]2(g) -15.96 -18.25 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -35196,14 +35157,14 @@ O(0) 1.030e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.33 -126.19 -2.86 CH4 + CH4(g) -122.21 -125.07 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.90 -40.05 -3.15 H2 + H2(g) -36.62 -39.77 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.40 -12.29 -2.89 O2 - O[18O](g) -12.10 -14.99 -2.89 O[18O] + O2(g) -9.96 -12.85 -2.89 O2 + O[18O](g) -12.66 -15.55 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -35273,7 +35234,7 @@ Calcite 1.16e-02 R(18O) H3O+ 2.04132e-03 18.014 permil R(18O) O2(aq) 1.99519e-03 -4.9939 permil R(13C) CO2(aq) 1.10385e-02 -12.673 permil - R(14C) CO2(aq) 2.30321e-13 19.587 pmc + R(14C) CO2(aq) 2.30320e-13 19.587 pmc R(18O) CO2(aq) 2.07915e-03 36.88 permil R(18O) HCO3- 1.99519e-03 -4.9939 permil R(13C) HCO3- 1.11345e-02 -4.0835 permil @@ -35293,12 +35254,12 @@ Calcite 1.16e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2284e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2243e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.7724e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6918e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6718e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -35318,14 +35279,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.461 Adjusted to redox equilibrium + pe = 11.321 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -35334,20 +35295,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.197 -126.196 0.001 (0) + CH4 0.000e+00 0.000e+00 -125.082 -125.081 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -35355,9 +35316,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -35365,81 +35326,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.072e-08 6.082e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.048 -40.047 0.001 (0) -O(0) 1.033e-12 - O2 5.142e-13 5.151e-13 -12.289 -12.288 0.001 (0) - O[18O] 2.052e-15 2.055e-15 -14.688 -14.687 0.001 (0) +H(0) 3.407e-40 + H2 1.703e-40 1.706e-40 -39.769 -39.768 0.001 (0) +O(0) 2.860e-13 + O2 1.424e-13 1.426e-13 -12.846 -12.846 0.001 (0) + O[18O] 5.683e-16 5.692e-16 -15.245 -15.245 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.154 -128.153 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -127.039 -127.038 0.001 (0) [13C](4) 6.493e-05 H[13C]O3- 5.237e-05 4.791e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) H[13C]O2[18O]- 1.045e-07 9.560e-08 -6.981 -7.020 -0.039 (0) - H[13C][18O]O2- 1.045e-07 9.560e-08 -6.981 -7.020 -0.039 (0) H[13C]O[18O]O- 1.045e-07 9.560e-08 -6.981 -7.020 -0.039 (0) + H[13C][18O]O2- 1.045e-07 9.560e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.072e-08 6.082e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.571e-08 4.579e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.115e-08 2.182e-08 -7.507 -7.661 -0.155 (0) + CaH[13C]O2[18O]+ 2.207e-09 2.024e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.207e-09 2.024e-09 -8.656 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.207e-09 2.024e-09 -8.656 -8.694 -0.037 (0) - CaH[13C]O2[18O]+ 2.207e-09 2.024e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.634e-10 3.640e-10 -9.440 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) H[13C]O[18O]2- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]O[18O]- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.864e-10 1.306e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.835 -138.834 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.719 -137.719 0.001 (0) [14C](4) 1.365e-15 H[14C]O3- 1.102e-15 1.008e-15 -14.958 -14.996 -0.039 (0) [14C]O2 2.294e-16 2.297e-16 -15.639 -15.639 0.001 (0) CaH[14C]O3+ 2.328e-17 2.135e-17 -16.633 -16.671 -0.037 (0) - H[14C][18O]O2- 2.199e-18 2.012e-18 -17.658 -17.696 -0.039 (0) - H[14C]O[18O]O- 2.199e-18 2.012e-18 -17.658 -17.696 -0.039 (0) H[14C]O2[18O]- 2.199e-18 2.012e-18 -17.658 -17.696 -0.039 (0) + H[14C]O[18O]O- 2.199e-18 2.012e-18 -17.658 -17.696 -0.039 (0) + H[14C][18O]O2- 2.199e-18 2.012e-18 -17.658 -17.696 -0.039 (0) Ca[14C]O3 1.276e-18 1.278e-18 -17.894 -17.893 0.001 (0) [14C]O[18O] 9.537e-19 9.553e-19 -18.021 -18.020 0.001 (0) [14C]O3-2 6.546e-19 4.586e-19 -18.184 -18.339 -0.155 (0) CaH[14C]O2[18O]+ 4.644e-20 4.260e-20 -19.333 -19.371 -0.037 (0) - CaH[14C][18O]O2+ 4.644e-20 4.260e-20 -19.333 -19.371 -0.037 (0) CaH[14C]O[18O]O+ 4.644e-20 4.260e-20 -19.333 -19.371 -0.037 (0) + CaH[14C][18O]O2+ 4.644e-20 4.260e-20 -19.333 -19.371 -0.037 (0) Ca[14C]O2[18O] 7.638e-21 7.650e-21 -20.117 -20.116 0.001 (0) - H[14C][18O]O[18O]- 4.388e-21 4.014e-21 -20.358 -20.396 -0.039 (0) H[14C]O[18O]2- 4.388e-21 4.014e-21 -20.358 -20.396 -0.039 (0) H[14C][18O]2O- 4.388e-21 4.014e-21 -20.358 -20.396 -0.039 (0) + H[14C][18O]O[18O]- 4.388e-21 4.014e-21 -20.358 -20.396 -0.039 (0) [14C]O2[18O]-2 3.918e-21 2.745e-21 -20.407 -20.561 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.056e-15 - O[18O] 2.052e-15 2.055e-15 -14.688 -14.687 0.001 (0) - [18O]2 2.047e-18 2.050e-18 -17.689 -17.688 0.001 (0) +[18O](0) 5.694e-16 + O[18O] 5.683e-16 5.692e-16 -15.245 -15.245 0.001 (0) + [18O]2 5.669e-19 5.678e-19 -18.247 -18.246 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.29 -128.15 -2.86 [13C]H4 + [13C]H4(g) -124.18 -127.04 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.54 -21.04 -1.50 [14C][18O]2 - [14C]H4(g) -135.97 -138.83 -2.86 [14C]H4 + [14C]H4(g) -134.86 -137.72 -2.86 [14C]H4 [14C]O2(g) -14.17 -15.64 -1.47 [14C]O2 [14C]O[18O](g) -16.55 -18.34 -1.79 [14C]O[18O] - [18O]2(g) -15.40 -17.69 -2.29 [18O]2 + [18O]2(g) -15.96 -18.25 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -35453,14 +35414,14 @@ O(0) 1.033e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.34 -126.20 -2.86 CH4 + CH4(g) -122.22 -125.08 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.90 -40.05 -3.15 H2 + H2(g) -36.62 -39.77 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.40 -12.29 -2.89 O2 - O[18O](g) -12.10 -14.99 -2.89 O[18O] + O2(g) -9.95 -12.85 -2.89 O2 + O[18O](g) -12.65 -15.55 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -35530,7 +35491,7 @@ Calcite 1.21e-02 R(18O) H3O+ 2.04132e-03 18.014 permil R(18O) O2(aq) 1.99519e-03 -4.9937 permil R(13C) CO2(aq) 1.10398e-02 -12.558 permil - R(14C) CO2(aq) 2.23889e-13 19.04 pmc + R(14C) CO2(aq) 2.23888e-13 19.04 pmc R(18O) CO2(aq) 2.07915e-03 36.88 permil R(18O) HCO3- 1.99519e-03 -4.9937 permil R(13C) HCO3- 1.11358e-02 -3.967 permil @@ -35550,12 +35511,12 @@ Calcite 1.21e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2582e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.253e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 0 0 +Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6868e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6643e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -35575,14 +35536,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.459 Adjusted to redox equilibrium + pe = 11.317 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -35591,30 +35552,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.182 -126.181 0.001 (0) + CH4 0.000e+00 0.000e+00 -125.049 -125.049 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -35622,50 +35583,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.072e-08 6.082e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.044 -40.043 0.001 (0) -O(0) 1.015e-12 - O2 5.054e-13 5.062e-13 -12.296 -12.296 0.001 (0) - O[18O] 2.017e-15 2.020e-15 -14.695 -14.695 0.001 (0) +H(0) 3.471e-40 + H2 1.735e-40 1.738e-40 -39.761 -39.760 0.001 (0) +O(0) 2.755e-13 + O2 1.372e-13 1.374e-13 -12.863 -12.862 0.001 (0) + O[18O] 5.474e-16 5.483e-16 -15.262 -15.261 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.139 -128.138 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -127.006 -127.006 0.001 (0) [13C](4) 6.494e-05 H[13C]O3- 5.238e-05 4.792e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) - H[13C][18O]O2- 1.045e-07 9.561e-08 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.045e-07 9.561e-08 -6.981 -7.020 -0.039 (0) H[13C]O2[18O]- 1.045e-07 9.561e-08 -6.981 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.045e-07 9.561e-08 -6.981 -7.020 -0.039 (0) + H[13C][18O]O2- 1.045e-07 9.561e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.072e-08 6.082e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.572e-08 4.579e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.115e-08 2.182e-08 -7.507 -7.661 -0.155 (0) - CaH[13C][18O]O2+ 2.207e-09 2.024e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O2[18O]+ 2.207e-09 2.024e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.207e-09 2.024e-09 -8.656 -8.694 -0.037 (0) + CaH[13C][18O]O2+ 2.207e-09 2.024e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.635e-10 3.641e-10 -9.440 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.085e-10 1.908e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.085e-10 1.908e-10 -9.681 -9.720 -0.039 (0) H[13C]O[18O]2- 2.085e-10 1.908e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.085e-10 1.908e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]O[18O]- 2.085e-10 1.908e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.864e-10 1.306e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.832 -138.831 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.699 -137.699 0.001 (0) [14C](4) 1.326e-15 H[14C]O3- 1.071e-15 9.803e-16 -14.970 -15.009 -0.039 (0) [14C]O2 2.230e-16 2.233e-16 -15.652 -15.651 0.001 (0) CaH[14C]O3+ 2.263e-17 2.076e-17 -16.645 -16.683 -0.037 (0) - H[14C][18O]O2- 2.138e-18 1.956e-18 -17.670 -17.709 -0.039 (0) - H[14C]O[18O]O- 2.138e-18 1.956e-18 -17.670 -17.709 -0.039 (0) H[14C]O2[18O]- 2.138e-18 1.956e-18 -17.670 -17.709 -0.039 (0) + H[14C]O[18O]O- 2.138e-18 1.956e-18 -17.670 -17.709 -0.039 (0) + H[14C][18O]O2- 2.138e-18 1.956e-18 -17.670 -17.709 -0.039 (0) Ca[14C]O3 1.240e-18 1.242e-18 -17.906 -17.906 0.001 (0) [14C]O[18O] 9.271e-19 9.286e-19 -18.033 -18.032 0.001 (0) [14C]O3-2 6.363e-19 4.458e-19 -18.196 -18.351 -0.155 (0) CaH[14C]O2[18O]+ 4.514e-20 4.141e-20 -19.345 -19.383 -0.037 (0) - CaH[14C][18O]O2+ 4.514e-20 4.141e-20 -19.345 -19.383 -0.037 (0) CaH[14C]O[18O]O+ 4.514e-20 4.141e-20 -19.345 -19.383 -0.037 (0) + CaH[14C][18O]O2+ 4.514e-20 4.141e-20 -19.345 -19.383 -0.037 (0) Ca[14C]O2[18O] 7.424e-21 7.437e-21 -20.129 -20.129 0.001 (0) H[14C]O[18O]2- 4.265e-21 3.902e-21 -20.370 -20.409 -0.039 (0) H[14C][18O]2O- 4.265e-21 3.902e-21 -20.370 -20.409 -0.039 (0) @@ -35674,29 +35635,29 @@ O(0) 1.015e-12 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.021e-15 - O[18O] 2.017e-15 2.020e-15 -14.695 -14.695 0.001 (0) - [18O]2 2.012e-18 2.015e-18 -17.696 -17.696 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 5.485e-16 + O[18O] 5.474e-16 5.483e-16 -15.262 -15.261 0.001 (0) + [18O]2 5.461e-19 5.470e-19 -18.263 -18.262 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.28 -128.14 -2.86 [13C]H4 + [13C]H4(g) -124.15 -127.01 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.55 -21.05 -1.50 [14C][18O]2 - [14C]H4(g) -135.97 -138.83 -2.86 [14C]H4 + [14C]H4(g) -134.84 -137.70 -2.86 [14C]H4 [14C]O2(g) -14.18 -15.65 -1.47 [14C]O2 [14C]O[18O](g) -16.56 -18.35 -1.79 [14C]O[18O] - [18O]2(g) -15.41 -17.70 -2.29 [18O]2 + [18O]2(g) -15.97 -18.26 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -35710,14 +35671,14 @@ O(0) 1.015e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.32 -126.18 -2.86 CH4 + CH4(g) -122.19 -125.05 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.89 -40.04 -3.15 H2 + H2(g) -36.61 -39.76 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.40 -12.30 -2.89 O2 - O[18O](g) -12.10 -15.00 -2.89 O[18O] + O2(g) -9.97 -12.86 -2.89 O2 + O[18O](g) -12.67 -15.56 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -35807,12 +35768,12 @@ Calcite 1.26e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2539e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2486e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.6605e-12 0 +Alpha 18O HCO3-/H2O(l) 1 1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6466e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6257e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -35832,14 +35793,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.455 Adjusted to redox equilibrium + pe = 11.301 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.536e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -35848,19 +35809,19 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.155 -126.154 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.919 -124.918 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -35869,9 +35830,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -35879,23 +35840,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.073e-08 6.083e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.037 -40.036 0.001 (0) -O(0) 9.836e-13 - O2 4.898e-13 4.907e-13 -12.310 -12.309 0.001 (0) - O[18O] 1.955e-15 1.958e-15 -14.709 -14.708 0.001 (0) +H(0) 3.742e-40 + H2 1.871e-40 1.874e-40 -39.728 -39.727 0.001 (0) +O(0) 2.370e-13 + O2 1.180e-13 1.182e-13 -12.928 -12.927 0.001 (0) + O[18O] 4.710e-16 4.718e-16 -15.327 -15.326 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.112 -128.111 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.876 -126.875 0.001 (0) [13C](4) 6.494e-05 H[13C]O3- 5.238e-05 4.793e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) - H[13C]O[18O]O- 1.045e-07 9.562e-08 -6.981 -7.019 -0.039 (0) H[13C]O2[18O]- 1.045e-07 9.562e-08 -6.981 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.045e-07 9.562e-08 -6.981 -7.019 -0.039 (0) H[13C][18O]O2- 1.045e-07 9.562e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.073e-08 6.083e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.572e-08 4.580e-08 -7.340 -7.339 0.001 (0) @@ -35904,56 +35865,56 @@ O(0) 9.836e-13 CaH[13C]O[18O]O+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.635e-10 3.641e-10 -9.439 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) H[13C]O[18O]2- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.865e-10 1.306e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.817 -138.816 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.581 -137.580 0.001 (0) [14C](4) 1.290e-15 H[14C]O3- 1.042e-15 9.536e-16 -14.982 -15.021 -0.039 (0) [14C]O2 2.169e-16 2.173e-16 -15.664 -15.663 0.001 (0) CaH[14C]O3+ 2.201e-17 2.019e-17 -16.657 -16.695 -0.037 (0) - H[14C][18O]O2- 2.080e-18 1.903e-18 -17.682 -17.721 -0.039 (0) - H[14C]O[18O]O- 2.080e-18 1.903e-18 -17.682 -17.721 -0.039 (0) H[14C]O2[18O]- 2.080e-18 1.903e-18 -17.682 -17.721 -0.039 (0) + H[14C]O[18O]O- 2.080e-18 1.903e-18 -17.682 -17.721 -0.039 (0) + H[14C][18O]O2- 2.080e-18 1.903e-18 -17.682 -17.721 -0.039 (0) Ca[14C]O3 1.207e-18 1.209e-18 -17.918 -17.918 0.001 (0) [14C]O[18O] 9.019e-19 9.034e-19 -18.045 -18.044 0.001 (0) [14C]O3-2 6.190e-19 4.336e-19 -18.208 -18.363 -0.155 (0) CaH[14C]O2[18O]+ 4.392e-20 4.029e-20 -19.357 -19.395 -0.037 (0) - CaH[14C][18O]O2+ 4.392e-20 4.029e-20 -19.357 -19.395 -0.037 (0) CaH[14C]O[18O]O+ 4.392e-20 4.029e-20 -19.357 -19.395 -0.037 (0) + CaH[14C][18O]O2+ 4.392e-20 4.029e-20 -19.357 -19.395 -0.037 (0) Ca[14C]O2[18O] 7.223e-21 7.235e-21 -20.141 -20.141 0.001 (0) + H[14C]O[18O]2- 4.149e-21 3.796e-21 -20.382 -20.421 -0.039 (0) H[14C][18O]2O- 4.149e-21 3.796e-21 -20.382 -20.421 -0.039 (0) H[14C][18O]O[18O]- 4.149e-21 3.796e-21 -20.382 -20.421 -0.039 (0) - H[14C]O[18O]2- 4.149e-21 3.796e-21 -20.382 -20.421 -0.039 (0) [14C]O2[18O]-2 3.705e-21 2.596e-21 -20.431 -20.586 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.959e-15 - O[18O] 1.955e-15 1.958e-15 -14.709 -14.708 0.001 (0) - [18O]2 1.950e-18 1.953e-18 -17.710 -17.709 0.001 (0) +[18O](0) 4.719e-16 + O[18O] 4.710e-16 4.718e-16 -15.327 -15.326 0.001 (0) + [18O]2 4.699e-19 4.706e-19 -18.328 -18.327 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.25 -128.11 -2.86 [13C]H4 + [13C]H4(g) -124.02 -126.88 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.56 -21.06 -1.50 [14C][18O]2 - [14C]H4(g) -135.96 -138.82 -2.86 [14C]H4 + [14C]H4(g) -134.72 -137.58 -2.86 [14C]H4 [14C]O2(g) -14.19 -15.66 -1.47 [14C]O2 [14C]O[18O](g) -16.58 -18.36 -1.79 [14C]O[18O] - [18O]2(g) -15.42 -17.71 -2.29 [18O]2 + [18O]2(g) -16.04 -18.33 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -35967,14 +35928,14 @@ O(0) 9.836e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.29 -126.15 -2.86 CH4 + CH4(g) -122.06 -124.92 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.89 -40.04 -3.15 H2 + H2(g) -36.58 -39.73 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.42 -12.31 -2.89 O2 - O[18O](g) -12.12 -15.01 -2.89 O[18O] + O2(g) -10.03 -12.93 -2.89 O2 + O[18O](g) -12.73 -15.63 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -36064,12 +36025,12 @@ Calcite 1.31e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2834e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2766e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.4409e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7578e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7346e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -36089,14 +36050,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.454 Adjusted to redox equilibrium + pe = 11.300 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -36105,30 +36066,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.146 -126.146 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.910 -124.909 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -36136,81 +36097,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.074e-08 6.084e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.035 -40.034 0.001 (0) -O(0) 9.740e-13 - O2 4.851e-13 4.858e-13 -12.314 -12.313 0.001 (0) - O[18O] 1.936e-15 1.939e-15 -14.713 -14.712 0.001 (0) +H(0) 3.760e-40 + H2 1.880e-40 1.883e-40 -39.726 -39.725 0.001 (0) +O(0) 2.347e-13 + O2 1.169e-13 1.171e-13 -12.932 -12.932 0.001 (0) + O[18O] 4.663e-16 4.671e-16 -15.331 -15.331 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.103 -128.103 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.867 -126.866 0.001 (0) [13C](4) 6.495e-05 H[13C]O3- 5.239e-05 4.793e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) H[13C]O2[18O]- 1.045e-07 9.563e-08 -6.981 -7.019 -0.039 (0) - H[13C][18O]O2- 1.045e-07 9.563e-08 -6.981 -7.019 -0.039 (0) H[13C]O[18O]O- 1.045e-07 9.563e-08 -6.981 -7.019 -0.039 (0) + H[13C][18O]O2- 1.045e-07 9.563e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.074e-08 6.084e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.573e-08 4.580e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.116e-08 2.183e-08 -7.506 -7.661 -0.155 (0) + CaH[13C]O2[18O]+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) - CaH[13C]O2[18O]+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.635e-10 3.641e-10 -9.439 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) H[13C]O[18O]2- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.865e-10 1.306e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.820 -138.819 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.584 -137.583 0.001 (0) [14C](4) 1.256e-15 H[14C]O3- 1.015e-15 9.284e-16 -14.994 -15.032 -0.039 (0) [14C]O2 2.112e-16 2.115e-16 -15.675 -15.675 0.001 (0) CaH[14C]O3+ 2.143e-17 1.966e-17 -16.669 -16.706 -0.037 (0) - H[14C][18O]O2- 2.025e-18 1.852e-18 -17.694 -17.732 -0.039 (0) - H[14C]O[18O]O- 2.025e-18 1.852e-18 -17.694 -17.732 -0.039 (0) H[14C]O2[18O]- 2.025e-18 1.852e-18 -17.694 -17.732 -0.039 (0) + H[14C]O[18O]O- 2.025e-18 1.852e-18 -17.694 -17.732 -0.039 (0) + H[14C][18O]O2- 2.025e-18 1.852e-18 -17.694 -17.732 -0.039 (0) Ca[14C]O3 1.175e-18 1.177e-18 -17.930 -17.929 0.001 (0) [14C]O[18O] 8.781e-19 8.795e-19 -18.056 -18.056 0.001 (0) [14C]O3-2 6.026e-19 4.222e-19 -18.220 -18.375 -0.155 (0) CaH[14C]O2[18O]+ 4.276e-20 3.922e-20 -19.369 -19.406 -0.037 (0) - CaH[14C][18O]O2+ 4.276e-20 3.922e-20 -19.369 -19.406 -0.037 (0) CaH[14C]O[18O]O+ 4.276e-20 3.922e-20 -19.369 -19.406 -0.037 (0) + CaH[14C][18O]O2+ 4.276e-20 3.922e-20 -19.369 -19.406 -0.037 (0) Ca[14C]O2[18O] 7.032e-21 7.043e-21 -20.153 -20.152 0.001 (0) - H[14C][18O]O[18O]- 4.040e-21 3.696e-21 -20.394 -20.432 -0.039 (0) H[14C]O[18O]2- 4.040e-21 3.696e-21 -20.394 -20.432 -0.039 (0) H[14C][18O]2O- 4.040e-21 3.696e-21 -20.394 -20.432 -0.039 (0) + H[14C][18O]O[18O]- 4.040e-21 3.696e-21 -20.394 -20.432 -0.039 (0) [14C]O2[18O]-2 3.607e-21 2.527e-21 -20.443 -20.597 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.939e-15 - O[18O] 1.936e-15 1.939e-15 -14.713 -14.712 0.001 (0) - [18O]2 1.931e-18 1.934e-18 -17.714 -17.714 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 4.673e-16 + O[18O] 4.663e-16 4.671e-16 -15.331 -15.331 0.001 (0) + [18O]2 4.652e-19 4.660e-19 -18.332 -18.332 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.24 -128.10 -2.86 [13C]H4 + [13C]H4(g) -124.01 -126.87 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.57 -21.07 -1.50 [14C][18O]2 - [14C]H4(g) -135.96 -138.82 -2.86 [14C]H4 + [14C]H4(g) -134.72 -137.58 -2.86 [14C]H4 [14C]O2(g) -14.21 -15.67 -1.47 [14C]O2 [14C]O[18O](g) -16.59 -18.37 -1.79 [14C]O[18O] - [18O]2(g) -15.42 -17.71 -2.29 [18O]2 + [18O]2(g) -16.04 -18.33 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -36224,14 +36185,14 @@ O(0) 9.740e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.29 -126.15 -2.86 CH4 + CH4(g) -122.05 -124.91 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.88 -40.03 -3.15 H2 + H2(g) -36.58 -39.73 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.42 -12.31 -2.89 O2 - O[18O](g) -12.12 -15.01 -2.89 O[18O] + O2(g) -10.04 -12.93 -2.89 O2 + O[18O](g) -12.74 -15.63 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -36308,7 +36269,7 @@ Calcite 1.36e-02 R(14C) HCO3- 2.10191e-13 17.875 pmc R(18O) CO3-2 1.99519e-03 -4.9933 permil R(13C) CO3-2 1.11234e-02 -5.0835 permil - R(14C) CO3-2 2.09589e-13 17.824 pmc + R(14C) CO3-2 2.09588e-13 17.824 pmc R(18O) Calcite 2.05263e-03 23.653 permil R(13C) Calcite 1.11614e-02 -1.6802 permil R(14C) Calcite 2.11025e-13 17.946 pmc @@ -36321,12 +36282,12 @@ Calcite 1.36e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2466e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2412e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6311e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6772e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -36346,14 +36307,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.453 Adjusted to redox equilibrium + pe = 11.291 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -36362,20 +36323,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.137 -126.136 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.840 -124.839 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -36383,9 +36344,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -36393,50 +36354,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.074e-08 6.084e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.032 -40.032 0.001 (0) -O(0) 9.631e-13 - O2 4.796e-13 4.804e-13 -12.319 -12.318 0.001 (0) - O[18O] 1.914e-15 1.917e-15 -14.718 -14.717 0.001 (0) +H(0) 3.916e-40 + H2 1.958e-40 1.961e-40 -39.708 -39.708 0.001 (0) +O(0) 2.164e-13 + O2 1.078e-13 1.080e-13 -12.967 -12.967 0.001 (0) + O[18O] 4.301e-16 4.308e-16 -15.366 -15.366 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.093 -128.093 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.797 -126.796 0.001 (0) [13C](4) 6.496e-05 H[13C]O3- 5.240e-05 4.793e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) - H[13C][18O]O2- 1.045e-07 9.564e-08 -6.981 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.045e-07 9.564e-08 -6.981 -7.019 -0.039 (0) H[13C]O2[18O]- 1.045e-07 9.564e-08 -6.981 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.045e-07 9.564e-08 -6.981 -7.019 -0.039 (0) + H[13C][18O]O2- 1.045e-07 9.564e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.074e-08 6.084e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.573e-08 4.580e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.116e-08 2.183e-08 -7.506 -7.661 -0.155 (0) - CaH[13C][18O]O2+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O2[18O]+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) + CaH[13C][18O]O2+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.636e-10 3.642e-10 -9.439 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) H[13C]O[18O]2- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.865e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.821 -138.821 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.525 -137.524 0.001 (0) [14C](4) 1.224e-15 H[14C]O3- 9.887e-16 9.045e-16 -15.005 -15.044 -0.039 (0) [14C]O2 2.057e-16 2.061e-16 -15.687 -15.686 0.001 (0) CaH[14C]O3+ 2.088e-17 1.915e-17 -16.680 -16.718 -0.037 (0) - H[14C][18O]O2- 1.973e-18 1.805e-18 -17.705 -17.744 -0.039 (0) - H[14C]O[18O]O- 1.973e-18 1.805e-18 -17.705 -17.744 -0.039 (0) H[14C]O2[18O]- 1.973e-18 1.805e-18 -17.705 -17.744 -0.039 (0) + H[14C]O[18O]O- 1.973e-18 1.805e-18 -17.705 -17.744 -0.039 (0) + H[14C][18O]O2- 1.973e-18 1.805e-18 -17.705 -17.744 -0.039 (0) Ca[14C]O3 1.144e-18 1.146e-18 -17.941 -17.941 0.001 (0) [14C]O[18O] 8.554e-19 8.568e-19 -18.068 -18.067 0.001 (0) [14C]O3-2 5.871e-19 4.113e-19 -18.231 -18.386 -0.155 (0) CaH[14C]O2[18O]+ 4.165e-20 3.821e-20 -19.380 -19.418 -0.037 (0) - CaH[14C][18O]O2+ 4.165e-20 3.821e-20 -19.380 -19.418 -0.037 (0) CaH[14C]O[18O]O+ 4.165e-20 3.821e-20 -19.380 -19.418 -0.037 (0) + CaH[14C][18O]O2+ 4.165e-20 3.821e-20 -19.380 -19.418 -0.037 (0) Ca[14C]O2[18O] 6.850e-21 6.862e-21 -20.164 -20.164 0.001 (0) H[14C]O[18O]2- 3.936e-21 3.601e-21 -20.405 -20.444 -0.039 (0) H[14C][18O]2O- 3.936e-21 3.601e-21 -20.405 -20.444 -0.039 (0) @@ -36445,29 +36406,29 @@ O(0) 9.631e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.918e-15 - O[18O] 1.914e-15 1.917e-15 -14.718 -14.717 0.001 (0) - [18O]2 1.909e-18 1.912e-18 -17.719 -17.718 0.001 (0) +[18O](0) 4.310e-16 + O[18O] 4.301e-16 4.308e-16 -15.366 -15.366 0.001 (0) + [18O]2 4.291e-19 4.298e-19 -18.367 -18.367 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.23 -128.09 -2.86 [13C]H4 + [13C]H4(g) -123.94 -126.80 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.58 -21.09 -1.50 [14C][18O]2 - [14C]H4(g) -135.96 -138.82 -2.86 [14C]H4 + [14C]H4(g) -134.66 -137.52 -2.86 [14C]H4 [14C]O2(g) -14.22 -15.69 -1.47 [14C]O2 [14C]O[18O](g) -16.60 -18.39 -1.79 [14C]O[18O] - [18O]2(g) -15.43 -17.72 -2.29 [18O]2 + [18O]2(g) -16.08 -18.37 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -36481,14 +36442,14 @@ O(0) 9.631e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.28 -126.14 -2.86 CH4 + CH4(g) -121.98 -124.84 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.88 -40.03 -3.15 H2 + H2(g) -36.56 -39.71 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.43 -12.32 -2.89 O2 - O[18O](g) -12.13 -15.02 -2.89 O[18O] + O2(g) -10.07 -12.97 -2.89 O2 + O[18O](g) -12.77 -15.67 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -36578,12 +36539,12 @@ Calcite 1.41e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2441e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2704e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7374e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.717e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -36603,14 +36564,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.454 Adjusted to redox equilibrium + pe = 11.294 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -36619,30 +36580,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.142 -126.141 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.862 -124.861 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -36650,23 +36611,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.075e-08 6.085e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.034 -40.033 0.001 (0) -O(0) 9.687e-13 - O2 4.824e-13 4.832e-13 -12.317 -12.316 0.001 (0) - O[18O] 1.925e-15 1.928e-15 -14.716 -14.715 0.001 (0) +H(0) 3.866e-40 + H2 1.933e-40 1.936e-40 -39.714 -39.713 0.001 (0) +O(0) 2.220e-13 + O2 1.106e-13 1.108e-13 -12.956 -12.956 0.001 (0) + O[18O] 4.412e-16 4.419e-16 -15.355 -15.355 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.098 -128.098 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.819 -126.818 0.001 (0) [13C](4) 6.496e-05 H[13C]O3- 5.240e-05 4.794e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.994 -0.037 (0) - H[13C]O[18O]O- 1.045e-07 9.565e-08 -6.981 -7.019 -0.039 (0) H[13C]O2[18O]- 1.045e-07 9.565e-08 -6.981 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.045e-07 9.565e-08 -6.981 -7.019 -0.039 (0) H[13C][18O]O2- 1.045e-07 9.565e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.075e-08 6.085e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.573e-08 4.581e-08 -7.340 -7.339 0.001 (0) @@ -36675,56 +36636,56 @@ O(0) 9.687e-13 CaH[13C]O[18O]O+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.636e-10 3.642e-10 -9.439 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) H[13C]O[18O]2- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.865e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.838 -138.837 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.558 -137.557 0.001 (0) [14C](4) 1.193e-15 H[14C]O3- 9.638e-16 8.818e-16 -15.016 -15.055 -0.039 (0) [14C]O2 2.006e-16 2.009e-16 -15.698 -15.697 0.001 (0) CaH[14C]O3+ 2.035e-17 1.867e-17 -16.691 -16.729 -0.037 (0) - H[14C][18O]O2- 1.923e-18 1.759e-18 -17.716 -17.755 -0.039 (0) - H[14C]O[18O]O- 1.923e-18 1.759e-18 -17.716 -17.755 -0.039 (0) H[14C]O2[18O]- 1.923e-18 1.759e-18 -17.716 -17.755 -0.039 (0) + H[14C]O[18O]O- 1.923e-18 1.759e-18 -17.716 -17.755 -0.039 (0) + H[14C][18O]O2- 1.923e-18 1.759e-18 -17.716 -17.755 -0.039 (0) Ca[14C]O3 1.116e-18 1.118e-18 -17.952 -17.952 0.001 (0) [14C]O[18O] 8.340e-19 8.353e-19 -18.079 -18.078 0.001 (0) [14C]O3-2 5.724e-19 4.010e-19 -18.242 -18.397 -0.155 (0) CaH[14C]O2[18O]+ 4.061e-20 3.725e-20 -19.391 -19.429 -0.037 (0) - CaH[14C][18O]O2+ 4.061e-20 3.725e-20 -19.391 -19.429 -0.037 (0) CaH[14C]O[18O]O+ 4.061e-20 3.725e-20 -19.391 -19.429 -0.037 (0) + CaH[14C][18O]O2+ 4.061e-20 3.725e-20 -19.391 -19.429 -0.037 (0) Ca[14C]O2[18O] 6.678e-21 6.689e-21 -20.175 -20.175 0.001 (0) + H[14C]O[18O]2- 3.837e-21 3.510e-21 -20.416 -20.455 -0.039 (0) H[14C][18O]2O- 3.837e-21 3.510e-21 -20.416 -20.455 -0.039 (0) H[14C][18O]O[18O]- 3.837e-21 3.510e-21 -20.416 -20.455 -0.039 (0) - H[14C]O[18O]2- 3.837e-21 3.510e-21 -20.416 -20.455 -0.039 (0) [14C]O2[18O]-2 3.426e-21 2.400e-21 -20.465 -20.620 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.929e-15 - O[18O] 1.925e-15 1.928e-15 -14.716 -14.715 0.001 (0) - [18O]2 1.920e-18 1.924e-18 -17.717 -17.716 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 4.421e-16 + O[18O] 4.412e-16 4.419e-16 -15.355 -15.355 0.001 (0) + [18O]2 4.402e-19 4.409e-19 -18.356 -18.356 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.24 -128.10 -2.86 [13C]H4 + [13C]H4(g) -123.96 -126.82 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.59 -21.10 -1.50 [14C][18O]2 - [14C]H4(g) -135.98 -138.84 -2.86 [14C]H4 + [14C]H4(g) -134.70 -137.56 -2.86 [14C]H4 [14C]O2(g) -14.23 -15.70 -1.47 [14C]O2 [14C]O[18O](g) -16.61 -18.40 -1.79 [14C]O[18O] - [18O]2(g) -15.43 -17.72 -2.29 [18O]2 + [18O]2(g) -16.07 -18.36 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -36738,14 +36699,14 @@ O(0) 9.687e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.28 -126.14 -2.86 CH4 + CH4(g) -122.00 -124.86 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.88 -40.03 -3.15 H2 + H2(g) -36.56 -39.71 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.42 -12.32 -2.89 O2 - O[18O](g) -12.12 -15.02 -2.89 O[18O] + O2(g) -10.06 -12.96 -2.89 O2 + O[18O](g) -12.76 -15.66 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -36835,12 +36796,12 @@ Calcite 1.46e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2436e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.3027e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 +Alpha 18O HCO3-/H2O(l) 1 2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6986e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7444e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -36860,14 +36821,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.453 Adjusted to redox equilibrium + pe = 11.291 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -36876,20 +36837,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.137 -126.136 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.843 -124.842 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -36897,9 +36858,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -36907,81 +36868,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.075e-08 6.085e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.033 -40.032 0.001 (0) -O(0) 9.638e-13 - O2 4.800e-13 4.808e-13 -12.319 -12.318 0.001 (0) - O[18O] 1.915e-15 1.918e-15 -14.718 -14.717 0.001 (0) +H(0) 3.909e-40 + H2 1.954e-40 1.958e-40 -39.709 -39.708 0.001 (0) +O(0) 2.172e-13 + O2 1.082e-13 1.083e-13 -12.966 -12.965 0.001 (0) + O[18O] 4.316e-16 4.323e-16 -15.365 -15.364 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.094 -128.093 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.800 -126.799 0.001 (0) [13C](4) 6.497e-05 H[13C]O3- 5.240e-05 4.794e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) H[13C]O2[18O]- 1.046e-07 9.566e-08 -6.981 -7.019 -0.039 (0) - H[13C][18O]O2- 1.046e-07 9.566e-08 -6.981 -7.019 -0.039 (0) H[13C]O[18O]O- 1.046e-07 9.566e-08 -6.981 -7.019 -0.039 (0) + H[13C][18O]O2- 1.046e-07 9.566e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.075e-08 6.085e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.574e-08 4.581e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.116e-08 2.183e-08 -7.506 -7.661 -0.155 (0) + CaH[13C]O2[18O]+ 2.208e-09 2.025e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.208e-09 2.025e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.208e-09 2.025e-09 -8.656 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.208e-09 2.025e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.636e-10 3.642e-10 -9.439 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) H[13C]O[18O]2- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.865e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.844 -138.843 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.550 -137.549 0.001 (0) [14C](4) 1.164e-15 H[14C]O3- 9.402e-16 8.602e-16 -15.027 -15.065 -0.039 (0) [14C]O2 1.956e-16 1.960e-16 -15.709 -15.708 0.001 (0) CaH[14C]O3+ 1.985e-17 1.821e-17 -16.702 -16.740 -0.037 (0) - H[14C][18O]O2- 1.876e-18 1.716e-18 -17.727 -17.765 -0.039 (0) - H[14C]O[18O]O- 1.876e-18 1.716e-18 -17.727 -17.765 -0.039 (0) H[14C]O2[18O]- 1.876e-18 1.716e-18 -17.727 -17.765 -0.039 (0) + H[14C]O[18O]O- 1.876e-18 1.716e-18 -17.727 -17.765 -0.039 (0) + H[14C][18O]O2- 1.876e-18 1.716e-18 -17.727 -17.765 -0.039 (0) Ca[14C]O3 1.088e-18 1.090e-18 -17.963 -17.962 0.001 (0) [14C]O[18O] 8.135e-19 8.149e-19 -18.090 -18.089 0.001 (0) [14C]O3-2 5.583e-19 3.911e-19 -18.253 -18.408 -0.155 (0) CaH[14C]O2[18O]+ 3.961e-20 3.634e-20 -19.402 -19.440 -0.037 (0) - CaH[14C][18O]O2+ 3.961e-20 3.634e-20 -19.402 -19.440 -0.037 (0) CaH[14C]O[18O]O+ 3.961e-20 3.634e-20 -19.402 -19.440 -0.037 (0) + CaH[14C][18O]O2+ 3.961e-20 3.634e-20 -19.402 -19.440 -0.037 (0) Ca[14C]O2[18O] 6.515e-21 6.525e-21 -20.186 -20.185 0.001 (0) - H[14C][18O]O[18O]- 3.743e-21 3.424e-21 -20.427 -20.465 -0.039 (0) H[14C]O[18O]2- 3.743e-21 3.424e-21 -20.427 -20.465 -0.039 (0) H[14C][18O]2O- 3.743e-21 3.424e-21 -20.427 -20.465 -0.039 (0) + H[14C][18O]O[18O]- 3.743e-21 3.424e-21 -20.427 -20.465 -0.039 (0) [14C]O2[18O]-2 3.342e-21 2.341e-21 -20.476 -20.631 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.919e-15 - O[18O] 1.915e-15 1.918e-15 -14.718 -14.717 0.001 (0) - [18O]2 1.911e-18 1.914e-18 -17.719 -17.718 0.001 (0) +[18O](0) 4.324e-16 + O[18O] 4.316e-16 4.323e-16 -15.365 -15.364 0.001 (0) + [18O]2 4.305e-19 4.312e-19 -18.366 -18.365 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.23 -128.09 -2.86 [13C]H4 + [13C]H4(g) -123.94 -126.80 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.60 -21.11 -1.50 [14C][18O]2 - [14C]H4(g) -135.98 -138.84 -2.86 [14C]H4 + [14C]H4(g) -134.69 -137.55 -2.86 [14C]H4 [14C]O2(g) -14.24 -15.71 -1.47 [14C]O2 [14C]O[18O](g) -16.62 -18.41 -1.79 [14C]O[18O] - [18O]2(g) -15.43 -17.72 -2.29 [18O]2 + [18O]2(g) -16.07 -18.37 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -36995,14 +36956,14 @@ O(0) 9.638e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.28 -126.14 -2.86 CH4 + CH4(g) -121.98 -124.84 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.88 -40.03 -3.15 H2 + H2(g) -36.56 -39.71 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.43 -12.32 -2.89 O2 - O[18O](g) -12.13 -15.02 -2.89 O[18O] + O2(g) -10.07 -12.97 -2.89 O2 + O[18O](g) -12.77 -15.67 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -37092,12 +37053,12 @@ Calcite 1.51e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2443e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2375e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.7716e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8415e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.75e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -37117,14 +37078,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.454 Adjusted to redox equilibrium + pe = 11.297 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -37133,30 +37094,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.147 -126.147 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.887 -124.886 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -37164,50 +37125,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.076e-08 6.086e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.035 -40.034 0.001 (0) -O(0) 9.751e-13 - O2 4.856e-13 4.864e-13 -12.314 -12.313 0.001 (0) - O[18O] 1.938e-15 1.941e-15 -14.713 -14.712 0.001 (0) +H(0) 3.810e-40 + H2 1.905e-40 1.908e-40 -39.720 -39.719 0.001 (0) +O(0) 2.285e-13 + O2 1.138e-13 1.140e-13 -12.944 -12.943 0.001 (0) + O[18O] 4.542e-16 4.549e-16 -15.343 -15.342 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.104 -128.103 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.844 -126.843 0.001 (0) [13C](4) 6.498e-05 H[13C]O3- 5.241e-05 4.795e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) - H[13C][18O]O2- 1.046e-07 9.566e-08 -6.981 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.566e-08 -6.981 -7.019 -0.039 (0) H[13C]O2[18O]- 1.046e-07 9.566e-08 -6.981 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.566e-08 -6.981 -7.019 -0.039 (0) + H[13C][18O]O2- 1.046e-07 9.566e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.076e-08 6.086e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.574e-08 4.582e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.117e-08 2.183e-08 -7.506 -7.661 -0.155 (0) - CaH[13C][18O]O2+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) + CaH[13C][18O]O2+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.637e-10 3.643e-10 -9.439 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) H[13C]O[18O]2- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.865 -138.864 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.604 -137.604 0.001 (0) [14C](4) 1.136e-15 H[14C]O3- 9.177e-16 8.396e-16 -15.037 -15.076 -0.039 (0) [14C]O2 1.910e-16 1.913e-16 -15.719 -15.718 0.001 (0) CaH[14C]O3+ 1.938e-17 1.778e-17 -16.713 -16.750 -0.037 (0) - H[14C][18O]O2- 1.831e-18 1.675e-18 -17.737 -17.776 -0.039 (0) - H[14C]O[18O]O- 1.831e-18 1.675e-18 -17.737 -17.776 -0.039 (0) H[14C]O2[18O]- 1.831e-18 1.675e-18 -17.737 -17.776 -0.039 (0) + H[14C]O[18O]O- 1.831e-18 1.675e-18 -17.737 -17.776 -0.039 (0) + H[14C][18O]O2- 1.831e-18 1.675e-18 -17.737 -17.776 -0.039 (0) Ca[14C]O3 1.062e-18 1.064e-18 -17.974 -17.973 0.001 (0) [14C]O[18O] 7.941e-19 7.954e-19 -18.100 -18.099 0.001 (0) [14C]O3-2 5.450e-19 3.818e-19 -18.264 -18.418 -0.155 (0) CaH[14C]O2[18O]+ 3.866e-20 3.547e-20 -19.413 -19.450 -0.037 (0) - CaH[14C][18O]O2+ 3.866e-20 3.547e-20 -19.413 -19.450 -0.037 (0) CaH[14C]O[18O]O+ 3.866e-20 3.547e-20 -19.413 -19.450 -0.037 (0) + CaH[14C][18O]O2+ 3.866e-20 3.547e-20 -19.413 -19.450 -0.037 (0) Ca[14C]O2[18O] 6.359e-21 6.369e-21 -20.197 -20.196 0.001 (0) H[14C]O[18O]2- 3.653e-21 3.342e-21 -20.437 -20.476 -0.039 (0) H[14C][18O]2O- 3.653e-21 3.342e-21 -20.437 -20.476 -0.039 (0) @@ -37216,29 +37177,29 @@ O(0) 9.751e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.942e-15 - O[18O] 1.938e-15 1.941e-15 -14.713 -14.712 0.001 (0) - [18O]2 1.933e-18 1.936e-18 -17.714 -17.713 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 4.551e-16 + O[18O] 4.542e-16 4.549e-16 -15.343 -15.342 0.001 (0) + [18O]2 4.531e-19 4.538e-19 -18.344 -18.343 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.24 -128.10 -2.86 [13C]H4 + [13C]H4(g) -123.98 -126.84 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.61 -21.12 -1.50 [14C][18O]2 - [14C]H4(g) -136.00 -138.86 -2.86 [14C]H4 + [14C]H4(g) -134.74 -137.60 -2.86 [14C]H4 [14C]O2(g) -14.25 -15.72 -1.47 [14C]O2 [14C]O[18O](g) -16.63 -18.42 -1.79 [14C]O[18O] - [18O]2(g) -15.42 -17.71 -2.29 [18O]2 + [18O]2(g) -16.05 -18.34 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -37252,14 +37213,14 @@ O(0) 9.751e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.29 -126.15 -2.86 CH4 + CH4(g) -122.03 -124.89 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.88 -40.03 -3.15 H2 + H2(g) -36.57 -39.72 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.42 -12.31 -2.89 O2 - O[18O](g) -12.12 -15.01 -2.89 O[18O] + O2(g) -10.05 -12.94 -2.89 O2 + O[18O](g) -12.75 -15.64 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -37349,12 +37310,12 @@ Calcite 1.56e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2491e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2743e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.7724e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.4409e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7054e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6824e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -37374,14 +37335,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.453 Adjusted to redox equilibrium + pe = 11.290 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -37390,19 +37351,19 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.135 -126.135 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.834 -124.833 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -37411,9 +37372,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -37421,23 +37382,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.076e-08 6.086e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.032 -40.031 0.001 (0) -O(0) 9.618e-13 - O2 4.790e-13 4.798e-13 -12.320 -12.319 0.001 (0) - O[18O] 1.911e-15 1.914e-15 -14.719 -14.718 0.001 (0) +H(0) 3.929e-40 + H2 1.965e-40 1.968e-40 -39.707 -39.706 0.001 (0) +O(0) 2.149e-13 + O2 1.070e-13 1.072e-13 -12.970 -12.970 0.001 (0) + O[18O] 4.272e-16 4.279e-16 -15.369 -15.369 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.092 -128.091 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.791 -126.790 0.001 (0) [13C](4) 6.498e-05 H[13C]O3- 5.241e-05 4.795e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.046e-07 9.567e-08 -6.981 -7.019 -0.039 (0) H[13C]O2[18O]- 1.046e-07 9.567e-08 -6.981 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.567e-08 -6.981 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.567e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.076e-08 6.086e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.575e-08 4.582e-08 -7.340 -7.339 0.001 (0) @@ -37446,56 +37407,56 @@ O(0) 9.618e-13 CaH[13C]O[18O]O+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.637e-10 3.643e-10 -9.439 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) H[13C]O[18O]2- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.863 -138.862 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.561 -137.561 0.001 (0) [14C](4) 1.110e-15 H[14C]O3- 8.963e-16 8.200e-16 -15.048 -15.086 -0.039 (0) [14C]O2 1.865e-16 1.868e-16 -15.729 -15.729 0.001 (0) CaH[14C]O3+ 1.893e-17 1.736e-17 -16.723 -16.760 -0.037 (0) - H[14C][18O]O2- 1.788e-18 1.636e-18 -17.748 -17.786 -0.039 (0) - H[14C]O[18O]O- 1.788e-18 1.636e-18 -17.748 -17.786 -0.039 (0) H[14C]O2[18O]- 1.788e-18 1.636e-18 -17.748 -17.786 -0.039 (0) + H[14C]O[18O]O- 1.788e-18 1.636e-18 -17.748 -17.786 -0.039 (0) + H[14C][18O]O2- 1.788e-18 1.636e-18 -17.748 -17.786 -0.039 (0) Ca[14C]O3 1.038e-18 1.039e-18 -17.984 -17.983 0.001 (0) [14C]O[18O] 7.755e-19 7.768e-19 -18.110 -18.110 0.001 (0) [14C]O3-2 5.322e-19 3.729e-19 -18.274 -18.428 -0.155 (0) CaH[14C]O2[18O]+ 3.776e-20 3.464e-20 -19.423 -19.460 -0.037 (0) - CaH[14C][18O]O2+ 3.776e-20 3.464e-20 -19.423 -19.460 -0.037 (0) CaH[14C]O[18O]O+ 3.776e-20 3.464e-20 -19.423 -19.460 -0.037 (0) + CaH[14C][18O]O2+ 3.776e-20 3.464e-20 -19.423 -19.460 -0.037 (0) Ca[14C]O2[18O] 6.210e-21 6.221e-21 -20.207 -20.206 0.001 (0) + H[14C]O[18O]2- 3.568e-21 3.264e-21 -20.448 -20.486 -0.039 (0) H[14C][18O]2O- 3.568e-21 3.264e-21 -20.448 -20.486 -0.039 (0) H[14C][18O]O[18O]- 3.568e-21 3.264e-21 -20.448 -20.486 -0.039 (0) - H[14C]O[18O]2- 3.568e-21 3.264e-21 -20.448 -20.486 -0.039 (0) [14C]O2[18O]-2 3.186e-21 2.232e-21 -20.497 -20.651 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.915e-15 - O[18O] 1.911e-15 1.914e-15 -14.719 -14.718 0.001 (0) - [18O]2 1.907e-18 1.910e-18 -17.720 -17.719 0.001 (0) +[18O](0) 4.280e-16 + O[18O] 4.272e-16 4.279e-16 -15.369 -15.369 0.001 (0) + [18O]2 4.261e-19 4.268e-19 -18.370 -18.370 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.23 -128.09 -2.86 [13C]H4 + [13C]H4(g) -123.93 -126.79 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.63 -21.13 -1.50 [14C][18O]2 - [14C]H4(g) -136.00 -138.86 -2.86 [14C]H4 + [14C]H4(g) -134.70 -137.56 -2.86 [14C]H4 [14C]O2(g) -14.26 -15.73 -1.47 [14C]O2 [14C]O[18O](g) -16.64 -18.43 -1.79 [14C]O[18O] - [18O]2(g) -15.43 -17.72 -2.29 [18O]2 + [18O]2(g) -16.08 -18.37 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -37509,14 +37470,14 @@ O(0) 9.618e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.27 -126.13 -2.86 CH4 + CH4(g) -121.97 -124.83 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.88 -40.03 -3.15 H2 + H2(g) -36.56 -39.71 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.43 -12.32 -2.89 O2 - O[18O](g) -12.13 -15.02 -2.89 O[18O] + O2(g) -10.08 -12.97 -2.89 O2 + O[18O](g) -12.78 -15.67 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -37606,12 +37567,12 @@ Calcite 1.61e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2577e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2512e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6053e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.72e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -37631,14 +37592,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.452 Adjusted to redox equilibrium + pe = 11.295 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -37647,30 +37608,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.131 -126.130 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.871 -124.871 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -37678,81 +37639,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.077e-08 6.087e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.031 -40.030 0.001 (0) -O(0) 9.568e-13 - O2 4.765e-13 4.773e-13 -12.322 -12.321 0.001 (0) - O[18O] 1.901e-15 1.905e-15 -14.721 -14.720 0.001 (0) +H(0) 3.845e-40 + H2 1.922e-40 1.926e-40 -39.716 -39.715 0.001 (0) +O(0) 2.245e-13 + O2 1.118e-13 1.120e-13 -12.952 -12.951 0.001 (0) + O[18O] 4.461e-16 4.468e-16 -15.351 -15.350 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.088 -128.087 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.828 -126.827 0.001 (0) [13C](4) 6.499e-05 H[13C]O3- 5.242e-05 4.796e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) H[13C]O2[18O]- 1.046e-07 9.568e-08 -6.981 -7.019 -0.039 (0) - H[13C][18O]O2- 1.046e-07 9.568e-08 -6.981 -7.019 -0.039 (0) H[13C]O[18O]O- 1.046e-07 9.568e-08 -6.981 -7.019 -0.039 (0) + H[13C][18O]O2- 1.046e-07 9.568e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.077e-08 6.087e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.575e-08 4.582e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.117e-08 2.184e-08 -7.506 -7.661 -0.155 (0) + CaH[13C]O2[18O]+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.637e-10 3.643e-10 -9.439 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.868 -138.868 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.609 -137.608 0.001 (0) [14C](4) 1.084e-15 H[14C]O3- 8.758e-16 8.013e-16 -15.058 -15.096 -0.039 (0) [14C]O2 1.822e-16 1.825e-16 -15.739 -15.739 0.001 (0) CaH[14C]O3+ 1.849e-17 1.697e-17 -16.733 -16.770 -0.037 (0) - H[14C][18O]O2- 1.747e-18 1.599e-18 -17.758 -17.796 -0.039 (0) - H[14C]O[18O]O- 1.747e-18 1.599e-18 -17.758 -17.796 -0.039 (0) H[14C]O2[18O]- 1.747e-18 1.599e-18 -17.758 -17.796 -0.039 (0) + H[14C]O[18O]O- 1.747e-18 1.599e-18 -17.758 -17.796 -0.039 (0) + H[14C][18O]O2- 1.747e-18 1.599e-18 -17.758 -17.796 -0.039 (0) Ca[14C]O3 1.014e-18 1.016e-18 -17.994 -17.993 0.001 (0) [14C]O[18O] 7.578e-19 7.591e-19 -18.120 -18.120 0.001 (0) [14C]O3-2 5.201e-19 3.644e-19 -18.284 -18.438 -0.155 (0) CaH[14C]O2[18O]+ 3.690e-20 3.385e-20 -19.433 -19.470 -0.037 (0) - CaH[14C][18O]O2+ 3.690e-20 3.385e-20 -19.433 -19.470 -0.037 (0) CaH[14C]O[18O]O+ 3.690e-20 3.385e-20 -19.433 -19.470 -0.037 (0) + CaH[14C][18O]O2+ 3.690e-20 3.385e-20 -19.433 -19.470 -0.037 (0) Ca[14C]O2[18O] 6.069e-21 6.079e-21 -20.217 -20.216 0.001 (0) - H[14C][18O]O[18O]- 3.486e-21 3.190e-21 -20.458 -20.496 -0.039 (0) H[14C]O[18O]2- 3.486e-21 3.190e-21 -20.458 -20.496 -0.039 (0) H[14C][18O]2O- 3.486e-21 3.190e-21 -20.458 -20.496 -0.039 (0) + H[14C][18O]O[18O]- 3.486e-21 3.190e-21 -20.458 -20.496 -0.039 (0) [14C]O2[18O]-2 3.113e-21 2.181e-21 -20.507 -20.661 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.905e-15 - O[18O] 1.901e-15 1.905e-15 -14.721 -14.720 0.001 (0) - [18O]2 1.897e-18 1.900e-18 -17.722 -17.721 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 4.469e-16 + O[18O] 4.461e-16 4.468e-16 -15.351 -15.350 0.001 (0) + [18O]2 4.450e-19 4.457e-19 -18.352 -18.351 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.23 -128.09 -2.86 [13C]H4 + [13C]H4(g) -123.97 -126.83 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.64 -21.14 -1.50 [14C][18O]2 - [14C]H4(g) -136.01 -138.87 -2.86 [14C]H4 + [14C]H4(g) -134.75 -137.61 -2.86 [14C]H4 [14C]O2(g) -14.27 -15.74 -1.47 [14C]O2 [14C]O[18O](g) -16.65 -18.44 -1.79 [14C]O[18O] - [18O]2(g) -15.43 -17.72 -2.29 [18O]2 + [18O]2(g) -16.06 -18.35 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -37766,14 +37727,14 @@ O(0) 9.568e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.27 -126.13 -2.86 CH4 + CH4(g) -122.01 -124.87 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.88 -40.03 -3.15 H2 + H2(g) -36.57 -39.72 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.43 -12.32 -2.89 O2 - O[18O](g) -12.13 -15.02 -2.89 O[18O] + O2(g) -10.06 -12.95 -2.89 O2 + O[18O](g) -12.76 -15.65 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -37863,12 +37824,12 @@ Calcite 1.66e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2712e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2639e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6693e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7805e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -37888,14 +37849,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.458 Adjusted to redox equilibrium + pe = 11.313 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -37904,20 +37865,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.179 -126.178 0.001 (0) + CH4 0.000e+00 0.000e+00 -125.015 -125.014 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -37925,9 +37886,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -37935,50 +37896,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.077e-08 6.087e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.043 -40.042 0.001 (0) -O(0) 1.011e-12 - O2 5.037e-13 5.045e-13 -12.298 -12.297 0.001 (0) - O[18O] 2.010e-15 2.013e-15 -14.697 -14.696 0.001 (0) +H(0) 3.541e-40 + H2 1.770e-40 1.773e-40 -39.752 -39.751 0.001 (0) +O(0) 2.647e-13 + O2 1.318e-13 1.320e-13 -12.880 -12.879 0.001 (0) + O[18O] 5.260e-16 5.268e-16 -15.279 -15.278 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.136 -128.135 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.971 -126.971 0.001 (0) [13C](4) 6.499e-05 H[13C]O3- 5.242e-05 4.796e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) - H[13C][18O]O2- 1.046e-07 9.569e-08 -6.981 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.569e-08 -6.981 -7.019 -0.039 (0) H[13C]O2[18O]- 1.046e-07 9.569e-08 -6.981 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.569e-08 -6.981 -7.019 -0.039 (0) + H[13C][18O]O2- 1.046e-07 9.569e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.077e-08 6.087e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.575e-08 4.583e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.117e-08 2.184e-08 -7.506 -7.661 -0.155 (0) - CaH[13C][18O]O2+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) + CaH[13C][18O]O2+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.638e-10 3.644e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.926 -138.926 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.762 -137.761 0.001 (0) [14C](4) 1.060e-15 H[14C]O3- 8.563e-16 7.834e-16 -15.067 -15.106 -0.039 (0) [14C]O2 1.782e-16 1.785e-16 -15.749 -15.748 0.001 (0) CaH[14C]O3+ 1.808e-17 1.659e-17 -16.743 -16.780 -0.037 (0) - H[14C][18O]O2- 1.708e-18 1.563e-18 -17.767 -17.806 -0.039 (0) - H[14C]O[18O]O- 1.708e-18 1.563e-18 -17.767 -17.806 -0.039 (0) H[14C]O2[18O]- 1.708e-18 1.563e-18 -17.767 -17.806 -0.039 (0) + H[14C]O[18O]O- 1.708e-18 1.563e-18 -17.767 -17.806 -0.039 (0) + H[14C][18O]O2- 1.708e-18 1.563e-18 -17.767 -17.806 -0.039 (0) Ca[14C]O3 9.912e-19 9.929e-19 -18.004 -18.003 0.001 (0) [14C]O[18O] 7.409e-19 7.421e-19 -18.130 -18.130 0.001 (0) [14C]O3-2 5.085e-19 3.562e-19 -18.294 -18.448 -0.155 (0) CaH[14C]O2[18O]+ 3.608e-20 3.309e-20 -19.443 -19.480 -0.037 (0) - CaH[14C][18O]O2+ 3.608e-20 3.309e-20 -19.443 -19.480 -0.037 (0) CaH[14C]O[18O]O+ 3.608e-20 3.309e-20 -19.443 -19.480 -0.037 (0) + CaH[14C][18O]O2+ 3.608e-20 3.309e-20 -19.443 -19.480 -0.037 (0) Ca[14C]O2[18O] 5.933e-21 5.943e-21 -20.227 -20.226 0.001 (0) H[14C]O[18O]2- 3.409e-21 3.118e-21 -20.467 -20.506 -0.039 (0) H[14C][18O]2O- 3.409e-21 3.118e-21 -20.467 -20.506 -0.039 (0) @@ -37987,29 +37948,29 @@ O(0) 1.011e-12 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.014e-15 - O[18O] 2.010e-15 2.013e-15 -14.697 -14.696 0.001 (0) - [18O]2 2.005e-18 2.008e-18 -17.698 -17.697 0.001 (0) +[18O](0) 5.270e-16 + O[18O] 5.260e-16 5.268e-16 -15.279 -15.278 0.001 (0) + [18O]2 5.247e-19 5.256e-19 -18.280 -18.279 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.27 -128.13 -2.86 [13C]H4 + [13C]H4(g) -124.11 -126.97 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.64 -21.15 -1.50 [14C][18O]2 - [14C]H4(g) -136.07 -138.93 -2.86 [14C]H4 + [14C]H4(g) -134.90 -137.76 -2.86 [14C]H4 [14C]O2(g) -14.28 -15.75 -1.47 [14C]O2 [14C]O[18O](g) -16.66 -18.45 -1.79 [14C]O[18O] - [18O]2(g) -15.41 -17.70 -2.29 [18O]2 + [18O]2(g) -15.99 -18.28 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -38023,14 +37984,14 @@ O(0) 1.011e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.32 -126.18 -2.86 CH4 + CH4(g) -122.15 -125.01 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.89 -40.04 -3.15 H2 + H2(g) -36.60 -39.75 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.40 -12.30 -2.89 O2 - O[18O](g) -12.10 -15.00 -2.89 O[18O] + O2(g) -9.99 -12.88 -2.89 O2 + O[18O](g) -12.69 -15.58 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -38100,7 +38061,7 @@ Calcite 1.71e-02 R(18O) H3O+ 2.04132e-03 18.016 permil R(18O) O2(aq) 1.99519e-03 -4.9923 permil R(13C) CO2(aq) 1.10496e-02 -11.68 permil - R(14C) CO2(aq) 1.75014e-13 14.884 pmc + R(14C) CO2(aq) 1.75013e-13 14.884 pmc R(18O) CO2(aq) 2.07916e-03 36.882 permil R(18O) HCO3- 1.99519e-03 -4.9923 permil R(13C) HCO3- 1.11457e-02 -3.0819 permil @@ -38120,12 +38081,12 @@ Calcite 1.71e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2577e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2495e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.6605e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.7716e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7683e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8121e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -38145,14 +38106,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.459 Adjusted to redox equilibrium + pe = 11.322 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -38161,30 +38122,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.188 -126.187 0.001 (0) + CH4 0.000e+00 0.000e+00 -125.091 -125.090 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -38192,23 +38153,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.078e-08 6.088e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.045 -40.044 0.001 (0) -O(0) 1.021e-12 - O2 5.086e-13 5.095e-13 -12.294 -12.293 0.001 (0) - O[18O] 2.030e-15 2.033e-15 -14.693 -14.692 0.001 (0) +H(0) 3.389e-40 + H2 1.695e-40 1.697e-40 -39.771 -39.770 0.001 (0) +O(0) 2.889e-13 + O2 1.439e-13 1.441e-13 -12.842 -12.841 0.001 (0) + O[18O] 5.741e-16 5.750e-16 -15.241 -15.240 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.144 -128.143 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -127.047 -127.047 0.001 (0) [13C](4) 6.499e-05 H[13C]O3- 5.242e-05 4.796e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.046e-07 9.569e-08 -6.980 -7.019 -0.039 (0) H[13C]O2[18O]- 1.046e-07 9.569e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.569e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.569e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.078e-08 6.088e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.576e-08 4.583e-08 -7.340 -7.339 0.001 (0) @@ -38217,56 +38178,56 @@ O(0) 1.021e-12 CaH[13C]O[18O]O+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.638e-10 3.644e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.944 -138.944 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.848 -137.847 0.001 (0) [14C](4) 1.037e-15 H[14C]O3- 8.376e-16 7.663e-16 -15.077 -15.116 -0.039 (0) [14C]O2 1.743e-16 1.746e-16 -15.759 -15.758 0.001 (0) CaH[14C]O3+ 1.769e-17 1.622e-17 -16.752 -16.790 -0.037 (0) - H[14C][18O]O2- 1.671e-18 1.529e-18 -17.777 -17.816 -0.039 (0) - H[14C]O[18O]O- 1.671e-18 1.529e-18 -17.777 -17.816 -0.039 (0) H[14C]O2[18O]- 1.671e-18 1.529e-18 -17.777 -17.816 -0.039 (0) + H[14C]O[18O]O- 1.671e-18 1.529e-18 -17.777 -17.816 -0.039 (0) + H[14C][18O]O2- 1.671e-18 1.529e-18 -17.777 -17.816 -0.039 (0) Ca[14C]O3 9.696e-19 9.712e-19 -18.013 -18.013 0.001 (0) [14C]O[18O] 7.247e-19 7.259e-19 -18.140 -18.139 0.001 (0) [14C]O3-2 4.974e-19 3.484e-19 -18.303 -18.458 -0.155 (0) CaH[14C]O2[18O]+ 3.529e-20 3.237e-20 -19.452 -19.490 -0.037 (0) - CaH[14C][18O]O2+ 3.529e-20 3.237e-20 -19.452 -19.490 -0.037 (0) CaH[14C]O[18O]O+ 3.529e-20 3.237e-20 -19.452 -19.490 -0.037 (0) + CaH[14C][18O]O2+ 3.529e-20 3.237e-20 -19.452 -19.490 -0.037 (0) Ca[14C]O2[18O] 5.804e-21 5.813e-21 -20.236 -20.236 0.001 (0) + H[14C]O[18O]2- 3.334e-21 3.050e-21 -20.477 -20.516 -0.039 (0) H[14C][18O]2O- 3.334e-21 3.050e-21 -20.477 -20.516 -0.039 (0) H[14C][18O]O[18O]- 3.334e-21 3.050e-21 -20.477 -20.516 -0.039 (0) - H[14C]O[18O]2- 3.334e-21 3.050e-21 -20.477 -20.516 -0.039 (0) [14C]O2[18O]-2 2.977e-21 2.086e-21 -20.526 -20.681 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.034e-15 - O[18O] 2.030e-15 2.033e-15 -14.693 -14.692 0.001 (0) - [18O]2 2.025e-18 2.028e-18 -17.694 -17.693 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 5.752e-16 + O[18O] 5.741e-16 5.750e-16 -15.241 -15.240 0.001 (0) + [18O]2 5.727e-19 5.736e-19 -18.242 -18.241 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.28 -128.14 -2.86 [13C]H4 + [13C]H4(g) -124.19 -127.05 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.65 -21.16 -1.50 [14C][18O]2 - [14C]H4(g) -136.08 -138.94 -2.86 [14C]H4 + [14C]H4(g) -134.99 -137.85 -2.86 [14C]H4 [14C]O2(g) -14.29 -15.76 -1.47 [14C]O2 [14C]O[18O](g) -16.67 -18.46 -1.79 [14C]O[18O] - [18O]2(g) -15.40 -17.69 -2.29 [18O]2 + [18O]2(g) -15.95 -18.24 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -38280,14 +38241,14 @@ O(0) 1.021e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.33 -126.19 -2.86 CH4 + CH4(g) -122.23 -125.09 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.89 -40.04 -3.15 H2 + H2(g) -36.62 -39.77 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.40 -12.29 -2.89 O2 - O[18O](g) -12.10 -14.99 -2.89 O[18O] + O2(g) -9.95 -12.84 -2.89 O2 + O[18O](g) -12.65 -15.54 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -38377,12 +38338,12 @@ Calcite 1.76e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2486e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2727e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.7724e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6546e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6998e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -38402,14 +38363,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.459 Adjusted to redox equilibrium + pe = 11.319 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -38418,20 +38379,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.187 -126.186 0.001 (0) + CH4 0.000e+00 0.000e+00 -125.066 -125.066 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -38439,9 +38400,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -38449,81 +38410,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.078e-08 6.088e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.045 -40.044 0.001 (0) -O(0) 1.021e-12 - O2 5.082e-13 5.091e-13 -12.294 -12.293 0.001 (0) - O[18O] 2.028e-15 2.031e-15 -14.693 -14.692 0.001 (0) +H(0) 3.437e-40 + H2 1.718e-40 1.721e-40 -39.765 -39.764 0.001 (0) +O(0) 2.809e-13 + O2 1.399e-13 1.401e-13 -12.854 -12.853 0.001 (0) + O[18O] 5.582e-16 5.592e-16 -15.253 -15.252 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.143 -128.143 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -127.023 -127.022 0.001 (0) [13C](4) 6.500e-05 H[13C]O3- 5.243e-05 4.797e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) H[13C]O2[18O]- 1.046e-07 9.570e-08 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.046e-07 9.570e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.046e-07 9.570e-08 -6.980 -7.019 -0.039 (0) + H[13C][18O]O2- 1.046e-07 9.570e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.078e-08 6.088e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.576e-08 4.583e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.118e-08 2.184e-08 -7.506 -7.661 -0.155 (0) + CaH[13C]O2[18O]+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.638e-10 3.644e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.953 -138.952 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.833 -137.832 0.001 (0) [14C](4) 1.015e-15 H[14C]O3- 8.197e-16 7.499e-16 -15.086 -15.125 -0.039 (0) [14C]O2 1.706e-16 1.708e-16 -15.768 -15.767 0.001 (0) CaH[14C]O3+ 1.731e-17 1.588e-17 -16.762 -16.799 -0.037 (0) - H[14C][18O]O2- 1.635e-18 1.496e-18 -17.786 -17.825 -0.039 (0) - H[14C]O[18O]O- 1.635e-18 1.496e-18 -17.786 -17.825 -0.039 (0) H[14C]O2[18O]- 1.635e-18 1.496e-18 -17.786 -17.825 -0.039 (0) + H[14C]O[18O]O- 1.635e-18 1.496e-18 -17.786 -17.825 -0.039 (0) + H[14C][18O]O2- 1.635e-18 1.496e-18 -17.786 -17.825 -0.039 (0) Ca[14C]O3 9.489e-19 9.504e-19 -18.023 -18.022 0.001 (0) [14C]O[18O] 7.092e-19 7.104e-19 -18.149 -18.148 0.001 (0) [14C]O3-2 4.868e-19 3.410e-19 -18.313 -18.467 -0.155 (0) CaH[14C]O2[18O]+ 3.453e-20 3.168e-20 -19.462 -19.499 -0.037 (0) - CaH[14C][18O]O2+ 3.453e-20 3.168e-20 -19.462 -19.499 -0.037 (0) CaH[14C]O[18O]O+ 3.453e-20 3.168e-20 -19.462 -19.499 -0.037 (0) + CaH[14C][18O]O2+ 3.453e-20 3.168e-20 -19.462 -19.499 -0.037 (0) Ca[14C]O2[18O] 5.680e-21 5.689e-21 -20.246 -20.245 0.001 (0) - H[14C][18O]O[18O]- 3.263e-21 2.985e-21 -20.486 -20.525 -0.039 (0) H[14C]O[18O]2- 3.263e-21 2.985e-21 -20.486 -20.525 -0.039 (0) H[14C][18O]2O- 3.263e-21 2.985e-21 -20.486 -20.525 -0.039 (0) + H[14C][18O]O[18O]- 3.263e-21 2.985e-21 -20.486 -20.525 -0.039 (0) [14C]O2[18O]-2 2.914e-21 2.041e-21 -20.536 -20.690 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.032e-15 - O[18O] 2.028e-15 2.031e-15 -14.693 -14.692 0.001 (0) - [18O]2 2.023e-18 2.027e-18 -17.694 -17.693 0.001 (0) +[18O](0) 5.594e-16 + O[18O] 5.582e-16 5.592e-16 -15.253 -15.252 0.001 (0) + [18O]2 5.569e-19 5.578e-19 -18.254 -18.254 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.28 -128.14 -2.86 [13C]H4 + [13C]H4(g) -124.16 -127.02 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.66 -21.17 -1.50 [14C][18O]2 - [14C]H4(g) -136.09 -138.95 -2.86 [14C]H4 + [14C]H4(g) -134.97 -137.83 -2.86 [14C]H4 [14C]O2(g) -14.30 -15.77 -1.47 [14C]O2 [14C]O[18O](g) -16.68 -18.47 -1.79 [14C]O[18O] - [18O]2(g) -15.40 -17.69 -2.29 [18O]2 + [18O]2(g) -15.96 -18.25 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -38537,14 +38498,14 @@ O(0) 1.021e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.33 -126.19 -2.86 CH4 + CH4(g) -122.21 -125.07 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.89 -40.04 -3.15 H2 + H2(g) -36.61 -39.76 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.40 -12.29 -2.89 O2 - O[18O](g) -12.10 -14.99 -2.89 O[18O] + O2(g) -9.96 -12.85 -2.89 O2 + O[18O](g) -12.66 -15.55 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -38634,12 +38595,12 @@ Calcite 1.81e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2466e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2384e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5858e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6959e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -38659,14 +38620,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.463 Adjusted to redox equilibrium + pe = 11.328 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -38675,30 +38636,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.219 -126.219 0.001 (0) + CH4 0.000e+00 0.000e+00 -125.139 -125.138 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -38706,50 +38667,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.078e-08 6.088e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.053 -40.052 0.001 (0) -O(0) 1.059e-12 - O2 5.275e-13 5.284e-13 -12.278 -12.277 0.001 (0) - O[18O] 2.105e-15 2.109e-15 -14.677 -14.676 0.001 (0) +H(0) 3.297e-40 + H2 1.648e-40 1.651e-40 -39.783 -39.782 0.001 (0) +O(0) 3.053e-13 + O2 1.520e-13 1.523e-13 -12.818 -12.817 0.001 (0) + O[18O] 6.067e-16 6.077e-16 -15.217 -15.216 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.176 -128.175 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -127.095 -127.095 0.001 (0) [13C](4) 6.500e-05 H[13C]O3- 5.243e-05 4.797e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C][18O]O2- 1.046e-07 9.571e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.571e-08 -6.980 -7.019 -0.039 (0) H[13C]O2[18O]- 1.046e-07 9.571e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.571e-08 -6.980 -7.019 -0.039 (0) + H[13C][18O]O2- 1.046e-07 9.571e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.078e-08 6.088e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.576e-08 4.584e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.118e-08 2.184e-08 -7.506 -7.661 -0.155 (0) - CaH[13C][18O]O2+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) + CaH[13C][18O]O2+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.638e-10 3.644e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.995 -138.994 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.914 -137.913 0.001 (0) [14C](4) 9.935e-16 H[14C]O3- 8.025e-16 7.342e-16 -15.096 -15.134 -0.039 (0) [14C]O2 1.670e-16 1.673e-16 -15.777 -15.777 0.001 (0) CaH[14C]O3+ 1.695e-17 1.555e-17 -16.771 -16.808 -0.037 (0) - H[14C][18O]O2- 1.601e-18 1.465e-18 -17.796 -17.834 -0.039 (0) - H[14C]O[18O]O- 1.601e-18 1.465e-18 -17.796 -17.834 -0.039 (0) H[14C]O2[18O]- 1.601e-18 1.465e-18 -17.796 -17.834 -0.039 (0) + H[14C]O[18O]O- 1.601e-18 1.465e-18 -17.796 -17.834 -0.039 (0) + H[14C][18O]O2- 1.601e-18 1.465e-18 -17.796 -17.834 -0.039 (0) Ca[14C]O3 9.290e-19 9.306e-19 -18.032 -18.031 0.001 (0) [14C]O[18O] 6.944e-19 6.955e-19 -18.158 -18.158 0.001 (0) [14C]O3-2 4.766e-19 3.339e-19 -18.322 -18.476 -0.155 (0) CaH[14C]O2[18O]+ 3.381e-20 3.102e-20 -19.471 -19.508 -0.037 (0) - CaH[14C][18O]O2+ 3.381e-20 3.102e-20 -19.471 -19.508 -0.037 (0) CaH[14C]O[18O]O+ 3.381e-20 3.102e-20 -19.471 -19.508 -0.037 (0) + CaH[14C][18O]O2+ 3.381e-20 3.102e-20 -19.471 -19.508 -0.037 (0) Ca[14C]O2[18O] 5.561e-21 5.570e-21 -20.255 -20.254 0.001 (0) H[14C]O[18O]2- 3.195e-21 2.923e-21 -20.496 -20.534 -0.039 (0) H[14C][18O]2O- 3.195e-21 2.923e-21 -20.496 -20.534 -0.039 (0) @@ -38758,29 +38719,29 @@ O(0) 1.059e-12 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.109e-15 - O[18O] 2.105e-15 2.109e-15 -14.677 -14.676 0.001 (0) - [18O]2 2.100e-18 2.103e-18 -17.678 -17.677 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 6.079e-16 + O[18O] 6.067e-16 6.077e-16 -15.217 -15.216 0.001 (0) + [18O]2 6.052e-19 6.062e-19 -18.218 -18.217 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.32 -128.18 -2.86 [13C]H4 + [13C]H4(g) -124.23 -127.09 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.67 -21.18 -1.50 [14C][18O]2 - [14C]H4(g) -136.13 -138.99 -2.86 [14C]H4 + [14C]H4(g) -135.05 -137.91 -2.86 [14C]H4 [14C]O2(g) -14.31 -15.78 -1.47 [14C]O2 [14C]O[18O](g) -16.69 -18.48 -1.79 [14C]O[18O] - [18O]2(g) -15.39 -17.68 -2.29 [18O]2 + [18O]2(g) -15.93 -18.22 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -38794,14 +38755,14 @@ O(0) 1.059e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.36 -126.22 -2.86 CH4 + CH4(g) -122.28 -125.14 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.90 -40.05 -3.15 H2 + H2(g) -36.63 -39.78 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.38 -12.28 -2.89 O2 - O[18O](g) -12.08 -14.98 -2.89 O[18O] + O2(g) -9.92 -12.82 -2.89 O2 + O[18O](g) -12.62 -15.52 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -38891,12 +38852,12 @@ Calcite 1.86e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.275e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2343e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5976e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6414e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -38916,14 +38877,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.461 Adjusted to redox equilibrium + pe = 11.324 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -38932,19 +38893,19 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.203 -126.202 0.001 (0) + CH4 0.000e+00 0.000e+00 -125.102 -125.101 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -38953,9 +38914,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -38963,23 +38924,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.079e-08 6.089e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.049 -40.048 0.001 (0) -O(0) 1.040e-12 - O2 5.177e-13 5.185e-13 -12.286 -12.285 0.001 (0) - O[18O] 2.066e-15 2.069e-15 -14.685 -14.684 0.001 (0) +H(0) 3.367e-40 + H2 1.683e-40 1.686e-40 -39.774 -39.773 0.001 (0) +O(0) 2.927e-13 + O2 1.458e-13 1.460e-13 -12.836 -12.836 0.001 (0) + O[18O] 5.817e-16 5.826e-16 -15.235 -15.235 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.159 -128.159 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -127.059 -127.058 0.001 (0) [13C](4) 6.501e-05 H[13C]O3- 5.244e-05 4.797e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.102e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.046e-07 9.571e-08 -6.980 -7.019 -0.039 (0) H[13C]O2[18O]- 1.046e-07 9.571e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.571e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.571e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.079e-08 6.089e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.576e-08 4.584e-08 -7.339 -7.339 0.001 (0) @@ -38988,56 +38949,56 @@ O(0) 1.040e-12 CaH[13C]O[18O]O+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.638e-10 3.644e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.308e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.987 -138.987 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.887 -137.886 0.001 (0) [14C](4) 9.731e-16 H[14C]O3- 7.861e-16 7.192e-16 -15.105 -15.143 -0.039 (0) [14C]O2 1.636e-16 1.638e-16 -15.786 -15.786 0.001 (0) CaH[14C]O3+ 1.660e-17 1.523e-17 -16.780 -16.817 -0.037 (0) - H[14C][18O]O2- 1.568e-18 1.435e-18 -17.805 -17.843 -0.039 (0) - H[14C]O[18O]O- 1.568e-18 1.435e-18 -17.805 -17.843 -0.039 (0) H[14C]O2[18O]- 1.568e-18 1.435e-18 -17.805 -17.843 -0.039 (0) + H[14C]O[18O]O- 1.568e-18 1.435e-18 -17.805 -17.843 -0.039 (0) + H[14C][18O]O2- 1.568e-18 1.435e-18 -17.805 -17.843 -0.039 (0) Ca[14C]O3 9.100e-19 9.115e-19 -18.041 -18.040 0.001 (0) [14C]O[18O] 6.802e-19 6.813e-19 -18.167 -18.167 0.001 (0) [14C]O3-2 4.668e-19 3.270e-19 -18.331 -18.485 -0.155 (0) CaH[14C]O2[18O]+ 3.312e-20 3.038e-20 -19.480 -19.517 -0.037 (0) - CaH[14C][18O]O2+ 3.312e-20 3.038e-20 -19.480 -19.517 -0.037 (0) CaH[14C]O[18O]O+ 3.312e-20 3.038e-20 -19.480 -19.517 -0.037 (0) + CaH[14C][18O]O2+ 3.312e-20 3.038e-20 -19.480 -19.517 -0.037 (0) Ca[14C]O2[18O] 5.447e-21 5.456e-21 -20.264 -20.263 0.001 (0) + H[14C]O[18O]2- 3.129e-21 2.863e-21 -20.505 -20.543 -0.039 (0) H[14C][18O]2O- 3.129e-21 2.863e-21 -20.505 -20.543 -0.039 (0) H[14C][18O]O[18O]- 3.129e-21 2.863e-21 -20.505 -20.543 -0.039 (0) - H[14C]O[18O]2- 3.129e-21 2.863e-21 -20.505 -20.543 -0.039 (0) [14C]O2[18O]-2 2.794e-21 1.957e-21 -20.554 -20.708 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.070e-15 - O[18O] 2.066e-15 2.069e-15 -14.685 -14.684 0.001 (0) - [18O]2 2.061e-18 2.064e-18 -17.686 -17.685 0.001 (0) +[18O](0) 5.829e-16 + O[18O] 5.817e-16 5.826e-16 -15.235 -15.235 0.001 (0) + [18O]2 5.803e-19 5.812e-19 -18.236 -18.236 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.30 -128.16 -2.86 [13C]H4 + [13C]H4(g) -124.20 -127.06 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.68 -21.19 -1.50 [14C][18O]2 - [14C]H4(g) -136.13 -138.99 -2.86 [14C]H4 + [14C]H4(g) -135.03 -137.89 -2.86 [14C]H4 [14C]O2(g) -14.32 -15.79 -1.47 [14C]O2 [14C]O[18O](g) -16.70 -18.49 -1.79 [14C]O[18O] - [18O]2(g) -15.39 -17.69 -2.29 [18O]2 + [18O]2(g) -15.95 -18.24 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -39051,14 +39012,14 @@ O(0) 1.040e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.34 -126.20 -2.86 CH4 + CH4(g) -122.24 -125.10 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.90 -40.05 -3.15 H2 + H2(g) -36.62 -39.77 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.39 -12.29 -2.89 O2 - O[18O](g) -12.09 -14.99 -2.89 O[18O] + O2(g) -9.94 -12.84 -2.89 O2 + O[18O](g) -12.64 -15.54 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -39148,12 +39109,12 @@ Calcite 1.91e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2478e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2714e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.705e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6787e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -39173,14 +39134,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.462 Adjusted to redox equilibrium + pe = 11.330 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.535e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.824e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -39189,30 +39150,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.211 -126.210 0.001 (0) + CH4 0.000e+00 0.000e+00 -125.152 -125.151 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -39220,81 +39181,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.079e-08 6.089e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.051 -40.050 0.001 (0) -O(0) 1.050e-12 - O2 5.227e-13 5.235e-13 -12.282 -12.281 0.001 (0) - O[18O] 2.086e-15 2.089e-15 -14.681 -14.680 0.001 (0) +H(0) 3.273e-40 + H2 1.636e-40 1.639e-40 -39.786 -39.785 0.001 (0) +O(0) 3.098e-13 + O2 1.543e-13 1.546e-13 -12.812 -12.811 0.001 (0) + O[18O] 6.158e-16 6.168e-16 -15.211 -15.210 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.168 -128.167 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -127.108 -127.107 0.001 (0) [13C](4) 6.501e-05 H[13C]O3- 5.244e-05 4.797e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.102e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) H[13C]O2[18O]- 1.046e-07 9.572e-08 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.046e-07 9.572e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.046e-07 9.572e-08 -6.980 -7.019 -0.039 (0) + H[13C][18O]O2- 1.046e-07 9.572e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.079e-08 6.089e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.577e-08 4.584e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.118e-08 2.185e-08 -7.506 -7.661 -0.155 (0) + CaH[13C]O2[18O]+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.639e-10 3.645e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.004 -139.004 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.945 -137.944 0.001 (0) [14C](4) 9.536e-16 H[14C]O3- 7.703e-16 7.047e-16 -15.113 -15.152 -0.039 (0) [14C]O2 1.603e-16 1.605e-16 -15.795 -15.794 0.001 (0) CaH[14C]O3+ 1.627e-17 1.492e-17 -16.789 -16.826 -0.037 (0) - H[14C][18O]O2- 1.537e-18 1.406e-18 -17.813 -17.852 -0.039 (0) - H[14C]O[18O]O- 1.537e-18 1.406e-18 -17.813 -17.852 -0.039 (0) H[14C]O2[18O]- 1.537e-18 1.406e-18 -17.813 -17.852 -0.039 (0) + H[14C]O[18O]O- 1.537e-18 1.406e-18 -17.813 -17.852 -0.039 (0) + H[14C][18O]O2- 1.537e-18 1.406e-18 -17.813 -17.852 -0.039 (0) Ca[14C]O3 8.917e-19 8.932e-19 -18.050 -18.049 0.001 (0) [14C]O[18O] 6.665e-19 6.676e-19 -18.176 -18.175 0.001 (0) [14C]O3-2 4.574e-19 3.205e-19 -18.340 -18.494 -0.155 (0) CaH[14C]O2[18O]+ 3.245e-20 2.977e-20 -19.489 -19.526 -0.037 (0) - CaH[14C][18O]O2+ 3.245e-20 2.977e-20 -19.489 -19.526 -0.037 (0) CaH[14C]O[18O]O+ 3.245e-20 2.977e-20 -19.489 -19.526 -0.037 (0) + CaH[14C][18O]O2+ 3.245e-20 2.977e-20 -19.489 -19.526 -0.037 (0) Ca[14C]O2[18O] 5.338e-21 5.346e-21 -20.273 -20.272 0.001 (0) - H[14C][18O]O[18O]- 3.066e-21 2.805e-21 -20.513 -20.552 -0.039 (0) H[14C]O[18O]2- 3.066e-21 2.805e-21 -20.513 -20.552 -0.039 (0) H[14C][18O]2O- 3.066e-21 2.805e-21 -20.513 -20.552 -0.039 (0) + H[14C][18O]O[18O]- 3.066e-21 2.805e-21 -20.513 -20.552 -0.039 (0) [14C]O2[18O]-2 2.738e-21 1.918e-21 -20.563 -20.717 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.090e-15 - O[18O] 2.086e-15 2.089e-15 -14.681 -14.680 0.001 (0) - [18O]2 2.081e-18 2.084e-18 -17.682 -17.681 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 6.170e-16 + O[18O] 6.158e-16 6.168e-16 -15.211 -15.210 0.001 (0) + [18O]2 6.143e-19 6.153e-19 -18.212 -18.211 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.31 -128.17 -2.86 [13C]H4 + [13C]H4(g) -124.25 -127.11 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.69 -21.19 -1.50 [14C][18O]2 - [14C]H4(g) -136.14 -139.00 -2.86 [14C]H4 + [14C]H4(g) -135.08 -137.94 -2.86 [14C]H4 [14C]O2(g) -14.33 -15.79 -1.47 [14C]O2 [14C]O[18O](g) -16.71 -18.49 -1.79 [14C]O[18O] - [18O]2(g) -15.39 -17.68 -2.29 [18O]2 + [18O]2(g) -15.92 -18.21 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -39308,14 +39269,14 @@ O(0) 1.050e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.35 -126.21 -2.86 CH4 + CH4(g) -122.29 -125.15 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.90 -40.05 -3.15 H2 + H2(g) -36.64 -39.79 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.39 -12.28 -2.89 O2 - O[18O](g) -12.09 -14.98 -2.89 O[18O] + O2(g) -9.92 -12.81 -2.89 O2 + O[18O](g) -12.62 -15.51 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -39405,12 +39366,12 @@ Calcite 1.96e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2619e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2845e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 4.4409e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7805e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7544e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -39430,14 +39391,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.463 Adjusted to redox equilibrium + pe = 11.328 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.534e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.823e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -39446,20 +39407,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.214 -126.213 0.001 (0) + CH4 0.000e+00 0.000e+00 -125.140 -125.139 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -39467,9 +39428,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -39477,50 +39438,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.079e-08 6.089e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.052 -40.051 0.001 (0) -O(0) 1.053e-12 - O2 5.242e-13 5.251e-13 -12.280 -12.280 0.001 (0) - O[18O] 2.092e-15 2.095e-15 -14.679 -14.679 0.001 (0) +H(0) 3.295e-40 + H2 1.647e-40 1.650e-40 -39.783 -39.782 0.001 (0) +O(0) 3.057e-13 + O2 1.522e-13 1.525e-13 -12.818 -12.817 0.001 (0) + O[18O] 6.074e-16 6.084e-16 -15.217 -15.216 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.170 -128.170 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -127.096 -127.095 0.001 (0) [13C](4) 6.501e-05 H[13C]O3- 5.244e-05 4.798e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.102e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C][18O]O2- 1.046e-07 9.572e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.572e-08 -6.980 -7.019 -0.039 (0) H[13C]O2[18O]- 1.046e-07 9.572e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.572e-08 -6.980 -7.019 -0.039 (0) + H[13C][18O]O2- 1.046e-07 9.572e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.079e-08 6.089e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.577e-08 4.585e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.119e-08 2.185e-08 -7.506 -7.661 -0.155 (0) - CaH[13C][18O]O2+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) + CaH[13C][18O]O2+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.639e-10 3.645e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.016 -139.015 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.942 -137.941 0.001 (0) [14C](4) 9.348e-16 H[14C]O3- 7.551e-16 6.909e-16 -15.122 -15.161 -0.039 (0) [14C]O2 1.571e-16 1.574e-16 -15.804 -15.803 0.001 (0) CaH[14C]O3+ 1.595e-17 1.463e-17 -16.797 -16.835 -0.037 (0) - H[14C][18O]O2- 1.507e-18 1.378e-18 -17.822 -17.861 -0.039 (0) - H[14C]O[18O]O- 1.507e-18 1.378e-18 -17.822 -17.861 -0.039 (0) H[14C]O2[18O]- 1.507e-18 1.378e-18 -17.822 -17.861 -0.039 (0) + H[14C]O[18O]O- 1.507e-18 1.378e-18 -17.822 -17.861 -0.039 (0) + H[14C][18O]O2- 1.507e-18 1.378e-18 -17.822 -17.861 -0.039 (0) Ca[14C]O3 8.742e-19 8.756e-19 -18.058 -18.058 0.001 (0) [14C]O[18O] 6.534e-19 6.545e-19 -18.185 -18.184 0.001 (0) [14C]O3-2 4.484e-19 3.142e-19 -18.348 -18.503 -0.155 (0) CaH[14C]O2[18O]+ 3.182e-20 2.919e-20 -19.497 -19.535 -0.037 (0) - CaH[14C][18O]O2+ 3.182e-20 2.919e-20 -19.497 -19.535 -0.037 (0) CaH[14C]O[18O]O+ 3.182e-20 2.919e-20 -19.497 -19.535 -0.037 (0) + CaH[14C][18O]O2+ 3.182e-20 2.919e-20 -19.497 -19.535 -0.037 (0) Ca[14C]O2[18O] 5.232e-21 5.241e-21 -20.281 -20.281 0.001 (0) H[14C]O[18O]2- 3.006e-21 2.750e-21 -20.522 -20.561 -0.039 (0) H[14C][18O]2O- 3.006e-21 2.750e-21 -20.522 -20.561 -0.039 (0) @@ -39529,29 +39490,29 @@ O(0) 1.053e-12 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.096e-15 - O[18O] 2.092e-15 2.095e-15 -14.679 -14.679 0.001 (0) - [18O]2 2.087e-18 2.090e-18 -17.681 -17.680 0.001 (0) +[18O](0) 6.086e-16 + O[18O] 6.074e-16 6.084e-16 -15.217 -15.216 0.001 (0) + [18O]2 6.060e-19 6.070e-19 -18.218 -18.217 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.31 -128.17 -2.86 [13C]H4 + [13C]H4(g) -124.24 -127.10 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.70 -21.20 -1.50 [14C][18O]2 - [14C]H4(g) -136.15 -139.01 -2.86 [14C]H4 + [14C]H4(g) -135.08 -137.94 -2.86 [14C]H4 [14C]O2(g) -14.33 -15.80 -1.47 [14C]O2 [14C]O[18O](g) -16.72 -18.50 -1.79 [14C]O[18O] - [18O]2(g) -15.39 -17.68 -2.29 [18O]2 + [18O]2(g) -15.93 -18.22 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -39565,14 +39526,14 @@ O(0) 1.053e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.35 -126.21 -2.86 CH4 + CH4(g) -122.28 -125.14 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.90 -40.05 -3.15 H2 + H2(g) -36.63 -39.78 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.39 -12.28 -2.89 O2 - O[18O](g) -12.09 -14.98 -2.89 O[18O] + O2(g) -9.92 -12.82 -2.89 O2 + O[18O](g) -12.62 -15.52 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -39636,7 +39597,7 @@ Calcite 2.01e-02 R(18O) 1.99519e-03 -4.99 permil R(13C) 1.11334e-02 -4.1896 permil - R(14C) 1.56986e-13 13.35 pmc + R(14C) 1.56985e-13 13.35 pmc R(18O) H2O(l) 1.99519e-03 -4.9915 permil R(18O) OH- 1.92122e-03 -41.879 permil R(18O) H3O+ 2.04133e-03 18.016 permil @@ -39662,12 +39623,12 @@ Calcite 2.01e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.285e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2752e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7054e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5427e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -39687,14 +39648,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.462 Adjusted to redox equilibrium + pe = 11.329 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.534e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.823e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -39703,30 +39664,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.210 -126.209 0.001 (0) + CH4 0.000e+00 0.000e+00 -125.146 -125.145 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -39734,23 +39695,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.080e-08 6.090e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.051 -40.050 0.001 (0) -O(0) 1.048e-12 - O2 5.218e-13 5.226e-13 -12.283 -12.282 0.001 (0) - O[18O] 2.082e-15 2.085e-15 -14.682 -14.681 0.001 (0) +H(0) 3.283e-40 + H2 1.641e-40 1.644e-40 -39.785 -39.784 0.001 (0) +O(0) 3.079e-13 + O2 1.533e-13 1.536e-13 -12.814 -12.814 0.001 (0) + O[18O] 6.119e-16 6.129e-16 -15.213 -15.213 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.166 -128.165 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -127.103 -127.102 0.001 (0) [13C](4) 6.502e-05 H[13C]O3- 5.244e-05 4.798e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) H[13C]O2[18O]- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.080e-08 6.090e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.577e-08 4.585e-08 -7.339 -7.339 0.001 (0) @@ -39759,56 +39720,56 @@ O(0) 1.048e-12 CaH[13C]O[18O]O+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.639e-10 3.645e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.020 -139.019 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.956 -137.956 0.001 (0) [14C](4) 9.168e-16 H[14C]O3- 7.406e-16 6.775e-16 -15.130 -15.169 -0.039 (0) [14C]O2 1.541e-16 1.544e-16 -15.812 -15.811 0.001 (0) CaH[14C]O3+ 1.564e-17 1.435e-17 -16.806 -16.843 -0.037 (0) - H[14C][18O]O2- 1.478e-18 1.352e-18 -17.830 -17.869 -0.039 (0) - H[14C]O[18O]O- 1.478e-18 1.352e-18 -17.830 -17.869 -0.039 (0) H[14C]O2[18O]- 1.478e-18 1.352e-18 -17.830 -17.869 -0.039 (0) + H[14C]O[18O]O- 1.478e-18 1.352e-18 -17.830 -17.869 -0.039 (0) + H[14C][18O]O2- 1.478e-18 1.352e-18 -17.830 -17.869 -0.039 (0) Ca[14C]O3 8.573e-19 8.587e-19 -18.067 -18.066 0.001 (0) [14C]O[18O] 6.408e-19 6.418e-19 -18.193 -18.193 0.001 (0) [14C]O3-2 4.398e-19 3.081e-19 -18.357 -18.511 -0.155 (0) CaH[14C]O2[18O]+ 3.120e-20 2.862e-20 -19.506 -19.543 -0.037 (0) - CaH[14C][18O]O2+ 3.120e-20 2.862e-20 -19.506 -19.543 -0.037 (0) CaH[14C]O[18O]O+ 3.120e-20 2.862e-20 -19.506 -19.543 -0.037 (0) + CaH[14C][18O]O2+ 3.120e-20 2.862e-20 -19.506 -19.543 -0.037 (0) Ca[14C]O2[18O] 5.131e-21 5.140e-21 -20.290 -20.289 0.001 (0) + H[14C]O[18O]2- 2.948e-21 2.697e-21 -20.530 -20.569 -0.039 (0) H[14C][18O]2O- 2.948e-21 2.697e-21 -20.530 -20.569 -0.039 (0) H[14C][18O]O[18O]- 2.948e-21 2.697e-21 -20.530 -20.569 -0.039 (0) - H[14C]O[18O]2- 2.948e-21 2.697e-21 -20.530 -20.569 -0.039 (0) [14C]O2[18O]-2 2.632e-21 1.844e-21 -20.580 -20.734 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.086e-15 - O[18O] 2.082e-15 2.085e-15 -14.682 -14.681 0.001 (0) - [18O]2 2.077e-18 2.080e-18 -17.683 -17.682 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 6.131e-16 + O[18O] 6.119e-16 6.129e-16 -15.213 -15.213 0.001 (0) + [18O]2 6.104e-19 6.114e-19 -18.214 -18.214 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.31 -128.17 -2.86 [13C]H4 + [13C]H4(g) -124.24 -127.10 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.71 -21.21 -1.50 [14C][18O]2 - [14C]H4(g) -136.16 -139.02 -2.86 [14C]H4 + [14C]H4(g) -135.10 -137.96 -2.86 [14C]H4 [14C]O2(g) -14.34 -15.81 -1.47 [14C]O2 [14C]O[18O](g) -16.72 -18.51 -1.79 [14C]O[18O] - [18O]2(g) -15.39 -17.68 -2.29 [18O]2 + [18O]2(g) -15.92 -18.21 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -39822,14 +39783,14 @@ O(0) 1.048e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.35 -126.21 -2.86 CH4 + CH4(g) -122.29 -125.15 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.90 -40.05 -3.15 H2 + H2(g) -36.63 -39.78 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.39 -12.28 -2.89 O2 - O[18O](g) -12.09 -14.98 -2.89 O[18O] + O2(g) -9.92 -12.81 -2.89 O2 + O[18O](g) -12.62 -15.51 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -39919,12 +39880,12 @@ Calcite 2.06e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2201e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.241e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7145e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6863e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -39944,14 +39905,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.462 Adjusted to redox equilibrium + pe = 11.327 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.534e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.823e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -39960,20 +39921,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.205 -126.205 0.001 (0) + CH4 0.000e+00 0.000e+00 -125.131 -125.131 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -39981,9 +39942,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -39991,81 +39952,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.080e-08 6.090e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.050 -40.049 0.001 (0) -O(0) 1.043e-12 - O2 5.192e-13 5.201e-13 -12.285 -12.284 0.001 (0) - O[18O] 2.072e-15 2.075e-15 -14.684 -14.683 0.001 (0) +H(0) 3.311e-40 + H2 1.655e-40 1.658e-40 -39.781 -39.780 0.001 (0) +O(0) 3.027e-13 + O2 1.507e-13 1.510e-13 -12.822 -12.821 0.001 (0) + O[18O] 6.015e-16 6.025e-16 -15.221 -15.220 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.162 -128.161 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -127.088 -127.087 0.001 (0) [13C](4) 6.502e-05 H[13C]O3- 5.245e-05 4.798e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) H[13C]O2[18O]- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) + H[13C][18O]O2- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.080e-08 6.090e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.577e-08 4.585e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.119e-08 2.185e-08 -7.506 -7.661 -0.155 (0) + CaH[13C]O2[18O]+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.639e-10 3.645e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.024 -139.023 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.950 -137.949 0.001 (0) [14C](4) 8.994e-16 H[14C]O3- 7.265e-16 6.647e-16 -15.139 -15.177 -0.039 (0) [14C]O2 1.512e-16 1.514e-16 -15.821 -15.820 0.001 (0) CaH[14C]O3+ 1.534e-17 1.407e-17 -16.814 -16.852 -0.037 (0) - H[14C][18O]O2- 1.450e-18 1.326e-18 -17.839 -17.877 -0.039 (0) - H[14C]O[18O]O- 1.450e-18 1.326e-18 -17.839 -17.877 -0.039 (0) H[14C]O2[18O]- 1.450e-18 1.326e-18 -17.839 -17.877 -0.039 (0) + H[14C]O[18O]O- 1.450e-18 1.326e-18 -17.839 -17.877 -0.039 (0) + H[14C][18O]O2- 1.450e-18 1.326e-18 -17.839 -17.877 -0.039 (0) Ca[14C]O3 8.411e-19 8.425e-19 -18.075 -18.074 0.001 (0) [14C]O[18O] 6.287e-19 6.297e-19 -18.202 -18.201 0.001 (0) [14C]O3-2 4.315e-19 3.023e-19 -18.365 -18.520 -0.155 (0) CaH[14C]O2[18O]+ 3.061e-20 2.808e-20 -19.514 -19.552 -0.037 (0) - CaH[14C][18O]O2+ 3.061e-20 2.808e-20 -19.514 -19.552 -0.037 (0) CaH[14C]O[18O]O+ 3.061e-20 2.808e-20 -19.514 -19.552 -0.037 (0) + CaH[14C][18O]O2+ 3.061e-20 2.808e-20 -19.514 -19.552 -0.037 (0) Ca[14C]O2[18O] 5.034e-21 5.043e-21 -20.298 -20.297 0.001 (0) - H[14C][18O]O[18O]- 2.892e-21 2.646e-21 -20.539 -20.577 -0.039 (0) H[14C]O[18O]2- 2.892e-21 2.646e-21 -20.539 -20.577 -0.039 (0) H[14C][18O]2O- 2.892e-21 2.646e-21 -20.539 -20.577 -0.039 (0) + H[14C][18O]O[18O]- 2.892e-21 2.646e-21 -20.539 -20.577 -0.039 (0) [14C]O2[18O]-2 2.583e-21 1.809e-21 -20.588 -20.743 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.076e-15 - O[18O] 2.072e-15 2.075e-15 -14.684 -14.683 0.001 (0) - [18O]2 2.067e-18 2.070e-18 -17.685 -17.684 0.001 (0) +[18O](0) 6.027e-16 + O[18O] 6.015e-16 6.025e-16 -15.221 -15.220 0.001 (0) + [18O]2 6.001e-19 6.011e-19 -18.222 -18.221 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.30 -128.16 -2.86 [13C]H4 + [13C]H4(g) -124.23 -127.09 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.72 -21.22 -1.50 [14C][18O]2 - [14C]H4(g) -136.16 -139.02 -2.86 [14C]H4 + [14C]H4(g) -135.09 -137.95 -2.86 [14C]H4 [14C]O2(g) -14.35 -15.82 -1.47 [14C]O2 [14C]O[18O](g) -16.73 -18.52 -1.79 [14C]O[18O] - [18O]2(g) -15.39 -17.68 -2.29 [18O]2 + [18O]2(g) -15.93 -18.22 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -40079,14 +40040,14 @@ O(0) 1.043e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.34 -126.20 -2.86 CH4 + CH4(g) -122.27 -125.13 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.90 -40.05 -3.15 H2 + H2(g) -36.63 -39.78 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.39 -12.28 -2.89 O2 - O[18O](g) -12.09 -14.98 -2.89 O[18O] + O2(g) -9.93 -12.82 -2.89 O2 + O[18O](g) -12.63 -15.52 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -40176,12 +40137,12 @@ Calcite 2.11e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2623e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2512e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 0 0 +Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5711e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6798e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -40201,14 +40162,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.461 Adjusted to redox equilibrium + pe = 11.318 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.533e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.823e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -40217,30 +40178,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.196 -126.195 0.001 (0) + CH4 0.000e+00 0.000e+00 -125.055 -125.054 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -40248,50 +40209,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.080e-08 6.090e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.047 -40.047 0.001 (0) -O(0) 1.031e-12 - O2 5.136e-13 5.145e-13 -12.289 -12.289 0.001 (0) - O[18O] 2.050e-15 2.053e-15 -14.688 -14.688 0.001 (0) +H(0) 3.459e-40 + H2 1.730e-40 1.733e-40 -39.762 -39.761 0.001 (0) +O(0) 2.773e-13 + O2 1.381e-13 1.383e-13 -12.860 -12.859 0.001 (0) + O[18O] 5.510e-16 5.519e-16 -15.259 -15.258 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.153 -128.152 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -127.011 -127.011 0.001 (0) [13C](4) 6.503e-05 H[13C]O3- 5.245e-05 4.798e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C][18O]O2- 1.046e-07 9.574e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.574e-08 -6.980 -7.019 -0.039 (0) H[13C]O2[18O]- 1.046e-07 9.574e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.574e-08 -6.980 -7.019 -0.039 (0) + H[13C][18O]O2- 1.046e-07 9.574e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.080e-08 6.090e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.578e-08 4.585e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.119e-08 2.185e-08 -7.506 -7.661 -0.155 (0) - CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) + CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.639e-10 3.645e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.023 -139.022 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.882 -137.881 0.001 (0) [14C](4) 8.827e-16 H[14C]O3- 7.130e-16 6.523e-16 -15.147 -15.186 -0.039 (0) [14C]O2 1.484e-16 1.486e-16 -15.829 -15.828 0.001 (0) CaH[14C]O3+ 1.506e-17 1.381e-17 -16.822 -16.860 -0.037 (0) - H[14C][18O]O2- 1.423e-18 1.302e-18 -17.847 -17.886 -0.039 (0) - H[14C]O[18O]O- 1.423e-18 1.302e-18 -17.847 -17.886 -0.039 (0) H[14C]O2[18O]- 1.423e-18 1.302e-18 -17.847 -17.886 -0.039 (0) + H[14C]O[18O]O- 1.423e-18 1.302e-18 -17.847 -17.886 -0.039 (0) + H[14C][18O]O2- 1.423e-18 1.302e-18 -17.847 -17.886 -0.039 (0) Ca[14C]O3 8.254e-19 8.268e-19 -18.083 -18.083 0.001 (0) [14C]O[18O] 6.170e-19 6.180e-19 -18.210 -18.209 0.001 (0) [14C]O3-2 4.234e-19 2.966e-19 -18.373 -18.528 -0.155 (0) CaH[14C]O2[18O]+ 3.004e-20 2.756e-20 -19.522 -19.560 -0.037 (0) - CaH[14C][18O]O2+ 3.004e-20 2.756e-20 -19.522 -19.560 -0.037 (0) CaH[14C]O[18O]O+ 3.004e-20 2.756e-20 -19.522 -19.560 -0.037 (0) + CaH[14C][18O]O2+ 3.004e-20 2.756e-20 -19.522 -19.560 -0.037 (0) Ca[14C]O2[18O] 4.941e-21 4.949e-21 -20.306 -20.305 0.001 (0) H[14C]O[18O]2- 2.838e-21 2.597e-21 -20.547 -20.586 -0.039 (0) H[14C][18O]2O- 2.838e-21 2.597e-21 -20.547 -20.586 -0.039 (0) @@ -40300,29 +40261,29 @@ O(0) 1.031e-12 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.054e-15 - O[18O] 2.050e-15 2.053e-15 -14.688 -14.688 0.001 (0) - [18O]2 2.045e-18 2.048e-18 -17.689 -17.689 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 5.521e-16 + O[18O] 5.510e-16 5.519e-16 -15.259 -15.258 0.001 (0) + [18O]2 5.497e-19 5.506e-19 -18.260 -18.259 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.29 -128.15 -2.86 [13C]H4 + [13C]H4(g) -124.15 -127.01 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.72 -21.23 -1.50 [14C][18O]2 - [14C]H4(g) -136.16 -139.02 -2.86 [14C]H4 + [14C]H4(g) -135.02 -137.88 -2.86 [14C]H4 [14C]O2(g) -14.36 -15.83 -1.47 [14C]O2 [14C]O[18O](g) -16.74 -18.53 -1.79 [14C]O[18O] - [18O]2(g) -15.40 -17.69 -2.29 [18O]2 + [18O]2(g) -15.97 -18.26 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -40336,14 +40297,14 @@ O(0) 1.031e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.34 -126.20 -2.86 CH4 + CH4(g) -122.19 -125.05 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.90 -40.05 -3.15 H2 + H2(g) -36.61 -39.76 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.40 -12.29 -2.89 O2 - O[18O](g) -12.10 -14.99 -2.89 O[18O] + O2(g) -9.97 -12.86 -2.89 O2 + O[18O](g) -12.67 -15.56 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -40433,12 +40394,12 @@ Calcite 2.16e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2841e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2732e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 +Alpha 18O HCO3-/H2O(l) 1 1.3323e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7304e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6359e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -40458,14 +40419,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.460 Adjusted to redox equilibrium + pe = 11.320 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.533e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.823e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -40474,19 +40435,19 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.195 -126.195 0.001 (0) + CH4 0.000e+00 0.000e+00 -125.075 -125.074 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -40495,9 +40456,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -40505,23 +40466,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.081e-08 6.091e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.047 -40.046 0.001 (0) -O(0) 1.030e-12 - O2 5.132e-13 5.140e-13 -12.290 -12.289 0.001 (0) - O[18O] 2.048e-15 2.051e-15 -14.689 -14.688 0.001 (0) +H(0) 3.420e-40 + H2 1.710e-40 1.713e-40 -39.767 -39.766 0.001 (0) +O(0) 2.836e-13 + O2 1.412e-13 1.415e-13 -12.850 -12.849 0.001 (0) + O[18O] 5.636e-16 5.646e-16 -15.249 -15.248 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.152 -128.151 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -127.031 -127.030 0.001 (0) [13C](4) 6.503e-05 H[13C]O3- 5.245e-05 4.799e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.047e-07 9.574e-08 -6.980 -7.019 -0.039 (0) H[13C]O2[18O]- 1.047e-07 9.574e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.574e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.574e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.081e-08 6.091e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.578e-08 4.585e-08 -7.339 -7.339 0.001 (0) @@ -40530,56 +40491,56 @@ O(0) 1.030e-12 CaH[13C]O[18O]O+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.640e-10 3.646e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.030 -139.029 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.910 -137.909 0.001 (0) [14C](4) 8.666e-16 H[14C]O3- 7.000e-16 6.404e-16 -15.155 -15.194 -0.039 (0) [14C]O2 1.457e-16 1.459e-16 -15.837 -15.836 0.001 (0) CaH[14C]O3+ 1.478e-17 1.356e-17 -16.830 -16.868 -0.037 (0) - H[14C][18O]O2- 1.397e-18 1.278e-18 -17.855 -17.894 -0.039 (0) - H[14C]O[18O]O- 1.397e-18 1.278e-18 -17.855 -17.894 -0.039 (0) H[14C]O2[18O]- 1.397e-18 1.278e-18 -17.855 -17.894 -0.039 (0) + H[14C]O[18O]O- 1.397e-18 1.278e-18 -17.855 -17.894 -0.039 (0) + H[14C][18O]O2- 1.397e-18 1.278e-18 -17.855 -17.894 -0.039 (0) Ca[14C]O3 8.104e-19 8.117e-19 -18.091 -18.091 0.001 (0) [14C]O[18O] 6.057e-19 6.067e-19 -18.218 -18.217 0.001 (0) [14C]O3-2 4.157e-19 2.912e-19 -18.381 -18.536 -0.155 (0) CaH[14C]O2[18O]+ 2.949e-20 2.706e-20 -19.530 -19.568 -0.037 (0) - CaH[14C][18O]O2+ 2.949e-20 2.706e-20 -19.530 -19.568 -0.037 (0) CaH[14C]O[18O]O+ 2.949e-20 2.706e-20 -19.530 -19.568 -0.037 (0) + CaH[14C][18O]O2+ 2.949e-20 2.706e-20 -19.530 -19.568 -0.037 (0) Ca[14C]O2[18O] 4.851e-21 4.859e-21 -20.314 -20.313 0.001 (0) + H[14C]O[18O]2- 2.787e-21 2.549e-21 -20.555 -20.594 -0.039 (0) H[14C][18O]2O- 2.787e-21 2.549e-21 -20.555 -20.594 -0.039 (0) H[14C][18O]O[18O]- 2.787e-21 2.549e-21 -20.555 -20.594 -0.039 (0) - H[14C]O[18O]2- 2.787e-21 2.549e-21 -20.555 -20.594 -0.039 (0) [14C]O2[18O]-2 2.488e-21 1.743e-21 -20.604 -20.759 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.052e-15 - O[18O] 2.048e-15 2.051e-15 -14.689 -14.688 0.001 (0) - [18O]2 2.043e-18 2.046e-18 -17.690 -17.689 0.001 (0) +[18O](0) 5.648e-16 + O[18O] 5.636e-16 5.646e-16 -15.249 -15.248 0.001 (0) + [18O]2 5.623e-19 5.632e-19 -18.250 -18.249 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.29 -128.15 -2.86 [13C]H4 + [13C]H4(g) -124.17 -127.03 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.73 -21.24 -1.50 [14C][18O]2 - [14C]H4(g) -136.17 -139.03 -2.86 [14C]H4 + [14C]H4(g) -135.05 -137.91 -2.86 [14C]H4 [14C]O2(g) -14.37 -15.84 -1.47 [14C]O2 [14C]O[18O](g) -16.75 -18.54 -1.79 [14C]O[18O] - [18O]2(g) -15.40 -17.69 -2.29 [18O]2 + [18O]2(g) -15.96 -18.25 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -40593,14 +40554,14 @@ O(0) 1.030e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.33 -126.19 -2.86 CH4 + CH4(g) -122.21 -125.07 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.90 -40.05 -3.15 H2 + H2(g) -36.62 -39.77 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.40 -12.29 -2.89 O2 - O[18O](g) -12.10 -14.99 -2.89 O[18O] + O2(g) -9.96 -12.85 -2.89 O2 + O[18O](g) -12.66 -15.55 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -40690,12 +40651,12 @@ Calcite 2.21e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2525e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2405e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.9944e-12 0 +Alpha 18O HCO3-/H2O(l) 1 1.3323e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6289e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7378e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -40715,14 +40676,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.460 Adjusted to redox equilibrium + pe = 11.320 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.533e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.822e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -40731,30 +40692,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.188 -126.188 0.001 (0) + CH4 0.000e+00 0.000e+00 -125.071 -125.071 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -40762,81 +40723,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.081e-08 6.091e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.045 -40.045 0.001 (0) -O(0) 1.022e-12 - O2 5.091e-13 5.100e-13 -12.293 -12.292 0.001 (0) - O[18O] 2.032e-15 2.035e-15 -14.692 -14.691 0.001 (0) +H(0) 3.427e-40 + H2 1.713e-40 1.716e-40 -39.766 -39.765 0.001 (0) +O(0) 2.826e-13 + O2 1.407e-13 1.410e-13 -12.852 -12.851 0.001 (0) + O[18O] 5.615e-16 5.624e-16 -15.251 -15.250 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.145 -128.144 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -127.028 -127.027 0.001 (0) [13C](4) 6.503e-05 H[13C]O3- 5.245e-05 4.799e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) + H[13C][18O]O2- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.081e-08 6.091e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.578e-08 4.586e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.119e-08 2.185e-08 -7.506 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.640e-10 3.646e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.031 -139.030 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.914 -137.913 0.001 (0) [14C](4) 8.511e-16 H[14C]O3- 6.875e-16 6.290e-16 -15.163 -15.201 -0.039 (0) [14C]O2 1.431e-16 1.433e-16 -15.845 -15.844 0.001 (0) CaH[14C]O3+ 1.452e-17 1.332e-17 -16.838 -16.876 -0.037 (0) - H[14C][18O]O2- 1.372e-18 1.255e-18 -17.863 -17.901 -0.039 (0) - H[14C]O[18O]O- 1.372e-18 1.255e-18 -17.863 -17.901 -0.039 (0) H[14C]O2[18O]- 1.372e-18 1.255e-18 -17.863 -17.901 -0.039 (0) + H[14C]O[18O]O- 1.372e-18 1.255e-18 -17.863 -17.901 -0.039 (0) + H[14C][18O]O2- 1.372e-18 1.255e-18 -17.863 -17.901 -0.039 (0) Ca[14C]O3 7.959e-19 7.972e-19 -18.099 -18.098 0.001 (0) [14C]O[18O] 5.949e-19 5.958e-19 -18.226 -18.225 0.001 (0) [14C]O3-2 4.083e-19 2.860e-19 -18.389 -18.544 -0.155 (0) CaH[14C]O2[18O]+ 2.897e-20 2.657e-20 -19.538 -19.576 -0.037 (0) - CaH[14C][18O]O2+ 2.897e-20 2.657e-20 -19.538 -19.576 -0.037 (0) CaH[14C]O[18O]O+ 2.897e-20 2.657e-20 -19.538 -19.576 -0.037 (0) + CaH[14C][18O]O2+ 2.897e-20 2.657e-20 -19.538 -19.576 -0.037 (0) Ca[14C]O2[18O] 4.764e-21 4.772e-21 -20.322 -20.321 0.001 (0) - H[14C][18O]O[18O]- 2.737e-21 2.504e-21 -20.563 -20.601 -0.039 (0) H[14C]O[18O]2- 2.737e-21 2.504e-21 -20.563 -20.601 -0.039 (0) H[14C][18O]2O- 2.737e-21 2.504e-21 -20.563 -20.601 -0.039 (0) + H[14C][18O]O[18O]- 2.737e-21 2.504e-21 -20.563 -20.601 -0.039 (0) [14C]O2[18O]-2 2.444e-21 1.712e-21 -20.612 -20.767 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.036e-15 - O[18O] 2.032e-15 2.035e-15 -14.692 -14.691 0.001 (0) - [18O]2 2.027e-18 2.030e-18 -17.693 -17.692 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 5.626e-16 + O[18O] 5.615e-16 5.624e-16 -15.251 -15.250 0.001 (0) + [18O]2 5.602e-19 5.611e-19 -18.252 -18.251 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.28 -128.14 -2.86 [13C]H4 + [13C]H4(g) -124.17 -127.03 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.74 -21.24 -1.50 [14C][18O]2 - [14C]H4(g) -136.17 -139.03 -2.86 [14C]H4 + [14C]H4(g) -135.05 -137.91 -2.86 [14C]H4 [14C]O2(g) -14.38 -15.84 -1.47 [14C]O2 [14C]O[18O](g) -16.76 -18.54 -1.79 [14C]O[18O] - [18O]2(g) -15.40 -17.69 -2.29 [18O]2 + [18O]2(g) -15.96 -18.25 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -40850,14 +40811,14 @@ O(0) 1.022e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.33 -126.19 -2.86 CH4 + CH4(g) -122.21 -125.07 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.89 -40.04 -3.15 H2 + H2(g) -36.62 -39.77 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.40 -12.29 -2.89 O2 - O[18O](g) -12.10 -14.99 -2.89 O[18O] + O2(g) -9.96 -12.85 -2.89 O2 + O[18O](g) -12.66 -15.55 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -40947,12 +40908,12 @@ Calcite 2.26e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2654e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2536e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.7724e-12 0 +Alpha 18O HCO3-/H2O(l) 1 8.8818e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6616e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7017e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -40972,14 +40933,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.463 Adjusted to redox equilibrium + pe = 11.329 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.532e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.822e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -40988,20 +40949,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.214 -126.214 0.001 (0) + CH4 0.000e+00 0.000e+00 -125.141 -125.141 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -41009,9 +40970,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -41019,50 +40980,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.081e-08 6.091e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.052 -40.051 0.001 (0) -O(0) 1.053e-12 - O2 5.245e-13 5.254e-13 -12.280 -12.280 0.001 (0) - O[18O] 2.093e-15 2.096e-15 -14.679 -14.679 0.001 (0) +H(0) 3.292e-40 + H2 1.646e-40 1.649e-40 -39.784 -39.783 0.001 (0) +O(0) 3.062e-13 + O2 1.525e-13 1.527e-13 -12.817 -12.816 0.001 (0) + O[18O] 6.085e-16 6.095e-16 -15.216 -15.215 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.171 -128.170 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -127.098 -127.097 0.001 (0) [13C](4) 6.503e-05 H[13C]O3- 5.246e-05 4.799e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C][18O]O2- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) H[13C]O2[18O]- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) + H[13C][18O]O2- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.081e-08 6.091e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.578e-08 4.586e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.120e-08 2.185e-08 -7.506 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) + CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.640e-10 3.646e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.065 -139.064 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.992 -137.991 0.001 (0) [14C](4) 8.361e-16 H[14C]O3- 6.754e-16 6.179e-16 -15.170 -15.209 -0.039 (0) [14C]O2 1.405e-16 1.408e-16 -15.852 -15.852 0.001 (0) CaH[14C]O3+ 1.426e-17 1.308e-17 -16.846 -16.883 -0.037 (0) - H[14C][18O]O2- 1.348e-18 1.233e-18 -17.870 -17.909 -0.039 (0) - H[14C]O[18O]O- 1.348e-18 1.233e-18 -17.870 -17.909 -0.039 (0) H[14C]O2[18O]- 1.348e-18 1.233e-18 -17.870 -17.909 -0.039 (0) + H[14C]O[18O]O- 1.348e-18 1.233e-18 -17.870 -17.909 -0.039 (0) + H[14C][18O]O2- 1.348e-18 1.233e-18 -17.870 -17.909 -0.039 (0) Ca[14C]O3 7.818e-19 7.831e-19 -18.107 -18.106 0.001 (0) [14C]O[18O] 5.844e-19 5.853e-19 -18.233 -18.233 0.001 (0) [14C]O3-2 4.011e-19 2.810e-19 -18.397 -18.551 -0.155 (0) CaH[14C]O2[18O]+ 2.846e-20 2.610e-20 -19.546 -19.583 -0.037 (0) - CaH[14C][18O]O2+ 2.846e-20 2.610e-20 -19.546 -19.583 -0.037 (0) CaH[14C]O[18O]O+ 2.846e-20 2.610e-20 -19.546 -19.583 -0.037 (0) + CaH[14C][18O]O2+ 2.846e-20 2.610e-20 -19.546 -19.583 -0.037 (0) Ca[14C]O2[18O] 4.680e-21 4.688e-21 -20.330 -20.329 0.001 (0) H[14C]O[18O]2- 2.689e-21 2.460e-21 -20.570 -20.609 -0.039 (0) H[14C][18O]2O- 2.689e-21 2.460e-21 -20.570 -20.609 -0.039 (0) @@ -41071,29 +41032,29 @@ O(0) 1.053e-12 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.097e-15 - O[18O] 2.093e-15 2.096e-15 -14.679 -14.679 0.001 (0) - [18O]2 2.088e-18 2.091e-18 -17.680 -17.680 0.001 (0) +[18O](0) 6.097e-16 + O[18O] 6.085e-16 6.095e-16 -15.216 -15.215 0.001 (0) + [18O]2 6.070e-19 6.080e-19 -18.217 -18.216 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.31 -128.17 -2.86 [13C]H4 + [13C]H4(g) -124.24 -127.10 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.75 -21.25 -1.50 [14C][18O]2 - [14C]H4(g) -136.20 -139.06 -2.86 [14C]H4 + [14C]H4(g) -135.13 -137.99 -2.86 [14C]H4 [14C]O2(g) -14.38 -15.85 -1.47 [14C]O2 [14C]O[18O](g) -16.76 -18.55 -1.79 [14C]O[18O] - [18O]2(g) -15.39 -17.68 -2.29 [18O]2 + [18O]2(g) -15.93 -18.22 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -41107,14 +41068,14 @@ O(0) 1.053e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.35 -126.21 -2.86 CH4 + CH4(g) -122.28 -125.14 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.90 -40.05 -3.15 H2 + H2(g) -36.63 -39.78 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.39 -12.28 -2.89 O2 - O[18O](g) -12.09 -14.98 -2.89 O[18O] + O2(g) -9.92 -12.82 -2.89 O2 + O[18O](g) -12.62 -15.52 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -41204,12 +41165,12 @@ Calcite 2.31e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2593e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2797e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6196e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7285e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -41229,14 +41190,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.461 Adjusted to redox equilibrium + pe = 11.327 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.532e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.822e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -41245,30 +41206,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.199 -126.199 0.001 (0) + CH4 0.000e+00 0.000e+00 -125.131 -125.130 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -41276,23 +41237,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.048 -40.047 0.001 (0) -O(0) 1.035e-12 - O2 5.156e-13 5.165e-13 -12.288 -12.287 0.001 (0) - O[18O] 2.058e-15 2.061e-15 -14.687 -14.686 0.001 (0) +H(0) 3.311e-40 + H2 1.656e-40 1.658e-40 -39.781 -39.780 0.001 (0) +O(0) 3.027e-13 + O2 1.507e-13 1.510e-13 -12.822 -12.821 0.001 (0) + O[18O] 6.015e-16 6.025e-16 -15.221 -15.220 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.156 -128.155 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -127.087 -127.087 0.001 (0) [13C](4) 6.504e-05 H[13C]O3- 5.246e-05 4.799e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) H[13C]O2[18O]- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.579e-08 4.586e-08 -7.339 -7.339 0.001 (0) @@ -41301,56 +41262,56 @@ O(0) 1.035e-12 CaH[13C]O[18O]O+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.640e-10 3.646e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.057 -139.057 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.989 -137.988 0.001 (0) [14C](4) 8.216e-16 H[14C]O3- 6.637e-16 6.072e-16 -15.178 -15.217 -0.039 (0) [14C]O2 1.381e-16 1.383e-16 -15.860 -15.859 0.001 (0) CaH[14C]O3+ 1.402e-17 1.286e-17 -16.853 -16.891 -0.037 (0) - H[14C][18O]O2- 1.324e-18 1.211e-18 -17.878 -17.917 -0.039 (0) - H[14C]O[18O]O- 1.324e-18 1.211e-18 -17.878 -17.917 -0.039 (0) H[14C]O2[18O]- 1.324e-18 1.211e-18 -17.878 -17.917 -0.039 (0) + H[14C]O[18O]O- 1.324e-18 1.211e-18 -17.878 -17.917 -0.039 (0) + H[14C][18O]O2- 1.324e-18 1.211e-18 -17.878 -17.917 -0.039 (0) Ca[14C]O3 7.683e-19 7.696e-19 -18.114 -18.114 0.001 (0) [14C]O[18O] 5.743e-19 5.752e-19 -18.241 -18.240 0.001 (0) [14C]O3-2 3.941e-19 2.761e-19 -18.404 -18.559 -0.155 (0) CaH[14C]O2[18O]+ 2.796e-20 2.565e-20 -19.553 -19.591 -0.037 (0) - CaH[14C][18O]O2+ 2.796e-20 2.565e-20 -19.553 -19.591 -0.037 (0) CaH[14C]O[18O]O+ 2.796e-20 2.565e-20 -19.553 -19.591 -0.037 (0) + CaH[14C][18O]O2+ 2.796e-20 2.565e-20 -19.553 -19.591 -0.037 (0) Ca[14C]O2[18O] 4.599e-21 4.606e-21 -20.337 -20.337 0.001 (0) + H[14C]O[18O]2- 2.642e-21 2.417e-21 -20.578 -20.617 -0.039 (0) H[14C][18O]2O- 2.642e-21 2.417e-21 -20.578 -20.617 -0.039 (0) H[14C][18O]O[18O]- 2.642e-21 2.417e-21 -20.578 -20.617 -0.039 (0) - H[14C]O[18O]2- 2.642e-21 2.417e-21 -20.578 -20.617 -0.039 (0) [14C]O2[18O]-2 2.359e-21 1.653e-21 -20.627 -20.782 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.062e-15 - O[18O] 2.058e-15 2.061e-15 -14.687 -14.686 0.001 (0) - [18O]2 2.053e-18 2.056e-18 -17.688 -17.687 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 6.027e-16 + O[18O] 6.015e-16 6.025e-16 -15.221 -15.220 0.001 (0) + [18O]2 6.000e-19 6.010e-19 -18.222 -18.221 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.30 -128.16 -2.86 [13C]H4 + [13C]H4(g) -124.23 -127.09 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.76 -21.26 -1.50 [14C][18O]2 - [14C]H4(g) -136.20 -139.06 -2.86 [14C]H4 + [14C]H4(g) -135.13 -137.99 -2.86 [14C]H4 [14C]O2(g) -14.39 -15.86 -1.47 [14C]O2 [14C]O[18O](g) -16.77 -18.56 -1.79 [14C]O[18O] - [18O]2(g) -15.40 -17.69 -2.29 [18O]2 + [18O]2(g) -15.93 -18.22 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -41364,14 +41325,14 @@ O(0) 1.035e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.34 -126.20 -2.86 CH4 + CH4(g) -122.27 -125.13 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.90 -40.05 -3.15 H2 + H2(g) -36.63 -39.78 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.39 -12.29 -2.89 O2 - O[18O](g) -12.09 -14.99 -2.89 O[18O] + O2(g) -9.93 -12.82 -2.89 O2 + O[18O](g) -12.63 -15.52 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -41461,12 +41422,12 @@ Calcite 2.36e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2353e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2569e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6441e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6174e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -41486,14 +41447,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.461 Adjusted to redox equilibrium + pe = 11.326 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.532e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.822e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -41502,20 +41463,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.196 -126.195 0.001 (0) + CH4 0.000e+00 0.000e+00 -125.120 -125.119 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -41523,9 +41484,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -41533,81 +41494,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.047 -40.047 0.001 (0) -O(0) 1.031e-12 - O2 5.136e-13 5.144e-13 -12.289 -12.289 0.001 (0) - O[18O] 2.049e-15 2.053e-15 -14.688 -14.688 0.001 (0) +H(0) 3.333e-40 + H2 1.667e-40 1.669e-40 -39.778 -39.777 0.001 (0) +O(0) 2.987e-13 + O2 1.487e-13 1.490e-13 -12.828 -12.827 0.001 (0) + O[18O] 5.935e-16 5.945e-16 -15.227 -15.226 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.152 -128.152 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -127.076 -127.075 0.001 (0) [13C](4) 6.504e-05 H[13C]O3- 5.246e-05 4.800e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) + H[13C][18O]O2- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.579e-08 4.586e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.120e-08 2.186e-08 -7.506 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.640e-10 3.646e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.061 -139.061 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.985 -137.984 0.001 (0) [14C](4) 8.077e-16 H[14C]O3- 6.524e-16 5.969e-16 -15.185 -15.224 -0.039 (0) [14C]O2 1.358e-16 1.360e-16 -15.867 -15.867 0.001 (0) CaH[14C]O3+ 1.378e-17 1.264e-17 -16.861 -16.898 -0.037 (0) - H[14C][18O]O2- 1.302e-18 1.191e-18 -17.885 -17.924 -0.039 (0) - H[14C]O[18O]O- 1.302e-18 1.191e-18 -17.885 -17.924 -0.039 (0) H[14C]O2[18O]- 1.302e-18 1.191e-18 -17.885 -17.924 -0.039 (0) + H[14C]O[18O]O- 1.302e-18 1.191e-18 -17.885 -17.924 -0.039 (0) + H[14C][18O]O2- 1.302e-18 1.191e-18 -17.885 -17.924 -0.039 (0) Ca[14C]O3 7.553e-19 7.565e-19 -18.122 -18.121 0.001 (0) [14C]O[18O] 5.645e-19 5.654e-19 -18.248 -18.248 0.001 (0) [14C]O3-2 3.874e-19 2.714e-19 -18.412 -18.566 -0.155 (0) CaH[14C]O2[18O]+ 2.749e-20 2.522e-20 -19.561 -19.598 -0.037 (0) - CaH[14C][18O]O2+ 2.749e-20 2.522e-20 -19.561 -19.598 -0.037 (0) CaH[14C]O[18O]O+ 2.749e-20 2.522e-20 -19.561 -19.598 -0.037 (0) + CaH[14C][18O]O2+ 2.749e-20 2.522e-20 -19.561 -19.598 -0.037 (0) Ca[14C]O2[18O] 4.521e-21 4.528e-21 -20.345 -20.344 0.001 (0) - H[14C][18O]O[18O]- 2.597e-21 2.376e-21 -20.586 -20.624 -0.039 (0) H[14C]O[18O]2- 2.597e-21 2.376e-21 -20.586 -20.624 -0.039 (0) H[14C][18O]2O- 2.597e-21 2.376e-21 -20.586 -20.624 -0.039 (0) + H[14C][18O]O[18O]- 2.597e-21 2.376e-21 -20.586 -20.624 -0.039 (0) [14C]O2[18O]-2 2.319e-21 1.625e-21 -20.635 -20.789 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.054e-15 - O[18O] 2.049e-15 2.053e-15 -14.688 -14.688 0.001 (0) - [18O]2 2.045e-18 2.048e-18 -17.689 -17.689 0.001 (0) +[18O](0) 5.947e-16 + O[18O] 5.935e-16 5.945e-16 -15.227 -15.226 0.001 (0) + [18O]2 5.921e-19 5.931e-19 -18.228 -18.227 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.29 -128.15 -2.86 [13C]H4 + [13C]H4(g) -124.22 -127.08 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.76 -21.27 -1.50 [14C][18O]2 - [14C]H4(g) -136.20 -139.06 -2.86 [14C]H4 + [14C]H4(g) -135.12 -137.98 -2.86 [14C]H4 [14C]O2(g) -14.40 -15.87 -1.47 [14C]O2 [14C]O[18O](g) -16.78 -18.57 -1.79 [14C]O[18O] - [18O]2(g) -15.40 -17.69 -2.29 [18O]2 + [18O]2(g) -15.94 -18.23 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -41621,14 +41582,14 @@ O(0) 1.031e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.34 -126.20 -2.86 CH4 + CH4(g) -122.26 -125.12 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.90 -40.05 -3.15 H2 + H2(g) -36.63 -39.78 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.40 -12.29 -2.89 O2 - O[18O](g) -12.10 -14.99 -2.89 O[18O] + O2(g) -9.93 -12.83 -2.89 O2 + O[18O](g) -12.63 -15.53 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -41718,12 +41679,12 @@ Calcite 2.41e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2249e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2464e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6646e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.57e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -41743,14 +41704,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.458 Adjusted to redox equilibrium + pe = 11.321 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.532e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -41759,30 +41720,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.173 -126.172 0.001 (0) + CH4 0.000e+00 0.000e+00 -125.082 -125.081 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -41790,50 +41751,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.042 -40.041 0.001 (0) -O(0) 1.004e-12 - O2 5.002e-13 5.010e-13 -12.301 -12.300 0.001 (0) - O[18O] 1.996e-15 1.999e-15 -14.700 -14.699 0.001 (0) +H(0) 3.406e-40 + H2 1.703e-40 1.706e-40 -39.769 -39.768 0.001 (0) +O(0) 2.860e-13 + O2 1.424e-13 1.426e-13 -12.846 -12.846 0.001 (0) + O[18O] 5.683e-16 5.692e-16 -15.245 -15.245 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.129 -128.129 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -127.038 -127.037 0.001 (0) [13C](4) 6.504e-05 H[13C]O3- 5.246e-05 4.800e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C][18O]O2- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) H[13C]O2[18O]- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) + H[13C][18O]O2- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.579e-08 4.586e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.120e-08 2.186e-08 -7.506 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) + CaH[13C][18O]O2+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.640e-10 3.646e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.046 -139.045 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.955 -137.954 0.001 (0) [14C](4) 7.942e-16 H[14C]O3- 6.415e-16 5.869e-16 -15.193 -15.231 -0.039 (0) [14C]O2 1.335e-16 1.337e-16 -15.875 -15.874 0.001 (0) CaH[14C]O3+ 1.355e-17 1.243e-17 -16.868 -16.906 -0.037 (0) - H[14C][18O]O2- 1.280e-18 1.171e-18 -17.893 -17.931 -0.039 (0) - H[14C]O[18O]O- 1.280e-18 1.171e-18 -17.893 -17.931 -0.039 (0) H[14C]O2[18O]- 1.280e-18 1.171e-18 -17.893 -17.931 -0.039 (0) + H[14C]O[18O]O- 1.280e-18 1.171e-18 -17.893 -17.931 -0.039 (0) + H[14C][18O]O2- 1.280e-18 1.171e-18 -17.893 -17.931 -0.039 (0) Ca[14C]O3 7.426e-19 7.439e-19 -18.129 -18.129 0.001 (0) [14C]O[18O] 5.551e-19 5.560e-19 -18.256 -18.255 0.001 (0) [14C]O3-2 3.810e-19 2.669e-19 -18.419 -18.574 -0.155 (0) CaH[14C]O2[18O]+ 2.703e-20 2.479e-20 -19.568 -19.606 -0.037 (0) - CaH[14C][18O]O2+ 2.703e-20 2.479e-20 -19.568 -19.606 -0.037 (0) CaH[14C]O[18O]O+ 2.703e-20 2.479e-20 -19.568 -19.606 -0.037 (0) + CaH[14C][18O]O2+ 2.703e-20 2.479e-20 -19.568 -19.606 -0.037 (0) Ca[14C]O2[18O] 4.445e-21 4.452e-21 -20.352 -20.351 0.001 (0) H[14C]O[18O]2- 2.554e-21 2.336e-21 -20.593 -20.631 -0.039 (0) H[14C][18O]2O- 2.554e-21 2.336e-21 -20.593 -20.631 -0.039 (0) @@ -41842,29 +41803,29 @@ O(0) 1.004e-12 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.000e-15 - O[18O] 1.996e-15 1.999e-15 -14.700 -14.699 0.001 (0) - [18O]2 1.991e-18 1.994e-18 -17.701 -17.700 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 5.694e-16 + O[18O] 5.683e-16 5.692e-16 -15.245 -15.245 0.001 (0) + [18O]2 5.669e-19 5.678e-19 -18.246 -18.246 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.27 -128.13 -2.86 [13C]H4 + [13C]H4(g) -124.18 -127.04 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.77 -21.27 -1.50 [14C][18O]2 - [14C]H4(g) -136.18 -139.04 -2.86 [14C]H4 + [14C]H4(g) -135.09 -137.95 -2.86 [14C]H4 [14C]O2(g) -14.41 -15.87 -1.47 [14C]O2 [14C]O[18O](g) -16.79 -18.57 -1.79 [14C]O[18O] - [18O]2(g) -15.41 -17.70 -2.29 [18O]2 + [18O]2(g) -15.96 -18.25 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -41878,14 +41839,14 @@ O(0) 1.004e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.31 -126.17 -2.86 CH4 + CH4(g) -122.22 -125.08 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.89 -40.04 -3.15 H2 + H2(g) -36.62 -39.77 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.41 -12.30 -2.89 O2 - O[18O](g) -12.11 -15.00 -2.89 O[18O] + O2(g) -9.95 -12.85 -2.89 O2 + O[18O](g) -12.65 -15.55 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -41975,12 +41936,12 @@ Calcite 2.46e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2619e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2834e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6909e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6622e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -42000,14 +41961,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.461 Adjusted to redox equilibrium + pe = 11.331 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.532e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.822e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -42016,19 +41977,19 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.203 -126.202 0.001 (0) + CH4 0.000e+00 0.000e+00 -125.162 -125.162 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -42037,9 +41998,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -42047,23 +42008,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.049 -40.048 0.001 (0) -O(0) 1.039e-12 - O2 5.176e-13 5.184e-13 -12.286 -12.285 0.001 (0) - O[18O] 2.065e-15 2.069e-15 -14.685 -14.684 0.001 (0) +H(0) 3.252e-40 + H2 1.626e-40 1.629e-40 -39.789 -39.788 0.001 (0) +O(0) 3.137e-13 + O2 1.562e-13 1.565e-13 -12.806 -12.805 0.001 (0) + O[18O] 6.235e-16 6.245e-16 -15.205 -15.204 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.159 -128.158 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -127.119 -127.118 0.001 (0) [13C](4) 6.505e-05 H[13C]O3- 5.247e-05 4.800e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) H[13C]O2[18O]- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.579e-08 4.587e-08 -7.339 -7.339 0.001 (0) @@ -42072,56 +42033,56 @@ O(0) 1.039e-12 CaH[13C]O[18O]O+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.083 -139.082 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -138.042 -138.042 0.001 (0) [14C](4) 7.811e-16 H[14C]O3- 6.310e-16 5.772e-16 -15.200 -15.239 -0.039 (0) [14C]O2 1.313e-16 1.315e-16 -15.882 -15.881 0.001 (0) CaH[14C]O3+ 1.332e-17 1.222e-17 -16.875 -16.913 -0.037 (0) - H[14C][18O]O2- 1.259e-18 1.152e-18 -17.900 -17.939 -0.039 (0) - H[14C]O[18O]O- 1.259e-18 1.152e-18 -17.900 -17.939 -0.039 (0) H[14C]O2[18O]- 1.259e-18 1.152e-18 -17.900 -17.939 -0.039 (0) + H[14C]O[18O]O- 1.259e-18 1.152e-18 -17.900 -17.939 -0.039 (0) + H[14C][18O]O2- 1.259e-18 1.152e-18 -17.900 -17.939 -0.039 (0) Ca[14C]O3 7.304e-19 7.316e-19 -18.136 -18.136 0.001 (0) [14C]O[18O] 5.459e-19 5.468e-19 -18.263 -18.262 0.001 (0) [14C]O3-2 3.747e-19 2.625e-19 -18.426 -18.581 -0.155 (0) CaH[14C]O2[18O]+ 2.658e-20 2.439e-20 -19.575 -19.613 -0.037 (0) - CaH[14C][18O]O2+ 2.658e-20 2.439e-20 -19.575 -19.613 -0.037 (0) CaH[14C]O[18O]O+ 2.658e-20 2.439e-20 -19.575 -19.613 -0.037 (0) + CaH[14C][18O]O2+ 2.658e-20 2.439e-20 -19.575 -19.613 -0.037 (0) Ca[14C]O2[18O] 4.372e-21 4.379e-21 -20.359 -20.359 0.001 (0) + H[14C]O[18O]2- 2.512e-21 2.298e-21 -20.600 -20.639 -0.039 (0) H[14C][18O]2O- 2.512e-21 2.298e-21 -20.600 -20.639 -0.039 (0) H[14C][18O]O[18O]- 2.512e-21 2.298e-21 -20.600 -20.639 -0.039 (0) - H[14C]O[18O]2- 2.512e-21 2.298e-21 -20.600 -20.639 -0.039 (0) [14C]O2[18O]-2 2.243e-21 1.571e-21 -20.649 -20.804 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.069e-15 - O[18O] 2.065e-15 2.069e-15 -14.685 -14.684 0.001 (0) - [18O]2 2.060e-18 2.064e-18 -17.686 -17.685 0.001 (0) +[18O](0) 6.247e-16 + O[18O] 6.235e-16 6.245e-16 -15.205 -15.204 0.001 (0) + [18O]2 6.220e-19 6.230e-19 -18.206 -18.206 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.30 -128.16 -2.86 [13C]H4 + [13C]H4(g) -124.26 -127.12 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.78 -21.28 -1.50 [14C][18O]2 - [14C]H4(g) -136.22 -139.08 -2.86 [14C]H4 + [14C]H4(g) -135.18 -138.04 -2.86 [14C]H4 [14C]O2(g) -14.41 -15.88 -1.47 [14C]O2 [14C]O[18O](g) -16.79 -18.58 -1.79 [14C]O[18O] - [18O]2(g) -15.40 -17.69 -2.29 [18O]2 + [18O]2(g) -15.92 -18.21 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -42135,14 +42096,14 @@ O(0) 1.039e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.34 -126.20 -2.86 CH4 + CH4(g) -122.30 -125.16 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.90 -40.05 -3.15 H2 + H2(g) -36.64 -39.79 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.39 -12.29 -2.89 O2 - O[18O](g) -12.09 -14.99 -2.89 O[18O] + O2(g) -9.91 -12.81 -2.89 O2 + O[18O](g) -12.61 -15.51 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -42232,12 +42193,12 @@ Calcite 2.51e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2495e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2371e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7324e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6366e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -42257,14 +42218,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.461 Adjusted to redox equilibrium + pe = 11.330 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.532e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -42273,30 +42234,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.200 -126.199 0.001 (0) + CH4 0.000e+00 0.000e+00 -125.154 -125.154 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -42304,81 +42265,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.048 -40.048 0.001 (0) -O(0) 1.036e-12 - O2 5.161e-13 5.169e-13 -12.287 -12.287 0.001 (0) - O[18O] 2.059e-15 2.063e-15 -14.686 -14.686 0.001 (0) +H(0) 3.267e-40 + H2 1.634e-40 1.636e-40 -39.787 -39.786 0.001 (0) +O(0) 3.108e-13 + O2 1.548e-13 1.551e-13 -12.810 -12.810 0.001 (0) + O[18O] 6.177e-16 6.187e-16 -15.209 -15.209 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.156 -128.156 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -127.111 -127.110 0.001 (0) [13C](4) 6.505e-05 H[13C]O3- 5.247e-05 4.800e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) + H[13C][18O]O2- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.579e-08 4.587e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.120e-08 2.186e-08 -7.506 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.087 -139.087 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -138.041 -138.041 0.001 (0) [14C](4) 7.685e-16 H[14C]O3- 6.208e-16 5.679e-16 -15.207 -15.246 -0.039 (0) [14C]O2 1.292e-16 1.294e-16 -15.889 -15.888 0.001 (0) CaH[14C]O3+ 1.311e-17 1.202e-17 -16.882 -16.920 -0.037 (0) - H[14C][18O]O2- 1.239e-18 1.133e-18 -17.907 -17.946 -0.039 (0) - H[14C]O[18O]O- 1.239e-18 1.133e-18 -17.907 -17.946 -0.039 (0) H[14C]O2[18O]- 1.239e-18 1.133e-18 -17.907 -17.946 -0.039 (0) + H[14C]O[18O]O- 1.239e-18 1.133e-18 -17.907 -17.946 -0.039 (0) + H[14C][18O]O2- 1.239e-18 1.133e-18 -17.907 -17.946 -0.039 (0) Ca[14C]O3 7.186e-19 7.198e-19 -18.144 -18.143 0.001 (0) [14C]O[18O] 5.371e-19 5.380e-19 -18.270 -18.269 0.001 (0) [14C]O3-2 3.686e-19 2.582e-19 -18.433 -18.588 -0.155 (0) CaH[14C]O2[18O]+ 2.615e-20 2.399e-20 -19.582 -19.620 -0.037 (0) - CaH[14C][18O]O2+ 2.615e-20 2.399e-20 -19.582 -19.620 -0.037 (0) CaH[14C]O[18O]O+ 2.615e-20 2.399e-20 -19.582 -19.620 -0.037 (0) + CaH[14C][18O]O2+ 2.615e-20 2.399e-20 -19.582 -19.620 -0.037 (0) Ca[14C]O2[18O] 4.301e-21 4.308e-21 -20.366 -20.366 0.001 (0) - H[14C][18O]O[18O]- 2.471e-21 2.261e-21 -20.607 -20.646 -0.039 (0) H[14C]O[18O]2- 2.471e-21 2.261e-21 -20.607 -20.646 -0.039 (0) H[14C][18O]2O- 2.471e-21 2.261e-21 -20.607 -20.646 -0.039 (0) + H[14C][18O]O[18O]- 2.471e-21 2.261e-21 -20.607 -20.646 -0.039 (0) [14C]O2[18O]-2 2.206e-21 1.546e-21 -20.656 -20.811 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.064e-15 - O[18O] 2.059e-15 2.063e-15 -14.686 -14.686 0.001 (0) - [18O]2 2.054e-18 2.058e-18 -17.687 -17.687 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 6.189e-16 + O[18O] 6.177e-16 6.187e-16 -15.209 -15.209 0.001 (0) + [18O]2 6.162e-19 6.172e-19 -18.210 -18.210 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.30 -128.16 -2.86 [13C]H4 + [13C]H4(g) -124.25 -127.11 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.78 -21.29 -1.50 [14C][18O]2 - [14C]H4(g) -136.23 -139.09 -2.86 [14C]H4 + [14C]H4(g) -135.18 -138.04 -2.86 [14C]H4 [14C]O2(g) -14.42 -15.89 -1.47 [14C]O2 [14C]O[18O](g) -16.80 -18.59 -1.79 [14C]O[18O] - [18O]2(g) -15.40 -17.69 -2.29 [18O]2 + [18O]2(g) -15.92 -18.21 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -42392,14 +42353,14 @@ O(0) 1.036e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.34 -126.20 -2.86 CH4 + CH4(g) -122.29 -125.15 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.90 -40.05 -3.15 H2 + H2(g) -36.64 -39.79 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.39 -12.29 -2.89 O2 - O[18O](g) -12.09 -14.99 -2.89 O[18O] + O2(g) -9.92 -12.81 -2.89 O2 + O[18O](g) -12.62 -15.51 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -42489,12 +42450,12 @@ Calcite 2.56e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2868e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2421e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.4385e-12 0 +Alpha 18O HCO3-/H2O(l) 1 2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7433e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7139e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -42514,14 +42475,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.464 Adjusted to redox equilibrium + pe = 11.338 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.532e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -42530,20 +42491,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.220 -126.219 0.001 (0) + CH4 0.000e+00 0.000e+00 -125.218 -125.218 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -42551,9 +42512,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -42561,50 +42522,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.053 -40.053 0.001 (0) -O(0) 1.060e-12 - O2 5.280e-13 5.288e-13 -12.277 -12.277 0.001 (0) - O[18O] 2.107e-15 2.110e-15 -14.676 -14.676 0.001 (0) +H(0) 3.149e-40 + H2 1.575e-40 1.577e-40 -39.803 -39.802 0.001 (0) +O(0) 3.346e-13 + O2 1.666e-13 1.669e-13 -12.778 -12.778 0.001 (0) + O[18O] 6.649e-16 6.660e-16 -15.177 -15.177 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.176 -128.175 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -127.174 -127.174 0.001 (0) [13C](4) 6.505e-05 H[13C]O3- 5.247e-05 4.800e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) H[13C]O2[18O]- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) + H[13C][18O]O2- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.579e-08 4.587e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.120e-08 2.186e-08 -7.506 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) + CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.114 -139.113 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -138.112 -138.112 0.001 (0) [14C](4) 7.562e-16 H[14C]O3- 6.109e-16 5.589e-16 -15.214 -15.253 -0.039 (0) [14C]O2 1.271e-16 1.273e-16 -15.896 -15.895 0.001 (0) CaH[14C]O3+ 1.290e-17 1.183e-17 -16.889 -16.927 -0.037 (0) - H[14C][18O]O2- 1.219e-18 1.115e-18 -17.914 -17.953 -0.039 (0) - H[14C]O[18O]O- 1.219e-18 1.115e-18 -17.914 -17.953 -0.039 (0) H[14C]O2[18O]- 1.219e-18 1.115e-18 -17.914 -17.953 -0.039 (0) + H[14C]O[18O]O- 1.219e-18 1.115e-18 -17.914 -17.953 -0.039 (0) + H[14C][18O]O2- 1.219e-18 1.115e-18 -17.914 -17.953 -0.039 (0) Ca[14C]O3 7.072e-19 7.083e-19 -18.150 -18.150 0.001 (0) [14C]O[18O] 5.286e-19 5.294e-19 -18.277 -18.276 0.001 (0) [14C]O3-2 3.628e-19 2.541e-19 -18.440 -18.595 -0.155 (0) CaH[14C]O2[18O]+ 2.574e-20 2.361e-20 -19.589 -19.627 -0.037 (0) - CaH[14C][18O]O2+ 2.574e-20 2.361e-20 -19.589 -19.627 -0.037 (0) CaH[14C]O[18O]O+ 2.574e-20 2.361e-20 -19.589 -19.627 -0.037 (0) + CaH[14C][18O]O2+ 2.574e-20 2.361e-20 -19.589 -19.627 -0.037 (0) Ca[14C]O2[18O] 4.233e-21 4.240e-21 -20.373 -20.373 0.001 (0) H[14C]O[18O]2- 2.432e-21 2.225e-21 -20.614 -20.653 -0.039 (0) H[14C][18O]2O- 2.432e-21 2.225e-21 -20.614 -20.653 -0.039 (0) @@ -42613,29 +42574,29 @@ O(0) 1.060e-12 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.111e-15 - O[18O] 2.107e-15 2.110e-15 -14.676 -14.676 0.001 (0) - [18O]2 2.102e-18 2.105e-18 -17.677 -17.677 0.001 (0) +[18O](0) 6.662e-16 + O[18O] 6.649e-16 6.660e-16 -15.177 -15.177 0.001 (0) + [18O]2 6.633e-19 6.644e-19 -18.178 -18.178 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.32 -128.18 -2.86 [13C]H4 + [13C]H4(g) -124.31 -127.17 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.79 -21.30 -1.50 [14C][18O]2 - [14C]H4(g) -136.25 -139.11 -2.86 [14C]H4 + [14C]H4(g) -135.25 -138.11 -2.86 [14C]H4 [14C]O2(g) -14.43 -15.90 -1.47 [14C]O2 [14C]O[18O](g) -16.81 -18.60 -1.79 [14C]O[18O] - [18O]2(g) -15.39 -17.68 -2.29 [18O]2 + [18O]2(g) -15.89 -18.18 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -42649,14 +42610,14 @@ O(0) 1.060e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.36 -126.22 -2.86 CH4 + CH4(g) -122.36 -125.22 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.90 -40.05 -3.15 H2 + H2(g) -36.65 -39.80 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.38 -12.28 -2.89 O2 - O[18O](g) -12.08 -14.98 -2.89 O[18O] + O2(g) -9.89 -12.78 -2.89 O2 + O[18O](g) -12.59 -15.48 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -42746,12 +42707,12 @@ Calcite 2.61e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.275e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2623e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7354e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7748e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -42771,14 +42732,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.462 Adjusted to redox equilibrium + pe = 11.339 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.532e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -42787,30 +42748,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.209 -126.209 0.001 (0) + CH4 0.000e+00 0.000e+00 -125.222 -125.222 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -42818,23 +42779,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.051 -40.050 0.001 (0) -O(0) 1.047e-12 - O2 5.217e-13 5.225e-13 -12.283 -12.282 0.001 (0) - O[18O] 2.082e-15 2.085e-15 -14.682 -14.681 0.001 (0) +H(0) 3.142e-40 + H2 1.571e-40 1.574e-40 -39.804 -39.803 0.001 (0) +O(0) 3.361e-13 + O2 1.674e-13 1.677e-13 -12.776 -12.776 0.001 (0) + O[18O] 6.680e-16 6.691e-16 -15.175 -15.175 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.166 -128.165 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -127.179 -127.178 0.001 (0) [13C](4) 6.505e-05 H[13C]O3- 5.247e-05 4.800e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) H[13C]O2[18O]- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.580e-08 4.587e-08 -7.339 -7.338 0.001 (0) @@ -42843,56 +42804,56 @@ O(0) 1.047e-12 CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.110 -139.110 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -138.123 -138.122 0.001 (0) [14C](4) 7.444e-16 H[14C]O3- 6.013e-16 5.501e-16 -15.221 -15.260 -0.039 (0) [14C]O2 1.251e-16 1.253e-16 -15.903 -15.902 0.001 (0) CaH[14C]O3+ 1.270e-17 1.165e-17 -16.896 -16.934 -0.037 (0) - H[14C][18O]O2- 1.200e-18 1.098e-18 -17.921 -17.960 -0.039 (0) - H[14C]O[18O]O- 1.200e-18 1.098e-18 -17.921 -17.960 -0.039 (0) H[14C]O2[18O]- 1.200e-18 1.098e-18 -17.921 -17.960 -0.039 (0) + H[14C]O[18O]O- 1.200e-18 1.098e-18 -17.921 -17.960 -0.039 (0) + H[14C][18O]O2- 1.200e-18 1.098e-18 -17.921 -17.960 -0.039 (0) Ca[14C]O3 6.961e-19 6.972e-19 -18.157 -18.157 0.001 (0) [14C]O[18O] 5.203e-19 5.211e-19 -18.284 -18.283 0.001 (0) [14C]O3-2 3.571e-19 2.501e-19 -18.447 -18.602 -0.155 (0) CaH[14C]O2[18O]+ 2.533e-20 2.324e-20 -19.596 -19.634 -0.037 (0) - CaH[14C][18O]O2+ 2.533e-20 2.324e-20 -19.596 -19.634 -0.037 (0) CaH[14C]O[18O]O+ 2.533e-20 2.324e-20 -19.596 -19.634 -0.037 (0) + CaH[14C][18O]O2+ 2.533e-20 2.324e-20 -19.596 -19.634 -0.037 (0) Ca[14C]O2[18O] 4.166e-21 4.173e-21 -20.380 -20.380 0.001 (0) + H[14C]O[18O]2- 2.394e-21 2.190e-21 -20.621 -20.660 -0.039 (0) H[14C][18O]2O- 2.394e-21 2.190e-21 -20.621 -20.660 -0.039 (0) H[14C][18O]O[18O]- 2.394e-21 2.190e-21 -20.621 -20.660 -0.039 (0) - H[14C]O[18O]2- 2.394e-21 2.190e-21 -20.621 -20.660 -0.039 (0) [14C]O2[18O]-2 2.137e-21 1.497e-21 -20.670 -20.825 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.086e-15 - O[18O] 2.082e-15 2.085e-15 -14.682 -14.681 0.001 (0) - [18O]2 2.077e-18 2.080e-18 -17.683 -17.682 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 6.693e-16 + O[18O] 6.680e-16 6.691e-16 -15.175 -15.175 0.001 (0) + [18O]2 6.664e-19 6.675e-19 -18.176 -18.176 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.31 -128.17 -2.86 [13C]H4 + [13C]H4(g) -124.32 -127.18 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.80 -21.30 -1.50 [14C][18O]2 - [14C]H4(g) -136.25 -139.11 -2.86 [14C]H4 + [14C]H4(g) -135.26 -138.12 -2.86 [14C]H4 [14C]O2(g) -14.43 -15.90 -1.47 [14C]O2 [14C]O[18O](g) -16.81 -18.60 -1.79 [14C]O[18O] - [18O]2(g) -15.39 -17.68 -2.29 [18O]2 + [18O]2(g) -15.89 -18.18 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -42906,14 +42867,14 @@ O(0) 1.047e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.35 -126.21 -2.86 CH4 + CH4(g) -122.36 -125.22 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.90 -40.05 -3.15 H2 + H2(g) -36.65 -39.80 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.39 -12.28 -2.89 O2 - O[18O](g) -12.09 -14.98 -2.89 O[18O] + O2(g) -9.88 -12.78 -2.89 O2 + O[18O](g) -12.58 -15.48 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -43003,12 +42964,12 @@ Calcite 2.66e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2489e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.268e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6008e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7072e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -43028,14 +42989,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.456 Adjusted to redox equilibrium + pe = 11.319 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.532e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -43044,20 +43005,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.163 -126.162 0.001 (0) + CH4 0.000e+00 0.000e+00 -125.067 -125.066 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -43065,9 +43026,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -43075,81 +43036,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.039 -40.038 0.001 (0) -O(0) 9.923e-13 - O2 4.942e-13 4.950e-13 -12.306 -12.305 0.001 (0) - O[18O] 1.972e-15 1.975e-15 -14.705 -14.704 0.001 (0) +H(0) 3.437e-40 + H2 1.718e-40 1.721e-40 -39.765 -39.764 0.001 (0) +O(0) 2.810e-13 + O2 1.399e-13 1.402e-13 -12.854 -12.853 0.001 (0) + O[18O] 5.584e-16 5.593e-16 -15.253 -15.252 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.119 -128.118 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -127.023 -127.022 0.001 (0) [13C](4) 6.505e-05 H[13C]O3- 5.247e-05 4.801e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) + H[13C][18O]O2- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.580e-08 4.587e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.121e-08 2.186e-08 -7.506 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.070 -139.069 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.974 -137.973 0.001 (0) [14C](4) 7.329e-16 H[14C]O3- 5.920e-16 5.416e-16 -15.228 -15.266 -0.039 (0) [14C]O2 1.232e-16 1.234e-16 -15.909 -15.909 0.001 (0) CaH[14C]O3+ 1.250e-17 1.147e-17 -16.903 -16.941 -0.037 (0) - H[14C][18O]O2- 1.181e-18 1.081e-18 -17.928 -17.966 -0.039 (0) - H[14C]O[18O]O- 1.181e-18 1.081e-18 -17.928 -17.966 -0.039 (0) H[14C]O2[18O]- 1.181e-18 1.081e-18 -17.928 -17.966 -0.039 (0) + H[14C]O[18O]O- 1.181e-18 1.081e-18 -17.928 -17.966 -0.039 (0) + H[14C][18O]O2- 1.181e-18 1.081e-18 -17.928 -17.966 -0.039 (0) Ca[14C]O3 6.853e-19 6.865e-19 -18.164 -18.163 0.001 (0) [14C]O[18O] 5.122e-19 5.131e-19 -18.291 -18.290 0.001 (0) [14C]O3-2 3.516e-19 2.463e-19 -18.454 -18.609 -0.155 (0) CaH[14C]O2[18O]+ 2.494e-20 2.288e-20 -19.603 -19.641 -0.037 (0) - CaH[14C][18O]O2+ 2.494e-20 2.288e-20 -19.603 -19.641 -0.037 (0) CaH[14C]O[18O]O+ 2.494e-20 2.288e-20 -19.603 -19.641 -0.037 (0) + CaH[14C][18O]O2+ 2.494e-20 2.288e-20 -19.603 -19.641 -0.037 (0) Ca[14C]O2[18O] 4.102e-21 4.109e-21 -20.387 -20.386 0.001 (0) - H[14C][18O]O[18O]- 2.357e-21 2.156e-21 -20.628 -20.666 -0.039 (0) H[14C]O[18O]2- 2.357e-21 2.156e-21 -20.628 -20.666 -0.039 (0) H[14C][18O]2O- 2.357e-21 2.156e-21 -20.628 -20.666 -0.039 (0) + H[14C][18O]O[18O]- 2.357e-21 2.156e-21 -20.628 -20.666 -0.039 (0) [14C]O2[18O]-2 2.104e-21 1.474e-21 -20.677 -20.831 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.976e-15 - O[18O] 1.972e-15 1.975e-15 -14.705 -14.704 0.001 (0) - [18O]2 1.967e-18 1.970e-18 -17.706 -17.705 0.001 (0) +[18O](0) 5.595e-16 + O[18O] 5.584e-16 5.593e-16 -15.253 -15.252 0.001 (0) + [18O]2 5.570e-19 5.579e-19 -18.254 -18.253 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.26 -128.12 -2.86 [13C]H4 + [13C]H4(g) -124.16 -127.02 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.81 -21.31 -1.50 [14C][18O]2 - [14C]H4(g) -136.21 -139.07 -2.86 [14C]H4 + [14C]H4(g) -135.11 -137.97 -2.86 [14C]H4 [14C]O2(g) -14.44 -15.91 -1.47 [14C]O2 [14C]O[18O](g) -16.82 -18.61 -1.79 [14C]O[18O] - [18O]2(g) -15.42 -17.71 -2.29 [18O]2 + [18O]2(g) -15.96 -18.25 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -43163,14 +43124,14 @@ O(0) 9.923e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.30 -126.16 -2.86 CH4 + CH4(g) -122.21 -125.07 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.89 -40.04 -3.15 H2 + H2(g) -36.61 -39.76 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.41 -12.31 -2.89 O2 - O[18O](g) -12.11 -15.01 -2.89 O[18O] + O2(g) -9.96 -12.85 -2.89 O2 + O[18O](g) -12.66 -15.55 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -43260,12 +43221,12 @@ Calcite 2.71e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2736e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2264e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.633e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6704e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -43285,14 +43246,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.451 Adjusted to redox equilibrium + pe = 11.303 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.531e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -43301,30 +43262,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.121 -126.121 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.937 -124.936 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -43332,50 +43293,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.029 -40.028 0.001 (0) -O(0) 9.463e-13 - O2 4.713e-13 4.720e-13 -12.327 -12.326 0.001 (0) - O[18O] 1.881e-15 1.884e-15 -14.726 -14.725 0.001 (0) +H(0) 3.703e-40 + H2 1.852e-40 1.855e-40 -39.732 -39.732 0.001 (0) +O(0) 2.419e-13 + O2 1.205e-13 1.207e-13 -12.919 -12.918 0.001 (0) + O[18O] 4.808e-16 4.816e-16 -15.318 -15.317 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.077 -128.077 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.893 -126.892 0.001 (0) [13C](4) 6.506e-05 H[13C]O3- 5.247e-05 4.801e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) H[13C]O2[18O]- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) + H[13C][18O]O2- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.580e-08 4.587e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.121e-08 2.186e-08 -7.506 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) + CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.036 -139.035 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.851 -137.850 0.001 (0) [14C](4) 7.217e-16 H[14C]O3- 5.830e-16 5.334e-16 -15.234 -15.273 -0.039 (0) [14C]O2 1.213e-16 1.215e-16 -15.916 -15.915 0.001 (0) CaH[14C]O3+ 1.231e-17 1.129e-17 -16.910 -16.947 -0.037 (0) - H[14C][18O]O2- 1.163e-18 1.064e-18 -17.934 -17.973 -0.039 (0) - H[14C]O[18O]O- 1.163e-18 1.064e-18 -17.934 -17.973 -0.039 (0) H[14C]O2[18O]- 1.163e-18 1.064e-18 -17.934 -17.973 -0.039 (0) + H[14C]O[18O]O- 1.163e-18 1.064e-18 -17.934 -17.973 -0.039 (0) + H[14C][18O]O2- 1.163e-18 1.064e-18 -17.934 -17.973 -0.039 (0) Ca[14C]O3 6.749e-19 6.760e-19 -18.171 -18.170 0.001 (0) [14C]O[18O] 5.045e-19 5.053e-19 -18.297 -18.296 0.001 (0) [14C]O3-2 3.462e-19 2.425e-19 -18.461 -18.615 -0.155 (0) CaH[14C]O2[18O]+ 2.456e-20 2.253e-20 -19.610 -19.647 -0.037 (0) - CaH[14C][18O]O2+ 2.456e-20 2.253e-20 -19.610 -19.647 -0.037 (0) CaH[14C]O[18O]O+ 2.456e-20 2.253e-20 -19.610 -19.647 -0.037 (0) + CaH[14C][18O]O2+ 2.456e-20 2.253e-20 -19.610 -19.647 -0.037 (0) Ca[14C]O2[18O] 4.040e-21 4.046e-21 -20.394 -20.393 0.001 (0) H[14C]O[18O]2- 2.321e-21 2.123e-21 -20.634 -20.673 -0.039 (0) H[14C][18O]2O- 2.321e-21 2.123e-21 -20.634 -20.673 -0.039 (0) @@ -43384,29 +43345,29 @@ O(0) 9.463e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.884e-15 - O[18O] 1.881e-15 1.884e-15 -14.726 -14.725 0.001 (0) - [18O]2 1.876e-18 1.879e-18 -17.727 -17.726 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 4.817e-16 + O[18O] 4.808e-16 4.816e-16 -15.318 -15.317 0.001 (0) + [18O]2 4.796e-19 4.804e-19 -18.319 -18.318 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.22 -128.08 -2.86 [13C]H4 + [13C]H4(g) -124.03 -126.89 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.81 -21.32 -1.50 [14C][18O]2 - [14C]H4(g) -136.17 -139.03 -2.86 [14C]H4 + [14C]H4(g) -134.99 -137.85 -2.86 [14C]H4 [14C]O2(g) -14.45 -15.92 -1.47 [14C]O2 [14C]O[18O](g) -16.83 -18.62 -1.79 [14C]O[18O] - [18O]2(g) -15.44 -17.73 -2.29 [18O]2 + [18O]2(g) -16.03 -18.32 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -43420,14 +43381,14 @@ O(0) 9.463e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.26 -126.12 -2.86 CH4 + CH4(g) -122.08 -124.94 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.88 -40.03 -3.15 H2 + H2(g) -36.58 -39.73 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.43 -12.33 -2.89 O2 - O[18O](g) -12.13 -15.03 -2.89 O[18O] + O2(g) -10.03 -12.92 -2.89 O2 + O[18O](g) -12.73 -15.62 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -43517,12 +43478,12 @@ Calcite 2.76e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2523e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2375e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7946e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5581e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -43542,14 +43503,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.448 Adjusted to redox equilibrium + pe = 11.297 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.531e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -43558,19 +43519,19 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.095 -126.095 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.886 -124.886 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -43579,9 +43540,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -43589,23 +43550,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.022 -40.021 0.001 (0) -O(0) 9.185e-13 - O2 4.574e-13 4.582e-13 -12.340 -12.339 0.001 (0) - O[18O] 1.825e-15 1.828e-15 -14.739 -14.738 0.001 (0) +H(0) 3.812e-40 + H2 1.906e-40 1.909e-40 -39.720 -39.719 0.001 (0) +O(0) 2.283e-13 + O2 1.137e-13 1.139e-13 -12.944 -12.944 0.001 (0) + O[18O] 4.537e-16 4.545e-16 -15.343 -15.342 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.052 -128.051 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.842 -126.842 0.001 (0) [13C](4) 6.506e-05 H[13C]O3- 5.248e-05 4.801e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) H[13C]O2[18O]- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.580e-08 4.588e-08 -7.339 -7.338 0.001 (0) @@ -43614,56 +43575,56 @@ O(0) 9.185e-13 CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.016 -139.015 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.807 -137.806 0.001 (0) [14C](4) 7.109e-16 H[14C]O3- 5.743e-16 5.254e-16 -15.241 -15.280 -0.039 (0) [14C]O2 1.195e-16 1.197e-16 -15.923 -15.922 0.001 (0) CaH[14C]O3+ 1.213e-17 1.112e-17 -16.916 -16.954 -0.037 (0) - H[14C][18O]O2- 1.146e-18 1.048e-18 -17.941 -17.980 -0.039 (0) - H[14C]O[18O]O- 1.146e-18 1.048e-18 -17.941 -17.980 -0.039 (0) H[14C]O2[18O]- 1.146e-18 1.048e-18 -17.941 -17.980 -0.039 (0) + H[14C]O[18O]O- 1.146e-18 1.048e-18 -17.941 -17.980 -0.039 (0) + H[14C][18O]O2- 1.146e-18 1.048e-18 -17.941 -17.980 -0.039 (0) Ca[14C]O3 6.648e-19 6.659e-19 -18.177 -18.177 0.001 (0) [14C]O[18O] 4.969e-19 4.977e-19 -18.304 -18.303 0.001 (0) [14C]O3-2 3.410e-19 2.389e-19 -18.467 -18.622 -0.155 (0) CaH[14C]O2[18O]+ 2.420e-20 2.220e-20 -19.616 -19.654 -0.037 (0) - CaH[14C][18O]O2+ 2.420e-20 2.220e-20 -19.616 -19.654 -0.037 (0) CaH[14C]O[18O]O+ 2.420e-20 2.220e-20 -19.616 -19.654 -0.037 (0) + CaH[14C][18O]O2+ 2.420e-20 2.220e-20 -19.616 -19.654 -0.037 (0) Ca[14C]O2[18O] 3.979e-21 3.986e-21 -20.400 -20.399 0.001 (0) + H[14C]O[18O]2- 2.286e-21 2.092e-21 -20.641 -20.680 -0.039 (0) H[14C][18O]2O- 2.286e-21 2.092e-21 -20.641 -20.680 -0.039 (0) H[14C][18O]O[18O]- 2.286e-21 2.092e-21 -20.641 -20.680 -0.039 (0) - H[14C]O[18O]2- 2.286e-21 2.092e-21 -20.641 -20.680 -0.039 (0) [14C]O2[18O]-2 2.041e-21 1.430e-21 -20.690 -20.845 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.829e-15 - O[18O] 1.825e-15 1.828e-15 -14.739 -14.738 0.001 (0) - [18O]2 1.821e-18 1.824e-18 -17.740 -17.739 0.001 (0) +[18O](0) 4.546e-16 + O[18O] 4.537e-16 4.545e-16 -15.343 -15.342 0.001 (0) + [18O]2 4.526e-19 4.534e-19 -18.344 -18.344 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.19 -128.05 -2.86 [13C]H4 + [13C]H4(g) -123.98 -126.84 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.82 -21.32 -1.50 [14C][18O]2 - [14C]H4(g) -136.16 -139.02 -2.86 [14C]H4 + [14C]H4(g) -134.95 -137.81 -2.86 [14C]H4 [14C]O2(g) -14.45 -15.92 -1.47 [14C]O2 [14C]O[18O](g) -16.83 -18.62 -1.79 [14C]O[18O] - [18O]2(g) -15.45 -17.74 -2.29 [18O]2 + [18O]2(g) -16.05 -18.34 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -43677,14 +43638,14 @@ O(0) 9.185e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.23 -126.09 -2.86 CH4 + CH4(g) -122.03 -124.89 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.87 -40.02 -3.15 H2 + H2(g) -36.57 -39.72 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.45 -12.34 -2.89 O2 - O[18O](g) -12.15 -15.04 -2.89 O[18O] + O2(g) -10.05 -12.94 -2.89 O2 + O[18O](g) -12.75 -15.64 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -43754,7 +43715,7 @@ Calcite 2.81e-02 R(18O) H3O+ 2.04133e-03 18.019 permil R(18O) O2(aq) 1.99520e-03 -4.9893 permil R(13C) CO2(aq) 1.10610e-02 -10.66 permil - R(14C) CO2(aq) 1.18232e-13 10.055 pmc + R(14C) CO2(aq) 1.18231e-13 10.055 pmc R(18O) CO2(aq) 2.07916e-03 36.885 permil R(18O) HCO3- 1.99520e-03 -4.9893 permil R(13C) HCO3- 1.11572e-02 -2.0531 permil @@ -43774,12 +43735,12 @@ Calcite 2.81e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2495e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2675e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6337e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6709e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -43799,14 +43760,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.449 Adjusted to redox equilibrium + pe = 11.306 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.531e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -43815,30 +43776,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.102 -126.101 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.963 -124.962 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -43846,81 +43807,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.024 -40.023 0.001 (0) -O(0) 9.253e-13 - O2 4.608e-13 4.615e-13 -12.336 -12.336 0.001 (0) - O[18O] 1.839e-15 1.842e-15 -14.735 -14.735 0.001 (0) +H(0) 3.648e-40 + H2 1.824e-40 1.827e-40 -39.739 -39.738 0.001 (0) +O(0) 2.494e-13 + O2 1.242e-13 1.244e-13 -12.906 -12.905 0.001 (0) + O[18O] 4.956e-16 4.964e-16 -15.305 -15.304 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.058 -128.057 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.919 -126.918 0.001 (0) [13C](4) 6.506e-05 H[13C]O3- 5.248e-05 4.801e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) + H[13C][18O]O2- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.580e-08 4.588e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.121e-08 2.186e-08 -7.506 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.029 -139.028 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.890 -137.890 0.001 (0) [14C](4) 7.005e-16 H[14C]O3- 5.658e-16 5.177e-16 -15.247 -15.286 -0.039 (0) [14C]O2 1.177e-16 1.179e-16 -15.929 -15.928 0.001 (0) CaH[14C]O3+ 1.195e-17 1.096e-17 -16.923 -16.960 -0.037 (0) - H[14C][18O]O2- 1.129e-18 1.033e-18 -17.947 -17.986 -0.039 (0) - H[14C]O[18O]O- 1.129e-18 1.033e-18 -17.947 -17.986 -0.039 (0) H[14C]O2[18O]- 1.129e-18 1.033e-18 -17.947 -17.986 -0.039 (0) + H[14C]O[18O]O- 1.129e-18 1.033e-18 -17.947 -17.986 -0.039 (0) + H[14C][18O]O2- 1.129e-18 1.033e-18 -17.947 -17.986 -0.039 (0) Ca[14C]O3 6.550e-19 6.561e-19 -18.184 -18.183 0.001 (0) [14C]O[18O] 4.896e-19 4.904e-19 -18.310 -18.309 0.001 (0) [14C]O3-2 3.360e-19 2.354e-19 -18.474 -18.628 -0.155 (0) CaH[14C]O2[18O]+ 2.384e-20 2.187e-20 -19.623 -19.660 -0.037 (0) - CaH[14C][18O]O2+ 2.384e-20 2.187e-20 -19.623 -19.660 -0.037 (0) CaH[14C]O[18O]O+ 2.384e-20 2.187e-20 -19.623 -19.660 -0.037 (0) + CaH[14C][18O]O2+ 2.384e-20 2.187e-20 -19.623 -19.660 -0.037 (0) Ca[14C]O2[18O] 3.921e-21 3.927e-21 -20.407 -20.406 0.001 (0) - H[14C][18O]O[18O]- 2.252e-21 2.061e-21 -20.647 -20.686 -0.039 (0) H[14C]O[18O]2- 2.252e-21 2.061e-21 -20.647 -20.686 -0.039 (0) H[14C][18O]2O- 2.252e-21 2.061e-21 -20.647 -20.686 -0.039 (0) + H[14C][18O]O[18O]- 2.252e-21 2.061e-21 -20.647 -20.686 -0.039 (0) [14C]O2[18O]-2 2.011e-21 1.409e-21 -20.697 -20.851 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.842e-15 - O[18O] 1.839e-15 1.842e-15 -14.735 -14.735 0.001 (0) - [18O]2 1.834e-18 1.837e-18 -17.737 -17.736 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 4.966e-16 + O[18O] 4.956e-16 4.964e-16 -15.305 -15.304 0.001 (0) + [18O]2 4.944e-19 4.952e-19 -18.306 -18.305 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.20 -128.06 -2.86 [13C]H4 + [13C]H4(g) -124.06 -126.92 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.82 -21.33 -1.50 [14C][18O]2 - [14C]H4(g) -136.17 -139.03 -2.86 [14C]H4 + [14C]H4(g) -135.03 -137.89 -2.86 [14C]H4 [14C]O2(g) -14.46 -15.93 -1.47 [14C]O2 [14C]O[18O](g) -16.84 -18.63 -1.79 [14C]O[18O] - [18O]2(g) -15.45 -17.74 -2.29 [18O]2 + [18O]2(g) -16.01 -18.31 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -43934,14 +43895,14 @@ O(0) 9.253e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.24 -126.10 -2.86 CH4 + CH4(g) -122.10 -124.96 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.87 -40.02 -3.15 H2 + H2(g) -36.59 -39.74 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.44 -12.34 -2.89 O2 - O[18O](g) -12.14 -15.04 -2.89 O[18O] + O2(g) -10.01 -12.91 -2.89 O2 + O[18O](g) -12.71 -15.61 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -44031,12 +43992,12 @@ Calcite 2.86e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2677e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2525e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6654e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7006e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -44056,14 +44017,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.443 Adjusted to redox equilibrium + pe = 11.290 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.531e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -44072,20 +44033,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.055 -126.054 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.835 -124.834 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -44093,9 +44054,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -44103,50 +44064,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.012 -40.011 0.001 (0) -O(0) 8.769e-13 - O2 4.367e-13 4.374e-13 -12.360 -12.359 0.001 (0) - O[18O] 1.743e-15 1.746e-15 -14.759 -14.758 0.001 (0) +H(0) 3.927e-40 + H2 1.963e-40 1.967e-40 -39.707 -39.706 0.001 (0) +O(0) 2.152e-13 + O2 1.072e-13 1.073e-13 -12.970 -12.969 0.001 (0) + O[18O] 4.276e-16 4.283e-16 -15.369 -15.368 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.011 -128.011 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.791 -126.790 0.001 (0) [13C](4) 6.506e-05 H[13C]O3- 5.248e-05 4.801e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) H[13C]O2[18O]- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) + H[13C][18O]O2- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.580e-08 4.588e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.121e-08 2.186e-08 -7.506 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) + CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.989 -138.988 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.768 -137.768 0.001 (0) [14C](4) 6.903e-16 H[14C]O3- 5.576e-16 5.101e-16 -15.254 -15.292 -0.039 (0) [14C]O2 1.160e-16 1.162e-16 -15.935 -15.935 0.001 (0) CaH[14C]O3+ 1.177e-17 1.080e-17 -16.929 -16.967 -0.037 (0) - H[14C][18O]O2- 1.113e-18 1.018e-18 -17.954 -17.992 -0.039 (0) - H[14C]O[18O]O- 1.113e-18 1.018e-18 -17.954 -17.992 -0.039 (0) H[14C]O2[18O]- 1.113e-18 1.018e-18 -17.954 -17.992 -0.039 (0) + H[14C]O[18O]O- 1.113e-18 1.018e-18 -17.954 -17.992 -0.039 (0) + H[14C][18O]O2- 1.113e-18 1.018e-18 -17.954 -17.992 -0.039 (0) Ca[14C]O3 6.455e-19 6.466e-19 -18.190 -18.189 0.001 (0) [14C]O[18O] 4.825e-19 4.833e-19 -18.317 -18.316 0.001 (0) [14C]O3-2 3.311e-19 2.320e-19 -18.480 -18.635 -0.155 (0) CaH[14C]O2[18O]+ 2.349e-20 2.155e-20 -19.629 -19.667 -0.037 (0) - CaH[14C][18O]O2+ 2.349e-20 2.155e-20 -19.629 -19.667 -0.037 (0) CaH[14C]O[18O]O+ 2.349e-20 2.155e-20 -19.629 -19.667 -0.037 (0) + CaH[14C][18O]O2+ 2.349e-20 2.155e-20 -19.629 -19.667 -0.037 (0) Ca[14C]O2[18O] 3.864e-21 3.870e-21 -20.413 -20.412 0.001 (0) H[14C]O[18O]2- 2.220e-21 2.031e-21 -20.654 -20.692 -0.039 (0) H[14C][18O]2O- 2.220e-21 2.031e-21 -20.654 -20.692 -0.039 (0) @@ -44155,29 +44116,29 @@ O(0) 8.769e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.746e-15 - O[18O] 1.743e-15 1.746e-15 -14.759 -14.758 0.001 (0) - [18O]2 1.738e-18 1.741e-18 -17.760 -17.759 0.001 (0) +[18O](0) 4.285e-16 + O[18O] 4.276e-16 4.283e-16 -15.369 -15.368 0.001 (0) + [18O]2 4.266e-19 4.273e-19 -18.370 -18.369 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.15 -128.01 -2.86 [13C]H4 + [13C]H4(g) -123.93 -126.79 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.83 -21.33 -1.50 [14C][18O]2 - [14C]H4(g) -136.13 -138.99 -2.86 [14C]H4 + [14C]H4(g) -134.91 -137.77 -2.86 [14C]H4 [14C]O2(g) -14.47 -15.93 -1.47 [14C]O2 [14C]O[18O](g) -16.85 -18.63 -1.79 [14C]O[18O] - [18O]2(g) -15.47 -17.76 -2.29 [18O]2 + [18O]2(g) -16.08 -18.37 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -44191,14 +44152,14 @@ O(0) 8.769e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.19 -126.05 -2.86 CH4 + CH4(g) -121.97 -124.83 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.86 -40.01 -3.15 H2 + H2(g) -36.56 -39.71 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.47 -12.36 -2.89 O2 - O[18O](g) -12.17 -15.06 -2.89 O[18O] + O2(g) -10.08 -12.97 -2.89 O2 + O[18O](g) -12.78 -15.67 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -44288,12 +44249,12 @@ Calcite 2.91e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2734e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.26e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6459e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6845e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -44313,14 +44274,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.440 Adjusted to redox equilibrium + pe = 11.278 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.531e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -44329,30 +44290,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.032 -126.032 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.738 -124.738 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -44360,23 +44321,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.006 -40.006 0.001 (0) -O(0) 8.541e-13 - O2 4.254e-13 4.261e-13 -12.371 -12.371 0.001 (0) - O[18O] 1.697e-15 1.700e-15 -14.770 -14.770 0.001 (0) +H(0) 4.151e-40 + H2 2.076e-40 2.079e-40 -39.683 -39.682 0.001 (0) +O(0) 1.925e-13 + O2 9.589e-14 9.604e-14 -13.018 -13.018 0.001 (0) + O[18O] 3.826e-16 3.833e-16 -15.417 -15.417 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.988 -127.988 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.694 -126.694 0.001 (0) [13C](4) 6.506e-05 H[13C]O3- 5.248e-05 4.801e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) H[13C]O2[18O]- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.588e-08 -7.339 -7.338 0.001 (0) @@ -44385,56 +44346,56 @@ O(0) 8.541e-13 CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.972 -138.971 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.678 -137.677 0.001 (0) [14C](4) 6.804e-16 H[14C]O3- 5.496e-16 5.028e-16 -15.260 -15.299 -0.039 (0) [14C]O2 1.144e-16 1.146e-16 -15.942 -15.941 0.001 (0) CaH[14C]O3+ 1.161e-17 1.065e-17 -16.935 -16.973 -0.037 (0) - H[14C][18O]O2- 1.097e-18 1.003e-18 -17.960 -17.999 -0.039 (0) - H[14C]O[18O]O- 1.097e-18 1.003e-18 -17.960 -17.999 -0.039 (0) H[14C]O2[18O]- 1.097e-18 1.003e-18 -17.960 -17.999 -0.039 (0) + H[14C]O[18O]O- 1.097e-18 1.003e-18 -17.960 -17.999 -0.039 (0) + H[14C][18O]O2- 1.097e-18 1.003e-18 -17.960 -17.999 -0.039 (0) Ca[14C]O3 6.362e-19 6.373e-19 -18.196 -18.196 0.001 (0) [14C]O[18O] 4.756e-19 4.763e-19 -18.323 -18.322 0.001 (0) [14C]O3-2 3.264e-19 2.286e-19 -18.486 -18.641 -0.155 (0) CaH[14C]O2[18O]+ 2.316e-20 2.124e-20 -19.635 -19.673 -0.037 (0) - CaH[14C][18O]O2+ 2.316e-20 2.124e-20 -19.635 -19.673 -0.037 (0) CaH[14C]O[18O]O+ 2.316e-20 2.124e-20 -19.635 -19.673 -0.037 (0) + CaH[14C][18O]O2+ 2.316e-20 2.124e-20 -19.635 -19.673 -0.037 (0) Ca[14C]O2[18O] 3.808e-21 3.815e-21 -20.419 -20.419 0.001 (0) + H[14C]O[18O]2- 2.188e-21 2.002e-21 -20.660 -20.699 -0.039 (0) H[14C][18O]2O- 2.188e-21 2.002e-21 -20.660 -20.699 -0.039 (0) H[14C][18O]O[18O]- 2.188e-21 2.002e-21 -20.660 -20.699 -0.039 (0) - H[14C]O[18O]2- 2.188e-21 2.002e-21 -20.660 -20.699 -0.039 (0) [14C]O2[18O]-2 1.954e-21 1.369e-21 -20.709 -20.864 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.701e-15 - O[18O] 1.697e-15 1.700e-15 -14.770 -14.770 0.001 (0) - [18O]2 1.693e-18 1.696e-18 -17.771 -17.771 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 3.834e-16 + O[18O] 3.826e-16 3.833e-16 -15.417 -15.417 0.001 (0) + [18O]2 3.817e-19 3.823e-19 -18.418 -18.418 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.13 -127.99 -2.86 [13C]H4 + [13C]H4(g) -123.83 -126.69 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.84 -21.34 -1.50 [14C][18O]2 - [14C]H4(g) -136.11 -138.97 -2.86 [14C]H4 + [14C]H4(g) -134.82 -137.68 -2.86 [14C]H4 [14C]O2(g) -14.47 -15.94 -1.47 [14C]O2 [14C]O[18O](g) -16.85 -18.64 -1.79 [14C]O[18O] - [18O]2(g) -15.48 -17.77 -2.29 [18O]2 + [18O]2(g) -16.13 -18.42 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -44448,14 +44409,14 @@ O(0) 8.541e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.17 -126.03 -2.86 CH4 + CH4(g) -121.88 -124.74 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.86 -40.01 -3.15 H2 + H2(g) -36.53 -39.68 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.48 -12.37 -2.89 O2 - O[18O](g) -12.18 -15.07 -2.89 O[18O] + O2(g) -10.13 -13.02 -2.89 O2 + O[18O](g) -12.83 -15.72 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -44545,12 +44506,12 @@ Calcite 2.96e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2362e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2553e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5472e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7905e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -44570,14 +44531,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.439 Adjusted to redox equilibrium + pe = 11.274 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.531e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -44586,20 +44547,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.024 -126.023 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.701 -124.700 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -44607,9 +44568,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -44617,81 +44578,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.004 -40.004 0.001 (0) -O(0) 8.460e-13 - O2 4.213e-13 4.220e-13 -12.375 -12.375 0.001 (0) - O[18O] 1.681e-15 1.684e-15 -14.774 -14.774 0.001 (0) +H(0) 4.241e-40 + H2 2.121e-40 2.124e-40 -39.674 -39.673 0.001 (0) +O(0) 1.845e-13 + O2 9.188e-14 9.203e-14 -13.037 -13.036 0.001 (0) + O[18O] 3.666e-16 3.672e-16 -15.436 -15.435 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.980 -127.979 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.657 -126.657 0.001 (0) [13C](4) 6.507e-05 H[13C]O3- 5.248e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) + H[13C][18O]O2- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.588e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.121e-08 2.187e-08 -7.506 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.970 -138.969 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.647 -137.646 0.001 (0) [14C](4) 6.708e-16 H[14C]O3- 5.418e-16 4.957e-16 -15.266 -15.305 -0.039 (0) [14C]O2 1.127e-16 1.129e-16 -15.948 -15.947 0.001 (0) CaH[14C]O3+ 1.144e-17 1.050e-17 -16.941 -16.979 -0.037 (0) - H[14C][18O]O2- 1.081e-18 9.891e-19 -17.966 -18.005 -0.039 (0) - H[14C]O[18O]O- 1.081e-18 9.891e-19 -17.966 -18.005 -0.039 (0) H[14C]O2[18O]- 1.081e-18 9.891e-19 -17.966 -18.005 -0.039 (0) + H[14C]O[18O]O- 1.081e-18 9.891e-19 -17.966 -18.005 -0.039 (0) + H[14C][18O]O2- 1.081e-18 9.891e-19 -17.966 -18.005 -0.039 (0) Ca[14C]O3 6.273e-19 6.283e-19 -18.203 -18.202 0.001 (0) [14C]O[18O] 4.688e-19 4.696e-19 -18.329 -18.328 0.001 (0) [14C]O3-2 3.218e-19 2.254e-19 -18.492 -18.647 -0.155 (0) CaH[14C]O2[18O]+ 2.283e-20 2.094e-20 -19.642 -19.679 -0.037 (0) - CaH[14C][18O]O2+ 2.283e-20 2.094e-20 -19.642 -19.679 -0.037 (0) CaH[14C]O[18O]O+ 2.283e-20 2.094e-20 -19.642 -19.679 -0.037 (0) + CaH[14C][18O]O2+ 2.283e-20 2.094e-20 -19.642 -19.679 -0.037 (0) Ca[14C]O2[18O] 3.755e-21 3.761e-21 -20.425 -20.425 0.001 (0) - H[14C][18O]O[18O]- 2.157e-21 1.973e-21 -20.666 -20.705 -0.039 (0) H[14C]O[18O]2- 2.157e-21 1.973e-21 -20.666 -20.705 -0.039 (0) H[14C][18O]2O- 2.157e-21 1.973e-21 -20.666 -20.705 -0.039 (0) + H[14C][18O]O[18O]- 2.157e-21 1.973e-21 -20.666 -20.705 -0.039 (0) [14C]O2[18O]-2 1.926e-21 1.349e-21 -20.715 -20.870 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.685e-15 - O[18O] 1.681e-15 1.684e-15 -14.774 -14.774 0.001 (0) - [18O]2 1.677e-18 1.680e-18 -17.775 -17.775 0.001 (0) +[18O](0) 3.674e-16 + O[18O] 3.666e-16 3.672e-16 -15.436 -15.435 0.001 (0) + [18O]2 3.657e-19 3.663e-19 -18.437 -18.436 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.12 -127.98 -2.86 [13C]H4 + [13C]H4(g) -123.80 -126.66 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.84 -21.35 -1.50 [14C][18O]2 - [14C]H4(g) -136.11 -138.97 -2.86 [14C]H4 + [14C]H4(g) -134.79 -137.65 -2.86 [14C]H4 [14C]O2(g) -14.48 -15.95 -1.47 [14C]O2 [14C]O[18O](g) -16.86 -18.65 -1.79 [14C]O[18O] - [18O]2(g) -15.48 -17.77 -2.29 [18O]2 + [18O]2(g) -16.15 -18.44 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -44705,14 +44666,14 @@ O(0) 8.460e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.16 -126.02 -2.86 CH4 + CH4(g) -121.84 -124.70 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.85 -40.00 -3.15 H2 + H2(g) -36.52 -39.67 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.48 -12.37 -2.89 O2 - O[18O](g) -12.18 -15.07 -2.89 O[18O] + O2(g) -10.14 -13.04 -2.89 O2 + O[18O](g) -12.84 -15.74 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -44802,12 +44763,12 @@ Calcite 3.01e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2545e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2732e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.611e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6476e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -44827,14 +44788,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.438 Adjusted to redox equilibrium + pe = 11.267 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.531e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -44843,30 +44804,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.020 -126.019 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.646 -124.645 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -44874,50 +44835,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.084e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.003 -40.002 0.001 (0) -O(0) 8.418e-13 - O2 4.192e-13 4.199e-13 -12.378 -12.377 0.001 (0) - O[18O] 1.673e-15 1.676e-15 -14.777 -14.776 0.001 (0) +H(0) 4.378e-40 + H2 2.189e-40 2.192e-40 -39.660 -39.659 0.001 (0) +O(0) 1.731e-13 + O2 8.623e-14 8.637e-14 -13.064 -13.064 0.001 (0) + O[18O] 3.441e-16 3.447e-16 -15.463 -15.463 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.976 -127.975 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.602 -126.601 0.001 (0) [13C](4) 6.507e-05 H[13C]O3- 5.248e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) H[13C]O2[18O]- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) + H[13C][18O]O2- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.084e-08 6.095e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.588e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.121e-08 2.187e-08 -7.506 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) + CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.972 -138.971 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.598 -137.597 0.001 (0) [14C](4) 6.614e-16 H[14C]O3- 5.343e-16 4.888e-16 -15.272 -15.311 -0.039 (0) [14C]O2 1.112e-16 1.114e-16 -15.954 -15.953 0.001 (0) CaH[14C]O3+ 1.128e-17 1.035e-17 -16.948 -16.985 -0.037 (0) - H[14C][18O]O2- 1.066e-18 9.753e-19 -17.972 -18.011 -0.039 (0) - H[14C]O[18O]O- 1.066e-18 9.753e-19 -17.972 -18.011 -0.039 (0) H[14C]O2[18O]- 1.066e-18 9.753e-19 -17.972 -18.011 -0.039 (0) + H[14C]O[18O]O- 1.066e-18 9.753e-19 -17.972 -18.011 -0.039 (0) + H[14C][18O]O2- 1.066e-18 9.753e-19 -17.972 -18.011 -0.039 (0) Ca[14C]O3 6.185e-19 6.195e-19 -18.209 -18.208 0.001 (0) [14C]O[18O] 4.623e-19 4.631e-19 -18.335 -18.334 0.001 (0) [14C]O3-2 3.173e-19 2.223e-19 -18.499 -18.653 -0.155 (0) CaH[14C]O2[18O]+ 2.251e-20 2.065e-20 -19.648 -19.685 -0.037 (0) - CaH[14C][18O]O2+ 2.251e-20 2.065e-20 -19.648 -19.685 -0.037 (0) CaH[14C]O[18O]O+ 2.251e-20 2.065e-20 -19.648 -19.685 -0.037 (0) + CaH[14C][18O]O2+ 2.251e-20 2.065e-20 -19.648 -19.685 -0.037 (0) Ca[14C]O2[18O] 3.702e-21 3.708e-21 -20.432 -20.431 0.001 (0) H[14C]O[18O]2- 2.127e-21 1.946e-21 -20.672 -20.711 -0.039 (0) H[14C][18O]2O- 2.127e-21 1.946e-21 -20.672 -20.711 -0.039 (0) @@ -44926,29 +44887,29 @@ O(0) 8.418e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.676e-15 - O[18O] 1.673e-15 1.676e-15 -14.777 -14.776 0.001 (0) - [18O]2 1.669e-18 1.672e-18 -17.778 -17.777 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 3.448e-16 + O[18O] 3.441e-16 3.447e-16 -15.463 -15.463 0.001 (0) + [18O]2 3.433e-19 3.438e-19 -18.464 -18.464 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.12 -127.98 -2.86 [13C]H4 + [13C]H4(g) -123.74 -126.60 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.85 -21.35 -1.50 [14C][18O]2 - [14C]H4(g) -136.11 -138.97 -2.86 [14C]H4 + [14C]H4(g) -134.74 -137.60 -2.86 [14C]H4 [14C]O2(g) -14.48 -15.95 -1.47 [14C]O2 [14C]O[18O](g) -16.87 -18.65 -1.79 [14C]O[18O] - [18O]2(g) -15.49 -17.78 -2.29 [18O]2 + [18O]2(g) -16.17 -18.46 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -44962,14 +44923,14 @@ O(0) 8.418e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.16 -126.02 -2.86 CH4 + CH4(g) -121.79 -124.65 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.85 -40.00 -3.15 H2 + H2(g) -36.51 -39.66 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.48 -12.38 -2.89 O2 - O[18O](g) -12.18 -15.08 -2.89 O[18O] + O2(g) -10.17 -13.06 -2.89 O2 + O[18O](g) -12.87 -15.76 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -45059,12 +45020,12 @@ Calcite 3.06e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2612e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2807e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5368e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7109e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -45084,14 +45045,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.441 Adjusted to redox equilibrium + pe = 11.277 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.531e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -45100,19 +45061,19 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.037 -126.037 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.728 -124.728 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -45121,9 +45082,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -45131,23 +45092,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.008 -40.007 0.001 (0) -O(0) 8.591e-13 - O2 4.278e-13 4.286e-13 -12.369 -12.368 0.001 (0) - O[18O] 1.707e-15 1.710e-15 -14.768 -14.767 0.001 (0) +H(0) 4.175e-40 + H2 2.087e-40 2.091e-40 -39.680 -39.680 0.001 (0) +O(0) 1.904e-13 + O2 9.481e-14 9.497e-14 -13.023 -13.022 0.001 (0) + O[18O] 3.783e-16 3.790e-16 -15.422 -15.421 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.993 -127.993 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.685 -126.684 0.001 (0) [13C](4) 6.507e-05 H[13C]O3- 5.249e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) H[13C]O2[18O]- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.588e-08 -7.339 -7.338 0.001 (0) @@ -45156,56 +45117,56 @@ O(0) 8.591e-13 CaH[13C]O[18O]O+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.995 -138.995 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.687 -137.686 0.001 (0) [14C](4) 6.524e-16 H[14C]O3- 5.270e-16 4.821e-16 -15.278 -15.317 -0.039 (0) [14C]O2 1.097e-16 1.098e-16 -15.960 -15.959 0.001 (0) CaH[14C]O3+ 1.113e-17 1.021e-17 -16.954 -16.991 -0.037 (0) - H[14C][18O]O2- 1.051e-18 9.619e-19 -17.978 -18.017 -0.039 (0) - H[14C]O[18O]O- 1.051e-18 9.619e-19 -17.978 -18.017 -0.039 (0) H[14C]O2[18O]- 1.051e-18 9.619e-19 -17.978 -18.017 -0.039 (0) + H[14C]O[18O]O- 1.051e-18 9.619e-19 -17.978 -18.017 -0.039 (0) + H[14C][18O]O2- 1.051e-18 9.619e-19 -17.978 -18.017 -0.039 (0) Ca[14C]O3 6.100e-19 6.110e-19 -18.215 -18.214 0.001 (0) [14C]O[18O] 4.560e-19 4.567e-19 -18.341 -18.340 0.001 (0) [14C]O3-2 3.129e-19 2.192e-19 -18.505 -18.659 -0.155 (0) CaH[14C]O2[18O]+ 2.220e-20 2.037e-20 -19.654 -19.691 -0.037 (0) - CaH[14C][18O]O2+ 2.220e-20 2.037e-20 -19.654 -19.691 -0.037 (0) CaH[14C]O[18O]O+ 2.220e-20 2.037e-20 -19.654 -19.691 -0.037 (0) + CaH[14C][18O]O2+ 2.220e-20 2.037e-20 -19.654 -19.691 -0.037 (0) Ca[14C]O2[18O] 3.651e-21 3.657e-21 -20.438 -20.437 0.001 (0) + H[14C]O[18O]2- 2.098e-21 1.919e-21 -20.678 -20.717 -0.039 (0) H[14C][18O]2O- 2.098e-21 1.919e-21 -20.678 -20.717 -0.039 (0) H[14C][18O]O[18O]- 2.098e-21 1.919e-21 -20.678 -20.717 -0.039 (0) - H[14C]O[18O]2- 2.098e-21 1.919e-21 -20.678 -20.717 -0.039 (0) [14C]O2[18O]-2 1.873e-21 1.312e-21 -20.727 -20.882 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.711e-15 - O[18O] 1.707e-15 1.710e-15 -14.768 -14.767 0.001 (0) - [18O]2 1.703e-18 1.706e-18 -17.769 -17.768 0.001 (0) +[18O](0) 3.791e-16 + O[18O] 3.783e-16 3.790e-16 -15.422 -15.421 0.001 (0) + [18O]2 3.774e-19 3.780e-19 -18.423 -18.422 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.13 -127.99 -2.86 [13C]H4 + [13C]H4(g) -123.82 -126.68 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.86 -21.36 -1.50 [14C][18O]2 - [14C]H4(g) -136.13 -138.99 -2.86 [14C]H4 + [14C]H4(g) -134.83 -137.69 -2.86 [14C]H4 [14C]O2(g) -14.49 -15.96 -1.47 [14C]O2 [14C]O[18O](g) -16.87 -18.66 -1.79 [14C]O[18O] - [18O]2(g) -15.48 -17.77 -2.29 [18O]2 + [18O]2(g) -16.13 -18.42 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -45219,14 +45180,14 @@ O(0) 8.591e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.18 -126.04 -2.86 CH4 + CH4(g) -121.87 -124.73 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.86 -40.01 -3.15 H2 + H2(g) -36.53 -39.68 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.48 -12.37 -2.89 O2 - O[18O](g) -12.18 -15.07 -2.89 O[18O] + O2(g) -10.13 -13.02 -2.89 O2 + O[18O](g) -12.83 -15.72 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -45316,12 +45277,12 @@ Calcite 3.11e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2603e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2471e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6364e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.675e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -45341,14 +45302,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.437 Adjusted to redox equilibrium + pe = 11.264 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.531e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -45357,30 +45318,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.008 -126.007 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.625 -124.624 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -45388,81 +45349,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 1.001e-40 -40.000 -39.999 0.001 (0) -O(0) 8.304e-13 - O2 4.135e-13 4.142e-13 -12.383 -12.383 0.001 (0) - O[18O] 1.650e-15 1.653e-15 -14.782 -14.782 0.001 (0) +H(0) 4.432e-40 + H2 2.216e-40 2.220e-40 -39.654 -39.654 0.001 (0) +O(0) 1.689e-13 + O2 8.412e-14 8.426e-14 -13.075 -13.074 0.001 (0) + O[18O] 3.357e-16 3.362e-16 -15.474 -15.473 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.964 -127.963 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.581 -126.580 0.001 (0) [13C](4) 6.507e-05 H[13C]O3- 5.249e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) + H[13C][18O]O2- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.589e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.121e-08 2.187e-08 -7.506 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.972 -138.971 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.589 -137.588 0.001 (0) [14C](4) 6.435e-16 H[14C]O3- 5.198e-16 4.756e-16 -15.284 -15.323 -0.039 (0) [14C]O2 1.082e-16 1.083e-16 -15.966 -15.965 0.001 (0) CaH[14C]O3+ 1.098e-17 1.007e-17 -16.960 -16.997 -0.037 (0) - H[14C][18O]O2- 1.037e-18 9.489e-19 -17.984 -18.023 -0.039 (0) - H[14C]O[18O]O- 1.037e-18 9.489e-19 -17.984 -18.023 -0.039 (0) H[14C]O2[18O]- 1.037e-18 9.489e-19 -17.984 -18.023 -0.039 (0) + H[14C]O[18O]O- 1.037e-18 9.489e-19 -17.984 -18.023 -0.039 (0) + H[14C][18O]O2- 1.037e-18 9.489e-19 -17.984 -18.023 -0.039 (0) Ca[14C]O3 6.018e-19 6.028e-19 -18.221 -18.220 0.001 (0) [14C]O[18O] 4.498e-19 4.505e-19 -18.347 -18.346 0.001 (0) [14C]O3-2 3.087e-19 2.163e-19 -18.510 -18.665 -0.155 (0) CaH[14C]O2[18O]+ 2.190e-20 2.009e-20 -19.660 -19.697 -0.037 (0) - CaH[14C][18O]O2+ 2.190e-20 2.009e-20 -19.660 -19.697 -0.037 (0) CaH[14C]O[18O]O+ 2.190e-20 2.009e-20 -19.660 -19.697 -0.037 (0) + CaH[14C][18O]O2+ 2.190e-20 2.009e-20 -19.660 -19.697 -0.037 (0) Ca[14C]O2[18O] 3.602e-21 3.608e-21 -20.443 -20.443 0.001 (0) - H[14C][18O]O[18O]- 2.069e-21 1.893e-21 -20.684 -20.723 -0.039 (0) H[14C]O[18O]2- 2.069e-21 1.893e-21 -20.684 -20.723 -0.039 (0) H[14C][18O]2O- 2.069e-21 1.893e-21 -20.684 -20.723 -0.039 (0) + H[14C][18O]O[18O]- 2.069e-21 1.893e-21 -20.684 -20.723 -0.039 (0) [14C]O2[18O]-2 1.848e-21 1.294e-21 -20.733 -20.888 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.653e-15 - O[18O] 1.650e-15 1.653e-15 -14.782 -14.782 0.001 (0) - [18O]2 1.646e-18 1.649e-18 -17.784 -17.783 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 3.363e-16 + O[18O] 3.357e-16 3.362e-16 -15.474 -15.473 0.001 (0) + [18O]2 3.349e-19 3.354e-19 -18.475 -18.474 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.10 -127.96 -2.86 [13C]H4 + [13C]H4(g) -123.72 -126.58 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.86 -21.37 -1.50 [14C][18O]2 - [14C]H4(g) -136.11 -138.97 -2.86 [14C]H4 + [14C]H4(g) -134.73 -137.59 -2.86 [14C]H4 [14C]O2(g) -14.50 -15.97 -1.47 [14C]O2 [14C]O[18O](g) -16.88 -18.67 -1.79 [14C]O[18O] - [18O]2(g) -15.49 -17.78 -2.29 [18O]2 + [18O]2(g) -16.18 -18.47 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -45476,14 +45437,14 @@ O(0) 8.304e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.15 -126.01 -2.86 CH4 + CH4(g) -121.76 -124.62 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.85 -40.00 -3.15 H2 + H2(g) -36.50 -39.65 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.49 -12.38 -2.89 O2 - O[18O](g) -12.19 -15.08 -2.89 O[18O] + O2(g) -10.18 -13.07 -2.89 O2 + O[18O](g) -12.88 -15.77 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -45573,12 +45534,12 @@ Calcite 3.16e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2499e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2705e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.9936e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6837e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5177e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -45598,14 +45559,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.439 Adjusted to redox equilibrium + pe = 11.273 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.531e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -45614,20 +45575,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.023 -126.022 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.697 -124.696 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -45635,9 +45596,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -45645,50 +45606,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.004 -40.003 0.001 (0) -O(0) 8.451e-13 - O2 4.208e-13 4.215e-13 -12.376 -12.375 0.001 (0) - O[18O] 1.679e-15 1.682e-15 -14.775 -14.774 0.001 (0) +H(0) 4.251e-40 + H2 2.125e-40 2.129e-40 -39.673 -39.672 0.001 (0) +O(0) 1.836e-13 + O2 9.145e-14 9.160e-14 -13.039 -13.038 0.001 (0) + O[18O] 3.649e-16 3.655e-16 -15.438 -15.437 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.979 -127.978 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.653 -126.653 0.001 (0) [13C](4) 6.507e-05 H[13C]O3- 5.249e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) H[13C]O2[18O]- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) + H[13C][18O]O2- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.589e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.121e-08 2.187e-08 -7.506 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) + CaH[13C][18O]O2+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.993 -138.992 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.667 -137.666 0.001 (0) [14C](4) 6.349e-16 H[14C]O3- 5.129e-16 4.692e-16 -15.290 -15.329 -0.039 (0) [14C]O2 1.067e-16 1.069e-16 -15.972 -15.971 0.001 (0) CaH[14C]O3+ 1.083e-17 9.935e-18 -16.965 -17.003 -0.037 (0) - H[14C][18O]O2- 1.023e-18 9.362e-19 -17.990 -18.029 -0.039 (0) - H[14C]O[18O]O- 1.023e-18 9.362e-19 -17.990 -18.029 -0.039 (0) H[14C]O2[18O]- 1.023e-18 9.362e-19 -17.990 -18.029 -0.039 (0) + H[14C]O[18O]O- 1.023e-18 9.362e-19 -17.990 -18.029 -0.039 (0) + H[14C][18O]O2- 1.023e-18 9.362e-19 -17.990 -18.029 -0.039 (0) Ca[14C]O3 5.937e-19 5.947e-19 -18.226 -18.226 0.001 (0) [14C]O[18O] 4.438e-19 4.445e-19 -18.353 -18.352 0.001 (0) [14C]O3-2 3.046e-19 2.134e-19 -18.516 -18.671 -0.155 (0) CaH[14C]O2[18O]+ 2.161e-20 1.982e-20 -19.665 -19.703 -0.037 (0) - CaH[14C][18O]O2+ 2.161e-20 1.982e-20 -19.665 -19.703 -0.037 (0) CaH[14C]O[18O]O+ 2.161e-20 1.982e-20 -19.665 -19.703 -0.037 (0) + CaH[14C][18O]O2+ 2.161e-20 1.982e-20 -19.665 -19.703 -0.037 (0) Ca[14C]O2[18O] 3.554e-21 3.560e-21 -20.449 -20.449 0.001 (0) H[14C]O[18O]2- 2.042e-21 1.868e-21 -20.690 -20.729 -0.039 (0) H[14C][18O]2O- 2.042e-21 1.868e-21 -20.690 -20.729 -0.039 (0) @@ -45697,29 +45658,29 @@ O(0) 8.451e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.683e-15 - O[18O] 1.679e-15 1.682e-15 -14.775 -14.774 0.001 (0) - [18O]2 1.675e-18 1.678e-18 -17.776 -17.775 0.001 (0) +[18O](0) 3.657e-16 + O[18O] 3.649e-16 3.655e-16 -15.438 -15.437 0.001 (0) + [18O]2 3.640e-19 3.646e-19 -18.439 -18.438 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.12 -127.98 -2.86 [13C]H4 + [13C]H4(g) -123.79 -126.65 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.87 -21.37 -1.50 [14C][18O]2 - [14C]H4(g) -136.13 -138.99 -2.86 [14C]H4 + [14C]H4(g) -134.81 -137.67 -2.86 [14C]H4 [14C]O2(g) -14.50 -15.97 -1.47 [14C]O2 [14C]O[18O](g) -16.88 -18.67 -1.79 [14C]O[18O] - [18O]2(g) -15.48 -17.78 -2.29 [18O]2 + [18O]2(g) -16.15 -18.44 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -45733,14 +45694,14 @@ O(0) 8.451e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.16 -126.02 -2.86 CH4 + CH4(g) -121.84 -124.70 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.85 -40.00 -3.15 H2 + H2(g) -36.52 -39.67 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.48 -12.38 -2.89 O2 - O[18O](g) -12.18 -15.08 -2.89 O[18O] + O2(g) -10.15 -13.04 -2.89 O2 + O[18O](g) -12.85 -15.74 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -45830,12 +45791,12 @@ Calcite 3.21e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.265e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2532e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.65e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6904e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -45855,14 +45816,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.440 Adjusted to redox equilibrium + pe = 11.280 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.531e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -45871,30 +45832,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.035 -126.035 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.754 -124.753 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -45902,23 +45863,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.007 -40.006 0.001 (0) -O(0) 8.573e-13 - O2 4.270e-13 4.277e-13 -12.370 -12.369 0.001 (0) - O[18O] 1.704e-15 1.707e-15 -14.769 -14.768 0.001 (0) +H(0) 4.115e-40 + H2 2.057e-40 2.061e-40 -39.687 -39.686 0.001 (0) +O(0) 1.960e-13 + O2 9.761e-14 9.777e-14 -13.010 -13.010 0.001 (0) + O[18O] 3.895e-16 3.902e-16 -15.409 -15.409 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.992 -127.991 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.710 -126.709 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.249e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) H[13C]O2[18O]- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.589e-08 -7.339 -7.338 0.001 (0) @@ -45927,56 +45888,56 @@ O(0) 8.573e-13 CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.011 -139.010 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.729 -137.729 0.001 (0) [14C](4) 6.265e-16 H[14C]O3- 5.061e-16 4.630e-16 -15.296 -15.334 -0.039 (0) [14C]O2 1.053e-16 1.055e-16 -15.978 -15.977 0.001 (0) CaH[14C]O3+ 1.069e-17 9.804e-18 -16.971 -17.009 -0.037 (0) - H[14C][18O]O2- 1.010e-18 9.238e-19 -17.996 -18.034 -0.039 (0) - H[14C]O[18O]O- 1.010e-18 9.238e-19 -17.996 -18.034 -0.039 (0) H[14C]O2[18O]- 1.010e-18 9.238e-19 -17.996 -18.034 -0.039 (0) + H[14C]O[18O]O- 1.010e-18 9.238e-19 -17.996 -18.034 -0.039 (0) + H[14C][18O]O2- 1.010e-18 9.238e-19 -17.996 -18.034 -0.039 (0) Ca[14C]O3 5.859e-19 5.869e-19 -18.232 -18.231 0.001 (0) [14C]O[18O] 4.379e-19 4.386e-19 -18.359 -18.358 0.001 (0) [14C]O3-2 3.006e-19 2.106e-19 -18.522 -18.677 -0.155 (0) CaH[14C]O2[18O]+ 2.132e-20 1.956e-20 -19.671 -19.709 -0.037 (0) - CaH[14C][18O]O2+ 2.132e-20 1.956e-20 -19.671 -19.709 -0.037 (0) CaH[14C]O[18O]O+ 2.132e-20 1.956e-20 -19.671 -19.709 -0.037 (0) + CaH[14C][18O]O2+ 2.132e-20 1.956e-20 -19.671 -19.709 -0.037 (0) Ca[14C]O2[18O] 3.507e-21 3.513e-21 -20.455 -20.454 0.001 (0) + H[14C]O[18O]2- 2.015e-21 1.843e-21 -20.696 -20.734 -0.039 (0) H[14C][18O]2O- 2.015e-21 1.843e-21 -20.696 -20.734 -0.039 (0) H[14C][18O]O[18O]- 2.015e-21 1.843e-21 -20.696 -20.734 -0.039 (0) - H[14C]O[18O]2- 2.015e-21 1.843e-21 -20.696 -20.734 -0.039 (0) [14C]O2[18O]-2 1.799e-21 1.260e-21 -20.745 -20.900 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.707e-15 - O[18O] 1.704e-15 1.707e-15 -14.769 -14.768 0.001 (0) - [18O]2 1.700e-18 1.702e-18 -17.770 -17.769 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 3.903e-16 + O[18O] 3.895e-16 3.902e-16 -15.409 -15.409 0.001 (0) + [18O]2 3.886e-19 3.892e-19 -18.411 -18.410 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.13 -127.99 -2.86 [13C]H4 + [13C]H4(g) -123.85 -126.71 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.87 -21.38 -1.50 [14C][18O]2 - [14C]H4(g) -136.15 -139.01 -2.86 [14C]H4 + [14C]H4(g) -134.87 -137.73 -2.86 [14C]H4 [14C]O2(g) -14.51 -15.98 -1.47 [14C]O2 [14C]O[18O](g) -16.89 -18.68 -1.79 [14C]O[18O] - [18O]2(g) -15.48 -17.77 -2.29 [18O]2 + [18O]2(g) -16.12 -18.41 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -45990,14 +45951,14 @@ O(0) 8.573e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.17 -126.03 -2.86 CH4 + CH4(g) -121.89 -124.75 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.86 -40.01 -3.15 H2 + H2(g) -36.54 -39.69 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.48 -12.37 -2.89 O2 - O[18O](g) -12.18 -15.07 -2.89 O[18O] + O2(g) -10.12 -13.01 -2.89 O2 + O[18O](g) -12.82 -15.71 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -46087,12 +46048,12 @@ Calcite 3.26e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.273e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.261e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.5503e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.9944e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.585e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5572e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -46112,14 +46073,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.441 Adjusted to redox equilibrium + pe = 11.288 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.531e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -46128,20 +46089,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.043 -126.042 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.815 -124.814 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -46149,9 +46110,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -46159,81 +46120,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.009 -40.008 0.001 (0) -O(0) 8.645e-13 - O2 4.305e-13 4.312e-13 -12.366 -12.365 0.001 (0) - O[18O] 1.718e-15 1.721e-15 -14.765 -14.764 0.001 (0) +H(0) 3.972e-40 + H2 1.986e-40 1.989e-40 -39.702 -39.701 0.001 (0) +O(0) 2.103e-13 + O2 1.048e-13 1.049e-13 -12.980 -12.979 0.001 (0) + O[18O] 4.180e-16 4.187e-16 -15.379 -15.378 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.999 -127.998 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.771 -126.770 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.249e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) + H[13C][18O]O2- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.589e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.024 -139.023 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.796 -137.796 0.001 (0) [14C](4) 6.184e-16 H[14C]O3- 4.995e-16 4.570e-16 -15.301 -15.340 -0.039 (0) [14C]O2 1.039e-16 1.041e-16 -15.983 -15.983 0.001 (0) CaH[14C]O3+ 1.055e-17 9.676e-18 -16.977 -17.014 -0.037 (0) - H[14C][18O]O2- 9.966e-19 9.118e-19 -18.001 -18.040 -0.039 (0) - H[14C]O[18O]O- 9.966e-19 9.118e-19 -18.001 -18.040 -0.039 (0) H[14C]O2[18O]- 9.966e-19 9.118e-19 -18.001 -18.040 -0.039 (0) + H[14C]O[18O]O- 9.966e-19 9.118e-19 -18.001 -18.040 -0.039 (0) + H[14C][18O]O2- 9.966e-19 9.118e-19 -18.001 -18.040 -0.039 (0) Ca[14C]O3 5.783e-19 5.792e-19 -18.238 -18.237 0.001 (0) [14C]O[18O] 4.322e-19 4.329e-19 -18.364 -18.364 0.001 (0) [14C]O3-2 2.966e-19 2.078e-19 -18.528 -18.682 -0.155 (0) CaH[14C]O2[18O]+ 2.105e-20 1.931e-20 -19.677 -19.714 -0.037 (0) - CaH[14C][18O]O2+ 2.105e-20 1.931e-20 -19.677 -19.714 -0.037 (0) CaH[14C]O[18O]O+ 2.105e-20 1.931e-20 -19.677 -19.714 -0.037 (0) + CaH[14C][18O]O2+ 2.105e-20 1.931e-20 -19.677 -19.714 -0.037 (0) Ca[14C]O2[18O] 3.461e-21 3.467e-21 -20.461 -20.460 0.001 (0) - H[14C][18O]O[18O]- 1.989e-21 1.819e-21 -20.701 -20.740 -0.039 (0) H[14C]O[18O]2- 1.989e-21 1.819e-21 -20.701 -20.740 -0.039 (0) H[14C][18O]2O- 1.989e-21 1.819e-21 -20.701 -20.740 -0.039 (0) + H[14C][18O]O[18O]- 1.989e-21 1.819e-21 -20.701 -20.740 -0.039 (0) [14C]O2[18O]-2 1.776e-21 1.244e-21 -20.751 -20.905 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.721e-15 - O[18O] 1.718e-15 1.721e-15 -14.765 -14.764 0.001 (0) - [18O]2 1.714e-18 1.717e-18 -17.766 -17.765 0.001 (0) +[18O](0) 4.188e-16 + O[18O] 4.180e-16 4.187e-16 -15.379 -15.378 0.001 (0) + [18O]2 4.170e-19 4.177e-19 -18.380 -18.379 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.14 -128.00 -2.86 [13C]H4 + [13C]H4(g) -123.91 -126.77 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.88 -21.38 -1.50 [14C][18O]2 - [14C]H4(g) -136.16 -139.02 -2.86 [14C]H4 + [14C]H4(g) -134.94 -137.80 -2.86 [14C]H4 [14C]O2(g) -14.51 -15.98 -1.47 [14C]O2 [14C]O[18O](g) -16.90 -18.68 -1.79 [14C]O[18O] - [18O]2(g) -15.48 -17.77 -2.29 [18O]2 + [18O]2(g) -16.09 -18.38 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -46247,14 +46208,14 @@ O(0) 8.645e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.18 -126.04 -2.86 CH4 + CH4(g) -121.95 -124.81 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.86 -40.01 -3.15 H2 + H2(g) -36.55 -39.70 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.47 -12.37 -2.89 O2 - O[18O](g) -12.17 -15.07 -2.89 O[18O] + O2(g) -10.09 -12.98 -2.89 O2 + O[18O](g) -12.79 -15.68 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -46344,12 +46305,12 @@ Calcite 3.31e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2432e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.263e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7399e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7794e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -46369,14 +46330,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.441 Adjusted to redox equilibrium + pe = 11.288 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -46385,30 +46346,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.042 -126.041 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.812 -124.811 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -46416,50 +46377,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.009 -40.008 0.001 (0) -O(0) 8.638e-13 - O2 4.302e-13 4.309e-13 -12.366 -12.366 0.001 (0) - O[18O] 1.717e-15 1.719e-15 -14.765 -14.765 0.001 (0) +H(0) 3.979e-40 + H2 1.989e-40 1.993e-40 -39.701 -39.701 0.001 (0) +O(0) 2.096e-13 + O2 1.044e-13 1.046e-13 -12.981 -12.981 0.001 (0) + O[18O] 4.166e-16 4.173e-16 -15.380 -15.380 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.998 -127.997 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.768 -126.768 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.249e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) H[13C]O2[18O]- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) + H[13C][18O]O2- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.589e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) + CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.029 -139.028 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.799 -137.798 0.001 (0) [14C](4) 6.104e-16 H[14C]O3- 4.931e-16 4.511e-16 -15.307 -15.346 -0.039 (0) [14C]O2 1.026e-16 1.028e-16 -15.989 -15.988 0.001 (0) CaH[14C]O3+ 1.041e-17 9.552e-18 -16.982 -17.020 -0.037 (0) - H[14C][18O]O2- 9.838e-19 9.001e-19 -18.007 -18.046 -0.039 (0) - H[14C]O[18O]O- 9.838e-19 9.001e-19 -18.007 -18.046 -0.039 (0) H[14C]O2[18O]- 9.838e-19 9.001e-19 -18.007 -18.046 -0.039 (0) + H[14C]O[18O]O- 9.838e-19 9.001e-19 -18.007 -18.046 -0.039 (0) + H[14C][18O]O2- 9.838e-19 9.001e-19 -18.007 -18.046 -0.039 (0) Ca[14C]O3 5.708e-19 5.718e-19 -18.243 -18.243 0.001 (0) [14C]O[18O] 4.267e-19 4.274e-19 -18.370 -18.369 0.001 (0) [14C]O3-2 2.928e-19 2.051e-19 -18.533 -18.688 -0.155 (0) CaH[14C]O2[18O]+ 2.078e-20 1.906e-20 -19.682 -19.720 -0.037 (0) - CaH[14C][18O]O2+ 2.078e-20 1.906e-20 -19.682 -19.720 -0.037 (0) CaH[14C]O[18O]O+ 2.078e-20 1.906e-20 -19.682 -19.720 -0.037 (0) + CaH[14C][18O]O2+ 2.078e-20 1.906e-20 -19.682 -19.720 -0.037 (0) Ca[14C]O2[18O] 3.417e-21 3.422e-21 -20.466 -20.466 0.001 (0) H[14C]O[18O]2- 1.963e-21 1.796e-21 -20.707 -20.746 -0.039 (0) H[14C][18O]2O- 1.963e-21 1.796e-21 -20.707 -20.746 -0.039 (0) @@ -46468,29 +46429,29 @@ O(0) 8.638e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.720e-15 - O[18O] 1.717e-15 1.719e-15 -14.765 -14.765 0.001 (0) - [18O]2 1.713e-18 1.715e-18 -17.766 -17.766 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 4.174e-16 + O[18O] 4.166e-16 4.173e-16 -15.380 -15.380 0.001 (0) + [18O]2 4.156e-19 4.163e-19 -18.381 -18.381 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.14 -128.00 -2.86 [13C]H4 + [13C]H4(g) -123.91 -126.77 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.88 -21.39 -1.50 [14C][18O]2 - [14C]H4(g) -136.17 -139.03 -2.86 [14C]H4 + [14C]H4(g) -134.94 -137.80 -2.86 [14C]H4 [14C]O2(g) -14.52 -15.99 -1.47 [14C]O2 [14C]O[18O](g) -16.90 -18.69 -1.79 [14C]O[18O] - [18O]2(g) -15.48 -17.77 -2.29 [18O]2 + [18O]2(g) -16.09 -18.38 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -46504,14 +46465,14 @@ O(0) 8.638e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.18 -126.04 -2.86 CH4 + CH4(g) -121.95 -124.81 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.86 -40.01 -3.15 H2 + H2(g) -36.55 -39.70 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.47 -12.37 -2.89 O2 - O[18O](g) -12.17 -15.07 -2.89 O[18O] + O2(g) -10.09 -12.98 -2.89 O2 + O[18O](g) -12.79 -15.68 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -46601,12 +46562,12 @@ Calcite 3.36e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2389e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.226e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.3414e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5852e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -46626,14 +46587,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.439 Adjusted to redox equilibrium + pe = 11.278 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -46642,19 +46603,19 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.023 -126.023 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.733 -124.732 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -46663,9 +46624,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -46673,23 +46634,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.004 -40.003 0.001 (0) -O(0) 8.455e-13 - O2 4.210e-13 4.217e-13 -12.376 -12.375 0.001 (0) - O[18O] 1.680e-15 1.683e-15 -14.775 -14.774 0.001 (0) +H(0) 4.165e-40 + H2 2.082e-40 2.086e-40 -39.681 -39.681 0.001 (0) +O(0) 1.913e-13 + O2 9.527e-14 9.543e-14 -13.021 -13.020 0.001 (0) + O[18O] 3.802e-16 3.808e-16 -15.420 -15.419 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.979 -127.979 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.689 -126.688 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.249e-05 4.803e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) H[13C]O2[18O]- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.589e-08 -7.339 -7.338 0.001 (0) @@ -46698,56 +46659,56 @@ O(0) 8.455e-13 CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.016 -139.015 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.725 -137.725 0.001 (0) [14C](4) 6.027e-16 H[14C]O3- 4.868e-16 4.454e-16 -15.313 -15.351 -0.039 (0) [14C]O2 1.013e-16 1.015e-16 -15.994 -15.994 0.001 (0) CaH[14C]O3+ 1.028e-17 9.431e-18 -16.988 -17.025 -0.037 (0) - H[14C][18O]O2- 9.714e-19 8.887e-19 -18.013 -18.051 -0.039 (0) - H[14C]O[18O]O- 9.714e-19 8.887e-19 -18.013 -18.051 -0.039 (0) H[14C]O2[18O]- 9.714e-19 8.887e-19 -18.013 -18.051 -0.039 (0) + H[14C]O[18O]O- 9.714e-19 8.887e-19 -18.013 -18.051 -0.039 (0) + H[14C][18O]O2- 9.714e-19 8.887e-19 -18.013 -18.051 -0.039 (0) Ca[14C]O3 5.636e-19 5.645e-19 -18.249 -18.248 0.001 (0) [14C]O[18O] 4.212e-19 4.219e-19 -18.375 -18.375 0.001 (0) [14C]O3-2 2.891e-19 2.025e-19 -18.539 -18.693 -0.155 (0) CaH[14C]O2[18O]+ 2.051e-20 1.882e-20 -19.688 -19.725 -0.037 (0) - CaH[14C][18O]O2+ 2.051e-20 1.882e-20 -19.688 -19.725 -0.037 (0) CaH[14C]O[18O]O+ 2.051e-20 1.882e-20 -19.688 -19.725 -0.037 (0) + CaH[14C][18O]O2+ 2.051e-20 1.882e-20 -19.688 -19.725 -0.037 (0) Ca[14C]O2[18O] 3.373e-21 3.379e-21 -20.472 -20.471 0.001 (0) + H[14C]O[18O]2- 1.938e-21 1.773e-21 -20.713 -20.751 -0.039 (0) H[14C][18O]2O- 1.938e-21 1.773e-21 -20.713 -20.751 -0.039 (0) H[14C][18O]O[18O]- 1.938e-21 1.773e-21 -20.713 -20.751 -0.039 (0) - H[14C]O[18O]2- 1.938e-21 1.773e-21 -20.713 -20.751 -0.039 (0) [14C]O2[18O]-2 1.730e-21 1.212e-21 -20.762 -20.916 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.684e-15 - O[18O] 1.680e-15 1.683e-15 -14.775 -14.774 0.001 (0) - [18O]2 1.676e-18 1.679e-18 -17.776 -17.775 0.001 (0) +[18O](0) 3.809e-16 + O[18O] 3.802e-16 3.808e-16 -15.420 -15.419 0.001 (0) + [18O]2 3.793e-19 3.799e-19 -18.421 -18.420 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.12 -127.98 -2.86 [13C]H4 + [13C]H4(g) -123.83 -126.69 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.89 -21.39 -1.50 [14C][18O]2 - [14C]H4(g) -136.16 -139.02 -2.86 [14C]H4 + [14C]H4(g) -134.86 -137.72 -2.86 [14C]H4 [14C]O2(g) -14.52 -15.99 -1.47 [14C]O2 [14C]O[18O](g) -16.91 -18.69 -1.79 [14C]O[18O] - [18O]2(g) -15.48 -17.77 -2.29 [18O]2 + [18O]2(g) -16.13 -18.42 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -46761,14 +46722,14 @@ O(0) 8.455e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.16 -126.02 -2.86 CH4 + CH4(g) -121.87 -124.73 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.85 -40.00 -3.15 H2 + H2(g) -36.53 -39.68 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.48 -12.37 -2.89 O2 - O[18O](g) -12.18 -15.07 -2.89 O[18O] + O2(g) -10.13 -13.02 -2.89 O2 + O[18O](g) -12.83 -15.72 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -46858,12 +46819,12 @@ Calcite 3.41e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2603e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2482e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.8842e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5987e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.4329e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -46883,14 +46844,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.440 Adjusted to redox equilibrium + pe = 11.276 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -46899,30 +46860,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.028 -126.027 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.720 -124.719 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -46930,81 +46891,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.005 -40.005 0.001 (0) -O(0) 8.497e-13 - O2 4.232e-13 4.239e-13 -12.373 -12.373 0.001 (0) - O[18O] 1.689e-15 1.691e-15 -14.772 -14.772 0.001 (0) +H(0) 4.196e-40 + H2 2.098e-40 2.102e-40 -39.678 -39.677 0.001 (0) +O(0) 1.884e-13 + O2 9.385e-14 9.400e-14 -13.028 -13.027 0.001 (0) + O[18O] 3.745e-16 3.751e-16 -15.427 -15.426 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.984 -127.983 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.676 -126.675 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) + H[13C][18O]O2- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.589e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.026 -139.025 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.718 -137.717 0.001 (0) [14C](4) 5.951e-16 H[14C]O3- 4.807e-16 4.398e-16 -15.318 -15.357 -0.039 (0) [14C]O2 1.000e-16 1.002e-16 -16.000 -15.999 0.001 (0) CaH[14C]O3+ 1.015e-17 9.313e-18 -16.993 -17.031 -0.037 (0) - H[14C][18O]O2- 9.592e-19 8.775e-19 -18.018 -18.057 -0.039 (0) - H[14C]O[18O]O- 9.592e-19 8.775e-19 -18.018 -18.057 -0.039 (0) H[14C]O2[18O]- 9.592e-19 8.775e-19 -18.018 -18.057 -0.039 (0) + H[14C]O[18O]O- 9.592e-19 8.775e-19 -18.018 -18.057 -0.039 (0) + H[14C][18O]O2- 9.592e-19 8.775e-19 -18.018 -18.057 -0.039 (0) Ca[14C]O3 5.565e-19 5.574e-19 -18.255 -18.254 0.001 (0) [14C]O[18O] 4.160e-19 4.167e-19 -18.381 -18.380 0.001 (0) [14C]O3-2 2.855e-19 2.000e-19 -18.544 -18.699 -0.155 (0) CaH[14C]O2[18O]+ 2.025e-20 1.858e-20 -19.693 -19.731 -0.037 (0) - CaH[14C][18O]O2+ 2.025e-20 1.858e-20 -19.693 -19.731 -0.037 (0) CaH[14C]O[18O]O+ 2.025e-20 1.858e-20 -19.693 -19.731 -0.037 (0) + CaH[14C][18O]O2+ 2.025e-20 1.858e-20 -19.693 -19.731 -0.037 (0) Ca[14C]O2[18O] 3.331e-21 3.337e-21 -20.477 -20.477 0.001 (0) - H[14C][18O]O[18O]- 1.914e-21 1.751e-21 -20.718 -20.757 -0.039 (0) H[14C]O[18O]2- 1.914e-21 1.751e-21 -20.718 -20.757 -0.039 (0) H[14C][18O]2O- 1.914e-21 1.751e-21 -20.718 -20.757 -0.039 (0) + H[14C][18O]O[18O]- 1.914e-21 1.751e-21 -20.718 -20.757 -0.039 (0) [14C]O2[18O]-2 1.709e-21 1.197e-21 -20.767 -20.922 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.692e-15 - O[18O] 1.689e-15 1.691e-15 -14.772 -14.772 0.001 (0) - [18O]2 1.685e-18 1.687e-18 -17.773 -17.773 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 3.752e-16 + O[18O] 3.745e-16 3.751e-16 -15.427 -15.426 0.001 (0) + [18O]2 3.736e-19 3.742e-19 -18.428 -18.427 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.12 -127.98 -2.86 [13C]H4 + [13C]H4(g) -123.81 -126.67 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.90 -21.40 -1.50 [14C][18O]2 - [14C]H4(g) -136.17 -139.03 -2.86 [14C]H4 + [14C]H4(g) -134.86 -137.72 -2.86 [14C]H4 [14C]O2(g) -14.53 -16.00 -1.47 [14C]O2 [14C]O[18O](g) -16.91 -18.70 -1.79 [14C]O[18O] - [18O]2(g) -15.48 -17.77 -2.29 [18O]2 + [18O]2(g) -16.14 -18.43 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -47018,14 +46979,14 @@ O(0) 8.497e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.17 -126.03 -2.86 CH4 + CH4(g) -121.86 -124.72 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.85 -40.00 -3.15 H2 + H2(g) -36.53 -39.68 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.48 -12.37 -2.89 O2 - O[18O](g) -12.18 -15.07 -2.89 O[18O] + O2(g) -10.13 -13.03 -2.89 O2 + O[18O](g) -12.83 -15.73 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -47115,12 +47076,12 @@ Calcite 3.46e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2771e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2657e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.3323e-12 0 +Alpha 18O HCO3-/H2O(l) 1 1.1102e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7408e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.577e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -47140,14 +47101,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.440 Adjusted to redox equilibrium + pe = 11.282 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -47156,20 +47117,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.031 -126.030 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.766 -124.765 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -47177,9 +47138,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -47187,50 +47148,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.006 -40.005 0.001 (0) -O(0) 8.529e-13 - O2 4.248e-13 4.255e-13 -12.372 -12.371 0.001 (0) - O[18O] 1.695e-15 1.698e-15 -14.771 -14.770 0.001 (0) +H(0) 4.086e-40 + H2 2.043e-40 2.046e-40 -39.690 -39.689 0.001 (0) +O(0) 1.988e-13 + O2 9.901e-14 9.917e-14 -13.004 -13.004 0.001 (0) + O[18O] 3.951e-16 3.957e-16 -15.403 -15.403 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.987 -127.986 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.722 -126.721 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) H[13C]O2[18O]- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) + H[13C][18O]O2- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.589e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) + CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.034 -139.034 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.769 -137.769 0.001 (0) [14C](4) 5.878e-16 H[14C]O3- 4.748e-16 4.344e-16 -15.323 -15.362 -0.039 (0) [14C]O2 9.879e-17 9.896e-17 -16.005 -16.005 0.001 (0) CaH[14C]O3+ 1.003e-17 9.197e-18 -16.999 -17.036 -0.037 (0) - H[14C][18O]O2- 9.473e-19 8.667e-19 -18.024 -18.062 -0.039 (0) - H[14C]O[18O]O- 9.473e-19 8.667e-19 -18.024 -18.062 -0.039 (0) H[14C]O2[18O]- 9.473e-19 8.667e-19 -18.024 -18.062 -0.039 (0) + H[14C]O[18O]O- 9.473e-19 8.667e-19 -18.024 -18.062 -0.039 (0) + H[14C][18O]O2- 9.473e-19 8.667e-19 -18.024 -18.062 -0.039 (0) Ca[14C]O3 5.496e-19 5.505e-19 -18.260 -18.259 0.001 (0) [14C]O[18O] 4.108e-19 4.115e-19 -18.386 -18.386 0.001 (0) [14C]O3-2 2.820e-19 1.975e-19 -18.550 -18.704 -0.155 (0) CaH[14C]O2[18O]+ 2.000e-20 1.835e-20 -19.699 -19.736 -0.037 (0) - CaH[14C][18O]O2+ 2.000e-20 1.835e-20 -19.699 -19.736 -0.037 (0) CaH[14C]O[18O]O+ 2.000e-20 1.835e-20 -19.699 -19.736 -0.037 (0) + CaH[14C][18O]O2+ 2.000e-20 1.835e-20 -19.699 -19.736 -0.037 (0) Ca[14C]O2[18O] 3.290e-21 3.295e-21 -20.483 -20.482 0.001 (0) H[14C]O[18O]2- 1.890e-21 1.729e-21 -20.724 -20.762 -0.039 (0) H[14C][18O]2O- 1.890e-21 1.729e-21 -20.724 -20.762 -0.039 (0) @@ -47239,29 +47200,29 @@ O(0) 8.529e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.698e-15 - O[18O] 1.695e-15 1.698e-15 -14.771 -14.770 0.001 (0) - [18O]2 1.691e-18 1.694e-18 -17.772 -17.771 0.001 (0) +[18O](0) 3.959e-16 + O[18O] 3.951e-16 3.957e-16 -15.403 -15.403 0.001 (0) + [18O]2 3.941e-19 3.948e-19 -18.404 -18.404 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.13 -127.99 -2.86 [13C]H4 + [13C]H4(g) -123.86 -126.72 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.90 -21.40 -1.50 [14C][18O]2 - [14C]H4(g) -136.17 -139.03 -2.86 [14C]H4 + [14C]H4(g) -134.91 -137.77 -2.86 [14C]H4 [14C]O2(g) -14.54 -16.00 -1.47 [14C]O2 [14C]O[18O](g) -16.92 -18.70 -1.79 [14C]O[18O] - [18O]2(g) -15.48 -17.77 -2.29 [18O]2 + [18O]2(g) -16.11 -18.40 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -47275,14 +47236,14 @@ O(0) 8.529e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.17 -126.03 -2.86 CH4 + CH4(g) -121.91 -124.77 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.86 -40.01 -3.15 H2 + H2(g) -36.54 -39.69 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.48 -12.37 -2.89 O2 - O[18O](g) -12.18 -15.07 -2.89 O[18O] + O2(g) -10.11 -13.00 -2.89 O2 + O[18O](g) -12.81 -15.70 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -47372,12 +47333,12 @@ Calcite 3.51e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2256e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2469e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.2157e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6219e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.798e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -47397,14 +47358,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.437 Adjusted to redox equilibrium + pe = 11.265 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -47413,30 +47374,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.009 -126.008 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.632 -124.632 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -47444,23 +47405,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 1.000e-40 -40.001 -40.000 0.001 (0) -O(0) 8.316e-13 - O2 4.141e-13 4.148e-13 -12.383 -12.382 0.001 (0) - O[18O] 1.653e-15 1.655e-15 -14.782 -14.781 0.001 (0) +H(0) 4.412e-40 + H2 2.206e-40 2.210e-40 -39.656 -39.656 0.001 (0) +O(0) 1.704e-13 + O2 8.488e-14 8.502e-14 -13.071 -13.070 0.001 (0) + O[18O] 3.387e-16 3.393e-16 -15.470 -15.469 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.965 -127.964 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.588 -126.588 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.047e-07 9.583e-08 -6.980 -7.019 -0.039 (0) H[13C]O2[18O]- 1.047e-07 9.583e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.583e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.583e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.589e-08 -7.339 -7.338 0.001 (0) @@ -47469,56 +47430,56 @@ O(0) 8.316e-13 CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.018 -139.017 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.641 -137.640 0.001 (0) [14C](4) 5.806e-16 H[14C]O3- 4.690e-16 4.291e-16 -15.329 -15.367 -0.039 (0) [14C]O2 9.759e-17 9.775e-17 -16.011 -16.010 0.001 (0) CaH[14C]O3+ 9.904e-18 9.085e-18 -17.004 -17.042 -0.037 (0) - H[14C][18O]O2- 9.357e-19 8.561e-19 -18.029 -18.067 -0.039 (0) - H[14C]O[18O]O- 9.357e-19 8.561e-19 -18.029 -18.067 -0.039 (0) H[14C]O2[18O]- 9.357e-19 8.561e-19 -18.029 -18.067 -0.039 (0) + H[14C]O[18O]O- 9.357e-19 8.561e-19 -18.029 -18.067 -0.039 (0) + H[14C][18O]O2- 9.357e-19 8.561e-19 -18.029 -18.067 -0.039 (0) Ca[14C]O3 5.429e-19 5.438e-19 -18.265 -18.265 0.001 (0) [14C]O[18O] 4.058e-19 4.065e-19 -18.392 -18.391 0.001 (0) [14C]O3-2 2.785e-19 1.951e-19 -18.555 -18.710 -0.155 (0) CaH[14C]O2[18O]+ 1.976e-20 1.813e-20 -19.704 -19.742 -0.037 (0) - CaH[14C][18O]O2+ 1.976e-20 1.813e-20 -19.704 -19.742 -0.037 (0) CaH[14C]O[18O]O+ 1.976e-20 1.813e-20 -19.704 -19.742 -0.037 (0) + CaH[14C][18O]O2+ 1.976e-20 1.813e-20 -19.704 -19.742 -0.037 (0) Ca[14C]O2[18O] 3.250e-21 3.255e-21 -20.488 -20.487 0.001 (0) + H[14C]O[18O]2- 1.867e-21 1.708e-21 -20.729 -20.768 -0.039 (0) H[14C][18O]2O- 1.867e-21 1.708e-21 -20.729 -20.768 -0.039 (0) H[14C][18O]O[18O]- 1.867e-21 1.708e-21 -20.729 -20.768 -0.039 (0) - H[14C]O[18O]2- 1.867e-21 1.708e-21 -20.729 -20.768 -0.039 (0) [14C]O2[18O]-2 1.667e-21 1.168e-21 -20.778 -20.933 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.656e-15 - O[18O] 1.653e-15 1.655e-15 -14.782 -14.781 0.001 (0) - [18O]2 1.649e-18 1.651e-18 -17.783 -17.782 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 3.394e-16 + O[18O] 3.387e-16 3.393e-16 -15.470 -15.469 0.001 (0) + [18O]2 3.379e-19 3.384e-19 -18.471 -18.471 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.10 -127.96 -2.86 [13C]H4 + [13C]H4(g) -123.73 -126.59 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.91 -21.41 -1.50 [14C][18O]2 - [14C]H4(g) -136.16 -139.02 -2.86 [14C]H4 + [14C]H4(g) -134.78 -137.64 -2.86 [14C]H4 [14C]O2(g) -14.54 -16.01 -1.47 [14C]O2 [14C]O[18O](g) -16.92 -18.71 -1.79 [14C]O[18O] - [18O]2(g) -15.49 -17.78 -2.29 [18O]2 + [18O]2(g) -16.18 -18.47 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -47532,14 +47493,14 @@ O(0) 8.316e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.15 -126.01 -2.86 CH4 + CH4(g) -121.77 -124.63 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.85 -40.00 -3.15 H2 + H2(g) -36.51 -39.66 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.49 -12.38 -2.89 O2 - O[18O](g) -12.19 -15.08 -2.89 O[18O] + O2(g) -10.18 -13.07 -2.89 O2 + O[18O](g) -12.88 -15.77 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -47629,12 +47590,12 @@ Calcite 3.56e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2677e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2893e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8284e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.803e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -47654,14 +47615,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.436 Adjusted to redox equilibrium + pe = 11.262 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -47670,20 +47631,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.996 -125.995 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.605 -124.604 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -47691,9 +47652,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -47701,81 +47662,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.013e-40 - H2 1.006e-40 1.008e-40 -39.997 -39.997 0.001 (0) -O(0) 8.192e-13 - O2 4.080e-13 4.086e-13 -12.389 -12.389 0.001 (0) - O[18O] 1.628e-15 1.631e-15 -14.788 -14.788 0.001 (0) +H(0) 4.483e-40 + H2 2.242e-40 2.245e-40 -39.649 -39.649 0.001 (0) +O(0) 1.651e-13 + O2 8.222e-14 8.235e-14 -13.085 -13.084 0.001 (0) + O[18O] 3.281e-16 3.286e-16 -15.484 -15.483 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.952 -127.951 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.561 -126.560 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.583e-08 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-07 9.583e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.583e-08 -6.980 -7.019 -0.039 (0) + H[13C][18O]O2- 1.047e-07 9.583e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.590e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.010 -139.009 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.619 -137.618 0.001 (0) [14C](4) 5.736e-16 H[14C]O3- 4.633e-16 4.239e-16 -15.334 -15.373 -0.039 (0) [14C]O2 9.641e-17 9.657e-17 -16.016 -16.015 0.001 (0) CaH[14C]O3+ 9.784e-18 8.975e-18 -17.009 -17.047 -0.037 (0) - H[14C][18O]O2- 9.244e-19 8.457e-19 -18.034 -18.073 -0.039 (0) - H[14C]O[18O]O- 9.244e-19 8.457e-19 -18.034 -18.073 -0.039 (0) H[14C]O2[18O]- 9.244e-19 8.457e-19 -18.034 -18.073 -0.039 (0) + H[14C]O[18O]O- 9.244e-19 8.457e-19 -18.034 -18.073 -0.039 (0) + H[14C][18O]O2- 9.244e-19 8.457e-19 -18.034 -18.073 -0.039 (0) Ca[14C]O3 5.364e-19 5.372e-19 -18.271 -18.270 0.001 (0) [14C]O[18O] 4.009e-19 4.016e-19 -18.397 -18.396 0.001 (0) [14C]O3-2 2.751e-19 1.928e-19 -18.560 -18.715 -0.155 (0) CaH[14C]O2[18O]+ 1.952e-20 1.791e-20 -19.709 -19.747 -0.037 (0) - CaH[14C][18O]O2+ 1.952e-20 1.791e-20 -19.709 -19.747 -0.037 (0) CaH[14C]O[18O]O+ 1.952e-20 1.791e-20 -19.709 -19.747 -0.037 (0) + CaH[14C][18O]O2+ 1.952e-20 1.791e-20 -19.709 -19.747 -0.037 (0) Ca[14C]O2[18O] 3.210e-21 3.216e-21 -20.493 -20.493 0.001 (0) - H[14C][18O]O[18O]- 1.844e-21 1.687e-21 -20.734 -20.773 -0.039 (0) H[14C]O[18O]2- 1.844e-21 1.687e-21 -20.734 -20.773 -0.039 (0) H[14C][18O]2O- 1.844e-21 1.687e-21 -20.734 -20.773 -0.039 (0) + H[14C][18O]O[18O]- 1.844e-21 1.687e-21 -20.734 -20.773 -0.039 (0) [14C]O2[18O]-2 1.647e-21 1.154e-21 -20.783 -20.938 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.631e-15 - O[18O] 1.628e-15 1.631e-15 -14.788 -14.788 0.001 (0) - [18O]2 1.624e-18 1.627e-18 -17.789 -17.789 0.001 (0) +[18O](0) 3.287e-16 + O[18O] 3.281e-16 3.286e-16 -15.484 -15.483 0.001 (0) + [18O]2 3.273e-19 3.278e-19 -18.485 -18.484 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.09 -127.95 -2.86 [13C]H4 + [13C]H4(g) -123.70 -126.56 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.91 -21.42 -1.50 [14C][18O]2 - [14C]H4(g) -136.15 -139.01 -2.86 [14C]H4 + [14C]H4(g) -134.76 -137.62 -2.86 [14C]H4 [14C]O2(g) -14.55 -16.02 -1.47 [14C]O2 [14C]O[18O](g) -16.93 -18.72 -1.79 [14C]O[18O] - [18O]2(g) -15.50 -17.79 -2.29 [18O]2 + [18O]2(g) -16.19 -18.48 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -47789,14 +47750,14 @@ O(0) 8.192e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.14 -126.00 -2.86 CH4 + CH4(g) -121.74 -124.60 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.85 -40.00 -3.15 H2 + H2(g) -36.50 -39.65 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.50 -12.39 -2.89 O2 - O[18O](g) -12.20 -15.09 -2.89 O[18O] + O2(g) -10.19 -13.08 -2.89 O2 + O[18O](g) -12.89 -15.78 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -47886,12 +47847,12 @@ Calcite 3.61e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2441e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2639e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.675e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5761e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -47911,14 +47872,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.435 Adjusted to redox equilibrium + pe = 11.267 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -47927,30 +47888,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.990 -125.990 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.651 -124.650 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -47958,50 +47919,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.019e-40 - H2 1.010e-40 1.011e-40 -39.996 -39.995 0.001 (0) -O(0) 8.138e-13 - O2 4.053e-13 4.059e-13 -12.392 -12.392 0.001 (0) - O[18O] 1.617e-15 1.620e-15 -14.791 -14.791 0.001 (0) +H(0) 4.366e-40 + H2 2.183e-40 2.187e-40 -39.661 -39.660 0.001 (0) +O(0) 1.740e-13 + O2 8.668e-14 8.682e-14 -13.062 -13.061 0.001 (0) + O[18O] 3.459e-16 3.464e-16 -15.461 -15.460 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.946 -127.946 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.607 -126.606 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) H[13C]O2[18O]- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) + H[13C][18O]O2- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.590e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) + CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.009 -139.009 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.670 -137.669 0.001 (0) [14C](4) 5.667e-16 H[14C]O3- 4.578e-16 4.188e-16 -15.339 -15.378 -0.039 (0) [14C]O2 9.526e-17 9.541e-17 -16.021 -16.020 0.001 (0) CaH[14C]O3+ 9.667e-18 8.868e-18 -17.015 -17.052 -0.037 (0) - H[14C][18O]O2- 9.134e-19 8.356e-19 -18.039 -18.078 -0.039 (0) - H[14C]O[18O]O- 9.134e-19 8.356e-19 -18.039 -18.078 -0.039 (0) H[14C]O2[18O]- 9.134e-19 8.356e-19 -18.039 -18.078 -0.039 (0) + H[14C]O[18O]O- 9.134e-19 8.356e-19 -18.039 -18.078 -0.039 (0) + H[14C][18O]O2- 9.134e-19 8.356e-19 -18.039 -18.078 -0.039 (0) Ca[14C]O3 5.300e-19 5.308e-19 -18.276 -18.275 0.001 (0) [14C]O[18O] 3.961e-19 3.968e-19 -18.402 -18.401 0.001 (0) [14C]O3-2 2.719e-19 1.905e-19 -18.566 -18.720 -0.155 (0) CaH[14C]O2[18O]+ 1.929e-20 1.769e-20 -19.715 -19.752 -0.037 (0) - CaH[14C][18O]O2+ 1.929e-20 1.769e-20 -19.715 -19.752 -0.037 (0) CaH[14C]O[18O]O+ 1.929e-20 1.769e-20 -19.715 -19.752 -0.037 (0) + CaH[14C][18O]O2+ 1.929e-20 1.769e-20 -19.715 -19.752 -0.037 (0) Ca[14C]O2[18O] 3.172e-21 3.177e-21 -20.499 -20.498 0.001 (0) H[14C]O[18O]2- 1.822e-21 1.667e-21 -20.739 -20.778 -0.039 (0) H[14C][18O]2O- 1.822e-21 1.667e-21 -20.739 -20.778 -0.039 (0) @@ -48010,29 +47971,29 @@ O(0) 8.138e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.620e-15 - O[18O] 1.617e-15 1.620e-15 -14.791 -14.791 0.001 (0) - [18O]2 1.613e-18 1.616e-18 -17.792 -17.792 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 3.466e-16 + O[18O] 3.459e-16 3.464e-16 -15.461 -15.460 0.001 (0) + [18O]2 3.450e-19 3.456e-19 -18.462 -18.461 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.09 -127.95 -2.86 [13C]H4 + [13C]H4(g) -123.75 -126.61 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.92 -21.42 -1.50 [14C][18O]2 - [14C]H4(g) -136.15 -139.01 -2.86 [14C]H4 + [14C]H4(g) -134.81 -137.67 -2.86 [14C]H4 [14C]O2(g) -14.55 -16.02 -1.47 [14C]O2 [14C]O[18O](g) -16.93 -18.72 -1.79 [14C]O[18O] - [18O]2(g) -15.50 -17.79 -2.29 [18O]2 + [18O]2(g) -16.17 -18.46 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -48046,14 +48007,14 @@ O(0) 8.138e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.13 -125.99 -2.86 CH4 + CH4(g) -121.79 -124.65 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.85 -40.00 -3.15 H2 + H2(g) -36.51 -39.66 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.50 -12.39 -2.89 O2 - O[18O](g) -12.20 -15.09 -2.89 O[18O] + O2(g) -10.17 -13.06 -2.89 O2 + O[18O](g) -12.87 -15.76 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -48133,7 +48094,7 @@ Calcite 3.66e-02 R(14C) CO3-2 9.59079e-14 8.1562 pmc R(18O) Calcite 2.05264e-03 23.66 permil R(13C) Calcite 1.11842e-02 0.35394 permil - R(14C) Calcite 9.65652e-14 8.2121 pmc + R(14C) Calcite 9.65651e-14 8.2121 pmc --------------------------------Isotope Alphas--------------------------------- @@ -48143,12 +48104,12 @@ Calcite 3.66e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2495e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2373e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.2164e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8173e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7204e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -48168,14 +48129,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.429 Adjusted to redox equilibrium + pe = 11.237 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -48184,19 +48145,19 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.943 -125.943 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.405 -124.404 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -48205,9 +48166,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -48215,23 +48176,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.075e-40 - H2 1.037e-40 1.039e-40 -39.984 -39.983 0.001 (0) -O(0) 7.710e-13 - O2 3.839e-13 3.846e-13 -12.416 -12.415 0.001 (0) - O[18O] 1.532e-15 1.535e-15 -14.815 -14.814 0.001 (0) +H(0) 5.029e-40 + H2 2.515e-40 2.519e-40 -39.600 -39.599 0.001 (0) +O(0) 1.312e-13 + O2 6.534e-14 6.544e-14 -13.185 -13.184 0.001 (0) + O[18O] 2.607e-16 2.612e-16 -15.584 -15.583 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.899 -127.899 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.361 -126.360 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) H[13C]O2[18O]- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.590e-08 -7.339 -7.338 0.001 (0) @@ -48240,56 +48201,56 @@ O(0) 7.710e-13 CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.968 -138.967 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.429 -137.429 0.001 (0) [14C](4) 5.600e-16 H[14C]O3- 4.524e-16 4.139e-16 -15.344 -15.383 -0.039 (0) [14C]O2 9.414e-17 9.429e-17 -16.026 -16.026 0.001 (0) CaH[14C]O3+ 9.553e-18 8.763e-18 -17.020 -17.057 -0.037 (0) - H[14C][18O]O2- 9.026e-19 8.258e-19 -18.044 -18.083 -0.039 (0) - H[14C]O[18O]O- 9.026e-19 8.258e-19 -18.044 -18.083 -0.039 (0) H[14C]O2[18O]- 9.026e-19 8.258e-19 -18.044 -18.083 -0.039 (0) + H[14C]O[18O]O- 9.026e-19 8.258e-19 -18.044 -18.083 -0.039 (0) + H[14C][18O]O2- 9.026e-19 8.258e-19 -18.044 -18.083 -0.039 (0) Ca[14C]O3 5.237e-19 5.246e-19 -18.281 -18.280 0.001 (0) [14C]O[18O] 3.914e-19 3.921e-19 -18.407 -18.407 0.001 (0) [14C]O3-2 2.687e-19 1.882e-19 -18.571 -18.725 -0.155 (0) CaH[14C]O2[18O]+ 1.906e-20 1.748e-20 -19.720 -19.757 -0.037 (0) - CaH[14C][18O]O2+ 1.906e-20 1.748e-20 -19.720 -19.757 -0.037 (0) CaH[14C]O[18O]O+ 1.906e-20 1.748e-20 -19.720 -19.757 -0.037 (0) + CaH[14C][18O]O2+ 1.906e-20 1.748e-20 -19.720 -19.757 -0.037 (0) Ca[14C]O2[18O] 3.135e-21 3.140e-21 -20.504 -20.503 0.001 (0) + H[14C]O[18O]2- 1.801e-21 1.648e-21 -20.745 -20.783 -0.039 (0) H[14C][18O]2O- 1.801e-21 1.648e-21 -20.745 -20.783 -0.039 (0) H[14C][18O]O[18O]- 1.801e-21 1.648e-21 -20.745 -20.783 -0.039 (0) - H[14C]O[18O]2- 1.801e-21 1.648e-21 -20.745 -20.783 -0.039 (0) [14C]O2[18O]-2 1.608e-21 1.127e-21 -20.794 -20.948 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.535e-15 - O[18O] 1.532e-15 1.535e-15 -14.815 -14.814 0.001 (0) - [18O]2 1.528e-18 1.531e-18 -17.816 -17.815 0.001 (0) +[18O](0) 2.612e-16 + O[18O] 2.607e-16 2.612e-16 -15.584 -15.583 0.001 (0) + [18O]2 2.601e-19 2.605e-19 -18.585 -18.584 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.04 -127.90 -2.86 [13C]H4 + [13C]H4(g) -123.50 -126.36 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.92 -21.43 -1.50 [14C][18O]2 - [14C]H4(g) -136.11 -138.97 -2.86 [14C]H4 + [14C]H4(g) -134.57 -137.43 -2.86 [14C]H4 [14C]O2(g) -14.56 -16.03 -1.47 [14C]O2 [14C]O[18O](g) -16.94 -18.73 -1.79 [14C]O[18O] - [18O]2(g) -15.52 -17.82 -2.29 [18O]2 + [18O]2(g) -16.29 -18.58 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -48303,14 +48264,14 @@ O(0) 7.710e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.08 -125.94 -2.86 CH4 + CH4(g) -121.54 -124.40 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.83 -39.98 -3.15 H2 + H2(g) -36.45 -39.60 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.52 -12.42 -2.89 O2 - O[18O](g) -12.22 -15.12 -2.89 O[18O] + O2(g) -10.29 -13.18 -2.89 O2 + O[18O](g) -12.99 -15.88 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -48384,7 +48345,7 @@ Calcite 3.71e-02 R(18O) CO2(aq) 2.07917e-03 36.887 permil R(18O) HCO3- 1.99520e-03 -4.9868 permil R(13C) HCO3- 1.11623e-02 -1.6035 permil - R(14C) HCO3- 9.50629e-14 8.0843 pmc + R(14C) HCO3- 9.50628e-14 8.0843 pmc R(18O) CO3-2 1.99520e-03 -4.9868 permil R(13C) CO3-2 1.11463e-02 -3.0363 permil R(14C) CO3-2 9.47902e-14 8.0612 pmc @@ -48400,12 +48361,12 @@ Calcite 3.71e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2871e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2734e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7694e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7387e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -48425,14 +48386,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.426 Adjusted to redox equilibrium + pe = 11.233 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -48441,30 +48402,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.922 -125.922 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.378 -124.377 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -48472,81 +48433,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.100e-40 - H2 1.050e-40 1.052e-40 -39.979 -39.978 0.001 (0) -O(0) 7.527e-13 - O2 3.748e-13 3.755e-13 -12.426 -12.425 0.001 (0) - O[18O] 1.496e-15 1.498e-15 -14.825 -14.824 0.001 (0) +H(0) 5.109e-40 + H2 2.555e-40 2.559e-40 -39.593 -39.592 0.001 (0) +O(0) 1.271e-13 + O2 6.331e-14 6.341e-14 -13.199 -13.198 0.001 (0) + O[18O] 2.526e-16 2.530e-16 -15.598 -15.597 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.878 -127.878 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.334 -126.333 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.583e-08 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-07 9.583e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.583e-08 -6.980 -7.018 -0.039 (0) + H[13C][18O]O2- 1.048e-07 9.583e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.590e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.952 -138.951 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.407 -137.406 0.001 (0) [14C](4) 5.535e-16 H[14C]O3- 4.471e-16 4.091e-16 -15.350 -15.388 -0.039 (0) [14C]O2 9.304e-17 9.319e-17 -16.031 -16.031 0.001 (0) CaH[14C]O3+ 9.442e-18 8.661e-18 -17.025 -17.062 -0.037 (0) - H[14C][18O]O2- 8.921e-19 8.162e-19 -18.050 -18.088 -0.039 (0) - H[14C]O[18O]O- 8.921e-19 8.162e-19 -18.050 -18.088 -0.039 (0) H[14C]O2[18O]- 8.921e-19 8.162e-19 -18.050 -18.088 -0.039 (0) + H[14C]O[18O]O- 8.921e-19 8.162e-19 -18.050 -18.088 -0.039 (0) + H[14C][18O]O2- 8.921e-19 8.162e-19 -18.050 -18.088 -0.039 (0) Ca[14C]O3 5.176e-19 5.185e-19 -18.286 -18.285 0.001 (0) [14C]O[18O] 3.869e-19 3.875e-19 -18.412 -18.412 0.001 (0) [14C]O3-2 2.655e-19 1.860e-19 -18.576 -18.730 -0.155 (0) CaH[14C]O2[18O]+ 1.884e-20 1.728e-20 -19.725 -19.762 -0.037 (0) - CaH[14C][18O]O2+ 1.884e-20 1.728e-20 -19.725 -19.762 -0.037 (0) CaH[14C]O[18O]O+ 1.884e-20 1.728e-20 -19.725 -19.762 -0.037 (0) + CaH[14C][18O]O2+ 1.884e-20 1.728e-20 -19.725 -19.762 -0.037 (0) Ca[14C]O2[18O] 3.098e-21 3.103e-21 -20.509 -20.508 0.001 (0) - H[14C][18O]O[18O]- 1.780e-21 1.628e-21 -20.750 -20.788 -0.039 (0) H[14C]O[18O]2- 1.780e-21 1.628e-21 -20.750 -20.788 -0.039 (0) H[14C][18O]2O- 1.780e-21 1.628e-21 -20.750 -20.788 -0.039 (0) + H[14C][18O]O[18O]- 1.780e-21 1.628e-21 -20.750 -20.788 -0.039 (0) [14C]O2[18O]-2 1.589e-21 1.113e-21 -20.799 -20.953 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.499e-15 - O[18O] 1.496e-15 1.498e-15 -14.825 -14.824 0.001 (0) - [18O]2 1.492e-18 1.495e-18 -17.826 -17.825 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.531e-16 + O[18O] 2.526e-16 2.530e-16 -15.598 -15.597 0.001 (0) + [18O]2 2.520e-19 2.524e-19 -18.599 -18.598 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.02 -127.88 -2.86 [13C]H4 + [13C]H4(g) -123.47 -126.33 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.93 -21.43 -1.50 [14C][18O]2 - [14C]H4(g) -136.09 -138.95 -2.86 [14C]H4 + [14C]H4(g) -134.55 -137.41 -2.86 [14C]H4 [14C]O2(g) -14.56 -16.03 -1.47 [14C]O2 [14C]O[18O](g) -16.94 -18.73 -1.79 [14C]O[18O] - [18O]2(g) -15.54 -17.83 -2.29 [18O]2 + [18O]2(g) -16.31 -18.60 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -48560,14 +48521,14 @@ O(0) 7.527e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.06 -125.92 -2.86 CH4 + CH4(g) -121.52 -124.38 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.83 -39.98 -3.15 H2 + H2(g) -36.44 -39.59 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.53 -12.43 -2.89 O2 - O[18O](g) -12.23 -15.13 -2.89 O[18O] + O2(g) -10.31 -13.20 -2.89 O2 + O[18O](g) -13.01 -15.90 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -48644,7 +48605,7 @@ Calcite 3.76e-02 R(14C) HCO3- 9.39678e-14 7.9912 pmc R(18O) CO3-2 1.99520e-03 -4.9867 permil R(13C) CO3-2 1.11465e-02 -3.0168 permil - R(14C) CO3-2 9.36983e-14 7.9683 pmc + R(14C) CO3-2 9.36982e-14 7.9683 pmc R(18O) Calcite 2.05264e-03 23.66 permil R(13C) Calcite 1.11846e-02 0.3935 permil R(14C) Calcite 9.43404e-14 8.0229 pmc @@ -48657,12 +48618,12 @@ Calcite 3.76e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2584e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2782e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6552e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6941e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -48682,14 +48643,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.422 Adjusted to redox equilibrium + pe = 11.195 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -48698,20 +48659,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.886 -125.885 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.071 -124.071 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -48719,9 +48680,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -48729,50 +48690,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.144e-40 - H2 1.072e-40 1.074e-40 -39.970 -39.969 0.001 (0) -O(0) 7.219e-13 - O2 3.595e-13 3.601e-13 -12.444 -12.444 0.001 (0) - O[18O] 1.435e-15 1.437e-15 -14.843 -14.843 0.001 (0) +H(0) 6.094e-40 + H2 3.047e-40 3.052e-40 -39.516 -39.515 0.001 (0) +O(0) 8.935e-14 + O2 4.450e-14 4.457e-14 -13.352 -13.351 0.001 (0) + O[18O] 1.776e-16 1.779e-16 -15.751 -15.750 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.842 -127.841 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.027 -126.027 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) + H[13C][18O]O2- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.590e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) + CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.921 -138.920 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.106 -137.105 0.001 (0) [14C](4) 5.471e-16 H[14C]O3- 4.420e-16 4.044e-16 -15.355 -15.393 -0.039 (0) [14C]O2 9.197e-17 9.212e-17 -16.036 -16.036 0.001 (0) CaH[14C]O3+ 9.333e-18 8.562e-18 -17.030 -17.067 -0.037 (0) - H[14C][18O]O2- 8.818e-19 8.068e-19 -18.055 -18.093 -0.039 (0) - H[14C]O[18O]O- 8.818e-19 8.068e-19 -18.055 -18.093 -0.039 (0) H[14C]O2[18O]- 8.818e-19 8.068e-19 -18.055 -18.093 -0.039 (0) + H[14C]O[18O]O- 8.818e-19 8.068e-19 -18.055 -18.093 -0.039 (0) + H[14C][18O]O2- 8.818e-19 8.068e-19 -18.055 -18.093 -0.039 (0) Ca[14C]O3 5.116e-19 5.125e-19 -18.291 -18.290 0.001 (0) [14C]O[18O] 3.824e-19 3.831e-19 -18.417 -18.417 0.001 (0) [14C]O3-2 2.625e-19 1.839e-19 -18.581 -18.735 -0.155 (0) CaH[14C]O2[18O]+ 1.862e-20 1.708e-20 -19.730 -19.767 -0.037 (0) - CaH[14C][18O]O2+ 1.862e-20 1.708e-20 -19.730 -19.767 -0.037 (0) CaH[14C]O[18O]O+ 1.862e-20 1.708e-20 -19.730 -19.767 -0.037 (0) + CaH[14C][18O]O2+ 1.862e-20 1.708e-20 -19.730 -19.767 -0.037 (0) Ca[14C]O2[18O] 3.063e-21 3.068e-21 -20.514 -20.513 0.001 (0) H[14C]O[18O]2- 1.759e-21 1.610e-21 -20.755 -20.793 -0.039 (0) H[14C][18O]2O- 1.759e-21 1.610e-21 -20.755 -20.793 -0.039 (0) @@ -48781,29 +48742,29 @@ O(0) 7.219e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.438e-15 - O[18O] 1.435e-15 1.437e-15 -14.843 -14.843 0.001 (0) - [18O]2 1.431e-18 1.434e-18 -17.844 -17.844 0.001 (0) +[18O](0) 1.779e-16 + O[18O] 1.776e-16 1.779e-16 -15.751 -15.750 0.001 (0) + [18O]2 1.771e-19 1.774e-19 -18.752 -18.751 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.98 -127.84 -2.86 [13C]H4 + [13C]H4(g) -123.17 -126.03 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.93 -21.44 -1.50 [14C][18O]2 - [14C]H4(g) -136.06 -138.92 -2.86 [14C]H4 + [14C]H4(g) -134.25 -137.11 -2.86 [14C]H4 [14C]O2(g) -14.57 -16.04 -1.47 [14C]O2 [14C]O[18O](g) -16.95 -18.74 -1.79 [14C]O[18O] - [18O]2(g) -15.55 -17.84 -2.29 [18O]2 + [18O]2(g) -16.46 -18.75 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -48817,14 +48778,14 @@ O(0) 7.219e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.03 -125.89 -2.86 CH4 + CH4(g) -121.21 -124.07 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.82 -39.97 -3.15 H2 + H2(g) -36.37 -39.52 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.55 -12.44 -2.89 O2 - O[18O](g) -12.25 -15.14 -2.89 O[18O] + O2(g) -10.46 -13.35 -2.89 O2 + O[18O](g) -13.16 -16.05 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -48914,12 +48875,12 @@ Calcite 3.81e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2299e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2484e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 0 0 +Alpha 18O HCO3-/H2O(l) 1 1.5543e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7311e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7013e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -48939,14 +48900,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.423 Adjusted to redox equilibrium + pe = 11.192 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -48955,30 +48916,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.892 -125.891 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.047 -124.047 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -48986,23 +48947,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.137e-40 - H2 1.068e-40 1.070e-40 -39.971 -39.971 0.001 (0) -O(0) 7.267e-13 - O2 3.619e-13 3.625e-13 -12.441 -12.441 0.001 (0) - O[18O] 1.444e-15 1.447e-15 -14.840 -14.840 0.001 (0) +H(0) 6.180e-40 + H2 3.090e-40 3.095e-40 -39.510 -39.509 0.001 (0) +O(0) 8.690e-14 + O2 4.328e-14 4.335e-14 -13.364 -13.363 0.001 (0) + O[18O] 1.727e-16 1.730e-16 -15.763 -15.762 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.848 -127.847 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.003 -126.003 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.590e-08 -7.339 -7.338 0.001 (0) @@ -49011,56 +48972,56 @@ O(0) 7.267e-13 CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.931 -138.931 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.087 -137.086 0.001 (0) [14C](4) 5.409e-16 H[14C]O3- 4.369e-16 3.997e-16 -15.360 -15.398 -0.039 (0) [14C]O2 9.092e-17 9.107e-17 -16.041 -16.041 0.001 (0) CaH[14C]O3+ 9.227e-18 8.464e-18 -17.035 -17.072 -0.037 (0) - H[14C][18O]O2- 8.718e-19 7.976e-19 -18.060 -18.098 -0.039 (0) - H[14C]O[18O]O- 8.718e-19 7.976e-19 -18.060 -18.098 -0.039 (0) H[14C]O2[18O]- 8.718e-19 7.976e-19 -18.060 -18.098 -0.039 (0) + H[14C]O[18O]O- 8.718e-19 7.976e-19 -18.060 -18.098 -0.039 (0) + H[14C][18O]O2- 8.718e-19 7.976e-19 -18.060 -18.098 -0.039 (0) Ca[14C]O3 5.058e-19 5.067e-19 -18.296 -18.295 0.001 (0) [14C]O[18O] 3.781e-19 3.787e-19 -18.422 -18.422 0.001 (0) [14C]O3-2 2.595e-19 1.818e-19 -18.586 -18.740 -0.155 (0) CaH[14C]O2[18O]+ 1.841e-20 1.689e-20 -19.735 -19.772 -0.037 (0) - CaH[14C][18O]O2+ 1.841e-20 1.689e-20 -19.735 -19.772 -0.037 (0) CaH[14C]O[18O]O+ 1.841e-20 1.689e-20 -19.735 -19.772 -0.037 (0) + CaH[14C][18O]O2+ 1.841e-20 1.689e-20 -19.735 -19.772 -0.037 (0) Ca[14C]O2[18O] 3.028e-21 3.033e-21 -20.519 -20.518 0.001 (0) + H[14C]O[18O]2- 1.739e-21 1.591e-21 -20.760 -20.798 -0.039 (0) H[14C][18O]2O- 1.739e-21 1.591e-21 -20.760 -20.798 -0.039 (0) H[14C][18O]O[18O]- 1.739e-21 1.591e-21 -20.760 -20.798 -0.039 (0) - H[14C]O[18O]2- 1.739e-21 1.591e-21 -20.760 -20.798 -0.039 (0) [14C]O2[18O]-2 1.553e-21 1.088e-21 -20.809 -20.963 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.447e-15 - O[18O] 1.444e-15 1.447e-15 -14.840 -14.840 0.001 (0) - [18O]2 1.441e-18 1.443e-18 -17.841 -17.841 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.730e-16 + O[18O] 1.727e-16 1.730e-16 -15.763 -15.762 0.001 (0) + [18O]2 1.723e-19 1.726e-19 -18.764 -18.763 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.99 -127.85 -2.86 [13C]H4 + [13C]H4(g) -123.14 -126.00 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.94 -21.44 -1.50 [14C][18O]2 - [14C]H4(g) -136.07 -138.93 -2.86 [14C]H4 + [14C]H4(g) -134.23 -137.09 -2.86 [14C]H4 [14C]O2(g) -14.57 -16.04 -1.47 [14C]O2 [14C]O[18O](g) -16.95 -18.74 -1.79 [14C]O[18O] - [18O]2(g) -15.55 -17.84 -2.29 [18O]2 + [18O]2(g) -16.47 -18.76 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -49074,14 +49035,14 @@ O(0) 7.267e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.03 -125.89 -2.86 CH4 + CH4(g) -121.19 -124.05 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.82 -39.97 -3.15 H2 + H2(g) -36.36 -39.51 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.55 -12.44 -2.89 O2 - O[18O](g) -12.25 -15.14 -2.89 O[18O] + O2(g) -10.47 -13.36 -2.89 O2 + O[18O](g) -13.17 -16.06 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -49145,7 +49106,7 @@ Calcite 3.86e-02 R(18O) 1.99520e-03 -4.9849 permil R(13C) 1.11464e-02 -3.0229 permil - R(14C) 9.15811e-14 7.7883 pmc + R(14C) 9.15811e-14 7.7882 pmc R(18O) H2O(l) 1.99520e-03 -4.9864 permil R(18O) OH- 1.92123e-03 -41.874 permil R(18O) H3O+ 2.04134e-03 18.022 permil @@ -49158,7 +49119,7 @@ Calcite 3.86e-02 R(14C) HCO3- 9.18516e-14 7.8113 pmc R(18O) CO3-2 1.99520e-03 -4.9864 permil R(13C) CO3-2 1.11469e-02 -2.9792 permil - R(14C) CO3-2 9.15881e-14 7.7889 pmc + R(14C) CO3-2 9.15881e-14 7.7888 pmc R(18O) Calcite 2.05264e-03 23.66 permil R(13C) Calcite 1.11850e-02 0.43128 permil R(14C) Calcite 9.22158e-14 7.8422 pmc @@ -49171,12 +49132,12 @@ Calcite 3.86e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2662e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.253e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6471e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6167e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -49196,14 +49157,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.423 Adjusted to redox equilibrium + pe = 11.177 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -49212,20 +49173,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.896 -125.895 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.928 -123.928 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -49233,9 +49194,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -49243,81 +49204,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.132e-40 - H2 1.066e-40 1.068e-40 -39.972 -39.972 0.001 (0) -O(0) 7.300e-13 - O2 3.635e-13 3.641e-13 -12.439 -12.439 0.001 (0) - O[18O] 1.451e-15 1.453e-15 -14.838 -14.838 0.001 (0) +H(0) 6.617e-40 + H2 3.308e-40 3.314e-40 -39.480 -39.480 0.001 (0) +O(0) 7.579e-14 + O2 3.774e-14 3.781e-14 -13.423 -13.422 0.001 (0) + O[18O] 1.506e-16 1.509e-16 -15.822 -15.821 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.852 -127.851 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.884 -125.884 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) + H[13C][18O]O2- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.590e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.940 -138.940 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.973 -136.972 0.001 (0) [14C](4) 5.348e-16 H[14C]O3- 4.320e-16 3.952e-16 -15.364 -15.403 -0.039 (0) [14C]O2 8.990e-17 9.004e-17 -16.046 -16.046 0.001 (0) CaH[14C]O3+ 9.123e-18 8.369e-18 -17.040 -17.077 -0.037 (0) - H[14C][18O]O2- 8.620e-19 7.886e-19 -18.065 -18.103 -0.039 (0) - H[14C]O[18O]O- 8.620e-19 7.886e-19 -18.065 -18.103 -0.039 (0) H[14C]O2[18O]- 8.620e-19 7.886e-19 -18.065 -18.103 -0.039 (0) + H[14C]O[18O]O- 8.620e-19 7.886e-19 -18.065 -18.103 -0.039 (0) + H[14C][18O]O2- 8.620e-19 7.886e-19 -18.065 -18.103 -0.039 (0) Ca[14C]O3 5.001e-19 5.009e-19 -18.301 -18.300 0.001 (0) [14C]O[18O] 3.738e-19 3.744e-19 -18.427 -18.427 0.001 (0) [14C]O3-2 2.566e-19 1.797e-19 -18.591 -18.745 -0.155 (0) CaH[14C]O2[18O]+ 1.820e-20 1.670e-20 -19.740 -19.777 -0.037 (0) - CaH[14C][18O]O2+ 1.820e-20 1.670e-20 -19.740 -19.777 -0.037 (0) CaH[14C]O[18O]O+ 1.820e-20 1.670e-20 -19.740 -19.777 -0.037 (0) + CaH[14C][18O]O2+ 1.820e-20 1.670e-20 -19.740 -19.777 -0.037 (0) Ca[14C]O2[18O] 2.994e-21 2.998e-21 -20.524 -20.523 0.001 (0) - H[14C][18O]O[18O]- 1.720e-21 1.573e-21 -20.765 -20.803 -0.039 (0) H[14C]O[18O]2- 1.720e-21 1.573e-21 -20.765 -20.803 -0.039 (0) H[14C][18O]2O- 1.720e-21 1.573e-21 -20.765 -20.803 -0.039 (0) + H[14C][18O]O[18O]- 1.720e-21 1.573e-21 -20.765 -20.803 -0.039 (0) [14C]O2[18O]-2 1.536e-21 1.076e-21 -20.814 -20.968 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.454e-15 - O[18O] 1.451e-15 1.453e-15 -14.838 -14.838 0.001 (0) - [18O]2 1.447e-18 1.450e-18 -17.839 -17.839 0.001 (0) +[18O](0) 1.509e-16 + O[18O] 1.506e-16 1.509e-16 -15.822 -15.821 0.001 (0) + [18O]2 1.503e-19 1.505e-19 -18.823 -18.822 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.99 -127.85 -2.86 [13C]H4 + [13C]H4(g) -123.02 -125.88 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.94 -21.45 -1.50 [14C][18O]2 - [14C]H4(g) -136.08 -138.94 -2.86 [14C]H4 + [14C]H4(g) -134.11 -136.97 -2.86 [14C]H4 [14C]O2(g) -14.58 -16.05 -1.47 [14C]O2 [14C]O[18O](g) -16.96 -18.75 -1.79 [14C]O[18O] - [18O]2(g) -15.55 -17.84 -2.29 [18O]2 + [18O]2(g) -16.53 -18.82 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -49331,14 +49292,14 @@ O(0) 7.300e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.04 -125.90 -2.86 CH4 + CH4(g) -121.07 -123.93 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.82 -39.97 -3.15 H2 + H2(g) -36.33 -39.48 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.55 -12.44 -2.89 O2 - O[18O](g) -12.25 -15.14 -2.89 O[18O] + O2(g) -10.53 -13.42 -2.89 O2 + O[18O](g) -13.23 -16.12 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -49428,12 +49389,12 @@ Calcite 3.91e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.271e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2575e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.4409e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6604e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6303e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -49453,14 +49414,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.424 Adjusted to redox equilibrium + pe = 11.205 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -49469,30 +49430,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.905 -125.904 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.148 -124.147 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -49500,50 +49461,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.121e-40 - H2 1.061e-40 1.062e-40 -39.974 -39.974 0.001 (0) -O(0) 7.374e-13 - O2 3.672e-13 3.678e-13 -12.435 -12.434 0.001 (0) - O[18O] 1.465e-15 1.468e-15 -14.834 -14.833 0.001 (0) +H(0) 5.831e-40 + H2 2.915e-40 2.920e-40 -39.535 -39.535 0.001 (0) +O(0) 9.760e-14 + O2 4.861e-14 4.869e-14 -13.313 -13.313 0.001 (0) + O[18O] 1.940e-16 1.943e-16 -15.712 -15.712 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.861 -127.860 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.104 -126.103 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) + H[13C][18O]O2- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.590e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.187e-08 -7.505 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) + CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.954 -138.953 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.197 -137.197 0.001 (0) [14C](4) 5.289e-16 H[14C]O3- 4.272e-16 3.908e-16 -15.369 -15.408 -0.039 (0) [14C]O2 8.889e-17 8.904e-17 -16.051 -16.050 0.001 (0) CaH[14C]O3+ 9.021e-18 8.276e-18 -17.045 -17.082 -0.037 (0) - H[14C][18O]O2- 8.524e-19 7.798e-19 -18.069 -18.108 -0.039 (0) - H[14C]O[18O]O- 8.524e-19 7.798e-19 -18.069 -18.108 -0.039 (0) H[14C]O2[18O]- 8.524e-19 7.798e-19 -18.069 -18.108 -0.039 (0) + H[14C]O[18O]O- 8.524e-19 7.798e-19 -18.069 -18.108 -0.039 (0) + H[14C][18O]O2- 8.524e-19 7.798e-19 -18.069 -18.108 -0.039 (0) Ca[14C]O3 4.946e-19 4.954e-19 -18.306 -18.305 0.001 (0) [14C]O[18O] 3.697e-19 3.703e-19 -18.432 -18.431 0.001 (0) [14C]O3-2 2.537e-19 1.777e-19 -18.596 -18.750 -0.155 (0) CaH[14C]O2[18O]+ 1.800e-20 1.651e-20 -19.745 -19.782 -0.037 (0) - CaH[14C][18O]O2+ 1.800e-20 1.651e-20 -19.745 -19.782 -0.037 (0) CaH[14C]O[18O]O+ 1.800e-20 1.651e-20 -19.745 -19.782 -0.037 (0) + CaH[14C][18O]O2+ 1.800e-20 1.651e-20 -19.745 -19.782 -0.037 (0) Ca[14C]O2[18O] 2.960e-21 2.965e-21 -20.529 -20.528 0.001 (0) H[14C]O[18O]2- 1.701e-21 1.556e-21 -20.769 -20.808 -0.039 (0) H[14C][18O]2O- 1.701e-21 1.556e-21 -20.769 -20.808 -0.039 (0) @@ -49552,29 +49513,29 @@ O(0) 7.374e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.468e-15 - O[18O] 1.465e-15 1.468e-15 -14.834 -14.833 0.001 (0) - [18O]2 1.462e-18 1.464e-18 -17.835 -17.834 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.943e-16 + O[18O] 1.940e-16 1.943e-16 -15.712 -15.712 0.001 (0) + [18O]2 1.935e-19 1.938e-19 -18.713 -18.713 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.00 -127.86 -2.86 [13C]H4 + [13C]H4(g) -123.24 -126.10 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.95 -21.45 -1.50 [14C][18O]2 - [14C]H4(g) -136.09 -138.95 -2.86 [14C]H4 + [14C]H4(g) -134.34 -137.20 -2.86 [14C]H4 [14C]O2(g) -14.58 -16.05 -1.47 [14C]O2 [14C]O[18O](g) -16.96 -18.75 -1.79 [14C]O[18O] - [18O]2(g) -15.54 -17.83 -2.29 [18O]2 + [18O]2(g) -16.42 -18.71 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -49588,14 +49549,14 @@ O(0) 7.374e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.04 -125.90 -2.86 CH4 + CH4(g) -121.29 -124.15 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.82 -39.97 -3.15 H2 + H2(g) -36.38 -39.53 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.54 -12.43 -2.89 O2 - O[18O](g) -12.24 -15.13 -2.89 O[18O] + O2(g) -10.42 -13.31 -2.89 O2 + O[18O](g) -13.12 -16.01 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -49659,7 +49620,7 @@ Calcite 3.96e-02 R(18O) 1.99520e-03 -4.9846 permil R(13C) 1.11468e-02 -2.9869 permil - R(14C) 8.95641e-14 7.6167 pmc + R(14C) 8.95640e-14 7.6167 pmc R(18O) H2O(l) 1.99520e-03 -4.9861 permil R(18O) OH- 1.92124e-03 -41.874 permil R(18O) H3O+ 2.04134e-03 18.022 permil @@ -49672,7 +49633,7 @@ Calcite 3.96e-02 R(14C) HCO3- 8.98286e-14 7.6392 pmc R(18O) CO3-2 1.99520e-03 -4.9861 permil R(13C) CO3-2 1.11473e-02 -2.9432 permil - R(14C) CO3-2 8.95710e-14 7.6173 pmc + R(14C) CO3-2 8.95709e-14 7.6173 pmc R(18O) Calcite 2.05264e-03 23.66 permil R(13C) Calcite 1.11854e-02 0.4674 permil R(14C) Calcite 9.01848e-14 7.6695 pmc @@ -49685,12 +49646,12 @@ Calcite 3.96e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2449e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2653e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6961e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5974e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -49710,14 +49671,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.426 Adjusted to redox equilibrium + pe = 11.208 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -49726,19 +49687,19 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.916 -125.916 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.174 -124.173 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -49747,9 +49708,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -49757,23 +49718,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.107e-40 - H2 1.054e-40 1.055e-40 -39.977 -39.977 0.001 (0) -O(0) 7.474e-13 - O2 3.722e-13 3.728e-13 -12.429 -12.428 0.001 (0) - O[18O] 1.485e-15 1.488e-15 -14.828 -14.827 0.001 (0) +H(0) 5.744e-40 + H2 2.872e-40 2.877e-40 -39.542 -39.541 0.001 (0) +O(0) 1.006e-13 + O2 5.008e-14 5.017e-14 -13.300 -13.300 0.001 (0) + O[18O] 1.999e-16 2.002e-16 -15.699 -15.699 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.872 -127.872 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.130 -126.129 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.590e-08 -7.339 -7.338 0.001 (0) @@ -49782,56 +49743,56 @@ O(0) 7.474e-13 CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.970 -138.970 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.228 -137.228 0.001 (0) [14C](4) 5.230e-16 H[14C]O3- 4.225e-16 3.865e-16 -15.374 -15.413 -0.039 (0) [14C]O2 8.792e-17 8.806e-17 -16.056 -16.055 0.001 (0) CaH[14C]O3+ 8.922e-18 8.184e-18 -17.050 -17.087 -0.037 (0) - H[14C][18O]O2- 8.430e-19 7.712e-19 -18.074 -18.113 -0.039 (0) - H[14C]O[18O]O- 8.430e-19 7.712e-19 -18.074 -18.113 -0.039 (0) H[14C]O2[18O]- 8.430e-19 7.712e-19 -18.074 -18.113 -0.039 (0) + H[14C]O[18O]O- 8.430e-19 7.712e-19 -18.074 -18.113 -0.039 (0) + H[14C][18O]O2- 8.430e-19 7.712e-19 -18.074 -18.113 -0.039 (0) Ca[14C]O3 4.891e-19 4.899e-19 -18.311 -18.310 0.001 (0) [14C]O[18O] 3.656e-19 3.662e-19 -18.437 -18.436 0.001 (0) [14C]O3-2 2.509e-19 1.758e-19 -18.600 -18.755 -0.155 (0) CaH[14C]O2[18O]+ 1.780e-20 1.633e-20 -19.750 -19.787 -0.037 (0) - CaH[14C][18O]O2+ 1.780e-20 1.633e-20 -19.750 -19.787 -0.037 (0) CaH[14C]O[18O]O+ 1.780e-20 1.633e-20 -19.750 -19.787 -0.037 (0) + CaH[14C][18O]O2+ 1.780e-20 1.633e-20 -19.750 -19.787 -0.037 (0) Ca[14C]O2[18O] 2.928e-21 2.932e-21 -20.533 -20.533 0.001 (0) + H[14C]O[18O]2- 1.682e-21 1.539e-21 -20.774 -20.813 -0.039 (0) H[14C][18O]2O- 1.682e-21 1.539e-21 -20.774 -20.813 -0.039 (0) H[14C][18O]O[18O]- 1.682e-21 1.539e-21 -20.774 -20.813 -0.039 (0) - H[14C]O[18O]2- 1.682e-21 1.539e-21 -20.774 -20.813 -0.039 (0) [14C]O2[18O]-2 1.502e-21 1.052e-21 -20.823 -20.978 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.488e-15 - O[18O] 1.485e-15 1.488e-15 -14.828 -14.827 0.001 (0) - [18O]2 1.482e-18 1.484e-18 -17.829 -17.829 0.001 (0) +[18O](0) 2.003e-16 + O[18O] 1.999e-16 2.002e-16 -15.699 -15.699 0.001 (0) + [18O]2 1.994e-19 1.997e-19 -18.700 -18.700 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.01 -127.87 -2.86 [13C]H4 + [13C]H4(g) -123.27 -126.13 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.95 -21.46 -1.50 [14C][18O]2 - [14C]H4(g) -136.11 -138.97 -2.86 [14C]H4 + [14C]H4(g) -134.37 -137.23 -2.86 [14C]H4 [14C]O2(g) -14.59 -16.06 -1.47 [14C]O2 [14C]O[18O](g) -16.97 -18.76 -1.79 [14C]O[18O] - [18O]2(g) -15.54 -17.83 -2.29 [18O]2 + [18O]2(g) -16.41 -18.70 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -49845,14 +49806,14 @@ O(0) 7.474e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.06 -125.92 -2.86 CH4 + CH4(g) -121.31 -124.17 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.83 -39.98 -3.15 H2 + H2(g) -36.39 -39.54 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.54 -12.43 -2.89 O2 - O[18O](g) -12.24 -15.13 -2.89 O[18O] + O2(g) -10.41 -13.30 -2.89 O2 + O[18O](g) -13.11 -16.00 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -49942,12 +49903,12 @@ Calcite 4.01e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2545e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2757e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8061e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6439e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -49967,14 +49928,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.417 Adjusted to redox equilibrium + pe = 11.144 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -49983,30 +49944,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.844 -125.843 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.660 -123.659 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -50014,81 +49975,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.197e-40 - H2 1.098e-40 1.100e-40 -39.959 -39.959 0.001 (0) -O(0) 6.877e-13 - O2 3.425e-13 3.430e-13 -12.465 -12.465 0.001 (0) - O[18O] 1.367e-15 1.369e-15 -14.864 -14.864 0.001 (0) +H(0) 7.722e-40 + H2 3.861e-40 3.867e-40 -39.413 -39.413 0.001 (0) +O(0) 5.565e-14 + O2 2.771e-14 2.776e-14 -13.557 -13.557 0.001 (0) + O[18O] 1.106e-16 1.108e-16 -15.956 -15.956 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.800 -127.799 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.616 -125.615 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) + H[13C][18O]O2- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.590e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.903 -138.902 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.719 -136.718 0.001 (0) [14C](4) 5.173e-16 H[14C]O3- 4.179e-16 3.823e-16 -15.379 -15.418 -0.039 (0) [14C]O2 8.696e-17 8.710e-17 -16.061 -16.060 0.001 (0) CaH[14C]O3+ 8.825e-18 8.095e-18 -17.054 -17.092 -0.037 (0) - H[14C][18O]O2- 8.338e-19 7.628e-19 -18.079 -18.118 -0.039 (0) - H[14C]O[18O]O- 8.338e-19 7.628e-19 -18.079 -18.118 -0.039 (0) H[14C]O2[18O]- 8.338e-19 7.628e-19 -18.079 -18.118 -0.039 (0) + H[14C]O[18O]O- 8.338e-19 7.628e-19 -18.079 -18.118 -0.039 (0) + H[14C][18O]O2- 8.338e-19 7.628e-19 -18.079 -18.118 -0.039 (0) Ca[14C]O3 4.838e-19 4.846e-19 -18.315 -18.315 0.001 (0) [14C]O[18O] 3.616e-19 3.622e-19 -18.442 -18.441 0.001 (0) [14C]O3-2 2.482e-19 1.739e-19 -18.605 -18.760 -0.155 (0) CaH[14C]O2[18O]+ 1.761e-20 1.615e-20 -19.754 -19.792 -0.037 (0) - CaH[14C][18O]O2+ 1.761e-20 1.615e-20 -19.754 -19.792 -0.037 (0) CaH[14C]O[18O]O+ 1.761e-20 1.615e-20 -19.754 -19.792 -0.037 (0) + CaH[14C][18O]O2+ 1.761e-20 1.615e-20 -19.754 -19.792 -0.037 (0) Ca[14C]O2[18O] 2.896e-21 2.900e-21 -20.538 -20.538 0.001 (0) - H[14C][18O]O[18O]- 1.664e-21 1.522e-21 -20.779 -20.818 -0.039 (0) H[14C]O[18O]2- 1.664e-21 1.522e-21 -20.779 -20.818 -0.039 (0) H[14C][18O]2O- 1.664e-21 1.522e-21 -20.779 -20.818 -0.039 (0) + H[14C][18O]O[18O]- 1.664e-21 1.522e-21 -20.779 -20.818 -0.039 (0) [14C]O2[18O]-2 1.485e-21 1.041e-21 -20.828 -20.983 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.369e-15 - O[18O] 1.367e-15 1.369e-15 -14.864 -14.864 0.001 (0) - [18O]2 1.363e-18 1.366e-18 -17.865 -17.865 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.108e-16 + O[18O] 1.106e-16 1.108e-16 -15.956 -15.956 0.001 (0) + [18O]2 1.103e-19 1.105e-19 -18.957 -18.957 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.94 -127.80 -2.86 [13C]H4 + [13C]H4(g) -122.76 -125.62 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.96 -21.46 -1.50 [14C][18O]2 - [14C]H4(g) -136.04 -138.90 -2.86 [14C]H4 + [14C]H4(g) -133.86 -136.72 -2.86 [14C]H4 [14C]O2(g) -14.59 -16.06 -1.47 [14C]O2 [14C]O[18O](g) -16.97 -18.76 -1.79 [14C]O[18O] - [18O]2(g) -15.57 -17.86 -2.29 [18O]2 + [18O]2(g) -16.67 -18.96 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -50102,14 +50063,14 @@ O(0) 6.877e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.98 -125.84 -2.86 CH4 + CH4(g) -120.80 -123.66 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.81 -39.96 -3.15 H2 + H2(g) -36.26 -39.41 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.57 -12.46 -2.89 O2 - O[18O](g) -12.27 -15.16 -2.89 O[18O] + O2(g) -10.66 -13.56 -2.89 O2 + O[18O](g) -13.36 -16.26 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -50199,12 +50160,12 @@ Calcite 4.06e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.268e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2569e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6459e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6868e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -50224,14 +50185,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.416 Adjusted to redox equilibrium + pe = 11.121 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -50240,20 +50201,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.841 -125.840 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.483 -123.483 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -50261,9 +50222,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -50271,50 +50232,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.201e-40 - H2 1.100e-40 1.102e-40 -39.958 -39.958 0.001 (0) -O(0) 6.850e-13 - O2 3.411e-13 3.417e-13 -12.467 -12.466 0.001 (0) - O[18O] 1.361e-15 1.363e-15 -14.866 -14.865 0.001 (0) +H(0) 8.549e-40 + H2 4.275e-40 4.282e-40 -39.369 -39.368 0.001 (0) +O(0) 4.540e-14 + O2 2.261e-14 2.265e-14 -13.646 -13.645 0.001 (0) + O[18O] 9.023e-17 9.038e-17 -16.045 -16.044 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.797 -127.796 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.439 -125.439 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) H[13C]O2[18O]- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) + H[13C][18O]O2- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.590e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) + CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.904 -138.903 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.547 -136.546 0.001 (0) [14C](4) 5.118e-16 H[14C]O3- 4.134e-16 3.782e-16 -15.384 -15.422 -0.039 (0) [14C]O2 8.602e-17 8.616e-17 -16.065 -16.065 0.001 (0) CaH[14C]O3+ 8.730e-18 8.008e-18 -17.059 -17.096 -0.037 (0) - H[14C][18O]O2- 8.248e-19 7.546e-19 -18.084 -18.122 -0.039 (0) - H[14C]O[18O]O- 8.248e-19 7.546e-19 -18.084 -18.122 -0.039 (0) H[14C]O2[18O]- 8.248e-19 7.546e-19 -18.084 -18.122 -0.039 (0) + H[14C]O[18O]O- 8.248e-19 7.546e-19 -18.084 -18.122 -0.039 (0) + H[14C][18O]O2- 8.248e-19 7.546e-19 -18.084 -18.122 -0.039 (0) Ca[14C]O3 4.786e-19 4.794e-19 -18.320 -18.319 0.001 (0) [14C]O[18O] 3.577e-19 3.583e-19 -18.446 -18.446 0.001 (0) [14C]O3-2 2.455e-19 1.720e-19 -18.610 -18.765 -0.155 (0) CaH[14C]O2[18O]+ 1.742e-20 1.598e-20 -19.759 -19.796 -0.037 (0) - CaH[14C][18O]O2+ 1.742e-20 1.598e-20 -19.759 -19.796 -0.037 (0) CaH[14C]O[18O]O+ 1.742e-20 1.598e-20 -19.759 -19.796 -0.037 (0) + CaH[14C][18O]O2+ 1.742e-20 1.598e-20 -19.759 -19.796 -0.037 (0) Ca[14C]O2[18O] 2.865e-21 2.869e-21 -20.543 -20.542 0.001 (0) H[14C]O[18O]2- 1.646e-21 1.506e-21 -20.784 -20.822 -0.039 (0) H[14C][18O]2O- 1.646e-21 1.506e-21 -20.784 -20.822 -0.039 (0) @@ -50323,29 +50284,29 @@ O(0) 6.850e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.364e-15 - O[18O] 1.361e-15 1.363e-15 -14.866 -14.865 0.001 (0) - [18O]2 1.358e-18 1.360e-18 -17.867 -17.866 0.001 (0) +[18O](0) 9.041e-17 + O[18O] 9.023e-17 9.038e-17 -16.045 -16.044 0.001 (0) + [18O]2 9.001e-20 9.016e-20 -19.046 -19.045 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.94 -127.80 -2.86 [13C]H4 + [13C]H4(g) -122.58 -125.44 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.96 -21.46 -1.50 [14C][18O]2 - [14C]H4(g) -136.04 -138.90 -2.86 [14C]H4 + [14C]H4(g) -133.69 -136.55 -2.86 [14C]H4 [14C]O2(g) -14.60 -16.06 -1.47 [14C]O2 [14C]O[18O](g) -16.98 -18.76 -1.79 [14C]O[18O] - [18O]2(g) -15.58 -17.87 -2.29 [18O]2 + [18O]2(g) -16.75 -19.04 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -50359,14 +50320,14 @@ O(0) 6.850e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.98 -125.84 -2.86 CH4 + CH4(g) -120.62 -123.48 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.81 -39.96 -3.15 H2 + H2(g) -36.22 -39.37 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.57 -12.47 -2.89 O2 - O[18O](g) -12.27 -15.17 -2.89 O[18O] + O2(g) -10.75 -13.64 -2.89 O2 + O[18O](g) -13.45 -16.34 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -50456,12 +50417,12 @@ Calcite 4.11e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2519e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2414e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.7716e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5415e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6523e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -50481,14 +50442,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.420 Adjusted to redox equilibrium + pe = 11.129 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -50497,30 +50458,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.871 -125.871 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.546 -123.545 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -50528,23 +50489,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.162e-40 - H2 1.081e-40 1.083e-40 -39.966 -39.965 0.001 (0) -O(0) 7.097e-13 - O2 3.535e-13 3.540e-13 -12.452 -12.451 0.001 (0) - O[18O] 1.410e-15 1.413e-15 -14.851 -14.850 0.001 (0) +H(0) 8.248e-40 + H2 4.124e-40 4.131e-40 -39.385 -39.384 0.001 (0) +O(0) 4.878e-14 + O2 2.429e-14 2.433e-14 -13.614 -13.614 0.001 (0) + O[18O] 9.695e-17 9.711e-17 -16.013 -16.013 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.827 -127.827 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.502 -125.501 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) H[13C]O2[18O]- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.590e-08 -7.339 -7.338 0.001 (0) @@ -50553,56 +50514,56 @@ O(0) 7.097e-13 CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.940 -138.939 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.614 -136.613 0.001 (0) [14C](4) 5.063e-16 H[14C]O3- 4.090e-16 3.742e-16 -15.388 -15.427 -0.039 (0) [14C]O2 8.510e-17 8.524e-17 -16.070 -16.069 0.001 (0) CaH[14C]O3+ 8.637e-18 7.923e-18 -17.064 -17.101 -0.037 (0) - H[14C][18O]O2- 8.160e-19 7.466e-19 -18.088 -18.127 -0.039 (0) - H[14C]O[18O]O- 8.160e-19 7.466e-19 -18.088 -18.127 -0.039 (0) H[14C]O2[18O]- 8.160e-19 7.466e-19 -18.088 -18.127 -0.039 (0) + H[14C]O[18O]O- 8.160e-19 7.466e-19 -18.088 -18.127 -0.039 (0) + H[14C][18O]O2- 8.160e-19 7.466e-19 -18.088 -18.127 -0.039 (0) Ca[14C]O3 4.735e-19 4.742e-19 -18.325 -18.324 0.001 (0) [14C]O[18O] 3.539e-19 3.545e-19 -18.451 -18.450 0.001 (0) [14C]O3-2 2.429e-19 1.701e-19 -18.615 -18.769 -0.155 (0) CaH[14C]O2[18O]+ 1.723e-20 1.581e-20 -19.764 -19.801 -0.037 (0) - CaH[14C][18O]O2+ 1.723e-20 1.581e-20 -19.764 -19.801 -0.037 (0) CaH[14C]O[18O]O+ 1.723e-20 1.581e-20 -19.764 -19.801 -0.037 (0) + CaH[14C][18O]O2+ 1.723e-20 1.581e-20 -19.764 -19.801 -0.037 (0) Ca[14C]O2[18O] 2.834e-21 2.839e-21 -20.548 -20.547 0.001 (0) + H[14C]O[18O]2- 1.628e-21 1.490e-21 -20.788 -20.827 -0.039 (0) H[14C][18O]2O- 1.628e-21 1.490e-21 -20.788 -20.827 -0.039 (0) H[14C][18O]O[18O]- 1.628e-21 1.490e-21 -20.788 -20.827 -0.039 (0) - H[14C]O[18O]2- 1.628e-21 1.490e-21 -20.788 -20.827 -0.039 (0) [14C]O2[18O]-2 1.454e-21 1.018e-21 -20.837 -20.992 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.413e-15 - O[18O] 1.410e-15 1.413e-15 -14.851 -14.850 0.001 (0) - [18O]2 1.407e-18 1.409e-18 -17.852 -17.851 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 9.714e-17 + O[18O] 9.695e-17 9.711e-17 -16.013 -16.013 0.001 (0) + [18O]2 9.671e-20 9.687e-20 -19.015 -19.014 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.97 -127.83 -2.86 [13C]H4 + [13C]H4(g) -122.64 -125.50 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.97 -21.47 -1.50 [14C][18O]2 - [14C]H4(g) -136.08 -138.94 -2.86 [14C]H4 + [14C]H4(g) -133.75 -136.61 -2.86 [14C]H4 [14C]O2(g) -14.60 -16.07 -1.47 [14C]O2 [14C]O[18O](g) -16.98 -18.77 -1.79 [14C]O[18O] - [18O]2(g) -15.56 -17.85 -2.29 [18O]2 + [18O]2(g) -16.72 -19.01 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -50616,14 +50577,14 @@ O(0) 7.097e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.01 -125.87 -2.86 CH4 + CH4(g) -120.69 -123.55 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.82 -39.97 -3.15 H2 + H2(g) -36.23 -39.38 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.56 -12.45 -2.89 O2 - O[18O](g) -12.26 -15.15 -2.89 O[18O] + O2(g) -10.72 -13.61 -2.89 O2 + O[18O](g) -13.42 -16.31 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -50693,7 +50654,7 @@ Calcite 4.16e-02 R(18O) H3O+ 2.04134e-03 18.022 permil R(18O) O2(aq) 1.99520e-03 -4.9856 permil R(13C) CO2(aq) 1.10678e-02 -10.055 permil - R(14C) CO2(aq) 8.45610e-14 7.1912 pmc + R(14C) CO2(aq) 8.45609e-14 7.1912 pmc R(18O) CO2(aq) 2.07917e-03 36.889 permil R(18O) HCO3- 1.99520e-03 -4.9856 permil R(13C) HCO3- 1.11641e-02 -1.4427 permil @@ -50713,12 +50674,12 @@ Calcite 4.16e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2736e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2623e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 +Alpha 18O HCO3-/H2O(l) 1 0 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.4898e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6659e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -50738,14 +50699,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.419 Adjusted to redox equilibrium + pe = 11.095 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -50754,20 +50715,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.864 -125.863 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.275 -123.275 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -50775,9 +50736,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -50785,81 +50746,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.171e-40 - H2 1.086e-40 1.087e-40 -39.964 -39.964 0.001 (0) -O(0) 7.038e-13 - O2 3.505e-13 3.511e-13 -12.455 -12.455 0.001 (0) - O[18O] 1.399e-15 1.401e-15 -14.854 -14.854 0.001 (0) +H(0) 9.636e-40 + H2 4.818e-40 4.826e-40 -39.317 -39.316 0.001 (0) +O(0) 3.574e-14 + O2 1.780e-14 1.783e-14 -13.750 -13.749 0.001 (0) + O[18O] 7.102e-17 7.114e-17 -16.149 -16.148 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.820 -127.819 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.231 -125.231 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) + H[13C][18O]O2- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.937 -138.936 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.348 -136.348 0.001 (0) [14C](4) 5.010e-16 H[14C]O3- 4.047e-16 3.702e-16 -15.393 -15.432 -0.039 (0) [14C]O2 8.421e-17 8.434e-17 -16.075 -16.074 0.001 (0) CaH[14C]O3+ 8.546e-18 7.839e-18 -17.068 -17.106 -0.037 (0) - H[14C][18O]O2- 8.074e-19 7.387e-19 -18.093 -18.132 -0.039 (0) - H[14C]O[18O]O- 8.074e-19 7.387e-19 -18.093 -18.132 -0.039 (0) H[14C]O2[18O]- 8.074e-19 7.387e-19 -18.093 -18.132 -0.039 (0) + H[14C]O[18O]O- 8.074e-19 7.387e-19 -18.093 -18.132 -0.039 (0) + H[14C][18O]O2- 8.074e-19 7.387e-19 -18.093 -18.132 -0.039 (0) Ca[14C]O3 4.685e-19 4.692e-19 -18.329 -18.329 0.001 (0) [14C]O[18O] 3.502e-19 3.507e-19 -18.456 -18.455 0.001 (0) [14C]O3-2 2.403e-19 1.684e-19 -18.619 -18.774 -0.155 (0) CaH[14C]O2[18O]+ 1.705e-20 1.564e-20 -19.768 -19.806 -0.037 (0) - CaH[14C][18O]O2+ 1.705e-20 1.564e-20 -19.768 -19.806 -0.037 (0) CaH[14C]O[18O]O+ 1.705e-20 1.564e-20 -19.768 -19.806 -0.037 (0) + CaH[14C][18O]O2+ 1.705e-20 1.564e-20 -19.768 -19.806 -0.037 (0) Ca[14C]O2[18O] 2.804e-21 2.809e-21 -20.552 -20.551 0.001 (0) - H[14C][18O]O[18O]- 1.611e-21 1.474e-21 -20.793 -20.832 -0.039 (0) H[14C]O[18O]2- 1.611e-21 1.474e-21 -20.793 -20.832 -0.039 (0) H[14C][18O]2O- 1.611e-21 1.474e-21 -20.793 -20.832 -0.039 (0) + H[14C][18O]O[18O]- 1.611e-21 1.474e-21 -20.793 -20.832 -0.039 (0) [14C]O2[18O]-2 1.438e-21 1.008e-21 -20.842 -20.997 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.401e-15 - O[18O] 1.399e-15 1.401e-15 -14.854 -14.854 0.001 (0) - [18O]2 1.395e-18 1.398e-18 -17.855 -17.855 0.001 (0) +[18O](0) 7.116e-17 + O[18O] 7.102e-17 7.114e-17 -16.149 -16.148 0.001 (0) + [18O]2 7.085e-20 7.097e-20 -19.150 -19.149 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.96 -127.82 -2.86 [13C]H4 + [13C]H4(g) -122.37 -125.23 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.97 -21.47 -1.50 [14C][18O]2 - [14C]H4(g) -136.08 -138.94 -2.86 [14C]H4 + [14C]H4(g) -133.49 -136.35 -2.86 [14C]H4 [14C]O2(g) -14.61 -16.07 -1.47 [14C]O2 [14C]O[18O](g) -16.99 -18.77 -1.79 [14C]O[18O] - [18O]2(g) -15.56 -17.85 -2.29 [18O]2 + [18O]2(g) -16.86 -19.15 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -50873,14 +50834,14 @@ O(0) 7.038e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.00 -125.86 -2.86 CH4 + CH4(g) -120.41 -123.27 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.81 -39.96 -3.15 H2 + H2(g) -36.17 -39.32 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.56 -12.45 -2.89 O2 - O[18O](g) -12.26 -15.15 -2.89 O[18O] + O2(g) -10.86 -13.75 -2.89 O2 + O[18O](g) -13.56 -16.45 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -50950,7 +50911,7 @@ Calcite 4.21e-02 R(18O) H3O+ 2.04134e-03 18.023 permil R(18O) O2(aq) 1.99520e-03 -4.9854 permil R(13C) CO2(aq) 1.10680e-02 -10.039 permil - R(14C) CO2(aq) 8.36784e-14 7.1162 pmc + R(14C) CO2(aq) 8.36783e-14 7.1162 pmc R(18O) CO2(aq) 2.07917e-03 36.889 permil R(18O) HCO3- 1.99520e-03 -4.9854 permil R(13C) HCO3- 1.11642e-02 -1.4267 permil @@ -50970,12 +50931,12 @@ Calcite 4.21e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2675e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2546e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6791e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6509e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -50995,14 +50956,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.415 Adjusted to redox equilibrium + pe = 11.029 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -51011,30 +50972,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.835 -125.834 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.741 -122.740 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -51042,50 +51003,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.209e-40 - H2 1.104e-40 1.106e-40 -39.957 -39.956 0.001 (0) -O(0) 6.802e-13 - O2 3.388e-13 3.393e-13 -12.470 -12.469 0.001 (0) - O[18O] 1.352e-15 1.354e-15 -14.869 -14.868 0.001 (0) +H(0) 1.311e-39 + H2 6.555e-40 6.565e-40 -39.183 -39.183 0.001 (0) +O(0) 1.931e-14 + O2 9.616e-15 9.632e-15 -14.017 -14.016 0.001 (0) + O[18O] 3.837e-17 3.843e-17 -16.416 -16.415 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.790 -127.790 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.697 -124.696 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) H[13C]O2[18O]- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) + H[13C][18O]O2- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) + CaH[13C][18O]O2+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.912 -138.911 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -135.818 -135.817 0.001 (0) [14C](4) 4.957e-16 H[14C]O3- 4.005e-16 3.664e-16 -15.397 -15.436 -0.039 (0) [14C]O2 8.333e-17 8.346e-17 -16.079 -16.079 0.001 (0) CaH[14C]O3+ 8.456e-18 7.757e-18 -17.073 -17.110 -0.037 (0) - H[14C][18O]O2- 7.990e-19 7.310e-19 -18.097 -18.136 -0.039 (0) - H[14C]O[18O]O- 7.990e-19 7.310e-19 -18.097 -18.136 -0.039 (0) H[14C]O2[18O]- 7.990e-19 7.310e-19 -18.097 -18.136 -0.039 (0) + H[14C]O[18O]O- 7.990e-19 7.310e-19 -18.097 -18.136 -0.039 (0) + H[14C][18O]O2- 7.990e-19 7.310e-19 -18.097 -18.136 -0.039 (0) Ca[14C]O3 4.636e-19 4.643e-19 -18.334 -18.333 0.001 (0) [14C]O[18O] 3.465e-19 3.471e-19 -18.460 -18.460 0.001 (0) [14C]O3-2 2.378e-19 1.666e-19 -18.624 -18.778 -0.155 (0) CaH[14C]O2[18O]+ 1.687e-20 1.548e-20 -19.773 -19.810 -0.037 (0) - CaH[14C][18O]O2+ 1.687e-20 1.548e-20 -19.773 -19.810 -0.037 (0) CaH[14C]O[18O]O+ 1.687e-20 1.548e-20 -19.773 -19.810 -0.037 (0) + CaH[14C][18O]O2+ 1.687e-20 1.548e-20 -19.773 -19.810 -0.037 (0) Ca[14C]O2[18O] 2.775e-21 2.779e-21 -20.557 -20.556 0.001 (0) H[14C]O[18O]2- 1.594e-21 1.458e-21 -20.797 -20.836 -0.039 (0) H[14C][18O]2O- 1.594e-21 1.458e-21 -20.797 -20.836 -0.039 (0) @@ -51094,29 +51055,29 @@ O(0) 6.802e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.354e-15 - O[18O] 1.352e-15 1.354e-15 -14.869 -14.868 0.001 (0) - [18O]2 1.349e-18 1.351e-18 -17.870 -17.869 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 3.845e-17 + O[18O] 3.837e-17 3.843e-17 -16.416 -16.415 0.001 (0) + [18O]2 3.828e-20 3.834e-20 -19.417 -19.416 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.93 -127.79 -2.86 [13C]H4 + [13C]H4(g) -121.84 -124.70 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.97 -21.48 -1.50 [14C][18O]2 - [14C]H4(g) -136.05 -138.91 -2.86 [14C]H4 + [14C]H4(g) -132.96 -135.82 -2.86 [14C]H4 [14C]O2(g) -14.61 -16.08 -1.47 [14C]O2 [14C]O[18O](g) -16.99 -18.78 -1.79 [14C]O[18O] - [18O]2(g) -15.58 -17.87 -2.29 [18O]2 + [18O]2(g) -17.13 -19.42 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -51130,14 +51091,14 @@ O(0) 6.802e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.97 -125.83 -2.86 CH4 + CH4(g) -119.88 -122.74 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.81 -39.96 -3.15 H2 + H2(g) -36.03 -39.18 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.58 -12.47 -2.89 O2 - O[18O](g) -12.28 -15.17 -2.89 O[18O] + O2(g) -11.12 -14.02 -2.89 O2 + O[18O](g) -13.82 -16.72 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -51227,12 +51188,12 @@ Calcite 4.26e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2342e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2206e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.2164e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5595e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6671e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -51252,14 +51213,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.420 Adjusted to redox equilibrium + pe = 11.142 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -51268,19 +51229,19 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.871 -125.870 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.649 -123.649 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -51289,9 +51250,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -51299,23 +51260,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.163e-40 - H2 1.082e-40 1.083e-40 -39.966 -39.965 0.001 (0) -O(0) 7.092e-13 - O2 3.532e-13 3.538e-13 -12.452 -12.451 0.001 (0) - O[18O] 1.409e-15 1.412e-15 -14.851 -14.850 0.001 (0) +H(0) 7.770e-40 + H2 3.885e-40 3.891e-40 -39.411 -39.410 0.001 (0) +O(0) 5.497e-14 + O2 2.738e-14 2.742e-14 -13.563 -13.562 0.001 (0) + O[18O] 1.092e-16 1.094e-16 -15.962 -15.961 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.827 -127.826 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.605 -125.605 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) H[13C]O2[18O]- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.591e-08 -7.339 -7.338 0.001 (0) @@ -51324,56 +51285,56 @@ O(0) 7.092e-13 CaH[13C]O[18O]O+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.953 -138.952 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.731 -136.731 0.001 (0) [14C](4) 4.906e-16 H[14C]O3- 3.963e-16 3.626e-16 -15.402 -15.441 -0.039 (0) [14C]O2 8.247e-17 8.260e-17 -16.084 -16.083 0.001 (0) CaH[14C]O3+ 8.369e-18 7.677e-18 -17.077 -17.115 -0.037 (0) - H[14C][18O]O2- 7.907e-19 7.234e-19 -18.102 -18.141 -0.039 (0) - H[14C]O[18O]O- 7.907e-19 7.234e-19 -18.102 -18.141 -0.039 (0) H[14C]O2[18O]- 7.907e-19 7.234e-19 -18.102 -18.141 -0.039 (0) + H[14C]O[18O]O- 7.907e-19 7.234e-19 -18.102 -18.141 -0.039 (0) + H[14C][18O]O2- 7.907e-19 7.234e-19 -18.102 -18.141 -0.039 (0) Ca[14C]O3 4.588e-19 4.595e-19 -18.338 -18.338 0.001 (0) [14C]O[18O] 3.429e-19 3.435e-19 -18.465 -18.464 0.001 (0) [14C]O3-2 2.354e-19 1.649e-19 -18.628 -18.783 -0.155 (0) CaH[14C]O2[18O]+ 1.670e-20 1.532e-20 -19.777 -19.815 -0.037 (0) - CaH[14C][18O]O2+ 1.670e-20 1.532e-20 -19.777 -19.815 -0.037 (0) CaH[14C]O[18O]O+ 1.670e-20 1.532e-20 -19.777 -19.815 -0.037 (0) + CaH[14C][18O]O2+ 1.670e-20 1.532e-20 -19.777 -19.815 -0.037 (0) Ca[14C]O2[18O] 2.746e-21 2.751e-21 -20.561 -20.561 0.001 (0) + H[14C]O[18O]2- 1.578e-21 1.443e-21 -20.802 -20.841 -0.039 (0) H[14C][18O]2O- 1.578e-21 1.443e-21 -20.802 -20.841 -0.039 (0) H[14C][18O]O[18O]- 1.578e-21 1.443e-21 -20.802 -20.841 -0.039 (0) - H[14C]O[18O]2- 1.578e-21 1.443e-21 -20.802 -20.841 -0.039 (0) [14C]O2[18O]-2 1.409e-21 9.869e-22 -20.851 -21.006 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.412e-15 - O[18O] 1.409e-15 1.412e-15 -14.851 -14.850 0.001 (0) - [18O]2 1.406e-18 1.408e-18 -17.852 -17.851 0.001 (0) +[18O](0) 1.095e-16 + O[18O] 1.092e-16 1.094e-16 -15.962 -15.961 0.001 (0) + [18O]2 1.090e-19 1.092e-19 -18.963 -18.962 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.97 -127.83 -2.86 [13C]H4 + [13C]H4(g) -122.74 -125.60 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.98 -21.48 -1.50 [14C][18O]2 - [14C]H4(g) -136.09 -138.95 -2.86 [14C]H4 + [14C]H4(g) -133.87 -136.73 -2.86 [14C]H4 [14C]O2(g) -14.61 -16.08 -1.47 [14C]O2 [14C]O[18O](g) -17.00 -18.78 -1.79 [14C]O[18O] - [18O]2(g) -15.56 -17.85 -2.29 [18O]2 + [18O]2(g) -16.67 -18.96 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -51387,14 +51348,14 @@ O(0) 7.092e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.01 -125.87 -2.86 CH4 + CH4(g) -120.79 -123.65 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.82 -39.97 -3.15 H2 + H2(g) -36.26 -39.41 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.56 -12.45 -2.89 O2 - O[18O](g) -12.26 -15.15 -2.89 O[18O] + O2(g) -10.67 -13.56 -2.89 O2 + O[18O](g) -13.37 -16.26 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -51484,12 +51445,12 @@ Calcite 4.31e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2389e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2582e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 0 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7365e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7061e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -51509,14 +51470,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.422 Adjusted to redox equilibrium + pe = 11.171 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -51525,30 +51486,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.891 -125.890 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.876 -123.876 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -51556,81 +51517,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.139e-40 - H2 1.069e-40 1.071e-40 -39.971 -39.970 0.001 (0) -O(0) 7.256e-13 - O2 3.614e-13 3.620e-13 -12.442 -12.441 0.001 (0) - O[18O] 1.442e-15 1.444e-15 -14.841 -14.840 0.001 (0) +H(0) 6.818e-40 + H2 3.409e-40 3.415e-40 -39.467 -39.467 0.001 (0) +O(0) 7.138e-14 + O2 3.555e-14 3.561e-14 -13.449 -13.448 0.001 (0) + O[18O] 1.419e-16 1.421e-16 -15.848 -15.847 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.847 -127.846 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.832 -125.832 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) + H[13C][18O]O2- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.977 -138.976 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.963 -136.962 0.001 (0) [14C](4) 4.856e-16 H[14C]O3- 3.923e-16 3.589e-16 -15.406 -15.445 -0.039 (0) [14C]O2 8.162e-17 8.176e-17 -16.088 -16.087 0.001 (0) CaH[14C]O3+ 8.283e-18 7.599e-18 -17.082 -17.119 -0.037 (0) - H[14C][18O]O2- 7.827e-19 7.160e-19 -18.106 -18.145 -0.039 (0) - H[14C]O[18O]O- 7.827e-19 7.160e-19 -18.106 -18.145 -0.039 (0) H[14C]O2[18O]- 7.827e-19 7.160e-19 -18.106 -18.145 -0.039 (0) + H[14C]O[18O]O- 7.827e-19 7.160e-19 -18.106 -18.145 -0.039 (0) + H[14C][18O]O2- 7.827e-19 7.160e-19 -18.106 -18.145 -0.039 (0) Ca[14C]O3 4.541e-19 4.548e-19 -18.343 -18.342 0.001 (0) [14C]O[18O] 3.394e-19 3.400e-19 -18.469 -18.469 0.001 (0) [14C]O3-2 2.329e-19 1.632e-19 -18.633 -18.787 -0.155 (0) CaH[14C]O2[18O]+ 1.653e-20 1.516e-20 -19.782 -19.819 -0.037 (0) - CaH[14C][18O]O2+ 1.653e-20 1.516e-20 -19.782 -19.819 -0.037 (0) CaH[14C]O[18O]O+ 1.653e-20 1.516e-20 -19.782 -19.819 -0.037 (0) + CaH[14C][18O]O2+ 1.653e-20 1.516e-20 -19.782 -19.819 -0.037 (0) Ca[14C]O2[18O] 2.718e-21 2.723e-21 -20.566 -20.565 0.001 (0) - H[14C][18O]O[18O]- 1.562e-21 1.429e-21 -20.806 -20.845 -0.039 (0) H[14C]O[18O]2- 1.562e-21 1.429e-21 -20.806 -20.845 -0.039 (0) H[14C][18O]2O- 1.562e-21 1.429e-21 -20.806 -20.845 -0.039 (0) + H[14C][18O]O[18O]- 1.562e-21 1.429e-21 -20.806 -20.845 -0.039 (0) [14C]O2[18O]-2 1.394e-21 9.768e-22 -20.856 -21.010 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.445e-15 - O[18O] 1.442e-15 1.444e-15 -14.841 -14.840 0.001 (0) - [18O]2 1.438e-18 1.441e-18 -17.842 -17.841 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.421e-16 + O[18O] 1.419e-16 1.421e-16 -15.848 -15.847 0.001 (0) + [18O]2 1.415e-19 1.417e-19 -18.849 -18.848 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.99 -127.85 -2.86 [13C]H4 + [13C]H4(g) -122.97 -125.83 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.98 -21.49 -1.50 [14C][18O]2 - [14C]H4(g) -136.12 -138.98 -2.86 [14C]H4 + [14C]H4(g) -134.10 -136.96 -2.86 [14C]H4 [14C]O2(g) -14.62 -16.09 -1.47 [14C]O2 [14C]O[18O](g) -17.00 -18.79 -1.79 [14C]O[18O] - [18O]2(g) -15.55 -17.84 -2.29 [18O]2 + [18O]2(g) -16.56 -18.85 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -51644,14 +51605,14 @@ O(0) 7.256e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.03 -125.89 -2.86 CH4 + CH4(g) -121.02 -123.88 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.82 -39.97 -3.15 H2 + H2(g) -36.32 -39.47 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.55 -12.44 -2.89 O2 - O[18O](g) -12.25 -15.14 -2.89 O[18O] + O2(g) -10.56 -13.45 -2.89 O2 + O[18O](g) -13.26 -16.15 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -51741,12 +51702,12 @@ Calcite 4.36e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2496e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.236e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.6605e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5166e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5554e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -51766,14 +51727,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.423 Adjusted to redox equilibrium + pe = 11.174 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -51782,20 +51743,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.894 -125.893 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.907 -123.906 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -51803,9 +51764,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -51813,50 +51774,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.135e-40 - H2 1.067e-40 1.069e-40 -39.972 -39.971 0.001 (0) -O(0) 7.281e-13 - O2 3.626e-13 3.632e-13 -12.441 -12.440 0.001 (0) - O[18O] 1.447e-15 1.449e-15 -14.840 -14.839 0.001 (0) +H(0) 6.700e-40 + H2 3.350e-40 3.356e-40 -39.475 -39.474 0.001 (0) +O(0) 7.391e-14 + O2 3.681e-14 3.687e-14 -13.434 -13.433 0.001 (0) + O[18O] 1.469e-16 1.471e-16 -15.833 -15.832 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.849 -127.849 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.863 -125.862 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) + CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.090e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.984 -138.984 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.997 -136.997 0.001 (0) [14C](4) 4.807e-16 H[14C]O3- 3.883e-16 3.552e-16 -15.411 -15.449 -0.039 (0) [14C]O2 8.080e-17 8.093e-17 -16.093 -16.092 0.001 (0) CaH[14C]O3+ 8.200e-18 7.522e-18 -17.086 -17.124 -0.037 (0) - H[14C][18O]O2- 7.747e-19 7.088e-19 -18.111 -18.149 -0.039 (0) - H[14C]O[18O]O- 7.747e-19 7.088e-19 -18.111 -18.149 -0.039 (0) H[14C]O2[18O]- 7.747e-19 7.088e-19 -18.111 -18.149 -0.039 (0) + H[14C]O[18O]O- 7.747e-19 7.088e-19 -18.111 -18.149 -0.039 (0) + H[14C][18O]O2- 7.747e-19 7.088e-19 -18.111 -18.149 -0.039 (0) Ca[14C]O3 4.495e-19 4.502e-19 -18.347 -18.347 0.001 (0) [14C]O[18O] 3.360e-19 3.365e-19 -18.474 -18.473 0.001 (0) [14C]O3-2 2.306e-19 1.615e-19 -18.637 -18.792 -0.155 (0) CaH[14C]O2[18O]+ 1.636e-20 1.501e-20 -19.786 -19.824 -0.037 (0) - CaH[14C][18O]O2+ 1.636e-20 1.501e-20 -19.786 -19.824 -0.037 (0) CaH[14C]O[18O]O+ 1.636e-20 1.501e-20 -19.786 -19.824 -0.037 (0) + CaH[14C][18O]O2+ 1.636e-20 1.501e-20 -19.786 -19.824 -0.037 (0) Ca[14C]O2[18O] 2.691e-21 2.695e-21 -20.570 -20.569 0.001 (0) H[14C]O[18O]2- 1.546e-21 1.414e-21 -20.811 -20.849 -0.039 (0) H[14C][18O]2O- 1.546e-21 1.414e-21 -20.811 -20.849 -0.039 (0) @@ -51865,29 +51826,29 @@ O(0) 7.281e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.450e-15 - O[18O] 1.447e-15 1.449e-15 -14.840 -14.839 0.001 (0) - [18O]2 1.443e-18 1.446e-18 -17.841 -17.840 0.001 (0) +[18O](0) 1.472e-16 + O[18O] 1.469e-16 1.471e-16 -15.833 -15.832 0.001 (0) + [18O]2 1.465e-19 1.468e-19 -18.834 -18.833 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.99 -127.85 -2.86 [13C]H4 + [13C]H4(g) -123.00 -125.86 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.99 -21.49 -1.50 [14C][18O]2 - [14C]H4(g) -136.12 -138.98 -2.86 [14C]H4 + [14C]H4(g) -134.14 -137.00 -2.86 [14C]H4 [14C]O2(g) -14.62 -16.09 -1.47 [14C]O2 [14C]O[18O](g) -17.00 -18.79 -1.79 [14C]O[18O] - [18O]2(g) -15.55 -17.84 -2.29 [18O]2 + [18O]2(g) -16.54 -18.83 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -51901,14 +51862,14 @@ O(0) 7.281e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.03 -125.89 -2.86 CH4 + CH4(g) -121.05 -123.91 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.82 -39.97 -3.15 H2 + H2(g) -36.32 -39.47 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.55 -12.44 -2.89 O2 - O[18O](g) -12.25 -15.14 -2.89 O[18O] + O2(g) -10.54 -13.43 -2.89 O2 + O[18O](g) -13.24 -16.13 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -51998,12 +51959,12 @@ Calcite 4.41e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.238e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2564e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5808e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6205e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -52023,14 +51984,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.420 Adjusted to redox equilibrium + pe = 11.128 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -52039,30 +52000,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.871 -125.870 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.535 -123.534 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -52070,23 +52031,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.163e-40 - H2 1.082e-40 1.083e-40 -39.966 -39.965 0.001 (0) -O(0) 7.092e-13 - O2 3.532e-13 3.538e-13 -12.452 -12.451 0.001 (0) - O[18O] 1.409e-15 1.412e-15 -14.851 -14.850 0.001 (0) +H(0) 8.298e-40 + H2 4.149e-40 4.156e-40 -39.382 -39.381 0.001 (0) +O(0) 4.819e-14 + O2 2.400e-14 2.404e-14 -13.620 -13.619 0.001 (0) + O[18O] 9.577e-17 9.593e-17 -16.019 -16.018 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.827 -127.826 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.491 -125.490 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.591e-08 -7.339 -7.338 0.001 (0) @@ -52095,56 +52056,56 @@ O(0) 7.092e-13 CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.966 -138.965 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.630 -136.630 0.001 (0) [14C](4) 4.759e-16 H[14C]O3- 3.844e-16 3.517e-16 -15.415 -15.454 -0.039 (0) [14C]O2 7.999e-17 8.012e-17 -16.097 -16.096 0.001 (0) CaH[14C]O3+ 8.117e-18 7.446e-18 -17.091 -17.128 -0.037 (0) - H[14C][18O]O2- 7.670e-19 7.017e-19 -18.115 -18.154 -0.039 (0) - H[14C]O[18O]O- 7.670e-19 7.017e-19 -18.115 -18.154 -0.039 (0) H[14C]O2[18O]- 7.670e-19 7.017e-19 -18.115 -18.154 -0.039 (0) + H[14C]O[18O]O- 7.670e-19 7.017e-19 -18.115 -18.154 -0.039 (0) + H[14C][18O]O2- 7.670e-19 7.017e-19 -18.115 -18.154 -0.039 (0) Ca[14C]O3 4.450e-19 4.457e-19 -18.352 -18.351 0.001 (0) [14C]O[18O] 3.326e-19 3.332e-19 -18.478 -18.477 0.001 (0) [14C]O3-2 2.283e-19 1.599e-19 -18.642 -18.796 -0.155 (0) CaH[14C]O2[18O]+ 1.620e-20 1.486e-20 -19.791 -19.828 -0.037 (0) - CaH[14C][18O]O2+ 1.620e-20 1.486e-20 -19.791 -19.828 -0.037 (0) CaH[14C]O[18O]O+ 1.620e-20 1.486e-20 -19.791 -19.828 -0.037 (0) + CaH[14C][18O]O2+ 1.620e-20 1.486e-20 -19.791 -19.828 -0.037 (0) Ca[14C]O2[18O] 2.664e-21 2.668e-21 -20.575 -20.574 0.001 (0) + H[14C]O[18O]2- 1.530e-21 1.400e-21 -20.815 -20.854 -0.039 (0) H[14C][18O]2O- 1.530e-21 1.400e-21 -20.815 -20.854 -0.039 (0) H[14C][18O]O[18O]- 1.530e-21 1.400e-21 -20.815 -20.854 -0.039 (0) - H[14C]O[18O]2- 1.530e-21 1.400e-21 -20.815 -20.854 -0.039 (0) [14C]O2[18O]-2 1.366e-21 9.572e-22 -20.864 -21.019 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.412e-15 - O[18O] 1.409e-15 1.412e-15 -14.851 -14.850 0.001 (0) - [18O]2 1.406e-18 1.408e-18 -17.852 -17.851 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 9.596e-17 + O[18O] 9.577e-17 9.593e-17 -16.019 -16.018 0.001 (0) + [18O]2 9.554e-20 9.570e-20 -19.020 -19.019 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.97 -127.83 -2.86 [13C]H4 + [13C]H4(g) -122.63 -125.49 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.99 -21.50 -1.50 [14C][18O]2 - [14C]H4(g) -136.11 -138.97 -2.86 [14C]H4 + [14C]H4(g) -133.77 -136.63 -2.86 [14C]H4 [14C]O2(g) -14.63 -16.10 -1.47 [14C]O2 [14C]O[18O](g) -17.01 -18.80 -1.79 [14C]O[18O] - [18O]2(g) -15.56 -17.85 -2.29 [18O]2 + [18O]2(g) -16.73 -19.02 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -52158,14 +52119,14 @@ O(0) 7.092e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.01 -125.87 -2.86 CH4 + CH4(g) -120.67 -123.53 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.82 -39.97 -3.15 H2 + H2(g) -36.23 -39.38 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.56 -12.45 -2.89 O2 - O[18O](g) -12.26 -15.15 -2.89 O[18O] + O2(g) -10.73 -13.62 -2.89 O2 + O[18O](g) -13.43 -16.32 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -52255,12 +52216,12 @@ Calcite 4.46e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2653e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2834e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.4385e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.577e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6822e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -52280,14 +52241,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.419 Adjusted to redox equilibrium + pe = 11.131 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -52296,20 +52257,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.864 -125.863 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.558 -123.557 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -52317,9 +52278,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -52327,81 +52288,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.172e-40 - H2 1.086e-40 1.088e-40 -39.964 -39.964 0.001 (0) -O(0) 7.037e-13 - O2 3.504e-13 3.510e-13 -12.455 -12.455 0.001 (0) - O[18O] 1.398e-15 1.401e-15 -14.854 -14.854 0.001 (0) +H(0) 8.190e-40 + H2 4.095e-40 4.102e-40 -39.388 -39.387 0.001 (0) +O(0) 4.948e-14 + O2 2.464e-14 2.468e-14 -13.608 -13.608 0.001 (0) + O[18O] 9.832e-17 9.848e-17 -16.007 -16.007 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.820 -127.819 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.514 -125.513 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.963 -138.963 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.657 -136.657 0.001 (0) [14C](4) 4.712e-16 H[14C]O3- 3.806e-16 3.482e-16 -15.420 -15.458 -0.039 (0) [14C]O2 7.919e-17 7.932e-17 -16.101 -16.101 0.001 (0) CaH[14C]O3+ 8.037e-18 7.373e-18 -17.095 -17.132 -0.037 (0) - H[14C][18O]O2- 7.594e-19 6.947e-19 -18.120 -18.158 -0.039 (0) - H[14C]O[18O]O- 7.594e-19 6.947e-19 -18.120 -18.158 -0.039 (0) H[14C]O2[18O]- 7.594e-19 6.947e-19 -18.120 -18.158 -0.039 (0) + H[14C]O[18O]O- 7.594e-19 6.947e-19 -18.120 -18.158 -0.039 (0) + H[14C][18O]O2- 7.594e-19 6.947e-19 -18.120 -18.158 -0.039 (0) Ca[14C]O3 4.406e-19 4.413e-19 -18.356 -18.355 0.001 (0) [14C]O[18O] 3.293e-19 3.299e-19 -18.482 -18.482 0.001 (0) [14C]O3-2 2.260e-19 1.583e-19 -18.646 -18.800 -0.155 (0) CaH[14C]O2[18O]+ 1.604e-20 1.471e-20 -19.795 -19.832 -0.037 (0) - CaH[14C][18O]O2+ 1.604e-20 1.471e-20 -19.795 -19.832 -0.037 (0) CaH[14C]O[18O]O+ 1.604e-20 1.471e-20 -19.795 -19.832 -0.037 (0) + CaH[14C][18O]O2+ 1.604e-20 1.471e-20 -19.795 -19.832 -0.037 (0) Ca[14C]O2[18O] 2.637e-21 2.642e-21 -20.579 -20.578 0.001 (0) - H[14C][18O]O[18O]- 1.515e-21 1.386e-21 -20.820 -20.858 -0.039 (0) H[14C]O[18O]2- 1.515e-21 1.386e-21 -20.820 -20.858 -0.039 (0) H[14C][18O]2O- 1.515e-21 1.386e-21 -20.820 -20.858 -0.039 (0) + H[14C][18O]O[18O]- 1.515e-21 1.386e-21 -20.820 -20.858 -0.039 (0) [14C]O2[18O]-2 1.353e-21 9.477e-22 -20.869 -21.023 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.401e-15 - O[18O] 1.398e-15 1.401e-15 -14.854 -14.854 0.001 (0) - [18O]2 1.395e-18 1.397e-18 -17.855 -17.855 0.001 (0) +[18O](0) 9.852e-17 + O[18O] 9.832e-17 9.848e-17 -16.007 -16.007 0.001 (0) + [18O]2 9.809e-20 9.825e-20 -19.008 -19.008 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.96 -127.82 -2.86 [13C]H4 + [13C]H4(g) -122.65 -125.51 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.00 -21.50 -1.50 [14C][18O]2 - [14C]H4(g) -136.10 -138.96 -2.86 [14C]H4 + [14C]H4(g) -133.80 -136.66 -2.86 [14C]H4 [14C]O2(g) -14.63 -16.10 -1.47 [14C]O2 [14C]O[18O](g) -17.01 -18.80 -1.79 [14C]O[18O] - [18O]2(g) -15.56 -17.85 -2.29 [18O]2 + [18O]2(g) -16.72 -19.01 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -52415,14 +52376,14 @@ O(0) 7.037e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.00 -125.86 -2.86 CH4 + CH4(g) -120.70 -123.56 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.81 -39.96 -3.15 H2 + H2(g) -36.24 -39.39 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.56 -12.45 -2.89 O2 - O[18O](g) -12.26 -15.15 -2.89 O[18O] + O2(g) -10.72 -13.61 -2.89 O2 + O[18O](g) -13.42 -16.31 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -52512,12 +52473,12 @@ Calcite 4.51e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2362e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2546e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5691e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7424e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -52537,14 +52498,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.420 Adjusted to redox equilibrium + pe = 11.129 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -52553,30 +52514,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.872 -125.871 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.546 -123.546 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -52584,50 +52545,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.161e-40 - H2 1.081e-40 1.083e-40 -39.966 -39.966 0.001 (0) -O(0) 7.103e-13 - O2 3.537e-13 3.543e-13 -12.451 -12.451 0.001 (0) - O[18O] 1.411e-15 1.414e-15 -14.850 -14.850 0.001 (0) +H(0) 8.245e-40 + H2 4.123e-40 4.129e-40 -39.385 -39.384 0.001 (0) +O(0) 4.881e-14 + O2 2.431e-14 2.435e-14 -13.614 -13.614 0.001 (0) + O[18O] 9.700e-17 9.716e-17 -16.013 -16.013 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.828 -127.827 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.502 -125.501 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.252e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.584e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) + CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.976 -138.975 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.650 -136.649 0.001 (0) [14C](4) 4.665e-16 H[14C]O3- 3.769e-16 3.448e-16 -15.424 -15.462 -0.039 (0) [14C]O2 7.842e-17 7.855e-17 -16.106 -16.105 0.001 (0) CaH[14C]O3+ 7.958e-18 7.300e-18 -17.099 -17.137 -0.037 (0) - H[14C][18O]O2- 7.519e-19 6.879e-19 -18.124 -18.162 -0.039 (0) - H[14C]O[18O]O- 7.519e-19 6.879e-19 -18.124 -18.162 -0.039 (0) H[14C]O2[18O]- 7.519e-19 6.879e-19 -18.124 -18.162 -0.039 (0) + H[14C]O[18O]O- 7.519e-19 6.879e-19 -18.124 -18.162 -0.039 (0) + H[14C][18O]O2- 7.519e-19 6.879e-19 -18.124 -18.162 -0.039 (0) Ca[14C]O3 4.363e-19 4.370e-19 -18.360 -18.360 0.001 (0) [14C]O[18O] 3.261e-19 3.266e-19 -18.487 -18.486 0.001 (0) [14C]O3-2 2.238e-19 1.568e-19 -18.650 -18.805 -0.155 (0) CaH[14C]O2[18O]+ 1.588e-20 1.457e-20 -19.799 -19.837 -0.037 (0) - CaH[14C][18O]O2+ 1.588e-20 1.457e-20 -19.799 -19.837 -0.037 (0) CaH[14C]O[18O]O+ 1.588e-20 1.457e-20 -19.799 -19.837 -0.037 (0) + CaH[14C][18O]O2+ 1.588e-20 1.457e-20 -19.799 -19.837 -0.037 (0) Ca[14C]O2[18O] 2.611e-21 2.616e-21 -20.583 -20.582 0.001 (0) H[14C]O[18O]2- 1.500e-21 1.372e-21 -20.824 -20.862 -0.039 (0) H[14C][18O]2O- 1.500e-21 1.372e-21 -20.824 -20.862 -0.039 (0) @@ -52636,29 +52597,29 @@ O(0) 7.103e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.414e-15 - O[18O] 1.411e-15 1.414e-15 -14.850 -14.850 0.001 (0) - [18O]2 1.408e-18 1.410e-18 -17.851 -17.851 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 9.719e-17 + O[18O] 9.700e-17 9.716e-17 -16.013 -16.013 0.001 (0) + [18O]2 9.676e-20 9.692e-20 -19.014 -19.014 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.97 -127.83 -2.86 [13C]H4 + [13C]H4(g) -122.64 -125.50 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.00 -21.50 -1.50 [14C][18O]2 - [14C]H4(g) -136.12 -138.98 -2.86 [14C]H4 + [14C]H4(g) -133.79 -136.65 -2.86 [14C]H4 [14C]O2(g) -14.64 -16.10 -1.47 [14C]O2 [14C]O[18O](g) -17.02 -18.80 -1.79 [14C]O[18O] - [18O]2(g) -15.56 -17.85 -2.29 [18O]2 + [18O]2(g) -16.72 -19.01 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -52672,14 +52633,14 @@ O(0) 7.103e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.01 -125.87 -2.86 CH4 + CH4(g) -120.69 -123.55 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.82 -39.97 -3.15 H2 + H2(g) -36.23 -39.38 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.56 -12.45 -2.89 O2 - O[18O](g) -12.26 -15.15 -2.89 O[18O] + O2(g) -10.72 -13.61 -2.89 O2 + O[18O](g) -13.42 -16.31 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -52769,12 +52730,12 @@ Calcite 4.56e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2512e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.236e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6848e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6528e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -52794,14 +52755,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.423 Adjusted to redox equilibrium + pe = 11.164 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -52810,19 +52771,19 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.894 -125.893 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.821 -123.820 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -52831,9 +52792,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -52841,23 +52802,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.135e-40 - H2 1.067e-40 1.069e-40 -39.972 -39.971 0.001 (0) -O(0) 7.282e-13 - O2 3.627e-13 3.633e-13 -12.441 -12.440 0.001 (0) - O[18O] 1.447e-15 1.450e-15 -14.839 -14.839 0.001 (0) +H(0) 7.039e-40 + H2 3.520e-40 3.525e-40 -39.454 -39.453 0.001 (0) +O(0) 6.697e-14 + O2 3.335e-14 3.341e-14 -13.477 -13.476 0.001 (0) + O[18O] 1.331e-16 1.333e-16 -15.876 -15.875 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.850 -127.849 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.777 -125.776 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.252e-05 4.805e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.584e-08 4.591e-08 -7.339 -7.338 0.001 (0) @@ -52866,56 +52827,56 @@ O(0) 7.282e-13 CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.002 -139.001 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.929 -136.928 0.001 (0) [14C](4) 4.620e-16 H[14C]O3- 3.732e-16 3.414e-16 -15.428 -15.467 -0.039 (0) [14C]O2 7.765e-17 7.778e-17 -16.110 -16.109 0.001 (0) CaH[14C]O3+ 7.881e-18 7.229e-18 -17.103 -17.141 -0.037 (0) - H[14C][18O]O2- 7.446e-19 6.812e-19 -18.128 -18.167 -0.039 (0) - H[14C]O[18O]O- 7.446e-19 6.812e-19 -18.128 -18.167 -0.039 (0) H[14C]O2[18O]- 7.446e-19 6.812e-19 -18.128 -18.167 -0.039 (0) + H[14C]O[18O]O- 7.446e-19 6.812e-19 -18.128 -18.167 -0.039 (0) + H[14C][18O]O2- 7.446e-19 6.812e-19 -18.128 -18.167 -0.039 (0) Ca[14C]O3 4.320e-19 4.327e-19 -18.364 -18.364 0.001 (0) [14C]O[18O] 3.229e-19 3.234e-19 -18.491 -18.490 0.001 (0) [14C]O3-2 2.216e-19 1.553e-19 -18.654 -18.809 -0.155 (0) CaH[14C]O2[18O]+ 1.572e-20 1.442e-20 -19.803 -19.841 -0.037 (0) - CaH[14C][18O]O2+ 1.572e-20 1.442e-20 -19.803 -19.841 -0.037 (0) CaH[14C]O[18O]O+ 1.572e-20 1.442e-20 -19.803 -19.841 -0.037 (0) + CaH[14C][18O]O2+ 1.572e-20 1.442e-20 -19.803 -19.841 -0.037 (0) Ca[14C]O2[18O] 2.586e-21 2.590e-21 -20.587 -20.587 0.001 (0) + H[14C]O[18O]2- 1.486e-21 1.359e-21 -20.828 -20.867 -0.039 (0) H[14C][18O]2O- 1.486e-21 1.359e-21 -20.828 -20.867 -0.039 (0) H[14C][18O]O[18O]- 1.486e-21 1.359e-21 -20.828 -20.867 -0.039 (0) - H[14C]O[18O]2- 1.486e-21 1.359e-21 -20.828 -20.867 -0.039 (0) [14C]O2[18O]-2 1.327e-21 9.293e-22 -20.877 -21.032 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.450e-15 - O[18O] 1.447e-15 1.450e-15 -14.839 -14.839 0.001 (0) - [18O]2 1.444e-18 1.446e-18 -17.841 -17.840 0.001 (0) +[18O](0) 1.333e-16 + O[18O] 1.331e-16 1.333e-16 -15.876 -15.875 0.001 (0) + [18O]2 1.328e-19 1.330e-19 -18.877 -18.876 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.99 -127.85 -2.86 [13C]H4 + [13C]H4(g) -122.92 -125.78 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.01 -21.51 -1.50 [14C][18O]2 - [14C]H4(g) -136.14 -139.00 -2.86 [14C]H4 + [14C]H4(g) -134.07 -136.93 -2.86 [14C]H4 [14C]O2(g) -14.64 -16.11 -1.47 [14C]O2 [14C]O[18O](g) -17.02 -18.81 -1.79 [14C]O[18O] - [18O]2(g) -15.55 -17.84 -2.29 [18O]2 + [18O]2(g) -16.59 -18.88 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -52929,14 +52890,14 @@ O(0) 7.282e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.03 -125.89 -2.86 CH4 + CH4(g) -120.96 -123.82 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.82 -39.97 -3.15 H2 + H2(g) -36.30 -39.45 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.55 -12.44 -2.89 O2 - O[18O](g) -12.25 -15.14 -2.89 O[18O] + O2(g) -10.58 -13.48 -2.89 O2 + O[18O](g) -13.28 -16.18 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -53026,12 +52987,12 @@ Calcite 4.61e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.243e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.261e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.6613e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.781e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5463e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -53051,14 +53012,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.428 Adjusted to redox equilibrium + pe = 11.219 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -53067,30 +53028,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.936 -125.935 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.260 -124.260 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -53098,81 +53059,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.084e-40 - H2 1.042e-40 1.044e-40 -39.982 -39.981 0.001 (0) -O(0) 7.641e-13 - O2 3.805e-13 3.812e-13 -12.420 -12.419 0.001 (0) - O[18O] 1.519e-15 1.521e-15 -14.819 -14.818 0.001 (0) +H(0) 5.466e-40 + H2 2.733e-40 2.738e-40 -39.563 -39.563 0.001 (0) +O(0) 1.110e-13 + O2 5.530e-14 5.540e-14 -13.257 -13.257 0.001 (0) + O[18O] 2.207e-16 2.210e-16 -15.656 -15.656 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.891 -127.891 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.216 -126.215 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.252e-05 4.805e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.584e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.048 -139.047 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.372 -137.372 0.001 (0) [14C](4) 4.575e-16 H[14C]O3- 3.696e-16 3.381e-16 -15.432 -15.471 -0.039 (0) [14C]O2 7.691e-17 7.703e-17 -16.114 -16.113 0.001 (0) CaH[14C]O3+ 7.805e-18 7.159e-18 -17.108 -17.145 -0.037 (0) - H[14C][18O]O2- 7.374e-19 6.746e-19 -18.132 -18.171 -0.039 (0) - H[14C]O[18O]O- 7.374e-19 6.746e-19 -18.132 -18.171 -0.039 (0) H[14C]O2[18O]- 7.374e-19 6.746e-19 -18.132 -18.171 -0.039 (0) + H[14C]O[18O]O- 7.374e-19 6.746e-19 -18.132 -18.171 -0.039 (0) + H[14C][18O]O2- 7.374e-19 6.746e-19 -18.132 -18.171 -0.039 (0) Ca[14C]O3 4.279e-19 4.286e-19 -18.369 -18.368 0.001 (0) [14C]O[18O] 3.198e-19 3.203e-19 -18.495 -18.494 0.001 (0) [14C]O3-2 2.195e-19 1.538e-19 -18.659 -18.813 -0.155 (0) CaH[14C]O2[18O]+ 1.557e-20 1.428e-20 -19.808 -19.845 -0.037 (0) - CaH[14C][18O]O2+ 1.557e-20 1.428e-20 -19.808 -19.845 -0.037 (0) CaH[14C]O[18O]O+ 1.557e-20 1.428e-20 -19.808 -19.845 -0.037 (0) + CaH[14C][18O]O2+ 1.557e-20 1.428e-20 -19.808 -19.845 -0.037 (0) Ca[14C]O2[18O] 2.561e-21 2.565e-21 -20.592 -20.591 0.001 (0) - H[14C][18O]O[18O]- 1.471e-21 1.346e-21 -20.832 -20.871 -0.039 (0) H[14C]O[18O]2- 1.471e-21 1.346e-21 -20.832 -20.871 -0.039 (0) H[14C][18O]2O- 1.471e-21 1.346e-21 -20.832 -20.871 -0.039 (0) + H[14C][18O]O[18O]- 1.471e-21 1.346e-21 -20.832 -20.871 -0.039 (0) [14C]O2[18O]-2 1.314e-21 9.203e-22 -20.881 -21.036 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.522e-15 - O[18O] 1.519e-15 1.521e-15 -14.819 -14.818 0.001 (0) - [18O]2 1.515e-18 1.517e-18 -17.820 -17.819 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.211e-16 + O[18O] 2.207e-16 2.210e-16 -15.656 -15.656 0.001 (0) + [18O]2 2.202e-19 2.205e-19 -18.657 -18.657 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.03 -127.89 -2.86 [13C]H4 + [13C]H4(g) -123.36 -126.22 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.01 -21.51 -1.50 [14C][18O]2 - [14C]H4(g) -136.19 -139.05 -2.86 [14C]H4 + [14C]H4(g) -134.51 -137.37 -2.86 [14C]H4 [14C]O2(g) -14.64 -16.11 -1.47 [14C]O2 [14C]O[18O](g) -17.03 -18.81 -1.79 [14C]O[18O] - [18O]2(g) -15.53 -17.82 -2.29 [18O]2 + [18O]2(g) -16.37 -18.66 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -53186,14 +53147,14 @@ O(0) 7.641e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.07 -125.93 -2.86 CH4 + CH4(g) -121.40 -124.26 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.83 -39.98 -3.15 H2 + H2(g) -36.41 -39.56 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.53 -12.42 -2.89 O2 - O[18O](g) -12.23 -15.12 -2.89 O[18O] + O2(g) -10.36 -13.26 -2.89 O2 + O[18O](g) -13.06 -15.96 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -53257,7 +53218,7 @@ Calcite 4.66e-02 R(18O) 1.99521e-03 -4.9827 permil R(13C) 1.11492e-02 -2.7734 permil - R(14C) 7.76004e-14 6.5993 pmc + R(14C) 7.76003e-14 6.5993 pmc R(18O) H2O(l) 1.99521e-03 -4.9842 permil R(18O) OH- 1.92124e-03 -41.872 permil R(18O) H3O+ 2.04134e-03 18.024 permil @@ -53267,7 +53228,7 @@ Calcite 4.66e-02 R(18O) CO2(aq) 2.07917e-03 36.89 permil R(18O) HCO3- 1.99521e-03 -4.9842 permil R(13C) HCO3- 1.11657e-02 -1.2964 permil - R(14C) HCO3- 7.78296e-14 6.6188 pmc + R(14C) HCO3- 7.78295e-14 6.6188 pmc R(18O) CO3-2 1.99521e-03 -4.9842 permil R(13C) CO3-2 1.11497e-02 -2.7297 permil R(14C) CO3-2 7.76063e-14 6.5998 pmc @@ -53283,12 +53244,12 @@ Calcite 4.66e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2446e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2632e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.5503e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7176e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6187e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -53308,14 +53269,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.434 Adjusted to redox equilibrium + pe = 11.245 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -53324,20 +53285,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.986 -125.985 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.471 -124.470 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -53345,9 +53306,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -53355,50 +53316,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.024e-40 - H2 1.012e-40 1.014e-40 -39.995 -39.994 0.001 (0) -O(0) 8.099e-13 - O2 4.033e-13 4.040e-13 -12.394 -12.394 0.001 (0) - O[18O] 1.609e-15 1.612e-15 -14.793 -14.793 0.001 (0) +H(0) 4.842e-40 + H2 2.421e-40 2.425e-40 -39.616 -39.615 0.001 (0) +O(0) 1.415e-13 + O2 7.049e-14 7.060e-14 -13.152 -13.151 0.001 (0) + O[18O] 2.813e-16 2.817e-16 -15.551 -15.550 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.942 -127.941 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.427 -126.426 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.252e-05 4.805e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.584e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) + CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.102 -139.102 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.587 -137.587 0.001 (0) [14C](4) 4.532e-16 H[14C]O3- 3.661e-16 3.349e-16 -15.436 -15.475 -0.039 (0) [14C]O2 7.617e-17 7.630e-17 -16.118 -16.117 0.001 (0) CaH[14C]O3+ 7.730e-18 7.091e-18 -17.112 -17.149 -0.037 (0) - H[14C][18O]O2- 7.304e-19 6.682e-19 -18.136 -18.175 -0.039 (0) - H[14C]O[18O]O- 7.304e-19 6.682e-19 -18.136 -18.175 -0.039 (0) H[14C]O2[18O]- 7.304e-19 6.682e-19 -18.136 -18.175 -0.039 (0) + H[14C]O[18O]O- 7.304e-19 6.682e-19 -18.136 -18.175 -0.039 (0) + H[14C][18O]O2- 7.304e-19 6.682e-19 -18.136 -18.175 -0.039 (0) Ca[14C]O3 4.238e-19 4.245e-19 -18.373 -18.372 0.001 (0) [14C]O[18O] 3.167e-19 3.173e-19 -18.499 -18.499 0.001 (0) [14C]O3-2 2.174e-19 1.523e-19 -18.663 -18.817 -0.155 (0) CaH[14C]O2[18O]+ 1.542e-20 1.415e-20 -19.812 -19.849 -0.037 (0) - CaH[14C][18O]O2+ 1.542e-20 1.415e-20 -19.812 -19.849 -0.037 (0) CaH[14C]O[18O]O+ 1.542e-20 1.415e-20 -19.812 -19.849 -0.037 (0) + CaH[14C][18O]O2+ 1.542e-20 1.415e-20 -19.812 -19.849 -0.037 (0) Ca[14C]O2[18O] 2.537e-21 2.541e-21 -20.596 -20.595 0.001 (0) H[14C]O[18O]2- 1.457e-21 1.333e-21 -20.836 -20.875 -0.039 (0) H[14C][18O]2O- 1.457e-21 1.333e-21 -20.836 -20.875 -0.039 (0) @@ -53407,29 +53368,29 @@ O(0) 8.099e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.613e-15 - O[18O] 1.609e-15 1.612e-15 -14.793 -14.793 0.001 (0) - [18O]2 1.606e-18 1.608e-18 -17.794 -17.794 0.001 (0) +[18O](0) 2.818e-16 + O[18O] 2.813e-16 2.817e-16 -15.551 -15.550 0.001 (0) + [18O]2 2.806e-19 2.811e-19 -18.552 -18.551 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.08 -127.94 -2.86 [13C]H4 + [13C]H4(g) -123.57 -126.43 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.01 -21.52 -1.50 [14C][18O]2 - [14C]H4(g) -136.24 -139.10 -2.86 [14C]H4 + [14C]H4(g) -134.73 -137.59 -2.86 [14C]H4 [14C]O2(g) -14.65 -16.12 -1.47 [14C]O2 [14C]O[18O](g) -17.03 -18.82 -1.79 [14C]O[18O] - [18O]2(g) -15.50 -17.79 -2.29 [18O]2 + [18O]2(g) -16.26 -18.55 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -53443,14 +53404,14 @@ O(0) 8.099e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.13 -125.99 -2.86 CH4 + CH4(g) -121.61 -124.47 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.84 -39.99 -3.15 H2 + H2(g) -36.47 -39.62 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.50 -12.39 -2.89 O2 - O[18O](g) -12.20 -15.09 -2.89 O[18O] + O2(g) -10.26 -13.15 -2.89 O2 + O[18O](g) -12.96 -15.85 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -53540,12 +53501,12 @@ Calcite 4.71e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2591e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2444e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6932e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8665e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -53565,14 +53526,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.429 Adjusted to redox equilibrium + pe = 11.218 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -53581,30 +53542,30 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.945 -125.944 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.259 -124.259 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -53612,23 +53573,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.073e-40 - H2 1.036e-40 1.038e-40 -39.984 -39.984 0.001 (0) -O(0) 7.723e-13 - O2 3.846e-13 3.853e-13 -12.415 -12.414 0.001 (0) - O[18O] 1.535e-15 1.537e-15 -14.814 -14.813 0.001 (0) +H(0) 5.469e-40 + H2 2.735e-40 2.739e-40 -39.563 -39.562 0.001 (0) +O(0) 1.109e-13 + O2 5.525e-14 5.534e-14 -13.258 -13.257 0.001 (0) + O[18O] 2.205e-16 2.208e-16 -15.657 -15.656 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.901 -127.900 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.215 -126.215 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.252e-05 4.805e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.215 -7.215 0.001 (0) [13C]O[18O] 4.584e-08 4.591e-08 -7.339 -7.338 0.001 (0) @@ -53637,56 +53598,56 @@ O(0) 7.723e-13 CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.065 -139.065 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.380 -137.379 0.001 (0) [14C](4) 4.489e-16 H[14C]O3- 3.626e-16 3.317e-16 -15.441 -15.479 -0.039 (0) [14C]O2 7.545e-17 7.558e-17 -16.122 -16.122 0.001 (0) CaH[14C]O3+ 7.657e-18 7.024e-18 -17.116 -17.153 -0.037 (0) - H[14C][18O]O2- 7.235e-19 6.619e-19 -18.141 -18.179 -0.039 (0) - H[14C]O[18O]O- 7.235e-19 6.619e-19 -18.141 -18.179 -0.039 (0) H[14C]O2[18O]- 7.235e-19 6.619e-19 -18.141 -18.179 -0.039 (0) + H[14C]O[18O]O- 7.235e-19 6.619e-19 -18.141 -18.179 -0.039 (0) + H[14C][18O]O2- 7.235e-19 6.619e-19 -18.141 -18.179 -0.039 (0) Ca[14C]O3 4.198e-19 4.205e-19 -18.377 -18.376 0.001 (0) [14C]O[18O] 3.138e-19 3.143e-19 -18.503 -18.503 0.001 (0) [14C]O3-2 2.153e-19 1.509e-19 -18.667 -18.821 -0.155 (0) CaH[14C]O2[18O]+ 1.528e-20 1.401e-20 -19.816 -19.853 -0.037 (0) - CaH[14C][18O]O2+ 1.528e-20 1.401e-20 -19.816 -19.853 -0.037 (0) CaH[14C]O[18O]O+ 1.528e-20 1.401e-20 -19.816 -19.853 -0.037 (0) + CaH[14C][18O]O2+ 1.528e-20 1.401e-20 -19.816 -19.853 -0.037 (0) Ca[14C]O2[18O] 2.513e-21 2.517e-21 -20.600 -20.599 0.001 (0) + H[14C]O[18O]2- 1.443e-21 1.321e-21 -20.841 -20.879 -0.039 (0) H[14C][18O]2O- 1.443e-21 1.321e-21 -20.841 -20.879 -0.039 (0) H[14C][18O]O[18O]- 1.443e-21 1.321e-21 -20.841 -20.879 -0.039 (0) - H[14C]O[18O]2- 1.443e-21 1.321e-21 -20.841 -20.879 -0.039 (0) [14C]O2[18O]-2 1.289e-21 9.029e-22 -20.890 -21.044 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.538e-15 - O[18O] 1.535e-15 1.537e-15 -14.814 -14.813 0.001 (0) - [18O]2 1.531e-18 1.534e-18 -17.815 -17.814 0.001 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.209e-16 + O[18O] 2.205e-16 2.208e-16 -15.657 -15.656 0.001 (0) + [18O]2 2.199e-19 2.203e-19 -18.658 -18.657 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.04 -127.90 -2.86 [13C]H4 + [13C]H4(g) -123.35 -126.21 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.02 -21.52 -1.50 [14C][18O]2 - [14C]H4(g) -136.20 -139.06 -2.86 [14C]H4 + [14C]H4(g) -134.52 -137.38 -2.86 [14C]H4 [14C]O2(g) -14.65 -16.12 -1.47 [14C]O2 [14C]O[18O](g) -17.03 -18.82 -1.79 [14C]O[18O] - [18O]2(g) -15.52 -17.81 -2.29 [18O]2 + [18O]2(g) -16.37 -18.66 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -53700,14 +53661,14 @@ O(0) 7.723e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.08 -125.94 -2.86 CH4 + CH4(g) -121.40 -124.26 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.83 -39.98 -3.15 H2 + H2(g) -36.41 -39.56 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.52 -12.41 -2.89 O2 - O[18O](g) -12.22 -15.11 -2.89 O[18O] + O2(g) -10.36 -13.26 -2.89 O2 + O[18O](g) -13.06 -15.96 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -53797,12 +53758,12 @@ Calcite 4.76e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2845e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2703e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 +Alpha 18O HCO3-/H2O(l) 1 4.4409e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5639e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6696e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -53822,14 +53783,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.434 Adjusted to redox equilibrium + pe = 11.264 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.530e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.821e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -53838,20 +53799,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.983 -125.983 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.621 -124.620 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -53859,9 +53820,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -53869,81 +53830,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.099e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.027e-40 - H2 1.014e-40 1.015e-40 -39.994 -39.993 0.001 (0) -O(0) 8.074e-13 - O2 4.021e-13 4.027e-13 -12.396 -12.395 0.001 (0) - O[18O] 1.604e-15 1.607e-15 -14.795 -14.794 0.001 (0) +H(0) 4.442e-40 + H2 2.221e-40 2.225e-40 -39.653 -39.653 0.001 (0) +O(0) 1.682e-13 + O2 8.375e-14 8.388e-14 -13.077 -13.076 0.001 (0) + O[18O] 3.342e-16 3.347e-16 -15.476 -15.475 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.939 -127.939 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.577 -126.576 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.252e-05 4.805e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.587e-08 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-07 9.587e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.587e-08 -6.980 -7.018 -0.039 (0) + H[13C][18O]O2- 1.048e-07 9.587e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.099e-08 -7.215 -7.215 0.001 (0) [13C]O[18O] 4.584e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) + CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.108 -139.107 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.745 -137.745 0.001 (0) [14C](4) 4.447e-16 H[14C]O3- 3.592e-16 3.286e-16 -15.445 -15.483 -0.039 (0) [14C]O2 7.475e-17 7.487e-17 -16.126 -16.126 0.001 (0) CaH[14C]O3+ 7.585e-18 6.958e-18 -17.120 -17.157 -0.037 (0) - H[14C][18O]O2- 7.167e-19 6.557e-19 -18.145 -18.183 -0.039 (0) - H[14C]O[18O]O- 7.167e-19 6.557e-19 -18.145 -18.183 -0.039 (0) H[14C]O2[18O]- 7.167e-19 6.557e-19 -18.145 -18.183 -0.039 (0) + H[14C]O[18O]O- 7.167e-19 6.557e-19 -18.145 -18.183 -0.039 (0) + H[14C][18O]O2- 7.167e-19 6.557e-19 -18.145 -18.183 -0.039 (0) Ca[14C]O3 4.158e-19 4.165e-19 -18.381 -18.380 0.001 (0) [14C]O[18O] 3.108e-19 3.113e-19 -18.507 -18.507 0.001 (0) [14C]O3-2 2.133e-19 1.494e-19 -18.671 -18.826 -0.155 (0) CaH[14C]O2[18O]+ 1.513e-20 1.388e-20 -19.820 -19.858 -0.037 (0) - CaH[14C][18O]O2+ 1.513e-20 1.388e-20 -19.820 -19.858 -0.037 (0) CaH[14C]O[18O]O+ 1.513e-20 1.388e-20 -19.820 -19.858 -0.037 (0) + CaH[14C][18O]O2+ 1.513e-20 1.388e-20 -19.820 -19.858 -0.037 (0) Ca[14C]O2[18O] 2.489e-21 2.493e-21 -20.604 -20.603 0.001 (0) - H[14C][18O]O[18O]- 1.430e-21 1.308e-21 -20.845 -20.883 -0.039 (0) H[14C]O[18O]2- 1.430e-21 1.308e-21 -20.845 -20.883 -0.039 (0) H[14C][18O]2O- 1.430e-21 1.308e-21 -20.845 -20.883 -0.039 (0) + H[14C][18O]O[18O]- 1.430e-21 1.308e-21 -20.845 -20.883 -0.039 (0) [14C]O2[18O]-2 1.277e-21 8.945e-22 -20.894 -21.048 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.608e-15 - O[18O] 1.604e-15 1.607e-15 -14.795 -14.794 0.001 (0) - [18O]2 1.601e-18 1.603e-18 -17.796 -17.795 0.001 (0) +[18O](0) 3.348e-16 + O[18O] 3.342e-16 3.347e-16 -15.476 -15.475 0.001 (0) + [18O]2 3.334e-19 3.339e-19 -18.477 -18.476 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.08 -127.94 -2.86 [13C]H4 + [13C]H4(g) -123.72 -126.58 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.02 -21.53 -1.50 [14C][18O]2 - [14C]H4(g) -136.25 -139.11 -2.86 [14C]H4 + [14C]H4(g) -134.88 -137.74 -2.86 [14C]H4 [14C]O2(g) -14.66 -16.13 -1.47 [14C]O2 [14C]O[18O](g) -17.04 -18.83 -1.79 [14C]O[18O] - [18O]2(g) -15.50 -17.80 -2.29 [18O]2 + [18O]2(g) -16.19 -18.48 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -53957,14 +53918,14 @@ O(0) 8.074e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.12 -125.98 -2.86 CH4 + CH4(g) -121.76 -124.62 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.84 -39.99 -3.15 H2 + H2(g) -36.50 -39.65 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.50 -12.39 -2.89 O2 - O[18O](g) -12.20 -15.09 -2.89 O[18O] + O2(g) -10.18 -13.08 -2.89 O2 + O[18O](g) -12.88 -15.78 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -53977,7 +53938,3 @@ End of simulation. Reading input data for simulation 114. -------------------------------------- -------------------------------- -End of Run after 0.967 Seconds. -------------------------------- - diff --git a/ex21.out b/ex21.out index 3fe21e11..b97d6ce4 100644 --- a/ex21.out +++ b/ex21.out @@ -107,15 +107,16 @@ Initial solution 0. column with only cell 1, two boundary solutions 0 and 2. pH = 7.000 pe = 4.000 - Specific Conductance (S/cm, 25C) = 123 - Density (g/cm) = 0.99708 + Specific Conductance (µS/cm, 25°C) = 123 + Density (g/cm³) = 0.99708 Volume (L) = 1.00298 + Viscosity (mPa s) = 0.89026 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.000e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 1.451e-09 - Temperature (C) = 25.00 - Electrical balance (eq) = -1.451e-09 + Total alkalinity (eq/kg) = 1.417e-09 + Temperature (°C) = 25.00 + Electrical balance (eq) = -1.417e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 3 Total H = 1.110124e+02 @@ -124,13 +125,14 @@ Initial solution 0. column with only cell 1, two boundary solutions 0 and 2. ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.049e-07 1.012e-07 -6.979 -6.995 -0.016 -4.11 H+ 1.035e-07 1.000e-07 -6.985 -7.000 -0.015 0.00 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 Cl 1.000e-03 Cl- 1.000e-03 9.649e-04 -3.000 -3.016 -0.016 18.07 + HCl 3.321e-11 3.324e-11 -10.479 -10.478 0.000 (0) H(0) 1.416e-25 H2 7.078e-26 7.079e-26 -25.150 -25.150 0.000 28.61 Na 1.000e-03 @@ -196,7 +198,7 @@ Reading input data for simulation 2. 120 por_clay = 0.159 130 rho_b_eps = 2.7 * (1 - por_clay) / por_clay # clay bulk density / porosity / (kg/L) 140 CEC = 0.09 * rho_b_eps # CEC / (eq/L porewater) - 150 A_por = 37e3 * rho_b_eps # pore surface area / (m/L porewater) + 150 A_por = 37e3 * rho_b_eps # pore surface area / (m²/L porewater) 160 DIM tracer$(4), exp_time(4), scale_y1$(4), scale_y2$(4), profile_y1$(4), profile_y2$(4) 170 DATA 'Hto', 'Cl_tr', 'Na_tr', 'Cs' 180 READ tracer$(1), tracer$(2), tracer$(3), tracer$(4) @@ -210,7 +212,7 @@ Reading input data for simulation 2. 290 READ profile_y1$(1), profile_y1$(2), profile_y1$(3), profile_y1$(4) 300 DATA '0 1.2e-9', '0 2.5e-5', '0 6e-10', '0 auto' 310 READ profile_y2$(1), profile_y2$(2), profile_y2$(3), profile_y2$(4) - 350 Dw = 2.5e-9 # default tracer diffusion coefficient / (m/s) + 350 Dw = 2.5e-9 # default tracer diffusion coefficient / (m²/s) 360 nfilt1 = 1 # number of cells in filter 1 370 nfilt2 = 1 # number of cells in filter 2 380 nclay = 11 # number of clay cells @@ -431,15 +433,16 @@ WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. pH = 7.600 pe = 13.120 Equilibrium with O2(g) - Specific Conductance (S/cm, 23C) = 28919 - Density (g/cm) = 1.01167 - Volume (L) = 0.20147 + Specific Conductance (µS/cm, 23°C) = 28957 + Density (g/cm³) = 1.01168 + Volume (L) = 0.20146 + Viscosity (mPa s) = 0.96825 Activity of water = 0.990 - Ionic strength (mol/kgw) = 3.658e-01 + Ionic strength (mol/kgw) = 3.653e-01 Mass of water (kg) = 2.000e-01 - Total carbon (mol/kg) = 4.787e-04 - Total CO2 (mol/kg) = 4.787e-04 - Temperature (C) = 23.00 + Total carbon (mol/kg) = 4.811e-04 + Total CO2 (mol/kg) = 4.811e-04 + Temperature (°C) = 23.00 Electrical balance (eq) = -1.312e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.10 Iterations = 6 @@ -449,87 +452,94 @@ WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 5.192e-07 3.419e-07 -6.285 -6.466 -0.181 -3.26 + OH- 5.191e-07 3.419e-07 -6.285 -6.466 -0.181 -3.26 H+ 3.238e-08 2.512e-08 -7.490 -7.600 -0.110 0.00 H2O 5.551e+01 9.899e-01 1.744 -0.004 0.000 18.06 -C(4) 4.787e-04 - HCO3- 3.775e-04 2.682e-04 -3.423 -3.571 -0.148 25.92 - CaHCO3+ 3.021e-05 2.187e-05 -4.520 -4.660 -0.140 9.84 - NaHCO3 2.416e-05 2.628e-05 -4.617 -4.580 0.037 1.80 - MgHCO3+ 2.132e-05 1.437e-05 -4.671 -4.843 -0.171 5.70 - CO2 1.444e-05 1.570e-05 -4.841 -4.804 0.037 34.33 - CaCO3 4.709e-06 5.122e-06 -5.327 -5.291 0.037 -14.61 - NaCO3- 1.904e-06 1.393e-06 -5.720 -5.856 -0.136 1.01 - MgCO3 1.887e-06 2.053e-06 -5.724 -5.688 0.037 -17.09 - CO3-2 1.885e-06 4.805e-07 -5.725 -6.318 -0.594 -3.10 - SrHCO3+ 6.907e-07 4.908e-07 -6.161 -6.309 -0.148 (0) - SrCO3 3.405e-08 3.704e-08 -7.468 -7.431 0.037 -14.14 - (CO2)2 3.892e-12 4.234e-12 -11.410 -11.373 0.037 68.67 +C(4) 4.811e-04 + HCO3- 3.809e-04 2.707e-04 -3.419 -3.568 -0.148 25.73 + CaHCO3+ 3.057e-05 2.214e-05 -4.515 -4.655 -0.140 9.84 + NaHCO3 2.383e-05 2.891e-05 -4.623 -4.539 0.084 28.00 + MgHCO3+ 2.149e-05 1.449e-05 -4.668 -4.839 -0.171 5.70 + CO2 1.499e-05 1.585e-05 -4.824 -4.800 0.024 34.33 + CaCO3 4.767e-06 5.185e-06 -5.322 -5.285 0.037 -14.61 + MgCO3 1.903e-06 2.070e-06 -5.721 -5.684 0.037 -17.09 + CO3-2 1.901e-06 4.849e-07 -5.721 -6.314 -0.593 -1.67 + SrHCO3+ 6.993e-07 4.970e-07 -6.155 -6.304 -0.148 (0) + SrCO3 3.448e-08 3.750e-08 -7.462 -7.426 0.037 -14.14 + (CO2)2 3.964e-12 4.312e-12 -11.402 -11.365 0.037 68.67 Ca 2.580e-02 - Ca+2 2.377e-02 6.596e-03 -1.624 -2.181 -0.557 -17.02 - CaSO4 1.991e-03 2.166e-03 -2.701 -2.664 0.037 7.42 - CaHCO3+ 3.021e-05 2.187e-05 -4.520 -4.660 -0.140 9.84 - CaCO3 4.709e-06 5.122e-06 -5.327 -5.291 0.037 -14.61 - CaOH+ 5.898e-08 4.314e-08 -7.229 -7.365 -0.136 (0) - CaHSO4+ 4.752e-10 3.476e-10 -9.323 -9.459 -0.136 (0) + Ca+2 2.384e-02 6.616e-03 -1.623 -2.179 -0.557 -17.02 + CaSO4 1.923e-03 2.092e-03 -2.716 -2.679 0.037 7.42 + CaHCO3+ 3.057e-05 2.214e-05 -4.515 -4.655 -0.140 9.84 + CaCO3 4.767e-06 5.185e-06 -5.322 -5.285 0.037 -14.61 + CaOH+ 5.916e-08 4.327e-08 -7.228 -7.364 -0.136 (0) + CaHSO4+ 4.591e-10 3.358e-10 -9.338 -9.474 -0.136 (0) Cl 3.000e-01 Cl- 3.000e-01 2.017e-01 -0.523 -0.695 -0.172 18.53 + HCl 1.235e-09 1.767e-09 -8.908 -8.753 0.155 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.617 -44.580 0.037 28.61 Hto 1.140e-09 Hto 1.140e-09 1.140e-09 -8.943 -8.943 0.000 (0) K 1.610e-03 - K+ 1.591e-03 1.061e-03 -2.798 -2.974 -0.176 9.40 - KSO4- 1.899e-05 1.349e-05 -4.722 -4.870 -0.148 34.58 + K+ 1.595e-03 1.064e-03 -2.797 -2.973 -0.176 9.40 + KSO4- 1.464e-05 7.267e-06 -4.834 -5.139 -0.304 29.98 Mg 1.690e-02 - Mg+2 1.511e-02 4.617e-03 -1.821 -2.336 -0.515 -20.64 - MgSO4 1.771e-03 1.926e-03 -2.752 -2.715 0.037 5.76 - MgHCO3+ 2.132e-05 1.437e-05 -4.671 -4.843 -0.171 5.70 - MgCO3 1.887e-06 2.053e-06 -5.724 -5.688 0.037 -17.09 - MgOH+ 7.503e-07 5.508e-07 -6.125 -6.259 -0.134 (0) + Mg+2 1.509e-02 4.612e-03 -1.821 -2.336 -0.515 -20.64 + MgSO4 1.750e-03 2.071e-03 -2.757 -2.684 0.073 -1.17 + Mg(SO4)2-2 4.016e-05 1.278e-05 -4.396 -4.894 -0.497 46.11 + MgHCO3+ 2.149e-05 1.449e-05 -4.668 -4.839 -0.171 5.70 + MgCO3 1.903e-06 2.070e-06 -5.721 -5.684 0.037 -17.09 + MgOH+ 7.495e-07 5.502e-07 -6.125 -6.259 -0.134 (0) Na 2.400e-01 - Na+ 2.377e-01 1.723e-01 -0.624 -0.764 -0.140 -0.85 - NaSO4- 2.249e-03 1.598e-03 -2.648 -2.796 -0.148 19.10 - NaHCO3 2.416e-05 2.628e-05 -4.617 -4.580 0.037 1.80 - NaCO3- 1.904e-06 1.393e-06 -5.720 -5.856 -0.136 1.01 - NaOH 5.415e-18 5.890e-18 -17.266 -17.230 0.037 (0) + Na+ 2.374e-01 1.721e-01 -0.624 -0.764 -0.140 -0.85 + NaSO4- 2.562e-03 1.263e-03 -2.591 -2.899 -0.307 18.52 + NaHCO3 2.383e-05 2.891e-05 -4.623 -4.539 0.084 28.00 + NaOH 5.408e-18 5.883e-18 -17.267 -17.230 0.037 (0) O(0) 2.437e-04 O2 1.218e-04 1.325e-04 -3.914 -3.878 0.037 30.24 S(6) 1.410e-02 - SO4-2 8.029e-03 1.874e-03 -2.095 -2.727 -0.632 16.37 - NaSO4- 2.249e-03 1.598e-03 -2.648 -2.796 -0.148 19.10 - CaSO4 1.991e-03 2.166e-03 -2.701 -2.664 0.037 7.42 - MgSO4 1.771e-03 1.926e-03 -2.752 -2.715 0.037 5.76 - SrSO4 4.203e-05 4.572e-05 -4.376 -4.340 0.037 24.16 - KSO4- 1.899e-05 1.349e-05 -4.722 -4.870 -0.148 34.58 - HSO4- 5.993e-09 4.384e-09 -8.222 -8.358 -0.136 40.64 - CaHSO4+ 4.752e-10 3.476e-10 -9.323 -9.459 -0.136 (0) + SO4-2 7.729e-03 1.805e-03 -2.112 -2.743 -0.632 16.64 + NaSO4- 2.562e-03 1.263e-03 -2.591 -2.899 -0.307 18.52 + CaSO4 1.923e-03 2.092e-03 -2.716 -2.679 0.037 7.42 + MgSO4 1.750e-03 2.071e-03 -2.757 -2.684 0.073 -1.17 + SrSO4 4.061e-05 4.418e-05 -4.391 -4.355 0.037 24.16 + Mg(SO4)2-2 4.016e-05 1.278e-05 -4.396 -4.894 -0.497 46.11 + KSO4- 1.464e-05 7.267e-06 -4.834 -5.139 -0.304 29.98 + HSO4- 5.771e-09 4.222e-09 -8.239 -8.374 -0.136 40.64 + CaHSO4+ 4.591e-10 3.358e-10 -9.338 -9.474 -0.136 (0) Sr 5.050e-04 - Sr+2 4.622e-04 1.281e-04 -3.335 -3.892 -0.557 -16.73 - SrSO4 4.203e-05 4.572e-05 -4.376 -4.340 0.037 24.16 - SrHCO3+ 6.907e-07 4.908e-07 -6.161 -6.309 -0.148 (0) - SrCO3 3.405e-08 3.704e-08 -7.468 -7.431 0.037 -14.14 - SrOH+ 3.693e-10 2.589e-10 -9.433 -9.587 -0.154 (0) + Sr+2 4.637e-04 1.285e-04 -3.334 -3.891 -0.557 -16.73 + SrSO4 4.061e-05 4.418e-05 -4.391 -4.355 0.037 24.16 + SrHCO3+ 6.993e-07 4.970e-07 -6.155 -6.304 -0.148 (0) + SrCO3 3.448e-08 3.750e-08 -7.462 -7.426 0.037 -14.14 + SrOH+ 3.705e-10 2.598e-10 -9.431 -9.585 -0.154 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(296 K, 1 atm) - Anhydrite -0.65 -4.91 -4.26 CaSO4 - Aragonite -0.18 -8.50 -8.32 CaCO3 - Calcite -0.03 -8.50 -8.47 CaCO3 - Celestite 0.03 -6.62 -6.65 SrSO4 + Anhydrite -0.67 -4.92 -4.26 CaSO4 + Aragonite -0.17 -8.49 -8.32 CaCO3 + Arcanite -6.78 -8.69 -1.91 K2SO4 + Calcite -0.03 -8.49 -8.47 CaCO3 + Celestite 0.01 -6.63 -6.65 SrSO4 CO2(g) -3.36 -4.80 -1.44 CO2 - Dolomite -0.11 -17.15 -17.04 CaMg(CO3)2 - Gypsum -0.33 -4.92 -4.58 CaSO4:2H2O + Dolomite -0.09 -17.14 -17.05 CaMg(CO3)2 + Epsomite -3.36 -5.11 -1.75 MgSO4:7H2O + Gypsum -0.35 -4.93 -4.58 CaSO4:2H2O H2(g) -41.48 -44.58 -3.10 H2 H2O(g) -1.56 -0.00 1.55 H2O Halite -3.03 -1.46 1.57 NaCl + Hexahydrite -3.54 -5.11 -1.57 MgSO4:6H2O + Kieserite -3.91 -5.08 -1.17 MgSO4:H2O + Mirabilite -2.99 -4.32 -1.33 Na2SO4:10H2O O2(g) -1.00 -3.88 -2.88 O2 Pressure 0.1 atm, phi 1.000 Strontianite -0.94 -10.21 -9.27 SrCO3 Sylvite -4.56 -3.67 0.89 KCl + Thenardite -3.98 -4.27 -0.29 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -919,6 +929,10 @@ WARNING: No porosities were read; used the value 1.59e-01 from -multi_D. 60 put(a, 2) 70 plot_xy days, equi("A_Hto"), y_axis = 2, color = Red, symbol = None END +WARNING: +Calculating transport: 1 (mobile) cells, 1120 shifts, 1 mixruns... + + WARNING: Maximum iterations exceeded, 100 WARNING: Numerical method failed with this set of convergence parameters. @@ -1111,13 +1125,12 @@ WARNING: Numerical method failed with this set of convergence parameters. WARNING: Trying diagonal scaling ... -WARNING: Maximum iterations exceeded, 100 - TRANSPORT shifts 0 punch_frequency 2 punch_cells 3-17 USER_GRAPH 1 +WARNING: No porosities were read; used the value 1.59e-01 from -multi_D. -detach USER_GRAPH 5 Example 21 -chart_title "Hto Concentration Profile: Filter1 | Clay | Filter2" @@ -1144,7 +1157,7 @@ WARNING: Maximum iterations exceeded, 100 220 IF cell_no = 3 THEN put(y1, 15) 230 IF (cell_no < 5 OR cell_no > 15) THEN GOTO 400 240 y2 = SYS("Hto") / (tot("water") + edl("water")) - 250 REM y2 = y2 / 1.4281e+01 + 250 REM y2 = y2 / 1.4281e+01# conc / kg solid 260 plot_xy xval * 1e3, y2, symbol = Circle, y_axis = 2 270 IF (cell_no > 6) THEN GOTO 400 280 IF 1 THEN plot_xy 1.8000e+00, get(15), color = Black, symbol = None @@ -1152,8 +1165,8 @@ WARNING: Maximum iterations exceeded, 100 300 put(0, 15) 400 put(xval, 14) END - END --------------------------------- -End of Run after 18.281 Seconds. --------------------------------- +WARNING: +Calculating transport: 1 (mobile) cells, 0 shifts, 1 mixruns... + + END diff --git a/ex21_Cs_rad.tsv b/ex21_Cs_rad.tsv index b32f4105..2c28df42 100644 --- a/ex21_Cs_rad.tsv +++ b/ex21_Cs_rad.tsv @@ -1,804 +1,804 @@ -Days A_Cs Flux -symbol_size 2 -y_axis 2 1 - 2.000e+00 0.000e+00 - 3.000e+00 0.000e+00 - 4.000e+00 0.000e+00 - 5.000e+00 0.000e+00 - 7.000e+00 0.000e+00 - 8.000e+00 0.000e+00 - 9.000e+00 0.000e+00 - 1.000e+01 0.000e+00 - 1.100e+01 0.000e+00 - 1.250e+01 0.000e+00 - 1.399e+01 0.000e+00 - 1.500e+01 0.000e+00 - 1.600e+01 0.000e+00 - 1.700e+01 0.000e+00 - 1.800e+01 0.000e+00 - 1.949e+01 0.000e+00 - 2.099e+01 0.000e+00 - 2.199e+01 0.000e+00 - 2.299e+01 0.000e+00 - 2.399e+01 0.000e+00 - 2.500e+01 0.000e+00 - 2.649e+01 0.000e+00 - 2.799e+01 0.000e+00 - 2.899e+01 0.000e+00 - 3.000e+01 0.000e+00 - 3.100e+01 0.000e+00 - 3.200e+01 0.000e+00 - 3.300e+01 0.000e+00 - 3.500e+01 0.000e+00 - 3.600e+01 0.000e+00 - 3.700e+01 0.000e+00 - 3.800e+01 0.000e+00 - 3.900e+01 0.000e+00 - 4.000e+01 0.000e+00 - 4.200e+01 0.000e+00 - 4.300e+01 0.000e+00 - 4.400e+01 0.000e+00 - 4.500e+01 0.000e+00 - 4.600e+01 0.000e+00 - 4.700e+01 0.000e+00 - 4.900e+01 0.000e+00 - 5.000e+01 0.000e+00 - 5.100e+01 0.000e+00 - 5.200e+01 0.000e+00 - 5.300e+01 0.000e+00 - 5.449e+01 0.000e+00 - 5.599e+01 0.000e+00 - 5.699e+01 4.178e-13 - 5.799e+01 6.002e-10 - 5.899e+01 1.257e-12 - 5.999e+01 2.403e-09 - 6.150e+01 7.776e-12 - 6.300e+01 1.917e-08 - 6.400e+01 1.823e-11 - 6.500e+01 4.531e-08 - 6.600e+01 3.015e-11 - 6.700e+01 8.856e-08 - 6.850e+01 4.542e-11 - 7.000e+01 1.863e-07 - 7.100e+01 6.332e-11 - 7.200e+01 2.771e-07 - 7.300e+01 7.770e-11 - 7.400e+01 3.885e-07 - 7.500e+01 8.712e-11 - 7.700e+01 5.759e-07 - 7.800e+01 1.173e-10 - 7.900e+01 7.438e-07 - 8.000e+01 1.484e-10 - 8.100e+01 9.569e-07 - 8.200e+01 1.399e-10 - 8.400e+01 1.258e-06 - 8.500e+01 1.893e-10 - 8.600e+01 1.529e-06 - 8.700e+01 1.928e-10 - 8.800e+01 1.806e-06 - 8.950e+01 1.838e-10 - 9.100e+01 2.201e-06 - 9.200e+01 2.335e-10 - 9.300e+01 2.536e-06 - 9.400e+01 2.716e-10 - 9.500e+01 2.925e-06 - 9.650e+01 2.367e-10 - 9.800e+01 3.435e-06 - 9.900e+01 2.993e-10 - 1.000e+02 3.864e-06 - 1.010e+02 3.404e-10 - 1.020e+02 4.352e-06 - 1.035e+02 9.918e-10 - 1.050e+02 6.485e-06 - 1.060e+02 9.313e-10 - 1.070e+02 7.821e-06 - 1.080e+02 9.768e-10 - 1.090e+02 9.222e-06 - 1.100e+02 8.721e-10 - 1.120e+02 1.110e-05 - 1.130e+02 1.065e-09 - 1.140e+02 1.262e-05 - 1.150e+02 1.127e-09 - 1.160e+02 1.424e-05 - 1.170e+02 1.297e-09 - 1.190e+02 1.703e-05 - 1.200e+02 1.211e-09 - 1.210e+02 1.877e-05 - 1.220e+02 1.222e-09 - 1.230e+02 2.052e-05 - 1.240e+02 1.360e-09 - 1.260e+02 2.345e-05 - 1.270e+02 1.286e-09 - 1.280e+02 2.529e-05 - 1.290e+02 1.275e-09 - 1.300e+02 2.712e-05 - 1.310e+02 1.295e-09 - 1.330e+02 2.990e-05 - 1.340e+02 1.378e-09 - 1.350e+02 3.188e-05 - 1.360e+02 1.293e-09 - 1.370e+02 3.373e-05 - 1.380e+02 1.494e-09 - 1.400e+02 3.695e-05 - 1.410e+02 1.388e-09 - 1.420e+02 3.894e-05 - 1.430e+02 1.393e-09 - 1.440e+02 4.094e-05 - 1.450e+02 1.531e-09 - 1.470e+02 4.423e-05 - 1.480e+02 1.412e-09 - 1.490e+02 4.626e-05 - 1.500e+02 1.420e-09 - 1.510e+02 4.829e-05 - 1.520e+02 1.610e-09 - 1.540e+02 5.176e-05 - 1.550e+02 1.468e-09 - 1.560e+02 5.386e-05 - 1.570e+02 1.504e-09 - 1.580e+02 5.602e-05 - 1.595e+02 1.641e-09 - 1.610e+02 5.955e-05 - 1.620e+02 1.493e-09 - 1.630e+02 6.169e-05 - 1.640e+02 1.551e-09 - 1.650e+02 6.391e-05 - 1.660e+02 1.693e-09 - 1.680e+02 6.755e-05 - 1.690e+02 1.600e-09 - 1.700e+02 6.985e-05 - 1.710e+02 1.587e-09 - 1.720e+02 7.212e-05 - 1.735e+02 1.735e-09 - 1.750e+02 7.591e-05 - 1.760e+02 1.784e-09 - 1.770e+02 7.847e-05 - 1.780e+02 1.648e-09 - 1.790e+02 8.083e-05 - 1.805e+02 1.785e-09 - 1.820e+02 8.467e-05 - 1.830e+02 1.657e-09 - 1.840e+02 8.704e-05 - 1.850e+02 1.688e-09 - 1.860e+02 8.947e-05 - 1.875e+02 1.813e-09 - 1.890e+02 9.337e-05 - 1.900e+02 1.723e-09 - 1.910e+02 9.584e-05 - 1.920e+02 1.689e-09 - 1.930e+02 9.826e-05 - 1.945e+02 1.794e-09 - 1.960e+02 1.021e-04 - 1.970e+02 1.589e-09 - 1.980e+02 1.044e-04 - 1.990e+02 1.637e-09 - 2.000e+02 1.067e-04 - 2.015e+02 1.743e-09 - 2.030e+02 1.105e-04 - 2.040e+02 1.658e-09 - 2.050e+02 1.129e-04 - 2.060e+02 1.630e-09 - 2.070e+02 1.152e-04 - 2.085e+02 1.760e-09 - 2.100e+02 1.190e-04 - 2.110e+02 1.646e-09 - 2.120e+02 1.214e-04 - 2.130e+02 1.664e-09 - 2.140e+02 1.237e-04 - 2.155e+02 1.807e-09 - 2.170e+02 1.276e-04 - 2.180e+02 1.663e-09 - 2.190e+02 1.300e-04 - 2.200e+02 1.704e-09 - 2.210e+02 1.325e-04 - 2.225e+02 1.812e-09 - 2.240e+02 1.364e-04 - 2.250e+02 1.684e-09 - 2.260e+02 1.388e-04 - 2.270e+02 1.665e-09 - 2.280e+02 1.412e-04 - 2.295e+02 1.799e-09 - 2.310e+02 1.450e-04 - 2.320e+02 1.855e-09 - 2.330e+02 1.477e-04 - 2.360e+02 1.180e-09 - 2.390e+02 1.528e-04 - 2.405e+02 1.816e-09 - 2.420e+02 1.567e-04 - 2.435e+02 1.905e-09 - 2.450e+02 1.608e-04 - 2.460e+02 2.171e-09 - 2.470e+02 1.639e-04 - 2.480e+02 1.713e-09 - 2.490e+02 1.663e-04 - 2.505e+02 1.429e-09 - 2.520e+02 1.694e-04 - 2.525e+02 1.177e-09 - 2.530e+02 1.703e-04 - 2.535e+02 1.942e-09 - 2.540e+02 1.716e-04 - 2.550e+02 1.746e-09 - 2.560e+02 1.741e-04 - 2.575e+02 1.849e-09 - 2.590e+02 1.781e-04 - 2.600e+02 1.716e-09 - 2.610e+02 1.806e-04 - 2.620e+02 1.669e-09 - 2.630e+02 1.830e-04 - 2.645e+02 1.796e-09 - 2.660e+02 1.868e-04 - 2.670e+02 1.688e-09 - 2.680e+02 1.893e-04 - 2.690e+02 1.691e-09 - 2.700e+02 1.917e-04 - 2.715e+02 1.815e-09 - 2.730e+02 1.956e-04 - 2.740e+02 1.819e-09 - 2.750e+02 1.982e-04 - 2.760e+02 1.735e-09 - 2.770e+02 2.007e-04 - 2.785e+02 1.745e-09 - 2.800e+02 2.044e-04 - 2.810e+02 1.734e-09 - 2.820e+02 2.069e-04 - 2.830e+02 1.714e-09 - 2.840e+02 2.094e-04 - 2.855e+02 1.816e-09 - 2.870e+02 2.133e-04 - 2.880e+02 1.756e-09 - 2.890e+02 2.158e-04 - 2.900e+02 1.788e-09 - 2.910e+02 2.184e-04 - 2.925e+02 1.787e-09 - 2.940e+02 2.222e-04 - 2.950e+02 1.721e-09 - 2.960e+02 2.247e-04 - 2.970e+02 1.704e-09 - 2.980e+02 2.271e-04 - 2.995e+02 1.832e-09 - 3.010e+02 2.311e-04 - 3.020e+02 1.722e-09 - 3.030e+02 2.335e-04 - 3.040e+02 1.740e-09 - 3.050e+02 2.360e-04 - 3.065e+02 1.768e-09 - 3.080e+02 2.398e-04 - 3.090e+02 1.734e-09 - 3.100e+02 2.423e-04 - 3.110e+02 1.699e-09 - 3.120e+02 2.448e-04 - 3.135e+02 1.833e-09 - 3.150e+02 2.487e-04 - 3.160e+02 1.741e-09 - 3.170e+02 2.512e-04 - 3.180e+02 1.688e-09 - 3.190e+02 2.536e-04 - 3.205e+02 1.768e-09 - 3.220e+02 2.574e-04 - 3.230e+02 1.724e-09 - 3.240e+02 2.599e-04 - 3.250e+02 1.685e-09 - 3.260e+02 2.623e-04 - 3.275e+02 1.841e-09 - 3.290e+02 2.663e-04 - 3.300e+02 1.637e-09 - 3.310e+02 2.686e-04 - 3.320e+02 1.633e-09 - 3.330e+02 2.710e-04 - 3.345e+02 1.840e-09 - 3.360e+02 2.749e-04 - 3.370e+02 1.632e-09 - 3.380e+02 2.773e-04 - 3.390e+02 1.668e-09 - 3.400e+02 2.797e-04 - 3.415e+02 1.888e-09 - 3.430e+02 2.837e-04 - 3.440e+02 1.762e-09 - 3.450e+02 2.862e-04 - 3.460e+02 1.672e-09 - 3.470e+02 2.886e-04 - 3.485e+02 1.864e-09 - 3.500e+02 2.927e-04 - 3.510e+02 1.699e-09 - 3.520e+02 2.951e-04 - 3.530e+02 1.677e-09 - 3.540e+02 2.975e-04 - 3.555e+02 1.713e-09 - 3.570e+02 3.012e-04 - 3.580e+02 1.656e-09 - 3.590e+02 3.036e-04 - 3.600e+02 1.674e-09 - 3.610e+02 3.060e-04 - 3.625e+02 1.840e-09 - 3.640e+02 3.099e-04 - 3.650e+02 1.646e-09 - 3.660e+02 3.123e-04 - 3.670e+02 1.639e-09 - 3.680e+02 3.146e-04 - 3.695e+02 1.801e-09 - 3.710e+02 3.185e-04 - 3.720e+02 1.588e-09 - 3.730e+02 3.208e-04 - 3.740e+02 1.610e-09 - 3.750e+02 3.231e-04 - 3.765e+02 1.691e-09 - 3.780e+02 3.267e-04 - 3.790e+02 1.549e-09 - 3.800e+02 3.289e-04 - 3.810e+02 1.617e-09 - 3.820e+02 3.313e-04 - 3.835e+02 1.665e-09 - 3.850e+02 3.348e-04 - 3.860e+02 1.480e-09 - 3.870e+02 3.370e-04 - 3.880e+02 1.472e-09 - 3.890e+02 3.391e-04 - 3.905e+02 1.620e-09 - 3.920e+02 3.426e-04 - 3.930e+02 1.591e-09 - 3.940e+02 3.448e-04 - 3.950e+02 1.496e-09 - 3.960e+02 3.470e-04 - 3.975e+02 1.701e-09 - 3.990e+02 3.506e-04 - 4.000e+02 9.268e-10 - 4.010e+02 3.520e-04 - 4.020e+02 1.064e-09 - 4.030e+02 3.535e-04 - 4.045e+02 1.423e-09 - 4.060e+02 3.566e-04 - 4.070e+02 1.580e-09 - 4.080e+02 3.588e-04 - 4.090e+02 1.518e-09 - 4.100e+02 3.610e-04 - 4.115e+02 1.727e-09 - 4.130e+02 3.647e-04 - 4.140e+02 1.572e-09 - 4.150e+02 3.670e-04 - 4.160e+02 1.488e-09 - 4.170e+02 3.691e-04 - 4.185e+02 1.686e-09 - 4.200e+02 3.727e-04 - 4.210e+02 1.577e-09 - 4.220e+02 3.750e-04 - 4.230e+02 1.513e-09 - 4.240e+02 3.772e-04 - 4.255e+02 1.676e-09 - 4.270e+02 3.808e-04 - 4.280e+02 1.639e-09 - 4.290e+02 3.831e-04 - 4.300e+02 1.536e-09 - 4.310e+02 3.853e-04 - 4.325e+02 1.754e-09 - 4.340e+02 3.891e-04 - 4.350e+02 1.552e-09 - 4.360e+02 3.913e-04 - 4.370e+02 1.518e-09 - 4.380e+02 3.935e-04 - 4.395e+02 1.767e-09 - 4.410e+02 3.973e-04 - 4.420e+02 1.602e-09 - 4.430e+02 3.996e-04 - 4.440e+02 1.596e-09 - 4.450e+02 4.019e-04 - 4.465e+02 1.733e-09 - 4.480e+02 4.056e-04 - 4.490e+02 1.639e-09 - 4.500e+02 4.080e-04 - 4.510e+02 1.412e-09 - 4.520e+02 4.100e-04 - 4.535e+02 1.492e-09 - 4.550e+02 4.132e-04 - 4.560e+02 1.353e-09 - 4.570e+02 4.151e-04 - 4.580e+02 1.329e-09 - 4.590e+02 4.170e-04 - 4.605e+02 1.406e-09 - 4.620e+02 4.201e-04 - 4.630e+02 1.280e-09 - 4.640e+02 4.219e-04 - 4.650e+02 1.280e-09 - 4.660e+02 4.237e-04 - 4.675e+02 1.383e-09 - 4.690e+02 4.267e-04 - 4.700e+02 1.284e-09 - 4.710e+02 4.286e-04 - 4.720e+02 1.290e-09 - 4.730e+02 4.304e-04 - 4.745e+02 1.367e-09 - 4.760e+02 4.333e-04 - 4.770e+02 1.236e-09 - 4.780e+02 4.351e-04 - 4.790e+02 1.245e-09 - 4.800e+02 4.369e-04 - 4.815e+02 1.393e-09 - 4.830e+02 4.399e-04 - 4.840e+02 1.293e-09 - 4.850e+02 4.418e-04 - 4.860e+02 1.296e-09 - 4.870e+02 4.436e-04 - 4.885e+02 1.393e-09 - 4.900e+02 4.466e-04 - 4.910e+02 1.236e-09 - 4.920e+02 4.484e-04 - 4.930e+02 9.177e-10 - 4.940e+02 4.497e-04 - 4.955e+02 1.403e-09 - 4.970e+02 4.527e-04 - 4.980e+02 1.211e-09 - 4.990e+02 4.545e-04 - 5.000e+02 1.200e-09 - 5.010e+02 4.562e-04 - 5.026e+02 1.309e-09 - 5.041e+02 4.591e-04 - 5.051e+02 1.184e-09 - 5.061e+02 4.607e-04 - 5.071e+02 1.150e-09 - 5.081e+02 4.624e-04 - 5.097e+02 1.225e-09 - 5.113e+02 4.652e-04 - 5.122e+02 1.232e-09 - 5.131e+02 4.668e-04 - 5.141e+02 1.190e-09 - 5.151e+02 4.685e-04 - 5.166e+02 1.276e-09 - 5.180e+02 4.712e-04 - 5.190e+02 1.121e-09 - 5.201e+02 4.728e-04 - 5.210e+02 1.143e-09 - 5.220e+02 4.744e-04 - 5.235e+02 0.000e+00 - 5.250e+02 4.744e-04 - 5.260e+02 1.331e-09 - 5.270e+02 4.763e-04 - 5.280e+02 1.246e-09 - 5.290e+02 4.781e-04 - 5.305e+02 1.331e-09 - 5.320e+02 4.810e-04 - 5.330e+02 1.169e-09 - 5.340e+02 4.827e-04 - 5.350e+02 1.171e-09 - 5.360e+02 4.843e-04 - 5.375e+02 1.179e-09 - 5.390e+02 4.869e-04 - 5.400e+02 1.167e-09 - 5.410e+02 4.886e-04 - 5.420e+02 1.172e-09 - 5.430e+02 4.902e-04 - 5.445e+02 1.206e-09 - 5.460e+02 4.928e-04 - 5.470e+02 1.091e-09 - 5.480e+02 4.944e-04 - 5.490e+02 1.166e-09 - 5.500e+02 4.961e-04 - 5.515e+02 1.254e-09 - 5.530e+02 4.988e-04 - 5.540e+02 1.050e-09 - 5.550e+02 5.003e-04 - 5.560e+02 1.041e-09 - 5.570e+02 5.018e-04 - 5.585e+02 1.120e-09 - 5.600e+02 5.042e-04 - 5.610e+02 1.005e-09 - 5.620e+02 5.056e-04 - 5.630e+02 1.024e-09 - 5.640e+02 5.071e-04 - 5.655e+02 1.119e-09 - 5.670e+02 5.095e-04 - 5.680e+02 1.079e-09 - 5.690e+02 5.110e-04 - 5.700e+02 1.054e-09 - 5.710e+02 5.125e-04 - 5.725e+02 1.122e-09 - 5.740e+02 5.150e-04 - 5.750e+02 1.084e-09 - 5.760e+02 5.165e-04 - 5.770e+02 1.061e-09 - 5.780e+02 5.180e-04 - 5.795e+02 1.030e-09 - 5.810e+02 5.203e-04 - 5.820e+02 1.070e-09 - 5.830e+02 5.218e-04 - 5.840e+02 1.113e-09 - 5.850e+02 5.234e-04 - 5.865e+02 1.062e-09 - 5.880e+02 5.257e-04 - 5.890e+02 9.930e-10 - 5.900e+02 5.271e-04 - 5.910e+02 1.031e-09 - 5.920e+02 5.286e-04 - 5.935e+02 1.057e-09 - 5.950e+02 5.308e-04 - 5.960e+02 1.051e-09 - 5.970e+02 5.323e-04 - 5.980e+02 1.070e-09 - 5.990e+02 5.339e-04 - 6.005e+02 1.064e-09 - 6.020e+02 5.362e-04 - 6.030e+02 9.560e-10 - 6.040e+02 5.375e-04 - 6.050e+02 9.860e-10 - 6.060e+02 5.390e-04 - 6.075e+02 1.062e-09 - 6.090e+02 5.412e-04 - 6.100e+02 1.000e-09 - 6.110e+02 5.427e-04 - 6.120e+02 1.043e-09 - 6.130e+02 5.442e-04 - 6.145e+02 0.000e+00 - 6.160e+02 5.442e-04 - 6.170e+02 1.055e-09 - 6.180e+02 5.457e-04 - 6.190e+02 9.937e-10 - 6.200e+02 5.471e-04 - 6.215e+02 1.033e-09 - 6.230e+02 5.493e-04 - 6.240e+02 9.149e-10 - 6.250e+02 5.507e-04 - 6.260e+02 8.856e-10 - 6.270e+02 5.519e-04 - 6.285e+02 9.521e-10 - 6.300e+02 5.540e-04 - 6.310e+02 9.365e-10 - 6.320e+02 5.553e-04 - 6.330e+02 9.442e-10 - 6.340e+02 5.567e-04 - 6.355e+02 9.758e-10 - 6.370e+02 5.588e-04 - 6.380e+02 8.835e-10 - 6.390e+02 5.600e-04 - 6.400e+02 9.135e-10 - 6.410e+02 5.613e-04 - 6.425e+02 9.707e-10 - 6.440e+02 5.634e-04 - 6.450e+02 8.445e-10 - 6.460e+02 5.646e-04 - 6.470e+02 9.198e-10 - 6.480e+02 5.660e-04 - 6.495e+02 9.103e-10 - 6.510e+02 5.679e-04 - 6.520e+02 8.444e-10 - 6.530e+02 5.691e-04 - 6.540e+02 8.346e-10 - 6.551e+02 5.703e-04 - 6.565e+02 9.148e-10 - 6.580e+02 5.723e-04 - 6.591e+02 7.726e-10 - 6.602e+02 5.735e-04 - 6.612e+02 8.116e-10 - 6.622e+02 5.747e-04 - 6.636e+02 9.800e-10 - 6.650e+02 5.766e-04 - 6.661e+02 8.068e-10 - 6.671e+02 5.778e-04 - 6.681e+02 8.225e-10 - 6.690e+02 5.790e-04 - 6.705e+02 8.851e-10 - 6.720e+02 5.809e-04 - 6.730e+02 8.040e-10 - 6.740e+02 5.820e-04 - 6.750e+02 8.312e-10 - 6.760e+02 5.832e-04 - 6.775e+02 8.791e-10 - 6.790e+02 5.851e-04 - 6.800e+02 7.942e-10 - 6.810e+02 5.862e-04 - 6.820e+02 7.623e-10 - 6.830e+02 5.873e-04 - 6.845e+02 8.425e-10 - 6.860e+02 5.891e-04 - 6.870e+02 7.929e-10 - 6.880e+02 5.903e-04 - 6.890e+02 0.000e+00 - 6.900e+02 5.903e-04 - 6.915e+02 9.958e-10 - 6.930e+02 5.924e-04 - 6.940e+02 8.249e-10 - 6.950e+02 5.936e-04 - 6.960e+02 7.915e-10 - 6.970e+02 5.947e-04 - 6.985e+02 8.024e-10 - 7.000e+02 5.965e-04 - 7.010e+02 5.139e-10 - 7.020e+02 5.972e-04 - 7.030e+02 7.998e-10 - 7.040e+02 5.983e-04 - 7.055e+02 9.042e-10 - 7.070e+02 6.003e-04 - 7.080e+02 7.971e-10 - 7.090e+02 6.014e-04 - 7.100e+02 7.183e-11 - 7.110e+02 6.015e-04 - 7.125e+02 9.089e-10 - 7.140e+02 6.035e-04 - 7.148e+02 9.950e-10 - 7.157e+02 6.047e-04 - 7.167e+02 8.417e-10 - 7.177e+02 6.059e-04 - 7.192e+02 9.130e-10 - 7.207e+02 6.078e-04 - 7.219e+02 5.306e-11 - 7.231e+02 6.079e-04 - 7.240e+02 9.362e-10 - 7.250e+02 6.092e-04 - 7.265e+02 8.503e-10 - 7.280e+02 6.110e-04 - 7.290e+02 7.859e-10 - 7.300e+02 6.122e-04 - 7.310e+02 7.782e-10 - 7.320e+02 6.133e-04 - 7.335e+02 8.173e-10 - 7.350e+02 6.150e-04 - 7.360e+02 7.887e-10 - 7.370e+02 6.162e-04 - 7.380e+02 6.973e-12 - 7.390e+02 6.162e-04 - 7.405e+02 7.788e-11 - 7.421e+02 6.164e-04 - 7.430e+02 1.005e-09 - 7.440e+02 6.177e-04 - 7.451e+02 7.844e-10 - 7.462e+02 6.190e-04 - 7.481e+02 7.687e-10 - 7.500e+02 6.211e-04 - 7.515e+02 7.647e-10 - 7.530e+02 6.227e-04 - 7.545e+02 7.792e-10 - 7.560e+02 6.244e-04 - 7.570e+02 7.566e-10 - 7.580e+02 6.255e-04 - 7.590e+02 7.818e-10 - 7.600e+02 6.266e-04 - 7.615e+02 7.940e-10 - 7.630e+02 6.283e-04 - 7.640e+02 7.573e-10 - 7.650e+02 6.294e-04 - 7.660e+02 7.782e-10 - 7.670e+02 6.305e-04 - 7.685e+02 7.647e-10 - 7.700e+02 6.321e-04 - 7.710e+02 7.413e-10 - 7.720e+02 6.332e-04 - 7.730e+02 7.231e-10 - 7.740e+02 6.342e-04 - 7.756e+02 7.029e-10 - 7.772e+02 6.359e-04 - 7.781e+02 7.520e-10 - 7.790e+02 6.368e-04 - 7.800e+02 6.869e-10 - 7.810e+02 6.378e-04 - 7.825e+02 7.461e-10 - 7.840e+02 6.394e-04 - 7.850e+02 6.975e-10 - 7.860e+02 6.404e-04 - 7.870e+02 6.722e-10 - 7.880e+02 6.414e-04 - 7.895e+02 7.363e-10 - 7.910e+02 6.430e-04 - 7.920e+02 6.839e-10 - 7.930e+02 6.439e-04 - 7.940e+02 6.736e-10 - 7.950e+02 6.449e-04 - 7.965e+02 7.220e-10 - 7.980e+02 6.465e-04 - 7.990e+02 7.064e-10 - 8.000e+02 6.475e-04 - 8.010e+02 7.008e-10 - 8.020e+02 6.485e-04 - 8.035e+02 7.271e-10 - 8.050e+02 6.500e-04 - 8.060e+02 6.708e-10 - 8.070e+02 6.510e-04 - 8.080e+02 6.771e-10 - 8.090e+02 6.520e-04 - 8.105e+02 7.076e-10 - 8.120e+02 6.535e-04 - 8.135e+02 5.253e-10 - 8.150e+02 6.546e-04 - 8.155e+02 6.667e-10 - 8.160e+02 6.551e-04 - 8.175e+02 6.992e-10 - 8.190e+02 6.566e-04 - 8.200e+02 6.831e-10 - 8.210e+02 6.576e-04 - 8.220e+02 6.753e-10 - 8.230e+02 6.586e-04 - 8.245e+02 6.592e-10 - 8.260e+02 6.600e-04 - 8.280e+02 4.072e-10 - 8.300e+02 6.611e-04 - 8.315e+02 6.773e-10 - 8.330e+02 6.626e-04 - 8.340e+02 6.395e-10 - 8.350e+02 6.635e-04 - 8.360e+02 6.457e-10 - 8.370e+02 6.644e-04 - 8.385e+02 6.736e-10 - 8.400e+02 6.659e-04 - 8.410e+02 6.422e-10 - 8.420e+02 6.668e-04 - 8.430e+02 6.227e-10 - 8.440e+02 6.677e-04 - 8.455e+02 6.350e-10 - 8.470e+02 6.691e-04 - 8.480e+02 6.283e-10 - 8.490e+02 6.700e-04 - 8.500e+02 3.626e-10 - 8.510e+02 6.705e-04 - 8.525e+02 5.025e-10 - 8.540e+02 6.716e-04 - 8.550e+02 5.990e-10 - 8.560e+02 6.724e-04 - 8.570e+02 5.774e-10 - 8.580e+02 6.733e-04 - 8.595e+02 5.927e-10 - 8.610e+02 6.745e-04 - 8.620e+02 5.934e-10 - 8.630e+02 6.754e-04 - 8.640e+02 5.676e-10 - 8.650e+02 6.762e-04 - 8.665e+02 5.997e-10 - 8.680e+02 6.775e-04 - 8.690e+02 5.518e-10 - 8.701e+02 6.783e-04 - 8.710e+02 5.791e-10 - 8.720e+02 6.791e-04 - 8.735e+02 5.713e-10 - 8.750e+02 6.803e-04 - 8.760e+02 6.918e-10 - 8.770e+02 6.813e-04 - 8.780e+02 7.001e-10 - 8.790e+02 6.823e-04 - 8.805e+02 5.806e-10 - 8.820e+02 6.836e-04 - 8.830e+02 5.455e-10 - 8.840e+02 6.844e-04 - 8.850e+02 5.472e-10 - 8.860e+02 6.851e-04 - 8.875e+02 5.444e-10 - 8.890e+02 6.863e-04 - 8.900e+02 5.251e-10 - 8.910e+02 6.871e-04 - 8.920e+02 5.418e-10 - 8.930e+02 6.878e-04 - 8.945e+02 5.286e-10 - 8.960e+02 6.890e-04 - 8.970e+02 5.265e-10 - 8.980e+02 6.897e-04 - 8.990e+02 5.300e-10 - 9.000e+02 6.905e-04 - 9.015e+02 5.255e-10 - 9.030e+02 6.916e-04 - 9.040e+02 5.251e-10 - 9.050e+02 6.924e-04 - 9.060e+02 5.251e-10 - 9.070e+02 6.932e-04 - 9.085e+02 5.402e-10 - 9.100e+02 6.943e-04 - 9.110e+02 5.279e-10 - 9.120e+02 6.951e-04 - 9.130e+02 5.000e-10 - 9.140e+02 6.958e-04 - 9.155e+02 5.272e-10 - 9.170e+02 6.969e-04 - 9.180e+02 5.098e-10 - 9.190e+02 6.977e-04 - 9.200e+02 4.784e-10 - 9.210e+02 6.983e-04 - 9.225e+02 4.932e-10 - 9.240e+02 6.994e-04 - 9.250e+02 4.846e-10 - 9.260e+02 7.001e-04 - 9.270e+02 4.728e-10 - 9.280e+02 7.008e-04 - 9.295e+02 4.993e-10 - 9.310e+02 7.018e-04 - 9.320e+02 4.867e-10 - 9.330e+02 7.025e-04 - 9.340e+02 4.916e-10 - 9.350e+02 7.033e-04 - 9.365e+02 4.960e-10 - 9.380e+02 7.043e-04 - 9.390e+02 4.937e-10 - 9.400e+02 7.050e-04 - 9.410e+02 4.923e-10 - 9.420e+02 7.057e-04 +Days A_Cs Flux +symbol_size 2 +y_axis 2 1 + 2.000e+00 0.000e+00 + 3.000e+00 0.000e+00 + 4.000e+00 0.000e+00 + 5.000e+00 0.000e+00 + 7.000e+00 0.000e+00 + 8.000e+00 0.000e+00 + 9.000e+00 0.000e+00 + 1.000e+01 0.000e+00 + 1.100e+01 0.000e+00 + 1.250e+01 0.000e+00 + 1.399e+01 0.000e+00 + 1.500e+01 0.000e+00 + 1.600e+01 0.000e+00 + 1.700e+01 0.000e+00 + 1.800e+01 0.000e+00 + 1.949e+01 0.000e+00 + 2.099e+01 0.000e+00 + 2.199e+01 0.000e+00 + 2.299e+01 0.000e+00 + 2.399e+01 0.000e+00 + 2.500e+01 0.000e+00 + 2.649e+01 0.000e+00 + 2.799e+01 0.000e+00 + 2.899e+01 0.000e+00 + 3.000e+01 0.000e+00 + 3.100e+01 0.000e+00 + 3.200e+01 0.000e+00 + 3.300e+01 0.000e+00 + 3.500e+01 0.000e+00 + 3.600e+01 0.000e+00 + 3.700e+01 0.000e+00 + 3.800e+01 0.000e+00 + 3.900e+01 0.000e+00 + 4.000e+01 0.000e+00 + 4.200e+01 0.000e+00 + 4.300e+01 0.000e+00 + 4.400e+01 0.000e+00 + 4.500e+01 0.000e+00 + 4.600e+01 0.000e+00 + 4.700e+01 0.000e+00 + 4.900e+01 0.000e+00 + 5.000e+01 0.000e+00 + 5.100e+01 0.000e+00 + 5.200e+01 0.000e+00 + 5.300e+01 0.000e+00 + 5.449e+01 0.000e+00 + 5.599e+01 0.000e+00 + 5.699e+01 4.178e-13 + 5.799e+01 6.002e-10 + 5.899e+01 1.257e-12 + 5.999e+01 2.403e-09 + 6.150e+01 7.776e-12 + 6.300e+01 1.917e-08 + 6.400e+01 1.823e-11 + 6.500e+01 4.531e-08 + 6.600e+01 3.015e-11 + 6.700e+01 8.856e-08 + 6.850e+01 4.542e-11 + 7.000e+01 1.863e-07 + 7.100e+01 6.332e-11 + 7.200e+01 2.771e-07 + 7.300e+01 7.770e-11 + 7.400e+01 3.885e-07 + 7.500e+01 8.712e-11 + 7.700e+01 5.759e-07 + 7.800e+01 1.173e-10 + 7.900e+01 7.438e-07 + 8.000e+01 1.484e-10 + 8.100e+01 9.569e-07 + 8.200e+01 1.399e-10 + 8.400e+01 1.258e-06 + 8.500e+01 1.893e-10 + 8.600e+01 1.529e-06 + 8.700e+01 1.928e-10 + 8.800e+01 1.806e-06 + 8.950e+01 1.838e-10 + 9.100e+01 2.201e-06 + 9.200e+01 2.335e-10 + 9.300e+01 2.536e-06 + 9.400e+01 2.716e-10 + 9.500e+01 2.925e-06 + 9.650e+01 2.367e-10 + 9.800e+01 3.435e-06 + 9.900e+01 2.993e-10 + 1.000e+02 3.864e-06 + 1.010e+02 3.404e-10 + 1.020e+02 4.352e-06 + 1.035e+02 9.918e-10 + 1.050e+02 6.485e-06 + 1.060e+02 9.313e-10 + 1.070e+02 7.821e-06 + 1.080e+02 9.768e-10 + 1.090e+02 9.222e-06 + 1.100e+02 8.721e-10 + 1.120e+02 1.110e-05 + 1.130e+02 1.065e-09 + 1.140e+02 1.262e-05 + 1.150e+02 1.127e-09 + 1.160e+02 1.424e-05 + 1.170e+02 1.297e-09 + 1.190e+02 1.703e-05 + 1.200e+02 1.211e-09 + 1.210e+02 1.877e-05 + 1.220e+02 1.222e-09 + 1.230e+02 2.052e-05 + 1.240e+02 1.360e-09 + 1.260e+02 2.345e-05 + 1.270e+02 1.286e-09 + 1.280e+02 2.529e-05 + 1.290e+02 1.275e-09 + 1.300e+02 2.712e-05 + 1.310e+02 1.295e-09 + 1.330e+02 2.990e-05 + 1.340e+02 1.378e-09 + 1.350e+02 3.188e-05 + 1.360e+02 1.293e-09 + 1.370e+02 3.373e-05 + 1.380e+02 1.494e-09 + 1.400e+02 3.695e-05 + 1.410e+02 1.388e-09 + 1.420e+02 3.894e-05 + 1.430e+02 1.393e-09 + 1.440e+02 4.094e-05 + 1.450e+02 1.531e-09 + 1.470e+02 4.423e-05 + 1.480e+02 1.412e-09 + 1.490e+02 4.626e-05 + 1.500e+02 1.420e-09 + 1.510e+02 4.829e-05 + 1.520e+02 1.610e-09 + 1.540e+02 5.176e-05 + 1.550e+02 1.468e-09 + 1.560e+02 5.386e-05 + 1.570e+02 1.504e-09 + 1.580e+02 5.602e-05 + 1.595e+02 1.641e-09 + 1.610e+02 5.955e-05 + 1.620e+02 1.493e-09 + 1.630e+02 6.169e-05 + 1.640e+02 1.551e-09 + 1.650e+02 6.391e-05 + 1.660e+02 1.693e-09 + 1.680e+02 6.755e-05 + 1.690e+02 1.600e-09 + 1.700e+02 6.985e-05 + 1.710e+02 1.587e-09 + 1.720e+02 7.212e-05 + 1.735e+02 1.735e-09 + 1.750e+02 7.591e-05 + 1.760e+02 1.784e-09 + 1.770e+02 7.847e-05 + 1.780e+02 1.648e-09 + 1.790e+02 8.083e-05 + 1.805e+02 1.785e-09 + 1.820e+02 8.467e-05 + 1.830e+02 1.657e-09 + 1.840e+02 8.704e-05 + 1.850e+02 1.688e-09 + 1.860e+02 8.947e-05 + 1.875e+02 1.813e-09 + 1.890e+02 9.337e-05 + 1.900e+02 1.723e-09 + 1.910e+02 9.584e-05 + 1.920e+02 1.689e-09 + 1.930e+02 9.826e-05 + 1.945e+02 1.794e-09 + 1.960e+02 1.021e-04 + 1.970e+02 1.589e-09 + 1.980e+02 1.044e-04 + 1.990e+02 1.637e-09 + 2.000e+02 1.067e-04 + 2.015e+02 1.743e-09 + 2.030e+02 1.105e-04 + 2.040e+02 1.658e-09 + 2.050e+02 1.129e-04 + 2.060e+02 1.630e-09 + 2.070e+02 1.152e-04 + 2.085e+02 1.760e-09 + 2.100e+02 1.190e-04 + 2.110e+02 1.646e-09 + 2.120e+02 1.214e-04 + 2.130e+02 1.664e-09 + 2.140e+02 1.237e-04 + 2.155e+02 1.807e-09 + 2.170e+02 1.276e-04 + 2.180e+02 1.663e-09 + 2.190e+02 1.300e-04 + 2.200e+02 1.704e-09 + 2.210e+02 1.325e-04 + 2.225e+02 1.812e-09 + 2.240e+02 1.364e-04 + 2.250e+02 1.684e-09 + 2.260e+02 1.388e-04 + 2.270e+02 1.665e-09 + 2.280e+02 1.412e-04 + 2.295e+02 1.799e-09 + 2.310e+02 1.450e-04 + 2.320e+02 1.855e-09 + 2.330e+02 1.477e-04 + 2.360e+02 1.180e-09 + 2.390e+02 1.528e-04 + 2.405e+02 1.816e-09 + 2.420e+02 1.567e-04 + 2.435e+02 1.905e-09 + 2.450e+02 1.608e-04 + 2.460e+02 2.171e-09 + 2.470e+02 1.639e-04 + 2.480e+02 1.713e-09 + 2.490e+02 1.663e-04 + 2.505e+02 1.429e-09 + 2.520e+02 1.694e-04 + 2.525e+02 1.177e-09 + 2.530e+02 1.703e-04 + 2.535e+02 1.942e-09 + 2.540e+02 1.716e-04 + 2.550e+02 1.746e-09 + 2.560e+02 1.741e-04 + 2.575e+02 1.849e-09 + 2.590e+02 1.781e-04 + 2.600e+02 1.716e-09 + 2.610e+02 1.806e-04 + 2.620e+02 1.669e-09 + 2.630e+02 1.830e-04 + 2.645e+02 1.796e-09 + 2.660e+02 1.868e-04 + 2.670e+02 1.688e-09 + 2.680e+02 1.893e-04 + 2.690e+02 1.691e-09 + 2.700e+02 1.917e-04 + 2.715e+02 1.815e-09 + 2.730e+02 1.956e-04 + 2.740e+02 1.819e-09 + 2.750e+02 1.982e-04 + 2.760e+02 1.735e-09 + 2.770e+02 2.007e-04 + 2.785e+02 1.745e-09 + 2.800e+02 2.044e-04 + 2.810e+02 1.734e-09 + 2.820e+02 2.069e-04 + 2.830e+02 1.714e-09 + 2.840e+02 2.094e-04 + 2.855e+02 1.816e-09 + 2.870e+02 2.133e-04 + 2.880e+02 1.756e-09 + 2.890e+02 2.158e-04 + 2.900e+02 1.788e-09 + 2.910e+02 2.184e-04 + 2.925e+02 1.787e-09 + 2.940e+02 2.222e-04 + 2.950e+02 1.721e-09 + 2.960e+02 2.247e-04 + 2.970e+02 1.704e-09 + 2.980e+02 2.271e-04 + 2.995e+02 1.832e-09 + 3.010e+02 2.311e-04 + 3.020e+02 1.722e-09 + 3.030e+02 2.335e-04 + 3.040e+02 1.740e-09 + 3.050e+02 2.360e-04 + 3.065e+02 1.768e-09 + 3.080e+02 2.398e-04 + 3.090e+02 1.734e-09 + 3.100e+02 2.423e-04 + 3.110e+02 1.699e-09 + 3.120e+02 2.448e-04 + 3.135e+02 1.833e-09 + 3.150e+02 2.487e-04 + 3.160e+02 1.741e-09 + 3.170e+02 2.512e-04 + 3.180e+02 1.688e-09 + 3.190e+02 2.536e-04 + 3.205e+02 1.768e-09 + 3.220e+02 2.574e-04 + 3.230e+02 1.724e-09 + 3.240e+02 2.599e-04 + 3.250e+02 1.685e-09 + 3.260e+02 2.623e-04 + 3.275e+02 1.841e-09 + 3.290e+02 2.663e-04 + 3.300e+02 1.637e-09 + 3.310e+02 2.686e-04 + 3.320e+02 1.633e-09 + 3.330e+02 2.710e-04 + 3.345e+02 1.840e-09 + 3.360e+02 2.749e-04 + 3.370e+02 1.632e-09 + 3.380e+02 2.773e-04 + 3.390e+02 1.668e-09 + 3.400e+02 2.797e-04 + 3.415e+02 1.888e-09 + 3.430e+02 2.837e-04 + 3.440e+02 1.762e-09 + 3.450e+02 2.862e-04 + 3.460e+02 1.672e-09 + 3.470e+02 2.886e-04 + 3.485e+02 1.864e-09 + 3.500e+02 2.927e-04 + 3.510e+02 1.699e-09 + 3.520e+02 2.951e-04 + 3.530e+02 1.677e-09 + 3.540e+02 2.975e-04 + 3.555e+02 1.713e-09 + 3.570e+02 3.012e-04 + 3.580e+02 1.656e-09 + 3.590e+02 3.036e-04 + 3.600e+02 1.674e-09 + 3.610e+02 3.060e-04 + 3.625e+02 1.840e-09 + 3.640e+02 3.099e-04 + 3.650e+02 1.646e-09 + 3.660e+02 3.123e-04 + 3.670e+02 1.639e-09 + 3.680e+02 3.146e-04 + 3.695e+02 1.801e-09 + 3.710e+02 3.185e-04 + 3.720e+02 1.588e-09 + 3.730e+02 3.208e-04 + 3.740e+02 1.610e-09 + 3.750e+02 3.231e-04 + 3.765e+02 1.691e-09 + 3.780e+02 3.267e-04 + 3.790e+02 1.549e-09 + 3.800e+02 3.289e-04 + 3.810e+02 1.617e-09 + 3.820e+02 3.313e-04 + 3.835e+02 1.665e-09 + 3.850e+02 3.348e-04 + 3.860e+02 1.480e-09 + 3.870e+02 3.370e-04 + 3.880e+02 1.472e-09 + 3.890e+02 3.391e-04 + 3.905e+02 1.620e-09 + 3.920e+02 3.426e-04 + 3.930e+02 1.591e-09 + 3.940e+02 3.448e-04 + 3.950e+02 1.496e-09 + 3.960e+02 3.470e-04 + 3.975e+02 1.701e-09 + 3.990e+02 3.506e-04 + 4.000e+02 9.268e-10 + 4.010e+02 3.520e-04 + 4.020e+02 1.064e-09 + 4.030e+02 3.535e-04 + 4.045e+02 1.423e-09 + 4.060e+02 3.566e-04 + 4.070e+02 1.580e-09 + 4.080e+02 3.588e-04 + 4.090e+02 1.518e-09 + 4.100e+02 3.610e-04 + 4.115e+02 1.727e-09 + 4.130e+02 3.647e-04 + 4.140e+02 1.572e-09 + 4.150e+02 3.670e-04 + 4.160e+02 1.488e-09 + 4.170e+02 3.691e-04 + 4.185e+02 1.686e-09 + 4.200e+02 3.727e-04 + 4.210e+02 1.577e-09 + 4.220e+02 3.750e-04 + 4.230e+02 1.513e-09 + 4.240e+02 3.772e-04 + 4.255e+02 1.676e-09 + 4.270e+02 3.808e-04 + 4.280e+02 1.639e-09 + 4.290e+02 3.831e-04 + 4.300e+02 1.536e-09 + 4.310e+02 3.853e-04 + 4.325e+02 1.754e-09 + 4.340e+02 3.891e-04 + 4.350e+02 1.552e-09 + 4.360e+02 3.913e-04 + 4.370e+02 1.518e-09 + 4.380e+02 3.935e-04 + 4.395e+02 1.767e-09 + 4.410e+02 3.973e-04 + 4.420e+02 1.602e-09 + 4.430e+02 3.996e-04 + 4.440e+02 1.596e-09 + 4.450e+02 4.019e-04 + 4.465e+02 1.733e-09 + 4.480e+02 4.056e-04 + 4.490e+02 1.639e-09 + 4.500e+02 4.080e-04 + 4.510e+02 1.412e-09 + 4.520e+02 4.100e-04 + 4.535e+02 1.492e-09 + 4.550e+02 4.132e-04 + 4.560e+02 1.353e-09 + 4.570e+02 4.151e-04 + 4.580e+02 1.329e-09 + 4.590e+02 4.170e-04 + 4.605e+02 1.406e-09 + 4.620e+02 4.201e-04 + 4.630e+02 1.280e-09 + 4.640e+02 4.219e-04 + 4.650e+02 1.280e-09 + 4.660e+02 4.237e-04 + 4.675e+02 1.383e-09 + 4.690e+02 4.267e-04 + 4.700e+02 1.284e-09 + 4.710e+02 4.286e-04 + 4.720e+02 1.290e-09 + 4.730e+02 4.304e-04 + 4.745e+02 1.367e-09 + 4.760e+02 4.333e-04 + 4.770e+02 1.236e-09 + 4.780e+02 4.351e-04 + 4.790e+02 1.245e-09 + 4.800e+02 4.369e-04 + 4.815e+02 1.393e-09 + 4.830e+02 4.399e-04 + 4.840e+02 1.293e-09 + 4.850e+02 4.418e-04 + 4.860e+02 1.296e-09 + 4.870e+02 4.436e-04 + 4.885e+02 1.393e-09 + 4.900e+02 4.466e-04 + 4.910e+02 1.236e-09 + 4.920e+02 4.484e-04 + 4.930e+02 9.177e-10 + 4.940e+02 4.497e-04 + 4.955e+02 1.403e-09 + 4.970e+02 4.527e-04 + 4.980e+02 1.211e-09 + 4.990e+02 4.545e-04 + 5.000e+02 1.200e-09 + 5.010e+02 4.562e-04 + 5.026e+02 1.309e-09 + 5.041e+02 4.591e-04 + 5.051e+02 1.184e-09 + 5.061e+02 4.607e-04 + 5.071e+02 1.150e-09 + 5.081e+02 4.624e-04 + 5.097e+02 1.225e-09 + 5.113e+02 4.652e-04 + 5.122e+02 1.232e-09 + 5.131e+02 4.668e-04 + 5.141e+02 1.190e-09 + 5.151e+02 4.685e-04 + 5.166e+02 1.276e-09 + 5.180e+02 4.712e-04 + 5.190e+02 1.121e-09 + 5.201e+02 4.728e-04 + 5.210e+02 1.143e-09 + 5.220e+02 4.744e-04 + 5.235e+02 0.000e+00 + 5.250e+02 4.744e-04 + 5.260e+02 1.331e-09 + 5.270e+02 4.763e-04 + 5.280e+02 1.246e-09 + 5.290e+02 4.781e-04 + 5.305e+02 1.331e-09 + 5.320e+02 4.810e-04 + 5.330e+02 1.169e-09 + 5.340e+02 4.827e-04 + 5.350e+02 1.171e-09 + 5.360e+02 4.843e-04 + 5.375e+02 1.179e-09 + 5.390e+02 4.869e-04 + 5.400e+02 1.167e-09 + 5.410e+02 4.886e-04 + 5.420e+02 1.172e-09 + 5.430e+02 4.902e-04 + 5.445e+02 1.206e-09 + 5.460e+02 4.928e-04 + 5.470e+02 1.091e-09 + 5.480e+02 4.944e-04 + 5.490e+02 1.166e-09 + 5.500e+02 4.961e-04 + 5.515e+02 1.254e-09 + 5.530e+02 4.988e-04 + 5.540e+02 1.050e-09 + 5.550e+02 5.003e-04 + 5.560e+02 1.041e-09 + 5.570e+02 5.018e-04 + 5.585e+02 1.120e-09 + 5.600e+02 5.042e-04 + 5.610e+02 1.005e-09 + 5.620e+02 5.056e-04 + 5.630e+02 1.024e-09 + 5.640e+02 5.071e-04 + 5.655e+02 1.119e-09 + 5.670e+02 5.095e-04 + 5.680e+02 1.079e-09 + 5.690e+02 5.110e-04 + 5.700e+02 1.054e-09 + 5.710e+02 5.125e-04 + 5.725e+02 1.122e-09 + 5.740e+02 5.150e-04 + 5.750e+02 1.084e-09 + 5.760e+02 5.165e-04 + 5.770e+02 1.061e-09 + 5.780e+02 5.180e-04 + 5.795e+02 1.030e-09 + 5.810e+02 5.203e-04 + 5.820e+02 1.070e-09 + 5.830e+02 5.218e-04 + 5.840e+02 1.113e-09 + 5.850e+02 5.234e-04 + 5.865e+02 1.062e-09 + 5.880e+02 5.257e-04 + 5.890e+02 9.930e-10 + 5.900e+02 5.271e-04 + 5.910e+02 1.031e-09 + 5.920e+02 5.286e-04 + 5.935e+02 1.057e-09 + 5.950e+02 5.308e-04 + 5.960e+02 1.051e-09 + 5.970e+02 5.323e-04 + 5.980e+02 1.070e-09 + 5.990e+02 5.339e-04 + 6.005e+02 1.064e-09 + 6.020e+02 5.362e-04 + 6.030e+02 9.560e-10 + 6.040e+02 5.375e-04 + 6.050e+02 9.860e-10 + 6.060e+02 5.390e-04 + 6.075e+02 1.062e-09 + 6.090e+02 5.412e-04 + 6.100e+02 1.000e-09 + 6.110e+02 5.427e-04 + 6.120e+02 1.043e-09 + 6.130e+02 5.442e-04 + 6.145e+02 0.000e+00 + 6.160e+02 5.442e-04 + 6.170e+02 1.055e-09 + 6.180e+02 5.457e-04 + 6.190e+02 9.937e-10 + 6.200e+02 5.471e-04 + 6.215e+02 1.033e-09 + 6.230e+02 5.493e-04 + 6.240e+02 9.149e-10 + 6.250e+02 5.507e-04 + 6.260e+02 8.856e-10 + 6.270e+02 5.519e-04 + 6.285e+02 9.521e-10 + 6.300e+02 5.540e-04 + 6.310e+02 9.365e-10 + 6.320e+02 5.553e-04 + 6.330e+02 9.442e-10 + 6.340e+02 5.567e-04 + 6.355e+02 9.758e-10 + 6.370e+02 5.588e-04 + 6.380e+02 8.835e-10 + 6.390e+02 5.600e-04 + 6.400e+02 9.135e-10 + 6.410e+02 5.613e-04 + 6.425e+02 9.707e-10 + 6.440e+02 5.634e-04 + 6.450e+02 8.445e-10 + 6.460e+02 5.646e-04 + 6.470e+02 9.198e-10 + 6.480e+02 5.660e-04 + 6.495e+02 9.103e-10 + 6.510e+02 5.679e-04 + 6.520e+02 8.444e-10 + 6.530e+02 5.691e-04 + 6.540e+02 8.346e-10 + 6.551e+02 5.703e-04 + 6.565e+02 9.148e-10 + 6.580e+02 5.723e-04 + 6.591e+02 7.726e-10 + 6.602e+02 5.735e-04 + 6.612e+02 8.116e-10 + 6.622e+02 5.747e-04 + 6.636e+02 9.800e-10 + 6.650e+02 5.766e-04 + 6.661e+02 8.068e-10 + 6.671e+02 5.778e-04 + 6.681e+02 8.225e-10 + 6.690e+02 5.790e-04 + 6.705e+02 8.851e-10 + 6.720e+02 5.809e-04 + 6.730e+02 8.040e-10 + 6.740e+02 5.820e-04 + 6.750e+02 8.312e-10 + 6.760e+02 5.832e-04 + 6.775e+02 8.791e-10 + 6.790e+02 5.851e-04 + 6.800e+02 7.942e-10 + 6.810e+02 5.862e-04 + 6.820e+02 7.623e-10 + 6.830e+02 5.873e-04 + 6.845e+02 8.425e-10 + 6.860e+02 5.891e-04 + 6.870e+02 7.929e-10 + 6.880e+02 5.903e-04 + 6.890e+02 0.000e+00 + 6.900e+02 5.903e-04 + 6.915e+02 9.958e-10 + 6.930e+02 5.924e-04 + 6.940e+02 8.249e-10 + 6.950e+02 5.936e-04 + 6.960e+02 7.915e-10 + 6.970e+02 5.947e-04 + 6.985e+02 8.024e-10 + 7.000e+02 5.965e-04 + 7.010e+02 5.139e-10 + 7.020e+02 5.972e-04 + 7.030e+02 7.998e-10 + 7.040e+02 5.983e-04 + 7.055e+02 9.042e-10 + 7.070e+02 6.003e-04 + 7.080e+02 7.971e-10 + 7.090e+02 6.014e-04 + 7.100e+02 7.183e-11 + 7.110e+02 6.015e-04 + 7.125e+02 9.089e-10 + 7.140e+02 6.035e-04 + 7.148e+02 9.950e-10 + 7.157e+02 6.047e-04 + 7.167e+02 8.417e-10 + 7.177e+02 6.059e-04 + 7.192e+02 9.130e-10 + 7.207e+02 6.078e-04 + 7.219e+02 5.306e-11 + 7.231e+02 6.079e-04 + 7.240e+02 9.362e-10 + 7.250e+02 6.092e-04 + 7.265e+02 8.503e-10 + 7.280e+02 6.110e-04 + 7.290e+02 7.859e-10 + 7.300e+02 6.122e-04 + 7.310e+02 7.782e-10 + 7.320e+02 6.133e-04 + 7.335e+02 8.173e-10 + 7.350e+02 6.150e-04 + 7.360e+02 7.887e-10 + 7.370e+02 6.162e-04 + 7.380e+02 6.973e-12 + 7.390e+02 6.162e-04 + 7.405e+02 7.788e-11 + 7.421e+02 6.164e-04 + 7.430e+02 1.005e-09 + 7.440e+02 6.177e-04 + 7.451e+02 7.844e-10 + 7.462e+02 6.190e-04 + 7.481e+02 7.687e-10 + 7.500e+02 6.211e-04 + 7.515e+02 7.647e-10 + 7.530e+02 6.227e-04 + 7.545e+02 7.792e-10 + 7.560e+02 6.244e-04 + 7.570e+02 7.566e-10 + 7.580e+02 6.255e-04 + 7.590e+02 7.818e-10 + 7.600e+02 6.266e-04 + 7.615e+02 7.940e-10 + 7.630e+02 6.283e-04 + 7.640e+02 7.573e-10 + 7.650e+02 6.294e-04 + 7.660e+02 7.782e-10 + 7.670e+02 6.305e-04 + 7.685e+02 7.647e-10 + 7.700e+02 6.321e-04 + 7.710e+02 7.413e-10 + 7.720e+02 6.332e-04 + 7.730e+02 7.231e-10 + 7.740e+02 6.342e-04 + 7.756e+02 7.029e-10 + 7.772e+02 6.359e-04 + 7.781e+02 7.520e-10 + 7.790e+02 6.368e-04 + 7.800e+02 6.869e-10 + 7.810e+02 6.378e-04 + 7.825e+02 7.461e-10 + 7.840e+02 6.394e-04 + 7.850e+02 6.975e-10 + 7.860e+02 6.404e-04 + 7.870e+02 6.722e-10 + 7.880e+02 6.414e-04 + 7.895e+02 7.363e-10 + 7.910e+02 6.430e-04 + 7.920e+02 6.839e-10 + 7.930e+02 6.439e-04 + 7.940e+02 6.736e-10 + 7.950e+02 6.449e-04 + 7.965e+02 7.220e-10 + 7.980e+02 6.465e-04 + 7.990e+02 7.064e-10 + 8.000e+02 6.475e-04 + 8.010e+02 7.008e-10 + 8.020e+02 6.485e-04 + 8.035e+02 7.271e-10 + 8.050e+02 6.500e-04 + 8.060e+02 6.708e-10 + 8.070e+02 6.510e-04 + 8.080e+02 6.771e-10 + 8.090e+02 6.520e-04 + 8.105e+02 7.076e-10 + 8.120e+02 6.535e-04 + 8.135e+02 5.253e-10 + 8.150e+02 6.546e-04 + 8.155e+02 6.667e-10 + 8.160e+02 6.551e-04 + 8.175e+02 6.992e-10 + 8.190e+02 6.566e-04 + 8.200e+02 6.831e-10 + 8.210e+02 6.576e-04 + 8.220e+02 6.753e-10 + 8.230e+02 6.586e-04 + 8.245e+02 6.592e-10 + 8.260e+02 6.600e-04 + 8.280e+02 4.072e-10 + 8.300e+02 6.611e-04 + 8.315e+02 6.773e-10 + 8.330e+02 6.626e-04 + 8.340e+02 6.395e-10 + 8.350e+02 6.635e-04 + 8.360e+02 6.457e-10 + 8.370e+02 6.644e-04 + 8.385e+02 6.736e-10 + 8.400e+02 6.659e-04 + 8.410e+02 6.422e-10 + 8.420e+02 6.668e-04 + 8.430e+02 6.227e-10 + 8.440e+02 6.677e-04 + 8.455e+02 6.350e-10 + 8.470e+02 6.691e-04 + 8.480e+02 6.283e-10 + 8.490e+02 6.700e-04 + 8.500e+02 3.626e-10 + 8.510e+02 6.705e-04 + 8.525e+02 5.025e-10 + 8.540e+02 6.716e-04 + 8.550e+02 5.990e-10 + 8.560e+02 6.724e-04 + 8.570e+02 5.774e-10 + 8.580e+02 6.733e-04 + 8.595e+02 5.927e-10 + 8.610e+02 6.745e-04 + 8.620e+02 5.934e-10 + 8.630e+02 6.754e-04 + 8.640e+02 5.676e-10 + 8.650e+02 6.762e-04 + 8.665e+02 5.997e-10 + 8.680e+02 6.775e-04 + 8.690e+02 5.518e-10 + 8.701e+02 6.783e-04 + 8.710e+02 5.791e-10 + 8.720e+02 6.791e-04 + 8.735e+02 5.713e-10 + 8.750e+02 6.803e-04 + 8.760e+02 6.918e-10 + 8.770e+02 6.813e-04 + 8.780e+02 7.001e-10 + 8.790e+02 6.823e-04 + 8.805e+02 5.806e-10 + 8.820e+02 6.836e-04 + 8.830e+02 5.455e-10 + 8.840e+02 6.844e-04 + 8.850e+02 5.472e-10 + 8.860e+02 6.851e-04 + 8.875e+02 5.444e-10 + 8.890e+02 6.863e-04 + 8.900e+02 5.251e-10 + 8.910e+02 6.871e-04 + 8.920e+02 5.418e-10 + 8.930e+02 6.878e-04 + 8.945e+02 5.286e-10 + 8.960e+02 6.890e-04 + 8.970e+02 5.265e-10 + 8.980e+02 6.897e-04 + 8.990e+02 5.300e-10 + 9.000e+02 6.905e-04 + 9.015e+02 5.255e-10 + 9.030e+02 6.916e-04 + 9.040e+02 5.251e-10 + 9.050e+02 6.924e-04 + 9.060e+02 5.251e-10 + 9.070e+02 6.932e-04 + 9.085e+02 5.402e-10 + 9.100e+02 6.943e-04 + 9.110e+02 5.279e-10 + 9.120e+02 6.951e-04 + 9.130e+02 5.000e-10 + 9.140e+02 6.958e-04 + 9.155e+02 5.272e-10 + 9.170e+02 6.969e-04 + 9.180e+02 5.098e-10 + 9.190e+02 6.977e-04 + 9.200e+02 4.784e-10 + 9.210e+02 6.983e-04 + 9.225e+02 4.932e-10 + 9.240e+02 6.994e-04 + 9.250e+02 4.846e-10 + 9.260e+02 7.001e-04 + 9.270e+02 4.728e-10 + 9.280e+02 7.008e-04 + 9.295e+02 4.993e-10 + 9.310e+02 7.018e-04 + 9.320e+02 4.867e-10 + 9.330e+02 7.025e-04 + 9.340e+02 4.916e-10 + 9.350e+02 7.033e-04 + 9.365e+02 4.960e-10 + 9.380e+02 7.043e-04 + 9.390e+02 4.937e-10 + 9.400e+02 7.050e-04 + 9.410e+02 4.923e-10 + 9.420e+02 7.057e-04 diff --git a/ex21_Na_tr_rad.tsv b/ex21_Na_tr_rad.tsv index 8b61883a..b8afd90b 100644 --- a/ex21_Na_tr_rad.tsv +++ b/ex21_Na_tr_rad.tsv @@ -1,85 +1,85 @@ -Days A_22Na Flux -y_axis 2 1 - 0.000e+00 0.000e+00 - 5.000e-01 2.775e-20 - 1.000e+00 1.990e-17 - 1.500e+00 5.969e-18 - 2.000e+00 4.300e-15 - 2.500e+00 3.793e-17 - 3.000e+00 3.150e-14 - 3.500e+00 9.832e-17 - 4.000e+00 1.020e-13 - 4.500e+00 1.548e-16 - 5.000e+00 2.130e-13 - 5.480e+00 2.048e-16 - 5.960e+00 3.540e-13 - 6.480e+00 2.347e-16 - 7.000e+00 5.290e-13 - 7.500e+00 2.747e-16 - 8.000e+00 7.260e-13 - 8.500e+00 3.068e-16 - 9.000e+00 9.460e-13 - 9.500e+00 3.124e-16 - 1.000e+01 1.170e-12 - 1.050e+01 3.347e-16 - 1.100e+01 1.410e-12 - 1.150e+01 3.487e-16 - 1.200e+01 1.660e-12 - 1.250e+01 3.626e-16 - 1.300e+01 1.920e-12 - 1.350e+01 3.626e-16 - 1.400e+01 2.180e-12 - 1.450e+01 3.626e-16 - 1.500e+01 2.440e-12 - 1.550e+01 3.766e-16 - 1.600e+01 2.710e-12 - 1.650e+01 3.766e-16 - 1.700e+01 2.980e-12 - 1.751e+01 3.314e-16 - 1.801e+01 3.220e-12 - 1.851e+01 4.085e-16 - 1.900e+01 3.510e-12 - 1.950e+01 3.905e-16 - 2.000e+01 3.790e-12 - 2.050e+01 3.905e-16 - 2.100e+01 4.070e-12 - 2.150e+01 3.905e-16 - 2.200e+01 4.350e-12 - 2.250e+01 3.905e-16 - 2.300e+01 4.630e-12 - 2.351e+01 3.866e-16 - 2.401e+01 4.910e-12 - 2.451e+01 3.487e-16 - 2.501e+01 5.160e-12 - 2.551e+01 4.226e-16 - 2.600e+01 5.460e-12 - 2.650e+01 3.766e-16 - 2.700e+01 5.730e-12 - 2.750e+01 3.905e-16 - 2.800e+01 6.010e-12 - 2.850e+01 3.766e-16 - 2.900e+01 6.280e-12 - 2.950e+01 3.766e-16 - 3.000e+01 6.550e-12 - 3.050e+01 3.766e-16 - 3.100e+01 6.820e-12 - 3.150e+01 3.766e-16 - 3.200e+01 7.090e-12 - 3.250e+01 3.347e-16 - 3.300e+01 7.330e-12 - 3.350e+01 4.045e-16 - 3.400e+01 7.620e-12 - 3.450e+01 3.766e-16 - 3.500e+01 7.890e-12 - 3.550e+01 3.766e-16 - 3.600e+01 8.160e-12 - 3.650e+01 3.766e-16 - 3.700e+01 8.430e-12 - 3.750e+01 3.766e-16 - 3.800e+01 8.700e-12 - 3.850e+01 3.766e-16 - 3.900e+01 8.970e-12 - 3.950e+01 3.766e-16 - 4.000e+01 9.240e-12 - 4.050e+01 3.626e-16 - 4.100e+01 9.500e-12 +Days A_22Na Flux +y_axis 2 1 + 0.000e+00 0.000e+00 + 5.000e-01 2.775e-20 + 1.000e+00 1.990e-17 + 1.500e+00 5.969e-18 + 2.000e+00 4.300e-15 + 2.500e+00 3.793e-17 + 3.000e+00 3.150e-14 + 3.500e+00 9.832e-17 + 4.000e+00 1.020e-13 + 4.500e+00 1.548e-16 + 5.000e+00 2.130e-13 + 5.480e+00 2.048e-16 + 5.960e+00 3.540e-13 + 6.480e+00 2.347e-16 + 7.000e+00 5.290e-13 + 7.500e+00 2.747e-16 + 8.000e+00 7.260e-13 + 8.500e+00 3.068e-16 + 9.000e+00 9.460e-13 + 9.500e+00 3.124e-16 + 1.000e+01 1.170e-12 + 1.050e+01 3.347e-16 + 1.100e+01 1.410e-12 + 1.150e+01 3.487e-16 + 1.200e+01 1.660e-12 + 1.250e+01 3.626e-16 + 1.300e+01 1.920e-12 + 1.350e+01 3.626e-16 + 1.400e+01 2.180e-12 + 1.450e+01 3.626e-16 + 1.500e+01 2.440e-12 + 1.550e+01 3.766e-16 + 1.600e+01 2.710e-12 + 1.650e+01 3.766e-16 + 1.700e+01 2.980e-12 + 1.751e+01 3.314e-16 + 1.801e+01 3.220e-12 + 1.851e+01 4.085e-16 + 1.900e+01 3.510e-12 + 1.950e+01 3.905e-16 + 2.000e+01 3.790e-12 + 2.050e+01 3.905e-16 + 2.100e+01 4.070e-12 + 2.150e+01 3.905e-16 + 2.200e+01 4.350e-12 + 2.250e+01 3.905e-16 + 2.300e+01 4.630e-12 + 2.351e+01 3.866e-16 + 2.401e+01 4.910e-12 + 2.451e+01 3.487e-16 + 2.501e+01 5.160e-12 + 2.551e+01 4.226e-16 + 2.600e+01 5.460e-12 + 2.650e+01 3.766e-16 + 2.700e+01 5.730e-12 + 2.750e+01 3.905e-16 + 2.800e+01 6.010e-12 + 2.850e+01 3.766e-16 + 2.900e+01 6.280e-12 + 2.950e+01 3.766e-16 + 3.000e+01 6.550e-12 + 3.050e+01 3.766e-16 + 3.100e+01 6.820e-12 + 3.150e+01 3.766e-16 + 3.200e+01 7.090e-12 + 3.250e+01 3.347e-16 + 3.300e+01 7.330e-12 + 3.350e+01 4.045e-16 + 3.400e+01 7.620e-12 + 3.450e+01 3.766e-16 + 3.500e+01 7.890e-12 + 3.550e+01 3.766e-16 + 3.600e+01 8.160e-12 + 3.650e+01 3.766e-16 + 3.700e+01 8.430e-12 + 3.750e+01 3.766e-16 + 3.800e+01 8.700e-12 + 3.850e+01 3.766e-16 + 3.900e+01 8.970e-12 + 3.950e+01 3.766e-16 + 4.000e+01 9.240e-12 + 4.050e+01 3.626e-16 + 4.100e+01 9.500e-12 diff --git a/ex22.out b/ex22.out index 59687df3..f5e62278 100644 --- a/ex22.out +++ b/ex22.out @@ -71,16 +71,15 @@ Initial solution 1. pH = 7.000 pe = 4.000 - Specific Conductance (S/cm, 25C) = 0 - Density (g/cm) = 0.99704 + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89002 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.007e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.217e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.60 Iterations = 0 @@ -90,7 +89,7 @@ Initial solution 1. ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.013e-07 1.012e-07 -6.995 -6.995 -0.000 -4.14 H+ 1.001e-07 1.000e-07 -7.000 -7.000 -0.000 0.00 @@ -161,16 +160,15 @@ H2O(g) -1.50 3.143e-02 1.000 0.000e+00 1.285e-03 1.285e-03 pH = 7.000 Charge balance pe = 11.047 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 0 - Density (g/cm) = 0.99700 + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99700 Volume (L) = 1.00299 + Viscosity (mPa s) = 0.89004 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.006e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.217e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 0.03 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.60 @@ -181,7 +179,7 @@ H2O(g) -1.50 3.143e-02 1.000 0.000e+00 1.285e-03 1.285e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.013e-07 1.012e-07 -6.995 -6.995 -0.000 -4.14 H+ 1.000e-07 1.000e-07 -7.000 -7.000 -0.000 0.00 @@ -245,52 +243,53 @@ H2O(g) -1.45 3.586e-02 0.878 1.285e-03 1.587e-03 3.014e-04 ----------------------------Description of solution---------------------------- pH = 3.368 Charge balance - pe = 14.672 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 171 - Density (g/cm) = 1.00156 + pe = 14.674 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 171 + Density (g/cm³) = 1.00156 Volume (L) = 1.01670 + Viscosity (mPa s) = 0.89000 Activity of water = 0.993 Ionic strength (mol/kgw) = 4.384e-04 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 4.161e-01 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 13.23 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 Total H = 1.110093e+02 - Total O = 5.633686e+01 + Total O = 5.633688e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 4.384e-04 4.284e-04 -3.358 -3.368 -0.010 0.00 OH- 2.430e-11 2.372e-11 -10.614 -10.625 -0.010 -4.07 H2O 5.551e+01 9.930e-01 1.744 -0.003 0.000 18.06 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.320 -120.320 0.000 35.47 + CH4 0.000e+00 0.000e+00 -120.338 -120.338 0.000 35.47 C(4) 4.161e-01 CO2 4.095e-01 4.096e-01 -0.388 -0.388 0.000 34.43 (CO2)2 3.079e-03 3.079e-03 -2.512 -2.512 0.000 68.85 - HCO3- 4.384e-04 4.282e-04 -3.358 -3.368 -0.010 24.68 - CO3-2 5.231e-11 4.758e-11 -10.281 -10.323 -0.041 -5.20 -H(0) 1.160e-39 - H2 5.802e-40 5.803e-40 -39.236 -39.236 0.000 28.60 -O(0) 2.379e-14 - O2 1.190e-14 1.190e-14 -13.925 -13.925 0.000 30.38 + HCO3- 4.384e-04 4.282e-04 -3.358 -3.368 -0.010 24.55 + CO3-2 5.227e-11 4.755e-11 -10.282 -10.323 -0.041 -4.00 +H(0) 1.149e-39 + H2 5.743e-40 5.743e-40 -39.241 -39.241 0.000 28.60 +O(0) 2.429e-14 + O2 1.214e-14 1.214e-14 -13.916 -13.916 0.000 30.38 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 13 atm) - CH4(g) -117.51 -120.32 -2.81 CH4 + CH4(g) -117.53 -120.34 -2.81 CH4 CO2(g) 1.09 -0.39 -1.48 CO2 Pressure 13.2 atm, phi 0.928 H2(g) -36.13 -39.24 -3.11 H2 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.878 - O2(g) -11.03 -13.92 -2.90 O2 + O2(g) -11.02 -13.92 -2.90 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -326,64 +325,65 @@ Total pressure: 25.84 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CO2(g) 1.41 2.580e+01 0.862 5.839e-01 1.250e+00 6.656e-01 +CO2(g) 1.41 2.580e+01 0.862 5.839e-01 1.249e+00 6.656e-01 H2O(g) -1.38 4.125e-02 0.766 1.587e-03 1.998e-03 4.108e-04 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 7.505e-01 7.505e-01 + C 7.506e-01 7.505e-01 ----------------------------Description of solution---------------------------- pH = 3.241 Charge balance - pe = 14.782 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 230 - Density (g/cm) = 1.00523 + pe = 14.739 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 231 + Density (g/cm³) = 1.00523 Volume (L) = 1.02762 + Viscosity (mPa s) = 0.88987 Activity of water = 0.987 - Ionic strength (mol/kgw) = 5.901e-04 + Ionic strength (mol/kgw) = 5.902e-04 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.216e-09 - Total CO2 (mol/kg) = 7.505e-01 - Temperature (C) = 25.00 + Total CO2 (mol/kg) = 7.506e-01 + Temperature (°C) = 25.00 Pressure (atm) = 25.84 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 30 Total H = 1.110084e+02 - Total O = 5.700522e+01 + Total O = 5.700527e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 5.901e-04 5.746e-04 -3.229 -3.241 -0.012 0.00 - OH- 1.829e-11 1.779e-11 -10.738 -10.750 -0.012 -4.02 + H+ 5.902e-04 5.747e-04 -3.229 -3.241 -0.012 0.00 + OH- 1.828e-11 1.779e-11 -10.738 -10.750 -0.012 -4.02 H2O 5.551e+01 9.874e-01 1.744 -0.006 0.000 18.05 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.930 -119.930 0.000 35.49 -C(4) 7.505e-01 - CO2 7.304e-01 7.305e-01 -0.136 -0.136 0.000 34.42 + CH4 0.000e+00 0.000e+00 -119.592 -119.592 0.000 35.49 +C(4) 7.506e-01 + CO2 7.304e-01 7.304e-01 -0.136 -0.136 0.000 34.42 (CO2)2 9.792e-03 9.794e-03 -2.009 -2.009 0.000 68.84 - HCO3- 5.901e-04 5.742e-04 -3.229 -3.241 -0.012 24.70 - CO3-2 5.388e-11 4.830e-11 -10.269 -10.316 -0.047 -5.07 -H(0) 1.241e-39 - H2 6.204e-40 6.205e-40 -39.207 -39.207 0.000 28.59 -O(0) 2.004e-14 - O2 1.002e-14 1.002e-14 -13.999 -13.999 0.000 30.36 + HCO3- 5.902e-04 5.742e-04 -3.229 -3.241 -0.012 24.57 + CO3-2 5.381e-11 4.824e-11 -10.269 -10.317 -0.047 -3.87 +H(0) 1.508e-39 + H2 7.538e-40 7.539e-40 -39.123 -39.123 0.000 28.59 +O(0) 1.357e-14 + O2 6.786e-15 6.787e-15 -14.168 -14.168 0.000 30.36 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 26 atm) - CH4(g) -117.11 -119.93 -2.82 CH4 + CH4(g) -116.77 -119.59 -2.82 CH4 CO2(g) 1.35 -0.14 -1.48 CO2 Pressure 25.8 atm, phi 0.862 - H2(g) -36.09 -39.21 -3.11 H2 + H2(g) -36.01 -39.12 -3.11 H2 H2O(g) -1.50 -0.01 1.49 H2O Pressure 0.0 atm, phi 0.766 - O2(g) -11.09 -14.00 -2.91 O2 + O2(g) -11.26 -14.17 -2.91 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -419,8 +419,8 @@ Total pressure: 37.31 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CO2(g) 1.57 3.727e+01 0.803 1.250e+00 1.998e+00 7.486e-01 -H2O(g) -1.32 4.764e-02 0.666 1.998e-03 2.555e-03 5.570e-04 +CO2(g) 1.57 3.726e+01 0.803 1.249e+00 1.998e+00 7.486e-01 +H2O(g) -1.32 4.764e-02 0.666 1.998e-03 2.555e-03 5.569e-04 -----------------------------Solution composition------------------------------ @@ -431,52 +431,53 @@ H2O(g) -1.32 4.764e-02 0.666 1.998e-03 2.555e-03 5.570e-04 ----------------------------Description of solution---------------------------- pH = 3.178 Charge balance - pe = 14.823 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 267 - Density (g/cm) = 1.00802 + pe = 2.399 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 267 + Density (g/cm³) = 1.00802 Volume (L) = 1.03574 + Viscosity (mPa s) = 0.88974 Activity of water = 0.983 Ionic strength (mol/kgw) = 6.833e-04 Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.002e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 37.31 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 28 + Iterations = 37 Total H = 1.110073e+02 - Total O = 5.750738e+01 + Total O = 5.750746e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 6.833e-04 6.641e-04 -3.165 -3.178 -0.012 0.00 + H+ 6.833e-04 6.642e-04 -3.165 -3.178 -0.012 0.00 OH- 1.595e-11 1.548e-11 -10.797 -10.810 -0.013 -3.98 H2O 5.551e+01 9.832e-01 1.744 -0.007 0.000 18.04 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.641 -119.641 0.000 35.51 +C(-4) 5.646e-21 + CH4 5.646e-21 5.647e-21 -20.248 -20.248 0.000 35.51 C(4) 1.002e+00 - CO2 9.669e-01 9.671e-01 -0.015 -0.015 0.000 34.42 + CO2 9.669e-01 9.670e-01 -0.015 -0.015 0.000 34.42 (CO2)2 1.716e-02 1.717e-02 -1.765 -1.765 0.000 68.83 - HCO3- 6.833e-04 6.636e-04 -3.165 -3.178 -0.013 24.71 - CO3-2 5.505e-11 4.897e-11 -10.259 -10.310 -0.051 -4.96 -H(0) 1.351e-39 - H2 6.754e-40 6.755e-40 -39.170 -39.170 0.000 28.59 -O(0) 1.636e-14 - O2 8.182e-15 8.183e-15 -14.087 -14.087 0.000 30.35 + HCO3- 6.833e-04 6.636e-04 -3.165 -3.178 -0.013 24.59 + CO3-2 5.495e-11 4.887e-11 -10.260 -10.311 -0.051 -3.76 +H(0) 9.525e-15 + H2 4.763e-15 4.763e-15 -14.322 -14.322 0.000 28.59 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -63.784 -63.784 0.000 30.35 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 37 atm) - CH4(g) -116.82 -119.64 -2.82 CH4 + CH4(g) -17.42 -20.25 -2.82 CH4 CO2(g) 1.48 -0.01 -1.49 CO2 Pressure 37.3 atm, phi 0.803 - H2(g) -36.05 -39.17 -3.12 H2 + H2(g) -11.20 -14.32 -3.12 H2 H2O(g) -1.50 -0.01 1.49 H2O Pressure 0.0 atm, phi 0.666 - O2(g) -11.18 -14.09 -2.91 O2 + O2(g) -60.87 -63.78 -2.91 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -506,14 +507,14 @@ Reaction 1. Total pressure: 47.10 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 3.54e-01 liters/mole - P * Vm / RT: 0.68100 (Compressibility Factor Z) + P * Vm / RT: 0.68101 (Compressibility Factor Z) Moles in gas ---------------------------------- Component log P P phi Initial Final Delta CO2(g) 1.67 4.704e+01 0.753 1.998e+00 2.823e+00 8.252e-01 -H2O(g) -1.26 5.499e-02 0.580 2.555e-03 3.300e-03 7.456e-04 +H2O(g) -1.26 5.498e-02 0.580 2.555e-03 3.300e-03 7.455e-04 -----------------------------Solution composition------------------------------ @@ -524,52 +525,53 @@ H2O(g) -1.26 5.499e-02 0.580 2.555e-03 3.300e-03 7.456e-04 ----------------------------Description of solution---------------------------- pH = 3.142 Charge balance - pe = 14.932 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 290 - Density (g/cm) = 1.01002 - Volume (L) = 1.04129 + pe = 2.323 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 290 + Density (g/cm³) = 1.01002 + Volume (L) = 1.04130 + Viscosity (mPa s) = 0.88964 Activity of water = 0.980 - Ionic strength (mol/kgw) = 7.422e-04 + Ionic strength (mol/kgw) = 7.423e-04 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.177e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 47.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 22 Total H = 1.110058e+02 - Total O = 5.785615e+01 + Total O = 5.785627e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.422e-04 7.206e-04 -3.129 -3.142 -0.013 0.00 + H+ 7.423e-04 7.207e-04 -3.129 -3.142 -0.013 0.00 OH- 1.480e-11 1.435e-11 -10.830 -10.843 -0.013 -3.94 H2O 5.551e+01 9.804e-01 1.744 -0.009 0.000 18.03 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.164 -120.163 0.000 35.52 +C(-4) 5.128e-20 + CH4 5.128e-20 5.129e-20 -19.290 -19.290 0.000 35.52 C(4) 1.177e+00 CO2 1.129e+00 1.129e+00 0.053 0.053 0.000 34.41 (CO2)2 2.341e-02 2.341e-02 -1.631 -1.631 0.000 68.82 - HCO3- 7.422e-04 7.200e-04 -3.129 -3.143 -0.013 24.72 - CO3-2 5.596e-11 4.954e-11 -10.252 -10.305 -0.053 -4.87 -H(0) 9.533e-40 - H2 4.767e-40 4.767e-40 -39.322 -39.322 0.000 28.58 -O(0) 3.200e-14 - O2 1.600e-14 1.600e-14 -13.796 -13.796 0.000 30.33 + HCO3- 7.423e-04 7.201e-04 -3.129 -3.143 -0.013 24.61 + CO3-2 5.582e-11 4.942e-11 -10.253 -10.306 -0.053 -3.66 +H(0) 1.576e-14 + H2 7.881e-15 7.882e-15 -14.103 -14.103 0.000 28.58 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -64.233 -64.233 0.000 30.33 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 47 atm) - CH4(g) -117.33 -120.16 -2.83 CH4 + CH4(g) -16.46 -19.29 -2.83 CH4 CO2(g) 1.55 0.05 -1.50 CO2 Pressure 47.0 atm, phi 0.753 - H2(g) -36.20 -39.32 -3.12 H2 + H2(g) -10.98 -14.10 -3.12 H2 H2O(g) -1.50 -0.01 1.49 H2O Pressure 0.1 atm, phi 0.580 - O2(g) -10.88 -13.80 -2.92 O2 + O2(g) -61.32 -64.23 -2.92 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -599,14 +601,14 @@ Reaction 1. Total pressure: 54.79 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 2.69e-01 liters/mole - P * Vm / RT: 0.60259 (Compressibility Factor Z) + P * Vm / RT: 0.60260 (Compressibility Factor Z) Moles in gas ---------------------------------- Component log P P phi Initial Final Delta CO2(g) 1.74 5.473e+01 0.713 2.823e+00 3.712e+00 8.887e-01 -H2O(g) -1.20 6.307e-02 0.507 3.300e-03 4.278e-03 9.776e-04 +H2O(g) -1.20 6.307e-02 0.507 3.300e-03 4.278e-03 9.775e-04 -----------------------------Solution composition------------------------------ @@ -617,52 +619,53 @@ H2O(g) -1.20 6.307e-02 0.507 3.300e-03 4.278e-03 9.776e-04 ----------------------------Description of solution---------------------------- pH = 3.122 Charge balance - pe = 14.957 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 304 - Density (g/cm) = 1.01134 - Volume (L) = 1.04475 + pe = 2.189 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 304 + Density (g/cm³) = 1.01134 + Volume (L) = 1.04476 + Viscosity (mPa s) = 0.88955 Activity of water = 0.979 - Ionic strength (mol/kgw) = 7.783e-04 + Ionic strength (mol/kgw) = 7.784e-04 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.288e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 54.79 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 26 Total H = 1.110039e+02 - Total O = 5.807770e+01 + Total O = 5.807783e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.783e-04 7.552e-04 -3.109 -3.122 -0.013 0.00 - OH- 1.421e-11 1.376e-11 -10.848 -10.861 -0.014 -3.91 + H+ 7.784e-04 7.553e-04 -3.109 -3.122 -0.013 0.00 + OH- 1.420e-11 1.376e-11 -10.848 -10.861 -0.014 -3.91 H2O 5.551e+01 9.786e-01 1.744 -0.009 0.000 18.03 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.170 -120.170 0.000 35.53 +C(-4) 9.496e-19 + CH4 9.496e-19 9.498e-19 -18.022 -18.022 0.000 35.53 C(4) 1.288e+00 CO2 1.232e+00 1.232e+00 0.090 0.091 0.000 34.41 (CO2)2 2.784e-02 2.785e-02 -1.555 -1.555 0.000 68.82 - HCO3- 7.783e-04 7.545e-04 -3.109 -3.122 -0.014 24.73 - CO3-2 5.663e-11 4.999e-11 -10.247 -10.301 -0.054 -4.79 -H(0) 9.229e-40 - H2 4.615e-40 4.615e-40 -39.336 -39.336 0.000 28.58 -O(0) 3.347e-14 - O2 1.673e-14 1.674e-14 -13.776 -13.776 0.000 30.32 + HCO3- 7.784e-04 7.546e-04 -3.109 -3.122 -0.014 24.62 + CO3-2 5.646e-11 4.985e-11 -10.248 -10.302 -0.054 -3.59 +H(0) 3.177e-14 + H2 1.589e-14 1.589e-14 -13.799 -13.799 0.000 28.58 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -64.850 -64.850 0.000 30.32 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 55 atm) - CH4(g) -117.33 -120.17 -2.84 CH4 + CH4(g) -15.19 -18.02 -2.84 CH4 CO2(g) 1.59 0.09 -1.50 CO2 Pressure 54.7 atm, phi 0.713 - H2(g) -36.21 -39.34 -3.13 H2 + H2(g) -10.67 -13.80 -3.13 H2 H2O(g) -1.50 -0.01 1.49 H2O Pressure 0.1 atm, phi 0.507 - O2(g) -10.86 -13.78 -2.92 O2 + O2(g) -61.93 -64.85 -2.92 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -710,52 +713,53 @@ H2O(g) -1.15 7.157e-02 0.448 4.278e-03 5.528e-03 1.251e-03 ----------------------------Description of solution---------------------------- pH = 3.111 Charge balance - pe = 14.963 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 312 - Density (g/cm) = 1.01214 + pe = 2.270 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 313 + Density (g/cm³) = 1.01215 Volume (L) = 1.04668 + Viscosity (mPa s) = 0.88949 Activity of water = 0.978 - Ionic strength (mol/kgw) = 7.989e-04 + Ionic strength (mol/kgw) = 7.990e-04 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.352e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 60.25 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 33 Total H = 1.110014e+02 - Total O = 5.820410e+01 + Total O = 5.820425e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.989e-04 7.749e-04 -3.098 -3.111 -0.013 0.00 + H+ 7.990e-04 7.750e-04 -3.097 -3.111 -0.013 0.00 OH- 1.390e-11 1.346e-11 -10.857 -10.871 -0.014 -3.89 H2O 5.551e+01 9.775e-01 1.744 -0.010 0.000 18.02 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.109 -120.109 0.000 35.54 +C(-4) 2.711e-19 + CH4 2.711e-19 2.712e-19 -18.567 -18.567 0.000 35.54 C(4) 1.352e+00 CO2 1.290e+00 1.290e+00 0.111 0.111 0.000 34.40 (CO2)2 3.055e-02 3.055e-02 -1.515 -1.515 0.000 68.81 - HCO3- 7.989e-04 7.741e-04 -3.098 -3.111 -0.014 24.74 - CO3-2 5.708e-11 5.032e-11 -10.244 -10.298 -0.055 -4.74 -H(0) 9.402e-40 - H2 4.701e-40 4.702e-40 -39.328 -39.328 0.000 28.58 -O(0) 3.181e-14 - O2 1.591e-14 1.591e-14 -13.798 -13.798 0.000 30.31 + HCO3- 7.990e-04 7.742e-04 -3.097 -3.111 -0.014 24.62 + CO3-2 5.690e-11 5.016e-11 -10.245 -10.300 -0.055 -3.54 +H(0) 2.285e-14 + H2 1.142e-14 1.143e-14 -13.942 -13.942 0.000 28.58 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -64.570 -64.570 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 60 atm) - CH4(g) -117.27 -120.11 -2.84 CH4 + CH4(g) -15.73 -18.57 -2.84 CH4 CO2(g) 1.62 0.11 -1.50 CO2 Pressure 60.2 atm, phi 0.685 - H2(g) -36.20 -39.33 -3.13 H2 + H2(g) -10.81 -13.94 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.448 - O2(g) -10.87 -13.80 -2.92 O2 + O2(g) -61.65 -64.57 -2.92 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -785,70 +789,71 @@ Reaction 1. Total pressure: 63.57 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 1.78e-01 liters/mole - P * Vm / RT: 0.46201 (Compressibility Factor Z) + P * Vm / RT: 0.46202 (Compressibility Factor Z) Moles in gas ---------------------------------- Component log P P phi Initial Final Delta CO2(g) 1.80 6.349e+01 0.667 4.648e+00 5.617e+00 9.684e-01 -H2O(g) -1.10 8.014e-02 0.401 5.528e-03 7.090e-03 1.561e-03 +H2O(g) -1.10 8.014e-02 0.401 5.528e-03 7.089e-03 1.561e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 1.383e+00 1.383e+00 + C 1.384e+00 1.383e+00 ----------------------------Description of solution---------------------------- pH = 3.105 Charge balance - pe = 14.952 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 316 - Density (g/cm) = 1.01257 + pe = 2.328 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 317 + Density (g/cm³) = 1.01257 Volume (L) = 1.04759 + Viscosity (mPa s) = 0.88945 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.092e-04 + Ionic strength (mol/kgw) = 8.094e-04 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.216e-09 - Total CO2 (mol/kg) = 1.383e+00 - Temperature (C) = 25.00 + Total CO2 (mol/kg) = 1.384e+00 + Temperature (°C) = 25.00 Pressure (atm) = 63.57 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 32 Total H = 1.109983e+02 - Total O = 5.826571e+01 + Total O = 5.826587e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.092e-04 7.848e-04 -3.092 -3.105 -0.013 0.00 + H+ 8.094e-04 7.849e-04 -3.092 -3.105 -0.013 0.00 OH- 1.376e-11 1.333e-11 -10.861 -10.875 -0.014 -3.88 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 18.02 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.968 -119.968 0.000 35.54 -C(4) 1.383e+00 +C(-4) 1.054e-19 + CH4 1.054e-19 1.055e-19 -18.977 -18.977 0.000 35.54 +C(4) 1.384e+00 CO2 1.319e+00 1.319e+00 0.120 0.120 0.000 34.40 (CO2)2 3.193e-02 3.194e-02 -1.496 -1.496 0.000 68.81 - HCO3- 8.092e-04 7.840e-04 -3.092 -3.106 -0.014 24.74 - CO3-2 5.735e-11 5.052e-11 -10.241 -10.297 -0.055 -4.71 -H(0) 1.011e-39 - H2 5.055e-40 5.056e-40 -39.296 -39.296 0.000 28.58 -O(0) 2.729e-14 - O2 1.364e-14 1.365e-14 -13.865 -13.865 0.000 30.31 + HCO3- 8.094e-04 7.841e-04 -3.092 -3.106 -0.014 24.63 + CO3-2 5.715e-11 5.035e-11 -10.243 -10.298 -0.055 -3.51 +H(0) 1.789e-14 + H2 8.945e-15 8.947e-15 -14.048 -14.048 0.000 28.58 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -64.361 -64.361 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 64 atm) - CH4(g) -117.13 -119.97 -2.84 CH4 + CH4(g) -16.14 -18.98 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 63.5 atm, phi 0.667 - H2(g) -36.16 -39.30 -3.13 H2 + H2(g) -10.92 -14.05 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.401 - O2(g) -10.94 -13.87 -2.93 O2 + O2(g) -61.43 -64.36 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -878,14 +883,14 @@ Reaction 1. Total pressure: 65.04 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 1.51e-01 liters/mole - P * Vm / RT: 0.40193 (Compressibility Factor Z) + P * Vm / RT: 0.40194 (Compressibility Factor Z) Moles in gas ---------------------------------- Component log P P phi Initial Final Delta CO2(g) 1.81 6.495e+01 0.658 5.617e+00 6.605e+00 9.885e-01 -H2O(g) -1.05 8.845e-02 0.364 7.090e-03 8.995e-03 1.905e-03 +H2O(g) -1.05 8.845e-02 0.364 7.089e-03 8.995e-03 1.905e-03 -----------------------------Solution composition------------------------------ @@ -896,52 +901,53 @@ H2O(g) -1.05 8.845e-02 0.364 7.090e-03 8.995e-03 1.905e-03 ----------------------------Description of solution---------------------------- pH = 3.103 Charge balance - pe = 14.979 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 318 - Density (g/cm) = 1.01273 + pe = 2.504 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 318 + Density (g/cm³) = 1.01273 Volume (L) = 1.04788 + Viscosity (mPa s) = 0.88943 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.131e-04 + Ionic strength (mol/kgw) = 8.132e-04 Mass of water (kg) = 9.998e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.395e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 65.04 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 40 Total H = 1.109944e+02 - Total O = 5.828682e+01 + Total O = 5.828699e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.131e-04 7.885e-04 -3.090 -3.103 -0.013 0.00 - OH- 1.372e-11 1.328e-11 -10.863 -10.877 -0.014 -3.87 + H+ 8.132e-04 7.886e-04 -3.090 -3.103 -0.013 0.00 + OH- 1.371e-11 1.328e-11 -10.863 -10.877 -0.014 -3.87 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.02 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.169 -120.169 0.000 35.54 +C(-4) 4.274e-21 + CH4 4.274e-21 4.275e-21 -20.369 -20.369 0.000 35.54 C(4) 1.395e+00 CO2 1.329e+00 1.330e+00 0.124 0.124 0.000 34.40 (CO2)2 3.244e-02 3.245e-02 -1.489 -1.489 0.000 68.81 - HCO3- 8.131e-04 7.877e-04 -3.090 -3.104 -0.014 24.74 - CO3-2 5.746e-11 5.060e-11 -10.241 -10.296 -0.055 -4.70 -H(0) 8.981e-40 - H2 4.490e-40 4.491e-40 -39.348 -39.348 0.000 28.58 -O(0) 3.447e-14 - O2 1.723e-14 1.724e-14 -13.764 -13.764 0.000 30.31 + HCO3- 8.132e-04 7.878e-04 -3.090 -3.104 -0.014 24.63 + CO3-2 5.727e-11 5.043e-11 -10.242 -10.297 -0.055 -3.49 +H(0) 8.001e-15 + H2 4.001e-15 4.001e-15 -14.398 -14.398 0.000 28.58 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -63.663 -63.663 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -117.33 -120.17 -2.84 CH4 + CH4(g) -17.53 -20.37 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.0 atm, phi 0.658 - H2(g) -36.21 -39.35 -3.13 H2 + H2(g) -11.26 -14.40 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.364 - O2(g) -10.84 -13.76 -2.93 O2 + O2(g) -60.74 -63.66 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -989,52 +995,53 @@ H2O(g) -1.02 9.646e-02 0.334 8.995e-03 1.127e-02 2.272e-03 ----------------------------Description of solution---------------------------- pH = 3.103 Charge balance - pe = 15.000 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 318 - Density (g/cm) = 1.01275 + pe = 2.558 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 318 + Density (g/cm³) = 1.01275 Volume (L) = 1.04787 + Viscosity (mPa s) = 0.88943 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.135e-04 + Ionic strength (mol/kgw) = 8.136e-04 Mass of water (kg) = 9.998e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.396e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 65.20 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 44 + Iterations = 39 Total H = 1.109899e+02 - Total O = 5.828652e+01 + Total O = 5.828669e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.135e-04 7.888e-04 -3.090 -3.103 -0.013 0.00 + H+ 8.136e-04 7.889e-04 -3.090 -3.103 -0.013 0.00 OH- 1.371e-11 1.327e-11 -10.863 -10.877 -0.014 -3.87 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.02 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.330 -120.330 0.000 35.54 +C(-4) 1.609e-21 + CH4 1.609e-21 1.610e-21 -20.793 -20.793 0.000 35.54 C(4) 1.396e+00 CO2 1.330e+00 1.331e+00 0.124 0.124 0.000 34.40 (CO2)2 3.249e-02 3.250e-02 -1.488 -1.488 0.000 68.81 - HCO3- 8.135e-04 7.880e-04 -3.090 -3.103 -0.014 24.74 - CO3-2 5.747e-11 5.061e-11 -10.241 -10.296 -0.055 -4.70 -H(0) 8.179e-40 - H2 4.090e-40 4.090e-40 -39.388 -39.388 0.000 28.58 -O(0) 4.154e-14 - O2 2.077e-14 2.077e-14 -13.683 -13.683 0.000 30.31 + HCO3- 8.136e-04 7.881e-04 -3.090 -3.103 -0.014 24.63 + CO3-2 5.728e-11 5.044e-11 -10.242 -10.297 -0.055 -3.49 +H(0) 6.266e-15 + H2 3.133e-15 3.134e-15 -14.504 -14.504 0.000 28.58 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -63.451 -63.451 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -117.49 -120.33 -2.84 CH4 + CH4(g) -17.95 -20.79 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.1 atm, phi 0.657 - H2(g) -36.25 -39.39 -3.13 H2 + H2(g) -11.37 -14.50 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.334 - O2(g) -10.76 -13.68 -2.93 O2 + O2(g) -60.52 -63.45 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1071,7 +1078,7 @@ Total pressure: 65.19 atmospheres (Peng-Robinson calculation) Component log P P phi Initial Final Delta CO2(g) 1.81 6.508e+01 0.657 7.604e+00 8.605e+00 1.001e+00 -H2O(g) -0.98 1.051e-01 0.306 1.127e-02 1.390e-02 2.628e-03 +H2O(g) -0.98 1.051e-01 0.306 1.127e-02 1.389e-02 2.628e-03 -----------------------------Solution composition------------------------------ @@ -1082,52 +1089,53 @@ H2O(g) -0.98 1.051e-01 0.306 1.127e-02 1.390e-02 2.628e-03 ----------------------------Description of solution---------------------------- pH = 3.103 Charge balance - pe = 15.010 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 318 - Density (g/cm) = 1.01274 + pe = 14.740 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 318 + Density (g/cm³) = 1.01275 Volume (L) = 1.04780 + Viscosity (mPa s) = 0.88943 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.133e-04 + Ionic strength (mol/kgw) = 8.134e-04 Mass of water (kg) = 9.997e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.396e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 65.19 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 43 + Iterations = 56 Total H = 1.109846e+02 - Total O = 5.828263e+01 + Total O = 5.828280e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.133e-04 7.887e-04 -3.090 -3.103 -0.013 0.00 + H+ 8.134e-04 7.888e-04 -3.090 -3.103 -0.013 0.00 OH- 1.371e-11 1.328e-11 -10.863 -10.877 -0.014 -3.87 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.413 -120.413 0.000 35.54 + CH4 0.000e+00 0.000e+00 -118.250 -118.250 0.000 35.54 C(4) 1.396e+00 CO2 1.330e+00 1.330e+00 0.124 0.124 0.000 34.40 (CO2)2 3.246e-02 3.247e-02 -1.489 -1.489 0.000 68.81 - HCO3- 8.133e-04 7.879e-04 -3.090 -3.104 -0.014 24.74 - CO3-2 5.747e-11 5.061e-11 -10.241 -10.296 -0.055 -4.70 -H(0) 7.801e-40 - H2 3.900e-40 3.901e-40 -39.409 -39.409 0.000 28.58 -O(0) 4.567e-14 - O2 2.283e-14 2.284e-14 -13.641 -13.641 0.000 30.31 + HCO3- 8.134e-04 7.880e-04 -3.090 -3.103 -0.014 24.63 + CO3-2 5.728e-11 5.044e-11 -10.242 -10.297 -0.055 -3.49 +H(0) 2.709e-39 + H2 1.355e-39 1.355e-39 -38.868 -38.868 0.000 28.58 +O(0) 3.786e-15 + O2 1.893e-15 1.893e-15 -14.723 -14.723 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -117.57 -120.41 -2.84 CH4 + CH4(g) -115.41 -118.25 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.1 atm, phi 0.657 - H2(g) -36.28 -39.41 -3.13 H2 + H2(g) -35.73 -38.87 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.306 - O2(g) -10.71 -13.64 -2.93 O2 + O2(g) -11.80 -14.72 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1164,7 +1172,7 @@ Total pressure: 65.17 atmospheres (Peng-Robinson calculation) Component log P P phi Initial Final Delta CO2(g) 1.81 6.506e+01 0.657 8.605e+00 9.606e+00 1.001e+00 -H2O(g) -0.94 1.145e-01 0.281 1.390e-02 1.691e-02 3.018e-03 +H2O(g) -0.94 1.145e-01 0.281 1.389e-02 1.691e-02 3.018e-03 -----------------------------Solution composition------------------------------ @@ -1175,52 +1183,53 @@ H2O(g) -0.94 1.145e-01 0.281 1.390e-02 1.691e-02 3.018e-03 ----------------------------Description of solution---------------------------- pH = 3.103 Charge balance - pe = 15.030 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 317 - Density (g/cm) = 1.01273 - Volume (L) = 1.04769 + pe = 14.912 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 318 + Density (g/cm³) = 1.01273 + Volume (L) = 1.04770 + Viscosity (mPa s) = 0.88943 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.129e-04 + Ionic strength (mol/kgw) = 8.130e-04 Mass of water (kg) = 9.997e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.394e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 65.17 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 46 Total H = 1.109786e+02 - Total O = 5.827670e+01 + Total O = 5.827687e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.129e-04 7.883e-04 -3.090 -3.103 -0.013 0.00 + H+ 8.130e-04 7.884e-04 -3.090 -3.103 -0.013 0.00 OH- 1.372e-11 1.328e-11 -10.863 -10.877 -0.014 -3.87 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.573 -120.573 0.000 35.54 + CH4 0.000e+00 0.000e+00 -119.630 -119.630 0.000 35.54 C(4) 1.394e+00 CO2 1.329e+00 1.329e+00 0.123 0.123 0.000 34.40 (CO2)2 3.240e-02 3.241e-02 -1.489 -1.489 0.000 68.81 - HCO3- 8.129e-04 7.875e-04 -3.090 -3.104 -0.014 24.74 - CO3-2 5.747e-11 5.061e-11 -10.241 -10.296 -0.055 -4.70 -H(0) 7.117e-40 - H2 3.558e-40 3.559e-40 -39.449 -39.449 0.000 28.58 -O(0) 5.487e-14 - O2 2.743e-14 2.744e-14 -13.562 -13.562 0.000 30.31 + HCO3- 8.130e-04 7.876e-04 -3.090 -3.104 -0.014 24.63 + CO3-2 5.727e-11 5.044e-11 -10.242 -10.297 -0.055 -3.49 +H(0) 1.224e-39 + H2 6.122e-40 6.123e-40 -39.213 -39.213 0.000 28.58 +O(0) 1.854e-14 + O2 9.269e-15 9.271e-15 -14.033 -14.033 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -117.73 -120.57 -2.84 CH4 + CH4(g) -116.79 -119.63 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.1 atm, phi 0.657 - H2(g) -36.32 -39.45 -3.13 H2 + H2(g) -36.08 -39.21 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.281 - O2(g) -10.63 -13.56 -2.93 O2 + O2(g) -11.11 -14.03 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1268,52 +1277,53 @@ H2O(g) -0.90 1.248e-01 0.258 1.691e-02 2.036e-02 3.449e-03 ----------------------------Description of solution---------------------------- pH = 3.104 Charge balance - pe = 15.015 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 317 - Density (g/cm) = 1.01271 + pe = 14.963 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 318 + Density (g/cm³) = 1.01271 Volume (L) = 1.04756 + Viscosity (mPa s) = 0.88943 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.124e-04 + Ionic strength (mol/kgw) = 8.125e-04 Mass of water (kg) = 9.996e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.392e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 65.15 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 46 Total H = 1.109717e+02 - Total O = 5.826897e+01 + Total O = 5.826914e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.124e-04 7.877e-04 -3.090 -3.104 -0.013 0.00 + H+ 8.125e-04 7.878e-04 -3.090 -3.104 -0.013 0.00 OH- 1.373e-11 1.329e-11 -10.862 -10.876 -0.014 -3.87 H2O 5.551e+01 9.769e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.462 -120.461 0.000 35.54 + CH4 0.000e+00 0.000e+00 -120.042 -120.042 0.000 35.54 C(4) 1.392e+00 CO2 1.327e+00 1.327e+00 0.123 0.123 0.000 34.40 (CO2)2 3.231e-02 3.232e-02 -1.491 -1.491 0.000 68.81 - HCO3- 8.124e-04 7.870e-04 -3.090 -3.104 -0.014 24.74 - CO3-2 5.747e-11 5.061e-11 -10.241 -10.296 -0.055 -4.70 -H(0) 7.590e-40 - H2 3.795e-40 3.796e-40 -39.421 -39.421 0.000 28.58 -O(0) 4.824e-14 - O2 2.412e-14 2.413e-14 -13.618 -13.618 0.000 30.31 + HCO3- 8.125e-04 7.871e-04 -3.090 -3.104 -0.014 24.63 + CO3-2 5.727e-11 5.044e-11 -10.242 -10.297 -0.055 -3.49 +H(0) 9.664e-40 + H2 4.832e-40 4.833e-40 -39.316 -39.316 0.000 28.58 +O(0) 2.976e-14 + O2 1.488e-14 1.488e-14 -13.827 -13.827 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -117.62 -120.46 -2.84 CH4 + CH4(g) -117.20 -120.04 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.0 atm, phi 0.656 - H2(g) -36.29 -39.42 -3.13 H2 + H2(g) -36.18 -39.32 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.258 - O2(g) -10.69 -13.62 -2.93 O2 + O2(g) -10.90 -13.83 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1361,52 +1371,53 @@ H2O(g) -0.87 1.359e-01 0.237 2.036e-02 2.428e-02 3.919e-03 ----------------------------Description of solution---------------------------- pH = 3.104 Charge balance - pe = 15.017 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 317 - Density (g/cm) = 1.01269 - Volume (L) = 1.04740 + pe = 14.958 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 318 + Density (g/cm³) = 1.01269 + Volume (L) = 1.04741 + Viscosity (mPa s) = 0.88943 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.117e-04 + Ionic strength (mol/kgw) = 8.118e-04 Mass of water (kg) = 9.995e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.390e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 65.14 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 45 Total H = 1.109639e+02 - Total O = 5.826007e+01 + Total O = 5.826024e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.117e-04 7.871e-04 -3.091 -3.104 -0.013 0.00 + H+ 8.118e-04 7.872e-04 -3.091 -3.104 -0.013 0.00 OH- 1.374e-11 1.330e-11 -10.862 -10.876 -0.014 -3.87 H2O 5.551e+01 9.769e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.480 -120.480 0.000 35.54 + CH4 0.000e+00 0.000e+00 -120.006 -120.006 0.000 35.54 C(4) 1.390e+00 - CO2 1.324e+00 1.325e+00 0.122 0.122 0.000 34.40 + CO2 1.325e+00 1.325e+00 0.122 0.122 0.000 34.40 (CO2)2 3.221e-02 3.221e-02 -1.492 -1.492 0.000 68.81 - HCO3- 8.117e-04 7.863e-04 -3.091 -3.104 -0.014 24.74 - CO3-2 5.746e-11 5.061e-11 -10.241 -10.296 -0.055 -4.70 -H(0) 7.512e-40 - H2 3.756e-40 3.757e-40 -39.425 -39.425 0.000 28.58 -O(0) 4.926e-14 - O2 2.463e-14 2.463e-14 -13.609 -13.608 0.000 30.31 + HCO3- 8.118e-04 7.864e-04 -3.091 -3.104 -0.014 24.63 + CO3-2 5.727e-11 5.044e-11 -10.242 -10.297 -0.055 -3.49 +H(0) 9.870e-40 + H2 4.935e-40 4.936e-40 -39.307 -39.307 0.000 28.58 +O(0) 2.853e-14 + O2 1.427e-14 1.427e-14 -13.846 -13.846 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -117.64 -120.48 -2.84 CH4 + CH4(g) -117.16 -120.01 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.0 atm, phi 0.655 - H2(g) -36.29 -39.43 -3.13 H2 + H2(g) -36.17 -39.31 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.237 - O2(g) -10.68 -13.61 -2.93 O2 + O2(g) -10.92 -13.85 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1454,52 +1465,53 @@ H2O(g) -0.83 1.479e-01 0.218 2.428e-02 2.871e-02 4.427e-03 ----------------------------Description of solution---------------------------- pH = 3.104 Charge balance - pe = 15.005 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 317 - Density (g/cm) = 1.01267 + pe = 14.991 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 317 + Density (g/cm³) = 1.01267 Volume (L) = 1.04724 + Viscosity (mPa s) = 0.88943 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.110e-04 + Ionic strength (mol/kgw) = 8.112e-04 Mass of water (kg) = 9.995e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.387e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 65.12 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 48 Total H = 1.109550e+02 - Total O = 5.825079e+01 + Total O = 5.825096e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.110e-04 7.865e-04 -3.091 -3.104 -0.013 0.00 - OH- 1.375e-11 1.332e-11 -10.862 -10.876 -0.014 -3.87 + H+ 8.112e-04 7.866e-04 -3.091 -3.104 -0.013 0.00 + OH- 1.375e-11 1.331e-11 -10.862 -10.876 -0.014 -3.87 H2O 5.551e+01 9.769e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.387 -120.387 0.000 35.54 + CH4 0.000e+00 0.000e+00 -120.273 -120.273 0.000 35.54 C(4) 1.387e+00 CO2 1.322e+00 1.323e+00 0.121 0.121 0.000 34.40 (CO2)2 3.210e-02 3.211e-02 -1.493 -1.493 0.000 68.81 - HCO3- 8.110e-04 7.857e-04 -3.091 -3.105 -0.014 24.74 - CO3-2 5.746e-11 5.061e-11 -10.241 -10.296 -0.055 -4.70 -H(0) 7.931e-40 - H2 3.965e-40 3.966e-40 -39.402 -39.402 0.000 28.58 -O(0) 4.420e-14 - O2 2.210e-14 2.210e-14 -13.656 -13.656 0.000 30.31 + HCO3- 8.112e-04 7.858e-04 -3.091 -3.105 -0.014 24.63 + CO3-2 5.726e-11 5.043e-11 -10.242 -10.297 -0.055 -3.49 +H(0) 8.470e-40 + H2 4.235e-40 4.236e-40 -39.373 -39.373 0.000 28.58 +O(0) 3.876e-14 + O2 1.938e-14 1.938e-14 -13.713 -13.713 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -117.54 -120.39 -2.84 CH4 + CH4(g) -117.43 -120.27 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.0 atm, phi 0.655 - H2(g) -36.27 -39.40 -3.13 H2 + H2(g) -36.24 -39.37 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.218 - O2(g) -10.73 -13.66 -2.93 O2 + O2(g) -10.79 -13.71 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1529,7 +1541,7 @@ Reaction 1. Total pressure: 65.10 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 7.33e-02 liters/mole - P * Vm / RT: 0.19493 (Compressibility Factor Z) + P * Vm / RT: 0.19494 (Compressibility Factor Z) Moles in gas ---------------------------------- @@ -1547,52 +1559,53 @@ H2O(g) -0.79 1.606e-01 0.200 2.871e-02 3.368e-02 4.970e-03 ----------------------------Description of solution---------------------------- pH = 3.105 Charge balance - pe = 14.969 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 317 - Density (g/cm) = 1.01265 + pe = 14.960 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 317 + Density (g/cm³) = 1.01265 Volume (L) = 1.04709 + Viscosity (mPa s) = 0.88943 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.105e-04 + Ionic strength (mol/kgw) = 8.106e-04 Mass of water (kg) = 9.994e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.386e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 65.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 46 Total H = 1.109451e+02 - Total O = 5.824194e+01 + Total O = 5.824211e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.105e-04 7.860e-04 -3.091 -3.105 -0.013 0.00 + H+ 8.106e-04 7.861e-04 -3.091 -3.105 -0.013 0.00 OH- 1.376e-11 1.332e-11 -10.861 -10.875 -0.014 -3.87 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.101 -120.101 0.000 35.54 + CH4 0.000e+00 0.000e+00 -120.031 -120.031 0.000 35.54 C(4) 1.386e+00 CO2 1.321e+00 1.321e+00 0.121 0.121 0.000 34.40 (CO2)2 3.202e-02 3.203e-02 -1.495 -1.494 0.000 68.81 - HCO3- 8.105e-04 7.852e-04 -3.091 -3.105 -0.014 24.74 - CO3-2 5.746e-11 5.061e-11 -10.241 -10.296 -0.055 -4.70 -H(0) 9.354e-40 - H2 4.677e-40 4.678e-40 -39.330 -39.330 0.000 28.58 -O(0) 3.178e-14 - O2 1.589e-14 1.589e-14 -13.799 -13.799 0.000 30.31 + HCO3- 8.106e-04 7.853e-04 -3.091 -3.105 -0.014 24.63 + CO3-2 5.726e-11 5.043e-11 -10.242 -10.297 -0.055 -3.49 +H(0) 9.736e-40 + H2 4.868e-40 4.869e-40 -39.313 -39.313 0.000 28.58 +O(0) 2.933e-14 + O2 1.466e-14 1.467e-14 -13.834 -13.834 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -117.26 -120.10 -2.84 CH4 + CH4(g) -117.19 -120.03 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 64.9 atm, phi 0.654 - H2(g) -36.20 -39.33 -3.13 H2 + H2(g) -36.18 -39.31 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.2 atm, phi 0.200 - O2(g) -10.87 -13.80 -2.93 O2 + O2(g) -10.91 -13.83 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1622,7 +1635,7 @@ Reaction 1. Total pressure: 65.07 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 6.82e-02 liters/mole - P * Vm / RT: 0.18148 (Compressibility Factor Z) + P * Vm / RT: 0.18149 (Compressibility Factor Z) Moles in gas ---------------------------------- @@ -1640,52 +1653,53 @@ H2O(g) -0.76 1.742e-01 0.185 3.368e-02 3.922e-02 5.546e-03 ----------------------------Description of solution---------------------------- pH = 3.105 Charge balance - pe = 14.928 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 316 - Density (g/cm) = 1.01264 + pe = 14.925 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 317 + Density (g/cm³) = 1.01265 Volume (L) = 1.04695 + Viscosity (mPa s) = 0.88943 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.103e-04 + Ionic strength (mol/kgw) = 8.104e-04 Mass of water (kg) = 9.993e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.385e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 65.07 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 32 Total H = 1.109340e+02 - Total O = 5.823435e+01 + Total O = 5.823451e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.103e-04 7.857e-04 -3.091 -3.105 -0.013 0.00 + H+ 8.104e-04 7.859e-04 -3.091 -3.105 -0.013 0.00 OH- 1.376e-11 1.333e-11 -10.861 -10.875 -0.014 -3.87 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.773 -119.773 0.000 35.54 + CH4 0.000e+00 0.000e+00 -119.745 -119.744 0.000 35.54 C(4) 1.385e+00 CO2 1.320e+00 1.320e+00 0.121 0.121 0.000 34.40 (CO2)2 3.198e-02 3.199e-02 -1.495 -1.495 0.000 68.81 - HCO3- 8.103e-04 7.850e-04 -3.091 -3.105 -0.014 24.74 - CO3-2 5.745e-11 5.061e-11 -10.241 -10.296 -0.055 -4.70 -H(0) 1.130e-39 - H2 5.648e-40 5.649e-40 -39.248 -39.248 0.000 28.58 -O(0) 2.180e-14 - O2 1.090e-14 1.090e-14 -13.963 -13.963 0.000 30.31 + HCO3- 8.104e-04 7.851e-04 -3.091 -3.105 -0.014 24.63 + CO3-2 5.726e-11 5.043e-11 -10.242 -10.297 -0.055 -3.49 +H(0) 1.148e-39 + H2 5.742e-40 5.744e-40 -39.241 -39.241 0.000 28.58 +O(0) 2.108e-14 + O2 1.054e-14 1.054e-14 -13.977 -13.977 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -116.93 -119.77 -2.84 CH4 + CH4(g) -116.90 -119.74 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 64.9 atm, phi 0.654 - H2(g) -36.11 -39.25 -3.13 H2 + H2(g) -36.11 -39.24 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.2 atm, phi 0.185 - O2(g) -11.04 -13.96 -2.93 O2 + O2(g) -11.05 -13.98 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1728,57 +1742,58 @@ H2O(g) -0.69 2.026e-01 0.159 3.922e-02 4.502e-02 5.801e-03 Elements Molality Moles - C 1.395e+00 1.393e+00 + C 1.395e+00 1.394e+00 ----------------------------Description of solution---------------------------- pH = 3.102 Charge balance - pe = 14.909 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 318 - Density (g/cm) = 1.01297 + pe = 14.876 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 319 + Density (g/cm³) = 1.01297 Volume (L) = 1.04694 + Viscosity (mPa s) = 0.88937 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.155e-04 + Ionic strength (mol/kgw) = 8.156e-04 Mass of water (kg) = 9.992e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.395e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 70.42 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 38 Total H = 1.109224e+02 - Total O = 5.824807e+01 + Total O = 5.824824e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.155e-04 7.907e-04 -3.089 -3.102 -0.013 0.00 + H+ 8.156e-04 7.909e-04 -3.089 -3.102 -0.013 0.00 OH- 1.374e-11 1.330e-11 -10.862 -10.876 -0.014 -3.86 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.01 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.601 -119.601 0.000 35.55 + CH4 0.000e+00 0.000e+00 -119.338 -119.338 0.000 35.55 C(4) 1.395e+00 CO2 1.329e+00 1.329e+00 0.124 0.124 0.000 34.40 (CO2)2 3.242e-02 3.243e-02 -1.489 -1.489 0.000 68.80 - HCO3- 8.155e-04 7.900e-04 -3.089 -3.102 -0.014 24.75 - CO3-2 5.784e-11 5.093e-11 -10.238 -10.293 -0.055 -4.65 -H(0) 1.240e-39 - H2 6.199e-40 6.200e-40 -39.208 -39.208 0.000 28.57 -O(0) 1.788e-14 - O2 8.941e-15 8.943e-15 -14.049 -14.049 0.000 30.30 + HCO3- 8.156e-04 7.901e-04 -3.089 -3.102 -0.014 24.64 + CO3-2 5.762e-11 5.074e-11 -10.239 -10.295 -0.055 -3.45 +H(0) 1.443e-39 + H2 7.215e-40 7.216e-40 -39.142 -39.142 0.000 28.57 +O(0) 1.320e-14 + O2 6.601e-15 6.602e-15 -14.180 -14.180 0.000 30.30 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 70 atm) - CH4(g) -116.76 -119.60 -2.85 CH4 + CH4(g) -116.49 -119.34 -2.85 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 70.2 atm, phi 0.613 - H2(g) -36.07 -39.21 -3.14 H2 + H2(g) -36.01 -39.14 -3.14 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.2 atm, phi 0.159 - O2(g) -11.12 -14.05 -2.93 O2 + O2(g) -11.25 -14.18 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1805,7 +1820,7 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 80.19 atmospheres (Peng-Robinson calculation) +Total pressure: 80.18 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 6.01e-02 liters/mole P * Vm / RT: 0.19694 (Compressibility Factor Z) @@ -1821,57 +1836,58 @@ H2O(g) -0.61 2.464e-01 0.132 4.502e-02 5.114e-02 6.118e-03 Elements Molality Moles - C 1.411e+00 1.409e+00 + C 1.411e+00 1.410e+00 ----------------------------Description of solution---------------------------- pH = 3.097 Charge balance - pe = 14.943 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 322 - Density (g/cm) = 1.01354 + pe = 14.946 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 323 + Density (g/cm³) = 1.01354 Volume (L) = 1.04694 + Viscosity (mPa s) = 0.88926 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.245e-04 + Ionic strength (mol/kgw) = 8.247e-04 Mass of water (kg) = 9.991e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.411e+00 - Temperature (C) = 25.00 - Pressure (atm) = 80.19 + Temperature (°C) = 25.00 + Pressure (atm) = 80.18 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 44 Total H = 1.109101e+02 - Total O = 5.827394e+01 + Total O = 5.827411e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.245e-04 7.994e-04 -3.084 -3.097 -0.013 0.00 + H+ 8.247e-04 7.995e-04 -3.084 -3.097 -0.013 0.00 OH- 1.371e-11 1.327e-11 -10.863 -10.877 -0.014 -3.82 H2O 5.551e+01 9.766e-01 1.744 -0.010 0.000 18.01 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.838 -119.838 0.000 35.56 + CH4 0.000e+00 0.000e+00 -119.859 -119.859 0.000 35.56 C(4) 1.411e+00 CO2 1.344e+00 1.344e+00 0.128 0.128 0.000 34.40 (CO2)2 3.314e-02 3.315e-02 -1.480 -1.480 0.000 68.79 - HCO3- 8.245e-04 7.986e-04 -3.084 -3.098 -0.014 24.76 - CO3-2 5.854e-11 5.151e-11 -10.233 -10.288 -0.056 -4.57 -H(0) 1.070e-39 - H2 5.352e-40 5.353e-40 -39.271 -39.271 0.000 28.57 -O(0) 2.349e-14 - O2 1.174e-14 1.175e-14 -13.930 -13.930 0.000 30.29 + HCO3- 8.247e-04 7.987e-04 -3.084 -3.098 -0.014 24.65 + CO3-2 5.829e-11 5.130e-11 -10.234 -10.290 -0.056 -3.36 +H(0) 1.058e-39 + H2 5.289e-40 5.290e-40 -39.277 -39.277 0.000 28.57 +O(0) 2.406e-14 + O2 1.203e-14 1.203e-14 -13.920 -13.920 0.000 30.29 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 80 atm) - CH4(g) -116.99 -119.84 -2.85 CH4 + CH4(g) -117.01 -119.86 -2.85 CH4 CO2(g) 1.64 0.13 -1.52 CO2 Pressure 79.9 atm, phi 0.552 - H2(g) -36.13 -39.27 -3.14 H2 + H2(g) -36.14 -39.28 -3.14 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.2 atm, phi 0.132 - O2(g) -11.00 -13.93 -2.93 O2 + O2(g) -10.98 -13.92 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1919,52 +1935,53 @@ H2O(g) -0.51 3.084e-01 0.107 5.114e-02 5.758e-02 6.433e-03 ----------------------------Description of solution---------------------------- pH = 3.091 Charge balance - pe = 14.947 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 327 - Density (g/cm) = 1.01434 + pe = 14.965 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 328 + Density (g/cm³) = 1.01434 Volume (L) = 1.04689 + Viscosity (mPa s) = 0.88911 Activity of water = 0.976 - Ionic strength (mol/kgw) = 8.370e-04 + Ionic strength (mol/kgw) = 8.371e-04 Mass of water (kg) = 9.989e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.432e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 94.41 Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 50 + Iterations = 49 Total H = 1.108973e+02 - Total O = 5.830878e+01 + Total O = 5.830896e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.370e-04 8.113e-04 -3.077 -3.091 -0.014 0.00 + H+ 8.371e-04 8.115e-04 -3.077 -3.091 -0.014 0.00 OH- 1.367e-11 1.323e-11 -10.864 -10.878 -0.014 -3.77 H2O 5.551e+01 9.762e-01 1.744 -0.010 0.000 17.99 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.815 -119.815 0.000 35.58 + CH4 0.000e+00 0.000e+00 -119.965 -119.965 0.000 35.58 C(4) 1.432e+00 CO2 1.363e+00 1.363e+00 0.134 0.134 0.000 34.39 (CO2)2 3.408e-02 3.409e-02 -1.467 -1.467 0.000 68.78 - HCO3- 8.370e-04 8.105e-04 -3.077 -3.091 -0.014 24.77 - CO3-2 5.957e-11 5.238e-11 -10.225 -10.281 -0.056 -4.44 -H(0) 1.069e-39 - H2 5.343e-40 5.344e-40 -39.272 -39.272 0.000 28.56 -O(0) 2.286e-14 - O2 1.143e-14 1.143e-14 -13.942 -13.942 0.000 30.26 + HCO3- 8.371e-04 8.106e-04 -3.077 -3.091 -0.014 24.67 + CO3-2 5.927e-11 5.212e-11 -10.227 -10.283 -0.056 -3.23 +H(0) 9.805e-40 + H2 4.902e-40 4.903e-40 -39.310 -39.310 0.000 28.56 +O(0) 2.715e-14 + O2 1.358e-14 1.358e-14 -13.867 -13.867 0.000 30.26 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 94 atm) - CH4(g) -116.95 -119.82 -2.86 CH4 + CH4(g) -117.10 -119.96 -2.86 CH4 CO2(g) 1.66 0.13 -1.53 CO2 Pressure 94.1 atm, phi 0.485 - H2(g) -36.12 -39.27 -3.15 H2 + H2(g) -36.16 -39.31 -3.15 H2 H2O(g) -1.48 -0.01 1.47 H2O Pressure 0.3 atm, phi 0.107 - O2(g) -11.00 -13.94 -2.94 O2 + O2(g) -10.92 -13.87 -2.94 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2007,57 +2024,58 @@ H2O(g) -0.40 3.942e-01 0.085 5.758e-02 6.425e-02 6.677e-03 Elements Molality Moles - C 1.457e+00 1.455e+00 + C 1.457e+00 1.456e+00 ----------------------------Description of solution---------------------------- pH = 3.082 Charge balance - pe = 14.973 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 333 - Density (g/cm) = 1.01543 + pe = 15.021 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 334 + Density (g/cm³) = 1.01543 Volume (L) = 1.04675 + Viscosity (mPa s) = 0.88890 Activity of water = 0.976 - Ionic strength (mol/kgw) = 8.535e-04 + Ionic strength (mol/kgw) = 8.537e-04 Mass of water (kg) = 9.988e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.457e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 114.16 Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 62 Total H = 1.108839e+02 - Total O = 5.835282e+01 + Total O = 5.835300e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.535e-04 8.271e-04 -3.069 -3.082 -0.014 0.00 + H+ 8.537e-04 8.273e-04 -3.069 -3.082 -0.014 0.00 OH- 1.364e-11 1.320e-11 -10.865 -10.879 -0.014 -3.70 H2O 5.551e+01 9.758e-01 1.744 -0.011 0.000 17.98 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.963 -119.962 0.000 35.61 + CH4 0.000e+00 0.000e+00 -120.347 -120.347 0.000 35.61 C(4) 1.457e+00 CO2 1.386e+00 1.386e+00 0.142 0.142 0.000 34.38 (CO2)2 3.526e-02 3.526e-02 -1.453 -1.453 0.000 68.76 - HCO3- 8.535e-04 8.262e-04 -3.069 -3.083 -0.014 24.79 - CO3-2 6.101e-11 5.359e-11 -10.215 -10.271 -0.056 -4.27 -H(0) 9.623e-40 - H2 4.812e-40 4.813e-40 -39.318 -39.318 0.000 28.55 -O(0) 2.702e-14 - O2 1.351e-14 1.351e-14 -13.869 -13.869 0.000 30.24 + HCO3- 8.537e-04 8.264e-04 -3.069 -3.083 -0.014 24.69 + CO3-2 6.065e-11 5.326e-11 -10.217 -10.274 -0.056 -3.06 +H(0) 7.714e-40 + H2 3.857e-40 3.858e-40 -39.414 -39.414 0.000 28.55 +O(0) 4.206e-14 + O2 2.103e-14 2.103e-14 -13.677 -13.677 0.000 30.24 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 114 atm) - CH4(g) -117.09 -119.96 -2.87 CH4 + CH4(g) -117.47 -120.35 -2.87 CH4 CO2(g) 1.68 0.14 -1.54 CO2 Pressure 113.8 atm, phi 0.420 - H2(g) -36.16 -39.32 -3.16 H2 + H2(g) -36.26 -39.41 -3.16 H2 H2O(g) -1.48 -0.01 1.47 H2O Pressure 0.4 atm, phi 0.085 - O2(g) -10.92 -13.87 -2.95 O2 + O2(g) -10.72 -13.68 -2.95 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2087,7 +2105,7 @@ Reaction 1. Total pressure: 140.69 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 5.11e-02 liters/mole - P * Vm / RT: 0.29361 (Compressibility Factor Z) + P * Vm / RT: 0.29360 (Compressibility Factor Z) Moles in gas ---------------------------------- @@ -2100,57 +2118,58 @@ H2O(g) -0.29 5.106e-01 0.066 6.425e-02 7.108e-02 6.829e-03 Elements Molality Moles - C 1.487e+00 1.486e+00 + C 1.488e+00 1.486e+00 ----------------------------Description of solution---------------------------- pH = 3.072 Charge balance - pe = 14.984 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 342 - Density (g/cm) = 1.01684 - Volume (L) = 1.04647 + pe = 15.060 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 343 + Density (g/cm³) = 1.01684 + Volume (L) = 1.04648 + Viscosity (mPa s) = 0.88865 Activity of water = 0.975 - Ionic strength (mol/kgw) = 8.748e-04 + Ionic strength (mol/kgw) = 8.750e-04 Mass of water (kg) = 9.987e-01 Total alkalinity (eq/kg) = 1.216e-09 - Total CO2 (mol/kg) = 1.487e+00 - Temperature (C) = 25.00 + Total CO2 (mol/kg) = 1.488e+00 + Temperature (°C) = 25.00 Pressure (atm) = 140.69 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 75 + Iterations = 74 Total H = 1.108703e+02 - Total O = 5.840622e+01 + Total O = 5.840641e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.748e-04 8.475e-04 -3.058 -3.072 -0.014 0.00 + H+ 8.750e-04 8.477e-04 -3.058 -3.072 -0.014 0.00 OH- 1.362e-11 1.317e-11 -10.866 -10.880 -0.014 -3.61 H2O 5.551e+01 9.753e-01 1.744 -0.011 0.000 17.96 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.975 -119.975 0.000 35.64 -C(4) 1.487e+00 + CH4 0.000e+00 0.000e+00 -120.580 -120.580 0.000 35.64 +C(4) 1.488e+00 CO2 1.413e+00 1.414e+00 0.150 0.150 0.000 34.37 (CO2)2 3.667e-02 3.668e-02 -1.436 -1.436 0.000 68.73 - HCO3- 8.748e-04 8.466e-04 -3.058 -3.072 -0.014 24.81 - CO3-2 6.297e-11 5.524e-11 -10.201 -10.258 -0.057 -4.04 -H(0) 9.311e-40 - H2 4.655e-40 4.656e-40 -39.332 -39.332 0.000 28.54 -O(0) 2.728e-14 - O2 1.364e-14 1.364e-14 -13.865 -13.865 0.000 30.20 + HCO3- 8.750e-04 8.468e-04 -3.058 -3.072 -0.014 24.73 + CO3-2 6.251e-11 5.483e-11 -10.204 -10.261 -0.057 -2.83 +H(0) 6.571e-40 + H2 3.285e-40 3.286e-40 -39.483 -39.483 0.000 28.54 +O(0) 5.476e-14 + O2 2.738e-14 2.739e-14 -13.563 -13.562 0.000 30.20 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 141 atm) - CH4(g) -117.08 -119.97 -2.89 CH4 + CH4(g) -117.69 -120.58 -2.89 CH4 CO2(g) 1.70 0.15 -1.55 CO2 Pressure 140.2 atm, phi 0.361 - H2(g) -36.16 -39.33 -3.17 H2 + H2(g) -36.31 -39.48 -3.17 H2 H2O(g) -1.47 -0.01 1.46 H2O Pressure 0.5 atm, phi 0.066 - O2(g) -10.90 -13.87 -2.97 O2 + O2(g) -10.60 -13.56 -2.97 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2184,10 +2203,10 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 175.51 atmospheres (Peng-Robinson calculation) +Total pressure: 175.50 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 4.86e-02 liters/mole - P * Vm / RT: 0.34895 (Compressibility Factor Z) + P * Vm / RT: 0.34894 (Compressibility Factor Z) Moles in gas ---------------------------------- @@ -2200,57 +2219,58 @@ H2O(g) -0.18 6.655e-01 0.052 7.108e-02 7.795e-02 6.869e-03 Elements Molality Moles - C 1.523e+00 1.520e+00 + C 1.523e+00 1.521e+00 ----------------------------Description of solution---------------------------- pH = 3.059 Charge balance - pe = 16.042 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 353 - Density (g/cm) = 1.01865 + pe = 16.076 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 353 + Density (g/cm³) = 1.01866 Volume (L) = 1.04600 + Viscosity (mPa s) = 0.88835 Activity of water = 0.975 - Ionic strength (mol/kgw) = 9.019e-04 + Ionic strength (mol/kgw) = 9.022e-04 Mass of water (kg) = 9.986e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.523e+00 - Temperature (C) = 25.00 - Pressure (atm) = 175.51 - Electrical balance (eq) = -1.214e-09 + Temperature (°C) = 25.00 + Pressure (atm) = 175.50 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 10 + Iterations = 40 (141 overall) Total H = 1.108565e+02 - Total O = 5.846909e+01 + Total O = 5.846928e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.019e-04 8.734e-04 -3.045 -3.059 -0.014 0.00 + H+ 9.022e-04 8.736e-04 -3.045 -3.059 -0.014 0.00 OH- 1.361e-11 1.316e-11 -10.866 -10.881 -0.015 -3.49 H2O 5.551e+01 9.748e-01 1.744 -0.011 0.000 17.93 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -128.346 -128.346 0.000 35.68 + CH4 0.000e+00 0.000e+00 -128.619 -128.619 0.000 35.68 C(4) 1.523e+00 CO2 1.445e+00 1.445e+00 0.160 0.160 0.000 34.35 (CO2)2 3.833e-02 3.834e-02 -1.416 -1.416 0.000 68.70 - HCO3- 9.019e-04 8.725e-04 -3.045 -3.059 -0.014 24.84 - CO3-2 6.560e-11 5.744e-11 -10.183 -10.241 -0.058 -3.74 + HCO3- 9.022e-04 8.727e-04 -3.045 -3.059 -0.014 24.77 + CO3-2 6.500e-11 5.692e-11 -10.187 -10.245 -0.058 -2.53 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.439 -41.439 0.000 28.53 -O(0) 4.150e-10 - O2 2.075e-10 2.075e-10 -9.683 -9.683 0.000 30.15 + H2 0.000e+00 0.000e+00 -41.508 -41.507 0.000 28.53 +O(0) 5.684e-10 + O2 2.842e-10 2.842e-10 -9.546 -9.546 0.000 30.15 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 176 atm) - CH4(g) -125.43 -128.35 -2.91 CH4 + CH4(g) -125.71 -128.62 -2.91 CH4 CO2(g) 1.73 0.16 -1.57 CO2 Pressure 174.8 atm, phi 0.310 - H2(g) -38.25 -41.44 -3.19 H2 + H2(g) -38.32 -41.51 -3.19 H2 H2O(g) -1.46 -0.01 1.45 H2O Pressure 0.7 atm, phi 0.052 - O2(g) -6.70 -9.68 -2.99 O2 + O2(g) -6.56 -9.55 -2.99 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2284,73 +2304,74 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 220.38 atmospheres (Peng-Robinson calculation) +Total pressure: 220.47 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 4.65e-02 liters/mole - P * Vm / RT: 0.41878 (Compressibility Factor Z) + P * Vm / RT: 0.41865 (Compressibility Factor Z) Moles in gas ---------------------------------- Component log P P phi Initial Final Delta -CO2(g) 2.34 2.197e+02 0.270 2.048e+01 2.144e+01 9.591e-01 -H2O(g) -0.14 7.217e-01 0.050 7.795e-02 7.044e-02 -7.514e-03 +CO2(g) 2.34 2.196e+02 0.270 2.048e+01 2.144e+01 9.605e-01 +H2O(g) -0.06 8.678e-01 0.041 7.795e-02 8.472e-02 6.772e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 1.563e+00 1.561e+00 + C 1.562e+00 1.560e+00 ----------------------------Description of solution---------------------------- pH = 3.043 Charge balance - pe = 16.057 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 366 - Density (g/cm) = 1.02094 - Volume (L) = 1.04556 + pe = 16.091 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 367 + Density (g/cm³) = 1.02093 + Volume (L) = 1.04525 + Viscosity (mPa s) = 0.88802 Activity of water = 0.974 Ionic strength (mol/kgw) = 9.364e-04 - Mass of water (kg) = 9.987e-01 + Mass of water (kg) = 9.985e-01 Total alkalinity (eq/kg) = 1.216e-09 - Total CO2 (mol/kg) = 1.563e+00 - Temperature (C) = 25.00 - Pressure (atm) = 220.38 - Electrical balance (eq) = -1.214e-09 + Total CO2 (mol/kg) = 1.562e+00 + Temperature (°C) = 25.00 + Pressure (atm) = 220.47 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 - Total H = 1.108716e+02 - Total O = 5.855845e+01 + Iterations = 35 (136 overall) + Total H = 1.108430e+02 + Total O = 5.854161e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 9.364e-04 9.063e-04 -3.029 -3.043 -0.014 0.00 OH- 1.362e-11 1.316e-11 -10.866 -10.881 -0.015 -3.34 H2O 5.551e+01 9.741e-01 1.744 -0.011 0.000 17.89 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -128.356 -128.356 0.000 35.73 -C(4) 1.563e+00 - CO2 1.482e+00 1.482e+00 0.171 0.171 0.000 34.33 - (CO2)2 4.031e-02 4.032e-02 -1.395 -1.394 0.000 68.66 - HCO3- 9.364e-04 9.053e-04 -3.029 -3.043 -0.015 24.88 - CO3-2 6.907e-11 6.035e-11 -10.161 -10.219 -0.059 -3.37 + CH4 0.000e+00 0.000e+00 -128.630 -128.630 0.000 35.73 +C(4) 1.562e+00 + CO2 1.481e+00 1.481e+00 0.171 0.171 0.000 34.33 + (CO2)2 4.026e-02 4.027e-02 -1.395 -1.395 0.000 68.66 + HCO3- 9.364e-04 9.053e-04 -3.029 -3.043 -0.015 24.82 + CO3-2 6.829e-11 5.967e-11 -10.166 -10.224 -0.059 -2.16 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.460 -41.460 0.000 28.51 -O(0) 4.149e-10 - O2 2.075e-10 2.075e-10 -9.683 -9.683 0.000 30.09 + H2 0.000e+00 0.000e+00 -41.528 -41.528 0.000 28.51 +O(0) 5.685e-10 + O2 2.842e-10 2.843e-10 -9.546 -9.546 0.000 30.09 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 220 atm) - CH4(g) -125.42 -128.36 -2.94 CH4 - CO2(g) 1.77 0.17 -1.60 CO2 Pressure 219.7 atm, phi 0.270 - H2(g) -38.25 -41.46 -3.21 H2 - H2O(g) -1.44 -0.01 1.43 H2O Pressure 0.7 atm, phi 0.050 - O2(g) -6.67 -9.68 -3.01 O2 + CH4(g) -125.69 -128.63 -2.94 CH4 + CO2(g) 1.77 0.17 -1.60 CO2 Pressure 219.6 atm, phi 0.270 + H2(g) -38.32 -41.53 -3.21 H2 + H2O(g) -1.44 -0.01 1.43 H2O Pressure 0.9 atm, phi 0.041 + O2(g) -6.54 -9.55 -3.01 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2384,73 +2405,74 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 277.37 atmospheres (Peng-Robinson calculation) +Total pressure: 277.89 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 4.45e-02 liters/mole - P * Vm / RT: 0.50490 (Compressibility Factor Z) + P * Vm / RT: 0.50510 (Compressibility Factor Z) Moles in gas ---------------------------------- Component log P P phi Initial Final Delta -CO2(g) 2.44 2.766e+02 0.238 2.144e+01 2.239e+01 9.546e-01 -H2O(g) -0.12 7.515e-01 0.050 7.044e-02 6.083e-02 -9.604e-03 +CO2(g) 2.44 2.768e+02 0.238 2.144e+01 2.240e+01 9.560e-01 +H2O(g) 0.05 1.127e+00 0.033 8.472e-02 9.124e-02 6.514e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 1.609e+00 1.607e+00 + C 1.607e+00 1.604e+00 ----------------------------Description of solution---------------------------- pH = 3.023 Charge balance - pe = 16.075 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 383 - Density (g/cm) = 1.02375 - Volume (L) = 1.04480 + pe = 16.109 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 384 + Density (g/cm³) = 1.02376 + Volume (L) = 1.04415 + Viscosity (mPa s) = 0.88771 Activity of water = 0.973 Ionic strength (mol/kgw) = 9.794e-04 - Mass of water (kg) = 9.989e-01 - Total alkalinity (eq/kg) = 1.215e-09 - Total CO2 (mol/kg) = 1.609e+00 - Temperature (C) = 25.00 - Pressure (atm) = 277.37 + Mass of water (kg) = 9.983e-01 + Total alkalinity (eq/kg) = 1.216e-09 + Total CO2 (mol/kg) = 1.607e+00 + Temperature (°C) = 25.00 + Pressure (atm) = 277.89 Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 19 - Total H = 1.108908e+02 - Total O = 5.865883e+01 + Iterations = 36 (137 overall) + Total H = 1.108300e+02 + Total O = 5.862319e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 9.794e-04 9.474e-04 -3.009 -3.023 -0.014 0.00 - OH- 1.365e-11 1.318e-11 -10.865 -10.880 -0.015 -3.15 + OH- 1.366e-11 1.319e-11 -10.865 -10.880 -0.015 -3.15 H2O 5.551e+01 9.734e-01 1.744 -0.012 0.000 17.85 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -128.371 -128.371 0.000 35.80 -C(4) 1.609e+00 - CO2 1.522e+00 1.523e+00 0.183 0.183 0.000 34.30 - (CO2)2 4.255e-02 4.256e-02 -1.371 -1.371 0.000 68.61 - HCO3- 9.794e-04 9.463e-04 -3.009 -3.024 -0.015 24.93 - CO3-2 7.361e-11 6.415e-11 -10.133 -10.193 -0.060 -2.91 + CH4 0.000e+00 0.000e+00 -128.646 -128.646 0.000 35.80 +C(4) 1.607e+00 + CO2 1.521e+00 1.521e+00 0.182 0.182 0.000 34.30 + (CO2)2 4.246e-02 4.247e-02 -1.372 -1.372 0.000 68.61 + HCO3- 9.794e-04 9.463e-04 -3.009 -3.024 -0.015 24.89 + CO3-2 7.261e-11 6.329e-11 -10.139 -10.199 -0.060 -1.70 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.486 -41.486 0.000 28.48 -O(0) 4.148e-10 - O2 2.074e-10 2.075e-10 -9.683 -9.683 0.000 30.02 + H2 0.000e+00 0.000e+00 -41.555 -41.555 0.000 28.48 +O(0) 5.685e-10 + O2 2.843e-10 2.843e-10 -9.546 -9.546 0.000 30.02 ------------------------------Saturation indices------------------------------- - Phase SI** log IAP log K(298 K, 277 atm) + Phase SI** log IAP log K(298 K, 278 atm) - CH4(g) -125.39 -128.37 -2.98 CH4 - CO2(g) 1.82 0.18 -1.64 CO2 Pressure 276.6 atm, phi 0.238 - H2(g) -38.25 -41.49 -3.24 H2 - H2O(g) -1.43 -0.01 1.42 H2O Pressure 0.8 atm, phi 0.050 - O2(g) -6.64 -9.68 -3.04 O2 + CH4(g) -125.67 -128.65 -2.98 CH4 + CO2(g) 1.82 0.18 -1.64 CO2 Pressure 276.8 atm, phi 0.238 + H2(g) -38.31 -41.55 -3.24 H2 + H2O(g) -1.43 -0.01 1.42 H2O Pressure 1.1 atm, phi 0.033 + O2(g) -6.51 -9.55 -3.04 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2484,73 +2506,74 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 349.34 atmospheres (Peng-Robinson calculation) +Total pressure: 350.70 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 4.27e-02 liters/mole - P * Vm / RT: 0.61027 (Compressibility Factor Z) + P * Vm / RT: 0.61139 (Compressibility Factor Z) Moles in gas ---------------------------------- Component log P P phi Initial Final Delta -CO2(g) 2.54 3.486e+02 0.215 2.239e+01 2.334e+01 9.508e-01 -H2O(g) -0.10 7.907e-01 0.050 6.083e-02 5.296e-02 -7.875e-03 +CO2(g) 2.54 3.492e+02 0.215 2.240e+01 2.335e+01 9.518e-01 +H2O(g) 0.16 1.455e+00 0.027 9.124e-02 9.730e-02 6.064e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 1.658e+00 1.656e+00 + C 1.655e+00 1.652e+00 ----------------------------Description of solution---------------------------- - pH = 3.001 Charge balance - pe = 16.096 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 404 - Density (g/cm) = 1.02719 - Volume (L) = 1.04355 + pH = 3.000 Charge balance + pe = 16.130 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 405 + Density (g/cm³) = 1.02723 + Volume (L) = 1.04258 + Viscosity (mPa s) = 0.88747 Activity of water = 0.973 Ionic strength (mol/kgw) = 1.033e-03 - Mass of water (kg) = 9.990e-01 - Total alkalinity (eq/kg) = 1.215e-09 - Total CO2 (mol/kg) = 1.658e+00 - Temperature (C) = 25.00 - Pressure (atm) = 349.34 - Electrical balance (eq) = -1.213e-09 + Mass of water (kg) = 9.982e-01 + Total alkalinity (eq/kg) = 1.216e-09 + Total CO2 (mol/kg) = 1.655e+00 + Temperature (°C) = 25.00 + Pressure (atm) = 350.70 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 21 - Total H = 1.109065e+02 - Total O = 5.876506e+01 + Iterations = 35 (136 overall) + Total H = 1.108178e+02 + Total O = 5.871355e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.033e-03 9.988e-04 -2.986 -3.001 -0.015 0.00 - OH- 1.372e-11 1.324e-11 -10.863 -10.878 -0.016 -2.93 - H2O 5.551e+01 9.726e-01 1.744 -0.012 0.000 17.80 + H+ 1.033e-03 9.990e-04 -2.986 -3.000 -0.015 0.00 + OH- 1.373e-11 1.325e-11 -10.862 -10.878 -0.016 -2.93 + H2O 5.551e+01 9.726e-01 1.744 -0.012 0.000 17.79 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -128.393 -128.393 0.000 35.87 -C(4) 1.658e+00 - CO2 1.566e+00 1.567e+00 0.195 0.195 0.000 34.27 - (CO2)2 4.505e-02 4.506e-02 -1.346 -1.346 0.000 68.54 - HCO3- 1.033e-03 9.976e-04 -2.986 -3.001 -0.015 25.00 - CO3-2 7.956e-11 6.913e-11 -10.099 -10.160 -0.061 -2.35 + CH4 0.000e+00 0.000e+00 -128.668 -128.668 0.000 35.87 +C(4) 1.655e+00 + CO2 1.564e+00 1.565e+00 0.194 0.194 0.000 34.27 + (CO2)2 4.492e-02 4.493e-02 -1.348 -1.347 0.000 68.54 + HCO3- 1.033e-03 9.978e-04 -2.986 -3.001 -0.015 24.98 + CO3-2 7.829e-11 6.803e-11 -10.106 -10.167 -0.061 -1.13 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.519 -41.519 0.000 28.46 -O(0) 4.148e-10 - O2 2.074e-10 2.074e-10 -9.683 -9.683 0.000 29.93 + H2 0.000e+00 0.000e+00 -41.588 -41.588 0.000 28.46 +O(0) 5.686e-10 + O2 2.843e-10 2.844e-10 -9.546 -9.546 0.000 29.93 ------------------------------Saturation indices------------------------------- - Phase SI** log IAP log K(298 K, 349 atm) + Phase SI** log IAP log K(298 K, 351 atm) - CH4(g) -125.37 -128.39 -3.02 CH4 - CO2(g) 1.88 0.20 -1.68 CO2 Pressure 348.6 atm, phi 0.215 - H2(g) -38.24 -41.52 -3.28 H2 - H2O(g) -1.40 -0.01 1.39 H2O Pressure 0.8 atm, phi 0.050 - O2(g) -6.61 -9.68 -3.08 O2 + CH4(g) -125.64 -128.67 -3.02 CH4 + CO2(g) 1.88 0.19 -1.68 CO2 Pressure 349.2 atm, phi 0.215 + H2(g) -38.31 -41.59 -3.28 H2 + H2O(g) -1.40 -0.01 1.39 H2O Pressure 1.5 atm, phi 0.027 + O2(g) -6.47 -9.55 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2584,73 +2607,74 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 439.98 atmospheres (Peng-Robinson calculation) +Total pressure: 442.66 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters - Molar volume: 4.11e-02 liters/mole - P * Vm / RT: 0.73890 (Compressibility Factor Z) + Molar volume: 4.10e-02 liters/mole + P * Vm / RT: 0.74155 (Compressibility Factor Z) Moles in gas ---------------------------------- Component log P P phi Initial Final Delta -CO2(g) 2.64 4.391e+02 0.200 2.334e+01 2.429e+01 9.475e-01 -H2O(g) -0.07 8.428e-01 0.050 5.296e-02 4.662e-02 -6.335e-03 +CO2(g) 2.64 4.408e+02 0.199 2.335e+01 2.430e+01 9.482e-01 +H2O(g) 0.27 1.863e+00 0.023 9.730e-02 1.027e-01 5.386e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 1.710e+00 1.708e+00 + C 1.707e+00 1.704e+00 ----------------------------Description of solution---------------------------- pH = 2.973 Charge balance - pe = 16.121 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 431 - Density (g/cm) = 1.03139 - Volume (L) = 1.04165 + pe = 16.156 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 432 + Density (g/cm³) = 1.03147 + Volume (L) = 1.04040 + Viscosity (mPa s) = 0.88743 Activity of water = 0.972 - Ionic strength (mol/kgw) = 1.101e-03 - Mass of water (kg) = 9.991e-01 - Total alkalinity (eq/kg) = 1.214e-09 - Total CO2 (mol/kg) = 1.710e+00 - Temperature (C) = 25.00 - Pressure (atm) = 439.98 - Electrical balance (eq) = -1.213e-09 + Ionic strength (mol/kgw) = 1.102e-03 + Mass of water (kg) = 9.981e-01 + Total alkalinity (eq/kg) = 1.216e-09 + Total CO2 (mol/kg) = 1.707e+00 + Temperature (°C) = 25.00 + Pressure (atm) = 442.66 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 23 - Total H = 1.109192e+02 - Total O = 5.887637e+01 + Iterations = 36 (137 overall) + Total H = 1.108071e+02 + Total O = 5.881181e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.101e-03 1.064e-03 -2.958 -2.973 -0.015 0.00 - OH- 1.383e-11 1.333e-11 -10.859 -10.875 -0.016 -2.66 - H2O 5.551e+01 9.717e-01 1.744 -0.012 0.000 17.73 + H+ 1.102e-03 1.064e-03 -2.958 -2.973 -0.015 0.00 + OH- 1.385e-11 1.335e-11 -10.858 -10.874 -0.016 -2.66 + H2O 5.551e+01 9.718e-01 1.744 -0.012 0.000 17.73 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -128.423 -128.423 0.000 35.96 -C(4) 1.710e+00 - CO2 1.613e+00 1.614e+00 0.208 0.208 0.000 34.23 - (CO2)2 4.778e-02 4.779e-02 -1.321 -1.321 0.000 68.46 - HCO3- 1.101e-03 1.062e-03 -2.958 -2.974 -0.016 25.07 - CO3-2 8.742e-11 7.568e-11 -10.058 -10.121 -0.063 -1.67 + CH4 0.000e+00 0.000e+00 -128.699 -128.699 0.000 35.96 +C(4) 1.707e+00 + CO2 1.611e+00 1.611e+00 0.207 0.207 0.000 34.23 + (CO2)2 4.764e-02 4.765e-02 -1.322 -1.322 0.000 68.46 + HCO3- 1.102e-03 1.063e-03 -2.958 -2.974 -0.016 25.08 + CO3-2 8.579e-11 7.426e-11 -10.067 -10.129 -0.063 -0.45 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.561 -41.560 0.000 28.42 -O(0) 4.147e-10 - O2 2.074e-10 2.074e-10 -9.683 -9.683 0.000 29.83 + H2 0.000e+00 0.000e+00 -41.630 -41.630 0.000 28.42 +O(0) 5.686e-10 + O2 2.843e-10 2.844e-10 -9.546 -9.546 0.000 29.83 ------------------------------Saturation indices------------------------------- - Phase SI** log IAP log K(298 K, 440 atm) + Phase SI** log IAP log K(298 K, 443 atm) - CH4(g) -125.34 -128.42 -3.08 CH4 - CO2(g) 1.94 0.21 -1.73 CO2 Pressure 439.1 atm, phi 0.200 - H2(g) -38.24 -41.56 -3.32 H2 - H2O(g) -1.38 -0.01 1.36 H2O Pressure 0.8 atm, phi 0.050 - O2(g) -6.56 -9.68 -3.12 O2 + CH4(g) -125.61 -128.70 -3.08 CH4 + CO2(g) 1.94 0.21 -1.74 CO2 Pressure 440.8 atm, phi 0.199 + H2(g) -38.31 -41.63 -3.32 H2 + H2O(g) -1.38 -0.01 1.36 H2O Pressure 1.9 atm, phi 0.023 + O2(g) -6.42 -9.55 -3.13 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2684,73 +2708,74 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 554.19 atmospheres (Peng-Robinson calculation) +Total pressure: 558.75 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters - Molar volume: 3.96e-02 liters/mole - P * Vm / RT: 0.89608 (Compressibility Factor Z) + Molar volume: 3.95e-02 liters/mole + P * Vm / RT: 0.90094 (Compressibility Factor Z) Moles in gas ---------------------------------- Component log P P phi Initial Final Delta -CO2(g) 2.74 5.533e+02 0.191 2.429e+01 2.524e+01 9.450e-01 -H2O(g) -0.04 9.130e-01 0.050 4.662e-02 4.165e-02 -4.977e-03 +CO2(g) 2.75 5.564e+02 0.191 2.430e+01 2.524e+01 9.455e-01 +H2O(g) 0.37 2.361e+00 0.019 1.027e-01 1.071e-01 4.442e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 1.765e+00 1.763e+00 + C 1.762e+00 1.759e+00 ----------------------------Description of solution---------------------------- - pH = 2.941 Charge balance - pe = 16.151 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 464 - Density (g/cm) = 1.03647 - Volume (L) = 1.03897 + pH = 2.940 Charge balance + pe = 16.186 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 466 + Density (g/cm³) = 1.03663 + Volume (L) = 1.03747 + Viscosity (mPa s) = 0.88778 Activity of water = 0.971 - Ionic strength (mol/kgw) = 1.188e-03 - Mass of water (kg) = 9.992e-01 + Ionic strength (mol/kgw) = 1.189e-03 + Mass of water (kg) = 9.980e-01 Total alkalinity (eq/kg) = 1.214e-09 - Total CO2 (mol/kg) = 1.765e+00 - Temperature (C) = 25.00 - Pressure (atm) = 554.19 - Electrical balance (eq) = -1.213e-09 + Total CO2 (mol/kg) = 1.762e+00 + Temperature (°C) = 25.00 + Pressure (atm) = 558.75 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 27 - Total H = 1.109291e+02 - Total O = 5.899133e+01 + Iterations = 32 (133 overall) + Total H = 1.107982e+02 + Total O = 5.891647e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.188e-03 1.146e-03 -2.925 -2.941 -0.016 0.00 - OH- 1.399e-11 1.347e-11 -10.854 -10.871 -0.016 -2.34 - H2O 5.551e+01 9.708e-01 1.744 -0.013 0.000 17.65 + H+ 1.189e-03 1.147e-03 -2.925 -2.940 -0.016 0.00 + OH- 1.403e-11 1.350e-11 -10.853 -10.870 -0.016 -2.33 + H2O 5.551e+01 9.709e-01 1.744 -0.013 0.000 17.64 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -128.464 -128.464 0.000 36.06 -C(4) 1.765e+00 - CO2 1.662e+00 1.663e+00 0.221 0.221 0.000 34.18 - (CO2)2 5.072e-02 5.074e-02 -1.295 -1.295 0.000 68.36 - HCO3- 1.188e-03 1.145e-03 -2.925 -2.941 -0.016 25.16 - CO3-2 9.788e-11 8.435e-11 -10.009 -10.074 -0.065 -0.86 + CH4 0.000e+00 0.000e+00 -128.741 -128.741 0.000 36.07 +C(4) 1.762e+00 + CO2 1.660e+00 1.660e+00 0.220 0.220 0.000 34.18 + (CO2)2 5.057e-02 5.059e-02 -1.296 -1.296 0.000 68.35 + HCO3- 1.189e-03 1.146e-03 -2.925 -2.941 -0.016 25.21 + CO3-2 9.577e-11 8.253e-11 -10.019 -10.083 -0.065 0.35 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.613 -41.613 0.000 28.38 -O(0) 4.147e-10 - O2 2.073e-10 2.074e-10 -9.683 -9.683 0.000 29.70 + H2 0.000e+00 0.000e+00 -41.683 -41.683 0.000 28.38 +O(0) 5.687e-10 + O2 2.843e-10 2.844e-10 -9.546 -9.546 0.000 29.70 ------------------------------Saturation indices------------------------------- - Phase SI** log IAP log K(298 K, 554 atm) + Phase SI** log IAP log K(298 K, 559 atm) - CH4(g) -125.31 -128.46 -3.16 CH4 - CO2(g) 2.02 0.22 -1.80 CO2 Pressure 553.3 atm, phi 0.191 - H2(g) -38.23 -41.61 -3.38 H2 - H2O(g) -1.34 -0.01 1.33 H2O Pressure 0.9 atm, phi 0.050 - O2(g) -6.50 -9.68 -3.18 O2 + CH4(g) -125.58 -128.74 -3.16 CH4 + CO2(g) 2.03 0.22 -1.81 CO2 Pressure 556.4 atm, phi 0.191 + H2(g) -38.30 -41.68 -3.38 H2 + H2O(g) -1.34 -0.01 1.33 H2O Pressure 2.4 atm, phi 0.019 + O2(g) -6.36 -9.55 -3.19 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2822,16 +2847,15 @@ H2O(g) -0.92 1.216e-01 0.998 0.000e+00 4.591e-03 4.591e-03 pH = 6.632 Charge balance pe = 9.262 Adjusted to redox equilibrium - Specific Conductance (S/cm, 50C) = 0 - Density (g/cm) = 0.98799 + Specific Conductance (µS/cm, 50°C) = 0 + Density (g/cm³) = 0.98799 Volume (L) = 1.01207 + Viscosity (mPa s) = 0.54650 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.341e-07 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.217e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 0.12 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.26 @@ -2842,7 +2866,7 @@ H2O(g) -0.92 1.216e-01 0.998 0.000e+00 4.591e-03 4.591e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 2.347e-07 2.346e-07 -6.629 -6.630 -0.000 -3.83 H+ 2.335e-07 2.334e-07 -6.632 -6.632 -0.000 0.00 @@ -2895,62 +2919,63 @@ Total pressure: 17.11 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CO2(g) 1.23 1.697e+01 0.928 0.000e+00 6.931e-01 6.931e-01 +CO2(g) 1.23 1.697e+01 0.928 0.000e+00 6.930e-01 6.930e-01 H2O(g) -0.85 1.400e-01 0.872 4.591e-03 5.717e-03 1.126e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 3.070e-01 3.069e-01 + C 3.070e-01 3.070e-01 ----------------------------Description of solution---------------------------- pH = 3.402 Charge balance - pe = 12.493 Adjusted to redox equilibrium - Specific Conductance (S/cm, 50C) = 217 - Density (g/cm) = 0.99137 + pe = 12.494 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 207 + Density (g/cm³) = 0.99137 Volume (L) = 1.02222 + Viscosity (mPa s) = 0.54697 Activity of water = 0.995 Ionic strength (mol/kgw) = 4.059e-04 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 3.070e-01 - Temperature (C) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 17.11 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 34 Total H = 1.110010e+02 - Total O = 5.611439e+01 + Total O = 5.611440e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 4.059e-04 3.965e-04 -3.392 -3.402 -0.010 0.00 OH- 1.426e-10 1.392e-10 -9.846 -9.856 -0.011 -3.83 H2O 5.551e+01 9.948e-01 1.744 -0.002 0.000 18.22 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -106.537 -106.537 0.000 37.34 + CH4 0.000e+00 0.000e+00 -106.546 -106.546 0.000 37.34 C(4) 3.070e-01 CO2 2.998e-01 2.998e-01 -0.523 -0.523 0.000 35.64 (CO2)2 3.375e-03 3.375e-03 -2.472 -2.472 0.000 71.28 - HCO3- 4.059e-04 3.963e-04 -3.392 -3.402 -0.010 25.71 - CO3-2 7.500e-11 6.816e-11 -10.125 -10.166 -0.042 -5.20 -H(0) 1.795e-35 - H2 8.977e-36 8.978e-36 -35.047 -35.047 0.000 28.58 -O(0) 2.755e-15 - O2 1.378e-15 1.378e-15 -14.861 -14.861 0.000 31.89 + HCO3- 4.059e-04 3.963e-04 -3.392 -3.402 -0.010 25.63 + CO3-2 7.490e-11 6.807e-11 -10.126 -10.167 -0.042 -3.03 +H(0) 1.787e-35 + H2 8.933e-36 8.934e-36 -35.049 -35.049 0.000 28.58 +O(0) 2.783e-15 + O2 1.391e-15 1.391e-15 -14.857 -14.857 0.000 31.89 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 17 atm) - CH4(g) -103.57 -106.54 -2.97 CH4 + CH4(g) -103.58 -106.55 -2.97 CH4 CO2(g) 1.20 -0.52 -1.72 CO2 Pressure 17.0 atm, phi 0.928 - H2(g) -31.90 -35.05 -3.14 H2 + H2(g) -31.91 -35.05 -3.14 H2 H2O(g) -0.91 -0.00 0.91 H2O Pressure 0.1 atm, phi 0.872 O2(g) -11.82 -14.86 -3.04 O2 @@ -2989,64 +3014,65 @@ Total pressure: 32.84 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CO2(g) 1.51 3.268e+01 0.864 6.931e-01 1.452e+00 7.592e-01 +CO2(g) 1.51 3.268e+01 0.864 6.930e-01 1.452e+00 7.592e-01 H2O(g) -0.79 1.615e-01 0.761 5.717e-03 7.178e-03 1.461e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 5.478e-01 5.477e-01 + C 5.478e-01 5.478e-01 ----------------------------Description of solution---------------------------- pH = 3.277 Charge balance - pe = 12.744 Adjusted to redox equilibrium - Specific Conductance (S/cm, 50C) = 290 - Density (g/cm) = 0.99409 + pe = 2.576 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 277 + Density (g/cm³) = 0.99409 Volume (L) = 1.03007 + Viscosity (mPa s) = 0.54733 Activity of water = 0.991 Ionic strength (mol/kgw) = 5.432e-04 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 5.478e-01 - Temperature (C) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 32.84 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 28 + Iterations = 38 Total H = 1.109981e+02 - Total O = 5.659453e+01 + Total O = 5.659456e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 5.432e-04 5.288e-04 -3.265 -3.277 -0.012 0.00 OH- 1.083e-10 1.053e-10 -9.965 -9.978 -0.012 -3.84 H2O 5.551e+01 9.909e-01 1.744 -0.004 0.000 18.21 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.306 -107.306 0.000 37.35 +C(-4) 1.084e-26 + CH4 1.084e-26 1.084e-26 -25.965 -25.965 0.000 37.35 C(4) 5.478e-01 CO2 5.265e-01 5.265e-01 -0.279 -0.279 0.000 35.62 (CO2)2 1.041e-02 1.041e-02 -1.983 -1.983 0.000 71.25 - HCO3- 5.432e-04 5.284e-04 -3.265 -3.277 -0.012 25.73 - CO3-2 7.746e-11 6.940e-11 -10.111 -10.159 -0.048 -5.04 -H(0) 9.886e-36 - H2 4.943e-36 4.944e-36 -35.306 -35.306 0.000 28.57 -O(0) 8.738e-15 - O2 4.369e-15 4.369e-15 -14.360 -14.360 0.000 31.85 + HCO3- 5.432e-04 5.285e-04 -3.265 -3.277 -0.012 25.66 + CO3-2 7.725e-11 6.921e-11 -10.112 -10.160 -0.048 -2.85 +H(0) 2.140e-15 + H2 1.070e-15 1.070e-15 -14.971 -14.971 0.000 28.57 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -55.030 -55.030 0.000 31.85 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 33 atm) - CH4(g) -104.33 -107.31 -2.98 CH4 + CH4(g) -22.99 -25.96 -2.98 CH4 CO2(g) 1.45 -0.28 -1.73 CO2 Pressure 32.7 atm, phi 0.864 - H2(g) -32.15 -35.31 -3.15 H2 + H2(g) -11.82 -14.97 -3.15 H2 H2O(g) -0.91 -0.00 0.91 H2O Pressure 0.2 atm, phi 0.761 - O2(g) -11.31 -14.36 -3.05 O2 + O2(g) -51.98 -55.03 -3.05 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3090,57 +3116,58 @@ H2O(g) -0.73 1.861e-01 0.665 7.178e-03 9.044e-03 1.866e-03 Elements Molality Moles - C 7.286e-01 7.284e-01 + C 7.286e-01 7.285e-01 ----------------------------Description of solution---------------------------- pH = 3.215 Charge balance - pe = 12.881 Adjusted to redox equilibrium - Specific Conductance (S/cm, 50C) = 335 - Density (g/cm) = 0.99620 - Volume (L) = 1.03583 + pe = 2.255 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 320 + Density (g/cm³) = 0.99620 + Volume (L) = 1.03584 + Viscosity (mPa s) = 0.54764 Activity of water = 0.988 Ionic strength (mol/kgw) = 6.276e-04 Mass of water (kg) = 9.998e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 7.286e-01 - Temperature (C) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 46.93 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 + Iterations = 25 Total H = 1.109943e+02 - Total O = 5.695404e+01 + Total O = 5.695410e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 6.276e-04 6.099e-04 -3.202 -3.215 -0.012 0.00 - OH- 9.491e-11 9.211e-11 -10.023 -10.036 -0.013 -3.86 + OH- 9.490e-11 9.211e-11 -10.023 -10.036 -0.013 -3.86 H2O 5.551e+01 9.879e-01 1.744 -0.005 0.000 18.20 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.795 -107.795 0.000 37.36 +C(-4) 1.625e-23 + CH4 1.625e-23 1.625e-23 -22.789 -22.789 0.000 37.36 C(4) 7.286e-01 CO2 6.920e-01 6.921e-01 -0.160 -0.160 0.000 35.61 (CO2)2 1.798e-02 1.798e-02 -1.745 -1.745 0.000 71.22 - HCO3- 6.276e-04 6.094e-04 -3.202 -3.215 -0.013 25.75 - CO3-2 7.933e-11 7.052e-11 -10.101 -10.152 -0.051 -4.90 -H(0) 6.890e-36 - H2 3.445e-36 3.445e-36 -35.463 -35.463 0.000 28.57 -O(0) 1.739e-14 - O2 8.695e-15 8.696e-15 -14.061 -14.061 0.000 31.82 + HCO3- 6.276e-04 6.094e-04 -3.202 -3.215 -0.013 25.69 + CO3-2 7.902e-11 7.024e-11 -10.102 -10.153 -0.051 -2.70 +H(0) 1.229e-14 + H2 6.145e-15 6.146e-15 -14.211 -14.211 0.000 28.57 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -56.563 -56.563 0.000 31.82 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 47 atm) - CH4(g) -104.81 -107.79 -2.99 CH4 + CH4(g) -19.80 -22.79 -2.99 CH4 CO2(g) 1.58 -0.16 -1.74 CO2 Pressure 46.7 atm, phi 0.809 - H2(g) -32.30 -35.46 -3.16 H2 + H2(g) -11.05 -14.21 -3.16 H2 H2O(g) -0.91 -0.01 0.90 H2O Pressure 0.2 atm, phi 0.665 - O2(g) -11.01 -14.06 -3.05 O2 + O2(g) -53.51 -56.56 -3.05 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3171,7 +3198,7 @@ Reaction 1. Total pressure: 59.15 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 3.17e-01 liters/mole - P * Vm / RT: 0.70756 (Compressibility Factor Z) + P * Vm / RT: 0.70757 (Compressibility Factor Z) Moles in gas ---------------------------------- @@ -3184,57 +3211,58 @@ H2O(g) -0.67 2.136e-01 0.583 9.044e-03 1.139e-02 2.342e-03 Elements Molality Moles - C 8.589e-01 8.587e-01 + C 8.589e-01 8.588e-01 ----------------------------Description of solution---------------------------- pH = 3.178 Charge balance - pe = 12.906 Adjusted to redox equilibrium - Specific Conductance (S/cm, 50C) = 364 - Density (g/cm) = 0.99780 + pe = 2.294 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 348 + Density (g/cm³) = 0.99780 Volume (L) = 1.03988 + Viscosity (mPa s) = 0.54790 Activity of water = 0.986 Ionic strength (mol/kgw) = 6.831e-04 Mass of water (kg) = 9.998e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 8.589e-01 - Temperature (C) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 59.15 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 21 + Iterations = 22 Total H = 1.109897e+02 - Total O = 5.721227e+01 + Total O = 5.721235e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 6.831e-04 6.631e-04 -3.166 -3.178 -0.013 0.00 - OH- 8.811e-11 8.541e-11 -10.055 -10.068 -0.014 -3.87 + OH- 8.811e-11 8.541e-11 -10.055 -10.069 -0.014 -3.87 H2O 5.551e+01 9.858e-01 1.744 -0.006 0.000 18.19 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.645 -107.645 0.000 37.37 +C(-4) 1.791e-23 + CH4 1.791e-23 1.791e-23 -22.747 -22.747 0.000 37.37 C(4) 8.589e-01 CO2 8.091e-01 8.092e-01 -0.092 -0.092 0.000 35.60 (CO2)2 2.458e-02 2.458e-02 -1.609 -1.609 0.000 71.19 - HCO3- 6.831e-04 6.625e-04 -3.166 -3.179 -0.013 25.77 - CO3-2 8.082e-11 7.150e-11 -10.092 -10.146 -0.053 -4.78 -H(0) 7.152e-36 - H2 3.576e-36 3.576e-36 -35.447 -35.447 0.000 28.56 -O(0) 1.569e-14 - O2 7.844e-15 7.845e-15 -14.105 -14.105 0.000 31.79 + HCO3- 6.831e-04 6.625e-04 -3.166 -3.179 -0.013 25.71 + CO3-2 8.042e-11 7.115e-11 -10.095 -10.148 -0.053 -2.57 +H(0) 1.199e-14 + H2 5.996e-15 5.997e-15 -14.222 -14.222 0.000 28.56 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -56.554 -56.554 0.000 31.79 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 59 atm) - CH4(g) -104.65 -107.64 -2.99 CH4 + CH4(g) -19.75 -22.75 -2.99 CH4 CO2(g) 1.65 -0.09 -1.74 CO2 Pressure 58.9 atm, phi 0.763 - H2(g) -32.28 -35.45 -3.16 H2 + H2(g) -11.06 -14.22 -3.16 H2 H2O(g) -0.90 -0.01 0.90 H2O Pressure 0.2 atm, phi 0.583 - O2(g) -11.05 -14.11 -3.06 O2 + O2(g) -53.49 -56.55 -3.06 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3265,70 +3293,71 @@ Reaction 1. Total pressure: 69.44 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 2.46e-01 liters/mole - P * Vm / RT: 0.64427 (Compressibility Factor Z) + P * Vm / RT: 0.64428 (Compressibility Factor Z) Moles in gas ---------------------------------- Component log P P phi Initial Final Delta CO2(g) 1.84 6.920e+01 0.724 3.141e+00 4.050e+00 9.089e-01 -H2O(g) -0.61 2.437e-01 0.514 1.139e-02 1.427e-02 2.882e-03 +H2O(g) -0.61 2.437e-01 0.514 1.139e-02 1.427e-02 2.881e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 9.500e-01 9.498e-01 + C 9.501e-01 9.498e-01 ----------------------------Description of solution---------------------------- pH = 3.156 Charge balance - pe = 12.978 Adjusted to redox equilibrium - Specific Conductance (S/cm, 50C) = 384 - Density (g/cm) = 0.99898 - Volume (L) = 1.04260 + pe = 2.084 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 367 + Density (g/cm³) = 0.99898 + Volume (L) = 1.04261 + Viscosity (mPa s) = 0.54812 Activity of water = 0.984 - Ionic strength (mol/kgw) = 7.202e-04 + Ionic strength (mol/kgw) = 7.203e-04 Mass of water (kg) = 9.997e-01 Total alkalinity (eq/kg) = 1.216e-09 - Total CO2 (mol/kg) = 9.500e-01 - Temperature (C) = 50.00 + Total CO2 (mol/kg) = 9.501e-01 + Temperature (°C) = 50.00 Pressure (atm) = 69.44 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 25 Total H = 1.109839e+02 - Total O = 5.739150e+01 + Total O = 5.739160e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.202e-04 6.986e-04 -3.143 -3.156 -0.013 0.00 - OH- 8.429e-11 8.164e-11 -10.074 -10.088 -0.014 -3.88 + H+ 7.203e-04 6.987e-04 -3.142 -3.156 -0.013 0.00 + OH- 8.428e-11 8.163e-11 -10.074 -10.088 -0.014 -3.88 H2O 5.551e+01 9.843e-01 1.744 -0.007 0.000 18.18 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -108.000 -107.999 0.000 37.37 -C(4) 9.500e-01 - CO2 8.898e-01 8.900e-01 -0.051 -0.051 0.000 35.58 +C(-4) 1.408e-21 + CH4 1.408e-21 1.408e-21 -20.851 -20.851 0.000 37.37 +C(4) 9.501e-01 + CO2 8.899e-01 8.900e-01 -0.051 -0.051 0.000 35.58 (CO2)2 2.973e-02 2.974e-02 -1.527 -1.527 0.000 71.17 - HCO3- 7.202e-04 6.980e-04 -3.143 -3.156 -0.014 25.78 - CO3-2 8.201e-11 7.233e-11 -10.086 -10.141 -0.055 -4.68 -H(0) 5.648e-36 - H2 2.824e-36 2.824e-36 -35.549 -35.549 0.000 28.55 -O(0) 2.457e-14 - O2 1.229e-14 1.229e-14 -13.911 -13.910 0.000 31.77 + HCO3- 7.203e-04 6.980e-04 -3.142 -3.156 -0.014 25.73 + CO3-2 8.154e-11 7.191e-11 -10.089 -10.143 -0.055 -2.47 +H(0) 3.459e-14 + H2 1.729e-14 1.730e-14 -13.762 -13.762 0.000 28.55 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -57.485 -57.485 0.000 31.77 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 69 atm) - CH4(g) -105.00 -108.00 -3.00 CH4 + CH4(g) -17.85 -20.85 -3.00 CH4 CO2(g) 1.70 -0.05 -1.75 CO2 Pressure 69.2 atm, phi 0.724 - H2(g) -32.38 -35.55 -3.17 H2 + H2(g) -10.59 -13.76 -3.17 H2 H2O(g) -0.90 -0.01 0.90 H2O Pressure 0.2 atm, phi 0.514 - O2(g) -10.84 -13.91 -3.07 O2 + O2(g) -54.42 -57.48 -3.07 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3377,52 +3406,53 @@ H2O(g) -0.56 2.762e-01 0.456 1.427e-02 1.774e-02 3.477e-03 ----------------------------Description of solution---------------------------- pH = 3.141 Charge balance - pe = 12.976 Adjusted to redox equilibrium - Specific Conductance (S/cm, 50C) = 397 - Density (g/cm) = 0.99985 + pe = 1.995 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 380 + Density (g/cm³) = 0.99985 Volume (L) = 1.04438 + Viscosity (mPa s) = 0.54830 Activity of water = 0.983 - Ionic strength (mol/kgw) = 7.454e-04 + Ionic strength (mol/kgw) = 7.455e-04 Mass of water (kg) = 9.997e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.013e+00 - Temperature (C) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 77.91 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 28 + Iterations = 23 Total H = 1.109769e+02 - Total O = 5.751280e+01 + Total O = 5.751290e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.454e-04 7.227e-04 -3.128 -3.141 -0.013 0.00 - OH- 8.202e-11 7.940e-11 -10.086 -10.100 -0.014 -3.89 + H+ 7.455e-04 7.228e-04 -3.128 -3.141 -0.013 0.00 + OH- 8.201e-11 7.939e-11 -10.086 -10.100 -0.014 -3.89 H2O 5.551e+01 9.833e-01 1.744 -0.007 0.000 18.17 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.847 -107.847 0.000 37.38 +C(-4) 1.000e-20 + CH4 1.000e-20 1.000e-20 -20.000 -20.000 0.000 37.38 C(4) 1.013e+00 - CO2 9.447e-01 9.449e-01 -0.025 -0.025 0.000 35.58 + CO2 9.448e-01 9.449e-01 -0.025 -0.025 0.000 35.58 (CO2)2 3.351e-02 3.352e-02 -1.475 -1.475 0.000 71.15 - HCO3- 7.454e-04 7.220e-04 -3.128 -3.141 -0.014 25.80 - CO3-2 8.296e-11 7.302e-11 -10.081 -10.137 -0.055 -4.60 -H(0) 6.034e-36 - H2 3.017e-36 3.017e-36 -35.520 -35.520 0.000 28.55 -O(0) 2.113e-14 - O2 1.056e-14 1.057e-14 -13.976 -13.976 0.000 31.75 + HCO3- 7.455e-04 7.221e-04 -3.128 -3.141 -0.014 25.74 + CO3-2 8.242e-11 7.255e-11 -10.084 -10.139 -0.055 -2.38 +H(0) 5.526e-14 + H2 2.763e-14 2.763e-14 -13.559 -13.559 0.000 28.55 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -57.900 -57.900 0.000 31.75 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 78 atm) - CH4(g) -104.84 -107.85 -3.01 CH4 + CH4(g) -16.99 -20.00 -3.01 CH4 CO2(g) 1.73 -0.02 -1.76 CO2 Pressure 77.6 atm, phi 0.693 - H2(g) -32.35 -35.52 -3.17 H2 + H2(g) -10.39 -13.56 -3.17 H2 H2O(g) -0.90 -0.01 0.89 H2O Pressure 0.3 atm, phi 0.456 - O2(g) -10.91 -13.98 -3.07 O2 + O2(g) -54.83 -57.90 -3.07 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3471,52 +3501,53 @@ H2O(g) -0.51 3.107e-01 0.407 1.774e-02 2.186e-02 4.119e-03 ----------------------------Description of solution---------------------------- pH = 3.131 Charge balance - pe = 13.030 Adjusted to redox equilibrium - Specific Conductance (S/cm, 50C) = 406 - Density (g/cm) = 1.00049 + pe = 1.992 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 389 + Density (g/cm³) = 1.00049 Volume (L) = 1.04551 + Viscosity (mPa s) = 0.54845 Activity of water = 0.983 Ionic strength (mol/kgw) = 7.627e-04 Mass of water (kg) = 9.996e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.055e+00 - Temperature (C) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 84.81 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 31 Total H = 1.109687e+02 - Total O = 5.759373e+01 + Total O = 5.759384e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.627e-04 7.392e-04 -3.118 -3.131 -0.014 0.00 - OH- 8.062e-11 7.802e-11 -10.094 -10.108 -0.014 -3.90 + H+ 7.627e-04 7.393e-04 -3.118 -3.131 -0.014 0.00 + OH- 8.061e-11 7.801e-11 -10.094 -10.108 -0.014 -3.90 H2O 5.551e+01 9.827e-01 1.744 -0.008 0.000 18.17 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -108.185 -108.185 0.000 37.38 +C(-4) 1.303e-20 + CH4 1.303e-20 1.303e-20 -19.885 -19.885 0.000 37.38 C(4) 1.055e+00 - CO2 9.819e-01 9.821e-01 -0.008 -0.008 0.000 35.57 + CO2 9.820e-01 9.821e-01 -0.008 -0.008 0.000 35.57 (CO2)2 3.620e-02 3.621e-02 -1.441 -1.441 0.000 71.14 - HCO3- 7.627e-04 7.385e-04 -3.118 -3.132 -0.014 25.81 - CO3-2 8.372e-11 7.359e-11 -10.077 -10.133 -0.056 -4.54 -H(0) 4.893e-36 - H2 2.446e-36 2.447e-36 -35.611 -35.611 0.000 28.55 -O(0) 3.166e-14 - O2 1.583e-14 1.583e-14 -13.801 -13.801 0.000 31.74 + HCO3- 7.627e-04 7.385e-04 -3.118 -3.132 -0.014 25.76 + CO3-2 8.312e-11 7.306e-11 -10.080 -10.136 -0.056 -2.31 +H(0) 5.816e-14 + H2 2.908e-14 2.909e-14 -13.536 -13.536 0.000 28.55 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -57.951 -57.951 0.000 31.74 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 85 atm) - CH4(g) -105.17 -108.19 -3.01 CH4 + CH4(g) -16.87 -19.89 -3.01 CH4 CO2(g) 1.75 -0.01 -1.76 CO2 Pressure 84.5 atm, phi 0.668 - H2(g) -32.44 -35.61 -3.18 H2 + H2(g) -10.36 -13.54 -3.18 H2 H2O(g) -0.90 -0.01 0.89 H2O Pressure 0.3 atm, phi 0.407 - O2(g) -10.73 -13.80 -3.07 O2 + O2(g) -54.88 -57.95 -3.07 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3565,52 +3596,53 @@ H2O(g) -0.46 3.475e-01 0.365 2.186e-02 2.666e-02 4.799e-03 ----------------------------Description of solution---------------------------- pH = 3.124 Charge balance - pe = 12.995 Adjusted to redox equilibrium - Specific Conductance (S/cm, 50C) = 412 - Density (g/cm) = 1.00097 + pe = 2.495 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 395 + Density (g/cm³) = 1.00098 Volume (L) = 1.04621 + Viscosity (mPa s) = 0.54857 Activity of water = 0.982 Ionic strength (mol/kgw) = 7.749e-04 Mass of water (kg) = 9.995e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.085e+00 - Temperature (C) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 90.49 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 34 Total H = 1.109591e+02 - Total O = 5.764778e+01 + Total O = 5.764790e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 7.749e-04 7.509e-04 -3.111 -3.124 -0.014 0.00 - OH- 7.973e-11 7.714e-11 -10.098 -10.113 -0.014 -3.90 + OH- 7.972e-11 7.713e-11 -10.098 -10.113 -0.014 -3.90 H2O 5.551e+01 9.822e-01 1.744 -0.008 0.000 18.16 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.839 -107.839 0.000 37.38 +C(-4) 1.431e-24 + CH4 1.431e-24 1.431e-24 -23.844 -23.844 0.000 37.38 C(4) 1.085e+00 CO2 1.008e+00 1.008e+00 0.003 0.003 0.000 35.56 (CO2)2 3.812e-02 3.813e-02 -1.419 -1.419 0.000 71.12 - HCO3- 7.749e-04 7.501e-04 -3.111 -3.125 -0.014 25.81 - CO3-2 8.433e-11 7.406e-11 -10.074 -10.130 -0.056 -4.49 -H(0) 5.908e-36 - H2 2.954e-36 2.955e-36 -35.530 -35.529 0.000 28.54 -O(0) 2.144e-14 - O2 1.072e-14 1.072e-14 -13.970 -13.970 0.000 31.72 + HCO3- 7.749e-04 7.502e-04 -3.111 -3.125 -0.014 25.77 + CO3-2 8.369e-11 7.349e-11 -10.077 -10.134 -0.056 -2.26 +H(0) 5.891e-15 + H2 2.945e-15 2.946e-15 -14.531 -14.531 0.000 28.54 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -55.967 -55.967 0.000 31.72 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 90 atm) - CH4(g) -104.82 -107.84 -3.01 CH4 + CH4(g) -20.83 -23.84 -3.01 CH4 CO2(g) 1.77 0.00 -1.76 CO2 Pressure 90.1 atm, phi 0.648 - H2(g) -32.35 -35.53 -3.18 H2 + H2(g) -11.35 -14.53 -3.18 H2 H2O(g) -0.90 -0.01 0.89 H2O Pressure 0.3 atm, phi 0.365 - O2(g) -10.89 -13.97 -3.08 O2 + O2(g) -52.89 -55.97 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3648,7 +3680,7 @@ Total pressure: 95.32 atmospheres (Peng-Robinson calculation) Component log P P phi Initial Final Delta CO2(g) 1.98 9.494e+01 0.630 6.916e+00 7.895e+00 9.787e-01 -H2O(g) -0.41 3.869e-01 0.329 2.666e-02 3.217e-02 5.511e-03 +H2O(g) -0.41 3.869e-01 0.329 2.666e-02 3.217e-02 5.510e-03 -----------------------------Solution composition------------------------------ @@ -3659,52 +3691,53 @@ H2O(g) -0.41 3.869e-01 0.329 2.666e-02 3.217e-02 5.511e-03 ----------------------------Description of solution---------------------------- pH = 3.119 Charge balance - pe = 12.995 Adjusted to redox equilibrium - Specific Conductance (S/cm, 50C) = 417 - Density (g/cm) = 1.00135 + pe = 12.633 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 399 + Density (g/cm³) = 1.00135 Volume (L) = 1.04665 + Viscosity (mPa s) = 0.54867 Activity of water = 0.982 - Ionic strength (mol/kgw) = 7.839e-04 + Ionic strength (mol/kgw) = 7.840e-04 Mass of water (kg) = 9.994e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.106e+00 - Temperature (C) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 95.32 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 34 + Iterations = 45 Total H = 1.109481e+02 - Total O = 5.768479e+01 + Total O = 5.768491e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.839e-04 7.595e-04 -3.106 -3.119 -0.014 0.00 - OH- 7.912e-11 7.654e-11 -10.102 -10.116 -0.014 -3.91 + H+ 7.840e-04 7.596e-04 -3.106 -3.119 -0.014 0.00 + OH- 7.912e-11 7.653e-11 -10.102 -10.116 -0.014 -3.91 H2O 5.551e+01 9.819e-01 1.744 -0.008 0.000 18.16 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.799 -107.799 0.000 37.39 + CH4 0.000e+00 0.000e+00 -104.901 -104.901 0.000 37.39 C(4) 1.106e+00 CO2 1.026e+00 1.026e+00 0.011 0.011 0.000 35.56 (CO2)2 3.954e-02 3.955e-02 -1.403 -1.403 0.000 71.11 - HCO3- 7.839e-04 7.588e-04 -3.106 -3.120 -0.014 25.82 - CO3-2 8.484e-11 7.446e-11 -10.071 -10.128 -0.057 -4.44 -H(0) 5.997e-36 - H2 2.999e-36 2.999e-36 -35.523 -35.523 0.000 28.54 -O(0) 2.060e-14 - O2 1.030e-14 1.030e-14 -13.987 -13.987 0.000 31.71 + HCO3- 7.840e-04 7.588e-04 -3.106 -3.120 -0.014 25.77 + CO3-2 8.416e-11 7.386e-11 -10.075 -10.132 -0.057 -2.21 +H(0) 3.180e-35 + H2 1.590e-35 1.590e-35 -34.799 -34.799 0.000 28.54 +O(0) 7.327e-16 + O2 3.664e-16 3.664e-16 -15.436 -15.436 0.000 31.71 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 95 atm) - CH4(g) -104.78 -107.80 -3.02 CH4 + CH4(g) -101.88 -104.90 -3.02 CH4 CO2(g) 1.78 0.01 -1.77 CO2 Pressure 94.9 atm, phi 0.630 - H2(g) -32.34 -35.52 -3.18 H2 + H2(g) -31.62 -34.80 -3.18 H2 H2O(g) -0.90 -0.01 0.89 H2O Pressure 0.4 atm, phi 0.329 - O2(g) -10.91 -13.99 -3.08 O2 + O2(g) -12.36 -15.44 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3742,7 +3775,7 @@ Total pressure: 99.75 atmospheres (Peng-Robinson calculation) Component log P P phi Initial Final Delta CO2(g) 2.00 9.932e+01 0.615 7.895e+00 8.878e+00 9.834e-01 -H2O(g) -0.37 4.298e-01 0.297 3.217e-02 3.842e-02 6.243e-03 +H2O(g) -0.37 4.298e-01 0.297 3.217e-02 3.841e-02 6.243e-03 -----------------------------Solution composition------------------------------ @@ -3753,52 +3786,53 @@ H2O(g) -0.37 4.298e-01 0.297 3.217e-02 3.842e-02 6.243e-03 ----------------------------Description of solution---------------------------- pH = 3.115 Charge balance - pe = 13.061 Adjusted to redox equilibrium - Specific Conductance (S/cm, 50C) = 421 - Density (g/cm) = 1.00168 + pe = 12.589 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 403 + Density (g/cm³) = 1.00168 Volume (L) = 1.04693 + Viscosity (mPa s) = 0.54877 Activity of water = 0.982 Ionic strength (mol/kgw) = 7.913e-04 Mass of water (kg) = 9.993e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.123e+00 - Temperature (C) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 99.75 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 34 + Iterations = 38 Total H = 1.109356e+02 - Total O = 5.771172e+01 + Total O = 5.771184e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.913e-04 7.665e-04 -3.102 -3.115 -0.014 0.00 - OH- 7.868e-11 7.610e-11 -10.104 -10.119 -0.014 -3.91 + H+ 7.913e-04 7.666e-04 -3.102 -3.115 -0.014 0.00 + OH- 7.867e-11 7.609e-11 -10.104 -10.119 -0.014 -3.91 H2O 5.551e+01 9.816e-01 1.744 -0.008 0.000 18.16 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -108.294 -108.294 0.000 37.39 + CH4 0.000e+00 0.000e+00 -104.514 -104.514 0.000 37.39 C(4) 1.123e+00 CO2 1.041e+00 1.041e+00 0.017 0.017 0.000 35.55 (CO2)2 4.066e-02 4.067e-02 -1.391 -1.391 0.000 71.10 - HCO3- 7.913e-04 7.657e-04 -3.102 -3.116 -0.014 25.82 - CO3-2 8.531e-11 7.482e-11 -10.069 -10.126 -0.057 -4.40 -H(0) 4.478e-36 - H2 2.239e-36 2.240e-36 -35.650 -35.650 0.000 28.54 -O(0) 3.660e-14 - O2 1.830e-14 1.831e-14 -13.738 -13.737 0.000 31.70 + HCO3- 7.913e-04 7.658e-04 -3.102 -3.116 -0.014 25.78 + CO3-2 8.459e-11 7.419e-11 -10.073 -10.130 -0.057 -2.16 +H(0) 3.946e-35 + H2 1.973e-35 1.973e-35 -34.705 -34.705 0.000 28.54 +O(0) 4.714e-16 + O2 2.357e-16 2.358e-16 -15.628 -15.628 0.000 31.70 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 100 atm) - CH4(g) -105.27 -108.29 -3.02 CH4 + CH4(g) -101.49 -104.51 -3.02 CH4 CO2(g) 1.79 0.02 -1.77 CO2 Pressure 99.3 atm, phi 0.615 - H2(g) -32.47 -35.65 -3.18 H2 + H2(g) -31.52 -34.70 -3.18 H2 H2O(g) -0.89 -0.01 0.89 H2O Pressure 0.4 atm, phi 0.297 - O2(g) -10.66 -13.74 -3.08 O2 + O2(g) -12.55 -15.63 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3829,14 +3863,14 @@ Reaction 1. Total pressure: 104.21 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 1.01e-01 liters/mole - P * Vm / RT: 0.39657 (Compressibility Factor Z) + P * Vm / RT: 0.39658 (Compressibility Factor Z) Moles in gas ---------------------------------- Component log P P phi Initial Final Delta CO2(g) 2.02 1.037e+02 0.599 8.878e+00 9.864e+00 9.856e-01 -H2O(g) -0.32 4.775e-01 0.268 3.842e-02 4.540e-02 6.988e-03 +H2O(g) -0.32 4.775e-01 0.268 3.841e-02 4.540e-02 6.987e-03 -----------------------------Solution composition------------------------------ @@ -3847,52 +3881,53 @@ H2O(g) -0.32 4.775e-01 0.268 3.842e-02 4.540e-02 6.988e-03 ----------------------------Description of solution---------------------------- pH = 3.112 Charge balance - pe = 13.041 Adjusted to redox equilibrium - Specific Conductance (S/cm, 50C) = 424 - Density (g/cm) = 1.00199 - Volume (L) = 1.04711 + pe = 2.168 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 406 + Density (g/cm³) = 1.00199 + Volume (L) = 1.04712 + Viscosity (mPa s) = 0.54886 Activity of water = 0.981 Ionic strength (mol/kgw) = 7.979e-04 Mass of water (kg) = 9.992e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.137e+00 - Temperature (C) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 104.21 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 34 + Iterations = 42 Total H = 1.109216e+02 - Total O = 5.773344e+01 + Total O = 5.773357e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.979e-04 7.728e-04 -3.098 -3.112 -0.014 0.00 - OH- 7.832e-11 7.574e-11 -10.106 -10.121 -0.015 -3.92 + H+ 7.979e-04 7.729e-04 -3.098 -3.112 -0.014 0.00 + OH- 7.831e-11 7.573e-11 -10.106 -10.121 -0.015 -3.92 H2O 5.551e+01 9.814e-01 1.744 -0.008 0.000 18.15 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -108.097 -108.097 0.000 37.39 +C(-4) 7.726e-22 + CH4 7.726e-22 7.728e-22 -21.112 -21.112 0.000 37.39 C(4) 1.137e+00 - CO2 1.053e+00 1.053e+00 0.022 0.023 0.000 35.55 + CO2 1.053e+00 1.053e+00 0.023 0.023 0.000 35.55 (CO2)2 4.165e-02 4.166e-02 -1.380 -1.380 0.000 71.09 - HCO3- 7.979e-04 7.720e-04 -3.098 -3.112 -0.014 25.83 - CO3-2 8.577e-11 7.519e-11 -10.067 -10.124 -0.057 -4.36 -H(0) 4.986e-36 - H2 2.493e-36 2.494e-36 -35.603 -35.603 0.000 28.54 -O(0) 2.925e-14 - O2 1.463e-14 1.463e-14 -13.835 -13.835 0.000 31.69 + HCO3- 7.979e-04 7.721e-04 -3.098 -3.112 -0.014 25.79 + CO3-2 8.501e-11 7.453e-11 -10.071 -10.128 -0.057 -2.12 +H(0) 2.780e-14 + H2 1.390e-14 1.390e-14 -13.857 -13.857 0.000 28.54 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -57.327 -57.327 0.000 31.69 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 104 atm) - CH4(g) -105.07 -108.10 -3.02 CH4 + CH4(g) -18.09 -21.11 -3.02 CH4 CO2(g) 1.79 0.02 -1.77 CO2 Pressure 103.7 atm, phi 0.599 - H2(g) -32.42 -35.60 -3.18 H2 + H2(g) -10.67 -13.86 -3.18 H2 H2O(g) -0.89 -0.01 0.89 H2O Pressure 0.5 atm, phi 0.268 - O2(g) -10.75 -13.83 -3.08 O2 + O2(g) -54.24 -57.33 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3923,14 +3958,14 @@ Reaction 1. Total pressure: 109.16 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 9.17e-02 liters/mole - P * Vm / RT: 0.37755 (Compressibility Factor Z) + P * Vm / RT: 0.37756 (Compressibility Factor Z) Moles in gas ---------------------------------- Component log P P phi Initial Final Delta CO2(g) 2.04 1.086e+02 0.583 9.864e+00 1.085e+01 9.862e-01 -H2O(g) -0.27 5.320e-01 0.241 4.540e-02 5.314e-02 7.732e-03 +H2O(g) -0.27 5.320e-01 0.241 4.540e-02 5.313e-02 7.732e-03 -----------------------------Solution composition------------------------------ @@ -3941,52 +3976,53 @@ H2O(g) -0.27 5.320e-01 0.241 4.540e-02 5.314e-02 7.732e-03 ----------------------------Description of solution---------------------------- pH = 3.108 Charge balance - pe = 13.007 Adjusted to redox equilibrium - Specific Conductance (S/cm, 50C) = 428 - Density (g/cm) = 1.00231 - Volume (L) = 1.04724 + pe = 2.138 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 409 + Density (g/cm³) = 1.00231 + Volume (L) = 1.04725 + Viscosity (mPa s) = 0.54897 Activity of water = 0.981 Ionic strength (mol/kgw) = 8.045e-04 Mass of water (kg) = 9.990e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.151e+00 - Temperature (C) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 109.16 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 33 Total H = 1.109062e+02 - Total O = 5.775335e+01 + Total O = 5.775348e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.045e-04 7.791e-04 -3.094 -3.108 -0.014 0.00 - OH- 7.800e-11 7.542e-11 -10.108 -10.123 -0.015 -3.92 + H+ 8.045e-04 7.792e-04 -3.094 -3.108 -0.014 0.00 + OH- 7.799e-11 7.541e-11 -10.108 -10.123 -0.015 -3.92 H2O 5.551e+01 9.811e-01 1.744 -0.008 0.000 18.15 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.799 -107.799 0.000 37.39 +C(-4) 1.432e-21 + CH4 1.432e-21 1.433e-21 -20.844 -20.844 0.000 37.39 C(4) 1.151e+00 CO2 1.065e+00 1.065e+00 0.027 0.028 0.000 35.54 (CO2)2 4.261e-02 4.262e-02 -1.371 -1.370 0.000 71.08 - HCO3- 8.045e-04 7.783e-04 -3.094 -3.109 -0.014 25.84 - CO3-2 8.629e-11 7.561e-11 -10.064 -10.121 -0.057 -4.32 -H(0) 5.880e-36 - H2 2.940e-36 2.941e-36 -35.532 -35.532 0.000 28.54 -O(0) 2.082e-14 - O2 1.041e-14 1.041e-14 -13.982 -13.982 0.000 31.68 + HCO3- 8.045e-04 7.784e-04 -3.094 -3.109 -0.014 25.80 + CO3-2 8.549e-11 7.491e-11 -10.068 -10.125 -0.057 -2.07 +H(0) 3.223e-14 + H2 1.611e-14 1.612e-14 -13.793 -13.793 0.000 28.54 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -57.460 -57.460 0.000 31.68 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 109 atm) - CH4(g) -104.77 -107.80 -3.03 CH4 + CH4(g) -17.82 -20.84 -3.03 CH4 CO2(g) 1.80 0.03 -1.77 CO2 Pressure 108.6 atm, phi 0.583 - H2(g) -32.34 -35.53 -3.19 H2 + H2(g) -10.61 -13.79 -3.19 H2 H2O(g) -0.89 -0.01 0.88 H2O Pressure 0.5 atm, phi 0.241 - O2(g) -10.90 -13.98 -3.09 O2 + O2(g) -54.37 -57.46 -3.09 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4014,7 +4050,7 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 115.11 atmospheres (Peng-Robinson calculation) +Total pressure: 115.10 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 8.41e-02 liters/mole P * Vm / RT: 0.36486 (Compressibility Factor Z) @@ -4024,7 +4060,7 @@ Total pressure: 115.11 atmospheres (Peng-Robinson calculation) Component log P P phi Initial Final Delta CO2(g) 2.06 1.145e+02 0.564 1.085e+01 1.184e+01 9.855e-01 -H2O(g) -0.22 5.960e-01 0.216 5.314e-02 6.160e-02 8.464e-03 +H2O(g) -0.22 5.960e-01 0.216 5.313e-02 6.160e-02 8.464e-03 -----------------------------Solution composition------------------------------ @@ -4034,53 +4070,54 @@ H2O(g) -0.22 5.960e-01 0.216 5.314e-02 6.160e-02 8.464e-03 ----------------------------Description of solution---------------------------- - pH = 3.105 Charge balance - pe = 13.018 Adjusted to redox equilibrium - Specific Conductance (S/cm, 50C) = 432 - Density (g/cm) = 1.00268 + pH = 3.104 Charge balance + pe = 2.119 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 413 + Density (g/cm³) = 1.00268 Volume (L) = 1.04734 + Viscosity (mPa s) = 0.54909 Activity of water = 0.981 - Ionic strength (mol/kgw) = 8.117e-04 + Ionic strength (mol/kgw) = 8.118e-04 Mass of water (kg) = 9.989e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.166e+00 - Temperature (C) = 50.00 - Pressure (atm) = 115.11 - Electrical balance (eq) = -1.215e-09 + Temperature (°C) = 50.00 + Pressure (atm) = 115.10 + Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 + Iterations = 30 Total H = 1.108892e+02 - Total O = 5.777384e+01 + Total O = 5.777398e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.117e-04 7.861e-04 -3.091 -3.105 -0.014 0.00 - OH- 7.768e-11 7.511e-11 -10.110 -10.124 -0.015 -3.93 + H+ 8.118e-04 7.861e-04 -3.091 -3.104 -0.014 0.00 + OH- 7.768e-11 7.510e-11 -10.110 -10.124 -0.015 -3.93 H2O 5.551e+01 9.809e-01 1.744 -0.008 0.000 18.14 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.852 -107.852 0.000 37.40 +C(-4) 2.169e-21 + CH4 2.169e-21 2.169e-21 -20.664 -20.664 0.000 37.40 C(4) 1.166e+00 CO2 1.078e+00 1.078e+00 0.033 0.033 0.000 35.54 (CO2)2 4.362e-02 4.363e-02 -1.360 -1.360 0.000 71.07 - HCO3- 8.117e-04 7.853e-04 -3.091 -3.105 -0.014 25.84 - CO3-2 8.690e-11 7.610e-11 -10.061 -10.119 -0.058 -4.26 -H(0) 5.663e-36 - H2 2.832e-36 2.832e-36 -35.548 -35.548 0.000 28.53 -O(0) 2.218e-14 - O2 1.109e-14 1.109e-14 -13.955 -13.955 0.000 31.67 + HCO3- 8.118e-04 7.853e-04 -3.091 -3.105 -0.014 25.81 + CO3-2 8.605e-11 7.536e-11 -10.065 -10.123 -0.058 -2.01 +H(0) 3.549e-14 + H2 1.774e-14 1.775e-14 -13.751 -13.751 0.000 28.53 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -57.549 -57.549 0.000 31.67 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 115 atm) - CH4(g) -104.82 -107.85 -3.03 CH4 + CH4(g) -17.63 -20.66 -3.03 CH4 CO2(g) 1.81 0.03 -1.78 CO2 Pressure 114.5 atm, phi 0.564 - H2(g) -32.36 -35.55 -3.19 H2 + H2(g) -10.56 -13.75 -3.19 H2 H2O(g) -0.89 -0.01 0.88 H2O Pressure 0.6 atm, phi 0.216 - O2(g) -10.87 -13.96 -3.09 O2 + O2(g) -54.46 -57.55 -3.09 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4129,52 +4166,53 @@ H2O(g) -0.17 6.730e-01 0.192 6.160e-02 7.077e-02 9.169e-03 ----------------------------Description of solution---------------------------- pH = 3.100 Charge balance - pe = 13.012 Adjusted to redox equilibrium - Specific Conductance (S/cm, 50C) = 436 - Density (g/cm) = 1.00313 + pe = 2.015 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 417 + Density (g/cm³) = 1.00313 Volume (L) = 1.04741 + Viscosity (mPa s) = 0.54925 Activity of water = 0.981 - Ionic strength (mol/kgw) = 8.201e-04 + Ionic strength (mol/kgw) = 8.202e-04 Mass of water (kg) = 9.987e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.182e+00 - Temperature (C) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 122.58 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.219e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 25 Total H = 1.108709e+02 - Total O = 5.779664e+01 + Total O = 5.779678e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.201e-04 7.941e-04 -3.086 -3.100 -0.014 0.00 - OH- 7.737e-11 7.479e-11 -10.111 -10.126 -0.015 -3.93 - H2O 5.551e+01 9.807e-01 1.744 -0.008 0.000 18.14 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.766 -107.766 0.000 37.40 + H+ 8.202e-04 7.942e-04 -3.086 -3.100 -0.014 0.00 + OH- 7.736e-11 7.479e-11 -10.111 -10.126 -0.015 -3.93 + H2O 5.551e+01 9.806e-01 1.744 -0.008 0.000 18.14 +C(-4) 1.613e-20 + CH4 1.613e-20 1.613e-20 -19.792 -19.792 0.000 37.40 C(4) 1.182e+00 CO2 1.092e+00 1.092e+00 0.038 0.038 0.000 35.53 (CO2)2 4.476e-02 4.477e-02 -1.349 -1.349 0.000 71.05 - HCO3- 8.201e-04 7.933e-04 -3.086 -3.101 -0.014 25.85 - CO3-2 8.767e-11 7.673e-11 -10.057 -10.115 -0.058 -4.20 -H(0) 5.898e-36 - H2 2.949e-36 2.950e-36 -35.530 -35.530 0.000 28.53 -O(0) 2.014e-14 - O2 1.007e-14 1.007e-14 -13.997 -13.997 0.000 31.65 + HCO3- 8.202e-04 7.933e-04 -3.086 -3.101 -0.014 25.82 + CO3-2 8.675e-11 7.593e-11 -10.062 -10.120 -0.058 -1.94 +H(0) 5.809e-14 + H2 2.905e-14 2.905e-14 -13.537 -13.537 0.000 28.53 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -57.984 -57.984 0.000 31.65 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 123 atm) - CH4(g) -104.73 -107.77 -3.03 CH4 + CH4(g) -16.76 -19.79 -3.03 CH4 CO2(g) 1.82 0.04 -1.78 CO2 Pressure 121.9 atm, phi 0.542 - H2(g) -32.34 -35.53 -3.19 H2 + H2(g) -10.34 -13.54 -3.19 H2 H2O(g) -0.89 -0.01 0.88 H2O Pressure 0.7 atm, phi 0.192 - O2(g) -10.90 -14.00 -3.09 O2 + O2(g) -54.89 -57.98 -3.09 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4212,63 +4250,64 @@ Total pressure: 132.16 atmospheres (Peng-Robinson calculation) Component log P P phi Initial Final Delta CO2(g) 2.12 1.314e+02 0.516 1.282e+01 1.380e+01 9.819e-01 -H2O(g) -0.12 7.673e-01 0.170 7.077e-02 8.060e-02 9.829e-03 +H2O(g) -0.12 7.673e-01 0.170 7.077e-02 8.060e-02 9.828e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 1.200e+00 1.199e+00 + C 1.201e+00 1.199e+00 ----------------------------Description of solution---------------------------- pH = 3.095 Charge balance - pe = 13.073 Adjusted to redox equilibrium - Specific Conductance (S/cm, 50C) = 441 - Density (g/cm) = 1.00368 + pe = 1.945 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 422 + Density (g/cm³) = 1.00368 Volume (L) = 1.04745 + Viscosity (mPa s) = 0.54946 Activity of water = 0.980 Ionic strength (mol/kgw) = 8.302e-04 Mass of water (kg) = 9.985e-01 - Total alkalinity (eq/kg) = 1.217e-09 - Total CO2 (mol/kg) = 1.200e+00 - Temperature (C) = 50.00 + Total alkalinity (eq/kg) = 1.221e-09 + Total CO2 (mol/kg) = 1.201e+00 + Temperature (°C) = 50.00 Pressure (atm) = 132.16 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.219e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 22 Total H = 1.108512e+02 - Total O = 5.782300e+01 + Total O = 5.782314e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.302e-04 8.037e-04 -3.081 -3.095 -0.014 0.00 OH- 7.705e-11 7.447e-11 -10.113 -10.128 -0.015 -3.94 H2O 5.551e+01 9.804e-01 1.744 -0.009 0.000 18.13 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -108.212 -108.211 0.000 37.41 -C(4) 1.200e+00 +C(-4) 6.483e-20 + CH4 6.483e-20 6.484e-20 -19.188 -19.188 0.000 37.41 +C(4) 1.201e+00 CO2 1.108e+00 1.108e+00 0.044 0.044 0.000 35.52 (CO2)2 4.606e-02 4.607e-02 -1.337 -1.337 0.000 71.03 - HCO3- 8.302e-04 8.028e-04 -3.081 -3.095 -0.015 25.87 - CO3-2 8.865e-11 7.754e-11 -10.052 -10.110 -0.058 -4.11 -H(0) 4.516e-36 - H2 2.258e-36 2.258e-36 -35.646 -35.646 0.000 28.53 -O(0) 3.368e-14 - O2 1.684e-14 1.685e-14 -13.774 -13.774 0.000 31.63 + HCO3- 8.302e-04 8.029e-04 -3.081 -3.095 -0.015 25.84 + CO3-2 8.766e-11 7.667e-11 -10.057 -10.115 -0.058 -1.85 +H(0) 8.139e-14 + H2 4.070e-14 4.070e-14 -13.390 -13.390 0.000 28.53 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -58.285 -58.285 0.000 31.63 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 132 atm) - CH4(g) -105.17 -108.21 -3.04 CH4 + CH4(g) -16.15 -19.19 -3.04 CH4 CO2(g) 1.83 0.04 -1.79 CO2 Pressure 131.4 atm, phi 0.516 - H2(g) -32.45 -35.65 -3.20 H2 + H2(g) -10.19 -13.39 -3.20 H2 H2O(g) -0.89 -0.01 0.88 H2O Pressure 0.8 atm, phi 0.170 - O2(g) -10.68 -13.77 -3.10 O2 + O2(g) -55.19 -58.29 -3.10 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4317,52 +4356,53 @@ H2O(g) -0.05 8.845e-01 0.148 8.060e-02 9.102e-02 1.042e-02 ----------------------------Description of solution---------------------------- pH = 3.089 Charge balance - pe = 13.118 Adjusted to redox equilibrium - Specific Conductance (S/cm, 50C) = 447 - Density (g/cm) = 1.00438 + pe = 1.987 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 428 + Density (g/cm³) = 1.00438 Volume (L) = 1.04744 + Viscosity (mPa s) = 0.54972 Activity of water = 0.980 - Ionic strength (mol/kgw) = 8.422e-04 + Ionic strength (mol/kgw) = 8.423e-04 Mass of water (kg) = 9.983e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.221e+00 - Temperature (C) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 144.52 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.219e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 44 Total H = 1.108304e+02 - Total O = 5.785389e+01 + Total O = 5.785404e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.422e-04 8.152e-04 -3.075 -3.089 -0.014 0.00 - OH- 7.674e-11 7.416e-11 -10.115 -10.130 -0.015 -3.96 + H+ 8.423e-04 8.152e-04 -3.075 -3.089 -0.014 0.00 + OH- 7.674e-11 7.415e-11 -10.115 -10.130 -0.015 -3.96 H2O 5.551e+01 9.800e-01 1.744 -0.009 0.000 18.12 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -108.529 -108.529 0.000 37.41 +C(-4) 3.329e-20 + CH4 3.329e-20 3.330e-20 -19.478 -19.478 0.000 37.41 C(4) 1.221e+00 CO2 1.125e+00 1.126e+00 0.051 0.051 0.000 35.50 (CO2)2 4.756e-02 4.757e-02 -1.323 -1.323 0.000 71.01 - HCO3- 8.422e-04 8.143e-04 -3.075 -3.089 -0.015 25.88 - CO3-2 8.993e-11 7.859e-11 -10.046 -10.105 -0.059 -4.00 -H(0) 3.713e-36 - H2 1.856e-36 1.857e-36 -35.731 -35.731 0.000 28.52 -O(0) 4.860e-14 - O2 2.430e-14 2.431e-14 -13.614 -13.614 0.000 31.61 + HCO3- 8.423e-04 8.144e-04 -3.075 -3.089 -0.015 25.86 + CO3-2 8.882e-11 7.762e-11 -10.051 -10.110 -0.059 -1.73 +H(0) 6.801e-14 + H2 3.401e-14 3.401e-14 -13.468 -13.468 0.000 28.52 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -58.140 -58.140 0.000 31.61 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 145 atm) - CH4(g) -105.48 -108.53 -3.05 CH4 + CH4(g) -16.43 -19.48 -3.05 CH4 CO2(g) 1.85 0.05 -1.79 CO2 Pressure 143.6 atm, phi 0.488 - H2(g) -32.53 -35.73 -3.20 H2 + H2(g) -10.26 -13.47 -3.20 H2 H2O(g) -0.88 -0.01 0.87 H2O Pressure 0.9 atm, phi 0.148 - O2(g) -10.51 -13.61 -3.10 O2 + O2(g) -55.04 -58.14 -3.10 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4411,52 +4451,53 @@ H2O(g) 0.01 1.031e+00 0.129 9.102e-02 1.020e-01 1.094e-02 ----------------------------Description of solution---------------------------- pH = 3.081 Charge balance - pe = 13.143 Adjusted to redox equilibrium - Specific Conductance (S/cm, 50C) = 455 - Density (g/cm) = 1.00524 + pe = 1.979 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 435 + Density (g/cm³) = 1.00524 Volume (L) = 1.04738 + Viscosity (mPa s) = 0.55006 Activity of water = 0.980 Ionic strength (mol/kgw) = 8.568e-04 Mass of water (kg) = 9.981e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.245e+00 - Temperature (C) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 160.38 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 46 + Iterations = 42 Total H = 1.108085e+02 - Total O = 5.789009e+01 + Total O = 5.789024e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.568e-04 8.291e-04 -3.067 -3.081 -0.014 0.00 OH- 7.645e-11 7.385e-11 -10.117 -10.132 -0.015 -3.97 H2O 5.551e+01 9.797e-01 1.744 -0.009 0.000 18.11 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -108.668 -108.668 0.000 37.42 +C(-4) 4.372e-20 + CH4 4.372e-20 4.373e-20 -19.359 -19.359 0.000 37.42 C(4) 1.245e+00 CO2 1.146e+00 1.146e+00 0.059 0.059 0.000 35.49 (CO2)2 4.929e-02 4.930e-02 -1.307 -1.307 0.000 70.97 - HCO3- 8.568e-04 8.282e-04 -3.067 -3.082 -0.015 25.90 - CO3-2 9.157e-11 7.995e-11 -10.038 -10.097 -0.059 -3.86 -H(0) 3.373e-36 - H2 1.686e-36 1.687e-36 -35.773 -35.773 0.000 28.51 -O(0) 5.704e-14 - O2 2.852e-14 2.852e-14 -13.545 -13.545 0.000 31.58 + HCO3- 8.568e-04 8.282e-04 -3.067 -3.082 -0.015 25.88 + CO3-2 9.032e-11 7.885e-11 -10.044 -10.103 -0.059 -1.58 +H(0) 7.165e-14 + H2 3.582e-14 3.583e-14 -13.446 -13.446 0.000 28.51 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -58.199 -58.199 0.000 31.58 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 160 atm) - CH4(g) -105.61 -108.67 -3.06 CH4 + CH4(g) -16.30 -19.36 -3.06 CH4 CO2(g) 1.86 0.06 -1.80 CO2 Pressure 159.3 atm, phi 0.457 - H2(g) -32.56 -35.77 -3.21 H2 + H2(g) -10.23 -13.45 -3.21 H2 H2O(g) -0.88 -0.01 0.87 H2O Pressure 1.0 atm, phi 0.129 - O2(g) -10.43 -13.54 -3.11 O2 + O2(g) -55.09 -58.20 -3.11 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4484,7 +4525,7 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 180.61 atmospheres (Peng-Robinson calculation) +Total pressure: 180.60 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 5.94e-02 liters/mole P * Vm / RT: 0.40435 (Compressibility Factor Z) @@ -4505,52 +4546,53 @@ H2O(g) 0.08 1.215e+00 0.111 1.020e-01 1.133e-01 1.134e-02 ----------------------------Description of solution---------------------------- pH = 3.073 Charge balance - pe = 13.160 Adjusted to redox equilibrium - Specific Conductance (S/cm, 50C) = 464 - Density (g/cm) = 1.00631 - Volume (L) = 1.04723 + pe = 1.992 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 444 + Density (g/cm³) = 1.00631 + Volume (L) = 1.04724 + Viscosity (mPa s) = 0.55050 Activity of water = 0.979 Ionic strength (mol/kgw) = 8.744e-04 Mass of water (kg) = 9.979e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.272e+00 - Temperature (C) = 50.00 - Pressure (atm) = 180.61 - Electrical balance (eq) = -1.213e-09 + Temperature (°C) = 50.00 + Pressure (atm) = 180.60 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 57 + Iterations = 55 Total H = 1.107858e+02 - Total O = 5.793222e+01 + Total O = 5.793238e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.744e-04 8.459e-04 -3.058 -3.073 -0.014 0.00 + H+ 8.744e-04 8.460e-04 -3.058 -3.073 -0.014 0.00 OH- 7.619e-11 7.358e-11 -10.118 -10.133 -0.015 -3.99 H2O 5.551e+01 9.792e-01 1.744 -0.009 0.000 18.09 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -108.740 -108.740 0.000 37.43 +C(-4) 4.061e-20 + CH4 4.061e-20 4.062e-20 -19.391 -19.391 0.000 37.43 C(4) 1.272e+00 CO2 1.169e+00 1.169e+00 0.068 0.068 0.000 35.47 (CO2)2 5.130e-02 5.131e-02 -1.290 -1.290 0.000 70.93 - HCO3- 8.744e-04 8.450e-04 -3.058 -3.073 -0.015 25.93 - CO3-2 9.369e-11 8.170e-11 -10.028 -10.088 -0.059 -3.69 -H(0) 3.174e-36 - H2 1.587e-36 1.587e-36 -35.799 -35.799 0.000 28.51 -O(0) 6.185e-14 - O2 3.092e-14 3.093e-14 -13.510 -13.510 0.000 31.53 + HCO3- 8.744e-04 8.450e-04 -3.058 -3.073 -0.015 25.92 + CO3-2 9.224e-11 8.043e-11 -10.035 -10.095 -0.059 -1.39 +H(0) 6.898e-14 + H2 3.449e-14 3.449e-14 -13.462 -13.462 0.000 28.51 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -58.184 -58.184 0.000 31.53 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 181 atm) - CH4(g) -105.67 -108.74 -3.07 CH4 + CH4(g) -16.32 -19.39 -3.07 CH4 CO2(g) 1.88 0.07 -1.82 CO2 Pressure 179.4 atm, phi 0.426 - H2(g) -32.58 -35.80 -3.22 H2 + H2(g) -10.24 -13.46 -3.22 H2 H2O(g) -0.87 -0.01 0.86 H2O Pressure 1.2 atm, phi 0.111 - O2(g) -10.39 -13.51 -3.12 O2 + O2(g) -55.06 -58.18 -3.12 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4581,7 +4623,7 @@ Reaction 1. Total pressure: 206.19 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 5.61e-02 liters/mole - P * Vm / RT: 0.43622 (Compressibility Factor Z) + P * Vm / RT: 0.43621 (Compressibility Factor Z) Moles in gas ---------------------------------- @@ -4599,52 +4641,53 @@ H2O(g) 0.16 1.445e+00 0.095 1.133e-01 1.249e-01 1.161e-02 ----------------------------Description of solution---------------------------- pH = 3.062 Charge balance - pe = 13.187 Adjusted to redox equilibrium - Specific Conductance (S/cm, 50C) = 474 - Density (g/cm) = 1.00762 + pe = 2.109 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 454 + Density (g/cm³) = 1.00763 Volume (L) = 1.04697 + Viscosity (mPa s) = 0.55105 Activity of water = 0.979 Ionic strength (mol/kgw) = 8.957e-04 Mass of water (kg) = 9.977e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.303e+00 - Temperature (C) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 206.19 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 66 + Iterations = 65 Total H = 1.107626e+02 - Total O = 5.798083e+01 + Total O = 5.798100e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.957e-04 8.663e-04 -3.048 -3.062 -0.015 0.00 + H+ 8.957e-04 8.662e-04 -3.048 -3.062 -0.015 0.00 OH- 7.600e-11 7.337e-11 -10.119 -10.134 -0.015 -4.02 H2O 5.551e+01 9.787e-01 1.744 -0.009 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -108.880 -108.879 0.000 37.44 +C(-4) 5.623e-21 + CH4 5.623e-21 5.624e-21 -20.250 -20.250 0.000 37.44 C(4) 1.303e+00 CO2 1.195e+00 1.195e+00 0.077 0.077 0.000 35.44 (CO2)2 5.359e-02 5.360e-02 -1.271 -1.271 0.000 70.88 HCO3- 8.957e-04 8.653e-04 -3.048 -3.063 -0.015 25.96 - CO3-2 9.640e-11 8.394e-11 -10.016 -10.076 -0.060 -3.47 -H(0) 2.859e-36 - H2 1.430e-36 1.430e-36 -35.845 -35.845 0.000 28.49 -O(0) 7.240e-14 - O2 3.620e-14 3.621e-14 -13.441 -13.441 0.000 31.48 + CO3-2 9.469e-11 8.246e-11 -10.024 -10.084 -0.060 -1.15 +H(0) 4.108e-14 + H2 2.054e-14 2.054e-14 -13.687 -13.687 0.000 28.49 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -57.756 -57.756 0.000 31.48 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 206 atm) - CH4(g) -105.79 -108.88 -3.09 CH4 + CH4(g) -17.16 -20.25 -3.09 CH4 CO2(g) 1.91 0.08 -1.83 CO2 Pressure 204.7 atm, phi 0.394 - H2(g) -32.61 -35.84 -3.23 H2 + H2(g) -10.46 -13.69 -3.23 H2 H2O(g) -0.86 -0.01 0.86 H2O Pressure 1.4 atm, phi 0.095 - O2(g) -10.31 -13.44 -3.14 O2 + O2(g) -54.62 -57.76 -3.14 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4672,10 +4715,10 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 238.32 atmospheres (Peng-Robinson calculation) +Total pressure: 238.31 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 5.32e-02 liters/mole - P * Vm / RT: 0.47796 (Compressibility Factor Z) + P * Vm / RT: 0.47795 (Compressibility Factor Z) Moles in gas ---------------------------------- @@ -4693,52 +4736,53 @@ H2O(g) 0.24 1.731e+00 0.081 1.249e-01 1.366e-01 1.171e-02 ----------------------------Description of solution---------------------------- pH = 3.050 Charge balance - pe = 13.190 Adjusted to redox equilibrium - Specific Conductance (S/cm, 50C) = 487 - Density (g/cm) = 1.00924 - Volume (L) = 1.04655 + pe = 2.269 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 466 + Density (g/cm³) = 1.00924 + Volume (L) = 1.04656 + Viscosity (mPa s) = 0.55176 Activity of water = 0.978 - Ionic strength (mol/kgw) = 9.214e-04 + Ionic strength (mol/kgw) = 9.213e-04 Mass of water (kg) = 9.975e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.337e+00 - Temperature (C) = 50.00 - Pressure (atm) = 238.32 - Electrical balance (eq) = -1.213e-09 + Temperature (°C) = 50.00 + Pressure (atm) = 238.31 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 76 + Iterations = 74 Total H = 1.107392e+02 - Total O = 5.803639e+01 + Total O = 5.803656e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.214e-04 8.908e-04 -3.036 -3.050 -0.015 0.00 - OH- 7.591e-11 7.325e-11 -10.120 -10.135 -0.015 -4.04 + H+ 9.213e-04 8.907e-04 -3.036 -3.050 -0.015 0.00 + OH- 7.591e-11 7.326e-11 -10.120 -10.135 -0.015 -4.04 H2O 5.551e+01 9.782e-01 1.744 -0.010 0.000 18.05 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -108.815 -108.815 0.000 37.46 +C(-4) 3.585e-22 + CH4 3.585e-22 3.586e-22 -21.445 -21.445 0.000 37.46 C(4) 1.337e+00 CO2 1.223e+00 1.224e+00 0.088 0.088 0.000 35.41 (CO2)2 5.620e-02 5.621e-02 -1.250 -1.250 0.000 70.81 - HCO3- 9.214e-04 8.897e-04 -3.036 -3.051 -0.015 26.00 - CO3-2 9.985e-11 8.681e-11 -10.001 -10.061 -0.061 -3.20 -H(0) 2.882e-36 - H2 1.441e-36 1.441e-36 -35.841 -35.841 0.000 28.48 -O(0) 6.684e-14 - O2 3.342e-14 3.343e-14 -13.476 -13.476 0.000 31.42 + HCO3- 9.213e-04 8.897e-04 -3.036 -3.051 -0.015 26.01 + CO3-2 9.780e-11 8.502e-11 -10.010 -10.070 -0.061 -0.86 +H(0) 2.005e-14 + H2 1.003e-14 1.003e-14 -13.999 -13.999 0.000 28.48 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -57.161 -57.161 0.000 31.42 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 238 atm) - CH4(g) -105.71 -108.82 -3.10 CH4 + CH4(g) -18.34 -21.45 -3.10 CH4 CO2(g) 1.94 0.09 -1.85 CO2 Pressure 236.6 atm, phi 0.365 - H2(g) -32.59 -35.84 -3.25 H2 + H2(g) -10.75 -14.00 -3.25 H2 H2O(g) -0.86 -0.01 0.85 H2O Pressure 1.7 atm, phi 0.081 - O2(g) -10.32 -13.48 -3.15 O2 + O2(g) -54.01 -57.16 -3.15 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4776,7 +4820,7 @@ Total pressure: 278.39 atmospheres (Peng-Robinson calculation) Component log P P phi Initial Final Delta CO2(g) 2.44 2.763e+02 0.338 1.867e+01 1.963e+01 9.627e-01 -H2O(g) 0.32 2.087e+00 0.069 1.366e-01 1.482e-01 1.162e-02 +H2O(g) 0.32 2.086e+00 0.069 1.366e-01 1.482e-01 1.162e-02 -----------------------------Solution composition------------------------------ @@ -4787,52 +4831,53 @@ H2O(g) 0.32 2.087e+00 0.069 1.366e-01 1.482e-01 1.162e-02 ----------------------------Description of solution---------------------------- pH = 3.036 Charge balance - pe = 13.220 Adjusted to redox equilibrium - Specific Conductance (S/cm, 50C) = 503 - Density (g/cm) = 1.01120 + pe = 2.093 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 481 + Density (g/cm³) = 1.01120 Volume (L) = 1.04594 + Viscosity (mPa s) = 0.55265 Activity of water = 0.978 - Ionic strength (mol/kgw) = 9.524e-04 + Ionic strength (mol/kgw) = 9.522e-04 Mass of water (kg) = 9.973e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.374e+00 - Temperature (C) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 278.39 Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 88 + Iterations = 86 Total H = 1.107160e+02 - Total O = 5.809927e+01 + Total O = 5.809945e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.524e-04 9.203e-04 -3.021 -3.036 -0.015 0.00 - OH- 7.596e-11 7.327e-11 -10.119 -10.135 -0.016 -4.08 + H+ 9.522e-04 9.202e-04 -3.021 -3.036 -0.015 0.00 + OH- 7.597e-11 7.328e-11 -10.119 -10.135 -0.016 -4.08 H2O 5.551e+01 9.776e-01 1.744 -0.010 0.000 18.02 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -108.951 -108.951 0.000 37.48 +C(-4) 1.157e-20 + CH4 1.157e-20 1.158e-20 -19.936 -19.936 0.000 37.48 C(4) 1.374e+00 CO2 1.255e+00 1.255e+00 0.099 0.099 0.000 35.37 (CO2)2 5.915e-02 5.916e-02 -1.228 -1.228 0.000 70.73 - HCO3- 9.524e-04 9.192e-04 -3.021 -3.037 -0.015 26.04 - CO3-2 1.042e-10 9.045e-11 -9.982 -10.044 -0.062 -2.86 -H(0) 2.574e-36 - H2 1.287e-36 1.287e-36 -35.891 -35.890 0.000 28.46 -O(0) 7.740e-14 - O2 3.870e-14 3.871e-14 -13.412 -13.412 0.000 31.34 + HCO3- 9.522e-04 9.191e-04 -3.021 -3.037 -0.015 26.08 + CO3-2 1.017e-10 8.828e-11 -9.993 -10.054 -0.062 -0.51 +H(0) 4.614e-14 + H2 2.307e-14 2.308e-14 -13.637 -13.637 0.000 28.46 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -57.919 -57.919 0.000 31.34 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 278 atm) - CH4(g) -105.82 -108.95 -3.13 CH4 + CH4(g) -16.81 -19.94 -3.13 CH4 CO2(g) 1.97 0.10 -1.87 CO2 Pressure 276.3 atm, phi 0.338 - H2(g) -32.62 -35.89 -3.27 H2 + H2(g) -10.37 -13.64 -3.27 H2 H2O(g) -0.84 -0.01 0.83 H2O Pressure 2.1 atm, phi 0.069 - O2(g) -10.24 -13.41 -3.17 O2 + O2(g) -54.75 -57.92 -3.17 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4846,6 +4891,18 @@ WARNING: Numerical method failed with this set of convergence parameters. WARNING: Trying smaller step size, pe step size 10, 5 ... +WARNING: Maximum iterations exceeded, 200 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + +WARNING: Maximum iterations exceeded, 200 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying increased tolerance 1e-14 ... + Using solution 1. Using gas phase 1. Using temperature 2. @@ -4867,7 +4924,7 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 328.13 atmospheres (Peng-Robinson calculation) +Total pressure: 328.12 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 4.82e-02 liters/mole P * Vm / RT: 0.59639 (Compressibility Factor Z) @@ -4888,52 +4945,53 @@ H2O(g) 0.40 2.523e+00 0.059 1.482e-01 1.595e-01 1.130e-02 ----------------------------Description of solution---------------------------- pH = 3.020 Charge balance - pe = 14.375 Adjusted to redox equilibrium - Specific Conductance (S/cm, 50C) = 522 - Density (g/cm) = 1.01357 - Volume (L) = 1.04506 + pe = 1.050 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 499 + Density (g/cm³) = 1.01357 + Volume (L) = 1.04507 + Viscosity (mPa s) = 0.55377 Activity of water = 0.977 - Ionic strength (mol/kgw) = 9.899e-04 + Ionic strength (mol/kgw) = 9.895e-04 Mass of water (kg) = 9.971e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.416e+00 - Temperature (C) = 50.00 - Pressure (atm) = 328.13 - Electrical balance (eq) = -1.212e-09 + Temperature (°C) = 50.00 + Pressure (atm) = 328.12 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 + Iterations = 39 (542 overall) Total H = 1.106934e+02 - Total O = 5.816978e+01 + Total O = 5.816997e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.899e-04 9.560e-04 -3.004 -3.020 -0.015 0.00 - OH- 7.622e-11 7.347e-11 -10.118 -10.134 -0.016 -4.12 + H+ 9.895e-04 9.557e-04 -3.005 -3.020 -0.015 0.00 + OH- 7.624e-11 7.349e-11 -10.118 -10.134 -0.016 -4.12 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 17.98 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -118.083 -118.083 0.000 37.50 +C(-4) 3.320e-12 + CH4 3.320e-12 3.321e-12 -11.479 -11.479 0.000 37.50 C(4) 1.416e+00 - CO2 1.290e+00 1.290e+00 0.110 0.111 0.000 35.32 + CO2 1.290e+00 1.290e+00 0.111 0.111 0.000 35.32 (CO2)2 6.246e-02 6.248e-02 -1.204 -1.204 0.000 70.63 - HCO3- 9.899e-04 9.548e-04 -3.004 -3.020 -0.016 26.10 - CO3-2 1.098e-10 9.508e-11 -9.959 -10.022 -0.063 -2.46 -H(0) 1.285e-38 - H2 6.426e-39 6.427e-39 -38.192 -38.192 0.000 28.45 -O(0) 2.812e-09 - O2 1.406e-09 1.406e-09 -8.852 -8.852 0.000 31.25 + HCO3- 9.895e-04 9.545e-04 -3.005 -3.020 -0.016 26.15 + CO3-2 1.067e-10 9.238e-11 -9.972 -10.034 -0.063 -0.08 +H(0) 5.756e-12 + H2 2.878e-12 2.879e-12 -11.541 -11.541 0.000 28.45 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -62.154 -62.154 0.000 31.25 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 328 atm) - CH4(g) -114.92 -118.08 -3.16 CH4 + CH4(g) -8.32 -11.48 -3.16 CH4 CO2(g) 2.01 0.11 -1.90 CO2 Pressure 325.6 atm, phi 0.315 - H2(g) -34.90 -38.19 -3.29 H2 + H2(g) -8.25 -11.54 -3.29 H2 H2O(g) -0.83 -0.01 0.82 H2O Pressure 2.5 atm, phi 0.059 - O2(g) -5.65 -8.85 -3.20 O2 + O2(g) -58.96 -62.15 -3.20 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4968,10 +5026,10 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 389.63 atmospheres (Peng-Robinson calculation) +Total pressure: 389.62 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 4.61e-02 liters/mole - P * Vm / RT: 0.67666 (Compressibility Factor Z) + P * Vm / RT: 0.67665 (Compressibility Factor Z) Moles in gas ---------------------------------- @@ -4988,53 +5046,54 @@ H2O(g) 0.48 3.055e+00 0.050 1.595e-01 1.702e-01 1.071e-02 ----------------------------Description of solution---------------------------- - pH = 3.000 Charge balance - pe = 14.394 Adjusted to redox equilibrium - Specific Conductance (S/cm, 50C) = 544 - Density (g/cm) = 1.01643 - Volume (L) = 1.04386 + pH = 3.001 Charge balance + pe = 1.065 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 520 + Density (g/cm³) = 1.01643 + Volume (L) = 1.04387 + Viscosity (mPa s) = 0.55518 Activity of water = 0.976 Ionic strength (mol/kgw) = 1.035e-03 Mass of water (kg) = 9.969e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.461e+00 - Temperature (C) = 50.00 - Pressure (atm) = 389.63 - Electrical balance (eq) = -1.212e-09 + Temperature (°C) = 50.00 + Pressure (atm) = 389.62 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 + Iterations = 36 (137 overall) Total H = 1.106719e+02 - Total O = 5.824809e+01 + Total O = 5.824829e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.035e-03 9.993e-04 -2.985 -3.000 -0.015 0.00 - OH- 7.675e-11 7.393e-11 -10.115 -10.131 -0.016 -4.17 + H+ 1.035e-03 9.987e-04 -2.985 -3.001 -0.015 0.00 + OH- 7.679e-11 7.398e-11 -10.115 -10.131 -0.016 -4.17 H2O 5.551e+01 9.763e-01 1.744 -0.010 0.000 17.94 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -118.100 -118.100 0.000 37.52 +C(-4) 3.353e-12 + CH4 3.353e-12 3.354e-12 -11.475 -11.474 0.000 37.52 C(4) 1.461e+00 CO2 1.327e+00 1.328e+00 0.123 0.123 0.000 35.26 (CO2)2 6.615e-02 6.616e-02 -1.179 -1.179 0.000 70.51 - HCO3- 1.035e-03 9.980e-04 -2.985 -3.001 -0.016 26.17 - CO3-2 1.169e-10 1.010e-10 -9.932 -9.996 -0.064 -1.98 -H(0) 1.209e-38 - H2 6.047e-39 6.048e-39 -38.218 -38.218 0.000 28.42 -O(0) 2.813e-09 - O2 1.406e-09 1.407e-09 -8.852 -8.852 0.000 31.14 + HCO3- 1.035e-03 9.974e-04 -2.985 -3.001 -0.016 26.25 + CO3-2 1.130e-10 9.757e-11 -9.947 -10.011 -0.064 0.44 +H(0) 5.483e-12 + H2 2.741e-12 2.742e-12 -11.562 -11.562 0.000 28.42 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -62.165 -62.165 0.000 31.14 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 390 atm) - CH4(g) -114.90 -118.10 -3.20 CH4 + CH4(g) -8.28 -11.47 -3.20 CH4 CO2(g) 2.06 0.12 -1.94 CO2 Pressure 386.6 atm, phi 0.296 - H2(g) -34.90 -38.22 -3.32 H2 + H2(g) -8.24 -11.56 -3.32 H2 H2O(g) -0.81 -0.01 0.80 H2O Pressure 3.1 atm, phi 0.050 - O2(g) -5.62 -8.85 -3.23 O2 + O2(g) -58.94 -62.16 -3.23 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5069,73 +5128,74 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 464.74 atmospheres (Peng-Robinson calculation) +Total pressure: 465.50 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 4.41e-02 liters/mole - P * Vm / RT: 0.77367 (Compressibility Factor Z) + P * Vm / RT: 0.77414 (Compressibility Factor Z) Moles in gas ---------------------------------- Component log P P phi Initial Final Delta -CO2(g) 2.66 4.615e+02 0.282 2.154e+01 2.249e+01 9.504e-01 -H2O(g) 0.51 3.251e+00 0.050 1.702e-01 1.585e-01 -1.176e-02 +CO2(g) 2.66 4.618e+02 0.282 2.154e+01 2.250e+01 9.520e-01 +H2O(g) 0.57 3.696e+00 0.044 1.702e-01 1.801e-01 9.820e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 1.510e+00 1.506e+00 + C 1.509e+00 1.504e+00 ----------------------------Description of solution---------------------------- pH = 2.978 Charge balance - pe = 14.415 Adjusted to redox equilibrium - Specific Conductance (S/cm, 50C) = 571 - Density (g/cm) = 1.01983 - Volume (L) = 1.04273 + pe = 1.082 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 546 + Density (g/cm³) = 1.01986 + Volume (L) = 1.04226 + Viscosity (mPa s) = 0.55696 Activity of water = 0.976 - Ionic strength (mol/kgw) = 1.091e-03 - Mass of water (kg) = 9.971e-01 - Total alkalinity (eq/kg) = 1.216e-09 - Total CO2 (mol/kg) = 1.510e+00 - Temperature (C) = 50.00 - Pressure (atm) = 464.74 - Electrical balance (eq) = -1.212e-09 + Ionic strength (mol/kgw) = 1.090e-03 + Mass of water (kg) = 9.967e-01 + Total alkalinity (eq/kg) = 1.217e-09 + Total CO2 (mol/kg) = 1.509e+00 + Temperature (°C) = 50.00 + Pressure (atm) = 465.50 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 21 - Total H = 1.106955e+02 - Total O = 5.835905e+01 + Iterations = 36 (137 overall) + Total H = 1.106523e+02 + Total O = 5.833443e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.091e-03 1.052e-03 -2.962 -2.978 -0.016 0.00 - OH- 7.762e-11 7.471e-11 -10.110 -10.127 -0.017 -4.22 + H+ 1.090e-03 1.051e-03 -2.963 -2.978 -0.016 0.00 + OH- 7.774e-11 7.483e-11 -10.109 -10.126 -0.017 -4.22 H2O 5.551e+01 9.755e-01 1.744 -0.011 0.000 17.88 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -118.123 -118.122 0.000 37.55 -C(4) 1.510e+00 - CO2 1.368e+00 1.369e+00 0.136 0.136 0.000 35.19 - (CO2)2 7.030e-02 7.032e-02 -1.153 -1.153 0.000 70.37 - HCO3- 1.091e-03 1.051e-03 -2.962 -2.979 -0.016 26.25 - CO3-2 1.260e-10 1.084e-10 -9.900 -9.965 -0.065 -1.42 -H(0) 1.123e-38 - H2 5.616e-39 5.618e-39 -38.251 -38.250 0.000 28.40 -O(0) 2.812e-09 - O2 1.406e-09 1.406e-09 -8.852 -8.852 0.000 31.01 +C(-4) 3.393e-12 + CH4 3.393e-12 3.394e-12 -11.469 -11.469 0.000 37.55 +C(4) 1.509e+00 + CO2 1.368e+00 1.368e+00 0.136 0.136 0.000 35.18 + (CO2)2 7.022e-02 7.023e-02 -1.154 -1.153 0.000 70.37 + HCO3- 1.090e-03 1.050e-03 -2.963 -2.979 -0.016 26.36 + CO3-2 1.210e-10 1.041e-10 -9.917 -9.982 -0.065 1.04 +H(0) 5.171e-12 + H2 2.586e-12 2.586e-12 -11.587 -11.587 0.000 28.39 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -62.179 -62.179 0.000 31.01 ------------------------------Saturation indices------------------------------- - Phase SI** log IAP log K(323 K, 465 atm) + Phase SI** log IAP log K(323 K, 466 atm) - CH4(g) -114.88 -118.12 -3.24 CH4 - CO2(g) 2.11 0.14 -1.98 CO2 Pressure 461.5 atm, phi 0.282 - H2(g) -34.90 -38.25 -3.35 H2 - H2O(g) -0.79 -0.01 0.78 H2O Pressure 3.3 atm, phi 0.050 - O2(g) -5.59 -8.85 -3.27 O2 + CH4(g) -8.22 -11.47 -3.25 CH4 + CO2(g) 2.11 0.14 -1.98 CO2 Pressure 461.8 atm, phi 0.282 + H2(g) -8.23 -11.59 -3.35 H2 + H2O(g) -0.79 -0.01 0.78 H2O Pressure 3.7 atm, phi 0.044 + O2(g) -58.91 -62.18 -3.27 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5170,73 +5230,74 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 556.93 atmospheres (Peng-Robinson calculation) +Total pressure: 559.08 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters - Molar volume: 4.24e-02 liters/mole - P * Vm / RT: 0.89038 (Compressibility Factor Z) + Molar volume: 4.23e-02 liters/mole + P * Vm / RT: 0.89211 (Compressibility Factor Z) Moles in gas ---------------------------------- Component log P P phi Initial Final Delta -CO2(g) 2.74 5.535e+02 0.274 2.249e+01 2.344e+01 9.475e-01 -H2O(g) 0.54 3.452e+00 0.050 1.585e-01 1.462e-01 -1.226e-02 +CO2(g) 2.74 5.546e+02 0.274 2.250e+01 2.344e+01 9.489e-01 +H2O(g) 0.65 4.462e+00 0.039 1.801e-01 1.886e-01 8.574e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 1.562e+00 1.558e+00 + C 1.561e+00 1.555e+00 ----------------------------Description of solution---------------------------- - pH = 2.952 Charge balance - pe = 14.439 Adjusted to redox equilibrium - Specific Conductance (S/cm, 50C) = 604 - Density (g/cm) = 1.02388 - Volume (L) = 1.04108 + pH = 2.953 Charge balance + pe = 1.102 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 578 + Density (g/cm³) = 1.02396 + Volume (L) = 1.04013 + Viscosity (mPa s) = 0.55922 Activity of water = 0.975 - Ionic strength (mol/kgw) = 1.158e-03 - Mass of water (kg) = 9.973e-01 - Total alkalinity (eq/kg) = 1.215e-09 - Total CO2 (mol/kg) = 1.562e+00 - Temperature (C) = 50.00 - Pressure (atm) = 556.93 - Electrical balance (eq) = -1.212e-09 + Ionic strength (mol/kgw) = 1.157e-03 + Mass of water (kg) = 9.966e-01 + Total alkalinity (eq/kg) = 1.217e-09 + Total CO2 (mol/kg) = 1.561e+00 + Temperature (°C) = 50.00 + Pressure (atm) = 559.08 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 23 - Total H = 1.107200e+02 - Total O = 5.847637e+01 + Iterations = 36 (137 overall) + Total H = 1.106352e+02 + Total O = 5.842815e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.158e-03 1.116e-03 -2.936 -2.952 -0.016 0.00 - OH- 7.901e-11 7.597e-11 -10.102 -10.119 -0.017 -4.28 + H+ 1.157e-03 1.115e-03 -2.937 -2.953 -0.016 0.00 + OH- 7.922e-11 7.618e-11 -10.101 -10.118 -0.017 -4.28 H2O 5.551e+01 9.747e-01 1.744 -0.011 0.000 17.82 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -118.152 -118.152 0.000 37.58 -C(4) 1.562e+00 - CO2 1.412e+00 1.412e+00 0.150 0.150 0.000 35.10 - (CO2)2 7.482e-02 7.484e-02 -1.126 -1.126 0.000 70.20 - HCO3- 1.158e-03 1.115e-03 -2.936 -2.953 -0.017 26.35 - CO3-2 1.375e-10 1.180e-10 -9.862 -9.928 -0.067 -0.75 -H(0) 1.026e-38 - H2 5.131e-39 5.133e-39 -38.290 -38.290 0.000 28.36 -O(0) 2.811e-09 - O2 1.406e-09 1.406e-09 -8.852 -8.852 0.000 30.86 +C(-4) 3.438e-12 + CH4 3.438e-12 3.439e-12 -11.464 -11.464 0.000 37.58 +C(4) 1.561e+00 + CO2 1.410e+00 1.410e+00 0.149 0.149 0.000 35.10 + (CO2)2 7.466e-02 7.468e-02 -1.127 -1.127 0.000 70.20 + HCO3- 1.157e-03 1.113e-03 -2.937 -2.953 -0.017 26.49 + CO3-2 1.311e-10 1.125e-10 -9.882 -9.949 -0.067 1.76 +H(0) 4.818e-12 + H2 2.409e-12 2.410e-12 -11.618 -11.618 0.000 28.36 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -62.197 -62.197 0.000 30.85 ------------------------------Saturation indices------------------------------- - Phase SI** log IAP log K(323 K, 557 atm) + Phase SI** log IAP log K(323 K, 559 atm) - CH4(g) -114.85 -118.15 -3.30 CH4 - CO2(g) 2.18 0.15 -2.03 CO2 Pressure 553.5 atm, phi 0.274 - H2(g) -34.90 -38.29 -3.39 H2 - H2O(g) -0.76 -0.01 0.75 H2O Pressure 3.5 atm, phi 0.050 - O2(g) -5.54 -8.85 -3.31 O2 + CH4(g) -8.16 -11.46 -3.30 CH4 + CO2(g) 2.18 0.15 -2.03 CO2 Pressure 554.6 atm, phi 0.274 + H2(g) -8.22 -11.62 -3.40 H2 + H2O(g) -0.76 -0.01 0.75 H2O Pressure 4.5 atm, phi 0.039 + O2(g) -58.88 -62.20 -3.31 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5271,73 +5332,74 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 670.45 atmospheres (Peng-Robinson calculation) +Total pressure: 674.65 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters - Molar volume: 4.08e-02 liters/mole - P * Vm / RT: 1.03100 (Compressibility Factor Z) + Molar volume: 4.07e-02 liters/mole + P * Vm / RT: 1.03479 (Compressibility Factor Z) Moles in gas ---------------------------------- Component log P P phi Initial Final Delta -CO2(g) 2.82 6.667e+02 0.272 2.344e+01 2.439e+01 9.452e-01 -H2O(g) 0.57 3.716e+00 0.050 1.462e-01 1.359e-01 -1.032e-02 +CO2(g) 2.83 6.693e+02 0.272 2.344e+01 2.439e+01 9.462e-01 +H2O(g) 0.73 5.366e+00 0.035 1.886e-01 1.956e-01 6.925e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 1.617e+00 1.613e+00 + C 1.615e+00 1.609e+00 ----------------------------Description of solution---------------------------- pH = 2.923 Charge balance - pe = 14.466 Adjusted to redox equilibrium - Specific Conductance (S/cm, 50C) = 644 - Density (g/cm) = 1.02870 - Volume (L) = 1.03873 + pe = 1.124 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 616 + Density (g/cm³) = 1.02885 + Volume (L) = 1.03737 + Viscosity (mPa s) = 0.56211 Activity of water = 0.974 - Ionic strength (mol/kgw) = 1.241e-03 - Mass of water (kg) = 9.975e-01 - Total alkalinity (eq/kg) = 1.214e-09 - Total CO2 (mol/kg) = 1.617e+00 - Temperature (C) = 50.00 - Pressure (atm) = 670.45 - Electrical balance (eq) = -1.211e-09 + Ionic strength (mol/kgw) = 1.240e-03 + Mass of water (kg) = 9.965e-01 + Total alkalinity (eq/kg) = 1.217e-09 + Total CO2 (mol/kg) = 1.615e+00 + Temperature (°C) = 50.00 + Pressure (atm) = 674.65 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 - Total H = 1.107406e+02 - Total O = 5.859638e+01 + Iterations = 36 (137 overall) + Total H = 1.106213e+02 + Total O = 5.852889e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.241e-03 1.195e-03 -2.906 -2.923 -0.016 0.00 - OH- 8.110e-11 7.790e-11 -10.091 -10.108 -0.017 -4.35 - H2O 5.551e+01 9.738e-01 1.744 -0.012 0.000 17.74 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -118.192 -118.192 0.000 37.61 -C(4) 1.617e+00 - CO2 1.456e+00 1.457e+00 0.163 0.163 0.000 35.00 - (CO2)2 7.966e-02 7.968e-02 -1.099 -1.099 0.000 70.00 - HCO3- 1.241e-03 1.193e-03 -2.906 -2.923 -0.017 26.46 - CO3-2 1.525e-10 1.303e-10 -9.817 -9.885 -0.068 0.03 -H(0) 9.186e-39 - H2 4.593e-39 4.594e-39 -38.338 -38.338 0.000 28.33 -O(0) 2.811e-09 - O2 1.405e-09 1.406e-09 -8.852 -8.852 0.000 30.68 + H+ 1.240e-03 1.194e-03 -2.907 -2.923 -0.016 0.00 + OH- 8.146e-11 7.825e-11 -10.089 -10.107 -0.017 -4.35 + H2O 5.551e+01 9.739e-01 1.744 -0.011 0.000 17.74 +C(-4) 3.488e-12 + CH4 3.488e-12 3.489e-12 -11.457 -11.457 0.000 37.61 +C(4) 1.615e+00 + CO2 1.455e+00 1.455e+00 0.163 0.163 0.000 35.00 + (CO2)2 7.945e-02 7.947e-02 -1.100 -1.100 0.000 69.99 + HCO3- 1.240e-03 1.192e-03 -2.907 -2.924 -0.017 26.65 + CO3-2 1.441e-10 1.231e-10 -9.841 -9.910 -0.068 2.59 +H(0) 4.421e-12 + H2 2.211e-12 2.211e-12 -11.655 -11.655 0.000 28.33 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -62.221 -62.220 0.000 30.67 ------------------------------Saturation indices------------------------------- - Phase SI** log IAP log K(323 K, 670 atm) + Phase SI** log IAP log K(323 K, 675 atm) - CH4(g) -114.82 -118.19 -3.37 CH4 - CO2(g) 2.26 0.16 -2.09 CO2 Pressure 666.7 atm, phi 0.272 - H2(g) -34.89 -38.34 -3.45 H2 - H2O(g) -0.73 -0.01 0.72 H2O Pressure 3.7 atm, phi 0.050 - O2(g) -5.49 -8.85 -3.37 O2 + CH4(g) -8.08 -11.46 -3.37 CH4 + CO2(g) 2.26 0.16 -2.10 CO2 Pressure 669.3 atm, phi 0.272 + H2(g) -8.21 -11.66 -3.45 H2 + H2O(g) -0.73 -0.01 0.72 H2O Pressure 5.4 atm, phi 0.035 + O2(g) -58.85 -62.22 -3.37 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5372,73 +5434,74 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 810.89 atmospheres (Peng-Robinson calculation) +Total pressure: 817.85 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters - Molar volume: 3.93e-02 liters/mole - P * Vm / RT: 1.20116 (Compressibility Factor Z) + Molar volume: 3.92e-02 liters/mole + P * Vm / RT: 1.20781 (Compressibility Factor Z) Moles in gas ---------------------------------- Component log P P phi Initial Final Delta -CO2(g) 2.91 8.068e+02 0.278 2.439e+01 2.533e+01 9.436e-01 -H2O(g) 0.61 4.066e+00 0.050 1.359e-01 1.277e-01 -8.238e-03 +CO2(g) 2.91 8.114e+02 0.278 2.439e+01 2.534e+01 9.442e-01 +H2O(g) 0.81 6.418e+00 0.032 1.956e-01 2.004e-01 4.813e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 1.673e+00 1.669e+00 + C 1.671e+00 1.665e+00 ----------------------------Description of solution---------------------------- pH = 2.888 Charge balance - pe = 14.498 Adjusted to redox equilibrium - Specific Conductance (S/cm, 50C) = 693 - Density (g/cm) = 1.03445 - Volume (L) = 1.03551 + pe = 1.148 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 663 + Density (g/cm³) = 1.03469 + Volume (L) = 1.03380 + Viscosity (mPa s) = 0.56583 Activity of water = 0.973 - Ionic strength (mol/kgw) = 1.346e-03 - Mass of water (kg) = 9.977e-01 - Total alkalinity (eq/kg) = 1.214e-09 - Total CO2 (mol/kg) = 1.673e+00 - Temperature (C) = 50.00 - Pressure (atm) = 810.89 - Electrical balance (eq) = -1.211e-09 + Ionic strength (mol/kgw) = 1.344e-03 + Mass of water (kg) = 9.964e-01 + Total alkalinity (eq/kg) = 1.217e-09 + Total CO2 (mol/kg) = 1.671e+00 + Temperature (°C) = 50.00 + Pressure (atm) = 817.85 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 - Total H = 1.107571e+02 - Total O = 5.871749e+01 + Iterations = 36 (137 overall) + Total H = 1.106117e+02 + Total O = 5.863558e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.346e-03 1.294e-03 -2.871 -2.888 -0.017 0.00 - OH- 8.418e-11 8.075e-11 -10.075 -10.093 -0.018 -4.42 - H2O 5.551e+01 9.730e-01 1.744 -0.012 0.000 17.65 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -118.243 -118.243 0.000 37.65 -C(4) 1.673e+00 - CO2 1.502e+00 1.503e+00 0.177 0.177 0.000 34.88 - (CO2)2 8.477e-02 8.480e-02 -1.072 -1.072 0.000 69.77 - HCO3- 1.346e-03 1.292e-03 -2.871 -2.889 -0.018 26.60 - CO3-2 1.722e-10 1.463e-10 -9.764 -9.835 -0.071 0.93 -H(0) 8.012e-39 - H2 4.006e-39 4.007e-39 -38.397 -38.397 0.000 28.29 -O(0) 2.811e-09 - O2 1.405e-09 1.406e-09 -8.852 -8.852 0.000 30.48 + H+ 1.344e-03 1.293e-03 -2.872 -2.888 -0.017 0.00 + OH- 8.475e-11 8.130e-11 -10.072 -10.090 -0.018 -4.42 + H2O 5.551e+01 9.730e-01 1.744 -0.012 0.000 17.64 +C(-4) 3.540e-12 + CH4 3.540e-12 3.541e-12 -11.451 -11.451 0.000 37.65 +C(4) 1.671e+00 + CO2 1.501e+00 1.501e+00 0.176 0.176 0.000 34.88 + (CO2)2 8.454e-02 8.456e-02 -1.073 -1.073 0.000 69.76 + HCO3- 1.344e-03 1.291e-03 -2.872 -2.889 -0.018 26.83 + CO3-2 1.610e-10 1.368e-10 -9.793 -9.864 -0.071 3.56 +H(0) 3.980e-12 + H2 1.990e-12 1.991e-12 -11.701 -11.701 0.000 28.28 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -62.250 -62.250 0.000 30.47 ------------------------------Saturation indices------------------------------- - Phase SI** log IAP log K(323 K, 811 atm) + Phase SI** log IAP log K(323 K, 818 atm) - CH4(g) -114.78 -118.24 -3.46 CH4 - CO2(g) 2.35 0.18 -2.17 CO2 Pressure 806.8 atm, phi 0.278 - H2(g) -34.89 -38.40 -3.51 H2 - H2O(g) -0.69 -0.01 0.68 H2O Pressure 4.1 atm, phi 0.050 - O2(g) -5.42 -8.85 -3.43 O2 + CH4(g) -7.99 -11.45 -3.46 CH4 + CO2(g) 2.35 0.18 -2.18 CO2 Pressure 811.4 atm, phi 0.278 + H2(g) -8.19 -11.70 -3.51 H2 + H2O(g) -0.69 -0.01 0.68 H2O Pressure 6.4 atm, phi 0.032 + O2(g) -58.81 -62.25 -3.44 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5510,16 +5573,15 @@ H2O(g) -0.42 3.792e-01 0.996 0.000e+00 1.332e-02 1.332e-02 pH = 6.344 Charge balance pe = 7.913 Adjusted to redox equilibrium - Specific Conductance (S/cm, 75C) = 0 - Density (g/cm) = 0.97481 + Specific Conductance (µS/cm, 75°C) = 0 + Density (g/cm³) = 0.97481 Volume (L) = 1.02560 + Viscosity (mPa s) = 0.37740 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.534e-07 Mass of water (kg) = 9.998e-01 Total alkalinity (eq/kg) = 1.217e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 0.38 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.13 @@ -5530,7 +5592,7 @@ H2O(g) -0.42 3.792e-01 0.996 0.000e+00 1.332e-02 1.332e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 4.540e-07 4.536e-07 -6.343 -6.343 -0.000 -4.48 H+ 4.528e-07 4.524e-07 -6.344 -6.344 -0.000 0.00 @@ -5595,52 +5657,53 @@ H2O(g) -0.36 4.356e-01 0.874 1.332e-02 1.642e-02 3.100e-03 ----------------------------Description of solution---------------------------- pH = 3.465 Charge balance - pe = 10.803 Adjusted to redox equilibrium - Specific Conductance (S/cm, 75C) = 234 - Density (g/cm) = 0.97762 + pe = 10.794 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 217 + Density (g/cm³) = 0.97762 Volume (L) = 1.03384 + Viscosity (mPa s) = 0.37807 Activity of water = 0.996 Ionic strength (mol/kgw) = 3.505e-04 Mass of water (kg) = 9.997e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 2.500e-01 - Temperature (C) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 20.33 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 33 Total H = 1.109796e+02 - Total O = 5.598961e+01 + Total O = 5.598962e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 3.505e-04 3.425e-04 -3.455 -3.465 -0.010 0.00 - OH- 6.207e-10 6.061e-10 -9.207 -9.217 -0.010 -4.53 + OH- 6.206e-10 6.060e-10 -9.207 -9.218 -0.010 -4.53 H2O 5.551e+01 9.958e-01 1.744 -0.002 0.000 18.46 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -96.569 -96.569 0.000 39.08 + CH4 0.000e+00 0.000e+00 -96.500 -96.500 0.000 39.08 C(4) 2.500e-01 CO2 2.422e-01 2.422e-01 -0.616 -0.616 0.000 37.04 (CO2)2 3.732e-03 3.732e-03 -2.428 -2.428 0.000 74.08 - HCO3- 3.505e-04 3.423e-04 -3.455 -3.466 -0.010 25.64 - CO3-2 8.420e-11 7.664e-11 -10.075 -10.116 -0.041 -8.14 -H(0) 2.640e-32 - H2 1.320e-32 1.320e-32 -31.879 -31.879 0.000 28.57 -O(0) 3.016e-15 - O2 1.508e-15 1.508e-15 -14.822 -14.822 0.000 32.93 + HCO3- 3.505e-04 3.424e-04 -3.455 -3.466 -0.010 25.37 + CO3-2 8.397e-11 7.644e-11 -10.076 -10.117 -0.041 -4.45 +H(0) 2.746e-32 + H2 1.373e-32 1.373e-32 -31.862 -31.862 0.000 28.57 +O(0) 2.786e-15 + O2 1.393e-15 1.393e-15 -14.856 -14.856 0.000 32.93 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 20 atm) - CH4(g) -93.54 -96.57 -3.02 CH4 + CH4(g) -93.48 -96.50 -3.02 CH4 CO2(g) 1.27 -0.62 -1.88 CO2 Pressure 19.9 atm, phi 0.933 - H2(g) -28.74 -31.88 -3.14 H2 + H2(g) -28.72 -31.86 -3.14 H2 H2O(g) -0.42 -0.00 0.42 H2O Pressure 0.4 atm, phi 0.874 - O2(g) -11.71 -14.82 -3.11 O2 + O2(g) -11.75 -14.86 -3.11 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5689,52 +5752,53 @@ H2O(g) -0.30 4.993e-01 0.769 1.642e-02 2.026e-02 3.838e-03 ----------------------------Description of solution---------------------------- pH = 3.339 Charge balance - pe = 2.398 Adjusted to redox equilibrium - Specific Conductance (S/cm, 75C) = 314 - Density (g/cm) = 0.97995 + pe = 11.044 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 290 + Density (g/cm³) = 0.97995 Volume (L) = 1.04028 + Viscosity (mPa s) = 0.37860 Activity of water = 0.993 - Ionic strength (mol/kgw) = 4.702e-04 + Ionic strength (mol/kgw) = 4.703e-04 Mass of water (kg) = 9.996e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 4.496e-01 - Temperature (C) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 38.71 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 34 + Iterations = 28 Total H = 1.109719e+02 - Total O = 5.638483e+01 + Total O = 5.638485e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 4.702e-04 4.579e-04 -3.328 -3.339 -0.011 0.00 - OH- 4.713e-10 4.586e-10 -9.327 -9.339 -0.012 -4.59 + H+ 4.703e-04 4.580e-04 -3.328 -3.339 -0.011 0.00 + OH- 4.713e-10 4.585e-10 -9.327 -9.339 -0.012 -4.59 H2O 5.551e+01 9.925e-01 1.744 -0.003 0.000 18.45 -C(-4) 8.173e-29 - CH4 8.173e-29 8.174e-29 -28.088 -28.088 0.000 39.07 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -97.254 -97.254 0.000 39.07 C(4) 4.496e-01 CO2 4.260e-01 4.261e-01 -0.371 -0.371 0.000 37.01 (CO2)2 1.155e-02 1.155e-02 -1.937 -1.937 0.000 74.01 - HCO3- 4.702e-04 4.576e-04 -3.328 -3.339 -0.012 25.68 - CO3-2 8.724e-11 7.829e-11 -10.059 -10.106 -0.047 -7.92 -H(0) 2.982e-15 - H2 1.491e-15 1.491e-15 -14.826 -14.826 0.000 28.56 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -48.945 -48.945 0.000 32.88 + HCO3- 4.703e-04 4.577e-04 -3.328 -3.339 -0.012 25.42 + CO3-2 8.679e-11 7.788e-11 -10.062 -10.109 -0.047 -4.22 +H(0) 1.524e-32 + H2 7.619e-33 7.619e-33 -32.118 -32.118 0.000 28.56 +O(0) 8.689e-15 + O2 4.345e-15 4.345e-15 -14.362 -14.362 0.000 32.88 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 39 atm) - CH4(g) -25.05 -28.09 -3.04 CH4 + CH4(g) -94.22 -97.25 -3.04 CH4 CO2(g) 1.52 -0.37 -1.89 CO2 Pressure 38.2 atm, phi 0.875 - H2(g) -11.68 -14.83 -3.15 H2 + H2(g) -28.97 -32.12 -3.15 H2 H2O(g) -0.42 -0.00 0.41 H2O Pressure 0.5 atm, phi 0.769 - O2(g) -45.83 -48.95 -3.12 O2 + O2(g) -11.25 -14.36 -3.12 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5783,52 +5847,53 @@ H2O(g) -0.24 5.707e-01 0.679 2.026e-02 2.494e-02 4.679e-03 ----------------------------Description of solution---------------------------- pH = 3.275 Charge balance - pe = 10.947 Adjusted to redox equilibrium - Specific Conductance (S/cm, 75C) = 364 - Density (g/cm) = 0.98185 + pe = 11.156 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 337 + Density (g/cm³) = 0.98185 Volume (L) = 1.04514 + Viscosity (mPa s) = 0.37908 Activity of water = 0.990 - Ionic strength (mol/kgw) = 5.460e-04 + Ionic strength (mol/kgw) = 5.461e-04 Mass of water (kg) = 9.995e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 6.050e-01 - Temperature (C) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 55.38 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 30 + Iterations = 26 Total H = 1.109626e+02 - Total O = 5.669062e+01 + Total O = 5.669067e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 5.460e-04 5.308e-04 -3.263 -3.275 -0.012 0.00 - OH- 4.120e-10 4.000e-10 -9.385 -9.398 -0.013 -4.64 + H+ 5.461e-04 5.309e-04 -3.263 -3.275 -0.012 0.00 + OH- 4.119e-10 3.999e-10 -9.385 -9.398 -0.013 -4.64 H2O 5.551e+01 9.901e-01 1.744 -0.004 0.000 18.43 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -95.848 -95.848 0.000 39.07 + CH4 0.000e+00 0.000e+00 -97.526 -97.525 0.000 39.07 C(4) 6.050e-01 - CO2 5.639e-01 5.640e-01 -0.249 -0.249 0.000 36.98 + CO2 5.640e-01 5.640e-01 -0.249 -0.249 0.000 36.98 (CO2)2 2.024e-02 2.024e-02 -1.694 -1.694 0.000 73.95 - HCO3- 5.460e-04 5.304e-04 -3.263 -3.275 -0.013 25.71 - CO3-2 8.964e-11 7.981e-11 -10.048 -10.098 -0.050 -7.73 -H(0) 3.153e-32 - H2 1.576e-32 1.577e-32 -31.802 -31.802 0.000 28.55 -O(0) 1.958e-15 - O2 9.789e-16 9.790e-16 -15.009 -15.009 0.000 32.83 + HCO3- 5.461e-04 5.305e-04 -3.263 -3.275 -0.013 25.47 + CO3-2 8.897e-11 7.921e-11 -10.051 -10.101 -0.050 -4.01 +H(0) 1.200e-32 + H2 6.002e-33 6.003e-33 -32.222 -32.222 0.000 28.55 +O(0) 1.351e-14 + O2 6.753e-15 6.754e-15 -14.171 -14.170 0.000 32.83 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 55 atm) - CH4(g) -92.80 -95.85 -3.05 CH4 + CH4(g) -94.48 -97.53 -3.05 CH4 CO2(g) 1.66 -0.25 -1.90 CO2 Pressure 54.8 atm, phi 0.825 - H2(g) -28.65 -31.80 -3.16 H2 + H2(g) -29.07 -32.22 -3.16 H2 H2O(g) -0.41 -0.00 0.41 H2O Pressure 0.6 atm, phi 0.679 - O2(g) -11.88 -15.01 -3.13 O2 + O2(g) -11.05 -14.17 -3.13 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5859,7 +5924,7 @@ Reaction 1. Total pressure: 70.32 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 3.02e-01 liters/mole - P * Vm / RT: 0.74428 (Compressibility Factor Z) + P * Vm / RT: 0.74429 (Compressibility Factor Z) Moles in gas ---------------------------------- @@ -5877,52 +5942,53 @@ H2O(g) -0.19 6.497e-01 0.601 2.494e-02 3.056e-02 5.615e-03 ----------------------------Description of solution---------------------------- pH = 3.236 Charge balance - pe = 11.250 Adjusted to redox equilibrium - Specific Conductance (S/cm, 75C) = 398 - Density (g/cm) = 0.98339 + pe = 11.195 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 369 + Density (g/cm³) = 0.98339 Volume (L) = 1.04871 + Viscosity (mPa s) = 0.37950 Activity of water = 0.988 - Ionic strength (mol/kgw) = 5.984e-04 + Ionic strength (mol/kgw) = 5.986e-04 Mass of water (kg) = 9.994e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 7.238e-01 - Temperature (C) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 70.32 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 24 + Iterations = 23 Total H = 1.109513e+02 - Total O = 5.692245e+01 + Total O = 5.692251e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 5.984e-04 5.810e-04 -3.223 -3.236 -0.013 0.00 - OH- 3.807e-10 3.692e-10 -9.419 -9.433 -0.013 -4.69 + H+ 5.986e-04 5.812e-04 -3.223 -3.236 -0.013 0.00 + OH- 3.806e-10 3.691e-10 -9.419 -9.433 -0.013 -4.69 H2O 5.551e+01 9.882e-01 1.744 -0.005 0.000 18.42 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -97.898 -97.898 0.000 39.07 + CH4 0.000e+00 0.000e+00 -97.456 -97.456 0.000 39.07 C(4) 7.238e-01 - CO2 6.666e-01 6.667e-01 -0.176 -0.176 0.000 36.95 + CO2 6.667e-01 6.667e-01 -0.176 -0.176 0.000 36.95 (CO2)2 2.828e-02 2.829e-02 -1.548 -1.548 0.000 73.90 - HCO3- 5.984e-04 5.805e-04 -3.223 -3.236 -0.013 25.74 - CO3-2 9.165e-11 8.118e-11 -10.038 -10.091 -0.053 -7.56 -H(0) 9.191e-33 - H2 4.596e-33 4.596e-33 -32.338 -32.338 0.000 28.54 -O(0) 2.232e-14 - O2 1.116e-14 1.116e-14 -13.952 -13.952 0.000 32.79 + HCO3- 5.986e-04 5.807e-04 -3.223 -3.236 -0.013 25.51 + CO3-2 9.078e-11 8.041e-11 -10.042 -10.095 -0.053 -3.83 +H(0) 1.185e-32 + H2 5.925e-33 5.926e-33 -32.227 -32.227 0.000 28.54 +O(0) 1.343e-14 + O2 6.714e-15 6.715e-15 -14.173 -14.173 0.000 32.79 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 70 atm) - CH4(g) -94.84 -97.90 -3.05 CH4 + CH4(g) -94.40 -97.46 -3.05 CH4 CO2(g) 1.74 -0.18 -1.91 CO2 Pressure 69.7 atm, phi 0.782 - H2(g) -29.17 -32.34 -3.16 H2 + H2(g) -29.06 -32.23 -3.16 H2 H2O(g) -0.41 -0.01 0.40 H2O Pressure 0.6 atm, phi 0.601 - O2(g) -10.82 -13.95 -3.13 O2 + O2(g) -11.04 -14.17 -3.13 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5970,53 +6036,54 @@ H2O(g) -0.13 7.364e-01 0.534 3.056e-02 3.718e-02 6.627e-03 ----------------------------Description of solution---------------------------- - pH = 3.210 Charge balance - pe = 11.308 Adjusted to redox equilibrium - Specific Conductance (S/cm, 75C) = 423 - Density (g/cm) = 0.98464 + pH = 3.209 Charge balance + pe = 11.161 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 392 + Density (g/cm³) = 0.98464 Volume (L) = 1.05128 + Viscosity (mPa s) = 0.37987 Activity of water = 0.987 - Ionic strength (mol/kgw) = 6.362e-04 + Ionic strength (mol/kgw) = 6.365e-04 Mass of water (kg) = 9.993e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 8.142e-01 - Temperature (C) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 83.65 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 19 + Iterations = 21 Total H = 1.109381e+02 - Total O = 5.709623e+01 + Total O = 5.709630e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 6.362e-04 6.173e-04 -3.196 -3.210 -0.013 0.00 - OH- 3.621e-10 3.508e-10 -9.441 -9.455 -0.014 -4.73 + H+ 6.365e-04 6.175e-04 -3.196 -3.209 -0.013 0.00 + OH- 3.620e-10 3.507e-10 -9.441 -9.455 -0.014 -4.73 H2O 5.551e+01 9.867e-01 1.744 -0.006 0.000 18.41 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -98.112 -98.112 0.000 39.07 + CH4 0.000e+00 0.000e+00 -96.935 -96.935 0.000 39.07 C(4) 8.142e-01 CO2 7.432e-01 7.433e-01 -0.129 -0.129 0.000 36.92 (CO2)2 3.515e-02 3.516e-02 -1.454 -1.454 0.000 73.85 - HCO3- 6.362e-04 6.167e-04 -3.196 -3.210 -0.014 25.76 - CO3-2 9.337e-11 8.242e-11 -10.030 -10.084 -0.054 -7.41 -H(0) 7.835e-33 - H2 3.917e-33 3.918e-33 -32.407 -32.407 0.000 28.54 -O(0) 2.989e-14 - O2 1.494e-14 1.494e-14 -13.826 -13.826 0.000 32.75 + HCO3- 6.365e-04 6.169e-04 -3.196 -3.210 -0.014 25.54 + CO3-2 9.231e-11 8.148e-11 -10.035 -10.089 -0.054 -3.68 +H(0) 1.543e-32 + H2 7.713e-33 7.715e-33 -32.113 -32.113 0.000 28.54 +O(0) 7.708e-15 + O2 3.854e-15 3.855e-15 -14.414 -14.414 0.000 32.75 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 84 atm) - CH4(g) -95.05 -98.11 -3.06 CH4 + CH4(g) -93.87 -96.93 -3.06 CH4 CO2(g) 1.79 -0.13 -1.92 CO2 Pressure 82.9 atm, phi 0.746 - H2(g) -29.24 -32.41 -3.17 H2 + H2(g) -28.94 -32.11 -3.17 H2 H2O(g) -0.41 -0.01 0.40 H2O Pressure 0.7 atm, phi 0.534 - O2(g) -10.69 -13.83 -3.14 O2 + O2(g) -11.27 -14.41 -3.14 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6060,57 +6127,58 @@ H2O(g) -0.08 8.308e-01 0.476 3.718e-02 4.488e-02 7.699e-03 Elements Molality Moles - C 8.832e-01 8.825e-01 + C 8.833e-01 8.825e-01 ----------------------------Description of solution---------------------------- pH = 3.191 Charge balance - pe = 11.357 Adjusted to redox equilibrium - Specific Conductance (S/cm, 75C) = 441 - Density (g/cm) = 0.98567 + pe = 11.265 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 409 + Density (g/cm³) = 0.98568 Volume (L) = 1.05312 + Viscosity (mPa s) = 0.38019 Activity of water = 0.986 - Ionic strength (mol/kgw) = 6.646e-04 + Ionic strength (mol/kgw) = 6.648e-04 Mass of water (kg) = 9.992e-01 Total alkalinity (eq/kg) = 1.217e-09 - Total CO2 (mol/kg) = 8.832e-01 - Temperature (C) = 75.00 + Total CO2 (mol/kg) = 8.833e-01 + Temperature (°C) = 75.00 Pressure (atm) = 95.56 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 23 + Iterations = 24 Total H = 1.109227e+02 - Total O = 5.722634e+01 + Total O = 5.722642e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 6.646e-04 6.443e-04 -3.177 -3.191 -0.013 0.00 - OH- 3.501e-10 3.390e-10 -9.456 -9.470 -0.014 -4.77 + H+ 6.648e-04 6.446e-04 -3.177 -3.191 -0.013 0.00 + OH- 3.500e-10 3.389e-10 -9.456 -9.470 -0.014 -4.77 H2O 5.551e+01 9.857e-01 1.744 -0.006 0.000 18.40 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -98.327 -98.327 0.000 39.06 -C(4) 8.832e-01 - CO2 8.009e-01 8.010e-01 -0.096 -0.096 0.000 36.90 + CH4 0.000e+00 0.000e+00 -97.585 -97.585 0.000 39.06 +C(4) 8.833e-01 + CO2 8.010e-01 8.010e-01 -0.096 -0.096 0.000 36.90 (CO2)2 4.082e-02 4.083e-02 -1.389 -1.389 0.000 73.80 - HCO3- 6.646e-04 6.437e-04 -3.177 -3.191 -0.014 25.79 - CO3-2 9.488e-11 8.354e-11 -10.023 -10.078 -0.055 -7.28 -H(0) 6.735e-33 - H2 3.368e-33 3.368e-33 -32.473 -32.473 0.000 28.53 -O(0) 3.947e-14 - O2 1.974e-14 1.974e-14 -13.705 -13.705 0.000 32.72 + HCO3- 6.648e-04 6.440e-04 -3.177 -3.191 -0.014 25.57 + CO3-2 9.364e-11 8.245e-11 -10.029 -10.084 -0.055 -3.54 +H(0) 1.032e-32 + H2 5.162e-33 5.163e-33 -32.287 -32.287 0.000 28.53 +O(0) 1.680e-14 + O2 8.400e-15 8.401e-15 -14.076 -14.076 0.000 32.72 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 96 atm) - CH4(g) -95.26 -98.33 -3.07 CH4 + CH4(g) -94.52 -97.59 -3.07 CH4 CO2(g) 1.83 -0.10 -1.93 CO2 Pressure 94.7 atm, phi 0.714 - H2(g) -29.30 -32.47 -3.17 H2 + H2(g) -29.11 -32.29 -3.17 H2 H2O(g) -0.40 -0.01 0.40 H2O Pressure 0.8 atm, phi 0.476 - O2(g) -10.56 -13.70 -3.15 O2 + O2(g) -10.93 -14.08 -3.15 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6159,52 +6227,53 @@ H2O(g) -0.03 9.337e-01 0.426 4.488e-02 5.370e-02 8.815e-03 ----------------------------Description of solution---------------------------- pH = 3.177 Charge balance - pe = 11.396 Adjusted to redox equilibrium - Specific Conductance (S/cm, 75C) = 456 - Density (g/cm) = 0.98654 + pe = 11.228 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 422 + Density (g/cm³) = 0.98654 Volume (L) = 1.05442 + Viscosity (mPa s) = 0.38049 Activity of water = 0.985 - Ionic strength (mol/kgw) = 6.865e-04 + Ionic strength (mol/kgw) = 6.868e-04 Mass of water (kg) = 9.990e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 9.370e-01 - Temperature (C) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 106.37 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 23 Total H = 1.109050e+02 - Total O = 5.732466e+01 + Total O = 5.732475e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 6.865e-04 6.653e-04 -3.163 -3.177 -0.014 0.00 - OH- 3.420e-10 3.309e-10 -9.466 -9.480 -0.014 -4.81 + H+ 6.868e-04 6.656e-04 -3.163 -3.177 -0.014 0.00 + OH- 3.419e-10 3.308e-10 -9.466 -9.480 -0.014 -4.81 H2O 5.551e+01 9.848e-01 1.744 -0.007 0.000 18.39 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -98.511 -98.511 0.000 39.06 + CH4 0.000e+00 0.000e+00 -97.164 -97.164 0.000 39.06 C(4) 9.370e-01 - CO2 8.453e-01 8.455e-01 -0.073 -0.073 0.000 36.88 + CO2 8.454e-01 8.455e-01 -0.073 -0.073 0.000 36.88 (CO2)2 4.548e-02 4.549e-02 -1.342 -1.342 0.000 73.77 - HCO3- 6.865e-04 6.647e-04 -3.163 -3.177 -0.014 25.81 - CO3-2 9.622e-11 8.456e-11 -10.017 -10.073 -0.056 -7.16 -H(0) 5.935e-33 - H2 2.967e-33 2.968e-33 -32.528 -32.528 0.000 28.53 -O(0) 4.975e-14 - O2 2.488e-14 2.488e-14 -13.604 -13.604 0.000 32.69 + HCO3- 6.868e-04 6.650e-04 -3.163 -3.177 -0.014 25.60 + CO3-2 9.483e-11 8.333e-11 -10.023 -10.079 -0.056 -3.41 +H(0) 1.288e-32 + H2 6.442e-33 6.443e-33 -32.191 -32.191 0.000 28.53 +O(0) 1.056e-14 + O2 5.278e-15 5.279e-15 -14.278 -14.277 0.000 32.69 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 106 atm) - CH4(g) -95.43 -98.51 -3.08 CH4 + CH4(g) -94.09 -97.16 -3.08 CH4 CO2(g) 1.86 -0.07 -1.93 CO2 Pressure 105.4 atm, phi 0.687 - H2(g) -29.35 -32.53 -3.18 H2 + H2(g) -29.01 -32.19 -3.18 H2 H2O(g) -0.40 -0.01 0.39 H2O Pressure 0.9 atm, phi 0.426 - O2(g) -10.45 -13.60 -3.15 O2 + O2(g) -11.13 -14.28 -3.15 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6248,57 +6317,58 @@ H2O(g) 0.02 1.046e+00 0.383 5.370e-02 6.365e-02 9.958e-03 Elements Molality Moles - C 9.801e-01 9.790e-01 + C 9.802e-01 9.790e-01 ----------------------------Description of solution---------------------------- pH = 3.166 Charge balance - pe = 11.379 Adjusted to redox equilibrium - Specific Conductance (S/cm, 75C) = 467 - Density (g/cm) = 0.98730 + pe = 11.077 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 432 + Density (g/cm³) = 0.98730 Volume (L) = 1.05534 + Viscosity (mPa s) = 0.38077 Activity of water = 0.984 - Ionic strength (mol/kgw) = 7.043e-04 + Ionic strength (mol/kgw) = 7.046e-04 Mass of water (kg) = 9.988e-01 Total alkalinity (eq/kg) = 1.218e-09 - Total CO2 (mol/kg) = 9.801e-01 - Temperature (C) = 75.00 + Total CO2 (mol/kg) = 9.802e-01 + Temperature (°C) = 75.00 Pressure (atm) = 116.43 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 + Iterations = 27 Total H = 1.108851e+02 - Total O = 5.740053e+01 + Total O = 5.740062e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.043e-04 6.824e-04 -3.152 -3.166 -0.014 0.00 - OH- 3.361e-10 3.251e-10 -9.473 -9.488 -0.014 -4.84 + H+ 7.046e-04 6.826e-04 -3.152 -3.166 -0.014 0.00 + OH- 3.360e-10 3.250e-10 -9.474 -9.488 -0.014 -4.84 H2O 5.551e+01 9.842e-01 1.744 -0.007 0.000 18.38 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -98.275 -98.275 0.000 39.06 -C(4) 9.801e-01 + CH4 0.000e+00 0.000e+00 -95.851 -95.851 0.000 39.06 +C(4) 9.802e-01 CO2 8.807e-01 8.808e-01 -0.055 -0.055 0.000 36.87 (CO2)2 4.936e-02 4.937e-02 -1.307 -1.307 0.000 73.73 - HCO3- 7.043e-04 6.817e-04 -3.152 -3.166 -0.014 25.82 - CO3-2 9.745e-11 8.551e-11 -10.011 -10.068 -0.057 -7.06 -H(0) 6.680e-33 - H2 3.340e-33 3.341e-33 -32.476 -32.476 0.000 28.52 -O(0) 3.849e-14 - O2 1.925e-14 1.925e-14 -13.716 -13.716 0.000 32.67 + HCO3- 7.046e-04 6.820e-04 -3.152 -3.166 -0.014 25.62 + CO3-2 9.591e-11 8.415e-11 -10.018 -10.075 -0.057 -3.30 +H(0) 2.697e-32 + H2 1.348e-32 1.349e-32 -31.870 -31.870 0.000 28.52 +O(0) 2.362e-15 + O2 1.181e-15 1.181e-15 -14.928 -14.928 0.000 32.67 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 116 atm) - CH4(g) -95.19 -98.28 -3.08 CH4 + CH4(g) -92.77 -95.85 -3.08 CH4 CO2(g) 1.88 -0.06 -1.94 CO2 Pressure 115.4 atm, phi 0.662 - H2(g) -29.29 -32.48 -3.18 H2 + H2(g) -28.69 -31.87 -3.18 H2 H2O(g) -0.40 -0.01 0.39 H2O Pressure 1.0 atm, phi 0.383 - O2(g) -10.56 -13.72 -3.16 O2 + O2(g) -11.77 -14.93 -3.16 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6329,7 +6399,7 @@ Reaction 1. Total pressure: 126.11 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 1.24e-01 liters/mole - P * Vm / RT: 0.54767 (Compressibility Factor Z) + P * Vm / RT: 0.54768 (Compressibility Factor Z) Moles in gas ---------------------------------- @@ -6347,52 +6417,53 @@ H2O(g) 0.07 1.170e+00 0.344 6.365e-02 7.477e-02 1.111e-02 ----------------------------Description of solution---------------------------- pH = 3.157 Charge balance - pe = 11.334 Adjusted to redox equilibrium - Specific Conductance (S/cm, 75C) = 477 - Density (g/cm) = 0.98799 + pe = 11.159 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 441 + Density (g/cm³) = 0.98799 Volume (L) = 1.05600 + Viscosity (mPa s) = 0.38103 Activity of water = 0.984 - Ionic strength (mol/kgw) = 7.195e-04 + Ionic strength (mol/kgw) = 7.198e-04 Mass of water (kg) = 9.986e-01 - Total alkalinity (eq/kg) = 1.220e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.016e+00 - Temperature (C) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 126.11 - Electrical balance (eq) = -1.218e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 22 + Iterations = 26 Total H = 1.108629e+02 - Total O = 5.746101e+01 + Total O = 5.746111e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.195e-04 6.968e-04 -3.143 -3.157 -0.014 0.00 - OH- 3.317e-10 3.208e-10 -9.479 -9.494 -0.015 -4.87 + H+ 7.198e-04 6.971e-04 -3.143 -3.157 -0.014 0.00 + OH- 3.316e-10 3.206e-10 -9.479 -9.494 -0.015 -4.87 H2O 5.551e+01 9.836e-01 1.744 -0.007 0.000 18.38 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -97.826 -97.826 0.000 39.06 + CH4 0.000e+00 0.000e+00 -96.431 -96.431 0.000 39.06 C(4) 1.016e+00 - CO2 9.100e-01 9.102e-01 -0.041 -0.041 0.000 36.85 + CO2 9.101e-01 9.102e-01 -0.041 -0.041 0.000 36.85 (CO2)2 5.270e-02 5.271e-02 -1.278 -1.278 0.000 73.70 - HCO3- 7.195e-04 6.962e-04 -3.143 -3.157 -0.014 25.84 - CO3-2 9.863e-11 8.644e-11 -10.006 -10.063 -0.057 -6.95 -H(0) 8.526e-33 - H2 4.263e-33 4.264e-33 -32.370 -32.370 0.000 28.52 -O(0) 2.318e-14 - O2 1.159e-14 1.159e-14 -13.936 -13.936 0.000 32.64 + HCO3- 7.198e-04 6.965e-04 -3.143 -3.157 -0.014 25.64 + CO3-2 9.693e-11 8.495e-11 -10.014 -10.071 -0.057 -3.19 +H(0) 1.903e-32 + H2 9.513e-33 9.515e-33 -32.022 -32.022 0.000 28.52 +O(0) 4.655e-15 + O2 2.328e-15 2.328e-15 -14.633 -14.633 0.000 32.64 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 126 atm) - CH4(g) -94.74 -97.83 -3.09 CH4 + CH4(g) -93.34 -96.43 -3.09 CH4 CO2(g) 1.90 -0.04 -1.94 CO2 Pressure 124.9 atm, phi 0.640 - H2(g) -29.18 -32.37 -3.19 H2 + H2(g) -28.83 -32.02 -3.19 H2 H2O(g) -0.40 -0.01 0.39 H2O Pressure 1.2 atm, phi 0.344 - O2(g) -10.78 -13.94 -3.16 O2 + O2(g) -11.47 -14.63 -3.16 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6441,52 +6512,53 @@ H2O(g) 0.12 1.308e+00 0.310 7.477e-02 8.703e-02 1.226e-02 ----------------------------Description of solution---------------------------- pH = 3.149 Charge balance - pe = 11.266 Adjusted to redox equilibrium - Specific Conductance (S/cm, 75C) = 486 - Density (g/cm) = 0.98864 + pe = 11.245 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 449 + Density (g/cm³) = 0.98864 Volume (L) = 1.05647 + Viscosity (mPa s) = 0.38130 Activity of water = 0.983 - Ionic strength (mol/kgw) = 7.332e-04 + Ionic strength (mol/kgw) = 7.335e-04 Mass of water (kg) = 9.984e-01 - Total alkalinity (eq/kg) = 1.220e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.048e+00 - Temperature (C) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 135.84 - Electrical balance (eq) = -1.218e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 + Iterations = 26 Total H = 1.108384e+02 - Total O = 5.751141e+01 + Total O = 5.751152e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.332e-04 7.099e-04 -3.135 -3.149 -0.014 0.00 - OH- 3.282e-10 3.172e-10 -9.484 -9.499 -0.015 -4.90 + H+ 7.335e-04 7.102e-04 -3.135 -3.149 -0.014 0.00 + OH- 3.280e-10 3.171e-10 -9.484 -9.499 -0.015 -4.90 H2O 5.551e+01 9.831e-01 1.744 -0.007 0.000 18.37 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -97.213 -97.213 0.000 39.06 + CH4 0.000e+00 0.000e+00 -97.045 -97.045 0.000 39.06 C(4) 1.048e+00 - CO2 9.356e-01 9.358e-01 -0.029 -0.029 0.000 36.83 + CO2 9.357e-01 9.358e-01 -0.029 -0.029 0.000 36.83 (CO2)2 5.571e-02 5.572e-02 -1.254 -1.254 0.000 73.66 - HCO3- 7.332e-04 7.092e-04 -3.135 -3.149 -0.014 25.86 - CO3-2 9.981e-11 8.737e-11 -10.001 -10.059 -0.058 -6.85 -H(0) 1.197e-32 - H2 5.983e-33 5.984e-33 -32.223 -32.223 0.000 28.51 -O(0) 1.155e-14 - O2 5.774e-15 5.775e-15 -14.239 -14.238 0.000 32.62 + HCO3- 7.335e-04 7.095e-04 -3.135 -3.149 -0.014 25.67 + CO3-2 9.796e-11 8.575e-11 -10.009 -10.067 -0.058 -3.08 +H(0) 1.318e-32 + H2 6.592e-33 6.593e-33 -32.181 -32.181 0.000 28.51 +O(0) 9.514e-15 + O2 4.757e-15 4.758e-15 -14.323 -14.323 0.000 32.62 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 136 atm) - CH4(g) -94.12 -97.21 -3.09 CH4 + CH4(g) -93.95 -97.04 -3.09 CH4 CO2(g) 1.92 -0.03 -1.95 CO2 Pressure 134.5 atm, phi 0.618 - H2(g) -29.03 -32.22 -3.19 H2 + H2(g) -28.99 -32.18 -3.19 H2 H2O(g) -0.39 -0.01 0.39 H2O Pressure 1.3 atm, phi 0.310 - O2(g) -11.07 -14.24 -3.16 O2 + O2(g) -11.16 -14.32 -3.16 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6535,52 +6607,53 @@ H2O(g) 0.17 1.463e+00 0.278 8.703e-02 1.004e-01 1.338e-02 ----------------------------Description of solution---------------------------- pH = 3.141 Charge balance - pe = 11.270 Adjusted to redox equilibrium - Specific Conductance (S/cm, 75C) = 494 - Density (g/cm) = 0.98930 + pe = 2.150 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 457 + Density (g/cm³) = 0.98930 Volume (L) = 1.05681 + Viscosity (mPa s) = 0.38157 Activity of water = 0.983 - Ionic strength (mol/kgw) = 7.461e-04 + Ionic strength (mol/kgw) = 7.465e-04 Mass of water (kg) = 9.982e-01 - Total alkalinity (eq/kg) = 1.221e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.077e+00 - Temperature (C) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 146.06 - Electrical balance (eq) = -1.218e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 21 + Iterations = 32 Total H = 1.108116e+02 - Total O = 5.755567e+01 + Total O = 5.755578e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.461e-04 7.223e-04 -3.127 -3.141 -0.014 0.00 - OH- 3.252e-10 3.143e-10 -9.488 -9.503 -0.015 -4.94 + H+ 7.465e-04 7.226e-04 -3.127 -3.141 -0.014 0.00 + OH- 3.251e-10 3.142e-10 -9.488 -9.503 -0.015 -4.94 H2O 5.551e+01 9.827e-01 1.744 -0.008 0.000 18.36 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -97.179 -97.179 0.000 39.05 +C(-4) 6.055e-25 + CH4 6.055e-25 6.057e-25 -24.218 -24.218 0.000 39.05 C(4) 1.077e+00 CO2 9.591e-01 9.592e-01 -0.018 -0.018 0.000 36.81 (CO2)2 5.854e-02 5.855e-02 -1.233 -1.232 0.000 73.63 - HCO3- 7.461e-04 7.215e-04 -3.127 -3.142 -0.015 25.88 - CO3-2 1.010e-10 8.836e-11 -9.996 -10.054 -0.058 -6.74 -H(0) 1.205e-32 - H2 6.023e-33 6.024e-33 -32.220 -32.220 0.000 28.51 -O(0) 1.117e-14 - O2 5.587e-15 5.588e-15 -14.253 -14.253 0.000 32.59 + HCO3- 7.465e-04 7.219e-04 -3.127 -3.142 -0.015 25.69 + CO3-2 9.903e-11 8.660e-11 -10.004 -10.063 -0.058 -2.97 +H(0) 2.095e-14 + H2 1.047e-14 1.048e-14 -13.980 -13.980 0.000 28.51 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -50.733 -50.733 0.000 32.59 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 146 atm) - CH4(g) -94.08 -97.18 -3.10 CH4 + CH4(g) -21.12 -24.22 -3.10 CH4 CO2(g) 1.94 -0.02 -1.95 CO2 Pressure 144.6 atm, phi 0.598 - H2(g) -29.02 -32.22 -3.20 H2 + H2(g) -10.78 -13.98 -3.20 H2 H2O(g) -0.39 -0.01 0.38 H2O Pressure 1.5 atm, phi 0.278 - O2(g) -11.08 -14.25 -3.17 O2 + O2(g) -47.56 -50.73 -3.17 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6629,52 +6702,53 @@ H2O(g) 0.21 1.640e+00 0.250 1.004e-01 1.149e-01 1.446e-02 ----------------------------Description of solution---------------------------- pH = 3.134 Charge balance - pe = 11.336 Adjusted to redox equilibrium - Specific Conductance (S/cm, 75C) = 502 - Density (g/cm) = 0.98999 + pe = 2.173 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 465 + Density (g/cm³) = 0.98999 Volume (L) = 1.05704 + Viscosity (mPa s) = 0.38188 Activity of water = 0.982 - Ionic strength (mol/kgw) = 7.591e-04 + Ionic strength (mol/kgw) = 7.595e-04 Mass of water (kg) = 9.979e-01 - Total alkalinity (eq/kg) = 1.221e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.105e+00 - Temperature (C) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 157.24 - Electrical balance (eq) = -1.218e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 21 + Iterations = 19 Total H = 1.107827e+02 - Total O = 5.759673e+01 + Total O = 5.759684e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.591e-04 7.346e-04 -3.120 -3.134 -0.014 0.00 - OH- 3.226e-10 3.117e-10 -9.491 -9.506 -0.015 -4.97 + H+ 7.595e-04 7.350e-04 -3.119 -3.134 -0.014 0.00 + OH- 3.225e-10 3.116e-10 -9.491 -9.506 -0.015 -4.97 H2O 5.551e+01 9.822e-01 1.744 -0.008 0.000 18.35 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -97.643 -97.643 0.000 39.05 +C(-4) 4.549e-25 + CH4 4.549e-25 4.549e-25 -24.342 -24.342 0.000 39.05 C(4) 1.105e+00 - CO2 9.816e-01 9.818e-01 -0.008 -0.008 0.000 36.79 + CO2 9.817e-01 9.818e-01 -0.008 -0.008 0.000 36.79 (CO2)2 6.132e-02 6.133e-02 -1.212 -1.212 0.000 73.59 - HCO3- 7.591e-04 7.339e-04 -3.120 -3.134 -0.015 25.90 - CO3-2 1.024e-10 8.944e-11 -9.990 -10.048 -0.059 -6.63 -H(0) 9.099e-33 - H2 4.549e-33 4.550e-33 -32.342 -32.342 0.000 28.50 -O(0) 1.917e-14 - O2 9.584e-15 9.586e-15 -14.018 -14.018 0.000 32.56 + HCO3- 7.595e-04 7.342e-04 -3.119 -3.134 -0.015 25.72 + CO3-2 1.002e-10 8.752e-11 -9.999 -10.058 -0.059 -2.84 +H(0) 1.924e-14 + H2 9.621e-15 9.623e-15 -14.017 -14.017 0.000 28.50 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -50.669 -50.669 0.000 32.56 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 157 atm) - CH4(g) -94.54 -97.64 -3.11 CH4 + CH4(g) -21.24 -24.34 -3.11 CH4 CO2(g) 1.95 -0.01 -1.96 CO2 Pressure 155.6 atm, phi 0.577 - H2(g) -29.14 -32.34 -3.20 H2 + H2(g) -10.82 -14.02 -3.20 H2 H2O(g) -0.39 -0.01 0.38 H2O Pressure 1.6 atm, phi 0.250 - O2(g) -10.84 -14.02 -3.18 O2 + O2(g) -47.49 -50.67 -3.18 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6718,57 +6792,58 @@ H2O(g) 0.27 1.845e+00 0.224 1.149e-01 1.303e-01 1.547e-02 Elements Molality Moles - C 1.133e+00 1.130e+00 + C 1.133e+00 1.131e+00 ----------------------------Description of solution---------------------------- pH = 3.126 Charge balance - pe = 11.317 Adjusted to redox equilibrium - Specific Conductance (S/cm, 75C) = 510 - Density (g/cm) = 0.99075 + pe = 2.127 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 472 + Density (g/cm³) = 0.99075 Volume (L) = 1.05719 + Viscosity (mPa s) = 0.38222 Activity of water = 0.982 - Ionic strength (mol/kgw) = 7.726e-04 + Ionic strength (mol/kgw) = 7.730e-04 Mass of water (kg) = 9.976e-01 - Total alkalinity (eq/kg) = 1.221e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.133e+00 - Temperature (C) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 169.89 - Electrical balance (eq) = -1.218e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 + Iterations = 24 Total H = 1.107517e+02 - Total O = 5.763684e+01 + Total O = 5.763696e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.726e-04 7.476e-04 -3.112 -3.126 -0.014 0.00 - OH- 3.204e-10 3.095e-10 -9.494 -9.509 -0.015 -5.01 + H+ 7.730e-04 7.479e-04 -3.112 -3.126 -0.014 0.00 + OH- 3.202e-10 3.093e-10 -9.495 -9.510 -0.015 -5.01 H2O 5.551e+01 9.818e-01 1.744 -0.008 0.000 18.34 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -97.430 -97.430 0.000 39.05 +C(-4) 1.231e-24 + CH4 1.231e-24 1.231e-24 -23.910 -23.910 0.000 39.05 C(4) 1.133e+00 CO2 1.004e+00 1.004e+00 0.002 0.002 0.000 36.77 (CO2)2 6.416e-02 6.417e-02 -1.193 -1.193 0.000 73.54 - HCO3- 7.726e-04 7.468e-04 -3.112 -3.127 -0.015 25.92 - CO3-2 1.039e-10 9.068e-11 -9.983 -10.042 -0.059 -6.50 -H(0) 1.014e-32 - H2 5.071e-33 5.072e-33 -32.295 -32.295 0.000 28.50 -O(0) 1.506e-14 - O2 7.530e-15 7.531e-15 -14.123 -14.123 0.000 32.53 + HCO3- 7.730e-04 7.471e-04 -3.112 -3.127 -0.015 25.75 + CO3-2 1.015e-10 8.858e-11 -9.994 -10.053 -0.059 -2.70 +H(0) 2.433e-14 + H2 1.217e-14 1.217e-14 -13.915 -13.915 0.000 28.50 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -50.883 -50.883 0.000 32.53 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 170 atm) - CH4(g) -94.32 -97.43 -3.11 CH4 + CH4(g) -20.80 -23.91 -3.11 CH4 CO2(g) 1.97 0.00 -1.97 CO2 Pressure 168.0 atm, phi 0.555 - H2(g) -29.09 -32.29 -3.21 H2 + H2(g) -10.71 -13.91 -3.21 H2 H2O(g) -0.38 -0.01 0.38 H2O Pressure 1.8 atm, phi 0.224 - O2(g) -10.94 -14.12 -3.18 O2 + O2(g) -47.70 -50.88 -3.18 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6817,52 +6892,53 @@ H2O(g) 0.32 2.085e+00 0.200 1.303e-01 1.467e-01 1.639e-02 ----------------------------Description of solution---------------------------- pH = 3.118 Charge balance - pe = 11.270 Adjusted to redox equilibrium - Specific Conductance (S/cm, 75C) = 519 - Density (g/cm) = 0.99159 + pe = 2.109 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 481 + Density (g/cm³) = 0.99159 Volume (L) = 1.05726 + Viscosity (mPa s) = 0.38262 Activity of water = 0.981 - Ionic strength (mol/kgw) = 7.872e-04 + Ionic strength (mol/kgw) = 7.876e-04 Mass of water (kg) = 9.973e-01 - Total alkalinity (eq/kg) = 1.220e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.162e+00 - Temperature (C) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 184.57 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 28 Total H = 1.107190e+02 - Total O = 5.767774e+01 + Total O = 5.767786e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.872e-04 7.615e-04 -3.104 -3.118 -0.014 0.00 - OH- 3.183e-10 3.074e-10 -9.497 -9.512 -0.015 -5.05 + H+ 7.876e-04 7.619e-04 -3.104 -3.118 -0.014 0.00 + OH- 3.182e-10 3.072e-10 -9.497 -9.513 -0.015 -5.05 H2O 5.551e+01 9.814e-01 1.744 -0.008 0.000 18.33 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -96.990 -96.990 0.000 39.05 +C(-4) 1.999e-24 + CH4 1.999e-24 1.999e-24 -23.699 -23.699 0.000 39.05 C(4) 1.162e+00 CO2 1.027e+00 1.027e+00 0.012 0.012 0.000 36.75 (CO2)2 6.714e-02 6.716e-02 -1.173 -1.173 0.000 73.49 - HCO3- 7.872e-04 7.607e-04 -3.104 -3.119 -0.015 25.95 - CO3-2 1.057e-10 9.213e-11 -9.976 -10.036 -0.060 -6.35 -H(0) 1.286e-32 - H2 6.432e-33 6.433e-33 -32.192 -32.192 0.000 28.49 -O(0) 9.102e-15 - O2 4.551e-15 4.552e-15 -14.342 -14.342 0.000 32.49 + HCO3- 7.876e-04 7.611e-04 -3.104 -3.119 -0.015 25.78 + CO3-2 1.030e-10 8.981e-11 -9.987 -10.047 -0.060 -2.54 +H(0) 2.704e-14 + H2 1.352e-14 1.352e-14 -13.869 -13.869 0.000 28.49 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -50.987 -50.987 0.000 32.49 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 185 atm) - CH4(g) -93.87 -96.99 -3.12 CH4 + CH4(g) -20.58 -23.70 -3.12 CH4 CO2(g) 1.99 0.01 -1.98 CO2 Pressure 182.5 atm, phi 0.533 - H2(g) -28.98 -32.19 -3.21 H2 + H2(g) -10.66 -13.87 -3.21 H2 H2O(g) -0.38 -0.01 0.37 H2O Pressure 2.1 atm, phi 0.200 - O2(g) -11.15 -14.34 -3.19 O2 + O2(g) -47.80 -50.99 -3.19 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6910,53 +6986,54 @@ H2O(g) 0.37 2.368e+00 0.178 1.467e-01 1.639e-01 1.719e-02 ----------------------------Description of solution---------------------------- - pH = 3.110 Charge balance - pe = 11.175 Adjusted to redox equilibrium - Specific Conductance (S/cm, 75C) = 529 - Density (g/cm) = 0.99256 - Volume (L) = 1.05725 + pH = 3.109 Charge balance + pe = 2.165 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 490 + Density (g/cm³) = 0.99256 + Volume (L) = 1.05726 + Viscosity (mPa s) = 0.38309 Activity of water = 0.981 - Ionic strength (mol/kgw) = 8.033e-04 + Ionic strength (mol/kgw) = 8.038e-04 Mass of water (kg) = 9.970e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.193e+00 - Temperature (C) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 201.89 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 33 + Iterations = 29 Total H = 1.106846e+02 - Total O = 5.772083e+01 + Total O = 5.772096e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.033e-04 7.768e-04 -3.095 -3.110 -0.015 0.00 - OH- 3.165e-10 3.056e-10 -9.500 -9.515 -0.015 -5.11 + H+ 8.038e-04 7.773e-04 -3.095 -3.109 -0.015 0.00 + OH- 3.163e-10 3.054e-10 -9.500 -9.515 -0.015 -5.11 H2O 5.551e+01 9.809e-01 1.744 -0.008 0.000 18.32 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -96.158 -96.158 0.000 39.04 +C(-4) 8.347e-25 + CH4 8.347e-25 8.349e-25 -24.078 -24.078 0.000 39.04 C(4) 1.193e+00 CO2 1.051e+00 1.052e+00 0.022 0.022 0.000 36.72 - (CO2)2 7.034e-02 7.036e-02 -1.153 -1.153 0.000 73.43 - HCO3- 8.033e-04 7.760e-04 -3.095 -3.110 -0.015 25.98 - CO3-2 1.078e-10 9.385e-11 -9.967 -10.028 -0.060 -6.17 -H(0) 2.041e-32 - H2 1.020e-32 1.021e-32 -31.991 -31.991 0.000 28.49 -O(0) 3.500e-15 - O2 1.750e-15 1.750e-15 -14.757 -14.757 0.000 32.45 + (CO2)2 7.034e-02 7.035e-02 -1.153 -1.153 0.000 73.43 + HCO3- 8.038e-04 7.764e-04 -3.095 -3.110 -0.015 25.82 + CO3-2 1.048e-10 9.127e-11 -9.980 -10.040 -0.060 -2.36 +H(0) 2.137e-14 + H2 1.068e-14 1.069e-14 -13.971 -13.971 0.000 28.49 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -50.797 -50.797 0.000 32.45 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 202 atm) - CH4(g) -93.03 -96.16 -3.13 CH4 + CH4(g) -20.95 -24.08 -3.13 CH4 CO2(g) 2.01 0.02 -1.99 CO2 Pressure 199.5 atm, phi 0.510 - H2(g) -28.77 -31.99 -3.22 H2 + H2(g) -10.75 -13.97 -3.22 H2 H2O(g) -0.38 -0.01 0.37 H2O Pressure 2.4 atm, phi 0.178 - O2(g) -11.56 -14.76 -3.20 O2 + O2(g) -47.60 -50.80 -3.20 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7000,57 +7077,58 @@ H2O(g) 0.43 2.704e+00 0.158 1.639e-01 1.818e-01 1.784e-02 Elements Molality Moles - C 1.225e+00 1.221e+00 + C 1.226e+00 1.221e+00 ----------------------------Description of solution---------------------------- pH = 3.100 Charge balance - pe = 11.276 Adjusted to redox equilibrium - Specific Conductance (S/cm, 75C) = 540 - Density (g/cm) = 0.99368 + pe = 2.388 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 500 + Density (g/cm³) = 0.99369 Volume (L) = 1.05716 + Viscosity (mPa s) = 0.38364 Activity of water = 0.980 - Ionic strength (mol/kgw) = 8.214e-04 + Ionic strength (mol/kgw) = 8.219e-04 Mass of water (kg) = 9.967e-01 - Total alkalinity (eq/kg) = 1.219e-09 - Total CO2 (mol/kg) = 1.225e+00 - Temperature (C) = 75.00 + Total alkalinity (eq/kg) = 1.215e-09 + Total CO2 (mol/kg) = 1.226e+00 + Temperature (°C) = 75.00 Pressure (atm) = 222.54 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 54 + Iterations = 52 Total H = 1.106489e+02 - Total O = 5.776726e+01 + Total O = 5.776739e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.214e-04 7.941e-04 -3.085 -3.100 -0.015 0.00 - OH- 3.150e-10 3.040e-10 -9.502 -9.517 -0.015 -5.17 + H+ 8.219e-04 7.945e-04 -3.085 -3.100 -0.015 0.00 + OH- 3.148e-10 3.038e-10 -9.502 -9.517 -0.015 -5.17 H2O 5.551e+01 9.804e-01 1.744 -0.009 0.000 18.30 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -96.894 -96.894 0.000 39.04 -C(4) 1.225e+00 +C(-4) 1.620e-26 + CH4 1.620e-26 1.620e-26 -25.791 -25.790 0.000 39.04 +C(4) 1.226e+00 CO2 1.077e+00 1.077e+00 0.032 0.032 0.000 36.68 (CO2)2 7.382e-02 7.383e-02 -1.132 -1.132 0.000 73.37 - HCO3- 8.214e-04 7.932e-04 -3.085 -3.101 -0.015 26.01 - CO3-2 1.103e-10 9.593e-11 -9.957 -10.018 -0.061 -5.97 -H(0) 1.310e-32 - H2 6.550e-33 6.551e-33 -32.184 -32.184 0.000 28.48 -O(0) 8.172e-15 - O2 4.086e-15 4.087e-15 -14.389 -14.389 0.000 32.40 + HCO3- 8.219e-04 7.937e-04 -3.085 -3.100 -0.015 25.87 + CO3-2 1.070e-10 9.302e-11 -9.971 -10.031 -0.061 -2.14 +H(0) 7.819e-15 + H2 3.909e-15 3.910e-15 -14.408 -14.408 0.000 28.48 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -49.940 -49.940 0.000 32.40 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 223 atm) - CH4(g) -93.75 -96.89 -3.14 CH4 + CH4(g) -22.65 -25.79 -3.14 CH4 CO2(g) 2.03 0.03 -2.00 CO2 Pressure 219.8 atm, phi 0.487 - H2(g) -28.96 -32.18 -3.23 H2 + H2(g) -11.18 -14.41 -3.23 H2 H2O(g) -0.37 -0.01 0.36 H2O Pressure 2.7 atm, phi 0.158 - O2(g) -11.18 -14.39 -3.21 O2 + O2(g) -46.73 -49.94 -3.21 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7094,57 +7172,58 @@ H2O(g) 0.49 3.103e+00 0.140 1.818e-01 2.001e-01 1.830e-02 Elements Molality Moles - C 1.260e+00 1.256e+00 + C 1.261e+00 1.256e+00 ----------------------------Description of solution---------------------------- - pH = 3.090 Charge balance - pe = 11.224 Adjusted to redox equilibrium - Specific Conductance (S/cm, 75C) = 553 - Density (g/cm) = 0.99500 + pH = 3.089 Charge balance + pe = 2.277 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 512 + Density (g/cm³) = 0.99500 Volume (L) = 1.05696 + Viscosity (mPa s) = 0.38431 Activity of water = 0.980 - Ionic strength (mol/kgw) = 8.420e-04 + Ionic strength (mol/kgw) = 8.425e-04 Mass of water (kg) = 9.964e-01 - Total alkalinity (eq/kg) = 1.219e-09 - Total CO2 (mol/kg) = 1.260e+00 - Temperature (C) = 75.00 + Total alkalinity (eq/kg) = 1.215e-09 + Total CO2 (mol/kg) = 1.261e+00 + Temperature (°C) = 75.00 Pressure (atm) = 247.32 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 62 + Iterations = 59 Total H = 1.106123e+02 - Total O = 5.781801e+01 + Total O = 5.781815e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.420e-04 8.138e-04 -3.075 -3.090 -0.015 0.00 - OH- 3.138e-10 3.027e-10 -9.503 -9.519 -0.016 -5.24 + H+ 8.425e-04 8.142e-04 -3.074 -3.089 -0.015 0.00 + OH- 3.136e-10 3.025e-10 -9.504 -9.519 -0.016 -5.24 H2O 5.551e+01 9.799e-01 1.744 -0.009 0.000 18.28 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -96.398 -96.398 0.000 39.03 -C(4) 1.260e+00 +C(-4) 1.512e-25 + CH4 1.512e-25 1.512e-25 -24.820 -24.820 0.000 39.03 +C(4) 1.261e+00 CO2 1.104e+00 1.105e+00 0.043 0.043 0.000 36.64 (CO2)2 7.762e-02 7.764e-02 -1.110 -1.110 0.000 73.28 - HCO3- 8.420e-04 8.128e-04 -3.075 -3.090 -0.015 26.05 - CO3-2 1.134e-10 9.845e-11 -9.945 -10.007 -0.061 -5.72 -H(0) 1.703e-32 - H2 8.516e-33 8.518e-33 -32.070 -32.070 0.000 28.47 -O(0) 4.614e-15 - O2 2.307e-15 2.307e-15 -14.637 -14.637 0.000 32.34 + HCO3- 8.425e-04 8.133e-04 -3.074 -3.090 -0.015 25.93 + CO3-2 1.096e-10 9.514e-11 -9.960 -10.022 -0.061 -1.88 +H(0) 1.336e-14 + H2 6.679e-15 6.681e-15 -14.175 -14.175 0.000 28.47 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -50.426 -50.426 0.000 32.34 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 247 atm) - CH4(g) -93.24 -96.40 -3.16 CH4 + CH4(g) -21.66 -24.82 -3.16 CH4 CO2(g) 2.05 0.04 -2.01 CO2 Pressure 244.2 atm, phi 0.464 - H2(g) -28.83 -32.07 -3.24 H2 + H2(g) -10.94 -14.18 -3.24 H2 H2O(g) -0.36 -0.01 0.35 H2O Pressure 3.1 atm, phi 0.140 - O2(g) -11.42 -14.64 -3.22 O2 + O2(g) -47.21 -50.43 -3.22 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7172,10 +7251,10 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 277.15 atmospheres (Peng-Robinson calculation) +Total pressure: 277.14 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 5.91e-02 liters/mole - P * Vm / RT: 0.57316 (Compressibility Factor Z) + P * Vm / RT: 0.57315 (Compressibility Factor Z) Moles in gas ---------------------------------- @@ -7192,53 +7271,54 @@ H2O(g) 0.55 3.579e+00 0.123 2.001e-01 2.186e-01 1.854e-02 ----------------------------Description of solution---------------------------- - pH = 3.078 Charge balance - pe = 11.662 Adjusted to redox equilibrium - Specific Conductance (S/cm, 75C) = 567 - Density (g/cm) = 0.99654 - Volume (L) = 1.05663 + pH = 3.077 Charge balance + pe = 2.243 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 525 + Density (g/cm³) = 0.99654 + Volume (L) = 1.05664 + Viscosity (mPa s) = 0.38512 Activity of water = 0.979 - Ionic strength (mol/kgw) = 8.657e-04 + Ionic strength (mol/kgw) = 8.662e-04 Mass of water (kg) = 9.960e-01 - Total alkalinity (eq/kg) = 1.220e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.298e+00 - Temperature (C) = 75.00 - Pressure (atm) = 277.15 - Electrical balance (eq) = -1.215e-09 + Temperature (°C) = 75.00 + Pressure (atm) = 277.14 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 90 + Iterations = 67 Total H = 1.105752e+02 - Total O = 5.787395e+01 + Total O = 5.787410e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.657e-04 8.363e-04 -3.063 -3.078 -0.015 0.00 - OH- 3.130e-10 3.019e-10 -9.504 -9.520 -0.016 -5.33 + H+ 8.662e-04 8.368e-04 -3.062 -3.077 -0.015 0.00 + OH- 3.129e-10 3.017e-10 -9.505 -9.520 -0.016 -5.33 H2O 5.551e+01 9.793e-01 1.744 -0.009 0.000 18.26 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -99.808 -99.808 0.000 39.03 +C(-4) 3.510e-25 + CH4 3.510e-25 3.510e-25 -24.455 -24.455 0.000 39.03 C(4) 1.298e+00 CO2 1.134e+00 1.134e+00 0.055 0.055 0.000 36.59 (CO2)2 8.181e-02 8.183e-02 -1.087 -1.087 0.000 73.19 - HCO3- 8.657e-04 8.353e-04 -3.063 -3.078 -0.016 26.10 - CO3-2 1.171e-10 1.015e-10 -9.931 -9.993 -0.062 -5.43 -H(0) 2.330e-33 - H2 1.165e-33 1.165e-33 -32.934 -32.934 0.000 28.45 -O(0) 2.332e-13 - O2 1.166e-13 1.166e-13 -12.933 -12.933 0.000 32.27 + HCO3- 8.662e-04 8.358e-04 -3.062 -3.078 -0.016 25.99 + CO3-2 1.127e-10 9.771e-11 -9.948 -10.010 -0.062 -1.57 +H(0) 1.606e-14 + H2 8.030e-15 8.032e-15 -14.095 -14.095 0.000 28.45 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -50.610 -50.610 0.000 32.27 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 277 atm) - CH4(g) -96.63 -99.81 -3.18 CH4 + CH4(g) -21.28 -24.45 -3.18 CH4 CO2(g) 2.08 0.05 -2.03 CO2 Pressure 273.6 atm, phi 0.441 - H2(g) -29.68 -32.93 -3.25 H2 + H2(g) -10.84 -14.10 -3.25 H2 H2O(g) -0.36 -0.01 0.35 H2O Pressure 3.6 atm, phi 0.123 - O2(g) -9.70 -12.93 -3.23 O2 + O2(g) -47.38 -50.61 -3.23 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7269,7 +7349,7 @@ Reaction 1. Total pressure: 313.08 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 5.59e-02 liters/mole - P * Vm / RT: 0.61209 (Compressibility Factor Z) + P * Vm / RT: 0.61208 (Compressibility Factor Z) Moles in gas ---------------------------------- @@ -7287,52 +7367,53 @@ H2O(g) 0.62 4.146e+00 0.109 2.186e-01 2.371e-01 1.851e-02 ----------------------------Description of solution---------------------------- pH = 3.064 Charge balance - pe = 11.676 Adjusted to redox equilibrium - Specific Conductance (S/cm, 75C) = 584 - Density (g/cm) = 0.99835 - Volume (L) = 1.05615 + pe = 2.155 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 541 + Density (g/cm³) = 0.99835 + Volume (L) = 1.05616 + Viscosity (mPa s) = 0.38609 Activity of water = 0.979 - Ionic strength (mol/kgw) = 8.931e-04 + Ionic strength (mol/kgw) = 8.935e-04 Mass of water (kg) = 9.957e-01 - Total alkalinity (eq/kg) = 1.220e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.339e+00 - Temperature (C) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 313.08 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 78 + Iterations = 75 Total H = 1.105382e+02 - Total O = 5.793584e+01 + Total O = 5.793600e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.931e-04 8.624e-04 -3.049 -3.064 -0.015 0.00 - OH- 3.129e-10 3.016e-10 -9.505 -9.521 -0.016 -5.43 + H+ 8.935e-04 8.628e-04 -3.049 -3.064 -0.015 0.00 + OH- 3.128e-10 3.015e-10 -9.505 -9.521 -0.016 -5.43 H2O 5.551e+01 9.787e-01 1.744 -0.009 0.000 18.23 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -99.821 -99.821 0.000 39.02 +C(-4) 2.221e-24 + CH4 2.221e-24 2.221e-24 -23.654 -23.653 0.000 39.02 C(4) 1.339e+00 CO2 1.165e+00 1.166e+00 0.066 0.067 0.000 36.53 (CO2)2 8.643e-02 8.645e-02 -1.063 -1.063 0.000 73.07 - HCO3- 8.931e-04 8.614e-04 -3.049 -3.065 -0.016 26.16 - CO3-2 1.217e-10 1.053e-10 -9.915 -9.978 -0.063 -5.09 -H(0) 2.244e-33 - H2 1.122e-33 1.122e-33 -32.950 -32.950 0.000 28.44 -O(0) 2.352e-13 - O2 1.176e-13 1.176e-13 -12.930 -12.929 0.000 32.18 + HCO3- 8.935e-04 8.618e-04 -3.049 -3.065 -0.016 26.07 + CO3-2 1.165e-10 1.008e-10 -9.934 -9.996 -0.063 -1.21 +H(0) 2.471e-14 + H2 1.235e-14 1.236e-14 -13.908 -13.908 0.000 28.44 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -51.013 -51.013 0.000 32.18 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 313 atm) - CH4(g) -96.62 -99.82 -3.20 CH4 + CH4(g) -20.46 -23.65 -3.20 CH4 CO2(g) 2.11 0.07 -2.05 CO2 Pressure 308.9 atm, phi 0.420 - H2(g) -29.68 -32.95 -3.27 H2 + H2(g) -10.64 -13.91 -3.27 H2 H2O(g) -0.35 -0.01 0.34 H2O Pressure 4.1 atm, phi 0.109 - O2(g) -9.68 -12.93 -3.25 O2 + O2(g) -47.76 -51.01 -3.25 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7370,7 +7451,7 @@ Total pressure: 356.38 atmospheres (Peng-Robinson calculation) Component log P P phi Initial Final Delta CO2(g) 2.55 3.516e+02 0.401 1.767e+01 1.862e+01 9.566e-01 -H2O(g) 0.68 4.820e+00 0.096 2.371e-01 2.553e-01 1.819e-02 +H2O(g) 0.68 4.819e+00 0.096 2.371e-01 2.553e-01 1.819e-02 -----------------------------Solution composition------------------------------ @@ -7381,52 +7462,53 @@ H2O(g) 0.68 4.820e+00 0.096 2.371e-01 2.553e-01 1.819e-02 ----------------------------Description of solution---------------------------- pH = 3.049 Charge balance - pe = 11.690 Adjusted to redox equilibrium - Specific Conductance (S/cm, 75C) = 603 - Density (g/cm) = 1.00048 + pe = 2.101 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 558 + Density (g/cm³) = 1.00048 Volume (L) = 1.05549 + Viscosity (mPa s) = 0.38726 Activity of water = 0.978 - Ionic strength (mol/kgw) = 9.250e-04 + Ionic strength (mol/kgw) = 9.254e-04 Mass of water (kg) = 9.954e-01 - Total alkalinity (eq/kg) = 1.220e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.383e+00 - Temperature (C) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 356.38 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 88 + Iterations = 84 Total H = 1.105018e+02 - Total O = 5.800438e+01 + Total O = 5.800455e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.250e-04 8.928e-04 -3.034 -3.049 -0.015 0.00 - OH- 3.136e-10 3.021e-10 -9.504 -9.520 -0.016 -5.54 + H+ 9.254e-04 8.931e-04 -3.034 -3.049 -0.015 0.00 + OH- 3.135e-10 3.020e-10 -9.504 -9.520 -0.016 -5.54 H2O 5.551e+01 9.780e-01 1.744 -0.010 0.000 18.20 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -99.830 -99.830 0.000 39.01 +C(-4) 7.616e-24 + CH4 7.616e-24 7.618e-24 -23.118 -23.118 0.000 39.01 C(4) 1.383e+00 CO2 1.199e+00 1.199e+00 0.079 0.079 0.000 36.47 (CO2)2 9.152e-02 9.154e-02 -1.038 -1.038 0.000 72.93 - HCO3- 9.250e-04 8.917e-04 -3.034 -3.050 -0.016 26.23 - CO3-2 1.273e-10 1.100e-10 -9.895 -9.959 -0.064 -4.69 -H(0) 2.154e-33 - H2 1.077e-33 1.077e-33 -32.968 -32.968 0.000 28.42 -O(0) 2.356e-13 - O2 1.178e-13 1.178e-13 -12.929 -12.929 0.000 32.08 + HCO3- 9.254e-04 8.920e-04 -3.034 -3.050 -0.016 26.16 + CO3-2 1.212e-10 1.047e-10 -9.916 -9.980 -0.064 -0.79 +H(0) 3.244e-14 + H2 1.622e-14 1.622e-14 -13.790 -13.790 0.000 28.42 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -51.285 -51.285 0.000 32.08 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 356 atm) - CH4(g) -96.61 -99.83 -3.22 CH4 + CH4(g) -19.89 -23.12 -3.22 CH4 CO2(g) 2.15 0.08 -2.07 CO2 Pressure 351.6 atm, phi 0.401 - H2(g) -29.68 -32.97 -3.29 H2 + H2(g) -10.50 -13.79 -3.29 H2 H2O(g) -0.33 -0.01 0.32 H2O Pressure 4.8 atm, phi 0.096 - O2(g) -9.66 -12.93 -3.27 O2 + O2(g) -48.01 -51.28 -3.27 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7454,7 +7536,7 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 408.57 atmospheres (Peng-Robinson calculation) +Total pressure: 408.56 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 5.04e-02 liters/mole P * Vm / RT: 0.72047 (Compressibility Factor Z) @@ -7463,64 +7545,65 @@ Total pressure: 408.57 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CO2(g) 2.61 4.030e+02 0.385 1.862e+01 1.958e+01 9.533e-01 +CO2(g) 2.61 4.029e+02 0.385 1.862e+01 1.958e+01 9.533e-01 H2O(g) 0.75 5.616e+00 0.085 2.553e-01 2.728e-01 1.752e-02 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 1.430e+00 1.423e+00 + C 1.431e+00 1.423e+00 ----------------------------Description of solution---------------------------- pH = 3.032 Charge balance - pe = 11.711 Adjusted to redox equilibrium - Specific Conductance (S/cm, 75C) = 625 - Density (g/cm) = 1.00298 + pe = 2.336 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 578 + Density (g/cm³) = 1.00298 Volume (L) = 1.05459 + Viscosity (mPa s) = 0.38867 Activity of water = 0.977 - Ionic strength (mol/kgw) = 9.623e-04 + Ionic strength (mol/kgw) = 9.626e-04 Mass of water (kg) = 9.951e-01 - Total alkalinity (eq/kg) = 1.220e-09 - Total CO2 (mol/kg) = 1.430e+00 - Temperature (C) = 75.00 - Pressure (atm) = 408.57 - Electrical balance (eq) = -1.214e-09 + Total alkalinity (eq/kg) = 1.216e-09 + Total CO2 (mol/kg) = 1.431e+00 + Temperature (°C) = 75.00 + Pressure (atm) = 408.56 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 99 + Iterations = 95 Total H = 1.104668e+02 - Total O = 5.808018e+01 + Total O = 5.808036e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.623e-04 9.283e-04 -3.017 -3.032 -0.016 0.00 - OH- 3.154e-10 3.036e-10 -9.501 -9.518 -0.016 -5.68 + H+ 9.626e-04 9.286e-04 -3.017 -3.032 -0.016 0.00 + OH- 3.153e-10 3.035e-10 -9.501 -9.518 -0.016 -5.68 H2O 5.551e+01 9.773e-01 1.744 -0.010 0.000 18.16 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -99.875 -99.875 0.000 39.00 -C(4) 1.430e+00 +C(-4) 1.331e-25 + CH4 1.331e-25 1.332e-25 -24.876 -24.876 0.000 39.00 +C(4) 1.431e+00 CO2 1.235e+00 1.236e+00 0.092 0.092 0.000 36.39 (CO2)2 9.711e-02 9.713e-02 -1.013 -1.013 0.000 72.77 - HCO3- 9.623e-04 9.271e-04 -3.017 -3.033 -0.016 26.31 - CO3-2 1.343e-10 1.157e-10 -9.872 -9.937 -0.065 -4.21 -H(0) 2.012e-33 - H2 1.006e-33 1.006e-33 -32.997 -32.997 0.000 28.40 -O(0) 2.450e-13 - O2 1.225e-13 1.225e-13 -12.912 -12.912 0.000 31.97 + HCO3- 9.626e-04 9.274e-04 -3.017 -3.033 -0.016 26.27 + CO3-2 1.269e-10 1.093e-10 -9.897 -9.961 -0.065 -0.29 +H(0) 1.131e-14 + H2 5.657e-15 5.659e-15 -14.247 -14.247 0.000 28.40 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -50.412 -50.412 0.000 31.97 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 409 atm) - CH4(g) -96.62 -99.88 -3.25 CH4 - CO2(g) 2.19 0.09 -2.10 CO2 Pressure 403.0 atm, phi 0.385 - H2(g) -29.69 -33.00 -3.31 H2 + CH4(g) -21.62 -24.88 -3.25 CH4 + CO2(g) 2.19 0.09 -2.10 CO2 Pressure 402.9 atm, phi 0.385 + H2(g) -10.94 -14.25 -3.31 H2 H2O(g) -0.32 -0.01 0.31 H2O Pressure 5.6 atm, phi 0.085 - O2(g) -9.62 -12.91 -3.30 O2 + O2(g) -47.12 -50.41 -3.30 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7555,10 +7638,10 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 471.45 atmospheres (Peng-Robinson calculation) +Total pressure: 471.44 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 4.80e-02 liters/mole - P * Vm / RT: 0.79277 (Compressibility Factor Z) + P * Vm / RT: 0.79276 (Compressibility Factor Z) Moles in gas ---------------------------------- @@ -7571,57 +7654,58 @@ H2O(g) 0.82 6.552e+00 0.076 2.728e-01 2.893e-01 1.646e-02 Elements Molality Moles - C 1.481e+00 1.473e+00 + C 1.481e+00 1.474e+00 ----------------------------Description of solution---------------------------- pH = 3.013 Charge balance - pe = 12.361 Adjusted to redox equilibrium - Specific Conductance (S/cm, 75C) = 650 - Density (g/cm) = 1.00591 + pe = 2.768 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 602 + Density (g/cm³) = 1.00591 Volume (L) = 1.05341 + Viscosity (mPa s) = 0.39037 Activity of water = 0.977 Ionic strength (mol/kgw) = 1.006e-03 Mass of water (kg) = 9.948e-01 - Total alkalinity (eq/kg) = 1.220e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.481e+00 - Temperature (C) = 75.00 - Pressure (atm) = 471.45 - Electrical balance (eq) = -1.214e-09 + Temperature (°C) = 75.00 + Pressure (atm) = 471.44 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 30 + Iterations = 146 (247 overall) Total H = 1.104339e+02 - Total O = 5.816380e+01 + Total O = 5.816399e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.006e-03 9.701e-04 -2.997 -3.013 -0.016 0.00 - OH- 3.186e-10 3.065e-10 -9.497 -9.514 -0.017 -5.84 + H+ 1.006e-03 9.702e-04 -2.997 -3.013 -0.016 0.00 + OH- 3.185e-10 3.065e-10 -9.497 -9.514 -0.017 -5.84 H2O 5.551e+01 9.766e-01 1.744 -0.010 0.000 18.11 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -104.949 -104.949 0.000 38.98 +C(-4) 6.275e-29 + CH4 6.275e-29 6.276e-29 -28.202 -28.202 0.000 38.98 C(4) 1.481e+00 CO2 1.274e+00 1.274e+00 0.105 0.105 0.000 36.29 (CO2)2 1.032e-01 1.033e-01 -0.986 -0.986 0.000 72.58 - HCO3- 1.006e-03 9.688e-04 -2.997 -3.014 -0.016 26.41 - CO3-2 1.429e-10 1.228e-10 -9.845 -9.911 -0.066 -3.66 -H(0) 1.033e-34 - H2 5.165e-35 5.166e-35 -34.287 -34.287 0.000 28.38 -O(0) 8.283e-11 - O2 4.141e-11 4.142e-11 -10.383 -10.383 0.000 31.83 + HCO3- 1.006e-03 9.689e-04 -2.997 -3.014 -0.016 26.40 + CO3-2 1.339e-10 1.150e-10 -9.873 -9.939 -0.066 0.29 +H(0) 1.588e-15 + H2 7.938e-16 7.940e-16 -15.100 -15.100 0.000 28.38 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -48.756 -48.756 0.000 31.83 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 471 atm) - CH4(g) -101.66 -104.95 -3.29 CH4 + CH4(g) -24.91 -28.20 -3.29 CH4 CO2(g) 2.24 0.11 -2.13 CO2 Pressure 464.9 atm, phi 0.372 - H2(g) -30.95 -34.29 -3.34 H2 + H2(g) -11.76 -15.10 -3.34 H2 H2O(g) -0.30 -0.01 0.29 H2O Pressure 6.6 atm, phi 0.076 - O2(g) -7.06 -10.38 -3.33 O2 + O2(g) -45.43 -48.76 -3.33 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7656,10 +7740,10 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 547.26 atmospheres (Peng-Robinson calculation) +Total pressure: 547.25 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 4.59e-02 liters/mole - P * Vm / RT: 0.87961 (Compressibility Factor Z) + P * Vm / RT: 0.87960 (Compressibility Factor Z) Moles in gas ---------------------------------- @@ -7677,52 +7761,53 @@ H2O(g) 0.88 7.646e+00 0.068 2.893e-01 3.042e-01 1.496e-02 ----------------------------Description of solution---------------------------- pH = 2.992 Charge balance - pe = 12.382 Adjusted to redox equilibrium - Specific Conductance (S/cm, 75C) = 680 - Density (g/cm) = 1.00936 + pe = 12.662 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 630 + Density (g/cm³) = 1.00936 Volume (L) = 1.05188 + Viscosity (mPa s) = 0.39243 Activity of water = 0.976 Ionic strength (mol/kgw) = 1.058e-03 Mass of water (kg) = 9.945e-01 - Total alkalinity (eq/kg) = 1.220e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.535e+00 - Temperature (C) = 75.00 - Pressure (atm) = 547.26 - Electrical balance (eq) = -1.213e-09 + Temperature (°C) = 75.00 + Pressure (atm) = 547.25 + Electrical balance (eq) = -1.209e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 18 + Iterations = 101 (202 overall) Total H = 1.104039e+02 - Total O = 5.825566e+01 + Total O = 5.825587e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.058e-03 1.020e-03 -2.975 -2.992 -0.016 0.00 - OH- 3.237e-10 3.112e-10 -9.490 -9.507 -0.017 -6.01 - H2O 5.551e+01 9.758e-01 1.744 -0.011 0.000 18.05 + H+ 1.058e-03 1.019e-03 -2.975 -2.992 -0.016 0.00 + OH- 3.238e-10 3.113e-10 -9.490 -9.507 -0.017 -6.01 + H2O 5.551e+01 9.757e-01 1.744 -0.011 0.000 18.05 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -104.970 -104.970 0.000 38.96 + CH4 0.000e+00 0.000e+00 -107.213 -107.213 0.000 38.96 C(4) 1.535e+00 CO2 1.314e+00 1.315e+00 0.119 0.119 0.000 36.18 (CO2)2 1.099e-01 1.100e-01 -0.959 -0.959 0.000 72.36 - HCO3- 1.058e-03 1.018e-03 -2.975 -2.992 -0.017 26.52 - CO3-2 1.537e-10 1.316e-10 -9.813 -9.881 -0.067 -3.02 -H(0) 9.636e-35 - H2 4.818e-35 4.819e-35 -34.317 -34.317 0.000 28.36 -O(0) 8.286e-11 - O2 4.143e-11 4.144e-11 -10.383 -10.383 0.000 31.68 + HCO3- 1.058e-03 1.018e-03 -2.975 -2.992 -0.017 26.54 + CO3-2 1.425e-10 1.221e-10 -9.846 -9.913 -0.067 0.96 +H(0) 2.649e-35 + H2 1.325e-35 1.325e-35 -34.878 -34.878 0.000 28.36 +O(0) 1.096e-09 + O2 5.480e-10 5.482e-10 -9.261 -9.261 0.000 31.68 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 547 atm) - CH4(g) -101.63 -104.97 -3.34 CH4 + CH4(g) -103.88 -107.21 -3.34 CH4 CO2(g) 2.29 0.12 -2.17 CO2 Pressure 539.6 atm, phi 0.364 - H2(g) -30.95 -34.32 -3.37 H2 + H2(g) -31.51 -34.88 -3.37 H2 H2O(g) -0.28 -0.01 0.27 H2O Pressure 7.6 atm, phi 0.068 - O2(g) -7.02 -10.38 -3.36 O2 + O2(g) -5.90 -9.26 -3.36 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7757,10 +7842,10 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 638.76 atmospheres (Peng-Robinson calculation) +Total pressure: 638.75 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 4.40e-02 liters/mole - P * Vm / RT: 0.98350 (Compressibility Factor Z) + P * Vm / RT: 0.98348 (Compressibility Factor Z) Moles in gas ---------------------------------- @@ -7778,52 +7863,53 @@ H2O(g) 0.95 8.913e+00 0.062 3.042e-01 3.172e-01 1.297e-02 ----------------------------Description of solution---------------------------- pH = 2.967 Charge balance - pe = 12.405 Adjusted to redox equilibrium - Specific Conductance (S/cm, 75C) = 716 - Density (g/cm) = 1.01339 + pe = 12.685 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 662 + Density (g/cm³) = 1.01339 Volume (L) = 1.04992 + Viscosity (mPa s) = 0.39492 Activity of water = 0.975 - Ionic strength (mol/kgw) = 1.121e-03 + Ionic strength (mol/kgw) = 1.120e-03 Mass of water (kg) = 9.943e-01 - Total alkalinity (eq/kg) = 1.220e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.593e+00 - Temperature (C) = 75.00 - Pressure (atm) = 638.76 - Electrical balance (eq) = -1.213e-09 + Temperature (°C) = 75.00 + Pressure (atm) = 638.75 + Electrical balance (eq) = -1.209e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 + Iterations = 36 (137 overall) Total H = 1.103780e+02 - Total O = 5.835609e+01 + Total O = 5.835631e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.121e-03 1.079e-03 -2.950 -2.967 -0.017 0.00 - OH- 3.315e-10 3.184e-10 -9.480 -9.497 -0.018 -6.22 + H+ 1.120e-03 1.078e-03 -2.951 -2.967 -0.017 0.00 + OH- 3.317e-10 3.186e-10 -9.479 -9.497 -0.018 -6.22 H2O 5.551e+01 9.749e-01 1.744 -0.011 0.000 17.99 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -104.998 -104.998 0.000 38.94 + CH4 0.000e+00 0.000e+00 -107.241 -107.241 0.000 38.94 C(4) 1.593e+00 CO2 1.357e+00 1.357e+00 0.133 0.133 0.000 36.05 (CO2)2 1.172e-01 1.173e-01 -0.931 -0.931 0.000 72.11 - HCO3- 1.121e-03 1.077e-03 -2.950 -2.968 -0.017 26.64 - CO3-2 1.672e-10 1.427e-10 -9.777 -9.845 -0.069 -2.28 -H(0) 8.863e-35 - H2 4.432e-35 4.433e-35 -34.353 -34.353 0.000 28.33 -O(0) 8.288e-11 - O2 4.144e-11 4.145e-11 -10.383 -10.382 0.000 31.50 + HCO3- 1.120e-03 1.076e-03 -2.951 -2.968 -0.017 26.72 + CO3-2 1.531e-10 1.307e-10 -9.815 -9.884 -0.069 1.73 +H(0) 2.437e-35 + H2 1.218e-35 1.219e-35 -34.914 -34.914 0.000 28.33 +O(0) 1.096e-09 + O2 5.482e-10 5.483e-10 -9.261 -9.261 0.000 31.50 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 639 atm) - CH4(g) -101.61 -105.00 -3.39 CH4 + CH4(g) -103.85 -107.24 -3.39 CH4 CO2(g) 2.36 0.13 -2.22 CO2 Pressure 629.8 atm, phi 0.360 - H2(g) -30.95 -34.35 -3.41 H2 + H2(g) -31.51 -34.91 -3.41 H2 H2O(g) -0.26 -0.01 0.25 H2O Pressure 8.9 atm, phi 0.062 - O2(g) -6.98 -10.38 -3.40 O2 + O2(g) -5.86 -9.26 -3.40 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7858,16 +7944,16 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 749.42 atmospheres (Peng-Robinson calculation) +Total pressure: 749.41 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 4.22e-02 liters/mole - P * Vm / RT: 1.10757 (Compressibility Factor Z) + P * Vm / RT: 1.10755 (Compressibility Factor Z) Moles in gas ---------------------------------- Component log P P phi Initial Final Delta -CO2(g) 2.87 7.391e+02 0.363 2.242e+01 2.336e+01 9.402e-01 +CO2(g) 2.87 7.390e+02 0.363 2.242e+01 2.336e+01 9.402e-01 H2O(g) 1.02 1.037e+01 0.057 3.172e-01 3.276e-01 1.043e-02 -----------------------------Solution composition------------------------------ @@ -7878,53 +7964,54 @@ H2O(g) 1.02 1.037e+01 0.057 3.172e-01 3.276e-01 1.043e-02 ----------------------------Description of solution---------------------------- - pH = 2.939 Charge balance - pe = 12.431 Adjusted to redox equilibrium - Specific Conductance (S/cm, 75C) = 758 - Density (g/cm) = 1.01812 - Volume (L) = 1.04744 + pH = 2.940 Charge balance + pe = 12.710 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 700 + Density (g/cm³) = 1.01812 + Volume (L) = 1.04745 + Viscosity (mPa s) = 0.39795 Activity of water = 0.974 - Ionic strength (mol/kgw) = 1.196e-03 + Ionic strength (mol/kgw) = 1.194e-03 Mass of water (kg) = 9.941e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.653e+00 - Temperature (C) = 75.00 - Pressure (atm) = 749.42 - Electrical balance (eq) = -1.212e-09 + Temperature (°C) = 75.00 + Pressure (atm) = 749.41 + Electrical balance (eq) = -1.209e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 23 - Total H = 1.103571e+02 - Total O = 5.846520e+01 + Iterations = 36 (137 overall) + Total H = 1.103572e+02 + Total O = 5.846545e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.196e-03 1.150e-03 -2.922 -2.939 -0.017 0.00 - OH- 3.429e-10 3.290e-10 -9.465 -9.483 -0.018 -6.44 + H+ 1.194e-03 1.148e-03 -2.923 -2.940 -0.017 0.00 + OH- 3.434e-10 3.295e-10 -9.464 -9.482 -0.018 -6.44 H2O 5.551e+01 9.740e-01 1.744 -0.011 0.000 17.91 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -105.034 -105.034 0.000 38.91 + CH4 0.000e+00 0.000e+00 -107.277 -107.277 0.000 38.91 C(4) 1.653e+00 CO2 1.402e+00 1.402e+00 0.147 0.147 0.000 35.91 (CO2)2 1.251e-01 1.251e-01 -0.903 -0.903 0.000 71.82 - HCO3- 1.196e-03 1.148e-03 -2.922 -2.940 -0.018 26.79 - CO3-2 1.843e-10 1.567e-10 -9.734 -9.805 -0.070 -1.43 -H(0) 8.015e-35 - H2 4.007e-35 4.009e-35 -34.397 -34.397 0.000 28.29 -O(0) 8.291e-11 - O2 4.145e-11 4.146e-11 -10.382 -10.382 0.000 31.30 + HCO3- 1.194e-03 1.147e-03 -2.923 -2.941 -0.018 26.91 + CO3-2 1.663e-10 1.414e-10 -9.779 -9.849 -0.070 2.61 +H(0) 2.204e-35 + H2 1.102e-35 1.102e-35 -34.958 -34.958 0.000 28.29 +O(0) 1.097e-09 + O2 5.483e-10 5.484e-10 -9.261 -9.261 0.000 31.30 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 749 atm) - CH4(g) -101.58 -105.03 -3.46 CH4 - CO2(g) 2.43 0.15 -2.28 CO2 Pressure 739.1 atm, phi 0.363 - H2(g) -30.94 -34.40 -3.45 H2 + CH4(g) -103.82 -107.28 -3.46 CH4 + CO2(g) 2.43 0.15 -2.28 CO2 Pressure 739.0 atm, phi 0.363 + H2(g) -31.50 -34.96 -3.45 H2 H2O(g) -0.23 -0.01 0.22 H2O Pressure 10.4 atm, phi 0.057 - O2(g) -6.93 -10.38 -3.45 O2 + O2(g) -5.81 -9.26 -3.45 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7959,17 +8046,17 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 883.69 atmospheres (Peng-Robinson calculation) +Total pressure: 883.67 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 4.06e-02 liters/mole - P * Vm / RT: 1.25589 (Compressibility Factor Z) + P * Vm / RT: 1.25587 (Compressibility Factor Z) Moles in gas ---------------------------------- Component log P P phi Initial Final Delta -CO2(g) 2.94 8.717e+02 0.375 2.336e+01 2.429e+01 9.375e-01 -H2O(g) 1.08 1.202e+01 0.053 3.276e-01 3.349e-01 7.290e-03 +CO2(g) 2.94 8.716e+02 0.375 2.336e+01 2.429e+01 9.375e-01 +H2O(g) 1.08 1.202e+01 0.053 3.276e-01 3.349e-01 7.291e-03 -----------------------------Solution composition------------------------------ @@ -7979,53 +8066,54 @@ H2O(g) 1.08 1.202e+01 0.053 3.276e-01 3.349e-01 7.290e-03 ----------------------------Description of solution---------------------------- - pH = 2.908 Charge balance - pe = 12.460 Adjusted to redox equilibrium - Specific Conductance (S/cm, 75C) = 808 - Density (g/cm) = 1.02365 - Volume (L) = 1.04434 + pH = 2.909 Charge balance + pe = 12.739 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 746 + Density (g/cm³) = 1.02365 + Volume (L) = 1.04435 + Viscosity (mPa s) = 0.40166 Activity of water = 0.973 - Ionic strength (mol/kgw) = 1.288e-03 + Ionic strength (mol/kgw) = 1.284e-03 Mass of water (kg) = 9.939e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.716e+00 - Temperature (C) = 75.00 - Pressure (atm) = 883.69 - Electrical balance (eq) = -1.212e-09 + Temperature (°C) = 75.00 + Pressure (atm) = 883.67 + Electrical balance (eq) = -1.209e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 27 + Iterations = 36 (137 overall) Total H = 1.103426e+02 - Total O = 5.858289e+01 + Total O = 5.858316e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.288e-03 1.237e-03 -2.890 -2.908 -0.017 0.00 - OH- 3.594e-10 3.444e-10 -9.444 -9.463 -0.019 -6.70 + H+ 1.284e-03 1.234e-03 -2.891 -2.909 -0.017 0.00 + OH- 3.604e-10 3.454e-10 -9.443 -9.462 -0.018 -6.70 H2O 5.551e+01 9.731e-01 1.744 -0.012 0.000 17.82 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -105.080 -105.079 0.000 38.88 + CH4 0.000e+00 0.000e+00 -107.322 -107.322 0.000 38.88 C(4) 1.716e+00 CO2 1.448e+00 1.448e+00 0.161 0.161 0.000 35.74 (CO2)2 1.335e-01 1.335e-01 -0.875 -0.875 0.000 71.48 - HCO3- 1.288e-03 1.235e-03 -2.890 -2.908 -0.018 26.96 - CO3-2 2.062e-10 1.746e-10 -9.686 -9.758 -0.072 -0.46 -H(0) 7.098e-35 - H2 3.549e-35 3.550e-35 -34.450 -34.450 0.000 28.26 -O(0) 8.292e-11 - O2 4.146e-11 4.147e-11 -10.382 -10.382 0.000 31.07 + HCO3- 1.284e-03 1.232e-03 -2.891 -2.910 -0.018 27.14 + CO3-2 1.828e-10 1.548e-10 -9.738 -9.810 -0.072 3.61 +H(0) 1.952e-35 + H2 9.759e-36 9.762e-36 -35.011 -35.010 0.000 28.26 +O(0) 1.097e-09 + O2 5.483e-10 5.485e-10 -9.261 -9.261 0.000 31.07 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 884 atm) - CH4(g) -101.54 -105.08 -3.53 CH4 - CO2(g) 2.51 0.16 -2.35 CO2 Pressure 871.7 atm, phi 0.375 - H2(g) -30.94 -34.45 -3.51 H2 + CH4(g) -103.79 -107.32 -3.53 CH4 + CO2(g) 2.51 0.16 -2.35 CO2 Pressure 871.6 atm, phi 0.375 + H2(g) -31.50 -35.01 -3.51 H2 H2O(g) -0.20 -0.01 0.18 H2O Pressure 12.0 atm, phi 0.053 - O2(g) -6.87 -10.38 -3.52 O2 + O2(g) -5.75 -9.26 -3.52 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8060,73 +8148,74 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 1047.35 atmospheres (Peng-Robinson calculation) +Total pressure: 1047.32 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 3.91e-02 liters/mole - P * Vm / RT: 1.43383 (Compressibility Factor Z) + P * Vm / RT: 1.43380 (Compressibility Factor Z) Moles in gas ---------------------------------- Component log P P phi Initial Final Delta CO2(g) 3.01 1.033e+03 0.398 2.429e+01 2.523e+01 9.354e-01 -H2O(g) 1.14 1.386e+01 0.051 3.349e-01 3.384e-01 3.492e-03 +H2O(g) 1.14 1.386e+01 0.051 3.349e-01 3.384e-01 3.493e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 1.781e+00 1.770e+00 + C 1.781e+00 1.771e+00 ----------------------------Description of solution---------------------------- - pH = 2.872 Charge balance - pe = 12.493 Adjusted to redox equilibrium - Specific Conductance (S/cm, 75C) = 869 - Density (g/cm) = 1.03011 - Volume (L) = 1.04049 + pH = 2.874 Charge balance + pe = 12.772 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 801 + Density (g/cm³) = 1.03011 + Volume (L) = 1.04050 + Viscosity (mPa s) = 0.40620 Activity of water = 0.972 - Ionic strength (mol/kgw) = 1.401e-03 + Ionic strength (mol/kgw) = 1.394e-03 Mass of water (kg) = 9.939e-01 Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.781e+00 - Temperature (C) = 75.00 - Pressure (atm) = 1047.35 - Electrical balance (eq) = -1.211e-09 + Temperature (°C) = 75.00 + Pressure (atm) = 1047.32 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 31 + Iterations = 36 (137 overall) Total H = 1.103356e+02 - Total O = 5.870864e+01 + Total O = 5.870894e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.401e-03 1.344e-03 -2.854 -2.872 -0.018 0.00 - OH- 3.833e-10 3.668e-10 -9.416 -9.436 -0.019 -6.98 + H+ 1.394e-03 1.338e-03 -2.856 -2.874 -0.018 0.00 + OH- 3.850e-10 3.684e-10 -9.415 -9.434 -0.019 -6.98 H2O 5.551e+01 9.721e-01 1.744 -0.012 0.000 17.72 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -105.138 -105.138 0.000 38.84 + CH4 0.000e+00 0.000e+00 -107.381 -107.381 0.000 38.84 C(4) 1.781e+00 CO2 1.495e+00 1.496e+00 0.175 0.175 0.000 35.55 (CO2)2 1.423e-01 1.424e-01 -0.847 -0.847 0.000 71.10 - HCO3- 1.401e-03 1.342e-03 -2.854 -2.872 -0.019 27.15 - CO3-2 2.347e-10 1.976e-10 -9.630 -9.704 -0.075 0.64 -H(0) 6.125e-35 - H2 3.063e-35 3.064e-35 -34.514 -34.514 0.000 28.21 -O(0) 8.292e-11 - O2 4.146e-11 4.147e-11 -10.382 -10.382 0.000 30.82 + HCO3- 1.394e-03 1.336e-03 -2.856 -2.874 -0.019 27.39 + CO3-2 2.036e-10 1.715e-10 -9.691 -9.766 -0.075 4.74 +H(0) 1.684e-35 + H2 8.422e-36 8.424e-36 -35.075 -35.074 0.000 28.21 +O(0) 1.097e-09 + O2 5.484e-10 5.486e-10 -9.261 -9.261 0.000 30.82 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 1047 atm) - CH4(g) -101.51 -105.14 -3.63 CH4 + CH4(g) -103.75 -107.38 -3.63 CH4 CO2(g) 2.61 0.17 -2.44 CO2 Pressure 1033.5 atm, phi 0.398 - H2(g) -30.93 -34.51 -3.58 H2 + H2(g) -31.49 -35.07 -3.58 H2 H2O(g) -0.15 -0.01 0.14 H2O Pressure 13.9 atm, phi 0.051 - O2(g) -6.79 -10.38 -3.59 O2 + O2(g) -5.67 -9.26 -3.59 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8198,16 +8287,15 @@ H2O(g) -0.00 9.971e-01 0.991 0.000e+00 3.285e-02 3.285e-02 pH = 6.120 Charge balance pe = 6.720 Adjusted to redox equilibrium - Specific Conductance (S/cm, 100C) = 0 - Density (g/cm) = 0.95835 + Specific Conductance (µS/cm, 100°C) = 0 + Density (g/cm³) = 0.95835 Volume (L) = 1.04285 + Viscosity (mPa s) = 0.28158 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.610e-07 Mass of water (kg) = 9.994e-01 Total alkalinity (eq/kg) = 1.217e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 1.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.08 @@ -8218,7 +8306,7 @@ H2O(g) -0.00 9.971e-01 0.991 0.000e+00 3.285e-02 3.285e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 7.616e-07 7.607e-07 -6.118 -6.119 -0.001 -5.96 H+ 7.604e-07 7.594e-07 -6.119 -6.120 -0.001 0.00 @@ -8282,53 +8370,54 @@ H2O(g) 0.06 1.139e+00 0.877 3.285e-02 3.984e-02 6.990e-03 ----------------------------Description of solution---------------------------- - pH = 3.545 Charge balance - pe = 9.293 Adjusted to redox equilibrium - Specific Conductance (S/cm, 100C) = 231 - Density (g/cm) = 0.96086 + pH = 3.544 Charge balance + pe = 9.307 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 209 + Density (g/cm³) = 0.96086 Volume (L) = 1.05014 + Viscosity (mPa s) = 0.28235 Activity of water = 0.996 - Ionic strength (mol/kgw) = 2.919e-04 + Ionic strength (mol/kgw) = 2.920e-04 Mass of water (kg) = 9.993e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 2.218e-01 - Temperature (C) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 23.39 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 31 Total H = 1.109328e+02 - Total O = 5.590968e+01 + Total O = 5.590969e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 2.919e-04 2.854e-04 -3.535 -3.545 -0.010 0.00 + H+ 2.920e-04 2.855e-04 -3.535 -3.544 -0.010 0.00 OH- 2.101e-09 2.053e-09 -8.678 -8.688 -0.010 -6.03 H2O 5.551e+01 9.963e-01 1.744 -0.002 0.000 18.78 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -87.885 -87.885 0.000 41.03 + CH4 0.000e+00 0.000e+00 -87.998 -87.998 0.000 41.03 C(4) 2.218e-01 CO2 2.131e-01 2.131e-01 -0.671 -0.671 0.000 38.83 (CO2)2 4.215e-03 4.215e-03 -2.375 -2.375 0.000 77.65 - HCO3- 2.919e-04 2.853e-04 -3.535 -3.545 -0.010 24.74 - CO3-2 7.879e-11 7.191e-11 -10.104 -10.143 -0.040 -13.79 -H(0) 1.613e-29 - H2 8.066e-30 8.066e-30 -29.093 -29.093 0.000 28.56 -O(0) 2.673e-15 - O2 1.336e-15 1.336e-15 -14.874 -14.874 0.000 33.82 + HCO3- 2.920e-04 2.854e-04 -3.535 -3.545 -0.010 24.09 + CO3-2 7.842e-11 7.157e-11 -10.106 -10.145 -0.040 -7.90 +H(0) 1.512e-29 + H2 7.558e-30 7.559e-30 -29.122 -29.122 0.000 28.56 +O(0) 3.044e-15 + O2 1.522e-15 1.522e-15 -14.818 -14.818 0.000 33.82 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 23 atm) - CH4(g) -84.87 -87.88 -3.02 CH4 + CH4(g) -84.98 -88.00 -3.02 CH4 CO2(g) 1.32 -0.67 -1.99 CO2 Pressure 22.3 atm, phi 0.939 - H2(g) -25.98 -29.09 -3.11 H2 + H2(g) -26.01 -29.12 -3.11 H2 H2O(g) -0.00 -0.00 -0.00 H2O Pressure 1.1 atm, phi 0.877 - O2(g) -11.75 -14.87 -3.13 O2 + O2(g) -11.69 -14.82 -3.13 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8372,57 +8461,58 @@ H2O(g) 0.11 1.294e+00 0.779 3.984e-02 4.816e-02 8.320e-03 Elements Molality Moles - C 4.049e-01 4.045e-01 + C 4.049e-01 4.046e-01 ----------------------------Description of solution---------------------------- pH = 3.416 Charge balance - pe = 9.452 Adjusted to redox equilibrium - Specific Conductance (S/cm, 100C) = 311 - Density (g/cm) = 0.96303 + pe = 1.885 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 281 + Density (g/cm³) = 0.96303 Volume (L) = 1.05598 + Viscosity (mPa s) = 0.28297 Activity of water = 0.993 - Ionic strength (mol/kgw) = 3.938e-04 + Ionic strength (mol/kgw) = 3.940e-04 Mass of water (kg) = 9.991e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 4.049e-01 - Temperature (C) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 44.15 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 + Iterations = 34 Total H = 1.109161e+02 - Total O = 5.626716e+01 + Total O = 5.626718e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 3.938e-04 3.838e-04 -3.405 -3.416 -0.011 0.00 + H+ 3.940e-04 3.840e-04 -3.404 -3.416 -0.011 0.00 OH- 1.590e-09 1.548e-09 -8.799 -8.810 -0.012 -6.11 H2O 5.551e+01 9.933e-01 1.744 -0.003 0.000 18.76 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -87.885 -87.885 0.000 41.01 +C(-4) 4.444e-28 + CH4 4.444e-28 4.444e-28 -27.352 -27.352 0.000 41.01 C(4) 4.049e-01 CO2 3.780e-01 3.780e-01 -0.423 -0.422 0.000 38.77 (CO2)2 1.326e-02 1.326e-02 -1.877 -1.877 0.000 77.53 - HCO3- 3.938e-04 3.836e-04 -3.405 -3.416 -0.011 24.81 - CO3-2 8.198e-11 7.378e-11 -10.086 -10.132 -0.046 -13.47 -H(0) 1.378e-29 - H2 6.889e-30 6.889e-30 -29.162 -29.162 0.000 28.55 -O(0) 3.513e-15 - O2 1.757e-15 1.757e-15 -14.755 -14.755 0.000 33.76 + HCO3- 3.940e-04 3.838e-04 -3.404 -3.416 -0.011 24.18 + CO3-2 8.124e-11 7.310e-11 -10.090 -10.136 -0.046 -7.58 +H(0) 1.872e-14 + H2 9.362e-15 9.363e-15 -14.029 -14.029 0.000 28.55 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -45.022 -45.022 0.000 33.76 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 44 atm) - CH4(g) -84.86 -87.89 -3.03 CH4 + CH4(g) -24.32 -27.35 -3.03 CH4 CO2(g) 1.58 -0.42 -2.00 CO2 Pressure 42.9 atm, phi 0.888 - H2(g) -26.04 -29.16 -3.12 H2 + H2(g) -10.91 -14.03 -3.12 H2 H2O(g) 0.00 -0.00 -0.01 H2O Pressure 1.3 atm, phi 0.779 - O2(g) -11.62 -14.76 -3.14 O2 + O2(g) -41.89 -45.02 -3.14 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8470,53 +8560,54 @@ H2O(g) 0.17 1.465e+00 0.695 4.816e-02 5.795e-02 9.787e-03 ----------------------------Description of solution---------------------------- - pH = 3.349 Charge balance - pe = 9.639 Adjusted to redox equilibrium - Specific Conductance (S/cm, 100C) = 363 - Density (g/cm) = 0.96489 + pH = 3.348 Charge balance + pe = 1.949 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 328 + Density (g/cm³) = 0.96489 Volume (L) = 1.06054 + Viscosity (mPa s) = 0.28353 Activity of water = 0.991 - Ionic strength (mol/kgw) = 4.606e-04 + Ionic strength (mol/kgw) = 4.609e-04 Mass of water (kg) = 9.989e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 5.538e-01 - Temperature (C) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 63.31 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 28 Total H = 1.108965e+02 - Total O = 5.655461e+01 + Total O = 5.655464e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 4.606e-04 4.480e-04 -3.337 -3.349 -0.012 0.00 - OH- 1.384e-09 1.344e-09 -8.859 -8.872 -0.013 -6.19 + H+ 4.609e-04 4.483e-04 -3.336 -3.348 -0.012 0.00 + OH- 1.383e-09 1.343e-09 -8.859 -8.872 -0.013 -6.19 H2O 5.551e+01 9.910e-01 1.744 -0.004 0.000 18.74 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -88.732 -88.732 0.000 40.98 +C(-4) 6.246e-28 + CH4 6.246e-28 6.246e-28 -27.204 -27.204 0.000 40.98 C(4) 5.538e-01 CO2 5.058e-01 5.059e-01 -0.296 -0.296 0.000 38.71 (CO2)2 2.375e-02 2.375e-02 -1.624 -1.624 0.000 77.42 - HCO3- 4.606e-04 4.477e-04 -3.337 -3.349 -0.012 24.86 - CO3-2 8.461e-11 7.552e-11 -10.073 -10.122 -0.049 -13.18 -H(0) 7.767e-30 - H2 3.883e-30 3.884e-30 -29.411 -29.411 0.000 28.54 -O(0) 1.064e-14 - O2 5.320e-15 5.321e-15 -14.274 -14.274 0.000 33.69 + HCO3- 4.609e-04 4.480e-04 -3.336 -3.349 -0.012 24.25 + CO3-2 8.350e-11 7.453e-11 -10.078 -10.128 -0.049 -7.29 +H(0) 1.871e-14 + H2 9.357e-15 9.358e-15 -14.029 -14.029 0.000 28.54 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -45.038 -45.038 0.000 33.69 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 63 atm) - CH4(g) -85.69 -88.73 -3.04 CH4 + CH4(g) -24.16 -27.20 -3.04 CH4 CO2(g) 1.72 -0.30 -2.01 CO2 Pressure 61.8 atm, phi 0.844 - H2(g) -26.28 -29.41 -3.13 H2 + H2(g) -10.90 -14.03 -3.13 H2 H2O(g) 0.01 -0.00 -0.01 H2O Pressure 1.5 atm, phi 0.695 - O2(g) -11.13 -14.27 -3.14 O2 + O2(g) -41.89 -45.04 -3.14 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8560,57 +8651,58 @@ H2O(g) 0.22 1.653e+00 0.621 5.795e-02 6.931e-02 1.136e-02 Elements Molality Moles - C 6.740e-01 6.731e-01 + C 6.740e-01 6.732e-01 ----------------------------Description of solution---------------------------- pH = 3.306 Charge balance - pe = 9.728 Adjusted to redox equilibrium - Specific Conductance (S/cm, 100C) = 400 - Density (g/cm) = 0.96649 + pe = 2.091 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 362 + Density (g/cm³) = 0.96649 Volume (L) = 1.06404 + Viscosity (mPa s) = 0.28404 Activity of water = 0.989 - Ionic strength (mol/kgw) = 5.088e-04 + Ionic strength (mol/kgw) = 5.092e-04 Mass of water (kg) = 9.987e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 6.740e-01 - Temperature (C) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 81.00 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 27 + Iterations = 26 Total H = 1.108738e+02 - Total O = 5.678319e+01 + Total O = 5.678324e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 5.088e-04 4.943e-04 -3.293 -3.306 -0.013 0.00 - OH- 1.272e-09 1.234e-09 -8.896 -8.909 -0.013 -6.27 + H+ 5.092e-04 4.947e-04 -3.293 -3.306 -0.013 0.00 + OH- 1.271e-09 1.233e-09 -8.896 -8.909 -0.013 -6.27 H2O 5.551e+01 9.891e-01 1.744 -0.005 0.000 18.72 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -89.029 -89.029 0.000 40.96 +C(-4) 1.164e-28 + CH4 1.164e-28 1.164e-28 -27.934 -27.934 0.000 40.96 C(4) 6.740e-01 - CO2 6.054e-01 6.055e-01 -0.218 -0.218 0.000 38.66 + CO2 6.055e-01 6.055e-01 -0.218 -0.218 0.000 38.66 (CO2)2 3.402e-02 3.403e-02 -1.468 -1.468 0.000 77.32 - HCO3- 5.088e-04 4.939e-04 -3.293 -3.306 -0.013 24.91 - CO3-2 8.690e-11 7.715e-11 -10.061 -10.113 -0.052 -12.92 -H(0) 6.186e-30 - H2 3.093e-30 3.093e-30 -29.510 -29.510 0.000 28.53 -O(0) 1.621e-14 - O2 8.103e-15 8.103e-15 -14.091 -14.091 0.000 33.64 + HCO3- 5.092e-04 4.943e-04 -3.293 -3.306 -0.013 24.32 + CO3-2 8.545e-11 7.586e-11 -10.068 -10.120 -0.052 -7.04 +H(0) 1.162e-14 + H2 5.810e-15 5.811e-15 -14.236 -14.236 0.000 28.53 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -44.639 -44.639 0.000 33.64 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 81 atm) - CH4(g) -85.98 -89.03 -3.05 CH4 + CH4(g) -24.88 -27.93 -3.05 CH4 CO2(g) 1.81 -0.22 -2.02 CO2 Pressure 79.3 atm, phi 0.805 - H2(g) -26.38 -29.51 -3.13 H2 + H2(g) -11.10 -14.24 -3.13 H2 H2O(g) 0.01 -0.00 -0.02 H2O Pressure 1.7 atm, phi 0.621 - O2(g) -10.94 -14.09 -3.15 O2 + O2(g) -41.49 -44.64 -3.15 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8654,57 +8746,58 @@ H2O(g) 0.27 1.859e+00 0.557 6.931e-02 8.231e-02 1.301e-02 Elements Molality Moles - C 7.714e-01 7.702e-01 + C 7.714e-01 7.703e-01 ----------------------------Description of solution---------------------------- pH = 3.276 Charge balance - pe = 9.750 Adjusted to redox equilibrium - Specific Conductance (S/cm, 100C) = 429 - Density (g/cm) = 0.96788 + pe = 2.195 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 387 + Density (g/cm³) = 0.96788 Volume (L) = 1.06668 + Viscosity (mPa s) = 0.28451 Activity of water = 0.988 - Ionic strength (mol/kgw) = 5.455e-04 + Ionic strength (mol/kgw) = 5.461e-04 Mass of water (kg) = 9.985e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 7.714e-01 - Temperature (C) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 97.41 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 + Iterations = 25 Total H = 1.108478e+02 - Total O = 5.696437e+01 + Total O = 5.696443e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 5.455e-04 5.295e-04 -3.263 -3.276 -0.013 0.00 - OH- 1.203e-09 1.166e-09 -8.920 -8.933 -0.014 -6.33 + H+ 5.461e-04 5.300e-04 -3.263 -3.276 -0.013 0.00 + OH- 1.202e-09 1.165e-09 -8.920 -8.934 -0.014 -6.33 H2O 5.551e+01 9.876e-01 1.744 -0.005 0.000 18.71 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -88.923 -88.923 0.000 40.94 +C(-4) 3.337e-29 + CH4 3.337e-29 3.338e-29 -28.477 -28.477 0.000 40.94 C(4) 7.714e-01 CO2 6.840e-01 6.841e-01 -0.165 -0.165 0.000 38.62 (CO2)2 4.343e-02 4.343e-02 -1.362 -1.362 0.000 77.23 - HCO3- 5.455e-04 5.290e-04 -3.263 -3.277 -0.013 24.96 - CO3-2 8.897e-11 7.868e-11 -10.051 -10.104 -0.053 -12.68 -H(0) 6.311e-30 - H2 3.155e-30 3.156e-30 -29.501 -29.501 0.000 28.52 -O(0) 1.509e-14 - O2 7.544e-15 7.545e-15 -14.122 -14.122 0.000 33.58 + HCO3- 5.461e-04 5.295e-04 -3.263 -3.276 -0.013 24.38 + CO3-2 8.718e-11 7.710e-11 -10.060 -10.113 -0.053 -6.80 +H(0) 8.159e-15 + H2 4.079e-15 4.080e-15 -14.389 -14.389 0.000 28.52 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -44.345 -44.345 0.000 33.58 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 97 atm) - CH4(g) -85.86 -88.92 -3.06 CH4 + CH4(g) -25.42 -28.48 -3.06 CH4 CO2(g) 1.87 -0.16 -2.03 CO2 Pressure 95.5 atm, phi 0.771 - H2(g) -26.36 -29.50 -3.14 H2 + H2(g) -11.25 -14.39 -3.14 H2 H2O(g) 0.02 -0.01 -0.02 H2O Pressure 1.9 atm, phi 0.557 - O2(g) -10.96 -14.12 -3.16 O2 + O2(g) -41.18 -44.35 -3.16 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8752,53 +8845,54 @@ H2O(g) 0.32 2.085e+00 0.501 8.231e-02 9.701e-02 1.470e-02 ----------------------------Description of solution---------------------------- - pH = 3.254 Charge balance - pe = 9.727 Adjusted to redox equilibrium - Specific Conductance (S/cm, 100C) = 451 - Density (g/cm) = 0.96910 + pH = 3.253 Charge balance + pe = 2.035 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 408 + Density (g/cm³) = 0.96910 Volume (L) = 1.06867 + Viscosity (mPa s) = 0.28494 Activity of water = 0.986 - Ionic strength (mol/kgw) = 5.747e-04 + Ionic strength (mol/kgw) = 5.754e-04 Mass of water (kg) = 9.982e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 8.512e-01 - Temperature (C) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 112.79 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 + Iterations = 24 Total H = 1.108184e+02 - Total O = 5.710863e+01 + Total O = 5.710869e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 5.747e-04 5.574e-04 -3.241 -3.254 -0.013 0.00 - OH- 1.157e-09 1.120e-09 -8.937 -8.951 -0.014 -6.40 + H+ 5.754e-04 5.580e-04 -3.240 -3.253 -0.013 0.00 + OH- 1.155e-09 1.119e-09 -8.937 -8.951 -0.014 -6.40 H2O 5.551e+01 9.864e-01 1.744 -0.006 0.000 18.70 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -88.525 -88.525 0.000 40.93 +C(-4) 1.028e-27 + CH4 1.028e-27 1.028e-27 -26.988 -26.988 0.000 40.93 C(4) 8.512e-01 - CO2 7.470e-01 7.471e-01 -0.127 -0.127 0.000 38.57 + CO2 7.471e-01 7.471e-01 -0.127 -0.127 0.000 38.57 (CO2)2 5.180e-02 5.181e-02 -1.286 -1.286 0.000 77.15 - HCO3- 5.747e-04 5.569e-04 -3.241 -3.254 -0.014 25.00 - CO3-2 9.088e-11 8.013e-11 -10.042 -10.096 -0.055 -12.47 -H(0) 7.686e-30 - H2 3.843e-30 3.844e-30 -29.415 -29.415 0.000 28.52 -O(0) 9.880e-15 - O2 4.940e-15 4.941e-15 -14.306 -14.306 0.000 33.54 + HCO3- 5.754e-04 5.575e-04 -3.240 -3.254 -0.014 24.43 + CO3-2 8.877e-11 7.826e-11 -10.052 -10.106 -0.055 -6.59 +H(0) 1.862e-14 + H2 9.308e-15 9.309e-15 -14.031 -14.031 0.000 28.52 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -45.075 -45.075 0.000 33.54 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 113 atm) - CH4(g) -85.46 -88.52 -3.07 CH4 + CH4(g) -23.92 -26.99 -3.07 CH4 CO2(g) 1.91 -0.13 -2.04 CO2 Pressure 110.7 atm, phi 0.741 - H2(g) -26.27 -29.42 -3.15 H2 + H2(g) -10.89 -14.03 -3.15 H2 H2O(g) 0.02 -0.01 -0.02 H2O Pressure 2.1 atm, phi 0.501 - O2(g) -11.14 -14.31 -3.17 O2 + O2(g) -41.91 -45.07 -3.17 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8842,57 +8936,58 @@ H2O(g) 0.37 2.333e+00 0.451 9.701e-02 1.134e-01 1.641e-02 Elements Molality Moles - C 9.179e-01 9.161e-01 + C 9.180e-01 9.161e-01 ----------------------------Description of solution---------------------------- pH = 3.236 Charge balance - pe = 9.618 Adjusted to redox equilibrium - Specific Conductance (S/cm, 100C) = 469 - Density (g/cm) = 0.97021 + pe = 2.091 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 424 + Density (g/cm³) = 0.97021 Volume (L) = 1.07015 + Viscosity (mPa s) = 0.28535 Activity of water = 0.985 - Ionic strength (mol/kgw) = 5.989e-04 + Ionic strength (mol/kgw) = 5.996e-04 Mass of water (kg) = 9.979e-01 - Total alkalinity (eq/kg) = 1.216e-09 - Total CO2 (mol/kg) = 9.179e-01 - Temperature (C) = 100.00 + Total alkalinity (eq/kg) = 1.218e-09 + Total CO2 (mol/kg) = 9.180e-01 + Temperature (°C) = 100.00 Pressure (atm) = 127.46 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 + Iterations = 23 Total H = 1.107856e+02 - Total O = 5.722490e+01 + Total O = 5.722497e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 5.989e-04 5.805e-04 -3.223 -3.236 -0.014 0.00 - OH- 1.124e-09 1.088e-09 -8.949 -8.963 -0.014 -6.46 + H+ 5.996e-04 5.812e-04 -3.222 -3.236 -0.014 0.00 + OH- 1.123e-09 1.087e-09 -8.950 -8.964 -0.014 -6.46 H2O 5.551e+01 9.854e-01 1.744 -0.006 0.000 18.68 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -87.493 -87.493 0.000 40.91 -C(4) 9.179e-01 +C(-4) 5.296e-28 + CH4 5.296e-28 5.297e-28 -27.276 -27.276 0.000 40.91 +C(4) 9.180e-01 CO2 7.989e-01 7.990e-01 -0.098 -0.097 0.000 38.53 (CO2)2 5.924e-02 5.925e-02 -1.227 -1.227 0.000 77.07 - HCO3- 5.989e-04 5.800e-04 -3.223 -3.237 -0.014 25.04 - CO3-2 9.268e-11 8.152e-11 -10.033 -10.089 -0.056 -12.26 -H(0) 1.356e-29 - H2 6.781e-30 6.782e-30 -29.169 -29.169 0.000 28.51 -O(0) 3.088e-15 - O2 1.544e-15 1.544e-15 -14.811 -14.811 0.000 33.49 + HCO3- 5.996e-04 5.807e-04 -3.222 -3.236 -0.014 24.48 + CO3-2 9.025e-11 7.938e-11 -10.045 -10.100 -0.056 -6.38 +H(0) 1.536e-14 + H2 7.682e-15 7.683e-15 -14.115 -14.114 0.000 28.51 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -44.920 -44.920 0.000 33.49 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 127 atm) - CH4(g) -84.42 -87.49 -3.08 CH4 + CH4(g) -24.20 -27.28 -3.08 CH4 CO2(g) 1.95 -0.10 -2.05 CO2 Pressure 125.1 atm, phi 0.714 - H2(g) -26.02 -29.17 -3.15 H2 + H2(g) -10.96 -14.11 -3.15 H2 H2O(g) 0.02 -0.01 -0.03 H2O Pressure 2.3 atm, phi 0.451 - O2(g) -11.64 -14.81 -3.17 O2 + O2(g) -41.75 -44.92 -3.17 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8940,53 +9035,54 @@ H2O(g) 0.42 2.605e+00 0.407 1.134e-01 1.315e-01 1.811e-02 ----------------------------Description of solution---------------------------- - pH = 3.222 Charge balance - pe = 9.676 Adjusted to redox equilibrium - Specific Conductance (S/cm, 100C) = 485 - Density (g/cm) = 0.97124 + pH = 3.221 Charge balance + pe = 2.134 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 438 + Density (g/cm³) = 0.97124 Volume (L) = 1.07126 + Viscosity (mPa s) = 0.28575 Activity of water = 0.985 - Ionic strength (mol/kgw) = 6.197e-04 + Ionic strength (mol/kgw) = 6.204e-04 Mass of water (kg) = 9.976e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 9.752e-01 - Temperature (C) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 141.77 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 + Iterations = 23 Total H = 1.107494e+02 - Total O = 5.732045e+01 + Total O = 5.732053e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 6.197e-04 6.004e-04 -3.208 -3.222 -0.014 0.00 - OH- 1.099e-09 1.064e-09 -8.959 -8.973 -0.014 -6.51 + H+ 6.204e-04 6.011e-04 -3.207 -3.221 -0.014 0.00 + OH- 1.098e-09 1.062e-09 -8.959 -8.974 -0.014 -6.51 H2O 5.551e+01 9.845e-01 1.744 -0.007 0.000 18.67 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -87.822 -87.822 0.000 40.89 +C(-4) 3.275e-28 + CH4 3.275e-28 3.275e-28 -27.485 -27.485 0.000 40.89 C(4) 9.752e-01 - CO2 8.427e-01 8.429e-01 -0.074 -0.074 0.000 38.49 + CO2 8.428e-01 8.429e-01 -0.074 -0.074 0.000 38.49 (CO2)2 6.592e-02 6.593e-02 -1.181 -1.181 0.000 76.99 - HCO3- 6.197e-04 5.998e-04 -3.208 -3.222 -0.014 25.08 - CO3-2 9.442e-11 8.289e-11 -10.025 -10.081 -0.057 -12.07 -H(0) 1.097e-29 - H2 5.487e-30 5.487e-30 -29.261 -29.261 0.000 28.50 -O(0) 4.593e-15 - O2 2.297e-15 2.297e-15 -14.639 -14.639 0.000 33.45 + HCO3- 6.204e-04 6.006e-04 -3.207 -3.221 -0.014 24.53 + CO3-2 9.168e-11 8.048e-11 -10.038 -10.094 -0.057 -6.19 +H(0) 1.332e-14 + H2 6.661e-15 6.662e-15 -14.176 -14.176 0.000 28.50 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -44.807 -44.807 0.000 33.45 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 142 atm) - CH4(g) -84.74 -87.82 -3.09 CH4 + CH4(g) -24.40 -27.48 -3.09 CH4 CO2(g) 1.98 -0.07 -2.06 CO2 Pressure 139.2 atm, phi 0.689 - H2(g) -26.10 -29.26 -3.16 H2 + H2(g) -11.02 -14.18 -3.16 H2 H2O(g) 0.03 -0.01 -0.03 H2O Pressure 2.6 atm, phi 0.407 - O2(g) -11.46 -14.64 -3.18 O2 + O2(g) -41.63 -44.81 -3.18 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9034,53 +9130,54 @@ H2O(g) 0.46 2.906e+00 0.368 1.315e-01 1.513e-01 1.977e-02 ----------------------------Description of solution---------------------------- - pH = 3.209 Charge balance - pe = 9.776 Adjusted to redox equilibrium - Specific Conductance (S/cm, 100C) = 498 - Density (g/cm) = 0.97222 + pH = 3.208 Charge balance + pe = 1.940 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 451 + Density (g/cm³) = 0.97222 Volume (L) = 1.07208 + Viscosity (mPa s) = 0.28615 Activity of water = 0.984 - Ionic strength (mol/kgw) = 6.383e-04 + Ionic strength (mol/kgw) = 6.391e-04 Mass of water (kg) = 9.973e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.026e+00 - Temperature (C) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 156.12 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 + Iterations = 24 Total H = 1.107098e+02 - Total O = 5.740106e+01 + Total O = 5.740115e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 6.383e-04 6.181e-04 -3.195 -3.209 -0.014 0.00 - OH- 1.080e-09 1.045e-09 -8.966 -8.981 -0.015 -6.57 + H+ 6.391e-04 6.190e-04 -3.194 -3.208 -0.014 0.00 + OH- 1.079e-09 1.043e-09 -8.967 -8.982 -0.015 -6.57 H2O 5.551e+01 9.838e-01 1.744 -0.007 0.000 18.66 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -88.507 -88.507 0.000 40.88 +C(-4) 1.514e-26 + CH4 1.514e-26 1.514e-26 -25.820 -25.820 0.000 40.88 C(4) 1.026e+00 - CO2 8.811e-01 8.812e-01 -0.055 -0.055 0.000 38.46 + CO2 8.812e-01 8.812e-01 -0.055 -0.055 0.000 38.46 (CO2)2 7.207e-02 7.208e-02 -1.142 -1.142 0.000 76.91 - HCO3- 6.383e-04 6.176e-04 -3.195 -3.209 -0.014 25.11 - CO3-2 9.617e-11 8.428e-11 -10.017 -10.074 -0.057 -11.87 -H(0) 7.247e-30 - H2 3.624e-30 3.624e-30 -29.441 -29.441 0.000 28.50 -O(0) 1.026e-14 - O2 5.129e-15 5.130e-15 -14.290 -14.290 0.000 33.40 + HCO3- 6.391e-04 6.184e-04 -3.194 -3.209 -0.014 24.58 + CO3-2 9.310e-11 8.159e-11 -10.031 -10.088 -0.057 -5.99 +H(0) 3.404e-14 + H2 1.702e-14 1.702e-14 -13.769 -13.769 0.000 28.50 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -45.634 -45.634 0.000 33.40 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 156 atm) - CH4(g) -85.41 -88.51 -3.09 CH4 + CH4(g) -22.73 -25.82 -3.09 CH4 CO2(g) 2.01 -0.05 -2.06 CO2 Pressure 153.2 atm, phi 0.666 - H2(g) -26.28 -29.44 -3.16 H2 + H2(g) -10.61 -13.77 -3.16 H2 H2O(g) 0.03 -0.01 -0.04 H2O Pressure 2.9 atm, phi 0.368 - O2(g) -11.10 -14.29 -3.19 O2 + O2(g) -42.45 -45.63 -3.19 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9129,52 +9226,53 @@ H2O(g) 0.51 3.242e+00 0.332 1.513e-01 1.727e-01 2.137e-02 ----------------------------Description of solution---------------------------- pH = 3.197 Charge balance - pe = 9.830 Adjusted to redox equilibrium - Specific Conductance (S/cm, 100C) = 511 - Density (g/cm) = 0.97320 + pe = 1.967 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 462 + Density (g/cm³) = 0.97320 Volume (L) = 1.07268 + Viscosity (mPa s) = 0.28656 Activity of water = 0.983 - Ionic strength (mol/kgw) = 6.556e-04 + Ionic strength (mol/kgw) = 6.566e-04 Mass of water (kg) = 9.969e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.072e+00 - Temperature (C) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 170.91 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 27 + Iterations = 26 Total H = 1.106671e+02 - Total O = 5.747128e+01 + Total O = 5.747138e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 6.556e-04 6.347e-04 -3.183 -3.197 -0.014 0.00 - OH- 1.065e-09 1.029e-09 -8.973 -8.987 -0.015 -6.63 + H+ 6.566e-04 6.356e-04 -3.183 -3.197 -0.014 0.00 + OH- 1.063e-09 1.028e-09 -8.973 -8.988 -0.015 -6.63 H2O 5.551e+01 9.831e-01 1.744 -0.007 0.000 18.64 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -88.838 -88.838 0.000 40.86 +C(-4) 1.176e-26 + CH4 1.176e-26 1.176e-26 -25.930 -25.930 0.000 40.86 C(4) 1.072e+00 - CO2 9.158e-01 9.160e-01 -0.038 -0.038 0.000 38.42 + CO2 9.159e-01 9.160e-01 -0.038 -0.038 0.000 38.42 (CO2)2 7.786e-02 7.787e-02 -1.109 -1.109 0.000 76.83 - HCO3- 6.556e-04 6.341e-04 -3.183 -3.198 -0.014 25.15 - CO3-2 9.797e-11 8.572e-11 -10.009 -10.067 -0.058 -11.67 -H(0) 5.877e-30 - H2 2.939e-30 2.939e-30 -29.532 -29.532 0.000 28.49 -O(0) 1.518e-14 - O2 7.591e-15 7.592e-15 -14.120 -14.120 0.000 33.36 + HCO3- 6.566e-04 6.350e-04 -3.183 -3.197 -0.015 24.63 + CO3-2 9.456e-11 8.273e-11 -10.024 -10.082 -0.058 -5.79 +H(0) 3.136e-14 + H2 1.568e-14 1.568e-14 -13.805 -13.805 0.000 28.49 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -45.574 -45.574 0.000 33.36 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 171 atm) - CH4(g) -85.74 -88.84 -3.10 CH4 + CH4(g) -22.83 -25.93 -3.10 CH4 CO2(g) 2.03 -0.04 -2.07 CO2 Pressure 167.7 atm, phi 0.645 - H2(g) -26.36 -29.53 -3.17 H2 + H2(g) -10.64 -13.80 -3.17 H2 H2O(g) 0.03 -0.01 -0.04 H2O Pressure 3.2 atm, phi 0.332 - O2(g) -10.92 -14.12 -3.20 O2 + O2(g) -42.38 -45.57 -3.20 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9222,53 +9320,54 @@ H2O(g) 0.56 3.618e+00 0.300 1.727e-01 1.955e-01 2.287e-02 ----------------------------Description of solution---------------------------- - pH = 3.187 Charge balance - pe = 9.809 Adjusted to redox equilibrium - Specific Conductance (S/cm, 100C) = 523 - Density (g/cm) = 0.97420 - Volume (L) = 1.07310 + pH = 3.186 Charge balance + pe = 1.927 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 474 + Density (g/cm³) = 0.97420 + Volume (L) = 1.07311 + Viscosity (mPa s) = 0.28699 Activity of water = 0.982 - Ionic strength (mol/kgw) = 6.725e-04 + Ionic strength (mol/kgw) = 6.735e-04 Mass of water (kg) = 9.965e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.116e+00 - Temperature (C) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 186.59 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 - Total H = 1.106213e+02 - Total O = 5.753469e+01 + Iterations = 27 + Total H = 1.106214e+02 + Total O = 5.753479e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 6.725e-04 6.508e-04 -3.172 -3.187 -0.014 0.00 - OH- 1.052e-09 1.017e-09 -8.978 -8.993 -0.015 -6.69 + H+ 6.735e-04 6.518e-04 -3.172 -3.186 -0.014 0.00 + OH- 1.051e-09 1.015e-09 -8.979 -8.993 -0.015 -6.69 H2O 5.551e+01 9.824e-01 1.744 -0.008 0.000 18.63 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -88.580 -88.580 0.000 40.84 +C(-4) 3.048e-26 + CH4 3.048e-26 3.049e-26 -25.516 -25.516 0.000 40.84 C(4) 1.116e+00 - CO2 9.483e-01 9.485e-01 -0.023 -0.023 0.000 38.38 + CO2 9.484e-01 9.485e-01 -0.023 -0.023 0.000 38.38 (CO2)2 8.348e-02 8.349e-02 -1.078 -1.078 0.000 76.75 - HCO3- 6.725e-04 6.501e-04 -3.172 -3.187 -0.015 25.19 - CO3-2 9.987e-11 8.726e-11 -10.001 -10.059 -0.059 -11.46 -H(0) 6.695e-30 - H2 3.347e-30 3.348e-30 -29.475 -29.475 0.000 28.48 -O(0) 1.137e-14 - O2 5.687e-15 5.688e-15 -14.245 -14.245 0.000 33.31 + HCO3- 6.735e-04 6.511e-04 -3.172 -3.186 -0.015 24.69 + CO3-2 9.609e-11 8.395e-11 -10.017 -10.076 -0.059 -5.58 +H(0) 3.906e-14 + H2 1.953e-14 1.953e-14 -13.709 -13.709 0.000 28.48 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -45.777 -45.777 0.000 33.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 187 atm) - CH4(g) -85.47 -88.58 -3.11 CH4 + CH4(g) -22.40 -25.52 -3.11 CH4 CO2(g) 2.06 -0.02 -2.08 CO2 Pressure 183.0 atm, phi 0.624 - H2(g) -26.30 -29.48 -3.18 H2 + H2(g) -10.53 -13.71 -3.18 H2 H2O(g) 0.04 -0.01 -0.04 H2O Pressure 3.6 atm, phi 0.300 - O2(g) -11.04 -14.25 -3.20 O2 + O2(g) -42.57 -45.78 -3.20 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9316,53 +9415,54 @@ H2O(g) 0.61 4.045e+00 0.271 1.955e-01 2.198e-01 2.424e-02 ----------------------------Description of solution---------------------------- - pH = 3.176 Charge balance - pe = 9.705 Adjusted to redox equilibrium - Specific Conductance (S/cm, 100C) = 536 - Density (g/cm) = 0.97525 + pH = 3.175 Charge balance + pe = 2.045 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 485 + Density (g/cm³) = 0.97525 Volume (L) = 1.07339 + Viscosity (mPa s) = 0.28746 Activity of water = 0.982 - Ionic strength (mol/kgw) = 6.893e-04 + Ionic strength (mol/kgw) = 6.905e-04 Mass of water (kg) = 9.960e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.158e+00 - Temperature (C) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 203.65 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 29 Total H = 1.105729e+02 - Total O = 5.759412e+01 + Total O = 5.759422e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 6.893e-04 6.669e-04 -3.162 -3.176 -0.014 0.00 - OH- 1.041e-09 1.006e-09 -8.982 -8.997 -0.015 -6.75 + H+ 6.905e-04 6.680e-04 -3.161 -3.175 -0.014 0.00 + OH- 1.040e-09 1.004e-09 -8.983 -8.998 -0.015 -6.75 H2O 5.551e+01 9.818e-01 1.744 -0.008 0.000 18.62 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -87.659 -87.659 0.000 40.82 +C(-4) 4.229e-27 + CH4 4.229e-27 4.230e-27 -26.374 -26.374 0.000 40.82 C(4) 1.158e+00 - CO2 9.796e-01 9.798e-01 -0.009 -0.009 0.000 38.33 + CO2 9.797e-01 9.798e-01 -0.009 -0.009 0.000 38.33 (CO2)2 8.908e-02 8.909e-02 -1.050 -1.050 0.000 76.66 - HCO3- 6.893e-04 6.662e-04 -3.162 -3.176 -0.015 25.24 - CO3-2 1.020e-10 8.895e-11 -9.992 -10.051 -0.059 -11.24 -H(0) 1.116e-29 - H2 5.582e-30 5.583e-30 -29.253 -29.253 0.000 28.48 -O(0) 3.967e-15 - O2 1.984e-15 1.984e-15 -14.703 -14.702 0.000 33.26 + HCO3- 6.905e-04 6.673e-04 -3.161 -3.176 -0.015 24.74 + CO3-2 9.776e-11 8.528e-11 -10.010 -10.069 -0.059 -5.36 +H(0) 2.340e-14 + H2 1.170e-14 1.170e-14 -13.932 -13.932 0.000 28.48 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -45.345 -45.345 0.000 33.26 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 204 atm) - CH4(g) -84.54 -87.66 -3.12 CH4 + CH4(g) -23.25 -26.37 -3.12 CH4 CO2(g) 2.08 -0.01 -2.09 CO2 Pressure 199.6 atm, phi 0.603 - H2(g) -26.07 -29.25 -3.18 H2 + H2(g) -10.75 -13.93 -3.18 H2 H2O(g) 0.04 -0.01 -0.05 H2O Pressure 4.0 atm, phi 0.271 - O2(g) -11.49 -14.70 -3.21 O2 + O2(g) -42.13 -45.35 -3.21 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9411,52 +9511,53 @@ H2O(g) 0.66 4.530e+00 0.245 2.198e-01 2.452e-01 2.545e-02 ----------------------------Description of solution---------------------------- pH = 3.165 Charge balance - pe = 9.737 Adjusted to redox equilibrium - Specific Conductance (S/cm, 100C) = 548 - Density (g/cm) = 0.97639 - Volume (L) = 1.07354 + pe = 9.644 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 496 + Density (g/cm³) = 0.97639 + Volume (L) = 1.07355 + Viscosity (mPa s) = 0.28797 Activity of water = 0.981 - Ionic strength (mol/kgw) = 7.068e-04 + Ionic strength (mol/kgw) = 7.080e-04 Mass of water (kg) = 9.956e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.213e-09 Total CO2 (mol/kg) = 1.201e+00 - Temperature (C) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 222.60 - Electrical balance (eq) = -1.209e-09 + Electrical balance (eq) = -1.208e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 33 + Iterations = 35 Total H = 1.105220e+02 - Total O = 5.765186e+01 + Total O = 5.765197e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.068e-04 6.835e-04 -3.151 -3.165 -0.015 0.00 - OH- 1.032e-09 9.968e-10 -8.986 -9.001 -0.015 -6.83 + H+ 7.080e-04 6.847e-04 -3.150 -3.165 -0.015 0.00 + OH- 1.031e-09 9.951e-10 -8.987 -9.002 -0.015 -6.83 H2O 5.551e+01 9.812e-01 1.744 -0.008 0.000 18.60 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -87.824 -87.824 0.000 40.80 + CH4 0.000e+00 0.000e+00 -87.076 -87.076 0.000 40.80 C(4) 1.201e+00 - CO2 1.010e+00 1.011e+00 0.005 0.005 0.000 38.28 + CO2 1.011e+00 1.011e+00 0.005 0.005 0.000 38.28 (CO2)2 9.478e-02 9.480e-02 -1.023 -1.023 0.000 76.56 - HCO3- 7.068e-04 6.828e-04 -3.151 -3.166 -0.015 25.28 - CO3-2 1.043e-10 9.085e-11 -9.982 -10.042 -0.060 -10.99 -H(0) 9.954e-30 - H2 4.977e-30 4.978e-30 -29.303 -29.303 0.000 28.47 -O(0) 4.824e-15 - O2 2.412e-15 2.413e-15 -14.618 -14.618 0.000 33.21 + HCO3- 7.080e-04 6.840e-04 -3.150 -3.165 -0.015 24.81 + CO3-2 9.961e-11 8.677e-11 -10.002 -10.062 -0.060 -5.12 +H(0) 1.532e-29 + H2 7.659e-30 7.661e-30 -29.116 -29.116 0.000 28.47 +O(0) 2.037e-15 + O2 1.019e-15 1.019e-15 -14.992 -14.992 0.000 33.21 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 223 atm) - CH4(g) -84.69 -87.82 -3.13 CH4 + CH4(g) -83.94 -87.08 -3.13 CH4 CO2(g) 2.10 0.00 -2.10 CO2 Pressure 218.1 atm, phi 0.583 - H2(g) -26.11 -29.30 -3.19 H2 + H2(g) -25.93 -29.12 -3.19 H2 H2O(g) 0.05 -0.01 -0.05 H2O Pressure 4.5 atm, phi 0.245 - O2(g) -11.40 -14.62 -3.22 O2 + O2(g) -11.77 -14.99 -3.22 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9484,7 +9585,7 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 244.03 atmospheres (Peng-Robinson calculation) +Total pressure: 244.02 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 7.67e-02 liters/mole P * Vm / RT: 0.61142 (Compressibility Factor Z) @@ -9504,53 +9605,54 @@ H2O(g) 0.71 5.087e+00 0.221 2.452e-01 2.717e-01 2.646e-02 ----------------------------Description of solution---------------------------- - pH = 3.154 Charge balance - pe = 9.846 Adjusted to redox equilibrium - Specific Conductance (S/cm, 100C) = 561 - Density (g/cm) = 0.97763 + pH = 3.153 Charge balance + pe = 2.372 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 508 + Density (g/cm³) = 0.97763 Volume (L) = 1.07359 + Viscosity (mPa s) = 0.28856 Activity of water = 0.981 - Ionic strength (mol/kgw) = 7.252e-04 + Ionic strength (mol/kgw) = 7.266e-04 Mass of water (kg) = 9.951e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.214e-09 Total CO2 (mol/kg) = 1.244e+00 - Temperature (C) = 100.00 - Pressure (atm) = 244.03 - Electrical balance (eq) = -1.209e-09 + Temperature (°C) = 100.00 + Pressure (atm) = 244.02 + Electrical balance (eq) = -1.208e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 39 + Iterations = 38 Total H = 1.104690e+02 - Total O = 5.770981e+01 + Total O = 5.770992e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.252e-04 7.011e-04 -3.140 -3.154 -0.015 0.00 - OH- 1.025e-09 9.891e-10 -8.989 -9.005 -0.015 -6.91 + H+ 7.266e-04 7.024e-04 -3.139 -3.153 -0.015 0.00 + OH- 1.023e-09 9.872e-10 -8.990 -9.006 -0.015 -6.91 H2O 5.551e+01 9.806e-01 1.744 -0.009 0.000 18.58 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -88.609 -88.609 0.000 40.78 +C(-4) 1.564e-29 + CH4 1.564e-29 1.564e-29 -28.806 -28.806 0.000 40.78 C(4) 1.244e+00 CO2 1.042e+00 1.042e+00 0.018 0.018 0.000 38.23 (CO2)2 1.007e-01 1.007e-01 -0.997 -0.997 0.000 76.46 - HCO3- 7.252e-04 7.004e-04 -3.140 -3.155 -0.015 25.34 - CO3-2 1.069e-10 9.302e-11 -9.971 -10.031 -0.061 -10.71 -H(0) 6.207e-30 - H2 3.103e-30 3.104e-30 -29.508 -29.508 0.000 28.46 -O(0) 1.195e-14 - O2 5.973e-15 5.974e-15 -14.224 -14.224 0.000 33.15 + HCO3- 7.266e-04 7.016e-04 -3.139 -3.154 -0.015 24.88 + CO3-2 1.017e-10 8.846e-11 -9.993 -10.053 -0.061 -4.84 +H(0) 5.542e-15 + H2 2.771e-15 2.771e-15 -14.557 -14.557 0.000 28.46 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -44.125 -44.125 0.000 33.15 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 244 atm) - CH4(g) -85.46 -88.61 -3.14 CH4 + CH4(g) -25.66 -28.81 -3.14 CH4 CO2(g) 2.13 0.02 -2.11 CO2 Pressure 238.9 atm, phi 0.563 - H2(g) -26.31 -29.51 -3.20 H2 + H2(g) -11.36 -14.56 -3.20 H2 H2O(g) 0.05 -0.01 -0.06 H2O Pressure 5.1 atm, phi 0.221 - O2(g) -10.99 -14.22 -3.23 O2 + O2(g) -40.90 -44.13 -3.23 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9598,53 +9700,54 @@ H2O(g) 0.76 5.727e+00 0.199 2.717e-01 2.989e-01 2.722e-02 ----------------------------Description of solution---------------------------- - pH = 3.143 Charge balance - pe = 9.726 Adjusted to redox equilibrium - Specific Conductance (S/cm, 100C) = 575 - Density (g/cm) = 0.97902 + pH = 3.142 Charge balance + pe = 10.120 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 521 + Density (g/cm³) = 0.97903 Volume (L) = 1.07352 + Viscosity (mPa s) = 0.28922 Activity of water = 0.980 - Ionic strength (mol/kgw) = 7.451e-04 + Ionic strength (mol/kgw) = 7.466e-04 Mass of water (kg) = 9.946e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.214e-09 Total CO2 (mol/kg) = 1.288e+00 - Temperature (C) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 268.56 - Electrical balance (eq) = -1.209e-09 + Electrical balance (eq) = -1.208e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 45 + Iterations = 46 Total H = 1.104146e+02 - Total O = 5.776956e+01 + Total O = 5.776968e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.451e-04 7.201e-04 -3.128 -3.143 -0.015 0.00 - OH- 1.019e-09 9.828e-10 -8.992 -9.008 -0.016 -7.00 + H+ 7.466e-04 7.215e-04 -3.127 -3.142 -0.015 0.00 + OH- 1.017e-09 9.809e-10 -8.993 -9.008 -0.016 -7.00 H2O 5.551e+01 9.799e-01 1.744 -0.009 0.000 18.56 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -87.553 -87.553 0.000 40.75 + CH4 0.000e+00 0.000e+00 -90.702 -90.702 0.000 40.75 C(4) 1.288e+00 CO2 1.073e+00 1.074e+00 0.031 0.031 0.000 38.17 (CO2)2 1.070e-01 1.070e-01 -0.971 -0.971 0.000 76.33 - HCO3- 7.451e-04 7.193e-04 -3.128 -3.143 -0.015 25.40 - CO3-2 1.100e-10 9.553e-11 -9.959 -10.020 -0.061 -10.40 -H(0) 1.114e-29 - H2 5.571e-30 5.572e-30 -29.254 -29.254 0.000 28.45 -O(0) 3.550e-15 - O2 1.775e-15 1.775e-15 -14.751 -14.751 0.000 33.08 + HCO3- 7.466e-04 7.207e-04 -3.127 -3.142 -0.015 24.95 + CO3-2 1.041e-10 9.041e-11 -9.983 -10.044 -0.061 -4.53 +H(0) 1.819e-30 + H2 9.095e-31 9.097e-31 -30.041 -30.041 0.000 28.45 +O(0) 1.332e-13 + O2 6.659e-14 6.660e-14 -13.177 -13.177 0.000 33.08 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 269 atm) - CH4(g) -84.39 -87.55 -3.16 CH4 + CH4(g) -87.54 -90.70 -3.16 CH4 CO2(g) 2.15 0.03 -2.12 CO2 Pressure 262.8 atm, phi 0.544 - H2(g) -26.05 -29.25 -3.21 H2 + H2(g) -26.83 -30.04 -3.21 H2 H2O(g) 0.06 -0.01 -0.07 H2O Pressure 5.7 atm, phi 0.199 - O2(g) -11.51 -14.75 -3.24 O2 + O2(g) -9.94 -13.18 -3.24 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9688,57 +9791,58 @@ H2O(g) 0.81 6.466e+00 0.179 2.989e-01 3.266e-01 2.770e-02 Elements Molality Moles - C 1.334e+00 1.326e+00 + C 1.334e+00 1.327e+00 ----------------------------Description of solution---------------------------- - pH = 3.130 Charge balance - pe = 9.731 Adjusted to redox equilibrium - Specific Conductance (S/cm, 100C) = 591 - Density (g/cm) = 0.98059 - Volume (L) = 1.07332 + pH = 3.129 Charge balance + pe = 10.141 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 535 + Density (g/cm³) = 0.98059 + Volume (L) = 1.07333 + Viscosity (mPa s) = 0.28999 Activity of water = 0.979 - Ionic strength (mol/kgw) = 7.670e-04 + Ionic strength (mol/kgw) = 7.685e-04 Mass of water (kg) = 9.941e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.334e+00 - Temperature (C) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 296.94 - Electrical balance (eq) = -1.209e-09 + Electrical balance (eq) = -1.208e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 67 + Iterations = 63 Total H = 1.103592e+02 - Total O = 5.783251e+01 + Total O = 5.783264e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.670e-04 7.409e-04 -3.115 -3.130 -0.015 0.00 - OH- 1.014e-09 9.781e-10 -8.994 -9.010 -0.016 -7.10 + H+ 7.685e-04 7.424e-04 -3.114 -3.129 -0.015 0.00 + OH- 1.012e-09 9.761e-10 -8.995 -9.010 -0.016 -7.10 H2O 5.551e+01 9.792e-01 1.744 -0.009 0.000 18.54 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -87.497 -87.497 0.000 40.72 + CH4 0.000e+00 0.000e+00 -90.769 -90.769 0.000 40.72 C(4) 1.334e+00 CO2 1.106e+00 1.107e+00 0.044 0.044 0.000 38.10 (CO2)2 1.136e-01 1.136e-01 -0.945 -0.944 0.000 76.19 - HCO3- 7.670e-04 7.401e-04 -3.115 -3.131 -0.015 25.46 - CO3-2 1.136e-10 9.848e-11 -9.945 -10.007 -0.062 -10.05 -H(0) 1.123e-29 - H2 5.613e-30 5.614e-30 -29.251 -29.251 0.000 28.44 -O(0) 3.327e-15 - O2 1.663e-15 1.664e-15 -14.779 -14.779 0.000 33.00 + HCO3- 7.685e-04 7.416e-04 -3.114 -3.130 -0.016 25.04 + CO3-2 1.069e-10 9.267e-11 -9.971 -10.033 -0.062 -4.18 +H(0) 1.707e-30 + H2 8.536e-31 8.537e-31 -30.069 -30.069 0.000 28.44 +O(0) 1.439e-13 + O2 7.193e-14 7.194e-14 -13.143 -13.143 0.000 33.00 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 297 atm) - CH4(g) -84.32 -87.50 -3.18 CH4 + CH4(g) -87.59 -90.77 -3.18 CH4 CO2(g) 2.18 0.04 -2.14 CO2 Pressure 290.5 atm, phi 0.525 - H2(g) -26.03 -29.25 -3.22 H2 + H2(g) -26.85 -30.07 -3.22 H2 H2O(g) 0.06 -0.01 -0.07 H2O Pressure 6.5 atm, phi 0.179 - O2(g) -11.53 -14.78 -3.25 O2 + O2(g) -9.89 -13.14 -3.25 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9766,17 +9870,17 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 329.98 atmospheres (Peng-Robinson calculation) +Total pressure: 329.97 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 6.26e-02 liters/mole - P * Vm / RT: 0.67435 (Compressibility Factor Z) + P * Vm / RT: 0.67434 (Compressibility Factor Z) Moles in gas ---------------------------------- Component log P P phi Initial Final Delta CO2(g) 2.51 3.227e+02 0.507 1.467e+01 1.563e+01 9.524e-01 -H2O(g) 0.86 7.319e+00 0.161 3.266e-01 3.545e-01 2.783e-02 +H2O(g) 0.86 7.319e+00 0.161 3.266e-01 3.544e-01 2.783e-02 -----------------------------Solution composition------------------------------ @@ -9786,53 +9890,54 @@ H2O(g) 0.86 7.319e+00 0.161 3.266e-01 3.545e-01 2.783e-02 ----------------------------Description of solution---------------------------- - pH = 3.117 Charge balance - pe = 1.957 Adjusted to redox equilibrium - Specific Conductance (S/cm, 100C) = 607 - Density (g/cm) = 0.98238 + pH = 3.116 Charge balance + pe = 10.147 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 550 + Density (g/cm³) = 0.98238 Volume (L) = 1.07300 + Viscosity (mPa s) = 0.29088 Activity of water = 0.979 - Ionic strength (mol/kgw) = 7.912e-04 + Ionic strength (mol/kgw) = 7.929e-04 Mass of water (kg) = 9.936e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.383e+00 - Temperature (C) = 100.00 - Pressure (atm) = 329.98 - Electrical balance (eq) = -1.209e-09 + Temperature (°C) = 100.00 + Pressure (atm) = 329.97 + Electrical balance (eq) = -1.207e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 80 + Iterations = 69 Total H = 1.103035e+02 - Total O = 5.789991e+01 + Total O = 5.790005e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.912e-04 7.640e-04 -3.102 -3.117 -0.015 0.00 - OH- 1.012e-09 9.753e-10 -8.995 -9.011 -0.016 -7.21 + H+ 7.929e-04 7.657e-04 -3.101 -3.116 -0.015 0.00 + OH- 1.010e-09 9.733e-10 -8.996 -9.012 -0.016 -7.21 H2O 5.551e+01 9.785e-01 1.744 -0.009 0.000 18.51 -C(-4) 6.267e-26 - CH4 6.267e-26 6.268e-26 -25.203 -25.203 0.000 40.69 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -90.720 -90.720 0.000 40.69 C(4) 1.383e+00 CO2 1.141e+00 1.141e+00 0.057 0.057 0.000 38.02 (CO2)2 1.208e-01 1.208e-01 -0.918 -0.918 0.000 76.03 - HCO3- 7.912e-04 7.632e-04 -3.102 -3.117 -0.016 25.54 - CO3-2 1.178e-10 1.020e-10 -9.929 -9.992 -0.063 -9.65 -H(0) 4.089e-14 - H2 2.044e-14 2.045e-14 -13.689 -13.689 0.000 28.43 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.927 -45.927 0.000 32.91 + HCO3- 7.929e-04 7.648e-04 -3.101 -3.116 -0.016 25.15 + CO3-2 1.102e-10 9.534e-11 -9.958 -10.021 -0.063 -3.79 +H(0) 1.708e-30 + H2 8.538e-31 8.540e-31 -30.069 -30.069 0.000 28.43 +O(0) 1.357e-13 + O2 6.785e-14 6.786e-14 -13.168 -13.168 0.000 32.91 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 330 atm) - CH4(g) -22.01 -25.20 -3.19 CH4 + CH4(g) -87.53 -90.72 -3.19 CH4 CO2(g) 2.21 0.06 -2.16 CO2 Pressure 322.7 atm, phi 0.507 - H2(g) -10.46 -13.69 -3.23 H2 + H2(g) -26.84 -30.07 -3.23 H2 H2O(g) 0.07 -0.01 -0.08 H2O Pressure 7.3 atm, phi 0.161 - O2(g) -42.66 -45.93 -3.27 O2 + O2(g) -9.90 -13.17 -3.27 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9870,7 +9975,7 @@ Total pressure: 368.63 atmospheres (Peng-Robinson calculation) Component log P P phi Initial Final Delta CO2(g) 2.56 3.603e+02 0.491 1.563e+01 1.658e+01 9.497e-01 -H2O(g) 0.92 8.305e+00 0.145 3.545e-01 3.820e-01 2.758e-02 +H2O(g) 0.92 8.305e+00 0.145 3.544e-01 3.820e-01 2.758e-02 -----------------------------Solution composition------------------------------ @@ -9880,53 +9985,54 @@ H2O(g) 0.92 8.305e+00 0.145 3.545e-01 3.820e-01 2.758e-02 ----------------------------Description of solution---------------------------- - pH = 3.102 Charge balance - pe = 2.686 Adjusted to redox equilibrium - Specific Conductance (S/cm, 100C) = 626 - Density (g/cm) = 0.98441 - Volume (L) = 1.07252 + pH = 3.101 Charge balance + pe = 10.166 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 567 + Density (g/cm³) = 0.98441 + Volume (L) = 1.07253 + Viscosity (mPa s) = 0.29192 Activity of water = 0.978 - Ionic strength (mol/kgw) = 8.185e-04 + Ionic strength (mol/kgw) = 8.203e-04 Mass of water (kg) = 9.931e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.434e+00 - Temperature (C) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 368.63 - Electrical balance (eq) = -1.208e-09 + Electrical balance (eq) = -1.207e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 80 + Iterations = 76 Total H = 1.102484e+02 - Total O = 5.797289e+01 + Total O = 5.797304e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.185e-04 7.900e-04 -3.087 -3.102 -0.015 0.00 - OH- 1.012e-09 9.749e-10 -8.995 -9.011 -0.016 -7.35 + H+ 8.203e-04 7.917e-04 -3.086 -3.101 -0.015 0.00 + OH- 1.010e-09 9.727e-10 -8.996 -9.012 -0.016 -7.34 H2O 5.551e+01 9.778e-01 1.744 -0.010 0.000 18.48 -C(-4) 1.180e-31 - CH4 1.180e-31 1.180e-31 -30.928 -30.928 0.000 40.65 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -90.756 -90.756 0.000 40.65 C(4) 1.434e+00 - CO2 1.176e+00 1.177e+00 0.071 0.071 0.000 37.92 + CO2 1.177e+00 1.177e+00 0.071 0.071 0.000 37.92 (CO2)2 1.285e-01 1.285e-01 -0.891 -0.891 0.000 75.85 - HCO3- 8.185e-04 7.891e-04 -3.087 -3.103 -0.016 25.63 - CO3-2 1.229e-10 1.061e-10 -9.911 -9.974 -0.064 -9.19 -H(0) 1.468e-15 - H2 7.339e-16 7.340e-16 -15.134 -15.134 0.000 28.41 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -43.066 -43.066 0.000 32.81 + HCO3- 8.203e-04 7.908e-04 -3.086 -3.102 -0.016 25.26 + CO3-2 1.140e-10 9.848e-11 -9.943 -10.007 -0.064 -3.33 +H(0) 1.620e-30 + H2 8.102e-31 8.104e-31 -30.091 -30.091 0.000 28.41 +O(0) 1.409e-13 + O2 7.044e-14 7.045e-14 -13.152 -13.152 0.000 32.81 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 369 atm) - CH4(g) -27.71 -30.93 -3.22 CH4 + CH4(g) -87.54 -90.76 -3.22 CH4 CO2(g) 2.25 0.07 -2.18 CO2 Pressure 360.3 atm, phi 0.491 - H2(g) -11.89 -15.13 -3.25 H2 + H2(g) -26.84 -30.09 -3.25 H2 H2O(g) 0.08 -0.01 -0.09 H2O Pressure 8.3 atm, phi 0.145 - O2(g) -39.78 -43.07 -3.29 O2 + O2(g) -9.87 -13.15 -3.29 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9954,10 +10060,10 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 414.01 atmospheres (Peng-Robinson calculation) +Total pressure: 414.00 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 5.58e-02 liters/mole - P * Vm / RT: 0.75402 (Compressibility Factor Z) + P * Vm / RT: 0.75401 (Compressibility Factor Z) Moles in gas ---------------------------------- @@ -9974,53 +10080,54 @@ H2O(g) 0.98 9.442e+00 0.131 3.820e-01 4.089e-01 2.690e-02 ----------------------------Description of solution---------------------------- - pH = 3.087 Charge balance - pe = 2.182 Adjusted to redox equilibrium - Specific Conductance (S/cm, 100C) = 647 - Density (g/cm) = 0.98675 + pH = 3.086 Charge balance + pe = 10.175 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 586 + Density (g/cm³) = 0.98675 Volume (L) = 1.07187 + Viscosity (mPa s) = 0.29313 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.494e-04 + Ionic strength (mol/kgw) = 8.513e-04 Mass of water (kg) = 9.926e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.489e+00 - Temperature (C) = 100.00 - Pressure (atm) = 414.01 - Electrical balance (eq) = -1.208e-09 + Temperature (°C) = 100.00 + Pressure (atm) = 414.00 + Electrical balance (eq) = -1.207e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 89 + Iterations = 84 Total H = 1.101946e+02 - Total O = 5.805251e+01 + Total O = 5.805267e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.494e-04 8.194e-04 -3.071 -3.087 -0.016 0.00 - OH- 1.015e-09 9.773e-10 -8.994 -9.010 -0.016 -7.50 + H+ 8.513e-04 8.212e-04 -3.070 -3.086 -0.016 0.00 + OH- 1.013e-09 9.751e-10 -8.994 -9.011 -0.016 -7.50 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 18.44 -C(-4) 1.663e-27 - CH4 1.663e-27 1.663e-27 -26.779 -26.779 0.000 40.60 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -90.714 -90.714 0.000 40.60 C(4) 1.489e+00 CO2 1.214e+00 1.214e+00 0.084 0.084 0.000 37.82 (CO2)2 1.368e-01 1.369e-01 -0.864 -0.864 0.000 75.64 - HCO3- 8.494e-04 8.184e-04 -3.071 -3.087 -0.016 25.73 - CO3-2 1.289e-10 1.111e-10 -9.890 -9.954 -0.065 -8.66 -H(0) 1.544e-14 - H2 7.718e-15 7.719e-15 -14.113 -14.112 0.000 28.40 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.144 -45.144 0.000 32.69 + HCO3- 8.513e-04 8.202e-04 -3.070 -3.086 -0.016 25.40 + CO3-2 1.186e-10 1.022e-10 -9.926 -9.991 -0.065 -2.81 +H(0) 1.603e-30 + H2 8.014e-31 8.015e-31 -30.096 -30.096 0.000 28.40 +O(0) 1.331e-13 + O2 6.656e-14 6.658e-14 -13.177 -13.177 0.000 32.69 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 414 atm) - CH4(g) -23.54 -26.78 -3.24 CH4 + CH4(g) -87.47 -90.71 -3.24 CH4 CO2(g) 2.29 0.08 -2.20 CO2 Pressure 404.6 atm, phi 0.477 - H2(g) -10.85 -14.11 -3.27 H2 + H2(g) -26.83 -30.10 -3.27 H2 H2O(g) 0.09 -0.01 -0.10 H2O Pressure 9.4 atm, phi 0.131 - O2(g) -41.84 -45.14 -3.31 O2 + O2(g) -9.87 -13.18 -3.31 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10051,13 +10158,13 @@ Reaction 1. Total pressure: 467.40 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 5.29e-02 liters/mole - P * Vm / RT: 0.80761 (Compressibility Factor Z) + P * Vm / RT: 0.80760 (Compressibility Factor Z) Moles in gas ---------------------------------- Component log P P phi Initial Final Delta -CO2(g) 2.66 4.567e+02 0.465 1.752e+01 1.847e+01 9.435e-01 +CO2(g) 2.66 4.566e+02 0.465 1.752e+01 1.847e+01 9.435e-01 H2O(g) 1.03 1.075e+01 0.119 4.089e-01 4.347e-01 2.572e-02 -----------------------------Solution composition------------------------------ @@ -10068,53 +10175,54 @@ H2O(g) 1.03 1.075e+01 0.119 4.089e-01 4.347e-01 2.572e-02 ----------------------------Description of solution---------------------------- - pH = 3.069 Charge balance - pe = 1.967 Adjusted to redox equilibrium - Specific Conductance (S/cm, 100C) = 670 - Density (g/cm) = 0.98942 - Volume (L) = 1.07101 + pH = 3.068 Charge balance + pe = 10.188 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 607 + Density (g/cm³) = 0.98943 + Volume (L) = 1.07102 + Viscosity (mPa s) = 0.29456 Activity of water = 0.976 - Ionic strength (mol/kgw) = 8.846e-04 + Ionic strength (mol/kgw) = 8.866e-04 Mass of water (kg) = 9.922e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.546e+00 - Temperature (C) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 467.40 - Electrical balance (eq) = -1.208e-09 + Electrical balance (eq) = -1.207e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 98 + Iterations = 93 Total H = 1.101431e+02 - Total O = 5.813977e+01 + Total O = 5.813993e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.846e-04 8.529e-04 -3.053 -3.069 -0.016 0.00 - OH- 1.022e-09 9.834e-10 -8.991 -9.007 -0.017 -7.67 + H+ 8.866e-04 8.548e-04 -3.052 -3.068 -0.016 0.00 + OH- 1.020e-09 9.812e-10 -8.992 -9.008 -0.017 -7.67 H2O 5.551e+01 9.762e-01 1.744 -0.010 0.000 18.40 -C(-4) 1.161e-25 - CH4 1.161e-25 1.162e-25 -24.935 -24.935 0.000 40.55 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -90.699 -90.699 0.000 40.55 C(4) 1.546e+00 CO2 1.254e+00 1.254e+00 0.098 0.098 0.000 37.70 (CO2)2 1.459e-01 1.459e-01 -0.836 -0.836 0.000 75.40 - HCO3- 8.846e-04 8.518e-04 -3.053 -3.070 -0.016 25.85 - CO3-2 1.362e-10 1.171e-10 -9.866 -9.932 -0.066 -8.06 -H(0) 4.285e-14 - H2 2.143e-14 2.143e-14 -13.669 -13.669 0.000 28.38 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.071 -46.071 0.000 32.56 + HCO3- 8.866e-04 8.537e-04 -3.052 -3.069 -0.016 25.55 + CO3-2 1.240e-10 1.066e-10 -9.906 -9.972 -0.066 -2.21 +H(0) 1.552e-30 + H2 7.762e-31 7.763e-31 -30.110 -30.110 0.000 28.38 +O(0) 1.294e-13 + O2 6.471e-14 6.472e-14 -13.189 -13.189 0.000 32.56 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 467 atm) - CH4(g) -21.66 -24.93 -3.27 CH4 - CO2(g) 2.33 0.10 -2.23 CO2 Pressure 456.7 atm, phi 0.465 - H2(g) -10.38 -13.67 -3.29 H2 + CH4(g) -87.43 -90.70 -3.27 CH4 + CO2(g) 2.33 0.10 -2.23 CO2 Pressure 456.6 atm, phi 0.465 + H2(g) -26.82 -30.11 -3.29 H2 H2O(g) 0.11 -0.01 -0.12 H2O Pressure 10.7 atm, phi 0.119 - O2(g) -42.74 -46.07 -3.33 O2 + O2(g) -9.86 -13.19 -3.33 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10149,10 +10257,10 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 530.36 atmospheres (Peng-Robinson calculation) +Total pressure: 530.35 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 5.03e-02 liters/mole - P * Vm / RT: 0.87192 (Compressibility Factor Z) + P * Vm / RT: 0.87191 (Compressibility Factor Z) Moles in gas ---------------------------------- @@ -10169,53 +10277,54 @@ H2O(g) 1.09 1.225e+01 0.108 4.347e-01 4.587e-01 2.401e-02 ----------------------------Description of solution---------------------------- - pH = 3.050 Charge balance - pe = 2.038 Adjusted to redox equilibrium - Specific Conductance (S/cm, 100C) = 697 - Density (g/cm) = 0.99250 + pH = 3.049 Charge balance + pe = 11.402 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 631 + Density (g/cm³) = 0.99251 Volume (L) = 1.06991 + Viscosity (mPa s) = 0.29623 Activity of water = 0.975 - Ionic strength (mol/kgw) = 9.252e-04 + Ionic strength (mol/kgw) = 9.272e-04 Mass of water (kg) = 9.917e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.607e+00 - Temperature (C) = 100.00 - Pressure (atm) = 530.36 - Electrical balance (eq) = -1.208e-09 + Temperature (°C) = 100.00 + Pressure (atm) = 530.35 + Electrical balance (eq) = -1.207e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 49 + Iterations = 41 (142 overall) Total H = 1.100951e+02 - Total O = 5.823559e+01 + Total O = 5.823577e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.252e-04 8.915e-04 -3.034 -3.050 -0.016 0.00 - OH- 1.034e-09 9.942e-10 -8.986 -9.003 -0.017 -7.86 + H+ 9.272e-04 8.934e-04 -3.033 -3.049 -0.016 0.00 + OH- 1.032e-09 9.921e-10 -8.986 -9.003 -0.017 -7.86 H2O 5.551e+01 9.753e-01 1.744 -0.011 0.000 18.35 -C(-4) 4.237e-26 - CH4 4.237e-26 4.238e-26 -25.373 -25.373 0.000 40.49 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -100.276 -100.276 0.000 40.49 C(4) 1.607e+00 CO2 1.295e+00 1.295e+00 0.112 0.112 0.000 37.56 (CO2)2 1.557e-01 1.557e-01 -0.808 -0.808 0.000 75.12 - HCO3- 9.252e-04 8.903e-04 -3.034 -3.050 -0.017 25.98 - CO3-2 1.450e-10 1.243e-10 -9.839 -9.905 -0.067 -7.37 -H(0) 3.180e-14 - H2 1.590e-14 1.590e-14 -13.799 -13.799 0.000 28.35 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.859 -45.859 0.000 32.41 + HCO3- 9.272e-04 8.922e-04 -3.033 -3.050 -0.017 25.73 + CO3-2 1.305e-10 1.119e-10 -9.884 -9.951 -0.067 -1.54 +H(0) 5.978e-33 + H2 2.989e-33 2.990e-33 -32.524 -32.524 0.000 28.35 +O(0) 7.833e-09 + O2 3.916e-09 3.917e-09 -8.407 -8.407 0.000 32.41 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 530 atm) - CH4(g) -22.06 -25.37 -3.31 CH4 + CH4(g) -96.97 -100.28 -3.31 CH4 CO2(g) 2.37 0.11 -2.26 CO2 Pressure 518.1 atm, phi 0.456 - H2(g) -10.48 -13.80 -3.31 H2 + H2(g) -29.21 -32.52 -3.31 H2 H2O(g) 0.12 -0.01 -0.13 H2O Pressure 12.2 atm, phi 0.108 - O2(g) -42.50 -45.86 -3.36 O2 + O2(g) -5.05 -8.41 -3.36 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10250,10 +10359,10 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 604.72 atmospheres (Peng-Robinson calculation) +Total pressure: 604.71 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 4.80e-02 liters/mole - P * Vm / RT: 0.94842 (Compressibility Factor Z) + P * Vm / RT: 0.94841 (Compressibility Factor Z) Moles in gas ---------------------------------- @@ -10270,53 +10379,54 @@ H2O(g) 1.14 1.395e+01 0.099 4.587e-01 4.804e-01 2.170e-02 ----------------------------Description of solution---------------------------- - pH = 3.029 Charge balance - pe = 1.947 Adjusted to redox equilibrium - Specific Conductance (S/cm, 100C) = 728 - Density (g/cm) = 0.99605 + pH = 3.028 Charge balance + pe = 11.422 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 659 + Density (g/cm³) = 0.99605 Volume (L) = 1.06852 + Viscosity (mPa s) = 0.29820 Activity of water = 0.974 - Ionic strength (mol/kgw) = 9.721e-04 + Ionic strength (mol/kgw) = 9.741e-04 Mass of water (kg) = 9.913e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.672e+00 - Temperature (C) = 100.00 - Pressure (atm) = 604.72 + Temperature (°C) = 100.00 + Pressure (atm) = 604.71 Electrical balance (eq) = -1.207e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 30 + Iterations = 35 (136 overall) Total H = 1.100517e+02 - Total O = 5.834087e+01 + Total O = 5.834106e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.721e-04 9.361e-04 -3.012 -3.029 -0.016 0.00 - OH- 1.052e-09 1.011e-09 -8.978 -8.995 -0.017 -8.07 + H+ 9.741e-04 9.379e-04 -3.011 -3.028 -0.016 0.00 + OH- 1.050e-09 1.009e-09 -8.979 -8.996 -0.017 -8.07 H2O 5.551e+01 9.744e-01 1.744 -0.011 0.000 18.29 -C(-4) 3.145e-25 - CH4 3.145e-25 3.146e-25 -24.502 -24.502 0.000 40.42 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -100.295 -100.295 0.000 40.42 C(4) 1.672e+00 - CO2 1.338e+00 1.339e+00 0.127 0.127 0.000 37.41 + CO2 1.339e+00 1.339e+00 0.127 0.127 0.000 37.41 (CO2)2 1.663e-01 1.663e-01 -0.779 -0.779 0.000 74.81 - HCO3- 9.721e-04 9.348e-04 -3.012 -3.029 -0.017 26.13 - CO3-2 1.557e-10 1.331e-10 -9.808 -9.876 -0.068 -6.59 -H(0) 4.977e-14 - H2 2.488e-14 2.489e-14 -13.604 -13.604 0.000 28.33 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.303 -46.303 0.000 32.23 + HCO3- 9.741e-04 9.366e-04 -3.011 -3.028 -0.017 25.93 + CO3-2 1.383e-10 1.182e-10 -9.859 -9.927 -0.068 -0.77 +H(0) 5.609e-33 + H2 2.804e-33 2.805e-33 -32.552 -32.552 0.000 28.33 +O(0) 7.836e-09 + O2 3.918e-09 3.919e-09 -8.407 -8.407 0.000 32.23 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 605 atm) - CH4(g) -21.15 -24.50 -3.35 CH4 + CH4(g) -96.94 -100.29 -3.35 CH4 CO2(g) 2.43 0.13 -2.30 CO2 Pressure 590.8 atm, phi 0.452 - H2(g) -10.26 -13.60 -3.34 H2 + H2(g) -29.21 -32.55 -3.34 H2 H2O(g) 0.14 -0.01 -0.15 H2O Pressure 14.0 atm, phi 0.099 - O2(g) -42.91 -46.30 -3.39 O2 + O2(g) -5.02 -8.41 -3.39 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10351,16 +10461,16 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 692.71 atmospheres (Peng-Robinson calculation) +Total pressure: 692.70 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 4.59e-02 liters/mole - P * Vm / RT: 1.03895 (Compressibility Factor Z) + P * Vm / RT: 1.03894 (Compressibility Factor Z) Moles in gas ---------------------------------- Component log P P phi Initial Final Delta -CO2(g) 2.83 6.768e+02 0.452 2.034e+01 2.128e+01 9.329e-01 +CO2(g) 2.83 6.768e+02 0.452 2.034e+01 2.128e+01 9.328e-01 H2O(g) 1.20 1.588e+01 0.091 4.804e-01 4.991e-01 1.875e-02 -----------------------------Solution composition------------------------------ @@ -10372,52 +10482,53 @@ H2O(g) 1.20 1.588e+01 0.091 4.804e-01 4.991e-01 1.875e-02 ----------------------------Description of solution---------------------------- pH = 3.005 Charge balance - pe = 1.883 Adjusted to redox equilibrium - Specific Conductance (S/cm, 100C) = 762 - Density (g/cm) = 1.00012 - Volume (L) = 1.06678 + pe = 11.444 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 690 + Density (g/cm³) = 1.00012 + Volume (L) = 1.06679 + Viscosity (mPa s) = 0.30053 Activity of water = 0.973 - Ionic strength (mol/kgw) = 1.027e-03 + Ionic strength (mol/kgw) = 1.029e-03 Mass of water (kg) = 9.910e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.740e+00 - Temperature (C) = 100.00 - Pressure (atm) = 692.71 - Electrical balance (eq) = -1.207e-09 + Temperature (°C) = 100.00 + Pressure (atm) = 692.70 + Electrical balance (eq) = -1.206e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 34 + Iterations = 36 (137 overall) Total H = 1.100142e+02 - Total O = 5.845641e+01 + Total O = 5.845662e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.027e-03 9.881e-04 -2.988 -3.005 -0.017 0.00 - OH- 1.080e-09 1.037e-09 -8.967 -8.984 -0.018 -8.32 + H+ 1.029e-03 9.897e-04 -2.988 -3.005 -0.017 0.00 + OH- 1.078e-09 1.035e-09 -8.967 -8.985 -0.018 -8.32 H2O 5.551e+01 9.734e-01 1.744 -0.012 0.000 18.23 -C(-4) 1.478e-24 - CH4 1.478e-24 1.478e-24 -23.830 -23.830 0.000 40.34 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -100.318 -100.318 0.000 40.34 C(4) 1.740e+00 CO2 1.384e+00 1.384e+00 0.141 0.141 0.000 37.23 (CO2)2 1.778e-01 1.778e-01 -0.750 -0.750 0.000 74.46 - HCO3- 1.027e-03 9.866e-04 -2.988 -3.006 -0.017 26.30 - CO3-2 1.689e-10 1.439e-10 -9.772 -9.842 -0.069 -5.71 -H(0) 6.891e-14 - H2 3.445e-14 3.446e-14 -13.463 -13.463 0.000 28.30 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.651 -46.651 0.000 32.04 + HCO3- 1.029e-03 9.883e-04 -2.988 -3.005 -0.017 26.15 + CO3-2 1.477e-10 1.258e-10 -9.831 -9.900 -0.069 0.10 +H(0) 5.203e-33 + H2 2.602e-33 2.602e-33 -32.585 -32.585 0.000 28.30 +O(0) 7.839e-09 + O2 3.919e-09 3.920e-09 -8.407 -8.407 0.000 32.04 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 693 atm) - CH4(g) -20.43 -23.83 -3.40 CH4 + CH4(g) -96.92 -100.32 -3.40 CH4 CO2(g) 2.49 0.14 -2.34 CO2 Pressure 676.8 atm, phi 0.452 - H2(g) -10.08 -13.46 -3.38 H2 + H2(g) -29.21 -32.58 -3.38 H2 H2O(g) 0.16 -0.01 -0.17 H2O Pressure 15.9 atm, phi 0.091 - O2(g) -43.22 -46.65 -3.43 O2 + O2(g) -4.98 -8.41 -3.43 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10452,10 +10563,10 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 797.07 atmospheres (Peng-Robinson calculation) +Total pressure: 797.06 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 4.40e-02 liters/mole - P * Vm / RT: 1.14578 (Compressibility Factor Z) + P * Vm / RT: 1.14576 (Compressibility Factor Z) Moles in gas ---------------------------------- @@ -10468,57 +10579,58 @@ H2O(g) 1.26 1.804e+01 0.085 4.991e-01 5.142e-01 1.511e-02 Elements Molality Moles - C 1.812e+00 1.795e+00 + C 1.812e+00 1.796e+00 ----------------------------Description of solution---------------------------- pH = 2.979 Charge balance - pe = 1.818 Adjusted to redox equilibrium - Specific Conductance (S/cm, 100C) = 803 - Density (g/cm) = 1.00480 + pe = 11.469 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 727 + Density (g/cm³) = 1.00480 Volume (L) = 1.06465 + Viscosity (mPa s) = 0.30328 Activity of water = 0.972 - Ionic strength (mol/kgw) = 1.091e-03 + Ionic strength (mol/kgw) = 1.092e-03 Mass of water (kg) = 9.907e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.812e+00 - Temperature (C) = 100.00 - Pressure (atm) = 797.07 - Electrical balance (eq) = -1.207e-09 + Temperature (°C) = 100.00 + Pressure (atm) = 797.06 + Electrical balance (eq) = -1.206e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 + Iterations = 33 (134 overall) Total H = 1.099840e+02 - Total O = 5.858298e+01 + Total O = 5.858320e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.091e-03 1.049e-03 -2.962 -2.979 -0.017 0.00 - OH- 1.119e-09 1.073e-09 -8.951 -8.969 -0.018 -8.59 + H+ 1.092e-03 1.050e-03 -2.962 -2.979 -0.017 0.00 + OH- 1.118e-09 1.072e-09 -8.952 -8.970 -0.018 -8.59 H2O 5.551e+01 9.724e-01 1.744 -0.012 0.000 18.15 -C(-4) 7.099e-24 - CH4 7.099e-24 7.101e-24 -23.149 -23.149 0.000 40.25 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -100.349 -100.348 0.000 40.25 C(4) 1.812e+00 CO2 1.431e+00 1.431e+00 0.156 0.156 0.000 37.03 (CO2)2 1.901e-01 1.902e-01 -0.721 -0.721 0.000 74.06 - HCO3- 1.091e-03 1.048e-03 -2.962 -2.980 -0.018 26.49 - CO3-2 1.852e-10 1.572e-10 -9.732 -9.803 -0.071 -4.72 -H(0) 9.501e-14 - H2 4.751e-14 4.752e-14 -13.323 -13.323 0.000 28.27 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -47.007 -47.006 0.000 31.83 + HCO3- 1.092e-03 1.049e-03 -2.962 -2.979 -0.018 26.40 + CO3-2 1.589e-10 1.350e-10 -9.799 -9.870 -0.071 1.07 +H(0) 4.763e-33 + H2 2.381e-33 2.382e-33 -32.623 -32.623 0.000 28.27 +O(0) 7.841e-09 + O2 3.920e-09 3.921e-09 -8.407 -8.407 0.000 31.83 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 797 atm) - CH4(g) -19.69 -23.15 -3.46 CH4 + CH4(g) -96.89 -100.35 -3.46 CH4 CO2(g) 2.55 0.16 -2.40 CO2 Pressure 779.0 atm, phi 0.459 - H2(g) -9.90 -13.32 -3.42 H2 + H2(g) -29.20 -32.62 -3.42 H2 H2O(g) 0.19 -0.01 -0.20 H2O Pressure 18.0 atm, phi 0.085 - O2(g) -43.53 -47.01 -3.47 O2 + O2(g) -4.93 -8.41 -3.47 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10553,10 +10665,10 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 921.17 atmospheres (Peng-Robinson calculation) +Total pressure: 921.15 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 4.23e-02 liters/mole - P * Vm / RT: 1.27175 (Compressibility Factor Z) + P * Vm / RT: 1.27174 (Compressibility Factor Z) Moles in gas ---------------------------------- @@ -10574,52 +10686,53 @@ H2O(g) 1.31 2.044e+01 0.081 5.142e-01 5.250e-01 1.075e-02 ----------------------------Description of solution---------------------------- pH = 2.950 Charge balance - pe = 1.804 Adjusted to redox equilibrium - Specific Conductance (S/cm, 100C) = 850 - Density (g/cm) = 1.01017 - Volume (L) = 1.06204 + pe = 11.495 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 768 + Density (g/cm³) = 1.01017 + Volume (L) = 1.06205 + Viscosity (mPa s) = 0.30654 Activity of water = 0.971 Ionic strength (mol/kgw) = 1.168e-03 Mass of water (kg) = 9.905e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.888e+00 - Temperature (C) = 100.00 - Pressure (atm) = 921.17 + Temperature (°C) = 100.00 + Pressure (atm) = 921.15 Electrical balance (eq) = -1.206e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 38 + Iterations = 35 (136 overall) Total H = 1.099625e+02 - Total O = 5.872118e+01 + Total O = 5.872143e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.168e-03 1.121e-03 -2.933 -2.950 -0.018 0.00 - OH- 1.174e-09 1.125e-09 -8.930 -8.949 -0.019 -8.89 + H+ 1.168e-03 1.122e-03 -2.933 -2.950 -0.018 0.00 + OH- 1.174e-09 1.124e-09 -8.930 -8.949 -0.019 -8.89 H2O 5.551e+01 9.713e-01 1.744 -0.013 0.000 18.07 -C(-4) 1.390e-23 - CH4 1.390e-23 1.391e-23 -22.857 -22.857 0.000 40.15 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -100.386 -100.386 0.000 40.15 C(4) 1.888e+00 CO2 1.480e+00 1.480e+00 0.170 0.170 0.000 36.81 (CO2)2 2.033e-01 2.034e-01 -0.692 -0.692 0.000 73.62 - HCO3- 1.168e-03 1.120e-03 -2.933 -2.951 -0.018 26.70 - CO3-2 2.054e-10 1.737e-10 -9.687 -9.760 -0.073 -3.62 -H(0) 1.035e-13 - H2 5.173e-14 5.174e-14 -13.286 -13.286 0.000 28.24 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -47.171 -47.171 0.000 31.59 + HCO3- 1.168e-03 1.120e-03 -2.933 -2.951 -0.018 26.69 + CO3-2 1.726e-10 1.460e-10 -9.763 -9.836 -0.073 2.15 +H(0) 4.289e-33 + H2 2.145e-33 2.145e-33 -32.669 -32.669 0.000 28.24 +O(0) 7.842e-09 + O2 3.921e-09 3.922e-09 -8.407 -8.406 0.000 31.59 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 921 atm) - CH4(g) -19.33 -22.86 -3.53 CH4 + CH4(g) -96.86 -100.39 -3.53 CH4 CO2(g) 2.63 0.17 -2.46 CO2 Pressure 900.7 atm, phi 0.474 - H2(g) -9.82 -13.29 -3.47 H2 + H2(g) -29.20 -32.67 -3.47 H2 H2O(g) 0.22 -0.01 -0.23 H2O Pressure 20.4 atm, phi 0.081 - O2(g) -43.64 -47.17 -3.53 O2 + O2(g) -4.88 -8.41 -3.53 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10654,17 +10767,17 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 1069.25 atmospheres (Peng-Robinson calculation) +Total pressure: 1069.23 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 4.07e-02 liters/mole - P * Vm / RT: 1.42049 (Compressibility Factor Z) + P * Vm / RT: 1.42047 (Compressibility Factor Z) Moles in gas ---------------------------------- Component log P P phi Initial Final Delta CO2(g) 3.02 1.046e+03 0.500 2.313e+01 2.405e+01 9.220e-01 -H2O(g) 1.36 2.308e+01 0.078 5.250e-01 5.306e-01 5.632e-03 +H2O(g) 1.36 2.308e+01 0.078 5.250e-01 5.306e-01 5.633e-03 -----------------------------Solution composition------------------------------ @@ -10675,52 +10788,53 @@ H2O(g) 1.36 2.308e+01 0.078 5.250e-01 5.306e-01 5.632e-03 ----------------------------Description of solution---------------------------- pH = 2.918 Charge balance - pe = 1.838 Adjusted to redox equilibrium - Specific Conductance (S/cm, 100C) = 905 - Density (g/cm) = 1.01630 - Volume (L) = 1.05891 + pe = 11.525 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 817 + Density (g/cm³) = 1.01630 + Volume (L) = 1.05892 + Viscosity (mPa s) = 0.31039 Activity of water = 0.970 - Ionic strength (mol/kgw) = 1.259e-03 + Ionic strength (mol/kgw) = 1.258e-03 Mass of water (kg) = 9.904e-01 Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.967e+00 - Temperature (C) = 100.00 - Pressure (atm) = 1069.25 + Temperature (°C) = 100.00 + Pressure (atm) = 1069.23 Electrical balance (eq) = -1.206e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 43 + Iterations = 37 (138 overall) Total H = 1.099512e+02 - Total O = 5.887150e+01 + Total O = 5.887177e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.259e-03 1.208e-03 -2.900 -2.918 -0.018 0.00 - OH- 1.252e-09 1.198e-09 -8.903 -8.922 -0.019 -9.21 + H+ 1.257e-03 1.207e-03 -2.900 -2.918 -0.018 0.00 + OH- 1.253e-09 1.199e-09 -8.902 -8.921 -0.019 -9.21 H2O 5.551e+01 9.702e-01 1.744 -0.013 0.000 17.97 -C(-4) 1.154e-23 - CH4 1.154e-23 1.154e-23 -22.938 -22.938 0.000 40.04 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -100.434 -100.434 0.000 40.04 C(4) 1.967e+00 CO2 1.531e+00 1.531e+00 0.185 0.185 0.000 36.56 (CO2)2 2.175e-01 2.175e-01 -0.663 -0.662 0.000 73.13 - HCO3- 1.259e-03 1.206e-03 -2.900 -2.919 -0.019 26.93 - CO3-2 2.308e-10 1.943e-10 -9.637 -9.712 -0.075 -2.39 -H(0) 8.961e-14 - H2 4.481e-14 4.482e-14 -13.349 -13.349 0.000 28.20 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -47.155 -47.154 0.000 31.32 + HCO3- 1.257e-03 1.205e-03 -2.900 -2.919 -0.019 27.00 + CO3-2 1.893e-10 1.594e-10 -9.723 -9.798 -0.075 3.35 +H(0) 3.788e-33 + H2 1.894e-33 1.894e-33 -32.723 -32.723 0.000 28.20 +O(0) 7.843e-09 + O2 3.922e-09 3.923e-09 -8.407 -8.406 0.000 31.32 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 1069 atm) - CH4(g) -19.33 -22.94 -3.61 CH4 + CH4(g) -96.82 -100.43 -3.61 CH4 CO2(g) 2.72 0.18 -2.53 CO2 Pressure 1046.2 atm, phi 0.500 - H2(g) -9.82 -13.35 -3.53 H2 + H2(g) -29.19 -32.72 -3.53 H2 H2O(g) 0.25 -0.01 -0.27 H2O Pressure 23.1 atm, phi 0.078 - O2(g) -43.57 -47.15 -3.59 O2 + O2(g) -4.82 -8.41 -3.59 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10755,17 +10869,17 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 1246.77 atmospheres (Peng-Robinson calculation) +Total pressure: 1246.74 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 3.92e-02 liters/mole - P * Vm / RT: 1.59665 (Compressibility Factor Z) + P * Vm / RT: 1.59662 (Compressibility Factor Z) Moles in gas ---------------------------------- Component log P P phi Initial Final Delta CO2(g) 3.09 1.221e+03 0.541 2.405e+01 2.497e+01 9.188e-01 -H2O(g) 1.41 2.593e+01 0.076 5.306e-01 5.304e-01 -2.400e-04 +H2O(g) 1.41 2.593e+01 0.076 5.306e-01 5.304e-01 -2.392e-04 -----------------------------Solution composition------------------------------ @@ -10775,53 +10889,54 @@ H2O(g) 1.41 2.593e+01 0.076 5.306e-01 5.304e-01 -2.400e-04 ----------------------------Description of solution---------------------------- - pH = 2.882 Charge balance - pe = 1.944 Adjusted to redox equilibrium - Specific Conductance (S/cm, 100C) = 970 - Density (g/cm) = 1.02323 - Volume (L) = 1.05523 + pH = 2.883 Charge balance + pe = 11.557 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 874 + Density (g/cm³) = 1.02323 + Volume (L) = 1.05524 + Viscosity (mPa s) = 0.31493 Activity of water = 0.969 - Ionic strength (mol/kgw) = 1.370e-03 + Ionic strength (mol/kgw) = 1.365e-03 Mass of water (kg) = 9.904e-01 Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 2.049e+00 - Temperature (C) = 100.00 - Pressure (atm) = 1246.77 + Temperature (°C) = 100.00 + Pressure (atm) = 1246.74 Electrical balance (eq) = -1.207e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 32 + Iterations = 49 (150 overall) Total H = 1.099517e+02 - Total O = 5.903410e+01 + Total O = 5.903441e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.370e-03 1.313e-03 -2.863 -2.882 -0.018 0.00 - OH- 1.362e-09 1.302e-09 -8.866 -8.885 -0.020 -9.57 + H+ 1.365e-03 1.308e-03 -2.865 -2.883 -0.018 0.00 + OH- 1.366e-09 1.306e-09 -8.864 -8.884 -0.020 -9.57 H2O 5.551e+01 9.691e-01 1.744 -0.014 0.000 17.86 -C(-4) 2.645e-24 - CH4 2.645e-24 2.646e-24 -23.578 -23.577 0.000 39.91 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -100.492 -100.492 0.000 39.91 C(4) 2.049e+00 - CO2 1.582e+00 1.583e+00 0.199 0.199 0.000 36.29 + CO2 1.583e+00 1.583e+00 0.199 0.199 0.000 36.29 (CO2)2 2.325e-01 2.326e-01 -0.634 -0.633 0.000 72.59 - HCO3- 1.370e-03 1.310e-03 -2.863 -2.883 -0.019 27.20 - CO3-2 2.631e-10 2.202e-10 -9.580 -9.657 -0.077 -1.04 -H(0) 5.530e-14 - H2 2.765e-14 2.766e-14 -13.558 -13.558 0.000 28.16 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.864 -46.864 0.000 31.03 + HCO3- 1.365e-03 1.306e-03 -2.865 -2.884 -0.019 27.35 + CO3-2 2.098e-10 1.757e-10 -9.678 -9.755 -0.077 4.67 +H(0) 3.266e-33 + H2 1.633e-33 1.634e-33 -32.787 -32.787 0.000 28.16 +O(0) 7.843e-09 + O2 3.922e-09 3.923e-09 -8.407 -8.406 0.000 31.03 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 1247 atm) - CH4(g) -19.87 -23.58 -3.71 CH4 + CH4(g) -96.78 -100.49 -3.71 CH4 CO2(g) 2.82 0.20 -2.62 CO2 Pressure 1220.8 atm, phi 0.541 - H2(g) -9.96 -13.56 -3.60 H2 + H2(g) -29.19 -32.79 -3.60 H2 H2O(g) 0.30 -0.01 -0.31 H2O Pressure 25.9 atm, phi 0.076 - O2(g) -43.20 -46.86 -3.66 O2 + O2(g) -4.74 -8.41 -3.66 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10834,7 +10949,3 @@ End of simulation. Reading input data for simulation 5. ------------------------------------ ------------------------------ -End of Run after 0.1 Seconds. ------------------------------ - diff --git a/ex2b.out b/ex2b.out index 0f051d3a..404c0e87 100644 --- a/ex2b.out +++ b/ex2b.out @@ -23,7 +23,3 @@ Reading input data for simulation 1. Data in ex2b.tsv from Blount and Dickson, 1973, Am. Mineral. 58, 323, fig. 2. PRINT reset false ------------------------------- -End of Run after 0.02 Seconds. ------------------------------- - diff --git a/ex3.out b/ex3.out index 65163324..2f170f84 100644 --- a/ex3.out +++ b/ex3.out @@ -50,16 +50,15 @@ Initial solution 1. Pure water pH = 7.000 pe = 4.000 - Specific Conductance (S/cm, 25C) = 0 - Density (g/cm) = 0.99704 + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89002 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.007e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.217e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.60 Iterations = 0 @@ -69,7 +68,7 @@ Initial solution 1. Pure water ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.013e-07 1.012e-07 -6.995 -6.995 -0.000 -4.14 H+ 1.001e-07 1.000e-07 -7.000 -7.000 -0.000 0.00 @@ -105,28 +104,29 @@ Using pure phase assemblage 1. Phase SI log IAP log K(T, P) Initial Final Delta CO2(g) -2.00 -3.47 -1.47 1.000e+01 9.998e+00 -1.976e-03 -Calcite 0.00 -8.48 -8.48 1.000e+01 9.998e+00 -1.646e-03 +Calcite 0.00 -8.48 -8.48 1.000e+01 9.998e+00 -1.645e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 3.622e-03 3.622e-03 - Ca 1.646e-03 1.646e-03 + C 3.622e-03 3.621e-03 + Ca 1.645e-03 1.645e-03 ----------------------------Description of solution---------------------------- pH = 7.297 Charge balance pe = -1.575 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 299 - Density (g/cm) = 0.99726 + Specific Conductance (µS/cm, 25°C) = 304 + Density (g/cm³) = 0.99726 Volume (L) = 1.00300 + Viscosity (mPa s) = 0.89187 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.826e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 3.291e-03 Total CO2 (mol/kg) = 3.622e-03 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 17 @@ -136,29 +136,29 @@ Calcite 0.00 -8.48 -8.48 1.000e+01 9.998e+00 -1.646e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 2.162e-07 2.005e-07 -6.665 -6.698 -0.033 -4.07 - H+ 5.401e-08 5.048e-08 -7.268 -7.297 -0.029 0.00 + H+ 5.402e-08 5.048e-08 -7.267 -7.297 -0.029 0.00 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 -C(-4) 1.394e-25 - CH4 1.394e-25 1.395e-25 -24.856 -24.855 0.000 35.46 +C(-4) 1.404e-25 + CH4 1.404e-25 1.406e-25 -24.853 -24.852 0.000 35.46 C(4) 3.622e-03 - HCO3- 3.224e-03 2.998e-03 -2.492 -2.523 -0.032 24.73 - CO2 3.399e-04 3.403e-04 -3.469 -3.468 0.000 34.43 - CaHCO3+ 4.887e-05 4.549e-05 -4.311 -4.342 -0.031 9.70 - CaCO3 5.559e-06 5.565e-06 -5.255 -5.255 0.000 -14.60 - CO3-2 3.724e-06 2.785e-06 -5.429 -5.555 -0.126 -5.13 + HCO3- 3.223e-03 2.998e-03 -2.492 -2.523 -0.032 24.60 + CO2 3.400e-04 3.403e-04 -3.469 -3.468 0.000 34.43 + CaHCO3+ 4.886e-05 4.548e-05 -4.311 -4.342 -0.031 9.70 + CaCO3 5.557e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 + CO3-2 3.723e-06 2.785e-06 -5.429 -5.555 -0.126 -3.91 (CO2)2 2.123e-09 2.125e-09 -8.673 -8.673 0.000 68.87 -Ca 1.646e-03 +Ca 1.645e-03 Ca+2 1.591e-03 1.189e-03 -2.798 -2.925 -0.126 -18.02 - CaHCO3+ 4.887e-05 4.549e-05 -4.311 -4.342 -0.031 9.70 - CaCO3 5.559e-06 5.565e-06 -5.255 -5.255 0.000 -14.60 - CaOH+ 4.213e-09 3.910e-09 -8.375 -8.408 -0.032 (0) -H(0) 5.084e-15 - H2 2.542e-15 2.545e-15 -14.595 -14.594 0.000 28.61 + CaHCO3+ 4.886e-05 4.548e-05 -4.311 -4.342 -0.031 9.70 + CaCO3 5.557e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 + CaOH+ 4.212e-09 3.909e-09 -8.376 -8.408 -0.032 (0) +H(0) 5.093e-15 + H2 2.547e-15 2.549e-15 -14.594 -14.594 0.000 28.61 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.192 -63.191 0.000 30.40 + O2 0.000e+00 0.000e+00 -63.193 -63.193 0.000 30.40 ------------------------------Saturation indices------------------------------- @@ -166,7 +166,7 @@ O(0) 0.000e+00 Aragonite -0.14 -8.48 -8.34 CaCO3 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -22.05 -24.86 -2.80 CH4 + CH4(g) -22.05 -24.85 -2.80 CH4 CO2(g) -2.00 -3.47 -1.47 CO2 Pressure 0.0 atm, phi 1.000 H2(g) -11.49 -14.59 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O @@ -228,103 +228,111 @@ Initial solution 2. Seawater pH = 8.220 pe = 8.451 - Specific Conductance (S/cm, 25C) = 52630 - Density (g/cm) = 1.02323 - Volume (L) = 1.01282 + Specific Conductance (µS/cm, 25°C) = 52731 + Density (g/cm³) = 1.02327 + Volume (L) = 1.01279 + Viscosity (mPa s) = 0.95702 Activity of water = 0.981 - Ionic strength (mol/kgw) = 6.747e-01 + Ionic strength (mol/kgw) = 6.741e-01 Mass of water (kg) = 1.000e+00 - Total carbon (mol/kg) = 2.182e-03 - Total CO2 (mol/kg) = 2.182e-03 - Temperature (C) = 25.00 + Total carbon (mol/kg) = 2.240e-03 + Total CO2 (mol/kg) = 2.240e-03 + Temperature (°C) = 25.00 Electrical balance (eq) = 7.967e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.07 - Iterations = 7 - Total H = 1.110147e+02 - Total O = 5.563009e+01 + Iterations = 8 + Total H = 1.110148e+02 + Total O = 5.563026e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 2.705e-06 1.647e-06 -5.568 -5.783 -0.215 -2.63 - H+ 7.984e-09 6.026e-09 -8.098 -8.220 -0.122 0.00 + H+ 7.983e-09 6.026e-09 -8.098 -8.220 -0.122 0.00 H2O 5.551e+01 9.806e-01 1.744 -0.009 0.000 18.07 -C(4) 2.182e-03 - HCO3- 1.485e-03 1.003e-03 -2.828 -2.999 -0.171 26.98 - MgHCO3+ 2.560e-04 1.610e-04 -3.592 -3.793 -0.201 5.82 - NaHCO3 1.658e-04 1.936e-04 -3.780 -3.713 0.067 1.80 - MgCO3 8.748e-05 1.022e-04 -4.058 -3.991 0.067 -17.09 - NaCO3- 6.682e-05 4.991e-05 -4.175 -4.302 -0.127 2.88 - CaHCO3+ 4.454e-05 3.081e-05 -4.351 -4.511 -0.160 9.96 - CO3-2 3.753e-05 7.804e-06 -4.426 -5.108 -0.682 -1.97 - CaCO3 2.703e-05 3.158e-05 -4.568 -4.501 0.067 -14.60 - CO2 1.186e-05 1.385e-05 -4.926 -4.858 0.067 34.43 - (CO2)2 3.016e-12 3.523e-12 -11.521 -11.453 0.067 68.87 +C(4) 2.240e-03 + HCO3- 1.572e-03 1.062e-03 -2.803 -2.974 -0.170 26.61 + MgHCO3+ 2.743e-04 1.725e-04 -3.562 -3.763 -0.201 5.82 + NaHCO3 1.700e-04 2.430e-04 -3.770 -3.614 0.155 28.00 + MgCO3 9.375e-05 1.095e-04 -4.028 -3.961 0.067 -17.09 + CaHCO3+ 4.751e-05 3.288e-05 -4.323 -4.483 -0.160 9.96 + CO3-2 3.973e-05 8.264e-06 -4.401 -5.083 -0.682 -0.40 + CaCO3 2.885e-05 3.369e-05 -4.540 -4.472 0.067 -14.60 + CO2 1.324e-05 1.467e-05 -4.878 -4.834 0.044 34.43 + (CO2)2 3.382e-12 3.950e-12 -11.471 -11.403 0.067 68.87 Ca 1.066e-02 - Ca+2 9.634e-03 2.409e-03 -2.016 -2.618 -0.602 -16.69 - CaSO4 9.548e-04 1.115e-03 -3.020 -2.953 0.067 7.50 - CaHCO3+ 4.454e-05 3.081e-05 -4.351 -4.511 -0.160 9.96 - CaCO3 2.703e-05 3.158e-05 -4.568 -4.501 0.067 -14.60 - CaOH+ 8.711e-08 6.505e-08 -7.060 -7.187 -0.127 (0) - CaHSO4+ 5.915e-11 4.418e-11 -10.228 -10.355 -0.127 (0) + Ca+2 9.706e-03 2.427e-03 -2.013 -2.615 -0.602 -16.70 + CaSO4 8.788e-04 1.026e-03 -3.056 -2.989 0.067 7.50 + CaHCO3+ 4.751e-05 3.288e-05 -4.323 -4.483 -0.160 9.96 + CaCO3 2.885e-05 3.369e-05 -4.540 -4.472 0.067 -14.60 + CaOH+ 8.777e-08 6.554e-08 -7.057 -7.183 -0.127 (0) + CaHSO4+ 5.444e-11 4.065e-11 -10.264 -10.391 -0.127 (0) Cl 5.657e-01 Cl- 5.657e-01 3.568e-01 -0.247 -0.448 -0.200 18.79 -H(0) 5.515e-37 + HCl 3.826e-10 7.407e-10 -9.417 -9.130 0.287 (0) +H(0) 5.516e-37 H2 2.758e-37 3.221e-37 -36.559 -36.492 0.067 28.61 K 1.058e-02 - K+ 1.040e-02 6.483e-03 -1.983 -2.188 -0.205 9.66 - KSO4- 1.756e-04 1.186e-04 -3.755 -3.926 -0.171 34.85 + K+ 1.043e-02 6.501e-03 -1.982 -2.187 -0.205 9.66 + KSO4- 1.471e-04 5.683e-05 -3.832 -4.245 -0.413 32.21 Mg 5.507e-02 - Mg+2 4.754e-02 1.372e-02 -1.323 -1.863 -0.540 -20.41 - MgSO4 7.170e-03 8.375e-03 -2.144 -2.077 0.067 5.84 - MgHCO3+ 2.560e-04 1.610e-04 -3.592 -3.793 -0.201 5.82 - MgCO3 8.748e-05 1.022e-04 -4.058 -3.991 0.067 -17.09 - MgOH+ 1.151e-05 8.107e-06 -4.939 -5.091 -0.152 (0) + Mg+2 4.811e-02 1.389e-02 -1.318 -1.857 -0.540 -20.41 + MgSO4 6.339e-03 8.646e-03 -2.198 -2.063 0.135 -0.83 + MgHCO3+ 2.743e-04 1.725e-04 -3.562 -3.763 -0.201 5.82 + Mg(SO4)2-2 2.394e-04 6.773e-05 -3.621 -4.169 -0.548 48.54 + MgCO3 9.375e-05 1.095e-04 -4.028 -3.961 0.067 -17.09 + MgOH+ 1.164e-05 8.204e-06 -4.934 -5.086 -0.152 (0) Na 4.854e-01 - Na+ 4.785e-01 3.434e-01 -0.320 -0.464 -0.144 -0.50 - NaSO4- 6.637e-03 4.482e-03 -2.178 -2.349 -0.171 21.21 - NaHCO3 1.658e-04 1.936e-04 -3.780 -3.713 0.067 1.80 - NaCO3- 6.682e-05 4.991e-05 -4.175 -4.302 -0.127 2.88 - NaOH 4.843e-17 5.657e-17 -16.315 -16.247 0.067 (0) -O(0) 6.615e-20 - O2 3.307e-20 3.863e-20 -19.481 -19.413 0.067 30.40 + Na+ 4.769e-01 3.422e-01 -0.322 -0.466 -0.144 -0.50 + NaSO4- 8.339e-03 3.180e-03 -2.079 -2.498 -0.419 20.67 + NaHCO3 1.700e-04 2.430e-04 -3.770 -3.614 0.155 28.00 + NaOH 4.827e-17 5.637e-17 -16.316 -16.249 0.067 (0) +O(0) 6.616e-20 + O2 3.308e-20 3.863e-20 -19.480 -19.413 0.067 30.40 S(6) 2.926e-02 - SO4-2 1.432e-02 2.604e-03 -1.844 -2.584 -0.740 17.49 - MgSO4 7.170e-03 8.375e-03 -2.144 -2.077 0.067 5.84 - NaSO4- 6.637e-03 4.482e-03 -2.178 -2.349 -0.171 21.21 - CaSO4 9.548e-04 1.115e-03 -3.020 -2.953 0.067 7.50 - KSO4- 1.756e-04 1.186e-04 -3.755 -3.926 -0.171 34.85 - HSO4- 2.042e-09 1.525e-09 -8.690 -8.817 -0.127 40.96 - CaHSO4+ 5.915e-11 4.418e-11 -10.228 -10.355 -0.127 (0) + SO4-2 1.307e-02 2.378e-03 -1.884 -2.624 -0.740 17.77 + NaSO4- 8.339e-03 3.180e-03 -2.079 -2.498 -0.419 20.67 + MgSO4 6.339e-03 8.646e-03 -2.198 -2.063 0.135 -0.83 + CaSO4 8.788e-04 1.026e-03 -3.056 -2.989 0.067 7.50 + Mg(SO4)2-2 2.394e-04 6.773e-05 -3.621 -4.169 -0.548 48.54 + KSO4- 1.471e-04 5.683e-05 -3.832 -4.245 -0.413 32.21 + HSO4- 1.866e-09 1.393e-09 -8.729 -8.856 -0.127 40.96 + CaHSO4+ 5.444e-11 4.065e-11 -10.264 -10.391 -0.127 (0) Si 7.382e-05 - H4SiO4 7.061e-05 8.248e-05 -4.151 -4.084 0.067 52.08 - H3SiO4- 3.210e-06 2.018e-06 -5.494 -5.695 -0.201 28.72 - H2SiO4-2 1.096e-10 2.279e-11 -9.960 -10.642 -0.682 (0) + H4SiO4 7.061e-05 8.247e-05 -4.151 -4.084 0.067 52.08 + H3SiO4- 3.209e-06 2.018e-06 -5.494 -5.695 -0.201 28.72 + H2SiO4-2 1.095e-10 2.278e-11 -9.961 -10.642 -0.682 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -0.93 -5.20 -4.28 CaSO4 - Aragonite 0.61 -7.73 -8.34 CaCO3 - Calcite 0.75 -7.73 -8.48 CaCO3 + Anhydrite -0.96 -5.24 -4.28 CaSO4 + Aragonite 0.64 -7.70 -8.34 CaCO3 + Arcanite -5.12 -7.00 -1.88 K2SO4 + Calcite 0.78 -7.70 -8.48 CaCO3 Chalcedony -0.52 -4.07 -3.55 SiO2 - Chrysotile 3.36 35.56 32.20 Mg3Si2O5(OH)4 - CO2(g) -3.39 -4.86 -1.47 CO2 - Dolomite 2.39 -14.70 -17.09 CaMg(CO3)2 - Gypsum -0.64 -5.22 -4.58 CaSO4:2H2O + Chrysotile 3.37 35.57 32.20 Mg3Si2O5(OH)4 + CO2(g) -3.37 -4.83 -1.47 CO2 + Dolomite 2.45 -14.64 -17.08 CaMg(CO3)2 + Epsomite -2.80 -4.54 -1.74 MgSO4:7H2O + Gypsum -0.67 -5.26 -4.58 CaSO4:2H2O H2(g) -33.39 -36.49 -3.10 H2 H2O(g) -1.51 -0.01 1.50 H2O Halite -2.48 -0.91 1.57 NaCl + Hexahydrite -2.97 -4.53 -1.57 MgSO4:6H2O + Kieserite -3.33 -4.49 -1.16 MgSO4:H2O + Mirabilite -2.40 -3.64 -1.24 Na2SO4:10H2O O2(g) -16.52 -19.41 -2.89 O2 Quartz -0.09 -4.07 -3.98 SiO2 - Sepiolite 1.15 16.91 15.76 Mg2Si3O7.5OH:3H2O - Sepiolite(d) -1.75 16.91 18.66 Mg2Si3O7.5OH:3H2O + Sepiolite 1.16 16.92 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -1.74 16.92 18.66 Mg2Si3O7.5OH:3H2O SiO2(a) -1.35 -4.07 -2.71 SiO2 - Sylvite -3.54 -2.64 0.90 KCl - Talc 6.03 27.43 21.40 Mg3Si4O10(OH)2 + Sylvite -3.53 -2.63 0.90 KCl + Talc 6.05 27.45 21.40 Mg3Si4O10(OH)2 + Thenardite -3.25 -3.56 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -366,7 +374,7 @@ Mixture 1. Elements Molality Moles - C 3.190e-03 3.190e-03 + C 3.207e-03 3.207e-03 Ca 4.350e-03 4.350e-03 Cl 1.697e-01 1.697e-01 K 3.173e-03 3.173e-03 @@ -377,114 +385,123 @@ Mixture 1. ----------------------------Description of solution---------------------------- - pH = 7.349 Charge balance - pe = -1.871 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 18383 - Density (g/cm) = 1.00525 + pH = 7.332 Charge balance + pe = 10.251 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 18410 + Density (g/cm³) = 1.00526 Volume (L) = 1.00580 + Viscosity (mPa s) = 0.91134 Activity of water = 0.994 - Ionic strength (mol/kgw) = 2.088e-01 + Ionic strength (mol/kgw) = 2.085e-01 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 3.026e-03 - Total CO2 (mol/kg) = 3.190e-03 - Temperature (C) = 25.00 + Total CO2 (mol/kg) = 3.207e-03 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.390e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.06 - Iterations = 12 + Iterations = 14 Total H = 1.110131e+02 - Total O = 5.554960e+01 + Total O = 5.554965e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 3.194e-07 2.247e-07 -6.496 -6.648 -0.153 -3.48 - H+ 5.626e-08 4.478e-08 -7.250 -7.349 -0.099 0.00 + OH- 3.070e-07 2.160e-07 -6.513 -6.666 -0.153 -3.48 + H+ 5.852e-08 4.658e-08 -7.233 -7.332 -0.099 0.00 H2O 5.551e+01 9.941e-01 1.744 -0.003 0.000 18.07 -C(-4) 7.127e-24 - CH4 7.127e-24 7.478e-24 -23.147 -23.126 0.021 35.46 -C(4) 3.190e-03 - HCO3- 2.657e-03 1.975e-03 -2.576 -2.704 -0.129 25.56 - CO2 1.907e-04 2.001e-04 -3.720 -3.699 0.021 34.43 - MgHCO3+ 1.603e-04 1.146e-04 -3.795 -3.941 -0.146 5.72 - NaHCO3 1.140e-04 1.196e-04 -3.943 -3.922 0.021 1.80 - CaHCO3+ 4.211e-05 3.175e-05 -4.376 -4.498 -0.123 9.88 - MgCO3 9.329e-06 9.789e-06 -5.030 -5.009 0.021 -17.09 - CO3-2 6.770e-06 2.069e-06 -5.169 -5.684 -0.515 -3.57 - NaCO3- 5.569e-06 4.147e-06 -5.254 -5.382 -0.128 0.35 - CaCO3 4.172e-06 4.378e-06 -5.380 -5.359 0.021 -14.60 - (CO2)2 7.003e-10 7.347e-10 -9.155 -9.134 0.021 68.87 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.973 -119.952 0.021 35.46 +C(4) 3.207e-03 + HCO3- 2.657e-03 1.976e-03 -2.576 -2.704 -0.129 25.45 + CO2 2.017e-04 2.082e-04 -3.695 -3.682 0.014 34.43 + MgHCO3+ 1.592e-04 1.139e-04 -3.798 -3.944 -0.146 5.72 + NaHCO3 1.274e-04 1.422e-04 -3.895 -3.847 0.048 28.00 + CaHCO3+ 4.217e-05 3.180e-05 -4.375 -4.498 -0.123 9.88 + MgCO3 8.913e-06 9.351e-06 -5.050 -5.029 0.021 -17.09 + CO3-2 6.506e-06 1.989e-06 -5.187 -5.701 -0.515 -2.16 + CaCO3 4.019e-06 4.216e-06 -5.396 -5.375 0.021 -14.60 + (CO2)2 7.580e-10 7.953e-10 -9.120 -9.099 0.021 68.87 Ca 4.350e-03 - Ca+2 3.966e-03 1.260e-03 -2.402 -2.900 -0.498 -17.20 - CaSO4 3.381e-04 3.548e-04 -3.471 -3.450 0.021 7.50 - CaHCO3+ 4.211e-05 3.175e-05 -4.376 -4.498 -0.123 9.88 - CaCO3 4.172e-06 4.378e-06 -5.380 -5.359 0.021 -14.60 - CaOH+ 6.232e-09 4.641e-09 -8.205 -8.333 -0.128 (0) - CaHSO4+ 1.402e-10 1.044e-10 -9.853 -9.981 -0.128 (0) + Ca+2 3.970e-03 1.262e-03 -2.401 -2.899 -0.498 -17.20 + CaSO4 3.335e-04 3.499e-04 -3.477 -3.456 0.021 7.50 + CaHCO3+ 4.217e-05 3.180e-05 -4.375 -4.498 -0.123 9.88 + CaCO3 4.019e-06 4.216e-06 -5.396 -5.375 0.021 -14.60 + CaOH+ 6.000e-09 4.469e-09 -8.222 -8.350 -0.128 (0) + CaHSO4+ 1.439e-10 1.071e-10 -9.842 -9.970 -0.128 (0) Cl 1.697e-01 - Cl- 1.697e-01 1.209e-01 -0.770 -0.918 -0.147 18.47 -H(0) 1.494e-14 - H2 7.472e-15 7.840e-15 -14.127 -14.106 0.021 28.61 + Cl- 1.697e-01 1.209e-01 -0.770 -0.917 -0.147 18.47 + HCl 1.582e-09 1.940e-09 -8.801 -8.712 0.089 (0) +H(0) 9.199e-39 + H2 4.600e-39 4.826e-39 -38.337 -38.316 0.021 28.61 K 3.173e-03 - K+ 3.140e-03 2.225e-03 -2.503 -2.653 -0.150 9.35 - KSO4- 3.330e-05 2.476e-05 -4.478 -4.606 -0.129 34.51 + K+ 3.152e-03 2.233e-03 -2.501 -2.651 -0.150 9.35 + KSO4- 2.180e-05 1.280e-05 -4.662 -4.893 -0.231 28.29 Mg 1.652e-02 - Mg+2 1.460e-02 4.958e-03 -1.836 -2.305 -0.469 -20.91 - MgSO4 1.754e-03 1.841e-03 -2.756 -2.735 0.021 5.84 - MgHCO3+ 1.603e-04 1.146e-04 -3.795 -3.941 -0.146 5.72 - MgCO3 9.329e-06 9.789e-06 -5.030 -5.009 0.021 -17.09 - MgOH+ 5.244e-07 3.997e-07 -6.280 -6.398 -0.118 (0) + Mg+2 1.450e-02 4.926e-03 -1.839 -2.307 -0.469 -20.91 + MgSO4 1.827e-03 2.012e-03 -2.738 -2.696 0.042 -0.83 + MgHCO3+ 1.592e-04 1.139e-04 -3.798 -3.944 -0.146 5.72 + Mg(SO4)2-2 2.876e-05 1.033e-05 -4.541 -4.986 -0.445 44.98 + MgCO3 8.913e-06 9.351e-06 -5.050 -5.029 0.021 -17.09 + MgOH+ 5.008e-07 3.817e-07 -6.300 -6.418 -0.118 (0) Na 1.456e-01 Na+ 1.444e-01 1.077e-01 -0.841 -0.968 -0.127 -0.92 - NaSO4- 1.149e-03 8.545e-04 -2.940 -3.068 -0.129 17.65 - NaHCO3 1.140e-04 1.196e-04 -3.943 -3.922 0.021 1.80 - NaCO3- 5.569e-06 4.147e-06 -5.254 -5.382 -0.128 0.35 - NaOH 2.305e-18 2.419e-18 -17.637 -17.616 0.021 (0) -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.195 -64.174 0.021 30.40 -S(-2) 8.755e-21 - HS- 6.935e-21 4.878e-21 -20.159 -20.312 -0.153 21.00 - H2S 1.820e-21 1.910e-21 -20.740 -20.719 0.021 37.16 - S-2 4.484e-26 1.316e-26 -25.348 -25.881 -0.533 (0) + NaSO4- 1.121e-03 6.560e-04 -2.950 -3.183 -0.233 17.35 + NaHCO3 1.274e-04 1.422e-04 -3.895 -3.847 0.048 28.00 + NaOH 2.217e-18 2.326e-18 -17.654 -17.633 0.021 (0) +O(0) 3.372e-16 + O2 1.686e-16 1.769e-16 -15.773 -15.752 0.021 30.40 +S(-2) 0.000e+00 + HS- 0.000e+00 0.000e+00 -116.991 -117.144 -0.153 21.00 + H2S 0.000e+00 0.000e+00 -117.555 -117.534 0.021 36.27 + S-2 0.000e+00 0.000e+00 -122.198 -122.730 -0.532 (0) + (H2S)2 0.000e+00 0.000e+00 -236.368 -236.347 0.021 30.09 S(6) 8.777e-03 - SO4-2 5.502e-03 1.584e-03 -2.259 -2.800 -0.541 16.12 - MgSO4 1.754e-03 1.841e-03 -2.756 -2.735 0.021 5.84 - NaSO4- 1.149e-03 8.545e-04 -2.940 -3.068 -0.129 17.65 - CaSO4 3.381e-04 3.548e-04 -3.471 -3.450 0.021 7.50 - KSO4- 3.330e-05 2.476e-05 -4.478 -4.606 -0.129 34.51 - HSO4- 9.259e-09 6.895e-09 -8.033 -8.161 -0.128 40.66 - CaHSO4+ 1.402e-10 1.044e-10 -9.853 -9.981 -0.128 (0) + SO4-2 5.416e-03 1.560e-03 -2.266 -2.807 -0.541 16.39 + MgSO4 1.827e-03 2.012e-03 -2.738 -2.696 0.042 -0.83 + NaSO4- 1.121e-03 6.560e-04 -2.950 -3.183 -0.233 17.35 + CaSO4 3.335e-04 3.499e-04 -3.477 -3.456 0.021 7.50 + Mg(SO4)2-2 2.876e-05 1.033e-05 -4.541 -4.986 -0.445 44.98 + KSO4- 2.180e-05 1.280e-05 -4.662 -4.893 -0.231 28.29 + HSO4- 9.484e-09 7.063e-09 -8.023 -8.151 -0.128 40.66 + CaHSO4+ 1.439e-10 1.071e-10 -9.842 -9.970 -0.128 (0) Si 2.215e-05 - H4SiO4 2.204e-05 2.313e-05 -4.657 -4.636 0.021 52.08 - H3SiO4- 1.065e-07 7.615e-08 -6.973 -7.118 -0.146 28.38 - H2SiO4-2 3.785e-13 1.157e-13 -12.422 -12.937 -0.515 (0) + H4SiO4 2.205e-05 2.313e-05 -4.657 -4.636 0.021 52.08 + H3SiO4- 1.024e-07 7.322e-08 -6.990 -7.135 -0.146 28.37 + H2SiO4-2 3.497e-13 1.069e-13 -12.456 -12.971 -0.515 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -1.42 -5.70 -4.28 CaSO4 - Aragonite -0.25 -8.58 -8.34 CaCO3 - Calcite -0.10 -8.58 -8.48 CaCO3 - CH4(g) -20.32 -23.13 -2.80 CH4 + Anhydrite -1.43 -5.71 -4.28 CaSO4 + Aragonite -0.26 -8.60 -8.34 CaCO3 + Arcanite -6.23 -8.11 -1.88 K2SO4 + Calcite -0.12 -8.60 -8.48 CaCO3 + CH4(g) -117.15 -119.95 -2.80 CH4 Chalcedony -1.08 -4.63 -3.55 SiO2 - Chrysotile -4.30 27.91 32.20 Mg3Si2O5(OH)4 - CO2(g) -2.23 -3.70 -1.47 CO2 - Dolomite 0.52 -16.57 -17.09 CaMg(CO3)2 - Gypsum -1.12 -5.71 -4.58 CaSO4:2H2O - H2(g) -11.00 -14.11 -3.10 H2 + Chrysotile -4.41 27.79 32.20 Mg3Si2O5(OH)4 + CO2(g) -2.21 -3.68 -1.47 CO2 + Dolomite 0.47 -16.61 -17.08 CaMg(CO3)2 + Epsomite -3.39 -5.13 -1.74 MgSO4:7H2O + Gypsum -1.13 -5.71 -4.58 CaSO4:2H2O + H2(g) -35.22 -38.32 -3.10 H2 H2O(g) -1.51 -0.00 1.50 H2O - H2S(g) -19.67 -27.66 -7.99 H2S + H2S(g) -116.54 -124.48 -7.94 H2S Halite -3.46 -1.89 1.57 NaCl - O2(g) -61.28 -64.17 -2.89 O2 + Hexahydrite -3.56 -5.13 -1.57 MgSO4:6H2O + Kieserite -3.96 -5.12 -1.16 MgSO4:H2O + Mirabilite -3.53 -4.77 -1.24 Na2SO4:10H2O + O2(g) -12.86 -15.75 -2.89 O2 Quartz -0.65 -4.63 -3.98 SiO2 - Sepiolite -4.88 10.88 15.76 Mg2Si3O7.5OH:3H2O - Sepiolite(d) -7.78 10.88 18.66 Mg2Si3O7.5OH:3H2O + Sepiolite -4.95 10.81 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -7.85 10.81 18.66 Mg2Si3O7.5OH:3H2O SiO2(a) -1.92 -4.63 -2.71 SiO2 - Sulfur -14.65 -9.76 4.88 S + Sulfur -87.25 -82.37 4.88 S Sylvite -4.47 -3.57 0.90 KCl - Talc -2.75 18.65 21.40 Mg3Si4O10(OH)2 + Talc -2.86 18.54 21.40 Mg3Si4O10(OH)2 + Thenardite -4.44 -4.74 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -523,106 +540,109 @@ Using pure phase assemblage 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Calcite 0.00 -8.48 -8.48 1.000e+01 9.984e+00 -1.561e-02 -Dolomite 0.00 -17.09 -17.09 1.000e+01 1.001e+01 7.884e-03 +Calcite 0.00 -8.48 -8.48 1.000e+01 9.985e+00 -1.538e-02 +Dolomite 0.00 -17.08 -17.08 1.000e+01 1.001e+01 7.764e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 3.029e-03 3.029e-03 - Ca 1.207e-02 1.207e-02 + C 3.056e-03 3.056e-03 + Ca 1.196e-02 1.196e-02 Cl 1.697e-01 1.697e-01 K 3.173e-03 3.173e-03 - Mg 8.636e-03 8.636e-03 + Mg 8.756e-03 8.756e-03 Na 1.456e-01 1.456e-01 S 8.777e-03 8.777e-03 Si 2.215e-05 2.215e-05 ----------------------------Description of solution---------------------------- - pH = 7.055 Charge balance - pe = -1.748 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 18465 - Density (g/cm) = 1.00533 + pH = 7.057 Charge balance + pe = 10.649 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 18495 + Density (g/cm³) = 1.00533 Volume (L) = 1.00583 + Viscosity (mPa s) = 0.91039 Activity of water = 0.994 - Ionic strength (mol/kgw) = 2.091e-01 + Ionic strength (mol/kgw) = 2.089e-01 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 2.705e-03 - Total CO2 (mol/kg) = 3.029e-03 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 2.723e-03 + Total CO2 (mol/kg) = 3.056e-03 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.390e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.06 Iterations = 5 Total H = 1.110131e+02 - Total O = 5.554912e+01 + Total O = 5.554920e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.625e-07 1.143e-07 -6.789 -6.942 -0.153 -3.48 - H+ 1.106e-07 8.804e-08 -6.956 -7.055 -0.099 0.00 + OH- 1.631e-07 1.147e-07 -6.788 -6.940 -0.153 -3.48 + H+ 1.102e-07 8.770e-08 -6.958 -7.057 -0.099 0.00 H2O 5.551e+01 9.941e-01 1.744 -0.003 0.000 18.07 -C(-4) 2.937e-22 - CH4 2.937e-22 3.082e-22 -21.532 -21.511 0.021 35.46 -C(4) 3.029e-03 - HCO3- 2.395e-03 1.780e-03 -2.621 -2.749 -0.129 25.56 - CO2 3.379e-04 3.545e-04 -3.471 -3.450 0.021 34.43 - CaHCO3+ 1.052e-04 7.934e-05 -3.978 -4.101 -0.123 9.88 - NaHCO3 1.027e-04 1.078e-04 -3.988 -3.968 0.021 1.80 - MgHCO3+ 7.538e-05 5.390e-05 -4.123 -4.268 -0.146 5.72 - CaCO3 5.303e-06 5.565e-06 -5.275 -5.255 0.021 -14.60 - CO3-2 3.105e-06 9.484e-07 -5.508 -6.023 -0.515 -3.57 - NaCO3- 2.553e-06 1.901e-06 -5.593 -5.721 -0.128 0.35 - MgCO3 2.231e-06 2.341e-06 -5.651 -5.631 0.021 -17.09 - (CO2)2 2.198e-09 2.307e-09 -8.658 -8.637 0.021 68.87 -Ca 1.207e-02 - Ca+2 1.100e-02 3.493e-03 -1.959 -2.457 -0.498 -17.19 - CaSO4 9.634e-04 1.011e-03 -3.016 -2.995 0.021 7.50 - CaHCO3+ 1.052e-04 7.934e-05 -3.978 -4.101 -0.123 9.88 - CaCO3 5.303e-06 5.565e-06 -5.275 -5.255 0.021 -14.60 - CaOH+ 8.789e-09 6.545e-09 -8.056 -8.184 -0.128 (0) - CaHSO4+ 7.856e-10 5.850e-10 -9.105 -9.233 -0.128 (0) +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -120.722 -120.701 0.021 35.46 +C(4) 3.056e-03 + HCO3- 2.405e-03 1.788e-03 -2.619 -2.748 -0.129 25.45 + CO2 3.436e-04 3.547e-04 -3.464 -3.450 0.014 34.43 + NaHCO3 1.152e-04 1.287e-04 -3.938 -3.890 0.048 28.00 + CaHCO3+ 1.048e-04 7.901e-05 -3.980 -4.102 -0.123 9.88 + MgHCO3+ 7.615e-05 5.445e-05 -4.118 -4.264 -0.146 5.72 + CaCO3 5.302e-06 5.563e-06 -5.276 -5.255 0.021 -14.60 + CO3-2 3.130e-06 9.562e-07 -5.505 -6.019 -0.515 -2.15 + MgCO3 2.263e-06 2.375e-06 -5.645 -5.624 0.021 -17.09 + (CO2)2 2.201e-09 2.309e-09 -8.657 -8.637 0.021 68.87 +Ca 1.196e-02 + Ca+2 1.090e-02 3.463e-03 -1.962 -2.461 -0.498 -17.20 + CaSO4 9.480e-04 9.947e-04 -3.023 -3.002 0.021 7.50 + CaHCO3+ 1.048e-04 7.901e-05 -3.980 -4.102 -0.123 9.88 + CaCO3 5.302e-06 5.563e-06 -5.276 -5.255 0.021 -14.60 + CaOH+ 8.748e-09 6.515e-09 -8.058 -8.186 -0.128 (0) + CaHSO4+ 7.700e-10 5.734e-10 -9.113 -9.242 -0.128 (0) Cl 1.697e-01 Cl- 1.697e-01 1.209e-01 -0.770 -0.918 -0.147 18.47 -H(0) 3.281e-14 - H2 1.641e-14 1.722e-14 -13.785 -13.764 0.021 28.61 + HCl 2.976e-09 3.652e-09 -8.526 -8.437 0.089 (0) +H(0) 5.232e-39 + H2 2.616e-39 2.745e-39 -38.582 -38.561 0.021 28.61 K 3.173e-03 - K+ 3.139e-03 2.224e-03 -2.503 -2.653 -0.150 9.35 - KSO4- 3.421e-05 2.543e-05 -4.466 -4.595 -0.129 34.51 -Mg 8.636e-03 - Mg+2 7.618e-03 2.587e-03 -2.118 -2.587 -0.469 -20.91 - MgSO4 9.408e-04 9.872e-04 -3.027 -3.006 0.021 5.84 - MgHCO3+ 7.538e-05 5.390e-05 -4.123 -4.268 -0.146 5.72 - MgCO3 2.231e-06 2.341e-06 -5.651 -5.631 0.021 -17.09 - MgOH+ 1.392e-07 1.061e-07 -6.856 -6.974 -0.118 (0) + K+ 3.151e-03 2.232e-03 -2.502 -2.651 -0.150 9.35 + KSO4- 2.258e-05 1.325e-05 -4.646 -4.878 -0.231 28.30 +Mg 8.756e-03 + Mg+2 7.661e-03 2.602e-03 -2.116 -2.585 -0.469 -20.91 + MgSO4 9.996e-04 1.101e-03 -3.000 -2.958 0.042 -0.83 + MgHCO3+ 7.615e-05 5.445e-05 -4.118 -4.264 -0.146 5.72 + Mg(SO4)2-2 1.631e-05 5.855e-06 -4.788 -5.232 -0.445 44.98 + MgCO3 2.263e-06 2.375e-06 -5.645 -5.624 0.021 -17.09 + MgOH+ 1.405e-07 1.071e-07 -6.852 -6.970 -0.118 (0) Na 1.456e-01 Na+ 1.443e-01 1.076e-01 -0.841 -0.968 -0.127 -0.92 - NaSO4- 1.181e-03 8.780e-04 -2.928 -3.056 -0.129 17.65 - NaHCO3 1.027e-04 1.078e-04 -3.988 -3.968 0.021 1.80 - NaCO3- 2.553e-06 1.901e-06 -5.593 -5.721 -0.128 0.35 - NaOH 1.172e-18 1.230e-18 -17.931 -17.910 0.021 (0) -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.878 -64.857 0.021 30.40 -S(-2) 4.940e-19 - HS- 3.259e-19 2.292e-19 -18.487 -18.640 -0.153 21.00 - H2S 1.681e-19 1.764e-19 -18.774 -18.753 0.021 37.16 - S-2 1.072e-24 3.145e-25 -23.970 -24.502 -0.533 (0) + NaSO4- 1.162e-03 6.792e-04 -2.935 -3.168 -0.233 17.35 + NaHCO3 1.152e-04 1.287e-04 -3.938 -3.890 0.048 28.00 + NaOH 1.177e-18 1.235e-18 -17.929 -17.908 0.021 (0) +O(0) 1.042e-15 + O2 5.211e-16 5.468e-16 -15.283 -15.262 0.021 30.40 +S(-2) 0.000e+00 + HS- 0.000e+00 0.000e+00 -117.682 -117.834 -0.153 21.00 + H2S 0.000e+00 0.000e+00 -117.971 -117.950 0.021 36.27 + S-2 0.000e+00 0.000e+00 -123.163 -123.695 -0.533 (0) + (H2S)2 0.000e+00 0.000e+00 -237.199 -237.178 0.021 30.09 S(6) 8.777e-03 - SO4-2 5.658e-03 1.628e-03 -2.247 -2.788 -0.541 16.12 - NaSO4- 1.181e-03 8.780e-04 -2.928 -3.056 -0.129 17.65 - CaSO4 9.634e-04 1.011e-03 -3.016 -2.995 0.021 7.50 - MgSO4 9.408e-04 9.872e-04 -3.027 -3.006 0.021 5.84 - KSO4- 3.421e-05 2.543e-05 -4.466 -4.595 -0.129 34.51 - HSO4- 1.871e-08 1.393e-08 -7.728 -7.856 -0.128 40.66 - CaHSO4+ 7.856e-10 5.850e-10 -9.105 -9.233 -0.128 (0) + SO4-2 5.613e-03 1.615e-03 -2.251 -2.792 -0.541 16.39 + NaSO4- 1.162e-03 6.792e-04 -2.935 -3.168 -0.233 17.35 + MgSO4 9.996e-04 1.101e-03 -3.000 -2.958 0.042 -0.83 + CaSO4 9.480e-04 9.947e-04 -3.023 -3.002 0.021 7.50 + KSO4- 2.258e-05 1.325e-05 -4.646 -4.878 -0.231 28.30 + Mg(SO4)2-2 1.631e-05 5.855e-06 -4.788 -5.232 -0.445 44.98 + HSO4- 1.849e-08 1.377e-08 -7.733 -7.861 -0.128 40.66 + CaHSO4+ 7.700e-10 5.734e-10 -9.113 -9.242 -0.128 (0) Si 2.215e-05 H4SiO4 2.209e-05 2.318e-05 -4.656 -4.635 0.021 52.08 - H3SiO4- 5.430e-08 3.883e-08 -7.265 -7.411 -0.146 28.38 - H2SiO4-2 9.822e-14 3.000e-14 -13.008 -13.523 -0.515 (0) + H3SiO4- 5.450e-08 3.897e-08 -7.264 -7.409 -0.146 28.38 + H2SiO4-2 9.894e-14 3.023e-14 -13.005 -13.520 -0.515 (0) ------------------------------Saturation indices------------------------------- @@ -630,25 +650,31 @@ Si 2.215e-05 Anhydrite -0.97 -5.25 -4.28 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 + Arcanite -6.21 -8.09 -1.88 K2SO4 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -18.71 -21.51 -2.80 CH4 + CH4(g) -117.90 -120.70 -2.80 CH4 Chalcedony -1.08 -4.63 -3.55 SiO2 - Chrysotile -6.90 25.30 32.20 Mg3Si2O5(OH)4 + Chrysotile -6.89 25.32 32.20 Mg3Si2O5(OH)4 CO2(g) -1.98 -3.45 -1.47 CO2 - Dolomite 0.00 -17.09 -17.09 CaMg(CO3)2 - Gypsum -0.67 -5.25 -4.58 CaSO4:2H2O - H2(g) -10.66 -13.76 -3.10 H2 + Dolomite 0.00 -17.08 -17.08 CaMg(CO3)2 + Epsomite -3.66 -5.39 -1.74 MgSO4:7H2O + Gypsum -0.68 -5.26 -4.58 CaSO4:2H2O + H2(g) -35.46 -38.56 -3.10 H2 H2O(g) -1.51 -0.00 1.50 H2O - H2S(g) -17.70 -25.70 -7.99 H2S + H2S(g) -116.96 -124.89 -7.94 H2S Halite -3.46 -1.89 1.57 NaCl - O2(g) -61.96 -64.86 -2.89 O2 + Hexahydrite -3.83 -5.39 -1.57 MgSO4:6H2O + Kieserite -4.22 -5.38 -1.16 MgSO4:H2O + Mirabilite -3.51 -4.75 -1.24 Na2SO4:10H2O + O2(g) -12.37 -15.26 -2.89 O2 Quartz -0.65 -4.63 -3.98 SiO2 - Sepiolite -6.62 9.14 15.76 Mg2Si3O7.5OH:3H2O - Sepiolite(d) -9.52 9.14 18.66 Mg2Si3O7.5OH:3H2O + Sepiolite -6.60 9.16 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -9.50 9.16 18.66 Mg2Si3O7.5OH:3H2O SiO2(a) -1.92 -4.63 -2.71 SiO2 - Sulfur -13.02 -8.14 4.88 S + Sulfur -87.42 -82.54 4.88 S Sylvite -4.47 -3.57 0.90 KCl - Talc -5.36 16.04 21.40 Mg3Si4O10(OH)2 + Talc -5.34 16.06 21.40 Mg3Si4O10(OH)2 + Thenardite -4.43 -4.73 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -686,14 +712,14 @@ Using pure phase assemblage 2. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Calcite 0.00 -8.48 -8.48 1.000e+01 1.000e+01 -3.968e-05 +Calcite 0.00 -8.48 -8.48 1.000e+01 1.000e+01 -4.542e-05 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 3.229e-03 3.229e-03 - Ca 4.390e-03 4.390e-03 + C 3.252e-03 3.252e-03 + Ca 4.396e-03 4.395e-03 Cl 1.697e-01 1.697e-01 K 3.173e-03 3.173e-03 Mg 1.652e-02 1.652e-02 @@ -703,88 +729,91 @@ Calcite 0.00 -8.48 -8.48 1.000e+01 1.000e+01 -3.968e-05 ----------------------------Description of solution---------------------------- - pH = 7.440 Charge balance - pe = -2.133 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 18387 - Density (g/cm) = 1.00525 - Volume (L) = 1.00580 + pH = 7.437 Charge balance + pe = 10.272 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 18414 + Density (g/cm³) = 1.00526 + Volume (L) = 1.00579 + Viscosity (mPa s) = 0.91136 Activity of water = 0.994 - Ionic strength (mol/kgw) = 2.089e-01 + Ionic strength (mol/kgw) = 2.086e-01 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 3.105e-03 - Total CO2 (mol/kg) = 3.229e-03 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 3.116e-03 + Total CO2 (mol/kg) = 3.252e-03 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.390e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.06 Iterations = 3 Total H = 1.110131e+02 - Total O = 5.554972e+01 + Total O = 5.554979e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 3.940e-07 2.771e-07 -6.405 -6.557 -0.153 -3.48 - H+ 4.562e-08 3.631e-08 -7.341 -7.440 -0.099 0.00 + OH- 3.910e-07 2.751e-07 -6.408 -6.561 -0.153 -3.48 + H+ 4.596e-08 3.658e-08 -7.338 -7.437 -0.099 0.00 H2O 5.551e+01 9.941e-01 1.744 -0.003 0.000 18.07 -C(-4) 1.385e-22 - CH4 1.385e-22 1.454e-22 -21.858 -21.838 0.021 35.46 -C(4) 3.229e-03 - HCO3- 2.715e-03 2.019e-03 -2.566 -2.695 -0.129 25.56 - MgHCO3+ 1.637e-04 1.171e-04 -3.786 -3.932 -0.146 5.72 - CO2 1.580e-04 1.658e-04 -3.801 -3.780 0.021 34.43 - NaHCO3 1.165e-04 1.222e-04 -3.934 -3.913 0.021 1.80 - CaHCO3+ 4.340e-05 3.272e-05 -4.363 -4.485 -0.123 9.88 - MgCO3 1.175e-05 1.233e-05 -4.930 -4.909 0.021 -17.09 - CO3-2 8.533e-06 2.607e-06 -5.069 -5.584 -0.515 -3.57 - NaCO3- 7.018e-06 5.226e-06 -5.154 -5.282 -0.128 0.35 - CaCO3 5.304e-06 5.565e-06 -5.275 -5.255 0.021 -14.60 - (CO2)2 4.808e-10 5.045e-10 -9.318 -9.297 0.021 68.87 -Ca 4.390e-03 - Ca+2 4.000e-03 1.271e-03 -2.398 -2.896 -0.498 -17.20 - CaSO4 3.409e-04 3.577e-04 -3.467 -3.446 0.021 7.50 - CaHCO3+ 4.340e-05 3.272e-05 -4.363 -4.485 -0.123 9.88 - CaCO3 5.304e-06 5.565e-06 -5.275 -5.255 0.021 -14.60 - CaOH+ 7.752e-09 5.773e-09 -8.111 -8.239 -0.128 (0) - CaHSO4+ 1.146e-10 8.537e-11 -9.941 -10.069 -0.128 (0) +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -121.070 -121.050 0.021 35.46 +C(4) 3.252e-03 + HCO3- 2.727e-03 2.027e-03 -2.564 -2.693 -0.129 25.45 + MgHCO3+ 1.633e-04 1.168e-04 -3.787 -3.933 -0.146 5.72 + CO2 1.625e-04 1.677e-04 -3.789 -3.775 0.014 34.43 + NaHCO3 1.307e-04 1.460e-04 -3.884 -3.836 0.048 28.00 + CaHCO3+ 4.370e-05 3.296e-05 -4.359 -4.482 -0.123 9.88 + MgCO3 1.164e-05 1.221e-05 -4.934 -4.913 0.021 -17.09 + CO3-2 8.503e-06 2.599e-06 -5.070 -5.585 -0.515 -2.16 + CaCO3 5.302e-06 5.563e-06 -5.276 -5.255 0.021 -14.60 + (CO2)2 4.923e-10 5.165e-10 -9.308 -9.287 0.021 68.87 +Ca 4.396e-03 + Ca+2 4.010e-03 1.274e-03 -2.397 -2.895 -0.498 -17.20 + CaSO4 3.367e-04 3.532e-04 -3.473 -3.452 0.021 7.50 + CaHCO3+ 4.370e-05 3.296e-05 -4.359 -4.482 -0.123 9.88 + CaCO3 5.302e-06 5.563e-06 -5.276 -5.255 0.021 -14.60 + CaOH+ 7.715e-09 5.746e-09 -8.113 -8.241 -0.128 (0) + CaHSO4+ 1.140e-10 8.493e-11 -9.943 -10.071 -0.128 (0) Cl 1.697e-01 Cl- 1.697e-01 1.209e-01 -0.770 -0.918 -0.147 18.47 -H(0) 3.289e-14 - H2 1.644e-14 1.725e-14 -13.784 -13.763 0.021 28.61 + HCl 1.242e-09 1.524e-09 -8.906 -8.817 0.089 (0) +H(0) 5.161e-39 + H2 2.581e-39 2.708e-39 -38.588 -38.567 0.021 28.61 K 3.173e-03 - K+ 3.140e-03 2.225e-03 -2.503 -2.653 -0.150 9.35 - KSO4- 3.329e-05 2.475e-05 -4.478 -4.606 -0.129 34.51 + K+ 3.152e-03 2.233e-03 -2.501 -2.651 -0.150 9.35 + KSO4- 2.179e-05 1.280e-05 -4.662 -4.893 -0.231 28.29 Mg 1.652e-02 - Mg+2 1.459e-02 4.956e-03 -1.836 -2.305 -0.469 -20.91 - MgSO4 1.753e-03 1.839e-03 -2.756 -2.735 0.021 5.84 - MgHCO3+ 1.637e-04 1.171e-04 -3.786 -3.932 -0.146 5.72 - MgCO3 1.175e-05 1.233e-05 -4.930 -4.909 0.021 -17.09 - MgOH+ 6.464e-07 4.927e-07 -6.189 -6.307 -0.118 (0) + Mg+2 1.449e-02 4.924e-03 -1.839 -2.308 -0.469 -20.91 + MgSO4 1.826e-03 2.010e-03 -2.739 -2.697 0.042 -0.83 + MgHCO3+ 1.633e-04 1.168e-04 -3.787 -3.933 -0.146 5.72 + Mg(SO4)2-2 2.873e-05 1.032e-05 -4.542 -4.986 -0.445 44.98 + MgCO3 1.164e-05 1.221e-05 -4.934 -4.913 0.021 -17.09 + MgOH+ 6.374e-07 4.858e-07 -6.196 -6.314 -0.118 (0) Na 1.456e-01 - Na+ 1.444e-01 1.076e-01 -0.841 -0.968 -0.127 -0.92 - NaSO4- 1.149e-03 8.541e-04 -2.940 -3.068 -0.129 17.65 - NaHCO3 1.165e-04 1.222e-04 -3.934 -3.913 0.021 1.80 - NaCO3- 7.018e-06 5.226e-06 -5.154 -5.282 -0.128 0.35 - NaOH 2.843e-18 2.983e-18 -17.546 -17.525 0.021 (0) -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.880 -64.859 0.021 30.40 -S(-2) 1.599e-19 - HS- 1.319e-19 9.275e-20 -18.880 -19.033 -0.153 21.00 - H2S 2.806e-20 2.945e-20 -19.552 -19.531 0.021 37.16 - S-2 1.052e-24 3.085e-25 -23.978 -24.511 -0.533 (0) + Na+ 1.444e-01 1.077e-01 -0.841 -0.968 -0.127 -0.92 + NaSO4- 1.121e-03 6.558e-04 -2.950 -3.183 -0.233 17.35 + NaHCO3 1.307e-04 1.460e-04 -3.884 -3.836 0.048 28.00 + NaOH 2.823e-18 2.962e-18 -17.549 -17.528 0.021 (0) +O(0) 1.071e-15 + O2 5.356e-16 5.619e-16 -15.271 -15.250 0.021 30.40 +S(-2) 0.000e+00 + HS- 0.000e+00 0.000e+00 -118.101 -118.253 -0.153 21.00 + H2S 0.000e+00 0.000e+00 -118.769 -118.748 0.021 36.27 + S-2 0.000e+00 0.000e+00 -123.202 -123.734 -0.532 (0) + (H2S)2 0.000e+00 0.000e+00 -238.796 -238.775 0.021 30.09 S(6) 8.777e-03 - SO4-2 5.501e-03 1.583e-03 -2.260 -2.800 -0.541 16.12 - MgSO4 1.753e-03 1.839e-03 -2.756 -2.735 0.021 5.84 - NaSO4- 1.149e-03 8.541e-04 -2.940 -3.068 -0.129 17.65 - CaSO4 3.409e-04 3.577e-04 -3.467 -3.446 0.021 7.50 - KSO4- 3.329e-05 2.475e-05 -4.478 -4.606 -0.129 34.51 - HSO4- 7.505e-09 5.589e-09 -8.125 -8.253 -0.128 40.66 - CaHSO4+ 1.146e-10 8.537e-11 -9.941 -10.069 -0.128 (0) + SO4-2 5.415e-03 1.559e-03 -2.266 -2.807 -0.541 16.39 + MgSO4 1.826e-03 2.010e-03 -2.739 -2.697 0.042 -0.83 + NaSO4- 1.121e-03 6.558e-04 -2.950 -3.183 -0.233 17.35 + CaSO4 3.367e-04 3.532e-04 -3.473 -3.452 0.021 7.50 + Mg(SO4)2-2 2.873e-05 1.032e-05 -4.542 -4.986 -0.445 44.98 + KSO4- 2.179e-05 1.280e-05 -4.662 -4.893 -0.231 28.29 + HSO4- 7.445e-09 5.545e-09 -8.128 -8.256 -0.128 40.66 + CaHSO4+ 1.140e-10 8.493e-11 -9.943 -10.071 -0.128 (0) Si 2.215e-05 H4SiO4 2.202e-05 2.310e-05 -4.657 -4.636 0.021 52.08 - H3SiO4- 1.312e-07 9.381e-08 -6.882 -7.028 -0.146 28.37 - H2SiO4-2 5.752e-13 1.757e-13 -12.240 -12.755 -0.515 (0) + H3SiO4- 1.302e-07 9.311e-08 -6.885 -7.031 -0.146 28.37 + H2SiO4-2 5.664e-13 1.732e-13 -12.247 -12.762 -0.515 (0) ------------------------------Saturation indices------------------------------- @@ -792,25 +821,31 @@ Si 2.215e-05 Anhydrite -1.42 -5.70 -4.28 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 + Arcanite -6.23 -8.11 -1.88 K2SO4 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -19.04 -21.84 -2.80 CH4 + CH4(g) -118.25 -121.05 -2.80 CH4 Chalcedony -1.08 -4.63 -3.55 SiO2 - Chrysotile -3.75 28.45 32.20 Mg3Si2O5(OH)4 + Chrysotile -3.78 28.42 32.20 Mg3Si2O5(OH)4 CO2(g) -2.31 -3.78 -1.47 CO2 - Dolomite 0.72 -16.37 -17.09 CaMg(CO3)2 - Gypsum -1.12 -5.70 -4.58 CaSO4:2H2O - H2(g) -10.66 -13.76 -3.10 H2 + Dolomite 0.71 -16.37 -17.08 CaMg(CO3)2 + Epsomite -3.39 -5.13 -1.74 MgSO4:7H2O + Gypsum -1.12 -5.71 -4.58 CaSO4:2H2O + H2(g) -35.47 -38.57 -3.10 H2 H2O(g) -1.51 -0.00 1.50 H2O - H2S(g) -18.48 -26.47 -7.99 H2S + H2S(g) -117.75 -125.69 -7.94 H2S Halite -3.46 -1.89 1.57 NaCl - O2(g) -61.97 -64.86 -2.89 O2 + Hexahydrite -3.56 -5.13 -1.57 MgSO4:6H2O + Kieserite -3.96 -5.12 -1.16 MgSO4:H2O + Mirabilite -3.53 -4.77 -1.24 Na2SO4:10H2O + O2(g) -12.36 -15.25 -2.89 O2 Quartz -0.65 -4.63 -3.98 SiO2 - Sepiolite -4.52 11.24 15.76 Mg2Si3O7.5OH:3H2O - Sepiolite(d) -7.42 11.24 18.66 Mg2Si3O7.5OH:3H2O + Sepiolite -4.54 11.22 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -7.44 11.22 18.66 Mg2Si3O7.5OH:3H2O SiO2(a) -1.92 -4.63 -2.71 SiO2 - Sulfur -13.80 -8.92 4.88 S + Sulfur -88.21 -83.33 4.88 S Sylvite -4.47 -3.57 0.90 KCl - Talc -2.21 19.19 21.40 Mg3Si4O10(OH)2 + Talc -2.24 19.16 21.40 Mg3Si4O10(OH)2 + Thenardite -4.44 -4.74 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -823,7 +858,3 @@ End of simulation. Reading input data for simulation 6. ------------------------------------ -------------------------------- -End of Run after 0.017 Seconds. -------------------------------- - diff --git a/ex4.out b/ex4.out index 31ac9193..e14c097e 100644 --- a/ex4.out +++ b/ex4.out @@ -68,15 +68,16 @@ Initial solution 1. Precipitation from Central Oklahoma pH = 4.500 pe = 4.000 - Specific Conductance (S/cm, 25C) = 17 - Density (g/cm) = 0.99705 + Specific Conductance (µS/cm, 25°C) = 17 + Density (g/cm³) = 0.99705 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89009 Activity of water = 1.000 Ionic strength (mol/kgw) = 8.839e-05 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = -3.185e-05 Total CO2 (mol/kg) = 1.091e-05 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.581e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 20.29 Iterations = 3 @@ -92,22 +93,21 @@ Initial solution 1. Precipitation from Central Oklahoma ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 3.196e-05 3.162e-05 -4.495 -4.500 -0.005 0.00 OH- 3.236e-10 3.201e-10 -9.490 -9.495 -0.005 -4.13 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 C(4) 1.091e-05 CO2 1.076e-05 1.076e-05 -4.968 -4.968 0.000 34.43 - HCO3- 1.530e-07 1.513e-07 -6.815 -6.820 -0.005 24.66 + HCO3- 1.530e-07 1.513e-07 -6.815 -6.820 -0.005 24.52 CaHCO3+ 1.787e-11 1.767e-11 -10.748 -10.753 -0.005 9.65 - MgHCO3+ 3.023e-12 2.990e-12 -11.520 -11.524 -0.005 5.46 + MgHCO3+ 3.022e-12 2.989e-12 -11.520 -11.524 -0.005 5.46 (CO2)2 2.125e-12 2.125e-12 -11.673 -11.673 0.000 68.87 - NaHCO3 5.163e-13 5.163e-13 -12.287 -12.287 0.000 1.80 - CO3-2 2.344e-13 2.244e-13 -12.630 -12.649 -0.019 -5.36 + NaHCO3 6.138e-13 6.138e-13 -12.212 -12.212 0.000 28.00 + CO3-2 2.344e-13 2.244e-13 -12.630 -12.649 -0.019 -4.16 CaCO3 3.451e-15 3.451e-15 -14.462 -14.462 0.000 -14.60 - MgCO3 3.617e-16 3.617e-16 -15.442 -15.442 0.000 -17.09 - NaCO3- 2.563e-17 2.535e-17 -16.591 -16.596 -0.005 -1.05 + MgCO3 3.616e-16 3.616e-16 -15.442 -15.442 0.000 -17.09 Ca 9.581e-06 Ca+2 9.560e-06 9.153e-06 -5.020 -5.038 -0.019 -18.22 CaSO4 2.098e-08 2.098e-08 -7.678 -7.678 0.000 7.50 @@ -117,40 +117,42 @@ Ca 9.581e-06 CaCO3 3.451e-15 3.451e-15 -14.462 -14.462 0.000 -14.60 Cl 6.657e-06 Cl- 6.657e-06 6.584e-06 -5.177 -5.181 -0.005 18.05 + HCl 7.172e-11 7.173e-11 -10.144 -10.144 0.000 (0) H(0) 1.416e-20 H2 7.079e-21 7.079e-21 -20.150 -20.150 0.000 28.61 K 9.207e-07 K+ 9.206e-07 9.106e-07 -6.036 -6.041 -0.005 8.99 - KSO4- 8.338e-11 8.248e-11 -10.079 -10.084 -0.005 34.08 + KSO4- 4.362e-11 4.314e-11 -10.360 -10.365 -0.005 15.81 Mg 1.769e-06 - Mg+2 1.764e-06 1.689e-06 -5.754 -5.772 -0.019 -21.90 - MgSO4 5.103e-09 5.103e-09 -8.292 -8.292 0.000 5.84 - MgHCO3+ 3.023e-12 2.990e-12 -11.520 -11.524 -0.005 5.46 - MgOH+ 1.960e-13 1.939e-13 -12.708 -12.712 -0.005 (0) - MgCO3 3.617e-16 3.617e-16 -15.442 -15.442 0.000 -17.09 + Mg+2 1.763e-06 1.688e-06 -5.754 -5.773 -0.019 -21.90 + MgSO4 5.697e-09 5.697e-09 -8.244 -8.244 0.000 -0.83 + MgHCO3+ 3.022e-12 2.989e-12 -11.520 -11.524 -0.005 5.46 + Mg(SO4)2-2 2.526e-13 2.419e-13 -12.598 -12.616 -0.019 31.70 + MgOH+ 1.959e-13 1.938e-13 -12.708 -12.713 -0.005 (0) + MgCO3 3.616e-16 3.616e-16 -15.442 -15.442 0.000 -17.09 N(-3) 1.485e-05 NH4+ 1.485e-05 1.469e-05 -4.828 -4.833 -0.005 17.94 - NH4SO4- 2.465e-09 2.439e-09 -8.608 -8.613 -0.005 37.59 + NH4SO4- 2.465e-09 2.439e-09 -8.608 -8.613 -0.005 38.17 NH3 2.646e-10 2.646e-10 -9.577 -9.577 0.000 24.42 N(5) 1.692e-05 NO3- 1.692e-05 1.674e-05 -4.772 -4.776 -0.005 29.47 Na 6.133e-06 Na+ 6.133e-06 6.066e-06 -5.212 -5.217 -0.005 -1.51 - NaSO4- 3.962e-10 3.919e-10 -9.402 -9.407 -0.005 13.56 - NaHCO3 5.163e-13 5.163e-13 -12.287 -12.287 0.000 1.80 - NaCO3- 2.563e-17 2.535e-17 -16.591 -16.596 -0.005 -1.05 + NaSO4- 3.089e-10 3.055e-10 -9.510 -9.515 -0.005 14.46 + NaHCO3 6.138e-13 6.138e-13 -12.212 -12.212 0.000 28.00 NaOH 1.942e-25 1.942e-25 -24.712 -24.712 0.000 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -52.080 -52.080 0.000 30.40 S(6) 1.353e-05 - SO4-2 1.346e-05 1.289e-05 -4.871 -4.890 -0.019 14.43 + SO4-2 1.346e-05 1.289e-05 -4.871 -4.890 -0.019 14.70 HSO4- 4.007e-08 3.963e-08 -7.397 -7.402 -0.005 40.26 CaSO4 2.098e-08 2.098e-08 -7.678 -7.678 0.000 7.50 - MgSO4 5.103e-09 5.103e-09 -8.292 -8.292 0.000 5.84 - NH4SO4- 2.465e-09 2.439e-09 -8.608 -8.613 -0.005 37.59 - NaSO4- 3.962e-10 3.919e-10 -9.402 -9.407 -0.005 13.56 - KSO4- 8.338e-11 8.248e-11 -10.079 -10.084 -0.005 34.08 + MgSO4 5.697e-09 5.697e-09 -8.244 -8.244 0.000 -0.83 + NH4SO4- 2.465e-09 2.439e-09 -8.608 -8.613 -0.005 38.17 + NaSO4- 3.089e-10 3.055e-10 -9.510 -9.515 -0.005 14.46 + KSO4- 4.362e-11 4.314e-11 -10.360 -10.365 -0.005 15.81 CaHSO4+ 4.409e-12 4.361e-12 -11.356 -11.360 -0.005 (0) + Mg(SO4)2-2 2.526e-13 2.419e-13 -12.598 -12.616 -0.019 31.70 ------------------------------Saturation indices------------------------------- @@ -158,16 +160,22 @@ S(6) 1.353e-05 Anhydrite -5.65 -9.93 -4.28 CaSO4 Aragonite -9.35 -17.69 -8.34 CaCO3 + Arcanite -15.09 -16.97 -1.88 K2SO4 Calcite -9.21 -17.69 -8.48 CaCO3 CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 - Dolomite -19.02 -36.11 -17.09 CaMg(CO3)2 + Dolomite -19.02 -36.11 -17.08 CaMg(CO3)2 + Epsomite -8.92 -10.66 -1.74 MgSO4:7H2O Gypsum -5.35 -9.93 -4.58 CaSO4:2H2O H2(g) -17.05 -20.15 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -11.97 -10.40 1.57 NaCl + Hexahydrite -9.10 -10.66 -1.57 MgSO4:6H2O + Kieserite -9.50 -10.66 -1.16 MgSO4:H2O + Mirabilite -14.08 -15.32 -1.24 Na2SO4:10H2O NH3(g) -11.37 -9.58 1.80 NH3 O2(g) -49.19 -52.08 -2.89 O2 Sylvite -12.12 -11.22 0.90 KCl + Thenardite -15.02 -15.32 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -212,15 +220,16 @@ Reaction 1. pH = 3.148 Charge balance pe = 16.529 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 345 - Density (g/cm) = 0.99709 + Specific Conductance (µS/cm, 25°C) = 345 + Density (g/cm³) = 0.99709 Volume (L) = 0.05017 + Viscosity (mPa s) = 0.89045 Activity of water = 1.000 - Ionic strength (mol/kgw) = 1.531e-03 + Ionic strength (mol/kgw) = 1.530e-03 Mass of water (kg) = 5.002e-02 Total alkalinity (eq/kg) = -7.555e-04 Total CO2 (mol/kg) = 2.182e-04 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.581e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 24.28 Iterations = 32 @@ -230,7 +239,7 @@ Reaction 1. ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 7.406e-04 7.107e-04 -3.130 -3.148 -0.018 0.00 OH- 1.488e-11 1.424e-11 -10.827 -10.846 -0.019 -4.10 @@ -239,38 +248,39 @@ C(-4) 0.000e+00 CH4 0.000e+00 0.000e+00 -136.694 -136.693 0.000 35.46 C(4) 2.182e-04 CO2 2.180e-04 2.181e-04 -3.661 -3.661 0.000 34.43 - HCO3- 1.425e-07 1.365e-07 -6.846 -6.865 -0.019 24.69 - (CO2)2 8.730e-10 8.733e-10 -9.059 -9.059 0.000 68.87 + HCO3- 1.425e-07 1.365e-07 -6.846 -6.865 -0.019 24.56 + (CO2)2 8.728e-10 8.731e-10 -9.059 -9.059 0.000 68.87 CaHCO3+ 2.842e-10 2.723e-10 -9.546 -9.565 -0.019 9.68 - MgHCO3+ 4.776e-11 4.572e-11 -10.321 -10.340 -0.019 5.48 - NaHCO3 9.001e-12 9.004e-12 -11.046 -11.046 0.000 1.80 - CO3-2 1.070e-14 9.007e-15 -13.971 -14.045 -0.075 -5.24 + MgHCO3+ 4.754e-11 4.551e-11 -10.323 -10.342 -0.019 5.48 + NaHCO3 1.070e-11 1.071e-11 -10.971 -10.970 0.000 28.00 + CO3-2 1.070e-14 9.007e-15 -13.971 -14.045 -0.075 -4.04 CaCO3 2.365e-15 2.366e-15 -14.626 -14.626 0.000 -14.60 - MgCO3 2.460e-16 2.460e-16 -15.609 -15.609 0.000 -17.09 - NaCO3- 2.055e-17 1.967e-17 -16.687 -16.706 -0.019 -1.02 + MgCO3 2.448e-16 2.449e-16 -15.611 -15.611 0.000 -17.09 Ca 1.916e-04 Ca+2 1.857e-04 1.564e-04 -3.731 -3.806 -0.075 -18.12 - CaSO4 5.802e-06 5.804e-06 -5.236 -5.236 0.000 7.50 - CaHSO4+ 2.832e-08 2.711e-08 -7.548 -7.567 -0.019 (0) + CaSO4 5.800e-06 5.802e-06 -5.237 -5.236 0.000 7.50 + CaHSO4+ 2.831e-08 2.710e-08 -7.548 -7.567 -0.019 (0) CaHCO3+ 2.842e-10 2.723e-10 -9.546 -9.565 -0.019 9.68 CaOH+ 3.814e-14 3.651e-14 -13.419 -13.438 -0.019 (0) CaCO3 2.365e-15 2.366e-15 -14.626 -14.626 0.000 -14.60 Cl 1.331e-04 Cl- 1.331e-04 1.274e-04 -3.876 -3.895 -0.019 18.08 + HCl 3.113e-08 3.118e-08 -7.507 -7.506 0.001 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.506 -42.506 0.000 28.61 K 1.841e-05 - K+ 1.838e-05 1.759e-05 -4.736 -4.755 -0.019 9.02 - KSO4- 2.693e-08 2.580e-08 -7.570 -7.588 -0.019 34.11 + K+ 1.839e-05 1.760e-05 -4.735 -4.754 -0.019 9.02 + KSO4- 1.413e-08 1.350e-08 -7.850 -7.870 -0.020 18.61 Mg 3.536e-05 - Mg+2 3.396e-05 2.863e-05 -4.469 -4.543 -0.074 -21.80 - MgSO4 1.400e-06 1.401e-06 -5.854 -5.854 0.000 5.84 - MgHCO3+ 4.776e-11 4.572e-11 -10.321 -10.340 -0.019 5.48 - MgOH+ 1.526e-13 1.462e-13 -12.817 -12.835 -0.018 (0) - MgCO3 2.460e-16 2.460e-16 -15.609 -15.609 0.000 -17.09 + Mg+2 3.380e-05 2.849e-05 -4.471 -4.545 -0.074 -21.80 + MgSO4 1.556e-06 1.557e-06 -5.808 -5.808 0.000 -0.83 + Mg(SO4)2-2 1.266e-09 1.070e-09 -8.898 -8.971 -0.073 35.55 + MgHCO3+ 4.754e-11 4.551e-11 -10.323 -10.342 -0.019 5.48 + MgOH+ 1.519e-13 1.456e-13 -12.819 -12.837 -0.018 (0) + MgCO3 2.448e-16 2.449e-16 -15.611 -15.611 0.000 -17.09 N(-3) 0.000e+00 NH4+ 0.000e+00 0.000e+00 -48.437 -48.457 -0.019 17.97 - NH4SO4- 0.000e+00 0.000e+00 -51.008 -51.027 -0.019 37.62 + NH4SO4- 0.000e+00 0.000e+00 -51.008 -51.027 -0.019 38.20 NH3 0.000e+00 0.000e+00 -54.553 -54.553 0.000 24.42 N(0) 4.751e-04 N2 2.375e-04 2.376e-04 -3.624 -3.624 0.000 29.29 @@ -280,25 +290,26 @@ N(5) 1.601e-04 NO3- 1.601e-04 1.532e-04 -3.796 -3.815 -0.019 29.50 Na 1.226e-04 Na+ 1.225e-04 1.173e-04 -3.912 -3.931 -0.019 -1.47 - NaSO4- 1.281e-07 1.227e-07 -6.892 -6.911 -0.019 13.80 - NaHCO3 9.001e-12 9.004e-12 -11.046 -11.046 0.000 1.80 - NaCO3- 2.055e-17 1.967e-17 -16.687 -16.706 -0.019 -1.02 - NaOH 1.670e-25 1.670e-25 -24.777 -24.777 0.000 (0) + NaSO4- 1.001e-07 9.563e-08 -6.999 -7.019 -0.020 14.56 + NaHCO3 1.070e-11 1.071e-11 -10.971 -10.970 0.000 28.00 + NaOH 1.670e-25 1.671e-25 -24.777 -24.777 0.000 (0) O(0) 8.552e-08 O2 4.276e-08 4.277e-08 -7.369 -7.369 0.000 30.40 S(-2) 0.000e+00 - H2S 0.000e+00 0.000e+00 -126.808 -126.808 0.000 37.16 + H2S 0.000e+00 0.000e+00 -126.808 -126.808 0.000 36.27 HS- 0.000e+00 0.000e+00 -130.582 -130.601 -0.019 20.61 S-2 0.000e+00 0.000e+00 -140.296 -140.371 -0.075 (0) + (H2S)2 0.000e+00 0.000e+00 -254.894 -254.894 0.000 30.09 S(6) 2.706e-04 - SO4-2 2.481e-04 2.087e-04 -3.605 -3.680 -0.075 14.54 - HSO4- 1.507e-05 1.442e-05 -4.822 -4.841 -0.019 40.28 - CaSO4 5.802e-06 5.804e-06 -5.236 -5.236 0.000 7.50 - MgSO4 1.400e-06 1.401e-06 -5.854 -5.854 0.000 5.84 - NaSO4- 1.281e-07 1.227e-07 -6.892 -6.911 -0.019 13.80 - CaHSO4+ 2.832e-08 2.711e-08 -7.548 -7.567 -0.019 (0) - KSO4- 2.693e-08 2.580e-08 -7.570 -7.588 -0.019 34.11 - NH4SO4- 0.000e+00 0.000e+00 -51.008 -51.027 -0.019 37.62 + SO4-2 2.480e-04 2.086e-04 -3.606 -3.681 -0.075 14.82 + HSO4- 1.506e-05 1.442e-05 -4.822 -4.841 -0.019 40.28 + CaSO4 5.800e-06 5.802e-06 -5.237 -5.236 0.000 7.50 + MgSO4 1.556e-06 1.557e-06 -5.808 -5.808 0.000 -0.83 + NaSO4- 1.001e-07 9.563e-08 -6.999 -7.019 -0.020 14.56 + CaHSO4+ 2.831e-08 2.710e-08 -7.548 -7.567 -0.019 (0) + KSO4- 1.413e-08 1.350e-08 -7.850 -7.870 -0.020 18.61 + Mg(SO4)2-2 1.266e-09 1.070e-09 -8.898 -8.971 -0.073 35.55 + NH4SO4- 0.000e+00 0.000e+00 -51.008 -51.027 -0.019 38.20 ------------------------------Saturation indices------------------------------- @@ -306,20 +317,26 @@ S(6) 2.706e-04 Anhydrite -3.21 -7.49 -4.28 CaSO4 Aragonite -9.52 -17.85 -8.34 CaCO3 + Arcanite -11.31 -13.19 -1.88 K2SO4 Calcite -9.37 -17.85 -8.48 CaCO3 CH4(g) -133.89 -136.69 -2.80 CH4 CO2(g) -2.19 -3.66 -1.47 CO2 - Dolomite -19.35 -36.44 -17.09 CaMg(CO3)2 + Dolomite -19.36 -36.44 -17.08 CaMg(CO3)2 + Epsomite -6.49 -8.23 -1.74 MgSO4:7H2O Gypsum -2.90 -7.49 -4.58 CaSO4:2H2O H2(g) -39.40 -42.51 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -125.76 -133.75 -7.99 H2S + H2S(g) -125.81 -133.75 -7.94 H2S Halite -9.40 -7.83 1.57 NaCl + Hexahydrite -6.66 -8.23 -1.57 MgSO4:6H2O + Kieserite -7.06 -8.23 -1.16 MgSO4:H2O + Mirabilite -10.30 -11.54 -1.24 Na2SO4:10H2O N2(g) -0.45 -3.62 -3.18 N2 NH3(g) -56.35 -54.55 1.80 NH3 O2(g) -4.48 -7.37 -2.89 O2 Sulfur -92.33 -87.45 4.88 S Sylvite -9.55 -8.65 0.90 KCl + Thenardite -11.24 -11.54 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -372,15 +389,16 @@ Mixture 1. pH = 3.148 Charge balance pe = 16.529 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 345 - Density (g/cm) = 0.99709 + Specific Conductance (µS/cm, 25°C) = 345 + Density (g/cm³) = 0.99709 Volume (L) = 1.00332 + Viscosity (mPa s) = 0.89045 Activity of water = 1.000 - Ionic strength (mol/kgw) = 1.531e-03 + Ionic strength (mol/kgw) = 1.530e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = -7.555e-04 Total CO2 (mol/kg) = 2.182e-04 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = 5.162e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 24.28 Iterations = 0 @@ -390,7 +408,7 @@ Mixture 1. ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 7.406e-04 7.107e-04 -3.130 -3.148 -0.018 0.00 OH- 1.488e-11 1.424e-11 -10.827 -10.846 -0.019 -4.10 @@ -399,38 +417,39 @@ C(-4) 0.000e+00 CH4 0.000e+00 0.000e+00 -136.694 -136.693 0.000 35.46 C(4) 2.182e-04 CO2 2.180e-04 2.181e-04 -3.661 -3.661 0.000 34.43 - HCO3- 1.425e-07 1.365e-07 -6.846 -6.865 -0.019 24.69 - (CO2)2 8.730e-10 8.733e-10 -9.059 -9.059 0.000 68.87 + HCO3- 1.425e-07 1.365e-07 -6.846 -6.865 -0.019 24.56 + (CO2)2 8.728e-10 8.731e-10 -9.059 -9.059 0.000 68.87 CaHCO3+ 2.842e-10 2.723e-10 -9.546 -9.565 -0.019 9.68 - MgHCO3+ 4.776e-11 4.572e-11 -10.321 -10.340 -0.019 5.48 - NaHCO3 9.001e-12 9.004e-12 -11.046 -11.046 0.000 1.80 - CO3-2 1.070e-14 9.007e-15 -13.971 -14.045 -0.075 -5.24 + MgHCO3+ 4.754e-11 4.551e-11 -10.323 -10.342 -0.019 5.48 + NaHCO3 1.070e-11 1.071e-11 -10.971 -10.970 0.000 28.00 + CO3-2 1.070e-14 9.007e-15 -13.971 -14.045 -0.075 -4.04 CaCO3 2.365e-15 2.366e-15 -14.626 -14.626 0.000 -14.60 - MgCO3 2.460e-16 2.460e-16 -15.609 -15.609 0.000 -17.09 - NaCO3- 2.055e-17 1.967e-17 -16.687 -16.706 -0.019 -1.02 + MgCO3 2.448e-16 2.449e-16 -15.611 -15.611 0.000 -17.09 Ca 1.916e-04 Ca+2 1.857e-04 1.564e-04 -3.731 -3.806 -0.075 -18.12 - CaSO4 5.802e-06 5.804e-06 -5.236 -5.236 0.000 7.50 - CaHSO4+ 2.832e-08 2.711e-08 -7.548 -7.567 -0.019 (0) + CaSO4 5.800e-06 5.802e-06 -5.237 -5.236 0.000 7.50 + CaHSO4+ 2.831e-08 2.710e-08 -7.548 -7.567 -0.019 (0) CaHCO3+ 2.842e-10 2.723e-10 -9.546 -9.565 -0.019 9.68 CaOH+ 3.814e-14 3.651e-14 -13.419 -13.438 -0.019 (0) CaCO3 2.365e-15 2.366e-15 -14.626 -14.626 0.000 -14.60 Cl 1.331e-04 Cl- 1.331e-04 1.274e-04 -3.876 -3.895 -0.019 18.08 + HCl 3.113e-08 3.118e-08 -7.507 -7.506 0.001 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.506 -42.506 0.000 28.61 K 1.841e-05 - K+ 1.838e-05 1.759e-05 -4.736 -4.755 -0.019 9.02 - KSO4- 2.693e-08 2.580e-08 -7.570 -7.588 -0.019 34.11 + K+ 1.839e-05 1.760e-05 -4.735 -4.754 -0.019 9.02 + KSO4- 1.413e-08 1.350e-08 -7.850 -7.870 -0.020 18.61 Mg 3.536e-05 - Mg+2 3.396e-05 2.863e-05 -4.469 -4.543 -0.074 -21.80 - MgSO4 1.400e-06 1.401e-06 -5.854 -5.854 0.000 5.84 - MgHCO3+ 4.776e-11 4.572e-11 -10.321 -10.340 -0.019 5.48 - MgOH+ 1.526e-13 1.462e-13 -12.817 -12.835 -0.018 (0) - MgCO3 2.460e-16 2.460e-16 -15.609 -15.609 0.000 -17.09 + Mg+2 3.380e-05 2.849e-05 -4.471 -4.545 -0.074 -21.80 + MgSO4 1.556e-06 1.557e-06 -5.808 -5.808 0.000 -0.83 + Mg(SO4)2-2 1.266e-09 1.070e-09 -8.898 -8.971 -0.073 35.55 + MgHCO3+ 4.754e-11 4.551e-11 -10.323 -10.342 -0.019 5.48 + MgOH+ 1.519e-13 1.456e-13 -12.819 -12.837 -0.018 (0) + MgCO3 2.448e-16 2.449e-16 -15.611 -15.611 0.000 -17.09 N(-3) 0.000e+00 NH4+ 0.000e+00 0.000e+00 -48.437 -48.457 -0.019 17.97 - NH4SO4- 0.000e+00 0.000e+00 -51.008 -51.027 -0.019 37.62 + NH4SO4- 0.000e+00 0.000e+00 -51.008 -51.027 -0.019 38.20 NH3 0.000e+00 0.000e+00 -54.553 -54.553 0.000 24.42 N(0) 4.751e-04 N2 2.375e-04 2.376e-04 -3.624 -3.624 0.000 29.29 @@ -440,25 +459,26 @@ N(5) 1.601e-04 NO3- 1.601e-04 1.532e-04 -3.796 -3.815 -0.019 29.50 Na 1.226e-04 Na+ 1.225e-04 1.173e-04 -3.912 -3.931 -0.019 -1.47 - NaSO4- 1.281e-07 1.227e-07 -6.892 -6.911 -0.019 13.80 - NaHCO3 9.001e-12 9.004e-12 -11.046 -11.046 0.000 1.80 - NaCO3- 2.055e-17 1.967e-17 -16.687 -16.706 -0.019 -1.02 - NaOH 1.670e-25 1.670e-25 -24.777 -24.777 0.000 (0) + NaSO4- 1.001e-07 9.563e-08 -6.999 -7.019 -0.020 14.56 + NaHCO3 1.070e-11 1.071e-11 -10.971 -10.970 0.000 28.00 + NaOH 1.670e-25 1.671e-25 -24.777 -24.777 0.000 (0) O(0) 8.552e-08 O2 4.276e-08 4.277e-08 -7.369 -7.369 0.000 30.40 S(-2) 0.000e+00 - H2S 0.000e+00 0.000e+00 -126.808 -126.808 0.000 37.16 + H2S 0.000e+00 0.000e+00 -126.808 -126.808 0.000 36.27 HS- 0.000e+00 0.000e+00 -130.582 -130.601 -0.019 20.61 S-2 0.000e+00 0.000e+00 -140.296 -140.371 -0.075 (0) + (H2S)2 0.000e+00 0.000e+00 -254.894 -254.894 0.000 30.09 S(6) 2.706e-04 - SO4-2 2.481e-04 2.087e-04 -3.605 -3.680 -0.075 14.54 - HSO4- 1.507e-05 1.442e-05 -4.822 -4.841 -0.019 40.28 - CaSO4 5.802e-06 5.804e-06 -5.236 -5.236 0.000 7.50 - MgSO4 1.400e-06 1.401e-06 -5.854 -5.854 0.000 5.84 - NaSO4- 1.281e-07 1.227e-07 -6.892 -6.911 -0.019 13.80 - CaHSO4+ 2.832e-08 2.711e-08 -7.548 -7.567 -0.019 (0) - KSO4- 2.693e-08 2.580e-08 -7.570 -7.588 -0.019 34.11 - NH4SO4- 0.000e+00 0.000e+00 -51.008 -51.027 -0.019 37.62 + SO4-2 2.480e-04 2.086e-04 -3.606 -3.681 -0.075 14.82 + HSO4- 1.506e-05 1.442e-05 -4.822 -4.841 -0.019 40.28 + CaSO4 5.800e-06 5.802e-06 -5.237 -5.236 0.000 7.50 + MgSO4 1.556e-06 1.557e-06 -5.808 -5.808 0.000 -0.83 + NaSO4- 1.001e-07 9.563e-08 -6.999 -7.019 -0.020 14.56 + CaHSO4+ 2.831e-08 2.710e-08 -7.548 -7.567 -0.019 (0) + KSO4- 1.413e-08 1.350e-08 -7.850 -7.870 -0.020 18.61 + Mg(SO4)2-2 1.266e-09 1.070e-09 -8.898 -8.971 -0.073 35.55 + NH4SO4- 0.000e+00 0.000e+00 -51.008 -51.027 -0.019 38.20 ------------------------------Saturation indices------------------------------- @@ -466,20 +486,26 @@ S(6) 2.706e-04 Anhydrite -3.21 -7.49 -4.28 CaSO4 Aragonite -9.52 -17.85 -8.34 CaCO3 + Arcanite -11.31 -13.19 -1.88 K2SO4 Calcite -9.37 -17.85 -8.48 CaCO3 CH4(g) -133.89 -136.69 -2.80 CH4 CO2(g) -2.19 -3.66 -1.47 CO2 - Dolomite -19.35 -36.44 -17.09 CaMg(CO3)2 + Dolomite -19.36 -36.44 -17.08 CaMg(CO3)2 + Epsomite -6.49 -8.23 -1.74 MgSO4:7H2O Gypsum -2.90 -7.49 -4.58 CaSO4:2H2O H2(g) -39.40 -42.51 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -125.76 -133.75 -7.99 H2S + H2S(g) -125.81 -133.75 -7.94 H2S Halite -9.40 -7.83 1.57 NaCl + Hexahydrite -6.66 -8.23 -1.57 MgSO4:6H2O + Kieserite -7.06 -8.23 -1.16 MgSO4:H2O + Mirabilite -10.30 -11.54 -1.24 Na2SO4:10H2O N2(g) -0.45 -3.62 -3.18 N2 NH3(g) -56.35 -54.55 1.80 NH3 O2(g) -4.48 -7.37 -2.89 O2 Sulfur -92.33 -87.45 4.88 S Sylvite -9.55 -8.65 0.90 KCl + Thenardite -11.24 -11.54 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -492,7 +518,3 @@ End of simulation. Reading input data for simulation 3. ------------------------------------ -------------------------------- -End of Run after 0.015 Seconds. -------------------------------- - diff --git a/ex5.out b/ex5.out index ac9de8c3..4bb27369 100644 --- a/ex5.out +++ b/ex5.out @@ -72,16 +72,15 @@ Initial solution 1. PURE WATER pH = 7.000 pe = 4.000 - Specific Conductance (S/cm, 25C) = 0 - Density (g/cm) = 0.99704 + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89002 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.007e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.217e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.60 Iterations = 0 @@ -91,7 +90,7 @@ Initial solution 1. PURE WATER ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.013e-07 1.012e-07 -6.995 -6.995 -0.000 -4.14 H+ 1.001e-07 1.000e-07 -7.000 -7.000 -0.000 0.00 @@ -144,33 +143,34 @@ Reaction 1. Phase SI log IAP log K(T, P) Initial Final Delta CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 -4.869e-04 -Calcite 0.00 -8.48 -8.48 1.000e+01 1.000e+01 -4.934e-04 -Goethite 0.00 -1.00 -1.00 1.000e+01 1.000e+01 1.097e-08 +Calcite 0.00 -8.48 -8.48 1.000e+01 1.000e+01 -4.933e-04 +Goethite 0.00 -1.00 -1.00 1.000e+01 1.000e+01 1.096e-08 Gypsum -6.13 -10.71 -4.58 0.000e+00 0 0.000e+00 -Pyrite -0.00 -18.48 -18.48 1.000e+01 1.000e+01 -3.144e-08 +Pyrite 0.00 -18.48 -18.48 1.000e+01 1.000e+01 -3.144e-08 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 9.803e-04 9.803e-04 - Ca 4.934e-04 4.934e-04 - Fe 2.047e-08 2.047e-08 - S 6.288e-08 6.288e-08 + C 9.802e-04 9.802e-04 + Ca 4.933e-04 4.933e-04 + Fe 2.048e-08 2.048e-08 + S 6.287e-08 6.287e-08 ----------------------------Description of solution---------------------------- pH = 8.279 Charge balance pe = -4.943 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 94 - Density (g/cm) = 0.99711 + Specific Conductance (µS/cm, 25°C) = 95 + Density (g/cm³) = 0.99711 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89082 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.463e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 9.867e-04 - Total CO2 (mol/kg) = 9.803e-04 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 9.866e-04 + Total CO2 (mol/kg) = 9.801e-04 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 14 @@ -180,71 +180,72 @@ Pyrite -0.00 -18.48 -18.48 1.000e+01 1.000e+01 -3.144e-08 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 2.010e-06 1.925e-06 -5.697 -5.716 -0.019 -4.10 - H+ 5.474e-09 5.258e-09 -8.262 -8.279 -0.018 0.00 + H+ 5.475e-09 5.258e-09 -8.262 -8.279 -0.018 0.00 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 -C(-4) 5.385e-08 - CH4 5.385e-08 5.386e-08 -7.269 -7.269 0.000 35.46 -C(4) 9.803e-04 - HCO3- 9.494e-04 9.103e-04 -3.023 -3.041 -0.018 24.69 +C(-4) 5.384e-08 + CH4 5.384e-08 5.386e-08 -7.269 -7.269 0.000 35.46 +C(4) 9.801e-04 + HCO3- 9.493e-04 9.102e-04 -3.023 -3.041 -0.018 24.56 CO2 1.076e-05 1.076e-05 -4.968 -4.968 0.000 34.43 - CO3-2 9.607e-06 8.120e-06 -5.017 -5.090 -0.073 -5.25 - CaCO3 5.563e-06 5.565e-06 -5.255 -5.255 0.000 -14.60 - CaHCO3+ 4.940e-06 4.738e-06 -5.306 -5.324 -0.018 9.68 + CO3-2 9.605e-06 8.118e-06 -5.017 -5.091 -0.073 -4.04 + CaCO3 5.561e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 + CaHCO3+ 4.939e-06 4.737e-06 -5.306 -5.324 -0.018 9.68 FeCO3 2.598e-09 2.599e-09 -8.585 -8.585 0.000 (0) FeHCO3+ 1.268e-09 1.215e-09 -8.897 -8.916 -0.019 (0) (CO2)2 2.125e-12 2.125e-12 -11.673 -11.673 0.000 68.87 -Ca 4.934e-04 - Ca+2 4.829e-04 4.080e-04 -3.316 -3.389 -0.073 -18.12 - CaCO3 5.563e-06 5.565e-06 -5.255 -5.255 0.000 -14.60 - CaHCO3+ 4.940e-06 4.738e-06 -5.306 -5.324 -0.018 9.68 +Ca 4.933e-04 + Ca+2 4.828e-04 4.079e-04 -3.316 -3.389 -0.073 -18.12 + CaCO3 5.561e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 + CaHCO3+ 4.939e-06 4.737e-06 -5.306 -5.324 -0.018 9.68 CaOH+ 1.344e-08 1.288e-08 -7.872 -7.890 -0.019 (0) - CaSO4 3.484e-09 3.485e-09 -8.458 -8.458 0.000 7.50 + CaSO4 3.483e-09 3.484e-09 -8.458 -8.458 0.000 7.50 CaHSO4+ 1.257e-16 1.204e-16 -15.901 -15.919 -0.019 (0) -Fe(2) 2.047e-08 - Fe+2 1.577e-08 1.334e-08 -7.802 -7.875 -0.073 -22.11 +Fe(2) 2.048e-08 + Fe+2 1.577e-08 1.335e-08 -7.802 -7.875 -0.073 -22.11 FeCO3 2.598e-09 2.599e-09 -8.585 -8.585 0.000 (0) FeHCO3+ 1.268e-09 1.215e-09 -8.897 -8.916 -0.019 (0) - FeOH+ 8.371e-10 8.025e-10 -9.077 -9.096 -0.018 (0) + FeOH+ 8.372e-10 8.026e-10 -9.077 -9.096 -0.018 (0) Fe(OH)2 1.299e-12 1.299e-12 -11.887 -11.886 0.000 (0) FeSO4 1.139e-13 1.140e-13 -12.943 -12.943 0.000 18.97 - Fe(OH)3- 9.576e-15 9.180e-15 -14.019 -14.037 -0.018 (0) - Fe(HS)2 6.283e-17 6.285e-17 -16.202 -16.202 0.000 (0) + Fe(OH)3- 9.575e-15 9.179e-15 -14.019 -14.037 -0.018 (0) + Fe(HS)2 6.282e-17 6.285e-17 -16.202 -16.202 0.000 (0) FeHSO4+ 4.111e-21 3.939e-21 -20.386 -20.405 -0.019 (0) Fe(HS)3- 1.642e-23 1.573e-23 -22.785 -22.803 -0.019 (0) Fe(3) 3.369e-14 Fe(OH)3 2.753e-14 2.754e-14 -13.560 -13.560 0.000 (0) - Fe(OH)4- 4.983e-15 4.777e-15 -14.303 -14.321 -0.018 (0) + Fe(OH)4- 4.982e-15 4.777e-15 -14.303 -14.321 -0.018 (0) Fe(OH)2+ 1.172e-15 1.124e-15 -14.931 -14.949 -0.018 (0) FeOH+2 2.114e-20 1.785e-20 -19.675 -19.748 -0.073 (0) - Fe+3 2.090e-26 1.453e-26 -25.680 -25.838 -0.158 (0) - FeSO4+ 7.985e-30 7.655e-30 -29.098 -29.116 -0.018 (0) - Fe(SO4)2- 8.395e-36 8.044e-36 -35.076 -35.095 -0.019 (0) - FeHSO4+2 1.279e-37 1.078e-37 -36.893 -36.968 -0.074 (0) - Fe2(OH)2+4 1.699e-38 8.574e-39 -37.770 -38.067 -0.297 (0) + Fe+3 2.091e-26 1.454e-26 -25.680 -25.837 -0.158 (0) + FeSO4+ 7.987e-30 7.656e-30 -29.098 -29.116 -0.018 (0) + Fe(SO4)2- 8.396e-36 8.045e-36 -35.076 -35.094 -0.019 (0) + FeHSO4+2 1.279e-37 1.078e-37 -36.893 -36.967 -0.074 (0) + Fe2(OH)2+4 1.700e-38 8.577e-39 -37.770 -38.067 -0.297 (0) Fe3(OH)4+5 0.000e+00 0.000e+00 -50.232 -50.696 -0.464 (0) H(0) 3.007e-10 H2 1.504e-10 1.504e-10 -9.823 -9.823 0.000 28.61 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -72.735 -72.735 0.000 30.40 -S(-2) 2.506e-09 - HS- 2.400e-09 2.299e-09 -8.620 -8.638 -0.019 20.61 - H2S 1.056e-10 1.057e-10 -9.976 -9.976 0.000 37.16 - S-2 6.254e-14 5.281e-14 -13.204 -13.277 -0.073 (0) - Fe(HS)2 6.283e-17 6.285e-17 -16.202 -16.202 0.000 (0) +S(-2) 2.505e-09 + HS- 2.400e-09 2.299e-09 -8.620 -8.639 -0.019 20.61 + H2S 1.056e-10 1.057e-10 -9.976 -9.976 0.000 36.27 + S-2 6.253e-14 5.280e-14 -13.204 -13.277 -0.073 (0) + Fe(HS)2 6.282e-17 6.285e-17 -16.202 -16.202 0.000 (0) + (H2S)2 5.883e-22 5.885e-22 -21.230 -21.230 0.000 30.09 Fe(HS)3- 1.642e-23 1.573e-23 -22.785 -22.803 -0.019 (0) S(6) 6.037e-08 - SO4-2 5.689e-08 4.803e-08 -7.245 -7.318 -0.073 14.54 - CaSO4 3.484e-09 3.485e-09 -8.458 -8.458 0.000 7.50 + SO4-2 5.688e-08 4.803e-08 -7.245 -7.319 -0.073 14.81 + CaSO4 3.483e-09 3.484e-09 -8.458 -8.458 0.000 7.50 FeSO4 1.139e-13 1.140e-13 -12.943 -12.943 0.000 18.97 HSO4- 2.563e-14 2.455e-14 -13.591 -13.610 -0.019 40.28 CaHSO4+ 1.257e-16 1.204e-16 -15.901 -15.919 -0.019 (0) FeHSO4+ 4.111e-21 3.939e-21 -20.386 -20.405 -0.019 (0) - FeSO4+ 7.985e-30 7.655e-30 -29.098 -29.116 -0.018 (0) - Fe(SO4)2- 8.395e-36 8.044e-36 -35.076 -35.095 -0.019 (0) - FeHSO4+2 1.279e-37 1.078e-37 -36.893 -36.968 -0.074 (0) + FeSO4+ 7.987e-30 7.656e-30 -29.098 -29.116 -0.018 (0) + Fe(SO4)2- 8.396e-36 8.045e-36 -35.076 -35.094 -0.019 (0) + FeHSO4+2 1.279e-37 1.078e-37 -36.893 -36.967 -0.074 (0) ------------------------------Saturation indices------------------------------- @@ -261,12 +262,12 @@ S(6) 6.037e-08 Gypsum -6.13 -10.71 -4.58 CaSO4:2H2O H2(g) -6.72 -9.82 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -8.93 -16.92 -7.99 H2S + H2S(g) -8.98 -16.92 -7.94 H2S Hematite 2.01 -2.00 -4.01 Fe2O3 Mackinawite -3.59 -8.23 -4.65 FeS Melanterite -12.98 -15.19 -2.21 FeSO4:7H2O O2(g) -69.84 -72.73 -2.89 O2 - Pyrite -0.00 -18.48 -18.48 FeS2 + Pyrite 0.00 -18.48 -18.48 FeS2 Siderite -2.08 -12.97 -10.89 FeCO3 Sulfur -8.19 -3.30 4.88 S @@ -300,9 +301,9 @@ Reaction 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 1.425e-04 -Calcite 0.00 -8.48 -8.48 1.000e+01 9.999e+00 -9.269e-04 -Goethite 0.00 -1.00 -1.00 1.000e+01 1.000e+01 2.667e-04 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 1.426e-04 +Calcite 0.00 -8.48 -8.48 1.000e+01 9.999e+00 -9.268e-04 +Goethite -0.00 -1.00 -1.00 1.000e+01 1.000e+01 2.667e-04 Gypsum -2.01 -6.60 -4.58 0.000e+00 0 0.000e+00 Pyrite -0.00 -18.48 -18.48 1.000e+01 1.000e+01 -2.667e-04 @@ -310,10 +311,10 @@ Pyrite -0.00 -18.48 -18.48 1.000e+01 1.000e+01 -2.667e-04 Elements Molality Moles - C 7.844e-04 7.844e-04 - Ca 9.269e-04 9.269e-04 + C 7.843e-04 7.843e-04 + Ca 9.269e-04 9.268e-04 Cl 5.000e-04 5.000e-04 - Fe 9.962e-09 9.962e-09 + Fe 9.963e-09 9.963e-09 Na 5.000e-04 5.000e-04 S 5.333e-04 5.333e-04 @@ -321,15 +322,16 @@ Pyrite -0.00 -18.48 -18.48 1.000e+01 1.000e+01 -2.667e-04 pH = 8.170 Charge balance pe = -4.286 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 254 - Density (g/cm) = 0.99719 + Specific Conductance (µS/cm, 25°C) = 254 + Density (g/cm³) = 0.99719 Volume (L) = 1.00298 + Viscosity (mPa s) = 0.89122 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.608e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 7.872e-04 - Total CO2 (mol/kg) = 7.844e-04 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 7.870e-04 + Total CO2 (mol/kg) = 7.843e-04 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 24 @@ -339,90 +341,90 @@ Pyrite -0.00 -18.48 -18.48 1.000e+01 1.000e+01 -2.667e-04 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.600e-06 1.498e-06 -5.796 -5.824 -0.029 -4.08 - H+ 7.173e-09 6.756e-09 -8.144 -8.170 -0.026 0.00 + OH- 1.600e-06 1.498e-06 -5.796 -5.825 -0.029 -4.08 + H+ 7.174e-09 6.757e-09 -8.144 -8.170 -0.026 0.00 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 -C(-4) 2.210e-12 - CH4 2.210e-12 2.212e-12 -11.656 -11.655 0.000 35.46 -C(4) 7.844e-04 - HCO3- 7.550e-04 7.084e-04 -3.122 -3.150 -0.028 24.72 - CO2 1.075e-05 1.076e-05 -4.969 -4.968 0.000 34.43 - CaHCO3+ 6.485e-06 6.088e-06 -5.188 -5.215 -0.027 9.69 - CO3-2 6.345e-06 4.917e-06 -5.198 -5.308 -0.111 -5.16 - CaCO3 5.560e-06 5.565e-06 -5.255 -5.255 0.000 -14.60 - NaHCO3 1.861e-07 1.863e-07 -6.730 -6.730 0.000 1.80 - NaCO3- 4.570e-08 4.282e-08 -7.340 -7.368 -0.028 -0.99 - FeCO3 7.347e-10 7.353e-10 -9.134 -9.134 0.000 (0) +C(-4) 2.208e-12 + CH4 2.208e-12 2.210e-12 -11.656 -11.656 0.000 35.46 +C(4) 7.843e-04 + HCO3- 7.549e-04 7.083e-04 -3.122 -3.150 -0.028 24.59 + CO2 1.075e-05 1.076e-05 -4.968 -4.968 0.000 34.43 + CaHCO3+ 6.484e-06 6.087e-06 -5.188 -5.216 -0.027 9.69 + CO3-2 6.344e-06 4.916e-06 -5.198 -5.308 -0.111 -3.95 + CaCO3 5.559e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 + NaHCO3 2.211e-07 2.215e-07 -6.655 -6.655 0.001 28.00 + FeCO3 7.346e-10 7.352e-10 -9.134 -9.134 0.000 (0) FeHCO3+ 4.714e-10 4.416e-10 -9.327 -9.355 -0.028 (0) (CO2)2 2.124e-12 2.125e-12 -11.673 -11.673 0.000 68.87 Ca 9.269e-04 - Ca+2 8.698e-04 6.737e-04 -3.061 -3.172 -0.111 -18.05 - CaSO4 4.510e-05 4.514e-05 -4.346 -4.345 0.000 7.50 - CaHCO3+ 6.485e-06 6.088e-06 -5.188 -5.215 -0.027 9.69 - CaCO3 5.560e-06 5.565e-06 -5.255 -5.255 0.000 -14.60 - CaOH+ 1.766e-08 1.655e-08 -7.753 -7.781 -0.028 (0) - CaHSO4+ 2.140e-12 2.005e-12 -11.670 -11.698 -0.028 (0) + Ca+2 8.697e-04 6.736e-04 -3.061 -3.172 -0.111 -18.05 + CaSO4 4.511e-05 4.515e-05 -4.346 -4.345 0.000 7.50 + CaHCO3+ 6.484e-06 6.087e-06 -5.188 -5.216 -0.027 9.69 + CaCO3 5.559e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 + CaOH+ 1.766e-08 1.654e-08 -7.753 -7.781 -0.028 (0) + CaHSO4+ 2.141e-12 2.005e-12 -11.669 -11.698 -0.028 (0) Cl 5.000e-04 Cl- 5.000e-04 4.682e-04 -3.301 -3.330 -0.029 18.10 FeCl+ 4.301e-12 4.029e-12 -11.366 -11.395 -0.028 (0) - FeCl+2 5.638e-28 4.361e-28 -27.249 -27.360 -0.112 (0) - FeCl2+ 9.725e-31 9.120e-31 -30.012 -30.040 -0.028 (0) - FeCl3 4.267e-35 4.270e-35 -34.370 -34.370 0.000 (0) -Fe(2) 9.962e-09 - Fe+2 8.023e-09 6.234e-09 -8.096 -8.205 -0.110 -22.04 - FeCO3 7.347e-10 7.353e-10 -9.134 -9.134 0.000 (0) + HCl 1.086e-12 1.090e-12 -11.964 -11.963 0.002 (0) + FeCl+2 5.639e-28 4.362e-28 -27.249 -27.360 -0.112 (0) + FeCl2+ 9.728e-31 9.123e-31 -30.012 -30.040 -0.028 (0) + FeCl3 4.268e-35 4.272e-35 -34.370 -34.369 0.000 (0) +Fe(2) 9.963e-09 + Fe+2 8.024e-09 6.234e-09 -8.096 -8.205 -0.110 -22.04 + FeCO3 7.346e-10 7.352e-10 -9.134 -9.134 0.000 (0) FeHCO3+ 4.714e-10 4.416e-10 -9.327 -9.355 -0.028 (0) - FeSO4 4.173e-10 4.177e-10 -9.380 -9.379 0.000 18.97 + FeSO4 4.176e-10 4.179e-10 -9.379 -9.379 0.000 18.97 FeOH+ 3.111e-10 2.918e-10 -9.507 -9.535 -0.028 (0) FeCl+ 4.301e-12 4.029e-12 -11.366 -11.395 -0.028 (0) - Fe(OH)2 3.672e-13 3.676e-13 -12.435 -12.435 0.000 (0) + Fe(OH)2 3.672e-13 3.675e-13 -12.435 -12.435 0.000 (0) Fe(OH)3- 2.155e-15 2.021e-15 -14.667 -14.694 -0.028 (0) - FeHSO4+ 1.980e-17 1.855e-17 -16.703 -16.732 -0.028 (0) - Fe(HS)2 5.027e-18 5.031e-18 -17.299 -17.298 0.000 (0) - Fe(HS)3- 5.565e-25 5.213e-25 -24.255 -24.283 -0.028 (0) + FeHSO4+ 1.981e-17 1.856e-17 -16.703 -16.731 -0.028 (0) + Fe(HS)2 5.026e-18 5.030e-18 -17.299 -17.298 0.000 (0) + Fe(HS)3- 5.563e-25 5.211e-25 -24.255 -24.283 -0.028 (0) Fe(3) 3.302e-14 Fe(OH)3 2.752e-14 2.754e-14 -13.560 -13.560 0.000 (0) - Fe(OH)4- 3.962e-15 3.718e-15 -14.402 -14.430 -0.028 (0) - Fe(OH)2+ 1.539e-15 1.444e-15 -14.813 -14.840 -0.028 (0) - FeOH+2 3.810e-20 2.947e-20 -19.419 -19.531 -0.112 (0) - FeSO4+ 1.359e-25 1.274e-25 -24.867 -24.895 -0.028 (0) - Fe+3 5.288e-26 3.084e-26 -25.277 -25.511 -0.234 (0) - Fe(SO4)2- 1.121e-27 1.050e-27 -26.950 -26.979 -0.028 (0) - FeCl+2 5.638e-28 4.361e-28 -27.249 -27.360 -0.112 (0) - FeCl2+ 9.725e-31 9.120e-31 -30.012 -30.040 -0.028 (0) - FeHSO4+2 2.993e-33 2.305e-33 -32.524 -32.637 -0.113 (0) - FeCl3 4.267e-35 4.270e-35 -34.370 -34.370 0.000 (0) - Fe2(OH)2+4 6.643e-38 2.338e-38 -37.178 -37.631 -0.454 (0) - Fe3(OH)4+5 0.000e+00 0.000e+00 -49.443 -50.152 -0.709 (0) + Fe(OH)4- 3.962e-15 3.717e-15 -14.402 -14.430 -0.028 (0) + Fe(OH)2+ 1.540e-15 1.445e-15 -14.813 -14.840 -0.028 (0) + FeOH+2 3.811e-20 2.948e-20 -19.419 -19.531 -0.112 (0) + FeSO4+ 1.360e-25 1.275e-25 -24.867 -24.894 -0.028 (0) + Fe+3 5.289e-26 3.085e-26 -25.277 -25.511 -0.234 (0) + Fe(SO4)2- 1.122e-27 1.051e-27 -26.950 -26.978 -0.028 (0) + FeCl+2 5.639e-28 4.362e-28 -27.249 -27.360 -0.112 (0) + FeCl2+ 9.728e-31 9.123e-31 -30.012 -30.040 -0.028 (0) + FeHSO4+2 2.995e-33 2.307e-33 -32.524 -32.637 -0.113 (0) + FeCl3 4.268e-35 4.272e-35 -34.370 -34.369 0.000 (0) + Fe2(OH)2+4 6.646e-38 2.339e-38 -37.177 -37.631 -0.454 (0) + Fe3(OH)4+5 0.000e+00 0.000e+00 -49.443 -50.151 -0.709 (0) H(0) 2.406e-11 H2 1.203e-11 1.204e-11 -10.920 -10.919 0.000 28.61 Na 5.000e-04 - Na+ 4.988e-04 4.676e-04 -3.302 -3.330 -0.028 -1.44 - NaSO4- 9.412e-07 8.831e-07 -6.026 -6.054 -0.028 13.98 - NaHCO3 1.861e-07 1.863e-07 -6.730 -6.730 0.000 1.80 - NaCO3- 4.570e-08 4.282e-08 -7.340 -7.368 -0.028 -0.99 - NaOH 7.000e-20 7.005e-20 -19.155 -19.155 0.000 (0) + Na+ 4.990e-04 4.678e-04 -3.302 -3.330 -0.028 -1.44 + NaSO4- 7.392e-07 6.889e-07 -6.131 -6.162 -0.031 14.65 + NaHCO3 2.211e-07 2.215e-07 -6.655 -6.655 0.001 28.00 + NaOH 7.002e-20 7.008e-20 -19.155 -19.154 0.000 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -70.542 -70.541 0.000 30.40 S(-2) 1.073e-09 - HS- 1.017e-09 9.516e-10 -8.993 -9.022 -0.029 20.63 - H2S 5.616e-11 5.621e-11 -10.251 -10.250 0.000 37.16 + HS- 1.016e-09 9.515e-10 -8.993 -9.022 -0.029 20.63 + H2S 5.616e-11 5.621e-11 -10.251 -10.250 0.000 36.27 S-2 2.199e-14 1.701e-14 -13.658 -13.769 -0.112 (0) - Fe(HS)2 5.027e-18 5.031e-18 -17.299 -17.298 0.000 (0) - Fe(HS)3- 5.565e-25 5.213e-25 -24.255 -24.283 -0.028 (0) + Fe(HS)2 5.026e-18 5.030e-18 -17.299 -17.298 0.000 (0) + (H2S)2 1.663e-22 1.665e-22 -21.779 -21.779 0.000 30.09 + Fe(HS)3- 5.563e-25 5.211e-25 -24.255 -24.283 -0.028 (0) S(6) 5.333e-04 - SO4-2 4.873e-04 3.768e-04 -3.312 -3.424 -0.112 14.62 - CaSO4 4.510e-05 4.514e-05 -4.346 -4.345 0.000 7.50 - NaSO4- 9.412e-07 8.831e-07 -6.026 -6.054 -0.028 13.98 - FeSO4 4.173e-10 4.177e-10 -9.380 -9.379 0.000 18.97 - HSO4- 2.642e-10 2.475e-10 -9.578 -9.606 -0.028 40.30 - CaHSO4+ 2.140e-12 2.005e-12 -11.670 -11.698 -0.028 (0) - FeHSO4+ 1.980e-17 1.855e-17 -16.703 -16.732 -0.028 (0) - FeSO4+ 1.359e-25 1.274e-25 -24.867 -24.895 -0.028 (0) - Fe(SO4)2- 1.121e-27 1.050e-27 -26.950 -26.979 -0.028 (0) - FeHSO4+2 2.993e-33 2.305e-33 -32.524 -32.637 -0.113 (0) + SO4-2 4.875e-04 3.769e-04 -3.312 -3.424 -0.112 14.90 + CaSO4 4.511e-05 4.515e-05 -4.346 -4.345 0.000 7.50 + NaSO4- 7.392e-07 6.889e-07 -6.131 -6.162 -0.031 14.65 + FeSO4 4.176e-10 4.179e-10 -9.379 -9.379 0.000 18.97 + HSO4- 2.643e-10 2.476e-10 -9.578 -9.606 -0.028 40.30 + CaHSO4+ 2.141e-12 2.005e-12 -11.669 -11.698 -0.028 (0) + FeHSO4+ 1.981e-17 1.856e-17 -16.703 -16.731 -0.028 (0) + FeSO4+ 1.360e-25 1.275e-25 -24.867 -24.894 -0.028 (0) + Fe(SO4)2- 1.122e-27 1.051e-27 -26.950 -26.978 -0.028 (0) + FeHSO4+2 2.995e-33 2.307e-33 -32.524 -32.637 -0.113 (0) ------------------------------Saturation indices------------------------------- @@ -435,19 +437,21 @@ S(6) 5.333e-04 CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 FeS(ppt) -5.14 -9.06 -3.92 FeS - Goethite 0.00 -1.00 -1.00 FeOOH + Goethite -0.00 -1.00 -1.00 FeOOH Gypsum -2.01 -6.60 -4.58 CaSO4:2H2O H2(g) -7.82 -10.92 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -9.20 -17.19 -7.99 H2S + H2S(g) -9.26 -17.19 -7.94 H2S Halite -8.23 -6.66 1.57 NaCl Hematite 2.01 -2.00 -4.01 Fe2O3 Mackinawite -4.41 -9.06 -4.65 FeS Melanterite -9.42 -11.63 -2.21 FeSO4:7H2O + Mirabilite -8.84 -10.08 -1.24 Na2SO4:10H2O O2(g) -67.65 -70.54 -2.89 O2 Pyrite -0.00 -18.48 -18.48 FeS2 Siderite -2.62 -13.51 -10.89 FeCO3 Sulfur -7.36 -2.48 4.88 S + Thenardite -9.78 -10.08 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -483,7 +487,7 @@ CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 2.396e-03 Calcite 0.00 -8.48 -8.48 1.000e+01 9.997e+00 -2.936e-03 Goethite 0.00 -1.00 -1.00 1.000e+01 1.000e+01 1.333e-03 Gypsum -1.05 -5.63 -4.58 0.000e+00 0 0.000e+00 -Pyrite -0.00 -18.48 -18.48 1.000e+01 9.999e+00 -1.333e-03 +Pyrite 0.00 -18.48 -18.48 1.000e+01 9.999e+00 -1.333e-03 -----------------------------Solution composition------------------------------ @@ -500,16 +504,17 @@ Pyrite -0.00 -18.48 -18.48 1.000e+01 9.999e+00 -1.333e-03 pH = 7.980 Charge balance pe = -3.966 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 863 - Density (g/cm) = 0.99755 + Specific Conductance (µS/cm, 25°C) = 863 + Density (g/cm³) = 0.99755 Volume (L) = 1.00300 + Viscosity (mPa s) = 0.89264 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.225e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.387e-04 + Total alkalinity (eq/kg) = 5.386e-04 Total CO2 (mol/kg) = 5.395e-04 - Temperature (C) = 25.00 - Electrical balance (eq) = -1.150e-09 + Temperature (°C) = 25.00 + Electrical balance (eq) = -1.151e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 24 Total H = 1.110111e+02 @@ -518,90 +523,90 @@ Pyrite -0.00 -18.48 -18.48 1.000e+01 9.999e+00 -1.333e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.083e-06 9.655e-07 -5.965 -6.015 -0.050 -4.02 + OH- 1.083e-06 9.654e-07 -5.965 -6.015 -0.050 -4.02 H+ 1.156e-08 1.048e-08 -7.937 -7.980 -0.043 0.00 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 -C(-4) 2.070e-13 - CH4 2.070e-13 2.076e-13 -12.684 -12.683 0.001 35.46 +C(-4) 2.067e-13 + CH4 2.067e-13 2.073e-13 -12.685 -12.683 0.001 35.46 C(4) 5.395e-04 - HCO3- 5.089e-04 4.565e-04 -3.293 -3.341 -0.047 24.78 - CO2 1.073e-05 1.076e-05 -4.969 -4.968 0.001 34.43 - CaHCO3+ 1.051e-05 9.446e-06 -4.978 -5.025 -0.046 9.73 - CaCO3 5.549e-06 5.565e-06 -5.256 -5.255 0.001 -14.60 - CO3-2 3.154e-06 2.043e-06 -5.501 -5.690 -0.189 -4.97 - NaHCO3 5.686e-07 5.702e-07 -6.245 -6.244 0.001 1.80 - NaCO3- 9.455e-08 8.448e-08 -7.024 -7.073 -0.049 -0.90 + HCO3- 5.089e-04 4.565e-04 -3.293 -3.341 -0.047 24.67 + CO2 1.074e-05 1.076e-05 -4.969 -4.968 0.001 34.43 + CaHCO3+ 1.051e-05 9.443e-06 -4.979 -5.025 -0.046 9.73 + CaCO3 5.547e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 + CO3-2 3.154e-06 2.042e-06 -5.501 -5.690 -0.189 -3.73 + NaHCO3 6.745e-07 6.789e-07 -6.171 -6.168 0.003 28.00 FeHCO3+ 5.705e-10 5.097e-10 -9.244 -9.293 -0.049 (0) - FeCO3 5.455e-10 5.471e-10 -9.263 -9.262 0.001 (0) + FeCO3 5.454e-10 5.470e-10 -9.263 -9.262 0.001 (0) (CO2)2 2.119e-12 2.125e-12 -11.674 -11.673 0.001 68.87 Ca 2.936e-03 - Ca+2 2.506e-03 1.622e-03 -2.601 -2.790 -0.189 -17.90 - CaSO4 4.136e-04 4.147e-04 -3.383 -3.382 0.001 7.50 - CaHCO3+ 1.051e-05 9.446e-06 -4.978 -5.025 -0.046 9.73 - CaCO3 5.549e-06 5.565e-06 -5.256 -5.255 0.001 -14.60 - CaOH+ 2.874e-08 2.567e-08 -7.542 -7.591 -0.049 (0) - CaHSO4+ 3.198e-11 2.858e-11 -10.495 -10.544 -0.049 (0) + Ca+2 2.506e-03 1.621e-03 -2.601 -2.790 -0.189 -17.90 + CaSO4 4.140e-04 4.152e-04 -3.383 -3.382 0.001 7.50 + CaHCO3+ 1.051e-05 9.443e-06 -4.979 -5.025 -0.046 9.73 + CaCO3 5.547e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 + CaOH+ 2.873e-08 2.567e-08 -7.542 -7.591 -0.049 (0) + CaHSO4+ 3.202e-11 2.861e-11 -10.495 -10.544 -0.049 (0) Cl 2.500e-03 Cl- 2.500e-03 2.230e-03 -2.602 -2.652 -0.050 18.15 - FeCl+ 3.847e-11 3.437e-11 -10.415 -10.464 -0.049 (0) + FeCl+ 3.846e-11 3.436e-11 -10.415 -10.464 -0.049 (0) + HCl 7.956e-12 8.052e-12 -11.099 -11.094 0.005 (0) FeCl+2 1.205e-26 7.758e-27 -25.919 -26.110 -0.191 (0) - FeCl2+ 8.626e-29 7.727e-29 -28.064 -28.112 -0.048 (0) + FeCl2+ 8.626e-29 7.728e-29 -28.064 -28.112 -0.048 (0) FeCl3 1.718e-32 1.723e-32 -31.765 -31.764 0.001 (0) Fe(2) 2.149e-08 - Fe+2 1.711e-08 1.117e-08 -7.767 -7.952 -0.185 -21.90 - FeSO4 2.847e-09 2.855e-09 -8.546 -8.544 0.001 18.97 + Fe+2 1.711e-08 1.116e-08 -7.767 -7.952 -0.185 -21.90 + FeSO4 2.851e-09 2.859e-09 -8.545 -8.544 0.001 18.97 FeHCO3+ 5.705e-10 5.097e-10 -9.244 -9.293 -0.049 (0) - FeCO3 5.455e-10 5.471e-10 -9.263 -9.262 0.001 (0) - FeOH+ 3.760e-10 3.368e-10 -9.425 -9.473 -0.048 (0) - FeCl+ 3.847e-11 3.437e-11 -10.415 -10.464 -0.049 (0) - Fe(OH)2 2.727e-13 2.734e-13 -12.564 -12.563 0.001 (0) - Fe(OH)3- 1.082e-15 9.691e-16 -14.966 -15.014 -0.048 (0) - FeHSO4+ 2.202e-16 1.967e-16 -15.657 -15.706 -0.049 (0) - Fe(HS)2 2.776e-18 2.784e-18 -17.557 -17.555 0.001 (0) - Fe(HS)3- 1.795e-25 1.604e-25 -24.746 -24.795 -0.049 (0) + FeCO3 5.454e-10 5.470e-10 -9.263 -9.262 0.001 (0) + FeOH+ 3.759e-10 3.367e-10 -9.425 -9.473 -0.048 (0) + FeCl+ 3.846e-11 3.436e-11 -10.415 -10.464 -0.049 (0) + Fe(OH)2 2.726e-13 2.734e-13 -12.564 -12.563 0.001 (0) + Fe(OH)3- 1.082e-15 9.689e-16 -14.966 -15.014 -0.048 (0) + FeHSO4+ 2.205e-16 1.970e-16 -15.657 -15.706 -0.049 (0) + Fe(HS)2 2.775e-18 2.783e-18 -17.557 -17.555 0.001 (0) + Fe(HS)3- 1.794e-25 1.603e-25 -24.746 -24.795 -0.049 (0) Fe(3) 3.263e-14 Fe(OH)3 2.746e-14 2.754e-14 -13.561 -13.560 0.001 (0) - Fe(OH)4- 2.671e-15 2.396e-15 -14.573 -14.621 -0.047 (0) + Fe(OH)4- 2.670e-15 2.396e-15 -14.573 -14.621 -0.047 (0) Fe(OH)2+ 2.498e-15 2.241e-15 -14.602 -14.650 -0.047 (0) FeOH+2 1.102e-19 7.095e-20 -18.958 -19.149 -0.191 (0) - FeSO4+ 2.028e-24 1.817e-24 -23.693 -23.741 -0.048 (0) - Fe+3 2.781e-25 1.152e-25 -24.556 -24.939 -0.383 (0) - Fe(SO4)2- 6.397e-26 5.715e-26 -25.194 -25.243 -0.049 (0) + FeSO4+ 2.031e-24 1.819e-24 -23.692 -23.740 -0.048 (0) + Fe+3 2.782e-25 1.152e-25 -24.556 -24.939 -0.383 (0) + Fe(SO4)2- 6.414e-26 5.731e-26 -25.193 -25.242 -0.049 (0) FeCl+2 1.205e-26 7.758e-27 -25.919 -26.110 -0.191 (0) - FeCl2+ 8.626e-29 7.727e-29 -28.064 -28.112 -0.048 (0) - FeHSO4+2 8.003e-32 5.099e-32 -31.097 -31.293 -0.196 (0) + FeCl2+ 8.626e-29 7.728e-29 -28.064 -28.112 -0.048 (0) + FeHSO4+2 8.015e-32 5.106e-32 -31.096 -31.292 -0.196 (0) FeCl3 1.718e-32 1.723e-32 -31.765 -31.764 0.001 (0) - Fe2(OH)2+4 8.224e-37 1.355e-37 -36.085 -36.868 -0.783 (0) + Fe2(OH)2+4 8.227e-37 1.355e-37 -36.085 -36.868 -0.783 (0) Fe3(OH)4+5 0.000e+00 0.000e+00 -47.974 -49.198 -1.224 (0) H(0) 1.329e-11 - H2 6.645e-12 6.664e-12 -11.178 -11.176 0.001 28.61 + H2 6.643e-12 6.661e-12 -11.178 -11.176 0.001 28.61 Na 2.500e-03 - Na+ 2.482e-03 2.221e-03 -2.605 -2.653 -0.048 -1.36 - NaSO4- 1.785e-05 1.601e-05 -4.748 -4.796 -0.047 14.42 - NaHCO3 5.686e-07 5.702e-07 -6.245 -6.244 0.001 1.80 - NaCO3- 9.455e-08 8.448e-08 -7.024 -7.073 -0.049 -0.90 - NaOH 2.138e-19 2.144e-19 -18.670 -18.669 0.001 (0) + Na+ 2.485e-03 2.224e-03 -2.605 -2.653 -0.048 -1.36 + NaSO4- 1.425e-05 1.251e-05 -4.846 -4.903 -0.056 14.91 + NaHCO3 6.745e-07 6.789e-07 -6.171 -6.168 0.003 28.00 + NaOH 2.141e-19 2.147e-19 -18.669 -18.668 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -70.029 -70.028 0.001 30.40 + O2 0.000e+00 0.000e+00 -70.029 -70.027 0.001 30.40 S(-2) 6.419e-10 - HS- 5.936e-10 5.290e-10 -9.227 -9.277 -0.050 20.68 - H2S 4.834e-11 4.848e-11 -10.316 -10.314 0.001 37.16 - S-2 9.463e-15 6.095e-15 -14.024 -14.215 -0.191 (0) - Fe(HS)2 2.776e-18 2.784e-18 -17.557 -17.555 0.001 (0) - Fe(HS)3- 1.795e-25 1.604e-25 -24.746 -24.795 -0.049 (0) + HS- 5.935e-10 5.289e-10 -9.227 -9.277 -0.050 20.68 + H2S 4.834e-11 4.847e-11 -10.316 -10.315 0.001 36.27 + S-2 9.463e-15 6.094e-15 -14.024 -14.215 -0.191 (0) + Fe(HS)2 2.775e-18 2.783e-18 -17.557 -17.555 0.001 (0) + (H2S)2 1.235e-22 1.238e-22 -21.908 -21.907 0.001 30.09 + Fe(HS)3- 1.794e-25 1.603e-25 -24.746 -24.795 -0.049 (0) S(6) 2.667e-03 - SO4-2 2.235e-03 1.438e-03 -2.651 -2.842 -0.192 14.81 - CaSO4 4.136e-04 4.147e-04 -3.383 -3.382 0.001 7.50 - NaSO4- 1.785e-05 1.601e-05 -4.748 -4.796 -0.047 14.42 - FeSO4 2.847e-09 2.855e-09 -8.546 -8.544 0.001 18.97 - HSO4- 1.640e-09 1.466e-09 -8.785 -8.834 -0.049 40.35 - CaHSO4+ 3.198e-11 2.858e-11 -10.495 -10.544 -0.049 (0) - FeHSO4+ 2.202e-16 1.967e-16 -15.657 -15.706 -0.049 (0) - FeSO4+ 2.028e-24 1.817e-24 -23.693 -23.741 -0.048 (0) - Fe(SO4)2- 6.397e-26 5.715e-26 -25.194 -25.243 -0.049 (0) - FeHSO4+2 8.003e-32 5.099e-32 -31.097 -31.293 -0.196 (0) + SO4-2 2.238e-03 1.440e-03 -2.650 -2.842 -0.192 15.09 + CaSO4 4.140e-04 4.152e-04 -3.383 -3.382 0.001 7.50 + NaSO4- 1.425e-05 1.251e-05 -4.846 -4.903 -0.056 14.91 + FeSO4 2.851e-09 2.859e-09 -8.545 -8.544 0.001 18.97 + HSO4- 1.643e-09 1.467e-09 -8.784 -8.833 -0.049 40.35 + CaHSO4+ 3.202e-11 2.861e-11 -10.495 -10.544 -0.049 (0) + FeHSO4+ 2.205e-16 1.970e-16 -15.657 -15.706 -0.049 (0) + FeSO4+ 2.031e-24 1.819e-24 -23.692 -23.740 -0.048 (0) + Fe(SO4)2- 6.414e-26 5.731e-26 -25.193 -25.242 -0.049 (0) + FeHSO4+2 8.015e-32 5.106e-32 -31.096 -31.292 -0.196 (0) ------------------------------Saturation indices------------------------------- @@ -618,15 +623,17 @@ S(6) 2.667e-03 Gypsum -1.05 -5.63 -4.58 CaSO4:2H2O H2(g) -8.08 -11.18 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -9.26 -17.26 -7.99 H2S - Halite -6.88 -5.31 1.57 NaCl + H2S(g) -9.32 -17.26 -7.94 H2S + Halite -6.87 -5.30 1.57 NaCl Hematite 2.01 -2.00 -4.01 Fe2O3 Mackinawite -4.60 -9.25 -4.65 FeS Melanterite -8.59 -10.79 -2.21 FeSO4:7H2O - O2(g) -67.14 -70.03 -2.89 O2 - Pyrite -0.00 -18.48 -18.48 FeS2 + Mirabilite -6.91 -8.15 -1.24 Na2SO4:10H2O + O2(g) -67.13 -70.03 -2.89 O2 + Pyrite 0.00 -18.48 -18.48 FeS2 Siderite -2.75 -13.64 -10.89 FeCO3 Sulfur -7.17 -2.29 4.88 S + Thenardite -7.85 -8.15 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -668,7 +675,7 @@ Pyrite 0.00 -18.48 -18.48 1.000e+01 9.997e+00 -2.667e-03 Elements Molality Moles - C 4.510e-04 4.510e-04 + C 4.511e-04 4.511e-04 Ca 5.558e-03 5.558e-03 Cl 5.000e-03 5.000e-03 Fe 3.488e-08 3.488e-08 @@ -679,15 +686,16 @@ Pyrite 0.00 -18.48 -18.48 1.000e+01 9.997e+00 -2.667e-03 pH = 7.881 Charge balance pe = -3.812 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 1562 - Density (g/cm) = 0.99801 + Specific Conductance (µS/cm, 25°C) = 1564 + Density (g/cm³) = 0.99801 Volume (L) = 1.00303 + Viscosity (mPa s) = 0.89416 Activity of water = 1.000 - Ionic strength (mol/kgw) = 2.254e-02 + Ionic strength (mol/kgw) = 2.256e-02 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 4.491e-04 - Total CO2 (mol/kg) = 4.510e-04 - Temperature (C) = 25.00 + Total CO2 (mol/kg) = 4.511e-04 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 25 @@ -697,90 +705,90 @@ Pyrite 0.00 -18.48 -18.48 1.000e+01 9.997e+00 -2.667e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 8.937e-07 7.689e-07 -6.049 -6.114 -0.065 -3.97 + OH- 8.939e-07 7.690e-07 -6.049 -6.114 -0.065 -3.97 H+ 1.487e-08 1.316e-08 -7.828 -7.881 -0.053 0.00 H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.07 -C(-4) 7.425e-14 - CH4 7.425e-14 7.463e-14 -13.129 -13.127 0.002 35.46 -C(4) 4.510e-04 - HCO3- 4.179e-04 3.636e-04 -3.379 -3.439 -0.060 24.84 - CaHCO3+ 1.359e-05 1.186e-05 -4.867 -4.926 -0.059 9.76 - CO2 1.070e-05 1.076e-05 -4.970 -4.968 0.002 34.43 - CaCO3 5.536e-06 5.565e-06 -5.257 -5.255 0.002 -14.60 - CO3-2 2.262e-06 1.296e-06 -5.646 -5.887 -0.242 -4.81 - NaHCO3 8.714e-07 8.760e-07 -6.060 -6.058 0.002 1.80 - NaCO3- 1.196e-07 1.034e-07 -6.922 -6.986 -0.063 -0.82 - FeHCO3+ 6.513e-10 5.632e-10 -9.186 -9.249 -0.063 (0) - FeCO3 4.790e-10 4.815e-10 -9.320 -9.317 0.002 (0) +C(-4) 7.410e-14 + CH4 7.410e-14 7.448e-14 -13.130 -13.128 0.002 35.46 +C(4) 4.511e-04 + HCO3- 4.180e-04 3.636e-04 -3.379 -3.439 -0.060 24.74 + CaHCO3+ 1.358e-05 1.185e-05 -4.867 -4.926 -0.059 9.76 + CO2 1.072e-05 1.076e-05 -4.970 -4.968 0.001 34.43 + CaCO3 5.534e-06 5.563e-06 -5.257 -5.255 0.002 -14.60 + CO3-2 2.263e-06 1.296e-06 -5.645 -5.887 -0.242 -3.56 + NaHCO3 1.031e-06 1.044e-06 -5.987 -5.981 0.005 28.00 + FeHCO3+ 6.511e-10 5.630e-10 -9.186 -9.250 -0.063 (0) + FeCO3 4.789e-10 4.814e-10 -9.320 -9.318 0.002 (0) (CO2)2 2.114e-12 2.125e-12 -11.675 -11.673 0.002 68.87 Ca 5.558e-03 - Ca+2 4.463e-03 2.556e-03 -2.350 -2.592 -0.242 -17.79 - CaSO4 1.076e-03 1.082e-03 -2.968 -2.966 0.002 7.50 - CaHCO3+ 1.359e-05 1.186e-05 -4.867 -4.926 -0.059 9.76 - CaCO3 5.536e-06 5.565e-06 -5.257 -5.255 0.002 -14.60 - CaOH+ 3.727e-08 3.223e-08 -7.429 -7.492 -0.063 (0) - CaHSO4+ 1.082e-10 9.356e-11 -9.966 -10.029 -0.063 (0) + Ca+2 4.461e-03 2.555e-03 -2.351 -2.593 -0.242 -17.79 + CaSO4 1.078e-03 1.083e-03 -2.967 -2.965 0.002 7.50 + CaHCO3+ 1.358e-05 1.185e-05 -4.867 -4.926 -0.059 9.76 + CaCO3 5.534e-06 5.563e-06 -5.257 -5.255 0.002 -14.60 + CaOH+ 3.726e-08 3.222e-08 -7.429 -7.492 -0.063 (0) + CaHSO4+ 1.084e-10 9.369e-11 -9.965 -10.028 -0.063 (0) Cl 5.000e-03 Cl- 5.000e-03 4.309e-03 -2.301 -2.366 -0.065 18.19 - FeCl+ 1.066e-10 9.214e-11 -9.972 -10.036 -0.063 (0) - FeCl+2 5.224e-26 2.967e-26 -25.282 -25.528 -0.246 (0) - FeCl2+ 6.579e-28 5.711e-28 -27.182 -27.243 -0.061 (0) - FeCl3 2.448e-31 2.461e-31 -30.611 -30.609 0.002 (0) + FeCl+ 1.065e-10 9.209e-11 -9.973 -10.036 -0.063 (0) + HCl 1.910e-11 1.953e-11 -10.719 -10.709 0.010 (0) + FeCl+2 5.223e-26 2.966e-26 -25.282 -25.528 -0.246 (0) + FeCl2+ 6.577e-28 5.709e-28 -27.182 -27.243 -0.061 (0) + FeCl3 2.447e-31 2.460e-31 -30.611 -30.609 0.002 (0) Fe(2) 3.488e-08 - Fe+2 2.669e-08 1.549e-08 -7.574 -7.810 -0.236 -21.80 - FeSO4 6.520e-09 6.554e-09 -8.186 -8.183 0.002 18.97 - FeHCO3+ 6.513e-10 5.632e-10 -9.186 -9.249 -0.063 (0) - FeCO3 4.790e-10 4.815e-10 -9.320 -9.317 0.002 (0) - FeOH+ 4.286e-10 3.721e-10 -9.368 -9.429 -0.061 (0) - FeCl+ 1.066e-10 9.214e-11 -9.972 -10.036 -0.063 (0) - Fe(OH)2 2.394e-13 2.406e-13 -12.621 -12.619 0.002 (0) - Fe(OH)3- 7.823e-16 6.791e-16 -15.107 -15.168 -0.061 (0) - FeHSO4+ 6.556e-16 5.669e-16 -15.183 -15.247 -0.063 (0) - Fe(HS)2 2.145e-18 2.156e-18 -17.669 -17.666 0.002 (0) - Fe(HS)3- 1.073e-25 9.278e-26 -24.969 -25.033 -0.063 (0) + Fe+2 2.668e-08 1.548e-08 -7.574 -7.810 -0.236 -21.80 + FeSO4 6.531e-09 6.565e-09 -8.185 -8.183 0.002 18.97 + FeHCO3+ 6.511e-10 5.630e-10 -9.186 -9.250 -0.063 (0) + FeCO3 4.789e-10 4.814e-10 -9.320 -9.318 0.002 (0) + FeOH+ 4.285e-10 3.720e-10 -9.368 -9.429 -0.061 (0) + FeCl+ 1.065e-10 9.209e-11 -9.973 -10.036 -0.063 (0) + Fe(OH)2 2.393e-13 2.406e-13 -12.621 -12.619 0.002 (0) + Fe(OH)3- 7.823e-16 6.790e-16 -15.107 -15.168 -0.061 (0) + FeHSO4+ 6.566e-16 5.677e-16 -15.183 -15.246 -0.063 (0) + Fe(HS)2 2.144e-18 2.155e-18 -17.669 -17.667 0.002 (0) + Fe(HS)3- 1.072e-25 9.273e-26 -24.970 -25.033 -0.063 (0) Fe(3) 3.282e-14 Fe(OH)3 2.739e-14 2.753e-14 -13.562 -13.560 0.002 (0) - Fe(OH)2+ 3.234e-15 2.813e-15 -14.490 -14.551 -0.060 (0) - Fe(OH)4- 2.193e-15 1.908e-15 -14.659 -14.720 -0.060 (0) - FeOH+2 1.969e-19 1.118e-19 -18.706 -18.951 -0.246 (0) - FeSO4+ 6.852e-24 5.948e-24 -23.164 -23.226 -0.061 (0) - Fe+3 6.843e-25 2.280e-25 -24.165 -24.642 -0.477 (0) - Fe(SO4)2- 3.581e-25 3.097e-25 -24.446 -24.509 -0.063 (0) - FeCl+2 5.224e-26 2.967e-26 -25.282 -25.528 -0.246 (0) - FeCl2+ 6.579e-28 5.711e-28 -27.182 -27.243 -0.061 (0) - FeHSO4+2 3.749e-31 2.096e-31 -30.426 -30.679 -0.253 (0) - FeCl3 2.448e-31 2.461e-31 -30.611 -30.609 0.002 (0) - Fe2(OH)2+4 3.445e-36 3.366e-37 -35.463 -36.473 -1.010 (0) - Fe3(OH)4+5 0.000e+00 0.000e+00 -47.125 -48.704 -1.578 (0) -H(0) 1.027e-11 - H2 5.133e-12 5.160e-12 -11.290 -11.287 0.002 28.61 + Fe(OH)2+ 3.233e-15 2.813e-15 -14.490 -14.551 -0.060 (0) + Fe(OH)4- 2.193e-15 1.908e-15 -14.659 -14.719 -0.060 (0) + FeOH+2 1.969e-19 1.118e-19 -18.706 -18.952 -0.246 (0) + FeSO4+ 6.864e-24 5.959e-24 -23.163 -23.225 -0.061 (0) + Fe+3 6.842e-25 2.279e-25 -24.165 -24.642 -0.477 (0) + Fe(SO4)2- 3.595e-25 3.109e-25 -24.444 -24.507 -0.063 (0) + FeCl+2 5.223e-26 2.966e-26 -25.282 -25.528 -0.246 (0) + FeCl2+ 6.577e-28 5.709e-28 -27.182 -27.243 -0.061 (0) + FeHSO4+2 3.756e-31 2.099e-31 -30.425 -30.678 -0.253 (0) + FeCl3 2.447e-31 2.460e-31 -30.611 -30.609 0.002 (0) + Fe2(OH)2+4 3.446e-36 3.365e-37 -35.463 -36.473 -1.010 (0) + Fe3(OH)4+5 0.000e+00 0.000e+00 -47.125 -48.704 -1.579 (0) +H(0) 1.026e-11 + H2 5.130e-12 5.157e-12 -11.290 -11.288 0.002 28.61 Na 5.000e-03 - Na+ 4.940e-03 4.284e-03 -2.306 -2.368 -0.062 -1.31 - NaSO4- 5.873e-05 5.109e-05 -4.231 -4.292 -0.060 14.77 - NaHCO3 8.714e-07 8.760e-07 -6.060 -6.058 0.002 1.80 - NaCO3- 1.196e-07 1.034e-07 -6.922 -6.986 -0.063 -0.82 - NaOH 3.277e-19 3.294e-19 -18.484 -18.482 0.002 (0) + Na+ 4.951e-03 4.293e-03 -2.305 -2.367 -0.062 -1.31 + NaSO4- 4.771e-05 3.999e-05 -4.321 -4.398 -0.077 15.13 + NaHCO3 1.031e-06 1.044e-06 -5.987 -5.981 0.005 28.00 + NaOH 3.285e-19 3.302e-19 -18.484 -18.481 0.002 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -69.808 -69.806 0.002 30.40 + O2 0.000e+00 0.000e+00 -69.807 -69.805 0.002 30.40 S(-2) 5.046e-10 HS- 4.593e-10 3.952e-10 -9.338 -9.403 -0.065 20.71 - H2S 4.523e-11 4.547e-11 -10.345 -10.342 0.002 37.16 - S-2 6.387e-15 3.627e-15 -14.195 -14.440 -0.246 (0) - Fe(HS)2 2.145e-18 2.156e-18 -17.669 -17.666 0.002 (0) - Fe(HS)3- 1.073e-25 9.278e-26 -24.969 -25.033 -0.063 (0) + H2S 4.522e-11 4.546e-11 -10.345 -10.342 0.002 36.27 + S-2 6.389e-15 3.628e-15 -14.195 -14.440 -0.246 (0) + Fe(HS)2 2.144e-18 2.155e-18 -17.669 -17.667 0.002 (0) + (H2S)2 1.083e-22 1.089e-22 -21.965 -21.963 0.002 30.09 + Fe(HS)3- 1.072e-25 9.273e-26 -24.970 -25.033 -0.063 (0) S(6) 5.333e-03 - SO4-2 4.199e-03 2.380e-03 -2.377 -2.624 -0.247 14.96 - CaSO4 1.076e-03 1.082e-03 -2.968 -2.966 0.002 7.50 - NaSO4- 5.873e-05 5.109e-05 -4.231 -4.292 -0.060 14.77 - FeSO4 6.520e-09 6.554e-09 -8.186 -8.183 0.002 18.97 - HSO4- 3.520e-09 3.044e-09 -8.453 -8.517 -0.063 40.39 - CaHSO4+ 1.082e-10 9.356e-11 -9.966 -10.029 -0.063 (0) - FeHSO4+ 6.556e-16 5.669e-16 -15.183 -15.247 -0.063 (0) - FeSO4+ 6.852e-24 5.948e-24 -23.164 -23.226 -0.061 (0) - Fe(SO4)2- 3.581e-25 3.097e-25 -24.446 -24.509 -0.063 (0) - FeHSO4+2 3.749e-31 2.096e-31 -30.426 -30.679 -0.253 (0) + SO4-2 4.208e-03 2.384e-03 -2.376 -2.623 -0.247 15.24 + CaSO4 1.078e-03 1.083e-03 -2.967 -2.965 0.002 7.50 + NaSO4- 4.771e-05 3.999e-05 -4.321 -4.398 -0.077 15.13 + FeSO4 6.531e-09 6.565e-09 -8.185 -8.183 0.002 18.97 + HSO4- 3.528e-09 3.050e-09 -8.453 -8.516 -0.063 40.39 + CaHSO4+ 1.084e-10 9.369e-11 -9.965 -10.028 -0.063 (0) + FeHSO4+ 6.566e-16 5.677e-16 -15.183 -15.246 -0.063 (0) + FeSO4+ 6.864e-24 5.959e-24 -23.163 -23.225 -0.061 (0) + Fe(SO4)2- 3.595e-25 3.109e-25 -24.444 -24.507 -0.063 (0) + FeHSO4+2 3.756e-31 2.099e-31 -30.425 -30.678 -0.253 (0) ------------------------------Saturation indices------------------------------- @@ -797,15 +805,17 @@ S(6) 5.333e-03 Gypsum -0.63 -5.22 -4.58 CaSO4:2H2O H2(g) -8.19 -11.29 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -9.29 -17.28 -7.99 H2S + H2S(g) -9.35 -17.28 -7.94 H2S Halite -6.30 -4.73 1.57 NaCl Hematite 2.01 -2.00 -4.01 Fe2O3 Mackinawite -4.68 -9.33 -4.65 FeS - Melanterite -8.23 -10.43 -2.21 FeSO4:7H2O + Melanterite -8.22 -10.43 -2.21 FeSO4:7H2O + Mirabilite -6.12 -7.36 -1.24 Na2SO4:10H2O O2(g) -66.91 -69.81 -2.89 O2 Pyrite 0.00 -18.48 -18.48 FeS2 Siderite -2.81 -13.70 -10.89 FeCO3 Sulfur -7.09 -2.20 4.88 S + Thenardite -7.06 -7.36 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -841,16 +851,16 @@ CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.002e+01 1.582e-02 Calcite 0.00 -8.48 -8.48 1.000e+01 9.984e+00 -1.617e-02 Goethite 0.00 -1.00 -1.00 1.000e+01 1.001e+01 8.000e-03 Gypsum -0.01 -4.59 -4.58 0.000e+00 0 0.000e+00 -Pyrite -0.00 -18.48 -18.48 1.000e+01 9.992e+00 -8.000e-03 +Pyrite 0.00 -18.48 -18.48 1.000e+01 9.992e+00 -8.000e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 3.506e-04 3.506e-04 + C 3.509e-04 3.509e-04 Ca 1.618e-02 1.617e-02 Cl 1.500e-02 1.500e-02 - Fe 8.188e-08 8.187e-08 + Fe 8.187e-08 8.187e-08 Na 1.500e-02 1.500e-02 S 1.600e-02 1.600e-02 @@ -858,15 +868,16 @@ Pyrite -0.00 -18.48 -18.48 1.000e+01 9.992e+00 -8.000e-03 pH = 7.725 Charge balance pe = -3.573 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 4056 - Density (g/cm) = 0.99985 + Specific Conductance (µS/cm, 25°C) = 4079 + Density (g/cm³) = 0.99984 Volume (L) = 1.00316 + Viscosity (mPa s) = 0.89935 Activity of water = 0.999 - Ionic strength (mol/kgw) = 6.087e-02 + Ionic strength (mol/kgw) = 6.093e-02 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 3.478e-04 - Total CO2 (mol/kg) = 3.506e-04 - Temperature (C) = 25.00 + Total CO2 (mol/kg) = 3.509e-04 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 25 @@ -876,96 +887,96 @@ Pyrite -0.00 -18.48 -18.48 1.000e+01 9.992e+00 -8.000e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 6.730e-07 5.370e-07 -6.172 -6.270 -0.098 -3.84 - H+ 2.226e-08 1.883e-08 -7.652 -7.725 -0.073 0.00 + OH- 6.733e-07 5.372e-07 -6.172 -6.270 -0.098 -3.84 + H+ 2.226e-08 1.882e-08 -7.653 -7.725 -0.073 0.00 H2O 5.551e+01 9.990e-01 1.744 -0.000 0.000 18.07 -C(-4) 1.593e-14 - CH4 1.593e-14 1.615e-14 -13.798 -13.792 0.006 35.46 -C(4) 3.506e-04 - HCO3- 3.106e-04 2.539e-04 -3.508 -3.595 -0.088 25.02 - CaHCO3+ 2.062e-05 1.697e-05 -4.686 -4.770 -0.085 9.81 - CO2 1.061e-05 1.076e-05 -4.974 -4.968 0.006 34.43 - CaCO3 5.487e-06 5.565e-06 -5.261 -5.255 0.006 -14.60 - NaHCO3 1.678e-06 1.701e-06 -5.775 -5.769 0.006 1.80 - CO3-2 1.416e-06 6.324e-07 -5.849 -6.199 -0.350 -4.43 - NaCO3- 1.733e-07 1.403e-07 -6.761 -6.853 -0.092 -0.55 - FeHCO3+ 8.222e-10 6.659e-10 -9.085 -9.177 -0.092 (0) - FeCO3 3.923e-10 3.978e-10 -9.406 -9.400 0.006 (0) +C(-4) 1.588e-14 + CH4 1.588e-14 1.611e-14 -13.799 -13.793 0.006 35.46 +C(4) 3.509e-04 + HCO3- 3.108e-04 2.540e-04 -3.508 -3.595 -0.088 24.93 + CaHCO3+ 2.061e-05 1.696e-05 -4.686 -4.771 -0.085 9.81 + CO2 1.066e-05 1.076e-05 -4.972 -4.968 0.004 34.43 + CaCO3 5.486e-06 5.563e-06 -5.261 -5.255 0.006 -14.60 + NaHCO3 1.966e-06 2.030e-06 -5.706 -5.692 0.014 28.00 + CO3-2 1.418e-06 6.329e-07 -5.848 -6.199 -0.350 -3.13 + FeHCO3+ 8.217e-10 6.654e-10 -9.085 -9.177 -0.092 (0) + FeCO3 3.922e-10 3.977e-10 -9.407 -9.400 0.006 (0) (CO2)2 2.096e-12 2.125e-12 -11.679 -11.673 0.006 68.87 Ca 1.618e-02 - Ca+2 1.168e-02 5.238e-03 -1.933 -2.281 -0.348 -17.57 - CaSO4 4.473e-03 4.536e-03 -2.349 -2.343 0.006 7.50 - CaHCO3+ 2.062e-05 1.697e-05 -4.686 -4.770 -0.085 9.81 - CaCO3 5.487e-06 5.565e-06 -5.261 -5.255 0.006 -14.60 - CaOH+ 5.695e-08 4.612e-08 -7.244 -7.336 -0.092 (0) - CaHSO4+ 6.933e-10 5.614e-10 -9.159 -9.251 -0.092 (0) + Ca+2 1.167e-02 5.232e-03 -1.933 -2.281 -0.348 -17.57 + CaSO4 4.483e-03 4.546e-03 -2.348 -2.342 0.006 7.50 + CaHCO3+ 2.061e-05 1.696e-05 -4.686 -4.771 -0.085 9.81 + CaCO3 5.486e-06 5.563e-06 -5.261 -5.255 0.006 -14.60 + CaOH+ 5.692e-08 4.609e-08 -7.245 -7.336 -0.092 (0) + CaHSO4+ 6.946e-10 5.625e-10 -9.158 -9.250 -0.092 (0) Cl 1.500e-02 Cl- 1.500e-02 1.202e-02 -1.824 -1.920 -0.096 18.27 - FeCl+ 5.373e-10 4.351e-10 -9.270 -9.361 -0.092 (0) - FeCl+2 5.539e-25 2.428e-25 -24.257 -24.615 -0.358 (0) - FeCl2+ 1.602e-26 1.304e-26 -25.795 -25.885 -0.090 (0) - FeCl3 1.546e-29 1.567e-29 -28.811 -28.805 0.006 (0) -Fe(2) 8.188e-08 - Fe+2 5.719e-08 2.622e-08 -7.243 -7.581 -0.339 -21.59 - FeSO4 2.239e-08 2.271e-08 -7.650 -7.644 0.006 18.97 - FeHCO3+ 8.222e-10 6.659e-10 -9.085 -9.177 -0.092 (0) - FeOH+ 5.407e-10 4.400e-10 -9.267 -9.357 -0.090 (0) - FeCl+ 5.373e-10 4.351e-10 -9.270 -9.361 -0.092 (0) - FeCO3 3.923e-10 3.978e-10 -9.406 -9.400 0.006 (0) - Fe(OH)2 1.959e-13 1.987e-13 -12.708 -12.702 0.006 (0) - FeHSO4+ 3.471e-15 2.811e-15 -14.460 -14.551 -0.092 (0) - Fe(OH)3- 4.813e-16 3.916e-16 -15.318 -15.407 -0.090 (0) - Fe(HS)2 1.450e-18 1.470e-18 -17.839 -17.833 0.006 (0) - Fe(HS)3- 4.957e-26 4.014e-26 -25.305 -25.396 -0.092 (0) -Fe(3) 3.369e-14 + FeCl+ 5.367e-10 4.346e-10 -9.270 -9.362 -0.092 (0) + HCl 7.342e-11 7.793e-11 -10.134 -10.108 0.026 (0) + FeCl+2 5.534e-25 2.425e-25 -24.257 -24.615 -0.358 (0) + FeCl2+ 1.600e-26 1.302e-26 -25.796 -25.885 -0.090 (0) + FeCl3 1.543e-29 1.565e-29 -28.812 -28.805 0.006 (0) +Fe(2) 8.187e-08 + Fe+2 5.714e-08 2.619e-08 -7.243 -7.582 -0.339 -21.59 + FeSO4 2.244e-08 2.276e-08 -7.649 -7.643 0.006 18.97 + FeHCO3+ 8.217e-10 6.654e-10 -9.085 -9.177 -0.092 (0) + FeOH+ 5.403e-10 4.396e-10 -9.267 -9.357 -0.090 (0) + FeCl+ 5.367e-10 4.346e-10 -9.270 -9.362 -0.092 (0) + FeCO3 3.922e-10 3.977e-10 -9.407 -9.400 0.006 (0) + Fe(OH)2 1.958e-13 1.986e-13 -12.708 -12.702 0.006 (0) + FeHSO4+ 3.477e-15 2.816e-15 -14.459 -14.550 -0.092 (0) + Fe(OH)3- 4.814e-16 3.917e-16 -15.318 -15.407 -0.090 (0) + Fe(HS)2 1.449e-18 1.469e-18 -17.839 -17.833 0.006 (0) + Fe(HS)3- 4.955e-26 4.013e-26 -25.305 -25.397 -0.092 (0) +Fe(3) 3.368e-14 Fe(OH)3 2.713e-14 2.752e-14 -13.567 -13.560 0.006 (0) - Fe(OH)2+ 4.924e-15 4.026e-15 -14.308 -14.395 -0.088 (0) - Fe(OH)4- 1.629e-15 1.331e-15 -14.788 -14.876 -0.088 (0) - FeOH+2 5.227e-19 2.291e-19 -18.282 -18.640 -0.358 (0) - FeSO4+ 4.390e-23 3.572e-23 -22.358 -22.447 -0.090 (0) - Fe(SO4)2- 4.699e-24 3.806e-24 -23.328 -23.420 -0.092 (0) - Fe+3 3.021e-24 6.689e-25 -23.520 -24.175 -0.655 (0) - FeCl+2 5.539e-25 2.428e-25 -24.257 -24.615 -0.358 (0) - FeCl2+ 1.602e-26 1.304e-26 -25.795 -25.885 -0.090 (0) - FeCl3 1.546e-29 1.567e-29 -28.811 -28.805 0.006 (0) - FeHSO4+2 4.188e-30 1.801e-30 -29.378 -29.744 -0.366 (0) - Fe2(OH)2+4 4.131e-35 1.413e-36 -34.384 -35.850 -1.466 (0) - Fe3(OH)4+5 0.000e+00 0.000e+00 -45.635 -47.925 -2.290 (0) -H(0) 6.938e-12 - H2 3.469e-12 3.518e-12 -11.460 -11.454 0.006 28.61 + Fe(OH)2+ 4.923e-15 4.024e-15 -14.308 -14.395 -0.088 (0) + Fe(OH)4- 1.629e-15 1.332e-15 -14.788 -14.876 -0.088 (0) + FeOH+2 5.225e-19 2.290e-19 -18.282 -18.640 -0.358 (0) + FeSO4+ 4.399e-23 3.580e-23 -22.357 -22.446 -0.090 (0) + Fe(SO4)2- 4.726e-24 3.827e-24 -23.326 -23.417 -0.092 (0) + Fe+3 3.019e-24 6.681e-25 -23.520 -24.175 -0.655 (0) + FeCl+2 5.534e-25 2.425e-25 -24.257 -24.615 -0.358 (0) + FeCl2+ 1.600e-26 1.302e-26 -25.796 -25.885 -0.090 (0) + FeCl3 1.543e-29 1.565e-29 -28.812 -28.805 0.006 (0) + FeHSO4+2 4.196e-30 1.804e-30 -29.377 -29.744 -0.367 (0) + Fe2(OH)2+4 4.129e-35 1.411e-36 -34.384 -35.851 -1.466 (0) + Fe3(OH)4+5 0.000e+00 0.000e+00 -45.635 -47.926 -2.291 (0) +H(0) 6.934e-12 + H2 3.467e-12 3.516e-12 -11.460 -11.454 0.006 28.61 Na 1.500e-02 - Na+ 1.464e-02 1.191e-02 -1.834 -1.924 -0.090 -1.18 - NaSO4- 3.557e-04 2.908e-04 -3.449 -3.536 -0.088 15.66 - NaHCO3 1.678e-06 1.701e-06 -5.775 -5.769 0.006 1.80 - NaCO3- 1.733e-07 1.403e-07 -6.761 -6.853 -0.092 -0.55 - NaOH 6.309e-19 6.398e-19 -18.200 -18.194 0.006 (0) + Na+ 1.469e-02 1.195e-02 -1.833 -1.922 -0.090 -1.18 + NaSO4- 3.049e-04 2.282e-04 -3.516 -3.642 -0.126 15.75 + NaHCO3 1.966e-06 2.030e-06 -5.706 -5.692 0.014 28.00 + NaOH 6.333e-19 6.423e-19 -18.198 -18.192 0.006 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -69.480 -69.473 0.006 30.40 -S(-2) 3.550e-10 - HS- 3.143e-10 2.508e-10 -9.503 -9.601 -0.098 20.81 - H2S 4.071e-11 4.129e-11 -10.390 -10.384 0.006 37.16 - S-2 3.670e-15 1.609e-15 -14.435 -14.794 -0.358 (0) - Fe(HS)2 1.450e-18 1.470e-18 -17.839 -17.833 0.006 (0) - Fe(HS)3- 4.957e-26 4.014e-26 -25.305 -25.396 -0.092 (0) + O2 0.000e+00 0.000e+00 -69.479 -69.473 0.006 30.40 +S(-2) 3.551e-10 + HS- 3.144e-10 2.509e-10 -9.503 -9.601 -0.098 20.81 + H2S 4.071e-11 4.128e-11 -10.390 -10.384 0.006 36.27 + S-2 3.673e-15 1.610e-15 -14.435 -14.793 -0.358 (0) + Fe(HS)2 1.449e-18 1.469e-18 -17.839 -17.833 0.006 (0) + (H2S)2 8.855e-23 8.980e-23 -22.053 -22.047 0.006 30.09 + Fe(HS)3- 4.955e-26 4.013e-26 -25.305 -25.397 -0.092 (0) S(6) 1.600e-02 - SO4-2 1.117e-02 4.870e-03 -1.952 -2.312 -0.361 15.32 - CaSO4 4.473e-03 4.536e-03 -2.349 -2.343 0.006 7.50 - NaSO4- 3.557e-04 2.908e-04 -3.449 -3.536 -0.088 15.66 - FeSO4 2.239e-08 2.271e-08 -7.650 -7.644 0.006 18.97 - HSO4- 1.101e-08 8.916e-09 -7.958 -8.050 -0.092 40.47 - CaHSO4+ 6.933e-10 5.614e-10 -9.159 -9.251 -0.092 (0) - FeHSO4+ 3.471e-15 2.811e-15 -14.460 -14.551 -0.092 (0) - FeSO4+ 4.390e-23 3.572e-23 -22.358 -22.447 -0.090 (0) - Fe(SO4)2- 4.699e-24 3.806e-24 -23.328 -23.420 -0.092 (0) - FeHSO4+2 4.188e-30 1.801e-30 -29.378 -29.744 -0.366 (0) + SO4-2 1.121e-02 4.886e-03 -1.950 -2.311 -0.361 15.60 + CaSO4 4.483e-03 4.546e-03 -2.348 -2.342 0.006 7.50 + NaSO4- 3.049e-04 2.282e-04 -3.516 -3.642 -0.126 15.75 + FeSO4 2.244e-08 2.276e-08 -7.649 -7.643 0.006 18.97 + HSO4- 1.104e-08 8.942e-09 -7.957 -8.049 -0.092 40.47 + CaHSO4+ 6.946e-10 5.625e-10 -9.158 -9.250 -0.092 (0) + FeHSO4+ 3.477e-15 2.816e-15 -14.459 -14.550 -0.092 (0) + FeSO4+ 4.399e-23 3.580e-23 -22.357 -22.446 -0.090 (0) + Fe(SO4)2- 4.726e-24 3.827e-24 -23.326 -23.417 -0.092 (0) + FeHSO4+2 4.196e-30 1.804e-30 -29.377 -29.744 -0.367 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -0.32 -4.59 -4.28 CaSO4 + Anhydrite -0.31 -4.59 -4.28 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 Calcite 0.00 -8.48 -8.48 CaCO3 CH4(g) -10.99 -13.79 -2.80 CH4 @@ -976,15 +987,17 @@ S(6) 1.600e-02 Gypsum -0.01 -4.59 -4.58 CaSO4:2H2O H2(g) -8.35 -11.45 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -9.33 -17.33 -7.99 H2S + H2S(g) -9.39 -17.33 -7.94 H2S Halite -5.41 -3.84 1.57 NaCl Hematite 2.01 -2.00 -4.01 Fe2O3 Mackinawite -4.81 -9.46 -4.65 FeS Melanterite -7.69 -9.90 -2.21 FeSO4:7H2O + Mirabilite -4.92 -6.16 -1.24 Na2SO4:10H2O O2(g) -66.58 -69.47 -2.89 O2 - Pyrite -0.00 -18.48 -18.48 FeS2 + Pyrite 0.00 -18.48 -18.48 FeS2 Siderite -2.89 -13.78 -10.89 FeCO3 Sulfur -6.96 -2.08 4.88 S + Thenardite -5.86 -6.16 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1017,128 +1030,129 @@ Reaction 1. Phase SI log IAP log K(T, P) Initial Final Delta CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.003e+01 2.649e-02 -Calcite 0.00 -8.48 -8.48 1.000e+01 9.973e+00 -2.684e-02 -Goethite 0.00 -1.00 -1.00 1.000e+01 1.001e+01 1.333e-02 -Gypsum 0.00 -4.58 -4.58 0.000e+00 9.591e-03 9.591e-03 -Pyrite -0.00 -18.48 -18.48 1.000e+01 9.987e+00 -1.333e-02 +Calcite -0.00 -8.48 -8.48 1.000e+01 9.973e+00 -2.684e-02 +Goethite -0.00 -1.00 -1.00 1.000e+01 1.001e+01 1.333e-02 +Gypsum 0.00 -4.58 -4.58 0.000e+00 9.631e-03 9.631e-03 +Pyrite 0.00 -18.48 -18.48 1.000e+01 9.987e+00 -1.333e-02 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 3.527e-04 3.526e-04 - Ca 1.726e-02 1.725e-02 + C 3.534e-04 3.532e-04 + Ca 1.722e-02 1.721e-02 Cl 2.501e-02 2.500e-02 - Fe 8.721e-08 8.717e-08 + Fe 8.704e-08 8.700e-08 Na 2.501e-02 2.500e-02 - S 1.708e-02 1.708e-02 + S 1.704e-02 1.704e-02 ----------------------------Description of solution---------------------------- pH = 7.720 Charge balance - pe = -3.566 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 5259 - Density (g/cm) = 1.00041 + pe = -3.567 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 5286 + Density (g/cm³) = 1.00040 Volume (L) = 1.00294 + Viscosity (mPa s) = 0.90015 Activity of water = 0.999 Ionic strength (mol/kgw) = 7.428e-02 Mass of water (kg) = 9.995e-01 - Total alkalinity (eq/kg) = 3.501e-04 - Total CO2 (mol/kg) = 3.527e-04 - Temperature (C) = 25.00 - Electrical balance (eq) = -1.165e-09 + Total alkalinity (eq/kg) = 3.504e-04 + Total CO2 (mol/kg) = 3.534e-04 + Temperature (°C) = 25.00 + Electrical balance (eq) = -1.163e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 25 - Total H = 1.109607e+02 - Total O = 5.554955e+01 + Total H = 1.109606e+02 + Total O = 5.554932e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - OH- 6.765e-07 5.302e-07 -6.170 -6.276 -0.106 -3.80 - H+ 2.276e-08 1.907e-08 -7.643 -7.720 -0.077 0.00 + OH- 6.774e-07 5.309e-07 -6.169 -6.275 -0.106 -3.80 + H+ 2.273e-08 1.904e-08 -7.643 -7.720 -0.077 0.00 H2O 5.551e+01 9.986e-01 1.744 -0.001 0.000 18.07 -C(-4) 1.540e-14 - CH4 1.540e-14 1.566e-14 -13.813 -13.805 0.007 35.46 -C(4) 3.527e-04 - HCO3- 3.110e-04 2.507e-04 -3.507 -3.601 -0.094 25.08 - CaHCO3+ 2.116e-05 1.718e-05 -4.674 -4.765 -0.090 9.82 - CO2 1.058e-05 1.076e-05 -4.976 -4.968 0.007 34.43 - CaCO3 5.470e-06 5.565e-06 -5.262 -5.255 0.007 -14.60 - NaHCO3 2.714e-06 2.761e-06 -5.566 -5.559 0.007 1.80 - CO3-2 1.462e-06 6.166e-07 -5.835 -6.210 -0.375 -4.33 - NaCO3- 2.817e-07 2.249e-07 -6.550 -6.648 -0.098 -0.46 - FeHCO3+ 8.417e-10 6.718e-10 -9.075 -9.173 -0.098 (0) +C(-4) 1.539e-14 + CH4 1.539e-14 1.566e-14 -13.813 -13.805 0.007 35.46 +C(4) 3.534e-04 + HCO3- 3.115e-04 2.510e-04 -3.507 -3.600 -0.094 24.99 + CaHCO3+ 2.112e-05 1.715e-05 -4.675 -4.766 -0.090 9.82 + CO2 1.064e-05 1.076e-05 -4.973 -4.968 0.005 34.43 + CaCO3 5.469e-06 5.563e-06 -5.262 -5.255 0.007 -14.60 + NaHCO3 3.170e-06 3.297e-06 -5.499 -5.482 0.017 28.00 + CO3-2 1.466e-06 6.184e-07 -5.834 -6.209 -0.375 -3.01 + FeHCO3+ 8.404e-10 6.709e-10 -9.075 -9.173 -0.098 (0) FeCO3 3.897e-10 3.964e-10 -9.409 -9.402 0.007 (0) (CO2)2 2.089e-12 2.125e-12 -11.680 -11.673 0.007 68.87 -Ca 1.726e-02 - Ca+2 1.265e-02 5.372e-03 -1.898 -2.270 -0.372 -17.52 +Ca 1.722e-02 + Ca+2 1.261e-02 5.355e-03 -1.899 -2.271 -0.372 -17.52 CaSO4 4.585e-03 4.664e-03 -2.339 -2.331 0.007 7.50 - CaHCO3+ 2.116e-05 1.718e-05 -4.674 -4.765 -0.090 9.82 - CaCO3 5.470e-06 5.565e-06 -5.262 -5.255 0.007 -14.60 - CaOH+ 5.850e-08 4.670e-08 -7.233 -7.331 -0.098 (0) - CaHSO4+ 7.323e-10 5.846e-10 -9.135 -9.233 -0.098 (0) + CaHCO3+ 2.112e-05 1.715e-05 -4.675 -4.766 -0.090 9.82 + CaCO3 5.469e-06 5.563e-06 -5.262 -5.255 0.007 -14.60 + CaOH+ 5.840e-08 4.662e-08 -7.234 -7.331 -0.098 (0) + CaHSO4+ 7.313e-10 5.837e-10 -9.136 -9.234 -0.098 (0) Cl 2.501e-02 Cl- 2.501e-02 1.970e-02 -1.602 -1.706 -0.104 18.30 - FeCl+ 9.131e-10 7.289e-10 -9.039 -9.137 -0.098 (0) - FeCl+2 1.001e-24 4.135e-25 -23.999 -24.384 -0.384 (0) - FeCl2+ 4.539e-26 3.639e-26 -25.343 -25.439 -0.096 (0) - FeCl3 7.047e-29 7.169e-29 -28.152 -28.145 0.007 (0) -Fe(2) 8.721e-08 - Fe+2 6.164e-08 2.680e-08 -7.210 -7.572 -0.362 -21.54 - FeSO4 2.287e-08 2.327e-08 -7.641 -7.633 0.007 18.97 - FeCl+ 9.131e-10 7.289e-10 -9.039 -9.137 -0.098 (0) - FeHCO3+ 8.417e-10 6.718e-10 -9.075 -9.173 -0.098 (0) - FeOH+ 5.538e-10 4.439e-10 -9.257 -9.353 -0.096 (0) + FeCl+ 9.105e-10 7.268e-10 -9.041 -9.139 -0.098 (0) + HCl 1.201e-10 1.292e-10 -9.920 -9.889 0.032 (0) + FeCl+2 9.970e-25 4.117e-25 -24.001 -24.385 -0.384 (0) + FeCl2+ 4.520e-26 3.623e-26 -25.345 -25.441 -0.096 (0) + FeCl3 7.017e-29 7.139e-29 -28.154 -28.146 0.007 (0) +Fe(2) 8.704e-08 + Fe+2 6.146e-08 2.672e-08 -7.211 -7.573 -0.362 -21.54 + FeSO4 2.288e-08 2.328e-08 -7.641 -7.633 0.007 18.97 + FeCl+ 9.105e-10 7.268e-10 -9.041 -9.139 -0.098 (0) + FeHCO3+ 8.404e-10 6.709e-10 -9.075 -9.173 -0.098 (0) + FeOH+ 5.530e-10 4.433e-10 -9.257 -9.353 -0.096 (0) FeCO3 3.897e-10 3.964e-10 -9.409 -9.402 0.007 (0) Fe(OH)2 1.945e-13 1.979e-13 -12.711 -12.704 0.007 (0) - FeHSO4+ 3.653e-15 2.916e-15 -14.437 -14.535 -0.098 (0) - Fe(OH)3- 4.804e-16 3.851e-16 -15.318 -15.414 -0.096 (0) - Fe(HS)2 1.434e-18 1.459e-18 -17.844 -17.836 0.007 (0) - Fe(HS)3- 4.917e-26 3.925e-26 -25.308 -25.406 -0.098 (0) -Fe(3) 3.373e-14 + FeHSO4+ 3.649e-15 2.913e-15 -14.438 -14.536 -0.098 (0) + Fe(OH)3- 4.811e-16 3.857e-16 -15.318 -15.414 -0.096 (0) + Fe(HS)2 1.434e-18 1.458e-18 -17.844 -17.836 0.007 (0) + Fe(HS)3- 4.923e-26 3.930e-26 -25.308 -25.406 -0.098 (0) +Fe(3) 3.372e-14 Fe(OH)3 2.704e-14 2.751e-14 -13.568 -13.561 0.007 (0) - Fe(OH)2+ 5.058e-15 4.076e-15 -14.296 -14.390 -0.094 (0) - Fe(OH)4- 1.630e-15 1.314e-15 -14.788 -14.881 -0.094 (0) - FeOH+2 5.691e-19 2.350e-19 -18.245 -18.629 -0.384 (0) - FeSO4+ 4.641e-23 3.720e-23 -22.333 -22.429 -0.096 (0) - Fe(SO4)2- 4.978e-24 3.974e-24 -23.303 -23.401 -0.098 (0) - Fe+3 3.426e-24 6.949e-25 -23.465 -24.158 -0.693 (0) - FeCl+2 1.001e-24 4.135e-25 -23.999 -24.384 -0.384 (0) - FeCl2+ 4.539e-26 3.639e-26 -25.343 -25.439 -0.096 (0) - FeCl3 7.047e-29 7.169e-29 -28.152 -28.145 0.007 (0) - FeHSO4+2 4.678e-30 1.899e-30 -29.330 -29.721 -0.391 (0) - Fe2(OH)2+4 5.471e-35 1.487e-36 -34.262 -35.828 -1.566 (0) - Fe3(OH)4+5 0.000e+00 0.000e+00 -45.451 -47.898 -2.447 (0) -H(0) 6.863e-12 - H2 3.431e-12 3.491e-12 -11.465 -11.457 0.007 28.61 + Fe(OH)2+ 5.051e-15 4.070e-15 -14.297 -14.390 -0.094 (0) + Fe(OH)4- 1.633e-15 1.316e-15 -14.787 -14.881 -0.094 (0) + FeOH+2 5.675e-19 2.344e-19 -18.246 -18.630 -0.384 (0) + FeSO4+ 4.636e-23 3.716e-23 -22.334 -22.430 -0.096 (0) + Fe(SO4)2- 4.988e-24 3.982e-24 -23.302 -23.400 -0.098 (0) + Fe+3 3.411e-24 6.920e-25 -23.467 -24.160 -0.693 (0) + FeCl+2 9.970e-25 4.117e-25 -24.001 -24.385 -0.384 (0) + FeCl2+ 4.520e-26 3.623e-26 -25.345 -25.441 -0.096 (0) + FeCl3 7.017e-29 7.139e-29 -28.154 -28.146 0.007 (0) + FeHSO4+2 4.667e-30 1.895e-30 -29.331 -29.722 -0.391 (0) + Fe2(OH)2+4 5.440e-35 1.478e-36 -34.264 -35.830 -1.566 (0) + Fe3(OH)4+5 0.000e+00 0.000e+00 -45.454 -47.901 -2.447 (0) +H(0) 6.862e-12 + H2 3.431e-12 3.490e-12 -11.465 -11.457 0.007 28.61 Na 2.501e-02 - Na+ 2.441e-02 1.958e-02 -1.612 -1.708 -0.096 -1.15 - NaSO4- 5.946e-04 4.792e-04 -3.226 -3.319 -0.094 15.90 - NaHCO3 2.714e-06 2.761e-06 -5.566 -5.559 0.007 1.80 - NaCO3- 2.817e-07 2.249e-07 -6.550 -6.648 -0.098 -0.46 - NaOH 1.021e-18 1.038e-18 -17.991 -17.984 0.007 (0) + Na+ 2.449e-02 1.965e-02 -1.611 -1.707 -0.096 -1.15 + NaSO4- 5.177e-04 3.759e-04 -3.286 -3.425 -0.139 15.93 + NaHCO3 3.170e-06 3.297e-06 -5.499 -5.482 0.017 28.00 + NaOH 1.025e-18 1.043e-18 -17.989 -17.982 0.007 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -69.474 -69.467 0.007 30.40 -S(-2) 3.558e-10 - HS- 3.153e-10 2.471e-10 -9.501 -9.607 -0.106 20.83 - H2S 4.049e-11 4.119e-11 -10.393 -10.385 0.007 37.16 - S-2 3.791e-15 1.565e-15 -14.421 -14.805 -0.384 (0) - Fe(HS)2 1.434e-18 1.459e-18 -17.844 -17.836 0.007 (0) - Fe(HS)3- 4.917e-26 3.925e-26 -25.308 -25.406 -0.098 (0) -S(6) 1.708e-02 - SO4-2 1.190e-02 4.882e-03 -1.924 -2.311 -0.387 15.42 +S(-2) 3.562e-10 + HS- 3.157e-10 2.474e-10 -9.501 -9.607 -0.106 20.83 + H2S 4.049e-11 4.119e-11 -10.393 -10.385 0.007 36.27 + S-2 3.801e-15 1.570e-15 -14.420 -14.804 -0.384 (0) + Fe(HS)2 1.434e-18 1.458e-18 -17.844 -17.836 0.007 (0) + (H2S)2 8.789e-23 8.941e-23 -22.056 -22.049 0.007 30.09 + Fe(HS)3- 4.923e-26 3.930e-26 -25.308 -25.406 -0.098 (0) +S(6) 1.704e-02 + SO4-2 1.194e-02 4.898e-03 -1.923 -2.310 -0.387 15.70 CaSO4 4.585e-03 4.664e-03 -2.339 -2.331 0.007 7.50 - NaSO4- 5.946e-04 4.792e-04 -3.226 -3.319 -0.094 15.90 - FeSO4 2.287e-08 2.327e-08 -7.641 -7.633 0.007 18.97 - HSO4- 1.134e-08 9.050e-09 -7.945 -8.043 -0.098 40.50 - CaHSO4+ 7.323e-10 5.846e-10 -9.135 -9.233 -0.098 (0) - FeHSO4+ 3.653e-15 2.916e-15 -14.437 -14.535 -0.098 (0) - FeSO4+ 4.641e-23 3.720e-23 -22.333 -22.429 -0.096 (0) - Fe(SO4)2- 4.978e-24 3.974e-24 -23.303 -23.401 -0.098 (0) - FeHSO4+2 4.678e-30 1.899e-30 -29.330 -29.721 -0.391 (0) + NaSO4- 5.177e-04 3.759e-04 -3.286 -3.425 -0.139 15.93 + FeSO4 2.288e-08 2.328e-08 -7.641 -7.633 0.007 18.97 + HSO4- 1.136e-08 9.066e-09 -7.945 -8.043 -0.098 40.50 + CaHSO4+ 7.313e-10 5.837e-10 -9.136 -9.234 -0.098 (0) + FeHSO4+ 3.649e-15 2.913e-15 -14.438 -14.536 -0.098 (0) + FeSO4+ 4.636e-23 3.716e-23 -22.334 -22.430 -0.096 (0) + Fe(SO4)2- 4.988e-24 3.982e-24 -23.302 -23.400 -0.098 (0) + FeHSO4+2 4.667e-30 1.895e-30 -29.331 -29.722 -0.391 (0) ------------------------------Saturation indices------------------------------- @@ -1146,24 +1160,26 @@ S(6) 1.708e-02 Anhydrite -0.30 -4.58 -4.28 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 - Calcite 0.00 -8.48 -8.48 CaCO3 + Calcite -0.00 -8.48 -8.48 CaCO3 CH4(g) -11.00 -13.81 -2.80 CH4 CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 FeS(ppt) -5.54 -9.46 -3.92 FeS - Goethite 0.00 -1.00 -1.00 FeOOH + Goethite -0.00 -1.00 -1.00 FeOOH Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O H2(g) -8.36 -11.46 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -9.33 -17.33 -7.99 H2S + H2S(g) -9.39 -17.33 -7.94 H2S Halite -4.98 -3.41 1.57 NaCl Hematite 2.01 -2.00 -4.01 Fe2O3 Mackinawite -4.81 -9.46 -4.65 FeS Melanterite -7.68 -9.89 -2.21 FeSO4:7H2O + Mirabilite -4.49 -5.73 -1.24 Na2SO4:10H2O O2(g) -66.57 -69.47 -2.89 O2 - Pyrite -0.00 -18.48 -18.48 FeS2 + Pyrite 0.00 -18.48 -18.48 FeS2 Siderite -2.89 -13.78 -10.89 FeCO3 Sulfur -6.96 -2.08 4.88 S + Thenardite -5.42 -5.72 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1176,7 +1192,3 @@ End of simulation. Reading input data for simulation 2. ------------------------------------ ------------------------------- -End of Run after 0.02 Seconds. ------------------------------- - diff --git a/ex5.sel b/ex5.sel index c2ba6d3f..3dff8160 100644 --- a/ex5.sel +++ b/ex5.sel @@ -1,8 +1,8 @@ sim state soln dist_x time step pH pe Cl pyrite d_pyrite goethite d_goethite calcite d_calcite CO2(g) d_CO2(g) gypsum d_gypsum si_Gypsum 1 i_soln 1 -99 -99 -99 7 4 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -999.9990 - 1 react 1 -99 0 1 8.27921 -4.94286 0.0000e+00 1.0000e+01 -3.1438e-08 1.0000e+01 1.0965e-08 9.9995e+00 -4.9338e-04 9.9995e+00 -4.8692e-04 0.0000e+00 0.0000e+00 -6.1255 - 1 react 1 -99 0 2 8.17031 -4.28563 5.0000e-04 9.9997e+00 -2.6667e-04 1.0000e+01 2.6666e-04 9.9991e+00 -9.2691e-04 1.0000e+01 1.4255e-04 0.0000e+00 0.0000e+00 -2.0131 - 1 react 1 -99 0 3 7.97957 -3.96643 2.5000e-03 9.9987e+00 -1.3333e-03 1.0001e+01 1.3333e-03 9.9971e+00 -2.9360e-03 1.0002e+01 2.3965e-03 0.0000e+00 0.0000e+00 -1.0500 - 1 react 1 -99 0 4 7.8808 -3.81211 5.0001e-03 9.9973e+00 -2.6667e-03 1.0003e+01 2.6666e-03 9.9944e+00 -5.5579e-03 1.0005e+01 5.1069e-03 0.0000e+00 0.0000e+00 -0.6338 - 1 react 1 -99 0 5 7.72516 -3.57332 1.5001e-02 9.9920e+00 -8.0000e-03 1.0008e+01 7.9999e-03 9.9838e+00 -1.6174e-02 1.0016e+01 1.5823e-02 0.0000e+00 0.0000e+00 -0.0118 - 1 react 1 -99 0 6 7.71974 -3.5662 2.5012e-02 9.9867e+00 -1.3333e-02 1.0013e+01 1.3333e-02 9.9732e+00 -2.6842e-02 1.0026e+01 2.6489e-02 9.5906e-03 9.5906e-03 0.0000 + 1 react 1 -99 0 1 8.27917 -4.94281 0.0000e+00 1.0000e+01 -3.1435e-08 1.0000e+01 1.0959e-08 9.9995e+00 -4.9333e-04 9.9995e+00 -4.8687e-04 0.0000e+00 0.0000e+00 -6.1255 + 1 react 1 -99 0 2 8.17027 -4.28555 5.0000e-04 9.9997e+00 -2.6667e-04 1.0000e+01 2.6666e-04 9.9991e+00 -9.2684e-04 1.0000e+01 1.4257e-04 0.0000e+00 0.0000e+00 -2.0130 + 1 react 1 -99 0 3 7.97956 -3.96634 2.5000e-03 9.9987e+00 -1.3333e-03 1.0001e+01 1.3333e-03 9.9971e+00 -2.9359e-03 1.0002e+01 2.3964e-03 0.0000e+00 0.0000e+00 -1.0495 + 1 react 1 -99 0 4 7.88084 -3.81205 5.0001e-03 9.9973e+00 -2.6667e-03 1.0003e+01 2.6666e-03 9.9944e+00 -5.5578e-03 1.0005e+01 5.1067e-03 0.0000e+00 0.0000e+00 -0.6331 + 1 react 1 -99 0 5 7.72534 -3.57335 1.5001e-02 9.9920e+00 -8.0000e-03 1.0008e+01 7.9999e-03 9.9838e+00 -1.6174e-02 1.0016e+01 1.5823e-02 0.0000e+00 0.0000e+00 -0.0108 + 1 react 1 -99 0 6 7.72035 -3.56679 2.5012e-02 9.9867e+00 -1.3333e-02 1.0013e+01 1.3333e-02 9.9732e+00 -2.6842e-02 1.0026e+01 2.6488e-02 9.6305e-03 9.6305e-03 0.0000 diff --git a/ex6.out b/ex6.out index 25c6263d..e0190c4d 100644 --- a/ex6.out +++ b/ex6.out @@ -68,16 +68,15 @@ Initial solution 1. PURE WATER pH = 6.997 Charge balance pe = 4.000 - Specific Conductance (S/cm, 25C) = 0 - Density (g/cm) = 0.99704 + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89002 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.006e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 3.040e-17 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -3.040e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 2 @@ -87,7 +86,7 @@ Initial solution 1. PURE WATER ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.006e-07 1.006e-07 -6.997 -6.997 -0.000 -4.14 H+ 1.006e-07 1.006e-07 -6.997 -6.997 -0.000 0.00 @@ -171,16 +170,15 @@ Kaolinite -3.81 1.90 5.71 0.000e+00 0 0.000e+00 pH = 7.004 Charge balance pe = 10.368 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 0 - Density (g/cm) = 0.99704 + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89002 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.267e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.063e-07 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -3.156e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 9 @@ -190,7 +188,7 @@ Kaolinite -3.81 1.90 5.71 0.000e+00 0 0.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.021e-07 1.021e-07 -6.991 -6.991 -0.000 -4.14 H+ 9.919e-08 9.915e-08 -7.004 -7.004 -0.000 0.00 @@ -269,10 +267,10 @@ Using pure phase assemblage 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Gibbsite 0.00 8.05 8.05 0.000e+00 1.785e-06 1.785e-06 +Gibbsite -0.00 8.05 8.05 0.000e+00 1.785e-06 1.785e-06 K-feldspar -5.86 -4.99 0.88 0.000e+00 0 0.000e+00 K-mica -1.86 11.11 12.97 0.000e+00 0 0.000e+00 -Kaolinite 0.00 5.71 5.71 +Kaolinite -0.00 5.71 5.71 KAlSi3O8 is reactant 1.000e+01 1.000e+01 -2.178e-06 -----------------------------Solution composition------------------------------ @@ -287,17 +285,16 @@ Kaolinite 0.00 5.71 5.71 pH = 8.209 Charge balance pe = 9.163 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 0 - Density (g/cm) = 0.99704 + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89003 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.185e-06 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 3.359e-06 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 - Electrical balance (eq) = -3.402e-17 + Temperature (°C) = 25.00 + Electrical balance (eq) = -3.403e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 13 Total H = 1.110124e+02 @@ -306,7 +303,7 @@ Kaolinite 0.00 5.71 5.71 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.640e-06 1.637e-06 -5.785 -5.786 -0.001 -4.14 H+ 6.193e-09 6.182e-09 -8.208 -8.209 -0.001 0.00 @@ -334,12 +331,12 @@ Si 6.535e-06 Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 Chalcedony -1.64 -5.20 -3.55 SiO2 - Gibbsite 0.00 8.05 8.05 Al(OH)3 + Gibbsite -0.00 8.05 8.05 Al(OH)3 H2(g) -34.79 -37.89 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -5.86 -4.99 0.88 KAlSi3O8 K-mica -1.86 11.11 12.97 KAl3Si3O10(OH)2 - Kaolinite 0.00 5.71 5.71 Al2Si2O5(OH)4 + Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 O2(g) -13.70 -16.59 -2.89 O2 Quartz -1.21 -5.20 -3.98 SiO2 SiO2(a) -2.48 -5.20 -2.71 SiO2 @@ -389,7 +386,7 @@ Gibbsite -0.73 7.32 8.05 0.000e+00 0 0.000e+00 K-feldspar -2.54 -1.67 0.88 0.000e+00 0 0.000e+00 K-mica 0.00 12.97 12.97 KAlSi3O8 is reactant 1.000e+01 1.000e+01 -2.010e-05 -Kaolinite 0.00 5.71 5.71 0.000e+00 9.760e-06 9.760e-06 +Kaolinite -0.00 5.71 5.71 0.000e+00 9.760e-06 9.760e-06 -----------------------------Solution composition------------------------------ @@ -403,26 +400,25 @@ Kaolinite 0.00 5.71 5.71 0.000e+00 9.760e-06 9.760e-06 pH = 9.107 Charge balance pe = 8.265 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 4 - Density (g/cm) = 0.99705 + Specific Conductance (µS/cm, 25°C) = 4 + Density (g/cm³) = 0.99705 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89004 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.010e-05 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 2.184e-05 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 - Electrical balance (eq) = -3.057e-17 + Temperature (°C) = 25.00 + Electrical balance (eq) = -3.047e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 14 + Iterations = 15 Total H = 1.110124e+02 Total O = 5.550629e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.302e-05 1.295e-05 -4.885 -4.888 -0.002 -4.13 H+ 7.856e-10 7.815e-10 -9.105 -9.107 -0.002 0.00 @@ -433,12 +429,12 @@ Al 5.799e-07 Al(OH)2+ 1.275e-12 1.268e-12 -11.895 -11.897 -0.002 (0) AlOH+2 1.291e-16 1.265e-16 -15.889 -15.898 -0.009 -27.86 Al+3 1.043e-20 9.949e-21 -19.982 -20.002 -0.020 -42.50 -H(0) 2.558e-38 +H(0) 2.557e-38 H2 1.279e-38 1.279e-38 -37.893 -37.893 0.000 28.61 K 2.010e-05 K+ 2.010e-05 2.000e-05 -4.697 -4.699 -0.002 8.98 -O(0) 5.097e-17 - O2 2.549e-17 2.549e-17 -16.594 -16.594 0.000 30.40 +O(0) 5.099e-17 + O2 2.550e-17 2.550e-17 -16.594 -16.594 0.000 30.40 Si 4.078e-05 H4SiO4 3.428e-05 3.428e-05 -4.465 -4.465 0.000 52.08 H3SiO4- 6.501e-06 6.468e-06 -5.187 -5.189 -0.002 27.95 @@ -455,7 +451,7 @@ Si 4.078e-05 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -2.54 -1.67 0.88 KAlSi3O8 K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 - Kaolinite 0.00 5.71 5.71 Al2Si2O5(OH)4 + Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 O2(g) -13.70 -16.59 -2.89 O2 Quartz -0.48 -4.46 -3.98 SiO2 SiO2(a) -1.75 -4.46 -2.71 SiO2 @@ -519,26 +515,25 @@ Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 pH = 9.388 Charge balance pe = 7.983 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 14 - Density (g/cm) = 0.99707 + Specific Conductance (µS/cm, 25°C) = 14 + Density (g/cm³) = 0.99707 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89005 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.273e-04 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.275e-04 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 - Electrical balance (eq) = -3.037e-17 + Temperature (°C) = 25.00 + Electrical balance (eq) = -3.135e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 15 + Iterations = 17 Total H = 1.110123e+02 Total O = 5.550698e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 2.506e-05 2.474e-05 -4.601 -4.607 -0.006 -4.13 H+ 4.144e-10 4.092e-10 -9.383 -9.388 -0.006 0.00 @@ -549,12 +544,12 @@ Al 5.973e-08 Al(OH)2+ 3.600e-14 3.554e-14 -13.444 -13.449 -0.006 (0) AlOH+2 1.954e-18 1.855e-18 -17.709 -17.732 -0.023 -27.83 Al+3 8.576e-23 7.641e-23 -22.067 -22.117 -0.050 -42.44 -H(0) 2.560e-38 - H2 1.280e-38 1.280e-38 -37.893 -37.893 0.000 28.61 +H(0) 2.558e-38 + H2 1.279e-38 1.279e-38 -37.893 -37.893 0.000 28.61 K 1.273e-04 K+ 1.273e-04 1.256e-04 -3.895 -3.901 -0.006 8.99 -O(0) 5.087e-17 - O2 2.543e-17 2.543e-17 -16.595 -16.595 0.000 30.40 +O(0) 5.095e-17 + O2 2.547e-17 2.548e-17 -16.594 -16.594 0.000 30.40 Si 3.819e-04 H4SiO4 2.797e-04 2.797e-04 -3.553 -3.553 0.000 52.08 H3SiO4- 1.021e-04 1.008e-04 -3.991 -3.996 -0.006 27.95 @@ -631,16 +626,15 @@ Kaolinite -0.00 5.71 5.71 1.000e+00 1.000e+00 1.240e-06 pH = 8.351 Charge balance pe = 9.021 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 0 - Density (g/cm) = 0.99704 + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89003 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.029e-06 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 4.660e-06 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -2.999e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 13 @@ -650,7 +644,7 @@ Kaolinite -0.00 5.71 5.71 1.000e+00 1.000e+00 1.240e-06 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 2.274e-06 2.269e-06 -5.643 -5.644 -0.001 -4.14 H+ 4.469e-09 4.460e-09 -8.350 -8.351 -0.001 0.00 @@ -743,16 +737,15 @@ Kaolinite 0.00 5.71 5.71 pH = 9.068 Charge balance pe = -3.259 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 3 - Density (g/cm) = 0.99705 + Specific Conductance (µS/cm, 25°C) = 3 + Density (g/cm³) = 0.99705 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89004 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.199e-05 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 2.295e-05 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -3.042e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 13 @@ -762,7 +755,7 @@ Kaolinite 0.00 5.71 5.71 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.191e-05 1.184e-05 -4.924 -4.926 -0.002 -4.13 H+ 8.592e-10 8.545e-10 -9.066 -9.068 -0.002 0.00 @@ -880,16 +873,15 @@ Kaolinite -3.45 2.25 5.71 0.000e+00 0 0.000e+00 pH = 7.029 Charge balance pe = -1.255 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 0 - Density (g/cm) = 0.99704 + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89002 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.344e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.240e-07 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -2.243e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 8 @@ -899,7 +891,7 @@ Kaolinite -3.45 2.25 5.71 0.000e+00 0 0.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.083e-07 1.082e-07 -6.965 -6.966 -0.000 -4.14 H+ 9.354e-08 9.350e-08 -7.029 -7.029 -0.000 0.00 @@ -984,16 +976,15 @@ Kaolinite -2.85 2.86 5.71 0.000e+00 0 0.000e+00 pH = 7.103 Charge balance pe = 11.463 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 0 - Density (g/cm) = 0.99704 + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89003 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.596e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.781e-07 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -2.583e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 9 @@ -1003,7 +994,7 @@ Kaolinite -2.85 2.86 5.71 0.000e+00 0 0.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.284e-07 1.284e-07 -6.891 -6.892 -0.000 -4.14 H+ 7.888e-08 7.885e-08 -7.103 -7.103 -0.000 0.00 @@ -1088,16 +1079,15 @@ Kaolinite -2.25 3.46 5.71 0.000e+00 0 0.000e+00 pH = 7.238 Charge balance pe = -1.232 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 0 - Density (g/cm) = 0.99704 + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89003 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.183e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 2.911e-07 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.730e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 9 @@ -1107,7 +1097,7 @@ Kaolinite -2.25 3.46 5.71 0.000e+00 0 0.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.752e-07 1.751e-07 -6.756 -6.757 -0.000 -4.14 H+ 5.783e-08 5.780e-08 -7.238 -7.238 -0.000 0.00 @@ -1192,16 +1182,15 @@ Kaolinite -1.65 4.06 5.71 0.000e+00 0 0.000e+00 pH = 7.448 Charge balance pe = -1.590 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 0 - Density (g/cm) = 0.99704 + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89003 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.560e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 5.286e-07 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -3.041e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 10 @@ -1211,7 +1200,7 @@ Kaolinite -1.65 4.06 5.71 0.000e+00 0 0.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 2.841e-07 2.839e-07 -6.547 -6.547 -0.000 -4.14 H+ 3.568e-08 3.565e-08 -7.448 -7.448 -0.000 0.00 @@ -1279,7 +1268,7 @@ Reaction 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Gibbsite 0.00 8.05 8.05 0.000e+00 5.140e-07 5.140e-07 +Gibbsite -0.00 8.05 8.05 0.000e+00 5.140e-07 5.140e-07 K-feldspar -8.47 -7.59 0.88 0.000e+00 0 0.000e+00 K-mica -4.47 8.50 12.97 0.000e+00 0 0.000e+00 Kaolinite -1.05 4.66 5.71 0.000e+00 0 0.000e+00 @@ -1296,17 +1285,16 @@ Kaolinite -1.05 4.66 5.71 0.000e+00 0 0.000e+00 pH = 7.711 Charge balance pe = -2.002 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 0 - Density (g/cm) = 0.99704 + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89003 Activity of water = 1.000 Ionic strength (mol/kgw) = 6.596e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.018e-06 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 - Electrical balance (eq) = -3.474e-15 + Temperature (°C) = 25.00 + Electrical balance (eq) = -3.816e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 10 Total H = 1.110124e+02 @@ -1315,7 +1303,7 @@ Kaolinite -1.05 4.66 5.71 0.000e+00 0 0.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 5.207e-07 5.202e-07 -6.283 -6.284 -0.000 -4.14 H+ 1.948e-08 1.946e-08 -7.711 -7.711 -0.000 0.00 @@ -1343,7 +1331,7 @@ Si 1.920e-06 Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 Chalcedony -2.17 -5.72 -3.55 SiO2 - Gibbsite 0.00 8.05 8.05 Al(OH)3 + Gibbsite -0.00 8.05 8.05 Al(OH)3 H2(g) -11.47 -14.57 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -8.47 -7.59 0.88 KAlSi3O8 @@ -1400,17 +1388,16 @@ Kaolinite -0.67 5.04 5.71 0.000e+00 0 0.000e+00 pH = 7.892 Charge balance pe = 9.814 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 0 - Density (g/cm) = 0.99704 + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89003 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.013e-06 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.571e-06 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 - Electrical balance (eq) = -3.304e-17 + Temperature (°C) = 25.00 + Electrical balance (eq) = -3.305e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 11 Total H = 1.110124e+02 @@ -1419,7 +1406,7 @@ Kaolinite -0.67 5.04 5.71 0.000e+00 0 0.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 7.899e-07 7.890e-07 -6.102 -6.103 -0.001 -4.14 H+ 1.284e-08 1.283e-08 -7.891 -7.892 -0.001 0.00 @@ -1504,16 +1491,15 @@ Kaolinite -0.07 5.64 5.71 0.000e+00 0 0.000e+00 pH = 8.174 Charge balance pe = 9.607 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 0 - Density (g/cm) = 0.99704 + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89003 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.007e-06 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 3.091e-06 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -6.917e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 11 @@ -1523,7 +1509,7 @@ Kaolinite -0.07 5.64 5.71 0.000e+00 0 0.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.515e-06 1.512e-06 -5.820 -5.820 -0.001 -4.14 H+ 6.703e-09 6.692e-09 -8.174 -8.174 -0.001 0.00 @@ -1594,7 +1580,7 @@ Phase SI log IAP log K(T, P) Initial Final Delta Gibbsite -0.11 7.94 8.05 0.000e+00 0 0.000e+00 K-feldspar -5.11 -4.24 0.88 0.000e+00 0 0.000e+00 K-mica -1.33 11.64 12.97 0.000e+00 0 0.000e+00 -Kaolinite 0.00 5.71 5.71 0.000e+00 1.714e-06 1.714e-06 +Kaolinite -0.00 5.71 5.71 0.000e+00 1.714e-06 1.714e-06 -----------------------------Solution composition------------------------------ @@ -1608,17 +1594,16 @@ Kaolinite 0.00 5.71 5.71 0.000e+00 1.714e-06 1.714e-06 pH = 8.480 Charge balance pe = -2.767 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 0 - Density (g/cm) = 0.99704 + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89003 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.003e-06 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 5.714e-06 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 - Electrical balance (eq) = -5.587e-17 + Temperature (°C) = 25.00 + Electrical balance (eq) = -6.910e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 12 Total H = 1.110124e+02 @@ -1627,7 +1612,7 @@ Kaolinite 0.00 5.71 5.71 0.000e+00 1.714e-06 1.714e-06 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 3.066e-06 3.059e-06 -5.513 -5.514 -0.001 -4.14 H+ 3.316e-09 3.309e-09 -8.479 -8.480 -0.001 0.00 @@ -1660,7 +1645,7 @@ Si 8.571e-06 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -5.11 -4.24 0.88 KAlSi3O8 K-mica -1.33 11.64 12.97 KAl3Si3O10(OH)2 - Kaolinite 0.00 5.71 5.71 Al2Si2O5(OH)4 + Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 O2(g) -60.33 -63.23 -2.89 O2 Quartz -1.11 -5.09 -3.98 SiO2 SiO2(a) -2.37 -5.09 -2.71 SiO2 @@ -1698,7 +1683,7 @@ Phase SI log IAP log K(T, P) Initial Final Delta Gibbsite -0.38 7.67 8.05 0.000e+00 0 0.000e+00 K-feldspar -3.98 -3.10 0.88 0.000e+00 0 0.000e+00 K-mica -0.73 12.24 12.97 0.000e+00 0 0.000e+00 -Kaolinite -0.00 5.71 5.71 0.000e+00 3.697e-06 3.697e-06 +Kaolinite 0.00 5.71 5.71 0.000e+00 3.697e-06 3.697e-06 -----------------------------Solution composition------------------------------ @@ -1712,26 +1697,25 @@ Kaolinite -0.00 5.71 5.71 0.000e+00 3.697e-06 3.697e-06 pH = 8.775 Charge balance pe = 8.985 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 1 - Density (g/cm) = 0.99704 + Specific Conductance (µS/cm, 25°C) = 1 + Density (g/cm³) = 0.99704 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89003 Activity of water = 1.000 Ionic strength (mol/kgw) = 8.002e-06 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 9.817e-06 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 - Electrical balance (eq) = -3.042e-17 + Temperature (°C) = 25.00 + Electrical balance (eq) = -7.217e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 13 + Iterations = 12 Total H = 1.110124e+02 Total O = 5.550625e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 6.051e-06 6.031e-06 -5.218 -5.220 -0.001 -4.14 H+ 1.684e-09 1.678e-09 -8.774 -8.775 -0.001 0.00 @@ -1764,7 +1748,7 @@ Si 1.661e-05 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -3.98 -3.10 0.88 KAlSi3O8 K-mica -0.73 12.24 12.97 KAl3Si3O10(OH)2 - Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 + Kaolinite 0.00 5.71 5.71 Al2Si2O5(OH)4 O2(g) -12.15 -15.04 -2.89 O2 Quartz -0.84 -4.82 -3.98 SiO2 SiO2(a) -2.10 -4.82 -2.71 SiO2 @@ -1802,7 +1786,7 @@ Phase SI log IAP log K(T, P) Initial Final Delta Gibbsite -0.64 7.41 8.05 0.000e+00 0 0.000e+00 K-feldspar -2.89 -2.01 0.88 0.000e+00 0 0.000e+00 K-mica -0.17 12.80 12.97 0.000e+00 0 0.000e+00 -Kaolinite -0.00 5.71 5.71 0.000e+00 7.703e-06 7.703e-06 +Kaolinite 0.00 5.71 5.71 0.000e+00 7.703e-06 7.703e-06 -----------------------------Solution composition------------------------------ @@ -1816,17 +1800,16 @@ Kaolinite -0.00 5.71 5.71 0.000e+00 7.703e-06 7.703e-06 pH = 9.031 Charge balance pe = -3.375 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 3 - Density (g/cm) = 0.99705 + Specific Conductance (µS/cm, 25°C) = 3 + Density (g/cm³) = 0.99705 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89004 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.600e-05 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.778e-05 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 - Electrical balance (eq) = -1.355e-16 + Temperature (°C) = 25.00 + Electrical balance (eq) = -1.356e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 13 Total H = 1.110124e+02 @@ -1835,7 +1818,7 @@ Kaolinite -0.00 5.71 5.71 0.000e+00 7.703e-06 7.703e-06 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.093e-05 1.088e-05 -4.961 -4.963 -0.002 -4.13 H+ 9.347e-10 9.304e-10 -9.029 -9.031 -0.002 0.00 @@ -1868,7 +1851,7 @@ Si 3.259e-05 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -2.89 -2.01 0.88 KAlSi3O8 K-mica -0.17 12.80 12.97 KAl3Si3O10(OH)2 - Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 + Kaolinite 0.00 5.71 5.71 Al2Si2O5(OH)4 O2(g) -60.56 -63.45 -2.89 O2 Quartz -0.57 -4.55 -3.98 SiO2 SiO2(a) -1.84 -4.55 -2.71 SiO2 @@ -1906,7 +1889,7 @@ Phase SI log IAP log K(T, P) Initial Final Delta Gibbsite -0.93 7.12 8.05 0.000e+00 0 0.000e+00 K-feldspar -2.14 -1.26 0.88 0.000e+00 0 0.000e+00 K-mica -0.00 12.97 12.97 0.000e+00 1.014e-05 1.014e-05 -Kaolinite 0.00 5.71 5.71 0.000e+00 6.295e-07 6.295e-07 +Kaolinite -0.00 5.71 5.71 0.000e+00 6.295e-07 6.295e-07 -----------------------------Solution composition------------------------------ @@ -1920,26 +1903,25 @@ Kaolinite 0.00 5.71 5.71 0.000e+00 6.295e-07 6.295e-07 pH = 9.071 Charge balance pe = 8.470 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 3 - Density (g/cm) = 0.99705 + Specific Conductance (µS/cm, 25°C) = 3 + Density (g/cm³) = 0.99705 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89004 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.187e-05 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 2.287e-05 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 - Electrical balance (eq) = 9.271e-14 + Temperature (°C) = 25.00 + Electrical balance (eq) = 4.982e-14 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 + Iterations = 14 Total H = 1.110124e+02 Total O = 5.550635e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.197e-05 1.191e-05 -4.922 -4.924 -0.002 -4.13 H+ 8.545e-10 8.499e-10 -9.068 -9.071 -0.002 0.00 @@ -1972,7 +1954,7 @@ Si 6.433e-05 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -2.14 -1.26 0.88 KAlSi3O8 K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 - Kaolinite 0.00 5.71 5.71 Al2Si2O5(OH)4 + Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 O2(g) -13.03 -15.92 -2.89 O2 Quartz -0.28 -4.26 -3.98 SiO2 SiO2(a) -1.55 -4.26 -2.71 SiO2 @@ -2009,7 +1991,7 @@ Phase SI log IAP log K(T, P) Initial Final Delta Gibbsite -1.35 6.70 8.05 0.000e+00 0 0.000e+00 K-feldspar -1.30 -0.42 0.88 0.000e+00 0 0.000e+00 -K-mica -0.00 12.97 12.97 0.000e+00 2.127e-05 2.127e-05 +K-mica 0.00 12.97 12.97 0.000e+00 2.127e-05 2.127e-05 Kaolinite -0.29 5.41 5.71 0.000e+00 0 0.000e+00 -----------------------------Solution composition------------------------------ @@ -2024,26 +2006,25 @@ Kaolinite -0.29 5.41 5.71 0.000e+00 0 0.000e+00 pH = 9.223 Charge balance pe = 8.396 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 6 - Density (g/cm) = 0.99705 + Specific Conductance (µS/cm, 25°C) = 6 + Density (g/cm³) = 0.99705 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89004 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.273e-05 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 4.327e-05 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 - Electrical balance (eq) = -1.541e-13 + Temperature (°C) = 25.00 + Electrical balance (eq) = -3.049e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 13 + Iterations = 15 Total H = 1.110124e+02 Total O = 5.550647e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.704e-05 1.692e-05 -4.768 -4.772 -0.003 -4.13 H+ 6.029e-10 5.984e-10 -9.220 -9.223 -0.003 0.00 @@ -2054,12 +2035,12 @@ Al 1.804e-07 Al(OH)2+ 2.326e-13 2.308e-13 -12.633 -12.637 -0.003 (0) AlOH+2 1.816e-17 1.762e-17 -16.741 -16.754 -0.013 -27.85 Al+3 1.136e-21 1.062e-21 -20.945 -20.974 -0.029 -42.48 -H(0) 8.192e-39 +H(0) 8.193e-39 H2 4.096e-39 4.096e-39 -38.388 -38.388 0.000 28.61 K 4.273e-05 K+ 4.273e-05 4.240e-05 -4.369 -4.373 -0.003 8.99 -O(0) 4.969e-16 - O2 2.485e-16 2.485e-16 -15.605 -15.605 0.000 30.40 +O(0) 4.968e-16 + O2 2.484e-16 2.484e-16 -15.605 -15.605 0.000 30.40 Si 1.282e-04 H4SiO4 1.027e-04 1.027e-04 -3.989 -3.989 0.000 52.08 H3SiO4- 2.550e-05 2.530e-05 -4.594 -4.597 -0.003 27.95 @@ -2075,7 +2056,7 @@ Si 1.282e-04 H2(g) -35.29 -38.39 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -1.30 -0.42 0.88 KAlSi3O8 - K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 + K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 Kaolinite -0.29 5.41 5.71 Al2Si2O5(OH)4 O2(g) -12.71 -15.60 -2.89 O2 Quartz -0.01 -3.99 -3.98 SiO2 @@ -2128,17 +2109,16 @@ Kaolinite -0.48 5.23 5.71 0.000e+00 0 0.000e+00 pH = 9.303 Charge balance pe = -3.515 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 8 - Density (g/cm) = 0.99706 + Specific Conductance (µS/cm, 25°C) = 8 + Density (g/cm³) = 0.99706 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89004 Activity of water = 1.000 Ionic strength (mol/kgw) = 6.671e-05 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 6.706e-05 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 - Electrical balance (eq) = -3.030e-17 + Temperature (°C) = 25.00 + Electrical balance (eq) = -4.146e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 15 Total H = 1.110124e+02 @@ -2147,7 +2127,7 @@ Kaolinite -0.48 5.23 5.71 0.000e+00 0 0.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 2.052e-05 2.033e-05 -4.688 -4.692 -0.004 -4.13 H+ 5.026e-10 4.979e-10 -9.299 -9.303 -0.004 0.00 @@ -2158,7 +2138,7 @@ Al 1.175e-07 Al(OH)2+ 1.049e-13 1.039e-13 -12.979 -12.984 -0.004 (0) AlOH+2 6.853e-18 6.599e-18 -17.164 -17.181 -0.016 -27.84 Al+3 3.599e-22 3.308e-22 -21.444 -21.480 -0.037 -42.47 -H(0) 3.759e-15 +H(0) 3.760e-15 H2 1.880e-15 1.880e-15 -14.726 -14.726 0.000 28.61 K 6.671e-05 K+ 6.671e-05 6.608e-05 -4.176 -4.180 -0.004 8.99 @@ -2216,8 +2196,8 @@ Reaction 1. Phase SI log IAP log K(T, P) Initial Final Delta Gibbsite -2.00 6.05 8.05 0.000e+00 0 0.000e+00 -K-feldspar -0.00 0.87 0.88 0.000e+00 9.093e-06 9.093e-06 -K-mica -0.00 12.97 12.97 0.000e+00 6.362e-05 6.362e-05 +K-feldspar 0.00 0.88 0.88 0.000e+00 9.093e-06 9.093e-06 +K-mica 0.00 12.97 12.97 0.000e+00 6.362e-05 6.362e-05 Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 -----------------------------Solution composition------------------------------ @@ -2232,26 +2212,25 @@ Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 pH = 9.388 Charge balance pe = 8.438 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 14 - Density (g/cm) = 0.99707 + Specific Conductance (µS/cm, 25°C) = 14 + Density (g/cm³) = 0.99707 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89005 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.273e-04 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.275e-04 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 - Electrical balance (eq) = 6.359e-15 + Temperature (°C) = 25.00 + Electrical balance (eq) = 1.541e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 14 + Iterations = 15 Total H = 1.110123e+02 Total O = 5.550698e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 2.506e-05 2.474e-05 -4.601 -4.607 -0.006 -4.13 H+ 4.144e-10 4.092e-10 -9.383 -9.388 -0.006 0.00 @@ -2282,8 +2261,8 @@ Si 3.819e-04 Gibbsite -2.00 6.05 8.05 Al(OH)3 H2(g) -35.70 -38.80 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -0.00 0.87 0.88 KAlSi3O8 - K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 + K-feldspar 0.00 0.88 0.88 KAlSi3O8 + K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 Kaolinite -0.72 4.99 5.71 Al2Si2O5(OH)4 O2(g) -11.88 -14.77 -2.89 O2 Quartz 0.43 -3.55 -3.98 SiO2 @@ -2410,16 +2389,15 @@ Initial solution 1. pH = 7.000 pe = 4.000 - Specific Conductance (S/cm, 25C) = 0 - Density (g/cm) = 0.99704 + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89002 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.006e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.217e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.60 Iterations = 2 @@ -2429,7 +2407,7 @@ Initial solution 1. ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.013e-07 1.012e-07 -6.995 -6.995 -0.000 -4.14 H+ 1.000e-07 1.000e-07 -7.000 -7.000 -0.000 0.00 @@ -2514,27 +2492,26 @@ Kaolinite -9.09 -3.38 5.71 0.000e+00 0 0.000e+00 ----------------------------Description of solution---------------------------- pH = 7.000 Charge balance - pe = 11.365 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 0 - Density (g/cm) = 0.99704 + pe = 11.011 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89002 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.019e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 6.279e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.60 - Iterations = 38 + Iterations = 34 Total H = 1.110124e+02 Total O = 5.550622e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.013e-07 1.013e-07 -6.994 -6.994 -0.000 -4.14 H+ 9.997e-08 9.993e-08 -7.000 -7.000 -0.000 0.00 @@ -2545,12 +2522,12 @@ Al 1.266e-09 Al(OH)2+ 4.178e-11 4.176e-11 -10.379 -10.379 -0.000 (0) AlOH+2 5.332e-13 5.324e-13 -12.273 -12.274 -0.001 -27.87 Al+3 5.375e-15 5.357e-15 -14.270 -14.271 -0.001 -42.53 -H(0) 2.637e-40 - H2 1.318e-40 1.318e-40 -39.880 -39.880 0.000 28.61 +H(0) 1.346e-39 + H2 6.732e-40 6.732e-40 -39.172 -39.172 0.000 28.61 K 1.266e-09 K+ 1.266e-09 1.265e-09 -8.898 -8.898 -0.000 8.98 -O(0) 4.797e-13 - O2 2.398e-13 2.398e-13 -12.620 -12.620 0.000 30.40 +O(0) 1.839e-14 + O2 9.197e-15 9.197e-15 -14.036 -14.036 0.000 30.40 Si 3.797e-09 H4SiO4 3.791e-09 3.791e-09 -8.421 -8.421 0.000 52.08 H3SiO4- 5.596e-12 5.594e-12 -11.252 -11.252 -0.000 27.94 @@ -2563,12 +2540,12 @@ Si 3.797e-09 Al(OH)3(a) -4.07 6.73 10.80 Al(OH)3 Chalcedony -4.87 -8.42 -3.55 SiO2 Gibbsite -1.32 6.73 8.05 Al(OH)3 - H2(g) -36.78 -39.88 -3.10 H2 + H2(g) -36.07 -39.17 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -21.31 -20.43 0.88 KAlSi3O8 K-mica -19.94 -6.97 12.97 KAl3Si3O10(OH)2 Kaolinite -9.09 -3.38 5.71 Al2Si2O5(OH)4 - O2(g) -9.73 -12.62 -2.89 O2 + O2(g) -11.14 -14.04 -2.89 O2 Quartz -4.44 -8.42 -3.98 SiO2 SiO2(a) -5.71 -8.42 -2.71 SiO2 @@ -2615,17 +2592,16 @@ Kaolinite -4.93 0.78 5.71 0.000e+00 0 0.000e+00 ----------------------------Description of solution---------------------------- pH = 7.003 Charge balance - pe = 11.361 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 0 - Density (g/cm) = 0.99704 + pe = 10.987 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89002 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.143e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 5.690e-08 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.53 Iterations = 9 @@ -2635,7 +2611,7 @@ Kaolinite -4.93 0.78 5.71 0.000e+00 0 0.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.020e-07 1.020e-07 -6.991 -6.991 -0.000 -4.14 H+ 9.928e-08 9.924e-08 -7.003 -7.003 -0.000 0.00 @@ -2646,12 +2622,12 @@ Al 1.392e-08 Al(OH)2+ 4.535e-10 4.534e-10 -9.343 -9.344 -0.000 (0) AlOH+2 5.750e-12 5.741e-12 -11.240 -11.241 -0.001 -27.87 Al+3 5.756e-14 5.735e-14 -13.240 -13.241 -0.002 -42.53 -H(0) 2.644e-40 - H2 1.322e-40 1.322e-40 -39.879 -39.879 0.000 28.61 +H(0) 1.484e-39 + H2 7.418e-40 7.418e-40 -39.130 -39.130 0.000 28.61 K 1.392e-08 K+ 1.392e-08 1.392e-08 -7.856 -7.856 -0.000 8.98 -O(0) 4.770e-13 - O2 2.385e-13 2.385e-13 -12.623 -12.623 0.000 30.40 +O(0) 1.515e-14 + O2 7.576e-15 7.576e-15 -14.121 -14.121 0.000 30.40 Si 4.176e-08 H4SiO4 4.170e-08 4.170e-08 -7.380 -7.380 0.000 52.08 H3SiO4- 6.198e-11 6.196e-11 -10.208 -10.208 -0.000 27.94 @@ -2664,12 +2640,12 @@ Si 4.176e-08 Al(OH)3(a) -3.03 7.77 10.80 Al(OH)3 Chalcedony -3.83 -7.38 -3.55 SiO2 Gibbsite -0.28 7.77 8.05 Al(OH)3 - H2(g) -36.78 -39.88 -3.10 H2 + H2(g) -36.03 -39.13 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -16.10 -15.22 0.88 KAlSi3O8 K-mica -12.66 0.31 12.97 KAl3Si3O10(OH)2 Kaolinite -4.93 0.78 5.71 Al2Si2O5(OH)4 - O2(g) -9.73 -12.62 -2.89 O2 + O2(g) -11.23 -14.12 -2.89 O2 Quartz -3.40 -7.38 -3.98 SiO2 SiO2(a) -4.67 -7.38 -2.71 SiO2 @@ -2717,17 +2693,16 @@ Kaolinite -2.36 3.35 5.71 0.000e+00 0 0.000e+00 ----------------------------Description of solution---------------------------- pH = 7.209 Charge balance - pe = 11.154 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 0 - Density (g/cm) = 0.99704 + pe = 10.746 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89003 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.035e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 2.647e-07 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.30 Iterations = 10 @@ -2737,7 +2712,7 @@ Kaolinite -2.36 3.35 5.71 0.000e+00 0 0.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.639e-07 1.638e-07 -6.785 -6.786 -0.000 -4.14 H+ 6.183e-08 6.180e-08 -7.209 -7.209 -0.000 0.00 @@ -2748,12 +2723,12 @@ Al 4.101e-08 Al(OH)2+ 5.388e-10 5.386e-10 -9.269 -9.269 -0.000 (0) AlOH+2 4.255e-12 4.246e-12 -11.371 -11.372 -0.001 -27.87 Al+3 2.654e-14 2.642e-14 -13.576 -13.578 -0.002 -42.53 -H(0) 2.658e-40 - H2 1.329e-40 1.329e-40 -39.876 -39.876 0.000 28.61 +H(0) 1.742e-39 + H2 8.708e-40 8.708e-40 -39.060 -39.060 0.000 28.61 K 1.405e-07 K+ 1.405e-07 1.404e-07 -6.852 -6.853 -0.000 8.98 -O(0) 4.721e-13 - O2 2.360e-13 2.360e-13 -12.627 -12.627 0.000 30.40 +O(0) 1.099e-14 + O2 5.497e-15 5.497e-15 -14.260 -14.260 0.000 30.40 Si 4.214e-07 H4SiO4 4.204e-07 4.204e-07 -6.376 -6.376 0.000 52.08 H3SiO4- 1.004e-09 1.003e-09 -8.998 -8.999 -0.000 27.94 @@ -2766,12 +2741,12 @@ Si 4.214e-07 Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 Chalcedony -2.82 -6.38 -3.55 SiO2 Gibbsite -0.00 8.05 8.05 Al(OH)3 - H2(g) -36.78 -39.88 -3.10 H2 + H2(g) -35.96 -39.06 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -11.60 -10.72 0.88 KAlSi3O8 K-mica -7.60 5.37 12.97 KAl3Si3O10(OH)2 Kaolinite -2.36 3.35 5.71 Al2Si2O5(OH)4 - O2(g) -9.73 -12.63 -2.89 O2 + O2(g) -11.37 -14.26 -2.89 O2 Quartz -2.40 -6.38 -3.98 SiO2 SiO2(a) -3.66 -6.38 -2.71 SiO2 @@ -2804,7 +2779,7 @@ A: Gibbsite 1100 1.4048e-01 3.5642e-01 -6.3763e+00 Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Gibbsite -0.00 8.05 8.05 9.946e-08 1.144e-06 1.045e-06 +Gibbsite 0.00 8.05 8.05 9.946e-08 1.144e-06 1.045e-06 K-mica -2.79 10.18 12.97 0.000e+00 0 0.000e+00 Kaolinite -0.37 5.33 5.71 0.000e+00 0 0.000e+00 @@ -2819,27 +2794,26 @@ Kaolinite -0.37 5.33 5.71 0.000e+00 0 0.000e+00 ----------------------------Description of solution---------------------------- pH = 8.032 Charge balance - pe = 10.324 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 0 - Density (g/cm) = 0.99704 + pe = -2.768 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89003 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.416e-06 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 2.193e-06 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.04 - Iterations = 67 + Iterations = 137 Total H = 1.110124e+02 Total O = 5.550622e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.090e-06 1.089e-06 -5.963 -5.963 -0.001 -4.14 H+ 9.311e-09 9.298e-09 -8.031 -8.032 -0.001 0.00 @@ -2850,12 +2824,12 @@ Al 2.620e-07 Al(OH)2+ 8.115e-11 8.104e-11 -10.091 -10.091 -0.001 (0) AlOH+2 9.668e-14 9.614e-14 -13.015 -13.017 -0.002 -27.87 Al+3 9.113e-17 8.999e-17 -16.040 -16.046 -0.005 -42.52 -H(0) 2.757e-40 - H2 1.378e-40 1.378e-40 -39.861 -39.861 0.000 28.61 +H(0) 4.202e-14 + H2 2.101e-14 2.101e-14 -13.678 -13.678 0.000 28.61 K 1.406e-06 K+ 1.406e-06 1.404e-06 -5.852 -5.853 -0.001 8.98 -O(0) 4.388e-13 - O2 2.194e-13 2.194e-13 -12.659 -12.659 0.000 30.40 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.025 -65.025 0.000 30.40 Si 4.218e-06 H4SiO4 4.152e-06 4.152e-06 -5.382 -5.382 0.000 52.08 H3SiO4- 6.594e-08 6.584e-08 -7.181 -7.181 -0.001 27.94 @@ -2867,13 +2841,13 @@ Si 4.218e-06 Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 Chalcedony -1.83 -5.38 -3.55 SiO2 - Gibbsite -0.00 8.05 8.05 Al(OH)3 - H2(g) -36.76 -39.86 -3.10 H2 + Gibbsite 0.00 8.05 8.05 Al(OH)3 + H2(g) -10.58 -13.68 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -6.79 -5.92 0.88 KAlSi3O8 K-mica -2.79 10.18 12.97 KAl3Si3O10(OH)2 Kaolinite -0.37 5.33 5.71 Al2Si2O5(OH)4 - O2(g) -9.77 -12.66 -2.89 O2 + O2(g) -62.13 -65.02 -2.89 O2 Quartz -1.40 -5.38 -3.98 SiO2 SiO2(a) -2.67 -5.38 -2.71 SiO2 @@ -2910,7 +2884,7 @@ Phase SI log IAP log K(T, P) Initial Final Delta Gibbsite -0.59 7.45 8.05 1.144e-06 0 -1.144e-06 K-mica -0.28 12.69 12.97 0.000e+00 0 0.000e+00 -Kaolinite -0.00 5.71 5.71 0.000e+00 6.730e-06 6.730e-06 +Kaolinite 0.00 5.71 5.71 0.000e+00 6.730e-06 6.730e-06 -----------------------------Solution composition------------------------------ @@ -2923,17 +2897,16 @@ Kaolinite -0.00 5.71 5.71 0.000e+00 6.730e-06 6.730e-06 ----------------------------Description of solution---------------------------- pH = 8.987 Charge balance - pe = 9.376 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 2 - Density (g/cm) = 0.99705 + pe = -3.532 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 3 + Density (g/cm³) = 0.99705 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89003 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.406e-05 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.586e-05 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 468 @@ -2943,7 +2916,7 @@ Kaolinite -0.00 5.71 5.71 0.000e+00 6.730e-06 6.730e-06 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 9.856e-06 9.813e-06 -5.006 -5.008 -0.002 -4.13 H+ 1.036e-09 1.031e-09 -8.985 -8.987 -0.002 0.00 @@ -2954,12 +2927,12 @@ Al 5.993e-07 Al(OH)2+ 2.295e-12 2.285e-12 -11.639 -11.641 -0.002 (0) AlOH+2 3.060e-16 3.007e-16 -15.514 -15.522 -0.008 -27.86 Al+3 3.247e-20 3.122e-20 -19.489 -19.506 -0.017 -42.50 -H(0) 2.665e-40 - H2 1.333e-40 1.333e-40 -39.875 -39.875 0.000 28.61 +H(0) 1.747e-14 + H2 8.737e-15 8.737e-15 -14.059 -14.059 0.000 28.61 K 1.406e-05 K+ 1.406e-05 1.400e-05 -4.852 -4.854 -0.002 8.98 -O(0) 4.695e-13 - O2 2.348e-13 2.348e-13 -12.629 -12.629 0.000 30.40 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -64.263 -64.263 0.000 30.40 Si 2.872e-05 H4SiO4 2.511e-05 2.511e-05 -4.600 -4.600 0.000 52.08 H3SiO4- 3.606e-06 3.590e-06 -5.443 -5.445 -0.002 27.95 @@ -2972,12 +2945,12 @@ Si 2.872e-05 Al(OH)3(a) -3.35 7.45 10.80 Al(OH)3 Chalcedony -1.05 -4.60 -3.55 SiO2 Gibbsite -0.59 7.45 8.05 Al(OH)3 - H2(g) -36.77 -39.88 -3.10 H2 + H2(g) -10.96 -14.06 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -3.09 -2.21 0.88 KAlSi3O8 K-mica -0.28 12.69 12.97 KAl3Si3O10(OH)2 - Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 - O2(g) -9.74 -12.63 -2.89 O2 + Kaolinite 0.00 5.71 5.71 Al2Si2O5(OH)4 + O2(g) -61.37 -64.26 -2.89 O2 Quartz -0.62 -4.60 -3.98 SiO2 SiO2(a) -1.89 -4.60 -2.71 SiO2 @@ -3029,27 +3002,26 @@ Kaolinite -0.57 5.14 5.71 6.730e-06 0 -6.730e-06 ----------------------------Description of solution---------------------------- pH = 9.338 Charge balance - pe = 8.994 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 10 - Density (g/cm) = 0.99706 + pe = 9.197 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 10 + Density (g/cm³) = 0.99706 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89004 Activity of water = 1.000 Ionic strength (mol/kgw) = 8.446e-05 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 8.473e-05 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.219e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 3072 + Iterations = 3370 Total H = 1.110123e+02 Total O = 5.550672e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 2.227e-05 2.204e-05 -4.652 -4.657 -0.005 -4.13 H+ 4.641e-10 4.593e-10 -9.333 -9.338 -0.005 0.00 @@ -3060,12 +3032,12 @@ Al 9.244e-08 Al(OH)2+ 7.020e-14 6.946e-14 -13.154 -13.158 -0.005 (0) AlOH+2 4.247e-18 4.070e-18 -17.372 -17.390 -0.018 -27.84 Al+3 2.069e-22 1.882e-22 -21.684 -21.725 -0.041 -42.46 -H(0) 3.066e-40 - H2 1.533e-40 1.533e-40 -39.814 -39.814 0.000 28.61 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.221 -40.221 0.000 28.61 K 8.445e-05 K+ 8.445e-05 8.355e-05 -4.073 -4.078 -0.005 8.99 -O(0) 3.547e-13 - O2 1.774e-13 1.774e-13 -12.751 -12.751 0.000 30.40 +O(0) 2.302e-12 + O2 1.151e-12 1.151e-12 -11.939 -11.939 0.000 30.40 Si 2.534e-04 H4SiO4 1.913e-04 1.913e-04 -3.718 -3.718 0.000 52.08 H3SiO4- 6.207e-05 6.141e-05 -4.207 -4.212 -0.005 27.95 @@ -3078,12 +3050,12 @@ Si 2.534e-04 Al(OH)3(a) -4.51 6.29 10.80 Al(OH)3 Chalcedony -0.17 -3.72 -3.55 SiO2 Gibbsite -1.76 6.29 8.05 Al(OH)3 - H2(g) -36.71 -39.81 -3.10 H2 + H2(g) -37.12 -40.22 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -0.48 0.39 0.88 KAlSi3O8 K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 Kaolinite -0.57 5.14 5.71 Al2Si2O5(OH)4 - O2(g) -9.86 -12.75 -2.89 O2 + O2(g) -9.05 -11.94 -2.89 O2 Quartz 0.26 -3.72 -3.98 SiO2 SiO2(a) -1.01 -3.72 -2.71 SiO2 @@ -3122,7 +3094,7 @@ F: K-mica -> K-feldspar 4.7638e+07 1.9074e+02 5.4868e+00 -3.5536e+00 Phase SI log IAP log K(T, P) Initial Final Delta Gibbsite -2.00 6.05 8.05 0.000e+00 0 0.000e+00 -K-mica -0.00 12.97 12.97 4.218e-05 6.362e-05 2.144e-05 +K-mica 0.00 12.97 12.97 4.218e-05 6.362e-05 2.144e-05 Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 -----------------------------Solution composition------------------------------ @@ -3136,17 +3108,16 @@ Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 ----------------------------Description of solution---------------------------- pH = 9.388 Charge balance - pe = 8.949 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 14 - Density (g/cm) = 0.99707 + pe = 9.153 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 14 + Density (g/cm³) = 0.99707 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89005 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.273e-04 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.275e-04 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 1790 @@ -3156,7 +3127,7 @@ Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 2.506e-05 2.474e-05 -4.601 -4.607 -0.006 -4.13 H+ 4.144e-10 4.091e-10 -9.383 -9.388 -0.006 0.00 @@ -3167,12 +3138,12 @@ Al 5.973e-08 Al(OH)2+ 3.600e-14 3.553e-14 -13.444 -13.449 -0.006 (0) AlOH+2 1.954e-18 1.855e-18 -17.709 -17.732 -0.023 -27.83 Al+3 8.576e-23 7.641e-23 -22.067 -22.117 -0.050 -42.44 -H(0) 2.993e-40 - H2 1.496e-40 1.496e-40 -39.825 -39.825 0.000 28.61 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.233 -40.233 0.000 28.61 K 1.273e-04 K+ 1.273e-04 1.256e-04 -3.895 -3.901 -0.006 8.99 -O(0) 3.723e-13 - O2 1.862e-13 1.862e-13 -12.730 -12.730 0.000 30.40 +O(0) 2.435e-12 + O2 1.217e-12 1.218e-12 -11.915 -11.915 0.000 30.40 Si 3.819e-04 H4SiO4 2.797e-04 2.797e-04 -3.553 -3.553 0.000 52.08 H3SiO4- 1.021e-04 1.008e-04 -3.991 -3.996 -0.006 27.95 @@ -3185,12 +3156,12 @@ Si 3.819e-04 Al(OH)3(a) -4.75 6.05 10.80 Al(OH)3 Chalcedony -0.00 -3.55 -3.55 SiO2 Gibbsite -2.00 6.05 8.05 Al(OH)3 - H2(g) -36.72 -39.82 -3.10 H2 + H2(g) -37.13 -40.23 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -0.00 0.87 0.88 KAlSi3O8 - K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 + K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 Kaolinite -0.72 4.99 5.71 Al2Si2O5(OH)4 - O2(g) -9.84 -12.73 -2.89 O2 + O2(g) -9.02 -11.91 -2.89 O2 Quartz 0.43 -3.55 -3.98 SiO2 SiO2(a) -0.84 -3.55 -2.71 SiO2 @@ -3253,16 +3224,15 @@ Initial solution 1. pH = 11.000 pe = 4.000 - Specific Conductance (S/cm, 25C) = 280 - Density (g/cm) = 0.99712 + Specific Conductance (µS/cm, 25°C) = 289 + Density (g/cm³) = 0.99712 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89020 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.175e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 2.064e-03 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -2.704e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -11.51 Iterations = 5 @@ -3272,7 +3242,7 @@ Initial solution 1. ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.052e-03 1.012e-03 -2.978 -2.995 -0.017 -4.10 H+ 1.037e-11 1.000e-11 -10.984 -11.000 -0.016 0.00 @@ -3328,26 +3298,25 @@ Initial solution 2. pH = 7.000 pe = 4.000 - Specific Conductance (S/cm, 25C) = 189 - Density (g/cm) = 0.99712 + Specific Conductance (µS/cm, 25°C) = 189 + Density (g/cm³) = 0.99712 Volume (L) = 1.00299 + Viscosity (mPa s) = 0.89010 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.333e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.178e-07 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.666e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 99.99 - Iterations = 7 + Iterations = 7 (12 overall) Total H = 1.110125e+02 Total O = 5.550624e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.055e-07 1.012e-07 -6.977 -6.995 -0.018 -4.10 H+ 1.039e-07 1.000e-07 -6.983 -7.000 -0.017 0.00 @@ -3403,26 +3372,25 @@ Initial solution 3. pH = 7.000 pe = 4.000 - Specific Conductance (S/cm, 25C) = 189 - Density (g/cm) = 0.99715 + Specific Conductance (µS/cm, 25°C) = 189 + Density (g/cm³) = 0.99715 Volume (L) = 1.00302 + Viscosity (mPa s) = 0.89005 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.333e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 9.863e-07 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.665e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 99.92 - Iterations = 7 + Iterations = 7 (19 overall) Total H = 1.110150e+02 Total O = 5.550878e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.055e-07 1.012e-07 -6.977 -6.995 -0.018 -4.10 H+ 1.039e-07 1.000e-07 -6.983 -7.000 -0.017 0.00 @@ -3478,26 +3446,25 @@ Initial solution 4. pH = 7.000 pe = 4.000 - Specific Conductance (S/cm, 25C) = 0 - Density (g/cm) = 1.01094 + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 1.01094 Volume (L) = 1.01964 + Viscosity (mPa s) = 0.89002 Activity of water = 0.995 Ionic strength (mol/kgw) = 2.403e-04 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 4.803e-04 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -4.803e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -99.95 - Iterations = 10 + Iterations = 10 (29 overall) Total H = 1.122938e+02 Total O = 5.678810e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.025e-07 1.007e-07 -6.989 -6.997 -0.008 -4.12 H+ 1.018e-07 1.000e-07 -6.992 -7.000 -0.008 0.00 @@ -3588,16 +3555,15 @@ Initial solution 1. pH = 11.000 pe = 4.000 - Specific Conductance (S/cm, 25C) = 280 - Density (g/cm) = 0.99714 + Specific Conductance (µS/cm, 25°C) = 280 + Density (g/cm³) = 0.99714 Volume (L) = 1.00299 + Viscosity (mPa s) = 0.89016 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.372e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.700e-03 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -6.497e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -23.76 Iterations = 5 @@ -3607,7 +3573,7 @@ Initial solution 1. ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.055e-03 1.012e-03 -2.977 -2.995 -0.018 -4.10 H+ 1.040e-11 1.000e-11 -10.983 -11.000 -0.017 0.00 @@ -3663,26 +3629,25 @@ Initial solution 2. pH = 7.000 pe = 4.000 - Specific Conductance (S/cm, 25C) = 189 - Density (g/cm) = 0.99715 + Specific Conductance (µS/cm, 25°C) = 189 + Density (g/cm³) = 0.99715 Volume (L) = 1.00302 + Viscosity (mPa s) = 0.89005 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.333e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 9.863e-07 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.665e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 99.92 - Iterations = 7 + Iterations = 7 (12 overall) Total H = 1.110150e+02 Total O = 5.550878e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.055e-07 1.012e-07 -6.977 -6.995 -0.018 -4.10 H+ 1.039e-07 1.000e-07 -6.983 -7.000 -0.017 0.00 @@ -3738,26 +3703,25 @@ Initial solution 3. pH = 7.000 pe = 4.000 - Specific Conductance (S/cm, 25C) = 189 - Density (g/cm) = 0.99712 + Specific Conductance (µS/cm, 25°C) = 189 + Density (g/cm³) = 0.99712 Volume (L) = 1.00299 + Viscosity (mPa s) = 0.89010 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.333e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.178e-07 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = 2.666e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 99.99 - Iterations = 7 + Iterations = 7 (19 overall) Total H = 1.110125e+02 Total O = 5.550624e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.055e-07 1.012e-07 -6.977 -6.995 -0.018 -4.10 H+ 1.039e-07 1.000e-07 -6.983 -7.000 -0.017 0.00 @@ -3813,26 +3777,25 @@ Initial solution 4. pH = 7.000 pe = 4.000 - Specific Conductance (S/cm, 25C) = 0 - Density (g/cm) = 0.99704 + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89002 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.229e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.131e-07 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -2.394e-08 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -9.74 - Iterations = 6 + Iterations = 6 (25 overall) Total H = 1.110125e+02 Total O = 5.550624e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.013e-07 1.012e-07 -6.995 -6.995 -0.000 -4.14 H+ 1.000e-07 1.000e-07 -7.000 -7.000 -0.000 0.00 @@ -3882,7 +3845,3 @@ End of simulation. Reading input data for simulation 12. ------------------------------------- ------------------------------- -End of Run after 0.27 Seconds. ------------------------------- - diff --git a/ex6A-B.sel b/ex6A-B.sel index 7e1a8690..dbbd6029 100644 --- a/ex6A-B.sel +++ b/ex6A-B.sel @@ -1,22 +1,22 @@ sim state soln dist_x time step pH pe la_K+ la_H+ la_H4SiO4 Gibbsite d_Gibbsite Kaolinite d_Kaolinite K-mica d_K-mica K-feldspar d_K-feldspar si_Gibbsite si_Kaolinite si_K-mica si_K-feldspar 1 i_soln 1 -99 -99 -99 6.99738 4 -1.0000e+03 -6.9974e+00 -1.0000e+03 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -999.9990 -999.9990 -999.9990 -999.9990 2 react 1 -99 0 1 7.00369 10.3679 -7.5756e+00 -7.0037e+00 -7.0990e+00 1.0000e+01 -2.6579e-08 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.0000 -3.8080 -10.6919 -14.6949 - 3 react 1 -99 0 1 8.20884 9.16277 -5.6626e+00 -8.2088e+00 -5.1950e+00 1.7849e-06 1.7849e-06 1.0000e+01 -2.1784e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 0.0000 -1.8618 -5.8648 - 4 react 1 -99 0 1 9.10706 8.26451 -4.6991e+00 -9.1071e+00 -4.4650e+00 0.0000e+00 0.0000e+00 9.7604e-06 9.7604e-06 1.0000e+01 -2.0101e-05 0.0000e+00 0.0000e+00 -0.7300 0.0000 0.0000 -2.5429 - 5 react 1 -99 0 1 9.38811 7.98324 -3.9009e+00 -9.3881e+00 -3.5533e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 6.3616e-05 6.3616e-05 9.9998e+00 -1.9091e-04 -2.0015 -0.7195 0.0000 0.0000 + 3 react 1 -99 0 1 8.20884 9.16278 -5.6626e+00 -8.2088e+00 -5.1950e+00 1.7849e-06 1.7849e-06 1.0000e+01 -2.1784e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.0000 -0.0000 -1.8618 -5.8648 + 4 react 1 -99 0 1 9.10706 8.26456 -4.6991e+00 -9.1071e+00 -4.4650e+00 0.0000e+00 0.0000e+00 9.7604e-06 9.7604e-06 1.0000e+01 -2.0101e-05 0.0000e+00 0.0000e+00 -0.7300 -0.0000 0.0000 -2.5429 + 5 react 1 -99 0 1 9.38811 7.98342 -3.9009e+00 -9.3881e+00 -3.5533e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 6.3616e-05 6.3616e-05 9.9998e+00 -1.9091e-04 -2.0015 -0.7195 0.0000 0.0000 6 react 1 -99 0 1 8.35063 9.021 -5.5202e+00 -8.3506e+00 -5.1950e+00 1.0000e+01 -3.0245e-06 1.0000e+00 1.2397e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -0.0000 -1.5776 -5.5806 7 react 1 -99 0 1 9.06827 -3.25856 -4.6603e+00 -9.0683e+00 -4.2503e+00 0.0000e+00 0.0000e+00 1.0000e+01 -3.2815e-05 1.0000e+00 1.0830e-05 0.0000e+00 0.0000e+00 -0.9448 0.0000 0.0000 -2.1135 8 react 1 -99 0 1 7.02917 -1.25493 -7.3981e+00 -7.0292e+00 -6.9215e+00 1.1996e-08 1.1996e-08 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -3.4530 -9.9565 -13.9595 8 react 1 -99 0 2 7.10321 11.4626 -7.0971e+00 -7.1032e+00 -6.6206e+00 4.7312e-08 4.7312e-08 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -2.8512 -8.6787 -12.6817 8 react 1 -99 0 3 7.2381 -1.23219 -6.7961e+00 -7.2381e+00 -6.3199e+00 1.1631e-07 1.1631e-07 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -2.2497 -7.3406 -11.3436 8 react 1 -99 0 4 7.44792 -1.59012 -6.4952e+00 -7.4479e+00 -6.0195e+00 2.5047e-07 2.5047e-07 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -1.6490 -5.9288 -9.9318 - 8 react 1 -99 0 5 7.71092 -2.00241 -6.1942e+00 -7.7109e+00 -5.7200e+00 5.1404e-07 5.1404e-07 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -1.0500 -4.4663 -8.4693 + 8 react 1 -99 0 5 7.71092 -2.00241 -6.1942e+00 -7.7109e+00 -5.7200e+00 5.1404e-07 5.1404e-07 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.0000 -1.0500 -4.4663 -8.4693 8 react 1 -99 0 6 7.89183 9.81356 -6.0005e+00 -7.8918e+00 -5.5278e+00 8.0972e-07 8.0972e-07 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -0.6657 -3.5152 -7.5182 8 react 1 -99 0 7 8.17443 9.60703 -5.6997e+00 -8.1744e+00 -5.2313e+00 1.6364e-06 1.6364e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -0.0727 -2.0422 -6.0452 - 8 react 1 -99 0 8 8.48037 -2.7668 -5.3990e+00 -8.4804e+00 -5.0859e+00 0.0000e+00 0.0000e+00 1.7143e-06 1.7143e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.1091 0.0000 -1.3266 -5.1114 - 8 react 1 -99 0 9 8.77515 8.98491 -5.0983e+00 -8.7752e+00 -4.8164e+00 0.0000e+00 0.0000e+00 3.6971e-06 3.6971e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.3786 -0.0000 -0.7312 -3.9771 - 8 react 1 -99 0 10 9.03134 -3.37462 -4.7979e+00 -9.0313e+00 -4.5510e+00 0.0000e+00 0.0000e+00 7.7032e-06 7.7032e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.6440 -0.0000 -0.1746 -2.8896 - 8 react 1 -99 0 11 9.07064 8.46951 -4.6626e+00 -9.0706e+00 -4.2614e+00 0.0000e+00 0.0000e+00 6.2948e-07 6.2948e-07 1.0136e-05 1.0136e-05 0.0000e+00 0.0000e+00 -0.9336 0.0000 -0.0000 -2.1358 - 8 react 1 -99 0 12 9.22303 8.39578 -4.3726e+00 -9.2230e+00 -3.9885e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 2.1273e-05 2.1273e-05 0.0000e+00 0.0000e+00 -1.3540 -0.2950 -0.0000 -1.2950 - 8 react 1 -99 0 13 9.30283 -3.51487 -4.1800e+00 -9.3028e+00 -3.8123e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 3.3294e-05 3.3294e-05 0.0000e+00 0.0000e+00 -1.6210 -0.4766 0.0000 -0.7610 - 8 react 1 -99 0 14 9.38811 8.43828 -3.9009e+00 -9.3881e+00 -3.5533e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 6.3616e-05 6.3616e-05 9.0932e-06 9.0932e-06 -2.0015 -0.7195 -0.0000 -0.0000 + 8 react 1 -99 0 8 8.48037 -2.7668 -5.3990e+00 -8.4804e+00 -5.0859e+00 0.0000e+00 0.0000e+00 1.7143e-06 1.7143e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.1091 -0.0000 -1.3266 -5.1114 + 8 react 1 -99 0 9 8.77515 8.98491 -5.0983e+00 -8.7752e+00 -4.8164e+00 0.0000e+00 0.0000e+00 3.6971e-06 3.6971e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.3786 0.0000 -0.7312 -3.9771 + 8 react 1 -99 0 10 9.03134 -3.37462 -4.7979e+00 -9.0313e+00 -4.5510e+00 0.0000e+00 0.0000e+00 7.7032e-06 7.7032e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.6440 0.0000 -0.1746 -2.8896 + 8 react 1 -99 0 11 9.07064 8.46954 -4.6626e+00 -9.0706e+00 -4.2614e+00 0.0000e+00 0.0000e+00 6.2948e-07 6.2948e-07 1.0136e-05 1.0136e-05 0.0000e+00 0.0000e+00 -0.9336 -0.0000 -0.0000 -2.1358 + 8 react 1 -99 0 12 9.22303 8.39576 -4.3726e+00 -9.2230e+00 -3.9885e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 2.1273e-05 2.1273e-05 0.0000e+00 0.0000e+00 -1.3540 -0.2950 0.0000 -1.2950 + 8 react 1 -99 0 13 9.30283 -3.51489 -4.1800e+00 -9.3028e+00 -3.8123e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 3.3294e-05 3.3294e-05 0.0000e+00 0.0000e+00 -1.6210 -0.4766 0.0000 -0.7610 + 8 react 1 -99 0 14 9.38811 8.43829 -3.9009e+00 -9.3881e+00 -3.5533e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 6.3616e-05 6.3616e-05 9.0932e-06 9.0932e-06 -2.0015 -0.7195 0.0000 0.0000 diff --git a/ex7.out b/ex7.out index 928020a9..95b95625 100644 --- a/ex7.out +++ b/ex7.out @@ -74,16 +74,15 @@ Initial solution 1. pH = 7.000 pe = 4.000 - Specific Conductance (S/cm, 25C) = 0 - Density (g/cm) = 0.99704 + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 Volume (L) = 1.00297 + Viscosity (mPa s) = 0.89002 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.007e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.217e-09 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.60 Iterations = 0 @@ -93,7 +92,7 @@ Initial solution 1. ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.013e-07 1.012e-07 -6.995 -6.995 -0.000 -4.14 H+ 1.001e-07 1.000e-07 -7.000 -7.000 -0.000 0.00 @@ -142,15 +141,16 @@ Calcite 0.00 -8.48 -8.48 1.000e+01 9.997e+00 -2.502e-03 pH = 6.971 Charge balance pe = -1.249 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 444 - Density (g/cm) = 0.99738 + Specific Conductance (µS/cm, 25°C) = 453 + Density (g/cm³) = 0.99738 Volume (L) = 1.00304 + Viscosity (mPa s) = 0.89254 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.282e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 5.004e-03 Total CO2 (mol/kg) = 6.070e-03 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 17 @@ -160,29 +160,29 @@ Calcite 0.00 -8.48 -8.48 1.000e+01 9.997e+00 -2.502e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.158e-07 1.069e-07 -6.936 -6.971 -0.035 0.00 - OH- 1.037e-07 9.467e-08 -6.984 -7.024 -0.040 -4.05 + OH- 1.037e-07 9.466e-08 -6.984 -7.024 -0.040 -4.05 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 -C(-4) 4.446e-25 - CH4 4.446e-25 4.453e-25 -24.352 -24.351 0.001 35.46 +C(-4) 4.416e-25 + CH4 4.416e-25 4.424e-25 -24.355 -24.354 0.001 35.46 C(4) 6.070e-03 - HCO3- 4.882e-03 4.475e-03 -2.311 -2.349 -0.038 24.75 - CO2 1.074e-03 1.076e-03 -2.969 -2.968 0.001 34.43 - CaHCO3+ 1.050e-04 9.634e-05 -3.979 -4.016 -0.037 9.71 - CaCO3 5.556e-06 5.565e-06 -5.255 -5.255 0.001 -14.60 - CO3-2 2.781e-06 1.963e-06 -5.556 -5.707 -0.151 -5.07 + HCO3- 4.882e-03 4.475e-03 -2.311 -2.349 -0.038 24.63 + CO2 1.075e-03 1.076e-03 -2.969 -2.968 0.000 34.43 + CaHCO3+ 1.050e-04 9.632e-05 -3.979 -4.016 -0.037 9.71 + CaCO3 5.554e-06 5.563e-06 -5.255 -5.255 0.001 -14.60 + CO3-2 2.780e-06 1.963e-06 -5.556 -5.707 -0.151 -3.84 (CO2)2 2.121e-08 2.125e-08 -7.673 -7.673 0.001 68.87 Ca 2.502e-03 - Ca+2 2.392e-03 1.687e-03 -2.621 -2.773 -0.151 -17.97 - CaHCO3+ 1.050e-04 9.634e-05 -3.979 -4.016 -0.037 9.71 - CaCO3 5.556e-06 5.565e-06 -5.255 -5.255 0.001 -14.60 - CaOH+ 2.865e-09 2.619e-09 -8.543 -8.582 -0.039 (0) -H(0) 5.092e-15 - H2 2.546e-15 2.550e-15 -14.594 -14.593 0.001 28.61 + Ca+2 2.391e-03 1.687e-03 -2.621 -2.773 -0.151 -17.97 + CaHCO3+ 1.050e-04 9.632e-05 -3.979 -4.016 -0.037 9.71 + CaCO3 5.554e-06 5.563e-06 -5.255 -5.255 0.001 -14.60 + CaOH+ 2.864e-09 2.618e-09 -8.543 -8.582 -0.039 (0) +H(0) 5.084e-15 + H2 2.542e-15 2.546e-15 -14.595 -14.594 0.001 28.61 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.194 -63.193 0.001 30.40 + O2 0.000e+00 0.000e+00 -63.193 -63.192 0.001 30.40 ------------------------------Saturation indices------------------------------- @@ -293,15 +293,16 @@ Reaction 1. pH = 6.832 Charge balance pe = -3.723 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 447 - Density (g/cm) = 0.99738 + Specific Conductance (µS/cm, 25°C) = 456 + Density (g/cm³) = 0.99738 Volume (L) = 1.00306 + Viscosity (mPa s) = 0.89255 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.353e-03 + Ionic strength (mol/kgw) = 7.352e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.074e-03 + Total alkalinity (eq/kg) = 5.073e-03 Total CO2 (mol/kg) = 6.570e-03 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -312,24 +313,24 @@ Reaction 1. ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.597e-07 1.474e-07 -6.797 -6.832 -0.035 0.00 - OH- 7.526e-08 6.867e-08 -7.123 -7.163 -0.040 -4.05 + OH- 7.527e-08 6.867e-08 -7.123 -7.163 -0.040 -4.05 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 5.001e-04 CH4 5.001e-04 5.009e-04 -3.301 -3.300 0.001 35.46 C(4) 6.570e-03 - HCO3- 4.955e-03 4.540e-03 -2.305 -2.343 -0.038 24.75 - CO2 1.502e-03 1.505e-03 -2.823 -2.823 0.001 34.43 - CaHCO3+ 1.064e-04 9.760e-05 -3.973 -4.011 -0.037 9.71 - CaCO3 4.083e-06 4.090e-06 -5.389 -5.388 0.001 -14.60 - CO3-2 2.050e-06 1.445e-06 -5.688 -5.840 -0.152 -5.06 - (CO2)2 4.148e-08 4.156e-08 -7.382 -7.381 0.001 68.87 + HCO3- 4.955e-03 4.540e-03 -2.305 -2.343 -0.038 24.63 + CO2 1.503e-03 1.504e-03 -2.823 -2.823 0.000 34.43 + CaHCO3+ 1.064e-04 9.758e-05 -3.973 -4.011 -0.037 9.71 + CaCO3 4.082e-06 4.089e-06 -5.389 -5.388 0.001 -14.60 + CO3-2 2.050e-06 1.445e-06 -5.688 -5.840 -0.152 -3.84 + (CO2)2 4.147e-08 4.154e-08 -7.382 -7.382 0.001 68.87 Ca 2.502e-03 - Ca+2 2.392e-03 1.685e-03 -2.621 -2.773 -0.152 -17.97 - CaHCO3+ 1.064e-04 9.760e-05 -3.973 -4.011 -0.037 9.71 - CaCO3 4.083e-06 4.090e-06 -5.389 -5.388 0.001 -14.60 + Ca+2 2.391e-03 1.685e-03 -2.621 -2.773 -0.152 -17.97 + CaHCO3+ 1.064e-04 9.758e-05 -3.973 -4.011 -0.037 9.71 + CaCO3 4.082e-06 4.089e-06 -5.389 -5.388 0.001 -14.60 CaOH+ 2.076e-09 1.897e-09 -8.683 -8.722 -0.039 (0) H(0) 8.575e-10 H2 4.288e-10 4.295e-10 -9.368 -9.367 0.001 28.61 @@ -396,17 +397,18 @@ Reaction 1. ----------------------------Description of solution---------------------------- - pH = 6.728 Charge balance + pH = 6.729 Charge balance pe = -3.644 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 449 - Density (g/cm) = 0.99738 + Specific Conductance (µS/cm, 25°C) = 459 + Density (g/cm³) = 0.99738 Volume (L) = 1.00310 + Viscosity (mPa s) = 0.89257 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.422e-03 + Ionic strength (mol/kgw) = 7.421e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.144e-03 + Total alkalinity (eq/kg) = 5.143e-03 Total CO2 (mol/kg) = 7.070e-03 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -417,36 +419,36 @@ Reaction 1. ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 2.025e-07 1.869e-07 -6.693 -6.728 -0.035 0.00 - OH- 5.939e-08 5.416e-08 -7.226 -7.266 -0.040 -4.05 + H+ 2.025e-07 1.868e-07 -6.694 -6.729 -0.035 0.00 + OH- 5.939e-08 5.417e-08 -7.226 -7.266 -0.040 -4.05 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 1.000e-03 CH4 1.000e-03 1.002e-03 -3.000 -2.999 0.001 35.46 C(4) 7.070e-03 - HCO3- 5.026e-03 4.604e-03 -2.299 -2.337 -0.038 24.75 - CO2 1.931e-03 1.934e-03 -2.714 -2.713 0.001 34.43 - CaHCO3+ 1.077e-04 9.880e-05 -3.968 -4.005 -0.038 9.71 + HCO3- 5.026e-03 4.603e-03 -2.299 -2.337 -0.038 24.63 + CO2 1.932e-03 1.934e-03 -2.714 -2.714 0.000 34.43 + CaHCO3+ 1.077e-04 9.878e-05 -3.968 -4.005 -0.038 9.71 CaCO3 3.260e-06 3.265e-06 -5.487 -5.486 0.001 -14.60 - CO3-2 1.642e-06 1.156e-06 -5.785 -5.937 -0.152 -5.06 - (CO2)2 6.856e-08 6.868e-08 -7.164 -7.163 0.001 68.87 + CO3-2 1.642e-06 1.156e-06 -5.785 -5.937 -0.152 -3.84 + (CO2)2 6.852e-08 6.864e-08 -7.164 -7.163 0.001 68.87 Ca 2.502e-03 Ca+2 2.391e-03 1.682e-03 -2.621 -2.774 -0.153 -17.97 - CaHCO3+ 1.077e-04 9.880e-05 -3.968 -4.005 -0.038 9.71 + CaHCO3+ 1.077e-04 9.878e-05 -3.968 -4.005 -0.038 9.71 CaCO3 3.260e-06 3.265e-06 -5.487 -5.486 0.001 -14.60 CaOH+ 1.635e-09 1.494e-09 -8.786 -8.826 -0.039 (0) H(0) 9.577e-10 - H2 4.788e-10 4.797e-10 -9.320 -9.319 0.001 28.61 + H2 4.789e-10 4.797e-10 -9.320 -9.319 0.001 28.61 N(-3) 1.398e-04 NH4+ 1.394e-04 1.268e-04 -3.856 -3.897 -0.041 (0) - NH3 3.861e-07 3.867e-07 -6.413 -6.413 0.001 (0) + NH3 3.861e-07 3.868e-07 -6.413 -6.413 0.001 (0) N(0) 2.492e-07 N2 1.246e-07 1.248e-07 -6.904 -6.904 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -62.399 -62.440 -0.041 25.02 + NO2- 0.000e+00 0.000e+00 -62.399 -62.440 -0.040 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -84.800 -84.841 -0.041 29.54 + NO3- 0.000e+00 0.000e+00 -84.800 -84.841 -0.040 29.54 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.743 -73.742 0.001 30.40 @@ -503,51 +505,52 @@ Reaction 1. pH = 6.647 Charge balance pe = -3.574 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 452 - Density (g/cm) = 0.99738 + Specific Conductance (µS/cm, 25°C) = 462 + Density (g/cm³) = 0.99738 Volume (L) = 1.00313 + Viscosity (mPa s) = 0.89258 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.491e-03 + Ionic strength (mol/kgw) = 7.490e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.214e-03 + Total alkalinity (eq/kg) = 5.213e-03 Total CO2 (mol/kg) = 7.570e-03 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 15 + Iterations = 14 Total H = 1.110191e+02 Total O = 5.552386e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 2.443e-07 2.253e-07 -6.612 -6.647 -0.035 0.00 - OH- 4.926e-08 4.491e-08 -7.307 -7.348 -0.040 -4.05 + OH- 4.927e-08 4.492e-08 -7.307 -7.348 -0.040 -4.05 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 1.500e-03 CH4 1.500e-03 1.503e-03 -2.824 -2.823 0.001 35.46 C(4) 7.570e-03 - HCO3- 5.096e-03 4.666e-03 -2.293 -2.331 -0.038 24.75 - CO2 2.360e-03 2.364e-03 -2.627 -2.626 0.001 34.43 - CaHCO3+ 1.090e-04 9.997e-05 -3.962 -4.000 -0.038 9.71 + HCO3- 5.096e-03 4.666e-03 -2.293 -2.331 -0.038 24.63 + CO2 2.361e-03 2.364e-03 -2.627 -2.626 0.000 34.43 + CaHCO3+ 1.090e-04 9.995e-05 -3.963 -4.000 -0.038 9.71 CaCO3 2.735e-06 2.740e-06 -5.563 -5.562 0.001 -14.60 - CO3-2 1.382e-06 9.713e-07 -5.860 -6.013 -0.153 -5.06 - (CO2)2 1.024e-07 1.026e-07 -6.990 -6.989 0.001 68.87 + CO3-2 1.382e-06 9.714e-07 -5.860 -6.013 -0.153 -3.84 + (CO2)2 1.024e-07 1.025e-07 -6.990 -6.989 0.001 68.87 Ca 2.502e-03 Ca+2 2.390e-03 1.679e-03 -2.622 -2.775 -0.153 -17.97 - CaHCO3+ 1.090e-04 9.997e-05 -3.962 -4.000 -0.038 9.71 + CaHCO3+ 1.090e-04 9.995e-05 -3.963 -4.000 -0.038 9.71 CaCO3 2.735e-06 2.740e-06 -5.563 -5.562 0.001 -14.60 - CaOH+ 1.354e-09 1.236e-09 -8.868 -8.908 -0.039 (0) + CaOH+ 1.354e-09 1.237e-09 -8.868 -8.908 -0.039 (0) H(0) 1.008e-09 - H2 5.040e-10 5.048e-10 -9.298 -9.297 0.001 28.61 + H2 5.040e-10 5.049e-10 -9.298 -9.297 0.001 28.61 N(-3) 2.097e-04 NH4+ 2.092e-04 1.903e-04 -3.679 -3.721 -0.041 (0) - NH3 4.803e-07 4.812e-07 -6.318 -6.318 0.001 (0) -N(0) 3.309e-07 - N2 1.654e-07 1.657e-07 -6.781 -6.781 0.001 29.29 + NH3 4.805e-07 4.813e-07 -6.318 -6.318 0.001 (0) +N(0) 3.310e-07 + N2 1.655e-07 1.658e-07 -6.781 -6.781 0.001 29.29 N(3) 0.000e+00 NO2- 0.000e+00 0.000e+00 -62.452 -62.493 -0.041 25.02 N(5) 0.000e+00 @@ -605,10 +608,10 @@ Total pressure: 1.10 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -0.01 9.865e-01 0.998 0.000e+00 4.503e-04 4.503e-04 -CO2(g) -1.09 8.152e-02 0.994 0.000e+00 3.721e-05 3.721e-05 +CH4(g) -0.01 9.866e-01 0.998 0.000e+00 4.502e-04 4.502e-04 +CO2(g) -1.09 8.149e-02 0.994 0.000e+00 3.719e-05 3.719e-05 H2O(g) -1.50 3.157e-02 0.995 0.000e+00 1.441e-05 1.441e-05 -N2(g) -3.44 3.639e-04 1.000 0.000e+00 1.661e-07 1.661e-07 +N2(g) -3.44 3.640e-04 1.000 0.000e+00 1.661e-07 1.661e-07 -----------------------------Solution composition------------------------------ @@ -622,15 +625,16 @@ N2(g) -3.44 3.639e-04 1.000 0.000e+00 1.661e-07 1.661e-07 pH = 6.586 Charge balance pe = -3.506 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 455 - Density (g/cm) = 0.99738 + Specific Conductance (µS/cm, 25°C) = 465 + Density (g/cm³) = 0.99739 Volume (L) = 1.00315 + Viscosity (mPa s) = 0.89260 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.558e-03 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 5.283e-03 - Total CO2 (mol/kg) = 8.032e-03 - Temperature (C) = 25.00 + Total CO2 (mol/kg) = 8.033e-03 + Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -641,34 +645,34 @@ N2(g) -3.44 3.639e-04 1.000 0.000e+00 1.661e-07 1.661e-07 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 2.813e-07 2.594e-07 -6.551 -6.586 -0.035 0.00 - OH- 4.281e-08 3.902e-08 -7.368 -7.409 -0.040 -4.05 + H+ 2.813e-07 2.593e-07 -6.551 -6.586 -0.035 0.00 + OH- 4.282e-08 3.903e-08 -7.368 -7.409 -0.040 -4.05 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 1.550e-03 CH4 1.550e-03 1.553e-03 -2.810 -2.809 0.001 35.46 -C(4) 8.032e-03 - HCO3- 5.165e-03 4.728e-03 -2.287 -2.325 -0.038 24.75 - CO2 2.753e-03 2.758e-03 -2.560 -2.559 0.001 34.43 +C(4) 8.033e-03 + HCO3- 5.165e-03 4.728e-03 -2.287 -2.325 -0.038 24.63 + CO2 2.753e-03 2.757e-03 -2.560 -2.560 0.000 34.43 CaHCO3+ 1.103e-04 1.011e-04 -3.957 -3.995 -0.038 9.72 - CaCO3 2.403e-06 2.407e-06 -5.619 -5.618 0.001 -14.60 - CO3-2 1.218e-06 8.550e-07 -5.914 -6.068 -0.154 -5.06 - (CO2)2 1.393e-07 1.396e-07 -6.856 -6.855 0.001 68.87 + CaCO3 2.403e-06 2.408e-06 -5.619 -5.618 0.001 -14.60 + CO3-2 1.218e-06 8.551e-07 -5.914 -6.068 -0.154 -3.83 + (CO2)2 1.392e-07 1.395e-07 -6.856 -6.855 0.001 68.87 Ca 2.502e-03 Ca+2 2.389e-03 1.676e-03 -2.622 -2.776 -0.154 -17.96 CaHCO3+ 1.103e-04 1.011e-04 -3.957 -3.995 -0.038 9.72 - CaCO3 2.403e-06 2.407e-06 -5.619 -5.618 0.001 -14.60 + CaCO3 2.403e-06 2.408e-06 -5.619 -5.618 0.001 -14.60 CaOH+ 1.175e-09 1.072e-09 -8.930 -8.970 -0.040 (0) -H(0) 9.778e-10 - H2 4.889e-10 4.898e-10 -9.311 -9.310 0.001 28.61 +H(0) 9.779e-10 + H2 4.890e-10 4.898e-10 -9.311 -9.310 0.001 28.61 N(-3) 2.792e-04 NH4+ 2.786e-04 2.533e-04 -3.555 -3.596 -0.041 (0) - NH3 5.556e-07 5.565e-07 -6.255 -6.254 0.001 (0) -N(0) 4.848e-07 - N2 2.424e-07 2.428e-07 -6.616 -6.615 0.001 29.29 + NH3 5.557e-07 5.567e-07 -6.255 -6.254 0.001 (0) +N(0) 4.849e-07 + N2 2.424e-07 2.429e-07 -6.615 -6.615 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -62.411 -62.452 -0.041 25.02 + NO2- 0.000e+00 0.000e+00 -62.411 -62.451 -0.041 25.02 N(5) 0.000e+00 NO3- 0.000e+00 0.000e+00 -84.821 -84.862 -0.041 29.54 O(0) 0.000e+00 @@ -724,10 +728,10 @@ Total pressure: 1.10 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -0.03 9.436e-01 0.998 0.000e+00 2.520e-03 2.520e-03 -CO2(g) -0.91 1.238e-01 0.994 0.000e+00 3.307e-04 3.307e-04 -H2O(g) -1.50 3.158e-02 0.995 0.000e+00 8.433e-05 8.433e-05 -N2(g) -3.01 9.673e-04 1.000 0.000e+00 2.583e-06 2.583e-06 +CH4(g) -0.03 9.437e-01 0.998 0.000e+00 2.520e-03 2.520e-03 +CO2(g) -0.91 1.238e-01 0.994 0.000e+00 3.306e-04 3.306e-04 +H2O(g) -1.50 3.158e-02 0.995 0.000e+00 8.432e-05 8.432e-05 +N2(g) -3.01 9.676e-04 1.000 0.000e+00 2.584e-06 2.584e-06 -----------------------------Solution composition------------------------------ @@ -741,15 +745,16 @@ N2(g) -3.01 9.673e-04 1.000 0.000e+00 2.583e-06 2.583e-06 pH = 6.426 Charge balance pe = -3.321 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 465 - Density (g/cm) = 0.99741 + Specific Conductance (µS/cm, 25°C) = 475 + Density (g/cm³) = 0.99742 Volume (L) = 1.00319 + Viscosity (mPa s) = 0.89266 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.825e-03 + Ionic strength (mol/kgw) = 7.824e-03 Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 5.558e-03 + Total alkalinity (eq/kg) = 5.557e-03 Total CO2 (mol/kg) = 9.737e-03 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -760,32 +765,32 @@ N2(g) -3.01 9.673e-04 1.000 0.000e+00 2.583e-06 2.583e-06 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 4.070e-07 3.749e-07 -6.390 -6.426 -0.036 0.00 - OH- 2.967e-08 2.700e-08 -7.528 -7.569 -0.041 -4.05 + H+ 4.069e-07 3.747e-07 -6.391 -6.426 -0.036 0.00 + OH- 2.968e-08 2.701e-08 -7.528 -7.569 -0.041 -4.05 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 1.483e-03 CH4 1.483e-03 1.485e-03 -2.829 -2.828 0.001 35.46 C(4) 9.737e-03 - HCO3- 5.437e-03 4.970e-03 -2.265 -2.304 -0.039 24.75 - CO2 4.182e-03 4.189e-03 -2.379 -2.378 0.001 34.43 + HCO3- 5.436e-03 4.969e-03 -2.265 -2.304 -0.039 24.63 + CO2 4.182e-03 4.187e-03 -2.379 -2.378 0.001 34.43 CaHCO3+ 1.153e-04 1.055e-04 -3.938 -3.977 -0.038 9.72 - CaCO3 1.735e-06 1.739e-06 -5.761 -5.760 0.001 -14.60 - CO3-2 8.906e-07 6.218e-07 -6.050 -6.206 -0.156 -5.05 - (CO2)2 3.215e-07 3.221e-07 -6.493 -6.492 0.001 68.87 + CaCO3 1.736e-06 1.739e-06 -5.761 -5.760 0.001 -14.60 + CO3-2 8.908e-07 6.220e-07 -6.050 -6.206 -0.156 -3.83 + (CO2)2 3.213e-07 3.218e-07 -6.493 -6.492 0.001 68.87 Ca 2.502e-03 Ca+2 2.385e-03 1.664e-03 -2.623 -2.779 -0.156 -17.96 CaHCO3+ 1.153e-04 1.055e-04 -3.938 -3.977 -0.038 9.72 - CaCO3 1.735e-06 1.739e-06 -5.761 -5.760 0.001 -14.60 - CaOH+ 8.082e-10 7.366e-10 -9.092 -9.133 -0.040 (0) -H(0) 8.710e-10 + CaCO3 1.736e-06 1.739e-06 -5.761 -5.760 0.001 -14.60 + CaOH+ 8.084e-10 7.368e-10 -9.092 -9.133 -0.040 (0) +H(0) 8.711e-10 H2 4.355e-10 4.363e-10 -9.361 -9.360 0.001 28.61 N(-3) 5.536e-04 NH4+ 5.528e-04 5.018e-04 -3.257 -3.299 -0.042 (0) - NH3 7.615e-07 7.628e-07 -6.118 -6.118 0.001 (0) -N(0) 1.288e-06 - N2 6.442e-07 6.454e-07 -6.191 -6.190 0.001 29.29 + NH3 7.617e-07 7.631e-07 -6.118 -6.117 0.001 (0) +N(0) 1.289e-06 + N2 6.444e-07 6.456e-07 -6.191 -6.190 0.001 29.29 N(3) 0.000e+00 NO2- 0.000e+00 0.000e+00 -62.282 -62.324 -0.041 25.02 N(5) 0.000e+00 @@ -843,10 +848,10 @@ Total pressure: 1.10 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -0.06 8.730e-01 0.998 0.000e+00 6.645e-03 6.645e-03 -CO2(g) -0.72 1.928e-01 0.994 0.000e+00 1.467e-03 1.467e-03 -H2O(g) -1.50 3.159e-02 0.994 0.000e+00 2.405e-04 2.405e-04 -N2(g) -2.58 2.646e-03 1.000 0.000e+00 2.014e-05 2.014e-05 +CH4(g) -0.06 8.731e-01 0.998 0.000e+00 6.645e-03 6.645e-03 +CO2(g) -0.72 1.927e-01 0.994 0.000e+00 1.466e-03 1.466e-03 +H2O(g) -1.50 3.159e-02 0.994 0.000e+00 2.404e-04 2.404e-04 +N2(g) -2.58 2.647e-03 1.000 0.000e+00 2.014e-05 2.014e-05 -----------------------------Solution composition------------------------------ @@ -860,51 +865,52 @@ N2(g) -2.58 2.646e-03 1.000 0.000e+00 2.014e-05 2.014e-05 pH = 6.272 Charge balance pe = -3.139 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 484 - Density (g/cm) = 0.99747 + Specific Conductance (µS/cm, 25°C) = 496 + Density (g/cm³) = 0.99747 Volume (L) = 1.00327 + Viscosity (mPa s) = 0.89277 Activity of water = 1.000 - Ionic strength (mol/kgw) = 8.330e-03 + Ionic strength (mol/kgw) = 8.329e-03 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 6.080e-03 Total CO2 (mol/kg) = 1.259e-02 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 22 + Iterations = 23 Total H = 1.110207e+02 Total O = 5.553368e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 5.813e-07 5.342e-07 -6.236 -6.272 -0.037 0.00 - OH- 2.087e-08 1.894e-08 -7.680 -7.723 -0.042 -4.04 + H+ 5.811e-07 5.340e-07 -6.236 -6.272 -0.037 0.00 + OH- 2.088e-08 1.895e-08 -7.680 -7.722 -0.042 -4.04 H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.07 C(-4) 1.372e-03 CH4 1.372e-03 1.374e-03 -2.863 -2.862 0.001 35.46 C(4) 1.259e-02 - CO2 6.507e-03 6.520e-03 -2.187 -2.186 0.001 34.43 - HCO3- 5.952e-03 5.427e-03 -2.225 -2.265 -0.040 24.76 + CO2 6.509e-03 6.517e-03 -2.187 -2.186 0.001 34.43 + HCO3- 5.951e-03 5.427e-03 -2.225 -2.265 -0.040 24.64 CaHCO3+ 1.245e-04 1.137e-04 -3.905 -3.944 -0.039 9.72 CaCO3 1.312e-06 1.314e-06 -5.882 -5.881 0.001 -14.60 - (CO2)2 7.787e-07 7.802e-07 -6.109 -6.108 0.001 68.87 - CO3-2 6.891e-07 4.765e-07 -6.162 -6.322 -0.160 -5.04 + (CO2)2 7.781e-07 7.796e-07 -6.109 -6.108 0.001 68.87 + CO3-2 6.893e-07 4.766e-07 -6.162 -6.322 -0.160 -3.82 Ca 2.502e-03 Ca+2 2.376e-03 1.642e-03 -2.624 -2.785 -0.161 -17.95 CaHCO3+ 1.245e-04 1.137e-04 -3.905 -3.944 -0.039 9.72 CaCO3 1.312e-06 1.314e-06 -5.882 -5.881 0.001 -14.60 - CaOH+ 5.609e-10 5.099e-10 -9.251 -9.293 -0.041 (0) -H(0) 7.647e-10 - H2 3.823e-10 3.831e-10 -9.418 -9.417 0.001 28.61 + CaOH+ 5.610e-10 5.100e-10 -9.251 -9.292 -0.041 (0) +H(0) 7.648e-10 + H2 3.824e-10 3.831e-10 -9.417 -9.417 0.001 28.61 N(-3) 1.076e-03 - NH4+ 1.075e-03 9.732e-04 -2.968 -3.012 -0.043 (0) - NH3 1.036e-06 1.038e-06 -5.985 -5.984 0.001 (0) -N(0) 3.524e-06 - N2 1.762e-06 1.766e-06 -5.754 -5.753 0.001 29.29 + NH4+ 1.075e-03 9.732e-04 -2.969 -3.012 -0.043 (0) + NH3 1.036e-06 1.038e-06 -5.984 -5.984 0.001 (0) +N(0) 3.525e-06 + N2 1.763e-06 1.766e-06 -5.754 -5.753 0.001 29.29 N(3) 0.000e+00 NO2- 0.000e+00 0.000e+00 -62.132 -62.174 -0.043 25.02 N(5) 0.000e+00 @@ -962,16 +968,16 @@ Total pressure: 1.10 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -0.11 7.772e-01 0.998 0.000e+00 1.489e-02 1.489e-02 -CO2(g) -0.55 2.837e-01 0.994 0.000e+00 5.435e-03 5.435e-03 -H2O(g) -1.50 3.161e-02 0.994 0.000e+00 6.055e-04 6.055e-04 -N2(g) -2.13 7.472e-03 1.000 0.000e+00 1.432e-04 1.432e-04 +CH4(g) -0.11 7.773e-01 0.998 0.000e+00 1.489e-02 1.489e-02 +CO2(g) -0.55 2.836e-01 0.994 0.000e+00 5.433e-03 5.433e-03 +H2O(g) -1.50 3.161e-02 0.994 0.000e+00 6.054e-04 6.054e-04 +N2(g) -2.13 7.474e-03 1.000 0.000e+00 1.432e-04 1.432e-04 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 1.775e-02 1.774e-02 + C 1.775e-02 1.775e-02 Ca 2.502e-03 2.502e-03 N 1.954e-03 1.954e-03 @@ -979,53 +985,54 @@ N2(g) -2.13 7.472e-03 1.000 0.000e+00 1.432e-04 1.432e-04 pH = 6.161 Charge balance pe = -3.000 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 516 - Density (g/cm) = 0.99755 + Specific Conductance (µS/cm, 25°C) = 531 + Density (g/cm³) = 0.99755 Volume (L) = 1.00337 + Viscosity (mPa s) = 0.89296 Activity of water = 1.000 Ionic strength (mol/kgw) = 9.168e-03 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 6.948e-03 - Total CO2 (mol/kg) = 1.652e-02 - Temperature (C) = 25.00 + Total CO2 (mol/kg) = 1.653e-02 + Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 22 Total H = 1.110224e+02 - Total O = 5.554138e+01 + Total O = 5.554139e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.535e-07 6.903e-07 -6.123 -6.161 -0.038 0.00 - OH- 1.622e-08 1.466e-08 -7.790 -7.834 -0.044 -4.04 + H+ 7.533e-07 6.901e-07 -6.123 -6.161 -0.038 0.00 + OH- 1.623e-08 1.466e-08 -7.790 -7.834 -0.044 -4.04 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.07 C(-4) 1.221e-03 - CH4 1.221e-03 1.223e-03 -2.913 -2.912 0.001 35.46 -C(4) 1.652e-02 - CO2 9.575e-03 9.596e-03 -2.019 -2.018 0.001 34.43 - HCO3- 6.805e-03 6.181e-03 -2.167 -2.209 -0.042 24.76 + CH4 1.221e-03 1.224e-03 -2.913 -2.912 0.001 35.46 +C(4) 1.653e-02 + CO2 9.579e-03 9.592e-03 -2.019 -2.018 0.001 34.43 + HCO3- 6.804e-03 6.181e-03 -2.167 -2.209 -0.042 24.64 CaHCO3+ 1.393e-04 1.267e-04 -3.856 -3.897 -0.041 9.72 - (CO2)2 1.687e-06 1.690e-06 -5.773 -5.772 0.001 68.87 + (CO2)2 1.685e-06 1.689e-06 -5.773 -5.772 0.001 68.87 CaCO3 1.131e-06 1.134e-06 -5.946 -5.946 0.001 -14.60 - CO3-2 6.169e-07 4.200e-07 -6.210 -6.377 -0.167 -5.03 + CO3-2 6.170e-07 4.201e-07 -6.210 -6.377 -0.167 -3.80 Ca 2.502e-03 - Ca+2 2.362e-03 1.607e-03 -2.627 -2.794 -0.167 -17.94 + Ca+2 2.361e-03 1.607e-03 -2.627 -2.794 -0.167 -17.94 CaHCO3+ 1.393e-04 1.267e-04 -3.856 -3.897 -0.041 9.72 CaCO3 1.131e-06 1.134e-06 -5.946 -5.946 0.001 -14.60 - CaOH+ 4.265e-10 3.861e-10 -9.370 -9.413 -0.043 (0) -H(0) 6.742e-10 - H2 3.371e-10 3.378e-10 -9.472 -9.471 0.001 28.61 + CaOH+ 4.266e-10 3.862e-10 -9.370 -9.413 -0.043 (0) +H(0) 6.743e-10 + H2 3.372e-10 3.379e-10 -9.472 -9.471 0.001 28.61 N(-3) 1.944e-03 NH4+ 1.942e-03 1.750e-03 -2.712 -2.757 -0.045 (0) NH3 1.442e-06 1.445e-06 -5.841 -5.840 0.001 (0) -N(0) 9.952e-06 - N2 4.976e-06 4.987e-06 -5.303 -5.302 0.001 29.29 +N(0) 9.954e-06 + N2 4.977e-06 4.988e-06 -5.303 -5.302 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.934 -61.979 -0.045 25.03 + NO2- 0.000e+00 0.000e+00 -61.934 -61.978 -0.045 25.03 N(5) 0.000e+00 NO3- 0.000e+00 0.000e+00 -84.183 -84.227 -0.045 29.55 O(0) 0.000e+00 @@ -1081,7 +1088,7 @@ Total pressure: 1.10 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -0.17 6.818e-01 0.998 0.000e+00 3.152e-02 3.152e-02 +CH4(g) -0.17 6.819e-01 0.998 0.000e+00 3.152e-02 3.152e-02 CO2(g) -0.43 3.697e-01 0.994 0.000e+00 1.709e-02 1.709e-02 H2O(g) -1.50 3.162e-02 0.993 0.000e+00 1.462e-03 1.462e-03 N2(g) -1.77 1.682e-02 1.000 0.000e+00 7.776e-04 7.776e-04 @@ -1090,57 +1097,58 @@ N2(g) -1.77 1.682e-02 1.000 0.000e+00 7.776e-04 7.776e-04 Elements Molality Moles - C 2.146e-02 2.145e-02 + C 2.146e-02 2.146e-02 Ca 2.502e-03 2.502e-03 N 2.925e-03 2.925e-03 ----------------------------Description of solution---------------------------- pH = 6.101 Charge balance - pe = -2.918 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 552 - Density (g/cm) = 0.99763 + pe = -2.919 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 569 + Density (g/cm³) = 0.99763 Volume (L) = 1.00348 + Viscosity (mPa s) = 0.89316 Activity of water = 1.000 - Ionic strength (mol/kgw) = 1.010e-02 + Ionic strength (mol/kgw) = 1.009e-02 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 7.907e-03 Total CO2 (mol/kg) = 2.039e-02 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 20 Total H = 1.110249e+02 - Total O = 5.554921e+01 + Total O = 5.554922e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.688e-07 7.932e-07 -6.061 -6.101 -0.040 0.00 + H+ 8.686e-07 7.931e-07 -6.061 -6.101 -0.040 0.00 OH- 1.418e-08 1.276e-08 -7.848 -7.894 -0.046 -4.03 H2O 5.551e+01 9.995e-01 1.744 -0.000 0.000 18.07 C(-4) 1.071e-03 CH4 1.071e-03 1.073e-03 -2.970 -2.969 0.001 35.46 C(4) 2.039e-02 - CO2 1.248e-02 1.251e-02 -1.904 -1.903 0.001 34.43 - HCO3- 7.748e-03 7.009e-03 -2.111 -2.154 -0.043 24.77 - CaHCO3+ 1.550e-04 1.405e-04 -3.810 -3.852 -0.043 9.72 - (CO2)2 2.864e-06 2.870e-06 -5.543 -5.542 0.001 68.87 + CO2 1.248e-02 1.250e-02 -1.904 -1.903 0.001 34.43 + HCO3- 7.747e-03 7.009e-03 -2.111 -2.154 -0.043 24.65 + CaHCO3+ 1.550e-04 1.404e-04 -3.810 -3.853 -0.043 9.72 + (CO2)2 2.862e-06 2.869e-06 -5.543 -5.542 0.001 68.87 CaCO3 1.091e-06 1.093e-06 -5.962 -5.961 0.001 -14.60 - CO3-2 6.186e-07 4.144e-07 -6.209 -6.383 -0.174 -5.01 + CO3-2 6.187e-07 4.145e-07 -6.209 -6.382 -0.174 -3.78 Ca 2.502e-03 - Ca+2 2.346e-03 1.571e-03 -2.630 -2.804 -0.174 -17.93 - CaHCO3+ 1.550e-04 1.405e-04 -3.810 -3.852 -0.043 9.72 + Ca+2 2.346e-03 1.570e-03 -2.630 -2.804 -0.174 -17.93 + CaHCO3+ 1.550e-04 1.404e-04 -3.810 -3.853 -0.043 9.72 CaCO3 1.091e-06 1.093e-06 -5.962 -5.961 0.001 -14.60 - CaOH+ 3.643e-10 3.284e-10 -9.439 -9.484 -0.045 (0) + CaOH+ 3.643e-10 3.285e-10 -9.438 -9.484 -0.045 (0) H(0) 6.106e-10 H2 3.053e-10 3.060e-10 -9.515 -9.514 0.001 28.61 N(-3) 2.903e-03 NH4+ 2.901e-03 2.601e-03 -2.537 -2.585 -0.047 (0) - NH3 1.864e-06 1.869e-06 -5.729 -5.728 0.001 (0) + NH3 1.865e-06 1.869e-06 -5.729 -5.728 0.001 (0) N(0) 2.240e-05 N2 1.120e-05 1.123e-05 -4.951 -4.950 0.001 29.29 N(3) 0.000e+00 @@ -1201,7 +1209,7 @@ Total pressure: 1.10 atmospheres (Peng-Robinson calculation) Component log P P phi Initial Final Delta CH4(g) -0.21 6.176e-01 0.998 0.000e+00 6.350e-02 6.350e-02 -CO2(g) -0.37 4.254e-01 0.994 0.000e+00 4.374e-02 4.374e-02 +CO2(g) -0.37 4.254e-01 0.994 0.000e+00 4.373e-02 4.373e-02 H2O(g) -1.50 3.163e-02 0.993 0.000e+00 3.252e-03 3.252e-03 N2(g) -1.60 2.536e-02 1.001 0.000e+00 2.607e-03 2.607e-03 @@ -1209,7 +1217,7 @@ N2(g) -1.60 2.536e-02 1.001 0.000e+00 2.607e-03 2.607e-03 Elements Molality Moles - C 2.383e-02 2.383e-02 + C 2.384e-02 2.384e-02 Ca 2.502e-03 2.502e-03 N 3.536e-03 3.535e-03 @@ -1217,48 +1225,49 @@ N2(g) -1.60 2.536e-02 1.001 0.000e+00 2.607e-03 2.607e-03 pH = 6.071 Charge balance pe = -2.875 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 574 - Density (g/cm) = 0.99768 + Specific Conductance (µS/cm, 25°C) = 593 + Density (g/cm³) = 0.99768 Volume (L) = 1.00356 + Viscosity (mPa s) = 0.89329 Activity of water = 0.999 - Ionic strength (mol/kgw) = 1.068e-02 + Ionic strength (mol/kgw) = 1.067e-02 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 8.506e-03 - Total CO2 (mol/kg) = 2.286e-02 - Temperature (C) = 25.00 + Total CO2 (mol/kg) = 2.287e-02 + Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 21 Total H = 1.110282e+02 - Total O = 5.555513e+01 + Total O = 5.555515e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.329e-07 8.501e-07 -6.030 -6.071 -0.040 0.00 - OH- 1.326e-08 1.190e-08 -7.877 -7.924 -0.047 -4.03 + H+ 9.328e-07 8.501e-07 -6.030 -6.071 -0.040 0.00 + OH- 1.327e-08 1.190e-08 -7.877 -7.924 -0.047 -4.03 H2O 5.551e+01 9.995e-01 1.744 -0.000 0.000 18.07 -C(-4) 9.698e-04 - CH4 9.698e-04 9.722e-04 -3.013 -3.012 0.001 35.46 -C(4) 2.286e-02 - CO2 1.435e-02 1.439e-02 -1.843 -1.842 0.001 34.43 - HCO3- 8.337e-03 7.525e-03 -2.079 -2.124 -0.045 24.77 +C(-4) 9.699e-04 + CH4 9.699e-04 9.723e-04 -3.013 -3.012 0.001 35.46 +C(4) 2.287e-02 + CO2 1.436e-02 1.439e-02 -1.843 -1.842 0.001 34.43 + HCO3- 8.337e-03 7.524e-03 -2.079 -2.124 -0.045 24.66 CaHCO3+ 1.645e-04 1.487e-04 -3.784 -3.828 -0.044 9.73 - (CO2)2 3.790e-06 3.800e-06 -5.421 -5.420 0.001 68.87 + (CO2)2 3.789e-06 3.799e-06 -5.421 -5.420 0.001 68.87 CaCO3 1.078e-06 1.080e-06 -5.967 -5.966 0.001 -14.60 - CO3-2 6.257e-07 4.151e-07 -6.204 -6.382 -0.178 -5.00 + CO3-2 6.257e-07 4.152e-07 -6.204 -6.382 -0.178 -3.76 Ca 2.502e-03 - Ca+2 2.337e-03 1.549e-03 -2.631 -2.810 -0.178 -17.92 + Ca+2 2.336e-03 1.549e-03 -2.631 -2.810 -0.178 -17.92 CaHCO3+ 1.645e-04 1.487e-04 -3.784 -3.828 -0.044 9.73 CaCO3 1.078e-06 1.080e-06 -5.967 -5.966 0.001 -14.60 CaOH+ 3.362e-10 3.023e-10 -9.473 -9.520 -0.046 (0) -H(0) 5.750e-10 +H(0) 5.751e-10 H2 2.875e-10 2.882e-10 -9.541 -9.540 0.001 28.61 N(-3) 3.502e-03 - NH4+ 3.500e-03 3.129e-03 -2.456 -2.505 -0.049 (0) + NH4+ 3.500e-03 3.130e-03 -2.456 -2.505 -0.049 (0) NH3 2.093e-06 2.098e-06 -5.679 -5.678 0.001 (0) N(0) 3.377e-05 N2 1.689e-05 1.693e-05 -4.772 -4.771 0.001 29.29 @@ -1321,14 +1330,14 @@ Component log P P phi Initial Final Delta CH4(g) -0.24 5.807e-01 0.998 0.000e+00 1.292e-01 1.292e-01 CO2(g) -0.34 4.570e-01 0.994 0.000e+00 1.017e-01 1.017e-01 -H2O(g) -1.50 3.163e-02 0.993 0.000e+00 7.040e-03 7.040e-03 +H2O(g) -1.50 3.163e-02 0.993 0.000e+00 7.039e-03 7.039e-03 N2(g) -1.51 3.067e-02 1.001 0.000e+00 6.826e-03 6.826e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 2.515e-02 2.515e-02 + C 2.516e-02 2.516e-02 Ca 2.502e-03 2.502e-03 N 3.849e-03 3.849e-03 @@ -1336,51 +1345,52 @@ N2(g) -1.51 3.067e-02 1.001 0.000e+00 6.826e-03 6.826e-03 pH = 6.054 Charge balance pe = -2.852 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 585 - Density (g/cm) = 0.99771 + Specific Conductance (µS/cm, 25°C) = 605 + Density (g/cm³) = 0.99771 Volume (L) = 1.00364 + Viscosity (mPa s) = 0.89335 Activity of water = 0.999 Ionic strength (mol/kgw) = 1.097e-02 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 8.812e-03 - Total CO2 (mol/kg) = 2.424e-02 - Temperature (C) = 25.00 + Total CO2 (mol/kg) = 2.425e-02 + Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 20 Total H = 1.110340e+02 - Total O = 5.556042e+01 + Total O = 5.556044e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 9.693e-07 8.824e-07 -6.014 -6.054 -0.041 0.00 OH- 1.280e-08 1.147e-08 -7.893 -7.941 -0.048 -4.03 H2O 5.551e+01 9.995e-01 1.744 -0.000 0.000 18.07 -C(-4) 9.118e-04 - CH4 9.118e-04 9.141e-04 -3.040 -3.039 0.001 35.46 -C(4) 2.424e-02 - CO2 1.542e-02 1.546e-02 -1.812 -1.811 0.001 34.43 - HCO3- 8.638e-03 7.787e-03 -2.064 -2.109 -0.045 24.78 +C(-4) 9.119e-04 + CH4 9.119e-04 9.142e-04 -3.040 -3.039 0.001 35.46 +C(4) 2.425e-02 + CO2 1.543e-02 1.546e-02 -1.812 -1.811 0.001 34.43 + HCO3- 8.638e-03 7.787e-03 -2.064 -2.109 -0.045 24.66 CaHCO3+ 1.693e-04 1.529e-04 -3.771 -3.816 -0.044 9.73 - (CO2)2 4.374e-06 4.385e-06 -5.359 -5.358 0.001 68.87 + (CO2)2 4.373e-06 4.384e-06 -5.359 -5.358 0.001 68.87 CaCO3 1.067e-06 1.070e-06 -5.972 -5.971 0.001 -14.60 - CO3-2 6.268e-07 4.139e-07 -6.203 -6.383 -0.180 -4.99 + CO3-2 6.268e-07 4.139e-07 -6.203 -6.383 -0.180 -3.76 Ca 2.502e-03 - Ca+2 2.332e-03 1.539e-03 -2.632 -2.813 -0.181 -17.91 + Ca+2 2.331e-03 1.539e-03 -2.632 -2.813 -0.181 -17.91 CaHCO3+ 1.693e-04 1.529e-04 -3.771 -3.816 -0.044 9.73 CaCO3 1.067e-06 1.070e-06 -5.972 -5.971 0.001 -14.60 - CaOH+ 3.221e-10 2.892e-10 -9.492 -9.539 -0.047 (0) -H(0) 5.561e-10 + CaOH+ 3.220e-10 2.892e-10 -9.492 -9.539 -0.047 (0) +H(0) 5.562e-10 H2 2.781e-10 2.788e-10 -9.556 -9.555 0.001 28.61 N(-3) 3.808e-03 - NH4+ 3.806e-03 3.398e-03 -2.420 -2.469 -0.049 (0) + NH4+ 3.806e-03 3.399e-03 -2.420 -2.469 -0.049 (0) NH3 2.189e-06 2.195e-06 -5.660 -5.659 0.001 (0) N(0) 4.085e-05 - N2 2.042e-05 2.047e-05 -4.690 -4.689 0.001 29.29 + N2 2.042e-05 2.048e-05 -4.690 -4.689 0.001 29.29 N(3) 0.000e+00 NO2- 0.000e+00 0.000e+00 -61.605 -61.653 -0.048 25.04 N(5) 0.000e+00 @@ -1447,7 +1457,7 @@ N2(g) -1.48 3.341e-02 1.001 0.000e+00 1.550e-02 1.550e-02 Elements Molality Moles - C 2.580e-02 2.580e-02 + C 2.581e-02 2.581e-02 Ca 2.502e-03 2.502e-03 N 3.996e-03 3.996e-03 @@ -1455,47 +1465,48 @@ N2(g) -1.48 3.341e-02 1.001 0.000e+00 1.550e-02 1.550e-02 pH = 6.046 Charge balance pe = -2.840 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 590 - Density (g/cm) = 0.99772 + Specific Conductance (µS/cm, 25°C) = 610 + Density (g/cm³) = 0.99772 Volume (L) = 1.00376 + Viscosity (mPa s) = 0.89338 Activity of water = 0.999 Ionic strength (mol/kgw) = 1.111e-02 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 8.955e-03 - Total CO2 (mol/kg) = 2.492e-02 - Temperature (C) = 25.00 + Total CO2 (mol/kg) = 2.493e-02 + Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 24 + Iterations = 26 Total H = 1.110450e+02 - Total O = 5.556716e+01 + Total O = 5.556719e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 9.882e-07 8.992e-07 -6.005 -6.046 -0.041 0.00 OH- 1.256e-08 1.125e-08 -7.901 -7.949 -0.048 -4.03 H2O 5.551e+01 9.995e-01 1.744 -0.000 0.000 18.07 C(-4) 8.824e-04 - CH4 8.824e-04 8.846e-04 -3.054 -3.053 0.001 35.46 -C(4) 2.492e-02 - CO2 1.596e-02 1.600e-02 -1.797 -1.796 0.001 34.43 - HCO3- 8.779e-03 7.910e-03 -2.057 -2.102 -0.045 24.78 + CH4 8.824e-04 8.847e-04 -3.054 -3.053 0.001 35.46 +C(4) 2.493e-02 + CO2 1.597e-02 1.600e-02 -1.797 -1.796 0.001 34.43 + HCO3- 8.779e-03 7.909e-03 -2.057 -2.102 -0.045 24.66 CaHCO3+ 1.715e-04 1.548e-04 -3.766 -3.810 -0.045 9.73 - (CO2)2 4.686e-06 4.698e-06 -5.329 -5.328 0.001 68.87 - CaCO3 1.060e-06 1.063e-06 -5.975 -5.973 0.001 -14.60 - CO3-2 6.261e-07 4.126e-07 -6.203 -6.384 -0.181 -4.99 + (CO2)2 4.685e-06 4.697e-06 -5.329 -5.328 0.001 68.87 + CaCO3 1.060e-06 1.063e-06 -5.975 -5.974 0.001 -14.60 + CO3-2 6.261e-07 4.125e-07 -6.203 -6.385 -0.181 -3.75 Ca 2.502e-03 Ca+2 2.329e-03 1.534e-03 -2.633 -2.814 -0.181 -17.91 CaHCO3+ 1.715e-04 1.548e-04 -3.766 -3.810 -0.045 9.73 - CaCO3 1.060e-06 1.063e-06 -5.975 -5.973 0.001 -14.60 + CaCO3 1.060e-06 1.063e-06 -5.975 -5.974 0.001 -14.60 CaOH+ 3.152e-10 2.829e-10 -9.501 -9.548 -0.047 (0) H(0) 5.469e-10 H2 2.734e-10 2.741e-10 -9.563 -9.562 0.001 28.61 -N(-3) 3.951e-03 +N(-3) 3.952e-03 NH4+ 3.949e-03 3.524e-03 -2.403 -2.453 -0.049 (0) NH3 2.228e-06 2.233e-06 -5.652 -5.651 0.001 (0) N(0) 4.449e-05 @@ -1566,7 +1577,7 @@ N2(g) -1.46 3.477e-02 1.001 0.000e+00 3.297e-02 3.297e-02 Elements Molality Moles - C 2.612e-02 2.613e-02 + C 2.614e-02 2.614e-02 Ca 2.501e-03 2.502e-03 N 4.066e-03 4.067e-03 @@ -1574,44 +1585,45 @@ N2(g) -1.46 3.477e-02 1.001 0.000e+00 3.297e-02 3.297e-02 pH = 6.042 Charge balance pe = -2.834 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 593 - Density (g/cm) = 0.99773 - Volume (L) = 1.00397 + Specific Conductance (µS/cm, 25°C) = 613 + Density (g/cm³) = 0.99773 + Volume (L) = 1.00396 + Viscosity (mPa s) = 0.89339 Activity of water = 0.999 - Ionic strength (mol/kgw) = 1.118e-02 + Ionic strength (mol/kgw) = 1.117e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 9.023e-03 - Total CO2 (mol/kg) = 2.526e-02 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 9.022e-03 + Total CO2 (mol/kg) = 2.527e-02 + Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 23 + Iterations = 24 Total H = 1.110669e+02 - Total O = 5.557873e+01 + Total O = 5.557876e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 9.978e-07 9.078e-07 -6.001 -6.042 -0.041 0.00 - OH- 1.245e-08 1.115e-08 -7.905 -7.953 -0.048 -4.03 + OH- 1.245e-08 1.114e-08 -7.905 -7.953 -0.048 -4.03 H2O 5.551e+01 9.994e-01 1.744 -0.000 0.000 18.07 -C(-4) 8.676e-04 - CH4 8.676e-04 8.699e-04 -3.062 -3.061 0.001 35.46 -C(4) 2.526e-02 - CO2 1.623e-02 1.627e-02 -1.790 -1.789 0.001 34.43 - HCO3- 8.846e-03 7.968e-03 -2.053 -2.099 -0.045 24.78 +C(-4) 8.677e-04 + CH4 8.677e-04 8.699e-04 -3.062 -3.061 0.001 35.46 +C(4) 2.527e-02 + CO2 1.624e-02 1.627e-02 -1.789 -1.789 0.001 34.43 + HCO3- 8.845e-03 7.967e-03 -2.053 -2.099 -0.045 24.66 CaHCO3+ 1.725e-04 1.556e-04 -3.763 -3.808 -0.045 9.73 (CO2)2 4.845e-06 4.858e-06 -5.315 -5.314 0.001 68.87 CaCO3 1.056e-06 1.059e-06 -5.976 -5.975 0.001 -14.60 - CO3-2 6.254e-07 4.117e-07 -6.204 -6.385 -0.182 -4.99 + CO3-2 6.254e-07 4.116e-07 -6.204 -6.385 -0.182 -3.75 Ca 2.501e-03 Ca+2 2.328e-03 1.531e-03 -2.633 -2.815 -0.182 -17.91 CaHCO3+ 1.725e-04 1.556e-04 -3.763 -3.808 -0.045 9.73 CaCO3 1.056e-06 1.059e-06 -5.976 -5.975 0.001 -14.60 - CaOH+ 3.118e-10 2.798e-10 -9.506 -9.553 -0.047 (0) + CaOH+ 3.118e-10 2.797e-10 -9.506 -9.553 -0.047 (0) H(0) 5.423e-10 H2 2.711e-10 2.718e-10 -9.567 -9.566 0.001 28.61 N(-3) 4.020e-03 @@ -1696,7 +1708,7 @@ Total pressure: 0.06 atmospheres ---------------------------------- Component log P P Initial Final Delta -CH4(g) -21.55 2.822e-22 2.675e-22 2.675e-22 0.000e+00 +CH4(g) -21.55 2.803e-22 2.657e-22 2.657e-22 0.000e+00 CO2(g) -1.50 3.162e-02 2.997e-02 2.997e-02 0.000e+00 H2O(g) -1.50 3.141e-02 2.977e-02 2.977e-02 0.000e+00 N2(g) -99.99 0.000e+00 0.000e+00 0.000e+00 0.000e+00 @@ -1742,9 +1754,9 @@ Total pressure: 0.06 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -3.26 5.527e-04 1.000 2.675e-22 5.242e-04 5.242e-04 +CH4(g) -3.26 5.527e-04 1.000 2.657e-22 5.242e-04 5.242e-04 CO2(g) -1.49 3.208e-02 1.000 2.997e-02 3.042e-02 4.563e-04 -H2O(g) -1.50 3.144e-02 0.999 2.977e-02 2.982e-02 4.337e-05 +H2O(g) -1.50 3.144e-02 0.999 2.977e-02 2.982e-02 4.336e-05 N2(g) -4.45 3.524e-05 1.000 0.000e+00 3.342e-05 3.342e-05 -----------------------------Solution composition------------------------------ @@ -1753,54 +1765,55 @@ N2(g) -4.45 3.524e-05 1.000 0.000e+00 3.342e-05 3.342e-05 C 6.089e-03 6.089e-03 Ca 2.502e-03 2.502e-03 - N 3.155e-06 3.155e-06 + N 3.156e-06 3.156e-06 ----------------------------Description of solution---------------------------- pH = 6.965 Charge balance pe = -3.529 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 444 - Density (g/cm) = 0.99734 + Specific Conductance (µS/cm, 25°C) = 453 + Density (g/cm³) = 0.99734 Volume (L) = 1.00308 + Viscosity (mPa s) = 0.89255 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.286e-03 + Ionic strength (mol/kgw) = 7.285e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 5.007e-03 Total CO2 (mol/kg) = 6.089e-03 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 0.06 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 31 + Iterations = 25 Total H = 1.110125e+02 Total O = 5.552090e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.174e-07 1.084e-07 -6.930 -6.965 -0.035 0.00 - OH- 1.023e-07 9.338e-08 -6.990 -7.030 -0.040 -4.05 + OH- 1.023e-07 9.337e-08 -6.990 -7.030 -0.040 -4.05 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 C(-4) 8.710e-07 CH4 8.710e-07 8.724e-07 -6.060 -6.059 0.001 35.45 C(4) 6.089e-03 - HCO3- 4.886e-03 4.478e-03 -2.311 -2.349 -0.038 24.75 - CO2 1.090e-03 1.091e-03 -2.963 -2.962 0.001 34.43 - CaHCO3+ 1.050e-04 9.640e-05 -3.979 -4.016 -0.037 9.71 - CaCO3 5.483e-06 5.493e-06 -5.261 -5.260 0.001 -14.61 - CO3-2 2.745e-06 1.938e-06 -5.561 -5.713 -0.151 -5.08 + HCO3- 4.885e-03 4.478e-03 -2.311 -2.349 -0.038 24.63 + CO2 1.090e-03 1.091e-03 -2.963 -2.962 0.000 34.43 + CaHCO3+ 1.050e-04 9.638e-05 -3.979 -4.016 -0.037 9.71 + CaCO3 5.482e-06 5.491e-06 -5.261 -5.260 0.001 -14.61 + CO3-2 2.745e-06 1.938e-06 -5.562 -5.713 -0.151 -3.85 (CO2)2 2.182e-08 2.186e-08 -7.661 -7.660 0.001 68.87 Ca 2.502e-03 - Ca+2 2.392e-03 1.687e-03 -2.621 -2.773 -0.152 -17.98 - CaHCO3+ 1.050e-04 9.640e-05 -3.979 -4.016 -0.037 9.71 - CaCO3 5.483e-06 5.493e-06 -5.261 -5.260 0.001 -14.61 - CaOH+ 2.826e-09 2.583e-09 -8.549 -8.588 -0.039 (0) + Ca+2 2.391e-03 1.687e-03 -2.621 -2.773 -0.152 -17.98 + CaHCO3+ 1.050e-04 9.638e-05 -3.979 -4.016 -0.037 9.71 + CaCO3 5.482e-06 5.491e-06 -5.261 -5.260 0.001 -14.61 + CaOH+ 2.825e-09 2.583e-09 -8.549 -8.588 -0.039 (0) H(0) 1.898e-10 H2 9.492e-11 9.508e-11 -10.023 -10.022 0.001 28.61 -N(-3) 3.108e-06 - NH4+ 3.094e-06 2.817e-06 -5.510 -5.550 -0.041 (0) +N(-3) 3.109e-06 + NH4+ 3.094e-06 2.817e-06 -5.509 -5.550 -0.041 (0) NH3 1.479e-08 1.481e-08 -7.830 -7.829 0.001 (0) N(0) 4.697e-08 N2 2.348e-08 2.352e-08 -7.629 -7.629 0.001 29.29 @@ -1861,7 +1874,7 @@ Total pressure: 0.07 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -2.96 1.106e-03 1.000 2.675e-22 1.049e-03 1.049e-03 +CH4(g) -2.96 1.106e-03 1.000 2.657e-22 1.049e-03 1.049e-03 CO2(g) -1.49 3.256e-02 1.000 2.997e-02 3.088e-02 9.119e-04 H2O(g) -1.50 3.144e-02 0.999 2.977e-02 2.982e-02 4.366e-05 N2(g) -4.15 7.072e-05 1.000 0.000e+00 6.707e-05 6.707e-05 @@ -1872,50 +1885,51 @@ N2(g) -4.15 7.072e-05 1.000 0.000e+00 6.707e-05 6.707e-05 C 6.109e-03 6.109e-03 Ca 2.502e-03 2.502e-03 - N 5.855e-06 5.855e-06 + N 5.856e-06 5.855e-06 ----------------------------Description of solution---------------------------- pH = 6.959 Charge balance pe = -3.560 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 444 - Density (g/cm) = 0.99734 + Specific Conductance (µS/cm, 25°C) = 453 + Density (g/cm³) = 0.99734 Volume (L) = 1.00308 + Viscosity (mPa s) = 0.89255 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.288e-03 + Ionic strength (mol/kgw) = 7.287e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.010e-03 + Total alkalinity (eq/kg) = 5.009e-03 Total CO2 (mol/kg) = 6.108e-03 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 0.07 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 + Iterations = 30 Total H = 1.110126e+02 Total O = 5.552099e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.191e-07 1.099e-07 -6.924 -6.959 -0.035 0.00 - OH- 1.009e-07 9.206e-08 -6.996 -7.036 -0.040 -4.05 + OH- 1.008e-07 9.205e-08 -6.996 -7.036 -0.040 -4.05 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 C(-4) 1.742e-06 CH4 1.742e-06 1.745e-06 -5.759 -5.758 0.001 35.45 C(4) 6.108e-03 - HCO3- 4.889e-03 4.481e-03 -2.311 -2.349 -0.038 24.75 - CO2 1.106e-03 1.108e-03 -2.956 -2.956 0.001 34.43 - CaHCO3+ 1.051e-04 9.645e-05 -3.978 -4.016 -0.037 9.71 - CaCO3 5.408e-06 5.417e-06 -5.267 -5.266 0.001 -14.61 - CO3-2 2.708e-06 1.912e-06 -5.567 -5.719 -0.151 -5.08 + HCO3- 4.888e-03 4.480e-03 -2.311 -2.349 -0.038 24.63 + CO2 1.106e-03 1.108e-03 -2.956 -2.956 0.000 34.43 + CaHCO3+ 1.051e-04 9.643e-05 -3.979 -4.016 -0.037 9.71 + CaCO3 5.407e-06 5.416e-06 -5.267 -5.266 0.001 -14.61 + CO3-2 2.707e-06 1.911e-06 -5.567 -5.719 -0.151 -3.85 (CO2)2 2.248e-08 2.252e-08 -7.648 -7.647 0.001 68.87 Ca 2.502e-03 - Ca+2 2.392e-03 1.687e-03 -2.621 -2.773 -0.152 -17.98 - CaHCO3+ 1.051e-04 9.645e-05 -3.978 -4.016 -0.037 9.71 - CaCO3 5.408e-06 5.417e-06 -5.267 -5.266 0.001 -14.61 - CaOH+ 2.786e-09 2.546e-09 -8.555 -8.594 -0.039 (0) + Ca+2 2.391e-03 1.687e-03 -2.621 -2.773 -0.152 -17.98 + CaHCO3+ 1.051e-04 9.643e-05 -3.979 -4.016 -0.037 9.71 + CaCO3 5.407e-06 5.416e-06 -5.267 -5.266 0.001 -14.61 + CaOH+ 2.785e-09 2.546e-09 -8.555 -8.594 -0.039 (0) H(0) 2.249e-10 H2 1.125e-10 1.127e-10 -9.949 -9.948 0.001 28.61 N(-3) 5.761e-06 @@ -1980,7 +1994,7 @@ Total pressure: 0.07 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -2.78 1.659e-03 1.000 2.675e-22 1.573e-03 1.573e-03 +CH4(g) -2.78 1.659e-03 1.000 2.657e-22 1.573e-03 1.573e-03 CO2(g) -1.48 3.304e-02 1.000 2.997e-02 3.134e-02 1.368e-03 H2O(g) -1.50 3.144e-02 0.999 2.977e-02 2.982e-02 4.396e-05 N2(g) -3.97 1.063e-04 1.000 0.000e+00 1.008e-04 1.008e-04 @@ -1991,54 +2005,55 @@ N2(g) -3.97 1.063e-04 1.000 0.000e+00 1.008e-04 1.008e-04 C 6.129e-03 6.129e-03 Ca 2.502e-03 2.502e-03 - N 8.434e-06 8.433e-06 + N 8.435e-06 8.434e-06 ----------------------------Description of solution---------------------------- pH = 6.953 Charge balance pe = -3.575 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 444 - Density (g/cm) = 0.99734 + Specific Conductance (µS/cm, 25°C) = 453 + Density (g/cm³) = 0.99734 Volume (L) = 1.00308 + Viscosity (mPa s) = 0.89255 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.291e-03 + Ionic strength (mol/kgw) = 7.290e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 5.012e-03 Total CO2 (mol/kg) = 6.127e-03 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 0.07 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 31 + Iterations = 29 Total H = 1.110127e+02 Total O = 5.552108e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.208e-07 1.115e-07 -6.918 -6.953 -0.035 0.00 - OH- 9.945e-08 9.077e-08 -7.002 -7.042 -0.040 -4.05 + OH- 9.944e-08 9.076e-08 -7.002 -7.042 -0.040 -4.05 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 C(-4) 2.613e-06 CH4 2.613e-06 2.618e-06 -5.583 -5.582 0.001 35.45 C(4) 6.127e-03 - HCO3- 4.891e-03 4.483e-03 -2.311 -2.348 -0.038 24.75 - CO2 1.122e-03 1.124e-03 -2.950 -2.949 0.001 34.43 - CaHCO3+ 1.051e-04 9.649e-05 -3.978 -4.016 -0.037 9.71 - CaCO3 5.335e-06 5.344e-06 -5.273 -5.272 0.001 -14.61 - CO3-2 2.672e-06 1.886e-06 -5.573 -5.725 -0.151 -5.08 + HCO3- 4.891e-03 4.483e-03 -2.311 -2.348 -0.038 24.63 + CO2 1.123e-03 1.124e-03 -2.950 -2.949 0.000 34.43 + CaHCO3+ 1.051e-04 9.647e-05 -3.978 -4.016 -0.037 9.71 + CaCO3 5.334e-06 5.342e-06 -5.273 -5.272 0.001 -14.61 + CO3-2 2.671e-06 1.885e-06 -5.573 -5.725 -0.151 -3.85 (CO2)2 2.315e-08 2.319e-08 -7.635 -7.635 0.001 68.87 Ca 2.502e-03 - Ca+2 2.392e-03 1.687e-03 -2.621 -2.773 -0.152 -17.98 - CaHCO3+ 1.051e-04 9.649e-05 -3.978 -4.016 -0.037 9.71 - CaCO3 5.335e-06 5.344e-06 -5.273 -5.272 0.001 -14.61 - CaOH+ 2.747e-09 2.511e-09 -8.561 -8.600 -0.039 (0) + Ca+2 2.391e-03 1.687e-03 -2.621 -2.773 -0.152 -17.98 + CaHCO3+ 1.051e-04 9.647e-05 -3.978 -4.016 -0.037 9.71 + CaCO3 5.334e-06 5.342e-06 -5.273 -5.272 0.001 -14.61 + CaOH+ 2.746e-09 2.510e-09 -8.561 -8.600 -0.039 (0) H(0) 2.480e-10 H2 1.240e-10 1.242e-10 -9.907 -9.906 0.001 28.61 -N(-3) 8.292e-06 - NH4+ 8.254e-06 7.515e-06 -5.083 -5.124 -0.041 (0) +N(-3) 8.293e-06 + NH4+ 8.255e-06 7.516e-06 -5.083 -5.124 -0.041 (0) NH3 3.835e-08 3.841e-08 -7.416 -7.416 0.001 (0) N(0) 1.416e-07 N2 7.081e-08 7.093e-08 -7.150 -7.149 0.001 29.29 @@ -2099,7 +2114,7 @@ Total pressure: 0.07 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -2.66 2.212e-03 1.000 2.675e-22 2.097e-03 2.097e-03 +CH4(g) -2.66 2.212e-03 1.000 2.657e-22 2.097e-03 2.097e-03 CO2(g) -1.47 3.352e-02 1.000 2.997e-02 3.179e-02 1.823e-03 H2O(g) -1.50 3.144e-02 0.999 2.977e-02 2.982e-02 4.426e-05 N2(g) -3.85 1.418e-04 1.000 0.000e+00 1.345e-04 1.345e-04 @@ -2116,48 +2131,49 @@ N2(g) -3.85 1.418e-04 1.000 0.000e+00 1.345e-04 1.345e-04 pH = 6.947 Charge balance pe = -3.584 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 444 - Density (g/cm) = 0.99734 + Specific Conductance (µS/cm, 25°C) = 453 + Density (g/cm³) = 0.99734 Volume (L) = 1.00308 + Viscosity (mPa s) = 0.89255 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.293e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.015e-03 + Total alkalinity (eq/kg) = 5.014e-03 Total CO2 (mol/kg) = 6.145e-03 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 0.07 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 + Iterations = 30 Total H = 1.110128e+02 Total O = 5.552117e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.225e-07 1.131e-07 -6.912 -6.947 -0.035 0.00 - OH- 9.808e-08 8.951e-08 -7.008 -7.048 -0.040 -4.05 + OH- 9.806e-08 8.951e-08 -7.008 -7.048 -0.040 -4.05 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 C(-4) 3.485e-06 CH4 3.485e-06 3.491e-06 -5.458 -5.457 0.001 35.45 C(4) 6.145e-03 - HCO3- 4.894e-03 4.486e-03 -2.310 -2.348 -0.038 24.75 - CO2 1.138e-03 1.140e-03 -2.944 -2.943 0.001 34.43 - CaHCO3+ 1.052e-04 9.654e-05 -3.978 -4.015 -0.037 9.71 - CaCO3 5.264e-06 5.273e-06 -5.279 -5.278 0.001 -14.61 - CO3-2 2.636e-06 1.861e-06 -5.579 -5.730 -0.151 -5.08 + HCO3- 4.893e-03 4.485e-03 -2.310 -2.348 -0.038 24.63 + CO2 1.139e-03 1.140e-03 -2.943 -2.943 0.000 34.43 + CaHCO3+ 1.052e-04 9.652e-05 -3.978 -4.015 -0.037 9.71 + CaCO3 5.262e-06 5.271e-06 -5.279 -5.278 0.001 -14.61 + CO3-2 2.636e-06 1.860e-06 -5.579 -5.730 -0.151 -3.85 (CO2)2 2.383e-08 2.387e-08 -7.623 -7.622 0.001 68.87 Ca 2.502e-03 - Ca+2 2.392e-03 1.687e-03 -2.621 -2.773 -0.152 -17.98 - CaHCO3+ 1.052e-04 9.654e-05 -3.978 -4.015 -0.037 9.71 - CaCO3 5.264e-06 5.273e-06 -5.279 -5.278 0.001 -14.61 - CaOH+ 2.709e-09 2.476e-09 -8.567 -8.606 -0.039 (0) + Ca+2 2.391e-03 1.687e-03 -2.621 -2.773 -0.152 -17.98 + CaHCO3+ 1.052e-04 9.652e-05 -3.978 -4.015 -0.037 9.71 + CaCO3 5.262e-06 5.271e-06 -5.279 -5.278 0.001 -14.61 + CaOH+ 2.708e-09 2.475e-09 -8.567 -8.606 -0.039 (0) H(0) 2.656e-10 H2 1.328e-10 1.330e-10 -9.877 -9.876 0.001 28.61 N(-3) 1.076e-05 - NH4+ 1.071e-05 9.755e-06 -4.970 -5.011 -0.041 (0) + NH4+ 1.071e-05 9.756e-06 -4.970 -5.011 -0.041 (0) NH3 4.909e-08 4.917e-08 -7.309 -7.308 0.001 (0) N(0) 1.890e-07 N2 9.452e-08 9.468e-08 -7.024 -7.024 0.001 29.29 @@ -2218,7 +2234,7 @@ Total pressure: 0.07 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -2.35 4.424e-03 1.000 2.675e-22 4.195e-03 4.195e-03 +CH4(g) -2.35 4.424e-03 1.000 2.657e-22 4.195e-03 4.195e-03 CO2(g) -1.45 3.544e-02 1.000 2.997e-02 3.361e-02 3.647e-03 H2O(g) -1.50 3.144e-02 0.999 2.977e-02 2.982e-02 4.546e-05 N2(g) -3.55 2.843e-04 1.000 0.000e+00 2.696e-04 2.696e-04 @@ -2227,7 +2243,7 @@ N2(g) -3.55 2.843e-04 1.000 0.000e+00 2.696e-04 2.696e-04 Elements Molality Moles - C 6.228e-03 6.227e-03 + C 6.228e-03 6.228e-03 Ca 2.502e-03 2.502e-03 N 2.079e-05 2.079e-05 @@ -2235,47 +2251,48 @@ N2(g) -3.55 2.843e-04 1.000 0.000e+00 2.696e-04 2.696e-04 pH = 6.923 Charge balance pe = -3.595 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 445 - Density (g/cm) = 0.99734 + Specific Conductance (µS/cm, 25°C) = 454 + Density (g/cm³) = 0.99734 Volume (L) = 1.00309 + Viscosity (mPa s) = 0.89255 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.303e-03 + Ionic strength (mol/kgw) = 7.302e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 5.024e-03 Total CO2 (mol/kg) = 6.221e-03 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 0.07 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 28 + Iterations = 29 Total H = 1.110132e+02 Total O = 5.552152e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.292e-07 1.193e-07 -6.889 -6.923 -0.035 0.00 - OH- 9.295e-08 8.483e-08 -7.032 -7.071 -0.040 -4.05 + H+ 1.293e-07 1.193e-07 -6.889 -6.923 -0.035 0.00 + OH- 9.294e-08 8.483e-08 -7.032 -7.071 -0.040 -4.05 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 C(-4) 6.970e-06 CH4 6.970e-06 6.982e-06 -5.157 -5.156 0.001 35.45 C(4) 6.221e-03 - HCO3- 4.904e-03 4.495e-03 -2.309 -2.347 -0.038 24.75 - CO2 1.204e-03 1.206e-03 -2.919 -2.919 0.001 34.43 - CaHCO3+ 1.054e-04 9.672e-05 -3.977 -4.014 -0.037 9.71 - CaCO3 4.998e-06 5.006e-06 -5.301 -5.300 0.001 -14.61 - CO3-2 2.504e-06 1.767e-06 -5.601 -5.753 -0.151 -5.07 + HCO3- 4.903e-03 4.494e-03 -2.309 -2.347 -0.038 24.63 + CO2 1.204e-03 1.206e-03 -2.919 -2.919 0.000 34.43 + CaHCO3+ 1.054e-04 9.670e-05 -3.977 -4.015 -0.037 9.71 + CaCO3 4.996e-06 5.005e-06 -5.301 -5.301 0.001 -14.61 + CO3-2 2.503e-06 1.767e-06 -5.601 -5.753 -0.151 -3.85 (CO2)2 2.664e-08 2.668e-08 -7.574 -7.574 0.001 68.87 Ca 2.502e-03 - Ca+2 2.392e-03 1.687e-03 -2.621 -2.773 -0.152 -17.98 - CaHCO3+ 1.054e-04 9.672e-05 -3.977 -4.014 -0.037 9.71 - CaCO3 4.998e-06 5.006e-06 -5.301 -5.300 0.001 -14.61 - CaOH+ 2.567e-09 2.346e-09 -8.591 -8.630 -0.039 (0) + Ca+2 2.391e-03 1.686e-03 -2.621 -2.773 -0.152 -17.98 + CaHCO3+ 1.054e-04 9.670e-05 -3.977 -4.015 -0.037 9.71 + CaCO3 4.996e-06 5.005e-06 -5.301 -5.301 0.001 -14.61 + CaOH+ 2.566e-09 2.346e-09 -8.591 -8.630 -0.039 (0) H(0) 3.114e-10 H2 1.557e-10 1.560e-10 -9.808 -9.807 0.001 28.61 -N(-3) 2.041e-05 +N(-3) 2.042e-05 NH4+ 2.033e-05 1.851e-05 -4.692 -4.733 -0.041 (0) NH3 8.826e-08 8.841e-08 -7.054 -7.054 0.001 (0) N(0) 3.788e-07 @@ -2306,13 +2323,6 @@ O(0) 0.000e+00 Reaction step 6. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Solution after simulation 1. Using gas phase 1. Gas phase after simulation 3. Using reaction 1. @@ -2344,8 +2354,8 @@ Total pressure: 0.08 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -2.05 8.848e-03 1.000 2.675e-22 8.391e-03 8.391e-03 -CO2(g) -1.41 3.929e-02 1.000 2.997e-02 3.726e-02 7.294e-03 +CH4(g) -2.05 8.848e-03 1.000 2.657e-22 8.391e-03 8.391e-03 +CO2(g) -1.41 3.929e-02 1.000 2.997e-02 3.726e-02 7.293e-03 H2O(g) -1.50 3.145e-02 0.999 2.977e-02 2.982e-02 4.786e-05 N2(g) -3.24 5.691e-04 1.000 0.000e+00 5.397e-04 5.397e-04 @@ -2355,53 +2365,54 @@ N2(g) -3.24 5.691e-04 1.000 0.000e+00 5.397e-04 5.397e-04 C 6.385e-03 6.385e-03 Ca 2.502e-03 2.502e-03 - N 4.053e-05 4.053e-05 + N 4.054e-05 4.053e-05 ----------------------------Description of solution---------------------------- pH = 6.880 Charge balance pe = -3.584 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 445 - Density (g/cm) = 0.99734 + Specific Conductance (µS/cm, 25°C) = 455 + Density (g/cm³) = 0.99734 Volume (L) = 1.00310 + Viscosity (mPa s) = 0.89256 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.323e-03 + Ionic strength (mol/kgw) = 7.322e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.044e-03 + Total alkalinity (eq/kg) = 5.043e-03 Total CO2 (mol/kg) = 6.371e-03 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 0.08 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 27 + Iterations = 26 Total H = 1.110141e+02 Total O = 5.552222e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.427e-07 1.317e-07 -6.846 -6.880 -0.035 0.00 - OH- 8.421e-08 7.685e-08 -7.075 -7.114 -0.040 -4.05 + OH- 8.420e-08 7.684e-08 -7.075 -7.114 -0.040 -4.05 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 C(-4) 1.394e-05 CH4 1.394e-05 1.396e-05 -4.856 -4.855 0.001 35.45 C(4) 6.371e-03 - HCO3- 4.924e-03 4.513e-03 -2.308 -2.346 -0.038 24.75 - CO2 1.334e-03 1.336e-03 -2.875 -2.874 0.001 34.43 - CaHCO3+ 1.058e-04 9.707e-05 -3.976 -4.013 -0.037 9.71 - CaCO3 4.544e-06 4.551e-06 -5.343 -5.342 0.001 -14.61 - CO3-2 2.278e-06 1.607e-06 -5.642 -5.794 -0.152 -5.07 + HCO3- 4.924e-03 4.512e-03 -2.308 -2.346 -0.038 24.63 + CO2 1.335e-03 1.336e-03 -2.875 -2.874 0.000 34.43 + CaHCO3+ 1.058e-04 9.705e-05 -3.976 -4.013 -0.037 9.71 + CaCO3 4.542e-06 4.550e-06 -5.343 -5.342 0.001 -14.61 + CO3-2 2.278e-06 1.607e-06 -5.642 -5.794 -0.152 -3.85 (CO2)2 3.273e-08 3.278e-08 -7.485 -7.484 0.001 68.87 Ca 2.502e-03 - Ca+2 2.392e-03 1.686e-03 -2.621 -2.773 -0.152 -17.98 - CaHCO3+ 1.058e-04 9.707e-05 -3.976 -4.013 -0.037 9.71 - CaCO3 4.544e-06 4.551e-06 -5.343 -5.342 0.001 -14.61 + Ca+2 2.391e-03 1.686e-03 -2.621 -2.773 -0.152 -17.98 + CaHCO3+ 1.058e-04 9.705e-05 -3.976 -4.013 -0.037 9.71 + CaCO3 4.542e-06 4.550e-06 -5.343 -5.342 0.001 -14.61 CaOH+ 2.324e-09 2.124e-09 -8.634 -8.673 -0.039 (0) H(0) 3.610e-10 H2 1.805e-10 1.808e-10 -9.744 -9.743 0.001 28.61 -N(-3) 3.977e-05 +N(-3) 3.978e-05 NH4+ 3.962e-05 3.607e-05 -4.402 -4.443 -0.041 (0) NH3 1.558e-07 1.561e-07 -6.807 -6.807 0.001 (0) N(0) 7.584e-07 @@ -2463,7 +2474,7 @@ Total pressure: 0.10 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -1.75 1.769e-02 1.000 2.675e-22 1.678e-02 1.678e-02 +CH4(g) -1.75 1.769e-02 1.000 2.657e-22 1.678e-02 1.678e-02 CO2(g) -1.33 4.698e-02 0.999 2.997e-02 4.455e-02 1.459e-02 H2O(g) -1.50 3.145e-02 0.999 2.977e-02 2.983e-02 5.266e-05 N2(g) -2.94 1.137e-03 1.000 0.000e+00 1.079e-03 1.079e-03 @@ -2474,53 +2485,54 @@ N2(g) -2.94 1.137e-03 1.000 0.000e+00 1.079e-03 1.079e-03 C 6.702e-03 6.702e-03 Ca 2.502e-03 2.502e-03 - N 8.234e-05 8.234e-05 + N 8.235e-05 8.234e-05 ----------------------------Description of solution---------------------------- pH = 6.806 Charge balance pe = -3.538 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 447 - Density (g/cm) = 0.99735 - Volume (L) = 1.00313 + Specific Conductance (µS/cm, 25°C) = 456 + Density (g/cm³) = 0.99735 + Volume (L) = 1.00312 + Viscosity (mPa s) = 0.89257 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.364e-03 + Ionic strength (mol/kgw) = 7.363e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.085e-03 + Total alkalinity (eq/kg) = 5.084e-03 Total CO2 (mol/kg) = 6.674e-03 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 0.10 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 27 + Iterations = 26 Total H = 1.110159e+02 Total O = 5.552363e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.692e-07 1.561e-07 -6.772 -6.806 -0.035 0.00 - OH- 7.104e-08 6.481e-08 -7.148 -7.188 -0.040 -4.05 + H+ 1.692e-07 1.562e-07 -6.772 -6.806 -0.035 0.00 + OH- 7.103e-08 6.481e-08 -7.149 -7.188 -0.040 -4.05 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 2.788e-05 CH4 2.788e-05 2.792e-05 -4.555 -4.554 0.001 35.45 C(4) 6.674e-03 - HCO3- 4.966e-03 4.550e-03 -2.304 -2.342 -0.038 24.75 - CO2 1.595e-03 1.598e-03 -2.797 -2.797 0.001 34.43 - CaHCO3+ 1.066e-04 9.779e-05 -3.972 -4.010 -0.037 9.71 - CaCO3 3.861e-06 3.867e-06 -5.413 -5.413 0.001 -14.61 - CO3-2 1.939e-06 1.367e-06 -5.712 -5.864 -0.152 -5.07 - (CO2)2 4.678e-08 4.686e-08 -7.330 -7.329 0.001 68.87 + HCO3- 4.966e-03 4.550e-03 -2.304 -2.342 -0.038 24.63 + CO2 1.596e-03 1.598e-03 -2.797 -2.797 0.000 34.43 + CaHCO3+ 1.066e-04 9.777e-05 -3.972 -4.010 -0.037 9.71 + CaCO3 3.860e-06 3.866e-06 -5.413 -5.413 0.001 -14.61 + CO3-2 1.939e-06 1.366e-06 -5.712 -5.864 -0.152 -3.85 + (CO2)2 4.678e-08 4.685e-08 -7.330 -7.329 0.001 68.87 Ca 2.502e-03 - Ca+2 2.392e-03 1.684e-03 -2.621 -2.774 -0.152 -17.98 - CaHCO3+ 1.066e-04 9.779e-05 -3.972 -4.010 -0.037 9.71 - CaCO3 3.861e-06 3.867e-06 -5.413 -5.413 0.001 -14.61 + Ca+2 2.391e-03 1.684e-03 -2.621 -2.774 -0.152 -17.98 + CaHCO3+ 1.066e-04 9.777e-05 -3.972 -4.010 -0.037 9.71 + CaCO3 3.860e-06 3.866e-06 -5.413 -5.413 0.001 -14.61 CaOH+ 1.959e-09 1.790e-09 -8.708 -8.747 -0.039 (0) H(0) 4.105e-10 H2 2.052e-10 2.056e-10 -9.688 -9.687 0.001 28.61 -N(-3) 8.082e-05 +N(-3) 8.083e-05 NH4+ 8.056e-05 7.332e-05 -4.094 -4.135 -0.041 (0) NH3 2.671e-07 2.676e-07 -6.573 -6.573 0.001 (0) N(0) 1.516e-06 @@ -2582,7 +2594,7 @@ Total pressure: 0.13 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -1.45 3.538e-02 1.000 2.675e-22 3.356e-02 3.356e-02 +CH4(g) -1.45 3.538e-02 1.000 2.657e-22 3.356e-02 3.356e-02 CO2(g) -1.21 6.234e-02 0.999 2.997e-02 5.913e-02 2.917e-02 H2O(g) -1.50 3.146e-02 0.999 2.977e-02 2.984e-02 6.224e-05 N2(g) -2.64 2.269e-03 1.000 0.000e+00 2.152e-03 2.152e-03 @@ -2599,48 +2611,49 @@ N2(g) -2.64 2.269e-03 1.000 0.000e+00 2.152e-03 2.152e-03 pH = 6.692 Charge balance pe = -3.445 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 451 - Density (g/cm) = 0.99736 + Specific Conductance (µS/cm, 25°C) = 460 + Density (g/cm³) = 0.99736 Volume (L) = 1.00317 + Viscosity (mPa s) = 0.89259 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.455e-03 + Ionic strength (mol/kgw) = 7.454e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 5.177e-03 - Total CO2 (mol/kg) = 7.289e-03 - Temperature (C) = 25.00 + Total CO2 (mol/kg) = 7.290e-03 + Temperature (°C) = 25.00 Pressure (atm) = 0.13 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 30 + Iterations = 28 Total H = 1.110195e+02 - Total O = 5.552646e+01 + Total O = 5.552647e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 2.206e-07 2.034e-07 -6.656 -6.692 -0.035 0.00 - OH- 5.455e-08 4.974e-08 -7.263 -7.303 -0.040 -4.05 + H+ 2.206e-07 2.035e-07 -6.656 -6.692 -0.035 0.00 + OH- 5.454e-08 4.974e-08 -7.263 -7.303 -0.040 -4.05 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 5.573e-05 CH4 5.573e-05 5.583e-05 -4.254 -4.253 0.001 35.45 -C(4) 7.289e-03 - HCO3- 5.060e-03 4.634e-03 -2.296 -2.334 -0.038 24.75 - CO2 2.116e-03 2.120e-03 -2.674 -2.674 0.001 34.43 - CaHCO3+ 1.083e-04 9.935e-05 -3.965 -4.003 -0.038 9.71 - CaCO3 3.010e-06 3.015e-06 -5.521 -5.521 0.001 -14.61 - CO3-2 1.518e-06 1.068e-06 -5.819 -5.971 -0.153 -5.07 - (CO2)2 8.235e-08 8.249e-08 -7.084 -7.084 0.001 68.87 +C(4) 7.290e-03 + HCO3- 5.059e-03 4.633e-03 -2.296 -2.334 -0.038 24.63 + CO2 2.117e-03 2.120e-03 -2.674 -2.674 0.000 34.43 + CaHCO3+ 1.083e-04 9.933e-05 -3.965 -4.003 -0.038 9.71 + CaCO3 3.009e-06 3.015e-06 -5.522 -5.521 0.001 -14.61 + CO3-2 1.518e-06 1.068e-06 -5.819 -5.971 -0.153 -3.85 + (CO2)2 8.234e-08 8.249e-08 -7.084 -7.084 0.001 68.87 Ca 2.502e-03 - Ca+2 2.391e-03 1.681e-03 -2.622 -2.775 -0.153 -17.97 - CaHCO3+ 1.083e-04 9.935e-05 -3.965 -4.003 -0.038 9.71 - CaCO3 3.010e-06 3.015e-06 -5.521 -5.521 0.001 -14.61 - CaOH+ 1.501e-09 1.371e-09 -8.824 -8.863 -0.039 (0) + Ca+2 2.390e-03 1.680e-03 -2.622 -2.775 -0.153 -17.97 + CaHCO3+ 1.083e-04 9.933e-05 -3.965 -4.003 -0.038 9.71 + CaCO3 3.009e-06 3.015e-06 -5.522 -5.521 0.001 -14.61 + CaOH+ 1.501e-09 1.370e-09 -8.824 -8.863 -0.039 (0) H(0) 4.548e-10 H2 2.274e-10 2.278e-10 -9.643 -9.642 0.001 28.61 N(-3) 1.734e-04 - NH4+ 1.730e-04 1.573e-04 -3.762 -3.803 -0.041 (0) + NH4+ 1.730e-04 1.574e-04 -3.762 -3.803 -0.041 (0) NH3 4.400e-07 4.407e-07 -6.357 -6.356 0.001 (0) N(0) 3.023e-06 N2 1.511e-06 1.514e-06 -5.821 -5.820 0.001 29.29 @@ -2701,7 +2714,7 @@ Total pressure: 0.20 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -1.16 6.907e-02 1.000 2.675e-22 6.553e-02 6.553e-02 +CH4(g) -1.16 6.907e-02 1.000 2.657e-22 6.553e-02 6.553e-02 CO2(g) -1.04 9.161e-02 0.999 2.997e-02 8.691e-02 5.694e-02 H2O(g) -1.50 3.147e-02 0.998 2.977e-02 2.986e-02 8.047e-05 N2(g) -2.36 4.408e-03 1.000 0.000e+00 4.182e-03 4.182e-03 @@ -2710,55 +2723,56 @@ N2(g) -2.36 4.408e-03 1.000 0.000e+00 4.182e-03 4.182e-03 Elements Molality Moles - C 8.597e-03 8.598e-03 - Ca 2.502e-03 2.502e-03 - N 3.860e-04 3.860e-04 + C 8.599e-03 8.599e-03 + Ca 2.501e-03 2.502e-03 + N 3.861e-04 3.861e-04 ----------------------------Description of solution---------------------------- pH = 6.541 Charge balance pe = -3.311 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 458 - Density (g/cm) = 0.99738 + Specific Conductance (µS/cm, 25°C) = 468 + Density (g/cm³) = 0.99738 Volume (L) = 1.00326 + Viscosity (mPa s) = 0.89263 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.655e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.384e-03 - Total CO2 (mol/kg) = 8.489e-03 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 5.383e-03 + Total CO2 (mol/kg) = 8.490e-03 + Temperature (°C) = 25.00 Pressure (atm) = 0.20 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 33 + Iterations = 28 Total H = 1.110264e+02 - Total O = 5.553189e+01 + Total O = 5.553190e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 3.119e-07 2.875e-07 -6.506 -6.541 -0.035 0.00 + H+ 3.120e-07 2.875e-07 -6.506 -6.541 -0.035 0.00 OH- 3.864e-08 3.520e-08 -7.413 -7.453 -0.041 -4.05 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 1.088e-04 CH4 1.088e-04 1.090e-04 -3.963 -3.963 0.001 35.45 -C(4) 8.489e-03 - HCO3- 5.265e-03 4.816e-03 -2.279 -2.317 -0.039 24.75 - CO2 3.108e-03 3.114e-03 -2.507 -2.507 0.001 34.43 +C(4) 8.490e-03 + HCO3- 5.264e-03 4.816e-03 -2.279 -2.317 -0.039 24.63 + CO2 3.110e-03 3.114e-03 -2.507 -2.507 0.001 34.43 CaHCO3+ 1.121e-04 1.027e-04 -3.950 -3.988 -0.038 9.71 CaCO3 2.202e-06 2.206e-06 -5.657 -5.656 0.001 -14.60 - CO3-2 1.121e-06 7.857e-07 -5.950 -6.105 -0.155 -5.07 + CO3-2 1.121e-06 7.856e-07 -5.950 -6.105 -0.155 -3.84 (CO2)2 1.777e-07 1.780e-07 -6.750 -6.750 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.387e-03 1.672e-03 -2.622 -2.777 -0.155 -17.97 +Ca 2.501e-03 + Ca+2 2.387e-03 1.671e-03 -2.622 -2.777 -0.155 -17.97 CaHCO3+ 1.121e-04 1.027e-04 -3.950 -3.988 -0.038 9.71 CaCO3 2.202e-06 2.206e-06 -5.657 -5.656 0.001 -14.60 - CaOH+ 1.058e-09 9.648e-10 -8.976 -9.016 -0.040 (0) + CaOH+ 1.057e-09 9.646e-10 -8.976 -9.016 -0.040 (0) H(0) 4.883e-10 H2 2.441e-10 2.446e-10 -9.612 -9.612 0.001 28.61 -N(-3) 3.801e-04 +N(-3) 3.802e-04 NH4+ 3.795e-04 3.448e-04 -3.421 -3.462 -0.042 (0) NH3 6.822e-07 6.834e-07 -6.166 -6.165 0.001 (0) N(0) 5.874e-06 @@ -2820,7 +2834,7 @@ Total pressure: 0.33 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -0.86 1.380e-01 0.999 2.675e-22 1.310e-01 1.310e-01 +CH4(g) -0.86 1.380e-01 0.999 2.657e-22 1.310e-01 1.310e-01 CO2(g) -0.82 1.515e-01 0.998 2.997e-02 1.438e-01 1.138e-01 H2O(g) -1.50 3.150e-02 0.997 2.977e-02 2.989e-02 1.178e-04 N2(g) -2.06 8.752e-03 1.000 0.000e+00 8.307e-03 8.307e-03 @@ -2830,55 +2844,56 @@ N2(g) -2.06 8.752e-03 1.000 0.000e+00 8.307e-03 8.307e-03 Elements Molality Moles C 1.123e-02 1.123e-02 - Ca 2.502e-03 2.502e-03 - N 8.856e-04 8.858e-04 + Ca 2.501e-03 2.502e-03 + N 8.857e-04 8.858e-04 ----------------------------Description of solution---------------------------- pH = 6.361 Charge balance pe = -3.140 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 477 - Density (g/cm) = 0.99743 + Specific Conductance (µS/cm, 25°C) = 488 + Density (g/cm³) = 0.99743 Volume (L) = 1.00344 + Viscosity (mPa s) = 0.89274 Activity of water = 1.000 Ionic strength (mol/kgw) = 8.132e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.877e-03 + Total alkalinity (eq/kg) = 5.876e-03 Total CO2 (mol/kg) = 1.101e-02 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 0.33 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 31 + Iterations = 29 Total H = 1.110406e+02 Total O = 5.554310e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 4.739e-07 4.359e-07 -6.324 -6.361 -0.036 0.00 + H+ 4.740e-07 4.359e-07 -6.324 -6.361 -0.036 0.00 OH- 2.555e-08 2.321e-08 -7.593 -7.634 -0.042 -4.05 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 2.173e-04 CH4 2.173e-04 2.177e-04 -3.663 -3.662 0.001 35.45 C(4) 1.101e-02 - HCO3- 5.751e-03 5.249e-03 -2.240 -2.280 -0.040 24.75 - CO2 5.136e-03 5.146e-03 -2.289 -2.289 0.001 34.43 + HCO3- 5.750e-03 5.249e-03 -2.240 -2.280 -0.040 24.63 + CO2 5.139e-03 5.146e-03 -2.289 -2.289 0.001 34.43 CaHCO3+ 1.209e-04 1.105e-04 -3.918 -3.957 -0.039 9.72 CaCO3 1.562e-06 1.565e-06 -5.806 -5.805 0.001 -14.60 - CO3-2 8.136e-07 5.647e-07 -6.090 -6.248 -0.159 -5.05 + CO3-2 8.135e-07 5.646e-07 -6.090 -6.248 -0.159 -3.83 (CO2)2 4.851e-07 4.860e-07 -6.314 -6.313 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.379e-03 1.650e-03 -2.624 -2.782 -0.159 -17.96 +Ca 2.501e-03 + Ca+2 2.379e-03 1.650e-03 -2.624 -2.783 -0.159 -17.96 CaHCO3+ 1.209e-04 1.105e-04 -3.918 -3.957 -0.039 9.72 CaCO3 1.562e-06 1.565e-06 -5.806 -5.805 0.001 -14.60 - CaOH+ 6.902e-10 6.281e-10 -9.161 -9.202 -0.041 (0) + CaOH+ 6.900e-10 6.280e-10 -9.161 -9.202 -0.041 (0) H(0) 5.119e-10 H2 2.560e-10 2.564e-10 -9.592 -9.591 0.001 28.61 N(-3) 8.740e-04 - NH4+ 8.729e-04 7.910e-04 -3.059 -3.102 -0.043 (0) + NH4+ 8.730e-04 7.910e-04 -3.059 -3.102 -0.043 (0) NH3 1.032e-06 1.034e-06 -5.986 -5.985 0.001 (0) N(0) 1.166e-05 N2 5.831e-06 5.842e-06 -5.234 -5.233 0.001 29.29 @@ -2939,7 +2954,7 @@ Total pressure: 0.60 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -0.56 2.757e-01 0.999 2.675e-22 2.620e-01 2.620e-01 +CH4(g) -0.56 2.757e-01 0.999 2.657e-22 2.620e-01 2.620e-01 CO2(g) -0.57 2.711e-01 0.997 2.997e-02 2.575e-01 2.275e-01 H2O(g) -1.50 3.154e-02 0.996 2.977e-02 2.997e-02 1.923e-04 N2(g) -1.76 1.738e-02 1.000 0.000e+00 1.651e-02 1.651e-02 @@ -2948,7 +2963,7 @@ N2(g) -1.76 1.738e-02 1.000 0.000e+00 1.651e-02 1.651e-02 Elements Molality Moles - C 1.657e-02 1.657e-02 + C 1.657e-02 1.658e-02 Ca 2.501e-03 2.502e-03 N 1.979e-03 1.979e-03 @@ -2956,47 +2971,48 @@ N2(g) -1.76 1.738e-02 1.000 0.000e+00 1.651e-02 1.651e-02 pH = 6.180 Charge balance pe = -2.966 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 517 - Density (g/cm) = 0.99754 + Specific Conductance (µS/cm, 25°C) = 531 + Density (g/cm³) = 0.99754 Volume (L) = 1.00381 + Viscosity (mPa s) = 0.89296 Activity of water = 1.000 - Ionic strength (mol/kgw) = 9.176e-03 + Ionic strength (mol/kgw) = 9.175e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 6.957e-03 - Total CO2 (mol/kg) = 1.613e-02 - Temperature (C) = 25.00 + Total CO2 (mol/kg) = 1.614e-02 + Temperature (°C) = 25.00 Pressure (atm) = 0.60 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 32 + Iterations = 31 Total H = 1.110692e+02 - Total O = 5.556559e+01 + Total O = 5.556560e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 7.210e-07 6.605e-07 -6.142 -6.180 -0.038 0.00 OH- 1.695e-08 1.532e-08 -7.771 -7.815 -0.044 -4.04 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.07 C(-4) 4.337e-04 CH4 4.337e-04 4.346e-04 -3.363 -3.362 0.001 35.45 -C(4) 1.613e-02 - CO2 9.174e-03 9.193e-03 -2.037 -2.037 0.001 34.43 - HCO3- 6.814e-03 6.189e-03 -2.167 -2.208 -0.042 24.76 - CaHCO3+ 1.394e-04 1.268e-04 -3.856 -3.897 -0.041 9.72 +C(4) 1.614e-02 + CO2 9.180e-03 9.193e-03 -2.037 -2.037 0.001 34.43 + HCO3- 6.813e-03 6.189e-03 -2.167 -2.208 -0.042 24.64 + CaHCO3+ 1.393e-04 1.268e-04 -3.856 -3.897 -0.041 9.72 (CO2)2 1.548e-06 1.551e-06 -5.810 -5.809 0.001 68.87 CaCO3 1.183e-06 1.185e-06 -5.927 -5.926 0.001 -14.60 - CO3-2 6.456e-07 4.395e-07 -6.190 -6.357 -0.167 -5.03 + CO3-2 6.455e-07 4.394e-07 -6.190 -6.357 -0.167 -3.80 Ca 2.501e-03 - Ca+2 2.360e-03 1.606e-03 -2.627 -2.794 -0.167 -17.94 - CaHCO3+ 1.394e-04 1.268e-04 -3.856 -3.897 -0.041 9.72 + Ca+2 2.360e-03 1.605e-03 -2.627 -2.794 -0.167 -17.94 + CaHCO3+ 1.393e-04 1.268e-04 -3.856 -3.897 -0.041 9.72 CaCO3 1.183e-06 1.185e-06 -5.927 -5.926 0.001 -14.60 - CaOH+ 4.455e-10 4.033e-10 -9.351 -9.394 -0.043 (0) + CaOH+ 4.454e-10 4.033e-10 -9.351 -9.394 -0.043 (0) H(0) 5.262e-10 H2 2.631e-10 2.636e-10 -9.580 -9.579 0.001 28.61 -N(-3) 1.955e-03 +N(-3) 1.956e-03 NH4+ 1.954e-03 1.760e-03 -2.709 -2.754 -0.045 (0) NH3 1.516e-06 1.519e-06 -5.819 -5.818 0.001 (0) N(0) 2.315e-05 @@ -3058,7 +3074,7 @@ Total pressure: 1.13 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -0.26 5.504e-01 0.998 2.675e-22 5.238e-01 5.238e-01 +CH4(g) -0.26 5.504e-01 0.998 2.657e-22 5.238e-01 5.238e-01 CO2(g) -0.29 5.096e-01 0.994 2.997e-02 4.850e-01 4.550e-01 H2O(g) -1.50 3.165e-02 0.992 2.977e-02 3.012e-02 3.446e-04 N2(g) -1.46 3.459e-02 1.001 0.000e+00 3.292e-02 3.292e-02 @@ -3067,7 +3083,7 @@ N2(g) -1.46 3.459e-02 1.001 0.000e+00 3.292e-02 3.292e-02 Elements Molality Moles - C 2.717e-02 2.719e-02 + C 2.718e-02 2.721e-02 Ca 2.500e-03 2.502e-03 N 4.158e-03 4.161e-03 @@ -3075,43 +3091,44 @@ N2(g) -1.46 3.459e-02 1.001 0.000e+00 3.292e-02 3.292e-02 pH = 6.021 Charge balance pe = -2.810 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 596 - Density (g/cm) = 0.99775 + Specific Conductance (µS/cm, 25°C) = 616 + Density (g/cm³) = 0.99775 Volume (L) = 1.00453 + Viscosity (mPa s) = 0.89341 Activity of water = 0.999 Ionic strength (mol/kgw) = 1.126e-02 Mass of water (kg) = 1.001e+00 - Total alkalinity (eq/kg) = 9.112e-03 - Total CO2 (mol/kg) = 2.631e-02 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 9.111e-03 + Total CO2 (mol/kg) = 2.632e-02 + Temperature (°C) = 25.00 Pressure (atm) = 1.13 - Electrical balance (eq) = -1.202e-09 + Electrical balance (eq) = -1.204e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 34 + Iterations = 32 Total H = 1.111264e+02 - Total O = 5.561044e+01 + Total O = 5.561047e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.047e-06 9.523e-07 -5.980 -6.021 -0.041 0.00 OH- 1.187e-08 1.062e-08 -7.925 -7.974 -0.048 -4.03 H2O 5.551e+01 9.994e-01 1.744 -0.000 0.000 18.07 C(-4) 8.642e-04 CH4 8.642e-04 8.664e-04 -3.063 -3.062 0.001 35.46 -C(4) 2.631e-02 - CO2 1.719e-02 1.723e-02 -1.765 -1.764 0.001 34.43 - HCO3- 8.934e-03 8.044e-03 -2.049 -2.095 -0.046 24.78 - CaHCO3+ 1.738e-04 1.568e-04 -3.760 -3.805 -0.045 9.73 - (CO2)2 5.436e-06 5.450e-06 -5.265 -5.264 0.001 68.87 - CaCO3 1.014e-06 1.017e-06 -5.994 -5.993 0.001 -14.60 - CO3-2 6.027e-07 3.962e-07 -6.220 -6.402 -0.182 -4.99 +C(4) 2.632e-02 + CO2 1.720e-02 1.723e-02 -1.764 -1.764 0.001 34.43 + HCO3- 8.933e-03 8.044e-03 -2.049 -2.095 -0.046 24.66 + CaHCO3+ 1.738e-04 1.567e-04 -3.760 -3.805 -0.045 9.73 + (CO2)2 5.435e-06 5.449e-06 -5.265 -5.264 0.001 68.87 + CaCO3 1.014e-06 1.016e-06 -5.994 -5.993 0.001 -14.60 + CO3-2 6.027e-07 3.962e-07 -6.220 -6.402 -0.182 -3.75 Ca 2.500e-03 Ca+2 2.325e-03 1.527e-03 -2.634 -2.816 -0.182 -17.91 - CaHCO3+ 1.738e-04 1.568e-04 -3.760 -3.805 -0.045 9.73 - CaCO3 1.014e-06 1.017e-06 -5.994 -5.993 0.001 -14.60 + CaHCO3+ 1.738e-04 1.567e-04 -3.760 -3.805 -0.045 9.73 + CaCO3 1.014e-06 1.016e-06 -5.994 -5.993 0.001 -14.60 CaOH+ 2.966e-10 2.660e-10 -9.528 -9.575 -0.047 (0) H(0) 5.340e-10 H2 2.670e-10 2.677e-10 -9.574 -9.572 0.001 28.61 @@ -3152,7 +3169,3 @@ End of simulation. Reading input data for simulation 4. ------------------------------------ -------------------------------- -End of Run after 0.035 Seconds. -------------------------------- - diff --git a/ex7.sel b/ex7.sel index da9f40e9..3e87649e 100644 --- a/ex7.sel +++ b/ex7.sel @@ -1,28 +1,28 @@ sim state reaction si_CO2(g) si_CH4(g) si_N2(g) si_NH3(g) pressure total mol volume g_CO2(g) g_CH4(g) g_N2(g) g_NH3(g) 1 i_soln -99 -999.9990 -999.9990 -999.9990 -999.9990 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 - 1 react -99 -1.5001 -21.5495 -999.9990 -999.9990 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 - 2 react 1.0000e-03 -1.3543 -0.4983 -3.9804 -8.3808 1.1000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 - 2 react 2.0000e-03 -1.2453 -0.1973 -3.7280 -8.1826 1.1000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 - 2 react 3.0000e-03 -1.1581 -0.0212 -3.6048 -8.0877 1.1000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 - 2 react 4.0000e-03 -1.0912 -0.0069 -3.4390 -8.0245 1.1000e+00 5.0204e-04 1.1135e-02 3.7205e-05 4.5026e-04 1.6609e-07 0.0000e+00 - 2 react 8.0000e-03 -0.9096 -0.0263 -3.0144 -7.8876 1.1000e+00 2.9375e-03 6.5147e-02 3.3072e-04 2.5199e-03 2.5831e-06 0.0000e+00 - 2 react 1.6000e-02 -0.7175 -0.0600 -2.5773 -7.7537 1.1000e+00 8.3727e-03 1.8565e-01 1.4671e-03 6.6450e-03 2.0140e-05 0.0000e+00 - 2 react 3.2000e-02 -0.5497 -0.1105 -2.1264 -7.6102 1.1000e+00 2.1074e-02 4.6715e-01 5.4354e-03 1.4890e-02 1.4316e-04 0.0000e+00 - 2 react 6.4000e-02 -0.4347 -0.1674 -1.7740 -7.4984 1.1000e+00 5.0854e-02 1.1270e+00 1.7094e-02 3.1521e-02 7.7760e-04 0.0000e+00 - 2 react 1.2500e-01 -0.3738 -0.2103 -1.5956 -7.4482 1.1000e+00 1.1310e-01 2.5060e+00 4.3740e-02 6.3498e-02 2.6073e-03 0.0000e+00 - 2 react 2.5000e-01 -0.3427 -0.2371 -1.5130 -7.4286 1.1000e+00 2.4479e-01 5.4234e+00 1.0170e-01 1.2922e-01 6.8256e-03 0.0000e+00 - 2 react 5.0000e-01 -0.3277 -0.2513 -1.4759 -7.4210 1.1000e+00 5.1045e-01 1.1309e+01 2.1951e-01 2.6076e-01 1.5502e-02 0.0000e+00 - 2 react 1.0000e+00 -0.3204 -0.2586 -1.4585 -7.4178 1.1000e+00 1.0429e+00 2.3104e+01 4.5607e-01 5.2387e-01 3.2966e-02 0.0000e+00 - 3 i_gas -99 -1.5001 -21.5495 -999.9990 -999.9990 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 - 3 react 1.0000e-03 -1.4939 -3.2574 -4.4528 -9.5993 6.4111e-02 6.0800e-02 2.3190e+01 3.0424e-02 5.2421e-04 3.3422e-05 0.0000e+00 - 3 react 2.0000e-03 -1.4874 -2.9563 -4.1503 -9.3376 6.5179e-02 6.1814e-02 2.3190e+01 3.0880e-02 1.0486e-03 6.7073e-05 0.0000e+00 - 3 react 3.0000e-03 -1.4811 -2.7802 -3.9735 -9.1855 6.6249e-02 6.2829e-02 2.3190e+01 3.1336e-02 1.5730e-03 1.0078e-04 0.0000e+00 + 1 react -99 -1.5001 -21.5524 -999.9990 -999.9990 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 + 2 react 1.0000e-03 -1.3544 -0.4983 -3.9804 -8.3808 1.1000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 + 2 react 2.0000e-03 -1.2454 -0.1973 -3.7279 -8.1825 1.1000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 + 2 react 3.0000e-03 -1.1582 -0.0212 -3.6047 -8.0876 1.1000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 + 2 react 4.0000e-03 -1.0914 -0.0069 -3.4389 -8.0244 1.1000e+00 5.0197e-04 1.1134e-02 3.7187e-05 4.5021e-04 1.6610e-07 0.0000e+00 + 2 react 8.0000e-03 -0.9098 -0.0262 -3.0143 -7.8874 1.1000e+00 2.9373e-03 6.5142e-02 3.3055e-04 2.5198e-03 2.5836e-06 0.0000e+00 + 2 react 1.6000e-02 -0.7177 -0.0600 -2.5772 -7.7536 1.1000e+00 8.3718e-03 1.8563e-01 1.4663e-03 6.6449e-03 2.0143e-05 0.0000e+00 + 2 react 3.2000e-02 -0.5499 -0.1104 -2.1263 -7.6101 1.1000e+00 2.1071e-02 4.6708e-01 5.4326e-03 1.4890e-02 1.4316e-04 0.0000e+00 + 2 react 6.4000e-02 -0.4348 -0.1673 -1.7739 -7.4984 1.1000e+00 5.0847e-02 1.1268e+00 1.7087e-02 3.1521e-02 7.7758e-04 0.0000e+00 + 2 react 1.2500e-01 -0.3738 -0.2103 -1.5956 -7.4482 1.1000e+00 1.1309e-01 2.5057e+00 4.3730e-02 6.3498e-02 2.6073e-03 0.0000e+00 + 2 react 2.5000e-01 -0.3427 -0.2370 -1.5130 -7.4286 1.1000e+00 2.4478e-01 5.4231e+00 1.0169e-01 1.2922e-01 6.8255e-03 0.0000e+00 + 2 react 5.0000e-01 -0.3277 -0.2513 -1.4759 -7.4210 1.1000e+00 5.1044e-01 1.1308e+01 2.1949e-01 2.6076e-01 1.5502e-02 0.0000e+00 + 2 react 1.0000e+00 -0.3204 -0.2586 -1.4585 -7.4178 1.1000e+00 1.0429e+00 2.3104e+01 4.5605e-01 5.2387e-01 3.2966e-02 0.0000e+00 + 3 i_gas -99 -1.5001 -21.5524 -999.9990 -999.9990 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 + 3 react 1.0000e-03 -1.4939 -3.2574 -4.4528 -9.5993 6.4109e-02 6.0800e-02 2.3190e+01 3.0424e-02 5.2421e-04 3.3422e-05 0.0000e+00 + 3 react 2.0000e-03 -1.4874 -2.9563 -4.1503 -9.3376 6.5180e-02 6.1814e-02 2.3190e+01 3.0880e-02 1.0486e-03 6.7072e-05 0.0000e+00 + 3 react 3.0000e-03 -1.4811 -2.7802 -3.9735 -9.1855 6.6249e-02 6.2828e-02 2.3190e+01 3.1336e-02 1.5730e-03 1.0078e-04 0.0000e+00 3 react 4.0000e-03 -1.4748 -2.6552 -3.8480 -9.0783 6.7318e-02 6.3843e-02 2.3190e+01 3.1792e-02 2.0975e-03 1.3452e-04 0.0000e+00 3 react 8.0000e-03 -1.4506 -2.3542 -3.5461 -8.8235 7.1596e-02 6.7900e-02 2.3190e+01 3.3615e-02 4.1954e-03 2.6960e-04 0.0000e+00 3 react 1.6000e-02 -1.4059 -2.0531 -3.2447 -8.5767 8.0152e-02 7.6015e-02 2.3190e+01 3.7262e-02 8.3911e-03 5.3973e-04 0.0000e+00 - 3 react 3.2000e-02 -1.3283 -1.7522 -2.9439 -8.3425 9.7259e-02 9.2242e-02 2.3190e+01 4.4554e-02 1.6782e-02 1.0788e-03 0.0000e+00 - 3 react 6.4000e-02 -1.2055 -1.4513 -2.6441 -8.1258 1.3145e-01 1.2468e-01 2.3190e+01 5.9134e-02 3.3559e-02 2.1518e-03 0.0000e+00 - 3 react 1.2500e-01 -1.0385 -1.1608 -2.3556 -7.9353 1.9656e-01 1.8648e-01 2.3190e+01 8.6910e-02 6.5530e-02 4.1820e-03 0.0000e+00 - 3 react 2.5000e-01 -0.8204 -0.8602 -2.0577 -7.7555 3.2979e-01 3.1301e-01 2.3190e+01 1.4379e-01 1.3102e-01 8.3071e-03 0.0000e+00 - 3 react 5.0000e-01 -0.5684 -0.5600 -1.7598 -7.5884 5.9574e-01 5.6594e-01 2.3190e+01 2.5751e-01 2.6196e-01 1.6510e-02 0.0000e+00 - 3 react 1.0000e+00 -0.2954 -0.2603 -1.4608 -7.4290 1.1262e+00 1.0719e+00 2.3190e+01 4.8500e-01 5.2384e-01 3.2919e-02 0.0000e+00 + 3 react 3.2000e-02 -1.3283 -1.7522 -2.9439 -8.3425 9.7257e-02 9.2242e-02 2.3190e+01 4.4554e-02 1.6782e-02 1.0788e-03 0.0000e+00 + 3 react 6.4000e-02 -1.2055 -1.4513 -2.6441 -8.1258 1.3145e-01 1.2468e-01 2.3190e+01 5.9133e-02 3.3559e-02 2.1518e-03 0.0000e+00 + 3 react 1.2500e-01 -1.0385 -1.1608 -2.3556 -7.9353 1.9656e-01 1.8648e-01 2.3190e+01 8.6909e-02 6.5530e-02 4.1820e-03 0.0000e+00 + 3 react 2.5000e-01 -0.8204 -0.8602 -2.0577 -7.7555 3.2979e-01 3.1300e-01 2.3190e+01 1.4379e-01 1.3102e-01 8.3071e-03 0.0000e+00 + 3 react 5.0000e-01 -0.5684 -0.5600 -1.7598 -7.5884 5.9573e-01 5.6594e-01 2.3190e+01 2.5750e-01 2.6196e-01 1.6510e-02 0.0000e+00 + 3 react 1.0000e+00 -0.2955 -0.2603 -1.4608 -7.4290 1.1262e+00 1.0719e+00 2.3190e+01 4.8499e-01 5.2384e-01 3.2919e-02 0.0000e+00 diff --git a/ex8.out b/ex8.out index 4181b382..35e0b3f0 100644 --- a/ex8.out +++ b/ex8.out @@ -89,16 +89,15 @@ WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. pH = 8.000 pe = 4.000 - Specific Conductance (S/cm, 25C) = 9863 - Density (g/cm) = 1.00265 + Specific Conductance (µS/cm, 25°C) = 9863 + Density (g/cm³) = 1.00265 Volume (L) = 1.00583 + Viscosity (mPa s) = 0.89481 Activity of water = 0.997 Ionic strength (mol/kgw) = 1.000e-01 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.326e-06 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = 6.946e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 9 @@ -108,7 +107,7 @@ WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.324e-06 1.009e-06 -5.878 -5.996 -0.118 -3.73 H+ 1.212e-08 1.000e-08 -7.917 -8.000 -0.083 0.00 @@ -185,16 +184,15 @@ Initial solution 2. pH = 8.000 pe = 4.000 - Specific Conductance (S/cm, 25C) = 9862 - Density (g/cm) = 1.00266 + Specific Conductance (µS/cm, 25°C) = 9862 + Density (g/cm³) = 1.00266 Volume (L) = 1.00583 + Viscosity (mPa s) = 0.89480 Activity of water = 0.997 Ionic strength (mol/kgw) = 1.001e-01 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.447e-05 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = 7.169e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 9 @@ -204,7 +202,7 @@ Initial solution 2. ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.325e-06 1.009e-06 -5.878 -5.996 -0.118 -3.73 H+ 1.212e-08 1.000e-08 -7.917 -8.000 -0.083 0.00 @@ -276,6 +274,8 @@ Reading input data for simulation 5. 20 GRAPH_Y MOL("Zn+2"), MOL("Hfo_wOZn+"), MOL("Hfo_sOZn+") 30 GRAPH_SY CHARGE_BALANCE * 1e3 -end + + Reading data from Zn1e_7 ... USE solution 1 USE surface 1 EQUILIBRIUM_PHASES 1 @@ -305,12 +305,12 @@ Diffuse Double Layer Surface-Complexation Model Hfo 1.123e-04 Surface charge, eq - 2.006e-01 sigma, C/m + 2.006e-01 sigma, C/m² 1.228e-01 psi, V -4.779e+00 -F*psi/RT 8.404e-03 exp(-F*psi/RT) - 6.000e+02 specific area, m/g - 5.400e+01 m for 9.000e-02 g + 6.000e+02 specific area, m²/g + 5.400e+01 m² for 9.000e-02 g Hfo_s @@ -345,26 +345,25 @@ Hfo_w pH = 5.000 Charge balance pe = 15.095 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 9862 - Density (g/cm) = 1.00265 + Specific Conductance (µS/cm, 25°C) = 9862 + Density (g/cm³) = 1.00265 Volume (L) = 1.00583 + Viscosity (mPa s) = 0.89480 Activity of water = 0.997 Ionic strength (mol/kgw) = 9.994e-02 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = -1.211e-05 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.123e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.06 - Iterations = 16 + Iterations = 17 Total H = 1.110122e+02 Total O = 5.580609e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.212e-05 1.000e-05 -4.917 -5.000 -0.083 0.00 OH- 1.324e-09 1.009e-09 -8.878 -8.996 -0.118 -3.73 @@ -444,12 +443,12 @@ Diffuse Double Layer Surface-Complexation Model Hfo 9.667e-05 Surface charge, eq - 1.727e-01 sigma, C/m + 1.727e-01 sigma, C/m² 1.152e-01 psi, V -4.486e+00 -F*psi/RT 1.127e-02 exp(-F*psi/RT) - 6.000e+02 specific area, m/g - 5.400e+01 m for 9.000e-02 g + 6.000e+02 specific area, m²/g + 5.400e+01 m² for 9.000e-02 g Hfo_s @@ -484,26 +483,25 @@ Hfo_w pH = 5.250 Charge balance pe = 14.809 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 9861 - Density (g/cm) = 1.00265 + Specific Conductance (µS/cm, 25°C) = 9861 + Density (g/cm³) = 1.00265 Volume (L) = 1.00583 + Viscosity (mPa s) = 0.89480 Activity of water = 0.997 Ionic strength (mol/kgw) = 9.995e-02 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = -6.811e-06 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -9.667e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.05 - Iterations = 15 + Iterations = 14 Total H = 1.110122e+02 Total O = 5.580611e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 6.813e-06 5.623e-06 -5.167 -5.250 -0.083 0.00 OH- 2.355e-09 1.794e-09 -8.628 -8.746 -0.118 -3.73 @@ -583,12 +581,12 @@ Diffuse Double Layer Surface-Complexation Model Hfo 8.214e-05 Surface charge, eq - 1.468e-01 sigma, C/m + 1.468e-01 sigma, C/m² 1.071e-01 psi, V -4.168e+00 -F*psi/RT 1.548e-02 exp(-F*psi/RT) - 6.000e+02 specific area, m/g - 5.400e+01 m for 9.000e-02 g + 6.000e+02 specific area, m²/g + 5.400e+01 m² for 9.000e-02 g Hfo_s @@ -623,26 +621,25 @@ Hfo_w pH = 5.500 Charge balance pe = 14.523 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 9861 - Density (g/cm) = 1.00265 + Specific Conductance (µS/cm, 25°C) = 9861 + Density (g/cm³) = 1.00265 Volume (L) = 1.00583 + Viscosity (mPa s) = 0.89480 Activity of water = 0.997 Ionic strength (mol/kgw) = 9.996e-02 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = -3.827e-06 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -8.214e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.04 - Iterations = 15 + Iterations = 14 Total H = 1.110123e+02 Total O = 5.580613e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 3.831e-06 3.162e-06 -5.417 -5.500 -0.083 0.00 OH- 4.188e-09 3.190e-09 -8.378 -8.496 -0.118 -3.73 @@ -722,12 +719,12 @@ Diffuse Double Layer Surface-Complexation Model Hfo 6.888e-05 Surface charge, eq - 1.231e-01 sigma, C/m + 1.231e-01 sigma, C/m² 9.838e-02 psi, V -3.829e+00 -F*psi/RT 2.173e-02 exp(-F*psi/RT) - 6.000e+02 specific area, m/g - 5.400e+01 m for 9.000e-02 g + 6.000e+02 specific area, m²/g + 5.400e+01 m² for 9.000e-02 g Hfo_s @@ -762,26 +759,25 @@ Hfo_w pH = 5.750 Charge balance pe = 14.237 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 9861 - Density (g/cm) = 1.00265 + Specific Conductance (µS/cm, 25°C) = 9861 + Density (g/cm³) = 1.00265 Volume (L) = 1.00583 + Viscosity (mPa s) = 0.89480 Activity of water = 0.997 Ionic strength (mol/kgw) = 9.997e-02 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = -2.147e-06 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -6.888e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.03 - Iterations = 15 + Iterations = 14 Total H = 1.110123e+02 Total O = 5.580615e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 2.155e-06 1.778e-06 -5.667 -5.750 -0.083 0.00 OH- 7.448e-09 5.672e-09 -8.128 -8.246 -0.118 -3.73 @@ -861,12 +857,12 @@ Diffuse Double Layer Surface-Complexation Model Hfo 5.700e-05 Surface charge, eq - 1.019e-01 sigma, C/m + 1.019e-01 sigma, C/m² 8.914e-02 psi, V -3.470e+00 -F*psi/RT 3.113e-02 exp(-F*psi/RT) - 6.000e+02 specific area, m/g - 5.400e+01 m for 9.000e-02 g + 6.000e+02 specific area, m²/g + 5.400e+01 m² for 9.000e-02 g Hfo_s @@ -901,16 +897,15 @@ Hfo_w pH = 6.000 Charge balance pe = 13.952 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 9861 - Density (g/cm) = 1.00265 + Specific Conductance (µS/cm, 25°C) = 9861 + Density (g/cm³) = 1.00265 Volume (L) = 1.00583 + Viscosity (mPa s) = 0.89480 Activity of water = 0.997 Ionic strength (mol/kgw) = 9.997e-02 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = -1.198e-06 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -5.700e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.03 Iterations = 14 @@ -920,7 +915,7 @@ Hfo_w ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.212e-06 1.000e-06 -5.917 -6.000 -0.083 0.00 OH- 1.324e-08 1.009e-08 -7.878 -7.996 -0.118 -3.73 @@ -1000,12 +995,12 @@ Diffuse Double Layer Surface-Complexation Model Hfo 4.647e-05 Surface charge, eq - 8.304e-02 sigma, C/m + 8.304e-02 sigma, C/m² 7.941e-02 psi, V -3.091e+00 -F*psi/RT 4.545e-02 exp(-F*psi/RT) - 6.000e+02 specific area, m/g - 5.400e+01 m for 9.000e-02 g + 6.000e+02 specific area, m²/g + 5.400e+01 m² for 9.000e-02 g Hfo_s @@ -1040,16 +1035,15 @@ Hfo_w pH = 6.250 Charge balance pe = 13.666 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 9862 - Density (g/cm) = 1.00265 + Specific Conductance (µS/cm, 25°C) = 9862 + Density (g/cm³) = 1.00265 Volume (L) = 1.00583 + Viscosity (mPa s) = 0.89480 Activity of water = 0.997 Ionic strength (mol/kgw) = 9.998e-02 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = -6.577e-07 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -4.647e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.02 Iterations = 14 @@ -1059,7 +1053,7 @@ Hfo_w ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 6.813e-07 5.623e-07 -6.167 -6.250 -0.083 0.00 OH- 2.355e-08 1.794e-08 -7.628 -7.746 -0.118 -3.73 @@ -1139,12 +1133,12 @@ Diffuse Double Layer Surface-Complexation Model Hfo 3.722e-05 Surface charge, eq - 6.651e-02 sigma, C/m + 6.651e-02 sigma, C/m² 6.921e-02 psi, V -2.694e+00 -F*psi/RT 6.762e-02 exp(-F*psi/RT) - 6.000e+02 specific area, m/g - 5.400e+01 m for 9.000e-02 g + 6.000e+02 specific area, m²/g + 5.400e+01 m² for 9.000e-02 g Hfo_s @@ -1179,26 +1173,25 @@ Hfo_w pH = 6.500 Charge balance pe = 13.380 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 9862 - Density (g/cm) = 1.00265 + Specific Conductance (µS/cm, 25°C) = 9862 + Density (g/cm³) = 1.00265 Volume (L) = 1.00583 + Viscosity (mPa s) = 0.89480 Activity of water = 0.997 Ionic strength (mol/kgw) = 9.998e-02 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = -3.412e-07 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -3.722e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.02 - Iterations = 14 + Iterations = 13 Total H = 1.110124e+02 Total O = 5.580618e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 3.831e-07 3.162e-07 -6.417 -6.500 -0.083 0.00 OH- 4.188e-08 3.190e-08 -7.378 -7.496 -0.118 -3.73 @@ -1278,12 +1271,12 @@ Diffuse Double Layer Surface-Complexation Model Hfo 2.911e-05 Surface charge, eq - 5.203e-02 sigma, C/m + 5.203e-02 sigma, C/m² 5.854e-02 psi, V -2.279e+00 -F*psi/RT 1.024e-01 exp(-F*psi/RT) - 6.000e+02 specific area, m/g - 5.400e+01 m for 9.000e-02 g + 6.000e+02 specific area, m²/g + 5.400e+01 m² for 9.000e-02 g Hfo_s @@ -1318,16 +1311,15 @@ Hfo_w pH = 6.750 Charge balance pe = 13.095 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 9862 - Density (g/cm) = 1.00265 + Specific Conductance (µS/cm, 25°C) = 9862 + Density (g/cm³) = 1.00265 Volume (L) = 1.00583 + Viscosity (mPa s) = 0.89480 Activity of water = 0.997 Ionic strength (mol/kgw) = 9.999e-02 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = -1.409e-07 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -2.911e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 Iterations = 14 @@ -1337,7 +1329,7 @@ Hfo_w ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 2.155e-07 1.778e-07 -6.667 -6.750 -0.083 0.00 OH- 7.448e-08 5.672e-08 -7.128 -7.246 -0.118 -3.73 @@ -1417,12 +1409,12 @@ Diffuse Double Layer Surface-Complexation Model Hfo 2.201e-05 Surface charge, eq - 3.934e-02 sigma, C/m + 3.934e-02 sigma, C/m² 4.745e-02 psi, V -1.847e+00 -F*psi/RT 1.577e-01 exp(-F*psi/RT) - 6.000e+02 specific area, m/g - 5.400e+01 m for 9.000e-02 g + 6.000e+02 specific area, m²/g + 5.400e+01 m² for 9.000e-02 g Hfo_s @@ -1457,16 +1449,15 @@ Hfo_w pH = 7.000 Charge balance pe = 12.809 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 9862 - Density (g/cm) = 1.00265 + Specific Conductance (µS/cm, 25°C) = 9862 + Density (g/cm³) = 1.00265 Volume (L) = 1.00583 + Viscosity (mPa s) = 0.89480 Activity of water = 0.997 Ionic strength (mol/kgw) = 9.999e-02 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.134e-08 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -2.201e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 Iterations = 14 @@ -1476,7 +1467,7 @@ Hfo_w ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.324e-07 1.009e-07 -6.878 -6.996 -0.118 -3.73 H+ 1.212e-07 1.000e-07 -6.917 -7.000 -0.083 0.00 @@ -1556,12 +1547,12 @@ Diffuse Double Layer Surface-Complexation Model Hfo 1.575e-05 Surface charge, eq - 2.814e-02 sigma, C/m + 2.814e-02 sigma, C/m² 3.597e-02 psi, V -1.400e+00 -F*psi/RT 2.466e-01 exp(-F*psi/RT) - 6.000e+02 specific area, m/g - 5.400e+01 m for 9.000e-02 g + 6.000e+02 specific area, m²/g + 5.400e+01 m² for 9.000e-02 g Hfo_s @@ -1596,16 +1587,15 @@ Hfo_w pH = 7.250 Charge balance pe = 12.523 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 9863 - Density (g/cm) = 1.00265 + Specific Conductance (µS/cm, 25°C) = 9863 + Density (g/cm³) = 1.00265 Volume (L) = 1.00583 + Viscosity (mPa s) = 0.89480 Activity of water = 0.997 Ionic strength (mol/kgw) = 9.999e-02 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.674e-07 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.575e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 Iterations = 14 @@ -1615,7 +1605,7 @@ Hfo_w ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 2.355e-07 1.794e-07 -6.628 -6.746 -0.118 -3.73 H+ 6.813e-08 5.623e-08 -7.167 -7.250 -0.083 0.00 @@ -1695,12 +1685,12 @@ Diffuse Double Layer Surface-Complexation Model Hfo 1.013e-05 Surface charge, eq - 1.811e-02 sigma, C/m + 1.811e-02 sigma, C/m² 2.418e-02 psi, V -9.410e-01 -F*psi/RT 3.902e-01 exp(-F*psi/RT) - 6.000e+02 specific area, m/g - 5.400e+01 m for 9.000e-02 g + 6.000e+02 specific area, m²/g + 5.400e+01 m² for 9.000e-02 g Hfo_s @@ -1735,16 +1725,15 @@ Hfo_w pH = 7.500 Charge balance pe = 12.237 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 9863 - Density (g/cm) = 1.00265 + Specific Conductance (µS/cm, 25°C) = 9863 + Density (g/cm³) = 1.00265 Volume (L) = 1.00583 + Viscosity (mPa s) = 0.89481 Activity of water = 0.997 Ionic strength (mol/kgw) = 1.000e-01 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 3.806e-07 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.013e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 Iterations = 14 @@ -1754,7 +1743,7 @@ Hfo_w ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 4.188e-07 3.190e-07 -6.378 -6.496 -0.118 -3.73 H+ 3.831e-08 3.162e-08 -7.417 -7.500 -0.083 0.00 @@ -1834,12 +1823,12 @@ Diffuse Double Layer Surface-Complexation Model Hfo 4.962e-06 Surface charge, eq - 8.867e-03 sigma, C/m + 8.867e-03 sigma, C/m² 1.217e-02 psi, V -4.736e-01 -F*psi/RT 6.228e-01 exp(-F*psi/RT) - 6.000e+02 specific area, m/g - 5.400e+01 m for 9.000e-02 g + 6.000e+02 specific area, m²/g + 5.400e+01 m² for 9.000e-02 g Hfo_s @@ -1874,16 +1863,15 @@ Hfo_w pH = 7.750 Charge balance pe = 11.952 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 9863 - Density (g/cm) = 1.00265 + Specific Conductance (µS/cm, 25°C) = 9863 + Density (g/cm³) = 1.00265 Volume (L) = 1.00583 + Viscosity (mPa s) = 0.89481 Activity of water = 0.997 Ionic strength (mol/kgw) = 1.000e-01 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 7.233e-07 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -4.962e-06 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 14 @@ -1893,7 +1881,7 @@ Hfo_w ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 7.448e-07 5.672e-07 -6.128 -6.246 -0.118 -3.73 H+ 2.155e-08 1.778e-08 -7.667 -7.750 -0.083 0.00 @@ -1973,12 +1961,12 @@ Diffuse Double Layer Surface-Complexation Model Hfo 1.787e-08 Surface charge, eq - 3.193e-05 sigma, C/m + 3.193e-05 sigma, C/m² 4.423e-05 psi, V -1.722e-03 -F*psi/RT 9.983e-01 exp(-F*psi/RT) - 6.000e+02 specific area, m/g - 5.400e+01 m for 9.000e-02 g + 6.000e+02 specific area, m²/g + 5.400e+01 m² for 9.000e-02 g Hfo_s @@ -2013,16 +2001,15 @@ Hfo_w pH = 8.000 Charge balance pe = 11.666 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 9863 - Density (g/cm) = 1.00265 + Specific Conductance (µS/cm, 25°C) = 9863 + Density (g/cm³) = 1.00265 Volume (L) = 1.00583 + Viscosity (mPa s) = 0.89481 Activity of water = 0.997 Ionic strength (mol/kgw) = 1.000e-01 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.312e-06 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.787e-08 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 14 @@ -2032,7 +2019,7 @@ Hfo_w ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.324e-06 1.009e-06 -5.878 -5.996 -0.118 -3.73 H+ 1.212e-08 1.000e-08 -7.917 -8.000 -0.083 0.00 @@ -2115,6 +2102,8 @@ Reading input data for simulation 20. 20 GRAPH_Y MOL("Zn+2"), MOL("Hfo_wOZn+"), MOL("Hfo_sOZn+") 30 GRAPH_SY CHARGE_BALANCE * 1e3 -end + + Reading data from Zn1e_4 ... USE solution 2 USE surface 1 EQUILIBRIUM_PHASES 1 @@ -2144,12 +2133,12 @@ Diffuse Double Layer Surface-Complexation Model Hfo 1.124e-04 Surface charge, eq - 2.008e-01 sigma, C/m + 2.008e-01 sigma, C/m² 1.228e-01 psi, V -4.780e+00 -F*psi/RT 8.398e-03 exp(-F*psi/RT) - 6.000e+02 specific area, m/g - 5.400e+01 m for 9.000e-02 g + 6.000e+02 specific area, m²/g + 5.400e+01 m² for 9.000e-02 g Hfo_s @@ -2184,16 +2173,15 @@ Hfo_w pH = 5.000 Charge balance pe = 15.095 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 9861 - Density (g/cm) = 1.00265 + Specific Conductance (µS/cm, 25°C) = 9861 + Density (g/cm³) = 1.00265 Volume (L) = 1.00583 + Viscosity (mPa s) = 0.89479 Activity of water = 0.997 Ionic strength (mol/kgw) = 1.000e-01 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = -1.211e-05 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.124e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.06 Iterations = 21 @@ -2203,7 +2191,7 @@ Hfo_w ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.212e-05 1.000e-05 -4.917 -5.000 -0.083 0.00 OH- 1.325e-09 1.009e-09 -8.878 -8.996 -0.118 -3.73 @@ -2214,7 +2202,7 @@ N(-3) 0.000e+00 NH4+ 0.000e+00 0.000e+00 -52.670 -52.798 -0.128 18.17 NH3 0.000e+00 0.000e+00 -57.052 -57.042 0.010 24.42 N(0) 1.543e-06 - N2 7.715e-07 7.895e-07 -6.113 -6.103 0.010 29.29 + N2 7.716e-07 7.896e-07 -6.113 -6.103 0.010 29.29 N(3) 2.412e-13 NO2- 2.412e-13 1.817e-13 -12.618 -12.741 -0.123 25.24 N(5) 1.000e-01 @@ -2283,12 +2271,12 @@ Diffuse Double Layer Surface-Complexation Model Hfo 9.689e-05 Surface charge, eq - 1.731e-01 sigma, C/m + 1.731e-01 sigma, C/m² 1.153e-01 psi, V -4.489e+00 -F*psi/RT 1.123e-02 exp(-F*psi/RT) - 6.000e+02 specific area, m/g - 5.400e+01 m for 9.000e-02 g + 6.000e+02 specific area, m²/g + 5.400e+01 m² for 9.000e-02 g Hfo_s @@ -2323,26 +2311,25 @@ Hfo_w pH = 5.250 Charge balance pe = 14.809 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 9860 - Density (g/cm) = 1.00265 + Specific Conductance (µS/cm, 25°C) = 9860 + Density (g/cm³) = 1.00265 Volume (L) = 1.00583 + Viscosity (mPa s) = 0.89479 Activity of water = 0.997 Ionic strength (mol/kgw) = 1.000e-01 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = -6.802e-06 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -9.689e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.05 - Iterations = 21 + Iterations = 22 Total H = 1.110122e+02 Total O = 5.580611e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 6.813e-06 5.623e-06 -5.167 -5.250 -0.083 0.00 OH- 2.355e-09 1.794e-09 -8.628 -8.746 -0.118 -3.73 @@ -2351,9 +2338,9 @@ H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -43.278 -43.268 0.010 28.61 N(-3) 0.000e+00 NH4+ 0.000e+00 0.000e+00 -52.884 -53.012 -0.128 18.17 - NH3 0.000e+00 0.000e+00 -57.016 -57.006 0.010 24.42 -N(0) 1.111e-06 - N2 5.553e-07 5.683e-07 -6.255 -6.245 0.010 29.29 + NH3 0.000e+00 0.000e+00 -57.017 -57.007 0.010 24.42 +N(0) 1.110e-06 + N2 5.552e-07 5.682e-07 -6.256 -6.246 0.010 29.29 N(3) 2.843e-13 NO2- 2.843e-13 2.142e-13 -12.546 -12.669 -0.123 25.24 N(5) 1.000e-01 @@ -2422,12 +2409,12 @@ Diffuse Double Layer Surface-Complexation Model Hfo 8.259e-05 Surface charge, eq - 1.476e-01 sigma, C/m + 1.476e-01 sigma, C/m² 1.073e-01 psi, V -4.178e+00 -F*psi/RT 1.533e-02 exp(-F*psi/RT) - 6.000e+02 specific area, m/g - 5.400e+01 m for 9.000e-02 g + 6.000e+02 specific area, m²/g + 5.400e+01 m² for 9.000e-02 g Hfo_s @@ -2462,26 +2449,25 @@ Hfo_w pH = 5.500 Charge balance pe = 14.523 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 9859 - Density (g/cm) = 1.00265 + Specific Conductance (µS/cm, 25°C) = 9859 + Density (g/cm³) = 1.00265 Volume (L) = 1.00583 + Viscosity (mPa s) = 0.89479 Activity of water = 0.997 Ionic strength (mol/kgw) = 1.001e-01 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = -3.811e-06 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -8.259e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.04 - Iterations = 21 + Iterations = 22 Total H = 1.110123e+02 Total O = 5.580613e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 3.831e-06 3.162e-06 -5.417 -5.500 -0.083 0.00 OH- 4.189e-09 3.190e-09 -8.378 -8.496 -0.118 -3.73 @@ -2489,19 +2475,19 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -43.206 -43.196 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.098 -53.226 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -53.099 -53.227 -0.128 18.17 NH3 0.000e+00 0.000e+00 -56.981 -56.971 0.010 24.42 -N(0) 7.997e-07 - N2 3.999e-07 4.092e-07 -6.398 -6.388 0.010 29.29 -N(3) 3.352e-13 - NO2- 3.352e-13 2.525e-13 -12.475 -12.598 -0.123 25.24 +N(0) 7.992e-07 + N2 3.996e-07 4.089e-07 -6.398 -6.388 0.010 29.29 +N(3) 3.351e-13 + NO2- 3.351e-13 2.525e-13 -12.475 -12.598 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.972e-02 Na+ 9.972e-02 7.828e-02 -1.001 -1.106 -0.105 -1.09 NaOH 2.440e-20 2.497e-20 -19.613 -19.603 0.010 (0) -O(0) 1.997e-06 - O2 9.987e-07 1.022e-06 -6.001 -5.991 0.010 30.40 +O(0) 1.998e-06 + O2 9.990e-07 1.022e-06 -6.000 -5.990 0.010 30.40 Zn 9.832e-05 Zn+2 9.830e-05 3.697e-05 -4.007 -4.432 -0.425 -24.68 ZnOH+ 1.636e-08 1.278e-08 -7.786 -7.894 -0.107 (0) @@ -2561,12 +2547,12 @@ Diffuse Double Layer Surface-Complexation Model Hfo 6.970e-05 Surface charge, eq - 1.245e-01 sigma, C/m + 1.245e-01 sigma, C/m² 9.893e-02 psi, V -3.851e+00 -F*psi/RT 2.126e-02 exp(-F*psi/RT) - 6.000e+02 specific area, m/g - 5.400e+01 m for 9.000e-02 g + 6.000e+02 specific area, m²/g + 5.400e+01 m² for 9.000e-02 g Hfo_s @@ -2601,16 +2587,15 @@ Hfo_w pH = 5.750 Charge balance pe = 14.237 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 9859 - Density (g/cm) = 1.00265 + Specific Conductance (µS/cm, 25°C) = 9859 + Density (g/cm³) = 1.00265 Volume (L) = 1.00583 + Viscosity (mPa s) = 0.89479 Activity of water = 0.997 Ionic strength (mol/kgw) = 1.001e-01 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = -2.118e-06 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -6.970e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.03 Iterations = 22 @@ -2620,7 +2605,7 @@ Hfo_w ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 2.155e-06 1.778e-06 -5.667 -5.750 -0.083 0.00 OH- 7.449e-09 5.672e-09 -8.128 -8.246 -0.118 -3.73 @@ -2700,12 +2685,12 @@ Diffuse Double Layer Surface-Complexation Model Hfo 5.821e-05 Surface charge, eq - 1.040e-01 sigma, C/m + 1.040e-01 sigma, C/m² 9.013e-02 psi, V -3.508e+00 -F*psi/RT 2.995e-02 exp(-F*psi/RT) - 6.000e+02 specific area, m/g - 5.400e+01 m for 9.000e-02 g + 6.000e+02 specific area, m²/g + 5.400e+01 m² for 9.000e-02 g Hfo_s @@ -2740,16 +2725,15 @@ Hfo_w pH = 6.000 Charge balance pe = 13.952 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 9860 - Density (g/cm) = 1.00265 + Specific Conductance (µS/cm, 25°C) = 9860 + Density (g/cm³) = 1.00265 Volume (L) = 1.00583 + Viscosity (mPa s) = 0.89479 Activity of water = 0.997 Ionic strength (mol/kgw) = 1.001e-01 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = -1.147e-06 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -5.821e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.03 Iterations = 22 @@ -2759,7 +2743,7 @@ Hfo_w ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.212e-06 1.000e-06 -5.917 -6.000 -0.083 0.00 OH- 1.325e-08 1.009e-08 -7.878 -7.996 -0.118 -3.73 @@ -2839,12 +2823,12 @@ Diffuse Double Layer Surface-Complexation Model Hfo 4.811e-05 Surface charge, eq - 8.597e-02 sigma, C/m + 8.597e-02 sigma, C/m² 8.102e-02 psi, V -3.154e+00 -F*psi/RT 4.270e-02 exp(-F*psi/RT) - 6.000e+02 specific area, m/g - 5.400e+01 m for 9.000e-02 g + 6.000e+02 specific area, m²/g + 5.400e+01 m² for 9.000e-02 g Hfo_s @@ -2879,16 +2863,15 @@ Hfo_w pH = 6.250 Charge balance pe = 13.666 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 9860 - Density (g/cm) = 1.00265 + Specific Conductance (µS/cm, 25°C) = 9860 + Density (g/cm³) = 1.00265 Volume (L) = 1.00583 + Viscosity (mPa s) = 0.89480 Activity of water = 0.997 Ionic strength (mol/kgw) = 1.001e-01 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = -5.675e-07 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -4.811e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.02 Iterations = 22 @@ -2898,7 +2881,7 @@ Hfo_w ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 6.813e-07 5.623e-07 -6.167 -6.250 -0.083 0.00 OH- 2.355e-08 1.794e-08 -7.628 -7.746 -0.118 -3.73 @@ -2978,12 +2961,12 @@ Diffuse Double Layer Surface-Complexation Model Hfo 3.957e-05 Surface charge, eq - 7.070e-02 sigma, C/m + 7.070e-02 sigma, C/m² 7.195e-02 psi, V -2.801e+00 -F*psi/RT 6.077e-02 exp(-F*psi/RT) - 6.000e+02 specific area, m/g - 5.400e+01 m for 9.000e-02 g + 6.000e+02 specific area, m²/g + 5.400e+01 m² for 9.000e-02 g Hfo_s @@ -3018,16 +3001,15 @@ Hfo_w pH = 6.500 Charge balance pe = 13.380 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 9860 - Density (g/cm) = 1.00265 + Specific Conductance (µS/cm, 25°C) = 9860 + Density (g/cm³) = 1.00265 Volume (L) = 1.00583 + Viscosity (mPa s) = 0.89480 Activity of water = 0.997 Ionic strength (mol/kgw) = 1.001e-01 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = -1.822e-07 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -3.957e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.02 Iterations = 22 @@ -3037,7 +3019,7 @@ Hfo_w ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 3.832e-07 3.162e-07 -6.417 -6.500 -0.083 0.00 OH- 4.189e-08 3.190e-08 -7.378 -7.496 -0.118 -3.73 @@ -3117,12 +3099,12 @@ Diffuse Double Layer Surface-Complexation Model Hfo 3.287e-05 Surface charge, eq - 5.874e-02 sigma, C/m + 5.874e-02 sigma, C/m² 6.371e-02 psi, V -2.480e+00 -F*psi/RT 8.376e-02 exp(-F*psi/RT) - 6.000e+02 specific area, m/g - 5.400e+01 m for 9.000e-02 g + 6.000e+02 specific area, m²/g + 5.400e+01 m² for 9.000e-02 g Hfo_s @@ -3157,16 +3139,15 @@ Hfo_w pH = 6.750 Charge balance pe = 13.094 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 9861 - Density (g/cm) = 1.00265 + Specific Conductance (µS/cm, 25°C) = 9861 + Density (g/cm³) = 1.00265 Volume (L) = 1.00583 + Viscosity (mPa s) = 0.89480 Activity of water = 0.997 Ionic strength (mol/kgw) = 1.001e-01 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.338e-07 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -3.287e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.02 Iterations = 22 @@ -3176,7 +3157,7 @@ Hfo_w ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 2.155e-07 1.778e-07 -6.667 -6.750 -0.083 0.00 OH- 7.449e-08 5.672e-08 -7.128 -7.246 -0.118 -3.73 @@ -3256,12 +3237,12 @@ Diffuse Double Layer Surface-Complexation Model Hfo 2.819e-05 Surface charge, eq - 5.037e-02 sigma, C/m + 5.037e-02 sigma, C/m² 5.718e-02 psi, V -2.226e+00 -F*psi/RT 1.080e-01 exp(-F*psi/RT) - 6.000e+02 specific area, m/g - 5.400e+01 m for 9.000e-02 g + 6.000e+02 specific area, m²/g + 5.400e+01 m² for 9.000e-02 g Hfo_s @@ -3296,16 +3277,15 @@ Hfo_w pH = 7.000 Charge balance pe = 12.809 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 9861 - Density (g/cm) = 1.00265 + Specific Conductance (µS/cm, 25°C) = 9861 + Density (g/cm³) = 1.00265 Volume (L) = 1.00583 + Viscosity (mPa s) = 0.89480 Activity of water = 0.997 Ionic strength (mol/kgw) = 1.001e-01 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 4.724e-07 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -2.819e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 Iterations = 23 @@ -3315,7 +3295,7 @@ Hfo_w ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.325e-07 1.009e-07 -6.878 -6.996 -0.118 -3.73 H+ 1.212e-07 1.000e-07 -6.917 -7.000 -0.083 0.00 @@ -3395,12 +3375,12 @@ Diffuse Double Layer Surface-Complexation Model Hfo 2.512e-05 Surface charge, eq - 4.488e-02 sigma, C/m + 4.488e-02 sigma, C/m² 5.252e-02 psi, V -2.044e+00 -F*psi/RT 1.295e-01 exp(-F*psi/RT) - 6.000e+02 specific area, m/g - 5.400e+01 m for 9.000e-02 g + 6.000e+02 specific area, m²/g + 5.400e+01 m² for 9.000e-02 g Hfo_s @@ -3435,16 +3415,15 @@ Hfo_w pH = 7.250 Charge balance pe = 12.523 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 9861 - Density (g/cm) = 1.00265 + Specific Conductance (µS/cm, 25°C) = 9861 + Density (g/cm³) = 1.00265 Volume (L) = 1.00583 + Viscosity (mPa s) = 0.89480 Activity of water = 0.997 Ionic strength (mol/kgw) = 1.000e-01 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 9.254e-07 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -2.512e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 Iterations = 23 @@ -3454,7 +3433,7 @@ Hfo_w ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 2.355e-07 1.794e-07 -6.628 -6.746 -0.118 -3.73 H+ 6.813e-08 5.623e-08 -7.167 -7.250 -0.083 0.00 @@ -3534,12 +3513,12 @@ Diffuse Double Layer Surface-Complexation Model Hfo 2.288e-05 Surface charge, eq - 4.088e-02 sigma, C/m + 4.088e-02 sigma, C/m² 4.889e-02 psi, V -1.903e+00 -F*psi/RT 1.491e-01 exp(-F*psi/RT) - 6.000e+02 specific area, m/g - 5.400e+01 m for 9.000e-02 g + 6.000e+02 specific area, m²/g + 5.400e+01 m² for 9.000e-02 g Hfo_s @@ -3574,16 +3553,15 @@ Hfo_w pH = 7.500 Charge balance pe = 12.237 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 9861 - Density (g/cm) = 1.00265 + Specific Conductance (µS/cm, 25°C) = 9861 + Density (g/cm³) = 1.00265 Volume (L) = 1.00583 + Viscosity (mPa s) = 0.89480 Activity of water = 0.997 Ionic strength (mol/kgw) = 1.000e-01 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.631e-06 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -2.288e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 Iterations = 23 @@ -3593,7 +3571,7 @@ Hfo_w ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 4.189e-07 3.190e-07 -6.378 -6.496 -0.118 -3.73 H+ 3.831e-08 3.162e-08 -7.417 -7.500 -0.083 0.00 @@ -3673,12 +3651,12 @@ Diffuse Double Layer Surface-Complexation Model Hfo 2.080e-05 Surface charge, eq - 3.717e-02 sigma, C/m + 3.717e-02 sigma, C/m² 4.535e-02 psi, V -1.765e+00 -F*psi/RT 1.711e-01 exp(-F*psi/RT) - 6.000e+02 specific area, m/g - 5.400e+01 m for 9.000e-02 g + 6.000e+02 specific area, m²/g + 5.400e+01 m² for 9.000e-02 g Hfo_s @@ -3713,16 +3691,15 @@ Hfo_w pH = 7.750 Charge balance pe = 11.951 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 9862 - Density (g/cm) = 1.00265 + Specific Conductance (µS/cm, 25°C) = 9862 + Density (g/cm³) = 1.00265 Volume (L) = 1.00583 + Viscosity (mPa s) = 0.89480 Activity of water = 0.997 Ionic strength (mol/kgw) = 1.000e-01 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 2.832e-06 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -2.080e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 Iterations = 23 @@ -3732,7 +3709,7 @@ Hfo_w ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 7.448e-07 5.672e-07 -6.128 -6.246 -0.118 -3.73 H+ 2.155e-08 1.778e-08 -7.667 -7.750 -0.083 0.00 @@ -3812,12 +3789,12 @@ Diffuse Double Layer Surface-Complexation Model Hfo 1.854e-05 Surface charge, eq - 3.313e-02 sigma, C/m + 3.313e-02 sigma, C/m² 4.129e-02 psi, V -1.607e+00 -F*psi/RT 2.004e-01 exp(-F*psi/RT) - 6.000e+02 specific area, m/g - 5.400e+01 m for 9.000e-02 g + 6.000e+02 specific area, m²/g + 5.400e+01 m² for 9.000e-02 g Hfo_s @@ -3852,26 +3829,25 @@ Hfo_w pH = 8.000 Charge balance pe = 11.666 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 9862 - Density (g/cm) = 1.00265 + Specific Conductance (µS/cm, 25°C) = 9862 + Density (g/cm³) = 1.00265 Volume (L) = 1.00583 + Viscosity (mPa s) = 0.89480 Activity of water = 0.997 Ionic strength (mol/kgw) = 1.000e-01 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 4.948e-06 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.854e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 - Iterations = 24 + Iterations = 25 Total H = 1.110127e+02 Total O = 5.580635e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.325e-06 1.009e-06 -5.878 -5.996 -0.118 -3.73 H+ 1.212e-08 1.000e-08 -7.917 -8.000 -0.083 0.00 @@ -3890,8 +3866,8 @@ N(5) 1.000e-01 Na 9.993e-02 Na+ 9.993e-02 7.845e-02 -1.000 -1.105 -0.105 -1.09 NaOH 7.734e-18 7.914e-18 -17.112 -17.102 0.010 (0) -O(0) 7.447e-08 - O2 3.724e-08 3.810e-08 -7.429 -7.419 0.010 30.40 +O(0) 7.448e-08 + O2 3.724e-08 3.811e-08 -7.429 -7.419 0.010 30.40 Zn 2.762e-05 Zn+2 2.514e-05 9.458e-06 -4.600 -5.024 -0.425 -24.68 ZnOH+ 1.323e-06 1.033e-06 -5.878 -5.986 -0.107 (0) @@ -3931,7 +3907,3 @@ End of simulation. Reading input data for simulation 34. ------------------------------------- -------------------------------- -End of Run after 0.035 Seconds. -------------------------------- - diff --git a/ex8.sel b/ex8.sel index 61578dca..133aaa03 100644 --- a/ex8.sel +++ b/ex8.sel @@ -12,11 +12,11 @@ 15 react 1 -99 0 1 7.5 12.2374 -99 25.000 3.80557e-07 0.0999953 1 -1.01328e-05 -0.00506665 1.1918e-09 4.0447e-09 9.4738e-08 16 react 1 -99 0 1 7.75 11.9517 -99 25.000 7.23295e-07 0.0999982 1 -4.96214e-06 -0.00248112 4.2167e-10 4.0771e-09 9.5483e-08 17 react 1 -99 0 1 8 11.666 -99 25.000 1.3124e-06 0.100001 1 -1.7871e-08 -8.9354e-06 1.4817e-10 4.0887e-09 9.5749e-08 - 20 react 2 -99 0 1 5 15.0946 -99 25.000 -1.21096e-05 0.100042 0.999998 -0.000112354 -0.0562096 9.9686e-05 1.3167e-08 2.9577e-07 + 20 react 2 -99 0 1 5 15.0945 -99 25.000 -1.21096e-05 0.100042 0.999998 -0.000112354 -0.0562096 9.9686e-05 1.3167e-08 2.9577e-07 21 react 2 -99 0 1 5.25 14.8088 -99 25.000 -6.80176e-06 0.10005 0.999998 -9.68903e-05 -0.0484692 9.9221e-05 3.6026e-08 7.3398e-07 22 react 2 -99 0 1 5.5 14.5231 -99 25.000 -3.81085e-06 0.100056 0.999998 -8.25933e-05 -0.041314 9.8302e-05 9.7147e-08 1.5849e-06 23 react 2 -99 0 1 5.75 14.2374 -99 25.000 -2.1182e-06 0.100062 0.999999 -6.96993e-05 -0.034862 9.6949e-05 2.5852e-07 2.7639e-06 - 24 react 2 -99 0 1 6 13.9517 -99 25.000 -1.14729e-06 0.100066 0.999999 -5.82072e-05 -0.0291122 9.5439e-05 6.8198e-07 3.8284e-06 + 24 react 2 -99 0 1 6 13.9517 -99 25.000 -1.14729e-06 0.100066 0.999999 -5.82071e-05 -0.0291122 9.5439e-05 6.8198e-07 3.8284e-06 25 react 2 -99 0 1 6.25 13.666 -99 25.000 -5.67452e-07 0.100069 0.999999 -4.8109e-05 -0.0240603 9.3655e-05 1.7788e-06 4.4775e-06 26 react 2 -99 0 1 6.5 13.3802 -99 25.000 -1.82222e-07 0.100071 1 -3.95664e-05 -0.0197871 9.0590e-05 4.4736e-06 4.7812e-06 27 react 2 -99 0 1 6.75 13.0945 -99 25.000 1.33839e-07 0.100068 1 -3.28749e-05 -0.0164401 8.4578e-05 1.0254e-05 4.9050e-06 diff --git a/ex9.out b/ex9.out index 76ecda41..23b36fe8 100644 --- a/ex9.out +++ b/ex9.out @@ -178,17 +178,16 @@ Initial solution 1. pH = 7.000 pe = 13.629 Equilibrium with O2(g) - Specific Conductance (S/cm, 25C) = 1192 - Density (g/cm) = 0.99747 + Specific Conductance (µS/cm, 25°C) = 1192 + Density (g/cm³) = 0.99747 Volume (L) = 1.00315 + Viscosity (mPa s) = 0.89124 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.030e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 2.313e-07 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 - Electrical balance (eq) = 3.500e-18 + Total alkalinity (eq/kg) = 2.310e-07 + Temperature (°C) = 25.00 + Electrical balance (eq) = 5.834e-18 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 9 Total H = 1.110124e+02 @@ -197,7 +196,7 @@ Initial solution 1. ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.126e-07 1.012e-07 -6.949 -6.995 -0.046 -4.03 H+ 1.096e-07 1.000e-07 -6.960 -7.000 -0.040 0.00 @@ -205,6 +204,7 @@ Initial solution 1. Cl 1.020e-02 Cl- 1.020e-02 9.174e-03 -1.991 -2.037 -0.046 18.14 Fe_diCl+ 9.148e-07 8.240e-07 -6.039 -6.084 -0.045 (0) + HCl 3.129e-10 3.160e-10 -9.505 -9.500 0.004 (0) Fe_di 1.000e-04 Fe_di+2 9.886e-05 6.507e-05 -4.005 -4.187 -0.182 (0) Fe_diCl+ 9.148e-07 8.240e-07 -6.039 -6.084 -0.045 (0) @@ -235,8 +235,8 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Negative moles in solution for Fe_tri, -6.101497e-06. Recovering... -WARNING: Negative moles in solution for Fe_tri, -1.392301e-06. Recovering... +WARNING: Negative moles in solution 1 for Fe_tri, -6.102356e-06. Recovering... +WARNING: Negative moles in solution 1 for Fe_tri, -1.391921e-06. Recovering... Using solution 1. Using pure phase assemblage 1. Using kinetics 1. @@ -247,7 +247,7 @@ Kinetics 1. Rate name Delta Moles Total Moles Reactant Coefficient - Fe_di_ox -1.066e-06 1.000e+00 Fe_di -1 + Fe_di_ox -1.067e-06 1.000e+00 Fe_di -1 Fe_tri 1 -------------------------------Phase assemblage-------------------------------- @@ -255,7 +255,7 @@ Kinetics 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -2.665e-07 +O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -2.669e-07 -----------------------------Solution composition------------------------------ @@ -263,63 +263,63 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -2.665e-07 Cl 1.020e-02 1.020e-02 Fe_di 9.893e-05 9.893e-05 - Fe_tri 1.066e-06 1.066e-06 + Fe_tri 1.067e-06 1.067e-06 Na 1.000e-02 1.000e-02 ----------------------------Description of solution---------------------------- - pH = 6.044 Charge balance + pH = 6.045 Charge balance pe = 14.585 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 1192 - Density (g/cm) = 0.99747 + Specific Conductance (µS/cm, 25°C) = 1192 + Density (g/cm³) = 0.99747 Volume (L) = 1.00315 + Viscosity (mPa s) = 0.89124 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.030e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 1.297e-06 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 - Electrical balance (eq) = 7.978e-16 + Total alkalinity (eq/kg) = 1.298e-06 + Temperature (°C) = 25.00 + Electrical balance (eq) = 8.157e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 208 + Iterations = 208 (195 overall) Total H = 1.110124e+02 Total O = 5.550676e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.895e-07 9.029e-07 -6.005 -6.044 -0.040 0.00 - OH- 1.247e-08 1.121e-08 -7.904 -7.951 -0.046 -4.03 + H+ 9.887e-07 9.021e-07 -6.005 -6.045 -0.040 0.00 + OH- 1.248e-08 1.122e-08 -7.904 -7.950 -0.046 -4.03 H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.07 Cl 1.020e-02 Cl- 1.020e-02 9.174e-03 -1.991 -2.037 -0.046 18.14 Fe_diCl+ 9.069e-07 8.169e-07 -6.042 -6.088 -0.045 (0) - Fe_triCl+2 1.362e-13 8.965e-14 -12.866 -13.047 -0.182 (0) - Fe_triCl2+ 4.079e-15 3.674e-15 -14.389 -14.435 -0.045 (0) - Fe_triCl3 3.362e-18 3.370e-18 -17.473 -17.472 0.001 (0) + HCl 2.822e-09 2.851e-09 -8.549 -8.545 0.004 (0) + Fe_triCl+2 1.361e-13 8.960e-14 -12.866 -13.048 -0.182 (0) + Fe_triCl2+ 4.076e-15 3.672e-15 -14.390 -14.435 -0.045 (0) + Fe_triCl3 3.360e-18 3.368e-18 -17.474 -17.473 0.001 (0) Fe_di 9.893e-05 Fe_di+2 9.800e-05 6.450e-05 -4.009 -4.190 -0.182 (0) Fe_diCl+ 9.069e-07 8.169e-07 -6.042 -6.088 -0.045 (0) - Fe_diOH+ 2.507e-08 2.259e-08 -7.601 -7.646 -0.045 (0) -Fe_tri 1.066e-06 - Fe_tri(OH)2+ 9.416e-07 8.481e-07 -6.026 -6.072 -0.045 (0) - Fe_tri(OH)3 1.207e-07 1.210e-07 -6.918 -6.917 0.001 (0) - Fe_triOH+2 3.514e-09 2.313e-09 -8.454 -8.636 -0.182 (0) - Fe_tri(OH)4- 1.356e-10 1.221e-10 -9.868 -9.913 -0.045 (0) - Fe_tri+3 8.292e-13 3.236e-13 -12.081 -12.490 -0.409 (0) - Fe_triCl+2 1.362e-13 8.965e-14 -12.866 -13.047 -0.182 (0) - Fe_triCl2+ 4.079e-15 3.674e-15 -14.389 -14.435 -0.045 (0) - Fe_tri2(OH)2+4 7.673e-16 1.440e-16 -15.115 -15.842 -0.727 (0) - Fe_triCl3 3.362e-18 3.370e-18 -17.473 -17.472 0.001 (0) - Fe_tri3(OH)4+5 3.484e-19 2.552e-20 -18.458 -19.593 -1.135 (0) + Fe_diOH+ 2.510e-08 2.260e-08 -7.600 -7.646 -0.045 (0) +Fe_tri 1.067e-06 + Fe_tri(OH)2+ 9.427e-07 8.491e-07 -6.026 -6.071 -0.045 (0) + Fe_tri(OH)3 1.209e-07 1.212e-07 -6.917 -6.916 0.001 (0) + Fe_triOH+2 3.515e-09 2.314e-09 -8.454 -8.636 -0.182 (0) + Fe_tri(OH)4- 1.360e-10 1.225e-10 -9.866 -9.912 -0.045 (0) + Fe_tri+3 8.288e-13 3.234e-13 -12.082 -12.490 -0.409 (0) + Fe_triCl+2 1.361e-13 8.960e-14 -12.866 -13.048 -0.182 (0) + Fe_triCl2+ 4.076e-15 3.672e-15 -14.390 -14.435 -0.045 (0) + Fe_tri2(OH)2+4 7.678e-16 1.441e-16 -15.115 -15.841 -0.727 (0) + Fe_triCl3 3.360e-18 3.368e-18 -17.474 -17.473 0.001 (0) + Fe_tri3(OH)4+5 3.491e-19 2.556e-20 -18.457 -19.592 -1.135 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 - NaOH 1.009e-20 1.011e-20 -19.996 -19.995 0.001 (0) + NaOH 1.010e-20 1.012e-20 -19.996 -19.995 0.001 (0) O(0) 5.465e-04 O2 2.732e-04 2.739e-04 -3.563 -3.562 0.001 30.40 @@ -348,7 +348,7 @@ Kinetics 1. Rate name Delta Moles Total Moles Reactant Coefficient - Fe_di_ox -7.416e-07 1.000e+00 Fe_di -1 + Fe_di_ox -7.429e-07 1.000e+00 Fe_di -1 Fe_tri 1 -------------------------------Phase assemblage-------------------------------- @@ -356,7 +356,7 @@ Kinetics 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -1.854e-07 +O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -1.858e-07 -----------------------------Solution composition------------------------------ @@ -364,24 +364,23 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -1.854e-07 Cl 1.020e-02 1.020e-02 Fe_di 9.819e-05 9.819e-05 - Fe_tri 1.808e-06 1.808e-06 + Fe_tri 1.810e-06 1.810e-06 Na 1.000e-02 1.000e-02 ----------------------------Description of solution---------------------------- pH = 5.807 Charge balance pe = 14.823 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 1192 - Density (g/cm) = 0.99747 + Specific Conductance (µS/cm, 25°C) = 1192 + Density (g/cm³) = 0.99747 Volume (L) = 1.00315 + Viscosity (mPa s) = 0.89124 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.030e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 2.039e-06 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 - Electrical balance (eq) = 8.026e-16 + Total alkalinity (eq/kg) = 2.041e-06 + Temperature (°C) = 25.00 + Electrical balance (eq) = 8.186e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 27 Total H = 1.110124e+02 @@ -390,37 +389,38 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -1.854e-07 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.711e-06 1.561e-06 -5.767 -5.807 -0.040 0.00 - OH- 7.211e-09 6.481e-09 -8.142 -8.188 -0.046 -4.03 + H+ 1.710e-06 1.560e-06 -5.767 -5.807 -0.040 0.00 + OH- 7.217e-09 6.487e-09 -8.142 -8.188 -0.046 -4.03 H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.07 Cl 1.020e-02 Cl- 1.020e-02 9.174e-03 -1.991 -2.037 -0.046 18.14 Fe_diCl+ 9.002e-07 8.108e-07 -6.046 -6.091 -0.045 (0) - Fe_triCl+2 7.235e-13 4.762e-13 -12.141 -12.322 -0.182 (0) - Fe_triCl2+ 2.167e-14 1.951e-14 -13.664 -13.710 -0.045 (0) - Fe_triCl3 1.786e-17 1.790e-17 -16.748 -16.747 0.001 (0) + HCl 4.880e-09 4.929e-09 -8.312 -8.307 0.004 (0) + Fe_triCl+2 7.232e-13 4.760e-13 -12.141 -12.322 -0.182 (0) + Fe_triCl2+ 2.166e-14 1.951e-14 -13.664 -13.710 -0.045 (0) + Fe_triCl3 1.785e-17 1.790e-17 -16.748 -16.747 0.001 (0) Fe_di 9.819e-05 Fe_di+2 9.728e-05 6.403e-05 -4.012 -4.194 -0.182 (0) Fe_diCl+ 9.002e-07 8.108e-07 -6.046 -6.091 -0.045 (0) - Fe_diOH+ 1.439e-08 1.296e-08 -7.842 -7.887 -0.045 (0) -Fe_tri 1.808e-06 - Fe_tri(OH)2+ 1.673e-06 1.507e-06 -5.777 -5.822 -0.045 (0) - Fe_tri(OH)3 1.240e-07 1.243e-07 -6.907 -6.906 0.001 (0) - Fe_triOH+2 1.080e-08 7.106e-09 -7.967 -8.148 -0.182 (0) - Fe_tri(OH)4- 8.057e-11 7.257e-11 -10.094 -10.139 -0.045 (0) - Fe_tri+3 4.405e-12 1.719e-12 -11.356 -11.765 -0.409 (0) - Fe_triCl+2 7.235e-13 4.762e-13 -12.141 -12.322 -0.182 (0) - Fe_triCl2+ 2.167e-14 1.951e-14 -13.664 -13.710 -0.045 (0) - Fe_tri2(OH)2+4 7.241e-15 1.359e-15 -14.140 -14.867 -0.727 (0) - Fe_triCl3 1.786e-17 1.790e-17 -16.748 -16.747 0.001 (0) - Fe_tri3(OH)4+5 5.841e-18 4.278e-19 -17.234 -18.369 -1.135 (0) + Fe_diOH+ 1.441e-08 1.298e-08 -7.841 -7.887 -0.045 (0) +Fe_tri 1.810e-06 + Fe_tri(OH)2+ 1.675e-06 1.509e-06 -5.776 -5.821 -0.045 (0) + Fe_tri(OH)3 1.243e-07 1.246e-07 -6.906 -6.905 0.001 (0) + Fe_triOH+2 1.080e-08 7.109e-09 -7.967 -8.148 -0.182 (0) + Fe_tri(OH)4- 8.083e-11 7.281e-11 -10.092 -10.138 -0.045 (0) + Fe_tri+3 4.403e-12 1.718e-12 -11.356 -11.765 -0.409 (0) + Fe_triCl+2 7.232e-13 4.760e-13 -12.141 -12.322 -0.182 (0) + Fe_triCl2+ 2.166e-14 1.951e-14 -13.664 -13.710 -0.045 (0) + Fe_tri2(OH)2+4 7.248e-15 1.360e-15 -14.140 -14.866 -0.727 (0) + Fe_triCl3 1.785e-17 1.790e-17 -16.748 -16.747 0.001 (0) + Fe_tri3(OH)4+5 5.855e-18 4.288e-19 -17.232 -18.368 -1.135 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 - NaOH 5.833e-21 5.847e-21 -20.234 -20.233 0.001 (0) + NaOH 5.838e-21 5.852e-21 -20.234 -20.233 0.001 (0) O(0) 5.465e-04 O2 2.732e-04 2.739e-04 -3.563 -3.562 0.001 30.40 @@ -428,7 +428,7 @@ O(0) 5.465e-04 Phase SI** log IAP log K(298 K, 1 atm) - Goethite 6.65 5.65 -1.00 Fe_triOOH + Goethite 6.66 5.66 -1.00 Fe_triOOH H2(g) -41.31 -44.41 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -5.65 -4.08 1.57 NaCl @@ -449,7 +449,7 @@ Kinetics 1. Rate name Delta Moles Total Moles Reactant Coefficient - Fe_di_ox -1.626e-06 1.000e+00 Fe_di -1 + Fe_di_ox -1.629e-06 1.000e+00 Fe_di -1 Fe_tri 1 -------------------------------Phase assemblage-------------------------------- @@ -457,32 +457,31 @@ Kinetics 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.065e-07 +O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.073e-07 -----------------------------Solution composition------------------------------ Elements Molality Moles Cl 1.020e-02 1.020e-02 - Fe_di 9.657e-05 9.657e-05 - Fe_tri 3.433e-06 3.433e-06 + Fe_di 9.656e-05 9.656e-05 + Fe_tri 3.439e-06 3.439e-06 Na 1.000e-02 1.000e-02 ----------------------------Description of solution---------------------------- pH = 5.522 Charge balance - pe = 15.108 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 1193 - Density (g/cm) = 0.99747 + pe = 15.107 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 1193 + Density (g/cm³) = 0.99747 Volume (L) = 1.00315 + Viscosity (mPa s) = 0.89124 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.029e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 3.665e-06 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 - Electrical balance (eq) = 8.949e-16 + Total alkalinity (eq/kg) = 3.670e-06 + Temperature (°C) = 25.00 + Electrical balance (eq) = 9.113e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 67 Total H = 1.110124e+02 @@ -491,37 +490,38 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.065e-07 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 3.298e-06 3.009e-06 -5.482 -5.522 -0.040 0.00 - OH- 3.741e-09 3.362e-09 -8.427 -8.473 -0.046 -4.03 + H+ 3.295e-06 3.006e-06 -5.482 -5.522 -0.040 0.00 + OH- 3.745e-09 3.366e-09 -8.427 -8.473 -0.046 -4.03 H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.07 Cl 1.020e-02 Cl- 1.020e-02 9.174e-03 -1.991 -2.037 -0.046 18.14 - Fe_diCl+ 8.854e-07 7.975e-07 -6.053 -6.098 -0.045 (0) - Fe_triCl+2 5.249e-12 3.455e-12 -11.280 -11.462 -0.182 (0) + Fe_diCl+ 8.853e-07 7.975e-07 -6.053 -6.098 -0.045 (0) + HCl 9.406e-09 9.501e-09 -8.027 -8.022 0.004 (0) + Fe_triCl+2 5.248e-12 3.454e-12 -11.280 -11.462 -0.182 (0) Fe_triCl2+ 1.572e-13 1.416e-13 -12.804 -12.849 -0.045 (0) - Fe_triCl3 1.296e-16 1.299e-16 -15.887 -15.886 0.001 (0) -Fe_di 9.657e-05 - Fe_di+2 9.567e-05 6.298e-05 -4.019 -4.201 -0.182 (0) - Fe_diCl+ 8.854e-07 7.975e-07 -6.053 -6.098 -0.045 (0) - Fe_diOH+ 7.345e-09 6.616e-09 -8.134 -8.179 -0.045 (0) -Fe_tri 3.433e-06 - Fe_tri(OH)2+ 3.267e-06 2.943e-06 -5.486 -5.531 -0.045 (0) - Fe_tri(OH)3 1.256e-07 1.259e-07 -6.901 -6.900 0.001 (0) - Fe_triOH+2 4.064e-08 2.675e-08 -7.391 -7.573 -0.182 (0) - Fe_tri(OH)4- 4.236e-11 3.815e-11 -10.373 -10.418 -0.045 (0) - Fe_tri+3 3.196e-11 1.247e-11 -10.495 -10.904 -0.409 (0) - Fe_triCl+2 5.249e-12 3.455e-12 -11.280 -11.462 -0.182 (0) + Fe_triCl3 1.296e-16 1.299e-16 -15.888 -15.887 0.001 (0) +Fe_di 9.656e-05 + Fe_di+2 9.567e-05 6.297e-05 -4.019 -4.201 -0.182 (0) + Fe_diCl+ 8.853e-07 7.975e-07 -6.053 -6.098 -0.045 (0) + Fe_diOH+ 7.351e-09 6.622e-09 -8.134 -8.179 -0.045 (0) +Fe_tri 3.439e-06 + Fe_tri(OH)2+ 3.272e-06 2.947e-06 -5.485 -5.531 -0.045 (0) + Fe_tri(OH)3 1.260e-07 1.263e-07 -6.900 -6.899 0.001 (0) + Fe_triOH+2 4.067e-08 2.677e-08 -7.391 -7.572 -0.182 (0) + Fe_tri(OH)4- 4.251e-11 3.829e-11 -10.372 -10.417 -0.045 (0) + Fe_tri+3 3.195e-11 1.247e-11 -10.496 -10.904 -0.409 (0) + Fe_triCl+2 5.248e-12 3.454e-12 -11.280 -11.462 -0.182 (0) Fe_triCl2+ 1.572e-13 1.416e-13 -12.804 -12.849 -0.045 (0) - Fe_tri2(OH)2+4 1.026e-13 1.926e-14 -12.989 -13.715 -0.727 (0) - Fe_tri3(OH)4+5 1.616e-16 1.184e-17 -15.791 -16.927 -1.135 (0) - Fe_triCl3 1.296e-16 1.299e-16 -15.887 -15.886 0.001 (0) + Fe_tri2(OH)2+4 1.027e-13 1.929e-14 -12.988 -13.715 -0.727 (0) + Fe_tri3(OH)4+5 1.621e-16 1.188e-17 -15.790 -16.925 -1.135 (0) + Fe_triCl3 1.296e-16 1.299e-16 -15.888 -15.887 0.001 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 - NaOH 3.026e-21 3.034e-21 -20.519 -20.518 0.001 (0) + NaOH 3.029e-21 3.036e-21 -20.519 -20.518 0.001 (0) O(0) 5.465e-04 O2 2.732e-04 2.739e-04 -3.563 -3.562 0.001 30.40 @@ -550,7 +550,7 @@ Kinetics 1. Rate name Delta Moles Total Moles Reactant Coefficient - Fe_di_ox -1.967e-06 1.000e+00 Fe_di -1 + Fe_di_ox -1.971e-06 1.000e+00 Fe_di -1 Fe_tri 1 -------------------------------Phase assemblage-------------------------------- @@ -558,32 +558,31 @@ Kinetics 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.919e-07 +O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.928e-07 -----------------------------Solution composition------------------------------ Elements Molality Moles Cl 1.020e-02 1.020e-02 - Fe_di 9.460e-05 9.460e-05 - Fe_tri 5.400e-06 5.400e-06 + Fe_di 9.459e-05 9.459e-05 + Fe_tri 5.410e-06 5.410e-06 Na 1.000e-02 1.000e-02 ----------------------------Description of solution---------------------------- pH = 5.324 Charge balance - pe = 15.306 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 1194 - Density (g/cm) = 0.99747 + pe = 15.305 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 1194 + Density (g/cm³) = 0.99747 Volume (L) = 1.00315 + Viscosity (mPa s) = 0.89124 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.029e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.632e-06 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 - Electrical balance (eq) = 6.869e-15 + Total alkalinity (eq/kg) = 5.641e-06 + Temperature (°C) = 25.00 + Electrical balance (eq) = 6.893e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 26 Total H = 1.110124e+02 @@ -592,37 +591,38 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.919e-07 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 5.200e-06 4.745e-06 -5.284 -5.324 -0.040 0.00 - OH- 2.373e-09 2.132e-09 -8.625 -8.671 -0.046 -4.03 + H+ 5.195e-06 4.740e-06 -5.284 -5.324 -0.040 0.00 + OH- 2.375e-09 2.134e-09 -8.624 -8.671 -0.046 -4.03 H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.07 Cl 1.020e-02 Cl- 1.020e-02 9.174e-03 -1.991 -2.037 -0.046 18.14 - Fe_diCl+ 8.674e-07 7.813e-07 -6.062 -6.107 -0.045 (0) + Fe_diCl+ 8.673e-07 7.812e-07 -6.062 -6.107 -0.045 (0) + HCl 1.483e-08 1.498e-08 -7.829 -7.824 0.004 (0) Fe_triCl+2 2.066e-11 1.360e-11 -10.685 -10.866 -0.182 (0) - Fe_triCl2+ 6.189e-13 5.574e-13 -12.208 -12.254 -0.045 (0) - Fe_triCl3 5.102e-16 5.114e-16 -15.292 -15.291 0.001 (0) -Fe_di 9.460e-05 - Fe_di+2 9.373e-05 6.170e-05 -4.028 -4.210 -0.182 (0) - Fe_diCl+ 8.674e-07 7.813e-07 -6.062 -6.107 -0.045 (0) - Fe_diOH+ 4.563e-09 4.110e-09 -8.341 -8.386 -0.045 (0) -Fe_tri 5.400e-06 - Fe_tri(OH)2+ 5.172e-06 4.659e-06 -5.286 -5.332 -0.045 (0) - Fe_tri(OH)3 1.262e-07 1.265e-07 -6.899 -6.898 0.001 (0) - Fe_triOH+2 1.015e-07 6.678e-08 -6.994 -7.175 -0.182 (0) - Fe_tri+3 1.258e-10 4.910e-11 -9.900 -10.309 -0.409 (0) - Fe_tri(OH)4- 2.697e-11 2.430e-11 -10.569 -10.614 -0.045 (0) + Fe_triCl2+ 6.187e-13 5.573e-13 -12.209 -12.254 -0.045 (0) + Fe_triCl3 5.101e-16 5.113e-16 -15.292 -15.291 0.001 (0) +Fe_di 9.459e-05 + Fe_di+2 9.372e-05 6.169e-05 -4.028 -4.210 -0.182 (0) + Fe_diCl+ 8.673e-07 7.812e-07 -6.062 -6.107 -0.045 (0) + Fe_diOH+ 4.567e-09 4.114e-09 -8.340 -8.386 -0.045 (0) +Fe_tri 5.410e-06 + Fe_tri(OH)2+ 5.181e-06 4.667e-06 -5.286 -5.331 -0.045 (0) + Fe_tri(OH)3 1.265e-07 1.268e-07 -6.898 -6.897 0.001 (0) + Fe_triOH+2 1.015e-07 6.683e-08 -6.993 -7.175 -0.182 (0) + Fe_tri+3 1.258e-10 4.909e-11 -9.900 -10.309 -0.409 (0) + Fe_tri(OH)4- 2.707e-11 2.438e-11 -10.567 -10.613 -0.045 (0) Fe_triCl+2 2.066e-11 1.360e-11 -10.685 -10.866 -0.182 (0) - Fe_tri2(OH)2+4 6.394e-13 1.200e-13 -12.194 -12.921 -0.726 (0) - Fe_triCl2+ 6.189e-13 5.574e-13 -12.208 -12.254 -0.045 (0) - Fe_tri3(OH)4+5 1.595e-15 1.169e-16 -14.797 -15.932 -1.135 (0) - Fe_triCl3 5.102e-16 5.114e-16 -15.292 -15.291 0.001 (0) + Fe_tri2(OH)2+4 6.404e-13 1.202e-13 -12.194 -12.920 -0.726 (0) + Fe_triCl2+ 6.187e-13 5.573e-13 -12.209 -12.254 -0.045 (0) + Fe_tri3(OH)4+5 1.600e-15 1.172e-16 -14.796 -15.931 -1.135 (0) + Fe_triCl3 5.101e-16 5.113e-16 -15.292 -15.291 0.001 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 - NaOH 1.919e-21 1.924e-21 -20.717 -20.716 0.001 (0) + NaOH 1.921e-21 1.926e-21 -20.716 -20.715 0.001 (0) O(0) 5.465e-04 O2 2.732e-04 2.739e-04 -3.563 -3.562 0.001 30.40 @@ -651,7 +651,7 @@ Kinetics 1. Rate name Delta Moles Total Moles Reactant Coefficient - Fe_di_ox -1.889e-06 1.000e+00 Fe_di -1 + Fe_di_ox -1.892e-06 1.000e+00 Fe_di -1 Fe_tri 1 -------------------------------Phase assemblage-------------------------------- @@ -659,32 +659,31 @@ Kinetics 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.723e-07 +O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.731e-07 -----------------------------Solution composition------------------------------ Elements Molality Moles Cl 1.020e-02 1.020e-02 - Fe_di 9.271e-05 9.271e-05 - Fe_tri 7.289e-06 7.289e-06 + Fe_di 9.270e-05 9.270e-05 + Fe_tri 7.302e-06 7.302e-06 Na 1.000e-02 1.000e-02 ----------------------------Description of solution---------------------------- - pH = 5.194 Charge balance + pH = 5.195 Charge balance pe = 15.435 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 1194 - Density (g/cm) = 0.99747 + Specific Conductance (µS/cm, 25°C) = 1194 + Density (g/cm³) = 0.99747 Volume (L) = 1.00315 + Viscosity (mPa s) = 0.89124 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.029e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 7.520e-06 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 - Electrical balance (eq) = 6.870e-15 + Total alkalinity (eq/kg) = 7.533e-06 + Temperature (°C) = 25.00 + Electrical balance (eq) = 6.912e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 24 Total H = 1.110124e+02 @@ -693,37 +692,38 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.723e-07 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.004e-06 6.391e-06 -5.155 -5.194 -0.040 0.00 - OH- 1.762e-09 1.583e-09 -8.754 -8.800 -0.046 -4.03 + H+ 6.997e-06 6.384e-06 -5.155 -5.195 -0.040 0.00 + OH- 1.763e-09 1.585e-09 -8.754 -8.800 -0.046 -4.03 H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.07 Cl 1.020e-02 Cl- 1.020e-02 9.174e-03 -1.991 -2.037 -0.046 18.14 - Fe_diCl+ 8.501e-07 7.658e-07 -6.071 -6.116 -0.045 (0) - Fe_triCl+2 5.057e-11 3.329e-11 -10.296 -10.478 -0.182 (0) + Fe_diCl+ 8.500e-07 7.657e-07 -6.071 -6.116 -0.045 (0) + HCl 1.997e-08 2.018e-08 -7.700 -7.695 0.004 (0) + Fe_triCl+2 5.056e-11 3.328e-11 -10.296 -10.478 -0.182 (0) Fe_triCl2+ 1.514e-12 1.364e-12 -11.820 -11.865 -0.045 (0) - Fe_triCl3 1.249e-15 1.252e-15 -14.904 -14.903 0.001 (0) -Fe_di 9.271e-05 - Fe_di+2 9.186e-05 6.047e-05 -4.037 -4.218 -0.182 (0) - Fe_diCl+ 8.501e-07 7.658e-07 -6.071 -6.116 -0.045 (0) - Fe_diOH+ 3.321e-09 2.991e-09 -8.479 -8.524 -0.045 (0) -Fe_tri 7.289e-06 - Fe_tri(OH)2+ 6.978e-06 6.285e-06 -5.156 -5.202 -0.045 (0) - Fe_triOH+2 1.843e-07 1.213e-07 -6.734 -6.916 -0.182 (0) - Fe_tri(OH)3 1.264e-07 1.267e-07 -6.898 -6.897 0.001 (0) + Fe_triCl3 1.248e-15 1.251e-15 -14.904 -14.903 0.001 (0) +Fe_di 9.270e-05 + Fe_di+2 9.185e-05 6.046e-05 -4.037 -4.219 -0.182 (0) + Fe_diCl+ 8.500e-07 7.657e-07 -6.071 -6.116 -0.045 (0) + Fe_diOH+ 3.323e-09 2.994e-09 -8.478 -8.524 -0.045 (0) +Fe_tri 7.302e-06 + Fe_tri(OH)2+ 6.990e-06 6.296e-06 -5.156 -5.201 -0.045 (0) + Fe_triOH+2 1.845e-07 1.214e-07 -6.734 -6.916 -0.182 (0) + Fe_tri(OH)3 1.267e-07 1.270e-07 -6.897 -6.896 0.001 (0) Fe_tri+3 3.078e-10 1.201e-10 -9.512 -9.920 -0.409 (0) - Fe_triCl+2 5.057e-11 3.329e-11 -10.296 -10.478 -0.182 (0) - Fe_tri(OH)4- 2.006e-11 1.807e-11 -10.698 -10.743 -0.045 (0) - Fe_tri2(OH)2+4 2.111e-12 3.963e-13 -11.676 -12.402 -0.726 (0) + Fe_triCl+2 5.056e-11 3.328e-11 -10.296 -10.478 -0.182 (0) + Fe_tri(OH)4- 2.013e-11 1.814e-11 -10.696 -10.741 -0.045 (0) + Fe_tri2(OH)2+4 2.114e-12 3.969e-13 -11.675 -12.401 -0.726 (0) Fe_triCl2+ 1.514e-12 1.364e-12 -11.820 -11.865 -0.045 (0) - Fe_tri3(OH)4+5 7.101e-15 5.204e-16 -14.149 -15.284 -1.135 (0) - Fe_triCl3 1.249e-15 1.252e-15 -14.904 -14.903 0.001 (0) + Fe_tri3(OH)4+5 7.125e-15 5.221e-16 -14.147 -15.282 -1.135 (0) + Fe_triCl3 1.248e-15 1.251e-15 -14.904 -14.903 0.001 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 - NaOH 1.425e-21 1.428e-21 -20.846 -20.845 0.001 (0) + NaOH 1.426e-21 1.430e-21 -20.846 -20.845 0.001 (0) O(0) 5.465e-04 O2 2.732e-04 2.739e-04 -3.563 -3.562 0.001 30.40 @@ -752,7 +752,7 @@ Kinetics 1. Rate name Delta Moles Total Moles Reactant Coefficient - Fe_di_ox -2.424e-06 1.000e+00 Fe_di -1 + Fe_di_ox -2.428e-06 1.000e+00 Fe_di -1 Fe_tri 1 -------------------------------Phase assemblage-------------------------------- @@ -760,32 +760,31 @@ Kinetics 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -6.060e-07 +O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -6.071e-07 -----------------------------Solution composition------------------------------ Elements Molality Moles Cl 1.020e-02 1.020e-02 - Fe_di 9.029e-05 9.029e-05 - Fe_tri 9.712e-06 9.712e-06 + Fe_di 9.027e-05 9.027e-05 + Fe_tri 9.729e-06 9.729e-06 Na 1.000e-02 1.000e-02 ----------------------------Description of solution---------------------------- pH = 5.072 Charge balance pe = 15.557 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 1195 - Density (g/cm) = 0.99747 + Specific Conductance (µS/cm, 25°C) = 1195 + Density (g/cm³) = 0.99747 Volume (L) = 1.00315 + Viscosity (mPa s) = 0.89124 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.029e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 9.944e-06 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 - Electrical balance (eq) = 6.880e-15 + Total alkalinity (eq/kg) = 9.960e-06 + Temperature (°C) = 25.00 + Electrical balance (eq) = 6.916e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 24 Total H = 1.110124e+02 @@ -794,37 +793,38 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -6.060e-07 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.285e-06 8.472e-06 -5.032 -5.072 -0.040 0.00 - OH- 1.329e-09 1.194e-09 -8.877 -8.923 -0.046 -4.03 + H+ 9.276e-06 8.464e-06 -5.033 -5.072 -0.040 0.00 + OH- 1.330e-09 1.195e-09 -8.876 -8.922 -0.046 -4.03 H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.07 Cl 1.020e-02 Cl- 1.020e-02 9.174e-03 -1.991 -2.037 -0.046 18.14 - Fe_diCl+ 8.280e-07 7.458e-07 -6.082 -6.127 -0.045 (0) - Fe_triCl+2 1.180e-10 7.765e-11 -9.928 -10.110 -0.182 (0) - Fe_triCl2+ 3.533e-12 3.182e-12 -11.452 -11.497 -0.045 (0) + Fe_diCl+ 8.278e-07 7.456e-07 -6.082 -6.127 -0.045 (0) + HCl 2.648e-08 2.675e-08 -7.577 -7.573 0.004 (0) + Fe_triCl+2 1.179e-10 7.763e-11 -9.928 -10.110 -0.182 (0) + Fe_triCl2+ 3.532e-12 3.181e-12 -11.452 -11.497 -0.045 (0) Fe_triCl3 2.912e-15 2.919e-15 -14.536 -14.535 0.001 (0) -Fe_di 9.029e-05 - Fe_di+2 8.946e-05 5.889e-05 -4.048 -4.230 -0.182 (0) - Fe_diCl+ 8.280e-07 7.458e-07 -6.082 -6.127 -0.045 (0) - Fe_diOH+ 2.439e-09 2.197e-09 -8.613 -8.658 -0.045 (0) -Fe_tri 9.712e-06 - Fe_tri(OH)2+ 9.261e-06 8.342e-06 -5.033 -5.079 -0.045 (0) - Fe_triOH+2 3.243e-07 2.135e-07 -6.489 -6.671 -0.182 (0) - Fe_tri(OH)3 1.265e-07 1.268e-07 -6.898 -6.897 0.001 (0) - Fe_tri+3 7.180e-10 2.803e-10 -9.144 -9.552 -0.409 (0) - Fe_triCl+2 1.180e-10 7.765e-11 -9.928 -10.110 -0.182 (0) - Fe_tri(OH)4- 1.515e-11 1.364e-11 -10.820 -10.865 -0.045 (0) - Fe_tri2(OH)2+4 6.533e-12 1.227e-12 -11.185 -11.911 -0.726 (0) - Fe_triCl2+ 3.533e-12 3.182e-12 -11.452 -11.497 -0.045 (0) - Fe_tri3(OH)4+5 2.917e-14 2.138e-15 -13.535 -14.670 -1.135 (0) +Fe_di 9.027e-05 + Fe_di+2 8.944e-05 5.888e-05 -4.048 -4.230 -0.182 (0) + Fe_diCl+ 8.278e-07 7.456e-07 -6.082 -6.127 -0.045 (0) + Fe_diOH+ 2.441e-09 2.199e-09 -8.612 -8.658 -0.045 (0) +Fe_tri 9.729e-06 + Fe_tri(OH)2+ 9.277e-06 8.356e-06 -5.033 -5.078 -0.045 (0) + Fe_triOH+2 3.246e-07 2.137e-07 -6.489 -6.670 -0.182 (0) + Fe_tri(OH)3 1.268e-07 1.271e-07 -6.897 -6.896 0.001 (0) + Fe_tri+3 7.178e-10 2.802e-10 -9.144 -9.553 -0.409 (0) + Fe_triCl+2 1.179e-10 7.763e-11 -9.928 -10.110 -0.182 (0) + Fe_tri(OH)4- 1.520e-11 1.370e-11 -10.818 -10.863 -0.045 (0) + Fe_tri2(OH)2+4 6.543e-12 1.229e-12 -11.184 -11.911 -0.726 (0) + Fe_triCl2+ 3.532e-12 3.181e-12 -11.452 -11.497 -0.045 (0) + Fe_tri3(OH)4+5 2.927e-14 2.145e-15 -13.534 -14.668 -1.135 (0) Fe_triCl3 2.912e-15 2.919e-15 -14.536 -14.535 0.001 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 - NaOH 1.075e-21 1.077e-21 -20.969 -20.968 0.001 (0) + NaOH 1.076e-21 1.079e-21 -20.968 -20.967 0.001 (0) O(0) 5.465e-04 O2 2.732e-04 2.739e-04 -3.563 -3.562 0.001 30.40 @@ -853,7 +853,7 @@ Kinetics 1. Rate name Delta Moles Total Moles Reactant Coefficient - Fe_di_ox -2.479e-06 1.000e+00 Fe_di -1 + Fe_di_ox -2.484e-06 1.000e+00 Fe_di -1 Fe_tri 1 -------------------------------Phase assemblage-------------------------------- @@ -861,32 +861,31 @@ Kinetics 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -6.200e-07 +O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -6.211e-07 -----------------------------Solution composition------------------------------ Elements Molality Moles Cl 1.020e-02 1.020e-02 - Fe_di 8.781e-05 8.781e-05 - Fe_tri 1.219e-05 1.219e-05 + Fe_di 8.779e-05 8.779e-05 + Fe_tri 1.221e-05 1.221e-05 Na 1.000e-02 1.000e-02 ----------------------------Description of solution---------------------------- pH = 4.976 Charge balance pe = 15.653 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 1196 - Density (g/cm) = 0.99747 + Specific Conductance (µS/cm, 25°C) = 1196 + Density (g/cm³) = 0.99747 Volume (L) = 1.00314 + Viscosity (mPa s) = 0.89124 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.029e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 1.242e-05 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 - Electrical balance (eq) = 6.870e-15 + Total alkalinity (eq/kg) = 1.244e-05 + Temperature (°C) = 25.00 + Electrical balance (eq) = 6.904e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 23 Total H = 1.110124e+02 @@ -895,37 +894,38 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -6.200e-07 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.158e-05 1.057e-05 -4.936 -4.976 -0.040 0.00 - OH- 1.065e-09 9.574e-10 -8.973 -9.019 -0.046 -4.03 + H+ 1.157e-05 1.056e-05 -4.937 -4.976 -0.040 0.00 + OH- 1.066e-09 9.584e-10 -8.972 -9.018 -0.046 -4.03 H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.07 Cl 1.020e-02 Cl- 1.020e-02 9.175e-03 -1.991 -2.037 -0.046 18.14 - Fe_diCl+ 8.053e-07 7.253e-07 -6.094 -6.139 -0.045 (0) - Fe_triCl+2 2.291e-10 1.508e-10 -9.640 -9.822 -0.182 (0) - Fe_triCl2+ 6.860e-12 6.180e-12 -11.164 -11.209 -0.045 (0) - Fe_triCl3 5.656e-15 5.669e-15 -14.247 -14.246 0.001 (0) -Fe_di 8.781e-05 - Fe_di+2 8.700e-05 5.727e-05 -4.060 -4.242 -0.182 (0) - Fe_diCl+ 8.053e-07 7.253e-07 -6.094 -6.139 -0.045 (0) - Fe_diOH+ 1.902e-09 1.713e-09 -8.721 -8.766 -0.045 (0) -Fe_tri 1.219e-05 - Fe_tri(OH)2+ 1.156e-05 1.041e-05 -4.937 -4.982 -0.045 (0) - Fe_triOH+2 5.049e-07 3.324e-07 -6.297 -6.478 -0.182 (0) - Fe_tri(OH)3 1.266e-07 1.269e-07 -6.898 -6.897 0.001 (0) - Fe_tri+3 1.394e-09 5.442e-10 -8.856 -9.264 -0.409 (0) - Fe_triCl+2 2.291e-10 1.508e-10 -9.640 -9.822 -0.182 (0) - Fe_tri2(OH)2+4 1.583e-11 2.974e-12 -10.800 -11.527 -0.726 (0) - Fe_tri(OH)4- 1.215e-11 1.095e-11 -10.915 -10.961 -0.045 (0) - Fe_triCl2+ 6.860e-12 6.180e-12 -11.164 -11.209 -0.045 (0) - Fe_tri3(OH)4+5 8.822e-14 6.469e-15 -13.054 -14.189 -1.135 (0) - Fe_triCl3 5.656e-15 5.669e-15 -14.247 -14.246 0.001 (0) + Fe_diCl+ 8.051e-07 7.252e-07 -6.094 -6.140 -0.045 (0) + HCl 3.303e-08 3.337e-08 -7.481 -7.477 0.004 (0) + Fe_triCl+2 2.290e-10 1.508e-10 -9.640 -9.822 -0.182 (0) + Fe_triCl2+ 6.859e-12 6.178e-12 -11.164 -11.209 -0.045 (0) + Fe_triCl3 5.655e-15 5.668e-15 -14.248 -14.247 0.001 (0) +Fe_di 8.779e-05 + Fe_di+2 8.698e-05 5.726e-05 -4.061 -4.242 -0.182 (0) + Fe_diCl+ 8.051e-07 7.252e-07 -6.094 -6.140 -0.045 (0) + Fe_diOH+ 1.903e-09 1.715e-09 -8.720 -8.766 -0.045 (0) +Fe_tri 1.221e-05 + Fe_tri(OH)2+ 1.158e-05 1.043e-05 -4.936 -4.982 -0.045 (0) + Fe_triOH+2 5.053e-07 3.327e-07 -6.296 -6.478 -0.182 (0) + Fe_tri(OH)3 1.269e-07 1.272e-07 -6.896 -6.895 0.001 (0) + Fe_tri+3 1.394e-09 5.441e-10 -8.856 -9.264 -0.409 (0) + Fe_triCl+2 2.290e-10 1.508e-10 -9.640 -9.822 -0.182 (0) + Fe_tri2(OH)2+4 1.586e-11 2.978e-12 -10.800 -11.526 -0.726 (0) + Fe_tri(OH)4- 1.220e-11 1.099e-11 -10.914 -10.959 -0.045 (0) + Fe_triCl2+ 6.859e-12 6.178e-12 -11.164 -11.209 -0.045 (0) + Fe_tri3(OH)4+5 8.852e-14 6.490e-15 -13.053 -14.188 -1.135 (0) + Fe_triCl3 5.655e-15 5.668e-15 -14.248 -14.247 0.001 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 - NaOH 8.618e-22 8.638e-22 -21.065 -21.064 0.001 (0) + NaOH 8.626e-22 8.647e-22 -21.064 -21.063 0.001 (0) O(0) 5.465e-04 O2 2.732e-04 2.739e-04 -3.563 -3.562 0.001 30.40 @@ -954,7 +954,7 @@ Kinetics 1. Rate name Delta Moles Total Moles Reactant Coefficient - Fe_di_ox -3.110e-06 1.000e+00 Fe_di -1 + Fe_di_ox -3.115e-06 1.000e+00 Fe_di -1 Fe_tri 1 -------------------------------Phase assemblage-------------------------------- @@ -962,32 +962,31 @@ Kinetics 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -7.777e-07 +O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -7.790e-07 -----------------------------Solution composition------------------------------ Elements Molality Moles Cl 1.020e-02 1.020e-02 - Fe_di 8.470e-05 8.470e-05 - Fe_tri 1.530e-05 1.530e-05 + Fe_di 8.467e-05 8.467e-05 + Fe_tri 1.533e-05 1.533e-05 Na 1.000e-02 1.000e-02 ----------------------------Description of solution---------------------------- - pH = 4.881 Charge balance + pH = 4.882 Charge balance pe = 15.748 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 1197 - Density (g/cm) = 0.99747 + Specific Conductance (µS/cm, 25°C) = 1197 + Density (g/cm³) = 0.99747 Volume (L) = 1.00314 + Viscosity (mPa s) = 0.89124 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.028e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 1.553e-05 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 - Electrical balance (eq) = 6.866e-15 + Total alkalinity (eq/kg) = 1.556e-05 + Temperature (°C) = 25.00 + Electrical balance (eq) = 6.902e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 23 Total H = 1.110124e+02 @@ -996,37 +995,38 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -7.777e-07 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.441e-05 1.315e-05 -4.841 -4.881 -0.040 0.00 - OH- 8.561e-10 7.695e-10 -9.067 -9.114 -0.046 -4.03 + H+ 1.440e-05 1.314e-05 -4.842 -4.882 -0.040 0.00 + OH- 8.569e-10 7.702e-10 -9.067 -9.113 -0.046 -4.03 H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.07 Cl 1.020e-02 Cl- 1.020e-02 9.175e-03 -1.991 -2.037 -0.046 18.14 - Fe_diCl+ 7.768e-07 6.997e-07 -6.110 -6.155 -0.045 (0) - Fe_triCl+2 4.415e-10 2.907e-10 -9.355 -9.537 -0.182 (0) + Fe_diCl+ 7.765e-07 6.995e-07 -6.110 -6.155 -0.045 (0) + HCl 4.110e-08 4.152e-08 -7.386 -7.382 0.004 (0) + Fe_triCl+2 4.414e-10 2.906e-10 -9.355 -9.537 -0.182 (0) Fe_triCl2+ 1.322e-11 1.191e-11 -10.879 -10.924 -0.045 (0) - Fe_triCl3 1.090e-14 1.093e-14 -13.962 -13.961 0.001 (0) -Fe_di 8.470e-05 - Fe_di+2 8.392e-05 5.525e-05 -4.076 -4.258 -0.182 (0) - Fe_diCl+ 7.768e-07 6.997e-07 -6.110 -6.155 -0.045 (0) - Fe_diOH+ 1.475e-09 1.328e-09 -8.831 -8.877 -0.045 (0) -Fe_tri 1.530e-05 - Fe_tri(OH)2+ 1.439e-05 1.296e-05 -4.842 -4.887 -0.045 (0) - Fe_triOH+2 7.821e-07 5.149e-07 -6.107 -6.288 -0.182 (0) - Fe_tri(OH)3 1.266e-07 1.269e-07 -6.897 -6.896 0.001 (0) - Fe_tri+3 2.687e-09 1.049e-09 -8.571 -8.979 -0.408 (0) - Fe_triCl+2 4.415e-10 2.907e-10 -9.355 -9.537 -0.182 (0) - Fe_tri2(OH)2+4 3.799e-11 7.136e-12 -10.420 -11.147 -0.726 (0) + Fe_triCl3 1.090e-14 1.093e-14 -13.963 -13.962 0.001 (0) +Fe_di 8.467e-05 + Fe_di+2 8.389e-05 5.523e-05 -4.076 -4.258 -0.182 (0) + Fe_diCl+ 7.765e-07 6.995e-07 -6.110 -6.155 -0.045 (0) + Fe_diOH+ 1.476e-09 1.329e-09 -8.831 -8.876 -0.045 (0) +Fe_tri 1.533e-05 + Fe_tri(OH)2+ 1.442e-05 1.299e-05 -4.841 -4.887 -0.045 (0) + Fe_triOH+2 7.827e-07 5.153e-07 -6.106 -6.288 -0.182 (0) + Fe_tri(OH)3 1.270e-07 1.273e-07 -6.896 -6.895 0.001 (0) + Fe_tri+3 2.686e-09 1.049e-09 -8.571 -8.979 -0.408 (0) + Fe_triCl+2 4.414e-10 2.906e-10 -9.355 -9.537 -0.182 (0) + Fe_tri2(OH)2+4 3.805e-11 7.147e-12 -10.420 -11.146 -0.726 (0) Fe_triCl2+ 1.322e-11 1.191e-11 -10.879 -10.924 -0.045 (0) - Fe_tri(OH)4- 9.771e-12 8.802e-12 -11.010 -11.055 -0.045 (0) - Fe_tri3(OH)4+5 2.635e-13 1.933e-14 -12.579 -13.714 -1.135 (0) - Fe_triCl3 1.090e-14 1.093e-14 -13.962 -13.961 0.001 (0) + Fe_tri(OH)4- 9.808e-12 8.835e-12 -11.008 -11.054 -0.045 (0) + Fe_tri3(OH)4+5 2.644e-13 1.939e-14 -12.578 -13.712 -1.135 (0) + Fe_triCl3 1.090e-14 1.093e-14 -13.963 -13.962 0.001 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 - NaOH 6.926e-22 6.942e-22 -21.160 -21.158 0.001 (0) + NaOH 6.933e-22 6.949e-22 -21.159 -21.158 0.001 (0) O(0) 5.465e-04 O2 2.732e-04 2.739e-04 -3.563 -3.562 0.001 30.40 @@ -1055,7 +1055,7 @@ Kinetics 1. Rate name Delta Moles Total Moles Reactant Coefficient - Fe_di_ox -2.172e-06 1.000e+00 Fe_di -1 + Fe_di_ox -2.176e-06 1.000e+00 Fe_di -1 Fe_tri 1 -------------------------------Phase assemblage-------------------------------- @@ -1063,32 +1063,31 @@ Kinetics 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -5.431e-07 +O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -5.440e-07 -----------------------------Solution composition------------------------------ Elements Molality Moles Cl 1.020e-02 1.020e-02 - Fe_di 8.253e-05 8.253e-05 - Fe_tri 1.747e-05 1.747e-05 + Fe_di 8.250e-05 8.250e-05 + Fe_tri 1.750e-05 1.750e-05 Na 1.000e-02 1.000e-02 ----------------------------Description of solution---------------------------- - pH = 4.826 Charge balance + pH = 4.827 Charge balance pe = 15.803 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 1197 - Density (g/cm) = 0.99747 + Specific Conductance (µS/cm, 25°C) = 1197 + Density (g/cm³) = 0.99747 Volume (L) = 1.00314 + Viscosity (mPa s) = 0.89124 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.028e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 1.771e-05 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 - Electrical balance (eq) = 5.312e-14 + Total alkalinity (eq/kg) = 1.774e-05 + Temperature (°C) = 25.00 + Electrical balance (eq) = 5.314e-14 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 20 Total H = 1.110124e+02 @@ -1097,37 +1096,38 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -5.431e-07 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.635e-05 1.492e-05 -4.786 -4.826 -0.040 0.00 - OH- 7.543e-10 6.780e-10 -9.122 -9.169 -0.046 -4.03 + H+ 1.634e-05 1.491e-05 -4.787 -4.827 -0.040 0.00 + OH- 7.551e-10 6.787e-10 -9.122 -9.168 -0.046 -4.03 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.07 Cl 1.020e-02 Cl- 1.020e-02 9.175e-03 -1.991 -2.037 -0.046 18.14 - Fe_diCl+ 7.569e-07 6.818e-07 -6.121 -6.166 -0.045 (0) - Fe_triCl+2 6.454e-10 4.249e-10 -9.190 -9.372 -0.182 (0) - Fe_triCl2+ 1.933e-11 1.742e-11 -10.714 -10.759 -0.045 (0) - Fe_triCl3 1.594e-14 1.598e-14 -13.798 -13.796 0.001 (0) -Fe_di 8.253e-05 - Fe_di+2 8.177e-05 5.383e-05 -4.087 -4.269 -0.182 (0) - Fe_diCl+ 7.569e-07 6.818e-07 -6.121 -6.166 -0.045 (0) - Fe_diOH+ 1.266e-09 1.140e-09 -8.898 -8.943 -0.045 (0) -Fe_tri 1.747e-05 - Fe_tri(OH)2+ 1.633e-05 1.471e-05 -4.787 -4.832 -0.045 (0) - Fe_triOH+2 1.008e-06 6.633e-07 -5.997 -6.178 -0.182 (0) - Fe_tri(OH)3 1.267e-07 1.270e-07 -6.897 -6.896 0.001 (0) - Fe_tri+3 3.928e-09 1.534e-09 -8.406 -8.814 -0.408 (0) - Fe_triCl+2 6.454e-10 4.249e-10 -9.190 -9.372 -0.182 (0) - Fe_tri2(OH)2+4 6.303e-11 1.184e-11 -10.200 -10.927 -0.726 (0) - Fe_triCl2+ 1.933e-11 1.742e-11 -10.714 -10.759 -0.045 (0) - Fe_tri(OH)4- 8.612e-12 7.758e-12 -11.065 -11.110 -0.045 (0) - Fe_tri3(OH)4+5 4.963e-13 3.641e-14 -12.304 -13.439 -1.135 (0) - Fe_triCl3 1.594e-14 1.598e-14 -13.798 -13.796 0.001 (0) + Fe_diCl+ 7.566e-07 6.815e-07 -6.121 -6.167 -0.045 (0) + HCl 4.664e-08 4.712e-08 -7.331 -7.327 0.004 (0) + Fe_triCl+2 6.453e-10 4.248e-10 -9.190 -9.372 -0.182 (0) + Fe_triCl2+ 1.933e-11 1.741e-11 -10.714 -10.759 -0.045 (0) + Fe_triCl3 1.594e-14 1.597e-14 -13.798 -13.797 0.001 (0) +Fe_di 8.250e-05 + Fe_di+2 8.174e-05 5.381e-05 -4.088 -4.269 -0.182 (0) + Fe_diCl+ 7.566e-07 6.815e-07 -6.121 -6.167 -0.045 (0) + Fe_diOH+ 1.267e-09 1.141e-09 -8.897 -8.943 -0.045 (0) +Fe_tri 1.750e-05 + Fe_tri(OH)2+ 1.636e-05 1.474e-05 -4.786 -4.831 -0.045 (0) + Fe_triOH+2 1.008e-06 6.638e-07 -5.996 -6.178 -0.182 (0) + Fe_tri(OH)3 1.270e-07 1.273e-07 -6.896 -6.895 0.001 (0) + Fe_tri+3 3.927e-09 1.533e-09 -8.406 -8.814 -0.408 (0) + Fe_triCl+2 6.453e-10 4.248e-10 -9.190 -9.372 -0.182 (0) + Fe_tri2(OH)2+4 6.313e-11 1.186e-11 -10.200 -10.926 -0.726 (0) + Fe_triCl2+ 1.933e-11 1.741e-11 -10.714 -10.759 -0.045 (0) + Fe_tri(OH)4- 8.645e-12 7.787e-12 -11.063 -11.109 -0.045 (0) + Fe_tri3(OH)4+5 4.979e-13 3.653e-14 -12.303 -13.437 -1.135 (0) + Fe_triCl3 1.594e-14 1.597e-14 -13.798 -13.797 0.001 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 - NaOH 6.103e-22 6.117e-22 -21.214 -21.213 0.001 (0) + NaOH 6.109e-22 6.124e-22 -21.214 -21.213 0.001 (0) O(0) 5.465e-04 O2 2.732e-04 2.739e-04 -3.563 -3.562 0.001 30.40 @@ -1135,7 +1135,7 @@ O(0) 5.465e-04 Phase SI** log IAP log K(298 K, 1 atm) - Goethite 6.66 5.66 -1.00 Fe_triOOH + Goethite 6.67 5.67 -1.00 Fe_triOOH H2(g) -41.31 -44.41 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -5.65 -4.08 1.57 NaCl @@ -1156,7 +1156,7 @@ Kinetics 1. Rate name Delta Moles Total Moles Reactant Coefficient - Fe_di_ox -1.723e-06 1.000e+00 Fe_di -1 + Fe_di_ox -1.726e-06 1.000e+00 Fe_di -1 Fe_tri 1 -------------------------------Phase assemblage-------------------------------- @@ -1164,31 +1164,30 @@ Kinetics 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.308e-07 +O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.315e-07 -----------------------------Solution composition------------------------------ Elements Molality Moles Cl 1.020e-02 1.020e-02 - Fe_di 8.080e-05 8.080e-05 - Fe_tri 1.920e-05 1.920e-05 + Fe_di 8.077e-05 8.077e-05 + Fe_tri 1.923e-05 1.923e-05 Na 1.000e-02 1.000e-02 ----------------------------Description of solution---------------------------- - pH = 4.787 Charge balance + pH = 4.788 Charge balance pe = 15.842 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 1198 - Density (g/cm) = 0.99747 + Specific Conductance (µS/cm, 25°C) = 1198 + Density (g/cm³) = 0.99747 Volume (L) = 1.00314 + Viscosity (mPa s) = 0.89124 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.028e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 1.943e-05 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 1.946e-05 + Temperature (°C) = 25.00 Electrical balance (eq) = 5.623e-14 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 20 @@ -1198,37 +1197,38 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.308e-07 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.788e-05 1.631e-05 -4.748 -4.787 -0.040 0.00 - OH- 6.901e-10 6.203e-10 -9.161 -9.207 -0.046 -4.03 + H+ 1.786e-05 1.630e-05 -4.748 -4.788 -0.040 0.00 + OH- 6.908e-10 6.209e-10 -9.161 -9.207 -0.046 -4.03 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.07 Cl 1.020e-02 Cl- 1.020e-02 9.175e-03 -1.991 -2.037 -0.046 18.14 - Fe_diCl+ 7.411e-07 6.676e-07 -6.130 -6.175 -0.045 (0) - Fe_triCl+2 8.433e-10 5.552e-10 -9.074 -9.256 -0.182 (0) - Fe_triCl2+ 2.526e-11 2.275e-11 -10.598 -10.643 -0.045 (0) - Fe_triCl3 2.083e-14 2.088e-14 -13.681 -13.680 0.001 (0) -Fe_di 8.080e-05 - Fe_di+2 8.006e-05 5.271e-05 -4.097 -4.278 -0.182 (0) - Fe_diCl+ 7.411e-07 6.676e-07 -6.130 -6.175 -0.045 (0) - Fe_diOH+ 1.134e-09 1.021e-09 -8.945 -8.991 -0.045 (0) -Fe_tri 1.920e-05 - Fe_tri(OH)2+ 1.786e-05 1.609e-05 -4.748 -4.794 -0.045 (0) - Fe_triOH+2 1.204e-06 7.928e-07 -5.919 -6.101 -0.182 (0) - Fe_tri(OH)3 1.267e-07 1.270e-07 -6.897 -6.896 0.001 (0) - Fe_tri+3 5.132e-09 2.004e-09 -8.290 -8.698 -0.408 (0) - Fe_triCl+2 8.433e-10 5.552e-10 -9.074 -9.256 -0.182 (0) - Fe_tri2(OH)2+4 9.004e-11 1.692e-11 -10.046 -10.772 -0.726 (0) - Fe_triCl2+ 2.526e-11 2.275e-11 -10.598 -10.643 -0.045 (0) - Fe_tri(OH)4- 7.880e-12 7.098e-12 -11.103 -11.149 -0.045 (0) - Fe_tri3(OH)4+5 7.750e-13 5.687e-14 -12.111 -13.245 -1.134 (0) - Fe_triCl3 2.083e-14 2.088e-14 -13.681 -13.680 0.001 (0) + Fe_diCl+ 7.408e-07 6.673e-07 -6.130 -6.176 -0.045 (0) + HCl 5.099e-08 5.150e-08 -7.293 -7.288 0.004 (0) + Fe_triCl+2 8.430e-10 5.551e-10 -9.074 -9.256 -0.182 (0) + Fe_triCl2+ 2.525e-11 2.275e-11 -10.598 -10.643 -0.045 (0) + Fe_triCl3 2.082e-14 2.087e-14 -13.681 -13.680 0.001 (0) +Fe_di 8.077e-05 + Fe_di+2 8.003e-05 5.269e-05 -4.097 -4.278 -0.182 (0) + Fe_diCl+ 7.408e-07 6.673e-07 -6.130 -6.176 -0.045 (0) + Fe_diOH+ 1.135e-09 1.022e-09 -8.945 -8.991 -0.045 (0) +Fe_tri 1.923e-05 + Fe_tri(OH)2+ 1.789e-05 1.612e-05 -4.747 -4.793 -0.045 (0) + Fe_triOH+2 1.205e-06 7.934e-07 -5.919 -6.100 -0.182 (0) + Fe_tri(OH)3 1.271e-07 1.274e-07 -6.896 -6.895 0.001 (0) + Fe_tri+3 5.130e-09 2.003e-09 -8.290 -8.698 -0.408 (0) + Fe_triCl+2 8.430e-10 5.551e-10 -9.074 -9.256 -0.182 (0) + Fe_tri2(OH)2+4 9.017e-11 1.694e-11 -10.045 -10.771 -0.726 (0) + Fe_triCl2+ 2.525e-11 2.275e-11 -10.598 -10.643 -0.045 (0) + Fe_tri(OH)4- 7.910e-12 7.125e-12 -11.102 -11.147 -0.045 (0) + Fe_tri3(OH)4+5 7.776e-13 5.705e-14 -12.109 -13.244 -1.134 (0) + Fe_triCl3 2.082e-14 2.087e-14 -13.681 -13.680 0.001 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 - NaOH 5.583e-22 5.596e-22 -21.253 -21.252 0.001 (0) + NaOH 5.589e-22 5.602e-22 -21.253 -21.252 0.001 (0) O(0) 5.465e-04 O2 2.732e-04 2.739e-04 -3.563 -3.562 0.001 30.40 @@ -1236,7 +1236,7 @@ O(0) 5.465e-04 Phase SI** log IAP log K(298 K, 1 atm) - Goethite 6.66 5.66 -1.00 Fe_triOOH + Goethite 6.67 5.67 -1.00 Fe_triOOH H2(g) -41.31 -44.41 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -5.65 -4.08 1.57 NaCl @@ -1257,7 +1257,7 @@ Kinetics 1. Rate name Delta Moles Total Moles Reactant Coefficient - Fe_di_ox -1.451e-06 1.000e+00 Fe_di -1 + Fe_di_ox -1.453e-06 1.000e+00 Fe_di -1 Fe_tri 1 -------------------------------Phase assemblage-------------------------------- @@ -1265,31 +1265,30 @@ Kinetics 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -3.627e-07 +O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -3.633e-07 -----------------------------Solution composition------------------------------ Elements Molality Moles Cl 1.020e-02 1.020e-02 - Fe_di 7.935e-05 7.935e-05 - Fe_tri 2.065e-05 2.065e-05 + Fe_di 7.932e-05 7.932e-05 + Fe_tri 2.068e-05 2.068e-05 Na 1.000e-02 1.000e-02 ----------------------------Description of solution---------------------------- pH = 4.758 Charge balance - pe = 15.872 Adjusted to redox equilibrium - Specific Conductance (S/cm, 25C) = 1198 - Density (g/cm) = 0.99747 + pe = 15.871 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 1198 + Density (g/cm³) = 0.99747 Volume (L) = 1.00314 + Viscosity (mPa s) = 0.89124 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.028e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 2.088e-05 - Total carbon (mol/kg) = 0.000e+00 - Total CO2 (mol/kg) = 0.000e+00 - Temperature (C) = 25.00 + Total alkalinity (eq/kg) = 2.091e-05 + Temperature (°C) = 25.00 Electrical balance (eq) = 5.664e-14 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 20 @@ -1299,37 +1298,38 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -3.627e-07 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm/mol + Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.915e-05 1.747e-05 -4.718 -4.758 -0.040 0.00 - OH- 6.443e-10 5.791e-10 -9.191 -9.237 -0.046 -4.03 + H+ 1.913e-05 1.745e-05 -4.718 -4.758 -0.040 0.00 + OH- 6.449e-10 5.797e-10 -9.190 -9.237 -0.046 -4.03 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.07 Cl 1.020e-02 Cl- 1.020e-02 9.175e-03 -1.991 -2.037 -0.046 18.14 - Fe_diCl+ 7.278e-07 6.556e-07 -6.138 -6.183 -0.045 (0) - Fe_triCl+2 1.036e-09 6.823e-10 -8.985 -9.166 -0.182 (0) - Fe_triCl2+ 3.104e-11 2.796e-11 -10.508 -10.553 -0.045 (0) + Fe_diCl+ 7.275e-07 6.553e-07 -6.138 -6.184 -0.045 (0) + HCl 5.461e-08 5.516e-08 -7.263 -7.258 0.004 (0) + Fe_triCl+2 1.036e-09 6.821e-10 -8.985 -9.166 -0.182 (0) + Fe_triCl2+ 3.103e-11 2.795e-11 -10.508 -10.554 -0.045 (0) Fe_triCl3 2.559e-14 2.565e-14 -13.592 -13.591 0.001 (0) -Fe_di 7.935e-05 - Fe_di+2 7.862e-05 5.177e-05 -4.104 -4.286 -0.182 (0) - Fe_diCl+ 7.278e-07 6.556e-07 -6.138 -6.183 -0.045 (0) - Fe_diOH+ 1.040e-09 9.366e-10 -8.983 -9.028 -0.045 (0) -Fe_tri 2.065e-05 - Fe_tri(OH)2+ 1.913e-05 1.723e-05 -4.718 -4.764 -0.045 (0) - Fe_triOH+2 1.382e-06 9.096e-07 -5.860 -6.041 -0.182 (0) - Fe_tri(OH)3 1.267e-07 1.270e-07 -6.897 -6.896 0.001 (0) - Fe_tri+3 6.306e-09 2.462e-09 -8.200 -8.609 -0.408 (0) - Fe_triCl+2 1.036e-09 6.823e-10 -8.985 -9.166 -0.182 (0) - Fe_tri2(OH)2+4 1.185e-10 2.227e-11 -9.926 -10.652 -0.726 (0) - Fe_triCl2+ 3.104e-11 2.796e-11 -10.508 -10.553 -0.045 (0) - Fe_tri(OH)4- 7.358e-12 6.628e-12 -11.133 -11.179 -0.045 (0) - Fe_tri3(OH)4+5 1.093e-12 8.019e-14 -11.961 -13.096 -1.134 (0) +Fe_di 7.932e-05 + Fe_di+2 7.859e-05 5.174e-05 -4.105 -4.286 -0.182 (0) + Fe_diCl+ 7.275e-07 6.553e-07 -6.138 -6.184 -0.045 (0) + Fe_diOH+ 1.040e-09 9.372e-10 -8.983 -9.028 -0.045 (0) +Fe_tri 2.068e-05 + Fe_tri(OH)2+ 1.917e-05 1.726e-05 -4.717 -4.763 -0.045 (0) + Fe_triOH+2 1.383e-06 9.103e-07 -5.859 -6.041 -0.182 (0) + Fe_tri(OH)3 1.271e-07 1.274e-07 -6.896 -6.895 0.001 (0) + Fe_tri+3 6.304e-09 2.462e-09 -8.200 -8.609 -0.408 (0) + Fe_triCl+2 1.036e-09 6.821e-10 -8.985 -9.166 -0.182 (0) + Fe_tri2(OH)2+4 1.187e-10 2.230e-11 -9.926 -10.652 -0.726 (0) + Fe_triCl2+ 3.103e-11 2.795e-11 -10.508 -10.554 -0.045 (0) + Fe_tri(OH)4- 7.386e-12 6.654e-12 -11.132 -11.177 -0.045 (0) + Fe_tri3(OH)4+5 1.096e-12 8.045e-14 -11.960 -13.094 -1.134 (0) Fe_triCl3 2.559e-14 2.565e-14 -13.592 -13.591 0.001 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 - NaOH 5.213e-22 5.225e-22 -21.283 -21.282 0.001 (0) + NaOH 5.218e-22 5.230e-22 -21.283 -21.281 0.001 (0) O(0) 5.465e-04 O2 2.732e-04 2.739e-04 -3.563 -3.562 0.001 30.40 @@ -1337,7 +1337,7 @@ O(0) 5.465e-04 Phase SI** log IAP log K(298 K, 1 atm) - Goethite 6.66 5.66 -1.00 Fe_triOOH + Goethite 6.67 5.67 -1.00 Fe_triOOH H2(g) -41.31 -44.41 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -5.65 -4.08 1.57 NaCl @@ -1354,7 +1354,3 @@ End of simulation. Reading input data for simulation 3. ------------------------------------ -------------------------------- -End of Run after 0.031 Seconds. -------------------------------- - diff --git a/ex9.sel b/ex9.sel index ec6fe1a1..16d27130 100644 --- a/ex9.sel +++ b/ex9.sel @@ -1,13 +1,13 @@ Days Fe(2) Fe(3) pH si_goethite 0.0000e+00 1.0000e+02 0.0000e+00 7.0000e+00 -9.9990e+01 - 1.1574e-03 9.8934e+01 1.0659e+00 6.0444e+00 6.6428e+00 - 5.7870e-03 9.8192e+01 1.8075e+00 5.8065e+00 6.6545e+00 - 4.1667e-02 9.6567e+01 3.4332e+00 5.5216e+00 6.6603e+00 - 1.6667e-01 9.4600e+01 5.4003e+00 5.3238e+00 6.6621e+00 - 4.1667e-01 9.2711e+01 7.2889e+00 5.1945e+00 6.6628e+00 - 1.0000e+00 9.0288e+01 9.7124e+00 5.0720e+00 6.6633e+00 - 2.0000e+00 8.7808e+01 1.2192e+01 4.9760e+00 6.6635e+00 - 4.0000e+00 8.4698e+01 1.5302e+01 4.8811e+00 6.6638e+00 - 6.0000e+00 8.2526e+01 1.7474e+01 4.8262e+00 6.6639e+00 - 8.0000e+00 8.0803e+01 1.9197e+01 4.7875e+00 6.6640e+00 - 1.0000e+01 7.9352e+01 2.0648e+01 4.7577e+00 6.6640e+00 + 1.1574e-03 9.8933e+01 1.0673e+00 6.0448e+00 6.6437e+00 + 5.7870e-03 9.8190e+01 1.8102e+00 5.8069e+00 6.6555e+00 + 4.1667e-02 9.6561e+01 3.4389e+00 5.5220e+00 6.6614e+00 + 1.6667e-01 9.4590e+01 5.4095e+00 5.3242e+00 6.6632e+00 + 4.1667e-01 9.2698e+01 7.3016e+00 5.1949e+00 6.6640e+00 + 1.0000e+00 9.0271e+01 9.7294e+00 5.0724e+00 6.6644e+00 + 2.0000e+00 8.7787e+01 1.2213e+01 4.9764e+00 6.6647e+00 + 4.0000e+00 8.4672e+01 1.5328e+01 4.8815e+00 6.6650e+00 + 6.0000e+00 8.2496e+01 1.7504e+01 4.8266e+00 6.6651e+00 + 8.0000e+00 8.0770e+01 1.9230e+01 4.7879e+00 6.6652e+00 + 1.0000e+01 7.9317e+01 2.0683e+01 4.7581e+00 6.6653e+00 From 322a40bb3a8db90d73fe707afaee51381e422aad Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Sun, 28 May 2023 19:59:33 +0000 Subject: [PATCH 084/384] Squashed 'phreeqcpp/' changes from 6dade54..8fa568f 8fa568f removed src/print.cpp.utf8 d140c3f End of Run after git-subtree-dir: phreeqcpp git-subtree-split: 8fa568f0b446527445c0601dc860cfeab5626212 --- print.cpp | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/print.cpp b/print.cpp index f93d8299..367b3c52 100644 --- a/print.cpp +++ b/print.cpp @@ -2213,7 +2213,7 @@ print_totals(void) output_msg(sformatf("%35s%3.0f%7s%i\n", "Specific Conductance (uS/cm, ", tc_x, "oC) = ", (int) SC)); #else - output_msg(sformatf("%35s%3.0f%7s%i\n", + output_msg(sformatf("%36s%3.0f%7s%i\n", "Specific Conductance (µS/cm, ", tc_x, "°C) = ", (int) SC)); #endif } @@ -2224,7 +2224,7 @@ print_totals(void) #ifdef NO_UTF8_ENCODING output_msg(sformatf("%45s%9.5f", "Density (g/cm3) = ", #else - output_msg(sformatf("%45s%9.5f", "Density (g/cm³) = ", + output_msg(sformatf("%46s%9.5f", "Density (g/cm³) = ", #endif (double) dens)); if (state == INITIAL_SOLUTION && use.Get_solution_ptr()->Get_initial_data()->Get_calc_density()) @@ -2279,7 +2279,7 @@ print_totals(void) #ifdef NO_UTF8_ENCODING output_msg(sformatf("%45s%6.2f\n", "Temperature (oC) = ", #else - output_msg(sformatf("%45s%6.2f\n", "Temperature (°C) = ", + output_msg(sformatf("%46s%6.2f\n", "Temperature (°C) = ", #endif (double) tc_x)); From e007a52c1dd90f0da15410a946f6573060710549 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Sun, 28 May 2023 20:14:57 -0600 Subject: [PATCH 085/384] Updated for phreeqc changes Introduce end-of-line normalization for CMakeLists.txt --- CMakeLists.txt | 20 ++++++++++---------- excel/CMakeLists.txt | 21 +++++++++------------ python/CMakeLists.txt | 25 +++++++++++-------------- 3 files changed, 30 insertions(+), 36 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index 518e47ce..6677cbed 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -1,10 +1,10 @@ -add_subdirectory(excel) -add_subdirectory(python) - -SET(COM_Files -README.txt -) - -SET(COM_Dir ${EXAMPLES_DIR}/com) - -install(FILES ${COM_Files} DESTINATION ${COM_Dir}) +add_subdirectory(excel) +add_subdirectory(python) + +SET(COM_Files +README.txt +) + +SET(COM_Dir ${EXAMPLES_DIR}/com) + +install(FILES ${COM_Files} DESTINATION ${COM_Dir}) diff --git a/excel/CMakeLists.txt b/excel/CMakeLists.txt index c249a451..85c067c7 100644 --- a/excel/CMakeLists.txt +++ b/excel/CMakeLists.txt @@ -1,12 +1,9 @@ -SET(Excel_Files -phreeqc.dat -runphreeqc.xls -withcallback.xls -) - -SET(Excel_Dir ${EXAMPLES_DIR}/com/excel) - -install(FILES ${Excel_Files} DESTINATION ${Excel_Dir}) - - - +SET(Excel_Files +phreeqc.dat +runphreeqc.xls +withcallback.xls +) + +SET(Excel_Dir ${EXAMPLES_DIR}/com/excel) + +install(FILES ${Excel_Files} DESTINATION ${Excel_Dir}) diff --git a/python/CMakeLists.txt b/python/CMakeLists.txt index 60a2c5bd..557b24a7 100644 --- a/python/CMakeLists.txt +++ b/python/CMakeLists.txt @@ -1,14 +1,11 @@ -SET(Python_Files -Gypsum.py -parallel_advect.py -phreeqc.dat -pitzer.dat -wateq4f.dat -) - -SET(Python_Dir ${EXAMPLES_DIR}/com/python) - -install(FILES ${Python_Files} DESTINATION ${Python_Dir}) - - - +SET(Python_Files +Gypsum.py +parallel_advect.py +phreeqc.dat +pitzer.dat +wateq4f.dat +) + +SET(Python_Dir ${EXAMPLES_DIR}/com/python) + +install(FILES ${Python_Files} DESTINATION ${Python_Dir}) From 5fe290beff62c5de43bf4e776e94d5b55db85cca Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Sun, 28 May 2023 20:14:57 -0600 Subject: [PATCH 086/384] Updated for phreeqc changes Introduce end-of-line normalization for CMakeLists.txt --- CMakeLists.txt | 650 ++++++++++++++++++++++++------------------------- 1 file changed, 325 insertions(+), 325 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index 8f5dac59..758e7fe6 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -1,325 +1,325 @@ -cmake_minimum_required (VERSION 3.9) - -SET(phreeqc_EXAMPLES -co2.tsv -ex1 -ex2 -ex2b -ex2b.tsv -ex3 -ex4 -ex5 -ex6 -ex7 -ex8 -ex9 -ex10 -ex11 -ex12 -ex12a -ex13a -ex13ac -ex13b -ex13c -ex14 -ex15 -ex15a -ex15b -ex15.dat -ex16 -ex17 -ex17b -ex18 -ex19 -ex19_meas.tsv -ex19b -ex20a -ex20b -ex20-c13.tsv -ex20-c14.tsv -ex21 -ex21_Cl_tr_rad.tsv -ex21_Cs_rad.tsv -ex21_HTO_rad.tsv -ex21_Na_tr_rad.tsv -ex22 -Zn1e_4 -Zn1e_7 -) - -if(WIN32) - install (FILES ${phreeqc_EXAMPLES} DESTINATION examples) -else() - install (FILES ${phreeqc_EXAMPLES} DESTINATION ${CMAKE_INSTALL_DOCDIR}/examples) -endif() - -# -# copy tsv files to build directories for testing -# - -# ex2b.tsv -configure_file ( - "ex2b.tsv" - "ex2b.tsv" - ) - -# ex19_meas.tsv -configure_file ( - "ex19_meas.tsv" - "ex19_meas.tsv" - ) - -# ex20-c13.tsv -configure_file ( - "ex20-c13.tsv" - "ex20-c13.tsv" - ) - -# ex20-c14.tsv -configure_file ( - "ex20-c14.tsv" - "ex20-c14.tsv" - ) - -# ex21_Cl_tr_rad.tsv -configure_file ( - "ex21_Cl_tr_rad.tsv" - "ex21_Cl_tr_rad.tsv" - ) - -# ex21_Cs_rad.tsv -configure_file ( - "ex21_Cs_rad.tsv" - "ex21_Cs_rad.tsv" - ) - -# ex21_HTO_rad.tsv -configure_file ( - "ex21_HTO_rad.tsv" - "ex21_HTO_rad.tsv" - ) - -# ex21_Na_tr_rad.tsv -configure_file ( - "ex21_Na_tr_rad.tsv" - "ex21_Na_tr_rad.tsv" - ) - -# co2.tsv -configure_file ( - "co2.tsv" - "co2.tsv" - ) - -# -# run examples for testing -# - -# ex1 -configure_file(ex1 ex1 COPYONLY) -add_test(NAME examples.ex1 - COMMAND $ ../examples/ex1 ex1.out ../database/phreeqc.dat ex1.log -) - -# ex2 -configure_file(ex2 ex2 COPYONLY) -add_test(NAME examples.ex2 - COMMAND $ ../examples/ex2 ex2.out ../database/phreeqc.dat ex2.log -) - -# ex2b -configure_file(ex2b ex2b COPYONLY) -add_test(NAME examples.ex2b - COMMAND $ ../examples/ex2b ex2b.out ../database/phreeqc.dat ex2b.log -) - -# ex3 -configure_file(ex3 ex3 COPYONLY) -add_test(NAME examples.ex3 - COMMAND $ ../examples/ex3 ex3.out ../database/phreeqc.dat ex3.log -) - -# ex4 -configure_file(ex4 ex4 COPYONLY) -add_test(NAME examples.ex4 - COMMAND $ ../examples/ex4 ex4.out ../database/phreeqc.dat ex4.log -) - -# ex5 -configure_file(ex5 ex5 COPYONLY) -add_test(NAME examples.ex5 - COMMAND $ ../examples/ex5 ex5.out ../database/phreeqc.dat ex5.log -) - -# ex6 -configure_file(ex6 ex6 COPYONLY) -add_test(NAME examples.ex6 - COMMAND $ ../examples/ex6 ex6.out ../database/phreeqc.dat ex6.log -) - -# ex7 -configure_file(ex7 ex7 COPYONLY) -add_test(NAME examples.ex7 - COMMAND $ ../examples/ex7 ex7.out ../database/phreeqc.dat ex7.log -) - -# ex8 -configure_file(ex8 ex8 COPYONLY) -add_test(NAME examples.ex8 - COMMAND $ ../examples/ex8 ex8.out ../database/phreeqc.dat ex8.log -) - -# ex9 -configure_file(ex9 ex9 COPYONLY) -add_test(NAME examples.ex9 - COMMAND $ ../examples/ex9 ex9.out ../database/phreeqc.dat ex9.log -) - -# ex10 -configure_file(ex10 ex10 COPYONLY) -add_test(NAME examples.ex10 - COMMAND $ ../examples/ex10 ex10.out ../database/phreeqc.dat ex10.log -) - -# ex11 -configure_file(ex11 ex11 COPYONLY) -add_test(NAME examples.ex11 - COMMAND $ ../examples/ex11 ex11.out ../database/phreeqc.dat ex11.log -) - -# ex12 -configure_file(ex12 ex12 COPYONLY) -add_test(NAME examples.ex12 - COMMAND $ ../examples/ex12 ex12.out ../database/phreeqc.dat ex12.log -) - -# ex12a -configure_file(ex12a ex12a COPYONLY) -add_test(NAME examples.ex12a - COMMAND $ ../examples/ex12a ex12a.out ../database/phreeqc.dat ex12a.log -) - -# ex13a -configure_file(ex13a ex13a COPYONLY) -add_test(NAME examples.ex13a - COMMAND $ ../examples/ex13a ex13a.out ../database/phreeqc.dat ex13a.log -) - -# ex13b -configure_file(ex13b ex13b COPYONLY) -add_test(NAME examples.ex13b - COMMAND $ ../examples/ex13b ex13b.out ../database/phreeqc.dat ex13b.log -) - -# ex13c -configure_file(ex13c ex13c COPYONLY) -add_test(NAME examples.ex13c - COMMAND $ ../examples/ex13c ex13c.out ../database/phreeqc.dat ex13c.log -) - -# ex13ac -configure_file(ex13ac ex13ac COPYONLY) -add_test(NAME examples.ex13ac - COMMAND $ ../examples/ex13ac ex13ac.out ../database/phreeqc.dat ex13ac.log -) - -# ex14 -configure_file(ex14 ex14 COPYONLY) -add_test(NAME examples.ex14 - COMMAND $ ../examples/ex14 ex14.out ../database/phreeqc.dat ex14.log -) - -# ex15 -configure_file(ex15 ex15 COPYONLY) -configure_file(ex15.dat ex15.dat COPYONLY) -add_test(NAME examples.ex15 - COMMAND $ ../examples/ex15 ex15.out ../examples/ex15.dat ex15.log -) - -# ex15a -configure_file(ex15a ex15a COPYONLY) -add_test(NAME examples.ex15a - COMMAND $ ../examples/ex15a ex15a.out ../examples/ex15.dat ex15a.log -) - -# ex15b -configure_file(ex15b ex15b COPYONLY) -add_test(NAME examples.ex15b - COMMAND $ ../examples/ex15b ex15b.out ../examples/ex15.dat ex15b.log -) - -# ex16 -configure_file(ex16 ex16 COPYONLY) -add_test(NAME examples.ex16 - COMMAND $ ../examples/ex16 ex16.out ../database/phreeqc.dat ex16.log -) - -# ex17 -configure_file(ex17 ex17 COPYONLY) -add_test(NAME examples.ex17 - COMMAND $ ../examples/ex17 ex17.out ../database/pitzer.dat ex17.log -) - -# ex17b -configure_file(ex17b ex17b COPYONLY) -add_test(NAME examples.ex17b - COMMAND $ ../examples/ex17b ex17b.out ../database/pitzer.dat ex17b.log -) - -# ex18 -configure_file(ex18 ex18 COPYONLY) -add_test(NAME examples.ex18 - COMMAND $ ../examples/ex18 ex18.out ../database/phreeqc.dat ex18.log -) - -# ex19 -configure_file(ex19 ex19 COPYONLY) -add_test(NAME examples.ex19 - COMMAND $ ../examples/ex19 ex19.out ../database/phreeqc.dat ex19.log -) - -# ex19b -configure_file(ex19b ex19b COPYONLY) -add_test(NAME examples.ex19b - COMMAND $ ../examples/ex19b ex19b.out ../database/phreeqc.dat ex19b.log -) - -# ex20a -configure_file(ex20a ex20a COPYONLY) -add_test(NAME examples.ex20a - COMMAND $ ../examples/ex20a ex20a.out ../database/iso.dat ex20a.log -) - -# ex20b -configure_file(ex20b ex20b COPYONLY) -add_test(NAME examples.ex20b - COMMAND $ ../examples/ex20b ex20b.out ../database/iso.dat ex20b.log -) - -# ex21 -configure_file(ex21 ex21 COPYONLY) -add_test(NAME examples.ex21 - COMMAND $ ../examples/ex21 ex21.out ../database/phreeqc.dat ex21.log -) - -# ex22 -configure_file(ex22 ex22 COPYONLY) -add_test(NAME examples.ex22 - COMMAND $ ../examples/ex22 ex22.out ../database/phreeqc.dat ex22.log -) - -# Note when setting labels we can't use the following: -# set_tests_properties(${test} PROPERTIES LABELS "pitzer") -# since it will overwrite any existing labels already set - -# long_debug -# > 600 seconds Debug -set(LONG_DEBUG - examples.ex21 -) - -# label tests that take too long -foreach(test ${LONG_DEBUG}) - set_property(TEST ${test} APPEND PROPERTY LABELS "long_debug") - set_property(TEST ${test} APPEND PROPERTY LABELS "long_memcheck") -endforeach() +cmake_minimum_required (VERSION 3.9) + +SET(phreeqc_EXAMPLES +co2.tsv +ex1 +ex2 +ex2b +ex2b.tsv +ex3 +ex4 +ex5 +ex6 +ex7 +ex8 +ex9 +ex10 +ex11 +ex12 +ex12a +ex13a +ex13ac +ex13b +ex13c +ex14 +ex15 +ex15a +ex15b +ex15.dat +ex16 +ex17 +ex17b +ex18 +ex19 +ex19_meas.tsv +ex19b +ex20a +ex20b +ex20-c13.tsv +ex20-c14.tsv +ex21 +ex21_Cl_tr_rad.tsv +ex21_Cs_rad.tsv +ex21_HTO_rad.tsv +ex21_Na_tr_rad.tsv +ex22 +Zn1e_4 +Zn1e_7 +) + +if(WIN32) + install (FILES ${phreeqc_EXAMPLES} DESTINATION examples) +else() + install (FILES ${phreeqc_EXAMPLES} DESTINATION ${CMAKE_INSTALL_DOCDIR}/examples) +endif() + +# +# copy tsv files to build directories for testing +# + +# ex2b.tsv +configure_file ( + "ex2b.tsv" + "ex2b.tsv" + ) + +# ex19_meas.tsv +configure_file ( + "ex19_meas.tsv" + "ex19_meas.tsv" + ) + +# ex20-c13.tsv +configure_file ( + "ex20-c13.tsv" + "ex20-c13.tsv" + ) + +# ex20-c14.tsv +configure_file ( + "ex20-c14.tsv" + "ex20-c14.tsv" + ) + +# ex21_Cl_tr_rad.tsv +configure_file ( + "ex21_Cl_tr_rad.tsv" + "ex21_Cl_tr_rad.tsv" + ) + +# ex21_Cs_rad.tsv +configure_file ( + "ex21_Cs_rad.tsv" + "ex21_Cs_rad.tsv" + ) + +# ex21_HTO_rad.tsv +configure_file ( + "ex21_HTO_rad.tsv" + "ex21_HTO_rad.tsv" + ) + +# ex21_Na_tr_rad.tsv +configure_file ( + "ex21_Na_tr_rad.tsv" + "ex21_Na_tr_rad.tsv" + ) + +# co2.tsv +configure_file ( + "co2.tsv" + "co2.tsv" + ) + +# +# run examples for testing +# + +# ex1 +configure_file(ex1 ex1 COPYONLY) +add_test(NAME examples.ex1 + COMMAND $ ../examples/ex1 ex1.out ../database/phreeqc.dat ex1.log +) + +# ex2 +configure_file(ex2 ex2 COPYONLY) +add_test(NAME examples.ex2 + COMMAND $ ../examples/ex2 ex2.out ../database/phreeqc.dat ex2.log +) + +# ex2b +configure_file(ex2b ex2b COPYONLY) +add_test(NAME examples.ex2b + COMMAND $ ../examples/ex2b ex2b.out ../database/phreeqc.dat ex2b.log +) + +# ex3 +configure_file(ex3 ex3 COPYONLY) +add_test(NAME examples.ex3 + COMMAND $ ../examples/ex3 ex3.out ../database/phreeqc.dat ex3.log +) + +# ex4 +configure_file(ex4 ex4 COPYONLY) +add_test(NAME examples.ex4 + COMMAND $ ../examples/ex4 ex4.out ../database/phreeqc.dat ex4.log +) + +# ex5 +configure_file(ex5 ex5 COPYONLY) +add_test(NAME examples.ex5 + COMMAND $ ../examples/ex5 ex5.out ../database/phreeqc.dat ex5.log +) + +# ex6 +configure_file(ex6 ex6 COPYONLY) +add_test(NAME examples.ex6 + COMMAND $ ../examples/ex6 ex6.out ../database/phreeqc.dat ex6.log +) + +# ex7 +configure_file(ex7 ex7 COPYONLY) +add_test(NAME examples.ex7 + COMMAND $ ../examples/ex7 ex7.out ../database/phreeqc.dat ex7.log +) + +# ex8 +configure_file(ex8 ex8 COPYONLY) +add_test(NAME examples.ex8 + COMMAND $ ../examples/ex8 ex8.out ../database/phreeqc.dat ex8.log +) + +# ex9 +configure_file(ex9 ex9 COPYONLY) +add_test(NAME examples.ex9 + COMMAND $ ../examples/ex9 ex9.out ../database/phreeqc.dat ex9.log +) + +# ex10 +configure_file(ex10 ex10 COPYONLY) +add_test(NAME examples.ex10 + COMMAND $ ../examples/ex10 ex10.out ../database/phreeqc.dat ex10.log +) + +# ex11 +configure_file(ex11 ex11 COPYONLY) +add_test(NAME examples.ex11 + COMMAND $ ../examples/ex11 ex11.out ../database/phreeqc.dat ex11.log +) + +# ex12 +configure_file(ex12 ex12 COPYONLY) +add_test(NAME examples.ex12 + COMMAND $ ../examples/ex12 ex12.out ../database/phreeqc.dat ex12.log +) + +# ex12a +configure_file(ex12a ex12a COPYONLY) +add_test(NAME examples.ex12a + COMMAND $ ../examples/ex12a ex12a.out ../database/phreeqc.dat ex12a.log +) + +# ex13a +configure_file(ex13a ex13a COPYONLY) +add_test(NAME examples.ex13a + COMMAND $ ../examples/ex13a ex13a.out ../database/phreeqc.dat ex13a.log +) + +# ex13b +configure_file(ex13b ex13b COPYONLY) +add_test(NAME examples.ex13b + COMMAND $ ../examples/ex13b ex13b.out ../database/phreeqc.dat ex13b.log +) + +# ex13c +configure_file(ex13c ex13c COPYONLY) +add_test(NAME examples.ex13c + COMMAND $ ../examples/ex13c ex13c.out ../database/phreeqc.dat ex13c.log +) + +# ex13ac +configure_file(ex13ac ex13ac COPYONLY) +add_test(NAME examples.ex13ac + COMMAND $ ../examples/ex13ac ex13ac.out ../database/phreeqc.dat ex13ac.log +) + +# ex14 +configure_file(ex14 ex14 COPYONLY) +add_test(NAME examples.ex14 + COMMAND $ ../examples/ex14 ex14.out ../database/phreeqc.dat ex14.log +) + +# ex15 +configure_file(ex15 ex15 COPYONLY) +configure_file(ex15.dat ex15.dat COPYONLY) +add_test(NAME examples.ex15 + COMMAND $ ../examples/ex15 ex15.out ../examples/ex15.dat ex15.log +) + +# ex15a +configure_file(ex15a ex15a COPYONLY) +add_test(NAME examples.ex15a + COMMAND $ ../examples/ex15a ex15a.out ../examples/ex15.dat ex15a.log +) + +# ex15b +configure_file(ex15b ex15b COPYONLY) +add_test(NAME examples.ex15b + COMMAND $ ../examples/ex15b ex15b.out ../examples/ex15.dat ex15b.log +) + +# ex16 +configure_file(ex16 ex16 COPYONLY) +add_test(NAME examples.ex16 + COMMAND $ ../examples/ex16 ex16.out ../database/phreeqc.dat ex16.log +) + +# ex17 +configure_file(ex17 ex17 COPYONLY) +add_test(NAME examples.ex17 + COMMAND $ ../examples/ex17 ex17.out ../database/pitzer.dat ex17.log +) + +# ex17b +configure_file(ex17b ex17b COPYONLY) +add_test(NAME examples.ex17b + COMMAND $ ../examples/ex17b ex17b.out ../database/pitzer.dat ex17b.log +) + +# ex18 +configure_file(ex18 ex18 COPYONLY) +add_test(NAME examples.ex18 + COMMAND $ ../examples/ex18 ex18.out ../database/phreeqc.dat ex18.log +) + +# ex19 +configure_file(ex19 ex19 COPYONLY) +add_test(NAME examples.ex19 + COMMAND $ ../examples/ex19 ex19.out ../database/phreeqc.dat ex19.log +) + +# ex19b +configure_file(ex19b ex19b COPYONLY) +add_test(NAME examples.ex19b + COMMAND $ ../examples/ex19b ex19b.out ../database/phreeqc.dat ex19b.log +) + +# ex20a +configure_file(ex20a ex20a COPYONLY) +add_test(NAME examples.ex20a + COMMAND $ ../examples/ex20a ex20a.out ../database/iso.dat ex20a.log +) + +# ex20b +configure_file(ex20b ex20b COPYONLY) +add_test(NAME examples.ex20b + COMMAND $ ../examples/ex20b ex20b.out ../database/iso.dat ex20b.log +) + +# ex21 +configure_file(ex21 ex21 COPYONLY) +add_test(NAME examples.ex21 + COMMAND $ ../examples/ex21 ex21.out ../database/phreeqc.dat ex21.log +) + +# ex22 +configure_file(ex22 ex22 COPYONLY) +add_test(NAME examples.ex22 + COMMAND $ ../examples/ex22 ex22.out ../database/phreeqc.dat ex22.log +) + +# Note when setting labels we can't use the following: +# set_tests_properties(${test} PROPERTIES LABELS "pitzer") +# since it will overwrite any existing labels already set + +# long_debug +# > 600 seconds Debug +set(LONG_DEBUG + examples.ex21 +) + +# label tests that take too long +foreach(test ${LONG_DEBUG}) + set_property(TEST ${test} APPEND PROPERTY LABELS "long_debug") + set_property(TEST ${test} APPEND PROPERTY LABELS "long_memcheck") +endforeach() From 3ed6cb654ab872b3a516d8414c0f21a2e3e584e5 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Sun, 28 May 2023 20:14:57 -0600 Subject: [PATCH 087/384] Updated for phreeqc changes Introduce end-of-line normalization for CMakeLists.txt --- CMakeLists.txt | 20 ++++++++++---------- excel/CMakeLists.txt | 21 +++++++++------------ python/CMakeLists.txt | 25 +++++++++++-------------- 3 files changed, 30 insertions(+), 36 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index 518e47ce..6677cbed 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -1,10 +1,10 @@ -add_subdirectory(excel) -add_subdirectory(python) - -SET(COM_Files -README.txt -) - -SET(COM_Dir ${EXAMPLES_DIR}/com) - -install(FILES ${COM_Files} DESTINATION ${COM_Dir}) +add_subdirectory(excel) +add_subdirectory(python) + +SET(COM_Files +README.txt +) + +SET(COM_Dir ${EXAMPLES_DIR}/com) + +install(FILES ${COM_Files} DESTINATION ${COM_Dir}) diff --git a/excel/CMakeLists.txt b/excel/CMakeLists.txt index c249a451..85c067c7 100644 --- a/excel/CMakeLists.txt +++ b/excel/CMakeLists.txt @@ -1,12 +1,9 @@ -SET(Excel_Files -phreeqc.dat -runphreeqc.xls -withcallback.xls -) - -SET(Excel_Dir ${EXAMPLES_DIR}/com/excel) - -install(FILES ${Excel_Files} DESTINATION ${Excel_Dir}) - - - +SET(Excel_Files +phreeqc.dat +runphreeqc.xls +withcallback.xls +) + +SET(Excel_Dir ${EXAMPLES_DIR}/com/excel) + +install(FILES ${Excel_Files} DESTINATION ${Excel_Dir}) diff --git a/python/CMakeLists.txt b/python/CMakeLists.txt index 60a2c5bd..557b24a7 100644 --- a/python/CMakeLists.txt +++ b/python/CMakeLists.txt @@ -1,14 +1,11 @@ -SET(Python_Files -Gypsum.py -parallel_advect.py -phreeqc.dat -pitzer.dat -wateq4f.dat -) - -SET(Python_Dir ${EXAMPLES_DIR}/com/python) - -install(FILES ${Python_Files} DESTINATION ${Python_Dir}) - - - +SET(Python_Files +Gypsum.py +parallel_advect.py +phreeqc.dat +pitzer.dat +wateq4f.dat +) + +SET(Python_Dir ${EXAMPLES_DIR}/com/python) + +install(FILES ${Python_Files} DESTINATION ${Python_Dir}) From 1680e5b76fc4f1008166df4b07cfa12049f7ff51 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Sun, 28 May 2023 20:14:57 -0600 Subject: [PATCH 088/384] Updated for phreeqc changes Introduce end-of-line normalization for CMakeLists.txt --- CMakeLists.txt | 2 +- advect/CMakeLists.txt | 70 +++++++++++++++++++++---------------------- 2 files changed, 36 insertions(+), 36 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index f6e6c91c..d8e9f25a 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -1 +1 @@ -add_subdirectory(advect) \ No newline at end of file +add_subdirectory(advect) diff --git a/advect/CMakeLists.txt b/advect/CMakeLists.txt index c4a6aeb4..9e368852 100644 --- a/advect/CMakeLists.txt +++ b/advect/CMakeLists.txt @@ -1,35 +1,35 @@ -# project -project(example_advect_c C) - -configure_file(phreeqc.dat phreeqc.dat COPYONLY) -configure_file(ic ic COPYONLY) -configure_file(CMakeLists.txt.in CMakeLists.txt COPYONLY) - -# files -SET(C_Advect_Files -${IPhreeqc_BINARY_DIR}/examples/c/advect/CMakeLists.txt -advect.c -ic -phreeqc.dat -README.txt -) - -# src -SET(C_Advect_SRC -advect.c -) - -# executable -add_executable(example_advect_c ${C_Advect_SRC}) - -# library dependencies -SET(EXTRA_LIBS ${EXTRA_LIBS} IPhreeqc) - -# link -target_link_libraries(example_advect_c ${EXTRA_LIBS}) - -# install directory -SET(C_Advect_Dir ${EXAMPLES_DIR}/c/advect) - -# install -install(FILES ${C_Advect_Files} DESTINATION ${C_Advect_Dir}) +# project +project(example_advect_c C) + +configure_file(phreeqc.dat phreeqc.dat COPYONLY) +configure_file(ic ic COPYONLY) +configure_file(CMakeLists.txt.in CMakeLists.txt COPYONLY) + +# files +SET(C_Advect_Files +${IPhreeqc_BINARY_DIR}/examples/c/advect/CMakeLists.txt +advect.c +ic +phreeqc.dat +README.txt +) + +# src +SET(C_Advect_SRC +advect.c +) + +# executable +add_executable(example_advect_c ${C_Advect_SRC}) + +# library dependencies +SET(EXTRA_LIBS ${EXTRA_LIBS} IPhreeqc) + +# link +target_link_libraries(example_advect_c ${EXTRA_LIBS}) + +# install directory +SET(C_Advect_Dir ${EXAMPLES_DIR}/c/advect) + +# install +install(FILES ${C_Advect_Files} DESTINATION ${C_Advect_Dir}) From 209412f4d9d11bfeb15d74cbf7372ea6787a49cd Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Sun, 28 May 2023 20:14:57 -0600 Subject: [PATCH 089/384] Updated for phreeqc changes Introduce end-of-line normalization for CMakeLists.txt --- CMakeLists.txt | 2 +- advect/CMakeLists.txt | 88 +++++++++++++++++++++---------------------- 2 files changed, 45 insertions(+), 45 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index f6e6c91c..d8e9f25a 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -1 +1 @@ -add_subdirectory(advect) \ No newline at end of file +add_subdirectory(advect) diff --git a/advect/CMakeLists.txt b/advect/CMakeLists.txt index f4c18dd0..1aa26a64 100644 --- a/advect/CMakeLists.txt +++ b/advect/CMakeLists.txt @@ -1,44 +1,44 @@ -# project -if (IPHREEQC_FORTRAN_TESTING AND IPHREEQC_ENABLE_MODULE) - project(example_advect_f90 Fortran) - - configure_file(phreeqc.dat phreeqc.dat COPYONLY) - configure_file(ic ic COPYONLY) -endif() - -configure_file(CMakeLists.txt.in CMakeLists.txt COPYONLY) - -# files -SET(FORTRAN_Advect_Files -${IPhreeqc_BINARY_DIR}/examples/fortran/advect/CMakeLists.txt -advect.F90 -ic -phreeqc.dat -README.txt -) - -if (IPHREEQC_FORTRAN_TESTING AND IPHREEQC_ENABLE_MODULE) - # src - SET(FORTRAN_Advect_SRC - advect.F90 - ../../../src/IPhreeqc_interface.F90 - ) - - # place [*.F90] files into "Source Files" - source_group("Source Files" FILES ${FORTRAN_Advect_SRC}) - - # executable - add_executable(example_advect_f90 ${FORTRAN_Advect_SRC}) - - # library dependencies - SET(EXTRA_LIBS ${EXTRA_LIBS} IPhreeqc) - - # link - target_link_libraries(example_advect_f90 ${EXTRA_LIBS}) -endif() - -# install directory -SET(FORTRAN_Advect_Dir ${EXAMPLES_DIR}/fortran/advect) - -# install -install(FILES ${FORTRAN_Advect_Files} DESTINATION ${FORTRAN_Advect_Dir}) +# project +if (IPHREEQC_FORTRAN_TESTING AND IPHREEQC_ENABLE_MODULE) + project(example_advect_f90 Fortran) + + configure_file(phreeqc.dat phreeqc.dat COPYONLY) + configure_file(ic ic COPYONLY) +endif() + +configure_file(CMakeLists.txt.in CMakeLists.txt COPYONLY) + +# files +SET(FORTRAN_Advect_Files +${IPhreeqc_BINARY_DIR}/examples/fortran/advect/CMakeLists.txt +advect.F90 +ic +phreeqc.dat +README.txt +) + +if (IPHREEQC_FORTRAN_TESTING AND IPHREEQC_ENABLE_MODULE) + # src + SET(FORTRAN_Advect_SRC + advect.F90 + ../../../src/IPhreeqc_interface.F90 + ) + + # place [*.F90] files into "Source Files" + source_group("Source Files" FILES ${FORTRAN_Advect_SRC}) + + # executable + add_executable(example_advect_f90 ${FORTRAN_Advect_SRC}) + + # library dependencies + SET(EXTRA_LIBS ${EXTRA_LIBS} IPhreeqc) + + # link + target_link_libraries(example_advect_f90 ${EXTRA_LIBS}) +endif() + +# install directory +SET(FORTRAN_Advect_Dir ${EXAMPLES_DIR}/fortran/advect) + +# install +install(FILES ${FORTRAN_Advect_Files} DESTINATION ${FORTRAN_Advect_Dir}) From 12e58e3ec323fb6ce38b4e93c82fb36ad2212a81 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Mon, 7 Aug 2023 10:13:49 -0600 Subject: [PATCH 090/384] bug fix on Basic functions; minor update to Release.txt --- RELEASE.TXT | 37 +++++++++++++++++-------------------- 1 file changed, 17 insertions(+), 20 deletions(-) diff --git a/RELEASE.TXT b/RELEASE.TXT index 880a075b..72bb4647 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,5 +1,19 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + + ----------------- + June 1, 2023 + ----------------- + Finalizing a Python version of PhreeqcRM that includes the BMI capabilities. + Methods are documented in Python style and two test cases are available, one + of which uses every Python method that is available. + + ----------------- + May 22, 2023 + ----------------- + PhreeqcRM: Revised all F90 methods that return arrays to use allocatable arrays, + so that, getter arrays are automatically dimensioned to the correct sizes + ----------------- May 22, 2023 ----------------- @@ -9,6 +23,9 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ Actually, it gives the contribution of the species to the B and D terms in the Jones-Dole eqution, assuming that the A term is small. The fractional contribution can be negative, for example f_visc("K+") is usually smaller than zero. + + Bug-fix: High T/P water phi became too small. Now limit how small phi of water can be + so that gas phase has reasonable H2O(g). Bug-fix: When -Vm parameters of SOLUTION_SPECIES were read after -viscosity parameters, the first viscosity parameter was set to 0. @@ -205,26 +222,6 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ RM_InitialSolutions2Module(id, solutions); RM_InitialSolidSolutions2Module(id, solid_solutions); RM_InitialSurfaces2Module(id, surfaces); - - ----------------- - April 3, 2023 - ----------------- - The viscosity of multi-species solutions is calculated with a (modified) - Jones-Dole equation: - - viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i) - - Parameters SOLUTION_SPECIES definitions are for calculating the B and D terms: - -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 - b0 b1 b2 d1 d2 d3 tan - - z_i is absolute charge number, m_i is molality of i - B_i = b0 + b1 exp(-b2 * tc) - fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions - D_i = d1 + exp(-d2 tc) - n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 m_i)d^3 / (2 + fI), fI is an ionic strength term. - For details, consult - Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp ----------------- February 28, 2023 From 0cb7f629943a58c808f22ad2d8f169f83beb38ff Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Thu, 10 Aug 2023 11:01:24 -0600 Subject: [PATCH 091/384] No memory leaks; Still need to turn-on Fortran --- phreeqcpp/common/PHRQ_io.cpp | 1 + 1 file changed, 1 insertion(+) diff --git a/phreeqcpp/common/PHRQ_io.cpp b/phreeqcpp/common/PHRQ_io.cpp index 15449606..15765fd5 100644 --- a/phreeqcpp/common/PHRQ_io.cpp +++ b/phreeqcpp/common/PHRQ_io.cpp @@ -63,6 +63,7 @@ ofstream_open(std::ostream **os, const char *file_name, std::ios_base::openmode std::ofstream *ofs = new std::ofstream(file_name, mode); if (ofs && ofs->is_open()) { + safe_close(os); *os = ofs; return true; } From e902474819623e9469f66b6514a8293063ff2b86 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Fri, 25 Aug 2023 03:29:16 +0000 Subject: [PATCH 092/384] Squashed 'phreeqcpp/' changes from 8fa568f..3b5f98c 3b5f98c No memory leaks; Still need to turn-on Fortran git-subtree-dir: phreeqcpp git-subtree-split: 3b5f98c838520da9638d08384186b2c85103ff30 --- common/PHRQ_io.cpp | 1 + 1 file changed, 1 insertion(+) diff --git a/common/PHRQ_io.cpp b/common/PHRQ_io.cpp index 15449606..15765fd5 100644 --- a/common/PHRQ_io.cpp +++ b/common/PHRQ_io.cpp @@ -63,6 +63,7 @@ ofstream_open(std::ostream **os, const char *file_name, std::ios_base::openmode std::ofstream *ofs = new std::ofstream(file_name, mode); if (ofs && ofs->is_open()) { + safe_close(os); *os = ofs; return true; } From 99b10305984102705405888e62ff98cae0c70fe6 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Fri, 25 Aug 2023 03:34:17 +0000 Subject: [PATCH 093/384] Squashed 'phreeqcpp/' changes from 3b5f98c..8dade82 8dade82 Merge commit '64c9761e116474c4c9e673976f02111fbec32caf' 64c9761 Squashed 'common/' changes from a088e29..b9af572 git-subtree-dir: phreeqcpp git-subtree-split: 8dade82c963a39f50ceeaab4d2d7b9700b53822f From 6ea0442d458c0a029140954f6c801006cac0871b Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Fri, 25 Aug 2023 15:29:27 +0000 Subject: [PATCH 094/384] Squashed 'phreeqcpp/' changes from 8dade82..bd2e2b6 bd2e2b6 Merge remote-tracking branch 'usgs-coupled/master' f170ab5 Merge branch 'usgs-coupled:master' into phreeqc-1-working 4cbc303 bug fix on Basic functions; minor update to Release.txt git-subtree-dir: phreeqcpp git-subtree-split: bd2e2b68ccf277552f19c498e9ef0b972c6d8b7e --- basicsubs.cpp | 1464 ++++++++++++++++++++++++------------------------- 1 file changed, 732 insertions(+), 732 deletions(-) diff --git a/basicsubs.cpp b/basicsubs.cpp index 4e07a4e5..738c894a 100644 --- a/basicsubs.cpp +++ b/basicsubs.cpp @@ -22,20 +22,20 @@ static char THIS_FILE[] = __FILE__; /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -activity(const char *species_name) +activity(const char* species_name) /* ---------------------------------------------------------------------- */ { - class species *s_ptr; + class species* s_ptr; LDBLE a; s_ptr = s_search(species_name); if (s_ptr == s_h2o) { - a = pow((LDBLE) 10., s_h2o->la); + a = pow((LDBLE)10., s_h2o->la); } else if (s_ptr == s_eminus) { - a = pow((LDBLE) 10., s_eminus->la); + a = pow((LDBLE)10., s_eminus->la); } else if (s_ptr == NULL || s_ptr->in == FALSE) { @@ -43,17 +43,17 @@ activity(const char *species_name) } else { - a = pow((LDBLE) 10., s_ptr->lm + s_ptr->lg); + a = pow((LDBLE)10., s_ptr->lm + s_ptr->lg); } return (a); } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -activity_coefficient(const char *species_name) +activity_coefficient(const char* species_name) /* ---------------------------------------------------------------------- */ { - class species *s_ptr; + class species* s_ptr; LDBLE g, dum = 0.0; s_ptr = s_search(species_name); @@ -61,7 +61,7 @@ activity_coefficient(const char *species_name) { if (s_ptr->type == EX && s_ptr->equiv && s_ptr->alk) dum = log10(s_ptr->equiv / s_ptr->alk); - g = pow((LDBLE) 10., s_ptr->lg - dum); + g = pow((LDBLE)10., s_ptr->lg - dum); } else { @@ -72,10 +72,10 @@ activity_coefficient(const char *species_name) /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -log_activity_coefficient(const char *species_name) +log_activity_coefficient(const char* species_name) /* ---------------------------------------------------------------------- */ { - class species *s_ptr; + class species* s_ptr; LDBLE g, dum = 0.0; s_ptr = s_search(species_name); @@ -94,10 +94,10 @@ log_activity_coefficient(const char *species_name) /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -aqueous_vm(const char *species_name) +aqueous_vm(const char* species_name) /* ---------------------------------------------------------------------- */ { - class species *s_ptr; + class species* s_ptr; LDBLE g; s_ptr = s_search(species_name); @@ -113,10 +113,10 @@ aqueous_vm(const char *species_name) } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -phase_vm(const char *phase_name) +phase_vm(const char* phase_name) /* ---------------------------------------------------------------------- */ { - class phase *phase_ptr; + class phase* phase_ptr; int l; LDBLE g; @@ -136,7 +136,7 @@ LDBLE Phreeqc:: sa_declercq(double sa_type, double Sa, double d, double m, double m0, double gfw) /* ---------------------------------------------------------------------- */ { - if (sa_type == 0) + if (sa_type == 0) { // surface-area-calculation-Fixed_Surface return Sa; @@ -147,14 +147,14 @@ sa_declercq(double sa_type, double Sa, double d, double m, double m0, double gfw double mass0 = m0 * gfw; double V0 = mass0 / d; double St0 = mass0 * Sa; // total surface - double a0 = pow(V0, 1.0/3.0); // side length - double Sp0 = 6.0 * a0*a0; // surface particle + double a0 = pow(V0, 1.0 / 3.0); // side length + double Sp0 = 6.0 * a0 * a0; // surface particle double np = St0 / Sp0; // number of particles - double RATS = Sa / St0; + double RATS = Sa / St0; double mass = m * gfw; double V = mass / d; - double a = pow(V, 1.0/3.0); - double St = 6.0 * a*a*np; + double a = pow(V, 1.0 / 3.0); + double St = 6.0 * a * a * np; return St * RATS; // total current surface } else if (sa_type == 2) @@ -163,30 +163,30 @@ sa_declercq(double sa_type, double Sa, double d, double m, double m0, double gfw double mass0 = m0 * gfw; double V0 = mass0 / d; // volume double St0 = mass0 * Sa; // total surface - double a0 = pow(3.0 * V0/(4.0 * pi), 1.0/3.0); // ((3*V0)/(4 * 3.14159265359))^(1/3) + double a0 = pow(3.0 * V0 / (4.0 * pi), 1.0 / 3.0); // ((3*V0)/(4 * 3.14159265359))^(1/3) double Sp0 = (4.0 * pi) * a0 * a0; // surface particle double np = St0 / Sp0; // number of particles double RATS = Sa / St0; - + double mass = m * gfw; double V = mass / d; - double a = pow(3.0 * V/(4.0 * pi), 1.0/3.0); //((3*V)/(4 * 3.14159265359))^(1/3) + double a = pow(3.0 * V / (4.0 * pi), 1.0 / 3.0); //((3*V)/(4 * 3.14159265359))^(1/3) double St = 4.0 * pi * a * a * np; return St * RATS; // total current surface } - error_string = sformatf( "Unknown surface area type in SA_DECLERCQ %d.", (int) sa_type); + error_string = sformatf("Unknown surface area type in SA_DECLERCQ %d.", (int)sa_type); error_msg(error_string, CONTINUE); input_error++; return (MISSING); - + } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -diff_c(const char *species_name) +diff_c(const char* species_name) /* ---------------------------------------------------------------------- */ { - class species *s_ptr; + class species* s_ptr; LDBLE ka, l_z, Dw, ff, sqrt_mu; sqrt_mu = sqrt(mu_x); @@ -244,10 +244,10 @@ diff_c(const char *species_name) } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -setdiff_c(const char *species_name, double d) +setdiff_c(const char* species_name, double d) /* ---------------------------------------------------------------------- */ { - class species *s_ptr; + class species* s_ptr; LDBLE ka, l_z, Dw, ff, sqrt_mu; sqrt_mu = sqrt(mu_x); @@ -296,7 +296,7 @@ setdiff_c(const char *species_name, double d) } if (tk_x != 298.15 && s_ptr->dw_t) - Dw *= exp(s_ptr->dw_t / tk_x - s_ptr->dw_t / 298.15); + Dw *= exp(s_ptr->dw_t / tk_x - s_ptr->dw_t / 298.15); s_ptr->dw_corr = Dw; return (Dw * viscos_0_25 / viscos_0); @@ -319,7 +319,7 @@ calc_SC(void) continue; if (i > 0 && strcmp(species_list[i].s->name, - species_list[i - 1].s->name) == 0) + species_list[i - 1].s->name) == 0) continue; if (species_list[i].s == s_h2o) continue; @@ -342,19 +342,19 @@ calc_SC(void) } } SC *= 1e7 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298160.0); - /* correct for temperature dependency... - SC_T = SC_298 * (Dw_T / T) * (298 / Dw_298) and - Dw_T = Dw_298 * (T / 298) * (viscos_298 / viscos_T) give: - SC_T = SC_298 * (viscos_298 / viscos_T) - */ + /* correct for temperature dependency... + SC_T = SC_298 * (Dw_T / T) * (298 / Dw_298) and + Dw_T = Dw_298 * (T / 298) * (viscos_298 / viscos_T) give: + SC_T = SC_298 * (viscos_298 / viscos_T) + */ SC *= viscos_0_25 / viscos; return (SC); -//# endif + //# endif for (i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type != AQ && s_x[i]->type != HPLUS) - continue; + continue; if ((Dw = s_x[i]->dw) == 0) continue; if ((l_z = fabs(s_x[i]->z)) == 0) @@ -374,11 +374,11 @@ calc_SC(void) } } SC *= 1e7 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298160.0); - /* correct for temperature dependency... - SC_T = SC_298 * (Dw_T / T) * (298 / Dw_298) and - Dw_T = Dw_298 * (T / 298) * (viscos_298 / viscos_T) give: - SC_T = SC_298 * (viscos_298 / viscos_T) - */ + /* correct for temperature dependency... + SC_T = SC_298 * (Dw_T / T) * (298 / Dw_298) and + Dw_T = Dw_298 * (T / 298) * (viscos_298 / viscos_T) give: + SC_T = SC_298 * (viscos_298 / viscos_T) + */ SC *= viscos_0_25 / viscos; return (SC); @@ -463,84 +463,84 @@ calc_SC(void) return (SC); } #ifdef SKIP -/*Debye-Onsager according to Robinson and Stokes, 1954, JACS 75, 1991, - but with sqrt charge multiplier for B2 and mu^ff dependent ka */ - LDBLE q, B1, B2, m_plus, m_min, eq_plus, eq_min, eq_dw_plus, eq_dw_min, Sum_m_dw, z_plus, z_min, t1, t2, Dw_SC; +/*Debye-Onsager according to Robinson and Stokes, 1954, JACS 75, 1991, + but with sqrt charge multiplier for B2 and mu^ff dependent ka */ +LDBLE q, B1, B2, m_plus, m_min, eq_plus, eq_min, eq_dw_plus, eq_dw_min, Sum_m_dw, z_plus, z_min, t1, t2, Dw_SC; - m_plus = m_min = eq_plus = eq_min = eq_dw_plus = eq_dw_min = Sum_m_dw = z_plus = z_min = 0; - SC = 0; - for (i = 0; i < (int)this->s_x.size(); i++) +m_plus = m_min = eq_plus = eq_min = eq_dw_plus = eq_dw_min = Sum_m_dw = z_plus = z_min = 0; +SC = 0; +for (i = 0; i < (int)this->s_x.size(); i++) +{ + if (s_x[i]->type != AQ && s_x[i]->type != HPLUS) + continue; + if ((l_z = s_x[i]->z) == 0) + continue; + if ((lm = s_x[i]->lm) < -9) + continue; + if ((Dw = s_x[i]->dw) == 0) + Dw = 1e-9; + if (s_x[i]->dw_t) + Dw *= exp(s_x[i]->dw_t / tk_x - s_x[i]->dw_t / 298.15); // the viscosity multiplier cancels in q... + if (l_z > 0) { - if (s_x[i]->type != AQ && s_x[i]->type != HPLUS) - continue; - if ((l_z = s_x[i]->z) == 0) - continue; - if ((lm = s_x[i]->lm) < -9) - continue; - if ((Dw = s_x[i]->dw) == 0) - Dw = 1e-9; - if (s_x[i]->dw_t) - Dw *= exp(s_x[i]->dw_t / tk_x - s_x[i]->dw_t / 298.15); // the viscosity multiplier cancels in q... - if (l_z > 0) - { - m_plus += s_x[i]->moles; - t1 = s_x[i]->moles * l_z; - eq_plus += t1; - eq_dw_plus += t1 * Dw; - Sum_m_dw += s_x[i]->moles * Dw; - } - else - { - m_min += s_x[i]->moles; - t1 = s_x[i]->moles * l_z; - eq_min -= t1; - eq_dw_min -= t1 * Dw; - Sum_m_dw += s_x[i]->moles * Dw; - } + m_plus += s_x[i]->moles; + t1 = s_x[i]->moles * l_z; + eq_plus += t1; + eq_dw_plus += t1 * Dw; + Sum_m_dw += s_x[i]->moles * Dw; } - // Falkenhagen, q = (Sum(z1 * m1*Dw1) + Sum(z2 *m2*Dw2)) / ((Sum(m1*Dw1) + Sum(m2*Dw2))(av_z1 + av_z2)) - z_plus = eq_plus / m_plus; // |av_z1| - z_min = eq_min / m_min; // |av_z2| - q = (eq_dw_plus + eq_dw_min) / (Sum_m_dw * (z_min + z_plus)); - t1 = 1.60218e-19 * 1.60218e-19 / (6 * pi); - B1 = t1 / (2 * 8.8542e-12 * eps_r * 1.38066e-23 * tk_x) * - q / (1 + sqrt(q)) * DH_B * 1e10 * z_plus * z_min; // DH_B is per Angstrom (*1e10) - t2 = viscos_0; // (1 - 0.5) * viscos_0 + 0.5 * viscos; - B2 = t1 * AVOGADRO / t2 * DH_B * 1e17; // DH_B per Angstrom (*1e10), viscos in mPa.s (*1e3), B2 in cm2 (*1e4) - - Dw_SC = viscos_0_25 / t2 * 1e4 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298160.0); - for (i = 0; i < (int)this->s_x.size(); i++) + else { - if (s_x[i]->type != AQ && s_x[i]->type != HPLUS) - continue; - if ((l_z = fabs(s_x[i]->z)) == 0) - continue; - if ((lm = s_x[i]->lm) < -9) - continue; - if ((Dw = s_x[i]->dw) == 0) - Dw = 1e-9; - - Dw *= Dw_SC; - if (s_x[i]->dw_t) - Dw *= exp(s_x[i]->dw_t / tk_x - s_x[i]->dw_t / 298.15); // the viscosity factor is in Dw_SC - a = (s_x[i]->dw_a ? s_x[i]->dw_a : 3.5); - ka = DH_B * a; - if (s_x[i]->dw_a2) - ka *= pow((double) mu_x, s_x[i]->dw_a2); - else - ka *= sqrt_mu; - - // Falkenhagen... - //SC += under(lm) * l_z * l_z * (Dw - B2 * l_z * sqrt_mu / (1 + ka)) * (1 - B1 * sqrt_mu / - // ((1 + ka) * (1 + ka * sqrt(q) + ka * ka / 6))); - - t1 = (Dw - (B1 * Dw + B2) * sqrt_mu / (1 + ka)); - //t1 = (Dw - (B1 * Dw + B2 * sqrt(l_z)) * sqrt_mu / (1 + ka)); - //t1 = (Dw - (B1 * Dw + B2 * l_z * l_z) * sqrt_mu / (1 + ka)); - if (t1 > 0) - SC += under(lm) * l_z * l_z * t1; + m_min += s_x[i]->moles; + t1 = s_x[i]->moles * l_z; + eq_min -= t1; + eq_dw_min -= t1 * Dw; + Sum_m_dw += s_x[i]->moles * Dw; } - return (SC * 1e3); +} +// Falkenhagen, q = (Sum(z1 * m1*Dw1) + Sum(z2 *m2*Dw2)) / ((Sum(m1*Dw1) + Sum(m2*Dw2))(av_z1 + av_z2)) +z_plus = eq_plus / m_plus; // |av_z1| +z_min = eq_min / m_min; // |av_z2| +q = (eq_dw_plus + eq_dw_min) / (Sum_m_dw * (z_min + z_plus)); +t1 = 1.60218e-19 * 1.60218e-19 / (6 * pi); +B1 = t1 / (2 * 8.8542e-12 * eps_r * 1.38066e-23 * tk_x) * +q / (1 + sqrt(q)) * DH_B * 1e10 * z_plus * z_min; // DH_B is per Angstrom (*1e10) +t2 = viscos_0; // (1 - 0.5) * viscos_0 + 0.5 * viscos; +B2 = t1 * AVOGADRO / t2 * DH_B * 1e17; // DH_B per Angstrom (*1e10), viscos in mPa.s (*1e3), B2 in cm2 (*1e4) + +Dw_SC = viscos_0_25 / t2 * 1e4 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298160.0); +for (i = 0; i < (int)this->s_x.size(); i++) +{ + if (s_x[i]->type != AQ && s_x[i]->type != HPLUS) + continue; + if ((l_z = fabs(s_x[i]->z)) == 0) + continue; + if ((lm = s_x[i]->lm) < -9) + continue; + if ((Dw = s_x[i]->dw) == 0) + Dw = 1e-9; + + Dw *= Dw_SC; + if (s_x[i]->dw_t) + Dw *= exp(s_x[i]->dw_t / tk_x - s_x[i]->dw_t / 298.15); // the viscosity factor is in Dw_SC + a = (s_x[i]->dw_a ? s_x[i]->dw_a : 3.5); + ka = DH_B * a; + if (s_x[i]->dw_a2) + ka *= pow((double)mu_x, s_x[i]->dw_a2); + else + ka *= sqrt_mu; + + // Falkenhagen... + //SC += under(lm) * l_z * l_z * (Dw - B2 * l_z * sqrt_mu / (1 + ka)) * (1 - B1 * sqrt_mu / + // ((1 + ka) * (1 + ka * sqrt(q) + ka * ka / 6))); + + t1 = (Dw - (B1 * Dw + B2) * sqrt_mu / (1 + ka)); + //t1 = (Dw - (B1 * Dw + B2 * sqrt(l_z)) * sqrt_mu / (1 + ka)); + //t1 = (Dw - (B1 * Dw + B2 * l_z * l_z) * sqrt_mu / (1 + ka)); + if (t1 > 0) + SC += under(lm) * l_z * l_z * t1; +} +return (SC * 1e3); #endif /* VP: Density Start */ @@ -549,72 +549,72 @@ LDBLE Phreeqc:: calc_dens(void) /* ---------------------------------------------------------------------- */ { -/* - * Calculates density based on the formulas and parameters from Millero, - * 2000. - * - * Millero, F.J. (2000) The equation of state of lakes. Aquatic geochemistry - * volume 6, pages 1-17 - */ + /* + * Calculates density based on the formulas and parameters from Millero, + * 2000. + * + * Millero, F.J. (2000) The equation of state of lakes. Aquatic geochemistry + * volume 6, pages 1-17 + */ int i; LDBLE M_T, /*rho_new,*/ gfw; /* 2 options: original VP, assign the volumes of species with zero molar volume to their master species, - but this doubles counts of complexes with -Vm defined. And, cation-OH and H-anion + but this doubles counts of complexes with -Vm defined. And, cation-OH and H-anion complexes are counted once. Also, must add H+ and OH-... */ - //class species *s_ptr; + //class species *s_ptr; - //V_solutes = M_T = 0.0; - //for (i = 0; i < count_species_list; i++) - //{ - // if (species_list[i].s->type != AQ && species_list[i].s->type != HPLUS) - // continue; + //V_solutes = M_T = 0.0; + //for (i = 0; i < count_species_list; i++) + //{ + // if (species_list[i].s->type != AQ && species_list[i].s->type != HPLUS) + // continue; - // //if (species_list[i].master_s->secondary != NULL) - // // gfw = species_list[i].master_s->secondary->gfw; - // //else - // // gfw = species_list[i].master_s->primary->gfw; + // //if (species_list[i].master_s->secondary != NULL) + // // gfw = species_list[i].master_s->secondary->gfw; + // //else + // // gfw = species_list[i].master_s->primary->gfw; - // /* OH-... */ - // if (!strcmp(species_list[i].s->name, "OH-")) - // s_ptr = s_search("OH-"); - // else if (species_list[i].s->logk[vm_tc] == 0) - // { - // s_ptr = species_list[i].master_s; - // if (s_ptr->secondary) - // gfw = s_ptr->secondary->gfw; - // else - // gfw = s_ptr->primary->gfw; - // } - // else - // { - // s_ptr = species_list[i].s; - // compute_gfw(species_list[i].s->name, &gfw); - // } + // /* OH-... */ + // if (!strcmp(species_list[i].s->name, "OH-")) + // s_ptr = s_search("OH-"); + // else if (species_list[i].s->logk[vm_tc] == 0) + // { + // s_ptr = species_list[i].master_s; + // if (s_ptr->secondary) + // gfw = s_ptr->secondary->gfw; + // else + // gfw = s_ptr->primary->gfw; + // } + // else + // { + // s_ptr = species_list[i].s; + // compute_gfw(species_list[i].s->name, &gfw); + // } - // /* Special case: CO3-2 species */ - // if (strcmp(s_ptr->name, "CO3-2") == 0) - // { - // if (strstr(species_list[i].s->name, "HCO3") != NULL) - // { - // s_ptr = s_search("HCO3-"); - // } else if (strstr(species_list[i].s->name, "CO3") != NULL) - // { - // compute_gfw("CO3-2", &gfw); - // } - // } - // if (!gfw || !strcmp(species_list[i].s->name, "CO2")) /* CO2, H+ and OH- */ - // compute_gfw(species_list[i].s->name, &gfw); + // /* Special case: CO3-2 species */ + // if (strcmp(s_ptr->name, "CO3-2") == 0) + // { + // if (strstr(species_list[i].s->name, "HCO3") != NULL) + // { + // s_ptr = s_search("HCO3-"); + // } else if (strstr(species_list[i].s->name, "CO3") != NULL) + // { + // compute_gfw("CO3-2", &gfw); + // } + // } + // if (!gfw || !strcmp(species_list[i].s->name, "CO2")) /* CO2, H+ and OH- */ + // compute_gfw(species_list[i].s->name, &gfw); - // M_T += (species_list[i].s->moles * gfw); - // V_solutes += species_list[i].s->moles * s_ptr->logk[vm_tc]; - //} + // M_T += (species_list[i].s->moles * gfw); + // V_solutes += species_list[i].s->moles * s_ptr->logk[vm_tc]; + //} - /* 2nd option, use species_x, vm = 0 for complexes with undefined volume... */ + /* 2nd option, use species_x, vm = 0 for complexes with undefined volume... */ V_solutes = M_T = 0.0; for (i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type != AQ && s_x[i]->type != HPLUS) - continue; + continue; //compute_gfw(s_x[i]->name, &gfw); gfw = s_x[i]->gfw; @@ -640,13 +640,13 @@ calc_dens(void) /* DP: Function for interval halving */ LDBLE Phreeqc:: -f_rho(LDBLE rho_old, void *cookie) +f_rho(LDBLE rho_old, void* cookie) /* ---------------------------------------------------------------------- */ { LDBLE rho = 1.0; - Phreeqc * pThis; + Phreeqc* pThis; - pThis = (Phreeqc *) cookie; + pThis = (Phreeqc*)cookie; pThis->solution_volume = pThis->solution_mass / rho_old; if (pThis->solution_volume != 0) @@ -662,9 +662,9 @@ LDBLE Phreeqc:: calc_solution_volume(void) /* ---------------------------------------------------------------------- */ { -/* - * Calculates solution volume based on sum of mass of element plus density - */ + /* + * Calculates solution volume based on sum of mass of element plus density + */ LDBLE total_mass = 0; LDBLE gfw; //compute_gfw("H", &gfw); @@ -677,10 +677,10 @@ calc_solution_volume(void) for (int i = 0; i < (int)master.size(); i++) { if (master[i]->s->type != AQ) continue; - class master *master_ptr = master[i]; + class master* master_ptr = master[i]; if (master_ptr->primary == TRUE && strcmp(master_ptr->elt->name, "Alkalinity")) { - total_mass += master_ptr->total_primary * master_ptr->elt->gfw; + total_mass += master_ptr->total_primary * master_ptr->elt->gfw; } } LDBLE rho = calc_dens(); @@ -690,13 +690,13 @@ calc_solution_volume(void) /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -calc_logk_n(const char *name) +calc_logk_n(const char* name) /* ---------------------------------------------------------------------- */ { char token[MAX_LENGTH]; int i; LDBLE lk; - class logk *logk_ptr; + class logk* logk_ptr; LDBLE l_logk[MAX_LOG_K_INDICES]; class name_coef add_logk; std::vector add_logk_v; @@ -713,7 +713,7 @@ calc_logk_n(const char *name) add_logk.coef = 1.0; add_logk_v.push_back(add_logk); add_other_logk(l_logk, add_logk_v); - lk = k_calc(l_logk, tk_x, patm_x * PASCAL_PER_ATM); + lk = k_calc(l_logk, tk_x, patm_x * PASCAL_PER_ATM); return (lk); } return (-999.99); @@ -721,20 +721,20 @@ calc_logk_n(const char *name) /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -calc_logk_p(const char *name) +calc_logk_p(const char* name) /* ---------------------------------------------------------------------- */ { int i, j; char token[MAX_LENGTH]; - class phase *phase_ptr; - LDBLE lk=-999.9; + class phase* phase_ptr; + LDBLE lk = -999.9; LDBLE l_logk[MAX_LOG_K_INDICES]; strcpy(token, name); phase_ptr = phase_bsearch(token, &j, FALSE); if (phase_ptr != NULL) - { + { CReaction* reaction_ptr; if (phase_ptr->replaced) reaction_ptr = &phase_ptr->rxn_s; @@ -753,7 +753,7 @@ calc_logk_p(const char *name) } //lk = k_calc(reaction_ptr->logk, tk_x, patm_x * PASCAL_PER_ATM); select_log_k_expression(reaction_ptr->logk, l_logk); - add_other_logk(l_logk, phase_ptr->add_logk); + add_other_logk(l_logk, phase_ptr->add_logk); lk = k_calc(l_logk, tk_x, patm_x * PASCAL_PER_ATM); } return (lk); @@ -761,12 +761,12 @@ calc_logk_p(const char *name) /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -calc_logk_s(const char *name) +calc_logk_s(const char* name) /* ---------------------------------------------------------------------- */ { int i; char token[MAX_LENGTH]; - class species *s_ptr; + class species* s_ptr; LDBLE lk, l_logk[MAX_LOG_K_INDICES]; strcpy(token, name); @@ -775,7 +775,7 @@ calc_logk_s(const char *name) { //if (s_ptr->logk[vm_tc]) /* calculate delta_v for the reaction... */ - s_ptr->logk[delta_v] = calc_delta_v(*&s_ptr->rxn, false); + s_ptr->logk[delta_v] = calc_delta_v(*&s_ptr->rxn, false); for (i = 0; i < MAX_LOG_K_INDICES; i++) { l_logk[i] = 0.0; @@ -892,24 +892,24 @@ calc_deltah_s(const char* name) select_log_k_expression(s_ptr->logk, l_logk); mu_terms_in_logk = true; add_other_logk(l_logk, s_ptr->add_logk); - lkm = k_calc(l_logk, tk_x-1.0, patm_x * PASCAL_PER_ATM); + lkm = k_calc(l_logk, tk_x - 1.0, patm_x * PASCAL_PER_ATM); lkp = k_calc(l_logk, tk_x + 1.0, patm_x * PASCAL_PER_ATM); - dh = (lkp - lkm) / 2.0 * LOG_10 * R_KJ_DEG_MOL * pow(tk_x,2.0); + dh = (lkp - lkm) / 2.0 * LOG_10 * R_KJ_DEG_MOL * pow(tk_x, 2.0); return (dh); } return (0.0); } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -calc_surface_charge(const char *surface_name) +calc_surface_charge(const char* surface_name) /* ---------------------------------------------------------------------- */ { char token[MAX_LENGTH], token1[MAX_LENGTH]; const char* cptr; int i, j, k; LDBLE charge; - class rxn_token_temp *token_ptr; - class master *master_ptr; + class rxn_token_temp* token_ptr; + class master* master_ptr; /* * Go through species, sum charge */ @@ -943,39 +943,39 @@ calc_surface_charge(const char *surface_name) } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -diff_layer_total(const char *total_name, const char *surface_name) +diff_layer_total(const char* total_name, const char* surface_name) /* ---------------------------------------------------------------------- */ { -/* - * Provides total moles in DDL layer - */ - cxxSurfaceCharge *surface_charge_ptr1; + /* + * Provides total moles in DDL layer + */ + cxxSurfaceCharge* surface_charge_ptr1; std::string name, token, surface_name_local; - class master *master_ptr; + class master* master_ptr; LDBLE mass_water_surface; LDBLE molality, moles_excess, moles_surface, charge; if (use.Get_surface_ptr() == NULL || (dl_type_x == cxxSurface::NO_DL && - strcmp_nocase("psi", total_name) != 0 && - strcmp_nocase("psi1", total_name) != 0 && - strcmp_nocase("psi2", total_name) != 0 && - strcmp_nocase("charge", total_name) != 0 - && strcmp_nocase("charge1", - total_name) != 0 - && strcmp_nocase("charge2", - total_name) != 0 - && strcmp_nocase("sigma", - total_name) != 0 - && strcmp_nocase("sigma1", - total_name) != 0 - && strcmp_nocase("sigma2", - total_name) != 0)) + strcmp_nocase("psi", total_name) != 0 && + strcmp_nocase("psi1", total_name) != 0 && + strcmp_nocase("psi2", total_name) != 0 && + strcmp_nocase("charge", total_name) != 0 + && strcmp_nocase("charge1", + total_name) != 0 + && strcmp_nocase("charge2", + total_name) != 0 + && strcmp_nocase("sigma", + total_name) != 0 + && strcmp_nocase("sigma1", + total_name) != 0 + && strcmp_nocase("sigma2", + total_name) != 0)) return (0); -/* - * Find surface... - */ + /* + * Find surface... + */ int j; for (j = 0; j < count_unknowns; j++) { @@ -997,7 +997,7 @@ diff_layer_total(const char *total_name, const char *surface_name) { if (x[j]->type != SURFACE) continue; - token = x[j]->master[0]->elt->name; + token = x[j]->master[0]->elt->name; Utilities::replace("_", " ", token); std::string::iterator b = token.begin(); std::string::iterator e = token.end(); @@ -1023,8 +1023,8 @@ diff_layer_total(const char *total_name, const char *surface_name) { if (use.Get_surface_ptr()->Get_type() == cxxSurface::DDL || use.Get_surface_ptr()->Get_type() == cxxSurface::CCM) { - return ((LDBLE) (x[j]->master[0]->s->la * 2 * R_KJ_DEG_MOL * - tk_x * LOG_10 / F_KJ_V_EQ)); + return ((LDBLE)(x[j]->master[0]->s->la * 2 * R_KJ_DEG_MOL * + tk_x * LOG_10 / F_KJ_V_EQ)); } else if (use.Get_surface_ptr()->Get_type() == cxxSurface::CD_MUSIC) { @@ -1032,8 +1032,8 @@ diff_layer_total(const char *total_name, const char *surface_name) if (master_ptr != NULL) { return ((LDBLE) - (-master_ptr->s->la * R_KJ_DEG_MOL * tk_x * LOG_10 / - F_KJ_V_EQ)); + (-master_ptr->s->la * R_KJ_DEG_MOL * tk_x * LOG_10 / + F_KJ_V_EQ)); } else { @@ -1051,8 +1051,8 @@ diff_layer_total(const char *total_name, const char *surface_name) if (master_ptr != NULL) { return ((LDBLE) - (-master_ptr->s->la * R_KJ_DEG_MOL * tk_x * LOG_10 / - F_KJ_V_EQ)); + (-master_ptr->s->la * R_KJ_DEG_MOL * tk_x * LOG_10 / + F_KJ_V_EQ)); } else { @@ -1065,8 +1065,8 @@ diff_layer_total(const char *total_name, const char *surface_name) if (master_ptr != NULL) { return ((LDBLE) - (-master_ptr->s->la * R_KJ_DEG_MOL * tk_x * LOG_10 / - F_KJ_V_EQ)); + (-master_ptr->s->la * R_KJ_DEG_MOL * tk_x * LOG_10 / + F_KJ_V_EQ)); } else { @@ -1077,14 +1077,14 @@ diff_layer_total(const char *total_name, const char *surface_name) { if ((use.Get_surface_ptr()->Get_type() == cxxSurface::DDL || use.Get_surface_ptr()->Get_type() == cxxSurface::CCM) && dl_type_x == cxxSurface::NO_DL) { - return ((LDBLE) (x[j]->f)); + return ((LDBLE)(x[j]->f)); } else if (use.Get_surface_ptr()->Get_type() == cxxSurface::CD_MUSIC) { - cxxSurfaceCharge *charge_ptr = use.Get_surface_ptr()->Find_charge(x[j]->surface_charge); + cxxSurfaceCharge* charge_ptr = use.Get_surface_ptr()->Find_charge(x[j]->surface_charge); return ((charge_ptr->Get_sigma0() * - (charge_ptr->Get_specific_area() * - charge_ptr->Get_grams()) / F_C_MOL)); + (charge_ptr->Get_specific_area() * + charge_ptr->Get_grams()) / F_C_MOL)); } else { @@ -1095,10 +1095,10 @@ diff_layer_total(const char *total_name, const char *surface_name) { if (use.Get_surface_ptr()->Get_type() == cxxSurface::CD_MUSIC) { - cxxSurfaceCharge *charge_ptr = use.Get_surface_ptr()->Find_charge(x[j]->surface_charge); + cxxSurfaceCharge* charge_ptr = use.Get_surface_ptr()->Find_charge(x[j]->surface_charge); return ((charge_ptr->Get_sigma1() * - (charge_ptr->Get_specific_area() * - charge_ptr->Get_grams()) / F_C_MOL)); + (charge_ptr->Get_specific_area() * + charge_ptr->Get_grams()) / F_C_MOL)); } else { @@ -1109,10 +1109,10 @@ diff_layer_total(const char *total_name, const char *surface_name) { if (use.Get_surface_ptr()->Get_type() == cxxSurface::CD_MUSIC) { - cxxSurfaceCharge *charge_ptr = use.Get_surface_ptr()->Find_charge(x[j]->surface_charge); + cxxSurfaceCharge* charge_ptr = use.Get_surface_ptr()->Find_charge(x[j]->surface_charge); return ((charge_ptr->Get_sigma2() * - (charge_ptr->Get_specific_area() * - charge_ptr->Get_grams()) / F_C_MOL)); + (charge_ptr->Get_specific_area() * + charge_ptr->Get_grams()) / F_C_MOL)); } else { @@ -1123,7 +1123,7 @@ diff_layer_total(const char *total_name, const char *surface_name) { if (use.Get_surface_ptr()->Get_type() == cxxSurface::DDL || use.Get_surface_ptr()->Get_type() == cxxSurface::CCM) { - cxxSurfaceCharge *charge_ptr = use.Get_surface_ptr()->Find_charge(x[j]->surface_charge); + cxxSurfaceCharge* charge_ptr = use.Get_surface_ptr()->Find_charge(x[j]->surface_charge); if (dl_type_x != cxxSurface::NO_DL) { charge = calc_surface_charge(surface_name_local.c_str()); @@ -1133,11 +1133,11 @@ diff_layer_total(const char *total_name, const char *surface_name) charge = x[j]->f; } if ((charge_ptr->Get_specific_area() * - charge_ptr->Get_grams()) > 0) + charge_ptr->Get_grams()) > 0) { return ((charge * F_C_MOL / - (charge_ptr->Get_specific_area() * - charge_ptr->Get_grams()))); + (charge_ptr->Get_specific_area() * + charge_ptr->Get_grams()))); } else { @@ -1146,8 +1146,8 @@ diff_layer_total(const char *total_name, const char *surface_name) } else if (use.Get_surface_ptr()->Get_type() == cxxSurface::CD_MUSIC) { - cxxSurfaceCharge *charge_ptr = use.Get_surface_ptr()->Find_charge(x[j]->surface_charge); - return ((LDBLE) (charge_ptr->Get_sigma0())); + cxxSurfaceCharge* charge_ptr = use.Get_surface_ptr()->Find_charge(x[j]->surface_charge); + return ((LDBLE)(charge_ptr->Get_sigma0())); } else { @@ -1158,8 +1158,8 @@ diff_layer_total(const char *total_name, const char *surface_name) { if (use.Get_surface_ptr()->Get_type() == cxxSurface::CD_MUSIC) { - cxxSurfaceCharge *charge_ptr = use.Get_surface_ptr()->Find_charge(x[j]->surface_charge); - return ((LDBLE) (charge_ptr->Get_sigma1())); + cxxSurfaceCharge* charge_ptr = use.Get_surface_ptr()->Find_charge(x[j]->surface_charge); + return ((LDBLE)(charge_ptr->Get_sigma1())); } else { @@ -1170,8 +1170,8 @@ diff_layer_total(const char *total_name, const char *surface_name) { if (use.Get_surface_ptr()->Get_type() == cxxSurface::CD_MUSIC) { - cxxSurfaceCharge *charge_ptr = use.Get_surface_ptr()->Find_charge(x[j]->surface_charge); - return ((LDBLE) (charge_ptr->Get_sigma2())); + cxxSurfaceCharge* charge_ptr = use.Get_surface_ptr()->Find_charge(x[j]->surface_charge); + return ((LDBLE)(charge_ptr->Get_sigma2())); } else { @@ -1182,7 +1182,7 @@ diff_layer_total(const char *total_name, const char *surface_name) { if (dl_type_x != cxxSurface::NO_DL) { - cxxSurfaceCharge *charge_ptr = use.Get_surface_ptr()->Find_charge(x[j]->surface_charge); + cxxSurfaceCharge* charge_ptr = use.Get_surface_ptr()->Find_charge(x[j]->surface_charge); return (charge_ptr->Get_mass_water()); } else @@ -1190,9 +1190,9 @@ diff_layer_total(const char *total_name, const char *surface_name) return (0); } } -/* - * find total moles of each element in diffuse layer... - */ + /* + * find total moles of each element in diffuse layer... + */ surface_charge_ptr1 = use.Get_surface_ptr()->Find_charge(x[j]->surface_charge); if (surface_charge_ptr1) { @@ -1207,23 +1207,23 @@ diff_layer_total(const char *total_name, const char *surface_name) LDBLE g = surface_charge_ptr1->Get_g_map()[s_x[j]->z].Get_g(); moles_excess = mass_water_aq_x * molality * (g * s_x[j]->erm_ddl + - mass_water_surface / - mass_water_aq_x * (s_x[j]->erm_ddl - 1)); + mass_water_surface / + mass_water_aq_x * (s_x[j]->erm_ddl - 1)); moles_surface = mass_water_surface * molality + moles_excess; -/* - * Accumulate elements in diffuse layer - */ + /* + * Accumulate elements in diffuse layer + */ add_elt_list(s_x[j]->next_elt, moles_surface); } elt_list_combine(); -/* - * Return totals - */ + /* + * Return totals + */ for (j = 0; j < count_elts; j++) { if (strcmp(elt_list[j].elt->name, total_name) == 0) { - return ((LDBLE) elt_list[j].coef); + return ((LDBLE)elt_list[j].coef); } } } @@ -1231,15 +1231,15 @@ diff_layer_total(const char *total_name, const char *surface_name) } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -calc_t_sc(const char *name) +calc_t_sc(const char* name) /* ---------------------------------------------------------------------- */ { char token[MAX_LENGTH]; - class species *s_ptr; + class species* s_ptr; strcpy(token, name); s_ptr = s_search(token); - if (s_ptr != NULL) + if (s_ptr != NULL && s_ptr->in) { if (!s_ptr->z) return (0); @@ -1249,22 +1249,22 @@ calc_t_sc(const char *name) LDBLE t = s_ptr->dw_t_SC * 1e7 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298150.0) * viscos_0_25 / viscos_0; return (t / SC); } - return (-999.99); + return (0); } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -calc_f_visc(const char *name) +calc_f_visc(const char* name) /* ---------------------------------------------------------------------- */ { char token[MAX_LENGTH]; - class species *s_ptr; + class species* s_ptr; if (print_viscosity) { strcpy(token, name); s_ptr = s_search(token); - if (s_ptr != NULL) + if (s_ptr != NULL && s_ptr->in) return s_ptr->dw_t_visc; } return 0; @@ -1272,7 +1272,7 @@ calc_f_visc(const char *name) /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -equi_phase(const char *phase_name) +equi_phase(const char* phase_name) /* ---------------------------------------------------------------------- */ { int j; @@ -1288,19 +1288,19 @@ equi_phase(const char *phase_name) break; } } -/* - * Print pure phase assemblage data - */ - cxxPPassemblage * pp_assemblage_ptr = use.Get_pp_assemblage_ptr(); + /* + * Print pure phase assemblage data + */ + cxxPPassemblage* pp_assemblage_ptr = use.Get_pp_assemblage_ptr(); if (j == count_unknowns) { /* if not an unknown */ std::map::iterator it; - it = pp_assemblage_ptr->Get_pp_assemblage_comps().begin(); - for ( ; it != pp_assemblage_ptr->Get_pp_assemblage_comps().end(); it++) + it = pp_assemblage_ptr->Get_pp_assemblage_comps().begin(); + for (; it != pp_assemblage_ptr->Get_pp_assemblage_comps().end(); it++) { if (strcmp_nocase - (it->second.Get_name().c_str(), phase_name) == 0) + (it->second.Get_name().c_str(), phase_name) == 0) { return (it->second.Get_moles()); } @@ -1317,7 +1317,7 @@ equi_phase(const char *phase_name) } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -equi_phase_delta(const char *phase_name) +equi_phase_delta(const char* phase_name) /* ---------------------------------------------------------------------- */ { int j; @@ -1333,21 +1333,21 @@ equi_phase_delta(const char *phase_name) break; } } -/* - * Print pure phase assemblage data - */ - cxxPPassemblage * pp_assemblage_ptr = use.Get_pp_assemblage_ptr(); + /* + * Print pure phase assemblage data + */ + cxxPPassemblage* pp_assemblage_ptr = use.Get_pp_assemblage_ptr(); if (j == count_unknowns) { /* if not an unknown */ std::map::iterator it; - it = pp_assemblage_ptr->Get_pp_assemblage_comps().begin(); - for ( ; it != pp_assemblage_ptr->Get_pp_assemblage_comps().end(); it++) + it = pp_assemblage_ptr->Get_pp_assemblage_comps().begin(); + for (; it != pp_assemblage_ptr->Get_pp_assemblage_comps().end(); it++) { if (strcmp_nocase - (it->second.Get_name().c_str(), phase_name) == 0) + (it->second.Get_name().c_str(), phase_name) == 0) { - cxxPPassemblageComp * comp_ptr = &(it->second); + cxxPPassemblageComp* comp_ptr = &(it->second); if (state != TRANSPORT && state != PHAST) { //LDBLE moles = it->second.Get_moles(); @@ -1358,7 +1358,7 @@ equi_phase_delta(const char *phase_name) else { LDBLE moles = it->second.Get_moles(); - LDBLE delta_moles = moles - comp_ptr->Get_initial_moles(); + LDBLE delta_moles = moles - comp_ptr->Get_initial_moles(); return(delta_moles); } } @@ -1367,7 +1367,7 @@ equi_phase_delta(const char *phase_name) else { //cxxPPassemblageComp * comp_ptr = pp_assemblage_ptr->Find(x[j]->pp_assemblage_comp_name); - cxxPPassemblageComp * comp_ptr = (cxxPPassemblageComp *) x[j]->pp_assemblage_comp_ptr; + cxxPPassemblageComp* comp_ptr = (cxxPPassemblageComp*)x[j]->pp_assemblage_comp_ptr; if (state != TRANSPORT && state != PHAST) { LDBLE delta_moles = @@ -1387,19 +1387,19 @@ equi_phase_delta(const char *phase_name) /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -equivalent_fraction(const char *name, LDBLE *eq, std::string &elt_name) +equivalent_fraction(const char* name, LDBLE * eq, std::string & elt_name) /* ---------------------------------------------------------------------- */ { - class species *s_ptr = s_search(name); + class species* s_ptr = s_search(name); *eq = 0; elt_name.clear(); LDBLE f = 0; if (s_ptr != NULL && (s_ptr->type == EX || s_ptr->type == SURF)) { *eq = s_ptr->equiv; - const class elt_list *next_elt; - LDBLE tot=0.0; - for (next_elt = &s_ptr->next_elt[0]; next_elt->elt != NULL; next_elt++) + const class elt_list* next_elt; + LDBLE tot = 0.0; + for (next_elt = &s_ptr->next_elt[0]; next_elt->elt != NULL; next_elt++) { if (next_elt->elt->master->s->type == SURF || next_elt->elt->master->s->type == EX) @@ -1410,26 +1410,26 @@ equivalent_fraction(const char *name, LDBLE *eq, std::string &elt_name) } if (s_ptr->in == TRUE && tot > 0.0) { - f = s_ptr->moles * s_ptr->equiv / tot; + f = s_ptr->moles * s_ptr->equiv / tot; } } return f; } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -find_gas_comp(const char *gas_comp_name) +find_gas_comp(const char* gas_comp_name) /* ---------------------------------------------------------------------- */ { int i; if (use.Get_gas_phase_in() == FALSE || use.Get_gas_phase_ptr() == NULL) return (0); - cxxGasPhase * gas_phase_ptr = use.Get_gas_phase_ptr(); + cxxGasPhase* gas_phase_ptr = use.Get_gas_phase_ptr(); for (size_t j = 0; j < gas_phase_ptr->Get_gas_comps().size(); j++) { if (strcmp_nocase(gas_phase_ptr->Get_gas_comps()[j].Get_phase_name().c_str(), gas_comp_name) == 0) { - class phase *phase_ptr = phase_bsearch(gas_comp_name, &i, false); + class phase* phase_ptr = phase_bsearch(gas_comp_name, &i, false); if (phase_ptr) { return (phase_ptr->moles_x); @@ -1445,7 +1445,7 @@ find_gas_p(void) { if (use.Get_gas_phase_in() == FALSE || use.Get_gas_phase_ptr() == NULL) return (0); - cxxGasPhase *gas_phase_ptr = use.Get_gas_phase_ptr(); + cxxGasPhase* gas_phase_ptr = use.Get_gas_phase_ptr(); if (gas_phase_ptr->Get_type() == cxxGasPhase::GP_PRESSURE) { if (gas_unknown == NULL) @@ -1462,7 +1462,7 @@ find_gas_vm(void) { if (use.Get_gas_phase_in() == FALSE || use.Get_gas_phase_ptr() == NULL) return (0); - cxxGasPhase *gas_phase_ptr = use.Get_gas_phase_ptr(); + cxxGasPhase* gas_phase_ptr = use.Get_gas_phase_ptr(); if (gas_phase_ptr->Get_type() == cxxGasPhase::GP_PRESSURE) { if (gas_unknown == NULL) @@ -1480,15 +1480,15 @@ find_gas_vm(void) /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -find_misc1(const char *ss_name) +find_misc1(const char* ss_name) /* ---------------------------------------------------------------------- */ { if (use.Get_ss_assemblage_in() == FALSE || use.Get_ss_assemblage_ptr() == NULL) return (0.0); - std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); + std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); for (size_t j = 0; j < ss_ptrs.size(); j++) { - cxxSS *ss_ptr = ss_ptrs[j]; + cxxSS* ss_ptr = ss_ptrs[j]; if (strcmp_nocase(ss_ptr->Get_name().c_str(), ss_name) == 0) { if (ss_ptr->Get_miscibility()) @@ -1506,15 +1506,15 @@ find_misc1(const char *ss_name) /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -find_misc2(const char *ss_name) +find_misc2(const char* ss_name) /* ---------------------------------------------------------------------- */ { if (use.Get_ss_assemblage_in() == FALSE || use.Get_ss_assemblage_ptr() == NULL) return (0.0); - std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); + std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); for (size_t j = 0; j < ss_ptrs.size(); j++) { - cxxSS *ss_ptr = ss_ptrs[j]; + cxxSS* ss_ptr = ss_ptrs[j]; if (strcmp_nocase(ss_ptr->Get_name().c_str(), ss_name) == 0) { if (ss_ptr->Get_miscibility()) @@ -1532,19 +1532,19 @@ find_misc2(const char *ss_name) /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -find_ss_comp(const char *ss_comp_name) +find_ss_comp(const char* ss_comp_name) /* ---------------------------------------------------------------------- */ { if (use.Get_ss_assemblage_in() == FALSE || use.Get_ss_assemblage_ptr() == NULL) return (0); - std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); + std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); for (size_t j = 0; j < ss_ptrs.size(); j++) { - cxxSS *ss_ptr = ss_ptrs[j]; + cxxSS* ss_ptr = ss_ptrs[j]; for (size_t i = 0; i < ss_ptr->Get_ss_comps().size(); i++) { - cxxSScomp *comp_ptr = &(ss_ptr->Get_ss_comps()[i]); + cxxSScomp* comp_ptr = &(ss_ptr->Get_ss_comps()[i]); if (strcmp_nocase(comp_ptr->Get_name().c_str(), ss_comp_name) == 0) { if (ss_ptr->Get_ss_in()) @@ -1562,7 +1562,7 @@ find_ss_comp(const char *ss_comp_name) } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -get_calculate_value(const char *name) +get_calculate_value(const char* name) /* ---------------------------------------------------------------------- */ /* * Gets value from a calclate_value structure @@ -1570,12 +1570,12 @@ get_calculate_value(const char *name) * return: LDBLE of value */ { - class calculate_value *calculate_value_ptr; + class calculate_value* calculate_value_ptr; calculate_value_ptr = calculate_value_search(name); if (calculate_value_ptr == NULL) { - error_string = sformatf( "CALC_VALUE Basic function, %s not found.", - name); + error_string = sformatf("CALC_VALUE Basic function, %s not found.", + name); //error_msg(error_string, CONTINUE); //input_error++; warning_msg(error_string); @@ -1584,7 +1584,7 @@ get_calculate_value(const char *name) if (name == NULL) { error_string = sformatf( - "Definition for calculated value not found, %s", name); + "Definition for calculated value not found, %s", name); input_error++; error_msg(error_string, CONTINUE); return (MISSING); @@ -1595,32 +1595,32 @@ get_calculate_value(const char *name) if (calculate_value_ptr->new_def == TRUE) { if (interp.basic_compile - (calculate_value_ptr->commands.c_str(), + (calculate_value_ptr->commands.c_str(), &calculate_value_ptr->linebase, &calculate_value_ptr->varbase, &calculate_value_ptr->loopbase) != 0) { error_string = sformatf( - "Fatal Basic error in CALCULATE_VALUES %s.", - calculate_value_ptr->name); + "Fatal Basic error in CALCULATE_VALUES %s.", + calculate_value_ptr->name); error_msg(error_string, STOP); } calculate_value_ptr->new_def = FALSE; } - if (interp.basic_run(l_command, + if (interp.basic_run(l_command, calculate_value_ptr->linebase, - calculate_value_ptr->varbase, + calculate_value_ptr->varbase, calculate_value_ptr->loopbase) != 0) { - error_string = sformatf( "Fatal Basic error in calculate_value %s.", - calculate_value_ptr->name); + error_string = sformatf("Fatal Basic error in calculate_value %s.", + calculate_value_ptr->name); error_msg(error_string, STOP); } - if(std::isnan(rate_moles)) + if (std::isnan(rate_moles)) { - error_string = sformatf( "Calculated value not SAVEed for %s.", - calculate_value_ptr->name); + error_string = sformatf("Calculated value not SAVEed for %s.", + calculate_value_ptr->name); error_msg(error_string, STOP); } else @@ -1632,7 +1632,7 @@ get_calculate_value(const char *name) } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -kinetics_moles(const char *kinetics_name) +kinetics_moles(const char* kinetics_name) /* ---------------------------------------------------------------------- */ { @@ -1640,23 +1640,23 @@ kinetics_moles(const char *kinetics_name) return (0); for (size_t i = 0; i < use.Get_kinetics_ptr()->Get_kinetics_comps().size(); i++) { - cxxKineticsComp *kinetics_comp_ptr = &(use.Get_kinetics_ptr()->Get_kinetics_comps()[i]); + cxxKineticsComp* kinetics_comp_ptr = &(use.Get_kinetics_ptr()->Get_kinetics_comps()[i]); if (strcmp_nocase - (kinetics_comp_ptr->Get_rate_name().c_str(), kinetics_name) == 0) + (kinetics_comp_ptr->Get_rate_name().c_str(), kinetics_name) == 0) { return (kinetics_comp_ptr->Get_m()); } } - error_string = sformatf( "No data for rate %s in KINETICS keyword.", - kinetics_name); + error_string = sformatf("No data for rate %s in KINETICS keyword.", + kinetics_name); //if (count_warnings >= 0) // appt debug cvode // warning_msg(error_string); return (0); } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -kinetics_moles_delta(const char *kinetics_name) +kinetics_moles_delta(const char* kinetics_name) /* ---------------------------------------------------------------------- */ { @@ -1664,24 +1664,24 @@ kinetics_moles_delta(const char *kinetics_name) return (0); for (size_t i = 0; i < use.Get_kinetics_ptr()->Get_kinetics_comps().size(); i++) { - cxxKineticsComp *kinetics_comp_ptr = &(use.Get_kinetics_ptr()->Get_kinetics_comps()[i]); + cxxKineticsComp* kinetics_comp_ptr = &(use.Get_kinetics_ptr()->Get_kinetics_comps()[i]); if (strcmp_nocase - (kinetics_comp_ptr->Get_rate_name().c_str(), kinetics_name) == 0) + (kinetics_comp_ptr->Get_rate_name().c_str(), kinetics_name) == 0) { //return (kinetics_comp_ptr->Get_m()); if (state != TRANSPORT && state != PHAST) { //LDBLE moles = kinetics_comp_ptr->Get_m(); - LDBLE delta_moles = - kinetics_comp_ptr->Get_moles(); + LDBLE delta_moles = -kinetics_comp_ptr->Get_moles(); return delta_moles; } else { //moles = kinetics_comp_ptr->Get_m(); LDBLE delta_moles = - kinetics_comp_ptr->Get_m() - - kinetics_comp_ptr->Get_initial_moles(); + kinetics_comp_ptr->Get_m() - + kinetics_comp_ptr->Get_initial_moles(); return delta_moles; } } @@ -1694,10 +1694,10 @@ kinetics_moles_delta(const char *kinetics_name) } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -log_activity(const char *species_name) +log_activity(const char* species_name) /* ---------------------------------------------------------------------- */ { - class species *s_ptr; + class species* s_ptr; LDBLE la; s_ptr = s_search(species_name); @@ -1723,10 +1723,10 @@ log_activity(const char *species_name) /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -log_molality(const char *species_name) +log_molality(const char* species_name) /* ---------------------------------------------------------------------- */ { - class species *s_ptr; + class species* s_ptr; LDBLE lm; s_ptr = s_search(species_name); @@ -1752,10 +1752,10 @@ log_molality(const char *species_name) /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -molality(const char *species_name) +molality(const char* species_name) /* ---------------------------------------------------------------------- */ { - class species *s_ptr; + class species* s_ptr; LDBLE m; s_ptr = s_search(species_name); @@ -1805,9 +1805,9 @@ pr_pressure(const char* phase_name) } } else if (phase_ptr->in != FALSE && phase_ptr->pr_in) - { - return phase_ptr->pr_p; - } + { + return phase_ptr->pr_p; + } return(0.0); } /* ---------------------------------------------------------------------- */ @@ -1820,14 +1820,14 @@ pressure(void) /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -pr_phi(const char *phase_name) +pr_phi(const char* phase_name) /* ---------------------------------------------------------------------- */ { int l; class phase* phase_ptr = phase_bsearch(phase_name, &l, FALSE); if (phase_ptr == NULL) { - error_string = sformatf( "Gas %s, not found.", phase_name); + error_string = sformatf("Gas %s, not found.", phase_name); warning_msg(error_string); return (1e-99); } @@ -1856,11 +1856,11 @@ pr_phi(const char *phase_name) } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -saturation_ratio(const char *phase_name) +saturation_ratio(const char* phase_name) /* ---------------------------------------------------------------------- */ { - class rxn_token *rxn_ptr; - class phase *phase_ptr; + class rxn_token* rxn_ptr; + class phase* phase_ptr; int l; LDBLE si, iap; @@ -1868,19 +1868,19 @@ saturation_ratio(const char *phase_name) phase_ptr = phase_bsearch(phase_name, &l, FALSE); if (phase_ptr == NULL) { - error_string = sformatf( "Mineral %s, not found.", phase_name); + error_string = sformatf("Mineral %s, not found.", phase_name); warning_msg(error_string); return (1e-99); } else if (phase_ptr->in != FALSE) { for (rxn_ptr = &phase_ptr->rxn_x.token[0] + 1; rxn_ptr->s != NULL; - rxn_ptr++) + rxn_ptr++) { iap += rxn_ptr->s->la * rxn_ptr->coef; } si = iap - phase_ptr->lk; - return (pow((LDBLE) 10.0, si)); + return (pow((LDBLE)10.0, si)); } return (0.0); @@ -1888,11 +1888,11 @@ saturation_ratio(const char *phase_name) /* ---------------------------------------------------------------------- */ int Phreeqc:: -saturation_index(const char *phase_name, LDBLE * iap, LDBLE * si) +saturation_index(const char* phase_name, LDBLE * iap, LDBLE * si) /* ---------------------------------------------------------------------- */ { - class rxn_token *rxn_ptr; - class phase *phase_ptr; + class rxn_token* rxn_ptr; + class phase* phase_ptr; int l; *si = -99.99; @@ -1900,14 +1900,14 @@ saturation_index(const char *phase_name, LDBLE * iap, LDBLE * si) phase_ptr = phase_bsearch(phase_name, &l, FALSE); if (phase_ptr == NULL) { - error_string = sformatf( "Mineral %s, not found.", phase_name); + error_string = sformatf("Mineral %s, not found.", phase_name); warning_msg(error_string); *si = -99; } else if (phase_ptr->in != FALSE) { for (rxn_ptr = &phase_ptr->rxn_x.token[0] + 1; rxn_ptr->s != NULL; - rxn_ptr++) + rxn_ptr++) { *iap += rxn_ptr->s->la * rxn_ptr->coef; } @@ -1921,20 +1921,20 @@ saturation_index(const char *phase_name, LDBLE * iap, LDBLE * si) } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -sum_match_gases(const char *mytemplate, const char *name) +sum_match_gases(const char* mytemplate, const char* name) /* ---------------------------------------------------------------------- */ { int i; LDBLE tot; - const class elt_list *next_elt; + const class elt_list* next_elt; if (use.Get_gas_phase_in() == FALSE || use.Get_gas_phase_ptr() == NULL) return (0); - cxxGasPhase *gas_phase_ptr = use.Get_gas_phase_ptr(); + cxxGasPhase* gas_phase_ptr = use.Get_gas_phase_ptr(); tot = 0; for (size_t j = 0; j < gas_phase_ptr->Get_gas_comps().size(); j++) { - class phase * phase_ptr = phase_bsearch(gas_phase_ptr->Get_gas_comps()[j].Get_phase_name().c_str(), + class phase* phase_ptr = phase_bsearch(gas_phase_ptr->Get_gas_comps()[j].Get_phase_name().c_str(), &i, FALSE); if (match_elts_in_species(phase_ptr->formula, mytemplate) == TRUE) { @@ -1945,7 +1945,7 @@ sum_match_gases(const char *mytemplate, const char *name) else { for (next_elt = &phase_ptr->next_elt[0]; - next_elt->elt != NULL; next_elt++) + next_elt->elt != NULL; next_elt++) { if (strcmp(next_elt->elt->name, name) == 0) { @@ -1961,12 +1961,12 @@ sum_match_gases(const char *mytemplate, const char *name) /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -sum_match_species(const char *mytemplate, const char *name) +sum_match_species(const char* mytemplate, const char* name) /* ---------------------------------------------------------------------- */ { int i; LDBLE tot; - const class elt_list *next_elt; + const class elt_list* next_elt; count_elts = 0; paren_count = 0; @@ -1976,7 +1976,7 @@ sum_match_species(const char *mytemplate, const char *name) std::vector species_list; for (i = 0; i < (int)this->s_x.size(); i++) { - class species *s_ptr = s_x[i]; + class species* s_ptr = s_x[i]; if (match_elts_in_species(s_ptr->name, mytemplate) == TRUE) { species_list.push_back(s_ptr->name); @@ -1984,10 +1984,10 @@ sum_match_species(const char *mytemplate, const char *name) } sum_species_map[mytemplate] = species_list; } - std::vector &species_list = (sum_species_map.find(mytemplate))->second; - for (size_t i=0; i < species_list.size(); i++) + std::vector& species_list = (sum_species_map.find(mytemplate))->second; + for (size_t i = 0; i < species_list.size(); i++) { - class species *s_ptr = s_search(species_list[i].c_str()); + class species* s_ptr = s_search(species_list[i].c_str()); if (s_ptr->in == FALSE) continue; if (name == NULL) { @@ -1996,7 +1996,7 @@ sum_match_species(const char *mytemplate, const char *name) else { for (next_elt = &s_ptr->next_elt[0]; next_elt->elt != NULL; - next_elt++) + next_elt++) { if (strcmp(next_elt->elt->name, name) == 0) { @@ -2013,19 +2013,19 @@ sum_match_species(const char *mytemplate, const char *name) /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -sum_match_ss(const char *mytemplate, const char *name) +sum_match_ss(const char* mytemplate, const char* name) /* ---------------------------------------------------------------------- */ { LDBLE tot; - const class elt_list *next_elt; + const class elt_list* next_elt; if (use.Get_ss_assemblage_in() == FALSE || use.Get_ss_assemblage_ptr() == NULL) return (0); tot = 0; - std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); + std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); for (size_t j = 0; j < ss_ptrs.size(); j++) { - cxxSS *ss_ptr = ss_ptrs[j]; + cxxSS* ss_ptr = ss_ptrs[j]; if (strcmp_nocase(ss_ptr->Get_name().c_str(), mytemplate) == 0) { if (!ss_ptr->Get_ss_in()) @@ -2035,7 +2035,7 @@ sum_match_ss(const char *mytemplate, const char *name) } for (size_t i = 0; i < ss_ptr->Get_ss_comps().size(); i++) { - cxxSScomp *comp_ptr = &(ss_ptr->Get_ss_comps()[i]); + cxxSScomp* comp_ptr = &(ss_ptr->Get_ss_comps()[i]); if (name == NULL) { tot += comp_ptr->Get_moles(); @@ -2043,12 +2043,12 @@ sum_match_ss(const char *mytemplate, const char *name) else { int l; - class phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + class phase* phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); for (next_elt = &phase_ptr->next_elt[0]; next_elt->elt != NULL; next_elt++) { if (strcmp(next_elt->elt->name, name) == 0) { - tot += next_elt->coef * comp_ptr->Get_moles(); + tot += next_elt->coef * comp_ptr->Get_moles(); break; } } @@ -2062,7 +2062,7 @@ sum_match_ss(const char *mytemplate, const char *name) /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -list_ss(std::string ss_name, cxxNameDouble &composition) +list_ss(std::string ss_name, cxxNameDouble & composition) /* ---------------------------------------------------------------------- */ { LDBLE tot = 0; @@ -2070,15 +2070,15 @@ list_ss(std::string ss_name, cxxNameDouble &composition) if (use.Get_ss_assemblage_in() == FALSE || use.Get_ss_assemblage_ptr() == NULL) return (0); - std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); + std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); for (size_t j = 0; j < ss_ptrs.size(); j++) { - cxxSS *ss_ptr = ss_ptrs[j]; + cxxSS* ss_ptr = ss_ptrs[j]; if (strcmp_nocase(ss_ptr->Get_name().c_str(), ss_name.c_str()) == 0) { for (size_t i = 0; i < ss_ptr->Get_ss_comps().size(); i++) { - cxxSScomp *comp_ptr = &(ss_ptr->Get_ss_comps()[i]); + cxxSScomp* comp_ptr = &(ss_ptr->Get_ss_comps()[i]); composition.add(comp_ptr->Get_name().c_str(), comp_ptr->Get_moles()); tot += comp_ptr->Get_moles(); } @@ -2089,25 +2089,25 @@ list_ss(std::string ss_name, cxxNameDouble &composition) } /* ---------------------------------------------------------------------- */ int Phreeqc:: -match_elts_in_species(const char *name, const char *mytemplate) +match_elts_in_species(const char* name, const char* mytemplate) /* ---------------------------------------------------------------------- */ { -/* - * Makes a list of elements with their coefficients, stores elements - * in elt_list at position count_elts. Global variable count_elts is - * updated with each stored element. Also uses static global variable - * paren_count. - * - * Arguments: - * **t_ptr input, point in token string to start looking - * output, is next position to start looking - * coef input, coefficient to multiply subscripts by - */ + /* + * Makes a list of elements with their coefficients, stores elements + * in elt_list at position count_elts. Global variable count_elts is + * updated with each stored element. Also uses static global variable + * paren_count. + * + * Arguments: + * **t_ptr input, point in token string to start looking + * output, is next position to start looking + * coef input, coefficient to multiply subscripts by + */ int i, i1, l, case_no, match; char c, c1; - const char* cptr, *ptr1; + const char* cptr, * ptr1; LDBLE d; - char token[MAX_LENGTH], equal_list[MAX_LENGTH]; + char token[MAX_LENGTH], equal_list[MAX_LENGTH]; char token1[MAX_LENGTH], template1[MAX_LENGTH], equal_list1[MAX_LENGTH]; char str[2]; @@ -2138,10 +2138,10 @@ match_elts_in_species(const char *name, const char *mytemplate) c1 = *(cptr + 1); str[0] = c; str[1] = '\0'; -/* - * New element - */ - if (isupper((int) c) || (c == 'e' && c1 == '-') || (c == '[')) + /* + * New element + */ + if (isupper((int)c) || (c == 'e' && c1 == '-') || (c == '[')) { /* * Get new element and subscript @@ -2156,12 +2156,12 @@ match_elts_in_species(const char *name, const char *mytemplate) return (ERROR); } std::pair pr(element, d); - match_vector.push_back(pr); + match_vector.push_back(pr); } else { std::pair pr(str, 1.0); - match_vector.push_back(pr); + match_vector.push_back(pr); cptr += 1; } } @@ -2184,8 +2184,8 @@ match_elts_in_species(const char *name, const char *mytemplate) if (copy_token(elt_name, &ptr1) == EMPTY) { error_string = sformatf( - "Expecting a nonempty list of element names in isotope sum. %s", - mytemplate); + "Expecting a nonempty list of element names in isotope sum. %s", + mytemplate); error_msg(error_string, CONTINUE); return (ERROR); } @@ -2195,7 +2195,7 @@ match_elts_in_species(const char *name, const char *mytemplate) */ while (copy_token(elt_name, &ptr1) != EMPTY) { - for (i = 0; i < (int) match_vector.size(); i++) + for (i = 0; i < (int)match_vector.size(); i++) { if (elt_name == match_vector[i].first) { @@ -2207,11 +2207,11 @@ match_elts_in_species(const char *name, const char *mytemplate) /* * Combine contiguous elements */ - i1 = 0; - for (i = 1; i < (int) match_vector.size(); i++) + i1 = 0; + for (i = 1; i < (int)match_vector.size(); i++) { - if ((isupper((int) (match_vector[i].first[0])) != FALSE) - && (match_vector[i].first == match_vector[i1].first)) + if ((isupper((int)(match_vector[i].first[0])) != FALSE) + && (match_vector[i].first == match_vector[i1].first)) { match_vector[i1].second += match_vector[i].second; } @@ -2232,7 +2232,7 @@ match_elts_in_species(const char *name, const char *mytemplate) strcat(token, match_vector[i].first.c_str()); if (match_vector[i].second != 1.0) { - snprintf(token1, sizeof(token1), "%g", (double) match_vector[i].second); + snprintf(token1, sizeof(token1), "%g", (double)match_vector[i].second); strcat(token, token1); } } @@ -2256,8 +2256,8 @@ match_elts_in_species(const char *name, const char *mytemplate) if (copy_token(elt_name, &ptr1) == EMPTY) { error_string = sformatf( - "Expecting a nonempty list of element names in isotope sum. %s", - mytemplate); + "Expecting a nonempty list of element names in isotope sum. %s", + mytemplate); error_msg(error_string, CONTINUE); return (ERROR); } @@ -2268,15 +2268,15 @@ match_elts_in_species(const char *name, const char *mytemplate) /* * Compare string */ - /* Cases: 0 exact match - * 1 leading wild card - * 2 trailing wild card - * 3 leading and trailing wild card - */ + /* Cases: 0 exact match + * 1 leading wild card + * 2 trailing wild card + * 3 leading and trailing wild card + */ case_no = 0; if (template1[0] == '*') case_no = 1; - l = (int) strlen(template1); + l = (int)strlen(template1); if (template1[l - 1] == '*') { if (case_no != 1) @@ -2325,11 +2325,11 @@ match_elts_in_species(const char *name, const char *mytemplate) /* ---------------------------------------------------------------------- */ int Phreeqc:: -extract_bracket(const char **string, char *bracket_string) +extract_bracket(const char** string, char* bracket_string) /* ---------------------------------------------------------------------- */ { const char* cptr; - char *ptr1; + char* ptr1; if ((cptr = strstr(*string, "{")) == NULL) return (FALSE); @@ -2337,8 +2337,8 @@ extract_bracket(const char **string, char *bracket_string) if ((ptr1 = strstr(bracket_string, "}")) == NULL) { error_string = sformatf( - "No matching bracket (}) in isotope template string %s", - *string); + "No matching bracket (}) in isotope template string %s", + *string); error_msg(error_string, CONTINUE); input_error++; return (FALSE); @@ -2350,12 +2350,12 @@ extract_bracket(const char **string, char *bracket_string) } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -surf_total(const char *total_name, const char *surface_name) +surf_total(const char* total_name, const char* surface_name) /* ---------------------------------------------------------------------- */ { -/* - * Provides total moles in LDBLE layer - */ + /* + * Provides total moles in LDBLE layer + */ int j; if (use.Get_surface_ptr() == NULL || surface_name == NULL || total_name == NULL) @@ -2372,15 +2372,15 @@ surf_total(const char *total_name, const char *surface_name) { return surf_total_no_redox(total_name, surface_name); } - } -/* - * Find surface... - */ + } + /* + * Find surface... + */ for (j = 0; j < count_unknowns; j++) { if (x[j]->type != SURFACE) continue; - + std::string token; token = x[j]->master[0]->elt->name; replace("_", " ", token); @@ -2389,13 +2389,13 @@ surf_total(const char *total_name, const char *surface_name) std::string name; CParser::copy_token(name, b, e); if (strcmp(name.c_str(), surface_name) == 0) - break; + break; } if (j >= count_unknowns) return (0); -/* - * find total moles for redox state - */ + /* + * find total moles for redox state + */ LDBLE t = 0; for (j = 0; j < (int)this->s_x.size(); j++) { @@ -2403,7 +2403,7 @@ surf_total(const char *total_name, const char *surface_name) continue; std::string token; - bool match = false; + bool match = false; // find if surface matches for (int i = 0; s_x[j]->next_elt[i].elt != NULL; i++) @@ -2429,7 +2429,7 @@ surf_total(const char *total_name, const char *surface_name) if (!match) continue; // surface matches, now match element or redox state - class rxn_token *rxn_ptr; + class rxn_token* rxn_ptr; if (s_x[j]->mole_balance == NULL) { for (rxn_ptr = &s_x[j]->rxn_s.token[0] + 1; rxn_ptr->s != NULL; rxn_ptr++) @@ -2491,12 +2491,12 @@ surf_total(const char *total_name, const char *surface_name) /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -surf_total_no_redox(const char *total_name, const char *surface_name) +surf_total_no_redox(const char* total_name, const char* surface_name) /* ---------------------------------------------------------------------- */ { -/* - * Provides total moles in LDBLE layer - */ + /* + * Provides total moles in LDBLE layer + */ int i, j, k; char name[MAX_LENGTH], token[MAX_LENGTH]; char surface_name_local[MAX_LENGTH]; @@ -2505,9 +2505,9 @@ surf_total_no_redox(const char *total_name, const char *surface_name) if (use.Get_surface_ptr() == NULL) return (0); -/* - * Find surface... - */ + /* + * Find surface... + */ for (j = 0; j < count_unknowns; j++) { if (x[j]->type != SURFACE) @@ -2529,9 +2529,9 @@ surf_total_no_redox(const char *total_name, const char *surface_name) if (j >= count_unknowns) return (0); strcpy(surface_name_local, name); -/* - * find total moles of each element in diffuse layer... - */ + /* + * find total moles of each element in diffuse layer... + */ count_elts = 0; paren_count = 0; for (j = 0; j < (int)this->s_x.size(); j++) @@ -2548,9 +2548,9 @@ surf_total_no_redox(const char *total_name, const char *surface_name) copy_token(name, &cptr, &k); if (strcmp(name, surface_name_local) == 0) { -/* - * Accumulate elements in diffuse layer - */ + /* + * Accumulate elements in diffuse layer + */ add_elt_list(s_x[j]->next_elt, s_x[j]->moles); //fprintf(stderr, "%15s\t%e\t%s\t%s\n", s_x[j]->name, s_x[j]->moles, name, surface_name_local ); break; @@ -2558,24 +2558,24 @@ surf_total_no_redox(const char *total_name, const char *surface_name) } } elt_list_combine(); -/* - * Return totals - */ + /* + * Return totals + */ for (j = 0; j < count_elts; j++) { if (strcmp(elt_list[j].elt->name, total_name) == 0) { - return ((LDBLE) elt_list[j].coef); + return ((LDBLE)elt_list[j].coef); } } return (0); } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -total(const char *total_name) +total(const char* total_name) /* ---------------------------------------------------------------------- */ { - class master *master_ptr; + class master* master_ptr; LDBLE t; if (strcmp(total_name, "H") == 0) @@ -2600,15 +2600,15 @@ total(const char *total_name) { return (cb_x / mass_water_aq_x); } -/* - sprintf (error_string, "Cannot find definition for master species, %s.", - total_name); - warning_msg (error_string); -*/ + /* + sprintf (error_string, "Cannot find definition for master species, %s.", + total_name); + warning_msg (error_string); + */ } -/* - * Primary master species - */ + /* + * Primary master species + */ else if (master_ptr->primary == TRUE) { /* @@ -2625,16 +2625,16 @@ total(const char *total_name) { t = 0; for (size_t i = master_ptr->number + 1; - (i < (int)master.size() && master[i]->elt->primary == master_ptr); - i++) + (i < (int)master.size() && master[i]->elt->primary == master_ptr); + i++) { t += master[i]->total / mass_water_aq_x; } } } -/* - * Secondary master species - */ + /* + * Secondary master species + */ else { t = master_ptr->total / mass_water_aq_x; @@ -2643,10 +2643,10 @@ total(const char *total_name) } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -total_mole(const char *total_name) +total_mole(const char* total_name) /* ---------------------------------------------------------------------- */ { - class master *master_ptr; + class master* master_ptr; LDBLE t; if (strcmp(total_name, "H") == 0) @@ -2671,15 +2671,15 @@ total_mole(const char *total_name) { return (cb_x); } -/* - sprintf (error_string, "Cannot find definition for master species, %s.", - total_name); - warning_msg (error_string); -*/ + /* + sprintf (error_string, "Cannot find definition for master species, %s.", + total_name); + warning_msg (error_string); + */ } -/* - * Primary master species - */ + /* + * Primary master species + */ else if (master_ptr->primary == TRUE) { /* @@ -2696,16 +2696,16 @@ total_mole(const char *total_name) { t = 0; for (size_t i = master_ptr->number + 1; - (i < master.size() && master[i]->elt->primary == master_ptr); - i++) + (i < master.size() && master[i]->elt->primary == master_ptr); + i++) { t += master[i]->total; } } } -/* - * Secondary master species - */ + /* + * Secondary master species + */ else { t = master_ptr->total; @@ -2753,23 +2753,23 @@ get_edl_species(cxxSurfaceCharge & charge_ref) } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -edl_species(const char *surf_name, LDBLE * count, char ***names, LDBLE ** moles, LDBLE * area, LDBLE * thickness) +edl_species(const char* surf_name, LDBLE * count, char*** names, LDBLE * *moles, LDBLE * area, LDBLE * thickness) /* ---------------------------------------------------------------------- */ { -/* - * Provides total moles in system and lists of species/phases in sort order - */ + /* + * Provides total moles in system and lists of species/phases in sort order + */ int i; sys_tot = 0; sys.clear(); if (!(dl_type_x == cxxSurface::NO_DL)) { - cxxSurface *surface_ptr = use.Get_surface_ptr(); + cxxSurface* surface_ptr = use.Get_surface_ptr(); for (size_t i = 0; i < surface_ptr->Get_surface_charges().size(); i++) { - cxxSurfaceCharge & charge_ref = surface_ptr->Get_surface_charges()[i]; + cxxSurfaceCharge& charge_ref = surface_ptr->Get_surface_charges()[i]; if (strcmp(charge_ref.Get_name().c_str(), surf_name) == 0) - { + { get_edl_species(charge_ref); *area = charge_ref.Get_specific_area() * charge_ref.Get_grams(); *thickness = surface_ptr->Get_thickness(); @@ -2783,15 +2783,15 @@ edl_species(const char *surf_name, LDBLE * count, char ***names, LDBLE ** moles, if (sys.size() > 1) { qsort(&sys[0], sys.size(), - sizeof(class system_species), system_species_compare); + sizeof(class system_species), system_species_compare); } /* * malloc space */ - *names = (char **) PHRQ_malloc((sys.size() + 1) * sizeof(char *)); + *names = (char**)PHRQ_malloc((sys.size() + 1) * sizeof(char*)); if (names == NULL) malloc_error(); - *moles = (LDBLE *) PHRQ_malloc((sys.size() + 1) * sizeof(LDBLE)); + *moles = (LDBLE*)PHRQ_malloc((sys.size() + 1) * sizeof(LDBLE)); if (moles == NULL) malloc_error(); @@ -2807,16 +2807,16 @@ edl_species(const char *surf_name, LDBLE * count, char ***names, LDBLE ** moles, //PHRQ_free(sys); sys.clear(); return (sys_tot); -} +} /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -system_total(const char *total_name, LDBLE * count, char ***names, - char ***types, LDBLE ** moles, int isort) -/* ---------------------------------------------------------------------- */ +system_total(const char* total_name, LDBLE * count, char*** names, + char*** types, LDBLE * *moles, int isort) + /* ---------------------------------------------------------------------- */ { -/* - * Provides total moles in system and lists of species/phases in sort order - */ + /* + * Provides total moles in system and lists of species/phases in sort order + */ int i; sys_tot = 0; @@ -2874,7 +2874,7 @@ system_total(const char *total_name, LDBLE * count, char ***names, if (sys.size() > 1 && isort == 0) { qsort(&sys[0], sys.size(), - sizeof(class system_species), system_species_compare); + sizeof(class system_species), system_species_compare); } else if (sys.size() > 1) { @@ -2885,13 +2885,13 @@ system_total(const char *total_name, LDBLE * count, char ***names, * malloc space */ size_t count_sys = sys.size(); - *names = (char **) PHRQ_malloc((count_sys + 1) * sizeof(char *)); + *names = (char**)PHRQ_malloc((count_sys + 1) * sizeof(char*)); if (names == NULL) malloc_error(); - *types = (char **) PHRQ_malloc((count_sys + 1) * sizeof(char *)); + *types = (char**)PHRQ_malloc((count_sys + 1) * sizeof(char*)); if (types == NULL) malloc_error(); - *moles = (LDBLE *) PHRQ_malloc((count_sys + 1) * sizeof(LDBLE)); + *moles = (LDBLE*)PHRQ_malloc((count_sys + 1) * sizeof(LDBLE)); if (moles == NULL) malloc_error(); @@ -2904,7 +2904,7 @@ system_total(const char *total_name, LDBLE * count, char ***names, (*types)[i + 1] = sys[i].type; (*moles)[i + 1] = sys[i].moles; } - *count = (LDBLE) count_sys; + *count = (LDBLE)count_sys; if (strcmp_nocase(total_name, "elements") == 0) { sys_tot = 0;; @@ -2926,13 +2926,13 @@ system_total(const char *total_name, LDBLE * count, char ***names, /* ---------------------------------------------------------------------- */ std::string Phreeqc:: -kinetics_formula(std::string kin_name, cxxNameDouble &stoichiometry) +kinetics_formula(std::string kin_name, cxxNameDouble & stoichiometry) /* ---------------------------------------------------------------------- */ { -/* - * Returns formula of kinetic reactant - * Also returns arrays of elements and stoichiometry in stoichiometry - */ + /* + * Returns formula of kinetic reactant + * Also returns arrays of elements and stoichiometry in stoichiometry + */ stoichiometry.clear(); std::string formula; @@ -2941,54 +2941,54 @@ kinetics_formula(std::string kin_name, cxxNameDouble &stoichiometry) std::vector comps = use.Get_kinetics_ptr()->Get_kinetics_comps(); count_elts = 0; paren_count = 0; - for (size_t i=0 ; i < comps.size(); i++) + for (size_t i = 0; i < comps.size(); i++) { - cxxKineticsComp *comp_ptr = &comps[i]; - if (kin_name == comp_ptr->Get_rate_name().c_str()) + cxxKineticsComp* comp_ptr = &comps[i]; + if (kin_name == comp_ptr->Get_rate_name().c_str()) + { + cxxNameDouble nd = comp_ptr->Get_namecoef(); + cxxNameDouble::iterator it = nd.begin(); + for (; it != nd.end(); it++) { - cxxNameDouble nd = comp_ptr->Get_namecoef(); - cxxNameDouble::iterator it = nd.begin(); - for ( ; it != nd.end(); it++) + // Try Phases + int l; + class phase* phase_ptr = phase_bsearch(it->first.c_str(), &l, FALSE); + if (phase_ptr != NULL) { - // Try Phases - int l; - class phase *phase_ptr = phase_bsearch(it->first.c_str(), &l, FALSE); - if (phase_ptr != NULL) - { - add_elt_list(phase_ptr->next_elt, it->second); - } - else - { - // add formula - std::string name = it->first; - LDBLE coef = it->second; - const char* cptr = &name[0]; - get_elts_in_species(&cptr, coef); - } + add_elt_list(phase_ptr->next_elt, it->second); + } + else + { + // add formula + std::string name = it->first; + LDBLE coef = it->second; + const char* cptr = &name[0]; + get_elts_in_species(&cptr, coef); } - formula.append(kin_name); - //elt_list[count_elts].elt = NULL; - elt_list_combine(); - stoichiometry = elt_list_NameDouble(); - break; } + formula.append(kin_name); + //elt_list[count_elts].elt = NULL; + elt_list_combine(); + stoichiometry = elt_list_NameDouble(); + break; + } } return (formula); } /* ---------------------------------------------------------------------- */ std::string Phreeqc:: -phase_formula(std::string phase_name, cxxNameDouble &stoichiometry) +phase_formula(std::string phase_name, cxxNameDouble & stoichiometry) /* ---------------------------------------------------------------------- */ { -/* - * Returns formula of mineral - * Also returns arrays of elements and stoichiometry in elts_arg and coef_arg - */ + /* + * Returns formula of mineral + * Also returns arrays of elements and stoichiometry in elts_arg and coef_arg + */ stoichiometry.clear(); std::string formula; int j; - class phase *phase_ptr = phase_bsearch(phase_name.c_str(), &j, FALSE); + class phase* phase_ptr = phase_bsearch(phase_name.c_str(), &j, FALSE); if (phase_ptr != NULL) { formula.append(phase_ptr->formula); @@ -3000,17 +3000,17 @@ phase_formula(std::string phase_name, cxxNameDouble &stoichiometry) } /* ---------------------------------------------------------------------- */ std::string Phreeqc:: -species_formula(std::string phase_name, cxxNameDouble &stoichiometry) +species_formula(std::string phase_name, cxxNameDouble & stoichiometry) /* ---------------------------------------------------------------------- */ { -/* - * Returns formula of mineral - * Also returns arrays of elements and stoichiometry in elts_arg and coef_arg - */ + /* + * Returns formula of mineral + * Also returns arrays of elements and stoichiometry in elts_arg and coef_arg + */ stoichiometry.clear(); std::string formula; formula = "none"; - class species *s_ptr = s_search(phase_name.c_str()); + class species* s_ptr = s_search(phase_name.c_str()); if (s_ptr != NULL) { cxxNameDouble nd(s_ptr->next_elt); @@ -3040,7 +3040,7 @@ system_total_elements(void) int i; LDBLE t; char name[MAX_LENGTH]; - class master *master_ptr; + class master* master_ptr; /* * Include H and O @@ -3113,7 +3113,7 @@ system_total_elements(void) { t = 0; for (size_t j = master_ptr->number + 1; - master[j]->elt->primary == master_ptr; j++) + master[j]->elt->primary == master_ptr; j++) { t += master[j]->total; } @@ -3126,7 +3126,7 @@ system_total_elements(void) { t = master_ptr->total; } - strcpy(name, master[i]->elt->name); + strcpy(name, master[i]->elt->name); count_sys = sys.size(); sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate(name); @@ -3155,7 +3155,7 @@ system_total_si(void) { int i; LDBLE si, iap; - class rxn_token *rxn_ptr; + class rxn_token* rxn_ptr; char name[MAX_LENGTH]; sys_tot = -999.9; @@ -3163,12 +3163,12 @@ system_total_si(void) { if (phases[i]->in == FALSE || phases[i]->type != SOLID) continue; -/* - * Print saturation index - */ + /* + * Print saturation index + */ iap = 0.0; for (rxn_ptr = &phases[i]->rxn_x.token[0] + 1; rxn_ptr->s != NULL; - rxn_ptr++) + rxn_ptr++) { iap += rxn_ptr->s->la * rxn_ptr->coef; } @@ -3190,13 +3190,13 @@ int Phreeqc:: system_total_aq(void) /* ---------------------------------------------------------------------- */ { -/* - * Provides total moles in system and lists of species/phases in sort order - */ + /* + * Provides total moles in system and lists of species/phases in sort order + */ int i; -/* - * find total moles in aq, surface, and exchange - */ + /* + * find total moles in aq, surface, and exchange + */ for (i = 0; i < (int)this->s_x.size(); i++) { //if (s_x[i]->type != AQ) @@ -3217,13 +3217,13 @@ int Phreeqc:: system_total_ex(void) /* ---------------------------------------------------------------------- */ { -/* - * Provides total moles in system and lists of species/phases in sort order - */ + /* + * Provides total moles in system and lists of species/phases in sort order + */ int i; -/* - * find total moles in aq, surface, and exchange - */ + /* + * find total moles in aq, surface, and exchange + */ for (i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type != EX) @@ -3245,13 +3245,13 @@ int Phreeqc:: system_total_surf(void) /* ---------------------------------------------------------------------- */ { -/* - * Provides total moles in system and lists of species/phases in sort order - */ + /* + * Provides total moles in system and lists of species/phases in sort order + */ int i; -/* - * find total moles in aq, surface, and exchange - */ + /* + * find total moles in aq, surface, and exchange + */ for (i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type != SURF) @@ -3270,20 +3270,20 @@ int Phreeqc:: system_total_gas(void) /* ---------------------------------------------------------------------- */ { -/* - * Provides total moles in system and lists of species/phases in sort order - */ + /* + * Provides total moles in system and lists of species/phases in sort order + */ int i; -/* - * find total in gas phase - */ + /* + * find total in gas phase + */ if (use.Get_gas_phase_ptr() == NULL) return (OK); - cxxGasPhase *gas_phase_ptr = use.Get_gas_phase_ptr(); + cxxGasPhase* gas_phase_ptr = use.Get_gas_phase_ptr(); for (size_t j = 0; j < gas_phase_ptr->Get_gas_comps().size(); j++) { - class phase *phase_ptr = phase_bsearch(gas_phase_ptr->Get_gas_comps()[j].Get_phase_name().c_str(), + class phase* phase_ptr = phase_bsearch(gas_phase_ptr->Get_gas_comps()[j].Get_phase_name().c_str(), &i, FALSE); assert(phase_ptr); size_t count_sys = sys.size(); @@ -3300,24 +3300,24 @@ int Phreeqc:: system_total_equi(void) /* ---------------------------------------------------------------------- */ { -/* - * Equilibrium phases - */ + /* + * Equilibrium phases + */ if (use.Get_pp_assemblage_ptr() == NULL) return (OK); std::map comps = use.Get_pp_assemblage_ptr()->Get_pp_assemblage_comps(); std::map ::iterator it = comps.begin(); - for ( ; it != comps.end(); it++) + for (; it != comps.end(); it++) { - cxxPPassemblageComp *comp_ptr = &(it->second); - int l; - class phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); - size_t count_sys = sys.size(); - sys.resize(count_sys + 1); - sys[count_sys].name = string_duplicate(phase_ptr->name); - sys[count_sys].moles = equi_phase(sys[count_sys].name); - sys_tot += sys[count_sys].moles; - sys[count_sys].type = string_duplicate("equi"); + cxxPPassemblageComp* comp_ptr = &(it->second); + int l; + class phase* phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + size_t count_sys = sys.size(); + sys.resize(count_sys + 1); + sys[count_sys].name = string_duplicate(phase_ptr->name); + sys[count_sys].moles = equi_phase(sys[count_sys].name); + sys_tot += sys[count_sys].moles; + sys[count_sys].type = string_duplicate("equi"); } return (OK); } @@ -3326,21 +3326,21 @@ int Phreeqc:: system_total_kin(void) /* ---------------------------------------------------------------------- */ { -/* - * Equilibrium phases - */ + /* + * Equilibrium phases + */ if (use.Get_kinetics_ptr() == NULL) return (OK); std::vector comps = use.Get_kinetics_ptr()->Get_kinetics_comps(); - for (size_t i=0 ; i < comps.size(); i++) + for (size_t i = 0; i < comps.size(); i++) { - cxxKineticsComp *comp_ptr = &comps[i]; - size_t count_sys = sys.size(); - sys.resize(count_sys + 1); - sys[count_sys].name = string_duplicate(comp_ptr->Get_rate_name().c_str()); - sys[count_sys].moles = comp_ptr->Get_m(); - sys_tot += sys[count_sys].moles; - sys[count_sys].type = string_duplicate("kin"); + cxxKineticsComp* comp_ptr = &comps[i]; + size_t count_sys = sys.size(); + sys.resize(count_sys + 1); + sys[count_sys].name = string_duplicate(comp_ptr->Get_rate_name().c_str()); + sys[count_sys].moles = comp_ptr->Get_m(); + sys_tot += sys[count_sys].moles; + sys[count_sys].type = string_duplicate("kin"); } return (OK); } @@ -3349,24 +3349,24 @@ int Phreeqc:: system_total_ss(void) /* ---------------------------------------------------------------------- */ { -/* - * Provides total moles in system and lists of species/phases in sort order - */ + /* + * Provides total moles in system and lists of species/phases in sort order + */ -/* - * Solid solutions - */ + /* + * Solid solutions + */ if (use.Get_ss_assemblage_ptr() == NULL) return (OK); - std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); + std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); for (size_t k = 0; k < ss_ptrs.size(); k++) { - cxxSS *ss_ptr = ss_ptrs[k]; + cxxSS* ss_ptr = ss_ptrs[k]; for (size_t i = 0; i < ss_ptr->Get_ss_comps().size(); i++) { - cxxSScomp *comp_ptr = &(ss_ptr->Get_ss_comps()[i]); + cxxSScomp* comp_ptr = &(ss_ptr->Get_ss_comps()[i]); int l; - class phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + class phase* phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); size_t count_sys = sys.size(); sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate(phase_ptr->name); @@ -3379,19 +3379,19 @@ system_total_ss(void) } /* ---------------------------------------------------------------------- */ int Phreeqc:: -system_total_elt(const char *total_name) +system_total_elt(const char* total_name) /* ---------------------------------------------------------------------- */ { -/* - * Provides total moles in system and lists of species/phases in sort order - */ + /* + * Provides total moles in system and lists of species/phases in sort order + */ int i, j, k; LDBLE molality, moles_excess, moles_surface, mass_water_surface; char name[MAX_LENGTH]; -/* - * find total moles in aq, surface, and exchange - */ + /* + * find total moles in aq, surface, and exchange + */ for (i = 0; i < (int)this->s_x.size(); i++) { count_elts = 0; @@ -3456,7 +3456,7 @@ system_total_elt(const char *total_name) { if (x[k]->type != SURFACE_CB) continue; - cxxSurfaceCharge *charge_ptr = use.Get_surface_ptr()->Find_charge(x[k]->surface_charge); + cxxSurfaceCharge* charge_ptr = use.Get_surface_ptr()->Find_charge(x[k]->surface_charge); i++; /* * Loop through all surface components, calculate each H2O surface (diffuse layer), @@ -3473,8 +3473,8 @@ system_total_elt(const char *total_name) moles_excess = mass_water_aq_x * molality * (charge_ptr->Get_g_map()[s_x[j]->z].Get_g() * s_x[j]->erm_ddl + - mass_water_surface / mass_water_aq_x * (s_x[j]->erm_ddl - - 1)); + mass_water_surface / mass_water_aq_x * (s_x[j]->erm_ddl - + 1)); moles_surface = mass_water_surface * molality + moles_excess; /* * Accumulate elements in diffuse layer @@ -3502,9 +3502,9 @@ system_total_elt(const char *total_name) } } } -/* - * find total moles in mineral phases - */ + /* + * find total moles in mineral phases + */ if (use.Get_pp_assemblage_in() == TRUE && use.Get_pp_assemblage_ptr() != NULL) { for (i = 0; i < count_unknowns; i++) @@ -3513,7 +3513,7 @@ system_total_elt(const char *total_name) continue; //std::map::iterator it; //it = pp_assemblage_ptr->Get_pp_assemblage_comps().find(x[i]->pp_assemblage_comp_name); - cxxPPassemblageComp * comp_ptr = (cxxPPassemblageComp * ) x[i]->pp_assemblage_comp_ptr; + cxxPPassemblageComp* comp_ptr = (cxxPPassemblageComp*)x[i]->pp_assemblage_comp_ptr; //if (it->second.Get_add_formula().size() > 0) if (comp_ptr->Get_add_formula().size() > 0) continue; @@ -3521,7 +3521,7 @@ system_total_elt(const char *total_name) paren_count = 0; int j; //class phase * phase_ptr = phase_bsearch(x[i]->pp_assemblage_comp_name, &j, FALSE); - class phase * phase_ptr = x[i]->phase; + class phase* phase_ptr = x[i]->phase; add_elt_list(phase_ptr->next_elt, x[i]->moles); elt_list_combine(); for (j = 0; j < count_elts; j++) @@ -3539,26 +3539,26 @@ system_total_elt(const char *total_name) } } } -/* - * Solid solutions - */ + /* + * Solid solutions + */ if (use.Get_ss_assemblage_ptr() != NULL) { - std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); + std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); for (size_t k = 0; k < ss_ptrs.size(); k++) { - cxxSS *ss_ptr = ss_ptrs[k]; + cxxSS* ss_ptr = ss_ptrs[k]; if (ss_ptr->Get_ss_in()) { for (size_t i = 0; i < ss_ptr->Get_ss_comps().size(); i++) { - cxxSScomp *comp_ptr = &(ss_ptr->Get_ss_comps()[i]); + cxxSScomp* comp_ptr = &(ss_ptr->Get_ss_comps()[i]); int l; - class phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + class phase* phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); count_elts = 0; paren_count = 0; add_elt_list(phase_ptr->next_elt, - comp_ptr->Get_moles()); + comp_ptr->Get_moles()); elt_list_combine(); for (j = 0; j < count_elts; j++) { @@ -3578,15 +3578,15 @@ system_total_elt(const char *total_name) } } } -/* - * find total in gas phase - */ + /* + * find total in gas phase + */ if (use.Get_gas_phase_ptr() != NULL) { - cxxGasPhase *gas_phase_ptr = use.Get_gas_phase_ptr(); + cxxGasPhase* gas_phase_ptr = use.Get_gas_phase_ptr(); for (size_t i = 0; i < gas_phase_ptr->Get_gas_comps().size(); i++) { - class phase *phase_ptr = + class phase* phase_ptr = phase_bsearch(gas_phase_ptr->Get_gas_comps()[i].Get_phase_name().c_str(), &k, FALSE); assert(phase_ptr); if (phase_ptr->in == TRUE) @@ -3619,19 +3619,19 @@ system_total_elt(const char *total_name) /* ---------------------------------------------------------------------- */ int Phreeqc:: -system_total_elt_secondary(const char *total_name) +system_total_elt_secondary(const char* total_name) /* ---------------------------------------------------------------------- */ { -/* - * Provides total moles in system and lists of species/phases in sort order - */ + /* + * Provides total moles in system and lists of species/phases in sort order + */ int i, j, k, l; LDBLE molality, moles_excess, moles_surface, mass_water_surface, sum, coef; char name[MAX_LENGTH]; -/* - * find total moles in aq, surface, and exchange - */ + /* + * find total moles in aq, surface, and exchange + */ for (i = 0; i < (int)this->s_x.size(); i++) { count_elts = 0; @@ -3697,7 +3697,7 @@ system_total_elt_secondary(const char *total_name) { if (x[k]->type != SURFACE_CB) continue; - cxxSurfaceCharge *charge_ptr = use.Get_surface_ptr()->Find_charge(x[k]->surface_charge); + cxxSurfaceCharge* charge_ptr = use.Get_surface_ptr()->Find_charge(x[k]->surface_charge); i++; /* * Loop through all surface components, calculate each H2O surface (diffuse layer), @@ -3748,9 +3748,9 @@ system_total_elt_secondary(const char *total_name) } } } -/* - * find total moles in mineral phases - */ + /* + * find total moles in mineral phases + */ if (use.Get_pp_assemblage_in() == TRUE && use.Get_pp_assemblage_ptr() != NULL) { for (i = 0; i < count_unknowns; i++) @@ -3759,7 +3759,7 @@ system_total_elt_secondary(const char *total_name) continue; //std::map::iterator it; //it = pp_assemblage_ptr->Get_pp_assemblage_comps().find(x[i]->pp_assemblage_comp_name); - cxxPPassemblageComp * comp_ptr = (cxxPPassemblageComp * ) x[i]->pp_assemblage_comp_ptr; + cxxPPassemblageComp* comp_ptr = (cxxPPassemblageComp*)x[i]->pp_assemblage_comp_ptr; //if (it->second.Get_add_formula().size() > 0) if (comp_ptr->Get_add_formula().size() > 0) continue; @@ -3767,8 +3767,8 @@ system_total_elt_secondary(const char *total_name) paren_count = 0; int j; //class phase * phase_ptr = phase_bsearch(x[i]->pp_assemblage_comp_name, &j, FALSE); - class phase * phase_ptr = x[i]->phase; - add_elt_list(phase_ptr->next_sys_total, x[i]->moles); + class phase* phase_ptr = x[i]->phase; + add_elt_list(phase_ptr->next_sys_total, x[i]->moles); elt_list_combine(); for (j = 0; j < count_elts; j++) { @@ -3786,26 +3786,26 @@ system_total_elt_secondary(const char *total_name) } } } -/* - * Solid solutions - */ + /* + * Solid solutions + */ if (use.Get_ss_assemblage_ptr() != NULL) { - std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); + std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); for (size_t i = 0; i < ss_ptrs.size(); i++) { - cxxSS *ss_ptr = ss_ptrs[i]; + cxxSS* ss_ptr = ss_ptrs[i]; if (ss_ptr->Get_ss_in()) { for (size_t k = 0; k < ss_ptr->Get_ss_comps().size(); k++) { - cxxSScomp *comp_ptr = &(ss_ptr->Get_ss_comps()[k]); + cxxSScomp* comp_ptr = &(ss_ptr->Get_ss_comps()[k]); int l; - class phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + class phase* phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); count_elts = 0; paren_count = 0; add_elt_list(phase_ptr->next_sys_total, - comp_ptr->Get_moles()); + comp_ptr->Get_moles()); elt_list_combine(); for (j = 0; j < count_elts; j++) { @@ -3825,15 +3825,15 @@ system_total_elt_secondary(const char *total_name) } } } -/* - * find total in gas phase - */ + /* + * find total in gas phase + */ if (use.Get_gas_phase_ptr() != NULL) { - cxxGasPhase *gas_phase_ptr = use.Get_gas_phase_ptr(); - for (size_t j = 0; j < gas_phase_ptr->Get_gas_comps().size(); j++) + cxxGasPhase* gas_phase_ptr = use.Get_gas_phase_ptr(); + for (size_t j = 0; j < gas_phase_ptr->Get_gas_comps().size(); j++) { - class phase *phase_ptr = + class phase* phase_ptr = phase_bsearch(gas_phase_ptr->Get_gas_comps()[j].Get_phase_name().c_str(), &i, FALSE); assert(phase_ptr); if (phase_ptr->in == TRUE) @@ -3841,13 +3841,13 @@ system_total_elt_secondary(const char *total_name) count_elts = 0; paren_count = 0; add_elt_list(phase_ptr->next_sys_total, - phase_ptr->moles_x); + phase_ptr->moles_x); elt_list_combine(); /* * Look for element */ - for (size_t j1 = 0; j1 < (size_t) count_elts; j1++) + for (size_t j1 = 0; j1 < (size_t)count_elts; j1++) { if (strcmp(elt_list[j1].elt->name, total_name) == 0) { @@ -3871,7 +3871,7 @@ int Phreeqc:: solution_number(void) /* ---------------------------------------------------------------------- */ { - Phreeqc * PhreeqcPtr = this; + Phreeqc* PhreeqcPtr = this; int soln_no = -999; if (PhreeqcPtr->state == TRANSPORT) { @@ -3904,17 +3904,17 @@ solution_number(void) } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -solution_sum_secondary(const char *total_name) +solution_sum_secondary(const char* total_name) /* ---------------------------------------------------------------------- */ { -/* - * Provides total moles in system and lists of species/phases in sort order - */ + /* + * Provides total moles in system and lists of species/phases in sort order + */ int i, j; LDBLE sum; -/* - * find total moles in aq, surface, and exchange - */ + /* + * find total moles in aq, surface, and exchange + */ sum = 0; for (i = 0; i < (int)this->s_x.size(); i++) { @@ -3948,13 +3948,13 @@ solution_sum_secondary(const char *total_name) /* ---------------------------------------------------------------------- */ int Phreeqc:: -system_species_compare(const void *ptr1, const void *ptr2) +system_species_compare(const void* ptr1, const void* ptr2) /* ---------------------------------------------------------------------- */ { - const class system_species *a, *b; + const class system_species* a, * b; - a = (const class system_species *) ptr1; - b = (const class system_species *) ptr2; + a = (const class system_species*)ptr1; + b = (const class system_species*)ptr2; if (a->moles < b->moles) return (1); if (a->moles > b->moles) @@ -3974,21 +3974,21 @@ system_species_compare_name(const void* ptr1, const void* ptr2) /* ---------------------------------------------------------------------- */ int Phreeqc:: -system_total_solids(cxxExchange *exchange_ptr, - cxxPPassemblage *pp_assemblage_ptr, - cxxGasPhase *gas_phase_ptr, - cxxSSassemblage *ss_assemblage_ptr, - cxxSurface *surface_ptr) -/* ---------------------------------------------------------------------- */ +system_total_solids(cxxExchange * exchange_ptr, + cxxPPassemblage * pp_assemblage_ptr, + cxxGasPhase * gas_phase_ptr, + cxxSSassemblage * ss_assemblage_ptr, + cxxSurface * surface_ptr) + /* ---------------------------------------------------------------------- */ { -/* - * Provides total moles in solid phases - */ + /* + * Provides total moles in solid phases + */ count_elts = 0; paren_count = 0; -/* - * find total moles in exchanger - */ + /* + * find total moles in exchanger + */ if (exchange_ptr != NULL) { for (size_t i = 0; i < exchange_ptr->Get_exchange_comps().size(); i++) @@ -4005,17 +4005,17 @@ system_total_solids(cxxExchange *exchange_ptr, } if (ss_assemblage_ptr != NULL) { - std::vector ss_ptrs = ss_assemblage_ptr->Vectorize(); + std::vector ss_ptrs = ss_assemblage_ptr->Vectorize(); for (size_t i = 0; i < ss_ptrs.size(); i++) { - cxxSS *ss_ptr = ss_ptrs[i]; + cxxSS* ss_ptr = ss_ptrs[i]; for (size_t j = 0; j < ss_ptr->Get_ss_comps().size(); j++) { - cxxSScomp *comp_ptr = &(ss_ptr->Get_ss_comps()[j]); + cxxSScomp* comp_ptr = &(ss_ptr->Get_ss_comps()[j]); int l; - class phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + class phase* phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); add_elt_list(phase_ptr->next_elt, - comp_ptr->Get_moles()); + comp_ptr->Get_moles()); } } } @@ -4024,7 +4024,7 @@ system_total_solids(cxxExchange *exchange_ptr, for (size_t j = 0; j < gas_phase_ptr->Get_gas_comps().size(); j++) { int i; - class phase *phase_ptr = + class phase* phase_ptr = phase_bsearch(gas_phase_ptr->Get_gas_comps()[j].Get_phase_name().c_str(), &i, FALSE); add_elt_list(phase_ptr->next_elt, gas_phase_ptr->Get_gas_comps()[j].Get_moles()); } @@ -4032,13 +4032,13 @@ system_total_solids(cxxExchange *exchange_ptr, if (pp_assemblage_ptr != NULL) { std::map::iterator it; - it = pp_assemblage_ptr->Get_pp_assemblage_comps().begin(); - for ( ; it != pp_assemblage_ptr->Get_pp_assemblage_comps().end(); it++) + it = pp_assemblage_ptr->Get_pp_assemblage_comps().begin(); + for (; it != pp_assemblage_ptr->Get_pp_assemblage_comps().end(); it++) { int j; - class phase * phase_ptr = phase_bsearch(it->first.c_str(), &j, FALSE); + class phase* phase_ptr = phase_bsearch(it->first.c_str(), &j, FALSE); add_elt_list(phase_ptr->next_elt, - it->second.Get_moles()); + it->second.Get_moles()); } } elt_list_combine(); @@ -4046,14 +4046,14 @@ system_total_solids(cxxExchange *exchange_ptr, } LDBLE Phreeqc:: -iso_value(const char *total_name) +iso_value(const char* total_name) { int j; char token[MAX_LENGTH]; char my_total_name[MAX_LENGTH]; strcpy(token, ""); strcpy(my_total_name, total_name); - while (replace(" ","_",my_total_name)); + while (replace(" ", "_", my_total_name)); for (j = 0; j < (int)isotope_ratio.size(); j++) { if (isotope_ratio[j]->ratio == MISSING) @@ -4063,11 +4063,11 @@ iso_value(const char *total_name) return (isotope_ratio[j]->converted_ratio); } strcpy(my_total_name, total_name); - while (replace("[","",my_total_name)); - while (replace("]","",my_total_name)); - strcat(token,"R("); - strcat(token,my_total_name); - strcat(token,")"); + while (replace("[", "", my_total_name)); + while (replace("]", "", my_total_name)); + strcat(token, "R("); + strcat(token, my_total_name); + strcat(token, ")"); for (j = 0; j < (int)isotope_ratio.size(); j++) { if (isotope_ratio[j]->ratio == MISSING) @@ -4079,16 +4079,16 @@ iso_value(const char *total_name) return -1000.; } -char * Phreeqc:: -iso_unit(const char *total_name) +char* Phreeqc:: +iso_unit(const char* total_name) { int j; char token[MAX_LENGTH], unit[MAX_LENGTH]; - class master_isotope *master_isotope_ptr; + class master_isotope* master_isotope_ptr; char my_total_name[MAX_LENGTH]; strcpy(token, ""); strcpy(my_total_name, total_name); - while (replace(" ","_",my_total_name)); + while (replace(" ", "_", my_total_name)); strcpy(unit, "unknown"); for (j = 0; j < (int)isotope_ratio.size(); j++) { @@ -4104,11 +4104,11 @@ iso_unit(const char *total_name) return string_duplicate(unit); } strcpy(my_total_name, total_name); - while (replace("[","",my_total_name)); - while (replace("]","",my_total_name)); - strcat(token,"R("); - strcat(token,my_total_name); - strcat(token,")"); + while (replace("[", "", my_total_name)); + while (replace("]", "", my_total_name)); + strcat(token, "R("); + strcat(token, my_total_name); + strcat(token, ")"); for (j = 0; j < (int)isotope_ratio.size(); j++) { if (isotope_ratio[j]->ratio == MISSING) @@ -4126,13 +4126,13 @@ iso_unit(const char *total_name) } int Phreeqc:: -basic_compile(const char *commands, void **lnbase, void **vbase, void **lpbase) +basic_compile(const char* commands, void** lnbase, void** vbase, void** lpbase) { return this->basic_interpreter->basic_compile(commands, lnbase, vbase, lpbase); } int Phreeqc:: -basic_run(char *commands, void *lnbase, void *vbase, void *lpbase) +basic_run(char* commands, void* lnbase, void* vbase, void* lpbase) { return this->basic_interpreter->basic_run(commands, lnbase, vbase, lpbase); } @@ -4149,7 +4149,7 @@ basic_free(void) #include "BasicCallback.h" double Phreeqc:: -basic_callback(double x1, double x2, const char * str) +basic_callback(double x1, double x2, const char* str) { if (this->basicCallback) { @@ -4162,10 +4162,10 @@ basic_callback(double x1, double x2, const char * str) #ifdef IPHREEQC_NO_FORTRAN_MODULE double Phreeqc:: -basic_callback(double x1, double x2, char * str) +basic_callback(double x1, double x2, char* str) #else double Phreeqc:: -basic_callback(double x1, double x2, const char * str) +basic_callback(double x1, double x2, const char* str) #endif { double local_x1 = x1; @@ -4173,35 +4173,35 @@ basic_callback(double x1, double x2, const char * str) if (basic_callback_ptr != NULL) { - return (*basic_callback_ptr) (x1, x2, (const char *) str, basic_callback_cookie); + return (*basic_callback_ptr) (x1, x2, (const char*)str, basic_callback_cookie); } if (basic_fortran_callback_ptr != NULL) { #ifdef IPHREEQC_NO_FORTRAN_MODULE - return (*basic_fortran_callback_ptr) (&local_x1, &local_x2, str, (int) strlen(str)); + return (*basic_fortran_callback_ptr) (&local_x1, &local_x2, str, (int)strlen(str)); #else - return (*basic_fortran_callback_ptr) (&local_x1, &local_x2, str, (int) strlen(str)); + return (*basic_fortran_callback_ptr) (&local_x1, &local_x2, str, (int)strlen(str)); #endif } return 0; } -void -Phreeqc::register_basic_callback(double (*fcn)(double x1, double x2, const char *str, void *cookie), void *cookie1) +void +Phreeqc::register_basic_callback(double (*fcn)(double x1, double x2, const char* str, void* cookie), void* cookie1) { this->basic_callback_ptr = fcn; this->basic_callback_cookie = cookie1; } #ifdef IPHREEQC_NO_FORTRAN_MODULE -void -Phreeqc::register_fortran_basic_callback(double ( *fcn)(double *x1, double *x2, char *str, size_t l)) +void +Phreeqc::register_fortran_basic_callback(double (*fcn)(double* x1, double* x2, char* str, size_t l)) { this->basic_fortran_callback_ptr = fcn; } #else -void -Phreeqc::register_fortran_basic_callback(double ( *fcn)(double *x1, double *x2, const char *str, int l)) +void +Phreeqc::register_fortran_basic_callback(double (*fcn)(double* x1, double* x2, const char* str, int l)) { this->basic_fortran_callback_ptr = fcn; } From 6721837c27fcdad9463a94e3ad9c2d9881f1094e Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Fri, 25 Aug 2023 19:44:03 -0600 Subject: [PATCH 095/384] Fixed bug that caused selected_output to accumulate in selected_output storage --- IPhreeqc.cpp | 19 ++++++++++++++++--- 1 file changed, 16 insertions(+), 3 deletions(-) diff --git a/IPhreeqc.cpp b/IPhreeqc.cpp index e648b313..4212aee8 100644 --- a/IPhreeqc.cpp +++ b/IPhreeqc.cpp @@ -1164,7 +1164,6 @@ void IPhreeqc::check_database(const char* sz_routine) delete (*it).second; } this->SelectedOutputMap.clear(); - this->SelectedOutputStringMap.clear(); // release this->LogString.clear(); @@ -1172,13 +1171,15 @@ void IPhreeqc::check_database(const char* sz_routine) this->OutputString.clear(); this->OutputLines.clear(); + // clear selected_output string storage + // GetSelectedOutputStringLine and GetSelectedOutputString std::map< int, std::string >::iterator mit = SelectedOutputStringMap.begin(); - for (; mit != SelectedOutputStringMap.begin(); ++mit) + for (; mit != SelectedOutputStringMap.end(); ++mit) { (*mit).second.clear(); } std::map< int, std::vector< std::string > >::iterator lit = this->SelectedOutputLinesMap.begin(); - for (; lit != this->SelectedOutputLinesMap.begin(); ++lit) + for (; lit != this->SelectedOutputLinesMap.end(); ++lit) { (*lit).second.clear(); } @@ -1245,6 +1246,18 @@ void IPhreeqc::do_run(const char* sz_routine, std::istream* pis, PFN_PRERUN_CALL this->PhreeqcPtr->dup_print(token, TRUE); if (this->PhreeqcPtr->read_input() == EOF) break; + + if (this->PhreeqcPtr->simulation == 1) + { + // force headings for selected output (on every call to do_run) + // might want to split tidy_punch to avoid duplicate searches like master_bsearch + std::map< int, SelectedOutput >::iterator pit = this->PhreeqcPtr->SelectedOutput_map.begin(); + for (; pit != this->PhreeqcPtr->SelectedOutput_map.end(); ++pit) + { + (*pit).second.Set_new_def(true); + this->PhreeqcPtr->keycount[Keywords::KEY_SELECTED_OUTPUT] = 1; + } + } // bool bWarning = false; std::map< int, SelectedOutput >::iterator mit = this->PhreeqcPtr->SelectedOutput_map.begin(); From 4d2181b79570209a2ed7cd11ac3f8b7d62ad6612 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Fri, 25 Aug 2023 19:44:03 -0600 Subject: [PATCH 096/384] Fixed bug that caused selected_output to accumulate in selected_output storage --- IPhreeqc.cpp | 19 ++++++++++++++++--- 1 file changed, 16 insertions(+), 3 deletions(-) diff --git a/IPhreeqc.cpp b/IPhreeqc.cpp index e648b313..4212aee8 100644 --- a/IPhreeqc.cpp +++ b/IPhreeqc.cpp @@ -1164,7 +1164,6 @@ void IPhreeqc::check_database(const char* sz_routine) delete (*it).second; } this->SelectedOutputMap.clear(); - this->SelectedOutputStringMap.clear(); // release this->LogString.clear(); @@ -1172,13 +1171,15 @@ void IPhreeqc::check_database(const char* sz_routine) this->OutputString.clear(); this->OutputLines.clear(); + // clear selected_output string storage + // GetSelectedOutputStringLine and GetSelectedOutputString std::map< int, std::string >::iterator mit = SelectedOutputStringMap.begin(); - for (; mit != SelectedOutputStringMap.begin(); ++mit) + for (; mit != SelectedOutputStringMap.end(); ++mit) { (*mit).second.clear(); } std::map< int, std::vector< std::string > >::iterator lit = this->SelectedOutputLinesMap.begin(); - for (; lit != this->SelectedOutputLinesMap.begin(); ++lit) + for (; lit != this->SelectedOutputLinesMap.end(); ++lit) { (*lit).second.clear(); } @@ -1245,6 +1246,18 @@ void IPhreeqc::do_run(const char* sz_routine, std::istream* pis, PFN_PRERUN_CALL this->PhreeqcPtr->dup_print(token, TRUE); if (this->PhreeqcPtr->read_input() == EOF) break; + + if (this->PhreeqcPtr->simulation == 1) + { + // force headings for selected output (on every call to do_run) + // might want to split tidy_punch to avoid duplicate searches like master_bsearch + std::map< int, SelectedOutput >::iterator pit = this->PhreeqcPtr->SelectedOutput_map.begin(); + for (; pit != this->PhreeqcPtr->SelectedOutput_map.end(); ++pit) + { + (*pit).second.Set_new_def(true); + this->PhreeqcPtr->keycount[Keywords::KEY_SELECTED_OUTPUT] = 1; + } + } // bool bWarning = false; std::map< int, SelectedOutput >::iterator mit = this->PhreeqcPtr->SelectedOutput_map.begin(); From 4662baee2f6d6857ee51330fa9d1768242e8b2f5 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Sat, 26 Aug 2023 18:15:23 -0600 Subject: [PATCH 097/384] Updated to pass unit tests on linux Added two additional selected_output tests: TestSelectedOutputFileMultipleRuns TestGetSelectedOutputRowCountMultipleRuns --- IPhreeqc.cpp | 27 ++++----------------------- 1 file changed, 4 insertions(+), 23 deletions(-) diff --git a/IPhreeqc.cpp b/IPhreeqc.cpp index 4212aee8..11f57a0a 100644 --- a/IPhreeqc.cpp +++ b/IPhreeqc.cpp @@ -1103,17 +1103,8 @@ void IPhreeqc::UnLoadDatabase(void) delete (*itt).second; } this->SelectedOutputMap.clear(); - - std::map< int, std::string >::iterator mit = this->SelectedOutputStringMap.begin(); - for (; mit != this->SelectedOutputStringMap.begin(); ++mit) - { - (*mit).second.clear(); - } - std::map< int, std::vector< std::string > >::iterator it = this->SelectedOutputLinesMap.begin(); - for (; it != this->SelectedOutputLinesMap.begin(); ++it) - { - (*it).second.clear(); - } + this->SelectedOutputStringMap.clear(); + this->SelectedOutputLinesMap.clear(); // clear dump string @@ -1164,6 +1155,8 @@ void IPhreeqc::check_database(const char* sz_routine) delete (*it).second; } this->SelectedOutputMap.clear(); + this->SelectedOutputStringMap.clear(); + this->SelectedOutputLinesMap.clear(); // release this->LogString.clear(); @@ -1171,18 +1164,6 @@ void IPhreeqc::check_database(const char* sz_routine) this->OutputString.clear(); this->OutputLines.clear(); - // clear selected_output string storage - // GetSelectedOutputStringLine and GetSelectedOutputString - std::map< int, std::string >::iterator mit = SelectedOutputStringMap.begin(); - for (; mit != SelectedOutputStringMap.end(); ++mit) - { - (*mit).second.clear(); - } - std::map< int, std::vector< std::string > >::iterator lit = this->SelectedOutputLinesMap.begin(); - for (; lit != this->SelectedOutputLinesMap.end(); ++lit) - { - (*lit).second.clear(); - } if (!this->DatabaseLoaded) { From 6e248c34be4094371c707879f5142cb2fe353a1f Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Sat, 26 Aug 2023 18:15:23 -0600 Subject: [PATCH 098/384] Updated to pass unit tests on linux Added two additional selected_output tests: TestSelectedOutputFileMultipleRuns TestGetSelectedOutputRowCountMultipleRuns --- IPhreeqc.cpp | 27 ++++----------------------- 1 file changed, 4 insertions(+), 23 deletions(-) diff --git a/IPhreeqc.cpp b/IPhreeqc.cpp index 4212aee8..11f57a0a 100644 --- a/IPhreeqc.cpp +++ b/IPhreeqc.cpp @@ -1103,17 +1103,8 @@ void IPhreeqc::UnLoadDatabase(void) delete (*itt).second; } this->SelectedOutputMap.clear(); - - std::map< int, std::string >::iterator mit = this->SelectedOutputStringMap.begin(); - for (; mit != this->SelectedOutputStringMap.begin(); ++mit) - { - (*mit).second.clear(); - } - std::map< int, std::vector< std::string > >::iterator it = this->SelectedOutputLinesMap.begin(); - for (; it != this->SelectedOutputLinesMap.begin(); ++it) - { - (*it).second.clear(); - } + this->SelectedOutputStringMap.clear(); + this->SelectedOutputLinesMap.clear(); // clear dump string @@ -1164,6 +1155,8 @@ void IPhreeqc::check_database(const char* sz_routine) delete (*it).second; } this->SelectedOutputMap.clear(); + this->SelectedOutputStringMap.clear(); + this->SelectedOutputLinesMap.clear(); // release this->LogString.clear(); @@ -1171,18 +1164,6 @@ void IPhreeqc::check_database(const char* sz_routine) this->OutputString.clear(); this->OutputLines.clear(); - // clear selected_output string storage - // GetSelectedOutputStringLine and GetSelectedOutputString - std::map< int, std::string >::iterator mit = SelectedOutputStringMap.begin(); - for (; mit != SelectedOutputStringMap.end(); ++mit) - { - (*mit).second.clear(); - } - std::map< int, std::vector< std::string > >::iterator lit = this->SelectedOutputLinesMap.begin(); - for (; lit != this->SelectedOutputLinesMap.end(); ++lit) - { - (*lit).second.clear(); - } if (!this->DatabaseLoaded) { From fd52458b43a1ffe79bd5c5f988da93774ae995c6 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Sun, 10 Sep 2023 13:35:39 -0600 Subject: [PATCH 099/384] release notes update --- RELEASE.TXT | 22 +++++++++++++++------- 1 file changed, 15 insertions(+), 7 deletions(-) diff --git a/RELEASE.TXT b/RELEASE.TXT index 72bb4647..84d566d2 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,5 +1,10 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ - + ----------------- + August 29, 2023 + ----------------- + PhreeqcRM: Fixed bug in memory allocation for selected output. One array accumulated lines + indefinitely, leading to ever increasing memory use. Memory use should now be relatively + constant once all selected output has been defined and used. ----------------- June 1, 2023 @@ -135,8 +140,10 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ May 19, 2023 ----------------- PhreeqcRM: - Renamed GetDensity and related functions to GetDensityCalculated. - Renamed SetDensity and related functions to SetDensityUser. + Changed documentation of GetDensity and related functions to GetDensityCalculated. + (GetDensity still exists for backward compatibility.) + Changed documentation of SetDensity and related functions to SetDensityUser. + (SetDensity still exists for backward compatibility.) Density is used to convert user-model concentrations to module solution definitions only if the units of the user-model concentrations are specified to be parts per million. The density specified by @@ -150,10 +157,12 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ The change in method names is intended to emphasize the difference between the user-specified densities and the module-calculated densities. - Renamed GetSaturation and related functions to GetSaturationCalculated. - Renamed SetSaturation and related functions to SetSaturationUser. + Changed documentation of GetSaturation and related functions to GetSaturationCalculated. + (GetSaturation still exists for backward compatibility.) + Changed documentation of SetSaturation and related functions to SetSaturationUser. + (SetSaturation still exists for backward compatibility.) - The values specified by SetSaturation are used to convert user-model concentrations to module solution definitions. + The values specified by SetSaturationUser are used to convert user-model concentrations to module solution definitions. For SetConcentrations, the volume of solution is calculated to be the user-specified saturation * porosity * representative volume. For GetConcentrations, two options are available to determine the solution volume, depending on the value specified for SetUseSolutionDensityVolume: (1) the solution volume is calculated by the reaction module @@ -165,7 +174,6 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ The change in method names is intended to emphasize the difference between the user-specified saturations and and the module-calculated saturations. - ----------------- April 16, 2023 ----------------- From 812061be2cf74e6a6191ad0bc9e1327016cdcc3b Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Tue, 31 Oct 2023 11:57:11 -0600 Subject: [PATCH 100/384] Turn off optimizing on k_temp --- phreeqcpp/prep.cpp | 8 ++++++++ 1 file changed, 8 insertions(+) diff --git a/phreeqcpp/prep.cpp b/phreeqcpp/prep.cpp index cc12fdc9..4600547c 100644 --- a/phreeqcpp/prep.cpp +++ b/phreeqcpp/prep.cpp @@ -5404,6 +5404,10 @@ calc_vm(LDBLE tc, LDBLE pa) return OK; } +#if defined(__INTEL_LLVM_COMPILER) +#pragma optimize( "", off ) +#endif + /* ---------------------------------------------------------------------- */ int Phreeqc:: k_temp(LDBLE tc, LDBLE pa) /* pa - pressure in atm */ @@ -5478,6 +5482,10 @@ k_temp(LDBLE tc, LDBLE pa) /* pa - pressure in atm */ return (OK); } +#if defined(__INTEL_LLVM_COMPILER) +#pragma optimize( "", on ) +#endif + /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: k_calc(LDBLE * l_logk, LDBLE tempk, LDBLE presPa) From 9b10ce3f5c6af4b43283830d0cbabbbc06f56910 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Tue, 31 Oct 2023 13:34:41 -0600 Subject: [PATCH 101/384] Try updated logical expression --- phreeqcpp/prep.cpp | 12 +++--------- 1 file changed, 3 insertions(+), 9 deletions(-) diff --git a/phreeqcpp/prep.cpp b/phreeqcpp/prep.cpp index 4600547c..1cf24f21 100644 --- a/phreeqcpp/prep.cpp +++ b/phreeqcpp/prep.cpp @@ -5404,10 +5404,6 @@ calc_vm(LDBLE tc, LDBLE pa) return OK; } -#if defined(__INTEL_LLVM_COMPILER) -#pragma optimize( "", off ) -#endif - /* ---------------------------------------------------------------------- */ int Phreeqc:: k_temp(LDBLE tc, LDBLE pa) /* pa - pressure in atm */ @@ -5417,7 +5413,9 @@ k_temp(LDBLE tc, LDBLE pa) /* pa - pressure in atm */ * Calculates log k's for all species and pure_phases */ - if (tc == current_tc && pa == current_pa && ((fabs(mu_x - current_mu) < 1e-3 * mu_x) || !mu_terms_in_logk)) + // if (tc == current_tc && pa == current_pa && ((fabs(mu_x - current_mu) < 1e-3 * mu_x) || !mu_terms_in_logk)) + // return OK; + if (tc != current_tc || pa != current_pa || !((fabs(mu_x - current_mu) < 1e-3 * mu_x) || !mu_terms_in_logk)) return OK; int i; @@ -5482,10 +5480,6 @@ k_temp(LDBLE tc, LDBLE pa) /* pa - pressure in atm */ return (OK); } -#if defined(__INTEL_LLVM_COMPILER) -#pragma optimize( "", on ) -#endif - /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: k_calc(LDBLE * l_logk, LDBLE tempk, LDBLE presPa) From 988bdee0a69a93e5f238a4508b0d1c46b685407f Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Tue, 31 Oct 2023 14:15:28 -0600 Subject: [PATCH 102/384] Try using goto(s) --- phreeqcpp/prep.cpp | 9 +++++++-- 1 file changed, 7 insertions(+), 2 deletions(-) diff --git a/phreeqcpp/prep.cpp b/phreeqcpp/prep.cpp index 1cf24f21..a8349d3e 100644 --- a/phreeqcpp/prep.cpp +++ b/phreeqcpp/prep.cpp @@ -5415,8 +5415,13 @@ k_temp(LDBLE tc, LDBLE pa) /* pa - pressure in atm */ // if (tc == current_tc && pa == current_pa && ((fabs(mu_x - current_mu) < 1e-3 * mu_x) || !mu_terms_in_logk)) // return OK; - if (tc != current_tc || pa != current_pa || !((fabs(mu_x - current_mu) < 1e-3 * mu_x) || !mu_terms_in_logk)) - return OK; + if (tc != current_tc) goto proceed; + if (pa != current_pa) goto proceed; + if (fabs(mu_x - current_mu) > 1e-3 * mu_x) goto proceed; + if (mu_terms_in_logk) goto proceed; + return OK; + +proceed: int i; LDBLE tempk = tc + 273.15; From e848160727ae1b749dae16ab6bc9716f5d50b51e Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Mon, 13 Nov 2023 14:32:40 -0700 Subject: [PATCH 103/384] warnings, strcat, strcpy --- Var.c | 2 +- phreeqcpp/NameDouble.cxx | 2 +- phreeqcpp/PBasic.cpp | 32 +++++---- phreeqcpp/Phreeqc.cpp | 2 +- phreeqcpp/Phreeqc.h | 1 - phreeqcpp/System.cxx | 6 +- phreeqcpp/basicsubs.cpp | 88 +++++++++++------------ phreeqcpp/input.cpp | 4 +- phreeqcpp/inverse.cpp | 14 ++-- phreeqcpp/isotopes.cpp | 4 +- phreeqcpp/model.cpp | 1 - phreeqcpp/nvector_serial.cpp | 2 +- phreeqcpp/parse.cpp | 2 +- phreeqcpp/print.cpp | 28 ++++---- phreeqcpp/read.cpp | 35 +++++---- phreeqcpp/step.cpp | 4 +- phreeqcpp/tally.cpp | 8 +-- phreeqcpp/tidy.cpp | 42 +++++------ phreeqcpp/transport.cpp | 2 +- phreeqcpp/utilities.cpp | 133 +---------------------------------- 20 files changed, 139 insertions(+), 273 deletions(-) diff --git a/Var.c b/Var.c index 381a572c..6b43ffaa 100644 --- a/Var.c +++ b/Var.c @@ -74,7 +74,7 @@ char* VarAllocString(const char* pSrc) char* psz; if (!pSrc) return NULL; psz = (char*) malloc(strlen(pSrc) + 1); - strcpy(psz, pSrc); + if(psz != NULL) strcpy(psz, pSrc); return psz; } diff --git a/phreeqcpp/NameDouble.cxx b/phreeqcpp/NameDouble.cxx index 3dcf9607..27c8c3a5 100644 --- a/phreeqcpp/NameDouble.cxx +++ b/phreeqcpp/NameDouble.cxx @@ -406,7 +406,7 @@ cxxNameDouble::add(const char *token, LDBLE total) // { char key[MAX_LENGTH]; - strcpy(key, token); + strcpy_s(key, MAX_LENGTH, token); cxxNameDouble::iterator current = (*this).find(key); if (current != (*this).end()) diff --git a/phreeqcpp/PBasic.cpp b/phreeqcpp/PBasic.cpp index a103b631..34e63041 100644 --- a/phreeqcpp/PBasic.cpp +++ b/phreeqcpp/PBasic.cpp @@ -550,7 +550,8 @@ numtostr(char * Result, LDBLE n) l_s[i] = '\0'; * p2c: basic.p, line 248: * Note: Modification of string length may translate incorrectly [146] * - return strcpy(Result, strltrim(l_s)); + strcpy_s(Result, MAX_LENGTH, strltrim(l_s)); + return Result; } */ } @@ -1746,16 +1747,16 @@ void PBasic:: snerr(const char * l_s) { char str[MAX_LENGTH] = {0}; - strcpy(str, "Syntax_error "); + strcpy_s(str, MAX_LENGTH, "Syntax_error "); if (phreeqci_gui) { _ASSERTE(nIDErrPrompt == 0); nIDErrPrompt = IDS_ERR_SYNTAX; } - strcat(str, l_s); - strcat(str, " in line: "); + strcat_s(str, MAX_LENGTH, l_s); + strcat_s(str, MAX_LENGTH, " in line: "); if (strcmp(inbuf, "run")) - strcat(str, inbuf); + strcat_s(str, MAX_LENGTH, inbuf); errormsg(str); } @@ -1763,16 +1764,16 @@ void PBasic:: tmerr(const char * l_s) { char str[MAX_LENGTH] = {0}; - strcpy(str, "Type mismatch error"); + strcpy_s(str, MAX_LENGTH, "Type mismatch error"); if (phreeqci_gui) { _ASSERTE(nIDErrPrompt == 0); nIDErrPrompt = IDS_ERR_MISMATCH; } - strcat(str, l_s); - strcat(str, " in line: "); + strcat_s(str, MAX_LENGTH, l_s); + strcat_s(str, MAX_LENGTH, " in line: "); if (strcmp(inbuf, "run")) - strcat(str, inbuf); + strcat_s(str, MAX_LENGTH, inbuf); errormsg(str); } @@ -1901,8 +1902,9 @@ require(int k, struct LOC_exec *LINK) if (item == command_tokens.end()) snerr(": missing unknown command"); else { - strcpy(str, ": missing "); - snerr(strcat(str, item->first.c_str())); + strcpy_s(str, MAX_LENGTH, ": missing "); + strcat_s(str, MAX_LENGTH, item->first.c_str()); + snerr(str); } #if !defined(R_SO) exit(4); @@ -2544,7 +2546,7 @@ factor(struct LOC_exec * LINK) size_t l = elt_name.size(); l = l < 256 ? 256 : l + 1; char* token = (char*)PhreeqcPtr->PHRQ_malloc(l * sizeof(char)); - strcpy(token, elt_name.c_str()); + strcpy_s(token, l, elt_name.c_str()); *elt_varrec->UU.U1.sval = token; } break; @@ -6240,9 +6242,9 @@ exec(void) _ASSERTE(nIDErrPrompt == 0); nIDErrPrompt = IDS_ERR_ILLEGAL; } - strcat(STR1, "Illegal command in line: "); + strcat_s(STR1, MAX_LENGTH, "Illegal command in line: "); if (strcmp(inbuf, "run")) - strcat(STR1, inbuf); + strcat_s(STR1, MAX_LENGTH, inbuf); errormsg(STR1); break; } @@ -6392,7 +6394,7 @@ cmdplot_xy(struct LOC_exec *LINK) n[i] = expr(LINK); if (n[i].stringval) { - strcpy(STR[i], n[i].UU.sval); + strcpy_s(STR[i], MAX_LENGTH, n[i].UU.sval); PhreeqcPtr->PHRQ_free(n[i].UU.sval); } else diff --git a/phreeqcpp/Phreeqc.cpp b/phreeqcpp/Phreeqc.cpp index 00febed2..a081801b 100644 --- a/phreeqcpp/Phreeqc.cpp +++ b/phreeqcpp/Phreeqc.cpp @@ -173,7 +173,7 @@ size_t Phreeqc::list_components(std::list &list_c) { if (it->first == "Charge") continue; char string[MAX_LENGTH]; - strcpy(string, it->first.c_str()); + strcpy_s(string, MAX_LENGTH, it->first.c_str()); class master *master_ptr = master_bsearch_primary(string); if (master_ptr == NULL) continue; if (master_ptr->type != AQ) continue; diff --git a/phreeqcpp/Phreeqc.h b/phreeqcpp/Phreeqc.h index f2ad5d52..07283482 100644 --- a/phreeqcpp/Phreeqc.h +++ b/phreeqcpp/Phreeqc.h @@ -1036,7 +1036,6 @@ public: int get_token(const char** eqnaddr, std::string& string, LDBLE* z, int* l); int islegit(const char c); void malloc_error(void); - int parse_couple(char* token); int print_centered(const char* string); static int replace(const char* str1, const char* str2, char* str); static void replace(std::string &stds, const char* str1, const char* str2); diff --git a/phreeqcpp/System.cxx b/phreeqcpp/System.cxx index ebae0af7..5b6f6e7b 100644 --- a/phreeqcpp/System.cxx +++ b/phreeqcpp/System.cxx @@ -66,11 +66,11 @@ cxxSystem::totalize(Phreeqc * phreeqc_ptr) if (this->solution != NULL) { char token[MAX_LENGTH]; - strcpy(token, "O"); + strcpy_s(token, MAX_LENGTH, "O"); this->totals[token] = this->solution->Get_total_o(); - strcpy(token, "H"); + strcpy_s(token, MAX_LENGTH, "H"); this->totals[token] = this->solution->Get_total_h(); - strcpy(token, "Charge"); + strcpy_s(token, MAX_LENGTH, "Charge"); this->totals[token] = this->solution->Get_cb(); this->totals.add_extensive(this->solution->Get_totals(), 1.0); } diff --git a/phreeqcpp/basicsubs.cpp b/phreeqcpp/basicsubs.cpp index 738c894a..645e915e 100644 --- a/phreeqcpp/basicsubs.cpp +++ b/phreeqcpp/basicsubs.cpp @@ -705,7 +705,7 @@ calc_logk_n(const char* name) { l_logk[i] = 0.0; } - strcpy(token, name); + strcpy_s(token, MAX_LENGTH, name); logk_ptr = logk_search(token); if (logk_ptr != NULL) { @@ -730,7 +730,7 @@ calc_logk_p(const char* name) LDBLE lk = -999.9; LDBLE l_logk[MAX_LOG_K_INDICES]; - strcpy(token, name); + strcpy_s(token, MAX_LENGTH, name); phase_ptr = phase_bsearch(token, &j, FALSE); if (phase_ptr != NULL) @@ -769,7 +769,7 @@ calc_logk_s(const char* name) class species* s_ptr; LDBLE lk, l_logk[MAX_LOG_K_INDICES]; - strcpy(token, name); + strcpy_s(token, MAX_LENGTH, name); s_ptr = s_search(token); if (s_ptr != NULL) { @@ -797,7 +797,7 @@ dh_a0(const char* name) class species* s_ptr; double a = -999.99; - strcpy(token, name); + strcpy_s(token, MAX_LENGTH, name); s_ptr = s_search(token); if (s_ptr != NULL) { @@ -819,7 +819,7 @@ dh_bdot(const char* name) } else { - strcpy(token, name); + strcpy_s(token, MAX_LENGTH, name); s_ptr = s_search(token); if (s_ptr != NULL) { @@ -839,7 +839,7 @@ calc_deltah_p(const char* name) LDBLE lkm, lkp; LDBLE l_logk[MAX_LOG_K_INDICES]; double dh = -999.99; - strcpy(token, name); + strcpy_s(token, MAX_LENGTH, name); phase_ptr = phase_bsearch(token, &j, FALSE); if (phase_ptr != NULL) @@ -879,7 +879,7 @@ calc_deltah_s(const char* name) class species* s_ptr; LDBLE lkm, lkp, l_logk[MAX_LOG_K_INDICES]; double dh = -999.99; - strcpy(token, name); + strcpy_s(token, MAX_LENGTH, name); s_ptr = s_search(token); if (s_ptr != NULL) { @@ -929,7 +929,7 @@ calc_surface_charge(const char* surface_name) if (token_ptr->s->type != SURF) continue; master_ptr = trxn.token[i].s->primary; - strcpy(token, master_ptr->elt->name); + strcpy_s(token, MAX_LENGTH, master_ptr->elt->name); replace("_", " ", token); cptr = token; copy_token(token1, &cptr, &j); @@ -1237,7 +1237,7 @@ calc_t_sc(const char* name) char token[MAX_LENGTH]; class species* s_ptr; - strcpy(token, name); + strcpy_s(token, MAX_LENGTH, name); s_ptr = s_search(token); if (s_ptr != NULL && s_ptr->in) { @@ -1262,7 +1262,7 @@ calc_f_visc(const char* name) if (print_viscosity) { - strcpy(token, name); + strcpy_s(token, MAX_LENGTH, name); s_ptr = s_search(token); if (s_ptr != NULL && s_ptr->in) return s_ptr->dw_t_visc; @@ -2111,7 +2111,7 @@ match_elts_in_species(const char* name, const char* mytemplate) char token1[MAX_LENGTH], template1[MAX_LENGTH], equal_list1[MAX_LENGTH]; char str[2]; - strcpy(token, name); + strcpy_s(token, MAX_LENGTH, name); squeeze_white(token); replace("(+", "(", token); if (strstr("token", "++") != NULL) @@ -2168,7 +2168,7 @@ match_elts_in_species(const char* name, const char* mytemplate) /* * Replace elements with first of equivalent elements */ - strcpy(template1, mytemplate); + strcpy_s(template1, MAX_LENGTH, mytemplate); squeeze_white(template1); cptr = template1; while (extract_bracket(&cptr, equal_list) == TRUE) @@ -2229,22 +2229,22 @@ match_elts_in_species(const char* name, const char* mytemplate) token[0] = '\0'; for (i = 0; i < count_match_tokens; i++) { - strcat(token, match_vector[i].first.c_str()); + strcat_s(token, MAX_LENGTH, match_vector[i].first.c_str()); if (match_vector[i].second != 1.0) { snprintf(token1, sizeof(token1), "%g", (double)match_vector[i].second); - strcat(token, token1); + strcat_s(token, MAX_LENGTH, token1); } } /* * Write a template name using first of equivalent elements */ - strcpy(template1, mytemplate); + strcpy_s(template1, MAX_LENGTH, mytemplate); squeeze_white(template1); cptr = template1; while (extract_bracket(&cptr, equal_list) == TRUE) { - strcpy(equal_list1, equal_list); + strcpy_s(equal_list1, MAX_LENGTH, equal_list); replace("{", "", equal_list); replace("}", "", equal_list); while (replace(",", " ", equal_list) == TRUE); @@ -2410,10 +2410,6 @@ surf_total(const char* total_name, const char* surface_name) { if (s_x[j]->next_elt[i].elt->master->type != SURF) continue; - //strcpy(token, s_x[j]->next_elt[i].elt->name); - //replace("_", " ", token); - //cptr = token; - //copy_token(name, &cptr, &k); token = s_x[j]->next_elt[i].elt->name; replace("_", " ", token); std::string::iterator b = token.begin(); @@ -2512,7 +2508,7 @@ surf_total_no_redox(const char* total_name, const char* surface_name) { if (x[j]->type != SURFACE) continue; - strcpy(token, x[j]->master[0]->elt->name); + strcpy_s(token, MAX_LENGTH, x[j]->master[0]->elt->name); replace("_", " ", token); cptr = token; copy_token(name, &cptr, &k); @@ -2528,7 +2524,7 @@ surf_total_no_redox(const char* total_name, const char* surface_name) } if (j >= count_unknowns) return (0); - strcpy(surface_name_local, name); + strcpy_s(surface_name_local, MAX_LENGTH, name); /* * find total moles of each element in diffuse layer... */ @@ -2542,7 +2538,7 @@ surf_total_no_redox(const char* total_name, const char* surface_name) { if (s_x[j]->next_elt[i].elt->master->type != SURF) continue; - strcpy(token, s_x[j]->next_elt[i].elt->name); + strcpy_s(token, MAX_LENGTH, s_x[j]->next_elt[i].elt->name); replace("_", " ", token); cptr = token; copy_token(name, &cptr, &k); @@ -2792,7 +2788,7 @@ edl_species(const char* surf_name, LDBLE * count, char*** names, LDBLE * *moles, if (names == NULL) malloc_error(); *moles = (LDBLE*)PHRQ_malloc((sys.size() + 1) * sizeof(LDBLE)); - if (moles == NULL) + if (*moles == NULL) malloc_error(); (*names)[0] = NULL; @@ -2886,13 +2882,13 @@ system_total(const char* total_name, LDBLE * count, char*** names, */ size_t count_sys = sys.size(); *names = (char**)PHRQ_malloc((count_sys + 1) * sizeof(char*)); - if (names == NULL) + if (*names == NULL) malloc_error(); *types = (char**)PHRQ_malloc((count_sys + 1) * sizeof(char*)); - if (types == NULL) + if (*types == NULL) malloc_error(); *moles = (LDBLE*)PHRQ_malloc((count_sys + 1) * sizeof(LDBLE)); - if (moles == NULL) + if (*moles == NULL) malloc_error(); (*names)[0] = NULL; @@ -3126,7 +3122,7 @@ system_total_elements(void) { t = master_ptr->total; } - strcpy(name, master[i]->elt->name); + strcpy_s(name, MAX_LENGTH, master[i]->elt->name); count_sys = sys.size(); sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate(name); @@ -3173,7 +3169,7 @@ system_total_si(void) iap += rxn_ptr->s->la * rxn_ptr->coef; } si = -phases[i]->lk + iap; - strcpy(name, phases[i]->name); + strcpy_s(name, MAX_LENGTH, phases[i]->name); size_t count_sys = sys.size(); sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate(name); @@ -3491,7 +3487,7 @@ system_total_elt(const char* total_name) { size_t count_sys = sys.size(); sys.resize(count_sys + 1); - strcpy(name, x[k]->master[0]->elt->name); + strcpy_s(name, MAX_LENGTH, x[k]->master[0]->elt->name); replace("_psi", "", name); sys[count_sys].name = string_duplicate(name); sys[count_sys].moles = elt_list[j].coef; @@ -3736,7 +3732,7 @@ system_total_elt_secondary(const char* total_name) } if (l >= count_elts) continue; - strcpy(name, x[k]->master[0]->elt->name); + strcpy_s(name, MAX_LENGTH, x[k]->master[0]->elt->name); replace("_psi", "", name); size_t count_sys = sys.size(); sys.resize(count_sys + 1); @@ -4051,8 +4047,8 @@ iso_value(const char* total_name) int j; char token[MAX_LENGTH]; char my_total_name[MAX_LENGTH]; - strcpy(token, ""); - strcpy(my_total_name, total_name); + strcpy_s(token, MAX_LENGTH, ""); + strcpy_s(my_total_name, MAX_LENGTH, total_name); while (replace(" ", "_", my_total_name)); for (j = 0; j < (int)isotope_ratio.size(); j++) { @@ -4062,12 +4058,12 @@ iso_value(const char* total_name) continue; return (isotope_ratio[j]->converted_ratio); } - strcpy(my_total_name, total_name); + strcpy_s(my_total_name, MAX_LENGTH, total_name); while (replace("[", "", my_total_name)); while (replace("]", "", my_total_name)); - strcat(token, "R("); - strcat(token, my_total_name); - strcat(token, ")"); + strcat_s(token, MAX_LENGTH, "R("); + strcat_s(token, MAX_LENGTH, my_total_name); + strcat_s(token, MAX_LENGTH, ")"); for (j = 0; j < (int)isotope_ratio.size(); j++) { if (isotope_ratio[j]->ratio == MISSING) @@ -4086,10 +4082,10 @@ iso_unit(const char* total_name) char token[MAX_LENGTH], unit[MAX_LENGTH]; class master_isotope* master_isotope_ptr; char my_total_name[MAX_LENGTH]; - strcpy(token, ""); - strcpy(my_total_name, total_name); + strcpy_s(token, MAX_LENGTH, ""); + strcpy_s(my_total_name, MAX_LENGTH, total_name); while (replace(" ", "_", my_total_name)); - strcpy(unit, "unknown"); + strcpy_s(unit, MAX_LENGTH, "unknown"); for (j = 0; j < (int)isotope_ratio.size(); j++) { if (isotope_ratio[j]->ratio == MISSING) @@ -4099,16 +4095,16 @@ iso_unit(const char* total_name) master_isotope_ptr = master_isotope_search(isotope_ratio[j]->isotope_name); if (master_isotope_ptr != NULL) { - strcpy(unit, master_isotope_ptr->units); + strcpy_s(unit, MAX_LENGTH, master_isotope_ptr->units); } return string_duplicate(unit); } - strcpy(my_total_name, total_name); + strcpy_s(my_total_name, MAX_LENGTH, total_name); while (replace("[", "", my_total_name)); while (replace("]", "", my_total_name)); - strcat(token, "R("); - strcat(token, my_total_name); - strcat(token, ")"); + strcat_s(token, MAX_LENGTH, "R("); + strcat_s(token, MAX_LENGTH, my_total_name); + strcat_s(token, MAX_LENGTH, ")"); for (j = 0; j < (int)isotope_ratio.size(); j++) { if (isotope_ratio[j]->ratio == MISSING) @@ -4118,7 +4114,7 @@ iso_unit(const char* total_name) master_isotope_ptr = master_isotope_search(isotope_ratio[j]->isotope_name); if (master_isotope_ptr != NULL) { - strcpy(unit, master_isotope_ptr->units); + strcpy_s(unit, MAX_LENGTH, master_isotope_ptr->units); } return string_duplicate(unit); } diff --git a/phreeqcpp/input.cpp b/phreeqcpp/input.cpp index 18339645..f9049554 100644 --- a/phreeqcpp/input.cpp +++ b/phreeqcpp/input.cpp @@ -124,7 +124,7 @@ get_line(void) if (line == NULL) malloc_error(); } - strcpy(line, phrq_io->Get_m_line().c_str()); - strcpy(line_save, phrq_io->Get_m_line_save().c_str()); + strcpy_s(line, max_line, phrq_io->Get_m_line().c_str()); + strcpy_s(line_save, max_line, phrq_io->Get_m_line_save().c_str()); return j; } diff --git a/phreeqcpp/inverse.cpp b/phreeqcpp/inverse.cpp index 72dffe40..7ecb66d4 100644 --- a/phreeqcpp/inverse.cpp +++ b/phreeqcpp/inverse.cpp @@ -54,10 +54,10 @@ inverse_models(void) */ if (inverse[n].pat != NULL) { - strcpy(string, inverse[n].pat); + strcpy_s(string, MAX_LENGTH, inverse[n].pat); if (replace(".pat", ".pat", string) != TRUE) { - strcat(string, ".pat"); + strcat_s(string, strlen(string), ".pat"); } netpath_file = fopen(string, "w"); if (netpath_file == NULL) @@ -4174,11 +4174,11 @@ print_total_multi(FILE * l_netpath_file, cxxSolution *solution_ptr, LDBLE sum; int i, found; - strcpy(elts[0], elt0); - strcpy(elts[1], elt1); - strcpy(elts[2], elt2); - strcpy(elts[3], elt3); - strcpy(elts[4], elt4); + strcpy_s(elts[0], MAX_LENGTH, elt0); + strcpy_s(elts[1], MAX_LENGTH, elt1); + strcpy_s(elts[2], MAX_LENGTH, elt2); + strcpy_s(elts[3], MAX_LENGTH, elt3); + strcpy_s(elts[4], MAX_LENGTH, elt4); sum = 0; diff --git a/phreeqcpp/isotopes.cpp b/phreeqcpp/isotopes.cpp index e09e43cb..e6900c98 100644 --- a/phreeqcpp/isotopes.cpp +++ b/phreeqcpp/isotopes.cpp @@ -982,7 +982,7 @@ print_isotope_ratios(void) /* * Print isotope ratio */ - strcpy(token, isotope_ratio[j]->name); + strcpy_s(token, MAX_LENGTH, isotope_ratio[j]->name); while (replace("_", " ", token) == TRUE); output_msg(sformatf( " %-20s\t%12.5e\t%15.5g %-10s\n", token, (double) isotope_ratio[j]->ratio, @@ -1045,7 +1045,7 @@ print_isotope_alphas(void) /* * Print isotope ratio */ - strcpy(token, isotope_alpha[j]->name); + strcpy_s(token, MAX_LENGTH, isotope_alpha[j]->name); while (replace("_", " ", token) == TRUE); if (isotope_alpha[j]->named_logk != NULL) { diff --git a/phreeqcpp/model.cpp b/phreeqcpp/model.cpp index eb5be6ab..60e077fb 100644 --- a/phreeqcpp/model.cpp +++ b/phreeqcpp/model.cpp @@ -884,7 +884,6 @@ int Phreeqc::gammas_a_f(int i1) { if (s_x[i]->rxn_x.token[j].s->type == EX) { - //strcpy(name, s_x[i]->rxn_x.token[j].s->name); name = s_x[i]->rxn_x.token[j].s->name; //m_ptr = s_x[i]->rxn_x.token[j].s->primary->elt->master; // appt debug break; diff --git a/phreeqcpp/nvector_serial.cpp b/phreeqcpp/nvector_serial.cpp index 761739f9..5c1ddfaf 100644 --- a/phreeqcpp/nvector_serial.cpp +++ b/phreeqcpp/nvector_serial.cpp @@ -173,7 +173,7 @@ M_EnvInit_Serial(integertype vec_length) me->ops->nvprint = N_VPrint_Serial; /* Attach ID tag */ - strcpy(me->tag, ID_TAG_S); + strcpy_s(me->tag, 8, ID_TAG_S); return (me); diff --git a/phreeqcpp/parse.cpp b/phreeqcpp/parse.cpp index 6ea041d9..2fed3fe5 100644 --- a/phreeqcpp/parse.cpp +++ b/phreeqcpp/parse.cpp @@ -133,7 +133,7 @@ parse_eq(char* eqn, std::vector& new_elt_list, int association) * Get elements in species or mineral formula */ count_elts = 0; - strcpy(token, trxn.token[0].name); + strcpy_s(token, MAX_LENGTH, trxn.token[0].name); replace("(s)", "", token); replace("(S)", "", token); replace("(g)", "", token); diff --git a/phreeqcpp/print.cpp b/phreeqcpp/print.cpp index 367b3c52..a0c51b9c 100644 --- a/phreeqcpp/print.cpp +++ b/phreeqcpp/print.cpp @@ -321,7 +321,7 @@ print_diffuse_layer(cxxSurfaceCharge *charge_ptr) add_elt_list(s_x[j]->next_elt, moles_surface); } /* - strcpy(token, s_h2o->name); + strcpy_s(token, MAX_LENGTH, s_h2o->name); ptr = &(token[0]); get_elts_in_species (&ptr, mass_water_surface / gfw_water); */ @@ -427,9 +427,9 @@ print_eh(void) /* * Print result */ - strcpy(token, master[i]->elt->name); - strcat(token, "/"); - strcat(token, master[k]->elt->name); + strcpy_s(token, MAX_LENGTH, master[i]->elt->name); + strcat_s(token, MAX_LENGTH, "/"); + strcat_s(token, MAX_LENGTH, master[k]->elt->name); output_msg(sformatf("\t%-15s%12.4f%12.4f\n", token, (double) pe, (double) eh)); } @@ -2904,34 +2904,34 @@ punch_identifiers(void) switch (state) { case 0: - strcpy(token, "init"); + strcpy_s(token, MAX_LENGTH, "init"); break; case 1: - strcpy(token, "i_soln"); + strcpy_s(token, MAX_LENGTH, "i_soln"); break; case 2: - strcpy(token, "i_exch"); + strcpy_s(token, MAX_LENGTH, "i_exch"); break; case 3: - strcpy(token, "i_surf"); + strcpy_s(token, MAX_LENGTH, "i_surf"); break; case 4: - strcpy(token, "i_gas"); + strcpy_s(token, MAX_LENGTH, "i_gas"); break; case 5: - strcpy(token, "react"); + strcpy_s(token, MAX_LENGTH, "react"); break; case 6: - strcpy(token, "inverse"); + strcpy_s(token, MAX_LENGTH, "inverse"); break; case 7: - strcpy(token, "advect"); + strcpy_s(token, MAX_LENGTH, "advect"); break; case 8: - strcpy(token, "transp"); + strcpy_s(token, MAX_LENGTH, "transp"); break; default: - strcpy(token, "unknown"); + strcpy_s(token, MAX_LENGTH, "unknown"); break; } fpunchf(PHAST_NULL("state"), sformat, token); diff --git a/phreeqcpp/read.cpp b/phreeqcpp/read.cpp index 9e875eff..663b0eb0 100644 --- a/phreeqcpp/read.cpp +++ b/phreeqcpp/read.cpp @@ -1097,7 +1097,7 @@ read_exchange_master_species(void) if (token[0] == '[') { cptr1 = token; get_elt(&cptr, element, &l); - strcpy(token, element); + strcpy_s(token, MAX_LENGTH, element); } */ replace("(+", "(", token); @@ -1752,7 +1752,7 @@ read_inv_phases(class inverse *inverse_ptr, const char* cptr) j = copy_token(token, &cptr, &l); if (j == EMPTY) break; - strcpy(token1, token); + strcpy_s(token1, MAX_LENGTH, token); str_tolower(token1); if (token1[0] == 'p') { @@ -3107,7 +3107,7 @@ read_master_species(void) if (token[0] == '[') { cptr1 = token; get_elt(&cptr, element, &l); - strcpy(token, element); + strcpy_s(token, MAX_LENGTH, element); } */ replace("(+", "(", token); @@ -3726,7 +3726,7 @@ read_phases(void) /* * Get pointer to each species in the reaction, store new species if necessary */ - strcpy(token1, trxn.token[0].name); + strcpy_s(token1, MAX_LENGTH, trxn.token[0].name); replace("(g)", "", token1); replace("(s)", "", token1); replace("(G)", "", token1); @@ -3739,7 +3739,7 @@ read_phases(void) (strstr(trxn.token[i].name, "(S)") == NULL) && (strstr(trxn.token[i].name, "(G)") == NULL)) { - strcpy(token1, trxn.token[i].name); + strcpy_s(token1, MAX_LENGTH, trxn.token[i].name); replace("(aq)", "", token1); replace("(AQ)", "", token1); replace("H2O(l)", "H2O", token1); @@ -5737,7 +5737,7 @@ read_use(void) /* * Read number */ - strcpy(token1, token); + strcpy_s(token1, MAX_LENGTH, token); for (;;) { i = copy_token(token, &cptr, &l); @@ -7013,16 +7013,16 @@ read_surface_master_species(void) master[count_master]->s = s_store(token1.c_str(), l_z, FALSE); } master[count_master]->primary = TRUE; - strcpy(token, master[count_master]->elt->name); + strcpy_s(token, MAX_LENGTH, master[count_master]->elt->name); count_master++; /* * Save values in master and species structure for surface psi */ - strcpy(token1, token); + strcpy_s(token1, MAX_LENGTH, token); replace("_", " ", token1); cptr1 = token1; copy_token(token, &cptr1, &l); - strcat(token, "_psi"); + strcat_s(token, MAX_LENGTH, "_psi"); add_psi_master_species(token); opt_save = OPTION_DEFAULT; break; @@ -7041,10 +7041,9 @@ add_psi_master_species(char *token) class species *s_ptr; class master *master_ptr; const char* cptr; - char token1[MAX_LENGTH]; + char token1[MAX_LENGTH] = ""; int i, n, plane; - - strcpy(token1, token); + strcpy_s(token1, MAX_LENGTH, token); for (plane = SURF_PSI; plane <= SURF_PSI2; plane++) { strcpy(token, token1); @@ -9481,7 +9480,7 @@ read_copy(void) switch (next_keyword) { case Keywords::KEY_NONE: /* Have not read line with keyword */ - strcpy(nonkeyword, token); + strcpy_s(nonkeyword, MAX_LENGTH, token); break; case Keywords::KEY_SOLUTION: /* Solution */ case Keywords::KEY_EQUILIBRIUM_PHASES: /* Pure phases */ @@ -9508,7 +9507,7 @@ read_copy(void) /* * Read source index */ - strcpy(token1, token); + strcpy_s(token1, MAX_LENGTH, token); i = copy_token(token, &cptr, &l); if (i == DIGIT) { @@ -9728,8 +9727,8 @@ cleanup_after_parser(CParser &parser) // check_key sets next_keyword if (parser.get_m_line_type() == PHRQ_io::LT_EOF) { - strcpy(line, ""); - strcpy(line_save, ""); + strcpy_s(line, max_line, ""); + strcpy_s(line_save, max_line, ""); next_keyword = Keywords::KEY_END; return(TRUE); } @@ -9751,8 +9750,8 @@ cleanup_after_parser(CParser &parser) if (line == NULL) malloc_error(); } - strcpy(line, parser.line().c_str()); - strcpy(line_save, parser.line_save().c_str()); + strcpy_s(line, max_line, parser.line().c_str()); + strcpy_s(line_save, max_line, parser.line_save().c_str()); return return_value; } /* ---------------------------------------------------------------------- */ diff --git a/phreeqcpp/step.cpp b/phreeqcpp/step.cpp index a5503f02..fcef4671 100644 --- a/phreeqcpp/step.cpp +++ b/phreeqcpp/step.cpp @@ -707,13 +707,13 @@ add_pp_assemblage(cxxPPassemblage *pp_assemblage_ptr) comp_ptr->Set_delta(0.0); if (comp_ptr->Get_add_formula().size() > 0) { - strcpy(token, comp_ptr->Get_add_formula().c_str()); + strcpy_s(token, MAX_LENGTH, comp_ptr->Get_add_formula().c_str()); cptr = &(token[0]); get_elts_in_species(&cptr, 1.0); } else { - strcpy(token, phase_ptr->formula); + strcpy_s(token, MAX_LENGTH, phase_ptr->formula); add_elt_list(phase_ptr->next_elt, 1.0); } if (comp_ptr->Get_moles() > 0.0) diff --git a/phreeqcpp/tally.cpp b/phreeqcpp/tally.cpp index 8fdb0e6a..98dc009d 100644 --- a/phreeqcpp/tally.cpp +++ b/phreeqcpp/tally.cpp @@ -914,13 +914,13 @@ build_tally_table(void) paren_count = 0; if (comp_ptr->Get_add_formula().size() > 0) { - strcpy(token, comp_ptr->Get_add_formula().c_str()); + strcpy_s(token, MAX_LENGTH, comp_ptr->Get_add_formula().c_str()); cptr = &(token[0]); get_elts_in_species(&cptr, 1.0); } else { - strcpy(token, phase_ptr->formula); + strcpy_s(token, MAX_LENGTH, phase_ptr->formula); add_elt_list(phase_ptr->next_elt, 1.0); } elt_list_combine(); @@ -971,7 +971,7 @@ build_tally_table(void) tally_table[n].type = Ss_phase; count_elts = 0; paren_count = 0; - strcpy(token, phase_ptr->formula); + strcpy_s(token, MAX_LENGTH, phase_ptr->formula); add_elt_list(phase_ptr->next_elt, 1.0); elt_list_combine(); tally_table[n].formula = elt_list_vsave(); @@ -1019,7 +1019,7 @@ build_tally_table(void) phase_ptr = NULL; if (kinetics_comp_ptr->Get_namecoef().size() == 1) { - strcpy(token, kinetics_comp_ptr->Get_namecoef().begin()->first.c_str()); + strcpy_s(token, MAX_LENGTH, kinetics_comp_ptr->Get_namecoef().begin()->first.c_str()); phase_ptr = phase_bsearch(token, &p, FALSE); } if (phase_ptr != NULL) diff --git a/phreeqcpp/tidy.cpp b/phreeqcpp/tidy.cpp index 2b038c22..f9d9228e 100644 --- a/phreeqcpp/tidy.cpp +++ b/phreeqcpp/tidy.cpp @@ -819,7 +819,7 @@ replace_solids_gases(void) /* try phase name without (g) or (s) */ if (phase_ptr == NULL) { - strcpy(token, token_ptr->name); + strcpy_s(token, MAX_LENGTH, token_ptr->name); replace("(g)", "", token); replace("(s)", "", token); replace("(G)", "", token); @@ -2013,8 +2013,8 @@ tidy_punch(void) " %s.", pair_ref.first.c_str()); warning_msg(error_string); } - //strcpy(token, "m_"); - //strcat(token, punch.molalities[i].name); + // strcpy_s(token, MAX_LENGTH, "m_"); + //strcat_s(token, punch.molalities[i].name); //fpunchf_heading(sformatf("%*s\t", l, token)); //if (punch.molalities[i].s == NULL) //{ @@ -2039,8 +2039,8 @@ tidy_punch(void) " %s.", pair_ref.first.c_str()); warning_msg(error_string); } - //strcpy(token, "la_"); - //strcat(token, punch.activities[i].name); + // strcpy_s(token, MAX_LENGTH, "la_"); + //strcat_s(token, punch.activities[i].name); //fpunchf_heading(sformatf("%*s\t", l, token)); //if (punch.activities[i].s == NULL) //{ @@ -2066,8 +2066,8 @@ tidy_punch(void) " %s.", pair_ref.first.c_str()); warning_msg(error_string); } - //strcpy(token, "d_"); - //strcat(token, punch.pure_phases[i].name); + // strcpy_s(token, MAX_LENGTH, "d_"); + //strcat_s(token, punch.pure_phases[i].name); //fpunchf_heading(sformatf("%*s\t", l, punch.pure_phases[i].name)); //fpunchf_heading(sformatf("%*s\t", l, token)); //if (punch.pure_phases[i].phase == NULL) @@ -2093,8 +2093,8 @@ tidy_punch(void) " %s.", pair_ref.first.c_str()); warning_msg(error_string); } - //strcpy(token, "si_"); - //strcat(token, punch.si[i].name); + // strcpy_s(token, MAX_LENGTH, "si_"); + //strcat_s(token, punch.si[i].name); //fpunchf_heading(sformatf("%*s\t", l, token)); //if (punch.si[i].phase == NULL) //{ @@ -2126,8 +2126,8 @@ tidy_punch(void) " %s.", pair_ref.first.c_str()); warning_msg(error_string); } - //strcpy(token, "g_"); - //strcat(token, punch.gases[i].name); + // strcpy_s(token, MAX_LENGTH, "g_"); + //strcat_s(token, punch.gases[i].name); //fpunchf_heading(sformatf("%*s\t", l, token)); //if (punch.gases[i].phase == NULL) //{ @@ -2149,11 +2149,11 @@ tidy_punch(void) name = "dk_"; name.append(pair_ref.first); fpunchf_heading(sformatf("%*s\t", l, name.c_str())); - //strcpy(token, "k_"); - //strcat(token, punch.kinetics[i].name); + // strcpy_s(token, MAX_LENGTH, "k_"); + //strcat_s(token, punch.kinetics[i].name); //fpunchf_heading(sformatf("%*s\t", l, token)); - //strcpy(token, "dk_"); - //strcat(token, punch.kinetics[i].name); + // strcpy_s(token, MAX_LENGTH, "dk_"); + //strcat_s(token, punch.kinetics[i].name); //fpunchf_heading(sformatf("%*s\t", l, token)); } @@ -2166,8 +2166,8 @@ tidy_punch(void) std::string name = "s_"; name.append(pair_ref.first); fpunchf_heading(sformatf("%*s\t", l, name.c_str())); - //strcpy(token, "s_"); - //strcat(token, punch.s_s[i].name); + // strcpy_s(token, MAX_LENGTH, "s_"); + //strcat_s(token, punch.s_s[i].name); //fpunchf_heading(sformatf("%*s\t", l, token)); } @@ -2196,8 +2196,8 @@ tidy_punch(void) // punch.isotopes[i].name, punch.isotopes[i].name); // warning_msg(error_string); //} - //strcpy(token, "I_"); - //strcat(token, punch.isotopes[i].name); + // strcpy_s(token, MAX_LENGTH, "I_"); + //strcat_s(token, punch.isotopes[i].name); //fpunchf_heading(sformatf("%*s\t", l, token)); } @@ -2227,8 +2227,8 @@ tidy_punch(void) // punch.calculate_values[i].name); // warning_msg(error_string); //} - //strcpy(token, "V_"); - //strcat(token, punch.calculate_values[i].name); + // strcpy_s(token, MAX_LENGTH, "V_"); + //strcat_s(token, punch.calculate_values[i].name); //fpunchf_heading(sformatf("%*s\t", l, token)); } diff --git a/phreeqcpp/transport.cpp b/phreeqcpp/transport.cpp index 90f51054..17c8bd35 100644 --- a/phreeqcpp/transport.cpp +++ b/phreeqcpp/transport.cpp @@ -1784,7 +1784,7 @@ set_initial_moles(int i) cxxExchComp comp; count_elts = 0; paren_count = 0; - strcpy(token, "X"); + strcpy_s(token, MAX_LENGTH, "X"); cptr = token; get_elts_in_species(&cptr, 2e-10); cptr = token; diff --git a/phreeqcpp/utilities.cpp b/phreeqcpp/utilities.cpp index d655f656..8f18a74f 100644 --- a/phreeqcpp/utilities.cpp +++ b/phreeqcpp/utilities.cpp @@ -233,7 +233,7 @@ compute_gfw(const char *string, LDBLE * gfw) count_elts = 0; paren_count = 0; - strcpy(token, string); + strcpy_s(token, MAX_LENGTH, string); cptr = token; if (get_elts_in_species(&cptr, 1.0) == ERROR) { @@ -640,135 +640,6 @@ malloc_error(void) return; } -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -parse_couple(char *token) -/* ---------------------------------------------------------------------- */ -{ -/* - * Parse couple puts redox couples in standard form - * "+" is removed and couples are rewritten in sort - * order. - */ - int e1, e2, p1, p2; - const char* cptr; - std::string elt1, elt2; - char paren1[MAX_LENGTH], paren2[MAX_LENGTH]; - - if (strcmp_nocase_arg1(token, "pe") == 0) - { - str_tolower(token); - return (OK); - } - while (replace("(+", "(", token) == TRUE); - cptr = token; - get_elt(&cptr, elt1, &e1); - if (*cptr != '(') - { - error_string = sformatf( "Element name must be followed by " - "parentheses in redox couple, %s.", token); - error_msg(error_string, CONTINUE); - parse_error++; - return (ERROR); - } - paren_count = 1; - paren1[0] = '('; - p1 = 1; - while (*cptr != '\0') - { - cptr++; - if (*cptr == '/' || *cptr == '\0') - { - error_string = sformatf( - "End of line or " "/" - " encountered before end of parentheses, %s.", token); - error_msg(error_string, CONTINUE); - return (ERROR); - } - paren1[p1++] = *cptr; - if (*cptr == '(') - paren_count++; - if (*cptr == ')') - paren_count--; - if (paren_count == 0) - break; - } - paren1[p1] = '\0'; - cptr++; - if (*cptr != '/') - { - error_string = sformatf( " " "/" " must follow parentheses " - "ending first half of redox couple, %s.", token); - error_msg(error_string, CONTINUE); - parse_error++; - return (ERROR); - } - cptr++; - get_elt(&cptr, elt2, &e2); - if (strcmp(elt1.c_str(), elt2.c_str()) != 0) - { - error_string = sformatf( "Redox couple must be two redox states " - "of the same element, %s.", token); - error_msg(error_string, CONTINUE); - return (ERROR); - } - if (*cptr != '(') - { - error_string = sformatf( "Element name must be followed by " - "parentheses in redox couple, %s.", token); - error_msg(error_string, CONTINUE); - parse_error++; - return (ERROR); - } - paren2[0] = '('; - paren_count = 1; - p2 = 1; - while (*cptr != '\0') - { - cptr++; - if (*cptr == '/' || *cptr == '\0') - { - error_string = sformatf( "End of line or " "/" " encountered" - " before end of parentheses, %s.", token); - error_msg(error_string, CONTINUE); - return (ERROR); - } - - paren2[p2++] = *cptr; - if (*cptr == '(') - paren_count++; - if (*cptr == ')') - paren_count--; - if (paren_count == 0) - break; - } - paren2[p2] = '\0'; - if (strcmp(paren1, paren2) < 0) - { - strcpy(token, elt1.c_str()); - strcat(token, paren1); - strcat(token, "/"); - strcat(token, elt2.c_str()); - strcat(token, paren2); - } - else if (strcmp(paren1, paren2) > 0) - { - strcpy(token, elt2.c_str()); - strcat(token, paren2); - strcat(token, "/"); - strcat(token, elt1.c_str()); - strcat(token, paren1); - } - else - { - error_string = sformatf( "Both parts of redox couple are the same, %s.", - token); - error_msg(error_string, CONTINUE); - return (ERROR); - } - return (OK); -} - /* ---------------------------------------------------------------------- */ int Phreeqc:: print_centered(const char *string) @@ -783,7 +654,7 @@ print_centered(const char *string) for (i = 0; i < l1; i++) token[i] = '-'; token[i] = '\0'; - strcat(token, string); + strcat_s(token, MAX_LENGTH, string); for (i = 0; i < l2; i++) token[i + l1 + l] = '-'; token[79] = '\0'; From 72796f154c7d4e50f873b960a8c59f87e09f9d55 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Mon, 13 Nov 2023 15:18:55 -0700 Subject: [PATCH 104/384] added --- phreeqcpp/input.cpp | 1 + 1 file changed, 1 insertion(+) diff --git a/phreeqcpp/input.cpp b/phreeqcpp/input.cpp index f9049554..ae7d453d 100644 --- a/phreeqcpp/input.cpp +++ b/phreeqcpp/input.cpp @@ -4,6 +4,7 @@ #include #include #include "phqalloc.h" +#include #if defined(PHREEQCI_GUI) #ifdef _DEBUG From 6d98c4e13d47a639495e688aa169e8cad5c042ec Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Mon, 13 Nov 2023 15:35:27 -0700 Subject: [PATCH 105/384] trying different header files --- phreeqcpp/input.cpp | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/phreeqcpp/input.cpp b/phreeqcpp/input.cpp index ae7d453d..ee844ca0 100644 --- a/phreeqcpp/input.cpp +++ b/phreeqcpp/input.cpp @@ -4,7 +4,9 @@ #include #include #include "phqalloc.h" -#include +#include "string.h" +#include +#include #if defined(PHREEQCI_GUI) #ifdef _DEBUG From 6d575967d49275e580a9cd36fada5f6987cfacef Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Tue, 14 Nov 2023 14:37:25 -0700 Subject: [PATCH 106/384] strcpy_safe and strcat_safe --- phreeqcpp/NameDouble.cxx | 2 +- phreeqcpp/PBasic.cpp | 30 +++++++------- phreeqcpp/Phreeqc.cpp | 3 +- phreeqcpp/System.cxx | 8 ++-- phreeqcpp/basicsubs.cpp | 76 ++++++++++++++++++------------------ phreeqcpp/common/Utils.cxx | 51 ++++++++++++++++++++++++ phreeqcpp/common/Utils.h | 3 +- phreeqcpp/input.cpp | 4 +- phreeqcpp/inverse.cpp | 14 +++---- phreeqcpp/isotopes.cpp | 5 ++- phreeqcpp/nvector_serial.cpp | 3 +- phreeqcpp/parse.cpp | 3 +- phreeqcpp/print.cpp | 28 ++++++------- phreeqcpp/read.cpp | 32 +++++++-------- phreeqcpp/step.cpp | 4 +- phreeqcpp/tally.cpp | 8 ++-- phreeqcpp/tidy.cpp | 42 ++++++++++---------- phreeqcpp/transport.cpp | 2 +- phreeqcpp/utilities.cpp | 4 +- 19 files changed, 189 insertions(+), 133 deletions(-) diff --git a/phreeqcpp/NameDouble.cxx b/phreeqcpp/NameDouble.cxx index 27c8c3a5..d9ceb6eb 100644 --- a/phreeqcpp/NameDouble.cxx +++ b/phreeqcpp/NameDouble.cxx @@ -406,7 +406,7 @@ cxxNameDouble::add(const char *token, LDBLE total) // { char key[MAX_LENGTH]; - strcpy_s(key, MAX_LENGTH, token); + Utilities::strcpy_safe(key, MAX_LENGTH, token); cxxNameDouble::iterator current = (*this).find(key); if (current != (*this).end()) diff --git a/phreeqcpp/PBasic.cpp b/phreeqcpp/PBasic.cpp index 34e63041..86c60359 100644 --- a/phreeqcpp/PBasic.cpp +++ b/phreeqcpp/PBasic.cpp @@ -550,7 +550,7 @@ numtostr(char * Result, LDBLE n) l_s[i] = '\0'; * p2c: basic.p, line 248: * Note: Modification of string length may translate incorrectly [146] * - strcpy_s(Result, MAX_LENGTH, strltrim(l_s)); + Utilities::strcpy_safe(Result, MAX_LENGTH, strltrim(l_s)); return Result; } */ } @@ -1747,16 +1747,16 @@ void PBasic:: snerr(const char * l_s) { char str[MAX_LENGTH] = {0}; - strcpy_s(str, MAX_LENGTH, "Syntax_error "); + Utilities::strcpy_safe(str, MAX_LENGTH, "Syntax_error "); if (phreeqci_gui) { _ASSERTE(nIDErrPrompt == 0); nIDErrPrompt = IDS_ERR_SYNTAX; } - strcat_s(str, MAX_LENGTH, l_s); - strcat_s(str, MAX_LENGTH, " in line: "); + Utilities::strcat_safe(str, MAX_LENGTH, l_s); + Utilities::strcat_safe(str, MAX_LENGTH, " in line: "); if (strcmp(inbuf, "run")) - strcat_s(str, MAX_LENGTH, inbuf); + Utilities::strcat_safe(str, MAX_LENGTH, inbuf); errormsg(str); } @@ -1764,16 +1764,16 @@ void PBasic:: tmerr(const char * l_s) { char str[MAX_LENGTH] = {0}; - strcpy_s(str, MAX_LENGTH, "Type mismatch error"); + Utilities::strcpy_safe(str, MAX_LENGTH, "Type mismatch error"); if (phreeqci_gui) { _ASSERTE(nIDErrPrompt == 0); nIDErrPrompt = IDS_ERR_MISMATCH; } - strcat_s(str, MAX_LENGTH, l_s); - strcat_s(str, MAX_LENGTH, " in line: "); + Utilities::strcat_safe(str, MAX_LENGTH, l_s); + Utilities::strcat_safe(str, MAX_LENGTH, " in line: "); if (strcmp(inbuf, "run")) - strcat_s(str, MAX_LENGTH, inbuf); + Utilities::strcat_safe(str, MAX_LENGTH, inbuf); errormsg(str); } @@ -1902,8 +1902,8 @@ require(int k, struct LOC_exec *LINK) if (item == command_tokens.end()) snerr(": missing unknown command"); else { - strcpy_s(str, MAX_LENGTH, ": missing "); - strcat_s(str, MAX_LENGTH, item->first.c_str()); + Utilities::strcpy_safe(str, MAX_LENGTH, ": missing "); + Utilities::strcat_safe(str, MAX_LENGTH, item->first.c_str()); snerr(str); } #if !defined(R_SO) @@ -2546,7 +2546,7 @@ factor(struct LOC_exec * LINK) size_t l = elt_name.size(); l = l < 256 ? 256 : l + 1; char* token = (char*)PhreeqcPtr->PHRQ_malloc(l * sizeof(char)); - strcpy_s(token, l, elt_name.c_str()); + Utilities::strcpy_safe(token, l, elt_name.c_str()); *elt_varrec->UU.U1.sval = token; } break; @@ -6242,9 +6242,9 @@ exec(void) _ASSERTE(nIDErrPrompt == 0); nIDErrPrompt = IDS_ERR_ILLEGAL; } - strcat_s(STR1, MAX_LENGTH, "Illegal command in line: "); + Utilities::strcat_safe(STR1, MAX_LENGTH, "Illegal command in line: "); if (strcmp(inbuf, "run")) - strcat_s(STR1, MAX_LENGTH, inbuf); + Utilities::strcat_safe(STR1, MAX_LENGTH, inbuf); errormsg(STR1); break; } @@ -6394,7 +6394,7 @@ cmdplot_xy(struct LOC_exec *LINK) n[i] = expr(LINK); if (n[i].stringval) { - strcpy_s(STR[i], MAX_LENGTH, n[i].UU.sval); + Utilities::strcpy_safe(STR[i], MAX_LENGTH, n[i].UU.sval); PhreeqcPtr->PHRQ_free(n[i].UU.sval); } else diff --git a/phreeqcpp/Phreeqc.cpp b/phreeqcpp/Phreeqc.cpp index a081801b..817bfa26 100644 --- a/phreeqcpp/Phreeqc.cpp +++ b/phreeqcpp/Phreeqc.cpp @@ -14,6 +14,7 @@ #include "PBasic.h" #include "Temperature.h" #include "SSassemblage.h" +#include "Utils.h" #if defined(PHREEQCI_GUI) #ifdef _DEBUG @@ -173,7 +174,7 @@ size_t Phreeqc::list_components(std::list &list_c) { if (it->first == "Charge") continue; char string[MAX_LENGTH]; - strcpy_s(string, MAX_LENGTH, it->first.c_str()); + Utilities::strcpy_safe(string, MAX_LENGTH, it->first.c_str()); class master *master_ptr = master_bsearch_primary(string); if (master_ptr == NULL) continue; if (master_ptr->type != AQ) continue; diff --git a/phreeqcpp/System.cxx b/phreeqcpp/System.cxx index 5b6f6e7b..1456f77f 100644 --- a/phreeqcpp/System.cxx +++ b/phreeqcpp/System.cxx @@ -14,7 +14,7 @@ #include "cxxMix.h" #include "Reaction.h" #include "Temperature.h" - +#include "Utils.h" #if defined(PHREEQCI_GUI) #ifdef _DEBUG #define new DEBUG_NEW @@ -66,11 +66,11 @@ cxxSystem::totalize(Phreeqc * phreeqc_ptr) if (this->solution != NULL) { char token[MAX_LENGTH]; - strcpy_s(token, MAX_LENGTH, "O"); + Utilities::strcpy_safe(token, MAX_LENGTH, "O"); this->totals[token] = this->solution->Get_total_o(); - strcpy_s(token, MAX_LENGTH, "H"); + Utilities::strcpy_safe(token, MAX_LENGTH, "H"); this->totals[token] = this->solution->Get_total_h(); - strcpy_s(token, MAX_LENGTH, "Charge"); + Utilities::strcpy_safe(token, MAX_LENGTH, "Charge"); this->totals[token] = this->solution->Get_cb(); this->totals.add_extensive(this->solution->Get_totals(), 1.0); } diff --git a/phreeqcpp/basicsubs.cpp b/phreeqcpp/basicsubs.cpp index 645e915e..bf545b4f 100644 --- a/phreeqcpp/basicsubs.cpp +++ b/phreeqcpp/basicsubs.cpp @@ -705,7 +705,7 @@ calc_logk_n(const char* name) { l_logk[i] = 0.0; } - strcpy_s(token, MAX_LENGTH, name); + Utilities::strcpy_safe(token, MAX_LENGTH, name); logk_ptr = logk_search(token); if (logk_ptr != NULL) { @@ -730,7 +730,7 @@ calc_logk_p(const char* name) LDBLE lk = -999.9; LDBLE l_logk[MAX_LOG_K_INDICES]; - strcpy_s(token, MAX_LENGTH, name); + Utilities::strcpy_safe(token, MAX_LENGTH, name); phase_ptr = phase_bsearch(token, &j, FALSE); if (phase_ptr != NULL) @@ -769,7 +769,7 @@ calc_logk_s(const char* name) class species* s_ptr; LDBLE lk, l_logk[MAX_LOG_K_INDICES]; - strcpy_s(token, MAX_LENGTH, name); + Utilities::strcpy_safe(token, MAX_LENGTH, name); s_ptr = s_search(token); if (s_ptr != NULL) { @@ -797,7 +797,7 @@ dh_a0(const char* name) class species* s_ptr; double a = -999.99; - strcpy_s(token, MAX_LENGTH, name); + Utilities::strcpy_safe(token, MAX_LENGTH, name); s_ptr = s_search(token); if (s_ptr != NULL) { @@ -819,7 +819,7 @@ dh_bdot(const char* name) } else { - strcpy_s(token, MAX_LENGTH, name); + Utilities::strcpy_safe(token, MAX_LENGTH, name); s_ptr = s_search(token); if (s_ptr != NULL) { @@ -839,7 +839,7 @@ calc_deltah_p(const char* name) LDBLE lkm, lkp; LDBLE l_logk[MAX_LOG_K_INDICES]; double dh = -999.99; - strcpy_s(token, MAX_LENGTH, name); + Utilities::strcpy_safe(token, MAX_LENGTH, name); phase_ptr = phase_bsearch(token, &j, FALSE); if (phase_ptr != NULL) @@ -879,7 +879,7 @@ calc_deltah_s(const char* name) class species* s_ptr; LDBLE lkm, lkp, l_logk[MAX_LOG_K_INDICES]; double dh = -999.99; - strcpy_s(token, MAX_LENGTH, name); + Utilities::strcpy_safe(token, MAX_LENGTH, name); s_ptr = s_search(token); if (s_ptr != NULL) { @@ -929,7 +929,7 @@ calc_surface_charge(const char* surface_name) if (token_ptr->s->type != SURF) continue; master_ptr = trxn.token[i].s->primary; - strcpy_s(token, MAX_LENGTH, master_ptr->elt->name); + Utilities::strcpy_safe(token, MAX_LENGTH, master_ptr->elt->name); replace("_", " ", token); cptr = token; copy_token(token1, &cptr, &j); @@ -1237,7 +1237,7 @@ calc_t_sc(const char* name) char token[MAX_LENGTH]; class species* s_ptr; - strcpy_s(token, MAX_LENGTH, name); + Utilities::strcpy_safe(token, MAX_LENGTH, name); s_ptr = s_search(token); if (s_ptr != NULL && s_ptr->in) { @@ -1262,7 +1262,7 @@ calc_f_visc(const char* name) if (print_viscosity) { - strcpy_s(token, MAX_LENGTH, name); + Utilities::strcpy_safe(token, MAX_LENGTH, name); s_ptr = s_search(token); if (s_ptr != NULL && s_ptr->in) return s_ptr->dw_t_visc; @@ -2111,7 +2111,7 @@ match_elts_in_species(const char* name, const char* mytemplate) char token1[MAX_LENGTH], template1[MAX_LENGTH], equal_list1[MAX_LENGTH]; char str[2]; - strcpy_s(token, MAX_LENGTH, name); + Utilities::strcpy_safe(token, MAX_LENGTH, name); squeeze_white(token); replace("(+", "(", token); if (strstr("token", "++") != NULL) @@ -2168,7 +2168,7 @@ match_elts_in_species(const char* name, const char* mytemplate) /* * Replace elements with first of equivalent elements */ - strcpy_s(template1, MAX_LENGTH, mytemplate); + Utilities::strcpy_safe(template1, MAX_LENGTH, mytemplate); squeeze_white(template1); cptr = template1; while (extract_bracket(&cptr, equal_list) == TRUE) @@ -2229,22 +2229,22 @@ match_elts_in_species(const char* name, const char* mytemplate) token[0] = '\0'; for (i = 0; i < count_match_tokens; i++) { - strcat_s(token, MAX_LENGTH, match_vector[i].first.c_str()); + Utilities::strcat_safe(token, MAX_LENGTH, match_vector[i].first.c_str()); if (match_vector[i].second != 1.0) { snprintf(token1, sizeof(token1), "%g", (double)match_vector[i].second); - strcat_s(token, MAX_LENGTH, token1); + Utilities::strcat_safe(token, MAX_LENGTH, token1); } } /* * Write a template name using first of equivalent elements */ - strcpy_s(template1, MAX_LENGTH, mytemplate); + Utilities::strcpy_safe(template1, MAX_LENGTH, mytemplate); squeeze_white(template1); cptr = template1; while (extract_bracket(&cptr, equal_list) == TRUE) { - strcpy_s(equal_list1, MAX_LENGTH, equal_list); + Utilities::strcpy_safe(equal_list1, MAX_LENGTH, equal_list); replace("{", "", equal_list); replace("}", "", equal_list); while (replace(",", " ", equal_list) == TRUE); @@ -2508,7 +2508,7 @@ surf_total_no_redox(const char* total_name, const char* surface_name) { if (x[j]->type != SURFACE) continue; - strcpy_s(token, MAX_LENGTH, x[j]->master[0]->elt->name); + Utilities::strcpy_safe(token, MAX_LENGTH, x[j]->master[0]->elt->name); replace("_", " ", token); cptr = token; copy_token(name, &cptr, &k); @@ -2524,7 +2524,7 @@ surf_total_no_redox(const char* total_name, const char* surface_name) } if (j >= count_unknowns) return (0); - strcpy_s(surface_name_local, MAX_LENGTH, name); + Utilities::strcpy_safe(surface_name_local, MAX_LENGTH, name); /* * find total moles of each element in diffuse layer... */ @@ -2538,7 +2538,7 @@ surf_total_no_redox(const char* total_name, const char* surface_name) { if (s_x[j]->next_elt[i].elt->master->type != SURF) continue; - strcpy_s(token, MAX_LENGTH, s_x[j]->next_elt[i].elt->name); + Utilities::strcpy_safe(token, MAX_LENGTH, s_x[j]->next_elt[i].elt->name); replace("_", " ", token); cptr = token; copy_token(name, &cptr, &k); @@ -3122,7 +3122,7 @@ system_total_elements(void) { t = master_ptr->total; } - strcpy_s(name, MAX_LENGTH, master[i]->elt->name); + Utilities::strcpy_safe(name, MAX_LENGTH, master[i]->elt->name); count_sys = sys.size(); sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate(name); @@ -3169,7 +3169,7 @@ system_total_si(void) iap += rxn_ptr->s->la * rxn_ptr->coef; } si = -phases[i]->lk + iap; - strcpy_s(name, MAX_LENGTH, phases[i]->name); + Utilities::strcpy_safe(name, MAX_LENGTH, phases[i]->name); size_t count_sys = sys.size(); sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate(name); @@ -3487,7 +3487,7 @@ system_total_elt(const char* total_name) { size_t count_sys = sys.size(); sys.resize(count_sys + 1); - strcpy_s(name, MAX_LENGTH, x[k]->master[0]->elt->name); + Utilities::strcpy_safe(name, MAX_LENGTH, x[k]->master[0]->elt->name); replace("_psi", "", name); sys[count_sys].name = string_duplicate(name); sys[count_sys].moles = elt_list[j].coef; @@ -3732,7 +3732,7 @@ system_total_elt_secondary(const char* total_name) } if (l >= count_elts) continue; - strcpy_s(name, MAX_LENGTH, x[k]->master[0]->elt->name); + Utilities::strcpy_safe(name, MAX_LENGTH, x[k]->master[0]->elt->name); replace("_psi", "", name); size_t count_sys = sys.size(); sys.resize(count_sys + 1); @@ -4047,8 +4047,8 @@ iso_value(const char* total_name) int j; char token[MAX_LENGTH]; char my_total_name[MAX_LENGTH]; - strcpy_s(token, MAX_LENGTH, ""); - strcpy_s(my_total_name, MAX_LENGTH, total_name); + Utilities::strcpy_safe(token, MAX_LENGTH, ""); + Utilities::strcpy_safe(my_total_name, MAX_LENGTH, total_name); while (replace(" ", "_", my_total_name)); for (j = 0; j < (int)isotope_ratio.size(); j++) { @@ -4058,12 +4058,12 @@ iso_value(const char* total_name) continue; return (isotope_ratio[j]->converted_ratio); } - strcpy_s(my_total_name, MAX_LENGTH, total_name); + Utilities::strcpy_safe(my_total_name, MAX_LENGTH, total_name); while (replace("[", "", my_total_name)); while (replace("]", "", my_total_name)); - strcat_s(token, MAX_LENGTH, "R("); - strcat_s(token, MAX_LENGTH, my_total_name); - strcat_s(token, MAX_LENGTH, ")"); + Utilities::strcat_safe(token, MAX_LENGTH, "R("); + Utilities::strcat_safe(token, MAX_LENGTH, my_total_name); + Utilities::strcat_safe(token, MAX_LENGTH, ")"); for (j = 0; j < (int)isotope_ratio.size(); j++) { if (isotope_ratio[j]->ratio == MISSING) @@ -4082,10 +4082,10 @@ iso_unit(const char* total_name) char token[MAX_LENGTH], unit[MAX_LENGTH]; class master_isotope* master_isotope_ptr; char my_total_name[MAX_LENGTH]; - strcpy_s(token, MAX_LENGTH, ""); - strcpy_s(my_total_name, MAX_LENGTH, total_name); + Utilities::strcpy_safe(token, MAX_LENGTH, ""); + Utilities::strcpy_safe(my_total_name, MAX_LENGTH, total_name); while (replace(" ", "_", my_total_name)); - strcpy_s(unit, MAX_LENGTH, "unknown"); + Utilities::strcpy_safe(unit, MAX_LENGTH, "unknown"); for (j = 0; j < (int)isotope_ratio.size(); j++) { if (isotope_ratio[j]->ratio == MISSING) @@ -4095,16 +4095,16 @@ iso_unit(const char* total_name) master_isotope_ptr = master_isotope_search(isotope_ratio[j]->isotope_name); if (master_isotope_ptr != NULL) { - strcpy_s(unit, MAX_LENGTH, master_isotope_ptr->units); + Utilities::strcpy_safe(unit, MAX_LENGTH, master_isotope_ptr->units); } return string_duplicate(unit); } - strcpy_s(my_total_name, MAX_LENGTH, total_name); + Utilities::strcpy_safe(my_total_name, MAX_LENGTH, total_name); while (replace("[", "", my_total_name)); while (replace("]", "", my_total_name)); - strcat_s(token, MAX_LENGTH, "R("); - strcat_s(token, MAX_LENGTH, my_total_name); - strcat_s(token, MAX_LENGTH, ")"); + Utilities::strcat_safe(token, MAX_LENGTH, "R("); + Utilities::strcat_safe(token, MAX_LENGTH, my_total_name); + Utilities::strcat_safe(token, MAX_LENGTH, ")"); for (j = 0; j < (int)isotope_ratio.size(); j++) { if (isotope_ratio[j]->ratio == MISSING) @@ -4114,7 +4114,7 @@ iso_unit(const char* total_name) master_isotope_ptr = master_isotope_search(isotope_ratio[j]->isotope_name); if (master_isotope_ptr != NULL) { - strcpy_s(unit, MAX_LENGTH, master_isotope_ptr->units); + Utilities::strcpy_safe(unit, MAX_LENGTH, master_isotope_ptr->units); } return string_duplicate(unit); } diff --git a/phreeqcpp/common/Utils.cxx b/phreeqcpp/common/Utils.cxx index 72fc8c2d..1eafd439 100644 --- a/phreeqcpp/common/Utils.cxx +++ b/phreeqcpp/common/Utils.cxx @@ -181,6 +181,57 @@ Utilities::safe_exp(LDBLE t) } return exp(t); } +size_t Utilities:: +strcpy_safe(char* dest, size_t max, const char* src) +{ + size_t lsrc = 0; + try + { + if (dest == nullptr || src == nullptr) + { + std::cerr << "nullptr in Utilities::strcpy_safe." << std::endl; + throw; + } + lsrc = strlen(src); + if (lsrc + 1 > max) + { + std::cerr << "Buffer overrun in Utilities::strcpy_safe." << std::endl; + throw; + } + memcpy(dest, src, (lsrc + 1) * sizeof(char)); + } + catch (...) + { + throw; + } + return lsrc; +} +size_t Utilities:: +strcat_safe(char* dest, size_t max, const char* src) +{ + size_t ldest = 0, lsrc = 0; + try + { + if (dest == nullptr || src == nullptr) + { + std::cerr << "nullptr in Utilities::strcat_safe." << std::endl; + throw; + } + lsrc = strlen(src); + ldest = strlen(dest); + if (ldest + lsrc + 1 > max) + { + std::cerr << "Buffer overrun in Utilities::strcat_safe." << std::endl; + throw; + } + memcpy(&dest[ldest], src, (lsrc + 1) * sizeof(char)); + } + catch (...) + { + throw; + } + return ldest + lsrc; +} //+NAN LDBLE: 7ff8000000000000 //-NAN LDBLE: fff8000000000000 /* diff --git a/phreeqcpp/common/Utils.h b/phreeqcpp/common/Utils.h index 74997731..3eb93676 100644 --- a/phreeqcpp/common/Utils.h +++ b/phreeqcpp/common/Utils.h @@ -20,7 +20,8 @@ namespace Utilities void str_toupper(std::string & str); std::string pad_right(const std::string & str, size_t l); bool replace(const char *str1, const char *str2, std::string & str); - + size_t strcat_safe(char* dest, size_t max, const char* src); + size_t strcpy_safe(char* dest, size_t max, const char* src); void squeeze_white(std::string & s_l); double convert_time(double t, std::string in, std::string out); LDBLE safe_exp(LDBLE t); diff --git a/phreeqcpp/input.cpp b/phreeqcpp/input.cpp index ee844ca0..7235f4ef 100644 --- a/phreeqcpp/input.cpp +++ b/phreeqcpp/input.cpp @@ -127,7 +127,7 @@ get_line(void) if (line == NULL) malloc_error(); } - strcpy_s(line, max_line, phrq_io->Get_m_line().c_str()); - strcpy_s(line_save, max_line, phrq_io->Get_m_line_save().c_str()); + Utilities::strcpy_safe(line, max_line, phrq_io->Get_m_line().c_str()); + Utilities::strcpy_safe(line_save, max_line, phrq_io->Get_m_line_save().c_str()); return j; } diff --git a/phreeqcpp/inverse.cpp b/phreeqcpp/inverse.cpp index 7ecb66d4..a25b8a2c 100644 --- a/phreeqcpp/inverse.cpp +++ b/phreeqcpp/inverse.cpp @@ -54,10 +54,10 @@ inverse_models(void) */ if (inverse[n].pat != NULL) { - strcpy_s(string, MAX_LENGTH, inverse[n].pat); + Utilities::strcat_safe(string, MAX_LENGTH, inverse[n].pat); if (replace(".pat", ".pat", string) != TRUE) { - strcat_s(string, strlen(string), ".pat"); + Utilities::strcat_safe(string, strlen(string), ".pat"); } netpath_file = fopen(string, "w"); if (netpath_file == NULL) @@ -4174,11 +4174,11 @@ print_total_multi(FILE * l_netpath_file, cxxSolution *solution_ptr, LDBLE sum; int i, found; - strcpy_s(elts[0], MAX_LENGTH, elt0); - strcpy_s(elts[1], MAX_LENGTH, elt1); - strcpy_s(elts[2], MAX_LENGTH, elt2); - strcpy_s(elts[3], MAX_LENGTH, elt3); - strcpy_s(elts[4], MAX_LENGTH, elt4); + Utilities::strcat_safe(elts[0], MAX_LENGTH, elt0); + Utilities::strcat_safe(elts[1], MAX_LENGTH, elt1); + Utilities::strcat_safe(elts[2], MAX_LENGTH, elt2); + Utilities::strcat_safe(elts[3], MAX_LENGTH, elt3); + Utilities::strcat_safe(elts[4], MAX_LENGTH, elt4); sum = 0; diff --git a/phreeqcpp/isotopes.cpp b/phreeqcpp/isotopes.cpp index e6900c98..316fdef5 100644 --- a/phreeqcpp/isotopes.cpp +++ b/phreeqcpp/isotopes.cpp @@ -1,6 +1,7 @@ #include "Phreeqc.h" #include "phqalloc.h" #include "Solution.h" +#include "Utils.h" #if defined(PHREEQCI_GUI) #ifdef _DEBUG @@ -982,7 +983,7 @@ print_isotope_ratios(void) /* * Print isotope ratio */ - strcpy_s(token, MAX_LENGTH, isotope_ratio[j]->name); + Utilities::strcpy_safe(token, MAX_LENGTH, isotope_ratio[j]->name); while (replace("_", " ", token) == TRUE); output_msg(sformatf( " %-20s\t%12.5e\t%15.5g %-10s\n", token, (double) isotope_ratio[j]->ratio, @@ -1045,7 +1046,7 @@ print_isotope_alphas(void) /* * Print isotope ratio */ - strcpy_s(token, MAX_LENGTH, isotope_alpha[j]->name); + Utilities::strcpy_safe(token, MAX_LENGTH, isotope_alpha[j]->name); while (replace("_", " ", token) == TRUE); if (isotope_alpha[j]->named_logk != NULL) { diff --git a/phreeqcpp/nvector_serial.cpp b/phreeqcpp/nvector_serial.cpp index 5c1ddfaf..4227b899 100644 --- a/phreeqcpp/nvector_serial.cpp +++ b/phreeqcpp/nvector_serial.cpp @@ -67,6 +67,7 @@ #include "nvector_serial.h" #include "sundialstypes.h" #include "sundialsmath.h" +#include "Utils.h" /* WARNING don`t include any headers below here */ @@ -173,7 +174,7 @@ M_EnvInit_Serial(integertype vec_length) me->ops->nvprint = N_VPrint_Serial; /* Attach ID tag */ - strcpy_s(me->tag, 8, ID_TAG_S); + Utilities::strcpy_safe(me->tag, 8, ID_TAG_S); return (me); diff --git a/phreeqcpp/parse.cpp b/phreeqcpp/parse.cpp index 2fed3fe5..96b78acc 100644 --- a/phreeqcpp/parse.cpp +++ b/phreeqcpp/parse.cpp @@ -1,5 +1,6 @@ #include "Phreeqc.h" #include "phqalloc.h" +#include "Utils.h" #if defined(PHREEQCI_GUI) #ifdef _DEBUG @@ -133,7 +134,7 @@ parse_eq(char* eqn, std::vector& new_elt_list, int association) * Get elements in species or mineral formula */ count_elts = 0; - strcpy_s(token, MAX_LENGTH, trxn.token[0].name); + Utilities::strcpy_safe(token, MAX_LENGTH, trxn.token[0].name); replace("(s)", "", token); replace("(S)", "", token); replace("(g)", "", token); diff --git a/phreeqcpp/print.cpp b/phreeqcpp/print.cpp index a0c51b9c..e372db9b 100644 --- a/phreeqcpp/print.cpp +++ b/phreeqcpp/print.cpp @@ -321,7 +321,7 @@ print_diffuse_layer(cxxSurfaceCharge *charge_ptr) add_elt_list(s_x[j]->next_elt, moles_surface); } /* - strcpy_s(token, MAX_LENGTH, s_h2o->name); + Utilities::strcpy_safe(token, MAX_LENGTH, s_h2o->name); ptr = &(token[0]); get_elts_in_species (&ptr, mass_water_surface / gfw_water); */ @@ -427,9 +427,9 @@ print_eh(void) /* * Print result */ - strcpy_s(token, MAX_LENGTH, master[i]->elt->name); - strcat_s(token, MAX_LENGTH, "/"); - strcat_s(token, MAX_LENGTH, master[k]->elt->name); + Utilities::strcpy_safe(token, MAX_LENGTH, master[i]->elt->name); + Utilities::strcat_safe(token, MAX_LENGTH, "/"); + Utilities::strcat_safe(token, MAX_LENGTH, master[k]->elt->name); output_msg(sformatf("\t%-15s%12.4f%12.4f\n", token, (double) pe, (double) eh)); } @@ -2904,34 +2904,34 @@ punch_identifiers(void) switch (state) { case 0: - strcpy_s(token, MAX_LENGTH, "init"); + Utilities::strcpy_safe(token, MAX_LENGTH, "init"); break; case 1: - strcpy_s(token, MAX_LENGTH, "i_soln"); + Utilities::strcpy_safe(token, MAX_LENGTH, "i_soln"); break; case 2: - strcpy_s(token, MAX_LENGTH, "i_exch"); + Utilities::strcpy_safe(token, MAX_LENGTH, "i_exch"); break; case 3: - strcpy_s(token, MAX_LENGTH, "i_surf"); + Utilities::strcpy_safe(token, MAX_LENGTH, "i_surf"); break; case 4: - strcpy_s(token, MAX_LENGTH, "i_gas"); + Utilities::strcpy_safe(token, MAX_LENGTH, "i_gas"); break; case 5: - strcpy_s(token, MAX_LENGTH, "react"); + Utilities::strcpy_safe(token, MAX_LENGTH, "react"); break; case 6: - strcpy_s(token, MAX_LENGTH, "inverse"); + Utilities::strcpy_safe(token, MAX_LENGTH, "inverse"); break; case 7: - strcpy_s(token, MAX_LENGTH, "advect"); + Utilities::strcpy_safe(token, MAX_LENGTH, "advect"); break; case 8: - strcpy_s(token, MAX_LENGTH, "transp"); + Utilities::strcpy_safe(token, MAX_LENGTH, "transp"); break; default: - strcpy_s(token, MAX_LENGTH, "unknown"); + Utilities::strcpy_safe(token, MAX_LENGTH, "unknown"); break; } fpunchf(PHAST_NULL("state"), sformat, token); diff --git a/phreeqcpp/read.cpp b/phreeqcpp/read.cpp index 663b0eb0..2ac1bea7 100644 --- a/phreeqcpp/read.cpp +++ b/phreeqcpp/read.cpp @@ -1097,7 +1097,7 @@ read_exchange_master_species(void) if (token[0] == '[') { cptr1 = token; get_elt(&cptr, element, &l); - strcpy_s(token, MAX_LENGTH, element); + Utilities::strcpy_safe(token, MAX_LENGTH, element); } */ replace("(+", "(", token); @@ -1752,7 +1752,7 @@ read_inv_phases(class inverse *inverse_ptr, const char* cptr) j = copy_token(token, &cptr, &l); if (j == EMPTY) break; - strcpy_s(token1, MAX_LENGTH, token); + Utilities::strcpy_safe(token1, MAX_LENGTH, token); str_tolower(token1); if (token1[0] == 'p') { @@ -3107,7 +3107,7 @@ read_master_species(void) if (token[0] == '[') { cptr1 = token; get_elt(&cptr, element, &l); - strcpy_s(token, MAX_LENGTH, element); + Utilities::strcpy_safe(token, MAX_LENGTH, element); } */ replace("(+", "(", token); @@ -3726,7 +3726,7 @@ read_phases(void) /* * Get pointer to each species in the reaction, store new species if necessary */ - strcpy_s(token1, MAX_LENGTH, trxn.token[0].name); + Utilities::strcpy_safe(token1, MAX_LENGTH, trxn.token[0].name); replace("(g)", "", token1); replace("(s)", "", token1); replace("(G)", "", token1); @@ -3739,7 +3739,7 @@ read_phases(void) (strstr(trxn.token[i].name, "(S)") == NULL) && (strstr(trxn.token[i].name, "(G)") == NULL)) { - strcpy_s(token1, MAX_LENGTH, trxn.token[i].name); + Utilities::strcpy_safe(token1, MAX_LENGTH, trxn.token[i].name); replace("(aq)", "", token1); replace("(AQ)", "", token1); replace("H2O(l)", "H2O", token1); @@ -5737,7 +5737,7 @@ read_use(void) /* * Read number */ - strcpy_s(token1, MAX_LENGTH, token); + Utilities::strcpy_safe(token1, MAX_LENGTH, token); for (;;) { i = copy_token(token, &cptr, &l); @@ -7013,16 +7013,16 @@ read_surface_master_species(void) master[count_master]->s = s_store(token1.c_str(), l_z, FALSE); } master[count_master]->primary = TRUE; - strcpy_s(token, MAX_LENGTH, master[count_master]->elt->name); + Utilities::strcpy_safe(token, MAX_LENGTH, master[count_master]->elt->name); count_master++; /* * Save values in master and species structure for surface psi */ - strcpy_s(token1, MAX_LENGTH, token); + Utilities::strcpy_safe(token1, MAX_LENGTH, token); replace("_", " ", token1); cptr1 = token1; copy_token(token, &cptr1, &l); - strcat_s(token, MAX_LENGTH, "_psi"); + Utilities::strcat_safe(token, MAX_LENGTH, "_psi"); add_psi_master_species(token); opt_save = OPTION_DEFAULT; break; @@ -7043,7 +7043,7 @@ add_psi_master_species(char *token) const char* cptr; char token1[MAX_LENGTH] = ""; int i, n, plane; - strcpy_s(token1, MAX_LENGTH, token); + Utilities::strcpy_safe(token1, MAX_LENGTH, token); for (plane = SURF_PSI; plane <= SURF_PSI2; plane++) { strcpy(token, token1); @@ -9480,7 +9480,7 @@ read_copy(void) switch (next_keyword) { case Keywords::KEY_NONE: /* Have not read line with keyword */ - strcpy_s(nonkeyword, MAX_LENGTH, token); + Utilities::strcpy_safe(nonkeyword, MAX_LENGTH, token); break; case Keywords::KEY_SOLUTION: /* Solution */ case Keywords::KEY_EQUILIBRIUM_PHASES: /* Pure phases */ @@ -9507,7 +9507,7 @@ read_copy(void) /* * Read source index */ - strcpy_s(token1, MAX_LENGTH, token); + Utilities::strcpy_safe(token1, MAX_LENGTH, token); i = copy_token(token, &cptr, &l); if (i == DIGIT) { @@ -9727,8 +9727,8 @@ cleanup_after_parser(CParser &parser) // check_key sets next_keyword if (parser.get_m_line_type() == PHRQ_io::LT_EOF) { - strcpy_s(line, max_line, ""); - strcpy_s(line_save, max_line, ""); + Utilities::strcpy_safe(line, max_line, ""); + Utilities::strcpy_safe(line_save, max_line, ""); next_keyword = Keywords::KEY_END; return(TRUE); } @@ -9750,8 +9750,8 @@ cleanup_after_parser(CParser &parser) if (line == NULL) malloc_error(); } - strcpy_s(line, max_line, parser.line().c_str()); - strcpy_s(line_save, max_line, parser.line_save().c_str()); + Utilities::strcpy_safe(line, max_line, parser.line().c_str()); + Utilities::strcpy_safe(line_save, max_line, parser.line_save().c_str()); return return_value; } /* ---------------------------------------------------------------------- */ diff --git a/phreeqcpp/step.cpp b/phreeqcpp/step.cpp index fcef4671..bd960b36 100644 --- a/phreeqcpp/step.cpp +++ b/phreeqcpp/step.cpp @@ -707,13 +707,13 @@ add_pp_assemblage(cxxPPassemblage *pp_assemblage_ptr) comp_ptr->Set_delta(0.0); if (comp_ptr->Get_add_formula().size() > 0) { - strcpy_s(token, MAX_LENGTH, comp_ptr->Get_add_formula().c_str()); + Utilities::strcpy_safe(token, MAX_LENGTH, comp_ptr->Get_add_formula().c_str()); cptr = &(token[0]); get_elts_in_species(&cptr, 1.0); } else { - strcpy_s(token, MAX_LENGTH, phase_ptr->formula); + Utilities::strcpy_safe(token, MAX_LENGTH, phase_ptr->formula); add_elt_list(phase_ptr->next_elt, 1.0); } if (comp_ptr->Get_moles() > 0.0) diff --git a/phreeqcpp/tally.cpp b/phreeqcpp/tally.cpp index 98dc009d..5f703e93 100644 --- a/phreeqcpp/tally.cpp +++ b/phreeqcpp/tally.cpp @@ -914,13 +914,13 @@ build_tally_table(void) paren_count = 0; if (comp_ptr->Get_add_formula().size() > 0) { - strcpy_s(token, MAX_LENGTH, comp_ptr->Get_add_formula().c_str()); + Utilities::strcpy_safe(token, MAX_LENGTH, comp_ptr->Get_add_formula().c_str()); cptr = &(token[0]); get_elts_in_species(&cptr, 1.0); } else { - strcpy_s(token, MAX_LENGTH, phase_ptr->formula); + Utilities::strcpy_safe(token, MAX_LENGTH, phase_ptr->formula); add_elt_list(phase_ptr->next_elt, 1.0); } elt_list_combine(); @@ -971,7 +971,7 @@ build_tally_table(void) tally_table[n].type = Ss_phase; count_elts = 0; paren_count = 0; - strcpy_s(token, MAX_LENGTH, phase_ptr->formula); + Utilities::strcpy_safe(token, MAX_LENGTH, phase_ptr->formula); add_elt_list(phase_ptr->next_elt, 1.0); elt_list_combine(); tally_table[n].formula = elt_list_vsave(); @@ -1019,7 +1019,7 @@ build_tally_table(void) phase_ptr = NULL; if (kinetics_comp_ptr->Get_namecoef().size() == 1) { - strcpy_s(token, MAX_LENGTH, kinetics_comp_ptr->Get_namecoef().begin()->first.c_str()); + Utilities::strcpy_safe(token, MAX_LENGTH, kinetics_comp_ptr->Get_namecoef().begin()->first.c_str()); phase_ptr = phase_bsearch(token, &p, FALSE); } if (phase_ptr != NULL) diff --git a/phreeqcpp/tidy.cpp b/phreeqcpp/tidy.cpp index f9d9228e..5769b4f5 100644 --- a/phreeqcpp/tidy.cpp +++ b/phreeqcpp/tidy.cpp @@ -819,7 +819,7 @@ replace_solids_gases(void) /* try phase name without (g) or (s) */ if (phase_ptr == NULL) { - strcpy_s(token, MAX_LENGTH, token_ptr->name); + Utilities::strcpy_safe(token, MAX_LENGTH, token_ptr->name); replace("(g)", "", token); replace("(s)", "", token); replace("(G)", "", token); @@ -2013,8 +2013,8 @@ tidy_punch(void) " %s.", pair_ref.first.c_str()); warning_msg(error_string); } - // strcpy_s(token, MAX_LENGTH, "m_"); - //strcat_s(token, punch.molalities[i].name); + // Utilities::strcpy_safe(token, MAX_LENGTH, "m_"); + //Utilities::strcat_safe(token, punch.molalities[i].name); //fpunchf_heading(sformatf("%*s\t", l, token)); //if (punch.molalities[i].s == NULL) //{ @@ -2039,8 +2039,8 @@ tidy_punch(void) " %s.", pair_ref.first.c_str()); warning_msg(error_string); } - // strcpy_s(token, MAX_LENGTH, "la_"); - //strcat_s(token, punch.activities[i].name); + // Utilities::strcpy_safe(token, MAX_LENGTH, "la_"); + //Utilities::strcat_safe(token, punch.activities[i].name); //fpunchf_heading(sformatf("%*s\t", l, token)); //if (punch.activities[i].s == NULL) //{ @@ -2066,8 +2066,8 @@ tidy_punch(void) " %s.", pair_ref.first.c_str()); warning_msg(error_string); } - // strcpy_s(token, MAX_LENGTH, "d_"); - //strcat_s(token, punch.pure_phases[i].name); + // Utilities::strcpy_safe(token, MAX_LENGTH, "d_"); + //Utilities::strcat_safe(token, punch.pure_phases[i].name); //fpunchf_heading(sformatf("%*s\t", l, punch.pure_phases[i].name)); //fpunchf_heading(sformatf("%*s\t", l, token)); //if (punch.pure_phases[i].phase == NULL) @@ -2093,8 +2093,8 @@ tidy_punch(void) " %s.", pair_ref.first.c_str()); warning_msg(error_string); } - // strcpy_s(token, MAX_LENGTH, "si_"); - //strcat_s(token, punch.si[i].name); + // Utilities::strcpy_safe(token, MAX_LENGTH, "si_"); + //Utilities::strcat_safe(token, punch.si[i].name); //fpunchf_heading(sformatf("%*s\t", l, token)); //if (punch.si[i].phase == NULL) //{ @@ -2126,8 +2126,8 @@ tidy_punch(void) " %s.", pair_ref.first.c_str()); warning_msg(error_string); } - // strcpy_s(token, MAX_LENGTH, "g_"); - //strcat_s(token, punch.gases[i].name); + // Utilities::strcpy_safe(token, MAX_LENGTH, "g_"); + //Utilities::strcat_safe(token, punch.gases[i].name); //fpunchf_heading(sformatf("%*s\t", l, token)); //if (punch.gases[i].phase == NULL) //{ @@ -2149,11 +2149,11 @@ tidy_punch(void) name = "dk_"; name.append(pair_ref.first); fpunchf_heading(sformatf("%*s\t", l, name.c_str())); - // strcpy_s(token, MAX_LENGTH, "k_"); - //strcat_s(token, punch.kinetics[i].name); + // Utilities::strcpy_safe(token, MAX_LENGTH, "k_"); + //Utilities::strcat_safe(token, punch.kinetics[i].name); //fpunchf_heading(sformatf("%*s\t", l, token)); - // strcpy_s(token, MAX_LENGTH, "dk_"); - //strcat_s(token, punch.kinetics[i].name); + // Utilities::strcpy_safe(token, MAX_LENGTH, "dk_"); + //Utilities::strcat_safe(token, punch.kinetics[i].name); //fpunchf_heading(sformatf("%*s\t", l, token)); } @@ -2166,8 +2166,8 @@ tidy_punch(void) std::string name = "s_"; name.append(pair_ref.first); fpunchf_heading(sformatf("%*s\t", l, name.c_str())); - // strcpy_s(token, MAX_LENGTH, "s_"); - //strcat_s(token, punch.s_s[i].name); + // Utilities::strcpy_safe(token, MAX_LENGTH, "s_"); + //Utilities::strcat_safe(token, punch.s_s[i].name); //fpunchf_heading(sformatf("%*s\t", l, token)); } @@ -2196,8 +2196,8 @@ tidy_punch(void) // punch.isotopes[i].name, punch.isotopes[i].name); // warning_msg(error_string); //} - // strcpy_s(token, MAX_LENGTH, "I_"); - //strcat_s(token, punch.isotopes[i].name); + // Utilities::strcpy_safe(token, MAX_LENGTH, "I_"); + //Utilities::strcat_safe(token, punch.isotopes[i].name); //fpunchf_heading(sformatf("%*s\t", l, token)); } @@ -2227,8 +2227,8 @@ tidy_punch(void) // punch.calculate_values[i].name); // warning_msg(error_string); //} - // strcpy_s(token, MAX_LENGTH, "V_"); - //strcat_s(token, punch.calculate_values[i].name); + // Utilities::strcpy_safe(token, MAX_LENGTH, "V_"); + //Utilities::strcat_safe(token, punch.calculate_values[i].name); //fpunchf_heading(sformatf("%*s\t", l, token)); } diff --git a/phreeqcpp/transport.cpp b/phreeqcpp/transport.cpp index 17c8bd35..0bd3d649 100644 --- a/phreeqcpp/transport.cpp +++ b/phreeqcpp/transport.cpp @@ -1784,7 +1784,7 @@ set_initial_moles(int i) cxxExchComp comp; count_elts = 0; paren_count = 0; - strcpy_s(token, MAX_LENGTH, "X"); + Utilities::strcpy_safe(token, MAX_LENGTH, "X"); cptr = token; get_elts_in_species(&cptr, 2e-10); cptr = token; diff --git a/phreeqcpp/utilities.cpp b/phreeqcpp/utilities.cpp index 8f18a74f..79dfae7f 100644 --- a/phreeqcpp/utilities.cpp +++ b/phreeqcpp/utilities.cpp @@ -233,7 +233,7 @@ compute_gfw(const char *string, LDBLE * gfw) count_elts = 0; paren_count = 0; - strcpy_s(token, MAX_LENGTH, string); + Utilities::strcpy_safe(token, MAX_LENGTH, string); cptr = token; if (get_elts_in_species(&cptr, 1.0) == ERROR) { @@ -654,7 +654,7 @@ print_centered(const char *string) for (i = 0; i < l1; i++) token[i] = '-'; token[i] = '\0'; - strcat_s(token, MAX_LENGTH, string); + Utilities::strcat_safe(token, MAX_LENGTH, string); for (i = 0; i < l2; i++) token[i + l1 + l] = '-'; token[79] = '\0'; From 81f180a069285bcb4d180c860664b4b2a193854d Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Tue, 14 Nov 2023 22:37:11 -0700 Subject: [PATCH 107/384] Fixed bugs in inverse --- phreeqcpp/inverse.cpp | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/phreeqcpp/inverse.cpp b/phreeqcpp/inverse.cpp index a25b8a2c..9e5c1ccb 100644 --- a/phreeqcpp/inverse.cpp +++ b/phreeqcpp/inverse.cpp @@ -31,7 +31,7 @@ inverse_models(void) * for any marked "new". */ int n/*, print1*/; - char string[MAX_LENGTH]; + char string[MAX_LENGTH] = ""; if (count_inverse <= 0) return OK; // Revert to previous headings after inverse modeling std::vector old_headings; @@ -54,10 +54,10 @@ inverse_models(void) */ if (inverse[n].pat != NULL) { - Utilities::strcat_safe(string, MAX_LENGTH, inverse[n].pat); + Utilities::strcpy_safe(string, MAX_LENGTH, inverse[n].pat); if (replace(".pat", ".pat", string) != TRUE) { - Utilities::strcat_safe(string, strlen(string), ".pat"); + Utilities::strcat_safe(string, MAX_LENGTH, ".pat"); } netpath_file = fopen(string, "w"); if (netpath_file == NULL) @@ -4174,11 +4174,11 @@ print_total_multi(FILE * l_netpath_file, cxxSolution *solution_ptr, LDBLE sum; int i, found; - Utilities::strcat_safe(elts[0], MAX_LENGTH, elt0); - Utilities::strcat_safe(elts[1], MAX_LENGTH, elt1); - Utilities::strcat_safe(elts[2], MAX_LENGTH, elt2); - Utilities::strcat_safe(elts[3], MAX_LENGTH, elt3); - Utilities::strcat_safe(elts[4], MAX_LENGTH, elt4); + Utilities::strcpy_safe(elts[0], MAX_LENGTH, elt0); + Utilities::strcpy_safe(elts[1], MAX_LENGTH, elt1); + Utilities::strcpy_safe(elts[2], MAX_LENGTH, elt2); + Utilities::strcpy_safe(elts[3], MAX_LENGTH, elt3); + Utilities::strcpy_safe(elts[4], MAX_LENGTH, elt4); sum = 0; From e0447f7ad56fc91f0c37b79f3e895fd700f048a6 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Wed, 15 Nov 2023 14:36:30 -0700 Subject: [PATCH 108/384] Minimum data base. --- minimum.dat | 66 +++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 66 insertions(+) create mode 100644 minimum.dat diff --git a/minimum.dat b/minimum.dat new file mode 100644 index 00000000..9234591c --- /dev/null +++ b/minimum.dat @@ -0,0 +1,66 @@ +SOLUTION_MASTER_SPECIES +H H+ -1.0 H 1.008 +H(0) H2 0 H +H(1) H+ -1.0 0 1 +E e- 0 0.0 0 +O H2O 0 O 16.0 +O(0) O2 0 O +O(-2) H2O 0 0 +C CO3-2 2.0 HCO3 12.0111 60 12 +Ca Ca+2 0 40.08 40.08 +Al Al+3 0 27 27 +Si H4SiO4 0 SiO2 28.0843 +SOLUTION_SPECIES +H+ = H+ + -gamma 9.0 0 + -dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 3. +# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc +# Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75))) +e- = e- +H2O = H2O +# H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence +Ca+2 = Ca+2 + -gamma 5.0 0.1650 + -dw 0.793e-9 97 3.4 24.6 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 +Al+3 = Al+3 + -gamma 9.0 0 + -dw 0.559e-9 + -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353. +H4SiO4 = H4SiO4 + -dw 1.10e-9 + -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 +H2O = OH- + H+ + -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 + -gamma 3.5 0 + -dw 5.27e-9 548 0.52 1e-10 + -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 +2 H2O = O2 + 4 H+ + 4 e- + -log_k -86.08 + -delta_h 134.79 kcal + -dw 2.35e-9 + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt +2 H+ + 2 e- = H2 + -log_k -3.15 + -delta_h -1.759 kcal + -dw 5.13e-9 + -Vm 6.52 0.78 0.12 # supcrt +CO3-2 = CO3-2 + -gamma 5.4 0 + -dw 0.955e-9 28.9 14.3 98.1 + -Vm 8.69 -10.2 -20.31 -0.131 4.65 0 3.75 0 -4.04e-2 0.678 +CO3-2 + H+ = HCO3- + -log_k 10.329 + -delta_h -3.561 kcal + -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 + -dw 1.18e-9 -182 0.351 -4.94 + -Vm 9.03 -7.03e-2 -13.38 0 2.05 0 0 128 0 0.8242 +CO3-2 + 2 H+ = CO2 + H2O + -log_k 16.681 + -delta_h -5.738 kcal + -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 + -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 + -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 +END From ed1fbe949157f56f0799b2170ce207b7716a10f2 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Thu, 16 Nov 2023 05:06:27 +0000 Subject: [PATCH 109/384] Squashed 'phreeqcpp/' changes from bd2e2b6..625f6f1 625f6f1 Fixed bugs in inverse ea9e0ef strcpy_safe and strcat_safe 9b06157 trying different header files e890269 added c370c7b warnings, strcat, strcpy 14ed59f Try using goto(s) d2d31d2 Try updated logical expression d2a3eac Turn off optimizing on k_temp git-subtree-dir: phreeqcpp git-subtree-split: 625f6f14905e41a1130a3d0a217b8de478631aca --- NameDouble.cxx | 2 +- PBasic.cpp | 32 ++++++----- Phreeqc.cpp | 3 +- Phreeqc.h | 1 - System.cxx | 8 +-- basicsubs.cpp | 88 ++++++++++++++---------------- common/Utils.cxx | 51 +++++++++++++++++ common/Utils.h | 3 +- input.cpp | 7 ++- inverse.cpp | 16 +++--- isotopes.cpp | 5 +- model.cpp | 1 - nvector_serial.cpp | 3 +- parse.cpp | 3 +- prep.cpp | 11 +++- print.cpp | 28 +++++----- read.cpp | 35 ++++++------ step.cpp | 4 +- tally.cpp | 8 +-- tidy.cpp | 42 +++++++------- transport.cpp | 2 +- utilities.cpp | 133 +-------------------------------------------- 22 files changed, 209 insertions(+), 277 deletions(-) diff --git a/NameDouble.cxx b/NameDouble.cxx index 3dcf9607..d9ceb6eb 100644 --- a/NameDouble.cxx +++ b/NameDouble.cxx @@ -406,7 +406,7 @@ cxxNameDouble::add(const char *token, LDBLE total) // { char key[MAX_LENGTH]; - strcpy(key, token); + Utilities::strcpy_safe(key, MAX_LENGTH, token); cxxNameDouble::iterator current = (*this).find(key); if (current != (*this).end()) diff --git a/PBasic.cpp b/PBasic.cpp index a103b631..86c60359 100644 --- a/PBasic.cpp +++ b/PBasic.cpp @@ -550,7 +550,8 @@ numtostr(char * Result, LDBLE n) l_s[i] = '\0'; * p2c: basic.p, line 248: * Note: Modification of string length may translate incorrectly [146] * - return strcpy(Result, strltrim(l_s)); + Utilities::strcpy_safe(Result, MAX_LENGTH, strltrim(l_s)); + return Result; } */ } @@ -1746,16 +1747,16 @@ void PBasic:: snerr(const char * l_s) { char str[MAX_LENGTH] = {0}; - strcpy(str, "Syntax_error "); + Utilities::strcpy_safe(str, MAX_LENGTH, "Syntax_error "); if (phreeqci_gui) { _ASSERTE(nIDErrPrompt == 0); nIDErrPrompt = IDS_ERR_SYNTAX; } - strcat(str, l_s); - strcat(str, " in line: "); + Utilities::strcat_safe(str, MAX_LENGTH, l_s); + Utilities::strcat_safe(str, MAX_LENGTH, " in line: "); if (strcmp(inbuf, "run")) - strcat(str, inbuf); + Utilities::strcat_safe(str, MAX_LENGTH, inbuf); errormsg(str); } @@ -1763,16 +1764,16 @@ void PBasic:: tmerr(const char * l_s) { char str[MAX_LENGTH] = {0}; - strcpy(str, "Type mismatch error"); + Utilities::strcpy_safe(str, MAX_LENGTH, "Type mismatch error"); if (phreeqci_gui) { _ASSERTE(nIDErrPrompt == 0); nIDErrPrompt = IDS_ERR_MISMATCH; } - strcat(str, l_s); - strcat(str, " in line: "); + Utilities::strcat_safe(str, MAX_LENGTH, l_s); + Utilities::strcat_safe(str, MAX_LENGTH, " in line: "); if (strcmp(inbuf, "run")) - strcat(str, inbuf); + Utilities::strcat_safe(str, MAX_LENGTH, inbuf); errormsg(str); } @@ -1901,8 +1902,9 @@ require(int k, struct LOC_exec *LINK) if (item == command_tokens.end()) snerr(": missing unknown command"); else { - strcpy(str, ": missing "); - snerr(strcat(str, item->first.c_str())); + Utilities::strcpy_safe(str, MAX_LENGTH, ": missing "); + Utilities::strcat_safe(str, MAX_LENGTH, item->first.c_str()); + snerr(str); } #if !defined(R_SO) exit(4); @@ -2544,7 +2546,7 @@ factor(struct LOC_exec * LINK) size_t l = elt_name.size(); l = l < 256 ? 256 : l + 1; char* token = (char*)PhreeqcPtr->PHRQ_malloc(l * sizeof(char)); - strcpy(token, elt_name.c_str()); + Utilities::strcpy_safe(token, l, elt_name.c_str()); *elt_varrec->UU.U1.sval = token; } break; @@ -6240,9 +6242,9 @@ exec(void) _ASSERTE(nIDErrPrompt == 0); nIDErrPrompt = IDS_ERR_ILLEGAL; } - strcat(STR1, "Illegal command in line: "); + Utilities::strcat_safe(STR1, MAX_LENGTH, "Illegal command in line: "); if (strcmp(inbuf, "run")) - strcat(STR1, inbuf); + Utilities::strcat_safe(STR1, MAX_LENGTH, inbuf); errormsg(STR1); break; } @@ -6392,7 +6394,7 @@ cmdplot_xy(struct LOC_exec *LINK) n[i] = expr(LINK); if (n[i].stringval) { - strcpy(STR[i], n[i].UU.sval); + Utilities::strcpy_safe(STR[i], MAX_LENGTH, n[i].UU.sval); PhreeqcPtr->PHRQ_free(n[i].UU.sval); } else diff --git a/Phreeqc.cpp b/Phreeqc.cpp index 00febed2..817bfa26 100644 --- a/Phreeqc.cpp +++ b/Phreeqc.cpp @@ -14,6 +14,7 @@ #include "PBasic.h" #include "Temperature.h" #include "SSassemblage.h" +#include "Utils.h" #if defined(PHREEQCI_GUI) #ifdef _DEBUG @@ -173,7 +174,7 @@ size_t Phreeqc::list_components(std::list &list_c) { if (it->first == "Charge") continue; char string[MAX_LENGTH]; - strcpy(string, it->first.c_str()); + Utilities::strcpy_safe(string, MAX_LENGTH, it->first.c_str()); class master *master_ptr = master_bsearch_primary(string); if (master_ptr == NULL) continue; if (master_ptr->type != AQ) continue; diff --git a/Phreeqc.h b/Phreeqc.h index f2ad5d52..07283482 100644 --- a/Phreeqc.h +++ b/Phreeqc.h @@ -1036,7 +1036,6 @@ public: int get_token(const char** eqnaddr, std::string& string, LDBLE* z, int* l); int islegit(const char c); void malloc_error(void); - int parse_couple(char* token); int print_centered(const char* string); static int replace(const char* str1, const char* str2, char* str); static void replace(std::string &stds, const char* str1, const char* str2); diff --git a/System.cxx b/System.cxx index ebae0af7..1456f77f 100644 --- a/System.cxx +++ b/System.cxx @@ -14,7 +14,7 @@ #include "cxxMix.h" #include "Reaction.h" #include "Temperature.h" - +#include "Utils.h" #if defined(PHREEQCI_GUI) #ifdef _DEBUG #define new DEBUG_NEW @@ -66,11 +66,11 @@ cxxSystem::totalize(Phreeqc * phreeqc_ptr) if (this->solution != NULL) { char token[MAX_LENGTH]; - strcpy(token, "O"); + Utilities::strcpy_safe(token, MAX_LENGTH, "O"); this->totals[token] = this->solution->Get_total_o(); - strcpy(token, "H"); + Utilities::strcpy_safe(token, MAX_LENGTH, "H"); this->totals[token] = this->solution->Get_total_h(); - strcpy(token, "Charge"); + Utilities::strcpy_safe(token, MAX_LENGTH, "Charge"); this->totals[token] = this->solution->Get_cb(); this->totals.add_extensive(this->solution->Get_totals(), 1.0); } diff --git a/basicsubs.cpp b/basicsubs.cpp index 738c894a..bf545b4f 100644 --- a/basicsubs.cpp +++ b/basicsubs.cpp @@ -705,7 +705,7 @@ calc_logk_n(const char* name) { l_logk[i] = 0.0; } - strcpy(token, name); + Utilities::strcpy_safe(token, MAX_LENGTH, name); logk_ptr = logk_search(token); if (logk_ptr != NULL) { @@ -730,7 +730,7 @@ calc_logk_p(const char* name) LDBLE lk = -999.9; LDBLE l_logk[MAX_LOG_K_INDICES]; - strcpy(token, name); + Utilities::strcpy_safe(token, MAX_LENGTH, name); phase_ptr = phase_bsearch(token, &j, FALSE); if (phase_ptr != NULL) @@ -769,7 +769,7 @@ calc_logk_s(const char* name) class species* s_ptr; LDBLE lk, l_logk[MAX_LOG_K_INDICES]; - strcpy(token, name); + Utilities::strcpy_safe(token, MAX_LENGTH, name); s_ptr = s_search(token); if (s_ptr != NULL) { @@ -797,7 +797,7 @@ dh_a0(const char* name) class species* s_ptr; double a = -999.99; - strcpy(token, name); + Utilities::strcpy_safe(token, MAX_LENGTH, name); s_ptr = s_search(token); if (s_ptr != NULL) { @@ -819,7 +819,7 @@ dh_bdot(const char* name) } else { - strcpy(token, name); + Utilities::strcpy_safe(token, MAX_LENGTH, name); s_ptr = s_search(token); if (s_ptr != NULL) { @@ -839,7 +839,7 @@ calc_deltah_p(const char* name) LDBLE lkm, lkp; LDBLE l_logk[MAX_LOG_K_INDICES]; double dh = -999.99; - strcpy(token, name); + Utilities::strcpy_safe(token, MAX_LENGTH, name); phase_ptr = phase_bsearch(token, &j, FALSE); if (phase_ptr != NULL) @@ -879,7 +879,7 @@ calc_deltah_s(const char* name) class species* s_ptr; LDBLE lkm, lkp, l_logk[MAX_LOG_K_INDICES]; double dh = -999.99; - strcpy(token, name); + Utilities::strcpy_safe(token, MAX_LENGTH, name); s_ptr = s_search(token); if (s_ptr != NULL) { @@ -929,7 +929,7 @@ calc_surface_charge(const char* surface_name) if (token_ptr->s->type != SURF) continue; master_ptr = trxn.token[i].s->primary; - strcpy(token, master_ptr->elt->name); + Utilities::strcpy_safe(token, MAX_LENGTH, master_ptr->elt->name); replace("_", " ", token); cptr = token; copy_token(token1, &cptr, &j); @@ -1237,7 +1237,7 @@ calc_t_sc(const char* name) char token[MAX_LENGTH]; class species* s_ptr; - strcpy(token, name); + Utilities::strcpy_safe(token, MAX_LENGTH, name); s_ptr = s_search(token); if (s_ptr != NULL && s_ptr->in) { @@ -1262,7 +1262,7 @@ calc_f_visc(const char* name) if (print_viscosity) { - strcpy(token, name); + Utilities::strcpy_safe(token, MAX_LENGTH, name); s_ptr = s_search(token); if (s_ptr != NULL && s_ptr->in) return s_ptr->dw_t_visc; @@ -2111,7 +2111,7 @@ match_elts_in_species(const char* name, const char* mytemplate) char token1[MAX_LENGTH], template1[MAX_LENGTH], equal_list1[MAX_LENGTH]; char str[2]; - strcpy(token, name); + Utilities::strcpy_safe(token, MAX_LENGTH, name); squeeze_white(token); replace("(+", "(", token); if (strstr("token", "++") != NULL) @@ -2168,7 +2168,7 @@ match_elts_in_species(const char* name, const char* mytemplate) /* * Replace elements with first of equivalent elements */ - strcpy(template1, mytemplate); + Utilities::strcpy_safe(template1, MAX_LENGTH, mytemplate); squeeze_white(template1); cptr = template1; while (extract_bracket(&cptr, equal_list) == TRUE) @@ -2229,22 +2229,22 @@ match_elts_in_species(const char* name, const char* mytemplate) token[0] = '\0'; for (i = 0; i < count_match_tokens; i++) { - strcat(token, match_vector[i].first.c_str()); + Utilities::strcat_safe(token, MAX_LENGTH, match_vector[i].first.c_str()); if (match_vector[i].second != 1.0) { snprintf(token1, sizeof(token1), "%g", (double)match_vector[i].second); - strcat(token, token1); + Utilities::strcat_safe(token, MAX_LENGTH, token1); } } /* * Write a template name using first of equivalent elements */ - strcpy(template1, mytemplate); + Utilities::strcpy_safe(template1, MAX_LENGTH, mytemplate); squeeze_white(template1); cptr = template1; while (extract_bracket(&cptr, equal_list) == TRUE) { - strcpy(equal_list1, equal_list); + Utilities::strcpy_safe(equal_list1, MAX_LENGTH, equal_list); replace("{", "", equal_list); replace("}", "", equal_list); while (replace(",", " ", equal_list) == TRUE); @@ -2410,10 +2410,6 @@ surf_total(const char* total_name, const char* surface_name) { if (s_x[j]->next_elt[i].elt->master->type != SURF) continue; - //strcpy(token, s_x[j]->next_elt[i].elt->name); - //replace("_", " ", token); - //cptr = token; - //copy_token(name, &cptr, &k); token = s_x[j]->next_elt[i].elt->name; replace("_", " ", token); std::string::iterator b = token.begin(); @@ -2512,7 +2508,7 @@ surf_total_no_redox(const char* total_name, const char* surface_name) { if (x[j]->type != SURFACE) continue; - strcpy(token, x[j]->master[0]->elt->name); + Utilities::strcpy_safe(token, MAX_LENGTH, x[j]->master[0]->elt->name); replace("_", " ", token); cptr = token; copy_token(name, &cptr, &k); @@ -2528,7 +2524,7 @@ surf_total_no_redox(const char* total_name, const char* surface_name) } if (j >= count_unknowns) return (0); - strcpy(surface_name_local, name); + Utilities::strcpy_safe(surface_name_local, MAX_LENGTH, name); /* * find total moles of each element in diffuse layer... */ @@ -2542,7 +2538,7 @@ surf_total_no_redox(const char* total_name, const char* surface_name) { if (s_x[j]->next_elt[i].elt->master->type != SURF) continue; - strcpy(token, s_x[j]->next_elt[i].elt->name); + Utilities::strcpy_safe(token, MAX_LENGTH, s_x[j]->next_elt[i].elt->name); replace("_", " ", token); cptr = token; copy_token(name, &cptr, &k); @@ -2792,7 +2788,7 @@ edl_species(const char* surf_name, LDBLE * count, char*** names, LDBLE * *moles, if (names == NULL) malloc_error(); *moles = (LDBLE*)PHRQ_malloc((sys.size() + 1) * sizeof(LDBLE)); - if (moles == NULL) + if (*moles == NULL) malloc_error(); (*names)[0] = NULL; @@ -2886,13 +2882,13 @@ system_total(const char* total_name, LDBLE * count, char*** names, */ size_t count_sys = sys.size(); *names = (char**)PHRQ_malloc((count_sys + 1) * sizeof(char*)); - if (names == NULL) + if (*names == NULL) malloc_error(); *types = (char**)PHRQ_malloc((count_sys + 1) * sizeof(char*)); - if (types == NULL) + if (*types == NULL) malloc_error(); *moles = (LDBLE*)PHRQ_malloc((count_sys + 1) * sizeof(LDBLE)); - if (moles == NULL) + if (*moles == NULL) malloc_error(); (*names)[0] = NULL; @@ -3126,7 +3122,7 @@ system_total_elements(void) { t = master_ptr->total; } - strcpy(name, master[i]->elt->name); + Utilities::strcpy_safe(name, MAX_LENGTH, master[i]->elt->name); count_sys = sys.size(); sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate(name); @@ -3173,7 +3169,7 @@ system_total_si(void) iap += rxn_ptr->s->la * rxn_ptr->coef; } si = -phases[i]->lk + iap; - strcpy(name, phases[i]->name); + Utilities::strcpy_safe(name, MAX_LENGTH, phases[i]->name); size_t count_sys = sys.size(); sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate(name); @@ -3491,7 +3487,7 @@ system_total_elt(const char* total_name) { size_t count_sys = sys.size(); sys.resize(count_sys + 1); - strcpy(name, x[k]->master[0]->elt->name); + Utilities::strcpy_safe(name, MAX_LENGTH, x[k]->master[0]->elt->name); replace("_psi", "", name); sys[count_sys].name = string_duplicate(name); sys[count_sys].moles = elt_list[j].coef; @@ -3736,7 +3732,7 @@ system_total_elt_secondary(const char* total_name) } if (l >= count_elts) continue; - strcpy(name, x[k]->master[0]->elt->name); + Utilities::strcpy_safe(name, MAX_LENGTH, x[k]->master[0]->elt->name); replace("_psi", "", name); size_t count_sys = sys.size(); sys.resize(count_sys + 1); @@ -4051,8 +4047,8 @@ iso_value(const char* total_name) int j; char token[MAX_LENGTH]; char my_total_name[MAX_LENGTH]; - strcpy(token, ""); - strcpy(my_total_name, total_name); + Utilities::strcpy_safe(token, MAX_LENGTH, ""); + Utilities::strcpy_safe(my_total_name, MAX_LENGTH, total_name); while (replace(" ", "_", my_total_name)); for (j = 0; j < (int)isotope_ratio.size(); j++) { @@ -4062,12 +4058,12 @@ iso_value(const char* total_name) continue; return (isotope_ratio[j]->converted_ratio); } - strcpy(my_total_name, total_name); + Utilities::strcpy_safe(my_total_name, MAX_LENGTH, total_name); while (replace("[", "", my_total_name)); while (replace("]", "", my_total_name)); - strcat(token, "R("); - strcat(token, my_total_name); - strcat(token, ")"); + Utilities::strcat_safe(token, MAX_LENGTH, "R("); + Utilities::strcat_safe(token, MAX_LENGTH, my_total_name); + Utilities::strcat_safe(token, MAX_LENGTH, ")"); for (j = 0; j < (int)isotope_ratio.size(); j++) { if (isotope_ratio[j]->ratio == MISSING) @@ -4086,10 +4082,10 @@ iso_unit(const char* total_name) char token[MAX_LENGTH], unit[MAX_LENGTH]; class master_isotope* master_isotope_ptr; char my_total_name[MAX_LENGTH]; - strcpy(token, ""); - strcpy(my_total_name, total_name); + Utilities::strcpy_safe(token, MAX_LENGTH, ""); + Utilities::strcpy_safe(my_total_name, MAX_LENGTH, total_name); while (replace(" ", "_", my_total_name)); - strcpy(unit, "unknown"); + Utilities::strcpy_safe(unit, MAX_LENGTH, "unknown"); for (j = 0; j < (int)isotope_ratio.size(); j++) { if (isotope_ratio[j]->ratio == MISSING) @@ -4099,16 +4095,16 @@ iso_unit(const char* total_name) master_isotope_ptr = master_isotope_search(isotope_ratio[j]->isotope_name); if (master_isotope_ptr != NULL) { - strcpy(unit, master_isotope_ptr->units); + Utilities::strcpy_safe(unit, MAX_LENGTH, master_isotope_ptr->units); } return string_duplicate(unit); } - strcpy(my_total_name, total_name); + Utilities::strcpy_safe(my_total_name, MAX_LENGTH, total_name); while (replace("[", "", my_total_name)); while (replace("]", "", my_total_name)); - strcat(token, "R("); - strcat(token, my_total_name); - strcat(token, ")"); + Utilities::strcat_safe(token, MAX_LENGTH, "R("); + Utilities::strcat_safe(token, MAX_LENGTH, my_total_name); + Utilities::strcat_safe(token, MAX_LENGTH, ")"); for (j = 0; j < (int)isotope_ratio.size(); j++) { if (isotope_ratio[j]->ratio == MISSING) @@ -4118,7 +4114,7 @@ iso_unit(const char* total_name) master_isotope_ptr = master_isotope_search(isotope_ratio[j]->isotope_name); if (master_isotope_ptr != NULL) { - strcpy(unit, master_isotope_ptr->units); + Utilities::strcpy_safe(unit, MAX_LENGTH, master_isotope_ptr->units); } return string_duplicate(unit); } diff --git a/common/Utils.cxx b/common/Utils.cxx index 72fc8c2d..1eafd439 100644 --- a/common/Utils.cxx +++ b/common/Utils.cxx @@ -181,6 +181,57 @@ Utilities::safe_exp(LDBLE t) } return exp(t); } +size_t Utilities:: +strcpy_safe(char* dest, size_t max, const char* src) +{ + size_t lsrc = 0; + try + { + if (dest == nullptr || src == nullptr) + { + std::cerr << "nullptr in Utilities::strcpy_safe." << std::endl; + throw; + } + lsrc = strlen(src); + if (lsrc + 1 > max) + { + std::cerr << "Buffer overrun in Utilities::strcpy_safe." << std::endl; + throw; + } + memcpy(dest, src, (lsrc + 1) * sizeof(char)); + } + catch (...) + { + throw; + } + return lsrc; +} +size_t Utilities:: +strcat_safe(char* dest, size_t max, const char* src) +{ + size_t ldest = 0, lsrc = 0; + try + { + if (dest == nullptr || src == nullptr) + { + std::cerr << "nullptr in Utilities::strcat_safe." << std::endl; + throw; + } + lsrc = strlen(src); + ldest = strlen(dest); + if (ldest + lsrc + 1 > max) + { + std::cerr << "Buffer overrun in Utilities::strcat_safe." << std::endl; + throw; + } + memcpy(&dest[ldest], src, (lsrc + 1) * sizeof(char)); + } + catch (...) + { + throw; + } + return ldest + lsrc; +} //+NAN LDBLE: 7ff8000000000000 //-NAN LDBLE: fff8000000000000 /* diff --git a/common/Utils.h b/common/Utils.h index 74997731..3eb93676 100644 --- a/common/Utils.h +++ b/common/Utils.h @@ -20,7 +20,8 @@ namespace Utilities void str_toupper(std::string & str); std::string pad_right(const std::string & str, size_t l); bool replace(const char *str1, const char *str2, std::string & str); - + size_t strcat_safe(char* dest, size_t max, const char* src); + size_t strcpy_safe(char* dest, size_t max, const char* src); void squeeze_white(std::string & s_l); double convert_time(double t, std::string in, std::string out); LDBLE safe_exp(LDBLE t); diff --git a/input.cpp b/input.cpp index 18339645..7235f4ef 100644 --- a/input.cpp +++ b/input.cpp @@ -4,6 +4,9 @@ #include #include #include "phqalloc.h" +#include "string.h" +#include +#include #if defined(PHREEQCI_GUI) #ifdef _DEBUG @@ -124,7 +127,7 @@ get_line(void) if (line == NULL) malloc_error(); } - strcpy(line, phrq_io->Get_m_line().c_str()); - strcpy(line_save, phrq_io->Get_m_line_save().c_str()); + Utilities::strcpy_safe(line, max_line, phrq_io->Get_m_line().c_str()); + Utilities::strcpy_safe(line_save, max_line, phrq_io->Get_m_line_save().c_str()); return j; } diff --git a/inverse.cpp b/inverse.cpp index 72dffe40..9e5c1ccb 100644 --- a/inverse.cpp +++ b/inverse.cpp @@ -31,7 +31,7 @@ inverse_models(void) * for any marked "new". */ int n/*, print1*/; - char string[MAX_LENGTH]; + char string[MAX_LENGTH] = ""; if (count_inverse <= 0) return OK; // Revert to previous headings after inverse modeling std::vector old_headings; @@ -54,10 +54,10 @@ inverse_models(void) */ if (inverse[n].pat != NULL) { - strcpy(string, inverse[n].pat); + Utilities::strcpy_safe(string, MAX_LENGTH, inverse[n].pat); if (replace(".pat", ".pat", string) != TRUE) { - strcat(string, ".pat"); + Utilities::strcat_safe(string, MAX_LENGTH, ".pat"); } netpath_file = fopen(string, "w"); if (netpath_file == NULL) @@ -4174,11 +4174,11 @@ print_total_multi(FILE * l_netpath_file, cxxSolution *solution_ptr, LDBLE sum; int i, found; - strcpy(elts[0], elt0); - strcpy(elts[1], elt1); - strcpy(elts[2], elt2); - strcpy(elts[3], elt3); - strcpy(elts[4], elt4); + Utilities::strcpy_safe(elts[0], MAX_LENGTH, elt0); + Utilities::strcpy_safe(elts[1], MAX_LENGTH, elt1); + Utilities::strcpy_safe(elts[2], MAX_LENGTH, elt2); + Utilities::strcpy_safe(elts[3], MAX_LENGTH, elt3); + Utilities::strcpy_safe(elts[4], MAX_LENGTH, elt4); sum = 0; diff --git a/isotopes.cpp b/isotopes.cpp index e09e43cb..316fdef5 100644 --- a/isotopes.cpp +++ b/isotopes.cpp @@ -1,6 +1,7 @@ #include "Phreeqc.h" #include "phqalloc.h" #include "Solution.h" +#include "Utils.h" #if defined(PHREEQCI_GUI) #ifdef _DEBUG @@ -982,7 +983,7 @@ print_isotope_ratios(void) /* * Print isotope ratio */ - strcpy(token, isotope_ratio[j]->name); + Utilities::strcpy_safe(token, MAX_LENGTH, isotope_ratio[j]->name); while (replace("_", " ", token) == TRUE); output_msg(sformatf( " %-20s\t%12.5e\t%15.5g %-10s\n", token, (double) isotope_ratio[j]->ratio, @@ -1045,7 +1046,7 @@ print_isotope_alphas(void) /* * Print isotope ratio */ - strcpy(token, isotope_alpha[j]->name); + Utilities::strcpy_safe(token, MAX_LENGTH, isotope_alpha[j]->name); while (replace("_", " ", token) == TRUE); if (isotope_alpha[j]->named_logk != NULL) { diff --git a/model.cpp b/model.cpp index eb5be6ab..60e077fb 100644 --- a/model.cpp +++ b/model.cpp @@ -884,7 +884,6 @@ int Phreeqc::gammas_a_f(int i1) { if (s_x[i]->rxn_x.token[j].s->type == EX) { - //strcpy(name, s_x[i]->rxn_x.token[j].s->name); name = s_x[i]->rxn_x.token[j].s->name; //m_ptr = s_x[i]->rxn_x.token[j].s->primary->elt->master; // appt debug break; diff --git a/nvector_serial.cpp b/nvector_serial.cpp index 761739f9..4227b899 100644 --- a/nvector_serial.cpp +++ b/nvector_serial.cpp @@ -67,6 +67,7 @@ #include "nvector_serial.h" #include "sundialstypes.h" #include "sundialsmath.h" +#include "Utils.h" /* WARNING don`t include any headers below here */ @@ -173,7 +174,7 @@ M_EnvInit_Serial(integertype vec_length) me->ops->nvprint = N_VPrint_Serial; /* Attach ID tag */ - strcpy(me->tag, ID_TAG_S); + Utilities::strcpy_safe(me->tag, 8, ID_TAG_S); return (me); diff --git a/parse.cpp b/parse.cpp index 6ea041d9..96b78acc 100644 --- a/parse.cpp +++ b/parse.cpp @@ -1,5 +1,6 @@ #include "Phreeqc.h" #include "phqalloc.h" +#include "Utils.h" #if defined(PHREEQCI_GUI) #ifdef _DEBUG @@ -133,7 +134,7 @@ parse_eq(char* eqn, std::vector& new_elt_list, int association) * Get elements in species or mineral formula */ count_elts = 0; - strcpy(token, trxn.token[0].name); + Utilities::strcpy_safe(token, MAX_LENGTH, trxn.token[0].name); replace("(s)", "", token); replace("(S)", "", token); replace("(g)", "", token); diff --git a/prep.cpp b/prep.cpp index cc12fdc9..a8349d3e 100644 --- a/prep.cpp +++ b/prep.cpp @@ -5413,8 +5413,15 @@ k_temp(LDBLE tc, LDBLE pa) /* pa - pressure in atm */ * Calculates log k's for all species and pure_phases */ - if (tc == current_tc && pa == current_pa && ((fabs(mu_x - current_mu) < 1e-3 * mu_x) || !mu_terms_in_logk)) - return OK; + // if (tc == current_tc && pa == current_pa && ((fabs(mu_x - current_mu) < 1e-3 * mu_x) || !mu_terms_in_logk)) + // return OK; + if (tc != current_tc) goto proceed; + if (pa != current_pa) goto proceed; + if (fabs(mu_x - current_mu) > 1e-3 * mu_x) goto proceed; + if (mu_terms_in_logk) goto proceed; + return OK; + +proceed: int i; LDBLE tempk = tc + 273.15; diff --git a/print.cpp b/print.cpp index 367b3c52..e372db9b 100644 --- a/print.cpp +++ b/print.cpp @@ -321,7 +321,7 @@ print_diffuse_layer(cxxSurfaceCharge *charge_ptr) add_elt_list(s_x[j]->next_elt, moles_surface); } /* - strcpy(token, s_h2o->name); + Utilities::strcpy_safe(token, MAX_LENGTH, s_h2o->name); ptr = &(token[0]); get_elts_in_species (&ptr, mass_water_surface / gfw_water); */ @@ -427,9 +427,9 @@ print_eh(void) /* * Print result */ - strcpy(token, master[i]->elt->name); - strcat(token, "/"); - strcat(token, master[k]->elt->name); + Utilities::strcpy_safe(token, MAX_LENGTH, master[i]->elt->name); + Utilities::strcat_safe(token, MAX_LENGTH, "/"); + Utilities::strcat_safe(token, MAX_LENGTH, master[k]->elt->name); output_msg(sformatf("\t%-15s%12.4f%12.4f\n", token, (double) pe, (double) eh)); } @@ -2904,34 +2904,34 @@ punch_identifiers(void) switch (state) { case 0: - strcpy(token, "init"); + Utilities::strcpy_safe(token, MAX_LENGTH, "init"); break; case 1: - strcpy(token, "i_soln"); + Utilities::strcpy_safe(token, MAX_LENGTH, "i_soln"); break; case 2: - strcpy(token, "i_exch"); + Utilities::strcpy_safe(token, MAX_LENGTH, "i_exch"); break; case 3: - strcpy(token, "i_surf"); + Utilities::strcpy_safe(token, MAX_LENGTH, "i_surf"); break; case 4: - strcpy(token, "i_gas"); + Utilities::strcpy_safe(token, MAX_LENGTH, "i_gas"); break; case 5: - strcpy(token, "react"); + Utilities::strcpy_safe(token, MAX_LENGTH, "react"); break; case 6: - strcpy(token, "inverse"); + Utilities::strcpy_safe(token, MAX_LENGTH, "inverse"); break; case 7: - strcpy(token, "advect"); + Utilities::strcpy_safe(token, MAX_LENGTH, "advect"); break; case 8: - strcpy(token, "transp"); + Utilities::strcpy_safe(token, MAX_LENGTH, "transp"); break; default: - strcpy(token, "unknown"); + Utilities::strcpy_safe(token, MAX_LENGTH, "unknown"); break; } fpunchf(PHAST_NULL("state"), sformat, token); diff --git a/read.cpp b/read.cpp index 9e875eff..2ac1bea7 100644 --- a/read.cpp +++ b/read.cpp @@ -1097,7 +1097,7 @@ read_exchange_master_species(void) if (token[0] == '[') { cptr1 = token; get_elt(&cptr, element, &l); - strcpy(token, element); + Utilities::strcpy_safe(token, MAX_LENGTH, element); } */ replace("(+", "(", token); @@ -1752,7 +1752,7 @@ read_inv_phases(class inverse *inverse_ptr, const char* cptr) j = copy_token(token, &cptr, &l); if (j == EMPTY) break; - strcpy(token1, token); + Utilities::strcpy_safe(token1, MAX_LENGTH, token); str_tolower(token1); if (token1[0] == 'p') { @@ -3107,7 +3107,7 @@ read_master_species(void) if (token[0] == '[') { cptr1 = token; get_elt(&cptr, element, &l); - strcpy(token, element); + Utilities::strcpy_safe(token, MAX_LENGTH, element); } */ replace("(+", "(", token); @@ -3726,7 +3726,7 @@ read_phases(void) /* * Get pointer to each species in the reaction, store new species if necessary */ - strcpy(token1, trxn.token[0].name); + Utilities::strcpy_safe(token1, MAX_LENGTH, trxn.token[0].name); replace("(g)", "", token1); replace("(s)", "", token1); replace("(G)", "", token1); @@ -3739,7 +3739,7 @@ read_phases(void) (strstr(trxn.token[i].name, "(S)") == NULL) && (strstr(trxn.token[i].name, "(G)") == NULL)) { - strcpy(token1, trxn.token[i].name); + Utilities::strcpy_safe(token1, MAX_LENGTH, trxn.token[i].name); replace("(aq)", "", token1); replace("(AQ)", "", token1); replace("H2O(l)", "H2O", token1); @@ -5737,7 +5737,7 @@ read_use(void) /* * Read number */ - strcpy(token1, token); + Utilities::strcpy_safe(token1, MAX_LENGTH, token); for (;;) { i = copy_token(token, &cptr, &l); @@ -7013,16 +7013,16 @@ read_surface_master_species(void) master[count_master]->s = s_store(token1.c_str(), l_z, FALSE); } master[count_master]->primary = TRUE; - strcpy(token, master[count_master]->elt->name); + Utilities::strcpy_safe(token, MAX_LENGTH, master[count_master]->elt->name); count_master++; /* * Save values in master and species structure for surface psi */ - strcpy(token1, token); + Utilities::strcpy_safe(token1, MAX_LENGTH, token); replace("_", " ", token1); cptr1 = token1; copy_token(token, &cptr1, &l); - strcat(token, "_psi"); + Utilities::strcat_safe(token, MAX_LENGTH, "_psi"); add_psi_master_species(token); opt_save = OPTION_DEFAULT; break; @@ -7041,10 +7041,9 @@ add_psi_master_species(char *token) class species *s_ptr; class master *master_ptr; const char* cptr; - char token1[MAX_LENGTH]; + char token1[MAX_LENGTH] = ""; int i, n, plane; - - strcpy(token1, token); + Utilities::strcpy_safe(token1, MAX_LENGTH, token); for (plane = SURF_PSI; plane <= SURF_PSI2; plane++) { strcpy(token, token1); @@ -9481,7 +9480,7 @@ read_copy(void) switch (next_keyword) { case Keywords::KEY_NONE: /* Have not read line with keyword */ - strcpy(nonkeyword, token); + Utilities::strcpy_safe(nonkeyword, MAX_LENGTH, token); break; case Keywords::KEY_SOLUTION: /* Solution */ case Keywords::KEY_EQUILIBRIUM_PHASES: /* Pure phases */ @@ -9508,7 +9507,7 @@ read_copy(void) /* * Read source index */ - strcpy(token1, token); + Utilities::strcpy_safe(token1, MAX_LENGTH, token); i = copy_token(token, &cptr, &l); if (i == DIGIT) { @@ -9728,8 +9727,8 @@ cleanup_after_parser(CParser &parser) // check_key sets next_keyword if (parser.get_m_line_type() == PHRQ_io::LT_EOF) { - strcpy(line, ""); - strcpy(line_save, ""); + Utilities::strcpy_safe(line, max_line, ""); + Utilities::strcpy_safe(line_save, max_line, ""); next_keyword = Keywords::KEY_END; return(TRUE); } @@ -9751,8 +9750,8 @@ cleanup_after_parser(CParser &parser) if (line == NULL) malloc_error(); } - strcpy(line, parser.line().c_str()); - strcpy(line_save, parser.line_save().c_str()); + Utilities::strcpy_safe(line, max_line, parser.line().c_str()); + Utilities::strcpy_safe(line_save, max_line, parser.line_save().c_str()); return return_value; } /* ---------------------------------------------------------------------- */ diff --git a/step.cpp b/step.cpp index a5503f02..bd960b36 100644 --- a/step.cpp +++ b/step.cpp @@ -707,13 +707,13 @@ add_pp_assemblage(cxxPPassemblage *pp_assemblage_ptr) comp_ptr->Set_delta(0.0); if (comp_ptr->Get_add_formula().size() > 0) { - strcpy(token, comp_ptr->Get_add_formula().c_str()); + Utilities::strcpy_safe(token, MAX_LENGTH, comp_ptr->Get_add_formula().c_str()); cptr = &(token[0]); get_elts_in_species(&cptr, 1.0); } else { - strcpy(token, phase_ptr->formula); + Utilities::strcpy_safe(token, MAX_LENGTH, phase_ptr->formula); add_elt_list(phase_ptr->next_elt, 1.0); } if (comp_ptr->Get_moles() > 0.0) diff --git a/tally.cpp b/tally.cpp index 8fdb0e6a..5f703e93 100644 --- a/tally.cpp +++ b/tally.cpp @@ -914,13 +914,13 @@ build_tally_table(void) paren_count = 0; if (comp_ptr->Get_add_formula().size() > 0) { - strcpy(token, comp_ptr->Get_add_formula().c_str()); + Utilities::strcpy_safe(token, MAX_LENGTH, comp_ptr->Get_add_formula().c_str()); cptr = &(token[0]); get_elts_in_species(&cptr, 1.0); } else { - strcpy(token, phase_ptr->formula); + Utilities::strcpy_safe(token, MAX_LENGTH, phase_ptr->formula); add_elt_list(phase_ptr->next_elt, 1.0); } elt_list_combine(); @@ -971,7 +971,7 @@ build_tally_table(void) tally_table[n].type = Ss_phase; count_elts = 0; paren_count = 0; - strcpy(token, phase_ptr->formula); + Utilities::strcpy_safe(token, MAX_LENGTH, phase_ptr->formula); add_elt_list(phase_ptr->next_elt, 1.0); elt_list_combine(); tally_table[n].formula = elt_list_vsave(); @@ -1019,7 +1019,7 @@ build_tally_table(void) phase_ptr = NULL; if (kinetics_comp_ptr->Get_namecoef().size() == 1) { - strcpy(token, kinetics_comp_ptr->Get_namecoef().begin()->first.c_str()); + Utilities::strcpy_safe(token, MAX_LENGTH, kinetics_comp_ptr->Get_namecoef().begin()->first.c_str()); phase_ptr = phase_bsearch(token, &p, FALSE); } if (phase_ptr != NULL) diff --git a/tidy.cpp b/tidy.cpp index 2b038c22..5769b4f5 100644 --- a/tidy.cpp +++ b/tidy.cpp @@ -819,7 +819,7 @@ replace_solids_gases(void) /* try phase name without (g) or (s) */ if (phase_ptr == NULL) { - strcpy(token, token_ptr->name); + Utilities::strcpy_safe(token, MAX_LENGTH, token_ptr->name); replace("(g)", "", token); replace("(s)", "", token); replace("(G)", "", token); @@ -2013,8 +2013,8 @@ tidy_punch(void) " %s.", pair_ref.first.c_str()); warning_msg(error_string); } - //strcpy(token, "m_"); - //strcat(token, punch.molalities[i].name); + // Utilities::strcpy_safe(token, MAX_LENGTH, "m_"); + //Utilities::strcat_safe(token, punch.molalities[i].name); //fpunchf_heading(sformatf("%*s\t", l, token)); //if (punch.molalities[i].s == NULL) //{ @@ -2039,8 +2039,8 @@ tidy_punch(void) " %s.", pair_ref.first.c_str()); warning_msg(error_string); } - //strcpy(token, "la_"); - //strcat(token, punch.activities[i].name); + // Utilities::strcpy_safe(token, MAX_LENGTH, "la_"); + //Utilities::strcat_safe(token, punch.activities[i].name); //fpunchf_heading(sformatf("%*s\t", l, token)); //if (punch.activities[i].s == NULL) //{ @@ -2066,8 +2066,8 @@ tidy_punch(void) " %s.", pair_ref.first.c_str()); warning_msg(error_string); } - //strcpy(token, "d_"); - //strcat(token, punch.pure_phases[i].name); + // Utilities::strcpy_safe(token, MAX_LENGTH, "d_"); + //Utilities::strcat_safe(token, punch.pure_phases[i].name); //fpunchf_heading(sformatf("%*s\t", l, punch.pure_phases[i].name)); //fpunchf_heading(sformatf("%*s\t", l, token)); //if (punch.pure_phases[i].phase == NULL) @@ -2093,8 +2093,8 @@ tidy_punch(void) " %s.", pair_ref.first.c_str()); warning_msg(error_string); } - //strcpy(token, "si_"); - //strcat(token, punch.si[i].name); + // Utilities::strcpy_safe(token, MAX_LENGTH, "si_"); + //Utilities::strcat_safe(token, punch.si[i].name); //fpunchf_heading(sformatf("%*s\t", l, token)); //if (punch.si[i].phase == NULL) //{ @@ -2126,8 +2126,8 @@ tidy_punch(void) " %s.", pair_ref.first.c_str()); warning_msg(error_string); } - //strcpy(token, "g_"); - //strcat(token, punch.gases[i].name); + // Utilities::strcpy_safe(token, MAX_LENGTH, "g_"); + //Utilities::strcat_safe(token, punch.gases[i].name); //fpunchf_heading(sformatf("%*s\t", l, token)); //if (punch.gases[i].phase == NULL) //{ @@ -2149,11 +2149,11 @@ tidy_punch(void) name = "dk_"; name.append(pair_ref.first); fpunchf_heading(sformatf("%*s\t", l, name.c_str())); - //strcpy(token, "k_"); - //strcat(token, punch.kinetics[i].name); + // Utilities::strcpy_safe(token, MAX_LENGTH, "k_"); + //Utilities::strcat_safe(token, punch.kinetics[i].name); //fpunchf_heading(sformatf("%*s\t", l, token)); - //strcpy(token, "dk_"); - //strcat(token, punch.kinetics[i].name); + // Utilities::strcpy_safe(token, MAX_LENGTH, "dk_"); + //Utilities::strcat_safe(token, punch.kinetics[i].name); //fpunchf_heading(sformatf("%*s\t", l, token)); } @@ -2166,8 +2166,8 @@ tidy_punch(void) std::string name = "s_"; name.append(pair_ref.first); fpunchf_heading(sformatf("%*s\t", l, name.c_str())); - //strcpy(token, "s_"); - //strcat(token, punch.s_s[i].name); + // Utilities::strcpy_safe(token, MAX_LENGTH, "s_"); + //Utilities::strcat_safe(token, punch.s_s[i].name); //fpunchf_heading(sformatf("%*s\t", l, token)); } @@ -2196,8 +2196,8 @@ tidy_punch(void) // punch.isotopes[i].name, punch.isotopes[i].name); // warning_msg(error_string); //} - //strcpy(token, "I_"); - //strcat(token, punch.isotopes[i].name); + // Utilities::strcpy_safe(token, MAX_LENGTH, "I_"); + //Utilities::strcat_safe(token, punch.isotopes[i].name); //fpunchf_heading(sformatf("%*s\t", l, token)); } @@ -2227,8 +2227,8 @@ tidy_punch(void) // punch.calculate_values[i].name); // warning_msg(error_string); //} - //strcpy(token, "V_"); - //strcat(token, punch.calculate_values[i].name); + // Utilities::strcpy_safe(token, MAX_LENGTH, "V_"); + //Utilities::strcat_safe(token, punch.calculate_values[i].name); //fpunchf_heading(sformatf("%*s\t", l, token)); } diff --git a/transport.cpp b/transport.cpp index 90f51054..0bd3d649 100644 --- a/transport.cpp +++ b/transport.cpp @@ -1784,7 +1784,7 @@ set_initial_moles(int i) cxxExchComp comp; count_elts = 0; paren_count = 0; - strcpy(token, "X"); + Utilities::strcpy_safe(token, MAX_LENGTH, "X"); cptr = token; get_elts_in_species(&cptr, 2e-10); cptr = token; diff --git a/utilities.cpp b/utilities.cpp index d655f656..79dfae7f 100644 --- a/utilities.cpp +++ b/utilities.cpp @@ -233,7 +233,7 @@ compute_gfw(const char *string, LDBLE * gfw) count_elts = 0; paren_count = 0; - strcpy(token, string); + Utilities::strcpy_safe(token, MAX_LENGTH, string); cptr = token; if (get_elts_in_species(&cptr, 1.0) == ERROR) { @@ -640,135 +640,6 @@ malloc_error(void) return; } -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -parse_couple(char *token) -/* ---------------------------------------------------------------------- */ -{ -/* - * Parse couple puts redox couples in standard form - * "+" is removed and couples are rewritten in sort - * order. - */ - int e1, e2, p1, p2; - const char* cptr; - std::string elt1, elt2; - char paren1[MAX_LENGTH], paren2[MAX_LENGTH]; - - if (strcmp_nocase_arg1(token, "pe") == 0) - { - str_tolower(token); - return (OK); - } - while (replace("(+", "(", token) == TRUE); - cptr = token; - get_elt(&cptr, elt1, &e1); - if (*cptr != '(') - { - error_string = sformatf( "Element name must be followed by " - "parentheses in redox couple, %s.", token); - error_msg(error_string, CONTINUE); - parse_error++; - return (ERROR); - } - paren_count = 1; - paren1[0] = '('; - p1 = 1; - while (*cptr != '\0') - { - cptr++; - if (*cptr == '/' || *cptr == '\0') - { - error_string = sformatf( - "End of line or " "/" - " encountered before end of parentheses, %s.", token); - error_msg(error_string, CONTINUE); - return (ERROR); - } - paren1[p1++] = *cptr; - if (*cptr == '(') - paren_count++; - if (*cptr == ')') - paren_count--; - if (paren_count == 0) - break; - } - paren1[p1] = '\0'; - cptr++; - if (*cptr != '/') - { - error_string = sformatf( " " "/" " must follow parentheses " - "ending first half of redox couple, %s.", token); - error_msg(error_string, CONTINUE); - parse_error++; - return (ERROR); - } - cptr++; - get_elt(&cptr, elt2, &e2); - if (strcmp(elt1.c_str(), elt2.c_str()) != 0) - { - error_string = sformatf( "Redox couple must be two redox states " - "of the same element, %s.", token); - error_msg(error_string, CONTINUE); - return (ERROR); - } - if (*cptr != '(') - { - error_string = sformatf( "Element name must be followed by " - "parentheses in redox couple, %s.", token); - error_msg(error_string, CONTINUE); - parse_error++; - return (ERROR); - } - paren2[0] = '('; - paren_count = 1; - p2 = 1; - while (*cptr != '\0') - { - cptr++; - if (*cptr == '/' || *cptr == '\0') - { - error_string = sformatf( "End of line or " "/" " encountered" - " before end of parentheses, %s.", token); - error_msg(error_string, CONTINUE); - return (ERROR); - } - - paren2[p2++] = *cptr; - if (*cptr == '(') - paren_count++; - if (*cptr == ')') - paren_count--; - if (paren_count == 0) - break; - } - paren2[p2] = '\0'; - if (strcmp(paren1, paren2) < 0) - { - strcpy(token, elt1.c_str()); - strcat(token, paren1); - strcat(token, "/"); - strcat(token, elt2.c_str()); - strcat(token, paren2); - } - else if (strcmp(paren1, paren2) > 0) - { - strcpy(token, elt2.c_str()); - strcat(token, paren2); - strcat(token, "/"); - strcat(token, elt1.c_str()); - strcat(token, paren1); - } - else - { - error_string = sformatf( "Both parts of redox couple are the same, %s.", - token); - error_msg(error_string, CONTINUE); - return (ERROR); - } - return (OK); -} - /* ---------------------------------------------------------------------- */ int Phreeqc:: print_centered(const char *string) @@ -783,7 +654,7 @@ print_centered(const char *string) for (i = 0; i < l1; i++) token[i] = '-'; token[i] = '\0'; - strcat(token, string); + Utilities::strcat_safe(token, MAX_LENGTH, string); for (i = 0; i < l2; i++) token[i + l1 + l] = '-'; token[79] = '\0'; From deb497735e9dea915ec582d42e671e0cfbcdd10e Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Thu, 16 Nov 2023 05:11:36 +0000 Subject: [PATCH 110/384] Squashed 'phreeqcpp/' changes from 625f6f1..3e6c2e9 3e6c2e9 Merge commit 'c4958bb740964f1804a6a4e6ae5d8df52c5c64ad' c4958bb Squashed 'common/' changes from b9af572..740bdd5 git-subtree-dir: phreeqcpp git-subtree-split: 3e6c2e94e308d95c2be3b98e50cf0f253f327a29 From b81c0fa8fc7713762598118f592bdc02acc3cf21 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Fri, 17 Nov 2023 08:12:34 -0700 Subject: [PATCH 111/384] update RELEASE.TXT --- RELEASE.TXT | 18 ++++++++++++++++++ 1 file changed, 18 insertions(+) diff --git a/RELEASE.TXT b/RELEASE.TXT index 84d566d2..9fd3c4af 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,4 +1,22 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + ----------------- + November 15, 2023 + ----------------- + PHREEQC programs: Fixed a couple malloc checks, some compiler warnings, and removed + some deprecated calls to strycpy and strcat. + + ----------------- + November 5, 2023 + ----------------- + PHREEQC programs: Automatic testing was expanded to include MPI and additional compilers. + + ----------------- + November 1, 2023 + ----------------- + PHREEQC: Logical statement in k_temp was modified to work with Intel optimization. + The statement at the beginning of the routine was not handled correctly when some + values were NaN. + ----------------- August 29, 2023 ----------------- From f1ef4343674725bf10c69247bec90f3e5549a093 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Fri, 17 Nov 2023 13:28:15 -0700 Subject: [PATCH 112/384] [skip ci] Fixed typo Added path-ignore to github actions --- RELEASE.TXT | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/RELEASE.TXT b/RELEASE.TXT index 9fd3c4af..3012b298 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -3,7 +3,7 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ November 15, 2023 ----------------- PHREEQC programs: Fixed a couple malloc checks, some compiler warnings, and removed - some deprecated calls to strycpy and strcat. + some deprecated calls to strcpy and strcat. ----------------- November 5, 2023 From 589ec40c7ce71d50ea98f7ff283f58ed5283cb29 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Sat, 18 Nov 2023 01:30:46 +0000 Subject: [PATCH 113/384] Squashed 'phreeqcpp/' changes from 3e6c2e9..ff1cc7a ff1cc7a [phreeqci] Updated to compile on vs2005 git-subtree-dir: phreeqcpp git-subtree-split: ff1cc7aa82e0ec1145f593a84025ff174af18463 --- Phreeqc.h | 14 +++++++++++++- common/Utils.cxx | 4 ++++ global_structures.h | 9 +++++++-- integrate.cpp | 2 +- 4 files changed, 25 insertions(+), 4 deletions(-) diff --git a/Phreeqc.h b/Phreeqc.h index 07283482..01a49e45 100644 --- a/Phreeqc.h +++ b/Phreeqc.h @@ -6,6 +6,7 @@ # define WINVER 0x0400 # endif # include +// # define nullptr NULL # endif # include # if defined(PHREEQCI_GUI) @@ -2095,12 +2096,22 @@ char* _string_duplicate(const char* token, const char* szFileName, int nLine); // https://stackoverflow.com/questions/2915672/snprintf-and-visual-studio-2010 #if defined(_MSC_VER) && (_MSC_VER < 1900) - +#if (_MSC_VER == 1400) // VS2005 +namespace std { + __inline bool isnan(double num) { + return _isnan(num) != 0; + } +} +#endif #include #define snprintf c99_snprintf #define vsnprintf c99_vsnprintf +#pragma warning( push ) +// warning C4793: 'vararg' : causes native code generation +#pragma warning( disable : 4793 ) + __inline int c99_vsnprintf(char *outBuf, size_t size, const char *format, va_list ap) { int count = -1; @@ -2124,6 +2135,7 @@ __inline int c99_snprintf(char *outBuf, size_t size, const char *format, ...) return count; } +#pragma warning( pop ) #endif // defined(_MSC_VER) && (_MSC_VER < 1900) #endif //_INC_MISSING_SNPRINTF_H diff --git a/common/Utils.cxx b/common/Utils.cxx index 1eafd439..0e8d461a 100644 --- a/common/Utils.cxx +++ b/common/Utils.cxx @@ -12,6 +12,10 @@ #include "float.h" #include +#if defined(_MSC_VER) && (_MSC_VER <= 1400) // VS2005 +# define nullptr NULL +#endif + #if defined(PHREEQCI_GUI) #ifdef _DEBUG #define new DEBUG_NEW diff --git a/global_structures.h b/global_structures.h index 98f16eef..020770f7 100644 --- a/global_structures.h +++ b/global_structures.h @@ -6,9 +6,14 @@ * #define DEFINITIONS * ---------------------------------------------------------------------- */ #if !defined(NAN) -#define NAN nan("1") +# if defined(_MSC_VER) && (_MSC_VER <= 1400) // VS2005 +# include +# define NAN std::numeric_limits::signaling_NaN() +# else +# define NAN nan("1") +# endif #endif -#define MISSING -9999.999 +#define MISSING -9999.999 #include "NA.h" /* NA = not available */ #define F_C_MOL 96493.5 /* C/mol or joule/volt-eq */ diff --git a/integrate.cpp b/integrate.cpp index 03e1c304..8f20cd27 100644 --- a/integrate.cpp +++ b/integrate.cpp @@ -1074,7 +1074,7 @@ calc_psi_avg(cxxSurfaceCharge *charge_ptr, LDBLE surf_chrg_eq, LDBLE nDbl, std:: cgc[10] = { 0.36, 0.1721, 0.798, 0.287, 0.1457, 1.2, 0.285, 0.372 }; if (!surf_p->Donnan_factors.empty()) - std::copy(std::begin(surf_p->Donnan_factors), std::end(surf_p->Donnan_factors), cgc); + std::copy(surf_p->Donnan_factors.begin(), surf_p->Donnan_factors.end(), cgc); cgc[1] *= pow(nDbl, cgc[2]) * pow(Gamma, cgc[3]) * pow(mu_x, cgc[4]); From a5b8a03fd7c84cdedb6507c4cd0679b46997ed7d Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Sat, 18 Nov 2023 01:35:08 +0000 Subject: [PATCH 114/384] Squashed 'phreeqcpp/' changes from ff1cc7a..f975e17 f975e17 Merge commit 'f82d3a73538ba56c8ed81977b0d26d46ebcb7f98' f82d3a7 Squashed 'common/' changes from 740bdd5..11183a1 git-subtree-dir: phreeqcpp git-subtree-split: f975e17ccce7eca010a391898d91c25e6e10990b From 488c119ac8fb2c9755ce3708519c79f4bd7d382c Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Sat, 18 Nov 2023 03:54:34 +0000 Subject: [PATCH 115/384] Squashed 'phreeqcpp/' changes from f975e17..9925ceb 9925ceb Updated for more visual studios tested on vs2005 vs2012 vs2013 vs2015 vs2019 git-subtree-dir: phreeqcpp git-subtree-split: 9925ceb3d2afa5ed8686dbc781b857e6f1b45314 --- Phreeqc.h | 3 +-- global_structures.h | 3 ++- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/Phreeqc.h b/Phreeqc.h index 01a49e45..5510379f 100644 --- a/Phreeqc.h +++ b/Phreeqc.h @@ -6,7 +6,6 @@ # define WINVER 0x0400 # endif # include -// # define nullptr NULL # endif # include # if defined(PHREEQCI_GUI) @@ -2096,7 +2095,7 @@ char* _string_duplicate(const char* token, const char* szFileName, int nLine); // https://stackoverflow.com/questions/2915672/snprintf-and-visual-studio-2010 #if defined(_MSC_VER) && (_MSC_VER < 1900) -#if (_MSC_VER == 1400) // VS2005 +#if (_MSC_VER <= 1700) // VS2012 namespace std { __inline bool isnan(double num) { return _isnan(num) != 0; diff --git a/global_structures.h b/global_structures.h index 020770f7..c4672cfe 100644 --- a/global_structures.h +++ b/global_structures.h @@ -6,7 +6,8 @@ * #define DEFINITIONS * ---------------------------------------------------------------------- */ #if !defined(NAN) -# if defined(_MSC_VER) && (_MSC_VER <= 1400) // VS2005 +# if defined(_MSC_VER) && (_MSC_VER <= 1700) // VS2012 +// https://learn.microsoft.com/en-us/cpp/preprocessor/predefined-macros?view=msvc-170 # include # define NAN std::numeric_limits::signaling_NaN() # else From f289b94cda5705b762909891b8f330e7f243595b Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Sun, 19 Nov 2023 18:04:03 -0700 Subject: [PATCH 116/384] Updated to force subtree merges --- .gitlab-ci.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 8f3a3913..822b6f25 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -1,6 +1,6 @@ # # https://code.chs.usgs.gov/coupled/subtrees/phreeqc3-doc -# SRC 2020-12-02T18:39:55-07:00 +# SRC 2020-12-02T18:39:55-07:01 # image: ${CI_REGISTRY}/coupled/containers/buildpack-deps:bionic-scm From 9665bd4a81b47793f54efa908511c8caaa890d53 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Tue, 28 Nov 2023 19:04:46 -0700 Subject: [PATCH 117/384] Updated for ubuntu 22.04 --- CMakeLists.txt | 12 +++++------- 1 file changed, 5 insertions(+), 7 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index 5e2e5457..296e5384 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -1,6 +1,3 @@ -# set standard directory locations -include(GNUInstallDirs) - set(phreeqc_DATABASE Amm.dat core10.dat @@ -11,19 +8,20 @@ set(phreeqc_DATABASE minteq.dat minteq.v4.dat phreeqc.dat + PHREEQC_ThermoddemV1.10_15Dec2020.dat pitzer.dat sit.dat Tipping_Hurley.dat wateq4f.dat - ) +) # for mytest tests foreach(db ${phreeqc_DATABASE}) configure_file(${db} ${db} COPYONLY) endforeach() -if (WIN32) - install (FILES ${phreeqc_DATABASE} DESTINATION database) +if(WIN32) + install(FILES ${phreeqc_DATABASE} DESTINATION database) else() - install (FILES ${phreeqc_DATABASE} DESTINATION ${CMAKE_INSTALL_DOCDIR}/database) + install(FILES ${phreeqc_DATABASE} DESTINATION ${CMAKE_INSTALL_DOCDIR}/database) endif() From 976555e201ea1ba8a0f37a78edfeec0e1550dd98 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Wed, 3 Jan 2024 13:34:35 -0700 Subject: [PATCH 118/384] Added PHREEQC_ThermoddemV1.10_15Dec2020.dat --- Makefile.am | 1 + 1 file changed, 1 insertion(+) diff --git a/Makefile.am b/Makefile.am index 25a6ba47..1c468a37 100644 --- a/Makefile.am +++ b/Makefile.am @@ -15,6 +15,7 @@ DATABASE=\ llnl.dat\ minteq.dat\ minteq.v4.dat\ + PHREEQC_ThermoddemV1.10_15Dec2020.dat\ phreeqc.dat\ pitzer.dat\ sit.dat\ From e510f75214e18e802d3ee357e5b290ca98807833 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Mon, 12 Feb 2024 15:50:08 -0700 Subject: [PATCH 119/384] Tony's changes 2/12/2024 --- Amm.dat | 1756 +++++++++++++++++++++++---------------------- Concrete_PHR.dat | 158 ++++ Concrete_PZ.dat | 195 +++++ kinetic_rates.dat | 144 ++++ pitzer.dat | 377 +++++----- 5 files changed, 1567 insertions(+), 1063 deletions(-) create mode 100644 Concrete_PHR.dat create mode 100644 Concrete_PZ.dat create mode 100644 kinetic_rates.dat diff --git a/Amm.dat b/Amm.dat index e40c6bb2..4a118abd 100644 --- a/Amm.dat +++ b/Amm.dat @@ -1,1010 +1,1012 @@ +# with Falkenhage, a in ka from change in vm with T, P, I # PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: # diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. # Details are given at the end of this file. SOLUTION_MASTER_SPECIES # -#element species alk gfw_formula element_gfw +#element species alk gfw_formula element_gfw # -H H+ -1.0 H 1.008 -H(0) H2 0 H -H(1) H+ -1.0 0 -E e- 0 0.0 0 -O H2O 0 O 16.0 -O(0) O2 0 O -O(-2) H2O 0 0 -Ca Ca+2 0 Ca 40.08 -Mg Mg+2 0 Mg 24.312 -Na Na+ 0 Na 22.9898 -K K+ 0 K 39.102 -Fe Fe+2 0 Fe 55.847 -Fe(+2) Fe+2 0 Fe -Fe(+3) Fe+3 -2.0 Fe -Mn Mn+2 0 Mn 54.938 -Mn(+2) Mn+2 0 Mn -Mn(+3) Mn+3 0 Mn -Al Al+3 0 Al 26.9815 -Ba Ba+2 0 Ba 137.34 -Sr Sr+2 0 Sr 87.62 -Si H4SiO4 0 SiO2 28.0843 -Cl Cl- 0 Cl 35.453 -C CO3-2 2.0 HCO3 12.0111 -C(+4) CO3-2 2.0 HCO3 -C(-4) CH4 0 CH4 -Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05 -S SO4-2 0 SO4 32.064 -S(6) SO4-2 0 SO4 -S(-2) HS- 1.0 S -N NO3- 0 N 14.0067 -N(+5) NO3- 0 NO3 -N(+3) NO2- 0 NO2 -N(0) N2 0 N -# N(-3) NH4+ NH4 14.0067 -Amm AmmH+ 0 AmmH 17.031 -B H3BO3 0 B 10.81 -P PO4-3 2.0 P 30.9738 -F F- 0 F 18.9984 -Li Li+ 0 Li 6.939 -Br Br- 0 Br 79.904 -Zn Zn+2 0 Zn 65.37 -Cd Cd+2 0 Cd 112.4 -Pb Pb+2 0 Pb 207.19 -Cu Cu+2 0 Cu 63.546 -Cu(+2) Cu+2 0 Cu -Cu(+1) Cu+1 0 Cu +H H+ -1.0 H 1.008 +H(0) H2 0 H +H(1) H+ -1.0 H +E e- 0 0 0 +O H2O 0 O 16.0 +O(0) O2 0 O +O(-2) H2O 0 0 +Ca Ca+2 0 Ca 40.08 +Mg Mg+2 0 Mg 24.312 +Na Na+ 0 Na 22.9898 +K K+ 0 K 39.102 +Fe Fe+2 0 Fe 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2.0 Fe +Mn Mn+2 0 Mn 54.938 +Mn(+2) Mn+2 0 Mn +Mn(+3) Mn+3 0 Mn +Al Al+3 0 Al 26.9815 +Ba Ba+2 0 Ba 137.34 +Sr Sr+2 0 Sr 87.62 +Si H4SiO4 0 SiO2 28.0843 +Cl Cl- 0 Cl 35.453 +C CO3-2 2.0 HCO3 12.0111 +C(+4) CO3-2 2.0 HCO3 +C(-4) CH4 0 CH4 +Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05 +S SO4-2 0 SO4 32.064 +S(6) SO4-2 0 SO4 +S(-2) HS- 1.0 S +N NO3- 0 N 14.0067 +N(+5) NO3- 0 NO3 +N(+3) NO2- 0 NO2 +N(0) N2 0 N +# N(-3) NH4+ NH4 14.0067 +Amm AmmH+ 0 AmmH 17.031 +B H3BO3 0 B 10.81 +P PO4-3 2.0 P 30.9738 +F F- 0 F 18.9984 +Li Li+ 0 Li 6.939 +Br Br- 0 Br 79.904 +Zn Zn+2 0 Zn 65.37 +Cd Cd+2 0 Cd 112.4 +Pb Pb+2 0 Pb 207.19 +Cu Cu+2 0 Cu 63.546 +Cu(+2) Cu+2 0 Cu +Cu(+1) Cu+1 0 Cu # redox-uncoupled gases -Hdg Hdg 0 Hdg 2.016 # H2 gas -Oxg Oxg 0 Oxg 32 # O2 gas -Mtg Mtg 0 Mtg 16.032 # CH4 gas +Hdg Hdg 0 Hdg 2.016 # H2 gas +Oxg Oxg 0 Oxg 32 # O2 gas +Mtg Mtg 0 Mtg 16.032 # CH4 gas Sg H2Sg 0.0 H2Sg 32.064 # H2S gas -Ntg Ntg 0 Ntg 28.0134 # N2 gas +Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ - -gamma 9.0 0 - -dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 3. -# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc -# Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75))) + -gamma 9.0 0 -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 + -dw 9.31e-9 742 15.0 1 2.353 24.01 # The dw parameters are defined in ref. 3. +# Dw(25 C) dw_T a a2 visc a3 +# Dw(TK) = 9.31e-9 * exp(742 / TK - 742 / 298.15) * viscos_0_25 / viscos_0_tc * (viscos_0_tc / viscos)^2.353 + +# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024 +# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0) / 5.2)^a2 * mu^0.5 (a3 = 5.2 = default, can be changed) in Falkenhagen's eqn. +# a3 = -10 ? ka = DH_B * a * mu^a2 in Falkenhagen's eqn. (Define a3 = -10), in CO3-2 and HCO3-, SO4-2 + cplxs +# -5 < a3 < 5 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) e- = e- H2O = H2O + -dw 2.299e-9 -254 # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence -Ca+2 = Ca+2 - -gamma 5.0 0.1650 - -dw 0.793e-9 97 3.4 24.6 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 - -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M -Mg+2 = Mg+2 - -gamma 5.5 0.20 - -dw 0.705e-9 111 2.4 13.7 - -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 - -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 +Li+ = Li+ + -gamma 6.0 0 # The apparent volume parameters for Vm are defined in ref. 1 & 2 + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 + -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl + -dw 1.03e-9 -23 4.063 5.488 3.0 Na+ = Na+ - -gamma 4.0 0.075 - -gamma 4.08 0.082 # halite solubility - -dw 1.33e-9 122 1.52 3.70 - -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 + -gamma 4.0 0.075 + -gamma 4.08 0.082 # halite solubility + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # for calculating densities (rho) when I > 3... # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 + -dw 1.33e-9 -121 4.383 -2.798 0.6215 K+ = K+ - -gamma 3.5 0.015 - -dw 1.96e-9 395 2.5 21 - -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 + -gamma 3.5 0.015 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 -viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028 -Fe+2 = Fe+2 - -gamma 6.0 0 - -dw 0.719e-9 - -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 -Mn+2 = Mn+2 - -gamma 6.0 0 - -dw 0.688e-9 - -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 -Al+3 = Al+3 - -gamma 9.0 0 - -dw 0.559e-9 - -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353. + -dw 1.96e-9 252 3.054 1.729 0.4706 +Mg+2 = Mg+2 + -gamma 5.5 0.20 + -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 + -dw 0.705e-9 35 11.92 -2.922 0.9631 +Ca+2 = Ca+2 + -gamma 5.0 0.1650 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 + -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M + -dw 0.792e-9 -198 11.80 -2.745 0.9735 +Sr+2 = Sr+2 + -gamma 5.260 0.121 + -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 + -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 + -dw 0.794e-9 66 25 -2.336 3.0 Ba+2 = Ba+2 -gamma 5.0 0 - -gamma 4.0 0.153 # Barite solubility - -dw 0.848e-9 100 - -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -gamma 4.0 0.153 # Barite solubility + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 -Sr+2 = Sr+2 - -gamma 5.260 0.121 - -dw 0.794e-9 161 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 - -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 + -dw 0.848e-9 -47 22.67 -2.543 3.0 +Fe+2 = Fe+2 + -gamma 6.0 0 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -dw 0.719e-9 +Mn+2 = Mn+2 + -gamma 6.0 0 + -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 + -dw 0.688e-9 +Al+3 = Al+3 + -gamma 9.0 0 + -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353. + -dw 0.559e-9 H4SiO4 = H4SiO4 - -dw 1.10e-9 - -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 + -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 + -dw 1.10e-9 Cl- = Cl- - -gamma 3.5 0.015 - -gamma 3.63 0.017 # cf. pitzer.dat - -dw 2.03e-9 194 1.6 6.9 - -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -gamma 3.5 0.015 + -gamma 3.63 0.017 # cf. pitzer.dat + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 -viscosity 0 0 0 0 0 0 1 # the reference solute + -dw 2.033e-9 164 3.214 0.6814 0.7554 CO3-2 = CO3-2 - -gamma 5.4 0 - -dw 0.955e-9 28.9 14.3 98.1 - -Vm 8.69 -10.2 -20.31 -0.131 4.65 0 3.75 0 -4.04e-2 0.678 - -viscosity 0 0.301 4.12e-2 1.44e-3 1.41e-2 1.364 -2.00 + -gamma 5.4 0 + -Vm 5.65 -0.413 4.32e-2 -5.68 5.56 0 -0.97 150 -7.3e-3 0.866 + -viscosity -0.307 0.461 6.91e-3 2.6e-4 -2.02e-2 1.666 -2.215 + -dw 0.955e-9 -21 4.372 0.4288 0.7542 -10 SO4-2 = SO4-2 - -gamma 5.0 -0.04 - -dw 1.07e-9 187 2.64 22.6 - -Vm 9.379 3.26 0 -7.13 4.30 0 0 0 -3.73e-2 0 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC - -viscosity -1.83 1.907 4.8e-4 1.7e-3 -1.60e-2 4.40 -0.143 + -gamma 5.0 -0.04 + -Vm -7.77 43.17 141.1 -42.45 3.794 1.40e-2 0 100.9 -5.713e-2 1.011e-4 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC + -viscosity -0.7887 0.813 1.86e-3 1.27e-3 -1.38e-2 4.668 -9.86e-2 + -dw 1.07e-9 -3 35 0.3063 1e-9 -10 NO3- = NO3- - -gamma 3.0 0 - -dw 1.9e-9 184 1.85 3.85 - -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 + -gamma 3.0 0 + -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 -viscosity 8.37e-2 -0.458 1.54e-2 0.340 1.79e-2 5.02e-2 0.7381 + -dw 1.90e-9 150 1.281 0.3876 1e-9 -10 AmmH+ = AmmH+ - -gamma 2.5 0 - -dw 1.98e-9 312 0.95 4.53 + -gamma 2.5 0 -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -dw 1.98e-9 -81 6.274 -4.118 -0.270 H3BO3 = H3BO3 + -Vm 7.0643 8.8547 3.5844 -3.1451 -0.20 # supcrt -dw 1.1e-9 - -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt PO4-3 = PO4-3 - -gamma 4.0 0 - -dw 0.612e-9 - -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 + -gamma 4.0 0 + -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 + -dw 0.612e-9 F- = F- - -gamma 3.5 0 - -dw 1.46e-9 10 - -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 -Li+ = Li+ - -gamma 6.0 0 - -dw 1.03e-9 80 - -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 - -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 + -gamma 3.5 0 + -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 + -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 + -dw 1.46e-9 11 4.659 -0.176 1e-9 Br- = Br- - -gamma 3.0 0 - -dw 2.01e-9 258 - -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 + -gamma 3.0 0 + -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.820 + -dw 2.01e-9 121 5.939 -2.588 1e-9 Zn+2 = Zn+2 - -gamma 5.0 0 - -dw 0.715e-9 - -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 + -gamma 5.0 0 + -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 + -dw 0.715e-9 Cd+2 = Cd+2 - -dw 0.717e-9 - -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 + -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 + -dw 0.717e-9 Pb+2 = Pb+2 - -dw 0.945e-9 - -Vm -.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt + -Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt + -dw 0.945e-9 Cu+2 = Cu+2 - -gamma 6.0 0 - -dw 0.733e-9 - -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 + -gamma 6.0 0 + -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 + -dw 0.733e-9 # redox-uncoupled gases Hdg = Hdg # H2 - -dw 5.13e-9 - -Vm 6.52 0.78 0.12 # supcrt + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 Oxg = Oxg # O2 - -dw 2.35e-9 - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 Mtg = Mtg # CH4 - -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 Ntg = Ntg # N2 - -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 -Vm 7 # Pray et al., 1952, IEC 44. 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 H2Sg = H2Sg # H2S - -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 # aqueous species H2O = OH- + H+ -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 - -gamma 3.5 0 - -dw 5.27e-9 548 0.52 1e-10 - -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 + -gamma 3.5 0 + -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH + -dw 5.27e-9 470 1.837 0.4096 0.3330 2 H2O = O2 + 4 H+ + 4 e- - -log_k -86.08 + -log_k -86.08 -delta_h 134.79 kcal - -dw 2.35e-9 - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 2 H+ + 2 e- = H2 - -log_k -3.15 + -log_k -3.15 -delta_h -1.759 kcal - -dw 5.13e-9 - -Vm 6.52 0.78 0.12 # supcrt + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 H+ + Cl- = HCl -log_k -0.5 -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50C -gamma 0 0.4256 -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 CO3-2 + H+ = HCO3- - -log_k 10.329 - -delta_h -3.561 kcal + -log_k 10.329; -delta_h -3.561 kcal -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 - -gamma 5.4 0 - -dw 1.18e-9 -182 0.351 -4.94 - -Vm 9.03 -7.03e-2 -13.38 0 2.05 0 0 128 0 0.8242 - -dw 1.18e-9 -182 0.351 -4.94 - -viscosity 0 0.117 -2.91e-2 0 0 0 0.896 + -gamma 5.4 0 + -Vm 6.64 4.47 7.27 -4.78 1.51 0 -2.91 202 3.33e-2 0.895 + -viscosity -1 1.059 -1.32e-2 8.98e-2 3.10e-2 -0.974 0.986 + -dw 1.18e-9 -133 3.421 0.2629 1e-9 -10 + # -dw 1.18e-9 -216 3.397 -9.20e-2 -0.5492 -10 CO3-2 + 2 H+ = CO2 + H2O - -log_k 16.681 - -delta_h -5.738 kcal - -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 - -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 - -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 + -log_k 16.681 + -delta_h -5.738 kcal + -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 + -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 2CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T - -log_k -1.8 + -log_k -1.8 -analytical_expression 8.68 -0.0103 -2190 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 - -Vm 14.58 1.84 4.14 -2.46 -3.20 + -Vm 14.58 1.84 4.14 -2.46 -3.20 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O - -log_k 41.071 + -log_k 41.071 -delta_h -61.039 kcal - -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm .01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 SO4-2 + H+ = HSO4- - -log_k 1.988 - -delta_h 3.85 kcal - -analytic -56.889 0.006473 2307.9 19.8858 - -dw 1.33e-9 - -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -log_k 1.988; -delta_h 3.85 kcal + -analytic -56.889 0.006473 2307.9 19.8858 + -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -dw 1.2e-9 1027 25 1.681 1e-9 -10 # a (=25) * mu^1.681 HS- = S-2 + H+ - -log_k -12.918 - -delta_h 12.1 kcal - -gamma 5.0 0 - -dw 0.731e-9 + -log_k -12.918 + -delta_h 12.1 kcal + -gamma 5.0 0 + -dw 0.731e-9 SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O - -log_k 33.65 + -log_k 33.65 -delta_h -60.140 kcal - -gamma 3.5 0 - -dw 1.73e-9 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -dw 1.73e-9 HS- + H+ = H2S - -log_k 6.994 - -delta_h -5.30 kcal + -log_k 6.994; -delta_h -5.30 kcal -analytical -11.17 0.02386 3279.0 - -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 2H2S = (H2S)2 # activity correction for H2S solubility at high P, T -analytical_expression 10.227 -0.01384 -2200 - -dw 2.1e-9 - -Vm 36.41 -71.95 0 0 2.58 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 H2Sg = HSg- + H+ - -log_k -6.994 - -delta_h 5.30 kcal + -log_k -6.994; -delta_h 5.30 kcal -analytical_expression 11.17 -0.02386 -3279.0 - -gamma 3.5 0 - -dw 1.73e-9 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -dw 1.73e-9 2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T -analytical_expression 10.227 -0.01384 -2200 - -dw 2.1e-9 - -Vm 36.41 -71.95 0 0 2.58 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 NO3- + 2 H+ + 2 e- = NO2- + H2O - -log_k 28.570 + -log_k 28.570 -delta_h -43.760 kcal - -gamma 3.0 0 - -dw 1.91e-9 - -Vm 5.5864 5.8590 3.4472 -3.0212 1.1847 # supcrt + -gamma 3.0 0 + -Vm 5.5864 5.8590 3.4472 -3.0212 1.1847 # supcrt + -dw 1.91e-9 2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O - -log_k 207.08 - -delta_h -312.130 kcal - -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 - -Vm 7 # Pray et al., 1952, IEC 44. 1146 + -log_k 207.08 + -delta_h -312.130 kcal + -Vm 7 # Pray et al., 1952, IEC 44. 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 AmmH+ = Amm + H+ - -log_k -9.252 - -delta_h 12.48 kcal + -log_k -9.252 + -delta_h 12.48 kcal -analytic 0.6322 -0.001225 -2835.76 - -dw 2.28e-9 - -Vm 6.69 2.8 3.58 -2.88 1.43 + -Vm 6.69 2.8 3.58 -2.88 1.43 -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -dw 2.28e-9 #NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O -# -log_k 119.077 -# -delta_h -187.055 kcal -# -gamma 2.5 0 -# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 +# -log_k 119.077 +# -delta_h -187.055 kcal +# -gamma 2.5 0 +# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 AmmH+ + SO4-2 = AmmHSO4- - -log_k 1.11; -delta_h 13.2 kcal - -gamma 5 -0.163 - -Vm 13.56 0 -31.15 0 0 0 11.20 0 -0.1287 1 - -dw 1.1e-9 400 1.85 200 - -viscosity 0.262 0 0 9.49e-2 3.81e-2 0.438 0.507 + -gamma 6.0 -0.27 + -log_k 1.27; -delta_h 4.9 kcal + -Vm 10.45 0 -12.26 0 2.578 0 12.67 0 -2.60e-2 0.3516 + -viscosity 0.139 0 0 7.95e-3 2.73e-2 1.38 0.127 + -dw 1.35e-9 500 25 3 1e-9 -10 H3BO3 = H2BO3- + H+ - -log_k -9.24 - -delta_h 3.224 kcal + -log_k -9.24 + -delta_h 3.224 kcal H3BO3 + F- = BF(OH)3- - -log_k -0.4 - -delta_h 1.850 kcal + -log_k -0.4 + -delta_h 1.850 kcal H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O - -log_k 7.63 - -delta_h 1.618 kcal + -log_k 7.63 + -delta_h 1.618 kcal H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O - -log_k 13.67 - -delta_h -1.614 kcal + -log_k 13.67 + -delta_h -1.614 kcal H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O - -log_k 20.28 - -delta_h -1.846 kcal + -log_k 20.28 + -delta_h -1.846 kcal PO4-3 + H+ = HPO4-2 - -log_k 12.346 - -delta_h -3.530 kcal - -gamma 5.0 0 + -log_k 12.346 + -delta_h -3.530 kcal + -gamma 5.0 0 -dw 0.69e-9 - -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 + -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 PO4-3 + 2 H+ = H2PO4- - -log_k 19.553 - -delta_h -4.520 kcal - -gamma 5.4 0 - -dw 0.846e-9 - -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 + -log_k 19.553 + -delta_h -4.520 kcal + -gamma 5.4 0 + -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 + -dw 0.846e-9 PO4-3 + 3H+ = H3PO4 - log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 - delta_h -10.1 kJ - -Vm 7.47 12.4 6.29 -3.29 0 + log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 + delta_h -10.1 kJ + -Vm 7.47 12.4 6.29 -3.29 0 H+ + F- = HF - -log_k 3.18 - -delta_h 3.18 kcal - -analytic -2.033 0.012645 429.01 - -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt + -log_k 3.18 + -delta_h 3.18 kcal + -analytic -2.033 0.012645 429.01 + -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt H+ + 2 F- = HF2- - -log_k 3.76 - -delta_h 4.550 kcal - -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt + -log_k 3.76 + -delta_h 4.550 kcal + -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt Ca+2 + H2O = CaOH+ + H+ - -log_k -12.78 + -log_k -12.78 Ca+2 + CO3-2 = CaCO3 - -log_k 3.224 - -delta_h 3.545 kcal - -analytic -1228.732 -0.299440 35512.75 485.818 - -dw 4.46e-10 # complexes: calc'd with the Pikal formula - -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt + -log_k 3.224; -delta_h 3.545 kcal + -analytic -1228.732 -0.299440 35512.75 485.818 + -dw 4.46e-10 # complexes: calc'd with the Pikal formula + -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt Ca+2 + CO3-2 + H+ = CaHCO3+ - -log_k 11.435 - -delta_h -0.871 kcal - -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9 - -gamma 6.0 0 - -dw 5.06e-10 - -Vm 3.1911 .0104 5.7459 -2.7794 .3084 5.4 # supcrt + -log_k 11.435; -delta_h -0.871 kcal + -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9 + -gamma 6.0 0 + -Vm 3.1911 .0104 5.7459 -2.7794 .3084 5.4 # supcrt + -dw 5.06e-10 Ca+2 + SO4-2 = CaSO4 - -log_k 2.25 - -delta_h 1.325 kcal + -log_k 2.25 + -delta_h 1.325 kcal -dw 4.71e-10 - -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # supcrt + -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # supcrt Ca+2 + HSO4- = CaHSO4+ - -log_k 1.08 + -log_k 1.08 Ca+2 + PO4-3 = CaPO4- - -log_k 6.459 - -delta_h 3.10 kcal - -gamma 5.4 0.0 + -log_k 6.459 + -delta_h 3.10 kcal + -gamma 5.4 0.0 Ca+2 + HPO4-2 = CaHPO4 - -log_k 2.739 + -log_k 2.739 -delta_h 3.3 kcal Ca+2 + H2PO4- = CaH2PO4+ - -log_k 1.408 + -log_k 1.408 -delta_h 3.4 kcal - -gamma 5.4 0.0 + -gamma 5.4 0.0 # Ca+2 + F- = CaF+ # -log_k 0.94 # -delta_h 4.120 kcal - # -gamma 5.5 0.0 - # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt + # -gamma 5.5 0.0 + # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt Mg+2 + H2O = MgOH+ + H+ - -log_k -11.44 + -log_k -11.44 -delta_h 15.952 kcal - -gamma 6.5 0 + -gamma 6.5 0 Mg+2 + CO3-2 = MgCO3 - -log_k 2.98 - -delta_h 2.713 kcal - -analytic 0.9910 0.00667 - -dw 4.21e-10 - -Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt + -log_k 2.98 + -delta_h 2.713 kcal + -analytic 0.9910 0.00667 + -Vm -0.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt + -dw 4.21e-10 Mg+2 + H+ + CO3-2 = MgHCO3+ - -log_k 11.399 + -log_k 11.399 -delta_h -2.771 kcal - -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 - -gamma 4.0 0 - -dw 4.78e-10 - -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt + -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 + -gamma 4.0 0 + -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt + -dw 4.78e-10 Mg+2 + SO4-2 = MgSO4 - -log_k 2.42; -delta_h 19.0 kJ - -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -gamma 0 0.20 - -Vm 13.18 -25.67 -21.23 0 0.800 0 0 0 0 0 - -dw 4.45e-10 - -viscosity -0.590 0.768 -3.8e-4 0.283 1.1e-3 1.09 0 + -gamma 0 0.20 + -log_k 2.42; -delta_h 19.0 kJ + -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm 14.19 -24.43 -30.57 0 1.194 0 0 0 0 0 + -viscosity -0.5787 0.8305 0 0.2147 -1.06e-4 1.202 0 + -dw 4.45e-10 SO4-2 + MgSO4 = Mg(SO4)2-2 - -log_k 0.52; -delta_h -13.6 kJ - -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -gamma 7 0.047 - -Vm 12.725 -28.73 0.219 0 -0.264 0 23.44 0 0.213 5.1e-2 - -Dw 1e-9 -2926 6.10e-2 -5.41 - -viscosity -0.162 9.6e-4 -4.65e-2 0.179 1.56e-2 1.66 0 + -gamma 7 0.047 + -log_k 0.52; -delta_h -13.6 kJ + -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm 27.34 -30 -26.79 0 1.75e-2 0 0.4148 -0.6003 0 0 + -viscosity -6.34e-2 5e-4 -5.09e-2 0.1974 1.65e-2 1.568 0 + -dw 0.69e-9 -661 35 -0.7452 0.4817 -10 Mg+2 + PO4-3 = MgPO4- - -log_k 6.589 - -delta_h 3.10 kcal - -gamma 5.4 0 + -log_k 6.589 + -delta_h 3.10 kcal + -gamma 5.4 0 Mg+2 + HPO4-2 = MgHPO4 - -log_k 2.87 + -log_k 2.87 -delta_h 3.3 kcal Mg+2 + H2PO4- = MgH2PO4+ - -log_k 1.513 + -log_k 1.513 -delta_h 3.4 kcal - -gamma 5.4 0 + -gamma 5.4 0 Mg+2 + F- = MgF+ - -log_k 1.82 - -delta_h 3.20 kcal - -gamma 4.5 0 - -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt + -log_k 1.82 + -delta_h 3.20 kcal + -gamma 4.5 0 + -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt Na+ + OH- = NaOH - -log_k -10 # remove this complex + -log_k -10 # remove this complex # Na+ + CO3-2 = NaCO3- # the CO3-2 cmplx is not necessary for the SC # -log_k 1.27 # -delta_h 8.91 kcal - # -dw 1.2e-9 -400 1e-10 1e-10 - # -Vm 3.812 0.196 20.0 -9.60 3.02 1e-5 2.65 0 2.54e-2 1 + # -dw 1.2e-9 -400 1e-10 1e-10 + # -Vm 3.812 0.196 20.0 -9.60 3.02 1e-5 2.65 0 2.54e-2 1 # -viscosity 0.104 -1.65 0.169 8.66e-2 2.60e-2 1.76 -0.90 Na+ + HCO3- = NaHCO3 - -log_k -0.18; -delta_h 27 kJ - -analytical_expression 0.1 -6.111e-3 -1600 2.794 # optimized with data in Appelo, 2015, Appl. Geochem. 55, 6271. - -gamma 0 0.23 - -dw 6.73e-10 -400 1e-10 1e-10 - -Vm 9 -6 - -viscosity 0 0 0 0.1 3e-2 + -log_k -0.18; -delta_h 23 kJ + # -analytical_expression 0.1 -6.111e-3 -1600 2.794 # optimized with data in Appelo, 2015, Appl. Geochem. 55, 6271. + -gamma 0 0.23 + -Vm 11.58 0 0 0 1.894 + -viscosity 1 -1.035 -4.78e-2 0.274 -6.27e-2 -4.17e-2 1.0 + -dw 6.73e-10 -400 1e-10 1e-10 Na+ + SO4-2 = NaSO4- - -log_k 0.6; -delta_h -14.4 kJ - -analytical_expression -7.99 1.637e-2 0 0 3.29e5 # mirabilite/thenardite solubilities, 0 - 200 oC - -gamma 0 0 - -Vm 9.993 -8.75 0 -2.95 2.59 0 8.40 0 -1.82e-2 0.672 - -dw 1.183e-9 438 1e-10 1e-10 - -viscosity 7.94e-2 6.96e-2 1.51e-2 7.62e-2 2.84e-2 1.74 0.120 + -gamma 5.5 0 + -log_k 0.6; -delta_h -14.4 kJ + -analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC + -Vm 1e-5 20.45 0 -3.75 2.433 0 6.106 0 -1.05e-2 0.6604 + -viscosity -1.045 1.215 2.32e-4 4.82e-2 2.67e-2 1.634 0 + -dw 0.85e-9 -100 35 2.643 0.4323 -10 Na+ + HPO4-2 = NaHPO4- - -log_k 0.29 - -gamma 5.4 0 - -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 Na+ + F- = NaF - -log_k -0.24 - -Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt + -log_k -0.24 + -Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt K+ + SO4-2 = KSO4- - -log_k 0.6; -delta_h -10.4 kJ - -analytical_expression -4.022 8.217e-3 0 0 1.90e5 # arcanite solubility, 0 - 200 oC - -gamma 0 8.3e-3 - -Vm 8.942 -5.05 -15.03 0 3.61 0 25.14 0 -5.06e-2 0.166 - -dw 5.11e-10 1694 -0.587 -4.43 - -viscosity -2.71 3.09 6e-4 -0.629 9.38e-2 0.778 0.975 + -gamma 5.4 0.19 + -log_k 0.6; -delta_h -10.4 kJ + -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC + -Vm 1e-5 -30 -113.5 21.88 1.5 0 114.0 0 -0.1241 2.281e-2 + -viscosity -0.4572 0.7833 7e-4 -1.014 4.60e-3 0.5757 -0.224 + -dw 0.52e-9 300 35 1.110 0.8 -10 K+ + HPO4-2 = KHPO4- - -log_k 0.29 - -gamma 5.4 0 - -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 Fe+2 + H2O = FeOH+ + H+ - -log_k -9.5 - -delta_h 13.20 kcal - -gamma 5.0 0 -Fe+2 + 3H2O = Fe(OH)3- + 3H+ + -log_k -9.5 + -delta_h 13.20 kcal + -gamma 5.0 0 +Fe+2 + 3H2O = Fe(OH)3- + 3H+ -log_k -31.0 -delta_h 30.3 kcal -gamma 5.0 0 Fe+2 + Cl- = FeCl+ - -log_k 0.14 + -log_k 0.14 Fe+2 + CO3-2 = FeCO3 - -log_k 4.38 + -log_k 4.38 Fe+2 + HCO3- = FeHCO3+ - -log_k 2.0 + -log_k 2.0 Fe+2 + SO4-2 = FeSO4 - -log_k 2.25 - -delta_h 3.230 kcal - -Vm -13 0 123 + -log_k 2.25 + -delta_h 3.230 kcal + -Vm -13 0 123 Fe+2 + HSO4- = FeHSO4+ - -log_k 1.08 + -log_k 1.08 Fe+2 + 2HS- = Fe(HS)2 - -log_k 8.95 + -log_k 8.95 Fe+2 + 3HS- = Fe(HS)3- - -log_k 10.987 + -log_k 10.987 Fe+2 + HPO4-2 = FeHPO4 - -log_k 3.6 + -log_k 3.6 Fe+2 + H2PO4- = FeH2PO4+ - -log_k 2.7 - -gamma 5.4 0 + -log_k 2.7 + -gamma 5.4 0 Fe+2 + F- = FeF+ - -log_k 1.0 + -log_k 1.0 Fe+2 = Fe+3 + e- - -log_k -13.02 - -delta_h 9.680 kcal - -gamma 9.0 0 + -log_k -13.02 + -delta_h 9.680 kcal + -gamma 9.0 0 Fe+3 + H2O = FeOH+2 + H+ - -log_k -2.19 - -delta_h 10.4 kcal - -gamma 5.0 0 + -log_k -2.19 + -delta_h 10.4 kcal + -gamma 5.0 0 Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ - -log_k -5.67 - -delta_h 17.1 kcal - -gamma 5.4 0 + -log_k -5.67 + -delta_h 17.1 kcal + -gamma 5.4 0 Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ - -log_k -12.56 - -delta_h 24.8 kcal + -log_k -12.56 + -delta_h 24.8 kcal Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ - -log_k -21.6 - -delta_h 31.9 kcal - -gamma 5.4 0 -Fe+2 + 2H2O = Fe(OH)2 + 2H+ + -log_k -21.6 + -delta_h 31.9 kcal + -gamma 5.4 0 +Fe+2 + 2H2O = Fe(OH)2 + 2H+ -log_k -20.57 - -delta_h 28.565 kcal + -delta_h 28.565 kcal 2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ - -log_k -2.95 - -delta_h 13.5 kcal + -log_k -2.95 + -delta_h 13.5 kcal 3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ - -log_k -6.3 - -delta_h 14.3 kcal + -log_k -6.3 + -delta_h 14.3 kcal Fe+3 + Cl- = FeCl+2 - -log_k 1.48 - -delta_h 5.6 kcal - -gamma 5.0 0 + -log_k 1.48 + -delta_h 5.6 kcal + -gamma 5.0 0 Fe+3 + 2 Cl- = FeCl2+ - -log_k 2.13 - -gamma 5.0 0 + -log_k 2.13 + -gamma 5.0 0 Fe+3 + 3 Cl- = FeCl3 - -log_k 1.13 + -log_k 1.13 Fe+3 + SO4-2 = FeSO4+ - -log_k 4.04 - -delta_h 3.91 kcal - -gamma 5.0 0 + -log_k 4.04 + -delta_h 3.91 kcal + -gamma 5.0 0 Fe+3 + HSO4- = FeHSO4+2 - -log_k 2.48 + -log_k 2.48 Fe+3 + 2 SO4-2 = Fe(SO4)2- - -log_k 5.38 - -delta_h 4.60 kcal + -log_k 5.38 + -delta_h 4.60 kcal Fe+3 + HPO4-2 = FeHPO4+ - -log_k 5.43 - -delta_h 5.76 kcal - -gamma 5.0 0 + -log_k 5.43 + -delta_h 5.76 kcal + -gamma 5.0 0 Fe+3 + H2PO4- = FeH2PO4+2 - -log_k 5.43 - -gamma 5.4 0 + -log_k 5.43 + -gamma 5.4 0 Fe+3 + F- = FeF+2 - -log_k 6.2 - -delta_h 2.7 kcal - -gamma 5.0 0 + -log_k 6.2 + -delta_h 2.7 kcal + -gamma 5.0 0 Fe+3 + 2 F- = FeF2+ - -log_k 10.8 - -delta_h 4.8 kcal - -gamma 5.0 0 + -log_k 10.8 + -delta_h 4.8 kcal + -gamma 5.0 0 Fe+3 + 3 F- = FeF3 - -log_k 14.0 - -delta_h 5.4 kcal + -log_k 14.0 + -delta_h 5.4 kcal Mn+2 + H2O = MnOH+ + H+ - -log_k -10.59 - -delta_h 14.40 kcal - -gamma 5.0 0 -Mn+2 + 3H2O = Mn(OH)3- + 3H+ + -log_k -10.59 + -delta_h 14.40 kcal + -gamma 5.0 0 +Mn+2 + 3H2O = Mn(OH)3- + 3H+ -log_k -34.8 - -gamma 5.0 0 + -gamma 5.0 0 Mn+2 + Cl- = MnCl+ - -log_k 0.61 - -gamma 5.0 0 - -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 + -log_k 0.61 + -gamma 5.0 0 + -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 Mn+2 + 2 Cl- = MnCl2 - -log_k 0.25 - -Vm 1e-5 0 144 + -log_k 0.25 + -Vm 1e-5 0 144 Mn+2 + 3 Cl- = MnCl3- - -log_k -0.31 - -gamma 5.0 0 - -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 + -log_k -0.31 + -gamma 5.0 0 + -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 Mn+2 + CO3-2 = MnCO3 - -log_k 4.9 + -log_k 4.9 Mn+2 + HCO3- = MnHCO3+ - -log_k 1.95 - -gamma 5.0 0 + -log_k 1.95 + -gamma 5.0 0 Mn+2 + SO4-2 = MnSO4 - -log_k 2.25 - -delta_h 3.370 kcal - -Vm -1.31 -1.83 62.3 -2.7 + -log_k 2.25 + -delta_h 3.370 kcal + -Vm -1.31 -1.83 62.3 -2.7 Mn+2 + 2 NO3- = Mn(NO3)2 - -log_k 0.6 - -delta_h -0.396 kcal - -Vm 6.16 0 29.4 0 0.9 + -log_k 0.6 + -delta_h -0.396 kcal + -Vm 6.16 0 29.4 0 0.9 Mn+2 + F- = MnF+ - -log_k 0.84 - -gamma 5.0 0 + -log_k 0.84 + -gamma 5.0 0 Mn+2 = Mn+3 + e- - -log_k -25.51 - -delta_h 25.80 kcal - -gamma 9.0 0 + -log_k -25.51 + -delta_h 25.80 kcal + -gamma 9.0 0 Al+3 + H2O = AlOH+2 + H+ - -log_k -5.0 - -delta_h 11.49 kcal - -analytic -38.253 0.0 -656.27 14.327 - -gamma 5.4 0 - -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353. + -log_k -5.0 + -delta_h 11.49 kcal + -analytic -38.253 0.0 -656.27 14.327 + -gamma 5.4 0 + -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353. Al+3 + 2 H2O = Al(OH)2+ + 2 H+ - -log_k -10.1 - -delta_h 26.90 kcal - -gamma 5.4 0 - -analytic 88.50 0.0 -9391.6 -27.121 + -log_k -10.1 + -delta_h 26.90 kcal + -gamma 5.4 0 + -analytic 88.50 0.0 -9391.6 -27.121 Al+3 + 3 H2O = Al(OH)3 + 3 H+ - -log_k -16.9 - -delta_h 39.89 kcal - -analytic 226.374 0.0 -18247.8 -73.597 + -log_k -16.9 + -delta_h 39.89 kcal + -analytic 226.374 0.0 -18247.8 -73.597 Al+3 + 4 H2O = Al(OH)4- + 4 H+ - -log_k -22.7 - -delta_h 42.30 kcal - -analytic 51.578 0.0 -11168.9 -14.865 - -gamma 4.5 0 + -log_k -22.7 + -delta_h 42.30 kcal + -analytic 51.578 0.0 -11168.9 -14.865 + -gamma 4.5 0 -dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959 Al+3 + SO4-2 = AlSO4+ - -log_k 3.5 + -log_k 3.5 -delta_h 2.29 kcal - -gamma 4.5 0 + -gamma 4.5 0 Al+3 + 2SO4-2 = Al(SO4)2- - -log_k 5.0 + -log_k 5.0 -delta_h 3.11 kcal - -gamma 4.5 0 + -gamma 4.5 0 Al+3 + HSO4- = AlHSO4+2 - -log_k 0.46 + -log_k 0.46 Al+3 + F- = AlF+2 - -log_k 7.0 - -delta_h 1.060 kcal - -gamma 5.4 0 + -log_k 7.0 + -delta_h 1.060 kcal + -gamma 5.4 0 Al+3 + 2 F- = AlF2+ - -log_k 12.7 - -delta_h 1.980 kcal - -gamma 5.4 0 + -log_k 12.7 + -delta_h 1.980 kcal + -gamma 5.4 0 Al+3 + 3 F- = AlF3 - -log_k 16.8 - -delta_h 2.160 kcal + -log_k 16.8 + -delta_h 2.160 kcal Al+3 + 4 F- = AlF4- - -log_k 19.4 - -delta_h 2.20 kcal - -gamma 4.5 0 + -log_k 19.4 + -delta_h 2.20 kcal + -gamma 4.5 0 # Al+3 + 5 F- = AlF5-2 - # log_k 20.6 - # delta_h 1.840 kcal + # log_k 20.6 + # delta_h 1.840 kcal # Al+3 + 6 F- = AlF6-3 - # log_k 20.6 + # log_k 20.6 # delta_h -1.670 kcal H4SiO4 = H3SiO4- + H+ - -log_k -9.83 - -delta_h 6.12 kcal - -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 - -gamma 4 0 - -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 + -log_k -9.83 + -delta_h 6.12 kcal + -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 + -gamma 4 0 + -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 H4SiO4 = H2SiO4-2 + 2 H+ - -log_k -23.0 - -delta_h 17.6 kcal - -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 - -gamma 5.4 0 + -log_k -23.0 + -delta_h 17.6 kcal + -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 + -gamma 5.4 0 H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O - -log_k 30.18 + -log_k 30.18 -delta_h -16.260 kcal - -gamma 5.0 0 - -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt + -gamma 5.0 0 + -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt Ba+2 + H2O = BaOH+ + H+ - -log_k -13.47 - -gamma 5.0 0 + -log_k -13.47 + -gamma 5.0 0 Ba+2 + CO3-2 = BaCO3 - -log_k 2.71 - -delta_h 3.55 kcal - -analytic 0.113 0.008721 - -Vm .2907 -7.0717 8.5295 -2.4867 -.0300 # supcrt + -log_k 2.71 + -delta_h 3.55 kcal + -analytic 0.113 0.008721 + -Vm .2907 -7.0717 8.5295 -2.4867 -.0300 # supcrt Ba+2 + HCO3- = BaHCO3+ - -log_k 0.982 + -log_k 0.982 -delta_h 5.56 kcal - -analytic -3.0938 0.013669 + -analytic -3.0938 0.013669 Ba+2 + SO4-2 = BaSO4 - -log_k 2.7 + -log_k 2.7 Sr+2 + H2O = SrOH+ + H+ - -log_k -13.29 - -gamma 5.0 0 + -log_k -13.29 + -gamma 5.0 0 Sr+2 + CO3-2 + H+ = SrHCO3+ - -log_k 11.509 - -delta_h 2.489 kcal - -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 - -gamma 5.4 0 + -log_k 11.509 + -delta_h 2.489 kcal + -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 Sr+2 + CO3-2 = SrCO3 - -log_k 2.81 - -delta_h 5.22 kcal - -analytic -1.019 0.012826 - -Vm -.1787 -8.2177 8.9799 -2.4393 -.0300 # supcrt + -log_k 2.81 + -delta_h 5.22 kcal + -analytic -1.019 0.012826 + -Vm -.1787 -8.2177 8.9799 -2.4393 -.0300 # supcrt Sr+2 + SO4-2 = SrSO4 - -log_k 2.29 - -delta_h 2.08 kcal - -Vm 6.7910 -.9666 6.1300 -2.7390 -.0010 # celestite solubility + -log_k 2.29 + -delta_h 2.08 kcal + -Vm 6.7910 -.9666 6.1300 -2.7390 -.0010 # celestite solubility Li+ + SO4-2 = LiSO4- - -log_k 0.64 - -gamma 5.0 0 + -log_k 0.64 + -gamma 5.0 0 Cu+2 + e- = Cu+ - -log_k 2.72 - -delta_h 1.65 kcal - -gamma 2.5 0 + -log_k 2.72 + -delta_h 1.65 kcal + -gamma 2.5 0 Cu+ + 2Cl- = CuCl2- - -log_k 5.50 + -log_k 5.50 -delta_h -0.42 kcal -gamma 4.0 0 Cu+ + 3Cl- = CuCl3-2 - -log_k 5.70 + -log_k 5.70 -delta_h 0.26 kcal - -gamma 5.0 0.0 -Cu+2 + CO3-2 = CuCO3 - -log_k 6.73 -Cu+2 + 2CO3-2 = Cu(CO3)2-2 - -log_k 9.83 + -gamma 5.0 0.0 +Cu+2 + CO3-2 = CuCO3 + -log_k 6.73 +Cu+2 + 2CO3-2 = Cu(CO3)2-2 + -log_k 9.83 Cu+2 + HCO3- = CuHCO3+ - -log_k 2.7 -Cu+2 + Cl- = CuCl+ - -log_k 0.43 + -log_k 2.7 +Cu+2 + Cl- = CuCl+ + -log_k 0.43 -delta_h 8.65 kcal -gamma 4.0 0 - -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 -Cu+2 + 2Cl- = CuCl2 - -log_k 0.16 + -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 +Cu+2 + 2Cl- = CuCl2 + -log_k 0.16 -delta_h 10.56 kcal - -Vm 26.8 0 -136 + -Vm 26.8 0 -136 Cu+2 + 3Cl- = CuCl3- - -log_k -2.29 + -log_k -2.29 -delta_h 13.69 kcal -gamma 4.0 0 Cu+2 + 4Cl- = CuCl4-2 - -log_k -4.59 + -log_k -4.59 -delta_h 17.78 kcal -gamma 5.0 0 -Cu+2 + F- = CuF+ - -log_k 1.26 +Cu+2 + F- = CuF+ + -log_k 1.26 -delta_h 1.62 kcal Cu+2 + H2O = CuOH+ + H+ - -log_k -8.0 - -gamma 4.0 0 + -log_k -8.0 + -gamma 4.0 0 Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ - -log_k -13.68 + -log_k -13.68 Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ - -log_k -26.9 + -log_k -26.9 Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ - -log_k -39.6 -2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ + -log_k -39.6 +2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ -log_k -10.359 -delta_h 17.539 kcal -analytical 2.497 0.0 -3833.0 Cu+2 + SO4-2 = CuSO4 - -log_k 2.31 - -delta_h 1.220 kcal - -Vm 5.21 0 -14.6 + -log_k 2.31 + -delta_h 1.220 kcal + -Vm 5.21 0 -14.6 Cu+2 + 3HS- = Cu(HS)3- -log_k 25.9 Zn+2 + H2O = ZnOH+ + H+ - -log_k -8.96 + -log_k -8.96 -delta_h 13.4 kcal Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ - -log_k -16.9 + -log_k -16.9 Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ - -log_k -28.4 + -log_k -28.4 Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ - -log_k -41.2 + -log_k -41.2 Zn+2 + Cl- = ZnCl+ - -log_k 0.43 + -log_k 0.43 -delta_h 7.79 kcal -gamma 4.0 0 - -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 + -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 Zn+2 + 2 Cl- = ZnCl2 - -log_k 0.45 + -log_k 0.45 -delta_h 8.5 kcal - -Vm -10.1 4.57 241 -2.97 -1e-3 + -Vm -10.1 4.57 241 -2.97 -1e-3 Zn+2 + 3Cl- = ZnCl3- - -log_k 0.5 + -log_k 0.5 -delta_h 9.56 kcal -gamma 4.0 0 - -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 + -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 Zn+2 + 4Cl- = ZnCl4-2 - -log_k 0.2 + -log_k 0.2 -delta_h 10.96 kcal -gamma 5.0 0 - -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 -Zn+2 + H2O + Cl- = ZnOHCl + H+ - -log_k -7.48 + -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 +Zn+2 + H2O + Cl- = ZnOHCl + H+ + -log_k -7.48 Zn+2 + 2HS- = Zn(HS)2 -log_k 14.94 Zn+2 + 3HS- = Zn(HS)3- - -log_k 16.1 + -log_k 16.1 Zn+2 + CO3-2 = ZnCO3 - -log_k 5.3 + -log_k 5.3 Zn+2 + 2CO3-2 = Zn(CO3)2-2 - -log_k 9.63 + -log_k 9.63 Zn+2 + HCO3- = ZnHCO3+ - -log_k 2.1 + -log_k 2.1 Zn+2 + SO4-2 = ZnSO4 - -log_k 2.37 + -log_k 2.37 -delta_h 1.36 kcal - -Vm 2.51 0 18.8 + -Vm 2.51 0 18.8 Zn+2 + 2SO4-2 = Zn(SO4)2-2 - -log_k 3.28 - -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 -Zn+2 + Br- = ZnBr+ + -log_k 3.28 + -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 +Zn+2 + Br- = ZnBr+ -log_k -0.58 Zn+2 + 2Br- = ZnBr2 - -log_k -0.98 -Zn+2 + F- = ZnF+ + -log_k -0.98 +Zn+2 + F- = ZnF+ -log_k 1.15 -delta_h 2.22 kcal Cd+2 + H2O = CdOH+ + H+ - -log_k -10.08 + -log_k -10.08 -delta_h 13.1 kcal Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ - -log_k -20.35 + -log_k -20.35 Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ - -log_k -33.3 + -log_k -33.3 Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ - -log_k -47.35 -2Cd+2 + H2O = Cd2OH+3 + H+ + -log_k -47.35 +2Cd+2 + H2O = Cd2OH+3 + H+ -log_k -9.39 -delta_h 10.9 kcal -Cd+2 + H2O + Cl- = CdOHCl + H+ +Cd+2 + H2O + Cl- = CdOHCl + H+ -log_k -7.404 -delta_h 4.355 kcal Cd+2 + NO3- = CdNO3+ -log_k 0.4 -delta_h -5.2 kcal - -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 + -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 Cd+2 + Cl- = CdCl+ - -log_k 1.98 + -log_k 1.98 -delta_h 0.59 kcal - -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 + -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 Cd+2 + 2 Cl- = CdCl2 - -log_k 2.6 + -log_k 2.6 -delta_h 1.24 kcal - -Vm 5.53 + -Vm 5.53 Cd+2 + 3 Cl- = CdCl3- - -log_k 2.4 + -log_k 2.4 -delta_h 3.9 kcal - -Vm 4.6 0 83.9 0 0 0 0 0 0 1 + -Vm 4.6 0 83.9 0 0 0 0 0 0 1 Cd+2 + CO3-2 = CdCO3 - -log_k 2.9 + -log_k 2.9 Cd+2 + 2CO3-2 = Cd(CO3)2-2 - -log_k 6.4 + -log_k 6.4 Cd+2 + HCO3- = CdHCO3+ - -log_k 1.5 + -log_k 1.5 Cd+2 + SO4-2 = CdSO4 - -log_k 2.46 + -log_k 2.46 -delta_h 1.08 kcal - -Vm 10.4 0 57.9 + -Vm 10.4 0 57.9 Cd+2 + 2SO4-2 = Cd(SO4)2-2 - -log_k 3.5 - -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 -Cd+2 + Br- = CdBr+ + -log_k 3.5 + -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 +Cd+2 + Br- = CdBr+ -log_k 2.17 -delta_h -0.81 kcal Cd+2 + 2Br- = CdBr2 -log_k 2.9 -Cd+2 + F- = CdF+ +Cd+2 + F- = CdF+ -log_k 1.1 Cd+2 + 2F- = CdF2 - -log_k 1.5 -Cd+2 + HS- = CdHS+ + -log_k 1.5 +Cd+2 + HS- = CdHS+ -log_k 10.17 -Cd+2 + 2HS- = Cd(HS)2 +Cd+2 + 2HS- = Cd(HS)2 -log_k 16.53 Cd+2 + 3HS- = Cd(HS)3- -log_k 18.71 Cd+2 + 4HS- = Cd(HS)4-2 - -log_k 20.9 + -log_k 20.9 Pb+2 + H2O = PbOH+ + H+ - -log_k -7.71 + -log_k -7.71 Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ - -log_k -17.12 + -log_k -17.12 Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ - -log_k -28.06 + -log_k -28.06 Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ - -log_k -39.7 + -log_k -39.7 2 Pb+2 + H2O = Pb2OH+3 + H+ - -log_k -6.36 + -log_k -6.36 Pb+2 + Cl- = PbCl+ - -log_k 1.6 + -log_k 1.6 -delta_h 4.38 kcal - -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt + -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt Pb+2 + 2 Cl- = PbCl2 - -log_k 1.8 + -log_k 1.8 -delta_h 1.08 kcal - -Vm 6.5402 8.1879 2.5318 -3.1175 -.0300 # supcrt + -Vm 6.5402 8.1879 2.5318 -3.1175 -.0300 # supcrt Pb+2 + 3 Cl- = PbCl3- - -log_k 1.7 + -log_k 1.7 -delta_h 2.17 kcal - -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt + -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt Pb+2 + 4 Cl- = PbCl4-2 - -log_k 1.38 + -log_k 1.38 -delta_h 3.53 kcal - -Vm 16.4150 32.2997 -6.9452 -4.1143 2.3118 # supcrt + -Vm 16.4150 32.2997 -6.9452 -4.1143 2.3118 # supcrt Pb+2 + CO3-2 = PbCO3 - -log_k 7.24 + -log_k 7.24 Pb+2 + 2 CO3-2 = Pb(CO3)2-2 - -log_k 10.64 + -log_k 10.64 Pb+2 + HCO3- = PbHCO3+ - -log_k 2.9 + -log_k 2.9 Pb+2 + SO4-2 = PbSO4 - -log_k 2.75 + -log_k 2.75 Pb+2 + 2 SO4-2 = Pb(SO4)2-2 - -log_k 3.47 -Pb+2 + 2HS- = Pb(HS)2 + -log_k 3.47 +Pb+2 + 2HS- = Pb(HS)2 -log_k 15.27 Pb+2 + 3HS- = Pb(HS)3- -log_k 16.57 -3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ +3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ -log_k -23.88 - -delta_h 26.5 kcal + -delta_h 26.5 kcal Pb+2 + NO3- = PbNO3+ - -log_k 1.17 -Pb+2 + Br- = PbBr+ + -log_k 1.17 +Pb+2 + Br- = PbBr+ -log_k 1.77 -delta_h 2.88 kcal -Pb+2 + 2Br- = PbBr2 - -log_k 1.44 -Pb+2 + F- = PbF+ +Pb+2 + 2Br- = PbBr2 + -log_k 1.44 +Pb+2 + F- = PbF+ -log_k 1.25 Pb+2 + 2F- = PbF2 -log_k 2.56 Pb+2 + 3F- = PbF3- -log_k 3.42 Pb+2 + 4F- = PbF4-2 - -log_k 3.1 + -log_k 3.1 PHASES Calcite CaCO3 = CO3-2 + Ca+2 - -log_k -8.48 + -log_k -8.48 -delta_h -2.297 kcal -analytic 17.118 -0.046528 -3496 # 0 - 250C, Ellis, 1959, Plummer and Busenberg, 1982 -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3) Aragonite CaCO3 = CO3-2 + Ca+2 - -log_k -8.336 + -log_k -8.336 -delta_h -2.589 kcal - -analytic -171.9773 -0.077993 2903.293 71.595 + -analytic -171.9773 -0.077993 2903.293 71.595 -Vm 34.04 Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 - -log_k -17.09 + -log_k -17.09 -delta_h -9.436 kcal -analytic 31.283 -0.0898 -6438 # 25C: Hemingway and Robie, 1994; 50175C: Bnzeth et al., 2018, GCA 224, 262-275. -Vm 64.5 Siderite FeCO3 = Fe+2 + CO3-2 - -log_k -10.89 + -log_k -10.89 -delta_h -2.480 kcal -Vm 29.2 Rhodochrosite MnCO3 = Mn+2 + CO3-2 - -log_k -11.13 + -log_k -11.13 -delta_h -1.430 kcal -Vm 31.1 Strontianite SrCO3 = Sr+2 + CO3-2 - -log_k -9.271 + -log_k -9.271 -delta_h -0.400 kcal - -analytic 155.0305 0.0 -7239.594 -56.58638 + -analytic 155.0305 0.0 -7239.594 -56.58638 -Vm 39.69 Witherite BaCO3 = Ba+2 + CO3-2 - -log_k -8.562 + -log_k -8.562 -delta_h 0.703 kcal - -analytic 607.642 0.121098 -20011.25 -236.4948 + -analytic 607.642 0.121098 -20011.25 -236.4948 -Vm 46 Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O - -log_k -4.58 + -log_k -4.58 -delta_h -0.109 kcal - -analytic 68.2401 0.0 -3221.51 -25.0627 + -analytic 68.2401 0.0 -3221.51 -25.0627 -analytical_expression 93.7 5.99E-03 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) Anhydrite CaSO4 = Ca+2 + SO4-2 - -log_k -4.36 + -log_k -4.36 -delta_h -1.710 kcal -analytic 84.90 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323. -Vm 46.1 # 136.14 / 2.95 Celestite SrSO4 = Sr+2 + SO4-2 - -log_k -6.63 + -log_k -6.63 -delta_h -4.037 kcal -# -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 +# -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464. -Vm 46.4 Barite BaSO4 = Ba+2 + SO4-2 - -log_k -9.97 + -log_k -9.97 -delta_h 6.35 kcal -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 -Vm 52.9 @@ -1023,176 +1025,176 @@ Thenardite -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 -Vm 52.9 Epsomite - MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O - log_k -1.74; -delta_h 10.57 kJ - -analytical_expression -3.59 6.21e-3 - Vm 147 + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -1.74; -delta_h 10.57 kJ + -analytical_expression -3.59 6.21e-3 + Vm 147 Hexahydrite - MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O - log_k -1.57; -delta_h 2.35 kJ - -analytical_expression -1.978 1.38e-3 - Vm 132 + MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O + log_k -1.57; -delta_h 2.35 kJ + -analytical_expression -1.978 1.38e-3 + Vm 132 Kieserite - MgSO4:H2O = Mg+2 + SO4-2 + H2O - log_k -1.16; -delta_h 9.22 kJ - -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 - Vm 53.8 + MgSO4:H2O = Mg+2 + SO4-2 + H2O + log_k -1.16; -delta_h 9.22 kJ + -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 + Vm 53.8 Hydroxyapatite Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 - -log_k -3.421 + -log_k -3.421 -delta_h -36.155 kcal -Vm 128.9 Fluorite CaF2 = Ca+2 + 2 F- - -log_k -10.6 + -log_k -10.6 -delta_h 4.69 kcal - -analytic 66.348 0.0 -4298.2 -25.271 + -analytic 66.348 0.0 -4298.2 -25.271 -Vm 15.7 SiO2(a) SiO2 + 2 H2O = H4SiO4 - -log_k -2.71 + -log_k -2.71 -delta_h 3.340 kcal - -analytic -0.26 0.0 -731.0 + -analytic -0.26 0.0 -731.0 Chalcedony SiO2 + 2 H2O = H4SiO4 - -log_k -3.55 + -log_k -3.55 -delta_h 4.720 kcal - -analytic -0.09 0.0 -1032.0 + -analytic -0.09 0.0 -1032.0 -Vm 23.1 Quartz SiO2 + 2 H2O = H4SiO4 - -log_k -3.98 + -log_k -3.98 -delta_h 5.990 kcal - -analytic 0.41 0.0 -1309.0 + -analytic 0.41 0.0 -1309.0 -Vm 22.67 Gibbsite Al(OH)3 + 3 H+ = Al+3 + 3 H2O - -log_k 8.11 + -log_k 8.11 -delta_h -22.800 kcal -Vm 32.22 Al(OH)3(a) Al(OH)3 + 3 H+ = Al+3 + 3 H2O - -log_k 10.8 + -log_k 10.8 -delta_h -26.500 kcal Kaolinite Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 - -log_k 7.435 + -log_k 7.435 -delta_h -35.300 kcal -Vm 99.35 Albite NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 - -log_k -18.002 + -log_k -18.002 -delta_h 25.896 kcal -Vm 101.31 Anorthite CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 - -log_k -19.714 + -log_k -19.714 -delta_h 11.580 kcal -Vm 105.05 K-feldspar KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 - -log_k -20.573 - -delta_h 30.820 kcal + -log_k -20.573 + -delta_h 30.820 kcal -Vm 108.15 K-mica KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 - -log_k 12.703 + -log_k 12.703 -delta_h -59.376 kcal Chlorite(14A) Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O - -log_k 68.38 + -log_k 68.38 -delta_h -151.494 kcal Ca-Montmorillonite Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ - -log_k -45.027 - -delta_h 58.373 kcal + -log_k -45.027 + -delta_h 58.373 kcal -Vm 156.16 Talc Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 - -log_k 21.399 + -log_k 21.399 -delta_h -46.352 kcal -Vm 68.34 Illite K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+ - -log_k -40.267 + -log_k -40.267 -delta_h 54.684 kcal -Vm 141.48 Chrysotile Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 - -log_k 32.2 + -log_k 32.2 -delta_h -46.800 kcal - -analytic 13.248 0.0 10217.1 -6.1894 - -Vm 106.5808 # 277.11/2.60 + -analytic 13.248 0.0 10217.1 -6.1894 + -Vm 106.5808 # 277.11/2.60 Sepiolite Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 - -log_k 15.760 + -log_k 15.760 -delta_h -10.700 kcal -Vm 143.765 Sepiolite(d) Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 - -log_k 18.66 + -log_k 18.66 Hematite Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O - -log_k -4.008 + -log_k -4.008 -delta_h -30.845 kcal -Vm 30.39 Goethite FeOOH + 3 H+ = Fe+3 + 2 H2O - -log_k -1.0 - -delta_h -14.48 kcal + -log_k -1.0 + -delta_h -14.48 kcal -Vm 20.84 Fe(OH)3(a) Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O - -log_k 4.891 + -log_k 4.891 Pyrite FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- - -log_k -18.479 + -log_k -18.479 -delta_h 11.300 kcal -Vm 23.48 FeS(ppt) FeS + H+ = Fe+2 + HS- - -log_k -3.915 + -log_k -3.915 Mackinawite FeS + H+ = Fe+2 + HS- - -log_k -4.648 + -log_k -4.648 -Vm 20.45 Sulfur S + 2H+ + 2e- = H2S - -log_k 4.882 + -log_k 4.882 -delta_h -9.5 kcal Vivianite Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O - -log_k -36.0 -Pyrolusite # H2O added for surface calc's + -log_k -36.0 +Pyrolusite # H2O added for surface calc's MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O - -log_k 41.38 + -log_k 41.38 -delta_h -65.110 kcal Hausmannite Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O - -log_k 61.03 + -log_k 61.03 -delta_h -100.640 kcal Manganite MnOOH + 3 H+ + e- = Mn+2 + 2 H2O - -log_k 25.34 + -log_k 25.34 Pyrochroite Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O - -log_k 15.2 + -log_k 15.2 Halite NaCl = Cl- + Na+ - log_k 1.570 + log_k 1.570 -delta_h 1.37 #-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915. -Vm 27.1 Sylvite KCl = K+ + Cl- - log_k 0.900 + log_k 0.900 -delta_h 8.5 - # -analytic 3.984 0.0 -919.55 + # -analytic 3.984 0.0 -919.55 Vm 37.5 # Gases... CO2(g) CO2 = CO2 - -log_k -1.468 + -log_k -1.468 -delta_h -4.776 kcal -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 -T_c 304.2 # critical T, K @@ -1210,18 +1212,18 @@ O2(g) -T_c 154.6; -P_c 49.80; -Omega 0.021 H2(g) H2 = H2 - -log_k -3.1050 + -log_k -3.1050 -delta_h -4.184 kJ -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 -T_c 33.2; -P_c 12.80; -Omega -0.225 N2(g) N2 = N2 - -log_k -3.1864 + -log_k -3.1864 -analytic -58.453 1.818e-3 3199 17.909 -27460 -T_c 126.2; -P_c 33.50; -Omega 0.039 H2S(g) H2S = H+ + HS- - log_k -7.93 + log_k -7.93 -delta_h 9.1 -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 -T_c 373.2; -P_c 88.20; -Omega 0.1 @@ -1232,7 +1234,7 @@ CH4(g) -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 Amm(g) Amm = Amm - -log_k 1.7966 + -log_k 1.7966 -analytic -18.758 3.3670e-4 2.5113e3 4.8619 39.192 -T_c 405.6; -P_c 111.3; -Omega 0.25 # redox-uncoupled gases @@ -1255,151 +1257,151 @@ Mtg(g) -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 H2Sg(g) H2Sg = H+ + HSg- - log_k -7.93 + log_k -7.93 -delta_h 9.1 -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 -T_c 373.2 ; -P_c 88.20 ; -Omega 0.1 Melanterite FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 - -log_k -2.209 - -delta_h 4.910 kcal - -analytic 1.447 -0.004153 0.0 0.0 -214949.0 + -log_k -2.209 + -delta_h 4.910 kcal + -analytic 1.447 -0.004153 0.0 0.0 -214949.0 Alunite KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6H2O - -log_k -1.4 + -log_k -1.4 -delta_h -50.250 kcal Jarosite-K KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2 - -log_k -9.21 + -log_k -9.21 -delta_h -31.280 kcal Zn(OH)2(e) Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O - -log_k 11.5 + -log_k 11.5 Smithsonite ZnCO3 = Zn+2 + CO3-2 - -log_k -10.0 - -delta_h -4.36 kcal + -log_k -10.0 + -delta_h -4.36 kcal Sphalerite ZnS + H+ = Zn+2 + HS- - -log_k -11.618 - -delta_h 8.250 kcal -Willemite 289 + -log_k -11.618 + -delta_h 8.250 kcal +Willemite 289 Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4 - -log_k 15.33 - -delta_h -33.37 kcal + -log_k 15.33 + -delta_h -33.37 kcal Cd(OH)2 Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O - -log_k 13.65 -Otavite 315 + -log_k 13.65 +Otavite 315 CdCO3 = Cd+2 + CO3-2 - -log_k -12.1 - -delta_h -0.019 kcal -CdSiO3 328 + -log_k -12.1 + -delta_h -0.019 kcal +CdSiO3 328 CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4 - -log_k 9.06 - -delta_h -16.63 kcal -CdSO4 329 + -log_k 9.06 + -delta_h -16.63 kcal +CdSO4 329 CdSO4 = Cd+2 + SO4-2 - -log_k -0.1 - -delta_h -14.74 kcal -Cerussite 365 + -log_k -0.1 + -delta_h -14.74 kcal +Cerussite 365 PbCO3 = Pb+2 + CO3-2 - -log_k -13.13 - -delta_h 4.86 kcal -Anglesite 384 + -log_k -13.13 + -delta_h 4.86 kcal +Anglesite 384 PbSO4 = Pb+2 + SO4-2 - -log_k -7.79 - -delta_h 2.15 kcal -Pb(OH)2 389 + -log_k -7.79 + -delta_h 2.15 kcal +Pb(OH)2 389 Pb(OH)2 + 2H+ = Pb+2 + 2H2O - -log_k 8.15 - -delta_h -13.99 kcal + -log_k 8.15 + -delta_h -13.99 kcal EXCHANGE_MASTER_SPECIES - X X- + X X- EXCHANGE_SPECIES X- = X- - -log_k 0.0 + -log_k 0.0 Na+ + X- = NaX - -log_k 0.0 - -gamma 4.08 0.082 + -log_k 0.0 + -gamma 4.08 0.082 K+ + X- = KX - -log_k 0.7 - -gamma 3.5 0.015 - -delta_h -4.3 # Jardine & Sparks, 1984 + -log_k 0.7 + -gamma 3.5 0.015 + -delta_h -4.3 # Jardine & Sparks, 1984 Li+ + X- = LiX - -log_k -0.08 - -gamma 6.0 0 - -delta_h 1.4 # Merriam & Thomas, 1956 + -log_k -0.08 + -gamma 6.0 0 + -delta_h 1.4 # Merriam & Thomas, 1956 # !!!!! -# H+ + X- = HX -# -log_k 1.0 -# -gamma 9.0 0 +# H+ + X- = HX +# -log_k 1.0 +# -gamma 9.0 0 AmmH+ + X- = AmmHX - -log_k 0.6 - -gamma 2.5 0 - -delta_h -2.4 # Laudelout et al., 1968 + -log_k 0.6 + -gamma 2.5 0 + -delta_h -2.4 # Laudelout et al., 1968 Ca+2 + 2X- = CaX2 - -log_k 0.8 - -gamma 5.0 0.165 + -log_k 0.8 + -gamma 5.0 0.165 -delta_h 7.2 # Van Bladel & Gheyl, 1980 Mg+2 + 2X- = MgX2 - -log_k 0.6 - -gamma 5.5 0.2 - -delta_h 7.4 # Laudelout et al., 1968 + -log_k 0.6 + -gamma 5.5 0.2 + -delta_h 7.4 # Laudelout et al., 1968 Sr+2 + 2X- = SrX2 - -log_k 0.91 - -gamma 5.26 0.121 - -delta_h 5.5 # Laudelout et al., 1968 + -log_k 0.91 + -gamma 5.26 0.121 + -delta_h 5.5 # Laudelout et al., 1968 Ba+2 + 2X- = BaX2 - -log_k 0.91 - -gamma 4.0 0.153 - -delta_h 4.5 # Laudelout et al., 1968 + -log_k 0.91 + -gamma 4.0 0.153 + -delta_h 4.5 # Laudelout et al., 1968 Mn+2 + 2X- = MnX2 - -log_k 0.52 - -gamma 6.0 0 + -log_k 0.52 + -gamma 6.0 0 Fe+2 + 2X- = FeX2 - -log_k 0.44 - -gamma 6.0 0 + -log_k 0.44 + -gamma 6.0 0 Cu+2 + 2X- = CuX2 - -log_k 0.6 - -gamma 6.0 0 + -log_k 0.6 + -gamma 6.0 0 Zn+2 + 2X- = ZnX2 - -log_k 0.8 - -gamma 5.0 0 + -log_k 0.8 + -gamma 5.0 0 Cd+2 + 2X- = CdX2 - -log_k 0.8 - -gamma 0.0 0 + -log_k 0.8 + -gamma 0.0 0 Pb+2 + 2X- = PbX2 - -log_k 1.05 - -gamma 0.0 0 + -log_k 1.05 + -gamma 0.0 0 Al+3 + 3X- = AlX3 - -log_k 0.41 - -gamma 9.0 0 + -log_k 0.41 + -gamma 9.0 0 AlOH+2 + 2X- = AlOHX2 - -log_k 0.89 - -gamma 0.0 0 + -log_k 0.89 + -gamma 0.0 0 SURFACE_MASTER_SPECIES - Hfo_s Hfo_sOH - Hfo_w Hfo_wOH + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH SURFACE_SPECIES # All surface data from # Dzombak and Morel, 1990 @@ -1410,24 +1412,24 @@ SURFACE_SPECIES # strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH - -log_k 0 + -log_k 0 - Hfo_sOH + H+ = Hfo_sOH2+ - -log_k 7.29 # = pKa1,int + Hfo_sOH + H+ = Hfo_sOH2+ + -log_k 7.29 # = pKa1,int Hfo_sOH = Hfo_sO- + H+ - -log_k -8.93 # = -pKa2,int + -log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH - -log_k 0 + -log_k 0 - Hfo_wOH + H+ = Hfo_wOH2+ - -log_k 7.29 # = pKa1,int + Hfo_wOH + H+ = Hfo_wOH2+ + -log_k 7.29 # = pKa1,int Hfo_wOH = Hfo_wO- + H+ - -log_k -8.93 # = -pKa2,int + -log_k -8.93 # = -pKa2,int ############################################### # CATIONS # ############################################### @@ -1436,13 +1438,13 @@ SURFACE_SPECIES # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - -log_k 4.97 + -log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ -log_k -5.85 # Strontium Hfo_sOH + Sr+2 = Hfo_sOHSr+2 - -log_k 5.01 + -log_k 5.01 Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ -log_k -6.58 @@ -1451,37 +1453,37 @@ SURFACE_SPECIES -log_k -17.6 # Barium Hfo_sOH + Ba+2 = Hfo_sOHBa+2 - -log_k 5.46 + -log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - -log_k -7.2 # table 10.5 + -log_k -7.2 # table 10.5 # # Cations from table 10.2 # # Cadmium Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ - -log_k 0.47 + -log_k 0.47 Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ - -log_k -2.91 + -log_k -2.91 # Zinc Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ - -log_k 0.99 + -log_k 0.99 Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ - -log_k -1.99 + -log_k -1.99 # Copper Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ - -log_k 2.89 + -log_k 2.89 Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ - -log_k 0.6 # table 10.5 + -log_k 0.6 # table 10.5 # Lead Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ - -log_k 4.65 + -log_k 4.65 Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ - -log_k 0.3 # table 10.5 + -log_k 0.3 # table 10.5 # # Derived constants table 10.5 # @@ -1490,13 +1492,13 @@ SURFACE_SPECIES -log_k -4.6 # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ - -log_k -0.4 # table 10.5 + -log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ -log_k -3.5 # table 10.5 # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096 Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ - -log_k -0.95 + -log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ -log_k -2.98 @@ -1511,49 +1513,49 @@ SURFACE_SPECIES # # Phosphate Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O - -log_k 31.29 + -log_k 31.29 Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O - -log_k 25.39 + -log_k 25.39 Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O - -log_k 17.72 + -log_k 17.72 # # Anions from table 10.7 # # Borate Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O - -log_k 0.62 + -log_k 0.62 # # Anions from table 10.8 # # Sulfate Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O - -log_k 7.78 + -log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - -log_k 0.79 + -log_k 0.79 # # Derived constants table 10.10 # Hfo_wOH + F- + H+ = Hfo_wF + H2O - -log_k 8.7 + -log_k 8.7 Hfo_wOH + F- = Hfo_wOHF- - -log_k 1.6 + -log_k 1.6 # # Carbonate: Van Geen et al., 1994 reoptimized for D&M model # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O - -log_k 12.56 + -log_k 12.56 Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O - -log_k 20.62 + -log_k 20.62 # # Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422. # - Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 - Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 + Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 + Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69 RATES @@ -1564,12 +1566,12 @@ RATES # ####### # Example of quartz kinetic rates block: -# KINETICS -# Quartz -# -m0 158.8 # 90 % Qu -# -parms 0.146 1.5 -# -step 3.1536e8 in 10 -# -tol 1e-12 +# KINETICS +# Quartz +# -m0 158.8 # 90 % Qu +# -parms 0.146 1.5 +# -step 3.1536e8 in 10 +# -tol 1e-12 Quartz -start @@ -1582,7 +1584,7 @@ Quartz 10 dif_temp = 1/TK - 1/298 20 pk_w = 13.7 + 4700.4 * dif_temp 40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) -# Integrate... +# Integrate... 50 SAVE moles * TIME -end @@ -1604,25 +1606,25 @@ Quartz # GFW Kspar 0.278 kg/mol # # Moles of Kspar per liter pore space calculation: -# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space -# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space -# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space +# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space # # Specific area calculation: -# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere -# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere -# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere -# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere +# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere # Specific area of K-feldspar in sphere 3.14e-8/4.90e-9 = 6.41 m^2/mol Kspar # # # Example of KINETICS data block for K-feldspar rate: -# KINETICS 1 -# K-feldspar -# -m0 2.18 # 10% Kspar, 0.1 mm cubes -# -m 2.18 # Moles per L pore space -# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate -# -time 1.5 year in 40 +# KINETICS 1 +# K-feldspar +# -m0 2.18 # 10% Kspar, 0.1 mm cubes +# -m 2.18 # Moles per L pore space +# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 K-feldspar -start @@ -1641,9 +1643,9 @@ K-feldspar 80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp +140 pk_H = pk_H + e_H * dif_temp 150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis 170 pk_H2O = pk_H2O + e_H2O * dif_temp @@ -1654,9 +1656,9 @@ K-feldspar 220 REM rate by CO2 230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) 280 moles = rate * TIME 290 SAVE moles -end @@ -1676,28 +1678,28 @@ K-feldspar # p. 162-163 and 395-399. # # Example of KINETICS data block for Albite rate: -# KINETICS 1 -# Albite -# -m0 0.46 # 2% Albite, 0.1 mm cubes -# -m 0.46 # Moles per L pore space -# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate -# -time 1.5 year in 40 +# KINETICS 1 +# Albite +# -m0 0.46 # 2% Albite, 0.1 mm cubes +# -m 0.46 # Moles per L pore space +# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 # # Assume soil is 2% Albite by mass in 1 mm spheres (radius 0.05 mm) # Assume density of rock and Albite is 2600 kg/m^3 = 2.6 kg/L # GFW Albite 0.262 kg/mol # # Moles of Albite per liter pore space calculation: -# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space -# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space -# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space +# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space # # Specific area calculation: -# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere -# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere -# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere -# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere -# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere +# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite Albite -start @@ -1716,9 +1718,9 @@ Albite 80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp +140 pk_H = pk_H + e_H * dif_temp 150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis 170 pk_H2O = pk_H2O + e_H2O * dif_temp @@ -1729,9 +1731,9 @@ Albite 220 REM rate by CO2 230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("Albite")) +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("Albite")) 280 moles = rate * TIME 290 SAVE moles -end @@ -1745,7 +1747,7 @@ Albite # Calcite # -tol 1e-8 # -m0 3.e-3 -# -m 3.e-3 +# -m 3.e-3 # -parms 1.67e5 0.6 # cm^2/mol calcite, exp factor # -time 1 day @@ -1776,20 +1778,20 @@ Calcite # rate equation is mol m^-2 s^-1. # # Example of KINETICS data block for pyrite rate: -# KINETICS 1 -# Pyrite -# -tol 1e-8 -# -m0 5.e-4 -# -m 5.e-4 -# -parms 0.3 0.67 .5 -0.11 -# -time 1 day in 10 +# KINETICS 1 +# Pyrite +# -tol 1e-8 +# -m0 5.e-4 +# -m 5.e-4 +# -parms 0.3 0.67 .5 -0.11 +# -time 1 day in 10 Pyrite -start -1 REM Williamson and Rimstidt, 1994 -2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) -3 REM PARM(2) = exp for (M/M0) -4 REM PARM(3) = exp for O2 -5 REM PARM(4) = exp for H+ +1 REM Williamson and Rimstidt, 1994 +2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) +3 REM PARM(2) = exp for (M/M0) +4 REM PARM(3) = exp for O2 +5 REM PARM(4) = exp for H+ 10 REM Dissolution in presence of DO 20 if (M <= 0) THEN GOTO 200 @@ -1805,16 +1807,16 @@ Pyrite ########## # # Example of KINETICS data block for SOC (sediment organic carbon): -# KINETICS 1 -# Organic_C -# -formula C -# -tol 1e-8 -# -m 5e-3 # SOC in mol -# -time 30 year in 15 +# KINETICS 1 +# Organic_C +# -formula C +# -tol 1e-8 +# -m 5e-3 # SOC in mol +# -time 30 year in 15 Organic_C -start -1 REM Additive Monod kinetics for SOC (sediment organic carbon) -2 REM Electron acceptors: O2, NO3, and SO4 +1 REM Additive Monod kinetics for SOC (sediment organic carbon) +2 REM Electron acceptors: O2, NO3, and SO4 10 if (M <= 0) THEN GOTO 200 20 mO2 = MOL("O2") @@ -1822,7 +1824,7 @@ Organic_C 40 mSO4 = TOT("S(6)") 50 k_O2 = 1.57e-9 # 1/sec 60 k_NO3 = 1.67e-11 # 1/sec -70 k_SO4 = 1.e-13 # 1/sec +70 k_SO4 = 1.e-13 # 1/sec 80 rate = k_O2 * mO2/(2.94e-4 + mO2) 90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) 100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) @@ -1838,12 +1840,12 @@ Organic_C # Rate equation given as mol L^-1 s^-1 # # Example of KINETICS data block for Pyrolusite -# KINETICS 1-12 -# Pyrolusite -# -tol 1.e-7 -# -m0 0.1 -# -m 0.1 -# -time 0.5 day in 10 +# KINETICS 1-12 +# Pyrolusite +# -tol 1.e-7 +# -m0 0.1 +# -m 0.1 +# -time 0.5 day in 10 Pyrolusite -start 10 if (M <= 0) THEN GOTO 200 @@ -1876,36 +1878,36 @@ END # H2O 0.49 0.19 0.19 0.49 # ============================================================================================= # The molar volumes of solids are entered with -# -Vm vm cm3/mol +# -Vm vm cm3/mol # vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted. # Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from # Deer, Howie and Zussman, The rock-forming minerals, Longman. -# -------------------- +# -------------------- # Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich- -# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with -# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 +# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with +# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 # The volume (cm3/mol) is # Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) + -# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) -# + z^2 / 2 * Av * f(I^0.5) -# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 +# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) +# + z^2 / 2 * Av * f(I^0.5) +# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 # Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899). # 41.84 transforms cal/bar/mol into cm3/mol. # pb is pressure in bar. # W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation, -# W is fitted on measured solution densities. +# W is fitted on measured solution densities. # z is charge of the solute species. # Av is the Debye-Hckel limiting slope (DH_AV in PHREEQC basic). # a0 is the ion-size parameter in the extended Debye-Hckel equation: -# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), -# a0 = -gamma x for cations, = 0 for anions. +# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), +# a0 = -gamma x for cations, = 0 for anions. # For details, consult ref. 1. # ============================================================================================= # The viscosity is calculated with a (modified) Jones-Dole equation: # viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i) # Parameters are for calculating the B and D terms: # -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 -# # b0 b1 b2 d1 d2 d3 tan +# # b0 b1 b2 d1 d2 d3 tan # z_i is absolute charge number, m_i is molality of i # B_i = b0 + b1 exp(-b2 * tc) # fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions @@ -1913,7 +1915,7 @@ END # n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 m_i)d^3 / (2 + fI), fI is an ionic strength term. # For details, consult ref. 4. # -# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967. +# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967. # ref. 2: Procedures from ref. 1 using data compiled by Lalibert, 2009, J. Chem. Eng. Data 54, 1725. # ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113. # ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp diff --git a/Concrete_PHR.dat b/Concrete_PHR.dat new file mode 100644 index 00000000..ded8898f --- /dev/null +++ b/Concrete_PHR.dat @@ -0,0 +1,158 @@ +# Concrete minerals +# Read this file in your input file with +# INCLUDE$ c:\phreeqc\database\concrete_phr.dat + +PRINT; -reset false + +# # AFm (short for monosulfoaluminate) is an anion-exchanger, with the general formula Ca4Al2(Y-2)(OH)12:6H2O. +# # Listed are the solubilities of end-members in the neutral form as Y-AFm, and with 5% surface charge as Y-AFmsura. +# # +# # Example of the combination of the charged AFmsura and charge-balancing EDL calculations: +# SURFACE_MASTER_SPECIES +# Sura Sura+ +# SURFACE_SPECIES +# Sura+ = Sura+ +# SOLUTION 1 +# pH 7 charge +# REACTION 1 +# Ca3O3Al2O3 1 gypsum 1; 0.113 # MW gfw("Ca3O3Al2O3CaSO4(H2O)2") = 442.4. 0.113 for w/s = 20 +# SAVE solution 2 +# END + +# RATES +# Sum_all_AFmsura # Sums up with the single charge formula, Ca2Al... +# 10 tot_ss = 2 * equi("AFmsura") +# 20 SAVE (m - tot_ss) * time +# -end + +# USE solution 2 +# EQUILIBRIUM_PHASES 2 +# AFmsura 0 0 +# KINETICS 2 +# Sum_all_AFmsura; -formula H2O 0; -m0 0; -time_step 30 +# SURFACE 2 +# Sura Sum_all_AFmsura kin 0.05 8.6e3; -donnan debye 2 ; -equil 1 +# END + +PHASES +Portlandite # Reardon, 1990 + Ca(OH)2 = Ca+2 + 2 OH- + -log_k -5.19; -Vm 33.1 + +Gibbsite + Al(OH)3 + OH- = Al(OH)4- + -log_k -1.123; -Vm 32.2 + -analyt -7.234 1.068e-2 0 1.1829 # data from Wesolowski, 1992, GCA 56, 1065 + +# AFm with a single exchange site... +OH-AFm # Appelo, 2021 + Ca2AlOH(OH)6:6H2O = 2 Ca+2 + Al(OH)4- + 3 OH- + 6 H2O + -log_k -12.84; -Vm 185 +OH-AFmsura + Ca2Al(OH)0.95(OH)6:6H2O+0.05 = 2 Ca+2 + Al(OH)4- + OH- + 1.95 OH- + 6 H2O + -log_k -12.74; -Vm 185 + +Cl-AFm # Friedel's salt. Appelo, 2021 + Ca2AlCl(OH)6:2H2O = 2 Ca+2 + Al(OH)4- + Cl- + 2 OH- + 2 H2O + -log_k -13.68; -Vm 136 +Cl-AFmsura + Ca2AlCl0.95(OH)6:2H2O+0.05 = 2 Ca+2 + Al(OH)4- + 0.95 Cl- + 2 OH- + 2 H2O + -log_k -13.59; -Vm 136 + +# AFm with a double exchange site... +SO4-AFm # Monosulfoaluminate. Appelo, 2021 + Ca4Al2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Al(OH)4- + SO4-2 + 4 OH- + 6 H2O + -log_k -29.15; -Vm 309 +SO4-AFmsura + Ca4Al2(SO4)0.95(OH)12:6H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 SO4-2 + 4 OH- + 6 H2O + -log_k -28.88; -Vm 309 + +SO4-OH-AFm # Hemisulfoaluminate. Appelo, 2021 + Ca4Al2(SO4)0.5(OH)(OH)12:9H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + 5 OH- + 9 H2O + -log_k -27.24; -Vm 340 +SO4-OH-AFmsura + Ca4Al2(SO4)0.475(OH)0.95(OH)12:9H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 4.95 OH- + 9 H2O + -log_k -26.94; -Vm 340 + +CO3-AFm # Monocarboaluminate. Appelo, 2021 + Ca4Al2(CO3)(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + CO3-2 + 4 OH- + 5 H2O + -log_k -31.32; -Vm 261 +CO3-AFmsura + Ca4Al2(CO3)0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 CO3-2 + 4 OH- + 5 H2O + -log_k -31.05; -Vm 261 + +CO3-OH-AFm # Hemicarboaluminate. Appelo, 2021 + Ca4Al2(CO3)0.5(OH)(OH)12:5.5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 CO3-2 + 5 OH- + 5.5 H2O + -log_k -29.06; -Vm 284 +CO3-OH-AFmsura + Ca4Al2(CO3)0.475(OH)0.95(OH)12:5.5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 CO3-2 + 4.95 OH- + 5.5 H2O + -log_k -28.84; -Vm 284 + +SO4-Cl-AFm # Kuzel's salt. Appelo, 2021 + Ca4Al2(SO4)0.5Cl(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + Cl- + 4 OH- + 5 H2O + -log_k -28.52; -Vm 290 +SO4-Cl-AFmsura + Ca4Al2(SO4)0.475Cl0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 0.95 Cl- + 4 OH- + 5 H2O + -log_k -28.41; -Vm 290 + +SO4-AFem # Lothenbach 2019 + Ca4Fe2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + SO4-2 + 4 OH- + 6 H2O + -log_k -31.57; -Vm 321 +CO3-AFem # Lothenbach 2019 + Ca4Fe2(CO3)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + CO3-2 + 4 OH- + 6 H2O + -log_k -34.59; -Vm 292 +CO3-OH-AFem # Lothenbach 2019. ?? 3.5 H2O?? + Ca4Fe2(CO3)0.5(OH)(OH)12:3.5H2O = 4 Ca+2 + 2 Fe(OH)4- + 0.5 CO3-2 + 5 OH- + 3.5 H2O + -log_k -30.83; -Vm 273 + +Ettringite # Matschei, 2007, fig. 27 + Ca6Al2(SO4)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 SO4-2 + 4 OH- + 26 H2O + -log_k -44.8; -Vm 707 + -analyt 334.09 0 -26251 -117.57 # 5 - 75 C + +CO3-ettringite # Matschei, 2007, tbl 13 + Ca6Al2(CO3)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 CO3-2 + 4 OH- + 26 H2O; + -log_k -46.50; -Vm 652 + +C2AH8 # Matschei, fig. 19 + Ca2Al2(OH)10:3H2O = 2 Ca+2 + 2 Al(OH)4- + 2 OH- + 3 H2O + -log_k -13.55; -Vm 184 + -analyt -225.37 -0.12380 0 100.522 # 1 - 50 C + +CAH10 # Matschei, fig. 19 + CaAl2(OH)8:6H2O = Ca+2 + 2 Al(OH)4- + 6 H2O + -log_k -7.60; -Vm 194 + -delta_h 43.2 # 1 - 20 C + +Hydrogarnet_Al # Matschei, 2007, Table 5 + (CaO)3Al2O3(H2O)6 = 3 Ca+2 + 2 Al(OH)4- + 4 OH- + -log_k -20.84; -Vm 150 + # -analyt -20.64 -0.002 0 0.16 # 5 - 105 C + # -delta_h 6.4 kJ # Geiger et al., 2012, AM 97, 1252-1255 + +Hydrogarnet_Fe # Lothenbach 2019 + (CaO)3Fe2O3(H2O)6 = 3 Ca+2 + 2 Fe(OH)4- + 4 OH- + -log_k -26.3; -Vm 155 + +Hydrogarnet_Si # Matschei, 2007, Table 6 + Ca3Al2Si0.8(OH)15.2 = 3 Ca+2 + 2 Al(OH)4- + 0.8 H4SiO4 + 4 OH- + -log_k -33.69; -Vm 143 + -analyt -476.84 -0.2598 0 210.38 # 5 - 85 C + +Jennite # CSH2.1. Lothenbach 2019 + Ca1.67SiO3.67:2.1H2O + 0.57 H2O = 1.67 Ca+2 + 2.34 OH- + H3SiO4- + -log_k -13.12; -Vm 78.4 + +Tobermorite-I # Lothenbach 2019 + CaSi1.2O3.4:1.6H2O + 0.6 H2O = Ca+2 + 0.8 OH- + 1.2 H3SiO4- + -log_k -6.80; -Vm 70.4 + +Tobermorite-II # Lothenbach 2019 + Ca0.833SiO2.833:1.333H2O + 0.5 H2O = 0.833Ca+2 + 0.666 OH- + H3SiO4- + -log_k -7.99; -Vm 58.7 + +PRINT; -reset true +# Refs +# Appelo 2021, Cem. Concr. Res. 140, https://doi.org/10.1016/j.cemconres.2020.106270. +# Lothenbach, B. et al. 2019, Cem. Concr. Res. 115, 472-506. +# Matschei, T. et al., 2007, Cem. Concr. Res. 37, 1379-1410. \ No newline at end of file diff --git a/Concrete_PZ.dat b/Concrete_PZ.dat new file mode 100644 index 00000000..69745ec4 --- /dev/null +++ b/Concrete_PZ.dat @@ -0,0 +1,195 @@ +# Concrete minerals for use with +# DATABASE c:\phreeqc\database\pitzer.dat +# Read this file in your input file with +# INCLUDE$ c:\phreeqc\database\concrete_pz.dat + +PRINT; -reset false + +SOLUTION_MASTER_SPECIES +Al Al(OH)4- 0 Al 26.9815 +H(0) H2 0 H +O(0) O2 0 O +SOLUTION_SPECIES +Al(OH)4- = Al(OH)4-; -dw 1.04e-9 # dw from Mackin & Aller, 1983, GCA 47, 959 +2 H2O = O2 + 4 H+ + 4 e-; log_k -86.08; delta_h 134.79 kcal; -dw 2.35e-9 +2 H+ + 2 e- = H2; log_k -3.15; delta_h -1.759 kcal; -dw 5.13e-9 + +PITZER # Using data from Weskolowski, 1992, GCA +#Park & Englezos 99 The model Pitzer coeff's are different from pitzer.dat, data are everywhere below the calc'd osmotic from Weskolowski. +-B0 + Al(OH)4- K+ -0.0669 0 0 8.24e-3 + Al(OH)4- Na+ -0.0289 0 0 1.18e-3 +-B1 + Al(OH)4- K+ 0.668 0 0 -1.93e-2 + Al(OH)4- Na+ 0.461 0 0 -2.33e-3 +-C0 + Al(OH)4- K+ 0.0499 0 0 -3.63e-3 + Al(OH)4- Na+ 0.0073 0 0 -1.56e-4 +-THETA + Al(OH)4- Cl- -0.0233 0 0 -8.11e-4 + Al(OH)4- OH- 0.0718 0 0 -7.29e-4 + # Al(OH)4- SO4-2 -0.012 +-PSI + Al(OH)4- Cl- K+ 0.0009 0 0 9.94e-4 + Al(OH)4- Cl- Na+ 0.0048 0 0 1.32e-4 + Al(OH)4- OH- Na+ -0.0048 0 0 1.00e-4 + Al(OH)4- OH- K+ 0 0 0 0 + Al(OH)4- K+ Na+ 0 0 0 0 +END + +# # AFm (short for monosulfoaluminate) is an anion-exchanger, with the general formula Ca4Al2(Y-2)(OH)12:6H2O. +# # Listed are the solubilities of end-members in the neutral form as Y-AFm, and with 5% surface charge as Y-AFmsura. +# # +# # Example of the combination of the charged AFmsura and charge-balancing EDL calculations: +# SURFACE_MASTER_SPECIES +# Sura Sura+ +# SURFACE_SPECIES +# Sura+ = Sura+ +# SOLUTION 1 +# pH 7 charge +# REACTION 1 +# Ca3O3Al2O3 1 gypsum 1; 0.113 # MW gfw("Ca3O3Al2O3CaSO4(H2O)2") = 442.4. 0.113 for w/s = 20 +# SAVE solution 2 +# END + +# RATES +# Sum_all_AFmsura # Sums up with the single charge formula, Ca2Al... +# 10 tot_ss = 2 * equi("AFmsura") +# 20 SAVE (m - tot_ss) * time +# -end + +# USE solution 2 +# EQUILIBRIUM_PHASES 2 +# AFmsura 0 0 +# KINETICS 2 +# Sum_all_AFmsura; -formula H2O 0; -m0 0; -time_step 30 +# SURFACE 2 +# Sura Sum_all_AFmsura kin 0.05 8.6e3; -donnan debye 2 ; -equil 1 +# END + +PHASES +O2(g) + O2 = O2; -log_k -2.8983 + -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 +H2(g) + H2 = H2; -log_k -3.1050 + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + +Portlandite # Reardon, 1990 + Ca(OH)2 = Ca+2 + 2 OH- + -log_k -5.19; -Vm 33.1 + +Gibbsite + Al(OH)3 + OH- = Al(OH)4- + -log_k -1.123; -Vm 32.2 + -analyt -7.234 1.068e-2 0 1.1829 # data from Wesolowski, 1992, GCA 56, 1065 + +# AFm with a single exchange site... +OH-AFm # Appelo, 2021 + Ca2AlOH(OH)6:6H2O = 2 Ca+2 + Al(OH)4- + 3 OH- + 6 H2O + -log_k -12.84; -Vm 185 +OH-AFmsura + Ca2Al(OH)0.95(OH)6:6H2O+0.05 = 2 Ca+2 + Al(OH)4- + OH- + 1.95 OH- + 6 H2O + -log_k -12.74; -Vm 185 + +Cl-AFm # Friedel's salt. Appelo, 2021 + Ca2AlCl(OH)6:2H2O = 2 Ca+2 + Al(OH)4- + Cl- + 2 OH- + 2 H2O + -log_k -13.68; -Vm 136 +Cl-AFmsura + Ca2AlCl0.95(OH)6:2H2O+0.05 = 2 Ca+2 + Al(OH)4- + 0.95 Cl- + 2 OH- + 2 H2O + -log_k -13.59; -Vm 136 + +# AFm with a double exchange site... +SO4-AFm # Monosulfoaluminate. Appelo, 2021 + Ca4Al2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Al(OH)4- + SO4-2 + 4 OH- + 6 H2O + -log_k -29.15; -Vm 309 +SO4-AFmsura + Ca4Al2(SO4)0.95(OH)12:6H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 SO4-2 + 4 OH- + 6 H2O + -log_k -28.88; -Vm 309 + +SO4-OH-AFm # Hemisulfoaluminate. Appelo, 2021 + Ca4Al2(SO4)0.5(OH)(OH)12:9H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + 5 OH- + 9 H2O + -log_k -27.24; -Vm 340 +SO4-OH-AFmsura + Ca4Al2(SO4)0.475(OH)0.95(OH)12:9H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 4.95 OH- + 9 H2O + -log_k -26.94; -Vm 340 + +CO3-AFm # Monocarboaluminate. Appelo, 2021 + Ca4Al2(CO3)(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + CO3-2 + 4 OH- + 5 H2O + -log_k -31.32; -Vm 261 +CO3-AFmsura + Ca4Al2(CO3)0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.95 CO3-2 + 4 OH- + 5 H2O + -log_k -31.05; -Vm 261 + +CO3-OH-AFm # Hemicarboaluminate. Appelo, 2021 + Ca4Al2(CO3)0.5(OH)(OH)12:5.5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 CO3-2 + 5 OH- + 5.5 H2O + -log_k -29.06; -Vm 284 +CO3-OH-AFmsura + Ca4Al2(CO3)0.475(OH)0.95(OH)12:5.5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 CO3-2 + 4.95 OH- + 5.5 H2O + -log_k -28.84; -Vm 284 + +SO4-Cl-AFm # Kuzel's salt. Appelo, 2021 + Ca4Al2(SO4)0.5Cl(OH)12:5H2O = 4 Ca+2 + 2 Al(OH)4- + 0.5 SO4-2 + Cl- + 4 OH- + 5 H2O + -log_k -28.52; -Vm 290 +SO4-Cl-AFmsura + Ca4Al2(SO4)0.475Cl0.95(OH)12:5H2O+0.1 = 4 Ca+2 + 2 Al(OH)4- + 0.475 SO4-2 + 0.95 Cl- + 4 OH- + 5 H2O + -log_k -28.41; -Vm 290 + +# No Fe(OH)4- in Pitzer... +# SO4-AFem # Lothenbach 2019 + # Ca4Fe2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + SO4-2 + 4 OH- + 6 H2O + # -log_k -31.57; -Vm 321 +# CO3-AFem # Lothenbach 2019 + # Ca4Fe2(CO3)(OH)12:6H2O = 4 Ca+2 + 2 Fe(OH)4- + CO3-2 + 4 OH- + 6 H2O + # -log_k -34.59; -Vm 292 +# CO3-OH-AFem # Lothenbach 2019. ?? 3.5 H2O?? + # Ca4Fe2(CO3)0.5(OH)(OH)12:3.5H2O = 4 Ca+2 + 2 Fe(OH)4- + 0.5 CO3-2 + 5 OH- + 3.5 H2O + # -log_k -30.83; -Vm 273 + +Ettringite # Matschei, 2007, fig. 27 + Ca6Al2(SO4)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 SO4-2 + 4 OH- + 26 H2O + -log_k -44.8; -Vm 707 + -analyt 334.09 0 -26251 -117.57 # 5 - 75 C + +CO3-ettringite # Matschei, 2007, tbl 13 + Ca6Al2(CO3)3(OH)12:26H2O = 6 Ca+2 + 2 Al(OH)4- + 3 CO3-2 + 4 OH- + 26 H2O; + -log_k -46.50; -Vm 652 + +C2AH8 # Matschei, fig. 19 + Ca2Al2(OH)10:3H2O = 2 Ca+2 + 2 Al(OH)4- + 2 OH- + 3 H2O + -log_k -13.55; -Vm 184 + -analyt -225.37 -0.12380 0 100.522 # 1 - 50 C + +CAH10 # Matschei, fig. 19 + CaAl2(OH)8:6H2O = Ca+2 + 2 Al(OH)4- + 6 H2O + -log_k -7.60; -Vm 194 + -delta_h 43.2 # 1 - 20 C + +Hydrogarnet_Al # Matschei, 2007, Table 5 + (CaO)3Al2O3(H2O)6 = 3 Ca+2 + 2 Al(OH)4- + 4 OH- + -log_k -20.84; -Vm 150 + # -analyt -20.64 -0.002 0 0.16 # 5 - 105 C + # -delta_h 6.4 kJ # Geiger et al., 2012, AM 97, 1252-1255 + +Hydrogarnet_Si # Matschei, 2007, Table 6 + Ca3Al2Si0.8(OH)15.2 = 3 Ca+2 + 2 Al(OH)4- + 0.8 H4SiO4 + 4 OH- + -log_k -33.69; -Vm 143 + -analyt -476.84 -0.2598 0 210.38 # 5 - 85 C + +Jennite # CSH2.1. Lothenbach 2019 + Ca1.67SiO3.67:2.1H2O + 0.57 H2O = 1.67 Ca+2 + 2.34 OH- + H3SiO4- + -log_k -13.12; -Vm 78.4 + +Tobermorite-I # Lothenbach 2019 + CaSi1.2O3.4:1.6H2O + 0.6 H2O = Ca+2 + 0.8 OH- + 1.2 H3SiO4- + -log_k -6.80; -Vm 70.4 + +Tobermorite-II # Lothenbach 2019 + Ca0.833SiO2.833:1.333H2O + 0.5 H2O = 0.833Ca+2 + 0.666 OH- + H3SiO4- + -log_k -7.99; -Vm 58.7 + +PRINT; -reset true +# Refs +# Appelo 2021, Cem. Concr. Res. 140, https://doi.org/10.1016/j.cemconres.2020.106270 +# Lothenbach, B. et al. 2019, Cem. Concr. Res. 115, 472-506. +# Matschei, T. et al., 2007, Cem. Concr. Res. 37, 1379-1410. \ No newline at end of file diff --git a/kinetic_rates.dat b/kinetic_rates.dat new file mode 100644 index 00000000..025e403a --- /dev/null +++ b/kinetic_rates.dat @@ -0,0 +1,144 @@ +# Subroutines for calculating mineral dissolution rates from Palandri and Kharaka (2004) and Sverdrup et al. (2019). +# It facilitates to use the kinetic rates for various minerals compiled by these authors. +# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters. + # The data are entered in a KINETICS block with -parms. For example: + + # KINETICS 1 + # Albite_PK + # -formula NaAlSi3O8 + + # # parms affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH + # # parm number 1 2 3, 4 5 6, 7 8, 9 10 11 + + # -parms 0 1 1, -10.16 65.0 0.457, -12.56 69.8, -15.60 71.0 -0.572 # parms 4-11 from TABLE 13 + + # In the RATES block, they are stored in memory, and retrieved by the subroutine calc_value("Palandri_rate"). + + # RATES + # Albite_PK # Palandri and Kharaka, 2004 + # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END + # 20 put(affinity, -99, 1) # store number in memory + # 30 for i = 2 to 11 : put(parm(i), -99, i) : next i + # 40 SAVE calc_value("Palandri_rate") + # -end + +# For an example file using the rates, see: kinetic_rates.phr + +# References +# Palandri, J.L. and Kharaka, J.K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068. +# Sverdrup, H.U., Oelkers, E., Erlandsson Lampa, M., Belyazid, S., Kurz, D. and Akselsson, C. (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58. +# Hermansk, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2022. A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807 +# Hermansk, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2023. A comprehensive and consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chemical Geology, p.121632. + +CALCULATE_VALUES +Palandri_rate +10 affinity = get(-99, 1) # retrieve number from memory +20 +30 REM # specific area m2/mol, surface roughness +40 sp_area = get(-99, 2) : roughness = get(-99, 3) +50 +60 REM # temperature factor, gas constant +70 dif_temp = 1 / TK - 1 / 298 : R = 2.303 * 8.314e-3 : dT_R = dif_temp / R +80 +90 REM # rate by H+ +100 lgk_H = get(-99, 4) : e_H = get(-99, 5) : nH = get(-99, 6) +110 rate_H = 10^(lgk_H - e_H * dT_R) * ACT("H+")^nH +120 +130 REM # rate by hydrolysis +140 lgk_H2O = get(-99, 7) : e_H2O = get(-99, 8) +150 rate_H2O = 10^(lgk_H2O - e_H2O * dT_R) +160 +170 REM # rate by OH- +180 lgk_OH = get(-99, 9) : e_OH = get(-99, 10) : nOH = get(-99, 11) +190 rate_OH = 10^(lgk_OH - e_OH * dT_R) * ACT("H+")^nOH +200 +210 rate = rate_H + rate_H2O + rate_OH +220 area = sp_area * M0 * (M / M0)^0.67 +230 +240 rate = area * roughness * rate * affinity +250 SAVE rate * TIME +-end + +Sverdrup_rate +10 affinity = get(-99, 1) +20 +30 REM # specific area m2/mol, surface roughness +40 sp_area = get(-99, 2) : roughness = get(-99, 3) +50 +60 REM # temperature factors +70 dif_temp = 1 / TK - 1 / 281 +80 e_H = get(-99, 4) : e_H2O = get(-99, 5) : e_CO2 = get(-99, 6) : e_OA = get(-99, 7) : e_OH = get(-99, 8) +90 +100 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +110 aAl = act("Al+3") +120 aSi = act("H4SiO4") +130 R = tot("OrganicMatter") +140 +150 REM # rate by H+ +160 pkH = get(-99, 9) : nH = get(-99, 10) : yAl = get(-99, 11) : CAl = get(-99, 12) : xBC = get(-99, 13) : CBC = get(-99, 14) +170 pk_H = pkH - 3 + e_H * dif_temp +180 CAl = CAl * 1e-6 +190 CBC = CBC * 1e-6 +200 rate_H = 10^-pk_H * ACT("H+")^nH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC) +210 +220 REM # rate by hydrolysis +230 pkH2O = get(-99, 15) : yAl = get(-99, 16) : CAl = get(-99, 17) : xBC = get(-99, 18) : CBC = get(-99, 19) : zSi = get(-99, 20) : CSi = get(-99, 21) +240 CAl = CAl * 1e-6 +250 CBC = CBC * 1e-6 +260 CSi = CSi * 1e-6 +270 pk_H2O = pkH2O - 3 + e_H2O * dif_temp +280 rate_H2O = 10^-pk_H2O / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi) +290 +300 REM # rate by CO2 +310 pKCO2 = get(-99, 22) : nCO2 = get(-99, 23) +320 pk_CO2 = pkCO2 - 3 + e_CO2 * dif_temp +330 rate_CO2 = 10^-pk_CO2 * SR("CO2(g)")^nCO2 +340 +350 REM # rate by Organic Acids +360 pkOrg = get(-99, 24) : nOrg = get(-99, 25) : COrg = get(-99, 26) +370 COrg = COrg * 1e-6 +380 pk_Org = pkOrg - 3 + e_OA * dif_temp +390 rate_Org = 10^-pk_Org * (R / (1 + R / COrg))^nOrg +400 +410 REM # rate by OH- +420 pkOH = get(-99, 27) : wOH = get(-99, 28) : yAl = get(-99, 29) : CAl = get(-99, 30) : xBC = get(-99, 31) : CBC = get(-99, 32) : zSi = get(-99, 33) : CSi = get(-99, 34) +430 CAl = CAl * 1e-6 +440 CBC = CBC * 1e-6 +450 CSi = CSi * 1e-6 +460 pk_OH = pkOH - 3 + e_OH * dif_temp +470 rate_OH = 10^-pk_OH * ACT("OH-")^wOH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi)# : print rate_OH +480 +490 rate = rate_H + rate_H2O + rate_CO2 + rate_Org + rate_OH +500 area = sp_area * M0 * (M / M0)^0.67 +510 +520 rate = roughness * area * rate * affinity +530 SAVE rate * TIME +-end + +Hermanska_rate +10 affinity = get(-99, 1) # retrieve number from memory +20 +30 REM # specific area m2/mol, surface roughness +40 sp_area = get(-99, 2) : roughness = get(-99, 3) +50 +60 REM # gas constant * Tk, act("H+") +70 RT = 8.314e-3 * TK : aH = act("H+") +80 +90 REM # rate by H+ +100 lgk_H = get(-99, 4) : Aa = get(-99, 5) : e_H = get(-99, 6) : nH = get(-99, 7) +110 rate_H = Aa * exp(- e_H / RT) * aH^nH +120 +130 REM # rate by hydrolysis +140 lgk_H2O = get(-99, 8) : Ab = get(-99, 9) : e_H2O = get(-99, 10) +150 rate_H2O = Ab * exp(- e_H2O / RT) +160 +170 REM # rate by OH- +180 lgk_OH = get(-99, 11) : Ac = get(-99, 12) : e_OH = get(-99, 13) : nOH = get(-99, 14) +190 rate_OH = Ac * exp(- e_OH / RT) * aH^nOH +200 +210 rate = rate_H + rate_H2O + rate_OH +220 area = sp_area * M0 * (M / M0)^0.67 +230 +240 rate = area * roughness * rate * affinity +250 SAVE rate * TIME +-end diff --git a/pitzer.dat b/pitzer.dat index 69274d1d..3de400ef 100644 --- a/pitzer.dat +++ b/pitzer.dat @@ -3,187 +3,192 @@ # Details are given at the end of this file. SOLUTION_MASTER_SPECIES -Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05 -B B(OH)3 0 B 10.81 -Ba Ba+2 0 Ba 137.33 -Br Br- 0 Br 79.904 -C CO3-2 2 HCO3 12.0111 -C(4) CO3-2 2 HCO3 12.0111 -Ca Ca+2 0 Ca 40.08 -Cl Cl- 0 Cl 35.453 -E e- 0 0.0 0.0 -Fe Fe+2 0 Fe 55.847 +Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05 +B B(OH)3 0 B 10.81 +Ba Ba+2 0 Ba 137.33 +Br Br- 0 Br 79.904 +C CO3-2 2 HCO3 12.0111 +C(4) CO3-2 2 HCO3 12.0111 +Ca Ca+2 0 Ca 40.08 +Cl Cl- 0 Cl 35.453 +E e- 0 0.0 0.0 +Fe Fe+2 0 Fe 55.847 H H+ -1 H 1.008 H(1) H+ -1 0.0 -K K+ 0 K 39.0983 -Li Li+ 0 Li 6.941 -Mg Mg+2 0 Mg 24.305 -Mn Mn+2 0 Mn 54.938 -Na Na+ 0 Na 22.9898 -O H2O 0 O 16.00 -O(-2) H2O 0 0.0 -S SO4-2 0 SO4 32.064 -S(6) SO4-2 0 SO4 -Si H4SiO4 0 SiO2 28.0843 -Sr Sr+2 0 Sr 87.62 +K K+ 0 K 39.0983 +Li Li+ 0 Li 6.941 +Mg Mg+2 0 Mg 24.305 +Mn Mn+2 0 Mn 54.938 +Na Na+ 0 Na 22.9898 +O H2O 0 O 16.00 +O(-2) H2O 0 0.0 +S SO4-2 0 SO4 32.064 +S(6) SO4-2 0 SO4 +Si H4SiO4 0 SiO2 28.0843 +Sr Sr+2 0 Sr 87.62 # redox-uncoupled gases -Hdg Hdg 0 Hdg 2.016 # H2 gas -Oxg Oxg 0 Oxg 32 # Oxygen gas -Mtg Mtg 0.0 Mtg 16.032 # CH4 gas +Hdg Hdg 0 Hdg 2.016 # H2 gas +Oxg Oxg 0 Oxg 32 # Oxygen gas +Mtg Mtg 0.0 Mtg 16.032 # CH4 gas Sg H2Sg 0.0 H2Sg 32.064 # H2S gas -Ntg Ntg 0 Ntg 28.0134 # N2 gas +Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ - -dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 4. -# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc -# Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75))) - -viscosity 9.35e-2 -7.87e-2 2.89e-2 2.7e-4 3.42e-2 1.704 # for viscosity parameters see ref. 5 + -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 + -dw 9.31e-9 721 6.094 0.8090 3.161 24.01 # The dw parameters are defined in ref. 3. +# Dw(25 C) dw_T a a2 visc a3 +# Dw(TK) = 9.31e-9 * exp(721 / TK - 721 / 298.15) * viscos_0_25 / viscos_0_tc * (viscos_0_tc / viscos)^3.161 + +# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024 +# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0) / 5.2)^a2 * mu^0.5 (a3 = 5.2 = default, can be changed) in Falkenhagen's eqn. +# a3 = -10 ? ka = DH_B * a * mu^a2 in Falkenhagen's eqn. (Define a3 = -10), in CO3-2 and HCO3- +# -5 < a3 < 5 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) e- = e- H2O = H2O + -dw 2.299e-9 -254 Li+ = Li+ - -dw 1.03e-9 80 - -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # The apparent volume parameters are defined in ref. 1 & 2. For Li+ additional data from Ellis, 1968, J. Chem. Soc. A, 1138 + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # The apparent volume parameters are defined in ref. 1 & 2. For Li+ additional data from Ellis, 1968, J. Chem. Soc. A, 1138 -viscosity 0.162 -2.41e-2 3.91e-2 9.6e-4 6.3e-4 2.094 + -dw 1.03e-9 -3 4.050 5.511 3.0 Na+ = Na+ - -dw 1.33e-9 122 1.52 3.70 - -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # for calculating densities (rho) when I > 3... - # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 - -viscosity 0.139 -8.71e-2 1.24e-2 1.45e-2 7.5e-3 1.062 + # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 + -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 + -dw 1.33e-9 -116 4.386 -2.808 0.6212 K+ = K+ - -dw 1.96e-9 395 2.5 21 - -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.70 0 1 - -viscosity 0.114 -0.203 1.60e-2 2.42e-2 2.53e-2 0.682 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 + -viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028 + -dw 1.96e-9 258 3.048 1.746 0.4695 Mg+2 = Mg+2 - -dw 0.705e-9 111 2.4 13.7 - -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 - -viscosity 0.423 0 0 1.67e-3 8.1e-3 2.50 + -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 + -dw 0.705e-9 48 11.92 -2.921 0.9631 Ca+2 = Ca+2 - -dw 0.793e-9 97 3.4 24.6 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 - -viscosity 0.379 -0.171 3.59e-2 1.55e-3 9.0e-3 2.282 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 + -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M + -dw 0.792e-9 -196 11.80 -2.743 0.9738 Sr+2 = Sr+2 - -dw 0.794e-9 161 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 + -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 + -dw 0.794e-9 80 25 -2.335 3.0 Ba+2 = Ba+2 - -dw 0.848e-9 46 - -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 -viscosity 0.339 -0.226 1.38e-2 3.06e-2 0 0.768 + -dw 0.848e-9 -35 22.78 -2.560 3.0 Mn+2 = Mn+2 - -dw 0.688e-9 - -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # ref. 2 + -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # ref. 2 + -dw 0.688e-9 Fe+2 = Fe+2 - -dw 0.719e-9 - -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -dw 0.719e-9 Cl- = Cl- - -dw 2.03e-9 194 1.6 6.9 - -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 -viscosity 0 0 0 0 0 0 1 # the reference solute + -dw 2.033e-9 154 3.209 0.6865 0.7555 CO3-2 = CO3-2 - -dw 0.955e-9 225 1.002 3.96 - -Vm 8.569 -10.40 -19.38 3e-4 4.61 0 2.99 0 -3.23e-2 0.872 - -viscosity 0 0.296 3.63e-2 2e-4 -1.90e-2 1.881 -1.754 + -Vm 8.569 -10.40 -19.38 3e-4 4.61 0 2.99 0 -3.23e-2 0.872 + -viscosity -0.117 0.303 1.60e-2 4.4e-4 -2.85e-2 1.432 -2.01 + -dw 0.955e-9 17 4.219 0.3648 0.5628 -10 SO4-2 = SO4-2 - -dw 1.07e-9 138 3.95 25.9 - -Vm 8.75 5.48 0 -6.41 3.32 0 0 0 -9.33E-2 0 - -viscosity -7.63e-2 0.229 1.34e-2 1.76e-3 -1.52e-3 2.079 0.271 + -Vm -7.77 43.17 141.1 -42.45 3.794 0.3377 -2.6556 352.2 1.647e-3 0.3786 + -viscosity -1.11e-2 0.1534 1.72e-2 4.45e-4 2.03e-2 2.986 0.248 + -dw 1.07e-9 7 2.826 0.101 0.6919 B(OH)3 = B(OH)3 + -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt -dw 1.1e-9 - -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt Br- = Br- - -dw 2.01e-9 258 - -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 # ref. 2 + -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 # ref. 2 -viscosity -1.16e-2 -5.23e-2 5.54e-2 1.22e-2 0.119 0.9969 0.818 + -dw 2.01e-9 117 5.941 -2.583 1e-9 H4SiO4 = H4SiO4 - -dw 1.10e-9 - -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 + -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 + -dw 1.10e-9 # redox-uncoupled gases Hdg = Hdg # H2 - -dw 5.13e-9 - -Vm 6.52 0.78 0.12 # supcrt + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 Oxg = Oxg # O2 - -dw 2.35e-9 - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 Mtg = Mtg # CH4 - -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 Ntg = Ntg # N2 - -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 - -Vm 7 # Pray et al., 1952, IEC 44. 1146 + -Vm 7 # Pray et al., 1952, IEC 44. 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 H2Sg = H2Sg # H2S - -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 # aqueous species H2O = OH- + H+ -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 - -dw 5.27e-9 548 0.52 1e-10 - -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 + -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 -viscosity -5.45e-2 0.142 1.45e-2 -3e-5 0 3.231 -1.791 # < 5 M Li,Na,KOH + -dw 5.27e-9 467 1.779 0.4280 0.3124 CO3-2 + H+ = HCO3- - log_k 10.3393 + log_k 10.3393 delta_h -3.561 kcal -analytic 107.8975 0.03252849 -5151.79 -38.92561 563713.9 - -dw 1.18e-9 -79.0 0.956 -3.29 - -Vm 9.463 -2.49 -11.92 0 1.63 0 0 130 0 0.691 - -viscosity 0 0.633 7.2e-3 0 0 0 1.087 + -Vm 9.463 -2.49 -11.92 0 1.63 0 0 130 0 0.691 + -viscosity -1 1.34 -5.06e-3 1.29e-2 1.81e-2 -1.306 1.08 + -dw 1.18e-9 -133 3.421 0.2629 1e-9 -10 CO3-2 + 2 H+ = CO2 + H2O - log_k 16.6767 - delta_h -5.738 kcal + log_k 16.6767 + delta_h -5.738 kcal -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 - -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 + -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 SO4-2 + H+ = HSO4- - log_k 1.979 - delta_h 4.91 kcal + log_k 1.979; delta_h 4.91 kcal -analytic -5.3585 0.0183412 557.2461 - -dw 1.33e-9 - -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -dw 1.10e-9 165 25 0 1e-9 # a * Vm correction H2Sg = HSg- + H+ log_k -6.994 delta_h 5.30 kcal -analytical 11.17 -0.02386 -3279.0 - -dw 1.73e-9 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -dw 1.73e-9 2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T -analytical 10.227 -0.01384 -2200 - -dw 2.1e-9 - -Vm 36.41 -71.95 0 0 2.58 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 B(OH)3 + H2O = B(OH)4- + H+ - log_k -9.239 + log_k -9.239 delta_h 0 kcal 3B(OH)3 = B3O3(OH)4- + 2H2O + H+ - log_k -7.528 + log_k -7.528 delta_h 0 kcal 4B(OH)3 = B4O5(OH)4-2 + 3H2O + 2H+ - log_k -16.134 + log_k -16.134 delta_h 0 kcal Ca+2 + B(OH)3 + H2O = CaB(OH)4+ + H+ - log_k -7.589 + log_k -7.589 delta_h 0 kcal Mg+2 + B(OH)3 + H2O = MgB(OH)4+ + H+ - log_k -7.840 + log_k -7.840 delta_h 0 kcal # Ca+2 + CO3-2 = CaCO3 - # log_k 3.151 + # log_k 3.151 # delta_h 3.547 kcal # -analytic -1228.806 -0.299440 35512.75 485.818 - # -dw 4.46e-10 # complexes: calc'd with the Pikal formula - # -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt + # -dw 4.46e-10 # complexes: calc'd with the Pikal formula + # -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt Mg+2 + H2O = MgOH+ + H+ - log_k -11.809 + log_k -11.809 delta_h 15.419 kcal Mg+2 + CO3-2 = MgCO3 - log_k 2.928 + log_k 2.928 delta_h 2.535 kcal - -analytic -32.225 0.0 1093.486 12.72433 - -dw 4.21e-10 - -Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt + -analytic -32.225 0.0 1093.486 12.72433 + -dw 4.21e-10 + -Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt H4SiO4 = H3SiO4- + H+ -log_k -9.83; -delta_h 6.12 kcal -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 - -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 + -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 H4SiO4 = H2SiO4-2 + 2 H+ -log_k -23.0; -delta_h 17.6 kcal -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 @@ -191,22 +196,22 @@ H4SiO4 = H2SiO4-2 + 2 H+ PHASES Akermanite Ca2MgSi2O7 + 6 H+ = Mg+2 + 2 Ca+2 + 2 H4SiO4 - H2O # llnl.dat - log_k 45.23 + log_k 45.23 -delta_H -289 kJ/mol Vm 92.6 Anhydrite CaSO4 = Ca+2 + SO4-2 log_k -4.362 -analytical_expression 5.009 -2.21e-2 -796.4 # ref. 3 - -Vm 46.1 # 136.14 / 2.95 + -Vm 46.1 # 136.14 / 2.95 Anthophyllite Mg7Si8O22(OH)2 + 14 H+ = 7 Mg+2 - 8 H2O + 8 H4SiO4 # llnl.dat - log_k 66.80 + log_k 66.80 -delta_H -483 kJ/mol Vm 269 Antigorite Mg48Si34O85(OH)62 + 96 H+ = 34 H4SiO4 + 48 Mg+2 + 11 H2O # llnl.dat - log_k 477.19 + log_k 477.19 -delta_H -3364 kJ/mol Vm 1745 Aragonite @@ -214,48 +219,48 @@ Aragonite log_k -8.336 delta_h -2.589 kcal -analytic -171.8607 -.077993 2903.293 71.595 - -Vm 34.04 + -Vm 34.04 Arcanite K2SO4 = SO4-2 + 2 K+ log_k -1.776; -delta_h 5 kcal -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 # Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06 - -Vm 65.5 + -Vm 65.5 Artinite Mg2CO3(OH)2:3H2O + 3 H+ = HCO3- + 2 Mg+2 + 5 H2O # llnl.dat - log_k 19.66 + log_k 19.66 -delta_H -130 kJ/mol Vm 97.4 Barite BaSO4 = Ba+2 + SO4-2 log_k -9.97; delta_h 6.35 kcal -analytical_expression -282.43 -8.972e-2 5822 113.08 # ref. 3 - -Vm 52.9 + -Vm 52.9 Bischofite MgCl2:6H2O = Mg+2 + 2 Cl- + 6 H2O - log_k 4.455 + log_k 4.455 -analytical_expression 7.526 -1.114e-2 115.7 # ref. 3 Vm 127.1 Bloedite Na2Mg(SO4)2:4H2O = Mg++ + 2 Na+ + 2 SO4-- + 4 H2O - log_k -2.347 - -delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite + log_k -2.347 + -delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite Vm 147 Brucite Mg(OH)2 = Mg++ + 2 OH- - log_k -10.88 + log_k -10.88 -delta_H 4.85 kcal/mol Vm 24.6 Burkeite Na6CO3(SO4)2 = CO3-2 + 2 SO4-- + 6 Na+ - log_k -0.772 + log_k -0.772 Vm 152 Calcite CaCO3 = CO3-2 + Ca+2 - log_k -8.406 + log_k -8.406 delta_h -2.297 kcal -analytic 8.481 -0.032644 -2133 # ref. 3 with data from Ellis, 1959, Plummer and Busenberg, 1982 - -Vm 36.9 + -Vm 36.9 Carnallite KMgCl3:6H2O = K+ + Mg+2 + 3Cl- + 6H2O log_k 4.35; -delta_h 1.17 @@ -263,105 +268,105 @@ Carnallite Vm 173.7 Celestite SrSO4 = Sr+2 + SO4-2 - log_k -6.630 + log_k -6.630 -analytic -7.14 6.11E-03 75 0 0 -1.79E-05 # ref. 3 - -Vm 46.4 + -Vm 46.4 Chalcedony SiO2 + 2 H2O = H4SiO4 -log_k -3.55; -delta_h 4.720 kcal - -Vm 23.1 + -Vm 23.1 Chrysotile Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 # phreeqc.dat -log_k 32.2 -delta_h -46.800 kcal -analytic 13.248 0.0 10217.1 -6.1894 - -Vm 110 + -Vm 110 Diopside CaMgSi2O6 + 4 H+ = Ca+2 + Mg+2 - 2 H2O + 2 H4SiO4 # llnl.dat - log_k 20.96 + log_k 20.96 -delta_H -134 kJ/mol Vm 67.2 Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 - log_k -17.09 + log_k -17.09 delta_h -9.436 kcal -analytic -120.63 -0.1051 0 54.509 # 50175C, Bnzeth et al., 2018, GCA 224, 262-275. - -Vm 64.5 + -Vm 64.5 Enstatite MgSiO3 + 2 H+ = - H2O + Mg+2 + H4SiO4 # llnl.dat - log_k 11.33 + log_k 11.33 -delta_H -83 kJ/mol Vm 31.3 Epsomite MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O - log_k -1.881 + log_k -1.881 -analytical_expression 4.479 -6.99e-3 -1.265e3 # ref. 3 Vm 147 Forsterite Mg2SiO4 + 4 H+ = H4SiO4 + 2 Mg+2 # llnl.dat - log_k 27.86 + log_k 27.86 -delta_H -206 kJ/mol Vm 43.7 Gaylussite CaNa2(CO3)2:5H2O = Ca+2 + 2 CO3-2 + 2 Na+ + 5 H2O - log_k -9.421 + log_k -9.421 Glaserite NaK3(SO4)2 = Na+ + 3K+ + 2SO4-2 log_k -3.803; -delta_h 25 - -Vm 123 + -Vm 123 Glauberite Na2Ca(SO4)2 = Ca+2 + 2 Na+ + 2 SO4-2 - log_k -5.31 + log_k -5.31 -analytical_expression 218.142 0 -9285 -77.735 # ref. 3 Vm 100.4 Goergeyite K2Ca5(SO4)6H2O = 2K+ + 5Ca+2 + 6SO4-2 + H2O log_k -29.5 -analytical_expression 1056.787 0 -52300 -368.06 # ref. 3 - -Vm 295.9 + -Vm 295.9 Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O -log_k -4.58; -delta_h -0.109 kcal -analytical_expression 82.381 0 -3804.5 -29.9952 # ref. 3 - -Vm 73.9 + -Vm 73.9 Halite NaCl = Cl- + Na+ - log_k 1.570 + log_k 1.570 -analytical_expression 159.605 8.4294e-2 -3975.6 -66.857 0 -4.9364e-5 # ref. 3 - -Vm 27.1 + -Vm 27.1 Hexahydrite MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O - log_k -1.635 + log_k -1.635 -analytical_expression -0.733 -2.80e-3 -8.57e-3 # ref. 3 Vm 132 Huntite CaMg3(CO3)4 + 4 H+ = Ca+2 + 3 Mg+2 + 4 HCO3- # llnl.dat - log_k 10.30 + log_k 10.30 -analytical_expression -1.145e3 -3.249e-1 3.941e4 4.526e2 Vm 130.8 Kainite KMgClSO4:3H2O = Cl- + K+ + Mg+2 + SO4-2 + 3 H2O - log_k -0.193 + log_k -0.193 Kalicinite KHCO3 = K+ + H+ + CO3-2 - log_k -9.94 # Harvie et al., 1984 + log_k -9.94 # Harvie et al., 1984 Kieserite MgSO4:H2O = Mg+2 + SO4-2 + H2O - log_k -0.123 + log_k -0.123 -analytical_expression 47.24 -0.12077 -5.356e3 0 0 7.272e-5 # ref. 3 Vm 53.8 Labile_S Na4Ca(SO4)3:2H2O = 4Na+ + Ca+2 + 3SO4-2 + 2H2O - log_k -5.672 + log_k -5.672 Leonhardite MgSO4:4H2O = Mg+2 + SO4-2 + 4H2O - log_k -0.887 + log_k -0.887 Leonite K2Mg(SO4)2:4H2O = Mg+2 + 2 K+ + 2 SO4-2 + 4 H2O - log_k -3.979 + log_k -3.979 Magnesite MgCO3 = CO3-2 + Mg+2 - log_k -7.834 + log_k -7.834 delta_h -6.169 Vm 28.3 MgCl2_2H2O @@ -376,51 +381,51 @@ Mirabilite Vm 216 Misenite K8H6(SO4)7 = 6 H+ + 7 SO4-2 + 8 K+ - log_k -10.806 + log_k -10.806 Nahcolite NaHCO3 = CO3-2 + H+ + Na+ - log_k -10.742 + log_k -10.742 Vm 38.0 Natron Na2CO3:10H2O = CO3-2 + 2 Na+ + 10 H2O - log_k -0.825 + log_k -0.825 Nesquehonite MgCO3:3H2O = CO3-2 + Mg+2 + 3 H2O - log_k -5.167 + log_k -5.167 Pentahydrite MgSO4:5H2O = Mg+2 + SO4-2 + 5 H2O - log_k -1.285 + log_k -1.285 Pirssonite Na2Ca(CO3)2:2H2O = 2Na+ + Ca+2 + 2CO3-2 + 2 H2O - log_k -9.234 + log_k -9.234 Polyhalite K2MgCa2(SO4)4:2H2O = 2K+ + Mg+2 + 2 Ca+2 + 4SO4-2 + 2 H2O - log_k -13.744 + log_k -13.744 Vm 218 Portlandite Ca(OH)2 = Ca+2 + 2 OH- - log_k -5.190 + log_k -5.190 Quartz SiO2 + 2 H2O = H4SiO4 -log_k -3.98; -delta_h 5.990 kcal - -Vm 22.67 + -Vm 22.67 Schoenite K2Mg(SO4)2:6H2O = 2K+ + Mg+2 + 2 SO4-2 + 6H2O - log_k -4.328 + log_k -4.328 Sepiolite(d) Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 # phreeqc.dat -log_k 18.66 - -Vm 162 + -Vm 162 Sepiolite Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 # phreeqc.dat -log_k 15.760 -delta_h -10.700 kcal - -Vm 154 + -Vm 154 SiO2(a) SiO2 + 2 H2O = H4SiO4 -log_k -2.71; -delta_h 3.340 kcal -analytic 20.42 3.107e-3 -1492 -7.68 # ref. 3 - -Vm 25.7 + -Vm 25.7 Sylvite KCl = K+ + Cl- log_k 0.90; -delta_h 8 @@ -429,42 +434,42 @@ Sylvite Syngenite K2Ca(SO4)2:H2O = 2K+ + Ca+2 + 2SO4-2 + H2O log_k -6.43; -delta_h -32.65 # ref. 3 - -Vm 127.3 + -Vm 127.3 Talc Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 # phreeqc.dat -log_k 21.399 -delta_h -46.352 kcal - -Vm 140 + -Vm 140 Thenardite Na2SO4 = 2 Na+ + SO4-2 -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 - -Vm 52.9 + -Vm 52.9 Trona Na3H(CO3)2:2H2O = 3 Na+ + H+ + 2CO3-2 + 2H2O - log_k -11.384 + log_k -11.384 Vm 106 Borax Na2(B4O5(OH)4):8H2O + 2 H+ = 4 B(OH)3 + 2 Na+ + 5 H2O - log_k 12.464 + log_k 12.464 Vm 223 Boric_acid,s B(OH)3 = B(OH)3 - log_k -0.030 + log_k -0.030 KB5O8:4H2O KB5O8:4H2O + 3H2O + H+ = 5B(OH)3 + K+ - log_k 4.671 + log_k 4.671 K2B4O7:4H2O K2B4O7:4H2O + H2O + 2H+ = 4B(OH)3 + 2K+ - log_k 13.906 + log_k 13.906 NaBO2:4H2O NaBO2:4H2O + H+ = B(OH)3 + Na+ + 3H2O - log_k 9.568 + log_k 9.568 NaB5O8:5H2O NaB5O8:5H2O + 2H2O + H+ = 5B(OH)3 + Na+ - log_k 5.895 + log_k 5.895 Teepleite Na2B(OH)4Cl + H+ = B(OH)3 + 2Na+ + Cl- + H2O - log_k 10.840 + log_k 10.840 CO2(g) CO2 = CO2 log_k -1.468 @@ -778,7 +783,7 @@ EXCHANGE_MASTER_SPECIES X X- EXCHANGE_SPECIES X- = X- - log_k 0.0 + log_k 0.0 Na+ + X- = NaX log_k 0.0 @@ -846,7 +851,7 @@ SURFACE_SPECIES log_k -8.93 # = -pKa2,int ############################################### -# CATIONS # +# CATIONS # ############################################### # # Cations from table 10.1 or 10.5 @@ -871,7 +876,7 @@ SURFACE_SPECIES log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - log_k -7.2 # table 10.5 + log_k -7.2 # table 10.5 # # Derived constants table 10.5 # @@ -880,10 +885,10 @@ SURFACE_SPECIES log_k -4.6 # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ - log_k -0.4 # table 10.5 + log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ - log_k -3.5 # table 10.5 + log_k -3.5 # table 10.5 # Iron # Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ # log_k 0.7 # LFER using table 10.5 @@ -892,17 +897,17 @@ SURFACE_SPECIES # log_k -2.5 # LFER using table 10.5 # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, subm. - Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ - log_k -0.95 + Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ + log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M - Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ - log_k -2.98 + Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ + log_k -2.98 - Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+ - log_k -11.55 + Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+ + log_k -11.55 ############################################### -# ANIONS # +# ANIONS # ############################################### # # Anions from table 10.6 @@ -975,14 +980,14 @@ END # H2O 0.49 0.19 0.19 0.49 # ============================================================================================= # The molar volumes of solids are entered with -# -Vm vm cm3/mol +# -Vm vm cm3/mol # vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted. # Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from # Deer, Howie and Zussman, The rock-forming minerals, Longman. # -------------------- # Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich- # type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with -# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 +# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 # The volume (cm3/mol) is # Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) + # a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) From 77038cb61a09de9a21e99d7432a03f169c60843f Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Mon, 12 Feb 2024 16:19:13 -0700 Subject: [PATCH 120/384] modified NH3 from Tony's Amm.dat --- phreeqc.dat | 1754 ++++++++++++++++++++++++++------------------------- 1 file changed, 878 insertions(+), 876 deletions(-) diff --git a/phreeqc.dat b/phreeqc.dat index 65c1656f..061817a3 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -1,1019 +1,1021 @@ +# with Falkenhage, a in ka from change in vm with T, P, I # PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: # diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. # Details are given at the end of this file. SOLUTION_MASTER_SPECIES # -#element species alk gfw_formula element_gfw +#element species alk gfw_formula element_gfw # -H H+ -1.0 H 1.008 -H(0) H2 0 H -H(1) H+ -1.0 0 -E e- 0 0.0 0 -O H2O 0 O 16.0 -O(0) O2 0 O -O(-2) H2O 0 0 -Ca Ca+2 0 Ca 40.08 -Mg Mg+2 0 Mg 24.312 -Na Na+ 0 Na 22.9898 -K K+ 0 K 39.102 -Fe Fe+2 0 Fe 55.847 -Fe(+2) Fe+2 0 Fe -Fe(+3) Fe+3 -2.0 Fe -Mn Mn+2 0 Mn 54.938 -Mn(+2) Mn+2 0 Mn -Mn(+3) Mn+3 0 Mn -Al Al+3 0 Al 26.9815 -Ba Ba+2 0 Ba 137.34 -Sr Sr+2 0 Sr 87.62 -Si H4SiO4 0 SiO2 28.0843 -Cl Cl- 0 Cl 35.453 -C CO3-2 2.0 HCO3 12.0111 -C(+4) CO3-2 2.0 HCO3 -C(-4) CH4 0 CH4 -Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05 -S SO4-2 0 SO4 32.064 -S(6) SO4-2 0 SO4 -S(-2) HS- 1.0 S -N NO3- 0 N 14.0067 +H H+ -1.0 H 1.008 +H(0) H2 0 H +H(1) H+ -1.0 H +E e- 0 0 0 +O H2O 0 O 16.0 +O(0) O2 0 O +O(-2) H2O 0 0 +Ca Ca+2 0 Ca 40.08 +Mg Mg+2 0 Mg 24.312 +Na Na+ 0 Na 22.9898 +K K+ 0 K 39.102 +Fe Fe+2 0 Fe 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2.0 Fe +Mn Mn+2 0 Mn 54.938 +Mn(+2) Mn+2 0 Mn +Mn(+3) Mn+3 0 Mn +Al Al+3 0 Al 26.9815 +Ba Ba+2 0 Ba 137.34 +Sr Sr+2 0 Sr 87.62 +Si H4SiO4 0 SiO2 28.0843 +Cl Cl- 0 Cl 35.453 +C CO3-2 2.0 HCO3 12.0111 +C(+4) CO3-2 2.0 HCO3 +C(-4) CH4 0 CH4 +Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05 +S SO4-2 0 SO4 32.064 +S(6) SO4-2 0 SO4 +S(-2) HS- 1.0 S +N NO3- 0 N 14.0067 N(+5) NO3- 0 N N(+3) NO2- 0 N -N(0) N2 0 N +N(0) N2 0 N N(-3) NH4+ 0 N 14.0067 -#Amm AmmH+ 0 AmmH 17.031 -B H3BO3 0 B 10.81 -P PO4-3 2.0 P 30.9738 -F F- 0 F 18.9984 -Li Li+ 0 Li 6.939 -Br Br- 0 Br 79.904 -Zn Zn+2 0 Zn 65.37 -Cd Cd+2 0 Cd 112.4 -Pb Pb+2 0 Pb 207.19 -Cu Cu+2 0 Cu 63.546 -Cu(+2) Cu+2 0 Cu -Cu(+1) Cu+1 0 Cu +#Amm AmmH+ 0 AmmH 17.031 +B H3BO3 0 B 10.81 +P PO4-3 2.0 P 30.9738 +F F- 0 F 18.9984 +Li Li+ 0 Li 6.939 +Br Br- 0 Br 79.904 +Zn Zn+2 0 Zn 65.37 +Cd Cd+2 0 Cd 112.4 +Pb Pb+2 0 Pb 207.19 +Cu Cu+2 0 Cu 63.546 +Cu(+2) Cu+2 0 Cu +Cu(+1) Cu+1 0 Cu # redox-uncoupled gases -Hdg Hdg 0 Hdg 2.016 # H2 gas -Oxg Oxg 0 Oxg 32 # O2 gas -Mtg Mtg 0 Mtg 16.032 # CH4 gas +Hdg Hdg 0 Hdg 2.016 # H2 gas +Oxg Oxg 0 Oxg 32 # O2 gas +Mtg Mtg 0 Mtg 16.032 # CH4 gas Sg H2Sg 0.0 H2Sg 32.064 # H2S gas -Ntg Ntg 0 Ntg 28.0134 # N2 gas +Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ - -gamma 9.0 0 - -dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 3. -# Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc -# Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75))) + -gamma 9.0 0 -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 + -dw 9.31e-9 742 15.0 1 2.353 24.01 # The dw parameters are defined in ref. 3. +# Dw(25 C) dw_T a a2 visc a3 +# Dw(TK) = 9.31e-9 * exp(742 / TK - 742 / 298.15) * viscos_0_25 / viscos_0_tc * (viscos_0_tc / viscos)^2.353 + +# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024 +# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0) / 5.2)^a2 * mu^0.5 (a3 = 5.2 = default, can be changed) in Falkenhagen's eqn. +# a3 = -10 ? ka = DH_B * a * mu^a2 in Falkenhagen's eqn. (Define a3 = -10), in CO3-2 and HCO3-, SO4-2 + cplxs +# -5 < a3 < 5 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) e- = e- H2O = H2O + -dw 2.299e-9 -254 # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence -Ca+2 = Ca+2 - -gamma 5.0 0.1650 - -dw 0.793e-9 97 3.4 24.6 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 - -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M -Mg+2 = Mg+2 - -gamma 5.5 0.20 - -dw 0.705e-9 111 2.4 13.7 - -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 - -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 +Li+ = Li+ + -gamma 6.0 0 # The apparent volume parameters for Vm are defined in ref. 1 & 2 + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 + -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl + -dw 1.03e-9 -23 4.063 5.488 3.0 Na+ = Na+ - -gamma 4.0 0.075 - -gamma 4.08 0.082 # halite solubility - -dw 1.33e-9 122 1.52 3.70 - -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 + -gamma 4.0 0.075 + -gamma 4.08 0.082 # halite solubility + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # for calculating densities (rho) when I > 3... # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 + -dw 1.33e-9 -121 4.383 -2.798 0.6215 K+ = K+ - -gamma 3.5 0.015 - -dw 1.96e-9 395 2.5 21 - -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 + -gamma 3.5 0.015 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 -viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028 -Fe+2 = Fe+2 - -gamma 6.0 0 - -dw 0.719e-9 - -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 -Mn+2 = Mn+2 - -gamma 6.0 0 - -dw 0.688e-9 - -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 -Al+3 = Al+3 - -gamma 9.0 0 - -dw 0.559e-9 - -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353. + -dw 1.96e-9 252 3.054 1.729 0.4706 +Mg+2 = Mg+2 + -gamma 5.5 0.20 + -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 + -dw 0.705e-9 35 11.92 -2.922 0.9631 +Ca+2 = Ca+2 + -gamma 5.0 0.1650 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 + -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M + -dw 0.792e-9 -198 11.80 -2.745 0.9735 +Sr+2 = Sr+2 + -gamma 5.260 0.121 + -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 + -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 + -dw 0.794e-9 66 25 -2.336 3.0 Ba+2 = Ba+2 -gamma 5.0 0 - -gamma 4.0 0.153 # Barite solubility - -dw 0.848e-9 100 - -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -gamma 4.0 0.153 # Barite solubility + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 -Sr+2 = Sr+2 - -gamma 5.260 0.121 - -dw 0.794e-9 161 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 - -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 + -dw 0.848e-9 -47 22.67 -2.543 3.0 +Fe+2 = Fe+2 + -gamma 6.0 0 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -dw 0.719e-9 +Mn+2 = Mn+2 + -gamma 6.0 0 + -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 + -dw 0.688e-9 +Al+3 = Al+3 + -gamma 9.0 0 + -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353. + -dw 0.559e-9 H4SiO4 = H4SiO4 - -dw 1.10e-9 - -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 + -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 + -dw 1.10e-9 Cl- = Cl- - -gamma 3.5 0.015 - -gamma 3.63 0.017 # cf. pitzer.dat - -dw 2.03e-9 194 1.6 6.9 - -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -gamma 3.5 0.015 + -gamma 3.63 0.017 # cf. pitzer.dat + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 -viscosity 0 0 0 0 0 0 1 # the reference solute + -dw 2.033e-9 164 3.214 0.6814 0.7554 CO3-2 = CO3-2 - -gamma 5.4 0 - -dw 0.955e-9 28.9 14.3 98.1 - -Vm 8.69 -10.2 -20.31 -0.131 4.65 0 3.75 0 -4.04e-2 0.678 - -viscosity 0 0.301 4.12e-2 1.44e-3 1.41e-2 1.364 -2.00 + -gamma 5.4 0 + -Vm 5.65 -0.413 4.32e-2 -5.68 5.56 0 -0.97 150 -7.3e-3 0.866 + -viscosity -0.307 0.461 6.91e-3 2.6e-4 -2.02e-2 1.666 -2.215 + -dw 0.955e-9 -21 4.372 0.4288 0.7542 -10 SO4-2 = SO4-2 - -gamma 5.0 -0.04 - -dw 1.07e-9 187 2.64 22.6 - -Vm 9.379 3.26 0 -7.13 4.30 0 0 0 -3.73e-2 0 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC - -viscosity -1.83 1.907 4.8e-4 1.7e-3 -1.60e-2 4.40 -0.143 + -gamma 5.0 -0.04 + -Vm -7.77 43.17 141.1 -42.45 3.794 1.40e-2 0 100.9 -5.713e-2 1.011e-4 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC + -viscosity -0.7887 0.813 1.86e-3 1.27e-3 -1.38e-2 4.668 -9.86e-2 + -dw 1.07e-9 -3 35 0.3063 1e-9 -10 NO3- = NO3- - -gamma 3.0 0 - -dw 1.9e-9 184 1.85 3.85 - -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 + -gamma 3.0 0 + -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 -viscosity 8.37e-2 -0.458 1.54e-2 0.340 1.79e-2 5.02e-2 0.7381 + -dw 1.90e-9 150 1.281 0.3876 1e-9 -10 #AmmH+ = AmmH+ -# -gamma 2.5 0 -# -dw 1.98e-9 312 0.95 4.53 +# -gamma 2.5 0 # -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 # -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 +# -dw 1.98e-9 -81 6.274 -4.118 -0.270 H3BO3 = H3BO3 + -Vm 7.0643 8.8547 3.5844 -3.1451 -0.20 # supcrt -dw 1.1e-9 - -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt PO4-3 = PO4-3 - -gamma 4.0 0 - -dw 0.612e-9 - -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 + -gamma 4.0 0 + -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 + -dw 0.612e-9 F- = F- - -gamma 3.5 0 - -dw 1.46e-9 10 - -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 -Li+ = Li+ - -gamma 6.0 0 - -dw 1.03e-9 80 - -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 - -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 + -gamma 3.5 0 + -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 + -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 + -dw 1.46e-9 11 4.659 -0.176 1e-9 Br- = Br- - -gamma 3.0 0 - -dw 2.01e-9 258 - -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 + -gamma 3.0 0 + -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.820 + -dw 2.01e-9 121 5.939 -2.588 1e-9 Zn+2 = Zn+2 - -gamma 5.0 0 - -dw 0.715e-9 - -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 + -gamma 5.0 0 + -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 + -dw 0.715e-9 Cd+2 = Cd+2 - -dw 0.717e-9 - -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 + -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 + -dw 0.717e-9 Pb+2 = Pb+2 - -dw 0.945e-9 - -Vm -.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt + -Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt + -dw 0.945e-9 Cu+2 = Cu+2 - -gamma 6.0 0 - -dw 0.733e-9 - -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 + -gamma 6.0 0 + -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 + -dw 0.733e-9 # redox-uncoupled gases Hdg = Hdg # H2 - -dw 5.13e-9 - -Vm 6.52 0.78 0.12 # supcrt + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 Oxg = Oxg # O2 - -dw 2.35e-9 - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 Mtg = Mtg # CH4 - -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 Ntg = Ntg # N2 - -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 -Vm 7 # Pray et al., 1952, IEC 44. 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 H2Sg = H2Sg # H2S - -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 # aqueous species H2O = OH- + H+ -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 - -gamma 3.5 0 - -dw 5.27e-9 548 0.52 1e-10 - -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 + -gamma 3.5 0 + -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH + -dw 5.27e-9 470 1.837 0.4096 0.3330 2 H2O = O2 + 4 H+ + 4 e- - -log_k -86.08 + -log_k -86.08 -delta_h 134.79 kcal - -dw 2.35e-9 - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 2 H+ + 2 e- = H2 - -log_k -3.15 + -log_k -3.15 -delta_h -1.759 kcal - -dw 5.13e-9 - -Vm 6.52 0.78 0.12 # supcrt + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 H+ + Cl- = HCl -log_k -0.5 -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50C -gamma 0 0.4256 -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 CO3-2 + H+ = HCO3- - -log_k 10.329 - -delta_h -3.561 kcal + -log_k 10.329; -delta_h -3.561 kcal -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 - -gamma 5.4 0 - -dw 1.18e-9 -182 0.351 -4.94 - -Vm 9.03 -7.03e-2 -13.38 0 2.05 0 0 128 0 0.8242 - -viscosity 0 0.117 -2.91e-2 0 0 0 0.896 + -gamma 5.4 0 + -Vm 6.64 4.47 7.27 -4.78 1.51 0 -2.91 202 3.33e-2 0.895 + -viscosity -1 1.059 -1.32e-2 8.98e-2 3.10e-2 -0.974 0.986 + -dw 1.18e-9 -133 3.421 0.2629 1e-9 -10 + # -dw 1.18e-9 -216 3.397 -9.20e-2 -0.5492 -10 CO3-2 + 2 H+ = CO2 + H2O - -log_k 16.681 - -delta_h -5.738 kcal - -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 - -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 - -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 + -log_k 16.681 + -delta_h -5.738 kcal + -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 + -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 2CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T - -log_k -1.8 + -log_k -1.8 -analytical_expression 8.68 -0.0103 -2190 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 - -Vm 14.58 1.84 4.14 -2.46 -3.20 + -Vm 14.58 1.84 4.14 -2.46 -3.20 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O - -log_k 41.071 + -log_k 41.071 -delta_h -61.039 kcal - -dw 1.85e-9 - -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm .01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 SO4-2 + H+ = HSO4- - -log_k 1.988 - -delta_h 3.85 kcal - -analytic -56.889 0.006473 2307.9 19.8858 - -dw 1.33e-9 - -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -log_k 1.988; -delta_h 3.85 kcal + -analytic -56.889 0.006473 2307.9 19.8858 + -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -dw 1.2e-9 1027 25 1.681 1e-9 -10 # a (=25) * mu^1.681 HS- = S-2 + H+ - -log_k -12.918 - -delta_h 12.1 kcal - -gamma 5.0 0 - -dw 0.731e-9 + -log_k -12.918 + -delta_h 12.1 kcal + -gamma 5.0 0 + -dw 0.731e-9 SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O - -log_k 33.65 + -log_k 33.65 -delta_h -60.140 kcal - -gamma 3.5 0 - -dw 1.73e-9 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -dw 1.73e-9 HS- + H+ = H2S - -log_k 6.994 - -delta_h -5.30 kcal + -log_k 6.994; -delta_h -5.30 kcal -analytical -11.17 0.02386 3279.0 - -dw 2.1e-9 - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 2H2S = (H2S)2 # activity correction for H2S solubility at high P, T -analytical_expression 10.227 -0.01384 -2200 - -dw 2.1e-9 - -Vm 36.41 -71.95 0 0 2.58 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 H2Sg = HSg- + H+ - -log_k -6.994 - -delta_h 5.30 kcal + -log_k -6.994; -delta_h 5.30 kcal -analytical_expression 11.17 -0.02386 -3279.0 - -gamma 3.5 0 - -dw 1.73e-9 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -dw 1.73e-9 2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T -analytical_expression 10.227 -0.01384 -2200 - -dw 2.1e-9 - -Vm 36.41 -71.95 0 0 2.58 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 NO3- + 2 H+ + 2 e- = NO2- + H2O - -log_k 28.570 + -log_k 28.570 -delta_h -43.760 kcal - -gamma 3.0 0 - -dw 1.91e-9 - -Vm 5.5864 5.8590 3.4472 -3.0212 1.1847 # supcrt + -gamma 3.0 0 + -Vm 5.5864 5.8590 3.4472 -3.0212 1.1847 # supcrt + -dw 1.91e-9 2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O - -log_k 207.08 - -delta_h -312.130 kcal - -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 - -Vm 7 # Pray et al., 1952, IEC 44. 1146 + -log_k 207.08 + -delta_h -312.130 kcal + -Vm 7 # Pray et al., 1952, IEC 44. 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 #AmmH+ = Amm + H+ NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O -log_k 119.077 -delta_h -187.055 kcal - -gamma 2.5 0 - -dw 1.98e-9 312 0.95 4.53 + -gamma 2.5 0 -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 - + -dw 1.98e-9 -81 6.274 -4.118 -0.270 NH4+ = NH3 + H+ - -log_k -9.252 - -delta_h 12.48 kcal + -log_k -9.252 + -delta_h 12.48 kcal -analytic 0.6322 -0.001225 -2835.76 - -dw 2.28e-9 - -Vm 6.69 2.8 3.58 -2.88 1.43 + -Vm 6.69 2.8 3.58 -2.88 1.43 -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -dw 2.28e-9 #NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O -# -log_k 119.077 -# -delta_h -187.055 kcal -# -gamma 2.5 0 -# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 +# -log_k 119.077 +# -delta_h -187.055 kcal +# -gamma 2.5 0 +# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 #AmmH+ + SO4-2 = AmmHSO4- NH4+ + SO4-2 = NH4SO4- - -log_k 1.11; -delta_h 13.2 kcal - -gamma 5 -0.163 - -Vm 13.56 0 -31.15 0 0 0 11.20 0 -0.1287 1 - -dw 1.1e-9 400 1.85 200 - -viscosity 0.262 0 0 9.49e-2 3.81e-2 0.438 0.507 + -gamma 6.0 -0.27 + -log_k 1.27; -delta_h 4.9 kcal + -Vm 10.45 0 -12.26 0 2.578 0 12.67 0 -2.60e-2 0.3516 + -viscosity 0.139 0 0 7.95e-3 2.73e-2 1.38 0.127 + -dw 1.35e-9 500 25 3 1e-9 -10 H3BO3 = H2BO3- + H+ - -log_k -9.24 - -delta_h 3.224 kcal + -log_k -9.24 + -delta_h 3.224 kcal H3BO3 + F- = BF(OH)3- - -log_k -0.4 - -delta_h 1.850 kcal + -log_k -0.4 + -delta_h 1.850 kcal H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O - -log_k 7.63 - -delta_h 1.618 kcal + -log_k 7.63 + -delta_h 1.618 kcal H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O - -log_k 13.67 - -delta_h -1.614 kcal + -log_k 13.67 + -delta_h -1.614 kcal H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O - -log_k 20.28 - -delta_h -1.846 kcal + -log_k 20.28 + -delta_h -1.846 kcal PO4-3 + H+ = HPO4-2 - -log_k 12.346 - -delta_h -3.530 kcal - -gamma 5.0 0 + -log_k 12.346 + -delta_h -3.530 kcal + -gamma 5.0 0 -dw 0.69e-9 - -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 + -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 PO4-3 + 2 H+ = H2PO4- - -log_k 19.553 - -delta_h -4.520 kcal - -gamma 5.4 0 - -dw 0.846e-9 - -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 + -log_k 19.553 + -delta_h -4.520 kcal + -gamma 5.4 0 + -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 + -dw 0.846e-9 PO4-3 + 3H+ = H3PO4 - log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 - delta_h -10.1 kJ - -Vm 7.47 12.4 6.29 -3.29 0 + log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 + delta_h -10.1 kJ + -Vm 7.47 12.4 6.29 -3.29 0 H+ + F- = HF - -log_k 3.18 - -delta_h 3.18 kcal - -analytic -2.033 0.012645 429.01 - -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt + -log_k 3.18 + -delta_h 3.18 kcal + -analytic -2.033 0.012645 429.01 + -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt H+ + 2 F- = HF2- - -log_k 3.76 - -delta_h 4.550 kcal - -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt + -log_k 3.76 + -delta_h 4.550 kcal + -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt Ca+2 + H2O = CaOH+ + H+ - -log_k -12.78 + -log_k -12.78 Ca+2 + CO3-2 = CaCO3 - -log_k 3.224 - -delta_h 3.545 kcal - -analytic -1228.732 -0.299440 35512.75 485.818 - -dw 4.46e-10 # complexes: calc'd with the Pikal formula - -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt + -log_k 3.224; -delta_h 3.545 kcal + -analytic -1228.732 -0.299440 35512.75 485.818 + -dw 4.46e-10 # complexes: calc'd with the Pikal formula + -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt Ca+2 + CO3-2 + H+ = CaHCO3+ - -log_k 11.435 - -delta_h -0.871 kcal - -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9 - -gamma 6.0 0 - -dw 5.06e-10 - -Vm 3.1911 .0104 5.7459 -2.7794 .3084 5.4 # supcrt + -log_k 11.435; -delta_h -0.871 kcal + -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9 + -gamma 6.0 0 + -Vm 3.1911 .0104 5.7459 -2.7794 .3084 5.4 # supcrt + -dw 5.06e-10 Ca+2 + SO4-2 = CaSO4 - -log_k 2.25 - -delta_h 1.325 kcal + -log_k 2.25 + -delta_h 1.325 kcal -dw 4.71e-10 - -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # supcrt + -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # supcrt Ca+2 + HSO4- = CaHSO4+ - -log_k 1.08 + -log_k 1.08 Ca+2 + PO4-3 = CaPO4- - -log_k 6.459 - -delta_h 3.10 kcal - -gamma 5.4 0.0 + -log_k 6.459 + -delta_h 3.10 kcal + -gamma 5.4 0.0 Ca+2 + HPO4-2 = CaHPO4 - -log_k 2.739 + -log_k 2.739 -delta_h 3.3 kcal Ca+2 + H2PO4- = CaH2PO4+ - -log_k 1.408 + -log_k 1.408 -delta_h 3.4 kcal - -gamma 5.4 0.0 + -gamma 5.4 0.0 # Ca+2 + F- = CaF+ # -log_k 0.94 # -delta_h 4.120 kcal - # -gamma 5.5 0.0 - # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt + # -gamma 5.5 0.0 + # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt Mg+2 + H2O = MgOH+ + H+ - -log_k -11.44 + -log_k -11.44 -delta_h 15.952 kcal - -gamma 6.5 0 + -gamma 6.5 0 Mg+2 + CO3-2 = MgCO3 - -log_k 2.98 - -delta_h 2.713 kcal - -analytic 0.9910 0.00667 - -dw 4.21e-10 - -Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt + -log_k 2.98 + -delta_h 2.713 kcal + -analytic 0.9910 0.00667 + -Vm -0.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt + -dw 4.21e-10 Mg+2 + H+ + CO3-2 = MgHCO3+ - -log_k 11.399 + -log_k 11.399 -delta_h -2.771 kcal - -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 - -gamma 4.0 0 - -dw 4.78e-10 - -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt + -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 + -gamma 4.0 0 + -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt + -dw 4.78e-10 Mg+2 + SO4-2 = MgSO4 - -log_k 2.42; -delta_h 19.0 kJ - -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -gamma 0 0.20 - -Vm 13.18 -25.67 -21.23 0 0.800 0 0 0 0 0 - -dw 4.45e-10 - -viscosity -0.590 0.768 -3.8e-4 0.283 1.1e-3 1.09 0 + -gamma 0 0.20 + -log_k 2.42; -delta_h 19.0 kJ + -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm 14.19 -24.43 -30.57 0 1.194 0 0 0 0 0 + -viscosity -0.5787 0.8305 0 0.2147 -1.06e-4 1.202 0 + -dw 4.45e-10 SO4-2 + MgSO4 = Mg(SO4)2-2 - -log_k 0.52; -delta_h -13.6 kJ - -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -gamma 7 0.047 - -Vm 12.725 -28.73 0.219 0 -0.264 0 23.44 0 0.213 5.1e-2 - -Dw 1e-9 -2926 6.10e-2 -5.41 - -viscosity -0.162 9.6e-4 -4.65e-2 0.179 1.56e-2 1.66 0 + -gamma 7 0.047 + -log_k 0.52; -delta_h -13.6 kJ + -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm 27.34 -30 -26.79 0 1.75e-2 0 0.4148 -0.6003 0 0 + -viscosity -6.34e-2 5e-4 -5.09e-2 0.1974 1.65e-2 1.568 0 + -dw 0.69e-9 -661 35 -0.7452 0.4817 -10 Mg+2 + PO4-3 = MgPO4- - -log_k 6.589 - -delta_h 3.10 kcal - -gamma 5.4 0 + -log_k 6.589 + -delta_h 3.10 kcal + -gamma 5.4 0 Mg+2 + HPO4-2 = MgHPO4 - -log_k 2.87 + -log_k 2.87 -delta_h 3.3 kcal Mg+2 + H2PO4- = MgH2PO4+ - -log_k 1.513 + -log_k 1.513 -delta_h 3.4 kcal - -gamma 5.4 0 + -gamma 5.4 0 Mg+2 + F- = MgF+ - -log_k 1.82 - -delta_h 3.20 kcal - -gamma 4.5 0 - -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt + -log_k 1.82 + -delta_h 3.20 kcal + -gamma 4.5 0 + -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt Na+ + OH- = NaOH - -log_k -10 # remove this complex + -log_k -10 # remove this complex # Na+ + CO3-2 = NaCO3- # the CO3-2 cmplx is not necessary for the SC # -log_k 1.27 # -delta_h 8.91 kcal - # -dw 1.2e-9 -400 1e-10 1e-10 - # -Vm 3.812 0.196 20.0 -9.60 3.02 1e-5 2.65 0 2.54e-2 1 + # -dw 1.2e-9 -400 1e-10 1e-10 + # -Vm 3.812 0.196 20.0 -9.60 3.02 1e-5 2.65 0 2.54e-2 1 # -viscosity 0.104 -1.65 0.169 8.66e-2 2.60e-2 1.76 -0.90 Na+ + HCO3- = NaHCO3 - -log_k -0.18; -delta_h 27 kJ - -analytical_expression 0.1 -6.111e-3 -1600 2.794 # optimized with data in Appelo, 2015, Appl. Geochem. 55, 6271. - -gamma 0 0.23 - -dw 6.73e-10 -400 1e-10 1e-10 - -Vm 9 -6 - -viscosity 0 0 0 0.1 3e-2 + -log_k -0.18; -delta_h 23 kJ + # -analytical_expression 0.1 -6.111e-3 -1600 2.794 # optimized with data in Appelo, 2015, Appl. Geochem. 55, 6271. + -gamma 0 0.23 + -Vm 11.58 0 0 0 1.894 + -viscosity 1 -1.035 -4.78e-2 0.274 -6.27e-2 -4.17e-2 1.0 + -dw 6.73e-10 -400 1e-10 1e-10 Na+ + SO4-2 = NaSO4- - -log_k 0.6; -delta_h -14.4 kJ - -analytical_expression -7.99 1.637e-2 0 0 3.29e5 # mirabilite/thenardite solubilities, 0 - 200 oC - -gamma 0 0 - -Vm 9.993 -8.75 0 -2.95 2.59 0 8.40 0 -1.82e-2 0.672 - -dw 1.183e-9 438 1e-10 1e-10 - -viscosity 7.94e-2 6.96e-2 1.51e-2 7.62e-2 2.84e-2 1.74 0.120 + -gamma 5.5 0 + -log_k 0.6; -delta_h -14.4 kJ + -analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC + -Vm 1e-5 20.45 0 -3.75 2.433 0 6.106 0 -1.05e-2 0.6604 + -viscosity -1.045 1.215 2.32e-4 4.82e-2 2.67e-2 1.634 0 + -dw 0.85e-9 -100 35 2.643 0.4323 -10 Na+ + HPO4-2 = NaHPO4- - -log_k 0.29 - -gamma 5.4 0 - -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 Na+ + F- = NaF - -log_k -0.24 - -Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt + -log_k -0.24 + -Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt K+ + SO4-2 = KSO4- - -log_k 0.6; -delta_h -10.4 kJ - -analytical_expression -4.022 8.217e-3 0 0 1.90e5 # arcanite solubility, 0 - 200 oC - -gamma 0 8.3e-3 - -Vm 8.942 -5.05 -15.03 0 3.61 0 25.14 0 -5.06e-2 0.166 - -dw 5.11e-10 1694 -0.587 -4.43 - -viscosity -2.71 3.09 6e-4 -0.629 9.38e-2 0.778 0.975 + -gamma 5.4 0.19 + -log_k 0.6; -delta_h -10.4 kJ + -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC + -Vm 1e-5 -30 -113.5 21.88 1.5 0 114.0 0 -0.1241 2.281e-2 + -viscosity -0.4572 0.7833 7e-4 -1.014 4.60e-3 0.5757 -0.224 + -dw 0.52e-9 300 35 1.110 0.8 -10 K+ + HPO4-2 = KHPO4- - -log_k 0.29 - -gamma 5.4 0 - -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 Fe+2 + H2O = FeOH+ + H+ - -log_k -9.5 - -delta_h 13.20 kcal - -gamma 5.0 0 -Fe+2 + 3H2O = Fe(OH)3- + 3H+ + -log_k -9.5 + -delta_h 13.20 kcal + -gamma 5.0 0 +Fe+2 + 3H2O = Fe(OH)3- + 3H+ -log_k -31.0 -delta_h 30.3 kcal -gamma 5.0 0 Fe+2 + Cl- = FeCl+ - -log_k 0.14 + -log_k 0.14 Fe+2 + CO3-2 = FeCO3 - -log_k 4.38 + -log_k 4.38 Fe+2 + HCO3- = FeHCO3+ - -log_k 2.0 + -log_k 2.0 Fe+2 + SO4-2 = FeSO4 - -log_k 2.25 - -delta_h 3.230 kcal - -Vm -13 0 123 + -log_k 2.25 + -delta_h 3.230 kcal + -Vm -13 0 123 Fe+2 + HSO4- = FeHSO4+ - -log_k 1.08 + -log_k 1.08 Fe+2 + 2HS- = Fe(HS)2 - -log_k 8.95 + -log_k 8.95 Fe+2 + 3HS- = Fe(HS)3- - -log_k 10.987 + -log_k 10.987 Fe+2 + HPO4-2 = FeHPO4 - -log_k 3.6 + -log_k 3.6 Fe+2 + H2PO4- = FeH2PO4+ - -log_k 2.7 - -gamma 5.4 0 + -log_k 2.7 + -gamma 5.4 0 Fe+2 + F- = FeF+ - -log_k 1.0 + -log_k 1.0 Fe+2 = Fe+3 + e- - -log_k -13.02 - -delta_h 9.680 kcal - -gamma 9.0 0 + -log_k -13.02 + -delta_h 9.680 kcal + -gamma 9.0 0 Fe+3 + H2O = FeOH+2 + H+ - -log_k -2.19 - -delta_h 10.4 kcal - -gamma 5.0 0 + -log_k -2.19 + -delta_h 10.4 kcal + -gamma 5.0 0 Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ - -log_k -5.67 - -delta_h 17.1 kcal - -gamma 5.4 0 + -log_k -5.67 + -delta_h 17.1 kcal + -gamma 5.4 0 Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ - -log_k -12.56 - -delta_h 24.8 kcal + -log_k -12.56 + -delta_h 24.8 kcal Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ - -log_k -21.6 - -delta_h 31.9 kcal - -gamma 5.4 0 -Fe+2 + 2H2O = Fe(OH)2 + 2H+ + -log_k -21.6 + -delta_h 31.9 kcal + -gamma 5.4 0 +Fe+2 + 2H2O = Fe(OH)2 + 2H+ -log_k -20.57 - -delta_h 28.565 kcal + -delta_h 28.565 kcal 2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ - -log_k -2.95 - -delta_h 13.5 kcal + -log_k -2.95 + -delta_h 13.5 kcal 3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ - -log_k -6.3 - -delta_h 14.3 kcal + -log_k -6.3 + -delta_h 14.3 kcal Fe+3 + Cl- = FeCl+2 - -log_k 1.48 - -delta_h 5.6 kcal - -gamma 5.0 0 + -log_k 1.48 + -delta_h 5.6 kcal + -gamma 5.0 0 Fe+3 + 2 Cl- = FeCl2+ - -log_k 2.13 - -gamma 5.0 0 + -log_k 2.13 + -gamma 5.0 0 Fe+3 + 3 Cl- = FeCl3 - -log_k 1.13 + -log_k 1.13 Fe+3 + SO4-2 = FeSO4+ - -log_k 4.04 - -delta_h 3.91 kcal - -gamma 5.0 0 + -log_k 4.04 + -delta_h 3.91 kcal + -gamma 5.0 0 Fe+3 + HSO4- = FeHSO4+2 - -log_k 2.48 + -log_k 2.48 Fe+3 + 2 SO4-2 = Fe(SO4)2- - -log_k 5.38 - -delta_h 4.60 kcal + -log_k 5.38 + -delta_h 4.60 kcal Fe+3 + HPO4-2 = FeHPO4+ - -log_k 5.43 - -delta_h 5.76 kcal - -gamma 5.0 0 + -log_k 5.43 + -delta_h 5.76 kcal + -gamma 5.0 0 Fe+3 + H2PO4- = FeH2PO4+2 - -log_k 5.43 - -gamma 5.4 0 + -log_k 5.43 + -gamma 5.4 0 Fe+3 + F- = FeF+2 - -log_k 6.2 - -delta_h 2.7 kcal - -gamma 5.0 0 + -log_k 6.2 + -delta_h 2.7 kcal + -gamma 5.0 0 Fe+3 + 2 F- = FeF2+ - -log_k 10.8 - -delta_h 4.8 kcal - -gamma 5.0 0 + -log_k 10.8 + -delta_h 4.8 kcal + -gamma 5.0 0 Fe+3 + 3 F- = FeF3 - -log_k 14.0 - -delta_h 5.4 kcal + -log_k 14.0 + -delta_h 5.4 kcal Mn+2 + H2O = MnOH+ + H+ - -log_k -10.59 - -delta_h 14.40 kcal - -gamma 5.0 0 -Mn+2 + 3H2O = Mn(OH)3- + 3H+ + -log_k -10.59 + -delta_h 14.40 kcal + -gamma 5.0 0 +Mn+2 + 3H2O = Mn(OH)3- + 3H+ -log_k -34.8 - -gamma 5.0 0 + -gamma 5.0 0 Mn+2 + Cl- = MnCl+ - -log_k 0.61 - -gamma 5.0 0 - -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 + -log_k 0.61 + -gamma 5.0 0 + -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 Mn+2 + 2 Cl- = MnCl2 - -log_k 0.25 - -Vm 1e-5 0 144 + -log_k 0.25 + -Vm 1e-5 0 144 Mn+2 + 3 Cl- = MnCl3- - -log_k -0.31 - -gamma 5.0 0 - -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 + -log_k -0.31 + -gamma 5.0 0 + -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 Mn+2 + CO3-2 = MnCO3 - -log_k 4.9 + -log_k 4.9 Mn+2 + HCO3- = MnHCO3+ - -log_k 1.95 - -gamma 5.0 0 + -log_k 1.95 + -gamma 5.0 0 Mn+2 + SO4-2 = MnSO4 - -log_k 2.25 - -delta_h 3.370 kcal - -Vm -1.31 -1.83 62.3 -2.7 + -log_k 2.25 + -delta_h 3.370 kcal + -Vm -1.31 -1.83 62.3 -2.7 Mn+2 + 2 NO3- = Mn(NO3)2 - -log_k 0.6 - -delta_h -0.396 kcal - -Vm 6.16 0 29.4 0 0.9 + -log_k 0.6 + -delta_h -0.396 kcal + -Vm 6.16 0 29.4 0 0.9 Mn+2 + F- = MnF+ - -log_k 0.84 - -gamma 5.0 0 + -log_k 0.84 + -gamma 5.0 0 Mn+2 = Mn+3 + e- - -log_k -25.51 - -delta_h 25.80 kcal - -gamma 9.0 0 + -log_k -25.51 + -delta_h 25.80 kcal + -gamma 9.0 0 Al+3 + H2O = AlOH+2 + H+ - -log_k -5.0 - -delta_h 11.49 kcal - -analytic -38.253 0.0 -656.27 14.327 - -gamma 5.4 0 - -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353. + -log_k -5.0 + -delta_h 11.49 kcal + -analytic -38.253 0.0 -656.27 14.327 + -gamma 5.4 0 + -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353. Al+3 + 2 H2O = Al(OH)2+ + 2 H+ - -log_k -10.1 - -delta_h 26.90 kcal - -gamma 5.4 0 - -analytic 88.50 0.0 -9391.6 -27.121 + -log_k -10.1 + -delta_h 26.90 kcal + -gamma 5.4 0 + -analytic 88.50 0.0 -9391.6 -27.121 Al+3 + 3 H2O = Al(OH)3 + 3 H+ - -log_k -16.9 - -delta_h 39.89 kcal - -analytic 226.374 0.0 -18247.8 -73.597 + -log_k -16.9 + -delta_h 39.89 kcal + -analytic 226.374 0.0 -18247.8 -73.597 Al+3 + 4 H2O = Al(OH)4- + 4 H+ - -log_k -22.7 - -delta_h 42.30 kcal - -analytic 51.578 0.0 -11168.9 -14.865 - -gamma 4.5 0 + -log_k -22.7 + -delta_h 42.30 kcal + -analytic 51.578 0.0 -11168.9 -14.865 + -gamma 4.5 0 -dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959 Al+3 + SO4-2 = AlSO4+ - -log_k 3.5 + -log_k 3.5 -delta_h 2.29 kcal - -gamma 4.5 0 + -gamma 4.5 0 Al+3 + 2SO4-2 = Al(SO4)2- - -log_k 5.0 + -log_k 5.0 -delta_h 3.11 kcal - -gamma 4.5 0 + -gamma 4.5 0 Al+3 + HSO4- = AlHSO4+2 - -log_k 0.46 + -log_k 0.46 Al+3 + F- = AlF+2 - -log_k 7.0 - -delta_h 1.060 kcal - -gamma 5.4 0 + -log_k 7.0 + -delta_h 1.060 kcal + -gamma 5.4 0 Al+3 + 2 F- = AlF2+ - -log_k 12.7 - -delta_h 1.980 kcal - -gamma 5.4 0 + -log_k 12.7 + -delta_h 1.980 kcal + -gamma 5.4 0 Al+3 + 3 F- = AlF3 - -log_k 16.8 - -delta_h 2.160 kcal + -log_k 16.8 + -delta_h 2.160 kcal Al+3 + 4 F- = AlF4- - -log_k 19.4 - -delta_h 2.20 kcal - -gamma 4.5 0 + -log_k 19.4 + -delta_h 2.20 kcal + -gamma 4.5 0 # Al+3 + 5 F- = AlF5-2 - # log_k 20.6 - # delta_h 1.840 kcal + # log_k 20.6 + # delta_h 1.840 kcal # Al+3 + 6 F- = AlF6-3 - # log_k 20.6 + # log_k 20.6 # delta_h -1.670 kcal H4SiO4 = H3SiO4- + H+ - -log_k -9.83 - -delta_h 6.12 kcal - -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 - -gamma 4 0 - -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 + -log_k -9.83 + -delta_h 6.12 kcal + -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 + -gamma 4 0 + -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 H4SiO4 = H2SiO4-2 + 2 H+ - -log_k -23.0 - -delta_h 17.6 kcal - -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 - -gamma 5.4 0 + -log_k -23.0 + -delta_h 17.6 kcal + -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 + -gamma 5.4 0 H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O - -log_k 30.18 + -log_k 30.18 -delta_h -16.260 kcal - -gamma 5.0 0 - -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt + -gamma 5.0 0 + -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt Ba+2 + H2O = BaOH+ + H+ - -log_k -13.47 - -gamma 5.0 0 + -log_k -13.47 + -gamma 5.0 0 Ba+2 + CO3-2 = BaCO3 - -log_k 2.71 - -delta_h 3.55 kcal - -analytic 0.113 0.008721 - -Vm .2907 -7.0717 8.5295 -2.4867 -.0300 # supcrt + -log_k 2.71 + -delta_h 3.55 kcal + -analytic 0.113 0.008721 + -Vm .2907 -7.0717 8.5295 -2.4867 -.0300 # supcrt Ba+2 + HCO3- = BaHCO3+ - -log_k 0.982 + -log_k 0.982 -delta_h 5.56 kcal - -analytic -3.0938 0.013669 + -analytic -3.0938 0.013669 Ba+2 + SO4-2 = BaSO4 - -log_k 2.7 + -log_k 2.7 Sr+2 + H2O = SrOH+ + H+ - -log_k -13.29 - -gamma 5.0 0 + -log_k -13.29 + -gamma 5.0 0 Sr+2 + CO3-2 + H+ = SrHCO3+ - -log_k 11.509 - -delta_h 2.489 kcal - -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 - -gamma 5.4 0 + -log_k 11.509 + -delta_h 2.489 kcal + -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 Sr+2 + CO3-2 = SrCO3 - -log_k 2.81 - -delta_h 5.22 kcal - -analytic -1.019 0.012826 - -Vm -.1787 -8.2177 8.9799 -2.4393 -.0300 # supcrt + -log_k 2.81 + -delta_h 5.22 kcal + -analytic -1.019 0.012826 + -Vm -.1787 -8.2177 8.9799 -2.4393 -.0300 # supcrt Sr+2 + SO4-2 = SrSO4 - -log_k 2.29 - -delta_h 2.08 kcal - -Vm 6.7910 -.9666 6.1300 -2.7390 -.0010 # celestite solubility + -log_k 2.29 + -delta_h 2.08 kcal + -Vm 6.7910 -.9666 6.1300 -2.7390 -.0010 # celestite solubility Li+ + SO4-2 = LiSO4- - -log_k 0.64 - -gamma 5.0 0 + -log_k 0.64 + -gamma 5.0 0 Cu+2 + e- = Cu+ - -log_k 2.72 - -delta_h 1.65 kcal - -gamma 2.5 0 + -log_k 2.72 + -delta_h 1.65 kcal + -gamma 2.5 0 Cu+ + 2Cl- = CuCl2- - -log_k 5.50 + -log_k 5.50 -delta_h -0.42 kcal -gamma 4.0 0 Cu+ + 3Cl- = CuCl3-2 - -log_k 5.70 + -log_k 5.70 -delta_h 0.26 kcal - -gamma 5.0 0.0 -Cu+2 + CO3-2 = CuCO3 - -log_k 6.73 -Cu+2 + 2CO3-2 = Cu(CO3)2-2 - -log_k 9.83 + -gamma 5.0 0.0 +Cu+2 + CO3-2 = CuCO3 + -log_k 6.73 +Cu+2 + 2CO3-2 = Cu(CO3)2-2 + -log_k 9.83 Cu+2 + HCO3- = CuHCO3+ - -log_k 2.7 -Cu+2 + Cl- = CuCl+ - -log_k 0.43 + -log_k 2.7 +Cu+2 + Cl- = CuCl+ + -log_k 0.43 -delta_h 8.65 kcal -gamma 4.0 0 - -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 -Cu+2 + 2Cl- = CuCl2 - -log_k 0.16 + -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 +Cu+2 + 2Cl- = CuCl2 + -log_k 0.16 -delta_h 10.56 kcal - -Vm 26.8 0 -136 + -Vm 26.8 0 -136 Cu+2 + 3Cl- = CuCl3- - -log_k -2.29 + -log_k -2.29 -delta_h 13.69 kcal -gamma 4.0 0 Cu+2 + 4Cl- = CuCl4-2 - -log_k -4.59 + -log_k -4.59 -delta_h 17.78 kcal -gamma 5.0 0 -Cu+2 + F- = CuF+ - -log_k 1.26 +Cu+2 + F- = CuF+ + -log_k 1.26 -delta_h 1.62 kcal Cu+2 + H2O = CuOH+ + H+ - -log_k -8.0 - -gamma 4.0 0 + -log_k -8.0 + -gamma 4.0 0 Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ - -log_k -13.68 + -log_k -13.68 Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ - -log_k -26.9 + -log_k -26.9 Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ - -log_k -39.6 -2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ + -log_k -39.6 +2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ -log_k -10.359 -delta_h 17.539 kcal -analytical 2.497 0.0 -3833.0 Cu+2 + SO4-2 = CuSO4 - -log_k 2.31 - -delta_h 1.220 kcal - -Vm 5.21 0 -14.6 + -log_k 2.31 + -delta_h 1.220 kcal + -Vm 5.21 0 -14.6 Cu+2 + 3HS- = Cu(HS)3- -log_k 25.9 Zn+2 + H2O = ZnOH+ + H+ - -log_k -8.96 + -log_k -8.96 -delta_h 13.4 kcal Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ - -log_k -16.9 + -log_k -16.9 Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ - -log_k -28.4 + -log_k -28.4 Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ - -log_k -41.2 + -log_k -41.2 Zn+2 + Cl- = ZnCl+ - -log_k 0.43 + -log_k 0.43 -delta_h 7.79 kcal -gamma 4.0 0 - -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 + -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 Zn+2 + 2 Cl- = ZnCl2 - -log_k 0.45 + -log_k 0.45 -delta_h 8.5 kcal - -Vm -10.1 4.57 241 -2.97 -1e-3 + -Vm -10.1 4.57 241 -2.97 -1e-3 Zn+2 + 3Cl- = ZnCl3- - -log_k 0.5 + -log_k 0.5 -delta_h 9.56 kcal -gamma 4.0 0 - -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 + -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 Zn+2 + 4Cl- = ZnCl4-2 - -log_k 0.2 + -log_k 0.2 -delta_h 10.96 kcal -gamma 5.0 0 - -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 -Zn+2 + H2O + Cl- = ZnOHCl + H+ - -log_k -7.48 + -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 +Zn+2 + H2O + Cl- = ZnOHCl + H+ + -log_k -7.48 Zn+2 + 2HS- = Zn(HS)2 -log_k 14.94 Zn+2 + 3HS- = Zn(HS)3- - -log_k 16.1 + -log_k 16.1 Zn+2 + CO3-2 = ZnCO3 - -log_k 5.3 + -log_k 5.3 Zn+2 + 2CO3-2 = Zn(CO3)2-2 - -log_k 9.63 + -log_k 9.63 Zn+2 + HCO3- = ZnHCO3+ - -log_k 2.1 + -log_k 2.1 Zn+2 + SO4-2 = ZnSO4 - -log_k 2.37 + -log_k 2.37 -delta_h 1.36 kcal - -Vm 2.51 0 18.8 + -Vm 2.51 0 18.8 Zn+2 + 2SO4-2 = Zn(SO4)2-2 - -log_k 3.28 - -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 -Zn+2 + Br- = ZnBr+ + -log_k 3.28 + -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 +Zn+2 + Br- = ZnBr+ -log_k -0.58 Zn+2 + 2Br- = ZnBr2 - -log_k -0.98 -Zn+2 + F- = ZnF+ + -log_k -0.98 +Zn+2 + F- = ZnF+ -log_k 1.15 -delta_h 2.22 kcal Cd+2 + H2O = CdOH+ + H+ - -log_k -10.08 + -log_k -10.08 -delta_h 13.1 kcal Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ - -log_k -20.35 + -log_k -20.35 Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ - -log_k -33.3 + -log_k -33.3 Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ - -log_k -47.35 -2Cd+2 + H2O = Cd2OH+3 + H+ + -log_k -47.35 +2Cd+2 + H2O = Cd2OH+3 + H+ -log_k -9.39 -delta_h 10.9 kcal -Cd+2 + H2O + Cl- = CdOHCl + H+ +Cd+2 + H2O + Cl- = CdOHCl + H+ -log_k -7.404 -delta_h 4.355 kcal Cd+2 + NO3- = CdNO3+ -log_k 0.4 -delta_h -5.2 kcal - -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 + -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 Cd+2 + Cl- = CdCl+ - -log_k 1.98 + -log_k 1.98 -delta_h 0.59 kcal - -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 + -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 Cd+2 + 2 Cl- = CdCl2 - -log_k 2.6 + -log_k 2.6 -delta_h 1.24 kcal - -Vm 5.53 + -Vm 5.53 Cd+2 + 3 Cl- = CdCl3- - -log_k 2.4 + -log_k 2.4 -delta_h 3.9 kcal - -Vm 4.6 0 83.9 0 0 0 0 0 0 1 + -Vm 4.6 0 83.9 0 0 0 0 0 0 1 Cd+2 + CO3-2 = CdCO3 - -log_k 2.9 + -log_k 2.9 Cd+2 + 2CO3-2 = Cd(CO3)2-2 - -log_k 6.4 + -log_k 6.4 Cd+2 + HCO3- = CdHCO3+ - -log_k 1.5 + -log_k 1.5 Cd+2 + SO4-2 = CdSO4 - -log_k 2.46 + -log_k 2.46 -delta_h 1.08 kcal - -Vm 10.4 0 57.9 + -Vm 10.4 0 57.9 Cd+2 + 2SO4-2 = Cd(SO4)2-2 - -log_k 3.5 - -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 -Cd+2 + Br- = CdBr+ + -log_k 3.5 + -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 +Cd+2 + Br- = CdBr+ -log_k 2.17 -delta_h -0.81 kcal Cd+2 + 2Br- = CdBr2 -log_k 2.9 -Cd+2 + F- = CdF+ +Cd+2 + F- = CdF+ -log_k 1.1 Cd+2 + 2F- = CdF2 - -log_k 1.5 -Cd+2 + HS- = CdHS+ + -log_k 1.5 +Cd+2 + HS- = CdHS+ -log_k 10.17 -Cd+2 + 2HS- = Cd(HS)2 +Cd+2 + 2HS- = Cd(HS)2 -log_k 16.53 Cd+2 + 3HS- = Cd(HS)3- -log_k 18.71 Cd+2 + 4HS- = Cd(HS)4-2 - -log_k 20.9 + -log_k 20.9 Pb+2 + H2O = PbOH+ + H+ - -log_k -7.71 + -log_k -7.71 Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ - -log_k -17.12 + -log_k -17.12 Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ - -log_k -28.06 + -log_k -28.06 Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ - -log_k -39.7 + -log_k -39.7 2 Pb+2 + H2O = Pb2OH+3 + H+ - -log_k -6.36 + -log_k -6.36 Pb+2 + Cl- = PbCl+ - -log_k 1.6 + -log_k 1.6 -delta_h 4.38 kcal - -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt + -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt Pb+2 + 2 Cl- = PbCl2 - -log_k 1.8 + -log_k 1.8 -delta_h 1.08 kcal - -Vm 6.5402 8.1879 2.5318 -3.1175 -.0300 # supcrt + -Vm 6.5402 8.1879 2.5318 -3.1175 -.0300 # supcrt Pb+2 + 3 Cl- = PbCl3- - -log_k 1.7 + -log_k 1.7 -delta_h 2.17 kcal - -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt + -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt Pb+2 + 4 Cl- = PbCl4-2 - -log_k 1.38 + -log_k 1.38 -delta_h 3.53 kcal - -Vm 16.4150 32.2997 -6.9452 -4.1143 2.3118 # supcrt + -Vm 16.4150 32.2997 -6.9452 -4.1143 2.3118 # supcrt Pb+2 + CO3-2 = PbCO3 - -log_k 7.24 + -log_k 7.24 Pb+2 + 2 CO3-2 = Pb(CO3)2-2 - -log_k 10.64 + -log_k 10.64 Pb+2 + HCO3- = PbHCO3+ - -log_k 2.9 + -log_k 2.9 Pb+2 + SO4-2 = PbSO4 - -log_k 2.75 + -log_k 2.75 Pb+2 + 2 SO4-2 = Pb(SO4)2-2 - -log_k 3.47 -Pb+2 + 2HS- = Pb(HS)2 + -log_k 3.47 +Pb+2 + 2HS- = Pb(HS)2 -log_k 15.27 Pb+2 + 3HS- = Pb(HS)3- -log_k 16.57 -3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ +3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ -log_k -23.88 - -delta_h 26.5 kcal + -delta_h 26.5 kcal Pb+2 + NO3- = PbNO3+ - -log_k 1.17 -Pb+2 + Br- = PbBr+ + -log_k 1.17 +Pb+2 + Br- = PbBr+ -log_k 1.77 -delta_h 2.88 kcal -Pb+2 + 2Br- = PbBr2 - -log_k 1.44 -Pb+2 + F- = PbF+ +Pb+2 + 2Br- = PbBr2 + -log_k 1.44 +Pb+2 + F- = PbF+ -log_k 1.25 Pb+2 + 2F- = PbF2 -log_k 2.56 Pb+2 + 3F- = PbF3- -log_k 3.42 Pb+2 + 4F- = PbF4-2 - -log_k 3.1 + -log_k 3.1 PHASES Calcite CaCO3 = CO3-2 + Ca+2 - -log_k -8.48 + -log_k -8.48 -delta_h -2.297 kcal -analytic 17.118 -0.046528 -3496 # 0 - 250C, Ellis, 1959, Plummer and Busenberg, 1982 -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3) Aragonite CaCO3 = CO3-2 + Ca+2 - -log_k -8.336 + -log_k -8.336 -delta_h -2.589 kcal - -analytic -171.9773 -0.077993 2903.293 71.595 + -analytic -171.9773 -0.077993 2903.293 71.595 -Vm 34.04 Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 - -log_k -17.09 + -log_k -17.09 -delta_h -9.436 kcal -analytic 31.283 -0.0898 -6438 # 25C: Hemingway and Robie, 1994; 50175C: Bnzeth et al., 2018, GCA 224, 262-275. -Vm 64.5 Siderite FeCO3 = Fe+2 + CO3-2 - -log_k -10.89 + -log_k -10.89 -delta_h -2.480 kcal -Vm 29.2 Rhodochrosite MnCO3 = Mn+2 + CO3-2 - -log_k -11.13 + -log_k -11.13 -delta_h -1.430 kcal -Vm 31.1 Strontianite SrCO3 = Sr+2 + CO3-2 - -log_k -9.271 + -log_k -9.271 -delta_h -0.400 kcal - -analytic 155.0305 0.0 -7239.594 -56.58638 + -analytic 155.0305 0.0 -7239.594 -56.58638 -Vm 39.69 Witherite BaCO3 = Ba+2 + CO3-2 - -log_k -8.562 + -log_k -8.562 -delta_h 0.703 kcal - -analytic 607.642 0.121098 -20011.25 -236.4948 + -analytic 607.642 0.121098 -20011.25 -236.4948 -Vm 46 Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O - -log_k -4.58 + -log_k -4.58 -delta_h -0.109 kcal - -analytic 68.2401 0.0 -3221.51 -25.0627 + -analytic 68.2401 0.0 -3221.51 -25.0627 -analytical_expression 93.7 5.99E-03 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) Anhydrite CaSO4 = Ca+2 + SO4-2 - -log_k -4.36 + -log_k -4.36 -delta_h -1.710 kcal -analytic 84.90 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323. -Vm 46.1 # 136.14 / 2.95 Celestite SrSO4 = Sr+2 + SO4-2 - -log_k -6.63 + -log_k -6.63 -delta_h -4.037 kcal -# -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 +# -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464. -Vm 46.4 Barite BaSO4 = Ba+2 + SO4-2 - -log_k -9.97 + -log_k -9.97 -delta_h 6.35 kcal -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 -Vm 52.9 @@ -1032,176 +1034,176 @@ Thenardite -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 -Vm 52.9 Epsomite - MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O - log_k -1.74; -delta_h 10.57 kJ - -analytical_expression -3.59 6.21e-3 - Vm 147 + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -1.74; -delta_h 10.57 kJ + -analytical_expression -3.59 6.21e-3 + Vm 147 Hexahydrite - MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O - log_k -1.57; -delta_h 2.35 kJ - -analytical_expression -1.978 1.38e-3 - Vm 132 + MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O + log_k -1.57; -delta_h 2.35 kJ + -analytical_expression -1.978 1.38e-3 + Vm 132 Kieserite - MgSO4:H2O = Mg+2 + SO4-2 + H2O - log_k -1.16; -delta_h 9.22 kJ - -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 - Vm 53.8 + MgSO4:H2O = Mg+2 + SO4-2 + H2O + log_k -1.16; -delta_h 9.22 kJ + -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 + Vm 53.8 Hydroxyapatite Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 - -log_k -3.421 + -log_k -3.421 -delta_h -36.155 kcal -Vm 128.9 Fluorite CaF2 = Ca+2 + 2 F- - -log_k -10.6 + -log_k -10.6 -delta_h 4.69 kcal - -analytic 66.348 0.0 -4298.2 -25.271 + -analytic 66.348 0.0 -4298.2 -25.271 -Vm 15.7 SiO2(a) SiO2 + 2 H2O = H4SiO4 - -log_k -2.71 + -log_k -2.71 -delta_h 3.340 kcal - -analytic -0.26 0.0 -731.0 + -analytic -0.26 0.0 -731.0 Chalcedony SiO2 + 2 H2O = H4SiO4 - -log_k -3.55 + -log_k -3.55 -delta_h 4.720 kcal - -analytic -0.09 0.0 -1032.0 + -analytic -0.09 0.0 -1032.0 -Vm 23.1 Quartz SiO2 + 2 H2O = H4SiO4 - -log_k -3.98 + -log_k -3.98 -delta_h 5.990 kcal - -analytic 0.41 0.0 -1309.0 + -analytic 0.41 0.0 -1309.0 -Vm 22.67 Gibbsite Al(OH)3 + 3 H+ = Al+3 + 3 H2O - -log_k 8.11 + -log_k 8.11 -delta_h -22.800 kcal -Vm 32.22 Al(OH)3(a) Al(OH)3 + 3 H+ = Al+3 + 3 H2O - -log_k 10.8 + -log_k 10.8 -delta_h -26.500 kcal Kaolinite Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 - -log_k 7.435 + -log_k 7.435 -delta_h -35.300 kcal -Vm 99.35 Albite NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 - -log_k -18.002 + -log_k -18.002 -delta_h 25.896 kcal -Vm 101.31 Anorthite CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 - -log_k -19.714 + -log_k -19.714 -delta_h 11.580 kcal -Vm 105.05 K-feldspar KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 - -log_k -20.573 - -delta_h 30.820 kcal + -log_k -20.573 + -delta_h 30.820 kcal -Vm 108.15 K-mica KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 - -log_k 12.703 + -log_k 12.703 -delta_h -59.376 kcal Chlorite(14A) Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O - -log_k 68.38 + -log_k 68.38 -delta_h -151.494 kcal Ca-Montmorillonite Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ - -log_k -45.027 - -delta_h 58.373 kcal + -log_k -45.027 + -delta_h 58.373 kcal -Vm 156.16 Talc Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 - -log_k 21.399 + -log_k 21.399 -delta_h -46.352 kcal -Vm 68.34 Illite K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+ - -log_k -40.267 + -log_k -40.267 -delta_h 54.684 kcal -Vm 141.48 Chrysotile Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 - -log_k 32.2 + -log_k 32.2 -delta_h -46.800 kcal - -analytic 13.248 0.0 10217.1 -6.1894 - -Vm 106.5808 # 277.11/2.60 + -analytic 13.248 0.0 10217.1 -6.1894 + -Vm 106.5808 # 277.11/2.60 Sepiolite Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 - -log_k 15.760 + -log_k 15.760 -delta_h -10.700 kcal -Vm 143.765 Sepiolite(d) Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 - -log_k 18.66 + -log_k 18.66 Hematite Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O - -log_k -4.008 + -log_k -4.008 -delta_h -30.845 kcal -Vm 30.39 Goethite FeOOH + 3 H+ = Fe+3 + 2 H2O - -log_k -1.0 - -delta_h -14.48 kcal + -log_k -1.0 + -delta_h -14.48 kcal -Vm 20.84 Fe(OH)3(a) Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O - -log_k 4.891 + -log_k 4.891 Pyrite FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- - -log_k -18.479 + -log_k -18.479 -delta_h 11.300 kcal -Vm 23.48 FeS(ppt) FeS + H+ = Fe+2 + HS- - -log_k -3.915 + -log_k -3.915 Mackinawite FeS + H+ = Fe+2 + HS- - -log_k -4.648 + -log_k -4.648 -Vm 20.45 Sulfur S + 2H+ + 2e- = H2S - -log_k 4.882 + -log_k 4.882 -delta_h -9.5 kcal Vivianite Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O - -log_k -36.0 -Pyrolusite # H2O added for surface calc's + -log_k -36.0 +Pyrolusite # H2O added for surface calc's MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O - -log_k 41.38 + -log_k 41.38 -delta_h -65.110 kcal Hausmannite Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O - -log_k 61.03 + -log_k 61.03 -delta_h -100.640 kcal Manganite MnOOH + 3 H+ + e- = Mn+2 + 2 H2O - -log_k 25.34 + -log_k 25.34 Pyrochroite Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O - -log_k 15.2 + -log_k 15.2 Halite NaCl = Cl- + Na+ - log_k 1.570 + log_k 1.570 -delta_h 1.37 #-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915. -Vm 27.1 Sylvite KCl = K+ + Cl- - log_k 0.900 + log_k 0.900 -delta_h 8.5 - # -analytic 3.984 0.0 -919.55 + # -analytic 3.984 0.0 -919.55 Vm 37.5 # Gases... CO2(g) CO2 = CO2 - -log_k -1.468 + -log_k -1.468 -delta_h -4.776 kcal -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 -T_c 304.2 # critical T, K @@ -1219,18 +1221,18 @@ O2(g) -T_c 154.6; -P_c 49.80; -Omega 0.021 H2(g) H2 = H2 - -log_k -3.1050 + -log_k -3.1050 -delta_h -4.184 kJ -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 -T_c 33.2; -P_c 12.80; -Omega -0.225 N2(g) N2 = N2 - -log_k -3.1864 + -log_k -3.1864 -analytic -58.453 1.818e-3 3199 17.909 -27460 -T_c 126.2; -P_c 33.50; -Omega 0.039 H2S(g) H2S = H+ + HS- - log_k -7.93 + log_k -7.93 -delta_h 9.1 -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 -T_c 373.2; -P_c 88.20; -Omega 0.1 @@ -1243,7 +1245,7 @@ CH4(g) # Amm = Amm NH3(g) NH3 = NH3 - -log_k 1.7966 + -log_k 1.7966 -analytic -18.758 3.3670e-4 2.5113e3 4.8619 39.192 -T_c 405.6; -P_c 111.3; -Omega 0.25 # redox-uncoupled gases @@ -1266,152 +1268,152 @@ Mtg(g) -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 H2Sg(g) H2Sg = H+ + HSg- - log_k -7.93 + log_k -7.93 -delta_h 9.1 -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 -T_c 373.2 ; -P_c 88.20 ; -Omega 0.1 Melanterite FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 - -log_k -2.209 - -delta_h 4.910 kcal - -analytic 1.447 -0.004153 0.0 0.0 -214949.0 + -log_k -2.209 + -delta_h 4.910 kcal + -analytic 1.447 -0.004153 0.0 0.0 -214949.0 Alunite KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6H2O - -log_k -1.4 + -log_k -1.4 -delta_h -50.250 kcal Jarosite-K KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2 - -log_k -9.21 + -log_k -9.21 -delta_h -31.280 kcal Zn(OH)2(e) Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O - -log_k 11.5 + -log_k 11.5 Smithsonite ZnCO3 = Zn+2 + CO3-2 - -log_k -10.0 - -delta_h -4.36 kcal + -log_k -10.0 + -delta_h -4.36 kcal Sphalerite ZnS + H+ = Zn+2 + HS- - -log_k -11.618 - -delta_h 8.250 kcal -Willemite 289 + -log_k -11.618 + -delta_h 8.250 kcal +Willemite 289 Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4 - -log_k 15.33 - -delta_h -33.37 kcal + -log_k 15.33 + -delta_h -33.37 kcal Cd(OH)2 Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O - -log_k 13.65 -Otavite 315 + -log_k 13.65 +Otavite 315 CdCO3 = Cd+2 + CO3-2 - -log_k -12.1 - -delta_h -0.019 kcal -CdSiO3 328 + -log_k -12.1 + -delta_h -0.019 kcal +CdSiO3 328 CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4 - -log_k 9.06 - -delta_h -16.63 kcal -CdSO4 329 + -log_k 9.06 + -delta_h -16.63 kcal +CdSO4 329 CdSO4 = Cd+2 + SO4-2 - -log_k -0.1 - -delta_h -14.74 kcal -Cerussite 365 + -log_k -0.1 + -delta_h -14.74 kcal +Cerussite 365 PbCO3 = Pb+2 + CO3-2 - -log_k -13.13 - -delta_h 4.86 kcal -Anglesite 384 + -log_k -13.13 + -delta_h 4.86 kcal +Anglesite 384 PbSO4 = Pb+2 + SO4-2 - -log_k -7.79 - -delta_h 2.15 kcal -Pb(OH)2 389 + -log_k -7.79 + -delta_h 2.15 kcal +Pb(OH)2 389 Pb(OH)2 + 2H+ = Pb+2 + 2H2O - -log_k 8.15 - -delta_h -13.99 kcal + -log_k 8.15 + -delta_h -13.99 kcal EXCHANGE_MASTER_SPECIES - X X- + X X- EXCHANGE_SPECIES X- = X- - -log_k 0.0 + -log_k 0.0 Na+ + X- = NaX - -log_k 0.0 - -gamma 4.08 0.082 + -log_k 0.0 + -gamma 4.08 0.082 K+ + X- = KX - -log_k 0.7 - -gamma 3.5 0.015 - -delta_h -4.3 # Jardine & Sparks, 1984 + -log_k 0.7 + -gamma 3.5 0.015 + -delta_h -4.3 # Jardine & Sparks, 1984 Li+ + X- = LiX - -log_k -0.08 - -gamma 6.0 0 - -delta_h 1.4 # Merriam & Thomas, 1956 + -log_k -0.08 + -gamma 6.0 0 + -delta_h 1.4 # Merriam & Thomas, 1956 # !!!!! -# H+ + X- = HX -# -log_k 1.0 -# -gamma 9.0 0 +# H+ + X- = HX +# -log_k 1.0 +# -gamma 9.0 0 # AmmH+ + X- = AmmHX NH4+ + X- = NH4X - -log_k 0.6 - -gamma 2.5 0 - -delta_h -2.4 # Laudelout et al., 1968 + -log_k 0.6 + -gamma 2.5 0 + -delta_h -2.4 # Laudelout et al., 1968 Ca+2 + 2X- = CaX2 - -log_k 0.8 - -gamma 5.0 0.165 + -log_k 0.8 + -gamma 5.0 0.165 -delta_h 7.2 # Van Bladel & Gheyl, 1980 Mg+2 + 2X- = MgX2 - -log_k 0.6 - -gamma 5.5 0.2 - -delta_h 7.4 # Laudelout et al., 1968 + -log_k 0.6 + -gamma 5.5 0.2 + -delta_h 7.4 # Laudelout et al., 1968 Sr+2 + 2X- = SrX2 - -log_k 0.91 - -gamma 5.26 0.121 - -delta_h 5.5 # Laudelout et al., 1968 + -log_k 0.91 + -gamma 5.26 0.121 + -delta_h 5.5 # Laudelout et al., 1968 Ba+2 + 2X- = BaX2 - -log_k 0.91 - -gamma 4.0 0.153 - -delta_h 4.5 # Laudelout et al., 1968 + -log_k 0.91 + -gamma 4.0 0.153 + -delta_h 4.5 # Laudelout et al., 1968 Mn+2 + 2X- = MnX2 - -log_k 0.52 - -gamma 6.0 0 + -log_k 0.52 + -gamma 6.0 0 Fe+2 + 2X- = FeX2 - -log_k 0.44 - -gamma 6.0 0 + -log_k 0.44 + -gamma 6.0 0 Cu+2 + 2X- = CuX2 - -log_k 0.6 - -gamma 6.0 0 + -log_k 0.6 + -gamma 6.0 0 Zn+2 + 2X- = ZnX2 - -log_k 0.8 - -gamma 5.0 0 + -log_k 0.8 + -gamma 5.0 0 Cd+2 + 2X- = CdX2 - -log_k 0.8 - -gamma 0.0 0 + -log_k 0.8 + -gamma 0.0 0 Pb+2 + 2X- = PbX2 - -log_k 1.05 - -gamma 0.0 0 + -log_k 1.05 + -gamma 0.0 0 Al+3 + 3X- = AlX3 - -log_k 0.41 - -gamma 9.0 0 + -log_k 0.41 + -gamma 9.0 0 AlOH+2 + 2X- = AlOHX2 - -log_k 0.89 - -gamma 0.0 0 + -log_k 0.89 + -gamma 0.0 0 SURFACE_MASTER_SPECIES - Hfo_s Hfo_sOH - Hfo_w Hfo_wOH + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH SURFACE_SPECIES # All surface data from # Dzombak and Morel, 1990 @@ -1422,24 +1424,24 @@ SURFACE_SPECIES # strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH - -log_k 0 + -log_k 0 - Hfo_sOH + H+ = Hfo_sOH2+ - -log_k 7.29 # = pKa1,int + Hfo_sOH + H+ = Hfo_sOH2+ + -log_k 7.29 # = pKa1,int Hfo_sOH = Hfo_sO- + H+ - -log_k -8.93 # = -pKa2,int + -log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH - -log_k 0 + -log_k 0 - Hfo_wOH + H+ = Hfo_wOH2+ - -log_k 7.29 # = pKa1,int + Hfo_wOH + H+ = Hfo_wOH2+ + -log_k 7.29 # = pKa1,int Hfo_wOH = Hfo_wO- + H+ - -log_k -8.93 # = -pKa2,int + -log_k -8.93 # = -pKa2,int ############################################### # CATIONS # ############################################### @@ -1448,13 +1450,13 @@ SURFACE_SPECIES # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - -log_k 4.97 + -log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ -log_k -5.85 # Strontium Hfo_sOH + Sr+2 = Hfo_sOHSr+2 - -log_k 5.01 + -log_k 5.01 Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ -log_k -6.58 @@ -1463,37 +1465,37 @@ SURFACE_SPECIES -log_k -17.6 # Barium Hfo_sOH + Ba+2 = Hfo_sOHBa+2 - -log_k 5.46 + -log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - -log_k -7.2 # table 10.5 + -log_k -7.2 # table 10.5 # # Cations from table 10.2 # # Cadmium Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ - -log_k 0.47 + -log_k 0.47 Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ - -log_k -2.91 + -log_k -2.91 # Zinc Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ - -log_k 0.99 + -log_k 0.99 Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ - -log_k -1.99 + -log_k -1.99 # Copper Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ - -log_k 2.89 + -log_k 2.89 Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ - -log_k 0.6 # table 10.5 + -log_k 0.6 # table 10.5 # Lead Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ - -log_k 4.65 + -log_k 4.65 Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ - -log_k 0.3 # table 10.5 + -log_k 0.3 # table 10.5 # # Derived constants table 10.5 # @@ -1502,13 +1504,13 @@ SURFACE_SPECIES -log_k -4.6 # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ - -log_k -0.4 # table 10.5 + -log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ -log_k -3.5 # table 10.5 # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096 Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ - -log_k -0.95 + -log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ -log_k -2.98 @@ -1523,49 +1525,49 @@ SURFACE_SPECIES # # Phosphate Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O - -log_k 31.29 + -log_k 31.29 Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O - -log_k 25.39 + -log_k 25.39 Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O - -log_k 17.72 + -log_k 17.72 # # Anions from table 10.7 # # Borate Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O - -log_k 0.62 + -log_k 0.62 # # Anions from table 10.8 # # Sulfate Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O - -log_k 7.78 + -log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - -log_k 0.79 + -log_k 0.79 # # Derived constants table 10.10 # Hfo_wOH + F- + H+ = Hfo_wF + H2O - -log_k 8.7 + -log_k 8.7 Hfo_wOH + F- = Hfo_wOHF- - -log_k 1.6 + -log_k 1.6 # # Carbonate: Van Geen et al., 1994 reoptimized for D&M model # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O - -log_k 12.56 + -log_k 12.56 Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O - -log_k 20.62 + -log_k 20.62 # # Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422. # - Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 - Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 + Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 + Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69 RATES @@ -1576,12 +1578,12 @@ RATES # ####### # Example of quartz kinetic rates block: -# KINETICS -# Quartz -# -m0 158.8 # 90 % Qu -# -parms 0.146 1.5 -# -step 3.1536e8 in 10 -# -tol 1e-12 +# KINETICS +# Quartz +# -m0 158.8 # 90 % Qu +# -parms 0.146 1.5 +# -step 3.1536e8 in 10 +# -tol 1e-12 Quartz -start @@ -1594,7 +1596,7 @@ Quartz 10 dif_temp = 1/TK - 1/298 20 pk_w = 13.7 + 4700.4 * dif_temp 40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) -# Integrate... +# Integrate... 50 SAVE moles * TIME -end @@ -1616,25 +1618,25 @@ Quartz # GFW Kspar 0.278 kg/mol # # Moles of Kspar per liter pore space calculation: -# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space -# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space -# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space +# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space # # Specific area calculation: -# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere -# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere -# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere -# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere +# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere # Specific area of K-feldspar in sphere 3.14e-8/4.90e-9 = 6.41 m^2/mol Kspar # # # Example of KINETICS data block for K-feldspar rate: -# KINETICS 1 -# K-feldspar -# -m0 2.18 # 10% Kspar, 0.1 mm cubes -# -m 2.18 # Moles per L pore space -# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate -# -time 1.5 year in 40 +# KINETICS 1 +# K-feldspar +# -m0 2.18 # 10% Kspar, 0.1 mm cubes +# -m 2.18 # Moles per L pore space +# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 K-feldspar -start @@ -1653,9 +1655,9 @@ K-feldspar 80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp +140 pk_H = pk_H + e_H * dif_temp 150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis 170 pk_H2O = pk_H2O + e_H2O * dif_temp @@ -1666,9 +1668,9 @@ K-feldspar 220 REM rate by CO2 230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) 280 moles = rate * TIME 290 SAVE moles -end @@ -1688,28 +1690,28 @@ K-feldspar # p. 162-163 and 395-399. # # Example of KINETICS data block for Albite rate: -# KINETICS 1 -# Albite -# -m0 0.46 # 2% Albite, 0.1 mm cubes -# -m 0.46 # Moles per L pore space -# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate -# -time 1.5 year in 40 +# KINETICS 1 +# Albite +# -m0 0.46 # 2% Albite, 0.1 mm cubes +# -m 0.46 # Moles per L pore space +# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 # # Assume soil is 2% Albite by mass in 1 mm spheres (radius 0.05 mm) # Assume density of rock and Albite is 2600 kg/m^3 = 2.6 kg/L # GFW Albite 0.262 kg/mol # # Moles of Albite per liter pore space calculation: -# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space -# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space -# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space +# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space # # Specific area calculation: -# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere -# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere -# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere -# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere -# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere +# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite Albite -start @@ -1728,9 +1730,9 @@ Albite 80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp +140 pk_H = pk_H + e_H * dif_temp 150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis 170 pk_H2O = pk_H2O + e_H2O * dif_temp @@ -1741,9 +1743,9 @@ Albite 220 REM rate by CO2 230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("Albite")) +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("Albite")) 280 moles = rate * TIME 290 SAVE moles -end @@ -1757,7 +1759,7 @@ Albite # Calcite # -tol 1e-8 # -m0 3.e-3 -# -m 3.e-3 +# -m 3.e-3 # -parms 1.67e5 0.6 # cm^2/mol calcite, exp factor # -time 1 day @@ -1788,20 +1790,20 @@ Calcite # rate equation is mol m^-2 s^-1. # # Example of KINETICS data block for pyrite rate: -# KINETICS 1 -# Pyrite -# -tol 1e-8 -# -m0 5.e-4 -# -m 5.e-4 -# -parms 0.3 0.67 .5 -0.11 -# -time 1 day in 10 +# KINETICS 1 +# Pyrite +# -tol 1e-8 +# -m0 5.e-4 +# -m 5.e-4 +# -parms 0.3 0.67 .5 -0.11 +# -time 1 day in 10 Pyrite -start -1 REM Williamson and Rimstidt, 1994 -2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) -3 REM PARM(2) = exp for (M/M0) -4 REM PARM(3) = exp for O2 -5 REM PARM(4) = exp for H+ +1 REM Williamson and Rimstidt, 1994 +2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) +3 REM PARM(2) = exp for (M/M0) +4 REM PARM(3) = exp for O2 +5 REM PARM(4) = exp for H+ 10 REM Dissolution in presence of DO 20 if (M <= 0) THEN GOTO 200 @@ -1817,16 +1819,16 @@ Pyrite ########## # # Example of KINETICS data block for SOC (sediment organic carbon): -# KINETICS 1 -# Organic_C -# -formula C -# -tol 1e-8 -# -m 5e-3 # SOC in mol -# -time 30 year in 15 +# KINETICS 1 +# Organic_C +# -formula C +# -tol 1e-8 +# -m 5e-3 # SOC in mol +# -time 30 year in 15 Organic_C -start -1 REM Additive Monod kinetics for SOC (sediment organic carbon) -2 REM Electron acceptors: O2, NO3, and SO4 +1 REM Additive Monod kinetics for SOC (sediment organic carbon) +2 REM Electron acceptors: O2, NO3, and SO4 10 if (M <= 0) THEN GOTO 200 20 mO2 = MOL("O2") @@ -1834,7 +1836,7 @@ Organic_C 40 mSO4 = TOT("S(6)") 50 k_O2 = 1.57e-9 # 1/sec 60 k_NO3 = 1.67e-11 # 1/sec -70 k_SO4 = 1.e-13 # 1/sec +70 k_SO4 = 1.e-13 # 1/sec 80 rate = k_O2 * mO2/(2.94e-4 + mO2) 90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) 100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) @@ -1850,12 +1852,12 @@ Organic_C # Rate equation given as mol L^-1 s^-1 # # Example of KINETICS data block for Pyrolusite -# KINETICS 1-12 -# Pyrolusite -# -tol 1.e-7 -# -m0 0.1 -# -m 0.1 -# -time 0.5 day in 10 +# KINETICS 1-12 +# Pyrolusite +# -tol 1.e-7 +# -m0 0.1 +# -m 0.1 +# -time 0.5 day in 10 Pyrolusite -start 10 if (M <= 0) THEN GOTO 200 @@ -1888,36 +1890,36 @@ END # H2O 0.49 0.19 0.19 0.49 # ============================================================================================= # The molar volumes of solids are entered with -# -Vm vm cm3/mol +# -Vm vm cm3/mol # vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted. # Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from # Deer, Howie and Zussman, The rock-forming minerals, Longman. -# -------------------- +# -------------------- # Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich- -# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with -# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 +# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with +# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 # The volume (cm3/mol) is # Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) + -# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) -# + z^2 / 2 * Av * f(I^0.5) -# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 +# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) +# + z^2 / 2 * Av * f(I^0.5) +# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 # Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899). # 41.84 transforms cal/bar/mol into cm3/mol. # pb is pressure in bar. # W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation, -# W is fitted on measured solution densities. +# W is fitted on measured solution densities. # z is charge of the solute species. # Av is the Debye-Hckel limiting slope (DH_AV in PHREEQC basic). # a0 is the ion-size parameter in the extended Debye-Hckel equation: -# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), -# a0 = -gamma x for cations, = 0 for anions. +# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), +# a0 = -gamma x for cations, = 0 for anions. # For details, consult ref. 1. # ============================================================================================= # The viscosity is calculated with a (modified) Jones-Dole equation: # viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i) # Parameters are for calculating the B and D terms: # -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 -# # b0 b1 b2 d1 d2 d3 tan +# # b0 b1 b2 d1 d2 d3 tan # z_i is absolute charge number, m_i is molality of i # B_i = b0 + b1 exp(-b2 * tc) # fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions @@ -1925,7 +1927,7 @@ END # n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 m_i)d^3 / (2 + fI), fI is an ionic strength term. # For details, consult ref. 4. # -# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967. +# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967. # ref. 2: Procedures from ref. 1 using data compiled by Lalibert, 2009, J. Chem. Eng. Data 54, 1725. # ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113. # ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp From d336cd6760372d79a1aac2537d80e2c68fbd3936 Mon Sep 17 00:00:00 2001 From: Scott R Charlton Date: Mon, 4 Mar 2024 18:42:52 -0700 Subject: [PATCH 121/384] =?UTF-8?q?fixed=20=E2=80=98nullptr=E2=80=99=20was?= =?UTF-8?q?=20not=20declared=20in=20this=20scope=20on=20ubuntu-16.04?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- phreeqcpp/common/Utils.cxx | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/phreeqcpp/common/Utils.cxx b/phreeqcpp/common/Utils.cxx index 0e8d461a..44f77b17 100644 --- a/phreeqcpp/common/Utils.cxx +++ b/phreeqcpp/common/Utils.cxx @@ -16,6 +16,10 @@ # define nullptr NULL #endif +#if __cplusplus < 201103L // Check if C++ standard is pre-C++11 +# define nullptr NULL +#endif + #if defined(PHREEQCI_GUI) #ifdef _DEBUG #define new DEBUG_NEW From 79518deebc2b5fb3990fbd0481ca264f36904179 Mon Sep 17 00:00:00 2001 From: Scott R Charlton Date: Mon, 4 Mar 2024 18:42:52 -0700 Subject: [PATCH 122/384] =?UTF-8?q?fixed=20=E2=80=98nullptr=E2=80=99=20was?= =?UTF-8?q?=20not=20declared=20in=20this=20scope=20on=20ubuntu-16.04?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- phreeqcpp/common/Utils.cxx | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/phreeqcpp/common/Utils.cxx b/phreeqcpp/common/Utils.cxx index 0e8d461a..44f77b17 100644 --- a/phreeqcpp/common/Utils.cxx +++ b/phreeqcpp/common/Utils.cxx @@ -16,6 +16,10 @@ # define nullptr NULL #endif +#if __cplusplus < 201103L // Check if C++ standard is pre-C++11 +# define nullptr NULL +#endif + #if defined(PHREEQCI_GUI) #ifdef _DEBUG #define new DEBUG_NEW From 2294b1ed915348c6baa2a44556796c539d6bb2bf Mon Sep 17 00:00:00 2001 From: Scott R Charlton Date: Mon, 4 Mar 2024 19:11:28 -0700 Subject: [PATCH 123/384] Try this to fix warning on Darwin --- phreeqcpp/common/Utils.cxx | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/phreeqcpp/common/Utils.cxx b/phreeqcpp/common/Utils.cxx index 44f77b17..6738fa9d 100644 --- a/phreeqcpp/common/Utils.cxx +++ b/phreeqcpp/common/Utils.cxx @@ -17,7 +17,9 @@ #endif #if __cplusplus < 201103L // Check if C++ standard is pre-C++11 -# define nullptr NULL +# ifndef nullptr +# define nullptr NULL +# endif #endif #if defined(PHREEQCI_GUI) From 64e51c1d13711fd636fc9df7532d21d3584b52aa Mon Sep 17 00:00:00 2001 From: Scott R Charlton Date: Mon, 4 Mar 2024 19:11:28 -0700 Subject: [PATCH 124/384] Try this to fix warning on Darwin --- phreeqcpp/common/Utils.cxx | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/phreeqcpp/common/Utils.cxx b/phreeqcpp/common/Utils.cxx index 44f77b17..6738fa9d 100644 --- a/phreeqcpp/common/Utils.cxx +++ b/phreeqcpp/common/Utils.cxx @@ -17,7 +17,9 @@ #endif #if __cplusplus < 201103L // Check if C++ standard is pre-C++11 -# define nullptr NULL +# ifndef nullptr +# define nullptr NULL +# endif #endif #if defined(PHREEQCI_GUI) From 0ebad0eedcbb952d1411042592b4081823abdbf5 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Tue, 5 Mar 2024 15:42:26 +0000 Subject: [PATCH 125/384] Squashed 'phreeqcpp/' changes from 9925ceb..87919a0 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit 87919a0 Merge commit 'b397d9d56c7985fddac5b7dbe8cd3c63152bf033' b397d9d Squashed 'common/' changes from 11183a1..6abe004 a25b00d Try this to fix warning on Darwin a2f6386 fixed ‘nullptr’ was not declared in this scope on ubuntu-16.04 git-subtree-dir: phreeqcpp git-subtree-split: 87919a001bdcde90d6559f597b06586d0d5015fd --- common/Utils.cxx | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/common/Utils.cxx b/common/Utils.cxx index 0e8d461a..6738fa9d 100644 --- a/common/Utils.cxx +++ b/common/Utils.cxx @@ -16,6 +16,12 @@ # define nullptr NULL #endif +#if __cplusplus < 201103L // Check if C++ standard is pre-C++11 +# ifndef nullptr +# define nullptr NULL +# endif +#endif + #if defined(PHREEQCI_GUI) #ifdef _DEBUG #define new DEBUG_NEW From 3318883ec15dc90e0a61c01f6c374293cfba14a5 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Fri, 15 Mar 2024 14:54:17 -0600 Subject: [PATCH 126/384] Tony's Mar 15, changes. --- Amm.dat | 332 +++++++++++++++++++++++++++++++++++++++++++------------- 1 file changed, 257 insertions(+), 75 deletions(-) diff --git a/Amm.dat b/Amm.dat index 4a118abd..23e7317b 100644 --- a/Amm.dat +++ b/Amm.dat @@ -1,4 +1,3 @@ -# with Falkenhage, a in ka from change in vm with T, P, I # PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: # diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. # Details are given at the end of this file. @@ -62,59 +61,58 @@ Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ - -gamma 9.0 0 + -gamma 9.0 0 -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 - -dw 9.31e-9 742 15.0 1 2.353 24.01 # The dw parameters are defined in ref. 3. + -dw 9.31e-9 838 16.315 0.809 2.376 24.01 # The dw parameters are defined in ref. 3. # Dw(25 C) dw_T a a2 visc a3 -# Dw(TK) = 9.31e-9 * exp(742 / TK - 742 / 298.15) * viscos_0_25 / viscos_0_tc * (viscos_0_tc / viscos)^2.353 +# Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc * (viscos_0_tc / viscos)^2.353 # a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024 -# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0) / 5.2)^a2 * mu^0.5 (a3 = 5.2 = default, can be changed) in Falkenhagen's eqn. -# a3 = -10 ? ka = DH_B * a * mu^a2 in Falkenhagen's eqn. (Define a3 = -10), in CO3-2 and HCO3-, SO4-2 + cplxs -# -5 < a3 < 5 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) +# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Debye-Onsager eqn. +# a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10) (not used in this database.) +# -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database) e- = e- H2O = H2O -dw 2.299e-9 -254 # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence Li+ = Li+ - -gamma 6.0 0 # The apparent volume parameters for Vm are defined in ref. 1 & 2 + -gamma 6.0 0 # The apparent volume parameters are defined in ref. 1 & 2 -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl - -dw 1.03e-9 -23 4.063 5.488 3.0 + -dw 1.03e-9 -14 4.03 0.8341 1.679 Na+ = Na+ - -gamma 4.0 0.075 - -gamma 4.08 0.082 # halite solubility + -gamma 4.0 0.075 + -gamma 4.08 0.082 # halite solubility -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 -# for calculating densities (rho) when I > 3... - # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 + # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 # for densities (rho) when I > 3. -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 - -dw 1.33e-9 -121 4.383 -2.798 0.6215 + -dw 1.33e-9 75 3.627 0 0.7037 K+ = K+ - -gamma 3.5 0.015 + -gamma 3.5 0.015 -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 -viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028 - -dw 1.96e-9 252 3.054 1.729 0.4706 + -dw 1.96e-9 254 3.484 0 0.1964 Mg+2 = Mg+2 - -gamma 5.5 0.20 + -gamma 5.5 0.20 -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 - -dw 0.705e-9 35 11.92 -2.922 0.9631 + -dw 0.705e-9 -4 5.569 0 1.047 Ca+2 = Ca+2 - -gamma 5.0 0.1650 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 + -gamma 5.0 0.1650 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M - -dw 0.792e-9 -198 11.80 -2.745 0.9735 + -dw 0.792e-9 34 5.411 0 1.046 Sr+2 = Sr+2 - -gamma 5.260 0.121 + -gamma 5.260 0.121 -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 - -dw 0.794e-9 66 25 -2.336 3.0 + -dw 0.794e-9 160 0.680 0.767 1e-9 0.912 Ba+2 = Ba+2 - -gamma 5.0 0 - -gamma 4.0 0.153 # Barite solubility + -gamma 5.0 0 + -gamma 4.0 0.153 # Barite solubility -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 - -dw 0.848e-9 -47 22.67 -2.543 3.0 + -dw 0.848e-9 174 10.53 0 3.0 Fe+2 = Fe+2 -gamma 6.0 0 -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 @@ -131,31 +129,31 @@ H4SiO4 = H4SiO4 -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 -dw 1.10e-9 Cl- = Cl- - -gamma 3.5 0.015 - -gamma 3.63 0.017 # cf. pitzer.dat + -gamma 3.5 0.015 + -gamma 3.63 0.017 # cf. pitzer.dat -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 - -viscosity 0 0 0 0 0 0 1 # the reference solute - -dw 2.033e-9 164 3.214 0.6814 0.7554 + -viscosity 0 0 0 0 0 0 1 # the reference solute + -dw 2.033e-9 216 3.160 0.2071 0.7432 CO3-2 = CO3-2 - -gamma 5.4 0 - -Vm 5.65 -0.413 4.32e-2 -5.68 5.56 0 -0.97 150 -7.3e-3 0.866 - -viscosity -0.307 0.461 6.91e-3 2.6e-4 -2.02e-2 1.666 -2.215 - -dw 0.955e-9 -21 4.372 0.4288 0.7542 -10 + -gamma 5.4 0 + -Vm 6.09 -2.78 -0.405 -5.30 5.02 0 0.169 101 -1.38e-2 0.9316 + -viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147 + -dw 0.955e-9 -103 2.246 7.13e-2 0.3686 SO4-2 = SO4-2 -gamma 5.0 -0.04 -Vm -7.77 43.17 141.1 -42.45 3.794 1.40e-2 0 100.9 -5.713e-2 1.011e-4 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC -viscosity -0.7887 0.813 1.86e-3 1.27e-3 -1.38e-2 4.668 -9.86e-2 - -dw 1.07e-9 -3 35 0.3063 1e-9 -10 + -dw 1.07e-9 -109 17 NO3- = NO3- - -gamma 3.0 0 + -gamma 3.0 0 -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 -viscosity 8.37e-2 -0.458 1.54e-2 0.340 1.79e-2 5.02e-2 0.7381 - -dw 1.90e-9 150 1.281 0.3876 1e-9 -10 + -dw 1.90e-9 104 1.11 AmmH+ = AmmH+ - -gamma 2.5 0 - -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 + -gamma 2.5 0 + -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 - -dw 1.98e-9 -81 6.274 -4.118 -0.270 + -dw 1.98e-9 178 3.747 0 1.220 H3BO3 = H3BO3 -Vm 7.0643 8.8547 3.5844 -3.1451 -0.20 # supcrt -dw 1.1e-9 @@ -164,15 +162,15 @@ PO4-3 = PO4-3 -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 -dw 0.612e-9 F- = F- - -gamma 3.5 0 + -gamma 3.5 0 -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 - -dw 1.46e-9 11 4.659 -0.176 1e-9 + -dw 1.46e-9 -36 4.352 Br- = Br- -gamma 3.0 0 -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.820 - -dw 2.01e-9 121 5.939 -2.588 1e-9 + -dw 2.01e-9 139 2.94 0 1.304 Zn+2 = Zn+2 -gamma 5.0 0 -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 @@ -206,10 +204,10 @@ H2Sg = H2Sg # H2S # aqueous species H2O = OH- + H+ -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 - -gamma 3.5 0 + -gamma 3.5 0 -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH - -dw 5.27e-9 470 1.837 0.4096 0.3330 + -dw 5.27e-9 478 0.8695 2 H2O = O2 + 4 H+ + 4 e- -log_k -86.08 -delta_h 134.79 kcal @@ -226,13 +224,12 @@ H+ + Cl- = HCl -gamma 0 0.4256 -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 CO3-2 + H+ = HCO3- - -log_k 10.329; -delta_h -3.561 kcal + -log_k 10.329; -delta_h -3.561 kcal -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 - -gamma 5.4 0 - -Vm 6.64 4.47 7.27 -4.78 1.51 0 -2.91 202 3.33e-2 0.895 - -viscosity -1 1.059 -1.32e-2 8.98e-2 3.10e-2 -0.974 0.986 - -dw 1.18e-9 -133 3.421 0.2629 1e-9 -10 - # -dw 1.18e-9 -216 3.397 -9.20e-2 -0.5492 -10 + -gamma 5.4 0 + -Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144 + -viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253 + -dw 1.18e-9 -190 11.386 CO3-2 + 2 H+ = CO2 + H2O -log_k 16.681 -delta_h -5.738 kcal @@ -251,10 +248,11 @@ CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O -Vm .01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 -dw 1.85e-9 SO4-2 + H+ = HSO4- - -log_k 1.988; -delta_h 3.85 kcal + -log_k 1.988; -delta_h 3.85 kcal -analytic -56.889 0.006473 2307.9 19.8858 - -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 - -dw 1.2e-9 1027 25 1.681 1e-9 -10 # a (=25) * mu^1.681 + -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987 + -dw 1.22e-9 1000 15.0 2.861 HS- = S-2 + H+ -log_k -12.918 -delta_h 12.1 kcal @@ -309,11 +307,11 @@ AmmH+ = Amm + H+ # -gamma 2.5 0 # -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 AmmH+ + SO4-2 = AmmHSO4- - -gamma 6.0 -0.27 - -log_k 1.27; -delta_h 4.9 kcal - -Vm 10.45 0 -12.26 0 2.578 0 12.67 0 -2.60e-2 0.3516 - -viscosity 0.139 0 0 7.95e-3 2.73e-2 1.38 0.127 - -dw 1.35e-9 500 25 3 1e-9 -10 + -gamma 6.54 -0.08 + -log_k 1.106; -delta_h 4.30 kcal # 1.1311278E+01 kcal + -Vm 11.35 0 -7.6971 0 3.531 0 7.608 0 0 0.410 + -viscosity 0.424 -0.641 0.108 7.3e-3 -3.39e-2 1.724 0.758 + -dw 1.35e-9 500 12.50 3.0 H3BO3 = H2BO3- + H+ -log_k -9.24 -delta_h 3.224 kcal @@ -420,7 +418,7 @@ SO4-2 + MgSO4 = Mg(SO4)2-2 -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC -Vm 27.34 -30 -26.79 0 1.75e-2 0 0.4148 -0.6003 0 0 -viscosity -6.34e-2 5e-4 -5.09e-2 0.1974 1.65e-2 1.568 0 - -dw 0.69e-9 -661 35 -0.7452 0.4817 -10 + -dw 0.99e-9 -200 17 4 1.1758 Mg+2 + PO4-3 = MgPO4- -log_k 6.589 -delta_h 3.10 kcal @@ -439,26 +437,19 @@ Mg+2 + F- = MgF+ -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt Na+ + OH- = NaOH -log_k -10 # remove this complex -# Na+ + CO3-2 = NaCO3- # the CO3-2 cmplx is not necessary for the SC - # -log_k 1.27 - # -delta_h 8.91 kcal - # -dw 1.2e-9 -400 1e-10 1e-10 - # -Vm 3.812 0.196 20.0 -9.60 3.02 1e-5 2.65 0 2.54e-2 1 - # -viscosity 0.104 -1.65 0.169 8.66e-2 2.60e-2 1.76 -0.90 Na+ + HCO3- = NaHCO3 - -log_k -0.18; -delta_h 23 kJ - # -analytical_expression 0.1 -6.111e-3 -1600 2.794 # optimized with data in Appelo, 2015, Appl. Geochem. 55, 6271. - -gamma 0 0.23 - -Vm 11.58 0 0 0 1.894 - -viscosity 1 -1.035 -4.78e-2 0.274 -6.27e-2 -4.17e-2 1.0 - -dw 6.73e-10 -400 1e-10 1e-10 + -log_k -0.06; -delta_h 23 kJ + -gamma 0 0.1 + -Vm 7.95 0 0 0 0.609 + -viscosity -4e-2 -2.717 1.67e-5 + -dw 6.73e-10 Na+ + SO4-2 = NaSO4- - -gamma 5.5 0 + -gamma 5.5 0 -log_k 0.6; -delta_h -14.4 kJ -analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC -Vm 1e-5 20.45 0 -3.75 2.433 0 6.106 0 -1.05e-2 0.6604 -viscosity -1.045 1.215 2.32e-4 4.82e-2 2.67e-2 1.634 0 - -dw 0.85e-9 -100 35 2.643 0.4323 -10 + -dw 1.13e-9 -98 13.13 0.627 0.6047 Na+ + HPO4-2 = NaHPO4- -log_k 0.29 -gamma 5.4 0 @@ -466,13 +457,18 @@ Na+ + HPO4-2 = NaHPO4- Na+ + F- = NaF -log_k -0.24 -Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt +K+ + HCO3- = KHCO3 + -log_k -0.35; -delta_h 12 kJ + -gamma 0 9.4e-3 + -Vm 9.48 0 0 0 -0.542 + -viscosity 0.7 -1.289 9e-2 K+ + SO4-2 = KSO4- -gamma 5.4 0.19 -log_k 0.6; -delta_h -10.4 kJ -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC -Vm 1e-5 -30 -113.5 21.88 1.5 0 114.0 0 -0.1241 2.281e-2 -viscosity -0.4572 0.7833 7e-4 -1.014 4.60e-3 0.5757 -0.224 - -dw 0.52e-9 300 35 1.110 0.8 -10 + -dw 0.85e-9 200 10.66 0 1.80 K+ + HPO4-2 = KHPO4- -log_k 0.29 -gamma 5.4 0 @@ -1588,6 +1584,192 @@ Quartz 50 SAVE moles * TIME -end +#INCLUDE$ \phreeqc\database\kinetic_rates.dat +# Loads subroutines for calculating mineral dissolution rates compiled by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023. +# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters. + + # The data are entered in a KINETICS block with -parms, the 'parms' are stored in memory by the RATES block, and used by Calc_value("name"). + # For example: + + # KINETICS 1 + # Albite_PK + # -formula NaAlSi3O8 + + # # parms affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH + # # parm number 1 2 3, 4 5 6, 7 8, 9 10 11 + + # -parms 0 1 1, -10.16 65.0 0.457, -12.56 69.8, -15.60 71.0 -0.572 # parms 4-11 from TABLE 13 + + # In the RATES block, the parms are stored in memory (put(parm(i), -99, i)), and retrieved by the subroutine calc_value("Palandri_rate"), as e.g. roughness = get(-99, 3). + + # RATES + # Albite_PK # Palandri and Kharaka, 2004 + # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END + # 20 put(affinity, -99, 1) # store number in memory + # 30 for i = 2 to 11 : put(parm(i), -99, i) : next i + # 40 SAVE calc_value("Palandri_rate") + # -end + +# For an example file using the rates, see: kinetic_rates.phr from https://www.hydrochemistry.eu/exmpls/kin_silicates.html + +# References +# Palandri, J.L. and Kharaka, J.K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068. +# Sverdrup, H.U., Oelkers, E., Erlandsson Lampa, M., Belyazid, S., Kurz, D. and Akselsson, C. (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58. +# Hermansk, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2022. A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807 +# Hermansk, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2023. A comprehensive and consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chemical Geology, p.121632. +# Subroutines for calculating mineral dissolution rates from compilations by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023. +# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters. + # The data are entered in a KINETICS block with -parms. For example for the Albite rate of Palandri and Kharaka, Table 13: + + # KINETICS 1 + # Albite_PK + # -formula NaAlSi3O8 + + # # parms affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH + # # parm number 1 2 3, 4 5 6, 7 8, 9 10 11 + + # -parms 0 1 1, -10.16 65.0 0.457, -12.56 69.8, -15.60 71.0 -0.572 # parms 4-11 from TABLE 13 + + # In the RATES block, they are stored in memory, and retrieved by the subroutine calc_value("Palandri_rate"). + + # RATES + # Albite_PK # Palandri and Kharaka, 2004 + # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END + # 20 put(affinity, -99, 1) # store value in memory + # 30 for i = 2 to 11 : put(parm(i), -99, i) : next i + # 40 SAVE calc_value("Palandri_rate") + # -end + +# For an example file using the rates, see: kinetic_rates.phr in https://www.hydrochemistry.eu/exmpls/kin_silicates.html + +# References +# Palandri, J.L. and Kharaka, J.K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068. +# Sverdrup, H.U., Oelkers, E., Erlandsson Lampa, M., Belyazid, S., Kurz, D. and Akselsson, C. (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58. +# Hermansk, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2022. A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807 +# Hermansk, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2023. A comprehensive and consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chemical Geology, p.121632. + +CALCULATE_VALUES +Palandri_rate +# in KINETICS, define 11 parms: +# affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH +# parm number 1 2 3, 4 5 6, 7 8, 9 10 11 +10 affinity = get(-99, 1) # retrieve number from memory +20 +30 REM # specific area m2/mol, surface roughness +40 sp_area = get(-99, 2) : roughness = get(-99, 3) +50 +60 REM # temperature factor, gas constant +70 dif_temp = 1 / TK - 1 / 298 : R = 2.303 * 8.314e-3 : dT_R = dif_temp / R +80 +90 REM # rate by H+ +100 lgk_H = get(-99, 4) : e_H = get(-99, 5) : nH = get(-99, 6) +110 rate_H = 10^(lgk_H - e_H * dT_R) * ACT("H+")^nH +120 +130 REM # rate by hydrolysis +140 lgk_H2O = get(-99, 7) : e_H2O = get(-99, 8) +150 rate_H2O = 10^(lgk_H2O - e_H2O * dT_R) +160 +170 REM # rate by OH- +180 lgk_OH = get(-99, 9) : e_OH = get(-99, 10) : nOH = get(-99, 11) +190 rate_OH = 10^(lgk_OH - e_OH * dT_R) * ACT("H+")^nOH +200 +210 rate = rate_H + rate_H2O + rate_OH +220 area = sp_area * M0 * (M / M0)^0.67 +230 +240 rate = area * roughness * rate * affinity +250 SAVE rate * TIME +-end + +Sverdrup_rate +# in KINETICS, define 34 parms: +# affinity m^2/mol roughness, temperature_factors (TABLE 4): e_H e_H2O e_CO2 e_OA e_OH,\ +# (TABLE 3): pkH nH yAl CAl xBC CBC, pKH2O yAl CAl xBC CBC zSi CSi, pKCO2 nCO2 pkOrg nOrg COrg, pkOH wOH yAl CAl xBC CBC zSi CSi +10 affinity = get(-99, 1) +20 +30 REM # specific area m2/mol, surface roughness +40 sp_area = get(-99, 2) : roughness = get(-99, 3) +50 +60 REM # temperature factors +70 dif_temp = 1 / TK - 1 / 281 +80 e_H = get(-99, 4) : e_H2O = get(-99, 5) : e_CO2 = get(-99, 6) : e_OA = get(-99, 7) : e_OH = get(-99, 8) +90 +100 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +110 aAl = act("Al+3") +120 aSi = act("H4SiO4") +130 R = tot("OrganicMatter") +140 +150 REM # rate by H+ +160 pkH = get(-99, 9) : nH = get(-99, 10) : yAl = get(-99, 11) : CAl = get(-99, 12) : xBC = get(-99, 13) : CBC = get(-99, 14) +170 pk_H = pkH - 3 + e_H * dif_temp +180 CAl = CAl * 1e-6 +190 CBC = CBC * 1e-6 +200 rate_H = 10^-pk_H * ACT("H+")^nH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC) +210 +220 REM # rate by hydrolysis +230 pkH2O = get(-99, 15) : yAl = get(-99, 16) : CAl = get(-99, 17) : xBC = get(-99, 18) : CBC = get(-99, 19) : zSi = get(-99, 20) : CSi = get(-99, 21) +240 CAl = CAl * 1e-6 +250 CBC = CBC * 1e-6 +260 CSi = CSi * 1e-6 +270 pk_H2O = pkH2O - 3 + e_H2O * dif_temp +280 rate_H2O = 10^-pk_H2O / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi) +290 +300 REM # rate by CO2 +310 pKCO2 = get(-99, 22) : nCO2 = get(-99, 23) +320 pk_CO2 = pkCO2 - 3 + e_CO2 * dif_temp +330 rate_CO2 = 10^-pk_CO2 * SR("CO2(g)")^nCO2 +340 +350 REM # rate by Organic Acids +360 pkOrg = get(-99, 24) : nOrg = get(-99, 25) : COrg = get(-99, 26) +370 COrg = COrg * 1e-6 +380 pk_Org = pkOrg - 3 + e_OA * dif_temp +390 rate_Org = 10^-pk_Org * (R / (1 + R / COrg))^nOrg +400 +410 REM # rate by OH- +420 pkOH = get(-99, 27) : wOH = get(-99, 28) : yAl = get(-99, 29) : CAl = get(-99, 30) : xBC = get(-99, 31) : CBC = get(-99, 32) : zSi = get(-99, 33) : CSi = get(-99, 34) +430 CAl = CAl * 1e-6 +440 CBC = CBC * 1e-6 +450 CSi = CSi * 1e-6 +460 pk_OH = pkOH - 3 + e_OH * dif_temp +470 rate_OH = 10^-pk_OH * ACT("OH-")^wOH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi)# : print rate_OH +480 +490 rate = rate_H + rate_H2O + rate_CO2 + rate_Org + rate_OH +500 area = sp_area * M0 * (M / M0)^0.67 +510 +520 rate = roughness * area * rate * affinity +530 SAVE rate * TIME +-end + +Hermanska_rate +# in KINETICS, define 14 parms: +# parms affinity m^2/mol roughness, (TABLE 2): (acid)logk25 Aa Ea na (neutral)logk25 Ab Eb (basic)logk25 Ac Ec nc +# (Note that logk25 values are not used, they were transformed to A's.) +10 affinity = get(-99, 1) # retrieve number from memory +20 +30 REM # specific area m2/mol, surface roughness +40 sp_area = get(-99, 2) : roughness = get(-99, 3) +50 +60 REM # gas constant * Tk, act("H+") +70 RT = 8.314e-3 * TK : aH = act("H+") +80 +90 REM # rate by H+ +100 lgk_H = get(-99, 4) : Aa = get(-99, 5) : e_H = get(-99, 6) : nH = get(-99, 7) +110 rate_H = Aa * exp(- e_H / RT) * aH^nH +120 +130 REM # rate by hydrolysis +140 lgk_H2O = get(-99, 8) : Ab = get(-99, 9) : e_H2O = get(-99, 10) +150 rate_H2O = Ab * exp(- e_H2O / RT) +160 +170 REM # rate by OH- +180 lgk_OH = get(-99, 11) : Ac = get(-99, 12) : e_OH = get(-99, 13) : nOH = get(-99, 14) +190 rate_OH = Ac * exp(- e_OH / RT) * aH^nOH +200 +210 rate = rate_H + rate_H2O + rate_OH +220 area = sp_area * M0 * (M / M0)^0.67 +230 +240 rate = area * roughness * rate * affinity +250 SAVE rate * TIME +-end + ########### #K-feldspar ########### From bc1f8f86b2a9a9490b0db2a6bff3c5b77f562f57 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Fri, 15 Mar 2024 15:16:12 -0600 Subject: [PATCH 127/384] Tony's changes Mar 15, 2024 --- phreeqc.dat | 340 ++++++++++++++++++++++++++++++++++++++++------------ 1 file changed, 261 insertions(+), 79 deletions(-) diff --git a/phreeqc.dat b/phreeqc.dat index 061817a3..d86c7aad 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -1,4 +1,3 @@ -# with Falkenhage, a in ka from change in vm with T, P, I # PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: # diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. # Details are given at the end of this file. @@ -62,59 +61,58 @@ Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ - -gamma 9.0 0 + -gamma 9.0 0 -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 - -dw 9.31e-9 742 15.0 1 2.353 24.01 # The dw parameters are defined in ref. 3. + -dw 9.31e-9 838 16.315 0.809 2.376 24.01 # The dw parameters are defined in ref. 3. # Dw(25 C) dw_T a a2 visc a3 -# Dw(TK) = 9.31e-9 * exp(742 / TK - 742 / 298.15) * viscos_0_25 / viscos_0_tc * (viscos_0_tc / viscos)^2.353 +# Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc * (viscos_0_tc / viscos)^2.353 # a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024 -# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0) / 5.2)^a2 * mu^0.5 (a3 = 5.2 = default, can be changed) in Falkenhagen's eqn. -# a3 = -10 ? ka = DH_B * a * mu^a2 in Falkenhagen's eqn. (Define a3 = -10), in CO3-2 and HCO3-, SO4-2 + cplxs -# -5 < a3 < 5 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) +# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Debye-Onsager eqn. +# a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10) (not used in this database.) +# -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database) e- = e- H2O = H2O -dw 2.299e-9 -254 # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence Li+ = Li+ - -gamma 6.0 0 # The apparent volume parameters for Vm are defined in ref. 1 & 2 + -gamma 6.0 0 # The apparent volume parameters are defined in ref. 1 & 2 -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl - -dw 1.03e-9 -23 4.063 5.488 3.0 + -dw 1.03e-9 -14 4.03 0.8341 1.679 Na+ = Na+ - -gamma 4.0 0.075 - -gamma 4.08 0.082 # halite solubility + -gamma 4.0 0.075 + -gamma 4.08 0.082 # halite solubility -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 -# for calculating densities (rho) when I > 3... - # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 + # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 # for densities (rho) when I > 3. -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 - -dw 1.33e-9 -121 4.383 -2.798 0.6215 + -dw 1.33e-9 75 3.627 0 0.7037 K+ = K+ - -gamma 3.5 0.015 + -gamma 3.5 0.015 -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 -viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028 - -dw 1.96e-9 252 3.054 1.729 0.4706 + -dw 1.96e-9 254 3.484 0 0.1964 Mg+2 = Mg+2 - -gamma 5.5 0.20 + -gamma 5.5 0.20 -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 - -dw 0.705e-9 35 11.92 -2.922 0.9631 + -dw 0.705e-9 -4 5.569 0 1.047 Ca+2 = Ca+2 - -gamma 5.0 0.1650 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 + -gamma 5.0 0.1650 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M - -dw 0.792e-9 -198 11.80 -2.745 0.9735 + -dw 0.792e-9 34 5.411 0 1.046 Sr+2 = Sr+2 - -gamma 5.260 0.121 + -gamma 5.260 0.121 -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 - -dw 0.794e-9 66 25 -2.336 3.0 + -dw 0.794e-9 160 0.680 0.767 1e-9 0.912 Ba+2 = Ba+2 - -gamma 5.0 0 - -gamma 4.0 0.153 # Barite solubility + -gamma 5.0 0 + -gamma 4.0 0.153 # Barite solubility -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 - -dw 0.848e-9 -47 22.67 -2.543 3.0 + -dw 0.848e-9 174 10.53 0 3.0 Fe+2 = Fe+2 -gamma 6.0 0 -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 @@ -131,31 +129,31 @@ H4SiO4 = H4SiO4 -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 -dw 1.10e-9 Cl- = Cl- - -gamma 3.5 0.015 - -gamma 3.63 0.017 # cf. pitzer.dat + -gamma 3.5 0.015 + -gamma 3.63 0.017 # cf. pitzer.dat -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 - -viscosity 0 0 0 0 0 0 1 # the reference solute - -dw 2.033e-9 164 3.214 0.6814 0.7554 + -viscosity 0 0 0 0 0 0 1 # the reference solute + -dw 2.033e-9 216 3.160 0.2071 0.7432 CO3-2 = CO3-2 - -gamma 5.4 0 - -Vm 5.65 -0.413 4.32e-2 -5.68 5.56 0 -0.97 150 -7.3e-3 0.866 - -viscosity -0.307 0.461 6.91e-3 2.6e-4 -2.02e-2 1.666 -2.215 - -dw 0.955e-9 -21 4.372 0.4288 0.7542 -10 + -gamma 5.4 0 + -Vm 6.09 -2.78 -0.405 -5.30 5.02 0 0.169 101 -1.38e-2 0.9316 + -viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147 + -dw 0.955e-9 -103 2.246 7.13e-2 0.3686 SO4-2 = SO4-2 -gamma 5.0 -0.04 -Vm -7.77 43.17 141.1 -42.45 3.794 1.40e-2 0 100.9 -5.713e-2 1.011e-4 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC -viscosity -0.7887 0.813 1.86e-3 1.27e-3 -1.38e-2 4.668 -9.86e-2 - -dw 1.07e-9 -3 35 0.3063 1e-9 -10 + -dw 1.07e-9 -109 17 NO3- = NO3- - -gamma 3.0 0 + -gamma 3.0 0 -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 -viscosity 8.37e-2 -0.458 1.54e-2 0.340 1.79e-2 5.02e-2 0.7381 - -dw 1.90e-9 150 1.281 0.3876 1e-9 -10 + -dw 1.90e-9 104 1.11 #AmmH+ = AmmH+ -# -gamma 2.5 0 -# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 +# -gamma 2.5 0 +# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 # -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 -# -dw 1.98e-9 -81 6.274 -4.118 -0.270 +# -dw 1.98e-9 178 3.747 0 1.220 H3BO3 = H3BO3 -Vm 7.0643 8.8547 3.5844 -3.1451 -0.20 # supcrt -dw 1.1e-9 @@ -164,15 +162,15 @@ PO4-3 = PO4-3 -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 -dw 0.612e-9 F- = F- - -gamma 3.5 0 + -gamma 3.5 0 -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 - -dw 1.46e-9 11 4.659 -0.176 1e-9 + -dw 1.46e-9 -36 4.352 Br- = Br- -gamma 3.0 0 -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.820 - -dw 2.01e-9 121 5.939 -2.588 1e-9 + -dw 2.01e-9 139 2.94 0 1.304 Zn+2 = Zn+2 -gamma 5.0 0 -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 @@ -206,10 +204,10 @@ H2Sg = H2Sg # H2S # aqueous species H2O = OH- + H+ -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 - -gamma 3.5 0 + -gamma 3.5 0 -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH - -dw 5.27e-9 470 1.837 0.4096 0.3330 + -dw 5.27e-9 478 0.8695 2 H2O = O2 + 4 H+ + 4 e- -log_k -86.08 -delta_h 134.79 kcal @@ -226,13 +224,12 @@ H+ + Cl- = HCl -gamma 0 0.4256 -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 CO3-2 + H+ = HCO3- - -log_k 10.329; -delta_h -3.561 kcal + -log_k 10.329; -delta_h -3.561 kcal -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 - -gamma 5.4 0 - -Vm 6.64 4.47 7.27 -4.78 1.51 0 -2.91 202 3.33e-2 0.895 - -viscosity -1 1.059 -1.32e-2 8.98e-2 3.10e-2 -0.974 0.986 - -dw 1.18e-9 -133 3.421 0.2629 1e-9 -10 - # -dw 1.18e-9 -216 3.397 -9.20e-2 -0.5492 -10 + -gamma 5.4 0 + -Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144 + -viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253 + -dw 1.18e-9 -190 11.386 CO3-2 + 2 H+ = CO2 + H2O -log_k 16.681 -delta_h -5.738 kcal @@ -251,10 +248,11 @@ CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O -Vm .01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 -dw 1.85e-9 SO4-2 + H+ = HSO4- - -log_k 1.988; -delta_h 3.85 kcal + -log_k 1.988; -delta_h 3.85 kcal -analytic -56.889 0.006473 2307.9 19.8858 - -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 - -dw 1.2e-9 1027 25 1.681 1e-9 -10 # a (=25) * mu^1.681 + -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987 + -dw 1.22e-9 1000 15.0 2.861 HS- = S-2 + H+ -log_k -12.918 -delta_h 12.1 kcal @@ -296,14 +294,15 @@ NO3- + 2 H+ + 2 e- = NO2- + H2O -delta_h -312.130 kcal -Vm 7 # Pray et al., 1952, IEC 44. 1146 -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 -#AmmH+ = Amm + H+ NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O -log_k 119.077 -delta_h -187.055 kcal - -gamma 2.5 0 - -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 + -gamma 2.5 0 + -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 - -dw 1.98e-9 -81 6.274 -4.118 -0.270 + -dw 1.98e-9 178 3.747 0 1.220 + +#AmmH+ = Amm + H+ NH4+ = NH3 + H+ -log_k -9.252 -delta_h 12.48 kcal @@ -318,11 +317,10 @@ NH4+ = NH3 + H+ # -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 #AmmH+ + SO4-2 = AmmHSO4- NH4+ + SO4-2 = NH4SO4- - -gamma 6.0 -0.27 - -log_k 1.27; -delta_h 4.9 kcal - -Vm 10.45 0 -12.26 0 2.578 0 12.67 0 -2.60e-2 0.3516 - -viscosity 0.139 0 0 7.95e-3 2.73e-2 1.38 0.127 - -dw 1.35e-9 500 25 3 1e-9 -10 + -log_k 1.106; -delta_h 4.30 kcal # 1.1311278E+01 kcal + -Vm 11.35 0 -7.6971 0 3.531 0 7.608 0 0 0.410 + -viscosity 0.424 -0.641 0.108 7.3e-3 -3.39e-2 1.724 0.758 + -dw 1.35e-9 500 12.50 3.0 H3BO3 = H2BO3- + H+ -log_k -9.24 -delta_h 3.224 kcal @@ -429,7 +427,7 @@ SO4-2 + MgSO4 = Mg(SO4)2-2 -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC -Vm 27.34 -30 -26.79 0 1.75e-2 0 0.4148 -0.6003 0 0 -viscosity -6.34e-2 5e-4 -5.09e-2 0.1974 1.65e-2 1.568 0 - -dw 0.69e-9 -661 35 -0.7452 0.4817 -10 + -dw 0.99e-9 -200 17 4 1.1758 Mg+2 + PO4-3 = MgPO4- -log_k 6.589 -delta_h 3.10 kcal @@ -448,26 +446,19 @@ Mg+2 + F- = MgF+ -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt Na+ + OH- = NaOH -log_k -10 # remove this complex -# Na+ + CO3-2 = NaCO3- # the CO3-2 cmplx is not necessary for the SC - # -log_k 1.27 - # -delta_h 8.91 kcal - # -dw 1.2e-9 -400 1e-10 1e-10 - # -Vm 3.812 0.196 20.0 -9.60 3.02 1e-5 2.65 0 2.54e-2 1 - # -viscosity 0.104 -1.65 0.169 8.66e-2 2.60e-2 1.76 -0.90 Na+ + HCO3- = NaHCO3 - -log_k -0.18; -delta_h 23 kJ - # -analytical_expression 0.1 -6.111e-3 -1600 2.794 # optimized with data in Appelo, 2015, Appl. Geochem. 55, 6271. - -gamma 0 0.23 - -Vm 11.58 0 0 0 1.894 - -viscosity 1 -1.035 -4.78e-2 0.274 -6.27e-2 -4.17e-2 1.0 - -dw 6.73e-10 -400 1e-10 1e-10 + -log_k -0.06; -delta_h 23 kJ + -gamma 0 0.1 + -Vm 7.95 0 0 0 0.609 + -viscosity -4e-2 -2.717 1.67e-5 + -dw 6.73e-10 Na+ + SO4-2 = NaSO4- - -gamma 5.5 0 + -gamma 5.5 0 -log_k 0.6; -delta_h -14.4 kJ -analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC -Vm 1e-5 20.45 0 -3.75 2.433 0 6.106 0 -1.05e-2 0.6604 -viscosity -1.045 1.215 2.32e-4 4.82e-2 2.67e-2 1.634 0 - -dw 0.85e-9 -100 35 2.643 0.4323 -10 + -dw 1.13e-9 -98 13.13 0.627 0.6047 Na+ + HPO4-2 = NaHPO4- -log_k 0.29 -gamma 5.4 0 @@ -475,13 +466,18 @@ Na+ + HPO4-2 = NaHPO4- Na+ + F- = NaF -log_k -0.24 -Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt +K+ + HCO3- = KHCO3 + -log_k -0.35; -delta_h 12 kJ + -gamma 0 9.4e-3 + -Vm 9.48 0 0 0 -0.542 + -viscosity 0.7 -1.289 9e-2 K+ + SO4-2 = KSO4- -gamma 5.4 0.19 -log_k 0.6; -delta_h -10.4 kJ -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC -Vm 1e-5 -30 -113.5 21.88 1.5 0 114.0 0 -0.1241 2.281e-2 -viscosity -0.4572 0.7833 7e-4 -1.014 4.60e-3 0.5757 -0.224 - -dw 0.52e-9 300 35 1.110 0.8 -10 + -dw 0.85e-9 200 10.66 0 1.80 K+ + HPO4-2 = KHPO4- -log_k 0.29 -gamma 5.4 0 @@ -1600,6 +1596,192 @@ Quartz 50 SAVE moles * TIME -end +#INCLUDE$ \phreeqc\database\kinetic_rates.dat +# Loads subroutines for calculating mineral dissolution rates compiled by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023. +# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters. + + # The data are entered in a KINETICS block with -parms, the 'parms' are stored in memory by the RATES block, and used by Calc_value("name"). + # For example: + + # KINETICS 1 + # Albite_PK + # -formula NaAlSi3O8 + + # # parms affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH + # # parm number 1 2 3, 4 5 6, 7 8, 9 10 11 + + # -parms 0 1 1, -10.16 65.0 0.457, -12.56 69.8, -15.60 71.0 -0.572 # parms 4-11 from TABLE 13 + + # In the RATES block, the parms are stored in memory (put(parm(i), -99, i)), and retrieved by the subroutine calc_value("Palandri_rate"), as e.g. roughness = get(-99, 3). + + # RATES + # Albite_PK # Palandri and Kharaka, 2004 + # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END + # 20 put(affinity, -99, 1) # store number in memory + # 30 for i = 2 to 11 : put(parm(i), -99, i) : next i + # 40 SAVE calc_value("Palandri_rate") + # -end + +# For an example file using the rates, see: kinetic_rates.phr from https://www.hydrochemistry.eu/exmpls/kin_silicates.html + +# References +# Palandri, J.L. and Kharaka, J.K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068. +# Sverdrup, H.U., Oelkers, E., Erlandsson Lampa, M., Belyazid, S., Kurz, D. and Akselsson, C. (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58. +# Hermansk, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2022. A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807 +# Hermansk, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2023. A comprehensive and consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chemical Geology, p.121632. +# Subroutines for calculating mineral dissolution rates from compilations by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023. +# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters. + # The data are entered in a KINETICS block with -parms. For example for the Albite rate of Palandri and Kharaka, Table 13: + + # KINETICS 1 + # Albite_PK + # -formula NaAlSi3O8 + + # # parms affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH + # # parm number 1 2 3, 4 5 6, 7 8, 9 10 11 + + # -parms 0 1 1, -10.16 65.0 0.457, -12.56 69.8, -15.60 71.0 -0.572 # parms 4-11 from TABLE 13 + + # In the RATES block, they are stored in memory, and retrieved by the subroutine calc_value("Palandri_rate"). + + # RATES + # Albite_PK # Palandri and Kharaka, 2004 + # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END + # 20 put(affinity, -99, 1) # store value in memory + # 30 for i = 2 to 11 : put(parm(i), -99, i) : next i + # 40 SAVE calc_value("Palandri_rate") + # -end + +# For an example file using the rates, see: kinetic_rates.phr in https://www.hydrochemistry.eu/exmpls/kin_silicates.html + +# References +# Palandri, J.L. and Kharaka, J.K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068. +# Sverdrup, H.U., Oelkers, E., Erlandsson Lampa, M., Belyazid, S., Kurz, D. and Akselsson, C. (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58. +# Hermansk, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2022. A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807 +# Hermansk, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2023. A comprehensive and consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chemical Geology, p.121632. + +CALCULATE_VALUES +Palandri_rate +# in KINETICS, define 11 parms: +# affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH +# parm number 1 2 3, 4 5 6, 7 8, 9 10 11 +10 affinity = get(-99, 1) # retrieve number from memory +20 +30 REM # specific area m2/mol, surface roughness +40 sp_area = get(-99, 2) : roughness = get(-99, 3) +50 +60 REM # temperature factor, gas constant +70 dif_temp = 1 / TK - 1 / 298 : R = 2.303 * 8.314e-3 : dT_R = dif_temp / R +80 +90 REM # rate by H+ +100 lgk_H = get(-99, 4) : e_H = get(-99, 5) : nH = get(-99, 6) +110 rate_H = 10^(lgk_H - e_H * dT_R) * ACT("H+")^nH +120 +130 REM # rate by hydrolysis +140 lgk_H2O = get(-99, 7) : e_H2O = get(-99, 8) +150 rate_H2O = 10^(lgk_H2O - e_H2O * dT_R) +160 +170 REM # rate by OH- +180 lgk_OH = get(-99, 9) : e_OH = get(-99, 10) : nOH = get(-99, 11) +190 rate_OH = 10^(lgk_OH - e_OH * dT_R) * ACT("H+")^nOH +200 +210 rate = rate_H + rate_H2O + rate_OH +220 area = sp_area * M0 * (M / M0)^0.67 +230 +240 rate = area * roughness * rate * affinity +250 SAVE rate * TIME +-end + +Sverdrup_rate +# in KINETICS, define 34 parms: +# affinity m^2/mol roughness, temperature_factors (TABLE 4): e_H e_H2O e_CO2 e_OA e_OH,\ +# (TABLE 3): pkH nH yAl CAl xBC CBC, pKH2O yAl CAl xBC CBC zSi CSi, pKCO2 nCO2 pkOrg nOrg COrg, pkOH wOH yAl CAl xBC CBC zSi CSi +10 affinity = get(-99, 1) +20 +30 REM # specific area m2/mol, surface roughness +40 sp_area = get(-99, 2) : roughness = get(-99, 3) +50 +60 REM # temperature factors +70 dif_temp = 1 / TK - 1 / 281 +80 e_H = get(-99, 4) : e_H2O = get(-99, 5) : e_CO2 = get(-99, 6) : e_OA = get(-99, 7) : e_OH = get(-99, 8) +90 +100 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +110 aAl = act("Al+3") +120 aSi = act("H4SiO4") +130 R = tot("OrganicMatter") +140 +150 REM # rate by H+ +160 pkH = get(-99, 9) : nH = get(-99, 10) : yAl = get(-99, 11) : CAl = get(-99, 12) : xBC = get(-99, 13) : CBC = get(-99, 14) +170 pk_H = pkH - 3 + e_H * dif_temp +180 CAl = CAl * 1e-6 +190 CBC = CBC * 1e-6 +200 rate_H = 10^-pk_H * ACT("H+")^nH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC) +210 +220 REM # rate by hydrolysis +230 pkH2O = get(-99, 15) : yAl = get(-99, 16) : CAl = get(-99, 17) : xBC = get(-99, 18) : CBC = get(-99, 19) : zSi = get(-99, 20) : CSi = get(-99, 21) +240 CAl = CAl * 1e-6 +250 CBC = CBC * 1e-6 +260 CSi = CSi * 1e-6 +270 pk_H2O = pkH2O - 3 + e_H2O * dif_temp +280 rate_H2O = 10^-pk_H2O / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi) +290 +300 REM # rate by CO2 +310 pKCO2 = get(-99, 22) : nCO2 = get(-99, 23) +320 pk_CO2 = pkCO2 - 3 + e_CO2 * dif_temp +330 rate_CO2 = 10^-pk_CO2 * SR("CO2(g)")^nCO2 +340 +350 REM # rate by Organic Acids +360 pkOrg = get(-99, 24) : nOrg = get(-99, 25) : COrg = get(-99, 26) +370 COrg = COrg * 1e-6 +380 pk_Org = pkOrg - 3 + e_OA * dif_temp +390 rate_Org = 10^-pk_Org * (R / (1 + R / COrg))^nOrg +400 +410 REM # rate by OH- +420 pkOH = get(-99, 27) : wOH = get(-99, 28) : yAl = get(-99, 29) : CAl = get(-99, 30) : xBC = get(-99, 31) : CBC = get(-99, 32) : zSi = get(-99, 33) : CSi = get(-99, 34) +430 CAl = CAl * 1e-6 +440 CBC = CBC * 1e-6 +450 CSi = CSi * 1e-6 +460 pk_OH = pkOH - 3 + e_OH * dif_temp +470 rate_OH = 10^-pk_OH * ACT("OH-")^wOH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi)# : print rate_OH +480 +490 rate = rate_H + rate_H2O + rate_CO2 + rate_Org + rate_OH +500 area = sp_area * M0 * (M / M0)^0.67 +510 +520 rate = roughness * area * rate * affinity +530 SAVE rate * TIME +-end + +Hermanska_rate +# in KINETICS, define 14 parms: +# parms affinity m^2/mol roughness, (TABLE 2): (acid)logk25 Aa Ea na (neutral)logk25 Ab Eb (basic)logk25 Ac Ec nc +# (Note that logk25 values are not used, they were transformed to A's.) +10 affinity = get(-99, 1) # retrieve number from memory +20 +30 REM # specific area m2/mol, surface roughness +40 sp_area = get(-99, 2) : roughness = get(-99, 3) +50 +60 REM # gas constant * Tk, act("H+") +70 RT = 8.314e-3 * TK : aH = act("H+") +80 +90 REM # rate by H+ +100 lgk_H = get(-99, 4) : Aa = get(-99, 5) : e_H = get(-99, 6) : nH = get(-99, 7) +110 rate_H = Aa * exp(- e_H / RT) * aH^nH +120 +130 REM # rate by hydrolysis +140 lgk_H2O = get(-99, 8) : Ab = get(-99, 9) : e_H2O = get(-99, 10) +150 rate_H2O = Ab * exp(- e_H2O / RT) +160 +170 REM # rate by OH- +180 lgk_OH = get(-99, 11) : Ac = get(-99, 12) : e_OH = get(-99, 13) : nOH = get(-99, 14) +190 rate_OH = Ac * exp(- e_OH / RT) * aH^nOH +200 +210 rate = rate_H + rate_H2O + rate_OH +220 area = sp_area * M0 * (M / M0)^0.67 +230 +240 rate = area * roughness * rate * affinity +250 SAVE rate * TIME +-end + ########### #K-feldspar ########### From 39130824b7146ae84d98998c961a2de0d2548fa8 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Fri, 15 Mar 2024 15:29:35 -0600 Subject: [PATCH 128/384] Tony's changes Mar 15, 2024 --- pitzer.dat | 68 ++++++++++++++++++++++++++---------------------------- 1 file changed, 33 insertions(+), 35 deletions(-) diff --git a/pitzer.dat b/pitzer.dat index 3de400ef..4d86d0da 100644 --- a/pitzer.dat +++ b/pitzer.dat @@ -36,47 +36,45 @@ Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 - -dw 9.31e-9 721 6.094 0.8090 3.161 24.01 # The dw parameters are defined in ref. 3. -# Dw(25 C) dw_T a a2 visc a3 -# Dw(TK) = 9.31e-9 * exp(721 / TK - 721 / 298.15) * viscos_0_25 / viscos_0_tc * (viscos_0_tc / viscos)^3.161 + -dw 9.31e-9 823 5.314 0 3.0 24.01 # The dw parameters are # Dw(TK) = 9.31e-9 * exp(823 / TK - 823 / 298.15) * viscos_0_25 / viscos_0_tc * (viscos_0_tc / viscos)^3.0 # a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024 -# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0) / 5.2)^a2 * mu^0.5 (a3 = 5.2 = default, can be changed) in Falkenhagen's eqn. -# a3 = -10 ? ka = DH_B * a * mu^a2 in Falkenhagen's eqn. (Define a3 = -10), in CO3-2 and HCO3- +# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5 in DHO eqn. +# a3 = -10 ? ka = DH_B * a * mu^a2 in DHO. (Define a3 = -10.) # -5 < a3 < 5 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) e- = e- H2O = H2O -dw 2.299e-9 -254 Li+ = Li+ -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # The apparent volume parameters are defined in ref. 1 & 2. For Li+ additional data from Ellis, 1968, J. Chem. Soc. A, 1138 - -viscosity 0.162 -2.41e-2 3.91e-2 9.6e-4 6.3e-4 2.094 - -dw 1.03e-9 -3 4.050 5.511 3.0 + -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl + -dw 1.03e-9 -14 4.03 0.8341 1.679 Na+ = Na+ -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # for calculating densities (rho) when I > 3... - # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 + # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 - -dw 1.33e-9 -116 4.386 -2.808 0.6212 + -dw 1.33e-9 75 3.627 0 0.7037 K+ = K+ - -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 -viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028 - -dw 1.96e-9 258 3.048 1.746 0.4695 + -dw 1.96e-9 254 3.484 0 0.1964 Mg+2 = Mg+2 - -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 - -dw 0.705e-9 48 11.92 -2.921 0.9631 + -dw 0.705e-9 -4 5.569 0 1.047 Ca+2 = Ca+2 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M - -dw 0.792e-9 -196 11.80 -2.743 0.9738 + -dw 0.792e-9 34 5.411 0 1.046 Sr+2 = Sr+2 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 + -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 - -dw 0.794e-9 80 25 -2.335 3.0 + -dw 0.794e-9 160 0.680 0.767 1e-9 0.912 Ba+2 = Ba+2 -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 - -viscosity 0.339 -0.226 1.38e-2 3.06e-2 0 0.768 - -dw 0.848e-9 -35 22.78 -2.560 3.0 + -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 + -dw 0.848e-9 174 10.53 0 3.0 Mn+2 = Mn+2 -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # ref. 2 -dw 0.688e-9 @@ -84,24 +82,24 @@ Fe+2 = Fe+2 -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 -dw 0.719e-9 Cl- = Cl- - -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 -viscosity 0 0 0 0 0 0 1 # the reference solute - -dw 2.033e-9 154 3.209 0.6865 0.7555 + -dw 2.033e-9 216 3.160 0.2071 0.7432 CO3-2 = CO3-2 -Vm 8.569 -10.40 -19.38 3e-4 4.61 0 2.99 0 -3.23e-2 0.872 - -viscosity -0.117 0.303 1.60e-2 4.4e-4 -2.85e-2 1.432 -2.01 - -dw 0.955e-9 17 4.219 0.3648 0.5628 -10 + -viscosity 0 0.296 3.63e-2 2e-4 -1.90e-2 1.881 -1.754 + -dw 0.955e-9 -60 2.257 0.1022 0.4136 SO4-2 = SO4-2 -Vm -7.77 43.17 141.1 -42.45 3.794 0.3377 -2.6556 352.2 1.647e-3 0.3786 -viscosity -1.11e-2 0.1534 1.72e-2 4.45e-4 2.03e-2 2.986 0.248 - -dw 1.07e-9 7 2.826 0.101 0.6919 + -dw 1.07e-9 -68 0.3946 0.9106 0.8941 B(OH)3 = B(OH)3 -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt -dw 1.1e-9 Br- = Br- - -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 # ref. 2 + -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 -viscosity -1.16e-2 -5.23e-2 5.54e-2 1.22e-2 0.119 0.9969 0.818 - -dw 2.01e-9 117 5.941 -2.583 1e-9 + -dw 2.01e-9 139 2.949 0 1.321 H4SiO4 = H4SiO4 -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 -dw 1.10e-9 @@ -126,14 +124,13 @@ H2O = OH- + H+ -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 -viscosity -5.45e-2 0.142 1.45e-2 -3e-5 0 3.231 -1.791 # < 5 M Li,Na,KOH - -dw 5.27e-9 467 1.779 0.4280 0.3124 + -dw 5.27e-9 491 1.851 0 0.3256 CO3-2 + H+ = HCO3- - log_k 10.3393 - delta_h -3.561 kcal + log_k 10.3393; delta_h -3.561 kcal -analytic 107.8975 0.03252849 -5151.79 -38.92561 563713.9 -Vm 9.463 -2.49 -11.92 0 1.63 0 0 130 0 0.691 - -viscosity -1 1.34 -5.06e-3 1.29e-2 1.81e-2 -1.306 1.08 - -dw 1.18e-9 -133 3.421 0.2629 1e-9 -10 + -viscosity 0 0.633 7.2e-3 0 0 0 1.087 + -dw 1.18e-9 -108 9.955 0 1.4928 CO3-2 + 2 H+ = CO2 + H2O log_k 16.6767 delta_h -5.738 kcal @@ -141,10 +138,11 @@ CO3-2 + 2 H+ = CO2 + H2O -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 SO4-2 + H+ = HSO4- - log_k 1.979; delta_h 4.91 kcal - -analytic -5.3585 0.0183412 557.2461 - -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 - -dw 1.10e-9 165 25 0 1e-9 # a * Vm correction + -log_k 1.988; -delta_h 3.85 kcal + -analytic -56.889 0.006473 2307.9 19.8858 + -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -viscosity 3.29e-2 -4.86e-2 0.409 1e-5 4.23e-2 1.069 0.7371 + -dw 0.731e-9 1e3 7.082 3.0 0.860 H2Sg = HSg- + H+ log_k -6.994 delta_h 5.30 kcal From 5c6d1c5ab15b34ba3ed3daff4864925064141150 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Fri, 15 Mar 2024 15:32:39 -0600 Subject: [PATCH 129/384] Tony's changes Mar 15, 2024 --- kinetic_rates.dat | 18 +++++++++++++----- 1 file changed, 13 insertions(+), 5 deletions(-) diff --git a/kinetic_rates.dat b/kinetic_rates.dat index 025e403a..6f9ae3e6 100644 --- a/kinetic_rates.dat +++ b/kinetic_rates.dat @@ -1,7 +1,6 @@ -# Subroutines for calculating mineral dissolution rates from Palandri and Kharaka (2004) and Sverdrup et al. (2019). -# It facilitates to use the kinetic rates for various minerals compiled by these authors. +# Subroutines for calculating mineral dissolution rates from compilations by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023. # Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters. - # The data are entered in a KINETICS block with -parms. For example: + # The data are entered in a KINETICS block with -parms. For example for the Albite rate of Palandri and Kharaka, Table 13: # KINETICS 1 # Albite_PK @@ -17,12 +16,12 @@ # RATES # Albite_PK # Palandri and Kharaka, 2004 # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END - # 20 put(affinity, -99, 1) # store number in memory + # 20 put(affinity, -99, 1) # store value in memory # 30 for i = 2 to 11 : put(parm(i), -99, i) : next i # 40 SAVE calc_value("Palandri_rate") # -end -# For an example file using the rates, see: kinetic_rates.phr +# For an example file using the rates, see: kinetic_rates.phr in https://www.hydrochemistry.eu/exmpls/kin_silicates.html # References # Palandri, J.L. and Kharaka, J.K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068. @@ -32,6 +31,9 @@ CALCULATE_VALUES Palandri_rate +# in KINETICS, define 11 parms: +# affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH +# parm number 1 2 3, 4 5 6, 7 8, 9 10 11 10 affinity = get(-99, 1) # retrieve number from memory 20 30 REM # specific area m2/mol, surface roughness @@ -60,6 +62,9 @@ Palandri_rate -end Sverdrup_rate +# in KINETICS, define 34 parms: +# affinity m^2/mol roughness, temperature_factors (TABLE 4): e_H e_H2O e_CO2 e_OA e_OH,\ +# (TABLE 3): pkH nH yAl CAl xBC CBC, pKH2O yAl CAl xBC CBC zSi CSi, pKCO2 nCO2 pkOrg nOrg COrg, pkOH wOH yAl CAl xBC CBC zSi CSi 10 affinity = get(-99, 1) 20 30 REM # specific area m2/mol, surface roughness @@ -116,6 +121,9 @@ Sverdrup_rate -end Hermanska_rate +# in KINETICS, define 14 parms: +# parms affinity m^2/mol roughness, (TABLE 2): (acid)logk25 Aa Ea na (neutral)logk25 Ab Eb (basic)logk25 Ac Ec nc +# (Note that logk25 values are not used, they were transformed to A's.) 10 affinity = get(-99, 1) # retrieve number from memory 20 30 REM # specific area m2/mol, surface roughness From d18452f369eca8cdfa6a44bf1fc52d0524084141 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Fri, 15 Mar 2024 23:20:47 -0600 Subject: [PATCH 130/384] All test cases run. Fixed CALCULATED_VALUES and RATES in Amm.dat and phreeqc.dat --- Amm.dat | 111 ++++++++++++++++++++++++---------------------------- phreeqc.dat | 111 ++++++++++++++++++++++++---------------------------- 2 files changed, 104 insertions(+), 118 deletions(-) diff --git a/Amm.dat b/Amm.dat index 23e7317b..569be7ef 100644 --- a/Amm.dat +++ b/Amm.dat @@ -1554,62 +1554,13 @@ SURFACE_SPECIES Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69 -RATES -########### -#Quartz -########### -# -####### -# Example of quartz kinetic rates block: -# KINETICS -# Quartz -# -m0 158.8 # 90 % Qu -# -parms 0.146 1.5 -# -step 3.1536e8 in 10 -# -tol 1e-12 - -Quartz - -start -1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 -2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol -3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) -4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz -5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 - -10 dif_temp = 1/TK - 1/298 -20 pk_w = 13.7 + 4700.4 * dif_temp -40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) -# Integrate... -50 SAVE moles * TIME - -end +CALCULATE_VALUES #INCLUDE$ \phreeqc\database\kinetic_rates.dat # Loads subroutines for calculating mineral dissolution rates compiled by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023. # Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters. - # The data are entered in a KINETICS block with -parms, the 'parms' are stored in memory by the RATES block, and used by Calc_value("name"). - # For example: - - # KINETICS 1 - # Albite_PK - # -formula NaAlSi3O8 - - # # parms affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH - # # parm number 1 2 3, 4 5 6, 7 8, 9 10 11 - - # -parms 0 1 1, -10.16 65.0 0.457, -12.56 69.8, -15.60 71.0 -0.572 # parms 4-11 from TABLE 13 - - # In the RATES block, the parms are stored in memory (put(parm(i), -99, i)), and retrieved by the subroutine calc_value("Palandri_rate"), as e.g. roughness = get(-99, 3). - - # RATES - # Albite_PK # Palandri and Kharaka, 2004 - # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END - # 20 put(affinity, -99, 1) # store number in memory - # 30 for i = 2 to 11 : put(parm(i), -99, i) : next i - # 40 SAVE calc_value("Palandri_rate") - # -end - # For an example file using the rates, see: kinetic_rates.phr from https://www.hydrochemistry.eu/exmpls/kin_silicates.html # References @@ -1640,15 +1591,6 @@ Quartz # 40 SAVE calc_value("Palandri_rate") # -end -# For an example file using the rates, see: kinetic_rates.phr in https://www.hydrochemistry.eu/exmpls/kin_silicates.html - -# References -# Palandri, J.L. and Kharaka, J.K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068. -# Sverdrup, H.U., Oelkers, E., Erlandsson Lampa, M., Belyazid, S., Kurz, D. and Akselsson, C. (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58. -# Hermansk, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2022. A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807 -# Hermansk, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2023. A comprehensive and consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chemical Geology, p.121632. - -CALCULATE_VALUES Palandri_rate # in KINETICS, define 11 parms: # affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH @@ -1770,6 +1712,36 @@ Hermanska_rate 250 SAVE rate * TIME -end +RATES + +########### +#Quartz +########### +# +####### +# Example of quartz kinetic rates block: +# KINETICS +# Quartz +# -m0 158.8 # 90 % Qu +# -parms 0.146 1.5 +# -step 3.1536e8 in 10 +# -tol 1e-12 + +Quartz + -start +1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 +2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol +3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) +4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz +5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 + +10 dif_temp = 1/TK - 1/298 +20 pk_w = 13.7 + 4700.4 * dif_temp +40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) +# Integrate... +50 SAVE moles * TIME + -end + ########### #K-feldspar ########### @@ -2042,6 +2014,27 @@ Pyrolusite 110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME 200 SAVE moles * SOLN_VOL -end + +Albite_PK # Palandri and Kharaka, 2004 +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END +20 put(affinity, -99, 1) # store value in memory +30 for i = 2 to 11 : put(parm(i), -99, i) : next i +40 SAVE calc_value("Palandri_rate") +-end + +Albite_Svd # Sverdrup, 2019 +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END +20 put(affinity, -99, 1) +30 for i = 2 to 34 : put(parm(i), -99, i) : next i +40 save calc_value("Sverdrup_rate") +-end + +Albite_Hermanska # Hermanska et al., 2022, 2023 +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END +20 put(affinity, -99, 1) # store value in memory +30 for i = 2 to 14 : put(parm(i), -99, i) : next i +40 SAVE calc_value("Hermanska_rate") +-end END # ============================================================================================= #(a) means amorphous. (d) means disordered, or less crystalline. diff --git a/phreeqc.dat b/phreeqc.dat index d86c7aad..d632cbd4 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -1566,62 +1566,13 @@ SURFACE_SPECIES Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69 -RATES -########### -#Quartz -########### -# -####### -# Example of quartz kinetic rates block: -# KINETICS -# Quartz -# -m0 158.8 # 90 % Qu -# -parms 0.146 1.5 -# -step 3.1536e8 in 10 -# -tol 1e-12 - -Quartz - -start -1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 -2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol -3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) -4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz -5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 - -10 dif_temp = 1/TK - 1/298 -20 pk_w = 13.7 + 4700.4 * dif_temp -40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) -# Integrate... -50 SAVE moles * TIME - -end +CALCULATE_VALUES #INCLUDE$ \phreeqc\database\kinetic_rates.dat # Loads subroutines for calculating mineral dissolution rates compiled by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023. # Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters. - # The data are entered in a KINETICS block with -parms, the 'parms' are stored in memory by the RATES block, and used by Calc_value("name"). - # For example: - - # KINETICS 1 - # Albite_PK - # -formula NaAlSi3O8 - - # # parms affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH - # # parm number 1 2 3, 4 5 6, 7 8, 9 10 11 - - # -parms 0 1 1, -10.16 65.0 0.457, -12.56 69.8, -15.60 71.0 -0.572 # parms 4-11 from TABLE 13 - - # In the RATES block, the parms are stored in memory (put(parm(i), -99, i)), and retrieved by the subroutine calc_value("Palandri_rate"), as e.g. roughness = get(-99, 3). - - # RATES - # Albite_PK # Palandri and Kharaka, 2004 - # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END - # 20 put(affinity, -99, 1) # store number in memory - # 30 for i = 2 to 11 : put(parm(i), -99, i) : next i - # 40 SAVE calc_value("Palandri_rate") - # -end - # For an example file using the rates, see: kinetic_rates.phr from https://www.hydrochemistry.eu/exmpls/kin_silicates.html # References @@ -1652,15 +1603,6 @@ Quartz # 40 SAVE calc_value("Palandri_rate") # -end -# For an example file using the rates, see: kinetic_rates.phr in https://www.hydrochemistry.eu/exmpls/kin_silicates.html - -# References -# Palandri, J.L. and Kharaka, J.K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068. -# Sverdrup, H.U., Oelkers, E., Erlandsson Lampa, M., Belyazid, S., Kurz, D. and Akselsson, C. (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58. -# Hermansk, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2022. A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807 -# Hermansk, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2023. A comprehensive and consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chemical Geology, p.121632. - -CALCULATE_VALUES Palandri_rate # in KINETICS, define 11 parms: # affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH @@ -1782,6 +1724,36 @@ Hermanska_rate 250 SAVE rate * TIME -end +RATES + +########### +#Quartz +########### +# +####### +# Example of quartz kinetic rates block: +# KINETICS +# Quartz +# -m0 158.8 # 90 % Qu +# -parms 0.146 1.5 +# -step 3.1536e8 in 10 +# -tol 1e-12 + +Quartz + -start +1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 +2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol +3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) +4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz +5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 + +10 dif_temp = 1/TK - 1/298 +20 pk_w = 13.7 + 4700.4 * dif_temp +40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) +# Integrate... +50 SAVE moles * TIME + -end + ########### #K-feldspar ########### @@ -2054,6 +2026,27 @@ Pyrolusite 110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME 200 SAVE moles * SOLN_VOL -end + +Albite_PK # Palandri and Kharaka, 2004 +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END +20 put(affinity, -99, 1) # store value in memory +30 for i = 2 to 11 : put(parm(i), -99, i) : next i +40 SAVE calc_value("Palandri_rate") +-end + +Albite_Svd # Sverdrup, 2019 +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END +20 put(affinity, -99, 1) +30 for i = 2 to 34 : put(parm(i), -99, i) : next i +40 save calc_value("Sverdrup_rate") +-end + +Albite_Hermanska # Hermanska et al., 2022, 2023 +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END +20 put(affinity, -99, 1) # store value in memory +30 for i = 2 to 14 : put(parm(i), -99, i) : next i +40 SAVE calc_value("Hermanska_rate") +-end END # ============================================================================================= #(a) means amorphous. (d) means disordered, or less crystalline. From 22eb9506866dbce35ae69811760e51e5fc785b5c Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Tue, 26 Mar 2024 17:51:00 -0600 Subject: [PATCH 131/384] normalized text files --- EPRI/epri_cdmusic.dat | 25974 ++++++++--------- core10.dat | 13646 ++++----- llnl-organics/llnl_organics.dat | 45668 +++++++++++++++--------------- 3 files changed, 42644 insertions(+), 42644 deletions(-) diff --git a/EPRI/epri_cdmusic.dat b/EPRI/epri_cdmusic.dat index ce9db7db..d1ff88de 100644 --- a/EPRI/epri_cdmusic.dat +++ b/EPRI/epri_cdmusic.dat @@ -1,12987 +1,12987 @@ -# $Id: minteq.v4.dat 794 2006-02-27 21:06:22Z dlpark $ -# expanded with CD-MUSIC parameters for sorption of oxyanions on goethite and HFO 1/14/2009 dv -# -SOLUTION_MASTER_SPECIES -Alkalinity CO3-2 2.0 HCO3 61.0173 -E e- 0 0 0 -O H2O 0 O 16.00 -O(-2) H2O 0 O -O(0) O2 0 O -Ag Ag+ 0.0 Ag 107.868 -Al Al+3 0.0 Al 26.9815 -As H3AsO4 -1.0 As 74.9216 -As(3) H3AsO3 0.0 As -As(5) H3AsO4 -1.0 As -B H3BO3 0.0 B 10.81 -Ba Ba+2 0.0 Ba 137.33 -Be Be+2 0.0 Be 9.0122 -Br Br- 0.0 Br 79.904 -C CO3-2 2.0 CO3 12.0111 -C(4) CO3-2 2.0 CO3 12.0111 -Cyanide Cyanide- 1.0 Cyanide 26.0177 -Dom_a Dom_a 0.0 C 12.0111 -Dom_b Dom_b 0.0 C 12.0111 -Dom_c Dom_c 0.0 C 12.0111 -Ca Ca+2 0.0 Ca 40.078 -Cd Cd+2 0.0 Cd 112.41 -Cl Cl- 0.0 Cl 35.453 -Co Co+3 -1.0 Co 58.9332 -Co(2) Co+2 0.0 Co -Co(3) Co+3 -1.0 Co -Cr CrO4-2 1.0 Cr 51.996 -Cr(2) Cr+2 0.0 Cr -Cr(3) Cr(OH)2+ 0.0 Cr -Cr(6) CrO4-2 1.0 Cr -Cu Cu+2 0.0 Cu 63.546 -Cu(1) Cu+ 0.0 Cu -Cu(2) Cu+2 0.0 Cu -F F- 0.0 F 18.9984 -Fe Fe+3 -2.0 Fe 55.847 -Fe(2) Fe+2 0.0 Fe -Fe(3) Fe+3 -2.0 Fe -H H+ -1.0 H 1.0079 -H(0) H2 0 H -H(1) H+ -1.0 H -Hg Hg(OH)2 0.0 Hg 200.59 -Hg(0) Hg 0.0 Hg -Hg(1) Hg2+2 0.0 Hg -Hg(2) Hg(OH)2 0.0 Hg -I I- 0.0 I 126.904 -K K+ 0.0 K 39.0983 -Li Li+ 0.0 Li 6.941 -Mg Mg+2 0.0 Mg 24.305 -Mn Mn+3 0.0 Mn 54.938 -Mn(2) Mn+2 0.0 Mn -Mn(3) Mn+3 0.0 Mn -Mn(6) MnO4-2 0.0 Mn -Mn(7) MnO4- 0.0 Mn -Mo MoO4-2 0.0 Mo 95.94 -N NO3- 0.0 N 14.0067 -N(-3) NH4+ 0.0 N -N(3) NO2- 0.0 N -N(5) NO3- 0.0 N -Na Na+ 0.0 Na 22.9898 -Ni Ni+2 0.0 Ni 58.69 -P PO4-3 2.0 P 30.9738 -Pb Pb+2 0.0 Pb 207.2 -S SO4-2 0.0 SO4 32.066 -S(-2) HS- 1.0 S -#S(0) S 0.0 S -S(6) SO4-2 0.0 SO4 -Sb Sb(OH)6- 0.0 Sb 121.75 -Sb(3) Sb(OH)3 0.0 Sb -Sb(5) Sb(OH)6- 0.0 Sb -Se SeO4-2 0.0 Se 78.96 -Se(-2) HSe- 0.0 Se -Se(4) HSeO3- 0.0 Se -Se(6) SeO4-2 0.0 Se -Si H4SiO4 0.0 SiO2 28.0843 -Sn Sn(OH)6-2 0.0 Sn 118.71 -Sn(2) Sn(OH)2 0.0 Sn -Sn(4) Sn(OH)6-2 0.0 Sn -Sr Sr+2 0.0 Sr 87.62 -Tl Tl(OH)3 0.0 Tl 204.383 -Tl(1) Tl+ 0.0 Tl -Tl(3) Tl(OH)3 0.0 Tl -U UO2+2 0.0 U 238.029 -U(3) U+3 0.0 U -U(4) U+4 -4.0 U -U(5) UO2+ 0.0 U -U(6) UO2+2 0.0 U -V VO2+ -2.0 V 50.94 -V(2) V+2 0.0 V -V(3) V+3 -3.0 V -V(4) VO+2 0.0 V -V(5) VO2+ -2.0 V -Zn Zn+2 0.0 Zn 65.39 -Benzoate Benzoate- 0.0 121.116 121.116 -Phenylacetate Phenylacetate- 0.0 135.142 135.142 -Isophthalate Isophthalate-2 0.0 164.117 164.117 -Diethylamine Diethylamine 1.0 73.138 73.138 -Butylamine Butylamine 1.0 73.138 73.138 -Methylamine Methylamine 1.0 31.057 31.057 -Dimethylamine Dimethylamine 1.0 45.084 45.084 -Hexylamine Hexylamine 1.0 101.192 101.192 -Ethylenediamine Ethylenediamine 2.0 60.099 60.099 -Propylamine Propylamine 1.0 59.111 59.111 -Isopropylamine Isopropylamine 1.0 59.111 59.111 -Trimethylamine Trimethylamine 1.0 59.111 59.111 -Citrate Citrate-3 2.0 189.102 189.102 -Nta Nta-3 1.0 188.117 188.117 -Edta Edta-4 2.0 288.214 288.214 -Propionate Propionate- 1.0 73.072 73.072 -Butyrate Butyrate- 1.0 87.098 87.098 -Isobutyrate Isobutyrate- 1.0 87.098 87.098 -Two_picoline Two_picoline 1.0 93.128 93.128 -Three_picoline Three_picoline 1.0 93.128 93.128 -Four_picoline Four_picoline 1.0 93.128 93.128 -Formate Formate- 0.0 45.018 45.018 -Isovalerate Isovalerate- 1.0 101.125 101.125 -Valerate Valerate- 1.0 101.125 101.125 -Acetate Acetate- 1.0 59.045 59.045 -Tartarate Tartarate-2 0.0 148.072 148.072 -Glycine Glycine- 1.0 74.059 74.059 -Salicylate Salicylate-2 1.0 136.107 136.107 -Glutamate Glutamate-2 1.0 145.115 145.115 -Phthalate Phthalate-2 1.0 164.117 164.117 -SOLUTION_SPECIES -e- = e- - log_k 0 -H2O = H2O - log_k 0 -Ag+ = Ag+ - log_k 0 -Al+3 = Al+3 - log_k 0 -H3AsO4 = H3AsO4 - log_k 0 -H3BO3 = H3BO3 - log_k 0 -Ba+2 = Ba+2 - log_k 0 -Be+2 = Be+2 - log_k 0 -Br- = Br- - log_k 0 -CO3-2 = CO3-2 - log_k 0 -Cyanide- = Cyanide- - log_k 0 -Dom_a = Dom_a - log_k 0 -Dom_b = Dom_b - log_k 0 -Dom_c = Dom_c - log_k 0 -Ca+2 = Ca+2 - log_k 0 -Cd+2 = Cd+2 - log_k 0 -Cl- = Cl- - log_k 0 -Co+3 = Co+3 - log_k 0 -CrO4-2 = CrO4-2 - log_k 0 -Cu+2 = Cu+2 - log_k 0 -F- = F- - log_k 0 -Fe+3 = Fe+3 - log_k 0 -H+ = H+ - log_k 0 -Hg(OH)2 = Hg(OH)2 - log_k 0 -I- = I- - log_k 0 -K+ = K+ - log_k 0 -Li+ = Li+ - log_k 0 -Mg+2 = Mg+2 - log_k 0 -Mn+3 = Mn+3 - log_k 0 -MoO4-2 = MoO4-2 - log_k 0 -NO3- = NO3- - log_k 0 -Na+ = Na+ - log_k 0 -Ni+2 = Ni+2 - log_k 0 -PO4-3 = PO4-3 - log_k 0 -Pb+2 = Pb+2 - log_k 0 -SO4-2 = SO4-2 - log_k 0 -Sb(OH)6- = Sb(OH)6- - log_k 0 -SeO4-2 = SeO4-2 - log_k 0 -H4SiO4 = H4SiO4 - log_k 0 -Sn(OH)6-2 = Sn(OH)6-2 - log_k 0 -Sr+2 = Sr+2 - log_k 0 -Tl(OH)3 = Tl(OH)3 - log_k 0 -UO2+2 = UO2+2 - log_k 0 -VO2+ = VO2+ - log_k 0 -Benzoate- = Benzoate- - log_k 0 -Phenylacetate- = Phenylacetate- - log_k 0 -Isophthalate-2 = Isophthalate-2 - log_k 0 -Zn+2 = Zn+2 - log_k 0 -Diethylamine = Diethylamine - log_k 0 -Butylamine = Butylamine - log_k 0 -Methylamine = Methylamine - log_k 0 -Dimethylamine = Dimethylamine - log_k 0 -Hexylamine = Hexylamine - log_k 0 -Ethylenediamine = Ethylenediamine - log_k 0 -Propylamine = Propylamine - log_k 0 -Isopropylamine = Isopropylamine - log_k 0 -Trimethylamine = Trimethylamine - log_k 0 -Citrate-3 = Citrate-3 - log_k 0 -Nta-3 = Nta-3 - log_k 0 -Edta-4 = Edta-4 - log_k 0 -Propionate- = Propionate- - log_k 0 -Butyrate- = Butyrate- - log_k 0 -Isobutyrate- = Isobutyrate- - log_k 0 -Two_picoline = Two_picoline - log_k 0 -Three_picoline = Three_picoline - log_k 0 -Four_picoline = Four_picoline - log_k 0 -Formate- = Formate- - log_k 0 -Isovalerate- = Isovalerate- - log_k 0 -Valerate- = Valerate- - log_k 0 -Acetate- = Acetate- - log_k 0 -Tartarate-2 = Tartarate-2 - log_k 0 -Glycine- = Glycine- - log_k 0 -Salicylate-2 = Salicylate-2 - log_k 0 -Glutamate-2 = Glutamate-2 - log_k 0 -Phthalate-2 = Phthalate-2 - log_k 0 -SOLUTION_SPECIES -Fe+3 + e- = Fe+2 - log_k 13.032 - delta_h -42.7 kJ - -gamma 0 0 - # Id: 2802810 - # log K source: Bard85 - # Delta H source: Bard85 - #T and ionic strength: -H3AsO4 + 2e- + 2H+ = H3AsO3 + H2O - log_k 18.898 - delta_h -125.6 kJ - -gamma 0 0 - # Id: 600610 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -Sb(OH)6- + 2e- + 3H+ = Sb(OH)3 + 3H2O - log_k 24.31 - delta_h 0 kJ - -gamma 0 0 - # Id: 7407410 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -UO2+2 + 3e- + 4H+ = U+3 + 2H2O - log_k 0.42 - delta_h -42 kJ - -gamma 0 0 - # Id: 8908930 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -UO2+2 + 2e- + 4H+ = U+4 + 2H2O - log_k 9.216 - delta_h -144.1 kJ - -gamma 0 0 - # Id: 8918930 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -UO2+2 + e- = UO2+ - log_k 2.785 - delta_h -13.8 kJ - -gamma 0 0 - # Id: 8928930 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -e- + Mn+3 = Mn+2 - log_k 25.35 - delta_h -107.8 kJ - -gamma 0 0 - # Id: 4704710 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -Co+3 + e- = Co+2 - log_k 32.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2002010 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cu+2 + e- = Cu+ - log_k 2.69 - delta_h 6.9 kJ - -gamma 0 0 - # Id: 2302310 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -V+3 + e- = V+2 - log_k -4.31 - delta_h 0 kJ - -gamma 0 0 - # Id: 9009010 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -VO+2 + e- + 2H+ = V+3 + H2O - log_k 5.696 - delta_h 0 kJ - -gamma 0 0 - # Id: 9019020 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -VO2+ + e- + 2H+ = VO+2 + H2O - log_k 16.903 - delta_h -122.7 kJ - -gamma 0 0 - # Id: 9029030 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -SO4-2 + 9H+ + 8e- = HS- + 4H2O - log_k 33.66 - delta_h -60.14 kJ - -gamma 0 0 - # Id: 7307320 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Sn(OH)6-2 + 2e- + 4H+ = Sn(OH)2 + 4H2O - log_k 19.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 7907910 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -Tl(OH)3 + 2e- + 3H+ = Tl+ + 3H2O - log_k 45.55 - delta_h 0 kJ - -gamma 0 0 - # Id: 8708710 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -HSeO3- + 6e- + 6H+ = HSe- + 3H2O - log_k 44.86 - delta_h 0 kJ - -gamma 0 0 - # Id: 7607610 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -SeO4-2 + 2e- + 3H+ = HSeO3- + H2O - log_k 36.308 - delta_h -201.2 kJ - -gamma 0 0 - # Id: 7617620 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -0.5Hg2+2 + e- = Hg - log_k 6.5667 - delta_h -45.735 kJ - -gamma 0 0 - # Id: 3600000 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: - -2Hg(OH)2 + 4H+ + 2e- = Hg2+2 + 4H2O - log_k 43.185 - delta_h -63.59 kJ - -gamma 0 0 - # Id: 3603610 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cr(OH)2+ + 2H+ + e- = Cr+2 + 2H2O - log_k 2.947 - delta_h 6.36 kJ - -gamma 0 0 - # Id: 2102110 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -CrO4-2 + 6H+ + 3e- = Cr(OH)2+ + 2H2O - log_k 67.376 - delta_h -103 kJ - -gamma 0 0 - # Id: 2112120 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: - -2H2O = O2 + 4H+ + 4e- -# Adjusted for equation to aqueous species - log_k -85.9951 - -analytic 38.0229 7.99407E-03 -2.7655e+004 -1.4506e+001 199838.45 - -2 H+ + 2 e- = H2 - log_k -3.15 - delta_h -1.759 kcal - -NO3- + 2 H+ + 2 e- = NO2- + H2O - log_k 28.570 - delta_h -43.760 kcal - -gamma 3.0000 0.0000 - -NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O - log_k 119.077 - delta_h -187.055 kcal - -gamma 2.5000 0.0000 - -Mn+2 + 4H2O = MnO4- + 8H+ + 5e- - log_k -127.794 - delta_h 822.67 kJ - -gamma 3 0 - # Id: 4700020 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Mn+2 + 4H2O = MnO4-2 + 8H+ + 4e- - log_k -118.422 - delta_h 711.07 kJ - -gamma 5 0 - # Id: 4700021 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -HS- = S-2 + H+ - log_k -17.3 - delta_h 49.4 kJ - -gamma 5 0 - # Id: 3307301 - # log K source: LMa1987 - # Delta H source: NIST2.1.1 - #T and ionic strength: 0.00 25.0 -HSe- = Se-2 + H+ - log_k -15 - delta_h 48.116 kJ - -gamma 0 0 - # Id: 3307601 - # log K source: SCD3.02 (1968 DKa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Tl(OH)3 + 3H+ = Tl+3 + 3H2O - log_k 3.291 - delta_h 0 kJ - -gamma 0 0 - # Id: 8713300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -0.5Hg2+2 + e- = Hg - log_k 6.5667 - delta_h -45.735 kJ - -gamma 0 0 - # Id: 3600000 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Hg(OH)2 + 2H+ = Hg+2 + 2H2O - log_k 6.194 - delta_h -39.72 kJ - -gamma 0 0 - # Id: 3613300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + 2H+ = Cr+3 + 2H2O - log_k 9.5688 - delta_h -129.62 kJ - -gamma 0 0 - # Id: 2113300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.10 20.0 -H2O = OH- + H+ - log_k -13.997 - delta_h 55.81 kJ - -gamma 3.5 0 - # Id: 3300020 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ = Sn+2 + 2H2O - log_k 7.094 - delta_h 0 kJ - -gamma 0 0 - # Id: 7903301 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Sn(OH)2 + H+ = SnOH+ + H2O - log_k 3.697 - delta_h 0 kJ - -gamma 0 0 - # Id: 7903302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Sn(OH)2 + H2O = Sn(OH)3- + H+ - log_k -9.497 - delta_h 0 kJ - -gamma 0 0 - # Id: 7903303 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -2Sn(OH)2 + 2H+ = Sn2(OH)2+2 + 2H2O - log_k 9.394 - delta_h 0 kJ - -gamma 0 0 - # Id: 7903304 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -3Sn(OH)2 + 2H+ = Sn3(OH)4+2 + 2H2O - log_k 14.394 - delta_h 0 kJ - -gamma 0 0 - # Id: 7903305 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Sn(OH)2 = HSnO2- + H+ - log_k -8.9347 - delta_h 0 kJ - -gamma 0 0 - # Id: 7903306 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -Sn(OH)6-2 + 6H+ = Sn+4 + 6H2O - log_k 21.2194 - delta_h 0 kJ - -gamma 0 0 - # Id: 7913301 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -Sn(OH)6-2 = SnO3-2 + 3H2O - log_k -2.2099 - delta_h 0 kJ - -gamma 0 0 - # Id: 7913302 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -Pb+2 + H2O = PbOH+ + H+ - log_k -7.597 - delta_h 0 kJ - -gamma 0 0 - # Id: 6003300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Pb+2 + 2H2O = Pb(OH)2 + 2H+ - log_k -17.094 - delta_h 0 kJ - -gamma 0 0 - # Id: 6003301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Pb+2 + 3H2O = Pb(OH)3- + 3H+ - log_k -28.091 - delta_h 0 kJ - -gamma 0 0 - # Id: 6003302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -2Pb+2 + H2O = Pb2OH+3 + H+ - log_k -6.397 - delta_h 0 kJ - -gamma 0 0 - # Id: 6003303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ - log_k -23.888 - delta_h 115.24 kJ - -gamma 0 0 - # Id: 6003304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Pb+2 + 4H2O = Pb(OH)4-2 + 4H+ - log_k -39.699 - delta_h 0 kJ - -gamma 0 0 - # Id: 6003305 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -4Pb+2 + 4H2O = Pb4(OH)4+4 + 4H+ - log_k -19.988 - delta_h 88.24 kJ - -gamma 0 0 - # Id: 6003306 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -H3BO3 + F- = BF(OH)3- - log_k -0.399 - delta_h 7.7404 kJ - -gamma 2.5 0 - # Id: 902700 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -H3BO3 + 2F- + H+ = BF2(OH)2- + H2O - log_k 7.63 - delta_h 6.8408 kJ - -gamma 2.5 0 - # Id: 902701 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -H3BO3 + 3F- + 2H+ = BF3OH- + 2H2O - log_k 13.22 - delta_h -20.4897 kJ - -gamma 2.5 0 - # Id: 902702 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Al+3 + H2O = AlOH+2 + H+ - log_k -4.997 - delta_h 47.81 kJ - -gamma 5.4 0 - # Id: 303300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Al+3 + 2H2O = Al(OH)2+ + 2H+ - log_k -10.094 - delta_h 0 kJ - -gamma 5.4 0 - # Id: 303301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Al+3 + 3H2O = Al(OH)3 + 3H+ - log_k -16.791 - delta_h 0 kJ - -gamma 0 0 - # Id: 303303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Al+3 + 4H2O = Al(OH)4- + 4H+ - log_k -22.688 - delta_h 173.24 kJ - -gamma 4.5 0 - # Id: 303302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Tl+ + H2O = TlOH + H+ - log_k -13.207 - delta_h 56.81 kJ - -gamma 0 0 - # Id: 8703300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Tl(OH)3 + 2H+ = TlOH+2 + 2H2O - log_k 2.694 - delta_h 0 kJ - -gamma 0 0 - # Id: 8713301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Tl(OH)3 + H+ = Tl(OH)2+ + H2O - log_k 1.897 - delta_h 0 kJ - -gamma 0 0 - # Id: 8713302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Tl(OH)3 + H2O = Tl(OH)4- + H+ - log_k -11.697 - delta_h 0 kJ - -gamma 0 0 - # Id: 8713303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Zn+2 + H2O = ZnOH+ + H+ - log_k -8.997 - delta_h 55.81 kJ - -gamma 0 0 - # Id: 9503300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Zn+2 + 2H2O = Zn(OH)2 + 2H+ - log_k -17.794 - delta_h 0 kJ - -gamma 0 0 - # Id: 9503301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Zn+2 + 3H2O = Zn(OH)3- + 3H+ - log_k -28.091 - delta_h 0 kJ - -gamma 0 0 - # Id: 9503302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Zn+2 + 4H2O = Zn(OH)4-2 + 4H+ - log_k -40.488 - delta_h 0 kJ - -gamma 0 0 - # Id: 9503303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cd+2 + H2O = CdOH+ + H+ - log_k -10.097 - delta_h 54.81 kJ - -gamma 0 0 - # Id: 1603300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cd+2 + 2H2O = Cd(OH)2 + 2H+ - log_k -20.294 - delta_h 0 kJ - -gamma 0 0 - # Id: 1603301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cd+2 + 3H2O = Cd(OH)3- + 3H+ - log_k -32.505 - delta_h 0 kJ - -gamma 0 0 - # Id: 1603302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 3.00 25.0 -Cd+2 + 4H2O = Cd(OH)4-2 + 4H+ - log_k -47.288 - delta_h 0 kJ - -gamma 0 0 - # Id: 1603303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -2Cd+2 + H2O = Cd2OH+3 + H+ - log_k -9.397 - delta_h 45.81 kJ - -gamma 0 0 - # Id: 1603304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + H+ = HgOH+ + H2O - log_k 2.797 - delta_h -18.91 kJ - -gamma 0 0 - # Id: 3613302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + H2O = Hg(OH)3- + H+ - log_k -14.897 - delta_h 0 kJ - -gamma 0 0 - # Id: 3613303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cu+2 + H2O = CuOH+ + H+ - log_k -7.497 - delta_h 35.81 kJ - -gamma 4 0 - # Id: 2313300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cu+2 + 2H2O = Cu(OH)2 + 2H+ - log_k -16.194 - delta_h 0 kJ - -gamma 0 0 - # Id: 2313301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cu+2 + 3H2O = Cu(OH)3- + 3H+ - log_k -26.879 - delta_h 0 kJ - -gamma 0 0 - # Id: 2313302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Cu+2 + 4H2O = Cu(OH)4-2 + 4H+ - log_k -39.98 - delta_h 0 kJ - -gamma 0 0 - # Id: 2313303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ - log_k -10.594 - delta_h 76.62 kJ - -gamma 0 0 - # Id: 2313304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ag+ + H2O = AgOH + H+ - log_k -11.997 - delta_h 0 kJ - -gamma 0 0 - # Id: 203300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Ag+ + 2H2O = Ag(OH)2- + 2H+ - log_k -24.004 - delta_h 0 kJ - -gamma 0 0 - # Id: 203301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Ni+2 + H2O = NiOH+ + H+ - log_k -9.897 - delta_h 51.81 kJ - -gamma 0 0 - # Id: 5403300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ni+2 + 2H2O = Ni(OH)2 + 2H+ - log_k -18.994 - delta_h 0 kJ - -gamma 0 0 - # Id: 5403301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Ni+2 + 3H2O = Ni(OH)3- + 3H+ - log_k -29.991 - delta_h 0 kJ - -gamma 0 0 - # Id: 5403302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Co+2 + H2O = CoOH+ + H+ - log_k -9.697 - delta_h 0 kJ - -gamma 0 0 - # Id: 2003300 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Co+2 + 2H2O = Co(OH)2 + 2H+ - log_k -18.794 - delta_h 0 kJ - -gamma 0 0 - # Id: 2003301 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Co+2 + 3H2O = Co(OH)3- + 3H+ - log_k -31.491 - delta_h 0 kJ - -gamma 0 0 - # Id: 2003302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Co+2 + 4H2O = Co(OH)4-2 + 4H+ - log_k -46.288 - delta_h 0 kJ - -gamma 0 0 - # Id: 2003303 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -2Co+2 + H2O = Co2OH+3 + H+ - log_k -10.997 - delta_h 0 kJ - -gamma 0 0 - # Id: 2003304 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -4Co+2 + 4H2O = Co4(OH)4+4 + 4H+ - log_k -30.488 - delta_h 0 kJ - -gamma 0 0 - # Id: 2003306 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Co+2 + 2H2O = CoOOH- + 3H+ - log_k -32.0915 - delta_h 260.454 kJ - -gamma 0 0 - # Id: 2003305 - # log K source: NIST2.1.1 - # Delta H source: MTQ3.11 - #T and ionic strength: -Co+3 + H2O = CoOH+2 + H+ - log_k -1.291 - delta_h 0 kJ - -gamma 0 0 - # Id: 2013300 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 3.00 25.0 -Fe+2 + H2O = FeOH+ + H+ - log_k -9.397 - delta_h 55.81 kJ - -gamma 5 0 - # Id: 2803300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Fe+2 + 2H2O = Fe(OH)2 + 2H+ - log_k -20.494 - delta_h 119.62 kJ - -gamma 0 0 - # Id: 2803302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Fe+2 + 3H2O = Fe(OH)3- + 3H+ - log_k -28.991 - delta_h 126.43 kJ - -gamma 5 0 - # Id: 2803301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Fe+3 + H2O = FeOH+2 + H+ - log_k -2.187 - delta_h 41.81 kJ - -gamma 5 0 - # Id: 2813300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Fe+3 + 2H2O = Fe(OH)2+ + 2H+ - log_k -4.594 - delta_h 0 kJ - -gamma 5.4 0 - # Id: 2813301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Fe+3 + 3H2O = Fe(OH)3 + 3H+ - log_k -12.56 - delta_h 103.8 kJ - -gamma 0 0 - # Id: 2813302 - # log K source: Nord90 - # Delta H source: Nord90 - #T and ionic strength: 0.00 25.0 -Fe+3 + 4H2O = Fe(OH)4- + 4H+ - log_k -21.588 - delta_h 0 kJ - -gamma 5.4 0 - # Id: 2813303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -2Fe+3 + 2H2O = Fe2(OH)2+4 + 2H+ - log_k -2.854 - delta_h 57.62 kJ - -gamma 0 0 - # Id: 2813304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -3Fe+3 + 4H2O = Fe3(OH)4+5 + 4H+ - log_k -6.288 - delta_h 65.24 kJ - -gamma 0 0 - # Id: 2813305 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Mn+2 + H2O = MnOH+ + H+ - log_k -10.597 - delta_h 55.81 kJ - -gamma 5 0 - # Id: 4703300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Mn+2 + 3H2O = Mn(OH)3- + 3H+ - log_k -34.8 - delta_h 0 kJ - -gamma 5 0 - # Id: 4703301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Mn+2 + 4H2O = Mn(OH)4-2 + 4H+ - log_k -48.288 - delta_h 0 kJ - -gamma 5 0 - # Id: 4703302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Mn+2 + 4H2O = MnO4- + 8H+ + 5e- - log_k -127.794 - delta_h 822.67 kJ - -gamma 3 0 - # Id: 4700020 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Mn+2 + 4H2O = MnO4-2 + 8H+ + 4e- - log_k -118.422 - delta_h 711.07 kJ - -gamma 5 0 - # Id: 4700021 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Cr(OH)2+ + H+ = Cr(OH)+2 + H2O - log_k 5.9118 - delta_h -77.91 kJ - -gamma 0 0 - # Id: 2113301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + H2O = Cr(OH)3 + H+ - log_k -8.4222 - delta_h 0 kJ - -gamma 0 0 - # Id: 2113302 - # log K source: SCD3.02 (1983 RCa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + 2H2O = Cr(OH)4- + 2H+ - log_k -17.8192 - delta_h 0 kJ - -gamma 0 0 - # Id: 2113303 - # log K source: SCD3.02 (1983 RCa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cr(OH)2+ = CrO2- + 2H+ - log_k -17.7456 - delta_h 0 kJ - -gamma 0 0 - # Id: 2113304 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -V+2 + H2O = VOH+ + H+ - log_k -6.487 - delta_h 59.81 kJ - -gamma 0 0 - # Id: 9003300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -V+3 + H2O = VOH+2 + H+ - log_k -2.297 - delta_h 43.81 kJ - -gamma 0 0 - # Id: 9013300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -V+3 + 2H2O = V(OH)2+ + 2H+ - log_k -6.274 - delta_h 0 kJ - -gamma 0 0 - # Id: 9013301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 -V+3 + 3H2O = V(OH)3 + 3H+ - log_k -3.0843 - delta_h 0 kJ - -gamma 0 0 - # Id: 9013302 - # log K source: SCD3.02 (1978 TKa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 20.0 -2V+3 + 2H2O = V2(OH)2+4 + 2H+ - log_k -3.794 - delta_h 0 kJ - -gamma 0 0 - # Id: 9013304 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -2V+3 + 3H2O = V2(OH)3+3 + 3H+ - log_k -10.1191 - delta_h 0 kJ - -gamma 0 0 - # Id: 9013303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 3.00 25.0 -VO+2 + 2H2O = V(OH)3+ + H+ - log_k -5.697 - delta_h 0 kJ - -gamma 0 0 - # Id: 9023300 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -2VO+2 + 2H2O = H2V2O4+2 + 2H+ - log_k -6.694 - delta_h 53.62 kJ - -gamma 0 0 - # Id: 9023301 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -U+4 + H2O = UOH+3 + H+ - log_k -0.597 - delta_h 47.81 kJ - -gamma 0 0 - # Id: 8913300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -U+4 + 2H2O = U(OH)2+2 + 2H+ - log_k -2.27 - delta_h 74.1823 kJ - -gamma 0 0 - # Id: 8913301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 3H2O = U(OH)3+ + 3H+ - log_k -4.935 - delta_h 94.7467 kJ - -gamma 0 0 - # Id: 8913302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 4H2O = U(OH)4 + 4H+ - log_k -8.498 - delta_h 103.596 kJ - -gamma 0 0 - # Id: 8913303 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 5H2O = U(OH)5- + 5H+ - log_k -13.12 - delta_h 115.374 kJ - -gamma 0 0 - # Id: 8913304 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -6U+4 + 15H2O = U6(OH)15+9 + 15H+ - log_k -17.155 - delta_h 0 kJ - -gamma 0 0 - # Id: 8913305 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -UO2+2 + H2O = UO2OH+ + H+ - log_k -5.897 - delta_h 47.81 kJ - -gamma 0 0 - # Id: 8933300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -2UO2+2 + 2H2O = (UO2)2(OH)2+2 + 2H+ - log_k -5.574 - delta_h 41.82 kJ - -gamma 0 0 - # Id: 8933301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -3UO2+2 + 5H2O = (UO2)3(OH)5+ + 5H+ - log_k -15.585 - delta_h 108.05 kJ - -gamma 0 0 - # Id: 8933302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Be+2 + H2O = BeOH+ + H+ - log_k -5.397 - delta_h 0 kJ - -gamma 6.5 0 - # Id: 1103301 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Be+2 + 2H2O = Be(OH)2 + 2H+ - log_k -13.594 - delta_h 0 kJ - -gamma 6.5 0 - # Id: 1103302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Be+2 + 3H2O = Be(OH)3- + 3H+ - log_k -23.191 - delta_h 0 kJ - -gamma 6.5 0 - # Id: 1103303 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Be+2 + 4H2O = Be(OH)4-2 + 4H+ - log_k -37.388 - delta_h 0 kJ - -gamma 6.5 0 - # Id: 1103304 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -2Be+2 + H2O = Be2OH+3 + H+ - log_k -3.177 - delta_h 0 kJ - -gamma 6.5 0 - # Id: 1103305 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 -3Be+2 + 3H2O = Be3(OH)3+3 + 3H+ - log_k -8.8076 - delta_h 0 kJ - -gamma 6.5 0 - # Id: 1103306 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 -Mg+2 + H2O = MgOH+ + H+ - log_k -11.397 - delta_h 67.81 kJ - -gamma 6.5 0 - # Id: 4603300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ca+2 + H2O = CaOH+ + H+ - log_k -12.697 - delta_h 64.11 kJ - -gamma 6 0 - # Id: 1503300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Sr+2 + H2O = SrOH+ + H+ - log_k -13.177 - delta_h 60.81 kJ - -gamma 5 0 - # Id: 8003300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ba+2 + H2O = BaOH+ + H+ - log_k -13.357 - delta_h 60.81 kJ - -gamma 5 0 - # Id: 1003300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -H+ + F- = HF - log_k 3.17 - delta_h 13.3 kJ - -gamma 0 0 - # Id: 3302700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -H+ + 2F- = HF2- - log_k 3.75 - delta_h 17.4 kJ - -gamma 3.5 0 - # Id: 3302701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -2F- + 2H+ = H2F2 - log_k 6.768 - delta_h 0 kJ - -gamma 0 0 - # Id: 3302702 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Sb(OH)3 + F- + H+ = SbOF + 2H2O - log_k 6.1864 - delta_h 0 kJ - -gamma 0 0 - # Id: 7402700 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: -Sb(OH)3 + F- + H+ = Sb(OH)2F + H2O - log_k 6.1937 - delta_h 0 kJ - -gamma 0 0 - # Id: 7402702 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: -H4SiO4 + 4H+ + 6F- = SiF6-2 + 4H2O - log_k 30.18 - delta_h -68 kJ - -gamma 5 0 - # Id: 7702700 - # log K source: Nord90 - # Delta H source: Nord90 - #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ + F- = SnF+ + 2H2O - log_k 11.582 - delta_h 0 kJ - -gamma 0 0 - # Id: 7902701 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Sn(OH)2 + 2H+ + 2F- = SnF2 + 2H2O - log_k 14.386 - delta_h 0 kJ - -gamma 0 0 - # Id: 7902702 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Sn(OH)2 + 2H+ + 3F- = SnF3- + 2H2O - log_k 17.206 - delta_h 0 kJ - -gamma 0 0 - # Id: 7902703 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Sn(OH)6-2 + 6H+ + 6F- = SnF6-2 + 6H2O - log_k 33.5844 - delta_h 0 kJ - -gamma 0 0 - # Id: 7912701 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -Pb+2 + F- = PbF+ - log_k 1.848 - delta_h 0 kJ - -gamma 0 0 - # Id: 6002700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Pb+2 + 2F- = PbF2 - log_k 3.142 - delta_h 0 kJ - -gamma 0 0 - # Id: 6002701 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Pb+2 + 3F- = PbF3- - log_k 3.42 - delta_h 0 kJ - -gamma 0 0 - # Id: 6002702 - # log K source: SCD3.02 (1956 TKa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Pb+2 + 4F- = PbF4-2 - log_k 3.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 6002703 - # log K source: SCD3.02 (1956 TKa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -H3BO3 + 3H+ + 4F- = BF4- + 3H2O - log_k 19.912 - delta_h -18.67 kJ - -gamma 2.5 0 - # Id: 902703 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 - #T and ionic strength: 1.00 25.0 -Al+3 + F- = AlF+2 - log_k 7 - delta_h 4.6 kJ - -gamma 5.4 0 - # Id: 302700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Al+3 + 2F- = AlF2+ - log_k 12.6 - delta_h 8.3 kJ - -gamma 5.4 0 - # Id: 302701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Al+3 + 3F- = AlF3 - log_k 16.7 - delta_h 8.7 kJ - -gamma 0 0 - # Id: 302702 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Al+3 + 4F- = AlF4- - log_k 19.4 - delta_h 8.7 kJ - -gamma 4.5 0 - # Id: 302703 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Tl+ + F- = TlF - log_k 0.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 8702700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Zn+2 + F- = ZnF+ - log_k 1.3 - delta_h 11 kJ - -gamma 0 0 - # Id: 9502700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cd+2 + F- = CdF+ - log_k 1.2 - delta_h 5 kJ - -gamma 0 0 - # Id: 1602700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cd+2 + 2F- = CdF2 - log_k 1.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 1602701 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Hg(OH)2 + 2H+ + F- = HgF+ + 2H2O - log_k 7.763 - delta_h -35.72 kJ - -gamma 0 0 - # Id: 3612701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.50 25.0 -Cu+2 + F- = CuF+ - log_k 1.8 - delta_h 13 kJ - -gamma 0 0 - # Id: 2312700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ag+ + F- = AgF - log_k 0.4 - delta_h 12 kJ - -gamma 0 0 - # Id: 202700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ni+2 + F- = NiF+ - log_k 1.4 - delta_h 7.1 kJ - -gamma 0 0 - # Id: 5402700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Co+2 + F- = CoF+ - log_k 1.5 - delta_h 9.2 kJ - -gamma 0 0 - # Id: 2002700 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Fe+3 + F- = FeF+2 - log_k 6.04 - delta_h 10 kJ - -gamma 5 0 - # Id: 2812700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Fe+3 + 2F- = FeF2+ - log_k 10.4675 - delta_h 17 kJ - -gamma 5 0 - # Id: 2812701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.50 25.0 -Fe+3 + 3F- = FeF3 - log_k 13.617 - delta_h 29 kJ - -gamma 0 0 - # Id: 2812702 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.50 25.0 -Mn+2 + F- = MnF+ - log_k 1.6 - delta_h 11 kJ - -gamma 5 0 - # Id: 4702700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + 2H+ + F- = CrF+2 + 2H2O - log_k 14.7688 - delta_h -70.2452 kJ - -gamma 0 0 - # Id: 2112700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -VO+2 + F- = VOF+ - log_k 3.778 - delta_h 7.9 kJ - -gamma 0 0 - # Id: 9022700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 -VO+2 + 2F- = VOF2 - log_k 6.352 - delta_h 14 kJ - -gamma 0 0 - # Id: 9022701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 -VO+2 + 3F- = VOF3- - log_k 7.902 - delta_h 20 kJ - -gamma 0 0 - # Id: 9022702 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 -VO+2 + 4F- = VOF4-2 - log_k 8.508 - delta_h 26 kJ - -gamma 0 0 - # Id: 9022703 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 -VO2+ + F- = VO2F - log_k 3.244 - delta_h 0 kJ - -gamma 0 0 - # Id: 9032700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -VO2+ + 2F- = VO2F2- - log_k 5.804 - delta_h 0 kJ - -gamma 0 0 - # Id: 9032701 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 -VO2+ + 3F- = VO2F3-2 - log_k 6.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 9032702 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 -VO2+ + 4F- = VO2F4-3 - log_k 6.592 - delta_h 0 kJ - -gamma 0 0 - # Id: 9032703 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 -U+4 + F- = UF+3 - log_k 9.3 - delta_h 21.1292 kJ - -gamma 0 0 - # Id: 8912700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -U+4 + 2F- = UF2+2 - log_k 16.4 - delta_h 30.1248 kJ - -gamma 0 0 - # Id: 8912701 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -U+4 + 3F- = UF3+ - log_k 21.6 - delta_h 29.9156 kJ - -gamma 0 0 - # Id: 8912702 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -U+4 + 4F- = UF4 - log_k 23.64 - delta_h 19.2464 kJ - -gamma 0 0 - # Id: 8912703 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 5F- = UF5- - log_k 25.238 - delta_h 20.2924 kJ - -gamma 0 0 - # Id: 8912704 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 6F- = UF6-2 - log_k 27.718 - delta_h 13.8072 kJ - -gamma 0 0 - # Id: 8912705 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -UO2+2 + F- = UO2F+ - log_k 5.14 - delta_h 1 kJ - -gamma 0 0 - # Id: 8932700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -UO2+2 + 2F- = UO2F2 - log_k 8.6 - delta_h 2 kJ - -gamma 0 0 - # Id: 8932701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -UO2+2 + 3F- = UO2F3- - log_k 11 - delta_h 2 kJ - -gamma 0 0 - # Id: 8932702 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -UO2+2 + 4F- = UO2F4-2 - log_k 11.9 - delta_h 0.4 kJ - -gamma 0 0 - # Id: 8932703 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Be+2 + F- = BeF+ - log_k 5.249 - delta_h 0 kJ - -gamma 0 0 - # Id: 1102701 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 -Be+2 + 2F- = BeF2 - log_k 9.1285 - delta_h -4 kJ - -gamma 0 0 - # Id: 1102702 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 -Be+2 + 3F- = BeF3- - log_k 11.9085 - delta_h -8 kJ - -gamma 0 0 - # Id: 1102703 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 -Mg+2 + F- = MgF+ - log_k 2.05 - delta_h 13 kJ - -gamma 4.5 0 - # Id: 4602700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ca+2 + F- = CaF+ - log_k 1.038 - delta_h 14 kJ - -gamma 5 0 - # Id: 1502700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 -Sr+2 + F- = SrF+ - log_k 0.548 - delta_h 16 kJ - -gamma 0 0 - # Id: 8002701 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 1.00 25.0 -Na+ + F- = NaF - log_k -0.2 - delta_h 12 kJ - -gamma 0 0 - # Id: 5002700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ + Cl- = SnCl+ + 2H2O - log_k 8.734 - delta_h 0 kJ - -gamma 0 0 - # Id: 7901801 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ + 2Cl- = SnCl2 + 2H2O - log_k 9.524 - delta_h 0 kJ - -gamma 0 0 - # Id: 7901802 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ + 3Cl- = SnCl3- + 2H2O - log_k 8.3505 - delta_h 0 kJ - -gamma 0 0 - # Id: 7901803 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 2.00 25.0 -Pb+2 + Cl- = PbCl+ - log_k 1.55 - delta_h 8.7 kJ - -gamma 0 0 - # Id: 6001800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Pb+2 + 2Cl- = PbCl2 - log_k 2.2 - delta_h 12 kJ - -gamma 0 0 - # Id: 6001801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Pb+2 + 3Cl- = PbCl3- - log_k 1.8 - delta_h 4 kJ - -gamma 0 0 - # Id: 6001802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Pb+2 + 4Cl- = PbCl4-2 - log_k 1.46 - delta_h 14.7695 kJ - -gamma 0 0 - # Id: 6001803 - # log K source: SCD3.02 (1984 SEa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Tl+ + Cl- = TlCl - log_k 0.51 - delta_h -6.2 kJ - -gamma 0 0 - # Id: 8701800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Tl+ + 2Cl- = TlCl2- - log_k 0.28 - delta_h 0 kJ - -gamma 0 0 - # Id: 8701801 - # log K source: SCD3.02 (1992 RAb) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Tl(OH)3 + 3H+ + Cl- = TlCl+2 + 3H2O - log_k 11.011 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Tl(OH)3 + 3H+ + 2Cl- = TlCl2+ + 3H2O - log_k 16.771 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Tl(OH)3 + 3H+ + 3Cl- = TlCl3 + 3H2O - log_k 19.791 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Tl(OH)3 + 3H+ + 4Cl- = TlCl4- + 3H2O - log_k 21.591 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711803 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Tl(OH)3 + Cl- + 2H+ = TlOHCl+ + 2H2O - log_k 10.629 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711804 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Zn+2 + Cl- = ZnCl+ - log_k 0.4 - delta_h 5.4 kJ - -gamma 4 0 - # Id: 9501800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Zn+2 + 2Cl- = ZnCl2 - log_k 0.6 - delta_h 37 kJ - -gamma 0 0 - # Id: 9501801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Zn+2 + 3Cl- = ZnCl3- - log_k 0.5 - delta_h 39.999 kJ - -gamma 4 0 - # Id: 9501802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Zn+2 + 4Cl- = ZnCl4-2 - log_k 0.199 - delta_h 45.8566 kJ - -gamma 5 0 - # Id: 9501803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Zn+2 + H2O + Cl- = ZnOHCl + H+ - log_k -7.48 - delta_h 0 kJ - -gamma 0 0 - # Id: 9501804 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cd+2 + Cl- = CdCl+ - log_k 1.98 - delta_h 1 kJ - -gamma 0 0 - # Id: 1601800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cd+2 + 2Cl- = CdCl2 - log_k 2.6 - delta_h 3 kJ - -gamma 0 0 - # Id: 1601801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cd+2 + 3Cl- = CdCl3- - log_k 2.4 - delta_h 10 kJ - -gamma 0 0 - # Id: 1601802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cd+2 + H2O + Cl- = CdOHCl + H+ - log_k -7.404 - delta_h 18.2213 kJ - -gamma 0 0 - # Id: 1601803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Hg(OH)2 + 2H+ + Cl- = HgCl+ + 2H2O - log_k 13.494 - delta_h -62.72 kJ - -gamma 0 0 - # Id: 3611800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + 2Cl- = HgCl2 + 2H2O - log_k 20.194 - delta_h -92.42 kJ - -gamma 0 0 - # Id: 3611801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + 3Cl- = HgCl3- + 2H2O - log_k 21.194 - delta_h -94.02 kJ - -gamma 0 0 - # Id: 3611802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + 4Cl- = HgCl4-2 + 2H2O - log_k 21.794 - delta_h -100.72 kJ - -gamma 0 0 - # Id: 3611803 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + Cl- + I- + 2H+ = HgClI + 2H2O - log_k 25.532 - delta_h -135.3 kJ - -gamma 0 0 - # Id: 3611804 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Hg(OH)2 + H+ + Cl- = HgClOH + H2O - log_k 10.444 - delta_h -42.72 kJ - -gamma 0 0 - # Id: 3611805 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 -Cu+2 + Cl- = CuCl+ - log_k 0.2 - delta_h 8.3 kJ - -gamma 4 0 - # Id: 2311800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cu+2 + 2Cl- = CuCl2 - log_k -0.26 - delta_h 44.183 kJ - -gamma 0 0 - # Id: 2311801 - # log K source: SCD3.02 (1989 IPa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cu+2 + 3Cl- = CuCl3- - log_k -2.29 - delta_h 57.279 kJ - -gamma 4 0 - # Id: 2311802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cu+2 + 4Cl- = CuCl4-2 - log_k -4.59 - delta_h 32.5515 kJ - -gamma 5 0 - # Id: 2311803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cu+ + 2Cl- = CuCl2- - log_k 5.42 - delta_h -1.7573 kJ - -gamma 4 0 - # Id: 2301800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cu+ + 3Cl- = CuCl3-2 - log_k 4.75 - delta_h 1.0878 kJ - -gamma 5 0 - # Id: 2301801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cu+ + Cl- = CuCl - log_k 3.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 2301802 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Ag+ + Cl- = AgCl - log_k 3.31 - delta_h -12 kJ - -gamma 0 0 - # Id: 201800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ag+ + 2Cl- = AgCl2- - log_k 5.25 - delta_h -16 kJ - -gamma 0 0 - # Id: 201801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ag+ + 3Cl- = AgCl3-2 - log_k 5.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 201802 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Ag+ + 4Cl- = AgCl4-3 - log_k 5.51 - delta_h 0 kJ - -gamma 0 0 - # Id: 201803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Ni+2 + Cl- = NiCl+ - log_k 0.408 - delta_h 2 kJ - -gamma 0 0 - # Id: 5401800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 -Ni+2 + 2Cl- = NiCl2 - log_k -1.89 - delta_h 0 kJ - -gamma 0 0 - # Id: 5401801 - # log K source: SCD3.02 (1989 IPa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Co+2 + Cl- = CoCl+ - log_k 0.539 - delta_h 2 kJ - -gamma 0 0 - # Id: 2001800 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 -Co+3 + Cl- = CoCl+2 - log_k 2.3085 - delta_h 16 kJ - -gamma 0 0 - # Id: 2011800 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 -Fe+3 + Cl- = FeCl+2 - log_k 1.48 - delta_h 23 kJ - -gamma 5 0 - # Id: 2811800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Fe+3 + 2Cl- = FeCl2+ - log_k 2.13 - delta_h 0 kJ - -gamma 5 0 - # Id: 2811801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Fe+3 + 3Cl- = FeCl3 - log_k 1.13 - delta_h 0 kJ - -gamma 0 0 - # Id: 2811802 - # log K source: Nord90 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Mn+2 + Cl- = MnCl+ - log_k 0.1 - delta_h 0 kJ - -gamma 5 0 - # Id: 4701800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 20.0 -Mn+2 + 2Cl- = MnCl2 - log_k 0.25 - delta_h 0 kJ - -gamma 0 0 - # Id: 4701801 - # log K source: Nord90 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Mn+2 + 3Cl- = MnCl3- - log_k -0.31 - delta_h 0 kJ - -gamma 5 0 - # Id: 4701802 - # log K source: Nord90 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + 2H+ + Cl- = CrCl+2 + 2H2O - log_k 9.6808 - delta_h -103.62 kJ - -gamma 0 0 - # Id: 2111800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 -Cr(OH)2+ + 2Cl- + 2H+ = CrCl2+ + 2H2O - log_k 8.658 - delta_h -39.2208 kJ - -gamma 0 0 - # Id: 2111801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cr(OH)2+ + 2Cl- + H+ = CrOHCl2 + H2O - log_k 2.9627 - delta_h 0 kJ - -gamma 0 0 - # Id: 2111802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -VO+2 + Cl- = VOCl+ - log_k 0.448 - delta_h 0 kJ - -gamma 0 0 - # Id: 9021800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 -U+4 + Cl- = UCl+3 - log_k 1.7 - delta_h -20 kJ - -gamma 0 0 - # Id: 8911800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -UO2+2 + Cl- = UO2Cl+ - log_k 0.21 - delta_h 16 kJ - -gamma 0 0 - # Id: 8931800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Be+2 + Cl- = BeCl+ - log_k 0.2009 - delta_h 0 kJ - -gamma 5 0 - # Id: 1101801 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.70 20.0 -Sn(OH)2 + 2H+ + Br- = SnBr+ + 2H2O - log_k 8.254 - delta_h 0 kJ - -gamma 0 0 - # Id: 7901301 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ + 2Br- = SnBr2 + 2H2O - log_k 8.794 - delta_h 0 kJ - -gamma 0 0 - # Id: 7901302 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ + 3Br- = SnBr3- + 2H2O - log_k 7.48 - delta_h 0 kJ - -gamma 0 0 - # Id: 7901303 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 3.00 25.0 -Pb+2 + Br- = PbBr+ - log_k 1.7 - delta_h 8 kJ - -gamma 0 0 - # Id: 6001300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Pb+2 + 2Br- = PbBr2 - log_k 2.6 - delta_h -4 kJ - -gamma 0 0 - # Id: 6001301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Tl+ + Br- = TlBr - log_k 0.91 - delta_h -12 kJ - -gamma 0 0 - # Id: 8701300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Tl+ + 2Br- = TlBr2- - log_k -0.384 - delta_h 12.36 kJ - -gamma 0 0 - # Id: 8701301 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 - #T and ionic strength: 4.00 25.0 -Tl+ + Br- + Cl- = TlBrCl- - log_k 0.8165 - delta_h 0 kJ - -gamma 0 0 - # Id: 8701302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Tl+ + I- + Br- = TlIBr- - log_k 2.185 - delta_h 0 kJ - -gamma 0 0 - # Id: 8703802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Tl(OH)3 + 3H+ + Br- = TlBr+2 + 3H2O - log_k 12.803 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Tl(OH)3 + 3H+ + 2Br- = TlBr2+ + 3H2O - log_k 20.711 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Tl(OH)3 + 3Br- + 3H+ = TlBr3 + 3H2O - log_k 27.0244 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Tl(OH)3 + 4Br- + 3H+ = TlBr4- + 3H2O - log_k 31.1533 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711303 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Zn+2 + Br- = ZnBr+ - log_k -0.07 - delta_h 1 kJ - -gamma 0 0 - # Id: 9501300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Zn+2 + 2Br- = ZnBr2 - log_k -0.98 - delta_h 0 kJ - -gamma 0 0 - # Id: 9501301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cd+2 + Br- = CdBr+ - log_k 2.15 - delta_h -3 kJ - -gamma 0 0 - # Id: 1601300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cd+2 + 2Br- = CdBr2 - log_k 3 - delta_h -3 kJ - -gamma 0 0 - # Id: 1601301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + Br- = HgBr+ + 2H2O - log_k 15.803 - delta_h -81.92 kJ - -gamma 0 0 - # Id: 3611301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 2H+ + 2Br- = HgBr2 + 2H2O - log_k 24.2725 - delta_h -127.12 kJ - -gamma 0 0 - # Id: 3611302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 2H+ + 3Br- = HgBr3- + 2H2O - log_k 26.7025 - delta_h -138.82 kJ - -gamma 0 0 - # Id: 3611303 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 2H+ + 4Br- = HgBr4-2 + 2H2O - log_k 27.933 - delta_h -153.72 kJ - -gamma 0 0 - # Id: 3611304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.50 25.0 -Hg(OH)2 + Br- + Cl- + 2H+ = HgBrCl + 2H2O - log_k 22.1811 - delta_h -113.77 kJ - -gamma 0 0 - # Id: 3611305 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Hg(OH)2 + Br- + I- + 2H+ = HgBrI + 2H2O - log_k 27.3133 - delta_h -151.27 kJ - -gamma 0 0 - # Id: 3611306 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Hg(OH)2 + Br- + 3I- + 2H+ = HgBrI3-2 + 2H2O - log_k 34.2135 - delta_h 0 kJ - -gamma 0 0 - # Id: 3611307 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Hg(OH)2 + 2Br- + 2I- + 2H+ = HgBr2I2-2 + 2H2O - log_k 32.3994 - delta_h 0 kJ - -gamma 0 0 - # Id: 3611308 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Hg(OH)2 + 3Br- + I- + 2H+ = HgBr3I-2 + 2H2O - log_k 30.1528 - delta_h 0 kJ - -gamma 0 0 - # Id: 3611309 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Hg(OH)2 + H+ + Br- = HgBrOH + H2O - log_k 12.433 - delta_h 0 kJ - -gamma 0 0 - # Id: 3613301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Ag+ + Br- = AgBr - log_k 4.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 201300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Ag+ + 2Br- = AgBr2- - log_k 7.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 201301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Ag+ + 3Br- = AgBr3-2 - log_k 8.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 201302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Ni+2 + Br- = NiBr+ - log_k 0.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 5401300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cr(OH)2+ + Br- + 2H+ = CrBr+2 + 2H2O - log_k 7.5519 - delta_h -46.9068 kJ - -gamma 0 0 - # Id: 2111300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Be+2 + Br- = BeBr+ - log_k 0.1009 - delta_h 0 kJ - -gamma 5 0 - # Id: 1101301 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.70 20.0 -Pb+2 + I- = PbI+ - log_k 2 - delta_h 0 kJ - -gamma 0 0 - # Id: 6003800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Pb+2 + 2I- = PbI2 - log_k 3.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 6003801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Tl+ + I- = TlI - log_k 1.4279 - delta_h 0 kJ - -gamma 0 0 - # Id: 8703800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Tl+ + 2I- = TlI2- - log_k 1.8588 - delta_h 0 kJ - -gamma 0 0 - # Id: 8703801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Tl(OH)3 + 4I- + 3H+ = TlI4- + 3H2O - log_k 34.7596 - delta_h 0 kJ - -gamma 0 0 - # Id: 8713800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Zn+2 + I- = ZnI+ - log_k -2.0427 - delta_h -4 kJ - -gamma 0 0 - # Id: 9503800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 3.00 25.0 -Zn+2 + 2I- = ZnI2 - log_k -1.69 - delta_h 0 kJ - -gamma 0 0 - # Id: 9503801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cd+2 + I- = CdI+ - log_k 2.28 - delta_h -9.6 kJ - -gamma 0 0 - # Id: 1603800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cd+2 + 2I- = CdI2 - log_k 3.92 - delta_h -12 kJ - -gamma 0 0 - # Id: 1603801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + I- = HgI+ + 2H2O - log_k 19.603 - delta_h -111.22 kJ - -gamma 0 0 - # Id: 3613801 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 2H+ + 2I- = HgI2 + 2H2O - log_k 30.8225 - delta_h -182.72 kJ - -gamma 0 0 - # Id: 3613802 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 2H+ + 3I- = HgI3- + 2H2O - log_k 34.6025 - delta_h -194.22 kJ - -gamma 0 0 - # Id: 3613803 - # log K source: NIST46.4 - # Delta H source: NIST2.1.1 - #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 2H+ + 4I- = HgI4-2 + 2H2O - log_k 36.533 - delta_h -220.72 kJ - -gamma 0 0 - # Id: 3613804 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 -Ag+ + I- = AgI - log_k 6.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 203800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 18.0 -Ag+ + 2I- = AgI2- - log_k 11.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 203801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 18.0 -Ag+ + 3I- = AgI3-2 - log_k 12.6 - delta_h -122 kJ - -gamma 0 0 - # Id: 203802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ag+ + 4I- = AgI4-3 - log_k 14.229 - delta_h 0 kJ - -gamma 0 0 - # Id: 203803 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 2.00 25.0 -Cr(OH)2+ + I- + 2H+ = CrI+2 + 2H2O - log_k 4.8289 - delta_h 0 kJ - -gamma 0 0 - # Id: 2113800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -H+ + HS- = H2S - log_k 7.02 - delta_h -22 kJ - -gamma 0 0 - # Id: 3307300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Pb+2 + 2HS- = Pb(HS)2 - log_k 15.27 - delta_h 0 kJ - -gamma 0 0 - # Id: 6007300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Pb+2 + 3HS- = Pb(HS)3- - log_k 16.57 - delta_h 0 kJ - -gamma 0 0 - # Id: 6007301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Tl+ + HS- = TlHS - log_k 2.474 - delta_h 0 kJ - -gamma 0 0 - # Id: 8707300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -2Tl+ + HS- = Tl2HS+ - log_k 5.974 - delta_h 0 kJ - -gamma 0 0 - # Id: 8707301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -2Tl+ + 3HS- + H2O = Tl2OH(HS)3-2 + H+ - log_k 1.0044 - delta_h 0 kJ - -gamma 0 0 - # Id: 8707302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -2Tl+ + 2HS- + 2H2O = Tl2(OH)2(HS)2-2 + 2H+ - log_k -11.0681 - delta_h 0 kJ - -gamma 0 0 - # Id: 8707303 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Zn+2 + 2HS- = Zn(HS)2 - log_k 12.82 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507300 - # log K source: DHa1993 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Zn+2 + 3HS- = Zn(HS)3- - log_k 16.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Zn+2 + 3HS- = ZnS(HS)2-2 + H+ - log_k 6.12 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507302 - # log K source: DHa1993 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Zn+2 + 2HS- + 2HS- = Zn(HS)4-2 - log_k 14.64 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507303 - # log K source: DHa1993 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Zn+2 + 2HS- = ZnS(HS)- + H+ - log_k 6.81 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507304 - # log K source: DHa1993 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cd+2 + HS- = CdHS+ - log_k 8.008 - delta_h 0 kJ - -gamma 0 0 - # Id: 1607300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Cd+2 + 2HS- = Cd(HS)2 - log_k 15.212 - delta_h 0 kJ - -gamma 0 0 - # Id: 1607301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Cd+2 + 3HS- = Cd(HS)3- - log_k 17.112 - delta_h 0 kJ - -gamma 0 0 - # Id: 1607302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Cd+2 + 4HS- = Cd(HS)4-2 - log_k 19.308 - delta_h 0 kJ - -gamma 0 0 - # Id: 1607303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Hg(OH)2 + 2HS- = HgS2-2 + 2H2O - log_k 29.414 - delta_h 0 kJ - -gamma 0 0 - # Id: 3617300 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 -Hg(OH)2 + 2H+ + 2HS- = Hg(HS)2 + 2H2O - log_k 44.516 - delta_h 0 kJ - -gamma 0 0 - # Id: 3617301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 -Hg(OH)2 + H+ + 2HS- = HgHS2- + 2H2O - log_k 38.122 - delta_h 0 kJ - -gamma 0 0 - # Id: 3617302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 -Cu+2 + 3HS- = Cu(HS)3- - log_k 25.899 - delta_h 0 kJ - -gamma 0 0 - # Id: 2317300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Ag+ + HS- = AgHS - log_k 13.8145 - delta_h 0 kJ - -gamma 0 0 - # Id: 207300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 20.0 -Ag+ + 2HS- = Ag(HS)2- - log_k 17.9145 - delta_h 0 kJ - -gamma 0 0 - # Id: 207301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 20.0 -Fe+2 + 2HS- = Fe(HS)2 - log_k 8.95 - delta_h 0 kJ - -gamma 0 0 - # Id: 2807300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Fe+2 + 3HS- = Fe(HS)3- - log_k 10.987 - delta_h 0 kJ - -gamma 0 0 - # Id: 2807301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -HS- = S2-2 + H+ - log_k -11.7828 - delta_h 46.4 kJ - -gamma 0 0 - -no_check - # Id: 7317300 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -HS- = S3-2 + H+ - log_k -10.7667 - delta_h 42.2 kJ - -gamma 0 0 - -no_check - # Id: 7317301 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -HS- = S4-2 + H+ - log_k -9.9608 - delta_h 39.3 kJ - -gamma 0 0 - -no_check - # Id: 7317302 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -HS- = S5-2 + H+ - log_k -9.3651 - delta_h 37.6 kJ - -gamma 0 0 - -no_check - # Id: 7317303 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -HS- = S6-2 + H+ - log_k -9.881 - delta_h 0 kJ - -gamma 0 0 - -no_check - # Id: 7317304 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -2Sb(OH)3 + 4HS- + 2H+ = Sb2S4-2 + 6H2O - log_k 49.3886 - delta_h -321.78 kJ - -gamma 0 0 - # Id: 7407300 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Cu+ + 2HS- = Cu(S4)2-3 + 2H+ - log_k 3.39 - delta_h 0 kJ - -gamma 23 0 - -no_check - # Id: 2307300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cu+ + 2HS- = CuS4S5-3 + 2H+ - log_k 2.66 - delta_h 0 kJ - -gamma 25 0 - -no_check - # Id: 2307301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Ag+ + 2HS- = Ag(S4)2-3 + 2H+ - log_k 0.991 - delta_h 0 kJ - -gamma 22 0 - -no_check - # Id: 207302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Ag+ + 2HS- = AgS4S5-3 + 2H+ - log_k 0.68 - delta_h 0 kJ - -gamma 24 0 - -no_check - # Id: 207303 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Ag+ + 2HS- = Ag(HS)S4-2 + H+ - log_k 10.431 - delta_h 0 kJ - -gamma 15 0 - -no_check - # Id: 207304 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -H+ + SO4-2 = HSO4- - log_k 1.99 - delta_h 22 kJ - -gamma 4.5 0 - # Id: 3307320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -NH4+ + SO4-2 = NH4SO4- - log_k 1.03 - delta_h 0 kJ - -gamma 5 0 - # Id: 4907320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Pb+2 + SO4-2 = PbSO4 - log_k 2.69 - delta_h 0 kJ - -gamma 0 0 - # Id: 6007320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Pb+2 + 2SO4-2 = Pb(SO4)2-2 - log_k 3.47 - delta_h 0 kJ - -gamma 0 0 - # Id: 6007321 - # log K source: SCD3.02 (1960 RKa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Al+3 + SO4-2 = AlSO4+ - log_k 3.89 - delta_h 28 kJ - -gamma 4.5 0 - # Id: 307320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Al+3 + 2SO4-2 = Al(SO4)2- - log_k 4.92 - delta_h 11.9 kJ - -gamma 4.5 0 - # Id: 307321 - # log K source: Nord90 - # Delta H source: Nord90 - #T and ionic strength: 0.00 25.0 -Tl+ + SO4-2 = TlSO4- - log_k 1.37 - delta_h -0.8 kJ - -gamma 0 0 - # Id: 8707320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Zn+2 + SO4-2 = ZnSO4 - log_k 2.34 - delta_h 6.2 kJ - -gamma 0 0 - # Id: 9507320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Zn+2 + 2SO4-2 = Zn(SO4)2-2 - log_k 3.28 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507321 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cd+2 + SO4-2 = CdSO4 - log_k 2.37 - delta_h 8.7 kJ - -gamma 0 0 - # Id: 1607320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cd+2 + 2SO4-2 = Cd(SO4)2-2 - log_k 3.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 1607321 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Hg(OH)2 + 2H+ + SO4-2 = HgSO4 + 2H2O - log_k 8.612 - delta_h 0 kJ - -gamma 0 0 - # Id: 3617320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Cu+2 + SO4-2 = CuSO4 - log_k 2.36 - delta_h 8.7 kJ - -gamma 0 0 - # Id: 2317320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ag+ + SO4-2 = AgSO4- - log_k 1.3 - delta_h 6.2 kJ - -gamma 0 0 - # Id: 207320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ni+2 + SO4-2 = NiSO4 - log_k 2.3 - delta_h 5.8 kJ - -gamma 0 0 - # Id: 5407320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ni+2 + 2SO4-2 = Ni(SO4)2-2 - log_k 0.82 - delta_h 0 kJ - -gamma 0 0 - # Id: 5407321 - # log K source: SCD3.02 (1978 BLa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Co+2 + SO4-2 = CoSO4 - log_k 2.3 - delta_h 6.2 kJ - -gamma 0 0 - # Id: 2007320 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Fe+2 + SO4-2 = FeSO4 - log_k 2.39 - delta_h 8 kJ - -gamma 0 0 - # Id: 2807320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Fe+3 + SO4-2 = FeSO4+ - log_k 4.05 - delta_h 25 kJ - -gamma 5 0 - # Id: 2817320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Fe+3 + 2SO4-2 = Fe(SO4)2- - log_k 5.38 - delta_h 19.2 kJ - -gamma 0 0 - # Id: 2817321 - # log K source: Nord90 - # Delta H source: Nord90 - #T and ionic strength: 0.00 25.0 -Mn+2 + SO4-2 = MnSO4 - log_k 2.25 - delta_h 8.7 kJ - -gamma 0 0 - # Id: 4707320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + 2H+ + SO4-2 = CrSO4+ + 2H2O - log_k 12.9371 - delta_h -98.62 kJ - -gamma 0 0 - # Id: 2117320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 50.0 -Cr(OH)2+ + H+ + SO4-2 = CrOHSO4 + H2O - log_k 8.2871 - delta_h 0 kJ - -gamma 0 0 - # Id: 2117321 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 -2Cr(OH)2+ + SO4-2 + 2H+ = Cr2(OH)2SO4+2 + 2H2O - log_k 16.155 - delta_h 0 kJ - -gamma 0 0 - # Id: 2117323 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -2Cr(OH)2+ + 2SO4-2 + 2H+ = Cr2(OH)2(SO4)2 + 2H2O - log_k 17.9288 - delta_h 0 kJ - -gamma 0 0 - # Id: 2117324 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + SO4-2 = USO4+2 - log_k 6.6 - delta_h 8 kJ - -gamma 0 0 - # Id: 8917320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -U+4 + 2SO4-2 = U(SO4)2 - log_k 10.5 - delta_h 33 kJ - -gamma 0 0 - # Id: 8917321 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -UO2+2 + SO4-2 = UO2SO4 - log_k 3.18 - delta_h 20 kJ - -gamma 0 0 - # Id: 8937320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -UO2+2 + 2SO4-2 = UO2(SO4)2-2 - log_k 4.3 - delta_h 38 kJ - -gamma 0 0 - # Id: 8937321 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -V+3 + SO4-2 = VSO4+ - log_k 2.674 - delta_h 0 kJ - -gamma 0 0 - # Id: 9017320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -VO+2 + SO4-2 = VOSO4 - log_k 2.44 - delta_h 17 kJ - -gamma 0 0 - # Id: 9027320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -VO2+ + SO4-2 = VO2SO4- - log_k 1.378 - delta_h 0 kJ - -gamma 0 0 - # Id: 9037320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 -Be+2 + SO4-2 = BeSO4 - log_k 2.19 - delta_h 29 kJ - -gamma 0 0 - # Id: 1107321 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Be+2 + 2SO4-2 = Be(SO4)2-2 - log_k 2.596 - delta_h 0 kJ - -gamma 0 0 - # Id: 1107322 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Mg+2 + SO4-2 = MgSO4 - log_k 2.26 - delta_h 5.8 kJ - -gamma 0 0 - # Id: 4607320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ca+2 + SO4-2 = CaSO4 - log_k 2.36 - delta_h 7.1 kJ - -gamma 0 0 - # Id: 1507320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Sr+2 + SO4-2 = SrSO4 - log_k 2.3 - delta_h 8 kJ - -gamma 0 0 - # Id: 8007321 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Li+ + SO4-2 = LiSO4- - log_k 0.64 - delta_h 0 kJ - -gamma 5 0 - # Id: 4407320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Na+ + SO4-2 = NaSO4- - log_k 0.73 - delta_h 1 kJ - -gamma 5.4 0 - # Id: 5007320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -K+ + SO4-2 = KSO4- - log_k 0.85 - delta_h 4.1 kJ - -gamma 5.4 0 - # Id: 4107320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -HSe- + H+ = H2Se - log_k 3.89 - delta_h 3.3 kJ - -gamma 0 0 - # Id: 3307600 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 - #T and ionic strength: 0.00 25.0 -2Ag+ + HSe- = Ag2Se + H+ - log_k 34.911 - delta_h 0 kJ - -gamma 0 0 - # Id: 207600 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Ag+ + H2O + 2HSe- = AgOH(Se)2-4 + 3H+ - log_k -20.509 - delta_h 0 kJ - -gamma 0 0 - # Id: 207601 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Mn+2 + HSe- = MnSe + H+ - log_k -5.385 - delta_h 0 kJ - -gamma 0 0 - # Id: 4707600 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -HSeO3- = SeO3-2 + H+ - log_k -8.4 - delta_h 5.02 kJ - -gamma 0 0 - # Id: 3307611 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -HSeO3- + H+ = H2SeO3 - log_k 2.63 - delta_h 6.2 kJ - -gamma 0 0 - # Id: 3307610 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cd+2 + 2HSeO3- = Cd(SeO3)2-2 + 2H+ - log_k -10.884 - delta_h 0 kJ - -gamma 0 0 - # Id: 1607610 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Ag+ + HSeO3- = AgSeO3- + H+ - log_k -5.592 - delta_h 0 kJ - -gamma 0 0 - # Id: 207610 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Ag+ + 2HSeO3- = Ag(SeO3)2-3 + 2H+ - log_k -13.04 - delta_h 0 kJ - -gamma 0 0 - # Id: 207611 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Fe+3 + HSeO3- = FeHSeO3+2 - log_k 3.422 - delta_h 25 kJ - -gamma 0 0 - # Id: 2817610 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 -SeO4-2 + H+ = HSeO4- - log_k 1.7 - delta_h 23 kJ - -gamma 0 0 - # Id: 3307620 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Zn+2 + SeO4-2 = ZnSeO4 - log_k 2.19 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507620 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Zn+2 + 2SeO4-2 = Zn(SeO4)2-2 - log_k 2.196 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507621 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Cd+2 + SeO4-2 = CdSeO4 - log_k 2.27 - delta_h 0 kJ - -gamma 0 0 - # Id: 1607620 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Ni+2 + SeO4-2 = NiSeO4 - log_k 2.67 - delta_h 14 kJ - -gamma 0 0 - # Id: 5407620 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Co+2 + SeO4-2 = CoSeO4 - log_k 2.7 - delta_h 12 kJ - -gamma 0 0 - # Id: 2007621 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Mn+2 + SeO4-2 = MnSeO4 - log_k 2.43 - delta_h 14 kJ - -gamma 0 0 - # Id: 4707620 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -NH4+ = NH3 + H+ - log_k -9.244 - delta_h -52 kJ - -gamma 0 0 - # Id: 3304900 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ag+ + NH4+ = AgNH3+ + H+ - log_k -5.934 - delta_h -72 kJ - -gamma 0 0 - # Id: 204901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ag+ + 2NH4+ = Ag(NH3)2+ + 2H+ - log_k -11.268 - delta_h -160 kJ - -gamma 0 0 - # Id: 204902 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + H+ + NH4+ = HgNH3+2 + 2H2O - log_k 5.75 - delta_h 0 kJ - -gamma 0 0 - # Id: 3614900 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 2.00 22.0 -Hg(OH)2 + 2NH4+ = Hg(NH3)2+2 + 2H2O - log_k 5.506 - delta_h -246.72 kJ - -gamma 0 0 - # Id: 3614901 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 -Hg(OH)2 + 3NH4+ = Hg(NH3)3+2 + 2H2O + H+ - log_k -3.138 - delta_h -312.72 kJ - -gamma 0 0 - # Id: 3614902 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 2.00 25.0 -Hg(OH)2 + 4NH4+ = Hg(NH3)4+2 + 2H2O + 2H+ - log_k -11.482 - delta_h -379.72 kJ - -gamma 0 0 - # Id: 3614903 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.10 25.0 -Cu+2 + NH4+ = CuNH3+2 + H+ - log_k -5.234 - delta_h -72 kJ - -gamma 0 0 - # Id: 2314901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ni+2 + NH4+ = NiNH3+2 + H+ - log_k -6.514 - delta_h -67 kJ - -gamma 0 0 - # Id: 5404901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Ni+2 + 2NH4+ = Ni(NH3)2+2 + 2H+ - log_k -13.598 - delta_h -111.6 kJ - -gamma 0 0 - # Id: 5404902 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Co+2 + NH4+ = Co(NH3)+2 + H+ - log_k -7.164 - delta_h -65 kJ - -gamma 0 0 - # Id: 2004900 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Co+2 + 2NH4+ = Co(NH3)2+2 + 2H+ - log_k -14.778 - delta_h 0 kJ - -gamma 0 0 - # Id: 2004901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 2.00 25.0 -Co+2 + 3NH4+ = Co(NH3)3+2 + 3H+ - log_k -22.922 - delta_h 0 kJ - -gamma 0 0 - # Id: 2004902 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 2.00 25.0 -Co+2 + 4NH4+ = Co(NH3)4+2 + 4H+ - log_k -31.446 - delta_h 0 kJ - -gamma 0 0 - # Id: 2004903 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 2.00 30.0 -Co+2 + 5NH4+ = Co(NH3)5+2 + 5H+ - log_k -40.47 - delta_h 0 kJ - -gamma 0 0 - # Id: 2004904 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 2.00 30.0 -Co+3 + 6NH4+ + H2O = Co(NH3)6OH+2 + 7H+ - log_k -43.7148 - delta_h 0 kJ - -gamma 0 0 - # Id: 2014901 - # log K source: NIST2.1.1 - # Delta H source: MTQ3.11 - #T and ionic strength: -Co+3 + 5NH4+ + Cl- = Co(NH3)5Cl+2 + 5H+ - log_k -17.9584 - delta_h 113.38 kJ - -gamma 0 0 - # Id: 2014902 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Co+3 + 6NH4+ + Cl- = Co(NH3)6Cl+2 + 6H+ - log_k -33.9179 - delta_h 104.34 kJ - -gamma 0 0 - # Id: 2014903 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Co+3 + 6NH4+ + Br- = Co(NH3)6Br+2 + 6H+ - log_k -33.8884 - delta_h 110.57 kJ - -gamma 0 0 - # Id: 2014904 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Co+3 + 6NH4+ + I- = Co(NH3)6I+2 + 6H+ - log_k -33.4808 - delta_h 115.44 kJ - -gamma 0 0 - # Id: 2014905 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Co+3 + 6NH4+ + SO4-2 = Co(NH3)6SO4+ + 6H+ - log_k -28.9926 - delta_h 124.5 kJ - -gamma 0 0 - # Id: 2014906 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Cr(OH)2+ + 6NH4+ = Cr(NH3)6+3 + 2H2O + 4H+ - log_k -32.8952 - delta_h 0 kJ - -gamma 0 0 - # Id: 2114900 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 4.50 25.0 -Cr(OH)2+ + 5NH4+ = Cr(NH3)5OH+2 + 4H+ + H2O - log_k -30.2759 - delta_h 0 kJ - -gamma 0 0 - # Id: 2114901 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cr(OH)2+ + 6NH4+ + Cl- = Cr(NH3)6Cl+2 + 2H2O + 4H+ - log_k -31.7932 - delta_h 0 kJ - -gamma 0 0 - # Id: 2114904 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cr(OH)2+ + 6NH4+ + Br- = Cr(NH3)6Br+2 + 4H+ + 2H2O - log_k -31.887 - delta_h 0 kJ - -gamma 0 0 - # Id: 2114905 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cr(OH)2+ + 6NH4+ + I- = Cr(NH3)6I+2 + 4H+ + 2H2O - log_k -32.008 - delta_h 0 kJ - -gamma 0 0 - # Id: 2114906 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -#Cr(OH)2+ + 4NH4+ = cis+ + 4H+ -# log_k -29.8574 -# delta_h 0 kJ -# -gamma 0 0 -# # Id: 4902113 -# # log K source: MTQ3.11 -# # Delta H source: MTQ3.11 -# #T and ionic strength: -#Cr(OH)2+ + 4NH4+ = trans+ + 4H+ -# log_k -30.5537 -# delta_h 0 kJ -# -gamma 0 0 -# # Id: 4902114 -# # log K source: MTQ3.11 -# # Delta H source: MTQ3.11 -# #T and ionic strength: -Ca+2 + NH4+ = CaNH3+2 + H+ - log_k -9.144 - delta_h 0 kJ - -gamma 0 0 - # Id: 1504901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Ca+2 + 2NH4+ = Ca(NH3)2+2 + 2H+ - log_k -18.788 - delta_h 0 kJ - -gamma 0 0 - # Id: 1504902 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Sr+2 + NH4+ = SrNH3+2 + H+ - log_k -9.344 - delta_h 0 kJ - -gamma 0 0 - # Id: 8004901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Ba+2 + NH4+ = BaNH3+2 + H+ - log_k -9.444 - delta_h 0 kJ - -gamma 0 0 - # Id: 1004901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Tl+ + NO2- = TlNO2 - log_k 0.83 - delta_h 0 kJ - -gamma 0 0 - # Id: 8704910 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Ag+ + NO2- = AgNO2 - log_k 2.32 - delta_h -29 kJ - -gamma 0 0 - # Id: 204911 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ag+ + 2NO2- = Ag(NO2)2- - log_k 2.51 - delta_h -46 kJ - -gamma 0 0 - # Id: 204910 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cu+2 + NO2- = CuNO2+ - log_k 2.02 - delta_h 0 kJ - -gamma 0 0 - # Id: 2314911 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cu+2 + 2NO2- = Cu(NO2)2 - log_k 3.03 - delta_h 0 kJ - -gamma 0 0 - # Id: 2314912 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Co+2 + NO2- = CoNO2+ - log_k 0.848 - delta_h 0 kJ - -gamma 0 0 - # Id: 2004911 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Sn(OH)2 + 2H+ + NO3- = SnNO3+ + 2H2O - log_k 7.942 - delta_h 0 kJ - -gamma 0 0 - # Id: 7904921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Pb+2 + NO3- = PbNO3+ - log_k 1.17 - delta_h 2 kJ - -gamma 0 0 - # Id: 6004920 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Pb+2 + 2NO3- = Pb(NO3)2 - log_k 1.4 - delta_h -6.6 kJ - -gamma 0 0 - # Id: 6004921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Tl+ + NO3- = TlNO3 - log_k 0.33 - delta_h -2 kJ - -gamma 0 0 - # Id: 8704920 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Tl(OH)3 + NO3- + 3H+ = TlNO3+2 + 3H2O - log_k 7.0073 - delta_h 0 kJ - -gamma 0 0 - # Id: 8714920 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cd+2 + NO3- = CdNO3+ - log_k 0.5 - delta_h -21 kJ - -gamma 0 0 - # Id: 1604920 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Cd+2 + 2NO3- = Cd(NO3)2 - log_k 0.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 1604921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + NO3- = HgNO3+ + 2H2O - log_k 5.7613 - delta_h 0 kJ - -gamma 0 0 - # Id: 3614920 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 3.00 25.0 -Hg(OH)2 + 2H+ + 2NO3- = Hg(NO3)2 + 2H2O - log_k 5.38 - delta_h 0 kJ - -gamma 0 0 - # Id: 3614921 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 3.00 25.0 -Cu+2 + NO3- = CuNO3+ - log_k 0.5 - delta_h -4.1 kJ - -gamma 0 0 - # Id: 2314921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Cu+2 + 2NO3- = Cu(NO3)2 - log_k -0.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2314922 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Zn+2 + NO3- = ZnNO3+ - log_k 0.4 - delta_h -4.6 kJ - -gamma 0 0 - # Id: 9504921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Zn+2 + 2NO3- = Zn(NO3)2 - log_k -0.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 9504922 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Ag+ + NO3- = AgNO3 - log_k -0.1 - delta_h 22.6 kJ - -gamma 0 0 - # Id: 204920 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ni+2 + NO3- = NiNO3+ - log_k 0.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 5404921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Co+2 + NO3- = CoNO3+ - log_k 0.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2004921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Co+2 + 2NO3- = Co(NO3)2 - log_k 0.5085 - delta_h 0 kJ - -gamma 0 0 - # Id: 2004922 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Fe+3 + NO3- = FeNO3+2 - log_k 1 - delta_h -37 kJ - -gamma 0 0 - # Id: 2814921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Mn+2 + NO3- = MnNO3+ - log_k 0.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 4704921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Mn+2 + 2NO3- = Mn(NO3)2 - log_k 0.6 - delta_h -1.6569 kJ - -gamma 0 0 - # Id: 4704920 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + NO3- + 2H+ = CrNO3+2 + 2H2O - log_k 8.2094 - delta_h -65.4378 kJ - -gamma 0 0 - # Id: 2114920 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -UO2+2 + NO3- = UO2NO3+ - log_k 0.3 - delta_h -12 kJ - -gamma 0 0 - # Id: 8934921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -VO2+ + NO3- = VO2NO3 - log_k -0.296 - delta_h 0 kJ - -gamma 0 0 - # Id: 9034920 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 -Ca+2 + NO3- = CaNO3+ - log_k 0.5 - delta_h -5.4 kJ - -gamma 0 0 - # Id: 1504921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Sr+2 + NO3- = SrNO3+ - log_k 0.6 - delta_h -10 kJ - -gamma 0 0 - # Id: 8004921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ba+2 + NO3- = BaNO3+ - log_k 0.7 - delta_h -13 kJ - -gamma 0 0 - # Id: 1004921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -H+ + Cyanide- = HCyanide - log_k 9.21 - delta_h -43.63 kJ - -gamma 0 0 - # Id: 3301431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Cd+2 + Cyanide- = CdCyanide+ - log_k 6.01 - delta_h -30 kJ - -gamma 0 0 - # Id: 1601431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Cd+2 + 2Cyanide- = Cd(Cyanide)2 - log_k 11.12 - delta_h -54.3 kJ - -gamma 0 0 - # Id: 1601432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Cd+2 + 3Cyanide- = Cd(Cyanide)3- - log_k 15.65 - delta_h -90.3 kJ - -gamma 0 0 - # Id: 1601433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Cd+2 + 4Cyanide- = Cd(Cyanide)4-2 - log_k 17.92 - delta_h -112 kJ - -gamma 0 0 - # Id: 1601434 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + Cyanide- = HgCyanide+ + 2H2O - log_k 23.194 - delta_h -136.72 kJ - -gamma 0 0 - # Id: 3611431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + 2Cyanide- = Hg(Cyanide)2 + 2H2O - log_k 38.944 - delta_h 154.28 kJ - -gamma 0 0 - # Id: 3611432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + 3Cyanide- = Hg(Cyanide)3- + 2H2O - log_k 42.504 - delta_h -262.72 kJ - -gamma 0 0 - # Id: 3611433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + 4Cyanide- = Hg(Cyanide)4-2 + 2H2O - log_k 45.164 - delta_h -288.72 kJ - -gamma 0 0 - # Id: 3611434 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Cu+ + 2Cyanide- = Cu(Cyanide)2- - log_k 21.9145 - delta_h -121 kJ - -gamma 0 0 - # Id: 2301432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Cu+ + 3Cyanide- = Cu(Cyanide)3-2 - log_k 27.2145 - delta_h -167.4 kJ - -gamma 0 0 - # Id: 2301433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Cu+ + 4Cyanide- = Cu(Cyanide)4-3 - log_k 28.7145 - delta_h -214.2 kJ - -gamma 0 0 - # Id: 2301431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ag+ + 2Cyanide- = Ag(Cyanide)2- - log_k 20.48 - delta_h -137 kJ - -gamma 0 0 - # Id: 201432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ag+ + 3Cyanide- = Ag(Cyanide)3-2 - log_k 21.7 - delta_h -140 kJ - -gamma 0 0 - # Id: 201433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ag+ + H2O + Cyanide- = Ag(Cyanide)OH- + H+ - log_k -0.777 - delta_h 0 kJ - -gamma 0 0 - # Id: 201431 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Ni+2 + 4Cyanide- = Ni(Cyanide)4-2 - log_k 30.2 - delta_h -180 kJ - -gamma 0 0 - # Id: 5401431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ni+2 + 4Cyanide- + H+ = NiH(Cyanide)4- - log_k 36.0289 - delta_h 0 kJ - -gamma 0 0 - # Id: 5401432 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 -Ni+2 + 4Cyanide- + 2H+ = NiH2Cyanide4 - log_k 40.7434 - delta_h 0 kJ - -gamma 0 0 - # Id: 5401433 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 -Ni+2 + 4Cyanide- + 3H+ = NiH3(Cyanide)4+ - log_k 43.3434 - delta_h 0 kJ - -gamma 0 0 - # Id: 5401434 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 -Co+2 + 3Cyanide- = Co(Cyanide)3- - log_k 14.312 - delta_h 0 kJ - -gamma 0 0 - # Id: 2001431 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 -Co+2 + 5Cyanide- = Co(Cyanide)5-3 - log_k 23 - delta_h -257 kJ - -gamma 0 0 - # Id: 2001432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 1.00 25.0 -Fe+2 + 6Cyanide- = Fe(Cyanide)6-4 - log_k 35.4 - delta_h -358 kJ - -gamma 0 0 - # Id: 2801431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -H+ + Fe+2 + 6Cyanide- = HFe(Cyanide)6-3 - log_k 39.71 - delta_h -356 kJ - -gamma 0 0 - # Id: 2801432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -2H+ + Fe+2 + 6Cyanide- = H2Fe(Cyanide)6-2 - log_k 42.11 - delta_h -352 kJ - -gamma 0 0 - # Id: 2801433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Fe+3 + 6Cyanide- = Fe(Cyanide)6-3 - log_k 43.6 - delta_h -293 kJ - -gamma 0 0 - # Id: 2811431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -2Fe+3 + 6Cyanide- = Fe2(Cyanide)6 - log_k 47.6355 - delta_h -218 kJ - -gamma 0 0 - # Id: 2811432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 -Sn(OH)2 + Fe+3 + 6Cyanide- + 2H+ = SnFe(Cyanide)6- + 2H2O - log_k 53.54 - delta_h 0 kJ - -gamma 0 0 - # Id: 7901431 - # log K source: Ba1987 - # Delta H source: - #T and ionic strength: 0.00 25.0 -NH4+ + Fe+2 + 6Cyanide- = NH4Fe(Cyanide)6-3 - log_k 37.7 - delta_h -354 kJ - -gamma 0 0 - # Id: 4901431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Tl+ + Fe+2 + 6Cyanide- = TlFe(Cyanide)6-3 - log_k 38.4 - delta_h -365.5 kJ - -gamma 0 0 - # Id: 8701432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Mg+2 + Fe+3 + 6Cyanide- = MgFe(Cyanide)6- - log_k 46.39 - delta_h -290 kJ - -gamma 0 0 - # Id: 4601431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Mg+2 + Fe+2 + 6Cyanide- = MgFe(Cyanide)6-2 - log_k 39.21 - delta_h -346 kJ - -gamma 0 0 - # Id: 4601432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ca+2 + Fe+3 + 6Cyanide- = CaFe(Cyanide)6- - log_k 46.43 - delta_h -291 kJ - -gamma 0 0 - # Id: 1501431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ca+2 + Fe+2 + 6Cyanide- = CaFe(Cyanide)6-2 - log_k 39.1 - delta_h -347 kJ - -gamma 0 0 - # Id: 1501432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -2Ca+2 + Fe+2 + 6Cyanide- = Ca2Fe(Cyanide)6 - log_k 40.6 - delta_h -350.201 kJ - -gamma 0 0 - # Id: 1501433 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Sr+2 + Fe+3 + 6Cyanide- = SrFe(Cyanide)6- - log_k 46.45 - delta_h -292 kJ - -gamma 0 0 - # Id: 8001431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Sr+2 + Fe+2 + 6Cyanide- = SrFe(Cyanide)6-2 - log_k 39.1 - delta_h -350 kJ - -gamma 0 0 - # Id: 8001432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ba+2 + Fe+2 + 6Cyanide- = BaFe(Cyanide)6-2 - log_k 39.19 - delta_h -342 kJ - -gamma 0 0 - # Id: 1001430 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ba+2 + Fe+3 + 6Cyanide- = BaFe(Cyanide)6- - log_k 46.48 - delta_h -292 kJ - -gamma 0 0 - # Id: 1001431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Na+ + Fe+2 + 6Cyanide- = NaFe(Cyanide)6-3 - log_k 37.6 - delta_h -354 kJ - -gamma 0 0 - # Id: 5001431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -K+ + Fe+2 + 6Cyanide- = KFe(Cyanide)6-3 - log_k 37.75 - delta_h -353.9 kJ - -gamma 0 0 - # Id: 4101433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -K+ + Fe+3 + 6Cyanide- = KFe(Cyanide)6-2 - log_k 45.04 - delta_h -291 kJ - -gamma 0 0 - # Id: 4101430 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -H+ + PO4-3 = HPO4-2 - log_k 12.375 - delta_h -15 kJ - -gamma 5 0 - # Id: 3305800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -2H+ + PO4-3 = H2PO4- - log_k 19.573 - delta_h -18 kJ - -gamma 5.4 0 - # Id: 3305801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -3H+ + PO4-3 = H3PO4 - log_k 21.721 - delta_h -10.1 kJ - -gamma 0 0 - # Id: 3305802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Co+2 + H+ + PO4-3 = CoHPO4 - log_k 15.4128 - delta_h 0 kJ - -gamma 0 0 - # Id: 2005800 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 -Fe+2 + 2H+ + PO4-3 = FeH2PO4+ - log_k 22.273 - delta_h 0 kJ - -gamma 5.4 0 - # Id: 2805800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Fe+2 + H+ + PO4-3 = FeHPO4 - log_k 15.975 - delta_h 0 kJ - -gamma 0 0 - # Id: 2805801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Fe+3 + 2H+ + PO4-3 = FeH2PO4+2 - log_k 23.8515 - delta_h 0 kJ - -gamma 5.4 0 - # Id: 2815801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Fe+3 + H+ + PO4-3 = FeHPO4+ - log_k 22.292 - delta_h -30.5432 kJ - -gamma 5.4 0 - # Id: 2815800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Cr(OH)2+ + 4H+ + PO4-3 = CrH2PO4+2 + 2H2O - log_k 31.9068 - delta_h 0 kJ - -gamma 0 0 - # Id: 2115800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + PO4-3 + H+ = UHPO4+2 - log_k 24.443 - delta_h 31.38 kJ - -gamma 0 0 - # Id: 8915800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 2PO4-3 + 2H+ = U(HPO4)2 - log_k 46.833 - delta_h 7.1128 kJ - -gamma 0 0 - # Id: 8915801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 3PO4-3 + 3H+ = U(HPO4)3-2 - log_k 67.564 - delta_h -32.6352 kJ - -gamma 0 0 - # Id: 8915802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 4PO4-3 + 4H+ = U(HPO4)4-4 - log_k 88.483 - delta_h -110.876 kJ - -gamma 0 0 - # Id: 8915803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -UO2+2 + H+ + PO4-3 = UO2HPO4 - log_k 19.655 - delta_h -8.7864 kJ - -gamma 0 0 - # Id: 8935800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -UO2+2 + 2PO4-3 + 2H+ = UO2(HPO4)2-2 - log_k 42.988 - delta_h -47.6934 kJ - -gamma 0 0 - # Id: 8935801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -UO2+2 + 2H+ + PO4-3 = UO2H2PO4+ - log_k 22.833 - delta_h -15.4808 kJ - -gamma 0 0 - # Id: 8935802 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -UO2+2 + 2PO4-3 + 4H+ = UO2(H2PO4)2 - log_k 44.7 - delta_h -69.036 kJ - -gamma 0 0 - # Id: 8935803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -UO2+2 + 3PO4-3 + 6H+ = UO2(H2PO4)3- - log_k 66.245 - delta_h -119.662 kJ - -gamma 0 0 - # Id: 8935804 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -UO2+2 + PO4-3 = UO2PO4- - log_k 13.25 - delta_h 0 kJ - -gamma 0 0 - # Id: 8935805 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Mg+2 + PO4-3 = MgPO4- - log_k 4.654 - delta_h 12.9704 kJ - -gamma 5.4 0 - # Id: 4605800 - # log K source: SCD3.02 (1993 GMa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.20 25.0 -Mg+2 + 2H+ + PO4-3 = MgH2PO4+ - log_k 21.2561 - delta_h -4.6861 kJ - -gamma 5.4 0 - # Id: 4605801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 37.0 -Mg+2 + H+ + PO4-3 = MgHPO4 - log_k 15.175 - delta_h -3 kJ - -gamma 0 0 - # Id: 4605802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ca+2 + H+ + PO4-3 = CaHPO4 - log_k 15.035 - delta_h -3 kJ - -gamma 0 0 - # Id: 1505800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ca+2 + PO4-3 = CaPO4- - log_k 6.46 - delta_h 12.9704 kJ - -gamma 5.4 0 - # Id: 1505801 - # log K source: SCD3.02 (1993 GMa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Ca+2 + 2H+ + PO4-3 = CaH2PO4+ - log_k 20.923 - delta_h -6 kJ - -gamma 5.4 0 - # Id: 1505802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Sr+2 + H+ + PO4-3 = SrHPO4 - log_k 14.8728 - delta_h 0 kJ - -gamma 0 0 - # Id: 8005800 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 -Sr+2 + 2H+ + PO4-3 = SrH2PO4+ - log_k 20.4019 - delta_h 0 kJ - -gamma 0 0 - # Id: 8005801 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 20.0 -Na+ + H+ + PO4-3 = NaHPO4- - log_k 13.445 - delta_h 0 kJ - -gamma 5.4 0 - # Id: 5005800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -K+ + H+ + PO4-3 = KHPO4- - log_k 13.255 - delta_h 0 kJ - -gamma 5.4 0 - # Id: 4105800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -H3AsO3 = AsO3-3 + 3H+ - log_k -34.744 - delta_h 84.726 kJ - -gamma 0 0 - # Id: 3300602 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -H3AsO3 = HAsO3-2 + 2H+ - log_k -21.33 - delta_h 59.4086 kJ - -gamma 0 0 - # Id: 3300601 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -H3AsO3 = H2AsO3- + H+ - log_k -9.29 - delta_h 27.41 kJ - -gamma 0 0 - # Id: 3300600 - # log K source: NIST46.4 - # Delta H source: NIST2.1.1 - #T and ionic strength: 0.00 25.0 -H3AsO3 + H+ = H4AsO3+ - log_k -0.305 - delta_h 0 kJ - -gamma 0 0 - # Id: 3300603 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -H3AsO4 = AsO4-3 + 3H+ - log_k -20.7 - delta_h 12.9 kJ - -gamma 0 0 - # Id: 3300613 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -H3AsO4 = HAsO4-2 + 2H+ - log_k -9.2 - delta_h -4.1 kJ - -gamma 0 0 - # Id: 3300612 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -H3AsO4 = H2AsO4- + H+ - log_k -2.24 - delta_h -7.1 kJ - -gamma 0 0 - # Id: 3300611 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Sb(OH)3 + H2O = Sb(OH)4- + H+ - log_k -12.0429 - delta_h 69.8519 kJ - -gamma 0 0 - # Id: 7400020 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: -Sb(OH)3 + H+ = Sb(OH)2+ + H2O - log_k 1.3853 - delta_h 0 kJ - -gamma 0 0 - # Id: 7403302 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: -Sb(OH)3 = HSbO2 + H2O - log_k -0.0105 - delta_h -0.13 kJ - -gamma 0 0 - # Id: 7400021 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Sb(OH)3 = SbO2- + H2O + H+ - log_k -11.8011 - delta_h 70.1866 kJ - -gamma 0 0 - # Id: 7403301 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: -Sb(OH)3 + H+ = SbO+ + 2H2O - log_k 0.9228 - delta_h 8.2425 kJ - -gamma 0 0 - # Id: 7403300 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: -Sb(OH)6- = SbO3- + 3H2O - log_k 2.9319 - delta_h 0 kJ - -gamma 0 0 - # Id: 7410021 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: -Sb(OH)6- + 2H+ = SbO2+ + 4H2O - log_k 2.3895 - delta_h 0 kJ - -gamma 0 0 - # Id: 7413300 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: -H+ + CO3-2 = HCO3- - log_k 10.329 - delta_h -14.6 kJ - -gamma 5.4 0 - # Id: 3301400 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -2H+ + CO3-2 = H2CO3 - log_k 16.681 - delta_h -23.76 kJ - -gamma 0 0 - # Id: 3301401 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Pb+2 + 2CO3-2 = Pb(CO3)2-2 - log_k 9.938 - delta_h 0 kJ - -gamma 0 0 - # Id: 6001400 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Pb+2 + CO3-2 = PbCO3 - log_k 6.478 - delta_h 0 kJ - -gamma 0 0 - # Id: 6001401 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Pb+2 + CO3-2 + H+ = PbHCO3+ - log_k 13.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 6001402 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Zn+2 + CO3-2 = ZnCO3 - log_k 4.76 - delta_h 0 kJ - -gamma 0 0 - # Id: 9501401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Zn+2 + H+ + CO3-2 = ZnHCO3+ - log_k 11.829 - delta_h 0 kJ - -gamma 0 0 - # Id: 9501400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + CO3-2 = HgCO3 + 2H2O - log_k 18.272 - delta_h 0 kJ - -gamma 0 0 - # Id: 3611401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 2H+ + 2CO3-2 = Hg(CO3)2-2 + 2H2O - log_k 21.772 - delta_h 0 kJ - -gamma 0 0 - # Id: 3611402 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 3H+ + CO3-2 = HgHCO3+ + 2H2O - log_k 22.542 - delta_h 0 kJ - -gamma 0 0 - # Id: 3611403 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Cd+2 + CO3-2 = CdCO3 - log_k 4.3578 - delta_h 0 kJ - -gamma 0 0 - # Id: 1601401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 -Cd+2 + H+ + CO3-2 = CdHCO3+ - log_k 10.6863 - delta_h 0 kJ - -gamma 0 0 - # Id: 1601400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 3.00 25.0 -Cd+2 + 2CO3-2 = Cd(CO3)2-2 - log_k 7.2278 - delta_h 0 kJ - -gamma 0 0 - # Id: 1601403 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 20.0 -Cu+2 + CO3-2 = CuCO3 - log_k 6.77 - delta_h 0 kJ - -gamma 0 0 - # Id: 2311400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cu+2 + H+ + CO3-2 = CuHCO3+ - log_k 12.129 - delta_h 0 kJ - -gamma 0 0 - # Id: 2311402 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Cu+2 + 2CO3-2 = Cu(CO3)2-2 - log_k 10.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2311401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Ni+2 + CO3-2 = NiCO3 - log_k 4.5718 - delta_h 0 kJ - -gamma 0 0 - # Id: 5401401 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.70 25.0 -Ni+2 + H+ + CO3-2 = NiHCO3+ - log_k 12.4199 - delta_h 0 kJ - -gamma 0 0 - # Id: 5401400 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.70 25.0 -Co+2 + CO3-2 = CoCO3 - log_k 4.228 - delta_h 0 kJ - -gamma 0 0 - # Id: 2001400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -Co+2 + H+ + CO3-2 = CoHCO3+ - log_k 12.2199 - delta_h 0 kJ - -gamma 0 0 - # Id: 2001401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.70 25.0 -Fe+2 + H+ + CO3-2 = FeHCO3+ - log_k 11.429 - delta_h 0 kJ - -gamma 6 0 - # Id: 2801400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Mn+2 + H+ + CO3-2 = MnHCO3+ - log_k 11.629 - delta_h -10.6 kJ - -gamma 5 0 - # Id: 4701400 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -UO2+2 + CO3-2 = UO2CO3 - log_k 9.6 - delta_h 4 kJ - -gamma 0 0 - # Id: 8931400 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -UO2+2 + 2CO3-2 = UO2(CO3)2-2 - log_k 16.9 - delta_h 16 kJ - -gamma 0 0 - # Id: 8931401 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -UO2+2 + 3CO3-2 = UO2(CO3)3-4 - log_k 21.6 - delta_h -40 kJ - -gamma 0 0 - # Id: 8931402 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Be+2 + CO3-2 = BeCO3 - log_k 6.2546 - delta_h 0 kJ - -gamma 0 0 - # Id: 1101401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 3.00 25.0 -Mg+2 + CO3-2 = MgCO3 - log_k 2.92 - delta_h 12 kJ - -gamma 0 0 - # Id: 4601400 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Mg+2 + H+ + CO3-2 = MgHCO3+ - log_k 11.339 - delta_h -10.6 kJ - -gamma 4 0 - # Id: 4601401 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Ca+2 + H+ + CO3-2 = CaHCO3+ - log_k 11.599 - delta_h 5.4 kJ - -gamma 6 0 - # Id: 1501400 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -CO3-2 + Ca+2 = CaCO3 - log_k 3.2 - delta_h 16 kJ - -gamma 0 0 - # Id: 1501401 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -Sr+2 + CO3-2 = SrCO3 - log_k 2.81 - delta_h 20 kJ - -gamma 0 0 - # Id: 8001401 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Sr+2 + H+ + CO3-2 = SrHCO3+ - log_k 11.539 - delta_h 10.4 kJ - -gamma 6 0 - # Id: 8001400 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ba+2 + CO3-2 = BaCO3 - log_k 2.71 - delta_h 16 kJ - -gamma 0 0 - # Id: 1001401 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ba+2 + H+ + CO3-2 = BaHCO3+ - log_k 11.309 - delta_h 10.4 kJ - -gamma 6 0 - # Id: 1001400 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Na+ + CO3-2 = NaCO3- - log_k 1.27 - delta_h -20.35 kJ - -gamma 5.4 0 - # Id: 5001400 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 - #T and ionic strength: 0.00 25.0 -Na+ + H+ + CO3-2 = NaHCO3 - log_k 10.079 - delta_h -28.3301 kJ - -gamma 0 0 - # Id: 5001401 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 - #T and ionic strength: 0.00 25.0 -H4SiO4 = H2SiO4-2 + 2H+ - log_k -23.04 - delta_h 61 kJ - -gamma 5.4 0 - # Id: 3307701 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -H4SiO4 = H3SiO4- + H+ - log_k -9.84 - delta_h 20 kJ - -gamma 4 0 - # Id: 3307700 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -UO2+2 + H4SiO4 = UO2H3SiO4+ + H+ - log_k -1.9111 - delta_h 0 kJ - -gamma 0 0 - # Id: 8937700 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 -H3BO3 = H2BO3- + H+ - log_k -9.236 - delta_h 13 kJ - -gamma 2.5 0 - # Id: 3300900 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -2H3BO3 = H5(BO3)2- + H+ - log_k -9.306 - delta_h 8.4 kJ - -gamma 2.5 0 - # Id: 3300901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -3H3BO3 = H8(BO3)3- + H+ - log_k -7.306 - delta_h 29.4 kJ - -gamma 2.5 0 - # Id: 3300902 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ag+ + H3BO3 = AgH2BO3 + H+ - log_k -8.036 - delta_h 0 kJ - -gamma 2.5 0 - # Id: 200901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Mg+2 + H3BO3 = MgH2BO3+ + H+ - log_k -7.696 - delta_h 13 kJ - -gamma 2.5 0 - # Id: 4600901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ca+2 + H3BO3 = CaH2BO3+ + H+ - log_k -7.476 - delta_h 17 kJ - -gamma 2.5 0 - # Id: 1500901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Sr+2 + H3BO3 = SrH2BO3+ + H+ - log_k -7.686 - delta_h 17 kJ - -gamma 2.5 0 - # Id: 8000901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ba+2 + H3BO3 = BaH2BO3+ + H+ - log_k -7.746 - delta_h 17 kJ - -gamma 2.5 0 - # Id: 1000901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Na+ + H3BO3 = NaH2BO3 + H+ - log_k -9.036 - delta_h 0 kJ - -gamma 2.5 0 - # Id: 5000901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -CrO4-2 + H+ = HCrO4- - log_k 6.51 - delta_h 2 kJ - -gamma 0 0 - # Id: 2123300 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -CrO4-2 + 2H+ = H2CrO4 - log_k 6.4188 - delta_h 39 kJ - -gamma 0 0 - # Id: 2123301 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 20.0 -2CrO4-2 + 2H+ = Cr2O7-2 + H2O - log_k 14.56 - delta_h -15 kJ - -gamma 0 0 - # Id: 2123302 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -CrO4-2 + Cl- + 2H+ = CrO3Cl- + H2O - log_k 7.3086 - delta_h 0 kJ - -gamma 0 0 - # Id: 2121800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -CrO4-2 + SO4-2 + 2H+ = CrO3SO4-2 + H2O - log_k 8.9937 - delta_h 0 kJ - -gamma 0 0 - # Id: 2127320 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -CrO4-2 + 4H+ + PO4-3 = CrO3H2PO4- + H2O - log_k 29.3634 - delta_h 0 kJ - -gamma 0 0 - # Id: 2125800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -CrO4-2 + 3H+ + PO4-3 = CrO3HPO4-2 + H2O - log_k 26.6806 - delta_h 0 kJ - -gamma 0 0 - # Id: 2125801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -CrO4-2 + Na+ = NaCrO4- - log_k 0.6963 - delta_h 0 kJ - -gamma 0 0 - # Id: 5002120 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -K+ + CrO4-2 = KCrO4- - log_k 0.57 - delta_h 0 kJ - -gamma 0 0 - # Id: 4102120 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 18.0 -MoO4-2 + H+ = HMoO4- - log_k 4.2988 - delta_h 20 kJ - -gamma 0 0 - # Id: 3304801 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 20.0 -MoO4-2 + 2H+ = H2MoO4 - log_k 8.1636 - delta_h -26 kJ - -gamma 0 0 - # Id: 3304802 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 20.0 -7MoO4-2 + 8H+ = Mo7O24-6 + 4H2O - log_k 52.99 - delta_h -228 kJ - -gamma 0 0 - # Id: 3304803 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -7MoO4-2 + 9H+ = HMo7O24-5 + 4H2O - log_k 59.3768 - delta_h -218 kJ - -gamma 0 0 - # Id: 3304804 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -7MoO4-2 + 10H+ = H2Mo7O24-4 + 4H2O - log_k 64.159 - delta_h -215 kJ - -gamma 0 0 - # Id: 3304805 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -7MoO4-2 + 11H+ = H3Mo7O24-3 + 4H2O - log_k 67.405 - delta_h -217 kJ - -gamma 0 0 - # Id: 3304806 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 1.00 25.0 -6MoO4-2 + Al+3 + 6H+ = AlMo6O21-3 + 3H2O - log_k 54.9925 - delta_h 0 kJ - -gamma 0 0 - # Id: 304801 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 -MoO4-2 + 2Ag+ = Ag2MoO4 - log_k -0.4219 - delta_h -1.18 kJ - -gamma 0 0 - # Id: 204801 - # log K source: Bard85 - # Delta H source: Bard85 - #T and ionic strength: -VO2+ + 2H2O = VO4-3 + 4H+ - log_k -30.2 - delta_h -25 kJ - -gamma 0 0 - # Id: 9033303 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -VO2+ + 2H2O = HVO4-2 + 3H+ - log_k -15.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 9033302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -VO2+ + 2H2O = H2VO4- + 2H+ - log_k -7.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 9033301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -VO2+ + 2H2O = H3VO4 + H+ - log_k -3.3 - delta_h 44.4759 kJ - -gamma 0 0 - # Id: 9033300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -2VO2+ + 3H2O = V2O7-4 + 6H+ - log_k -31.24 - delta_h -28 kJ - -gamma 0 0 - # Id: 9030020 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -2VO2+ + 3H2O = HV2O7-3 + 5H+ - log_k -20.67 - delta_h 0 kJ - -gamma 0 0 - # Id: 9030021 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -2VO2+ + 3H2O = H3V2O7- + 3H+ - log_k -3.79 - delta_h 0 kJ - -gamma 0 0 - # Id: 9030022 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -3VO2+ + 3H2O = V3O9-3 + 6H+ - log_k -15.88 - delta_h 0 kJ - -gamma 0 0 - # Id: 9030023 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -4VO2+ + 4H2O = V4O12-4 + 8H+ - log_k -20.56 - delta_h -87 kJ - -gamma 0 0 - # Id: 9030024 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 -10VO2+ + 8H2O = V10O28-6 + 16H+ - log_k -24.0943 - delta_h 0 kJ - -gamma 0 0 - # Id: 9030025 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 20.0 -10VO2+ + 8H2O = HV10O28-5 + 15H+ - log_k -15.9076 - delta_h 90.0397 kJ - -gamma 0 0 - # Id: 9030026 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 20.0 -10VO2+ + 8H2O = H2V10O28-4 + 14H+ - log_k -10.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 9030027 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 -Benzoate- + H+ = H(Benzoate) - log_k 4.202 - delta_h -0.4602 kJ - -gamma 0 0 - # Id: 3309171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Benzoate- + Pb+2 = Pb(Benzoate)+ - log_k 2.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Benzoate- + Al+3 = Al(Benzoate)+2 - log_k 2.05 - delta_h 0 kJ - -gamma 0 0 - # Id: 309171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Benzoate- + Al+3 + H2O = AlOH(Benzoate)+ + H+ - log_k -0.56 - delta_h 0 kJ - -gamma 0 0 - # Id: 309172 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Benzoate- + Zn+2 = Zn(Benzoate)+ - log_k 1.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509171 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Benzoate- + Cd+2 = Cd(Benzoate)+ - log_k 1.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2Benzoate- + Cd+2 = Cd(Benzoate)2 - log_k 1.82 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609172 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Benzoate- + Cu+2 = Cu(Benzoate)+ - log_k 2.19 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Benzoate- + Ag+ = Ag(Benzoate) - log_k 0.91 - delta_h 0 kJ - -gamma 0 0 - # Id: 209171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Benzoate- + Ni+2 = Ni(Benzoate)+ - log_k 1.86 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409171 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Co+2 + Benzoate- = Co(Benzoate)+ - log_k 1.0537 - delta_h 12 kJ - -gamma 0 0 - # Id: 2009171 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 30.0 -Benzoate- + Mn+2 = Mn(Benzoate)+ - log_k 2.06 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Benzoate- + Mg+2 = Mg(Benzoate)+ - log_k 1.26 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609171 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Benzoate- + Ca+2 = Ca(Benzoate)+ - log_k 1.55 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509171 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Phenylacetate- + H+ = H(Phenylacetate) - log_k 4.31 - delta_h 2.1757 kJ - -gamma 0 0 - # Id: 3309181 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Phenylacetate- + Zn+2 = Zn(Phenylacetate)+ - log_k 1.57 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509181 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Phenylacetate- + Cu+2 = Cu(Phenylacetate)+ - log_k 1.97 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319181 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Co+2 + Phenylacetate- = Co(Phenylacetate)+ - log_k 0.591 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009181 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 2.00 25.0 -Co+2 + 2Phenylacetate- = Co(Phenylacetate)2 - log_k 0.4765 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009182 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 2.00 25.0 -Isophthalate-2 + H+ = H(Isophthalate)- - log_k 4.5 - delta_h 1.6736 kJ - -gamma 0 0 - # Id: 3309201 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Isophthalate-2 + 2H+ = H2(Isophthalate) - log_k 8 - delta_h 1.6736 kJ - -gamma 0 0 - # Id: 3309202 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Isophthalate-2 + Pb+2 = Pb(Isophthalate) - log_k 2.99 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009201 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2Isophthalate-2 + Pb+2 = Pb(Isophthalate)2-2 - log_k 4.18 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009202 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Isophthalate-2 + Pb+2 + H+ = PbH(Isophthalate)+ - log_k 6.69 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009203 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Isophthalate-2 + Cd+2 = Cd(Isophthalate) - log_k 2.15 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609201 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2Isophthalate-2 + Cd+2 = Cd(Isophthalate)2-2 - log_k 2.99 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609202 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Isophthalate-2 + Cd+2 + H+ = CdH(Isophthalate)+ - log_k 5.73 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609203 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Isophthalate-2 + Ca+2 = Ca(Isophthalate) - log_k 2 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509200 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Isophthalate-2 + Ba+2 = Ba(Isophthalate) - log_k 1.55 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009201 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -H+ + Diethylamine = H(Diethylamine)+ - log_k 10.933 - delta_h -53.1368 kJ - -gamma 0 0 - # Id: 3309551 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Diethylamine = Zn(Diethylamine)+2 - log_k 2.74 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509551 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 2Diethylamine = Zn(Diethylamine)2+2 - log_k 5.27 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509552 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 3Diethylamine = Zn(Diethylamine)3+2 - log_k 7.71 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509553 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 4Diethylamine = Zn(Diethylamine)4+2 - log_k 9.84 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509554 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + Diethylamine = Cd(Diethylamine)+2 - log_k 2.73 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609551 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 2Diethylamine = Cd(Diethylamine)2+2 - log_k 4.86 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609552 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 3Diethylamine = Cd(Diethylamine)3+2 - log_k 6.37 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609553 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 4Diethylamine = Cd(Diethylamine)4+2 - log_k 7.32 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609554 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ag+ + Diethylamine = Ag(Diethylamine)+ - log_k 2.98 - delta_h 0 kJ - -gamma 0 0 - # Id: 209551 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Diethylamine = Ag(Diethylamine)2+ - log_k 6.38 - delta_h -44.7688 kJ - -gamma 0 0 - # Id: 209552 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Diethylamine = Ni(Diethylamine)+2 - log_k 2.78 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409551 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 2Diethylamine = Ni(Diethylamine)2+2 - log_k 4.97 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409552 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 3Diethylamine = Ni(Diethylamine)3+2 - log_k 6.72 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409553 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 4Diethylamine = Ni(Diethylamine)4+2 - log_k 7.93 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409554 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 5Diethylamine = Ni(Diethylamine)5+2 - log_k 8.87 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409555 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -H+ + Butylamine = H(Butylamine)+ - log_k 10.64 - delta_h -58.2831 kJ - -gamma 0 0 - # Id: 3309561 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Butylamine + 2H+ = Hg(Butylamine)+2 + 2H2O - log_k 14.84 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619561 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 2Butylamine + 2H+ = Hg(Butylamine)2+2 + 2H2O - log_k 24.24 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619562 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 3Butylamine + 2H+ = Hg(Butylamine)3+2 + 2H2O - log_k 25.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619563 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 4Butylamine + 2H+ = Hg(Butylamine)4+2 + 2H2O - log_k 26.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619564 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Butylamine = Ag(Butylamine)+ - log_k 3.42 - delta_h -16.736 kJ - -gamma 0 0 - # Id: 209561 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Butylamine = Ag(Butylamine)2+ - log_k 7.47 - delta_h -52.7184 kJ - -gamma 0 0 - # Id: 209562 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -H+ + Methylamine = H(Methylamine)+ - log_k 10.64 - delta_h -55.2288 kJ - -gamma 0 0 - # Id: 3309581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Methylamine = Cd(Methylamine)+2 - log_k 2.75 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Methylamine = Cd(Methylamine)2+2 - log_k 4.81 - delta_h -29.288 kJ - -gamma 0 0 - # Id: 1609582 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 3Methylamine = Cd(Methylamine)3+2 - log_k 5.94 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609583 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 4Methylamine = Cd(Methylamine)4+2 - log_k 6.55 - delta_h -58.576 kJ - -gamma 0 0 - # Id: 1609584 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Methylamine + 2H+ = Hg(Methylamine)+2 + 2H2O - log_k 14.76 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 2Methylamine + 2H+ = Hg(Methylamine)2+2 + 2H2O - log_k 23.96 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619582 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 3Methylamine + 2H+ = Hg(Methylamine)3+2 + 2H2O - log_k 24.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619583 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 4Methylamine + 2H+ = Hg(Methylamine)4+2 + 2H2O - log_k 24.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619584 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Methylamine = Cu(Methylamine)+2 - log_k 4.11 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Methylamine = Cu(Methylamine)2+2 - log_k 7.51 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319582 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 3Methylamine = Cu(Methylamine)3+2 - log_k 10.21 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319583 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 4Methylamine = Cu(Methylamine)4+2 - log_k 12.08 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319584 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Methylamine = Ag(Methylamine)+ - log_k 3.07 - delta_h -12.552 kJ - -gamma 0 0 - # Id: 209581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Methylamine = Ag(Methylamine)2+ - log_k 6.89 - delta_h -48.9528 kJ - -gamma 0 0 - # Id: 209582 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Methylamine = Ni(Methylamine)+2 - log_k 2.23 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -H+ + Dimethylamine = H(Dimethylamine)+ - log_k 10.774 - delta_h -50.208 kJ - -gamma 0 0 - # Id: 3309591 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Dimethylamine = Ag(Dimethylamine)2+ - log_k 5.37 - delta_h -40.5848 kJ - -gamma 0 0 - # Id: 209591 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Dimethylamine = Ni(Dimethylamine)+2 - log_k 1.47 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409591 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -H+ + Hexylamine = H(Hexylamine)+ - log_k 10.63 - delta_h -58.576 kJ - -gamma 0 0 - # Id: 3309611 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Hexylamine = Ag(Hexylamine)+ - log_k 3.54 - delta_h -25.104 kJ - -gamma 0 0 - # Id: 209611 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Hexylamine = Ag(Hexylamine)2+ - log_k 7.55 - delta_h -53.1368 kJ - -gamma 0 0 - # Id: 209612 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -H+ + Ethylenediamine = H(Ethylenediamine)+ - log_k 9.928 - delta_h -49.7896 kJ - -gamma 0 0 - # Id: 3309631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Ethylenediamine = H2(Ethylenediamine)+2 - log_k 16.776 - delta_h -95.3952 kJ - -gamma 0 0 - # Id: 3309632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + Ethylenediamine = Pb(Ethylenediamine)+2 - log_k 5.04 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + 2Ethylenediamine = Pb(Ethylenediamine)2+2 - log_k 8.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Ethylenediamine = Zn(Ethylenediamine)+2 - log_k 5.66 - delta_h -29.288 kJ - -gamma 0 0 - # Id: 9509631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Ethylenediamine = Zn(Ethylenediamine)2+2 - log_k 10.6 - delta_h -48.116 kJ - -gamma 0 0 - # Id: 9509632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 3Ethylenediamine = Zn(Ethylenediamine)3+2 - log_k 13.9 - delta_h -71.5464 kJ - -gamma 0 0 - # Id: 9509633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Ethylenediamine = Cd(Ethylenediamine)+2 - log_k 5.41 - delta_h -28.4512 kJ - -gamma 0 0 - # Id: 1609631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Ethylenediamine = Cd(Ethylenediamine)2+2 - log_k 9.9 - delta_h -55.6472 kJ - -gamma 0 0 - # Id: 1609632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 3Ethylenediamine = Cd(Ethylenediamine)3+2 - log_k 11.6 - delta_h -82.4248 kJ - -gamma 0 0 - # Id: 1609633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Ethylenediamine + 2H+ = Hg(Ethylenediamine)+2 + 2H2O - log_k 20.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 2Ethylenediamine + 2H+ = Hg(Ethylenediamine)2+2 + 2H2O - log_k 29.3 - delta_h -173.218 kJ - -gamma 0 0 - # Id: 3619632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 2Ethylenediamine + 3H+ = HgH(Ethylenediamine)2+3 + 2H2O - log_k 34.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 2Ethylenediamine = Cu(Ethylenediamine)2+ - log_k 11.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Ethylenediamine = Cu(Ethylenediamine)+2 - log_k 10.5 - delta_h -52.7184 kJ - -gamma 0 0 - # Id: 2319631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Ethylenediamine = Cu(Ethylenediamine)2+2 - log_k 19.6 - delta_h -105.437 kJ - -gamma 0 0 - # Id: 2319632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Ethylenediamine = Ag(Ethylenediamine)+ - log_k 4.6 - delta_h -48.9528 kJ - -gamma 0 0 - # Id: 209631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Ethylenediamine = Ag(Ethylenediamine)2+ - log_k 7.5 - delta_h -52.3 kJ - -gamma 0 0 - # Id: 209632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Ethylenediamine + H+ = AgH(Ethylenediamine)+2 - log_k 11.99 - delta_h -75.312 kJ - -gamma 0 0 - # Id: 209633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2Ag+ + Ethylenediamine = Ag2(Ethylenediamine)+2 - log_k 6.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 209634 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2Ag+ + 2Ethylenediamine = Ag2(Ethylenediamine)2+2 - log_k 12.7 - delta_h -97.0688 kJ - -gamma 0 0 - # Id: 209635 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Ethylenediamine + 2H+ = Ag(HEthylenediamine)2+3 - log_k 24 - delta_h -150.206 kJ - -gamma 0 0 - # Id: 209636 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Ethylenediamine + H+ = AgH(Ethylenediamine)2+2 - log_k 8.4 - delta_h -47.6976 kJ - -gamma 0 0 - # Id: 209637 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Ethylenediamine = Ni(Ethylenediamine)+2 - log_k 7.32 - delta_h -37.656 kJ - -gamma 0 0 - # Id: 5409631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Ethylenediamine = Ni(Ethylenediamine)2+2 - log_k 13.5 - delta_h -76.5672 kJ - -gamma 0 0 - # Id: 5409632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 3Ethylenediamine = Ni(Ethylenediamine)3+2 - log_k 17.6 - delta_h -117.152 kJ - -gamma 0 0 - # Id: 5409633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Co+2 + Ethylenediamine = Co(Ethylenediamine)+2 - log_k 5.5 - delta_h -28 kJ - -gamma 0 0 - # Id: 2009631 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Co+2 + 2Ethylenediamine = Co(Ethylenediamine)2+2 - log_k 10.1 - delta_h -58.5 kJ - -gamma 0 0 - # Id: 2009632 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Co+2 + 3Ethylenediamine = Co(Ethylenediamine)3+2 - log_k 13.2 - delta_h -92.8 kJ - -gamma 0 0 - # Id: 2009633 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Co+3 + 2Ethylenediamine = Co(Ethylenediamine)2+3 - log_k 34.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 2019631 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 25.0 -Co+3 + 3Ethylenediamine = Co(Ethylenediamine)3+3 - log_k 48.69 - delta_h 0 kJ - -gamma 0 0 - # Id: 2019632 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.50 30.0 -Fe+2 + Ethylenediamine = Fe(Ethylenediamine)+2 - log_k 4.26 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + 2Ethylenediamine = Fe(Ethylenediamine)2+2 - log_k 7.73 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + 3Ethylenediamine = Fe(Ethylenediamine)3+2 - log_k 10.17 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + Ethylenediamine = Mn(Ethylenediamine)+2 - log_k 2.74 - delta_h -11.7152 kJ - -gamma 0 0 - # Id: 4709631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + 2Ethylenediamine = Mn(Ethylenediamine)2+2 - log_k 4.8 - delta_h -25.104 kJ - -gamma 0 0 - # Id: 4709632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr(OH)2+ + 2Ethylenediamine + 2H+ = Cr(Ethylenediamine)2+3 + 2H2O - log_k 22.57 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr(OH)2+ + 3Ethylenediamine + 2H+ = Cr(Ethylenediamine)3+3 + 2H2O - log_k 29 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mg+2 + Ethylenediamine = Mg(Ethylenediamine)+2 - log_k 0.37 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Ethylenediamine = Ca(Ethylenediamine)+2 - log_k 0.11 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -H+ + Propylamine = H(Propylamine)+ - log_k 10.566 - delta_h -57.53 kJ - -gamma 0 0 - # Id: 3309641 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Propylamine = Zn(Propylamine)+2 - log_k 2.42 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509641 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 2Propylamine = Zn(Propylamine)2+2 - log_k 4.85 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509642 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 3Propylamine = Zn(Propylamine)3+2 - log_k 7.38 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509643 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 4Propylamine = Zn(Propylamine)4+2 - log_k 9.49 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509644 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + Propylamine = Cd(Propylamine)+2 - log_k 2.62 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609641 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 2Propylamine = Cd(Propylamine)2+2 - log_k 4.64 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609642 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 3Propylamine = Cd(Propylamine)3+2 - log_k 6.03 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609643 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ag+ + Propylamine = Ag(Propylamine)+ - log_k 3.45 - delta_h -12.552 kJ - -gamma 0 0 - # Id: 209641 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Propylamine = Ag(Propylamine)2+ - log_k 7.44 - delta_h -53.1368 kJ - -gamma 0 0 - # Id: 209642 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Propylamine = Ni(Propylamine)+2 - log_k 2.81 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409641 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 2Propylamine = Ni(Propylamine)2+2 - log_k 5.02 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409642 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 3Propylamine = Ni(Propylamine)3+2 - log_k 6.79 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409643 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 4Propylamine = Ni(Propylamine)4+2 - log_k 8.31 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409644 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -H+ + Isopropylamine = H(Isopropylamine)+ - log_k 10.67 - delta_h -58.3668 kJ - -gamma 0 0 - # Id: 3309651 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Isopropylamine = Zn(Isopropylamine)+2 - log_k 2.37 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509651 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 2Isopropylamine = Zn(Isopropylamine)2+2 - log_k 4.67 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509652 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 3Isopropylamine = Zn(Isopropylamine)3+2 - log_k 7.14 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509653 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 4Isopropylamine = Zn(Isopropylamine)4+2 - log_k 9.44 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509654 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + Isopropylamine = Cd(Isopropylamine)+2 - log_k 2.55 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609651 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 2Isopropylamine = Cd(Isopropylamine)2+2 - log_k 4.57 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609652 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 3Isopropylamine = Cd(Isopropylamine)3+2 - log_k 6.07 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609653 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 4Isopropylamine = Cd(Isopropylamine)4+2 - log_k 6.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609654 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Hg(OH)2 + Isopropylamine + 2H+ = Hg(Isopropylamine)+2 + 2H2O - log_k 14.85 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619651 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 2Isopropylamine + 2H+ = Hg(Isopropylamine)2+2 + 2H2O - log_k 24.37 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619652 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Isopropylamine = Ag(Isopropylamine)+ - log_k 3.67 - delta_h -23.8488 kJ - -gamma 0 0 - # Id: 209651 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Isopropylamine = Ag(Isopropylamine)2+ - log_k 7.77 - delta_h -59.8312 kJ - -gamma 0 0 - # Id: 209652 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Isopropylamine = Ni(Isopropylamine)+2 - log_k 2.71 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409651 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 2Isopropylamine = Ni(Isopropylamine)2+2 - log_k 4.86 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409652 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 3Isopropylamine = Ni(Isopropylamine)3+2 - log_k 6.57 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409653 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 4Isopropylamine = Ni(Isopropylamine)4+2 - log_k 7.83 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409654 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 5Isopropylamine = Ni(Isopropylamine)5+2 - log_k 8.43 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409655 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -H+ + Trimethylamine = H(Trimethylamine)+ - log_k 9.8 - delta_h -36.8192 kJ - -gamma 0 0 - # Id: 3309661 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Trimethylamine = Ag(Trimethylamine)+ - log_k 1.701 - delta_h 0 kJ - -gamma 0 0 - # Id: 209661 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -H+ + Citrate-3 = H(Citrate)-2 - log_k 6.396 - delta_h 3.3472 kJ - -gamma 0 0 - # Id: 3309671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Citrate-3 = H2(Citrate)- - log_k 11.157 - delta_h 1.297 kJ - -gamma 0 0 - # Id: 3309672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -3H+ + Citrate-3 = H3(Citrate) - log_k 14.285 - delta_h -2.7614 kJ - -gamma 0 0 - # Id: 3309673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + Citrate-3 = Pb(Citrate)- - log_k 7.27 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009671 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Pb+2 + 2Citrate-3 = Pb(Citrate)2-4 - log_k 6.53 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + Citrate-3 = Al(Citrate) - log_k 9.97 - delta_h 0 kJ - -gamma 0 0 - # Id: 309671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + 2Citrate-3 = Al(Citrate)2-3 - log_k 14.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 309672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + Citrate-3 + H+ = AlH(Citrate)+ - log_k 12.85 - delta_h 0 kJ - -gamma 0 0 - # Id: 309673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Tl+ + Citrate-3 = Tl(Citrate)-2 - log_k 1.48 - delta_h 0 kJ - -gamma 0 0 - # Id: 8709671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Citrate-3 = Zn(Citrate)- - log_k 6.21 - delta_h 8.368 kJ - -gamma 0 0 - # Id: 9509671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Citrate-3 = Zn(Citrate)2-4 - log_k 7.4 - delta_h 25.104 kJ - -gamma 0 0 - # Id: 9509672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Citrate-3 + H+ = ZnH(Citrate) - log_k 10.2 - delta_h 3.3472 kJ - -gamma 0 0 - # Id: 9509673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Citrate-3 + 2H+ = ZnH2(Citrate)+ - log_k 12.84 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509674 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + Citrate-3 = Cd(Citrate)- - log_k 4.98 - delta_h 8.368 kJ - -gamma 0 0 - # Id: 1609671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Citrate-3 + H+ = CdH(Citrate) - log_k 9.44 - delta_h 3.3472 kJ - -gamma 0 0 - # Id: 1609672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Citrate-3 + 2H+ = CdH2(Citrate)+ - log_k 12.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Citrate-3 = Cd(Citrate)2-4 - log_k 5.9 - delta_h 20.92 kJ - -gamma 0 0 - # Id: 1609674 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Citrate-3 + 2H+ = Hg(Citrate)- + 2H2O - log_k 18.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Citrate-3 = Cu(Citrate)- - log_k 7.57 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319671 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cu+2 + 2Citrate-3 = Cu(Citrate)2-4 - log_k 8.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319672 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cu+2 + Citrate-3 + H+ = CuH(Citrate) - log_k 10.87 - delta_h 11.7152 kJ - -gamma 0 0 - # Id: 2319673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Citrate-3 + 2H+ = CuH2(Citrate)+ - log_k 13.23 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319674 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -2Cu+2 + 2Citrate-3 = Cu2(Citrate)2-2 - log_k 16.9 - delta_h 41.84 kJ - -gamma 0 0 - # Id: 2319675 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Citrate-3 = Ni(Citrate)- - log_k 6.59 - delta_h 16.736 kJ - -gamma 0 0 - # Id: 5409671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Citrate-3 + H+ = NiH(Citrate) - log_k 10.5 - delta_h 15.8992 kJ - -gamma 0 0 - # Id: 5409672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Citrate-3 + 2H+ = NiH2(Citrate)+ - log_k 13.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Citrate-3 = Ni(Citrate)2-4 - log_k 8.77 - delta_h 12.552 kJ - -gamma 0 0 - # Id: 5409674 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Citrate-3 + H+ = NiH(Citrate)2-3 - log_k 14.9 - delta_h 32.6352 kJ - -gamma 0 0 - # Id: 5409675 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Co+2 + Citrate-3 = Co(Citrate)- - log_k 6.1867 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009671 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Co+2 + H+ + Citrate-3 = CoHCitrate - log_k 10.4438 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009672 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Co+2 + 2H+ + Citrate-3 = CoH2Citrate+ - log_k 12.7859 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009673 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 -Fe+2 + Citrate-3 = Fe(Citrate)- - log_k 6.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + Citrate-3 + H+ = FeH(Citrate) - log_k 10.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + Citrate-3 = Fe(Citrate) - log_k 13.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + Citrate-3 + H+ = FeH(Citrate)+ - log_k 14.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + Citrate-3 = Mn(Citrate)- - log_k 4.28 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709671 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Mn+2 + Citrate-3 + H+ = MnH(Citrate) - log_k 9.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Be+2 + Citrate-3 = Be(Citrate)- - log_k 5.534 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109671 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 25.0 -Be+2 + H+ + Citrate-3 = BeH(Citrate) - log_k 9.442 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109672 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 25.0 -Ca+2 + Citrate-3 = Ca(Citrate)- - log_k 4.87 - delta_h -8.368 kJ - -gamma 0 0 - # Id: 1509671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Citrate-3 + H+ = CaH(Citrate) - log_k 9.26 - delta_h -0.8368 kJ - -gamma 0 0 - # Id: 1509672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Citrate-3 + 2H+ = CaH2(Citrate)+ - log_k 12.257 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509673 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Mg+2 + Citrate-3 = Mg(Citrate)- - log_k 4.89 - delta_h 8.368 kJ - -gamma 0 0 - # Id: 4609671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mg+2 + Citrate-3 + H+ = MgH(Citrate) - log_k 8.91 - delta_h 3.3472 kJ - -gamma 0 0 - # Id: 4609672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mg+2 + Citrate-3 + 2H+ = MgH2(Citrate)+ - log_k 12.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609673 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Sr+2 + Citrate-3 = Sr(Citrate)- - log_k 4.3367 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009671 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Sr+2 + H+ + Citrate-3 = SrH(Citrate) - log_k 8.9738 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009672 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Sr+2 + 2H+ + Citrate-3 = SrH2(Citrate)+ - log_k 12.4859 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009673 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Ba+2 + Citrate-3 = Ba(Citrate)- - log_k 4.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ba+2 + Citrate-3 + H+ = BaH(Citrate) - log_k 8.74 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ba+2 + Citrate-3 + 2H+ = BaH2(Citrate)+ - log_k 12.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Na+ + Citrate-3 = Na(Citrate)-2 - log_k 1.03 - delta_h -2.8033 kJ - -gamma 0 0 - # Id: 5009671 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -2Na+ + Citrate-3 = Na2(Citrate)- - log_k 1.5 - delta_h -5.1045 kJ - -gamma 0 0 - # Id: 5009672 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Na+ + Citrate-3 + H+ = NaH(Citrate)- - log_k 6.45 - delta_h -3.5982 kJ - -gamma 0 0 - # Id: 5009673 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -K+ + Citrate-3 = K(Citrate)-2 - log_k 1.1 - delta_h 5.4392 kJ - -gamma 0 0 - # Id: 4109671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -H+ + Nta-3 = H(Nta)-2 - log_k 10.278 - delta_h -18.828 kJ - -gamma 0 0 - # Id: 3309681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Nta-3 = H2(Nta)- - log_k 13.22 - delta_h -17.9912 kJ - -gamma 0 0 - # Id: 3309682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -3H+ + Nta-3 = H3(Nta) - log_k 15.22 - delta_h -16.3176 kJ - -gamma 0 0 - # Id: 3309683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -4H+ + Nta-3 = H4(Nta)+ - log_k 16.22 - delta_h -16.3176 kJ - -gamma 0 0 - # Id: 3309684 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + Nta-3 = Pb(Nta)- - log_k 12.7 - delta_h -15.8992 kJ - -gamma 0 0 - # Id: 6009681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + Nta-3 + H+ = PbH(Nta) - log_k 15.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + Nta-3 = Al(Nta) - log_k 13.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 309681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + Nta-3 + H+ = AlH(Nta)+ - log_k 15.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 309682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + Nta-3 + H2O = AlOH(Nta)- + H+ - log_k 8 - delta_h 0 kJ - -gamma 0 0 - # Id: 309683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Tl+ + Nta-3 = Tl(Nta)-2 - log_k 5.39 - delta_h 0 kJ - -gamma 0 0 - # Id: 8709681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Nta-3 = Zn(Nta)- - log_k 11.95 - delta_h -3.7656 kJ - -gamma 0 0 - # Id: 9509681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Nta-3 = Zn(Nta)2-4 - log_k 14.88 - delta_h -15.0624 kJ - -gamma 0 0 - # Id: 9509682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Nta-3 + H2O = ZnOH(Nta)-2 + H+ - log_k 1.46 - delta_h 46.4424 kJ - -gamma 0 0 - # Id: 9509683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Nta-3 = Cd(Nta)- - log_k 11.07 - delta_h -16.736 kJ - -gamma 0 0 - # Id: 1609681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Nta-3 = Cd(Nta)2-4 - log_k 15.03 - delta_h -38.0744 kJ - -gamma 0 0 - # Id: 1609682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Nta-3 + H2O = CdOH(Nta)-2 + H+ - log_k -0.61 - delta_h 29.288 kJ - -gamma 0 0 - # Id: 1609683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Nta-3 + 2H+ = Hg(Nta)- + 2H2O - log_k 21.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Nta-3 = Cu(Nta)- - log_k 14.4 - delta_h -7.9496 kJ - -gamma 0 0 - # Id: 2319681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Nta-3 = Cu(Nta)2-4 - log_k 18.1 - delta_h -37.2376 kJ - -gamma 0 0 - # Id: 2319682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Nta-3 + H+ = CuH(Nta) - log_k 16.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Nta-3 + H2O = CuOH(Nta)-2 + H+ - log_k 4.8 - delta_h 25.5224 kJ - -gamma 0 0 - # Id: 2319684 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Nta-3 = Ag(Nta)-2 - log_k 6 - delta_h -26.3592 kJ - -gamma 0 0 - # Id: 209681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Nta-3 = Ni(Nta)- - log_k 12.79 - delta_h -10.0416 kJ - -gamma 0 0 - # Id: 5409681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Nta-3 = Ni(Nta)2-4 - log_k 16.96 - delta_h -32.6352 kJ - -gamma 0 0 - # Id: 5409682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Nta-3 + H2O = NiOH(Nta)-2 + H+ - log_k 1.5 - delta_h 15.0624 kJ - -gamma 0 0 - # Id: 5409683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Co+2 + Nta-3 = Co(Nta)- - log_k 11.6667 - delta_h -0.4 kJ - -gamma 0 0 - # Id: 2009681 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Co+2 + 2Nta-3 = Co(Nta)2-4 - log_k 14.9734 - delta_h -20 kJ - -gamma 0 0 - # Id: 2009682 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Co+2 + Nta-3 + H2O = CoOH(Nta)-2 + H+ - log_k 0.4378 - delta_h 45.6 kJ - -gamma 0 0 - # Id: 2009683 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Fe+2 + Nta-3 = Fe(Nta)- - log_k 10.19 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + 2Nta-3 = Fe(Nta)2-4 - log_k 12.62 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + Nta-3 + H+ = FeH(Nta) - log_k 12.29 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + Nta-3 + H2O = FeOH(Nta)-2 + H+ - log_k -1.06 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809684 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + Nta-3 = Fe(Nta) - log_k 17.8 - delta_h 13.3888 kJ - -gamma 0 0 - # Id: 2819681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + 2Nta-3 = Fe(Nta)2-3 - log_k 25.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + Nta-3 + H2O = FeOH(Nta)- + H+ - log_k 13.23 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + Nta-3 = Mn(Nta)- - log_k 8.573 - delta_h 5.8576 kJ - -gamma 0 0 - # Id: 4709681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + 2Nta-3 = Mn(Nta)2-4 - log_k 11.58 - delta_h -17.1544 kJ - -gamma 0 0 - # Id: 4709682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr(OH)2+ + Nta-3 + 2H+ = Cr(Nta) + 2H2O - log_k 21.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119681 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + 2Nta-3 + 2H+ = Cr(Nta)2-3 + 2H2O - log_k 29.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119682 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -MoO4-2 + 2H+ + Nta-3 = MoO3(Nta)-3 + H2O - log_k 19.5434 - delta_h -69 kJ - -gamma 0 0 - # Id: 4809681 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -MoO4-2 + 3H+ + Nta-3 = MoO3H(Nta)-2 + H2O - log_k 23.3954 - delta_h -71 kJ - -gamma 0 0 - # Id: 4809682 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 1.00 25.0 -MoO4-2 + 4H+ + Nta-3 = MoO3H2(Nta)- + H2O - log_k 25.3534 - delta_h -71 kJ - -gamma 0 0 - # Id: 4809683 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 1.00 25.0 -Be+2 + Nta-3 = Be(Nta)- - log_k 9.0767 - delta_h 25 kJ - -gamma 0 0 - # Id: 1109681 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Mg+2 + Nta-3 = Mg(Nta)- - log_k 6.5 - delta_h 17.9912 kJ - -gamma 0 0 - # Id: 4609681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Nta-3 = Ca(Nta)- - log_k 7.608 - delta_h -5.6902 kJ - -gamma 0 0 - # Id: 1509681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + 2Nta-3 = Ca(Nta)2-4 - log_k 8.81 - delta_h -32.6352 kJ - -gamma 0 0 - # Id: 1509682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Sr+2 + Nta-3 = Sr(Nta)- - log_k 6.2767 - delta_h -2.2 kJ - -gamma 0 0 - # Id: 8009681 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Ba+2 + Nta-3 = Ba(Nta)- - log_k 5.875 - delta_h -6.025 kJ - -gamma 0 0 - # Id: 1009681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -H+ + Edta-4 = H(Edta)-3 - log_k 10.948 - delta_h -23.4304 kJ - -gamma 0 0 - # Id: 3309691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Edta-4 = H2(Edta)-2 - log_k 17.221 - delta_h -41.0032 kJ - -gamma 0 0 - # Id: 3309692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -3H+ + Edta-4 = H3(Edta)- - log_k 20.34 - delta_h -35.564 kJ - -gamma 0 0 - # Id: 3309693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -4H+ + Edta-4 = H4(Edta) - log_k 22.5 - delta_h -34.3088 kJ - -gamma 0 0 - # Id: 3309694 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -5H+ + Edta-4 = H5(Edta)+ - log_k 24 - delta_h -32.2168 kJ - -gamma 0 0 - # Id: 3309695 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Sn(OH)2 + 2H+ + Edta-4 = Sn(Edta)-2 + 2H2O - log_k 27.026 - delta_h 0 kJ - -gamma 0 0 - # Id: 7909691 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 20.0 -Sn(OH)2 + 3H+ + Edta-4 = SnH(Edta)- + 2H2O - log_k 29.934 - delta_h 0 kJ - -gamma 0 0 - # Id: 7909692 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 20.0 -Sn(OH)2 + 4H+ + Edta-4 = SnH2(Edta) + 2H2O - log_k 31.638 - delta_h 0 kJ - -gamma 0 0 - # Id: 7909693 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 20.0 -Pb+2 + Edta-4 = Pb(Edta)-2 - log_k 19.8 - delta_h -54.8104 kJ - -gamma 0 0 - # Id: 6009691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + Edta-4 + H+ = PbH(Edta)- - log_k 23 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + Edta-4 + 2H+ = PbH2(Edta) - log_k 24.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + Edta-4 = Al(Edta)- - log_k 19.1 - delta_h 52.7184 kJ - -gamma 0 0 - # Id: 309690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + Edta-4 + H+ = AlH(Edta) - log_k 21.8 - delta_h 36.4008 kJ - -gamma 0 0 - # Id: 309691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + Edta-4 + H2O = AlOH(Edta)-2 + H+ - log_k 12.8 - delta_h 73.6384 kJ - -gamma 0 0 - # Id: 309692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Tl+ + Edta-4 = Tl(Edta)-3 - log_k 7.27 - delta_h -43.5136 kJ - -gamma 0 0 - # Id: 8709691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Tl+ + Edta-4 + H+ = TlH(Edta)-2 - log_k 13.68 - delta_h 0 kJ - -gamma 0 0 - # Id: 8709692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Edta-4 = Zn(Edta)-2 - log_k 18 - delta_h -19.2464 kJ - -gamma 0 0 - # Id: 9509691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Edta-4 + H+ = ZnH(Edta)- - log_k 21.4 - delta_h -28.4512 kJ - -gamma 0 0 - # Id: 9509692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Edta-4 + H2O = ZnOH(Edta)-3 + H+ - log_k 5.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Edta-4 = Cd(Edta)-2 - log_k 18.2 - delta_h -38.0744 kJ - -gamma 0 0 - # Id: 1609691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Edta-4 + H+ = CdH(Edta)- - log_k 21.5 - delta_h -39.748 kJ - -gamma 0 0 - # Id: 1609692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Edta-4 + 2H+ = Hg(Edta)-2 + 2H2O - log_k 29.3 - delta_h -125.102 kJ - -gamma 0 0 - # Id: 3619691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Edta-4 + 3H+ = HgH(Edta)- + 2H2O - log_k 32.9 - delta_h -128.449 kJ - -gamma 0 0 - # Id: 3619692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Edta-4 = Cu(Edta)-2 - log_k 20.5 - delta_h -34.7272 kJ - -gamma 0 0 - # Id: 2319691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Edta-4 + H+ = CuH(Edta)- - log_k 24 - delta_h -43.0952 kJ - -gamma 0 0 - # Id: 2319692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Edta-4 + 2H+ = CuH2(Edta) - log_k 26.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Edta-4 + H2O = CuOH(Edta)-3 + H+ - log_k 8.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319694 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Edta-4 = Ag(Edta)-3 - log_k 8.08 - delta_h -31.38 kJ - -gamma 0 0 - # Id: 209691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Edta-4 + H+ = AgH(Edta)-2 - log_k 15.21 - delta_h 0 kJ - -gamma 0 0 - # Id: 209693 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + Edta-4 = Ni(Edta)-2 - log_k 20.1 - delta_h -30.9616 kJ - -gamma 0 0 - # Id: 5409691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Edta-4 + H+ = NiH(Edta)- - log_k 23.6 - delta_h -38.4928 kJ - -gamma 0 0 - # Id: 5409692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Edta-4 + H2O = NiOH(Edta)-3 + H+ - log_k 7.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Co+2 + Edta-4 = Co(Edta)-2 - log_k 18.1657 - delta_h -15 kJ - -gamma 0 0 - # Id: 2009691 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Co+2 + Edta-4 + H+ = CoH(Edta)- - log_k 21.5946 - delta_h -22.9 kJ - -gamma 0 0 - # Id: 2009692 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Co+2 + Edta-4 + 2H+ = CoH2(Edta) - log_k 23.4986 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009693 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 25.0 -Co+3 + Edta-4 = Co(Edta)- - log_k 43.9735 - delta_h 0 kJ - -gamma 0 0 - # Id: 2019691 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Co+3 + Edta-4 + H+ = CoH(Edta) - log_k 47.168 - delta_h 0 kJ - -gamma 0 0 - # Id: 2019692 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 -Fe+2 + Edta-4 = Fe(Edta)-2 - log_k 16 - delta_h -16.736 kJ - -gamma 0 0 - # Id: 2809690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + Edta-4 + H+ = FeH(Edta)- - log_k 19.06 - delta_h -27.6144 kJ - -gamma 0 0 - # Id: 2809691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + Edta-4 + H2O = FeOH(Edta)-3 + H+ - log_k 6.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809692 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Fe+2 + Edta-4 + 2H2O = Fe(OH)2(Edta)-4 + 2H+ - log_k -4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809693 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Fe+3 + Edta-4 = Fe(Edta)- - log_k 27.7 - delta_h -11.2968 kJ - -gamma 0 0 - # Id: 2819690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + Edta-4 + H+ = FeH(Edta) - log_k 29.2 - delta_h -11.7152 kJ - -gamma 0 0 - # Id: 2819691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + Edta-4 + H2O = FeOH(Edta)-2 + H+ - log_k 19.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + Edta-4 + 2H2O = Fe(OH)2(Edta)-3 + 2H+ - log_k 9.85 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819693 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Mn+2 + Edta-4 = Mn(Edta)-2 - log_k 15.6 - delta_h -19.2464 kJ - -gamma 0 0 - # Id: 4709691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + Edta-4 + H+ = MnH(Edta)- - log_k 19.1 - delta_h -24.2672 kJ - -gamma 0 0 - # Id: 4709692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr+2 + Edta-4 = Cr(Edta)-2 - log_k 15.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2109691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr+2 + Edta-4 + H+ = CrH(Edta)- - log_k 19.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 2109692 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + Edta-4 + 2H+ = Cr(Edta)- + 2H2O - log_k 35.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr(OH)2+ + Edta-4 + 3H+ = CrH(Edta) + 2H2O - log_k 37.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr(OH)2+ + Edta-4 + H+ = CrOH(Edta)-2 + H2O - log_k 27.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Be+2 + Edta-4 = Be(Edta)-2 - log_k 11.4157 - delta_h 41 kJ - -gamma 0 0 - # Id: 1109691 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Mg+2 + Edta-4 = Mg(Edta)-2 - log_k 10.57 - delta_h 13.8072 kJ - -gamma 0 0 - # Id: 4609690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mg+2 + Edta-4 + H+ = MgH(Edta)- - log_k 14.97 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Edta-4 = Ca(Edta)-2 - log_k 12.42 - delta_h -25.5224 kJ - -gamma 0 0 - # Id: 1509690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Edta-4 + H+ = CaH(Edta)- - log_k 15.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Sr+2 + Edta-4 = Sr(Edta)-2 - log_k 10.4357 - delta_h -17 kJ - -gamma 0 0 - # Id: 8009691 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Sr+2 + Edta-4 + H+ = SrH(Edta)- - log_k 14.7946 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009692 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 -Ba+2 + Edta-4 = Ba(Edta)-2 - log_k 7.72 - delta_h -20.5016 kJ - -gamma 0 0 - # Id: 1009691 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Na+ + Edta-4 = Na(Edta)-3 - log_k 2.7 - delta_h -5.8576 kJ - -gamma 0 0 - # Id: 5009690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -K+ + Edta-4 = K(Edta)-3 - log_k 1.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 4109690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -H+ + Propionate- = H(Propionate) - log_k 4.874 - delta_h 0.66 kJ - -gamma 0 0 - # Id: 3309711 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Pb+2 + Propionate- = Pb(Propionate)+ - log_k 2.64 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009711 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.00 35.0 -Pb+2 + 2Propionate- = Pb(Propionate)2 - log_k 3.1765 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009712 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 2.00 25.0 -Zn+2 + Propionate- = Zn(Propionate)+ - log_k 1.4389 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Zn+2 + 2Propionate- = Zn(Propionate)2 - log_k 1.842 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509712 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 25.0 -Cd+2 + Propionate- = Cd(Propionate)+ - log_k 1.598 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 25.0 -Cd+2 + 2Propionate- = Cd(Propionate)2 - log_k 2.472 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609712 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 25.0 -Hg(OH)2 + 2H+ + Propionate- = Hg(Propionate)+ + 2H2O - log_k 10.594 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Cu+2 + Propionate- = Cu(Propionate)+ - log_k 2.22 - delta_h 4.1 kJ - -gamma 0 0 - # Id: 2319711 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Cu+2 + 2Propionate- = Cu(Propionate)2 - log_k 3.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319712 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Ni+2 + Propionate- = Ni(Propionate)+ - log_k 0.908 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409711 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 1.00 25.0 -Co+2 + Propionate- = Co(Propionate)+ - log_k 0.671 - delta_h 4.6 kJ - -gamma 0 0 - # Id: 2009711 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 2.00 25.0 -Co+2 + 2Propionate- = Co(Propionate)2 - log_k 0.5565 - delta_h 16 kJ - -gamma 0 0 - # Id: 2009712 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 2.00 25.0 -Fe+3 + Propionate- = Fe(Propionate)+2 - log_k 4.012 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 20.0 -Cr(OH)2+ + 2H+ + Propionate- = Cr(Propionate)+2 + 2H2O - log_k 15.0773 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119711 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.50 25.0 -Cr(OH)2+ + 2H+ + 2Propionate- = Cr(Propionate)2+ + 2H2O - log_k 17.9563 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119712 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.50 25.0 -Cr(OH)2+ + 2H+ + 3Propionate- = Cr(Propionate)3 + 2H2O - log_k 20.8858 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119713 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.50 25.0 -Mg+2 + Propionate- = Mg(Propionate)+ - log_k 0.9689 - delta_h 4.2677 kJ - -gamma 0 0 - # Id: 4609710 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.10 25.0 -Ca+2 + Propionate- = Ca(Propionate)+ - log_k 0.9289 - delta_h 3.3472 kJ - -gamma 0 0 - # Id: 1509710 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.10 25.0 -Sr+2 + Propionate- = Sr(Propionate)+ - log_k 0.8589 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Ba+2 + Propionate- = Ba(Propionate)+ - log_k 0.7689 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009711 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.10 25.0 -Ba+2 + 2Propionate- = Ba(Propionate)2 - log_k 0.9834 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009712 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.10 25.0 -H+ + Butyrate- = H(Butyrate) - log_k 4.819 - delta_h 2.8 kJ - -gamma 0 0 - # Id: 3309721 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Pb+2 + Butyrate- = Pb(Butyrate)+ - log_k 2.101 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009721 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 2.00 25.0 -Zn+2 + Butyrate- = Zn(Butyrate)+ - log_k 1.4289 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Hg(OH)2 + 2H+ + Butyrate- = Hg(Butyrate)+ + 2H2O - log_k 10.3529 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Cu+2 + Butyrate- = Cu(Butyrate)+ - log_k 2.14 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Ni+2 + Butyrate- = Ni(Butyrate)+ - log_k 0.691 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409721 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 2.00 25.0 -Co+2 + Butyrate- = Co(Butyrate)+ - log_k 0.591 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 2.00 25.0 -Co+2 + 2Butyrate- = Co(Butyrate)2 - log_k 0.7765 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009722 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 2.00 25.0 -Mg+2 + Butyrate- = Mg(Butyrate)+ - log_k 0.9589 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609720 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.10 25.0 -Ca+2 + Butyrate- = Ca(Butyrate)+ - log_k 0.9389 - delta_h 3.3472 kJ - -gamma 0 0 - # Id: 1509720 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.10 25.0 -Sr+2 + Butyrate- = Sr(Butyrate)+ - log_k 0.7889 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Ba+2 + Butyrate- = Ba(Butyrate)+ - log_k 0.7389 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009721 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.10 25.0 -Ba+2 + 2Butyrate- = Ba(Butyrate)2 - log_k 0.88 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009722 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -H+ + Isobutyrate- = H(Isobutyrate) - log_k 4.849 - delta_h 3.2217 kJ - -gamma 0 0 - # Id: 3309731 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Isobutyrate- = Zn(Isobutyrate)+ - log_k 1.44 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509731 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Isobutyrate- = Cu(Isobutyrate)+ - log_k 2.17 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319731 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Isobutyrate- = Cu(Isobutyrate)2 - log_k 3.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319732 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + Isobutyrate- = Fe(Isobutyrate)+2 - log_k 4.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819731 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Isobutyrate- = Ca(Isobutyrate)+ - log_k 0.51 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509731 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -H+ + Two_picoline = H(Two_picoline)+ - log_k 5.95 - delta_h -25.5224 kJ - -gamma 0 0 - # Id: 3309801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Two_picoline = Cu(Two_picoline)+2 - log_k 1.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Two_picoline = Cu(Two_picoline)2+2 - log_k 2.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319802 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + Two_picoline = Cu(Two_picoline)+ - log_k 5.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 2Two_picoline = Cu(Two_picoline)2+ - log_k 7.65 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309802 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 3Two_picoline = Cu(Two_picoline)3+ - log_k 8.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309803 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Two_picoline = Ag(Two_picoline)+ - log_k 2.32 - delta_h -24.2672 kJ - -gamma 0 0 - # Id: 209801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Two_picoline = Ag(Two_picoline)2+ - log_k 4.68 - delta_h -42.6768 kJ - -gamma 0 0 - # Id: 209802 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Two_picoline = Ni(Two_picoline)+2 - log_k 0.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -H+ + Three_picoline = H(Three_picoline)+ - log_k 5.7 - delta_h -23.8488 kJ - -gamma 0 0 - # Id: 3309811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Three_picoline = Zn(Three_picoline)+2 - log_k 1 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Three_picoline = Zn(Three_picoline)2+2 - log_k 2.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 3Three_picoline = Zn(Three_picoline)3+2 - log_k 2.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 4Three_picoline = Zn(Three_picoline)4+2 - log_k 3.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Three_picoline = Cd(Three_picoline)+2 - log_k 1.42 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609811 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 2Three_picoline = Cd(Three_picoline)2+2 - log_k 2.27 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609812 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 3Three_picoline = Cd(Three_picoline)3+2 - log_k 3.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 4Three_picoline = Cd(Three_picoline)4+2 - log_k 4 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + Three_picoline = Cu(Three_picoline)+ - log_k 5.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 2Three_picoline = Cu(Three_picoline)2+ - log_k 7.78 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 3Three_picoline = Cu(Three_picoline)3+ - log_k 8.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 4Three_picoline = Cu(Three_picoline)4+ - log_k 9 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Three_picoline = Cu(Three_picoline)+2 - log_k 2.77 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Three_picoline = Cu(Three_picoline)2+2 - log_k 4.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 3Three_picoline = Cu(Three_picoline)3+2 - log_k 6.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 4Three_picoline = Cu(Three_picoline)4+2 - log_k 7.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Three_picoline = Ag(Three_picoline)+ - log_k 2.2 - delta_h -21.7568 kJ - -gamma 0 0 - # Id: 209811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Three_picoline = Ag(Three_picoline)2+ - log_k 4.46 - delta_h -49.7896 kJ - -gamma 0 0 - # Id: 209812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Three_picoline = Ni(Three_picoline)+2 - log_k 1.87 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Three_picoline = Ni(Three_picoline)2+2 - log_k 3.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 3Three_picoline = Ni(Three_picoline)3+2 - log_k 4.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 4Three_picoline = Ni(Three_picoline)4+2 - log_k 4.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Co+2 + Three_picoline = Co(Three_picoline)+2 - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009811 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 -Co+2 + 2Three_picoline = Co(Three_picoline)2+2 - log_k 2.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009812 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 -Co+2 + 3Three_picoline = Co(Three_picoline)3+2 - log_k 2.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009813 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 -H+ + Four_picoline = H(Four_picoline)+ - log_k 6.03 - delta_h -25.3132 kJ - -gamma 0 0 - # Id: 3309821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Four_picoline = Zn(Four_picoline)+2 - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Four_picoline = Zn(Four_picoline)2+2 - log_k 2.11 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 3Four_picoline = Zn(Four_picoline)3+2 - log_k 2.85 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509823 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Four_picoline = Cd(Four_picoline)+2 - log_k 1.59 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609821 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 2Four_picoline = Cd(Four_picoline)2+2 - log_k 2.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609822 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 3Four_picoline = Cd(Four_picoline)3+2 - log_k 3.18 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609823 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 4Four_picoline = Cd(Four_picoline)4+2 - log_k 4 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609824 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + Four_picoline = Cu(Four_picoline)+ - log_k 5.65 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 2Four_picoline = Cu(Four_picoline)2+ - log_k 8.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 3Four_picoline = Cu(Four_picoline)3+ - log_k 8.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309823 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 4Four_picoline = Cu(Four_picoline)4+ - log_k 9.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309824 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Four_picoline = Cu(Four_picoline)+2 - log_k 2.88 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Four_picoline = Cu(Four_picoline)2+2 - log_k 5.16 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 3Four_picoline = Cu(Four_picoline)3+2 - log_k 6.77 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319823 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 4Four_picoline = Cu(Four_picoline)4+2 - log_k 8.08 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319824 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 5Four_picoline = Cu(Four_picoline)5+2 - log_k 8.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319825 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Four_picoline = Ag(Four_picoline)+ - log_k 2.03 - delta_h -25.5224 kJ - -gamma 0 0 - # Id: 209821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Four_picoline = Ag(Four_picoline)2+ - log_k 4.39 - delta_h -53.5552 kJ - -gamma 0 0 - # Id: 209822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Four_picoline = Ni(Four_picoline)+2 - log_k 2.11 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Four_picoline = Ni(Four_picoline)2+2 - log_k 3.59 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 3Four_picoline = Ni(Four_picoline)3+2 - log_k 4.34 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409823 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 4Four_picoline = Ni(Four_picoline)4+2 - log_k 4.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409824 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Co+2 + Four_picoline = Co(Four_picoline)+2 - log_k 1.56 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009821 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 -Co+2 + 2Four_picoline = Co(Four_picoline)2+2 - log_k 2.51 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009822 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 -Co+2 + 3Four_picoline = Co(Four_picoline)3+2 - log_k 2.94 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009823 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 -Co+2 + 4Four_picoline = Co(Four_picoline)4+2 - log_k 3.17 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009824 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 -H+ + Formate- = H(Formate) - log_k 3.745 - delta_h 0.1674 kJ - -gamma 0 0 - # Id: 3309831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + Formate- = Pb(Formate)+ - log_k 2.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009831 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + Formate- = Zn(Formate)+ - log_k 1.44 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Formate- = Cd(Formate)+ - log_k 1.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609831 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Hg(OH)2 + Formate- + 2H+ = Hg(Formate)+ + 2H2O - log_k 9.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Formate- = Cu(Formate)+ - log_k 2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Formate- = Ni(Formate)+ - log_k 1.22 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409831 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Co+2 + Formate- = Co(Formate)+ - log_k 1.209 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009831 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 30.0 -Co+2 + 2Formate- = Co(Formate)2 - log_k 1.1365 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009832 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 2.00 25.0 -Cr+2 + Formate- = Cr(Formate)+ - log_k 1.07 - delta_h 0 kJ - -gamma 0 0 - # Id: 2109831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mg+2 + Formate- = Mg(Formate)+ - log_k 1.43 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Formate- = Ca(Formate)+ - log_k 1.43 - delta_h 4.184 kJ - -gamma 0 0 - # Id: 1509831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Sr+2 + Formate- = Sr(Formate)+ - log_k 1.39 - delta_h 4 kJ - -gamma 0 0 - # Id: 8009831 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ba+2 + Formate- = Ba(Formate)+ - log_k 1.38 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -H+ + Isovalerate- = H(Isovalerate) - log_k 4.781 - delta_h 4.5606 kJ - -gamma 0 0 - # Id: 3309841 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Isovalerate- = Zn(Isovalerate)+ - log_k 1.39 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509841 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Isovalerate- = Cu(Isovalerate)+ - log_k 2.08 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319841 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Isovalerate- = Ca(Isovalerate)+ - log_k 0.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509841 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -H+ + Valerate- = H(Valerate) - log_k 4.843 - delta_h 2.887 kJ - -gamma 0 0 - # Id: 3309851 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Valerate- = Cu(Valerate)+ - log_k 2.12 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319851 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Valerate- = Ca(Valerate)+ - log_k 0.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509851 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ba+2 + Valerate- = Ba(Valerate)+ - log_k -0.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009851 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -H+ + Acetate- = H(Acetate) - log_k 4.757 - delta_h 0.41 kJ - -gamma 0 0 - # Id: 3309921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ + Acetate- = Sn(Acetate)+ + 2H2O - log_k 10.0213 - delta_h 0 kJ - -gamma 0 0 - # Id: 7909921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 3.00 25.0 -Sn(OH)2 + 2H+ + 2Acetate- = Sn(Acetate)2 + 2H2O - log_k 12.32 - delta_h 0 kJ - -gamma 0 0 - # Id: 7909922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 3.00 25.0 -Sn(OH)2 + 2H+ + 3Acetate- = Sn(Acetate)3- + 2H2O - log_k 13.55 - delta_h 0 kJ - -gamma 0 0 - # Id: 7909923 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 3.00 25.0 -Pb+2 + Acetate- = Pb(Acetate)+ - log_k 2.68 - delta_h -0.4 kJ - -gamma 0 0 - # Id: 6009921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Pb+2 + 2Acetate- = Pb(Acetate)2 - log_k 4.08 - delta_h -0.8 kJ - -gamma 0 0 - # Id: 6009922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Tl+ + Acetate- = Tl(Acetate) - log_k -0.11 - delta_h 0 kJ - -gamma 0 0 - # Id: 8709921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Zn+2 + Acetate- = Zn(Acetate)+ - log_k 1.58 - delta_h 8.3 kJ - -gamma 0 0 - # Id: 9509921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Zn+2 + 2Acetate- = Zn(Acetate)2 - log_k 2.6434 - delta_h 22 kJ - -gamma 0 0 - # Id: 9509922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Cd+2 + Acetate- = Cd(Acetate)+ - log_k 1.93 - delta_h 9.6 kJ - -gamma 0 0 - # Id: 1609921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Cd+2 + 2Acetate- = Cd(Acetate)2 - log_k 2.86 - delta_h 15 kJ - -gamma 0 0 - # Id: 1609922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + Acetate- = Hg(Acetate)+ + 2H2O - log_k 10.494 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + 2Acetate- = Hg(Acetate)2 + 2H2O - log_k 13.83 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619921 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 3.00 25.0 -Cu+2 + Acetate- = Cu(Acetate)+ - log_k 2.21 - delta_h 7.1 kJ - -gamma 0 0 - # Id: 2319921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Cu+2 + 2Acetate- = Cu(Acetate)2 - log_k 3.4 - delta_h 12 kJ - -gamma 0 0 - # Id: 2319922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Cu+2 + 3Acetate- = Cu(Acetate)3- - log_k 3.9434 - delta_h 6.2 kJ - -gamma 0 0 - # Id: 2319923 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Ag+ + Acetate- = Ag(Acetate) - log_k 0.73 - delta_h 3 kJ - -gamma 0 0 - # Id: 209921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ag+ + 2Acetate- = Ag(Acetate)2- - log_k 0.64 - delta_h 3 kJ - -gamma 0 0 - # Id: 209922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ni+2 + Acetate- = Ni(Acetate)+ - log_k 1.37 - delta_h 8.7 kJ - -gamma 0 0 - # Id: 5409921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Ni+2 + 2Acetate- = Ni(Acetate)2 - log_k 2.1 - delta_h 10 kJ - -gamma 0 0 - # Id: 5409922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Co+2 + Acetate- = Co(Acetate)+ - log_k 1.38 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Co+2 + 2Acetate- = Co(Acetate)2 - log_k 0.7565 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 2.00 25.0 -Fe+2 + Acetate- = Fe(Acetate)+ - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Fe+3 + Acetate- = Fe(Acetate)+2 - log_k 4.0234 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 -Fe+3 + 2Acetate- = Fe(Acetate)2+ - log_k 7.5723 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 -Fe+3 + 3Acetate- = Fe(Acetate)3 - log_k 9.5867 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 -Mn+2 + Acetate- = Mn(Acetate)+ - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Cr+2 + Acetate- = Cr(Acetate)+ - log_k 1.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 2109921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Cr+2 + 2Acetate- = Cr(Acetate)2 - log_k 2.92 - delta_h 0 kJ - -gamma 0 0 - # Id: 2109922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + 2H+ + Acetate- = Cr(Acetate)+2 + 2H2O - log_k 15.0073 - delta_h -125.62 kJ - -gamma 0 0 - # Id: 2119921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 -Cr(OH)2+ + 2H+ + 2Acetate- = Cr(Acetate)2+ + 2H2O - log_k 17.9963 - delta_h -117.62 kJ - -gamma 0 0 - # Id: 2119922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 -Cr(OH)2+ + 2H+ + 3Acetate- = Cr(Acetate)3 + 2H2O - log_k 20.7858 - delta_h -96.62 kJ - -gamma 0 0 - # Id: 2119923 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 -Be+2 + Acetate- = Be(Acetate)+ - log_k 2.0489 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Be+2 + 2Acetate- = Be(Acetate)2 - log_k 3.0034 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Mg+2 + Acetate- = Mg(Acetate)+ - log_k 1.27 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Ca+2 + Acetate- = Ca(Acetate)+ - log_k 1.18 - delta_h 4 kJ - -gamma 0 0 - # Id: 1509920 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Sr+2 + Acetate- = Sr(Acetate)+ - log_k 1.14 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Ba+2 + Acetate- = Ba(Acetate)+ - log_k 1.07 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Na+ + Acetate- = Na(Acetate) - log_k -0.18 - delta_h 12 kJ - -gamma 0 0 - # Id: 5009920 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -K+ + Acetate- = K(Acetate) - log_k -0.1955 - delta_h 4.184 kJ - -gamma 0 0 - # Id: 4109921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -H+ + Tartarate-2 = H(Tartarate)- - log_k 4.366 - delta_h -0.7531 kJ - -gamma 0 0 - # Id: 3309931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Tartarate-2 = H2(Tartarate) - log_k 7.402 - delta_h -3.6819 kJ - -gamma 0 0 - # Id: 3309932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Sn(OH)2 + 2H+ + Tartarate-2 = Sn(Tartarate) + 2H2O - log_k 13.1518 - delta_h 0 kJ - -gamma 0 0 - # Id: 7909931 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 -Pb+2 + Tartarate-2 = Pb(Tartarate) - log_k 3.98 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + 2Tartarate-2 = Al(Tartarate)2- - log_k 9.37 - delta_h 0 kJ - -gamma 0 0 - # Id: 309931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Tl+ + Tartarate-2 = Tl(Tartarate)- - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 8709931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Tl+ + Tartarate-2 + H+ = TlH(Tartarate) - log_k 4.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 8709932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Tartarate-2 = Zn(Tartarate) - log_k 3.43 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Tartarate-2 = Zn(Tartarate)2-2 - log_k 5.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Tartarate-2 + H+ = ZnH(Tartarate)+ - log_k 5.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509933 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Tartarate-2 = Cd(Tartarate) - log_k 2.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Tartarate-2 = Cd(Tartarate)2-2 - log_k 4.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Tartarate-2 + 2H+ = Hg(Tartarate) + 2H2O - log_k 14 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Tartarate-2 = Cu(Tartarate) - log_k 3.97 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Tartarate-2 + H+ = CuH(Tartarate)+ - log_k 6.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Tartarate-2 = Ni(Tartarate) - log_k 3.46 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Tartarate-2 + H+ = NiH(Tartarate)+ - log_k 5.89 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Co+2 + Tartarate-2 = Co(Tartarate) - log_k 3.05 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009931 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Co+2 + 2Tartarate-2 = Co(Tartarate)2-2 - log_k 4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009932 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Co+2 + H+ + Tartarate-2 = CoH(Tartarate)+ - log_k 5.754 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009933 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 20.0 -Fe+2 + Tartarate-2 = Fe(Tartarate) - log_k 3.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + Tartarate-2 = Fe(Tartarate)+ - log_k 7.78 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + Tartarate-2 = Mn(Tartarate) - log_k 3.38 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + Tartarate-2 + H+ = MnH(Tartarate)+ - log_k 6 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mg+2 + Tartarate-2 = Mg(Tartarate) - log_k 2.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mg+2 + Tartarate-2 + H+ = MgH(Tartarate)+ - log_k 5.75 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Be+2 + Tartarate-2 = Be(Tartarate) - log_k 2.768 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109931 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 -Be+2 + 2Tartarate-2 = Be(Tartarate)2-2 - log_k 4.008 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109932 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 -Ca+2 + Tartarate-2 = Ca(Tartarate) - log_k 2.8 - delta_h -8.368 kJ - -gamma 0 0 - # Id: 1509931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Tartarate-2 + H+ = CaH(Tartarate)+ - log_k 5.86 - delta_h -9.1211 kJ - -gamma 0 0 - # Id: 1509932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Sr+2 + Tartarate-2 = Sr(Tartarate) - log_k 2.55 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009931 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 20.0 -Sr+2 + H+ + Tartarate-2 = SrH(Tartarate)+ - log_k 5.8949 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009932 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Ba+2 + Tartarate-2 = Ba(Tartarate) - log_k 2.54 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ba+2 + Tartarate-2 + H+ = BaH(Tartarate)+ - log_k 5.77 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Na+ + Tartarate-2 = Na(Tartarate)- - log_k 0.9 - delta_h -0.8368 kJ - -gamma 0 0 - # Id: 5009931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Na+ + Tartarate-2 + H+ = NaH(Tartarate) - log_k 4.58 - delta_h -2.8451 kJ - -gamma 0 0 - # Id: 5009932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -K+ + Tartarate-2 = K(Tartarate)- - log_k 0.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 4109931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -H+ + Glycine- = H(Glycine) - log_k 9.778 - delta_h -44.3504 kJ - -gamma 0 0 - # Id: 3309941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Glycine- = H2(Glycine)+ - log_k 12.128 - delta_h -48.4507 kJ - -gamma 0 0 - # Id: 3309942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + Glycine- = Pb(Glycine)+ - log_k 5.47 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + 2Glycine- = Pb(Glycine)2 - log_k 8.86 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009942 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Tl+ + Glycine- = Tl(Glycine) - log_k 1.72 - delta_h 0 kJ - -gamma 0 0 - # Id: 8709941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Glycine- = Zn(Glycine)+ - log_k 5.38 - delta_h -11.7152 kJ - -gamma 0 0 - # Id: 9509941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Glycine- = Zn(Glycine)2 - log_k 9.81 - delta_h -24.2672 kJ - -gamma 0 0 - # Id: 9509942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 3Glycine- = Zn(Glycine)3- - log_k 12.3 - delta_h -39.748 kJ - -gamma 0 0 - # Id: 9509943 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Glycine- = Cd(Glycine)+ - log_k 4.69 - delta_h -8.7864 kJ - -gamma 0 0 - # Id: 1609941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Glycine- = Cd(Glycine)2 - log_k 8.4 - delta_h -22.5936 kJ - -gamma 0 0 - # Id: 1609942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 3Glycine- = Cd(Glycine)3- - log_k 10.7 - delta_h -35.9824 kJ - -gamma 0 0 - # Id: 1609943 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Glycine- + 2H+ = Hg(Glycine)+ + 2H2O - log_k 17 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619941 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Hg(OH)2 + 2Glycine- + 2H+ = Hg(Glycine)2 + 2H2O - log_k 25.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619942 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cu+ + 2Glycine- = Cu(Glycine)2- - log_k 10.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Glycine- = Cu(Glycine)+ - log_k 8.57 - delta_h -25.104 kJ - -gamma 0 0 - # Id: 2319941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Glycine- = Cu(Glycine)2 - log_k 15.7 - delta_h -54.8104 kJ - -gamma 0 0 - # Id: 2319942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Glycine- = Ag(Glycine) - log_k 3.51 - delta_h -19.2464 kJ - -gamma 0 0 - # Id: 209941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Glycine- = Ag(Glycine)2- - log_k 6.89 - delta_h -48.116 kJ - -gamma 0 0 - # Id: 209942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Glycine- = Ni(Glycine)+ - log_k 6.15 - delta_h -18.828 kJ - -gamma 0 0 - # Id: 5409941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Glycine- = Ni(Glycine)2 - log_k 11.12 - delta_h -38.0744 kJ - -gamma 0 0 - # Id: 5409942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 3Glycine- = Ni(Glycine)3- - log_k 14.63 - delta_h -62.3416 kJ - -gamma 0 0 - # Id: 5409943 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Co+2 + Glycine- = Co(Glycine)+ - log_k 5.07 - delta_h -12 kJ - -gamma 0 0 - # Id: 2009941 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Co+2 + 2Glycine- = Co(Glycine)2 - log_k 9.07 - delta_h -26 kJ - -gamma 0 0 - # Id: 2009942 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Co+2 + 3Glycine- = Co(Glycine)3- - log_k 11.6 - delta_h -41 kJ - -gamma 0 0 - # Id: 2009943 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Co+2 + Glycine- + H2O = CoOH(Glycine) + H+ - log_k -5.02 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009944 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Fe+2 + Glycine- = Fe(Glycine)+ - log_k 4.31 - delta_h -15.0624 kJ - -gamma 0 0 - # Id: 2809941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + 2Glycine- = Fe(Glycine)2 - log_k 8.29 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + Glycine- = Fe(Glycine)+2 - log_k 9.38 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + Glycine- + H+ = FeH(Glycine)+3 - log_k 11.55 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + Glycine- = Mn(Glycine)+ - log_k 3.19 - delta_h -1.2552 kJ - -gamma 0 0 - # Id: 4709941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + 2Glycine- = Mn(Glycine)2 - log_k 5.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr(OH)2+ + Glycine- + 2H+ = Cr(Glycine)+2 + 2H2O - log_k 18.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119941 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + 2Glycine- + 2H+ = Cr(Glycine)2+ + 2H2O - log_k 25.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119942 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + 3Glycine- + 2H+ = Cr(Glycine)3 + 2H2O - log_k 31.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119943 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Mg+2 + Glycine- = Mg(Glycine)+ - log_k 2.08 - delta_h 4.184 kJ - -gamma 0 0 - # Id: 4609941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Glycine- = Ca(Glycine)+ - log_k 1.39 - delta_h -4.184 kJ - -gamma 0 0 - # Id: 1509941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Glycine- + H+ = CaH(Glycine)+2 - log_k 10.1 - delta_h -35.9824 kJ - -gamma 0 0 - # Id: 1509942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Sr+2 + Glycine- = Sr(Glycine)+ - log_k 0.91 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009941 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 -Ba+2 + Glycine- = Ba(Glycine)+ - log_k 0.77 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -H+ + Salicylate-2 = H(Salicylate)- - log_k 13.7 - delta_h -35.7732 kJ - -gamma 0 0 - # Id: 3309951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Salicylate-2 = H2(Salicylate) - log_k 16.8 - delta_h -38.7857 kJ - -gamma 0 0 - # Id: 3309952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Salicylate-2 = Zn(Salicylate) - log_k 7.71 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509951 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + Salicylate-2 + H+ = ZnH(Salicylate)+ - log_k 15.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Salicylate-2 = Cd(Salicylate) - log_k 6.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Salicylate-2 + H+ = CdH(Salicylate)+ - log_k 16 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Salicylate-2 = Cu(Salicylate) - log_k 11.3 - delta_h -17.9912 kJ - -gamma 0 0 - # Id: 2319951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Salicylate-2 = Cu(Salicylate)2-2 - log_k 19.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Salicylate-2 + H+ = CuH(Salicylate)+ - log_k 14.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319953 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Salicylate-2 = Ni(Salicylate) - log_k 8.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Salicylate-2 = Ni(Salicylate)2-2 - log_k 12.64 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409952 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Co+2 + Salicylate-2 = Co(Salicylate) - log_k 7.4289 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009951 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 -Co+2 + 2Salicylate-2 = Co(Salicylate)2-2 - log_k 11.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009952 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 -Fe+2 + Salicylate-2 = Fe(Salicylate) - log_k 7.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + 2Salicylate-2 = Fe(Salicylate)2-2 - log_k 11.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + Salicylate-2 = Fe(Salicylate)+ - log_k 17.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + 2Salicylate-2 = Fe(Salicylate)2- - log_k 29.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + Salicylate-2 = Mn(Salicylate) - log_k 6.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + 2Salicylate-2 = Mn(Salicylate)2-2 - log_k 10.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Be+2 + Salicylate-2 = Be(Salicylate) - log_k 13.3889 - delta_h -31.7732 kJ - -gamma 0 0 - # Id: 1109951 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 -Be+2 + 2Salicylate-2 = Be(Salicylate)2-2 - log_k 23.25 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109952 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Mg+2 + Salicylate-2 = Mg(Salicylate) - log_k 5.76 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mg+2 + Salicylate-2 + H+ = MgH(Salicylate)+ - log_k 15.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609952 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ca+2 + Salicylate-2 = Ca(Salicylate) - log_k 4.05 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Salicylate-2 + H+ = CaH(Salicylate)+ - log_k 14.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ba+2 + Salicylate-2 + H+ = BaH(Salicylate)+ - log_k 13.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009951 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -H+ + Glutamate-2 = H(Glutamate)- - log_k 9.96 - delta_h -41.0032 kJ - -gamma 0 0 - # Id: 3309961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Glutamate-2 = H2(Glutamate) - log_k 14.26 - delta_h -43.5136 kJ - -gamma 0 0 - # Id: 3309962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -3H+ + Glutamate-2 = H3(Glutamate)+ - log_k 16.42 - delta_h -46.8608 kJ - -gamma 0 0 - # Id: 3309963 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + Glutamate-2 = Pb(Glutamate) - log_k 6.43 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Pb+2 + 2Glutamate-2 = Pb(Glutamate)2-2 - log_k 8.61 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Pb+2 + Glutamate-2 + H+ = PbH(Glutamate)+ - log_k 14.08 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009963 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Al+3 + Glutamate-2 + H+ = AlH(Glutamate)+2 - log_k 13.07 - delta_h 0 kJ - -gamma 0 0 - # Id: 309961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Glutamate-2 = Zn(Glutamate) - log_k 6.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 2Glutamate-2 = Zn(Glutamate)2-2 - log_k 9.13 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 3Glutamate-2 = Zn(Glutamate)3-4 - log_k 9.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509963 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + Glutamate-2 = Cd(Glutamate) - log_k 4.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Glutamate-2 = Cd(Glutamate)2-2 - log_k 7.59 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Glutamate-2 + 2H+ = Hg(Glutamate) + 2H2O - log_k 19.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Hg(OH)2 + 2Glutamate-2 + 2H+ = Hg(Glutamate)2-2 + 2H2O - log_k 26.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cu+2 + Glutamate-2 = Cu(Glutamate) - log_k 9.17 - delta_h -20.92 kJ - -gamma 0 0 - # Id: 2319961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Glutamate-2 = Cu(Glutamate)2-2 - log_k 15.78 - delta_h -48.116 kJ - -gamma 0 0 - # Id: 2319962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Glutamate-2 + H+ = CuH(Glutamate)+ - log_k 13.3 - delta_h -28.0328 kJ - -gamma 0 0 - # Id: 2319963 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + Glutamate-2 = Ag(Glutamate)- - log_k 4.22 - delta_h 0 kJ - -gamma 0 0 - # Id: 209961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Glutamate-2 = Ag(Glutamate)2-3 - log_k 7.36 - delta_h 0 kJ - -gamma 0 0 - # Id: 209962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -2Ag+ + Glutamate-2 = Ag2(Glutamate) - log_k 3.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 209963 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Glutamate-2 = Ni(Glutamate) - log_k 6.47 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Glutamate-2 = Ni(Glutamate)2-2 - log_k 10.7 - delta_h -30.9616 kJ - -gamma 0 0 - # Id: 5409962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Co+2 + Glutamate-2 = Co(Glutamate) - log_k 5.4178 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009961 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Co+2 + 2Glutamate-2 = Co(Glutamate)2-2 - log_k 8.7178 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009962 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Mn+2 + Glutamate-2 = Mn(Glutamate) - log_k 4.95 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Mn+2 + 2Glutamate-2 = Mn(Glutamate)2-2 - log_k 8.48 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + Glutamate-2 + 2H+ = Cr(Glutamate)+ + 2H2O - log_k 22.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + 2Glutamate-2 + 2H+ = Cr(Glutamate)2- + 2H2O - log_k 30.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + Glutamate-2 + 3H+ = CrH(Glutamate)+2 + 2H2O - log_k 25.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119963 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Mg+2 + Glutamate-2 = Mg(Glutamate) - log_k 2.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Glutamate-2 = Ca(Glutamate) - log_k 2.06 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Glutamate-2 + H+ = CaH(Glutamate)+ - log_k 11.13 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Sr+2 + Glutamate-2 = Sr(Glutamate) - log_k 2.2278 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009961 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Ba+2 + Glutamate-2 = Ba(Glutamate) - log_k 2.14 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -H+ + Phthalate-2 = H(Phthalate)- - log_k 5.408 - delta_h 2.1757 kJ - -gamma 0 0 - # Id: 3309971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Phthalate-2 = H2(Phthalate) - log_k 8.358 - delta_h 4.8534 kJ - -gamma 0 0 - # Id: 3309972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + Phthalate-2 = Pb(Phthalate) - log_k 4.26 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009971 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Pb+2 + 2Phthalate-2 = Pb(Phthalate)2-2 - log_k 4.83 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + Phthalate-2 + H+ = PbH(Phthalate)+ - log_k 6.98 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009973 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + Phthalate-2 = Al(Phthalate)+ - log_k 4.56 - delta_h 0 kJ - -gamma 0 0 - # Id: 309971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + 2Phthalate-2 = Al(Phthalate)2- - log_k 7.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 309972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Phthalate-2 = Zn(Phthalate) - log_k 2.91 - delta_h 13.3888 kJ - -gamma 0 0 - # Id: 9509971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Phthalate-2 = Zn(Phthalate)2-2 - log_k 4.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Phthalate-2 = Cd(Phthalate) - log_k 3.43 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Phthalate-2 + H+ = CdH(Phthalate)+ - log_k 6.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609973 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Phthalate-2 = Cd(Phthalate)2-2 - log_k 3.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Phthalate-2 = Cu(Phthalate) - log_k 4.02 - delta_h 8.368 kJ - -gamma 0 0 - # Id: 2319971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Phthalate-2 + H+ = CuH(Phthalate)+ - log_k 7.1 - delta_h 3.8493 kJ - -gamma 0 0 - # Id: 2319970 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Phthalate-2 = Cu(Phthalate)2-2 - log_k 5.3 - delta_h 15.8992 kJ - -gamma 0 0 - # Id: 2319972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Phthalate-2 = Ni(Phthalate) - log_k 2.95 - delta_h 7.5312 kJ - -gamma 0 0 - # Id: 5409971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Phthalate-2 + H+ = NiH(Phthalate)+ - log_k 6.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Co+2 + Phthalate-2 = Co(Phthalate) - log_k 2.83 - delta_h 7.9 kJ - -gamma 0 0 - # Id: 2009971 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 -Co+2 + H+ + Phthalate-2 = CoH(Phthalate)+ - log_k 7.227 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009972 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 -Mn+2 + Phthalate-2 = Mn(Phthalate) - log_k 2.74 - delta_h 10.0416 kJ - -gamma 0 0 - # Id: 4709971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr(OH)2+ + Phthalate-2 + 2H+ = Cr(Phthalate)+ + 2H2O - log_k 16.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119971 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + 2Phthalate-2 + 2H+ = Cr(Phthalate)2- + 2H2O - log_k 21.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119972 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + 3Phthalate-2 + 2H+ = Cr(Phthalate)3-3 + 2H2O - log_k 23.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119973 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Be+2 + Phthalate-2 = Be(Phthalate) - log_k 4.8278 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109971 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Be+2 + 2Phthalate-2 = Be(Phthalate)2-2 - log_k 6.5478 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109972 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 -Mg+2 + Phthalate-2 = Mg(Phthalate) - log_k 2.49 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609971 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ca+2 + Phthalate-2 = Ca(Phthalate) - log_k 2.45 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509970 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Phthalate-2 + H+ = CaH(Phthalate)+ - log_k 6.43 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ba+2 + Phthalate-2 = Ba(Phthalate) - log_k 2.33 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Na+ + Phthalate-2 = Na(Phthalate)- - log_k 0.8 - delta_h 4.184 kJ - -gamma 0 0 - # Id: 5009970 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -K+ + Phthalate-2 = K(Phthalate)- - log_k 0.7 - delta_h 3.7656 kJ - -gamma 0 0 - # Id: 4109971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -PHASES -Sulfur - S + H+ + 2e- = HS- - log_k -2.1449 - delta_h -16.3 kJ -Semetal(hex - Se + H+ + 2e- = HSe- - log_k -7.7084 - delta_h 15.9 kJ -Semetal(am) - Se + H+ + 2e- = HSe- - log_k -7.1099 - delta_h 10.8784 kJ -Sbmetal - Sb + 3H2O = Sb(OH)3 + 3H+ + 3e- - log_k -11.6889 - delta_h 83.89 kJ -Snmetal(wht) - Sn + 2H2O = Sn(OH)2 + 2H+ + 2e- - log_k -2.3266 - delta_h -0 kJ -Pbmetal - Pb = Pb+2 + 2e- - log_k 4.2462 - delta_h 0.92 kJ -Tlmetal - Tl = Tl+ + e- - log_k 5.6762 - delta_h 5.36 kJ -Znmetal - Zn = Zn+2 + 2e- - log_k 25.7886 - delta_h -153.39 kJ -Cdmetal(alpha) - Cd = Cd+2 + 2e- - log_k 13.5147 - delta_h -75.33 kJ -Cdmetal(gamma) - Cd = Cd+2 + 2e- - log_k 13.618 - delta_h -75.92 kJ -Hgmetal(l) - Hg = 0.5Hg2+2 + e- - log_k -13.4517 - delta_h 83.435 kJ -Cumetal - Cu = Cu+ + e- - log_k -8.756 - delta_h 71.67 kJ -Agmetal - Ag = Ag+ + e- - log_k -13.5065 - delta_h 105.79 kJ -Crmetal - Cr = Cr+2 + 2e- - log_k 30.4831 - delta_h -172 kJ -Vmetal - V = V+3 + 3e- - log_k 44.0253 - delta_h -259 kJ -Stibnite - Sb2S3 + 6H2O = 2Sb(OH)3 + 3H+ + 3HS- - log_k -50.46 - delta_h 293.78 kJ -Orpiment - As2S3 + 6H2O = 2H3AsO3 + 3HS- + 3H+ - log_k -61.0663 - delta_h 350.68 kJ -Realgar - AsS + 3H2O = H3AsO3 + HS- + 2H+ + e- - log_k -19.747 - delta_h 127.8 kJ -SnS - SnS + 2H2O = Sn(OH)2 + H+ + HS- - log_k -19.114 - delta_h -0 kJ -SnS2 - SnS2 + 6H2O = Sn(OH)6-2 + 4H+ + 2HS- - log_k -57.4538 - delta_h -0 kJ -Galena - PbS + H+ = Pb+2 + HS- - log_k -13.97 - delta_h 80 kJ -Tl2S - Tl2S + H+ = 2Tl+ + HS- - log_k -7.19 - delta_h 91.52 kJ -ZnS(am) - ZnS + H+ = Zn+2 + HS- - log_k -9.052 - delta_h 15.3553 kJ -Sphalerite - ZnS + H+ = Zn+2 + HS- - log_k -11.45 - delta_h 30 kJ -Wurtzite - ZnS + H+ = Zn+2 + HS- - log_k -8.95 - delta_h 21.171 kJ -Greenockite - CdS + H+ = Cd+2 + HS- - log_k -14.36 - delta_h 55 kJ -Hg2S - Hg2S + H+ = Hg2+2 + HS- - log_k -11.6765 - delta_h 69.7473 kJ -Cinnabar - HgS + 2H2O = Hg(OH)2 + H+ + HS- - log_k -45.694 - delta_h 253.76 kJ -Metacinnabar - HgS + 2H2O = Hg(OH)2 + H+ + HS- - log_k -45.094 - delta_h 253.72 kJ -Chalcocite - Cu2S + H+ = 2Cu+ + HS- - log_k -34.92 - delta_h 168 kJ -Djurleite - Cu0.066Cu1.868S + H+ = 0.066Cu+2 + 1.868Cu+ + HS- - log_k -33.92 - delta_h 200.334 kJ -Anilite - Cu0.25Cu1.5S + H+ = 0.25Cu+2 + 1.5Cu+ + HS- - log_k -31.878 - delta_h 182.15 kJ -BlaubleiII - Cu0.6Cu0.8S + H+ = 0.6Cu+2 + 0.8Cu+ + HS- - log_k -27.279 - delta_h -0 kJ -BlaubleiI - Cu0.9Cu0.2S + H+ = 0.9Cu+2 + 0.2Cu+ + HS- - log_k -24.162 - delta_h -0 kJ -Covellite - CuS + H+ = Cu+2 + HS- - log_k -22.3 - delta_h 97 kJ -Chalcopyrite - CuFeS2 + 2H+ = Cu+2 + Fe+2 + 2HS- - log_k -35.27 - delta_h 148.448 kJ -Acanthite - Ag2S + H+ = 2Ag+ + HS- - log_k -36.22 - delta_h 227 kJ -NiS(alpha) - NiS + H+ = Ni+2 + HS- - log_k -5.6 - delta_h -0 kJ -NiS(beta) - NiS + H+ = Ni+2 + HS- - log_k -11.1 - delta_h -0 kJ -NiS(gamma) - NiS + H+ = Ni+2 + HS- - log_k -12.8 - delta_h -0 kJ -CoS(alpha) - CoS + H+ = Co+2 + HS- - log_k -7.44 - delta_h -0 kJ -CoS(beta) - CoS + H+ = Co+2 + HS- - log_k -11.07 - delta_h -0 kJ -FeS(ppt) - FeS + H+ = Fe+2 + HS- - log_k -2.95 - delta_h -11 kJ -Greigite - Fe3S4 + 4H+ = 2Fe+3 + Fe+2 + 4HS- - log_k -45.035 - delta_h -0 kJ -Mackinawite - FeS + H+ = Fe+2 + HS- - log_k -3.6 - delta_h -0 kJ -Pyrite - FeS2 + 2H+ + 2e- = Fe+2 + 2HS- - log_k -18.5082 - delta_h 49.844 kJ -MnS(grn) - MnS + H+ = Mn+2 + HS- - log_k 0.17 - delta_h -32 kJ -MnS(pnk) - MnS + H+ = Mn+2 + HS- - log_k 3.34 - delta_h -0 kJ -MoS2 - MoS2 + 4H2O = MoO4-2 + 6H+ + 2HS- + 2e- - log_k -70.2596 - delta_h 389.02 kJ -BeS - BeS + H+ = Be+2 + HS- - log_k 19.38 - delta_h -0 kJ -BaS - BaS + H+ = Ba+2 + HS- - log_k 16.18 - delta_h -0 kJ -Hg2(Cyanide)2 - Hg2(Cyanide)2 = Hg2+2 + 2Cyanide- - log_k -39.3 - delta_h -0 kJ -CuCyanide - CuCyanide = Cu+ + Cyanide- - log_k -19.5 - delta_h -19 kJ -AgCyanide - AgCyanide = Ag+ + Cyanide- - log_k -15.74 - delta_h 110.395 kJ -Ag2(Cyanide)2 - Ag2(Cyanide)2 = 2Ag+ + 2Cyanide- - log_k -11.3289 - delta_h -0 kJ -NaCyanide(cubic) - NaCyanide = Cyanide- + Na+ - log_k 1.6012 - delta_h 0.969 kJ -KCyanide(cubic) - KCyanide = Cyanide- + K+ - log_k 1.4188 - delta_h 11.93 kJ -Pb2Fe(Cyanide)6 - Pb2Fe(Cyanide)6 = 2Pb+2 + Fe+2 + 6Cyanide- - log_k -53.42 - delta_h -0 kJ -Zn2Fe(Cyanide)6 - Zn2Fe(Cyanide)6 = 2Zn+2 + Fe+2 + 6Cyanide- - log_k -51.08 - delta_h -0 kJ -Cd2Fe(Cyanide)6 - Cd2Fe(Cyanide)6 = 2Cd+2 + Fe+2 + 6Cyanide- - log_k -52.78 - delta_h -0 kJ -Ag4Fe(Cyanide)6 - Ag4Fe(Cyanide)6 = 4Ag+ + Fe+2 + 6Cyanide- - log_k -79.47 - delta_h -0 kJ -Ag3Fe(Cyanide)6 - Ag3Fe(Cyanide)6 = 3Ag+ + Fe+3 + 6Cyanide- - log_k -72.7867 - delta_h -0 kJ -Mn3(Fe(Cyanide)6)2 - Mn3(Fe(Cyanide)6)2 = 3Mn+2 + 2Fe+3 + 12Cyanide- - log_k -105.4 - delta_h -0 kJ -Sb2Se3 - Sb2Se3 + 6H2O = 2Sb(OH)3 + 3HSe- + 3H+ - log_k -67.7571 - delta_h 343.046 kJ -SnSe - SnSe + 2H2O = Sn(OH)2 + H+ + HSe- - log_k -30.494 - delta_h -0 kJ -SnSe2 - SnSe2 + 6H2O = Sn(OH)6-2 + 4H+ + 2HSe- - log_k -65.1189 - delta_h -0 kJ -Clausthalite - PbSe + H+ = Pb+2 + HSe- - log_k -27.1 - delta_h 119.72 kJ -Tl2Se - Tl2Se + H+ = 2Tl+ + HSe- - log_k -18.1 - delta_h 85.62 kJ -ZnSe - ZnSe + H+ = Zn+2 + HSe- - log_k -14.4 - delta_h 25.51 kJ -CdSe - CdSe + H+ = Cd+2 + HSe- - log_k -20.2 - delta_h 75.9814 kJ -HgSe - HgSe + 2H2O = Hg(OH)2 + H+ + HSe- - log_k -55.694 - delta_h -0 kJ -Cu2Se(alpha) - Cu2Se + H+ = 2Cu+ + HSe- - log_k -45.8 - delta_h 214.263 kJ -Cu3Se2 - Cu3Se2 + 2H+ = 2HSe- + 2Cu+ + Cu+2 - log_k -63.4911 - delta_h 340.327 kJ -CuSe - CuSe + H+ = Cu+2 + HSe- - log_k -33.1 - delta_h 121.127 kJ -CuSe2 - CuSe2 + 2H+ + 2e- = 2HSe- + Cu+2 - log_k -33.3655 - delta_h 140.582 kJ -Ag2Se - Ag2Se + H+ = 2Ag+ + HSe- - log_k -48.7 - delta_h 265.48 kJ -NiSe - NiSe + H+ = Ni+2 + HSe- - log_k -17.7 - delta_h -0 kJ -CoSe - CoSe + H+ = Co+2 + HSe- - log_k -16.2 - delta_h -0 kJ -FeSe - FeSe + H+ = Fe+2 + HSe- - log_k -11 - delta_h 2.092 kJ -Ferroselite - FeSe2 + 2H+ + 2e- = 2HSe- + Fe+2 - log_k -18.5959 - delta_h 47.2792 kJ -MnSe - MnSe + H+ = Mn+2 + HSe- - log_k 3.5 - delta_h -98.15 kJ -AlSb - AlSb + 3H2O = Sb(OH)3 + 6e- + Al+3 + 3H+ - log_k 65.6241 - delta_h -0 kJ -ZnSb - ZnSb + 3H2O = Sb(OH)3 + 5e- + Zn+2 + 3H+ - log_k 11.0138 - delta_h -54.8773 kJ -CdSb - CdSb + 3H2O = Sb(OH)3 + 5e- + 3H+ + Cd+2 - log_k -0.3501 - delta_h 22.36 kJ -Cu2Sb:3H2O - Cu2Sb:3H2O = Sb(OH)3 + 6e- + 3H+ + Cu+ + Cu+2 - log_k -34.8827 - delta_h 233.237 kJ -Cu3Sb - Cu3Sb + 3H2O = Sb(OH)3 + 6e- + 3H+ + 3Cu+ - log_k -42.5937 - delta_h 308.131 kJ -#Ag4Sb -# Ag4Sb + 3H2O = Sb(OH)3 + 6e- + 3Ag+ + 3H+ -# log_k -56.1818 -# delta_h -0 kJ -Breithauptite - NiSb + 3H2O = Sb(OH)3 + 5e- + 3H+ + Ni+2 - log_k -18.5225 - delta_h 96.0019 kJ -MnSb - MnSb + 3H2O = Mn+3 + Sb(OH)3 + 6e- + 3H+ - log_k -2.9099 - delta_h 21.1083 kJ -Mn2Sb - Mn2Sb + 3H2O = 2Mn+2 + Sb(OH)3 + 7e- + 3H+ - log_k 61.0796 - delta_h -0 kJ -USb2 - USb2 + 8H2O = UO2+2 + 2Sb(OH)3 + 12e- + 10H+ - log_k 29.5771 - delta_h -103.56 kJ -U3Sb4 - U3Sb4 + 12H2O = 3U+4 + 4Sb(OH)3 + 24e- + 12H+ - log_k 152.383 - delta_h -986.04 kJ -Mg2Sb3 - Mg2Sb3 + 9H2O = 2Mg+2 + 3Sb(OH)3 + 9H+ + 13e- - log_k 74.6838 - delta_h -0 kJ -Ca3Sb2 - Ca3Sb2 + 6H2O = 3Ca+2 + 2Sb(OH)3 + 6H+ + 12e- - log_k 142.974 - delta_h -732.744 kJ -NaSb - NaSb + 3H2O = Na+ + Sb(OH)3 + 3H+ + 4e- - log_k 23.1658 - delta_h -93.45 kJ -Na3Sb - Na3Sb + 3H2O = 3Na+ + Sb(OH)3 + 3H+ + 6e- - log_k 94.4517 - delta_h -432.13 kJ -SeO2 - SeO2 + H2O = HSeO3- + H+ - log_k 0.1246 - delta_h 1.4016 kJ -SeO3 - SeO3 + H2O = SeO4-2 + 2H+ - log_k 21.044 - delta_h -146.377 kJ -Sb2O5 - Sb2O5 + 7H2O = 2Sb(OH)6- + 2H+ - log_k -9.6674 - delta_h -0 kJ -SbO2 - SbO2 + 4H2O = Sb(OH)6- + e- + 2H+ - log_k -27.8241 - delta_h -0 kJ -Sb2O4 - Sb2O4 + 2H2O + 2H+ + 2e- = 2Sb(OH)3 - log_k 3.4021 - delta_h -68.04 kJ -Sb4O6(cubic) - Sb4O6 + 6H2O = 4Sb(OH)3 - log_k -18.2612 - delta_h 61.1801 kJ -Sb4O6(orth) - Sb4O6 + 6H2O = 4Sb(OH)3 - log_k -17.9012 - delta_h 37.6801 kJ -Sb(OH)3 - Sb(OH)3 = Sb(OH)3 - log_k -7.1099 - delta_h 30.1248 kJ -Senarmontite - Sb2O3 + 3H2O = 2Sb(OH)3 - log_k -12.3654 - delta_h 30.6478 kJ -Valentinite - Sb2O3 + 3H2O = 2Sb(OH)3 - log_k -8.4806 - delta_h 19.0163 kJ -Chalcedony - SiO2 + 2H2O = H4SiO4 - log_k -3.55 - delta_h 19.7 kJ -Cristobalite - SiO2 + 2H2O = H4SiO4 - log_k -3.35 - delta_h 20.006 kJ -Quartz - SiO2 + 2H2O = H4SiO4 - log_k -4 - delta_h 22.36 kJ -SiO2(am-gel) - SiO2 + 2H2O = H4SiO4 - log_k -2.71 - delta_h 14 kJ -SiO2(am-ppt) - SiO2 + 2H2O = H4SiO4 - log_k -2.74 - delta_h 15.15 kJ -SnO - SnO + H2O = Sn(OH)2 - log_k -4.9141 - delta_h -0 kJ -SnO2 - SnO2 + 4H2O = Sn(OH)6-2 + 2H+ - log_k -28.9749 - delta_h -0 kJ -Sn(OH)2 - Sn(OH)2 = Sn(OH)2 - log_k -5.4309 - delta_h -0 kJ -Sn(OH)4 - Sn(OH)4 + 2H2O = Sn(OH)6-2 + 2H+ - log_k -22.2808 - delta_h -0 kJ -H2Sn(OH)6 - H2Sn(OH)6 = Sn(OH)6-2 + 2H+ - log_k -23.5281 - delta_h -0 kJ -Massicot - PbO + 2H+ = Pb+2 + H2O - log_k 12.894 - delta_h -66.848 kJ -Litharge - PbO + 2H+ = Pb+2 + H2O - log_k 12.694 - delta_h -65.501 kJ -PbO:0.3H2O - PbO:0.33H2O + 2H+ = Pb+2 + 1.33H2O - log_k 12.98 - delta_h -0 kJ -Plattnerite - PbO2 + 4H+ + 2e- = Pb+2 + 2H2O - log_k 49.6001 - delta_h -296.27 kJ -Pb(OH)2 - Pb(OH)2 + 2H+ = Pb+2 + 2H2O - log_k 8.15 - delta_h -58.5342 kJ -Pb2O(OH)2 - Pb2O(OH)2 + 4H+ = 2Pb+2 + 3H2O - log_k 26.188 - delta_h -0 kJ -Al(OH)3(am) - Al(OH)3 + 3H+ = Al+3 + 3H2O - log_k 10.8 - delta_h -111 kJ -Boehmite - AlOOH + 3H+ = Al+3 + 2H2O - log_k 8.578 - delta_h -117.696 kJ -Diaspore - AlOOH + 3H+ = Al+3 + 2H2O - log_k 6.873 - delta_h -103.052 kJ -Gibbsite - Al(OH)3 + 3H+ = Al+3 + 3H2O - log_k 8.291 - delta_h -95.3952 kJ -Tl2O - Tl2O + 2H+ = 2Tl+ + H2O - log_k 27.0915 - delta_h -96.41 kJ -TlOH - TlOH + H+ = Tl+ + H2O - log_k 12.9186 - delta_h -41.57 kJ -Avicennite - Tl2O3 + 3H2O = 2Tl(OH)3 - log_k -13 - delta_h -0 kJ -Tl(OH)3 - Tl(OH)3 = Tl(OH)3 - log_k -5.441 - delta_h -0 kJ -Zn(OH)2(am) - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 12.474 - delta_h -80.62 kJ -Zn(OH)2 - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 12.2 - delta_h -0 kJ -Zn(OH)2(beta) - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.754 - delta_h -83.14 kJ -Zn(OH)2(gamma) - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.734 - delta_h -0 kJ -Zn(OH)2(epsilon) - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.534 - delta_h -81.8 kJ -ZnO(active) - ZnO + 2H+ = Zn+2 + H2O - log_k 11.1884 - delta_h -88.76 kJ -Zincite - ZnO + 2H+ = Zn+2 + H2O - log_k 11.334 - delta_h -89.62 kJ -Cd(OH)2(am) - Cd(OH)2 + 2H+ = Cd+2 + 2H2O - log_k 13.73 - delta_h -86.9017 kJ -Cd(OH)2 - Cd(OH)2 + 2H+ = Cd+2 + 2H2O - log_k 13.644 - delta_h -94.62 kJ -Monteponite - CdO + 2H+ = Cd+2 + H2O - log_k 15.1034 - delta_h -103.4 kJ -Hg2(OH)2 - Hg2(OH)2 + 2H+ = Hg2+2 + 2H2O - log_k 5.2603 - delta_h -0 kJ -Montroydite - HgO + H2O = Hg(OH)2 - log_k -3.64 - delta_h -38.9 kJ -Hg(OH)2 - Hg(OH)2 = Hg(OH)2 - log_k -3.4963 - delta_h -0 kJ -Cuprite - Cu2O + 2H+ = 2Cu+ + H2O - log_k -1.406 - delta_h -124.02 kJ -Cu(OH)2 - Cu(OH)2 + 2H+ = Cu+2 + 2H2O - log_k 8.674 - delta_h -56.42 kJ -Tenorite - CuO + 2H+ = Cu+2 + H2O - log_k 7.644 - delta_h -64.867 kJ -Ag2O - Ag2O + 2H+ = 2Ag+ + H2O - log_k 12.574 - delta_h -45.62 kJ -Ni(OH)2 - Ni(OH)2 + 2H+ = Ni+2 + 2H2O - log_k 12.794 - delta_h -95.96 kJ -Bunsenite - NiO + 2H+ = Ni+2 + H2O - log_k 12.4456 - delta_h -100.13 kJ -CoO - CoO + 2H+ = Co+2 + H2O - log_k 13.5864 - delta_h -106.295 kJ -Co(OH)2 - Co(OH)2 + 2H+ = Co+2 + 2H2O - log_k 13.094 - delta_h -0 kJ -Co(OH)3 - Co(OH)3 + 3H+ = Co+3 + 3H2O - log_k -2.309 - delta_h -92.43 kJ -#Wustite-0.11 -# WUSTITE-0.11 + 2H+ = 0.947Fe+2 + H2O -# log_k 11.6879 -# delta_h -103.938 kJ -Fe(OH)2 - Fe(OH)2 + 2H+ = Fe+2 + 2H2O - log_k 13.564 - delta_h -0 kJ -Ferrihydrite - Fe(OH)3 + 3H+ = Fe+3 + 3H2O - log_k 3.191 - delta_h -73.374 kJ -Fe3(OH)8 - Fe3(OH)8 + 8H+ = 2Fe+3 + Fe+2 + 8H2O - log_k 20.222 - delta_h -0 kJ -Goethite - FeOOH + 3H+ = Fe+3 + 2H2O - log_k 0.491 - delta_h -60.5843 kJ -Pyrolusite - MnO2 + 4H+ + 2e- = Mn+2 + 2H2O - log_k 41.38 - delta_h -272 kJ -Birnessite - MnO2 + 4H+ + e- = Mn+3 + 2H2O - log_k 18.091 - delta_h -0 kJ -Nsutite - MnO2 + 4H+ + e- = Mn+3 + 2H2O - log_k 17.504 - delta_h -0 kJ -Pyrochroite - Mn(OH)2 + 2H+ = Mn+2 + 2H2O - log_k 15.194 - delta_h -97.0099 kJ -Manganite - MnOOH + 3H+ + e- = Mn+2 + 2H2O - log_k 25.34 - delta_h -0 kJ -Cr(OH)2 - Cr(OH)2 + 2H+ = Cr+2 + 2H2O - log_k 10.8189 - delta_h -35.6058 kJ -Cr(OH)3(am) - Cr(OH)3 + H+ = Cr(OH)2+ + H2O - log_k -0.75 - delta_h -0 kJ -Cr(OH)3 - Cr(OH)3 + H+ = Cr(OH)2+ + H2O - log_k 1.3355 - delta_h -29.7692 kJ -CrO3 - CrO3 + H2O = CrO4-2 + 2H+ - log_k -3.2105 - delta_h -5.2091 kJ -MoO3 - MoO3 + H2O = MoO4-2 + 2H+ - log_k -8 - delta_h -0 kJ -VO - VO + 2H+ = V+3 + H2O + e- - log_k 14.7563 - delta_h -113.041 kJ -V(OH)3 - V(OH)3 + 3H+ = V+3 + 3H2O - log_k 7.591 - delta_h -0 kJ -VO(OH)2 - VO(OH)2 + 2H+ = VO+2 + 2H2O - log_k 5.1506 - delta_h -0 kJ -Uraninite - UO2 + 4H+ = U+4 + 2H2O - log_k -4.6693 - delta_h -77.86 kJ -UO2(am) - UO2 + 4H+ = U+4 + 2H2O - log_k 0.934 - delta_h -109.746 kJ -UO3 - UO3 + 2H+ = UO2+2 + H2O - log_k 7.7 - delta_h -81.0299 kJ -Gummite - UO3 + 2H+ = UO2+2 + H2O - log_k 7.6718 - delta_h -81.0299 kJ -UO2(OH)2(beta) - UO2(OH)2 + 2H+ = UO2+2 + 2H2O - log_k 5.6116 - delta_h -56.7599 kJ -Schoepite - UO2(OH)2:H2O + 2H+ = UO2+2 + 3H2O - log_k 5.994 - delta_h -49.79 kJ -Be(OH)2(am) - Be(OH)2 + 2H+ = Be+2 + 2H2O - log_k 7.194 - delta_h -0 kJ -Be(OH)2(alpha) - Be(OH)2 + 2H+ = Be+2 + 2H2O - log_k 6.894 - delta_h -0 kJ -Be(OH)2(beta) - Be(OH)2 + 2H+ = Be+2 + 2H2O - log_k 6.494 - delta_h -0 kJ -Brucite - Mg(OH)2 + 2H+ = Mg+2 + 2H2O - log_k 16.844 - delta_h -113.996 kJ -Periclase - MgO + 2H+ = Mg+2 + H2O - log_k 21.5841 - delta_h -151.23 kJ -Mg(OH)2(active) - Mg(OH)2 + 2H+ = Mg+2 + 2H2O - log_k 18.794 - delta_h -0 kJ -Lime - CaO + 2H+ = Ca+2 + H2O - log_k 32.6993 - delta_h -193.91 kJ -Portlandite - Ca(OH)2 + 2H+ = Ca+2 + 2H2O - log_k 22.804 - delta_h -128.62 kJ -Ba(OH)2:8H2O - Ba(OH)2:8H2O + 2H+ = Ba+2 + 10H2O - log_k 24.394 - delta_h -54.32 kJ -Cu(SbO3)2 - Cu(SbO3)2 + 6H+ + 4e- = 2Sb(OH)3 + Cu+2 - log_k 45.2105 - delta_h -0 kJ -Arsenolite - As2O3 + 3H2O = 2H3AsO3 - log_k -1.38 - delta_h 59.9567 kJ -Claudetite - As2O3 + 3H2O = 2H3AsO3 - log_k -1.5325 - delta_h 55.6054 kJ -As2O5 - As2O5 + 3H2O = 2H3AsO4 - log_k 6.7061 - delta_h -22.64 kJ -Pb2O3 - Pb2O3 + 6H+ + 2e- = 2Pb+2 + 3H2O - log_k 61.04 - delta_h -0 kJ -Minium - Pb3O4 + 8H+ + 2e- = 3Pb+2 + 4H2O - log_k 73.5219 - delta_h -421.874 kJ -Al2O3 - Al2O3 + 6H+ = 2Al+3 + 3H2O - log_k 19.6524 - delta_h -258.59 kJ -Co3O4 - Co3O4 + 8H+ = Co+2 + 2Co+3 + 4H2O - log_k -10.4956 - delta_h -107.5 kJ -CoFe2O4 - CoFe2O4 + 8H+ = Co+2 + 2Fe+3 + 4H2O - log_k -3.5281 - delta_h -158.82 kJ -Magnetite - Fe3O4 + 8H+ = 2Fe+3 + Fe+2 + 4H2O - log_k 3.4028 - delta_h -208.526 kJ -Hercynite - FeAl2O4 + 8H+ = Fe+2 + 2Al+3 + 4H2O - log_k 22.893 - delta_h -313.92 kJ -Hematite - Fe2O3 + 6H+ = 2Fe+3 + 3H2O - log_k -1.418 - delta_h -128.987 kJ -Maghemite - Fe2O3 + 6H+ = 2Fe+3 + 3H2O - log_k 6.386 - delta_h -0 kJ -Lepidocrocite - FeOOH + 3H+ = Fe+3 + 2H2O - log_k 1.371 - delta_h -0 kJ -Hausmannite - Mn3O4 + 8H+ + 2e- = 3Mn+2 + 4H2O - log_k 61.03 - delta_h -421 kJ -Bixbyite - Mn2O3 + 6H+ = 2Mn+3 + 3H2O - log_k -0.6445 - delta_h -124.49 kJ -Cr2O3 - Cr2O3 + H2O + 2H+ = 2Cr(OH)2+ - log_k -2.3576 - delta_h -50.731 kJ -#V2O3 -# V2O3 + 3H+ = V+3 + 1.5H2O -# log_k 4.9 -# delta_h -82.5085 kJ -V3O5 - V3O5 + 4H+ = 3VO+2 + 2H2O + 2e- - log_k 1.8361 - delta_h -98.46 kJ -#V2O4 -# V2O4 + 2H+ = VO+2 + H2O -# log_k 4.27 -# delta_h -58.8689 kJ -V4O7 - V4O7 + 6H+ = 4VO+2 + 3H2O + 2e- - log_k 7.1865 - delta_h -163.89 kJ -V6O13 - V6O13 + 2H+ = 6VO2+ + H2O + 4e- - log_k -60.86 - delta_h 271.5 kJ -V2O5 - V2O5 + 2H+ = 2VO2+ + H2O - log_k -1.36 - delta_h 34 kJ -U4O9 - U4O9 + 18H+ + 2e- = 4U+4 + 9H2O - log_k -3.0198 - delta_h -426.87 kJ -U3O8 - U3O8 + 16H+ + 4e- = 3U+4 + 8H2O - log_k 21.0834 - delta_h -485.44 kJ -Spinel - MgAl2O4 + 8H+ = Mg+2 + 2Al+3 + 4H2O - log_k 36.8476 - delta_h -388.012 kJ -Magnesioferrite - Fe2MgO4 + 8H+ = Mg+2 + 2Fe+3 + 4H2O - log_k 16.8597 - delta_h -278.92 kJ -Natron - Na2CO3:10H2O = 2Na+ + CO3-2 + 10H2O - log_k -1.311 - delta_h 65.8771 kJ -Cuprousferrite - CuFeO2 + 4H+ = Cu+ + Fe+3 + 2H2O - log_k -8.9171 - delta_h -15.89 kJ -Cupricferrite - CuFe2O4 + 8H+ = Cu+2 + 2Fe+3 + 4H2O - log_k 5.9882 - delta_h -210.21 kJ -FeCr2O4 - FeCr2O4 + 4H+ = 2Cr(OH)2+ + Fe+2 - log_k 7.2003 - delta_h -140.4 kJ -MgCr2O4 - MgCr2O4 + 4H+ = 2Cr(OH)2+ + Mg+2 - log_k 16.2007 - delta_h -179.4 kJ -SbF3 - SbF3 + 3H2O = Sb(OH)3 + 3H+ + 3F- - log_k -10.2251 - delta_h -6.7279 kJ -PbF2 - PbF2 = Pb+2 + 2F- - log_k -7.44 - delta_h 20 kJ -ZnF2 - ZnF2 = Zn+2 + 2F- - log_k -0.5343 - delta_h -59.69 kJ -CdF2 - CdF2 = Cd+2 + 2F- - log_k -1.2124 - delta_h -46.22 kJ -Hg2F2 - Hg2F2 = Hg2+2 + 2F- - log_k -10.3623 - delta_h -18.486 kJ -CuF - CuF = Cu+ + F- - log_k -4.9056 - delta_h 16.648 kJ -CuF2 - CuF2 = Cu+2 + 2F- - log_k 1.115 - delta_h -66.901 kJ -CuF2:2H2O - CuF2:2H2O = Cu+2 + 2F- + 2H2O - log_k -4.55 - delta_h -15.2716 kJ -AgF:4H2O - AgF:4H2O = Ag+ + F- + 4H2O - log_k 1.0491 - delta_h 15.4202 kJ -CoF2 - CoF2 = Co+2 + 2F- - log_k -1.5969 - delta_h -57.368 kJ -CoF3 - CoF3 = Co+3 + 3F- - log_k -1.4581 - delta_h -123.692 kJ -CrF3 - CrF3 + 2H2O = Cr(OH)2+ + 3F- + 2H+ - log_k -11.3367 - delta_h -23.3901 kJ -VF4 - VF4 + H2O = VO+2 + 4F- + 2H+ - log_k 14.93 - delta_h -199.117 kJ -UF4 - UF4 = U+4 + 4F- - log_k -29.5371 - delta_h -79.0776 kJ -UF4:2.5H2O - UF4:2.5H2O = U+4 + 4F- + 2.5H2O - log_k -32.7179 - delta_h 24.325 kJ -MgF2 - MgF2 = Mg+2 + 2F- - log_k -8.13 - delta_h -8 kJ -Fluorite - CaF2 = Ca+2 + 2F- - log_k -10.5 - delta_h 8 kJ -SrF2 - SrF2 = Sr+2 + 2F- - log_k -8.58 - delta_h 4 kJ -BaF2 - BaF2 = Ba+2 + 2F- - log_k -5.82 - delta_h 4 kJ -Cryolite - Na3AlF6 = 3Na+ + Al+3 + 6F- - log_k -33.84 - delta_h 38 kJ -SbCl3 - SbCl3 + 3H2O = Sb(OH)3 + 3Cl- + 3H+ - log_k 0.5719 - delta_h -35.18 kJ -SnCl2 - SnCl2 + 2H2O = Sn(OH)2 + 2H+ + 2Cl- - log_k -9.2752 - delta_h -0 kJ -Cotunnite - PbCl2 = Pb+2 + 2Cl- - log_k -4.78 - delta_h 26.166 kJ -Matlockite - PbClF = Pb+2 + Cl- + F- - log_k -8.9733 - delta_h 33.19 kJ -Phosgenite - PbCl2:PbCO3 = 2Pb+2 + 2Cl- + CO3-2 - log_k -19.81 - delta_h -0 kJ -Laurionite - PbOHCl + H+ = Pb+2 + Cl- + H2O - log_k 0.623 - delta_h -0 kJ -Pb2(OH)3Cl - Pb2(OH)3Cl + 3H+ = 2Pb+2 + 3H2O + Cl- - log_k 8.793 - delta_h -0 kJ -TlCl - TlCl = Tl+ + Cl- - log_k -3.74 - delta_h 41 kJ -ZnCl2 - ZnCl2 = Zn+2 + 2Cl- - log_k 7.05 - delta_h -72.5 kJ -Zn2(OH)3Cl - Zn2(OH)3Cl + 3H+ = 2Zn+2 + 3H2O + Cl- - log_k 15.191 - delta_h -0 kJ -Zn5(OH)8Cl2 - Zn5(OH)8Cl2 + 8H+ = 5Zn+2 + 8H2O + 2Cl- - log_k 38.5 - delta_h -0 kJ -CdCl2 - CdCl2 = Cd+2 + 2Cl- - log_k -0.6588 - delta_h -18.58 kJ -CdCl2:1H2O - CdCl2:1H2O = Cd+2 + 2Cl- + H2O - log_k -1.6932 - delta_h -7.47 kJ -CdCl2:2.5H2O - CdCl2:2.5H2O = Cd+2 + 2Cl- + 2.5H2O - log_k -1.913 - delta_h 7.2849 kJ -CdOHCl - CdOHCl + H+ = Cd+2 + H2O + Cl- - log_k 3.5373 - delta_h -30.93 kJ -Calomel - Hg2Cl2 = Hg2+2 + 2Cl- - log_k -17.91 - delta_h 92 kJ -HgCl2 - HgCl2 + 2H2O = Hg(OH)2 + 2Cl- + 2H+ - log_k -21.2621 - delta_h 107.82 kJ -Nantokite - CuCl = Cu+ + Cl- - log_k -6.73 - delta_h 42.662 kJ -Melanothallite - CuCl2 = Cu+2 + 2Cl- - log_k 6.2572 - delta_h -63.407 kJ -Atacamite - Cu2(OH)3Cl + 3H+ = 2Cu+2 + 3H2O + Cl- - log_k 7.391 - delta_h -93.43 kJ -Cerargyrite - AgCl = Ag+ + Cl- - log_k -9.75 - delta_h 65.2 kJ -CoCl2 - CoCl2 = Co+2 + 2Cl- - log_k 8.2672 - delta_h -79.815 kJ -CoCl2:6H2O - CoCl2:6H2O = Co+2 + 2Cl- + 6H2O - log_k 2.5365 - delta_h 8.0598 kJ -(Co(NH3)6)Cl3 - (Co(NH3)6)Cl3 + 6H+ = Co+3 + 6NH4+ + 3Cl- - log_k 20.0317 - delta_h -33.1 kJ -(Co(NH3)5OH2)Cl3 - (Co(NH3)5OH2)Cl3 + 5H+ = Co+3 + 5NH4+ + 3Cl- + H2O - log_k 11.7351 - delta_h -25.37 kJ -(Co(NH3)5Cl)Cl2 - (Co(NH3)5Cl)Cl2 + 5H+ = Co+3 + 5NH4+ + 3Cl- - log_k 4.5102 - delta_h -10.74 kJ -Fe(OH)2.7Cl.3 - Fe(OH)2.7Cl.3 + 2.7H+ = Fe+3 + 2.7H2O + 0.3Cl- - log_k -3.04 - delta_h -0 kJ -MnCl2:4H2O - MnCl2:4H2O = Mn+2 + 2Cl- + 4H2O - log_k 2.7151 - delta_h -10.83 kJ -CrCl2 - CrCl2 = Cr+2 + 2Cl- - log_k 14.0917 - delta_h -110.76 kJ -CrCl3 - CrCl3 + 2H2O = Cr(OH)2+ + 3Cl- + 2H+ - log_k 15.1145 - delta_h -121.08 kJ -VCl2 - VCl2 = V+3 + 2Cl- + e- - log_k 18.8744 - delta_h -141.16 kJ -VCl3 - VCl3 = V+3 + 3Cl- - log_k 23.4326 - delta_h -179.54 kJ -VOCl - VOCl + 2H+ = V+3 + Cl- + H2O - log_k 11.1524 - delta_h -104.91 kJ -VOCl2 - VOCl2 = VO+2 + 2Cl- - log_k 12.7603 - delta_h -117.76 kJ -VO2Cl - VO2Cl = VO2+ + Cl- - log_k 2.8413 - delta_h -40.28 kJ -Halite - NaCl = Na+ + Cl- - log_k 1.6025 - delta_h 3.7 kJ -SbBr3 - SbBr3 + 3H2O = Sb(OH)3 + 3Br- + 3H+ - log_k 0.9689 - delta_h -20.94 kJ -SnBr2 - SnBr2 + 2H2O = Sn(OH)2 + 2H+ + 2Br- - log_k -9.5443 - delta_h -0 kJ -SnBr4 - SnBr4 + 6H2O = Sn(OH)6-2 + 6H+ + 4Br- - log_k -28.8468 - delta_h -0 kJ -PbBr2 - PbBr2 = Pb+2 + 2Br- - log_k -5.3 - delta_h 35.499 kJ -PbBrF - PbBrF = Pb+2 + Br- + F- - log_k -8.49 - delta_h -0 kJ -TlBr - TlBr = Tl+ + Br- - log_k -5.44 - delta_h 54 kJ -ZnBr2:2H2O - ZnBr2:2H2O = Zn+2 + 2Br- + 2H2O - log_k 5.2005 - delta_h -30.67 kJ -CdBr2:4H2O - CdBr2:4H2O = Cd+2 + 2Br- + 4H2O - log_k -2.425 - delta_h 30.5001 kJ -Hg2Br2 - Hg2Br2 = Hg2+2 + 2Br- - log_k -22.25 - delta_h 133 kJ -HgBr2 - HgBr2 + 2H2O = Hg(OH)2 + 2Br- + 2H+ - log_k -25.2734 - delta_h 138.492 kJ -CuBr - CuBr = Cu+ + Br- - log_k -8.3 - delta_h 54.86 kJ -Cu2(OH)3Br - Cu2(OH)3Br + 3H+ = 2Cu+2 + 3H2O + Br- - log_k 7.9085 - delta_h -93.43 kJ -Bromyrite - AgBr = Ag+ + Br- - log_k -12.3 - delta_h 84.5 kJ -(Co(NH3)6)Br3 - (Co(NH3)6)Br3 + 6H+ = Co+3 + 6NH4+ + 3Br- - log_k 18.3142 - delta_h -21.1899 kJ -(Co(NH3)5Cl)Br2 - (Co(NH3)5Cl)Br2 + 5H+ = Co+3 + 5NH4+ + Cl- + 2Br- - log_k 5.0295 - delta_h -6.4 kJ -CrBr3 - CrBr3 + 2H2O = Cr(OH)2+ + 3Br- + 2H+ - log_k 19.9086 - delta_h -141.323 kJ -AsI3 - AsI3 + 3H2O = H3AsO3 + 3I- + 3H+ - log_k 4.2307 - delta_h 3.15 kJ -SbI3 - SbI3 + 3H2O = Sb(OH)3 + 3H+ + 3I- - log_k -0.538 - delta_h 13.5896 kJ -PbI2 - PbI2 = Pb+2 + 2I- - log_k -8.1 - delta_h 62 kJ -TlI - TlI = Tl+ + I- - log_k -7.23 - delta_h 75 kJ -ZnI2 - ZnI2 = Zn+2 + 2I- - log_k 7.3055 - delta_h -58.92 kJ -CdI2 - CdI2 = Cd+2 + 2I- - log_k -3.5389 - delta_h 13.82 kJ -Hg2I2 - Hg2I2 = Hg2+2 + 2I- - log_k -28.34 - delta_h 163 kJ -Coccinite - HgI2 + 2H2O = Hg(OH)2 + 2H+ + 2I- - log_k -34.9525 - delta_h 210.72 kJ -HgI2:2NH3 - HgI2:2NH3 + 2H2O = Hg(OH)2 + 2I- + 2NH4+ - log_k -16.2293 - delta_h 132.18 kJ -HgI2:6NH3 - HgI2:6NH3 + 2H2O + 4H+ = Hg(OH)2 + 2I- + 6NH4+ - log_k 33.7335 - delta_h -90.3599 kJ -CuI - CuI = Cu+ + I- - log_k -12 - delta_h 82.69 kJ -Iodyrite - AgI = Ag+ + I- - log_k -16.08 - delta_h 110 kJ -(Co(NH3)6)I3 - (Co(NH3)6)I3 + 6H+ = Co+3 + 6NH4+ + 3I- - log_k 16.5831 - delta_h -9.6999 kJ -(Co(NH3)5Cl)I2 - (Co(NH3)5Cl)I2 + 5H+ = Co+3 + 5NH4+ + Cl- + 2I- - log_k 5.5981 - delta_h 0.66 kJ -CrI3 - CrI3 + 2H2O = Cr(OH)2+ + 3I- + 2H+ - log_k 20.4767 - delta_h -134.419 kJ -Cerrusite - PbCO3 = Pb+2 + CO3-2 - log_k -13.13 - delta_h 24.79 kJ -Pb2OCO3 - Pb2OCO3 + 2H+ = 2Pb+2 + H2O + CO3-2 - log_k -0.5578 - delta_h -40.8199 kJ -Pb3O2CO3 - Pb3O2CO3 + 4H+ = 3Pb+2 + CO3-2 + 2H2O - log_k 11.02 - delta_h -110.583 kJ -Hydrocerrusite - Pb3(OH)2(CO3)2 + 2H+ = 3Pb+2 + 2H2O + 2CO3-2 - log_k -18.7705 - delta_h -0 kJ -Pb10(OH)6O(CO3)6 - Pb10(OH)6O(CO3)6 + 8H+ = 10Pb+2 + 6CO3-2 + 7H2O - log_k -8.76 - delta_h -0 kJ -Tl2CO3 - Tl2CO3 = 2Tl+ + CO3-2 - log_k -3.8367 - delta_h 35.49 kJ -Smithsonite - ZnCO3 = Zn+2 + CO3-2 - log_k -10 - delta_h -15.84 kJ -ZnCO3:1H2O - ZnCO3:1H2O = Zn+2 + CO3-2 + H2O - log_k -10.26 - delta_h -0 kJ -Otavite - CdCO3 = Cd+2 + CO3-2 - log_k -12 - delta_h -0.55 kJ -Hg2CO3 - Hg2CO3 = Hg2+2 + CO3-2 - log_k -16.05 - delta_h 45.14 kJ -Hg3O2CO3 - Hg3O2CO3 + 4H2O = 3Hg(OH)2 + 2H+ + CO3-2 - log_k -29.682 - delta_h -0 kJ -CuCO3 - CuCO3 = Cu+2 + CO3-2 - log_k -11.5 - delta_h -0 kJ -Malachite - Cu2(OH)2CO3 + 2H+ = 2Cu+2 + 2H2O + CO3-2 - log_k -5.306 - delta_h 76.38 kJ -Azurite - Cu3(OH)2(CO3)2 + 2H+ = 3Cu+2 + 2H2O + 2CO3-2 - log_k -16.906 - delta_h -95.22 kJ -Ag2CO3 - Ag2CO3 = 2Ag+ + CO3-2 - log_k -11.09 - delta_h 42.15 kJ -NiCO3 - NiCO3 = Ni+2 + CO3-2 - log_k -6.87 - delta_h -41.589 kJ -CoCO3 - CoCO3 = Co+2 + CO3-2 - log_k -9.98 - delta_h -12.7612 kJ -Siderite - FeCO3 = Fe+2 + CO3-2 - log_k -10.24 - delta_h -16 kJ -Rhodochrosite - MnCO3 = Mn+2 + CO3-2 - log_k -10.58 - delta_h -1.88 kJ -Rutherfordine - UO2CO3 = UO2+2 + CO3-2 - log_k -14.5 - delta_h -3.03 kJ -Artinite - MgCO3:Mg(OH)2:3H2O + 2H+ = 2Mg+2 + CO3-2 + 5H2O - log_k 9.6 - delta_h -120.257 kJ -Hydromagnesite - Mg5(CO3)4(OH)2:4H2O + 2H+ = 5Mg+2 + 4CO3-2 + 6H2O - log_k -8.766 - delta_h -218.447 kJ -Magnesite - MgCO3 = Mg+2 + CO3-2 - log_k -7.46 - delta_h 20 kJ -Nesquehonite - MgCO3:3H2O = Mg+2 + CO3-2 + 3H2O - log_k -4.67 - delta_h -24.2212 kJ -Aragonite - CaCO3 = Ca+2 + CO3-2 - log_k -8.3 - delta_h -12 kJ -Calcite - CaCO3 = Ca+2 + CO3-2 - log_k -8.48 - delta_h -8 kJ -Dolomite(ordered) - CaMg(CO3)2 = Ca+2 + Mg+2 + 2CO3-2 - log_k -17.09 - delta_h -39.5 kJ -Dolomite(disordered) - CaMg(CO3)2 = Ca+2 + Mg+2 + 2CO3-2 - log_k -16.54 - delta_h -46.4 kJ -Huntite - CaMg3(CO3)4 = 3Mg+2 + Ca+2 + 4CO3-2 - log_k -29.968 - delta_h -107.78 kJ -Strontianite - SrCO3 = Sr+2 + CO3-2 - log_k -9.27 - delta_h -0 kJ -Witherite - BaCO3 = Ba+2 + CO3-2 - log_k -8.57 - delta_h 4 kJ -Thermonatrite - Na2CO3:H2O = 2Na+ + CO3-2 + H2O - log_k 0.637 - delta_h -10.4799 kJ -TlNO3 - TlNO3 = Tl+ + NO3- - log_k -1.6127 - delta_h 42.44 kJ -Zn(NO3)2:6H2O - Zn(NO3)2:6H2O = Zn+2 + 2NO3- + 6H2O - log_k 3.3153 - delta_h 24.5698 kJ -Cu2(OH)3NO3 - Cu2(OH)3NO3 + 3H+ = 2Cu+2 + 3H2O + NO3- - log_k 9.251 - delta_h -72.5924 kJ -(Co(NH3)6)(NO3)3 - (Co(NH3)6)(NO3)3 + 6H+ = Co+3 + 6NH4+ + 3NO3- - log_k 17.9343 - delta_h 1.59 kJ -(Co(NH3)5Cl)(NO3)2 - (Co(NH3)5Cl)(NO3)2 + 5H+ = Co+3 + 5NH4+ + Cl- + 2NO3- - log_k 6.2887 - delta_h 6.4199 kJ -UO2(NO3)2 - UO2(NO3)2 = UO2+2 + 2NO3- - log_k 12.1476 - delta_h -83.3999 kJ -UO2(NO3)2:2H2O - UO2(NO3)2:2H2O = UO2+2 + 2NO3- + 2H2O - log_k 4.851 - delta_h -25.355 kJ -UO2(NO3)2:3H2O - UO2(NO3)2:3H2O = UO2+2 + 2NO3- + 3H2O - log_k 3.39 - delta_h -9.1599 kJ -UO2(NO3)2:6H2O - UO2(NO3)2:6H2O = UO2+2 + 2NO3- + 6H2O - log_k 2.0464 - delta_h 20.8201 kJ -Pb(BO2)2 - Pb(BO2)2 + 2H2O + 2H+ = Pb+2 + 2H3BO3 - log_k 6.5192 - delta_h -15.6119 kJ -Zn(BO2)2 - Zn(BO2)2 + 2H2O + 2H+ = Zn+2 + 2H3BO3 - log_k 8.29 - delta_h -0 kJ -Cd(BO2)2 - Cd(BO2)2 + 2H2O + 2H+ = Cd+2 + 2H3BO3 - log_k 9.84 - delta_h -0 kJ -Co(BO2)2 - Co(BO2)2 + 2H2O + 2H+ = Co+2 + 2H3BO3 - log_k 27.0703 - delta_h -0 kJ -SnSO4 - SnSO4 + 2H2O = Sn(OH)2 + 2H+ + SO4-2 - log_k -56.9747 - delta_h -0 kJ -Sn(SO4)2 - Sn(SO4)2 + 6H2O = Sn(OH)6-2 + 6H+ + 2SO4-2 - log_k -15.2123 - delta_h -0 kJ -Larnakite - PbO:PbSO4 + 2H+ = 2Pb+2 + SO4-2 + H2O - log_k -0.4344 - delta_h -21.83 kJ -Pb3O2SO4 - Pb3O2SO4 + 4H+ = 3Pb+2 + SO4-2 + 2H2O - log_k 10.6864 - delta_h -79.14 kJ -Pb4O3SO4 - Pb4O3SO4 + 6H+ = 4Pb+2 + SO4-2 + 3H2O - log_k 21.8772 - delta_h -136.45 kJ -Anglesite - PbSO4 = Pb+2 + SO4-2 - log_k -7.79 - delta_h 12 kJ -Pb4(OH)6SO4 - Pb4(OH)6SO4 + 6H+ = 4Pb+2 + SO4-2 + 6H2O - log_k 21.1 - delta_h -0 kJ -AlOHSO4 - AlOHSO4 + H+ = Al+3 + SO4-2 + H2O - log_k -3.23 - delta_h -0 kJ -Al4(OH)10SO4 - Al4(OH)10SO4 + 10H+ = 4Al+3 + SO4-2 + 10H2O - log_k 22.7 - delta_h -0 kJ -Tl2SO4 - Tl2SO4 = 2Tl+ + SO4-2 - log_k -3.7868 - delta_h 33.1799 kJ -Zn2(OH)2SO4 - Zn2(OH)2SO4 + 2H+ = 2Zn+2 + 2H2O + SO4-2 - log_k 7.5 - delta_h -0 kJ -Zn4(OH)6SO4 - Zn4(OH)6SO4 + 6H+ = 4Zn+2 + 6H2O + SO4-2 - log_k 28.4 - delta_h -0 kJ -Zn3O(SO4)2 - Zn3O(SO4)2 + 2H+ = 3Zn+2 + 2SO4-2 + H2O - log_k 18.9135 - delta_h -258.08 kJ -Zincosite - ZnSO4 = Zn+2 + SO4-2 - log_k 3.9297 - delta_h -82.586 kJ -ZnSO4:1H2O - ZnSO4:1H2O = Zn+2 + SO4-2 + H2O - log_k -0.638 - delta_h -44.0699 kJ -Bianchite - ZnSO4:6H2O = Zn+2 + SO4-2 + 6H2O - log_k -1.765 - delta_h -0.6694 kJ -Goslarite - ZnSO4:7H2O = Zn+2 + SO4-2 + 7H2O - log_k -2.0112 - delta_h 14.21 kJ -Cd3(OH)4SO4 - Cd3(OH)4SO4 + 4H+ = 3Cd+2 + 4H2O + SO4-2 - log_k 22.56 - delta_h -0 kJ -Cd3(OH)2(SO4)2 - Cd3(OH)2(SO4)2 + 2H+ = 3Cd+2 + 2H2O + 2SO4-2 - log_k 6.71 - delta_h -0 kJ -Cd4(OH)6SO4 - Cd4(OH)6SO4 + 6H+ = 4Cd+2 + 6H2O + SO4-2 - log_k 28.4 - delta_h -0 kJ -CdSO4 - CdSO4 = Cd+2 + SO4-2 - log_k -0.1722 - delta_h -51.98 kJ -CdSO4:1H2O - CdSO4:1H2O = Cd+2 + SO4-2 + H2O - log_k -1.7261 - delta_h -31.5399 kJ -CdSO4:2.67H2O - CdSO4:2.67H2O = Cd+2 + SO4-2 + 2.67H2O - log_k -1.873 - delta_h -17.9912 kJ -Hg2SO4 - Hg2SO4 = Hg2+2 + SO4-2 - log_k -6.13 - delta_h 5.4 kJ -HgSO4 - HgSO4 + 2H2O = Hg(OH)2 + SO4-2 + 2H+ - log_k -9.4189 - delta_h 14.6858 kJ -Cu2SO4 - Cu2SO4 = 2Cu+ + SO4-2 - log_k -1.95 - delta_h -19.079 kJ -Antlerite - Cu3(OH)4SO4 + 4H+ = 3Cu+2 + 4H2O + SO4-2 - log_k 8.788 - delta_h -0 kJ -Brochantite - Cu4(OH)6SO4 + 6H+ = 4Cu+2 + 6H2O + SO4-2 - log_k 15.222 - delta_h -202.86 kJ -Langite - Cu4(OH)6SO4:H2O + 6H+ = 4Cu+2 + 7H2O + SO4-2 - log_k 17.4886 - delta_h -165.55 kJ -CuOCuSO4 - CuOCuSO4 + 2H+ = 2Cu+2 + H2O + SO4-2 - log_k 10.3032 - delta_h -137.777 kJ -CuSO4 - CuSO4 = Cu+2 + SO4-2 - log_k 2.9395 - delta_h -73.04 kJ -Chalcanthite - CuSO4:5H2O = Cu+2 + SO4-2 + 5H2O - log_k -2.64 - delta_h 6.025 kJ -Ag2SO4 - Ag2SO4 = 2Ag+ + SO4-2 - log_k -4.82 - delta_h 17 kJ -Ni4(OH)6SO4 - Ni4(OH)6SO4 + 6H+ = 4Ni+2 + SO4-2 + 6H2O - log_k 32 - delta_h -0 kJ -Retgersite - NiSO4:6H2O = Ni+2 + SO4-2 + 6H2O - log_k -2.04 - delta_h 4.6024 kJ -Morenosite - NiSO4:7H2O = Ni+2 + SO4-2 + 7H2O - log_k -2.1449 - delta_h 12.1802 kJ -CoSO4 - CoSO4 = Co+2 + SO4-2 - log_k 2.8024 - delta_h -79.277 kJ -CoSO4:6H2O - CoSO4:6H2O = Co+2 + SO4-2 + 6H2O - log_k -2.4726 - delta_h 1.0801 kJ -Melanterite - FeSO4:7H2O = Fe+2 + SO4-2 + 7H2O - log_k -2.209 - delta_h 20.5 kJ -Fe2(SO4)3 - Fe2(SO4)3 = 2Fe+3 + 3SO4-2 - log_k -3.7343 - delta_h -242.028 kJ -H-Jarosite - (H3O)Fe3(SO4)2(OH)6 + 5H+ = 3Fe+3 + 2SO4-2 + 7H2O - log_k -12.1 - delta_h -230.748 kJ -Na-Jarosite - NaFe3(SO4)2(OH)6 + 6H+ = Na+ + 3Fe+3 + 2SO4-2 + 6H2O - log_k -11.2 - delta_h -151.377 kJ -K-Jarosite - KFe3(SO4)2(OH)6 + 6H+ = K+ + 3Fe+3 + 2SO4-2 + 6H2O - log_k -14.8 - delta_h -130.875 kJ -MnSO4 - MnSO4 = Mn+2 + SO4-2 - log_k 2.5831 - delta_h -64.8401 kJ -Mn2(SO4)3 - Mn2(SO4)3 = 2Mn+3 + 3SO4-2 - log_k -5.711 - delta_h -163.427 kJ -VOSO4 - VOSO4 = VO+2 + SO4-2 - log_k 3.6097 - delta_h -86.7401 kJ -Epsomite - MgSO4:7H2O = Mg+2 + SO4-2 + 7H2O - log_k -2.1265 - delta_h 11.5601 kJ -Anhydrite - CaSO4 = Ca+2 + SO4-2 - log_k -4.36 - delta_h -7.2 kJ -Gypsum - CaSO4:2H2O = Ca+2 + SO4-2 + 2H2O - log_k -4.61 - delta_h 1 kJ -Celestite - SrSO4 = Sr+2 + SO4-2 - log_k -6.62 - delta_h 2 kJ -Barite - BaSO4 = Ba+2 + SO4-2 - log_k -9.98 - delta_h 23 kJ -Mirabilite - Na2SO4:10H2O = 2Na+ + SO4-2 + 10H2O - log_k -1.114 - delta_h 79.4416 kJ -Thenardite - Na2SO4 = 2Na+ + SO4-2 - log_k 0.3217 - delta_h -9.121 kJ -K-Alum - KAl(SO4)2:12H2O = K+ + Al+3 + 2SO4-2 + 12H2O - log_k -5.17 - delta_h 30.2085 kJ -Alunite - KAl3(SO4)2(OH)6 + 6H+ = K+ + 3Al+3 + 2SO4-2 + 6H2O - log_k -1.4 - delta_h -210 kJ -(NH4)2CrO4 - (NH4)2CrO4 = CrO4-2 + 2NH4+ - log_k 0.4046 - delta_h 9.163 kJ -PbCrO4 - PbCrO4 = Pb+2 + CrO4-2 - log_k -12.6 - delta_h 44.18 kJ -Tl2CrO4 - Tl2CrO4 = 2Tl+ + CrO4-2 - log_k -12.01 - delta_h 74.27 kJ -Hg2CrO4 - Hg2CrO4 = Hg2+2 + CrO4-2 - log_k -8.7 - delta_h -0 kJ -CuCrO4 - CuCrO4 = Cu+2 + CrO4-2 - log_k -5.44 - delta_h -0 kJ -Ag2CrO4 - Ag2CrO4 = 2Ag+ + CrO4-2 - log_k -11.59 - delta_h 62 kJ -MgCrO4 - MgCrO4 = CrO4-2 + Mg+2 - log_k 5.3801 - delta_h -88.9518 kJ -CaCrO4 - CaCrO4 = Ca+2 + CrO4-2 - log_k -2.2657 - delta_h -26.945 kJ -SrCrO4 - SrCrO4 = Sr+2 + CrO4-2 - log_k -4.65 - delta_h -10.1253 kJ -BaCrO4 - BaCrO4 = Ba+2 + CrO4-2 - log_k -9.67 - delta_h 33 kJ -Li2CrO4 - Li2CrO4 = CrO4-2 + 2Li+ - log_k 4.8568 - delta_h -45.2792 kJ -Na2CrO4 - Na2CrO4 = CrO4-2 + 2Na+ - log_k 2.9302 - delta_h -19.6301 kJ -Na2Cr2O7 - Na2Cr2O7 + H2O = 2CrO4-2 + 2Na+ + 2H+ - log_k -9.8953 - delta_h 22.1961 kJ -K2CrO4 - K2CrO4 = CrO4-2 + 2K+ - log_k -0.5134 - delta_h 18.2699 kJ -K2Cr2O7 - K2Cr2O7 + H2O = 2CrO4-2 + 2K+ + 2H+ - log_k -17.2424 - delta_h 80.7499 kJ -Hg2SeO3 - Hg2SeO3 + H+ = Hg2+2 + HSeO3- - log_k -4.657 - delta_h -0 kJ -HgSeO3 - HgSeO3 + 2H2O = Hg(OH)2 + H+ + HSeO3- - log_k -12.43 - delta_h -0 kJ -Ag2SeO3 - Ag2SeO3 + H+ = 2Ag+ + HSeO3- - log_k -7.15 - delta_h 39.68 kJ -CuSeO3:2H2O - CuSeO3:2H2O + H+ = Cu+2 + HSeO3- + 2H2O - log_k 0.5116 - delta_h -36.861 kJ -NiSeO3:2H2O - NiSeO3:2H2O + H+ = HSeO3- + Ni+2 + 2H2O - log_k 2.8147 - delta_h -31.0034 kJ -CoSeO3 - CoSeO3 + H+ = Co+2 + HSeO3- - log_k 1.32 - delta_h -0 kJ -Fe2(SeO3)3:2H2O - Fe2(SeO3)3:2H2O + 3H+ = 3HSeO3- + 2Fe+3 + 2H2O - log_k -20.6262 - delta_h -0 kJ -Fe2(OH)4SeO3 - Fe2(OH)4SeO3 + 5H+ = HSeO3- + 2Fe+3 + 4H2O - log_k 1.5539 - delta_h -0 kJ -MnSeO3 - MnSeO3 + H+ = Mn+2 + HSeO3- - log_k 1.13 - delta_h -0 kJ -MnSeO3:2H2O - MnSeO3:2H2O + H+ = HSeO3- + Mn+2 + 2H2O - log_k 0.9822 - delta_h 8.4935 kJ -MgSeO3:6H2O - MgSeO3:6H2O + H+ = Mg+2 + HSeO3- + 6H2O - log_k 3.0554 - delta_h 5.23 kJ -CaSeO3:2H2O - CaSeO3:2H2O + H+ = HSeO3- + Ca+2 + 2H2O - log_k 2.8139 - delta_h -19.4556 kJ -SrSeO3 - SrSeO3 + H+ = Sr+2 + HSeO3- - log_k 2.3 - delta_h -0 kJ -BaSeO3 - BaSeO3 + H+ = Ba+2 + HSeO3- - log_k 1.83 - delta_h 11.98 kJ -Na2SeO3:5H2O - Na2SeO3:5H2O + H+ = 2Na+ + HSeO3- + 5H2O - log_k 10.3 - delta_h -0 kJ -PbSeO4 - PbSeO4 = Pb+2 + SeO4-2 - log_k -6.84 - delta_h 15 kJ -Tl2SeO4 - Tl2SeO4 = 2Tl+ + SeO4-2 - log_k -4.1 - delta_h 43 kJ -ZnSeO4:6H2O - ZnSeO4:6H2O = Zn+2 + SeO4-2 + 6H2O - log_k -1.52 - delta_h -0 kJ -CdSeO4:2H2O - CdSeO4:2H2O = Cd+2 + SeO4-2 + 2H2O - log_k -1.85 - delta_h -0 kJ -Ag2SeO4 - Ag2SeO4 = 2Ag+ + SeO4-2 - log_k -8.91 - delta_h -43.5 kJ -CuSeO4:5H2O - CuSeO4:5H2O = Cu+2 + SeO4-2 + 5H2O - log_k -2.44 - delta_h -0 kJ -NiSeO4:6H2O - NiSeO4:6H2O = Ni+2 + SeO4-2 + 6H2O - log_k -1.52 - delta_h -0 kJ -CoSeO4:6H2O - CoSeO4:6H2O = Co+2 + SeO4-2 + 6H2O - log_k -1.53 - delta_h -0 kJ -MnSeO4:5H2O - MnSeO4:5H2O = Mn+2 + SeO4-2 + 5H2O - log_k -2.05 - delta_h -0 kJ -UO2SeO4:4H2O - UO2SeO4:4H2O = UO2+2 + SeO4-2 + 4H2O - log_k -2.25 - delta_h -0 kJ -MgSeO4:6H2O - MgSeO4:6H2O = Mg+2 + SeO4-2 + 6H2O - log_k -1.2 - delta_h -0 kJ -CaSeO4:2H2O - CaSeO4:2H2O = Ca+2 + SeO4-2 + 2H2O - log_k -3.02 - delta_h -8.3 kJ -SrSeO4 - SrSeO4 = Sr+2 + SeO4-2 - log_k -4.4 - delta_h 0.4 kJ -BaSeO4 - BaSeO4 = Ba+2 + SeO4-2 - log_k -7.46 - delta_h 22 kJ -BeSeO4:4H2O - BeSeO4:4H2O = Be+2 + SeO4-2 + 4H2O - log_k -2.94 - delta_h -0 kJ -Na2SeO4 - Na2SeO4 = 2Na+ + SeO4-2 - log_k 1.28 - delta_h -0 kJ -K2SeO4 - K2SeO4 = 2K+ + SeO4-2 - log_k -0.73 - delta_h -0 kJ -(NH4)2SeO4 - (NH4)2SeO4 = 2NH4+ + SeO4-2 - log_k 0.45 - delta_h -0 kJ -H2MoO4 - H2MoO4 = MoO4-2 + 2H+ - log_k -12.8765 - delta_h 49 kJ -PbMoO4 - PbMoO4 = Pb+2 + MoO4-2 - log_k -15.62 - delta_h 53.93 kJ -Al2(MoO4)3 - Al2(MoO4)3 = 3MoO4-2 + 2Al+3 - log_k 2.3675 - delta_h -260.8 kJ -Tl2MoO4 - Tl2MoO4 = MoO4-2 + 2Tl+ - log_k -7.9887 - delta_h -0 kJ -ZnMoO4 - ZnMoO4 = MoO4-2 + Zn+2 - log_k -10.1254 - delta_h -10.6901 kJ -CdMoO4 - CdMoO4 = MoO4-2 + Cd+2 - log_k -14.1497 - delta_h 19.48 kJ -CuMoO4 - CuMoO4 = MoO4-2 + Cu+2 - log_k -13.0762 - delta_h 12.2 kJ -Ag2MoO4 - Ag2MoO4 = 2Ag+ + MoO4-2 - log_k -11.55 - delta_h 52.7 kJ -NiMoO4 - NiMoO4 = MoO4-2 + Ni+2 - log_k -11.1421 - delta_h 1.3 kJ -CoMoO4 - CoMoO4 = MoO4-2 + Co+2 - log_k -7.7609 - delta_h -23.3999 kJ -FeMoO4 - FeMoO4 = MoO4-2 + Fe+2 - log_k -10.091 - delta_h -11.1 kJ -BeMoO4 - BeMoO4 = MoO4-2 + Be+2 - log_k -1.7817 - delta_h -56.4 kJ -MgMoO4 - MgMoO4 = Mg+2 + MoO4-2 - log_k -1.85 - delta_h -0 kJ -CaMoO4 - CaMoO4 = Ca+2 + MoO4-2 - log_k -7.95 - delta_h -2 kJ -BaMoO4 - BaMoO4 = MoO4-2 + Ba+2 - log_k -6.9603 - delta_h 10.96 kJ -Li2MoO4 - Li2MoO4 = MoO4-2 + 2Li+ - log_k 2.4416 - delta_h -33.9399 kJ -Na2MoO4 - Na2MoO4 = MoO4-2 + 2Na+ - log_k 1.4901 - delta_h -9.98 kJ -Na2MoO4:2H2O - Na2MoO4:2H2O = MoO4-2 + 2Na+ + 2H2O - log_k 1.224 - delta_h -0 kJ -Na2Mo2O7 - Na2Mo2O7 + H2O = 2MoO4-2 + 2Na+ + 2H+ - log_k -16.5966 - delta_h 56.2502 kJ -K2MoO4 - K2MoO4 = MoO4-2 + 2K+ - log_k 3.2619 - delta_h -3.38 kJ -PbHPO4 - PbHPO4 = Pb+2 + H+ + PO4-3 - log_k -23.805 - delta_h -0 kJ -Pb3(PO4)2 - Pb3(PO4)2 = 3Pb+2 + 2PO4-3 - log_k -43.53 - delta_h -0 kJ -Pyromorphite - Pb5(PO4)3Cl = 5Pb+2 + 3PO4-3 + Cl- - log_k -84.43 - delta_h -0 kJ -Hydroxylpyromorphite - Pb5(PO4)3OH + H+ = 5Pb+2 + 3PO4-3 + H2O - log_k -62.79 - delta_h -0 kJ -Plumbgummite - PbAl3(PO4)2(OH)5:H2O + 5H+ = Pb+2 + 3Al+3 + 2PO4-3 + 6H2O - log_k -32.79 - delta_h -0 kJ -Hinsdalite - PbAl3PO4SO4(OH)6 + 6H+ = Pb+2 + 3Al+3 + PO4-3 + SO4-2 + 6H2O - log_k -2.5 - delta_h -0 kJ -Tsumebite - Pb2CuPO4(OH)3:3H2O + 3H+ = 2Pb+2 + Cu+2 + PO4-3 + 6H2O - log_k -9.79 - delta_h -0 kJ -Zn3(PO4)2:4H2O - Zn3(PO4)2:4H2O = 3Zn+2 + 2PO4-3 + 4H2O - log_k -35.42 - delta_h -0 kJ -Cd3(PO4)2 - Cd3(PO4)2 = 3Cd+2 + 2PO4-3 - log_k -32.6 - delta_h -0 kJ -Hg2HPO4 - Hg2HPO4 = Hg2+2 + H+ + PO4-3 - log_k -24.775 - delta_h -0 kJ -Cu3(PO4)2 - Cu3(PO4)2 = 3Cu+2 + 2PO4-3 - log_k -36.85 - delta_h -0 kJ -Cu3(PO4)2:3H2O - Cu3(PO4)2:3H2O = 3Cu+2 + 2PO4-3 + 3H2O - log_k -35.12 - delta_h -0 kJ -Ag3PO4 - Ag3PO4 = 3Ag+ + PO4-3 - log_k -17.59 - delta_h -0 kJ -Ni3(PO4)2 - Ni3(PO4)2 = 3Ni+2 + 2PO4-3 - log_k -31.3 - delta_h -0 kJ -CoHPO4 - CoHPO4 = Co+2 + PO4-3 + H+ - log_k -19.0607 - delta_h -0 kJ -Co3(PO4)2 - Co3(PO4)2 = 3Co+2 + 2PO4-3 - log_k -34.6877 - delta_h -0 kJ -Vivianite - Fe3(PO4)2:8H2O = 3Fe+2 + 2PO4-3 + 8H2O - log_k -36 - delta_h -0 kJ -Strengite - FePO4:2H2O = Fe+3 + PO4-3 + 2H2O - log_k -26.4 - delta_h -9.3601 kJ -Mn3(PO4)2 - Mn3(PO4)2 = 3Mn+2 + 2PO4-3 - log_k -23.827 - delta_h 8.8701 kJ -MnHPO4 - MnHPO4 = Mn+2 + PO4-3 + H+ - log_k -25.4 - delta_h -0 kJ -(VO)3(PO4)2 - (VO)3(PO4)2 = 3VO+2 + 2PO4-3 - log_k -25.1 - delta_h -0 kJ -Mg3(PO4)2 - Mg3(PO4)2 = 3Mg+2 + 2PO4-3 - log_k -23.28 - delta_h -0 kJ -MgHPO4:3H2O - MgHPO4:3H2O = Mg+2 + H+ + PO4-3 + 3H2O - log_k -18.175 - delta_h -0 kJ -FCO3Apatite - Ca9.316Na0.36Mg0.144(PO4)4.8(CO3)1.2F2.48 = 9.316Ca+2 + 0.36Na+ + 0.144Mg+2 + 4.8PO4-3 + 1.2CO3-2 + 2.48F- - log_k -114.4 - delta_h 164.808 kJ -Hydroxylapatite - Ca5(PO4)3OH + H+ = 5Ca+2 + 3PO4-3 + H2O - log_k -44.333 - delta_h -0 kJ -CaHPO4:2H2O - CaHPO4:2H2O = Ca+2 + H+ + PO4-3 + 2H2O - log_k -18.995 - delta_h 23 kJ -CaHPO4 - CaHPO4 = Ca+2 + H+ + PO4-3 - log_k -19.275 - delta_h 31 kJ -Ca3(PO4)2(beta) - Ca3(PO4)2 = 3Ca+2 + 2PO4-3 - log_k -28.92 - delta_h 54 kJ -Ca4H(PO4)3:3H2O - Ca4H(PO4)3:3H2O = 4Ca+2 + H+ + 3PO4-3 + 3H2O - log_k -47.08 - delta_h -0 kJ -SrHPO4 - SrHPO4 = Sr+2 + H+ + PO4-3 - log_k -19.295 - delta_h -0 kJ -BaHPO4 - BaHPO4 = Ba+2 + H+ + PO4-3 - log_k -19.775 - delta_h -0 kJ -U(HPO4)2:4H2O - U(HPO4)2:4H2O = U+4 + 2PO4-3 + 2H+ + 4H2O - log_k -51.584 - delta_h 16.0666 kJ -(UO2)3(PO4)2 - (UO2)3(PO4)2 = 3UO2+2 + 2PO4-3 - log_k -49.4 - delta_h 397.062 kJ -UO2HPO4 - UO2HPO4 = UO2+2 + H+ + PO4-3 - log_k -24.225 - delta_h -0 kJ -Uramphite - (NH4)2(UO2)2(PO4)2 = 2UO2+2 + 2NH4+ + 2PO4-3 - log_k -51.749 - delta_h 40.5848 kJ -Przhevalskite - Pb(UO2)2(PO4)2 = 2UO2+2 + Pb+2 + 2PO4-3 - log_k -44.365 - delta_h -46.024 kJ -Torbernite - Cu(UO2)2(PO4)2 = 2UO2+2 + Cu+2 + 2PO4-3 - log_k -45.279 - delta_h -66.5256 kJ -Bassetite - Fe(UO2)2(PO4)2 = 2UO2+2 + Fe+2 + 2PO4-3 - log_k -44.485 - delta_h -83.2616 kJ -Saleeite - Mg(UO2)2(PO4)2 = 2UO2+2 + Mg+2 + 2PO4-3 - log_k -43.646 - delta_h -84.4331 kJ -Ningyoite - CaU(PO4)2:2H2O = U+4 + Ca+2 + 2PO4-3 + 2H2O - log_k -53.906 - delta_h -9.4977 kJ -H-Autunite - H2(UO2)2(PO4)2 = 2UO2+2 + 2H+ + 2PO4-3 - log_k -47.931 - delta_h -15.0624 kJ -Autunite - Ca(UO2)2(PO4)2 = 2UO2+2 + Ca+2 + 2PO4-3 - log_k -43.927 - delta_h -59.9986 kJ -Sr-Autunite - Sr(UO2)2(PO4)2 = 2UO2+2 + Sr+2 + 2PO4-3 - log_k -44.457 - delta_h -54.6012 kJ -Na-Autunite - Na2(UO2)2(PO4)2 = 2UO2+2 + 2Na+ + 2PO4-3 - log_k -47.409 - delta_h -1.9246 kJ -K-Autunite - K2(UO2)2(PO4)2 = 2UO2+2 + 2K+ + 2PO4-3 - log_k -48.244 - delta_h 24.5182 kJ -Uranocircite - Ba(UO2)2(PO4)2 = 2UO2+2 + Ba+2 + 2PO4-3 - log_k -44.631 - delta_h -42.2584 kJ -Pb3(AsO4)2 - Pb3(AsO4)2 + 6H+ = 3Pb+2 + 2H3AsO4 - log_k 5.8 - delta_h -0 kJ -AlAsO4:2H2O - AlAsO4:2H2O + 3H+ = Al+3 + H3AsO4 + 2H2O - log_k 4.8 - delta_h -0 kJ -Zn3(AsO4)2:2.5H2O - Zn3(AsO4)2:2.5H2O + 6H+ = 3Zn+2 + 2H3AsO4 + 2.5H2O - log_k 13.65 - delta_h -0 kJ -Cu3(AsO4)2:2H2O - Cu3(AsO4)2:2H2O + 6H+ = 3Cu+2 + 2H3AsO4 + 2H2O - log_k 6.1 - delta_h -0 kJ -Ag3AsO3 - Ag3AsO3 + 3H+ = 3Ag+ + H3AsO3 - log_k 2.1573 - delta_h -0 kJ -Ag3AsO4 - Ag3AsO4 + 3H+ = 3Ag+ + H3AsO4 - log_k -2.7867 - delta_h -0 kJ -Ni3(AsO4)2:8H2O - Ni3(AsO4)2:8H2O + 6H+ = 3Ni+2 + 2H3AsO4 + 8H2O - log_k 15.7 - delta_h -0 kJ -Co3(AsO4)2 - Co3(AsO4)2 + 6H+ = 3Co+2 + 2H3AsO4 - log_k 13.0341 - delta_h -0 kJ -FeAsO4:2H2O - FeAsO4:2H2O + 3H+ = Fe+3 + H3AsO4 + 2H2O - log_k 0.4 - delta_h -0 kJ -Mn3(AsO4)2:8H2O - Mn3(AsO4)2:8H2O + 6H+ = 3Mn+2 + 2H3AsO4 + 8H2O - log_k 12.5 - delta_h -0 kJ -Ca3(AsO4)2:4H2O - Ca3(AsO4)2:4H2O + 6H+ = 3Ca+2 + 2H3AsO4 + 4H2O - log_k 22.3 - delta_h -0 kJ -Ba3(AsO4)2 - Ba3(AsO4)2 + 6H+ = 3Ba+2 + 2H3AsO4 - log_k -8.91 - delta_h 11.0458 kJ -#NH4VO3 -# NH4VO3 + 2H+ = 2VO2+ + H2O -# log_k 3.8 -# delta_h 30 kJ -Pb3(VO4)2 - Pb3(VO4)2 + 8H+ = 3Pb+2 + 2VO2+ + 4H2O - log_k 6.14 - delta_h -72.6342 kJ -Pb2V2O7 - Pb2V2O7 + 6H+ = 2Pb+2 + 2VO2+ + 3H2O - log_k -1.9 - delta_h -26.945 kJ -AgVO3 - AgVO3 + 2H+ = Ag+ + VO2+ + H2O - log_k 0.77 - delta_h -0 kJ -Ag2HVO4 - Ag2HVO4 + 3H+ = 2Ag+ + VO2+ + 2H2O - log_k 1.48 - delta_h -0 kJ -Ag3H2VO5 - Ag3H2VO5 + 4H+ = 3Ag+ + VO2+ + 3H2O - log_k 5.18 - delta_h -0 kJ -Fe(VO3)2 - Fe(VO3)2 + 4H+ = Fe+2 + 2VO2+ + 2H2O - log_k -3.72 - delta_h -61.6722 kJ -Mn(VO3)2 - Mn(VO3)2 + 4H+ = Mn+2 + 2VO2+ + 2H2O - log_k 4.9 - delta_h -92.4664 kJ -Mg(VO3)2 - Mg(VO3)2 + 4H+ = Mg+2 + 2VO2+ + 2H2O - log_k 11.28 - delta_h -136.649 kJ -Mg2V2O7 - Mg2V2O7 + 6H+ = 2Mg+2 + 2VO2+ + 3H2O - log_k 26.36 - delta_h -255.224 kJ -Carnotite - KUO2VO4 + 4H+ = K+ + UO2+2 + VO2+ + 2H2O - log_k 0.23 - delta_h -36.4008 kJ -Tyuyamunite - Ca(UO2)2(VO4)2 + 8H+ = Ca+2 + 2UO2+2 + 2VO2+ + 4H2O - log_k 4.08 - delta_h -153.134 kJ -Ca(VO3)2 - Ca(VO3)2 + 4H+ = Ca+2 + 2VO2+ + 2H2O - log_k 5.66 - delta_h -84.7678 kJ -Ca3(VO4)2 - Ca3(VO4)2 + 8H+ = 3Ca+2 + 2VO2+ + 4H2O - log_k 38.96 - delta_h -293.466 kJ -Ca2V2O7 - Ca2V2O7 + 6H+ = 2Ca+2 + 2VO2+ + 3H2O - log_k 17.5 - delta_h -159.494 kJ -Ca3(VO4)2:4H2O - Ca3(VO4)2:4H2O + 8H+ = 3Ca+2 + 2VO2+ + 8H2O - log_k 39.86 - delta_h -0 kJ -Ca2V2O7:2H2O - Ca2V2O7:2H2O + 6H+ = 2Ca+2 + 2VO2+ + 5H2O - log_k 21.552 - delta_h -0 kJ -Ba3(VO4)2:4H2O - Ba3(VO4)2:4H2O + 8H+ = 3Ba+2 + 2VO2+ + 8H2O - log_k 32.94 - delta_h -0 kJ -Ba2V2O7:2H2O - Ba2V2O7:2H2O + 6H+ = 2Ba+2 + 2VO2+ + 5H2O - log_k 15.872 - delta_h -0 kJ -NaVO3 - NaVO3 + 2H+ = Na+ + VO2+ + H2O - log_k 3.8582 - delta_h -30.1799 kJ -Na3VO4 - Na3VO4 + 4H+ = 3Na+ + VO2+ + 2H2O - log_k 36.6812 - delta_h -184.61 kJ -Na4V2O7 - Na4V2O7 + 6H+ = 4Na+ + 2VO2+ + 3H2O - log_k 37.4 - delta_h -201.083 kJ -Halloysite - Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O - log_k 9.5749 - delta_h -181.43 kJ -Kaolinite - Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O - log_k 7.435 - delta_h -148 kJ -Greenalite - Fe3Si2O5(OH)4 + 6H+ = 3Fe+2 + 2H4SiO4 + H2O - log_k 20.81 - delta_h -0 kJ -Chrysotile - Mg3Si2O5(OH)4 + 6H+ = 3Mg+2 + 2H4SiO4 + H2O - log_k 32.2 - delta_h -196 kJ -Sepiolite - Mg2Si3O7.5OH:3H2O + 4H+ + 0.5H2O = 2Mg+2 + 3H4SiO4 - log_k 15.76 - delta_h -114.089 kJ -Sepiolite(A) - Mg2Si3O7.5OH:3H2O + 0.5H2O + 4H+ = 2Mg+2 + 3H4SiO4 - log_k 18.78 - delta_h -0 kJ -PHASES -O2(g) - O2 + 4H+ + 4e- = 2H2O - log_k 83.0894 - delta_h -571.66 kJ -CH4(g) - CH4 + 3H2O = CO3-2 + 8e- + 10H+ - log_k -41.0452 - delta_h 257.133 kJ -CO2(g) - CO2 + H2O = 2H+ + CO3-2 - log_k -18.147 - delta_h 4.06 kJ -H2S(g) - H2S = H+ + HS- - log_k -8.01 - delta_h -0 kJ -H2Se(g) - H2Se = HSe- + H+ - log_k -4.96 - delta_h -15.3 kJ -Hg(g) - Hg = 0.5Hg2+2 + e- - log_k -7.8733 - delta_h 22.055 kJ -Hg2(g) - Hg2 = Hg2+2 + 2e- - log_k -14.9554 - delta_h 58.07 kJ -Hg(CH3)2(g) - Hg(CH3)2 + 8H2O = Hg(OH)2 + 2CO3-2 + 16e- + 20H+ - log_k -73.7066 - delta_h 481.99 kJ -HgF(g) - HgF = 0.5Hg2+2 + F- - log_k 32.6756 - delta_h -254.844 kJ -HgF2(g) - HgF2 + 2H2O = Hg(OH)2 + 2F- + 2H+ - log_k 12.5652 - delta_h -165.186 kJ -HgCl(g) - HgCl = 0.5Hg2+2 + Cl- - log_k 19.4966 - delta_h -162.095 kJ -HgBr(g) - HgBr = 0.5Hg2+2 + Br- - log_k 16.7566 - delta_h -142.157 kJ -HgBr2(g) - HgBr2 + 2H2O = Hg(OH)2 + 2Br- + 2H+ - log_k -18.3881 - delta_h 54.494 kJ -HgI(g) - HgI = 0.5Hg2+2 + I- - log_k 11.3322 - delta_h -106.815 kJ -HgI2(g) - HgI2 + 2H2O = Hg(OH)2 + 2I- + 2H+ - log_k -27.2259 - delta_h 114.429 kJ -# -# -SURFACE_MASTER_SPECIES - Goe_uni Goe_uniOH-0.5 # =FeO site on goethite - Goe_tri Goe_triO-0.5 # =Fe3O site on goethite - Hfocd_uni Hfocd_uniOH-0.5 # =FeO site on HFO - Hfocd_tri Hfocd_triO-0.5 # =Fe3O site on HFO -SURFACE_SPECIES -# -# Goethite -# - Goe_triO-0.5 = Goe_triO-0.5 - -cd_music 0 0 0 0 0 - log_k 0 - Goe_triO-0.5 + H+ = Goe_triOH+0.5 - -cd_music 1 0 0 0 0 - log_k 9.20 - Goe_uniOH-0.5 = Goe_uniOH-0.5 - -cd_music 0 0 0 0 0 - log_k 0 - Goe_uniOH-0.5 + H+ = Goe_uniOH2+0.5 - -cd_music 1 0 0 0 0 - log_k 9.20 -# Na+ - Goe_triO-0.5 + Na+ = Goe_triONa+0.5 - -cd_music 0 1 0 0 0 - log_k -0.60 - Goe_uniOH-0.5 + Na+ = Goe_uniOHNa+0.5 - -cd_music 0 1 0 0 0 - log_k -0.60 -# K+ - Goe_triO-0.5 + K+ = Goe_triOK+0.5 - -cd_music 0 1 0 0 0 - log_k -1.71 - Goe_uniOH-0.5 + K+ = Goe_uniOHK+0.5 - -cd_music 0 1 0 0 0 - log_k -1.71 -# Cl- - Goe_uniOH-0.5 + H+ + Cl- = Goe_uniOH2Cl-0.5 - -cd_music 1 -1 0 0 0 - log_k 8.76 - Goe_triO-0.5 + H+ + Cl- = Goe_triOHCl-0.5 - -cd_music 1 -1 0 0 0 - log_k 8.76 -# NO3- - Goe_triO-0.5 + H+ + NO3- = Goe_triOHNO3-0.5 - -cd_music 1 -1 0 0 0 - log_k 8.52 - Goe_uniOH-0.5 + H+ + NO3- = Goe_uniOH2NO3-0.5 - log_k 8.52 - -cd_music 1 -1 0 0 0 -# Ca+2 - Goe_triO-0.5 + Ca+2 = Goe_triOCa+1.5 - log_k 3.00 - -cd_music 0.0 2.0 0 0 0 - Goe_uniOH-0.5 + Ca+2 = Goe_uniOHCa+1.5 - log_k 3.00 - -cd_music 0.0 2.0 0 0 0 - Goe_uniOH-0.5 + Ca+2 = Goe_uniOHCa+1.5 - log_k 3.65 - -cd_music 0.32 1.68 0 0 0 - Goe_uniOH-0.5 + Ca+2 + H2O = Goe_uniOHCaOH+0.5 + H+ - log_k -9.25 - -cd_music 0.32 0.68 0 0 0 -# Mg+2 - 2Goe_uniOH-0.5 + Mg+2 = (Goe_uniOH)2Mg+ - log_k 4.90 - -cd_music 0.71 1.29 0 0 0 - 2Goe_uniOH-0.5 + Mg+2 + H2O = (Goe_uniOH)2MgOH + H+ - log_k -6.47 - -cd_music 0.71 0.29 0 0 0 -# CO3-2 - 2Goe_uniOH-0.5 + 2H+ + CO3-2 = (Goe_uniO)2CO- + 2H2O - log_k 22.33 - -cd_music 0.68 -0.68 0 0 0 -# PO4-3 - Goe_uniOH-0.5 + 2H+ + PO4-3 = Goe_uniOPO2OH-1.5 + H2O - log_k 27.65 - -cd_music 0.28 -1.28 0 0 0 - 2Goe_uniOH-0.5 + 2H+ + PO4-3 = (Goe_uniO)2PO2-2 + 2H2O - log_k 29.77 - -cd_music 0.46 -1.46 0 0 0 -# H3AsO3 - Goe_uniOH-0.5 + H3AsO3 = Goe_uniOAs(OH)2-0.5 + H2O - log_k 4.33 # Stachowicz et al 2006 - -cd_music 0.16 -0.16 0 0 0 - 2Goe_uniOH-0.5 + H3AsO3 = (Goe_uniO)2AsOH- + 2H2O - log_k 6.99 # Stachowicz et al 2006 - -cd_music 0.34 -0.34 0 0 0 -# AsO4-3 - Goe_uniOH-0.5 + 2H+ + AsO4-3 = Goe_uniOAsO2OH-1.5 + H2O - log_k 25.88 - -cd_music 0.30 -1.30 0 0 0 - 2Goe_uniOH-0.5 + 2H+ + AsO4-3 = (Goe_uniO)2AsO2-2 + 2H2O - log_k 29.41 - -cd_music 0.47 -1.47 0 0 0 - 2Goe_uniOH-0.5 + 3H+ + AsO4-3 = (Goe_uniO)2AsOOH- + 2H2O - log_k 33.72 - -cd_music 0.58 -0.58 0 0 0 -# H3BO3 - Goe_uniOH-0.5 + H3BO3 = Goe_uniOBH2O2-0.5 + H2O - log_k 1.99 - -cd_music 0.16 -0.16 0 0 0 - Goe_uniOH-0.5 + H3BO3 = Goe_uniOH3BO3-1.5 + H+ - log_k -8.31 - -cd_music 0.16 -0.16 0 0 0 -# CrO4-2 - Goe_uniOH-0.5 + H+ + CrO4-2 = Goe_uniOCrO3-1.5 + H2O - log_k 12.45 - -cd_music 0.5 -1.5 0 0 0 -# MoO4-2 - Goe_uniOH-0.5 + 2H+ + MoO4-2 + H2O = Goe_uniOMo(OH)5-0.5 - log_k 18.25 - -cd_music 0.5 -0.5 0 0 0 # RH99 - Goe_uniOH-0.5 + H+ + MoO4-2 = Goe_uniOMoO3-1.5 + H2O - log_k 12.28 - -cd_music 0.5 -1.5 0 0 0 # RH99 -# SO4-2 - Goe_uniOH-0.5 + H+ + SO4-2 = Goe_uniSO4-1.5 + H2O - log_k 9.21 - -cd_music 0.65 -1.65 0 0 0 # RH99 - 2Goe_uniOH-0.5 + 2H+ +SO4-2 = Goe_uni2SO4- + 2H2O - log_k 19.01 - -cd_music 1.5 -0.5 0 0 0 - Goe_uniOH-0.5 + 2H+ + SO4-2 = Goe_uniSO4H-0.5 + H2O - log_k 3.97 - -cd_music 1.5 -0.5 0 0 0 # RH99 - 2Goe_uniOH-0.5 + 3H+ +SO4-2 = Goe_uni2SO4H + 2H2O - log_k 19.00 - -cd_music 1 0 0 0 0 -# Sb(OH)3 - Goe_uniOH-0.5 + Sb(OH)3 = Goe_uniOSb(OH)2-0.5 + H2O - log_k 15.55 - -cd_music 0.16 -0.16 0 0 0 - 2Goe_uniOH-0.5 + Sb(OH)3 = Goe_uni2O2Sb(OH)- + 2H2O - log_k 25.22 - -cd_music 0.34 -0.34 0 0 0 -# Sb(OH)6- - Goe_uniOH-0.5 + Sb(OH)6- = Goe_uniOSb(OH)5-1.5 + H2O - log_k 6.66 - -cd_music 0.84 -1.83 0 0 0 - 2Goe_uniOH-0.5 + Sb(OH)6- = Goe_uni2O2Sb(OH)4-2 + 2H2O - log_k -7.80 - -cd_music 1.67 -2.66 0 0 0 -# HSeO3- - 2Goe_uniOH-0.5 + H+ + HSeO3- = Goe_uni2SeO3- + 2H2O - log_k 4.33 - -cd_music 0.72 -0.72 0 0 0 - 2Goe_uniOH-0.5 + 2H+ + HSeO3- = Goe_uni2HSeO3 + 2H2O - log_k 9.46 - -cd_music 1.03 -0.03 0 0 0 - Goe_uniOH-0.5 + H+ + HSeO3- = Goe_uniSeO3H-0.5 + H2O - log_k 6.85 - -cd_music 0.43 -0.43 0 0 0 - Goe_uniOH-0.5 + HSeO3- = Goe_uniSeO3-1.5 + H2O - log_k 2.29 - -cd_music 0.20 -1.20 0 0 0 -# SeO4-2 - Goe_uniOH-0.5 + H+ + SeO4-2 = Goe_uniSeO4-1.5 + H2O - log_k 10.48 - -cd_music 0.50 -1.50 0 0 0 - 2Goe_uniOH-0.5 + SeO4-2 + 2H+ = Goe_uni2SeO4- + 2H2O - log_k -5.84 - -cd_music 1. -1. 0 0 0 - Goe_uniOH-0.5 + 2H+ + SeO4-2 = Goe_uniOH2SeO4H-0.5 - log_k -2.19 - -cd_music 0.50 -0.50 0 0 0 -# -# HFO -# - Hfocd_triO-0.5 = Hfocd_triO-0.5 - -cd_music 0 0 0 0 0 - log_k 0 - Hfocd_triO-0.5 + H+ = Hfocd_triOH+0.5 - -cd_music 1 0 0 0 0 - log_k 9.20 - Hfocd_uniOH-0.5 = Hfocd_uniOH-0.5 - -cd_music 0 0 0 0 0 - log_k 0 - Hfocd_uniOH-0.5 + H+ = Hfocd_uniOH2+0.5 - -cd_music 1 0 0 0 0 - log_k 9.20 -# Na+ - Hfocd_triO-0.5 + Na+ = Hfocd_triONa+0.5 - -cd_music 0 1 0 0 0 - log_k -0.60 - Hfocd_uniOH-0.5 + Na+ = Hfocd_uniOHNa+0.5 - -cd_music 0 1 0 0 0 - log_k -0.60 -# K+ - Hfocd_triO-0.5 + K+ = Hfocd_triOK+0.5 - -cd_music 0 1 0 0 0 - log_k -1.71 - Hfocd_uniOH-0.5 + K+ = Hfocd_uniOHK+0.5 - -cd_music 0 1 0 0 0 - log_k 1.71 -# Cl- - Hfocd_triO-0.5 + H+ + Cl- = Hfocd_triOHCl-0.5 - -cd_music 1 -1 0 0 0 - log_k 8.76 - Hfocd_uniOH-0.5 + H+ + Cl- = Hfocd_uniOH2Cl-0.5 - -cd_music 1 -1 0 0 0 - log_k 8.76 -# NO3- - Hfocd_triO-0.5 + H+ + NO3- = Hfocd_triOHNO3-0.5 - -cd_music 1 -1 0 0 0 - log_k 8.52 - Hfocd_uniOH-0.5 + H+ + NO3- = Hfocd_uniOH2NO3-0.5 - -cd_music 1 -1 0 0 0 - log_k 8.52 -# Ca+2 - Hfocd_triO-0.5 + Ca+2 = Hfocd_triOCa+1.5 - log_k 3.00 - -cd_music 0.0 2.0 0 0 0 - Hfocd_uniOH-0.5 + Ca+2 = Hfocd_uniOHCa+1.5 - log_k 3.00 - -cd_music 0.0 2.0 0 0 0 - Hfocd_uniOH-0.5 + Ca+2 = Hfocd_uniOHCa+1.5 - log_k 3.65 - -cd_music 0.32 1.68 0 0 0 - Hfocd_uniOH-0.5 + Ca+2 + H2O = Hfocd_uniOHCaOH+0.5 + H+ - log_k -9.25 - -cd_music 0.32 1.68 0 0 0 -# Mg+2 - 2Hfocd_uniOH-0.5 + Mg+2 = (Hfocd_uniOH)2Mg+ - log_k 4.90 - -cd_music 0.71 1.29 0 0 0 - 2Hfocd_uniOH-0.5 + Mg+2 + H2O = (Hfocd_uniOH)2MgOH + H+ - log_k -6.47 - -cd_music 0.71 1.29 0 0 0 -# CO3-2 - 2Hfocd_uniOH-0.5 + 2H+ + CO3-2 = (Hfocd_uniO)2CO- + 2H2O - log_k 22.33 - -cd_music 0.68 -0.68 0 0 0 -# H3AsO3 - Hfocd_uniOH-0.5 + H3AsO3 = Hfocd_uniOAs(OH)2-0.5 + H2O - log_k 5.31 - -cd_music 0.16 -0.16 0 0 0 - - 2Hfocd_uniOH-0.5 + H3AsO3 = (Hfocd_uniO)2AsOH- + 2H2O - log_k 5.89 - -cd_music 0.34 -0.34 0 0 0 -# AsO4-3 - Hfocd_uniOH-0.5 + 2H+ + AsO4-3 = Hfocd_uniOAsO2OH-1.5 + H2O - log_k 25.83 - -cd_music 0.30 -1.30 0 0 0 - 2Hfocd_uniOH-0.5 + 2H+ + AsO4-3 = (Hfocd_uniO)2AsO2-2 + 2H2O - log_k 28.11 - -cd_music 0.47 -1.47 0 0 0 - 2Hfocd_uniOH-0.5 + 3H+ + AsO4-3 = (Hfocd_uniO)2AsOOH- + 2H2O - log_k 33.41 - -cd_music 0.58 -0.58 0 0 0 -# H3BO3 - Hfocd_uniOH-0.5 + H3BO3 = Hfocd_uniOBH2O2-0.5 + H2O - log_k 1.92 - -cd_music 0.16 -0.16 0 0 0 - Hfocd_uniOH-0.5 + H3BO3 = Hfocd_uniOH3BO3-1.5 + H+ - log_k -8.10 - -cd_music 0.16 -0.16 0 0 0 -# CrO4-2 - Hfocd_uniOH-0.5 + H+ + CrO4-2 = Hfocd_uniOCrO3-1.5 + H2O - log_k 11.11 - -cd_music 0.5 -1.5 0 0 0 -# MoO4-2 - Hfocd_uniOH-0.5 + 2H+ + MoO4-2 + H2O = Hfocd_uniOMo(OH)5-0.5 - log_k 14.94 - -cd_music 0.5 -0.5 0 0 0 # RH99 - Hfocd_uniOH-0.5 + H+ + MoO4-2 = Hfocd_uniOMoO3-1.5 + H2O - log_k 11.38 - -cd_music 0.5 -1.5 0 0 0 # RH99 -# SO4-2 - Hfocd_uniOH-0.5 + H+ + SO4-2 = Hfocd_uniSO4-1.5 + H2O - log_k 2.77 - -cd_music 0.65 -1.65 0 0 0 # RH99 - 2Hfocd_uniOH-0.5 + 2H+ +SO4-2 = Hfocd_uni2SO4- + 2H2O - log_k 0.20 - -cd_music 1.5 -0.5 0 0 0 - Hfocd_uniOH-0.5 + 2H+ + SO4-2 = Hfocd_uniSO4H-0.5 + H2O - log_k 4.12 - -cd_music 1.5 -0.5 0 0 0 # RH99 - 2Hfocd_uniOH-0.5 + 3H+ +SO4-2 = Hfocd_uni2SO4H + 2H2O - log_k 17.68 - -cd_music 1 0 0 0 0 -# Sb(OH)6- - Hfocd_uniOH-0.5 + Sb(OH)6- = Hfocd_uniOSb(OH)5-1.5 + H2O - log_k 9.75 - -cd_music 0.84 -1.83 0 0 0 - 2Hfocd_uniOH-0.5 + Sb(OH)6- = Hfocd_uni2O2Sb(OH)4-2 + 2H2O - log_k -0.21 - -cd_music 1.67 -2.66 0 0 0 -# HSeO3- - 2Hfocd_uniOH-0.5 + H+ + HSeO3- = Hfocd_uni2SeO3- + 2H2O - log_k 9.61 - -cd_music 0.72 -0.72 0 0 0 - 2Hfocd_uniOH-0.5 + 2H+ + HSeO3- = Hfocd_uni2HSeO3 + 2H2O - log_k 15.15 - -cd_music 1.03 -0.03 0 0 0 - Hfocd_uniOH-0.5 + H+ + HSeO3- = Hfocd_uniSeO3H-0.5 + H2O - log_k 5.00 - -cd_music 0.43 -0.43 0 0 0 - Hfocd_uniOH-0.5 + HSeO3- = Hfocd_uniSeO3-1.5 + H2O - log_k 5.00 - -cd_music 0.20 -1.20 0 0 0 -# SeO4-2 - Hfocd_uniOH-0.5 + H+ + SeO4-2 = Hfocd_uniSeO4-1.5 + H2O - log_k 11.57 - -cd_music 0.50 -1.50 0 0 0 - 2Hfocd_uniOH-0.5 + SeO4-2 + 2H+ = Hfocd_uni2SeO4- + 2H2O - log_k 4.04 - -cd_music 1. -1. 0 0 0 - Hfocd_uniOH-0.5 + 2H+ + SeO4-2 = Hfocd_uniOH2SeO4H-0.5 - log_k 3.76 - -cd_music 0.50 -0.50 0 0 0 -# VO2+ - 2Hfocd_uniOH-0.5 + VO2+ = Hfocd_uni2O2VO + H2O - log_k 18.15 - -cd_music 1.50 -0.50 0 0 0 -END - - +# $Id: minteq.v4.dat 794 2006-02-27 21:06:22Z dlpark $ +# expanded with CD-MUSIC parameters for sorption of oxyanions on goethite and HFO 1/14/2009 dv +# +SOLUTION_MASTER_SPECIES +Alkalinity CO3-2 2.0 HCO3 61.0173 +E e- 0 0 0 +O H2O 0 O 16.00 +O(-2) H2O 0 O +O(0) O2 0 O +Ag Ag+ 0.0 Ag 107.868 +Al Al+3 0.0 Al 26.9815 +As H3AsO4 -1.0 As 74.9216 +As(3) H3AsO3 0.0 As +As(5) H3AsO4 -1.0 As +B H3BO3 0.0 B 10.81 +Ba Ba+2 0.0 Ba 137.33 +Be Be+2 0.0 Be 9.0122 +Br Br- 0.0 Br 79.904 +C CO3-2 2.0 CO3 12.0111 +C(4) CO3-2 2.0 CO3 12.0111 +Cyanide Cyanide- 1.0 Cyanide 26.0177 +Dom_a Dom_a 0.0 C 12.0111 +Dom_b Dom_b 0.0 C 12.0111 +Dom_c Dom_c 0.0 C 12.0111 +Ca Ca+2 0.0 Ca 40.078 +Cd Cd+2 0.0 Cd 112.41 +Cl Cl- 0.0 Cl 35.453 +Co Co+3 -1.0 Co 58.9332 +Co(2) Co+2 0.0 Co +Co(3) Co+3 -1.0 Co +Cr CrO4-2 1.0 Cr 51.996 +Cr(2) Cr+2 0.0 Cr +Cr(3) Cr(OH)2+ 0.0 Cr +Cr(6) CrO4-2 1.0 Cr +Cu Cu+2 0.0 Cu 63.546 +Cu(1) Cu+ 0.0 Cu +Cu(2) Cu+2 0.0 Cu +F F- 0.0 F 18.9984 +Fe Fe+3 -2.0 Fe 55.847 +Fe(2) Fe+2 0.0 Fe +Fe(3) Fe+3 -2.0 Fe +H H+ -1.0 H 1.0079 +H(0) H2 0 H +H(1) H+ -1.0 H +Hg Hg(OH)2 0.0 Hg 200.59 +Hg(0) Hg 0.0 Hg +Hg(1) Hg2+2 0.0 Hg +Hg(2) Hg(OH)2 0.0 Hg +I I- 0.0 I 126.904 +K K+ 0.0 K 39.0983 +Li Li+ 0.0 Li 6.941 +Mg Mg+2 0.0 Mg 24.305 +Mn Mn+3 0.0 Mn 54.938 +Mn(2) Mn+2 0.0 Mn +Mn(3) Mn+3 0.0 Mn +Mn(6) MnO4-2 0.0 Mn +Mn(7) MnO4- 0.0 Mn +Mo MoO4-2 0.0 Mo 95.94 +N NO3- 0.0 N 14.0067 +N(-3) NH4+ 0.0 N +N(3) NO2- 0.0 N +N(5) NO3- 0.0 N +Na Na+ 0.0 Na 22.9898 +Ni Ni+2 0.0 Ni 58.69 +P PO4-3 2.0 P 30.9738 +Pb Pb+2 0.0 Pb 207.2 +S SO4-2 0.0 SO4 32.066 +S(-2) HS- 1.0 S +#S(0) S 0.0 S +S(6) SO4-2 0.0 SO4 +Sb Sb(OH)6- 0.0 Sb 121.75 +Sb(3) Sb(OH)3 0.0 Sb +Sb(5) Sb(OH)6- 0.0 Sb +Se SeO4-2 0.0 Se 78.96 +Se(-2) HSe- 0.0 Se +Se(4) HSeO3- 0.0 Se +Se(6) SeO4-2 0.0 Se +Si H4SiO4 0.0 SiO2 28.0843 +Sn Sn(OH)6-2 0.0 Sn 118.71 +Sn(2) Sn(OH)2 0.0 Sn +Sn(4) Sn(OH)6-2 0.0 Sn +Sr Sr+2 0.0 Sr 87.62 +Tl Tl(OH)3 0.0 Tl 204.383 +Tl(1) Tl+ 0.0 Tl +Tl(3) Tl(OH)3 0.0 Tl +U UO2+2 0.0 U 238.029 +U(3) U+3 0.0 U +U(4) U+4 -4.0 U +U(5) UO2+ 0.0 U +U(6) UO2+2 0.0 U +V VO2+ -2.0 V 50.94 +V(2) V+2 0.0 V +V(3) V+3 -3.0 V +V(4) VO+2 0.0 V +V(5) VO2+ -2.0 V +Zn Zn+2 0.0 Zn 65.39 +Benzoate Benzoate- 0.0 121.116 121.116 +Phenylacetate Phenylacetate- 0.0 135.142 135.142 +Isophthalate Isophthalate-2 0.0 164.117 164.117 +Diethylamine Diethylamine 1.0 73.138 73.138 +Butylamine Butylamine 1.0 73.138 73.138 +Methylamine Methylamine 1.0 31.057 31.057 +Dimethylamine Dimethylamine 1.0 45.084 45.084 +Hexylamine Hexylamine 1.0 101.192 101.192 +Ethylenediamine Ethylenediamine 2.0 60.099 60.099 +Propylamine Propylamine 1.0 59.111 59.111 +Isopropylamine Isopropylamine 1.0 59.111 59.111 +Trimethylamine Trimethylamine 1.0 59.111 59.111 +Citrate Citrate-3 2.0 189.102 189.102 +Nta Nta-3 1.0 188.117 188.117 +Edta Edta-4 2.0 288.214 288.214 +Propionate Propionate- 1.0 73.072 73.072 +Butyrate Butyrate- 1.0 87.098 87.098 +Isobutyrate Isobutyrate- 1.0 87.098 87.098 +Two_picoline Two_picoline 1.0 93.128 93.128 +Three_picoline Three_picoline 1.0 93.128 93.128 +Four_picoline Four_picoline 1.0 93.128 93.128 +Formate Formate- 0.0 45.018 45.018 +Isovalerate Isovalerate- 1.0 101.125 101.125 +Valerate Valerate- 1.0 101.125 101.125 +Acetate Acetate- 1.0 59.045 59.045 +Tartarate Tartarate-2 0.0 148.072 148.072 +Glycine Glycine- 1.0 74.059 74.059 +Salicylate Salicylate-2 1.0 136.107 136.107 +Glutamate Glutamate-2 1.0 145.115 145.115 +Phthalate Phthalate-2 1.0 164.117 164.117 +SOLUTION_SPECIES +e- = e- + log_k 0 +H2O = H2O + log_k 0 +Ag+ = Ag+ + log_k 0 +Al+3 = Al+3 + log_k 0 +H3AsO4 = H3AsO4 + log_k 0 +H3BO3 = H3BO3 + log_k 0 +Ba+2 = Ba+2 + log_k 0 +Be+2 = Be+2 + log_k 0 +Br- = Br- + log_k 0 +CO3-2 = CO3-2 + log_k 0 +Cyanide- = Cyanide- + log_k 0 +Dom_a = Dom_a + log_k 0 +Dom_b = Dom_b + log_k 0 +Dom_c = Dom_c + log_k 0 +Ca+2 = Ca+2 + log_k 0 +Cd+2 = Cd+2 + log_k 0 +Cl- = Cl- + log_k 0 +Co+3 = Co+3 + log_k 0 +CrO4-2 = CrO4-2 + log_k 0 +Cu+2 = Cu+2 + log_k 0 +F- = F- + log_k 0 +Fe+3 = Fe+3 + log_k 0 +H+ = H+ + log_k 0 +Hg(OH)2 = Hg(OH)2 + log_k 0 +I- = I- + log_k 0 +K+ = K+ + log_k 0 +Li+ = Li+ + log_k 0 +Mg+2 = Mg+2 + log_k 0 +Mn+3 = Mn+3 + log_k 0 +MoO4-2 = MoO4-2 + log_k 0 +NO3- = NO3- + log_k 0 +Na+ = Na+ + log_k 0 +Ni+2 = Ni+2 + log_k 0 +PO4-3 = PO4-3 + log_k 0 +Pb+2 = Pb+2 + log_k 0 +SO4-2 = SO4-2 + log_k 0 +Sb(OH)6- = Sb(OH)6- + log_k 0 +SeO4-2 = SeO4-2 + log_k 0 +H4SiO4 = H4SiO4 + log_k 0 +Sn(OH)6-2 = Sn(OH)6-2 + log_k 0 +Sr+2 = Sr+2 + log_k 0 +Tl(OH)3 = Tl(OH)3 + log_k 0 +UO2+2 = UO2+2 + log_k 0 +VO2+ = VO2+ + log_k 0 +Benzoate- = Benzoate- + log_k 0 +Phenylacetate- = Phenylacetate- + log_k 0 +Isophthalate-2 = Isophthalate-2 + log_k 0 +Zn+2 = Zn+2 + log_k 0 +Diethylamine = Diethylamine + log_k 0 +Butylamine = Butylamine + log_k 0 +Methylamine = Methylamine + log_k 0 +Dimethylamine = Dimethylamine + log_k 0 +Hexylamine = Hexylamine + log_k 0 +Ethylenediamine = Ethylenediamine + log_k 0 +Propylamine = Propylamine + log_k 0 +Isopropylamine = Isopropylamine + log_k 0 +Trimethylamine = Trimethylamine + log_k 0 +Citrate-3 = Citrate-3 + log_k 0 +Nta-3 = Nta-3 + log_k 0 +Edta-4 = Edta-4 + log_k 0 +Propionate- = Propionate- + log_k 0 +Butyrate- = Butyrate- + log_k 0 +Isobutyrate- = Isobutyrate- + log_k 0 +Two_picoline = Two_picoline + log_k 0 +Three_picoline = Three_picoline + log_k 0 +Four_picoline = Four_picoline + log_k 0 +Formate- = Formate- + log_k 0 +Isovalerate- = Isovalerate- + log_k 0 +Valerate- = Valerate- + log_k 0 +Acetate- = Acetate- + log_k 0 +Tartarate-2 = Tartarate-2 + log_k 0 +Glycine- = Glycine- + log_k 0 +Salicylate-2 = Salicylate-2 + log_k 0 +Glutamate-2 = Glutamate-2 + log_k 0 +Phthalate-2 = Phthalate-2 + log_k 0 +SOLUTION_SPECIES +Fe+3 + e- = Fe+2 + log_k 13.032 + delta_h -42.7 kJ + -gamma 0 0 + # Id: 2802810 + # log K source: Bard85 + # Delta H source: Bard85 + #T and ionic strength: +H3AsO4 + 2e- + 2H+ = H3AsO3 + H2O + log_k 18.898 + delta_h -125.6 kJ + -gamma 0 0 + # Id: 600610 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +Sb(OH)6- + 2e- + 3H+ = Sb(OH)3 + 3H2O + log_k 24.31 + delta_h 0 kJ + -gamma 0 0 + # Id: 7407410 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +UO2+2 + 3e- + 4H+ = U+3 + 2H2O + log_k 0.42 + delta_h -42 kJ + -gamma 0 0 + # Id: 8908930 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +UO2+2 + 2e- + 4H+ = U+4 + 2H2O + log_k 9.216 + delta_h -144.1 kJ + -gamma 0 0 + # Id: 8918930 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +UO2+2 + e- = UO2+ + log_k 2.785 + delta_h -13.8 kJ + -gamma 0 0 + # Id: 8928930 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +e- + Mn+3 = Mn+2 + log_k 25.35 + delta_h -107.8 kJ + -gamma 0 0 + # Id: 4704710 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +Co+3 + e- = Co+2 + log_k 32.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2002010 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cu+2 + e- = Cu+ + log_k 2.69 + delta_h 6.9 kJ + -gamma 0 0 + # Id: 2302310 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +V+3 + e- = V+2 + log_k -4.31 + delta_h 0 kJ + -gamma 0 0 + # Id: 9009010 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +VO+2 + e- + 2H+ = V+3 + H2O + log_k 5.696 + delta_h 0 kJ + -gamma 0 0 + # Id: 9019020 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +VO2+ + e- + 2H+ = VO+2 + H2O + log_k 16.903 + delta_h -122.7 kJ + -gamma 0 0 + # Id: 9029030 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +SO4-2 + 9H+ + 8e- = HS- + 4H2O + log_k 33.66 + delta_h -60.14 kJ + -gamma 0 0 + # Id: 7307320 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Sn(OH)6-2 + 2e- + 4H+ = Sn(OH)2 + 4H2O + log_k 19.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 7907910 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +Tl(OH)3 + 2e- + 3H+ = Tl+ + 3H2O + log_k 45.55 + delta_h 0 kJ + -gamma 0 0 + # Id: 8708710 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +HSeO3- + 6e- + 6H+ = HSe- + 3H2O + log_k 44.86 + delta_h 0 kJ + -gamma 0 0 + # Id: 7607610 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +SeO4-2 + 2e- + 3H+ = HSeO3- + H2O + log_k 36.308 + delta_h -201.2 kJ + -gamma 0 0 + # Id: 7617620 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +0.5Hg2+2 + e- = Hg + log_k 6.5667 + delta_h -45.735 kJ + -gamma 0 0 + # Id: 3600000 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: + +2Hg(OH)2 + 4H+ + 2e- = Hg2+2 + 4H2O + log_k 43.185 + delta_h -63.59 kJ + -gamma 0 0 + # Id: 3603610 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cr(OH)2+ + 2H+ + e- = Cr+2 + 2H2O + log_k 2.947 + delta_h 6.36 kJ + -gamma 0 0 + # Id: 2102110 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +CrO4-2 + 6H+ + 3e- = Cr(OH)2+ + 2H2O + log_k 67.376 + delta_h -103 kJ + -gamma 0 0 + # Id: 2112120 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: + +2H2O = O2 + 4H+ + 4e- +# Adjusted for equation to aqueous species + log_k -85.9951 + -analytic 38.0229 7.99407E-03 -2.7655e+004 -1.4506e+001 199838.45 + +2 H+ + 2 e- = H2 + log_k -3.15 + delta_h -1.759 kcal + +NO3- + 2 H+ + 2 e- = NO2- + H2O + log_k 28.570 + delta_h -43.760 kcal + -gamma 3.0000 0.0000 + +NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O + log_k 119.077 + delta_h -187.055 kcal + -gamma 2.5000 0.0000 + +Mn+2 + 4H2O = MnO4- + 8H+ + 5e- + log_k -127.794 + delta_h 822.67 kJ + -gamma 3 0 + # Id: 4700020 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Mn+2 + 4H2O = MnO4-2 + 8H+ + 4e- + log_k -118.422 + delta_h 711.07 kJ + -gamma 5 0 + # Id: 4700021 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +HS- = S-2 + H+ + log_k -17.3 + delta_h 49.4 kJ + -gamma 5 0 + # Id: 3307301 + # log K source: LMa1987 + # Delta H source: NIST2.1.1 + #T and ionic strength: 0.00 25.0 +HSe- = Se-2 + H+ + log_k -15 + delta_h 48.116 kJ + -gamma 0 0 + # Id: 3307601 + # log K source: SCD3.02 (1968 DKa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Tl(OH)3 + 3H+ = Tl+3 + 3H2O + log_k 3.291 + delta_h 0 kJ + -gamma 0 0 + # Id: 8713300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +0.5Hg2+2 + e- = Hg + log_k 6.5667 + delta_h -45.735 kJ + -gamma 0 0 + # Id: 3600000 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Hg(OH)2 + 2H+ = Hg+2 + 2H2O + log_k 6.194 + delta_h -39.72 kJ + -gamma 0 0 + # Id: 3613300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cr(OH)2+ + 2H+ = Cr+3 + 2H2O + log_k 9.5688 + delta_h -129.62 kJ + -gamma 0 0 + # Id: 2113300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.10 20.0 +H2O = OH- + H+ + log_k -13.997 + delta_h 55.81 kJ + -gamma 3.5 0 + # Id: 3300020 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Sn(OH)2 + 2H+ = Sn+2 + 2H2O + log_k 7.094 + delta_h 0 kJ + -gamma 0 0 + # Id: 7903301 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Sn(OH)2 + H+ = SnOH+ + H2O + log_k 3.697 + delta_h 0 kJ + -gamma 0 0 + # Id: 7903302 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Sn(OH)2 + H2O = Sn(OH)3- + H+ + log_k -9.497 + delta_h 0 kJ + -gamma 0 0 + # Id: 7903303 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +2Sn(OH)2 + 2H+ = Sn2(OH)2+2 + 2H2O + log_k 9.394 + delta_h 0 kJ + -gamma 0 0 + # Id: 7903304 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +3Sn(OH)2 + 2H+ = Sn3(OH)4+2 + 2H2O + log_k 14.394 + delta_h 0 kJ + -gamma 0 0 + # Id: 7903305 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Sn(OH)2 = HSnO2- + H+ + log_k -8.9347 + delta_h 0 kJ + -gamma 0 0 + # Id: 7903306 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +Sn(OH)6-2 + 6H+ = Sn+4 + 6H2O + log_k 21.2194 + delta_h 0 kJ + -gamma 0 0 + # Id: 7913301 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +Sn(OH)6-2 = SnO3-2 + 3H2O + log_k -2.2099 + delta_h 0 kJ + -gamma 0 0 + # Id: 7913302 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +Pb+2 + H2O = PbOH+ + H+ + log_k -7.597 + delta_h 0 kJ + -gamma 0 0 + # Id: 6003300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Pb+2 + 2H2O = Pb(OH)2 + 2H+ + log_k -17.094 + delta_h 0 kJ + -gamma 0 0 + # Id: 6003301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Pb+2 + 3H2O = Pb(OH)3- + 3H+ + log_k -28.091 + delta_h 0 kJ + -gamma 0 0 + # Id: 6003302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +2Pb+2 + H2O = Pb2OH+3 + H+ + log_k -6.397 + delta_h 0 kJ + -gamma 0 0 + # Id: 6003303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ + log_k -23.888 + delta_h 115.24 kJ + -gamma 0 0 + # Id: 6003304 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Pb+2 + 4H2O = Pb(OH)4-2 + 4H+ + log_k -39.699 + delta_h 0 kJ + -gamma 0 0 + # Id: 6003305 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +4Pb+2 + 4H2O = Pb4(OH)4+4 + 4H+ + log_k -19.988 + delta_h 88.24 kJ + -gamma 0 0 + # Id: 6003306 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +H3BO3 + F- = BF(OH)3- + log_k -0.399 + delta_h 7.7404 kJ + -gamma 2.5 0 + # Id: 902700 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +H3BO3 + 2F- + H+ = BF2(OH)2- + H2O + log_k 7.63 + delta_h 6.8408 kJ + -gamma 2.5 0 + # Id: 902701 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +H3BO3 + 3F- + 2H+ = BF3OH- + 2H2O + log_k 13.22 + delta_h -20.4897 kJ + -gamma 2.5 0 + # Id: 902702 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Al+3 + H2O = AlOH+2 + H+ + log_k -4.997 + delta_h 47.81 kJ + -gamma 5.4 0 + # Id: 303300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Al+3 + 2H2O = Al(OH)2+ + 2H+ + log_k -10.094 + delta_h 0 kJ + -gamma 5.4 0 + # Id: 303301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Al+3 + 3H2O = Al(OH)3 + 3H+ + log_k -16.791 + delta_h 0 kJ + -gamma 0 0 + # Id: 303303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Al+3 + 4H2O = Al(OH)4- + 4H+ + log_k -22.688 + delta_h 173.24 kJ + -gamma 4.5 0 + # Id: 303302 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Tl+ + H2O = TlOH + H+ + log_k -13.207 + delta_h 56.81 kJ + -gamma 0 0 + # Id: 8703300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Tl(OH)3 + 2H+ = TlOH+2 + 2H2O + log_k 2.694 + delta_h 0 kJ + -gamma 0 0 + # Id: 8713301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Tl(OH)3 + H+ = Tl(OH)2+ + H2O + log_k 1.897 + delta_h 0 kJ + -gamma 0 0 + # Id: 8713302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Tl(OH)3 + H2O = Tl(OH)4- + H+ + log_k -11.697 + delta_h 0 kJ + -gamma 0 0 + # Id: 8713303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Zn+2 + H2O = ZnOH+ + H+ + log_k -8.997 + delta_h 55.81 kJ + -gamma 0 0 + # Id: 9503300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Zn+2 + 2H2O = Zn(OH)2 + 2H+ + log_k -17.794 + delta_h 0 kJ + -gamma 0 0 + # Id: 9503301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Zn+2 + 3H2O = Zn(OH)3- + 3H+ + log_k -28.091 + delta_h 0 kJ + -gamma 0 0 + # Id: 9503302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Zn+2 + 4H2O = Zn(OH)4-2 + 4H+ + log_k -40.488 + delta_h 0 kJ + -gamma 0 0 + # Id: 9503303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cd+2 + H2O = CdOH+ + H+ + log_k -10.097 + delta_h 54.81 kJ + -gamma 0 0 + # Id: 1603300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cd+2 + 2H2O = Cd(OH)2 + 2H+ + log_k -20.294 + delta_h 0 kJ + -gamma 0 0 + # Id: 1603301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cd+2 + 3H2O = Cd(OH)3- + 3H+ + log_k -32.505 + delta_h 0 kJ + -gamma 0 0 + # Id: 1603302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 3.00 25.0 +Cd+2 + 4H2O = Cd(OH)4-2 + 4H+ + log_k -47.288 + delta_h 0 kJ + -gamma 0 0 + # Id: 1603303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +2Cd+2 + H2O = Cd2OH+3 + H+ + log_k -9.397 + delta_h 45.81 kJ + -gamma 0 0 + # Id: 1603304 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + H+ = HgOH+ + H2O + log_k 2.797 + delta_h -18.91 kJ + -gamma 0 0 + # Id: 3613302 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + H2O = Hg(OH)3- + H+ + log_k -14.897 + delta_h 0 kJ + -gamma 0 0 + # Id: 3613303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cu+2 + H2O = CuOH+ + H+ + log_k -7.497 + delta_h 35.81 kJ + -gamma 4 0 + # Id: 2313300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cu+2 + 2H2O = Cu(OH)2 + 2H+ + log_k -16.194 + delta_h 0 kJ + -gamma 0 0 + # Id: 2313301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cu+2 + 3H2O = Cu(OH)3- + 3H+ + log_k -26.879 + delta_h 0 kJ + -gamma 0 0 + # Id: 2313302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Cu+2 + 4H2O = Cu(OH)4-2 + 4H+ + log_k -39.98 + delta_h 0 kJ + -gamma 0 0 + # Id: 2313303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ + log_k -10.594 + delta_h 76.62 kJ + -gamma 0 0 + # Id: 2313304 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ag+ + H2O = AgOH + H+ + log_k -11.997 + delta_h 0 kJ + -gamma 0 0 + # Id: 203300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Ag+ + 2H2O = Ag(OH)2- + 2H+ + log_k -24.004 + delta_h 0 kJ + -gamma 0 0 + # Id: 203301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Ni+2 + H2O = NiOH+ + H+ + log_k -9.897 + delta_h 51.81 kJ + -gamma 0 0 + # Id: 5403300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ni+2 + 2H2O = Ni(OH)2 + 2H+ + log_k -18.994 + delta_h 0 kJ + -gamma 0 0 + # Id: 5403301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Ni+2 + 3H2O = Ni(OH)3- + 3H+ + log_k -29.991 + delta_h 0 kJ + -gamma 0 0 + # Id: 5403302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Co+2 + H2O = CoOH+ + H+ + log_k -9.697 + delta_h 0 kJ + -gamma 0 0 + # Id: 2003300 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Co+2 + 2H2O = Co(OH)2 + 2H+ + log_k -18.794 + delta_h 0 kJ + -gamma 0 0 + # Id: 2003301 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Co+2 + 3H2O = Co(OH)3- + 3H+ + log_k -31.491 + delta_h 0 kJ + -gamma 0 0 + # Id: 2003302 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Co+2 + 4H2O = Co(OH)4-2 + 4H+ + log_k -46.288 + delta_h 0 kJ + -gamma 0 0 + # Id: 2003303 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +2Co+2 + H2O = Co2OH+3 + H+ + log_k -10.997 + delta_h 0 kJ + -gamma 0 0 + # Id: 2003304 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +4Co+2 + 4H2O = Co4(OH)4+4 + 4H+ + log_k -30.488 + delta_h 0 kJ + -gamma 0 0 + # Id: 2003306 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Co+2 + 2H2O = CoOOH- + 3H+ + log_k -32.0915 + delta_h 260.454 kJ + -gamma 0 0 + # Id: 2003305 + # log K source: NIST2.1.1 + # Delta H source: MTQ3.11 + #T and ionic strength: +Co+3 + H2O = CoOH+2 + H+ + log_k -1.291 + delta_h 0 kJ + -gamma 0 0 + # Id: 2013300 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 3.00 25.0 +Fe+2 + H2O = FeOH+ + H+ + log_k -9.397 + delta_h 55.81 kJ + -gamma 5 0 + # Id: 2803300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Fe+2 + 2H2O = Fe(OH)2 + 2H+ + log_k -20.494 + delta_h 119.62 kJ + -gamma 0 0 + # Id: 2803302 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Fe+2 + 3H2O = Fe(OH)3- + 3H+ + log_k -28.991 + delta_h 126.43 kJ + -gamma 5 0 + # Id: 2803301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Fe+3 + H2O = FeOH+2 + H+ + log_k -2.187 + delta_h 41.81 kJ + -gamma 5 0 + # Id: 2813300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Fe+3 + 2H2O = Fe(OH)2+ + 2H+ + log_k -4.594 + delta_h 0 kJ + -gamma 5.4 0 + # Id: 2813301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Fe+3 + 3H2O = Fe(OH)3 + 3H+ + log_k -12.56 + delta_h 103.8 kJ + -gamma 0 0 + # Id: 2813302 + # log K source: Nord90 + # Delta H source: Nord90 + #T and ionic strength: 0.00 25.0 +Fe+3 + 4H2O = Fe(OH)4- + 4H+ + log_k -21.588 + delta_h 0 kJ + -gamma 5.4 0 + # Id: 2813303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +2Fe+3 + 2H2O = Fe2(OH)2+4 + 2H+ + log_k -2.854 + delta_h 57.62 kJ + -gamma 0 0 + # Id: 2813304 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +3Fe+3 + 4H2O = Fe3(OH)4+5 + 4H+ + log_k -6.288 + delta_h 65.24 kJ + -gamma 0 0 + # Id: 2813305 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Mn+2 + H2O = MnOH+ + H+ + log_k -10.597 + delta_h 55.81 kJ + -gamma 5 0 + # Id: 4703300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Mn+2 + 3H2O = Mn(OH)3- + 3H+ + log_k -34.8 + delta_h 0 kJ + -gamma 5 0 + # Id: 4703301 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Mn+2 + 4H2O = Mn(OH)4-2 + 4H+ + log_k -48.288 + delta_h 0 kJ + -gamma 5 0 + # Id: 4703302 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Mn+2 + 4H2O = MnO4- + 8H+ + 5e- + log_k -127.794 + delta_h 822.67 kJ + -gamma 3 0 + # Id: 4700020 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Mn+2 + 4H2O = MnO4-2 + 8H+ + 4e- + log_k -118.422 + delta_h 711.07 kJ + -gamma 5 0 + # Id: 4700021 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Cr(OH)2+ + H+ = Cr(OH)+2 + H2O + log_k 5.9118 + delta_h -77.91 kJ + -gamma 0 0 + # Id: 2113301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cr(OH)2+ + H2O = Cr(OH)3 + H+ + log_k -8.4222 + delta_h 0 kJ + -gamma 0 0 + # Id: 2113302 + # log K source: SCD3.02 (1983 RCa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cr(OH)2+ + 2H2O = Cr(OH)4- + 2H+ + log_k -17.8192 + delta_h 0 kJ + -gamma 0 0 + # Id: 2113303 + # log K source: SCD3.02 (1983 RCa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cr(OH)2+ = CrO2- + 2H+ + log_k -17.7456 + delta_h 0 kJ + -gamma 0 0 + # Id: 2113304 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +V+2 + H2O = VOH+ + H+ + log_k -6.487 + delta_h 59.81 kJ + -gamma 0 0 + # Id: 9003300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +V+3 + H2O = VOH+2 + H+ + log_k -2.297 + delta_h 43.81 kJ + -gamma 0 0 + # Id: 9013300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +V+3 + 2H2O = V(OH)2+ + 2H+ + log_k -6.274 + delta_h 0 kJ + -gamma 0 0 + # Id: 9013301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 +V+3 + 3H2O = V(OH)3 + 3H+ + log_k -3.0843 + delta_h 0 kJ + -gamma 0 0 + # Id: 9013302 + # log K source: SCD3.02 (1978 TKa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 20.0 +2V+3 + 2H2O = V2(OH)2+4 + 2H+ + log_k -3.794 + delta_h 0 kJ + -gamma 0 0 + # Id: 9013304 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +2V+3 + 3H2O = V2(OH)3+3 + 3H+ + log_k -10.1191 + delta_h 0 kJ + -gamma 0 0 + # Id: 9013303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 3.00 25.0 +VO+2 + 2H2O = V(OH)3+ + H+ + log_k -5.697 + delta_h 0 kJ + -gamma 0 0 + # Id: 9023300 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +2VO+2 + 2H2O = H2V2O4+2 + 2H+ + log_k -6.694 + delta_h 53.62 kJ + -gamma 0 0 + # Id: 9023301 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +U+4 + H2O = UOH+3 + H+ + log_k -0.597 + delta_h 47.81 kJ + -gamma 0 0 + # Id: 8913300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +U+4 + 2H2O = U(OH)2+2 + 2H+ + log_k -2.27 + delta_h 74.1823 kJ + -gamma 0 0 + # Id: 8913301 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 3H2O = U(OH)3+ + 3H+ + log_k -4.935 + delta_h 94.7467 kJ + -gamma 0 0 + # Id: 8913302 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 4H2O = U(OH)4 + 4H+ + log_k -8.498 + delta_h 103.596 kJ + -gamma 0 0 + # Id: 8913303 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 5H2O = U(OH)5- + 5H+ + log_k -13.12 + delta_h 115.374 kJ + -gamma 0 0 + # Id: 8913304 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +6U+4 + 15H2O = U6(OH)15+9 + 15H+ + log_k -17.155 + delta_h 0 kJ + -gamma 0 0 + # Id: 8913305 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +UO2+2 + H2O = UO2OH+ + H+ + log_k -5.897 + delta_h 47.81 kJ + -gamma 0 0 + # Id: 8933300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +2UO2+2 + 2H2O = (UO2)2(OH)2+2 + 2H+ + log_k -5.574 + delta_h 41.82 kJ + -gamma 0 0 + # Id: 8933301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +3UO2+2 + 5H2O = (UO2)3(OH)5+ + 5H+ + log_k -15.585 + delta_h 108.05 kJ + -gamma 0 0 + # Id: 8933302 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Be+2 + H2O = BeOH+ + H+ + log_k -5.397 + delta_h 0 kJ + -gamma 6.5 0 + # Id: 1103301 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Be+2 + 2H2O = Be(OH)2 + 2H+ + log_k -13.594 + delta_h 0 kJ + -gamma 6.5 0 + # Id: 1103302 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Be+2 + 3H2O = Be(OH)3- + 3H+ + log_k -23.191 + delta_h 0 kJ + -gamma 6.5 0 + # Id: 1103303 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Be+2 + 4H2O = Be(OH)4-2 + 4H+ + log_k -37.388 + delta_h 0 kJ + -gamma 6.5 0 + # Id: 1103304 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +2Be+2 + H2O = Be2OH+3 + H+ + log_k -3.177 + delta_h 0 kJ + -gamma 6.5 0 + # Id: 1103305 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 +3Be+2 + 3H2O = Be3(OH)3+3 + 3H+ + log_k -8.8076 + delta_h 0 kJ + -gamma 6.5 0 + # Id: 1103306 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 +Mg+2 + H2O = MgOH+ + H+ + log_k -11.397 + delta_h 67.81 kJ + -gamma 6.5 0 + # Id: 4603300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ca+2 + H2O = CaOH+ + H+ + log_k -12.697 + delta_h 64.11 kJ + -gamma 6 0 + # Id: 1503300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Sr+2 + H2O = SrOH+ + H+ + log_k -13.177 + delta_h 60.81 kJ + -gamma 5 0 + # Id: 8003300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ba+2 + H2O = BaOH+ + H+ + log_k -13.357 + delta_h 60.81 kJ + -gamma 5 0 + # Id: 1003300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +H+ + F- = HF + log_k 3.17 + delta_h 13.3 kJ + -gamma 0 0 + # Id: 3302700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +H+ + 2F- = HF2- + log_k 3.75 + delta_h 17.4 kJ + -gamma 3.5 0 + # Id: 3302701 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +2F- + 2H+ = H2F2 + log_k 6.768 + delta_h 0 kJ + -gamma 0 0 + # Id: 3302702 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Sb(OH)3 + F- + H+ = SbOF + 2H2O + log_k 6.1864 + delta_h 0 kJ + -gamma 0 0 + # Id: 7402700 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: +Sb(OH)3 + F- + H+ = Sb(OH)2F + H2O + log_k 6.1937 + delta_h 0 kJ + -gamma 0 0 + # Id: 7402702 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: +H4SiO4 + 4H+ + 6F- = SiF6-2 + 4H2O + log_k 30.18 + delta_h -68 kJ + -gamma 5 0 + # Id: 7702700 + # log K source: Nord90 + # Delta H source: Nord90 + #T and ionic strength: 0.00 25.0 +Sn(OH)2 + 2H+ + F- = SnF+ + 2H2O + log_k 11.582 + delta_h 0 kJ + -gamma 0 0 + # Id: 7902701 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Sn(OH)2 + 2H+ + 2F- = SnF2 + 2H2O + log_k 14.386 + delta_h 0 kJ + -gamma 0 0 + # Id: 7902702 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Sn(OH)2 + 2H+ + 3F- = SnF3- + 2H2O + log_k 17.206 + delta_h 0 kJ + -gamma 0 0 + # Id: 7902703 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Sn(OH)6-2 + 6H+ + 6F- = SnF6-2 + 6H2O + log_k 33.5844 + delta_h 0 kJ + -gamma 0 0 + # Id: 7912701 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +Pb+2 + F- = PbF+ + log_k 1.848 + delta_h 0 kJ + -gamma 0 0 + # Id: 6002700 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Pb+2 + 2F- = PbF2 + log_k 3.142 + delta_h 0 kJ + -gamma 0 0 + # Id: 6002701 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Pb+2 + 3F- = PbF3- + log_k 3.42 + delta_h 0 kJ + -gamma 0 0 + # Id: 6002702 + # log K source: SCD3.02 (1956 TKa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Pb+2 + 4F- = PbF4-2 + log_k 3.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 6002703 + # log K source: SCD3.02 (1956 TKa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +H3BO3 + 3H+ + 4F- = BF4- + 3H2O + log_k 19.912 + delta_h -18.67 kJ + -gamma 2.5 0 + # Id: 902703 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 + #T and ionic strength: 1.00 25.0 +Al+3 + F- = AlF+2 + log_k 7 + delta_h 4.6 kJ + -gamma 5.4 0 + # Id: 302700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Al+3 + 2F- = AlF2+ + log_k 12.6 + delta_h 8.3 kJ + -gamma 5.4 0 + # Id: 302701 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Al+3 + 3F- = AlF3 + log_k 16.7 + delta_h 8.7 kJ + -gamma 0 0 + # Id: 302702 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Al+3 + 4F- = AlF4- + log_k 19.4 + delta_h 8.7 kJ + -gamma 4.5 0 + # Id: 302703 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Tl+ + F- = TlF + log_k 0.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 8702700 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Zn+2 + F- = ZnF+ + log_k 1.3 + delta_h 11 kJ + -gamma 0 0 + # Id: 9502700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cd+2 + F- = CdF+ + log_k 1.2 + delta_h 5 kJ + -gamma 0 0 + # Id: 1602700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cd+2 + 2F- = CdF2 + log_k 1.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 1602701 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Hg(OH)2 + 2H+ + F- = HgF+ + 2H2O + log_k 7.763 + delta_h -35.72 kJ + -gamma 0 0 + # Id: 3612701 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.50 25.0 +Cu+2 + F- = CuF+ + log_k 1.8 + delta_h 13 kJ + -gamma 0 0 + # Id: 2312700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ag+ + F- = AgF + log_k 0.4 + delta_h 12 kJ + -gamma 0 0 + # Id: 202700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ni+2 + F- = NiF+ + log_k 1.4 + delta_h 7.1 kJ + -gamma 0 0 + # Id: 5402700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Co+2 + F- = CoF+ + log_k 1.5 + delta_h 9.2 kJ + -gamma 0 0 + # Id: 2002700 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Fe+3 + F- = FeF+2 + log_k 6.04 + delta_h 10 kJ + -gamma 5 0 + # Id: 2812700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Fe+3 + 2F- = FeF2+ + log_k 10.4675 + delta_h 17 kJ + -gamma 5 0 + # Id: 2812701 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.50 25.0 +Fe+3 + 3F- = FeF3 + log_k 13.617 + delta_h 29 kJ + -gamma 0 0 + # Id: 2812702 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.50 25.0 +Mn+2 + F- = MnF+ + log_k 1.6 + delta_h 11 kJ + -gamma 5 0 + # Id: 4702700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cr(OH)2+ + 2H+ + F- = CrF+2 + 2H2O + log_k 14.7688 + delta_h -70.2452 kJ + -gamma 0 0 + # Id: 2112700 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +VO+2 + F- = VOF+ + log_k 3.778 + delta_h 7.9 kJ + -gamma 0 0 + # Id: 9022700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 +VO+2 + 2F- = VOF2 + log_k 6.352 + delta_h 14 kJ + -gamma 0 0 + # Id: 9022701 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 +VO+2 + 3F- = VOF3- + log_k 7.902 + delta_h 20 kJ + -gamma 0 0 + # Id: 9022702 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 +VO+2 + 4F- = VOF4-2 + log_k 8.508 + delta_h 26 kJ + -gamma 0 0 + # Id: 9022703 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 +VO2+ + F- = VO2F + log_k 3.244 + delta_h 0 kJ + -gamma 0 0 + # Id: 9032700 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +VO2+ + 2F- = VO2F2- + log_k 5.804 + delta_h 0 kJ + -gamma 0 0 + # Id: 9032701 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 +VO2+ + 3F- = VO2F3-2 + log_k 6.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 9032702 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 +VO2+ + 4F- = VO2F4-3 + log_k 6.592 + delta_h 0 kJ + -gamma 0 0 + # Id: 9032703 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 +U+4 + F- = UF+3 + log_k 9.3 + delta_h 21.1292 kJ + -gamma 0 0 + # Id: 8912700 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +U+4 + 2F- = UF2+2 + log_k 16.4 + delta_h 30.1248 kJ + -gamma 0 0 + # Id: 8912701 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +U+4 + 3F- = UF3+ + log_k 21.6 + delta_h 29.9156 kJ + -gamma 0 0 + # Id: 8912702 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +U+4 + 4F- = UF4 + log_k 23.64 + delta_h 19.2464 kJ + -gamma 0 0 + # Id: 8912703 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 5F- = UF5- + log_k 25.238 + delta_h 20.2924 kJ + -gamma 0 0 + # Id: 8912704 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 6F- = UF6-2 + log_k 27.718 + delta_h 13.8072 kJ + -gamma 0 0 + # Id: 8912705 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +UO2+2 + F- = UO2F+ + log_k 5.14 + delta_h 1 kJ + -gamma 0 0 + # Id: 8932700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +UO2+2 + 2F- = UO2F2 + log_k 8.6 + delta_h 2 kJ + -gamma 0 0 + # Id: 8932701 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +UO2+2 + 3F- = UO2F3- + log_k 11 + delta_h 2 kJ + -gamma 0 0 + # Id: 8932702 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +UO2+2 + 4F- = UO2F4-2 + log_k 11.9 + delta_h 0.4 kJ + -gamma 0 0 + # Id: 8932703 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Be+2 + F- = BeF+ + log_k 5.249 + delta_h 0 kJ + -gamma 0 0 + # Id: 1102701 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 +Be+2 + 2F- = BeF2 + log_k 9.1285 + delta_h -4 kJ + -gamma 0 0 + # Id: 1102702 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 +Be+2 + 3F- = BeF3- + log_k 11.9085 + delta_h -8 kJ + -gamma 0 0 + # Id: 1102703 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 +Mg+2 + F- = MgF+ + log_k 2.05 + delta_h 13 kJ + -gamma 4.5 0 + # Id: 4602700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ca+2 + F- = CaF+ + log_k 1.038 + delta_h 14 kJ + -gamma 5 0 + # Id: 1502700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 +Sr+2 + F- = SrF+ + log_k 0.548 + delta_h 16 kJ + -gamma 0 0 + # Id: 8002701 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 1.00 25.0 +Na+ + F- = NaF + log_k -0.2 + delta_h 12 kJ + -gamma 0 0 + # Id: 5002700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Sn(OH)2 + 2H+ + Cl- = SnCl+ + 2H2O + log_k 8.734 + delta_h 0 kJ + -gamma 0 0 + # Id: 7901801 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Sn(OH)2 + 2H+ + 2Cl- = SnCl2 + 2H2O + log_k 9.524 + delta_h 0 kJ + -gamma 0 0 + # Id: 7901802 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Sn(OH)2 + 2H+ + 3Cl- = SnCl3- + 2H2O + log_k 8.3505 + delta_h 0 kJ + -gamma 0 0 + # Id: 7901803 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 2.00 25.0 +Pb+2 + Cl- = PbCl+ + log_k 1.55 + delta_h 8.7 kJ + -gamma 0 0 + # Id: 6001800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Pb+2 + 2Cl- = PbCl2 + log_k 2.2 + delta_h 12 kJ + -gamma 0 0 + # Id: 6001801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Pb+2 + 3Cl- = PbCl3- + log_k 1.8 + delta_h 4 kJ + -gamma 0 0 + # Id: 6001802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Pb+2 + 4Cl- = PbCl4-2 + log_k 1.46 + delta_h 14.7695 kJ + -gamma 0 0 + # Id: 6001803 + # log K source: SCD3.02 (1984 SEa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Tl+ + Cl- = TlCl + log_k 0.51 + delta_h -6.2 kJ + -gamma 0 0 + # Id: 8701800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Tl+ + 2Cl- = TlCl2- + log_k 0.28 + delta_h 0 kJ + -gamma 0 0 + # Id: 8701801 + # log K source: SCD3.02 (1992 RAb) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Tl(OH)3 + 3H+ + Cl- = TlCl+2 + 3H2O + log_k 11.011 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Tl(OH)3 + 3H+ + 2Cl- = TlCl2+ + 3H2O + log_k 16.771 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Tl(OH)3 + 3H+ + 3Cl- = TlCl3 + 3H2O + log_k 19.791 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Tl(OH)3 + 3H+ + 4Cl- = TlCl4- + 3H2O + log_k 21.591 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711803 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Tl(OH)3 + Cl- + 2H+ = TlOHCl+ + 2H2O + log_k 10.629 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711804 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Zn+2 + Cl- = ZnCl+ + log_k 0.4 + delta_h 5.4 kJ + -gamma 4 0 + # Id: 9501800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Zn+2 + 2Cl- = ZnCl2 + log_k 0.6 + delta_h 37 kJ + -gamma 0 0 + # Id: 9501801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Zn+2 + 3Cl- = ZnCl3- + log_k 0.5 + delta_h 39.999 kJ + -gamma 4 0 + # Id: 9501802 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Zn+2 + 4Cl- = ZnCl4-2 + log_k 0.199 + delta_h 45.8566 kJ + -gamma 5 0 + # Id: 9501803 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Zn+2 + H2O + Cl- = ZnOHCl + H+ + log_k -7.48 + delta_h 0 kJ + -gamma 0 0 + # Id: 9501804 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cd+2 + Cl- = CdCl+ + log_k 1.98 + delta_h 1 kJ + -gamma 0 0 + # Id: 1601800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cd+2 + 2Cl- = CdCl2 + log_k 2.6 + delta_h 3 kJ + -gamma 0 0 + # Id: 1601801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cd+2 + 3Cl- = CdCl3- + log_k 2.4 + delta_h 10 kJ + -gamma 0 0 + # Id: 1601802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cd+2 + H2O + Cl- = CdOHCl + H+ + log_k -7.404 + delta_h 18.2213 kJ + -gamma 0 0 + # Id: 1601803 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Hg(OH)2 + 2H+ + Cl- = HgCl+ + 2H2O + log_k 13.494 + delta_h -62.72 kJ + -gamma 0 0 + # Id: 3611800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + 2H+ + 2Cl- = HgCl2 + 2H2O + log_k 20.194 + delta_h -92.42 kJ + -gamma 0 0 + # Id: 3611801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + 2H+ + 3Cl- = HgCl3- + 2H2O + log_k 21.194 + delta_h -94.02 kJ + -gamma 0 0 + # Id: 3611802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + 2H+ + 4Cl- = HgCl4-2 + 2H2O + log_k 21.794 + delta_h -100.72 kJ + -gamma 0 0 + # Id: 3611803 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + Cl- + I- + 2H+ = HgClI + 2H2O + log_k 25.532 + delta_h -135.3 kJ + -gamma 0 0 + # Id: 3611804 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Hg(OH)2 + H+ + Cl- = HgClOH + H2O + log_k 10.444 + delta_h -42.72 kJ + -gamma 0 0 + # Id: 3611805 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 +Cu+2 + Cl- = CuCl+ + log_k 0.2 + delta_h 8.3 kJ + -gamma 4 0 + # Id: 2311800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cu+2 + 2Cl- = CuCl2 + log_k -0.26 + delta_h 44.183 kJ + -gamma 0 0 + # Id: 2311801 + # log K source: SCD3.02 (1989 IPa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cu+2 + 3Cl- = CuCl3- + log_k -2.29 + delta_h 57.279 kJ + -gamma 4 0 + # Id: 2311802 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cu+2 + 4Cl- = CuCl4-2 + log_k -4.59 + delta_h 32.5515 kJ + -gamma 5 0 + # Id: 2311803 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cu+ + 2Cl- = CuCl2- + log_k 5.42 + delta_h -1.7573 kJ + -gamma 4 0 + # Id: 2301800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cu+ + 3Cl- = CuCl3-2 + log_k 4.75 + delta_h 1.0878 kJ + -gamma 5 0 + # Id: 2301801 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cu+ + Cl- = CuCl + log_k 3.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 2301802 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Ag+ + Cl- = AgCl + log_k 3.31 + delta_h -12 kJ + -gamma 0 0 + # Id: 201800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ag+ + 2Cl- = AgCl2- + log_k 5.25 + delta_h -16 kJ + -gamma 0 0 + # Id: 201801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ag+ + 3Cl- = AgCl3-2 + log_k 5.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 201802 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Ag+ + 4Cl- = AgCl4-3 + log_k 5.51 + delta_h 0 kJ + -gamma 0 0 + # Id: 201803 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Ni+2 + Cl- = NiCl+ + log_k 0.408 + delta_h 2 kJ + -gamma 0 0 + # Id: 5401800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 +Ni+2 + 2Cl- = NiCl2 + log_k -1.89 + delta_h 0 kJ + -gamma 0 0 + # Id: 5401801 + # log K source: SCD3.02 (1989 IPa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Co+2 + Cl- = CoCl+ + log_k 0.539 + delta_h 2 kJ + -gamma 0 0 + # Id: 2001800 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 +Co+3 + Cl- = CoCl+2 + log_k 2.3085 + delta_h 16 kJ + -gamma 0 0 + # Id: 2011800 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 +Fe+3 + Cl- = FeCl+2 + log_k 1.48 + delta_h 23 kJ + -gamma 5 0 + # Id: 2811800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Fe+3 + 2Cl- = FeCl2+ + log_k 2.13 + delta_h 0 kJ + -gamma 5 0 + # Id: 2811801 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Fe+3 + 3Cl- = FeCl3 + log_k 1.13 + delta_h 0 kJ + -gamma 0 0 + # Id: 2811802 + # log K source: Nord90 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Mn+2 + Cl- = MnCl+ + log_k 0.1 + delta_h 0 kJ + -gamma 5 0 + # Id: 4701800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 20.0 +Mn+2 + 2Cl- = MnCl2 + log_k 0.25 + delta_h 0 kJ + -gamma 0 0 + # Id: 4701801 + # log K source: Nord90 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Mn+2 + 3Cl- = MnCl3- + log_k -0.31 + delta_h 0 kJ + -gamma 5 0 + # Id: 4701802 + # log K source: Nord90 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cr(OH)2+ + 2H+ + Cl- = CrCl+2 + 2H2O + log_k 9.6808 + delta_h -103.62 kJ + -gamma 0 0 + # Id: 2111800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 +Cr(OH)2+ + 2Cl- + 2H+ = CrCl2+ + 2H2O + log_k 8.658 + delta_h -39.2208 kJ + -gamma 0 0 + # Id: 2111801 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cr(OH)2+ + 2Cl- + H+ = CrOHCl2 + H2O + log_k 2.9627 + delta_h 0 kJ + -gamma 0 0 + # Id: 2111802 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +VO+2 + Cl- = VOCl+ + log_k 0.448 + delta_h 0 kJ + -gamma 0 0 + # Id: 9021800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 +U+4 + Cl- = UCl+3 + log_k 1.7 + delta_h -20 kJ + -gamma 0 0 + # Id: 8911800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +UO2+2 + Cl- = UO2Cl+ + log_k 0.21 + delta_h 16 kJ + -gamma 0 0 + # Id: 8931800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Be+2 + Cl- = BeCl+ + log_k 0.2009 + delta_h 0 kJ + -gamma 5 0 + # Id: 1101801 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.70 20.0 +Sn(OH)2 + 2H+ + Br- = SnBr+ + 2H2O + log_k 8.254 + delta_h 0 kJ + -gamma 0 0 + # Id: 7901301 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Sn(OH)2 + 2H+ + 2Br- = SnBr2 + 2H2O + log_k 8.794 + delta_h 0 kJ + -gamma 0 0 + # Id: 7901302 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Sn(OH)2 + 2H+ + 3Br- = SnBr3- + 2H2O + log_k 7.48 + delta_h 0 kJ + -gamma 0 0 + # Id: 7901303 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 3.00 25.0 +Pb+2 + Br- = PbBr+ + log_k 1.7 + delta_h 8 kJ + -gamma 0 0 + # Id: 6001300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Pb+2 + 2Br- = PbBr2 + log_k 2.6 + delta_h -4 kJ + -gamma 0 0 + # Id: 6001301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Tl+ + Br- = TlBr + log_k 0.91 + delta_h -12 kJ + -gamma 0 0 + # Id: 8701300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Tl+ + 2Br- = TlBr2- + log_k -0.384 + delta_h 12.36 kJ + -gamma 0 0 + # Id: 8701301 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 + #T and ionic strength: 4.00 25.0 +Tl+ + Br- + Cl- = TlBrCl- + log_k 0.8165 + delta_h 0 kJ + -gamma 0 0 + # Id: 8701302 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Tl+ + I- + Br- = TlIBr- + log_k 2.185 + delta_h 0 kJ + -gamma 0 0 + # Id: 8703802 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Tl(OH)3 + 3H+ + Br- = TlBr+2 + 3H2O + log_k 12.803 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Tl(OH)3 + 3H+ + 2Br- = TlBr2+ + 3H2O + log_k 20.711 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Tl(OH)3 + 3Br- + 3H+ = TlBr3 + 3H2O + log_k 27.0244 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711302 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Tl(OH)3 + 4Br- + 3H+ = TlBr4- + 3H2O + log_k 31.1533 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711303 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Zn+2 + Br- = ZnBr+ + log_k -0.07 + delta_h 1 kJ + -gamma 0 0 + # Id: 9501300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Zn+2 + 2Br- = ZnBr2 + log_k -0.98 + delta_h 0 kJ + -gamma 0 0 + # Id: 9501301 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cd+2 + Br- = CdBr+ + log_k 2.15 + delta_h -3 kJ + -gamma 0 0 + # Id: 1601300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cd+2 + 2Br- = CdBr2 + log_k 3 + delta_h -3 kJ + -gamma 0 0 + # Id: 1601301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + 2H+ + Br- = HgBr+ + 2H2O + log_k 15.803 + delta_h -81.92 kJ + -gamma 0 0 + # Id: 3611301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.50 25.0 +Hg(OH)2 + 2H+ + 2Br- = HgBr2 + 2H2O + log_k 24.2725 + delta_h -127.12 kJ + -gamma 0 0 + # Id: 3611302 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.50 25.0 +Hg(OH)2 + 2H+ + 3Br- = HgBr3- + 2H2O + log_k 26.7025 + delta_h -138.82 kJ + -gamma 0 0 + # Id: 3611303 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.50 25.0 +Hg(OH)2 + 2H+ + 4Br- = HgBr4-2 + 2H2O + log_k 27.933 + delta_h -153.72 kJ + -gamma 0 0 + # Id: 3611304 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.50 25.0 +Hg(OH)2 + Br- + Cl- + 2H+ = HgBrCl + 2H2O + log_k 22.1811 + delta_h -113.77 kJ + -gamma 0 0 + # Id: 3611305 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Hg(OH)2 + Br- + I- + 2H+ = HgBrI + 2H2O + log_k 27.3133 + delta_h -151.27 kJ + -gamma 0 0 + # Id: 3611306 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Hg(OH)2 + Br- + 3I- + 2H+ = HgBrI3-2 + 2H2O + log_k 34.2135 + delta_h 0 kJ + -gamma 0 0 + # Id: 3611307 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Hg(OH)2 + 2Br- + 2I- + 2H+ = HgBr2I2-2 + 2H2O + log_k 32.3994 + delta_h 0 kJ + -gamma 0 0 + # Id: 3611308 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Hg(OH)2 + 3Br- + I- + 2H+ = HgBr3I-2 + 2H2O + log_k 30.1528 + delta_h 0 kJ + -gamma 0 0 + # Id: 3611309 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Hg(OH)2 + H+ + Br- = HgBrOH + H2O + log_k 12.433 + delta_h 0 kJ + -gamma 0 0 + # Id: 3613301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Ag+ + Br- = AgBr + log_k 4.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 201300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Ag+ + 2Br- = AgBr2- + log_k 7.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 201301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Ag+ + 3Br- = AgBr3-2 + log_k 8.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 201302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Ni+2 + Br- = NiBr+ + log_k 0.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 5401300 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cr(OH)2+ + Br- + 2H+ = CrBr+2 + 2H2O + log_k 7.5519 + delta_h -46.9068 kJ + -gamma 0 0 + # Id: 2111300 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Be+2 + Br- = BeBr+ + log_k 0.1009 + delta_h 0 kJ + -gamma 5 0 + # Id: 1101301 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.70 20.0 +Pb+2 + I- = PbI+ + log_k 2 + delta_h 0 kJ + -gamma 0 0 + # Id: 6003800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Pb+2 + 2I- = PbI2 + log_k 3.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 6003801 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Tl+ + I- = TlI + log_k 1.4279 + delta_h 0 kJ + -gamma 0 0 + # Id: 8703800 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Tl+ + 2I- = TlI2- + log_k 1.8588 + delta_h 0 kJ + -gamma 0 0 + # Id: 8703801 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Tl(OH)3 + 4I- + 3H+ = TlI4- + 3H2O + log_k 34.7596 + delta_h 0 kJ + -gamma 0 0 + # Id: 8713800 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Zn+2 + I- = ZnI+ + log_k -2.0427 + delta_h -4 kJ + -gamma 0 0 + # Id: 9503800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 3.00 25.0 +Zn+2 + 2I- = ZnI2 + log_k -1.69 + delta_h 0 kJ + -gamma 0 0 + # Id: 9503801 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cd+2 + I- = CdI+ + log_k 2.28 + delta_h -9.6 kJ + -gamma 0 0 + # Id: 1603800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cd+2 + 2I- = CdI2 + log_k 3.92 + delta_h -12 kJ + -gamma 0 0 + # Id: 1603801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + 2H+ + I- = HgI+ + 2H2O + log_k 19.603 + delta_h -111.22 kJ + -gamma 0 0 + # Id: 3613801 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 +Hg(OH)2 + 2H+ + 2I- = HgI2 + 2H2O + log_k 30.8225 + delta_h -182.72 kJ + -gamma 0 0 + # Id: 3613802 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 +Hg(OH)2 + 2H+ + 3I- = HgI3- + 2H2O + log_k 34.6025 + delta_h -194.22 kJ + -gamma 0 0 + # Id: 3613803 + # log K source: NIST46.4 + # Delta H source: NIST2.1.1 + #T and ionic strength: 0.50 25.0 +Hg(OH)2 + 2H+ + 4I- = HgI4-2 + 2H2O + log_k 36.533 + delta_h -220.72 kJ + -gamma 0 0 + # Id: 3613804 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 +Ag+ + I- = AgI + log_k 6.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 203800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 18.0 +Ag+ + 2I- = AgI2- + log_k 11.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 203801 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 18.0 +Ag+ + 3I- = AgI3-2 + log_k 12.6 + delta_h -122 kJ + -gamma 0 0 + # Id: 203802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ag+ + 4I- = AgI4-3 + log_k 14.229 + delta_h 0 kJ + -gamma 0 0 + # Id: 203803 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 2.00 25.0 +Cr(OH)2+ + I- + 2H+ = CrI+2 + 2H2O + log_k 4.8289 + delta_h 0 kJ + -gamma 0 0 + # Id: 2113800 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +H+ + HS- = H2S + log_k 7.02 + delta_h -22 kJ + -gamma 0 0 + # Id: 3307300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Pb+2 + 2HS- = Pb(HS)2 + log_k 15.27 + delta_h 0 kJ + -gamma 0 0 + # Id: 6007300 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Pb+2 + 3HS- = Pb(HS)3- + log_k 16.57 + delta_h 0 kJ + -gamma 0 0 + # Id: 6007301 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Tl+ + HS- = TlHS + log_k 2.474 + delta_h 0 kJ + -gamma 0 0 + # Id: 8707300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +2Tl+ + HS- = Tl2HS+ + log_k 5.974 + delta_h 0 kJ + -gamma 0 0 + # Id: 8707301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +2Tl+ + 3HS- + H2O = Tl2OH(HS)3-2 + H+ + log_k 1.0044 + delta_h 0 kJ + -gamma 0 0 + # Id: 8707302 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +2Tl+ + 2HS- + 2H2O = Tl2(OH)2(HS)2-2 + 2H+ + log_k -11.0681 + delta_h 0 kJ + -gamma 0 0 + # Id: 8707303 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Zn+2 + 2HS- = Zn(HS)2 + log_k 12.82 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507300 + # log K source: DHa1993 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Zn+2 + 3HS- = Zn(HS)3- + log_k 16.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507301 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Zn+2 + 3HS- = ZnS(HS)2-2 + H+ + log_k 6.12 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507302 + # log K source: DHa1993 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Zn+2 + 2HS- + 2HS- = Zn(HS)4-2 + log_k 14.64 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507303 + # log K source: DHa1993 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Zn+2 + 2HS- = ZnS(HS)- + H+ + log_k 6.81 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507304 + # log K source: DHa1993 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cd+2 + HS- = CdHS+ + log_k 8.008 + delta_h 0 kJ + -gamma 0 0 + # Id: 1607300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Cd+2 + 2HS- = Cd(HS)2 + log_k 15.212 + delta_h 0 kJ + -gamma 0 0 + # Id: 1607301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Cd+2 + 3HS- = Cd(HS)3- + log_k 17.112 + delta_h 0 kJ + -gamma 0 0 + # Id: 1607302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Cd+2 + 4HS- = Cd(HS)4-2 + log_k 19.308 + delta_h 0 kJ + -gamma 0 0 + # Id: 1607303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Hg(OH)2 + 2HS- = HgS2-2 + 2H2O + log_k 29.414 + delta_h 0 kJ + -gamma 0 0 + # Id: 3617300 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 +Hg(OH)2 + 2H+ + 2HS- = Hg(HS)2 + 2H2O + log_k 44.516 + delta_h 0 kJ + -gamma 0 0 + # Id: 3617301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 +Hg(OH)2 + H+ + 2HS- = HgHS2- + 2H2O + log_k 38.122 + delta_h 0 kJ + -gamma 0 0 + # Id: 3617302 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 +Cu+2 + 3HS- = Cu(HS)3- + log_k 25.899 + delta_h 0 kJ + -gamma 0 0 + # Id: 2317300 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Ag+ + HS- = AgHS + log_k 13.8145 + delta_h 0 kJ + -gamma 0 0 + # Id: 207300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 20.0 +Ag+ + 2HS- = Ag(HS)2- + log_k 17.9145 + delta_h 0 kJ + -gamma 0 0 + # Id: 207301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 20.0 +Fe+2 + 2HS- = Fe(HS)2 + log_k 8.95 + delta_h 0 kJ + -gamma 0 0 + # Id: 2807300 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Fe+2 + 3HS- = Fe(HS)3- + log_k 10.987 + delta_h 0 kJ + -gamma 0 0 + # Id: 2807301 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +HS- = S2-2 + H+ + log_k -11.7828 + delta_h 46.4 kJ + -gamma 0 0 + -no_check + # Id: 7317300 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +HS- = S3-2 + H+ + log_k -10.7667 + delta_h 42.2 kJ + -gamma 0 0 + -no_check + # Id: 7317301 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +HS- = S4-2 + H+ + log_k -9.9608 + delta_h 39.3 kJ + -gamma 0 0 + -no_check + # Id: 7317302 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +HS- = S5-2 + H+ + log_k -9.3651 + delta_h 37.6 kJ + -gamma 0 0 + -no_check + # Id: 7317303 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +HS- = S6-2 + H+ + log_k -9.881 + delta_h 0 kJ + -gamma 0 0 + -no_check + # Id: 7317304 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +2Sb(OH)3 + 4HS- + 2H+ = Sb2S4-2 + 6H2O + log_k 49.3886 + delta_h -321.78 kJ + -gamma 0 0 + # Id: 7407300 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Cu+ + 2HS- = Cu(S4)2-3 + 2H+ + log_k 3.39 + delta_h 0 kJ + -gamma 23 0 + -no_check + # Id: 2307300 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cu+ + 2HS- = CuS4S5-3 + 2H+ + log_k 2.66 + delta_h 0 kJ + -gamma 25 0 + -no_check + # Id: 2307301 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Ag+ + 2HS- = Ag(S4)2-3 + 2H+ + log_k 0.991 + delta_h 0 kJ + -gamma 22 0 + -no_check + # Id: 207302 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Ag+ + 2HS- = AgS4S5-3 + 2H+ + log_k 0.68 + delta_h 0 kJ + -gamma 24 0 + -no_check + # Id: 207303 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Ag+ + 2HS- = Ag(HS)S4-2 + H+ + log_k 10.431 + delta_h 0 kJ + -gamma 15 0 + -no_check + # Id: 207304 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +H+ + SO4-2 = HSO4- + log_k 1.99 + delta_h 22 kJ + -gamma 4.5 0 + # Id: 3307320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +NH4+ + SO4-2 = NH4SO4- + log_k 1.03 + delta_h 0 kJ + -gamma 5 0 + # Id: 4907320 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Pb+2 + SO4-2 = PbSO4 + log_k 2.69 + delta_h 0 kJ + -gamma 0 0 + # Id: 6007320 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Pb+2 + 2SO4-2 = Pb(SO4)2-2 + log_k 3.47 + delta_h 0 kJ + -gamma 0 0 + # Id: 6007321 + # log K source: SCD3.02 (1960 RKa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Al+3 + SO4-2 = AlSO4+ + log_k 3.89 + delta_h 28 kJ + -gamma 4.5 0 + # Id: 307320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Al+3 + 2SO4-2 = Al(SO4)2- + log_k 4.92 + delta_h 11.9 kJ + -gamma 4.5 0 + # Id: 307321 + # log K source: Nord90 + # Delta H source: Nord90 + #T and ionic strength: 0.00 25.0 +Tl+ + SO4-2 = TlSO4- + log_k 1.37 + delta_h -0.8 kJ + -gamma 0 0 + # Id: 8707320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Zn+2 + SO4-2 = ZnSO4 + log_k 2.34 + delta_h 6.2 kJ + -gamma 0 0 + # Id: 9507320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Zn+2 + 2SO4-2 = Zn(SO4)2-2 + log_k 3.28 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507321 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cd+2 + SO4-2 = CdSO4 + log_k 2.37 + delta_h 8.7 kJ + -gamma 0 0 + # Id: 1607320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cd+2 + 2SO4-2 = Cd(SO4)2-2 + log_k 3.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 1607321 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Hg(OH)2 + 2H+ + SO4-2 = HgSO4 + 2H2O + log_k 8.612 + delta_h 0 kJ + -gamma 0 0 + # Id: 3617320 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Cu+2 + SO4-2 = CuSO4 + log_k 2.36 + delta_h 8.7 kJ + -gamma 0 0 + # Id: 2317320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ag+ + SO4-2 = AgSO4- + log_k 1.3 + delta_h 6.2 kJ + -gamma 0 0 + # Id: 207320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ni+2 + SO4-2 = NiSO4 + log_k 2.3 + delta_h 5.8 kJ + -gamma 0 0 + # Id: 5407320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ni+2 + 2SO4-2 = Ni(SO4)2-2 + log_k 0.82 + delta_h 0 kJ + -gamma 0 0 + # Id: 5407321 + # log K source: SCD3.02 (1978 BLa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Co+2 + SO4-2 = CoSO4 + log_k 2.3 + delta_h 6.2 kJ + -gamma 0 0 + # Id: 2007320 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Fe+2 + SO4-2 = FeSO4 + log_k 2.39 + delta_h 8 kJ + -gamma 0 0 + # Id: 2807320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Fe+3 + SO4-2 = FeSO4+ + log_k 4.05 + delta_h 25 kJ + -gamma 5 0 + # Id: 2817320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Fe+3 + 2SO4-2 = Fe(SO4)2- + log_k 5.38 + delta_h 19.2 kJ + -gamma 0 0 + # Id: 2817321 + # log K source: Nord90 + # Delta H source: Nord90 + #T and ionic strength: 0.00 25.0 +Mn+2 + SO4-2 = MnSO4 + log_k 2.25 + delta_h 8.7 kJ + -gamma 0 0 + # Id: 4707320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cr(OH)2+ + 2H+ + SO4-2 = CrSO4+ + 2H2O + log_k 12.9371 + delta_h -98.62 kJ + -gamma 0 0 + # Id: 2117320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 50.0 +Cr(OH)2+ + H+ + SO4-2 = CrOHSO4 + H2O + log_k 8.2871 + delta_h 0 kJ + -gamma 0 0 + # Id: 2117321 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 +2Cr(OH)2+ + SO4-2 + 2H+ = Cr2(OH)2SO4+2 + 2H2O + log_k 16.155 + delta_h 0 kJ + -gamma 0 0 + # Id: 2117323 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +2Cr(OH)2+ + 2SO4-2 + 2H+ = Cr2(OH)2(SO4)2 + 2H2O + log_k 17.9288 + delta_h 0 kJ + -gamma 0 0 + # Id: 2117324 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + SO4-2 = USO4+2 + log_k 6.6 + delta_h 8 kJ + -gamma 0 0 + # Id: 8917320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +U+4 + 2SO4-2 = U(SO4)2 + log_k 10.5 + delta_h 33 kJ + -gamma 0 0 + # Id: 8917321 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +UO2+2 + SO4-2 = UO2SO4 + log_k 3.18 + delta_h 20 kJ + -gamma 0 0 + # Id: 8937320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +UO2+2 + 2SO4-2 = UO2(SO4)2-2 + log_k 4.3 + delta_h 38 kJ + -gamma 0 0 + # Id: 8937321 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +V+3 + SO4-2 = VSO4+ + log_k 2.674 + delta_h 0 kJ + -gamma 0 0 + # Id: 9017320 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +VO+2 + SO4-2 = VOSO4 + log_k 2.44 + delta_h 17 kJ + -gamma 0 0 + # Id: 9027320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +VO2+ + SO4-2 = VO2SO4- + log_k 1.378 + delta_h 0 kJ + -gamma 0 0 + # Id: 9037320 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 +Be+2 + SO4-2 = BeSO4 + log_k 2.19 + delta_h 29 kJ + -gamma 0 0 + # Id: 1107321 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Be+2 + 2SO4-2 = Be(SO4)2-2 + log_k 2.596 + delta_h 0 kJ + -gamma 0 0 + # Id: 1107322 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Mg+2 + SO4-2 = MgSO4 + log_k 2.26 + delta_h 5.8 kJ + -gamma 0 0 + # Id: 4607320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ca+2 + SO4-2 = CaSO4 + log_k 2.36 + delta_h 7.1 kJ + -gamma 0 0 + # Id: 1507320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Sr+2 + SO4-2 = SrSO4 + log_k 2.3 + delta_h 8 kJ + -gamma 0 0 + # Id: 8007321 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Li+ + SO4-2 = LiSO4- + log_k 0.64 + delta_h 0 kJ + -gamma 5 0 + # Id: 4407320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Na+ + SO4-2 = NaSO4- + log_k 0.73 + delta_h 1 kJ + -gamma 5.4 0 + # Id: 5007320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +K+ + SO4-2 = KSO4- + log_k 0.85 + delta_h 4.1 kJ + -gamma 5.4 0 + # Id: 4107320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +HSe- + H+ = H2Se + log_k 3.89 + delta_h 3.3 kJ + -gamma 0 0 + # Id: 3307600 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 + #T and ionic strength: 0.00 25.0 +2Ag+ + HSe- = Ag2Se + H+ + log_k 34.911 + delta_h 0 kJ + -gamma 0 0 + # Id: 207600 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Ag+ + H2O + 2HSe- = AgOH(Se)2-4 + 3H+ + log_k -20.509 + delta_h 0 kJ + -gamma 0 0 + # Id: 207601 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Mn+2 + HSe- = MnSe + H+ + log_k -5.385 + delta_h 0 kJ + -gamma 0 0 + # Id: 4707600 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +HSeO3- = SeO3-2 + H+ + log_k -8.4 + delta_h 5.02 kJ + -gamma 0 0 + # Id: 3307611 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +HSeO3- + H+ = H2SeO3 + log_k 2.63 + delta_h 6.2 kJ + -gamma 0 0 + # Id: 3307610 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cd+2 + 2HSeO3- = Cd(SeO3)2-2 + 2H+ + log_k -10.884 + delta_h 0 kJ + -gamma 0 0 + # Id: 1607610 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Ag+ + HSeO3- = AgSeO3- + H+ + log_k -5.592 + delta_h 0 kJ + -gamma 0 0 + # Id: 207610 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Ag+ + 2HSeO3- = Ag(SeO3)2-3 + 2H+ + log_k -13.04 + delta_h 0 kJ + -gamma 0 0 + # Id: 207611 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Fe+3 + HSeO3- = FeHSeO3+2 + log_k 3.422 + delta_h 25 kJ + -gamma 0 0 + # Id: 2817610 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 +SeO4-2 + H+ = HSeO4- + log_k 1.7 + delta_h 23 kJ + -gamma 0 0 + # Id: 3307620 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Zn+2 + SeO4-2 = ZnSeO4 + log_k 2.19 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507620 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Zn+2 + 2SeO4-2 = Zn(SeO4)2-2 + log_k 2.196 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507621 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Cd+2 + SeO4-2 = CdSeO4 + log_k 2.27 + delta_h 0 kJ + -gamma 0 0 + # Id: 1607620 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Ni+2 + SeO4-2 = NiSeO4 + log_k 2.67 + delta_h 14 kJ + -gamma 0 0 + # Id: 5407620 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Co+2 + SeO4-2 = CoSeO4 + log_k 2.7 + delta_h 12 kJ + -gamma 0 0 + # Id: 2007621 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Mn+2 + SeO4-2 = MnSeO4 + log_k 2.43 + delta_h 14 kJ + -gamma 0 0 + # Id: 4707620 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +NH4+ = NH3 + H+ + log_k -9.244 + delta_h -52 kJ + -gamma 0 0 + # Id: 3304900 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ag+ + NH4+ = AgNH3+ + H+ + log_k -5.934 + delta_h -72 kJ + -gamma 0 0 + # Id: 204901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ag+ + 2NH4+ = Ag(NH3)2+ + 2H+ + log_k -11.268 + delta_h -160 kJ + -gamma 0 0 + # Id: 204902 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + H+ + NH4+ = HgNH3+2 + 2H2O + log_k 5.75 + delta_h 0 kJ + -gamma 0 0 + # Id: 3614900 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 2.00 22.0 +Hg(OH)2 + 2NH4+ = Hg(NH3)2+2 + 2H2O + log_k 5.506 + delta_h -246.72 kJ + -gamma 0 0 + # Id: 3614901 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 +Hg(OH)2 + 3NH4+ = Hg(NH3)3+2 + 2H2O + H+ + log_k -3.138 + delta_h -312.72 kJ + -gamma 0 0 + # Id: 3614902 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 2.00 25.0 +Hg(OH)2 + 4NH4+ = Hg(NH3)4+2 + 2H2O + 2H+ + log_k -11.482 + delta_h -379.72 kJ + -gamma 0 0 + # Id: 3614903 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.10 25.0 +Cu+2 + NH4+ = CuNH3+2 + H+ + log_k -5.234 + delta_h -72 kJ + -gamma 0 0 + # Id: 2314901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ni+2 + NH4+ = NiNH3+2 + H+ + log_k -6.514 + delta_h -67 kJ + -gamma 0 0 + # Id: 5404901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Ni+2 + 2NH4+ = Ni(NH3)2+2 + 2H+ + log_k -13.598 + delta_h -111.6 kJ + -gamma 0 0 + # Id: 5404902 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Co+2 + NH4+ = Co(NH3)+2 + H+ + log_k -7.164 + delta_h -65 kJ + -gamma 0 0 + # Id: 2004900 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Co+2 + 2NH4+ = Co(NH3)2+2 + 2H+ + log_k -14.778 + delta_h 0 kJ + -gamma 0 0 + # Id: 2004901 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 2.00 25.0 +Co+2 + 3NH4+ = Co(NH3)3+2 + 3H+ + log_k -22.922 + delta_h 0 kJ + -gamma 0 0 + # Id: 2004902 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 2.00 25.0 +Co+2 + 4NH4+ = Co(NH3)4+2 + 4H+ + log_k -31.446 + delta_h 0 kJ + -gamma 0 0 + # Id: 2004903 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 2.00 30.0 +Co+2 + 5NH4+ = Co(NH3)5+2 + 5H+ + log_k -40.47 + delta_h 0 kJ + -gamma 0 0 + # Id: 2004904 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 2.00 30.0 +Co+3 + 6NH4+ + H2O = Co(NH3)6OH+2 + 7H+ + log_k -43.7148 + delta_h 0 kJ + -gamma 0 0 + # Id: 2014901 + # log K source: NIST2.1.1 + # Delta H source: MTQ3.11 + #T and ionic strength: +Co+3 + 5NH4+ + Cl- = Co(NH3)5Cl+2 + 5H+ + log_k -17.9584 + delta_h 113.38 kJ + -gamma 0 0 + # Id: 2014902 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Co+3 + 6NH4+ + Cl- = Co(NH3)6Cl+2 + 6H+ + log_k -33.9179 + delta_h 104.34 kJ + -gamma 0 0 + # Id: 2014903 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Co+3 + 6NH4+ + Br- = Co(NH3)6Br+2 + 6H+ + log_k -33.8884 + delta_h 110.57 kJ + -gamma 0 0 + # Id: 2014904 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Co+3 + 6NH4+ + I- = Co(NH3)6I+2 + 6H+ + log_k -33.4808 + delta_h 115.44 kJ + -gamma 0 0 + # Id: 2014905 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Co+3 + 6NH4+ + SO4-2 = Co(NH3)6SO4+ + 6H+ + log_k -28.9926 + delta_h 124.5 kJ + -gamma 0 0 + # Id: 2014906 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Cr(OH)2+ + 6NH4+ = Cr(NH3)6+3 + 2H2O + 4H+ + log_k -32.8952 + delta_h 0 kJ + -gamma 0 0 + # Id: 2114900 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 4.50 25.0 +Cr(OH)2+ + 5NH4+ = Cr(NH3)5OH+2 + 4H+ + H2O + log_k -30.2759 + delta_h 0 kJ + -gamma 0 0 + # Id: 2114901 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cr(OH)2+ + 6NH4+ + Cl- = Cr(NH3)6Cl+2 + 2H2O + 4H+ + log_k -31.7932 + delta_h 0 kJ + -gamma 0 0 + # Id: 2114904 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cr(OH)2+ + 6NH4+ + Br- = Cr(NH3)6Br+2 + 4H+ + 2H2O + log_k -31.887 + delta_h 0 kJ + -gamma 0 0 + # Id: 2114905 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cr(OH)2+ + 6NH4+ + I- = Cr(NH3)6I+2 + 4H+ + 2H2O + log_k -32.008 + delta_h 0 kJ + -gamma 0 0 + # Id: 2114906 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +#Cr(OH)2+ + 4NH4+ = cis+ + 4H+ +# log_k -29.8574 +# delta_h 0 kJ +# -gamma 0 0 +# # Id: 4902113 +# # log K source: MTQ3.11 +# # Delta H source: MTQ3.11 +# #T and ionic strength: +#Cr(OH)2+ + 4NH4+ = trans+ + 4H+ +# log_k -30.5537 +# delta_h 0 kJ +# -gamma 0 0 +# # Id: 4902114 +# # log K source: MTQ3.11 +# # Delta H source: MTQ3.11 +# #T and ionic strength: +Ca+2 + NH4+ = CaNH3+2 + H+ + log_k -9.144 + delta_h 0 kJ + -gamma 0 0 + # Id: 1504901 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Ca+2 + 2NH4+ = Ca(NH3)2+2 + 2H+ + log_k -18.788 + delta_h 0 kJ + -gamma 0 0 + # Id: 1504902 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Sr+2 + NH4+ = SrNH3+2 + H+ + log_k -9.344 + delta_h 0 kJ + -gamma 0 0 + # Id: 8004901 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Ba+2 + NH4+ = BaNH3+2 + H+ + log_k -9.444 + delta_h 0 kJ + -gamma 0 0 + # Id: 1004901 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Tl+ + NO2- = TlNO2 + log_k 0.83 + delta_h 0 kJ + -gamma 0 0 + # Id: 8704910 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Ag+ + NO2- = AgNO2 + log_k 2.32 + delta_h -29 kJ + -gamma 0 0 + # Id: 204911 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ag+ + 2NO2- = Ag(NO2)2- + log_k 2.51 + delta_h -46 kJ + -gamma 0 0 + # Id: 204910 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cu+2 + NO2- = CuNO2+ + log_k 2.02 + delta_h 0 kJ + -gamma 0 0 + # Id: 2314911 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cu+2 + 2NO2- = Cu(NO2)2 + log_k 3.03 + delta_h 0 kJ + -gamma 0 0 + # Id: 2314912 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Co+2 + NO2- = CoNO2+ + log_k 0.848 + delta_h 0 kJ + -gamma 0 0 + # Id: 2004911 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Sn(OH)2 + 2H+ + NO3- = SnNO3+ + 2H2O + log_k 7.942 + delta_h 0 kJ + -gamma 0 0 + # Id: 7904921 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Pb+2 + NO3- = PbNO3+ + log_k 1.17 + delta_h 2 kJ + -gamma 0 0 + # Id: 6004920 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Pb+2 + 2NO3- = Pb(NO3)2 + log_k 1.4 + delta_h -6.6 kJ + -gamma 0 0 + # Id: 6004921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Tl+ + NO3- = TlNO3 + log_k 0.33 + delta_h -2 kJ + -gamma 0 0 + # Id: 8704920 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Tl(OH)3 + NO3- + 3H+ = TlNO3+2 + 3H2O + log_k 7.0073 + delta_h 0 kJ + -gamma 0 0 + # Id: 8714920 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cd+2 + NO3- = CdNO3+ + log_k 0.5 + delta_h -21 kJ + -gamma 0 0 + # Id: 1604920 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Cd+2 + 2NO3- = Cd(NO3)2 + log_k 0.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 1604921 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + 2H+ + NO3- = HgNO3+ + 2H2O + log_k 5.7613 + delta_h 0 kJ + -gamma 0 0 + # Id: 3614920 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 3.00 25.0 +Hg(OH)2 + 2H+ + 2NO3- = Hg(NO3)2 + 2H2O + log_k 5.38 + delta_h 0 kJ + -gamma 0 0 + # Id: 3614921 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 3.00 25.0 +Cu+2 + NO3- = CuNO3+ + log_k 0.5 + delta_h -4.1 kJ + -gamma 0 0 + # Id: 2314921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Cu+2 + 2NO3- = Cu(NO3)2 + log_k -0.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2314922 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Zn+2 + NO3- = ZnNO3+ + log_k 0.4 + delta_h -4.6 kJ + -gamma 0 0 + # Id: 9504921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Zn+2 + 2NO3- = Zn(NO3)2 + log_k -0.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 9504922 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Ag+ + NO3- = AgNO3 + log_k -0.1 + delta_h 22.6 kJ + -gamma 0 0 + # Id: 204920 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ni+2 + NO3- = NiNO3+ + log_k 0.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 5404921 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Co+2 + NO3- = CoNO3+ + log_k 0.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2004921 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Co+2 + 2NO3- = Co(NO3)2 + log_k 0.5085 + delta_h 0 kJ + -gamma 0 0 + # Id: 2004922 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Fe+3 + NO3- = FeNO3+2 + log_k 1 + delta_h -37 kJ + -gamma 0 0 + # Id: 2814921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Mn+2 + NO3- = MnNO3+ + log_k 0.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 4704921 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Mn+2 + 2NO3- = Mn(NO3)2 + log_k 0.6 + delta_h -1.6569 kJ + -gamma 0 0 + # Id: 4704920 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cr(OH)2+ + NO3- + 2H+ = CrNO3+2 + 2H2O + log_k 8.2094 + delta_h -65.4378 kJ + -gamma 0 0 + # Id: 2114920 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +UO2+2 + NO3- = UO2NO3+ + log_k 0.3 + delta_h -12 kJ + -gamma 0 0 + # Id: 8934921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +VO2+ + NO3- = VO2NO3 + log_k -0.296 + delta_h 0 kJ + -gamma 0 0 + # Id: 9034920 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 +Ca+2 + NO3- = CaNO3+ + log_k 0.5 + delta_h -5.4 kJ + -gamma 0 0 + # Id: 1504921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Sr+2 + NO3- = SrNO3+ + log_k 0.6 + delta_h -10 kJ + -gamma 0 0 + # Id: 8004921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ba+2 + NO3- = BaNO3+ + log_k 0.7 + delta_h -13 kJ + -gamma 0 0 + # Id: 1004921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +H+ + Cyanide- = HCyanide + log_k 9.21 + delta_h -43.63 kJ + -gamma 0 0 + # Id: 3301431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Cd+2 + Cyanide- = CdCyanide+ + log_k 6.01 + delta_h -30 kJ + -gamma 0 0 + # Id: 1601431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Cd+2 + 2Cyanide- = Cd(Cyanide)2 + log_k 11.12 + delta_h -54.3 kJ + -gamma 0 0 + # Id: 1601432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Cd+2 + 3Cyanide- = Cd(Cyanide)3- + log_k 15.65 + delta_h -90.3 kJ + -gamma 0 0 + # Id: 1601433 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Cd+2 + 4Cyanide- = Cd(Cyanide)4-2 + log_k 17.92 + delta_h -112 kJ + -gamma 0 0 + # Id: 1601434 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + 2H+ + Cyanide- = HgCyanide+ + 2H2O + log_k 23.194 + delta_h -136.72 kJ + -gamma 0 0 + # Id: 3611431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + 2H+ + 2Cyanide- = Hg(Cyanide)2 + 2H2O + log_k 38.944 + delta_h 154.28 kJ + -gamma 0 0 + # Id: 3611432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + 2H+ + 3Cyanide- = Hg(Cyanide)3- + 2H2O + log_k 42.504 + delta_h -262.72 kJ + -gamma 0 0 + # Id: 3611433 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + 2H+ + 4Cyanide- = Hg(Cyanide)4-2 + 2H2O + log_k 45.164 + delta_h -288.72 kJ + -gamma 0 0 + # Id: 3611434 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Cu+ + 2Cyanide- = Cu(Cyanide)2- + log_k 21.9145 + delta_h -121 kJ + -gamma 0 0 + # Id: 2301432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Cu+ + 3Cyanide- = Cu(Cyanide)3-2 + log_k 27.2145 + delta_h -167.4 kJ + -gamma 0 0 + # Id: 2301433 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Cu+ + 4Cyanide- = Cu(Cyanide)4-3 + log_k 28.7145 + delta_h -214.2 kJ + -gamma 0 0 + # Id: 2301431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ag+ + 2Cyanide- = Ag(Cyanide)2- + log_k 20.48 + delta_h -137 kJ + -gamma 0 0 + # Id: 201432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ag+ + 3Cyanide- = Ag(Cyanide)3-2 + log_k 21.7 + delta_h -140 kJ + -gamma 0 0 + # Id: 201433 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ag+ + H2O + Cyanide- = Ag(Cyanide)OH- + H+ + log_k -0.777 + delta_h 0 kJ + -gamma 0 0 + # Id: 201431 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Ni+2 + 4Cyanide- = Ni(Cyanide)4-2 + log_k 30.2 + delta_h -180 kJ + -gamma 0 0 + # Id: 5401431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ni+2 + 4Cyanide- + H+ = NiH(Cyanide)4- + log_k 36.0289 + delta_h 0 kJ + -gamma 0 0 + # Id: 5401432 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 +Ni+2 + 4Cyanide- + 2H+ = NiH2Cyanide4 + log_k 40.7434 + delta_h 0 kJ + -gamma 0 0 + # Id: 5401433 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 +Ni+2 + 4Cyanide- + 3H+ = NiH3(Cyanide)4+ + log_k 43.3434 + delta_h 0 kJ + -gamma 0 0 + # Id: 5401434 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 +Co+2 + 3Cyanide- = Co(Cyanide)3- + log_k 14.312 + delta_h 0 kJ + -gamma 0 0 + # Id: 2001431 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 +Co+2 + 5Cyanide- = Co(Cyanide)5-3 + log_k 23 + delta_h -257 kJ + -gamma 0 0 + # Id: 2001432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 1.00 25.0 +Fe+2 + 6Cyanide- = Fe(Cyanide)6-4 + log_k 35.4 + delta_h -358 kJ + -gamma 0 0 + # Id: 2801431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +H+ + Fe+2 + 6Cyanide- = HFe(Cyanide)6-3 + log_k 39.71 + delta_h -356 kJ + -gamma 0 0 + # Id: 2801432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +2H+ + Fe+2 + 6Cyanide- = H2Fe(Cyanide)6-2 + log_k 42.11 + delta_h -352 kJ + -gamma 0 0 + # Id: 2801433 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Fe+3 + 6Cyanide- = Fe(Cyanide)6-3 + log_k 43.6 + delta_h -293 kJ + -gamma 0 0 + # Id: 2811431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +2Fe+3 + 6Cyanide- = Fe2(Cyanide)6 + log_k 47.6355 + delta_h -218 kJ + -gamma 0 0 + # Id: 2811432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 +Sn(OH)2 + Fe+3 + 6Cyanide- + 2H+ = SnFe(Cyanide)6- + 2H2O + log_k 53.54 + delta_h 0 kJ + -gamma 0 0 + # Id: 7901431 + # log K source: Ba1987 + # Delta H source: + #T and ionic strength: 0.00 25.0 +NH4+ + Fe+2 + 6Cyanide- = NH4Fe(Cyanide)6-3 + log_k 37.7 + delta_h -354 kJ + -gamma 0 0 + # Id: 4901431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Tl+ + Fe+2 + 6Cyanide- = TlFe(Cyanide)6-3 + log_k 38.4 + delta_h -365.5 kJ + -gamma 0 0 + # Id: 8701432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Mg+2 + Fe+3 + 6Cyanide- = MgFe(Cyanide)6- + log_k 46.39 + delta_h -290 kJ + -gamma 0 0 + # Id: 4601431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Mg+2 + Fe+2 + 6Cyanide- = MgFe(Cyanide)6-2 + log_k 39.21 + delta_h -346 kJ + -gamma 0 0 + # Id: 4601432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ca+2 + Fe+3 + 6Cyanide- = CaFe(Cyanide)6- + log_k 46.43 + delta_h -291 kJ + -gamma 0 0 + # Id: 1501431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ca+2 + Fe+2 + 6Cyanide- = CaFe(Cyanide)6-2 + log_k 39.1 + delta_h -347 kJ + -gamma 0 0 + # Id: 1501432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +2Ca+2 + Fe+2 + 6Cyanide- = Ca2Fe(Cyanide)6 + log_k 40.6 + delta_h -350.201 kJ + -gamma 0 0 + # Id: 1501433 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Sr+2 + Fe+3 + 6Cyanide- = SrFe(Cyanide)6- + log_k 46.45 + delta_h -292 kJ + -gamma 0 0 + # Id: 8001431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Sr+2 + Fe+2 + 6Cyanide- = SrFe(Cyanide)6-2 + log_k 39.1 + delta_h -350 kJ + -gamma 0 0 + # Id: 8001432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ba+2 + Fe+2 + 6Cyanide- = BaFe(Cyanide)6-2 + log_k 39.19 + delta_h -342 kJ + -gamma 0 0 + # Id: 1001430 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ba+2 + Fe+3 + 6Cyanide- = BaFe(Cyanide)6- + log_k 46.48 + delta_h -292 kJ + -gamma 0 0 + # Id: 1001431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Na+ + Fe+2 + 6Cyanide- = NaFe(Cyanide)6-3 + log_k 37.6 + delta_h -354 kJ + -gamma 0 0 + # Id: 5001431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +K+ + Fe+2 + 6Cyanide- = KFe(Cyanide)6-3 + log_k 37.75 + delta_h -353.9 kJ + -gamma 0 0 + # Id: 4101433 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +K+ + Fe+3 + 6Cyanide- = KFe(Cyanide)6-2 + log_k 45.04 + delta_h -291 kJ + -gamma 0 0 + # Id: 4101430 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +H+ + PO4-3 = HPO4-2 + log_k 12.375 + delta_h -15 kJ + -gamma 5 0 + # Id: 3305800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +2H+ + PO4-3 = H2PO4- + log_k 19.573 + delta_h -18 kJ + -gamma 5.4 0 + # Id: 3305801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +3H+ + PO4-3 = H3PO4 + log_k 21.721 + delta_h -10.1 kJ + -gamma 0 0 + # Id: 3305802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Co+2 + H+ + PO4-3 = CoHPO4 + log_k 15.4128 + delta_h 0 kJ + -gamma 0 0 + # Id: 2005800 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 +Fe+2 + 2H+ + PO4-3 = FeH2PO4+ + log_k 22.273 + delta_h 0 kJ + -gamma 5.4 0 + # Id: 2805800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Fe+2 + H+ + PO4-3 = FeHPO4 + log_k 15.975 + delta_h 0 kJ + -gamma 0 0 + # Id: 2805801 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Fe+3 + 2H+ + PO4-3 = FeH2PO4+2 + log_k 23.8515 + delta_h 0 kJ + -gamma 5.4 0 + # Id: 2815801 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Fe+3 + H+ + PO4-3 = FeHPO4+ + log_k 22.292 + delta_h -30.5432 kJ + -gamma 5.4 0 + # Id: 2815800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Cr(OH)2+ + 4H+ + PO4-3 = CrH2PO4+2 + 2H2O + log_k 31.9068 + delta_h 0 kJ + -gamma 0 0 + # Id: 2115800 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + PO4-3 + H+ = UHPO4+2 + log_k 24.443 + delta_h 31.38 kJ + -gamma 0 0 + # Id: 8915800 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 2PO4-3 + 2H+ = U(HPO4)2 + log_k 46.833 + delta_h 7.1128 kJ + -gamma 0 0 + # Id: 8915801 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 3PO4-3 + 3H+ = U(HPO4)3-2 + log_k 67.564 + delta_h -32.6352 kJ + -gamma 0 0 + # Id: 8915802 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 4PO4-3 + 4H+ = U(HPO4)4-4 + log_k 88.483 + delta_h -110.876 kJ + -gamma 0 0 + # Id: 8915803 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +UO2+2 + H+ + PO4-3 = UO2HPO4 + log_k 19.655 + delta_h -8.7864 kJ + -gamma 0 0 + # Id: 8935800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +UO2+2 + 2PO4-3 + 2H+ = UO2(HPO4)2-2 + log_k 42.988 + delta_h -47.6934 kJ + -gamma 0 0 + # Id: 8935801 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +UO2+2 + 2H+ + PO4-3 = UO2H2PO4+ + log_k 22.833 + delta_h -15.4808 kJ + -gamma 0 0 + # Id: 8935802 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +UO2+2 + 2PO4-3 + 4H+ = UO2(H2PO4)2 + log_k 44.7 + delta_h -69.036 kJ + -gamma 0 0 + # Id: 8935803 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +UO2+2 + 3PO4-3 + 6H+ = UO2(H2PO4)3- + log_k 66.245 + delta_h -119.662 kJ + -gamma 0 0 + # Id: 8935804 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +UO2+2 + PO4-3 = UO2PO4- + log_k 13.25 + delta_h 0 kJ + -gamma 0 0 + # Id: 8935805 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Mg+2 + PO4-3 = MgPO4- + log_k 4.654 + delta_h 12.9704 kJ + -gamma 5.4 0 + # Id: 4605800 + # log K source: SCD3.02 (1993 GMa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.20 25.0 +Mg+2 + 2H+ + PO4-3 = MgH2PO4+ + log_k 21.2561 + delta_h -4.6861 kJ + -gamma 5.4 0 + # Id: 4605801 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 37.0 +Mg+2 + H+ + PO4-3 = MgHPO4 + log_k 15.175 + delta_h -3 kJ + -gamma 0 0 + # Id: 4605802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ca+2 + H+ + PO4-3 = CaHPO4 + log_k 15.035 + delta_h -3 kJ + -gamma 0 0 + # Id: 1505800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ca+2 + PO4-3 = CaPO4- + log_k 6.46 + delta_h 12.9704 kJ + -gamma 5.4 0 + # Id: 1505801 + # log K source: SCD3.02 (1993 GMa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Ca+2 + 2H+ + PO4-3 = CaH2PO4+ + log_k 20.923 + delta_h -6 kJ + -gamma 5.4 0 + # Id: 1505802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Sr+2 + H+ + PO4-3 = SrHPO4 + log_k 14.8728 + delta_h 0 kJ + -gamma 0 0 + # Id: 8005800 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 +Sr+2 + 2H+ + PO4-3 = SrH2PO4+ + log_k 20.4019 + delta_h 0 kJ + -gamma 0 0 + # Id: 8005801 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 20.0 +Na+ + H+ + PO4-3 = NaHPO4- + log_k 13.445 + delta_h 0 kJ + -gamma 5.4 0 + # Id: 5005800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +K+ + H+ + PO4-3 = KHPO4- + log_k 13.255 + delta_h 0 kJ + -gamma 5.4 0 + # Id: 4105800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +H3AsO3 = AsO3-3 + 3H+ + log_k -34.744 + delta_h 84.726 kJ + -gamma 0 0 + # Id: 3300602 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +H3AsO3 = HAsO3-2 + 2H+ + log_k -21.33 + delta_h 59.4086 kJ + -gamma 0 0 + # Id: 3300601 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +H3AsO3 = H2AsO3- + H+ + log_k -9.29 + delta_h 27.41 kJ + -gamma 0 0 + # Id: 3300600 + # log K source: NIST46.4 + # Delta H source: NIST2.1.1 + #T and ionic strength: 0.00 25.0 +H3AsO3 + H+ = H4AsO3+ + log_k -0.305 + delta_h 0 kJ + -gamma 0 0 + # Id: 3300603 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +H3AsO4 = AsO4-3 + 3H+ + log_k -20.7 + delta_h 12.9 kJ + -gamma 0 0 + # Id: 3300613 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +H3AsO4 = HAsO4-2 + 2H+ + log_k -9.2 + delta_h -4.1 kJ + -gamma 0 0 + # Id: 3300612 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +H3AsO4 = H2AsO4- + H+ + log_k -2.24 + delta_h -7.1 kJ + -gamma 0 0 + # Id: 3300611 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Sb(OH)3 + H2O = Sb(OH)4- + H+ + log_k -12.0429 + delta_h 69.8519 kJ + -gamma 0 0 + # Id: 7400020 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: +Sb(OH)3 + H+ = Sb(OH)2+ + H2O + log_k 1.3853 + delta_h 0 kJ + -gamma 0 0 + # Id: 7403302 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: +Sb(OH)3 = HSbO2 + H2O + log_k -0.0105 + delta_h -0.13 kJ + -gamma 0 0 + # Id: 7400021 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Sb(OH)3 = SbO2- + H2O + H+ + log_k -11.8011 + delta_h 70.1866 kJ + -gamma 0 0 + # Id: 7403301 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: +Sb(OH)3 + H+ = SbO+ + 2H2O + log_k 0.9228 + delta_h 8.2425 kJ + -gamma 0 0 + # Id: 7403300 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: +Sb(OH)6- = SbO3- + 3H2O + log_k 2.9319 + delta_h 0 kJ + -gamma 0 0 + # Id: 7410021 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: +Sb(OH)6- + 2H+ = SbO2+ + 4H2O + log_k 2.3895 + delta_h 0 kJ + -gamma 0 0 + # Id: 7413300 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: +H+ + CO3-2 = HCO3- + log_k 10.329 + delta_h -14.6 kJ + -gamma 5.4 0 + # Id: 3301400 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +2H+ + CO3-2 = H2CO3 + log_k 16.681 + delta_h -23.76 kJ + -gamma 0 0 + # Id: 3301401 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Pb+2 + 2CO3-2 = Pb(CO3)2-2 + log_k 9.938 + delta_h 0 kJ + -gamma 0 0 + # Id: 6001400 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Pb+2 + CO3-2 = PbCO3 + log_k 6.478 + delta_h 0 kJ + -gamma 0 0 + # Id: 6001401 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Pb+2 + CO3-2 + H+ = PbHCO3+ + log_k 13.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 6001402 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Zn+2 + CO3-2 = ZnCO3 + log_k 4.76 + delta_h 0 kJ + -gamma 0 0 + # Id: 9501401 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Zn+2 + H+ + CO3-2 = ZnHCO3+ + log_k 11.829 + delta_h 0 kJ + -gamma 0 0 + # Id: 9501400 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + 2H+ + CO3-2 = HgCO3 + 2H2O + log_k 18.272 + delta_h 0 kJ + -gamma 0 0 + # Id: 3611401 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Hg(OH)2 + 2H+ + 2CO3-2 = Hg(CO3)2-2 + 2H2O + log_k 21.772 + delta_h 0 kJ + -gamma 0 0 + # Id: 3611402 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Hg(OH)2 + 3H+ + CO3-2 = HgHCO3+ + 2H2O + log_k 22.542 + delta_h 0 kJ + -gamma 0 0 + # Id: 3611403 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Cd+2 + CO3-2 = CdCO3 + log_k 4.3578 + delta_h 0 kJ + -gamma 0 0 + # Id: 1601401 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 +Cd+2 + H+ + CO3-2 = CdHCO3+ + log_k 10.6863 + delta_h 0 kJ + -gamma 0 0 + # Id: 1601400 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 3.00 25.0 +Cd+2 + 2CO3-2 = Cd(CO3)2-2 + log_k 7.2278 + delta_h 0 kJ + -gamma 0 0 + # Id: 1601403 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 20.0 +Cu+2 + CO3-2 = CuCO3 + log_k 6.77 + delta_h 0 kJ + -gamma 0 0 + # Id: 2311400 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cu+2 + H+ + CO3-2 = CuHCO3+ + log_k 12.129 + delta_h 0 kJ + -gamma 0 0 + # Id: 2311402 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Cu+2 + 2CO3-2 = Cu(CO3)2-2 + log_k 10.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2311401 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Ni+2 + CO3-2 = NiCO3 + log_k 4.5718 + delta_h 0 kJ + -gamma 0 0 + # Id: 5401401 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.70 25.0 +Ni+2 + H+ + CO3-2 = NiHCO3+ + log_k 12.4199 + delta_h 0 kJ + -gamma 0 0 + # Id: 5401400 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.70 25.0 +Co+2 + CO3-2 = CoCO3 + log_k 4.228 + delta_h 0 kJ + -gamma 0 0 + # Id: 2001400 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +Co+2 + H+ + CO3-2 = CoHCO3+ + log_k 12.2199 + delta_h 0 kJ + -gamma 0 0 + # Id: 2001401 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.70 25.0 +Fe+2 + H+ + CO3-2 = FeHCO3+ + log_k 11.429 + delta_h 0 kJ + -gamma 6 0 + # Id: 2801400 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Mn+2 + H+ + CO3-2 = MnHCO3+ + log_k 11.629 + delta_h -10.6 kJ + -gamma 5 0 + # Id: 4701400 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +UO2+2 + CO3-2 = UO2CO3 + log_k 9.6 + delta_h 4 kJ + -gamma 0 0 + # Id: 8931400 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +UO2+2 + 2CO3-2 = UO2(CO3)2-2 + log_k 16.9 + delta_h 16 kJ + -gamma 0 0 + # Id: 8931401 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +UO2+2 + 3CO3-2 = UO2(CO3)3-4 + log_k 21.6 + delta_h -40 kJ + -gamma 0 0 + # Id: 8931402 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Be+2 + CO3-2 = BeCO3 + log_k 6.2546 + delta_h 0 kJ + -gamma 0 0 + # Id: 1101401 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 3.00 25.0 +Mg+2 + CO3-2 = MgCO3 + log_k 2.92 + delta_h 12 kJ + -gamma 0 0 + # Id: 4601400 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Mg+2 + H+ + CO3-2 = MgHCO3+ + log_k 11.339 + delta_h -10.6 kJ + -gamma 4 0 + # Id: 4601401 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Ca+2 + H+ + CO3-2 = CaHCO3+ + log_k 11.599 + delta_h 5.4 kJ + -gamma 6 0 + # Id: 1501400 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +CO3-2 + Ca+2 = CaCO3 + log_k 3.2 + delta_h 16 kJ + -gamma 0 0 + # Id: 1501401 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +Sr+2 + CO3-2 = SrCO3 + log_k 2.81 + delta_h 20 kJ + -gamma 0 0 + # Id: 8001401 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Sr+2 + H+ + CO3-2 = SrHCO3+ + log_k 11.539 + delta_h 10.4 kJ + -gamma 6 0 + # Id: 8001400 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ba+2 + CO3-2 = BaCO3 + log_k 2.71 + delta_h 16 kJ + -gamma 0 0 + # Id: 1001401 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ba+2 + H+ + CO3-2 = BaHCO3+ + log_k 11.309 + delta_h 10.4 kJ + -gamma 6 0 + # Id: 1001400 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Na+ + CO3-2 = NaCO3- + log_k 1.27 + delta_h -20.35 kJ + -gamma 5.4 0 + # Id: 5001400 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 + #T and ionic strength: 0.00 25.0 +Na+ + H+ + CO3-2 = NaHCO3 + log_k 10.079 + delta_h -28.3301 kJ + -gamma 0 0 + # Id: 5001401 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 + #T and ionic strength: 0.00 25.0 +H4SiO4 = H2SiO4-2 + 2H+ + log_k -23.04 + delta_h 61 kJ + -gamma 5.4 0 + # Id: 3307701 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +H4SiO4 = H3SiO4- + H+ + log_k -9.84 + delta_h 20 kJ + -gamma 4 0 + # Id: 3307700 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +UO2+2 + H4SiO4 = UO2H3SiO4+ + H+ + log_k -1.9111 + delta_h 0 kJ + -gamma 0 0 + # Id: 8937700 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 +H3BO3 = H2BO3- + H+ + log_k -9.236 + delta_h 13 kJ + -gamma 2.5 0 + # Id: 3300900 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +2H3BO3 = H5(BO3)2- + H+ + log_k -9.306 + delta_h 8.4 kJ + -gamma 2.5 0 + # Id: 3300901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +3H3BO3 = H8(BO3)3- + H+ + log_k -7.306 + delta_h 29.4 kJ + -gamma 2.5 0 + # Id: 3300902 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ag+ + H3BO3 = AgH2BO3 + H+ + log_k -8.036 + delta_h 0 kJ + -gamma 2.5 0 + # Id: 200901 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Mg+2 + H3BO3 = MgH2BO3+ + H+ + log_k -7.696 + delta_h 13 kJ + -gamma 2.5 0 + # Id: 4600901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ca+2 + H3BO3 = CaH2BO3+ + H+ + log_k -7.476 + delta_h 17 kJ + -gamma 2.5 0 + # Id: 1500901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Sr+2 + H3BO3 = SrH2BO3+ + H+ + log_k -7.686 + delta_h 17 kJ + -gamma 2.5 0 + # Id: 8000901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ba+2 + H3BO3 = BaH2BO3+ + H+ + log_k -7.746 + delta_h 17 kJ + -gamma 2.5 0 + # Id: 1000901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Na+ + H3BO3 = NaH2BO3 + H+ + log_k -9.036 + delta_h 0 kJ + -gamma 2.5 0 + # Id: 5000901 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +CrO4-2 + H+ = HCrO4- + log_k 6.51 + delta_h 2 kJ + -gamma 0 0 + # Id: 2123300 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +CrO4-2 + 2H+ = H2CrO4 + log_k 6.4188 + delta_h 39 kJ + -gamma 0 0 + # Id: 2123301 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 20.0 +2CrO4-2 + 2H+ = Cr2O7-2 + H2O + log_k 14.56 + delta_h -15 kJ + -gamma 0 0 + # Id: 2123302 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +CrO4-2 + Cl- + 2H+ = CrO3Cl- + H2O + log_k 7.3086 + delta_h 0 kJ + -gamma 0 0 + # Id: 2121800 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +CrO4-2 + SO4-2 + 2H+ = CrO3SO4-2 + H2O + log_k 8.9937 + delta_h 0 kJ + -gamma 0 0 + # Id: 2127320 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +CrO4-2 + 4H+ + PO4-3 = CrO3H2PO4- + H2O + log_k 29.3634 + delta_h 0 kJ + -gamma 0 0 + # Id: 2125800 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +CrO4-2 + 3H+ + PO4-3 = CrO3HPO4-2 + H2O + log_k 26.6806 + delta_h 0 kJ + -gamma 0 0 + # Id: 2125801 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +CrO4-2 + Na+ = NaCrO4- + log_k 0.6963 + delta_h 0 kJ + -gamma 0 0 + # Id: 5002120 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +K+ + CrO4-2 = KCrO4- + log_k 0.57 + delta_h 0 kJ + -gamma 0 0 + # Id: 4102120 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 18.0 +MoO4-2 + H+ = HMoO4- + log_k 4.2988 + delta_h 20 kJ + -gamma 0 0 + # Id: 3304801 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 20.0 +MoO4-2 + 2H+ = H2MoO4 + log_k 8.1636 + delta_h -26 kJ + -gamma 0 0 + # Id: 3304802 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 20.0 +7MoO4-2 + 8H+ = Mo7O24-6 + 4H2O + log_k 52.99 + delta_h -228 kJ + -gamma 0 0 + # Id: 3304803 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +7MoO4-2 + 9H+ = HMo7O24-5 + 4H2O + log_k 59.3768 + delta_h -218 kJ + -gamma 0 0 + # Id: 3304804 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +7MoO4-2 + 10H+ = H2Mo7O24-4 + 4H2O + log_k 64.159 + delta_h -215 kJ + -gamma 0 0 + # Id: 3304805 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +7MoO4-2 + 11H+ = H3Mo7O24-3 + 4H2O + log_k 67.405 + delta_h -217 kJ + -gamma 0 0 + # Id: 3304806 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 1.00 25.0 +6MoO4-2 + Al+3 + 6H+ = AlMo6O21-3 + 3H2O + log_k 54.9925 + delta_h 0 kJ + -gamma 0 0 + # Id: 304801 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 +MoO4-2 + 2Ag+ = Ag2MoO4 + log_k -0.4219 + delta_h -1.18 kJ + -gamma 0 0 + # Id: 204801 + # log K source: Bard85 + # Delta H source: Bard85 + #T and ionic strength: +VO2+ + 2H2O = VO4-3 + 4H+ + log_k -30.2 + delta_h -25 kJ + -gamma 0 0 + # Id: 9033303 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +VO2+ + 2H2O = HVO4-2 + 3H+ + log_k -15.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 9033302 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +VO2+ + 2H2O = H2VO4- + 2H+ + log_k -7.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 9033301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +VO2+ + 2H2O = H3VO4 + H+ + log_k -3.3 + delta_h 44.4759 kJ + -gamma 0 0 + # Id: 9033300 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +2VO2+ + 3H2O = V2O7-4 + 6H+ + log_k -31.24 + delta_h -28 kJ + -gamma 0 0 + # Id: 9030020 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +2VO2+ + 3H2O = HV2O7-3 + 5H+ + log_k -20.67 + delta_h 0 kJ + -gamma 0 0 + # Id: 9030021 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +2VO2+ + 3H2O = H3V2O7- + 3H+ + log_k -3.79 + delta_h 0 kJ + -gamma 0 0 + # Id: 9030022 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +3VO2+ + 3H2O = V3O9-3 + 6H+ + log_k -15.88 + delta_h 0 kJ + -gamma 0 0 + # Id: 9030023 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +4VO2+ + 4H2O = V4O12-4 + 8H+ + log_k -20.56 + delta_h -87 kJ + -gamma 0 0 + # Id: 9030024 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 +10VO2+ + 8H2O = V10O28-6 + 16H+ + log_k -24.0943 + delta_h 0 kJ + -gamma 0 0 + # Id: 9030025 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 20.0 +10VO2+ + 8H2O = HV10O28-5 + 15H+ + log_k -15.9076 + delta_h 90.0397 kJ + -gamma 0 0 + # Id: 9030026 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 20.0 +10VO2+ + 8H2O = H2V10O28-4 + 14H+ + log_k -10.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 9030027 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 +Benzoate- + H+ = H(Benzoate) + log_k 4.202 + delta_h -0.4602 kJ + -gamma 0 0 + # Id: 3309171 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Benzoate- + Pb+2 = Pb(Benzoate)+ + log_k 2.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009171 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Benzoate- + Al+3 = Al(Benzoate)+2 + log_k 2.05 + delta_h 0 kJ + -gamma 0 0 + # Id: 309171 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Benzoate- + Al+3 + H2O = AlOH(Benzoate)+ + H+ + log_k -0.56 + delta_h 0 kJ + -gamma 0 0 + # Id: 309172 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Benzoate- + Zn+2 = Zn(Benzoate)+ + log_k 1.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509171 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Benzoate- + Cd+2 = Cd(Benzoate)+ + log_k 1.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609171 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2Benzoate- + Cd+2 = Cd(Benzoate)2 + log_k 1.82 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609172 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Benzoate- + Cu+2 = Cu(Benzoate)+ + log_k 2.19 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319171 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Benzoate- + Ag+ = Ag(Benzoate) + log_k 0.91 + delta_h 0 kJ + -gamma 0 0 + # Id: 209171 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Benzoate- + Ni+2 = Ni(Benzoate)+ + log_k 1.86 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409171 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Co+2 + Benzoate- = Co(Benzoate)+ + log_k 1.0537 + delta_h 12 kJ + -gamma 0 0 + # Id: 2009171 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 30.0 +Benzoate- + Mn+2 = Mn(Benzoate)+ + log_k 2.06 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709171 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Benzoate- + Mg+2 = Mg(Benzoate)+ + log_k 1.26 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609171 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Benzoate- + Ca+2 = Ca(Benzoate)+ + log_k 1.55 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509171 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Phenylacetate- + H+ = H(Phenylacetate) + log_k 4.31 + delta_h 2.1757 kJ + -gamma 0 0 + # Id: 3309181 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Phenylacetate- + Zn+2 = Zn(Phenylacetate)+ + log_k 1.57 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509181 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Phenylacetate- + Cu+2 = Cu(Phenylacetate)+ + log_k 1.97 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319181 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Co+2 + Phenylacetate- = Co(Phenylacetate)+ + log_k 0.591 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009181 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 2.00 25.0 +Co+2 + 2Phenylacetate- = Co(Phenylacetate)2 + log_k 0.4765 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009182 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 2.00 25.0 +Isophthalate-2 + H+ = H(Isophthalate)- + log_k 4.5 + delta_h 1.6736 kJ + -gamma 0 0 + # Id: 3309201 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Isophthalate-2 + 2H+ = H2(Isophthalate) + log_k 8 + delta_h 1.6736 kJ + -gamma 0 0 + # Id: 3309202 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Isophthalate-2 + Pb+2 = Pb(Isophthalate) + log_k 2.99 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009201 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2Isophthalate-2 + Pb+2 = Pb(Isophthalate)2-2 + log_k 4.18 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009202 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Isophthalate-2 + Pb+2 + H+ = PbH(Isophthalate)+ + log_k 6.69 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009203 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Isophthalate-2 + Cd+2 = Cd(Isophthalate) + log_k 2.15 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609201 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2Isophthalate-2 + Cd+2 = Cd(Isophthalate)2-2 + log_k 2.99 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609202 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Isophthalate-2 + Cd+2 + H+ = CdH(Isophthalate)+ + log_k 5.73 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609203 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Isophthalate-2 + Ca+2 = Ca(Isophthalate) + log_k 2 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509200 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Isophthalate-2 + Ba+2 = Ba(Isophthalate) + log_k 1.55 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009201 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +H+ + Diethylamine = H(Diethylamine)+ + log_k 10.933 + delta_h -53.1368 kJ + -gamma 0 0 + # Id: 3309551 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Diethylamine = Zn(Diethylamine)+2 + log_k 2.74 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509551 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 2Diethylamine = Zn(Diethylamine)2+2 + log_k 5.27 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509552 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 3Diethylamine = Zn(Diethylamine)3+2 + log_k 7.71 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509553 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 4Diethylamine = Zn(Diethylamine)4+2 + log_k 9.84 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509554 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + Diethylamine = Cd(Diethylamine)+2 + log_k 2.73 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609551 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 2Diethylamine = Cd(Diethylamine)2+2 + log_k 4.86 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609552 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 3Diethylamine = Cd(Diethylamine)3+2 + log_k 6.37 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609553 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 4Diethylamine = Cd(Diethylamine)4+2 + log_k 7.32 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609554 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ag+ + Diethylamine = Ag(Diethylamine)+ + log_k 2.98 + delta_h 0 kJ + -gamma 0 0 + # Id: 209551 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Diethylamine = Ag(Diethylamine)2+ + log_k 6.38 + delta_h -44.7688 kJ + -gamma 0 0 + # Id: 209552 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Diethylamine = Ni(Diethylamine)+2 + log_k 2.78 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409551 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 2Diethylamine = Ni(Diethylamine)2+2 + log_k 4.97 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409552 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 3Diethylamine = Ni(Diethylamine)3+2 + log_k 6.72 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409553 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 4Diethylamine = Ni(Diethylamine)4+2 + log_k 7.93 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409554 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 5Diethylamine = Ni(Diethylamine)5+2 + log_k 8.87 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409555 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +H+ + Butylamine = H(Butylamine)+ + log_k 10.64 + delta_h -58.2831 kJ + -gamma 0 0 + # Id: 3309561 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Butylamine + 2H+ = Hg(Butylamine)+2 + 2H2O + log_k 14.84 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619561 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 2Butylamine + 2H+ = Hg(Butylamine)2+2 + 2H2O + log_k 24.24 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619562 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 3Butylamine + 2H+ = Hg(Butylamine)3+2 + 2H2O + log_k 25.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619563 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 4Butylamine + 2H+ = Hg(Butylamine)4+2 + 2H2O + log_k 26.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619564 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Butylamine = Ag(Butylamine)+ + log_k 3.42 + delta_h -16.736 kJ + -gamma 0 0 + # Id: 209561 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Butylamine = Ag(Butylamine)2+ + log_k 7.47 + delta_h -52.7184 kJ + -gamma 0 0 + # Id: 209562 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +H+ + Methylamine = H(Methylamine)+ + log_k 10.64 + delta_h -55.2288 kJ + -gamma 0 0 + # Id: 3309581 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Methylamine = Cd(Methylamine)+2 + log_k 2.75 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609581 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2Methylamine = Cd(Methylamine)2+2 + log_k 4.81 + delta_h -29.288 kJ + -gamma 0 0 + # Id: 1609582 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 3Methylamine = Cd(Methylamine)3+2 + log_k 5.94 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609583 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 4Methylamine = Cd(Methylamine)4+2 + log_k 6.55 + delta_h -58.576 kJ + -gamma 0 0 + # Id: 1609584 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Methylamine + 2H+ = Hg(Methylamine)+2 + 2H2O + log_k 14.76 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619581 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 2Methylamine + 2H+ = Hg(Methylamine)2+2 + 2H2O + log_k 23.96 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619582 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 3Methylamine + 2H+ = Hg(Methylamine)3+2 + 2H2O + log_k 24.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619583 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 4Methylamine + 2H+ = Hg(Methylamine)4+2 + 2H2O + log_k 24.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619584 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Methylamine = Cu(Methylamine)+2 + log_k 4.11 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319581 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2Methylamine = Cu(Methylamine)2+2 + log_k 7.51 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319582 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 3Methylamine = Cu(Methylamine)3+2 + log_k 10.21 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319583 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 4Methylamine = Cu(Methylamine)4+2 + log_k 12.08 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319584 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Methylamine = Ag(Methylamine)+ + log_k 3.07 + delta_h -12.552 kJ + -gamma 0 0 + # Id: 209581 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Methylamine = Ag(Methylamine)2+ + log_k 6.89 + delta_h -48.9528 kJ + -gamma 0 0 + # Id: 209582 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Methylamine = Ni(Methylamine)+2 + log_k 2.23 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409581 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +H+ + Dimethylamine = H(Dimethylamine)+ + log_k 10.774 + delta_h -50.208 kJ + -gamma 0 0 + # Id: 3309591 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Dimethylamine = Ag(Dimethylamine)2+ + log_k 5.37 + delta_h -40.5848 kJ + -gamma 0 0 + # Id: 209591 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Dimethylamine = Ni(Dimethylamine)+2 + log_k 1.47 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409591 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +H+ + Hexylamine = H(Hexylamine)+ + log_k 10.63 + delta_h -58.576 kJ + -gamma 0 0 + # Id: 3309611 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Hexylamine = Ag(Hexylamine)+ + log_k 3.54 + delta_h -25.104 kJ + -gamma 0 0 + # Id: 209611 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Hexylamine = Ag(Hexylamine)2+ + log_k 7.55 + delta_h -53.1368 kJ + -gamma 0 0 + # Id: 209612 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +H+ + Ethylenediamine = H(Ethylenediamine)+ + log_k 9.928 + delta_h -49.7896 kJ + -gamma 0 0 + # Id: 3309631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2H+ + Ethylenediamine = H2(Ethylenediamine)+2 + log_k 16.776 + delta_h -95.3952 kJ + -gamma 0 0 + # Id: 3309632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + Ethylenediamine = Pb(Ethylenediamine)+2 + log_k 5.04 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + 2Ethylenediamine = Pb(Ethylenediamine)2+2 + log_k 8.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Ethylenediamine = Zn(Ethylenediamine)+2 + log_k 5.66 + delta_h -29.288 kJ + -gamma 0 0 + # Id: 9509631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2Ethylenediamine = Zn(Ethylenediamine)2+2 + log_k 10.6 + delta_h -48.116 kJ + -gamma 0 0 + # Id: 9509632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 3Ethylenediamine = Zn(Ethylenediamine)3+2 + log_k 13.9 + delta_h -71.5464 kJ + -gamma 0 0 + # Id: 9509633 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Ethylenediamine = Cd(Ethylenediamine)+2 + log_k 5.41 + delta_h -28.4512 kJ + -gamma 0 0 + # Id: 1609631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2Ethylenediamine = Cd(Ethylenediamine)2+2 + log_k 9.9 + delta_h -55.6472 kJ + -gamma 0 0 + # Id: 1609632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 3Ethylenediamine = Cd(Ethylenediamine)3+2 + log_k 11.6 + delta_h -82.4248 kJ + -gamma 0 0 + # Id: 1609633 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Ethylenediamine + 2H+ = Hg(Ethylenediamine)+2 + 2H2O + log_k 20.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 2Ethylenediamine + 2H+ = Hg(Ethylenediamine)2+2 + 2H2O + log_k 29.3 + delta_h -173.218 kJ + -gamma 0 0 + # Id: 3619632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 2Ethylenediamine + 3H+ = HgH(Ethylenediamine)2+3 + 2H2O + log_k 34.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619633 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 2Ethylenediamine = Cu(Ethylenediamine)2+ + log_k 11.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Ethylenediamine = Cu(Ethylenediamine)+2 + log_k 10.5 + delta_h -52.7184 kJ + -gamma 0 0 + # Id: 2319631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2Ethylenediamine = Cu(Ethylenediamine)2+2 + log_k 19.6 + delta_h -105.437 kJ + -gamma 0 0 + # Id: 2319632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Ethylenediamine = Ag(Ethylenediamine)+ + log_k 4.6 + delta_h -48.9528 kJ + -gamma 0 0 + # Id: 209631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Ethylenediamine = Ag(Ethylenediamine)2+ + log_k 7.5 + delta_h -52.3 kJ + -gamma 0 0 + # Id: 209632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Ethylenediamine + H+ = AgH(Ethylenediamine)+2 + log_k 11.99 + delta_h -75.312 kJ + -gamma 0 0 + # Id: 209633 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2Ag+ + Ethylenediamine = Ag2(Ethylenediamine)+2 + log_k 6.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 209634 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2Ag+ + 2Ethylenediamine = Ag2(Ethylenediamine)2+2 + log_k 12.7 + delta_h -97.0688 kJ + -gamma 0 0 + # Id: 209635 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Ethylenediamine + 2H+ = Ag(HEthylenediamine)2+3 + log_k 24 + delta_h -150.206 kJ + -gamma 0 0 + # Id: 209636 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Ethylenediamine + H+ = AgH(Ethylenediamine)2+2 + log_k 8.4 + delta_h -47.6976 kJ + -gamma 0 0 + # Id: 209637 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Ethylenediamine = Ni(Ethylenediamine)+2 + log_k 7.32 + delta_h -37.656 kJ + -gamma 0 0 + # Id: 5409631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2Ethylenediamine = Ni(Ethylenediamine)2+2 + log_k 13.5 + delta_h -76.5672 kJ + -gamma 0 0 + # Id: 5409632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 3Ethylenediamine = Ni(Ethylenediamine)3+2 + log_k 17.6 + delta_h -117.152 kJ + -gamma 0 0 + # Id: 5409633 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Co+2 + Ethylenediamine = Co(Ethylenediamine)+2 + log_k 5.5 + delta_h -28 kJ + -gamma 0 0 + # Id: 2009631 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Co+2 + 2Ethylenediamine = Co(Ethylenediamine)2+2 + log_k 10.1 + delta_h -58.5 kJ + -gamma 0 0 + # Id: 2009632 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Co+2 + 3Ethylenediamine = Co(Ethylenediamine)3+2 + log_k 13.2 + delta_h -92.8 kJ + -gamma 0 0 + # Id: 2009633 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Co+3 + 2Ethylenediamine = Co(Ethylenediamine)2+3 + log_k 34.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 2019631 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 25.0 +Co+3 + 3Ethylenediamine = Co(Ethylenediamine)3+3 + log_k 48.69 + delta_h 0 kJ + -gamma 0 0 + # Id: 2019632 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.50 30.0 +Fe+2 + Ethylenediamine = Fe(Ethylenediamine)+2 + log_k 4.26 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + 2Ethylenediamine = Fe(Ethylenediamine)2+2 + log_k 7.73 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + 3Ethylenediamine = Fe(Ethylenediamine)3+2 + log_k 10.17 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809633 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + Ethylenediamine = Mn(Ethylenediamine)+2 + log_k 2.74 + delta_h -11.7152 kJ + -gamma 0 0 + # Id: 4709631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + 2Ethylenediamine = Mn(Ethylenediamine)2+2 + log_k 4.8 + delta_h -25.104 kJ + -gamma 0 0 + # Id: 4709632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr(OH)2+ + 2Ethylenediamine + 2H+ = Cr(Ethylenediamine)2+3 + 2H2O + log_k 22.57 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr(OH)2+ + 3Ethylenediamine + 2H+ = Cr(Ethylenediamine)3+3 + 2H2O + log_k 29 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mg+2 + Ethylenediamine = Mg(Ethylenediamine)+2 + log_k 0.37 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Ethylenediamine = Ca(Ethylenediamine)+2 + log_k 0.11 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +H+ + Propylamine = H(Propylamine)+ + log_k 10.566 + delta_h -57.53 kJ + -gamma 0 0 + # Id: 3309641 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Propylamine = Zn(Propylamine)+2 + log_k 2.42 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509641 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 2Propylamine = Zn(Propylamine)2+2 + log_k 4.85 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509642 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 3Propylamine = Zn(Propylamine)3+2 + log_k 7.38 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509643 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 4Propylamine = Zn(Propylamine)4+2 + log_k 9.49 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509644 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + Propylamine = Cd(Propylamine)+2 + log_k 2.62 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609641 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 2Propylamine = Cd(Propylamine)2+2 + log_k 4.64 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609642 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 3Propylamine = Cd(Propylamine)3+2 + log_k 6.03 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609643 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ag+ + Propylamine = Ag(Propylamine)+ + log_k 3.45 + delta_h -12.552 kJ + -gamma 0 0 + # Id: 209641 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Propylamine = Ag(Propylamine)2+ + log_k 7.44 + delta_h -53.1368 kJ + -gamma 0 0 + # Id: 209642 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Propylamine = Ni(Propylamine)+2 + log_k 2.81 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409641 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 2Propylamine = Ni(Propylamine)2+2 + log_k 5.02 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409642 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 3Propylamine = Ni(Propylamine)3+2 + log_k 6.79 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409643 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 4Propylamine = Ni(Propylamine)4+2 + log_k 8.31 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409644 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +H+ + Isopropylamine = H(Isopropylamine)+ + log_k 10.67 + delta_h -58.3668 kJ + -gamma 0 0 + # Id: 3309651 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Isopropylamine = Zn(Isopropylamine)+2 + log_k 2.37 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509651 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 2Isopropylamine = Zn(Isopropylamine)2+2 + log_k 4.67 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509652 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 3Isopropylamine = Zn(Isopropylamine)3+2 + log_k 7.14 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509653 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 4Isopropylamine = Zn(Isopropylamine)4+2 + log_k 9.44 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509654 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + Isopropylamine = Cd(Isopropylamine)+2 + log_k 2.55 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609651 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 2Isopropylamine = Cd(Isopropylamine)2+2 + log_k 4.57 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609652 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 3Isopropylamine = Cd(Isopropylamine)3+2 + log_k 6.07 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609653 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 4Isopropylamine = Cd(Isopropylamine)4+2 + log_k 6.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609654 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Hg(OH)2 + Isopropylamine + 2H+ = Hg(Isopropylamine)+2 + 2H2O + log_k 14.85 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619651 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 2Isopropylamine + 2H+ = Hg(Isopropylamine)2+2 + 2H2O + log_k 24.37 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619652 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Isopropylamine = Ag(Isopropylamine)+ + log_k 3.67 + delta_h -23.8488 kJ + -gamma 0 0 + # Id: 209651 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Isopropylamine = Ag(Isopropylamine)2+ + log_k 7.77 + delta_h -59.8312 kJ + -gamma 0 0 + # Id: 209652 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Isopropylamine = Ni(Isopropylamine)+2 + log_k 2.71 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409651 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 2Isopropylamine = Ni(Isopropylamine)2+2 + log_k 4.86 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409652 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 3Isopropylamine = Ni(Isopropylamine)3+2 + log_k 6.57 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409653 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 4Isopropylamine = Ni(Isopropylamine)4+2 + log_k 7.83 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409654 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 5Isopropylamine = Ni(Isopropylamine)5+2 + log_k 8.43 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409655 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +H+ + Trimethylamine = H(Trimethylamine)+ + log_k 9.8 + delta_h -36.8192 kJ + -gamma 0 0 + # Id: 3309661 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Trimethylamine = Ag(Trimethylamine)+ + log_k 1.701 + delta_h 0 kJ + -gamma 0 0 + # Id: 209661 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +H+ + Citrate-3 = H(Citrate)-2 + log_k 6.396 + delta_h 3.3472 kJ + -gamma 0 0 + # Id: 3309671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2H+ + Citrate-3 = H2(Citrate)- + log_k 11.157 + delta_h 1.297 kJ + -gamma 0 0 + # Id: 3309672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +3H+ + Citrate-3 = H3(Citrate) + log_k 14.285 + delta_h -2.7614 kJ + -gamma 0 0 + # Id: 3309673 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + Citrate-3 = Pb(Citrate)- + log_k 7.27 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009671 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Pb+2 + 2Citrate-3 = Pb(Citrate)2-4 + log_k 6.53 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + Citrate-3 = Al(Citrate) + log_k 9.97 + delta_h 0 kJ + -gamma 0 0 + # Id: 309671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + 2Citrate-3 = Al(Citrate)2-3 + log_k 14.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 309672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + Citrate-3 + H+ = AlH(Citrate)+ + log_k 12.85 + delta_h 0 kJ + -gamma 0 0 + # Id: 309673 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Tl+ + Citrate-3 = Tl(Citrate)-2 + log_k 1.48 + delta_h 0 kJ + -gamma 0 0 + # Id: 8709671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Citrate-3 = Zn(Citrate)- + log_k 6.21 + delta_h 8.368 kJ + -gamma 0 0 + # Id: 9509671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2Citrate-3 = Zn(Citrate)2-4 + log_k 7.4 + delta_h 25.104 kJ + -gamma 0 0 + # Id: 9509672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Citrate-3 + H+ = ZnH(Citrate) + log_k 10.2 + delta_h 3.3472 kJ + -gamma 0 0 + # Id: 9509673 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Citrate-3 + 2H+ = ZnH2(Citrate)+ + log_k 12.84 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509674 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + Citrate-3 = Cd(Citrate)- + log_k 4.98 + delta_h 8.368 kJ + -gamma 0 0 + # Id: 1609671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Citrate-3 + H+ = CdH(Citrate) + log_k 9.44 + delta_h 3.3472 kJ + -gamma 0 0 + # Id: 1609672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Citrate-3 + 2H+ = CdH2(Citrate)+ + log_k 12.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609673 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2Citrate-3 = Cd(Citrate)2-4 + log_k 5.9 + delta_h 20.92 kJ + -gamma 0 0 + # Id: 1609674 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Citrate-3 + 2H+ = Hg(Citrate)- + 2H2O + log_k 18.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Citrate-3 = Cu(Citrate)- + log_k 7.57 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319671 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cu+2 + 2Citrate-3 = Cu(Citrate)2-4 + log_k 8.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319672 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cu+2 + Citrate-3 + H+ = CuH(Citrate) + log_k 10.87 + delta_h 11.7152 kJ + -gamma 0 0 + # Id: 2319673 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Citrate-3 + 2H+ = CuH2(Citrate)+ + log_k 13.23 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319674 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +2Cu+2 + 2Citrate-3 = Cu2(Citrate)2-2 + log_k 16.9 + delta_h 41.84 kJ + -gamma 0 0 + # Id: 2319675 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Citrate-3 = Ni(Citrate)- + log_k 6.59 + delta_h 16.736 kJ + -gamma 0 0 + # Id: 5409671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Citrate-3 + H+ = NiH(Citrate) + log_k 10.5 + delta_h 15.8992 kJ + -gamma 0 0 + # Id: 5409672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Citrate-3 + 2H+ = NiH2(Citrate)+ + log_k 13.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409673 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2Citrate-3 = Ni(Citrate)2-4 + log_k 8.77 + delta_h 12.552 kJ + -gamma 0 0 + # Id: 5409674 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2Citrate-3 + H+ = NiH(Citrate)2-3 + log_k 14.9 + delta_h 32.6352 kJ + -gamma 0 0 + # Id: 5409675 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Co+2 + Citrate-3 = Co(Citrate)- + log_k 6.1867 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009671 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Co+2 + H+ + Citrate-3 = CoHCitrate + log_k 10.4438 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009672 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Co+2 + 2H+ + Citrate-3 = CoH2Citrate+ + log_k 12.7859 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009673 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 +Fe+2 + Citrate-3 = Fe(Citrate)- + log_k 6.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + Citrate-3 + H+ = FeH(Citrate) + log_k 10.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + Citrate-3 = Fe(Citrate) + log_k 13.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + Citrate-3 + H+ = FeH(Citrate)+ + log_k 14.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + Citrate-3 = Mn(Citrate)- + log_k 4.28 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709671 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Mn+2 + Citrate-3 + H+ = MnH(Citrate) + log_k 9.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Be+2 + Citrate-3 = Be(Citrate)- + log_k 5.534 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109671 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 25.0 +Be+2 + H+ + Citrate-3 = BeH(Citrate) + log_k 9.442 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109672 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 25.0 +Ca+2 + Citrate-3 = Ca(Citrate)- + log_k 4.87 + delta_h -8.368 kJ + -gamma 0 0 + # Id: 1509671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Citrate-3 + H+ = CaH(Citrate) + log_k 9.26 + delta_h -0.8368 kJ + -gamma 0 0 + # Id: 1509672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Citrate-3 + 2H+ = CaH2(Citrate)+ + log_k 12.257 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509673 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Mg+2 + Citrate-3 = Mg(Citrate)- + log_k 4.89 + delta_h 8.368 kJ + -gamma 0 0 + # Id: 4609671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mg+2 + Citrate-3 + H+ = MgH(Citrate) + log_k 8.91 + delta_h 3.3472 kJ + -gamma 0 0 + # Id: 4609672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mg+2 + Citrate-3 + 2H+ = MgH2(Citrate)+ + log_k 12.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609673 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Sr+2 + Citrate-3 = Sr(Citrate)- + log_k 4.3367 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009671 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Sr+2 + H+ + Citrate-3 = SrH(Citrate) + log_k 8.9738 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009672 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Sr+2 + 2H+ + Citrate-3 = SrH2(Citrate)+ + log_k 12.4859 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009673 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Ba+2 + Citrate-3 = Ba(Citrate)- + log_k 4.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ba+2 + Citrate-3 + H+ = BaH(Citrate) + log_k 8.74 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ba+2 + Citrate-3 + 2H+ = BaH2(Citrate)+ + log_k 12.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009673 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Na+ + Citrate-3 = Na(Citrate)-2 + log_k 1.03 + delta_h -2.8033 kJ + -gamma 0 0 + # Id: 5009671 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +2Na+ + Citrate-3 = Na2(Citrate)- + log_k 1.5 + delta_h -5.1045 kJ + -gamma 0 0 + # Id: 5009672 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Na+ + Citrate-3 + H+ = NaH(Citrate)- + log_k 6.45 + delta_h -3.5982 kJ + -gamma 0 0 + # Id: 5009673 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +K+ + Citrate-3 = K(Citrate)-2 + log_k 1.1 + delta_h 5.4392 kJ + -gamma 0 0 + # Id: 4109671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +H+ + Nta-3 = H(Nta)-2 + log_k 10.278 + delta_h -18.828 kJ + -gamma 0 0 + # Id: 3309681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2H+ + Nta-3 = H2(Nta)- + log_k 13.22 + delta_h -17.9912 kJ + -gamma 0 0 + # Id: 3309682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +3H+ + Nta-3 = H3(Nta) + log_k 15.22 + delta_h -16.3176 kJ + -gamma 0 0 + # Id: 3309683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +4H+ + Nta-3 = H4(Nta)+ + log_k 16.22 + delta_h -16.3176 kJ + -gamma 0 0 + # Id: 3309684 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + Nta-3 = Pb(Nta)- + log_k 12.7 + delta_h -15.8992 kJ + -gamma 0 0 + # Id: 6009681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + Nta-3 + H+ = PbH(Nta) + log_k 15.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + Nta-3 = Al(Nta) + log_k 13.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 309681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + Nta-3 + H+ = AlH(Nta)+ + log_k 15.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 309682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + Nta-3 + H2O = AlOH(Nta)- + H+ + log_k 8 + delta_h 0 kJ + -gamma 0 0 + # Id: 309683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Tl+ + Nta-3 = Tl(Nta)-2 + log_k 5.39 + delta_h 0 kJ + -gamma 0 0 + # Id: 8709681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Nta-3 = Zn(Nta)- + log_k 11.95 + delta_h -3.7656 kJ + -gamma 0 0 + # Id: 9509681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2Nta-3 = Zn(Nta)2-4 + log_k 14.88 + delta_h -15.0624 kJ + -gamma 0 0 + # Id: 9509682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Nta-3 + H2O = ZnOH(Nta)-2 + H+ + log_k 1.46 + delta_h 46.4424 kJ + -gamma 0 0 + # Id: 9509683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Nta-3 = Cd(Nta)- + log_k 11.07 + delta_h -16.736 kJ + -gamma 0 0 + # Id: 1609681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2Nta-3 = Cd(Nta)2-4 + log_k 15.03 + delta_h -38.0744 kJ + -gamma 0 0 + # Id: 1609682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Nta-3 + H2O = CdOH(Nta)-2 + H+ + log_k -0.61 + delta_h 29.288 kJ + -gamma 0 0 + # Id: 1609683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Nta-3 + 2H+ = Hg(Nta)- + 2H2O + log_k 21.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Nta-3 = Cu(Nta)- + log_k 14.4 + delta_h -7.9496 kJ + -gamma 0 0 + # Id: 2319681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2Nta-3 = Cu(Nta)2-4 + log_k 18.1 + delta_h -37.2376 kJ + -gamma 0 0 + # Id: 2319682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Nta-3 + H+ = CuH(Nta) + log_k 16.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Nta-3 + H2O = CuOH(Nta)-2 + H+ + log_k 4.8 + delta_h 25.5224 kJ + -gamma 0 0 + # Id: 2319684 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Nta-3 = Ag(Nta)-2 + log_k 6 + delta_h -26.3592 kJ + -gamma 0 0 + # Id: 209681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Nta-3 = Ni(Nta)- + log_k 12.79 + delta_h -10.0416 kJ + -gamma 0 0 + # Id: 5409681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2Nta-3 = Ni(Nta)2-4 + log_k 16.96 + delta_h -32.6352 kJ + -gamma 0 0 + # Id: 5409682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Nta-3 + H2O = NiOH(Nta)-2 + H+ + log_k 1.5 + delta_h 15.0624 kJ + -gamma 0 0 + # Id: 5409683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Co+2 + Nta-3 = Co(Nta)- + log_k 11.6667 + delta_h -0.4 kJ + -gamma 0 0 + # Id: 2009681 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Co+2 + 2Nta-3 = Co(Nta)2-4 + log_k 14.9734 + delta_h -20 kJ + -gamma 0 0 + # Id: 2009682 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Co+2 + Nta-3 + H2O = CoOH(Nta)-2 + H+ + log_k 0.4378 + delta_h 45.6 kJ + -gamma 0 0 + # Id: 2009683 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Fe+2 + Nta-3 = Fe(Nta)- + log_k 10.19 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + 2Nta-3 = Fe(Nta)2-4 + log_k 12.62 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + Nta-3 + H+ = FeH(Nta) + log_k 12.29 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + Nta-3 + H2O = FeOH(Nta)-2 + H+ + log_k -1.06 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809684 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + Nta-3 = Fe(Nta) + log_k 17.8 + delta_h 13.3888 kJ + -gamma 0 0 + # Id: 2819681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + 2Nta-3 = Fe(Nta)2-3 + log_k 25.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + Nta-3 + H2O = FeOH(Nta)- + H+ + log_k 13.23 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + Nta-3 = Mn(Nta)- + log_k 8.573 + delta_h 5.8576 kJ + -gamma 0 0 + # Id: 4709681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + 2Nta-3 = Mn(Nta)2-4 + log_k 11.58 + delta_h -17.1544 kJ + -gamma 0 0 + # Id: 4709682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr(OH)2+ + Nta-3 + 2H+ = Cr(Nta) + 2H2O + log_k 21.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119681 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + 2Nta-3 + 2H+ = Cr(Nta)2-3 + 2H2O + log_k 29.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119682 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +MoO4-2 + 2H+ + Nta-3 = MoO3(Nta)-3 + H2O + log_k 19.5434 + delta_h -69 kJ + -gamma 0 0 + # Id: 4809681 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +MoO4-2 + 3H+ + Nta-3 = MoO3H(Nta)-2 + H2O + log_k 23.3954 + delta_h -71 kJ + -gamma 0 0 + # Id: 4809682 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 1.00 25.0 +MoO4-2 + 4H+ + Nta-3 = MoO3H2(Nta)- + H2O + log_k 25.3534 + delta_h -71 kJ + -gamma 0 0 + # Id: 4809683 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 1.00 25.0 +Be+2 + Nta-3 = Be(Nta)- + log_k 9.0767 + delta_h 25 kJ + -gamma 0 0 + # Id: 1109681 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Mg+2 + Nta-3 = Mg(Nta)- + log_k 6.5 + delta_h 17.9912 kJ + -gamma 0 0 + # Id: 4609681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Nta-3 = Ca(Nta)- + log_k 7.608 + delta_h -5.6902 kJ + -gamma 0 0 + # Id: 1509681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + 2Nta-3 = Ca(Nta)2-4 + log_k 8.81 + delta_h -32.6352 kJ + -gamma 0 0 + # Id: 1509682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Sr+2 + Nta-3 = Sr(Nta)- + log_k 6.2767 + delta_h -2.2 kJ + -gamma 0 0 + # Id: 8009681 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Ba+2 + Nta-3 = Ba(Nta)- + log_k 5.875 + delta_h -6.025 kJ + -gamma 0 0 + # Id: 1009681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +H+ + Edta-4 = H(Edta)-3 + log_k 10.948 + delta_h -23.4304 kJ + -gamma 0 0 + # Id: 3309691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2H+ + Edta-4 = H2(Edta)-2 + log_k 17.221 + delta_h -41.0032 kJ + -gamma 0 0 + # Id: 3309692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +3H+ + Edta-4 = H3(Edta)- + log_k 20.34 + delta_h -35.564 kJ + -gamma 0 0 + # Id: 3309693 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +4H+ + Edta-4 = H4(Edta) + log_k 22.5 + delta_h -34.3088 kJ + -gamma 0 0 + # Id: 3309694 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +5H+ + Edta-4 = H5(Edta)+ + log_k 24 + delta_h -32.2168 kJ + -gamma 0 0 + # Id: 3309695 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Sn(OH)2 + 2H+ + Edta-4 = Sn(Edta)-2 + 2H2O + log_k 27.026 + delta_h 0 kJ + -gamma 0 0 + # Id: 7909691 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 20.0 +Sn(OH)2 + 3H+ + Edta-4 = SnH(Edta)- + 2H2O + log_k 29.934 + delta_h 0 kJ + -gamma 0 0 + # Id: 7909692 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 20.0 +Sn(OH)2 + 4H+ + Edta-4 = SnH2(Edta) + 2H2O + log_k 31.638 + delta_h 0 kJ + -gamma 0 0 + # Id: 7909693 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 20.0 +Pb+2 + Edta-4 = Pb(Edta)-2 + log_k 19.8 + delta_h -54.8104 kJ + -gamma 0 0 + # Id: 6009691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + Edta-4 + H+ = PbH(Edta)- + log_k 23 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + Edta-4 + 2H+ = PbH2(Edta) + log_k 24.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009693 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + Edta-4 = Al(Edta)- + log_k 19.1 + delta_h 52.7184 kJ + -gamma 0 0 + # Id: 309690 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + Edta-4 + H+ = AlH(Edta) + log_k 21.8 + delta_h 36.4008 kJ + -gamma 0 0 + # Id: 309691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + Edta-4 + H2O = AlOH(Edta)-2 + H+ + log_k 12.8 + delta_h 73.6384 kJ + -gamma 0 0 + # Id: 309692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Tl+ + Edta-4 = Tl(Edta)-3 + log_k 7.27 + delta_h -43.5136 kJ + -gamma 0 0 + # Id: 8709691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Tl+ + Edta-4 + H+ = TlH(Edta)-2 + log_k 13.68 + delta_h 0 kJ + -gamma 0 0 + # Id: 8709692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Edta-4 = Zn(Edta)-2 + log_k 18 + delta_h -19.2464 kJ + -gamma 0 0 + # Id: 9509691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Edta-4 + H+ = ZnH(Edta)- + log_k 21.4 + delta_h -28.4512 kJ + -gamma 0 0 + # Id: 9509692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Edta-4 + H2O = ZnOH(Edta)-3 + H+ + log_k 5.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509693 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Edta-4 = Cd(Edta)-2 + log_k 18.2 + delta_h -38.0744 kJ + -gamma 0 0 + # Id: 1609691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Edta-4 + H+ = CdH(Edta)- + log_k 21.5 + delta_h -39.748 kJ + -gamma 0 0 + # Id: 1609692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Edta-4 + 2H+ = Hg(Edta)-2 + 2H2O + log_k 29.3 + delta_h -125.102 kJ + -gamma 0 0 + # Id: 3619691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Edta-4 + 3H+ = HgH(Edta)- + 2H2O + log_k 32.9 + delta_h -128.449 kJ + -gamma 0 0 + # Id: 3619692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Edta-4 = Cu(Edta)-2 + log_k 20.5 + delta_h -34.7272 kJ + -gamma 0 0 + # Id: 2319691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Edta-4 + H+ = CuH(Edta)- + log_k 24 + delta_h -43.0952 kJ + -gamma 0 0 + # Id: 2319692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Edta-4 + 2H+ = CuH2(Edta) + log_k 26.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319693 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Edta-4 + H2O = CuOH(Edta)-3 + H+ + log_k 8.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319694 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Edta-4 = Ag(Edta)-3 + log_k 8.08 + delta_h -31.38 kJ + -gamma 0 0 + # Id: 209691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Edta-4 + H+ = AgH(Edta)-2 + log_k 15.21 + delta_h 0 kJ + -gamma 0 0 + # Id: 209693 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + Edta-4 = Ni(Edta)-2 + log_k 20.1 + delta_h -30.9616 kJ + -gamma 0 0 + # Id: 5409691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Edta-4 + H+ = NiH(Edta)- + log_k 23.6 + delta_h -38.4928 kJ + -gamma 0 0 + # Id: 5409692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Edta-4 + H2O = NiOH(Edta)-3 + H+ + log_k 7.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409693 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Co+2 + Edta-4 = Co(Edta)-2 + log_k 18.1657 + delta_h -15 kJ + -gamma 0 0 + # Id: 2009691 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Co+2 + Edta-4 + H+ = CoH(Edta)- + log_k 21.5946 + delta_h -22.9 kJ + -gamma 0 0 + # Id: 2009692 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Co+2 + Edta-4 + 2H+ = CoH2(Edta) + log_k 23.4986 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009693 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 25.0 +Co+3 + Edta-4 = Co(Edta)- + log_k 43.9735 + delta_h 0 kJ + -gamma 0 0 + # Id: 2019691 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Co+3 + Edta-4 + H+ = CoH(Edta) + log_k 47.168 + delta_h 0 kJ + -gamma 0 0 + # Id: 2019692 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 +Fe+2 + Edta-4 = Fe(Edta)-2 + log_k 16 + delta_h -16.736 kJ + -gamma 0 0 + # Id: 2809690 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + Edta-4 + H+ = FeH(Edta)- + log_k 19.06 + delta_h -27.6144 kJ + -gamma 0 0 + # Id: 2809691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + Edta-4 + H2O = FeOH(Edta)-3 + H+ + log_k 6.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809692 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Fe+2 + Edta-4 + 2H2O = Fe(OH)2(Edta)-4 + 2H+ + log_k -4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809693 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Fe+3 + Edta-4 = Fe(Edta)- + log_k 27.7 + delta_h -11.2968 kJ + -gamma 0 0 + # Id: 2819690 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + Edta-4 + H+ = FeH(Edta) + log_k 29.2 + delta_h -11.7152 kJ + -gamma 0 0 + # Id: 2819691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + Edta-4 + H2O = FeOH(Edta)-2 + H+ + log_k 19.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + Edta-4 + 2H2O = Fe(OH)2(Edta)-3 + 2H+ + log_k 9.85 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819693 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Mn+2 + Edta-4 = Mn(Edta)-2 + log_k 15.6 + delta_h -19.2464 kJ + -gamma 0 0 + # Id: 4709691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + Edta-4 + H+ = MnH(Edta)- + log_k 19.1 + delta_h -24.2672 kJ + -gamma 0 0 + # Id: 4709692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr+2 + Edta-4 = Cr(Edta)-2 + log_k 15.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2109691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr+2 + Edta-4 + H+ = CrH(Edta)- + log_k 19.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 2109692 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + Edta-4 + 2H+ = Cr(Edta)- + 2H2O + log_k 35.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr(OH)2+ + Edta-4 + 3H+ = CrH(Edta) + 2H2O + log_k 37.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr(OH)2+ + Edta-4 + H+ = CrOH(Edta)-2 + H2O + log_k 27.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119693 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Be+2 + Edta-4 = Be(Edta)-2 + log_k 11.4157 + delta_h 41 kJ + -gamma 0 0 + # Id: 1109691 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Mg+2 + Edta-4 = Mg(Edta)-2 + log_k 10.57 + delta_h 13.8072 kJ + -gamma 0 0 + # Id: 4609690 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mg+2 + Edta-4 + H+ = MgH(Edta)- + log_k 14.97 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Edta-4 = Ca(Edta)-2 + log_k 12.42 + delta_h -25.5224 kJ + -gamma 0 0 + # Id: 1509690 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Edta-4 + H+ = CaH(Edta)- + log_k 15.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Sr+2 + Edta-4 = Sr(Edta)-2 + log_k 10.4357 + delta_h -17 kJ + -gamma 0 0 + # Id: 8009691 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Sr+2 + Edta-4 + H+ = SrH(Edta)- + log_k 14.7946 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009692 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 +Ba+2 + Edta-4 = Ba(Edta)-2 + log_k 7.72 + delta_h -20.5016 kJ + -gamma 0 0 + # Id: 1009691 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Na+ + Edta-4 = Na(Edta)-3 + log_k 2.7 + delta_h -5.8576 kJ + -gamma 0 0 + # Id: 5009690 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +K+ + Edta-4 = K(Edta)-3 + log_k 1.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 4109690 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +H+ + Propionate- = H(Propionate) + log_k 4.874 + delta_h 0.66 kJ + -gamma 0 0 + # Id: 3309711 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Pb+2 + Propionate- = Pb(Propionate)+ + log_k 2.64 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009711 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.00 35.0 +Pb+2 + 2Propionate- = Pb(Propionate)2 + log_k 3.1765 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009712 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 2.00 25.0 +Zn+2 + Propionate- = Zn(Propionate)+ + log_k 1.4389 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509711 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Zn+2 + 2Propionate- = Zn(Propionate)2 + log_k 1.842 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509712 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 25.0 +Cd+2 + Propionate- = Cd(Propionate)+ + log_k 1.598 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609711 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 25.0 +Cd+2 + 2Propionate- = Cd(Propionate)2 + log_k 2.472 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609712 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 25.0 +Hg(OH)2 + 2H+ + Propionate- = Hg(Propionate)+ + 2H2O + log_k 10.594 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619711 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Cu+2 + Propionate- = Cu(Propionate)+ + log_k 2.22 + delta_h 4.1 kJ + -gamma 0 0 + # Id: 2319711 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Cu+2 + 2Propionate- = Cu(Propionate)2 + log_k 3.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319712 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Ni+2 + Propionate- = Ni(Propionate)+ + log_k 0.908 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409711 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 1.00 25.0 +Co+2 + Propionate- = Co(Propionate)+ + log_k 0.671 + delta_h 4.6 kJ + -gamma 0 0 + # Id: 2009711 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 2.00 25.0 +Co+2 + 2Propionate- = Co(Propionate)2 + log_k 0.5565 + delta_h 16 kJ + -gamma 0 0 + # Id: 2009712 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 2.00 25.0 +Fe+3 + Propionate- = Fe(Propionate)+2 + log_k 4.012 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819711 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 20.0 +Cr(OH)2+ + 2H+ + Propionate- = Cr(Propionate)+2 + 2H2O + log_k 15.0773 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119711 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.50 25.0 +Cr(OH)2+ + 2H+ + 2Propionate- = Cr(Propionate)2+ + 2H2O + log_k 17.9563 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119712 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.50 25.0 +Cr(OH)2+ + 2H+ + 3Propionate- = Cr(Propionate)3 + 2H2O + log_k 20.8858 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119713 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.50 25.0 +Mg+2 + Propionate- = Mg(Propionate)+ + log_k 0.9689 + delta_h 4.2677 kJ + -gamma 0 0 + # Id: 4609710 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.10 25.0 +Ca+2 + Propionate- = Ca(Propionate)+ + log_k 0.9289 + delta_h 3.3472 kJ + -gamma 0 0 + # Id: 1509710 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.10 25.0 +Sr+2 + Propionate- = Sr(Propionate)+ + log_k 0.8589 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009711 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Ba+2 + Propionate- = Ba(Propionate)+ + log_k 0.7689 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009711 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.10 25.0 +Ba+2 + 2Propionate- = Ba(Propionate)2 + log_k 0.9834 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009712 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.10 25.0 +H+ + Butyrate- = H(Butyrate) + log_k 4.819 + delta_h 2.8 kJ + -gamma 0 0 + # Id: 3309721 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Pb+2 + Butyrate- = Pb(Butyrate)+ + log_k 2.101 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009721 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 2.00 25.0 +Zn+2 + Butyrate- = Zn(Butyrate)+ + log_k 1.4289 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509721 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Hg(OH)2 + 2H+ + Butyrate- = Hg(Butyrate)+ + 2H2O + log_k 10.3529 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619721 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Cu+2 + Butyrate- = Cu(Butyrate)+ + log_k 2.14 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319721 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Ni+2 + Butyrate- = Ni(Butyrate)+ + log_k 0.691 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409721 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 2.00 25.0 +Co+2 + Butyrate- = Co(Butyrate)+ + log_k 0.591 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009721 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 2.00 25.0 +Co+2 + 2Butyrate- = Co(Butyrate)2 + log_k 0.7765 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009722 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 2.00 25.0 +Mg+2 + Butyrate- = Mg(Butyrate)+ + log_k 0.9589 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609720 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.10 25.0 +Ca+2 + Butyrate- = Ca(Butyrate)+ + log_k 0.9389 + delta_h 3.3472 kJ + -gamma 0 0 + # Id: 1509720 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.10 25.0 +Sr+2 + Butyrate- = Sr(Butyrate)+ + log_k 0.7889 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009721 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Ba+2 + Butyrate- = Ba(Butyrate)+ + log_k 0.7389 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009721 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.10 25.0 +Ba+2 + 2Butyrate- = Ba(Butyrate)2 + log_k 0.88 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009722 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +H+ + Isobutyrate- = H(Isobutyrate) + log_k 4.849 + delta_h 3.2217 kJ + -gamma 0 0 + # Id: 3309731 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Isobutyrate- = Zn(Isobutyrate)+ + log_k 1.44 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509731 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Isobutyrate- = Cu(Isobutyrate)+ + log_k 2.17 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319731 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2Isobutyrate- = Cu(Isobutyrate)2 + log_k 3.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319732 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + Isobutyrate- = Fe(Isobutyrate)+2 + log_k 4.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819731 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Isobutyrate- = Ca(Isobutyrate)+ + log_k 0.51 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509731 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +H+ + Two_picoline = H(Two_picoline)+ + log_k 5.95 + delta_h -25.5224 kJ + -gamma 0 0 + # Id: 3309801 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Two_picoline = Cu(Two_picoline)+2 + log_k 1.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319801 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2Two_picoline = Cu(Two_picoline)2+2 + log_k 2.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319802 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + Two_picoline = Cu(Two_picoline)+ + log_k 5.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309801 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 2Two_picoline = Cu(Two_picoline)2+ + log_k 7.65 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309802 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 3Two_picoline = Cu(Two_picoline)3+ + log_k 8.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309803 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Two_picoline = Ag(Two_picoline)+ + log_k 2.32 + delta_h -24.2672 kJ + -gamma 0 0 + # Id: 209801 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Two_picoline = Ag(Two_picoline)2+ + log_k 4.68 + delta_h -42.6768 kJ + -gamma 0 0 + # Id: 209802 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Two_picoline = Ni(Two_picoline)+2 + log_k 0.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409801 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +H+ + Three_picoline = H(Three_picoline)+ + log_k 5.7 + delta_h -23.8488 kJ + -gamma 0 0 + # Id: 3309811 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Three_picoline = Zn(Three_picoline)+2 + log_k 1 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509811 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2Three_picoline = Zn(Three_picoline)2+2 + log_k 2.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509812 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 3Three_picoline = Zn(Three_picoline)3+2 + log_k 2.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509813 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 4Three_picoline = Zn(Three_picoline)4+2 + log_k 3.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509814 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Three_picoline = Cd(Three_picoline)+2 + log_k 1.42 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609811 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 2Three_picoline = Cd(Three_picoline)2+2 + log_k 2.27 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609812 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 3Three_picoline = Cd(Three_picoline)3+2 + log_k 3.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609813 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 4Three_picoline = Cd(Three_picoline)4+2 + log_k 4 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609814 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + Three_picoline = Cu(Three_picoline)+ + log_k 5.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309811 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 2Three_picoline = Cu(Three_picoline)2+ + log_k 7.78 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309812 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 3Three_picoline = Cu(Three_picoline)3+ + log_k 8.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309813 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 4Three_picoline = Cu(Three_picoline)4+ + log_k 9 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309814 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Three_picoline = Cu(Three_picoline)+2 + log_k 2.77 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319811 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2Three_picoline = Cu(Three_picoline)2+2 + log_k 4.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319812 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 3Three_picoline = Cu(Three_picoline)3+2 + log_k 6.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319813 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 4Three_picoline = Cu(Three_picoline)4+2 + log_k 7.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319814 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Three_picoline = Ag(Three_picoline)+ + log_k 2.2 + delta_h -21.7568 kJ + -gamma 0 0 + # Id: 209811 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Three_picoline = Ag(Three_picoline)2+ + log_k 4.46 + delta_h -49.7896 kJ + -gamma 0 0 + # Id: 209812 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Three_picoline = Ni(Three_picoline)+2 + log_k 1.87 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409811 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2Three_picoline = Ni(Three_picoline)2+2 + log_k 3.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409812 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 3Three_picoline = Ni(Three_picoline)3+2 + log_k 4.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409813 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 4Three_picoline = Ni(Three_picoline)4+2 + log_k 4.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409814 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Co+2 + Three_picoline = Co(Three_picoline)+2 + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009811 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 +Co+2 + 2Three_picoline = Co(Three_picoline)2+2 + log_k 2.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009812 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 +Co+2 + 3Three_picoline = Co(Three_picoline)3+2 + log_k 2.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009813 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 +H+ + Four_picoline = H(Four_picoline)+ + log_k 6.03 + delta_h -25.3132 kJ + -gamma 0 0 + # Id: 3309821 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Four_picoline = Zn(Four_picoline)+2 + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509821 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2Four_picoline = Zn(Four_picoline)2+2 + log_k 2.11 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509822 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 3Four_picoline = Zn(Four_picoline)3+2 + log_k 2.85 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509823 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Four_picoline = Cd(Four_picoline)+2 + log_k 1.59 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609821 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 2Four_picoline = Cd(Four_picoline)2+2 + log_k 2.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609822 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 3Four_picoline = Cd(Four_picoline)3+2 + log_k 3.18 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609823 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 4Four_picoline = Cd(Four_picoline)4+2 + log_k 4 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609824 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + Four_picoline = Cu(Four_picoline)+ + log_k 5.65 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309821 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 2Four_picoline = Cu(Four_picoline)2+ + log_k 8.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309822 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 3Four_picoline = Cu(Four_picoline)3+ + log_k 8.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309823 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 4Four_picoline = Cu(Four_picoline)4+ + log_k 9.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309824 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Four_picoline = Cu(Four_picoline)+2 + log_k 2.88 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319821 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2Four_picoline = Cu(Four_picoline)2+2 + log_k 5.16 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319822 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 3Four_picoline = Cu(Four_picoline)3+2 + log_k 6.77 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319823 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 4Four_picoline = Cu(Four_picoline)4+2 + log_k 8.08 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319824 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 5Four_picoline = Cu(Four_picoline)5+2 + log_k 8.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319825 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Four_picoline = Ag(Four_picoline)+ + log_k 2.03 + delta_h -25.5224 kJ + -gamma 0 0 + # Id: 209821 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Four_picoline = Ag(Four_picoline)2+ + log_k 4.39 + delta_h -53.5552 kJ + -gamma 0 0 + # Id: 209822 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Four_picoline = Ni(Four_picoline)+2 + log_k 2.11 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409821 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2Four_picoline = Ni(Four_picoline)2+2 + log_k 3.59 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409822 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 3Four_picoline = Ni(Four_picoline)3+2 + log_k 4.34 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409823 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 4Four_picoline = Ni(Four_picoline)4+2 + log_k 4.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409824 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Co+2 + Four_picoline = Co(Four_picoline)+2 + log_k 1.56 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009821 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 +Co+2 + 2Four_picoline = Co(Four_picoline)2+2 + log_k 2.51 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009822 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 +Co+2 + 3Four_picoline = Co(Four_picoline)3+2 + log_k 2.94 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009823 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 +Co+2 + 4Four_picoline = Co(Four_picoline)4+2 + log_k 3.17 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009824 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 +H+ + Formate- = H(Formate) + log_k 3.745 + delta_h 0.1674 kJ + -gamma 0 0 + # Id: 3309831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + Formate- = Pb(Formate)+ + log_k 2.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009831 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + Formate- = Zn(Formate)+ + log_k 1.44 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Formate- = Cd(Formate)+ + log_k 1.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609831 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Hg(OH)2 + Formate- + 2H+ = Hg(Formate)+ + 2H2O + log_k 9.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Formate- = Cu(Formate)+ + log_k 2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Formate- = Ni(Formate)+ + log_k 1.22 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409831 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Co+2 + Formate- = Co(Formate)+ + log_k 1.209 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009831 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 30.0 +Co+2 + 2Formate- = Co(Formate)2 + log_k 1.1365 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009832 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 2.00 25.0 +Cr+2 + Formate- = Cr(Formate)+ + log_k 1.07 + delta_h 0 kJ + -gamma 0 0 + # Id: 2109831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mg+2 + Formate- = Mg(Formate)+ + log_k 1.43 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Formate- = Ca(Formate)+ + log_k 1.43 + delta_h 4.184 kJ + -gamma 0 0 + # Id: 1509831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Sr+2 + Formate- = Sr(Formate)+ + log_k 1.39 + delta_h 4 kJ + -gamma 0 0 + # Id: 8009831 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ba+2 + Formate- = Ba(Formate)+ + log_k 1.38 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +H+ + Isovalerate- = H(Isovalerate) + log_k 4.781 + delta_h 4.5606 kJ + -gamma 0 0 + # Id: 3309841 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Isovalerate- = Zn(Isovalerate)+ + log_k 1.39 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509841 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Isovalerate- = Cu(Isovalerate)+ + log_k 2.08 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319841 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Isovalerate- = Ca(Isovalerate)+ + log_k 0.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509841 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +H+ + Valerate- = H(Valerate) + log_k 4.843 + delta_h 2.887 kJ + -gamma 0 0 + # Id: 3309851 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Valerate- = Cu(Valerate)+ + log_k 2.12 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319851 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Valerate- = Ca(Valerate)+ + log_k 0.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509851 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ba+2 + Valerate- = Ba(Valerate)+ + log_k -0.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009851 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +H+ + Acetate- = H(Acetate) + log_k 4.757 + delta_h 0.41 kJ + -gamma 0 0 + # Id: 3309921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Sn(OH)2 + 2H+ + Acetate- = Sn(Acetate)+ + 2H2O + log_k 10.0213 + delta_h 0 kJ + -gamma 0 0 + # Id: 7909921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 3.00 25.0 +Sn(OH)2 + 2H+ + 2Acetate- = Sn(Acetate)2 + 2H2O + log_k 12.32 + delta_h 0 kJ + -gamma 0 0 + # Id: 7909922 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 3.00 25.0 +Sn(OH)2 + 2H+ + 3Acetate- = Sn(Acetate)3- + 2H2O + log_k 13.55 + delta_h 0 kJ + -gamma 0 0 + # Id: 7909923 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 3.00 25.0 +Pb+2 + Acetate- = Pb(Acetate)+ + log_k 2.68 + delta_h -0.4 kJ + -gamma 0 0 + # Id: 6009921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Pb+2 + 2Acetate- = Pb(Acetate)2 + log_k 4.08 + delta_h -0.8 kJ + -gamma 0 0 + # Id: 6009922 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Tl+ + Acetate- = Tl(Acetate) + log_k -0.11 + delta_h 0 kJ + -gamma 0 0 + # Id: 8709921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Zn+2 + Acetate- = Zn(Acetate)+ + log_k 1.58 + delta_h 8.3 kJ + -gamma 0 0 + # Id: 9509921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Zn+2 + 2Acetate- = Zn(Acetate)2 + log_k 2.6434 + delta_h 22 kJ + -gamma 0 0 + # Id: 9509922 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Cd+2 + Acetate- = Cd(Acetate)+ + log_k 1.93 + delta_h 9.6 kJ + -gamma 0 0 + # Id: 1609921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Cd+2 + 2Acetate- = Cd(Acetate)2 + log_k 2.86 + delta_h 15 kJ + -gamma 0 0 + # Id: 1609922 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + 2H+ + Acetate- = Hg(Acetate)+ + 2H2O + log_k 10.494 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619920 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Hg(OH)2 + 2H+ + 2Acetate- = Hg(Acetate)2 + 2H2O + log_k 13.83 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619921 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 3.00 25.0 +Cu+2 + Acetate- = Cu(Acetate)+ + log_k 2.21 + delta_h 7.1 kJ + -gamma 0 0 + # Id: 2319921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Cu+2 + 2Acetate- = Cu(Acetate)2 + log_k 3.4 + delta_h 12 kJ + -gamma 0 0 + # Id: 2319922 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Cu+2 + 3Acetate- = Cu(Acetate)3- + log_k 3.9434 + delta_h 6.2 kJ + -gamma 0 0 + # Id: 2319923 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Ag+ + Acetate- = Ag(Acetate) + log_k 0.73 + delta_h 3 kJ + -gamma 0 0 + # Id: 209921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ag+ + 2Acetate- = Ag(Acetate)2- + log_k 0.64 + delta_h 3 kJ + -gamma 0 0 + # Id: 209922 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ni+2 + Acetate- = Ni(Acetate)+ + log_k 1.37 + delta_h 8.7 kJ + -gamma 0 0 + # Id: 5409921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Ni+2 + 2Acetate- = Ni(Acetate)2 + log_k 2.1 + delta_h 10 kJ + -gamma 0 0 + # Id: 5409922 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Co+2 + Acetate- = Co(Acetate)+ + log_k 1.38 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Co+2 + 2Acetate- = Co(Acetate)2 + log_k 0.7565 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009922 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 2.00 25.0 +Fe+2 + Acetate- = Fe(Acetate)+ + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809920 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Fe+3 + Acetate- = Fe(Acetate)+2 + log_k 4.0234 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819920 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 +Fe+3 + 2Acetate- = Fe(Acetate)2+ + log_k 7.5723 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 +Fe+3 + 3Acetate- = Fe(Acetate)3 + log_k 9.5867 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819922 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 +Mn+2 + Acetate- = Mn(Acetate)+ + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709920 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Cr+2 + Acetate- = Cr(Acetate)+ + log_k 1.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 2109921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Cr+2 + 2Acetate- = Cr(Acetate)2 + log_k 2.92 + delta_h 0 kJ + -gamma 0 0 + # Id: 2109922 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Cr(OH)2+ + 2H+ + Acetate- = Cr(Acetate)+2 + 2H2O + log_k 15.0073 + delta_h -125.62 kJ + -gamma 0 0 + # Id: 2119921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 +Cr(OH)2+ + 2H+ + 2Acetate- = Cr(Acetate)2+ + 2H2O + log_k 17.9963 + delta_h -117.62 kJ + -gamma 0 0 + # Id: 2119922 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 +Cr(OH)2+ + 2H+ + 3Acetate- = Cr(Acetate)3 + 2H2O + log_k 20.7858 + delta_h -96.62 kJ + -gamma 0 0 + # Id: 2119923 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 +Be+2 + Acetate- = Be(Acetate)+ + log_k 2.0489 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Be+2 + 2Acetate- = Be(Acetate)2 + log_k 3.0034 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109922 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Mg+2 + Acetate- = Mg(Acetate)+ + log_k 1.27 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609920 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Ca+2 + Acetate- = Ca(Acetate)+ + log_k 1.18 + delta_h 4 kJ + -gamma 0 0 + # Id: 1509920 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Sr+2 + Acetate- = Sr(Acetate)+ + log_k 1.14 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Ba+2 + Acetate- = Ba(Acetate)+ + log_k 1.07 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Na+ + Acetate- = Na(Acetate) + log_k -0.18 + delta_h 12 kJ + -gamma 0 0 + # Id: 5009920 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +K+ + Acetate- = K(Acetate) + log_k -0.1955 + delta_h 4.184 kJ + -gamma 0 0 + # Id: 4109921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +H+ + Tartarate-2 = H(Tartarate)- + log_k 4.366 + delta_h -0.7531 kJ + -gamma 0 0 + # Id: 3309931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2H+ + Tartarate-2 = H2(Tartarate) + log_k 7.402 + delta_h -3.6819 kJ + -gamma 0 0 + # Id: 3309932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Sn(OH)2 + 2H+ + Tartarate-2 = Sn(Tartarate) + 2H2O + log_k 13.1518 + delta_h 0 kJ + -gamma 0 0 + # Id: 7909931 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 +Pb+2 + Tartarate-2 = Pb(Tartarate) + log_k 3.98 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + 2Tartarate-2 = Al(Tartarate)2- + log_k 9.37 + delta_h 0 kJ + -gamma 0 0 + # Id: 309931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Tl+ + Tartarate-2 = Tl(Tartarate)- + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 8709931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Tl+ + Tartarate-2 + H+ = TlH(Tartarate) + log_k 4.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 8709932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Tartarate-2 = Zn(Tartarate) + log_k 3.43 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2Tartarate-2 = Zn(Tartarate)2-2 + log_k 5.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Tartarate-2 + H+ = ZnH(Tartarate)+ + log_k 5.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509933 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Tartarate-2 = Cd(Tartarate) + log_k 2.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2Tartarate-2 = Cd(Tartarate)2-2 + log_k 4.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Tartarate-2 + 2H+ = Hg(Tartarate) + 2H2O + log_k 14 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Tartarate-2 = Cu(Tartarate) + log_k 3.97 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Tartarate-2 + H+ = CuH(Tartarate)+ + log_k 6.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Tartarate-2 = Ni(Tartarate) + log_k 3.46 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Tartarate-2 + H+ = NiH(Tartarate)+ + log_k 5.89 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Co+2 + Tartarate-2 = Co(Tartarate) + log_k 3.05 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009931 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Co+2 + 2Tartarate-2 = Co(Tartarate)2-2 + log_k 4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009932 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Co+2 + H+ + Tartarate-2 = CoH(Tartarate)+ + log_k 5.754 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009933 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 20.0 +Fe+2 + Tartarate-2 = Fe(Tartarate) + log_k 3.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + Tartarate-2 = Fe(Tartarate)+ + log_k 7.78 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + Tartarate-2 = Mn(Tartarate) + log_k 3.38 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + Tartarate-2 + H+ = MnH(Tartarate)+ + log_k 6 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mg+2 + Tartarate-2 = Mg(Tartarate) + log_k 2.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mg+2 + Tartarate-2 + H+ = MgH(Tartarate)+ + log_k 5.75 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Be+2 + Tartarate-2 = Be(Tartarate) + log_k 2.768 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109931 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 +Be+2 + 2Tartarate-2 = Be(Tartarate)2-2 + log_k 4.008 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109932 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 +Ca+2 + Tartarate-2 = Ca(Tartarate) + log_k 2.8 + delta_h -8.368 kJ + -gamma 0 0 + # Id: 1509931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Tartarate-2 + H+ = CaH(Tartarate)+ + log_k 5.86 + delta_h -9.1211 kJ + -gamma 0 0 + # Id: 1509932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Sr+2 + Tartarate-2 = Sr(Tartarate) + log_k 2.55 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009931 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 20.0 +Sr+2 + H+ + Tartarate-2 = SrH(Tartarate)+ + log_k 5.8949 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009932 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Ba+2 + Tartarate-2 = Ba(Tartarate) + log_k 2.54 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ba+2 + Tartarate-2 + H+ = BaH(Tartarate)+ + log_k 5.77 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Na+ + Tartarate-2 = Na(Tartarate)- + log_k 0.9 + delta_h -0.8368 kJ + -gamma 0 0 + # Id: 5009931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Na+ + Tartarate-2 + H+ = NaH(Tartarate) + log_k 4.58 + delta_h -2.8451 kJ + -gamma 0 0 + # Id: 5009932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +K+ + Tartarate-2 = K(Tartarate)- + log_k 0.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 4109931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +H+ + Glycine- = H(Glycine) + log_k 9.778 + delta_h -44.3504 kJ + -gamma 0 0 + # Id: 3309941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2H+ + Glycine- = H2(Glycine)+ + log_k 12.128 + delta_h -48.4507 kJ + -gamma 0 0 + # Id: 3309942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + Glycine- = Pb(Glycine)+ + log_k 5.47 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + 2Glycine- = Pb(Glycine)2 + log_k 8.86 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009942 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Tl+ + Glycine- = Tl(Glycine) + log_k 1.72 + delta_h 0 kJ + -gamma 0 0 + # Id: 8709941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Glycine- = Zn(Glycine)+ + log_k 5.38 + delta_h -11.7152 kJ + -gamma 0 0 + # Id: 9509941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2Glycine- = Zn(Glycine)2 + log_k 9.81 + delta_h -24.2672 kJ + -gamma 0 0 + # Id: 9509942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 3Glycine- = Zn(Glycine)3- + log_k 12.3 + delta_h -39.748 kJ + -gamma 0 0 + # Id: 9509943 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Glycine- = Cd(Glycine)+ + log_k 4.69 + delta_h -8.7864 kJ + -gamma 0 0 + # Id: 1609941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2Glycine- = Cd(Glycine)2 + log_k 8.4 + delta_h -22.5936 kJ + -gamma 0 0 + # Id: 1609942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 3Glycine- = Cd(Glycine)3- + log_k 10.7 + delta_h -35.9824 kJ + -gamma 0 0 + # Id: 1609943 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Glycine- + 2H+ = Hg(Glycine)+ + 2H2O + log_k 17 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619941 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Hg(OH)2 + 2Glycine- + 2H+ = Hg(Glycine)2 + 2H2O + log_k 25.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619942 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cu+ + 2Glycine- = Cu(Glycine)2- + log_k 10.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Glycine- = Cu(Glycine)+ + log_k 8.57 + delta_h -25.104 kJ + -gamma 0 0 + # Id: 2319941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2Glycine- = Cu(Glycine)2 + log_k 15.7 + delta_h -54.8104 kJ + -gamma 0 0 + # Id: 2319942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Glycine- = Ag(Glycine) + log_k 3.51 + delta_h -19.2464 kJ + -gamma 0 0 + # Id: 209941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Glycine- = Ag(Glycine)2- + log_k 6.89 + delta_h -48.116 kJ + -gamma 0 0 + # Id: 209942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Glycine- = Ni(Glycine)+ + log_k 6.15 + delta_h -18.828 kJ + -gamma 0 0 + # Id: 5409941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2Glycine- = Ni(Glycine)2 + log_k 11.12 + delta_h -38.0744 kJ + -gamma 0 0 + # Id: 5409942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 3Glycine- = Ni(Glycine)3- + log_k 14.63 + delta_h -62.3416 kJ + -gamma 0 0 + # Id: 5409943 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Co+2 + Glycine- = Co(Glycine)+ + log_k 5.07 + delta_h -12 kJ + -gamma 0 0 + # Id: 2009941 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Co+2 + 2Glycine- = Co(Glycine)2 + log_k 9.07 + delta_h -26 kJ + -gamma 0 0 + # Id: 2009942 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Co+2 + 3Glycine- = Co(Glycine)3- + log_k 11.6 + delta_h -41 kJ + -gamma 0 0 + # Id: 2009943 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Co+2 + Glycine- + H2O = CoOH(Glycine) + H+ + log_k -5.02 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009944 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Fe+2 + Glycine- = Fe(Glycine)+ + log_k 4.31 + delta_h -15.0624 kJ + -gamma 0 0 + # Id: 2809941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + 2Glycine- = Fe(Glycine)2 + log_k 8.29 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + Glycine- = Fe(Glycine)+2 + log_k 9.38 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + Glycine- + H+ = FeH(Glycine)+3 + log_k 11.55 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + Glycine- = Mn(Glycine)+ + log_k 3.19 + delta_h -1.2552 kJ + -gamma 0 0 + # Id: 4709941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + 2Glycine- = Mn(Glycine)2 + log_k 5.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr(OH)2+ + Glycine- + 2H+ = Cr(Glycine)+2 + 2H2O + log_k 18.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119941 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + 2Glycine- + 2H+ = Cr(Glycine)2+ + 2H2O + log_k 25.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119942 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + 3Glycine- + 2H+ = Cr(Glycine)3 + 2H2O + log_k 31.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119943 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Mg+2 + Glycine- = Mg(Glycine)+ + log_k 2.08 + delta_h 4.184 kJ + -gamma 0 0 + # Id: 4609941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Glycine- = Ca(Glycine)+ + log_k 1.39 + delta_h -4.184 kJ + -gamma 0 0 + # Id: 1509941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Glycine- + H+ = CaH(Glycine)+2 + log_k 10.1 + delta_h -35.9824 kJ + -gamma 0 0 + # Id: 1509942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Sr+2 + Glycine- = Sr(Glycine)+ + log_k 0.91 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009941 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 +Ba+2 + Glycine- = Ba(Glycine)+ + log_k 0.77 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +H+ + Salicylate-2 = H(Salicylate)- + log_k 13.7 + delta_h -35.7732 kJ + -gamma 0 0 + # Id: 3309951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2H+ + Salicylate-2 = H2(Salicylate) + log_k 16.8 + delta_h -38.7857 kJ + -gamma 0 0 + # Id: 3309952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Salicylate-2 = Zn(Salicylate) + log_k 7.71 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509951 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + Salicylate-2 + H+ = ZnH(Salicylate)+ + log_k 15.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Salicylate-2 = Cd(Salicylate) + log_k 6.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Salicylate-2 + H+ = CdH(Salicylate)+ + log_k 16 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Salicylate-2 = Cu(Salicylate) + log_k 11.3 + delta_h -17.9912 kJ + -gamma 0 0 + # Id: 2319951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2Salicylate-2 = Cu(Salicylate)2-2 + log_k 19.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Salicylate-2 + H+ = CuH(Salicylate)+ + log_k 14.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319953 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Salicylate-2 = Ni(Salicylate) + log_k 8.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2Salicylate-2 = Ni(Salicylate)2-2 + log_k 12.64 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409952 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Co+2 + Salicylate-2 = Co(Salicylate) + log_k 7.4289 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009951 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 +Co+2 + 2Salicylate-2 = Co(Salicylate)2-2 + log_k 11.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009952 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 +Fe+2 + Salicylate-2 = Fe(Salicylate) + log_k 7.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + 2Salicylate-2 = Fe(Salicylate)2-2 + log_k 11.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + Salicylate-2 = Fe(Salicylate)+ + log_k 17.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + 2Salicylate-2 = Fe(Salicylate)2- + log_k 29.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + Salicylate-2 = Mn(Salicylate) + log_k 6.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + 2Salicylate-2 = Mn(Salicylate)2-2 + log_k 10.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Be+2 + Salicylate-2 = Be(Salicylate) + log_k 13.3889 + delta_h -31.7732 kJ + -gamma 0 0 + # Id: 1109951 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 +Be+2 + 2Salicylate-2 = Be(Salicylate)2-2 + log_k 23.25 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109952 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Mg+2 + Salicylate-2 = Mg(Salicylate) + log_k 5.76 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mg+2 + Salicylate-2 + H+ = MgH(Salicylate)+ + log_k 15.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609952 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ca+2 + Salicylate-2 = Ca(Salicylate) + log_k 4.05 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Salicylate-2 + H+ = CaH(Salicylate)+ + log_k 14.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ba+2 + Salicylate-2 + H+ = BaH(Salicylate)+ + log_k 13.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009951 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +H+ + Glutamate-2 = H(Glutamate)- + log_k 9.96 + delta_h -41.0032 kJ + -gamma 0 0 + # Id: 3309961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2H+ + Glutamate-2 = H2(Glutamate) + log_k 14.26 + delta_h -43.5136 kJ + -gamma 0 0 + # Id: 3309962 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +3H+ + Glutamate-2 = H3(Glutamate)+ + log_k 16.42 + delta_h -46.8608 kJ + -gamma 0 0 + # Id: 3309963 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + Glutamate-2 = Pb(Glutamate) + log_k 6.43 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009961 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Pb+2 + 2Glutamate-2 = Pb(Glutamate)2-2 + log_k 8.61 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009962 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Pb+2 + Glutamate-2 + H+ = PbH(Glutamate)+ + log_k 14.08 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009963 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Al+3 + Glutamate-2 + H+ = AlH(Glutamate)+2 + log_k 13.07 + delta_h 0 kJ + -gamma 0 0 + # Id: 309961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Glutamate-2 = Zn(Glutamate) + log_k 6.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509961 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 2Glutamate-2 = Zn(Glutamate)2-2 + log_k 9.13 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509962 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 3Glutamate-2 = Zn(Glutamate)3-4 + log_k 9.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509963 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + Glutamate-2 = Cd(Glutamate) + log_k 4.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2Glutamate-2 = Cd(Glutamate)2-2 + log_k 7.59 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609962 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Glutamate-2 + 2H+ = Hg(Glutamate) + 2H2O + log_k 19.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619961 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Hg(OH)2 + 2Glutamate-2 + 2H+ = Hg(Glutamate)2-2 + 2H2O + log_k 26.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619962 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cu+2 + Glutamate-2 = Cu(Glutamate) + log_k 9.17 + delta_h -20.92 kJ + -gamma 0 0 + # Id: 2319961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2Glutamate-2 = Cu(Glutamate)2-2 + log_k 15.78 + delta_h -48.116 kJ + -gamma 0 0 + # Id: 2319962 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Glutamate-2 + H+ = CuH(Glutamate)+ + log_k 13.3 + delta_h -28.0328 kJ + -gamma 0 0 + # Id: 2319963 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + Glutamate-2 = Ag(Glutamate)- + log_k 4.22 + delta_h 0 kJ + -gamma 0 0 + # Id: 209961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2Glutamate-2 = Ag(Glutamate)2-3 + log_k 7.36 + delta_h 0 kJ + -gamma 0 0 + # Id: 209962 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +2Ag+ + Glutamate-2 = Ag2(Glutamate) + log_k 3.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 209963 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Glutamate-2 = Ni(Glutamate) + log_k 6.47 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2Glutamate-2 = Ni(Glutamate)2-2 + log_k 10.7 + delta_h -30.9616 kJ + -gamma 0 0 + # Id: 5409962 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Co+2 + Glutamate-2 = Co(Glutamate) + log_k 5.4178 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009961 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Co+2 + 2Glutamate-2 = Co(Glutamate)2-2 + log_k 8.7178 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009962 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Mn+2 + Glutamate-2 = Mn(Glutamate) + log_k 4.95 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709961 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Mn+2 + 2Glutamate-2 = Mn(Glutamate)2-2 + log_k 8.48 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709962 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + Glutamate-2 + 2H+ = Cr(Glutamate)+ + 2H2O + log_k 22.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119961 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + 2Glutamate-2 + 2H+ = Cr(Glutamate)2- + 2H2O + log_k 30.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119962 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + Glutamate-2 + 3H+ = CrH(Glutamate)+2 + 2H2O + log_k 25.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119963 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Mg+2 + Glutamate-2 = Mg(Glutamate) + log_k 2.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Glutamate-2 = Ca(Glutamate) + log_k 2.06 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Glutamate-2 + H+ = CaH(Glutamate)+ + log_k 11.13 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509962 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Sr+2 + Glutamate-2 = Sr(Glutamate) + log_k 2.2278 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009961 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Ba+2 + Glutamate-2 = Ba(Glutamate) + log_k 2.14 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +H+ + Phthalate-2 = H(Phthalate)- + log_k 5.408 + delta_h 2.1757 kJ + -gamma 0 0 + # Id: 3309971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2H+ + Phthalate-2 = H2(Phthalate) + log_k 8.358 + delta_h 4.8534 kJ + -gamma 0 0 + # Id: 3309972 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + Phthalate-2 = Pb(Phthalate) + log_k 4.26 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009971 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Pb+2 + 2Phthalate-2 = Pb(Phthalate)2-2 + log_k 4.83 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009972 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + Phthalate-2 + H+ = PbH(Phthalate)+ + log_k 6.98 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009973 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + Phthalate-2 = Al(Phthalate)+ + log_k 4.56 + delta_h 0 kJ + -gamma 0 0 + # Id: 309971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + 2Phthalate-2 = Al(Phthalate)2- + log_k 7.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 309972 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Phthalate-2 = Zn(Phthalate) + log_k 2.91 + delta_h 13.3888 kJ + -gamma 0 0 + # Id: 9509971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2Phthalate-2 = Zn(Phthalate)2-2 + log_k 4.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509972 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Phthalate-2 = Cd(Phthalate) + log_k 3.43 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Phthalate-2 + H+ = CdH(Phthalate)+ + log_k 6.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609973 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2Phthalate-2 = Cd(Phthalate)2-2 + log_k 3.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609972 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Phthalate-2 = Cu(Phthalate) + log_k 4.02 + delta_h 8.368 kJ + -gamma 0 0 + # Id: 2319971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Phthalate-2 + H+ = CuH(Phthalate)+ + log_k 7.1 + delta_h 3.8493 kJ + -gamma 0 0 + # Id: 2319970 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2Phthalate-2 = Cu(Phthalate)2-2 + log_k 5.3 + delta_h 15.8992 kJ + -gamma 0 0 + # Id: 2319972 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Phthalate-2 = Ni(Phthalate) + log_k 2.95 + delta_h 7.5312 kJ + -gamma 0 0 + # Id: 5409971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Phthalate-2 + H+ = NiH(Phthalate)+ + log_k 6.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409972 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Co+2 + Phthalate-2 = Co(Phthalate) + log_k 2.83 + delta_h 7.9 kJ + -gamma 0 0 + # Id: 2009971 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 +Co+2 + H+ + Phthalate-2 = CoH(Phthalate)+ + log_k 7.227 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009972 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 +Mn+2 + Phthalate-2 = Mn(Phthalate) + log_k 2.74 + delta_h 10.0416 kJ + -gamma 0 0 + # Id: 4709971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr(OH)2+ + Phthalate-2 + 2H+ = Cr(Phthalate)+ + 2H2O + log_k 16.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119971 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + 2Phthalate-2 + 2H+ = Cr(Phthalate)2- + 2H2O + log_k 21.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119972 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + 3Phthalate-2 + 2H+ = Cr(Phthalate)3-3 + 2H2O + log_k 23.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119973 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Be+2 + Phthalate-2 = Be(Phthalate) + log_k 4.8278 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109971 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Be+2 + 2Phthalate-2 = Be(Phthalate)2-2 + log_k 6.5478 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109972 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 +Mg+2 + Phthalate-2 = Mg(Phthalate) + log_k 2.49 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609971 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ca+2 + Phthalate-2 = Ca(Phthalate) + log_k 2.45 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509970 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Phthalate-2 + H+ = CaH(Phthalate)+ + log_k 6.43 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ba+2 + Phthalate-2 = Ba(Phthalate) + log_k 2.33 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Na+ + Phthalate-2 = Na(Phthalate)- + log_k 0.8 + delta_h 4.184 kJ + -gamma 0 0 + # Id: 5009970 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +K+ + Phthalate-2 = K(Phthalate)- + log_k 0.7 + delta_h 3.7656 kJ + -gamma 0 0 + # Id: 4109971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +PHASES +Sulfur + S + H+ + 2e- = HS- + log_k -2.1449 + delta_h -16.3 kJ +Semetal(hex + Se + H+ + 2e- = HSe- + log_k -7.7084 + delta_h 15.9 kJ +Semetal(am) + Se + H+ + 2e- = HSe- + log_k -7.1099 + delta_h 10.8784 kJ +Sbmetal + Sb + 3H2O = Sb(OH)3 + 3H+ + 3e- + log_k -11.6889 + delta_h 83.89 kJ +Snmetal(wht) + Sn + 2H2O = Sn(OH)2 + 2H+ + 2e- + log_k -2.3266 + delta_h -0 kJ +Pbmetal + Pb = Pb+2 + 2e- + log_k 4.2462 + delta_h 0.92 kJ +Tlmetal + Tl = Tl+ + e- + log_k 5.6762 + delta_h 5.36 kJ +Znmetal + Zn = Zn+2 + 2e- + log_k 25.7886 + delta_h -153.39 kJ +Cdmetal(alpha) + Cd = Cd+2 + 2e- + log_k 13.5147 + delta_h -75.33 kJ +Cdmetal(gamma) + Cd = Cd+2 + 2e- + log_k 13.618 + delta_h -75.92 kJ +Hgmetal(l) + Hg = 0.5Hg2+2 + e- + log_k -13.4517 + delta_h 83.435 kJ +Cumetal + Cu = Cu+ + e- + log_k -8.756 + delta_h 71.67 kJ +Agmetal + Ag = Ag+ + e- + log_k -13.5065 + delta_h 105.79 kJ +Crmetal + Cr = Cr+2 + 2e- + log_k 30.4831 + delta_h -172 kJ +Vmetal + V = V+3 + 3e- + log_k 44.0253 + delta_h -259 kJ +Stibnite + Sb2S3 + 6H2O = 2Sb(OH)3 + 3H+ + 3HS- + log_k -50.46 + delta_h 293.78 kJ +Orpiment + As2S3 + 6H2O = 2H3AsO3 + 3HS- + 3H+ + log_k -61.0663 + delta_h 350.68 kJ +Realgar + AsS + 3H2O = H3AsO3 + HS- + 2H+ + e- + log_k -19.747 + delta_h 127.8 kJ +SnS + SnS + 2H2O = Sn(OH)2 + H+ + HS- + log_k -19.114 + delta_h -0 kJ +SnS2 + SnS2 + 6H2O = Sn(OH)6-2 + 4H+ + 2HS- + log_k -57.4538 + delta_h -0 kJ +Galena + PbS + H+ = Pb+2 + HS- + log_k -13.97 + delta_h 80 kJ +Tl2S + Tl2S + H+ = 2Tl+ + HS- + log_k -7.19 + delta_h 91.52 kJ +ZnS(am) + ZnS + H+ = Zn+2 + HS- + log_k -9.052 + delta_h 15.3553 kJ +Sphalerite + ZnS + H+ = Zn+2 + HS- + log_k -11.45 + delta_h 30 kJ +Wurtzite + ZnS + H+ = Zn+2 + HS- + log_k -8.95 + delta_h 21.171 kJ +Greenockite + CdS + H+ = Cd+2 + HS- + log_k -14.36 + delta_h 55 kJ +Hg2S + Hg2S + H+ = Hg2+2 + HS- + log_k -11.6765 + delta_h 69.7473 kJ +Cinnabar + HgS + 2H2O = Hg(OH)2 + H+ + HS- + log_k -45.694 + delta_h 253.76 kJ +Metacinnabar + HgS + 2H2O = Hg(OH)2 + H+ + HS- + log_k -45.094 + delta_h 253.72 kJ +Chalcocite + Cu2S + H+ = 2Cu+ + HS- + log_k -34.92 + delta_h 168 kJ +Djurleite + Cu0.066Cu1.868S + H+ = 0.066Cu+2 + 1.868Cu+ + HS- + log_k -33.92 + delta_h 200.334 kJ +Anilite + Cu0.25Cu1.5S + H+ = 0.25Cu+2 + 1.5Cu+ + HS- + log_k -31.878 + delta_h 182.15 kJ +BlaubleiII + Cu0.6Cu0.8S + H+ = 0.6Cu+2 + 0.8Cu+ + HS- + log_k -27.279 + delta_h -0 kJ +BlaubleiI + Cu0.9Cu0.2S + H+ = 0.9Cu+2 + 0.2Cu+ + HS- + log_k -24.162 + delta_h -0 kJ +Covellite + CuS + H+ = Cu+2 + HS- + log_k -22.3 + delta_h 97 kJ +Chalcopyrite + CuFeS2 + 2H+ = Cu+2 + Fe+2 + 2HS- + log_k -35.27 + delta_h 148.448 kJ +Acanthite + Ag2S + H+ = 2Ag+ + HS- + log_k -36.22 + delta_h 227 kJ +NiS(alpha) + NiS + H+ = Ni+2 + HS- + log_k -5.6 + delta_h -0 kJ +NiS(beta) + NiS + H+ = Ni+2 + HS- + log_k -11.1 + delta_h -0 kJ +NiS(gamma) + NiS + H+ = Ni+2 + HS- + log_k -12.8 + delta_h -0 kJ +CoS(alpha) + CoS + H+ = Co+2 + HS- + log_k -7.44 + delta_h -0 kJ +CoS(beta) + CoS + H+ = Co+2 + HS- + log_k -11.07 + delta_h -0 kJ +FeS(ppt) + FeS + H+ = Fe+2 + HS- + log_k -2.95 + delta_h -11 kJ +Greigite + Fe3S4 + 4H+ = 2Fe+3 + Fe+2 + 4HS- + log_k -45.035 + delta_h -0 kJ +Mackinawite + FeS + H+ = Fe+2 + HS- + log_k -3.6 + delta_h -0 kJ +Pyrite + FeS2 + 2H+ + 2e- = Fe+2 + 2HS- + log_k -18.5082 + delta_h 49.844 kJ +MnS(grn) + MnS + H+ = Mn+2 + HS- + log_k 0.17 + delta_h -32 kJ +MnS(pnk) + MnS + H+ = Mn+2 + HS- + log_k 3.34 + delta_h -0 kJ +MoS2 + MoS2 + 4H2O = MoO4-2 + 6H+ + 2HS- + 2e- + log_k -70.2596 + delta_h 389.02 kJ +BeS + BeS + H+ = Be+2 + HS- + log_k 19.38 + delta_h -0 kJ +BaS + BaS + H+ = Ba+2 + HS- + log_k 16.18 + delta_h -0 kJ +Hg2(Cyanide)2 + Hg2(Cyanide)2 = Hg2+2 + 2Cyanide- + log_k -39.3 + delta_h -0 kJ +CuCyanide + CuCyanide = Cu+ + Cyanide- + log_k -19.5 + delta_h -19 kJ +AgCyanide + AgCyanide = Ag+ + Cyanide- + log_k -15.74 + delta_h 110.395 kJ +Ag2(Cyanide)2 + Ag2(Cyanide)2 = 2Ag+ + 2Cyanide- + log_k -11.3289 + delta_h -0 kJ +NaCyanide(cubic) + NaCyanide = Cyanide- + Na+ + log_k 1.6012 + delta_h 0.969 kJ +KCyanide(cubic) + KCyanide = Cyanide- + K+ + log_k 1.4188 + delta_h 11.93 kJ +Pb2Fe(Cyanide)6 + Pb2Fe(Cyanide)6 = 2Pb+2 + Fe+2 + 6Cyanide- + log_k -53.42 + delta_h -0 kJ +Zn2Fe(Cyanide)6 + Zn2Fe(Cyanide)6 = 2Zn+2 + Fe+2 + 6Cyanide- + log_k -51.08 + delta_h -0 kJ +Cd2Fe(Cyanide)6 + Cd2Fe(Cyanide)6 = 2Cd+2 + Fe+2 + 6Cyanide- + log_k -52.78 + delta_h -0 kJ +Ag4Fe(Cyanide)6 + Ag4Fe(Cyanide)6 = 4Ag+ + Fe+2 + 6Cyanide- + log_k -79.47 + delta_h -0 kJ +Ag3Fe(Cyanide)6 + Ag3Fe(Cyanide)6 = 3Ag+ + Fe+3 + 6Cyanide- + log_k -72.7867 + delta_h -0 kJ +Mn3(Fe(Cyanide)6)2 + Mn3(Fe(Cyanide)6)2 = 3Mn+2 + 2Fe+3 + 12Cyanide- + log_k -105.4 + delta_h -0 kJ +Sb2Se3 + Sb2Se3 + 6H2O = 2Sb(OH)3 + 3HSe- + 3H+ + log_k -67.7571 + delta_h 343.046 kJ +SnSe + SnSe + 2H2O = Sn(OH)2 + H+ + HSe- + log_k -30.494 + delta_h -0 kJ +SnSe2 + SnSe2 + 6H2O = Sn(OH)6-2 + 4H+ + 2HSe- + log_k -65.1189 + delta_h -0 kJ +Clausthalite + PbSe + H+ = Pb+2 + HSe- + log_k -27.1 + delta_h 119.72 kJ +Tl2Se + Tl2Se + H+ = 2Tl+ + HSe- + log_k -18.1 + delta_h 85.62 kJ +ZnSe + ZnSe + H+ = Zn+2 + HSe- + log_k -14.4 + delta_h 25.51 kJ +CdSe + CdSe + H+ = Cd+2 + HSe- + log_k -20.2 + delta_h 75.9814 kJ +HgSe + HgSe + 2H2O = Hg(OH)2 + H+ + HSe- + log_k -55.694 + delta_h -0 kJ +Cu2Se(alpha) + Cu2Se + H+ = 2Cu+ + HSe- + log_k -45.8 + delta_h 214.263 kJ +Cu3Se2 + Cu3Se2 + 2H+ = 2HSe- + 2Cu+ + Cu+2 + log_k -63.4911 + delta_h 340.327 kJ +CuSe + CuSe + H+ = Cu+2 + HSe- + log_k -33.1 + delta_h 121.127 kJ +CuSe2 + CuSe2 + 2H+ + 2e- = 2HSe- + Cu+2 + log_k -33.3655 + delta_h 140.582 kJ +Ag2Se + Ag2Se + H+ = 2Ag+ + HSe- + log_k -48.7 + delta_h 265.48 kJ +NiSe + NiSe + H+ = Ni+2 + HSe- + log_k -17.7 + delta_h -0 kJ +CoSe + CoSe + H+ = Co+2 + HSe- + log_k -16.2 + delta_h -0 kJ +FeSe + FeSe + H+ = Fe+2 + HSe- + log_k -11 + delta_h 2.092 kJ +Ferroselite + FeSe2 + 2H+ + 2e- = 2HSe- + Fe+2 + log_k -18.5959 + delta_h 47.2792 kJ +MnSe + MnSe + H+ = Mn+2 + HSe- + log_k 3.5 + delta_h -98.15 kJ +AlSb + AlSb + 3H2O = Sb(OH)3 + 6e- + Al+3 + 3H+ + log_k 65.6241 + delta_h -0 kJ +ZnSb + ZnSb + 3H2O = Sb(OH)3 + 5e- + Zn+2 + 3H+ + log_k 11.0138 + delta_h -54.8773 kJ +CdSb + CdSb + 3H2O = Sb(OH)3 + 5e- + 3H+ + Cd+2 + log_k -0.3501 + delta_h 22.36 kJ +Cu2Sb:3H2O + Cu2Sb:3H2O = Sb(OH)3 + 6e- + 3H+ + Cu+ + Cu+2 + log_k -34.8827 + delta_h 233.237 kJ +Cu3Sb + Cu3Sb + 3H2O = Sb(OH)3 + 6e- + 3H+ + 3Cu+ + log_k -42.5937 + delta_h 308.131 kJ +#Ag4Sb +# Ag4Sb + 3H2O = Sb(OH)3 + 6e- + 3Ag+ + 3H+ +# log_k -56.1818 +# delta_h -0 kJ +Breithauptite + NiSb + 3H2O = Sb(OH)3 + 5e- + 3H+ + Ni+2 + log_k -18.5225 + delta_h 96.0019 kJ +MnSb + MnSb + 3H2O = Mn+3 + Sb(OH)3 + 6e- + 3H+ + log_k -2.9099 + delta_h 21.1083 kJ +Mn2Sb + Mn2Sb + 3H2O = 2Mn+2 + Sb(OH)3 + 7e- + 3H+ + log_k 61.0796 + delta_h -0 kJ +USb2 + USb2 + 8H2O = UO2+2 + 2Sb(OH)3 + 12e- + 10H+ + log_k 29.5771 + delta_h -103.56 kJ +U3Sb4 + U3Sb4 + 12H2O = 3U+4 + 4Sb(OH)3 + 24e- + 12H+ + log_k 152.383 + delta_h -986.04 kJ +Mg2Sb3 + Mg2Sb3 + 9H2O = 2Mg+2 + 3Sb(OH)3 + 9H+ + 13e- + log_k 74.6838 + delta_h -0 kJ +Ca3Sb2 + Ca3Sb2 + 6H2O = 3Ca+2 + 2Sb(OH)3 + 6H+ + 12e- + log_k 142.974 + delta_h -732.744 kJ +NaSb + NaSb + 3H2O = Na+ + Sb(OH)3 + 3H+ + 4e- + log_k 23.1658 + delta_h -93.45 kJ +Na3Sb + Na3Sb + 3H2O = 3Na+ + Sb(OH)3 + 3H+ + 6e- + log_k 94.4517 + delta_h -432.13 kJ +SeO2 + SeO2 + H2O = HSeO3- + H+ + log_k 0.1246 + delta_h 1.4016 kJ +SeO3 + SeO3 + H2O = SeO4-2 + 2H+ + log_k 21.044 + delta_h -146.377 kJ +Sb2O5 + Sb2O5 + 7H2O = 2Sb(OH)6- + 2H+ + log_k -9.6674 + delta_h -0 kJ +SbO2 + SbO2 + 4H2O = Sb(OH)6- + e- + 2H+ + log_k -27.8241 + delta_h -0 kJ +Sb2O4 + Sb2O4 + 2H2O + 2H+ + 2e- = 2Sb(OH)3 + log_k 3.4021 + delta_h -68.04 kJ +Sb4O6(cubic) + Sb4O6 + 6H2O = 4Sb(OH)3 + log_k -18.2612 + delta_h 61.1801 kJ +Sb4O6(orth) + Sb4O6 + 6H2O = 4Sb(OH)3 + log_k -17.9012 + delta_h 37.6801 kJ +Sb(OH)3 + Sb(OH)3 = Sb(OH)3 + log_k -7.1099 + delta_h 30.1248 kJ +Senarmontite + Sb2O3 + 3H2O = 2Sb(OH)3 + log_k -12.3654 + delta_h 30.6478 kJ +Valentinite + Sb2O3 + 3H2O = 2Sb(OH)3 + log_k -8.4806 + delta_h 19.0163 kJ +Chalcedony + SiO2 + 2H2O = H4SiO4 + log_k -3.55 + delta_h 19.7 kJ +Cristobalite + SiO2 + 2H2O = H4SiO4 + log_k -3.35 + delta_h 20.006 kJ +Quartz + SiO2 + 2H2O = H4SiO4 + log_k -4 + delta_h 22.36 kJ +SiO2(am-gel) + SiO2 + 2H2O = H4SiO4 + log_k -2.71 + delta_h 14 kJ +SiO2(am-ppt) + SiO2 + 2H2O = H4SiO4 + log_k -2.74 + delta_h 15.15 kJ +SnO + SnO + H2O = Sn(OH)2 + log_k -4.9141 + delta_h -0 kJ +SnO2 + SnO2 + 4H2O = Sn(OH)6-2 + 2H+ + log_k -28.9749 + delta_h -0 kJ +Sn(OH)2 + Sn(OH)2 = Sn(OH)2 + log_k -5.4309 + delta_h -0 kJ +Sn(OH)4 + Sn(OH)4 + 2H2O = Sn(OH)6-2 + 2H+ + log_k -22.2808 + delta_h -0 kJ +H2Sn(OH)6 + H2Sn(OH)6 = Sn(OH)6-2 + 2H+ + log_k -23.5281 + delta_h -0 kJ +Massicot + PbO + 2H+ = Pb+2 + H2O + log_k 12.894 + delta_h -66.848 kJ +Litharge + PbO + 2H+ = Pb+2 + H2O + log_k 12.694 + delta_h -65.501 kJ +PbO:0.3H2O + PbO:0.33H2O + 2H+ = Pb+2 + 1.33H2O + log_k 12.98 + delta_h -0 kJ +Plattnerite + PbO2 + 4H+ + 2e- = Pb+2 + 2H2O + log_k 49.6001 + delta_h -296.27 kJ +Pb(OH)2 + Pb(OH)2 + 2H+ = Pb+2 + 2H2O + log_k 8.15 + delta_h -58.5342 kJ +Pb2O(OH)2 + Pb2O(OH)2 + 4H+ = 2Pb+2 + 3H2O + log_k 26.188 + delta_h -0 kJ +Al(OH)3(am) + Al(OH)3 + 3H+ = Al+3 + 3H2O + log_k 10.8 + delta_h -111 kJ +Boehmite + AlOOH + 3H+ = Al+3 + 2H2O + log_k 8.578 + delta_h -117.696 kJ +Diaspore + AlOOH + 3H+ = Al+3 + 2H2O + log_k 6.873 + delta_h -103.052 kJ +Gibbsite + Al(OH)3 + 3H+ = Al+3 + 3H2O + log_k 8.291 + delta_h -95.3952 kJ +Tl2O + Tl2O + 2H+ = 2Tl+ + H2O + log_k 27.0915 + delta_h -96.41 kJ +TlOH + TlOH + H+ = Tl+ + H2O + log_k 12.9186 + delta_h -41.57 kJ +Avicennite + Tl2O3 + 3H2O = 2Tl(OH)3 + log_k -13 + delta_h -0 kJ +Tl(OH)3 + Tl(OH)3 = Tl(OH)3 + log_k -5.441 + delta_h -0 kJ +Zn(OH)2(am) + Zn(OH)2 + 2H+ = Zn+2 + 2H2O + log_k 12.474 + delta_h -80.62 kJ +Zn(OH)2 + Zn(OH)2 + 2H+ = Zn+2 + 2H2O + log_k 12.2 + delta_h -0 kJ +Zn(OH)2(beta) + Zn(OH)2 + 2H+ = Zn+2 + 2H2O + log_k 11.754 + delta_h -83.14 kJ +Zn(OH)2(gamma) + Zn(OH)2 + 2H+ = Zn+2 + 2H2O + log_k 11.734 + delta_h -0 kJ +Zn(OH)2(epsilon) + Zn(OH)2 + 2H+ = Zn+2 + 2H2O + log_k 11.534 + delta_h -81.8 kJ +ZnO(active) + ZnO + 2H+ = Zn+2 + H2O + log_k 11.1884 + delta_h -88.76 kJ +Zincite + ZnO + 2H+ = Zn+2 + H2O + log_k 11.334 + delta_h -89.62 kJ +Cd(OH)2(am) + Cd(OH)2 + 2H+ = Cd+2 + 2H2O + log_k 13.73 + delta_h -86.9017 kJ +Cd(OH)2 + Cd(OH)2 + 2H+ = Cd+2 + 2H2O + log_k 13.644 + delta_h -94.62 kJ +Monteponite + CdO + 2H+ = Cd+2 + H2O + log_k 15.1034 + delta_h -103.4 kJ +Hg2(OH)2 + Hg2(OH)2 + 2H+ = Hg2+2 + 2H2O + log_k 5.2603 + delta_h -0 kJ +Montroydite + HgO + H2O = Hg(OH)2 + log_k -3.64 + delta_h -38.9 kJ +Hg(OH)2 + Hg(OH)2 = Hg(OH)2 + log_k -3.4963 + delta_h -0 kJ +Cuprite + Cu2O + 2H+ = 2Cu+ + H2O + log_k -1.406 + delta_h -124.02 kJ +Cu(OH)2 + Cu(OH)2 + 2H+ = Cu+2 + 2H2O + log_k 8.674 + delta_h -56.42 kJ +Tenorite + CuO + 2H+ = Cu+2 + H2O + log_k 7.644 + delta_h -64.867 kJ +Ag2O + Ag2O + 2H+ = 2Ag+ + H2O + log_k 12.574 + delta_h -45.62 kJ +Ni(OH)2 + Ni(OH)2 + 2H+ = Ni+2 + 2H2O + log_k 12.794 + delta_h -95.96 kJ +Bunsenite + NiO + 2H+ = Ni+2 + H2O + log_k 12.4456 + delta_h -100.13 kJ +CoO + CoO + 2H+ = Co+2 + H2O + log_k 13.5864 + delta_h -106.295 kJ +Co(OH)2 + Co(OH)2 + 2H+ = Co+2 + 2H2O + log_k 13.094 + delta_h -0 kJ +Co(OH)3 + Co(OH)3 + 3H+ = Co+3 + 3H2O + log_k -2.309 + delta_h -92.43 kJ +#Wustite-0.11 +# WUSTITE-0.11 + 2H+ = 0.947Fe+2 + H2O +# log_k 11.6879 +# delta_h -103.938 kJ +Fe(OH)2 + Fe(OH)2 + 2H+ = Fe+2 + 2H2O + log_k 13.564 + delta_h -0 kJ +Ferrihydrite + Fe(OH)3 + 3H+ = Fe+3 + 3H2O + log_k 3.191 + delta_h -73.374 kJ +Fe3(OH)8 + Fe3(OH)8 + 8H+ = 2Fe+3 + Fe+2 + 8H2O + log_k 20.222 + delta_h -0 kJ +Goethite + FeOOH + 3H+ = Fe+3 + 2H2O + log_k 0.491 + delta_h -60.5843 kJ +Pyrolusite + MnO2 + 4H+ + 2e- = Mn+2 + 2H2O + log_k 41.38 + delta_h -272 kJ +Birnessite + MnO2 + 4H+ + e- = Mn+3 + 2H2O + log_k 18.091 + delta_h -0 kJ +Nsutite + MnO2 + 4H+ + e- = Mn+3 + 2H2O + log_k 17.504 + delta_h -0 kJ +Pyrochroite + Mn(OH)2 + 2H+ = Mn+2 + 2H2O + log_k 15.194 + delta_h -97.0099 kJ +Manganite + MnOOH + 3H+ + e- = Mn+2 + 2H2O + log_k 25.34 + delta_h -0 kJ +Cr(OH)2 + Cr(OH)2 + 2H+ = Cr+2 + 2H2O + log_k 10.8189 + delta_h -35.6058 kJ +Cr(OH)3(am) + Cr(OH)3 + H+ = Cr(OH)2+ + H2O + log_k -0.75 + delta_h -0 kJ +Cr(OH)3 + Cr(OH)3 + H+ = Cr(OH)2+ + H2O + log_k 1.3355 + delta_h -29.7692 kJ +CrO3 + CrO3 + H2O = CrO4-2 + 2H+ + log_k -3.2105 + delta_h -5.2091 kJ +MoO3 + MoO3 + H2O = MoO4-2 + 2H+ + log_k -8 + delta_h -0 kJ +VO + VO + 2H+ = V+3 + H2O + e- + log_k 14.7563 + delta_h -113.041 kJ +V(OH)3 + V(OH)3 + 3H+ = V+3 + 3H2O + log_k 7.591 + delta_h -0 kJ +VO(OH)2 + VO(OH)2 + 2H+ = VO+2 + 2H2O + log_k 5.1506 + delta_h -0 kJ +Uraninite + UO2 + 4H+ = U+4 + 2H2O + log_k -4.6693 + delta_h -77.86 kJ +UO2(am) + UO2 + 4H+ = U+4 + 2H2O + log_k 0.934 + delta_h -109.746 kJ +UO3 + UO3 + 2H+ = UO2+2 + H2O + log_k 7.7 + delta_h -81.0299 kJ +Gummite + UO3 + 2H+ = UO2+2 + H2O + log_k 7.6718 + delta_h -81.0299 kJ +UO2(OH)2(beta) + UO2(OH)2 + 2H+ = UO2+2 + 2H2O + log_k 5.6116 + delta_h -56.7599 kJ +Schoepite + UO2(OH)2:H2O + 2H+ = UO2+2 + 3H2O + log_k 5.994 + delta_h -49.79 kJ +Be(OH)2(am) + Be(OH)2 + 2H+ = Be+2 + 2H2O + log_k 7.194 + delta_h -0 kJ +Be(OH)2(alpha) + Be(OH)2 + 2H+ = Be+2 + 2H2O + log_k 6.894 + delta_h -0 kJ +Be(OH)2(beta) + Be(OH)2 + 2H+ = Be+2 + 2H2O + log_k 6.494 + delta_h -0 kJ +Brucite + Mg(OH)2 + 2H+ = Mg+2 + 2H2O + log_k 16.844 + delta_h -113.996 kJ +Periclase + MgO + 2H+ = Mg+2 + H2O + log_k 21.5841 + delta_h -151.23 kJ +Mg(OH)2(active) + Mg(OH)2 + 2H+ = Mg+2 + 2H2O + log_k 18.794 + delta_h -0 kJ +Lime + CaO + 2H+ = Ca+2 + H2O + log_k 32.6993 + delta_h -193.91 kJ +Portlandite + Ca(OH)2 + 2H+ = Ca+2 + 2H2O + log_k 22.804 + delta_h -128.62 kJ +Ba(OH)2:8H2O + Ba(OH)2:8H2O + 2H+ = Ba+2 + 10H2O + log_k 24.394 + delta_h -54.32 kJ +Cu(SbO3)2 + Cu(SbO3)2 + 6H+ + 4e- = 2Sb(OH)3 + Cu+2 + log_k 45.2105 + delta_h -0 kJ +Arsenolite + As2O3 + 3H2O = 2H3AsO3 + log_k -1.38 + delta_h 59.9567 kJ +Claudetite + As2O3 + 3H2O = 2H3AsO3 + log_k -1.5325 + delta_h 55.6054 kJ +As2O5 + As2O5 + 3H2O = 2H3AsO4 + log_k 6.7061 + delta_h -22.64 kJ +Pb2O3 + Pb2O3 + 6H+ + 2e- = 2Pb+2 + 3H2O + log_k 61.04 + delta_h -0 kJ +Minium + Pb3O4 + 8H+ + 2e- = 3Pb+2 + 4H2O + log_k 73.5219 + delta_h -421.874 kJ +Al2O3 + Al2O3 + 6H+ = 2Al+3 + 3H2O + log_k 19.6524 + delta_h -258.59 kJ +Co3O4 + Co3O4 + 8H+ = Co+2 + 2Co+3 + 4H2O + log_k -10.4956 + delta_h -107.5 kJ +CoFe2O4 + CoFe2O4 + 8H+ = Co+2 + 2Fe+3 + 4H2O + log_k -3.5281 + delta_h -158.82 kJ +Magnetite + Fe3O4 + 8H+ = 2Fe+3 + Fe+2 + 4H2O + log_k 3.4028 + delta_h -208.526 kJ +Hercynite + FeAl2O4 + 8H+ = Fe+2 + 2Al+3 + 4H2O + log_k 22.893 + delta_h -313.92 kJ +Hematite + Fe2O3 + 6H+ = 2Fe+3 + 3H2O + log_k -1.418 + delta_h -128.987 kJ +Maghemite + Fe2O3 + 6H+ = 2Fe+3 + 3H2O + log_k 6.386 + delta_h -0 kJ +Lepidocrocite + FeOOH + 3H+ = Fe+3 + 2H2O + log_k 1.371 + delta_h -0 kJ +Hausmannite + Mn3O4 + 8H+ + 2e- = 3Mn+2 + 4H2O + log_k 61.03 + delta_h -421 kJ +Bixbyite + Mn2O3 + 6H+ = 2Mn+3 + 3H2O + log_k -0.6445 + delta_h -124.49 kJ +Cr2O3 + Cr2O3 + H2O + 2H+ = 2Cr(OH)2+ + log_k -2.3576 + delta_h -50.731 kJ +#V2O3 +# V2O3 + 3H+ = V+3 + 1.5H2O +# log_k 4.9 +# delta_h -82.5085 kJ +V3O5 + V3O5 + 4H+ = 3VO+2 + 2H2O + 2e- + log_k 1.8361 + delta_h -98.46 kJ +#V2O4 +# V2O4 + 2H+ = VO+2 + H2O +# log_k 4.27 +# delta_h -58.8689 kJ +V4O7 + V4O7 + 6H+ = 4VO+2 + 3H2O + 2e- + log_k 7.1865 + delta_h -163.89 kJ +V6O13 + V6O13 + 2H+ = 6VO2+ + H2O + 4e- + log_k -60.86 + delta_h 271.5 kJ +V2O5 + V2O5 + 2H+ = 2VO2+ + H2O + log_k -1.36 + delta_h 34 kJ +U4O9 + U4O9 + 18H+ + 2e- = 4U+4 + 9H2O + log_k -3.0198 + delta_h -426.87 kJ +U3O8 + U3O8 + 16H+ + 4e- = 3U+4 + 8H2O + log_k 21.0834 + delta_h -485.44 kJ +Spinel + MgAl2O4 + 8H+ = Mg+2 + 2Al+3 + 4H2O + log_k 36.8476 + delta_h -388.012 kJ +Magnesioferrite + Fe2MgO4 + 8H+ = Mg+2 + 2Fe+3 + 4H2O + log_k 16.8597 + delta_h -278.92 kJ +Natron + Na2CO3:10H2O = 2Na+ + CO3-2 + 10H2O + log_k -1.311 + delta_h 65.8771 kJ +Cuprousferrite + CuFeO2 + 4H+ = Cu+ + Fe+3 + 2H2O + log_k -8.9171 + delta_h -15.89 kJ +Cupricferrite + CuFe2O4 + 8H+ = Cu+2 + 2Fe+3 + 4H2O + log_k 5.9882 + delta_h -210.21 kJ +FeCr2O4 + FeCr2O4 + 4H+ = 2Cr(OH)2+ + Fe+2 + log_k 7.2003 + delta_h -140.4 kJ +MgCr2O4 + MgCr2O4 + 4H+ = 2Cr(OH)2+ + Mg+2 + log_k 16.2007 + delta_h -179.4 kJ +SbF3 + SbF3 + 3H2O = Sb(OH)3 + 3H+ + 3F- + log_k -10.2251 + delta_h -6.7279 kJ +PbF2 + PbF2 = Pb+2 + 2F- + log_k -7.44 + delta_h 20 kJ +ZnF2 + ZnF2 = Zn+2 + 2F- + log_k -0.5343 + delta_h -59.69 kJ +CdF2 + CdF2 = Cd+2 + 2F- + log_k -1.2124 + delta_h -46.22 kJ +Hg2F2 + Hg2F2 = Hg2+2 + 2F- + log_k -10.3623 + delta_h -18.486 kJ +CuF + CuF = Cu+ + F- + log_k -4.9056 + delta_h 16.648 kJ +CuF2 + CuF2 = Cu+2 + 2F- + log_k 1.115 + delta_h -66.901 kJ +CuF2:2H2O + CuF2:2H2O = Cu+2 + 2F- + 2H2O + log_k -4.55 + delta_h -15.2716 kJ +AgF:4H2O + AgF:4H2O = Ag+ + F- + 4H2O + log_k 1.0491 + delta_h 15.4202 kJ +CoF2 + CoF2 = Co+2 + 2F- + log_k -1.5969 + delta_h -57.368 kJ +CoF3 + CoF3 = Co+3 + 3F- + log_k -1.4581 + delta_h -123.692 kJ +CrF3 + CrF3 + 2H2O = Cr(OH)2+ + 3F- + 2H+ + log_k -11.3367 + delta_h -23.3901 kJ +VF4 + VF4 + H2O = VO+2 + 4F- + 2H+ + log_k 14.93 + delta_h -199.117 kJ +UF4 + UF4 = U+4 + 4F- + log_k -29.5371 + delta_h -79.0776 kJ +UF4:2.5H2O + UF4:2.5H2O = U+4 + 4F- + 2.5H2O + log_k -32.7179 + delta_h 24.325 kJ +MgF2 + MgF2 = Mg+2 + 2F- + log_k -8.13 + delta_h -8 kJ +Fluorite + CaF2 = Ca+2 + 2F- + log_k -10.5 + delta_h 8 kJ +SrF2 + SrF2 = Sr+2 + 2F- + log_k -8.58 + delta_h 4 kJ +BaF2 + BaF2 = Ba+2 + 2F- + log_k -5.82 + delta_h 4 kJ +Cryolite + Na3AlF6 = 3Na+ + Al+3 + 6F- + log_k -33.84 + delta_h 38 kJ +SbCl3 + SbCl3 + 3H2O = Sb(OH)3 + 3Cl- + 3H+ + log_k 0.5719 + delta_h -35.18 kJ +SnCl2 + SnCl2 + 2H2O = Sn(OH)2 + 2H+ + 2Cl- + log_k -9.2752 + delta_h -0 kJ +Cotunnite + PbCl2 = Pb+2 + 2Cl- + log_k -4.78 + delta_h 26.166 kJ +Matlockite + PbClF = Pb+2 + Cl- + F- + log_k -8.9733 + delta_h 33.19 kJ +Phosgenite + PbCl2:PbCO3 = 2Pb+2 + 2Cl- + CO3-2 + log_k -19.81 + delta_h -0 kJ +Laurionite + PbOHCl + H+ = Pb+2 + Cl- + H2O + log_k 0.623 + delta_h -0 kJ +Pb2(OH)3Cl + Pb2(OH)3Cl + 3H+ = 2Pb+2 + 3H2O + Cl- + log_k 8.793 + delta_h -0 kJ +TlCl + TlCl = Tl+ + Cl- + log_k -3.74 + delta_h 41 kJ +ZnCl2 + ZnCl2 = Zn+2 + 2Cl- + log_k 7.05 + delta_h -72.5 kJ +Zn2(OH)3Cl + Zn2(OH)3Cl + 3H+ = 2Zn+2 + 3H2O + Cl- + log_k 15.191 + delta_h -0 kJ +Zn5(OH)8Cl2 + Zn5(OH)8Cl2 + 8H+ = 5Zn+2 + 8H2O + 2Cl- + log_k 38.5 + delta_h -0 kJ +CdCl2 + CdCl2 = Cd+2 + 2Cl- + log_k -0.6588 + delta_h -18.58 kJ +CdCl2:1H2O + CdCl2:1H2O = Cd+2 + 2Cl- + H2O + log_k -1.6932 + delta_h -7.47 kJ +CdCl2:2.5H2O + CdCl2:2.5H2O = Cd+2 + 2Cl- + 2.5H2O + log_k -1.913 + delta_h 7.2849 kJ +CdOHCl + CdOHCl + H+ = Cd+2 + H2O + Cl- + log_k 3.5373 + delta_h -30.93 kJ +Calomel + Hg2Cl2 = Hg2+2 + 2Cl- + log_k -17.91 + delta_h 92 kJ +HgCl2 + HgCl2 + 2H2O = Hg(OH)2 + 2Cl- + 2H+ + log_k -21.2621 + delta_h 107.82 kJ +Nantokite + CuCl = Cu+ + Cl- + log_k -6.73 + delta_h 42.662 kJ +Melanothallite + CuCl2 = Cu+2 + 2Cl- + log_k 6.2572 + delta_h -63.407 kJ +Atacamite + Cu2(OH)3Cl + 3H+ = 2Cu+2 + 3H2O + Cl- + log_k 7.391 + delta_h -93.43 kJ +Cerargyrite + AgCl = Ag+ + Cl- + log_k -9.75 + delta_h 65.2 kJ +CoCl2 + CoCl2 = Co+2 + 2Cl- + log_k 8.2672 + delta_h -79.815 kJ +CoCl2:6H2O + CoCl2:6H2O = Co+2 + 2Cl- + 6H2O + log_k 2.5365 + delta_h 8.0598 kJ +(Co(NH3)6)Cl3 + (Co(NH3)6)Cl3 + 6H+ = Co+3 + 6NH4+ + 3Cl- + log_k 20.0317 + delta_h -33.1 kJ +(Co(NH3)5OH2)Cl3 + (Co(NH3)5OH2)Cl3 + 5H+ = Co+3 + 5NH4+ + 3Cl- + H2O + log_k 11.7351 + delta_h -25.37 kJ +(Co(NH3)5Cl)Cl2 + (Co(NH3)5Cl)Cl2 + 5H+ = Co+3 + 5NH4+ + 3Cl- + log_k 4.5102 + delta_h -10.74 kJ +Fe(OH)2.7Cl.3 + Fe(OH)2.7Cl.3 + 2.7H+ = Fe+3 + 2.7H2O + 0.3Cl- + log_k -3.04 + delta_h -0 kJ +MnCl2:4H2O + MnCl2:4H2O = Mn+2 + 2Cl- + 4H2O + log_k 2.7151 + delta_h -10.83 kJ +CrCl2 + CrCl2 = Cr+2 + 2Cl- + log_k 14.0917 + delta_h -110.76 kJ +CrCl3 + CrCl3 + 2H2O = Cr(OH)2+ + 3Cl- + 2H+ + log_k 15.1145 + delta_h -121.08 kJ +VCl2 + VCl2 = V+3 + 2Cl- + e- + log_k 18.8744 + delta_h -141.16 kJ +VCl3 + VCl3 = V+3 + 3Cl- + log_k 23.4326 + delta_h -179.54 kJ +VOCl + VOCl + 2H+ = V+3 + Cl- + H2O + log_k 11.1524 + delta_h -104.91 kJ +VOCl2 + VOCl2 = VO+2 + 2Cl- + log_k 12.7603 + delta_h -117.76 kJ +VO2Cl + VO2Cl = VO2+ + Cl- + log_k 2.8413 + delta_h -40.28 kJ +Halite + NaCl = Na+ + Cl- + log_k 1.6025 + delta_h 3.7 kJ +SbBr3 + SbBr3 + 3H2O = Sb(OH)3 + 3Br- + 3H+ + log_k 0.9689 + delta_h -20.94 kJ +SnBr2 + SnBr2 + 2H2O = Sn(OH)2 + 2H+ + 2Br- + log_k -9.5443 + delta_h -0 kJ +SnBr4 + SnBr4 + 6H2O = Sn(OH)6-2 + 6H+ + 4Br- + log_k -28.8468 + delta_h -0 kJ +PbBr2 + PbBr2 = Pb+2 + 2Br- + log_k -5.3 + delta_h 35.499 kJ +PbBrF + PbBrF = Pb+2 + Br- + F- + log_k -8.49 + delta_h -0 kJ +TlBr + TlBr = Tl+ + Br- + log_k -5.44 + delta_h 54 kJ +ZnBr2:2H2O + ZnBr2:2H2O = Zn+2 + 2Br- + 2H2O + log_k 5.2005 + delta_h -30.67 kJ +CdBr2:4H2O + CdBr2:4H2O = Cd+2 + 2Br- + 4H2O + log_k -2.425 + delta_h 30.5001 kJ +Hg2Br2 + Hg2Br2 = Hg2+2 + 2Br- + log_k -22.25 + delta_h 133 kJ +HgBr2 + HgBr2 + 2H2O = Hg(OH)2 + 2Br- + 2H+ + log_k -25.2734 + delta_h 138.492 kJ +CuBr + CuBr = Cu+ + Br- + log_k -8.3 + delta_h 54.86 kJ +Cu2(OH)3Br + Cu2(OH)3Br + 3H+ = 2Cu+2 + 3H2O + Br- + log_k 7.9085 + delta_h -93.43 kJ +Bromyrite + AgBr = Ag+ + Br- + log_k -12.3 + delta_h 84.5 kJ +(Co(NH3)6)Br3 + (Co(NH3)6)Br3 + 6H+ = Co+3 + 6NH4+ + 3Br- + log_k 18.3142 + delta_h -21.1899 kJ +(Co(NH3)5Cl)Br2 + (Co(NH3)5Cl)Br2 + 5H+ = Co+3 + 5NH4+ + Cl- + 2Br- + log_k 5.0295 + delta_h -6.4 kJ +CrBr3 + CrBr3 + 2H2O = Cr(OH)2+ + 3Br- + 2H+ + log_k 19.9086 + delta_h -141.323 kJ +AsI3 + AsI3 + 3H2O = H3AsO3 + 3I- + 3H+ + log_k 4.2307 + delta_h 3.15 kJ +SbI3 + SbI3 + 3H2O = Sb(OH)3 + 3H+ + 3I- + log_k -0.538 + delta_h 13.5896 kJ +PbI2 + PbI2 = Pb+2 + 2I- + log_k -8.1 + delta_h 62 kJ +TlI + TlI = Tl+ + I- + log_k -7.23 + delta_h 75 kJ +ZnI2 + ZnI2 = Zn+2 + 2I- + log_k 7.3055 + delta_h -58.92 kJ +CdI2 + CdI2 = Cd+2 + 2I- + log_k -3.5389 + delta_h 13.82 kJ +Hg2I2 + Hg2I2 = Hg2+2 + 2I- + log_k -28.34 + delta_h 163 kJ +Coccinite + HgI2 + 2H2O = Hg(OH)2 + 2H+ + 2I- + log_k -34.9525 + delta_h 210.72 kJ +HgI2:2NH3 + HgI2:2NH3 + 2H2O = Hg(OH)2 + 2I- + 2NH4+ + log_k -16.2293 + delta_h 132.18 kJ +HgI2:6NH3 + HgI2:6NH3 + 2H2O + 4H+ = Hg(OH)2 + 2I- + 6NH4+ + log_k 33.7335 + delta_h -90.3599 kJ +CuI + CuI = Cu+ + I- + log_k -12 + delta_h 82.69 kJ +Iodyrite + AgI = Ag+ + I- + log_k -16.08 + delta_h 110 kJ +(Co(NH3)6)I3 + (Co(NH3)6)I3 + 6H+ = Co+3 + 6NH4+ + 3I- + log_k 16.5831 + delta_h -9.6999 kJ +(Co(NH3)5Cl)I2 + (Co(NH3)5Cl)I2 + 5H+ = Co+3 + 5NH4+ + Cl- + 2I- + log_k 5.5981 + delta_h 0.66 kJ +CrI3 + CrI3 + 2H2O = Cr(OH)2+ + 3I- + 2H+ + log_k 20.4767 + delta_h -134.419 kJ +Cerrusite + PbCO3 = Pb+2 + CO3-2 + log_k -13.13 + delta_h 24.79 kJ +Pb2OCO3 + Pb2OCO3 + 2H+ = 2Pb+2 + H2O + CO3-2 + log_k -0.5578 + delta_h -40.8199 kJ +Pb3O2CO3 + Pb3O2CO3 + 4H+ = 3Pb+2 + CO3-2 + 2H2O + log_k 11.02 + delta_h -110.583 kJ +Hydrocerrusite + Pb3(OH)2(CO3)2 + 2H+ = 3Pb+2 + 2H2O + 2CO3-2 + log_k -18.7705 + delta_h -0 kJ +Pb10(OH)6O(CO3)6 + Pb10(OH)6O(CO3)6 + 8H+ = 10Pb+2 + 6CO3-2 + 7H2O + log_k -8.76 + delta_h -0 kJ +Tl2CO3 + Tl2CO3 = 2Tl+ + CO3-2 + log_k -3.8367 + delta_h 35.49 kJ +Smithsonite + ZnCO3 = Zn+2 + CO3-2 + log_k -10 + delta_h -15.84 kJ +ZnCO3:1H2O + ZnCO3:1H2O = Zn+2 + CO3-2 + H2O + log_k -10.26 + delta_h -0 kJ +Otavite + CdCO3 = Cd+2 + CO3-2 + log_k -12 + delta_h -0.55 kJ +Hg2CO3 + Hg2CO3 = Hg2+2 + CO3-2 + log_k -16.05 + delta_h 45.14 kJ +Hg3O2CO3 + Hg3O2CO3 + 4H2O = 3Hg(OH)2 + 2H+ + CO3-2 + log_k -29.682 + delta_h -0 kJ +CuCO3 + CuCO3 = Cu+2 + CO3-2 + log_k -11.5 + delta_h -0 kJ +Malachite + Cu2(OH)2CO3 + 2H+ = 2Cu+2 + 2H2O + CO3-2 + log_k -5.306 + delta_h 76.38 kJ +Azurite + Cu3(OH)2(CO3)2 + 2H+ = 3Cu+2 + 2H2O + 2CO3-2 + log_k -16.906 + delta_h -95.22 kJ +Ag2CO3 + Ag2CO3 = 2Ag+ + CO3-2 + log_k -11.09 + delta_h 42.15 kJ +NiCO3 + NiCO3 = Ni+2 + CO3-2 + log_k -6.87 + delta_h -41.589 kJ +CoCO3 + CoCO3 = Co+2 + CO3-2 + log_k -9.98 + delta_h -12.7612 kJ +Siderite + FeCO3 = Fe+2 + CO3-2 + log_k -10.24 + delta_h -16 kJ +Rhodochrosite + MnCO3 = Mn+2 + CO3-2 + log_k -10.58 + delta_h -1.88 kJ +Rutherfordine + UO2CO3 = UO2+2 + CO3-2 + log_k -14.5 + delta_h -3.03 kJ +Artinite + MgCO3:Mg(OH)2:3H2O + 2H+ = 2Mg+2 + CO3-2 + 5H2O + log_k 9.6 + delta_h -120.257 kJ +Hydromagnesite + Mg5(CO3)4(OH)2:4H2O + 2H+ = 5Mg+2 + 4CO3-2 + 6H2O + log_k -8.766 + delta_h -218.447 kJ +Magnesite + MgCO3 = Mg+2 + CO3-2 + log_k -7.46 + delta_h 20 kJ +Nesquehonite + MgCO3:3H2O = Mg+2 + CO3-2 + 3H2O + log_k -4.67 + delta_h -24.2212 kJ +Aragonite + CaCO3 = Ca+2 + CO3-2 + log_k -8.3 + delta_h -12 kJ +Calcite + CaCO3 = Ca+2 + CO3-2 + log_k -8.48 + delta_h -8 kJ +Dolomite(ordered) + CaMg(CO3)2 = Ca+2 + Mg+2 + 2CO3-2 + log_k -17.09 + delta_h -39.5 kJ +Dolomite(disordered) + CaMg(CO3)2 = Ca+2 + Mg+2 + 2CO3-2 + log_k -16.54 + delta_h -46.4 kJ +Huntite + CaMg3(CO3)4 = 3Mg+2 + Ca+2 + 4CO3-2 + log_k -29.968 + delta_h -107.78 kJ +Strontianite + SrCO3 = Sr+2 + CO3-2 + log_k -9.27 + delta_h -0 kJ +Witherite + BaCO3 = Ba+2 + CO3-2 + log_k -8.57 + delta_h 4 kJ +Thermonatrite + Na2CO3:H2O = 2Na+ + CO3-2 + H2O + log_k 0.637 + delta_h -10.4799 kJ +TlNO3 + TlNO3 = Tl+ + NO3- + log_k -1.6127 + delta_h 42.44 kJ +Zn(NO3)2:6H2O + Zn(NO3)2:6H2O = Zn+2 + 2NO3- + 6H2O + log_k 3.3153 + delta_h 24.5698 kJ +Cu2(OH)3NO3 + Cu2(OH)3NO3 + 3H+ = 2Cu+2 + 3H2O + NO3- + log_k 9.251 + delta_h -72.5924 kJ +(Co(NH3)6)(NO3)3 + (Co(NH3)6)(NO3)3 + 6H+ = Co+3 + 6NH4+ + 3NO3- + log_k 17.9343 + delta_h 1.59 kJ +(Co(NH3)5Cl)(NO3)2 + (Co(NH3)5Cl)(NO3)2 + 5H+ = Co+3 + 5NH4+ + Cl- + 2NO3- + log_k 6.2887 + delta_h 6.4199 kJ +UO2(NO3)2 + UO2(NO3)2 = UO2+2 + 2NO3- + log_k 12.1476 + delta_h -83.3999 kJ +UO2(NO3)2:2H2O + UO2(NO3)2:2H2O = UO2+2 + 2NO3- + 2H2O + log_k 4.851 + delta_h -25.355 kJ +UO2(NO3)2:3H2O + UO2(NO3)2:3H2O = UO2+2 + 2NO3- + 3H2O + log_k 3.39 + delta_h -9.1599 kJ +UO2(NO3)2:6H2O + UO2(NO3)2:6H2O = UO2+2 + 2NO3- + 6H2O + log_k 2.0464 + delta_h 20.8201 kJ +Pb(BO2)2 + Pb(BO2)2 + 2H2O + 2H+ = Pb+2 + 2H3BO3 + log_k 6.5192 + delta_h -15.6119 kJ +Zn(BO2)2 + Zn(BO2)2 + 2H2O + 2H+ = Zn+2 + 2H3BO3 + log_k 8.29 + delta_h -0 kJ +Cd(BO2)2 + Cd(BO2)2 + 2H2O + 2H+ = Cd+2 + 2H3BO3 + log_k 9.84 + delta_h -0 kJ +Co(BO2)2 + Co(BO2)2 + 2H2O + 2H+ = Co+2 + 2H3BO3 + log_k 27.0703 + delta_h -0 kJ +SnSO4 + SnSO4 + 2H2O = Sn(OH)2 + 2H+ + SO4-2 + log_k -56.9747 + delta_h -0 kJ +Sn(SO4)2 + Sn(SO4)2 + 6H2O = Sn(OH)6-2 + 6H+ + 2SO4-2 + log_k -15.2123 + delta_h -0 kJ +Larnakite + PbO:PbSO4 + 2H+ = 2Pb+2 + SO4-2 + H2O + log_k -0.4344 + delta_h -21.83 kJ +Pb3O2SO4 + Pb3O2SO4 + 4H+ = 3Pb+2 + SO4-2 + 2H2O + log_k 10.6864 + delta_h -79.14 kJ +Pb4O3SO4 + Pb4O3SO4 + 6H+ = 4Pb+2 + SO4-2 + 3H2O + log_k 21.8772 + delta_h -136.45 kJ +Anglesite + PbSO4 = Pb+2 + SO4-2 + log_k -7.79 + delta_h 12 kJ +Pb4(OH)6SO4 + Pb4(OH)6SO4 + 6H+ = 4Pb+2 + SO4-2 + 6H2O + log_k 21.1 + delta_h -0 kJ +AlOHSO4 + AlOHSO4 + H+ = Al+3 + SO4-2 + H2O + log_k -3.23 + delta_h -0 kJ +Al4(OH)10SO4 + Al4(OH)10SO4 + 10H+ = 4Al+3 + SO4-2 + 10H2O + log_k 22.7 + delta_h -0 kJ +Tl2SO4 + Tl2SO4 = 2Tl+ + SO4-2 + log_k -3.7868 + delta_h 33.1799 kJ +Zn2(OH)2SO4 + Zn2(OH)2SO4 + 2H+ = 2Zn+2 + 2H2O + SO4-2 + log_k 7.5 + delta_h -0 kJ +Zn4(OH)6SO4 + Zn4(OH)6SO4 + 6H+ = 4Zn+2 + 6H2O + SO4-2 + log_k 28.4 + delta_h -0 kJ +Zn3O(SO4)2 + Zn3O(SO4)2 + 2H+ = 3Zn+2 + 2SO4-2 + H2O + log_k 18.9135 + delta_h -258.08 kJ +Zincosite + ZnSO4 = Zn+2 + SO4-2 + log_k 3.9297 + delta_h -82.586 kJ +ZnSO4:1H2O + ZnSO4:1H2O = Zn+2 + SO4-2 + H2O + log_k -0.638 + delta_h -44.0699 kJ +Bianchite + ZnSO4:6H2O = Zn+2 + SO4-2 + 6H2O + log_k -1.765 + delta_h -0.6694 kJ +Goslarite + ZnSO4:7H2O = Zn+2 + SO4-2 + 7H2O + log_k -2.0112 + delta_h 14.21 kJ +Cd3(OH)4SO4 + Cd3(OH)4SO4 + 4H+ = 3Cd+2 + 4H2O + SO4-2 + log_k 22.56 + delta_h -0 kJ +Cd3(OH)2(SO4)2 + Cd3(OH)2(SO4)2 + 2H+ = 3Cd+2 + 2H2O + 2SO4-2 + log_k 6.71 + delta_h -0 kJ +Cd4(OH)6SO4 + Cd4(OH)6SO4 + 6H+ = 4Cd+2 + 6H2O + SO4-2 + log_k 28.4 + delta_h -0 kJ +CdSO4 + CdSO4 = Cd+2 + SO4-2 + log_k -0.1722 + delta_h -51.98 kJ +CdSO4:1H2O + CdSO4:1H2O = Cd+2 + SO4-2 + H2O + log_k -1.7261 + delta_h -31.5399 kJ +CdSO4:2.67H2O + CdSO4:2.67H2O = Cd+2 + SO4-2 + 2.67H2O + log_k -1.873 + delta_h -17.9912 kJ +Hg2SO4 + Hg2SO4 = Hg2+2 + SO4-2 + log_k -6.13 + delta_h 5.4 kJ +HgSO4 + HgSO4 + 2H2O = Hg(OH)2 + SO4-2 + 2H+ + log_k -9.4189 + delta_h 14.6858 kJ +Cu2SO4 + Cu2SO4 = 2Cu+ + SO4-2 + log_k -1.95 + delta_h -19.079 kJ +Antlerite + Cu3(OH)4SO4 + 4H+ = 3Cu+2 + 4H2O + SO4-2 + log_k 8.788 + delta_h -0 kJ +Brochantite + Cu4(OH)6SO4 + 6H+ = 4Cu+2 + 6H2O + SO4-2 + log_k 15.222 + delta_h -202.86 kJ +Langite + Cu4(OH)6SO4:H2O + 6H+ = 4Cu+2 + 7H2O + SO4-2 + log_k 17.4886 + delta_h -165.55 kJ +CuOCuSO4 + CuOCuSO4 + 2H+ = 2Cu+2 + H2O + SO4-2 + log_k 10.3032 + delta_h -137.777 kJ +CuSO4 + CuSO4 = Cu+2 + SO4-2 + log_k 2.9395 + delta_h -73.04 kJ +Chalcanthite + CuSO4:5H2O = Cu+2 + SO4-2 + 5H2O + log_k -2.64 + delta_h 6.025 kJ +Ag2SO4 + Ag2SO4 = 2Ag+ + SO4-2 + log_k -4.82 + delta_h 17 kJ +Ni4(OH)6SO4 + Ni4(OH)6SO4 + 6H+ = 4Ni+2 + SO4-2 + 6H2O + log_k 32 + delta_h -0 kJ +Retgersite + NiSO4:6H2O = Ni+2 + SO4-2 + 6H2O + log_k -2.04 + delta_h 4.6024 kJ +Morenosite + NiSO4:7H2O = Ni+2 + SO4-2 + 7H2O + log_k -2.1449 + delta_h 12.1802 kJ +CoSO4 + CoSO4 = Co+2 + SO4-2 + log_k 2.8024 + delta_h -79.277 kJ +CoSO4:6H2O + CoSO4:6H2O = Co+2 + SO4-2 + 6H2O + log_k -2.4726 + delta_h 1.0801 kJ +Melanterite + FeSO4:7H2O = Fe+2 + SO4-2 + 7H2O + log_k -2.209 + delta_h 20.5 kJ +Fe2(SO4)3 + Fe2(SO4)3 = 2Fe+3 + 3SO4-2 + log_k -3.7343 + delta_h -242.028 kJ +H-Jarosite + (H3O)Fe3(SO4)2(OH)6 + 5H+ = 3Fe+3 + 2SO4-2 + 7H2O + log_k -12.1 + delta_h -230.748 kJ +Na-Jarosite + NaFe3(SO4)2(OH)6 + 6H+ = Na+ + 3Fe+3 + 2SO4-2 + 6H2O + log_k -11.2 + delta_h -151.377 kJ +K-Jarosite + KFe3(SO4)2(OH)6 + 6H+ = K+ + 3Fe+3 + 2SO4-2 + 6H2O + log_k -14.8 + delta_h -130.875 kJ +MnSO4 + MnSO4 = Mn+2 + SO4-2 + log_k 2.5831 + delta_h -64.8401 kJ +Mn2(SO4)3 + Mn2(SO4)3 = 2Mn+3 + 3SO4-2 + log_k -5.711 + delta_h -163.427 kJ +VOSO4 + VOSO4 = VO+2 + SO4-2 + log_k 3.6097 + delta_h -86.7401 kJ +Epsomite + MgSO4:7H2O = Mg+2 + SO4-2 + 7H2O + log_k -2.1265 + delta_h 11.5601 kJ +Anhydrite + CaSO4 = Ca+2 + SO4-2 + log_k -4.36 + delta_h -7.2 kJ +Gypsum + CaSO4:2H2O = Ca+2 + SO4-2 + 2H2O + log_k -4.61 + delta_h 1 kJ +Celestite + SrSO4 = Sr+2 + SO4-2 + log_k -6.62 + delta_h 2 kJ +Barite + BaSO4 = Ba+2 + SO4-2 + log_k -9.98 + delta_h 23 kJ +Mirabilite + Na2SO4:10H2O = 2Na+ + SO4-2 + 10H2O + log_k -1.114 + delta_h 79.4416 kJ +Thenardite + Na2SO4 = 2Na+ + SO4-2 + log_k 0.3217 + delta_h -9.121 kJ +K-Alum + KAl(SO4)2:12H2O = K+ + Al+3 + 2SO4-2 + 12H2O + log_k -5.17 + delta_h 30.2085 kJ +Alunite + KAl3(SO4)2(OH)6 + 6H+ = K+ + 3Al+3 + 2SO4-2 + 6H2O + log_k -1.4 + delta_h -210 kJ +(NH4)2CrO4 + (NH4)2CrO4 = CrO4-2 + 2NH4+ + log_k 0.4046 + delta_h 9.163 kJ +PbCrO4 + PbCrO4 = Pb+2 + CrO4-2 + log_k -12.6 + delta_h 44.18 kJ +Tl2CrO4 + Tl2CrO4 = 2Tl+ + CrO4-2 + log_k -12.01 + delta_h 74.27 kJ +Hg2CrO4 + Hg2CrO4 = Hg2+2 + CrO4-2 + log_k -8.7 + delta_h -0 kJ +CuCrO4 + CuCrO4 = Cu+2 + CrO4-2 + log_k -5.44 + delta_h -0 kJ +Ag2CrO4 + Ag2CrO4 = 2Ag+ + CrO4-2 + log_k -11.59 + delta_h 62 kJ +MgCrO4 + MgCrO4 = CrO4-2 + Mg+2 + log_k 5.3801 + delta_h -88.9518 kJ +CaCrO4 + CaCrO4 = Ca+2 + CrO4-2 + log_k -2.2657 + delta_h -26.945 kJ +SrCrO4 + SrCrO4 = Sr+2 + CrO4-2 + log_k -4.65 + delta_h -10.1253 kJ +BaCrO4 + BaCrO4 = Ba+2 + CrO4-2 + log_k -9.67 + delta_h 33 kJ +Li2CrO4 + Li2CrO4 = CrO4-2 + 2Li+ + log_k 4.8568 + delta_h -45.2792 kJ +Na2CrO4 + Na2CrO4 = CrO4-2 + 2Na+ + log_k 2.9302 + delta_h -19.6301 kJ +Na2Cr2O7 + Na2Cr2O7 + H2O = 2CrO4-2 + 2Na+ + 2H+ + log_k -9.8953 + delta_h 22.1961 kJ +K2CrO4 + K2CrO4 = CrO4-2 + 2K+ + log_k -0.5134 + delta_h 18.2699 kJ +K2Cr2O7 + K2Cr2O7 + H2O = 2CrO4-2 + 2K+ + 2H+ + log_k -17.2424 + delta_h 80.7499 kJ +Hg2SeO3 + Hg2SeO3 + H+ = Hg2+2 + HSeO3- + log_k -4.657 + delta_h -0 kJ +HgSeO3 + HgSeO3 + 2H2O = Hg(OH)2 + H+ + HSeO3- + log_k -12.43 + delta_h -0 kJ +Ag2SeO3 + Ag2SeO3 + H+ = 2Ag+ + HSeO3- + log_k -7.15 + delta_h 39.68 kJ +CuSeO3:2H2O + CuSeO3:2H2O + H+ = Cu+2 + HSeO3- + 2H2O + log_k 0.5116 + delta_h -36.861 kJ +NiSeO3:2H2O + NiSeO3:2H2O + H+ = HSeO3- + Ni+2 + 2H2O + log_k 2.8147 + delta_h -31.0034 kJ +CoSeO3 + CoSeO3 + H+ = Co+2 + HSeO3- + log_k 1.32 + delta_h -0 kJ +Fe2(SeO3)3:2H2O + Fe2(SeO3)3:2H2O + 3H+ = 3HSeO3- + 2Fe+3 + 2H2O + log_k -20.6262 + delta_h -0 kJ +Fe2(OH)4SeO3 + Fe2(OH)4SeO3 + 5H+ = HSeO3- + 2Fe+3 + 4H2O + log_k 1.5539 + delta_h -0 kJ +MnSeO3 + MnSeO3 + H+ = Mn+2 + HSeO3- + log_k 1.13 + delta_h -0 kJ +MnSeO3:2H2O + MnSeO3:2H2O + H+ = HSeO3- + Mn+2 + 2H2O + log_k 0.9822 + delta_h 8.4935 kJ +MgSeO3:6H2O + MgSeO3:6H2O + H+ = Mg+2 + HSeO3- + 6H2O + log_k 3.0554 + delta_h 5.23 kJ +CaSeO3:2H2O + CaSeO3:2H2O + H+ = HSeO3- + Ca+2 + 2H2O + log_k 2.8139 + delta_h -19.4556 kJ +SrSeO3 + SrSeO3 + H+ = Sr+2 + HSeO3- + log_k 2.3 + delta_h -0 kJ +BaSeO3 + BaSeO3 + H+ = Ba+2 + HSeO3- + log_k 1.83 + delta_h 11.98 kJ +Na2SeO3:5H2O + Na2SeO3:5H2O + H+ = 2Na+ + HSeO3- + 5H2O + log_k 10.3 + delta_h -0 kJ +PbSeO4 + PbSeO4 = Pb+2 + SeO4-2 + log_k -6.84 + delta_h 15 kJ +Tl2SeO4 + Tl2SeO4 = 2Tl+ + SeO4-2 + log_k -4.1 + delta_h 43 kJ +ZnSeO4:6H2O + ZnSeO4:6H2O = Zn+2 + SeO4-2 + 6H2O + log_k -1.52 + delta_h -0 kJ +CdSeO4:2H2O + CdSeO4:2H2O = Cd+2 + SeO4-2 + 2H2O + log_k -1.85 + delta_h -0 kJ +Ag2SeO4 + Ag2SeO4 = 2Ag+ + SeO4-2 + log_k -8.91 + delta_h -43.5 kJ +CuSeO4:5H2O + CuSeO4:5H2O = Cu+2 + SeO4-2 + 5H2O + log_k -2.44 + delta_h -0 kJ +NiSeO4:6H2O + NiSeO4:6H2O = Ni+2 + SeO4-2 + 6H2O + log_k -1.52 + delta_h -0 kJ +CoSeO4:6H2O + CoSeO4:6H2O = Co+2 + SeO4-2 + 6H2O + log_k -1.53 + delta_h -0 kJ +MnSeO4:5H2O + MnSeO4:5H2O = Mn+2 + SeO4-2 + 5H2O + log_k -2.05 + delta_h -0 kJ +UO2SeO4:4H2O + UO2SeO4:4H2O = UO2+2 + SeO4-2 + 4H2O + log_k -2.25 + delta_h -0 kJ +MgSeO4:6H2O + MgSeO4:6H2O = Mg+2 + SeO4-2 + 6H2O + log_k -1.2 + delta_h -0 kJ +CaSeO4:2H2O + CaSeO4:2H2O = Ca+2 + SeO4-2 + 2H2O + log_k -3.02 + delta_h -8.3 kJ +SrSeO4 + SrSeO4 = Sr+2 + SeO4-2 + log_k -4.4 + delta_h 0.4 kJ +BaSeO4 + BaSeO4 = Ba+2 + SeO4-2 + log_k -7.46 + delta_h 22 kJ +BeSeO4:4H2O + BeSeO4:4H2O = Be+2 + SeO4-2 + 4H2O + log_k -2.94 + delta_h -0 kJ +Na2SeO4 + Na2SeO4 = 2Na+ + SeO4-2 + log_k 1.28 + delta_h -0 kJ +K2SeO4 + K2SeO4 = 2K+ + SeO4-2 + log_k -0.73 + delta_h -0 kJ +(NH4)2SeO4 + (NH4)2SeO4 = 2NH4+ + SeO4-2 + log_k 0.45 + delta_h -0 kJ +H2MoO4 + H2MoO4 = MoO4-2 + 2H+ + log_k -12.8765 + delta_h 49 kJ +PbMoO4 + PbMoO4 = Pb+2 + MoO4-2 + log_k -15.62 + delta_h 53.93 kJ +Al2(MoO4)3 + Al2(MoO4)3 = 3MoO4-2 + 2Al+3 + log_k 2.3675 + delta_h -260.8 kJ +Tl2MoO4 + Tl2MoO4 = MoO4-2 + 2Tl+ + log_k -7.9887 + delta_h -0 kJ +ZnMoO4 + ZnMoO4 = MoO4-2 + Zn+2 + log_k -10.1254 + delta_h -10.6901 kJ +CdMoO4 + CdMoO4 = MoO4-2 + Cd+2 + log_k -14.1497 + delta_h 19.48 kJ +CuMoO4 + CuMoO4 = MoO4-2 + Cu+2 + log_k -13.0762 + delta_h 12.2 kJ +Ag2MoO4 + Ag2MoO4 = 2Ag+ + MoO4-2 + log_k -11.55 + delta_h 52.7 kJ +NiMoO4 + NiMoO4 = MoO4-2 + Ni+2 + log_k -11.1421 + delta_h 1.3 kJ +CoMoO4 + CoMoO4 = MoO4-2 + Co+2 + log_k -7.7609 + delta_h -23.3999 kJ +FeMoO4 + FeMoO4 = MoO4-2 + Fe+2 + log_k -10.091 + delta_h -11.1 kJ +BeMoO4 + BeMoO4 = MoO4-2 + Be+2 + log_k -1.7817 + delta_h -56.4 kJ +MgMoO4 + MgMoO4 = Mg+2 + MoO4-2 + log_k -1.85 + delta_h -0 kJ +CaMoO4 + CaMoO4 = Ca+2 + MoO4-2 + log_k -7.95 + delta_h -2 kJ +BaMoO4 + BaMoO4 = MoO4-2 + Ba+2 + log_k -6.9603 + delta_h 10.96 kJ +Li2MoO4 + Li2MoO4 = MoO4-2 + 2Li+ + log_k 2.4416 + delta_h -33.9399 kJ +Na2MoO4 + Na2MoO4 = MoO4-2 + 2Na+ + log_k 1.4901 + delta_h -9.98 kJ +Na2MoO4:2H2O + Na2MoO4:2H2O = MoO4-2 + 2Na+ + 2H2O + log_k 1.224 + delta_h -0 kJ +Na2Mo2O7 + Na2Mo2O7 + H2O = 2MoO4-2 + 2Na+ + 2H+ + log_k -16.5966 + delta_h 56.2502 kJ +K2MoO4 + K2MoO4 = MoO4-2 + 2K+ + log_k 3.2619 + delta_h -3.38 kJ +PbHPO4 + PbHPO4 = Pb+2 + H+ + PO4-3 + log_k -23.805 + delta_h -0 kJ +Pb3(PO4)2 + Pb3(PO4)2 = 3Pb+2 + 2PO4-3 + log_k -43.53 + delta_h -0 kJ +Pyromorphite + Pb5(PO4)3Cl = 5Pb+2 + 3PO4-3 + Cl- + log_k -84.43 + delta_h -0 kJ +Hydroxylpyromorphite + Pb5(PO4)3OH + H+ = 5Pb+2 + 3PO4-3 + H2O + log_k -62.79 + delta_h -0 kJ +Plumbgummite + PbAl3(PO4)2(OH)5:H2O + 5H+ = Pb+2 + 3Al+3 + 2PO4-3 + 6H2O + log_k -32.79 + delta_h -0 kJ +Hinsdalite + PbAl3PO4SO4(OH)6 + 6H+ = Pb+2 + 3Al+3 + PO4-3 + SO4-2 + 6H2O + log_k -2.5 + delta_h -0 kJ +Tsumebite + Pb2CuPO4(OH)3:3H2O + 3H+ = 2Pb+2 + Cu+2 + PO4-3 + 6H2O + log_k -9.79 + delta_h -0 kJ +Zn3(PO4)2:4H2O + Zn3(PO4)2:4H2O = 3Zn+2 + 2PO4-3 + 4H2O + log_k -35.42 + delta_h -0 kJ +Cd3(PO4)2 + Cd3(PO4)2 = 3Cd+2 + 2PO4-3 + log_k -32.6 + delta_h -0 kJ +Hg2HPO4 + Hg2HPO4 = Hg2+2 + H+ + PO4-3 + log_k -24.775 + delta_h -0 kJ +Cu3(PO4)2 + Cu3(PO4)2 = 3Cu+2 + 2PO4-3 + log_k -36.85 + delta_h -0 kJ +Cu3(PO4)2:3H2O + Cu3(PO4)2:3H2O = 3Cu+2 + 2PO4-3 + 3H2O + log_k -35.12 + delta_h -0 kJ +Ag3PO4 + Ag3PO4 = 3Ag+ + PO4-3 + log_k -17.59 + delta_h -0 kJ +Ni3(PO4)2 + Ni3(PO4)2 = 3Ni+2 + 2PO4-3 + log_k -31.3 + delta_h -0 kJ +CoHPO4 + CoHPO4 = Co+2 + PO4-3 + H+ + log_k -19.0607 + delta_h -0 kJ +Co3(PO4)2 + Co3(PO4)2 = 3Co+2 + 2PO4-3 + log_k -34.6877 + delta_h -0 kJ +Vivianite + Fe3(PO4)2:8H2O = 3Fe+2 + 2PO4-3 + 8H2O + log_k -36 + delta_h -0 kJ +Strengite + FePO4:2H2O = Fe+3 + PO4-3 + 2H2O + log_k -26.4 + delta_h -9.3601 kJ +Mn3(PO4)2 + Mn3(PO4)2 = 3Mn+2 + 2PO4-3 + log_k -23.827 + delta_h 8.8701 kJ +MnHPO4 + MnHPO4 = Mn+2 + PO4-3 + H+ + log_k -25.4 + delta_h -0 kJ +(VO)3(PO4)2 + (VO)3(PO4)2 = 3VO+2 + 2PO4-3 + log_k -25.1 + delta_h -0 kJ +Mg3(PO4)2 + Mg3(PO4)2 = 3Mg+2 + 2PO4-3 + log_k -23.28 + delta_h -0 kJ +MgHPO4:3H2O + MgHPO4:3H2O = Mg+2 + H+ + PO4-3 + 3H2O + log_k -18.175 + delta_h -0 kJ +FCO3Apatite + Ca9.316Na0.36Mg0.144(PO4)4.8(CO3)1.2F2.48 = 9.316Ca+2 + 0.36Na+ + 0.144Mg+2 + 4.8PO4-3 + 1.2CO3-2 + 2.48F- + log_k -114.4 + delta_h 164.808 kJ +Hydroxylapatite + Ca5(PO4)3OH + H+ = 5Ca+2 + 3PO4-3 + H2O + log_k -44.333 + delta_h -0 kJ +CaHPO4:2H2O + CaHPO4:2H2O = Ca+2 + H+ + PO4-3 + 2H2O + log_k -18.995 + delta_h 23 kJ +CaHPO4 + CaHPO4 = Ca+2 + H+ + PO4-3 + log_k -19.275 + delta_h 31 kJ +Ca3(PO4)2(beta) + Ca3(PO4)2 = 3Ca+2 + 2PO4-3 + log_k -28.92 + delta_h 54 kJ +Ca4H(PO4)3:3H2O + Ca4H(PO4)3:3H2O = 4Ca+2 + H+ + 3PO4-3 + 3H2O + log_k -47.08 + delta_h -0 kJ +SrHPO4 + SrHPO4 = Sr+2 + H+ + PO4-3 + log_k -19.295 + delta_h -0 kJ +BaHPO4 + BaHPO4 = Ba+2 + H+ + PO4-3 + log_k -19.775 + delta_h -0 kJ +U(HPO4)2:4H2O + U(HPO4)2:4H2O = U+4 + 2PO4-3 + 2H+ + 4H2O + log_k -51.584 + delta_h 16.0666 kJ +(UO2)3(PO4)2 + (UO2)3(PO4)2 = 3UO2+2 + 2PO4-3 + log_k -49.4 + delta_h 397.062 kJ +UO2HPO4 + UO2HPO4 = UO2+2 + H+ + PO4-3 + log_k -24.225 + delta_h -0 kJ +Uramphite + (NH4)2(UO2)2(PO4)2 = 2UO2+2 + 2NH4+ + 2PO4-3 + log_k -51.749 + delta_h 40.5848 kJ +Przhevalskite + Pb(UO2)2(PO4)2 = 2UO2+2 + Pb+2 + 2PO4-3 + log_k -44.365 + delta_h -46.024 kJ +Torbernite + Cu(UO2)2(PO4)2 = 2UO2+2 + Cu+2 + 2PO4-3 + log_k -45.279 + delta_h -66.5256 kJ +Bassetite + Fe(UO2)2(PO4)2 = 2UO2+2 + Fe+2 + 2PO4-3 + log_k -44.485 + delta_h -83.2616 kJ +Saleeite + Mg(UO2)2(PO4)2 = 2UO2+2 + Mg+2 + 2PO4-3 + log_k -43.646 + delta_h -84.4331 kJ +Ningyoite + CaU(PO4)2:2H2O = U+4 + Ca+2 + 2PO4-3 + 2H2O + log_k -53.906 + delta_h -9.4977 kJ +H-Autunite + H2(UO2)2(PO4)2 = 2UO2+2 + 2H+ + 2PO4-3 + log_k -47.931 + delta_h -15.0624 kJ +Autunite + Ca(UO2)2(PO4)2 = 2UO2+2 + Ca+2 + 2PO4-3 + log_k -43.927 + delta_h -59.9986 kJ +Sr-Autunite + Sr(UO2)2(PO4)2 = 2UO2+2 + Sr+2 + 2PO4-3 + log_k -44.457 + delta_h -54.6012 kJ +Na-Autunite + Na2(UO2)2(PO4)2 = 2UO2+2 + 2Na+ + 2PO4-3 + log_k -47.409 + delta_h -1.9246 kJ +K-Autunite + K2(UO2)2(PO4)2 = 2UO2+2 + 2K+ + 2PO4-3 + log_k -48.244 + delta_h 24.5182 kJ +Uranocircite + Ba(UO2)2(PO4)2 = 2UO2+2 + Ba+2 + 2PO4-3 + log_k -44.631 + delta_h -42.2584 kJ +Pb3(AsO4)2 + Pb3(AsO4)2 + 6H+ = 3Pb+2 + 2H3AsO4 + log_k 5.8 + delta_h -0 kJ +AlAsO4:2H2O + AlAsO4:2H2O + 3H+ = Al+3 + H3AsO4 + 2H2O + log_k 4.8 + delta_h -0 kJ +Zn3(AsO4)2:2.5H2O + Zn3(AsO4)2:2.5H2O + 6H+ = 3Zn+2 + 2H3AsO4 + 2.5H2O + log_k 13.65 + delta_h -0 kJ +Cu3(AsO4)2:2H2O + Cu3(AsO4)2:2H2O + 6H+ = 3Cu+2 + 2H3AsO4 + 2H2O + log_k 6.1 + delta_h -0 kJ +Ag3AsO3 + Ag3AsO3 + 3H+ = 3Ag+ + H3AsO3 + log_k 2.1573 + delta_h -0 kJ +Ag3AsO4 + Ag3AsO4 + 3H+ = 3Ag+ + H3AsO4 + log_k -2.7867 + delta_h -0 kJ +Ni3(AsO4)2:8H2O + Ni3(AsO4)2:8H2O + 6H+ = 3Ni+2 + 2H3AsO4 + 8H2O + log_k 15.7 + delta_h -0 kJ +Co3(AsO4)2 + Co3(AsO4)2 + 6H+ = 3Co+2 + 2H3AsO4 + log_k 13.0341 + delta_h -0 kJ +FeAsO4:2H2O + FeAsO4:2H2O + 3H+ = Fe+3 + H3AsO4 + 2H2O + log_k 0.4 + delta_h -0 kJ +Mn3(AsO4)2:8H2O + Mn3(AsO4)2:8H2O + 6H+ = 3Mn+2 + 2H3AsO4 + 8H2O + log_k 12.5 + delta_h -0 kJ +Ca3(AsO4)2:4H2O + Ca3(AsO4)2:4H2O + 6H+ = 3Ca+2 + 2H3AsO4 + 4H2O + log_k 22.3 + delta_h -0 kJ +Ba3(AsO4)2 + Ba3(AsO4)2 + 6H+ = 3Ba+2 + 2H3AsO4 + log_k -8.91 + delta_h 11.0458 kJ +#NH4VO3 +# NH4VO3 + 2H+ = 2VO2+ + H2O +# log_k 3.8 +# delta_h 30 kJ +Pb3(VO4)2 + Pb3(VO4)2 + 8H+ = 3Pb+2 + 2VO2+ + 4H2O + log_k 6.14 + delta_h -72.6342 kJ +Pb2V2O7 + Pb2V2O7 + 6H+ = 2Pb+2 + 2VO2+ + 3H2O + log_k -1.9 + delta_h -26.945 kJ +AgVO3 + AgVO3 + 2H+ = Ag+ + VO2+ + H2O + log_k 0.77 + delta_h -0 kJ +Ag2HVO4 + Ag2HVO4 + 3H+ = 2Ag+ + VO2+ + 2H2O + log_k 1.48 + delta_h -0 kJ +Ag3H2VO5 + Ag3H2VO5 + 4H+ = 3Ag+ + VO2+ + 3H2O + log_k 5.18 + delta_h -0 kJ +Fe(VO3)2 + Fe(VO3)2 + 4H+ = Fe+2 + 2VO2+ + 2H2O + log_k -3.72 + delta_h -61.6722 kJ +Mn(VO3)2 + Mn(VO3)2 + 4H+ = Mn+2 + 2VO2+ + 2H2O + log_k 4.9 + delta_h -92.4664 kJ +Mg(VO3)2 + Mg(VO3)2 + 4H+ = Mg+2 + 2VO2+ + 2H2O + log_k 11.28 + delta_h -136.649 kJ +Mg2V2O7 + Mg2V2O7 + 6H+ = 2Mg+2 + 2VO2+ + 3H2O + log_k 26.36 + delta_h -255.224 kJ +Carnotite + KUO2VO4 + 4H+ = K+ + UO2+2 + VO2+ + 2H2O + log_k 0.23 + delta_h -36.4008 kJ +Tyuyamunite + Ca(UO2)2(VO4)2 + 8H+ = Ca+2 + 2UO2+2 + 2VO2+ + 4H2O + log_k 4.08 + delta_h -153.134 kJ +Ca(VO3)2 + Ca(VO3)2 + 4H+ = Ca+2 + 2VO2+ + 2H2O + log_k 5.66 + delta_h -84.7678 kJ +Ca3(VO4)2 + Ca3(VO4)2 + 8H+ = 3Ca+2 + 2VO2+ + 4H2O + log_k 38.96 + delta_h -293.466 kJ +Ca2V2O7 + Ca2V2O7 + 6H+ = 2Ca+2 + 2VO2+ + 3H2O + log_k 17.5 + delta_h -159.494 kJ +Ca3(VO4)2:4H2O + Ca3(VO4)2:4H2O + 8H+ = 3Ca+2 + 2VO2+ + 8H2O + log_k 39.86 + delta_h -0 kJ +Ca2V2O7:2H2O + Ca2V2O7:2H2O + 6H+ = 2Ca+2 + 2VO2+ + 5H2O + log_k 21.552 + delta_h -0 kJ +Ba3(VO4)2:4H2O + Ba3(VO4)2:4H2O + 8H+ = 3Ba+2 + 2VO2+ + 8H2O + log_k 32.94 + delta_h -0 kJ +Ba2V2O7:2H2O + Ba2V2O7:2H2O + 6H+ = 2Ba+2 + 2VO2+ + 5H2O + log_k 15.872 + delta_h -0 kJ +NaVO3 + NaVO3 + 2H+ = Na+ + VO2+ + H2O + log_k 3.8582 + delta_h -30.1799 kJ +Na3VO4 + Na3VO4 + 4H+ = 3Na+ + VO2+ + 2H2O + log_k 36.6812 + delta_h -184.61 kJ +Na4V2O7 + Na4V2O7 + 6H+ = 4Na+ + 2VO2+ + 3H2O + log_k 37.4 + delta_h -201.083 kJ +Halloysite + Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O + log_k 9.5749 + delta_h -181.43 kJ +Kaolinite + Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O + log_k 7.435 + delta_h -148 kJ +Greenalite + Fe3Si2O5(OH)4 + 6H+ = 3Fe+2 + 2H4SiO4 + H2O + log_k 20.81 + delta_h -0 kJ +Chrysotile + Mg3Si2O5(OH)4 + 6H+ = 3Mg+2 + 2H4SiO4 + H2O + log_k 32.2 + delta_h -196 kJ +Sepiolite + Mg2Si3O7.5OH:3H2O + 4H+ + 0.5H2O = 2Mg+2 + 3H4SiO4 + log_k 15.76 + delta_h -114.089 kJ +Sepiolite(A) + Mg2Si3O7.5OH:3H2O + 0.5H2O + 4H+ = 2Mg+2 + 3H4SiO4 + log_k 18.78 + delta_h -0 kJ +PHASES +O2(g) + O2 + 4H+ + 4e- = 2H2O + log_k 83.0894 + delta_h -571.66 kJ +CH4(g) + CH4 + 3H2O = CO3-2 + 8e- + 10H+ + log_k -41.0452 + delta_h 257.133 kJ +CO2(g) + CO2 + H2O = 2H+ + CO3-2 + log_k -18.147 + delta_h 4.06 kJ +H2S(g) + H2S = H+ + HS- + log_k -8.01 + delta_h -0 kJ +H2Se(g) + H2Se = HSe- + H+ + log_k -4.96 + delta_h -15.3 kJ +Hg(g) + Hg = 0.5Hg2+2 + e- + log_k -7.8733 + delta_h 22.055 kJ +Hg2(g) + Hg2 = Hg2+2 + 2e- + log_k -14.9554 + delta_h 58.07 kJ +Hg(CH3)2(g) + Hg(CH3)2 + 8H2O = Hg(OH)2 + 2CO3-2 + 16e- + 20H+ + log_k -73.7066 + delta_h 481.99 kJ +HgF(g) + HgF = 0.5Hg2+2 + F- + log_k 32.6756 + delta_h -254.844 kJ +HgF2(g) + HgF2 + 2H2O = Hg(OH)2 + 2F- + 2H+ + log_k 12.5652 + delta_h -165.186 kJ +HgCl(g) + HgCl = 0.5Hg2+2 + Cl- + log_k 19.4966 + delta_h -162.095 kJ +HgBr(g) + HgBr = 0.5Hg2+2 + Br- + log_k 16.7566 + delta_h -142.157 kJ +HgBr2(g) + HgBr2 + 2H2O = Hg(OH)2 + 2Br- + 2H+ + log_k -18.3881 + delta_h 54.494 kJ +HgI(g) + HgI = 0.5Hg2+2 + I- + log_k 11.3322 + delta_h -106.815 kJ +HgI2(g) + HgI2 + 2H2O = Hg(OH)2 + 2I- + 2H+ + log_k -27.2259 + delta_h 114.429 kJ +# +# +SURFACE_MASTER_SPECIES + Goe_uni Goe_uniOH-0.5 # =FeO site on goethite + Goe_tri Goe_triO-0.5 # =Fe3O site on goethite + Hfocd_uni Hfocd_uniOH-0.5 # =FeO site on HFO + Hfocd_tri Hfocd_triO-0.5 # =Fe3O site on HFO +SURFACE_SPECIES +# +# Goethite +# + Goe_triO-0.5 = Goe_triO-0.5 + -cd_music 0 0 0 0 0 + log_k 0 + Goe_triO-0.5 + H+ = Goe_triOH+0.5 + -cd_music 1 0 0 0 0 + log_k 9.20 + Goe_uniOH-0.5 = Goe_uniOH-0.5 + -cd_music 0 0 0 0 0 + log_k 0 + Goe_uniOH-0.5 + H+ = Goe_uniOH2+0.5 + -cd_music 1 0 0 0 0 + log_k 9.20 +# Na+ + Goe_triO-0.5 + Na+ = Goe_triONa+0.5 + -cd_music 0 1 0 0 0 + log_k -0.60 + Goe_uniOH-0.5 + Na+ = Goe_uniOHNa+0.5 + -cd_music 0 1 0 0 0 + log_k -0.60 +# K+ + Goe_triO-0.5 + K+ = Goe_triOK+0.5 + -cd_music 0 1 0 0 0 + log_k -1.71 + Goe_uniOH-0.5 + K+ = Goe_uniOHK+0.5 + -cd_music 0 1 0 0 0 + log_k -1.71 +# Cl- + Goe_uniOH-0.5 + H+ + Cl- = Goe_uniOH2Cl-0.5 + -cd_music 1 -1 0 0 0 + log_k 8.76 + Goe_triO-0.5 + H+ + Cl- = Goe_triOHCl-0.5 + -cd_music 1 -1 0 0 0 + log_k 8.76 +# NO3- + Goe_triO-0.5 + H+ + NO3- = Goe_triOHNO3-0.5 + -cd_music 1 -1 0 0 0 + log_k 8.52 + Goe_uniOH-0.5 + H+ + NO3- = Goe_uniOH2NO3-0.5 + log_k 8.52 + -cd_music 1 -1 0 0 0 +# Ca+2 + Goe_triO-0.5 + Ca+2 = Goe_triOCa+1.5 + log_k 3.00 + -cd_music 0.0 2.0 0 0 0 + Goe_uniOH-0.5 + Ca+2 = Goe_uniOHCa+1.5 + log_k 3.00 + -cd_music 0.0 2.0 0 0 0 + Goe_uniOH-0.5 + Ca+2 = Goe_uniOHCa+1.5 + log_k 3.65 + -cd_music 0.32 1.68 0 0 0 + Goe_uniOH-0.5 + Ca+2 + H2O = Goe_uniOHCaOH+0.5 + H+ + log_k -9.25 + -cd_music 0.32 0.68 0 0 0 +# Mg+2 + 2Goe_uniOH-0.5 + Mg+2 = (Goe_uniOH)2Mg+ + log_k 4.90 + -cd_music 0.71 1.29 0 0 0 + 2Goe_uniOH-0.5 + Mg+2 + H2O = (Goe_uniOH)2MgOH + H+ + log_k -6.47 + -cd_music 0.71 0.29 0 0 0 +# CO3-2 + 2Goe_uniOH-0.5 + 2H+ + CO3-2 = (Goe_uniO)2CO- + 2H2O + log_k 22.33 + -cd_music 0.68 -0.68 0 0 0 +# PO4-3 + Goe_uniOH-0.5 + 2H+ + PO4-3 = Goe_uniOPO2OH-1.5 + H2O + log_k 27.65 + -cd_music 0.28 -1.28 0 0 0 + 2Goe_uniOH-0.5 + 2H+ + PO4-3 = (Goe_uniO)2PO2-2 + 2H2O + log_k 29.77 + -cd_music 0.46 -1.46 0 0 0 +# H3AsO3 + Goe_uniOH-0.5 + H3AsO3 = Goe_uniOAs(OH)2-0.5 + H2O + log_k 4.33 # Stachowicz et al 2006 + -cd_music 0.16 -0.16 0 0 0 + 2Goe_uniOH-0.5 + H3AsO3 = (Goe_uniO)2AsOH- + 2H2O + log_k 6.99 # Stachowicz et al 2006 + -cd_music 0.34 -0.34 0 0 0 +# AsO4-3 + Goe_uniOH-0.5 + 2H+ + AsO4-3 = Goe_uniOAsO2OH-1.5 + H2O + log_k 25.88 + -cd_music 0.30 -1.30 0 0 0 + 2Goe_uniOH-0.5 + 2H+ + AsO4-3 = (Goe_uniO)2AsO2-2 + 2H2O + log_k 29.41 + -cd_music 0.47 -1.47 0 0 0 + 2Goe_uniOH-0.5 + 3H+ + AsO4-3 = (Goe_uniO)2AsOOH- + 2H2O + log_k 33.72 + -cd_music 0.58 -0.58 0 0 0 +# H3BO3 + Goe_uniOH-0.5 + H3BO3 = Goe_uniOBH2O2-0.5 + H2O + log_k 1.99 + -cd_music 0.16 -0.16 0 0 0 + Goe_uniOH-0.5 + H3BO3 = Goe_uniOH3BO3-1.5 + H+ + log_k -8.31 + -cd_music 0.16 -0.16 0 0 0 +# CrO4-2 + Goe_uniOH-0.5 + H+ + CrO4-2 = Goe_uniOCrO3-1.5 + H2O + log_k 12.45 + -cd_music 0.5 -1.5 0 0 0 +# MoO4-2 + Goe_uniOH-0.5 + 2H+ + MoO4-2 + H2O = Goe_uniOMo(OH)5-0.5 + log_k 18.25 + -cd_music 0.5 -0.5 0 0 0 # RH99 + Goe_uniOH-0.5 + H+ + MoO4-2 = Goe_uniOMoO3-1.5 + H2O + log_k 12.28 + -cd_music 0.5 -1.5 0 0 0 # RH99 +# SO4-2 + Goe_uniOH-0.5 + H+ + SO4-2 = Goe_uniSO4-1.5 + H2O + log_k 9.21 + -cd_music 0.65 -1.65 0 0 0 # RH99 + 2Goe_uniOH-0.5 + 2H+ +SO4-2 = Goe_uni2SO4- + 2H2O + log_k 19.01 + -cd_music 1.5 -0.5 0 0 0 + Goe_uniOH-0.5 + 2H+ + SO4-2 = Goe_uniSO4H-0.5 + H2O + log_k 3.97 + -cd_music 1.5 -0.5 0 0 0 # RH99 + 2Goe_uniOH-0.5 + 3H+ +SO4-2 = Goe_uni2SO4H + 2H2O + log_k 19.00 + -cd_music 1 0 0 0 0 +# Sb(OH)3 + Goe_uniOH-0.5 + Sb(OH)3 = Goe_uniOSb(OH)2-0.5 + H2O + log_k 15.55 + -cd_music 0.16 -0.16 0 0 0 + 2Goe_uniOH-0.5 + Sb(OH)3 = Goe_uni2O2Sb(OH)- + 2H2O + log_k 25.22 + -cd_music 0.34 -0.34 0 0 0 +# Sb(OH)6- + Goe_uniOH-0.5 + Sb(OH)6- = Goe_uniOSb(OH)5-1.5 + H2O + log_k 6.66 + -cd_music 0.84 -1.83 0 0 0 + 2Goe_uniOH-0.5 + Sb(OH)6- = Goe_uni2O2Sb(OH)4-2 + 2H2O + log_k -7.80 + -cd_music 1.67 -2.66 0 0 0 +# HSeO3- + 2Goe_uniOH-0.5 + H+ + HSeO3- = Goe_uni2SeO3- + 2H2O + log_k 4.33 + -cd_music 0.72 -0.72 0 0 0 + 2Goe_uniOH-0.5 + 2H+ + HSeO3- = Goe_uni2HSeO3 + 2H2O + log_k 9.46 + -cd_music 1.03 -0.03 0 0 0 + Goe_uniOH-0.5 + H+ + HSeO3- = Goe_uniSeO3H-0.5 + H2O + log_k 6.85 + -cd_music 0.43 -0.43 0 0 0 + Goe_uniOH-0.5 + HSeO3- = Goe_uniSeO3-1.5 + H2O + log_k 2.29 + -cd_music 0.20 -1.20 0 0 0 +# SeO4-2 + Goe_uniOH-0.5 + H+ + SeO4-2 = Goe_uniSeO4-1.5 + H2O + log_k 10.48 + -cd_music 0.50 -1.50 0 0 0 + 2Goe_uniOH-0.5 + SeO4-2 + 2H+ = Goe_uni2SeO4- + 2H2O + log_k -5.84 + -cd_music 1. -1. 0 0 0 + Goe_uniOH-0.5 + 2H+ + SeO4-2 = Goe_uniOH2SeO4H-0.5 + log_k -2.19 + -cd_music 0.50 -0.50 0 0 0 +# +# HFO +# + Hfocd_triO-0.5 = Hfocd_triO-0.5 + -cd_music 0 0 0 0 0 + log_k 0 + Hfocd_triO-0.5 + H+ = Hfocd_triOH+0.5 + -cd_music 1 0 0 0 0 + log_k 9.20 + Hfocd_uniOH-0.5 = Hfocd_uniOH-0.5 + -cd_music 0 0 0 0 0 + log_k 0 + Hfocd_uniOH-0.5 + H+ = Hfocd_uniOH2+0.5 + -cd_music 1 0 0 0 0 + log_k 9.20 +# Na+ + Hfocd_triO-0.5 + Na+ = Hfocd_triONa+0.5 + -cd_music 0 1 0 0 0 + log_k -0.60 + Hfocd_uniOH-0.5 + Na+ = Hfocd_uniOHNa+0.5 + -cd_music 0 1 0 0 0 + log_k -0.60 +# K+ + Hfocd_triO-0.5 + K+ = Hfocd_triOK+0.5 + -cd_music 0 1 0 0 0 + log_k -1.71 + Hfocd_uniOH-0.5 + K+ = Hfocd_uniOHK+0.5 + -cd_music 0 1 0 0 0 + log_k 1.71 +# Cl- + Hfocd_triO-0.5 + H+ + Cl- = Hfocd_triOHCl-0.5 + -cd_music 1 -1 0 0 0 + log_k 8.76 + Hfocd_uniOH-0.5 + H+ + Cl- = Hfocd_uniOH2Cl-0.5 + -cd_music 1 -1 0 0 0 + log_k 8.76 +# NO3- + Hfocd_triO-0.5 + H+ + NO3- = Hfocd_triOHNO3-0.5 + -cd_music 1 -1 0 0 0 + log_k 8.52 + Hfocd_uniOH-0.5 + H+ + NO3- = Hfocd_uniOH2NO3-0.5 + -cd_music 1 -1 0 0 0 + log_k 8.52 +# Ca+2 + Hfocd_triO-0.5 + Ca+2 = Hfocd_triOCa+1.5 + log_k 3.00 + -cd_music 0.0 2.0 0 0 0 + Hfocd_uniOH-0.5 + Ca+2 = Hfocd_uniOHCa+1.5 + log_k 3.00 + -cd_music 0.0 2.0 0 0 0 + Hfocd_uniOH-0.5 + Ca+2 = Hfocd_uniOHCa+1.5 + log_k 3.65 + -cd_music 0.32 1.68 0 0 0 + Hfocd_uniOH-0.5 + Ca+2 + H2O = Hfocd_uniOHCaOH+0.5 + H+ + log_k -9.25 + -cd_music 0.32 1.68 0 0 0 +# Mg+2 + 2Hfocd_uniOH-0.5 + Mg+2 = (Hfocd_uniOH)2Mg+ + log_k 4.90 + -cd_music 0.71 1.29 0 0 0 + 2Hfocd_uniOH-0.5 + Mg+2 + H2O = (Hfocd_uniOH)2MgOH + H+ + log_k -6.47 + -cd_music 0.71 1.29 0 0 0 +# CO3-2 + 2Hfocd_uniOH-0.5 + 2H+ + CO3-2 = (Hfocd_uniO)2CO- + 2H2O + log_k 22.33 + -cd_music 0.68 -0.68 0 0 0 +# H3AsO3 + Hfocd_uniOH-0.5 + H3AsO3 = Hfocd_uniOAs(OH)2-0.5 + H2O + log_k 5.31 + -cd_music 0.16 -0.16 0 0 0 + + 2Hfocd_uniOH-0.5 + H3AsO3 = (Hfocd_uniO)2AsOH- + 2H2O + log_k 5.89 + -cd_music 0.34 -0.34 0 0 0 +# AsO4-3 + Hfocd_uniOH-0.5 + 2H+ + AsO4-3 = Hfocd_uniOAsO2OH-1.5 + H2O + log_k 25.83 + -cd_music 0.30 -1.30 0 0 0 + 2Hfocd_uniOH-0.5 + 2H+ + AsO4-3 = (Hfocd_uniO)2AsO2-2 + 2H2O + log_k 28.11 + -cd_music 0.47 -1.47 0 0 0 + 2Hfocd_uniOH-0.5 + 3H+ + AsO4-3 = (Hfocd_uniO)2AsOOH- + 2H2O + log_k 33.41 + -cd_music 0.58 -0.58 0 0 0 +# H3BO3 + Hfocd_uniOH-0.5 + H3BO3 = Hfocd_uniOBH2O2-0.5 + H2O + log_k 1.92 + -cd_music 0.16 -0.16 0 0 0 + Hfocd_uniOH-0.5 + H3BO3 = Hfocd_uniOH3BO3-1.5 + H+ + log_k -8.10 + -cd_music 0.16 -0.16 0 0 0 +# CrO4-2 + Hfocd_uniOH-0.5 + H+ + CrO4-2 = Hfocd_uniOCrO3-1.5 + H2O + log_k 11.11 + -cd_music 0.5 -1.5 0 0 0 +# MoO4-2 + Hfocd_uniOH-0.5 + 2H+ + MoO4-2 + H2O = Hfocd_uniOMo(OH)5-0.5 + log_k 14.94 + -cd_music 0.5 -0.5 0 0 0 # RH99 + Hfocd_uniOH-0.5 + H+ + MoO4-2 = Hfocd_uniOMoO3-1.5 + H2O + log_k 11.38 + -cd_music 0.5 -1.5 0 0 0 # RH99 +# SO4-2 + Hfocd_uniOH-0.5 + H+ + SO4-2 = Hfocd_uniSO4-1.5 + H2O + log_k 2.77 + -cd_music 0.65 -1.65 0 0 0 # RH99 + 2Hfocd_uniOH-0.5 + 2H+ +SO4-2 = Hfocd_uni2SO4- + 2H2O + log_k 0.20 + -cd_music 1.5 -0.5 0 0 0 + Hfocd_uniOH-0.5 + 2H+ + SO4-2 = Hfocd_uniSO4H-0.5 + H2O + log_k 4.12 + -cd_music 1.5 -0.5 0 0 0 # RH99 + 2Hfocd_uniOH-0.5 + 3H+ +SO4-2 = Hfocd_uni2SO4H + 2H2O + log_k 17.68 + -cd_music 1 0 0 0 0 +# Sb(OH)6- + Hfocd_uniOH-0.5 + Sb(OH)6- = Hfocd_uniOSb(OH)5-1.5 + H2O + log_k 9.75 + -cd_music 0.84 -1.83 0 0 0 + 2Hfocd_uniOH-0.5 + Sb(OH)6- = Hfocd_uni2O2Sb(OH)4-2 + 2H2O + log_k -0.21 + -cd_music 1.67 -2.66 0 0 0 +# HSeO3- + 2Hfocd_uniOH-0.5 + H+ + HSeO3- = Hfocd_uni2SeO3- + 2H2O + log_k 9.61 + -cd_music 0.72 -0.72 0 0 0 + 2Hfocd_uniOH-0.5 + 2H+ + HSeO3- = Hfocd_uni2HSeO3 + 2H2O + log_k 15.15 + -cd_music 1.03 -0.03 0 0 0 + Hfocd_uniOH-0.5 + H+ + HSeO3- = Hfocd_uniSeO3H-0.5 + H2O + log_k 5.00 + -cd_music 0.43 -0.43 0 0 0 + Hfocd_uniOH-0.5 + HSeO3- = Hfocd_uniSeO3-1.5 + H2O + log_k 5.00 + -cd_music 0.20 -1.20 0 0 0 +# SeO4-2 + Hfocd_uniOH-0.5 + H+ + SeO4-2 = Hfocd_uniSeO4-1.5 + H2O + log_k 11.57 + -cd_music 0.50 -1.50 0 0 0 + 2Hfocd_uniOH-0.5 + SeO4-2 + 2H+ = Hfocd_uni2SeO4- + 2H2O + log_k 4.04 + -cd_music 1. -1. 0 0 0 + Hfocd_uniOH-0.5 + 2H+ + SeO4-2 = Hfocd_uniOH2SeO4H-0.5 + log_k 3.76 + -cd_music 0.50 -0.50 0 0 0 +# VO2+ + 2Hfocd_uniOH-0.5 + VO2+ = Hfocd_uni2O2VO + H2O + log_k 18.15 + -cd_music 1.50 -0.50 0 0 0 +END + + diff --git a/core10.dat b/core10.dat index 0c77db5f..5b147d43 100644 --- a/core10.dat +++ b/core10.dat @@ -1,6824 +1,6824 @@ -# Marc Neveu - created March 2, 2017. Last edited April 16, 2018. mneveu@asu.edu -# Reference for database description: Neveu M., Desch S. J., Castillo-Rogez J. C. (2017) -# Aqueous geochemistry in icy world interiors: Equilibrium fluid, rock, and gas compositions, -# and fate of antifreezes and radionuclides. Geochimica et Cosmochimica Acta 212, 324-371. - # http://dx.doi.org/10.1016/j.gca.2017.06.023 -# -# Downloaded April 26, 2018 -# -# Paraphrase from abstract: -# This database is a compilation and careful validation of a -# comprehensive PHREEQC database, which combines the advantages -# of the default databases phreeqc.dat (carefully vetted data, molar volumes) -# and llnl.dat (large diversity of species), and should be of broad use to -# anyone seeking to model aqueous geochemistry at pressures that -# differ from 1 bar. -# -# Extrapolation algorithms: -# 64cri/cob: ? (12 aq species, all also with supcrt92) -# Cp integration = Integration of heat capacity vs. temperature measurements (162 solids, 2 gases) -# Constant H approx = Constant enthalpy approximation (76 solids) -# 69hel: http://dx.doi.org/10.2475/ajs.267.7.729 (5 aq species) -# Marion+12 (NH4Cl, NH4HCO3) -# supcrt92 = SUPCRT92 (329 aq, solids, gases) -# N17 ([(6)(CB)(CB)S], NH4-feldspar, NH4-muscovite) -# -# References: -# APP14: http://dx.doi.org/10.1016/j.gca.2013.10.003 (25 molar volumes, see phreeqc.dat) -# AS01: http://dx.doi.org/10.1016/S0168-6445(00)00062-0 (NO(g)) -# BH86: Barta and Hepler, 1986, Can. J.C. 64, 353. (Al+3, AlOH+2 molar volumes) -# Catalano13: http://dx.doi.org/10.1002/jgre.20161 (23 saponites + ripidolite) -# CWM89: http://www.worldcat.org/oclc/18559968 (20 solids, incl. 14 elemental) -# E68: Ellis, 1968, J. Chem. Soc. A, 1138. (Li+ molar volume) -# HDN+78: http://www.worldcatlibraries.org/oclc/13594862 (117 solids) -# Hel+98: http://dx.doi.org/10.1016/S0016-7037(97)00219-6 (Pyridine) -# Hel+09: http://dx.doi.org/10.1016/j.gca.2008.03.004 (Kerogen C128, C292, C515) -# HOK+98: http://dx.doi.org/10.1016/S0016-7037(97)00219-6 (C2H6(g), C3H8(g)) -# Hovis04: http://dx.doi.org/10.2138/am-2004-0111 (NH4-muscovite molar volume) -# HSS95: http://dx.doi.org/10.1016/0016-7037(95)00314-P (55 solutes) -# Joh90: Johnson, J.W., 1990, Personal calculation, Parameters given provide smooth metastable extrapolation of one-bar steam properties predicted by the Haar et al. (1984) equation of state to temperatures < the saturation temperature (99.632 C): Earch Sci. Dept, LLNL, Livermore, CA. (H2O(g)) -# Kel60: http://www.worldcat.org/oclc/693388901 (8 gases) -# M13: McColm I. J. (2013) Dictionary of Ceramic Science and Engineering, p.72. (CaUO4 molar volume) -# Marion+03: http://dx.doi.org/10.1016/S0016-7037(03)00372-7 (FeOH+) -# Marion+05: http://dx.doi.org/10.1016/j.gca.2004.06.024 (Arcanite, Gypsum, Niter, Thenardite molar volumes) -# Marion+08: http://dx.doi.org/10.1016/j.gca.2007.10.012 (FeOH+, FeOH+2, Melanterite molar volume) -# Marion+09: http://dx.doi.org/10.1016/j.gca.2009.03.013 (Alum-K molar volume) -# Marion+12: http://dx.doi.org/10.1016/j.icarus.2012.06.016 (NH4Cl, NH4HCO3) -# MLS+03: http://dx.doi.org/10.2138/am-2003-5-613 (Goethite) -# MS97: http://dx.doi.org/10.1016/S0016-7037(97)00241-X (HCl, MgSO4) -# N17: http://dx.doi.org/10.1016/j.gca.2017.06.023 ([(6)(CB)(CB)S], NH4-feldspar, NH4-muscovite) -# R01: http://dx.doi.org/10.1016/S0016-7037(01)00761-X ([(6)(CB)(CB)S]) -# RHF79: http://pubs.er.usgs.gov/publication/b1452 (40 solids) -# RH98: http://dx.doi.org/10.1016/S0016-7037(97)00345-1 ([(aro)-O-(aro)], Kerogen C128, C292, C515) -# SH88: http://dx.doi.org/10.1016/0016-7037(88)90181-0 (42 solutes, 1 solid) -# SH90: http://dx.doi.org/10.1016/0016-7037(90)90429-O (6 organic solutes) -# Sho93: http://dx.doi.org/10.1016/0016-7037(93)90542-5 (C2H4(g), CO(g)) -# Sho95: http://dx.doi.org/10.2475/ajs.295.5.496 (4 organic solutes) -# Sho09: http://dx.doi.org/10.2113/gsecongeo.104.8.1235 (Goethite) -# SHS89: http://dx.doi.org/10.1016/0016-7037(89)90341-4 (11 solutes) -# SK93: http://dx.doi.org/10.1016/0016-7037(93)90128-J (44 acetic acid/acetate complexes) -# SS93: http://dx.doi.org/10.1016/0016-7037(93)90337-V (CH2O) -# SM93: http://dx.doi.org/10.1006/icar.1993.1185 (CO, CO(NH2)2, HCN solutes) -# SSB97: http://dx.doi.org/10.1016/S0016-7037(97)00240-8 (UO2OH+, Uraninite) -# SSH97: http://dx.doi.org/10.1016/S0016-7037(97)00009-4 (30 solutes) -# SSW01: http://dx.doi.org/10.1016/S0016-7037(01)00717-7 (CO2, H2S) -# Ste01: http://dx.doi.org/10.1016/S0009-2541(00)00263-1 (Ti(OH)4) -# Wat81: “Ammonium Aluminosilicates: The Examination of a Mechanism for the High Temperature Condensation of Ammonia in Circumplanetary Subnebulae” MS Thesis, MIT, 1981. (NH4-feldspar, NH4-muscovite) -# WEP+82: http://dx.doi.org/10.1063/1.555845 (87 solutes, solids, and gases) -# WebElements: http://www.webelements.com/periodicity/molar_volume (K, U molar volumes) -# WebMineral: http://www.webmineral.com (38 solid molar volumes) -# Wilson+06: http://dx.doi.org/10.1016/j.gca.2005.10.003 (Chamosite, Lizardite) -# -# 73bar/kna: Barin, I., and Knacke, O., 1973, Thermochemical properties of inorganic substances: Springer-Verlag, New York. (Alum-K, MgOHCl, Na2SiO3, Nahcolite) -# 77bar/kna: Barin, I., Knacke, O., and Kubaschewski, O., 1977, Thermochemical properties of inorganic substances. Supplement: Springer-Verlag, New York. (Natrosilite, Pseudowollastonite, Rankinite) -# 87bou/bar: http://dx.doi.org/10.2113/gsecongeo.82.7.1839 (ZnOH+) -# 88db 3: Database development group iii/3, 1988, Errors in computation of estimated delH298 for montmor-x endmembers of smectite-di solid solution: LLNL Internal Memo. (Montmor-Ca, K, Mg, Na) -# 89db 7=89db 6, Database development group, 1989, Zeolite thermodynamic data: LLNL Internal memo. (Clinoptilolite-Ca, K, Na, Mesolite) -# 76del/hal: http://dx.doi.org/10.1021/cr60301a001 (2 Cr solutes, 9 Cr solids) -# 92gre/fug: Grenthe, I., Fuger, J., Konings, R.J.M., Lemire, R.J., Muller, A.B., Nguyen-Trung, C., and Wanner, H., 1992, Chemical Thermodynamics, Volume 1: Chemical Thermodynamics of Uranium: North-Holland, Amsterdam, 1, 714p. (4 U solutes, 21 U solids) -# 90how/joh: http://dx.doi.org/10.1016/S0144-2449(05)80307-0 (Stilbite) -# 82joh/flo: Johnson, G.K., Flotow, H.E., O'Hare, P.A.G., and Wise, W.S., 1982, Thermodynamic studies of zeolites: Analcime and dehydrated analcime: Amer. Mineral., 67, 736-748. (Analcime) -# 83joh/flo: Johnson, G.K., Flotow, H.E., O'Hare, P.A.G., and Wise, W.S., 1983, Thermodynamic studies of zeolites: Natrolite, mesolite, and scolecite: Amer. Mineral., 68, 1134-1145. (Natrolite, Scolecite) -# 91joh/tas: http://dx.doi.org/10.1016/S0021-9614(05)80135-1 (Mordenite) -# 75kas/bor: Kashkay, C.H.M., Borovskaya,Y.U.B., and Babazade, M.A., 1975, Determination of delG0f298K of synthetic jarosite and its sulfate analogues: Geochem. Intl., 12, 115-121. (Jarosite) -# 87kee/rup: Kee, R.J., Rupley, F.M., and Miller, J.A., 1987, The Chemkin thermodynamic database: SNL Rep. SAND-87-8215, 92p. (Ice) -# 78lan: http://dx.doi.org/10.1016/0016-7037(78)90001-7 (Bassetite, Ningyoite, Saleeite) -# 80lan/her: http://dx.doi.org/10.1016/0016-7037(80)90226-4 (ThCl4) -# 82mar/smi: Martell, A.E., and Smith, R.M., 1982, Critical Stability Constants, Vol. 5: First Supplement: Plenum, New York, 5, 604p. (MgSO4(aq)) -# 74nau/ryz: Naumov, G.B., Ryzhenko, B.N., and Khodakovsky, I.L., 1974, Handbook of Thermodynamic Data: U.S.G.S. WRD-74-001, 328p. (CoCl+, CoFe2O4, CoS, CoSO4:H2O, Delafossite, Ni2SiO4) -# 76mac: http://dx.doi.org/10.1016/0010-938X(76)90066-4 (Mn+3) -# 95pok/hel: http://dx.doi.org/10.2475/ajs.295.10.1255 (4 solutes, 4 solids) -# 85rar 2: http://dx.doi.org/10.1021/cr00070a003 (9 europium solids) -# 87rar 2: Rard, J.A., 1987, Update of the europium data base, October, 1987: LLNL Internal Memo. (3 europium solids) -# 87rua/sew: http://dx.doi.org/10.1016/0016-7037(87)90013-5 (HCl) -# 82sar/bar: Sarkar, A.K., Barnes, M.W., and Roy, D.M., 1982, Longevity of borehole and shaft sealing materials: thermodynamic properties of cements and related phases applied to repository sealing: ONWI Tech. Rep. ONWI-201, 52p. (16 solids) -# 84sve: http://dx.doi.org/10.1016/0016-7037(84)90203-5 (Sphaerocobaltite) -# 78vau/cra: Vaughan, D.J., and Craig, J.R., 1978, Mineral chemistry of metal sulfides: Cambridge Univ. Press, Cambridge, MA. (5 solids) -# 78wol: Wolery, T.J., 1978, Some chemical aspects of hydrothermal processes at mid-oceanic ridges -- A theoretical study. I. Basalt-sea water reaction and chemical cycling between the oceanic crust and the oceans. II. Calculation of chemical equilibrium between aqueous solutions and minerals: Unpub. Ph.D. Diss., Northwestern Univ., Evaston, IL, 263p. (23 clays) -# 87woo/gar: Woods, T.L., and Garrels, R.M., 1987, Thermodynamic values at low temperature for natural inorganic materials: An uncritical summary: Oxford Univ. Press, Oxford. (Atacamite, Brochantite, Dioptase) - -# Species have various valid temperature ranges, noted in the Range parameter. Currently, Phreeqc doesn’t use this parameter, so it is up to the user to remain in the valid temperature range for all data used. - -# Example entry block: - -# Formation reaction from basis species -# -llnl_gamma # ion size parameter in B-dot Debye-Huckel equation -# log_k # at 25C, 1 bar, used if no -delta_H or -analytic -# -delta_H # molar enthalpy of reaction, used if no -analytic -# # deltafH # molar enthalpy of formation from reference compounds -# -analytic b1 b2 b3 b4 b5 b6 # logK = b1 + b2*T + b3/T + b4*log(T) + b5/T2 + b6*T2 -# # Range Tmin-Tmax # of validity of -analytic -# -Vm a1 a2 a3 a4 omega # See APP14, SH88 for equations -# # Extrapol # extrapolation algorithm -# # Ref # references - -LLNL_AQUEOUS_MODEL_PARAMETERS --temperatures - 0.01 25 60 100 - 150 200 250 300 -#debye huckel a (adh) --dh_a - 0.4939 0.5114 0.5465 0.5995 - 0.6855 0.7994 0.9593 1.2180 -#debye huckel b (bdh) --dh_b - 0.3253 0.3288 0.3346 0.3421 - 0.3525 0.3639 0.3766 0.3925 --bdot - 0.0374 0.0410 0.0438 0.0460 - 0.0470 0.0470 0.0340 0 -#cco2 (coefficients for the Drummond (1981) polynomial) --co2_coefs - -1.0312 0.0012806 - 255.9 0.4445 - -0.001606 - -SOLUTION_MASTER_SPECIES - -#element species alk gfw_formula element_gfw - -Al Al+3 0 Al 26.9815 -Alkalinity HCO3- 1 Ca0.5(CO3)0.5 50.05 -B B(OH)3 0 B 10.811 -B(3) B(OH)3 0 B -36.44179 -C(-4) CH4 0 CH4 -33.31051 -C(-3) C2H6 0 C2H6 -30.54674 -C(-2) C2H4 0 C2H4 -28.08539 -C HCO3- 1 HCO3 12.011 -C(+2) CO 0 C -23.87691 -C(+4) HCO3- 1 HCO3 -22.05727 -Ca Ca+2 0 Ca 40.078 -Cl Cl- 0 Cl 35.4527 -Cl(-1) Cl- 0 Cl -17.43358 -Cl(1) ClO- 0 Cl -16.11094 -Cl(3) ClO2- 0 Cl -14.87484 -Cl(5) ClO3- 0 Cl -13.71476 -Cl(7) ClO4- 0 Cl -Co Co+2 0 Co 58.9332 -Co(+2) Co+2 0 Co -Co(+3) Co+3 0 Co -Cr CrO4-2 0 CrO4-2 51.9961 -Cr(+2) Cr+2 0 Cr -Cr(+3) Cr+3 0 Cr -Cr(+6) CrO4-2 0 Cr -Cu Cu+2 0 Cu 63.546 -Cu(+1) Cu+1 0 Cu -Cu(+2) Cu+2 0 Cu -E e- 0 0 0 -Eu Eu+3 0 Eu 151.965 -Eu(+2) Eu+2 0 Eu -Eu(+3) Eu+3 0 Eu -Fe Fe+2 0 Fe 55.847 -Fe(+2) Fe+2 0 Fe -Fe(+3) Fe+3 -2 Fe -Gd Gd+3 0 Gd 157.25 -Gd(+3) Gd+3 0 Gd -H H+ -1 H 1.0079 -H(0) H2 0 H -H(+1) H+ -1 0 -K K+ 0 K 39.0983 -Li Li+ 0 Li 6.941 -Mg Mg+2 0 Mg 24.305 -Mn Mn+2 0 Mn 54.938 -Mn(+2) Mn+2 0 Mn -Mn(+3) Mn+3 0 Mn -Mn(+6) MnO4-2 0 Mn -Mn(+7) MnO4- 0 Mn -Mo MoO4-2 0 Mo 95.94 -N NH3 1 N 14.0067 -N(-3) NH3 1 N -N(0) N2 0 N -N(+3) NO2- 0 N -N(+5) NO3- 0 N -Na Na+ 0 Na 22.9898 -Ni Ni+2 0 Ni 58.69 -O H2O 0 O 15.994 -O(-2) H2O 0 0 -O(0) O2 0 O -P HPO4-2 2 P 30.9738 -P(5) HPO4-2 2 P -S SO4-2 0 SO4 32.066 -S(-2) HS- 1 S -S(+2) S2O3-2 0 S -S(+3) S2O4-2 0 S -S(+4) SO3-2 0 S -S(+5) S2O5-2 0 S -S(+6) SO4-2 0 SO4 -S(+7) S2O8-2 0 S -S(+8) HSO5- 0 S -Sc Sc+3 0 Sc 44.9559 -Si SiO2 0 SiO2 28.0855 -Sm Sm+3 0 Sm 150.36 -Sm(+2) Sm+2 0 Sm -Sm(+3) Sm+3 0 Sm -Th Th+4 0 Th 232.0381 -Ti Ti(OH)4 0 Ti 47.88 -U UO2+2 0 U 238.0289 -U(+3) U+3 0 U -U(+4) U+4 0 U -U(+5) UO2+ 0 U -U(+6) UO2+2 0 U -Zn Zn+2 0 Zn 65.39 - -SOLUTION_SPECIES - -#------------------ -# 31 basis species -#------------------ - -Al+3 = Al+3 - -llnl_gamma 9 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -128.681 kcal/mol - -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # APP14, BH86 - -B(OH)3 = B(OH)3 - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -256.82 kcal/mol - -Vm 7.0643 8.847 3.5844 -3.1451 -0.2 0 0 0 0 0 # SHS89 - -Ca+2 = Ca+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -129.8 kcal/mol - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # APP14 - -Cl- = Cl- - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -39.933 kcal/mol - -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 # APP14 - -Co+2 = Co+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -13.9 kcal/mol - -Vm -1.2252 -8.9356 5.3191 -2.4095 1.47690 0 0 0 0 0 # SSW+97 - -CrO4-2 = CrO4-2 - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -210.6 kcal/mol - -Vm 5.4891 5.6223 3.5382 -3.0113 3.00240 0 0 0 0 0 # SSW+97 - -Cu+2 = Cu+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol -# deltafH 15.7 kcal/mol - -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 # APP14 - -e- = e- - -Eu+3 = Eu+3 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -144.7 kcal/mol - -Vm -3.1037 -15.3599 11.7871 -2.144 2.3161 0 0 0 0 0 # SH88 - -Fe+2 = Fe+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -22.05 kcal/mol - -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 # APP14 - -Gd+3 = Gd+3 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -164.2 kcal/mol - -Vm -2.9771 -15.0506 11.6656 -2.1568 2.3265 0 0 0 0 0 # SH88 - -H+ = H+ - -llnl_gamma 9 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -0 kJ/mol - -HCO3- = HCO3- - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -164.898 kcal/mol - -Vm 7.5621 1.1505 1.2346 -2.8266 1.27330 0 0 0 0 0 # SH88 - -HPO4-2 = HPO4-2 - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -308.815 kcal/mol - -Vm 3.6315 1.0857 5.3233 -2.8239 3.33630 0 0 0 0 0 # SH88 - -K+ = K+ - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -60.27 kcal/mol - -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 # APP14 - -Li+ = Li+ - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -66.552 kcal/mol - -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # APP14, E68 - -Mg+2 = Mg+2 - -llnl_gamma 8 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -111.367 kcal/mol - -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 # APP14 - -Mn+2 = Mn+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -52.724 kcal/mol - -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # APP14 - -MoO4-2 = MoO4-2 - -llnl_gamma 4.5 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -238.5 kcal/mol - -Vm 6.9651 2.7095 18.6617 -2.8909 3.07770 0 0 0 0 0 # SSW+97 - -NH3 = NH3 - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -19.44 kcal/mol - -Vm 5.0911 2.797 8.6248 -2.8946 -7.690e-2 0 0 0 0 0 # SHS89 - -Na+ = Na+ - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -57.433 kcal/mol - -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # APP14 - -Ni+2 = Ni+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -12.9 kcal/mol - -Vm -1.6942 -11.9181 10.4344 -2.2863 1.50670 0 0 0 0 0 # SH88 - -H2O = H2O - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -68.317 kcal/mol - -SO4-2 = SO4-2 - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -217.4 kcal/mol - -Vm 8.0 2.3 -46.04 6.245 3.82 0 0 0 0 1 # APP14 - -Sc+3 = Sc+3 - -llnl_gamma 9 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -146.8 kcal/mol - -Vm -2.1109 -12.9294 10.817 -2.2444 2.5003 0 0 0 0 0 # SSW+97 - -SiO2 = SiO2 - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -209.775 kcal/mol - -Vm 1.9 1.7 20 -2.7 0.12910 0 0 0 0 0 # SHS89 - -Sm+3 = Sm+3 - -llnl_gamma 9 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -165.2 kcal/mol - -Vm -3.2065 -15.6108 11.8857 -2.1337 2.2955 0 0 0 0 0 # SH88 - -Th+4 = Th+4 - -llnl_gamma 11 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -183.8 kcal/mol - -Vm -4.2886 -18.25 12.9154 -2.0244 3.70930 0 0 0 0 0 # SSW+97 - -Ti(OH)4 = Ti(OH)4 - -llnl_gamma 3 - log_k 0 -# deltafH -0 kcal/mol - -Vm 7.366874 10.21009 1.152964 -3.201004 0.01498566 0 0 0 0 0 # Ste01 - -UO2+2 = UO2+2 - -llnl_gamma 4.5 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -1019 kJ/mol - -Vm 3.0256 -4.1084 15.3326 -2.6091 1.40990 0 0 0 0 0 # SSW+97 - -Zn+2 = Zn+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol -# deltafH -36.66 kcal/mol - -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 # APP14 - -#------------------- -# 40 Redox couples -#------------------- - -2H2O = O2 + 4H+ + 4e- - -CO2_llnl_gamma - log_k -85.9951 - -delta_H 559.543 kJ/mol -# deltafH -2.9 kcal/mol - -analytic 38.0229 7.99407e-3 -2.7655e4 -1.4506e1 199838.45 -# Range 0-350 - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 -# Extrapol supcrt92 -# Ref SHS89 - -SO4-2 + H+ = HS- + 2 O2 - -llnl_gamma 3.5 - log_k -138.3169 - -delta_H 869.226 kJ/mol -# deltafH -3.85 kcal/mol - -analytic 2.6251e1 3.9525e-2 -4.5443e4 -1.1107e1 3.1843e5 -# Range 0-350 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.44100 -# Extrapol supcrt92 -# Ref SH88 - -.5 O2 + 2 HS- = S2-2 + H2O - -llnl_gamma 4.0 - log_k 33.2673 -# deltafH -0 kcal/mol - -analytic 0.21730e2 -0.12307e-2 0.10098e5 -0.88813e1 0.15757e3 - -mass_balance S(-2)2 -# Range 0-350 - -Vm 5.5797 5.8426 3.4536 -3.0205 3.10830 -# Extrapol supcrt92 -# Ref SH88 - -2 H+ + 2 SO3-2 = S2O3-2 + O2 + H2O - -llnl_gamma 4.0 - log_k -40.2906 -# deltafH -0 kcal/mol - -analytic 0.77679e2 0.65761e-1 -0.15438e5 -0.34651e2 -0.24092e3 -# Range 0-350 - -Vm 6.6685 12.4951 -7.7281 -3.2955 2.96940 -# Extrapol supcrt92 -# Ref SH88 - -H+ + HCO3- + H2O = CH4 + 2 O2 - -llnl_gamma 3.0 - log_k -144.1412 - -delta_H 863.599 kJ/mol -# deltafH -21.01 kcal/mol - -analytic -0.41698e2 0.36584e-1 -0.40675e5 0.93479e1 -0.63468e3 -# Range 0-350 - -Vm 6.7617 8.7279 2.3212 -3.1397 -0.31790 -# Extrapol supcrt92 -# Ref SH90 - -2 H+ + 2 HCO3- + H2O = C2H6 + 3.5 O2 - -llnl_gamma 3.0 - log_k -228.6072 -# deltafH -0 kcal/mol - #analytic -0.10777e2 0.72105e-1 -0.67489e5 -0.13915e2 -0.10531e4 - -analytic -491.3 1.148 -10004 0 0 -8.06e-4 # !!! Using CHNOSZ, discrepant with above expression unless the first term is -0.10777e2 instead of 0.10777e2 -# Range 0-350 - -Vm 8.75 13.1051 1.6258 -3.3207 -0.06270 -# Extrapol supcrt92 -# Ref SH90 - -2 H+ + 2 HCO3- = C2H4 + 3 O2 - -llnl_gamma 3.0 - log_k -254.5034 - -delta_H 1446.6 kJ/mol -# deltafH 24.65 kcal/mol - #analytic -0.30329e2 0.71187e-1 -0.73140e5 - -analytic 6e-2 3.60e-2 -7.17e4 -# Range 0-350 - -Vm 7.856 12.6391 -1.8737 -3.3014 -0.4 -# Extrapol supcrt92 -# Ref SH90 - -HCO3- + H+ = CO + H2O + 0.5 O2 - -llnl_gamma 3.0 - log_k -41.7002 - -delta_H 277.069 kJ/mol -# deltafH -28.91 kcal/mol - -analytic 1.0028e2 4.6877e-2 -1.8062e4 -4.0263e1 3.8031e5 -# Range 0-350 - -Vm 6.2373 7.4498 2.8184 -3.0869 -0.37150 -# Extrapol supcrt92 -# Ref SM93 - -Cl- + 0.5 O2 = ClO- - -llnl_gamma 4.0 - log_k -15.1014 - -delta_H 66.0361 kJ/mol -# deltafH -25.6 kcal/mol - -analytic 6.1314e1 3.4812e-3 -6.0952e3 -2.3043e1 -9.5128e1 -# Range 0-350 - -Vm 2.3599 -2.0164 6.5356 -2.6955 1.47670 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -O2 + Cl- = ClO2- - -llnl_gamma 4.0 - log_k -23.108 - -delta_H 112.688 kJ/mol -# deltafH -15.9 kcal/mol - -analytic 3.3638e0 -6.1675e-3 -4.9726e3 -2.0467e0 -2.5769e5 -# Range 0-350 - -Vm 5.2163 4.958 3.7949 -2.9839 1.2637 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -1.5 O2 + Cl- = ClO3- - -llnl_gamma 3.5 - log_k -17.2608 - -delta_H 81.3077 kJ/mol -# deltafH -24.85 kcal/mol - -analytic 2.8852e1 -4.8281e-3 -4.6779e3 -1.0772e1 -2.0783e5 -# Range 0-350 - -Vm 7.1665 9.7172 1.9307 -3.1807 1.0418 -# Extrapol supcrt92 -# Ref SH88 - -2 O2 + Cl- = ClO4- - -llnl_gamma 3.5 - log_k -15.7091 - -delta_H 62.0194 kJ/mol -# deltafH -30.91 kcal/mol - -analytic 7.0280e1 -6.8927e-5 -5.5690e3 -2.6446e1 -1.6596e5 -# Range 0-350 - -Vm 8.1411 15.5654 -7.8077 -3.4224 0.9699 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -H+ + Co+2 + 0.25 O2 = Co+3 + 0.5 H2O - -llnl_gamma 5.0 - log_k -11.4845 - -delta_H 10.3198 kJ/mol -# deltafH 22 kcal/mol - -analytic -2.2827e1 -1.2222e-2 -7.2117e2 7.0306 -1.1247e1 -# Range 0-350 - -Vm -2.8678 -14.7777 11.5439 -2.1680 2.6901 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -4 H+ + CrO4-2 = Cr+2 + 2 H2O + O2 - -llnl_gamma 4.5 - log_k -21.6373 - -delta_H 153.829 kJ/mol -# deltafH -34.3 kcal/mol - -analytic 6.9003e1 6.2884e-2 -6.9847e3 -3.4720e1 -1.0901e2 -# Range 0-350 - -Vm -0.8036 -9.74 9.5688 -2.3762 1.4287 # SSW+97 -# Extrapol supcrt92, 64cri/cob -# Ref SSW+97, 76del/hal differ by 2 log K at 0C, 0.7 log K at 300C - -5 H+ + CrO4-2 = Cr+3 + 2.5 H2O + 0.75 O2 - -llnl_gamma 9.0 - log_k 8.3842 - -delta_H -81.0336 kJ/mol -# deltafH -57 kcal/mol - -analytic 5.1963e1 6.0932e-2 5.4256e3 -3.2290e1 8.4645e1 -# Range 0-350 - -Vm -2.7824 -14.5709 11.4661 -2.1765 2.7403 -# Extrapol supcrt92, 64cri/cob -# Ref SSW+97, 76del/hal differ by 1.5 log K at 0C, 0.8 log K at 300C - -Cu+2 + 0.5 H2O = Cu+ + H+ + 0.25 O2 - -llnl_gamma 4.0 - log_k -18.7704 - -delta_H 145.877 kJ/mol -# deltafH 17.132 kcal/mol - -analytic 3.7909e1 1.3731e-2 -8.1506e3 -1.3508e1 -1.2719e2 -# Range 0-350 - -Vm 0.807 -5.804 8.0165 -2.5390 0.40460 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -Eu+3 + 0.5 H2O = Eu+2 + H+ + 0.25 O2 - -llnl_gamma 4.5 - log_k -27.5115 - -delta_H 217.708 kJ/mol -# deltafH -126.1 kcal/mol - -analytic 3.0300e1 1.4126e-2 -1.2319e4 -9.0585e0 1.5289e5 -# Range 0-350 - -Vm 0.0407 -7.6776 8.7578 -2.4615 1.0929 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -H+ + Fe+2 + 0.25 O2 = Fe+3 + 0.5 H2O - -llnl_gamma 9.0 - log_k 8.4899 - -delta_H -97.209 kJ/mol -# deltafH -11.85 kcal/mol - -analytic -1.7808e1 -1.1753e-2 4.7609e3 5.5866 7.4295e1 -# Range 0-350 - -Vm -2.4256 -13.6961 11.1141 -2.2127 2.58120 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -H2O = H2 + 0.5 O2 - -CO2_llnl_gamma - log_k -46.1066 - -delta_H 275.588 kJ/mol -# deltafH -1 kcal/mol - -analytic 6.6835e1 1.7172e-2 -1.8849e4 -2.4092e1 4.2501e5 -# Range 0-350 - -Vm 5.1427 4.7758 3.8729 -2.9764 -0.209 -# Extrapol supcrt92 -# Ref SHS89 - -SO4-2 + H+ + 0.5 O2 = HSO5- - -llnl_gamma 4.0 - log_k -17.2865 - -delta_H 140.038 kJ/mol -# deltafH -185.38 kcal/mol - -analytic 5.9944e1 3.0904e-2 -7.7494e3 -2.4420e1 -1.2094e2 -# Range 0-350 - -Vm 8.9391 14.043 0.2349 -3.3594 0.86110 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -Mn+2 + H+ + 0.25 O2 = Mn+3 + 0.5 H2O - -llnl_gamma 5.0 - log_k -4.0811 - -delta_H -65.2892 kJ/mol -# deltafH -34.895 kcal/mol - -analytic 3.8873e1 1.7458e-2 2.0757e3 -2.2274e1 3.2378e1 -# Range 0-350 - -Vm -2.932 -14.934 11.6041 -2.1615 2.70250 -# Extrapol supcrt92, 64cri/cob -# Ref SSW+97, 76mac match - -2 H2O + O2 + Mn+2 = MnO4-2 + 4 H+ - -llnl_gamma 4.0 - log_k -32.4146 - -delta_H 151.703 kJ/mol -# deltafH -156 kcal/mol - -analytic -1.0407e1 -4.6464e-2 -1.0515e4 1.0943e1 -1.6408e2 -# Range 0-350 - -Vm 5.6596 6.0368 3.3786 -3.0285 2.98030 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -2 NH3 + 1.5 O2 = N2 + 3 H2O - -llnl_gamma 3.0 - log_k 116.4609 - -delta_H -687.08 kJ/mol -# deltafH -2.495 kcal/mol - -analytic -8.2621e1 -1.4671e-2 4.0068e4 2.9090e1 -2.5924e5 -# Range 0-350 - -Vm 6.2046 7.3685 2.8539 -3.0836 -0.34680 -# Extrapol supcrt92 -# Ref SHS89 - -1.5 O2 + NH3 = NO2- + H+ + H2O - -llnl_gamma 3.0 - log_k +46.8653 - -delta_H -290.901 kJ/mol -# deltafH -25 kcal/mol - -analytic -1.7011e1 -3.3459e-2 1.3999e4 1.1078e1 -4.8255e4 -# Range 0-350 - -Vm 5.5864 5.859 3.4472 -3.0212 1.18470 -# Extrapol supcrt92 -# Ref SH88 - -2 O2 + NH3 = NO3- + H+ + H2O - -llnl_gamma 3.0 - log_k 62.1001 - -delta_H -387.045 kJ/mol -# deltafH -49.429 kcal/mol - -analytic -3.9468e1 -3.9697e-2 2.0614e4 1.8872e1 -2.1917e5 -# Range 0-350 - -Vm 7.3161 6.7824 -4.6838 -3.0594 1.09770 -# Extrapol supcrt92 -# Ref SH88 - -2 H+ + 2 SO3-2 = S2O4-2 + .5 O2 + H2O - -llnl_gamma 5.0 - log_k -25.2076 -# deltafH -0 kcal/mol - -analytic -2.3172e2 2.0393e-3 -7.1011 8.3239e1 9.4155e-1 -# Range 0-350 - -Vm 6.6784 8.528 2.3917 -3.1314 2.87720 -# Extrapol supcrt92 -# Ref SSW+97 - -2 SO3-2 + .5 O2 + 2 H+ = S2O6-2 + H2O - -llnl_gamma 4.0 - log_k 41.8289 -# deltafH -0 kcal/mol - -analytic 0.14458e3 0.61449e-1 0.71877e4 -0.58657e2 0.11211e3 -# Range 0-350 - -Vm 8.2257 12.3054 0.9087 -3.2876 2.75870 -# Extrapol supcrt92 -# Ref SSW+97 - -2 SO3-2 + 1.5 O2 + 2 H+ = S2O8-2 + H2O - -llnl_gamma 4.0 - log_k 70.7489 -# deltafH -0 kcal/mol - -analytic 0.18394e3 0.60414e-1 0.13864e5 -0.71804e2 0.21628e3 -# Range 0-350 - -Vm 13.3622 24.8454 -4.0153 -3.8061 2.32810 -# Extrapol supcrt92 -# Ref SH88 - -O2 + H+ + 3 HS- = S3-2 + 2 H2O - -llnl_gamma 4.0 - log_k 79.3915 -# deltafH -0 kcal/mol - -analytic -0.51626e2 0.70208e-2 0.31797e5 0.11927e2 -0.64249e6 - -mass_balance S(-2)3 -# Range 0-350 - -Vm 6.7661 8.7396 2.315 -3.1403 2.97490 -# Extrapol supcrt92 -# Ref SH88 - -3 SO3-2 + 4 H+ = S3O6-2 + .5 O2 + 2 H2O - -llnl_gamma 4.0 - log_k -6.2316 -# deltafH -0 kcal/mol - -analytic 0.23664e3 0.12702 -0.10110e5 -0.99715e2 -0.15783e3 -# Range 0-350 - -Vm 8.4155 12.7691 0.7268 -3.3068 2.71310 -# Extrapol supcrt92 -# Ref SSW+97 - -1.5 O2 + 2 H+ + 4 HS- = S4-2 + 3 H2O - -llnl_gamma 4.0 - log_k 125.2958 -# deltafH -0 kcal/mol - -analytic 0.20875e3 0.58133e-1 0.33278e5 -0.85833e2 0.51921e3 - -mass_balance S(-2)4 -# Range 0-350 - -Vm 7.9381 11.6012 1.1902 -3.2586 2.83900 -# Extrapol supcrt92 -# Ref SH88 - -4 SO3-2 + 6 H+ = S4O6-2 + 1.5 O2 + 3 H2O - -llnl_gamma 4.0 - log_k -38.3859 -# deltafH -0 kcal/mol - -analytic 0.32239e3 0.19555 -0.23617e5 -0.13729e3 -0.36862e3 -# Range 0-350 - -Vm 10.2672 17.2902 -1.0502 -3.4937 2.28050 -# Extrapol supcrt92 -# Ref SSW+97 - -2 O2 + 3 H+ + 5 HS- = S5-2 + 4 H2O - -llnl_gamma 4.0 - log_k 170.9802 -# deltafH -0 kcal/mol - -analytic 0.30329e3 0.88033e-1 0.44739e5 -0.12471e3 0.69803e3 - -mass_balance S(-2)5 -# Range 0-350 - -Vm 9.1107 14.4645 0.0649 -3.3770 2.70510 -# Extrapol supcrt92 -# Ref SH88 - -5 SO3-2 + 8 H+ = S5O6-2 + 2.5 O2 + 4 H2O - -llnl_gamma 4.0 - log_k -99.4206 -# deltafH -0 kcal/mol - -analytic 0.42074e3 0.25833 -0.43878e5 -0.18178e3 -0.68480e3 -# Range 0-350 - -Vm 8.8725 13.8806 0.2986 -3.3527 2.60760 -# Extrapol supcrt92 -# Ref SSW+97 - -H+ + HCO3- + HS- + NH3 = SCN- + 3 H2O - -llnl_gamma 3.5 - log_k 3.0070 -# deltafH -0 kcal/mol - -analytic 0.16539e3 0.49623e-1 -0.44624e4 -0.65544e2 -0.69680e2 -# Range 0-350 - -Vm 7.0244 9.3687 2.0708 -3.1662 1.10730 -# Extrapol supcrt92, 64cri/cob -# Ref SSW+97, 92gre/fug match - -SO4-2 = SO3-2 + 0.5 O2 - -llnl_gamma 4.5 - log_k -46.6244 - -delta_H 267.985 kJ/mol -# deltafH -151.9 kcal/mol - -analytic -1.3771e1 6.5102e-4 -1.3330e4 4.7164 -2.0800e2 -# Range 0-350 - -Vm 2.4632 -1.7691 6.4494 -2.7058 3.321 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -Sm+3 + 0.5 H2O = Sm+2 + H+ + 0.25 O2 - -llnl_gamma 4.5 - log_k -47.9624 - -delta_H 326.911 kJ/mol -# deltafH -120.5 kcal/mol - -analytic -1.0217e1 7.7548e-3 -1.6285e4 5.4711 9.1931e4 -# Range 0-350 - -Vm -0.0353 -7.8592 8.8194 -2.454 1.1512 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -UO2+2 + H+ = U+3 + 0.75 O2 + 0.5 H2O - -llnl_gamma 5.0 - log_k -64.8028 - -delta_H 377.881 kJ/mol -# deltafH -489.1 kJ/mol - -analytic 2.5133e1 6.4088e-3 -2.2542e4 -8.1423 3.4793e5 -# Range 0-350 - -Vm -2.8438 -14.722 11.528 -2.1703 2.27520 -# Extrapol supcrt92, 64cri/cob -# Ref SSW+97, 92gre/fug match - -2 H+ + UO2+2 = U+4 + H2O + 0.5 O2 - -llnl_gamma 5.5 - log_k -33.9491 - -delta_H 135.895 kJ/mol -# deltafH -591.2 kJ/mol - -analytic 4.4837e1 1.0129e-2 -1.1787e4 -1.9194e1 4.6436e5 -# Range 0-350 - -Vm -4.2836 -18.2319 12.8955 -2.0252 3.68350 # SSW+97 -# Extrapol supcrt92, 64cri/cob -# Ref SSW+97, 92gre/fug match - -UO2+2 + 0.5 H2O = UO2+ + H+ + 0.25 O2 - -llnl_gamma 4.0 - log_k -20.0169 - -delta_H 133.759 kJ/mol -# deltafH -1025.13 kJ/mol - -analytic 8.0480 9.5845e-3 -6.5994e3 -3.5515 -1.0298e2 -# Range 0-350 - -Vm 3.3767 0.4614 5.5725 -2.7980 0.63880 # SSW+97 -# Extrapol supcrt92, 64cri/cob -# Ref SSW+97, 92gre/fug match - -#--------------------------- -# 156 other aqueous species -#--------------------------- - -2 CH3COOH + Al+3 = Al(CH3COO)2+ + 2 H+ - -llnl_gamma 4.0 - log_k -5.595 - -delta_H -46.8566 kJ/mol -# deltafH -372.08 kcal/mol - -analytic -4.2528e1 2.1431e-3 3.1658e2 1.1585e1 5.8604e5 -# Range 0-350 - -Vm 8.9971 14.1844 0.1805 -3.3653 1.39180 -# Extrapol supcrt92 -# Ref SK93, differ by 2.2 log K at 0C, 1 log K at 300C - -2 H2O + Al+3 = AlO2- + 4 H+ - -llnl_gamma 4.0 - log_k -22.8833 - -delta_H 180.899 kJ/mol -# deltafH -222.079 kcal/mol - -analytic 1.0803e1 -3.4379e-3 -9.7391e3 0e0 0e0 -# Range 0-350 - -Vm 3.7221 3.9954 -1.5879 -2.9441 1.74180 -# Extrapol supcrt92 -# Ref SSW+97, 95pok/hel match - -H2O + Al+3 = AlOH+2 + H+ - -llnl_gamma 4.5 - log_k -4.9571 - -delta_H 49.798 kJ/mol -# deltafH -185.096 kcal/mol - -analytic -2.6224e-1 8.8816e-3 -1.8686e3 -4.3195e-1 -2.9158e1 -# Range 0-350 - -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # APP14, BH86 -# Extrapol supcrt92 -# Ref SSW+97, 95pok/hel match - -B(OH)3 = BO2- + H+ + H2O - -llnl_gamma 4.0 - log_k -9.2449 - -delta_H 16.3302 kJ/mol -# deltafH -184.6 kcal/mol - -analytic -1.0500e2 -3.3447e-2 1.4706e3 4.0724e1 2.2978e1 -# Range 0-350 - -Vm -2.2428 -6.2065 -6.3216 -2.5224 1.75950 -# Extrapol supcrt92 -# Ref SH88 - -HCO3- + H+ = CO2 + H2O - -CO2_llnl_gamma - log_k 6.3447 - -delta_H -9.7027 kJ/mol -# deltafH -98.9 kcal/mol - -analytic -1.0534e1 2.1746e-2 2.5216e3 7.9125e-1 3.9351e1 -# Range 0-350 - -Vm 6.2466 7.4711 2.8136 -3.0879 -0.1934 -# Extrapol supcrt92 -# Ref SSW01, SHS89 - -HCO3- = CO3-2 + H+ - -llnl_gamma 4.5 - log_k -10.3288 - -delta_H 14.6984 kJ/mol -# deltafH -161.385 kcal/mol - -analytic -6.9958e1 -3.3526e-2 -7.0846e1 2.8224e1 -1.0849 -# Range 0-350 - -Vm 2.8524 -3.9844 6.4142 -2.6143 3.39140 -# Extrapol supcrt92 -# Ref SH88 - -NH3 + HCO3- = CN- + 2 H2O + 0.5 O2 - -llnl_gamma 3.0 - log_k -56.0505 - -delta_H 344.151 kJ/mol -# deltafH 36 kcal/mol - -analytic -1.1174e1 3.8167e-3 -1.7063e4 4.5349e0 -2.6625e2 -# Range 0-350 - -Vm 5.4714 5.5813 3.5497 -3.0096 1.29000 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -HCO3- + H+ = HCOOH + 0.5 O2 - -llnl_gamma 3.0 # EQ3/6 data0.sup - log_k -39.0524 - -analytic -16.6 0.041 -10000 0 0 -1.205e-5 -# Range 0-350 - -Vm 6.3957 7.7713 2.8318 -3.1002 -0.33 -# Extrapol supcrt92 -# Ref Sho95 - -HCOOH = HCOO- + H+ - -llnl_gamma 3.5 # EQ3/6 data0.sup - log_k -3.752994 - -analytic -6.456 0.01694 0 0 0 -2.71e-5 -# Range 0-350 - -Vm 5.7842 4.7242 7.363 -2.9742 1.3003 -# Extrapol supcrt92 -# Ref Sho95 - -2 HCO3- + 2 H+ = CH3COOH + 2 O2 - -llnl_gamma 3.0 # EQ3/6 data0.sup - log_k -141.99219 - -analytic -6.037 0.0104 -42362 0 0 3.604e-5 -# Range 0-350 - -Vm 11.6198 5.218 2.5088 -2.9946 -0.15 -# Extrapol supcrt92 -# Ref Sho95 - -CH3COOH = CH3COO- + H+ - -llnl_gamma 4.5 - log_k -4.7572 -# deltafH -0 kcal/mol - -analytic -0.96597e2 -0.34535e-1 0.19753e4 0.38593e2 0.30850e2 -# Range 0-350 - -Vm 7.7525 8.6996 7.5825 -3.1385 1.31820 -# Extrapol supcrt92 -# Ref Sho95 - -2 NH3 + HCO3- + H+ = CO(NH2)2 + 2 H2O - -llnl_gamma 3.0 # EQ3/6 data0.sup - log_k 6.631821 - -analytic 15.98 -4.41e-2 0 0 0 4.25e-5 -# Range 0-350 - -Vm 7.7158 7.3031 10.9353 -3.0808 -0.3006 -# Extrapol supcrt92 -# Ref SM93 - -3 H+ + 3 HCO3- + H2O = C3H8 + 5 O2 - -llnl_gamma 3.0 # thermo.com.V8.R6+.tdat - log_k -363.088 - -analytic -8.04e2 1.877 0 0 0 -1.33e-3 -# Range 0-350 - -Vm 10.768 17.6785 -0.5878 -3.5097 -0.165 -# Extrapol supcrt92 -# Ref SH90 - -H+ + HCO3- + H2O = CH3OH + 1.5 O2 - -llnl_gamma 3.0 # EQ3/6 data0.sup - log_k -117.9046 - -analytic -262.5446137 6.159125942e-1 0 0 0 -4.375362728e-4 -# Range 0-350 - -Vm 6.9383 5.5146 11.4018 -3.0069 -0.14760 -# Extrapol supcrt92 -# Ref SH90 - -H2O + 2 HCO3- + 2 H+ = CH3CH2OH + 3 O2 - -llnl_gamma 3.0 # EQ3/6 data0.sup - log_k -224.1415 - -analytic -423.8 0.989 -10003 0 0 -6.93e-4 -# Range 0-350 - -Vm 9.2333 9.9581 12.1445 -3.1906 -0.2037 -# Extrapol supcrt92 -# Ref SH90 - -HCO3- + H+ = CH2O + O2 - -llnl_gamma 3.0 # EQ3/6 data0.sup - log_k -86.57248 - -analytic -17.3 0.0404 -24072 0 0 -6.57e-6 -# Range 0-350 - -Vm 5.3113 5.3139 3.3901 -2.9986 -0.3984 -# Extrapol supcrt92 -# Ref SS93 - -2 CH3COOH + Ca+2 = Ca(CH3COO)2 + 2 H+ - -llnl_gamma 3.0 - log_k -7.3814 - -delta_H -2.7196 kJ/mol -# deltafH -362.65 kcal/mol - -analytic -1.0320e1 4.0012e-3 -3.6281e3 2.4421 7.0175e5 -# Range 0-350 - -Vm 12.9911 23.9379 -3.6556 -3.7685 -0.03 -# Extrapol supcrt92 -# Ref SK93 - -Ca+2 + CH3COOH = CaCH3COO+ + H+ - -llnl_gamma 4.0 - log_k -3.8263 - -delta_H 1.17152 kJ/mol -# deltafH -245.62 kcal/mol - -analytic -8.8826 3.1672e-3 -1.0764e3 2.0526 2.3599e5 -# Range 0-350 - -Vm 5.9002 6.6232 3.1505 -3.0527 0.36360 -# Extrapol supcrt92 -# Ref SK93 - -HCO3- + Ca+2 = CaCO3 + H+ - -llnl_gamma 3.0 - log_k -7.0017 - -delta_H 30.5767 kJ/mol -# deltafH -287.39 kcal/mol - -analytic 2.3045e2 5.5350e-2 -8.5056e3 -9.1096e1 -1.3279e2 -# Range 0-350 - -Vm -0.3907 -8.7325 9.1753 -2.4179 -0.038 -# Extrapol supcrt92 -# Ref SSH97 - -Cl- + Ca+2 = CaCl+ - -llnl_gamma 4.0 - log_k -0.6956 - -delta_H 2.02087 kJ/mol -# deltafH -169.25 kcal/mol - -analytic 8.1498e1 3.8387e-2 -1.3763e3 -3.5968e1 -2.1501e1 -# Range 0-350 - -Vm 2.7148 -1.1497 6.1949 -2.7314 0.48620 -# Extrapol supcrt92 -# Ref SSH97 differ by 0.3 log K at 0C, 1.2 log K at 300C - -2 Cl- + Ca+2 = CaCl2 - -llnl_gamma 3.0 - log_k -0.6436 - -delta_H -5.8325 kJ/mol -# deltafH -211.06 kcal/mol - -analytic 1.8178e2 7.6910e-2 -3.1088e3 -7.8760e1 -4.8563e1 -# Range 0-350 - -Vm 6.2187 7.4058 2.8322 -3.0851 -0.038 -# Extrapol supcrt92 -# Ref SSH97 - -SO4-2 + Ca+2 = CaSO4 - -llnl_gamma 3.0 - log_k 2.1111 - -delta_H 5.4392 kJ/mol -# deltafH -345.9 kcal/mol - -analytic 2.8618e2 8.4084e-2 -7.6880e3 -1.1449e2 -1.2005e2 -# Range 0-350 - -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # phreeqc.dat, SSH97 -# Extrapol supcrt92 -# Ref SSH97 - -2 CH3COOH + Co+2 = Co(CH3COO)2 + 2 H+ - -llnl_gamma 3.0 - log_k -7.1468 - -delta_H -22.4262 kJ/mol -# deltafH -251.46 kcal/mol - -analytic -2.0661e1 2.9014e-3 -2.2146e3 5.1702 6.4968e5 -# Range 0-350 - -Vm 11.9141 21.312 -2.6321 -3.6599 3.49629 -# Extrapol supcrt92 -# Ref SK93 - -3 CH3COOH + Co+2 = Co(CH3COO)3- + 3 H+ - -llnl_gamma 4.0 - log_k -11.281 - -delta_H -48.2415 kJ/mol -# deltafH -373.73 kcal/mol - -analytic 6.3384e1 -4.0669e-3 -1.4715e4 -1.9518e1 2.1524e6 -# Range 0-350 - -Vm 20.3474 41.8989 -10.7127 -4.5110 1.47140 -# Extrapol supcrt92 -# Ref SK93 - -Co+2 + CH3COOH = CoCH3COO+ + H+ - -llnl_gamma 4.0 - log_k -3.2985 - -delta_H -8.70272 kJ/mol -# deltafH -132.08 kcal/mol - -analytic -5.4858 1.9147e-3 -1.1292e3 9.0555e-1 2.8223e5 -# Range 0-350 - -Vm 5.0294 4.4992 3.9806 -2.9649 0.64720 -# Extrapol supcrt92 -# Ref SK93 - -Co+2 + Cl- = CoCl+ - -llnl_gamma 4.0 - log_k 0.1547 - -delta_H 1.71962 kJ/mol -# deltafH -53.422 kcal/mol - -analytic 1.5234e2 5.6958e-2 -3.3258e3 -6.3849e1 -5.1942e1 -# Range 0-350 - -Vm 1.8028 -3.3766 7.0702 -2.6394 0.71910 -# Extrapol supcrt92, 64cri/cob -# Ref SSW+97, 74nau/ryz match - -2 H+ + 2 CrO4-2 = Cr2O7-2 + H2O - -llnl_gamma 4.0 - log_k 14.5192 - -delta_H -13.8783 kJ/mol -# deltafH -356.2 kcal/mol - -analytic 1.3749e2 6.5773e-2 -7.9472e2 -5.6525e1 -1.2441e1 -# Range 0-350 - -Vm 12.4303 22.568 -3.1161 -3.7119 2.12160 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -2 CH3COOH + Cu+2 = Cu(CH3COO)2 + 2 H+ - -llnl_gamma 3.0 - log_k -5.8824 - -delta_H -25.899 kJ/mol -# deltafH -222.69 kcal/mol - -analytic -2.6689e1 1.8048e-3 -1.8244e3 7.7008 6.5408e5 -# Range 0-350 - -Vm 11.8801 21.2264 -2.5925 -3.6564 -0.03 -# Extrapol supcrt92 -# Ref SK93 - -2 CH3COOH + Cu+ = Cu(CH3COO)2- + 2 H+ - -llnl_gamma 4.0 - log_k -9.2139 - -delta_H -19.5476 kJ/mol -# deltafH -219.74 kcal/mol - -analytic -3.2712e2 -5.9087e-2 1.1386e4 1.2017e2 1.7777e2 -# Range 0-350 - -Vm 15.0715 29.0205 -5.6592 -3.9786 1.06910 -# Extrapol supcrt92 -# Ref SK93 - -3 CH3COOH + Cu+2 = Cu(CH3COO)3- + 3 H+ - -llnl_gamma 4.0 - log_k -9.3788 - -delta_H -53.2205 kJ/mol -# deltafH -345.32 kcal/mol - -analytic 3.9475e1 -6.2867e-3 -1.3233e4 -1.0643e1 2.1121e6 -# Range 0-350 - -Vm 20.2654 41.7019 -10.6422 -4.5029 1.3408 -# Extrapol supcrt92 -# Ref SK93 - -Cu+ + CH3COOH = CuCH3COO + H+ - -llnl_gamma 3.0 - log_k -4.4274 - -delta_H -4.19237 kJ/mol -# deltafH -99.97 kcal/mol - -analytic 6.3784 -4.5464e-4 -1.9995e3 -2.8359 2.7224e5 -# Range 0-350 - -Vm 7.3009 10.0483 1.7946 -3.1943 -0.03 -# Extrapol supcrt92 -# Ref SK93 - -Cu+2 + CH3COOH = CuCH3COO+ + H+ - -llnl_gamma 4.0 - log_k -2.5252 - -delta_H -11.3805 kJ/mol -# deltafH -103.12 kcal/mol - -analytic -1.4930e1 5.1278e-4 -3.4874e2 4.3605 2.3504e5 -# Range 0-350 - -Vm 4.9722 4.362 4.029 -2.9592 0.56810 -# Extrapol supcrt92 -# Ref SK93 - -2 CH3COOH + Eu+3 = Eu(CH3COO)2+ + 2 H+ - -llnl_gamma 4.0 - log_k -4.6912 - -delta_H -28.3257 kJ/mol -# deltafH -383.67 kcal/mol - -analytic -2.7589e1 1.5772e-3 -1.1008e3 7.9899 5.6652e5 -# Range 0-350 - -Vm 9.3029 14.9307 -0.1123 -3.3961 0.7384 -# Extrapol supcrt92 -# Ref SK93 - -3 CH3COOH + Eu+3 = Eu(CH3COO)3 + 3 H+ - -llnl_gamma 3.0 - log_k -7.9824 - -delta_H -47.3629 kJ/mol -# deltafH -504.32 kcal/mol - -analytic -3.7470e1 1.9276e-3 -1.0318e3 9.7078 7.4558e5 -# Range 0-350 - -Vm 16.6413 32.8512 -7.1605 -4.137 -0.03 -# Extrapol supcrt92 -# Ref SK93 - -Eu+3 + CH3COOH = EuCH3COO+2 + H+ - -llnl_gamma 4.5 - log_k -1.9571 - -delta_H -14.5603 kJ/mol -# deltafH -264.28 kcal/mol - -analytic -1.5090e1 1.0352e-3 -6.4435e2 4.6225 3.1649e5 -# Range 0-350 - -Vm 2.75 -1.0666 6.169 -2.7348 1.5269 -# Extrapol supcrt92 -# Ref SK93 - -HCO3- + Eu+3 = EuCO3+ + H+ - -llnl_gamma 4.0 - log_k -2.4057 - -delta_H 90.7844 kJ/mol -# deltafH -287.9 kcal/mol # OBIGT: -311.27 kcal/mol HSS95 - -analytic 2.3548e2 5.3819e-2 -6.9908e3 -9.3137e1 -1.0915e2 -# Range 0-350 - -Vm -0.9842 -10.1779 9.7343 -2.3581 1.2465 -# Extrapol supcrt92 -# Ref HSS95 - -Eu+2 + Cl- = EuCl+ - -llnl_gamma 4.0 - log_k 0.3819 - -delta_H 8.50607 kJ/mol -# deltafH -164 kcal/mol - -analytic 6.8695e1 3.7619e-2 -1.0809e3 -3.0665e1 -1.6887e1 -# Range 0-350 - -Vm 5.1742 4.8499 3.8487 -2.9794 0.2557 -# Extrapol supcrt92 -# Ref HSS95 - -Eu+3 + Cl- = EuCl+2 - -llnl_gamma 4.5 - log_k 0.3086 - -delta_H 13.9453 kJ/mol -# deltafH -181.3 kcal/mol - -analytic 7.9275e1 3.7878e-2 -1.7895e3 -3.4041e1 -2.7947e1 -# Range 0-350 - -Vm -0.3777 -8.6968 9.1514 -2.4194 1.4671 -# Extrapol supcrt92 -# Ref HSS95 - -2 Cl- + Eu+3 = EuCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 18.6857 kJ/mol -# deltafH -220.1 kcal/mol # OBIGT: -204.6 kcal/mol HSS95 - -analytic 2.1758e2 8.0336e-2 -5.5499e3 -9.0087e1 -8.6665e1 -# Range 0-350 - -Vm 9.1152 14.474 0.0641 -3.3773 -0.03 -# Extrapol supcrt92 -# Ref HSS95 - -3 Cl- + Eu+3 = EuCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 11.2926 kJ/mol -# deltafH -261.8 kcal/mol - -analytic 4.2075e2 1.2890e-1 -1.1288e4 -1.7043e2 -1.7627e2 -# Range 0-350 - -Vm 6.2132 7.3881 2.8493 -3.0843 -0.03 -# Extrapol supcrt92 -# Ref HSS95 - -3 Cl- + Eu+2 = EuCl3- - -llnl_gamma 4.0 - log_k 2.0253 - -delta_H -3.76978 kJ/mol -# deltafH -246.8 kcal/mol - -analytic 1.1546e1 6.4683e-2 3.7299e3 -1.6672e1 5.8196e1 -# Range 0-350 - -Vm 13.946 26.2721 -4.579 -3.865 0.9527 -# Extrapol supcrt92 -# Ref HSS95 - -4 Cl- + Eu+3 = EuCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -9.90771 kJ/mol -# deltafH -306.8 kcal/mol - -analytic 4.8122e2 1.3081e-1 -1.2950e4 -1.9302e2 -2.0222e2 -# Range 0-350 - -Vm 10.9946 19.066 -1.7473 -3.5671 1.787 -# Extrapol supcrt92 -# Ref HSS95 - -4 Cl- + Eu+2 = EuCl4-2 - -llnl_gamma 4.0 - log_k 2.8470 - -delta_H -19.9493 kJ/mol -# deltafH -290.6 kcal/mol - -analytic -1.2842e2 5.0789e-2 9.8815e3 3.3565e1 1.5423e2 -# Range 0-350 - -Vm 19.473 39.7656 -9.8784 -4.4228 2.4755 -# Extrapol supcrt92 -# Ref HSS95 - -HPO4-2 + H+ + Eu+3 = EuH2PO4+2 - -llnl_gamma 4.5 - log_k 9.4484 - -delta_H -17.0916 kJ/mol -# deltafH -457.6 kcal/mol - -analytic 1.0873e2 6.3416e-2 2.7202e2 -4.8113e1 4.2122 -# Range 0-350 - -Vm 1.4946 -4.1236 7.3517 -2.6084 1.5372 -# Extrapol supcrt92 -# Ref HSS95 - -HCO3- + Eu+3 = EuHCO3+2 - -llnl_gamma 4.5 - log_k 1.6258 - -delta_H 8.77803 kJ/mol -# deltafH -307.5 kcal/mol - -analytic 3.9266e1 3.1608e-2 -9.8731e1 -1.8875e1 -1.5524 -# Range 0-350 - -Vm 0.4928 -6.572 8.3198 -2.5072 1.286 -# Extrapol supcrt92 -# Ref HSS95 - -NO3- + Eu+3 = EuNO3+2 - -llnl_gamma 4.5 - log_k 0.8745 - -delta_H -32.0955 kJ/mol -# deltafH -201.8 kcal/mol - -analytic 1.7398e1 2.5467e-2 2.2683e3 -1.2810e1 3.5389e1 -# Range 0-350 - -Vm 1.2198 -4.7951 7.6178 -2.5807 1.6556 -# Extrapol supcrt92 -# Ref HSS95 - -H2O + Eu+3 = EuO+ + 2 H+ - -llnl_gamma 4.0 - log_k -16.337 - -delta_H 110.947 kJ/mol -# deltafH -186.5 kcal/mol # OBIGT: -177.81 kcal/mol HSS95 - -analytic 1.8876e2 3.0194e-2 -1.3836e4 -6.7770e1 -2.1595e2 -# Range 0-350 - -Vm 2.7458 -1.0743 6.1663 -2.7345 0.4322 -# Extrapol supcrt92 -# Ref HSS95 - -2 H2O + Eu+3 = EuO2- + 4 H+ - -llnl_gamma 4.0 - log_k -34.5066 - -delta_H 281.307 kJ/mol -# deltafH -214.1 kcal/mol # OBIGT: -219.06 kcal/mol HSS95 - -analytic 7.5244e1 3.7089e-4 -1.3587e4 -2.3859e1 -4.6713e5 -# Range 0-350 - -Vm 4.8468 4.0541 4.1548 -2.9465 1.1424 -# Extrapol supcrt92 -# Ref HSS95 - -2 H2O + Eu+3 = EuO2H + 3 H+ - -llnl_gamma 3.0 - log_k -25.4173 - -delta_H 222.313 kJ/mol -# deltafH -228.2 kcal/mol - -analytic 3.6754e2 5.3868e-2 -2.4034e4 -1.3272e2 -3.7514e2 -# Range 0-350 - -Vm 4.8064 3.954 4.1968 -2.9424 -0.03 -# Extrapol supcrt92 -# Ref HSS95 - -H2O + Eu+3 = EuOH+2 + H+ - -llnl_gamma 4.5 - log_k -7.9075 - -delta_H 78.0065 kJ/mol -# deltafH -194.373 kcal/mol - -analytic 6.7691e1 1.2066e-2 -6.1871e3 -2.3617e1 -9.6563e1 -# Range 0-350 - -Vm 2.6569 -1.2969 6.2659 -2.7253 1.1815 -# Extrapol supcrt92 -# Ref HSS95 - -SO4-2 + Eu+3 = EuSO4+ - -llnl_gamma 4.0 - log_k 3.6430 - -delta_H 62.3416 kJ/mol -# deltafH -347.2 kcal/mol # OBIGT: -357.2 kcal/mol HSS95 - -analytic 3.0587e2 8.6208e-2 -9.0387e3 -1.2026e2 -1.4113e2 -# Range 0-350 - -Vm 1.4399 -4.2627 7.4184 -2.6027 0.779 -# Extrapol supcrt92 -# Ref HSS95 - -2 CH3COOH + Fe+2 = Fe(CH3COO)2 + 2 H+ - -llnl_gamma 3.0 - log_k -7.0295 - -delta_H -20.2924 kJ/mol -# deltafH -259.1 kcal/mol - -analytic -2.9862e1 1.3901e-3 -1.6908e3 8.6283 6.0125e5 -# Range 0-350 - -Vm 12.1698 21.937 -2.8791 -3.6858 -0.038 -# Extrapol supcrt92 -# Ref SSH97, SK93 - -Fe+2 + CH3COOH = FeCH3COO+ + H+ - -llnl_gamma 4.0 - log_k -3.4671 - -delta_H -3.80744 kJ/mol -# deltafH -139.06 kcal/mol - -analytic -1.3781e1 9.6253e-4 -7.5310e2 4.0135 2.3416e5 -# Range 0-350 - -Vm 5.2246 4.9785 3.7863 -2.9848 0.57560 -# Extrapol supcrt92 -# Ref SSH97, SK93 - -Fe+2 + Cl- = FeCl+ - -llnl_gamma 4.0 - log_k -0.1605 - -delta_H 3.02503 kJ/mol -# deltafH -61.26 kcal/mol - -analytic 8.2435e1 3.7755e-2 -1.4765e3 -3.5918e1 -2.3064e1 -# Range 0-350 - -Vm 2.1468 -2.5367 6.7401 -2.6741 0.7003 -# Extrapol supcrt92 -# Ref SSH97 - -Fe+3 + Cl- = FeCl+2 - -llnl_gamma 4.5 - log_k -0.8108 - -delta_H 36.6421 kJ/mol -# deltafH -180.018 kJ/mol - -analytic 1.6186e2 5.9436e-2 -5.1913e3 -6.5852e1 -8.1053e1 -# Range 0-350 - -Vm -0.7164 -9.5277 9.4878 -2.3851 0.17013 # SSH97 -# Extrapol supcrt92, 64cri/cob -# Ref SSH97, WEP+82 differ by 2.7 log K at 0C, 1.2 log K at 300C - -2 Cl- + Fe+2 = FeCl2 - -llnl_gamma 3.0 - log_k -2.4541 - -delta_H 6.46846 kJ/mol -# deltafH -100.37 kcal/mol - -analytic 1.9171e2 7.8070e-2 -4.1048e3 -8.2292e1 -6.4108e1 -# Range 0-350 - -Vm 5.5057 5.665 3.5164 -3.0131 -0.038 -# Extrapol supcrt92 -# Ref SSH97 differ by 7.2 log K at 0C, 3.2 log K at 300C !! flag - -H2O + Fe+2 = FeOH+ + H+ - -llnl_gamma 4.0 - log_k -9.5 - -analytic 1.706e-1 0 -2.883e3 -# Range 0-350 - -Vm -0.2561 -8.4039 9.0457 -2.4315 0.7003 -# Extrapol supcrt92 -# Ref SSW+97, Marion+03,08 match - -H2O + Fe+3 = FeOH+2 + H+ - -llnl_gamma 4.5 - log_k -2.19 -# deltafH -0 kcal/mol - -analytic 5.300 0 -2.272e3 -# Range 0-350 - -Vm -1.1562 -10.6009 9.9077 -2.3407 1.43820 -# Extrapol supcrt92 -# Ref SSW+97, Marion+08 match - -2 CH3COOH + Gd+3 = Gd(CH3COO)2+ + 2 H+ - -llnl_gamma 4.0 - log_k -4.9625 - -delta_H -22.3426 kJ/mol -# deltafH -401.74 kcal/mol - -analytic -4.3124e1 1.2995e-4 -4.3494e2 1.3677e1 5.1224e5 -# Range 0-350 - -Vm 9.4165 15.2134 -0.2342 -3.4078 0.6223 -# Extrapol supcrt92 -# Ref SK93 - -3 CH3COOH + Gd+3 = Gd(CH3COO)3 + 3 H+ - -llnl_gamma 3.0 - log_k -8.3489 - -delta_H -37.9907 kJ/mol -# deltafH -521.58 kcal/mol - -analytic -8.8296e1 -5.0939e-3 1.2268e3 2.8513e1 6.0745e5 -# Range 0-350 - -Vm 16.8116 33.2662 -7.3215 -4.1541 -0.03 -# Extrapol supcrt92 -# Ref SK93 - -Gd+3 + CH3COOH = GdCH3COO+2 + H+ - -llnl_gamma 4.5 - log_k -2.1037 - -delta_H -11.7152 kJ/mol -# deltafH -283.1 kcal/mol - -analytic -1.4118e1 1.6660e-3 -7.5206e2 4.2614 3.1187e5 -# Range 0-350 - -Vm 2.8605 -0.7945 6.0567 -2.7461 1.4477 -# Extrapol supcrt92 -# Ref SK93 - -HCO3- + Gd+3 = GdCO3+ + H+ - -llnl_gamma 4.0 - log_k -2.479 - -delta_H 89.9476 kJ/mol -# deltafH -307.6 kcal/mol # OBIGT: -330.22 kcal/mol HSS95 - -analytic 2.3628e2 5.4100e-2 -7.0746e3 -9.3413e1 -1.1046e2 -# Range 0-350 - -Vm -0.953 -10.1036 9.7095 -2.3612 1.1729 -# Extrapol supcrt92 -# Ref HSS95 - -Gd+3 + Cl- = GdCl+2 - -llnl_gamma 4.5 - log_k 0.3086 - -delta_H 14.7821 kJ/mol -# deltafH -200.6 kcal/mol - -analytic 8.0750e1 3.8524e-2 -1.8591e3 -3.4621e1 -2.9034e1 -# Range 0-350 - -Vm -0.263 -8.417 9.0425 -2.4309 1.4006 -# Extrapol supcrt92 -# Ref HSS95 - -2 Cl- + Gd+3 = GdCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 21.1961 kJ/mol -# deltafH -239 kcal/mol - -analytic 2.1754e2 8.0996e-2 -5.6121e3 -9.0067e1 -8.7635e1 -# Range 0-350 - -Vm 2.8492 -0.8272 6.0803 -2.7447 0.6305 -# Extrapol supcrt92 -# Ref HSS95 - -3 Cl- + Gd+3 = GdCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 15.895 kJ/mol -# deltafH -280.2 kcal/mol - -analytic 4.1398e2 1.2829e-1 -1.1230e4 -1.6770e2 -1.7535e2 -# Range 0-350 - -Vm 6.3836 7.8028 2.6888 -3.1015 -0.03 -# Extrapol supcrt92 -# Ref HSS95 - -4 Cl- + Gd+3 = GdCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -1.53971 kJ/mol -# deltafH -324.3 kcal/mol - -analytic 4.7684e2 1.3157e-1 -1.3068e4 -1.9118e2 -2.0405e2 -# Range 0-350 - -Vm 11.1317 19.3995 -1.8761 -3.5809 1.631 -# Extrapol supcrt92 -# Ref HSS95 - -HPO4-2 + H+ + Gd+3 = GdH2PO4+2 - -llnl_gamma 4.5 - log_k 9.4484 - -delta_H -14.9996 kJ/mol -# deltafH -476.6 kcal/mol - -analytic 1.1058e2 6.4124e-2 1.3451e2 -4.8758e1 2.0660 -# Range 0-350 - -Vm 1.6048 -3.8632 7.2686 -2.6192 1.4574 -# Extrapol supcrt92 -# Ref HSS95 - -HCO3- + Gd+3 = GdHCO3+2 - -llnl_gamma 4.5 - log_k 1.6991 - -delta_H 10.0332 kJ/mol -# deltafH -326.7 kcal/mol - -analytic 4.1973e1 3.2521e-2 -2.3475e2 -1.9864e1 -3.6757 -# Range 0-350 - -Vm 0.6026 -6.3043 8.2153 -2.5183 1.2048 -# Extrapol supcrt92 -# Ref HSS95 - -NO3- + Gd+3 = GdNO3+2 - -llnl_gamma 4.5 - log_k 0.4347 - -delta_H -25.8195 kJ/mol -# deltafH -219.8 kcal/mol - -analytic 2.0253e1 2.6372e-2 1.8785e3 -1.3723e1 2.9306e1 -# Range 0-350 - -Vm 1.3205 -4.5535 7.5323 -2.5907 1.5475 -# Extrapol supcrt92 -# Ref HSS95 - -H2O + Gd+3 = GdO+ + 2 H+ - -llnl_gamma 4.0 - log_k -16.337 - -delta_H 113.039 kJ/mol -# deltafH -205.5 kcal/mol # OBIGT: -196.63 kcal/mol HSS95 - -analytic 2.0599e2 3.2521e-2 -1.4547e4 -7.4048e1 -2.2705e2 -# Range 0-350 - -Vm 2.8425 -0.8409 6.0801 -2.7441 0.3539 -# Extrapol supcrt92 -# Ref HSS95 - -2 H2O + Gd+3 = GdO2- + 4 H+ - -llnl_gamma 4.0 - log_k -34.4333 - -delta_H 283.817 kJ/mol -# deltafH -233 kcal/mol # OBIGT: -237.73 kcal/mol HSS95 - -analytic 1.2067e2 6.6276e-3 -1.5531e4 -4.0448e1 -4.3587e5 -# Range 0-350 - -Vm 5.0344 4.5111 3.9769 -2.9654 1.0495 -1 -# Extrapol supcrt92 -# Ref HSS95 - -2 H2O + Gd+3 = GdO2H + 3 H+ - -llnl_gamma 3.0 - log_k -25.2707 - -delta_H 224.405 kJ/mol -# deltafH -247.2 kcal/mol - -analytic 3.6324e2 4.7938e-2 -2.4275e4 -1.2988e2 -3.7889e2 -# Range 0-350 - -Vm 5.0117 4.4582 3.9917 -2.9632 -0.03 -# Extrapol supcrt92 -# Ref HSS95 - -H2O + Gd+3 = GdOH+2 + H+ - -llnl_gamma 4.5 - log_k -7.9075 - -delta_H 79.9855 kJ/mol -# deltafH -213.4 kcal/mol # OBIGT: 212.9 kcal/mol HSS95 - -analytic 8.3265e1 1.4153e-2 -6.8229e3 -2.9301e1 -1.0649e2 -# Range 0-350 - -Vm 2.7389 -1.0936 6.1786 -2.7337 1.1 -# Extrapol supcrt92 -# Ref HSS95 - -SO4-2 + Gd+3 = GdSO4+ - -llnl_gamma 4.0 - log_k -3.687 - -delta_H 20.0832 kJ/mol -# deltafH -376.8 kcal/mol - -analytic 3.0783e2 8.6798e-2 -1.1246e4 -1.2109e2 -1.7557e2 - #analytic 3.18e2 7.5e-2 -1.12e4 -1.21e2 -1.76e2 -# Range 0-350 - -Vm 1.4776 -4.1705 7.3822 -2.6065 0.7287 -# Extrapol supcrt92 -# Ref HSS95 differ by 7 log K at 0C, 3.7 log K at 300C !! flag - -2 HPO4-2 + 2 H+ = H2P2O7-2 + H2O - -llnl_gamma 4.0 - log_k 12.0709 - -delta_H 19.7192 kJ/mol -# deltafH -544.6 kcal/mol - -analytic 1.4825e2 6.7021e-2 -2.8329e3 -5.9251e1 -4.4248e1 -# Range 0-350 - -Vm 9.0963 14.4299 0.076 -3.3754 2.62180 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -HPO4-2 + H+ = H2PO4- - -llnl_gamma 4.0 - log_k 7.2054 - -delta_H -4.20492 kJ/mol -# deltafH -309.82 kcal/mol - -analytic 8.2149e1 3.4077e-2 -1.0431e3 -3.2970e1 -1.6301e1 -# Range 0-350 - -Vm 6.4875 8.0594 2.5823 -3.1122 1.3003 -# Extrapol supcrt92 -# Ref SH88 - -HS- + H+ = H2S - -llnl_gamma 3.0 - log_k 6.9877 - -delta_H -21.5518 kJ/mol -# deltafH -9.001 kcal/mol - -analytic 3.9283e1 2.8727e-2 1.3477e3 -1.8331e1 2.1018e1 -# Range 0-350 - -Vm 7.81 2.96 -0.46 # phreeqc.dat -# Extrapol supcrt92 -# Ref SSW01, SHS89 - -3 H+ + 2 HPO4-2 = H3P2O7- + H2O - -llnl_gamma 4.0 - log_k 14.4165 - -delta_H 21.8112 kJ/mol -# deltafH -544.1 kcal/mol - -analytic 2.3157e2 1.0161e-1 -4.3723e3 -9.4050e1 -6.8295e1 -# Range 0-350 - -Vm 9.1292 14.5122 0.0398 -3.3788 0.8568 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -2 H+ + HPO4-2 = H3PO4 - -llnl_gamma 3.0 - log_k 9.3751 - -delta_H 3.74468 kJ/mol -# deltafH -307.92 kcal/mol - -analytic 1.8380e2 6.7320e-2 -3.7792e3 -7.3463e1 -5.9025e1 -# Range 0-350 - -Vm 8.2727 12.4182 0.8691 -3.2924 -0.22 -# Extrapol supcrt92 -# Ref SHS89 - -4 H+ + 2 HPO4-2 = H4P2O7 + H2O - -llnl_gamma 3.0 - log_k 15.9263 - -delta_H 29.7226 kJ/mol -# deltafH -2268.6 kJ/mol - -analytic 6.9026e2 2.4309e-1 -1.6165e4 -2.7989e2 -2.7475e2 -# Range 0-350 - -Vm 9.2975 14.9199 -0.113 -3.3957 -0.62920 -# Extrapol supcrt92, 69hel -# Ref SSW+97, WEP+82 - -2 H2O + Al+3 = HAlO2 + 3 H+ - -llnl_gamma 3.0 - log_k -16.4329 - -delta_H 144.704 kJ/mol -# deltafH -230.73 kcal/mol - -analytic 4.2012e1 1.9980e-2 -7.7847e3 -1.5470e1 -1.2149e2 -# Range 0-350 - -Vm 3.5338 0.8485 5.4132 -2.8140 -0.03 -# Extrapol supcrt92 -# Ref SSW+97, 95pok/hel - -H+ + CN- = HCN - -llnl_gamma 3.0 - log_k 9.2359 - -delta_H -43.5136 kJ/mol -# deltafH 25.6 kcal/mol - -analytic 1.0536e1 2.3105e-2 3.3038e3 -7.7786 5.1550e1 -# Range 0-350 - -Vm 8.0083 11.7705 1.1286 -3.2655 -0.1113 -# Extrapol supcrt92 -# Ref SM93 - -H+ + Cl- = HCl - -llnl_gamma 3.0 - log_k -0.67 -# deltafH -0 kcal/mol - -analytic 4.1893e2 1.1103e-1 -1.1784e4 -1.6697e2 -1.8400e2 -# Range 0-350 - -Vm 1.2547 -4.7177 7.6043 -2.5840 -0.7 -# Extrapol supcrt92, ? -# Ref MS97, 87rua/sew match - -H+ + CrO4-2 = HCrO4- - -llnl_gamma 4.0 - log_k 6.4944 - -delta_H 2.9288 kJ/mol -# deltafH -209.9 kcal/mol - -analytic 4.4944e1 3.2740e-2 1.8400e2 -1.9722e1 2.8578 -# Range 0-350 - -Vm 8.2211 12.2925 0.9174 -3.2871 0.923 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -NO2- + H+ = HNO2 - -llnl_gamma 3.0 - log_k 3.2206 - -delta_H -14.782 kJ/mol -# deltafH -119.382 kJ/mol - -analytic 1.9653 -1.1603e-4 0 0 1.1569e5 -# Range 0-350 - -Vm 5.9151 6.659 3.1378 -3.0542 -0.1507 -# Extrapol supcrt92, 69hel -# Ref SSW+97, WEP+82 match - -NO3- + H+ = HNO3 - -llnl_gamma 3.0 - log_k -1.3025 - -delta_H 16.8155 kJ/mol -# deltafH -45.41 kcal/mol - -analytic 9.9744e1 3.4866e-2 -3.0975e3 -4.0830e1 -4.8363e1 -# Range 0-350 - -Vm 7.1623 9.7063 1.9367 -3.1802 -0.3066 -# Extrapol supcrt92 -# Ref SSW+97, SHS89 - -2 HPO4-2 + H+ = HP2O7-3 + H2O - -llnl_gamma 4.0 - log_k 5.4498 - -delta_H 23.3326 kJ/mol -# deltafH -2274.99 kJ/mol - -analytic 3.9159e2 1.5438e-1 -8.7071e3 -1.6283e2 -1.3598e2 -# Range 0-350 - -Vm 8.3302 12.5558 0.8208 -3.2980 4.647 -# Extrapol supcrt92, 64cri/cob -# Ref SSW+97, WEP+82 differ by 0 log K at 0C, 4.7 log K at 300C - -SO3-2 + H+ = HSO3- - -llnl_gamma 4.0 - log_k 7.2054 - -delta_H 9.33032 kJ/mol -# deltafH -149.67 kcal/mol - -analytic 5.5899e1 3.3623e-2 -5.0120e2 -2.3040e1 -7.8373 -# Range 0-350 - -Vm 6.7014 8.5816 2.3771 -0.31338 1.1233 -# Extrapol supcrt92 -# Ref SH88 - -SO4-2 + H+ = HSO4- - -llnl_gamma 4.0 - log_k 1.9791 - -delta_H 20.5016 kJ/mol -# deltafH -212.5 kcal/mol - -analytic 4.9619e1 3.0368e-2 -1.1558e3 -2.1335e1 -1.8051e1 -# Range 0-350 - -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 # APP14 -# Extrapol supcrt92 -# Ref SH88 - -SiO2 + H2O = HSiO3- + H+ - -llnl_gamma 4.0 - log_k -9.9525 - -delta_H 25.991 kJ/mol -# deltafH -271.88 kcal/mol - -analytic 6.4211e1 -2.4872e-2 -1.2707e4 -1.4681e1 1.0853e6 -# Range 0-350 - -Vm 2.9735 -0.5158 5.9467 -2.7575 1.5511 -# Extrapol supcrt92 -# Ref SSH97 - -2 CH3COOH + K+ = K(CH3COO)2- + 2 H+ - -llnl_gamma 4.0 - log_k -10.2914 - -delta_H -1.79912 kJ/mol -# deltafH -292.9 kcal/mol - -analytic -2.3036e2 -4.6369e-2 7.0305e3 8.4997e1 1.0977e2 -# Range 0-350 - -Vm 17.8481 35.7984 -8.3193 -4.2588 0.7097 -# Extrapol supcrt92 -# Ref SK93 - -K+ + CH3COOH = KCH3COO + H+ - -llnl_gamma 3.0 - log_k -5.0211 - -delta_H 4.8116 kJ/mol -# deltafH -175.22 kcal/mol - -analytic -2.6676e-1 -3.2675e-3 -1.7143e3 -7.1907e-3 1.7726e5 -# Range 0-350 - -Vm 17.8481 35.7984 -8.3193 -4.2588 0.7097 -# Extrapol supcrt92 -# Ref SK93 - -K+ + Cl- = KCl - -llnl_gamma 3.0 - log_k -1.4946 - -delta_H 14.1963 kJ/mol -# deltafH -96.81 kcal/mol - -analytic 1.3650e2 3.8405e-2 -4.4014e3 -5.4421e1 -6.8721e1 -# Range 0-350 - -Vm 6.9932 9.297 2.0889 -3.1633 -0.038 -# Extrapol supcrt92 -# Ref SSH97 - -SO4-2 + K+ + H+ = KHSO4 - -llnl_gamma 3.0 - log_k 0.8136 - -delta_H 29.8319 kJ/mol -# deltafH -270.54 kcal/mol - -analytic 1.2620e2 5.7349e-2 -3.3670e3 -5.3003e1 -5.2576e1 -# Range 0-350 - -Vm 9.1226 14.4964 0.0453 -3.3782 -0.001 -# Extrapol supcrt92 -# Ref SSH97 - -SO4-2 + K+ = KSO4- - -llnl_gamma 4.0 - log_k 0.8796 - -delta_H 2.88696 kJ/mol -# deltafH -276.98 kcal/mol - -analytic 9.9073e1 3.7817e-2 -2.1628e3 -4.1297e1 -3.3779e1 -# Range 0-350 - -Vm 6.8 7.06 3.0 -2.07 1.1 0 0 0 0 1 # APP14 -# Extrapol supcrt92 -# Ref SSH97 - -2 CH3COOH + Li+ = Li(CH3COO)2- + 2 H+ - -llnl_gamma 4.0 - log_k -9.2674 - -delta_H -24.7609 kJ/mol -# deltafH -304.67 kcal/mol - -analytic -3.3702e2 -6.0849e-2 1.1952e4 1.2359e2 1.8659e2 -# Range 0-350 - -Vm 16.3412 32.1211 -6.8785 -4.1068 1.2422 -# Extrapol supcrt92 -# Ref SK93 - -Li+ + CH3COOH = LiCH3COO + H+ - -llnl_gamma 3.0 - log_k -4.4589 - -delta_H -6.64419 kJ/mol -# deltafH -184.24 kcal/mol - -analytic -3.8391 -7.3938e-4 -1.0829e3 3.4134e-1 2.1318e5 -# Range 0-350 - -Vm 8.388 12.6976 0.7639 -3.3038 -0.03 -# Extrapol supcrt92 -# Ref SK93 - -Li+ + Cl- = LiCl - -llnl_gamma 3.0 - log_k -1.5115 - -delta_H 3.36812 kJ/mol -# deltafH -105.68 kcal/mol - -analytic 1.2484e2 4.1941e-2 -3.2439e3 -5.1708e1 -5.0655e1 -# Range 0-350 - -Vm 5.5837 5.8554 3.4416 -3.021 -0.038 -# Extrapol supcrt92 -# Ref SSH97 - -2 CH3COOH + Mg+2 = Mg(CH3COO)2 + 2 H+ - -llnl_gamma 3.0 - log_k -7.473 - -delta_H -23.8195 kJ/mol -# deltafH -349.26 kcal/mol - -analytic -4.3954e1 -3.1842e-4 -1.2033e3 1.3556e1 6.3058e5 -# Range 0-350 - -Vm 12.3982 22.4898 -3.0853 -3.7086 -0.03 -# Extrapol supcrt92 -# Ref SK93 - -Mg+2 + CH3COOH = MgCH3COO+ + H+ - -llnl_gamma 4.0 - log_k -3.4781 - -delta_H -8.42239 kJ/mol -# deltafH -229.48 kcal/mol - -analytic -2.3548e1 -1.6071e-3 -4.2228e2 7.7009 2.5981e5 -# Range 0-350 - -Vm 5.4981 5.6424 3.5341 -3.0122 0.7483 -# Extrapol supcrt92 -# Ref SK93 - -Mg+2 + HCO3- = MgCO3 + H+ - -llnl_gamma 3.0 - log_k -7.3499 - -delta_H 23.8279 kJ/mol -# deltafH -270.57 kcal/mol - -analytic 2.3465e2 5.5538e-2 -8.3947e3 -9.3104e1 -1.3106e2 -# Range 0-350 - -Vm -0.7355 -9.5745 9.5062 -2.3831 -0.038 -# Extrapol supcrt92 -# Ref SSH97 - -Mg+2 + Cl- = MgCl+ - -llnl_gamma 4.0 - log_k -0.1349 - -delta_H -0.58576 kJ/mol -# deltafH -151.44 kcal/mol - -analytic 4.3363e1 3.2858e-2 1.1878e2 -2.1688e1 1.8403 -# Range 0-350 - -Vm 2.223 -2.3505 6.6669 -2.6818 0.84490 -# Extrapol supcrt92 -# Ref SSH97 - -SO4-2 + Mg+2 = MgSO4 - -llnl_gamma 3.0 - log_k 2.4117 - -delta_H 19.6051 kJ/mol -# deltafH -1355.96 kJ/mol - -analytic 1.7994e2 6.4715e-2 -4.7314e3 -7.3123e1 -8.0408e1 -# Range 0-350 - -Vm 2.4 -0.97 6.1 -2.74 # APP14 -# Extrapol supcrt92, 69hel -# Ref MS97, 82mar/smi match - -2 CH3COOH + Mn+2 = Mn(CH3COO)2 + 2 H+ - -llnl_gamma 3.0 - log_k -7.4547 - -delta_H -11.4893 kJ/mol -# deltafH -287.67 kcal/mol - -analytic -9.0558e-1 5.9656e-3 -4.3531e3 -1.1063 8.0323e5 -# Range 0-350 - -Vm 13.1542 24.3405 -3.8236 -3.7851 -0.03 -# Extrapol supcrt92 -# Ref SK93 - -3 CH3COOH + Mn+2 = Mn(CH3COO)3- + 3 H+ - -llnl_gamma 4.0 - log_k -11.8747 - -delta_H -30.3591 kJ/mol -# deltafH -408.28 kcal/mol - -analytic -3.8531 -9.9140e-3 -1.2065e4 5.1424 2.0175e6 -# Range 0-350 - -Vm 21.6217 45.0124 -11.9409 -4.6397 1.15360 -# Extrapol supcrt92 -# Ref SK93 - -Mn+2 + CH3COOH = MnCH3COO+ + H+ - -llnl_gamma 4.0 - log_k -3.5404 - -delta_H -3.07942 kJ/mol -# deltafH -169.56 kcal/mol - -analytic -1.4061e1 1.8149e-3 -8.6438e2 4.0354 2.5831e5 -# Range 0-350 - -Vm 6.0776 7.057 2.9786 -3.0706 0.4555 -# Extrapol supcrt92 -# Ref SK93 - -Mn+2 + Cl- = MnCl+ - -llnl_gamma 4.0 - log_k 0.3013 - -delta_H 18.3134 kJ/mol -# deltafH -88.28 kcal/mol - -analytic 8.7072e1 4.0361e-2 -2.1786e3 -3.6966e1 -3.4022e1 -# Range 0-350 - -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 # APP14 -# Extrapol supcrt92 -# Ref SSH97 - -1.5 H2O + 1.25 O2 + Mn+2 = MnO4- + 3 H+ - -llnl_gamma 3.5 - log_k -20.2963 - -delta_H 123.112 kJ/mol -# deltafH -129.4 kcal/mol - -analytic 1.8544e1 -1.7618e-2 -6.7332e3 -3.3193 -2.4924e5 -# Range 0-350 - -Vm 7.8248 11.3277 1.2912 -3.2472 0.9248 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -SO4-2 + Mn+2 = MnSO4 - -llnl_gamma 3.0 - log_k 2.3529 - -delta_H 14.1168 kJ/mol -# deltafH -266.75 kcal/mol - -analytic 2.9448e2 8.5294e-2 -8.1366e3 -1.1729e2 -1.2705e2 -# Range 0-350 - -Vm -1.31 -1.83 62.3 -2.7 # APP14 -# Extrapol supcrt92 -# Ref SSH97 - -2 CH3COOH + NH3 = NH4(CH3COO)2- + H+ - -llnl_gamma 4.0 - log_k -0.1928 - -delta_H -56.735 kJ/mol -# deltafH -265.2 kcal/mol - -analytic 3.7137e1 -1.2242e-2 -8.4764e3 -8.4308 1.3883e6 -# Range 0-350 - -Vm 19.3685 39.509 -9.7736 -4.4122 0.6495 -# Extrapol supcrt92 -# Ref SK93 - -NH3 + H+ = NH4+ - -llnl_gamma 2.5 - log_k 9.2410 - -delta_H -51.9234 kJ/mol -# deltafH -31.85 kcal/mol - -analytic -1.4527e1 -5.0518e-3 3.0447e3 6.0865 4.7515e1 -# Range 0-350 - -Vm 3.8763 2.3448 8.5605 -2.8759 0.1502 -# Extrapol supcrt92 -# Ref SH88 - -NH3 + CH3COOH = NH4CH3COO - -llnl_gamma 3.0 - log_k 4.6964 - -delta_H -48.911 kJ/mol -# deltafH -147.23 kcal/mol - -analytic 1.4104e1 -4.3664e-3 -1.0746e3 -3.6999 4.1428e5 -# Range 0-350 - -Vm 11.2849 19.7719 -2.0187 -3.5963 -0.03 -# Extrapol supcrt92 -# Ref SK93 - -2 CH3COOH + Na+ = Na(CH3COO)2- + 2 H+ - -llnl_gamma 4.0 - log_k -9.9989 - -delta_H -11.5771 kJ/mol -# deltafH -292.4 kcal/mol - -analytic -2.9232e2 -5.5708e-2 9.6601e3 1.0772e2 1.5082e2 -# Range 0-350 - -Vm 16.2062 31.7884 -6.7416 -4.0930 0.9633 -# Extrapol supcrt92 -# Ref SK93 - -Na+ + CH3COOH = NaCH3COO + H+ - -llnl_gamma 3.0 - log_k -4.8606 - -delta_H -0.029288 kJ/mol -# deltafH -173.54 kcal/mol - -analytic 6.4833 -1.8739e-3 -2.0902e3 -2.6121 2.3990e5 -# Range 0-350 - -Vm 8.3514 12.6125 0.7884 -3.3003 -0.03 -# Extrapol supcrt92 -# Ref SK93 - -Na+ + Cl- = NaCl - -llnl_gamma 3.0 - log_k -0.777 - -delta_H 5.21326 kJ/mol -# deltafH -96.12 kcal/mol - -analytic 1.1398e2 3.6386e-2 -3.0847e3 -4.6571e1 -4.8167e1 -# Range 0-350 - -Vm 5.0364 4.5189 3.9669 -2.9658 -0.038 -# Extrapol supcrt92 -# Ref SSH97 - -Na+ + HCO3- = NaHCO3 - -llnl_gamma 3.0 - log_k 0.1541 - -delta_H -13.7741 kJ/mol -# deltafH -944.007 kJ/mol - -analytic -9.0668e1 -2.9866e-2 2.7947e3 3.6515e1 4.7489e1 -# Range 0-200 - -Vm 0.431 # APP14 -# Extrapol 69hel -# Ref WEP+82 - -SiO2 + Na+ + H2O = NaHSiO3 + H+ - -llnl_gamma 3.0 - log_k -8.304 - -delta_H 11.6524 kJ/mol -# deltafH -332.74 kcal/mol - -analytic 3.6045e1 -9.0411e-3 -6.6605e3 -1.0447e1 5.8415e5 -# Range 0-350 - -Vm 3.4928 0.75 5.4483 -2.8100 -0.038 -# Extrapol supcrt92 -# Ref SSH97 - -Na+ + H2O = NaOH + H+ - -llnl_gamma 3.0 - log_k -14.7948 - -delta_H 53.6514 kJ/mol -# deltafH -112.927 kcal/mol - -analytic 8.7326e1 2.3555e-2 -5.4770e3 -3.6678e1 -8.5489e1 -# Range 0-350 - -Vm 2.2338 -2.3287 6.6683 -2.6826 -0.03 -# Extrapol supcrt92 -# Ref SSW+97, 95pok/hel match - -2 CH3COOH + Ni+2 = Ni(CH3COO)2 + 2 H+ - -llnl_gamma 3.0 - log_k -7.1908 - -delta_H -25.8571 kJ/mol -# deltafH -251.28 kcal/mol - -analytic -2.9660e1 1.0643e-3 -1.0060e3 7.9358 5.2562e5 -# Range 0-350 - -Vm 11.1327 19.4031 -1.8801 -3.5810 -0.03 -# Extrapol supcrt92 -# Ref SK93 - -3 CH3COOH + Ni+2 = Ni(CH3COO)3- + 3 H+ - -llnl_gamma 4.0 - log_k -11.3543 - -delta_H -53.6807 kJ/mol -# deltafH -374.03 kcal/mol - -analytic 5.0850e1 -8.2435e-3 -1.3049e4 -1.5410e1 1.9704e6 -# Range 0-350 - -Vm 19.5212 39.8827 -9.9226 -4.4277 0.1603 -# Extrapol supcrt92 -# Ref SK93 - -Ni+2 + CH3COOH = NiCH3COO+ + H+ - -llnl_gamma 4.0 - log_k -3.3278 - -delta_H -10.2508 kJ/mol -# deltafH -131.45 kcal/mol - -analytic -3.3110 1.6895e-3 -1.0556e3 2.7168e-2 2.6350e5 -# Range 0-350 - -Vm 4.3556 2.8512 4.6343 -2.8968 0.7287 -# Extrapol supcrt92 -# Ref SK93 - -Ni+2 + Cl- = NiCl+ - -llnl_gamma 4.0 - log_k -0.9962 - -delta_H 5.99567 kJ/mol -# deltafH -51.4 kcal/mol - -analytic 9.5370e1 3.8521e-2 -2.1746e3 -4.0629e1 -3.3961e1 -# Range 0-350 - -Vm 1.1319 -5.0147 7.714 -2.5716 0.8111 -# Extrapol supcrt92 -# Ref SSH97 - -H2O = OH- + H+ - -llnl_gamma 3.5 - log_k -13.9951 - -delta_H 55.8146 kJ/mol -# deltafH -54.977 kcal/mol - -analytic -6.7506e1 -3.0619e-2 -1.9901e3 2.8004e1 -3.1033e1 -# Range 0-350 - -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 # APP14 -# Extrapol supcrt92 -# Ref SH88 - -2 HPO4-2 = P2O7-4 + H2O - -llnl_gamma 4.0 - log_k -3.7463 - -delta_H 27.2256 kJ/mol -# deltafH -2271.1 kJ/mol - -analytic 4.0885e2 1.3243e-1 -1.1373e4 -1.6727e2 -1.7758e2 -# Range 0-350 - -Vm 7.0687 9.4773 2.0273 -3.1707 6.9069 -# Extrapol supcrt92, 64cri/cob -# Ref SSW+97, WEP+82 differ by 0.1 log K at 0C, 7 log K at 350C !! flag - -HPO4-2 = PO4-3 + H+ - -llnl_gamma 4.0 - log_k -12.3218 - -delta_H 14.7068 kJ/mol -# deltafH -305.3 kcal/mol - -analytic -7.6170e1 -3.3574e-2 1.3405e2 2.9658e1 2.1140 -# Range 0-350 - -Vm -0.5258 -9.0576 9.2927 -2.4045 5.61140 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -2 H+ + 2 SO3-2 = S2O5-2 + H2O - -llnl_gamma 4.0 - log_k 9.5934 -# deltafH -0 kcal/mol - -analytic 0.12262e3 0.62883e-1 -0.18005e4 -0.50798e2 -0.28132e2 -# Range 0-350 - -Vm 7.3618 10.1945 1.7414 -3.2003 2.8343 # SSW+97 -# Extrapol supcrt92 -# Ref SSW+97, SH88 - -2 H+ + SO3-2 = SO2 + H2O - -llnl_gamma 3.0 - log_k 9.0656 - -delta_H 26.7316 kJ/mol -# deltafH -77.194 kcal/mol - -analytic 9.4048e1 6.2127e-2 -1.1072e3 -4.0310e1 -1.7305e1 -# Range 0-350 - -Vm 6.9502 9.189 2.1383 -3.1589 -0.0559 -# Extrapol supcrt92 -# Ref SHS89 - -2 CH3COOH + Sc+3 = Sc(CH3COO)2+ + 2 H+ - -llnl_gamma 4.0 - log_k -3.7237 - -delta_H -43.1789 kJ/mol -# deltafH -389.32 kcal/mol - -analytic -4.1862e1 -3.9443e-5 2.1444e2 1.2616e1 5.5442e5 -# Range 0-350 - -Vm 9.2794 14.8737 -0.0899 -3.3938 0.9706 -# Extrapol supcrt92 -# Ref SK93 - -3 CH3COOH + Sc+3 = Sc(CH3COO)3 + 3 H+ - -llnl_gamma 3.0 - log_k -6.6777 - -delta_H -70.0402 kJ/mol -# deltafH -511.84 kcal/mol - -analytic -5.2525e1 1.6181e-3 7.5022e2 1.3988e1 7.3540e5 -# Range 0-350 - -Vm 16.5277 32.5748 -7.0539 -4.1255 -0.03 -# Extrapol supcrt92 -# Ref SK93 - -Sc+3 + CH3COOH = ScCH3COO+2 + H+ - -llnl_gamma 4.5 - log_k -1.4294 - -delta_H -21.7568 kJ/mol -# deltafH -268.1 kcal/mol - -analytic -2.3400e1 1.3144e-4 1.1125e2 7.3527 3.0025e5 -# Range 0-350 - -Vm 2.7175 -1.1437 6.1937 -2.7316 1.7013 -# Extrapol supcrt92 -# Ref SK93 - -2 CH3COOH + Sm+3 = Sm(CH3COO)2+ + 2 H+ - -llnl_gamma 4.0 - log_k -4.7132 - -delta_H -25.5224 kJ/mol -# deltafH -403.5 kcal/mol - -analytic -1.4192e1 2.1732e-3 -1.0267e3 2.9516 4.4389e5 -# Range 0-350 - -Vm 9.159 14.5839 0.0138 -3.3818 0.6644 -# Extrapol supcrt92 -# Ref SK93 - -3 CH3COOH + Sm+3 = Sm(CH3COO)3 + 3 H+ - -llnl_gamma 3.0 - log_k -7.8798 - -delta_H -43.5554 kJ/mol -# deltafH -523.91 kcal/mol - -analytic -2.0765e1 1.1047e-3 -5.1181e2 3.4797 5.0618e5 -# Range 0-350 - -Vm 16.5088 32.5307 -7.0412 -4.1237 -0.03 -# Extrapol supcrt92 -# Ref SK93 - -Sm+3 + CH3COOH = SmCH3COO+2 + H+ - -llnl_gamma 4.5 - log_k -1.9205 - -delta_H -13.598 kJ/mol -# deltafH -284.55 kcal/mol - -analytic -1.1734e1 1.0889e-3 -5.1061e2 3.3317 2.6395e5 -# Range 0-350 - -Vm 2.6264 -1.3667 6.2827 -2.7224 1.4769 -# Extrapol supcrt92 -# Ref SK93 - -Sm+3 + HCO3- = SmCO3+ + H+ - -llnl_gamma 4.0 - log_k -2.479 - -delta_H 89.1108 kJ/mol -# deltafH -308.8 kcal/mol # OBIGT: -331.34 kcal/mol HSS95 - -analytic 2.3486e2 5.3703e-2 -7.0193e3 -9.2863e1 -1.0960e2 -# Range 0-350 - -Vm -1.0455 -10.3293 9.798 -2.3519 1.1907 -# Extrapol supcrt92 -# Ref HSS95 - -Sm+3 + Cl- = SmCl+2 - -llnl_gamma 4.5 - log_k 0.3086 - -delta_H 14.3637 kJ/mol -# deltafH -201.7 kcal/mol - -analytic 9.4972e1 3.9428e-2 -2.4198e3 -3.9718e1 -3.7787e1 -# Range 0-350 - -Vm -0.5006 -8.9988 9.2743 -2.4069 1.4192 -# Extrapol supcrt92 -# Ref HSS95 - -2 Cl- + Sm+3 = SmCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 19.9409 kJ/mol -# deltafH -240.3 kcal/mol - -analytic 2.5872e2 8.4154e-2 -7.2061e3 -1.0493e2 -1.1252e2 -# Range 0-350 - -Vm 2.5888 -1.4617 6.3276 -2.7185 0.6644 -# Extrapol supcrt92 -# Ref HSS95 - -3 Cl- + Sm+3 = SmCl3 - -llnl_gamma 3.0 - log_k -0.3936 - -delta_H 13.803 kJ/mol -# deltafH -281.7 kcal/mol - -analytic 4.9535e2 1.3520e-1 -1.4325e4 -1.9720e2 -2.2367e2 -# Range 0-350 - -Vm 6.0808 7.0673 2.9692 -3.0711 -0.03 -# Extrapol supcrt92 -# Ref HSS95 - -4 Cl- + Sm+3 = SmCl4- - -llnl_gamma 4.0 - log_k -0.818 - -delta_H -5.30531 kJ/mol -# deltafH -326.2 kcal/mol - -analytic 6.0562e2 1.4212e-1 -1.7982e4 -2.3782e2 -2.8077e2 -# Range 0-350 - -Vm 10.8148 18.6261 -1.5732 -3.5489 1.6917 -# Extrapol supcrt92 -# Ref HSS95 - -Sm+3 + HPO4-2 + H+ = SmH2PO4+2 - -llnl_gamma 4.5 - log_k 9.4484 - -delta_H -15.8364 kJ/mol -# deltafH -477.8 kcal/mol - -analytic 1.2451e2 6.4959e-2 -3.9576e2 -5.3772e1 -6.2124 -# Range 0-350 - -Vm 1.3708 -4.4295 7.4801 -2.5958 1.4867 -# Extrapol supcrt92 -# Ref HSS95 - -Sm+3 + HCO3- = SmHCO3+2 - -llnl_gamma 4.5 - log_k 1.7724 - -delta_H 9.19643 kJ/mol -# deltafH -327.9 kcal/mol - -analytic 5.5520e1 3.3265e-2 -7.3142e2 -2.4727e1 -1.1430e1 -# Range 0-350 - -Vm 0.3694 -6.8727 8.4365 -2.4948 1.2366 -# Extrapol supcrt92 -# Ref HSS95 - -Sm+3 + NO3- = SmNO3+2 - -llnl_gamma 4.5 - log_k 0.8012 - -delta_H -29.1667 kJ/mol -# deltafH -221.6 kcal/mol - -analytic 3.3782e1 2.7125e-2 1.5091e3 -1.8632e1 2.3537e1 -# Range 0-350 - -Vm 1.0908 -5.1124 7.7478 -2.5676 1.5897 -# Extrapol supcrt92 -# Ref HSS95 - -Sm+3 + H2O = SmO+ + 2 H+ - -llnl_gamma 4.0 - log_k -16.4837 - -delta_H 113.039 kJ/mol -# deltafH -206.5 kcal/mol # OBIGT: -197.63 kcal/mol HSS95 - -analytic 1.8554e2 3.0198e-2 -1.3791e4 -6.6588e1 -2.1526e2 -# Range 0-350 - -Vm 2.8115 -0.9157 6.1076 -2.741 0.3837 -# Extrapol supcrt92 -# Ref HSS95 - -2 H2O + Sm+3 = SmO2- + 4 H+ - -llnl_gamma 4.0 - log_k -35.0197 - -delta_H 285.909 kJ/mol -# deltafH -233.5 kcal/mol # OBIGT: -238.22 kcal/mol HSS95 - -analytic 1.3508e1 -8.3384e-3 -1.0325e4 -1.5506 -6.7392e5 -# Range 0-350 - -Vm 4.9642 4.3393 4.0456 -2.9583 1.0848 -# Extrapol supcrt92 -# Ref HSS95 - -2 H2O + Sm+3 = SmO2H + 3 H+ - -llnl_gamma 3.0 - log_k -25.9304 - -delta_H 226.497 kJ/mol -# deltafH -247.7 kcal/mol - -analytic 3.6882e2 5.3761e-2 -2.4317e4 -1.3305e2 -3.7956e2 -# Range 0-350 - -Vm 4.9296 4.2552 4.0768 -2.9548 -0.03 -# Extrapol supcrt92 -# Ref HSS95 - -Sm+3 + H2O = SmOH+2 + H+ - -llnl_gamma 4.5 - log_k -7.9808 - -delta_H 79.1487 kJ/mol -# deltafH -214.6 kcal/mol # OBIGT: -213.97 kcal/mol HSS95 - -analytic 6.3793e1 1.1977e-2 -6.0852e3 -2.2198e1 -9.4972e1 -# Range 0-350 - -Vm 2.7076 -1.1676 6.2027 -2.7306 1.1289 -# Extrapol supcrt92 -# Ref HSS95 - -Sm+3 + SO4-2 = SmSO4+ - -llnl_gamma 4.0 - log_k 3.6430 - -delta_H 20.0832 kJ/mol -# deltafH -377.8 kcal/mol - -analytic 3.0597e2 8.6258e-2 -9.0231e3 -1.2032e2 -1.4089e2 -# Range 0-350 - -Vm -1.3885 -4.3882 7.4678 -2.5975 0.7483 -# Extrapol supcrt92 -# Ref HSS95 - -UO2+2 + H2O = UO2OH+ + H+ - -llnl_gamma 4.0 - log_k -5.2073 - -delta_H 43.1813 kJ/mol -# deltafH -1261.66 kJ/mol - -analytic 3.4387e1 6.0811e-3 -3.3068e3 -1.2252e1 -5.1609e1 -# Range 0-350 - -Vm 4.764 3.8529 4.2318 -2.9382 0.4925 # SSB97 -# Extrapol supcrt92, 64cri/cob -# Ref SSW+97, 92gre/fug match - -2 CH3COOH + Zn+2 = Zn(CH3COO)2 + 2 H+ - -llnl_gamma 3.0 - log_k -6.062 - -delta_H -11.0458 kJ/mol -# deltafH -271.5 kcal/mol - -analytic -2.2038e1 2.6133e-3 -2.7652e3 6.8501 6.7086e5 -# Range 0-350 - -Vm 11.7443 20.8978 -2.4707 -3.6429 -0.038 -# Extrapol supcrt92 -# Ref SSH97, SK93 - -3 CH3COOH + Zn+2 = Zn(CH3COO)3- + 3 H+ - -llnl_gamma 4.0 - log_k -10.0715 - -delta_H 25.355 kJ/mol -# deltafH -378.9 kcal/mol - -analytic 3.5104e1 -6.1568e-3 -1.3379e4 -8.7697 2.0670e6 -# Range 0-350 - -Vm 20.0332 41.1373 -10.4257 -4.4796 1.2513 -# Extrapol supcrt92 -# Ref SSH97, SK93 - -Zn+2 + CH3COOH = ZnCH3COO+ + H+ - -llnl_gamma 4.0 - log_k -3.1519 - -delta_H -9.87424 kJ/mol -# deltafH -155.12 kcal/mol - -analytic -7.9367 2.8564e-3 -1.4514e3 2.5010 2.3343e5 -# Range 0-350 - -Vm 4.8484 4.06 4.1473 -2.9468 0.41 -# Extrapol supcrt92 -# Ref SSH97, SK93 - -Zn+2 + Cl- = ZnCl+ - -llnl_gamma 4.0 - log_k 0.1986 - -delta_H 43.317 kJ/mol -# deltafH -66.24 kcal/mol - -analytic 1.1235e2 4.4461e-2 -4.1662e3 -4.5023e1 -6.5042e1 -# Range 0-350 - -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 # APP14 -# Extrapol supcrt92 -# Ref SSH97 - -2 Cl- + Zn+2 = ZnCl2 - -llnl_gamma 3.0 - log_k 0.2507 - -delta_H 31.1541 kJ/mol -# deltafH -109.08 kcal/mol - -analytic 1.7824e2 7.5733e-2 -4.6251e3 -7.4770e1 -7.2224e1 -# Range 0-350 - -Vm -10.1 4.57 241 -2.97 -1e-3 # APP14 -# Extrapol supcrt92 -# Ref SSH97 - -3 Cl- + Zn+2 = ZnCl3- - -llnl_gamma 4.0 - log_k -0.0198 - -delta_H 22.5894 kJ/mol -# deltafH -151.06 kcal/mol - -analytic 1.3889e2 7.4712e-2 -2.1527e3 -6.2200e1 -3.3633e1 -# Range 0-350 - -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 # APP14 -# Extrapol supcrt92 -# Ref SSH97 - -4 Cl- + Zn+2 = ZnCl4-2 - -llnl_gamma 4.0 - log_k 0.8605 - -delta_H 4.98733 kJ/mol -# deltafH -195.2 kcal/mol - -analytic 8.4294e1 7.0021e-2 3.9150e2 -4.2664e1 6.0834 -# Range 0-300 - -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 # APP14 -# Extrapol supcrt92 -# Ref SSH97? - -Zn+2 + H2O = ZnOH+ + H+ - -llnl_gamma 4.0 - log_k -8.96 -# deltafH -0 kcal/mol - -analytic -7.8600e-1 -2.9499e-4 -2.8673e3 6.1892e-1 -4.2576e1 -# Range 25-300 - -Vm 1.1499 -4.9677 7.6896 -2.5735 0.326 -# Extrapol supcrt92, ? -# Ref SSW+97, 87bou/bar differ by 0.8 log K at 0C, 2.7 log K at 300C - -Zn+2 + SO4-2 = ZnSO4 - -llnl_gamma 3.0 - log_k 2.3062 - -delta_H 15.277 kJ/mol -# deltafH -1047.71 kJ/mol - -analytic 1.3640e2 5.1256e-2 -3.4422e3 -5.5695e1 -5.8501e1 -# Range 0-200 - -Vm 2.51 0 18.8 # APP14 -# Extrapol 69hel -# Ref WEP+82 - -PHASES - -#------------ -# 375 solids -#------------ - -[(6)(CB)(CB)S] - S + O2 = SO2 - log_k 63.04 - -analytic 137.16 -0.320465 0 0 0 0.000241 -# Range 0-350 - -Vm 16.5 -# Extrapol supcrt92 -# Ref R01, calculations and fit by N17 - -[(aro)-O-(aro)] - O = 0.5 O2 - log_k -20.610681 - -delta_H 30.240 kcal/mol - -analytic -46.6 0.111 0 0 0 -7.99e-5 -# Range 0-350 - -Vm -2.4 -# Extrapol supcrt92 -# Ref RH98 - -Afwillite - Ca3Si2O4(OH)6 + 6 H+ = 2 SiO2 + 3 Ca+2 + 6 H2O - log_k 60.0452 - -delta_H -316.059 kJ/mol -# deltafH -1143.31 kcal/mol - -analytic 1.8353e1 1.9014e-3 1.8478e4 -6.6311 -4.0227e5 -# Range 0-300 - -Vm 129.23 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 82sar/bar - -Akermanite - Ca2MgSi2O7 + 6 H+ = Mg+2 + 2 Ca+2 + 2 SiO2 + 3 H2O - log_k 45.3190 - -delta_H -288.575 kJ/mol -# deltafH -926.497 kcal/mol - -analytic -4.8295e1 -8.5613e-3 2.0880e4 1.3798e1 -7.1975e5 -# Range 0-350 - -Vm 92.81 -# Extrapol supcrt92 -# Ref HDN+78 - -Al - Al + 3 H+ + 0.75 O2 = Al+3 + 1.5 H2O - log_k 149.9292 - -delta_H -958.059 kJ/mol -# deltafH 0 kJ/mol - -analytic -1.8752e2 -4.6187e-2 5.7127e4 6.6270e1 -3.8952e5 -# Range 0-300 - -Vm 9.99 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref CWM89 - -Al2(SO4)3 - Al2(SO4)3 = 2 Al+3 + 3 SO4-2 - log_k 19.0535 - -delta_H -364.566 kJ/mol -# deltafH -3441.04 kJ/mol - -analytic -6.1001e2 -2.4268e-1 2.9194e4 2.4383e2 4.5573e2 -# Range 0-300 - -Vm 126.25 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref RHF79 - -Alabandite - MnS + H+ = HS- + Mn+2 - log_k -0.3944 - -delta_H -23.3216 kJ/mol -# deltafH -51 kcal/mol - -analytic -1.5515e2 -4.8820e-2 4.9049e3 6.1765e1 7.6583e1 -# Range 0-350 - -Vm 21.46 -# Extrapol supcrt92 -# Ref HDN+78 - -Albite - NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 - log_k 2.7645 - -delta_H -51.8523 kJ/mol -# deltafH -939.68 kcal/mol - -analytic -1.1694e1 1.4429e-2 1.3784e4 -7.2866 -1.6136e6 -# Range 0-350 - -Vm 100.25 -# Extrapol supcrt92 -# Ref HDN+78 - -Albite_high - NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 - log_k 4.0832 - -delta_H -62.8562 kJ/mol -# deltafH -937.05 kcal/mol - -analytic -1.8957e1 1.3726e-2 1.4801e4 -4.9732 -1.6442e6 -# Range 0-350 - -Vm 100.25 -# Extrapol supcrt92 -# Ref HDN+78 - -Albite_low - NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 - log_k 2.7645 - -delta_H -51.8523 kJ/mol -# deltafH -939.68 kcal/mol - -analytic -1.2860e1 1.4481e-2 1.3913e4 -6.9417 -1.6256e6 -# Range 0-350 - -Vm 100.25 -# Extrapol supcrt92 -# Ref HDN+78 - -Alum-K - KAl(SO4)2:12H2O = Al+3 + K+ + 2 SO4-2 + 12 H2O - log_k -4.8818 - -delta_H 14.4139 kJ/mol -# deltafH -1447 kcal/mol - -analytic -8.8025e2 -2.5706e-1 2.2399e4 3.5434e2 3.4978e2 -# Range 0-300 - -Vm 269.54 # Marion+09 -# Extrapol Cp integration -# Ref 73bar/kna - -Alunite - KAl3(OH)6(SO4)2 + 6 H+ = K+ + 2 SO4-2 + 3 Al+3 + 6 H2O - log_k -0.3479 - -delta_H -231.856 kJ/mol -# deltafH -1235.6 kcal/mol - -analytic -6.8581e2 -2.2455e-1 2.6886e4 2.6758e2 4.1973e2 -# Range 0-350 - -Vm 205.40 # thermo.com.V8.R6+.tdat -# Extrapol supcrt92 -# Ref HDN+78 - -Amesite-14A - Mg4Al4Si2O10(OH)8 + 20 H+ = 2 SiO2 + 4 Al+3 + 4 Mg+2 + 14 H2O - log_k 75.4571 - -delta_H -797.098 kJ/mol -# deltafH -2145.67 kcal/mol - -analytic -5.4326e2 -1.4144e-1 5.4150e4 1.9361e2 8.4512e2 -# Range 0-300 - -Vm 205.4 -# Extrapol Cp integration -# Ref 78wol - -Analcime - Na.96Al.96Si2.04O6:H2O + 3.84 H+ = 0.96 Al+3 + 0.96 Na+ + 2.04 SiO2 + 2.92 H2O - log_k 6.1396 - -delta_H -75.844 kJ/mol -# deltafH -3296.86 kJ/mol - -analytic -6.8694 6.6052e-3 9.8260e3 -4.8540 -8.8780e5 -# Range 0-350 - -Vm 97.1 # 96.8 in thermo.com.V8.R6+.tdat -# Extrapol supcrt92, Cp integration -# Ref HDN+78, 82joh/flo match but differ from Wilson+06 by 1 log K at 0C, 0 log K a 300C - -Andalusite - Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O - log_k 15.9445 - -delta_H -235.233 kJ/mol -# deltafH -615.866 kcal/mol - -analytic -7.1115e1 -3.2234e-2 1.2308e4 2.2357e1 1.9208e2 -# Range 0-350 - -Vm 51.53 -# Extrapol supcrt92 -# Ref HDN+78 differ by 1.6 log K at 0C, 0.5 log K at 350C - -Andradite - Ca3Fe2(SiO4)3 + 12 H+ = 2 Fe+3 + 3 Ca+2 + 3 SiO2 + 6 H2O - log_k 33.3352 - -delta_H -301.173 kJ/mol -# deltafH -1380.35 kcal/mol - -analytic 1.3884e1 -2.3886e-2 1.5314e4 -8.1606 -4.2193e5 -# Range 0-350 - -Vm 131.85 -# Extrapol supcrt92 -# Ref HDN+78 - -Anhydrite - CaSO4 = Ca+2 + SO4-2 - log_k -4.3064 - -delta_H -18.577 kJ/mol -# deltafH -342.76 kcal/mol - -analytic -2.0986e2 -7.8823e-2 5.0969e3 8.5642e1 7.9594e1 -# Range 0-350 - -Vm 45.94 # thermo.com.V8.R6+.tdat -# Extrapol supcrt92 -# Ref HDN+78 - -Annite - KFe3AlSi3O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Fe+2 + 3 SiO2 + 6 H2O - log_k 29.4693 - -delta_H -259.964 kJ/mol -# deltafH -1232.19 kcal/mol - -analytic -4.0186e1 -1.4238e-2 1.8929e4 7.9859e0 -8.4343e5 -# Range 0-350 - -Vm 154.32 -# Extrapol supcrt92 -# Ref HDN+78 - -Anorthite - CaAl2(SiO4)2 + 8 H+ = Ca+2 + 2 Al+3 + 2 SiO2 + 4 H2O - log_k 26.5780 - -delta_H -303.039 kJ/mol -# deltafH -1007.55 kcal/mol - -analytic 3.9717e-1 -1.8751e-2 1.4897e4 -6.3078 -2.3885e5 -# Range 0-350 - -Vm 100.79 -# Extrapol supcrt92 -# Ref HDN+78 - -Anthophyllite - Mg7Si8O22(OH)2 + 14 H+ = 7 Mg+2 + 8 H2O + 8 SiO2 - log_k 66.7965 - -delta_H -483.486 kJ/mol -# deltafH -2888.75 kcal/mol - -analytic -1.2865e2 1.9705e-2 5.4853e4 1.9444e1 -3.8080e6 -# Range 0-350 - -Vm 264.4 -# Extrapol supcrt92 -# Ref HDN+78 - -Antigorite - Mg48Si34O85(OH)62 + 96 H+ = 34 SiO2 + 48 Mg+2 + 79 H2O - log_k 477.1943 - -delta_H -3364.43 kJ/mol -# deltafH -17070.9 kcal/mol - -analytic -8.1630e2 -6.7780e-2 2.5998e5 2.2029e2 -9.3275e6 -# Range 0-350 - -Vm 1749.13 -# Extrapol supcrt92 -# Ref HDN+78 - -Aragonite - CaCO3 + H+ = Ca+2 + HCO3- - log_k 1.9931 - -delta_H -25.8027 kJ/mol -# deltafH -288.531 kcal/mol - -analytic -1.4934e2 -4.8043e-2 4.9089e3 6.0284e1 7.6644e1 -# Range 0-325 - -Vm 34.15 # thermo.com.V8.R6+.tdat -# Extrapol supcrt92 -# Ref HDN+78 - -Arcanite - K2SO4 = SO4-2 + 2 K+ - log_k -1.8008 - -delta_H 23.836 kJ/mol -# deltafH -1437.78 kJ/mol - -analytic -1.6428e2 -6.7762e-2 1.9879e3 7.1116e1 3.1067e1 -# Range 0-300 - -Vm 65.50 # Marion+05 -# Extrapol Cp integration -# Ref RHF79 - -Artinite - Mg2CO3(OH)2:3H2O + 3 H+ = HCO3- + 2 Mg+2 + 5 H2O - log_k 19.6560 - -delta_H -130.432 kJ/mol -# deltafH -698.043 kcal/mol - -analytic -2.8614e2 -6.7344e-2 1.5230e4 1.1104e2 2.3773e2 -# Range 0-350 - -Vm 96.9 # 97.85 Webmineral.com -# Extrapol supcrt92 -# Ref HDN+78 - -Atacamite - Cu4Cl2(OH)6 + 6 H+ = 2 Cl- + 4 Cu+2 + 6 H2O - log_k 14.2836 - -delta_H -132.001 kJ/mol -# deltafH -1654.43 kJ/mol - -analytic -2.6623e2 -4.8121e-2 1.5315e4 9.8395e1 2.6016e2 -# Range 0-200 - -Vm 56.80 # Webmineral.com -# Extrapol Constant H approx -# Ref 87woo/gar - -Azurite - Cu3(CO3)2(OH)2 + 4 H+ = 2 H2O + 2 HCO3- + 3 Cu+2 - log_k 9.1607 - -delta_H -122.298 kJ/mol -# deltafH -390.1 kcal/mol - -analytic -4.4042e2 -1.1934e-1 1.8053e4 1.7158e2 2.8182e2 -# Range 0-350 - -Vm 91.01 -# Extrapol supcrt92 -# Ref HDN+78 - -B - B + 1.5 H2O + 0.75 O2 = B(OH)3 - log_k 109.5654 - -delta_H -636.677 kJ/mol -# deltafH 0 kJ/mol - -analytic 8.0471e1 1.2577e-3 2.9653e4 -2.8593e1 4.6268e2 -# Range 0-300 - -Vm 4.386 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref CWM89 - -B2O3 - B2O3 + 3 H2O = 2 B(OH)3 - log_k 5.5464 - -delta_H -18.0548 kJ/mol -# deltafH -1273.5 kJ/mol - -analytic 9.0905e1 5.5365e-3 -2.6629e3 -3.1553e1 -4.1578e1 -# Range 0-300 - -Vm 28.30 # gfw/density -# Extrapol Cp integration -# Ref CWM89 - -Bassanite - CaSO4:0.5H2O = 0.5 H2O + Ca+2 + SO4-2 - log_k -3.6615 - -delta_H -18.711 kJ/mol -# deltafH -1576.89 kJ/mol - -analytic -2.2010e2 -8.0230e-2 5.5092e3 8.9651e1 8.6031e1 -# Range 0-300 - -Vm 52.31 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Bassetite - Fe(UO2)2(PO4)2 + 2 H+ = Fe+2 + 2 HPO4-2 + 2 UO2+2 - log_k -17.7240 - -delta_H -114.841 kJ/mol -# deltafH -1099.33 kcal/mol - -analytic -5.7788e1 -4.5400e-2 4.0119e3 1.6216e1 6.8147e1 -# Range 0-200 - -Vm 256.19 # Webmineral.com -# Extrapol Constant H approx -# Ref 78lan - -Beidellite-Ca - Ca.175Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Ca+2 + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O - log_k 5.5914 - -delta_H -162.403 kJ/mol -# deltafH -1370.66 kcal/mol - -analytic 3.872e1 -1.431e-1 0 0 0 9.036e-5 -# Range 0-300 - -Vm 133.081 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 78 wol differ by 1.5 log K at 0C, 1 log K at 300C - -Beidellite-Fe - Fe.175Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Fe+2 + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O - log_k 4.6335 - -delta_H -154.65 kJ/mol -# deltafH -1351.1 kcal/mol - -analytic 3.641e1 -1.391e-1 0 0 0 8.671e-5 -# Range 0-300 - -Vm 134.293 -# Extrapol supcrt92 -# Ref Catalano13 - -Beidellite-K - K.35Al2.35Si3.65O10(OH)2 +7.4 H+ = 0.35 K+ + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O - log_k 5.3088 - -delta_H -150.834 kJ/mol -# deltafH -1371.9 kcal/mol - -analytic 3.307e1 -1.254e-1 0 0 0 7.660e-5 -# Range 0-300 - -Vm 137.214 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 78 wol differ by 2.9 log K at 0C, 1.7 log K at 300C - -Beidellite-Mg - Mg.175Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Mg+2 + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O - log_k 5.5537 - -delta_H -165.455 kJ/mol -# deltafH -1366.89 kcal/mol - -analytic 3.750e1 -1.415e-1 0 0 0 8.929e-5 -# Range 0-300 - -Vm 132.116 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 78 wol differ by 2.4 log K at 0C, 1.4 log K at 300C - -Beidellite-Na - Na.35Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Na+ + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O - log_k 5.6473 - -delta_H -155.846 kJ/mol -# deltafH -1369.76 kcal/mol - -analytic 3.613e1 -1.347e-1 0 0 0 8.470e-5 -# Range 0-300 - -Vm 134.522 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, differ from 78 wol and Wilson+06 (which match) by 2.8 log K at 0C, 1.3 log K at 300C - -Berlinite - AlPO4 + H+ = Al+3 + HPO4-2 - log_k -7.2087 - -delta_H -96.6313 kJ/mol -# deltafH -1733.85 kJ/mol - -analytic -2.8134e2 -9.9933e-2 1.0308e4 1.0883e2 1.6094e2 -# Range 0-300 - -Vm 46.19 # Webmineral.com -# Extrapol Cp integration -# Ref WEP+82 - -Bieberite - CoSO4:7H2O = Co+2 + SO4-2 + 7 H2O - log_k -2.5051 - -delta_H 11.3885 kJ/mol -# deltafH -2980.02 kJ/mol - -analytic -2.6405e2 -7.2497e-2 6.6673e3 1.0538e2 1.0411e2 -# Range 0-300 - -Vm 147.95 # Webmineral.com -# Extrapol Cp integration -# Ref WEP+82 - -Bixbyite - Mn2O3 + 6 H+ = 2 Mn+3 + 3 H2O - log_k -0.9655 - -delta_H -190.545 kJ/mol -# deltafH -958.971 kJ/mol - -analytic -1.1600e2 -2.8056e-3 1.3418e4 2.8639e1 2.0941e2 -# Range 0-300 - -Vm 31.89 # Webmineral.com, density 4.95 -# Extrapol Cp integration -# Ref RHF79 - -Boehmite - AlO2H + 3 H+ = Al+3 + 2 H2O - log_k 7.5642 - -delta_H -113.282 kJ/mol -# deltafH -238.24 kcal/mol - -analytic -1.2196e2 -3.1138e-2 8.8643e3 4.4075e1 1.3835e2 -# Range 0-225 - -Vm 19.535 -# Extrapol supcrt92 -# Ref HDN+78, 95pok/hel - -Borax - Na2(B4O5(OH)4):8H2O + 2 H+ = 2 Na+ + 4 B(OH)3 + 5 H2O - log_k 12.0395 - -delta_H 80.5145 kJ/mol -# deltafH -6288.44 kJ/mol - -analytic 7.8374e1 1.9328e-2 -5.3279e3 -2.1914e1 -8.3160e1 -# Range 0-300 - -Vm 222.66 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Boric_acid - B(OH)3 = B(OH)3 - log_k -0.1583 - -delta_H 20.2651 kJ/mol -# deltafH -1094.8 kJ/mol - -analytic 3.9122e1 6.4058e-3 -2.2525e3 -1.3592e1 -3.5160e1 -# Range 0-300 - -Vm 43.09 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref CWM89 - -Bornite - Cu5FeS4 + 4 H+ = Cu+2 + Fe+2 + 4 Cu+ + 4 HS- - log_k -102.4369 - -delta_H 530.113 kJ/mol -# deltafH -79.922 kcal/mol - -analytic -7.0495e2 -2.0082e-1 -9.1376e3 2.8004e2 -1.4238e2 -# Range 0-350 - -Vm 98.6 -# Extrapol supcrt92 -# Ref HDN+78 - -Brezinaite - Cr3S4 + 4 H+ = Cr+2 + 2 Cr+3 + 4 HS- - log_k 2.7883 - -delta_H -216.731 kJ/mol -# deltafH -111.9 kcal/mol - -analytic -7.0528e1 -3.6568e-2 1.0598e4 1.9665e1 1.8000e2 -# Range 0-200 - -Vm 69.16 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 78vau/cra - -Brochantite - Cu4(SO4)(OH)6 + 6 H+ = SO4-2 + 4 Cu+2 + 6 H2O - log_k 15.4363 - -delta_H -163.158 kJ/mol -# deltafH -2198.72 kJ/mol - -analytic -2.3609e2 -3.9046e-2 1.5970e4 8.4701e1 2.7127e2 -# Range 0-200 - -Vm 113.60 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 87woo/gar - -Brucite - Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O - log_k 16.2980 - -delta_H -111.34 kJ/mol -# deltafH -221.39 kcal/mol - -analytic -1.0280e2 -1.9759e-2 9.0180e3 3.8282e1 1.4075e2 -# Range 0-350 - -Vm 24.63 -# Extrapol supcrt92 -# Ref HDN+78 - -Bunsenite - NiO + 2 H+ = H2O + Ni+2 - log_k 12.4719 - -delta_H -100.069 kJ/mol -# deltafH -57.3 kcal/mol - -analytic -8.1664e1 -1.9796e-2 7.4064e3 3.0385e1 1.1559e2 -# Range 0-350 - -Vm 10.97 -# Extrapol supcrt92 -# Ref HDN+78 - -C - C + H2O + O2 = H+ + HCO3- - log_k 64.1735 - -delta_H -391.961 kJ/mol -# deltafH 0 kcal/mol - -analytic -3.5556e1 -3.3691e-2 1.9774e4 1.7548e1 3.0856e2 -# Range 0-350 - -Vm 5.298 -# Extrapol supcrt92 -# Ref HDN+78 - -Ca - Ca +2 H+ + 0.5 O2 = Ca+2 + H2O - log_k 139.8465 - -delta_H -822.855 kJ/mol -# deltafH 0 kJ/mol - -analytic -1.1328e2 -2.6554e-2 4.7638e4 4.1989e1 -2.3545e5 -# Range 0-300 - -Vm 26.19 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref CWM89 - -Ca-Al_Pyroxene - CaAl2SiO6 + 8 H+ = Ca+2 + SiO2 + 2 Al+3 + 4 H2O - log_k 35.9759 - -delta_H -361.548 kJ/mol -# deltafH -783.793 kcal/mol - -analytic -1.4664e2 -5.0409e-2 2.1045e4 5.1318e1 3.2843e2 -# Range 0-350 - -Vm 63.5 -# Extrapol supcrt92 -# Ref HDN+78 - -Ca3Al2O6 - Ca3Al2O6 + 12 H+ = 2 Al+3 + 3 Ca+2 + 6 H2O - log_k 113.0460 - -delta_H -833.336 kJ/mol -# deltafH -857.492 kcal/mol - -analytic -2.7163e2 -5.2897e-2 5.0815e4 9.2946e1 8.6300e2 -# Range 0-200 - -Vm 88.94 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 82sar/bar - -Ca4Al2Fe2O10 - Ca4Al2Fe2O10 + 20 H+ = 2 Al+3 + 2 Fe+3 + 4 Ca+2 + 10 H2O - log_k 140.5050 - -delta_H -1139.86 kJ/mol -# deltafH -1211 kcal/mol - -analytic -4.1808e2 -8.2787e-2 7.0288e4 1.4043e2 1.1937e3 -# Range 0-200 - -Vm 130.28 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 82sar/bar - -CaAl2O4 - CaAl2O4 + 8 H+ = Ca+2 + 2 Al+3 + 4 H2O - log_k 46.9541 - -delta_H -436.952 kJ/mol -# deltafH -555.996 kcal/mol - -analytic -3.0378e2 -7.9356e-2 3.0096e4 1.1049e2 4.6971e2 -# Range 0-300 - -Vm 53.02 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 82sar/bar - -CaAl4O7 - CaAl4O7 + 14 H+ = Ca+2 + 4 Al+3 + 7 H2O - log_k 68.6138 - -delta_H -718.464 kJ/mol -# deltafH -951.026 kcal/mol - -analytic -3.1044e2 -6.7078e-2 4.4566e4 1.0085e2 7.5689e2 -# Range 0-200 - -Vm 89.35 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 82sar/bar - -CaUO4 - CaUO4 + 4 H+ = Ca+2 + UO2+2 + 2 H2O - log_k 15.9420 - -delta_H -131.46 kJ/mol -# deltafH -2002.3 kJ/mol - -analytic -8.7902e1 -1.9810e-2 9.2354e3 3.1832e1 1.4414e2 -# Range 0-300 - -Vm 45.92 # M13 -# Extrapol Cp integration -# Ref 92gre/fug - -Calcite - CaCO3 + H+ = Ca+2 + HCO3- - log_k 1.8487 - -delta_H -25.7149 kJ/mol -# deltafH -288.552 kcal/mol - -analytic -1.4978e2 -4.8370e-2 4.8974e3 6.0458e1 7.6464e1 -# Range 0-350 - -Vm 36.934 -# Extrapol supcrt92 -# Ref HDN+78 - -Cattierite - CoS2 = Co+2 + S2-2 - log_k -29.9067 -# deltafH -36.589 kcal/mol - -analytic -2.1970e2 -7.8585e-2 -1.9592e3 8.8809e1 -3.0507e1 -# Range 0-300 - -Vm 25.53 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 78vau/cra - -Celadonite - KMgAlSi4O10(OH)2 + 6 H+ = Al+3 + K+ + Mg+2 + 4 H2O + 4 SiO2 - log_k 7.4575 - -delta_H -74.3957 kJ/mol -# deltafH -1394.9 kcal/mol - -analytic -3.3097e1 1.7989e-2 1.8919e4 -2.1219 -2.0588e6 -# Range 0-300 - -Vm 157.1 -# Extrapol supcrt92, Cp integration -# Ref HDN+78, 78wol match - -Chalcanthite - CuSO4:5H2O = Cu+2 + SO4-2 + 5 H2O - log_k -2.6215 - -delta_H 6.57556 kJ/mol -# deltafH -2279.68 kJ/mol - -analytic -1.1262e2 -1.5544e-2 3.6176e3 4.1420e1 6.1471e1 -# Range 0-200 - -Vm 108.97 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -Chalcedony - SiO2 = SiO2 - log_k -3.7281 - -delta_H 31.4093 kJ/mol -# deltafH -217.282 kcal/mol - -analytic -9.0068 9.3241e-3 4.0535e3 -1.0830 -7.5077e5 -# Range 0-350 - -Vm 22.68 -# Extrapol supcrt92 -# Ref HDN+78 - -Chalcocite - Cu2S + H+ = HS- + 2 Cu+ - log_k -34.7342 - -delta_H 206.748 kJ/mol -# deltafH -19 kcal/mol - -analytic -1.3703e2 -4.0727e-2 -7.1694e3 5.5963e1 -1.1183e2 -# Range 0-350 - -Vm 27.48 -# Extrapol supcrt92 -# Ref HDN+78 - -Chalcocyanite - CuSO4 = Cu+2 + SO4-2 - log_k 2.9239 - -delta_H -72.5128 kJ/mol -# deltafH -771.4 kJ/mol - -analytic 5.8173 -1.6933e-2 2.0097e3 -1.8583 3.4126e1 -# Range 0-200 - -Vm 40.88 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref CWM89 - -Chalcopyrite - CuFeS2 + 2 H+ = Cu+2 + Fe+2 + 2 HS- - log_k -32.5638 - -delta_H 127.206 kJ/mol -# deltafH -44.453 kcal/mol - -analytic -3.1575e2 -9.8947e-2 8.3400e2 1.2522e2 1.3106e1 -# Range 0-350 - -Vm 42.83 -# Extrapol supcrt92 -# Ref HDN+78 - -Chamosite - Fe5Al2Si3O10(OH)8 + 16 H+ = 3 SiO2 + 2 Al+3 + 5 Fe+2 + 12 H2O - log_k 32.8416 - -delta_H -364.213 kJ/mol -# deltafH -902.407 kcal/mol - -analytic 1.577e2 -4.614e-1 0 0 0 3.413e-4 -# Range 0-300 - -Vm 213.42 -# Extrapol supcrt92 -# Ref Wilson+06 - -Chloromagnesite - MgCl2 = Mg+2 + 2 Cl- - log_k 21.8604 - -delta_H -158.802 kJ/mol -# deltafH -641.317 kJ/mol - -analytic -2.3640e2 -8.2017e-2 1.3480e4 9.5963e1 2.1042e2 -# Range 0-300 - -Vm 40.95 # Webmineral.com -# Extrapol Cp integration -# Ref RHF79 - -Chromite - FeCr2O4 + 8 H+ = Fe+2 + 2 Cr+3 + 4 H2O - log_k 15.1685 - -delta_H -267.755 kJ/mol -# deltafH -1444.83 kJ/mol - -analytic -1.9060e2 -2.5695e-2 1.9465e4 5.9865e1 3.0379e2 -# Range 0-300 - -Vm 44.01 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Chrysotile - Mg3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Mg+2 + 5 H2O - log_k 31.1254 - -delta_H -218.041 kJ/mol -# deltafH -1043.12 kcal/mol - -analytic -9.2462e1 -1.1359e-2 1.8312e4 2.9289e1 -6.2342e5 -# Range 0-350 - -Vm 108.5 -# Extrapol supcrt92 -# Ref HDN+78 - -Clinochlore-14A - Mg5Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Mg+2 + 12 H2O - log_k 67.2391 - -delta_H -612.379 kJ/mol -# deltafH -2116.96 kcal/mol - -analytic -2.0441e2 -6.2268e-2 3.5388e4 6.9239e1 5.5225e2 -# Range 0-350 - -Vm 207.11 -# Extrapol supcrt92 -# Ref HDN+78, Wilson+06 differ by 0.4 log K at 0C, 1.6 log K at 300C - -Clinochlore-7A - Mg5Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Mg+2 + 12 H2O - log_k 70.6124 - -delta_H -628.14 kJ/mol -# deltafH -2113.2 kcal/mol - -analytic -2.1644e2 -6.4187e-2 3.6548e4 7.4123e1 5.7037e2 -# Range 0-350 - -Vm 211.5 -# Extrapol supcrt92 -# Ref HDN+78 - -Clinoptilolite-Ca - Ca1.7335Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 1.7335 Ca+2 + 3.45 Al+3 + 14.533 SiO2 + 17.856 H2O - log_k -7.0095 - -delta_H -74.6745 kJ/mol -# deltafH -4919.84 kcal/mol - -analytic -4.4820e1 5.3696e-2 5.4878e4 -3.1459e1 -7.5491e6 -# Range 0-300 - -Vm 625.19 # Webmineral.com, density 2.15 -# Extrapol Cp integration -# Ref 89db 7 - -Clinoptilolite-K - K3.467Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 K+ + 14.533 SiO2 + 17.856 H2O - log_k -10.9485 - -delta_H 67.4862 kJ/mol -# deltafH -4937.77 kcal/mol - -analytic 1.1697e1 6.9480e-2 4.7718e4 -4.7442e1 -7.6907e6 -# Range 0-300 - -Vm 655.93 # Webmineral.com, density 2.15 -# Extrapol Cp integration -# Ref 89db 7 - -Clinoptilolite-Na - Na3.467Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 Na+ + 14.533 SiO2 + 17.856 H2O - log_k -7.1363 - -delta_H 2.32824 kJ/mol -# deltafH -4912.36 kcal/mol - -analytic -3.4572e1 6.8377e-2 5.1962e4 -3.3426e1 -7.5586e6 -# Range 0-300 - -Vm 629.95 # Webmineral.com, density 2.15 -# Extrapol Cp integration -# Ref 89db 7 - -Clinozoisite - Ca2Al3Si3O12(OH) + 13 H+ = 2 Ca+2 + 3 Al+3 + 3 SiO2 + 7 H2O - log_k 43.2569 - -delta_H -457.755 kJ/mol -# deltafH -1643.78 kcal/mol - -analytic -2.8690e1 -3.7056e-2 2.2770e4 3.7880 -2.5834e5 -# Range 0-300 - -Vm 136.2 -# Extrapol supcrt92 -# Ref HDN+78, SH88 - -Co - Co + 2 H+ + 0.5 O2 = Co+2 + H2O - log_k 52.5307 - -delta_H -337.929 kJ/mol -# deltafH 0 kJ/mol - -analytic -6.2703e1 -2.0172e-2 1.8888e4 2.3391e1 2.9474e2 -# Range 0-300 - -Vm 6.67 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref RHF79 - -Co2SiO4 - Co2SiO4 + 4 H+ = SiO2 + 2 Co+2 + 2 H2O - log_k 6.6808 - -delta_H -88.6924 kJ/mol -# deltafH -353.011 kcal/mol - -analytic -3.9978 -3.7985e-3 5.1554e3 -1.5033 -1.6100e5 -# Range 0-300 - -Vm 44.52 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -CoCl2 - CoCl2 = Co+2 + 2 Cl- - log_k 8.2641 - -delta_H -79.5949 kJ/mol -# deltafH -312.722 kJ/mol - -analytic -2.2386e2 -8.0936e-2 8.8631e3 9.1528e1 1.3837e2 -# Range 0-300 - -Vm 38.69 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -CoCl2:2H2O - CoCl2:2H2O = Co+2 + 2 Cl- + 2 H2O - log_k 4.6661 - -delta_H -40.7876 kJ/mol -# deltafH -923.206 kJ/mol - -analytic -5.6411e1 -2.3390e-2 3.0519e3 2.3361e1 5.1845e1 -# Range 0-200 - -Vm 66.61 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -CoCl2:6H2O - CoCl2:6H2O = Co+2 + 2 Cl- + 6 H2O - log_k 2.6033 - -delta_H 8.32709 kJ/mol -# deltafH -2115.67 kJ/mol - -analytic -1.5066e2 -2.2132e-2 5.0591e3 5.7743e1 8.5962e1 -# Range 0-200 - -Vm 123.66 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -CoFe2O4 - CoFe2O4 + 8 H+ = Co+2 + 2 Fe+3 + 4 H2O - log_k 0.8729 - -delta_H -160.674 kJ/mol -# deltafH -272.466 kcal/mol - -analytic -3.0149e2 -7.9159e-2 1.5683e4 1.1046e2 2.4480e2 -# Range 0-300 - -Vm 44 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 74nau/ryz - -CoO - CoO + 2 H+ = Co+2 + H2O - log_k 13.5553 - -delta_H -106.05 kJ/mol -# deltafH -237.946 kJ/mol - -analytic -8.4424e1 -1.9457e-2 7.8616e3 3.1281e1 1.2270e2 -# Range 0-300 - -Vm 11.64 # gfw/density -# Extrapol Cp integration -# Ref WEP+82 - -CoS - CoS + H+ = Co+2 + HS- - log_k -7.3740 - -delta_H 10.1755 kJ/mol -# deltafH -20.182 kcal/mol - -analytic -1.5128e2 -4.8484e-2 2.9553e3 5.9983e1 4.6158e1 -# Range 0-300 - -Vm 22.91 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 74nau/ryz - -CoSO4 - CoSO4 = Co+2 + SO4-2 - log_k 2.8996 - -delta_H -79.7952 kJ/mol -# deltafH -887.964 kJ/mol - -analytic -1.9907e2 -7.7890e-2 7.7193e3 8.0525e1 1.2051e2 -# Range 0-300 - -Vm 41.78 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -CoSO4:6H2O - CoSO4:6H2O = Co+2 + SO4-2 + 6 H2O - log_k -2.3512 - -delta_H 1.08483 kJ/mol -# deltafH -2683.87 kJ/mol - -analytic -2.5469e2 -7.3092e-2 6.6767e3 1.0172e2 1.0426e2 -# Range 0-300 - -Vm 130.30 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -CoSO4:H2O - CoSO4:H2O = Co+2 + H2O + SO4-2 - log_k -1.2111 - -delta_H -52.6556 kJ/mol -# deltafH -287.032 kcal/mol - -analytic -1.0570e1 -1.6196e-2 1.7180e3 3.4000 2.9178e1 -# Range 0-200 - -Vm 56.26 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 74nau/ryz - -Coesite - SiO2 = SiO2 - log_k -3.1893 - -delta_H 28.6144 kJ/mol -# deltafH -216.614 kcal/mol - -analytic -9.7312 9.1773e-3 4.2143e3 -7.8065e-1 -7.4905e5 -# Range 0-350 - -Vm 20.641 -# Extrapol supcrt92 -# Ref HDN+78 - -Coffinite - USiO4 + 4 H+ = SiO2 + U+4 + 2 H2O - log_k -8.0530 - -delta_H -49.2493 kJ/mol -# deltafH -1991.33 kJ/mol - -analytic 2.3126e2 6.2389e-2 -4.6189e3 -9.7976e1 -7.8517e1 -# Range 0-200 - -Vm 46.12 # thermo.com.V8.R6+.tdat -# Extrapol Constant H Approx -# Ref 92gre/fug - -Cordierite_anhyd - Mg2Al4Si5O18 + 16 H+ = 2 Mg+2 + 4 Al+3 + 5 SiO2 + 8 H2O - log_k 52.3035 - -delta_H -626.219 kJ/mol -# deltafH -2183.2 kcal/mol - -analytic 2.6562 -2.3801e-2 3.5192e4 -1.9911e1 -1.0894e6 -# Range 0-350 - -Vm 233.22 -# Extrapol supcrt92 -# Ref HDN+78 differ by 3 log K at 0C, 0.8 log K at 350C - -Cordierite_hydr - Mg2Al4Si5O18:H2O + 16 H+ = 2 Mg+2 + 4 Al+3 + 5 SiO2 + 9 H2O - log_k 49.8235 - -delta_H -608.814 kJ/mol -# deltafH -2255.68 kcal/mol - -analytic -1.2985e2 -4.1335e-2 4.1566e4 2.7892e1 -1.4819e6 -# Range 0-350 - -Vm 241.22 -# Extrapol supcrt92 -# Ref HDN+78 differ by 3.4 log K at 0C, 0.8 log K at 350C - -Corundum - Al2O3 + 6 H+ = 2 Al+3 + 3 H2O - log_k 18.3121 - -delta_H -258.626 kJ/mol -# deltafH -400.5 kcal/mol - -analytic -1.4278e2 -7.8519e-2 1.3776e4 5.5881e1 2.1501e2 -# Range 0-350 - -Vm 25.575 -# Extrapol supcrt92 -# Ref HDN+78, 95pok/hel differ by 1 log K at 0C, 7 log K at 300C !! flag - -Covellite - CuS + H+ = Cu+2 + HS- - log_k -22.8310 - -delta_H 101.88 kJ/mol -# deltafH -12.5 kcal/mol - -analytic -1.6068e2 -4.9040e-2 -1.4234e3 6.3536e1 -2.2164e1 -# Range 0-350 - -Vm 20.42 -# Extrapol supcrt92 -# Ref HDN+78 - -Cr - Cr + 3 H+ + 0.75 O2 = Cr+3 + 1.5 H2O - log_k 98.6784 - -delta_H -658.145 kJ/mol -# deltafH 0 kJ/mol - -analytic -2.2488e1 -5.5886e-3 3.4288e4 3.1585 5.3503e2 -# Range 0-300 - -Vm 7.231 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref RHF79 - -CrCl3 - CrCl3 = Cr+3 + 3 Cl- - log_k 17.9728 - -delta_H -183.227 kJ/mol -# deltafH -556.5 kJ/mol - -analytic -2.6348e2 -9.5339e-2 1.4785e4 1.0517e2 2.3079e2 -# Range 0-300 - -Vm 57.38 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -CrO2 - CrO2 = 0.5 Cr+2 + 0.5 CrO4-2 - log_k -19.1332 - -delta_H 85.9812 kJ/mol -# deltafH -143 kcal/mol - -analytic 2.7763 -7.7698e-3 -5.2893e3 -7.4970e-1 -8.9821e1 -# Range 0-200 - -Vm 16.95 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 76del/hal - -CrO3 - CrO3 + H2O = CrO4-2 + 2 H+ - log_k -3.5221 - -delta_H -5.78647 kJ/mol -# deltafH -140.9 kcal/mol - -analytic -1.3262e2 -6.1411e-2 2.2083e3 5.6564e1 3.4497e1 -# Range 0-300 - -Vm 35.14 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 76del/hal - -CrS - CrS + H+ = Cr+2 + HS- - log_k -0.6304 - -delta_H -26.15 kJ/mol -# deltafH -31.9 kcal/mol - -analytic -1.1134e2 -3.5954e-2 3.8744e3 4.3815e1 6.0490e1 -# Range 0-300 - -Vm 17.33 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 76del/hal - -Cristobalite(alpha) - SiO2 = SiO2 - log_k -3.4488 - -delta_H 29.2043 kJ/mol -# deltafH -216.755 kcal/mol - -analytic -1.1936e1 9.0520e-3 4.3701e3 -1.1464e-1 -7.6568e5 -# Range 0-350 - -Vm 25.74 -# Extrapol supcrt92 -# Ref HDN+78 - -Cristobalite(beta) - SiO2 = SiO2 - log_k -3.0053 - -delta_H 24.6856 kJ/mol -# deltafH -215.675 kcal/mol - -analytic -4.7414 9.7567e-3 3.8831e3 -2.5830 -6.9636e5 -# Range 0-350 - -Vm 27.38 -# Extrapol supcrt92 -# Ref HDN+78 - -Cronstedtite-7A - Fe2Fe2SiO5(OH)4 + 10 H+ = SiO2 + 2 Fe+2 + 2 Fe+3 + 7 H2O - log_k 16.2603 - -delta_H -244.266 kJ/mol -# deltafH -697.413 kcal/mol - -analytic -2.3783e2 -7.1026e-2 1.7752e4 8.7147e1 2.7707e2 -# Range 0-300 - -Vm 110.9 # HDN+78 -# Extrapol Cp integration -# Ref 78wol - -Cu - Cu + 2 H+ + 0.5 O2 = Cu+2 + H2O - log_k 31.5118 - -delta_H -214.083 kJ/mol -# deltafH 0 kcal/mol - -analytic -7.0719e1 -2.0300e-2 1.2802e4 2.6401e1 1.9979e2 -# Range 0-300 - -Vm 7.113 -# Extrapol supcrt92 -# Ref HDN+78 - - -CuCl2 - CuCl2 = Cu+2 + 2 Cl- - log_k 3.7308 - -delta_H -48.5965 kJ/mol -# deltafH -219.874 kJ/mol - -analytic -1.7803e1 -2.4432e-2 1.5729e3 9.5104 2.6716e1 -# Range 0-200 - -Vm 39.71 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -CuCr2O4 - CuCr2O4 + 8 H+ = Cu+2 + 2 Cr+3 + 4 H2O - log_k 16.2174 - -delta_H -268.768 kJ/mol -# deltafH -307.331 kcal/mol - -analytic -1.8199e2 -1.0254e-2 2.0123e4 5.4062e1 3.4178e2 -# Range 0-200 - -Vm 42.74 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 76del/hal - -Cuprite - Cu2O + 2 H+ = H2O + 2 Cu+ - log_k -1.9031 - -delta_H 28.355 kJ/mol -# deltafH -40.83 kcal/mol - -analytic -8.6240e1 -1.1445e-2 1.7851e3 3.3041e1 2.7880e1 -# Range 0-350 - -Vm 23.437 -# Extrapol supcrt92 -# Ref HDN+78 - -Daphnite-14A - Fe5AlAlSi3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Fe+2 + 12 H2O - log_k 52.2821 - -delta_H -517.561 kJ/mol -# deltafH -1693.04 kcal/mol - -analytic -1.5261e2 -6.1392e-2 2.8283e4 5.1788e1 4.4137e2 -# Range 0-350 - -Vm 213.42 -# Extrapol supcrt92 -# Ref HDN+78 - -Daphnite-7A - Fe5AlAlSi3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Fe+2 + 12 H2O - log_k 55.6554 - -delta_H -532.326 kJ/mol -# deltafH -1689.51 kcal/mol - -analytic -1.6430e2 -6.3160e-2 2.9499e4 5.6442e1 4.6035e2 -# Range 0-300 - -Vm 221.2 -# Extrapol supcrt92 -# Ref HDN+78 - -Dawsonite - NaAlCO3(OH)2 + 3 H+ = Al+3 + HCO3- + Na+ + 2 H2O - log_k 4.3464 - -delta_H -76.3549 kJ/mol -# deltafH -1963.96 kJ/mol - -analytic -1.1393e2 -2.3487e-2 7.1758e3 4.0900e1 1.2189e2 -# Range 0-200 - -Vm 59.50 # Webmineral.com -# Extrapol Constant H approx -# Ref RHF79 - -Delafossite - CuFeO2 + 4 H+ = Cu+ + Fe+3 + 2 H2O - log_k -6.4172 - -delta_H -18.6104 kJ/mol -# deltafH -126.904 kcal/mol - -analytic -1.5275e2 -3.5478e-2 5.1404e3 5.6437e1 8.0255e1 -# Range 0-300 - -Vm 27.52 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 74nau/ryz - -Diaspore - AlHO2 + 3 H+ = Al+3 + 2 H2O - log_k 7.1603 - -delta_H -110.42 kJ/mol -# deltafH -238.924 kcal/mol - -analytic -1.2618e2 -3.1671e-2 8.8737e3 4.5669e1 1.3850e2 -# Range 0-225 - -Vm 17.76 -# Extrapol supcrt92 -# Ref HDN+78, 95pok/hel - -Dicalcium_silicate - Ca2SiO4 + 4 H+ = SiO2 + 2 Ca+2 + 2 H2O - log_k 37.1725 - -delta_H -217.642 kJ/mol -# deltafH -2317.9 kJ/mol - -analytic -5.9723e1 -1.3682e-2 1.5461e4 2.1547e1 -3.7732e5 -# Range 0-300 - -Vm 59.11 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Diopside - CaMgSi2O6 + 4 H+ = Ca+2 + Mg+2 + 2 H2O + 2 SiO2 - log_k 20.9643 - -delta_H -133.775 kJ/mol -# deltafH -765.378 kcal/mol - -analytic 7.1240e1 1.5514e-2 8.1437e3 -3.0672e1 -5.6880e5 -# Range 0-350 - -Vm 66.09 -# Extrapol supcrt92 -# Ref HDN+78 - -Dioptase - CuSiO2(OH)2 + 2 H+ = Cu+2 + SiO2 + 2 H2O - log_k 6.0773 - -delta_H -25.2205 kJ/mol -# deltafH -1358.47 kJ/mol - -analytic 2.3913e2 6.2669e-2 -5.4030e3 -9.4420e1 -9.1834e1 -# Range 0-200 - -Vm 48.24 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 87woo/gar - -Dolomite - CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- - log_k 2.5135 - -delta_H -59.9651 kJ/mol -# deltafH -556.631 kcal/mol - -analytic -3.1782e2 -9.8179e-2 1.0845e4 1.2657e2 1.6932e2 -# Range 0-350 - -Vm 64.365 -# Extrapol supcrt92 -# Ref HDN+78 - -Dolomite-dis - CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- - log_k 4.0579 - -delta_H -72.2117 kJ/mol -# deltafH -553.704 kcal/mol - -analytic -3.1706e2 -9.7886e-2 1.1442e4 1.2604e2 1.7864e2 -# Range 0-350 - -Vm 64.39 -# Extrapol supcrt92 -# Ref HDN+78 - -Dolomite-ord - CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- - log_k 2.5135 - -delta_H -59.9651 kJ/mol -# deltafH -556.631 kcal/mol - -analytic -3.1654e2 -9.7902e-2 1.0805e4 1.2607e2 1.6870e2 -# Range 0-350 - -Vm 64.34 -# Extrapol supcrt92 -# Ref HDN+78 - -Enstatite - MgSiO3 + 2 H+ = H2O + Mg+2 + SiO2 - log_k 11.3269 - -delta_H -82.7302 kJ/mol -# deltafH -369.686 kcal/mol - -analytic -4.9278e1 -3.2832e-3 9.5205e3 1.4437e1 -5.4324e5 -# Range 0-350 - -Vm 31.276 -# Extrapol supcrt92 -# Ref HDN+78 - -Epidote - Ca2FeAl2Si3O12OH + 13 H+ = Fe+3 + 2 Al+3 + 2 Ca+2 + 3 SiO2 + 7 H2O - log_k 32.9296 - -delta_H -386.451 kJ/mol -# deltafH -1543.99 kcal/mol - -analytic -2.6187e1 -3.6436e-2 1.9351e4 3.3671 -3.0319e5 -# Range 0-350 - -Vm 139.2 -# Extrapol supcrt92 -# Ref HDN+78 - -Epidote-ord - FeCa2Al2(OH)(SiO4)3 + 13 H+ = Fe+3 + 2 Al+3 + 2 Ca+2 + 3 SiO2 + 7 H2O - log_k 32.9296 - -delta_H -386.351 kJ/mol -# deltafH -1544.02 kcal/mol - -analytic 1.9379e1 -3.2870e-2 1.5692e4 -1.1901e1 2.4485e2 -# Range 0-350 - -Vm 139.2 -# Extrapol supcrt92 -# Ref HDN+78 - -Eskolaite - Cr2O3 + 2 H2O + 1.5 O2 = 2 CrO4-2 + 4 H+ - log_k -9.1306 - -delta_H -32.6877 kJ/mol -# deltafH -1139.74 kJ/mol - -analytic -2.0411e2 -1.2809e-1 2.2197e3 9.1186e1 3.4697e1 -# Range 0-300 - -Vm 29.09 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Ettringite - Ca6Al2(SO4)3(OH)12:26H2O + 12 H+ = 2 Al+3 + 3 SO4-2 + 6 Ca+2 + 38 H2O - log_k 62.5362 - -delta_H -382.451 kJ/mol -# deltafH -4193 kcal/mol - -analytic -1.0576e3 -1.1585e-1 5.9580e4 3.8585e2 1.0121e3 -# Range 0-200 - -Vm 697.28 # Webmineral.com -# Extrapol Constant H approx -# Ref 82sar/bar - -Eu - Eu + 3 H+ + 0.75 O2 = Eu+3 + 1.5 H2O - log_k 165.1443 - -delta_H -1025.08 kJ/mol -# deltafH 0 kJ/mol - -analytic -6.5749e1 -2.8921e-2 5.4018e4 2.3561e1 8.4292e2 -# Range 0-300 - -Vm 28.97 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 85rar 2 - -Eu(OH)3 - Eu(OH)3 + 3 H+ = Eu+3 + 3 H2O - log_k 15.3482 - -delta_H -126.897 kJ/mol -# deltafH -1336.04 kJ/mol - -analytic -6.3077e1 -6.1421e-3 8.7323e3 2.0595e1 1.4831e+2 -# Range 0-200 - -Vm 38.44 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 87rar 2 - -Eu2(SO4)3:8H2O - Eu2(SO4)3:8H2O = 2 Eu+3 + 3 SO4-2 + 8 H2O - log_k -10.8524 - -delta_H -86.59 kJ/mol -# deltafH -6139.77 kJ/mol - -analytic -5.6582e1 -3.8846e-2 3.3821e3 1.8561e1 5.7452e1 -# Range 0-200 - -Vm 245.41 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 85rar 2 - -Eu2O3(cubic) - Eu2O3 + 6 H+ = 2 Eu+3 + 3 H2O - log_k 51.7818 - -delta_H -406.403 kJ/mol -# deltafH -1661.96 kJ/mol - -analytic -5.3469e1 -1.2554e-2 2.1925e4 1.4324e1 3.7233e2 -# Range 0-200 - -Vm 48.29 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 85rar 2 - -Eu2O3(monoclinic) - Eu2O3 + 6 H+ = 2 Eu+3 + 3 H2O - log_k 53.3936 - -delta_H -417.481 kJ/mol -# deltafH -1650.88 kJ/mol - -analytic -5.4022e1 -1.2627e-2 2.2508e4 1.4416e1 3.8224e2 -# Range 0-200 - -Vm 44.02 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 85rar 2 - -Eu3O4 - Eu3O4 + 8 H+ = Eu+2 + 2 Eu+3 + 4 H2O - log_k 87.0369 - -delta_H -611.249 kJ/mol -# deltafH -2270.56 kJ/mol - -analytic -1.1829e2 -2.0354e-2 3.4981e4 3.8007e1 5.9407e2 -# Range 0-200 - -Vm 64.15 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 85rar 2 - -EuCl2 - EuCl2 = Eu+2 + 2 Cl- - log_k 5.9230 - -delta_H -39.2617 kJ/mol -# deltafH -822.5 kJ/mol - -analytic -2.5741e1 -2.4956e-2 1.5713e3 1.3670e1 2.6691e1 -# Range 0-200 - -Vm 45.49 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 87rar 2 - -EuCl3 - EuCl3 = Eu+3 + 3 Cl- - log_k 19.7149 - -delta_H -170.861 kJ/mol -# deltafH -935.803 kJ/mol - -analytic 3.2865e1 -3.1877e-2 4.9792e3 -8.2294 8.4542e1 -# Range 0-200 - -Vm 52.83 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 85rar 2 - -EuCl3:6H2O - EuCl3:6H2O = Eu+3 + 3 Cl- + 6 H2O - log_k 4.9090 - -delta_H -40.0288 kJ/mol -# deltafH -2781.66 kJ/mol - -analytic -1.0987e2 -2.9851e-2 4.9991e3 4.3198e1 8.4930e1 -# Range 0-200 - -Vm 151.22 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 85rar 2 - -EuOCl - EuOCl + 2 H+ = Cl- + Eu+3 + H2O - log_k 15.6683 - -delta_H -147.173 kJ/mol -# deltafH -911.17 kJ/mol - -analytic -7.7446 -1.4960e-2 6.6242e3 2.2813 1.1249e2 -# Range 0-200 - -Vm 31.68 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 87rar 2 - -EuS - EuS + H+ = Eu+2 + HS- - log_k 14.9068 - -delta_H -96.4088 kJ/mol -# deltafH -447.302 kJ/mol - -analytic -4.1026e1 -1.5582e-2 5.7842e3 1.6639e1 9.8238e1 -# Range 0-200 - -Vm 32.03 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 85rar 2 - -EuSO4 - EuSO4 = Eu+2 + SO4-2 - log_k -8.8449 - -delta_H 33.873 kJ/mol -# deltafH -1471.08 kJ/mol - -analytic 3.0262e-1 -1.7571e-2 -3.0392e3 2.5356 -5.1610e1 -# Range 0-200 - -Vm 49.71 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 85rar 2 - -Eucryptite - LiAlSiO4 + 4 H+ = Al+3 + Li+ + SiO2 + 2 H2O - log_k 13.6106 - -delta_H -141.818 kJ/mol -# deltafH -2124.41 kJ/mol - -analytic -2.2213 -8.2498e-3 6.4838e3 -1.4183 1.0117e2 -# Range 0-300 - -Vm 53.63 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Fayalite - Fe2SiO4 + 4 H+ = SiO2 + 2 Fe+2 + 2 H2O - log_k 19.1113 - -delta_H -152.256 kJ/mol -# deltafH -354.119 kcal/mol - -analytic 1.3853e1 -3.5501e-3 7.1496e3 -6.8710e0 -6.3310e4 -# Range 0-350 - -Vm 46.39 -# Extrapol supcrt92 -# Ref HDN+78 - -Fe - Fe + 2 H+ + 0.5 O2 = Fe+2 + H2O - log_k 59.0325 - -delta_H -372.029 kJ/mol -# deltafH 0 kcal/mol - -analytic -6.2882e1 -2.0379e-2 2.0690e4 2.3673e1 3.2287e2 -# Range 0-350 - -Vm 7.092 # thermo.com.V8.R6+.tdat -# Extrapol supcrt92 -# Ref RHF79 - -Fe(OH)2 - Fe(OH)2 + 2 H+ = Fe+2 + 2 H2O - log_k 13.9045 - -delta_H -95.4089 kJ/mol -# deltafH -568.525 kJ/mol - -analytic -8.6666e1 -1.8440e-2 7.5723e3 3.2597e1 1.1818e2 -# Range 0-300 - -Vm 26.43 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Fe(OH)3 - Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O - log_k 5.6556 - -delta_H -84.0824 kJ/mol -# deltafH -823.013 kJ/mol - -analytic -1.3316e2 -3.1284e-2 7.9753e3 4.9052e1 1.2449e2 -# Range 0-300 - -Vm 34.36 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Fe2(SO4)3 - Fe2(SO4)3 = 2 Fe+3 + 3 SO4-2 - log_k 3.2058 - -delta_H -250.806 kJ/mol -# deltafH -2577.16 kJ/mol - -analytic -5.8649e2 -2.3718e-1 2.2736e4 2.3601e2 3.5495e2 -# Range 0-300 - -Vm 130.77 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref RHF79 - -FeO - FeO + 2 H+ = Fe+2 + H2O - log_k 13.5318 - -delta_H -106.052 kJ/mol -# deltafH -65.02 kcal/mol - -analytic -7.8750e1 -1.8268e-2 7.6852e3 2.9074e1 1.1994e2 -# Range 0-350 - -Vm 12 -# Extrapol supcrt92 -# Ref HDN+78 - -FeSO4 - FeSO4 = Fe+2 + SO4-2 - log_k 2.6565 - -delta_H -73.0878 kJ/mol -# deltafH -928.771 kJ/mol - -analytic -2.0794e2 -7.6891e-2 7.8705e3 8.3685e1 1.2287e2 -# Range 0-300 - -Vm 41.58 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Ferrite-Ca - CaFe2O4 + 8 H+ = Ca+2 + 2 Fe+3 + 4 H2O - log_k 21.5217 - -delta_H -264.738 kJ/mol -# deltafH -363.494 kcal/mol - -analytic -2.8472e2 -7.5870e-2 2.0688e4 1.0485e2 3.2289e2 -# Range 0-300 - -Vm 44.98 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 82sar/bar - -Ferrite-Cu - CuFe2O4 + 8 H+ = Cu+2 + 2 Fe+3 + 4 H2O - log_k 10.3160 - -delta_H -211.647 kJ/mol -# deltafH -965.178 kJ/mol - -analytic -3.1271e2 -7.9976e-2 1.8818e4 1.1466e2 2.9374e2 -# Range 0-300 - -Vm 44.53 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Ferrite-Dicalcium - Ca2Fe2O5 + 10 H+ = 2 Ca+2 + 2 Fe+3 + 5 H2O - log_k 56.8331 - -delta_H -475.261 kJ/mol -# deltafH -2139.26 kJ/mol - -analytic -3.6277e2 -9.5015e-2 3.3898e4 1.3506e2 5.2906e2 -# Range 0-300 - -Vm 67.18 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref RHF79 - -Ferrite-Mg - MgFe2O4 + 8 H+ = Mg+2 + 2 Fe+3 + 4 H2O - log_k 21.0551 - -delta_H -280.056 kJ/mol -# deltafH -1428.42 kJ/mol - -analytic -2.8297e2 -7.4820e-2 2.1333e4 1.0295e2 3.3296e2 -# Range 0-300 - -Vm 44.57 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref RHF79 - -Ferrite-Zn - ZnFe2O4 + 8 H+ = Zn+2 + 2 Fe+3 + 4 H2O - log_k 11.7342 - -delta_H -226.609 kJ/mol -# deltafH -1169.29 kJ/mol - -analytic -2.9809e2 -7.7263e-2 1.9067e4 1.0866e2 2.9761e2 -# Range 0-300 - -Vm 45.23 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Ferrosilite - FeSiO3 + 2 H+ = Fe+2 + H2O + SiO2 - log_k 7.4471 - -delta_H -60.6011 kJ/mol -# deltafH -285.658 kcal/mol - -analytic 9.0041 3.7917e-3 5.1625e3 -6.3009 -3.9565e5 -# Range 0-350 - -Vm 32.952 -# Extrapol supcrt92 -# Ref HDN+78 - -Forsterite - Mg2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Mg+2 - log_k 27.8626 - -delta_H -205.614 kJ/mol -# deltafH -520 kcal/mol - -analytic -7.6195e1 -1.4013e-2 1.4763e4 2.5090e1 -3.0379e5 -# Range 0-350 - -Vm 43.79 -# Extrapol supcrt92 -# Ref HDN+78 - -Foshagite - Ca4Si3O9(OH)2:0.5H2O + 8 H+ = 3 SiO2 + 4 Ca+2 + 5.5 H2O - log_k 65.9210 - -delta_H -359.839 kJ/mol -# deltafH -1438.27 kcal/mol - -analytic 2.9983e1 5.5272e-3 2.3427e4 -1.3879e1 -8.9461e5 -# Range 0-300 - -Vm 154.23 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 82sar/bar - - -Gd - Gd + 3 H+ + 0.75 O2 = Gd+3 + 1.5 H2O - log_k 180.7573 - -delta_H -1106.67 kJ/mol -# deltafH 0 kJ/mol - -analytic -3.3949e2 -6.5698e-2 7.4278e4 1.2189e2 -9.7055e5 -# Range 0-300 - -Vm 19.89 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref RHF79 - -Gehlenite - Ca2Al2SiO7 + 10 H+ = SiO2 + 2 Al+3 + 2 Ca+2 + 5 H2O - log_k 56.2997 - -delta_H -489.934 kJ/mol -# deltafH -951.225 kcal/mol - -analytic -2.1784e2 -6.7200e-2 2.9779e4 7.8488e1 4.6473e2 -# Range 0-350 - -Vm 90.24 -# Extrapol supcrt92 -# Ref HDN+78 - -Gibbsite - Al(OH)3 + 3 H+ = Al+3 + 3 H2O - log_k 7.7560 - -delta_H -102.788 kJ/mol -# deltafH -309.065 kcal/mol - -analytic -1.1403e2 -3.6453e-2 7.7236e3 4.3134e1 1.2055e2 -# Range 0-150 - -Vm 31.956 -# Extrapol supcrt92 -# Ref HDN+78, 95pok/hel - -Goethite - FeOOH + 3 H+ = Fe+3 + 2 H2O - log_k 0.5345 - -delta_H -61.9291 kJ/mol -# deltafH -559.328 kJ/mol - -analytic -6.0331e1 -1.0847e-2 4.7759e3 1.9429e1 8.1122e1 -# Range 0-200 - -Vm 20.82 -# Extrapol supcrt92, Constant H approx -# Ref Sho09, MLS+03, RHF79 match - -Greenalite - Fe3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Fe+2 + 5 H2O - log_k 22.6701 - -delta_H -165.297 kJ/mol -# deltafH -787.778 kcal/mol - -analytic -1.4187e1 -3.8377e-3 1.1710e4 1.6442 -4.8290e5 -# Range 0-350 - -Vm 115 -# Extrapol supcrt92 -# Ref HDN+78, 78wol, Wilson+06 match - -Grossular - Ca3Al2(SiO4)3 + 12 H+ = 2 Al+3 + 3 Ca+2 + 3 SiO2 + 6 H2O - log_k 51.9228 - -delta_H -432.006 kJ/mol -# deltafH -1582.74 kcal/mol - -analytic 2.9389e1 -2.2478e-2 2.0323e4 -1.4624e1 -2.5674e5 -# Range 0-350 - -Vm 125.3 -# Extrapol supcrt92 -# Ref HDN+78 - -Gypsum - CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O - log_k -4.4823 - -delta_H -1.66746 kJ/mol -# deltafH -2022.69 kJ/mol - -analytic -2.4417e2 -8.3329e-2 5.5958e3 9.9301e1 8.7389e1 -# Range 0-300 - -Vm 74.69 # Marion+05 -# Extrapol Cp integration -# Ref RHF79 - -Gyrolite - Ca2Si3O7(OH)2:1.5H2O + 4 H+ = 2 Ca+2 + 3 SiO2 + 4.5 H2O - log_k 22.9099 - -delta_H -82.862 kJ/mol -# deltafH -1176.55 kcal/mol - -analytic -2.4416e1 1.4646e-2 1.6181e4 2.3723 -1.5369e6 -# -Range 0-300 - -Vm 136.85 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 82sar/bar - -Halite - NaCl = Cl- + Na+ - log_k 1.5855 - -delta_H 3.7405 kJ/mol -# deltafH -98.26 kcal/mol - -analytic -1.0163e2 -3.4761e-2 2.2796e3 4.2802e1 3.5602e1 -# Range 0-350 - -Vm 27.015 -# Extrapol supcrt92 -# Ref HDN+78 - -Hatrurite - Ca3SiO5 + 6 H+ = SiO2 + 3 Ca+2 + 3 H2O - log_k 73.4056 - -delta_H -434.684 kJ/mol -# deltafH -700.234 kcal/mol - -analytic -4.5448e1 -1.9998e-2 2.3800e4 1.8494e1 -7.3385e4 -# Range 0-300 - -Vm 75.60 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 82sar/bar - -Hausmannite - Mn3O4 + 8 H+ = Mn+2 + 2 Mn+3 + 4 H2O - log_k 10.1598 - -delta_H -268.121 kJ/mol -# deltafH -1387.83 kJ/mol - -analytic -2.0600e2 -2.2214e-2 2.0160e4 6.2700e1 3.1464e2 -# Range 0-300 - -Vm 48.07 # Webmineral.com -# Extrapol Cp integration -# Ref RHF79 - -Heazlewoodite - Ni3S2 + 4 H+ + 0.5 O2 = H2O + 2 HS- + 3 Ni+2 - log_k 28.2477 - -delta_H -270.897 kJ/mol -# deltafH -203.012 kJ/mol - -analytic -3.5439e2 -1.1740e-1 2.1811e4 1.3919e2 3.4044e2 -# Range 0-300 - -Vm 40.95 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Hedenbergite - CaFe(SiO3)2 + 4 H+ = Ca+2 + Fe+2 + 2 H2O + 2 SiO2 - log_k 19.6060 - -delta_H -124.507 kJ/mol -# deltafH -678.276 kcal/mol - -analytic -1.9473e1 1.5288e-3 1.2910e4 2.1729 -9.0058e5 -# Range 0-350 - -Vm 68.27 -# Extrapol supcrt92 -# Ref HDN+78 - -Hematite - Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O - log_k 0.1086 - -delta_H -129.415 kJ/mol -# deltafH -197.72 kcal/mol - -analytic -2.2015e2 -6.0290e-2 1.1812e4 8.0253e1 1.8438e2 -# Range 0-350 - -Vm 30.274 -# Extrapol supcrt92 -# Ref HDN+78 - -Hercynite - FeAl2O4 + 8 H+ = Fe+2 + 2 Al+3 + 4 H2O - log_k 28.8484 - -delta_H -345.961 kJ/mol -# deltafH -1966.45 kJ/mol - -analytic -3.1848e2 -7.9501e-2 2.5892e4 1.1483e2 4.0412e2 -# Range 0-300 - -Vm 40.75 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref RHF79 - -Hillebrandite - Ca2SiO3(OH)2:0.17H2O + 4 H+ = SiO2 + 2 Ca+2 + 3.17 H2O - log_k 36.8190 - -delta_H -203.074 kJ/mol -# deltafH -637.404 kcal/mol - -analytic -1.9360e1 -7.5176e-3 1.1947e4 8.0558 -1.4504e5 -# Range 0-300 - -Vm 71.79 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 82sar/bar - -Huntite - CaMg3(CO3)4 + 4 H+ = Ca+2 + 3 Mg+2 + 4 HCO3- - log_k 10.3010 - -delta_H -171.096 kJ/mol -# deltafH -1082.6 kcal/mol - -analytic -6.5e2 -1.9671e-1 2.4815e4 2.5688e2 3.8740e2 -# Range 0-350 - -Vm 122.9 -# Extrapol supcrt92 -# Ref HDN+78 - -Hydromagnesite - Mg5(CO3)4(OH)2:4H2O + 6 H+ = 4 HCO3- + 5 Mg+2 + 6 H2O - log_k 30.8539 - -delta_H -289.696 kJ/mol -# deltafH -1557.09 kcal/mol - -analytic -7.9288e2 -2.1448e-1 3.6749e4 3.0888e2 5.7367e2 -# Range 0-350 - -Vm 208.8 -# Extrapol supcrt92 -# Ref HDN+78 - -Hydrophilite - CaCl2 = Ca+2 + 2 Cl- - log_k 11.7916 - -delta_H -81.4545 kJ/mol -# deltafH -795.788 kJ/mol - -analytic -2.2278e2 -8.1414e-2 9.0298e3 9.2349e1 1.4097e2 -# Range 0-300 - -Vm 49.99 # Webmineral.com -# Extrapol Cp integration -# Ref RHF79 - -Hydroxyapatite - Ca5(OH)(PO4)3 + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 - log_k -3.0746 - -delta_H -191.982 kJ/mol -# deltafH -6685.52 kJ/mol - -analytic -8.5221e2 -2.9430e-1 2.8125e4 3.4044e2 4.3911e2 -# Range 0-300 - -Vm 128.9 -# Extrapol Cp integration -# Ref RHF79 - -Ice - H2O = H2O - log_k 0.1387 - -delta_H 6.74879 kJ/mol -# deltafH -69.93 kcal/mol - -analytic -2.3260e1 4.7948e-4 7.7351e2 8.3499 1.3143e1 -# Range 0-200 - -Vm 19.635 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 87kee/rup - -Ilmenite - FeTiO3 + 2 H+ + H2O = Fe+2 + Ti(OH)4 - log_k 0.9046 -# deltafH -1236.65 kJ/mol - -Vm 32.15 # Webmineral.com -# Ref RHF79 - -Jadeite - NaAl(SiO3)2 + 4 H+ = Al+3 + Na+ + 2 H2O + 2 SiO2 - log_k 8.3888 - -delta_H -84.4415 kJ/mol -# deltafH -722.116 kcal/mol - -analytic 1.5934 5.0757e-3 9.5602e3 -7.0164 -8.4454e5 -# Range 0-350 - -Vm 60.4 -# Extrapol supcrt92 -# Ref HDN+78 - -Jarosite - KFe3(SO4)2(OH)6 + 6 H+ = K+ + 2 SO4-2 + 3 Fe+3 + 6 H2O - log_k -9.3706 - -delta_H -191.343 kJ/mol -# deltafH -894.79 kcal/mol - -analytic -1.0813e2 -5.0381e-2 9.6893e3 3.2832e1 1.6457e2 -# Range 0-200 - -Vm 162.07 # Webmineral.com -# Extrapol Constant H approx -# Ref 75kas/bor - -K - K + H+ + 0.25 O2 = 0.5 H2O + K+ - log_k 70.9861 - -delta_H -392.055 kJ/mol -# deltafH 0 kJ/mol - -analytic -3.1102e1 -1.0003e-2 2.1338e4 1.3534e1 3.3296e2 -# Range 0-300 - -Vm 45.94 # Webelements.com -# Extrapol Cp integration -# Ref CWM89 - -K-Feldspar - KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 - log_k -0.2753 - -delta_H -23.9408 kJ/mol -# deltafH -949.188 kcal/mol - -analytic -1.0684 1.3111e-2 1.1671e4 -9.9129 -1.5855e6 -# Range 0-350 - -Vm 108.87 -# Extrapol supcrt92 -# Ref HDN+78 - -K2O - K2O + 2 H+ = H2O + 2 K+ - log_k 84.0405 - -delta_H -427.006 kJ/mol -# deltafH -86.8 kcal/mol - -analytic -1.8283e1 -5.2255e-3 2.3184e4 1.0553e1 3.6177e2 -# Range 0-350 - -Vm 40.085 # gfw/density -# Extrapol supcrt92 -# Ref HDN+78 - -KAl(SO4)2 - KAl(SO4)2 = Al+3 + K+ + 2 SO4-2 - log_k 3.3647 - -delta_H -139.485 kJ/mol -# deltafH -2470.29 kJ/mol - -analytic -4.2785e2 -1.6303e-1 1.5311e4 1.7312e2 2.3904e2 -# Range 0-300 - -Vm 146.71 # gfw/density -# Extrapol Cp integration -# Ref RHF79 - -Kalsilite - KAlSiO4 + 4 H+ = Al+3 + K+ + SiO2 + 2 H2O - log_k 10.8987 - -delta_H -108.583 kJ/mol -# deltafH -509.408 kcal/mol - -analytic -6.7595 -7.4301e-3 6.5380e3 1.8999e-1 -2.2880e5 -# Range 0-350 - -Vm 59.89 -# Extrapol supcrt92 -# Ref HDN+78 - -Kaolinite - Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 SiO2 + 5 H2O - log_k 6.8101 - -delta_H -151.779 kJ/mol -# deltafH -982.221 kcal/mol - -analytic 1.6835e1 -7.8939e-3 7.7636e3 -1.2190e1 -3.2354e5 -# Range 0-350 - -Vm 99.52 -# Extrapol supcrt92 -# Ref HDN+78 differ by 1.6 log K at 0C, 0.4 log K at 350C - -KerogenC128 - C128H68O7 + 141.5 O2 = 128 CO2 + 34 H2O - log_k 10740.654 - -delta_H -14623.902 kcal/mol - -analytic 23405.37 -54.726 0 0 0 0.041 -# Range 0-350 - -Vm 1320.7 -# Extrapol supcrt92 -# Ref RH98, Hel+09 - -KerogenC292 - C292H288O12 + 358 O2 = 292 CO2 + 144 H2O - log_k 27153.69 - -delta_H -36994.127 kcal/mol - -analytic 59184.26 -138.37 0 0 0 0.10 -# Range 0-350 - -Vm 3398.2 -# Extrapol supcrt92 -# Ref RH98, Hel+09 - -KerogenC515 - C515H596O72 + 628 O2 = 515 CO2 + 298 H2O - log_k 48112.16 - -delta_H -65346.703 kcal/mol - -analytic 104660.55 -244.27 0 0 0 0.183 -# Range 0-350 - -Vm 6989.3 -# Extrapol supcrt92 -# Ref RH98, Hel+09 - -Kyanite - Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O - log_k 15.6740 - -delta_H -230.919 kJ/mol -# deltafH -616.897 kcal/mol - -analytic -7.3335e1 -3.2853e-2 1.2166e4 2.3412e1 1.8986e2 -# Range 0-175 - -Vm 44.09 -# Extrapol supcrt92 -# Ref HDN+78 - -Larnite - Ca2SiO4 + 4 H+ = SiO2 + 2 Ca+2 + 2 H2O - log_k 38.4665 - -delta_H -227.061 kJ/mol -# deltafH -551.74 kcal/mol - -analytic 2.6900e1 -2.1833e-3 1.0900e4 -9.5257 -7.2537e4 -# Range 0-300 - -Vm 51.6 # HDN+78 -# Extrapol Cp integration -# Ref 82sar/bar - -Laumontite - CaAl2Si4O12:4H2O + 8 H+ = Ca+2 + 2 Al+3 + 4 SiO2 + 8 H2O - log_k 13.6667 - -delta_H -184.657 kJ/mol -# deltafH -1728.66 kcal/mol - -analytic 1.1904 8.1763e-3 1.9005e4 -1.4561e1 -1.5851e6 -# Range 0-350 - -Vm 207.55 -# Extrapol supcrt92 -# Ref HDN+78 differ by 1.7 log K at 0C, 0.1 log K at 350C - -Lawrencite - FeCl2 = Fe+2 + 2 Cl- - log_k 9.0945 - -delta_H -84.7665 kJ/mol -# deltafH -341.65 kJ/mol - -analytic -2.2798e2 -8.1819e-2 9.2620e3 9.3097e1 1.4459e2 -# Range 0-300 - -Vm 40.31 # Webmineral.com -# Extrapol Cp integration -# Ref RHF79 - -Lawsonite - CaAl2Si2O7(OH)2:H2O + 8 H+ = Ca+2 + 2 Al+3 + 2 SiO2 + 6 H2O - log_k 22.2132 - -delta_H -244.806 kJ/mol -# deltafH -1158.1 kcal/mol - -analytic 1.3995e1 -1.7668e-2 1.0119e4 -8.3100 1.5789e2 -# Range 0-350 - -Vm 101.32 -# Extrapol supcrt92 -# Ref HDN+78 - -Li - Li + H+ +0.25 O2 = 0.5 H2O + Li+ - log_k 72.7622 - -delta_H -418.339 kJ/mol -# deltafH 0 kJ/mol - -analytic -1.0227e2 -1.8118e-2 2.6262e4 3.8056e1 -1.6166e5 -# Range 0-300 - -Vm 13.017 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref CWM89 - -Lime - CaO + 2 H+ = Ca+2 + H2O - log_k 32.5761 - -delta_H -193.832 kJ/mol -# deltafH -151.79 kcal/mol - -analytic -7.2686e1 -1.7654e-2 1.2199e4 2.8128e1 1.9037e2 -# Range 0-350 - -Vm 16.764 -# Extrapol supcrt92 -# Ref HDN+78 - -Linnaeite - Co3S4 + 4 H+ = Co+2 + 2 Co+3 + 4 HS- - log_k -106.9017 - -delta_H 420.534 kJ/mol -# deltafH -85.81 kcal/mol - -analytic -6.0034e2 -2.0179e-1 -9.2145e3 2.3618e2 -1.4361e2 -# Range 0-300 - -Vm 63.55 # Webmineral.com -# Extrapol Cp integration -# Ref 78vau/cra - -Lizardite - Mg3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Mg+2 + 5 H2O - log_k 30.560 - -analytic 7.886e1 -2.108e-1 0 0 0 1.637e-4 -# Range 0-300 - -Vm 107.31 -# Extrapol supcrt92 -# Ref Wilson+06 - -Lopezite - K2Cr2O7 + H2O = 2 CrO4-2 + 2 H+ + 2 K+ - log_k -17.4366 - -delta_H 81.9227 kJ/mol -# deltafH -493.003 kcal/mol - -analytic 7.8359e1 -2.2908e-2 -9.3812e3 -2.3245e1 -1.5933e2 -# Range 0-200 - -Vm 109.93 # thermo.com.V8.R6+.tdat -# Extrapol Constant H Approx -# Ref 76del/hal - -Magnesiochromite - MgCr2O4 + 8 H+ = Mg+2 + 2 Cr+3 + 4 H2O - log_k 21.6927 - -delta_H -302.689 kJ/mol -# deltafH -1783.6 kJ/mol - -analytic -1.7376e2 -8.7429e-3 2.1600e4 5.0762e1 3.6685e2 -# Range 0-200 - -Vm 43.564 # thermo.com.V8.R6+.tdat -# Extrapol Constant H Approx -# Ref WEP+82 - -Magnesite - MgCO3 + H+ = HCO3- + Mg+2 - log_k 2.2936 - -delta_H -44.4968 kJ/mol -# deltafH -265.63 kcal/mol - -analytic -1.6665e2 -4.9469e-2 6.4344e3 6.5506e1 1.0045e2 -# Range 0-350 - -Vm 28.018 -# Extrapol supcrt92 -# Ref HDN+78 - -Magnetite - Fe3O4 + 8 H+ = Fe+2 + 2 Fe+3 + 4 H2O - log_k 10.4724 - -delta_H -216.597 kJ/mol -# deltafH -267.25 kcal/mol - -analytic -3.0510e2 -7.9919e-2 1.8709e4 1.1178e2 2.9203e2 -# Range 0-350 - -Vm 44.524 -# Extrapol supcrt92 -# Ref HDN+78 - -Malachite - Cu2CO3(OH)2 + 3 H+ = HCO3- + 2 Cu+2 + 2 H2O - log_k 5.9399 - -delta_H -76.2827 kJ/mol -# deltafH -251.9 kcal/mol - -analytic -2.7189e2 -6.9454e-2 1.1451e4 1.0511e2 1.7877e2 -# Range 0-350 - -Vm 54.86 -# Extrapol supcrt92 -# Ref HDN+78 - -Manganosite - MnO + 2 H+ = H2O + Mn+2 - log_k 17.9240 - -delta_H -121.215 kJ/mol -# deltafH -92.07 kcal/mol - -analytic -8.4114e1 -1.8490e-2 8.7792e3 3.1561e1 1.3702e2 -# Range 0-350 - -Vm 13.221 -# Extrapol supcrt92 -# Ref HDN+78 - -Margarite - CaAl4Si2O10(OH)2 + 14 H+ = Ca+2 + 2 SiO2 + 4 Al+3 + 8 H2O - log_k 41.0658 - -delta_H -522.192 kJ/mol -# deltafH -1485.8 kcal/mol - -analytic -2.3138e2 -8.2788e-2 3.0154e4 7.9148e1 4.7060e2 -# Range 0-350 - -Vm 129.4 -# Extrapol supcrt92 -# Ref HDN+78 differ by 3.3 log K at 0C, 1.1 log K at 350C - -Maximum_Microcline - KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 - log_k -0.2753 - -delta_H -23.9408 kJ/mol -# deltafH -949.188 kcal/mol - -analytic -9.4387 1.3561e-2 1.2656e4 -7.4925 -1.6795e6 -# Range 0-350 - -Vm 108.741 -# Extrapol supcrt92 -# Ref HDN+78 - -Mayenite - Ca12Al14O33 + 66 H+ = 12 Ca+2 + 14 Al+3 + 33 H2O - log_k 494.2199 - -delta_H -4056.77 kJ/mol -# deltafH -4644 kcal/mol - -analytic -1.4778e3 -2.9898e-1 2.4918e5 4.9518e2 4.2319e3 -# Range 0-200 - -Vm 517.41 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 82sar/bar - -Melanterite - FeSO4:7H2O = Fe+2 + SO4-2 + 7 H2O - log_k -2.3490 - -delta_H 11.7509 kJ/mol -# deltafH -3014.48 kJ/mol - -analytic -2.6230e2 -7.2469e-2 6.5854e3 1.0484e2 1.0284e2 -# Range 0-300 - -Vm 146.48 # Marion+08 -# Extrapol Cp integration -# Ref RHF79 - -Merwinite - MgCa3(SiO4)2 + 8 H+ = Mg+2 + 2 SiO2 + 3 Ca+2 + 4 H2O - log_k 68.5140 - -delta_H -430.069 kJ/mol -# deltafH -1090.8 kcal/mol - -analytic -2.2524e2 -4.2525e-2 3.5619e4 7.9984e1 -9.8259e5 -# Range 0-350 - -Vm 104.4 -# Extrapol supcrt92 -# Ref HDN+78 - -Mesolite - Na.676Ca.657Al1.99Si3.01O10:2.647H2O + 7.96 H+ = 0.657 Ca+2 + 0.676 Na+ + 1.99 Al+3 + 3.01 SiO2 + 6.627 H2O - log_k 13.6191 - -delta_H -179.744 kJ/mol -# deltafH -5947.05 kJ/mol - -analytic 7.1993 5.9356e-3 1.4717e4 -1.3627e1 -9.8863e5 -# Range 0-300 - -Vm 171.2 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 89db 6 - -Mg - Mg + 2 H+ + 0.5 O2 = H2O + Mg+2 - log_k 122.5365 - -delta_H -745.731 kJ/mol -# deltafH 0 kJ/mol - -analytic -6.5988e1 -1.9356e-2 4.0318e4 2.3862e1 6.2914e2 -# Range 0-300 - -Vm 13.996 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref CWM89 - -MgOHCl - MgOHCl + H+ = Cl- + H2O + Mg+2 - log_k 15.9138 - -delta_H -118.897 kJ/mol -# deltafH -191.2 kcal/mol - -analytic -1.6614e2 -4.9715e-2 1.0311e4 6.5578e1 1.6093e2 -# Range 0-300 - -Vm 33.23 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 73bar/kna - -MgSO4 - MgSO4 = Mg+2 + SO4-2 - log_k 4.8781 - -delta_H -90.6421 kJ/mol -# deltafH -1284.92 kJ/mol - -analytic -2.2439e2 -7.9688e-2 9.3058e3 8.9622e1 1.4527e2 -# Range 0-300 - -Vm 45.25 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Millerite - NiS + H+ = HS- + Ni+2 - log_k -8.0345 - -delta_H 12.089 kJ/mol -# deltafH -82.171 kJ/mol - -analytic -1.4848e2 -4.8834e-2 2.6981e3 5.8976e1 4.2145e1 -# Range 0-300 - -Vm 16.89 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Minnesotaite - Fe3Si4O10(OH)2 + 6 H+ = 3 Fe+2 + 4 H2O + 4 SiO2 - log_k 13.9805 - -delta_H -105.211 kJ/mol -# deltafH -1153.37 kcal/mol - -analytic -1.8812e1 1.7261e-2 1.9804e4 -6.4410 -2.0433e6 -# Range 0-300 - -Vm 147.86 # HDN+78 -# Extrapol Cp integration -# Ref 78wol, Wilson+06 differ by 2.6 log K at 0C, 1.6 log K at 350C - -Mirabilite - Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O - log_k -1.1398 - -delta_H 79.4128 kJ/mol -# deltafH -4328 kJ/mol - -analytic -2.1877e2 -3.6692e-3 5.9214e3 8.0361e1 1.0063e2 -# Range 0-200 - -Vm 219.80 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref RHF79 - -Mn - Mn + 2 H+ + 0.5 O2 = H2O + Mn+2 - log_k 82.9505 - -delta_H -500.369 kJ/mol -# deltafH 0 kJ/mol - -analytic -6.5558e1 -2.0429e-2 2.7571e4 2.5098e1 4.3024e2 -# Range 0-300 - -Vm 7.354 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref RHF79 - -Mn(OH)2(am) - Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O - log_k 15.3102 - -delta_H -97.1779 kJ/mol -# deltafH -695.096 kJ/mol - -analytic -7.8518e1 -7.5357e-3 8.0198e3 2.7955e1 1.3621e2 -# Range 0-200 - -Vm 22.36 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -MnCl2:2H2O - MnCl2:2H2O = Mn+2 + 2 Cl- + 2 H2O - log_k 4.0067 - -delta_H -34.4222 kJ/mol -# deltafH -1092.01 kJ/mol - -analytic -6.2823e1 -2.3959e-2 2.9931e3 2.5834e1 5.0850e1 -# Range 0-200 - -Vm 71.12 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -MnCl2:4H2O - MnCl2:4H2O = Mn+2 + 2 Cl- + 4 H2O - log_k 2.7563 - -delta_H -10.7019 kJ/mol -# deltafH -1687.41 kJ/mol - -analytic -1.1049e2 -2.3376e-2 4.0458e3 4.3097e1 6.8742e1 -# Range 0-200 - -Vm 98.46 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -MnCl2:H2O - MnCl2:H2O = H2O + Mn+2 + 2 Cl- - log_k 5.5517 - -delta_H -50.8019 kJ/mol -# deltafH -789.793 kJ/mol - -analytic -4.5051e1 -2.5923e-2 2.8739e3 1.9674e1 4.8818e1 -# Range 0-200 - -Vm 42.27 # gfw/density -# Extrapol Constant H approx -# Ref WEP+82 - -MnSO4 - MnSO4 = Mn+2 + SO4-2 - log_k 2.6561 - -delta_H -64.8718 kJ/mol -# deltafH -1065.33 kJ/mol - -analytic -2.3088e2 -8.2694e-2 8.1653e3 9.3256e1 1.2748e2 -# Range 0-300 - -Vm 46.46 # gfw/density -# Extrapol Cp integration -# Ref RHF79 - -Mo - Mo + 1.5 O2 + H2O = MoO4-2 + 2 H+ - log_k 109.3230 - -delta_H -693.845 kJ/mol -# deltafH 0 kJ/mol - -analytic -2.0021e2 -8.3006e-2 4.1629e4 8.0219e1 -3.4570e5 -# Range 0-300 - -Vm 9.387 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref RHF79 - -Molysite - FeCl3 = Fe+3 + 3 Cl- - log_k 13.5517 - -delta_H -151.579 kJ/mol -# deltafH -399.24 kJ/mol - -analytic -3.1810e2 -1.2357e-1 1.3860e4 1.3010e2 2.1637e2 -# Range 0-300 - -Vm 55.86 # Webmineral.com -# Extrapol Cp integration -# Ref RHF79 - -Monohydrocalcite - CaCO3:H2O + H+ = Ca+2 + H2O + HCO3- - log_k 2.6824 - -delta_H -20.5648 kJ/mol -# deltafH -1498.29 kJ/mol - -analytic -7.2614e1 -1.7217e-2 3.1850e3 2.8185e1 5.4111e1 -# Range 0-200 - -Vm 49.62 # Webmineral.com -# Extrapol Constant H approx -# Ref RHF79 - -Monticellite - CaMgSiO4 + 4 H+ = Ca+2 + Mg+2 + SiO2 + 2 H2O - log_k 29.5852 - -delta_H -195.711 kJ/mol -# deltafH -540.8 kcal/mol - -analytic 1.5730e1 -3.5567e-3 9.0789e3 -6.3007 1.4166e2 -# Range 0-300 - -Vm 51.47 -# Extrapol supcrt92 -# Ref HDN+78 - -Montmor-Ca - Ca.175Mg.35Al1.65Si4O10(OH)2 + 6 H+ = 0.175 Ca+2 + 0.35 Mg+2 + 1.65 Al+3 + 4 H2O + 4 SiO2 - log_k 2.4952 - -delta_H -100.154 kJ/mol -# deltafH -1361.5 kcal/mol - -analytic 2.459e1 -9.080e-2 0 0 0 5.223e-5 -# Range 0-300 - -Vm 136.007 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 88db 3 match - -Montmor-K - K.35Mg.35Al1.65Si4O10(OH)2 + 6 H+ = 0.35 K+ + 0.35 Mg+2 + 1.65 Al+3 + 4 H2O + 4 SiO2 - log_k 2.1423 - -delta_H -88.184 kJ/mol -# deltafH -1362.83 kcal/mol - -analytic 2.022e1 -7.624e-2 0 0 0 4.102e-5 -# Range 0-300 - -Vm 140.140 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 88db 3 match - -Montmor-Mg - Mg.525Al1.65Si4O10(OH)2 + 6 H+ = 0.525 Mg+2 + 1.65 Al+3 + 4 H2O + 4 SiO2 - log_k 2.3879 - -delta_H -102.608 kJ/mol -# deltafH -1357.87 kcal/mol - -analytic 2.381e1 -9.031e-2 0 0 0 5.203e-5 -# Range 0-300 - -Vm 135.042 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 88db 3 match - -Montmor-Na - Na.35Mg.35Al1.65Si4O10(OH)2 + 6 H+ = 0.35 Mg+2 + 0.35 Na+ + 1.65 Al+3 + 4 H2O + 4 SiO2 - log_k 2.4844 - -delta_H -93.2165 kJ/mol -# deltafH -1360.69 kcal/mol - -analytic 2.348e1 -8.604e-2 0 0 0 4.951e-5 -# Range 0-300 - -Vm 137.449 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 88db 3 match, but differ from Wilson+06 by 3.4 log K at 0C, 1.7 log K at 300C - -Mordenite - Ca.2895Na.361Al.94Si5.06O12:3.468H2O + 3.76 H+ = 0.2895 Ca+2 + 0.361 Na+ + 0.94 Al+3 + 5.06 SiO2 + 5.348 H2O - log_k -5.1969 - -delta_H 16.7517 kJ/mol -# deltafH -6736.64 kJ/mol - -analytic -5.4675e1 3.2513e-2 2.3412e4 -1.0419 -3.2292e6 -# Range 0-300 - -Vm 209.90 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 91joh/tas - -Morenosite - NiSO4:7H2O = Ni+2 + SO4-2 + 7 H2O - log_k -2.0140 - -delta_H 12.0185 kJ/mol -# deltafH -2976.46 kJ/mol - -analytic -2.6654e2 -7.2132e-2 6.7983e3 1.0636e2 1.0616e2 -# Range 0-300 - -Vm 144.17 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Muscovite - KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 SiO2 + 6 H2O - log_k 13.5858 - -delta_H -243.224 kJ/mol -# deltafH -1427.41 kcal/mol - -analytic 3.3085e1 -1.2425e-2 1.2477e4 -2.0865e1 -5.4692e5 -# Range 0-350 - -Vm 140.71 -# Extrapol supcrt92 -# Ref HDN+78 - -Na - Na + H+ + 0.25 O2 = 0.5 H2O + Na+ - log_k 67.3804 - -delta_H -380.185 kJ/mol -# deltafH 0 kJ/mol - -analytic -4.0458e1 -8.7899e-3 2.1223e4 1.5927e1 -1.2715e4 -# Range 0-300 - -Vm 23.812 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref CWM89 - -Na2CO3 - Na2CO3 + H+ = HCO3- + 2 Na+ - log_k 11.1822 - -delta_H -39.8526 kJ/mol -# deltafH -1130.68 kJ/mol - -analytic -1.5495e2 -4.3374e-2 6.4821e3 6.3571e1 1.0119e2 -# Range 0-300 - -Vm 41.86 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Na2CO3:7H2O - Na2CO3:7H2O + H+ = HCO3- + 2 Na+ + 7 H2O - log_k 9.9459 - -delta_H 27.7881 kJ/mol -# deltafH -3199.19 kJ/mol - -analytic -2.0593e2 -3.4509e-3 8.1601e3 7.6594e1 1.3864e2 -# Range 0-200 - -Vm 153.71 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -Na2Cr2O7 - Na2Cr2O7 + H2O = 2 CrO4-2 + 2 H+ + 2 Na+ - log_k -10.1597 - -delta_H 21.9702 kJ/mol -# deltafH -473 kcal/mol - -analytic 4.4885e1 -2.4919e-2 -5.0321e3 -1.2430e1 -8.5468e1 -# Range 0-200 - -Vm 103.96 # gfw/density -# Extrapol Constant H approx -# Ref 76del/hal - -Na2CrO4 - Na2CrO4 = CrO4-2 + 2 Na+ - log_k 2.9103 - -delta_H -19.5225 kJ/mol -# deltafH -320.8 kcal/mol - -analytic 5.4985 -9.9008e-3 1.0510e2 -# Range 0-200 - -Vm 59.48 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 76del/hal - -Na2O - Na2O + 2 H+ = H2O + 2 Na+ - log_k 67.4269 - -delta_H -351.636 kJ/mol -# deltafH -99.14 kcal/mol - -analytic -6.3585e1 -8.4695e-3 2.0923e4 2.5601e1 3.2651e2 -# Range 0-350 - -Vm 25 -# Extrapol supcrt92 -# Ref HDN+78 - -Na2SiO3 - Na2SiO3 + 2 H+ = H2O + SiO2 + 2 Na+ - log_k 22.2418 - -delta_H -82.7093 kJ/mol -# deltafH -373.19 kcal/mol - -analytic -3.4928e1 5.6905e-3 1.0284e4 1.1197e1 -6.0134e5 -# Range 0-300 - -Vm 50.86 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 73bar/kna - -Na2U2O7 - Na2U2O7 + 6 H+ = 2 Na+ + 2 UO2+2 + 3 H2O - log_k 22.5917 - -delta_H -172.314 kJ/mol -# deltafH -3203.8 kJ/mol - -analytic -8.6640e1 -1.0903e-2 1.1841e4 2.9406e1 1.8479e2 -# Range 0-300 - -Vm 95.34 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 92gre/fug - -NaFeO2 - NaFeO2 + 4 H+ = Fe+3 + Na+ + 2 H2O - log_k 19.8899 - -delta_H -163.339 kJ/mol -# deltafH -698.218 kJ/mol - -analytic -7.0047e1 -9.6226e-3 1.0647e4 2.3071e1 1.8082e2 -# Range 0-200 - -Vm 33.48 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -NaUO3 - NaUO3 + 2 H+ = H2O + Na+ + UO2+ - log_k 8.3371 - -delta_H -56.365 kJ/mol -# deltafH -1494.9 kJ/mol - -analytic -3.6363e1 7.0505e-4 4.5359e3 1.1828e1 7.0790e1 -# Range 0-300 - -Vm 42.56 # gfw/density -# Extrapol Cp integration -# Ref 92gre/fug - -Nahcolite - NaHCO3 = HCO3- + Na+ - log_k -0.1118 - -delta_H 17.0247 kJ/mol -# deltafH -226.4 kcal/mol - -analytic -2.2282e2 -5.9693e-2 5.4887e3 8.9744e1 8.5712e1 -# Range 0-300 - -Vm 38.62 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 73bar/kna - -Nantokite - CuCl = Cl- + Cu+ - log_k -6.7623 - -delta_H 41.9296 kJ/mol -# deltafH -137.329 kJ/mol - -analytic -2.2442e1 -1.1201e-2 -1.8709e3 1.0221e1 -3.1763e1 -# Range 0-200 - -Vm 23.92 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -Natrolite - Na2Al2Si3O10:2H2O + 8 H+ = 2 Al+3 + 2 Na+ + 3 SiO2 + 6 H2O - log_k 18.5204 - -delta_H -186.971 kJ/mol -# deltafH -5718.56 kJ/mol - -analytic -2.7712e1 -2.7963e-3 1.6075e4 1.5332 -9.5765e5 -# Range 0-300 - -Vm 169.72 # HDN+78 -# Extrapol Cp integration -# Ref 83joh/flo - -Natron - Na2CO3:10H2O + H+ = HCO3- + 2 Na+ + 10 H2O - log_k 9.6102 - -delta_H 50.4781 kJ/mol -# deltafH -4079.39 kJ/mol - -analytic -1.9981e2 -2.9247e-2 5.2937e3 8.0973e1 8.2662e1 -# Range 0-300 - -Vm 195.99 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Natrosilite - Na2Si2O5 + 2 H+ = H2O + 2 Na+ + 2 SiO2 - log_k 18.1337 - -delta_H -51.7686 kJ/mol -# deltafH -590.36 kcal/mol - -analytic -2.7628e1 1.6865e-2 1.3302e4 4.2356 -1.2828e6 -# Range 0-300 - -Vm 72.57 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 77bar/kna - -Nepheline - NaAlSiO4 + 4 H+ = Al+3 + Na+ + SiO2 + 2 H2O - log_k 13.8006 - -delta_H -135.068 kJ/mol -# deltafH -500.241 kcal/mol - -analytic -2.4856e1 -8.8171e-3 8.5653e3 6.0904 -2.2786e5 -# Range 0-350 - -Vm 54.16 -# Extrapol supcrt92 -# Ref HDN+78 - -Nesquehonite - MgCO3:3H2O + H+ = HCO3- + Mg+2 + 3 H2O - log_k 4.9955 - -delta_H -36.1498 kJ/mol -# deltafH -472.576 kcal/mol - -analytic 1.3771e2 -6.0397e-2 -3.5049e4 -1.8831e1 4.4213e6 -# Range 0-50 - -Vm 74.79 -# Extrapol supcrt92 -# Ref HDN+78 - -NH4Cl - NH4Cl = NH4+ + Cl- - log_k 1.3252 - -analytic -3.078 1.550e-2 0 0 0 -3.451e-6 -# Range 0-30 - -Vm 34.96 -# Extrapol Marion+12 -# Ref Marion+12, WangLi11 match - -NH4-feldspar # Buddingtonite (sometimes with +0.5 H2O, especially at low temp) - NH4AlSi3O8 + 4H+ = NH4+ + Al+3 + 3 SiO2 + 2 H2O - log_k -2.7243 - -analytic -7.434e1 3.080e-1 0 0 0 -2.270e-4 -# Range 25-325 - -Vm 114.78 # Webmineral.com (Hovis04: 109.08-112.23) -# Extrapol N17 -# Ref Wat81 - -NH4HCO3 - NH4HCO3 = NH4+ + HCO3- - log_k -0.0207 - -analytic -1.587e1 9.703e-2 0 0 0 -1.472e-4 -# Range 0-40 - -Vm 50.04 -# Extrapol Marion+12 -# Ref Marion+12 - -NH4-muscovite # Tobelite - NH4Al3Si3O10(OH)2 + 10 H+ = NH4+ + 3 Al+3 + 3 SiO2 + 6 H2O - log_k 6.8109 - -analytical -6.638e1 3.170e-1 0 0 0 -2.386e-4 -# Range 25-325 - -Vm 146.07 # Hovis04 -# Extrapol N17 -# Ref Wat81 - -Ni - Ni + 2 H+ + 0.5 O2 = H2O + Ni+2 - log_k 50.9914 - -delta_H -333.745 kJ/mol -# deltafH 0 kcal/mol - -analytic -5.8308e1 -2.0133e-2 1.8444e4 2.1590e1 2.8781e2 -# Range 0-350 - -Vm 6.588 -# Extrapol supcrt92 -# Ref HDN+78 - -Ni(OH)2 - Ni(OH)2 + 2 H+ = Ni+2 + 2 H2O - log_k 12.7485 - -delta_H -95.6523 kJ/mol -# deltafH -529.998 kJ/mol - -analytic -6.5279e1 -5.9499e-3 7.3471e3 2.2290e1 1.2479e2 -# Range 0-200 - -Vm 22.34 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -Ni2SiO4 - Ni2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Ni+2 - log_k 14.3416 - -delta_H -127.629 kJ/mol -# deltafH -341.705 kcal/mol - -analytic -4.0414e1 -1.1194e-2 9.6515e3 1.2026e1 -3.6336e5 -# Range 0-300 - -Vm 42.61 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 74nau/ryz - -NiCl2 - NiCl2 = Ni+2 + 2 Cl- - log_k 8.6113 - -delta_H -82.7969 kJ/mol -# deltafH -305.336 kJ/mol - -analytic -1.2416 -2.3139e-2 2.6529e3 3.1696 4.5052e1 -# Range 0-200 - -Vm 36.70 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -NiCl2:2H2O - NiCl2:2H2O = Ni+2 + 2 Cl- + 2 H2O - log_k 3.9327 - -delta_H -37.6746 kJ/mol -# deltafH -922.135 kJ/mol - -analytic -4.8814e1 -2.2602e-2 2.5951e3 2.0518e1 4.4086e1 -# Range 0-200 - -Vm 64.07 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -NiSO4 - NiSO4 = Ni+2 + SO4-2 - log_k 5.3197 - -delta_H -90.5092 kJ/mol -# deltafH -873.066 kJ/mol - -analytic -1.8878e2 -7.6403e-2 7.9412e3 7.6866e1 1.2397e2 -# Range 0-300 - -Vm 42.05 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -NiSO4:6H2O(alpha) - NiSO4:6H2O = Ni+2 + SO4-2 + 6 H2O - log_k -2.0072 - -delta_H 4.37983 kJ/mol -# deltafH -2682.99 kJ/mol - -analytic -1.1937e2 -1.3785e-2 4.1543e3 4.3454e1 7.0587e1 -# Range 0-200 - -Vm 126.6 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -Nickelbischofite - NiCl2:6H2O = Ni+2 + 2 Cl- + 6 H2O - log_k 3.1681 - -delta_H 0.064088 kJ/mol -# deltafH -2103.23 kJ/mol - -analytic -1.4340e2 -2.1257e-2 5.1858e3 5.4759e1 8.8112e1 -# Range 0-200 - -Vm 123.15 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -Ningyoite - CaUP2O8:2H2O + 2 H+ = Ca+2 + U+4 + 2 H2O + 2 HPO4-2 - log_k -29.7931 - -delta_H -36.4769 kJ/mol -# deltafH -1016.65 kcal/mol - -analytic -1.0274e2 -4.9041e-2 1.7779e3 3.2973e1 3.0227e1 -# Range 0-200 - -Vm 116.77 # Webmineral.com -# Extrapol Constant H approx -# Ref 78lan - -Niter - KNO3 = K+ + NO3- - log_k -0.2061 - -delta_H 35.4794 kJ/mol -# deltafH -494.46 kJ/mol - -analytic -6.5607e1 -2.8165e-2 -4.0131e2 3.0361e1 -6.2425 -# Range 0-300 - -Vm 48.04 # Marion+05 -# Extrapol Cp integration -# Ref RHF79 - -Nontronite-Ca - Ca.175Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.175 Ca+2 + 0.35 Al+3 + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O - log_k -11.5822 - -delta_H -38.138 kJ/mol -# deltafH -1166.7 kcal/mol - -analytic 3.697 -4.892e-2 0 0 0 1.489e-5 -# Range 0-300 - -Vm 137.780 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 78wol differ by 2.6 log K at 0C, 0.2 log K at 300C - -Nontronite-K - K.35Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.35 Al+3 + 0.35 K+ + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O - log_k -11.8648 - -delta_H -26.5822 kJ/mol -# deltafH -1167.93 kcal/mol - -analytic -1.959 -3.115e-2 0 0 0 1.139e-6 -# Range 0-300 - -Vm 141.913 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 78wol differ by 1.1 log K at 0C, 0.5 log K at 300C - -Nontronite-Mg - Mg.175Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.175 Mg+2 + 0.35 Al+3 + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O - log_k -11.6200 - -delta_H -41.1779 kJ/mol -# deltafH -1162.93 kcal/mol - -analytic 2.476 -4.730e-2 0 0 0 1.382e-5 -# Range 0-300 - -Vm 136.815 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 78wol - -Nontronite-Na - Na.35Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.35 Al+3 + 0.35 Na+ + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O - log_k -11.5263 - -delta_H -31.5687 kJ/mol -# deltafH -1165.8 kcal/mol - -analytic 1.106 -4.045e-2 0 0 0 9.229e-6 -# Range 0-300 - -Vm 139.221 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 78wol differ by 1.7 log K at 0C, 0.2 log K at 300C - -Okenite - CaSi2O4(OH)2:H2O + 2 H+ = Ca+2 + 2 SiO2 + 3 H2O - log_k 10.3816 - -delta_H -19.4974 kJ/mol -# deltafH -749.641 kcal/mol - -analytic -7.7353e1 1.5091e-2 1.3023e4 2.1337e1 -1.1831e6 -# Range 0-300 - -Vm 94.77 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 82sar/bar - -P - P + 1.5 H2O + 1.25 O2 = HPO4-2 + 2 H+ - log_k 132.1032 - -delta_H -848.157 kJ/mol -# deltafH 0 kJ/mol - -analytic -9.2727e1 -6.8342e-2 4.3465e4 4.0156e1 6.7826e2 -# Range 0-300 - -Vm 17.2 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref CWM89 - -Paragonite - NaAl3Si3O10(OH)2 + 10 H+ = Na+ + 3 Al+3 + 3 SiO2 + 6 H2O - log_k 17.5220 - -delta_H -275.056 kJ/mol -# deltafH -1416.96 kcal/mol - -analytic 3.5507e1 -1.0720e-2 1.3519e4 -2.2283e1 -4.5657e5 -# Range 0-350 - -Vm 132.53 -# Extrapol supcrt92 -# Ref HDN+78, differ by 2.5 log K at 0C, 0.6 log K at 350C, but match Wilson+06 - -Pargasite - NaCa2Al3Mg4Si6O22(OH)2 + 22 H+ = Na+ + 2 Ca+2 + 3 Al+3 + 4 Mg+2 + 6 SiO2 + 12 H2O - log_k 101.9939 - -delta_H -880.205 kJ/mol -# deltafH -3016.62 kcal/mol - -analytic -6.7889e1 -3.7817e-2 5.0493e4 9.2705 -1.0163e6 -# Range 0-350 - -Vm 273.5 -# Extrapol supcrt92 -# Ref HDN+78 - -Periclase - MgO + 2 H+ = H2O + Mg+2 - log_k 21.3354 - -delta_H -150.139 kJ/mol -# deltafH -143.8 kcal/mol - -analytic -8.8465e1 -1.8390e-2 1.0414e4 3.2469e1 1.6253e2 -# Range 0-350 - -Vm 11.248 -# Extrapol supcrt92 -# Ref HDN+78 - -Petalite - LiAlSi4O10 + 4 H+ = Al+3 + Li+ + 2 H2O + 4 SiO2 - log_k -3.8153 - -delta_H -13.1739 kJ/mol -# deltafH -4886.15 kJ/mol - -analytic -6.6355 2.4316e-2 1.5949e4 -1.3341e1 -2.2265e6 -# Range 0-300 - -Vm 128.4 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Phlogopite - KAlMg3Si3O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Mg+2 + 3 SiO2 + 6 H2O - log_k 37.4400 - -delta_H -310.503 kJ/mol -# deltafH -1488.07 kcal/mol - -analytic -8.7730e1 -1.7253e-2 2.3748e4 2.4465e1 -8.9045e5 -# Range 0-350 - -Vm 149.66 -# Extrapol supcrt92 -# Ref HDN+78 - -Polydymite - Ni3S4 + 2 H+ = S2-2 + 2 HS- + 3 Ni+2 - log_k -48.9062 -# deltafH -78.014 kcal/mol - -analytic -1.8030e1 -4.6945e-2 -1.1557e4 8.8339 -1.9625e2 -# Range 0-200 - -Vm 64.14 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 78vau/cra - -Portlandite - Ca(OH)2 + 2 H+ = Ca+2 + 2 H2O - log_k 22.5552 - -delta_H -128.686 kJ/mol -# deltafH -986.074 kJ/mol - -analytic -8.3848e1 -1.8373e-2 9.3154e3 3.2584e1 1.4538e2 -# Range 0-300 - -Vm 33.056 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref RHF79 - -Prehnite - Ca2Al2Si3O10(OH)2 + 10 H+ = 2 Al+3 + 2 Ca+2 + 3 SiO2 + 6 H2O - log_k 32.9305 - -delta_H -311.875 kJ/mol -# deltafH -1481.65 kcal/mol - -analytic -3.5763e1 -2.1396e-2 2.0167e4 6.3554 -7.4967e5 -# Range 0-350 - -Vm 140.33 -# Extrapol supcrt92 -# Ref HDN+78 - -Pseudowollastonite - CaSiO3 + 2 H+ = Ca+2 + H2O + SiO2 - log_k 13.9997 - -delta_H -79.4625 kJ/mol -# deltafH -388.9 kcal/mol - -analytic 2.6691e1 6.3323e-3 5.5723e3 -1.1822e1 -3.6038e5 -# Range 0-300 - -Vm 40.08 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 77bar/kna - -Pyridine - C5H5N + 6.25 O2 = 5 CO2 + 2.5 H2O + 0.5 N2 - log_k 490.7474 - -delta_H -669.9574 kcal/mol - -analytic 1071.04 -2.50773 0 0 0 0.00188 -# Range 0-350 - -Vm 64.4 -# Extrapol supcrt92 -# Ref Hel+98 - -Pyrite - FeS2 + H2O = 0.25 H+ + 0.25 SO4-2 + Fe+2 + 1.75 HS- - log_k -24.6534 - -delta_H 109.535 kJ/mol -# deltafH -41 kcal/mol - -analytic -2.4195e2 -8.7948e-2 -6.2911e2 9.9248e1 -9.7454 -# Range 0-350 - -Vm 23.94 -# Extrapol supcrt92 -# Ref HDN+78 - -Pyrolusite - MnO2 = 0.5 Mn+2 + 0.5 MnO4-2 - log_k -17.6439 - -delta_H 83.3804 kJ/mol -# deltafH -520.031 kJ/mol - -analytic -1.1541e2 -4.1665e-2 -1.8960e3 4.7094e1 -2.9551e1 -# Range 0-300 - -Vm 18.38 # Webmineral.com -# Extrapol Cp integration -# Ref RHF79 - -Pyrophyllite - Al2Si4O10(OH)2 + 6 H+ = 2 Al+3 + 4 H2O + 4 SiO2 - log_k 0.4397 - -delta_H -102.161 kJ/mol -# deltafH -1345.31 kcal/mol - -analytic 1.1066e1 1.2707e-2 1.6417e4 -1.9596e1 -1.8791e6 -# Range 0-350 - -Vm 126.6 -# Extrapol supcrt92 -# Ref HDN+78, Wilson+06 match - -Pyrrhotite - FeS + H+ = Fe+2 + HS- - log_k -3.7193 - -delta_H -7.9496 kJ/mol -# deltafH -24 kcal/mol - -analytic -1.5785e2 -5.2258e-2 3.9711e3 6.3195e1 6.2012e1 -# Range 0-350 - -Vm 18.2 -# Extrapol supcrt92 -# Ref HDN+78 - -Quartz - SiO2 = SiO2 - log_k -3.9993 - -delta_H 32.949 kJ/mol -# deltafH -217.65 kcal/mol - -analytic 7.7698e-2 1.0612e-2 3.4651e3 -4.3551 -7.2138e5 -# Range 0-350 - -Vm 22.68 -# Extrapol supcrt92 -# Ref HDN+78 - -Rankinite - Ca3Si2O7 + 6 H+ = 2 SiO2 + 3 Ca+2 + 3 H2O - log_k 51.9078 - -delta_H -302.089 kJ/mol -# deltafH -941.7 kcal/mol - -analytic -9.6393e1 -1.6592e-2 2.4832e4 3.2541e1 -9.4630e5 -# Range 0-300 - -Vm 96.13 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 77bar/kna - -Rhodochrosite - MnCO3 + H+ = HCO3- + Mn+2 - log_k -0.1928 - -delta_H -21.3426 kJ/mol -# deltafH -212.521 kcal/mol - -analytic -1.6195e2 -4.9344e-2 5.0937e3 6.4402e1 7.9531e1 -# Range 0-350 - -Vm 31.075 -# Extrapol supcrt92 -# Ref HDN+78 - -Rhodonite - MnSiO3 + 2 H+ = H2O + Mn+2 + SiO2 - log_k 9.7301 - -delta_H -64.7121 kJ/mol -# deltafH -1319.42 kJ/mol - -analytic 2.0585e1 4.9941e-3 4.5816e3 -9.8212 -3.0658e5 -# Range 0-300 - -Vm 35.87 # Webmineral.com -# Extrapol Cp integration -# Ref RHF79 - -Ripidolite - Mg3Fe2Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 2 Fe+2 + 3 Mg+2 + 3 SiO2 + 12 H2O - log_k 60.9638 - -delta_H -572.472 kJ/mol -# deltafH -1947.87 kcal/mol - -analytic 2.122e2 -6.025e-1 0 0 0 4.579e-4 -# Range 0-300 - -Vm 208.614 -# Extrapol supcrt92 -# Ref Catalano13 - -Rutherfordine - UO2CO3 + H+ = HCO3- + UO2+2 - log_k -4.1064 - -delta_H -19.4032 kJ/mol -# deltafH -1689.53 kJ/mol - -analytic -8.8224e1 -3.1434e-2 2.6675e3 3.4161e1 4.1650e1 -# Range 0-300 - -Vm 57.90 # Webmineral.com -# Extrapol Cp integration -# Ref 92gre/fug - -Rutile - TiO2 + 2 H2O = Ti(OH)4 - log_k -9.6452 -# deltafH -226.107 kcal/mol - -Vm 18.82 -# Ref RHF79 - -S - S + H2O = 0.5 O2 + H+ + HS- - log_k -45.0980 - -delta_H 263.663 kJ/mol -# deltafH 0 kJ/mol - -analytic -8.8928e1 -2.8454e-2 -1.1516e4 3.6747e1 -1.7966e2 -# Range 0-300 - -Vm 15.511 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref CWM89 - -Saleeite - Mg(UO2)2(PO4)2 + 2 H+ = Mg+2 + 2 HPO4-2 + 2 UO2+2 - log_k -19.4575 - -delta_H -110.816 kJ/mol -# deltafH -1189.61 kcal/mol - -analytic -6.0028e1 -4.4391e-2 3.9168e3 1.6428e1 6.6533e1 -# Range 0-200 - -Vm 285.77 # Webmineral.com -# Extrapol Constant H approx -# Ref 78lan - -Sanidine_high - KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 - log_k 0.9239 - -delta_H -35.0284 kJ/mol -# deltafH -946.538 kcal/mol - -analytic -3.4889 1.4495e-2 1.2856e4 -9.8978 -1.6572e6 -# Range 0-350 - -Vm 109.008 -# Extrapol supcrt92 -# Ref HDN+78 - -Saponite-Fe-Ca - Ca.175Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Ca+2 + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O - log_k 20.3624 - -analytic 5.992e1 -1.681e-1 0 0 0 1.174e-4 -# Range 0-300 - -Vm 143.506 -# Extrapol supcrt92 -# Ref Catalano13 - -Saponite-Fe-Fe - Fe3.175Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 3.175 Fe+2 + 3.65 SiO2 + 4.7 H2O - log_k 18.9359 - -analytic 5.762e1 -1.630e-1 0 0 0 1.099e-4 -# Range 0-300 - -Vm 142.672 -# Extrapol supcrt92 -# Ref Catalano13 - -Saponite-Fe-K - K.35Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 K+ + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O - log_k 18.7937 - -analytic 5.427e1 -1.504e-1 0 0 0 1.037e-4 -# Range 0-300 - -Vm 147.639 -# Extrapol supcrt92 -# Ref Catalano13 - -Saponite-Fe-Mg - Mg.175Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Mg+2 + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O - log_k 19.5290 - -analytic 5.870e1 -1.665e-1 0 0 0 1.163e-4 -# Range 0-300 - -Vm 142.541 -# Extrapol supcrt92 -# Ref Catalano13 - -Saponite-Fe-Na - Na.35Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Na+ + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O - log_k 19.7977 - -analytic 5.733e1 -1.597e-1 0 0 0 1.117e-4 -# Range 0-300 - -Vm 144.947 -# Extrapol supcrt92 -# Ref Catalano13 - -Saponite-Mg-Ca - Ca.175Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Ca+2 + 0.35 Al+3 + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O - log_k 26.2900 - -delta_H -207.971 kJ/mol -# deltafH -1436.51 kcal/mol - -analytic 8.088e1 -2.233e-1 0 0 0 1.655e-4 -# Range 0-300 - -Vm 141.250 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 78wol match - -Saponite-Mg-Fe - Fe.175Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Fe+2 + 0.35 Al+3 + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O - log_k 27.6789 - -analytic 7.825e1 -2.180e-1 0 0 0 1.612e-4 -# Range 0-300 - -Vm 140.416 -# Extrapol supcrt92 -# Ref Catalano13 - -Saponite-Mg-K - K.35Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 0.35 K+ + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O - log_k 26.0075 - -delta_H -196.402 kJ/mol -# deltafH -1437.74 kcal/mol - -analytic 7.522e1 -2.055e-1 0 0 0 1.517e-4 -# Range 0-300 - -Vm 145.383 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 78wol differ by 1.7 log K at 0C, 0.7 log K at 300C - -Saponite-Mg-Mg - Mg3.175Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 3.175 Mg+2 + 3.65 SiO2 + 4.7 H2O - log_k 26.2523 - -delta_H -210.822 kJ/mol -# deltafH -1432.79 kcal/mol - -analytic 7.965e1 -2.217e-1 0 0 0 1.644e-4 -# Range 0-300 - -Vm 140.285 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 78wol differ by 2.2 log K at 0C, 0.6 log K at 300C - -Saponite-Mg-Na - Na.35Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 0.35 Na+ + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O - log_k 26.3459 - -delta_H -201.401 kJ/mol -# deltafH -1435.61 kcal/mol - -analytic 7.829e1 -2.148e-1 0 0 0 1.598e-4 -# Range 0-300 - -Vm 142.691 -# Extrapol supcrt92, Cp integration -# Ref Catalano13, 78wol differ by 2.4 log K at 0C, 0.7 log K at 300C - -Sc - Sc + 3 H+ + 0.75 O2 = Sc+3 + 1.5 H2O - log_k 167.2700 - -delta_H -1033.87 kJ/mol -# deltafH 0 kJ/mol - -analytic -6.6922e1 -2.9150e-2 5.4559e4 2.4189e1 8.5137e2 -# Range 0-300 - -Vm 15.038 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref RHF79 - -Scacchite - MnCl2 = Mn+2 + 2 Cl- - log_k 8.7785 - -delta_H -73.4546 kJ/mol -# deltafH -481.302 kJ/mol - -analytic -2.3476e2 -8.2437e-2 9.0088e3 9.6128e1 1.4064e2 -# Range 0-300 - -Vm 42.27 # Webmineral.com -# Extrapol Cp integration -# Ref WEP+82 - -Schoepite - UO3:2H2O + 2 H+ = UO2+2 + 3 H2O - log_k 4.8333 - -delta_H -50.415 kJ/mol -# deltafH -1826.1 kJ/mol - -analytic 1.3645e1 1.0884e-2 2.5412e3 -8.3167e0 3.9649e1 -# Range 0-300 - -Vm 66.08 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 92gre/fug - -Scolecite - CaAl2Si3O10:3H2O + 8 H+ = Ca+2 + 2 Al+3 + 3 SiO2 + 7 H2O - log_k 15.8767 - -delta_H -204.93 kJ/mol -# deltafH -6048.92 kJ/mol - -analytic 5.0656e1 -3.1485e-3 1.0574e4 -2.5663e1 -5.2769e5 -# Range 0-300 - -Vm 172.29 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 83joh/flo - -Sepiolite - Mg4Si6O15(OH)2:6H2O + 8 H+ = 4 Mg+2 + 6 SiO2 + 11 H2O - log_k 30.4439 - -delta_H -157.339 kJ/mol -# deltafH -2418 kcal/mol - -analytic 1.8690e1 4.7544e-2 2.6765e4 -2.5301e1 -2.6498e6 -# Range 0-350 - -Vm 285.6 -# Extrapol supcrt92 -# Ref HDN+78 - -Si - Si + O2 = SiO2 - log_k 148.9059 - -delta_H -865.565 kJ/mol -# deltafH 0 kJ/mol - -analytic -5.7245e2 -7.6302e-2 8.3516e4 2.0045e2 -2.8494e6 -# Range 0-300 - -Vm 12.056 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref CWM89 - -Siderite - FeCO3 + H+ = Fe+2 + HCO3- - log_k -0.1920 - -delta_H -32.5306 kJ/mol -# deltafH -179.173 kcal/mol - -analytic -1.5990e2 -4.9361e-2 5.4947e3 6.3032e1 8.5787e1 -# Range 0-350 - -Vm 29.378 -# Extrapol supcrt92 -# Ref HDN+78 - -Sillimanite - Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O - log_k 16.3080 - -delta_H -238.442 kJ/mol -# deltafH -615.099 kcal/mol - -analytic -7.1610e1 -3.2196e-2 1.2493e4 2.2449e1 1.9496e2 -# Range 0-350 - -Vm 49.9 -# Extrapol supcrt92 -# Ref HDN+78 - -SiO2(am) - SiO2 = SiO2 - log_k -2.7136 - -delta_H 20.0539 kJ/mol -# deltafH -214.568 kcal/mol - -analytic 1.2109 7.0767e-3 2.3634e3 -3.4449 -4.8591e5 -# Range 0-325 - -Vm 29 -# Extrapol supcrt92 -# Ref HDN+78 - -Sm - Sm + 2 H+ + 0.5 O2 = H2O + Sm+2 - log_k 133.1614 - -delta_H -783.944 kJ/mol -# deltafH 0 kJ/mol - -analytic -7.1599e1 -2.0083e-2 4.2693e4 2.7291e1 6.6621e2 -# Range 0-300 - -Vm 19.98 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref RHF79 - -Smectite-high-Fe-Mg - Ca.025Na.1K.2Fe.5Fe.2Mg1.15Al1.25Si3.5H2O12 + 8 H+ = 0.025 Ca+2 + 0.1 Na+ + 0.2 Fe+3 + 0.2 K+ + 0.5 Fe+2 + 1.15 Mg+2 + 1.25 Al+3 + 3.5 SiO2 + 5 H2O - log_k 17.4200 - -delta_H -199.841 kJ/mol -# deltafH -1351.39 kcal/mol - -analytic -9.6102 1.2551e-3 1.8157e4 -7.9862 -1.3005e6 -# Range 0-300 - -Vm 139.07 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 78wol - -Smectite-low-Fe-Mg - Ca.02Na.15K.2Fe.29Fe.16Mg.9Al1.25Si3.75H2O12 + 7 H+ = 0.02 Ca+2 + 0.15 Na+ + 0.16 Fe+3 + 0.2 K+ + 0.29 Fe+2 + 0.9 Mg+2 + 1.25 Al+3 + 3.75 SiO2 + 4.5 H2O - log_k 11.0405 - -delta_H -144.774 kJ/mol -# deltafH -1352.12 kcal/mol - -analytic -1.7003e1 6.9848e-3 1.8359e4 -6.8896 -1.6637e6 -# Range 0-300 - -Vm 139.39 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 78wol - -Smithsonite - ZnCO3 + H+ = HCO3- + Zn+2 - log_k 0.4633 - -delta_H -30.5348 kJ/mol -# deltafH -194.26 kcal/mol - -analytic -1.6452e2 -5.0231e-2 5.5925e3 6.5139e1 8.7314e1 -# Range 0-350 - -Vm 28.275 -# Extrapol supcrt92 -# Ref HDN+78 - -Sphaerocobaltite - CoCO3 + H+ = Co+2 + HCO3- - log_k -0.2331 - -delta_H -30.7064 kJ/mol -# deltafH -171.459 kcal/mol - -analytic -1.5709e2 -4.8957e-2 5.3158e3 6.2075e1 8.2995e1 -# Range 0-300 - -Vm 28.8 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 84sve - -Sphalerite - ZnS + H+ = HS- + Zn+2 - log_k -11.4400 - -delta_H 35.5222 kJ/mol -# deltafH -49 kcal/mol - -analytic -1.5497e2 -4.8953e-2 1.7850e3 6.1472e1 2.7899e1 -# Range 0-350 - -Vm 23.83 -# Extrapol supcrt92 -# Ref HDN+78 - -Spinel - Al2MgO4 + 8 H+ = Mg+2 + 2 Al+3 + 4 H2O - log_k 37.6295 - -delta_H -398.108 kJ/mol -# deltafH -546.847 kcal/mol - -analytic -3.3895e2 -8.3595e-2 2.9251e4 1.2260e2 4.5654e2 -# Range 0-350 - -Vm 39.71 -# Extrapol supcrt92 -# Ref HDN+78 - -Spinel-Co - Co3O4 + 8 H+ = Co+2 + 2 Co+3 + 4 H2O - log_k -6.4852 - -delta_H -126.415 kJ/mol -# deltafH -891 kJ/mol - -analytic -3.2239e2 -8.0782e-2 1.4635e4 1.1755e2 2.2846e2 -# Range 0-300 - -Vm 39.41 # gfw/density -# Extrapol Cp integration -# Ref WEP+82 - -Spodumene - LiAlSi2O6 + 4 H+ = Al+3 + Li+ + 2 H2O + 2 SiO2 - log_k 6.9972 - -delta_H -89.1817 kJ/mol -# deltafH -3054.75 kJ/mol - -analytic -9.8111 2.1191e-3 9.6920e3 -3.0484 -7.8822e5 -# Range 0-300 - -Vm 58.37 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Stilbite - Ca1.019Na.136K.006Al2.18Si6.82O18:7.33H2O + 8.72 H+ = 0.006 K+ + 0.136 Na+ + 1.019 Ca+2 + 2.18 Al+3 + 6.82 SiO2 + 11.69 H2O - log_k 1.0545 - -delta_H -83.0019 kJ/mol -# deltafH -11005.7 kJ/mol - -analytic -2.4483e1 3.0987e-2 2.8013e4 -1.5802e1 -3.4491e6 -# Range 0-300 - -Vm 333.50 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 90how/joh - -Strengite - FePO4:2H2O + H+ = Fe+3 + HPO4-2 + 2 H2O - log_k -11.3429 - -delta_H -37.107 kJ/mol -# deltafH -1876.23 kJ/mol - -analytic -2.7752e2 -9.4014e-2 7.6862e3 1.0846e2 1.2002e2 -# Range 0-300 - -Vm 65.10 # Webmineral.com -# Extrapol Cp integration -# Ref RHF79 - -Sylvite - KCl = Cl- + K+ - log_k 0.8459 - -delta_H 17.4347 kJ/mol -# deltafH -104.37 kcal/mol - -analytic -8.1204e1 -3.3074e-2 8.2819e2 3.6014e1 1.2947e1 -# Range 0-350 - -Vm 37.524 -# Extrapol supcrt92 -# Ref HDN+78 - -Talc - Mg3Si4O10(OH)2 + 6 H+ = 3 Mg+2 + 4 H2O + 4 SiO2 - log_k 21.1383 - -delta_H -148.737 kJ/mol -# deltafH -1410.92 kcal/mol - -analytic 1.1164e1 2.4724e-2 1.9810e4 -1.7568e1 -1.8241e6 -# Range 0-350 - -Vm 136.25 -# Extrapol supcrt92 -# Ref HDN+78, Wilson+06 match - -Tarapacaite - K2CrO4 = CrO4-2 + 2 K+ - log_k -0.4037 - -delta_H 17.8238 kJ/mol -# deltafH -335.4 kcal/mol - -analytic 2.7953e1 -1.0863e-2 -2.7589e3 -6.4154e0 -4.6859e1 -# Range 0-200 - -Vm 70.87 # Webmineral.com -# Extrapol Constant H approx -# Ref 76del/hal - -Tenorite - CuO + 2 H+ = Cu+2 + H2O - log_k 7.6560 - -delta_H -64.5047 kJ/mol -# deltafH -37.2 kcal/mol - -analytic -8.9899e1 -1.8886e-2 6.0346e3 3.3517e1 9.4191e1 -# Range 0-350 - -Vm 12.22 -# Extrapol supcrt92 -# Ref HDN+78 - -Tephroite - Mn2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Mn+2 - log_k 23.0781 - -delta_H -160.1 kJ/mol -# deltafH -1730.47 kJ/mol - -analytic -3.2440e1 -1.1023e-2 8.8910e3 1.1691e1 1.3875e2 -# Range 0-300 - -Vm 47.52 # Webmineral.com -# Extrapol Cp integration -# Ref WEP+82 - -Th - Th + 4 H+ + O2 = Th+4 + 2 H2O - log_k 209.6028 - -delta_H -1328.56 kJ/mol -# deltafH 0 kJ/mol - -analytic -2.8256e1 -1.1963e-2 6.8870e4 4.2068e0 1.0747e3 -# Range 0-300 - -Vm 19.83 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref CWM89 - -Th(NO3)4:5H2O - Th(NO3)4:5H2O = Th+4 + 4 NO3- + 5 H2O - log_k 1.7789 - -delta_H -18.1066 kJ/mol -# deltafH -3007.35 kJ/mol - -analytic -1.2480e2 -2.0405e-2 5.1601e3 4.6613e1 8.7669e1 -# Range 0-200 - -Vm 203.62 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -Th(SO4)2 - Th(SO4)2 = Th+4 + 2 SO4-2 - log_k -20.3006 - -delta_H -46.1064 kJ/mol -# deltafH -2542.12 kJ/mol - -analytic -8.4525 -3.5442e-2 0 0 -1.1540e5 -# Range 0-200 - -Vm 100.39 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -Th2S3 - Th2S3 + 5 H+ + 0.5 O2 = H2O + 2 Th+4 + 3 HS- - log_k 95.2290 - -delta_H -783.243 kJ/mol -# deltafH -1082.89 kJ/mol - -analytic -3.2969e2 -1.1090e-1 4.6877e4 1.2152e2 7.3157e2 -# Range 0-300 - -Vm 71.19 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Th7S12 - Th7S12 + 16 H+ + O2 = 2 H2O + 7 Th+4 + 12 HS- - log_k 204.0740 - -delta_H -1999.4 kJ/mol -# deltafH -4136.58 kJ/mol - -analytic -2.1309e2 -1.4149e-1 9.8550e4 5.2042e1 1.6736e3 -# Range 0-200 - -Vm 248.02 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -ThCl4 - ThCl4 = Th+4 + 4 Cl- - log_k 23.8491 - -delta_H -251.094 kJ/mol -# deltafH -283.519 kcal/mol - -analytic -5.9340 -4.1640e-2 9.8623e3 3.6804 1.6748e2 -# Range 0-200 - -Vm 81.45 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 80lan/her - -ThS2 - ThS2 + 2 H+ = Th+4 + 2 HS- - log_k 10.7872 - -delta_H -175.369 kJ/mol -# deltafH -625.867 kJ/mol - -analytic -3.7691e1 -2.3714e-2 8.4673e3 1.0970e1 1.4380e2 -# Range 0-200 - -Vm 40.57 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref WEP+82 - -Thenardite - Na2SO4 = SO4-2 + 2 Na+ - log_k -0.3091 - -delta_H -2.33394 kJ/mol -# deltafH -1387.87 kJ/mol - -analytic -2.1202e2 -7.1613e-2 5.1083e3 8.7244e1 7.9773e1 -# Range 0-300 - -Vm 53.33 # Marion+05 -# Extrapol Cp integration -# Ref RHF79 - -Thermonatrite - Na2CO3:H2O + H+ = H2O + HCO3- + 2 Na+ - log_k 10.9623 - -delta_H -27.5869 kJ/mol -# deltafH -1428.78 kJ/mol - -analytic -1.4030e2 -3.5263e-2 5.7840e3 5.7528e1 9.0295e1 -# Range 0-300 - -Vm 54.92 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Thorianite - ThO2 + 4 H+ = Th+4 + 2 H2O - log_k 1.8624 - -delta_H -114.296 kJ/mol -# deltafH -1226.4 kJ/mol - -analytic -1.4249e1 -2.4645e-3 4.3110e3 -1.6605e-2 2.1598e5 -# Range 0-300 - -Vm 26.373 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref CWM89 - -Ti - Ti + 2 H2O + O2 = Ti(OH)4 - log_k 149.2978 -# deltafH 0 kJ/mol - -Vm 10.631 # thermo.com.V8.R6+.tdat -# Ref CWM89 - -Ti2O3 - Ti2O3 + 4 H2O + 0.5 O2 = 2 Ti(OH)4 - log_k 42.9866 -# deltafH -1520.78 kJ/mol - -Vm 32.02 # gfw/density -# Ref WEP+82 - -Ti3O5 - Ti3O5 + 6 H2O + 0.5 O2 = 3 Ti(OH)4 - log_k 34.6557 -# deltafH -2459.24 kJ/mol - -Vm 48.93 # gfw/density -# Ref WEP+82 - -TiB2 - TiB2 + 5 H2O + 2.5 O2 = Ti(OH)4 + 2 B(OH)3 - log_k 312.4194 -# deltafH -323.883 kJ/mol - -Vm 15.37 # gfw/density -# Ref WEP+82 - -TiC - TiC + 3 H2O + 2 O2 = H+ + HCO3- + Ti(OH)4 - log_k 181.8139 -# deltafH -184.346 kJ/mol - -Vm 12.15 # gfw/density -# Ref WEP+82 - -TiCl2 - TiCl2 + 3 H2O + 0.5 O2 = Ti(OH)4 + 2 Cl- + 2 H+ - log_k 70.9386 -# deltafH -514.012 kJ/mol - -Vm 37.95 # gfw/density -# Ref WEP+82 - -TiCl3 - TiCl3 + 3.5 H2O + 0.25 O2 = Ti(OH)4 + 3 Cl- + 3 H+ - log_k 39.3099 -# deltafH -720.775 kJ/mol - -Vm 58.42 # gfw/density -# Ref WEP+82 - -TiN - TiN + 3.5 H2O + 0.25 O2 = NH3 + Ti(OH)4 - log_k 35.2344 -# deltafH -338.304 kJ/mol - -Vm 11.46 # gfw/density -# Ref WEP+82 - -Titanite - CaTiSiO5 + 2 H+ + H2O = Ca+2 + SiO2 + Ti(OH)4 - log_k 719.5839 -# deltafH 0 kcal/mol - -Vm 55.65 -# Ref RHF79 - -Tobermorite-11A - Ca5Si6H11O22.5 + 10 H+ = 5 Ca+2 + 6 SiO2 + 10.5 H2O - log_k 65.6121 - -delta_H -286.861 kJ/mol -# deltafH -2556.42 kcal/mol - -analytic 7.9123e1 3.9150e-2 2.9429e4 -3.9191e1 -2.4122e6 -# Range 0-300 - -Vm 286.81 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 82sar/bar - -Tremolite - Ca2Mg5Si8O22(OH)2 + 14 H+ = 2 Ca+2 + 5 Mg+2 + 8 H2O + 8 SiO2 - log_k 61.2367 - -delta_H -406.404 kJ/mol -# deltafH -2944.04 kcal/mol - -analytic 8.5291e1 4.6337e-2 3.9465e4 -5.4414e1 -3.1913e6 -# Range 0-350 - -Vm 272.92 -# Extrapol supcrt92 -# Ref HDN+78 - -Trevorite - NiFe2O4 + 8 H+ = Ni+2 + 2 Fe+3 + 4 H2O - log_k 9.7876 - -delta_H -215.338 kJ/mol -# deltafH -1081.15 kJ/mol - -analytic -1.4322e2 -2.9429e-2 1.4518e4 4.5698e1 2.4658e2 -# Range 0-200 - -Vm 44.89 # Webmineral.com -# Extrapol Constant H approx -# Ref RHF79 - -Tridymite - SiO2 = SiO2 - log_k -3.8278 - -delta_H 31.3664 kJ/mol -# deltafH -909.065 kJ/mol - -analytic 3.1594e2 6.9315e-2 -1.1358e4 -1.2219e2 -1.9299e2 -# Range 0-200 - -Vm 26.12 # Webmineral.com -# Extrapol Constant H approx -# Ref WEP+82 - -Troilite - FeS + H+ = Fe+2 + HS- - log_k -3.8184 - -delta_H -7.3296 kJ/mol -# deltafH -101.036 kJ/mol - -analytic -1.6146e2 -5.3170e-2 4.0461e3 6.4620e1 6.3183e1 -# Range 0-300 - -Vm 19.07 # Webmineral.com -# Extrapol Cp integration -# Ref RHF79 - -U - U + 2 H+ + 1.5 O2 = H2O + UO2+2 - log_k 212.7800 - -delta_H -1286.64 kJ/mol -# deltafH 0 kJ/mol - -analytic -2.4912e2 -4.7104e-2 8.1115e4 8.7008e1 -1.0158e6 -# Range 0-300 - -Vm 12.49 # Webelements.com -# Extrapol Cp integration -# Ref CWM89 - -U2O2Cl5 - U2O2Cl5 = U+4 + UO2+ + 5 Cl- - log_k 19.2752 - -delta_H -254.325 kJ/mol -# deltafH -2197.4 kJ/mol - -analytic -4.3945e2 -1.6239e-1 2.1694e4 1.7551e2 3.3865e2 -# Range 0-300 - -Vm 142.48 # gfw/density -# Extrapol Cp integration -# Ref 92gre/fug - -U3S5 - U3S5 + 5 H+ = U+4 + 2 U+3 + 5 HS- - log_k -0.3680 - -delta_H -218.942 kJ/mol -# deltafH -1431 kJ/mol - -analytic -1.1011e2 -6.7959e-2 1.0369e4 3.8481e1 1.7611e2 -# Range 0-200 - -Vm 106.12 # gfw/density -# Extrapol Constant H approx -# Ref 92gre/fug - -UC - UC + 2 H+ + 1.75 O2 = 0.5 H2O + HCO3- + U+3 - log_k 194.8241 - -delta_H -1202.82 kJ/mol -# deltafH -97.9 kJ/mol - -analytic -4.6329e1 -4.4600e-2 6.1417e4 1.9566e1 9.5836e2 -# Range 0-300 - -Vm 18.34 # gfw/density -# Extrapol Cp integration -# Ref 92gre/fug - -UCl3 - UCl3 = U+3 + 3 Cl- - log_k 13.0062 - -delta_H -126.639 kJ/mol -# deltafH -863.7 kJ/mol - -analytic -2.6388e2 -1.0241e-1 1.1629e4 1.0846e2 1.8155e2 -# Range 0-300 - -Vm 62.62 # gfw/density -# Extrapol Cp integration -# Ref 92gre/fug - -UCl4 - UCl4 = U+4 + 4 Cl- - log_k 21.9769 - -delta_H -240.719 kJ/mol -# deltafH -1018.8 kJ/mol - -analytic -3.6881e2 -1.3618e-1 1.9685e4 1.4763e2 3.0727e2 -# Range 0-300 - -Vm 78.00 # gfw/density -# Extrapol Cp integration -# Ref 92gre/fug - -UCl6 - UCl6 + 2 H2O = UO2+2 + 4 H+ + 6 Cl- - log_k 57.5888 - -delta_H -383.301 kJ/mol -# deltafH -1066.5 kJ/mol - -analytic -4.5589e2 -1.9203e-1 2.8029e4 1.9262e2 4.3750e2 -# Range 0-300 - -Vm 125.21 # gfw/density -# Extrapol Cp integration -# Ref 92gre/fug - -UH3(beta) - UH3 + 3 H+ + 1.5 O2 = U+3 + 3 H2O - log_k 199.7683 - -delta_H -1201.43 kJ/mol -# deltafH -126.98 kJ/mol - -analytic 5.2870e1 4.2151e-3 6.0167e4 -2.2701e1 1.0217e3 -# Range 0-200 - -Vm 22.01 # gfw/density -# Extrapol Constant H approx -# Ref 92gre/fug - -UN - UN + 3 H+ = NH3 + U+3 - log_k 41.7130 - -delta_H -280.437 kJ/mol -# deltafH -290 kJ/mol - -analytic -1.6393e2 -1.1679e-3 2.8845e3 6.5637e1 3.0122e6 -# Range 0-300 - -Vm 45.85 # gfw/density -# Extrapol Cp integration -# Ref 92gre/fug - -UO2(NO3)2 - UO2(NO3)2 = UO2+2 + 2 NO3- - log_k 11.9598 - -delta_H -81.6219 kJ/mol -# deltafH -1351 kJ/mol - -analytic -1.2216e1 -1.1261e-2 3.9895e3 5.7166 6.7751e1 -# Range 0-200 - -Vm 140.23 # gfw/density -# Extrapol Constant H approx -# Ref 92gre/fug - -UO2(NO3)2:6H2O - UO2(NO3)2:6H2O = UO2+2 + 2 NO3- + 6 H2O - log_k 2.3189 - -delta_H 19.8482 kJ/mol -# deltafH -3167.5 kJ/mol - -analytic -1.4019e2 -4.3682e-2 2.7842e3 5.9070e1 4.3486e1 -# Range 0-300 - -Vm 178.88 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 92gre/fug - -UO2(OH)2(beta) - UO2(OH)2 + 2 H+ = UO2+2 + 2 H2O - log_k 4.9457 - -delta_H -56.8767 kJ/mol -# deltafH -1533.8 kJ/mol - -analytic -1.7478e1 -1.6806e-3 3.4226e3 4.6260 5.3412e1 -# Range 0-300 - -Vm 51.31 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref 92gre/fug - -UO2SO4 - UO2SO4 = SO4-2 + UO2+2 - log_k 1.9681 - -delta_H -83.4616 kJ/mol -# deltafH -1845.14 kJ/mol - -analytic -1.5677e2 -6.5310e-2 6.7411e3 6.2867e1 1.0523e2 -# Range 0-300 - -Vm 111.61 # gfw/density -# Extrapol Cp integration -# Ref 92gre/fug - -UO2SO4:3H2O - UO2SO4:3H2O = SO4-2 + UO2+2 + 3 H2O - log_k -1.4028 - -delta_H -34.6176 kJ/mol -# deltafH -2751.5 kJ/mol - -analytic -5.0134e1 -1.0321e-2 3.0505e3 1.6799e1 5.1818e1 -# Range 0-200 - -Vm 108.34 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 92gre/fug - -UO3(beta) - UO3 + 2 H+ = H2O + UO2+2 - log_k 8.3095 - -delta_H -84.5383 kJ/mol -# deltafH -1220.3 kJ/mol - -analytic -1.2298e1 -1.7800e-3 4.5621e3 2.3593 7.1191e1 -# Range 0-300 - -Vm 34.46 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 92gre/fug - -Uraninite - UO2 + 4 H+ = U+4 + 2 H2O - log_k -4.8372 - -delta_H -77.8767 kJ/mol -# deltafH -1085 kJ/mol - -analytic -7.5776e1 -1.0558e-2 5.9677e3 2.1853e1 9.3142e1 -# Range 0-325 - -Vm 24.638 -# Extrapol Cp integration -# Ref CWM89, SSB97 match - -Vaesite - NiS2 + H2O = 0.25 H+ + 0.25 SO4-2 + Ni+2 + 1.75 HS- - log_k -26.7622 - -delta_H 110.443 kJ/mol -# deltafH -32.067 kcal/mol - -analytic 1.6172e1 -2.2673e-2 -8.2514e3 -3.4392 -1.4013e2 -# Range 0-200 - -Vm 27.697 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 78vau/cra - -Wairakite - CaAl2Si4O10(OH)4 + 8 H+ = Ca+2 + 2 Al+3 + 4 SiO2 + 6 H2O - log_k 18.0762 - -delta_H -237.781 kJ/mol -# deltafH -1579.33 kcal/mol - -analytic -1.7914e1 3.2944e-3 2.2782e4 -9.0981 -1.6934e6 -# Range 0-350 - -Vm 186.87 -# Extrapol supcrt92 -# Ref HDN+78 - -Wollastonite - CaSiO3 + 2 H+ = Ca+2 + H2O + SiO2 - log_k 13.7605 - -delta_H -76.5756 kJ/mol -# deltafH -389.59 kcal/mol - -analytic 3.0931e1 6.7466e-3 5.1749e3 -1.3209e1 -3.4579e5 -# Range 0-350 - -Vm 39.93 -# Extrapol supcrt92 -# Ref HDN+78 - -Wurtzite - ZnS + H+ = HS- + Zn+2 - log_k -9.1406 - -delta_H 22.3426 kJ/mol -# deltafH -45.85 kcal/mol - -analytic -1.5446e2 -4.8874e-2 2.4551e3 6.1278e1 3.8355e1 -# Range 0-350 - -Vm 23.846 -# Extrapol supcrt92 -# Ref HDN+78 - -Wustite - Fe.947O + 2 H+ = 0.106 Fe+3 + 0.841 Fe+2 + H2O - log_k 12.4113 - -delta_H -102.417 kJ/mol -# deltafH -266.265 kJ/mol - -analytic -7.6919e1 -1.8433e-2 7.3823e3 2.8312e1 1.1522e2 -# Range 0-300 - -Vm 12.04 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref WEP+82 - -Xonotlite - Ca6Si6O17(OH)2 + 12 H+ = 6 Ca+2 + 6 SiO2 + 7 H2O - log_k 91.8267 - -delta_H -495.457 kJ/mol -# deltafH -2397.25 kcal/mol - -analytic 1.6080e3 3.7309e-1 -2.2548e4 -6.2716e2 -3.8346e2 -# Range 0-200 - -Vm 264.81 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 82sar/bar - -Zincite - ZnO + 2 H+ = H2O + Zn+2 - log_k 11.2087 - -delta_H -88.7638 kJ/mol -# deltafH -350.46 kJ/mol - -analytic -8.6681e1 -1.9324e-2 7.1034e3 3.2256e1 1.1087e2 -# Range 0-350 - -Vm 14.338 -# Extrapol supcrt92, Cp integration -# Ref SSW+97, CWM89 match - -Zn - Zn + 2 H+ + 0.5 O2 = H2O + Zn+2 - log_k 68.8035 - -delta_H -433.157 kJ/mol -# deltafH 0 kJ/mol - -analytic -6.4131e1 -2.0009e-2 2.3921e4 2.3702e1 3.7329e2 -# Range 0-300 - -Vm 9.162 # thermo.com.V8.R6+.tdat -# Extrapol Cp integration -# Ref CWM89 - -Zn(NO3)2:6H2O - Zn(NO3)2:6H2O = Zn+2 + 2 NO3- + 6 H2O - log_k 3.4102 - -delta_H 24.7577 kJ/mol -# deltafH -2306.8 kJ/mol - -analytic -1.7152e2 -1.6875e-2 5.6291e3 6.5094e1 9.5649e1 -# Range 0-200 - -Vm 144.06 # gfw/density -# Extrapol Constant H approx -# Ref WEP+82 - -Zn(OH)2(beta) - Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O - log_k 11.9341 - -delta_H -83.2111 kJ/mol -# deltafH -641.851 kJ/mol - -analytic -7.7810e1 -7.8548e-3 7.1994e3 2.7455e1 1.2228e2 -# Range 0-200 - -Vm 32.60 # gfw/density -# Extrapol Constant H approx -# Ref WEP+82 - -Zn(OH)2(epsilon) - Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O - log_k 11.6625 - -delta_H -81.7811 kJ/mol -# deltafH -643.281 kJ/mol - -analytic -7.7938e1 -7.8767e-3 7.1282e3 2.7496e1 1.2107e2 -# Range 0-200 - -Vm 32.60 # gfw/density -# Extrapol Constant H approx -# Ref WEP+82 - -Zn2SiO4 - Zn2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Zn+2 - log_k 13.8695 - -delta_H -119.399 kJ/mol -# deltafH -1636.75 kJ/mol - -analytic 2.0970e2 5.3663e-2 -1.2724e2 -8.5445e1 -2.2336 -# Range 0-200 - -Vm 55.03 # Webmineral.com -# Extrapol Constant H approx -# Ref WEP+82 - -ZnCl2 - ZnCl2 = Zn+2 + 2 Cl- - log_k 7.0880 - -delta_H -72.4548 kJ/mol -# deltafH -415.09 kJ/mol - -analytic -1.6157e1 -2.5405e-2 2.6505e3 8.8584 4.5015e1 -# Range 0-200 - -Vm 46.84 # gfw/density -# Extrapol Constant H approx -# Ref WEP+82 - -ZnCr2O4 - ZnCr2O4 + 8 H+ = Zn+2 + 2 Cr+3 + 4 H2O - log_k 7.9161 - -delta_H -221.953 kJ/mol -# deltafH -370.88 kcal/mol - -analytic -1.7603e2 -1.0217e-2 1.7414e4 5.1966e1 2.9577e2 -# Range 0-200 - -Vm 44.03 # thermo.com.V8.R6+.tdat -# Extrapol Constant H approx -# Ref 76del/hal - -ZnSO4 - ZnSO4 = SO4-2 + Zn+2 - log_k 3.5452 - -delta_H -80.132 kJ/mol -# deltafH -982.855 kJ/mol - -analytic 6.9905 -1.8046e-2 2.2566e3 -2.2819 3.8318e1 -# Range 0-200 - -Vm 45.61 # gfw/density -# Extrapol Constant H approx -# Ref WEP+82 - -ZnSO4:6H2O - ZnSO4:6H2O = SO4-2 + Zn+2 + 6 H2O - log_k -1.6846 - -delta_H -0.412008 kJ/mol -# deltafH -2777.61 kJ/mol - -analytic -1.4506e2 -1.8736e-2 5.2179e3 5.3121e1 8.8657e1 -# Range 0-200 - -Vm 130.08 # gfw/density -# Extrapol Constant H approx -# Ref WEP+82 - -Zoisite - Ca2Al3(SiO4)3OH + 13 H+ = 2 Ca+2 + 3 Al+3 + 3 SiO2 + 7 H2O - log_k 43.3017 - -delta_H -458.131 kJ/mol -# deltafH -1643.69 kcal/mol - -analytic 2.5321 -3.5886e-2 1.9902e4 -6.2443 3.1055e2 -# Range 0-350 - -Vm 135.9 -# Extrapol supcrt92 -# Ref HDN+78 differ by 2.5 log K at 0C, 0.6 log K at 350C - -#---------- -# 15 gases -#---------- - -C2H4(g) - C2H4 = C2H4 - log_k -2.323631 - -delta_H -3.930 kcal/mol - -analytic -14.5616 0.0176 2192.2 0 0 -3.8657e-6 -# Range 0-350 - -T_c 283 # K - -P_c 50.53 - -Omega 0.085 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf -# Extrapol supcrt92 -# Ref Sho93 - -C2H6(g) - C2H6 = C2H6 - log_k -2.93276 - -delta_H -4.509 kcal/mol - -analytic -23.1154 0.0354 3289.1 0 0 -1.5637e-5 -# Range 0-350 - -T_c 305 # K - -P_c 48.16 - -Omega 0.100 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf -# Extrapol supcrt92 -# Ref HOK+98 - -C3H8(g) - C3H8 = C3H8 - log_k -2.876 - -analytic 1.885 -2.55e-2 0 0 0 3.20e-5 # Not the best -# Range 0-350 - -T_c 369.522 # K - -P_c 42.4924 - -Omega 0.152 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf -# Extrapol supcrt92 -# Ref HOK+98 - -CH4(g) - CH4 = CH4 - log_k -2.8502 - -delta_H -13.0959 kJ/mol -# deltafH -17.88 kcal/mol - -analytic -24.027 4.7146e-3 372.27 6.4264 2.3362e5 -# Range 0-350 - -T_c 190.6 # K - -P_c 45.40 - -Omega 0.008 # phreeqc.dat -# Extrapol supcrt92 -# Ref WEP+82, Kel60 - -CO(g) - CO = CO - log_k -3.0068 - -delta_H -10.4349 kJ/mol -# deltafH -26.416 kcal/mol - -analytic -8.0849 9.2114e-3 0 0 2.0813e5 -# Range 0-350 - -T_c 133 # K - -P_c 34.54 - -Omega 0.049 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf -# Extrapol supcrt92 -# Ref Sho93 - -CO2(g) - CO2 + H2O = H+ + HCO3- - log_k -7.8136 - -delta_H -10.5855 kJ/mol -# deltafH -94.051 kcal/mol - -analytic -8.5938e1 -3.0431e-2 2.0702e3 3.2427e1 3.2328e1 -# Range 0-350 - -T_c 304.25 # K - -P_c 72.83 # atm, 7.38 MPa, http://webbook.nist.gov/cgi/cbook.cgi?ID=C124389&Units=SI&Mask=4#Thermo-Phase - -Omega 0.225 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf -# Extrapol supcrt92 -# Ref WEP+82, Kel60 - -H2(g) - H2 = H2 - log_k -3.1050 - -delta_H -4.184 kJ/mol -# deltafH 0 kcal/mol - -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 -# Range 0-350 - -T_c 33.2 # K - -P_c 12.80 - -Omega 0.225 # phreeqc.dat -# Extrapol supcrt92 -# Ref WEP+82, Kel60 - -H2O(g) - H2O = H2O - log_k 1.5854 - -delta_H -43.4383 kJ/mol -# deltafH -57.935 kcal/mol - -analytic -1.4782e1 1.0752e-3 2.7519e3 2.7548 4.2945e1 -# Range 0-350 - -T_c 647.3 # K - -P_c 218.31 - -Omega 0.344 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf -# Extrapol supcrt92 -# Ref Joh90 - -H2S(g) - H2S = H+ + HS- - log_k -7.9759 - -delta_H 4.5229 kJ/mol -# deltafH -4.931 kcal/mol - -analytic -97.354 -3.1576e-2 1.8285e3 37.44 28.56 -# Range 0-350 - -T_c 373.2 # K - -P_c 88.20 - -Omega 0.1 -# Extrapol supcrt92 -# Ref WEP+82, Kel60 - -N2(g) - N2 = N2 - log_k -3.1864 - -delta_H -10.4391 kJ/mol -# deltafH 0 kcal/mol - -analytic -58.453 1.818e-3 3199 17.909 -27460 # phreeqc.dat -# Range 0-350 - -T_c 126.2 # K - -P_c 33.50 - -Omega 0.039 -# Extrapol supcrt92 -# Ref WEP+82, Kel60 - -NH3(g) - NH3 = NH3 - log_k 1.7966 - -delta_H -35.2251 kJ/mol -# deltafH -11.021 kcal/mol - -analytic -18.758 3.3670e-4 2.5113e3 4.8619 39.192 -# Range 0-350 - -T_c 405.6 # K - -P_c 111.3 - -Omega 0.25 -# Extrapol supcrt92 -# Ref WEP+82, Kel60 - -NO(g) - NO + 0.5 H2O + 0.25 O2 = H+ + NO2- - log_k 0.7554 - -delta_H -48.8884 kJ/mol -# deltafH 90.241 kJ/mol - -analytic 8.2147 -1.2708e-1 -6.0593e3 2.0504e1 -9.4551e1 -# Range 0-300 - -T_c 180 # K - -P_c 64.64 - -Omega 0.607 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf -# Extrapol supcrt92, Cp integration -# Ref AS01, WEP+82 differ by 0.2 log K at 0C, 17 log K at 350C !! flag - -NO2(g) - NO2 + 0.5 H2O + 0.25 O2 = H+ + NO3- - log_k 8.3673 - -delta_H -94.0124 kJ/mol -# deltafH 33.154 kJ/mol - -analytic 9.4389e1 -2.7511e-1 -1.6783e4 2.1127e1 -2.6191e2 -# Range 0-300 - -T_c 431 # K - -P_c 99.67 - -Omega 0 # Not found -# Extrapol Cp integration -# Ref WEP+82 - -O2(g) - O2 = O2 - log_k -2.8983 - -delta_H -12.1336 kJ/mol -# deltafH 0 kcal/mol - -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 -# Range 0-300 - -T_c 154.6 # K phreeqc.dat - -P_c 49.80 # phreeqc.dat - -Omega 0.021 # phreeqc.dat -# Extrapol supcrt92 -# Ref WEP+82, Kel60 - -SO2(g) - SO2 = SO2 - log_k 0.1700 - -delta_H 0 -# deltafH 0 kcal/mol - -analytic -2.0205e1 2.8861e-3 1.4862e3 5.2958 1.2721e5 -# Range 0-300 - -T_c 430 # K - -P_c 77.67 - -Omega 0.251 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf -# Extrapol supcrt92 +# Marc Neveu - created March 2, 2017. Last edited April 16, 2018. mneveu@asu.edu +# Reference for database description: Neveu M., Desch S. J., Castillo-Rogez J. C. (2017) +# Aqueous geochemistry in icy world interiors: Equilibrium fluid, rock, and gas compositions, +# and fate of antifreezes and radionuclides. Geochimica et Cosmochimica Acta 212, 324-371. + # http://dx.doi.org/10.1016/j.gca.2017.06.023 +# +# Downloaded April 26, 2018 +# +# Paraphrase from abstract: +# This database is a compilation and careful validation of a +# comprehensive PHREEQC database, which combines the advantages +# of the default databases phreeqc.dat (carefully vetted data, molar volumes) +# and llnl.dat (large diversity of species), and should be of broad use to +# anyone seeking to model aqueous geochemistry at pressures that +# differ from 1 bar. +# +# Extrapolation algorithms: +# 64cri/cob: ? (12 aq species, all also with supcrt92) +# Cp integration = Integration of heat capacity vs. temperature measurements (162 solids, 2 gases) +# Constant H approx = Constant enthalpy approximation (76 solids) +# 69hel: http://dx.doi.org/10.2475/ajs.267.7.729 (5 aq species) +# Marion+12 (NH4Cl, NH4HCO3) +# supcrt92 = SUPCRT92 (329 aq, solids, gases) +# N17 ([(6)(CB)(CB)S], NH4-feldspar, NH4-muscovite) +# +# References: +# APP14: http://dx.doi.org/10.1016/j.gca.2013.10.003 (25 molar volumes, see phreeqc.dat) +# AS01: http://dx.doi.org/10.1016/S0168-6445(00)00062-0 (NO(g)) +# BH86: Barta and Hepler, 1986, Can. J.C. 64, 353. (Al+3, AlOH+2 molar volumes) +# Catalano13: http://dx.doi.org/10.1002/jgre.20161 (23 saponites + ripidolite) +# CWM89: http://www.worldcat.org/oclc/18559968 (20 solids, incl. 14 elemental) +# E68: Ellis, 1968, J. Chem. Soc. A, 1138. (Li+ molar volume) +# HDN+78: http://www.worldcatlibraries.org/oclc/13594862 (117 solids) +# Hel+98: http://dx.doi.org/10.1016/S0016-7037(97)00219-6 (Pyridine) +# Hel+09: http://dx.doi.org/10.1016/j.gca.2008.03.004 (Kerogen C128, C292, C515) +# HOK+98: http://dx.doi.org/10.1016/S0016-7037(97)00219-6 (C2H6(g), C3H8(g)) +# Hovis04: http://dx.doi.org/10.2138/am-2004-0111 (NH4-muscovite molar volume) +# HSS95: http://dx.doi.org/10.1016/0016-7037(95)00314-P (55 solutes) +# Joh90: Johnson, J.W., 1990, Personal calculation, Parameters given provide smooth metastable extrapolation of one-bar steam properties predicted by the Haar et al. (1984) equation of state to temperatures < the saturation temperature (99.632 C): Earch Sci. Dept, LLNL, Livermore, CA. (H2O(g)) +# Kel60: http://www.worldcat.org/oclc/693388901 (8 gases) +# M13: McColm I. J. (2013) Dictionary of Ceramic Science and Engineering, p.72. (CaUO4 molar volume) +# Marion+03: http://dx.doi.org/10.1016/S0016-7037(03)00372-7 (FeOH+) +# Marion+05: http://dx.doi.org/10.1016/j.gca.2004.06.024 (Arcanite, Gypsum, Niter, Thenardite molar volumes) +# Marion+08: http://dx.doi.org/10.1016/j.gca.2007.10.012 (FeOH+, FeOH+2, Melanterite molar volume) +# Marion+09: http://dx.doi.org/10.1016/j.gca.2009.03.013 (Alum-K molar volume) +# Marion+12: http://dx.doi.org/10.1016/j.icarus.2012.06.016 (NH4Cl, NH4HCO3) +# MLS+03: http://dx.doi.org/10.2138/am-2003-5-613 (Goethite) +# MS97: http://dx.doi.org/10.1016/S0016-7037(97)00241-X (HCl, MgSO4) +# N17: http://dx.doi.org/10.1016/j.gca.2017.06.023 ([(6)(CB)(CB)S], NH4-feldspar, NH4-muscovite) +# R01: http://dx.doi.org/10.1016/S0016-7037(01)00761-X ([(6)(CB)(CB)S]) +# RHF79: http://pubs.er.usgs.gov/publication/b1452 (40 solids) +# RH98: http://dx.doi.org/10.1016/S0016-7037(97)00345-1 ([(aro)-O-(aro)], Kerogen C128, C292, C515) +# SH88: http://dx.doi.org/10.1016/0016-7037(88)90181-0 (42 solutes, 1 solid) +# SH90: http://dx.doi.org/10.1016/0016-7037(90)90429-O (6 organic solutes) +# Sho93: http://dx.doi.org/10.1016/0016-7037(93)90542-5 (C2H4(g), CO(g)) +# Sho95: http://dx.doi.org/10.2475/ajs.295.5.496 (4 organic solutes) +# Sho09: http://dx.doi.org/10.2113/gsecongeo.104.8.1235 (Goethite) +# SHS89: http://dx.doi.org/10.1016/0016-7037(89)90341-4 (11 solutes) +# SK93: http://dx.doi.org/10.1016/0016-7037(93)90128-J (44 acetic acid/acetate complexes) +# SS93: http://dx.doi.org/10.1016/0016-7037(93)90337-V (CH2O) +# SM93: http://dx.doi.org/10.1006/icar.1993.1185 (CO, CO(NH2)2, HCN solutes) +# SSB97: http://dx.doi.org/10.1016/S0016-7037(97)00240-8 (UO2OH+, Uraninite) +# SSH97: http://dx.doi.org/10.1016/S0016-7037(97)00009-4 (30 solutes) +# SSW01: http://dx.doi.org/10.1016/S0016-7037(01)00717-7 (CO2, H2S) +# Ste01: http://dx.doi.org/10.1016/S0009-2541(00)00263-1 (Ti(OH)4) +# Wat81: “Ammonium Aluminosilicates: The Examination of a Mechanism for the High Temperature Condensation of Ammonia in Circumplanetary Subnebulae” MS Thesis, MIT, 1981. (NH4-feldspar, NH4-muscovite) +# WEP+82: http://dx.doi.org/10.1063/1.555845 (87 solutes, solids, and gases) +# WebElements: http://www.webelements.com/periodicity/molar_volume (K, U molar volumes) +# WebMineral: http://www.webmineral.com (38 solid molar volumes) +# Wilson+06: http://dx.doi.org/10.1016/j.gca.2005.10.003 (Chamosite, Lizardite) +# +# 73bar/kna: Barin, I., and Knacke, O., 1973, Thermochemical properties of inorganic substances: Springer-Verlag, New York. (Alum-K, MgOHCl, Na2SiO3, Nahcolite) +# 77bar/kna: Barin, I., Knacke, O., and Kubaschewski, O., 1977, Thermochemical properties of inorganic substances. Supplement: Springer-Verlag, New York. (Natrosilite, Pseudowollastonite, Rankinite) +# 87bou/bar: http://dx.doi.org/10.2113/gsecongeo.82.7.1839 (ZnOH+) +# 88db 3: Database development group iii/3, 1988, Errors in computation of estimated delH298 for montmor-x endmembers of smectite-di solid solution: LLNL Internal Memo. (Montmor-Ca, K, Mg, Na) +# 89db 7=89db 6, Database development group, 1989, Zeolite thermodynamic data: LLNL Internal memo. (Clinoptilolite-Ca, K, Na, Mesolite) +# 76del/hal: http://dx.doi.org/10.1021/cr60301a001 (2 Cr solutes, 9 Cr solids) +# 92gre/fug: Grenthe, I., Fuger, J., Konings, R.J.M., Lemire, R.J., Muller, A.B., Nguyen-Trung, C., and Wanner, H., 1992, Chemical Thermodynamics, Volume 1: Chemical Thermodynamics of Uranium: North-Holland, Amsterdam, 1, 714p. (4 U solutes, 21 U solids) +# 90how/joh: http://dx.doi.org/10.1016/S0144-2449(05)80307-0 (Stilbite) +# 82joh/flo: Johnson, G.K., Flotow, H.E., O'Hare, P.A.G., and Wise, W.S., 1982, Thermodynamic studies of zeolites: Analcime and dehydrated analcime: Amer. Mineral., 67, 736-748. (Analcime) +# 83joh/flo: Johnson, G.K., Flotow, H.E., O'Hare, P.A.G., and Wise, W.S., 1983, Thermodynamic studies of zeolites: Natrolite, mesolite, and scolecite: Amer. Mineral., 68, 1134-1145. (Natrolite, Scolecite) +# 91joh/tas: http://dx.doi.org/10.1016/S0021-9614(05)80135-1 (Mordenite) +# 75kas/bor: Kashkay, C.H.M., Borovskaya,Y.U.B., and Babazade, M.A., 1975, Determination of delG0f298K of synthetic jarosite and its sulfate analogues: Geochem. Intl., 12, 115-121. (Jarosite) +# 87kee/rup: Kee, R.J., Rupley, F.M., and Miller, J.A., 1987, The Chemkin thermodynamic database: SNL Rep. SAND-87-8215, 92p. (Ice) +# 78lan: http://dx.doi.org/10.1016/0016-7037(78)90001-7 (Bassetite, Ningyoite, Saleeite) +# 80lan/her: http://dx.doi.org/10.1016/0016-7037(80)90226-4 (ThCl4) +# 82mar/smi: Martell, A.E., and Smith, R.M., 1982, Critical Stability Constants, Vol. 5: First Supplement: Plenum, New York, 5, 604p. (MgSO4(aq)) +# 74nau/ryz: Naumov, G.B., Ryzhenko, B.N., and Khodakovsky, I.L., 1974, Handbook of Thermodynamic Data: U.S.G.S. WRD-74-001, 328p. (CoCl+, CoFe2O4, CoS, CoSO4:H2O, Delafossite, Ni2SiO4) +# 76mac: http://dx.doi.org/10.1016/0010-938X(76)90066-4 (Mn+3) +# 95pok/hel: http://dx.doi.org/10.2475/ajs.295.10.1255 (4 solutes, 4 solids) +# 85rar 2: http://dx.doi.org/10.1021/cr00070a003 (9 europium solids) +# 87rar 2: Rard, J.A., 1987, Update of the europium data base, October, 1987: LLNL Internal Memo. (3 europium solids) +# 87rua/sew: http://dx.doi.org/10.1016/0016-7037(87)90013-5 (HCl) +# 82sar/bar: Sarkar, A.K., Barnes, M.W., and Roy, D.M., 1982, Longevity of borehole and shaft sealing materials: thermodynamic properties of cements and related phases applied to repository sealing: ONWI Tech. Rep. ONWI-201, 52p. (16 solids) +# 84sve: http://dx.doi.org/10.1016/0016-7037(84)90203-5 (Sphaerocobaltite) +# 78vau/cra: Vaughan, D.J., and Craig, J.R., 1978, Mineral chemistry of metal sulfides: Cambridge Univ. Press, Cambridge, MA. (5 solids) +# 78wol: Wolery, T.J., 1978, Some chemical aspects of hydrothermal processes at mid-oceanic ridges -- A theoretical study. I. Basalt-sea water reaction and chemical cycling between the oceanic crust and the oceans. II. Calculation of chemical equilibrium between aqueous solutions and minerals: Unpub. Ph.D. Diss., Northwestern Univ., Evaston, IL, 263p. (23 clays) +# 87woo/gar: Woods, T.L., and Garrels, R.M., 1987, Thermodynamic values at low temperature for natural inorganic materials: An uncritical summary: Oxford Univ. Press, Oxford. (Atacamite, Brochantite, Dioptase) + +# Species have various valid temperature ranges, noted in the Range parameter. Currently, Phreeqc doesn’t use this parameter, so it is up to the user to remain in the valid temperature range for all data used. + +# Example entry block: + +# Formation reaction from basis species +# -llnl_gamma # ion size parameter in B-dot Debye-Huckel equation +# log_k # at 25C, 1 bar, used if no -delta_H or -analytic +# -delta_H # molar enthalpy of reaction, used if no -analytic +# # deltafH # molar enthalpy of formation from reference compounds +# -analytic b1 b2 b3 b4 b5 b6 # logK = b1 + b2*T + b3/T + b4*log(T) + b5/T2 + b6*T2 +# # Range Tmin-Tmax # of validity of -analytic +# -Vm a1 a2 a3 a4 omega # See APP14, SH88 for equations +# # Extrapol # extrapolation algorithm +# # Ref # references + +LLNL_AQUEOUS_MODEL_PARAMETERS +-temperatures + 0.01 25 60 100 + 150 200 250 300 +#debye huckel a (adh) +-dh_a + 0.4939 0.5114 0.5465 0.5995 + 0.6855 0.7994 0.9593 1.2180 +#debye huckel b (bdh) +-dh_b + 0.3253 0.3288 0.3346 0.3421 + 0.3525 0.3639 0.3766 0.3925 +-bdot + 0.0374 0.0410 0.0438 0.0460 + 0.0470 0.0470 0.0340 0 +#cco2 (coefficients for the Drummond (1981) polynomial) +-co2_coefs + -1.0312 0.0012806 + 255.9 0.4445 + -0.001606 + +SOLUTION_MASTER_SPECIES + +#element species alk gfw_formula element_gfw + +Al Al+3 0 Al 26.9815 +Alkalinity HCO3- 1 Ca0.5(CO3)0.5 50.05 +B B(OH)3 0 B 10.811 +B(3) B(OH)3 0 B -36.44179 +C(-4) CH4 0 CH4 -33.31051 +C(-3) C2H6 0 C2H6 -30.54674 +C(-2) C2H4 0 C2H4 -28.08539 +C HCO3- 1 HCO3 12.011 +C(+2) CO 0 C -23.87691 +C(+4) HCO3- 1 HCO3 -22.05727 +Ca Ca+2 0 Ca 40.078 +Cl Cl- 0 Cl 35.4527 +Cl(-1) Cl- 0 Cl -17.43358 +Cl(1) ClO- 0 Cl -16.11094 +Cl(3) ClO2- 0 Cl -14.87484 +Cl(5) ClO3- 0 Cl -13.71476 +Cl(7) ClO4- 0 Cl +Co Co+2 0 Co 58.9332 +Co(+2) Co+2 0 Co +Co(+3) Co+3 0 Co +Cr CrO4-2 0 CrO4-2 51.9961 +Cr(+2) Cr+2 0 Cr +Cr(+3) Cr+3 0 Cr +Cr(+6) CrO4-2 0 Cr +Cu Cu+2 0 Cu 63.546 +Cu(+1) Cu+1 0 Cu +Cu(+2) Cu+2 0 Cu +E e- 0 0 0 +Eu Eu+3 0 Eu 151.965 +Eu(+2) Eu+2 0 Eu +Eu(+3) Eu+3 0 Eu +Fe Fe+2 0 Fe 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2 Fe +Gd Gd+3 0 Gd 157.25 +Gd(+3) Gd+3 0 Gd +H H+ -1 H 1.0079 +H(0) H2 0 H +H(+1) H+ -1 0 +K K+ 0 K 39.0983 +Li Li+ 0 Li 6.941 +Mg Mg+2 0 Mg 24.305 +Mn Mn+2 0 Mn 54.938 +Mn(+2) Mn+2 0 Mn +Mn(+3) Mn+3 0 Mn +Mn(+6) MnO4-2 0 Mn +Mn(+7) MnO4- 0 Mn +Mo MoO4-2 0 Mo 95.94 +N NH3 1 N 14.0067 +N(-3) NH3 1 N +N(0) N2 0 N +N(+3) NO2- 0 N +N(+5) NO3- 0 N +Na Na+ 0 Na 22.9898 +Ni Ni+2 0 Ni 58.69 +O H2O 0 O 15.994 +O(-2) H2O 0 0 +O(0) O2 0 O +P HPO4-2 2 P 30.9738 +P(5) HPO4-2 2 P +S SO4-2 0 SO4 32.066 +S(-2) HS- 1 S +S(+2) S2O3-2 0 S +S(+3) S2O4-2 0 S +S(+4) SO3-2 0 S +S(+5) S2O5-2 0 S +S(+6) SO4-2 0 SO4 +S(+7) S2O8-2 0 S +S(+8) HSO5- 0 S +Sc Sc+3 0 Sc 44.9559 +Si SiO2 0 SiO2 28.0855 +Sm Sm+3 0 Sm 150.36 +Sm(+2) Sm+2 0 Sm +Sm(+3) Sm+3 0 Sm +Th Th+4 0 Th 232.0381 +Ti Ti(OH)4 0 Ti 47.88 +U UO2+2 0 U 238.0289 +U(+3) U+3 0 U +U(+4) U+4 0 U +U(+5) UO2+ 0 U +U(+6) UO2+2 0 U +Zn Zn+2 0 Zn 65.39 + +SOLUTION_SPECIES + +#------------------ +# 31 basis species +#------------------ + +Al+3 = Al+3 + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -128.681 kcal/mol + -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # APP14, BH86 + +B(OH)3 = B(OH)3 + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -256.82 kcal/mol + -Vm 7.0643 8.847 3.5844 -3.1451 -0.2 0 0 0 0 0 # SHS89 + +Ca+2 = Ca+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -129.8 kcal/mol + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # APP14 + +Cl- = Cl- + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -39.933 kcal/mol + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 # APP14 + +Co+2 = Co+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -13.9 kcal/mol + -Vm -1.2252 -8.9356 5.3191 -2.4095 1.47690 0 0 0 0 0 # SSW+97 + +CrO4-2 = CrO4-2 + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -210.6 kcal/mol + -Vm 5.4891 5.6223 3.5382 -3.0113 3.00240 0 0 0 0 0 # SSW+97 + +Cu+2 = Cu+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH 15.7 kcal/mol + -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 # APP14 + +e- = e- + +Eu+3 = Eu+3 + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -144.7 kcal/mol + -Vm -3.1037 -15.3599 11.7871 -2.144 2.3161 0 0 0 0 0 # SH88 + +Fe+2 = Fe+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -22.05 kcal/mol + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 # APP14 + +Gd+3 = Gd+3 + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -164.2 kcal/mol + -Vm -2.9771 -15.0506 11.6656 -2.1568 2.3265 0 0 0 0 0 # SH88 + +H+ = H+ + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -0 kJ/mol + +HCO3- = HCO3- + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -164.898 kcal/mol + -Vm 7.5621 1.1505 1.2346 -2.8266 1.27330 0 0 0 0 0 # SH88 + +HPO4-2 = HPO4-2 + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -308.815 kcal/mol + -Vm 3.6315 1.0857 5.3233 -2.8239 3.33630 0 0 0 0 0 # SH88 + +K+ = K+ + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -60.27 kcal/mol + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 # APP14 + +Li+ = Li+ + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -66.552 kcal/mol + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # APP14, E68 + +Mg+2 = Mg+2 + -llnl_gamma 8 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -111.367 kcal/mol + -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 # APP14 + +Mn+2 = Mn+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -52.724 kcal/mol + -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # APP14 + +MoO4-2 = MoO4-2 + -llnl_gamma 4.5 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -238.5 kcal/mol + -Vm 6.9651 2.7095 18.6617 -2.8909 3.07770 0 0 0 0 0 # SSW+97 + +NH3 = NH3 + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -19.44 kcal/mol + -Vm 5.0911 2.797 8.6248 -2.8946 -7.690e-2 0 0 0 0 0 # SHS89 + +Na+ = Na+ + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -57.433 kcal/mol + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # APP14 + +Ni+2 = Ni+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -12.9 kcal/mol + -Vm -1.6942 -11.9181 10.4344 -2.2863 1.50670 0 0 0 0 0 # SH88 + +H2O = H2O + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -68.317 kcal/mol + +SO4-2 = SO4-2 + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -217.4 kcal/mol + -Vm 8.0 2.3 -46.04 6.245 3.82 0 0 0 0 1 # APP14 + +Sc+3 = Sc+3 + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -146.8 kcal/mol + -Vm -2.1109 -12.9294 10.817 -2.2444 2.5003 0 0 0 0 0 # SSW+97 + +SiO2 = SiO2 + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -209.775 kcal/mol + -Vm 1.9 1.7 20 -2.7 0.12910 0 0 0 0 0 # SHS89 + +Sm+3 = Sm+3 + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -165.2 kcal/mol + -Vm -3.2065 -15.6108 11.8857 -2.1337 2.2955 0 0 0 0 0 # SH88 + +Th+4 = Th+4 + -llnl_gamma 11 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -183.8 kcal/mol + -Vm -4.2886 -18.25 12.9154 -2.0244 3.70930 0 0 0 0 0 # SSW+97 + +Ti(OH)4 = Ti(OH)4 + -llnl_gamma 3 + log_k 0 +# deltafH -0 kcal/mol + -Vm 7.366874 10.21009 1.152964 -3.201004 0.01498566 0 0 0 0 0 # Ste01 + +UO2+2 = UO2+2 + -llnl_gamma 4.5 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -1019 kJ/mol + -Vm 3.0256 -4.1084 15.3326 -2.6091 1.40990 0 0 0 0 0 # SSW+97 + +Zn+2 = Zn+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -36.66 kcal/mol + -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 # APP14 + +#------------------- +# 40 Redox couples +#------------------- + +2H2O = O2 + 4H+ + 4e- + -CO2_llnl_gamma + log_k -85.9951 + -delta_H 559.543 kJ/mol +# deltafH -2.9 kcal/mol + -analytic 38.0229 7.99407e-3 -2.7655e4 -1.4506e1 199838.45 +# Range 0-350 + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 +# Extrapol supcrt92 +# Ref SHS89 + +SO4-2 + H+ = HS- + 2 O2 + -llnl_gamma 3.5 + log_k -138.3169 + -delta_H 869.226 kJ/mol +# deltafH -3.85 kcal/mol + -analytic 2.6251e1 3.9525e-2 -4.5443e4 -1.1107e1 3.1843e5 +# Range 0-350 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.44100 +# Extrapol supcrt92 +# Ref SH88 + +.5 O2 + 2 HS- = S2-2 + H2O + -llnl_gamma 4.0 + log_k 33.2673 +# deltafH -0 kcal/mol + -analytic 0.21730e2 -0.12307e-2 0.10098e5 -0.88813e1 0.15757e3 + -mass_balance S(-2)2 +# Range 0-350 + -Vm 5.5797 5.8426 3.4536 -3.0205 3.10830 +# Extrapol supcrt92 +# Ref SH88 + +2 H+ + 2 SO3-2 = S2O3-2 + O2 + H2O + -llnl_gamma 4.0 + log_k -40.2906 +# deltafH -0 kcal/mol + -analytic 0.77679e2 0.65761e-1 -0.15438e5 -0.34651e2 -0.24092e3 +# Range 0-350 + -Vm 6.6685 12.4951 -7.7281 -3.2955 2.96940 +# Extrapol supcrt92 +# Ref SH88 + +H+ + HCO3- + H2O = CH4 + 2 O2 + -llnl_gamma 3.0 + log_k -144.1412 + -delta_H 863.599 kJ/mol +# deltafH -21.01 kcal/mol + -analytic -0.41698e2 0.36584e-1 -0.40675e5 0.93479e1 -0.63468e3 +# Range 0-350 + -Vm 6.7617 8.7279 2.3212 -3.1397 -0.31790 +# Extrapol supcrt92 +# Ref SH90 + +2 H+ + 2 HCO3- + H2O = C2H6 + 3.5 O2 + -llnl_gamma 3.0 + log_k -228.6072 +# deltafH -0 kcal/mol + #analytic -0.10777e2 0.72105e-1 -0.67489e5 -0.13915e2 -0.10531e4 + -analytic -491.3 1.148 -10004 0 0 -8.06e-4 # !!! Using CHNOSZ, discrepant with above expression unless the first term is -0.10777e2 instead of 0.10777e2 +# Range 0-350 + -Vm 8.75 13.1051 1.6258 -3.3207 -0.06270 +# Extrapol supcrt92 +# Ref SH90 + +2 H+ + 2 HCO3- = C2H4 + 3 O2 + -llnl_gamma 3.0 + log_k -254.5034 + -delta_H 1446.6 kJ/mol +# deltafH 24.65 kcal/mol + #analytic -0.30329e2 0.71187e-1 -0.73140e5 + -analytic 6e-2 3.60e-2 -7.17e4 +# Range 0-350 + -Vm 7.856 12.6391 -1.8737 -3.3014 -0.4 +# Extrapol supcrt92 +# Ref SH90 + +HCO3- + H+ = CO + H2O + 0.5 O2 + -llnl_gamma 3.0 + log_k -41.7002 + -delta_H 277.069 kJ/mol +# deltafH -28.91 kcal/mol + -analytic 1.0028e2 4.6877e-2 -1.8062e4 -4.0263e1 3.8031e5 +# Range 0-350 + -Vm 6.2373 7.4498 2.8184 -3.0869 -0.37150 +# Extrapol supcrt92 +# Ref SM93 + +Cl- + 0.5 O2 = ClO- + -llnl_gamma 4.0 + log_k -15.1014 + -delta_H 66.0361 kJ/mol +# deltafH -25.6 kcal/mol + -analytic 6.1314e1 3.4812e-3 -6.0952e3 -2.3043e1 -9.5128e1 +# Range 0-350 + -Vm 2.3599 -2.0164 6.5356 -2.6955 1.47670 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +O2 + Cl- = ClO2- + -llnl_gamma 4.0 + log_k -23.108 + -delta_H 112.688 kJ/mol +# deltafH -15.9 kcal/mol + -analytic 3.3638e0 -6.1675e-3 -4.9726e3 -2.0467e0 -2.5769e5 +# Range 0-350 + -Vm 5.2163 4.958 3.7949 -2.9839 1.2637 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +1.5 O2 + Cl- = ClO3- + -llnl_gamma 3.5 + log_k -17.2608 + -delta_H 81.3077 kJ/mol +# deltafH -24.85 kcal/mol + -analytic 2.8852e1 -4.8281e-3 -4.6779e3 -1.0772e1 -2.0783e5 +# Range 0-350 + -Vm 7.1665 9.7172 1.9307 -3.1807 1.0418 +# Extrapol supcrt92 +# Ref SH88 + +2 O2 + Cl- = ClO4- + -llnl_gamma 3.5 + log_k -15.7091 + -delta_H 62.0194 kJ/mol +# deltafH -30.91 kcal/mol + -analytic 7.0280e1 -6.8927e-5 -5.5690e3 -2.6446e1 -1.6596e5 +# Range 0-350 + -Vm 8.1411 15.5654 -7.8077 -3.4224 0.9699 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +H+ + Co+2 + 0.25 O2 = Co+3 + 0.5 H2O + -llnl_gamma 5.0 + log_k -11.4845 + -delta_H 10.3198 kJ/mol +# deltafH 22 kcal/mol + -analytic -2.2827e1 -1.2222e-2 -7.2117e2 7.0306 -1.1247e1 +# Range 0-350 + -Vm -2.8678 -14.7777 11.5439 -2.1680 2.6901 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +4 H+ + CrO4-2 = Cr+2 + 2 H2O + O2 + -llnl_gamma 4.5 + log_k -21.6373 + -delta_H 153.829 kJ/mol +# deltafH -34.3 kcal/mol + -analytic 6.9003e1 6.2884e-2 -6.9847e3 -3.4720e1 -1.0901e2 +# Range 0-350 + -Vm -0.8036 -9.74 9.5688 -2.3762 1.4287 # SSW+97 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 76del/hal differ by 2 log K at 0C, 0.7 log K at 300C + +5 H+ + CrO4-2 = Cr+3 + 2.5 H2O + 0.75 O2 + -llnl_gamma 9.0 + log_k 8.3842 + -delta_H -81.0336 kJ/mol +# deltafH -57 kcal/mol + -analytic 5.1963e1 6.0932e-2 5.4256e3 -3.2290e1 8.4645e1 +# Range 0-350 + -Vm -2.7824 -14.5709 11.4661 -2.1765 2.7403 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 76del/hal differ by 1.5 log K at 0C, 0.8 log K at 300C + +Cu+2 + 0.5 H2O = Cu+ + H+ + 0.25 O2 + -llnl_gamma 4.0 + log_k -18.7704 + -delta_H 145.877 kJ/mol +# deltafH 17.132 kcal/mol + -analytic 3.7909e1 1.3731e-2 -8.1506e3 -1.3508e1 -1.2719e2 +# Range 0-350 + -Vm 0.807 -5.804 8.0165 -2.5390 0.40460 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +Eu+3 + 0.5 H2O = Eu+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -27.5115 + -delta_H 217.708 kJ/mol +# deltafH -126.1 kcal/mol + -analytic 3.0300e1 1.4126e-2 -1.2319e4 -9.0585e0 1.5289e5 +# Range 0-350 + -Vm 0.0407 -7.6776 8.7578 -2.4615 1.0929 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +H+ + Fe+2 + 0.25 O2 = Fe+3 + 0.5 H2O + -llnl_gamma 9.0 + log_k 8.4899 + -delta_H -97.209 kJ/mol +# deltafH -11.85 kcal/mol + -analytic -1.7808e1 -1.1753e-2 4.7609e3 5.5866 7.4295e1 +# Range 0-350 + -Vm -2.4256 -13.6961 11.1141 -2.2127 2.58120 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +H2O = H2 + 0.5 O2 + -CO2_llnl_gamma + log_k -46.1066 + -delta_H 275.588 kJ/mol +# deltafH -1 kcal/mol + -analytic 6.6835e1 1.7172e-2 -1.8849e4 -2.4092e1 4.2501e5 +# Range 0-350 + -Vm 5.1427 4.7758 3.8729 -2.9764 -0.209 +# Extrapol supcrt92 +# Ref SHS89 + +SO4-2 + H+ + 0.5 O2 = HSO5- + -llnl_gamma 4.0 + log_k -17.2865 + -delta_H 140.038 kJ/mol +# deltafH -185.38 kcal/mol + -analytic 5.9944e1 3.0904e-2 -7.7494e3 -2.4420e1 -1.2094e2 +# Range 0-350 + -Vm 8.9391 14.043 0.2349 -3.3594 0.86110 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +Mn+2 + H+ + 0.25 O2 = Mn+3 + 0.5 H2O + -llnl_gamma 5.0 + log_k -4.0811 + -delta_H -65.2892 kJ/mol +# deltafH -34.895 kcal/mol + -analytic 3.8873e1 1.7458e-2 2.0757e3 -2.2274e1 3.2378e1 +# Range 0-350 + -Vm -2.932 -14.934 11.6041 -2.1615 2.70250 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 76mac match + +2 H2O + O2 + Mn+2 = MnO4-2 + 4 H+ + -llnl_gamma 4.0 + log_k -32.4146 + -delta_H 151.703 kJ/mol +# deltafH -156 kcal/mol + -analytic -1.0407e1 -4.6464e-2 -1.0515e4 1.0943e1 -1.6408e2 +# Range 0-350 + -Vm 5.6596 6.0368 3.3786 -3.0285 2.98030 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 NH3 + 1.5 O2 = N2 + 3 H2O + -llnl_gamma 3.0 + log_k 116.4609 + -delta_H -687.08 kJ/mol +# deltafH -2.495 kcal/mol + -analytic -8.2621e1 -1.4671e-2 4.0068e4 2.9090e1 -2.5924e5 +# Range 0-350 + -Vm 6.2046 7.3685 2.8539 -3.0836 -0.34680 +# Extrapol supcrt92 +# Ref SHS89 + +1.5 O2 + NH3 = NO2- + H+ + H2O + -llnl_gamma 3.0 + log_k +46.8653 + -delta_H -290.901 kJ/mol +# deltafH -25 kcal/mol + -analytic -1.7011e1 -3.3459e-2 1.3999e4 1.1078e1 -4.8255e4 +# Range 0-350 + -Vm 5.5864 5.859 3.4472 -3.0212 1.18470 +# Extrapol supcrt92 +# Ref SH88 + +2 O2 + NH3 = NO3- + H+ + H2O + -llnl_gamma 3.0 + log_k 62.1001 + -delta_H -387.045 kJ/mol +# deltafH -49.429 kcal/mol + -analytic -3.9468e1 -3.9697e-2 2.0614e4 1.8872e1 -2.1917e5 +# Range 0-350 + -Vm 7.3161 6.7824 -4.6838 -3.0594 1.09770 +# Extrapol supcrt92 +# Ref SH88 + +2 H+ + 2 SO3-2 = S2O4-2 + .5 O2 + H2O + -llnl_gamma 5.0 + log_k -25.2076 +# deltafH -0 kcal/mol + -analytic -2.3172e2 2.0393e-3 -7.1011 8.3239e1 9.4155e-1 +# Range 0-350 + -Vm 6.6784 8.528 2.3917 -3.1314 2.87720 +# Extrapol supcrt92 +# Ref SSW+97 + +2 SO3-2 + .5 O2 + 2 H+ = S2O6-2 + H2O + -llnl_gamma 4.0 + log_k 41.8289 +# deltafH -0 kcal/mol + -analytic 0.14458e3 0.61449e-1 0.71877e4 -0.58657e2 0.11211e3 +# Range 0-350 + -Vm 8.2257 12.3054 0.9087 -3.2876 2.75870 +# Extrapol supcrt92 +# Ref SSW+97 + +2 SO3-2 + 1.5 O2 + 2 H+ = S2O8-2 + H2O + -llnl_gamma 4.0 + log_k 70.7489 +# deltafH -0 kcal/mol + -analytic 0.18394e3 0.60414e-1 0.13864e5 -0.71804e2 0.21628e3 +# Range 0-350 + -Vm 13.3622 24.8454 -4.0153 -3.8061 2.32810 +# Extrapol supcrt92 +# Ref SH88 + +O2 + H+ + 3 HS- = S3-2 + 2 H2O + -llnl_gamma 4.0 + log_k 79.3915 +# deltafH -0 kcal/mol + -analytic -0.51626e2 0.70208e-2 0.31797e5 0.11927e2 -0.64249e6 + -mass_balance S(-2)3 +# Range 0-350 + -Vm 6.7661 8.7396 2.315 -3.1403 2.97490 +# Extrapol supcrt92 +# Ref SH88 + +3 SO3-2 + 4 H+ = S3O6-2 + .5 O2 + 2 H2O + -llnl_gamma 4.0 + log_k -6.2316 +# deltafH -0 kcal/mol + -analytic 0.23664e3 0.12702 -0.10110e5 -0.99715e2 -0.15783e3 +# Range 0-350 + -Vm 8.4155 12.7691 0.7268 -3.3068 2.71310 +# Extrapol supcrt92 +# Ref SSW+97 + +1.5 O2 + 2 H+ + 4 HS- = S4-2 + 3 H2O + -llnl_gamma 4.0 + log_k 125.2958 +# deltafH -0 kcal/mol + -analytic 0.20875e3 0.58133e-1 0.33278e5 -0.85833e2 0.51921e3 + -mass_balance S(-2)4 +# Range 0-350 + -Vm 7.9381 11.6012 1.1902 -3.2586 2.83900 +# Extrapol supcrt92 +# Ref SH88 + +4 SO3-2 + 6 H+ = S4O6-2 + 1.5 O2 + 3 H2O + -llnl_gamma 4.0 + log_k -38.3859 +# deltafH -0 kcal/mol + -analytic 0.32239e3 0.19555 -0.23617e5 -0.13729e3 -0.36862e3 +# Range 0-350 + -Vm 10.2672 17.2902 -1.0502 -3.4937 2.28050 +# Extrapol supcrt92 +# Ref SSW+97 + +2 O2 + 3 H+ + 5 HS- = S5-2 + 4 H2O + -llnl_gamma 4.0 + log_k 170.9802 +# deltafH -0 kcal/mol + -analytic 0.30329e3 0.88033e-1 0.44739e5 -0.12471e3 0.69803e3 + -mass_balance S(-2)5 +# Range 0-350 + -Vm 9.1107 14.4645 0.0649 -3.3770 2.70510 +# Extrapol supcrt92 +# Ref SH88 + +5 SO3-2 + 8 H+ = S5O6-2 + 2.5 O2 + 4 H2O + -llnl_gamma 4.0 + log_k -99.4206 +# deltafH -0 kcal/mol + -analytic 0.42074e3 0.25833 -0.43878e5 -0.18178e3 -0.68480e3 +# Range 0-350 + -Vm 8.8725 13.8806 0.2986 -3.3527 2.60760 +# Extrapol supcrt92 +# Ref SSW+97 + +H+ + HCO3- + HS- + NH3 = SCN- + 3 H2O + -llnl_gamma 3.5 + log_k 3.0070 +# deltafH -0 kcal/mol + -analytic 0.16539e3 0.49623e-1 -0.44624e4 -0.65544e2 -0.69680e2 +# Range 0-350 + -Vm 7.0244 9.3687 2.0708 -3.1662 1.10730 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +SO4-2 = SO3-2 + 0.5 O2 + -llnl_gamma 4.5 + log_k -46.6244 + -delta_H 267.985 kJ/mol +# deltafH -151.9 kcal/mol + -analytic -1.3771e1 6.5102e-4 -1.3330e4 4.7164 -2.0800e2 +# Range 0-350 + -Vm 2.4632 -1.7691 6.4494 -2.7058 3.321 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +Sm+3 + 0.5 H2O = Sm+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -47.9624 + -delta_H 326.911 kJ/mol +# deltafH -120.5 kcal/mol + -analytic -1.0217e1 7.7548e-3 -1.6285e4 5.4711 9.1931e4 +# Range 0-350 + -Vm -0.0353 -7.8592 8.8194 -2.454 1.1512 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +UO2+2 + H+ = U+3 + 0.75 O2 + 0.5 H2O + -llnl_gamma 5.0 + log_k -64.8028 + -delta_H 377.881 kJ/mol +# deltafH -489.1 kJ/mol + -analytic 2.5133e1 6.4088e-3 -2.2542e4 -8.1423 3.4793e5 +# Range 0-350 + -Vm -2.8438 -14.722 11.528 -2.1703 2.27520 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +2 H+ + UO2+2 = U+4 + H2O + 0.5 O2 + -llnl_gamma 5.5 + log_k -33.9491 + -delta_H 135.895 kJ/mol +# deltafH -591.2 kJ/mol + -analytic 4.4837e1 1.0129e-2 -1.1787e4 -1.9194e1 4.6436e5 +# Range 0-350 + -Vm -4.2836 -18.2319 12.8955 -2.0252 3.68350 # SSW+97 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +UO2+2 + 0.5 H2O = UO2+ + H+ + 0.25 O2 + -llnl_gamma 4.0 + log_k -20.0169 + -delta_H 133.759 kJ/mol +# deltafH -1025.13 kJ/mol + -analytic 8.0480 9.5845e-3 -6.5994e3 -3.5515 -1.0298e2 +# Range 0-350 + -Vm 3.3767 0.4614 5.5725 -2.7980 0.63880 # SSW+97 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +#--------------------------- +# 156 other aqueous species +#--------------------------- + +2 CH3COOH + Al+3 = Al(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -5.595 + -delta_H -46.8566 kJ/mol +# deltafH -372.08 kcal/mol + -analytic -4.2528e1 2.1431e-3 3.1658e2 1.1585e1 5.8604e5 +# Range 0-350 + -Vm 8.9971 14.1844 0.1805 -3.3653 1.39180 +# Extrapol supcrt92 +# Ref SK93, differ by 2.2 log K at 0C, 1 log K at 300C + +2 H2O + Al+3 = AlO2- + 4 H+ + -llnl_gamma 4.0 + log_k -22.8833 + -delta_H 180.899 kJ/mol +# deltafH -222.079 kcal/mol + -analytic 1.0803e1 -3.4379e-3 -9.7391e3 0e0 0e0 +# Range 0-350 + -Vm 3.7221 3.9954 -1.5879 -2.9441 1.74180 +# Extrapol supcrt92 +# Ref SSW+97, 95pok/hel match + +H2O + Al+3 = AlOH+2 + H+ + -llnl_gamma 4.5 + log_k -4.9571 + -delta_H 49.798 kJ/mol +# deltafH -185.096 kcal/mol + -analytic -2.6224e-1 8.8816e-3 -1.8686e3 -4.3195e-1 -2.9158e1 +# Range 0-350 + -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # APP14, BH86 +# Extrapol supcrt92 +# Ref SSW+97, 95pok/hel match + +B(OH)3 = BO2- + H+ + H2O + -llnl_gamma 4.0 + log_k -9.2449 + -delta_H 16.3302 kJ/mol +# deltafH -184.6 kcal/mol + -analytic -1.0500e2 -3.3447e-2 1.4706e3 4.0724e1 2.2978e1 +# Range 0-350 + -Vm -2.2428 -6.2065 -6.3216 -2.5224 1.75950 +# Extrapol supcrt92 +# Ref SH88 + +HCO3- + H+ = CO2 + H2O + -CO2_llnl_gamma + log_k 6.3447 + -delta_H -9.7027 kJ/mol +# deltafH -98.9 kcal/mol + -analytic -1.0534e1 2.1746e-2 2.5216e3 7.9125e-1 3.9351e1 +# Range 0-350 + -Vm 6.2466 7.4711 2.8136 -3.0879 -0.1934 +# Extrapol supcrt92 +# Ref SSW01, SHS89 + +HCO3- = CO3-2 + H+ + -llnl_gamma 4.5 + log_k -10.3288 + -delta_H 14.6984 kJ/mol +# deltafH -161.385 kcal/mol + -analytic -6.9958e1 -3.3526e-2 -7.0846e1 2.8224e1 -1.0849 +# Range 0-350 + -Vm 2.8524 -3.9844 6.4142 -2.6143 3.39140 +# Extrapol supcrt92 +# Ref SH88 + +NH3 + HCO3- = CN- + 2 H2O + 0.5 O2 + -llnl_gamma 3.0 + log_k -56.0505 + -delta_H 344.151 kJ/mol +# deltafH 36 kcal/mol + -analytic -1.1174e1 3.8167e-3 -1.7063e4 4.5349e0 -2.6625e2 +# Range 0-350 + -Vm 5.4714 5.5813 3.5497 -3.0096 1.29000 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +HCO3- + H+ = HCOOH + 0.5 O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -39.0524 + -analytic -16.6 0.041 -10000 0 0 -1.205e-5 +# Range 0-350 + -Vm 6.3957 7.7713 2.8318 -3.1002 -0.33 +# Extrapol supcrt92 +# Ref Sho95 + +HCOOH = HCOO- + H+ + -llnl_gamma 3.5 # EQ3/6 data0.sup + log_k -3.752994 + -analytic -6.456 0.01694 0 0 0 -2.71e-5 +# Range 0-350 + -Vm 5.7842 4.7242 7.363 -2.9742 1.3003 +# Extrapol supcrt92 +# Ref Sho95 + +2 HCO3- + 2 H+ = CH3COOH + 2 O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -141.99219 + -analytic -6.037 0.0104 -42362 0 0 3.604e-5 +# Range 0-350 + -Vm 11.6198 5.218 2.5088 -2.9946 -0.15 +# Extrapol supcrt92 +# Ref Sho95 + +CH3COOH = CH3COO- + H+ + -llnl_gamma 4.5 + log_k -4.7572 +# deltafH -0 kcal/mol + -analytic -0.96597e2 -0.34535e-1 0.19753e4 0.38593e2 0.30850e2 +# Range 0-350 + -Vm 7.7525 8.6996 7.5825 -3.1385 1.31820 +# Extrapol supcrt92 +# Ref Sho95 + +2 NH3 + HCO3- + H+ = CO(NH2)2 + 2 H2O + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k 6.631821 + -analytic 15.98 -4.41e-2 0 0 0 4.25e-5 +# Range 0-350 + -Vm 7.7158 7.3031 10.9353 -3.0808 -0.3006 +# Extrapol supcrt92 +# Ref SM93 + +3 H+ + 3 HCO3- + H2O = C3H8 + 5 O2 + -llnl_gamma 3.0 # thermo.com.V8.R6+.tdat + log_k -363.088 + -analytic -8.04e2 1.877 0 0 0 -1.33e-3 +# Range 0-350 + -Vm 10.768 17.6785 -0.5878 -3.5097 -0.165 +# Extrapol supcrt92 +# Ref SH90 + +H+ + HCO3- + H2O = CH3OH + 1.5 O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -117.9046 + -analytic -262.5446137 6.159125942e-1 0 0 0 -4.375362728e-4 +# Range 0-350 + -Vm 6.9383 5.5146 11.4018 -3.0069 -0.14760 +# Extrapol supcrt92 +# Ref SH90 + +H2O + 2 HCO3- + 2 H+ = CH3CH2OH + 3 O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -224.1415 + -analytic -423.8 0.989 -10003 0 0 -6.93e-4 +# Range 0-350 + -Vm 9.2333 9.9581 12.1445 -3.1906 -0.2037 +# Extrapol supcrt92 +# Ref SH90 + +HCO3- + H+ = CH2O + O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -86.57248 + -analytic -17.3 0.0404 -24072 0 0 -6.57e-6 +# Range 0-350 + -Vm 5.3113 5.3139 3.3901 -2.9986 -0.3984 +# Extrapol supcrt92 +# Ref SS93 + +2 CH3COOH + Ca+2 = Ca(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.3814 + -delta_H -2.7196 kJ/mol +# deltafH -362.65 kcal/mol + -analytic -1.0320e1 4.0012e-3 -3.6281e3 2.4421 7.0175e5 +# Range 0-350 + -Vm 12.9911 23.9379 -3.6556 -3.7685 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Ca+2 + CH3COOH = CaCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.8263 + -delta_H 1.17152 kJ/mol +# deltafH -245.62 kcal/mol + -analytic -8.8826 3.1672e-3 -1.0764e3 2.0526 2.3599e5 +# Range 0-350 + -Vm 5.9002 6.6232 3.1505 -3.0527 0.36360 +# Extrapol supcrt92 +# Ref SK93 + +HCO3- + Ca+2 = CaCO3 + H+ + -llnl_gamma 3.0 + log_k -7.0017 + -delta_H 30.5767 kJ/mol +# deltafH -287.39 kcal/mol + -analytic 2.3045e2 5.5350e-2 -8.5056e3 -9.1096e1 -1.3279e2 +# Range 0-350 + -Vm -0.3907 -8.7325 9.1753 -2.4179 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +Cl- + Ca+2 = CaCl+ + -llnl_gamma 4.0 + log_k -0.6956 + -delta_H 2.02087 kJ/mol +# deltafH -169.25 kcal/mol + -analytic 8.1498e1 3.8387e-2 -1.3763e3 -3.5968e1 -2.1501e1 +# Range 0-350 + -Vm 2.7148 -1.1497 6.1949 -2.7314 0.48620 +# Extrapol supcrt92 +# Ref SSH97 differ by 0.3 log K at 0C, 1.2 log K at 300C + +2 Cl- + Ca+2 = CaCl2 + -llnl_gamma 3.0 + log_k -0.6436 + -delta_H -5.8325 kJ/mol +# deltafH -211.06 kcal/mol + -analytic 1.8178e2 7.6910e-2 -3.1088e3 -7.8760e1 -4.8563e1 +# Range 0-350 + -Vm 6.2187 7.4058 2.8322 -3.0851 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +SO4-2 + Ca+2 = CaSO4 + -llnl_gamma 3.0 + log_k 2.1111 + -delta_H 5.4392 kJ/mol +# deltafH -345.9 kcal/mol + -analytic 2.8618e2 8.4084e-2 -7.6880e3 -1.1449e2 -1.2005e2 +# Range 0-350 + -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # phreeqc.dat, SSH97 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + Co+2 = Co(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.1468 + -delta_H -22.4262 kJ/mol +# deltafH -251.46 kcal/mol + -analytic -2.0661e1 2.9014e-3 -2.2146e3 5.1702 6.4968e5 +# Range 0-350 + -Vm 11.9141 21.312 -2.6321 -3.6599 3.49629 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Co+2 = Co(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -11.281 + -delta_H -48.2415 kJ/mol +# deltafH -373.73 kcal/mol + -analytic 6.3384e1 -4.0669e-3 -1.4715e4 -1.9518e1 2.1524e6 +# Range 0-350 + -Vm 20.3474 41.8989 -10.7127 -4.5110 1.47140 +# Extrapol supcrt92 +# Ref SK93 + +Co+2 + CH3COOH = CoCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.2985 + -delta_H -8.70272 kJ/mol +# deltafH -132.08 kcal/mol + -analytic -5.4858 1.9147e-3 -1.1292e3 9.0555e-1 2.8223e5 +# Range 0-350 + -Vm 5.0294 4.4992 3.9806 -2.9649 0.64720 +# Extrapol supcrt92 +# Ref SK93 + +Co+2 + Cl- = CoCl+ + -llnl_gamma 4.0 + log_k 0.1547 + -delta_H 1.71962 kJ/mol +# deltafH -53.422 kcal/mol + -analytic 1.5234e2 5.6958e-2 -3.3258e3 -6.3849e1 -5.1942e1 +# Range 0-350 + -Vm 1.8028 -3.3766 7.0702 -2.6394 0.71910 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 74nau/ryz match + +2 H+ + 2 CrO4-2 = Cr2O7-2 + H2O + -llnl_gamma 4.0 + log_k 14.5192 + -delta_H -13.8783 kJ/mol +# deltafH -356.2 kcal/mol + -analytic 1.3749e2 6.5773e-2 -7.9472e2 -5.6525e1 -1.2441e1 +# Range 0-350 + -Vm 12.4303 22.568 -3.1161 -3.7119 2.12160 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 CH3COOH + Cu+2 = Cu(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -5.8824 + -delta_H -25.899 kJ/mol +# deltafH -222.69 kcal/mol + -analytic -2.6689e1 1.8048e-3 -1.8244e3 7.7008 6.5408e5 +# Range 0-350 + -Vm 11.8801 21.2264 -2.5925 -3.6564 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +2 CH3COOH + Cu+ = Cu(CH3COO)2- + 2 H+ + -llnl_gamma 4.0 + log_k -9.2139 + -delta_H -19.5476 kJ/mol +# deltafH -219.74 kcal/mol + -analytic -3.2712e2 -5.9087e-2 1.1386e4 1.2017e2 1.7777e2 +# Range 0-350 + -Vm 15.0715 29.0205 -5.6592 -3.9786 1.06910 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Cu+2 = Cu(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -9.3788 + -delta_H -53.2205 kJ/mol +# deltafH -345.32 kcal/mol + -analytic 3.9475e1 -6.2867e-3 -1.3233e4 -1.0643e1 2.1121e6 +# Range 0-350 + -Vm 20.2654 41.7019 -10.6422 -4.5029 1.3408 +# Extrapol supcrt92 +# Ref SK93 + +Cu+ + CH3COOH = CuCH3COO + H+ + -llnl_gamma 3.0 + log_k -4.4274 + -delta_H -4.19237 kJ/mol +# deltafH -99.97 kcal/mol + -analytic 6.3784 -4.5464e-4 -1.9995e3 -2.8359 2.7224e5 +# Range 0-350 + -Vm 7.3009 10.0483 1.7946 -3.1943 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Cu+2 + CH3COOH = CuCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -2.5252 + -delta_H -11.3805 kJ/mol +# deltafH -103.12 kcal/mol + -analytic -1.4930e1 5.1278e-4 -3.4874e2 4.3605 2.3504e5 +# Range 0-350 + -Vm 4.9722 4.362 4.029 -2.9592 0.56810 +# Extrapol supcrt92 +# Ref SK93 + +2 CH3COOH + Eu+3 = Eu(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -4.6912 + -delta_H -28.3257 kJ/mol +# deltafH -383.67 kcal/mol + -analytic -2.7589e1 1.5772e-3 -1.1008e3 7.9899 5.6652e5 +# Range 0-350 + -Vm 9.3029 14.9307 -0.1123 -3.3961 0.7384 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Eu+3 = Eu(CH3COO)3 + 3 H+ + -llnl_gamma 3.0 + log_k -7.9824 + -delta_H -47.3629 kJ/mol +# deltafH -504.32 kcal/mol + -analytic -3.7470e1 1.9276e-3 -1.0318e3 9.7078 7.4558e5 +# Range 0-350 + -Vm 16.6413 32.8512 -7.1605 -4.137 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Eu+3 + CH3COOH = EuCH3COO+2 + H+ + -llnl_gamma 4.5 + log_k -1.9571 + -delta_H -14.5603 kJ/mol +# deltafH -264.28 kcal/mol + -analytic -1.5090e1 1.0352e-3 -6.4435e2 4.6225 3.1649e5 +# Range 0-350 + -Vm 2.75 -1.0666 6.169 -2.7348 1.5269 +# Extrapol supcrt92 +# Ref SK93 + +HCO3- + Eu+3 = EuCO3+ + H+ + -llnl_gamma 4.0 + log_k -2.4057 + -delta_H 90.7844 kJ/mol +# deltafH -287.9 kcal/mol # OBIGT: -311.27 kcal/mol HSS95 + -analytic 2.3548e2 5.3819e-2 -6.9908e3 -9.3137e1 -1.0915e2 +# Range 0-350 + -Vm -0.9842 -10.1779 9.7343 -2.3581 1.2465 +# Extrapol supcrt92 +# Ref HSS95 + +Eu+2 + Cl- = EuCl+ + -llnl_gamma 4.0 + log_k 0.3819 + -delta_H 8.50607 kJ/mol +# deltafH -164 kcal/mol + -analytic 6.8695e1 3.7619e-2 -1.0809e3 -3.0665e1 -1.6887e1 +# Range 0-350 + -Vm 5.1742 4.8499 3.8487 -2.9794 0.2557 +# Extrapol supcrt92 +# Ref HSS95 + +Eu+3 + Cl- = EuCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 13.9453 kJ/mol +# deltafH -181.3 kcal/mol + -analytic 7.9275e1 3.7878e-2 -1.7895e3 -3.4041e1 -2.7947e1 +# Range 0-350 + -Vm -0.3777 -8.6968 9.1514 -2.4194 1.4671 +# Extrapol supcrt92 +# Ref HSS95 + +2 Cl- + Eu+3 = EuCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 18.6857 kJ/mol +# deltafH -220.1 kcal/mol # OBIGT: -204.6 kcal/mol HSS95 + -analytic 2.1758e2 8.0336e-2 -5.5499e3 -9.0087e1 -8.6665e1 +# Range 0-350 + -Vm 9.1152 14.474 0.0641 -3.3773 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +3 Cl- + Eu+3 = EuCl3 + -llnl_gamma 3.0 + log_k -0.4669 + -delta_H 11.2926 kJ/mol +# deltafH -261.8 kcal/mol + -analytic 4.2075e2 1.2890e-1 -1.1288e4 -1.7043e2 -1.7627e2 +# Range 0-350 + -Vm 6.2132 7.3881 2.8493 -3.0843 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +3 Cl- + Eu+2 = EuCl3- + -llnl_gamma 4.0 + log_k 2.0253 + -delta_H -3.76978 kJ/mol +# deltafH -246.8 kcal/mol + -analytic 1.1546e1 6.4683e-2 3.7299e3 -1.6672e1 5.8196e1 +# Range 0-350 + -Vm 13.946 26.2721 -4.579 -3.865 0.9527 +# Extrapol supcrt92 +# Ref HSS95 + +4 Cl- + Eu+3 = EuCl4- + -llnl_gamma 4.0 + log_k -0.8913 + -delta_H -9.90771 kJ/mol +# deltafH -306.8 kcal/mol + -analytic 4.8122e2 1.3081e-1 -1.2950e4 -1.9302e2 -2.0222e2 +# Range 0-350 + -Vm 10.9946 19.066 -1.7473 -3.5671 1.787 +# Extrapol supcrt92 +# Ref HSS95 + +4 Cl- + Eu+2 = EuCl4-2 + -llnl_gamma 4.0 + log_k 2.8470 + -delta_H -19.9493 kJ/mol +# deltafH -290.6 kcal/mol + -analytic -1.2842e2 5.0789e-2 9.8815e3 3.3565e1 1.5423e2 +# Range 0-350 + -Vm 19.473 39.7656 -9.8784 -4.4228 2.4755 +# Extrapol supcrt92 +# Ref HSS95 + +HPO4-2 + H+ + Eu+3 = EuH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -17.0916 kJ/mol +# deltafH -457.6 kcal/mol + -analytic 1.0873e2 6.3416e-2 2.7202e2 -4.8113e1 4.2122 +# Range 0-350 + -Vm 1.4946 -4.1236 7.3517 -2.6084 1.5372 +# Extrapol supcrt92 +# Ref HSS95 + +HCO3- + Eu+3 = EuHCO3+2 + -llnl_gamma 4.5 + log_k 1.6258 + -delta_H 8.77803 kJ/mol +# deltafH -307.5 kcal/mol + -analytic 3.9266e1 3.1608e-2 -9.8731e1 -1.8875e1 -1.5524 +# Range 0-350 + -Vm 0.4928 -6.572 8.3198 -2.5072 1.286 +# Extrapol supcrt92 +# Ref HSS95 + +NO3- + Eu+3 = EuNO3+2 + -llnl_gamma 4.5 + log_k 0.8745 + -delta_H -32.0955 kJ/mol +# deltafH -201.8 kcal/mol + -analytic 1.7398e1 2.5467e-2 2.2683e3 -1.2810e1 3.5389e1 +# Range 0-350 + -Vm 1.2198 -4.7951 7.6178 -2.5807 1.6556 +# Extrapol supcrt92 +# Ref HSS95 + +H2O + Eu+3 = EuO+ + 2 H+ + -llnl_gamma 4.0 + log_k -16.337 + -delta_H 110.947 kJ/mol +# deltafH -186.5 kcal/mol # OBIGT: -177.81 kcal/mol HSS95 + -analytic 1.8876e2 3.0194e-2 -1.3836e4 -6.7770e1 -2.1595e2 +# Range 0-350 + -Vm 2.7458 -1.0743 6.1663 -2.7345 0.4322 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Eu+3 = EuO2- + 4 H+ + -llnl_gamma 4.0 + log_k -34.5066 + -delta_H 281.307 kJ/mol +# deltafH -214.1 kcal/mol # OBIGT: -219.06 kcal/mol HSS95 + -analytic 7.5244e1 3.7089e-4 -1.3587e4 -2.3859e1 -4.6713e5 +# Range 0-350 + -Vm 4.8468 4.0541 4.1548 -2.9465 1.1424 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Eu+3 = EuO2H + 3 H+ + -llnl_gamma 3.0 + log_k -25.4173 + -delta_H 222.313 kJ/mol +# deltafH -228.2 kcal/mol + -analytic 3.6754e2 5.3868e-2 -2.4034e4 -1.3272e2 -3.7514e2 +# Range 0-350 + -Vm 4.8064 3.954 4.1968 -2.9424 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +H2O + Eu+3 = EuOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.9075 + -delta_H 78.0065 kJ/mol +# deltafH -194.373 kcal/mol + -analytic 6.7691e1 1.2066e-2 -6.1871e3 -2.3617e1 -9.6563e1 +# Range 0-350 + -Vm 2.6569 -1.2969 6.2659 -2.7253 1.1815 +# Extrapol supcrt92 +# Ref HSS95 + +SO4-2 + Eu+3 = EuSO4+ + -llnl_gamma 4.0 + log_k 3.6430 + -delta_H 62.3416 kJ/mol +# deltafH -347.2 kcal/mol # OBIGT: -357.2 kcal/mol HSS95 + -analytic 3.0587e2 8.6208e-2 -9.0387e3 -1.2026e2 -1.4113e2 +# Range 0-350 + -Vm 1.4399 -4.2627 7.4184 -2.6027 0.779 +# Extrapol supcrt92 +# Ref HSS95 + +2 CH3COOH + Fe+2 = Fe(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.0295 + -delta_H -20.2924 kJ/mol +# deltafH -259.1 kcal/mol + -analytic -2.9862e1 1.3901e-3 -1.6908e3 8.6283 6.0125e5 +# Range 0-350 + -Vm 12.1698 21.937 -2.8791 -3.6858 -0.038 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +Fe+2 + CH3COOH = FeCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.4671 + -delta_H -3.80744 kJ/mol +# deltafH -139.06 kcal/mol + -analytic -1.3781e1 9.6253e-4 -7.5310e2 4.0135 2.3416e5 +# Range 0-350 + -Vm 5.2246 4.9785 3.7863 -2.9848 0.57560 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +Fe+2 + Cl- = FeCl+ + -llnl_gamma 4.0 + log_k -0.1605 + -delta_H 3.02503 kJ/mol +# deltafH -61.26 kcal/mol + -analytic 8.2435e1 3.7755e-2 -1.4765e3 -3.5918e1 -2.3064e1 +# Range 0-350 + -Vm 2.1468 -2.5367 6.7401 -2.6741 0.7003 +# Extrapol supcrt92 +# Ref SSH97 + +Fe+3 + Cl- = FeCl+2 + -llnl_gamma 4.5 + log_k -0.8108 + -delta_H 36.6421 kJ/mol +# deltafH -180.018 kJ/mol + -analytic 1.6186e2 5.9436e-2 -5.1913e3 -6.5852e1 -8.1053e1 +# Range 0-350 + -Vm -0.7164 -9.5277 9.4878 -2.3851 0.17013 # SSH97 +# Extrapol supcrt92, 64cri/cob +# Ref SSH97, WEP+82 differ by 2.7 log K at 0C, 1.2 log K at 300C + +2 Cl- + Fe+2 = FeCl2 + -llnl_gamma 3.0 + log_k -2.4541 + -delta_H 6.46846 kJ/mol +# deltafH -100.37 kcal/mol + -analytic 1.9171e2 7.8070e-2 -4.1048e3 -8.2292e1 -6.4108e1 +# Range 0-350 + -Vm 5.5057 5.665 3.5164 -3.0131 -0.038 +# Extrapol supcrt92 +# Ref SSH97 differ by 7.2 log K at 0C, 3.2 log K at 300C !! flag + +H2O + Fe+2 = FeOH+ + H+ + -llnl_gamma 4.0 + log_k -9.5 + -analytic 1.706e-1 0 -2.883e3 +# Range 0-350 + -Vm -0.2561 -8.4039 9.0457 -2.4315 0.7003 +# Extrapol supcrt92 +# Ref SSW+97, Marion+03,08 match + +H2O + Fe+3 = FeOH+2 + H+ + -llnl_gamma 4.5 + log_k -2.19 +# deltafH -0 kcal/mol + -analytic 5.300 0 -2.272e3 +# Range 0-350 + -Vm -1.1562 -10.6009 9.9077 -2.3407 1.43820 +# Extrapol supcrt92 +# Ref SSW+97, Marion+08 match + +2 CH3COOH + Gd+3 = Gd(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -4.9625 + -delta_H -22.3426 kJ/mol +# deltafH -401.74 kcal/mol + -analytic -4.3124e1 1.2995e-4 -4.3494e2 1.3677e1 5.1224e5 +# Range 0-350 + -Vm 9.4165 15.2134 -0.2342 -3.4078 0.6223 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Gd+3 = Gd(CH3COO)3 + 3 H+ + -llnl_gamma 3.0 + log_k -8.3489 + -delta_H -37.9907 kJ/mol +# deltafH -521.58 kcal/mol + -analytic -8.8296e1 -5.0939e-3 1.2268e3 2.8513e1 6.0745e5 +# Range 0-350 + -Vm 16.8116 33.2662 -7.3215 -4.1541 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Gd+3 + CH3COOH = GdCH3COO+2 + H+ + -llnl_gamma 4.5 + log_k -2.1037 + -delta_H -11.7152 kJ/mol +# deltafH -283.1 kcal/mol + -analytic -1.4118e1 1.6660e-3 -7.5206e2 4.2614 3.1187e5 +# Range 0-350 + -Vm 2.8605 -0.7945 6.0567 -2.7461 1.4477 +# Extrapol supcrt92 +# Ref SK93 + +HCO3- + Gd+3 = GdCO3+ + H+ + -llnl_gamma 4.0 + log_k -2.479 + -delta_H 89.9476 kJ/mol +# deltafH -307.6 kcal/mol # OBIGT: -330.22 kcal/mol HSS95 + -analytic 2.3628e2 5.4100e-2 -7.0746e3 -9.3413e1 -1.1046e2 +# Range 0-350 + -Vm -0.953 -10.1036 9.7095 -2.3612 1.1729 +# Extrapol supcrt92 +# Ref HSS95 + +Gd+3 + Cl- = GdCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 14.7821 kJ/mol +# deltafH -200.6 kcal/mol + -analytic 8.0750e1 3.8524e-2 -1.8591e3 -3.4621e1 -2.9034e1 +# Range 0-350 + -Vm -0.263 -8.417 9.0425 -2.4309 1.4006 +# Extrapol supcrt92 +# Ref HSS95 + +2 Cl- + Gd+3 = GdCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 21.1961 kJ/mol +# deltafH -239 kcal/mol + -analytic 2.1754e2 8.0996e-2 -5.6121e3 -9.0067e1 -8.7635e1 +# Range 0-350 + -Vm 2.8492 -0.8272 6.0803 -2.7447 0.6305 +# Extrapol supcrt92 +# Ref HSS95 + +3 Cl- + Gd+3 = GdCl3 + -llnl_gamma 3.0 + log_k -0.4669 + -delta_H 15.895 kJ/mol +# deltafH -280.2 kcal/mol + -analytic 4.1398e2 1.2829e-1 -1.1230e4 -1.6770e2 -1.7535e2 +# Range 0-350 + -Vm 6.3836 7.8028 2.6888 -3.1015 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +4 Cl- + Gd+3 = GdCl4- + -llnl_gamma 4.0 + log_k -0.8913 + -delta_H -1.53971 kJ/mol +# deltafH -324.3 kcal/mol + -analytic 4.7684e2 1.3157e-1 -1.3068e4 -1.9118e2 -2.0405e2 +# Range 0-350 + -Vm 11.1317 19.3995 -1.8761 -3.5809 1.631 +# Extrapol supcrt92 +# Ref HSS95 + +HPO4-2 + H+ + Gd+3 = GdH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -14.9996 kJ/mol +# deltafH -476.6 kcal/mol + -analytic 1.1058e2 6.4124e-2 1.3451e2 -4.8758e1 2.0660 +# Range 0-350 + -Vm 1.6048 -3.8632 7.2686 -2.6192 1.4574 +# Extrapol supcrt92 +# Ref HSS95 + +HCO3- + Gd+3 = GdHCO3+2 + -llnl_gamma 4.5 + log_k 1.6991 + -delta_H 10.0332 kJ/mol +# deltafH -326.7 kcal/mol + -analytic 4.1973e1 3.2521e-2 -2.3475e2 -1.9864e1 -3.6757 +# Range 0-350 + -Vm 0.6026 -6.3043 8.2153 -2.5183 1.2048 +# Extrapol supcrt92 +# Ref HSS95 + +NO3- + Gd+3 = GdNO3+2 + -llnl_gamma 4.5 + log_k 0.4347 + -delta_H -25.8195 kJ/mol +# deltafH -219.8 kcal/mol + -analytic 2.0253e1 2.6372e-2 1.8785e3 -1.3723e1 2.9306e1 +# Range 0-350 + -Vm 1.3205 -4.5535 7.5323 -2.5907 1.5475 +# Extrapol supcrt92 +# Ref HSS95 + +H2O + Gd+3 = GdO+ + 2 H+ + -llnl_gamma 4.0 + log_k -16.337 + -delta_H 113.039 kJ/mol +# deltafH -205.5 kcal/mol # OBIGT: -196.63 kcal/mol HSS95 + -analytic 2.0599e2 3.2521e-2 -1.4547e4 -7.4048e1 -2.2705e2 +# Range 0-350 + -Vm 2.8425 -0.8409 6.0801 -2.7441 0.3539 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Gd+3 = GdO2- + 4 H+ + -llnl_gamma 4.0 + log_k -34.4333 + -delta_H 283.817 kJ/mol +# deltafH -233 kcal/mol # OBIGT: -237.73 kcal/mol HSS95 + -analytic 1.2067e2 6.6276e-3 -1.5531e4 -4.0448e1 -4.3587e5 +# Range 0-350 + -Vm 5.0344 4.5111 3.9769 -2.9654 1.0495 -1 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Gd+3 = GdO2H + 3 H+ + -llnl_gamma 3.0 + log_k -25.2707 + -delta_H 224.405 kJ/mol +# deltafH -247.2 kcal/mol + -analytic 3.6324e2 4.7938e-2 -2.4275e4 -1.2988e2 -3.7889e2 +# Range 0-350 + -Vm 5.0117 4.4582 3.9917 -2.9632 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +H2O + Gd+3 = GdOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.9075 + -delta_H 79.9855 kJ/mol +# deltafH -213.4 kcal/mol # OBIGT: 212.9 kcal/mol HSS95 + -analytic 8.3265e1 1.4153e-2 -6.8229e3 -2.9301e1 -1.0649e2 +# Range 0-350 + -Vm 2.7389 -1.0936 6.1786 -2.7337 1.1 +# Extrapol supcrt92 +# Ref HSS95 + +SO4-2 + Gd+3 = GdSO4+ + -llnl_gamma 4.0 + log_k -3.687 + -delta_H 20.0832 kJ/mol +# deltafH -376.8 kcal/mol + -analytic 3.0783e2 8.6798e-2 -1.1246e4 -1.2109e2 -1.7557e2 + #analytic 3.18e2 7.5e-2 -1.12e4 -1.21e2 -1.76e2 +# Range 0-350 + -Vm 1.4776 -4.1705 7.3822 -2.6065 0.7287 +# Extrapol supcrt92 +# Ref HSS95 differ by 7 log K at 0C, 3.7 log K at 300C !! flag + +2 HPO4-2 + 2 H+ = H2P2O7-2 + H2O + -llnl_gamma 4.0 + log_k 12.0709 + -delta_H 19.7192 kJ/mol +# deltafH -544.6 kcal/mol + -analytic 1.4825e2 6.7021e-2 -2.8329e3 -5.9251e1 -4.4248e1 +# Range 0-350 + -Vm 9.0963 14.4299 0.076 -3.3754 2.62180 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +HPO4-2 + H+ = H2PO4- + -llnl_gamma 4.0 + log_k 7.2054 + -delta_H -4.20492 kJ/mol +# deltafH -309.82 kcal/mol + -analytic 8.2149e1 3.4077e-2 -1.0431e3 -3.2970e1 -1.6301e1 +# Range 0-350 + -Vm 6.4875 8.0594 2.5823 -3.1122 1.3003 +# Extrapol supcrt92 +# Ref SH88 + +HS- + H+ = H2S + -llnl_gamma 3.0 + log_k 6.9877 + -delta_H -21.5518 kJ/mol +# deltafH -9.001 kcal/mol + -analytic 3.9283e1 2.8727e-2 1.3477e3 -1.8331e1 2.1018e1 +# Range 0-350 + -Vm 7.81 2.96 -0.46 # phreeqc.dat +# Extrapol supcrt92 +# Ref SSW01, SHS89 + +3 H+ + 2 HPO4-2 = H3P2O7- + H2O + -llnl_gamma 4.0 + log_k 14.4165 + -delta_H 21.8112 kJ/mol +# deltafH -544.1 kcal/mol + -analytic 2.3157e2 1.0161e-1 -4.3723e3 -9.4050e1 -6.8295e1 +# Range 0-350 + -Vm 9.1292 14.5122 0.0398 -3.3788 0.8568 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 H+ + HPO4-2 = H3PO4 + -llnl_gamma 3.0 + log_k 9.3751 + -delta_H 3.74468 kJ/mol +# deltafH -307.92 kcal/mol + -analytic 1.8380e2 6.7320e-2 -3.7792e3 -7.3463e1 -5.9025e1 +# Range 0-350 + -Vm 8.2727 12.4182 0.8691 -3.2924 -0.22 +# Extrapol supcrt92 +# Ref SHS89 + +4 H+ + 2 HPO4-2 = H4P2O7 + H2O + -llnl_gamma 3.0 + log_k 15.9263 + -delta_H 29.7226 kJ/mol +# deltafH -2268.6 kJ/mol + -analytic 6.9026e2 2.4309e-1 -1.6165e4 -2.7989e2 -2.7475e2 +# Range 0-350 + -Vm 9.2975 14.9199 -0.113 -3.3957 -0.62920 +# Extrapol supcrt92, 69hel +# Ref SSW+97, WEP+82 + +2 H2O + Al+3 = HAlO2 + 3 H+ + -llnl_gamma 3.0 + log_k -16.4329 + -delta_H 144.704 kJ/mol +# deltafH -230.73 kcal/mol + -analytic 4.2012e1 1.9980e-2 -7.7847e3 -1.5470e1 -1.2149e2 +# Range 0-350 + -Vm 3.5338 0.8485 5.4132 -2.8140 -0.03 +# Extrapol supcrt92 +# Ref SSW+97, 95pok/hel + +H+ + CN- = HCN + -llnl_gamma 3.0 + log_k 9.2359 + -delta_H -43.5136 kJ/mol +# deltafH 25.6 kcal/mol + -analytic 1.0536e1 2.3105e-2 3.3038e3 -7.7786 5.1550e1 +# Range 0-350 + -Vm 8.0083 11.7705 1.1286 -3.2655 -0.1113 +# Extrapol supcrt92 +# Ref SM93 + +H+ + Cl- = HCl + -llnl_gamma 3.0 + log_k -0.67 +# deltafH -0 kcal/mol + -analytic 4.1893e2 1.1103e-1 -1.1784e4 -1.6697e2 -1.8400e2 +# Range 0-350 + -Vm 1.2547 -4.7177 7.6043 -2.5840 -0.7 +# Extrapol supcrt92, ? +# Ref MS97, 87rua/sew match + +H+ + CrO4-2 = HCrO4- + -llnl_gamma 4.0 + log_k 6.4944 + -delta_H 2.9288 kJ/mol +# deltafH -209.9 kcal/mol + -analytic 4.4944e1 3.2740e-2 1.8400e2 -1.9722e1 2.8578 +# Range 0-350 + -Vm 8.2211 12.2925 0.9174 -3.2871 0.923 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +NO2- + H+ = HNO2 + -llnl_gamma 3.0 + log_k 3.2206 + -delta_H -14.782 kJ/mol +# deltafH -119.382 kJ/mol + -analytic 1.9653 -1.1603e-4 0 0 1.1569e5 +# Range 0-350 + -Vm 5.9151 6.659 3.1378 -3.0542 -0.1507 +# Extrapol supcrt92, 69hel +# Ref SSW+97, WEP+82 match + +NO3- + H+ = HNO3 + -llnl_gamma 3.0 + log_k -1.3025 + -delta_H 16.8155 kJ/mol +# deltafH -45.41 kcal/mol + -analytic 9.9744e1 3.4866e-2 -3.0975e3 -4.0830e1 -4.8363e1 +# Range 0-350 + -Vm 7.1623 9.7063 1.9367 -3.1802 -0.3066 +# Extrapol supcrt92 +# Ref SSW+97, SHS89 + +2 HPO4-2 + H+ = HP2O7-3 + H2O + -llnl_gamma 4.0 + log_k 5.4498 + -delta_H 23.3326 kJ/mol +# deltafH -2274.99 kJ/mol + -analytic 3.9159e2 1.5438e-1 -8.7071e3 -1.6283e2 -1.3598e2 +# Range 0-350 + -Vm 8.3302 12.5558 0.8208 -3.2980 4.647 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, WEP+82 differ by 0 log K at 0C, 4.7 log K at 300C + +SO3-2 + H+ = HSO3- + -llnl_gamma 4.0 + log_k 7.2054 + -delta_H 9.33032 kJ/mol +# deltafH -149.67 kcal/mol + -analytic 5.5899e1 3.3623e-2 -5.0120e2 -2.3040e1 -7.8373 +# Range 0-350 + -Vm 6.7014 8.5816 2.3771 -0.31338 1.1233 +# Extrapol supcrt92 +# Ref SH88 + +SO4-2 + H+ = HSO4- + -llnl_gamma 4.0 + log_k 1.9791 + -delta_H 20.5016 kJ/mol +# deltafH -212.5 kcal/mol + -analytic 4.9619e1 3.0368e-2 -1.1558e3 -2.1335e1 -1.8051e1 +# Range 0-350 + -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 # APP14 +# Extrapol supcrt92 +# Ref SH88 + +SiO2 + H2O = HSiO3- + H+ + -llnl_gamma 4.0 + log_k -9.9525 + -delta_H 25.991 kJ/mol +# deltafH -271.88 kcal/mol + -analytic 6.4211e1 -2.4872e-2 -1.2707e4 -1.4681e1 1.0853e6 +# Range 0-350 + -Vm 2.9735 -0.5158 5.9467 -2.7575 1.5511 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + K+ = K(CH3COO)2- + 2 H+ + -llnl_gamma 4.0 + log_k -10.2914 + -delta_H -1.79912 kJ/mol +# deltafH -292.9 kcal/mol + -analytic -2.3036e2 -4.6369e-2 7.0305e3 8.4997e1 1.0977e2 +# Range 0-350 + -Vm 17.8481 35.7984 -8.3193 -4.2588 0.7097 +# Extrapol supcrt92 +# Ref SK93 + +K+ + CH3COOH = KCH3COO + H+ + -llnl_gamma 3.0 + log_k -5.0211 + -delta_H 4.8116 kJ/mol +# deltafH -175.22 kcal/mol + -analytic -2.6676e-1 -3.2675e-3 -1.7143e3 -7.1907e-3 1.7726e5 +# Range 0-350 + -Vm 17.8481 35.7984 -8.3193 -4.2588 0.7097 +# Extrapol supcrt92 +# Ref SK93 + +K+ + Cl- = KCl + -llnl_gamma 3.0 + log_k -1.4946 + -delta_H 14.1963 kJ/mol +# deltafH -96.81 kcal/mol + -analytic 1.3650e2 3.8405e-2 -4.4014e3 -5.4421e1 -6.8721e1 +# Range 0-350 + -Vm 6.9932 9.297 2.0889 -3.1633 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +SO4-2 + K+ + H+ = KHSO4 + -llnl_gamma 3.0 + log_k 0.8136 + -delta_H 29.8319 kJ/mol +# deltafH -270.54 kcal/mol + -analytic 1.2620e2 5.7349e-2 -3.3670e3 -5.3003e1 -5.2576e1 +# Range 0-350 + -Vm 9.1226 14.4964 0.0453 -3.3782 -0.001 +# Extrapol supcrt92 +# Ref SSH97 + +SO4-2 + K+ = KSO4- + -llnl_gamma 4.0 + log_k 0.8796 + -delta_H 2.88696 kJ/mol +# deltafH -276.98 kcal/mol + -analytic 9.9073e1 3.7817e-2 -2.1628e3 -4.1297e1 -3.3779e1 +# Range 0-350 + -Vm 6.8 7.06 3.0 -2.07 1.1 0 0 0 0 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + Li+ = Li(CH3COO)2- + 2 H+ + -llnl_gamma 4.0 + log_k -9.2674 + -delta_H -24.7609 kJ/mol +# deltafH -304.67 kcal/mol + -analytic -3.3702e2 -6.0849e-2 1.1952e4 1.2359e2 1.8659e2 +# Range 0-350 + -Vm 16.3412 32.1211 -6.8785 -4.1068 1.2422 +# Extrapol supcrt92 +# Ref SK93 + +Li+ + CH3COOH = LiCH3COO + H+ + -llnl_gamma 3.0 + log_k -4.4589 + -delta_H -6.64419 kJ/mol +# deltafH -184.24 kcal/mol + -analytic -3.8391 -7.3938e-4 -1.0829e3 3.4134e-1 2.1318e5 +# Range 0-350 + -Vm 8.388 12.6976 0.7639 -3.3038 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Li+ + Cl- = LiCl + -llnl_gamma 3.0 + log_k -1.5115 + -delta_H 3.36812 kJ/mol +# deltafH -105.68 kcal/mol + -analytic 1.2484e2 4.1941e-2 -3.2439e3 -5.1708e1 -5.0655e1 +# Range 0-350 + -Vm 5.5837 5.8554 3.4416 -3.021 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + Mg+2 = Mg(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.473 + -delta_H -23.8195 kJ/mol +# deltafH -349.26 kcal/mol + -analytic -4.3954e1 -3.1842e-4 -1.2033e3 1.3556e1 6.3058e5 +# Range 0-350 + -Vm 12.3982 22.4898 -3.0853 -3.7086 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Mg+2 + CH3COOH = MgCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.4781 + -delta_H -8.42239 kJ/mol +# deltafH -229.48 kcal/mol + -analytic -2.3548e1 -1.6071e-3 -4.2228e2 7.7009 2.5981e5 +# Range 0-350 + -Vm 5.4981 5.6424 3.5341 -3.0122 0.7483 +# Extrapol supcrt92 +# Ref SK93 + +Mg+2 + HCO3- = MgCO3 + H+ + -llnl_gamma 3.0 + log_k -7.3499 + -delta_H 23.8279 kJ/mol +# deltafH -270.57 kcal/mol + -analytic 2.3465e2 5.5538e-2 -8.3947e3 -9.3104e1 -1.3106e2 +# Range 0-350 + -Vm -0.7355 -9.5745 9.5062 -2.3831 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +Mg+2 + Cl- = MgCl+ + -llnl_gamma 4.0 + log_k -0.1349 + -delta_H -0.58576 kJ/mol +# deltafH -151.44 kcal/mol + -analytic 4.3363e1 3.2858e-2 1.1878e2 -2.1688e1 1.8403 +# Range 0-350 + -Vm 2.223 -2.3505 6.6669 -2.6818 0.84490 +# Extrapol supcrt92 +# Ref SSH97 + +SO4-2 + Mg+2 = MgSO4 + -llnl_gamma 3.0 + log_k 2.4117 + -delta_H 19.6051 kJ/mol +# deltafH -1355.96 kJ/mol + -analytic 1.7994e2 6.4715e-2 -4.7314e3 -7.3123e1 -8.0408e1 +# Range 0-350 + -Vm 2.4 -0.97 6.1 -2.74 # APP14 +# Extrapol supcrt92, 69hel +# Ref MS97, 82mar/smi match + +2 CH3COOH + Mn+2 = Mn(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.4547 + -delta_H -11.4893 kJ/mol +# deltafH -287.67 kcal/mol + -analytic -9.0558e-1 5.9656e-3 -4.3531e3 -1.1063 8.0323e5 +# Range 0-350 + -Vm 13.1542 24.3405 -3.8236 -3.7851 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Mn+2 = Mn(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -11.8747 + -delta_H -30.3591 kJ/mol +# deltafH -408.28 kcal/mol + -analytic -3.8531 -9.9140e-3 -1.2065e4 5.1424 2.0175e6 +# Range 0-350 + -Vm 21.6217 45.0124 -11.9409 -4.6397 1.15360 +# Extrapol supcrt92 +# Ref SK93 + +Mn+2 + CH3COOH = MnCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.5404 + -delta_H -3.07942 kJ/mol +# deltafH -169.56 kcal/mol + -analytic -1.4061e1 1.8149e-3 -8.6438e2 4.0354 2.5831e5 +# Range 0-350 + -Vm 6.0776 7.057 2.9786 -3.0706 0.4555 +# Extrapol supcrt92 +# Ref SK93 + +Mn+2 + Cl- = MnCl+ + -llnl_gamma 4.0 + log_k 0.3013 + -delta_H 18.3134 kJ/mol +# deltafH -88.28 kcal/mol + -analytic 8.7072e1 4.0361e-2 -2.1786e3 -3.6966e1 -3.4022e1 +# Range 0-350 + -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +1.5 H2O + 1.25 O2 + Mn+2 = MnO4- + 3 H+ + -llnl_gamma 3.5 + log_k -20.2963 + -delta_H 123.112 kJ/mol +# deltafH -129.4 kcal/mol + -analytic 1.8544e1 -1.7618e-2 -6.7332e3 -3.3193 -2.4924e5 +# Range 0-350 + -Vm 7.8248 11.3277 1.2912 -3.2472 0.9248 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +SO4-2 + Mn+2 = MnSO4 + -llnl_gamma 3.0 + log_k 2.3529 + -delta_H 14.1168 kJ/mol +# deltafH -266.75 kcal/mol + -analytic 2.9448e2 8.5294e-2 -8.1366e3 -1.1729e2 -1.2705e2 +# Range 0-350 + -Vm -1.31 -1.83 62.3 -2.7 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + NH3 = NH4(CH3COO)2- + H+ + -llnl_gamma 4.0 + log_k -0.1928 + -delta_H -56.735 kJ/mol +# deltafH -265.2 kcal/mol + -analytic 3.7137e1 -1.2242e-2 -8.4764e3 -8.4308 1.3883e6 +# Range 0-350 + -Vm 19.3685 39.509 -9.7736 -4.4122 0.6495 +# Extrapol supcrt92 +# Ref SK93 + +NH3 + H+ = NH4+ + -llnl_gamma 2.5 + log_k 9.2410 + -delta_H -51.9234 kJ/mol +# deltafH -31.85 kcal/mol + -analytic -1.4527e1 -5.0518e-3 3.0447e3 6.0865 4.7515e1 +# Range 0-350 + -Vm 3.8763 2.3448 8.5605 -2.8759 0.1502 +# Extrapol supcrt92 +# Ref SH88 + +NH3 + CH3COOH = NH4CH3COO + -llnl_gamma 3.0 + log_k 4.6964 + -delta_H -48.911 kJ/mol +# deltafH -147.23 kcal/mol + -analytic 1.4104e1 -4.3664e-3 -1.0746e3 -3.6999 4.1428e5 +# Range 0-350 + -Vm 11.2849 19.7719 -2.0187 -3.5963 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +2 CH3COOH + Na+ = Na(CH3COO)2- + 2 H+ + -llnl_gamma 4.0 + log_k -9.9989 + -delta_H -11.5771 kJ/mol +# deltafH -292.4 kcal/mol + -analytic -2.9232e2 -5.5708e-2 9.6601e3 1.0772e2 1.5082e2 +# Range 0-350 + -Vm 16.2062 31.7884 -6.7416 -4.0930 0.9633 +# Extrapol supcrt92 +# Ref SK93 + +Na+ + CH3COOH = NaCH3COO + H+ + -llnl_gamma 3.0 + log_k -4.8606 + -delta_H -0.029288 kJ/mol +# deltafH -173.54 kcal/mol + -analytic 6.4833 -1.8739e-3 -2.0902e3 -2.6121 2.3990e5 +# Range 0-350 + -Vm 8.3514 12.6125 0.7884 -3.3003 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Na+ + Cl- = NaCl + -llnl_gamma 3.0 + log_k -0.777 + -delta_H 5.21326 kJ/mol +# deltafH -96.12 kcal/mol + -analytic 1.1398e2 3.6386e-2 -3.0847e3 -4.6571e1 -4.8167e1 +# Range 0-350 + -Vm 5.0364 4.5189 3.9669 -2.9658 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +Na+ + HCO3- = NaHCO3 + -llnl_gamma 3.0 + log_k 0.1541 + -delta_H -13.7741 kJ/mol +# deltafH -944.007 kJ/mol + -analytic -9.0668e1 -2.9866e-2 2.7947e3 3.6515e1 4.7489e1 +# Range 0-200 + -Vm 0.431 # APP14 +# Extrapol 69hel +# Ref WEP+82 + +SiO2 + Na+ + H2O = NaHSiO3 + H+ + -llnl_gamma 3.0 + log_k -8.304 + -delta_H 11.6524 kJ/mol +# deltafH -332.74 kcal/mol + -analytic 3.6045e1 -9.0411e-3 -6.6605e3 -1.0447e1 5.8415e5 +# Range 0-350 + -Vm 3.4928 0.75 5.4483 -2.8100 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +Na+ + H2O = NaOH + H+ + -llnl_gamma 3.0 + log_k -14.7948 + -delta_H 53.6514 kJ/mol +# deltafH -112.927 kcal/mol + -analytic 8.7326e1 2.3555e-2 -5.4770e3 -3.6678e1 -8.5489e1 +# Range 0-350 + -Vm 2.2338 -2.3287 6.6683 -2.6826 -0.03 +# Extrapol supcrt92 +# Ref SSW+97, 95pok/hel match + +2 CH3COOH + Ni+2 = Ni(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.1908 + -delta_H -25.8571 kJ/mol +# deltafH -251.28 kcal/mol + -analytic -2.9660e1 1.0643e-3 -1.0060e3 7.9358 5.2562e5 +# Range 0-350 + -Vm 11.1327 19.4031 -1.8801 -3.5810 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Ni+2 = Ni(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -11.3543 + -delta_H -53.6807 kJ/mol +# deltafH -374.03 kcal/mol + -analytic 5.0850e1 -8.2435e-3 -1.3049e4 -1.5410e1 1.9704e6 +# Range 0-350 + -Vm 19.5212 39.8827 -9.9226 -4.4277 0.1603 +# Extrapol supcrt92 +# Ref SK93 + +Ni+2 + CH3COOH = NiCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.3278 + -delta_H -10.2508 kJ/mol +# deltafH -131.45 kcal/mol + -analytic -3.3110 1.6895e-3 -1.0556e3 2.7168e-2 2.6350e5 +# Range 0-350 + -Vm 4.3556 2.8512 4.6343 -2.8968 0.7287 +# Extrapol supcrt92 +# Ref SK93 + +Ni+2 + Cl- = NiCl+ + -llnl_gamma 4.0 + log_k -0.9962 + -delta_H 5.99567 kJ/mol +# deltafH -51.4 kcal/mol + -analytic 9.5370e1 3.8521e-2 -2.1746e3 -4.0629e1 -3.3961e1 +# Range 0-350 + -Vm 1.1319 -5.0147 7.714 -2.5716 0.8111 +# Extrapol supcrt92 +# Ref SSH97 + +H2O = OH- + H+ + -llnl_gamma 3.5 + log_k -13.9951 + -delta_H 55.8146 kJ/mol +# deltafH -54.977 kcal/mol + -analytic -6.7506e1 -3.0619e-2 -1.9901e3 2.8004e1 -3.1033e1 +# Range 0-350 + -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 # APP14 +# Extrapol supcrt92 +# Ref SH88 + +2 HPO4-2 = P2O7-4 + H2O + -llnl_gamma 4.0 + log_k -3.7463 + -delta_H 27.2256 kJ/mol +# deltafH -2271.1 kJ/mol + -analytic 4.0885e2 1.3243e-1 -1.1373e4 -1.6727e2 -1.7758e2 +# Range 0-350 + -Vm 7.0687 9.4773 2.0273 -3.1707 6.9069 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, WEP+82 differ by 0.1 log K at 0C, 7 log K at 350C !! flag + +HPO4-2 = PO4-3 + H+ + -llnl_gamma 4.0 + log_k -12.3218 + -delta_H 14.7068 kJ/mol +# deltafH -305.3 kcal/mol + -analytic -7.6170e1 -3.3574e-2 1.3405e2 2.9658e1 2.1140 +# Range 0-350 + -Vm -0.5258 -9.0576 9.2927 -2.4045 5.61140 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 H+ + 2 SO3-2 = S2O5-2 + H2O + -llnl_gamma 4.0 + log_k 9.5934 +# deltafH -0 kcal/mol + -analytic 0.12262e3 0.62883e-1 -0.18005e4 -0.50798e2 -0.28132e2 +# Range 0-350 + -Vm 7.3618 10.1945 1.7414 -3.2003 2.8343 # SSW+97 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 H+ + SO3-2 = SO2 + H2O + -llnl_gamma 3.0 + log_k 9.0656 + -delta_H 26.7316 kJ/mol +# deltafH -77.194 kcal/mol + -analytic 9.4048e1 6.2127e-2 -1.1072e3 -4.0310e1 -1.7305e1 +# Range 0-350 + -Vm 6.9502 9.189 2.1383 -3.1589 -0.0559 +# Extrapol supcrt92 +# Ref SHS89 + +2 CH3COOH + Sc+3 = Sc(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -3.7237 + -delta_H -43.1789 kJ/mol +# deltafH -389.32 kcal/mol + -analytic -4.1862e1 -3.9443e-5 2.1444e2 1.2616e1 5.5442e5 +# Range 0-350 + -Vm 9.2794 14.8737 -0.0899 -3.3938 0.9706 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Sc+3 = Sc(CH3COO)3 + 3 H+ + -llnl_gamma 3.0 + log_k -6.6777 + -delta_H -70.0402 kJ/mol +# deltafH -511.84 kcal/mol + -analytic -5.2525e1 1.6181e-3 7.5022e2 1.3988e1 7.3540e5 +# Range 0-350 + -Vm 16.5277 32.5748 -7.0539 -4.1255 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Sc+3 + CH3COOH = ScCH3COO+2 + H+ + -llnl_gamma 4.5 + log_k -1.4294 + -delta_H -21.7568 kJ/mol +# deltafH -268.1 kcal/mol + -analytic -2.3400e1 1.3144e-4 1.1125e2 7.3527 3.0025e5 +# Range 0-350 + -Vm 2.7175 -1.1437 6.1937 -2.7316 1.7013 +# Extrapol supcrt92 +# Ref SK93 + +2 CH3COOH + Sm+3 = Sm(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -4.7132 + -delta_H -25.5224 kJ/mol +# deltafH -403.5 kcal/mol + -analytic -1.4192e1 2.1732e-3 -1.0267e3 2.9516 4.4389e5 +# Range 0-350 + -Vm 9.159 14.5839 0.0138 -3.3818 0.6644 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Sm+3 = Sm(CH3COO)3 + 3 H+ + -llnl_gamma 3.0 + log_k -7.8798 + -delta_H -43.5554 kJ/mol +# deltafH -523.91 kcal/mol + -analytic -2.0765e1 1.1047e-3 -5.1181e2 3.4797 5.0618e5 +# Range 0-350 + -Vm 16.5088 32.5307 -7.0412 -4.1237 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Sm+3 + CH3COOH = SmCH3COO+2 + H+ + -llnl_gamma 4.5 + log_k -1.9205 + -delta_H -13.598 kJ/mol +# deltafH -284.55 kcal/mol + -analytic -1.1734e1 1.0889e-3 -5.1061e2 3.3317 2.6395e5 +# Range 0-350 + -Vm 2.6264 -1.3667 6.2827 -2.7224 1.4769 +# Extrapol supcrt92 +# Ref SK93 + +Sm+3 + HCO3- = SmCO3+ + H+ + -llnl_gamma 4.0 + log_k -2.479 + -delta_H 89.1108 kJ/mol +# deltafH -308.8 kcal/mol # OBIGT: -331.34 kcal/mol HSS95 + -analytic 2.3486e2 5.3703e-2 -7.0193e3 -9.2863e1 -1.0960e2 +# Range 0-350 + -Vm -1.0455 -10.3293 9.798 -2.3519 1.1907 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + Cl- = SmCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 14.3637 kJ/mol +# deltafH -201.7 kcal/mol + -analytic 9.4972e1 3.9428e-2 -2.4198e3 -3.9718e1 -3.7787e1 +# Range 0-350 + -Vm -0.5006 -8.9988 9.2743 -2.4069 1.4192 +# Extrapol supcrt92 +# Ref HSS95 + +2 Cl- + Sm+3 = SmCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 19.9409 kJ/mol +# deltafH -240.3 kcal/mol + -analytic 2.5872e2 8.4154e-2 -7.2061e3 -1.0493e2 -1.1252e2 +# Range 0-350 + -Vm 2.5888 -1.4617 6.3276 -2.7185 0.6644 +# Extrapol supcrt92 +# Ref HSS95 + +3 Cl- + Sm+3 = SmCl3 + -llnl_gamma 3.0 + log_k -0.3936 + -delta_H 13.803 kJ/mol +# deltafH -281.7 kcal/mol + -analytic 4.9535e2 1.3520e-1 -1.4325e4 -1.9720e2 -2.2367e2 +# Range 0-350 + -Vm 6.0808 7.0673 2.9692 -3.0711 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +4 Cl- + Sm+3 = SmCl4- + -llnl_gamma 4.0 + log_k -0.818 + -delta_H -5.30531 kJ/mol +# deltafH -326.2 kcal/mol + -analytic 6.0562e2 1.4212e-1 -1.7982e4 -2.3782e2 -2.8077e2 +# Range 0-350 + -Vm 10.8148 18.6261 -1.5732 -3.5489 1.6917 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + HPO4-2 + H+ = SmH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -15.8364 kJ/mol +# deltafH -477.8 kcal/mol + -analytic 1.2451e2 6.4959e-2 -3.9576e2 -5.3772e1 -6.2124 +# Range 0-350 + -Vm 1.3708 -4.4295 7.4801 -2.5958 1.4867 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + HCO3- = SmHCO3+2 + -llnl_gamma 4.5 + log_k 1.7724 + -delta_H 9.19643 kJ/mol +# deltafH -327.9 kcal/mol + -analytic 5.5520e1 3.3265e-2 -7.3142e2 -2.4727e1 -1.1430e1 +# Range 0-350 + -Vm 0.3694 -6.8727 8.4365 -2.4948 1.2366 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + NO3- = SmNO3+2 + -llnl_gamma 4.5 + log_k 0.8012 + -delta_H -29.1667 kJ/mol +# deltafH -221.6 kcal/mol + -analytic 3.3782e1 2.7125e-2 1.5091e3 -1.8632e1 2.3537e1 +# Range 0-350 + -Vm 1.0908 -5.1124 7.7478 -2.5676 1.5897 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + H2O = SmO+ + 2 H+ + -llnl_gamma 4.0 + log_k -16.4837 + -delta_H 113.039 kJ/mol +# deltafH -206.5 kcal/mol # OBIGT: -197.63 kcal/mol HSS95 + -analytic 1.8554e2 3.0198e-2 -1.3791e4 -6.6588e1 -2.1526e2 +# Range 0-350 + -Vm 2.8115 -0.9157 6.1076 -2.741 0.3837 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Sm+3 = SmO2- + 4 H+ + -llnl_gamma 4.0 + log_k -35.0197 + -delta_H 285.909 kJ/mol +# deltafH -233.5 kcal/mol # OBIGT: -238.22 kcal/mol HSS95 + -analytic 1.3508e1 -8.3384e-3 -1.0325e4 -1.5506 -6.7392e5 +# Range 0-350 + -Vm 4.9642 4.3393 4.0456 -2.9583 1.0848 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Sm+3 = SmO2H + 3 H+ + -llnl_gamma 3.0 + log_k -25.9304 + -delta_H 226.497 kJ/mol +# deltafH -247.7 kcal/mol + -analytic 3.6882e2 5.3761e-2 -2.4317e4 -1.3305e2 -3.7956e2 +# Range 0-350 + -Vm 4.9296 4.2552 4.0768 -2.9548 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + H2O = SmOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.9808 + -delta_H 79.1487 kJ/mol +# deltafH -214.6 kcal/mol # OBIGT: -213.97 kcal/mol HSS95 + -analytic 6.3793e1 1.1977e-2 -6.0852e3 -2.2198e1 -9.4972e1 +# Range 0-350 + -Vm 2.7076 -1.1676 6.2027 -2.7306 1.1289 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + SO4-2 = SmSO4+ + -llnl_gamma 4.0 + log_k 3.6430 + -delta_H 20.0832 kJ/mol +# deltafH -377.8 kcal/mol + -analytic 3.0597e2 8.6258e-2 -9.0231e3 -1.2032e2 -1.4089e2 +# Range 0-350 + -Vm -1.3885 -4.3882 7.4678 -2.5975 0.7483 +# Extrapol supcrt92 +# Ref HSS95 + +UO2+2 + H2O = UO2OH+ + H+ + -llnl_gamma 4.0 + log_k -5.2073 + -delta_H 43.1813 kJ/mol +# deltafH -1261.66 kJ/mol + -analytic 3.4387e1 6.0811e-3 -3.3068e3 -1.2252e1 -5.1609e1 +# Range 0-350 + -Vm 4.764 3.8529 4.2318 -2.9382 0.4925 # SSB97 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +2 CH3COOH + Zn+2 = Zn(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -6.062 + -delta_H -11.0458 kJ/mol +# deltafH -271.5 kcal/mol + -analytic -2.2038e1 2.6133e-3 -2.7652e3 6.8501 6.7086e5 +# Range 0-350 + -Vm 11.7443 20.8978 -2.4707 -3.6429 -0.038 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +3 CH3COOH + Zn+2 = Zn(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -10.0715 + -delta_H 25.355 kJ/mol +# deltafH -378.9 kcal/mol + -analytic 3.5104e1 -6.1568e-3 -1.3379e4 -8.7697 2.0670e6 +# Range 0-350 + -Vm 20.0332 41.1373 -10.4257 -4.4796 1.2513 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +Zn+2 + CH3COOH = ZnCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.1519 + -delta_H -9.87424 kJ/mol +# deltafH -155.12 kcal/mol + -analytic -7.9367 2.8564e-3 -1.4514e3 2.5010 2.3343e5 +# Range 0-350 + -Vm 4.8484 4.06 4.1473 -2.9468 0.41 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +Zn+2 + Cl- = ZnCl+ + -llnl_gamma 4.0 + log_k 0.1986 + -delta_H 43.317 kJ/mol +# deltafH -66.24 kcal/mol + -analytic 1.1235e2 4.4461e-2 -4.1662e3 -4.5023e1 -6.5042e1 +# Range 0-350 + -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +2 Cl- + Zn+2 = ZnCl2 + -llnl_gamma 3.0 + log_k 0.2507 + -delta_H 31.1541 kJ/mol +# deltafH -109.08 kcal/mol + -analytic 1.7824e2 7.5733e-2 -4.6251e3 -7.4770e1 -7.2224e1 +# Range 0-350 + -Vm -10.1 4.57 241 -2.97 -1e-3 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +3 Cl- + Zn+2 = ZnCl3- + -llnl_gamma 4.0 + log_k -0.0198 + -delta_H 22.5894 kJ/mol +# deltafH -151.06 kcal/mol + -analytic 1.3889e2 7.4712e-2 -2.1527e3 -6.2200e1 -3.3633e1 +# Range 0-350 + -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +4 Cl- + Zn+2 = ZnCl4-2 + -llnl_gamma 4.0 + log_k 0.8605 + -delta_H 4.98733 kJ/mol +# deltafH -195.2 kcal/mol + -analytic 8.4294e1 7.0021e-2 3.9150e2 -4.2664e1 6.0834 +# Range 0-300 + -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97? + +Zn+2 + H2O = ZnOH+ + H+ + -llnl_gamma 4.0 + log_k -8.96 +# deltafH -0 kcal/mol + -analytic -7.8600e-1 -2.9499e-4 -2.8673e3 6.1892e-1 -4.2576e1 +# Range 25-300 + -Vm 1.1499 -4.9677 7.6896 -2.5735 0.326 +# Extrapol supcrt92, ? +# Ref SSW+97, 87bou/bar differ by 0.8 log K at 0C, 2.7 log K at 300C + +Zn+2 + SO4-2 = ZnSO4 + -llnl_gamma 3.0 + log_k 2.3062 + -delta_H 15.277 kJ/mol +# deltafH -1047.71 kJ/mol + -analytic 1.3640e2 5.1256e-2 -3.4422e3 -5.5695e1 -5.8501e1 +# Range 0-200 + -Vm 2.51 0 18.8 # APP14 +# Extrapol 69hel +# Ref WEP+82 + +PHASES + +#------------ +# 375 solids +#------------ + +[(6)(CB)(CB)S] + S + O2 = SO2 + log_k 63.04 + -analytic 137.16 -0.320465 0 0 0 0.000241 +# Range 0-350 + -Vm 16.5 +# Extrapol supcrt92 +# Ref R01, calculations and fit by N17 + +[(aro)-O-(aro)] + O = 0.5 O2 + log_k -20.610681 + -delta_H 30.240 kcal/mol + -analytic -46.6 0.111 0 0 0 -7.99e-5 +# Range 0-350 + -Vm -2.4 +# Extrapol supcrt92 +# Ref RH98 + +Afwillite + Ca3Si2O4(OH)6 + 6 H+ = 2 SiO2 + 3 Ca+2 + 6 H2O + log_k 60.0452 + -delta_H -316.059 kJ/mol +# deltafH -1143.31 kcal/mol + -analytic 1.8353e1 1.9014e-3 1.8478e4 -6.6311 -4.0227e5 +# Range 0-300 + -Vm 129.23 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Akermanite + Ca2MgSi2O7 + 6 H+ = Mg+2 + 2 Ca+2 + 2 SiO2 + 3 H2O + log_k 45.3190 + -delta_H -288.575 kJ/mol +# deltafH -926.497 kcal/mol + -analytic -4.8295e1 -8.5613e-3 2.0880e4 1.3798e1 -7.1975e5 +# Range 0-350 + -Vm 92.81 +# Extrapol supcrt92 +# Ref HDN+78 + +Al + Al + 3 H+ + 0.75 O2 = Al+3 + 1.5 H2O + log_k 149.9292 + -delta_H -958.059 kJ/mol +# deltafH 0 kJ/mol + -analytic -1.8752e2 -4.6187e-2 5.7127e4 6.6270e1 -3.8952e5 +# Range 0-300 + -Vm 9.99 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Al2(SO4)3 + Al2(SO4)3 = 2 Al+3 + 3 SO4-2 + log_k 19.0535 + -delta_H -364.566 kJ/mol +# deltafH -3441.04 kJ/mol + -analytic -6.1001e2 -2.4268e-1 2.9194e4 2.4383e2 4.5573e2 +# Range 0-300 + -Vm 126.25 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Alabandite + MnS + H+ = HS- + Mn+2 + log_k -0.3944 + -delta_H -23.3216 kJ/mol +# deltafH -51 kcal/mol + -analytic -1.5515e2 -4.8820e-2 4.9049e3 6.1765e1 7.6583e1 +# Range 0-350 + -Vm 21.46 +# Extrapol supcrt92 +# Ref HDN+78 + +Albite + NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 + log_k 2.7645 + -delta_H -51.8523 kJ/mol +# deltafH -939.68 kcal/mol + -analytic -1.1694e1 1.4429e-2 1.3784e4 -7.2866 -1.6136e6 +# Range 0-350 + -Vm 100.25 +# Extrapol supcrt92 +# Ref HDN+78 + +Albite_high + NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 + log_k 4.0832 + -delta_H -62.8562 kJ/mol +# deltafH -937.05 kcal/mol + -analytic -1.8957e1 1.3726e-2 1.4801e4 -4.9732 -1.6442e6 +# Range 0-350 + -Vm 100.25 +# Extrapol supcrt92 +# Ref HDN+78 + +Albite_low + NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 + log_k 2.7645 + -delta_H -51.8523 kJ/mol +# deltafH -939.68 kcal/mol + -analytic -1.2860e1 1.4481e-2 1.3913e4 -6.9417 -1.6256e6 +# Range 0-350 + -Vm 100.25 +# Extrapol supcrt92 +# Ref HDN+78 + +Alum-K + KAl(SO4)2:12H2O = Al+3 + K+ + 2 SO4-2 + 12 H2O + log_k -4.8818 + -delta_H 14.4139 kJ/mol +# deltafH -1447 kcal/mol + -analytic -8.8025e2 -2.5706e-1 2.2399e4 3.5434e2 3.4978e2 +# Range 0-300 + -Vm 269.54 # Marion+09 +# Extrapol Cp integration +# Ref 73bar/kna + +Alunite + KAl3(OH)6(SO4)2 + 6 H+ = K+ + 2 SO4-2 + 3 Al+3 + 6 H2O + log_k -0.3479 + -delta_H -231.856 kJ/mol +# deltafH -1235.6 kcal/mol + -analytic -6.8581e2 -2.2455e-1 2.6886e4 2.6758e2 4.1973e2 +# Range 0-350 + -Vm 205.40 # thermo.com.V8.R6+.tdat +# Extrapol supcrt92 +# Ref HDN+78 + +Amesite-14A + Mg4Al4Si2O10(OH)8 + 20 H+ = 2 SiO2 + 4 Al+3 + 4 Mg+2 + 14 H2O + log_k 75.4571 + -delta_H -797.098 kJ/mol +# deltafH -2145.67 kcal/mol + -analytic -5.4326e2 -1.4144e-1 5.4150e4 1.9361e2 8.4512e2 +# Range 0-300 + -Vm 205.4 +# Extrapol Cp integration +# Ref 78wol + +Analcime + Na.96Al.96Si2.04O6:H2O + 3.84 H+ = 0.96 Al+3 + 0.96 Na+ + 2.04 SiO2 + 2.92 H2O + log_k 6.1396 + -delta_H -75.844 kJ/mol +# deltafH -3296.86 kJ/mol + -analytic -6.8694 6.6052e-3 9.8260e3 -4.8540 -8.8780e5 +# Range 0-350 + -Vm 97.1 # 96.8 in thermo.com.V8.R6+.tdat +# Extrapol supcrt92, Cp integration +# Ref HDN+78, 82joh/flo match but differ from Wilson+06 by 1 log K at 0C, 0 log K a 300C + +Andalusite + Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O + log_k 15.9445 + -delta_H -235.233 kJ/mol +# deltafH -615.866 kcal/mol + -analytic -7.1115e1 -3.2234e-2 1.2308e4 2.2357e1 1.9208e2 +# Range 0-350 + -Vm 51.53 +# Extrapol supcrt92 +# Ref HDN+78 differ by 1.6 log K at 0C, 0.5 log K at 350C + +Andradite + Ca3Fe2(SiO4)3 + 12 H+ = 2 Fe+3 + 3 Ca+2 + 3 SiO2 + 6 H2O + log_k 33.3352 + -delta_H -301.173 kJ/mol +# deltafH -1380.35 kcal/mol + -analytic 1.3884e1 -2.3886e-2 1.5314e4 -8.1606 -4.2193e5 +# Range 0-350 + -Vm 131.85 +# Extrapol supcrt92 +# Ref HDN+78 + +Anhydrite + CaSO4 = Ca+2 + SO4-2 + log_k -4.3064 + -delta_H -18.577 kJ/mol +# deltafH -342.76 kcal/mol + -analytic -2.0986e2 -7.8823e-2 5.0969e3 8.5642e1 7.9594e1 +# Range 0-350 + -Vm 45.94 # thermo.com.V8.R6+.tdat +# Extrapol supcrt92 +# Ref HDN+78 + +Annite + KFe3AlSi3O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Fe+2 + 3 SiO2 + 6 H2O + log_k 29.4693 + -delta_H -259.964 kJ/mol +# deltafH -1232.19 kcal/mol + -analytic -4.0186e1 -1.4238e-2 1.8929e4 7.9859e0 -8.4343e5 +# Range 0-350 + -Vm 154.32 +# Extrapol supcrt92 +# Ref HDN+78 + +Anorthite + CaAl2(SiO4)2 + 8 H+ = Ca+2 + 2 Al+3 + 2 SiO2 + 4 H2O + log_k 26.5780 + -delta_H -303.039 kJ/mol +# deltafH -1007.55 kcal/mol + -analytic 3.9717e-1 -1.8751e-2 1.4897e4 -6.3078 -2.3885e5 +# Range 0-350 + -Vm 100.79 +# Extrapol supcrt92 +# Ref HDN+78 + +Anthophyllite + Mg7Si8O22(OH)2 + 14 H+ = 7 Mg+2 + 8 H2O + 8 SiO2 + log_k 66.7965 + -delta_H -483.486 kJ/mol +# deltafH -2888.75 kcal/mol + -analytic -1.2865e2 1.9705e-2 5.4853e4 1.9444e1 -3.8080e6 +# Range 0-350 + -Vm 264.4 +# Extrapol supcrt92 +# Ref HDN+78 + +Antigorite + Mg48Si34O85(OH)62 + 96 H+ = 34 SiO2 + 48 Mg+2 + 79 H2O + log_k 477.1943 + -delta_H -3364.43 kJ/mol +# deltafH -17070.9 kcal/mol + -analytic -8.1630e2 -6.7780e-2 2.5998e5 2.2029e2 -9.3275e6 +# Range 0-350 + -Vm 1749.13 +# Extrapol supcrt92 +# Ref HDN+78 + +Aragonite + CaCO3 + H+ = Ca+2 + HCO3- + log_k 1.9931 + -delta_H -25.8027 kJ/mol +# deltafH -288.531 kcal/mol + -analytic -1.4934e2 -4.8043e-2 4.9089e3 6.0284e1 7.6644e1 +# Range 0-325 + -Vm 34.15 # thermo.com.V8.R6+.tdat +# Extrapol supcrt92 +# Ref HDN+78 + +Arcanite + K2SO4 = SO4-2 + 2 K+ + log_k -1.8008 + -delta_H 23.836 kJ/mol +# deltafH -1437.78 kJ/mol + -analytic -1.6428e2 -6.7762e-2 1.9879e3 7.1116e1 3.1067e1 +# Range 0-300 + -Vm 65.50 # Marion+05 +# Extrapol Cp integration +# Ref RHF79 + +Artinite + Mg2CO3(OH)2:3H2O + 3 H+ = HCO3- + 2 Mg+2 + 5 H2O + log_k 19.6560 + -delta_H -130.432 kJ/mol +# deltafH -698.043 kcal/mol + -analytic -2.8614e2 -6.7344e-2 1.5230e4 1.1104e2 2.3773e2 +# Range 0-350 + -Vm 96.9 # 97.85 Webmineral.com +# Extrapol supcrt92 +# Ref HDN+78 + +Atacamite + Cu4Cl2(OH)6 + 6 H+ = 2 Cl- + 4 Cu+2 + 6 H2O + log_k 14.2836 + -delta_H -132.001 kJ/mol +# deltafH -1654.43 kJ/mol + -analytic -2.6623e2 -4.8121e-2 1.5315e4 9.8395e1 2.6016e2 +# Range 0-200 + -Vm 56.80 # Webmineral.com +# Extrapol Constant H approx +# Ref 87woo/gar + +Azurite + Cu3(CO3)2(OH)2 + 4 H+ = 2 H2O + 2 HCO3- + 3 Cu+2 + log_k 9.1607 + -delta_H -122.298 kJ/mol +# deltafH -390.1 kcal/mol + -analytic -4.4042e2 -1.1934e-1 1.8053e4 1.7158e2 2.8182e2 +# Range 0-350 + -Vm 91.01 +# Extrapol supcrt92 +# Ref HDN+78 + +B + B + 1.5 H2O + 0.75 O2 = B(OH)3 + log_k 109.5654 + -delta_H -636.677 kJ/mol +# deltafH 0 kJ/mol + -analytic 8.0471e1 1.2577e-3 2.9653e4 -2.8593e1 4.6268e2 +# Range 0-300 + -Vm 4.386 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +B2O3 + B2O3 + 3 H2O = 2 B(OH)3 + log_k 5.5464 + -delta_H -18.0548 kJ/mol +# deltafH -1273.5 kJ/mol + -analytic 9.0905e1 5.5365e-3 -2.6629e3 -3.1553e1 -4.1578e1 +# Range 0-300 + -Vm 28.30 # gfw/density +# Extrapol Cp integration +# Ref CWM89 + +Bassanite + CaSO4:0.5H2O = 0.5 H2O + Ca+2 + SO4-2 + log_k -3.6615 + -delta_H -18.711 kJ/mol +# deltafH -1576.89 kJ/mol + -analytic -2.2010e2 -8.0230e-2 5.5092e3 8.9651e1 8.6031e1 +# Range 0-300 + -Vm 52.31 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Bassetite + Fe(UO2)2(PO4)2 + 2 H+ = Fe+2 + 2 HPO4-2 + 2 UO2+2 + log_k -17.7240 + -delta_H -114.841 kJ/mol +# deltafH -1099.33 kcal/mol + -analytic -5.7788e1 -4.5400e-2 4.0119e3 1.6216e1 6.8147e1 +# Range 0-200 + -Vm 256.19 # Webmineral.com +# Extrapol Constant H approx +# Ref 78lan + +Beidellite-Ca + Ca.175Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Ca+2 + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 5.5914 + -delta_H -162.403 kJ/mol +# deltafH -1370.66 kcal/mol + -analytic 3.872e1 -1.431e-1 0 0 0 9.036e-5 +# Range 0-300 + -Vm 133.081 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78 wol differ by 1.5 log K at 0C, 1 log K at 300C + +Beidellite-Fe + Fe.175Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Fe+2 + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 4.6335 + -delta_H -154.65 kJ/mol +# deltafH -1351.1 kcal/mol + -analytic 3.641e1 -1.391e-1 0 0 0 8.671e-5 +# Range 0-300 + -Vm 134.293 +# Extrapol supcrt92 +# Ref Catalano13 + +Beidellite-K + K.35Al2.35Si3.65O10(OH)2 +7.4 H+ = 0.35 K+ + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 5.3088 + -delta_H -150.834 kJ/mol +# deltafH -1371.9 kcal/mol + -analytic 3.307e1 -1.254e-1 0 0 0 7.660e-5 +# Range 0-300 + -Vm 137.214 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78 wol differ by 2.9 log K at 0C, 1.7 log K at 300C + +Beidellite-Mg + Mg.175Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Mg+2 + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 5.5537 + -delta_H -165.455 kJ/mol +# deltafH -1366.89 kcal/mol + -analytic 3.750e1 -1.415e-1 0 0 0 8.929e-5 +# Range 0-300 + -Vm 132.116 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78 wol differ by 2.4 log K at 0C, 1.4 log K at 300C + +Beidellite-Na + Na.35Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Na+ + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 5.6473 + -delta_H -155.846 kJ/mol +# deltafH -1369.76 kcal/mol + -analytic 3.613e1 -1.347e-1 0 0 0 8.470e-5 +# Range 0-300 + -Vm 134.522 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, differ from 78 wol and Wilson+06 (which match) by 2.8 log K at 0C, 1.3 log K at 300C + +Berlinite + AlPO4 + H+ = Al+3 + HPO4-2 + log_k -7.2087 + -delta_H -96.6313 kJ/mol +# deltafH -1733.85 kJ/mol + -analytic -2.8134e2 -9.9933e-2 1.0308e4 1.0883e2 1.6094e2 +# Range 0-300 + -Vm 46.19 # Webmineral.com +# Extrapol Cp integration +# Ref WEP+82 + +Bieberite + CoSO4:7H2O = Co+2 + SO4-2 + 7 H2O + log_k -2.5051 + -delta_H 11.3885 kJ/mol +# deltafH -2980.02 kJ/mol + -analytic -2.6405e2 -7.2497e-2 6.6673e3 1.0538e2 1.0411e2 +# Range 0-300 + -Vm 147.95 # Webmineral.com +# Extrapol Cp integration +# Ref WEP+82 + +Bixbyite + Mn2O3 + 6 H+ = 2 Mn+3 + 3 H2O + log_k -0.9655 + -delta_H -190.545 kJ/mol +# deltafH -958.971 kJ/mol + -analytic -1.1600e2 -2.8056e-3 1.3418e4 2.8639e1 2.0941e2 +# Range 0-300 + -Vm 31.89 # Webmineral.com, density 4.95 +# Extrapol Cp integration +# Ref RHF79 + +Boehmite + AlO2H + 3 H+ = Al+3 + 2 H2O + log_k 7.5642 + -delta_H -113.282 kJ/mol +# deltafH -238.24 kcal/mol + -analytic -1.2196e2 -3.1138e-2 8.8643e3 4.4075e1 1.3835e2 +# Range 0-225 + -Vm 19.535 +# Extrapol supcrt92 +# Ref HDN+78, 95pok/hel + +Borax + Na2(B4O5(OH)4):8H2O + 2 H+ = 2 Na+ + 4 B(OH)3 + 5 H2O + log_k 12.0395 + -delta_H 80.5145 kJ/mol +# deltafH -6288.44 kJ/mol + -analytic 7.8374e1 1.9328e-2 -5.3279e3 -2.1914e1 -8.3160e1 +# Range 0-300 + -Vm 222.66 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Boric_acid + B(OH)3 = B(OH)3 + log_k -0.1583 + -delta_H 20.2651 kJ/mol +# deltafH -1094.8 kJ/mol + -analytic 3.9122e1 6.4058e-3 -2.2525e3 -1.3592e1 -3.5160e1 +# Range 0-300 + -Vm 43.09 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Bornite + Cu5FeS4 + 4 H+ = Cu+2 + Fe+2 + 4 Cu+ + 4 HS- + log_k -102.4369 + -delta_H 530.113 kJ/mol +# deltafH -79.922 kcal/mol + -analytic -7.0495e2 -2.0082e-1 -9.1376e3 2.8004e2 -1.4238e2 +# Range 0-350 + -Vm 98.6 +# Extrapol supcrt92 +# Ref HDN+78 + +Brezinaite + Cr3S4 + 4 H+ = Cr+2 + 2 Cr+3 + 4 HS- + log_k 2.7883 + -delta_H -216.731 kJ/mol +# deltafH -111.9 kcal/mol + -analytic -7.0528e1 -3.6568e-2 1.0598e4 1.9665e1 1.8000e2 +# Range 0-200 + -Vm 69.16 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 78vau/cra + +Brochantite + Cu4(SO4)(OH)6 + 6 H+ = SO4-2 + 4 Cu+2 + 6 H2O + log_k 15.4363 + -delta_H -163.158 kJ/mol +# deltafH -2198.72 kJ/mol + -analytic -2.3609e2 -3.9046e-2 1.5970e4 8.4701e1 2.7127e2 +# Range 0-200 + -Vm 113.60 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87woo/gar + +Brucite + Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O + log_k 16.2980 + -delta_H -111.34 kJ/mol +# deltafH -221.39 kcal/mol + -analytic -1.0280e2 -1.9759e-2 9.0180e3 3.8282e1 1.4075e2 +# Range 0-350 + -Vm 24.63 +# Extrapol supcrt92 +# Ref HDN+78 + +Bunsenite + NiO + 2 H+ = H2O + Ni+2 + log_k 12.4719 + -delta_H -100.069 kJ/mol +# deltafH -57.3 kcal/mol + -analytic -8.1664e1 -1.9796e-2 7.4064e3 3.0385e1 1.1559e2 +# Range 0-350 + -Vm 10.97 +# Extrapol supcrt92 +# Ref HDN+78 + +C + C + H2O + O2 = H+ + HCO3- + log_k 64.1735 + -delta_H -391.961 kJ/mol +# deltafH 0 kcal/mol + -analytic -3.5556e1 -3.3691e-2 1.9774e4 1.7548e1 3.0856e2 +# Range 0-350 + -Vm 5.298 +# Extrapol supcrt92 +# Ref HDN+78 + +Ca + Ca +2 H+ + 0.5 O2 = Ca+2 + H2O + log_k 139.8465 + -delta_H -822.855 kJ/mol +# deltafH 0 kJ/mol + -analytic -1.1328e2 -2.6554e-2 4.7638e4 4.1989e1 -2.3545e5 +# Range 0-300 + -Vm 26.19 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Ca-Al_Pyroxene + CaAl2SiO6 + 8 H+ = Ca+2 + SiO2 + 2 Al+3 + 4 H2O + log_k 35.9759 + -delta_H -361.548 kJ/mol +# deltafH -783.793 kcal/mol + -analytic -1.4664e2 -5.0409e-2 2.1045e4 5.1318e1 3.2843e2 +# Range 0-350 + -Vm 63.5 +# Extrapol supcrt92 +# Ref HDN+78 + +Ca3Al2O6 + Ca3Al2O6 + 12 H+ = 2 Al+3 + 3 Ca+2 + 6 H2O + log_k 113.0460 + -delta_H -833.336 kJ/mol +# deltafH -857.492 kcal/mol + -analytic -2.7163e2 -5.2897e-2 5.0815e4 9.2946e1 8.6300e2 +# Range 0-200 + -Vm 88.94 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +Ca4Al2Fe2O10 + Ca4Al2Fe2O10 + 20 H+ = 2 Al+3 + 2 Fe+3 + 4 Ca+2 + 10 H2O + log_k 140.5050 + -delta_H -1139.86 kJ/mol +# deltafH -1211 kcal/mol + -analytic -4.1808e2 -8.2787e-2 7.0288e4 1.4043e2 1.1937e3 +# Range 0-200 + -Vm 130.28 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +CaAl2O4 + CaAl2O4 + 8 H+ = Ca+2 + 2 Al+3 + 4 H2O + log_k 46.9541 + -delta_H -436.952 kJ/mol +# deltafH -555.996 kcal/mol + -analytic -3.0378e2 -7.9356e-2 3.0096e4 1.1049e2 4.6971e2 +# Range 0-300 + -Vm 53.02 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +CaAl4O7 + CaAl4O7 + 14 H+ = Ca+2 + 4 Al+3 + 7 H2O + log_k 68.6138 + -delta_H -718.464 kJ/mol +# deltafH -951.026 kcal/mol + -analytic -3.1044e2 -6.7078e-2 4.4566e4 1.0085e2 7.5689e2 +# Range 0-200 + -Vm 89.35 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +CaUO4 + CaUO4 + 4 H+ = Ca+2 + UO2+2 + 2 H2O + log_k 15.9420 + -delta_H -131.46 kJ/mol +# deltafH -2002.3 kJ/mol + -analytic -8.7902e1 -1.9810e-2 9.2354e3 3.1832e1 1.4414e2 +# Range 0-300 + -Vm 45.92 # M13 +# Extrapol Cp integration +# Ref 92gre/fug + +Calcite + CaCO3 + H+ = Ca+2 + HCO3- + log_k 1.8487 + -delta_H -25.7149 kJ/mol +# deltafH -288.552 kcal/mol + -analytic -1.4978e2 -4.8370e-2 4.8974e3 6.0458e1 7.6464e1 +# Range 0-350 + -Vm 36.934 +# Extrapol supcrt92 +# Ref HDN+78 + +Cattierite + CoS2 = Co+2 + S2-2 + log_k -29.9067 +# deltafH -36.589 kcal/mol + -analytic -2.1970e2 -7.8585e-2 -1.9592e3 8.8809e1 -3.0507e1 +# Range 0-300 + -Vm 25.53 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 78vau/cra + +Celadonite + KMgAlSi4O10(OH)2 + 6 H+ = Al+3 + K+ + Mg+2 + 4 H2O + 4 SiO2 + log_k 7.4575 + -delta_H -74.3957 kJ/mol +# deltafH -1394.9 kcal/mol + -analytic -3.3097e1 1.7989e-2 1.8919e4 -2.1219 -2.0588e6 +# Range 0-300 + -Vm 157.1 +# Extrapol supcrt92, Cp integration +# Ref HDN+78, 78wol match + +Chalcanthite + CuSO4:5H2O = Cu+2 + SO4-2 + 5 H2O + log_k -2.6215 + -delta_H 6.57556 kJ/mol +# deltafH -2279.68 kJ/mol + -analytic -1.1262e2 -1.5544e-2 3.6176e3 4.1420e1 6.1471e1 +# Range 0-200 + -Vm 108.97 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Chalcedony + SiO2 = SiO2 + log_k -3.7281 + -delta_H 31.4093 kJ/mol +# deltafH -217.282 kcal/mol + -analytic -9.0068 9.3241e-3 4.0535e3 -1.0830 -7.5077e5 +# Range 0-350 + -Vm 22.68 +# Extrapol supcrt92 +# Ref HDN+78 + +Chalcocite + Cu2S + H+ = HS- + 2 Cu+ + log_k -34.7342 + -delta_H 206.748 kJ/mol +# deltafH -19 kcal/mol + -analytic -1.3703e2 -4.0727e-2 -7.1694e3 5.5963e1 -1.1183e2 +# Range 0-350 + -Vm 27.48 +# Extrapol supcrt92 +# Ref HDN+78 + +Chalcocyanite + CuSO4 = Cu+2 + SO4-2 + log_k 2.9239 + -delta_H -72.5128 kJ/mol +# deltafH -771.4 kJ/mol + -analytic 5.8173 -1.6933e-2 2.0097e3 -1.8583 3.4126e1 +# Range 0-200 + -Vm 40.88 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref CWM89 + +Chalcopyrite + CuFeS2 + 2 H+ = Cu+2 + Fe+2 + 2 HS- + log_k -32.5638 + -delta_H 127.206 kJ/mol +# deltafH -44.453 kcal/mol + -analytic -3.1575e2 -9.8947e-2 8.3400e2 1.2522e2 1.3106e1 +# Range 0-350 + -Vm 42.83 +# Extrapol supcrt92 +# Ref HDN+78 + +Chamosite + Fe5Al2Si3O10(OH)8 + 16 H+ = 3 SiO2 + 2 Al+3 + 5 Fe+2 + 12 H2O + log_k 32.8416 + -delta_H -364.213 kJ/mol +# deltafH -902.407 kcal/mol + -analytic 1.577e2 -4.614e-1 0 0 0 3.413e-4 +# Range 0-300 + -Vm 213.42 +# Extrapol supcrt92 +# Ref Wilson+06 + +Chloromagnesite + MgCl2 = Mg+2 + 2 Cl- + log_k 21.8604 + -delta_H -158.802 kJ/mol +# deltafH -641.317 kJ/mol + -analytic -2.3640e2 -8.2017e-2 1.3480e4 9.5963e1 2.1042e2 +# Range 0-300 + -Vm 40.95 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Chromite + FeCr2O4 + 8 H+ = Fe+2 + 2 Cr+3 + 4 H2O + log_k 15.1685 + -delta_H -267.755 kJ/mol +# deltafH -1444.83 kJ/mol + -analytic -1.9060e2 -2.5695e-2 1.9465e4 5.9865e1 3.0379e2 +# Range 0-300 + -Vm 44.01 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Chrysotile + Mg3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Mg+2 + 5 H2O + log_k 31.1254 + -delta_H -218.041 kJ/mol +# deltafH -1043.12 kcal/mol + -analytic -9.2462e1 -1.1359e-2 1.8312e4 2.9289e1 -6.2342e5 +# Range 0-350 + -Vm 108.5 +# Extrapol supcrt92 +# Ref HDN+78 + +Clinochlore-14A + Mg5Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Mg+2 + 12 H2O + log_k 67.2391 + -delta_H -612.379 kJ/mol +# deltafH -2116.96 kcal/mol + -analytic -2.0441e2 -6.2268e-2 3.5388e4 6.9239e1 5.5225e2 +# Range 0-350 + -Vm 207.11 +# Extrapol supcrt92 +# Ref HDN+78, Wilson+06 differ by 0.4 log K at 0C, 1.6 log K at 300C + +Clinochlore-7A + Mg5Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Mg+2 + 12 H2O + log_k 70.6124 + -delta_H -628.14 kJ/mol +# deltafH -2113.2 kcal/mol + -analytic -2.1644e2 -6.4187e-2 3.6548e4 7.4123e1 5.7037e2 +# Range 0-350 + -Vm 211.5 +# Extrapol supcrt92 +# Ref HDN+78 + +Clinoptilolite-Ca + Ca1.7335Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 1.7335 Ca+2 + 3.45 Al+3 + 14.533 SiO2 + 17.856 H2O + log_k -7.0095 + -delta_H -74.6745 kJ/mol +# deltafH -4919.84 kcal/mol + -analytic -4.4820e1 5.3696e-2 5.4878e4 -3.1459e1 -7.5491e6 +# Range 0-300 + -Vm 625.19 # Webmineral.com, density 2.15 +# Extrapol Cp integration +# Ref 89db 7 + +Clinoptilolite-K + K3.467Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 K+ + 14.533 SiO2 + 17.856 H2O + log_k -10.9485 + -delta_H 67.4862 kJ/mol +# deltafH -4937.77 kcal/mol + -analytic 1.1697e1 6.9480e-2 4.7718e4 -4.7442e1 -7.6907e6 +# Range 0-300 + -Vm 655.93 # Webmineral.com, density 2.15 +# Extrapol Cp integration +# Ref 89db 7 + +Clinoptilolite-Na + Na3.467Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 Na+ + 14.533 SiO2 + 17.856 H2O + log_k -7.1363 + -delta_H 2.32824 kJ/mol +# deltafH -4912.36 kcal/mol + -analytic -3.4572e1 6.8377e-2 5.1962e4 -3.3426e1 -7.5586e6 +# Range 0-300 + -Vm 629.95 # Webmineral.com, density 2.15 +# Extrapol Cp integration +# Ref 89db 7 + +Clinozoisite + Ca2Al3Si3O12(OH) + 13 H+ = 2 Ca+2 + 3 Al+3 + 3 SiO2 + 7 H2O + log_k 43.2569 + -delta_H -457.755 kJ/mol +# deltafH -1643.78 kcal/mol + -analytic -2.8690e1 -3.7056e-2 2.2770e4 3.7880 -2.5834e5 +# Range 0-300 + -Vm 136.2 +# Extrapol supcrt92 +# Ref HDN+78, SH88 + +Co + Co + 2 H+ + 0.5 O2 = Co+2 + H2O + log_k 52.5307 + -delta_H -337.929 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.2703e1 -2.0172e-2 1.8888e4 2.3391e1 2.9474e2 +# Range 0-300 + -Vm 6.67 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Co2SiO4 + Co2SiO4 + 4 H+ = SiO2 + 2 Co+2 + 2 H2O + log_k 6.6808 + -delta_H -88.6924 kJ/mol +# deltafH -353.011 kcal/mol + -analytic -3.9978 -3.7985e-3 5.1554e3 -1.5033 -1.6100e5 +# Range 0-300 + -Vm 44.52 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CoCl2 + CoCl2 = Co+2 + 2 Cl- + log_k 8.2641 + -delta_H -79.5949 kJ/mol +# deltafH -312.722 kJ/mol + -analytic -2.2386e2 -8.0936e-2 8.8631e3 9.1528e1 1.3837e2 +# Range 0-300 + -Vm 38.69 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CoCl2:2H2O + CoCl2:2H2O = Co+2 + 2 Cl- + 2 H2O + log_k 4.6661 + -delta_H -40.7876 kJ/mol +# deltafH -923.206 kJ/mol + -analytic -5.6411e1 -2.3390e-2 3.0519e3 2.3361e1 5.1845e1 +# Range 0-200 + -Vm 66.61 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +CoCl2:6H2O + CoCl2:6H2O = Co+2 + 2 Cl- + 6 H2O + log_k 2.6033 + -delta_H 8.32709 kJ/mol +# deltafH -2115.67 kJ/mol + -analytic -1.5066e2 -2.2132e-2 5.0591e3 5.7743e1 8.5962e1 +# Range 0-200 + -Vm 123.66 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +CoFe2O4 + CoFe2O4 + 8 H+ = Co+2 + 2 Fe+3 + 4 H2O + log_k 0.8729 + -delta_H -160.674 kJ/mol +# deltafH -272.466 kcal/mol + -analytic -3.0149e2 -7.9159e-2 1.5683e4 1.1046e2 2.4480e2 +# Range 0-300 + -Vm 44 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +CoO + CoO + 2 H+ = Co+2 + H2O + log_k 13.5553 + -delta_H -106.05 kJ/mol +# deltafH -237.946 kJ/mol + -analytic -8.4424e1 -1.9457e-2 7.8616e3 3.1281e1 1.2270e2 +# Range 0-300 + -Vm 11.64 # gfw/density +# Extrapol Cp integration +# Ref WEP+82 + +CoS + CoS + H+ = Co+2 + HS- + log_k -7.3740 + -delta_H 10.1755 kJ/mol +# deltafH -20.182 kcal/mol + -analytic -1.5128e2 -4.8484e-2 2.9553e3 5.9983e1 4.6158e1 +# Range 0-300 + -Vm 22.91 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +CoSO4 + CoSO4 = Co+2 + SO4-2 + log_k 2.8996 + -delta_H -79.7952 kJ/mol +# deltafH -887.964 kJ/mol + -analytic -1.9907e2 -7.7890e-2 7.7193e3 8.0525e1 1.2051e2 +# Range 0-300 + -Vm 41.78 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CoSO4:6H2O + CoSO4:6H2O = Co+2 + SO4-2 + 6 H2O + log_k -2.3512 + -delta_H 1.08483 kJ/mol +# deltafH -2683.87 kJ/mol + -analytic -2.5469e2 -7.3092e-2 6.6767e3 1.0172e2 1.0426e2 +# Range 0-300 + -Vm 130.30 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CoSO4:H2O + CoSO4:H2O = Co+2 + H2O + SO4-2 + log_k -1.2111 + -delta_H -52.6556 kJ/mol +# deltafH -287.032 kcal/mol + -analytic -1.0570e1 -1.6196e-2 1.7180e3 3.4000 2.9178e1 +# Range 0-200 + -Vm 56.26 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +Coesite + SiO2 = SiO2 + log_k -3.1893 + -delta_H 28.6144 kJ/mol +# deltafH -216.614 kcal/mol + -analytic -9.7312 9.1773e-3 4.2143e3 -7.8065e-1 -7.4905e5 +# Range 0-350 + -Vm 20.641 +# Extrapol supcrt92 +# Ref HDN+78 + +Coffinite + USiO4 + 4 H+ = SiO2 + U+4 + 2 H2O + log_k -8.0530 + -delta_H -49.2493 kJ/mol +# deltafH -1991.33 kJ/mol + -analytic 2.3126e2 6.2389e-2 -4.6189e3 -9.7976e1 -7.8517e1 +# Range 0-200 + -Vm 46.12 # thermo.com.V8.R6+.tdat +# Extrapol Constant H Approx +# Ref 92gre/fug + +Cordierite_anhyd + Mg2Al4Si5O18 + 16 H+ = 2 Mg+2 + 4 Al+3 + 5 SiO2 + 8 H2O + log_k 52.3035 + -delta_H -626.219 kJ/mol +# deltafH -2183.2 kcal/mol + -analytic 2.6562 -2.3801e-2 3.5192e4 -1.9911e1 -1.0894e6 +# Range 0-350 + -Vm 233.22 +# Extrapol supcrt92 +# Ref HDN+78 differ by 3 log K at 0C, 0.8 log K at 350C + +Cordierite_hydr + Mg2Al4Si5O18:H2O + 16 H+ = 2 Mg+2 + 4 Al+3 + 5 SiO2 + 9 H2O + log_k 49.8235 + -delta_H -608.814 kJ/mol +# deltafH -2255.68 kcal/mol + -analytic -1.2985e2 -4.1335e-2 4.1566e4 2.7892e1 -1.4819e6 +# Range 0-350 + -Vm 241.22 +# Extrapol supcrt92 +# Ref HDN+78 differ by 3.4 log K at 0C, 0.8 log K at 350C + +Corundum + Al2O3 + 6 H+ = 2 Al+3 + 3 H2O + log_k 18.3121 + -delta_H -258.626 kJ/mol +# deltafH -400.5 kcal/mol + -analytic -1.4278e2 -7.8519e-2 1.3776e4 5.5881e1 2.1501e2 +# Range 0-350 + -Vm 25.575 +# Extrapol supcrt92 +# Ref HDN+78, 95pok/hel differ by 1 log K at 0C, 7 log K at 300C !! flag + +Covellite + CuS + H+ = Cu+2 + HS- + log_k -22.8310 + -delta_H 101.88 kJ/mol +# deltafH -12.5 kcal/mol + -analytic -1.6068e2 -4.9040e-2 -1.4234e3 6.3536e1 -2.2164e1 +# Range 0-350 + -Vm 20.42 +# Extrapol supcrt92 +# Ref HDN+78 + +Cr + Cr + 3 H+ + 0.75 O2 = Cr+3 + 1.5 H2O + log_k 98.6784 + -delta_H -658.145 kJ/mol +# deltafH 0 kJ/mol + -analytic -2.2488e1 -5.5886e-3 3.4288e4 3.1585 5.3503e2 +# Range 0-300 + -Vm 7.231 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +CrCl3 + CrCl3 = Cr+3 + 3 Cl- + log_k 17.9728 + -delta_H -183.227 kJ/mol +# deltafH -556.5 kJ/mol + -analytic -2.6348e2 -9.5339e-2 1.4785e4 1.0517e2 2.3079e2 +# Range 0-300 + -Vm 57.38 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CrO2 + CrO2 = 0.5 Cr+2 + 0.5 CrO4-2 + log_k -19.1332 + -delta_H 85.9812 kJ/mol +# deltafH -143 kcal/mol + -analytic 2.7763 -7.7698e-3 -5.2893e3 -7.4970e-1 -8.9821e1 +# Range 0-200 + -Vm 16.95 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 76del/hal + +CrO3 + CrO3 + H2O = CrO4-2 + 2 H+ + log_k -3.5221 + -delta_H -5.78647 kJ/mol +# deltafH -140.9 kcal/mol + -analytic -1.3262e2 -6.1411e-2 2.2083e3 5.6564e1 3.4497e1 +# Range 0-300 + -Vm 35.14 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 76del/hal + +CrS + CrS + H+ = Cr+2 + HS- + log_k -0.6304 + -delta_H -26.15 kJ/mol +# deltafH -31.9 kcal/mol + -analytic -1.1134e2 -3.5954e-2 3.8744e3 4.3815e1 6.0490e1 +# Range 0-300 + -Vm 17.33 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 76del/hal + +Cristobalite(alpha) + SiO2 = SiO2 + log_k -3.4488 + -delta_H 29.2043 kJ/mol +# deltafH -216.755 kcal/mol + -analytic -1.1936e1 9.0520e-3 4.3701e3 -1.1464e-1 -7.6568e5 +# Range 0-350 + -Vm 25.74 +# Extrapol supcrt92 +# Ref HDN+78 + +Cristobalite(beta) + SiO2 = SiO2 + log_k -3.0053 + -delta_H 24.6856 kJ/mol +# deltafH -215.675 kcal/mol + -analytic -4.7414 9.7567e-3 3.8831e3 -2.5830 -6.9636e5 +# Range 0-350 + -Vm 27.38 +# Extrapol supcrt92 +# Ref HDN+78 + +Cronstedtite-7A + Fe2Fe2SiO5(OH)4 + 10 H+ = SiO2 + 2 Fe+2 + 2 Fe+3 + 7 H2O + log_k 16.2603 + -delta_H -244.266 kJ/mol +# deltafH -697.413 kcal/mol + -analytic -2.3783e2 -7.1026e-2 1.7752e4 8.7147e1 2.7707e2 +# Range 0-300 + -Vm 110.9 # HDN+78 +# Extrapol Cp integration +# Ref 78wol + +Cu + Cu + 2 H+ + 0.5 O2 = Cu+2 + H2O + log_k 31.5118 + -delta_H -214.083 kJ/mol +# deltafH 0 kcal/mol + -analytic -7.0719e1 -2.0300e-2 1.2802e4 2.6401e1 1.9979e2 +# Range 0-300 + -Vm 7.113 +# Extrapol supcrt92 +# Ref HDN+78 + + +CuCl2 + CuCl2 = Cu+2 + 2 Cl- + log_k 3.7308 + -delta_H -48.5965 kJ/mol +# deltafH -219.874 kJ/mol + -analytic -1.7803e1 -2.4432e-2 1.5729e3 9.5104 2.6716e1 +# Range 0-200 + -Vm 39.71 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +CuCr2O4 + CuCr2O4 + 8 H+ = Cu+2 + 2 Cr+3 + 4 H2O + log_k 16.2174 + -delta_H -268.768 kJ/mol +# deltafH -307.331 kcal/mol + -analytic -1.8199e2 -1.0254e-2 2.0123e4 5.4062e1 3.4178e2 +# Range 0-200 + -Vm 42.74 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 76del/hal + +Cuprite + Cu2O + 2 H+ = H2O + 2 Cu+ + log_k -1.9031 + -delta_H 28.355 kJ/mol +# deltafH -40.83 kcal/mol + -analytic -8.6240e1 -1.1445e-2 1.7851e3 3.3041e1 2.7880e1 +# Range 0-350 + -Vm 23.437 +# Extrapol supcrt92 +# Ref HDN+78 + +Daphnite-14A + Fe5AlAlSi3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Fe+2 + 12 H2O + log_k 52.2821 + -delta_H -517.561 kJ/mol +# deltafH -1693.04 kcal/mol + -analytic -1.5261e2 -6.1392e-2 2.8283e4 5.1788e1 4.4137e2 +# Range 0-350 + -Vm 213.42 +# Extrapol supcrt92 +# Ref HDN+78 + +Daphnite-7A + Fe5AlAlSi3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Fe+2 + 12 H2O + log_k 55.6554 + -delta_H -532.326 kJ/mol +# deltafH -1689.51 kcal/mol + -analytic -1.6430e2 -6.3160e-2 2.9499e4 5.6442e1 4.6035e2 +# Range 0-300 + -Vm 221.2 +# Extrapol supcrt92 +# Ref HDN+78 + +Dawsonite + NaAlCO3(OH)2 + 3 H+ = Al+3 + HCO3- + Na+ + 2 H2O + log_k 4.3464 + -delta_H -76.3549 kJ/mol +# deltafH -1963.96 kJ/mol + -analytic -1.1393e2 -2.3487e-2 7.1758e3 4.0900e1 1.2189e2 +# Range 0-200 + -Vm 59.50 # Webmineral.com +# Extrapol Constant H approx +# Ref RHF79 + +Delafossite + CuFeO2 + 4 H+ = Cu+ + Fe+3 + 2 H2O + log_k -6.4172 + -delta_H -18.6104 kJ/mol +# deltafH -126.904 kcal/mol + -analytic -1.5275e2 -3.5478e-2 5.1404e3 5.6437e1 8.0255e1 +# Range 0-300 + -Vm 27.52 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +Diaspore + AlHO2 + 3 H+ = Al+3 + 2 H2O + log_k 7.1603 + -delta_H -110.42 kJ/mol +# deltafH -238.924 kcal/mol + -analytic -1.2618e2 -3.1671e-2 8.8737e3 4.5669e1 1.3850e2 +# Range 0-225 + -Vm 17.76 +# Extrapol supcrt92 +# Ref HDN+78, 95pok/hel + +Dicalcium_silicate + Ca2SiO4 + 4 H+ = SiO2 + 2 Ca+2 + 2 H2O + log_k 37.1725 + -delta_H -217.642 kJ/mol +# deltafH -2317.9 kJ/mol + -analytic -5.9723e1 -1.3682e-2 1.5461e4 2.1547e1 -3.7732e5 +# Range 0-300 + -Vm 59.11 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Diopside + CaMgSi2O6 + 4 H+ = Ca+2 + Mg+2 + 2 H2O + 2 SiO2 + log_k 20.9643 + -delta_H -133.775 kJ/mol +# deltafH -765.378 kcal/mol + -analytic 7.1240e1 1.5514e-2 8.1437e3 -3.0672e1 -5.6880e5 +# Range 0-350 + -Vm 66.09 +# Extrapol supcrt92 +# Ref HDN+78 + +Dioptase + CuSiO2(OH)2 + 2 H+ = Cu+2 + SiO2 + 2 H2O + log_k 6.0773 + -delta_H -25.2205 kJ/mol +# deltafH -1358.47 kJ/mol + -analytic 2.3913e2 6.2669e-2 -5.4030e3 -9.4420e1 -9.1834e1 +# Range 0-200 + -Vm 48.24 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87woo/gar + +Dolomite + CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- + log_k 2.5135 + -delta_H -59.9651 kJ/mol +# deltafH -556.631 kcal/mol + -analytic -3.1782e2 -9.8179e-2 1.0845e4 1.2657e2 1.6932e2 +# Range 0-350 + -Vm 64.365 +# Extrapol supcrt92 +# Ref HDN+78 + +Dolomite-dis + CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- + log_k 4.0579 + -delta_H -72.2117 kJ/mol +# deltafH -553.704 kcal/mol + -analytic -3.1706e2 -9.7886e-2 1.1442e4 1.2604e2 1.7864e2 +# Range 0-350 + -Vm 64.39 +# Extrapol supcrt92 +# Ref HDN+78 + +Dolomite-ord + CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- + log_k 2.5135 + -delta_H -59.9651 kJ/mol +# deltafH -556.631 kcal/mol + -analytic -3.1654e2 -9.7902e-2 1.0805e4 1.2607e2 1.6870e2 +# Range 0-350 + -Vm 64.34 +# Extrapol supcrt92 +# Ref HDN+78 + +Enstatite + MgSiO3 + 2 H+ = H2O + Mg+2 + SiO2 + log_k 11.3269 + -delta_H -82.7302 kJ/mol +# deltafH -369.686 kcal/mol + -analytic -4.9278e1 -3.2832e-3 9.5205e3 1.4437e1 -5.4324e5 +# Range 0-350 + -Vm 31.276 +# Extrapol supcrt92 +# Ref HDN+78 + +Epidote + Ca2FeAl2Si3O12OH + 13 H+ = Fe+3 + 2 Al+3 + 2 Ca+2 + 3 SiO2 + 7 H2O + log_k 32.9296 + -delta_H -386.451 kJ/mol +# deltafH -1543.99 kcal/mol + -analytic -2.6187e1 -3.6436e-2 1.9351e4 3.3671 -3.0319e5 +# Range 0-350 + -Vm 139.2 +# Extrapol supcrt92 +# Ref HDN+78 + +Epidote-ord + FeCa2Al2(OH)(SiO4)3 + 13 H+ = Fe+3 + 2 Al+3 + 2 Ca+2 + 3 SiO2 + 7 H2O + log_k 32.9296 + -delta_H -386.351 kJ/mol +# deltafH -1544.02 kcal/mol + -analytic 1.9379e1 -3.2870e-2 1.5692e4 -1.1901e1 2.4485e2 +# Range 0-350 + -Vm 139.2 +# Extrapol supcrt92 +# Ref HDN+78 + +Eskolaite + Cr2O3 + 2 H2O + 1.5 O2 = 2 CrO4-2 + 4 H+ + log_k -9.1306 + -delta_H -32.6877 kJ/mol +# deltafH -1139.74 kJ/mol + -analytic -2.0411e2 -1.2809e-1 2.2197e3 9.1186e1 3.4697e1 +# Range 0-300 + -Vm 29.09 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Ettringite + Ca6Al2(SO4)3(OH)12:26H2O + 12 H+ = 2 Al+3 + 3 SO4-2 + 6 Ca+2 + 38 H2O + log_k 62.5362 + -delta_H -382.451 kJ/mol +# deltafH -4193 kcal/mol + -analytic -1.0576e3 -1.1585e-1 5.9580e4 3.8585e2 1.0121e3 +# Range 0-200 + -Vm 697.28 # Webmineral.com +# Extrapol Constant H approx +# Ref 82sar/bar + +Eu + Eu + 3 H+ + 0.75 O2 = Eu+3 + 1.5 H2O + log_k 165.1443 + -delta_H -1025.08 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.5749e1 -2.8921e-2 5.4018e4 2.3561e1 8.4292e2 +# Range 0-300 + -Vm 28.97 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 85rar 2 + +Eu(OH)3 + Eu(OH)3 + 3 H+ = Eu+3 + 3 H2O + log_k 15.3482 + -delta_H -126.897 kJ/mol +# deltafH -1336.04 kJ/mol + -analytic -6.3077e1 -6.1421e-3 8.7323e3 2.0595e1 1.4831e+2 +# Range 0-200 + -Vm 38.44 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87rar 2 + +Eu2(SO4)3:8H2O + Eu2(SO4)3:8H2O = 2 Eu+3 + 3 SO4-2 + 8 H2O + log_k -10.8524 + -delta_H -86.59 kJ/mol +# deltafH -6139.77 kJ/mol + -analytic -5.6582e1 -3.8846e-2 3.3821e3 1.8561e1 5.7452e1 +# Range 0-200 + -Vm 245.41 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +Eu2O3(cubic) + Eu2O3 + 6 H+ = 2 Eu+3 + 3 H2O + log_k 51.7818 + -delta_H -406.403 kJ/mol +# deltafH -1661.96 kJ/mol + -analytic -5.3469e1 -1.2554e-2 2.1925e4 1.4324e1 3.7233e2 +# Range 0-200 + -Vm 48.29 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +Eu2O3(monoclinic) + Eu2O3 + 6 H+ = 2 Eu+3 + 3 H2O + log_k 53.3936 + -delta_H -417.481 kJ/mol +# deltafH -1650.88 kJ/mol + -analytic -5.4022e1 -1.2627e-2 2.2508e4 1.4416e1 3.8224e2 +# Range 0-200 + -Vm 44.02 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +Eu3O4 + Eu3O4 + 8 H+ = Eu+2 + 2 Eu+3 + 4 H2O + log_k 87.0369 + -delta_H -611.249 kJ/mol +# deltafH -2270.56 kJ/mol + -analytic -1.1829e2 -2.0354e-2 3.4981e4 3.8007e1 5.9407e2 +# Range 0-200 + -Vm 64.15 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +EuCl2 + EuCl2 = Eu+2 + 2 Cl- + log_k 5.9230 + -delta_H -39.2617 kJ/mol +# deltafH -822.5 kJ/mol + -analytic -2.5741e1 -2.4956e-2 1.5713e3 1.3670e1 2.6691e1 +# Range 0-200 + -Vm 45.49 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87rar 2 + +EuCl3 + EuCl3 = Eu+3 + 3 Cl- + log_k 19.7149 + -delta_H -170.861 kJ/mol +# deltafH -935.803 kJ/mol + -analytic 3.2865e1 -3.1877e-2 4.9792e3 -8.2294 8.4542e1 +# Range 0-200 + -Vm 52.83 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +EuCl3:6H2O + EuCl3:6H2O = Eu+3 + 3 Cl- + 6 H2O + log_k 4.9090 + -delta_H -40.0288 kJ/mol +# deltafH -2781.66 kJ/mol + -analytic -1.0987e2 -2.9851e-2 4.9991e3 4.3198e1 8.4930e1 +# Range 0-200 + -Vm 151.22 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +EuOCl + EuOCl + 2 H+ = Cl- + Eu+3 + H2O + log_k 15.6683 + -delta_H -147.173 kJ/mol +# deltafH -911.17 kJ/mol + -analytic -7.7446 -1.4960e-2 6.6242e3 2.2813 1.1249e2 +# Range 0-200 + -Vm 31.68 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87rar 2 + +EuS + EuS + H+ = Eu+2 + HS- + log_k 14.9068 + -delta_H -96.4088 kJ/mol +# deltafH -447.302 kJ/mol + -analytic -4.1026e1 -1.5582e-2 5.7842e3 1.6639e1 9.8238e1 +# Range 0-200 + -Vm 32.03 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +EuSO4 + EuSO4 = Eu+2 + SO4-2 + log_k -8.8449 + -delta_H 33.873 kJ/mol +# deltafH -1471.08 kJ/mol + -analytic 3.0262e-1 -1.7571e-2 -3.0392e3 2.5356 -5.1610e1 +# Range 0-200 + -Vm 49.71 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +Eucryptite + LiAlSiO4 + 4 H+ = Al+3 + Li+ + SiO2 + 2 H2O + log_k 13.6106 + -delta_H -141.818 kJ/mol +# deltafH -2124.41 kJ/mol + -analytic -2.2213 -8.2498e-3 6.4838e3 -1.4183 1.0117e2 +# Range 0-300 + -Vm 53.63 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Fayalite + Fe2SiO4 + 4 H+ = SiO2 + 2 Fe+2 + 2 H2O + log_k 19.1113 + -delta_H -152.256 kJ/mol +# deltafH -354.119 kcal/mol + -analytic 1.3853e1 -3.5501e-3 7.1496e3 -6.8710e0 -6.3310e4 +# Range 0-350 + -Vm 46.39 +# Extrapol supcrt92 +# Ref HDN+78 + +Fe + Fe + 2 H+ + 0.5 O2 = Fe+2 + H2O + log_k 59.0325 + -delta_H -372.029 kJ/mol +# deltafH 0 kcal/mol + -analytic -6.2882e1 -2.0379e-2 2.0690e4 2.3673e1 3.2287e2 +# Range 0-350 + -Vm 7.092 # thermo.com.V8.R6+.tdat +# Extrapol supcrt92 +# Ref RHF79 + +Fe(OH)2 + Fe(OH)2 + 2 H+ = Fe+2 + 2 H2O + log_k 13.9045 + -delta_H -95.4089 kJ/mol +# deltafH -568.525 kJ/mol + -analytic -8.6666e1 -1.8440e-2 7.5723e3 3.2597e1 1.1818e2 +# Range 0-300 + -Vm 26.43 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Fe(OH)3 + Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O + log_k 5.6556 + -delta_H -84.0824 kJ/mol +# deltafH -823.013 kJ/mol + -analytic -1.3316e2 -3.1284e-2 7.9753e3 4.9052e1 1.2449e2 +# Range 0-300 + -Vm 34.36 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Fe2(SO4)3 + Fe2(SO4)3 = 2 Fe+3 + 3 SO4-2 + log_k 3.2058 + -delta_H -250.806 kJ/mol +# deltafH -2577.16 kJ/mol + -analytic -5.8649e2 -2.3718e-1 2.2736e4 2.3601e2 3.5495e2 +# Range 0-300 + -Vm 130.77 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +FeO + FeO + 2 H+ = Fe+2 + H2O + log_k 13.5318 + -delta_H -106.052 kJ/mol +# deltafH -65.02 kcal/mol + -analytic -7.8750e1 -1.8268e-2 7.6852e3 2.9074e1 1.1994e2 +# Range 0-350 + -Vm 12 +# Extrapol supcrt92 +# Ref HDN+78 + +FeSO4 + FeSO4 = Fe+2 + SO4-2 + log_k 2.6565 + -delta_H -73.0878 kJ/mol +# deltafH -928.771 kJ/mol + -analytic -2.0794e2 -7.6891e-2 7.8705e3 8.3685e1 1.2287e2 +# Range 0-300 + -Vm 41.58 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Ferrite-Ca + CaFe2O4 + 8 H+ = Ca+2 + 2 Fe+3 + 4 H2O + log_k 21.5217 + -delta_H -264.738 kJ/mol +# deltafH -363.494 kcal/mol + -analytic -2.8472e2 -7.5870e-2 2.0688e4 1.0485e2 3.2289e2 +# Range 0-300 + -Vm 44.98 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Ferrite-Cu + CuFe2O4 + 8 H+ = Cu+2 + 2 Fe+3 + 4 H2O + log_k 10.3160 + -delta_H -211.647 kJ/mol +# deltafH -965.178 kJ/mol + -analytic -3.1271e2 -7.9976e-2 1.8818e4 1.1466e2 2.9374e2 +# Range 0-300 + -Vm 44.53 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Ferrite-Dicalcium + Ca2Fe2O5 + 10 H+ = 2 Ca+2 + 2 Fe+3 + 5 H2O + log_k 56.8331 + -delta_H -475.261 kJ/mol +# deltafH -2139.26 kJ/mol + -analytic -3.6277e2 -9.5015e-2 3.3898e4 1.3506e2 5.2906e2 +# Range 0-300 + -Vm 67.18 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Ferrite-Mg + MgFe2O4 + 8 H+ = Mg+2 + 2 Fe+3 + 4 H2O + log_k 21.0551 + -delta_H -280.056 kJ/mol +# deltafH -1428.42 kJ/mol + -analytic -2.8297e2 -7.4820e-2 2.1333e4 1.0295e2 3.3296e2 +# Range 0-300 + -Vm 44.57 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Ferrite-Zn + ZnFe2O4 + 8 H+ = Zn+2 + 2 Fe+3 + 4 H2O + log_k 11.7342 + -delta_H -226.609 kJ/mol +# deltafH -1169.29 kJ/mol + -analytic -2.9809e2 -7.7263e-2 1.9067e4 1.0866e2 2.9761e2 +# Range 0-300 + -Vm 45.23 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Ferrosilite + FeSiO3 + 2 H+ = Fe+2 + H2O + SiO2 + log_k 7.4471 + -delta_H -60.6011 kJ/mol +# deltafH -285.658 kcal/mol + -analytic 9.0041 3.7917e-3 5.1625e3 -6.3009 -3.9565e5 +# Range 0-350 + -Vm 32.952 +# Extrapol supcrt92 +# Ref HDN+78 + +Forsterite + Mg2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Mg+2 + log_k 27.8626 + -delta_H -205.614 kJ/mol +# deltafH -520 kcal/mol + -analytic -7.6195e1 -1.4013e-2 1.4763e4 2.5090e1 -3.0379e5 +# Range 0-350 + -Vm 43.79 +# Extrapol supcrt92 +# Ref HDN+78 + +Foshagite + Ca4Si3O9(OH)2:0.5H2O + 8 H+ = 3 SiO2 + 4 Ca+2 + 5.5 H2O + log_k 65.9210 + -delta_H -359.839 kJ/mol +# deltafH -1438.27 kcal/mol + -analytic 2.9983e1 5.5272e-3 2.3427e4 -1.3879e1 -8.9461e5 +# Range 0-300 + -Vm 154.23 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + + +Gd + Gd + 3 H+ + 0.75 O2 = Gd+3 + 1.5 H2O + log_k 180.7573 + -delta_H -1106.67 kJ/mol +# deltafH 0 kJ/mol + -analytic -3.3949e2 -6.5698e-2 7.4278e4 1.2189e2 -9.7055e5 +# Range 0-300 + -Vm 19.89 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Gehlenite + Ca2Al2SiO7 + 10 H+ = SiO2 + 2 Al+3 + 2 Ca+2 + 5 H2O + log_k 56.2997 + -delta_H -489.934 kJ/mol +# deltafH -951.225 kcal/mol + -analytic -2.1784e2 -6.7200e-2 2.9779e4 7.8488e1 4.6473e2 +# Range 0-350 + -Vm 90.24 +# Extrapol supcrt92 +# Ref HDN+78 + +Gibbsite + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 7.7560 + -delta_H -102.788 kJ/mol +# deltafH -309.065 kcal/mol + -analytic -1.1403e2 -3.6453e-2 7.7236e3 4.3134e1 1.2055e2 +# Range 0-150 + -Vm 31.956 +# Extrapol supcrt92 +# Ref HDN+78, 95pok/hel + +Goethite + FeOOH + 3 H+ = Fe+3 + 2 H2O + log_k 0.5345 + -delta_H -61.9291 kJ/mol +# deltafH -559.328 kJ/mol + -analytic -6.0331e1 -1.0847e-2 4.7759e3 1.9429e1 8.1122e1 +# Range 0-200 + -Vm 20.82 +# Extrapol supcrt92, Constant H approx +# Ref Sho09, MLS+03, RHF79 match + +Greenalite + Fe3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Fe+2 + 5 H2O + log_k 22.6701 + -delta_H -165.297 kJ/mol +# deltafH -787.778 kcal/mol + -analytic -1.4187e1 -3.8377e-3 1.1710e4 1.6442 -4.8290e5 +# Range 0-350 + -Vm 115 +# Extrapol supcrt92 +# Ref HDN+78, 78wol, Wilson+06 match + +Grossular + Ca3Al2(SiO4)3 + 12 H+ = 2 Al+3 + 3 Ca+2 + 3 SiO2 + 6 H2O + log_k 51.9228 + -delta_H -432.006 kJ/mol +# deltafH -1582.74 kcal/mol + -analytic 2.9389e1 -2.2478e-2 2.0323e4 -1.4624e1 -2.5674e5 +# Range 0-350 + -Vm 125.3 +# Extrapol supcrt92 +# Ref HDN+78 + +Gypsum + CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O + log_k -4.4823 + -delta_H -1.66746 kJ/mol +# deltafH -2022.69 kJ/mol + -analytic -2.4417e2 -8.3329e-2 5.5958e3 9.9301e1 8.7389e1 +# Range 0-300 + -Vm 74.69 # Marion+05 +# Extrapol Cp integration +# Ref RHF79 + +Gyrolite + Ca2Si3O7(OH)2:1.5H2O + 4 H+ = 2 Ca+2 + 3 SiO2 + 4.5 H2O + log_k 22.9099 + -delta_H -82.862 kJ/mol +# deltafH -1176.55 kcal/mol + -analytic -2.4416e1 1.4646e-2 1.6181e4 2.3723 -1.5369e6 +# -Range 0-300 + -Vm 136.85 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Halite + NaCl = Cl- + Na+ + log_k 1.5855 + -delta_H 3.7405 kJ/mol +# deltafH -98.26 kcal/mol + -analytic -1.0163e2 -3.4761e-2 2.2796e3 4.2802e1 3.5602e1 +# Range 0-350 + -Vm 27.015 +# Extrapol supcrt92 +# Ref HDN+78 + +Hatrurite + Ca3SiO5 + 6 H+ = SiO2 + 3 Ca+2 + 3 H2O + log_k 73.4056 + -delta_H -434.684 kJ/mol +# deltafH -700.234 kcal/mol + -analytic -4.5448e1 -1.9998e-2 2.3800e4 1.8494e1 -7.3385e4 +# Range 0-300 + -Vm 75.60 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Hausmannite + Mn3O4 + 8 H+ = Mn+2 + 2 Mn+3 + 4 H2O + log_k 10.1598 + -delta_H -268.121 kJ/mol +# deltafH -1387.83 kJ/mol + -analytic -2.0600e2 -2.2214e-2 2.0160e4 6.2700e1 3.1464e2 +# Range 0-300 + -Vm 48.07 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Heazlewoodite + Ni3S2 + 4 H+ + 0.5 O2 = H2O + 2 HS- + 3 Ni+2 + log_k 28.2477 + -delta_H -270.897 kJ/mol +# deltafH -203.012 kJ/mol + -analytic -3.5439e2 -1.1740e-1 2.1811e4 1.3919e2 3.4044e2 +# Range 0-300 + -Vm 40.95 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Hedenbergite + CaFe(SiO3)2 + 4 H+ = Ca+2 + Fe+2 + 2 H2O + 2 SiO2 + log_k 19.6060 + -delta_H -124.507 kJ/mol +# deltafH -678.276 kcal/mol + -analytic -1.9473e1 1.5288e-3 1.2910e4 2.1729 -9.0058e5 +# Range 0-350 + -Vm 68.27 +# Extrapol supcrt92 +# Ref HDN+78 + +Hematite + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k 0.1086 + -delta_H -129.415 kJ/mol +# deltafH -197.72 kcal/mol + -analytic -2.2015e2 -6.0290e-2 1.1812e4 8.0253e1 1.8438e2 +# Range 0-350 + -Vm 30.274 +# Extrapol supcrt92 +# Ref HDN+78 + +Hercynite + FeAl2O4 + 8 H+ = Fe+2 + 2 Al+3 + 4 H2O + log_k 28.8484 + -delta_H -345.961 kJ/mol +# deltafH -1966.45 kJ/mol + -analytic -3.1848e2 -7.9501e-2 2.5892e4 1.1483e2 4.0412e2 +# Range 0-300 + -Vm 40.75 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Hillebrandite + Ca2SiO3(OH)2:0.17H2O + 4 H+ = SiO2 + 2 Ca+2 + 3.17 H2O + log_k 36.8190 + -delta_H -203.074 kJ/mol +# deltafH -637.404 kcal/mol + -analytic -1.9360e1 -7.5176e-3 1.1947e4 8.0558 -1.4504e5 +# Range 0-300 + -Vm 71.79 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Huntite + CaMg3(CO3)4 + 4 H+ = Ca+2 + 3 Mg+2 + 4 HCO3- + log_k 10.3010 + -delta_H -171.096 kJ/mol +# deltafH -1082.6 kcal/mol + -analytic -6.5e2 -1.9671e-1 2.4815e4 2.5688e2 3.8740e2 +# Range 0-350 + -Vm 122.9 +# Extrapol supcrt92 +# Ref HDN+78 + +Hydromagnesite + Mg5(CO3)4(OH)2:4H2O + 6 H+ = 4 HCO3- + 5 Mg+2 + 6 H2O + log_k 30.8539 + -delta_H -289.696 kJ/mol +# deltafH -1557.09 kcal/mol + -analytic -7.9288e2 -2.1448e-1 3.6749e4 3.0888e2 5.7367e2 +# Range 0-350 + -Vm 208.8 +# Extrapol supcrt92 +# Ref HDN+78 + +Hydrophilite + CaCl2 = Ca+2 + 2 Cl- + log_k 11.7916 + -delta_H -81.4545 kJ/mol +# deltafH -795.788 kJ/mol + -analytic -2.2278e2 -8.1414e-2 9.0298e3 9.2349e1 1.4097e2 +# Range 0-300 + -Vm 49.99 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Hydroxyapatite + Ca5(OH)(PO4)3 + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 + log_k -3.0746 + -delta_H -191.982 kJ/mol +# deltafH -6685.52 kJ/mol + -analytic -8.5221e2 -2.9430e-1 2.8125e4 3.4044e2 4.3911e2 +# Range 0-300 + -Vm 128.9 +# Extrapol Cp integration +# Ref RHF79 + +Ice + H2O = H2O + log_k 0.1387 + -delta_H 6.74879 kJ/mol +# deltafH -69.93 kcal/mol + -analytic -2.3260e1 4.7948e-4 7.7351e2 8.3499 1.3143e1 +# Range 0-200 + -Vm 19.635 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87kee/rup + +Ilmenite + FeTiO3 + 2 H+ + H2O = Fe+2 + Ti(OH)4 + log_k 0.9046 +# deltafH -1236.65 kJ/mol + -Vm 32.15 # Webmineral.com +# Ref RHF79 + +Jadeite + NaAl(SiO3)2 + 4 H+ = Al+3 + Na+ + 2 H2O + 2 SiO2 + log_k 8.3888 + -delta_H -84.4415 kJ/mol +# deltafH -722.116 kcal/mol + -analytic 1.5934 5.0757e-3 9.5602e3 -7.0164 -8.4454e5 +# Range 0-350 + -Vm 60.4 +# Extrapol supcrt92 +# Ref HDN+78 + +Jarosite + KFe3(SO4)2(OH)6 + 6 H+ = K+ + 2 SO4-2 + 3 Fe+3 + 6 H2O + log_k -9.3706 + -delta_H -191.343 kJ/mol +# deltafH -894.79 kcal/mol + -analytic -1.0813e2 -5.0381e-2 9.6893e3 3.2832e1 1.6457e2 +# Range 0-200 + -Vm 162.07 # Webmineral.com +# Extrapol Constant H approx +# Ref 75kas/bor + +K + K + H+ + 0.25 O2 = 0.5 H2O + K+ + log_k 70.9861 + -delta_H -392.055 kJ/mol +# deltafH 0 kJ/mol + -analytic -3.1102e1 -1.0003e-2 2.1338e4 1.3534e1 3.3296e2 +# Range 0-300 + -Vm 45.94 # Webelements.com +# Extrapol Cp integration +# Ref CWM89 + +K-Feldspar + KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 + log_k -0.2753 + -delta_H -23.9408 kJ/mol +# deltafH -949.188 kcal/mol + -analytic -1.0684 1.3111e-2 1.1671e4 -9.9129 -1.5855e6 +# Range 0-350 + -Vm 108.87 +# Extrapol supcrt92 +# Ref HDN+78 + +K2O + K2O + 2 H+ = H2O + 2 K+ + log_k 84.0405 + -delta_H -427.006 kJ/mol +# deltafH -86.8 kcal/mol + -analytic -1.8283e1 -5.2255e-3 2.3184e4 1.0553e1 3.6177e2 +# Range 0-350 + -Vm 40.085 # gfw/density +# Extrapol supcrt92 +# Ref HDN+78 + +KAl(SO4)2 + KAl(SO4)2 = Al+3 + K+ + 2 SO4-2 + log_k 3.3647 + -delta_H -139.485 kJ/mol +# deltafH -2470.29 kJ/mol + -analytic -4.2785e2 -1.6303e-1 1.5311e4 1.7312e2 2.3904e2 +# Range 0-300 + -Vm 146.71 # gfw/density +# Extrapol Cp integration +# Ref RHF79 + +Kalsilite + KAlSiO4 + 4 H+ = Al+3 + K+ + SiO2 + 2 H2O + log_k 10.8987 + -delta_H -108.583 kJ/mol +# deltafH -509.408 kcal/mol + -analytic -6.7595 -7.4301e-3 6.5380e3 1.8999e-1 -2.2880e5 +# Range 0-350 + -Vm 59.89 +# Extrapol supcrt92 +# Ref HDN+78 + +Kaolinite + Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 SiO2 + 5 H2O + log_k 6.8101 + -delta_H -151.779 kJ/mol +# deltafH -982.221 kcal/mol + -analytic 1.6835e1 -7.8939e-3 7.7636e3 -1.2190e1 -3.2354e5 +# Range 0-350 + -Vm 99.52 +# Extrapol supcrt92 +# Ref HDN+78 differ by 1.6 log K at 0C, 0.4 log K at 350C + +KerogenC128 + C128H68O7 + 141.5 O2 = 128 CO2 + 34 H2O + log_k 10740.654 + -delta_H -14623.902 kcal/mol + -analytic 23405.37 -54.726 0 0 0 0.041 +# Range 0-350 + -Vm 1320.7 +# Extrapol supcrt92 +# Ref RH98, Hel+09 + +KerogenC292 + C292H288O12 + 358 O2 = 292 CO2 + 144 H2O + log_k 27153.69 + -delta_H -36994.127 kcal/mol + -analytic 59184.26 -138.37 0 0 0 0.10 +# Range 0-350 + -Vm 3398.2 +# Extrapol supcrt92 +# Ref RH98, Hel+09 + +KerogenC515 + C515H596O72 + 628 O2 = 515 CO2 + 298 H2O + log_k 48112.16 + -delta_H -65346.703 kcal/mol + -analytic 104660.55 -244.27 0 0 0 0.183 +# Range 0-350 + -Vm 6989.3 +# Extrapol supcrt92 +# Ref RH98, Hel+09 + +Kyanite + Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O + log_k 15.6740 + -delta_H -230.919 kJ/mol +# deltafH -616.897 kcal/mol + -analytic -7.3335e1 -3.2853e-2 1.2166e4 2.3412e1 1.8986e2 +# Range 0-175 + -Vm 44.09 +# Extrapol supcrt92 +# Ref HDN+78 + +Larnite + Ca2SiO4 + 4 H+ = SiO2 + 2 Ca+2 + 2 H2O + log_k 38.4665 + -delta_H -227.061 kJ/mol +# deltafH -551.74 kcal/mol + -analytic 2.6900e1 -2.1833e-3 1.0900e4 -9.5257 -7.2537e4 +# Range 0-300 + -Vm 51.6 # HDN+78 +# Extrapol Cp integration +# Ref 82sar/bar + +Laumontite + CaAl2Si4O12:4H2O + 8 H+ = Ca+2 + 2 Al+3 + 4 SiO2 + 8 H2O + log_k 13.6667 + -delta_H -184.657 kJ/mol +# deltafH -1728.66 kcal/mol + -analytic 1.1904 8.1763e-3 1.9005e4 -1.4561e1 -1.5851e6 +# Range 0-350 + -Vm 207.55 +# Extrapol supcrt92 +# Ref HDN+78 differ by 1.7 log K at 0C, 0.1 log K at 350C + +Lawrencite + FeCl2 = Fe+2 + 2 Cl- + log_k 9.0945 + -delta_H -84.7665 kJ/mol +# deltafH -341.65 kJ/mol + -analytic -2.2798e2 -8.1819e-2 9.2620e3 9.3097e1 1.4459e2 +# Range 0-300 + -Vm 40.31 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Lawsonite + CaAl2Si2O7(OH)2:H2O + 8 H+ = Ca+2 + 2 Al+3 + 2 SiO2 + 6 H2O + log_k 22.2132 + -delta_H -244.806 kJ/mol +# deltafH -1158.1 kcal/mol + -analytic 1.3995e1 -1.7668e-2 1.0119e4 -8.3100 1.5789e2 +# Range 0-350 + -Vm 101.32 +# Extrapol supcrt92 +# Ref HDN+78 + +Li + Li + H+ +0.25 O2 = 0.5 H2O + Li+ + log_k 72.7622 + -delta_H -418.339 kJ/mol +# deltafH 0 kJ/mol + -analytic -1.0227e2 -1.8118e-2 2.6262e4 3.8056e1 -1.6166e5 +# Range 0-300 + -Vm 13.017 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Lime + CaO + 2 H+ = Ca+2 + H2O + log_k 32.5761 + -delta_H -193.832 kJ/mol +# deltafH -151.79 kcal/mol + -analytic -7.2686e1 -1.7654e-2 1.2199e4 2.8128e1 1.9037e2 +# Range 0-350 + -Vm 16.764 +# Extrapol supcrt92 +# Ref HDN+78 + +Linnaeite + Co3S4 + 4 H+ = Co+2 + 2 Co+3 + 4 HS- + log_k -106.9017 + -delta_H 420.534 kJ/mol +# deltafH -85.81 kcal/mol + -analytic -6.0034e2 -2.0179e-1 -9.2145e3 2.3618e2 -1.4361e2 +# Range 0-300 + -Vm 63.55 # Webmineral.com +# Extrapol Cp integration +# Ref 78vau/cra + +Lizardite + Mg3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Mg+2 + 5 H2O + log_k 30.560 + -analytic 7.886e1 -2.108e-1 0 0 0 1.637e-4 +# Range 0-300 + -Vm 107.31 +# Extrapol supcrt92 +# Ref Wilson+06 + +Lopezite + K2Cr2O7 + H2O = 2 CrO4-2 + 2 H+ + 2 K+ + log_k -17.4366 + -delta_H 81.9227 kJ/mol +# deltafH -493.003 kcal/mol + -analytic 7.8359e1 -2.2908e-2 -9.3812e3 -2.3245e1 -1.5933e2 +# Range 0-200 + -Vm 109.93 # thermo.com.V8.R6+.tdat +# Extrapol Constant H Approx +# Ref 76del/hal + +Magnesiochromite + MgCr2O4 + 8 H+ = Mg+2 + 2 Cr+3 + 4 H2O + log_k 21.6927 + -delta_H -302.689 kJ/mol +# deltafH -1783.6 kJ/mol + -analytic -1.7376e2 -8.7429e-3 2.1600e4 5.0762e1 3.6685e2 +# Range 0-200 + -Vm 43.564 # thermo.com.V8.R6+.tdat +# Extrapol Constant H Approx +# Ref WEP+82 + +Magnesite + MgCO3 + H+ = HCO3- + Mg+2 + log_k 2.2936 + -delta_H -44.4968 kJ/mol +# deltafH -265.63 kcal/mol + -analytic -1.6665e2 -4.9469e-2 6.4344e3 6.5506e1 1.0045e2 +# Range 0-350 + -Vm 28.018 +# Extrapol supcrt92 +# Ref HDN+78 + +Magnetite + Fe3O4 + 8 H+ = Fe+2 + 2 Fe+3 + 4 H2O + log_k 10.4724 + -delta_H -216.597 kJ/mol +# deltafH -267.25 kcal/mol + -analytic -3.0510e2 -7.9919e-2 1.8709e4 1.1178e2 2.9203e2 +# Range 0-350 + -Vm 44.524 +# Extrapol supcrt92 +# Ref HDN+78 + +Malachite + Cu2CO3(OH)2 + 3 H+ = HCO3- + 2 Cu+2 + 2 H2O + log_k 5.9399 + -delta_H -76.2827 kJ/mol +# deltafH -251.9 kcal/mol + -analytic -2.7189e2 -6.9454e-2 1.1451e4 1.0511e2 1.7877e2 +# Range 0-350 + -Vm 54.86 +# Extrapol supcrt92 +# Ref HDN+78 + +Manganosite + MnO + 2 H+ = H2O + Mn+2 + log_k 17.9240 + -delta_H -121.215 kJ/mol +# deltafH -92.07 kcal/mol + -analytic -8.4114e1 -1.8490e-2 8.7792e3 3.1561e1 1.3702e2 +# Range 0-350 + -Vm 13.221 +# Extrapol supcrt92 +# Ref HDN+78 + +Margarite + CaAl4Si2O10(OH)2 + 14 H+ = Ca+2 + 2 SiO2 + 4 Al+3 + 8 H2O + log_k 41.0658 + -delta_H -522.192 kJ/mol +# deltafH -1485.8 kcal/mol + -analytic -2.3138e2 -8.2788e-2 3.0154e4 7.9148e1 4.7060e2 +# Range 0-350 + -Vm 129.4 +# Extrapol supcrt92 +# Ref HDN+78 differ by 3.3 log K at 0C, 1.1 log K at 350C + +Maximum_Microcline + KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 + log_k -0.2753 + -delta_H -23.9408 kJ/mol +# deltafH -949.188 kcal/mol + -analytic -9.4387 1.3561e-2 1.2656e4 -7.4925 -1.6795e6 +# Range 0-350 + -Vm 108.741 +# Extrapol supcrt92 +# Ref HDN+78 + +Mayenite + Ca12Al14O33 + 66 H+ = 12 Ca+2 + 14 Al+3 + 33 H2O + log_k 494.2199 + -delta_H -4056.77 kJ/mol +# deltafH -4644 kcal/mol + -analytic -1.4778e3 -2.9898e-1 2.4918e5 4.9518e2 4.2319e3 +# Range 0-200 + -Vm 517.41 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +Melanterite + FeSO4:7H2O = Fe+2 + SO4-2 + 7 H2O + log_k -2.3490 + -delta_H 11.7509 kJ/mol +# deltafH -3014.48 kJ/mol + -analytic -2.6230e2 -7.2469e-2 6.5854e3 1.0484e2 1.0284e2 +# Range 0-300 + -Vm 146.48 # Marion+08 +# Extrapol Cp integration +# Ref RHF79 + +Merwinite + MgCa3(SiO4)2 + 8 H+ = Mg+2 + 2 SiO2 + 3 Ca+2 + 4 H2O + log_k 68.5140 + -delta_H -430.069 kJ/mol +# deltafH -1090.8 kcal/mol + -analytic -2.2524e2 -4.2525e-2 3.5619e4 7.9984e1 -9.8259e5 +# Range 0-350 + -Vm 104.4 +# Extrapol supcrt92 +# Ref HDN+78 + +Mesolite + Na.676Ca.657Al1.99Si3.01O10:2.647H2O + 7.96 H+ = 0.657 Ca+2 + 0.676 Na+ + 1.99 Al+3 + 3.01 SiO2 + 6.627 H2O + log_k 13.6191 + -delta_H -179.744 kJ/mol +# deltafH -5947.05 kJ/mol + -analytic 7.1993 5.9356e-3 1.4717e4 -1.3627e1 -9.8863e5 +# Range 0-300 + -Vm 171.2 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 89db 6 + +Mg + Mg + 2 H+ + 0.5 O2 = H2O + Mg+2 + log_k 122.5365 + -delta_H -745.731 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.5988e1 -1.9356e-2 4.0318e4 2.3862e1 6.2914e2 +# Range 0-300 + -Vm 13.996 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +MgOHCl + MgOHCl + H+ = Cl- + H2O + Mg+2 + log_k 15.9138 + -delta_H -118.897 kJ/mol +# deltafH -191.2 kcal/mol + -analytic -1.6614e2 -4.9715e-2 1.0311e4 6.5578e1 1.6093e2 +# Range 0-300 + -Vm 33.23 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 73bar/kna + +MgSO4 + MgSO4 = Mg+2 + SO4-2 + log_k 4.8781 + -delta_H -90.6421 kJ/mol +# deltafH -1284.92 kJ/mol + -analytic -2.2439e2 -7.9688e-2 9.3058e3 8.9622e1 1.4527e2 +# Range 0-300 + -Vm 45.25 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Millerite + NiS + H+ = HS- + Ni+2 + log_k -8.0345 + -delta_H 12.089 kJ/mol +# deltafH -82.171 kJ/mol + -analytic -1.4848e2 -4.8834e-2 2.6981e3 5.8976e1 4.2145e1 +# Range 0-300 + -Vm 16.89 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Minnesotaite + Fe3Si4O10(OH)2 + 6 H+ = 3 Fe+2 + 4 H2O + 4 SiO2 + log_k 13.9805 + -delta_H -105.211 kJ/mol +# deltafH -1153.37 kcal/mol + -analytic -1.8812e1 1.7261e-2 1.9804e4 -6.4410 -2.0433e6 +# Range 0-300 + -Vm 147.86 # HDN+78 +# Extrapol Cp integration +# Ref 78wol, Wilson+06 differ by 2.6 log K at 0C, 1.6 log K at 350C + +Mirabilite + Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O + log_k -1.1398 + -delta_H 79.4128 kJ/mol +# deltafH -4328 kJ/mol + -analytic -2.1877e2 -3.6692e-3 5.9214e3 8.0361e1 1.0063e2 +# Range 0-200 + -Vm 219.80 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref RHF79 + +Mn + Mn + 2 H+ + 0.5 O2 = H2O + Mn+2 + log_k 82.9505 + -delta_H -500.369 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.5558e1 -2.0429e-2 2.7571e4 2.5098e1 4.3024e2 +# Range 0-300 + -Vm 7.354 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Mn(OH)2(am) + Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O + log_k 15.3102 + -delta_H -97.1779 kJ/mol +# deltafH -695.096 kJ/mol + -analytic -7.8518e1 -7.5357e-3 8.0198e3 2.7955e1 1.3621e2 +# Range 0-200 + -Vm 22.36 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +MnCl2:2H2O + MnCl2:2H2O = Mn+2 + 2 Cl- + 2 H2O + log_k 4.0067 + -delta_H -34.4222 kJ/mol +# deltafH -1092.01 kJ/mol + -analytic -6.2823e1 -2.3959e-2 2.9931e3 2.5834e1 5.0850e1 +# Range 0-200 + -Vm 71.12 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +MnCl2:4H2O + MnCl2:4H2O = Mn+2 + 2 Cl- + 4 H2O + log_k 2.7563 + -delta_H -10.7019 kJ/mol +# deltafH -1687.41 kJ/mol + -analytic -1.1049e2 -2.3376e-2 4.0458e3 4.3097e1 6.8742e1 +# Range 0-200 + -Vm 98.46 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +MnCl2:H2O + MnCl2:H2O = H2O + Mn+2 + 2 Cl- + log_k 5.5517 + -delta_H -50.8019 kJ/mol +# deltafH -789.793 kJ/mol + -analytic -4.5051e1 -2.5923e-2 2.8739e3 1.9674e1 4.8818e1 +# Range 0-200 + -Vm 42.27 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +MnSO4 + MnSO4 = Mn+2 + SO4-2 + log_k 2.6561 + -delta_H -64.8718 kJ/mol +# deltafH -1065.33 kJ/mol + -analytic -2.3088e2 -8.2694e-2 8.1653e3 9.3256e1 1.2748e2 +# Range 0-300 + -Vm 46.46 # gfw/density +# Extrapol Cp integration +# Ref RHF79 + +Mo + Mo + 1.5 O2 + H2O = MoO4-2 + 2 H+ + log_k 109.3230 + -delta_H -693.845 kJ/mol +# deltafH 0 kJ/mol + -analytic -2.0021e2 -8.3006e-2 4.1629e4 8.0219e1 -3.4570e5 +# Range 0-300 + -Vm 9.387 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Molysite + FeCl3 = Fe+3 + 3 Cl- + log_k 13.5517 + -delta_H -151.579 kJ/mol +# deltafH -399.24 kJ/mol + -analytic -3.1810e2 -1.2357e-1 1.3860e4 1.3010e2 2.1637e2 +# Range 0-300 + -Vm 55.86 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Monohydrocalcite + CaCO3:H2O + H+ = Ca+2 + H2O + HCO3- + log_k 2.6824 + -delta_H -20.5648 kJ/mol +# deltafH -1498.29 kJ/mol + -analytic -7.2614e1 -1.7217e-2 3.1850e3 2.8185e1 5.4111e1 +# Range 0-200 + -Vm 49.62 # Webmineral.com +# Extrapol Constant H approx +# Ref RHF79 + +Monticellite + CaMgSiO4 + 4 H+ = Ca+2 + Mg+2 + SiO2 + 2 H2O + log_k 29.5852 + -delta_H -195.711 kJ/mol +# deltafH -540.8 kcal/mol + -analytic 1.5730e1 -3.5567e-3 9.0789e3 -6.3007 1.4166e2 +# Range 0-300 + -Vm 51.47 +# Extrapol supcrt92 +# Ref HDN+78 + +Montmor-Ca + Ca.175Mg.35Al1.65Si4O10(OH)2 + 6 H+ = 0.175 Ca+2 + 0.35 Mg+2 + 1.65 Al+3 + 4 H2O + 4 SiO2 + log_k 2.4952 + -delta_H -100.154 kJ/mol +# deltafH -1361.5 kcal/mol + -analytic 2.459e1 -9.080e-2 0 0 0 5.223e-5 +# Range 0-300 + -Vm 136.007 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 88db 3 match + +Montmor-K + K.35Mg.35Al1.65Si4O10(OH)2 + 6 H+ = 0.35 K+ + 0.35 Mg+2 + 1.65 Al+3 + 4 H2O + 4 SiO2 + log_k 2.1423 + -delta_H -88.184 kJ/mol +# deltafH -1362.83 kcal/mol + -analytic 2.022e1 -7.624e-2 0 0 0 4.102e-5 +# Range 0-300 + -Vm 140.140 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 88db 3 match + +Montmor-Mg + Mg.525Al1.65Si4O10(OH)2 + 6 H+ = 0.525 Mg+2 + 1.65 Al+3 + 4 H2O + 4 SiO2 + log_k 2.3879 + -delta_H -102.608 kJ/mol +# deltafH -1357.87 kcal/mol + -analytic 2.381e1 -9.031e-2 0 0 0 5.203e-5 +# Range 0-300 + -Vm 135.042 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 88db 3 match + +Montmor-Na + Na.35Mg.35Al1.65Si4O10(OH)2 + 6 H+ = 0.35 Mg+2 + 0.35 Na+ + 1.65 Al+3 + 4 H2O + 4 SiO2 + log_k 2.4844 + -delta_H -93.2165 kJ/mol +# deltafH -1360.69 kcal/mol + -analytic 2.348e1 -8.604e-2 0 0 0 4.951e-5 +# Range 0-300 + -Vm 137.449 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 88db 3 match, but differ from Wilson+06 by 3.4 log K at 0C, 1.7 log K at 300C + +Mordenite + Ca.2895Na.361Al.94Si5.06O12:3.468H2O + 3.76 H+ = 0.2895 Ca+2 + 0.361 Na+ + 0.94 Al+3 + 5.06 SiO2 + 5.348 H2O + log_k -5.1969 + -delta_H 16.7517 kJ/mol +# deltafH -6736.64 kJ/mol + -analytic -5.4675e1 3.2513e-2 2.3412e4 -1.0419 -3.2292e6 +# Range 0-300 + -Vm 209.90 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 91joh/tas + +Morenosite + NiSO4:7H2O = Ni+2 + SO4-2 + 7 H2O + log_k -2.0140 + -delta_H 12.0185 kJ/mol +# deltafH -2976.46 kJ/mol + -analytic -2.6654e2 -7.2132e-2 6.7983e3 1.0636e2 1.0616e2 +# Range 0-300 + -Vm 144.17 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Muscovite + KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 SiO2 + 6 H2O + log_k 13.5858 + -delta_H -243.224 kJ/mol +# deltafH -1427.41 kcal/mol + -analytic 3.3085e1 -1.2425e-2 1.2477e4 -2.0865e1 -5.4692e5 +# Range 0-350 + -Vm 140.71 +# Extrapol supcrt92 +# Ref HDN+78 + +Na + Na + H+ + 0.25 O2 = 0.5 H2O + Na+ + log_k 67.3804 + -delta_H -380.185 kJ/mol +# deltafH 0 kJ/mol + -analytic -4.0458e1 -8.7899e-3 2.1223e4 1.5927e1 -1.2715e4 +# Range 0-300 + -Vm 23.812 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Na2CO3 + Na2CO3 + H+ = HCO3- + 2 Na+ + log_k 11.1822 + -delta_H -39.8526 kJ/mol +# deltafH -1130.68 kJ/mol + -analytic -1.5495e2 -4.3374e-2 6.4821e3 6.3571e1 1.0119e2 +# Range 0-300 + -Vm 41.86 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Na2CO3:7H2O + Na2CO3:7H2O + H+ = HCO3- + 2 Na+ + 7 H2O + log_k 9.9459 + -delta_H 27.7881 kJ/mol +# deltafH -3199.19 kJ/mol + -analytic -2.0593e2 -3.4509e-3 8.1601e3 7.6594e1 1.3864e2 +# Range 0-200 + -Vm 153.71 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Na2Cr2O7 + Na2Cr2O7 + H2O = 2 CrO4-2 + 2 H+ + 2 Na+ + log_k -10.1597 + -delta_H 21.9702 kJ/mol +# deltafH -473 kcal/mol + -analytic 4.4885e1 -2.4919e-2 -5.0321e3 -1.2430e1 -8.5468e1 +# Range 0-200 + -Vm 103.96 # gfw/density +# Extrapol Constant H approx +# Ref 76del/hal + +Na2CrO4 + Na2CrO4 = CrO4-2 + 2 Na+ + log_k 2.9103 + -delta_H -19.5225 kJ/mol +# deltafH -320.8 kcal/mol + -analytic 5.4985 -9.9008e-3 1.0510e2 +# Range 0-200 + -Vm 59.48 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 76del/hal + +Na2O + Na2O + 2 H+ = H2O + 2 Na+ + log_k 67.4269 + -delta_H -351.636 kJ/mol +# deltafH -99.14 kcal/mol + -analytic -6.3585e1 -8.4695e-3 2.0923e4 2.5601e1 3.2651e2 +# Range 0-350 + -Vm 25 +# Extrapol supcrt92 +# Ref HDN+78 + +Na2SiO3 + Na2SiO3 + 2 H+ = H2O + SiO2 + 2 Na+ + log_k 22.2418 + -delta_H -82.7093 kJ/mol +# deltafH -373.19 kcal/mol + -analytic -3.4928e1 5.6905e-3 1.0284e4 1.1197e1 -6.0134e5 +# Range 0-300 + -Vm 50.86 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 73bar/kna + +Na2U2O7 + Na2U2O7 + 6 H+ = 2 Na+ + 2 UO2+2 + 3 H2O + log_k 22.5917 + -delta_H -172.314 kJ/mol +# deltafH -3203.8 kJ/mol + -analytic -8.6640e1 -1.0903e-2 1.1841e4 2.9406e1 1.8479e2 +# Range 0-300 + -Vm 95.34 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 92gre/fug + +NaFeO2 + NaFeO2 + 4 H+ = Fe+3 + Na+ + 2 H2O + log_k 19.8899 + -delta_H -163.339 kJ/mol +# deltafH -698.218 kJ/mol + -analytic -7.0047e1 -9.6226e-3 1.0647e4 2.3071e1 1.8082e2 +# Range 0-200 + -Vm 33.48 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +NaUO3 + NaUO3 + 2 H+ = H2O + Na+ + UO2+ + log_k 8.3371 + -delta_H -56.365 kJ/mol +# deltafH -1494.9 kJ/mol + -analytic -3.6363e1 7.0505e-4 4.5359e3 1.1828e1 7.0790e1 +# Range 0-300 + -Vm 42.56 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +Nahcolite + NaHCO3 = HCO3- + Na+ + log_k -0.1118 + -delta_H 17.0247 kJ/mol +# deltafH -226.4 kcal/mol + -analytic -2.2282e2 -5.9693e-2 5.4887e3 8.9744e1 8.5712e1 +# Range 0-300 + -Vm 38.62 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 73bar/kna + +Nantokite + CuCl = Cl- + Cu+ + log_k -6.7623 + -delta_H 41.9296 kJ/mol +# deltafH -137.329 kJ/mol + -analytic -2.2442e1 -1.1201e-2 -1.8709e3 1.0221e1 -3.1763e1 +# Range 0-200 + -Vm 23.92 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Natrolite + Na2Al2Si3O10:2H2O + 8 H+ = 2 Al+3 + 2 Na+ + 3 SiO2 + 6 H2O + log_k 18.5204 + -delta_H -186.971 kJ/mol +# deltafH -5718.56 kJ/mol + -analytic -2.7712e1 -2.7963e-3 1.6075e4 1.5332 -9.5765e5 +# Range 0-300 + -Vm 169.72 # HDN+78 +# Extrapol Cp integration +# Ref 83joh/flo + +Natron + Na2CO3:10H2O + H+ = HCO3- + 2 Na+ + 10 H2O + log_k 9.6102 + -delta_H 50.4781 kJ/mol +# deltafH -4079.39 kJ/mol + -analytic -1.9981e2 -2.9247e-2 5.2937e3 8.0973e1 8.2662e1 +# Range 0-300 + -Vm 195.99 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Natrosilite + Na2Si2O5 + 2 H+ = H2O + 2 Na+ + 2 SiO2 + log_k 18.1337 + -delta_H -51.7686 kJ/mol +# deltafH -590.36 kcal/mol + -analytic -2.7628e1 1.6865e-2 1.3302e4 4.2356 -1.2828e6 +# Range 0-300 + -Vm 72.57 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 77bar/kna + +Nepheline + NaAlSiO4 + 4 H+ = Al+3 + Na+ + SiO2 + 2 H2O + log_k 13.8006 + -delta_H -135.068 kJ/mol +# deltafH -500.241 kcal/mol + -analytic -2.4856e1 -8.8171e-3 8.5653e3 6.0904 -2.2786e5 +# Range 0-350 + -Vm 54.16 +# Extrapol supcrt92 +# Ref HDN+78 + +Nesquehonite + MgCO3:3H2O + H+ = HCO3- + Mg+2 + 3 H2O + log_k 4.9955 + -delta_H -36.1498 kJ/mol +# deltafH -472.576 kcal/mol + -analytic 1.3771e2 -6.0397e-2 -3.5049e4 -1.8831e1 4.4213e6 +# Range 0-50 + -Vm 74.79 +# Extrapol supcrt92 +# Ref HDN+78 + +NH4Cl + NH4Cl = NH4+ + Cl- + log_k 1.3252 + -analytic -3.078 1.550e-2 0 0 0 -3.451e-6 +# Range 0-30 + -Vm 34.96 +# Extrapol Marion+12 +# Ref Marion+12, WangLi11 match + +NH4-feldspar # Buddingtonite (sometimes with +0.5 H2O, especially at low temp) + NH4AlSi3O8 + 4H+ = NH4+ + Al+3 + 3 SiO2 + 2 H2O + log_k -2.7243 + -analytic -7.434e1 3.080e-1 0 0 0 -2.270e-4 +# Range 25-325 + -Vm 114.78 # Webmineral.com (Hovis04: 109.08-112.23) +# Extrapol N17 +# Ref Wat81 + +NH4HCO3 + NH4HCO3 = NH4+ + HCO3- + log_k -0.0207 + -analytic -1.587e1 9.703e-2 0 0 0 -1.472e-4 +# Range 0-40 + -Vm 50.04 +# Extrapol Marion+12 +# Ref Marion+12 + +NH4-muscovite # Tobelite + NH4Al3Si3O10(OH)2 + 10 H+ = NH4+ + 3 Al+3 + 3 SiO2 + 6 H2O + log_k 6.8109 + -analytical -6.638e1 3.170e-1 0 0 0 -2.386e-4 +# Range 25-325 + -Vm 146.07 # Hovis04 +# Extrapol N17 +# Ref Wat81 + +Ni + Ni + 2 H+ + 0.5 O2 = H2O + Ni+2 + log_k 50.9914 + -delta_H -333.745 kJ/mol +# deltafH 0 kcal/mol + -analytic -5.8308e1 -2.0133e-2 1.8444e4 2.1590e1 2.8781e2 +# Range 0-350 + -Vm 6.588 +# Extrapol supcrt92 +# Ref HDN+78 + +Ni(OH)2 + Ni(OH)2 + 2 H+ = Ni+2 + 2 H2O + log_k 12.7485 + -delta_H -95.6523 kJ/mol +# deltafH -529.998 kJ/mol + -analytic -6.5279e1 -5.9499e-3 7.3471e3 2.2290e1 1.2479e2 +# Range 0-200 + -Vm 22.34 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Ni2SiO4 + Ni2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Ni+2 + log_k 14.3416 + -delta_H -127.629 kJ/mol +# deltafH -341.705 kcal/mol + -analytic -4.0414e1 -1.1194e-2 9.6515e3 1.2026e1 -3.6336e5 +# Range 0-300 + -Vm 42.61 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +NiCl2 + NiCl2 = Ni+2 + 2 Cl- + log_k 8.6113 + -delta_H -82.7969 kJ/mol +# deltafH -305.336 kJ/mol + -analytic -1.2416 -2.3139e-2 2.6529e3 3.1696 4.5052e1 +# Range 0-200 + -Vm 36.70 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +NiCl2:2H2O + NiCl2:2H2O = Ni+2 + 2 Cl- + 2 H2O + log_k 3.9327 + -delta_H -37.6746 kJ/mol +# deltafH -922.135 kJ/mol + -analytic -4.8814e1 -2.2602e-2 2.5951e3 2.0518e1 4.4086e1 +# Range 0-200 + -Vm 64.07 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +NiSO4 + NiSO4 = Ni+2 + SO4-2 + log_k 5.3197 + -delta_H -90.5092 kJ/mol +# deltafH -873.066 kJ/mol + -analytic -1.8878e2 -7.6403e-2 7.9412e3 7.6866e1 1.2397e2 +# Range 0-300 + -Vm 42.05 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +NiSO4:6H2O(alpha) + NiSO4:6H2O = Ni+2 + SO4-2 + 6 H2O + log_k -2.0072 + -delta_H 4.37983 kJ/mol +# deltafH -2682.99 kJ/mol + -analytic -1.1937e2 -1.3785e-2 4.1543e3 4.3454e1 7.0587e1 +# Range 0-200 + -Vm 126.6 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Nickelbischofite + NiCl2:6H2O = Ni+2 + 2 Cl- + 6 H2O + log_k 3.1681 + -delta_H 0.064088 kJ/mol +# deltafH -2103.23 kJ/mol + -analytic -1.4340e2 -2.1257e-2 5.1858e3 5.4759e1 8.8112e1 +# Range 0-200 + -Vm 123.15 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Ningyoite + CaUP2O8:2H2O + 2 H+ = Ca+2 + U+4 + 2 H2O + 2 HPO4-2 + log_k -29.7931 + -delta_H -36.4769 kJ/mol +# deltafH -1016.65 kcal/mol + -analytic -1.0274e2 -4.9041e-2 1.7779e3 3.2973e1 3.0227e1 +# Range 0-200 + -Vm 116.77 # Webmineral.com +# Extrapol Constant H approx +# Ref 78lan + +Niter + KNO3 = K+ + NO3- + log_k -0.2061 + -delta_H 35.4794 kJ/mol +# deltafH -494.46 kJ/mol + -analytic -6.5607e1 -2.8165e-2 -4.0131e2 3.0361e1 -6.2425 +# Range 0-300 + -Vm 48.04 # Marion+05 +# Extrapol Cp integration +# Ref RHF79 + +Nontronite-Ca + Ca.175Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.175 Ca+2 + 0.35 Al+3 + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O + log_k -11.5822 + -delta_H -38.138 kJ/mol +# deltafH -1166.7 kcal/mol + -analytic 3.697 -4.892e-2 0 0 0 1.489e-5 +# Range 0-300 + -Vm 137.780 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 2.6 log K at 0C, 0.2 log K at 300C + +Nontronite-K + K.35Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.35 Al+3 + 0.35 K+ + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O + log_k -11.8648 + -delta_H -26.5822 kJ/mol +# deltafH -1167.93 kcal/mol + -analytic -1.959 -3.115e-2 0 0 0 1.139e-6 +# Range 0-300 + -Vm 141.913 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 1.1 log K at 0C, 0.5 log K at 300C + +Nontronite-Mg + Mg.175Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.175 Mg+2 + 0.35 Al+3 + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O + log_k -11.6200 + -delta_H -41.1779 kJ/mol +# deltafH -1162.93 kcal/mol + -analytic 2.476 -4.730e-2 0 0 0 1.382e-5 +# Range 0-300 + -Vm 136.815 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol + +Nontronite-Na + Na.35Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.35 Al+3 + 0.35 Na+ + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O + log_k -11.5263 + -delta_H -31.5687 kJ/mol +# deltafH -1165.8 kcal/mol + -analytic 1.106 -4.045e-2 0 0 0 9.229e-6 +# Range 0-300 + -Vm 139.221 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 1.7 log K at 0C, 0.2 log K at 300C + +Okenite + CaSi2O4(OH)2:H2O + 2 H+ = Ca+2 + 2 SiO2 + 3 H2O + log_k 10.3816 + -delta_H -19.4974 kJ/mol +# deltafH -749.641 kcal/mol + -analytic -7.7353e1 1.5091e-2 1.3023e4 2.1337e1 -1.1831e6 +# Range 0-300 + -Vm 94.77 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +P + P + 1.5 H2O + 1.25 O2 = HPO4-2 + 2 H+ + log_k 132.1032 + -delta_H -848.157 kJ/mol +# deltafH 0 kJ/mol + -analytic -9.2727e1 -6.8342e-2 4.3465e4 4.0156e1 6.7826e2 +# Range 0-300 + -Vm 17.2 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Paragonite + NaAl3Si3O10(OH)2 + 10 H+ = Na+ + 3 Al+3 + 3 SiO2 + 6 H2O + log_k 17.5220 + -delta_H -275.056 kJ/mol +# deltafH -1416.96 kcal/mol + -analytic 3.5507e1 -1.0720e-2 1.3519e4 -2.2283e1 -4.5657e5 +# Range 0-350 + -Vm 132.53 +# Extrapol supcrt92 +# Ref HDN+78, differ by 2.5 log K at 0C, 0.6 log K at 350C, but match Wilson+06 + +Pargasite + NaCa2Al3Mg4Si6O22(OH)2 + 22 H+ = Na+ + 2 Ca+2 + 3 Al+3 + 4 Mg+2 + 6 SiO2 + 12 H2O + log_k 101.9939 + -delta_H -880.205 kJ/mol +# deltafH -3016.62 kcal/mol + -analytic -6.7889e1 -3.7817e-2 5.0493e4 9.2705 -1.0163e6 +# Range 0-350 + -Vm 273.5 +# Extrapol supcrt92 +# Ref HDN+78 + +Periclase + MgO + 2 H+ = H2O + Mg+2 + log_k 21.3354 + -delta_H -150.139 kJ/mol +# deltafH -143.8 kcal/mol + -analytic -8.8465e1 -1.8390e-2 1.0414e4 3.2469e1 1.6253e2 +# Range 0-350 + -Vm 11.248 +# Extrapol supcrt92 +# Ref HDN+78 + +Petalite + LiAlSi4O10 + 4 H+ = Al+3 + Li+ + 2 H2O + 4 SiO2 + log_k -3.8153 + -delta_H -13.1739 kJ/mol +# deltafH -4886.15 kJ/mol + -analytic -6.6355 2.4316e-2 1.5949e4 -1.3341e1 -2.2265e6 +# Range 0-300 + -Vm 128.4 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Phlogopite + KAlMg3Si3O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Mg+2 + 3 SiO2 + 6 H2O + log_k 37.4400 + -delta_H -310.503 kJ/mol +# deltafH -1488.07 kcal/mol + -analytic -8.7730e1 -1.7253e-2 2.3748e4 2.4465e1 -8.9045e5 +# Range 0-350 + -Vm 149.66 +# Extrapol supcrt92 +# Ref HDN+78 + +Polydymite + Ni3S4 + 2 H+ = S2-2 + 2 HS- + 3 Ni+2 + log_k -48.9062 +# deltafH -78.014 kcal/mol + -analytic -1.8030e1 -4.6945e-2 -1.1557e4 8.8339 -1.9625e2 +# Range 0-200 + -Vm 64.14 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 78vau/cra + +Portlandite + Ca(OH)2 + 2 H+ = Ca+2 + 2 H2O + log_k 22.5552 + -delta_H -128.686 kJ/mol +# deltafH -986.074 kJ/mol + -analytic -8.3848e1 -1.8373e-2 9.3154e3 3.2584e1 1.4538e2 +# Range 0-300 + -Vm 33.056 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Prehnite + Ca2Al2Si3O10(OH)2 + 10 H+ = 2 Al+3 + 2 Ca+2 + 3 SiO2 + 6 H2O + log_k 32.9305 + -delta_H -311.875 kJ/mol +# deltafH -1481.65 kcal/mol + -analytic -3.5763e1 -2.1396e-2 2.0167e4 6.3554 -7.4967e5 +# Range 0-350 + -Vm 140.33 +# Extrapol supcrt92 +# Ref HDN+78 + +Pseudowollastonite + CaSiO3 + 2 H+ = Ca+2 + H2O + SiO2 + log_k 13.9997 + -delta_H -79.4625 kJ/mol +# deltafH -388.9 kcal/mol + -analytic 2.6691e1 6.3323e-3 5.5723e3 -1.1822e1 -3.6038e5 +# Range 0-300 + -Vm 40.08 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 77bar/kna + +Pyridine + C5H5N + 6.25 O2 = 5 CO2 + 2.5 H2O + 0.5 N2 + log_k 490.7474 + -delta_H -669.9574 kcal/mol + -analytic 1071.04 -2.50773 0 0 0 0.00188 +# Range 0-350 + -Vm 64.4 +# Extrapol supcrt92 +# Ref Hel+98 + +Pyrite + FeS2 + H2O = 0.25 H+ + 0.25 SO4-2 + Fe+2 + 1.75 HS- + log_k -24.6534 + -delta_H 109.535 kJ/mol +# deltafH -41 kcal/mol + -analytic -2.4195e2 -8.7948e-2 -6.2911e2 9.9248e1 -9.7454 +# Range 0-350 + -Vm 23.94 +# Extrapol supcrt92 +# Ref HDN+78 + +Pyrolusite + MnO2 = 0.5 Mn+2 + 0.5 MnO4-2 + log_k -17.6439 + -delta_H 83.3804 kJ/mol +# deltafH -520.031 kJ/mol + -analytic -1.1541e2 -4.1665e-2 -1.8960e3 4.7094e1 -2.9551e1 +# Range 0-300 + -Vm 18.38 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Pyrophyllite + Al2Si4O10(OH)2 + 6 H+ = 2 Al+3 + 4 H2O + 4 SiO2 + log_k 0.4397 + -delta_H -102.161 kJ/mol +# deltafH -1345.31 kcal/mol + -analytic 1.1066e1 1.2707e-2 1.6417e4 -1.9596e1 -1.8791e6 +# Range 0-350 + -Vm 126.6 +# Extrapol supcrt92 +# Ref HDN+78, Wilson+06 match + +Pyrrhotite + FeS + H+ = Fe+2 + HS- + log_k -3.7193 + -delta_H -7.9496 kJ/mol +# deltafH -24 kcal/mol + -analytic -1.5785e2 -5.2258e-2 3.9711e3 6.3195e1 6.2012e1 +# Range 0-350 + -Vm 18.2 +# Extrapol supcrt92 +# Ref HDN+78 + +Quartz + SiO2 = SiO2 + log_k -3.9993 + -delta_H 32.949 kJ/mol +# deltafH -217.65 kcal/mol + -analytic 7.7698e-2 1.0612e-2 3.4651e3 -4.3551 -7.2138e5 +# Range 0-350 + -Vm 22.68 +# Extrapol supcrt92 +# Ref HDN+78 + +Rankinite + Ca3Si2O7 + 6 H+ = 2 SiO2 + 3 Ca+2 + 3 H2O + log_k 51.9078 + -delta_H -302.089 kJ/mol +# deltafH -941.7 kcal/mol + -analytic -9.6393e1 -1.6592e-2 2.4832e4 3.2541e1 -9.4630e5 +# Range 0-300 + -Vm 96.13 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 77bar/kna + +Rhodochrosite + MnCO3 + H+ = HCO3- + Mn+2 + log_k -0.1928 + -delta_H -21.3426 kJ/mol +# deltafH -212.521 kcal/mol + -analytic -1.6195e2 -4.9344e-2 5.0937e3 6.4402e1 7.9531e1 +# Range 0-350 + -Vm 31.075 +# Extrapol supcrt92 +# Ref HDN+78 + +Rhodonite + MnSiO3 + 2 H+ = H2O + Mn+2 + SiO2 + log_k 9.7301 + -delta_H -64.7121 kJ/mol +# deltafH -1319.42 kJ/mol + -analytic 2.0585e1 4.9941e-3 4.5816e3 -9.8212 -3.0658e5 +# Range 0-300 + -Vm 35.87 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Ripidolite + Mg3Fe2Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 2 Fe+2 + 3 Mg+2 + 3 SiO2 + 12 H2O + log_k 60.9638 + -delta_H -572.472 kJ/mol +# deltafH -1947.87 kcal/mol + -analytic 2.122e2 -6.025e-1 0 0 0 4.579e-4 +# Range 0-300 + -Vm 208.614 +# Extrapol supcrt92 +# Ref Catalano13 + +Rutherfordine + UO2CO3 + H+ = HCO3- + UO2+2 + log_k -4.1064 + -delta_H -19.4032 kJ/mol +# deltafH -1689.53 kJ/mol + -analytic -8.8224e1 -3.1434e-2 2.6675e3 3.4161e1 4.1650e1 +# Range 0-300 + -Vm 57.90 # Webmineral.com +# Extrapol Cp integration +# Ref 92gre/fug + +Rutile + TiO2 + 2 H2O = Ti(OH)4 + log_k -9.6452 +# deltafH -226.107 kcal/mol + -Vm 18.82 +# Ref RHF79 + +S + S + H2O = 0.5 O2 + H+ + HS- + log_k -45.0980 + -delta_H 263.663 kJ/mol +# deltafH 0 kJ/mol + -analytic -8.8928e1 -2.8454e-2 -1.1516e4 3.6747e1 -1.7966e2 +# Range 0-300 + -Vm 15.511 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Saleeite + Mg(UO2)2(PO4)2 + 2 H+ = Mg+2 + 2 HPO4-2 + 2 UO2+2 + log_k -19.4575 + -delta_H -110.816 kJ/mol +# deltafH -1189.61 kcal/mol + -analytic -6.0028e1 -4.4391e-2 3.9168e3 1.6428e1 6.6533e1 +# Range 0-200 + -Vm 285.77 # Webmineral.com +# Extrapol Constant H approx +# Ref 78lan + +Sanidine_high + KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 + log_k 0.9239 + -delta_H -35.0284 kJ/mol +# deltafH -946.538 kcal/mol + -analytic -3.4889 1.4495e-2 1.2856e4 -9.8978 -1.6572e6 +# Range 0-350 + -Vm 109.008 +# Extrapol supcrt92 +# Ref HDN+78 + +Saponite-Fe-Ca + Ca.175Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Ca+2 + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 20.3624 + -analytic 5.992e1 -1.681e-1 0 0 0 1.174e-4 +# Range 0-300 + -Vm 143.506 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Fe-Fe + Fe3.175Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 3.175 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 18.9359 + -analytic 5.762e1 -1.630e-1 0 0 0 1.099e-4 +# Range 0-300 + -Vm 142.672 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Fe-K + K.35Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 K+ + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 18.7937 + -analytic 5.427e1 -1.504e-1 0 0 0 1.037e-4 +# Range 0-300 + -Vm 147.639 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Fe-Mg + Mg.175Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Mg+2 + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 19.5290 + -analytic 5.870e1 -1.665e-1 0 0 0 1.163e-4 +# Range 0-300 + -Vm 142.541 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Fe-Na + Na.35Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Na+ + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 19.7977 + -analytic 5.733e1 -1.597e-1 0 0 0 1.117e-4 +# Range 0-300 + -Vm 144.947 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Mg-Ca + Ca.175Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Ca+2 + 0.35 Al+3 + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 26.2900 + -delta_H -207.971 kJ/mol +# deltafH -1436.51 kcal/mol + -analytic 8.088e1 -2.233e-1 0 0 0 1.655e-4 +# Range 0-300 + -Vm 141.250 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol match + +Saponite-Mg-Fe + Fe.175Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Fe+2 + 0.35 Al+3 + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 27.6789 + -analytic 7.825e1 -2.180e-1 0 0 0 1.612e-4 +# Range 0-300 + -Vm 140.416 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Mg-K + K.35Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 0.35 K+ + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 26.0075 + -delta_H -196.402 kJ/mol +# deltafH -1437.74 kcal/mol + -analytic 7.522e1 -2.055e-1 0 0 0 1.517e-4 +# Range 0-300 + -Vm 145.383 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 1.7 log K at 0C, 0.7 log K at 300C + +Saponite-Mg-Mg + Mg3.175Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 3.175 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 26.2523 + -delta_H -210.822 kJ/mol +# deltafH -1432.79 kcal/mol + -analytic 7.965e1 -2.217e-1 0 0 0 1.644e-4 +# Range 0-300 + -Vm 140.285 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 2.2 log K at 0C, 0.6 log K at 300C + +Saponite-Mg-Na + Na.35Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 0.35 Na+ + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 26.3459 + -delta_H -201.401 kJ/mol +# deltafH -1435.61 kcal/mol + -analytic 7.829e1 -2.148e-1 0 0 0 1.598e-4 +# Range 0-300 + -Vm 142.691 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 2.4 log K at 0C, 0.7 log K at 300C + +Sc + Sc + 3 H+ + 0.75 O2 = Sc+3 + 1.5 H2O + log_k 167.2700 + -delta_H -1033.87 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.6922e1 -2.9150e-2 5.4559e4 2.4189e1 8.5137e2 +# Range 0-300 + -Vm 15.038 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Scacchite + MnCl2 = Mn+2 + 2 Cl- + log_k 8.7785 + -delta_H -73.4546 kJ/mol +# deltafH -481.302 kJ/mol + -analytic -2.3476e2 -8.2437e-2 9.0088e3 9.6128e1 1.4064e2 +# Range 0-300 + -Vm 42.27 # Webmineral.com +# Extrapol Cp integration +# Ref WEP+82 + +Schoepite + UO3:2H2O + 2 H+ = UO2+2 + 3 H2O + log_k 4.8333 + -delta_H -50.415 kJ/mol +# deltafH -1826.1 kJ/mol + -analytic 1.3645e1 1.0884e-2 2.5412e3 -8.3167e0 3.9649e1 +# Range 0-300 + -Vm 66.08 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 92gre/fug + +Scolecite + CaAl2Si3O10:3H2O + 8 H+ = Ca+2 + 2 Al+3 + 3 SiO2 + 7 H2O + log_k 15.8767 + -delta_H -204.93 kJ/mol +# deltafH -6048.92 kJ/mol + -analytic 5.0656e1 -3.1485e-3 1.0574e4 -2.5663e1 -5.2769e5 +# Range 0-300 + -Vm 172.29 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 83joh/flo + +Sepiolite + Mg4Si6O15(OH)2:6H2O + 8 H+ = 4 Mg+2 + 6 SiO2 + 11 H2O + log_k 30.4439 + -delta_H -157.339 kJ/mol +# deltafH -2418 kcal/mol + -analytic 1.8690e1 4.7544e-2 2.6765e4 -2.5301e1 -2.6498e6 +# Range 0-350 + -Vm 285.6 +# Extrapol supcrt92 +# Ref HDN+78 + +Si + Si + O2 = SiO2 + log_k 148.9059 + -delta_H -865.565 kJ/mol +# deltafH 0 kJ/mol + -analytic -5.7245e2 -7.6302e-2 8.3516e4 2.0045e2 -2.8494e6 +# Range 0-300 + -Vm 12.056 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Siderite + FeCO3 + H+ = Fe+2 + HCO3- + log_k -0.1920 + -delta_H -32.5306 kJ/mol +# deltafH -179.173 kcal/mol + -analytic -1.5990e2 -4.9361e-2 5.4947e3 6.3032e1 8.5787e1 +# Range 0-350 + -Vm 29.378 +# Extrapol supcrt92 +# Ref HDN+78 + +Sillimanite + Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O + log_k 16.3080 + -delta_H -238.442 kJ/mol +# deltafH -615.099 kcal/mol + -analytic -7.1610e1 -3.2196e-2 1.2493e4 2.2449e1 1.9496e2 +# Range 0-350 + -Vm 49.9 +# Extrapol supcrt92 +# Ref HDN+78 + +SiO2(am) + SiO2 = SiO2 + log_k -2.7136 + -delta_H 20.0539 kJ/mol +# deltafH -214.568 kcal/mol + -analytic 1.2109 7.0767e-3 2.3634e3 -3.4449 -4.8591e5 +# Range 0-325 + -Vm 29 +# Extrapol supcrt92 +# Ref HDN+78 + +Sm + Sm + 2 H+ + 0.5 O2 = H2O + Sm+2 + log_k 133.1614 + -delta_H -783.944 kJ/mol +# deltafH 0 kJ/mol + -analytic -7.1599e1 -2.0083e-2 4.2693e4 2.7291e1 6.6621e2 +# Range 0-300 + -Vm 19.98 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Smectite-high-Fe-Mg + Ca.025Na.1K.2Fe.5Fe.2Mg1.15Al1.25Si3.5H2O12 + 8 H+ = 0.025 Ca+2 + 0.1 Na+ + 0.2 Fe+3 + 0.2 K+ + 0.5 Fe+2 + 1.15 Mg+2 + 1.25 Al+3 + 3.5 SiO2 + 5 H2O + log_k 17.4200 + -delta_H -199.841 kJ/mol +# deltafH -1351.39 kcal/mol + -analytic -9.6102 1.2551e-3 1.8157e4 -7.9862 -1.3005e6 +# Range 0-300 + -Vm 139.07 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 78wol + +Smectite-low-Fe-Mg + Ca.02Na.15K.2Fe.29Fe.16Mg.9Al1.25Si3.75H2O12 + 7 H+ = 0.02 Ca+2 + 0.15 Na+ + 0.16 Fe+3 + 0.2 K+ + 0.29 Fe+2 + 0.9 Mg+2 + 1.25 Al+3 + 3.75 SiO2 + 4.5 H2O + log_k 11.0405 + -delta_H -144.774 kJ/mol +# deltafH -1352.12 kcal/mol + -analytic -1.7003e1 6.9848e-3 1.8359e4 -6.8896 -1.6637e6 +# Range 0-300 + -Vm 139.39 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 78wol + +Smithsonite + ZnCO3 + H+ = HCO3- + Zn+2 + log_k 0.4633 + -delta_H -30.5348 kJ/mol +# deltafH -194.26 kcal/mol + -analytic -1.6452e2 -5.0231e-2 5.5925e3 6.5139e1 8.7314e1 +# Range 0-350 + -Vm 28.275 +# Extrapol supcrt92 +# Ref HDN+78 + +Sphaerocobaltite + CoCO3 + H+ = Co+2 + HCO3- + log_k -0.2331 + -delta_H -30.7064 kJ/mol +# deltafH -171.459 kcal/mol + -analytic -1.5709e2 -4.8957e-2 5.3158e3 6.2075e1 8.2995e1 +# Range 0-300 + -Vm 28.8 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 84sve + +Sphalerite + ZnS + H+ = HS- + Zn+2 + log_k -11.4400 + -delta_H 35.5222 kJ/mol +# deltafH -49 kcal/mol + -analytic -1.5497e2 -4.8953e-2 1.7850e3 6.1472e1 2.7899e1 +# Range 0-350 + -Vm 23.83 +# Extrapol supcrt92 +# Ref HDN+78 + +Spinel + Al2MgO4 + 8 H+ = Mg+2 + 2 Al+3 + 4 H2O + log_k 37.6295 + -delta_H -398.108 kJ/mol +# deltafH -546.847 kcal/mol + -analytic -3.3895e2 -8.3595e-2 2.9251e4 1.2260e2 4.5654e2 +# Range 0-350 + -Vm 39.71 +# Extrapol supcrt92 +# Ref HDN+78 + +Spinel-Co + Co3O4 + 8 H+ = Co+2 + 2 Co+3 + 4 H2O + log_k -6.4852 + -delta_H -126.415 kJ/mol +# deltafH -891 kJ/mol + -analytic -3.2239e2 -8.0782e-2 1.4635e4 1.1755e2 2.2846e2 +# Range 0-300 + -Vm 39.41 # gfw/density +# Extrapol Cp integration +# Ref WEP+82 + +Spodumene + LiAlSi2O6 + 4 H+ = Al+3 + Li+ + 2 H2O + 2 SiO2 + log_k 6.9972 + -delta_H -89.1817 kJ/mol +# deltafH -3054.75 kJ/mol + -analytic -9.8111 2.1191e-3 9.6920e3 -3.0484 -7.8822e5 +# Range 0-300 + -Vm 58.37 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Stilbite + Ca1.019Na.136K.006Al2.18Si6.82O18:7.33H2O + 8.72 H+ = 0.006 K+ + 0.136 Na+ + 1.019 Ca+2 + 2.18 Al+3 + 6.82 SiO2 + 11.69 H2O + log_k 1.0545 + -delta_H -83.0019 kJ/mol +# deltafH -11005.7 kJ/mol + -analytic -2.4483e1 3.0987e-2 2.8013e4 -1.5802e1 -3.4491e6 +# Range 0-300 + -Vm 333.50 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 90how/joh + +Strengite + FePO4:2H2O + H+ = Fe+3 + HPO4-2 + 2 H2O + log_k -11.3429 + -delta_H -37.107 kJ/mol +# deltafH -1876.23 kJ/mol + -analytic -2.7752e2 -9.4014e-2 7.6862e3 1.0846e2 1.2002e2 +# Range 0-300 + -Vm 65.10 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Sylvite + KCl = Cl- + K+ + log_k 0.8459 + -delta_H 17.4347 kJ/mol +# deltafH -104.37 kcal/mol + -analytic -8.1204e1 -3.3074e-2 8.2819e2 3.6014e1 1.2947e1 +# Range 0-350 + -Vm 37.524 +# Extrapol supcrt92 +# Ref HDN+78 + +Talc + Mg3Si4O10(OH)2 + 6 H+ = 3 Mg+2 + 4 H2O + 4 SiO2 + log_k 21.1383 + -delta_H -148.737 kJ/mol +# deltafH -1410.92 kcal/mol + -analytic 1.1164e1 2.4724e-2 1.9810e4 -1.7568e1 -1.8241e6 +# Range 0-350 + -Vm 136.25 +# Extrapol supcrt92 +# Ref HDN+78, Wilson+06 match + +Tarapacaite + K2CrO4 = CrO4-2 + 2 K+ + log_k -0.4037 + -delta_H 17.8238 kJ/mol +# deltafH -335.4 kcal/mol + -analytic 2.7953e1 -1.0863e-2 -2.7589e3 -6.4154e0 -4.6859e1 +# Range 0-200 + -Vm 70.87 # Webmineral.com +# Extrapol Constant H approx +# Ref 76del/hal + +Tenorite + CuO + 2 H+ = Cu+2 + H2O + log_k 7.6560 + -delta_H -64.5047 kJ/mol +# deltafH -37.2 kcal/mol + -analytic -8.9899e1 -1.8886e-2 6.0346e3 3.3517e1 9.4191e1 +# Range 0-350 + -Vm 12.22 +# Extrapol supcrt92 +# Ref HDN+78 + +Tephroite + Mn2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Mn+2 + log_k 23.0781 + -delta_H -160.1 kJ/mol +# deltafH -1730.47 kJ/mol + -analytic -3.2440e1 -1.1023e-2 8.8910e3 1.1691e1 1.3875e2 +# Range 0-300 + -Vm 47.52 # Webmineral.com +# Extrapol Cp integration +# Ref WEP+82 + +Th + Th + 4 H+ + O2 = Th+4 + 2 H2O + log_k 209.6028 + -delta_H -1328.56 kJ/mol +# deltafH 0 kJ/mol + -analytic -2.8256e1 -1.1963e-2 6.8870e4 4.2068e0 1.0747e3 +# Range 0-300 + -Vm 19.83 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Th(NO3)4:5H2O + Th(NO3)4:5H2O = Th+4 + 4 NO3- + 5 H2O + log_k 1.7789 + -delta_H -18.1066 kJ/mol +# deltafH -3007.35 kJ/mol + -analytic -1.2480e2 -2.0405e-2 5.1601e3 4.6613e1 8.7669e1 +# Range 0-200 + -Vm 203.62 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Th(SO4)2 + Th(SO4)2 = Th+4 + 2 SO4-2 + log_k -20.3006 + -delta_H -46.1064 kJ/mol +# deltafH -2542.12 kJ/mol + -analytic -8.4525 -3.5442e-2 0 0 -1.1540e5 +# Range 0-200 + -Vm 100.39 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Th2S3 + Th2S3 + 5 H+ + 0.5 O2 = H2O + 2 Th+4 + 3 HS- + log_k 95.2290 + -delta_H -783.243 kJ/mol +# deltafH -1082.89 kJ/mol + -analytic -3.2969e2 -1.1090e-1 4.6877e4 1.2152e2 7.3157e2 +# Range 0-300 + -Vm 71.19 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Th7S12 + Th7S12 + 16 H+ + O2 = 2 H2O + 7 Th+4 + 12 HS- + log_k 204.0740 + -delta_H -1999.4 kJ/mol +# deltafH -4136.58 kJ/mol + -analytic -2.1309e2 -1.4149e-1 9.8550e4 5.2042e1 1.6736e3 +# Range 0-200 + -Vm 248.02 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +ThCl4 + ThCl4 = Th+4 + 4 Cl- + log_k 23.8491 + -delta_H -251.094 kJ/mol +# deltafH -283.519 kcal/mol + -analytic -5.9340 -4.1640e-2 9.8623e3 3.6804 1.6748e2 +# Range 0-200 + -Vm 81.45 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 80lan/her + +ThS2 + ThS2 + 2 H+ = Th+4 + 2 HS- + log_k 10.7872 + -delta_H -175.369 kJ/mol +# deltafH -625.867 kJ/mol + -analytic -3.7691e1 -2.3714e-2 8.4673e3 1.0970e1 1.4380e2 +# Range 0-200 + -Vm 40.57 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Thenardite + Na2SO4 = SO4-2 + 2 Na+ + log_k -0.3091 + -delta_H -2.33394 kJ/mol +# deltafH -1387.87 kJ/mol + -analytic -2.1202e2 -7.1613e-2 5.1083e3 8.7244e1 7.9773e1 +# Range 0-300 + -Vm 53.33 # Marion+05 +# Extrapol Cp integration +# Ref RHF79 + +Thermonatrite + Na2CO3:H2O + H+ = H2O + HCO3- + 2 Na+ + log_k 10.9623 + -delta_H -27.5869 kJ/mol +# deltafH -1428.78 kJ/mol + -analytic -1.4030e2 -3.5263e-2 5.7840e3 5.7528e1 9.0295e1 +# Range 0-300 + -Vm 54.92 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Thorianite + ThO2 + 4 H+ = Th+4 + 2 H2O + log_k 1.8624 + -delta_H -114.296 kJ/mol +# deltafH -1226.4 kJ/mol + -analytic -1.4249e1 -2.4645e-3 4.3110e3 -1.6605e-2 2.1598e5 +# Range 0-300 + -Vm 26.373 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Ti + Ti + 2 H2O + O2 = Ti(OH)4 + log_k 149.2978 +# deltafH 0 kJ/mol + -Vm 10.631 # thermo.com.V8.R6+.tdat +# Ref CWM89 + +Ti2O3 + Ti2O3 + 4 H2O + 0.5 O2 = 2 Ti(OH)4 + log_k 42.9866 +# deltafH -1520.78 kJ/mol + -Vm 32.02 # gfw/density +# Ref WEP+82 + +Ti3O5 + Ti3O5 + 6 H2O + 0.5 O2 = 3 Ti(OH)4 + log_k 34.6557 +# deltafH -2459.24 kJ/mol + -Vm 48.93 # gfw/density +# Ref WEP+82 + +TiB2 + TiB2 + 5 H2O + 2.5 O2 = Ti(OH)4 + 2 B(OH)3 + log_k 312.4194 +# deltafH -323.883 kJ/mol + -Vm 15.37 # gfw/density +# Ref WEP+82 + +TiC + TiC + 3 H2O + 2 O2 = H+ + HCO3- + Ti(OH)4 + log_k 181.8139 +# deltafH -184.346 kJ/mol + -Vm 12.15 # gfw/density +# Ref WEP+82 + +TiCl2 + TiCl2 + 3 H2O + 0.5 O2 = Ti(OH)4 + 2 Cl- + 2 H+ + log_k 70.9386 +# deltafH -514.012 kJ/mol + -Vm 37.95 # gfw/density +# Ref WEP+82 + +TiCl3 + TiCl3 + 3.5 H2O + 0.25 O2 = Ti(OH)4 + 3 Cl- + 3 H+ + log_k 39.3099 +# deltafH -720.775 kJ/mol + -Vm 58.42 # gfw/density +# Ref WEP+82 + +TiN + TiN + 3.5 H2O + 0.25 O2 = NH3 + Ti(OH)4 + log_k 35.2344 +# deltafH -338.304 kJ/mol + -Vm 11.46 # gfw/density +# Ref WEP+82 + +Titanite + CaTiSiO5 + 2 H+ + H2O = Ca+2 + SiO2 + Ti(OH)4 + log_k 719.5839 +# deltafH 0 kcal/mol + -Vm 55.65 +# Ref RHF79 + +Tobermorite-11A + Ca5Si6H11O22.5 + 10 H+ = 5 Ca+2 + 6 SiO2 + 10.5 H2O + log_k 65.6121 + -delta_H -286.861 kJ/mol +# deltafH -2556.42 kcal/mol + -analytic 7.9123e1 3.9150e-2 2.9429e4 -3.9191e1 -2.4122e6 +# Range 0-300 + -Vm 286.81 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Tremolite + Ca2Mg5Si8O22(OH)2 + 14 H+ = 2 Ca+2 + 5 Mg+2 + 8 H2O + 8 SiO2 + log_k 61.2367 + -delta_H -406.404 kJ/mol +# deltafH -2944.04 kcal/mol + -analytic 8.5291e1 4.6337e-2 3.9465e4 -5.4414e1 -3.1913e6 +# Range 0-350 + -Vm 272.92 +# Extrapol supcrt92 +# Ref HDN+78 + +Trevorite + NiFe2O4 + 8 H+ = Ni+2 + 2 Fe+3 + 4 H2O + log_k 9.7876 + -delta_H -215.338 kJ/mol +# deltafH -1081.15 kJ/mol + -analytic -1.4322e2 -2.9429e-2 1.4518e4 4.5698e1 2.4658e2 +# Range 0-200 + -Vm 44.89 # Webmineral.com +# Extrapol Constant H approx +# Ref RHF79 + +Tridymite + SiO2 = SiO2 + log_k -3.8278 + -delta_H 31.3664 kJ/mol +# deltafH -909.065 kJ/mol + -analytic 3.1594e2 6.9315e-2 -1.1358e4 -1.2219e2 -1.9299e2 +# Range 0-200 + -Vm 26.12 # Webmineral.com +# Extrapol Constant H approx +# Ref WEP+82 + +Troilite + FeS + H+ = Fe+2 + HS- + log_k -3.8184 + -delta_H -7.3296 kJ/mol +# deltafH -101.036 kJ/mol + -analytic -1.6146e2 -5.3170e-2 4.0461e3 6.4620e1 6.3183e1 +# Range 0-300 + -Vm 19.07 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +U + U + 2 H+ + 1.5 O2 = H2O + UO2+2 + log_k 212.7800 + -delta_H -1286.64 kJ/mol +# deltafH 0 kJ/mol + -analytic -2.4912e2 -4.7104e-2 8.1115e4 8.7008e1 -1.0158e6 +# Range 0-300 + -Vm 12.49 # Webelements.com +# Extrapol Cp integration +# Ref CWM89 + +U2O2Cl5 + U2O2Cl5 = U+4 + UO2+ + 5 Cl- + log_k 19.2752 + -delta_H -254.325 kJ/mol +# deltafH -2197.4 kJ/mol + -analytic -4.3945e2 -1.6239e-1 2.1694e4 1.7551e2 3.3865e2 +# Range 0-300 + -Vm 142.48 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +U3S5 + U3S5 + 5 H+ = U+4 + 2 U+3 + 5 HS- + log_k -0.3680 + -delta_H -218.942 kJ/mol +# deltafH -1431 kJ/mol + -analytic -1.1011e2 -6.7959e-2 1.0369e4 3.8481e1 1.7611e2 +# Range 0-200 + -Vm 106.12 # gfw/density +# Extrapol Constant H approx +# Ref 92gre/fug + +UC + UC + 2 H+ + 1.75 O2 = 0.5 H2O + HCO3- + U+3 + log_k 194.8241 + -delta_H -1202.82 kJ/mol +# deltafH -97.9 kJ/mol + -analytic -4.6329e1 -4.4600e-2 6.1417e4 1.9566e1 9.5836e2 +# Range 0-300 + -Vm 18.34 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UCl3 + UCl3 = U+3 + 3 Cl- + log_k 13.0062 + -delta_H -126.639 kJ/mol +# deltafH -863.7 kJ/mol + -analytic -2.6388e2 -1.0241e-1 1.1629e4 1.0846e2 1.8155e2 +# Range 0-300 + -Vm 62.62 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UCl4 + UCl4 = U+4 + 4 Cl- + log_k 21.9769 + -delta_H -240.719 kJ/mol +# deltafH -1018.8 kJ/mol + -analytic -3.6881e2 -1.3618e-1 1.9685e4 1.4763e2 3.0727e2 +# Range 0-300 + -Vm 78.00 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UCl6 + UCl6 + 2 H2O = UO2+2 + 4 H+ + 6 Cl- + log_k 57.5888 + -delta_H -383.301 kJ/mol +# deltafH -1066.5 kJ/mol + -analytic -4.5589e2 -1.9203e-1 2.8029e4 1.9262e2 4.3750e2 +# Range 0-300 + -Vm 125.21 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UH3(beta) + UH3 + 3 H+ + 1.5 O2 = U+3 + 3 H2O + log_k 199.7683 + -delta_H -1201.43 kJ/mol +# deltafH -126.98 kJ/mol + -analytic 5.2870e1 4.2151e-3 6.0167e4 -2.2701e1 1.0217e3 +# Range 0-200 + -Vm 22.01 # gfw/density +# Extrapol Constant H approx +# Ref 92gre/fug + +UN + UN + 3 H+ = NH3 + U+3 + log_k 41.7130 + -delta_H -280.437 kJ/mol +# deltafH -290 kJ/mol + -analytic -1.6393e2 -1.1679e-3 2.8845e3 6.5637e1 3.0122e6 +# Range 0-300 + -Vm 45.85 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UO2(NO3)2 + UO2(NO3)2 = UO2+2 + 2 NO3- + log_k 11.9598 + -delta_H -81.6219 kJ/mol +# deltafH -1351 kJ/mol + -analytic -1.2216e1 -1.1261e-2 3.9895e3 5.7166 6.7751e1 +# Range 0-200 + -Vm 140.23 # gfw/density +# Extrapol Constant H approx +# Ref 92gre/fug + +UO2(NO3)2:6H2O + UO2(NO3)2:6H2O = UO2+2 + 2 NO3- + 6 H2O + log_k 2.3189 + -delta_H 19.8482 kJ/mol +# deltafH -3167.5 kJ/mol + -analytic -1.4019e2 -4.3682e-2 2.7842e3 5.9070e1 4.3486e1 +# Range 0-300 + -Vm 178.88 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 92gre/fug + +UO2(OH)2(beta) + UO2(OH)2 + 2 H+ = UO2+2 + 2 H2O + log_k 4.9457 + -delta_H -56.8767 kJ/mol +# deltafH -1533.8 kJ/mol + -analytic -1.7478e1 -1.6806e-3 3.4226e3 4.6260 5.3412e1 +# Range 0-300 + -Vm 51.31 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 92gre/fug + +UO2SO4 + UO2SO4 = SO4-2 + UO2+2 + log_k 1.9681 + -delta_H -83.4616 kJ/mol +# deltafH -1845.14 kJ/mol + -analytic -1.5677e2 -6.5310e-2 6.7411e3 6.2867e1 1.0523e2 +# Range 0-300 + -Vm 111.61 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UO2SO4:3H2O + UO2SO4:3H2O = SO4-2 + UO2+2 + 3 H2O + log_k -1.4028 + -delta_H -34.6176 kJ/mol +# deltafH -2751.5 kJ/mol + -analytic -5.0134e1 -1.0321e-2 3.0505e3 1.6799e1 5.1818e1 +# Range 0-200 + -Vm 108.34 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 92gre/fug + +UO3(beta) + UO3 + 2 H+ = H2O + UO2+2 + log_k 8.3095 + -delta_H -84.5383 kJ/mol +# deltafH -1220.3 kJ/mol + -analytic -1.2298e1 -1.7800e-3 4.5621e3 2.3593 7.1191e1 +# Range 0-300 + -Vm 34.46 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 92gre/fug + +Uraninite + UO2 + 4 H+ = U+4 + 2 H2O + log_k -4.8372 + -delta_H -77.8767 kJ/mol +# deltafH -1085 kJ/mol + -analytic -7.5776e1 -1.0558e-2 5.9677e3 2.1853e1 9.3142e1 +# Range 0-325 + -Vm 24.638 +# Extrapol Cp integration +# Ref CWM89, SSB97 match + +Vaesite + NiS2 + H2O = 0.25 H+ + 0.25 SO4-2 + Ni+2 + 1.75 HS- + log_k -26.7622 + -delta_H 110.443 kJ/mol +# deltafH -32.067 kcal/mol + -analytic 1.6172e1 -2.2673e-2 -8.2514e3 -3.4392 -1.4013e2 +# Range 0-200 + -Vm 27.697 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 78vau/cra + +Wairakite + CaAl2Si4O10(OH)4 + 8 H+ = Ca+2 + 2 Al+3 + 4 SiO2 + 6 H2O + log_k 18.0762 + -delta_H -237.781 kJ/mol +# deltafH -1579.33 kcal/mol + -analytic -1.7914e1 3.2944e-3 2.2782e4 -9.0981 -1.6934e6 +# Range 0-350 + -Vm 186.87 +# Extrapol supcrt92 +# Ref HDN+78 + +Wollastonite + CaSiO3 + 2 H+ = Ca+2 + H2O + SiO2 + log_k 13.7605 + -delta_H -76.5756 kJ/mol +# deltafH -389.59 kcal/mol + -analytic 3.0931e1 6.7466e-3 5.1749e3 -1.3209e1 -3.4579e5 +# Range 0-350 + -Vm 39.93 +# Extrapol supcrt92 +# Ref HDN+78 + +Wurtzite + ZnS + H+ = HS- + Zn+2 + log_k -9.1406 + -delta_H 22.3426 kJ/mol +# deltafH -45.85 kcal/mol + -analytic -1.5446e2 -4.8874e-2 2.4551e3 6.1278e1 3.8355e1 +# Range 0-350 + -Vm 23.846 +# Extrapol supcrt92 +# Ref HDN+78 + +Wustite + Fe.947O + 2 H+ = 0.106 Fe+3 + 0.841 Fe+2 + H2O + log_k 12.4113 + -delta_H -102.417 kJ/mol +# deltafH -266.265 kJ/mol + -analytic -7.6919e1 -1.8433e-2 7.3823e3 2.8312e1 1.1522e2 +# Range 0-300 + -Vm 12.04 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Xonotlite + Ca6Si6O17(OH)2 + 12 H+ = 6 Ca+2 + 6 SiO2 + 7 H2O + log_k 91.8267 + -delta_H -495.457 kJ/mol +# deltafH -2397.25 kcal/mol + -analytic 1.6080e3 3.7309e-1 -2.2548e4 -6.2716e2 -3.8346e2 +# Range 0-200 + -Vm 264.81 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +Zincite + ZnO + 2 H+ = H2O + Zn+2 + log_k 11.2087 + -delta_H -88.7638 kJ/mol +# deltafH -350.46 kJ/mol + -analytic -8.6681e1 -1.9324e-2 7.1034e3 3.2256e1 1.1087e2 +# Range 0-350 + -Vm 14.338 +# Extrapol supcrt92, Cp integration +# Ref SSW+97, CWM89 match + +Zn + Zn + 2 H+ + 0.5 O2 = H2O + Zn+2 + log_k 68.8035 + -delta_H -433.157 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.4131e1 -2.0009e-2 2.3921e4 2.3702e1 3.7329e2 +# Range 0-300 + -Vm 9.162 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Zn(NO3)2:6H2O + Zn(NO3)2:6H2O = Zn+2 + 2 NO3- + 6 H2O + log_k 3.4102 + -delta_H 24.7577 kJ/mol +# deltafH -2306.8 kJ/mol + -analytic -1.7152e2 -1.6875e-2 5.6291e3 6.5094e1 9.5649e1 +# Range 0-200 + -Vm 144.06 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +Zn(OH)2(beta) + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.9341 + -delta_H -83.2111 kJ/mol +# deltafH -641.851 kJ/mol + -analytic -7.7810e1 -7.8548e-3 7.1994e3 2.7455e1 1.2228e2 +# Range 0-200 + -Vm 32.60 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +Zn(OH)2(epsilon) + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.6625 + -delta_H -81.7811 kJ/mol +# deltafH -643.281 kJ/mol + -analytic -7.7938e1 -7.8767e-3 7.1282e3 2.7496e1 1.2107e2 +# Range 0-200 + -Vm 32.60 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +Zn2SiO4 + Zn2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Zn+2 + log_k 13.8695 + -delta_H -119.399 kJ/mol +# deltafH -1636.75 kJ/mol + -analytic 2.0970e2 5.3663e-2 -1.2724e2 -8.5445e1 -2.2336 +# Range 0-200 + -Vm 55.03 # Webmineral.com +# Extrapol Constant H approx +# Ref WEP+82 + +ZnCl2 + ZnCl2 = Zn+2 + 2 Cl- + log_k 7.0880 + -delta_H -72.4548 kJ/mol +# deltafH -415.09 kJ/mol + -analytic -1.6157e1 -2.5405e-2 2.6505e3 8.8584 4.5015e1 +# Range 0-200 + -Vm 46.84 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +ZnCr2O4 + ZnCr2O4 + 8 H+ = Zn+2 + 2 Cr+3 + 4 H2O + log_k 7.9161 + -delta_H -221.953 kJ/mol +# deltafH -370.88 kcal/mol + -analytic -1.7603e2 -1.0217e-2 1.7414e4 5.1966e1 2.9577e2 +# Range 0-200 + -Vm 44.03 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 76del/hal + +ZnSO4 + ZnSO4 = SO4-2 + Zn+2 + log_k 3.5452 + -delta_H -80.132 kJ/mol +# deltafH -982.855 kJ/mol + -analytic 6.9905 -1.8046e-2 2.2566e3 -2.2819 3.8318e1 +# Range 0-200 + -Vm 45.61 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +ZnSO4:6H2O + ZnSO4:6H2O = SO4-2 + Zn+2 + 6 H2O + log_k -1.6846 + -delta_H -0.412008 kJ/mol +# deltafH -2777.61 kJ/mol + -analytic -1.4506e2 -1.8736e-2 5.2179e3 5.3121e1 8.8657e1 +# Range 0-200 + -Vm 130.08 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +Zoisite + Ca2Al3(SiO4)3OH + 13 H+ = 2 Ca+2 + 3 Al+3 + 3 SiO2 + 7 H2O + log_k 43.3017 + -delta_H -458.131 kJ/mol +# deltafH -1643.69 kcal/mol + -analytic 2.5321 -3.5886e-2 1.9902e4 -6.2443 3.1055e2 +# Range 0-350 + -Vm 135.9 +# Extrapol supcrt92 +# Ref HDN+78 differ by 2.5 log K at 0C, 0.6 log K at 350C + +#---------- +# 15 gases +#---------- + +C2H4(g) + C2H4 = C2H4 + log_k -2.323631 + -delta_H -3.930 kcal/mol + -analytic -14.5616 0.0176 2192.2 0 0 -3.8657e-6 +# Range 0-350 + -T_c 283 # K + -P_c 50.53 + -Omega 0.085 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref Sho93 + +C2H6(g) + C2H6 = C2H6 + log_k -2.93276 + -delta_H -4.509 kcal/mol + -analytic -23.1154 0.0354 3289.1 0 0 -1.5637e-5 +# Range 0-350 + -T_c 305 # K + -P_c 48.16 + -Omega 0.100 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref HOK+98 + +C3H8(g) + C3H8 = C3H8 + log_k -2.876 + -analytic 1.885 -2.55e-2 0 0 0 3.20e-5 # Not the best +# Range 0-350 + -T_c 369.522 # K + -P_c 42.4924 + -Omega 0.152 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref HOK+98 + +CH4(g) + CH4 = CH4 + log_k -2.8502 + -delta_H -13.0959 kJ/mol +# deltafH -17.88 kcal/mol + -analytic -24.027 4.7146e-3 372.27 6.4264 2.3362e5 +# Range 0-350 + -T_c 190.6 # K + -P_c 45.40 + -Omega 0.008 # phreeqc.dat +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +CO(g) + CO = CO + log_k -3.0068 + -delta_H -10.4349 kJ/mol +# deltafH -26.416 kcal/mol + -analytic -8.0849 9.2114e-3 0 0 2.0813e5 +# Range 0-350 + -T_c 133 # K + -P_c 34.54 + -Omega 0.049 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref Sho93 + +CO2(g) + CO2 + H2O = H+ + HCO3- + log_k -7.8136 + -delta_H -10.5855 kJ/mol +# deltafH -94.051 kcal/mol + -analytic -8.5938e1 -3.0431e-2 2.0702e3 3.2427e1 3.2328e1 +# Range 0-350 + -T_c 304.25 # K + -P_c 72.83 # atm, 7.38 MPa, http://webbook.nist.gov/cgi/cbook.cgi?ID=C124389&Units=SI&Mask=4#Thermo-Phase + -Omega 0.225 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +H2(g) + H2 = H2 + log_k -3.1050 + -delta_H -4.184 kJ/mol +# deltafH 0 kcal/mol + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 +# Range 0-350 + -T_c 33.2 # K + -P_c 12.80 + -Omega 0.225 # phreeqc.dat +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +H2O(g) + H2O = H2O + log_k 1.5854 + -delta_H -43.4383 kJ/mol +# deltafH -57.935 kcal/mol + -analytic -1.4782e1 1.0752e-3 2.7519e3 2.7548 4.2945e1 +# Range 0-350 + -T_c 647.3 # K + -P_c 218.31 + -Omega 0.344 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref Joh90 + +H2S(g) + H2S = H+ + HS- + log_k -7.9759 + -delta_H 4.5229 kJ/mol +# deltafH -4.931 kcal/mol + -analytic -97.354 -3.1576e-2 1.8285e3 37.44 28.56 +# Range 0-350 + -T_c 373.2 # K + -P_c 88.20 + -Omega 0.1 +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +N2(g) + N2 = N2 + log_k -3.1864 + -delta_H -10.4391 kJ/mol +# deltafH 0 kcal/mol + -analytic -58.453 1.818e-3 3199 17.909 -27460 # phreeqc.dat +# Range 0-350 + -T_c 126.2 # K + -P_c 33.50 + -Omega 0.039 +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +NH3(g) + NH3 = NH3 + log_k 1.7966 + -delta_H -35.2251 kJ/mol +# deltafH -11.021 kcal/mol + -analytic -18.758 3.3670e-4 2.5113e3 4.8619 39.192 +# Range 0-350 + -T_c 405.6 # K + -P_c 111.3 + -Omega 0.25 +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +NO(g) + NO + 0.5 H2O + 0.25 O2 = H+ + NO2- + log_k 0.7554 + -delta_H -48.8884 kJ/mol +# deltafH 90.241 kJ/mol + -analytic 8.2147 -1.2708e-1 -6.0593e3 2.0504e1 -9.4551e1 +# Range 0-300 + -T_c 180 # K + -P_c 64.64 + -Omega 0.607 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92, Cp integration +# Ref AS01, WEP+82 differ by 0.2 log K at 0C, 17 log K at 350C !! flag + +NO2(g) + NO2 + 0.5 H2O + 0.25 O2 = H+ + NO3- + log_k 8.3673 + -delta_H -94.0124 kJ/mol +# deltafH 33.154 kJ/mol + -analytic 9.4389e1 -2.7511e-1 -1.6783e4 2.1127e1 -2.6191e2 +# Range 0-300 + -T_c 431 # K + -P_c 99.67 + -Omega 0 # Not found +# Extrapol Cp integration +# Ref WEP+82 + +O2(g) + O2 = O2 + log_k -2.8983 + -delta_H -12.1336 kJ/mol +# deltafH 0 kcal/mol + -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 +# Range 0-300 + -T_c 154.6 # K phreeqc.dat + -P_c 49.80 # phreeqc.dat + -Omega 0.021 # phreeqc.dat +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +SO2(g) + SO2 = SO2 + log_k 0.1700 + -delta_H 0 +# deltafH 0 kcal/mol + -analytic -2.0205e1 2.8861e-3 1.4862e3 5.2958 1.2721e5 +# Range 0-300 + -T_c 430 # K + -P_c 77.67 + -Omega 0.251 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 # Ref WEP+82, Kel60 \ No newline at end of file diff --git a/llnl-organics/llnl_organics.dat b/llnl-organics/llnl_organics.dat index d88d35d9..491b2c57 100644 --- a/llnl-organics/llnl_organics.dat +++ b/llnl-organics/llnl_organics.dat @@ -1,22834 +1,22834 @@ -# $Id: llnl.dat 4023 2010-02-09 21:02:42Z dlpark $ -#Data are from 'thermo.com.V8.R6.230' prepared by Jim Johnson at -#Lawrence Livermore National Laboratory, in Geochemist's Workbench -#format. Converted to Phreeqc format by Greg Anderson with help from -#David Parkhurst. A few organic species have been omitted. - -#Delta H of reaction calculated from Delta H of formations given in -#thermo.com.V8.R6.230 (8 Mar 2000). - -#Note that species have various valid temperature ranges, noted in -#the Range parameter. However, Phreeqc at present makes no use of -#this parameter, so it is the user's responsibility to remain in the -#valid temperature range for all the data used. - -#This version is relatively untested. Kindly send comments or -#corrections to Greg Anderson at greg@geology.utoronto.ca. - -LLNL_AQUEOUS_MODEL_PARAMETERS --temperatures - 0.0100 25.0000 60.0000 100.0000 - 150.0000 200.0000 250.0000 300.0000 -#debye huckel a (adh) --dh_a - 0.4939 0.5114 0.5465 0.5995 - 0.6855 0.7994 0.9593 1.2180 -#debye huckel b (bdh) --dh_b - 0.3253 0.3288 0.3346 0.3421 - 0.3525 0.3639 0.3766 0.3925 --bdot - 0.0374 0.0410 0.0438 0.0460 - 0.0470 0.0470 0.0340 0.0000 -#cco2 (coefficients for the Drummond (1981) polynomial) --co2_coefs - -1.0312 0.0012806 - 255.9 0.4445 - -0.001606 -NAMED_EXPRESSIONS -# -# formation of O2 from H2O -# 2H2O = O2 + 4H+ + 4e- -# - Log_K_O2 - log_k -85.9951 - -delta_H 559.543 kJ/mol # Calculated enthalpy of reaction O2 -# Enthalpy of formation: -2.9 kcal/mol - -analytic 38.0229 7.99407E-03 -2.7655e+004 -1.4506e+001 199838.45 -# Range: 0-300 - - -SOLUTION_MASTER_SPECIES - -#element species alk gfw_formula element_gfw - -Acetate CH3COO- 0.0 CH3COO- 59.0252 -Ag Ag+ 0.0 Ag 107.8682 -Ag(1) Ag+ 0 Ag -Ag(2) Ag+2 0 Ag -Al Al+3 0.0 Al 26.9815 -Alkalinity HCO3- 1.0 Ca0.5(CO3)0.5 50.05 -Am Am+3 0.0 Am 243.0000 -Am(+2) Am+2 0.0 Am -Am(+3) Am+3 0.0 Am -Am(+4) Am+4 0.0 Am -Am(+5) AmO2+ 0.0 Am -Am(+6) AmO2+2 0.0 Am -Ar Ar 0.0 Ar 39.948 -As H2AsO4- 0.0 As 74.9216 -As(-3) AsH3 0.0 As -As(+3) H2AsO3- 0.0 As -As(+5) H2AsO4- 0.0 As -Au Au+ 0.0 Au 196.9665 -Au(+1) Au+ 0.0 Au -Au(+3) Au+3 0.0 Au -#B H3BO3 0.0 B 10.811 -B B(OH)3 0.0 B 10.811 -B(3) B(OH)3 0 B -B(-5) BH4- 0 B -Ba Ba+2 0.0 Ba 137.3270 -Be Be+2 0.0 Be 9.0122 -Br Br- 0.0 Br 79.904 -Br(-03) Br3- 0 Br -Br(-1) Br- 0 Br -Br(0) Br2 0 Br -Br(1) BrO- 0 Br -Br(5) BrO3- 0 Br -Br(7) BrO4- 0 Br -C(-4) CH4 0.0 CH4 -C(-3) C2H6 0.0 C2H6 -C(-2.667) C3H8 0 C3H8 -C(-2) C2H4 0.0 C2H4 -C(-1.14) C7H8 0 C7H8 -C(-1) C6H6 0 C6H6 -C(-0.667) C6H5OH 0 C6H5OH -C(-.286) C7H6O2 0 C7H6O2 -C HCO3- 1.0 HCO3 12.0110 -C(+1) C3H7COOH 0 C3H7COOH -C(+2) CO 0 C -C(+4) HCO3- 1.0 HCO3 -Ca Ca+2 0.0 Ca 40.078 -Cyanide Cyanide- 1.0 CN 26. -Cd Cd+2 0.0 Cd 112.411 -Ce Ce+3 0.0 Ce 140.115 -Ce(+2) Ce+2 0.0 Ce -Ce(+3) Ce+3 0.0 Ce -Ce(+4) Ce+4 0.0 Ce -Cl Cl- 0.0 Cl 35.4527 -Cl(-1) Cl- 0 Cl -Cl(1) ClO- 0 Cl -Cl(3) ClO2- 0 Cl -Cl(5) ClO3- 0 Cl -Cl(7) ClO4- 0 Cl -Co Co+2 0.0 Co 58.9332 -Co(+2) Co+2 0.0 Co -Co(+3) Co+3 0.0 Co -Cr CrO4-2 0.0 CrO4-2 51.9961 -Cr(+2) Cr+2 0.0 Cr -Cr(+3) Cr+3 0.0 Cr -Cr(+5) CrO4-3 0.0 Cr -Cr(+6) CrO4-2 0.0 Cr -Cs Cs+ 0.0 Cs 132.9054 -Cu Cu+2 0.0 Cu 63.546 -Cu(+1) Cu+1 0.0 Cu -Cu(+2) Cu+2 0.0 Cu -Dy Dy+3 0.0 Dy 162.50 -Dy(+2) Dy+2 0.0 Dy -Dy(+3) Dy+3 0.0 Dy -E e- 0.0 0.0 0.0 -Er Er+3 0.0 Er 167.26 -Er(+2) Er+2 0.0 Er -Er(+3) Er+3 0.0 Er -#Ethylene C2H4 0.0 C2H4 28.0536 -Eu Eu+3 0.0 Eu 151.965 -Eu(+2) Eu+2 0.0 Eu -Eu(+3) Eu+3 0.0 Eu -F F- 0.0 F 18.9984 -Fe Fe+2 0.0 Fe 55.847 -Fe(+2) Fe+2 0.0 Fe -Fe(+3) Fe+3 -2.0 Fe -Ga Ga+3 0.0 Ga 69.723 -Gd Gd+3 0.0 Gd 157.25 -Gd(+2) Gd+2 0.0 Gd -Gd(+3) Gd+3 0.0 Gd -H H+ -1. H 1.0079 -H(0) H2 0.0 H -H(+1) H+ -1. 0.0 -He He 0.0 He 4.0026 -He(0) He 0.0 He -Hf Hf+4 0.0 Hf 178.49 -Hg Hg+2 0.0 Hg 200.59 -Hg(+1) Hg2+2 0.0 Hg -Hg(+2) Hg+2 0.0 Hg -Ho Ho+3 0.0 Ho 164.9303 -Ho(+2) Ho+2 0.0 Ho -Ho(+3) Ho+3 0.0 Ho -I I- 0.0 I 126.9045 -I(-03) I3- 0 I -I(-1) I- 0.0 I -I(+1) IO- 0.0 I -I(+5) IO3- 0.0 I -I(+7) IO4- 0.0 I -In In+3 0.0 In 114.82 -K K+ 0.0 K 39.0983 -Kr Kr 0.0 Kr 83.80 -Kr(0) Kr 0.0 Kr -La La+3 0.0 La 138.9055 -La(2) La+2 0 La -La(3) La+3 0 La -Li Li+ 0.0 Li 6.9410 -Lu Lu+3 0.0 Lu 174.967 -Mg Mg+2 0.0 Mg 24.305 -Mn Mn+2 0.0 Mn 54.938 -Mn(+2) Mn+2 0.0 Mn -Mn(+3) Mn+3 0.0 Mn -Mn(+6) MnO4-2 0 Mn -Mn(+7) MnO4- 0 Mn -Mo MoO4-2 0.0 Mo 95.94 -N NH3 1.0 N 14.0067 -N(-3) NH3 1.0 N -N(-03) N3- 0.0 N -N(0) N2 0.0 N -N(+3) NO2- 0.0 N -N(+5) NO3- 0.0 N -Na Na+ 0.0 Na 22.9898 -Nd Nd+3 0.0 Nd 144.24 -Nd(+2) Nd+2 0.0 Nd -Nd(+3) Nd+3 0.0 Nd -Ne Ne 0.0 Ne 20.1797 -#Ne(0) Ne 0.0 Ne -Ni Ni+2 0.0 Ni 58.69 -Np Np+4 0.0 Np 237.048 -Np(+3) Np+3 0.0 Np -Np(+4) Np+4 0.0 Np -Np(+5) NpO2+ 0.0 Np -Np(+6) NpO2+2 0.0 Np -O H2O 0.0 O 15.994 -O(-2) H2O 0.0 0.0 -O(0) O2 0.0 O -O_phthalate O_phthalate-2 0 1 1 -P HPO4-2 2.0 P 30.9738 -P(-3) PH4+ 0 P -P(5) HPO4-2 2.0 P -Pb Pb+2 0.0 Pb 207.20 -Pb(+2) Pb+2 0.0 Pb -Pb(+4) Pb+4 0.0 Pb -Pd Pd+2 0.0 Pd 106.42 -Pm Pm+3 0.0 Pm 147.00 -Pm(+2) Pm+2 0.0 Pm -Pm(+3) Pm+3 0.0 Pm -Pr Pr+3 0.0 Pr 140.9076 -Pr(+2) Pr+2 0.0 Pr -Pr(+3) Pr+3 0.0 Pr -Pu Pu+4 0.0 Pu 244.00 -Pu(+3) Pu+3 0.0 Pu -Pu(+4) Pu+4 0.0 Pu -Pu(+5) PuO2+ 0.0 Pu -Pu(+6) PuO2+2 0.0 Pu -Ra Ra+2 0.0 Ra 226.025 -Rb Rb+ 0.0 Rb 85.4678 -Re ReO4- 0.0 Re 186.207 -Rn Rn 0.0 Rn 222.00 -Ru RuO4-2 0.0 Ru 101.07 -Ru(+2) Ru+2 0.0 Ru -Ru(+3) Ru+3 0.0 Ru -Ru(+4) Ru(OH)2+2 0.0 Ru -Ru(+6) RuO4-2 0.0 Ru -Ru(+7) RuO4- 0.0 Ru -Ru(+8) RuO4 0.0 Ru -S SO4-2 0.0 SO4 32.066 -S(-2) HS- 1.0 S -S(+2) S2O3-2 0.0 S -S(+3) S2O4-2 0.0 S -S(+4) SO3-2 0.0 S -S(+5) S2O5-2 0.0 S -S(+6) SO4-2 0.0 SO4 -S(+7) S2O8-2 0.0 S -S(+8) HSO5- 0.0 S -Sb Sb(OH)3 0.0 Sb 121.75 -Sc Sc+3 0.0 Sc 44.9559 -Se SeO3-2 0.0 Se 78.96 -Se(-2) HSe- 0.0 Se -Se(+4) SeO3-2 0.0 Se -Se(+6) SeO4-2 0.0 Se -Si SiO2 0.0 SiO2 28.0855 -Sm Sm+3 0.0 Sm 150.36 -Sm(+2) Sm+2 0.0 Sm -Sm(+3) Sm+3 0.0 Sm -Sn Sn+2 0.0 Sn 118.71 -Sn(+2) Sn+2 0.0 Sn -Sn(+4) Sn+4 0.0 Sn -Sr Sr+2 0.0 Sr 87.62 -Tb Tb+3 0.0 Tb 158.9253 -Tb(+2) Tb+2 0.0 Tb -Tb(+3) Tb+3 0.0 Tb -Tc TcO4- 0.0 Tc 98.00 -Tc(+3) Tc+3 0.0 Tc -Tc(+4) TcO+2 0.0 Tc -Tc(+5) TcO4-3 0.0 Tc -Tc(+6) TcO4-2 0.0 Tc -Tc(+7) TcO4- 0.0 Tc -Thiocyanate Thiocyanate- 0.0 SCN 58. -Th Th+4 0.0 Th 232.0381 -Ti Ti(OH)4 0.0 Ti 47.88 -Tl Tl+ 0.0 Tl 204.3833 -Tl(+1) Tl+ 0.0 Tl -Tl(+3) Tl+3 0.0 Tl -Tm Tm+3 0.0 Tm 168.9342 -Tm(+2) Tm+2 0.0 Tm -Tm(+3) Tm+3 0.0 Tm -U UO2+2 0.0 U 238.0289 -U(+3) U+3 0.0 U -U(+4) U+4 0.0 U -U(+5) UO2+ 0.0 U -U(+6) UO2+2 0.0 U -V VO+2 0.0 V 50.9415 -V(+3) V+3 0.0 V -V(+4) VO+2 0.0 V -V(+5) VO2+ 0.0 V -W WO4-2 0.0 W 183.85 -Xe Xe 0.0 Xe 131.29 -Xe(0) Xe 0.0 Xe -Y Y+3 0.0 Y 88.9059 -Yb Yb+3 0.0 Yb 173.04 -Yb(+2) Yb+2 0.0 Yb -Yb(+3) Yb+3 0.0 Yb -Zn Zn+2 0.0 Zn 65.39 -Zr Zr(OH)2+2 0.0 Zr 91.224 - -SOLUTION_SPECIES - -#HAcetate = HAcetate -# -llnl_gamma 3.0000 -# log_k 0 -# -delta_H 0 kJ/mol # Calculated enthalpy of reaction HAcetate -# Enthalpy of formation: -116.1 kcal/mol -CH3COO- = CH3COO- - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction CH3COO- -# Enthalpy of formation: -116.374 kcal/mol -Ag+ = Ag+ - -llnl_gamma 2.5000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ag+ -# Enthalpy of formation: 25.275 kcal/mol -Al+3 = Al+3 - -llnl_gamma 9.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Al+3 -# Enthalpy of formation: -128.681 kcal/mol -Am+3 = Am+3 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Am+3 -# Enthalpy of formation: -616.7 kJ/mol -Ar = Ar - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ar -# Enthalpy of formation: -2.87 kcal/mol -Au+ = Au+ - -llnl_gamma 4.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Au+ -# Enthalpy of formation: 47.58 kcal/mol -B(OH)3 = B(OH)3 - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction B(OH)3 -# Enthalpy of formation: -256.82 kcal/mol -Ba+2 = Ba+2 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ba+2 -# Enthalpy of formation: -128.5 kcal/mol -Be+2 = Be+2 - -llnl_gamma 8.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Be+2 -# Enthalpy of formation: -91.5 kcal/mol -Br- = Br- - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Br- -# Enthalpy of formation: -29.04 kcal/mol -Ca+2 = Ca+2 - -llnl_gamma 6.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ca+2 -# Enthalpy of formation: -129.8 kcal/mol -Cd+2 = Cd+2 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cd+2 -# Enthalpy of formation: -18.14 kcal/mol -Ce+3 = Ce+3 - -llnl_gamma 9.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ce+3 -# Enthalpy of formation: -167.4 kcal/mol -Cl- = Cl- - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cl- -# Enthalpy of formation: -39.933 kcal/mol -Co+2 = Co+2 - -llnl_gamma 6.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Co+2 -# Enthalpy of formation: -13.9 kcal/mol -CrO4-2 = CrO4-2 - -llnl_gamma 4.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction CrO4-2 -# Enthalpy of formation: -210.6 kcal/mol -Cs+ = Cs+ - -llnl_gamma 2.5000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cs+ -# Enthalpy of formation: -61.67 kcal/mol -Cu+2 = Cu+2 - -llnl_gamma 6.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cu+2 -# Enthalpy of formation: 15.7 kcal/mol -Dy+3 = Dy+3 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Dy+3 -# Enthalpy of formation: -166.5 kcal/mol -e- = e- - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction e- -# Enthalpy of formation: -0 kJ/mol -Er+3 = Er+3 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Er+3 -# Enthalpy of formation: -168.5 kcal/mol -#Ethylene = Ethylene -# -llnl_gamma 3.0000 -# log_k 0 -# -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ethylene -# Enthalpy of formation: 8.57 kcal/mol -Eu+3 = Eu+3 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Eu+3 -# Enthalpy of formation: -144.7 kcal/mol -F- = F- - -llnl_gamma 3.5000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction F- -# Enthalpy of formation: -80.15 kcal/mol -Fe+2 = Fe+2 - -llnl_gamma 6.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Fe+2 -# Enthalpy of formation: -22.05 kcal/mol -Ga+3 = Ga+3 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ga+3 -# Enthalpy of formation: -50.6 kcal/mol -Gd+3 = Gd+3 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Gd+3 -# Enthalpy of formation: -164.2 kcal/mol -H+ = H+ - -llnl_gamma 9.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction H+ -# Enthalpy of formation: -0 kJ/mol -He = He - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction He -# Enthalpy of formation: -0.15 kcal/mol -H2AsO4- = H2AsO4- - -llnl_gamma 4.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction H2AsO4- -# Enthalpy of formation: -217.39 kcal/mol -HCO3- = HCO3- - -llnl_gamma 4.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction HCO3- -# Enthalpy of formation: -164.898 kcal/mol -HPO4-2 = HPO4-2 - -llnl_gamma 4.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction HPO4-2 -# Enthalpy of formation: -308.815 kcal/mol -Hf+4 = Hf+4 - log_k 0 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf+4 -# Enthalpy of formation: -0 kcal/mol -Hg+2 = Hg+2 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Hg+2 -# Enthalpy of formation: 40.67 kcal/mol -Ho+3 = Ho+3 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ho+3 -# Enthalpy of formation: -169 kcal/mol -I- = I- - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction I- -# Enthalpy of formation: -13.6 kcal/mol -In+3 = In+3 - -llnl_gamma 9.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction In+3 -# Enthalpy of formation: -25 kcal/mol -K+ = K+ - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction K+ -# Enthalpy of formation: -60.27 kcal/mol -Kr = Kr - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Kr -# Enthalpy of formation: -3.65 kcal/mol -La+3 = La+3 - -llnl_gamma 9.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction La+3 -# Enthalpy of formation: -169.6 kcal/mol -Li+ = Li+ - -llnl_gamma 6.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Li+ -# Enthalpy of formation: -66.552 kcal/mol -Lu+3 = Lu+3 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Lu+3 -# Enthalpy of formation: -167.9 kcal/mol -Mg+2 = Mg+2 - -llnl_gamma 8.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Mg+2 -# Enthalpy of formation: -111.367 kcal/mol -Mn+2 = Mn+2 - -llnl_gamma 6.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Mn+2 -# Enthalpy of formation: -52.724 kcal/mol -MoO4-2 = MoO4-2 - -llnl_gamma 4.5000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction MoO4-2 -# Enthalpy of formation: -238.5 kcal/mol -NH3 = NH3 - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction NH3 -# Enthalpy of formation: -19.44 kcal/mol -Na+ = Na+ - -llnl_gamma 4.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Na+ -# Enthalpy of formation: -57.433 kcal/mol -Nd+3 = Nd+3 - -llnl_gamma 9.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Nd+3 -# Enthalpy of formation: -166.5 kcal/mol -Ne = Ne - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ne -# Enthalpy of formation: -0.87 kcal/mol -Ni+2 = Ni+2 - -llnl_gamma 6.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ni+2 -# Enthalpy of formation: -12.9 kcal/mol -Np+4 = Np+4 - -llnl_gamma 5.5000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Np+4 -# Enthalpy of formation: -556.001 kJ/mol -H2O = H2O - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction H2O -# Enthalpy of formation: -68.317 kcal/mol -O_phthalate-2 = O_phthalate-2 - -llnl_gamma 4.0000 - log_k 0 - -delta_H 0 # Not possible to calculate enthalpy of reaction O_phthalate-2 -# Enthalpy of formation: -0 kcal/mol -Pb+2 = Pb+2 - -llnl_gamma 4.5000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pb+2 -# Enthalpy of formation: 0.22 kcal/mol -Pd+2 = Pd+2 - -llnl_gamma 4.5000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pd+2 -# Enthalpy of formation: 42.08 kcal/mol -Pm+3 = Pm+3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pm+3 -# Enthalpy of formation: -688 kJ/mol -Pr+3 = Pr+3 - -llnl_gamma 9.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pr+3 -# Enthalpy of formation: -168.8 kcal/mol -Pu+4 = Pu+4 - -llnl_gamma 5.5000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pu+4 -# Enthalpy of formation: -535.893 kJ/mol -Ra+2 = Ra+2 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ra+2 -# Enthalpy of formation: -126.1 kcal/mol -Rb+ = Rb+ - -llnl_gamma 2.5000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Rb+ -# Enthalpy of formation: -60.02 kcal/mol -ReO4- = ReO4- - -llnl_gamma 4.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction ReO4- -# Enthalpy of formation: -188.2 kcal/mol -Rn = Rn - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Rn -# Enthalpy of formation: -5 kcal/mol -RuO4-2 = RuO4-2 - -llnl_gamma 4.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction RuO4-2 -# Enthalpy of formation: -457.075 kJ/mol -SO4-2 = SO4-2 - -llnl_gamma 4.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction SO4-2 -# Enthalpy of formation: -217.4 kcal/mol -Sb(OH)3 = Sb(OH)3 - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sb(OH)3 -# Enthalpy of formation: -773.789 kJ/mol -Sc+3 = Sc+3 - -llnl_gamma 9.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sc+3 -# Enthalpy of formation: -146.8 kcal/mol -SeO3-2 = SeO3-2 - -llnl_gamma 4.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction SeO3-2 -# Enthalpy of formation: -121.7 kcal/mol -SiO2 = SiO2 - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction SiO2 -# Enthalpy of formation: -209.775 kcal/mol -Sm+3 = Sm+3 - -llnl_gamma 9.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sm+3 -# Enthalpy of formation: -165.2 kcal/mol -Sn+2 = Sn+2 - -llnl_gamma 6.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sn+2 -# Enthalpy of formation: -2.1 kcal/mol -Sr+2 = Sr+2 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sr+2 -# Enthalpy of formation: -131.67 kcal/mol -Tb+3 = Tb+3 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tb+3 -# Enthalpy of formation: -166.9 kcal/mol -TcO4- = TcO4- - -llnl_gamma 4.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction TcO4- -# Enthalpy of formation: -716.269 kJ/mol -Th+4 = Th+4 - -llnl_gamma 11.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Th+4 -# Enthalpy of formation: -183.8 kcal/mol -Ti(OH)4 = Ti(OH)4 - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti(OH)4 -# Enthalpy of formation: -0 kcal/mol -Tl+ = Tl+ - -llnl_gamma 2.5000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tl+ -# Enthalpy of formation: 1.28 kcal/mol -Tm+3 = Tm+3 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tm+3 -# Enthalpy of formation: -168.5 kcal/mol -UO2+2 = UO2+2 - -llnl_gamma 4.5000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction UO2+2 -# Enthalpy of formation: -1019 kJ/mol -VO+2 = VO+2 - -llnl_gamma 4.5000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction VO+2 -# Enthalpy of formation: -116.3 kcal/mol -WO4-2 = WO4-2 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction WO4-2 -# Enthalpy of formation: -257.1 kcal/mol -Xe = Xe - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Xe -# Enthalpy of formation: -4.51 kcal/mol -Y+3 = Y+3 - -llnl_gamma 9.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Y+3 -# Enthalpy of formation: -170.9 kcal/mol -Yb+3 = Yb+3 - -llnl_gamma 5.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Yb+3 -# Enthalpy of formation: -160.3 kcal/mol -Zn+2 = Zn+2 - -llnl_gamma 6.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Zn+2 -# Enthalpy of formation: -36.66 kcal/mol -Zr(OH)2+2 = Zr(OH)2+2 - -llnl_gamma 4.5000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Zr(OH)2+2 -# Enthalpy of formation: -260.717 kcal/mol - -2H2O = O2 + 4H+ + 4e- - -CO2_llnl_gamma - log_k -85.9951 - -delta_H 559.543 kJ/mol # Calculated enthalpy of reaction O2 -# Enthalpy of formation: -2.9 kcal/mol - -analytic 38.0229 7.99407E-03 -2.7655e+004 -1.4506e+001 199838.45 -# -Range: 0-300 - - 1.0000 SO4-- + 1.0000 H+ = HS- +2.0000 O2 - -llnl_gamma 3.5 - log_k -138.3169 - -delta_H 869.226 kJ/mol # Calculated enthalpy of reaction HS- -# Enthalpy of formation: -3.85 kcal/mol - -analytic 2.6251e+001 3.9525e-002 -4.5443e+004 -1.1107e+001 3.1843e+005 -# -Range: 0-300 - - .5000 O2 + 2.0000 HS- = S2-- + H2O -#2 HS- = S2-- +2 H+ + 2e- - -llnl_gamma 4.0 - log_k 33.2673 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2-2 -# Enthalpy of formation: -0 kcal/mol - -analytic 0.21730E+02 -0.12307E-02 0.10098E+05 -0.88813E+01 0.15757E+03 - -mass_balance S(-2)2 -# -Range: 0-300 -# -add_logk Log_K_O2 0.5 - -2.0000 H+ + 2.0000 SO3-- = S2O3-- + O2 + H2O - -llnl_gamma 4.0 - log_k -40.2906 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O3-2 -# Enthalpy of formation: -0 kcal/mol - -analytic 0.77679E+02 0.65761E-01 -0.15438E+05 -0.34651E+02 -0.24092E+03 -# -Range: 0-300 - - 1.0000 H+ + 1.0000 Ag+ + 0.2500 O2 = Ag++ +0.5000 H2O - -llnl_gamma 4.5 - log_k -12.1244 - -delta_H 22.9764 kJ/mol # Calculated enthalpy of reaction Ag+2 -# Enthalpy of formation: 64.2 kcal/mol - -analytic -4.7312e+001 -1.5239e-002 -4.1954e+002 1.6622e+001 -6.5328e+000 -# -Range: 0-300 - - 1.0000 Am+++ + 0.5000 H2O = Am++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -60.3792 - -delta_H 401.953 kJ/mol # Calculated enthalpy of reaction Am+2 -# Enthalpy of formation: -354.633 kJ/mol - -analytic 1.4922e+001 3.5993e-003 -2.0987e+004 -2.4146e+000 -3.2749e+002 -# -Range: 0-300 - - 1.0000 H+ + 1.0000 Am+++ + 0.2500 O2 = Am++++ +0.5000 H2O - -llnl_gamma 5.5 - log_k -22.7073 - -delta_H 70.8142 kJ/mol # Calculated enthalpy of reaction Am+4 -# Enthalpy of formation: -406 kJ/mol - -analytic -1.7460e+001 -2.2336e-003 -3.5139e+003 2.9102e+000 -5.4826e+001 -# -Range: 0-300 - - 1.0000 H2O + 1.0000 Am+++ + 0.5000 O2 = AmO2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -15.384 - -delta_H 104.345 kJ/mol # Calculated enthalpy of reaction AmO2+ -# Enthalpy of formation: -804.26 kJ/mol - -analytic 1.4110e+001 6.9728e-003 -4.2098e+003 -6.0936e+000 -2.1192e+005 -# -Range: 0-300 - - 1.0000 Am+++ + 0.7500 O2 + 0.5000 H2O = AmO2++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -20.862 - -delta_H 117.959 kJ/mol # Calculated enthalpy of reaction AmO2+2 -# Enthalpy of formation: -650.76 kJ/mol - -analytic 5.7163e+001 4.0278e-003 -8.4633e+003 -2.0550e+001 -1.3208e+002 -# -Range: 0-300 - - 1.0000 H2AsO4- + 1.0000 H+ = AsH3 +2.0000 O2 - -llnl_gamma 3.0 - log_k -155.1907 - -delta_H 931.183 kJ/mol # Calculated enthalpy of reaction AsH3 -# Enthalpy of formation: 10.968 kcal/mol - -analytic 2.8310e+002 9.6961e-002 -5.4830e+004 -1.1449e+002 -9.3119e+002 -# -Range: 0-200 - - 2.0000 H+ + 1.0000 Au+ + 0.5000 O2 = Au+++ +1.0000 H2O - -llnl_gamma 5.0 - log_k -4.3506 - -delta_H -73.2911 kJ/mol # Calculated enthalpy of reaction Au+3 -# Enthalpy of formation: 96.93 kcal/mol - -analytic -6.8661e+001 -2.6838e-002 4.4549e+003 2.3178e+001 6.9534e+001 -# -Range: 0-300 - - 1.0000 H2O + 1.0000 B(OH)3 = BH4- +2.0000 O2 +1.0000 H+ - -llnl_gamma 4.0 - log_k -237.1028 - -delta_H 1384.24 kJ/mol # Calculated enthalpy of reaction BH4- -# Enthalpy of formation: 48.131 kJ/mol - -analytic -7.4930e+001 -7.2794e-003 -6.9168e+004 2.9105e+001 -1.0793e+003 -# -Range: 0-300 - - 3.0000 Br- + 2.0000 H+ + 0.5000 O2 = Br3- +1.0000 H2O - -llnl_gamma 4.0 - log_k +7.0696 - -delta_H -45.6767 kJ/mol # Calculated enthalpy of reaction Br3- -# Enthalpy of formation: -31.17 kcal/mol - -analytic 1.4899e+002 6.4017e-002 -3.3831e+002 -6.4596e+001 -5.3232e+000 -# -Range: 0-300 - - 1.0000 Br- + 0.5000 O2 = BrO- - -llnl_gamma 4.0 - log_k -10.9167 - -delta_H 33.4302 kJ/mol # Calculated enthalpy of reaction BrO- -# Enthalpy of formation: -22.5 kcal/mol - -analytic 5.4335e+001 1.9509e-003 -4.2860e+003 -2.0799e+001 -6.6896e+001 -# -Range: 0-300 - - 1.5000 O2 + 1.0000 Br- = BrO3- - -llnl_gamma 3.5 - log_k -17.1443 - -delta_H 72.6342 kJ/mol # Calculated enthalpy of reaction BrO3- -# Enthalpy of formation: -16.03 kcal/mol - -analytic 3.7156e+001 -4.7855e-003 -4.6208e+003 -1.4136e+001 -2.1385e+005 -# -Range: 0-300 - - 2.0000 O2 + 1.0000 Br- = BrO4- - -llnl_gamma 4.0 - log_k -33.104 - -delta_H 158.741 kJ/mol # Calculated enthalpy of reaction BrO4- -# Enthalpy of formation: 3.1 kcal/mol - -analytic 8.1393e+001 -2.3409e-003 -1.2290e+004 -2.9336e+001 -1.9180e+002 -# -Range: 0-300 - -# 1.0000 NH3 + 1.0000 HCO3- = CN- +2.0000 H2O +0.5000 O2 -# -llnl_gamma 3.0 -# log_k -56.0505 -# -delta_H 344.151 kJ/mol # Calculated enthalpy of reaction CN- -# # Enthalpy of formation: 36 kcal/mol -# -analytic -1.1174e+001 3.8167e-003 -1.7063e+004 4.5349e+000 -2.6625e+002 -# # -Range: 0-300 - -Cyanide- = Cyanide- - log_k 0 - - H+ + HCO3- + H2O = CH4 + 2.0000 O2 - -llnl_gamma 3.0 - log_k -144.1412 - -delta_H 863.599 kJ/mol # Calculated enthalpy of reaction CH4 -# Enthalpy of formation: -21.01 kcal/mol - -analytic -0.41698E+02 0.36584E-01 -0.40675E+05 0.93479E+01 -0.63468E+03 -# -Range: 0-300 - - 2.0000 H+ + 2.0000 HCO3- + H2O = C2H6 + 3.5000 O2 - -llnl_gamma 3.0 - log_k -228.6072 - -delta_H 0 # Not possible to calculate enthalpy of reaction C2H6 -# Enthalpy of formation: -0 kcal/mol - -analytic 0.10777E+02 0.72105E-01 -0.67489E+05 -0.13915E+02 -0.10531E+04 -# -Range: 0-300 - - 2.000 H+ + 2.0000 HCO3- = C2H4 + 3.0000 O2 - -llnl_gamma 3.0 - log_k -254.5034 - -delta_H 1446.6 kJ/mol # Calculated enthalpy of reaction C2H4 -# Enthalpy of formation: 24.65 kcal/mol - -analytic -0.30329E+02 0.71187E-01 -0.73140E+05 0.00000E+00 0.00000E+00 -# -Range: 0-300 - - 1.0000 HCO3- + 1.0000 H+ = CO +1.0000 H2O +0.5000 O2 - -llnl_gamma 3.0 - log_k -41.7002 - -delta_H 277.069 kJ/mol # Calculated enthalpy of reaction CO -# Enthalpy of formation: -28.91 kcal/mol - -analytic 1.0028e+002 4.6877e-002 -1.8062e+004 -4.0263e+001 3.8031e+005 -# -Range: 0-300 - - 1.0000 Ce+++ + 0.5000 H2O = Ce++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -83.6754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce+2 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 H+ + 1.0000 Ce+++ + 0.2500 O2 = Ce++++ +0.5000 H2O - -llnl_gamma 5.5 - log_k -7.9154 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce+4 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 Cl- + 0.5000 O2 = ClO- - -llnl_gamma 4.0 - log_k -15.1014 - -delta_H 66.0361 kJ/mol # Calculated enthalpy of reaction ClO- -# Enthalpy of formation: -25.6 kcal/mol - -analytic 6.1314e+001 3.4812e-003 -6.0952e+003 -2.3043e+001 -9.5128e+001 -# -Range: 0-300 - - 1.0000 O2 + 1.0000 Cl- = ClO2- - -llnl_gamma 4.0 - log_k -23.108 - -delta_H 112.688 kJ/mol # Calculated enthalpy of reaction ClO2- -# Enthalpy of formation: -15.9 kcal/mol - -analytic 3.3638e+000 -6.1675e-003 -4.9726e+003 -2.0467e+000 -2.5769e+005 -# -Range: 0-300 - - 1.5000 O2 + 1.0000 Cl- = ClO3- - -llnl_gamma 3.5 - log_k -17.2608 - -delta_H 81.3077 kJ/mol # Calculated enthalpy of reaction ClO3- -# Enthalpy of formation: -24.85 kcal/mol - -analytic 2.8852e+001 -4.8281e-003 -4.6779e+003 -1.0772e+001 -2.0783e+005 -# -Range: 0-300 - - 2.0000 O2 + 1.0000 Cl- = ClO4- - -llnl_gamma 3.5 - log_k -15.7091 - -delta_H 62.0194 kJ/mol # Calculated enthalpy of reaction ClO4- -# Enthalpy of formation: -30.91 kcal/mol - -analytic 7.0280e+001 -6.8927e-005 -5.5690e+003 -2.6446e+001 -1.6596e+005 -# -Range: 0-300 - - 1.0000 H+ + 1.0000 Co++ + 0.2500 O2 = Co+++ +0.5000 H2O - -llnl_gamma 5.0 - log_k -11.4845 - -delta_H 10.3198 kJ/mol # Calculated enthalpy of reaction Co+3 -# Enthalpy of formation: 22 kcal/mol - -analytic -2.2827e+001 -1.2222e-002 -7.2117e+002 7.0306e+000 -1.1247e+001 -# -Range: 0-300 - - 4.0000 H+ + 1.0000 CrO4-- = Cr++ +2.0000 H2O +1.0000 O2 - -llnl_gamma 4.5 - log_k -21.6373 - -delta_H 153.829 kJ/mol # Calculated enthalpy of reaction Cr+2 -# Enthalpy of formation: -34.3 kcal/mol - -analytic 6.9003e+001 6.2884e-002 -6.9847e+003 -3.4720e+001 -1.0901e+002 -# -Range: 0-300 - - 5.0000 H+ + 1.0000 CrO4-- = Cr+++ +2.5000 H2O +0.7500 O2 - -llnl_gamma 9.0 - log_k +8.3842 - -delta_H -81.0336 kJ/mol # Calculated enthalpy of reaction Cr+3 -# Enthalpy of formation: -57 kcal/mol - -analytic 5.1963e+001 6.0932e-002 5.4256e+003 -3.2290e+001 8.4645e+001 -# -Range: 0-300 - - 0.5000 H2O + 1.0000 CrO4-- = CrO4--- +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.0 - log_k -19.7709 - -delta_H 0 # Not possible to calculate enthalpy of reaction CrO4-3 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 Cu++ + 0.5000 H2O = Cu+ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.0 - log_k -18.7704 - -delta_H 145.877 kJ/mol # Calculated enthalpy of reaction Cu+ -# Enthalpy of formation: 17.132 kcal/mol - -analytic 3.7909e+001 1.3731e-002 -8.1506e+003 -1.3508e+001 -1.2719e+002 -# -Range: 0-300 - - 1.0000 Dy+++ + 0.5000 H2O = Dy++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -61.0754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy+2 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 Er+++ + 0.5000 H2O = Er++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -70.1754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er+2 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 Eu+++ + 0.5000 H2O = Eu++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -27.5115 - -delta_H 217.708 kJ/mol # Calculated enthalpy of reaction Eu+2 -# Enthalpy of formation: -126.1 kcal/mol - -analytic 3.0300e+001 1.4126e-002 -1.2319e+004 -9.0585e+000 1.5289e+005 -# -Range: 0-300 - - 1.0000 H+ + 1.0000 Fe++ + 0.2500 O2 = Fe+++ +0.5000 H2O - -llnl_gamma 9.0 - log_k +8.4899 - -delta_H -97.209 kJ/mol # Calculated enthalpy of reaction Fe+3 -# Enthalpy of formation: -11.85 kcal/mol - -analytic -1.7808e+001 -1.1753e-002 4.7609e+003 5.5866e+000 7.4295e+001 -# -Range: 0-300 - - 1.0000 Gd+++ + 0.5000 H2O = Gd++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -84.6754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd+2 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 H2O = H2 +0.5000 O2 - -CO2_llnl_gamma - log_k -46.1066 - -delta_H 275.588 kJ/mol # Calculated enthalpy of reaction H2 -# Enthalpy of formation: -1 kcal/mol - -analytic 6.6835e+001 1.7172e-002 -1.8849e+004 -2.4092e+001 4.2501e+005 -# -Range: 0-300 - - 1.0000 H2AsO4- = H2AsO3- +0.5000 O2 - -llnl_gamma 4.0 - log_k -30.5349 - -delta_H 188.698 kJ/mol # Calculated enthalpy of reaction H2AsO3- -# Enthalpy of formation: -170.84 kcal/mol - -analytic 7.4245e+001 1.4885e-002 -1.4218e+004 -2.6403e+001 3.3822e+005 -# -Range: 0-300 - - 1.0000 SO4-- + 1.0000 H+ + 0.5000 O2 = HSO5- - -llnl_gamma 4.0 - log_k -17.2865 - -delta_H 140.038 kJ/mol # Calculated enthalpy of reaction HSO5- -# Enthalpy of formation: -185.38 kcal/mol - -analytic 5.9944e+001 3.0904e-002 -7.7494e+003 -2.4420e+001 -1.2094e+002 -# -Range: 0-300 - - 1.0000 SeO3-- + 1.0000 H+ = HSe- +1.5000 O2 - -llnl_gamma 4.0 - log_k -76.8418 - -delta_H 506.892 kJ/mol # Calculated enthalpy of reaction HSe- -# Enthalpy of formation: 3.8 kcal/mol - -analytic 4.7105e+001 4.3116e-002 -2.6949e+004 -1.9895e+001 2.5305e+005 -# -Range: 0-300 - - 2.0000 Hg++ + 1.0000 H2O = Hg2++ +2.0000 H+ +0.5000 O2 - -llnl_gamma 4.0 - log_k -12.208 - -delta_H 106.261 kJ/mol # Calculated enthalpy of reaction Hg2+2 -# Enthalpy of formation: 39.87 kcal/mol - -analytic 5.5010e+001 1.9050e-002 -4.7967e+003 -2.2952e+001 -7.4864e+001 -# -Range: 0-300 - - 1.0000 Ho+++ + 0.5000 H2O = Ho++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -67.3754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho+2 -# Enthalpy of formation: -0 kcal/mol - - 3.0000 I- + 2.0000 H+ + 0.5000 O2 = I3- +1.0000 H2O - -llnl_gamma 4.0 - log_k +24.7278 - -delta_H -160.528 kJ/mol # Calculated enthalpy of reaction I3- -# Enthalpy of formation: -12.3 kcal/mol - -analytic 1.4788e+002 6.6206e-002 5.7407e+003 -6.5517e+001 8.9535e+001 -# -Range: 0-300 - - 1.0000 I- + 0.5000 O2 = IO- - -llnl_gamma 4.0 - log_k -0.9038 - -delta_H -44.5596 kJ/mol # Calculated enthalpy of reaction IO- -# Enthalpy of formation: -25.7 kcal/mol - -analytic 2.7568e+000 -5.5671e-003 3.2484e+003 -3.9065e+000 -2.8800e+005 -# -Range: 0-300 - - 1.5000 O2 + 1.0000 I- = IO3- - -llnl_gamma 4.0 - log_k +17.6809 - -delta_H -146.231 kJ/mol # Calculated enthalpy of reaction IO3- -# Enthalpy of formation: -52.9 kcal/mol - -analytic -2.2971e+001 -1.3478e-002 9.5977e+003 6.6010e+000 -3.4371e+005 -# -Range: 0-300 - - 2.0000 O2 + 1.0000 I- = IO4- - -llnl_gamma 3.5 - log_k +6.9621 - -delta_H -70.2912 kJ/mol # Calculated enthalpy of reaction IO4- -# Enthalpy of formation: -36.2 kcal/mol - -analytic 2.1232e+001 -7.8107e-003 3.5803e+003 -8.5272e+000 -2.5422e+005 -# -Range: 0-300 - - 1.0000 La+++ + 0.5000 H2O = La++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -72.4754 - -delta_H 0 # Not possible to calculate enthalpy of reaction La+2 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 Mn++ + 1.0000 H+ + 0.2500 O2 = Mn+++ +0.5000 H2O - -llnl_gamma 5.0 - log_k -4.0811 - -delta_H -65.2892 kJ/mol # Calculated enthalpy of reaction Mn+3 -# Enthalpy of formation: -34.895 kcal/mol - -analytic 3.8873e+001 1.7458e-002 2.0757e+003 -2.2274e+001 3.2378e+001 -# -Range: 0-300 - - 2.0000 H2O + 1.0000 O2 + 1.0000 Mn++ = MnO4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -32.4146 - -delta_H 151.703 kJ/mol # Calculated enthalpy of reaction MnO4-2 -# Enthalpy of formation: -156 kcal/mol - -analytic -1.0407e+001 -4.6464e-002 -1.0515e+004 1.0943e+001 -1.6408e+002 -# -Range: 0-300 - - 2.0000 NH3 + 1.5000 O2 = N2 +3.0000 H2O - -llnl_gamma 3.0 - log_k +116.4609 - -delta_H -687.08 kJ/mol # Calculated enthalpy of reaction N2 -# Enthalpy of formation: -2.495 kcal/mol - -analytic -8.2621e+001 -1.4671e-002 4.0068e+004 2.9090e+001 -2.5924e+005 -# -Range: 0-300 - - 3.0000 NH3 + 2.0000 O2 = N3- +4.0000 H2O +1.0000 H+ - -llnl_gamma 4.0 - log_k +96.9680 - -delta_H -599.935 kJ/mol # Calculated enthalpy of reaction N3- -# Enthalpy of formation: 275.14 kJ/mol - -analytic -9.1080e+001 -4.0817e-002 3.6350e+004 3.4484e+001 -6.2678e+005 -# -Range: 0-300 - - 1.5000 O2 + 1.0000 NH3 = NO2- +1.0000 H+ +1.0000 H2O - -llnl_gamma 3.0 - log_k +46.8653 - -delta_H -290.901 kJ/mol # Calculated enthalpy of reaction NO2- -# Enthalpy of formation: -25 kcal/mol - -analytic -1.7011e+001 -3.3459e-002 1.3999e+004 1.1078e+001 -4.8255e+004 -# -Range: 0-300 - - 2.0000 O2 + 1.0000 NH3 = NO3- +1.0000 H+ +1.0000 H2O - -llnl_gamma 3.0 - log_k +62.1001 - -delta_H -387.045 kJ/mol # Calculated enthalpy of reaction NO3- -# Enthalpy of formation: -49.429 kcal/mol - -analytic -3.9468e+001 -3.9697e-002 2.0614e+004 1.8872e+001 -2.1917e+005 -# -Range: 0-300 - - 1.0000 Nd+++ + 0.5000 H2O = Nd++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -64.3754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd+2 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 Np++++ + 0.5000 H2O = Np+++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 5.0 - log_k -19.0131 - -delta_H 168.787 kJ/mol # Calculated enthalpy of reaction Np+3 -# Enthalpy of formation: -527.1 kJ/mol - -analytic 1.6615e+001 2.4645e-003 -8.9343e+003 -2.5829e+000 -1.3942e+002 -# -Range: 0-300 - - 1.5000 H2O + 1.0000 Np++++ + 0.2500 O2 = NpO2+ +3.0000 H+ - -llnl_gamma 4.0 - log_k +10.5928 - -delta_H 9.80089 kJ/mol # Calculated enthalpy of reaction NpO2+ -# Enthalpy of formation: -977.991 kJ/mol - -analytic 1.2566e+001 7.5467e-003 1.6921e+003 -2.7125e+000 -2.8381e+005 -# -Range: 0-300 - - 1.0000 Np++++ + 1.0000 H2O + 0.5000 O2 = NpO2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k +11.2107 - -delta_H -12.5719 kJ/mol # Calculated enthalpy of reaction NpO2+2 -# Enthalpy of formation: -860.478 kJ/mol - -analytic 2.5510e+001 1.1973e-003 1.2753e+003 -6.7082e+000 -2.0792e+005 -# -Range: 0-300 - - 2.0000 H+ + 1.0000 Pb++ + 0.5000 O2 = Pb++++ +1.0000 H2O - -llnl_gamma 5.5 - log_k -14.1802 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb+4 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 Pm+++ + 0.5000 H2O = Pm++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -65.2754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm+2 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 Pr+++ + 0.5000 H2O = Pr++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -79.9754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr+2 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 Pu++++ + 0.5000 H2O = Pu+++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 5.0 - log_k -4.5071 - -delta_H 84.2268 kJ/mol # Calculated enthalpy of reaction Pu+3 -# Enthalpy of formation: -591.552 kJ/mol - -analytic 2.0655e+001 3.2688e-003 -4.7434e+003 -4.1907e+000 1.2944e+004 -# -Range: 0-300 - - 1.5000 H2O + 1.0000 Pu++++ + 0.2500 O2 = PuO2+ +3.0000 H+ - -llnl_gamma 4.0 - log_k +2.9369 - -delta_H 53.5009 kJ/mol # Calculated enthalpy of reaction PuO2+ -# Enthalpy of formation: -914.183 kJ/mol - -analytic -2.0464e+001 2.8265e-003 1.2131e+003 9.2156e+000 -3.8400e+005 -# -Range: 0-300 - - 1.0000 Pu++++ + 1.0000 H2O + 0.5000 O2 = PuO2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k +8.1273 - -delta_H 6.22013 kJ/mol # Calculated enthalpy of reaction PuO2+2 -# Enthalpy of formation: -821.578 kJ/mol - -analytic 3.5219e+001 2.5202e-003 -2.4760e+002 -1.0120e+001 -1.7569e+005 -# -Range: 0-300 - - 4.0000 H+ + 1.0000 RuO4-- = Ru(OH)2++ +1.0000 H2O +0.5000 O2 - -llnl_gamma 4.5 - log_k +25.2470 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2+2 -# Enthalpy of formation: -0 kcal/mol - - 4.0000 H+ + 1.0000 RuO4-- = Ru++ +2.0000 H2O +1.0000 O2 - -llnl_gamma 4.5 - log_k +0.1610 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru+2 -# Enthalpy of formation: -0 kcal/mol - - 5.0000 H+ + 1.0000 RuO4-- = Ru+++ +2.5000 H2O +0.7500 O2 - -llnl_gamma 5.0 - log_k +17.6149 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru+3 -# Enthalpy of formation: -0 kcal/mol - - 2.0000 H+ + 1.0000 RuO4-- + 0.5000 O2 = RuO4 +1.0000 H2O - -llnl_gamma 3.0 - log_k +16.2672 - -delta_H -60.8385 kJ/mol # Calculated enthalpy of reaction RuO4 -# Enthalpy of formation: -238.142 kJ/mol - -analytic 1.9964e+002 6.8286e-002 -1.2020e+003 -8.0706e+001 -2.0481e+001 -# -Range: 0-200 - - 1.0000 RuO4-- + 1.0000 H+ + 0.2500 O2 = RuO4- +0.5000 H2O - -llnl_gamma 4.0 - log_k +11.6024 - -delta_H -16.1998 kJ/mol # Calculated enthalpy of reaction RuO4- -# Enthalpy of formation: -333.389 kJ/mol - -analytic -1.9653e+000 8.8623e-003 1.8588e+003 1.8998e+000 2.9005e+001 -# -Range: 0-300 - - 2.0000 H+ + 2.0000 SO3-- = S2O4-- + .500 O2 + H2O - -llnl_gamma 5.0 -# log_k -25.2075 - log_k -25.2076 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O4-2 -# Enthalpy of formation: -0 kcal/mol -# -analytic -0.15158E+05 -0.31356E+01 0.47072E+06 0.58544E+04 0.73497E+04 - -analytic -2.3172e2 2.0393e-3 -7.1011e0 8.3239e1 9.4155e-1 -# changed 3/23/04, corrected to supcrt temperature dependence, GMA -# -Range: 0-300 - -# 2.0000 SO3-- + .500 O2 + 2.0000 H+ = S2O6-- + H2O -# H2O = .5 O2 + 2H+ + 2e- -2SO3-- = S2O6-- + 2e- - -llnl_gamma 4.0 - log_k 41.8289 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O6-2 -# Enthalpy of formation: -0 kcal/mol - -analytic 0.14458E+03 0.61449E-01 0.71877E+04 -0.58657E+02 0.11211E+03 -# -Range: 0-300 - -add_logk Log_K_O2 0.5 - - - 2.0000 SO3-- + 1.500 O2 + 2.0000 H+ = S2O8-- + H2O - -llnl_gamma 4.0 - log_k 70.7489 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O8-2 -# Enthalpy of formation: -0 kcal/mol - -analytic 0.18394E+03 0.60414E-01 0.13864E+05 -0.71804E+02 0.21628E+03 -# -Range: 0-300 - -O2 + H+ + 3.0000 HS- = S3-- + 2.0000 H2O -# 2H2O = O2 + 4H+ + 4e- -#3HS- = S3-- + 3H+ + 4e- - -llnl_gamma 4.0 - log_k 79.3915 - -delta_H 0 # Not possible to calculate enthalpy of reaction S3-2 -# Enthalpy of formation: -0 kcal/mol - -analytic -0.51626E+02 0.70208E-02 0.31797E+05 0.11927E+02 -0.64249E+06 - -mass_balance S(-2)3 -# -Range: 0-300 -# -add_logk Log_K_O2 1.0 - -# 3.0000 SO3-- + 4.0000 H+ = S3O6-- + .500 O2 + 2.0000 H2O -# .5 O2 + 2H+ + 2e- = H2O -3SO3-- + 6 H+ + 2e- = S3O6-- + 3H2O - -llnl_gamma 4.0 - log_k -6.2316 - -delta_H 0 # Not possible to calculate enthalpy of reaction S3O6-2 -# Enthalpy of formation: -0 kcal/mol - -analytic 0.23664E+03 0.12702E+00 -0.10110E+05 -0.99715E+02 -0.15783E+03 -# -Range: 0-300 - -add_logk Log_K_O2 -0.5 - -1.5000 O2 + 2.0000 H+ + 4.0000 HS- = S4-- + 3.0000 H2O -#4 HS- = S4-- + 4H+ + 6e- - -llnl_gamma 4.0 - log_k 125.2958 - -delta_H 0 # Not possible to calculate enthalpy of reaction S4-2 -# Enthalpy of formation: -0 kcal/mol - -analytic 0.20875E+03 0.58133E-01 0.33278E+05 -0.85833E+02 0.51921E+03 - -mass_balance S(-2)4 -# -Range: 0-300 -# -add_logk Log_K_O2 1.5 - -# 4.0000 SO3-- + 6.0000 H+ = S4O6-- + 1.500 O2 + 3.0000 H2O -4 SO3-- + 12 H+ + 6e- = S4O6-- + 6H2O - -llnl_gamma 4.0 - log_k -38.3859 - -delta_H 0 # Not possible to calculate enthalpy of reaction S4O6-2 -# Enthalpy of formation: -0 kcal/mol - -analytic 0.32239E+03 0.19555E+00 -0.23617E+05 -0.13729E+03 -0.36862E+03 -# -Range: 0-300 - -add_logk Log_K_O2 -1.5 - -2.0000 O2 + 3.0000 H+ + 5.0000 HS- = S5-- + 4.0000 H2O -#5 HS- = S5-- + 5H+ + 8e- - -llnl_gamma 4.0 - log_k 170.9802 - -delta_H 0 # Not possible to calculate enthalpy of reaction S5-2 -# Enthalpy of formation: -0 kcal/mol - -analytic 0.30329E+03 0.88033E-01 0.44739E+05 -0.12471E+03 0.69803E+03 - -mass_balance S(-2)5 -# -Range: 0-300 -# -add_logk Log_K_O2 2 - -# 5.0000 SO3-- + 8.0000 H+ = S5O6-- + 2.5000 O2 + 4.0000 H2O -# 2.5O2 + 10 H+ + 10e- = 5H2O -5SO3-- + 18H+ + 10e- = S5O6-- + 9H2O - -llnl_gamma 4.0 - log_k -99.4206 - -delta_H 0 # Not possible to calculate enthalpy of reaction S5O6-2 -# Enthalpy of formation: -0 kcal/mol - -analytic 0.42074E+03 0.25833E+00 -0.43878E+05 -0.18178E+03 -0.68480E+03 -# -Range: 0-300 - -add_logk Log_K_O2 -2.5 - -# 1.0000 H+ + HCO3- + HS- + NH3 = SCN- + 3.0000 H2O -# -llnl_gamma 3.5 -# log_k 3.0070 -# -delta_H 0 # Not possible to calculate enthalpy of reaction SCN- -## Enthalpy of formation: -0 kcal/mol -# -analytic 0.16539E+03 0.49623E-01 -0.44624E+04 -0.65544E+02 -0.69680E+02 -## -Range: 0-300 - -Thiocyanate- = Thiocyanate- - log_k 0.0 - - 1.0000 SO4-- = SO3-- +0.5000 O2 - -llnl_gamma 4.5 - log_k -46.6244 - -delta_H 267.985 kJ/mol # Calculated enthalpy of reaction SO3-2 -# Enthalpy of formation: -151.9 kcal/mol - -analytic -1.3771e+001 6.5102e-004 -1.3330e+004 4.7164e+000 -2.0800e+002 -# -Range: 0-300 - -1.0000 HSe- = Se-- + 1.0000 H+ - -llnl_gamma 4.0 - log_k -14.9534 - -delta_H 0 # Not possible to calculate enthalpy of reaction Se-2 -# Enthalpy of formation: -0 kcal/mol - -analytic 1.0244e+002 3.1346e-002 -5.4190e+003 -4.3871e+001 -8.4589e+001 -# -Range: 0-300 - - 1.0000 SeO3-- + 0.5000 O2 = SeO4-- - -llnl_gamma 4.0 - log_k +13.9836 - -delta_H -83.8892 kJ/mol # Calculated enthalpy of reaction SeO4-2 -# Enthalpy of formation: -143.2 kcal/mol - -analytic -7.2314e+001 -1.3657e-002 8.6969e+003 2.6182e+001 -3.1897e+005 -# -Range: 0-300 - - 1.0000 Sm+++ + 0.5000 H2O = Sm++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -47.9624 - -delta_H 326.911 kJ/mol # Calculated enthalpy of reaction Sm+2 -# Enthalpy of formation: -120.5 kcal/mol - -analytic -1.0217e+001 7.7548e-003 -1.6285e+004 5.4711e+000 9.1931e+004 -# -Range: 0-300 - - 2.0000 H+ + 1.0000 Sn++ + 0.5000 O2 = Sn++++ +1.0000 H2O - -llnl_gamma 11.0 - log_k +37.7020 - -delta_H -240.739 kJ/mol # Calculated enthalpy of reaction Sn+4 -# Enthalpy of formation: 7.229 kcal/mol - -analytic 3.2053e+001 -9.2307e-003 1.0378e+004 -1.0666e+001 1.6193e+002 -# -Range: 0-300 - - 1.0000 Tb+++ + 0.5000 H2O = Tb++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -78.7754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb+2 -# Enthalpy of formation: -0 kcal/mol - - 4.0000 H+ + 1.0000 TcO4- = Tc+++ +2.0000 H2O +1.0000 O2 - -llnl_gamma 5.0 - log_k -47.614 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc+3 -# Enthalpy of formation: -0 kcal/mol - - 3.0000 H+ + 1.0000 TcO4- = TcO++ +1.5000 H2O +0.7500 O2 - -llnl_gamma 4.5 - log_k -31.5059 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO+2 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 TcO4- + 0.5000 H2O = TcO4-- +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.0 - log_k -31.8197 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO4-2 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 TcO4- + 1.0000 H2O = TcO4--- +2.0000 H+ +0.5000 O2 - -llnl_gamma 4.0 - log_k -63.2889 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO4-3 -# Enthalpy of formation: -0 kcal/mol - - 2.0000 H+ + 1.0000 Tl+ + 0.5000 O2 = Tl+++ +1.0000 H2O - -llnl_gamma 5.0 - log_k -0.2751 - -delta_H -88.479 kJ/mol # Calculated enthalpy of reaction Tl+3 -# Enthalpy of formation: 47 kcal/mol - -analytic -6.7978e+001 -2.6430e-002 5.3106e+003 2.3340e+001 8.2887e+001 -# -Range: 0-300 - - 1.0000 Tm+++ + 0.5000 H2O = Tm++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -58.3754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm+2 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 UO2++ + 1.0000 H+ = U+++ +0.7500 O2 +0.5000 H2O - -llnl_gamma 5.0 - log_k -64.8028 - -delta_H 377.881 kJ/mol # Calculated enthalpy of reaction U+3 -# Enthalpy of formation: -489.1 kJ/mol - -analytic 2.5133e+001 6.4088e-003 -2.2542e+004 -8.1423e+000 3.4793e+005 -# -Range: 0-300 - - 2.0000 H+ + 1.0000 UO2++ = U++++ +1.0000 H2O +0.5000 O2 - -llnl_gamma 5.5 - log_k -33.9491 - -delta_H 135.895 kJ/mol # Calculated enthalpy of reaction U+4 -# Enthalpy of formation: -591.2 kJ/mol - -analytic 4.4837e+001 1.0129e-002 -1.1787e+004 -1.9194e+001 4.6436e+005 -# -Range: 0-300 - - 1.0000 UO2++ + 0.5000 H2O = UO2+ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.0 - log_k -20.0169 - -delta_H 133.759 kJ/mol # Calculated enthalpy of reaction UO2+ -# Enthalpy of formation: -1025.13 kJ/mol - -analytic 8.0480e+000 9.5845e-003 -6.5994e+003 -3.5515e+000 -1.0298e+002 -# -Range: 0-300 - - 1.0000 VO++ + 1.0000 H+ = V+++ +0.5000 H2O +0.2500 O2 - -llnl_gamma 5.0 - log_k -15.7191 - -delta_H 79.6069 kJ/mol # Calculated enthalpy of reaction V+3 -# Enthalpy of formation: -62.39 kcal/mol - -analytic 1.6167e+001 1.1963e-002 -4.2112e+003 -8.6126e+000 -6.5717e+001 -# -Range: 0-300 - - 1.0000 VO++ + 0.5000 H2O + 0.2500 O2 = VO2+ +1.0000 H+ - -llnl_gamma 4.0 - log_k +4.5774 - -delta_H -17.2234 kJ/mol # Calculated enthalpy of reaction VO2+ -# Enthalpy of formation: -155.3 kcal/mol - -analytic 1.9732e+000 5.3936e-003 1.2240e+003 -1.2539e+000 1.9098e+001 -# -Range: 0-300 - - 1.0000 VO2+ + 2.0000 H2O = VO4--- +4.0000 H+ - -llnl_gamma 4.0 - log_k -28.4475 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO4-3 -# Enthalpy of formation: -0 kcal/mol - - 1.0000 Yb+++ + 0.5000 H2O = Yb++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -39.4595 - -delta_H 280.05 kJ/mol # Calculated enthalpy of reaction Yb+2 -# Enthalpy of formation: -126.8 kcal/mol - -analytic 1.0773e+000 9.5995e-003 -1.3833e+004 1.0723e+000 3.1365e+004 -# -Range: 0-300 - - 2.0000 H+ + 1.0000 Zr(OH)2++ = Zr++++ +2.0000 H2O - -llnl_gamma 11.0 - log_k +0.2385 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr+4 -# Enthalpy of formation: -0 kcal/mol - -4.0000 HS- + 4.0000 H+ + 2.0000 Sb(OH)3 + 2.0000 NH3 = (NH4)2Sb2S4 +6.0000 H2O - -llnl_gamma 3.0 - log_k +67.6490 - -delta_H -424.665 kJ/mol # Calculated enthalpy of reaction (NH4)2Sb2S4 -# Enthalpy of formation: -484.321 kJ/mol - -analytic -3.9259e+002 -1.1727e-001 3.2073e+004 1.5667e+002 5.4478e+002 -# -Range: 0-200 - -2.0000 NpO2++ + 2.0000 H2O = (NpO2)2(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -6.4 - -delta_H 45.4397 kJ/mol # Calculated enthalpy of reaction (NpO2)2(OH)2+2 -# Enthalpy of formation: -537.092 kcal/mol - -analytic -4.7462e+001 -3.1413e-002 -2.1954e+003 2.3355e+001 -3.7424e+001 -# -Range: 25-150 - -5.0000 H2O + 3.0000 NpO2++ = (NpO2)3(OH)5+ +5.0000 H+ - -llnl_gamma 4.0 - log_k -17.5 - -delta_H 112.322 kJ/mol # Calculated enthalpy of reaction (NpO2)3(OH)5+ -# Enthalpy of formation: -931.717 kcal/mol - -analytic 5.4053e+002 9.1693e-002 -2.4404e+004 -2.0349e+002 -4.1639e+002 -# -Range: 25-150 - -2.0000 PuO2++ + 2.0000 H2O = (PuO2)2(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -8.2626 - -delta_H 57.8597 kJ/mol # Calculated enthalpy of reaction (PuO2)2(OH)2+2 -# Enthalpy of formation: -2156.97 kJ/mol - -analytic 6.5448e+001 -1.6194e-003 -5.9542e+003 -2.1522e+001 -9.2929e+001 -# -Range: 0-300 - -5.0000 H2O + 3.0000 PuO2++ = (PuO2)3(OH)5+ +5.0000 H+ - -llnl_gamma 4.0 - log_k -21.655 - -delta_H 139.617 kJ/mol # Calculated enthalpy of reaction (PuO2)3(OH)5+ -# Enthalpy of formation: -3754.31 kJ/mol - -analytic 1.6151e+002 5.8182e-003 -1.4002e+004 -5.5745e+001 -2.1854e+002 -# -Range: 0-300 - -4.0000 H2O + 2.0000 TcO++ = (TcO(OH)2)2 +4.0000 H+ - -llnl_gamma 3.0 - log_k -0.1271 - -delta_H 0 # Not possible to calculate enthalpy of reaction (TcO(OH)2)2 -# Enthalpy of formation: -0 kcal/mol - -12.0000 H2O + 11.0000 UO2++ + 6.0000 HCO3- = (UO2)11(CO3)6(OH)12-2 +18.0000 H+ - -llnl_gamma 4.0 - log_k -25.7347 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)11(CO3)6(OH)12-2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 UO2++ + 2.0000 H2O = (UO2)2(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -5.6346 - -delta_H 37.6127 kJ/mol # Calculated enthalpy of reaction (UO2)2(OH)2+2 -# Enthalpy of formation: -2572.06 kJ/mol - -analytic 6.4509e+001 -7.6875e-004 -4.8433e+003 -2.1689e+001 -7.5593e+001 -# -Range: 0-300 - -3.0000 H2O + 2.0000 UO2++ + 1.0000 HCO3- = (UO2)2CO3(OH)3- +4.0000 H+ - -llnl_gamma 4.0 - log_k -11.2229 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)2CO3(OH)3- -# Enthalpy of formation: -0 kcal/mol - -2.0000 UO2++ + 1.0000 H2O = (UO2)2OH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -2.7072 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)2OH+3 -# Enthalpy of formation: -0 kcal/mol - -6.0000 HCO3- + 3.0000 UO2++ = (UO2)3(CO3)6-6 +6.0000 H+ - -llnl_gamma 4.0 - log_k -8.0601 - -delta_H 25.5204 kJ/mol # Calculated enthalpy of reaction (UO2)3(CO3)6-6 -# Enthalpy of formation: -7171.08 kJ/mol - -analytic 7.4044e+002 2.7299e-001 -1.7614e+004 -3.1149e+002 -2.7507e+002 -# -Range: 0-300 - -4.0000 H2O + 3.0000 UO2++ = (UO2)3(OH)4++ +4.0000 H+ - -llnl_gamma 4.5 - log_k -11.929 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)4+2 -# Enthalpy of formation: -0 kcal/mol - -5.0000 H2O + 3.0000 UO2++ = (UO2)3(OH)5+ +5.0000 H+ - -llnl_gamma 4.0 - log_k -15.5862 - -delta_H 97.1056 kJ/mol # Calculated enthalpy of reaction (UO2)3(OH)5+ -# Enthalpy of formation: -4389.09 kJ/mol - -analytic 1.6004e+002 7.0827e-003 -1.1700e+004 -5.5973e+001 -1.8261e+002 -# -Range: 0-300 - -4.0000 H2O + 3.0000 UO2++ + 1.0000 HCO3- = (UO2)3(OH)5CO2+ +4.0000 H+ - -llnl_gamma 4.0 - log_k -9.6194 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)5CO2+ -# Enthalpy of formation: -0 kcal/mol - -7.0000 H2O + 3.0000 UO2++ = (UO2)3(OH)7- +7.0000 H+ - -llnl_gamma 4.0 - log_k -31.0508 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)7- -# Enthalpy of formation: -0 kcal/mol - -3.0000 UO2++ + 3.0000 H2O + 1.0000 HCO3- = (UO2)3O(OH)2(HCO3)+ +4.0000 H+ - -llnl_gamma 4.0 - log_k -9.7129 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3O(OH)2(HCO3)+ -# Enthalpy of formation: -0 kcal/mol - -7.0000 H2O + 4.0000 UO2++ = (UO2)4(OH)7+ +7.0000 H+ - -llnl_gamma 4.0 - log_k -21.9508 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)4(OH)7+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 VO++ + 2.0000 H2O = (VO)2(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -6.67 - -delta_H 0 # Not possible to calculate enthalpy of reaction (VO)2(OH)2+2 -# Enthalpy of formation: -0 kcal/mol - -CH3COO- + H+ = CH3COOH - -llnl_gamma 4.5 - log_k 4.7572 - -delta_H 0 # Not possible to calculate enthalpy of reaction CH3COOH -# Enthalpy of formation: -0 kcal/mol - -analytic 0.96597E+02 0.34535E-01 -0.19753E+04 -0.38593E+02 -0.30850E+02 -# -Range: 0-300 - -H+ + 2.000 HCO3- = CH3COO- + 2.0000 O2 - -llnl_gamma 4.5 - log_k -146.7494 - -delta_H 0 # Not possible to calculate enthalpy of reaction CH3COO- -# Enthalpy of formation: -0 kcal/mol - -analytic -1.3108E+03 -2.3248E-01 -4.5380E+01 4.9843E+02 6.5945E-01 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Ag+ = Ag(CH3COO)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -8.8716 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ag(Acetate)2- -# Enthalpy of formation: -0 kcal/mol - -analytic -2.8207e+002 -5.3713e-002 9.5343e+003 1.0396e+002 1.4886e+002 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Ag+ = Ag(CO3)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -18.5062 - -delta_H 1.34306 kJ/mol # Calculated enthalpy of reaction Ag(CO3)2-3 -# Enthalpy of formation: -304.2 kcal/mol - -analytic -1.6671e+002 -4.5571e-002 3.7190e+003 6.0341e+001 5.8080e+001 -# -Range: 0-300 - -1.0000 Ag+ + 1.0000 CH3COOH = AgCH3COO +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.0264 - -delta_H -3.4518 kJ/mol # Calculated enthalpy of reaction AgAcetate -# Enthalpy of formation: -91.65 kcal/mol - -analytic 6.9069e+000 -1.9415e-003 -1.9953e+003 -2.6175e+000 2.5092e+005 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Ag+ = AgCO3- +1.0000 H+ - -llnl_gamma 4.0 - log_k -7.6416 - -delta_H -8.27177 kJ/mol # Calculated enthalpy of reaction AgCO3- -# Enthalpy of formation: -141.6 kcal/mol - -analytic 6.5598e+000 -1.6477e-004 -4.7079e+002 -5.0807e+000 -7.3484e+000 -# -Range: 0-300 - -1.0000 Cl- + 1.0000 Ag+ = AgCl - -llnl_gamma 3.0 - log_k +3.2971 - -delta_H -15.1126 kJ/mol # Calculated enthalpy of reaction AgCl -# Enthalpy of formation: -18.27 kcal/mol - -analytic 1.0904e+002 3.5492e-002 -1.8455e+003 -4.4502e+001 -2.8830e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Ag+ = AgCl2- - -llnl_gamma 4.0 - log_k +5.2989 - -delta_H -27.3592 kJ/mol # Calculated enthalpy of reaction AgCl2- -# Enthalpy of formation: -61.13 kcal/mol - -analytic 9.2164e+001 4.0261e-002 -1.6597e+002 -3.9721e+001 -2.6171e+000 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Ag+ = AgCl3-- - -llnl_gamma 4.0 - log_k +5.1310 - -delta_H -47.7645 kJ/mol # Calculated enthalpy of reaction AgCl3-2 -# Enthalpy of formation: -105.94 kcal/mol - -analytic 4.3732e+000 2.9568e-002 3.9818e+003 -8.6428e+000 6.2131e+001 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Ag+ = AgCl4--- - -llnl_gamma 4.0 - log_k +3.8050 - -delta_H -32.4804 kJ/mol # Calculated enthalpy of reaction AgCl4-3 -# Enthalpy of formation: -142.22 kcal/mol - -analytic -1.6176e+001 2.9523e-002 0.0000e+000 0.0000e+000 9.9602e+005 -# -Range: 0-300 - -1.0000 F- + 1.0000 Ag+ = AgF - -llnl_gamma 3.0 - log_k -0.1668 - -delta_H -9.298 kJ/mol # Calculated enthalpy of reaction AgF -# Enthalpy of formation: -238.895 kJ/mol - -analytic -6.6024e+001 -2.2350e-002 1.9514e+003 2.6663e+001 3.3160e+001 -# -Range: 0-200 - -1.0000 NO3- + 1.0000 Ag+ = AgNO3 - -llnl_gamma 3.0 - log_k -0.1979 - -delta_H 4.45178 kJ/mol # Calculated enthalpy of reaction AgNO3 -# Enthalpy of formation: -23.09 kcal/mol - -analytic 7.3866e+001 2.6050e-002 -1.5923e+003 -3.0904e+001 -2.4868e+001 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Al+++ = Al(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.595 - -delta_H -46.8566 kJ/mol # Calculated enthalpy of reaction Al(Acetate)2+ -# Enthalpy of formation: -372.08 kcal/mol - -analytic -4.2528e+001 2.1431e-003 3.1658e+002 1.1585e+001 5.8604e+005 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Al+++ = Al(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -10.5945 - -delta_H 98.2822 kJ/mol # Calculated enthalpy of reaction Al(OH)2+ -# Enthalpy of formation: -241.825 kcal/mol - -analytic 4.4036e+001 2.0168e-002 -5.5455e+003 -1.6987e+001 -8.6545e+001 -# -Range: 0-300 - -2.0000 SO4-- + 1.0000 Al+++ = Al(SO4)2- - -llnl_gamma 4.0 - log_k +4.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Al(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -28.0000 H2O + 13.0000 Al+++ = Al13O4(OH)24+7 +32.0000 H+ - -llnl_gamma 6.0 - log_k -98.73 - -delta_H 0 # Not possible to calculate enthalpy of reaction Al13O4(OH)24+7 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 2.0000 Al+++ = Al2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -7.6902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Al2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 3.0000 Al+++ = Al3(OH)4+5 +4.0000 H+ - -llnl_gamma 6.0 - log_k -13.8803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Al3(OH)4+5 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Al+++ + 1.0000 CH3COOH = AlCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.6923 - -delta_H -18.1962 kJ/mol # Calculated enthalpy of reaction AlAcetate+2 -# Enthalpy of formation: -249.13 kcal/mol - -analytic -1.9847e+001 2.0058e-003 -2.3653e+002 5.5454e+000 3.2362e+005 -# -Range: 0-300 - -1.0000 F- + 1.0000 Al+++ = AlF++ - -llnl_gamma 4.5 - log_k +7.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlF+2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 Al+++ = AlF2+ - -llnl_gamma 4.0 - log_k +12.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlF2+ -# Enthalpy of formation: -0 kcal/mol - -3.0000 F- + 1.0000 Al+++ = AlF3 - -llnl_gamma 3.0 - log_k +16.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlF3 -# Enthalpy of formation: -0 kcal/mol - -4.0000 F- + 1.0000 Al+++ = AlF4- - -llnl_gamma 4.0 - log_k +19.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlF4- -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Al+++ = AlH2PO4++ - -llnl_gamma 4.5 - log_k +3.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlH2PO4+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Al+++ = AlHPO4+ - -llnl_gamma 4.0 - log_k +7.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlHPO4+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Al+++ = AlO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -22.8833 - -delta_H 180.899 kJ/mol # Calculated enthalpy of reaction AlO2- -# Enthalpy of formation: -222.079 kcal/mol - -analytic 1.0803e+001 -3.4379e-003 -9.7391e+003 0.0000e+000 0.0000e+000 -# -Range: 0-300 - -1.0000 H2O + 1.0000 Al+++ = AlOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -4.9571 - -delta_H 49.798 kJ/mol # Calculated enthalpy of reaction AlOH+2 -# Enthalpy of formation: -185.096 kcal/mol - -analytic -2.6224e-001 8.8816e-003 -1.8686e+003 -4.3195e-001 -2.9158e+001 -# -Range: 0-300 - -1.0000 SO4-- + 1.0000 Al+++ = AlSO4+ - -llnl_gamma 4.0 - log_k +3.0100 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlSO4+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 HCO3- + 1.0000 Am+++ = Am(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -8.3868 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -3.0000 HCO3- + 1.0000 Am+++ = Am(CO3)3--- +3.0000 H+ - -llnl_gamma 4.0 - log_k -15.8302 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)3-3 -# Enthalpy of formation: -0 kcal/mol - -5.0000 HCO3- + 1.0000 Am++++ = Am(CO3)5-6 +5.0000 H+ - -llnl_gamma 4.0 - log_k -12.409 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)5-6 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Am+++ = Am(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -14.1145 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)2+ -# Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Am+++ = Am(OH)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -25.7218 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Am+++ = Am(SO4)2- - -llnl_gamma 4.0 - log_k +5.2407 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 HCO3- + 1.0000 Am+++ = AmCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.5434 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmCO3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Cl- + 1.0000 Am+++ = AmCl++ - -llnl_gamma 4.5 - log_k +1.0374 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmCl+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 F- + 1.0000 Am+++ = AmF++ - -llnl_gamma 4.5 - log_k +3.3601 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmF+2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 Am+++ = AmF2+ - -llnl_gamma 4.0 - log_k +5.7204 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmF2+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Am+++ = AmH2PO4++ - -llnl_gamma 4.5 - log_k +11.4119 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmH2PO4+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 N3- + 1.0000 Am+++ = AmN3++ - -llnl_gamma 4.5 - log_k +1.6699 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmN3+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Am+++ = AmNO3++ - -llnl_gamma 4.5 - log_k +1.3104 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmNO3+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Am+++ = AmOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -6.4072 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmOH+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Am+++ = AmSO4+ - -llnl_gamma 4.0 - log_k +3.7703 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmSO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2AsO3- + 1.0000 H+ = As(OH)3 - -llnl_gamma 3.0 - log_k +9.2048 - -delta_H -27.4054 kJ/mol # Calculated enthalpy of reaction As(OH)3 -# Enthalpy of formation: -742.2 kJ/mol - -analytic 1.3020e+002 4.7513e-002 -1.1999e+003 -5.2993e+001 -2.0422e+001 -# -Range: 0-200 - -1.0000 H2AsO3- = AsO2- +1.0000 H2O - -llnl_gamma 4.0 - log_k 0.0111 - -delta_H 0 # Not possible to calculate enthalpy of reaction AsO2- -# Enthalpy of formation: -0 kcal/mol - -analytic -2.1509e+001 -1.7680e-002 -1.9261e+001 1.0841e+001 -2.9404e-001 -# -Range: 0-300 - -1.0000 H2AsO3- = AsO2OH-- +1.0000 H+ - -llnl_gamma 4.0 - log_k -11.0171 - -delta_H 25.514 kJ/mol # Calculated enthalpy of reaction AsO2OH-2 -# Enthalpy of formation: -164.742 kcal/mol - -analytic 1.4309e+002 1.8620e-002 -6.8596e+003 -5.5222e+001 -1.0708e+002 -# -Range: 0-300 - -1.0000 H2AsO4- + 1.0000 F- = AsO3F-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +40.2451 - -delta_H 0 # Not possible to calculate enthalpy of reaction AsO3F-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2AsO4- = AsO4--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -18.3604 - -delta_H 21.4198 kJ/mol # Calculated enthalpy of reaction AsO4-3 -# Enthalpy of formation: -888.14 kJ/mol - -analytic -2.4979e+001 -1.2761e-002 2.8369e+003 3.4878e+000 -6.8736e+005 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Au+ = Au(CH3COO)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -9.0013 - -delta_H -8.91192 kJ/mol # Calculated enthalpy of reaction Au(CH3COO)2- -# Enthalpy of formation: -186.75 kcal/mol - -analytic -2.2338e+002 -4.6312e-002 7.0942e+003 8.2606e+001 1.1076e+002 -# -Range: 0-300 - -1.0000 Au+ + 1.0000 CH3COOH = AuCH3COO +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.3174 - -delta_H 0.87864 kJ/mol # Calculated enthalpy of reaction AuCH3COO -# Enthalpy of formation: -68.31 kcal/mol - -analytic -1.1812e+000 -4.1120e-003 -1.4752e+003 4.5665e-001 1.7019e+005 -# -Range: 0-300 - -2.0000 B(OH)3 = B2O(OH)5- +1.0000 H+ - -llnl_gamma 4.0 - log_k -18.6851 - -delta_H 0 # Not possible to calculate enthalpy of reaction B2O(OH)5- -# Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 H+ + 1.0000 B(OH)3 = BF2(OH)2- +1.0000 H2O - -llnl_gamma 4.0 - log_k +6.6174 - -delta_H 0 # Not possible to calculate enthalpy of reaction BF2(OH)2- -# Enthalpy of formation: -0 kcal/mol - -3.0000 F- + 2.0000 H+ + 1.0000 B(OH)3 = BF3OH- +2.0000 H2O - -llnl_gamma 4.0 - log_k +13.1908 - -delta_H -178.577 kJ/mol # Calculated enthalpy of reaction BF3OH- -# Enthalpy of formation: -403.317 kcal/mol - -analytic 3.3411e+002 -3.7303e-002 -8.6507e+003 -1.1345e+002 -1.3508e+002 -# -Range: 0-300 - -4.0000 F- + 3.0000 H+ + 1.0000 B(OH)3 = BF4- +3.0000 H2O - -llnl_gamma 4.0 - log_k +18.0049 - -delta_H -16.4473 kJ/mol # Calculated enthalpy of reaction BF4- -# Enthalpy of formation: -376.4 kcal/mol - -analytic 2.5491e+002 1.0443e-001 -3.3332e+003 -1.0378e+002 -5.2087e+001 -# -Range: 0-300 - -1.0000 B(OH)3 = BO2- +1.0000 H+ +1.0000 H2O - -llnl_gamma 4.0 - log_k -9.2449 - -delta_H 16.3302 kJ/mol # Calculated enthalpy of reaction BO2- -# Enthalpy of formation: -184.6 kcal/mol - -analytic -1.0500e+002 -3.3447e-002 1.4706e+003 4.0724e+001 2.2978e+001 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Ba++ = Ba(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -8.0118 - -delta_H 11.255 kJ/mol # Calculated enthalpy of reaction Ba(CH3COO)2 -# Enthalpy of formation: -358.01 kcal/mol - -analytic -1.4566e+001 3.1394e-004 -3.9564e+003 5.1906e+000 6.1407e+005 -# -Range: 0-300 - -1.0000 O_phthalate-2 + 1.0000 Ba++ = Ba(O_phthalate) - -llnl_gamma 3.0 - log_k +2.3300 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ba(O_phthalate) -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Ba++ + 1.0000 B(OH)3 = BaB(OH)4+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -7.8012 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaB(OH)4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Ba++ + 1.0000 CH3COOH = BaCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.7677 - -delta_H 7.322 kJ/mol # Calculated enthalpy of reaction BaCH3COO+ -# Enthalpy of formation: -242.85 kcal/mol - -analytic -1.5623e+001 2.9282e-003 -3.9534e+002 4.3959e+000 1.2829e+005 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Ba++ = BaCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -7.6834 - -delta_H 31.5808 kJ/mol # Calculated enthalpy of reaction BaCO3 -# Enthalpy of formation: -285.85 kcal/mol - -analytic 2.1878e+002 5.2368e-002 -8.2472e+003 -8.6644e+001 -1.2875e+002 -# -Range: 0-300 - -1.0000 Cl- + 1.0000 Ba++ = BaCl+ - -llnl_gamma 4.0 - log_k -0.4977 - -delta_H 11.142 kJ/mol # Calculated enthalpy of reaction BaCl+ -# Enthalpy of formation: -165.77 kcal/mol - -analytic 1.1016e+002 4.2325e-002 -2.8039e+003 -4.6010e+001 -4.3785e+001 -# -Range: 0-300 - -1.0000 F- + 1.0000 Ba++ = BaF+ - -llnl_gamma 4.0 - log_k -0.1833 - -delta_H 8.95376 kJ/mol # Calculated enthalpy of reaction BaF+ -# Enthalpy of formation: -206.51 kcal/mol - -analytic 1.0349e+002 4.0336e-002 -2.5195e+003 -4.3334e+001 -3.9346e+001 -# -Range: 0-300 - -1.0000 NO3- + 1.0000 Ba++ = BaNO3+ - -llnl_gamma 4.0 - log_k +0.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaNO3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Ba++ = BaOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -13.47 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaOH+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Be++ = Be(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -6.8023 - -delta_H -52.4255 kJ/mol # Calculated enthalpy of reaction Be(CH3COO)2 -# Enthalpy of formation: -336.23 kcal/mol - -analytic -3.5242e+001 5.1285e-003 -4.8914e+002 8.2862e+000 7.1774e+005 -# -Range: 0-300 - -1.0000 Be++ + 1.0000 CH3COOH = BeCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.1079 - -delta_H -22.761 kJ/mol # Calculated enthalpy of reaction BeCH3COO+ -# Enthalpy of formation: -213.04 kcal/mol - -analytic -1.9418e+001 5.2172e-004 -8.5071e+001 5.2755e+000 3.0215e+005 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Be++ = BeO2-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -32.161 - -delta_H 163.737 kJ/mol # Calculated enthalpy of reaction BeO2-2 -# Enthalpy of formation: -189 kcal/mol - -analytic 7.0860e+000 -3.8474e-002 -1.1400e+004 4.2138e+000 -1.7789e+002 -# -Range: 0-300 - -2.0000 H+ + 2.0000 Br- + 0.5000 O2 = Br2 +1.0000 H2O - -llnl_gamma 3.0 - log_k +5.6834 - -delta_H 0 # Not possible to calculate enthalpy of reaction Br2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 HCO3- + 1.0000 H+ = CO2 +1.0000 H2O - -CO2_llnl_gamma - log_k +6.3447 - -delta_H -9.7027 kJ/mol # Calculated enthalpy of reaction CO2 -# Enthalpy of formation: -98.9 kcal/mol - -analytic -1.0534e+001 2.1746e-002 2.5216e+003 7.9125e-001 3.9351e+001 -# -Range: 0-300 - -1.0000 HCO3- = CO3-- +1.0000 H+ - -llnl_gamma 4.5 - log_k -10.3288 - -delta_H 14.6984 kJ/mol # Calculated enthalpy of reaction CO3-2 -# Enthalpy of formation: -161.385 kcal/mol - -analytic -6.9958e+001 -3.3526e-002 -7.0846e+001 2.8224e+001 -1.0849e+000 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Ca++ = Ca(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.3814 - -delta_H -2.7196 kJ/mol # Calculated enthalpy of reaction Ca(CH3COO)2 -# Enthalpy of formation: -362.65 kcal/mol - -analytic -1.0320e+001 4.0012e-003 -3.6281e+003 2.4421e+000 7.0175e+005 -# -Range: 0-300 - -1.0000 O_phthalate-2 + 1.0000 Ca++ = Ca(O_phthalate) - -llnl_gamma 3.0 - log_k +2.4200 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca(O_phthalate) -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Ca++ + 1.0000 B(OH)3 = CaB(OH)4+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -7.4222 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaB(OH)4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Ca++ + 1.0000 CH3COOH = CaCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.8263 - -delta_H 1.17152 kJ/mol # Calculated enthalpy of reaction CaCH3COO+ -# Enthalpy of formation: -245.62 kcal/mol - -analytic -8.8826e+000 3.1672e-003 -1.0764e+003 2.0526e+000 2.3599e+005 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Ca++ = CaCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -7.0017 - -delta_H 30.5767 kJ/mol # Calculated enthalpy of reaction CaCO3 -# Enthalpy of formation: -287.39 kcal/mol - -analytic 2.3045e+002 5.5350e-002 -8.5056e+003 -9.1096e+001 -1.3279e+002 -# -Range: 0-300 - -1.0000 Cl- + 1.0000 Ca++ = CaCl+ - -llnl_gamma 4.0 - log_k -0.6956 - -delta_H 2.02087 kJ/mol # Calculated enthalpy of reaction CaCl+ -# Enthalpy of formation: -169.25 kcal/mol - -analytic 8.1498e+001 3.8387e-002 -1.3763e+003 -3.5968e+001 -2.1501e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Ca++ = CaCl2 - -llnl_gamma 3.0 - log_k -0.6436 - -delta_H -5.8325 kJ/mol # Calculated enthalpy of reaction CaCl2 -# Enthalpy of formation: -211.06 kcal/mol - -analytic 1.8178e+002 7.6910e-002 -3.1088e+003 -7.8760e+001 -4.8563e+001 -# -Range: 0-300 - -1.0000 F- + 1.0000 Ca++ = CaF+ - -llnl_gamma 4.0 - log_k +0.6817 - -delta_H 5.6484 kJ/mol # Calculated enthalpy of reaction CaF+ -# Enthalpy of formation: -208.6 kcal/mol - -analytic 7.8058e+001 3.8276e-002 -1.3289e+003 -3.4071e+001 -2.0759e+001 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Ca++ = CaH2PO4+ - -llnl_gamma 4.0 - log_k +1.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaH2PO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 HCO3- + 1.0000 Ca++ = CaHCO3+ - -llnl_gamma 4.0 - log_k +1.0467 - -delta_H 1.45603 kJ/mol # Calculated enthalpy of reaction CaHCO3+ -# Enthalpy of formation: -294.35 kcal/mol - -analytic 5.5985e+001 3.4639e-002 -3.6972e+002 -2.5864e+001 -5.7859e+000 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 Ca++ = CaHPO4 - -llnl_gamma 3.0 - log_k +2.7400 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaHPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Ca++ = CaNO3+ - -llnl_gamma 4.0 - log_k +0.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaNO3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Ca++ = CaOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -12.85 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaOH+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Ca++ = CaP2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +3.0537 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaP2O7-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Ca++ = CaPO4- +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.8618 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaPO4- -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Ca++ = CaSO4 - -llnl_gamma 3.0 - log_k +2.1111 - -delta_H 5.4392 kJ/mol # Calculated enthalpy of reaction CaSO4 -# Enthalpy of formation: -345.9 kcal/mol - -analytic 2.8618e+002 8.4084e-002 -7.6880e+003 -1.1449e+002 -1.2005e+002 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Cd++ = Cd(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -6.3625 - -delta_H -17.4891 kJ/mol # Calculated enthalpy of reaction Cd(CH3COO)2 -# Enthalpy of formation: -254.52 kcal/mol - -analytic -1.9344e+001 2.5894e-003 -3.2847e+003 5.8489e+000 7.8041e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Cd++ = Cd(CH3COO)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -10.8558 - -delta_H -40.0409 kJ/mol # Calculated enthalpy of reaction Cd(CH3COO)3- -# Enthalpy of formation: -376.01 kcal/mol - -analytic 4.8290e+001 -3.4317e-003 -1.5122e+004 -1.3203e+001 2.2479e+006 -# -Range: 0-300 - -4.0000 CH3COOH + 1.0000 Cd++ = Cd(CH3COO)4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -16.9163 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(CH3COO)4-2 -# Enthalpy of formation: -0 kcal/mol - - 2.0000 Cyanide- + 1.0000 Cd++ = Cd(Cyanide)2 - -llnl_gamma 3.0 - log_k +10.3551 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)2 - # Enthalpy of formation: -0 kcal/mol - - 3.0000 Cyanide- + 1.0000 Cd++ = Cd(Cyanide)3- - -llnl_gamma 4.0 - log_k +14.8191 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)3- - # Enthalpy of formation: -0 kcal/mol - - 4.0000 Cyanide- + 1.0000 Cd++ = Cd(Cyanide)4-- - -llnl_gamma 4.0 - log_k +18.2670 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)4-2 - # Enthalpy of formation: -0 kcal/mol - - -2.0000 HCO3- + 1.0000 Cd++ = Cd(CO3)2-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -14.2576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(CO3)2-2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 N3- + 1.0000 Cd++ = Cd(N3)2 - -llnl_gamma 0.0 - log_k +2.4606 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 N3- + 1.0000 Cd++ = Cd(N3)3- - -llnl_gamma 4.0 - log_k +3.1263 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)3- -# Enthalpy of formation: -0 kcal/mol - -4.0000 N3- + 1.0000 Cd++ = Cd(N3)4-- - -llnl_gamma 4.0 - log_k +3.4942 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)4-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 NH3 + 1.0000 Cd++ = Cd(NH3)++ - -llnl_gamma 4.5 - log_k +2.5295 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(NH3)+2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 NH3 + 1.0000 Cd++ = Cd(NH3)2++ - -llnl_gamma 4.5 - log_k +4.8760 - -delta_H -27.6533 kJ/mol # Calculated enthalpy of reaction Cd(NH3)2+2 -# Enthalpy of formation: -266.225 kJ/mol - -analytic 1.0738e+002 1.6071e-003 -3.2536e+003 -3.7202e+001 -5.0801e+001 -# -Range: 0-300 - -4.0000 NH3 + 1.0000 Cd++ = Cd(NH3)4++ - -llnl_gamma 4.5 - log_k +7.2914 - -delta_H -49.0684 kJ/mol # Calculated enthalpy of reaction Cd(NH3)4+2 -# Enthalpy of formation: -450.314 kJ/mol - -analytic 1.5670e+002 -9.4949e-003 -5.0986e+003 -5.2316e+001 -7.9603e+001 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Cd++ = Cd(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -20.3402 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Cd++ = Cd(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -33.2852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)3- -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Cd++ = Cd(OH)4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -47.3303 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)4-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Cl- + 1.0000 Cd++ = Cd(OH)Cl +1.0000 H+ - -llnl_gamma 3.0 - log_k -7.4328 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)Cl -# Enthalpy of formation: -0 kcal/mol - -2.0000 Thiocyanate- + 1.0000 Cd++ = Cd(Thiocyanate)2 - -llnl_gamma 3.0 - log_k +1.8649 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Thiocyanate)2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 Thiocyanate- + 1.0000 Cd++ = Cd(Thiocyanate)3- - -llnl_gamma 4.0 - log_k +1.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Thiocyanate)3- -# Enthalpy of formation: -0 kcal/mol - -2.0000 Cd++ + 1.0000 H2O = Cd2OH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -9.3851 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd2OH+3 -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 4.0000 Cd++ = Cd4(OH)4++++ +4.0000 H+ - -llnl_gamma 5.5 - log_k -362.1263 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd4(OH)4+4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Cd++ + 1.0000 Br- = CdBr+ - -llnl_gamma 4.0 - log_k +2.1424 - -delta_H -3.35588 kJ/mol # Calculated enthalpy of reaction CdBr+ -# Enthalpy of formation: -200.757 kJ/mol - -analytic 1.4922e+002 5.0059e-002 -3.3035e+003 -6.0984e+001 -5.1593e+001 -# -Range: 0-300 - -2.0000 Br- + 1.0000 Cd++ = CdBr2 - -llnl_gamma 3.0 - log_k +2.8614 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdBr2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 Br- + 1.0000 Cd++ = CdBr3- - -llnl_gamma 4.0 - log_k +3.0968 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdBr3- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Cd++ + 1.0000 CH3COOH = CdCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.8294 - -delta_H -7.02912 kJ/mol # Calculated enthalpy of reaction CdCH3COO+ -# Enthalpy of formation: -135.92 kcal/mol - -analytic -8.8425e+000 1.7178e-003 -1.1758e+003 2.4435e+000 3.0321e+005 -# -Range: 0-300 - -1.0000 Cd++ + 1.0000 Cyanide- = CdCyanide+ - -llnl_gamma 4.0 - log_k +5.3129 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdCyanide+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 HCO3- + 1.0000 Cd++ = CdCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -7.3288 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdCO3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Cl- + 1.0000 Cd++ = CdCl+ - -llnl_gamma 4.0 - log_k +2.7059 - -delta_H 2.33843 kJ/mol # Calculated enthalpy of reaction CdCl+ -# Enthalpy of formation: -240.639 kJ/mol -2.0000 Cl- + 1.0000 Cd++ = CdCl2 - -llnl_gamma 3.0 - log_k +3.3384 - -delta_H 5.1261 kJ/mol # Calculated enthalpy of reaction CdCl2 -# Enthalpy of formation: -404.931 kJ/mol - -analytic 1.4052e+002 4.9221e-002 -3.2625e+003 -5.6946e+001 -5.5451e+001 -# -Range: 0-200 - -3.0000 Cl- + 1.0000 Cd++ = CdCl3- - -llnl_gamma 4.0 - log_k +2.7112 - -delta_H 15.9388 kJ/mol # Calculated enthalpy of reaction CdCl3- -# Enthalpy of formation: -561.198 kJ/mol - -analytic 3.5108e+002 1.0219e-001 -9.9103e+003 -1.3965e+002 -1.5474e+002 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Cd++ = CdHCO3+ - -llnl_gamma 4.0 - log_k +1.5000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdHCO3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 I- + 1.0000 Cd++ = CdI+ - -llnl_gamma 4.0 - log_k +2.0710 - -delta_H -9.02584 kJ/mol # Calculated enthalpy of reaction CdI+ -# Enthalpy of formation: -141.826 kJ/mol - -analytic 1.5019e+002 5.0320e-002 -3.0810e+003 -6.1738e+001 -4.8120e+001 -# -Range: 0-300 - -2.0000 I- + 1.0000 Cd++ = CdI2 - -llnl_gamma 3.0 - log_k +3.4685 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdI2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 I- + 1.0000 Cd++ = CdI3- - -llnl_gamma 4.0 - log_k +4.5506 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdI3- -# Enthalpy of formation: -0 kcal/mol - -4.0000 I- + 1.0000 Cd++ = CdI4-- - -llnl_gamma 4.0 - log_k +5.3524 - -delta_H -38.8566 kJ/mol # Calculated enthalpy of reaction CdI4-2 -# Enthalpy of formation: -342.364 kJ/mol - -analytic 4.3154e+002 1.4257e-001 -8.4464e+003 -1.7795e+002 -1.3193e+002 -# -Range: 0-300 - -1.0000 N3- + 1.0000 Cd++ = CdN3+ - -llnl_gamma 4.0 - log_k +1.4970 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdN3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 NO2- + 1.0000 Cd++ = CdNO2+ - -llnl_gamma 4.0 - log_k +2.3700 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdNO2+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Cd++ = CdOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -10.0751 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdOH+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Cd++ = CdP2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +4.8094 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdP2O7-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Thiocyanate- + 1.0000 Cd++ = CdThiocyanate+ - -llnl_gamma 4.0 - log_k +1.3218 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdThiocyanate+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Cd++ = CdSO4 - -llnl_gamma 3.0 - log_k +0.0028 - -delta_H 0.20436 kJ/mol # Calculated enthalpy of reaction CdSO4 -# Enthalpy of formation: -985.295 kJ/mol - -analytic -8.9926e+000 -1.9109e-003 2.7454e+002 3.4949e+000 4.6651e+000 -# -Range: 0-200 - -1.0000 SeO4-- + 1.0000 Cd++ = CdSeO4 - -llnl_gamma 3.0 - log_k +2.2700 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdSeO4 -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Ce+++ = Ce(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.8159 - -delta_H -22.9702 kJ/mol # Calculated enthalpy of reaction Ce(CH3COO)2+ -# Enthalpy of formation: -405.09 kcal/mol - -analytic -3.4653e+001 2.0716e-004 -6.3400e+002 1.0678e+001 4.8922e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Ce+++ = Ce(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.151 - -delta_H -38.7438 kJ/mol # Calculated enthalpy of reaction Ce(CH3COO)3 -# Enthalpy of formation: -524.96 kcal/mol - -analytic -2.3361e+001 2.3896e-003 -1.8035e+003 5.0888e+000 7.1021e+005 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Ce+++ = Ce(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -8.1576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Ce+++ = Ce(HPO4)2- - -llnl_gamma 4.0 - log_k +8.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Ce++++ = Ce(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k +2.0098 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)2+2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Ce+++ = Ce(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -6.1437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 2.0000 Ce++++ = Ce2(OH)2+6 +2.0000 H+ - -llnl_gamma 6.0 - log_k +3.0098 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2(OH)2+6 -# Enthalpy of formation: -0 kcal/mol - -5.0000 H2O + 3.0000 Ce+++ = Ce3(OH)5++++ +5.0000 H+ - -llnl_gamma 5.5 - log_k -33.4754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce3(OH)5+4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Ce+++ + 1.0000 Br- = CeBr++ - -llnl_gamma 4.5 - log_k +0.3797 - -delta_H 3.0585 kJ/mol # Calculated enthalpy of reaction CeBr+2 -# Enthalpy of formation: -195.709 kcal/mol - -analytic 7.5790e+001 3.6040e-002 -1.2647e+003 -3.3094e+001 -1.9757e+001 -# -Range: 0-300 - -1.0000 Ce+++ + 1.0000 CH3COOH = CeCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.0304 - -delta_H -12.0918 kJ/mol # Calculated enthalpy of reaction CeCH3COO+2 -# Enthalpy of formation: -286.39 kcal/mol - -analytic -1.6080e+001 6.6239e-004 -6.0721e+002 5.0845e+000 2.9512e+005 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Ce+++ = CeCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.9284 - -delta_H 93.345 kJ/mol # Calculated enthalpy of reaction CeCO3+ -# Enthalpy of formation: -309.988 kcal/mol - -analytic 2.3292e+002 5.3153e-002 -7.1180e+003 -9.2061e+001 -1.1114e+002 -# -Range: 0-300 - -1.0000 Cl- + 1.0000 Ce+++ = CeCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 14.7821 kJ/mol # Calculated enthalpy of reaction CeCl+2 -# Enthalpy of formation: -203.8 kcal/mol - -analytic 8.3534e+001 3.8166e-002 -2.0058e+003 -3.5504e+001 -3.1324e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Ce+++ = CeCl2+ - -llnl_gamma 4.0 - log_k +0.0308 - -delta_H 20.7777 kJ/mol # Calculated enthalpy of reaction CeCl2+ -# Enthalpy of formation: -242.3 kcal/mol - -analytic 2.3011e+002 8.1428e-002 -6.1292e+003 -9.4468e+001 -9.5708e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Ce+++ = CeCl3 - -llnl_gamma 3.0 - log_k -0.3936 - -delta_H 15.4766 kJ/mol # Calculated enthalpy of reaction CeCl3 -# Enthalpy of formation: -283.5 kcal/mol - -analytic 4.4073e+002 1.2994e-001 -1.2308e+004 -1.7722e+002 -1.9218e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Ce+++ = CeCl4- - -llnl_gamma 4.0 - log_k -0.7447 - -delta_H -1.95811 kJ/mol # Calculated enthalpy of reaction CeCl4- -# Enthalpy of formation: -327.6 kcal/mol - -analytic 5.2230e+002 1.3490e-001 -1.4859e+004 -2.0747e+002 -2.3201e+002 -# -Range: 0-300 - -1.0000 ClO4- + 1.0000 Ce+++ = CeClO4++ - -llnl_gamma 4.5 - log_k +1.9102 - -delta_H -49.0197 kJ/mol # Calculated enthalpy of reaction CeClO4+2 -# Enthalpy of formation: -210.026 kcal/mol - -analytic -1.3609e+001 1.8115e-002 3.9869e+003 -1.3033e+000 6.2215e+001 -# -Range: 0-300 - -1.0000 F- + 1.0000 Ce+++ = CeF++ - -llnl_gamma 4.5 - log_k +4.2221 - -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction CeF+2 -# Enthalpy of formation: -242 kcal/mol - -analytic 1.0303e+002 4.1730e-002 -2.8424e+003 -4.1094e+001 -4.4383e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Ce+++ = CeF2+ - -llnl_gamma 4.0 - log_k +7.2714 - -delta_H 15.0624 kJ/mol # Calculated enthalpy of reaction CeF2+ -# Enthalpy of formation: -324.1 kcal/mol - -analytic 2.5063e+002 8.5224e-002 -6.2219e+003 -1.0017e+002 -9.7160e+001 -# -Range: 0-300 - -3.0000 F- + 1.0000 Ce+++ = CeF3 - -llnl_gamma 3.0 - log_k +9.5144 - -delta_H -6.0668 kJ/mol # Calculated enthalpy of reaction CeF3 -# Enthalpy of formation: -409.3 kcal/mol - -analytic 4.6919e+002 1.3664e-001 -1.1745e+004 -1.8629e+002 -1.8340e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 Ce+++ = CeF4- - -llnl_gamma 4.0 - log_k +11.3909 - -delta_H -45.6056 kJ/mol # Calculated enthalpy of reaction CeF4- -# Enthalpy of formation: -498.9 kcal/mol - -analytic 5.3522e+002 1.3856e-001 -1.2722e+004 -2.1112e+002 -1.9868e+002 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Ce+++ = CeH2PO4++ - -llnl_gamma 4.5 - log_k +9.6684 - -delta_H -16.2548 kJ/mol # Calculated enthalpy of reaction CeH2PO4+2 -# Enthalpy of formation: -480.1 kcal/mol - -analytic 1.1338e+002 6.3771e-002 5.2908e+001 -4.9649e+001 7.9189e-001 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Ce+++ = CeHCO3++ - -llnl_gamma 4.5 - log_k +1.9190 - -delta_H 8.77803 kJ/mol # Calculated enthalpy of reaction CeHCO3+2 -# Enthalpy of formation: -330.2 kcal/mol - -analytic 4.4441e+001 3.2077e-002 -3.0714e+002 -2.0622e+001 -4.8060e+000 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 Ce+++ = CeHPO4+ - -llnl_gamma 4.0 - log_k +5.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CeHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 IO3- + 1.0000 Ce+++ = CeIO3++ - -llnl_gamma 4.5 - log_k +1.9000 - -delta_H -21.1627 kJ/mol # Calculated enthalpy of reaction CeIO3+2 -# Enthalpy of formation: -225.358 kcal/mol - -analytic 3.3756e+001 2.8528e-002 1.2847e+003 -1.8042e+001 2.0036e+001 -# -Range: 0-300 - -1.0000 NO3- + 1.0000 Ce+++ = CeNO3++ - -llnl_gamma 4.5 - log_k +1.3143 - -delta_H -26.6563 kJ/mol # Calculated enthalpy of reaction CeNO3+2 -# Enthalpy of formation: -223.2 kcal/mol - -analytic 2.2772e+001 2.5931e-002 1.9950e+003 -1.4490e+001 3.1124e+001 -# -Range: 0-300 - -1.0000 H2O + 1.0000 Ce+++ = CeO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.4103 - -delta_H 112.202 kJ/mol # Calculated enthalpy of reaction CeO+ -# Enthalpy of formation: -208.9 kcal/mol - -analytic 1.9881e+002 3.1302e-002 -1.4331e+004 -7.1323e+001 -2.2368e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Ce+++ = CeO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -38.758 - -delta_H 308.503 kJ/mol # Calculated enthalpy of reaction CeO2- -# Enthalpy of formation: -230.3 kcal/mol - -analytic 1.0059e+002 3.4824e-003 -1.5873e+004 -3.3056e+001 -4.7656e+005 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Ce+++ = CeO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -26.1503 - -delta_H 228.17 kJ/mol # Calculated enthalpy of reaction CeO2H -# Enthalpy of formation: -249.5 kcal/mol - -analytic 3.5650e+002 4.6708e-002 -2.4320e+004 -1.2731e+002 -3.7959e+002 -# -Range: 0-300 - -1.0000 H2O + 1.0000 Ce+++ = CeOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -8.4206 - -delta_H 73.2911 kJ/mol # Calculated enthalpy of reaction CeOH+2 -# Enthalpy of formation: -218.2 kcal/mol - -analytic 7.5809e+001 1.2863e-002 -6.7244e+003 -2.6473e+001 -1.0495e+002 -# -Range: 0-300 - -1.0000 H2O + 1.0000 Ce++++ = CeOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k +3.2049 - -delta_H 0 # Not possible to calculate enthalpy of reaction CeOH+3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Ce+++ = CePO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.9718 - -delta_H 0 # Not possible to calculate enthalpy of reaction CePO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Ce+++ = CeSO4+ - -llnl_gamma 4.0 - log_k -3.687 - -delta_H 19.2464 kJ/mol # Calculated enthalpy of reaction CeSO4+ -# Enthalpy of formation: -380.2 kcal/mol - -analytic 3.0156e+002 8.5149e-002 -1.1025e+004 -1.1866e+002 -1.7213e+002 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Co++ = Co(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.1468 - -delta_H -22.4262 kJ/mol # Calculated enthalpy of reaction Co(CH3COO)2 -# Enthalpy of formation: -251.46 kcal/mol - -analytic -2.0661e+001 2.9014e-003 -2.2146e+003 5.1702e+000 6.4968e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Co++ = Co(CH3COO)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -11.281 - -delta_H -48.2415 kJ/mol # Calculated enthalpy of reaction Co(CH3COO)3- -# Enthalpy of formation: -373.73 kcal/mol - -analytic 6.3384e+001 -4.0669e-003 -1.4715e+004 -1.9518e+001 2.1524e+006 -# -Range: 0-300 - -2.0000 HS- + 1.0000 Co++ = Co(HS)2 - -llnl_gamma 3.0 - log_k +9.0306 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(HS)2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Co++ = Co(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -18.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)2 -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Co++ = Co(OH)4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -45.7803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)4-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 2.0000 Co++ = Co2OH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -11.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co2OH+3 -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 4.0000 Co++ = Co4(OH)4++++ +4.0000 H+ - -llnl_gamma 5.5 - log_k -30.3803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co4(OH)4+4 -# Enthalpy of formation: -0 kcal/mol - -2.0000 Br- + 1.0000 Co++ = CoBr2 - -llnl_gamma 3.0 - log_k -0.0358 - -delta_H -0.56568 kJ/mol # Calculated enthalpy of reaction CoBr2 -# Enthalpy of formation: -301.73 kJ/mol - -analytic 5.8731e+000 8.0908e-004 -1.8986e+002 -2.2295e+000 -3.2261e+000 -# -Range: 0-200 - -1.0000 Co++ + 1.0000 CH3COOH = CoCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.2985 - -delta_H -8.70272 kJ/mol # Calculated enthalpy of reaction CoCH3COO+ -# Enthalpy of formation: -132.08 kcal/mol - -analytic -5.4858e+000 1.9147e-003 -1.1292e+003 9.0555e-001 2.8223e+005 -# -Range: 0-300 - -1.0000 Co++ + 1.0000 Cl- = CoCl+ - -llnl_gamma 4.0 - log_k +0.1547 - -delta_H 1.71962 kJ/mol # Calculated enthalpy of reaction CoCl+ -# Enthalpy of formation: -53.422 kcal/mol - -analytic 1.5234e+002 5.6958e-002 -3.3258e+003 -6.3849e+001 -5.1942e+001 -# -Range: 0-300 - -1.0000 HS- + 1.0000 Co++ = CoHS+ - -llnl_gamma 4.0 - log_k +5.9813 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoHS+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 I- + 1.0000 Co++ = CoI2 - -llnl_gamma 3.0 - log_k -0.0944 - -delta_H 3.1774 kJ/mol # Calculated enthalpy of reaction CoI2 -# Enthalpy of formation: -168.785 kJ/mol - -analytic 3.6029e+001 1.0128e-002 -1.1219e+003 -1.4301e+001 -1.9064e+001 -# -Range: 0-200 - -1.0000 NO3- + 1.0000 Co++ = CoNO3+ - -llnl_gamma 4.0 - log_k +0.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoNO3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Co++ + S2O3-- = CoS2O3 - -llnl_gamma 3.0 - log_k 0.8063 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoS2O3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Co++ = CoSO4 - -llnl_gamma 3.0 - log_k +0.0436 - -delta_H 0.3842 kJ/mol # Calculated enthalpy of reaction CoSO4 -# Enthalpy of formation: -967.375 kJ/mol - -analytic 2.4606e+000 1.0086e-003 -6.1450e+001 -1.0148e+000 -1.0444e+000 -# -Range: 0-200 - -1.0000 SeO4-- + 1.0000 Co++ = CoSeO4 - -llnl_gamma 3.0 - log_k +2.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoSeO4 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Cr+++ = Cr(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -9.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)2+ -# Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Cr+++ = Cr(OH)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -18 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)3 -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Cr+++ = Cr(OH)4- +4.0000 H+ - -llnl_gamma 4.0 - log_k -27.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)4- -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 2.0000 Cr+++ = Cr2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -5.06 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 2.0000 CrO4-- = Cr2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +14.5192 - -delta_H -13.8783 kJ/mol # Calculated enthalpy of reaction Cr2O7-2 -# Enthalpy of formation: -356.2 kcal/mol - -analytic 1.3749e+002 6.5773e-002 -7.9472e+002 -5.6525e+001 -1.2441e+001 -# -Range: 0-300 - -4.0000 H2O + 3.0000 Cr+++ = Cr3(OH)4+5 +4.0000 H+ - -llnl_gamma 6.0 - log_k -8.15 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr3(OH)4+5 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Cr+++ + 1.0000 Br- = CrBr++ - -llnl_gamma 4.5 - log_k -2.7813 - -delta_H 33.564 kJ/mol # Calculated enthalpy of reaction CrBr+2 -# Enthalpy of formation: -78.018 kcal/mol - -analytic 9.4384e+001 3.4704e-002 -3.6750e+003 -3.8461e+001 -5.7373e+001 -# -Range: 0-300 - -1.0000 Cr+++ + 1.0000 Cl- = CrCl++ - -llnl_gamma 4.5 - log_k -0.149 - -delta_H 0 # Not possible to calculate enthalpy of reaction CrCl+2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 Cl- + 1.0000 Cr+++ = CrCl2+ - -llnl_gamma 4.0 - log_k +0.1596 - -delta_H 41.2919 kJ/mol # Calculated enthalpy of reaction CrCl2+ -# Enthalpy of formation: -126.997 kcal/mol - -analytic 2.0114e+002 7.3878e-002 -6.2218e+003 -8.1677e+001 -9.7144e+001 -# -Range: 0-300 - -1.0000 Cl- + 2.000 H+ + 1.0000 CrO4-- = CrO3Cl- + 1.0000 H2O - -llnl_gamma 4.0 - log_k 7.5270 - -delta_H 0 # Not possible to calculate enthalpy of reaction CrO3Cl- -# Enthalpy of formation: -0 kcal/mol - -analytic 2.7423e+002 1.0013e-001 -6.0072e+003 -1.1168e+002 -9.3817e+001 -# -Range: 0-300 - -1.0000 H2O + 1.0000 Cr+++ = CrOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -4 - -delta_H 0 # Not possible to calculate enthalpy of reaction CrOH+2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Cs+ = Cs(CH3COO)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -9.771 - -delta_H 1.2552 kJ/mol # Calculated enthalpy of reaction Cs(CH3COO)2- -# Enthalpy of formation: -293.57 kcal/mol - -analytic -1.6956e+002 -4.0378e-002 4.5773e+003 6.3241e+001 7.1475e+001 -# -Range: 0-300 - -1.0000 Cs+ + 1.0000 Br- = CsBr - -llnl_gamma 3.0 - log_k -0.2712 - -delta_H 10.9621 kJ/mol # Calculated enthalpy of reaction CsBr -# Enthalpy of formation: -88.09 kcal/mol - -analytic 1.2064e+002 3.2000e-002 -3.8770e+003 -4.7458e+001 -6.0533e+001 -# -Range: 0-300 - -1.0000 Cs+ + 1.0000 CH3COOH = CsCH3COO +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.7352 - -delta_H 6.0668 kJ/mol # Calculated enthalpy of reaction CsCH3COO -# Enthalpy of formation: -176.32 kcal/mol - -analytic 2.4280e+001 -2.8642e-003 -3.1339e+003 -8.1616e+000 2.2684e+005 -# -Range: 0-300 - -1.0000 Cs+ + 1.0000 Cl- = CsCl - -llnl_gamma 3.0 - log_k -0.1385 - -delta_H 2.73215 kJ/mol # Calculated enthalpy of reaction CsCl -# Enthalpy of formation: -100.95 kcal/mol - -analytic 1.2472e+002 3.3730e-002 -3.9130e+003 -4.9212e+001 -6.1096e+001 -# -Range: 0-300 - -1.0000 I- + 1.0000 Cs+ = CsI - -llnl_gamma 3.0 - log_k +0.2639 - -delta_H -6.56888 kJ/mol # Calculated enthalpy of reaction CsI -# Enthalpy of formation: -76.84 kcal/mol - -analytic 1.1555e+002 3.1419e-002 -3.3496e+003 -4.5828e+001 -5.2302e+001 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Cu++ = Cu(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -5.8824 - -delta_H -25.899 kJ/mol # Calculated enthalpy of reaction Cu(CH3COO)2 -# Enthalpy of formation: -222.69 kcal/mol - -analytic -2.6689e+001 1.8048e-003 -1.8244e+003 7.7008e+000 6.5408e+005 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Cu+ = Cu(CH3COO)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -9.2139 - -delta_H -19.5476 kJ/mol # Calculated enthalpy of reaction Cu(CH3COO)2- -# Enthalpy of formation: -219.74 kcal/mol - -analytic -3.2712e+002 -5.9087e-002 1.1386e+004 1.2017e+002 1.7777e+002 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Cu++ = Cu(CH3COO)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -9.3788 - -delta_H -53.2205 kJ/mol # Calculated enthalpy of reaction Cu(CH3COO)3- -# Enthalpy of formation: -345.32 kcal/mol - -analytic 3.9475e+001 -6.2867e-003 -1.3233e+004 -1.0643e+001 2.1121e+006 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Cu++ = Cu(CO3)2-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -10.4757 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cu(CO3)2-2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 NH3 + 1.0000 Cu++ = Cu(NH3)2++ - -llnl_gamma 4.5 - log_k +7.4512 - -delta_H -45.1269 kJ/mol # Calculated enthalpy of reaction Cu(NH3)2+2 -# Enthalpy of formation: -142.112 kJ/mol - -analytic 1.1526e+002 4.8192e-003 -2.5139e+003 -4.0733e+001 -3.9261e+001 -# -Range: 0-300 - -3.0000 NH3 + 1.0000 Cu++ = Cu(NH3)3++ - -llnl_gamma 4.5 - log_k +10.2719 - -delta_H -67.2779 kJ/mol # Calculated enthalpy of reaction Cu(NH3)3+2 -# Enthalpy of formation: -245.6 kJ/mol - -analytic 1.3945e+002 -3.8236e-004 -2.8137e+003 -4.8336e+001 -4.3946e+001 -# -Range: 0-300 - -2.0000 NO2- + 1.0000 Cu++ = Cu(NO2)2 - -llnl_gamma 3.0 - log_k +3.0300 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cu(NO2)2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Cu+ + 1.0000 CH3COOH = CuCH3COO +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.4274 - -delta_H -4.19237 kJ/mol # Calculated enthalpy of reaction CuCH3COO -# Enthalpy of formation: -99.97 kcal/mol - -analytic 6.3784e+000 -4.5464e-004 -1.9995e+003 -2.8359e+000 2.7224e+005 -# -Range: 0-300 - -1.0000 Cu++ + 1.0000 CH3COOH = CuCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.5252 - -delta_H -11.3805 kJ/mol # Calculated enthalpy of reaction CuCH3COO+ -# Enthalpy of formation: -103.12 kcal/mol - -analytic -1.4930e+001 5.1278e-004 -3.4874e+002 4.3605e+000 2.3504e+005 -# -Range: 0-300 - -2.0000 H2O + 1.0000 HCO3- + 1.0000 Cu++ = CuCO3(OH)2-- +3.0000 H+ - -llnl_gamma 4.0 - log_k -23.444 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCO3(OH)2-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 HCO3- + 1.0000 Cu++ = CuCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -3.3735 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCO3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Cu++ + 1.0000 Cl- = CuCl+ - -llnl_gamma 4.0 - log_k +0.4370 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 Cl- + 1.0000 Cu++ = CuCl2 - -llnl_gamma 3.0 - log_k +0.1585 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 Cl- + 1.0000 Cu+ = CuCl2- - -llnl_gamma 4.0 - log_k +4.8212 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl2- -# Enthalpy of formation: -0 kcal/mol - -3.0000 Cl- + 1.0000 Cu+ = CuCl3-- - -llnl_gamma 4.0 - log_k +5.6289 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl3-2 -# Enthalpy of formation: -0 kcal/mol - -4.0000 Cl- + 1.0000 Cu++ = CuCl4-- - -llnl_gamma 4.0 - log_k -4.5681 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl4-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 F- + 1.0000 Cu++ = CuF+ - -llnl_gamma 4.0 - log_k +1.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuF+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Cu++ = CuH2PO4+ - -llnl_gamma 4.0 - log_k +8.9654 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuH2PO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Cu++ = CuHPO4 - -llnl_gamma 3.0 - log_k +4.0600 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuHPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 NH3 + 1.0000 Cu++ = CuNH3++ - -llnl_gamma 4.5 - log_k +4.0400 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuNH3+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 NO2- + 1.0000 Cu++ = CuNO2+ - -llnl_gamma 4.0 - log_k +2.0200 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuNO2+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Cu++ = CuO2-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -39.4497 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuO2-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Cu++ = CuOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -7.2875 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuOH+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Cu++ = CuPO4- +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.4718 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuPO4- -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Cu++ = CuSO4 - -llnl_gamma 0.0 - log_k +2.3600 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuSO4 -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Dy+++ = Dy(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9625 - -delta_H -29.3298 kJ/mol # Calculated enthalpy of reaction Dy(CH3COO)2+ -# Enthalpy of formation: -405.71 kcal/mol - -analytic -2.7249e+001 2.7507e-003 -1.7500e+003 7.9356e+000 6.8668e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Dy+++ = Dy(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3489 - -delta_H -49.4549 kJ/mol # Calculated enthalpy of reaction Dy(CH3COO)3 -# Enthalpy of formation: -526.62 kcal/mol - -analytic -2.4199e+001 6.2065e-003 -2.8937e+003 5.0176e+000 1.0069e+006 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Dy+++ = Dy(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.4576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Dy+++ = Dy(HPO4)2- - -llnl_gamma 4.0 - log_k +9.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -# Redundant with DyO2- -#4.0000 H2O + 1.0000 Dy+++ = Dy(OH)4- +4.0000 H+ -# -llnl_gamma 4.0 -# log_k -33.4803 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)4- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Dy+++ = Dy(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.4437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Dy+++ = Dy(SO4)2- - -llnl_gamma 4.0 - log_k +5.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Dy+++ + 1.0000 CH3COOH = DyCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1037 - -delta_H -14.8532 kJ/mol # Calculated enthalpy of reaction DyCH3COO+2 -# Enthalpy of formation: -286.15 kcal/mol - -analytic -1.3635e+001 1.7329e-003 -9.4636e+002 4.0900e+000 3.6282e+005 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Dy+++ = DyCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.3324 - -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction DyCO3+ -# Enthalpy of formation: -310.1 kcal/mol - -analytic 2.3742e+002 5.4342e-002 -6.9953e+003 -9.3949e+001 -1.0922e+002 -# -Range: 0-300 - -1.0000 Dy+++ + 1.0000 Cl- = DyCl++ - -llnl_gamma 4.5 - log_k +0.2353 - -delta_H 13.5269 kJ/mol # Calculated enthalpy of reaction DyCl+2 -# Enthalpy of formation: -203.2 kcal/mol - -analytic 6.9134e+001 3.7129e-002 -1.3839e+003 -3.0432e+001 -2.1615e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Dy+++ = DyCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 17.4305 kJ/mol # Calculated enthalpy of reaction DyCl2+ -# Enthalpy of formation: -242.2 kcal/mol - -analytic 1.8868e+002 7.7901e-002 -4.3528e+003 -7.9735e+001 -6.7978e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Dy+++ = DyCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 8.78222 kJ/mol # Calculated enthalpy of reaction DyCl3 -# Enthalpy of formation: -284.2 kcal/mol - -analytic 3.6761e+002 1.2471e-001 -9.0651e+003 -1.5147e+002 -1.4156e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Dy+++ = DyCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -14.0917 kJ/mol # Calculated enthalpy of reaction DyCl4- -# Enthalpy of formation: -329.6 kcal/mol - -analytic 3.9134e+002 1.2288e-001 -9.2351e+003 -1.6078e+002 -1.4422e+002 -# -Range: 0-300 - -1.0000 F- + 1.0000 Dy+++ = DyF++ - -llnl_gamma 4.5 - log_k +4.6619 - -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction DyF+2 -# Enthalpy of formation: -241.1 kcal/mol - -analytic 9.1120e+001 4.1193e-002 -2.3302e+003 -3.6734e+001 -3.6388e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Dy+++ = DyF2+ - -llnl_gamma 4.0 - log_k +8.1510 - -delta_H 12.552 kJ/mol # Calculated enthalpy of reaction DyF2+ -# Enthalpy of formation: -323.8 kcal/mol - -analytic 2.1325e+002 8.2483e-002 -4.5864e+003 -8.6587e+001 -7.1629e+001 -# -Range: 0-300 - -3.0000 F- + 1.0000 Dy+++ = DyF3 - -llnl_gamma 3.0 - log_k +10.7605 - -delta_H -11.9244 kJ/mol # Calculated enthalpy of reaction DyF3 -# Enthalpy of formation: -409.8 kcal/mol - -analytic 3.9766e+002 1.3143e-001 -8.5607e+003 -1.6056e+002 -1.3370e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 Dy+++ = DyF4- - -llnl_gamma 4.0 - log_k +12.8569 - -delta_H -57.3208 kJ/mol # Calculated enthalpy of reaction DyF4- -# Enthalpy of formation: -500.8 kcal/mol - -analytic 4.1672e+002 1.2922e-001 -7.4445e+003 -1.6867e+002 -1.1629e+002 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Dy+++ = DyH2PO4++ - -llnl_gamma 4.5 - log_k +9.3751 - -delta_H -18.3468 kJ/mol # Calculated enthalpy of reaction DyH2PO4+2 -# Enthalpy of formation: -479.7 kcal/mol - -analytic 9.8183e+001 6.2578e-002 7.1784e+002 -4.4383e+001 1.1172e+001 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Dy+++ = DyHCO3++ - -llnl_gamma 4.5 - log_k +1.6991 - -delta_H 7.10443 kJ/mol # Calculated enthalpy of reaction DyHCO3+2 -# Enthalpy of formation: -329.7 kcal/mol - -analytic 2.8465e+001 3.0703e-002 3.9229e+002 -1.5036e+001 6.1127e+000 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 Dy+++ = DyHPO4+ - -llnl_gamma 4.0 - log_k +5.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction DyHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Dy+++ = DyNO3++ - -llnl_gamma 4.5 - log_k +0.1415 - -delta_H -30.4219 kJ/mol # Calculated enthalpy of reaction DyNO3+2 -# Enthalpy of formation: -223.2 kcal/mol - -analytic 6.4353e+000 2.4556e-002 2.5866e+003 -8.9975e+000 4.0359e+001 -# -Range: 0-300 - -1.0000 H2O + 1.0000 Dy+++ = DyO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.1171 - -delta_H 108.018 kJ/mol # Calculated enthalpy of reaction DyO+ -# Enthalpy of formation: -209 kcal/mol - -analytic 1.9069e+002 3.0358e-002 -1.3796e+004 -6.8532e+001 -2.1532e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Dy+++ = DyO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -33.4804 - -delta_H 273.776 kJ/mol # Calculated enthalpy of reaction DyO2- -# Enthalpy of formation: -237.7 kcal/mol - -analytic 7.7395e+001 4.4204e-004 -1.3570e+004 -2.4546e+001 -4.2320e+005 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Dy+++ = DyO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -24.8309 - -delta_H 217.71 kJ/mol # Calculated enthalpy of reaction DyO2H -# Enthalpy of formation: -251.1 kcal/mol - -analytic 3.3576e+002 4.6004e-002 -2.2868e+004 -1.2027e+002 -3.5693e+002 -# -Range: 0-300 - -1.0000 H2O + 1.0000 Dy+++ = DyOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.8342 - -delta_H 76.6383 kJ/mol # Calculated enthalpy of reaction DyOH+2 -# Enthalpy of formation: -216.5 kcal/mol - -analytic 7.0856e+001 1.2473e-002 -6.2419e+003 -2.4841e+001 -9.7420e+001 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 Dy+++ = DyPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.1782 - -delta_H 0 # Not possible to calculate enthalpy of reaction DyPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Dy+++ = DySO4+ - -llnl_gamma 4.0 - log_k +3.6430 - -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction DySO4+ -# Enthalpy of formation: -379 kcal/mol - -analytic 3.0672e+002 8.6459e-002 -9.0386e+003 -1.2063e+002 -1.4113e+002 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Er+++ = Er(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9844 - -delta_H -32.8026 kJ/mol # Calculated enthalpy of reaction Er(CH3COO)2+ -# Enthalpy of formation: -408.54 kcal/mol - -analytic -3.1458e+001 1.4715e-003 -1.0556e+003 9.1586e+000 6.1669e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Er+++ = Er(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3783 - -delta_H -55.187 kJ/mol # Calculated enthalpy of reaction Er(CH3COO)3 -# Enthalpy of formation: -529.99 kcal/mol - -analytic -2.1575e+001 5.9740e-003 -2.0489e+003 3.3624e+000 8.8933e+005 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Er+++ = Er(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.2576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Er+++ = Er(HPO4)2- - -llnl_gamma 4.0 - log_k +10.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -# Redundant with ErO2- -#4.0000 H2O + 1.0000 Er+++ = Er(OH)4- +4.0000 H+ -# -llnl_gamma 4.0 -# log_k -32.5803 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)4- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Er+++ = Er(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.2437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Er+++ = Er(SO4)2- - -llnl_gamma 4.0 - log_k +5.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Er+++ + 1.0000 CH3COOH = ErCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1184 - -delta_H -16.4013 kJ/mol # Calculated enthalpy of reaction ErCH3COO+2 -# Enthalpy of formation: -288.52 kcal/mol - -analytic -1.2519e+001 1.5558e-003 -8.5344e+002 3.5918e+000 3.4888e+005 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Er+++ = ErCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.1858 - -delta_H 87.0188 kJ/mol # Calculated enthalpy of reaction ErCO3+ -# Enthalpy of formation: -312.6 kcal/mol - -analytic 2.3838e+002 5.4549e-002 -6.9433e+003 -9.4373e+001 -1.0841e+002 -# -Range: 0-300 - -1.0000 Er+++ + 1.0000 Cl- = ErCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 12.6901 kJ/mol # Calculated enthalpy of reaction ErCl+2 -# Enthalpy of formation: -205.4 kcal/mol - -analytic 7.4113e+001 3.7462e-002 -1.5300e+003 -3.2257e+001 -2.3896e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Er+++ = ErCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 15.3385 kJ/mol # Calculated enthalpy of reaction ErCl2+ -# Enthalpy of formation: -244.7 kcal/mol - -analytic 2.0259e+002 7.8907e-002 -4.8271e+003 -8.4835e+001 -7.5382e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Er+++ = ErCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 5.01662 kJ/mol # Calculated enthalpy of reaction ErCl3 -# Enthalpy of formation: -287.1 kcal/mol - -analytic 3.9721e+002 1.2757e-001 -1.0045e+004 -1.6244e+002 -1.5686e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Er+++ = ErCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -20.7861 kJ/mol # Calculated enthalpy of reaction ErCl4- -# Enthalpy of formation: -333.2 kcal/mol - -analytic 4.3471e+002 1.2627e-001 -1.0669e+004 -1.7677e+002 -1.6660e+002 -# -Range: 0-300 - -1.0000 F- + 1.0000 Er+++ = ErF++ - -llnl_gamma 4.5 - log_k +4.7352 - -delta_H 24.058 kJ/mol # Calculated enthalpy of reaction ErF+2 -# Enthalpy of formation: -242.9 kcal/mol - -analytic 9.7079e+001 4.1707e-002 -2.6028e+003 -3.8805e+001 -4.0643e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Er+++ = ErF2+ - -llnl_gamma 4.0 - log_k +8.2976 - -delta_H 12.9704 kJ/mol # Calculated enthalpy of reaction ErF2+ -# Enthalpy of formation: -325.7 kcal/mol - -analytic 2.2892e+002 8.3842e-002 -5.2174e+003 -9.2172e+001 -8.1481e+001 -# -Range: 0-300 - -3.0000 F- + 1.0000 Er+++ = ErF3 - -llnl_gamma 3.0 - log_k +10.9071 - -delta_H -12.3428 kJ/mol # Calculated enthalpy of reaction ErF3 -# Enthalpy of formation: -411.9 kcal/mol - -analytic 4.2782e+002 1.3425e-001 -9.7064e+003 -1.7148e+002 -1.5158e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 Er+++ = ErF4- - -llnl_gamma 4.0 - log_k +13.0768 - -delta_H -60.2496 kJ/mol # Calculated enthalpy of reaction ErF4- -# Enthalpy of formation: -503.5 kcal/mol - -analytic 4.6524e+002 1.3372e-001 -9.1895e+003 -1.8636e+002 -1.4353e+002 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Er+++ = ErH2PO4++ - -llnl_gamma 4.5 - log_k +9.4484 - -delta_H -20.4388 kJ/mol # Calculated enthalpy of reaction ErH2PO4+2 -# Enthalpy of formation: -482.2 kcal/mol - -analytic 1.0254e+002 6.2786e-002 6.3590e+002 -4.6029e+001 9.8920e+000 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Er+++ = ErHCO3++ - -llnl_gamma 4.5 - log_k +1.7724 - -delta_H 5.01243 kJ/mol # Calculated enthalpy of reaction ErHCO3+2 -# Enthalpy of formation: -332.2 kcal/mol - -analytic 3.2450e+001 3.0822e-002 3.1601e+002 -1.6528e+001 4.9212e+000 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 Er+++ = ErHPO4+ - -llnl_gamma 4.0 - log_k +5.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction ErHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Er+++ = ErNO3++ - -llnl_gamma 4.5 - log_k +0.1415 - -delta_H -33.7691 kJ/mol # Calculated enthalpy of reaction ErNO3+2 -# Enthalpy of formation: -226 kcal/mol - -analytic 1.0381e+001 2.4710e-002 2.5752e+003 -1.0596e+001 4.0181e+001 -# -Range: 0-300 - -1.0000 H2O + 1.0000 Er+++ = ErO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -15.9705 - -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction ErO+ -# Enthalpy of formation: -211.6 kcal/mol - -analytic 1.7556e+002 2.8655e-002 -1.3134e+004 -6.3050e+001 -2.0499e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Er+++ = ErO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -32.6008 - -delta_H 266.245 kJ/mol # Calculated enthalpy of reaction ErO2- -# Enthalpy of formation: -241.5 kcal/mol - -analytic 1.4987e+002 9.1241e-003 -1.8521e+004 -4.9740e+001 -2.8905e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Er+++ = ErO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -24.3178 - -delta_H 212.689 kJ/mol # Calculated enthalpy of reaction ErO2H -# Enthalpy of formation: -254.3 kcal/mol - -analytic 3.1493e+002 4.4381e-002 -2.1821e+004 -1.1287e+002 -3.4059e+002 -# -Range: 0-300 - -1.0000 H2O + 1.0000 Er+++ = ErOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.7609 - -delta_H 74.5463 kJ/mol # Calculated enthalpy of reaction ErOH+2 -# Enthalpy of formation: -219 kcal/mol - -analytic 5.7142e+001 1.0986e-002 -5.6684e+003 -1.9867e+001 -8.8467e+001 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 Er+++ = ErPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.3782 - -delta_H 0 # Not possible to calculate enthalpy of reaction ErPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Er+++ = ErSO4+ - -llnl_gamma 4.0 - log_k +3.5697 - -delta_H 20.3008 kJ/mol # Calculated enthalpy of reaction ErSO4+ -# Enthalpy of formation: -381.048 kcal/mol - -analytic 3.0363e+002 8.5667e-002 -8.9667e+003 -1.1942e+002 -1.4001e+002 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Eu+++ = Eu(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.6912 - -delta_H -28.3257 kJ/mol # Calculated enthalpy of reaction Eu(CH3COO)2+ -# Enthalpy of formation: -383.67 kcal/mol - -analytic -2.7589e+001 1.5772e-003 -1.1008e+003 7.9899e+000 5.6652e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Eu+++ = Eu(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -7.9824 - -delta_H -47.3629 kJ/mol # Calculated enthalpy of reaction Eu(CH3COO)3 -# Enthalpy of formation: -504.32 kcal/mol - -analytic -3.7470e+001 1.9276e-003 -1.0318e+003 9.7078e+000 7.4558e+005 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Eu+++ = Eu(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -8.3993 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -3.0000 HCO3- + 1.0000 Eu+++ = Eu(CO3)3--- +3.0000 H+ - -llnl_gamma 4.0 - log_k -16.8155 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(CO3)3-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Eu+++ = Eu(HPO4)2- - -llnl_gamma 4.0 - log_k +9.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -# Redundant with EuO+ -#2.0000 H2O + 1.0000 Eu+++ = Eu(OH)2+ +2.0000 H+ -# -llnl_gamma 4.0 -# log_k -14.8609 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2+ -## Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 HCO3- + 1.0000 Eu+++ = Eu(OH)2CO3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -17.8462 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2CO3- -# Enthalpy of formation: -0 kcal/mol - -# Redundant with EuO2H -#3.0000 H2O + 1.0000 Eu+++ = Eu(OH)3 +3.0000 H+ -# -llnl_gamma 3.0 -# log_k -24.1253 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)3 -## Enthalpy of formation: -0 kcal/mol - -# Redundant with EuO2- -#4.0000 H2O + 1.0000 Eu+++ = Eu(OH)4- +4.0000 H+ -# -llnl_gamma 4.0 -# log_k -36.5958 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)4- -## Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Eu+++ = Eu(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.9837 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Eu+++ = Eu(SO4)2- - -llnl_gamma 4.0 - log_k +5.4693 - -delta_H 25.627 kJ/mol # Calculated enthalpy of reaction Eu(SO4)2- -# Enthalpy of formation: -2399 kJ/mol - -analytic 4.5178e+002 1.2285e-001 -1.3400e+004 -1.7697e+002 -2.0922e+002 -# -Range: 0-300 - -2.0000 H2O + 2.0000 Eu+++ = Eu2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -6.9182 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Eu+++ + 1.0000 Br- = EuBr++ - -llnl_gamma 4.5 - log_k +0.5572 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuBr+2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 Br- + 1.0000 Eu+++ = EuBr2+ - -llnl_gamma 4.0 - log_k +0.2145 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuBr2+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Eu+++ + 1.0000 BrO3- = EuBrO3++ - -llnl_gamma 4.5 - log_k +4.5823 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuBrO3+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Eu+++ + 1.0000 CH3COOH = EuCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -1.9571 - -delta_H -14.5603 kJ/mol # Calculated enthalpy of reaction EuCH3COO+2 -# Enthalpy of formation: -264.28 kcal/mol - -analytic -1.5090e+001 1.0352e-003 -6.4435e+002 4.6225e+000 3.1649e+005 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Eu+++ = EuCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.4057 - -delta_H 90.7844 kJ/mol # Calculated enthalpy of reaction EuCO3+ -# Enthalpy of formation: -287.9 kcal/mol - -analytic 2.3548e+002 5.3819e-002 -6.9908e+003 -9.3137e+001 -1.0915e+002 -# -Range: 0-300 - -1.0000 Eu++ + 1.0000 Cl- = EuCl+ - -llnl_gamma 4.0 - log_k +0.3819 - -delta_H 8.50607 kJ/mol # Calculated enthalpy of reaction EuCl+ -# Enthalpy of formation: -164 kcal/mol - -analytic 6.8695e+001 3.7619e-002 -1.0809e+003 -3.0665e+001 -1.6887e+001 -# -Range: 0-300 - -1.0000 Eu+++ + 1.0000 Cl- = EuCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction EuCl+2 -# Enthalpy of formation: -181.3 kcal/mol - -analytic 7.9275e+001 3.7878e-002 -1.7895e+003 -3.4041e+001 -2.7947e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Eu++ = EuCl2 - -llnl_gamma 3.0 - log_k +1.2769 - -delta_H 5.71534 kJ/mol # Calculated enthalpy of reaction EuCl2 -# Enthalpy of formation: -204.6 kcal/mol - -analytic 1.0474e+002 6.7132e-002 -7.0448e+002 -4.8928e+001 -1.1024e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Eu+++ = EuCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 18.6857 kJ/mol # Calculated enthalpy of reaction EuCl2+ -# Enthalpy of formation: -220.1 kcal/mol - -analytic 2.1758e+002 8.0336e-002 -5.5499e+003 -9.0087e+001 -8.6665e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Eu+++ = EuCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 11.2926 kJ/mol # Calculated enthalpy of reaction EuCl3 -# Enthalpy of formation: -261.8 kcal/mol - -analytic 4.2075e+002 1.2890e-001 -1.1288e+004 -1.7043e+002 -1.7627e+002 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Eu++ = EuCl3- - -llnl_gamma 4.0 - log_k +2.0253 - -delta_H -3.76978 kJ/mol # Calculated enthalpy of reaction EuCl3- -# Enthalpy of formation: -246.8 kcal/mol - -analytic 1.1546e+001 6.4683e-002 3.7299e+003 -1.6672e+001 5.8196e+001 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Eu+++ = EuCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -9.90771 kJ/mol # Calculated enthalpy of reaction EuCl4- -# Enthalpy of formation: -306.8 kcal/mol - -analytic 4.8122e+002 1.3081e-001 -1.2950e+004 -1.9302e+002 -2.0222e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Eu++ = EuCl4-- - -llnl_gamma 4.0 - log_k +2.8470 - -delta_H -19.9493 kJ/mol # Calculated enthalpy of reaction EuCl4-2 -# Enthalpy of formation: -290.6 kcal/mol - -analytic -1.2842e+002 5.0789e-002 9.8815e+003 3.3565e+001 1.5423e+002 -# -Range: 0-300 - -1.0000 F- + 1.0000 Eu++ = EuF+ - -llnl_gamma 4.0 - log_k -1.3487 - -delta_H 16.9452 kJ/mol # Calculated enthalpy of reaction EuF+ -# Enthalpy of formation: -202.2 kcal/mol - -analytic 6.2412e+001 3.5839e-002 -1.3660e+003 -2.8223e+001 -2.1333e+001 -# -Range: 0-300 - -1.0000 F- + 1.0000 Eu+++ = EuF++ - -llnl_gamma 4.5 - log_k +4.4420 - -delta_H 23.6396 kJ/mol # Calculated enthalpy of reaction EuF+2 -# Enthalpy of formation: -219.2 kcal/mol - -analytic 1.0063e+002 4.1834e-002 -2.7355e+003 -4.0195e+001 -4.2714e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Eu++ = EuF2 - -llnl_gamma 3.0 - log_k -2.0378 - -delta_H 17.5728 kJ/mol # Calculated enthalpy of reaction EuF2 -# Enthalpy of formation: -282.2 kcal/mol - -analytic 1.2065e+002 7.1705e-002 -1.7998e+003 -5.5760e+001 -2.8121e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Eu+++ = EuF2+ - -llnl_gamma 4.0 - log_k +7.7112 - -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction EuF2+ -# Enthalpy of formation: -301.7 kcal/mol - -analytic 2.4099e+002 8.4714e-002 -5.7702e+003 -9.6640e+001 -9.0109e+001 -# -Range: 0-300 - -3.0000 F- + 1.0000 Eu+++ = EuF3 - -llnl_gamma 3.0 - log_k +10.1741 - -delta_H -8.9956 kJ/mol # Calculated enthalpy of reaction EuF3 -# Enthalpy of formation: -387.3 kcal/mol - -analytic 4.5022e+002 1.3560e-001 -1.0801e+004 -1.7951e+002 -1.6867e+002 -# -Range: 0-300 - -3.0000 F- + 1.0000 Eu++ = EuF3- - -llnl_gamma 4.0 - log_k -2.5069 - -delta_H 3.5564 kJ/mol # Calculated enthalpy of reaction EuF3- -# Enthalpy of formation: -365.7 kcal/mol - -analytic -2.8441e+001 5.5972e-002 4.4573e+003 -2.2782e+000 6.9558e+001 -# -Range: 0-300 - -4.0000 F- + 1.0000 Eu+++ = EuF4- - -llnl_gamma 4.0 - log_k +12.1239 - -delta_H -52.3 kJ/mol # Calculated enthalpy of reaction EuF4- -# Enthalpy of formation: -477.8 kcal/mol - -analytic 5.0246e+002 1.3629e-001 -1.1092e+004 -1.9952e+002 -1.7323e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 Eu++ = EuF4-- - -llnl_gamma 4.0 - log_k -2.8294 - -delta_H -37.656 kJ/mol # Calculated enthalpy of reaction EuF4-2 -# Enthalpy of formation: -455.7 kcal/mol - -analytic -1.8730e+002 3.9237e-002 1.2303e+004 5.3179e+001 1.9204e+002 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Eu+++ = EuH2PO4++ - -llnl_gamma 4.5 - log_k +9.4484 - -delta_H -17.0916 kJ/mol # Calculated enthalpy of reaction EuH2PO4+2 -# Enthalpy of formation: -457.6 kcal/mol - -analytic 1.0873e+002 6.3416e-002 2.7202e+002 -4.8113e+001 4.2122e+000 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Eu+++ = EuHCO3++ - -llnl_gamma 4.5 - log_k +1.6258 - -delta_H 8.77803 kJ/mol # Calculated enthalpy of reaction EuHCO3+2 -# Enthalpy of formation: -307.5 kcal/mol - -analytic 3.9266e+001 3.1608e-002 -9.8731e+001 -1.8875e+001 -1.5524e+000 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 Eu+++ = EuHPO4+ - -llnl_gamma 4.0 - log_k +5.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 IO3- + 1.0000 Eu+++ = EuIO3++ - -llnl_gamma 4.5 - log_k +2.1560 - -delta_H 11.8314 kJ/mol # Calculated enthalpy of reaction EuIO3+2 -# Enthalpy of formation: -814.927 kJ/mol - -analytic 1.4970e+002 4.7369e-002 -4.1559e+003 -5.9687e+001 -6.4893e+001 -# -Range: 0-300 - -1.0000 NO3- + 1.0000 Eu+++ = EuNO3++ - -llnl_gamma 4.5 - log_k +0.8745 - -delta_H -32.0955 kJ/mol # Calculated enthalpy of reaction EuNO3+2 -# Enthalpy of formation: -201.8 kcal/mol - -analytic 1.7398e+001 2.5467e-002 2.2683e+003 -1.2810e+001 3.5389e+001 -# -Range: 0-300 - -1.0000 H2O + 1.0000 Eu+++ = EuO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.337 - -delta_H 110.947 kJ/mol # Calculated enthalpy of reaction EuO+ -# Enthalpy of formation: -186.5 kcal/mol - -analytic 1.8876e+002 3.0194e-002 -1.3836e+004 -6.7770e+001 -2.1595e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Eu+++ = EuO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -34.5066 - -delta_H 281.307 kJ/mol # Calculated enthalpy of reaction EuO2- -# Enthalpy of formation: -214.1 kcal/mol - -analytic 7.5244e+001 3.7089e-004 -1.3587e+004 -2.3859e+001 -4.6713e+005 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Eu+++ = EuO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -25.4173 - -delta_H 222.313 kJ/mol # Calculated enthalpy of reaction EuO2H -# Enthalpy of formation: -228.2 kcal/mol - -analytic 3.6754e+002 5.3868e-002 -2.4034e+004 -1.3272e+002 -3.7514e+002 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 H2O + 1.0000 Eu+++ = EuOH(CO3)2-- +3.0000 H+ - -llnl_gamma 4.0 - log_k -15.176 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuOH(CO3)2-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Eu+++ = EuOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.9075 - -delta_H 78.0065 kJ/mol # Calculated enthalpy of reaction EuOH+2 -# Enthalpy of formation: -194.373 kcal/mol - -analytic 6.7691e+001 1.2066e-002 -6.1871e+003 -2.3617e+001 -9.6563e+001 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 H2O + 1.0000 Eu+++ = EuOHCO3 +2.0000 H+ - -llnl_gamma 3.0 - log_k -8.4941 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuOHCO3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Eu+++ = EuPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.1218 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Eu+++ = EuSO4+ - -llnl_gamma 4.0 - log_k +3.6430 - -delta_H 62.3416 kJ/mol # Calculated enthalpy of reaction EuSO4+ -# Enthalpy of formation: -347.2 kcal/mol - -analytic 3.0587e+002 8.6208e-002 -9.0387e+003 -1.2026e+002 -1.4113e+002 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Fe++ = Fe(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.0295 - -delta_H -20.2924 kJ/mol # Calculated enthalpy of reaction Fe(CH3COO)2 -# Enthalpy of formation: -259.1 kcal/mol - -analytic -2.9862e+001 1.3901e-003 -1.6908e+003 8.6283e+000 6.0125e+005 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Fe++ = Fe(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -20.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Fe+++ = Fe(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.67 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)2+ -# Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Fe+++ = Fe(OH)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -12 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)3 -# Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Fe++ = Fe(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -31 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)3- -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Fe+++ = Fe(OH)4- +4.0000 H+ - -llnl_gamma 4.0 - log_k -21.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)4- -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Fe++ = Fe(OH)4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -46 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)4-2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Fe+++ = Fe(SO4)2- - -llnl_gamma 4.0 - log_k +3.2137 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 2.0000 Fe+++ = Fe2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -2.95 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 3.0000 Fe+++ = Fe3(OH)4+5 +4.0000 H+ - -llnl_gamma 6.0 - log_k -6.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe3(OH)4+5 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Fe++ + 1.0000 CH3COOH = FeCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.4671 - -delta_H -3.80744 kJ/mol # Calculated enthalpy of reaction FeCH3COO+ -# Enthalpy of formation: -139.06 kcal/mol - -analytic -1.3781e+001 9.6253e-004 -7.5310e+002 4.0135e+000 2.3416e+005 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Fe++ = FeCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -5.5988 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeCO3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 HCO3- + 1.0000 Fe+++ = FeCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -0.6088 - -delta_H -50.208 kJ/mol # Calculated enthalpy of reaction FeCO3+ -# Enthalpy of formation: -188.748 kcal/mol - -analytic 1.7100e+002 8.0413e-002 -4.3217e+002 -7.8449e+001 -6.7948e+000 -# -Range: 0-300 - -1.0000 Fe++ + 1.0000 Cl- = FeCl+ - -llnl_gamma 4.0 - log_k -0.1605 - -delta_H 3.02503 kJ/mol # Calculated enthalpy of reaction FeCl+ -# Enthalpy of formation: -61.26 kcal/mol - -analytic 8.2435e+001 3.7755e-002 -1.4765e+003 -3.5918e+001 -2.3064e+001 -# -Range: 0-300 - -1.0000 Fe+++ + 1.0000 Cl- = FeCl++ - -llnl_gamma 4.5 - log_k -0.8108 - -delta_H 36.6421 kJ/mol # Calculated enthalpy of reaction FeCl+2 -# Enthalpy of formation: -180.018 kJ/mol - -analytic 1.6186e+002 5.9436e-002 -5.1913e+003 -6.5852e+001 -8.1053e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Fe++ = FeCl2 - -llnl_gamma 3.0 - log_k -2.4541 - -delta_H 6.46846 kJ/mol # Calculated enthalpy of reaction FeCl2 -# Enthalpy of formation: -100.37 kcal/mol - -analytic 1.9171e+002 7.8070e-002 -4.1048e+003 -8.2292e+001 -6.4108e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Fe+++ = FeCl2+ - -llnl_gamma 4.0 - log_k +2.1300 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl2+ -# Enthalpy of formation: -0 kcal/mol - -4.0000 Cl- + 1.0000 Fe+++ = FeCl4- - -llnl_gamma 4.0 - log_k -0.79 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl4- -# Enthalpy of formation: -0 kcal/mol - -4.0000 Cl- + 1.0000 Fe++ = FeCl4-- - -llnl_gamma 4.0 - log_k -1.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl4-2 -# Enthalpy of formation: -0 kcal/mol - -analytic -2.4108e+002 -6.0086e-003 9.7979e+003 8.4084e+001 1.5296e+002 -# -Range: 0-300 - -1.0000 Fe++ + 1.0000 F- = FeF+ - -llnl_gamma 4.0 - log_k +1.3600 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeF+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Fe+++ + 1.0000 F- = FeF++ - -llnl_gamma 4.5 - log_k +4.1365 - -delta_H 14.327 kJ/mol # Calculated enthalpy of reaction FeF+2 -# Enthalpy of formation: -370.601 kJ/mol - -analytic 1.7546e+002 6.3754e-002 -4.3166e+003 -7.1052e+001 -6.7408e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Fe+++ = FeF2+ - -llnl_gamma 4.0 - log_k +8.3498 - -delta_H 23.9776 kJ/mol # Calculated enthalpy of reaction FeF2+ -# Enthalpy of formation: -696.298 kJ/mol - -analytic 2.9080e+002 1.0393e-001 -7.2118e+003 -1.1688e+002 -1.1262e+002 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Fe++ = FeH2PO4+ - -llnl_gamma 4.0 - log_k +2.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeH2PO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Fe+++ = FeH2PO4++ - -llnl_gamma 4.5 - log_k +4.1700 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeH2PO4+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 HCO3- + 1.0000 Fe++ = FeHCO3+ - -llnl_gamma 4.0 - log_k +2.7200 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeHCO3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Fe++ = FeHPO4 - -llnl_gamma 3.0 - log_k +3.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeHPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Fe+++ = FeHPO4+ - -llnl_gamma 4.0 - log_k +10.1800 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 NO2- + 1.0000 Fe+++ = FeNO2++ - -llnl_gamma 4.5 - log_k +3.1500 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeNO2+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Fe+++ = FeNO3++ - -llnl_gamma 4.5 - log_k +1.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeNO3+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Fe++ = FeOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -9.5 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeOH+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Fe+++ = FeOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.19 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeOH+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Fe++ = FePO4- +1.0000 H+ - -llnl_gamma 4.0 - log_k -4.3918 - -delta_H 0 # Not possible to calculate enthalpy of reaction FePO4- -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Fe++ = FeSO4 - -llnl_gamma 3.0 - log_k +2.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeSO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Fe+++ = FeSO4+ - -llnl_gamma 4.0 - log_k +1.9276 - -delta_H 27.181 kJ/mol # Calculated enthalpy of reaction FeSO4+ -# Enthalpy of formation: -932.001 kJ/mol - -analytic 2.5178e+002 1.0080e-001 -6.0977e+003 -1.0483e+002 -9.5223e+001 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Gd+++ = Gd(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9625 - -delta_H -22.3426 kJ/mol # Calculated enthalpy of reaction Gd(CH3COO)2+ -# Enthalpy of formation: -401.74 kcal/mol - -analytic -4.3124e+001 1.2995e-004 -4.3494e+002 1.3677e+001 5.1224e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Gd+++ = Gd(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3489 - -delta_H -37.9907 kJ/mol # Calculated enthalpy of reaction Gd(CH3COO)3 -# Enthalpy of formation: -521.58 kcal/mol - -analytic -8.8296e+001 -5.0939e-003 1.2268e+003 2.8513e+001 6.0745e+005 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Gd+++ = Gd(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.5576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Gd+++ = Gd(HPO4)2- - -llnl_gamma 4.0 - log_k +9.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -# Redundant with GdO2- -#4.0000 H2O + 1.0000 Gd+++ = Gd(OH)4- +4.0000 H+ -# -llnl_gamma 4.0 -# log_k -33.8803 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)4- -## Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Gd+++ = Gd(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.9437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Gd+++ = Gd(SO4)2- - -llnl_gamma 4.0 - log_k +5.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Gd+++ + 1.0000 CH3COOH = GdCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1037 - -delta_H -11.7152 kJ/mol # Calculated enthalpy of reaction GdCH3COO+2 -# Enthalpy of formation: -283.1 kcal/mol - -analytic -1.4118e+001 1.6660e-003 -7.5206e+002 4.2614e+000 3.1187e+005 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Gd+++ = GdCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.479 - -delta_H 89.9476 kJ/mol # Calculated enthalpy of reaction GdCO3+ -# Enthalpy of formation: -307.6 kcal/mol - -analytic 2.3628e+002 5.4100e-002 -7.0746e+003 -9.3413e+001 -1.1046e+002 -# -Range: 0-300 - -1.0000 Gd+++ + 1.0000 Cl- = GdCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 14.7821 kJ/mol # Calculated enthalpy of reaction GdCl+2 -# Enthalpy of formation: -200.6 kcal/mol - -analytic 8.0750e+001 3.8524e-002 -1.8591e+003 -3.4621e+001 -2.9034e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Gd+++ = GdCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 21.1961 kJ/mol # Calculated enthalpy of reaction GdCl2+ -# Enthalpy of formation: -239 kcal/mol - -analytic 2.1754e+002 8.0996e-002 -5.6121e+003 -9.0067e+001 -8.7635e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Gd+++ = GdCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 15.895 kJ/mol # Calculated enthalpy of reaction GdCl3 -# Enthalpy of formation: -280.2 kcal/mol - -analytic 4.1398e+002 1.2829e-001 -1.1230e+004 -1.6770e+002 -1.7535e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Gd+++ = GdCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -1.53971 kJ/mol # Calculated enthalpy of reaction GdCl4- -# Enthalpy of formation: -324.3 kcal/mol - -analytic 4.7684e+002 1.3157e-001 -1.3068e+004 -1.9118e+002 -2.0405e+002 -# -Range: 0-300 - -1.0000 Gd+++ + 1.0000 F- = GdF++ - -llnl_gamma 4.5 - log_k +4.5886 - -delta_H 21.1292 kJ/mol # Calculated enthalpy of reaction GdF+2 -# Enthalpy of formation: -239.3 kcal/mol - -analytic 1.0060e+002 4.2181e-002 -2.6024e+003 -4.0347e+001 -4.0637e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Gd+++ = GdF2+ - -llnl_gamma 4.0 - log_k +7.9311 - -delta_H 11.2968 kJ/mol # Calculated enthalpy of reaction GdF2+ -# Enthalpy of formation: -321.8 kcal/mol - -analytic 2.3793e+002 8.4732e-002 -5.4950e+003 -9.5689e+001 -8.5815e+001 -# -Range: 0-300 - -3.0000 F- + 1.0000 Gd+++ = GdF3 - -llnl_gamma 3.0 - log_k +10.4673 - -delta_H -11.506 kJ/mol # Calculated enthalpy of reaction GdF3 -# Enthalpy of formation: -407.4 kcal/mol - -analytic 4.4257e+002 1.3500e-001 -1.0377e+004 -1.7680e+002 -1.6205e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 Gd+++ = GdF4- - -llnl_gamma 4.0 - log_k +12.4904 - -delta_H -52.3 kJ/mol # Calculated enthalpy of reaction GdF4- -# Enthalpy of formation: -497.3 kcal/mol - -analytic 4.9026e+002 1.3534e-001 -1.0586e+004 -1.9501e+002 -1.6533e+002 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Gd+++ = GdH2PO4++ - -llnl_gamma 4.5 - log_k +9.4484 - -delta_H -14.9996 kJ/mol # Calculated enthalpy of reaction GdH2PO4+2 -# Enthalpy of formation: -476.6 kcal/mol - -analytic 1.1058e+002 6.4124e-002 1.3451e+002 -4.8758e+001 2.0660e+000 -# -Range: 0-300 - -1.0000 HCO3- + 1.0000 Gd+++ = GdHCO3++ - -llnl_gamma 4.5 - log_k +1.6991 - -delta_H 10.0332 kJ/mol # Calculated enthalpy of reaction GdHCO3+2 -# Enthalpy of formation: -326.7 kcal/mol - -analytic 4.1973e+001 3.2521e-002 -2.3475e+002 -1.9864e+001 -3.6757e+000 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 Gd+++ = GdHPO4+ - -llnl_gamma 4.0 - log_k -185.109 - -delta_H 0 # Not possible to calculate enthalpy of reaction GdHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Gd+++ = GdNO3++ - -llnl_gamma 4.5 - log_k +0.4347 - -delta_H -25.8195 kJ/mol # Calculated enthalpy of reaction GdNO3+2 -# Enthalpy of formation: -219.8 kcal/mol - -analytic 2.0253e+001 2.6372e-002 1.8785e+003 -1.3723e+001 2.9306e+001 -# -Range: 0-300 - -1.0000 H2O + 1.0000 Gd+++ = GdO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.337 - -delta_H 113.039 kJ/mol # Calculated enthalpy of reaction GdO+ -# Enthalpy of formation: -205.5 kcal/mol - -analytic 2.0599e+002 3.2521e-002 -1.4547e+004 -7.4048e+001 -2.2705e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Gd+++ = GdO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -34.4333 - -delta_H 283.817 kJ/mol # Calculated enthalpy of reaction GdO2- -# Enthalpy of formation: -233 kcal/mol - -analytic 1.2067e+002 6.6276e-003 -1.5531e+004 -4.0448e+001 -4.3587e+005 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Gd+++ = GdO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -25.2707 - -delta_H 224.405 kJ/mol # Calculated enthalpy of reaction GdO2H -# Enthalpy of formation: -247.2 kcal/mol - -analytic 3.6324e+002 4.7938e-002 -2.4275e+004 -1.2988e+002 -3.7889e+002 -# -Range: 0-300 - -1.0000 H2O + 1.0000 Gd+++ = GdOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.9075 - -delta_H 79.9855 kJ/mol # Calculated enthalpy of reaction GdOH+2 -# Enthalpy of formation: -213.4 kcal/mol - -analytic 8.3265e+001 1.4153e-002 -6.8229e+003 -2.9301e+001 -1.0649e+002 -# -Range: 0-300 - -1.0000 HPO4-- + 1.0000 Gd+++ = GdPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.1218 - -delta_H 0 # Not possible to calculate enthalpy of reaction GdPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Gd+++ = GdSO4+ - -llnl_gamma 4.0 - log_k -3.687 - -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction GdSO4+ -# Enthalpy of formation: -376.8 kcal/mol - -analytic 3.0783e+002 8.6798e-002 -1.1246e+004 -1.2109e+002 -1.7557e+002 -# -Range: 0-300 - -1.0000 O_phthalate-2 + 1.0000 H+ = H(O_phthalate)- - -llnl_gamma 4.0 - log_k +5.4080 - -delta_H 0 # Not possible to calculate enthalpy of reaction H(O_phthalate)- -# Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 1.0000 CrO4-- = H2CrO4 - -llnl_gamma 3.0 - log_k +5.1750 - -delta_H 42.8274 kJ/mol # Calculated enthalpy of reaction H2CrO4 -# Enthalpy of formation: -200.364 kcal/mol - -analytic 4.2958e+002 1.4939e-001 -1.1474e+004 -1.7396e+002 -1.9499e+002 -# -Range: 0-200 - -2.0000 H+ + 2.0000 F- = H2F2 - -llnl_gamma 3.0 - log_k +6.7680 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2F2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 2.0000 H+ = H2P2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +12.0709 - -delta_H 19.7192 kJ/mol # Calculated enthalpy of reaction H2P2O7-2 -# Enthalpy of formation: -544.6 kcal/mol - -analytic 1.4825e+002 6.7021e-002 -2.8329e+003 -5.9251e+001 -4.4248e+001 -# -Range: 0-300 - -3.0000 H+ + 1.0000 HPO4-- + 1.0000 F- = H2PO3F +1.0000 H2O - -llnl_gamma 3.0 - log_k +12.1047 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2PO3F -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 H+ = H2PO4- - -llnl_gamma 4.0 - log_k +7.2054 - -delta_H -4.20492 kJ/mol # Calculated enthalpy of reaction H2PO4- -# Enthalpy of formation: -309.82 kcal/mol - -analytic 8.2149e+001 3.4077e-002 -1.0431e+003 -3.2970e+001 -1.6301e+001 -# -Range: 0-300 - -#1.0000 HS- + 1.0000 H+ = H2S -# -llnl_gamma 3.0 -# log_k +6.99 -# -analytic 1.2833e+002 5.1641e-002 -1.1681e+003 -5.3665e+001 -1.8266e+001 -# -Range: 0-300 -# these (above) H2S values are from -# Suleimenov & Seward, Geochim. Cosmochim. Acta, v. 61, p. 5187-5198. -# values below are the original Thermo.com.v8.r6.230 data from somewhere - -1.0000 HS- + 1.0000 H+ = H2S - -llnl_gamma 3.0 - log_k +6.9877 - -delta_H -21.5518 kJ/mol # Calculated enthalpy of reaction H2S -# Enthalpy of formation: -9.001 kcal/mol - -analytic 3.9283e+001 2.8727e-002 1.3477e+003 -1.8331e+001 2.1018e+001 -# -Range: 0-300 - -2.0000 H+ + 1.0000 SO3-- = H2SO3 - -llnl_gamma 3.0 - log_k +9.2132 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2SO3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 1.0000 SO4-- = H2SO4 - -llnl_gamma 3.0 - log_k -1.0209 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2SO4 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 1.0000 Se-- = H2Se - -llnl_gamma 3.0 - log_k +18.7606 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2Se -# Enthalpy of formation: 19.412 kJ/mol - -analytic 3.6902e+002 1.2855e-001 -5.5900e+003 -1.4946e+002 -9.5054e+001 -# -Range: 0-200 - -2.0000 H+ + 1.0000 SeO3-- = H2SeO3 - -llnl_gamma 3.0 - log_k +9.8589 - -delta_H 1.7238 kJ/mol # Calculated enthalpy of reaction H2SeO3 -# Enthalpy of formation: -507.469 kJ/mol - -analytic 2.7850e+002 1.0460e-001 -5.4934e+003 -1.1371e+002 -9.3383e+001 -# -Range: 0-200 - -2.0000 H2O + 1.0000 SiO2 = H2SiO4-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -22.96 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2SiO4-2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 1.0000 TcO4-- = H2TcO4 - -llnl_gamma 3.0 - log_k +9.0049 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2TcO4 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 VO2+ = H2VO4- + 2.0000 H+ - -llnl_gamma 4.0 - log_k -7.0922 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2VO4- -# Enthalpy of formation: -0 kcal/mol - -analytic 1.7105e+001 -1.7503e-002 -4.2671e+003 -1.8910e+000 -6.6589e+001 -# -Range: 0-300 - -1.0000 H2AsO4- + 1.0000 H+ = H3AsO4 - -llnl_gamma 3.0 - log_k +2.2492 - -delta_H 7.17876 kJ/mol # Calculated enthalpy of reaction H3AsO4 -# Enthalpy of formation: -902.381 kJ/mol - -analytic 1.4043e+002 4.6288e-002 -3.5868e+003 -5.6560e+001 -6.0957e+001 -# -Range: 0-200 - -3.0000 H+ + 2.0000 HPO4-- = H3P2O7- +1.0000 H2O - -llnl_gamma 4.0 - log_k +14.4165 - -delta_H 21.8112 kJ/mol # Calculated enthalpy of reaction H3P2O7- -# Enthalpy of formation: -544.1 kcal/mol - -analytic 2.3157e+002 1.0161e-001 -4.3723e+003 -9.4050e+001 -6.8295e+001 -# -Range: 0-300 - -2.0000 H+ + 1.0000 HPO4-- = H3PO4 - -llnl_gamma 3.0 - log_k +9.3751 - -delta_H 3.74468 kJ/mol # Calculated enthalpy of reaction H3PO4 -# Enthalpy of formation: -307.92 kcal/mol - -analytic 1.8380e+002 6.7320e-002 -3.7792e+003 -7.3463e+001 -5.9025e+001 -# -Range: 0-300 - -8.0000 H2O + 4.0000 SiO2 = H4(H2SiO4)4---- +4.0000 H+ - -llnl_gamma 4.0 - log_k -35.94 - -delta_H 0 # Not possible to calculate enthalpy of reaction H4(H2SiO4)4-4 -# Enthalpy of formation: -0 kcal/mol - -4.0000 H+ + 2.0000 HPO4-- = H4P2O7 +1.0000 H2O - -llnl_gamma 3.0 - log_k +15.9263 - -delta_H 29.7226 kJ/mol # Calculated enthalpy of reaction H4P2O7 -# Enthalpy of formation: -2268.6 kJ/mol - -analytic 6.9026e+002 2.4309e-001 -1.6165e+004 -2.7989e+002 -2.7475e+002 -# -Range: 0-200 - -8.0000 H2O + 4.0000 SiO2 = H6(H2SiO4)4-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -13.64 - -delta_H 0 # Not possible to calculate enthalpy of reaction H6(H2SiO4)4-2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Al+++ = HAlO2 +3.0000 H+ - -llnl_gamma 3.0 - log_k -16.4329 - -delta_H 144.704 kJ/mol # Calculated enthalpy of reaction HAlO2 -# Enthalpy of formation: -230.73 kcal/mol - -analytic 4.2012e+001 1.9980e-002 -7.7847e+003 -1.5470e+001 -1.2149e+002 -# -Range: 0-300 - -1.0000 H2AsO3- + 1.0000 H+ = HAsO2 +1.0000 H2O - -llnl_gamma 3.0 - log_k 9.2792 - -delta_H 0 # Not possible to calculate enthalpy of reaction HAsO2 -# Enthalpy of formation: -0 kcal/mol - -analytic 3.1290e+002 9.3052e-002 -6.5052e+003 -1.2510e+002 -1.1058e+002 -# -Range: 0-200 - -1.0000 H2AsO4- + 1.0000 H+ + 1.0000 F- = HAsO3F- +1.0000 H2O - -llnl_gamma 4.0 - log_k +46.1158 - -delta_H 0 # Not possible to calculate enthalpy of reaction HAsO3F- -# Enthalpy of formation: -0 kcal/mol - -1.0000 H2AsO4- = HAsO4-- +1.0000 H+ - -llnl_gamma 4.0 - log_k -6.7583 - -delta_H 3.22168 kJ/mol # Calculated enthalpy of reaction HAsO4-2 -# Enthalpy of formation: -216.62 kcal/mol - -analytic -8.4546e+001 -3.4630e-002 1.1829e+003 3.3997e+001 1.8483e+001 -# -Range: 0-300 - -3.0000 H+ + 2.0000 HS- + 1.0000 H2AsO3- = HAsS2 +3.0000 H2O - -llnl_gamma 3.0 - log_k +30.4803 - -delta_H 0 # Not possible to calculate enthalpy of reaction HAsS2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 H+ + 1.0000 BrO- = HBrO - -llnl_gamma 3.0 - log_k +8.3889 - -delta_H 0 # Not possible to calculate enthalpy of reaction HBrO -# Enthalpy of formation: -0 kcal/mol - -1.0000 H+ + 1.0000 Cyanide- = HCyanide - -llnl_gamma 3.0 - log_k +9.2359 - -delta_H -43.5136 kJ/mol # Calculated enthalpy of reaction HCyanide -# Enthalpy of formation: 25.6 kcal/mol - -analytic 1.0536e+001 2.3105e-002 3.3038e+003 -7.7786e+000 5.1550e+001 -# -Range: 0-300 - -1.0000 H+ + 1.0000 Cl- = HCl - -llnl_gamma 3.0 - log_k -0.67 - -delta_H 0 # Not possible to calculate enthalpy of reaction HCl -# Enthalpy of formation: -0 kcal/mol - -analytic 4.1893e+002 1.1103e-001 -1.1784e+004 -1.6697e+002 -1.8400e+002 -# -Range: 0-300 - -1.0000 H+ + 1.0000 ClO- = HClO - -llnl_gamma 3.0 - log_k +7.5692 - -delta_H 0 # Not possible to calculate enthalpy of reaction HClO -# Enthalpy of formation: -0 kcal/mol - -1.0000 H+ + 1.0000 ClO2- = HClO2 - -llnl_gamma 3.0 - log_k +3.1698 - -delta_H 0 # Not possible to calculate enthalpy of reaction HClO2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Co++ = HCoO2- +3.0000 H+ - -llnl_gamma 4.0 - log_k -21.243 - -delta_H 0 # Not possible to calculate enthalpy of reaction HCoO2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 H+ + 1.0000 CrO4-- = HCrO4- - -llnl_gamma 4.0 - log_k +6.4944 - -delta_H 2.9288 kJ/mol # Calculated enthalpy of reaction HCrO4- -# Enthalpy of formation: -209.9 kcal/mol - -analytic 4.4944e+001 3.2740e-002 1.8400e+002 -1.9722e+001 2.8578e+000 -# -Range: 0-300 - -1.0000 H+ + 1.0000 F- = HF - -llnl_gamma 3.0 - log_k +3.1681 - -delta_H 13.87 kJ/mol # Calculated enthalpy of reaction HF -# Enthalpy of formation: -76.835 kcal/mol - -analytic 8.6626e+001 3.2861e-002 -2.3026e+003 -3.4559e+001 -3.5956e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 H+ = HF2- - -llnl_gamma 4.0 - log_k +2.5509 - -delta_H 20.7526 kJ/mol # Calculated enthalpy of reaction HF2- -# Enthalpy of formation: -155.34 kcal/mol - -analytic 1.4359e+002 4.0866e-002 -4.6776e+003 -5.5574e+001 -7.3032e+001 -# -Range: 0-300 - -1.0000 IO3- + 1.0000 H+ = HIO3 - -llnl_gamma 3.0 - log_k +0.4915 - -delta_H 0 # Not possible to calculate enthalpy of reaction HIO3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 N3- + 1.0000 H+ = HN3 - -llnl_gamma 3.0 - log_k +4.7001 - -delta_H -15 kJ/mol # Calculated enthalpy of reaction HN3 -# Enthalpy of formation: 260.14 kJ/mol - -analytic 6.9976e+001 2.4359e-002 -7.1947e+002 -2.8339e+001 -1.2242e+001 -# -Range: 0-200 - -1.0000 NO2- + 1.0000 H+ = HNO2 - -llnl_gamma 3.0 - log_k +3.2206 - -delta_H -14.782 kJ/mol # Calculated enthalpy of reaction HNO2 -# Enthalpy of formation: -119.382 kJ/mol - -analytic 1.9653e+000 -1.1603e-004 0.0000e+000 0.0000e+000 1.1569e+005 -# -Range: 0-200 - -1.0000 NO3- + 1.0000 H+ = HNO3 - -llnl_gamma 3.0 - log_k -1.3025 - -delta_H 16.8155 kJ/mol # Calculated enthalpy of reaction HNO3 -# Enthalpy of formation: -45.41 kcal/mol - -analytic 9.9744e+001 3.4866e-002 -3.0975e+003 -4.0830e+001 -4.8363e+001 -# -Range: 0-300 - -2.0000 HPO4-- + 1.0000 H+ = HP2O7--- +1.0000 H2O - -llnl_gamma 4.0 - log_k +5.4498 - -delta_H 23.3326 kJ/mol # Calculated enthalpy of reaction HP2O7-3 -# Enthalpy of formation: -2274.99 kJ/mol - -analytic 3.9159e+002 1.5438e-001 -8.7071e+003 -1.6283e+002 -1.3598e+002 -# -Range: 0-300 - -2.0000 H+ + 1.0000 HPO4-- + 1.0000 F- = HPO3F- +1.0000 H2O - -llnl_gamma 4.0 - log_k +11.2988 - -delta_H 0 # Not possible to calculate enthalpy of reaction HPO3F- -# Enthalpy of formation: -0 kcal/mol - -1.0000 RuO4 + 1.0000 H2O = HRuO5- +1.0000 H+ - -llnl_gamma 4.0 - log_k -11.5244 - -delta_H 0 # Not possible to calculate enthalpy of reaction HRuO5- -# Enthalpy of formation: -0 kcal/mol - -1.0000 H+ + 1.0000 S2O3-- = HS2O3- - -llnl_gamma 4.0 - log_k 1.0139 - -delta_H 0 # Not possible to calculate enthalpy of reaction HS2O3- -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO3-- + 1.0000 H+ = HSO3- - -llnl_gamma 4.0 - log_k +7.2054 - -delta_H 9.33032 kJ/mol # Calculated enthalpy of reaction HSO3- -# Enthalpy of formation: -149.67 kcal/mol - -analytic 5.5899e+001 3.3623e-002 -5.0120e+002 -2.3040e+001 -7.8373e+000 -# -Range: 0-300 - -1.0000 SO4-- + 1.0000 H+ = HSO4- - -llnl_gamma 4.0 - log_k +1.9791 - -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction HSO4- -# Enthalpy of formation: -212.5 kcal/mol - -analytic 4.9619e+001 3.0368e-002 -1.1558e+003 -2.1335e+001 -1.8051e+001 -# -Range: 0-300 - -4.0000 HS- + 3.0000 H+ + 2.0000 Sb(OH)3 = HSb2S4- +6.0000 H2O - -llnl_gamma 4.0 - log_k +50.6100 - -delta_H 0 # Not possible to calculate enthalpy of reaction HSb2S4- -# Enthalpy of formation: -0 kcal/mol - -analytic 1.7540e+002 8.2177e-002 1.0786e+004 -7.4874e+001 1.6826e+002 -# -Range: 0-300 - -1.0000 SeO3-- + 1.0000 H+ = HSeO3- - -llnl_gamma 4.0 - log_k +7.2861 - -delta_H -5.35552 kJ/mol # Calculated enthalpy of reaction HSeO3- -# Enthalpy of formation: -122.98 kcal/mol - -analytic 5.0427e+001 3.2250e-002 2.9603e+002 -2.1711e+001 4.6044e+000 -# -Range: 0-300 - -1.0000 SeO4-- + 1.0000 H+ = HSeO4- - -llnl_gamma 4.0 - log_k +1.9058 - -delta_H 17.5728 kJ/mol # Calculated enthalpy of reaction HSeO4- -# Enthalpy of formation: -139 kcal/mol - -analytic 1.4160e+002 3.9801e-002 -4.5392e+003 -5.5088e+001 -7.0872e+001 -# -Range: 0-300 - -1.0000 SiO2 + 1.0000 H2O = HSiO3- +1.0000 H+ - -llnl_gamma 4.0 - log_k -9.9525 - -delta_H 25.991 kJ/mol # Calculated enthalpy of reaction HSiO3- -# Enthalpy of formation: -271.88 kcal/mol - -analytic 6.4211e+001 -2.4872e-002 -1.2707e+004 -1.4681e+001 1.0853e+006 -# -Range: 0-300 - -1.0000 TcO4-- + 1.0000 H+ = HTcO4- - -llnl_gamma 4.0 - log_k +8.7071 - -delta_H 0 # Not possible to calculate enthalpy of reaction HTcO4- -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 VO2+ = HVO4-- +3.0000 H+ - -llnl_gamma 4.0 - log_k -15.1553 - -delta_H 0 # Not possible to calculate enthalpy of reaction HVO4-2 -# Enthalpy of formation: -0 kcal/mol - -analytic -7.0660e+001 -5.2457e-002 -3.5380e+003 3.3534e+001 -5.5186e+001 -# -Range: 0-300 - -5.0000 H2O + 1.0000 Hf++++ = Hf(OH)5- +5.0000 H+ - -llnl_gamma 4.0 - log_k -17.1754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(OH)5- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Hf++++ + 1.0000 H2O = HfOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -0.2951 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfOH+3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Hg++ = Hg(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -2.6242 - -delta_H -30.334 kJ/mol # Calculated enthalpy of reaction Hg(CH3COO)2 -# Enthalpy of formation: -198.78 kcal/mol - -analytic -2.1959e+001 2.7774e-003 -3.2500e+003 7.7351e+000 9.1508e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Hg++ = Hg(CH3COO)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -4.3247 - -delta_H -59.7057 kJ/mol # Calculated enthalpy of reaction Hg(CH3COO)3- -# Enthalpy of formation: -321.9 kcal/mol - -analytic 2.1656e+001 -2.0392e-003 -1.2866e+004 -3.2932e+000 2.3073e+006 -# -Range: 0-300 - -1.0000 Hg++ + 1.0000 CH3COOH = HgCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -0.4691 - -delta_H -16.5686 kJ/mol # Calculated enthalpy of reaction HgCH3COO+ -# Enthalpy of formation: -79.39 kcal/mol - -analytic -1.6355e+001 1.9446e-003 -2.6676e+002 5.1978e+000 2.9805e+005 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Ho+++ = Ho(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9844 - -delta_H -28.1583 kJ/mol # Calculated enthalpy of reaction Ho(CH3COO)2+ -# Enthalpy of formation: -407.93 kcal/mol - -analytic -2.7925e+001 2.5599e-003 -1.4779e+003 8.0785e+000 6.3736e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Ho+++ = Ho(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3783 - -delta_H -47.5721 kJ/mol # Calculated enthalpy of reaction Ho(CH3COO)3 -# Enthalpy of formation: -528.67 kcal/mol - -analytic -6.5547e+001 -1.1963e-004 -1.8887e+002 1.9796e+001 7.9041e+005 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Ho+++ = Ho(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.3576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Ho+++ = Ho(HPO4)2- - -llnl_gamma 4.0 - log_k +9.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Ho+++ = Ho(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.3437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Ho+++ = Ho(SO4)2- - -llnl_gamma 4.0 - log_k +4.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Ho+++ + 1.0000 CH3COOH = HoCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1184 - -delta_H -14.3093 kJ/mol # Calculated enthalpy of reaction HoCH3COO+2 -# Enthalpy of formation: -288.52 kcal/mol - -analytic -1.8265e+001 1.0753e-003 -6.0695e+002 5.7211e+000 3.3055e+005 -# -Range: 0-300 - -1.0000 Ho+++ + 1.0000 HCO3- = HoCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.2591 - -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction HoCO3+ -# Enthalpy of formation: -312.6 kcal/mol - -analytic 2.3773e+002 5.4448e-002 -6.9916e+003 -9.4063e+001 -1.0917e+002 -# -Range: 0-300 - -1.0000 Ho+++ + 1.0000 Cl- = HoCl++ - -llnl_gamma 4.5 - log_k +0.2353 - -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction HoCl+2 -# Enthalpy of formation: -205.6 kcal/mol - -analytic 7.3746e+001 3.7733e-002 -1.5627e+003 -3.2126e+001 -2.4407e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Ho+++ = HoCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 17.8489 kJ/mol # Calculated enthalpy of reaction HoCl2+ -# Enthalpy of formation: -244.6 kcal/mol - -analytic 1.9928e+002 7.9025e-002 -4.7775e+003 -8.3582e+001 -7.4607e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Ho+++ = HoCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 10.0374 kJ/mol # Calculated enthalpy of reaction HoCl3 -# Enthalpy of formation: -286.4 kcal/mol - -analytic 3.8608e+002 1.2638e-001 -9.8339e+003 -1.5809e+002 -1.5356e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Ho+++ = HoCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -12.4181 kJ/mol # Calculated enthalpy of reaction HoCl4- -# Enthalpy of formation: -331.7 kcal/mol - -analytic 4.2179e+002 1.2576e-001 -1.0495e+004 -1.7172e+002 -1.6388e+002 -# -Range: 0-300 - -1.0000 Ho+++ + 1.0000 F- = HoF++ - -llnl_gamma 4.5 - log_k +4.7352 - -delta_H 22.3844 kJ/mol # Calculated enthalpy of reaction HoF+2 -# Enthalpy of formation: -243.8 kcal/mol - -analytic 9.5294e+001 4.1702e-002 -2.4460e+003 -3.8296e+001 -3.8195e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Ho+++ = HoF2+ - -llnl_gamma 4.0 - log_k +8.2976 - -delta_H 11.7152 kJ/mol # Calculated enthalpy of reaction HoF2+ -# Enthalpy of formation: -326.5 kcal/mol - -analytic 2.2330e+002 8.3497e-002 -4.9105e+003 -9.0272e+001 -7.6690e+001 -# -Range: 0-300 - -3.0000 F- + 1.0000 Ho+++ = HoF3 - -llnl_gamma 3.0 - log_k +10.9071 - -delta_H -12.7612 kJ/mol # Calculated enthalpy of reaction HoF3 -# Enthalpy of formation: -412.5 kcal/mol - -analytic 4.1587e+002 1.3308e-001 -9.2193e+003 -1.6717e+002 -1.4398e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 Ho+++ = HoF4- - -llnl_gamma 4.0 - log_k +13.0035 - -delta_H -57.7392 kJ/mol # Calculated enthalpy of reaction HoF4- -# Enthalpy of formation: -503.4 kcal/mol - -analytic 4.4575e+002 1.3182e-001 -8.5485e+003 -1.7916e+002 -1.3352e+002 -# -Range: 0-300 - -1.0000 Ho+++ + 1.0000 HPO4-- + 1.0000 H+ = HoH2PO4++ - -llnl_gamma 4.5 - log_k +9.4484 - -delta_H -17.9284 kJ/mol # Calculated enthalpy of reaction HoH2PO4+2 -# Enthalpy of formation: -482.1 kcal/mol - -analytic 1.0273e+002 6.3161e-002 5.5160e+002 -4.6035e+001 8.5766e+000 -# -Range: 0-300 - -1.0000 Ho+++ + 1.0000 HCO3- = HoHCO3++ - -llnl_gamma 4.5 - log_k +1.6991 - -delta_H 7.52283 kJ/mol # Calculated enthalpy of reaction HoHCO3+2 -# Enthalpy of formation: -332.1 kcal/mol - -analytic 3.3420e+001 3.1394e-002 1.9804e+002 -1.6859e+001 3.0801e+000 -# -Range: 0-300 - -1.0000 Ho+++ + 1.0000 HPO4-- = HoHPO4+ - -llnl_gamma 4.0 - log_k +5.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction HoHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Ho+++ = HoNO3++ - -llnl_gamma 4.5 - log_k +0.2148 - -delta_H -30.0035 kJ/mol # Calculated enthalpy of reaction HoNO3+2 -# Enthalpy of formation: -225.6 kcal/mol - -analytic 1.1069e+001 2.5142e-002 2.3943e+003 -1.0650e+001 3.7358e+001 -# -Range: 0-300 - -1.0000 Ho+++ + 1.0000 H2O = HoO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.0438 - -delta_H 108.437 kJ/mol # Calculated enthalpy of reaction HoO+ -# Enthalpy of formation: -211.4 kcal/mol - -analytic 1.9152e+002 3.0627e-002 -1.3817e+004 -6.8846e+001 -2.1565e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Ho+++ = HoO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -33.4804 - -delta_H 274.613 kJ/mol # Calculated enthalpy of reaction HoO2- -# Enthalpy of formation: -240 kcal/mol - -analytic 1.7987e+002 1.2731e-002 -2.0007e+004 -6.0642e+001 -3.1224e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Ho+++ = HoO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -24.5377 - -delta_H 216.873 kJ/mol # Calculated enthalpy of reaction HoO2H -# Enthalpy of formation: -253.8 kcal/mol - -analytic 3.3877e+002 4.6282e-002 -2.2925e+004 -1.2133e+002 -3.5782e+002 -# -Range: 0-300 - -1.0000 Ho+++ + 1.0000 H2O = HoOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.7609 - -delta_H 76.6383 kJ/mol # Calculated enthalpy of reaction HoOH+2 -# Enthalpy of formation: -219 kcal/mol - -analytic 7.1326e+001 1.2657e-002 -6.2461e+003 -2.5018e+001 -9.7485e+001 -# -Range: 0-300 - -1.0000 Ho+++ + 1.0000 HPO4-- = HoPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.2782 - -delta_H 0 # Not possible to calculate enthalpy of reaction HoPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Ho+++ = HoSO4+ - -llnl_gamma 4.0 - log_k +3.5697 - -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction HoSO4+ -# Enthalpy of formation: -381.5 kcal/mol - -analytic 3.0709e+002 8.6579e-002 -9.0693e+003 -1.2078e+002 -1.4161e+002 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 K+ = K(CH3COO)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -10.2914 - -delta_H -1.79912 kJ/mol # Calculated enthalpy of reaction K(CH3COO)2- -# Enthalpy of formation: -292.9 kcal/mol - -analytic -2.3036e+002 -4.6369e-002 7.0305e+003 8.4997e+001 1.0977e+002 -# -Range: 0-300 - -1.0000 K+ + 1.0000 Br- = KBr - -llnl_gamma 3.0 - log_k -1.7372 - -delta_H 12.5102 kJ/mol # Calculated enthalpy of reaction KBr -# Enthalpy of formation: -86.32 kcal/mol - -analytic 1.1320e+002 3.4227e-002 -3.6401e+003 -4.5633e+001 -5.6833e+001 -# -Range: 0-300 - -1.0000 K+ + 1.0000 CH3COOH = KCH3COO +1.0000 H+ - -llnl_gamma 3.0 - log_k -5.0211 - -delta_H 4.8116 kJ/mol # Calculated enthalpy of reaction KCH3COO -# Enthalpy of formation: -175.22 kcal/mol - -analytic -2.6676e-001 -3.2675e-003 -1.7143e+003 -7.1907e-003 1.7726e+005 -# -Range: 0-300 - -1.0000 K+ + 1.0000 Cl- = KCl - -llnl_gamma 3.0 - log_k -1.4946 - -delta_H 14.1963 kJ/mol # Calculated enthalpy of reaction KCl -# Enthalpy of formation: -96.81 kcal/mol - -analytic 1.3650e+002 3.8405e-002 -4.4014e+003 -5.4421e+001 -6.8721e+001 -# -Range: 0-300 - -1.0000 K+ + 1.0000 HPO4-- = KHPO4- - -llnl_gamma 4.0 - log_k +0.7800 - -delta_H 0 # Not possible to calculate enthalpy of reaction KHPO4- -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 K+ + 1.0000 H+ = KHSO4 - -llnl_gamma 3.0 - log_k +0.8136 - -delta_H 29.8319 kJ/mol # Calculated enthalpy of reaction KHSO4 -# Enthalpy of formation: -270.54 kcal/mol - -analytic 1.2620e+002 5.7349e-002 -3.3670e+003 -5.3003e+001 -5.2576e+001 -# -Range: 0-300 - -1.0000 K+ + 1.0000 I- = KI - -llnl_gamma 3.0 - log_k -1.598 - -delta_H 9.16296 kJ/mol # Calculated enthalpy of reaction KI -# Enthalpy of formation: -71.68 kcal/mol - -analytic 1.0816e+002 3.3683e-002 -3.2143e+003 -4.4054e+001 -5.0187e+001 -# -Range: 0-300 - -1.0000 K+ + 1.0000 H2O = KOH +1.0000 H+ - -llnl_gamma 3.0 - log_k -14.46 - -delta_H 0 # Not possible to calculate enthalpy of reaction KOH -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 K+ = KP2O7--- +1.0000 H2O - -llnl_gamma 4.0 - log_k -1.4286 - -delta_H 34.1393 kJ/mol # Calculated enthalpy of reaction KP2O7-3 -# Enthalpy of formation: -2516.36 kJ/mol - -analytic 4.1930e+002 1.4676e-001 -1.1169e+004 -1.7255e+002 -1.7441e+002 -# -Range: 0-300 - -1.0000 SO4-- + 1.0000 K+ = KSO4- - -llnl_gamma 4.0 - log_k +0.8796 - -delta_H 2.88696 kJ/mol # Calculated enthalpy of reaction KSO4- -# Enthalpy of formation: -276.98 kcal/mol - -analytic 9.9073e+001 3.7817e-002 -2.1628e+003 -4.1297e+001 -3.3779e+001 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 La+++ = La(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.3949 - -delta_H -23.1375 kJ/mol # Calculated enthalpy of reaction La(CH3COO)2+ -# Enthalpy of formation: -407.33 kcal/mol - -analytic -1.2805e+001 2.8482e-003 -2.2521e+003 2.9108e+000 6.1659e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 La+++ = La(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.5982 - -delta_H -41.9237 kJ/mol # Calculated enthalpy of reaction La(CH3COO)3 -# Enthalpy of formation: -527.92 kcal/mol - -analytic -3.3456e+001 1.2371e-003 -1.5978e+003 8.6343e+000 7.5717e+005 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 La+++ = La(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -8.8576 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 La+++ = La(HPO4)2- - -llnl_gamma 4.0 - log_k +8.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 La+++ = La(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.0437 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 La+++ = La(SO4)2- - -llnl_gamma 4.0 - log_k +5.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 La+++ + 2.0000 H2O = La2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -22.9902 - -delta_H 0 # Not possible to calculate enthalpy of reaction La2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol - -9.0000 H2O + 5.0000 La+++ = La5(OH)9+6 +9.0000 H+ - -llnl_gamma 6.0 - log_k -71.1557 - -delta_H 0 # Not possible to calculate enthalpy of reaction La5(OH)9+6 -# Enthalpy of formation: -0 kcal/mol - -1.0000 La+++ + 1.0000 CH3COOH = LaCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.2063 - -delta_H -12.5938 kJ/mol # Calculated enthalpy of reaction LaCH3COO+2 -# Enthalpy of formation: -288.71 kcal/mol - -analytic -1.0803e+001 8.5239e-004 -1.1143e+003 3.3273e+000 3.4305e+005 -# -Range: 0-300 - -1.0000 La+++ + 1.0000 HCO3- = LaCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.212 - -delta_H 89.5292 kJ/mol # Calculated enthalpy of reaction LaCO3+ -# Enthalpy of formation: -313.1 kcal/mol - -analytic 2.3046e+002 5.2419e-002 -7.1063e+003 -9.1109e+001 -1.1095e+002 -# -Range: 0-300 - -1.0000 La+++ + 1.0000 Cl- = LaCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction LaCl+2 -# Enthalpy of formation: -206.1 kcal/mol - -analytic 7.5802e+001 3.6641e-002 -1.7234e+003 -3.2578e+001 -2.6914e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 La+++ = LaCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 19.1041 kJ/mol # Calculated enthalpy of reaction LaCl2+ -# Enthalpy of formation: -244.9 kcal/mol - -analytic 2.1632e+002 7.9274e-002 -5.5883e+003 -8.9400e+001 -8.7264e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 La+++ = LaCl3 - -llnl_gamma 3.0 - log_k -0.3936 - -delta_H 12.5478 kJ/mol # Calculated enthalpy of reaction LaCl3 -# Enthalpy of formation: -286.4 kcal/mol - -analytic 4.2210e+002 1.2792e-001 -1.1444e+004 -1.7062e+002 -1.7869e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 La+++ = LaCl4- - -llnl_gamma 4.0 - log_k -0.818 - -delta_H -7.81571 kJ/mol # Calculated enthalpy of reaction LaCl4- -# Enthalpy of formation: -331.2 kcal/mol - -analytic 4.8802e+002 1.3053e-001 -1.3344e+004 -1.9518e+002 -2.0836e+002 -# -Range: 0-300 - -1.0000 La+++ + 1.0000 F- = LaF++ - -llnl_gamma 4.5 - log_k +3.8556 - -delta_H 26.5684 kJ/mol # Calculated enthalpy of reaction LaF+2 -# Enthalpy of formation: -243.4 kcal/mol - -analytic 9.6765e+001 4.0513e-002 -2.8042e+003 -3.8617e+001 -4.3785e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 La+++ = LaF2+ - -llnl_gamma 4.0 - log_k +6.6850 - -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction LaF2+ -# Enthalpy of formation: -325.2 kcal/mol - -analytic 2.3923e+002 8.3559e-002 -6.0536e+003 -9.5821e+001 -9.4531e+001 -# -Range: 0-300 - -3.0000 F- + 1.0000 La+++ = LaF3 - -llnl_gamma 3.0 - log_k +8.7081 - -delta_H -0.6276 kJ/mol # Calculated enthalpy of reaction LaF3 -# Enthalpy of formation: -410.2 kcal/mol - -analytic 4.5123e+002 1.3460e-001 -1.1334e+004 -1.7967e+002 -1.7699e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 La+++ = LaF4- - -llnl_gamma 4.0 - log_k +10.3647 - -delta_H -41.4216 kJ/mol # Calculated enthalpy of reaction LaF4- -# Enthalpy of formation: -500.1 kcal/mol - -analytic 5.0747e+002 1.3563e-001 -1.1903e+004 -2.0108e+002 -1.8588e+002 -# -Range: 0-300 - -1.0000 La+++ + 1.0000 HPO4-- + 1.0000 H+ = LaH2PO4++ - -llnl_gamma 4.5 - log_k +9.7417 - -delta_H -18.3468 kJ/mol # Calculated enthalpy of reaction LaH2PO4+2 -# Enthalpy of formation: -482.8 kcal/mol - -analytic 1.0530e+002 6.2177e-002 4.0686e+002 -4.6642e+001 6.3174e+000 -# -Range: 0-300 - -1.0000 La+++ + 1.0000 HCO3- = LaHCO3++ - -llnl_gamma 4.5 - log_k +1.9923 - -delta_H 6.68603 kJ/mol # Calculated enthalpy of reaction LaHCO3+2 -# Enthalpy of formation: -332.9 kcal/mol - -analytic 3.6032e+001 3.0405e-002 5.1281e+001 -1.7478e+001 7.8933e-001 -# -Range: 0-300 - -1.0000 La+++ + 1.0000 HPO4-- = LaHPO4+ - -llnl_gamma 4.0 - log_k +5.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 La+++ = LaNO3++ - -llnl_gamma 4.5 - log_k +0.5813 - -delta_H -29.1667 kJ/mol # Calculated enthalpy of reaction LaNO3+2 -# Enthalpy of formation: -226 kcal/mol - -analytic 1.4136e+001 2.4247e-002 2.1998e+003 -1.1371e+001 3.4322e+001 -# -Range: 0-300 - -1.0000 La+++ + 1.0000 H2O = LaO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -18.1696 - -delta_H 121.407 kJ/mol # Calculated enthalpy of reaction LaO+ -# Enthalpy of formation: -208.9 kcal/mol - -analytic 1.8691e+002 2.9275e-002 -1.4385e+004 -6.6906e+001 -2.2452e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 La+++ = LaO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -40.8105 - -delta_H 318.126 kJ/mol # Calculated enthalpy of reaction LaO2- -# Enthalpy of formation: -230.2 kcal/mol - -analytic 1.8374e+002 1.2355e-002 -2.2472e+004 -6.1779e+001 -3.5070e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 La+++ = LaO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -27.9095 - -delta_H 237.375 kJ/mol # Calculated enthalpy of reaction LaO2H -# Enthalpy of formation: -249.5 kcal/mol - -analytic 3.3862e+002 4.4808e-002 -2.4083e+004 -1.2088e+002 -3.7589e+002 -# -Range: 0-300 - -1.0000 La+++ + 1.0000 H2O = LaOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -8.6405 - -delta_H 82.4959 kJ/mol # Calculated enthalpy of reaction LaOH+2 -# Enthalpy of formation: -218.2 kcal/mol - -analytic 6.5529e+001 1.1104e-002 -6.3920e+003 -2.2646e+001 -9.9760e+001 -# -Range: 0-300 - -1.0000 La+++ + 1.0000 HPO4-- = LaPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -1.3618 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 La+++ = LaSO4+ - -llnl_gamma 4.0 - log_k +3.6430 - -delta_H 18.4096 kJ/mol # Calculated enthalpy of reaction LaSO4+ -# Enthalpy of formation: -382.6 kcal/mol - -analytic 3.0657e+002 8.4093e-002 -9.1074e+003 -1.2019e+002 -1.4220e+002 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Li+ = Li(CH3COO)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -9.2674 - -delta_H -24.7609 kJ/mol # Calculated enthalpy of reaction Li(CH3COO)2- -# Enthalpy of formation: -304.67 kcal/mol - -analytic -3.3702e+002 -6.0849e-002 1.1952e+004 1.2359e+002 1.8659e+002 -# -Range: 0-300 - -1.0000 Li+ + 1.0000 CH3COOH = LiCH3COO +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.4589 - -delta_H -6.64419 kJ/mol # Calculated enthalpy of reaction LiCH3COO -# Enthalpy of formation: -184.24 kcal/mol - -analytic -3.8391e+000 -7.3938e-004 -1.0829e+003 3.4134e-001 2.1318e+005 -# -Range: 0-300 - -1.0000 Li+ + 1.0000 Cl- = LiCl - -llnl_gamma 3.0 - log_k -1.5115 - -delta_H 3.36812 kJ/mol # Calculated enthalpy of reaction LiCl -# Enthalpy of formation: -105.68 kcal/mol - -analytic 1.2484e+002 4.1941e-002 -3.2439e+003 -5.1708e+001 -5.0655e+001 -# -Range: 0-300 - -1.0000 Li+ + 1.0000 H2O = LiOH +1.0000 H+ - -llnl_gamma 3.0 - log_k -13.64 - -delta_H 0 # Not possible to calculate enthalpy of reaction LiOH -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Li+ = LiSO4- - -llnl_gamma 4.0 - log_k +0.7700 - -delta_H 0 # Not possible to calculate enthalpy of reaction LiSO4- -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Lu+++ = Lu(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9625 - -delta_H -38.5346 kJ/mol # Calculated enthalpy of reaction Lu(CH3COO)2+ -# Enthalpy of formation: -409.31 kcal/mol - -analytic -2.7341e+001 2.5097e-003 -1.4157e+003 7.5026e+000 6.9682e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Lu+++ = Lu(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3489 - -delta_H -64.5173 kJ/mol # Calculated enthalpy of reaction Lu(CH3COO)3 -# Enthalpy of formation: -531.62 kcal/mol - -analytic -5.0225e+001 3.3508e-003 -6.2901e+002 1.3262e+001 9.0737e+005 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Lu+++ = Lu(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -6.8576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Lu+++ = Lu(HPO4)2- - -llnl_gamma 4.0 - log_k +10.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Lu+++ = Lu(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -2.7437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Lu+++ = Lu(SO4)2- - -llnl_gamma 4.0 - log_k +5.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Lu+++ + 1.0000 CH3COOH = LuCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1037 - -delta_H -18.9703 kJ/mol # Calculated enthalpy of reaction LuCH3COO+2 -# Enthalpy of formation: -288.534 kcal/mol - -analytic -6.5982e+000 2.4512e-003 -1.2666e+003 1.4226e+000 4.0045e+005 -# -Range: 0-300 - -1.0000 Lu+++ + 1.0000 HCO3- = LuCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.0392 - -delta_H 78.2324 kJ/mol # Calculated enthalpy of reaction LuCO3+ -# Enthalpy of formation: -314.1 kcal/mol - -analytic 2.3840e+002 5.4774e-002 -6.8317e+003 -9.4500e+001 -1.0667e+002 -# -Range: 0-300 - -1.0000 Lu+++ + 1.0000 Cl- = LuCl++ - -llnl_gamma 4.5 - log_k -0.0579 - -delta_H 13.5269 kJ/mol # Calculated enthalpy of reaction LuCl+2 -# Enthalpy of formation: -204.6 kcal/mol - -analytic 6.6161e+001 3.6521e-002 -1.2938e+003 -2.9397e+001 -2.0209e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Lu+++ = LuCl2+ - -llnl_gamma 4.0 - log_k -0.6289 - -delta_H 15.7569 kJ/mol # Calculated enthalpy of reaction LuCl2+ -# Enthalpy of formation: -244 kcal/mol - -analytic 1.8608e+002 7.7283e-002 -4.2349e+003 -7.9007e+001 -6.6137e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Lu+++ = LuCl3 - -llnl_gamma 3.0 - log_k -1.1999 - -delta_H 3.56895 kJ/mol # Calculated enthalpy of reaction LuCl3 -# Enthalpy of formation: -286.846 kcal/mol - -analytic 3.7060e+002 1.2564e-001 -8.9374e+003 -1.5325e+002 -1.3957e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Lu+++ = LuCl4- - -llnl_gamma 4.0 - log_k -1.771 - -delta_H -25.8069 kJ/mol # Calculated enthalpy of reaction LuCl4- -# Enthalpy of formation: -333.8 kcal/mol - -analytic 3.8876e+002 1.2200e-001 -8.6965e+003 -1.6071e+002 -1.3582e+002 -# -Range: 0-300 - -1.0000 Lu+++ + 1.0000 F- = LuF++ - -llnl_gamma 4.5 - log_k +4.8085 - -delta_H 25.7316 kJ/mol # Calculated enthalpy of reaction LuF+2 -# Enthalpy of formation: -241.9 kcal/mol - -analytic 9.0303e+001 4.0963e-002 -2.4140e+003 -3.6203e+001 -3.7694e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Lu+++ = LuF2+ - -llnl_gamma 4.0 - log_k +8.4442 - -delta_H 14.2256 kJ/mol # Calculated enthalpy of reaction LuF2+ -# Enthalpy of formation: -324.8 kcal/mol - -analytic 2.1440e+002 8.2559e-002 -4.7009e+003 -8.6790e+001 -7.3417e+001 -# -Range: 0-300 - -3.0000 F- + 1.0000 Lu+++ = LuF3 - -llnl_gamma 3.0 - log_k +11.0999 - -delta_H -12.3428 kJ/mol # Calculated enthalpy of reaction LuF3 -# Enthalpy of formation: -411.3 kcal/mol - -analytic 4.0247e+002 1.3233e-001 -8.6775e+003 -1.6232e+002 -1.3552e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 Lu+++ = LuF4- - -llnl_gamma 4.0 - log_k +13.2967 - -delta_H -64.0152 kJ/mol # Calculated enthalpy of reaction LuF4- -# Enthalpy of formation: -503.8 kcal/mol - -analytic 4.2541e+002 1.3070e-001 -7.4276e+003 -1.7220e+002 -1.1603e+002 -# -Range: 0-300 - -1.0000 Lu+++ + 1.0000 HPO4-- + 1.0000 H+ = LuH2PO4++ - -llnl_gamma 4.5 - log_k +9.5950 - -delta_H -23.786 kJ/mol # Calculated enthalpy of reaction LuH2PO4+2 -# Enthalpy of formation: -482.4 kcal/mol - -analytic 9.4223e+001 6.1797e-002 1.1102e+003 -4.3131e+001 1.7296e+001 -# -Range: 0-300 - -1.0000 Lu+++ + 1.0000 HCO3- = LuHCO3++ - -llnl_gamma 4.5 - log_k +1.9190 - -delta_H 1.66523 kJ/mol # Calculated enthalpy of reaction LuHCO3+2 -# Enthalpy of formation: -332.4 kcal/mol - -analytic 2.3187e+001 2.9604e-002 8.1268e+002 -1.3252e+001 1.2674e+001 -# -Range: 0-300 - -1.0000 Lu+++ + 1.0000 HPO4-- = LuHPO4+ - -llnl_gamma 4.0 - log_k +6.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction LuHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Lu+++ = LuNO3++ - -llnl_gamma 4.5 - log_k +0.5813 - -delta_H -41.7187 kJ/mol # Calculated enthalpy of reaction LuNO3+2 -# Enthalpy of formation: -227.3 kcal/mol - -analytic 1.7412e+000 2.3703e-002 3.2605e+003 -7.7334e+000 5.0876e+001 -# -Range: 0-300 - -1.0000 Lu+++ + 1.0000 H2O = LuO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -15.3108 - -delta_H 99.6503 kJ/mol # Calculated enthalpy of reaction LuO+ -# Enthalpy of formation: -212.4 kcal/mol - -analytic 1.5946e+002 2.6603e-002 -1.2215e+004 -5.7276e+001 -1.9065e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Lu+++ = LuO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -31.9411 - -delta_H 258.713 kJ/mol # Calculated enthalpy of reaction LuO2- -# Enthalpy of formation: -242.7 kcal/mol - -analytic 1.1522e+002 5.0221e-003 -1.6847e+004 -3.7244e+001 -2.6292e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Lu+++ = LuO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -23.878 - -delta_H 206.832 kJ/mol # Calculated enthalpy of reaction LuO2H -# Enthalpy of formation: -255.1 kcal/mol - -analytic 2.8768e+002 4.2338e-002 -2.0443e+004 -1.0330e+002 -3.1907e+002 -# -Range: 0-300 - -1.0000 Lu+++ + 1.0000 H2O = LuOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.6143 - -delta_H 72.0359 kJ/mol # Calculated enthalpy of reaction LuOH+2 -# Enthalpy of formation: -219 kcal/mol - -analytic 4.2937e+001 9.2421e-003 -4.9953e+003 -1.4769e+001 -7.7960e+001 -# -Range: 0-300 - -1.0000 Lu+++ + 1.0000 HPO4-- = LuPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.6782 - -delta_H 0 # Not possible to calculate enthalpy of reaction LuPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Lu+++ = LuSO4+ - -llnl_gamma 4.0 - log_k +3.5697 - -delta_H 19.5393 kJ/mol # Calculated enthalpy of reaction LuSO4+ -# Enthalpy of formation: -380.63 kcal/mol - -analytic 3.0108e+002 8.5238e-002 -8.8411e+003 -1.1850e+002 -1.3805e+002 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Mg++ = Mg(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.473 - -delta_H -23.8195 kJ/mol # Calculated enthalpy of reaction Mg(CH3COO)2 -# Enthalpy of formation: -349.26 kcal/mol - -analytic -4.3954e+001 -3.1842e-004 -1.2033e+003 1.3556e+001 6.3058e+005 -# -Range: 0-300 - -4.0000 Mg++ + 4.0000 H2O = Mg4(OH)4++++ +4.0000 H+ - -llnl_gamma 5.5 - log_k -39.75 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mg4(OH)4+4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Mg++ + 1.0000 H2O + 1.0000 B(OH)3 = MgB(OH)4+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -7.3467 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgB(OH)4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Mg++ + 1.0000 CH3COOH = MgCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.4781 - -delta_H -8.42239 kJ/mol # Calculated enthalpy of reaction MgAcetate+ -# Enthalpy of formation: -229.48 kcal/mol - -analytic -2.3548e+001 -1.6071e-003 -4.2228e+002 7.7009e+000 2.5981e+005 -# -Range: 0-300 - -1.0000 Mg++ + 1.0000 HCO3- = MgCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -7.3499 - -delta_H 23.8279 kJ/mol # Calculated enthalpy of reaction MgCO3 -# Enthalpy of formation: -270.57 kcal/mol - -analytic 2.3465e+002 5.5538e-002 -8.3947e+003 -9.3104e+001 -1.3106e+002 -# -Range: 0-300 - -1.0000 Mg++ + 1.0000 Cl- = MgCl+ - -llnl_gamma 4.0 - log_k -0.1349 - -delta_H -0.58576 kJ/mol # Calculated enthalpy of reaction MgCl+ -# Enthalpy of formation: -151.44 kcal/mol - -analytic 4.3363e+001 3.2858e-002 1.1878e+002 -2.1688e+001 1.8403e+000 -# -Range: 0-300 - -1.0000 Mg++ + 1.0000 F- = MgF+ - -llnl_gamma 4.0 - log_k +1.3524 - -delta_H 2.37233 kJ/mol # Calculated enthalpy of reaction MgF+ -# Enthalpy of formation: -190.95 kcal/mol - -analytic 6.4311e+001 3.5184e-002 -7.3241e+002 -2.8678e+001 -1.1448e+001 -# -Range: 0-300 - -1.0000 Mg++ + 1.0000 HPO4-- + 1.0000 H+ = MgH2PO4+ - -llnl_gamma 4.0 - log_k +1.6600 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgH2PO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Mg++ + 1.0000 HCO3- = MgHCO3+ - -llnl_gamma 4.0 - log_k +1.0357 - -delta_H 2.15476 kJ/mol # Calculated enthalpy of reaction MgHCO3+ -# Enthalpy of formation: -275.75 kcal/mol - -analytic 3.8459e+001 3.0076e-002 9.8068e+001 -1.8869e+001 1.5187e+000 -# -Range: 0-300 - -1.0000 Mg++ + 1.0000 HPO4-- = MgHPO4 - -llnl_gamma 3.0 - log_k +2.9100 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgHPO4 -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Mg++ = MgP2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +3.4727 - -delta_H 38.5451 kJ/mol # Calculated enthalpy of reaction MgP2O7-2 -# Enthalpy of formation: -2725.74 kJ/mol - -analytic 4.8038e+002 1.2530e-001 -1.5175e+004 -1.8724e+002 -2.3693e+002 -# -Range: 0-300 - -1.0000 Mg++ + 1.0000 HPO4-- = MgPO4- +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.7328 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgPO4- -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Mg++ = MgSO4 - -llnl_gamma 3.0 - log_k +2.4117 - -delta_H 19.6051 kJ/mol # Calculated enthalpy of reaction MgSO4 -# Enthalpy of formation: -1355.96 kJ/mol - -analytic 1.7994e+002 6.4715e-002 -4.7314e+003 -7.3123e+001 -8.0408e+001 -# -Range: 0-200 - -2.0000 CH3COOH + 1.0000 Mn++ = Mn(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.4547 - -delta_H -11.4893 kJ/mol # Calculated enthalpy of reaction Mn(CH3COO)2 -# Enthalpy of formation: -287.67 kcal/mol - -analytic -9.0558e-001 5.9656e-003 -4.3531e+003 -1.1063e+000 8.0323e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Mn++ = Mn(CH3COO)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -11.8747 - -delta_H -30.3591 kJ/mol # Calculated enthalpy of reaction Mn(CH3COO)3- -# Enthalpy of formation: -408.28 kcal/mol - -analytic -3.8531e+000 -9.9140e-003 -1.2065e+004 5.1424e+000 2.0175e+006 -# -Range: 0-300 - -2.0000 NO3- + 1.0000 Mn++ = Mn(NO3)2 - -llnl_gamma 3.0 - log_k +0.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(NO3)2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Mn++ = Mn(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -22.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Mn++ = Mn(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -34.2278 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)3- -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Mn++ = Mn(OH)4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -48.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)4-2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 2.0000 Mn++ = Mn2(OH)3+ +3.0000 H+ - -llnl_gamma 4.0 - log_k -23.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn2(OH)3+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 Mn++ + 1.0000 H2O = Mn2OH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -10.56 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn2OH+3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Mn++ + 1.0000 CH3COOH = MnCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.5404 - -delta_H -3.07942 kJ/mol # Calculated enthalpy of reaction MnCH3COO+ -# Enthalpy of formation: -169.56 kcal/mol - -analytic -1.4061e+001 1.8149e-003 -8.6438e+002 4.0354e+000 2.5831e+005 -# -Range: 0-300 - -1.0000 Mn++ + 1.0000 HCO3- = MnCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -5.8088 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnCO3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Mn++ + 1.0000 Cl- = MnCl+ - -llnl_gamma 4.0 - log_k +0.3013 - -delta_H 18.3134 kJ/mol # Calculated enthalpy of reaction MnCl+ -# Enthalpy of formation: -88.28 kcal/mol - -analytic 8.7072e+001 4.0361e-002 -2.1786e+003 -3.6966e+001 -3.4022e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Mn++ = MnCl3- - -llnl_gamma 4.0 - log_k -0.3324 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnCl3- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Mn++ + 1.0000 F- = MnF+ - -llnl_gamma 4.0 - log_k +1.4300 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnF+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Mn++ + 1.0000 HPO4-- + 1.0000 H+ = MnH2PO4+ - -llnl_gamma 4.0 - log_k +8.5554 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnH2PO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Mn++ + 1.0000 HCO3- = MnHCO3+ - -llnl_gamma 4.0 - log_k +0.8816 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnHCO3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Mn++ + 1.0000 HPO4-- = MnHPO4 - -llnl_gamma 3.0 - log_k +3.5800 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnHPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Mn++ = MnNO3+ - -llnl_gamma 4.0 - log_k +0.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnNO3+ -# Enthalpy of formation: -0 kcal/mol - -1.5000 H2O + 1.2500 O2 + 1.0000 Mn++ = MnO4- +3.0000 H+ - -llnl_gamma 3.5 - log_k -20.2963 - -delta_H 123.112 kJ/mol # Calculated enthalpy of reaction MnO4- -# Enthalpy of formation: -129.4 kcal/mol - -analytic 1.8544e+001 -1.7618e-002 -6.7332e+003 -3.3193e+000 -2.4924e+005 -# -Range: 0-300 - -1.0000 Mn++ + 1.0000 H2O = MnOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -10.59 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnOH+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Mn++ + 1.0000 HPO4-- = MnPO4- +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.1318 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnPO4- -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Mn++ = MnSO4 - -llnl_gamma 3.0 - log_k +2.3529 - -delta_H 14.1168 kJ/mol # Calculated enthalpy of reaction MnSO4 -# Enthalpy of formation: -266.75 kcal/mol - -analytic 2.9448e+002 8.5294e-002 -8.1366e+003 -1.1729e+002 -1.2705e+002 -# -Range: 0-300 - -1.0000 SeO4-- + 1.0000 Mn++ = MnSeO4 - -llnl_gamma 3.0 - log_k +2.4300 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnSeO4 -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 NH3 = NH4(CH3COO)2- +1.0000 H+ - -llnl_gamma 4.0 - log_k -0.1928 - -delta_H -56.735 kJ/mol # Calculated enthalpy of reaction NH4(CH3COO)2- -# Enthalpy of formation: -265.2 kcal/mol - -analytic 3.7137e+001 -1.2242e-002 -8.4764e+003 -8.4308e+000 1.3883e+006 -# -Range: 0-300 - -1.0000 NH3 + 1.0000 H+ = NH4+ - -llnl_gamma 2.5 - log_k +9.2410 - -delta_H -51.9234 kJ/mol # Calculated enthalpy of reaction NH4+ -# Enthalpy of formation: -31.85 kcal/mol - -analytic -1.4527e+001 -5.0518e-003 3.0447e+003 6.0865e+000 4.7515e+001 -# -Range: 0-300 - -1.0000 NH3 + 1.0000 CH3COOH = NH4CH3COO - -llnl_gamma 3.0 - log_k +4.6964 - -delta_H -48.911 kJ/mol # Calculated enthalpy of reaction NH4CH3COO -# Enthalpy of formation: -147.23 kcal/mol - -analytic 1.4104e+001 -4.3664e-003 -1.0746e+003 -3.6999e+000 4.1428e+005 -# -Range: 0-300 - -1.0000 SO4-- + 1.0000 NH3 + 1.0000 H+ = NH4SO4- - -llnl_gamma 4.0 - log_k +0.9400 - -delta_H 0 # Not possible to calculate enthalpy of reaction NH4SO4- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Sb(OH)3 + 1.0000 NH3 = NH4SbO2 +1.0000 H2O - -llnl_gamma 3.0 - log_k -2.5797 - -delta_H 0 # Not possible to calculate enthalpy of reaction NH4SbO2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Na+ = Na(CH3COO)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -9.9989 - -delta_H -11.5771 kJ/mol # Calculated enthalpy of reaction Na(CH3COO)2- -# Enthalpy of formation: -292.4 kcal/mol - -analytic -2.9232e+002 -5.5708e-002 9.6601e+003 1.0772e+002 1.5082e+002 -# -Range: 0-300 - -1.0000 O_phthalate-2 + 1.0000 Na+ = Na(O_phthalate)- - -llnl_gamma 4.0 - log_k +0.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na(O_phthalate)- -# Enthalpy of formation: -0 kcal/mol - -2.0000 Na+ + 2.0000 HPO4-- = Na2P2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +0.4437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na2P2O7-2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Na+ + 1.0000 Al+++ = NaAlO2 +4.0000 H+ - -llnl_gamma 3.0 - log_k -23.6266 - -delta_H 190.326 kJ/mol # Calculated enthalpy of reaction NaAlO2 -# Enthalpy of formation: -277.259 kcal/mol - -analytic 1.2288e+002 3.4921e-002 -1.2808e+004 -4.6046e+001 -1.9990e+002 -# -Range: 0-300 - -1.0000 Na+ + 1.0000 H2O + 1.0000 B(OH)3 = NaB(OH)4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -8.974 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaB(OH)4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Na+ + 1.0000 Br- = NaBr - -llnl_gamma 3.0 - log_k -1.3568 - -delta_H 6.87431 kJ/mol # Calculated enthalpy of reaction NaBr -# Enthalpy of formation: -84.83 kcal/mol - -analytic 1.1871e+002 3.7271e-002 -3.4061e+003 -4.8386e+001 -5.3184e+001 -# -Range: 0-300 - -1.0000 Na+ + 1.0000 CH3COOH = NaCH3COO +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.8606 - -delta_H -0.029288 kJ/mol # Calculated enthalpy of reaction NaCH3COO -# Enthalpy of formation: -173.54 kcal/mol - -analytic 6.4833e+000 -1.8739e-003 -2.0902e+003 -2.6121e+000 2.3990e+005 -# -Range: 0-300 - -1.0000 Na+ + 1.0000 HCO3- = NaCO3- +1.0000 H+ - -llnl_gamma 4.0 - log_k -9.8144 - -delta_H -5.6521 kJ/mol # Calculated enthalpy of reaction NaCO3- -# Enthalpy of formation: -935.885 kJ/mol - -analytic 1.6939e+002 5.3122e-004 -7.6768e+003 -6.2078e+001 -1.1984e+002 -# -Range: 0-300 - -1.0000 Na+ + 1.0000 Cl- = NaCl - -llnl_gamma 3.0 - log_k -0.777 - -delta_H 5.21326 kJ/mol # Calculated enthalpy of reaction NaCl -# Enthalpy of formation: -96.12 kcal/mol - -analytic 1.1398e+002 3.6386e-002 -3.0847e+003 -4.6571e+001 -4.8167e+001 -# -Range: 0-300 - -1.0000 Na+ + 1.0000 F- = NaF - -llnl_gamma 3.0 - log_k -0.9976 - -delta_H 7.20903 kJ/mol # Calculated enthalpy of reaction NaF -# Enthalpy of formation: -135.86 kcal/mol - -analytic 1.2507e+002 3.8619e-002 -3.5436e+003 -5.0787e+001 -5.5332e+001 -# -Range: 0-300 - -1.0000 Na+ + 1.0000 HCO3- = NaHCO3 - -llnl_gamma 3.0 - log_k +0.1541 - -delta_H -13.7741 kJ/mol # Calculated enthalpy of reaction NaHCO3 -# Enthalpy of formation: -944.007 kJ/mol - -analytic -9.0668e+001 -2.9866e-002 2.7947e+003 3.6515e+001 4.7489e+001 -# -Range: 0-200 - -2.0000 HPO4-- + 1.0000 Na+ + 1.0000 H+ = NaHP2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +6.8498 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaHP2O7-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Na+ + 1.0000 HPO4-- = NaHPO4- - -llnl_gamma 4.0 - log_k +0.9200 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaHPO4- -# Enthalpy of formation: -0 kcal/mol - -1.0000 SiO2 + 1.0000 Na+ + 1.0000 H2O = NaHSiO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -8.304 - -delta_H 11.6524 kJ/mol # Calculated enthalpy of reaction NaHSiO3 -# Enthalpy of formation: -332.74 kcal/mol - -analytic 3.6045e+001 -9.0411e-003 -6.6605e+003 -1.0447e+001 5.8415e+005 -# -Range: 0-300 - -1.0000 Na+ + 1.0000 I- = NaI - -llnl_gamma 3.0 - log_k -1.54 - -delta_H 7.33455 kJ/mol # Calculated enthalpy of reaction NaI -# Enthalpy of formation: -69.28 kcal/mol - -analytic 9.8742e+001 3.2917e-002 -2.7576e+003 -4.0748e+001 -4.3058e+001 -# -Range: 0-300 - -1.0000 Na+ + 1.0000 H2O = NaOH +1.0000 H+ - -llnl_gamma 3.0 - log_k -14.7948 - -delta_H 53.6514 kJ/mol # Calculated enthalpy of reaction NaOH -# Enthalpy of formation: -112.927 kcal/mol - -analytic 8.7326e+001 2.3555e-002 -5.4770e+003 -3.6678e+001 -8.5489e+001 -# -Range: 0-300 - -2.0000 HPO4-- + 1.0000 Na+ = NaP2O7--- +1.0000 H2O - -llnl_gamma 4.0 - log_k -1.4563 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaP2O7-3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Na+ = NaSO4- - -llnl_gamma 4.0 - log_k +0.8200 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaSO4- -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Nd+++ = Nd(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9771 - -delta_H -22.6354 kJ/mol # Calculated enthalpy of reaction Nd(CH3COO)2+ -# Enthalpy of formation: -404.11 kcal/mol - -analytic -2.2128e+001 1.0975e-003 -7.1543e+002 5.8799e+000 4.1748e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Nd+++ = Nd(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.2976 - -delta_H -38.8694 kJ/mol # Calculated enthalpy of reaction Nd(CH3COO)3 -# Enthalpy of formation: -524.09 kcal/mol - -analytic -4.5726e+001 -2.6143e-003 5.9389e+002 1.2679e+001 4.3320e+005 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Nd+++ = Nd(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -8.0576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Nd+++ = Nd(HPO4)2- - -llnl_gamma 4.0 - log_k +9.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -# Redundant with NdO2- -#4.0000 H2O + 1.0000 Nd+++ = Nd(OH)4- +4.0000 H+ -# -llnl_gamma 4.0 -# log_k -37.0803 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)4- -## Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Nd+++ = Nd(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.1437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Nd+++ = Nd(SO4)2- - -llnl_gamma 4.0 - log_k -255.7478 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 Nd+++ + 2.0000 H2O = Nd2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -13.8902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Nd+++ + 1.0000 CH3COOH = NdCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.0891 - -delta_H -12.0081 kJ/mol # Calculated enthalpy of reaction NdCH3COO+2 -# Enthalpy of formation: -285.47 kcal/mol - -analytic -1.6006e+001 4.1948e-004 -3.6469e+002 4.9280e+000 2.5187e+005 -# -Range: 0-300 - -1.0000 Nd+++ + 1.0000 HCO3- = NdCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.6256 - -delta_H 91.6212 kJ/mol # Calculated enthalpy of reaction NdCO3+ -# Enthalpy of formation: -309.5 kcal/mol - -analytic 2.3399e+002 5.3454e-002 -7.0513e+003 -9.2500e+001 -1.1010e+002 -# -Range: 0-300 - -1.0000 Nd+++ + 1.0000 Cl- = NdCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction NdCl+2 -# Enthalpy of formation: -203 kcal/mol - -analytic 9.4587e+001 3.9331e-002 -2.4200e+003 -3.9550e+001 -3.7790e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Nd+++ = NdCl2+ - -llnl_gamma 4.0 - log_k +0.0308 - -delta_H 20.3593 kJ/mol # Calculated enthalpy of reaction NdCl2+ -# Enthalpy of formation: -241.5 kcal/mol - -analytic 2.5840e+002 8.4118e-002 -7.2056e+003 -1.0477e+002 -1.1251e+002 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Nd+++ = NdCl3 - -llnl_gamma 3.0 - log_k -0.3203 - -delta_H 15.0582 kJ/mol # Calculated enthalpy of reaction NdCl3 -# Enthalpy of formation: -282.7 kcal/mol - -analytic 4.9362e+002 1.3485e-001 -1.4309e+004 -1.9645e+002 -2.2343e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Nd+++ = NdCl4- - -llnl_gamma 4.0 - log_k -0.7447 - -delta_H -3.21331 kJ/mol # Calculated enthalpy of reaction NdCl4- -# Enthalpy of formation: -327 kcal/mol - -analytic 6.0548e+002 1.4227e-001 -1.8055e+004 -2.3765e+002 -2.8191e+002 -# -Range: 0-300 - -1.0000 Nd+++ + 1.0000 F- = NdF++ - -llnl_gamma 4.5 - log_k +4.3687 - -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction NdF+2 -# Enthalpy of formation: -241.2 kcal/mol - -analytic 1.1461e+002 4.3014e-002 -3.2461e+003 -4.5326e+001 -5.0687e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Nd+++ = NdF2+ - -llnl_gamma 4.0 - log_k +7.5646 - -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction NdF2+ -# Enthalpy of formation: -323.5 kcal/mol - -analytic 2.7901e+002 8.7910e-002 -7.2424e+003 -1.1046e+002 -1.1309e+002 -# -Range: 0-300 - -3.0000 F- + 1.0000 Nd+++ = NdF3 - -llnl_gamma 3.0 - log_k +9.8809 - -delta_H -8.1588 kJ/mol # Calculated enthalpy of reaction NdF3 -# Enthalpy of formation: -408.9 kcal/mol - -analytic 5.2220e+002 1.4154e-001 -1.3697e+004 -2.0551e+002 -2.1388e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 Nd+++ = NdF4- - -llnl_gamma 4.0 - log_k +11.8307 - -delta_H -48.5344 kJ/mol # Calculated enthalpy of reaction NdF4- -# Enthalpy of formation: -498.7 kcal/mol - -analytic 6.1972e+002 1.4620e-001 -1.5869e+004 -2.4175e+002 -2.4780e+002 -# -Range: 0-300 - -1.0000 Nd+++ + 1.0000 HPO4-- + 1.0000 H+ = NdH2PO4++ - -llnl_gamma 4.5 - log_k +9.5152 - -delta_H -15.736 kJ/mol # Calculated enthalpy of reaction NdH2PO4+2 -# Enthalpy of formation: -479.076 kcal/mol - -analytic 1.2450e+002 6.4953e-002 -4.0524e+002 -5.3728e+001 -6.3603e+000 -# -Range: 0-300 - -1.0000 Nd+++ + 1.0000 HCO3- = NdHCO3++ - -llnl_gamma 4.5 - log_k +1.8457 - -delta_H 9.19643 kJ/mol # Calculated enthalpy of reaction NdHCO3+2 -# Enthalpy of formation: -329.2 kcal/mol - -analytic 5.5530e+001 3.3254e-002 -7.3859e+002 -2.4690e+001 -1.1542e+001 -# -Range: 0-300 - -1.0000 Nd+++ + 1.0000 HPO4-- = NdHPO4+ - -llnl_gamma 4.0 - log_k +5.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Nd+++ + 1.0000 NO3- = NdNO3++ - -llnl_gamma 4.5 - log_k +0.7902 - -delta_H -27.8529 kJ/mol # Calculated enthalpy of reaction NdNO3+2 -# Enthalpy of formation: -222.586 kcal/mol - -analytic 3.3850e+001 2.7112e-002 1.4404e+003 -1.8570e+001 2.2466e+001 -# -Range: 0-300 - -1.0000 Nd+++ + 1.0000 H2O = NdO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -17.0701 - -delta_H 116.386 kJ/mol # Calculated enthalpy of reaction NdO+ -# Enthalpy of formation: -207 kcal/mol - -analytic 1.8961e+002 3.0563e-002 -1.4153e+004 -6.8024e+001 -2.2089e+002 -# -Range: 0-300 -2.0000 H2O + 1.0000 Nd+++ = NdO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -37.0721 - -delta_H 298.88 kJ/mol # Calculated enthalpy of reaction NdO2- -# Enthalpy of formation: -231.7 kcal/mol - -analytic 1.9606e+002 1.4784e-002 -2.1838e+004 -6.6399e+001 -3.4082e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Nd+++ = NdO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -26.3702 - -delta_H 230.681 kJ/mol # Calculated enthalpy of reaction NdO2H -# Enthalpy of formation: -248 kcal/mol - -analytic 3.4617e+002 4.5955e-002 -2.3960e+004 -1.2361e+002 -3.7398e+002 -# -Range: 0-300 - -1.0000 Nd+++ + 1.0000 H2O = NdOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -8.1274 - -delta_H 80.8223 kJ/mol # Calculated enthalpy of reaction NdOH+2 -# Enthalpy of formation: -215.5 kcal/mol - -analytic 6.6963e+001 1.2182e-002 -6.2797e+003 -2.3300e+001 -9.8008e+001 -# -Range: 0-300 - -1.0000 Nd+++ + 1.0000 HPO4-- = NdPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.5218 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Nd+++ = NdSO4+ - -llnl_gamma 4.0 - log_k +3.6430 - -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction NdSO4+ -# Enthalpy of formation: -379.1 kcal/mol - -analytic 3.0267e+002 8.5362e-002 -8.9211e+003 -1.1902e+002 -1.3929e+002 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Ni++ = Ni(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.1908 - -delta_H -25.8571 kJ/mol # Calculated enthalpy of reaction Ni(CH3COO)2 -# Enthalpy of formation: -251.28 kcal/mol - -analytic -2.9660e+001 1.0643e-003 -1.0060e+003 7.9358e+000 5.2562e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Ni++ = Ni(CH3COO)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -11.3543 - -delta_H -53.6807 kJ/mol # Calculated enthalpy of reaction Ni(CH3COO)3- -# Enthalpy of formation: -374.03 kcal/mol - -analytic 5.0850e+001 -8.2435e-003 -1.3049e+004 -1.5410e+001 1.9704e+006 -# -Range: 0-300 - -2.0000 NH3 + 1.0000 Ni++ = Ni(NH3)2++ - -llnl_gamma 4.5 - log_k +5.0598 - -delta_H -29.7505 kJ/mol # Calculated enthalpy of reaction Ni(NH3)2+2 -# Enthalpy of formation: -246.398 kJ/mol - -analytic 1.0002e+002 5.2896e-003 -2.5967e+003 -3.5485e+001 -4.0548e+001 -# -Range: 0-300 - -6.0000 NH3 + 1.0000 Ni++ = Ni(NH3)6++ - -llnl_gamma 4.5 - log_k +8.7344 - -delta_H -88.0436 kJ/mol # Calculated enthalpy of reaction Ni(NH3)6+2 -# Enthalpy of formation: -630.039 kJ/mol - -analytic 1.9406e+002 -1.3467e-002 -5.2321e+003 -6.6168e+001 -8.1699e+001 -# -Range: 0-300 - -2.0000 NO3- + 1.0000 Ni++ = Ni(NO3)2 - -llnl_gamma 3.0 - log_k +0.1899 - -delta_H -1.54153 kJ/mol # Calculated enthalpy of reaction Ni(NO3)2 -# Enthalpy of formation: -469.137 kJ/mol - -analytic -4.2544e+001 -1.0101e-002 1.3496e+003 1.6663e+001 2.2933e+001 -# -Range: 0-200 - -2.0000 H2O + 1.0000 Ni++ = Ni(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -19.9902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni(OH)2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Ni++ = Ni(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -30.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni(OH)3- -# Enthalpy of formation: -0 kcal/mol - -2.0000 Ni++ + 1.0000 H2O = Ni2OH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -10.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni2OH+3 -# Enthalpy of formation: -0 kcal/mol - -4.0000 Ni++ + 4.0000 H2O = Ni4(OH)4++++ +4.0000 H+ - -llnl_gamma 5.5 - log_k -27.6803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni4(OH)4+4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Ni++ + 1.0000 Br- = NiBr+ - -llnl_gamma 4.0 - log_k -0.37 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiBr+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Ni++ + 1.0000 CH3COOH = NiCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.3278 - -delta_H -10.2508 kJ/mol # Calculated enthalpy of reaction NiCH3COO+ -# Enthalpy of formation: -131.45 kcal/mol - -analytic -3.3110e+000 1.6895e-003 -1.0556e+003 2.7168e-002 2.6350e+005 -# -Range: 0-300 - -1.0000 Ni++ + 1.0000 Cl- = NiCl+ - -llnl_gamma 4.0 - log_k -0.9962 - -delta_H 5.99567 kJ/mol # Calculated enthalpy of reaction NiCl+ -# Enthalpy of formation: -51.4 kcal/mol - -analytic 9.5370e+001 3.8521e-002 -2.1746e+003 -4.0629e+001 -3.3961e+001 -# -Range: 0-300 - -2.0000 HPO4-- + 1.0000 Ni++ + 1.0000 H+ = NiHP2O7- +1.0000 H2O - -llnl_gamma 4.0 - log_k +9.2680 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiHP2O7- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Ni++ + 1.0000 NO3- = NiNO3+ - -llnl_gamma 4.0 - log_k +0.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiNO3+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Ni++ = NiP2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +3.1012 - -delta_H 9.68819 kJ/mol # Calculated enthalpy of reaction NiP2O7-2 -# Enthalpy of formation: -2342.61 kJ/mol - -analytic 4.6809e+002 1.0985e-001 -1.4310e+004 -1.8173e+002 -2.2344e+002 -# -Range: 0-300 - -1.0000 SO4-- + 1.0000 Ni++ = NiSO4 - -llnl_gamma 3.0 - log_k +2.1257 - -delta_H 2.36814 kJ/mol # Calculated enthalpy of reaction NiSO4 -# Enthalpy of formation: -229.734 kcal/mol - -analytic 6.1187e+001 2.4211e-002 -1.2180e+003 -2.5130e+001 -2.0705e+001 -# -Range: 0-200 - -1.0000 SeO4-- + 1.0000 Ni++ = NiSeO4 - -llnl_gamma 3.0 - log_k +2.6700 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiSeO4 -# Enthalpy of formation: -0 kcal/mol - -5.0000 HCO3- + 1.0000 Np++++ = Np(CO3)5-6 +5.0000 H+ - -llnl_gamma 4.0 - log_k -13.344 - -delta_H 92.7067 kJ/mol # Calculated enthalpy of reaction Np(CO3)5-6 -# Enthalpy of formation: -935.22 kcal/mol - -analytic 6.3005e+002 2.3388e-001 -1.8328e+004 -2.6334e+002 -2.8618e+002 -# -Range: 0-300 - -2.0000 HPO4-- + 2.0000 H+ + 1.0000 Np+++ = Np(H2PO4)2+ - -llnl_gamma 4.0 - log_k +3.7000 - -delta_H -1.55258 kJ/mol # Calculated enthalpy of reaction Np(H2PO4)2+ -# Enthalpy of formation: -743.981 kcal/mol - -analytic 7.8161e+002 2.8446e-001 -1.2330e+004 -3.3194e+002 -2.1056e+002 -# -Range: 25-150 - -3.0000 HPO4-- + 3.0000 H+ + 1.0000 Np+++ = Np(H2PO4)3 - -llnl_gamma 3.0 - log_k +5.6000 - -delta_H -21.8575 kJ/mol # Calculated enthalpy of reaction Np(H2PO4)3 -# Enthalpy of formation: -1057.65 kcal/mol - -analytic 1.5150e+003 4.4939e-001 -3.2766e+004 -6.1975e+002 -5.5934e+002 -# -Range: 25-150 - -2.0000 HPO4-- + 1.0000 Np++++ = Np(HPO4)2 - -llnl_gamma 3.0 - log_k +23.7000 - -delta_H -35.24 kJ/mol # Calculated enthalpy of reaction Np(HPO4)2 -# Enthalpy of formation: -758.94 kcal/mol - -analytic 4.7722e+002 2.1099e-001 -4.7296e+003 -2.0229e+002 -8.0831e+001 -# -Range: 25-150 - -3.0000 HPO4-- + 1.0000 Np++++ = Np(HPO4)3-- - -llnl_gamma 4.0 - log_k +33.4000 - -delta_H -44.9093 kJ/mol # Calculated enthalpy of reaction Np(HPO4)3-2 -# Enthalpy of formation: -1070.07 kcal/mol - -analytic -1.5951e+003 -3.6579e-001 5.1343e+004 6.3262e+002 8.7619e+002 -# -Range: 25-150 - -4.0000 HPO4-- + 1.0000 Np++++ = Np(HPO4)4---- - -llnl_gamma 4.0 - log_k +43.2000 - -delta_H -67.0803 kJ/mol # Calculated enthalpy of reaction Np(HPO4)4-4 -# Enthalpy of formation: -1384.18 kcal/mol - -analytic 5.8359e+003 1.5194e+000 -1.6349e+005 -2.3025e+003 -2.7903e+003 -# -Range: 25-150 - -5.0000 HPO4-- + 1.0000 Np++++ = Np(HPO4)5-6 - -llnl_gamma 4.0 - log_k +52.0000 - -delta_H -83.5401 kJ/mol # Calculated enthalpy of reaction Np(HPO4)5-6 -# Enthalpy of formation: -1696.93 kcal/mol - -analytic -1.8082e+003 -2.0018e-001 7.5155e+004 6.7400e+002 1.2824e+003 -# -Range: 25-150 - -2.0000 H2O + 1.0000 Np++++ = Np(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -2.8 - -delta_H 77.0669 kJ/mol # Calculated enthalpy of reaction Np(OH)2+2 -# Enthalpy of formation: -251.102 kcal/mol - -analytic 2.9299e+003 6.5812e-001 -9.5085e+004 -1.1356e+003 -1.6227e+003 -# -Range: 25-150 - -3.0000 H2O + 1.0000 Np++++ = Np(OH)3+ +3.0000 H+ - -llnl_gamma 4.0 - log_k -5.8 - -delta_H 99.5392 kJ/mol # Calculated enthalpy of reaction Np(OH)3+ -# Enthalpy of formation: -314.048 kcal/mol - -analytic -4.7723e+003 -1.1810e+000 1.3545e+005 1.8850e+003 2.3117e+003 -# -Range: 25-150 - -4.0000 H2O + 1.0000 Np++++ = Np(OH)4 +4.0000 H+ - -llnl_gamma 3.0 - log_k -9.6 - -delta_H 109.585 kJ/mol # Calculated enthalpy of reaction Np(OH)4 -# Enthalpy of formation: -379.964 kcal/mol - -analytic -5.5904e+003 -1.3639e+000 1.6112e+005 2.2013e+003 2.7498e+003 -# -Range: 25-150 - -2.0000 SO4-- + 1.0000 Np++++ = Np(SO4)2 - -llnl_gamma 3.0 - log_k +9.9000 - -delta_H 40.005 kJ/mol # Calculated enthalpy of reaction Np(SO4)2 -# Enthalpy of formation: -558.126 kcal/mol - -analytic -9.0765e+002 -1.8494e-001 2.7951e+004 3.5521e+002 4.7702e+002 -# -Range: 25-150 - -1.0000 Np++++ + 1.0000 Cl- = NpCl+++ - -llnl_gamma 5.0 - log_k +0.2000 - -delta_H 20.3737 kJ/mol # Calculated enthalpy of reaction NpCl+3 -# Enthalpy of formation: -167.951 kcal/mol - -analytic 8.3169e+002 2.6267e-001 -2.1618e+004 -3.3838e+002 -3.6898e+002 -# -Range: 25-150 - -2.0000 Cl- + 1.0000 Np++++ = NpCl2++ - -llnl_gamma 4.5 - log_k -0.1 - -delta_H 94.5853 kJ/mol # Calculated enthalpy of reaction NpCl2+2 -# Enthalpy of formation: -190.147 kcal/mol - -analytic -1.5751e+003 -3.8759e-001 4.2054e+004 6.2619e+002 7.1777e+002 -# -Range: 25-150 - -1.0000 Np++++ + 1.0000 F- = NpF+++ - -llnl_gamma 5.0 - log_k +8.7000 - -delta_H -3.43746 kJ/mol # Calculated enthalpy of reaction NpF+3 -# Enthalpy of formation: -213.859 kcal/mol - -analytic 2.7613e+000 1.3498e-003 -1.6411e+003 2.9074e+000 3.4192e+005 -# -Range: 25-150 - -2.0000 F- + 1.0000 Np++++ = NpF2++ - -llnl_gamma 4.5 - log_k +15.4000 - -delta_H 6.03094 kJ/mol # Calculated enthalpy of reaction NpF2+2 -# Enthalpy of formation: -291.746 kcal/mol - -analytic -2.6793e+002 -4.2056e-002 9.7952e+003 1.0629e+002 1.6715e+002 -# -Range: 25-150 - -1.0000 Np+++ + 1.0000 HPO4-- + 1.0000 H+ = NpH2PO4++ - -llnl_gamma 4.5 - log_k +2.4000 - -delta_H 6.0874 kJ/mol # Calculated enthalpy of reaction NpH2PO4+2 -# Enthalpy of formation: -433.34 kcal/mol - -analytic 6.0731e+003 1.4733e+000 -1.7919e+005 -2.3880e+003 -3.0582e+003 -# -Range: 25-150 - -1.0000 Np++++ + 1.0000 HPO4-- = NpHPO4++ - -llnl_gamma 4.5 - log_k +12.9000 - -delta_H 7.54554 kJ/mol # Calculated enthalpy of reaction NpHPO4+2 -# Enthalpy of formation: -439.899 kcal/mol - -analytic -7.2792e+003 -1.7476e+000 2.1770e+005 2.8624e+003 3.7154e+003 -# -Range: 25-150 - -2.0000 HCO3- + 1.0000 NpO2++ = NpO2(CO3)2-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -6.6576 - -delta_H 57.2588 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)2-2 -# Enthalpy of formation: -521.77 kcal/mol - -analytic 2.6597e+002 7.5850e-002 -9.9987e+003 -1.0576e+002 -1.5610e+002 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 NpO2+ = NpO2(CO3)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -13.6576 - -delta_H 58.1553 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)2-3 -# Enthalpy of formation: -549.642 kcal/mol - -analytic 2.6012e+002 7.3174e-002 -1.0250e+004 -1.0556e+002 -1.6002e+002 -# -Range: 0-300 - -3.0000 HCO3- + 1.0000 NpO2+ = NpO2(CO3)3-5 +3.0000 H+ - -llnl_gamma 4.0 - log_k -22.4864 - -delta_H 70.176 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)3-5 -# Enthalpy of formation: -711.667 kcal/mol - -analytic 3.7433e+002 1.2938e-001 -1.2791e+004 -1.5861e+002 -1.9970e+002 -# -Range: 0-300 - -3.0000 HCO3- + 1.0000 NpO2++ = NpO2(CO3)3---- +3.0000 H+ - -llnl_gamma 4.0 - log_k -10.5864 - -delta_H 3.14711 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)3-4 -# Enthalpy of formation: -699.601 kcal/mol - -analytic 3.7956e+002 1.1163e-001 -1.0607e+004 -1.5674e+002 -1.6562e+002 -# -Range: 0-300 - -1.0000 NpO2+ + 1.0000 HCO3- = NpO2CO3- +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.7288 - -delta_H 69.1634 kJ/mol # Calculated enthalpy of reaction NpO2CO3- -# Enthalpy of formation: -382.113 kcal/mol - -analytic 1.4634e+002 2.6576e-002 -8.2036e+003 -5.3534e+001 -1.2805e+002 -# -Range: 0-300 - -1.0000 NpO2+ + 1.0000 Cl- = NpO2Cl - -llnl_gamma 3.0 - log_k -0.4 - -delta_H 15.4492 kJ/mol # Calculated enthalpy of reaction NpO2Cl -# Enthalpy of formation: -269.986 kcal/mol - -analytic 4.5109e+002 9.0437e-002 -1.5453e+004 -1.7241e+002 -2.6371e+002 -# -Range: 25-150 - -1.0000 NpO2++ + 1.0000 Cl- = NpO2Cl+ - -llnl_gamma 4.0 - log_k -0.2 - -delta_H 11.6239 kJ/mol # Calculated enthalpy of reaction NpO2Cl+ -# Enthalpy of formation: -242.814 kcal/mol - -analytic -1.2276e+003 -2.5435e-001 3.8507e+004 4.7447e+002 6.5715e+002 -# -Range: 25-150 - -1.0000 NpO2+ + 1.0000 F- = NpO2F - -llnl_gamma 3.0 - log_k +1.0000 - -delta_H 34.2521 kJ/mol # Calculated enthalpy of reaction NpO2F -# Enthalpy of formation: -305.709 kcal/mol - -analytic -1.9364e+002 -4.4083e-002 4.5602e+003 7.7791e+001 7.7840e+001 -# -Range: 25-150 - -1.0000 NpO2++ + 1.0000 F- = NpO2F+ - -llnl_gamma 4.0 - log_k +4.6000 - -delta_H 0.883568 kJ/mol # Calculated enthalpy of reaction NpO2F+ -# Enthalpy of formation: -285.598 kcal/mol - -analytic 9.6320e+002 2.4799e-001 -2.7614e+004 -3.7985e+002 -4.7128e+002 -# -Range: 25-150 - -2.0000 F- + 1.0000 NpO2++ = NpO2F2 - -llnl_gamma 3.0 - log_k +7.8000 - -delta_H 2.60319 kJ/mol # Calculated enthalpy of reaction NpO2F2 -# Enthalpy of formation: -365.337 kcal/mol - -analytic 1.9648e+002 6.4083e-002 -4.5601e+003 -7.7790e+001 -7.7840e+001 -# -Range: 25-150 - -1.0000 NpO2+ + 1.0000 HPO4-- + 1.0000 H+ = NpO2H2PO4 - -llnl_gamma 3.0 - log_k +0.6000 - -delta_H 18.717 kJ/mol # Calculated enthalpy of reaction NpO2H2PO4 -# Enthalpy of formation: -538.087 kcal/mol - -analytic 1.0890e+003 2.7738e-001 -3.0654e+004 -4.3171e+002 -5.2317e+002 -# -Range: 25-150 - -1.0000 NpO2++ + 1.0000 HPO4-- + 1.0000 H+ = NpO2H2PO4+ - -llnl_gamma 4.0 - log_k +2.3000 - -delta_H 9.31014 kJ/mol # Calculated enthalpy of reaction NpO2H2PO4+ -# Enthalpy of formation: -512.249 kcal/mol - -analytic -5.6996e+003 -1.4008e+000 1.6898e+005 2.2441e+003 2.8838e+003 -# -Range: 25-150 - -1.0000 NpO2++ + 1.0000 HPO4-- = NpO2HPO4 - -llnl_gamma 3.0 - log_k +8.2000 - -delta_H -6.47609 kJ/mol # Calculated enthalpy of reaction NpO2HPO4 -# Enthalpy of formation: -516.022 kcal/mol - -analytic 4.8515e+003 1.2189e+000 -1.4069e+005 -1.9135e+003 -2.4011e+003 -# -Range: 25-150 - -1.0000 NpO2+ + 1.0000 HPO4-- = NpO2HPO4- - -llnl_gamma 4.0 - log_k +3.5000 - -delta_H 49.8668 kJ/mol # Calculated enthalpy of reaction NpO2HPO4- -# Enthalpy of formation: -530.642 kcal/mol - -analytic -4.1705e+003 -9.9302e-001 1.2287e+005 1.6399e+003 2.0969e+003 -# -Range: 25-150 - -1.0000 NpO2+ + 1.0000 H2O = NpO2OH +1.0000 H+ - -llnl_gamma 3.0 - log_k -8.9 - -delta_H 43.6285 kJ/mol # Calculated enthalpy of reaction NpO2OH -# Enthalpy of formation: -291.635 kcal/mol - -analytic -4.5710e+002 -1.2286e-001 1.0640e+004 1.8151e+002 1.8163e+002 -# -Range: 25-150 - -1.0000 NpO2++ + 1.0000 H2O = NpO2OH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.2 - -delta_H 43.3805 kJ/mol # Calculated enthalpy of reaction NpO2OH+ -# Enthalpy of formation: -263.608 kcal/mol - -analytic 1.7485e+002 4.0017e-002 -7.5154e+003 -6.7399e+001 -1.2823e+002 -# -Range: 25-150 - -1.0000 SO4-- + 1.0000 NpO2++ = NpO2SO4 - -llnl_gamma 3.0 - log_k +3.3000 - -delta_H 19.8789 kJ/mol # Calculated enthalpy of reaction NpO2SO4 -# Enthalpy of formation: -418.308 kcal/mol - -analytic -1.5624e+002 7.3296e-003 6.7555e+003 5.4435e+001 1.1527e+002 -# -Range: 25-150 - -1.0000 SO4-- + 1.0000 NpO2+ = NpO2SO4- - -llnl_gamma 4.0 - log_k +0.4000 - -delta_H 19.1395 kJ/mol # Calculated enthalpy of reaction NpO2SO4- -# Enthalpy of formation: -446.571 kcal/mol - -analytic -3.1804e+002 -9.3472e-002 7.6002e+003 1.2965e+002 1.2973e+002 -# -Range: 25-150 - -1.0000 Np+++ + 1.0000 H2O = NpOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7 - -delta_H 50.1031 kJ/mol # Calculated enthalpy of reaction NpOH+2 -# Enthalpy of formation: -182.322 kcal/mol - -analytic 1.4062e+002 3.2671e-002 -6.7555e+003 -5.4435e+001 -1.1526e+002 -# -Range: 25-150 - -1.0000 Np++++ + 1.0000 H2O = NpOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -1 - -delta_H 51.0089 kJ/mol # Calculated enthalpy of reaction NpOH+3 -# Enthalpy of formation: -189.013 kcal/mol - -analytic -1.8373e+002 -5.2443e-002 2.7025e+003 7.6503e+001 4.6154e+001 -# -Range: 25-150 - -1.0000 SO4-- + 1.0000 Np++++ = NpSO4++ - -llnl_gamma 4.5 - log_k +5.5000 - -delta_H 20.7377 kJ/mol # Calculated enthalpy of reaction NpSO4+2 -# Enthalpy of formation: -345.331 kcal/mol - -analytic 3.9477e+002 1.1981e-001 -1.0978e+004 -1.5687e+002 -1.8736e+002 -# -Range: 25-150 - -1.0000 H2O = OH- +1.0000 H+ - -llnl_gamma 3.5 - log_k -13.9951 - -delta_H 55.8146 kJ/mol # Calculated enthalpy of reaction OH- -# Enthalpy of formation: -54.977 kcal/mol - -analytic -6.7506e+001 -3.0619e-002 -1.9901e+003 2.8004e+001 -3.1033e+001 -# -Range: 0-300 - -2.0000 HPO4-- = P2O7---- +1.0000 H2O - -llnl_gamma 4.0 - log_k -3.7463 - -delta_H 27.2256 kJ/mol # Calculated enthalpy of reaction P2O7-4 -# Enthalpy of formation: -2271.1 kJ/mol - -analytic 4.0885e+002 1.3243e-001 -1.1373e+004 -1.6727e+002 -1.7758e+002 -# -Range: 0-300 - -3.0000 H+ + 1.0000 HPO4-- = PH4+ +2.0000 O2 - -llnl_gamma 4.0 - log_k -212.7409 - -delta_H 0 # Not possible to calculate enthalpy of reaction PH4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 F- = PO3F-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +7.1993 - -delta_H 0 # Not possible to calculate enthalpy of reaction PO3F-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- = PO4--- +1.0000 H+ - -llnl_gamma 4.0 - log_k -12.3218 - -delta_H 14.7068 kJ/mol # Calculated enthalpy of reaction PO4-3 -# Enthalpy of formation: -305.3 kcal/mol - -analytic -7.6170e+001 -3.3574e-002 1.3405e+002 2.9658e+001 2.1140e+000 -# -Range: 0-300 - -2.0000 BrO3- + 1.0000 Pb++ = Pb(BrO3)2 - -llnl_gamma 3.0 - log_k +5.1939 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(BrO3)2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Pb++ = Pb(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -6.1133 - -delta_H 10.5437 kJ/mol # Calculated enthalpy of reaction Pb(CH3COO)2 -# Enthalpy of formation: -229.46 kcal/mol - -analytic -1.7315e+001 -1.0618e-003 -3.6365e+003 6.9263e+000 5.8659e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Pb++ = Pb(CH3COO)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -8.972 - -delta_H -2.84512 kJ/mol # Calculated enthalpy of reaction Pb(CH3COO)3- -# Enthalpy of formation: -348.76 kcal/mol - -analytic 1.2417e+001 -3.1481e-003 -9.4152e+003 -1.6846e+000 1.3623e+006 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Pb++ = Pb(CO3)2-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -11.2576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(CO3)2-2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 ClO3- + 1.0000 Pb++ = Pb(ClO3)2 - -llnl_gamma 3.0 - log_k -0.5133 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(ClO3)2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Pb++ = Pb(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -17.0902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Pb++ = Pb(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -28.0852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)3- -# Enthalpy of formation: -0 kcal/mol - -2.0000 Thiocyanate- + 1.0000 Pb++ = Pb(Thiocyanate)2 - -llnl_gamma 3.0 - log_k +1.2455 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(Thiocyanate)2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 Pb++ + 1.0000 H2O = Pb2OH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -6.3951 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2OH+3 -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 3.0000 Pb++ = Pb3(OH)4++ +4.0000 H+ - -llnl_gamma 4.5 - log_k -23.8803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb3(OH)4+2 -# Enthalpy of formation: -0 kcal/mol - -4.0000 Pb++ + 4.0000 H2O = Pb4(OH)4++++ +4.0000 H+ - -llnl_gamma 5.5 - log_k -20.8803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4(OH)4+4 -# Enthalpy of formation: -0 kcal/mol - -8.0000 H2O + 6.0000 Pb++ = Pb6(OH)8++++ +8.0000 H+ - -llnl_gamma 5.5 - log_k -43.5606 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb6(OH)8+4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 Br- = PbBr+ - -llnl_gamma 4.0 - log_k +1.1831 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 Br- + 1.0000 Pb++ = PbBr2 - -llnl_gamma 3.0 - log_k +1.5062 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 Br- + 1.0000 Pb++ = PbBr3- - -llnl_gamma 4.0 - log_k +1.2336 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr3- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 BrO3- = PbBrO3+ - -llnl_gamma 4.0 - log_k +1.9373 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBrO3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 CH3COOH = PbCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.3603 - -delta_H -2.33147e-15 kJ/mol # Calculated enthalpy of reaction PbCH3COO+ -# Enthalpy of formation: -115.88 kcal/mol - -analytic -2.6822e+001 1.0992e-003 7.3688e+002 8.4407e+000 7.0266e+004 -# -Range: 0-300 - -1.0000 Pb++ + 1.0000 HCO3- = PbCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -3.7488 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbCO3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 Cl- = PbCl+ - -llnl_gamma 4.0 - log_k +1.4374 - -delta_H 4.53127 kJ/mol # Calculated enthalpy of reaction PbCl+ -# Enthalpy of formation: -38.63 kcal/mol - -analytic 1.1948e+002 4.3527e-002 -2.7666e+003 -4.9190e+001 -4.3206e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Pb++ = PbCl2 - -llnl_gamma 3.0 - log_k +2.0026 - -delta_H 8.14206 kJ/mol # Calculated enthalpy of reaction PbCl2 -# Enthalpy of formation: -77.7 kcal/mol - -analytic 2.2537e+002 7.7574e-002 -5.5112e+003 -9.2131e+001 -8.6064e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Pb++ = PbCl3- - -llnl_gamma 4.0 - log_k +1.6881 - -delta_H 7.86174 kJ/mol # Calculated enthalpy of reaction PbCl3- -# Enthalpy of formation: -117.7 kcal/mol - -analytic 2.5254e+002 8.9159e-002 -6.0116e+003 -1.0395e+002 -9.3880e+001 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Pb++ = PbCl4-- - -llnl_gamma 4.0 - log_k +1.4909 - -delta_H -7.18811 kJ/mol # Calculated enthalpy of reaction PbCl4-2 -# Enthalpy of formation: -161.23 kcal/mol - -analytic 1.4048e+002 7.6332e-002 -1.1507e+003 -6.3786e+001 -1.7997e+001 -# -Range: 0-300 - -1.0000 Pb++ + 1.0000 ClO3- = PbClO3+ - -llnl_gamma 4.0 - log_k -0.2208 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbClO3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 F- = PbF+ - -llnl_gamma 4.0 - log_k +0.8284 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbF+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 Pb++ = PbF2 - -llnl_gamma 3.0 - log_k +1.6132 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbF2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 HPO4-- + 1.0000 H+ = PbH2PO4+ - -llnl_gamma 4.0 - log_k +1.5000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbH2PO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 HPO4-- = PbHPO4 - -llnl_gamma 3.0 - log_k +3.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbHPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 I- = PbI+ - -llnl_gamma 4.0 - log_k +1.9597 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbI+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 I- + 1.0000 Pb++ = PbI2 - -llnl_gamma 3.0 - log_k +2.7615 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbI2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 I- + 1.0000 Pb++ = PbI3- - -llnl_gamma 4.0 - log_k +3.3355 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbI3- -# Enthalpy of formation: -0 kcal/mol - -4.0000 I- + 1.0000 Pb++ = PbI4-- - -llnl_gamma 4.0 - log_k +4.0672 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbI4-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 NO3- = PbNO3+ - -llnl_gamma 4.0 - log_k +1.2271 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbNO3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 H2O = PbOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -7.6951 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbOH+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Pb++ = PbP2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +7.4136 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbP2O7-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Thiocyanate- + 1.0000 Pb++ = PbThiocyanate+ - -llnl_gamma 4.0 - log_k +0.9827 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbThiocyanate+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pd++ + 1.0000 Cl- = PdCl+ - -llnl_gamma 4.0 - log_k +6.0993 - -delta_H -31.995 kJ/mol # Calculated enthalpy of reaction PdCl+ -# Enthalpy of formation: -5.5 kcal/mol - -analytic 7.2852e+001 3.6886e-002 7.3102e+002 -3.2402e+001 1.1385e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Pd++ = PdCl2 - -llnl_gamma 3.0 - log_k +10.7327 - -delta_H -66.1658 kJ/mol # Calculated enthalpy of reaction PdCl2 -# Enthalpy of formation: -53.6 kcal/mol - -analytic 1.6849e+002 7.9321e-002 8.2874e+002 -7.4416e+001 1.2882e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Pd++ = PdCl3- - -llnl_gamma 4.0 - log_k +13.0937 - -delta_H -101.592 kJ/mol # Calculated enthalpy of reaction PdCl3- -# Enthalpy of formation: -102 kcal/mol - -analytic 4.5978e+001 6.2999e-002 6.9333e+003 -3.0257e+001 1.0817e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Pd++ = PdCl4-- - -llnl_gamma 4.0 - log_k +15.1615 - -delta_H -152.08 kJ/mol # Calculated enthalpy of reaction PdCl4-2 -# Enthalpy of formation: -154 kcal/mol - -analytic -3.2209e+001 5.3432e-002 1.2180e+004 -3.7814e+000 1.9006e+002 -# -Range: 0-300 - -1.0000 Pd++ + 1.0000 H2O = PdO +2.0000 H+ - -llnl_gamma 3.0 - log_k -2.19 - -delta_H 6.43081 kJ/mol # Calculated enthalpy of reaction PdO -# Enthalpy of formation: -24.7 kcal/mol - -analytic 1.3587e+002 2.9292e-002 -4.6645e+003 -5.2997e+001 -7.2825e+001 -# -Range: 0-300 - -1.0000 Pd++ + 1.0000 H2O = PdOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -1.0905 - -delta_H -3.19239 kJ/mol # Calculated enthalpy of reaction PdOH+ -# Enthalpy of formation: -27 kcal/mol - -analytic 1.4291e+001 5.8382e-003 -1.9881e+002 -6.6475e+000 -3.1065e+000 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Pm+++ = Pm(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.9576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Pm+++ = Pm(HPO4)2- - -llnl_gamma 4.0 - log_k +9.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Pm+++ = Pm(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.7902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)2+ -# Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Pm+++ = Pm(OH)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -26.1852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Pm+++ = Pm(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.6837 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Pm+++ = Pm(SO4)2- - -llnl_gamma 4.0 - log_k +5.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 HCO3- = PmCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.6288 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmCO3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 Cl- = PmCl++ - -llnl_gamma 4.5 - log_k +0.3400 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmCl+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 F- = PmF++ - -llnl_gamma 4.5 - log_k +3.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmF+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 HPO4-- + 1.0000 H+ = PmH2PO4++ - -llnl_gamma 4.5 - log_k +9.6054 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmH2PO4+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 HCO3- = PmHCO3++ - -llnl_gamma 4.5 - log_k +2.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmHCO3+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 HPO4-- = PmHPO4+ - -llnl_gamma 4.0 - log_k +5.5000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 NO3- = PmNO3++ - -llnl_gamma 4.5 - log_k +1.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmNO3+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 H2O = PmOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.9951 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmOH+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 HPO4-- = PmPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.3718 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Pm+++ = PmSO4+ - -llnl_gamma 4.0 - log_k +3.5000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmSO4+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Pr+++ = Pr(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.8525 - -delta_H -23.8906 kJ/mol # Calculated enthalpy of reaction Pr(CH3COO)2+ -# Enthalpy of formation: -406.71 kcal/mol - -analytic -1.6464e+001 6.2989e-004 -4.4771e+002 3.6947e+000 3.3816e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Pr+++ = Pr(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.2023 - -delta_H -40.3756 kJ/mol # Calculated enthalpy of reaction Pr(CH3COO)3 -# Enthalpy of formation: -526.75 kcal/mol - -analytic -1.2007e+001 4.9332e-004 0.0000e+000 0.0000e+000 3.2789e+005 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Pr+++ = Pr(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -8.1076 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Pr+++ = Pr(HPO4)2- - -llnl_gamma 4.0 - log_k +8.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Pr+++ = Pr(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.5637 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Pr+++ = Pr(SO4)2- - -llnl_gamma 4.0 - log_k +4.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pr+++ + 1.0000 CH3COOH = PrCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.0451 - -delta_H -12.4683 kJ/mol # Calculated enthalpy of reaction PrAcetate+2 -# Enthalpy of formation: -287.88 kcal/mol - -analytic -8.5624e+000 9.3878e-004 -5.7551e+002 2.2087e+000 2.4126e+005 -# -Range: 0-300 - -1.0000 Pr+++ + 1.0000 HCO3- = PrCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.7722 - -delta_H 92.458 kJ/mol # Calculated enthalpy of reaction PrCO3+ -# Enthalpy of formation: -311.6 kcal/mol - -analytic 2.2079e+002 5.2156e-002 -6.5821e+003 -8.7701e+001 -1.0277e+002 -# -Range: 0-300 - -1.0000 Pr+++ + 1.0000 Cl- = PrCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction PrCl+2 -# Enthalpy of formation: -205.3 kcal/mol - -analytic 7.5152e+001 3.7446e-002 -1.6661e+003 -3.2490e+001 -2.6020e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Pr+++ = PrCl2+ - -llnl_gamma 4.0 - log_k +0.0308 - -delta_H 20.3593 kJ/mol # Calculated enthalpy of reaction PrCl2+ -# Enthalpy of formation: -243.8 kcal/mol - -analytic 2.2848e+002 8.1250e-002 -6.0401e+003 -9.3909e+001 -9.4318e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Pr+++ = PrCl3 - -llnl_gamma 3.0 - log_k -0.3203 - -delta_H 14.2214 kJ/mol # Calculated enthalpy of reaction PrCl3 -# Enthalpy of formation: -285.2 kcal/mol - -analytic 4.5016e+002 1.3095e-001 -1.2588e+004 -1.8075e+002 -1.9656e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Pr+++ = PrCl4- - -llnl_gamma 4.0 - log_k -0.7447 - -delta_H -4.05011 kJ/mol # Calculated enthalpy of reaction PrCl4- -# Enthalpy of formation: -329.5 kcal/mol - -analytic 5.4245e+002 1.3647e-001 -1.5564e+004 -2.1485e+002 -2.4302e+002 -# -Range: 0-300 - -1.0000 Pr+++ + 1.0000 F- = PrF++ - -llnl_gamma 4.5 - log_k +4.2221 - -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction PrF+2 -# Enthalpy of formation: -243.4 kcal/mol - -analytic 9.5146e+001 4.1115e-002 -2.5463e+003 -3.8236e+001 -3.9760e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Pr+++ = PrF2+ - -llnl_gamma 4.0 - log_k +7.3447 - -delta_H 14.644 kJ/mol # Calculated enthalpy of reaction PrF2+ -# Enthalpy of formation: -325.6 kcal/mol - -analytic 2.4997e+002 8.5251e-002 -6.1908e+003 -9.9912e+001 -9.6675e+001 -# -Range: 0-300 - -3.0000 F- + 1.0000 Pr+++ = PrF3 - -llnl_gamma 3.0 - log_k +9.6610 - -delta_H -6.4852 kJ/mol # Calculated enthalpy of reaction PrF3 -# Enthalpy of formation: -410.8 kcal/mol - -analytic 4.7885e+002 1.3764e-001 -1.2080e+004 -1.8980e+002 -1.8864e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 Pr+++ = PrF4- - -llnl_gamma 4.0 - log_k +11.5375 - -delta_H -47.2792 kJ/mol # Calculated enthalpy of reaction PrF4- -# Enthalpy of formation: -500.7 kcal/mol - -analytic 5.5774e+002 1.4067e-001 -1.3523e+004 -2.1933e+002 -2.1118e+002 -# -Range: 0-300 - -1.0000 Pr+++ + 1.0000 HPO4-- + 1.0000 H+ = PrH2PO4++ - -llnl_gamma 4.5 - log_k +9.5950 - -delta_H -16.2548 kJ/mol # Calculated enthalpy of reaction PrH2PO4+2 -# Enthalpy of formation: -481.5 kcal/mol - -analytic 1.0501e+002 6.3059e-002 3.8161e+002 -4.6656e+001 5.9234e+000 -# -Range: 0-300 - -1.0000 Pr+++ + 1.0000 HCO3- = PrHCO3++ - -llnl_gamma 4.5 - log_k +1.9190 - -delta_H -12.9788 kJ/mol # Calculated enthalpy of reaction PrHCO3+2 -# Enthalpy of formation: -336.8 kcal/mol - -analytic 2.2010e+001 2.8541e-002 1.4574e+003 -1.3522e+001 2.2734e+001 -# -Range: 0-300 - -1.0000 Pr+++ + 1.0000 HPO4-- = PrHPO4+ - -llnl_gamma 4.0 - log_k +5.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PrHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pr+++ + 1.0000 NO3- = PrNO3++ - -llnl_gamma 4.5 - log_k +0.6546 - -delta_H -27.9115 kJ/mol # Calculated enthalpy of reaction PrNO3+2 -# Enthalpy of formation: -224.9 kcal/mol - -analytic 1.4297e+001 2.5214e-002 2.1756e+003 -1.1490e+001 3.3943e+001 -# -Range: 0-300 - -1.0000 Pr+++ + 1.0000 H2O = PrO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -17.29 - -delta_H 117.642 kJ/mol # Calculated enthalpy of reaction PrO+ -# Enthalpy of formation: -209 kcal/mol - -analytic 1.7927e+002 2.9467e-002 -1.3815e+004 -6.4259e+001 -2.1562e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Pr+++ = PrO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -37.5852 - -delta_H 301.39 kJ/mol # Calculated enthalpy of reaction PrO2- -# Enthalpy of formation: -233.4 kcal/mol - -analytic -4.4480e+001 -1.6327e-002 -7.9031e+003 1.9348e+001 -8.5440e+005 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Pr+++ = PrO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -26.5901 - -delta_H 231.517 kJ/mol # Calculated enthalpy of reaction PrO2H -# Enthalpy of formation: -250.1 kcal/mol - -analytic 3.3930e+002 4.4894e-002 -2.3769e+004 -1.2106e+002 -3.7099e+002 -# -Range: 0-300 - -1.0000 Pr+++ + 1.0000 H2O = PrOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -8.274 - -delta_H 81.2407 kJ/mol # Calculated enthalpy of reaction PrOH+2 -# Enthalpy of formation: -217.7 kcal/mol - -analytic 5.6599e+001 1.1073e-002 -5.9197e+003 -1.9525e+001 -9.2388e+001 -# -Range: 0-300 - -1.0000 Pr+++ + 1.0000 HPO4-- = PrPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.7218 - -delta_H 0 # Not possible to calculate enthalpy of reaction PrPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Pr+++ = PrSO4+ - -llnl_gamma 4.0 - log_k -3.687 - -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction PrSO4+ -# Enthalpy of formation: -381.5 kcal/mol - -analytic 2.9156e+002 8.4671e-002 -1.0638e+004 -1.1509e+002 -1.6608e+002 -# -Range: 0-300 - -2.0000 HPO4-- + 1.0000 Pu++++ = Pu(HPO4)2 - -llnl_gamma 3.0 - log_k +23.8483 - -delta_H 25.9279 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)2 -# Enthalpy of formation: -3094.13 kJ/mol - -analytic 9.2387e+002 3.2577e-001 -2.0881e+004 -3.7466e+002 -3.5492e+002 -# -Range: 0-200 - -3.0000 HPO4-- + 1.0000 Pu++++ = Pu(HPO4)3-- - -llnl_gamma 4.0 - log_k +33.4599 - -delta_H -6.49412 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)3-2 -# Enthalpy of formation: -4418.63 kJ/mol - -analytic 6.4515e+002 2.3011e-001 -1.2752e+004 -2.5761e+002 -1.9917e+002 -# -Range: 0-300 - -4.0000 HPO4-- + 1.0000 Pu++++ = Pu(HPO4)4---- - -llnl_gamma 4.0 - log_k +43.2467 - -delta_H -77.4832 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)4-4 -# Enthalpy of formation: -5781.7 kJ/mol - -analytic 8.5301e+002 3.0730e-001 -1.3644e+004 -3.4573e+002 -2.1316e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Pu++++ = Pu(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -2.3235 - -delta_H 74.3477 kJ/mol # Calculated enthalpy of reaction Pu(OH)2+2 -# Enthalpy of formation: -1033.22 kJ/mol - -analytic 7.5979e+001 6.8394e-003 -6.3710e+003 -2.3833e+001 -9.9435e+001 -# -Range: 0-300 - -3.0000 H2O + 1.0000 Pu++++ = Pu(OH)3+ +3.0000 H+ - -llnl_gamma 4.0 - log_k -5.281 - -delta_H 96.578 kJ/mol # Calculated enthalpy of reaction Pu(OH)3+ -# Enthalpy of formation: -1296.83 kJ/mol - -analytic 1.0874e+002 1.4199e-002 -8.4954e+003 -3.6278e+001 -1.3259e+002 -# -Range: 0-300 - -4.0000 H2O + 1.0000 Pu++++ = Pu(OH)4 +4.0000 H+ - -llnl_gamma 3.0 - log_k -9.5174 - -delta_H 109.113 kJ/mol # Calculated enthalpy of reaction Pu(OH)4 -# Enthalpy of formation: -1570.13 kJ/mol - -analytic 2.7913e+002 1.0252e-001 -1.1289e+004 -1.1369e+002 -1.9181e+002 -# -Range: 0-200 - -2.0000 SO4-- + 1.0000 Pu++++ = Pu(SO4)2 - -llnl_gamma 3.0 - log_k +10.2456 - -delta_H 41.0122 kJ/mol # Calculated enthalpy of reaction Pu(SO4)2 -# Enthalpy of formation: -2314.08 kJ/mol - -analytic 5.3705e+002 1.9308e-001 -1.3213e+004 -2.1824e+002 -2.2457e+002 -# -Range: 0-200 - -2.0000 SO4-- + 1.0000 Pu+++ = Pu(SO4)2- - -llnl_gamma 4.0 - log_k +6.3200 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pu(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pu++++ + 1.0000 F- = PuF+++ - -llnl_gamma 5.0 - log_k +8.4600 - -delta_H 0 # Not possible to calculate enthalpy of reaction PuF+3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 Pu++++ = PuF2++ - -llnl_gamma 4.5 - log_k +15.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PuF2+2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 F- + 1.0000 Pu++++ = PuF3+ - -llnl_gamma 4.0 - log_k +5.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PuF3+ -# Enthalpy of formation: -0 kcal/mol - -4.0000 F- + 1.0000 Pu++++ = PuF4 - -llnl_gamma 3.0 - log_k +4.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PuF4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Pu+++ + 1.0000 HPO4-- + 1.0000 H+ = PuH2PO4++ - -llnl_gamma 4.5 - log_k +9.6817 - -delta_H 28.597 kJ/mol # Calculated enthalpy of reaction PuH2PO4+2 -# Enthalpy of formation: -1855.04 kJ/mol - -analytic 2.1595e+002 6.4502e-002 -6.4723e+003 -8.2341e+001 -1.0106e+002 -# -Range: 0-300 - -1.0000 Pu++++ + 1.0000 HPO4-- = PuHPO4++ - -llnl_gamma 4.5 - log_k +13.0103 - -delta_H 40.306 kJ/mol # Calculated enthalpy of reaction PuHPO4+2 -# Enthalpy of formation: -1787.67 kJ/mol - -analytic 2.2662e+002 7.1073e-002 -6.9134e+003 -8.5504e+001 -1.0794e+002 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 PuO2++ = PuO2(CO3)2-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.7428 - -delta_H 52.3345 kJ/mol # Calculated enthalpy of reaction PuO2(CO3)2-2 -# Enthalpy of formation: -2149.11 kJ/mol - -analytic 2.6589e+002 7.6132e-002 -9.7187e+003 -1.0577e+002 -1.5173e+002 -# -Range: 0-300 - -1.0000 PuO2++ + 1.0000 Cl- = PuO2Cl+ - -llnl_gamma 4.0 - log_k -0.2084 - -delta_H 11.6127 kJ/mol # Calculated enthalpy of reaction PuO2Cl+ -# Enthalpy of formation: -977.045 kJ/mol - -analytic 9.8385e+001 3.8617e-002 -2.5210e+003 -4.1075e+001 -3.9367e+001 -# -Range: 0-300 - -1.0000 PuO2++ + 1.0000 F- = PuO2F+ - -llnl_gamma 4.0 - log_k +5.6674 - -delta_H -5.2094 kJ/mol # Calculated enthalpy of reaction PuO2F+ -# Enthalpy of formation: -1162.13 kJ/mol - -analytic 1.1412e+002 4.1224e-002 -2.0503e+003 -4.6009e+001 -3.2027e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 PuO2++ = PuO2F2 - -llnl_gamma 3.0 - log_k +10.9669 - -delta_H -15.4738 kJ/mol # Calculated enthalpy of reaction PuO2F2 -# Enthalpy of formation: -1507.75 kJ/mol - -analytic 2.5502e+002 9.1597e-002 -4.4557e+003 -1.0362e+002 -7.5752e+001 -# -Range: 0-200 - -3.0000 F- + 1.0000 PuO2++ = PuO2F3- - -llnl_gamma 4.0 - log_k +15.9160 - -delta_H -29.4032 kJ/mol # Calculated enthalpy of reaction PuO2F3- -# Enthalpy of formation: -1857.02 kJ/mol - -analytic 3.6102e+002 8.6364e-002 -8.7129e+003 -1.3805e+002 -1.3606e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 PuO2++ = PuO2F4-- - -llnl_gamma 4.0 - log_k +18.7628 - -delta_H -39.9786 kJ/mol # Calculated enthalpy of reaction PuO2F4-2 -# Enthalpy of formation: -2202.95 kJ/mol - -analytic 4.6913e+002 1.3649e-001 -9.8336e+003 -1.8510e+002 -1.5358e+002 -# -Range: 0-300 - -1.0000 PuO2++ + 1.0000 HPO4-- + 1.0000 H+ = PuO2H2PO4+ - -llnl_gamma 4.0 - log_k +11.2059 - -delta_H -6.63904 kJ/mol # Calculated enthalpy of reaction PuO2H2PO4+ -# Enthalpy of formation: -2120.3 kJ/mol - -analytic 2.1053e+002 6.8671e-002 -4.3390e+003 -8.2930e+001 -6.7768e+001 -# -Range: 0-300 - -1.0000 PuO2+ + 1.0000 H2O = PuO2OH +1.0000 H+ - -llnl_gamma 3.0 - log_k -9.6674 - -delta_H 69.1763 kJ/mol # Calculated enthalpy of reaction PuO2OH -# Enthalpy of formation: -1130.85 kJ/mol - -analytic 7.1080e+001 2.6141e-002 -5.0337e+003 -2.8956e+001 -8.5504e+001 -# -Range: 0-200 - -1.0000 PuO2++ + 1.0000 H2O = PuO2OH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.6379 - -delta_H 45.2823 kJ/mol # Calculated enthalpy of reaction PuO2OH+ -# Enthalpy of formation: -1062.13 kJ/mol - -analytic -3.9012e+000 1.1645e-003 -1.1299e+003 1.3419e+000 -1.4364e+005 -# -Range: 0-300 - -1.0000 SO4-- + 1.0000 PuO2++ = PuO2SO4 - -llnl_gamma 3.0 - log_k +3.2658 - -delta_H 20.0746 kJ/mol # Calculated enthalpy of reaction PuO2SO4 -# Enthalpy of formation: -1711.11 kJ/mol - -analytic 2.0363e+002 7.3903e-002 -5.1940e+003 -8.2833e+001 -8.8273e+001 -# -Range: 0-200 - -1.0000 Pu+++ + 1.0000 H2O = PuOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.968 - -delta_H 53.5143 kJ/mol # Calculated enthalpy of reaction PuOH+2 -# Enthalpy of formation: -823.876 kJ/mol - -analytic 3.0065e+000 3.0278e-003 -1.9675e+003 -1.6100e+000 -1.1524e+005 -# -Range: 0-300 - -1.0000 Pu++++ + 1.0000 H2O = PuOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -0.5048 - -delta_H 48.1823 kJ/mol # Calculated enthalpy of reaction PuOH+3 -# Enthalpy of formation: -773.549 kJ/mol - -analytic 4.1056e+001 1.1119e-003 -3.9252e+003 -1.1609e+001 -6.1260e+001 -# -Range: 0-300 - -1.0000 SO4-- + 1.0000 Pu+++ = PuSO4+ - -llnl_gamma 4.0 - log_k +3.4935 - -delta_H 14.6006 kJ/mol # Calculated enthalpy of reaction PuSO4+ -# Enthalpy of formation: -1486.55 kJ/mol - -analytic 1.9194e+002 7.7154e-002 -4.2751e+003 -7.9646e+001 -6.6765e+001 -# -Range: 0-300 - -1.0000 SO4-- + 1.0000 Pu++++ = PuSO4++ - -llnl_gamma 4.5 - log_k +5.7710 - -delta_H 12.3336 kJ/mol # Calculated enthalpy of reaction PuSO4+2 -# Enthalpy of formation: -1433.16 kJ/mol - -analytic 1.9418e+002 7.5477e-002 -4.2767e+003 -7.9425e+001 -6.6792e+001 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Ra++ = Ra(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.9018 - -delta_H 21.0874 kJ/mol # Calculated enthalpy of reaction Ra(CH3COO)2 -# Enthalpy of formation: -353.26 kcal/mol - -analytic 2.2767e+001 3.1254e-003 -6.4558e+003 -7.2253e+000 7.0689e+005 -# -Range: 0-300 - -1.0000 Ra++ + 1.0000 CH3COOH = RaCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.709 - -delta_H 11.7989 kJ/mol # Calculated enthalpy of reaction RaCH3COO+ -# Enthalpy of formation: -239.38 kcal/mol - -analytic -1.8268e+001 2.9956e-003 1.9313e+001 5.2767e+000 4.9771e+004 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Rb+ = Rb(CH3COO)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -9.7636 - -delta_H -1.12968 kJ/mol # Calculated enthalpy of reaction Rb(CH3COO)2- -# Enthalpy of formation: -292.49 kcal/mol - -analytic -1.9198e+002 -4.2101e-002 5.5792e+003 7.1152e+001 8.7114e+001 -# -Range: 0-300 - -1.0000 Rb+ + 1.0000 Br- = RbBr - -llnl_gamma 3.0 - log_k -1.2168 - -delta_H 13.9327 kJ/mol # Calculated enthalpy of reaction RbBr -# Enthalpy of formation: -85.73 kcal/mol - -analytic 1.2054e+002 3.3825e-002 -3.9500e+003 -4.7920e+001 -6.1671e+001 -# -Range: 0-300 - -1.0000 Rb+ + 1.0000 CH3COOH = RbCH3COO +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.7279 - -delta_H 4.89528 kJ/mol # Calculated enthalpy of reaction RbCH3COO -# Enthalpy of formation: -174.95 kcal/mol - -analytic 1.5661e+001 -2.4230e-003 -2.5280e+003 -5.4433e+000 2.0344e+005 -# -Range: 0-300 - -1.0000 Rb+ + 1.0000 Cl- = RbCl - -llnl_gamma 3.0 - log_k -0.9595 - -delta_H 13.1922 kJ/mol # Calculated enthalpy of reaction RbCl -# Enthalpy of formation: -96.8 kcal/mol - -analytic 1.2689e+002 3.5557e-002 -4.0822e+003 -5.0412e+001 -6.3736e+001 -# -Range: 0-300 - -1.0000 Rb+ + 1.0000 F- = RbF - -llnl_gamma 3.0 - log_k +0.9602 - -delta_H 1.92464 kJ/mol # Calculated enthalpy of reaction RbF -# Enthalpy of formation: -139.71 kcal/mol - -analytic 1.3893e+002 3.8188e-002 -3.8677e+003 -5.5109e+001 -6.0393e+001 -# -Range: 0-300 - -1.0000 Rb+ + 1.0000 I- = RbI - -llnl_gamma 3.0 - log_k -0.8136 - -delta_H 7.1128 kJ/mol # Calculated enthalpy of reaction RbI -# Enthalpy of formation: -71.92 kcal/mol - -analytic 1.1486e+002 3.3121e-002 -3.4217e+003 -4.6096e+001 -5.3426e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Ru+++ = Ru(Cl)2+ - -llnl_gamma 4.0 - log_k +3.7527 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(Cl)2+ -# Enthalpy of formation: -0 kcal/mol - -3.0000 Cl- + 1.0000 Ru+++ = Ru(Cl)3 - -llnl_gamma 3.0 - log_k +4.2976 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(Cl)3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Ru+++ = Ru(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.5148 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Ru(OH)2++ + 1.0000 Cl- = Ru(OH)2Cl+ - -llnl_gamma 4.0 - log_k +1.3858 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 Cl- + 1.0000 Ru(OH)2++ = Ru(OH)2Cl2 - -llnl_gamma 3.0 - log_k +1.8081 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 Cl- + 1.0000 Ru(OH)2++ = Ru(OH)2Cl3- - -llnl_gamma 4.0 - log_k +1.6172 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl3- -# Enthalpy of formation: -0 kcal/mol - -4.0000 Cl- + 1.0000 Ru(OH)2++ = Ru(OH)2Cl4-- - -llnl_gamma 4.0 - log_k +2.7052 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl4-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Ru(OH)2++ = Ru(OH)2SO4 - -llnl_gamma 3.0 - log_k +1.7941 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2SO4 -# Enthalpy of formation: -0 kcal/mol - -#3.0000 H2O + 1.0000 Ru++ + 0.5000 O2 = Ru(OH)4 +2.0000 H+ -# Ru(OH)2++ +1.0000 H2O +0.5000 O2 = 4.0000 H+ + 1.0000 RuO4-- log_k -25.2470 -# 4.0000 H+ + 1.0000 RuO4-- = Ru++ +2.0000 H2O +1.0000 O2 log_k +0.1610 -#1 + 2 + 3 -2H2O + Ru(OH)2++ = Ru(OH)4 + 2H+ - -llnl_gamma 3.0 -# log_k +18.0322 - log_k -7.0538 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)4 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Ru+++ = Ru(SO4)2- - -llnl_gamma 4.0 - log_k +3.0627 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -4.0000 Ru(OH)2++ + 4.0000 H2O = Ru4(OH)12++++ +4.0000 H+ - -llnl_gamma 5.5 - log_k +7.1960 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru4(OH)12+4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Ru++ + 1.0000 Cl- = RuCl+ - -llnl_gamma 4.0 - log_k -0.4887 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Ru+++ + 1.0000 Cl- = RuCl++ - -llnl_gamma 4.5 - log_k +2.1742 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl+2 -# Enthalpy of formation: -0 kcal/mol - -4.0000 Cl- + 1.0000 Ru+++ = RuCl4- - -llnl_gamma 4.0 - log_k +4.1418 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl4- -# Enthalpy of formation: -0 kcal/mol - -5.0000 Cl- + 1.0000 Ru+++ = RuCl5-- - -llnl_gamma 4.0 - log_k +3.8457 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl5-2 -# Enthalpy of formation: -0 kcal/mol - -6.0000 Cl- + 1.0000 Ru+++ = RuCl6--- - -llnl_gamma 4.0 - log_k +3.4446 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl6-3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Ru+++ + 1.0000 H2O = RuOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.2392 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuOH+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Ru++ = RuSO4 - -llnl_gamma 3.0 - log_k +2.3547 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuSO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Ru+++ = RuSO4+ - -llnl_gamma 4.0 - log_k +1.9518 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuSO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 HS- = S-- +1.0000 H+ - -llnl_gamma 5.0 - log_k -12.9351 - -delta_H 49.0364 kJ/mol # Calculated enthalpy of reaction S-2 -# Enthalpy of formation: 32.928 kJ/mol - -analytic 9.7756e+001 3.2913e-002 -5.0784e+003 -4.1812e+001 -7.9273e+001 -# -Range: 0-300 - -2.0000 H+ + 2.0000 SO3-- = S2O5-- + H2O - -llnl_gamma 4.0 - log_k 9.5934 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O5-2 -# Enthalpy of formation: -0 kcal/mol - -analytic 0.12262E+03 0.62883E-01 -0.18005E+04 -0.50798E+02 -0.28132E+02 -# -Range: 0-300 - -2.0000 H+ + 1.0000 SO3-- = SO2 +1.0000 H2O - -llnl_gamma 3.0 - log_k +9.0656 - -delta_H 26.7316 kJ/mol # Calculated enthalpy of reaction SO2 -# Enthalpy of formation: -77.194 kcal/mol - -analytic 9.4048e+001 6.2127e-002 -1.1072e+003 -4.0310e+001 -1.7305e+001 -# -Range: 0-300 - -1.0000 Sb(OH)3 + 1.0000 H+ = Sb(OH)2+ +1.0000 H2O - -llnl_gamma 4.0 - log_k +1.4900 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)2+ -# Enthalpy of formation: -0 kcal/mol - - -analytic -4.9192e+000 -1.6439e-004 1.4777e+003 6.0724e-001 2.3059e+001 -# -Range: 0-300 - -1.0000 Sb(OH)3 + 1.0000 H+ + 1.0000 F- = Sb(OH)2F +1.0000 H2O - -llnl_gamma 3.0 - log_k +7.1700 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)2F -# Enthalpy of formation: -0 kcal/mol - - -analytic -1.6961e+002 5.7364e-002 2.7207e+004 3.7969e+001 -2.2834e+006 -# -Range: 0-300 - -1.0000 Sb(OH)3 + 1.0000 H2O = Sb(OH)4- +1.0000 H+ - -llnl_gamma 4.0 - log_k -11.92 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)4- -# Enthalpy of formation: -0 kcal/mol - - -analytic 4.9839e+001 -6.7112e-003 -4.8976e+003 -1.7138e+001 -8.3725e+004 -# -Range: 0-300 - -4.0000 HS- + 2.0000 Sb(OH)3 + 2.0000 H+ = Sb2S4-- +6.0000 H2O - -llnl_gamma 4.0 - log_k +39.1100 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb2S4-2 -# Enthalpy of formation: -0 kcal/mol - - -analytic 1.7631e+002 8.3686e-002 9.7091e+003 -7.8605e+001 1.5145e+002 -# -Range: 0-300 - -4.0000 Cl- + 3.0000 H+ + 1.0000 Sb(OH)3 = SbCl4- +3.0000 H2O - -llnl_gamma 4.0 - log_k +3.0720 - -delta_H 0 # Not possible to calculate enthalpy of reaction SbCl4- -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Sc+++ = Sc(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.7237 - -delta_H -43.1789 kJ/mol # Calculated enthalpy of reaction Sc(CH3COO)2+ -# Enthalpy of formation: -389.32 kcal/mol - -analytic -4.1862e+001 -3.9443e-005 2.1444e+002 1.2616e+001 5.5442e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Sc+++ = Sc(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -6.6777 - -delta_H -70.0402 kJ/mol # Calculated enthalpy of reaction Sc(CH3COO)3 -# Enthalpy of formation: -511.84 kcal/mol - -analytic -5.2525e+001 1.6181e-003 7.5022e+002 1.3988e+001 7.3540e+005 -# -Range: 0-300 - -1.0000 Sc+++ + 1.0000 CH3COOH = ScCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -1.4294 - -delta_H -21.7568 kJ/mol # Calculated enthalpy of reaction ScCH3COO+2 -# Enthalpy of formation: -268.1 kcal/mol - -analytic -2.3400e+001 1.3144e-004 1.1125e+002 7.3527e+000 3.0025e+005 -# -Range: 0-300 - -6.0000 F- + 4.0000 H+ + 1.0000 SiO2 = SiF6-- +2.0000 H2O - -llnl_gamma 4.0 - log_k +26.2749 - -delta_H -70.9565 kJ/mol # Calculated enthalpy of reaction SiF6-2 -# Enthalpy of formation: -571 kcal/mol - -analytic 2.3209e+002 1.0685e-001 5.8428e+002 -9.6798e+001 9.0486e+000 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Sm+++ = Sm(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.7132 - -delta_H -25.5224 kJ/mol # Calculated enthalpy of reaction Sm(CH3COO)2+ -# Enthalpy of formation: -403.5 kcal/mol - -analytic -1.4192e+001 2.1732e-003 -1.0267e+003 2.9516e+000 4.4389e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Sm+++ = Sm(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -7.8798 - -delta_H -43.5554 kJ/mol # Calculated enthalpy of reaction Sm(CH3COO)3 -# Enthalpy of formation: -523.91 kcal/mol - -analytic -2.0765e+001 1.1047e-003 -5.1181e+002 3.4797e+000 5.0618e+005 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Sm+++ = Sm(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.8576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Sm+++ = Sm(HPO4)2- - -llnl_gamma 4.0 - log_k +9.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -# Redundant with SmO2- -#4.0000 H2O + 1.0000 Sm+++ = Sm(OH)4- +4.0000 H+ -# -llnl_gamma 4.0 -# log_k -36.8803 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)4- -## Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Sm+++ = Sm(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.2437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Sm+++ = Sm(SO4)2- - -llnl_gamma 4.0 - log_k +5.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Sm+++ + 1.0000 CH3COOH = SmCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -1.9205 - -delta_H -13.598 kJ/mol # Calculated enthalpy of reaction SmCH3COO+2 -# Enthalpy of formation: -284.55 kcal/mol - -analytic -1.1734e+001 1.0889e-003 -5.1061e+002 3.3317e+000 2.6395e+005 -# -Range: 0-300 - -1.0000 Sm+++ + 1.0000 HCO3- = SmCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.479 - -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction SmCO3+ -# Enthalpy of formation: -308.8 kcal/mol - -analytic 2.3486e+002 5.3703e-002 -7.0193e+003 -9.2863e+001 -1.0960e+002 -# -Range: 0-300 - -1.0000 Sm+++ + 1.0000 Cl- = SmCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction SmCl+2 -# Enthalpy of formation: -201.7 kcal/mol - -analytic 9.4972e+001 3.9428e-002 -2.4198e+003 -3.9718e+001 -3.7787e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Sm+++ = SmCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 19.9409 kJ/mol # Calculated enthalpy of reaction SmCl2+ -# Enthalpy of formation: -240.3 kcal/mol - -analytic 2.5872e+002 8.4154e-002 -7.2061e+003 -1.0493e+002 -1.1252e+002 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Sm+++ = SmCl3 - -llnl_gamma 3.0 - log_k -0.3936 - -delta_H 13.803 kJ/mol # Calculated enthalpy of reaction SmCl3 -# Enthalpy of formation: -281.7 kcal/mol - -analytic 4.9535e+002 1.3520e-001 -1.4325e+004 -1.9720e+002 -2.2367e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Sm+++ = SmCl4- - -llnl_gamma 4.0 - log_k -0.818 - -delta_H -5.30531 kJ/mol # Calculated enthalpy of reaction SmCl4- -# Enthalpy of formation: -326.2 kcal/mol - -analytic 6.0562e+002 1.4212e-001 -1.7982e+004 -2.3782e+002 -2.8077e+002 -# -Range: 0-300 - -1.0000 Sm+++ + 1.0000 F- = SmF++ - -llnl_gamma 4.5 - log_k +4.3687 - -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction SmF+2 -# Enthalpy of formation: -239.9 kcal/mol - -analytic 1.1514e+002 4.3117e-002 -3.2853e+003 -4.5499e+001 -5.1297e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Sm+++ = SmF2+ - -llnl_gamma 4.0 - log_k +7.6379 - -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction SmF2+ -# Enthalpy of formation: -322.2 kcal/mol - -analytic 2.8030e+002 8.8143e-002 -7.2857e+003 -1.1092e+002 -1.1377e+002 -# -Range: 0-300 - -3.0000 F- + 1.0000 Sm+++ = SmF3 - -llnl_gamma 3.0 - log_k +10.0275 - -delta_H -8.5772 kJ/mol # Calculated enthalpy of reaction SmF3 -# Enthalpy of formation: -407.7 kcal/mol - -analytic 5.2425e+002 1.4191e-001 -1.3728e+004 -2.0628e+002 -2.1436e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 Sm+++ = SmF4- - -llnl_gamma 4.0 - log_k +11.9773 - -delta_H -49.7896 kJ/mol # Calculated enthalpy of reaction SmF4- -# Enthalpy of formation: -497.7 kcal/mol - -analytic 6.2228e+002 1.4659e-001 -1.5887e+004 -2.4275e+002 -2.4809e+002 -# -Range: 0-300 - -1.0000 Sm+++ + 1.0000 HPO4-- + 1.0000 H+ = SmH2PO4++ - -llnl_gamma 4.5 - log_k +9.4484 - -delta_H -15.8364 kJ/mol # Calculated enthalpy of reaction SmH2PO4+2 -# Enthalpy of formation: -477.8 kcal/mol - -analytic 1.2451e+002 6.4959e-002 -3.9576e+002 -5.3772e+001 -6.2124e+000 -# -Range: 0-300 - -1.0000 Sm+++ + 1.0000 HCO3- = SmHCO3++ - -llnl_gamma 4.5 - log_k +1.7724 - -delta_H 9.19643 kJ/mol # Calculated enthalpy of reaction SmHCO3+2 -# Enthalpy of formation: -327.9 kcal/mol - -analytic 5.5520e+001 3.3265e-002 -7.3142e+002 -2.4727e+001 -1.1430e+001 -# -Range: 0-300 - -1.0000 Sm+++ + 1.0000 HPO4-- = SmHPO4+ - -llnl_gamma 4.0 - log_k +5.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction SmHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Sm+++ + 1.0000 NO3- = SmNO3++ - -llnl_gamma 4.5 - log_k +0.8012 - -delta_H -29.1667 kJ/mol # Calculated enthalpy of reaction SmNO3+2 -# Enthalpy of formation: -221.6 kcal/mol - -analytic 3.3782e+001 2.7125e-002 1.5091e+003 -1.8632e+001 2.3537e+001 -# -Range: 0-300 - -1.0000 Sm+++ + 1.0000 H2O = SmO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.4837 - -delta_H 113.039 kJ/mol # Calculated enthalpy of reaction SmO+ -# Enthalpy of formation: -206.5 kcal/mol - -analytic 1.8554e+002 3.0198e-002 -1.3791e+004 -6.6588e+001 -2.1526e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Sm+++ = SmO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -35.0197 - -delta_H 285.909 kJ/mol # Calculated enthalpy of reaction SmO2- -# Enthalpy of formation: -233.5 kcal/mol - -analytic 1.3508e+001 -8.3384e-003 -1.0325e+004 -1.5506e+000 -6.7392e+005 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Sm+++ = SmO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -25.9304 - -delta_H 226.497 kJ/mol # Calculated enthalpy of reaction SmO2H -# Enthalpy of formation: -247.7 kcal/mol - -analytic 3.6882e+002 5.3761e-002 -2.4317e+004 -1.3305e+002 -3.7956e+002 -# -Range: 0-300 - -1.0000 Sm+++ + 1.0000 H2O = SmOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.9808 - -delta_H 79.1487 kJ/mol # Calculated enthalpy of reaction SmOH+2 -# Enthalpy of formation: -214.6 kcal/mol - -analytic 6.3793e+001 1.1977e-002 -6.0852e+003 -2.2198e+001 -9.4972e+001 -# -Range: 0-300 - -1.0000 Sm+++ + 1.0000 HPO4-- = SmPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.2218 - -delta_H 0 # Not possible to calculate enthalpy of reaction SmPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Sm+++ + 1.0000 SO4-- = SmSO4+ - -llnl_gamma 4.0 - log_k +3.6430 - -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction SmSO4+ -# Enthalpy of formation: -377.8 kcal/mol - -analytic 3.0597e+002 8.6258e-002 -9.0231e+003 -1.2032e+002 -1.4089e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Sn++ = Sn(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.9102 - -delta_H 42.0534 kJ/mol # Calculated enthalpy of reaction Sn(OH)2 -# Enthalpy of formation: -128.683 kcal/mol - -analytic -3.7979e+001 -1.0893e-002 -1.2048e+003 1.5100e+001 -2.0445e+001 -# -Range: 0-200 - -2.0000 H2O + 1.0000 Sn++++ = Sn(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -0.1902 - -delta_H -2.02087 kJ/mol # Calculated enthalpy of reaction Sn(OH)2+2 -# Enthalpy of formation: -129.888 kcal/mol - -analytic -2.1675e+001 5.9697e-003 3.3953e+003 4.8158e+000 -3.2042e+005 -# -Range: 0-300 - -3.0000 H2O + 1.0000 Sn++++ = Sn(OH)3+ +3.0000 H+ - -llnl_gamma 4.0 - log_k +0.5148 - -delta_H -7.59396 kJ/mol # Calculated enthalpy of reaction Sn(OH)3+ -# Enthalpy of formation: -199.537 kcal/mol - -analytic -3.3294e+001 8.8580e-003 5.3803e+003 7.4994e+000 -4.8389e+005 -# -Range: 0-300 - -3.0000 H2O + 1.0000 Sn++ = Sn(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -17.4052 - -delta_H 94.7007 kJ/mol # Calculated enthalpy of reaction Sn(OH)3- -# Enthalpy of formation: -184.417 kcal/mol - -analytic 1.5614e+002 1.9943e-002 -1.0700e+004 -5.8031e+001 -1.6701e+002 -# -Range: 0-300 - -4.0000 H2O + 1.0000 Sn++++ = Sn(OH)4 +4.0000 H+ - -llnl_gamma 3.0 - log_k +0.8497 - -delta_H -11.0583 kJ/mol # Calculated enthalpy of reaction Sn(OH)4 -# Enthalpy of formation: -268.682 kcal/mol - -analytic -7.9563e+001 -2.2641e-002 2.6682e+003 3.1614e+001 4.5337e+001 -# -Range: 0-200 - -2.0000 SO4-- + 1.0000 Sn++++ = Sn(SO4)2 - -llnl_gamma 3.0 - log_k -0.8072 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sn(SO4)2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Sn++ + 1.0000 Cl- = SnCl+ - -llnl_gamma 4.0 - log_k +1.0500 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl+ -# Enthalpy of formation: -0 kcal/mol - - -analytic 3.0558e+002 8.2458e-002 -8.9329e+003 -1.2088e+002 -1.3948e+002 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Sn++ = SnCl2 - -llnl_gamma 3.0 - log_k +1.7100 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl2 -# Enthalpy of formation: -0 kcal/mol - - -analytic 3.6600e+002 1.0753e-001 -1.0006e+004 -1.4660e+002 -1.5624e+002 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Sn++ = SnCl3- - -llnl_gamma 4.0 - log_k +1.6900 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl3- -# Enthalpy of formation: -0 kcal/mol - - -analytic 3.6019e+002 1.0602e-001 -1.0337e+004 -1.4363e+002 -1.6141e+002 -# -Range: 0-300 - -1.0000 Sn++ + 1.0000 F- = SnF+ - -llnl_gamma 4.0 - log_k +4.0800 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnF+ -# Enthalpy of formation: -0 kcal/mol - - -analytic 3.0020e+002 7.5485e-002 -8.4231e+003 -1.1734e+002 -1.3152e+002 -# -Range: 0-300 - -2.0000 F- + 1.0000 Sn++ = SnF2 - -llnl_gamma 3.0 - log_k +6.6800 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnF2 -# Enthalpy of formation: -0 kcal/mol - - -analytic 4.1241e+002 1.0988e-001 -1.1151e+004 -1.6207e+002 -1.7413e+002 -# -Range: 0-300 - -3.0000 F- + 1.0000 Sn++ = SnF3- - -llnl_gamma 4.0 - log_k +9.4600 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnF3- -# Enthalpy of formation: -0 kcal/mol - - -analytic 4.1793e+002 1.0898e-001 -1.1402e+004 -1.6273e+002 -1.7803e+002 -# -Range: 0-300 - -1.0000 Sn++ + 1.0000 H2O = SnOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.9851 - -delta_H 21.2045 kJ/mol # Calculated enthalpy of reaction SnOH+ -# Enthalpy of formation: -65.349 kcal/mol - -analytic 7.7253e+001 1.9149e-002 -3.3745e+003 -3.0560e+001 -5.2679e+001 -# -Range: 0-300 - -1.0000 Sn++++ + 1.0000 H2O = SnOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k +0.6049 - -delta_H -5.00406 kJ/mol # Calculated enthalpy of reaction SnOH+3 -# Enthalpy of formation: -62.284 kcal/mol - -analytic -1.1548e+001 2.8878e-003 1.9476e+003 2.6622e+000 -1.6274e+005 -# -Range: 0-300 - -1.0000 Sn++++ + 1.0000 SO4-- = SnSO4++ - -llnl_gamma 4.5 - log_k -3.1094 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnSO4+2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Sr++ = Sr(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.8212 - -delta_H 0.54392 kJ/mol # Calculated enthalpy of reaction Sr(CH3COO)2 -# Enthalpy of formation: -363.74 kcal/mol - -analytic 1.2965e+001 4.7082e-003 -5.2538e+003 -5.2337e+000 7.4721e+005 -# -Range: 0-300 - -1.0000 Sr++ + 1.0000 CH3COOH = SrCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.6724 - -delta_H 2.3012 kJ/mol # Calculated enthalpy of reaction SrCH3COO+ -# Enthalpy of formation: -247.22 kcal/mol - -analytic -1.4301e+001 1.2481e-003 -7.5690e+002 4.2760e+000 1.9800e+005 -# -Range: 0-300 - -1.0000 Sr++ + 1.0000 HCO3- = SrCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -7.4635 - -delta_H 33.2544 kJ/mol # Calculated enthalpy of reaction SrCO3 -# Enthalpy of formation: -288.62 kcal/mol - -analytic 2.2303e+002 5.2582e-002 -8.4861e+003 -8.7975e+001 -1.3248e+002 -# -Range: 0-300 - -1.0000 Sr++ + 1.0000 Cl- = SrCl+ - -llnl_gamma 4.0 - log_k -0.2485 - -delta_H 7.58559 kJ/mol # Calculated enthalpy of reaction SrCl+ -# Enthalpy of formation: -169.79 kcal/mol - -analytic 9.4568e+001 3.9042e-002 -2.1458e+003 -4.0105e+001 -3.3511e+001 -# -Range: 0-300 - -1.0000 Sr++ + 1.0000 F- = SrF+ - -llnl_gamma 4.0 - log_k +0.1393 - -delta_H 4.8116 kJ/mol # Calculated enthalpy of reaction SrF+ -# Enthalpy of formation: -210.67 kcal/mol - -analytic 9.0295e+001 3.7609e-002 -1.9012e+003 -3.8379e+001 -2.9693e+001 -# -Range: 0-300 - -1.0000 Sr++ + 1.0000 HPO4-- + 1.0000 H+ = SrH2PO4+ - -llnl_gamma 4.0 - log_k +0.7300 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrH2PO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Sr++ + 1.0000 HPO4-- = SrHPO4 - -llnl_gamma 3.0 - log_k +2.0600 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrHPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Sr++ + 1.0000 NO3- = SrNO3+ - -llnl_gamma 4.0 - log_k +0.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrNO3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Sr++ + 1.0000 H2O = SrOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -13.29 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrOH+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Sr++ = SrP2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +1.6537 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrP2O7-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Sr++ + 1.0000 SO4-- = SrSO4 - -llnl_gamma 3.0 - log_k +2.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrSO4 -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Tb+++ = Tb(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9625 - -delta_H -27.9491 kJ/mol # Calculated enthalpy of reaction Tb(CH3COO)2+ -# Enthalpy of formation: -405.78 kcal/mol - -analytic -2.3910e+001 1.3433e-003 -8.0800e+002 6.3895e+000 4.8619e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Tb+++ = Tb(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3489 - -delta_H -47.1537 kJ/mol # Calculated enthalpy of reaction Tb(CH3COO)3 -# Enthalpy of formation: -526.47 kcal/mol - -analytic -1.0762e+001 4.2361e-003 -1.5620e+003 -3.9317e-001 6.5745e+005 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Tb+++ = Tb(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.5576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Tb+++ = Tb(HPO4)2- - -llnl_gamma 4.0 - log_k +9.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Tb+++ = Tb(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.6437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Tb+++ = Tb(SO4)2- - -llnl_gamma 4.0 - log_k +5.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Tb+++ + 1.0000 CH3COOH = TbCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1037 - -delta_H -14.2256 kJ/mol # Calculated enthalpy of reaction TbCH3COO+2 -# Enthalpy of formation: -286.4 kcal/mol - -analytic -1.6817e+001 6.4290e-004 -3.4442e+002 5.0994e+000 2.7304e+005 -# -Range: 0-300 - -1.0000 Tb+++ + 1.0000 HCO3- = TbCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.4057 - -delta_H 89.5292 kJ/mol # Calculated enthalpy of reaction TbCO3+ -# Enthalpy of formation: -310.4 kcal/mol - -analytic 2.2347e+002 5.4185e-002 -6.4127e+003 -8.9112e+001 -1.0013e+002 -# -Range: 0-300 - -1.0000 Tb+++ + 1.0000 Cl- = TbCl++ - -llnl_gamma 4.5 - log_k +0.2353 - -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction TbCl+2 -# Enthalpy of formation: -203.5 kcal/mol - -analytic 7.1095e+001 3.7367e-002 -1.4676e+003 -3.1140e+001 -2.2921e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Tb+++ = TbCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 18.2673 kJ/mol # Calculated enthalpy of reaction TbCl2+ -# Enthalpy of formation: -242.4 kcal/mol - -analytic 2.0699e+002 7.9609e-002 -5.0958e+003 -8.6337e+001 -7.9576e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Tb+++ = TbCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 10.0374 kJ/mol # Calculated enthalpy of reaction TbCl3 -# Enthalpy of formation: -284.3 kcal/mol - -analytic 4.0764e+002 1.2809e-001 -1.0704e+004 -1.6583e+002 -1.6715e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Tb+++ = TbCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -11.5813 kJ/mol # Calculated enthalpy of reaction TbCl4- -# Enthalpy of formation: -329.4 kcal/mol - -analytic 4.6247e+002 1.2926e-001 -1.2117e+004 -1.8639e+002 -1.8921e+002 -# -Range: 0-300 - -1.0000 Tb+++ + 1.0000 F- = TbF++ - -llnl_gamma 4.5 - log_k +4.6619 - -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction TbF+2 -# Enthalpy of formation: -241.6 kcal/mol - -analytic 9.2579e+001 4.1327e-002 -2.3647e+003 -3.7293e+001 -3.6927e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Tb+++ = TbF2+ - -llnl_gamma 4.0 - log_k +8.1510 - -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction TbF2+ -# Enthalpy of formation: -324.3 kcal/mol - -analytic 2.3100e+002 8.4094e-002 -5.2548e+003 -9.3051e+001 -8.2065e+001 -# -Range: 0-300 - -3.0000 F- + 1.0000 Tb+++ = TbF3 - -llnl_gamma 3.0 - log_k +10.6872 - -delta_H -11.9244 kJ/mol # Calculated enthalpy of reaction TbF3 -# Enthalpy of formation: -410.2 kcal/mol - -analytic 4.3730e+002 1.3479e-001 -1.0128e+004 -1.7489e+002 -1.5817e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 Tb+++ = TbF4- - -llnl_gamma 4.0 - log_k +12.7836 - -delta_H -56.0656 kJ/mol # Calculated enthalpy of reaction TbF4- -# Enthalpy of formation: -500.9 kcal/mol - -analytic 4.8546e+002 1.3511e-001 -1.0189e+004 -1.9347e+002 -1.5913e+002 -# -Range: 0-300 - -1.0000 Tb+++ + 1.0000 HPO4-- + 1.0000 H+ = TbH2PO4++ - -llnl_gamma 4.5 - log_k +9.3751 - -delta_H -17.51 kJ/mol # Calculated enthalpy of reaction TbH2PO4+2 -# Enthalpy of formation: -479.9 kcal/mol - -analytic 1.0042e+002 6.2886e-002 6.0975e+002 -4.5178e+001 9.4847e+000 -# -Range: 0-300 - -1.0000 Tb+++ + 1.0000 HCO3- = TbHCO3++ - -llnl_gamma 4.5 - log_k +1.6991 - -delta_H -14.6524 kJ/mol # Calculated enthalpy of reaction TbHCO3+2 -# Enthalpy of formation: -335.3 kcal/mol - -analytic 1.7376e+001 2.8365e-002 1.6982e+003 -1.2044e+001 2.6494e+001 -# -Range: 0-300 - -1.0000 Tb+++ + 1.0000 HPO4-- = TbHPO4+ - -llnl_gamma 4.0 - log_k +5.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction TbHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Tb+++ + 1.0000 NO3- = TbNO3++ - -llnl_gamma 4.5 - log_k +0.5080 - -delta_H -31.2587 kJ/mol # Calculated enthalpy of reaction TbNO3+2 -# Enthalpy of formation: -223.8 kcal/mol - -analytic 8.7852e+000 2.4868e-002 2.5553e+003 -9.7944e+000 3.9871e+001 -# -Range: 0-300 - -1.0000 Tb+++ + 1.0000 H2O = TbO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.1904 - -delta_H 109.692 kJ/mol # Calculated enthalpy of reaction TbO+ -# Enthalpy of formation: -209 kcal/mol - -analytic 1.7975e+002 2.9563e-002 -1.3407e+004 -6.4573e+001 -2.0926e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Tb+++ = TbO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -34.2134 - -delta_H 278.797 kJ/mol # Calculated enthalpy of reaction TbO2- -# Enthalpy of formation: -236.9 kcal/mol - -analytic 1.6924e+002 1.1804e-002 -1.9821e+004 -5.6781e+001 -3.0933e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Tb+++ = TbO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -25.0508 - -delta_H 219.802 kJ/mol # Calculated enthalpy of reaction TbO2H -# Enthalpy of formation: -251 kcal/mol - -analytic 3.2761e+002 4.5225e-002 -2.2652e+004 -1.1727e+002 -3.5356e+002 -# -Range: 0-300 - -1.0000 Tb+++ + 1.0000 H2O = TbOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.8342 - -delta_H 77.4751 kJ/mol # Calculated enthalpy of reaction TbOH+2 -# Enthalpy of formation: -216.7 kcal/mol - -analytic 5.9574e+001 1.1625e-002 -5.8143e+003 -2.0759e+001 -9.0744e+001 -# -Range: 0-300 - -1.0000 Tb+++ + 1.0000 HPO4-- = TbPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.0782 - -delta_H 0 # Not possible to calculate enthalpy of reaction TbPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Tb+++ + 1.0000 SO4-- = TbSO4+ - -llnl_gamma 4.0 - log_k +3.6430 - -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction TbSO4+ -# Enthalpy of formation: -379.6 kcal/mol - -analytic 2.9633e+002 8.5155e-002 -8.6346e+003 -1.1682e+002 -1.3482e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 TcO++ = TcO(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -3.3221 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO(OH)2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 TcO++ + 1.0000 H2O = TcOOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -1.1355 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcOOH+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 2.0000 H+ + 1.0000 Th++++ = Th(H2PO4)2++ - -llnl_gamma 4.5 - log_k +23.2070 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th(H2PO4)2+2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Th++++ = Th(HPO4)2 - -llnl_gamma 3.0 - log_k +22.6939 - -delta_H -13.644 kJ/mol # Calculated enthalpy of reaction Th(HPO4)2 -# Enthalpy of formation: -804.691 kcal/mol - -analytic 6.5208e+002 2.3099e-001 -1.2990e+004 -2.6457e+002 -2.2082e+002 -# -Range: 0-200 - -3.0000 HPO4-- + 1.0000 Th++++ = Th(HPO4)3-- - -llnl_gamma 4.0 - log_k +31.1894 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th(HPO4)3-2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Th++++ = Th(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -7.1068 - -delta_H 58.668 kJ/mol # Calculated enthalpy of reaction Th(OH)2+2 -# Enthalpy of formation: -306.412 kcal/mol - -analytic -1.1274e+001 3.4195e-003 -3.7553e+002 3.1299e+000 -2.9696e+005 -# -Range: 0-300 - -3.0000 H2O + 1.0000 Th++++ = Th(OH)3+ +3.0000 H+ - -llnl_gamma 4.0 - log_k -11.8623 - -delta_H 86.1318 kJ/mol # Calculated enthalpy of reaction Th(OH)3+ -# Enthalpy of formation: -368.165 kcal/mol -4.0000 H2O + 1.0000 Th++++ = Th(OH)4 +4.0000 H+ - -llnl_gamma 3.0 - log_k -16.0315 - -delta_H 104.01 kJ/mol # Calculated enthalpy of reaction Th(OH)4 -# Enthalpy of formation: -432.209 kcal/mol - -analytic 2.9534e+001 1.5550e-002 -5.6680e+003 -1.2598e+001 -9.6262e+001 -# -Range: 0-200 - -2.0000 SO4-- + 1.0000 Th++++ = Th(SO4)2 - -llnl_gamma 3.0 - log_k +9.6170 - -delta_H 32.2377 kJ/mol # Calculated enthalpy of reaction Th(SO4)2 -# Enthalpy of formation: -610.895 kcal/mol - -analytic 4.6425e+002 1.6769e-001 -1.1195e+004 -1.8875e+002 -1.9027e+002 -# -Range: 0-200 - -3.0000 SO4-- + 1.0000 Th++++ = Th(SO4)3-- - -llnl_gamma 4.0 - log_k +10.4014 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th(SO4)3-2 -# Enthalpy of formation: -0 kcal/mol - -4.0000 SO4-- + 1.0000 Th++++ = Th(SO4)4---- - -llnl_gamma 4.0 - log_k +8.4003 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th(SO4)4-4 -# Enthalpy of formation: -0 kcal/mol - -2.0000 Th++++ + 2.0000 H2O = Th2(OH)2+6 +2.0000 H+ - -llnl_gamma 6.0 - log_k -6.4618 - -delta_H 63.7181 kJ/mol # Calculated enthalpy of reaction Th2(OH)2+6 -# Enthalpy of formation: -489.005 kcal/mol - -analytic 6.8838e+001 -4.1348e-003 -6.4415e+003 -2.1200e+001 -1.0053e+002 -# -Range: 0-300 - -8.0000 H2O + 4.0000 Th++++ = Th4(OH)8+8 +8.0000 H+ - -llnl_gamma 6.0 - log_k -21.7568 - -delta_H 245.245 kJ/mol # Calculated enthalpy of reaction Th4(OH)8+8 -# Enthalpy of formation: -1223.12 kcal/mol - -analytic 2.7826e+002 -2.3504e-003 -2.4410e+004 -8.7873e+001 -3.8097e+002 -# -Range: 0-300 - -15.0000 H2O + 6.0000 Th++++ = Th6(OH)15+9 +15.0000 H+ - -llnl_gamma 6.0 - log_k -37.7027 - -delta_H 458.248 kJ/mol # Calculated enthalpy of reaction Th6(OH)15+9 -# Enthalpy of formation: -2018.03 kcal/mol - -analytic 5.2516e+002 3.3015e-003 -4.5237e+004 -1.6654e+002 -7.0603e+002 -# -Range: 0-300 - -1.0000 Th++++ + 1.0000 Cl- = ThCl+++ - -llnl_gamma 5.0 - log_k +0.9536 - -delta_H 0.06276 kJ/mol # Calculated enthalpy of reaction ThCl+3 -# Enthalpy of formation: -223.718 kcal/mol - -analytic 9.7430e+001 3.9398e-002 -1.8653e+003 -4.1202e+001 -2.9135e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Th++++ = ThCl2++ - -llnl_gamma 4.5 - log_k +0.6758 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl2+2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 Cl- + 1.0000 Th++++ = ThCl3+ - -llnl_gamma 4.0 - log_k +1.4975 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl3+ -# Enthalpy of formation: -0 kcal/mol - -4.0000 Cl- + 1.0000 Th++++ = ThCl4 - -llnl_gamma 3.0 - log_k +1.0731 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Th++++ + 1.0000 F- = ThF+++ - -llnl_gamma 5.0 - log_k +7.8725 - -delta_H -4.87436 kJ/mol # Calculated enthalpy of reaction ThF+3 -# Enthalpy of formation: -265.115 kcal/mol - -analytic 1.1679e+002 3.9201e-002 -2.2118e+003 -4.5736e+001 -3.4548e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Th++++ = ThF2++ - -llnl_gamma 4.5 - log_k +14.0884 - -delta_H -7.77806 kJ/mol # Calculated enthalpy of reaction ThF2+2 -# Enthalpy of formation: -345.959 kcal/mol - -analytic 2.3200e+002 7.9567e-002 -4.4418e+003 -9.1617e+001 -6.9379e+001 -# -Range: 0-300 - -3.0000 F- + 1.0000 Th++++ = ThF3+ - -llnl_gamma 4.0 - log_k +18.7357 - -delta_H -11.7068 kJ/mol # Calculated enthalpy of reaction ThF3+ -# Enthalpy of formation: -427.048 kcal/mol - -analytic 3.4511e+002 1.2149e-001 -6.5065e+003 -1.3770e+002 -1.0163e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 Th++++ = ThF4 - -llnl_gamma 3.0 - log_k +22.1515 - -delta_H -14.8448 kJ/mol # Calculated enthalpy of reaction ThF4 -# Enthalpy of formation: -507.948 kcal/mol - -analytic 6.1206e+002 2.1878e-001 -1.1938e+004 -2.4857e+002 -2.0294e+002 -# -Range: 0-200 - -1.0000 Th++++ + 1.0000 HPO4-- + 1.0000 H+ = ThH2PO4+++ - -llnl_gamma 5.0 - log_k +11.7061 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThH2PO4+3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 1.0000 Th++++ + 1.0000 HPO4-- = ThH3PO4++++ - -llnl_gamma 5.5 - log_k +11.1197 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThH3PO4+4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Th++++ + 1.0000 HPO4-- = ThHPO4++ - -llnl_gamma 4.5 - log_k +10.6799 - -delta_H 0.1046 kJ/mol # Calculated enthalpy of reaction ThHPO4+2 -# Enthalpy of formation: -492.59 kcal/mol -1.0000 Th++++ + 1.0000 H2O = ThOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -3.8871 - -delta_H 25.0275 kJ/mol # Calculated enthalpy of reaction ThOH+3 -# Enthalpy of formation: -1029.83 kJ/mol - -analytic 1.0495e+001 5.1532e-003 -8.6396e+002 -4.8420e+000 -9.2609e+004 -# -Range: 0-300 - -1.0000 Th++++ + 1.0000 SO4-- = ThSO4++ - -llnl_gamma 4.5 - log_k +5.3143 - -delta_H 16.3511 kJ/mol # Calculated enthalpy of reaction ThSO4+2 -# Enthalpy of formation: -397.292 kcal/mol - -analytic 1.9443e+002 7.5245e-002 -4.5010e+003 -7.9379e+001 -7.0291e+001 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Tl+ = Tl(CH3COO)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -10.0129 - -delta_H 1.2552 kJ/mol # Calculated enthalpy of reaction Tl(CH3COO)2- -# Enthalpy of formation: -230.62 kcal/mol - -analytic -1.8123e+002 -4.0616e-002 5.0741e+003 6.7216e+001 7.9229e+001 -# -Range: 0-300 - -1.0000 Tl+ + 1.0000 CH3COOH = TlCH3COO +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.8672 - -delta_H 6.15048 kJ/mol # Calculated enthalpy of reaction TlCH3COO -# Enthalpy of formation: -113.35 kcal/mol - -analytic 9.2977e+000 -3.4368e-003 -2.1748e+003 -3.1454e+000 1.7273e+005 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Tm+++ = Tm(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9844 - -delta_H -32.5934 kJ/mol # Calculated enthalpy of reaction Tm(CH3COO)2+ -# Enthalpy of formation: -408.49 kcal/mol - -analytic -2.8983e+001 2.0256e-003 -1.1525e+003 8.2163e+000 6.1820e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Tm+++ = Tm(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3783 - -delta_H -54.8104 kJ/mol # Calculated enthalpy of reaction Tm(CH3COO)3 -# Enthalpy of formation: -529.9 kcal/mol - -analytic -2.8900e+001 4.9633e-003 -1.6574e+003 6.0186e+000 8.6624e+005 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Tm+++ = Tm(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.1576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Tm+++ = Tm(HPO4)2- - -llnl_gamma 4.0 - log_k +10.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Tm+++ = Tm(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.0437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Tm+++ = Tm(SO4)2- - -llnl_gamma 4.0 - log_k +5.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Tm+++ + 1.0000 CH3COOH = TmCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1184 - -delta_H -16.3176 kJ/mol # Calculated enthalpy of reaction TmCH3COO+2 -# Enthalpy of formation: -288.5 kcal/mol - -analytic -1.6068e+001 1.2043e-003 -6.2777e+002 4.8318e+000 3.3363e+005 -# -Range: 0-300 - -1.0000 Tm+++ + 1.0000 HCO3- = TmCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.1125 - -delta_H 86.6004 kJ/mol # Calculated enthalpy of reaction TmCO3+ -# Enthalpy of formation: -312.7 kcal/mol - -analytic 2.3889e+002 5.4733e-002 -6.9382e+003 -9.4581e+001 -1.0833e+002 -# -Range: 0-300 - -1.0000 Tm+++ + 1.0000 Cl- = TmCl++ - -llnl_gamma 4.5 - log_k +0.2353 - -delta_H 13.1085 kJ/mol # Calculated enthalpy of reaction TmCl+2 -# Enthalpy of formation: -205.3 kcal/mol - -analytic 7.4795e+001 3.7655e-002 -1.5701e+003 -3.2531e+001 -2.4523e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Tm+++ = TmCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 15.7569 kJ/mol # Calculated enthalpy of reaction TmCl2+ -# Enthalpy of formation: -244.6 kcal/mol - -analytic 2.0352e+002 7.9173e-002 -4.8574e+003 -8.5202e+001 -7.5855e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Tm+++ = TmCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 5.43502 kJ/mol # Calculated enthalpy of reaction TmCl3 -# Enthalpy of formation: -287 kcal/mol - -analytic 3.9793e+002 1.2777e-001 -1.0070e+004 -1.6272e+002 -1.5725e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Tm+++ = TmCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -20.3677 kJ/mol # Calculated enthalpy of reaction TmCl4- -# Enthalpy of formation: -333.1 kcal/mol - -analytic 4.3574e+002 1.2655e-001 -1.0713e+004 -1.7716e+002 -1.6730e+002 -# -Range: 0-300 - -1.0000 Tm+++ + 1.0000 F- = TmF++ - -llnl_gamma 4.5 - log_k +4.8085 - -delta_H 23.6396 kJ/mol # Calculated enthalpy of reaction TmF+2 -# Enthalpy of formation: -243 kcal/mol - -analytic 9.7686e+001 4.1890e-002 -2.5909e+003 -3.9059e+001 -4.0457e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Tm+++ = TmF2+ - -llnl_gamma 4.0 - log_k +8.3709 - -delta_H 12.552 kJ/mol # Calculated enthalpy of reaction TmF2+ -# Enthalpy of formation: -325.8 kcal/mol - -analytic 2.2986e+002 8.4119e-002 -5.2144e+003 -9.2558e+001 -8.1433e+001 -# -Range: 0-300 - -3.0000 F- + 1.0000 Tm+++ = TmF3 - -llnl_gamma 3.0 - log_k +10.9804 - -delta_H -12.7612 kJ/mol # Calculated enthalpy of reaction TmF3 -# Enthalpy of formation: -412 kcal/mol - -analytic 4.2855e+002 1.3445e-001 -9.7045e+003 -1.7177e+002 -1.5156e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 Tm+++ = TmF4- - -llnl_gamma 4.0 - log_k +13.1501 - -delta_H -60.668 kJ/mol # Calculated enthalpy of reaction TmF4- -# Enthalpy of formation: -503.6 kcal/mol - -analytic 4.6559e+002 1.3386e-001 -9.1790e+003 -1.8650e+002 -1.4337e+002 -# -Range: 0-300 - -1.0000 Tm+++ + 1.0000 HPO4-- + 1.0000 H+ = TmH2PO4++ - -llnl_gamma 4.5 - log_k +9.4484 - -delta_H -20.4388 kJ/mol # Calculated enthalpy of reaction TmH2PO4+2 -# Enthalpy of formation: -482.2 kcal/mol - -analytic 1.0360e+002 6.3085e-002 6.0731e+002 -4.6456e+001 9.4456e+000 -# -Range: 0-300 - -1.0000 Tm+++ + 1.0000 HCO3- = TmHCO3++ - -llnl_gamma 4.5 - log_k +1.7724 - -delta_H 5.01243 kJ/mol # Calculated enthalpy of reaction TmHCO3+2 -# Enthalpy of formation: -332.2 kcal/mol - -analytic 3.3102e+001 3.1010e-002 2.9880e+002 -1.6791e+001 4.6524e+000 -# -Range: 0-300 - -1.0000 Tm+++ + 1.0000 HPO4-- = TmHPO4+ - -llnl_gamma 4.0 - log_k +5.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction TmHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Tm+++ + 1.0000 NO3- = TmNO3++ - -llnl_gamma 4.5 - log_k +0.2148 - -delta_H -33.7691 kJ/mol # Calculated enthalpy of reaction TmNO3+2 -# Enthalpy of formation: -226 kcal/mol - -analytic 1.1085e+001 2.4898e-002 2.5664e+003 -1.0861e+001 4.0043e+001 -# -Range: 0-300 - -1.0000 Tm+++ + 1.0000 H2O = TmO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -15.8972 - -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction TmO+ -# Enthalpy of formation: -211.6 kcal/mol - -analytic 1.7572e+002 2.8756e-002 -1.3096e+004 -6.3150e+001 -2.0441e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Tm+++ = TmO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -32.6741 - -delta_H 266.663 kJ/mol # Calculated enthalpy of reaction TmO2- -# Enthalpy of formation: -241.4 kcal/mol - -analytic 3.3118e+001 -5.2802e-003 -1.1318e+004 -8.4764e+000 -4.6998e+005 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Tm+++ = TmO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -24.1712 - -delta_H 211.853 kJ/mol # Calculated enthalpy of reaction TmO2H -# Enthalpy of formation: -254.5 kcal/mol - -analytic 3.1648e+002 4.4527e-002 -2.1821e+004 -1.1345e+002 -3.4059e+002 -# -Range: 0-300 - -1.0000 Tm+++ + 1.0000 H2O = TmOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.6876 - -delta_H 74.5463 kJ/mol # Calculated enthalpy of reaction TmOH+2 -# Enthalpy of formation: -219 kcal/mol - -analytic 5.7572e+001 1.1162e-002 -5.6381e+003 -2.0074e+001 -8.7994e+001 -# -Range: 0-300 - -1.0000 Tm+++ + 1.0000 HPO4-- = TmPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.4782 - -delta_H 0 # Not possible to calculate enthalpy of reaction TmPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Tm+++ + 1.0000 SO4-- = TmSO4+ - -llnl_gamma 4.0 - log_k +3.5697 - -delta_H 19.9995 kJ/mol # Calculated enthalpy of reaction TmSO4+ -# Enthalpy of formation: -381.12 kcal/mol - -analytic 3.0441e+002 8.6070e-002 -8.9592e+003 -1.1979e+002 -1.3989e+002 -# -Range: 0-300 - -4.0000 HCO3- + 1.0000 U++++ = U(CO3)4---- +4.0000 H+ - -llnl_gamma 4.0 - log_k -6.2534 - -delta_H 0 # Not possible to calculate enthalpy of reaction U(CO3)4-4 -# Enthalpy of formation: -0 kcal/mol - -5.0000 HCO3- + 1.0000 U++++ = U(CO3)5-6 +5.0000 H+ - -llnl_gamma 4.0 - log_k -17.7169 - -delta_H 53.5172 kJ/mol # Calculated enthalpy of reaction U(CO3)5-6 -# Enthalpy of formation: -3987.35 kJ/mol - -analytic 6.3020e+002 1.9391e-001 -1.9238e+004 -2.5912e+002 -3.0038e+002 -# -Range: 0-300 - -2.0000 NO3- + 1.0000 U++++ = U(NO3)2++ - -llnl_gamma 4.5 - log_k +2.2610 - -delta_H 0 # Not possible to calculate enthalpy of reaction U(NO3)2+2 -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 U++++ = U(OH)4 +4.0000 H+ - -llnl_gamma 3.0 - log_k -4.57 - -delta_H 78.7553 kJ/mol # Calculated enthalpy of reaction U(OH)4 -# Enthalpy of formation: -1655.8 kJ/mol - -analytic 2.6685e+002 9.8204e-002 -9.4428e+003 -1.0871e+002 -1.6045e+002 -# -Range: 0-200 - -2.0000 Thiocyanate- + 1.0000 U++++ = U(Thiocyanate)2++ - -llnl_gamma 4.5 - log_k +4.2600 - -delta_H 0 # Not possible to calculate enthalpy of reaction U(Thiocyanate)2+2 -# Enthalpy of formation: -456.4 kJ/mol - -analytic 6.2193e+000 2.7673e-002 2.4326e+003 -7.4158e+000 3.7957e+001 -# -Range: 0-300 - -2.0000 SO4-- + 1.0000 U++++ = U(SO4)2 - -llnl_gamma 3.0 - log_k +10.3507 - -delta_H 33.2232 kJ/mol # Calculated enthalpy of reaction U(SO4)2 -# Enthalpy of formation: -2377.18 kJ/mol - -analytic 4.9476e+002 1.7832e-001 -1.1901e+004 -2.0111e+002 -2.0227e+002 -# -Range: 0-200 - -1.0000 U++++ + 1.0000 Br- = UBr+++ - -llnl_gamma 5.0 - log_k +1.4240 - -delta_H 0 # Not possible to calculate enthalpy of reaction UBr+3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 U++++ + 1.0000 Cl- = UCl+++ - -llnl_gamma 5.0 - log_k +1.7073 - -delta_H -18.9993 kJ/mol # Calculated enthalpy of reaction UCl+3 -# Enthalpy of formation: -777.279 kJ/mol - -analytic 9.4418e+001 4.1718e-002 -7.0675e+002 -4.1532e+001 -1.1056e+001 -# -Range: 0-300 - -1.0000 U++++ + 1.0000 F- = UF+++ - -llnl_gamma 5.0 - log_k +9.2403 - -delta_H -5.6024 kJ/mol # Calculated enthalpy of reaction UF+3 -# Enthalpy of formation: -932.15 kJ/mol - -analytic 1.1828e+002 3.8097e-002 -2.2531e+003 -4.5594e+001 -3.5193e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 U++++ = UF2++ - -llnl_gamma 4.5 - log_k +16.1505 - -delta_H -3.5048 kJ/mol # Calculated enthalpy of reaction UF2+2 -# Enthalpy of formation: -1265.4 kJ/mol - -analytic 2.3537e+002 7.7064e-002 -4.8455e+003 -9.1296e+001 -7.5679e+001 -# -Range: 0-300 - -3.0000 F- + 1.0000 U++++ = UF3+ - -llnl_gamma 4.0 - log_k +21.4806 - -delta_H 0.4938 kJ/mol # Calculated enthalpy of reaction UF3+ -# Enthalpy of formation: -1596.75 kJ/mol - -analytic 3.5097e+002 1.1714e-001 -7.4569e+003 -1.3714e+002 -1.1646e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 U++++ = UF4 - -llnl_gamma 3.0 - log_k +25.4408 - -delta_H -4.2146 kJ/mol # Calculated enthalpy of reaction UF4 -# Enthalpy of formation: -1936.81 kJ/mol - -analytic 7.8549e+002 2.7922e-001 -1.6213e+004 -3.1881e+002 -2.7559e+002 -# -Range: 0-200 - -5.0000 F- + 1.0000 U++++ = UF5- - -llnl_gamma 4.0 - log_k +26.8110 - -delta_H 0 # Not possible to calculate enthalpy of reaction UF5- -# Enthalpy of formation: -0 kcal/mol - -6.0000 F- + 1.0000 U++++ = UF6-- - -llnl_gamma 4.0 - log_k +28.8412 - -delta_H 0 # Not possible to calculate enthalpy of reaction UF6-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 U++++ + 1.0000 I- = UI+++ - -llnl_gamma 5.0 - log_k +1.2151 - -delta_H 0 # Not possible to calculate enthalpy of reaction UI+3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 U++++ + 1.0000 NO3- = UNO3+++ - -llnl_gamma 5.0 - log_k +1.4506 - -delta_H 0 # Not possible to calculate enthalpy of reaction UNO3+3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 HCO3- + 1.0000 UO2++ = UO2(CO3)2-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.7467 - -delta_H 47.9065 kJ/mol # Calculated enthalpy of reaction UO2(CO3)2-2 -# Enthalpy of formation: -2350.96 kJ/mol - -analytic 2.6569e+002 8.1552e-002 -9.0918e+003 -1.0638e+002 -1.4195e+002 -# -Range: 0-300 - -3.0000 HCO3- + 1.0000 UO2+ = UO2(CO3)3-5 +3.0000 H+ - -llnl_gamma 4.0 - log_k -23.6241 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(CO3)3-5 -# Enthalpy of formation: -0 kcal/mol - -3.0000 HCO3- + 1.0000 UO2++ = UO2(CO3)3---- +3.0000 H+ - -llnl_gamma 4.0 - log_k -9.4302 - -delta_H 4.9107 kJ/mol # Calculated enthalpy of reaction UO2(CO3)3-4 -# Enthalpy of formation: -3083.89 kJ/mol - -analytic 3.7918e+002 1.1789e-001 -1.0233e+004 -1.5738e+002 -1.5978e+002 -# -Range: 0-300 - -3.0000 H+ + 2.0000 HPO4-- + 1.0000 UO2++ = UO2(H2PO4)(H3PO4)+ - -llnl_gamma 4.0 - log_k +22.7537 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(H2PO4)(H3PO4)+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 2.0000 H+ + 1.0000 UO2++ = UO2(H2PO4)2 - -llnl_gamma 3.0 - log_k +21.7437 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(H2PO4)2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 IO3- + 1.0000 UO2++ = UO2(IO3)2 - -llnl_gamma 3.0 - log_k +2.9969 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(IO3)2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 N3- + 1.0000 UO2++ = UO2(N3)2 - -llnl_gamma 3.0 - log_k +4.3301 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 N3- + 1.0000 UO2++ = UO2(N3)3- - -llnl_gamma 4.0 - log_k +5.7401 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)3- -# Enthalpy of formation: -0 kcal/mol - -4.0000 N3- + 1.0000 UO2++ = UO2(N3)4-- - -llnl_gamma 4.0 - log_k +4.9200 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)4-2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 UO2++ = UO2(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -10.3146 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 UO2++ = UO2(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -19.2218 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)3- -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 UO2++ = UO2(OH)4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -33.0291 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)4-2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 Thiocyanate- + 1.0000 UO2++ = UO2(Thiocyanate)2 - -llnl_gamma 3.0 - log_k +1.2401 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(Thiocyanate)2 -# Enthalpy of formation: -857.3 kJ/mol - -analytic 9.4216e+001 3.2840e-002 -2.4849e+003 -3.8162e+001 -4.2231e+001 -# -Range: 0-200 - -3.0000 Thiocyanate- + 1.0000 UO2++ = UO2(Thiocyanate)3- - -llnl_gamma 4.0 - log_k +2.1001 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(Thiocyanate)3- -# Enthalpy of formation: -783.8 kJ/mol - -analytic 1.6622e+001 2.2714e-002 4.9707e+002 -9.2785e+000 7.7512e+000 -# -Range: 0-300 - -2.0000 SO3-- + 1.0000 UO2++ = UO2(SO3)2-- - -llnl_gamma 4.0 - log_k +7.9101 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(SO3)2-2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 UO2++ = UO2(SO4)2-- - -llnl_gamma 4.0 - log_k +3.9806 - -delta_H 35.6242 kJ/mol # Calculated enthalpy of reaction UO2(SO4)2-2 -# Enthalpy of formation: -2802.58 kJ/mol - -analytic 3.9907e+002 1.3536e-001 -1.0813e+004 -1.6130e+002 -1.6884e+002 -# -Range: 0-300 - -1.0000 UO2++ + 1.0000 Br- = UO2Br+ - -llnl_gamma 4.0 - log_k +0.1840 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2Br+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 UO2++ + 1.0000 BrO3- = UO2BrO3+ - -llnl_gamma 4.0 - log_k +0.5510 - -delta_H 0.46952 kJ/mol # Calculated enthalpy of reaction UO2BrO3+ -# Enthalpy of formation: -1085.6 kJ/mol - -analytic 8.2618e+001 2.6921e-002 -2.0144e+003 -3.3673e+001 -3.1457e+001 -# -Range: 0-300 - -1.0000 UO2++ + 1.0000 HCO3- = UO2CO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.6634 - -delta_H 19.7032 kJ/mol # Calculated enthalpy of reaction UO2CO3 -# Enthalpy of formation: -1689.23 kJ/mol - -analytic 7.3898e+001 2.8127e-002 -2.4347e+003 -3.0217e+001 -4.1371e+001 -# -Range: 0-200 - -1.0000 UO2++ + 1.0000 Cl- = UO2Cl+ - -llnl_gamma 4.0 - log_k +0.1572 - -delta_H 8.00167 kJ/mol # Calculated enthalpy of reaction UO2Cl+ -# Enthalpy of formation: -1178.08 kJ/mol - -analytic 9.8139e+001 3.8869e-002 -2.3178e+003 -4.1133e+001 -3.6196e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 UO2++ = UO2Cl2 - -llnl_gamma 3.0 - log_k -1.1253 - -delta_H 15.0013 kJ/mol # Calculated enthalpy of reaction UO2Cl2 -# Enthalpy of formation: -1338.16 kJ/mol - -analytic 3.4087e+001 1.3840e-002 -1.3664e+003 -1.4043e+001 -2.3216e+001 -# -Range: 0-200 - -1.0000 UO2++ + 1.0000 ClO3- = UO2ClO3+ - -llnl_gamma 4.0 - log_k +0.4919 - -delta_H -3.9266 kJ/mol # Calculated enthalpy of reaction UO2ClO3+ -# Enthalpy of formation: -1126.9 kJ/mol - -analytic 9.6263e+001 2.8926e-002 -2.3068e+003 -3.9057e+001 -3.6025e+001 -# -Range: 0-300 - -1.0000 UO2++ + 1.0000 F- = UO2F+ - -llnl_gamma 4.0 - log_k +5.0502 - -delta_H 1.6976 kJ/mol # Calculated enthalpy of reaction UO2F+ -# Enthalpy of formation: -1352.65 kJ/mol - -analytic 1.1476e+002 4.0682e-002 -2.4467e+003 -4.5914e+001 -3.8212e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 UO2++ = UO2F2 - -llnl_gamma 3.0 - log_k +8.5403 - -delta_H 2.0962 kJ/mol # Calculated enthalpy of reaction UO2F2 -# Enthalpy of formation: -1687.6 kJ/mol - -analytic 2.7673e+002 9.9190e-002 -5.8371e+003 -1.1242e+002 -9.9219e+001 -# -Range: 0-200 - -3.0000 F- + 1.0000 UO2++ = UO2F3- - -llnl_gamma 4.0 - log_k +10.7806 - -delta_H 2.3428 kJ/mol # Calculated enthalpy of reaction UO2F3- -# Enthalpy of formation: -2022.7 kJ/mol - -analytic 3.3383e+002 9.2160e-002 -8.7975e+003 -1.2972e+002 -1.3738e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 UO2++ = UO2F4-- - -llnl_gamma 4.0 - log_k +11.5407 - -delta_H 0.2814 kJ/mol # Calculated enthalpy of reaction UO2F4-2 -# Enthalpy of formation: -2360.11 kJ/mol - -analytic 4.4324e+002 1.3808e-001 -1.0705e+004 -1.7657e+002 -1.6718e+002 -# -Range: 0-300 - -1.0000 UO2++ + 1.0000 HPO4-- + 1.0000 H+ = UO2H2PO4+ - -llnl_gamma 4.0 - log_k +11.6719 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2H2PO4+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 1.0000 UO2++ + 1.0000 HPO4-- = UO2H3PO4++ - -llnl_gamma 4.5 - log_k +11.3119 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2H3PO4+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 UO2++ + 1.0000 HPO4-- = UO2HPO4 - -llnl_gamma 3.0 - log_k +8.4398 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2HPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 UO2++ + 1.0000 IO3- = UO2IO3+ - -llnl_gamma 4.0 - log_k +1.7036 - -delta_H 11.4336 kJ/mol # Calculated enthalpy of reaction UO2IO3+ -# Enthalpy of formation: -1228.9 kJ/mol - -analytic 1.0428e+002 2.9620e-002 -3.2441e+003 -4.0618e+001 -5.0651e+001 -# -Range: 0-300 - -1.0000 UO2++ + 1.0000 N3- = UO2N3+ - -llnl_gamma 4.0 - log_k +2.5799 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2N3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 UO2++ + 1.0000 NO3- = UO2NO3+ - -llnl_gamma 4.0 - log_k +0.2805 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2NO3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 UO2++ + 1.0000 H2O = UO2OH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.2073 - -delta_H 43.1813 kJ/mol # Calculated enthalpy of reaction UO2OH+ -# Enthalpy of formation: -1261.66 kJ/mol - -analytic 3.4387e+001 6.0811e-003 -3.3068e+003 -1.2252e+001 -5.1609e+001 -# -Range: 0-300 - -1.0000 UO2++ + 1.0000 HPO4-- = UO2PO4- +1.0000 H+ - -llnl_gamma 4.0 - log_k +2.0798 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2PO4- -# Enthalpy of formation: -0 kcal/mol - -#2.0000 SO3-- + 2.0000 H+ + 1.0000 UO2++ = UO2S2O3 +1.0000 H2O +1.0000 O2 -#S2O3-- + O2 + H2O = 2.0000 H+ + 2.0000 SO3-- log_k 40.2906 -S2O3-- + UO2++ = UO2S2O3 - -llnl_gamma 3.0 -# log_k -38.0666 - log_k 2.224 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2S2O3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 UO2++ + 1.0000 Thiocyanate- = UO2Thiocyanate+ - -llnl_gamma 4.0 - log_k +1.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2Thiocyanate+ -# Enthalpy of formation: -939.38 kJ/mol - -analytic 4.7033e+000 1.2562e-002 4.9095e+002 -3.5097e+000 7.6593e+000 -# -Range: 0-300 - -1.0000 UO2++ + 1.0000 SO3-- = UO2SO3 - -llnl_gamma 3.0 - log_k +6.7532 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2SO3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 UO2++ + 1.0000 SO4-- = UO2SO4 - -llnl_gamma 3.0 - log_k +3.0703 - -delta_H 19.7626 kJ/mol # Calculated enthalpy of reaction UO2SO4 -# Enthalpy of formation: -1908.84 kJ/mol - -analytic 1.9514e+002 7.0951e-002 -4.9949e+003 -7.9394e+001 -8.4888e+001 -# -Range: 0-200 - -1.0000 U++++ + 1.0000 H2O = UOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -0.5472 - -delta_H 46.9183 kJ/mol # Calculated enthalpy of reaction UOH+3 -# Enthalpy of formation: -830.12 kJ/mol - -analytic 4.0793e+001 1.3563e-003 -3.8441e+003 -1.1659e+001 -5.9996e+001 -# -Range: 0-300 - -1.0000 U++++ + 1.0000 Thiocyanate- = UThiocyanate+++ - -llnl_gamma 5.0 - log_k +2.9700 - -delta_H 0 # Not possible to calculate enthalpy of reaction UThiocyanate+3 -# Enthalpy of formation: -541.8 kJ/mol - -analytic 4.0286e-001 1.5909e-002 2.3026e+003 -3.9973e+000 3.5929e+001 -# -Range: 0-300 - -1.0000 U++++ + 1.0000 SO4-- = USO4++ - -llnl_gamma 4.5 - log_k +6.5003 - -delta_H 8.2616 kJ/mol # Calculated enthalpy of reaction USO4+2 -# Enthalpy of formation: -1492.54 kJ/mol - -analytic 1.9418e+002 7.5458e-002 -4.0646e+003 -7.9416e+001 -6.3482e+001 -# -Range: 0-300 - -2.0000 H2O + 1.0000 V+++ = V(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.9193 - -delta_H 0 # Not possible to calculate enthalpy of reaction V(OH)2+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 V+++ + 2.0000 H2O = V2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -3.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction V2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 VO2+ = VO(OH)3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -3.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO(OH)3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 VO2+ = VO2(HPO4)2--- - -llnl_gamma 4.0 - log_k +8.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2(HPO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 VO2+ = VO2(OH)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2(OH)2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 VO2+ + 1.0000 F- = VO2F - -llnl_gamma 3.0 - log_k +3.3500 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2F -# Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 VO2+ = VO2F2- - -llnl_gamma 4.0 - log_k +5.8100 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2F2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 VO2+ + 1.0000 HPO4-- + 1.0000 H+ = VO2H2PO4 - -llnl_gamma 3.0 - log_k +1.6800 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2H2PO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 VO2+ + 1.0000 HPO4-- = VO2HPO4- - -llnl_gamma 4.0 - log_k +5.8300 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2HPO4- -# Enthalpy of formation: -0 kcal/mol - -1.0000 VO2+ + 1.0000 SO4-- = VO2SO4- - -llnl_gamma 4.0 - log_k +1.5800 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2SO4- -# Enthalpy of formation: -0 kcal/mol - -1.0000 VO4--- + 1.0000 H+ = VO3OH-- - -llnl_gamma 4.0 - log_k +14.2600 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO3OH-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 VO++ + 1.0000 F- = VOF+ - -llnl_gamma 4.0 - log_k +4.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOF+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 VO++ = VOF2 - -llnl_gamma 3.0 - log_k +6.7800 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOF2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 V+++ + 1.0000 H2O = VOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.26 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOH+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 VO++ + 1.0000 H2O = VOOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.67 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOOH+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 VO++ + 1.0000 SO4-- = VOSO4 - -llnl_gamma 3.0 - log_k +2.4800 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOSO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 V+++ + 1.0000 SO4-- = VSO4+ - -llnl_gamma 4.0 - log_k +3.3300 - -delta_H 0 # Not possible to calculate enthalpy of reaction VSO4+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Y+++ = Y(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9844 - -delta_H -34.8109 kJ/mol # Calculated enthalpy of reaction Y(CH3COO)2+ -# Enthalpy of formation: -411.42 kcal/mol - -analytic -3.3011e+001 6.1979e-004 -7.7468e+002 9.6380e+000 5.8814e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Y+++ = Y(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3783 - -delta_H -58.4505 kJ/mol # Calculated enthalpy of reaction Y(CH3COO)3 -# Enthalpy of formation: -533.17 kcal/mol - -analytic -3.0086e+001 4.0213e-003 -1.1444e+003 6.1794e+000 8.0827e+005 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Y+++ = Y(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.3576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Y+++ = Y(HPO4)2- - -llnl_gamma 4.0 - log_k +9.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Y+++ = Y(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.3902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)2+ -# Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Y+++ = Y(OH)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -25.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)3 -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Y+++ = Y(OH)4- +4.0000 H+ - -llnl_gamma 4.0 - log_k -36.4803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)4- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Y+++ = Y(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.2437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Y+++ = Y(SO4)2- - -llnl_gamma 4.0 - log_k +4.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 Y+++ + 2.0000 H2O = Y2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -14.1902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 CH3COOH = YCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1184 - -delta_H -17.2799 kJ/mol # Calculated enthalpy of reaction YCH3COO+2 -# Enthalpy of formation: -291.13 kcal/mol - -analytic -1.2080e+001 1.2015e-003 -8.4186e+002 3.4522e+000 3.4647e+005 -# -Range: 0-300 - -1.0000 Y+++ + 1.0000 HCO3- = YCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.2788 - -delta_H 0 # Not possible to calculate enthalpy of reaction YCO3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 Cl- = YCl++ - -llnl_gamma 4.5 - log_k +0.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YCl+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 F- = YF++ - -llnl_gamma 4.5 - log_k +4.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YF+2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 Y+++ = YF2+ - -llnl_gamma 4.0 - log_k +7.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YF2+ -# Enthalpy of formation: -0 kcal/mol - -3.0000 F- + 1.0000 Y+++ = YF3 - -llnl_gamma 3.0 - log_k +11.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YF3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 HPO4-- + 1.0000 H+ = YH2PO4++ - -llnl_gamma 4.5 - log_k +9.6054 - -delta_H 0 # Not possible to calculate enthalpy of reaction YH2PO4+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 HCO3- = YHCO3++ - -llnl_gamma 4.5 - log_k +2.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YHCO3+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 HPO4-- = YHPO4+ - -llnl_gamma 4.0 - log_k +5.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 NO3- = YNO3++ - -llnl_gamma 4.5 - log_k +0.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YNO3+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 H2O = YOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.6951 - -delta_H 0 # Not possible to calculate enthalpy of reaction YOH+2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 HPO4-- = YPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.2782 - -delta_H 0 # Not possible to calculate enthalpy of reaction YPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 SO4-- = YSO4+ - -llnl_gamma 4.0 - log_k +3.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YSO4+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 CH3COOH + 1.0000 Yb+++ = Yb(CH3COO)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.131 - -delta_H -30.334 kJ/mol # Calculated enthalpy of reaction Yb(CH3COO)2+ -# Enthalpy of formation: -399.75 kcal/mol - -analytic -3.4286e+001 9.4069e-004 -6.5120e+002 1.0071e+001 5.4773e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Yb+++ = Yb(CH3COO)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.5688 - -delta_H -51.4214 kJ/mol # Calculated enthalpy of reaction Yb(CH3COO)3 -# Enthalpy of formation: -520.89 kcal/mol - -analytic -6.2211e+001 -6.1589e-004 5.9577e+002 1.7954e+001 6.6116e+005 -# -Range: 0-300 - -2.0000 HCO3- + 1.0000 Yb+++ = Yb(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.0576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(CO3)2- -# Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Yb+++ = Yb(HPO4)2- - -llnl_gamma 4.0 - log_k +10.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(HPO4)2- -# Enthalpy of formation: -0 kcal/mol - -# Redundant with YbO2- -#4.0000 H2O + 1.0000 Yb+++ = Yb(OH)4- +4.0000 H+ -# -llnl_gamma 4.0 -# log_k -32.6803 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)4- -## Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Yb+++ = Yb(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -2.7437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Yb+++ = Yb(SO4)2- - -llnl_gamma 4.0 - log_k +5.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(SO4)2- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Yb+++ + 1.0000 CH3COOH = YbCH3COO++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.199 - -delta_H -15.2298 kJ/mol # Calculated enthalpy of reaction YbCH3COO+2 -# Enthalpy of formation: -280.04 kcal/mol - -analytic -8.5003e+000 2.2459e-003 -9.6434e+002 2.0630e+000 3.3550e+005 -# -Range: 0-300 - -1.0000 Yb+++ + 1.0000 HCO3- = YbCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.0392 - -delta_H 82.8348 kJ/mol # Calculated enthalpy of reaction YbCO3+ -# Enthalpy of formation: -305.4 kcal/mol - -analytic 2.3533e+002 5.4436e-002 -6.7871e+003 -9.3280e+001 -1.0598e+002 -# -Range: 0-300 - -1.0000 Yb+++ + 1.0000 Cl- = YbCl++ - -llnl_gamma 4.5 - log_k +0.1620 - -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction YbCl+2 -# Enthalpy of formation: -196.9 kcal/mol - -analytic 8.0452e+001 3.8343e-002 -1.8176e+003 -3.4594e+001 -2.8386e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Yb+++ = YbCl2+ - -llnl_gamma 4.0 - log_k -0.2624 - -delta_H 17.4305 kJ/mol # Calculated enthalpy of reaction YbCl2+ -# Enthalpy of formation: -236 kcal/mol - -analytic 2.1708e+002 8.0550e-002 -5.4744e+003 -9.0101e+001 -8.5487e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Yb+++ = YbCl3 - -llnl_gamma 3.0 - log_k -0.7601 - -delta_H 8.36382 kJ/mol # Calculated enthalpy of reaction YbCl3 -# Enthalpy of formation: -278.1 kcal/mol - -analytic 4.0887e+002 1.2992e-001 -1.0578e+004 -1.6684e+002 -1.6518e+002 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Yb+++ = YbCl4- - -llnl_gamma 4.0 - log_k -1.1845 - -delta_H -15.7653 kJ/mol # Calculated enthalpy of reaction YbCl4- -# Enthalpy of formation: -323.8 kcal/mol - -analytic 4.7560e+002 1.3032e-001 -1.2452e+004 -1.9149e+002 -1.9444e+002 -# -Range: 0-300 - -1.0000 Yb+++ + 1.0000 F- = YbF++ - -llnl_gamma 4.5 - log_k +4.8085 - -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction YbF+2 -# Enthalpy of formation: -234.9 kcal/mol - -analytic 1.0291e+002 4.2493e-002 -2.7637e+003 -4.1008e+001 -4.3156e+001 -# -Range: 0-300 - -2.0000 F- + 1.0000 Yb+++ = YbF2+ - -llnl_gamma 4.0 - log_k +8.3709 - -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction YbF2+ -# Enthalpy of formation: -317.7 kcal/mol - -analytic 2.4281e+002 8.5385e-002 -5.6900e+003 -9.7299e+001 -8.8859e+001 -# -Range: 0-300 - -3.0000 F- + 1.0000 Yb+++ = YbF3 - -llnl_gamma 3.0 - log_k +11.0537 - -delta_H -13.1796 kJ/mol # Calculated enthalpy of reaction YbF3 -# Enthalpy of formation: -403.9 kcal/mol - -analytic 4.5227e+002 1.3659e-001 -1.0595e+004 -1.8038e+002 -1.6546e+002 -# -Range: 0-300 - -4.0000 F- + 1.0000 Yb+++ = YbF4- - -llnl_gamma 4.0 - log_k +13.2234 - -delta_H -60.2496 kJ/mol # Calculated enthalpy of reaction YbF4- -# Enthalpy of formation: -495.3 kcal/mol - -analytic 5.0369e+002 1.3726e-001 -1.0671e+004 -2.0026e+002 -1.6666e+002 -# -Range: 0-300 - -1.0000 Yb+++ + 1.0000 HPO4-- + 1.0000 H+ = YbH2PO4++ - -llnl_gamma 4.5 - log_k +9.5217 - -delta_H -20.0204 kJ/mol # Calculated enthalpy of reaction YbH2PO4+2 -# Enthalpy of formation: -473.9 kcal/mol - -analytic 1.0919e+002 6.3749e-002 3.8909e+002 -4.8469e+001 6.0389e+000 -# -Range: 0-300 - -1.0000 Yb+++ + 1.0000 HCO3- = YbHCO3++ - -llnl_gamma 4.5 - log_k +1.8398 - -delta_H 5.43083 kJ/mol # Calculated enthalpy of reaction YbHCO3+2 -# Enthalpy of formation: -323.9 kcal/mol - -analytic 3.9175e+001 3.1796e-002 6.9728e+001 -1.9002e+001 1.0762e+000 -# -Range: 0-300 - -1.0000 Yb+++ + 1.0000 HPO4-- = YbHPO4+ - -llnl_gamma 4.0 - log_k +6.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YbHPO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Yb+++ + 1.0000 NO3- = YbNO3++ - -llnl_gamma 4.5 - log_k +0.2148 - -delta_H -32.9323 kJ/mol # Calculated enthalpy of reaction YbNO3+2 -# Enthalpy of formation: -217.6 kcal/mol - -analytic 1.7237e+001 2.5684e-002 2.2806e+003 -1.3055e+001 3.5581e+001 -# -Range: 0-300 - -1.0000 Yb+++ + 1.0000 H2O = YbO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -15.7506 - -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction YbO+ -# Enthalpy of formation: -203.4 kcal/mol - -analytic 1.7675e+002 2.9078e-002 -1.3106e+004 -6.3534e+001 -2.0456e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Yb+++ = YbO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -32.6741 - -delta_H 267.918 kJ/mol # Calculated enthalpy of reaction YbO2- -# Enthalpy of formation: -232.9 kcal/mol - -analytic 1.5529e+002 1.0053e-002 -1.8749e+004 -5.1764e+001 -2.9260e+002 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Yb+++ = YbO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -23.878 - -delta_H 211.016 kJ/mol # Calculated enthalpy of reaction YbO2H -# Enthalpy of formation: -246.5 kcal/mol - -analytic 3.2148e+002 4.4821e-002 -2.1971e+004 -1.1519e+002 -3.4293e+002 -# -Range: 0-300 - -1.0000 Yb+++ + 1.0000 H2O = YbOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.6143 - -delta_H 74.9647 kJ/mol # Calculated enthalpy of reaction YbOH+2 -# Enthalpy of formation: -210.7 kcal/mol - -analytic 5.8142e+001 1.1402e-002 -5.6488e+003 -2.0289e+001 -8.8160e+001 -# -Range: 0-300 - -1.0000 Yb+++ + 1.0000 HPO4-- = YbPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.5782 - -delta_H 0 # Not possible to calculate enthalpy of reaction YbPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Yb+++ + 1.0000 SO4-- = YbSO4+ - -llnl_gamma 4.0 - log_k +3.5697 - -delta_H 1424.65 kJ/mol # Calculated enthalpy of reaction YbSO4+ -# Enthalpy of formation: -37.2 kcal/mol - -analytic 3.0675e+002 8.6527e-002 -9.0298e+003 -1.2069e+002 -1.4099e+002 -# -Range: 0-300 - -2.0000 CH3COOH + 1.0000 Zn++ = Zn(CH3COO)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -6.062 - -delta_H -11.0458 kJ/mol # Calculated enthalpy of reaction Zn(CH3COO)2 -# Enthalpy of formation: -271.5 kcal/mol - -analytic -2.2038e+001 2.6133e-003 -2.7652e+003 6.8501e+000 6.7086e+005 -# -Range: 0-300 - -3.0000 CH3COOH + 1.0000 Zn++ = Zn(CH3COO)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -10.0715 - -delta_H 25.355 kJ/mol # Calculated enthalpy of reaction Zn(CH3COO)3- -# Enthalpy of formation: -378.9 kcal/mol - -analytic 3.5104e+001 -6.1568e-003 -1.3379e+004 -8.7697e+000 2.0670e+006 -# -Range: 0-300 - -4.0000 Cyanide- + 1.0000 Zn++ = Zn(Cyanide)4-- - -llnl_gamma 4.0 - log_k +16.7040 - -delta_H -107.305 kJ/mol # Calculated enthalpy of reaction Zn(Cyanide)4-2 -# Enthalpy of formation: 341.806 kJ/mol - -analytic 3.6586e+002 1.2655e-001 -2.9546e+003 -1.5232e+002 -4.6213e+001 -# -Range: 0-300 - -2.0000 N3- + 1.0000 Zn++ = Zn(N3)2 - -llnl_gamma 3.0 - log_k +1.1954 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(N3)2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 NH3 = Zn(NH3)++ - -llnl_gamma 4.5 - log_k +2.0527 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)+2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 NH3 + 1.0000 Zn++ = Zn(NH3)2++ - -llnl_gamma 4.5 - log_k +4.2590 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)2+2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 NH3 + 1.0000 Zn++ = Zn(NH3)3++ - -llnl_gamma 4.5 - log_k +6.4653 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)3+2 -# Enthalpy of formation: -0 kcal/mol - -4.0000 NH3 + 1.0000 Zn++ = Zn(NH3)4++ - -llnl_gamma 4.5 - log_k +8.3738 - -delta_H -54.9027 kJ/mol # Calculated enthalpy of reaction Zn(NH3)4+2 -# Enthalpy of formation: -533.636 kJ/mol - -analytic 1.5851e+002 -6.3376e-003 -4.6783e+003 -5.3560e+001 -7.3047e+001 -# -Range: 0-300 - -2.0000 H2O + 1.0000 Zn++ = Zn(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -17.3282 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Zn++ = Zn(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -28.8369 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)3- -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Zn++ = Zn(OH)4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -41.6052 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)4-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 H2O + 1.0000 Cl- = Zn(OH)Cl +1.0000 H+ - -llnl_gamma 3.0 - log_k -7.5417 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)Cl -# Enthalpy of formation: -0 kcal/mol - -2.0000 Thiocyanate- + 1.0000 Zn++ = Zn(Thiocyanate)2 - -llnl_gamma 3.0 - log_k +0.8800 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(Thiocyanate)2 -# Enthalpy of formation: -0 kcal/mol - -4.0000 Thiocyanate- + 1.0000 Zn++ = Zn(Thiocyanate)4-- - -llnl_gamma 4.0 - log_k +1.2479 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(Thiocyanate)4-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 Br- = ZnBr+ - -llnl_gamma 4.0 - log_k -0.6365 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 Br- + 1.0000 Zn++ = ZnBr2 - -llnl_gamma 3.0 - log_k -1.0492 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 Br- + 1.0000 Zn++ = ZnBr3- - -llnl_gamma 4.0 - log_k -1.8474 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr3- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 CH3COOH = ZnCH3COO+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.1519 - -delta_H -9.87424 kJ/mol # Calculated enthalpy of reaction ZnCH3COO+ -# Enthalpy of formation: -155.12 kcal/mol - -analytic -7.9367e+000 2.8564e-003 -1.4514e+003 2.5010e+000 2.3343e+005 -# -Range: 0-300 - -1.0000 Zn++ + 1.0000 HCO3- = ZnCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -6.4288 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnCO3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 Cl- = ZnCl+ - -llnl_gamma 4.0 - log_k +0.1986 - -delta_H 43.317 kJ/mol # Calculated enthalpy of reaction ZnCl+ -# Enthalpy of formation: -66.24 kcal/mol - -analytic 1.1235e+002 4.4461e-002 -4.1662e+003 -4.5023e+001 -6.5042e+001 -# -Range: 0-300 - -2.0000 Cl- + 1.0000 Zn++ = ZnCl2 - -llnl_gamma 3.0 - log_k +0.2507 - -delta_H 31.1541 kJ/mol # Calculated enthalpy of reaction ZnCl2 -# Enthalpy of formation: -109.08 kcal/mol - -analytic 1.7824e+002 7.5733e-002 -4.6251e+003 -7.4770e+001 -7.2224e+001 -# -Range: 0-300 - -3.0000 Cl- + 1.0000 Zn++ = ZnCl3- - -llnl_gamma 4.0 - log_k -0.0198 - -delta_H 22.5894 kJ/mol # Calculated enthalpy of reaction ZnCl3- -# Enthalpy of formation: -151.06 kcal/mol - -analytic 1.3889e+002 7.4712e-002 -2.1527e+003 -6.2200e+001 -3.3633e+001 -# -Range: 0-300 - -4.0000 Cl- + 1.0000 Zn++ = ZnCl4-- - -llnl_gamma 4.0 - log_k +0.8605 - -delta_H 4.98733 kJ/mol # Calculated enthalpy of reaction ZnCl4-2 -# Enthalpy of formation: -195.2 kcal/mol - -analytic 8.4294e+001 7.0021e-002 3.9150e+002 -4.2664e+001 6.0834e+000 -# -Range: 0-300 - -1.0000 Zn++ + 1.0000 ClO4- = ZnClO4+ - -llnl_gamma 4.0 - log_k +1.2768 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnClO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 F- = ZnF+ - -llnl_gamma 4.0 - log_k +1.1500 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnF+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 HPO4-- + 1.0000 H+ = ZnH2PO4+ - -llnl_gamma 4.0 - log_k +0.4300 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnH2PO4+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 HCO3- = ZnHCO3+ - -llnl_gamma 4.0 - log_k +1.4200 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnHCO3+ -# Enthalpy of formation: -0 kcal/mol - -analytic 5.1115e+002 1.2911e-001 -1.5292e+004 -2.0083e+002 -2.2721e+002 -# -Range: 25-300 - -1.0000 Zn++ + 1.0000 HPO4-- = ZnHPO4 - -llnl_gamma 3.0 - log_k +3.2600 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnHPO4 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 I- = ZnI+ - -llnl_gamma 4.0 - log_k -3.0134 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI+ -# Enthalpy of formation: -0 kcal/mol - -2.0000 I- + 1.0000 Zn++ = ZnI2 - -llnl_gamma 3.0 - log_k -1.8437 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 I- + 1.0000 Zn++ = ZnI3- - -llnl_gamma 4.0 - log_k -2.0054 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI3- -# Enthalpy of formation: -0 kcal/mol - -4.0000 I- + 1.0000 Zn++ = ZnI4-- - -llnl_gamma 4.0 - log_k -2.6052 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI4-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 N3- = ZnN3+ - -llnl_gamma 4.0 - log_k +0.4420 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnN3+ -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 H2O = ZnOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -8.96 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnOH+ -# Enthalpy of formation: -0 kcal/mol - -analytic -7.8600e-001 -2.9499e-004 -2.8673e+003 6.1892e-001 -4.2576e+001 -# -Range: 25-300 - -1.0000 Zn++ + 1.0000 HPO4-- = ZnPO4- +1.0000 H+ - -llnl_gamma 4.0 - log_k -4.3018 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnPO4- -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 SO4-- = ZnSO4 - -llnl_gamma 3.0 - log_k +2.3062 - -delta_H 15.277 kJ/mol # Calculated enthalpy of reaction ZnSO4 -# Enthalpy of formation: -1047.71 kJ/mol - -analytic 1.3640e+002 5.1256e-002 -3.4422e+003 -5.5695e+001 -5.8501e+001 -# -Range: 0-200 - -1.0000 Zn++ + 1.0000 SeO4-- = ZnSeO4 - -llnl_gamma 3.0 - log_k +2.1900 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnSeO4 -# Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Zr++++ = Zr(OH)3+ +3.0000 H+ - -llnl_gamma 4.0 - log_k -0.6693 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)3+ -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Zr++++ = Zr(OH)4 +4.0000 H+ - -llnl_gamma 3.0 - log_k -1.4666 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)4 -# Enthalpy of formation: -0 kcal/mol - -5.0000 H2O + 1.0000 Zr++++ = Zr(OH)5- +5.0000 H+ - -llnl_gamma 4.0 - log_k -15.9754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)5- -# Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Zr++++ = Zr(SO4)2 - -llnl_gamma 3.0 - log_k +6.2965 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(SO4)2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 SO4-- + 1.0000 Zr++++ = Zr(SO4)3-- - -llnl_gamma 4.0 - log_k +7.3007 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(SO4)3-2 -# Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 3.0000 Zr++++ = Zr3(OH)4+8 +4.0000 H+ - -llnl_gamma 6.0 - log_k -0.5803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr3(OH)4+8 -# Enthalpy of formation: -0 kcal/mol - -8.0000 H2O + 4.0000 Zr++++ = Zr4(OH)8+8 +8.0000 H+ - -llnl_gamma 6.0 - log_k -5.9606 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr4(OH)8+8 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zr++++ + 1.0000 F- = ZrF+++ - -llnl_gamma 5.0 - log_k +8.5835 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF+3 -# Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 Zr++++ = ZrF2++ - -llnl_gamma 4.5 - log_k +15.7377 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF2+2 -# Enthalpy of formation: -0 kcal/mol - -3.0000 F- + 1.0000 Zr++++ = ZrF3+ - -llnl_gamma 4.0 - log_k +21.2792 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF3+ -# Enthalpy of formation: -0 kcal/mol - -4.0000 F- + 1.0000 Zr++++ = ZrF4 - -llnl_gamma 3.0 - log_k +25.9411 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4 -# Enthalpy of formation: -0 kcal/mol - -5.0000 F- + 1.0000 Zr++++ = ZrF5- - -llnl_gamma 4.0 - log_k +30.3098 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF5- -# Enthalpy of formation: -0 kcal/mol - -6.0000 F- + 1.0000 Zr++++ = ZrF6-- - -llnl_gamma 4.0 - log_k +34.0188 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF6-2 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zr++++ + 1.0000 H2O = ZrOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k +0.0457 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrOH+3 -# Enthalpy of formation: -0 kcal/mol - -1.0000 Zr++++ + 1.0000 SO4-- = ZrSO4++ - -llnl_gamma 4.5 - log_k +3.6064 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrSO4+2 -# Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 1.0000 O_phthalate-2 = H2O_phthalate - -llnl_gamma 3.0 - log_k +8.3580 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2O_phthalate -# Enthalpy of formation: -0 kcal/mol - - -###################### - -#Start of organic species added Feb. 4, 2011 - -####################### - -# 1-Butanamine, C4H9NH2 - + 2.0000 C2H5NH2 = C4H9NH2 + 1.0000 NH3 - -llnl_gamma 3.0 - log_k +7.0171 - -delta_h +36.110 kcal/mol - -analytic 2.6628e+000 1.4357e-003 1.7062e+003 -7.5117e-001 5.7612e+003 -# -Range: 0-300 - -# 1-Butanol, C4H9OH - + 2.0000 C2H5OH = C4H9OH + 1.0000 H2O - -llnl_gamma 3.0 - log_k +6.5001 - -delta_h +80.320 kcal/mol - -analytic -2.4958e+000 -1.9919e-003 2.3794e+003 6.5075e-001 3.7130e+001 -# -Range: 0-300 - -# 1-Butene, C4H8 - + 2.0000 C2H4 = C4H8 - -llnl_gamma 3.0 - log_k +13.6266 - -delta_h +5.635 kcal/mol - -analytic -6.9511e+000 -5.1950e-003 5.3537e+003 2.0720e+000 -8.5186e+004 -# -Range: 0-300 - -# 1-Butyne, C4H6 - + 2.0000 C2H2 + 1.0000 H2O = C4H6 + 0.5000 O2 - -llnl_gamma 3.0 - log_k -422.3711 - -delta_h -33.4 kcal/mol - -analytic 8.0147e+000 -1.9434e-003 -9.6752e+002 -3.5459e+000 8.7444e+004 -# -Range: 0-300 - -# 1-Heptanamine, C7H15NH2 - + 3.5000 C2H5NH2 = C7H15NH2 + 2.5000 NH3 - -llnl_gamma 3.0 - log_k +15.4646 - -delta_h +51.990 kcal/mol - -analytic 8.1328e+000 2.9346e-003 3.6672e+003 -2.3594e+000 5.7222e+001 -# -Range: 0-300 - -# 1-Heptanol, C7H15OH - + 3.5000 C2H5OH = C7H15OH + 2.5000 H2O - -llnl_gamma 3.0 - log_k +16.1733 - -delta_h +97.270 kcal/mol - -analytic 1.1253e+000 -1.4421e-003 5.3337e+003 -9.7252e-001 8.3227e+001 -# -Range: 0-300 - -# 1-Heptene, C7H14 - + 3.5000 C2H4 = C7H14 - -llnl_gamma 3.0 - log_k +30.5114 - -delta_h +22.670 kcal/mol - -analytic -1.1457e+001 -1.3165e-002 1.1832e+004 3.2374e+000 -1.6063e+005 -# -Range: 0-300 - -# 1-Heptyne, C7H12 - + 3.5000 C2H2 + 2.5000 H2O = C7H12 + 1.2500 O2 - -llnl_gamma 3.0 - log_k -748.8076 - -delta_h -16.98 kcal/mol - -analytic 6.8635e+000 -6.7966e-003 -3.7961e+003 -4.0767e+000 1.8009e+005 -# -Range: 0-300 - -# 1-Hexanamine, C6H13NH2 - + 3.0000 C2H5NH2 = C6H13NH2 + 2.0000 NH3 - -llnl_gamma 3.0 - log_k +12.3189 - -delta_h +46.320 kcal/mol - -analytic 2.7655e+000 2.2270e-003 3.0793e+003 -5.7977e-001 4.8049e+001 -# -Range: 0-300 - -# 1-Hexanol, C6H13OH - + 3.0000 C2H5OH = C6H13OH + 2.0000 H2O - -llnl_gamma 3.0 - log_k +13.8358 - -delta_h +92.690 kcal/mol - -analytic 1.2093e+001 -8.5858e-004 4.0578e+003 -4.6909e+000 6.3315e+001 -# -Range: 0-300 - -# 1-Hexene, C6H12 - + 3.0000 C2H4 = C6H12 - -llnl_gamma 3.0 - log_k +24.9076 - -delta_h +17.025 kcal/mol - -analytic -1.8354e+001 -1.1761e-002 1.0127e+004 5.8975e+000 -1.5953e+005 -# -Range: 0-300 - -# 1-Hexyne, C6H10 - + 3.0000 C2H2 + 2.0000 H2O = C6H10 + 1.0000 O2 - -llnl_gamma 3.0 - log_k -639.9392 - -delta_h -22.34 kcal/mol - -analytic 2.6448e+001 -2.4295e-003 -3.8892e+003 -1.0837e+001 2.0944e+005 -# -Range: 0-300 - -# 1-Octanamine, C8H17NH2 - + 4.0000 C2H5NH2 = C8H17NH2 + 3.0000 NH3 - -llnl_gamma 3.0 - log_k +18.6103 - -delta_h +57.660 kcal/mol - -analytic 9.9090e+000 3.5563e-003 4.4097e+003 -2.8869e+000 6.8807e+001 -# -Range: 0-300 - -# 1-Octanol, C8H12OH -# + 4.0000 C2H5OH = C8H12OH + 3.0000 H2O -# does not balance -# -llnl_gamma 3.0 -# log_k +19.7862 -# -delta_h +103.060 kcal/mol -# -analytic -1.0628e+001 -4.8545e-003 7.2441e+003 3.0590e+000 1.1304e+002 -# -Range: 0-300 - -# 1-Octene, C8H16 - + 4.0000 C2H4 = C8H16 - -llnl_gamma 3.0 - log_k +35.9760 - -delta_h +28.120 kcal/mol - -analytic -3.3408e+001 -1.8810e-002 1.5052e+004 1.1026e+001 -2.4723e+005 -# -Range: 0-300 - -# 1-Octyne, C8H14 - + 4.0000 C2H2 + 3.0000 H2O = C8H14 + 1.5000 O2 - -llnl_gamma 3.0 - log_k -857.5439 - -delta_h -11.33 kcal/mol - -analytic 4.5356e+001 -2.9242e-003 -6.8742e+003 -1.8272e+001 3.3648e+005 -# -Range: 0-300 - -# 1-Pentanamine, C5H11NH2 - + 2.5000 C2H5NH2 = C5H11NH2 + 1.5000 NH3 - -llnl_gamma 3.0 - log_k +9.1805 - -delta_h +40.650 kcal/mol - -analytic 8.4037e+000 2.7132e-003 1.9292e+003 -2.7349e+000 2.3844e+004 -# -Range: 0-300 - -# 1-Pentanol, C5H11OH - + 2.5000 C2H5OH = C5H11OH + 1.5000 H2O - -llnl_gamma 3.0 - log_k +11.1245 - -delta_h +87.730 kcal/mol - -analytic -9.8673e-001 -2.4789e-003 3.8322e+003 0.0000e+000 0.0000e+000 -# -Range: 0-300 - -# 1-Pentene, C5H10 - + 2.5000 C2H4 = C5H10 - -llnl_gamma 3.0 - log_k +19.1718 - -delta_h +11.200 kcal/mol - -analytic -5.8469e+001 -1.4970e-002 1.0267e+004 2.0489e+001 -2.6977e+005 -# -Range: 0-300 - -# 1-Pentyne, C5H8 - + 2.5000 C2H2 + 1.5000 H2O = C5H8 + 0.7500 O2 - -llnl_gamma 3.0 - log_k -531.1075 - -delta_h -27.8 kcal/mol - -analytic 5.0924e+000 -3.9604e-003 -1.7557e+003 -2.7988e+000 1.1194e+005 -# -Range: 0-300 - -# 1-Propanamine, C3H7NH2 - + 1.5000 C2H5NH2 = C3H7NH2 + 0.5000 NH3 - -llnl_gamma 3.0 - log_k +4.1279 - -delta_h +30.680 kcal/mol - -analytic 2.8174e+000 8.5281e-004 9.7545e+002 -8.9491e-001 1.5220e+001 -# -Range: 0-300 - -# 1-Propanol, C3H7OH - + 1.5000 C2H5OH = C3H7OH + 0.5000 H2O - -llnl_gamma 3.0 - log_k +3.8548 - -delta_h +75.320 kcal/mol - -analytic -2.8360e+000 -1.0577e-003 1.4368e+003 8.8413e-001 2.2421e+001 -# -Range: 0-300 - -# 1-Propene, C3H6 - + 1.5000 C2H4 = C3H6 - -llnl_gamma 3.0 - log_k +8.2573 - -delta_h +0.290 kcal/mol - -analytic 1.1038e+001 -3.4869e-004 2.3006e+003 -4.2007e+000 3.5895e+001 -# -Range: 0-300 - -# 1-Propyne, C3H4 - + 1.5000 C2H2 + 0.5000 H2O = C3H4 + 0.2500 O2 - -llnl_gamma 3.0 - log_k -313.6201 - -delta_h -38.97 kcal/mol - -analytic 2.4860e-002 -1.5316e-003 4.1336e+002 -3.4011e-001 3.0624e+004 -# -Range: 0-300 - -# # 2-Butanone, C4H8O CH3C(O)CH2CH3 -# + 4.0000 CH3COCH3 = C4H8O + 0.5000 O2 -# does not balance -# -llnl_gamma 3.0 -# log_k -1200.9839 -# -delta_h +67.880 kcal/mol -# -analytic -2.1942e+001 9.8502e-004 -9.1936e+003 6.9213e+000 1.6006e+005 -# -Range: 0-300 - -# 2-Heptanone, C7H14O correct formula -# + 7.0000 CH3COCH3 = C7H14O + 2.0000 O2 -# does not balance -# -llnl_gamma 3.0 -# log_k -2179.4136 -# -delta_h +84.890 kcal/mol -# -analytic -1.8734e+002 -6.9923e-003 -3.0077e+004 6.2205e+001 -4.6928e+002 -# -Range: 0-300 - -# 2-Hexanone, C6H12O -# + 6.0000 CH3COCH3 = C6H12O + 1.5000 O2 -# does not balance -# -llnl_gamma 3.0 -# log_k -1853.3802 -# -delta_h +79.220 kcal/mol -# -analytic 3.3773e+002 5.9197e-002 -5.0406e+004 -1.2439e+002 1.7107e+006 -# -Range: 0-300 - -# 2-Hydroxybutanoate, C4H7O3- - + 1.0000 C3H7COOH + 0.5000 O2 = C4H7O3- + 1.0000 H+ - -llnl_gamma 4.0 - log_k -3.8116 - -delta_h +169.810 kcal/mol - -analytic -5.4902e+001 -2.9840e-002 9.1382e+003 2.2664e+001 1.4261e+002 -# -Range: 0-300 - -# 2-Hydroxybutanoic, C4H8O3 - + 1.0000 C3H7COOH + 0.5000 O2 = C4H8O3 - -llnl_gamma 3.0 - log_k -332.1774 - -delta_h +169.670 kcal/mol - -analytic -3.0810e+001 -8.1378e-003 1.0507e+004 1.0709e+001 -1.5474e+005 -# -Range: 0-300 - -# 2-Hydroxydecanoate, C10H19O3- - + 5.0000 CH3COOH = C10H19O3- + 3.5000 O2 + 1.0000 H+ - -llnl_gamma 4.0 - log_k -3.7383 - -delta_h +203.930 kcal/mol - -analytic -2.8008e+002 -1.9653e-002 -6.9199e+004 9.7024e+001 -1.0797e+003 -# -Range: 0-300 - -# 2-Hydroxydecanoic, C10H20O3 - + 5.0000 CH3COOH = C10H20O3 + 3.5000 O2 - -llnl_gamma 3.0 - log_k -984.2221 - -delta_h +203.690 kcal/mol - -analytic -3.2602e+002 -2.4822e-002 -6.7352e+004 1.1523e+002 -1.0509e+003 -# -Range: 0-300 - -# 2-Hydroxyheptanoate, C7H13O3- - + 3.5000 CH3COOH = C7H13O3- + 2.0000 O2 + 1.0000 H+ - -llnl_gamma 4.0 - log_k -3.7383 - -delta_h +186.900 kcal/mol - -analytic -2.0491e+002 -2.6664e-002 -3.9557e+004 7.2979e+001 -6.1720e+002 -# -Range: 0-300 - -# 2-Hydroxyheptanoic, C7H14O3 - + 3.5000 CH3COOH = C7H14O3 + 2.0000 O2 - -llnl_gamma 3.0 - log_k -658.2107 - -delta_h +186.680 kcal/mol - -analytic -1.9142e+002 -1.4836e-002 -3.9307e+004 6.7281e+001 -6.1330e+002 -# -Range: 0-300 - -# 2-Hydroxyhexanoate, C6H11O3- - + 3.0000 CH3COOH = C6H11O3- + 1.5000 O2 + 1.0000 H+ - -llnl_gamma 4.0 - log_k -3.7384 - -delta_h +181.240 kcal/mol - -analytic -1.7865e+002 -2.8722e-002 -2.9711e+004 6.4493e+001 -4.6357e+002 -# -Range: 0-300 - -# 2-Hydroxyhexanoic, C6H12O3 - + 3.0000 CH3COOH = C6H12O3 + 1.5000 O2 - -llnl_gamma 3.0 - log_k -549.5329 - -delta_h +181.010 kcal/mol - -analytic 4.5831e+000 5.4145e-003 -3.9948e+004 -1.4677e+000 6.9991e+005 -# -Range: 0-300 - -# 2-Hydroxynonanoate, C9H17O3- - + 4.5000 CH3COOH = C9H17O3- + 3.0000 O2 + 1.0000 H+ - -llnl_gamma 4.0 - log_k -3.7383 - -delta_h +198.250 kcal/mol - -analytic -2.5572e+002 -2.2155e-002 -5.9298e+004 8.9284e+001 -9.2521e+002 -# -Range: 0-300 - -# 2-Hydroxynonanoic, C9H18O3 - + 4.5000 CH3COOH = C9H18O3 + 3.0000 O2 - -llnl_gamma 3.0 - log_k -875.5516 - -delta_h +198.020 kcal/mol - -analytic -1.1226e+002 -3.7272e-003 -6.9576e+004 4.0711e+001 8.3790e+005 -# -Range: 0-300 - -# 2-Hydroxyoctanoate, C8H15O3- - + 4.0000 CH3COOH = C8H15O3- + 2.5000 O2 + 1.0000 H+ - -llnl_gamma 4.0 - log_k -3.7383 - -delta_h +192.570 kcal/mol - -analytic 6.7477e+001 1.2723e-002 -6.7802e+004 -2.4249e+001 1.1992e+006 -# -Range: 0-300 - -# 2-Hydroxyoctanoic, C8H16O3 - + 4.0000 CH3COOH = C8H16O3 + 2.5000 O2 - -llnl_gamma 3.0 - log_k -766.8885 - -delta_h +192.350 kcal/mol - -analytic 1.8003e+002 3.4449e-002 -7.4099e+004 -6.4322e+001 1.6435e+006 -# -Range: 0-300 - -# 2-Hydroxypentanoate, C5H9O3- - + 1.0000 C4H9COOH + 0.5000 O2 = C5H9O3- + 1.0000 H+ - -llnl_gamma 4.0 - log_k -3.5918 - -delta_h +175.770 kcal/mol - -analytic -3.4964e+001 -2.4619e-002 8.6213e+003 1.4743e+001 1.3454e+002 -# -Range: 0-300 - -# 2-Hydroxypentanoic, C5H10O3 - + 1.0000 C4H9COOH + 0.5000 O2 = C5H10O3 - -llnl_gamma 3.0 - log_k -440.8552 - -delta_h +175.340 kcal/mol - -analytic -4.8323e+001 -1.0534e-002 1.1616e+004 1.6913e+001 -2.3478e+005 -# -Range: 0-300 - -# 2-Octanone, C8H16O -# + 8.0000 CH3COCH3 = C8H16O + 2.5000 O2 -# does not balance -# -llnl_gamma 3.0 -# log_k -2505.4468 -# -delta_h +90.560 kcal/mol -# -analytic 3.9776e+002 7.5718e-002 -7.4592e+004 -1.4798e+002 2.2610e+006 -# -Range: 0-300 - -# 2-Pentanone, C5H10O -# + 5.0000 CH3COCH3 = C5H10O + 1.0000 O2 -# does not balance -# -llnl_gamma 3.0 -# log_k -1527.6549 -# -delta_h +73.460 kcal/mol -# -analytic 2.2603e+002 3.9343e-002 -3.3782e+004 -8.3253e+001 1.1722e+006 -# -Range: 0-300 - -# Acetaldehyde, CH3CHO - + 1.0000 CH3COOH = CH3CHO + 0.5000 O2 - -llnl_gamma 3.0 - log_k -188.3673 - -delta_h +50.380 kcal/mol - -analytic 2.3139e+001 9.8759e-003 -1.4924e+004 -9.4191e+000 8.0783e+004 -# -Range: 0-300 - -# Acetamide, CH3CONH2 - + 1.0000 NH3 + 1.0000 CH3COOH = CH3CONH2 + 1.0000 H2O - -llnl_gamma 3.0 - log_k +4.6947 - -delta_h +77.290 kcal/mol - -analytic 2.4852e+001 5.3426e-003 1.3023e+003 -1.0554e+001 2.0315e+001 -# -Range: 0-300 - -# CH3COCH3, CH3COCH3 - + 3.0000 HCO3- + 3.0000 H+ = CH3COCH3 + 4.0000 O2 - -llnl_gamma 3.0 - log_k -291.8554 - -delta_h +61.720 kcal/mol - -analytic -2.5990E+03 -4.4302E-01 -5.7126E+02 9.8637E+02 -1.6901E-01 -# -Range: 0-300 - -# Adipate, C6H8O4-2 - + 3.0000 CH3COOH = C6H8O4-2 + 2.0000 H+ + 1.0000 H2O + 0.5000 O2 - -llnl_gamma 4.0 - log_k -9.8223 - -delta_h +227.780 kcal/mol - -analytic -1.6044e+002 -7.4583e-002 -9.1669e+003 6.5454e+001 -1.4299e+002 -# -Range: 0-300 - -# Adipic_acid, C6H10O4 - + 3.0000 CH3COOH = C6H10O4 + 1.0000 H2O + 0.5000 O2 - -llnl_gamma 3.0 - log_k -467.5962 - -delta_h +229.750 kcal/mol - -analytic -4.7527e+001 -1.3717e-002 -1.0191e+004 1.7857e+001 -1.5900e+002 -# -Range: 0-300 - -# Alanine, C3H7NO2 - + 1.0000 NH3 + 3.0000 HCO3- + 3.0000 H+ = C3H7NO2 + 1.0000 H2O + 3.0000 O2 - -llnl_gamma 3.0 - log_k -215.2132 - -delta_h +132.130 kcal/mol - -analytic -1.8686E+03 -3.1237E-01 -5.4608E+02 7.0646E+02 -8.7774E-03 -# -Range 0-300 - -# Alanylglycine, C5H10N2O3 - + 2.5000 C2H5NO2 = C5H10N2O3 + 0.7500 O2 + 0.5000 H2O + 0.5000 NH3 - -llnl_gamma 3.0 - log_k -326.317 - -delta_h +186.110 kcal/mol - -analytic 1.4154e+001 1.2917e-002 -2.0305e+004 -5.2689e+000 6.4481e+005 -# -Range: 0-300 - -# Asparagine, C4H8N2O3 - + 2.0000 C2H5NO2 = C4H8N2O3 + 1.0000 H2O - -llnl_gamma 3.0 - log_k +5.9386 - -delta_h +186.660 kcal/mol - -analytic -1.7915e+001 8.7354e-004 2.1119e+003 6.1432e+000 1.1658e+005 -# -Range: 0-300 - -# Aspartic_acid, C4H7NO4 - + 2.0000 C2H5NO2 = C4H7NO4 + 1.0000 NH3 - -llnl_gamma 3.0 - log_k +1.1340 - -delta_h +226.370 kcal/mol - -analytic -1.6456e+001 1.7980e-003 2.4086e+002 6.0721e+000 1.0866e+005 -# -Range: 0-300 - -# Azelaic_acid, C9H16O4 - + 4.5000 CH3COOH = C9H16O4 + 2.0000 O2 + 1.0000 H2O - -llnl_gamma 3.0 - log_k -795.8139 - -delta_h +240.700 kcal/mol - -analytic 2.0346e+002 2.5843e-002 -6.2187e+004 -7.1175e+001 1.4838e+006 -# -Range: 0-300 - -# Azelate, C9H14O4-2 - + 4.5000 CH3COOH = C9H14O4-2 + 2.0000 H+ + 2.0000 O2 + 1.0000 H2O - -llnl_gamma 4.0 - log_k -9.9176 - -delta_h +241.660 kcal/mol - -analytic -2.5031e+002 -7.0995e-002 -3.9050e+004 9.5249e+001 -6.0927e+002 -# -Range: 0-300 - -# Ba(Ala)+, Ba(C3H6NO2)+ - + 1.0000 Ba+2 + 1.0000 C3H7NO2 = Ba(C3H6NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -9.3949 - -delta_h +243.703 kcal/mol - -analytic -1.9975e+001 5.8683e-003 -3.7242e+003 7.5785e+000 2.2969e+005 -# -Range: 0-300 - -# Ba(Ala)2, Ba(C3H6NO2)2 - + 2.0000 C3H7NO2 + 1.0000 Ba+2 = Ba(C3H6NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -19.3096 - -delta_h +359.051 kcal/mol - -analytic 1.0973e+002 1.7563e-002 -2.0507e+004 -3.3504e+001 1.5490e+006 -# -Range: 0-300 - -# Ba(But)+, Ba(CH3(CH2)2CO2)+ - + 1.0000 C3H7COOH + 1.0000 Ba+2 = Ba(CH3(CH2)2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.8378 - -delta_h +253.285 kcal/mol - -analytic -1.6992e+001 3.8062e-003 -1.7104e+003 5.2858e+000 3.2839e+005 -# -Range: 0-300 - -# Ba(But)2, Ba(CH3(CH2)2CO2)2 - + 2.0000 C3H7COOH + 1.0000 Ba+2 = Ba(CH3(CH2)2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -9.9857 - -delta_h +378.066 kcal/mol - -analytic -2.9726e+000 1.9119e-003 -9.5963e+003 3.7172e+000 1.3721e+006 -# -Range: 0-300 - -# Ba(For)+, Ba(CHO2)+ - + 1.0000 HCOOH + 1.0000 Ba+2 = Ba(CHO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.3727 - -delta_h +228.918 kcal/mol - -analytic 8.0004e-001 1.5487e-003 -2.7467e+002 -1.0939e+000 -4.2863e+000 -# -Range: 0-300 - -# Ba(For)2, Ba(CHO2)2 - + 2.0000 HCOOH + 1.0000 Ba+2 = Ba(CHO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.296 - -delta_h +329.933 kcal/mol - -analytic 3.4358e+001 -2.1439e-003 -4.0534e+003 -1.1596e+001 2.9161e+005 -# -Range: 0-300 - -# Ba(Gly)+, Ba(C2H4NO2)+ - + 1.0000 C2H5NO2 + 1.0000 Ba+2 = Ba(C2H4NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -8.2881 - -delta_h +235.808 kcal/mol - -analytic -4.3238e+000 8.7896e-003 -3.1933e+003 1.1733e+000 1.0974e+005 -# -Range: 0-300 - -# Ba(Gly)2, Ba(C2H4NO2)2 - + 2.0000 C2H5NO2 + 1.0000 Ba+2 = Ba(C2H4NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -17.1868 - -delta_h +343.302 kcal/mol - -analytic 3.6958e+001 8.4550e-003 -1.2694e+004 -9.4136e+000 8.1935e+005 -# -Range: 0-300 - -# Ba(Glyc)+, Ba(CH3OCO2)+ - + 1.0000 C2H4O3 + 1.0000 Ba+2 = Ba(CH3OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.8338 - -delta_h +282.924 kcal/mol - -analytic -1.6504e+001 4.4210e-004 -4.2741e+002 5.3311e+000 1.5913e+005 -# -Range: 0-300 - -# Ba(Glyc)2, Ba(CH3OCO2)2 - + 2.0000 C2H4O3 + 1.0000 Ba+2 = Ba(CH3OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.9674 - -delta_h +436.833 kcal/mol - -analytic 5.7805e+000 -1.9337e-003 -5.5632e+003 -3.9310e-001 7.5344e+005 -# -Range: 0-300 - -# Ba(Lac)+, Ba(CH3CH2OCO2)+ - + 1.0000 C3H6O3 + 1.0000 Ba+2 = Ba(CH3CH2OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.223 - -delta_h +291.416 kcal/mol - -analytic -1.3618e+001 2.4575e-003 -1.0433e+003 4.2488e+000 2.3666e+005 -# -Range: 0-300 - -# Ba(Lac)2, Ba(CH3CH2OCO2)2 - + 2.0000 C3H6O3 + 1.0000 Ba+2 = Ba(CH3CH2OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.6762 - -delta_h +453.654 kcal/mol - -analytic 1.1971e+001 8.0125e-004 -7.9857e+003 -1.7124e+000 1.0808e+006 -# -Range: 0-300 - -# Ba(Pent)+, Ba(CH3(CH2)3CO2)+ - + 1.0000 C4H9COOH + 1.0000 Ba+2 = Ba(CH3(CH2)3CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -5.0673 - -delta_h +259.492 kcal/mol - -analytic -3.4714e+001 4.4831e-003 -2.0568e+003 1.1920e+001 5.1000e+005 -# -Range: 0-300 - -# Ba(Pent)2, Ba(CH3(CH2)3CO2)2 - + 2.0000 C4H9COOH + 1.0000 Ba+2 = Ba(CH3(CH2)3CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -10.4241 - -delta_h +389.909 kcal/mol - -analytic -3.2583e+001 3.5113e-003 -1.2204e+004 1.6052e+001 1.9881e+006 -# -Range: 0-300 - -# Ba(Prop)+, Ba(CH3CH2CO2)+ - + 1.0000 C2H5COOH + 1.0000 Ba+2 = Ba(CH3CH2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.7462 - -delta_h +248.190 kcal/mol - -analytic -5.3032e+000 4.7638e-003 -2.1690e+003 1.1454e+000 3.1960e+005 -# -Range: 0-300 - -# Ba(Prop)2, Ba(CH3CH2CO2)2 - + 2.0000 C2H5COOH + 1.0000 Ba+2 = Ba(CH3CH2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -9.823 - -delta_h +368.336 kcal/mol - -analytic -1.3636e+001 2.7509e-004 -7.6760e+003 6.8362e+000 1.1194e+006 -# -Range: 0-300 - -# Benzene, C6H6 - + 6.0000 HCO3- + 6.0000 H+ = C6H6 + 3.0000 H2O + 7.5 O2 - -llnl_gamma 3.0 - log_k -537.502 - -delta_h -12.23 kcal/mol - -analytic -4.7749E+03 -8.0212E-01 -6.4755E+02 1.8097E+03 -7.4941E-01 -# -Range: 0-300 - -# Benzoate, C7H5O2- - + 3.5000 CH3COOH = C7H5O2- + 4.0000 H2O + 1.0000 H+ + 0.5000 O2 - -llnl_gamma 6.0 - log_k -4.2001 - -delta_h +84.990 kcal/mol - -analytic -1.6676e+002 -3.8444e-002 -5.4403e+003 6.2663e+001 -8.4843e+001 -# -Range: 0-300 - -# Benzoic_acid, C7H6O2 - + 3.5000 CH3COOH = C7H6O2 + 4.0000 H2O + 0.5000 O2 - -llnl_gamma 3.0 - log_k -534.1773 - -delta_h +85.070 kcal/mol - -analytic 1.5144e+001 3.5834e-003 -1.3334e+004 -5.4195e+000 4.1964e+005 -# -Range: 0-300 - -# Butanal, CH3(CH2)2CHO - + 1.0000 C2H4 + 1.0000 CH3COOH = CH3(CH2)2CHO + 0.5000 O2 - -llnl_gamma 3.0 - log_k -406.1993 - -delta_h +61.070 kcal/mol - -analytic -1.2090e+001 -8.7356e-004 -9.4627e+003 3.4311e+000 -1.4765e+002 -# -Range: 0-300 - -# Butanoate, C3H7COO- - + 1.0000 C3H7COOH = C3H7COO- + 1.0000 H+ - -llnl_gamma 4.0 - log_k -4.8085 - -delta_h +128.630 kcal/mol - -analytic -8.2788e+001 -2.9877e-002 1.7558e+003 3.2727e+001 2.7421e+001 -# -Range: 0-300 - -# Butanoic_acid, C3H7COOH - + 4.0000 HCO3- + 4.0000 H+ = C3H7COOH + 5.0000 O2 - -llnl_gamma 3.0 - log_k -358.9446 - -delta_h +127.950 kcal/mol - -analytic -3.1892E+03 -5.4023E-01 -5.9261E+02 1.2095E+03 -3.5739E-01 -# -Range: 0-300 - -# Ca(Ala)+, Ca(C3H6NO2)+ - + 1.0000 Ca+2 + 1.0000 C3H7NO2 = Ca(C3H6NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -9.1245 - -delta_h +247.083 kcal/mol - -analytic 1.6971e+001 9.5706e-003 -6.1936e+003 -5.4079e+000 4.6397e+005 -# -Range: 0-300 - -# Ca(Ala)2, Ca(C3H6NO2)2 - + 2.0000 C3H7NO2 + 1.0000 Ca+2 = Ca(C3H6NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -18.8192 - -delta_h +364.714 kcal/mol - -analytic 2.3029e+001 8.5155e-003 -1.5061e+004 -3.5999e+000 1.3386e+006 -# -Range: 0-300 - -# Ca(But)+, Ca(CH3(CH2)2CO2)+ - + 1.0000 Ca+2 + 1.0000 C3H7COOH = Ca(CH3(CH2)2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.2976 - -delta_h +257.034 kcal/mol - -analytic -2.5048e+001 1.5166e-003 -1.4808e+003 8.3797e+000 4.0411e+005 -# -Range: 0-300 - -# Ca(But)2, Ca(CH3(CH2)2CO2)2 - + 2.0000 C3H7COOH + 1.0000 Ca+2 = Ca(CH3(CH2)2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -8.9955 - -delta_h +384.411 kcal/mol - -analytic 2.0646e+000 5.8047e-003 -9.1382e+003 5.9558e-001 1.4594e+006 -# -Range: 0-300 - -# Ca(For)+, Ca(CHO2)+ - + 1.0000 HCOOH + 1.0000 Ca+2 = Ca(CHO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.3229 - -delta_h +231.998 kcal/mol - -analytic 2.9298e+000 9.5453e-004 -6.9686e+002 -1.7506e+000 1.0103e+005 -# -Range: 0-300 - -# Ca(For)2, Ca(CHO2)2 - + 2.0000 HCOOH + 1.0000 Ca+2 = Ca(CHO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.2058 - -delta_h +335.050 kcal/mol - -analytic 2.6958e+001 -7.2777e-005 -3.1911e+003 -1.0215e+001 3.4188e+005 -# -Range: 0-300 - -# Ca(Gly)+, Ca(C2H4NO2)+ - + 1.0000 C2H5NO2 + 1.0000 Ca+2 = Ca(C2H4NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -8.4281 - -delta_h +238.629 kcal/mol - -analytic 9.6784e+000 9.2419e-003 -4.5102e+003 -3.5460e+000 2.7110e+005 -# -Range: 0-300 - -# Ca(Gly)2, Ca(C2H4NO2)2 - + 2.0000 C2H5NO2 + 1.0000 Ca+2 = Ca(C2H4NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -17.4463 - -delta_h +347.942 kcal/mol - -analytic 4.7335e+001 1.2694e-002 -1.3050e+004 -1.4305e+001 9.4368e+005 -# -Range: 0-300 - -# Ca(Glyc)+, Ca(CH3OCO2)+ - + 1.0000 C2H4O3 + 1.0000 Ca+2 = Ca(CH3OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.1836 - -delta_h +285.318 kcal/mol - -analytic -6.6096e+000 1.5353e-003 -1.1777e+003 2.0325e+000 2.5764e+005 -# -Range: 0-300 - -# Ca(Glyc)2, Ca(CH3OCO2)2 - + 2.0000 C2H4O3 + 1.0000 Ca+2 = Ca(CH3OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.777 - -delta_h +441.481 kcal/mol - -analytic 1.5520e+001 2.3781e-003 -5.6732e+003 -4.6723e+000 8.5347e+005 -# -Range: 0-300 - -# Ca(Lac)+, Ca(CH3CH2OCO2)+ - + 1.0000 C3H6O3 + 1.0000 Ca+2 = Ca(CH3CH2OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.4431 - -delta_h +294.436 kcal/mol - -analytic -1.3975e+001 1.7379e-003 -1.2135e+003 4.6597e+000 3.1702e+005 -# -Range: 0-300 - -# Ca(Lac)2, Ca(CH3CH2OCO2)2 - + 2.0000 C3H6O3 + 1.0000 Ca+2 = Ca(CH3CH2OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.2461 - -delta_h +459.217 kcal/mol - -analytic -1.6205e+001 -2.3672e-004 -5.8180e+003 7.5258e+000 1.0619e+006 -# -Range: 0-300 - -# Ca(Pent)+, Ca(CH3(CH2)3CO2)+ - + 1.0000 C4H9COOH + 1.0000 Ca+2 = Ca(CH3(CH2)3CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.5674 - -delta_h +263.187 kcal/mol - -analytic -3.1543e+001 3.4804e-003 -2.5576e+003 1.1076e+001 6.3392e+005 -# -Range: 0-300 - -# Ca(Pent)2, Ca(CH3(CH2)3CO2)2 - + 2.0000 C4H9COOH + 1.0000 Ca+2 = Ca(CH3(CH2)3CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -9.5042 - -delta_h +396.159 kcal/mol - -analytic -3.4318e+001 6.3122e-003 -1.1437e+004 1.5421e+001 2.0603e+006 -# -Range: 0-300 - -# Ca(Prop)+, Ca(CH3CH2CO2)+ - + 1.0000 C2H5COOH + 1.0000 Ca+2 = Ca(CH3CH2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.2163 - -delta_h +251.925 kcal/mol - -analytic -1.1303e+001 2.9020e-003 -2.0209e+003 3.4533e+000 3.9745e+005 -# -Range: 0-300 - -# Ca(Prop)2, Ca(CH3CH2CO2)2 - + 2.0000 C2H5COOH + 1.0000 Ca+2 = Ca(CH3CH2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -8.8533 - -delta_h +374.653 kcal/mol - -analytic -2.1746e+001 2.3077e-003 -6.4906e+003 8.4496e+000 1.1644e+006 -# -Range: 0-300 - -# Cd(Ala)+, Cd(C3H6NO2)+ - + 1.0000 Cd+2 + 1.0000 C3H7NO2 = Cd(C3H6NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -5.3348 - -delta_h +141.016 kcal/mol - -analytic -1.0583e+001 3.9676e-003 -4.0210e+003 5.0485e+000 4.5101e+005 -# -Range: 0-300 - -# Cd(Ala)2, Cd(C3H6NO2)2 - + 2.0000 C3H7NO2 + 1.0000 Cd+2 = Cd(C3H6NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -11.8894 - -delta_h +263.420 kcal/mol - -analytic 2.5164e+001 8.5032e-003 -1.3671e+004 -4.0957e+000 1.4600e+006 -# -Range: 0-300 - -# Cd(But)+, Cd(CH3(CH2)2CO2)+ - + 1.0000 Cd+2 + 1.0000 C3H7COOH = Cd(CH3(CH2)2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.2875 - -delta_h +147.174 kcal/mol - -analytic -2.4575e+001 -8.5197e-006 -1.6709e+003 8.7040e+000 4.7765e+005 -# -Range: 0-300 - -# Cd(But)2, Cd(CH3(CH2)2CO2)2 - + 2.0000 C3H7COOH + 1.0000 Cd+2 = Cd(CH3(CH2)2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.976 - -delta_h +276.419 kcal/mol - -analytic -5.3701e+000 4.5291e-003 -8.6471e+003 3.5125e+000 1.5458e+006 -# -Range: 0-300 - -# Cd(For)+, Cd(CHO2)+ - + 1.0000 HCOOH + 1.0000 Cd+2 = Cd(CHO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.9131 - -delta_h +121.320 kcal/mol - -analytic -5.5574e-001 -1.0359e-003 -8.1506e+002 -3.4199e-002 1.5786e+005 -# -Range: 0-300 - -# Cd(For)2, Cd(CHO2)2 - + 2.0000 HCOOH + 1.0000 Cd+2 = Cd(CHO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -3.6658 - -delta_h +226.403 kcal/mol - -analytic 2.2826e+000 -3.7353e-003 -1.8618e+003 -1.1085e+000 3.7009e+005 -# -Range: 0-300 - -# Cd(Gly)+, Cd(C2H4NO2)+ - + 1.0000 C2H5NO2 + 1.0000 Cd+2 = Cd(C2H4NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -5.0885 - -delta_h +132.088 kcal/mol - -analytic -1.0697e+001 4.7244e-003 -2.8241e+003 4.2651e+000 2.7816e+005 -# -Range: 0-300 - -# Cd(Gly)2, Cd(C2H4NO2)2 - + 2.0000 C2H5NO2 + 1.0000 Cd+2 = Cd(C2H4NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -11.1564 - -delta_h +246.607 kcal/mol - -analytic 1.7236e+001 8.4272e-003 -9.8265e+003 -3.4936e+000 9.5253e+005 -# -Range: 0-300 - -# Cd(Glyc)+, Cd(CH3OCO2)+ - + 1.0000 C2H4O3 + 1.0000 Cd+2 = Cd(CH3OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.9637 - -delta_h +174.381 kcal/mol - -analytic -2.7570e+000 5.5464e-004 -1.7718e+003 1.1165e+000 3.3942e+005 -# -Range: 0-300 - -# Cd(Glyc)2, Cd(CH3OCO2)2 - + 2.0000 C2H4O3 + 1.0000 Cd+2 = Cd(CH3OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.3775 - -delta_h +331.279 kcal/mol - -analytic 1.7413e+001 2.4215e-003 -6.1858e+003 -5.1146e+000 9.6988e+005 -# -Range: 0-300 - -# Cd(Lac)+, Cd(CH3CH2OCO2)+ - + 1.0000 C3H6O3 + 1.0000 Cd+2 = Cd(CH3CH2OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.1631 - -delta_h +183.519 kcal/mol - -analytic -1.3237e+001 2.9922e-004 -1.6309e+003 4.8863e+000 3.8920e+005 -# -Range: 0-300 - -# Cd(Lac)2, Cd(CH3CH2OCO2)2 - + 2.0000 C3H6O3 + 1.0000 Cd+2 = Cd(CH3CH2OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.736 - -delta_h +349.085 kcal/mol - -analytic -1.7558e+001 -6.8972e-004 -6.1408e+003 8.2844e+000 1.1691e+006 -# -Range: 0-300 - -# Cd(Pent)+, Cd(CH3(CH2)3CO2)+ - + 1.0000 C4H9COOH + 1.0000 Cd+2 = Cd(CH3(CH2)3CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.237 - -delta_h +153.764 kcal/mol - -analytic -1.4232e+001 4.3507e-003 -3.5842e+003 5.3294e+000 7.6047e+005 -# -Range: 0-300 - -# Cd(Pent)2, Cd(CH3(CH2)3CO2)2 - + 2.0000 C4H9COOH + 1.0000 Cd+2 = Cd(CH3(CH2)3CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.0742 - -delta_h +288.726 kcal/mol - -analytic -3.1302e+001 6.5168e-003 -1.1405e+004 1.4573e+001 2.1801e+006 -# -Range: 0-300 - -# Cd(Prop)+, Cd(CH3CH2CO2)+ - + 1.0000 C2H5COOH + 1.0000 Cd+2 = Cd(CH3CH2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.0068 - -delta_h +142.338 kcal/mol - -analytic -1.1700e+001 1.3228e-003 -2.0826e+003 4.0674e+000 4.6555e+005 -# -Range: 0-300 - -# Cd(Prop)2, Cd(CH3CH2CO2)2 - + 2.0000 C2H5COOH + 1.0000 Cd+2 = Cd(CH3CH2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.5531 - -delta_h +267.043 kcal/mol - -analytic -2.7887e+001 1.1740e-003 -6.0022e+003 1.0916e+001 1.2569e+006 -# -Range: 0-300 - -# Co(Ala)+, Co(C3H6NO2)+ - + 1.0000 Co+2 + 1.0000 C3H7NO2 = Co(C3H6NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -5.6449 - -delta_h +136.245 kcal/mol - -analytic -6.6326e+000 4.2270e-003 -4.1512e+003 3.5761e+000 4.2801e+005 -# -Range: 0-300 - -# Co(Ala)2, Co(C3H6NO2)2 - + 2.0000 C3H7NO2 + 1.0000 Co+2 = Co(C3H6NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -12.3196 - -delta_h +259.272 kcal/mol - -analytic 3.7901e+001 1.0752e-002 -1.3519e+004 -9.4658e+000 1.3658e+006 -# -Range: 0-300 - -# Co(But)+, Co(CH3(CH2)2CO2)+ - + 1.0000 Co+2 + 1.0000 C3H7COOH = Co(CH3(CH2)2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.0977 - -delta_h +144.234 kcal/mol - -analytic -1.2926e+001 1.1374e-003 -1.9544e+003 4.2567e+000 4.9139e+005 -# -Range: 0-300 - -# Co(But)2, Co(CH3(CH2)2CO2)2 - + 2.0000 C3H7COOH + 1.0000 Co+2 = Co(CH3(CH2)2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.806 - -delta_h +274.655 kcal/mol - -analytic -1.7789e+001 3.3292e-003 -6.6509e+003 6.8084e+000 1.3765e+006 -# -Range: 0-300 - -# Co(For)+, Co(CHO2)+ - + 1.0000 HCOOH + 1.0000 Co+2 = Co(CHO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.8934 - -delta_h +118.148 kcal/mol - -analytic 3.4604e+000 -7.0163e-004 -6.4686e+002 -1.8241e+000 1.3725e+005 -# -Range: 0-300 - -# Co(For)2, Co(CHO2)2 - + 2.0000 HCOOH + 1.0000 Co+2 = Co(CHO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.4259 - -delta_h +223.371 kcal/mol - -analytic 4.6480e+000 -2.8123e-003 -9.5823e+002 -3.1486e+000 2.4710e+005 -# -Range: 0-300 - -# Co(Gly)+, Co(C2H4NO2)+ - + 1.0000 C2H5NO2 + 1.0000 Co+2 = Co(C2H4NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.7081 - -delta_h +129.082 kcal/mol - -analytic -6.1033e+000 4.7861e-003 -2.7304e+003 2.4628e+000 2.7041e+005 -# -Range: 0-300 - -# Co(Gly)2, Co(C2H4NO2)2 - + 2.0000 C2H5NO2 + 1.0000 Co+2 = Co(C2H4NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -10.4666 - -delta_h +243.427 kcal/mol - -analytic 3.7958e+001 1.1767e-002 -9.8791e+003 -1.1599e+001 8.8179e+005 -# -Range: 0-300 - -# Co(Glyc)+, Co(CH3OCO2)+ - + 1.0000 C2H4O3 + 1.0000 Co+2 = Co(CH3OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.8538 - -delta_h +171.331 kcal/mol - -analytic -5.3556e+000 -1.8875e-004 -1.2450e+003 1.7558e+000 3.0214e+005 -# -Range: 0-300 - -# Co(Glyc)2, Co(CH3OCO2)2 - + 2.0000 C2H4O3 + 1.0000 Co+2 = Co(CH3OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.1774 - -delta_h +329.556 kcal/mol - -analytic 2.1760e+000 8.7672e-004 -4.0049e+003 -8.2381e-001 7.8900e+005 -# -Range: 0-300 - -# Co(Lac)+, Co(CH3CH2OCO2)+ - + 1.0000 C3H6O3 + 1.0000 Co+2 = Co(CH3CH2OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.5032 - -delta_h +179.856 kcal/mol - -analytic -8.0185e+000 4.8796e-004 -1.7264e+003 2.7704e+000 3.8387e+005 -# -Range: 0-300 - -# Co(Lac)2, Co(CH3CH2OCO2)2 - + 2.0000 C3H6O3 + 1.0000 Co+2 = Co(CH3CH2OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.2359 - -delta_h +346.408 kcal/mol - -analytic 2.9324e+000 2.8527e-003 -6.1528e+003 -3.0383e-001 1.1020e+006 -# -Range: 0-300 - -# Co(Pent)+, Co(CH3(CH2)3CO2)+ - + 1.0000 C4H9COOH + 1.0000 Co+2 = Co(CH3(CH2)3CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.1571 - -delta_h +150.673 kcal/mol - -analytic -2.2797e+001 2.4832e-003 -2.8121e+003 8.2127e+000 7.1396e+005 -# -Range: 0-300 - -# Co(Pent)2, Co(CH3(CH2)3CO2)2 - + 2.0000 C4H9COOH + 1.0000 Co+2 = Co(CH3(CH2)3CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.924 - -delta_h +286.935 kcal/mol - -analytic -3.2956e+001 6.8817e-003 -1.0002e+004 1.3976e+001 2.0436e+006 -# -Range: 0-300 - -# Co(Prop)+, Co(CH3CH2CO2)+ - + 1.0000 C2H5COOH + 1.0000 Co+2 = Co(CH3CH2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.5866 - -delta_h +138.347 kcal/mol - -analytic -5.0563e+000 1.9295e-003 -2.2644e+003 1.3628e+000 4.5635e+005 -# -Range: 0-300 - -# Co(Prop)2, Co(CH3CH2CO2)2 - + 2.0000 C2H5COOH + 1.0000 Co+2 = Co(CH3CH2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.6929 - -delta_h +263.492 kcal/mol - -analytic -1.4853e+001 3.7021e-003 -5.7739e+003 4.9977e+000 1.1637e+006 -# -Range: 0-300 - -# Cu(Ala)+, Cu(C3H6NO2)+ - + 1.0000 Cu+2 + 1.0000 C3H7NO2 = Cu(C3H6NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.8545 - -delta_h +109.970 kcal/mol - -analytic -1.1698e+001 4.4099e-003 -2.4550e+003 5.1251e+000 3.6414e+005 -# -Range: 0-300 - -# Cu(Ala)2, Cu(C3H6NO2)2 - + 2.0000 C3H7NO2 + 1.0000 Cu+2 = Cu(C3H6NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.3297 - -delta_h +237.360 kcal/mol - -analytic -1.2813e+001 3.4309e-003 -8.8197e+003 9.0075e+000 1.2248e+006 -# -Range: 0-300 - -# Cu(But)+, Cu(CH3(CH2)2CO2)+ - + 1.0000 Cu+2 + 1.0000 C3H7COOH = Cu(CH3(CH2)2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.6982 - -delta_h +114.768 kcal/mol - -analytic 1.9946e+000 3.2893e-003 -2.6114e+003 -1.1028e+000 5.1836e+005 -# -Range: 0-300 - -# Cu(But)2, Cu(CH3(CH2)2CO2)2 - + 2.0000 C3H7COOH + 1.0000 Cu+2 = Cu(CH3(CH2)2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.0656 - -delta_h +245.176 kcal/mol - -analytic -2.8831e+001 1.5210e-003 -6.1416e+003 1.1151e+001 1.3647e+006 -# -Range: 0-300 - -# Cu(For)+, CuCHO2+ - + 1.0000 HCOOH + 1.0000 Cu+2 = CuCHO2+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.7731 - -delta_h +88.300 kcal/mol - -analytic 1.8727e+000 -1.0020e-003 -5.0154e+002 -1.1966e+000 1.1576e+005 -# -Range: 0-300 - -# Cu(For)2, Cu(CHO2)2 - + 2.0000 HCOOH + 1.0000 Cu+2 = Cu(CHO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.206 - -delta_h +193.183 kcal/mol - -analytic 7.4586e+000 -2.6644e-003 -1.3786e+003 -3.7935e+000 2.8017e+005 -# -Range: 0-300 - -# Cu(Gly)+, Cu(C2H4NO2)+ - + 1.0000 C2H5NO2 + 1.0000 Cu+2 = Cu(C2H4NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.208 - -delta_h +102.408 kcal/mol - -analytic -1.2098e+001 4.5923e-003 -1.3603e+003 4.7714e+000 2.0346e+005 -# -Range: 0-300 - -# Cu(Gly)2, Cu(C2H4NO2)2 - + 2.0000 C2H5NO2 + 1.0000 Cu+2 = Cu(C2H4NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -3.7266 - -delta_h +221.770 kcal/mol - -analytic -6.9393e+000 5.1196e-003 -5.7575e+003 5.0366e+000 7.6022e+005 -# -Range: 0-300 - -# Cu(Glyc)+, Cu(CH3OCO2)+ - + 1.0000 C2H4O3 + 1.0000 Cu+2 = Cu(CH3OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -0.9434 - -delta_h +142.561 kcal/mol - -analytic -8.4029e+000 -5.9451e-004 -7.5383e+002 2.8746e+000 2.7225e+005 -# -Range: 0-300 - -# Cu(Glyc)2, Cu(CH3OCO2)2 - + 2.0000 C2H4O3 + 1.0000 Cu+2 = Cu(CH3OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -3.0075 - -delta_h +300.664 kcal/mol - -analytic -9.6849e+000 -1.0687e-003 -3.3286e+003 3.8217e+000 7.7552e+005 -# -Range: 0-300 - -# Cu(Lac)+, Cu(CH3CH2OCO2)+ - + 1.0000 C3H6O3 + 1.0000 Cu+2 = Cu(CH3CH2OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.3033 - -delta_h +151.481 kcal/mol - -analytic -1.1811e+001 3.4701e-005 -1.0895e+003 4.1370e+000 3.4922e+005 -# -Range: 0-300 - -# Cu(Lac)2, Cu(CH3CH2OCO2)2 - + 2.0000 C3H6O3 + 1.0000 Cu+2 = Cu(CH3CH2OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -3.5756 - -delta_h +318.184 kcal/mol - -analytic -9.7842e+000 7.7321e-004 -5.2869e+003 4.6546e+000 1.0864e+006 -# -Range: 0-300 - -# Cu(Pent)+, Cu(CH3(CH2)3CO2)+ - + 1.0000 C4H9COOH + 1.0000 Cu+2 = Cu(CH3(CH2)3CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.7473 - -delta_h +121.221 kcal/mol - -analytic -1.5283e+001 3.6782e-003 -3.0281e+003 5.4906e+000 7.1403e+005 -# -Range: 0-300 - -# Cu(Pent)2, Cu(CH3(CH2)3CO2)2 - + 2.0000 C4H9COOH + 1.0000 Cu+2 = Cu(CH3(CH2)3CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.1741 - -delta_h +257.470 kcal/mol - -analytic -2.9542e+001 7.1204e-003 -1.0296e+004 1.3112e+001 2.0784e+006 -# -Range: 0-300 - -# Cu(Prop)+, Cu(CH3CH2CO2)+ - + 1.0000 C2H5COOH + 1.0000 Cu+2 = Cu(CH3CH2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.6762 - -delta_h +109.577 kcal/mol - -analytic -1.3220e+001 7.8363e-004 -1.4925e+003 4.3301e+000 4.1063e+005 -# -Range: 0-300 - -# Cu(Prop)2, Cu(CH3CH2CO2)2 - + 2.0000 C2H5COOH + 1.0000 Cu+2 = Cu(CH3CH2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.0326 - -delta_h +235.268 kcal/mol - -analytic -1.0718e+001 3.9487e-003 -5.8699e+003 3.9089e+000 1.2053e+006 -# -Range: 0-300 - -# Decanal, CH3(CH2)8CHO - + 4.0000 C2H4 + 1.0000 CH3COOH = CH3(CH2)8CHO + 0.5000 O2 - -llnl_gamma 3.0 - log_k -1058.134 - -delta_h +95.290 kcal/mol - -analytic -7.6767e+001 -2.9579e-002 4.2940e+003 2.8063e+001 6.7027e+001 -# -Range: 0-300 - -# Decanoate, C10H19O2- - + 5.0000 CH3COOH = C10H19O2- + 4.0000 O2 + 1.0000 H+ - -llnl_gamma 4.0 - log_k -4.9185 - -delta_h +162.700 kcal/mol - -analytic -3.1511e+002 -2.1029e-002 -7.6356e+004 1.0982e+002 -1.1914e+003 -# -Range: 0-300 - -# Decanoic_acid, C10H20O2 - + 5.0000 CH3COOH = C10H20O2 + 4.0000 O2 - -llnl_gamma 3.0 - log_k -1010.8207 - -delta_h +162.200 kcal/mol - -analytic 1.9927e+002 4.5966e-002 -1.0812e+005 -7.0739e+001 2.1239e+006 -# -Range: 0-300 - -# Diglycine, C4H8N2O3 - + 2.0000 C2H5NO2 = C4H8N2O3 + 1.0000 H2O - -llnl_gamma 3.0 - log_k -2.5863 - -delta_h +175.640 kcal/mol - -analytic -9.6588e+000 2.9406e-003 -1.1504e+003 3.1397e+000 2.0330e+005 -# -Range: 0-300 - -# Diketopiperazine, C4H6N2O2 - + 2.0000 C2H5NO2 = C4H6N2O2 + 2.0000 H2O - -llnl_gamma 3.0 - log_k -4.7063 - -delta_h +99.300 kcal/mol - -analytic 3.4352e+000 4.6987e-003 -3.2032e+003 -4.8114e-001 2.1265e+005 -# -Range: 0-300 - -# Dodecanoate, C12H23O2- - + 6.0000 CH3COOH = C12H23O2- + 5.0000 O2 + 1.0000 H+ - -llnl_gamma 4.0 - log_k -4.9185 - -delta_h -174.04 kcal/mol - -analytic 5.7006e+002 1.0646e-001 -1.5130e+005 -2.0765e+002 3.4121e+006 -# -Range: 0-300 - -# Dodecanoic_acid, C12H24O2 - + 6.0000 CH3COOH = C12H24O2 + 5.0000 O2 - -llnl_gamma 3.0 - log_k -1228.1689 - -delta_h +173.540 kcal/mol - -analytic 6.5537e+002 1.1671e-001 -1.5726e+005 -2.3542e+002 3.8794e+006 -# -Range: 0-300 - -# Ethanamine, C2H5NH2 - + 1.0000 NH3 + 2.0000 HCO3- + 2.0000 H+ = C2H5NH2 + 3.0000 O2 - -llnl_gamma 3.0 - log_k -223.647 - -delta_h +23.830 kcal/mol - -analytic -1.9599E+03 -3.3677E-01 -5.4980E+02 7.4290E+02 -4.9475E-02 -# -Range: 0-300 - -# Ethane, C2H6 - + 1.0000 H2O + 2.0000 HCO3- + 2.0000 H+ = C2H6 + 3.5000 O2 - -llnl_gamma 3.0 - log_k -254.5034 - -delta_h +24.650 kcal/mol - -analytic -2.2475E+03 -3.8473E-01 -5.6009E+02 8.5243E+02 -1.2340E-01 -# -Range: 0-300 - -# Ethanol, C2H5OH - + 1.0000 H2O + 2.0000 HCO3- + 2.0000 H+ = C2H5OH + 3.0000 O2 - -llnl_gamma 3.0 - log_k -224.1415 - -delta_h +68.650 kcal/mol - -analytic -1.9805E+03 -3.3932E-01 -5.5095E+02 7.5133E+02 -5.5268E-02 -# -Range: 0-300 - -# Ethyne, C2H2 - + 2.0000 HCO3- + 2.0000 H+ = C2H2 + 1.0000 H2O + 2.5000 O2 - -llnl_gamma 3.0 - log_k -209.3843 - -delta_h -50.7 kcal/mol - -analytic -1.8747E+03 -3.1966E-01 -5.4744E+02 7.1215E+02 -3.1389E-02 -# -Range: 0-300 - -# Ethylacetate, CH3COOCH2CH3 - + 1.0000 C2H4 + 1.0000 CH3COOH = CH3COOCH2CH3 - -llnl_gamma 3.0 - log_k +2.9247 - -delta_h +116.840 kcal/mol - -analytic -1.2558e+001 -3.4591e-003 2.2166e+003 3.6667e+000 3.4592e+001 -# -Range: 0-300 - -# Ethylbenzene, C6H5C2H5 -# + 4.0000 C6H6 + 3.0000 H2O = C6H5C2H5 + 1.5000 O2 -# does not balance -# -llnl_gamma 3.0 -# log_k -2256.5242 -# -delta_h +2.500 kcal/mol -# -analytic 2.7546e+002 5.0556e-002 -4.5964e+004 -1.0201e+002 8.4857e+005 -# -Range: 0-300 - -# Eu(Ala)+, Eu(C3H6NO2)+ - + 1.0000 Eu+2 + 1.0000 C3H7NO2 = Eu(C3H6NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -9.2139 - -delta_h +242.060 kcal/mol - -analytic 1.4058e+001 1.0581e-002 -6.6420e+003 -4.0654e+000 5.2699e+005 -# -Range: 0-300 - -# Eu(Ala)2, Eu(C3H6NO2)2 - + 2.0000 C3H7NO2 + 1.0000 Eu+2 = Eu(C3H6NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -18.7503 - -delta_h +358.510 kcal/mol - -analytic 1.3352e+001 7.6973e-003 -1.7130e+004 1.7787e+000 1.6606e+006 -# -Range: 0-300 - -# Eu(But)+, Eu(CH3(CH2)2CO2)+ - + 1.0000 Eu+2 + 1.0000 C3H7COOH = Eu(CH3(CH2)2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.538 - -delta_h +251.804 kcal/mol - -analytic -1.5879e+001 3.8795e-003 -2.7555e+003 5.4947e+000 5.2007e+005 -# -Range: 0-300 - -# Eu(But)+2, Eu(CH3(CH2)2CO2)+2 - + 1.0000 Eu+3 + 1.0000 C3H7COOH = Eu(CH3(CH2)2CO2)+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.048 - -delta_h +276.036 kcal/mol - -analytic -9.7855e+000 1.8979e-003 -2.3175e+003 3.4425e+000 5.7272e+005 -# -Range: 0-300 - -# Eu(But)2, Eu(CH3(CH2)2CO2)2 - + 2.0000 C3H7COOH + 1.0000 Eu+2 = Eu(CH3(CH2)2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -9.5254 - -delta_h +377.392 kcal/mol - -analytic 1.1271e+001 7.7268e-003 -1.2418e+004 -8.4949e-001 1.8391e+006 -# -Range: 0-300 - -# Eu(But)2+, Eu(CH3(CH2)2CO2)2+ - + 2.0000 C3H7COOH + 1.0000 Eu+3 = Eu(CH3(CH2)2CO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.876 - -delta_h +405.964 kcal/mol - -analytic -3.4218e+000 7.6886e-003 -6.2895e+003 1.1718e+000 1.2875e+006 -# -Range: 0-300 - -# Eu(For)+, EuCHO2+ - + 1.0000 HCOOH + 1.0000 Eu+2 = EuCHO2+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.353 - -delta_h +227.054 kcal/mol - -analytic -3.3218e+000 9.1062e-004 -1.1082e+003 9.9294e-001 1.7476e+005 -# -Range: 0-300 - -# Eu(For)+2, EuCHO2+2 - + 1.0000 HCOOH + 1.0000 Eu+3 = EuCHO2+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -0.9632 - -delta_h +249.786 kcal/mol - -analytic 1.3475e+000 -5.3304e-004 -7.1045e+002 -7.9702e-001 1.9639e+005 -# -Range: 0-300 - -# Eu(For)2, Eu(CHO2)2 - + 2.0000 HCOOH + 1.0000 Eu+2 = Eu(CHO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.7961 - -delta_h +329.314 kcal/mol - -analytic 2.0204e+001 -4.0598e-004 -5.2985e+003 -5.9131e+000 6.6991e+005 -# -Range: 0-300 - -# Eu(For)2+, Eu(CHO2)2+ - + 2.0000 HCOOH + 1.0000 Eu+3 = Eu(CHO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -2.7158 - -delta_h +354.544 kcal/mol - -analytic 4.1316e+000 -3.0069e-003 -3.8235e+002 -2.6986e+000 1.7945e+005 -# -Range: 0-300 - -# Eu(Gly)+, Eu(C2H4NO2)+ - + 1.0000 C2H5NO2 + 1.0000 Eu+2 = Eu(C2H4NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -8.1283 - -delta_h +234.136 kcal/mol - -analytic -1.3352e+001 7.3561e-003 -3.7321e+003 5.0576e+000 2.7090e+005 -# -Range: 0-300 - -# Eu(Gly)2, Eu(C2H4NO2)2 - + 2.0000 C2H5NO2 + 1.0000 Eu+2 = Eu(C2H4NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -16.5066 - -delta_h +342.929 kcal/mol - -analytic 2.6146e+001 1.0368e-002 -1.4175e+004 -4.8232e+000 1.2226e+006 -# -Range: 0-300 - -# Eu(Glyc)+, Eu(CH3OCO2)+ - + 1.0000 C2H4O3 + 1.0000 Eu+2 = Eu(CH3OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.5333 - -delta_h +279.938 kcal/mol - -analytic -1.1341e+001 1.8436e-003 -1.7310e+003 4.1823e+000 3.3141e+005 -# -Range: 0-300 - -# Eu(Glyc)2, Eu(CH3OCO2)2 - + 2.0000 C2H4O3 + 1.0000 Eu+2 = Eu(CH3OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.757 - -delta_h +433.849 kcal/mol - -analytic 2.6027e+000 1.1080e-003 -7.8729e+003 1.8735e+000 1.1647e+006 -# -Range: 0-300 - -# Eu(Lac)+, Eu(CH3CH2OCO2)+ - + 1.0000 C3H6O3 + 1.0000 Eu+2 = Eu(CH3CH2OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.9328 - -delta_h +288.803 kcal/mol - -analytic -6.8714e+000 3.8415e-003 -2.4462e+003 2.5210e+000 4.2462e+005 -# -Range: 0-300 - -# Eu(Lac)2, Eu(CH3CH2OCO2)2 - + 2.0000 C3H6O3 + 1.0000 Eu+2 = Eu(CH3CH2OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.0656 - -delta_h +451.723 kcal/mol - -analytic 1.5690e+000 2.8366e-003 -9.6953e+003 3.0359e+000 1.4716e+006 -# -Range: 0-300 - -# Eu(Pent)+, Eu(CH3(CH2)3CO2)+ - + 1.0000 C4H9COOH + 1.0000 Eu+2 = Eu(CH3(CH2)3CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.8569 - -delta_h +257.888 kcal/mol - -analytic -1.8827e+001 6.5719e-003 -3.9749e+003 6.8334e+000 7.5209e+005 -# -Range: 0-300 - -# Eu(Pent)+2, Eu(CH3(CH2)3CO2)+2 - + 1.0000 C4H9COOH + 1.0000 Eu+3 = Eu(CH3(CH2)3CO2)+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.0773 - -delta_h +282.516 kcal/mol - -analytic -3.0633e+001 1.5481e-003 -2.5917e+003 1.1399e+001 7.6469e+005 -# -Range: 0-300 - -# Eu(Pent)2+, Eu(CH3(CH2)3CO2)2+ - + 2.0000 C4H9COOH + 1.0000 Eu+3 = Eu(CH3(CH2)3CO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.9441 - -delta_h +418.206 kcal/mol - -analytic -3.7682e+001 1.0658e-002 -8.0528e+003 1.4565e+001 1.8292e+006 -# -Range: 0-300 - -# Eu(Prop)+, Eu(CH3CH2CO2)+ - + 1.0000 C2H5COOH + 1.0000 Eu+2 = Eu(CH3CH2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.3262 - -delta_h +246.872 kcal/mol - -analytic -1.9603e+001 2.7407e-003 -2.2921e+003 6.8757e+000 4.5820e+005 -# -Range: 0-300 - -# Eu(Prop)+2, Eu(CH3CH2CO2)+2 - + 1.0000 C2H5COOH + 1.0000 Eu+3 = Eu(CH3CH2CO2)+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.0363 - -delta_h +270.831 kcal/mol - -analytic -1.0272e+001 1.5651e-003 -1.9970e+003 3.5396e+000 5.0897e+005 -# -Range: 0-300 - -# Eu(Prop)2, Eu(CH3CH2CO2)2 - + 2.0000 C2H5COOH + 1.0000 Eu+2 = Eu(CH3CH2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -9.3927 - -delta_h +367.621 kcal/mol - -analytic 4.1333e-001 5.9591e-003 -1.0532e+004 2.3781e+000 1.5907e+006 -# -Range: 0-300 - -# Eu(Prop)2+, Eu(CH3CH2CO2)2+ - + 2.0000 C2H5COOH + 1.0000 Eu+3 = Eu(CH3CH2CO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.8628 - -delta_h +396.115 kcal/mol - -analytic -1.7270e+001 4.2004e-003 -4.5560e+003 5.8571e+000 1.0648e+006 -# -Range: 0-300 - -# Fe(Ala)+, Fe(C3H6NO2)+ - + 1.0000 Fe+2 + 1.0000 C3H7NO2 = Fe(C3H6NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -5.4374 - -delta_h +145.225 kcal/mol - -analytic -6.8881e-001 4.8406e-003 -4.2771e+003 1.2355e+000 4.5422e+005 -# -Range: 0-300 - -# Fe(Ala)2, Fe(C3H6NO2)2 - + 2.0000 C3H7NO2 + 1.0000 Fe+2 = Fe(C3H6NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -12.0822 - -delta_h +268.535 kcal/mol - -analytic 1.0817e+001 7.0057e-003 -1.1636e+004 -9.2499e-002 1.2704e+006 -# -Range: 0-300 - -# Fe(But)+, Fe(CH3(CH2)2CO2)+ - + 1.0000 Fe+2 + 1.0000 C3H7COOH = Fe(CH3(CH2)2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.2003 - -delta_h +151.642 kcal/mol - -analytic -1.1468e+001 1.5002e-003 -2.0030e+003 3.6750e+000 4.8551e+005 -# -Range: 0-300 - -# Fe(But)2, Fe(CH3(CH2)2CO2)2 - + 2.0000 C3H7COOH + 1.0000 Fe+2 = Fe(CH3(CH2)2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.998 - -delta_h +281.765 kcal/mol - -analytic -2.8364e+001 1.7011e-003 -6.1151e+003 1.0670e+001 1.3334e+006 -# -Range: 0-300 - -# Fe(For)+, FeCHO2+ - + 1.0000 HCOOH + 1.0000 Fe+2 = FeCHO2+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.9256 - -delta_h +125.651 kcal/mol - -analytic -4.2844e-001 -1.1907e-003 -4.0278e+002 -4.4791e-001 1.1757e+005 -# -Range: 0-300 - -# Fe(For)2, Fe(CHO2)2 - + 2.0000 HCOOH + 1.0000 Fe+2 = Fe(CHO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.4889 - -delta_h +230.658 kcal/mol - -analytic 2.6286e+000 -3.2750e-003 -8.7717e+002 -2.3516e+000 2.3378e+005 -# -Range: 0-300 - -# Fe(Gly)+, Fe(C2H4NO2)+ - + 1.0000 C2H5NO2 + 1.0000 Fe+2 = Fe(C2H4NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -5.4609 - -delta_h +134.682 kcal/mol - -analytic -1.5456e+001 3.9367e-003 -2.4338e+003 5.8876e+000 2.1566e+005 -# -Range: 0-300 - -# Fe(Gly)2, Fe(C2H4NO2)2 - + 2.0000 C2H5NO2 + 1.0000 Fe+2 = Fe(C2H4NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -12.0191 - -delta_h +248.527 kcal/mol - -analytic -4.9791e+000 5.5006e-003 -7.9837e+003 3.9747e+000 7.3594e+005 -# -Range: 0-300 - -# Fe(Glyc)+, Fe(CH3OCO2)+ - + 1.0000 C2H4O3 + 1.0000 Fe+2 = Fe(CH3OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.6566 - -delta_h +179.149 kcal/mol - -analytic -1.1315e+001 -1.3546e-003 -9.1265e+002 4.0008e+000 2.8737e+005 -# -Range: 0-300 - -# Fe(Glyc)2, Fe(CH3OCO2)2 - + 2.0000 C2H4O3 + 1.0000 Fe+2 = Fe(CH3OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -3.8197 - -delta_h +337.416 kcal/mol - -analytic -2.4214e+001 -3.9432e-003 -2.6649e+003 9.0425e+000 7.2466e+005 -# -Range: 0-300 - -# Fe(Lac)+, Fe(CH3CH2OCO2)+ - + 1.0000 C3H6O3 + 1.0000 Fe+2 = Fe(CH3CH2OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.7453 - -delta_h +188.437 kcal/mol - -analytic -1.4649e+001 -2.7787e-004 -1.0617e+003 5.0960e+000 3.5122e+005 -# -Range: 0-300 - -# Fe(Lac)2, Fe(CH3CH2OCO2)2 - + 2.0000 C3H6O3 + 1.0000 Fe+2 = Fe(CH3CH2OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -3.9788 - -delta_h +355.495 kcal/mol - -analytic -1.6235e+001 -4.1634e-005 -4.7223e+003 6.6708e+000 1.0336e+006 -# -Range: 0-300 - -# Fe(Pent)+, Fe(CH3(CH2)3CO2)+ - + 1.0000 C4H9COOH + 1.0000 Fe+2 = Fe(CH3(CH2)3CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.2802 - -delta_h +158.054 kcal/mol - -analytic -2.6685e+001 2.0954e-003 -2.5680e+003 9.5548e+000 6.9089e+005 -# -Range: 0-300 - -# Fe(Pent)2, Fe(CH3(CH2)3CO2)2 - + 2.0000 C4H9COOH + 1.0000 Fe+2 = Fe(CH3(CH2)3CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.1571 - -delta_h +293.990 kcal/mol - -analytic -4.2465e+001 5.3731e-003 -9.5476e+003 1.7464e+001 2.0055e+006 -# -Range: 0-300 - -# Fe(Prop)+, Fe(CH3CH2CO2)+ - + 1.0000 C2H5COOH + 1.0000 Fe+2 = Fe(CH3CH2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.289 - -delta_h +146.301 kcal/mol - -analytic -7.3746e+000 1.6930e-003 -2.0030e+003 2.1641e+000 4.4097e+005 -# -Range: 0-300 - -# Fe(Prop)2, Fe(CH3CH2CO2)2 - + 2.0000 C2H5COOH + 1.0000 Fe+2 = Fe(CH3CH2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.1556 - -delta_h +271.598 kcal/mol - -analytic -1.9694e+001 2.8321e-003 -5.3596e+003 6.8142e+000 1.1417e+006 -# -Range: 0-300 - -# Formaldehyde, HCHO - + 1.0000 CH3COOH = HCHO + 0.5000 C2H4 + 0.5000 O2 - -llnl_gamma 3.0 - log_k -86.5725 - -delta_h +33.890 kcal/mol - -analytic 1.3515e+002 2.8915e-002 -2.5168e+004 -4.9725e+001 4.2808e+005 -# -Range: 0-300 - -# Formate, HCOO- - + 1.0000 HCOOH = HCOO- + 1.0000 H+ - -llnl_gamma 3.5 - log_k -3.753 - -delta_h +101.680 kcal/mol - -analytic -9.4187e+001 -3.4616e-002 1.8918e+003 3.8145e+001 2.9547e+001 -# -Range: 0-300 - -# Formic_acid, HCOOH - HCO3- + H+ 1.0000 = HCOOH + 0.5O2 - -llnl_gamma 3.0 - log_k -39.0524 - -delta_h +101.680 kcal/mol - -analytic -3.4508E+02 -4.9133E-02 -4.9396E+02 1.3024E+02 3.5416E-01 -# -Range: 0-300 - -# Gd(But)+2, Gd(CH3(CH2)2CO2)+2 - + 1.0000 Gd+3 + 1.0000 C3H7COOH = Gd(CH3(CH2)2CO2)+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.1778 - -delta_h +294.884 kcal/mol - -analytic -9.4460e+000 2.4870e-003 -2.3699e+003 3.2918e+000 5.6419e+005 -# -Range: 0-300 - -# Gd(But)2+, Gd(CH3(CH2)2CO2)2+ - + 2.0000 C3H7COOH + 1.0000 Gd+3 = Gd(CH3(CH2)2CO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.1157 - -delta_h +424.078 kcal/mol - -analytic -1.4589e+001 7.2722e-003 -5.7356e+003 5.1448e+000 1.2310e+006 -# -Range: 0-300 - -# Gd(For)+2, GdCHO2+2 - + 1.0000 Gd+3 + 1.0000 HCOOH = GdCHO2+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.0929 - -delta_h +268.634 kcal/mol - -analytic -6.8541e-001 -3.3966e-004 -6.4856e+002 -7.2227e-002 1.8259e+005 -# -Range: 0-300 - -# Gd(For)2+, Gd(CHO2)2+ - + 2.0000 HCOOH + 1.0000 Gd+3 = Gd(CHO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -2.9562 - -delta_h +372.659 kcal/mol - -analytic -3.5152e+000 -3.2979e-003 -1.3266e+002 1.3417e-001 1.4806e+005 -# -Range: 0-300 - -# Gd(Pent)+2, Gd(CH3(CH2)3CO2)+2 - + 1.0000 C4H9COOH + 1.0000 Gd+3 = Gd(CH3(CH2)3CO2)+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.2071 - -delta_h +301.364 kcal/mol - -analytic -2.8290e+001 2.4126e-003 -2.7617e+003 1.0531e+001 7.6352e+005 -# -Range: 0-300 - -# Gd(Pent)2+, Gd(CH3(CH2)3CO2)2+ - + 2.0000 C4H9COOH + 1.0000 Gd+3 = Gd(CH3(CH2)3CO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.1846 - -delta_h +436.320 kcal/mol - -analytic -5.3965e+001 9.5419e-003 -7.2168e+003 2.0378e+001 1.7572e+006 -# -Range: 0-300 - -# Gd(Prop)+2, GdCH3CH2CO2+2 - + 1.0000 C2H5COOH + 1.0000 Gd+3 = GdCH3CH2CO2+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.1763 - -delta_h +289.666 kcal/mol - -analytic -1.7869e+001 1.0366e-003 -1.6096e+003 6.2464e+000 4.7496e+005 -# -Range: 0-300 - -# Gd(Prop)2+, Gd(CH3CH2CO2)2+ - + 2.0000 C2H5COOH + 1.0000 Gd+3 = Gd(CH3CH2CO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.1127 - -delta_h +414.216 kcal/mol - -analytic -4.1151e+001 1.7684e-003 -3.3631e+003 1.4486e+001 9.7618e+005 -# -Range: 0-300 - -# Glutamic_acid, C5H9NO4 - + 2.5000 C2H5NO2 + 0.5000 H2O = C5H9NO4 + 1.5000 NH3 + 0.7500 O2 - -llnl_gamma 3.0 3.0 - log_k -321.9443 - -delta_h +232.000 kcal/mol - -analytic 1.3643e+002 3.2714e-002 -2.5437e+004 -4.8787e+001 7.4165e+005 -# -Range: 0-300 - -# Glutamine, C5H10N2O3 - + 2.5000 C2H5NO2 = C5H10N2O3 + 0.7500 O2 + 0.5000 H2O + 0.5000 NH3 - -llnl_gamma 3.0 - log_k +2.8622 - -delta_h +192.330 kcal/mol - -analytic 8.7755e+001 2.3462e-002 -2.1760e+004 -3.1651e+001 7.0288e+005 -# -Range: 0-300 - -# Glutarate, C5H6O4-2 - + 2.5000 CH3COOH = C5H6O4-2 + 2.0000 H+ + 1.0000 H2O - -llnl_gamma 4.0 - log_k -9.7563 - -delta_h +224.140 kcal/mol - -analytic -1.3762e+002 -7.5681e-002 1.3347e+003 5.7954e+001 2.0867e+001 -# -Range: 0-300 - -# Glutaric_acid, C5H8O4 - + 2.5000 CH3COOH = C5H8O4 + 1.0000 H2O - -llnl_gamma 3.0 - log_k -357.4964 - -delta_h +223.440 kcal/mol - -analytic -9.9184e+000 -1.0441e-002 -1.9203e+001 4.2761e+000 -2.9671e-001 -# -Range: 0-300 - -# Glycine, C2H5NO2 - + 1.0000 NH3 + 2.0000 HCO3- + 2.0000 H+ = C2H5NO2 + 1.0000 H2O + 1.5000 O2 - -llnl_gamma 3.0 - log_k -108.1715 - -delta_h +122.846 kcal/mol - -analytic -9.2863E+02 -1.5296E-01 -5.1446E+02 3.5064E+02 2.0391E-01 -# -Range: 0-300 - -# Glycolate, C2H3O3- - + 1.0000 C2H4O3 = C2H3O3- + 1.0000 H+ - -llnl_gamma 4.0 - log_k -3.8336 - -delta_h +154.700 kcal/mol - -analytic -9.9557e+001 -3.6800e-002 1.9551e+003 4.0462e+001 3.0537e+001 -# -Range: 0-300 - -# Glycolic_acid, C2H4O3 - + 2.0000 HCO3- + 2.0000 H+ = C2H4O3 + 1.5000 O2 - -llnl_gamma 3.0 - log_k -117.3507 - -delta_h +154.890 kcal/mol - -analytic -1.0189E+03 -1.6160E-01 -5.1773E+02 3.8447E+02 1.7876E-01 -# -Range: 0-300 - -# H-Adipate, C6H9O4- - + 3.0000 CH3COOH = C6H9O4- + 1.0000 H+ + 1.0000 H2O + 0.5000 O2 - -llnl_gamma 4.0 - log_k -4.4127 - -delta_h +227.130 kcal/mol - -analytic -5.8686e+001 -2.8724e-002 -1.0743e+004 2.3135e+001 -1.6761e+002 -# -Range: 0-300 - -# H-Azelate, C9H15O4- - + 4.5000 CH3COOH = C9H15O4- + 2.0000 O2 + 1.0000 H+ + 1.0000 H2O - -llnl_gamma 4.0 - log_k -4.5226 - -delta_h +240.970 kcal/mol - -analytic 2.2650e+002 2.5261e-002 -6.2618e+004 -8.1084e+001 1.3566e+006 -# -Range: 0-300 - -# H-Glutarate, C5H7O4- - + 2.5000 CH3COOH = C5H7O4- + 1.0000 H+ + 1.0000 H2O - -llnl_gamma 4.0 - log_k -4.3394 - -delta_h +223.570 kcal/mol - -analytic -4.0300e+001 -3.0858e-002 -9.3931e+001 1.7357e+001 -1.4538e+000 -# -Range: 0-300 - -# H-Malonate, C3H3O4- - + 1.5000 CH3COOH + 1.0000 O2 = C3H3O4- + 1.0000 H+ + 1.0000 H2O - -llnl_gamma 4.0 - log_k -2.8513 - -delta_h +207.850 kcal/mol - -analytic -5.6715e+000 -3.3611e-002 1.9552e+004 6.4983e+000 3.0509e+002 -# -Range: 0-300 - -# H-Oxalate, C2HO4- - + 1.5000 O2 + 1.0000 CH3COOH = C2HO4- + 1.0000 H+ + 1.0000 H2O - -llnl_gamma 4.0 - log_k -1.2703 - -delta_h +195.600 kcal/mol - -analytic 1.3266e+001 -3.3064e-002 2.8427e+004 0.0000e+000 0.0000e+000 -# -Range: 0-300 - -# H-Pimelate, C7H11O4- - + 3.5000 CH3COOH = C7H11O4- + 1.0000 H+ + 1.0000 H2O + 1.0000 O2 - -llnl_gamma 4.0 - log_k -4.486 - -delta_h +234.040 kcal/mol - -analytic -7.7415e+001 -2.6046e-002 -2.0605e+004 2.8981e+001 -3.2150e+002 -# -Range: 0-300 - -# H-Sebacate, C10H17O4- - + 5.0000 CH3COOH = C10H17O4- + 2.5000 O2 + 1.0000 H+ + 1.0000 H2O - -llnl_gamma 4.0 - log_k -4.5446 - -delta_h +246.230 kcal/mol - -analytic -1.5704e+002 -1.8900e-002 -5.1105e+004 5.4466e+001 -7.9740e+002 -# -Range: 0-300 - -# H-Suberate, C8H13O4- - + 4.0000 CH3COOH = C8H13O4- + 1.5000 O2 + 1.0000 H+ + 1.0000 H2O - -llnl_gamma 4.0 - log_k -4.508 - -delta_h +238.130 kcal/mol - -analytic -1.0933e+002 -2.4139e-002 -3.0563e+004 3.9365e+001 -4.7687e+002 -# -Range: 0-300 - -# H-Succinate, C4H5O4- - + 2.0000 CH3COOH + 0.5000 O2 = C4H5O4- + 1.0000 H+ + 1.0000 H2O - -llnl_gamma 4.0 - log_k -4.2075 - -delta_h +217.350 kcal/mol - -analytic -3.0274e+001 -3.3174e-002 1.0329e+004 1.4429e+001 1.6118e+002 -# -Range: 0-300 - -# HO2-, HO2- - + 1.0000 H2O + 0.5000 O2 = HO2- + 1.0000 H+ - -llnl_gamma 4.0 - log_k -28.3019 - -delta_h +38.320 kcal/mol - -analytic -4.1095e+001 -3.1617e-002 -7.2259e+003 1.8765e+001 -1.1274e+002 -# -Range: 0-300 - -# Heptanal, CH3(CH2)5CHO - + 2.5000 C2H4 + 1.0000 CH3COOH = CH3(CH2)5CHO + 0.5000 O2 - -llnl_gamma 3.0 - log_k -733.0243 - -delta_h +77.010 kcal/mol - -analytic -4.4470e+001 -1.5235e-002 -2.8387e+003 1.5763e+001 -4.4282e+001 -# -Range: 0-300 - -# Heptanoate, C6H13COO- - + 3.5000 CH3COOH = C6H13COO- + 2.5000 O2 + 1.0000 H+ - -llnl_gamma 4.0 - log_k -4.8928 - -delta_h +145.620 kcal/mol - -analytic -2.3984e+002 -2.7315e-002 -4.6686e+004 8.5594e+001 -7.2843e+002 -# -Range: 0-300 - -# Heptanoic_acid, C6H13COOH - + 3.5000 CH3COOH = C6H13COOH + 2.5000 O2 - -llnl_gamma 3.0 - log_k -684.8753 - -delta_h +145.080 kcal/mol - -analytic 4.8292e+002 8.0059e-002 -8.7380e+004 -1.7349e+002 2.4625e+006 -# -Range: 0-300 - -# Hexanal, CH3(CH2)4CHO - + 2.0000 C2H4 + 1.0000 CH3COOH = CH3(CH2)4CHO + 0.5000 O2 - -llnl_gamma 3.0 - log_k -623.3863 - -delta_h +72.650 kcal/mol - -analytic -3.3617e+001 -1.0435e-002 -4.8410e+003 1.1629e+001 -7.5530e+001 -# -Range: 0-300 - -# Hexanoate, C5H11COO- - + 3.0000 CH3COOH = C5H11COO- + 2.0000 O2 + 1.0000 H+ - -llnl_gamma 4.0 - log_k -4.8599 - -delta_h +139.870 kcal/mol - -analytic -2.1318e+002 -2.9283e-002 -3.6871e+004 7.6955e+001 -5.7527e+002 -# -Range: 0-300 - -# Hexanoic_acid, C5H11COOH - + 3.0000 CH3COOH = C5H11COOH + 2.0000 O2 - -llnl_gamma 3.0 - log_k -576.2928 - -delta_h +139.290 kcal/mol - -analytic 1.1076e+002 2.5510e-002 -5.4376e+004 -3.9703e+001 1.0632e+006 -# -Range: 0-300 - -# Isoleucine, C6H13NO2 - + 3.0000 C2H5NO2 + 2.0000 H2O = C6H13NO2 + 3.0000 O2 + 2.0000 NH3 - -llnl_gamma 3.0 - log_k +0.1466 - -delta_h +150.900 kcal/mol - -analytic -2.8273e+002 -1.9351e-003 -5.4209e+004 1.0027e+002 -8.4579e+002 -# -Range: 0-300 - -# K(But), K(CH3(CH2)2CO2) - + 1.0000 K+ + 1.0000 C3H7COOH = K(CH3(CH2)2CO2) + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.8078 - -delta_h +187.401 kcal/mol - -analytic 1.3634e+001 -2.1745e-003 -3.9995e+003 -3.9841e+000 4.8796e+005 -# -Range: 0-300 - -# K(But)2-, K(CH3(CH2)2CO2)2- - + 2.0000 C3H7COOH + 1.0000 K+ = K(CH3(CH2)2CO2)2- + 2.0000 H+ - -llnl_gamma 3.0 - log_k -9.9359 - -delta_h +316.310 kcal/mol - -analytic 5.5776e+001 -3.5589e-003 -1.2872e+004 -1.6024e+001 1.6171e+006 -# -Range: 0-300 - -# K(For), K(CHO2) - + 1.0000 K+ + 1.0000 HCOOH = K(CHO2) + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.7229 - -delta_h +161.151 kcal/mol - -analytic -2.4221e+000 -7.5713e-003 -6.7114e+002 1.2963e+000 -1.0472e+001 -# -Range: 0-300 - -# K(For)2-, K(CHO2)2- - + 2.0000 HCOOH + 1.0000 K+ = K(CHO2)2- + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.7757 - -delta_h +264.561 kcal/mol - -analytic -1.0611e+002 -3.9682e-002 2.1061e+003 4.1665e+001 3.2895e+001 -# -Range: 0-300 - -# K(Glyc), K(CH3OCO2) - + 1.0000 K+ + 1.0000 C2H4O3 = K(CH3OCO2) + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.8036 - -delta_h +214.171 kcal/mol - -analytic 2.8123e+001 -1.9061e-003 -3.6027e+003 -9.1691e+000 3.0378e+005 -# -Range: 0-300 - -# K(Glyc)2-, K(CH3OCO2)2- - + 2.0000 C2H4O3 + 1.0000 K+ = K(CH3OCO2)2- + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.7471 - -delta_h +370.519 kcal/mol - -analytic -2.2646e+002 -4.8542e-002 6.8259e+003 8.4988e+001 1.0658e+002 -# -Range: 0-300 - -# K(Lac), K(CH3CH2OCO2) - + 1.0000 C3H6O3 + 1.0000 K+ = K(CH3CH2OCO2) + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.8329 - -delta_h +223.541 kcal/mol - -analytic 1.4972e+001 -3.2999e-003 -3.4489e+003 -4.1956e+000 3.6756e+005 -# -Range: 0-300 - -# K(Lac)2-, K(CH3CH2OCO2)2- - + 2.0000 C3H6O3 + 1.0000 K+ = K(CH3CH2OCO2)2- + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.7955 - -delta_h +388.842 kcal/mol - -analytic 3.7819e+001 -9.5803e-003 -1.0074e+004 -9.1771e+000 1.2221e+006 -# -Range: 0-300 - -# K(Pent), K(CH3(CH2)3CO2) - + 1.0000 C4H9COOH + 1.0000 K+ = K(CH3(CH2)3CO2) + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.8371 - -delta_h +193.881 kcal/mol - -analytic 1.1271e+001 -4.4936e-004 -5.4272e+003 -2.5193e+000 7.5365e+005 -# -Range: 0-300 - -# K(Pent)2-, K(CH3(CH2)3CO2)2- - + 2.0000 C4H9COOH + 1.0000 K+ = K(CH3(CH2)3CO2)2- + 2.0000 H+ - -llnl_gamma 3.0 - log_k -10.0041 - -delta_h +328.765 kcal/mol - -analytic 7.8715e+000 -1.1792e-003 -1.3479e+004 1.7870e+000 2.0708e+006 -# -Range: 0-300 - -# K(Prop), KCH3CH2CO2 - + 1.0000 C2H5COOH + 1.0000 K+ = KCH3CH2CO2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.8664 - -delta_h +182.101 kcal/mol - -analytic 1.1437e+001 -2.2439e-003 -3.4860e+003 -3.4282e+000 4.0460e+005 -# -Range: 0-300 - -# K(Prop)2-, K(CH3CH2CO2)2- - + 2.0000 C2H5COOH + 1.0000 K+ = K(CH3CH2CO2)2- + 2.0000 H+ - -llnl_gamma 3.0 - log_k -10.0429 - -delta_h +306.125 kcal/mol - -analytic 3.7431e+001 -9.1342e-003 -1.1368e+004 -9.1819e+000 1.4324e+006 -# -Range: 0-300 - -# La(But)+2, La(CH3(CH2)2CO2)+2 - + 1.0000 La+3 + 1.0000 C3H7COOH = La(CH3(CH2)2CO2)+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.2078 - -delta_h +300.593 kcal/mol - -analytic -1.2213e+001 7.6865e-004 -2.3803e+003 4.5583e+000 5.7748e+005 -# -Range: 0-300 - -# La(But)2+, La(CH3(CH2)2CO2)2+ - + 2.0000 C3H7COOH + 1.0000 La+3 = La(CH3(CH2)2CO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.1758 - -delta_h +430.176 kcal/mol - -analytic -2.7187e+001 3.6155e-003 -5.1320e+003 9.9375e+000 1.2081e+006 -# -Range: 0-300 - -# La(For)+2, La(CHO2)+2 - + 1.0000 La+3 + 1.0000 HCOOH = La(CHO2)+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.123 - -delta_h +274.343 kcal/mol - -analytic 2.4425e+000 -1.1728e-003 -9.7383e+002 -9.4604e-001 2.1308e+005 -# -Range: 0-300 - -# La(For)2+, La(CHO2)2+ - + 2.0000 HCOOH + 1.0000 La+3 = La(CHO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -3.0163 - -delta_h +378.757 kcal/mol - -analytic 1.4193e+001 -2.4396e-003 -1.1566e+003 -6.0653e+000 2.1470e+005 -# -Range: 0-300 - -# La(Pent)+2, La(CH3(CH2)3CO2)+2 - + 1.0000 C4H9COOH + 1.0000 La+3 = La(CH3(CH2)3CO2)+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.2371 - -delta_h +307.073 kcal/mol - -analytic -2.4830e+001 1.6328e-003 -3.1022e+003 9.5351e+000 7.9458e+005 -# -Range: 0-300 - -# La(Pent)2+, La(CH3(CH2)3CO2)2+ - + 2.0000 C4H9COOH + 1.0000 La+3 = La(CH3(CH2)3CO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.2447 - -delta_h +442.418 kcal/mol - -analytic -4.1413e+001 9.3380e-003 -8.0438e+003 1.6147e+001 1.8186e+006 -# -Range: 0-300 - -# La(Prop)+2, La(CH3CH2CO2)+2 - + 1.0000 C2H5COOH + 1.0000 La+3 = La(CH3CH2CO2)+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.3764 - -delta_h +295.142 kcal/mol - -analytic -8.7100e+000 9.9977e-004 -2.3370e+003 3.2191e+000 5.2671e+005 -# -Range: 0-300 - -# La(Prop)2+, La(CH3CH2CO2)2+ - + 2.0000 C2H5COOH + 1.0000 La+3 = La(CH3CH2CO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.4829 - -delta_h +419.891 kcal/mol - -analytic -1.7985e+001 3.2712e-003 -4.8213e+003 6.3648e+000 1.0652e+006 -# -Range: 0-300 - -# Lactate, C3H5O3- - + 1.0000 C3H6O3 = C3H5O3- + 1.0000 H+ - -llnl_gamma 4.0 - log_k -3.8629 - -delta_h +164.070 kcal/mol - -analytic -8.2814e+001 -3.2149e-002 1.5440e+003 3.3680e+001 2.4117e+001 -# -Range: 0-300 - -# Lactic_acid, C3H6O3 - + 3.0000 HCO3- + 3.0000 H+ = C3H6O3 + 3.0000 O2 - -llnl_gamma 3.0 - log_k -223.4996 - -delta_h +164.000 kcal/mol - -analytic -1.9621E+03 -3.2360E-01 -5.5305E+02 7.4225E+02 -2.0548E-01 -# -Range: 0-300 - -# Leucine, C6H13NO2 - + 3.0000 C2H5NO2 + 2.0000 H2O = C6H13NO2 + 3.0000 O2 + 2.0000 NH3 - -llnl_gamma 3.0 - log_k -541.723 - -delta_h +151.070 kcal/mol - -analytic 2.4561e+002 6.5239e-002 -8.6593e+004 -8.7114e+001 2.1100e+006 -# -Range: 0-300 - -# Leucylglycine, C8H16N2O3 - + 4.0000 C2H5NO2 + 1.0000 H2O = C8H16N2O3 + 3.0000 O2 + 2.0000 NH3 - -llnl_gamma 3.0 - log_k -652.321 - -delta_h +202.660 kcal/mol - -analytic -3.3759e+002 -5.6274e-003 -5.2689e+004 1.1979e+002 -8.2207e+002 -# -Range: 0-300 - -# Malonate, C3H2O4-2 - + 1.5000 CH3COOH + 1.0000 O2 = C3H2O4-2 + 2.0000 H+ + 1.0000 H2O - -llnl_gamma 4.0 - log_k -2.8513 - -delta_h +207.850 kcal/mol - -analytic -9.9824e+001 -7.7578e-002 2.0986e+004 4.5594e+001 3.2750e+002 -# -Range: 0-300 - -# Malonic_acid, C3H4O4 - + 3.0000 HCO3- + 3.0000 H+ = C3H4O4 + 2.0000 O2 + 1.0000 H2O - -llnl_gamma 3.0 - log_k -144.1431 - -delta_h +207.870 kcal/mol - -analytic -1.2631E+03 -1.9613E-01 -5.2873E+02 4.7649E+02 -3.1921E-02 -# -Range: 0-300 - -# Methanamine, CH3NH2 - + 0.5000 NH3 + 0.5000 C2H5NH2 = CH3NH2 - -llnl_gamma 3.0 - log_k -3.7248 - -delta_h +16.320 kcal/mol - -analytic 3.6212e+000 9.9672e-004 -1.2549e+003 -1.3879e+000 -1.9583e+001 -# -Range: 0-300 - -# Methanol, CH3OH - + 0.5000 H2O + 0.5000 C2H5OH = CH3OH - -llnl_gamma 3.0 - log_k -5.8339 - -delta_h +58.870 kcal/mol - -analytic 1.0292e+001 2.0369e-003 -2.3980e+003 -3.5121e+000 -3.7422e+001 -# -Range: 0-300 - -# Methionine, C5H11NO2S -2.5000 C2H5NO2 + 1.0000 HS- + 1.0000 H+ + 0.5000 H2O = C5H11NO2S + 1.7500 O2 + 1.5000 NH3 - -llnl_gamma 3.0 - log_k -499.7659 - -delta_h +177.600 kcal/mol - -analytic -8.0509e+001 3.4730e-002 -2.3107e+004 2.2907e+001 -3.6054e+002 -# -Range: 0-300 - -# Mg(Ala)+, Mg(C3H6NO2)+ - + 1.0000 Mg+2 + 1.0000 C3H7NO2 = Mg(C3H6NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -8.4047 - -delta_h +231.745 kcal/mol - -analytic 3.2275e+000 3.8767e-003 -5.7267e+003 1.9424e-001 5.2913e+005 -# -Range: 0-300 - -# Mg(Ala)2, Mg(C3H6NO2)2 - + 2.0000 C3H7NO2 + 1.0000 Mg+2 = Mg(C3H6NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -17.4998 - -delta_h +352.641 kcal/mol - -analytic -2.6461e+000 5.2729e-003 -1.2622e+004 4.5793e+000 1.2982e+006 -# -Range: 0-300 - -# Mg(But)+, Mg(CH3(CH2)2CO2)+ - + 1.0000 Mg+2 + 1.0000 C3H7COOH = Mg(CH3(CH2)2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.2778 - -delta_h +240.741 kcal/mol - -analytic -2.1041e+000 1.4633e-003 -3.1485e+003 6.1810e-001 5.7229e+005 -# -Range: 0-300 - -# Mg(But)2, Mg(CH3(CH2)2CO2)2 - + 2.0000 C3H7COOH + 1.0000 Mg+2 = Mg(CH3(CH2)2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -8.9654 - -delta_h +370.578 kcal/mol - -analytic -2.8906e+001 1.7817e-003 -6.7997e+003 1.0694e+001 1.4036e+006 -# -Range: 0-300 - -# Mg(For)+, Mg(CHO2)+ - + 1.0000 Mg+2 + 1.0000 HCOOH = Mg(CHO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.3229 - -delta_h +215.678 kcal/mol - -analytic -3.9514e+000 -2.8298e-003 -5.6302e+002 1.0614e+000 1.5474e+005 -# -Range: 0-300 - -# Mg(For)2, Mg(CHO2)2 - + 2.0000 HCOOH + 1.0000 Mg+2 = Mg(CHO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.2058 - -delta_h +321.177 kcal/mol - -analytic -1.9131e+001 -6.0693e-003 4.0785e+001 5.2661e+000 2.2927e+005 -# -Range: 0-300 - -# Mg(Gly)+, Mg(C2H4NO2)+ - + 1.0000 Mg+2 + 1.0000 C2H5NO2 = Mg(C2H4NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -6.328 - -delta_h +225.174 kcal/mol - -analytic 2.0689e+001 7.1872e-003 -4.9739e+003 -6.9062e+000 4.1092e+005 -# -Range: 0-300 - -# Mg(Gly)2, Mg(C2H4NO2)2 - + 2.0000 C2H5NO2 + 1.0000 Mg+2 = Mg(C2H4NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -13.0966 - -delta_h +340.003 kcal/mol - -analytic -2.1284e+000 6.2771e-003 -8.3120e+003 2.3697e+000 8.1724e+005 -# -Range: 0-300 - -# Mg(Glyc)+, Mg(CH3OCO2)+ - + 1.0000 Mg+2 + 1.0000 C2H4O3 = Mg(CH3OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.5039 - -delta_h +266.450 kcal/mol - -analytic 4.1719e+000 4.8995e-004 -2.4071e+003 -1.0943e+000 3.5295e+005 -# -Range: 0-300 - -# Mg(Glyc)2, Mg(CH3OCO2)2 - + 2.0000 C2H4O3 + 1.0000 Mg+2 = Mg(CH3OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.3671 - -delta_h +424.040 kcal/mol - -analytic 1.1456e+001 1.9693e-003 -5.4799e+003 -3.5701e+000 8.7339e+005 -# -Range: 0-300 - -# Mg(Lac)+, Mg(CH3CH2OCO2)+ - + 1.0000 Mg+2 + 1.0000 C3H6O3 = Mg(CH3CH2OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.493 - -delta_h +274.593 kcal/mol - -analytic -5.8138e+000 4.6550e-004 -2.3971e+003 2.7483e+000 3.9437e+005 -# -Range: 0-300 - -# Mg(Lac)2, Mg(CH3CH2OCO2)2 - + 2.0000 C3H6O3 + 1.0000 Mg+2 = Mg(CH3CH2OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.3356 - -delta_h +440.700 kcal/mol - -analytic -9.2240e+000 7.2412e-004 -6.4088e+003 5.1184e+000 1.1140e+006 -# -Range: 0-300 - -# Mg(Pent)+, Mg(CH3(CH2)3CO2)+ - + 1.0000 C4H9COOH + 1.0000 Mg+2 = Mg(CH3(CH2)3CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.5571 - -delta_h +246.880 kcal/mol - -analytic -2.6885e+001 6.6381e-004 -3.2502e+003 9.9565e+000 7.4821e+005 -# -Range: 0-300 - -# Mg(Pent)2, Mg(CH3(CH2)3CO2)2 - + 2.0000 C4H9COOH + 1.0000 Mg+2 = Mg(CH3(CH2)3CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -9.4844 - -delta_h +382.313 kcal/mol - -analytic -3.1213e+001 7.2244e-003 -1.0963e+004 1.3204e+001 2.1088e+006 -# -Range: 0-300 - -# Mg(Prop)+, Mg(CH3CH2CO2)+ - + 1.0000 C2H5COOH + 1.0000 Mg+2 = Mg(CH3CH2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.1767 - -delta_h +235.660 kcal/mol - -analytic -1.5671e+001 -6.7187e-004 -2.0570e+003 5.4098e+000 4.6452e+005 -# -Range: 0-300 - -# Mg(Prop)2, Mg(CH3CH2CO2)2 - + 2.0000 C2H5COOH + 1.0000 Mg+2 = Mg(CH3CH2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -8.7726 - -delta_h +360.889 kcal/mol - -analytic -1.3652e+001 3.8826e-003 -6.2937e+003 4.4524e+000 1.2312e+006 -# -Range: 0-300 - -# Mn(Ala)+, Mn(C3H6NO2)+ - + 1.0000 Mn+2 + 1.0000 C3H7NO2 = Mn(C3H6NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -7.1248 - -delta_h +173.180 kcal/mol - -analytic -6.0922e+000 5.5095e-003 -4.5521e+003 3.1202e+000 4.3437e+005 -# -Range: 0-300 - -# Mn(Ala)2, Mn(C3H6NO2)2 - + 2.0000 C3H7NO2 + 1.0000 Mn+2 = Mn(C3H6NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -14.6792 - -delta_h +294.245 kcal/mol - -analytic -5.0476e-001 5.7769e-003 -1.2737e+004 4.7857e+000 1.3339e+006 -# -Range: 0-300 - -# Mn(But)+, Mn(CH3(CH2)2CO2)+ - + 1.0000 Mn+2 + 1.0000 C3H7COOH = Mn(CH3(CH2)2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.6079 - -delta_h +181.344 kcal/mol - -analytic -1.6910e+001 1.9388e-003 -1.9552e+003 5.6484e+000 4.7316e+005 -# -Range: 0-300 - -# Mn(But)2, Mn(CH3(CH2)2CO2)2 - + 2.0000 C3H7COOH + 1.0000 Mn+2 = Mn(CH3(CH2)2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.7354 - -delta_h +310.012 kcal/mol - -analytic -1.8458e+001 3.5123e-003 -7.8343e+003 7.8894e+000 1.4636e+006 -# -Range: 0-300 - -# Mn(For)+, Mn(CHO2)+ - + 1.0000 Mn+2 + 1.0000 HCOOH = Mn(CHO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.0532 - -delta_h +155.735 kcal/mol - -analytic -5.7235e+000 -8.3722e-004 -3.0900e+002 1.5086e+000 1.0934e+005 -# -Range: 0-300 - -# Mn(For)2, Mn(CHO2)2 - + 2.0000 HCOOH + 1.0000 Mn+2 = Mn(CHO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.7162 - -delta_h +259.601 kcal/mol - -analytic 1.2827e+001 -1.4127e-003 -2.4571e+003 -5.2411e+000 3.6438e+005 -# -Range: 0-300 - -# Mn(Gly)+, Mn(C2H4NO2)+ - + 1.0000 Mn+2 + 1.0000 C2H5NO2 = Mn(C2H4NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -6.1184 - -delta_h +165.803 kcal/mol - -analytic 1.2891e+001 8.7151e-003 -4.1826e+003 -4.5776e+000 3.3412e+005 -# -Range: 0-300 - -# Mn(Gly)2, Mn(C2H4NO2)2 - + 2.0000 C2H5NO2 + 1.0000 Mn+2 = Mn(C2H4NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -12.9266 - -delta_h +278.847 kcal/mol - -analytic -8.9549e+000 5.6683e-003 -8.5407e+003 5.5548e+000 8.2286e+005 -# -Range: 0-300 - -# Mn(Glyc)+, Mn(CH3OCO2)+ - + 1.0000 Mn+2 + 1.0000 C2H4O3 = Mn(CH3OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.2518 - -delta_h +208.594 kcal/mol - -analytic -7.3237e+000 7.7086e-004 -1.3628e+003 2.4657e+000 2.9532e+005 -# -Range: 0-300 - -# Mn(Glyc)2, Mn(CH3OCO2)2 - + 2.0000 C2H4O3 + 1.0000 Mn+2 = Mn(CH3OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.2373 - -delta_h +364.736 kcal/mol - -analytic -1.7505e+001 -1.6628e-003 -4.1763e+003 7.1162e+000 8.1623e+005 -# -Range: 0-300 - -# Mn(Lac)+, Mn(CH3CH2OCO2)+ - + 1.0000 Mn+2 + 1.0000 C3H6O3 = Mn(CH3CH2OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.4328 - -delta_h +217.756 kcal/mol - -analytic -1.6464e+001 7.1558e-004 -1.2885e+003 5.7494e+000 3.4911e+005 -# -Range: 0-300 - -# Mn(Lac)2, Mn(CH3CH2OCO2)2 - + 2.0000 C3H6O3 + 1.0000 Mn+2 = Mn(CH3CH2OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.2256 - -delta_h +383.047 kcal/mol - -analytic -1.8030e+001 1.4926e-004 -5.9277e+003 8.0913e+000 1.1243e+006 -# -Range: 0-300 - -# Mn(Pent)+, Mn(CH3(CH2)3CO2)+ - + 1.0000 C4H9COOH + 1.0000 Mn+2 = Mn(CH3(CH2)3CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.7669 - -delta_h +187.646 kcal/mol - -analytic -3.1330e+001 2.7885e-003 -2.5476e+003 1.1193e+001 6.7589e+005 -# -Range: 0-300 - -# Mn(Pent)2, Mn(CH3(CH2)3CO2)2 - + 2.0000 C4H9COOH + 1.0000 Mn+2 = Mn(CH3(CH2)3CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -8.044 - -delta_h +322.033 kcal/mol - -analytic -2.1011e+001 8.8159e-003 -1.1958e+004 1.0527e+001 2.1730e+006 -# -Range: 0-300 - -# Mn(Prop)+, Mn(CH3CH2CO2)+ - + 1.0000 C2H5COOH + 1.0000 Mn+2 = Mn(CH3CH2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.6167 - -delta_h +176.112 kcal/mol - -analytic -5.3912e+000 3.1110e-003 -2.3654e+003 1.4872e+000 4.5498e+005 -# -Range: 0-300 - -# Mn(Prop)2, Mn(CH3CH2CO2)2 - + 2.0000 C2H5COOH + 1.0000 Mn+2 = Mn(CH3CH2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.753 - -delta_h +300.037 kcal/mol - -analytic -5.4193e+000 5.1920e-003 -7.3047e+003 2.4858e+000 1.2892e+006 -# -Range: 0-300 - -# Na(But), Na(CH3(CH2)2CO2) - + 1.0000 Na+ + 1.0000 C3H7COOH = Na(CH3(CH2)2CO2) + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.788 - -delta_h +185.529 kcal/mol - -analytic 1.1463e+001 -1.9756e-003 -3.8987e+003 -3.3969e+000 5.1852e+005 -# -Range: 0-300 - -# Na(But)2-, Na(CH3(CH2)2CO2)2- - + 2.0000 C3H7COOH + 1.0000 Na+ = Na(CH3(CH2)2CO2)2- + 2.0000 H+ - -llnl_gamma 3.0 - log_k -9.8956 - -delta_h +315.475 kcal/mol - -analytic 2.9605e+001 -9.5353e-003 -1.2859e+004 -5.5837e+000 1.8051e+006 -# -Range: 0-300 - -# Na(For), Na(CHO2) - + 1.0000 Na+ + 1.0000 HCOOH = Na(CHO2) + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.7031 - -delta_h +159.279 kcal/mol - -analytic 1.9556e+001 -4.0171e-003 -1.9403e+003 -6.7907e+000 1.1139e+005 -# -Range: 0-300 - -# Na(For)2-, Na(CHO2)2- - + 2.0000 HCOOH + 1.0000 Na+ = Na(CHO2)2- + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.7362 - -delta_h +263.725 kcal/mol - -analytic -1.6907e+002 -4.9200e-002 4.7499e+003 6.4687e+001 7.4168e+001 -# -Range: 0-300 - -# Na(Glyc), Na(CH3OCO2) - + 1.0000 Na+ + 1.0000 C2H4O3 = Na(CH3OCO2) + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.7838 - -delta_h +212.299 kcal/mol - -analytic 6.5651e+000 -4.5298e-003 -2.4464e+003 -1.5701e+000 2.7550e+005 -# -Range: 0-300 - -# Na(Glyc)2-, Na(CH3OCO2)2- - + 2.0000 C2H4O3 + 1.0000 Na+ = Na(CH3OCO2)2- + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.7076 - -delta_h +369.684 kcal/mol - -analytic -2.9181e+002 -5.8674e-002 9.4836e+003 1.0904e+002 1.4807e+002 -# -Range: 0-300 - -# Na(Lac), Na(CH3CH2OCO2) - + 1.0000 Na+ + 1.0000 C3H6O3 = Na(CH3CH2OCO2) + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.8131 - -delta_h +221.669 kcal/mol - -analytic -8.9871e+000 -6.2002e-003 -2.1368e+003 4.2449e+000 3.2856e+005 -# -Range: 0-300 - -# Na(Lac)2-, Na(CH3CH2OCO2)2- - + 2.0000 C3H6O3 + 1.0000 Na+ = Na(CH3CH2OCO2)2- + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.7559 - -delta_h +388.006 kcal/mol - -analytic 5.9524e+001 -8.7468e-003 -1.2721e+004 -1.5993e+001 1.5628e+006 -# -Range: 0-300 - -# Na(Pent), Na(CH3(CH2)3CO2) - + 1.0000 C4H9COOH + 1.0000 Na+ = Na(CH3(CH2)3CO2) + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.8173 - -delta_h +192.009 kcal/mol - -analytic 8.1540e+000 -4.2441e-004 -5.2875e+003 -1.5765e+000 7.8307e+005 -# -Range: 0-300 - -# Na(Pent)2-, Na(CH3(CH2)3CO2)2- - + 2.0000 C4H9COOH + 1.0000 Na+ = Na(CH3(CH2)3CO2)2- + 2.0000 H+ - -llnl_gamma 3.0 - log_k -9.9645 - -delta_h +327.929 kcal/mol - -analytic 3.8577e+001 7.5820e-004 -1.6661e+004 -8.2211e+000 2.4438e+006 -# -Range: 0-300 - -# Na(Prop), Na(CH3CH2CO2) - + 1.0000 C2H5COOH + 1.0000 Na+ = Na(CH3CH2CO2) + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.8466 - -delta_h +180.229 kcal/mol - -analytic 1.7028e+000 -3.1352e-003 -2.9697e+003 -1.0967e-001 4.1170e+005 -# -Range: 0-300 - -# Na(Prop)2-, Na(CH3CH2CO2)2- - + 2.0000 C2H5COOH + 1.0000 Na+ = Na(CH3CH2CO2)2- + 2.0000 H+ - -llnl_gamma 3.0 - log_k -10.0026 - -delta_h +305.289 kcal/mol - -analytic 6.6077e+001 -6.9347e-003 -1.4292e+004 -1.8630e+001 1.7811e+006 -# -Range: 0-300 - -# Ni(Ala)+, Ni(C3H6NO2)+ - + 1.0000 Ni+2 + 1.0000 C3H7NO2 = Ni(C3H6NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.5249 - -delta_h +137.131 kcal/mol - -analytic 1.1604e+000 4.6374e-003 -4.1009e+003 7.4132e-001 4.3245e+005 -# -Range: 0-300 - -# Ni(Ala)2, Ni(C3H6NO2)2 - + 2.0000 C3H7NO2 + 1.0000 Ni+2 = Ni(C3H6NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -10.2291 - -delta_h +262.972 kcal/mol - -analytic 3.1888e+001 9.4817e-003 -1.1655e+004 -8.0444e+000 1.2513e+006 -# -Range: 0-300 - -# Ni(But)+, Ni(CH3(CH2)2CO2)+ - + 1.0000 Ni+2 + 1.0000 C3H7COOH = Ni(CH3(CH2)2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.0676 - -delta_h +143.687 kcal/mol - -analytic -1.1210e+001 7.7237e-004 -1.8584e+003 3.5695e+000 4.7362e+005 -# -Range: 0-300 - -# Ni(But)2, Ni(CH3(CH2)2CO2)2 - + 2.0000 C3H7COOH + 1.0000 Ni+2 = Ni(CH3(CH2)2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.7459 - -delta_h +274.625 kcal/mol - -analytic -3.4716e+000 4.8213e-003 -6.7033e+003 1.1666e+000 1.3261e+006 -# -Range: 0-300 - -# Ni(For)+, Ni(CHO2)+ - + 1.0000 Ni+2 + 1.0000 HCOOH = Ni(CHO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.8831 - -delta_h +117.573 kcal/mol - -analytic -4.4750e-001 -1.7720e-003 -2.1850e+002 -5.1560e-001 9.8346e+004 -# -Range: 0-300 - -# Ni(For)2, Ni(CHO2)2 - + 2.0000 HCOOH + 1.0000 Ni+2 = Ni(CHO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.4061 - -delta_h +223.287 kcal/mol - -analytic -1.1886e+001 -5.7362e-003 6.8286e+002 2.3397e+000 9.9533e+004 -# -Range: 0-300 - -# Ni(Gly)+, Ni(C2H4NO2)+ - + 1.0000 Ni+2 + 1.0000 C2H5NO2 = Ni(C2H4NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.6482 - -delta_h +129.289 kcal/mol - -analytic -4.6499e+000 4.5579e-003 -2.3704e+003 1.9662e+000 2.4331e+005 -# -Range: 0-300 - -# Ni(Gly)2, Ni(C2H4NO2)2 - + 2.0000 C2H5NO2 + 1.0000 Ni+2 = Ni(C2H4NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -8.5065 - -delta_h +246.055 kcal/mol - -analytic 7.2186e-001 5.9661e-003 -6.4762e+003 1.3110e+000 6.6544e+005 -# -Range: 0-300 - -# Ni(Glyc)+, Ni(CH3OCO2)+ - + 1.0000 Ni+2 + 1.0000 C2H4O3 = Ni(CH3OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.5738 - -delta_h +171.125 kcal/mol - -analytic -1.0297e+000 -1.2447e-004 -1.2044e+003 1.0906e-001 2.9085e+005 -# -Range: 0-300 - -# Ni(Glyc)2, Ni(CH3OCO2)2 - + 2.0000 C2H4O3 + 1.0000 Ni+2 = Ni(CH3OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -3.657 - -delta_h +330.154 kcal/mol - -analytic -1.0354e+001 -1.4250e-003 -2.4189e+003 3.2017e+000 6.5173e+005 -# -Range: 0-300 - -# Ni(Lac)+, Ni(CH3CH2OCO2)+ - + 1.0000 Ni+2 + 1.0000 C3H6O3 = Ni(CH3CH2OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.2731 - -delta_h +179.581 kcal/mol - -analytic -5.3952e+000 3.0639e-004 -1.6023e+003 1.7361e+000 3.6640e+005 -# -Range: 0-300 - -# Ni(Lac)2, Ni(CH3CH2OCO2)2 - + 2.0000 C3H6O3 + 1.0000 Ni+2 = Ni(CH3CH2OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.7961 - -delta_h +346.896 kcal/mol - -analytic 1.3452e+001 3.7748e-003 -5.8913e+003 -4.5655e+000 1.0409e+006 -# -Range: 0-300 - -# Ni(Pent)+, Ni(CH3(CH2)3CO2)+ - + 1.0000 C4H9COOH + 1.0000 Ni+2 = Ni(CH3(CH2)3CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.127 - -delta_h +150.126 kcal/mol - -analytic -1.8027e+001 2.5673e-003 -2.8802e+003 6.4190e+000 7.0514e+005 -# -Range: 0-300 - -# Ni(Pent)2, Ni(CH3(CH2)3CO2)2 - + 2.0000 C4H9COOH + 1.0000 Ni+2 = Ni(CH3(CH2)3CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.8741 - -delta_h +286.892 kcal/mol - -analytic -1.4118e+001 9.0210e-003 -1.0307e+004 6.7035e+000 2.0075e+006 -# -Range: 0-300 - -# Ni(Prop)+, Ni(CH3CH2CO2)+ - + 1.0000 C2H5COOH + 1.0000 Ni+2 = Ni(CH3CH2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.4561 - -delta_h +137.936 kcal/mol - -analytic -7.2594e+000 1.0617e-003 -1.9069e+003 2.0708e+000 4.2443e+005 -# -Range: 0-300 - -# Ni(Prop)2, Ni(CH3CH2CO2)2 - + 2.0000 C2H5COOH + 1.0000 Ni+2 = Ni(CH3CH2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.4532 - -delta_h +263.708 kcal/mol - -analytic -3.7965e+001 -1.2697e-004 -3.6918e+003 1.2846e+001 9.9382e+005 -# -Range: 0-300 - -# Nonanal, CH3(CH2)7CHO - + 3.5000 C2H4 + 1.0000 CH3COOH = CH3(CH2)7CHO + 0.5000 O2 - -llnl_gamma 3.0 - log_k -949.8594 - -delta_h +89.060 kcal/mol - -analytic -6.6011e+001 -2.4799e-002 1.8885e+003 2.3966e+001 2.9487e+001 -# -Range: 0-300 - -# Nonanoate, C9H17O2- - + 4.5000 CH3COOH = C9H17O2- + 3.5000 O2 + 1.0000 H+ - -llnl_gamma 4.0 - log_k -4.728 - -delta_h +156.990 kcal/mol - -analytic -2.9242e+002 -2.3233e-002 -6.6303e+004 1.0260e+002 -1.0345e+003 -# -Range: 0-300 - -# Nonanoic_acid, C9H18O2 - + 4.5000 CH3COOH = C9H18O2 + 3.5000 O2 - -llnl_gamma 3.0 - log_k -902.1429 - -delta_h +156.530 kcal/mol - -analytic 7.6545e+002 1.2327e-001 -1.2782e+005 -2.7455e+002 3.7974e+006 -# -Range: 0-300 - -# Octanal, CH3(CH2)6CHO - + 3.0000 C2H4 + 1.0000 CH3COOH = CH3(CH2)6CHO + 0.5000 O2 - -llnl_gamma 3.0 - log_k -841.0644 - -delta_h +83.550 kcal/mol - -analytic -5.5236e+001 -2.0015e-002 -3.6255e+002 1.9863e+001 -5.6412e+000 -# -Range: 0-300 - -# Octanoate, C7H15COO- - + 4.0000 CH3COOH = C7H15COO- + 3.0000 O2 + 1.0000 H+ - -llnl_gamma 4.0 - log_k -4.8965 - -delta_h +151.580 kcal/mol - -analytic -2.6026e+002 -2.5391e-002 -5.6736e+004 9.2101e+001 -8.8524e+002 -# -Range: 0-300 - -# Octanoic_acid, C7H15COOH - + 4.0000 CH3COOH = C7H15COOH + 3.0000 O2 - -llnl_gamma 3.0 - log_k -793.3332 - -delta_h +151.050 kcal/mol - -analytic -1.9247e+001 1.0829e-002 -7.1544e+004 7.6349e+000 1.0441e+006 -# -Range: 0-300 - -# Oxalate, C2O4-2 - + 1.5000 O2 + 1.0000 CH3COOH = C2O4-2 + 2.0000 H+ + 1.0000 H2O - -llnl_gamma 4.0 - log_k -1.2703 - -delta_h +195.600 kcal/mol - -analytic -6.1367e+001 -6.7813e-002 2.9725e+004 3.0857e+001 4.6385e+002 -# -Range: 0-300 - -# Oxalic_acid, C2H2O4 - + 2.0000 HCO3- + 2.0000 H+ = C2H2O4 + 0.5000 O2 + 1.0000 H2O - -llnl_gamma 3.0 - log_k -41.9377 - -delta_h +194.580 kcal/mol - -analytic -3.4531E+02 -3.8017E-02 -4.9420E+02 1.2783E+02 3.4954E-01 -# -Range: 0-300 - -# Pb(Ala)+, Pb(C3H6NO2)+ - + 1.0000 Pb+2 + 1.0000 C3H7NO2 = Pb(C3H6NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -5.3649 - -delta_h +120.275 kcal/mol - -analytic -2.6624e+001 4.7189e-003 -2.0605e+003 9.9803e+000 1.8534e+005 -# -Range: 0-300 - -# Pb(Ala)2, Pb(C3H6NO2)2 - + 2.0000 C3H7NO2 + 1.0000 Pb+2 = Pb(C3H6NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -12.4897 - -delta_h +239.191 kcal/mol - -analytic -9.5305e+000 7.6294e-006 -1.1822e+004 9.6291e+000 1.1454e+006 -# -Range: 0-300 - -# Pb(But)+, Pb(CH3(CH2)2CO2)+ - + 1.0000 Pb+2 + 1.0000 C3H7COOH = Pb(CH3(CH2)2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.0075 - -delta_h +126.856 kcal/mol - -analytic -2.1474e+001 2.8958e-003 -8.4396e+002 6.9308e+000 2.9372e+005 -# -Range: 0-300 - -# Pb(But)2, Pb(CH3(CH2)2CO2)2 - + 2.0000 C3H7COOH + 1.0000 Pb+2 = Pb(CH3(CH2)2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.6359 - -delta_h +253.472 kcal/mol - -analytic 2.0254e+001 4.4997e-003 -9.9101e+003 -4.4607e+000 1.4291e+006 -# -Range: 0-300 - -# Pb(For)+, Pb(CHO2)+ - + 1.0000 Pb+2 + 1.0000 HCOOH = Pb(CHO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.8633 - -delta_h +100.688 kcal/mol - -analytic 6.0621e+000 1.9339e-003 -3.7110e+002 -2.9296e+000 -5.7925e+000 -# -Range: 0-300 - -# Pb(For)2, Pb(CHO2)2 - + 2.0000 HCOOH + 1.0000 Pb+2 = Pb(CHO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.3658 - -delta_h +202.038 kcal/mol - -analytic 2.6259e+001 -4.0425e-003 -3.3586e+003 -8.4717e+000 2.5027e+005 -# -Range: 0-300 - -# Pb(Gly)+, Pb(C2H4NO2)+ - + 1.0000 Pb+2 + 1.0000 C2H5NO2 = Pb(C2H4NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.3086 - -delta_h +112.312 kcal/mol - -analytic -1.8673e+001 6.5915e-003 -1.1000e+003 6.3328e+000 3.8522e+004 -# -Range: 0-300 - -# Pb(Gly)2, Pb(C2H4NO2)2 - + 2.0000 C2H5NO2 + 1.0000 Pb+2 = Pb(C2H4NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -10.6968 - -delta_h +222.992 kcal/mol - -analytic 8.2909e+000 3.4522e-003 -9.2596e+003 1.1906e+000 7.2077e+005 -# -Range: 0-300 - -# Pb(Glyc)+, Pb(CH3OCO2)+ - + 1.0000 Pb+2 + 1.0000 C2H4O3 = Pb(CH3OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.5335 - -delta_h +154.267 kcal/mol - -analytic -1.4773e+001 6.3698e-004 -2.3399e+002 5.0111e+000 1.2864e+005 -# -Range: 0-300 - -# Pb(Glyc)2, Pb(CH3OCO2)2 - + 2.0000 C2H4O3 + 1.0000 Pb+2 = Pb(CH3OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -3.5873 - -delta_h +308.946 kcal/mol - -analytic 1.1096e+001 -3.0559e-003 -5.7676e+003 -1.2814e+000 7.7865e+005 -# -Range: 0-300 - -# Pb(Lac)+, Pb(CH3CH2OCO2)+ - + 1.0000 Pb+2 + 1.0000 C3H6O3 = Pb(CH3CH2OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.5833 - -delta_h +163.610 kcal/mol - -analytic -1.3871e+001 2.6871e-003 -5.0054e+002 4.4527e+000 1.9242e+005 -# -Range: 0-300 - -# Pb(Lac)2, Pb(CH3CH2OCO2)2 - + 2.0000 C3H6O3 + 1.0000 Pb+2 = Pb(CH3CH2OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -3.676 - -delta_h +327.120 kcal/mol - -analytic -4.4899e+000 -2.4870e-003 -6.4849e+003 4.8300e+000 1.0115e+006 -# -Range: 0-300 - -# Pb(Pent)+, Pb(CH3(CH2)3CO2)+ - + 1.0000 C4H9COOH + 1.0000 Pb+2 = Pb(CH3(CH2)3CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.0471 - -delta_h +133.322 kcal/mol - -analytic -2.4746e+001 5.6511e-003 -1.9305e+003 8.3485e+000 5.2061e+005 -# -Range: 0-300 - -# Pb(Pent)2, Pb(CH3(CH2)3CO2)2 - + 2.0000 C4H9COOH + 1.0000 Pb+2 = Pb(CH3(CH2)3CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.7246 - -delta_h +265.793 kcal/mol - -analytic -2.7005e+001 3.4894e-003 -1.1468e+004 1.4273e+001 1.9937e+006 -# -Range: 0-300 - -# Pb(Prop)+, Pb(CH3CH2CO2)+ - + 1.0000 C2H5COOH + 1.0000 Pb+2 = Pb(CH3CH2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.5567 - -delta_h +122.252 kcal/mol - -analytic -1.6614e+001 2.8882e-003 -8.1215e+002 5.2485e+000 2.6253e+005 -# -Range: 0-300 - -# Pb(Prop)2, Pb(CH3CH2CO2)2 - + 2.0000 C2H5COOH + 1.0000 Pb+2 = Pb(CH3CH2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.1631 - -delta_h +244.164 kcal/mol - -analytic -8.3280e+000 2.5204e-004 -6.9233e+003 5.1398e+000 1.1223e+006 -# -Range: 0-300 - -# Pentanal, CH3(CH2)3CHO - + 1.5000 C2H4 + 1.0000 CH3COOH = CH3(CH2)3CHO + 0.5000 O2 - -llnl_gamma 3.0 - log_k -514.6206 - -delta_h +67.100 kcal/mol - -analytic -2.2868e+001 -5.6572e-003 -7.1000e+003 7.5357e+000 -1.1078e+002 -# -Range: 0-300 - -# Pentanoate, C4H9COO- - + 1.0000 C4H9COOH = C4H9COO- + 1.0000 H+ - -llnl_gamma 4.0 - log_k -4.8452 - -delta_h +134.380 kcal/mol - -analytic -7.1959e+001 -2.5255e-002 1.5595e+003 2.8045e+001 2.4355e+001 -# -Range: 0-300 - -# Pentanoic_acid, C4H9COOH - + 5.0000 HCO3- + 5.0000 H+ = C4H9COOH + 6.5000 O2 - -llnl_gamma 3.0 - log_k -467.5638 - -delta_h +133.690 kcal/mol - -analytic -4.1508E+03 -7.0450E-01 -6.2821E+02 1.5740E+03 -6.3823E-01 -# -Range: 0-300 - -# Phenol, C6H5OH - + 6.0000 HCO3- + 6.0000 H+ = C6H5OH + 7.0000 O2 + 3.0000 H2O - -llnl_gamma 3.0 - log_k -503.3718 - -delta_h +36.640 kcal/mol - -analytic -4.4638E+03 -7.4406E-01 -6.3959E+02 1.6908E+03 -7.2665E-01 -# -Range: 0-300 - -# Phenylalanine, C9H11NO2 - + 4.5000 C2H5NO2 = C9H11NO2 + 3.5000 NH3 + 3.2500 O2 + 0.5000 H2O - -llnl_gamma 3.0 - log_k -715.0646 - -delta_h +110.080 kcal/mol - -analytic 4.3141e+002 9.9794e-002 -1.0397e+005 -1.5181e+002 3.1041e+006 -# -Range: 0-300 - -# Pimelate, C7H10O4-2 - + 3.5000 CH3COOH = C7H10O4-2 + 2.0000 H+ + 1.0000 H2O + 1.0000 O2 - -llnl_gamma 4.0 - log_k -4.486 - -delta_h +234.040 kcal/mol - -analytic -1.8597e+002 -7.3478e-002 -1.8772e+004 7.3883e+001 -2.9286e+002 -# -Range: 0-300 - -# Pimelic_acid, C7H12O4 - + 3.5000 CH3COOH = C7H12O4 + 1.0000 H2O + 1.0000 O2 - -llnl_gamma 3.0 - log_k -575.0718 - -delta_h +253.720 kcal/mol - -analytic -8.7817e+001 -1.7044e-002 -1.9448e+004 3.2348e+001 -3.0344e+002 -# -Range: 0-300 - -# Propanal, CH3CH2CHO - + 1.0000 CH3COOH + 0.5000 C2H4 = CH3CH2CHO + 0.5000 O2 - -llnl_gamma 3.0 - log_k -296.0849 - -delta_h +57.360 kcal/mol - -analytic -1.2713e+000 3.9198e-003 -1.1322e+004 -6.8971e-001 -1.7667e+002 -# -Range: 0-300 - -# Propane, C3H8 - + 1.5000 C2H6 + 0.2500 O2 = C3H8 + 0.5000 H2O - -llnl_gamma 3.0 - log_k -363.0881 - -delta_h +30.490 kcal/mol - -analytic -6.4646e+001 -1.3427e-002 9.8352e+003 2.3379e+001 -3.1351e+005 -# -Range: 0-300 - -#C7H8 from J.Thom - CH4 + C6H6 = C7H8 + H2 - -llnl_gamma 3.0 - log_k -7.82476 - -analytic -6.78979e1 -1.31838e-2 -1.34773e0 2.58679e1 9.83945e-1 -# -Range: 0-300 - -# Propanoate, C2H5COO- - + 1.0000 C2H5COOH = C2H5COO- + 1.0000 H+ - -llnl_gamma 4.0 - log_k -4.8892 - -delta_h +122.630 kcal/mol - -analytic -9.5201e+001 -3.2154e-002 2.0655e+003 3.7566e+001 3.2258e+001 -# -Range: 0-300 - -# C2H5COOH, C2H5COOH - + 3.0000 HCO3- + 3.0000 H+ = C2H5COOH + 3.5000 O2 - -llnl_gamma 3.0 - log_k -250.1276 - -delta_h +122.470 kcal/mol - -analytic -2.2143E+03 -3.6918E-01 -5.6115E+02 8.3892E+02 -1.6485E-01 -# -Range: 0-300 - -# Sebacate, C10H16O4-2 - + 5.0000 CH3COOH = C10H16O4-2 + 2.5000 O2 + 2.0000 H+ + 1.0000 H2O - -llnl_gamma 4.0 - log_k -4.5446 - -delta_h +246.230 kcal/mol - -analytic -2.7931e+002 -6.9587e-002 -4.8910e+004 1.0481e+002 -7.6312e+002 -# -Range: 0-300 - -# Sebacic_acid, C10H18O4 - + 5.0000 CH3COOH = C10H18O4 + 2.5000 O2 + 1.0000 H2O - -llnl_gamma 3.0 - log_k -904.7629 - -delta_h +246.000 kcal/mol - -analytic -2.2715e+002 -2.7047e-002 -4.8330e+004 8.1858e+001 -7.5408e+002 -# -Range: 0-300 - -# Serine, C3H7NO3 - + 1.5000 C2H5NO2 + 0.5000 H2O = C3H7NO3 + 0.5000 NH3 + 0.2500 O2 - -llnl_gamma 3.0 - log_k -189.3549 - -delta_h +170.800 kcal/mol - -analytic -3.4133e+001 -7.9911e-005 -6.6066e+003 1.1810e+001 -1.0308e+002 -# -Range: 0-300 - -# Sr(Ala)+, Sr(C3H6NO2)+ - + 1.0000 Sr+2 + 1.0000 C3H7NO2 = Sr(C3H6NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -9.6244 - -delta_h +247.624 kcal/mol - -analytic -1.5372e-001 6.3659e-003 -5.3387e+003 9.4940e-001 3.7366e+005 -# -Range: 0-300 - -# Sr(Ala)2, Sr(C3H6NO2)2 - + 2.0000 C3H7NO2 + 1.0000 Sr+2 = Sr(C3H6NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -19.7391 - -delta_h +363.933 kcal/mol - -analytic 2.2701e+001 5.7649e-003 -1.5582e+004 -2.6780e+000 1.3116e+006 -# -Range: 0-300 - -# Sr(But)+, Sr(CH3(CH2)2CO2)+ - + 1.0000 Sr+2 + 1.0000 C3H7COOH = Sr(CH3(CH2)2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.6876 - -delta_h +257.725 kcal/mol - -analytic 3.9063e+000 4.6099e-003 -3.2349e+003 -1.7801e+000 4.7152e+005 -# -Range: 0-300 - -# Sr(But)2, Sr(CH3(CH2)2CO2)2 - + 2.0000 C3H7COOH + 1.0000 Sr+2 = Sr(CH3(CH2)2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -9.716 - -delta_h +383.903 kcal/mol - -analytic -7.5798e+000 1.7956e-003 -9.0604e+003 4.8509e+000 1.3997e+006 -# -Range: 0-300 - -# Sr(For)+, Sr(CHO2)+ - + 1.0000 Sr+2 + 1.0000 HCOOH = Sr(CHO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.3632 - -delta_h +233.167 kcal/mol - -analytic -7.7187e+000 -1.6025e-003 -1.4308e+002 2.3659e+000 4.1368e+004 -# -Range: 0-300 - -# Sr(For)2, Sr(CHO2)2 - + 2.0000 HCOOH + 1.0000 Sr+2 = Sr(CHO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.2857 - -delta_h +335.415 kcal/mol - -analytic 1.2568e+001 -4.6580e-003 -2.6237e+003 -4.2863e+000 2.6225e+005 -# -Range: 0-300 - -# Sr(Gly)+, Sr(C2H4NO2)+ - + 1.0000 Sr+2 + 1.0000 C2H5NO2 = Sr(C2H4NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -8.8283 - -delta_h +239.307 kcal/mol - -analytic 2.8102e+000 7.4407e-003 -4.2138e+003 -8.6544e-001 2.1596e+005 -# -Range: 0-300 - -# Sr(Gly)2, Sr(C2H4NO2)2 - + 2.0000 C2H5NO2 + 1.0000 Sr+2 = Sr(C2H4NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -18.1764 - -delta_h +347.420 kcal/mol - -analytic -2.8343e+001 -5.5578e-004 -9.2508e+003 1.3694e+001 6.6583e+005 -# -Range: 0-300 - -# Sr(Glyc)+, Sr(CH3OCO2)+ - + 1.0000 Sr+2 + 1.0000 C2H4O3 = Sr(CH3OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.5237 - -delta_h +286.078 kcal/mol - -analytic -6.4133e+000 5.4199e-004 -1.3135e+003 2.2348e+000 2.3242e+005 -# -Range: 0-300 - -# Sr(Glyc)2, Sr(CH3OCO2)2 - + 2.0000 C2H4O3 + 1.0000 Sr+2 = Sr(CH3OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.3971 - -delta_h +441.109 kcal/mol - -analytic 1.3286e+001 -5.0599e-004 -5.9522e+003 -3.1148e+000 8.1395e+005 -# -Range: 0-300 - -# Sr(Lac)+, Sr(CH3CH2OCO2)+ - + 1.0000 Sr+2 + 1.0000 C3H6O3 = Sr(CH3CH2OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.8829 - -delta_h +295.697 kcal/mol - -analytic -4.0445e+000 1.9255e-003 -1.8712e+003 1.2700e+000 3.3209e+005 -# -Range: 0-300 - -# Sr(Lac)2, Sr(CH3CH2OCO2)2 - + 2.0000 C3H6O3 + 1.0000 Sr+2 = Sr(CH3CH2OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -6.0561 - -delta_h +459.421 kcal/mol - -analytic -1.4468e+001 -2.5097e-003 -6.2399e+003 7.4467e+000 1.0390e+006 -# -Range: 0-300 - -# Sr(Pent)+, Sr(CH3(CH2)3CO2)+ - Sr+2 + 1.0000 C4H9COOH = Sr(CH3(CH2)3CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -5.0475 - -delta_h +263.755 kcal/mol - -analytic -1.6735e+001 4.7533e-003 -3.4901e+003 5.9457e+000 6.4784e+005 -# -Range: 0-300 - -# Sr(Pent)2, Sr(CH3(CH2)3CO2)2 - + 2.0000 C4H9COOH + 1.0000 Sr+2 = Sr(CH3(CH2)3CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -10.3845 - -delta_h +395.432 kcal/mol - -analytic -2.1107e+001 5.6147e-003 -1.2655e+004 1.1415e+001 2.0705e+006 -# -Range: 0-300 - -# Sr(Prop)+, Sr(CH3CH2CO2)+ - Sr+2 + 1.0000 C2H5COOH = Sr(CH3CH2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.6568 - -delta_h +252.548 kcal/mol - -analytic -6.6891e+000 2.5586e-003 -2.4244e+003 2.0550e+000 3.8526e+005 -# -Range: 0-300 - -# Sr(Prop)2, Sr(CH3CH2CO2)2 - + 2.0000 C2H5COOH + 1.0000 Sr+2 = Sr(CH3CH2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -9.653 - -delta_h +374.036 kcal/mol - -analytic -1.7427e+001 2.9439e-004 -7.2086e+003 7.6682e+000 1.1487e+006 -# -Range: 0-300 - -# Suberate, C8H12O4-2 - + 4.0000 CH3COOH = C8H12O4-2 + 2.0000 H+ + 1.5000 O2 + 1.0000 H2O - -llnl_gamma 4.0 - log_k -4.508 - -delta_h +238.130 kcal/mol - -analytic -2.2072e+002 -7.2265e-002 -2.8694e+004 8.5459e+001 -4.4768e+002 -# -Range: 0-300 - -# Suberic_acid, C8H14O4 - + 4.0000 CH3COOH = C8H14O4 + 1.5000 O2 + 1.0000 H2O - -llnl_gamma 3.0 - log_k -685.0983 - -delta_h +237.760 kcal/mol - -analytic 3.0275e+002 3.8350e-002 -5.4760e+004 -1.0730e+002 1.5882e+006 -# -Range: 0-300 - -# Succinate, C4H4O4-2 - + 2.0000 CH3COOH + 0.5000 O2 = C4H4O4-2 + 2.0000 H+ + 1.0000 H2O - -llnl_gamma 4.0 - log_k -4.2075 - -delta_h +217.350 kcal/mol - -analytic -1.2187e+002 -7.6672e-002 1.1465e+004 5.2865e+001 1.7894e+002 -# -Range: 0-300 - -# Succinic_acid, C4H6O4 - + 4.0000 HCO3- + 4.0000 H+ = C4H6O4 + 1.0000 H2O + 3.5000 O2 - -llnl_gamma 3.0 - log_k -249.5736 - -delta_h +218.000 kcal/mol - -analytic -2.2145E+03 -3.6471E-01 -5.6115E+02 8.3864E+02 -1.6486E-01 -# -Range: 0-300 - -# Threonine, C4H9NO3 - + 2.0000 C2H5NO2 + 1.0000 H2O = C4H9NO3 + 1.0000 NH3 + 1.0000 O2 - -llnl_gamma 3.0 - log_k -298.0694 - -delta_h +179.100 kcal/mol - -analytic -1.0140e+002 6.4713e-004 -2.0508e+004 3.5679e+001 -3.1999e+002 -# -Range: 0-300 - -# Toluene, C6H5CH3 - + 7.0000 HCO3- + 7.0000 H+ = C6H5CH3 + 9.0000 O2 + 3.0000 H2O - -llnl_gamma 3.0 - log_k -643.4017 - -delta_h -3.28 kcal/mol - -analytic -5.7062E+03 -9.5845E-01 -6.8381E+02 2.1621E+03 -1.1553E+00 -# -Range: 0-300 - -# Tryptophan, C11H12N2O2 - + 5.5000 C2H5NO2 = C11H12N2O2 + 3.5000 NH3 + 3.2500 O2 + 2.5000 H2O - -llnl_gamma 3.0 - log_k -821.6547 - -delta_h +97.800 kcal/mol - -analytic 2.0110e+002 6.4379e-002 -9.2769e+004 -6.7930e+001 2.8656e+006 -# -Range: 0-300 - -# Tyrosine, C9H11NO3 - + 4.5000 C2H5NO2 = C9H11NO3 + 3.5000 NH3 + 2.7500 O2 + 0.5000 H2O - -llnl_gamma 3.0 - log_k -685.9078 - -delta_h +157.400 kcal/mol - -analytic 8.1097e+001 4.1846e-002 -7.3858e+004 -2.6230e+001 1.7718e+006 -# -Range: 0-300 - -# Undecanoate, C11H21O2- - + 5.5000 CH3COOH = C11H21O2- + 4.5000 O2 + 1.0000 H+ - -llnl_gamma 4.0 - log_k -4.9258 - -delta_h +168.370 kcal/mol - -analytic -3.4192e+002 -1.8413e-002 -8.6143e+004 1.1839e+002 -1.3441e+003 -# -Range: 0-300 - -# Undecanoic_acid, C11H22O2 - + 5.5000 CH3COOH = C11H22O2 + 4.5000 O2 - -llnl_gamma 3.0 - log_k -1119.4911 - -delta_h +167.870 kcal/mol - -analytic -3.8607e+002 -2.5829e-002 -8.4510e+004 1.3690e+002 -1.3186e+003 -# -Range: 0-300 - -# Urea, (NH2)2CO - + 2.0000 NH3 + 1.0000 HCO3- + 1.0000 H+ = (NH2)2CO + 2.0000 H2O - -llnl_gamma 3.0 - log_k -NH3(aq) - -delta_h +48.720 kcal/mol - -analytic 1.0904e+002 3.5979e-002 -6.9287e+002 -4.4776e+001 -1.0844e+001 -# -Range: 0-300 - -# Valine, C5H11NO2 - + 2.5000 C2H5NO2 + 1.5000 H2O = C5H11NO2 + 2.2500 O2 + 1.5000 NH3 - -llnl_gamma 3.0 - log_k +8.7263 - -delta_h +147.300 kcal/mol - -analytic 3.7382e+001 2.7415e-002 -5.6188e+004 -1.2674e+001 1.1178e+006 -# -Range: 0-300 - -# Yb(But)+2, Yb(CH3(CH2)2CO2)+2 - + 1.0000 Yb+3 + 1.0000 C3H7COOH = Yb(CH3(CH2)2CO2)+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.1382 - -delta_h +291.999 kcal/mol - -analytic -1.2860e+001 1.7057e-003 -2.0611e+003 4.3737e+000 5.6186e+005 -# -Range: 0-300 - -# Yb(But)2+, Yb(CH3(CH2)2CO2)2+ - + 2.0000 C3H7COOH + 1.0000 Yb+3 = Yb(CH3(CH2)2CO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.046 - -delta_h +422.417 kcal/mol - -analytic -2.4830e+001 4.6045e-003 -5.0416e+003 8.6785e+000 1.2339e+006 -# -Range: 0-300 - -# Yb(For)+2, Yb(CHO2)+2 - + 1.0000 Yb+3 + 1.0000 HCOOH = Yb(CHO2)+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.0533 - -delta_h +265.749 kcal/mol - -analytic -4.3955e+000 -1.0863e-003 -2.9561e+002 1.0868e+000 1.7552e+005 -# -Range: 0-300 - -# Yb(For)2+, Yb(CHO2)2+ - + 2.0000 HCOOH + 1.0000 Yb+3 = Yb(CHO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -2.8858 - -delta_h +370.998 kcal/mol - -analytic 1.6276e+000 -3.1580e-003 -1.1548e+002 -2.0889e+000 1.7727e+005 -# -Range: 0-300 - -# Yb(Pent)+2, Yb(CH3(CH2)3CO2)+2 - Yb+3 + 1.0000 C4H9COOH = Yb(CH3(CH2)3CO2)+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.1675 - -delta_h +298.479 kcal/mol - -analytic -2.3047e+001 2.8250e-003 -2.9411e+003 8.5036e+000 7.8951e+005 -# -Range: 0-300 - -# Yb(Pent)2+, Yb(CH3(CH2)3CO2)2+ - + 2.0000 C4H9COOH + 1.0000 Yb+3 = Yb(CH3(CH2)3CO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.1142 - -delta_h +434.659 kcal/mol - -analytic -5.2700e+001 8.2187e-003 -7.2378e+003 1.9860e+001 1.8060e+006 -# -Range: 0-300 - -# Yb(Prop)+2, Yb(CH3CH2CO2)+2 - Yb+3 + 1.0000 C2H5COOH = Yb(CH3CH2CO2)+2 + 1.0000 H+ - -llnl_gamma 3.0 - log_k -2.3266 - -delta_h +286.522 kcal/mol - -analytic -6.7242e+000 2.3108e-003 -2.1680e+003 2.0842e+000 5.1913e+005 -# -Range: 0-300 - -# Yb(Prop)2+, Yb(CH3CH2CO2)2+ - + 2.0000 C2H5COOH + 1.0000 Yb+3 = Yb(CH3CH2CO2)2+ + 2.0000 H+ - -llnl_gamma 3.0 - log_k -5.3927 - -delta_h +412.078 kcal/mol - -analytic -3.8113e+001 1.3154e-003 -3.4162e+003 1.3121e+001 1.0092e+006 -# -Range: 0-300 - -# Zn(Ala)+, Zn(C3H6NO2)+ - + 1.0000 Zn+2 + 1.0000 C3H7NO2 = Zn(C3H6NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -5.4147 - -delta_h +161.048 kcal/mol - -analytic 1.2672e+001 6.7980e-003 -5.1247e+003 -3.5266e+000 5.1686e+005 -# -Range: 0-300 - -# Zn(Ala)2, Zn(C3H6NO2)2 - + 2.0000 C3H7NO2 + 1.0000 Zn+2 = Zn(C3H6NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -11.4994 - -delta_h +283.389 kcal/mol - -analytic 4.4585e+001 1.2039e-002 -1.3805e+004 -1.1865e+001 1.4233e+006 -# -Range: 0-300 - -# Zn(But)+, Zn(CH3(CH2)2CO2)+ - + 1.0000 Zn+2 + 1.0000 C3H7COOH = Zn(CH3(CH2)2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.3682 - -delta_h +166.539 kcal/mol - -analytic -1.6276e+001 9.6461e-004 -1.8810e+003 5.4462e+000 4.8622e+005 -# -Range: 0-300 - -# Zn(But)2, Zn(CH3(CH2)2CO2)2 - + 2.0000 C3H7COOH + 1.0000 Zn+2 = Zn(CH3(CH2)2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.2956 - -delta_h +296.560 kcal/mol - -analytic -1.3591e+001 4.2586e-003 -7.2513e+003 5.4031e+000 1.4233e+006 -# -Range: 0-300 - -# Zn(For)+, Zn(CHO2)+ - + 1.0000 Zn+2 + 1.0000 HCOOH = Zn(CHO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.9828 - -delta_h +140.698 kcal/mol - -analytic -1.1156e+001 -2.5823e-003 7.3093e+001 3.4639e+000 1.0064e+005 -# -Range: 0-300 - -# Zn(For)2, Zn(CHO2)2 - + 2.0000 HCOOH + 1.0000 Zn+2 = Zn(CHO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -4.5857 - -delta_h +245.726 kcal/mol - -analytic -7.1074e-001 -3.3021e-003 -9.4938e+002 -1.0872e+000 2.6619e+005 -# -Range: 0-300 - -# Zn(Gly)+, Zn(C2H4NO2)+ - + 1.0000 Zn+2 + 1.0000 C2H5NO2 = Zn(C2H4NO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -4.398 - -delta_h +151.609 kcal/mol - -analytic 1.4690e+000 6.2605e-003 -3.1652e+003 -1.7705e-001 2.9610e+005 -# -Range: 0-300 - -# Zn(Gly)2, Zn(C2H4NO2)2 - + 2.0000 C2H5NO2 + 1.0000 Zn+2 = Zn(C2H4NO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -9.7468 - -delta_h +267.408 kcal/mol - -analytic -6.7271e+000 5.7103e-003 -7.3518e+003 4.5306e+000 7.7709e+005 -# -Range: 0-300 - -# Zn(Glyc)+, Zn(CH3OCO2)+ - + 1.0000 Zn+2 + 1.0000 C2H4O3 = Zn(CH3OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.4536 - -delta_h +194.550 kcal/mol - -analytic -1.1705e+001 -8.4917e-004 -8.2775e+002 4.0500e+000 2.9059e+005 -# -Range: 0-300 - -# Zn(Glyc)2, Zn(CH3OCO2)2 - + 2.0000 C2H4O3 + 1.0000 Zn+2 = Zn(CH3OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -3.4371 - -delta_h +353.139 kcal/mol - -analytic 6.2982e-001 9.5823e-004 -3.9294e+003 -1.4746e-001 8.1885e+005 -# -Range: 0-300 - -# Zn(Lac)+, Zn(CH3CH2OCO2)+ - + 1.0000 Zn+2 + 1.0000 C3H6O3 = Zn(CH3CH2OCO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -1.6632 - -delta_h +200.064 kcal/mol - -analytic -1.2294e+001 1.2442e-003 -1.5665e+003 4.7943e+000 3.2586e+005 -# -Range: 0-300 - -# Zn(Lac)2, Zn(CH3CH2OCO2)2 - + 2.0000 C3H6O3 + 1.0000 Zn+2 = Zn(CH3CH2OCO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -3.9758 - -delta_h +364.728 kcal/mol - -analytic 3.8951e+000 2.6835e-003 -7.1188e+003 1.0404e+000 1.1253e+006 -# -Range: 0-300 - -# Zn(Pent)+, Zn(CH3(CH2)3CO2)+ - Zn+2 + 1.0000 C4H9COOH = Zn(CH3(CH2)3CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.4869 - -delta_h +172.896 kcal/mol - -analytic -1.1325e+001 4.3921e-003 -3.5920e+003 4.0708e+000 7.5781e+005 -# -Range: 0-300 - -# Zn(Pent)2, Zn(CH3(CH2)3CO2)2 - + 2.0000 C4H9COOH + 1.0000 Zn+2 = Zn(CH3(CH2)3CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.5243 - -delta_h +308.690 kcal/mol - -analytic -1.2210e+001 1.0120e-002 -1.1570e+004 6.6228e+000 2.1453e+006 -# -Range: 0-300 - -# Zn(Prop)+, Zn(CH3CH2CO2)+ - Zn+2 + 1.0000 C2H5COOH = Zn(CH3CH2CO2)+ + 1.0000 H+ - -llnl_gamma 3.0 - log_k -3.6467 - -delta_h +160.939 kcal/mol - -analytic -1.2581e+001 1.0699e-003 -1.9249e+003 4.0899e+000 4.4167e+005 -# -Range: 0-300 - -# Zn(Prop)2, Zn(CH3CH2CO2)2 - + 2.0000 C2H5COOH + 1.0000 Zn+2 = Zn(CH3CH2CO2)2 + 2.0000 H+ - -llnl_gamma 3.0 - log_k -7.8029 - -delta_h +285.915 kcal/mol - -analytic 5.0990e+000 6.7118e-003 -7.1926e+003 -2.0259e+000 1.2684e+006 -# -Range: 0-300 - -# a-Aminobutyric_acid, C4H9NO2 - + 2.0000 C2H5NO2 + 1.0000 H2O = C4H9NO2 + 1.5000 O2 + 1.0000 NH3 - -llnl_gamma 3.0 - log_k +8.5576 - -delta_h +138.180 kcal/mol - -analytic -1.4296e+002 -5.6984e-004 -2.6712e+004 5.0706e+001 -4.1677e+002 -# -Range: 0-300 - -# m-Toluate, C8H7O2- - + 4.0000 CH3COOH = C8H7O2- + 4.0000 H2O + 1.0000 H+ + 1.0000 O2 - -llnl_gamma 4.0 - log_k -1.9205 - -delta_h +95.350 kcal/mol - -analytic -2.1064e+002 -3.7768e-002 -1.3591e+004 7.7265e+001 -2.1201e+002 -# -Range: 0-300 - -# m-Toluic_acid, C8H8O2 - + 4.0000 CH3COOH = C8H8O2 + 4.0000 H2O + 1.0000 O2 - -llnl_gamma 3.0 - log_k +2.3383 - -delta_h +95.450 kcal/mol - -analytic -3.8131e+000 4.7688e-003 -2.3805e+004 1.3041e+000 6.1998e+005 -# -Range: 0-300 - -# n-Butane, C4H10 - + 2.0000 C2H6 + 0.5000 O2 = C4H10 + 1.0000 H2O - -llnl_gamma 3.0 - log_k -471.7285 - -delta_h +36.230 kcal/mol - -analytic -4.4434e+001 -1.4522e-002 1.4959e+004 1.6121e+001 -3.5819e+005 -# -Range: 0-300 - -# n-Butylbenzene, C6H5C4H9 -# + 6.0000 H2O + 5.0000 C6H6 = C6H5C4H9 + 3.0000 O2 -# does not balance -# -llnl_gamma 3.0 -# log_k -2907.6453 -# -delta_h +14.430 kcal/mol -# -analytic 6.8560e+002 1.2459e-001 -1.0249e+005 -2.5284e+002 2.3594e+006 -# -Range: 0-300 - -# n-Heptane, C7H16 - + 3.5000 C2H6 + 1.2500 O2 = C7H16 + 2.5000 H2O - -llnl_gamma 3.0 - log_k -797.97 - -delta_h +52.950 kcal/mol - -analytic 1.3006e+002 -5.8965e-003 2.2874e+004 -4.5370e+001 3.5689e+002 -# -Range: 0-300 - -# n-Heptylbenzene, C6H5C7H15 -# + 10.5000 H2O + 6.5000 C6H6 = C6H5C7H15 + 5.2500 O2 -# does not balance -# -llnl_gamma 3.0 -# log_k -3886.5811 -# -delta_h +31.090 kcal/mol -# -analytic -5.4784e+001 4.5194e-002 -1.1072e+005 8.0680e+000 -1.7277e+003 -# -Range: 0-300 - -# n-Hexane, C6H14 - + 3.0000 C2H6 + 1.0000 O2 = C6H14 + 2.0000 H2O - -llnl_gamma 3.0 - log_k -689.2922 - -delta_h +47.400 kcal/mol - -analytic -8.0362e+001 -2.8468e-002 2.9412e+004 2.9224e+001 -7.0316e+005 -# -Range: 0-300 - -# n-Hexylbenzene, C6H5C6H13 - + 3.0000 H2O + 2.0000 C6H6 = C6H5C6H13 + 1.5000 O2 - -llnl_gamma 3.0 - log_k -1186.7026 - -delta_h +25.590 kcal/mol - -analytic 3.5759e+002 6.3935e-002 -5.2899e+004 -1.3148e+002 1.2819e+006 -# -Range: 0-300 - -# n-Octane, C8H18 - + 4.0000 C2H6 + 1.5000 O2 = C8H18 + 3.0000 H2O - -llnl_gamma 3.0 - log_k -906.6918 - -delta_h +59.410 kcal/mol - -analytic -1.4173e+002 -4.6447e-002 4.5236e+004 5.1540e+001 -1.1006e+006 -# -Range: 0-300 - -# n-Octylbenzene, C6H5C8H17 -# + 12.0000 H2O + 7.0000 C6H6 = C6H5C8H17 + 6.0000 O2 -# does not balance -# -llnl_gamma 3.0 -# log_k -4212.6143 -# -delta_h +36.760 kcal/mol -# -analytic 1.2934e+003 2.4001e-001 -2.0402e+005 -4.7773e+002 4.5749e+006 -# -Range: 0-300 - -# n-Pentane, C5H12 - + 2.5000 C2H6 + 0.7500 O2 = C5H12 + 1.5000 H2O - -llnl_gamma 3.0 - log_k -580.4385 - -delta_h +41.560 kcal/mol - -analytic 8.4526e+000 -1.1432e-002 1.8295e+004 -2.8367e+000 -3.1818e+005 -# -Range: 0-300 - -# n-Pentylbenzene, C6H5C5H11 -# + 7.5000 H2O + 5.5000 C6H6 = C6H5C5H11 + 3.7500 O2 -# does not balance -# -llnl_gamma 3.0 -# log_k -3233.7886 -# -delta_h +19.750 kcal/mol -# -analytic 2.9887e+002 7.2990e-002 -9.9228e+004 -1.1348e+002 1.3767e+006 -# -Range: 0-300 - -# n-Propylbenzene, C6H5C3H7 - + 1.5000 H2O + 1.5000 C6H6 = C6H5C3H7 + 0.7500 O2 - -llnl_gamma 3.0 - log_k -860.618 - -delta_h +8.630 kcal/mol - -analytic -4.3768e+000 6.3937e-003 -1.5469e+004 0.0000e+000 0.0000e+000 -# -Range: 0-300 - -# o-Toluate, C8H7O2- - + 4.0000 CH3COOH = C8H7O2- + 4.0000 H2O + 1.0000 H+ + 1.0000 O2 - -llnl_gamma 4.0 - log_k -3.9069 - -delta_h +94.070 kcal/mol - -analytic -2.2819e+002 -3.9422e-002 -1.3238e+004 8.3275e+001 -2.0650e+002 -# -Range: 0-300 - -# o-Toluic_acid, C8H8O2 - + 4.0000 CH3COOH = C8H8O2 + 4.0000 H2O + 1.0000 O2 - -llnl_gamma 3.0 - log_k -642.3493 - -delta_h +92.640 kcal/mol - -analytic 8.2106e+001 1.6240e-002 -2.9218e+004 -2.9637e+001 8.9007e+005 -# -Range: 0-300 - -# p-Toluate, C8H7O2- - + 4.0000 CH3COOH = C8H7O2- + 4.0000 H2O + 1.0000 H+ + 1.0000 O2 - -llnl_gamma 4.0 - log_k -1.6786 - -delta_h +96.160 kcal/mol - -analytic -1.9101e+002 -3.8193e-002 -1.4330e+004 7.0482e+001 -2.2355e+002 -# -Range: 0-300 - -# p-Toluic_acid, C8H8O2 - + 4.0000 CH3COOH = C8H8O2 + 4.0000 H2O + 1.0000 O2 - -llnl_gamma 3.0 - log_k +2.6901 - -delta_h +96.190 kcal/mol - -analytic 1.5812e+002 2.5784e-002 -3.1991e+004 -5.7207e+001 1.0103e+006 -# -Range: 0-300 - -# U(But)+2, U(CH3(CH2)2CO2)+2 - 1.0000 U+3 + 1.0000 C3H7COOH = U(CH3(CH2)2CO2)+2 + 1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1498 - -delta_h 248.272 kcal/mol - -analytic 4.8984E+01 2.2598E-02 -5.4323E+02 -2.2538E+01 1.6299E+00 -# -Range: 0-300 - -# U(But)2+, U(CH3(CH2)2CO2)2+ - 1.0000 U+3 + 2.0000 C3H7COOH = U(CH3(CH2)2CO2)2+ + 2.0000 H+ - -llnl_gamma 4.5 - log_k -4.9572 - -delta_h 377.871 kcal/mol - -analytic 7.8056E+01 4.5216E-02 -5.4214E+02 -3.8131E+01 1.6380E+00 -# -Range: 0-300 - -# U(For)+2, U(CHO2)+2 - 1.0000 U+3 + 1.0000 HCOOH = U(CHO2)+2 + 1.0000 H+ - -llnl_gamma 4.5 - log_k -1.0650 - -delta_h 221.372 kj/mol - -analytic 3.4236E+01 7.8056E+01 4.5216E-02 -5.4214E+02 -3.8131E+01 1.6380E+00 -# -Range: 0-300 - -# U(For)2+, U(CHO2)2+ - 1.0000 U+3 + 2.0000 HCOOH = U(CHO2)2+ + 2.0000 H+ - -llnl_gamma 4.0 - log_k -2.2378 - -delta_h 325.914 kj/mol - -analytic 3.4236E+01 3.5094E-03 -5.4368E+02 -1.4325E+01 1.6273E+00 -# -Range: 0-300 - -# U(Pent)+2, U(CH3(CH2)3CO2)+2 - 1.0000 U+3 + 1.0000 C4H9COOH = U(CH3(CH2)3CO2)+2 + 1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1791 - -delta_h 254.046 kj/mol - -analytic 6.0007E+01 3.2104E-02 -5.4273E+02 -2.8145E+01 1.6343E+00 -# -Range: 0-300 - -# U(Prop)+2, U(CH3CH2CO2)+2 - 1.0000 U+3 + 1.0000 C2H5COOH = U(CH3CH2CO2)+2 + 1.0000 H+ - -llnl_gamma 4.5 - log_k -2.2084 - -delta_h 242.291 kj/mol - -analytic 4.5186E+01 2.0784E-02 -5.4323E+02 -2.0809E+01 1.6310E+00 -# -Range: 0-300 - -# U(Prop)2+, U(CH3CH2CO2)2+ - 1.0000 U+3 + 2.0000 C2H5COOH = U(CH3CH2CO2)2+ + 2.0000 H+ - -llnl_gamma 4.0 - log_k -5.3149 - -delta_h 366.155 kj/mol - -analytic 6.7383E+01 3.8662E-02 -5.4239E+02 -3.3175E+01 1.6373E+00 -# -Range: 0-300 - -3.0000 H+ + 1.0000 HCO3- + 1.0000 SO4-2 = CH3SH + 3.5 O2 # Methanethiol - -llnl_gamma 3.0 - log_k -242.047 # from supcrt92 -# Enthalpy of formation: -11.650 kcal/mol # from supcrt92 - -delta_H 360498 cal/mol # from supcrt92 - -analytic -2.03598E+03 -2.78169E-01 -6.13323E+02 7.59329E+02 1.13938E+00 -# -Range: 0-350 - -4.0000 H+ + 2.0000 HCO3- + 1.0000 SO4-2 = C2H5SH + 5.0 O2 # Ethanethiol - -llnl_gamma 3.0 - log_k -349.764 # from supcrt92 -# Enthalpy of formation: -17.820 kcal/mol # from supcrt92 - -delta_H 514876 cal/mol # from supcrt92 - -analytic -2.96331E+03 -4.22107E-01 -1.00319E+02 1.10720E+03 2.90155E-01 -# -Range: 0-350 - -5.0000 H+ + 3.0000 HCO3- + 1.0000 SO4-2 = C3H7SH + 6.5 O2 # Propanethiol - -llnl_gamma 3.0 - log_k -458.757 # from supcrt92 -# Enthalpy of formation: -23.320 kcal/mol # from supcrt92 - -delta_H 669924 cal/mol # from supcrt92 - -analytic -3.88470E+03 -5.63950E-01 -1.31641E+02 1.45265E+03 6.67442E-02 -# -Range: 0-350 - -6.0000 H+ + 4.0000 HCO3- + 1.0000 SO4-2 = C4H9SH + 8.0 O2 # Butanethiol - -llnl_gamma 3.0 - log_k -567.530 # from supcrt92 -# Enthalpy of formation: -28.630 kcal/mol # from supcrt92 - -delta_H 825162 cal/mol # from supcrt92 - -analytic -4.80261E+03 -7.05108E-01 -1.62840E+02 1.79669E+03 -1.59893E-01 -# -Range: 0-350 - -7.0000 H+ + 5.0000 HCO3- + 1.0000 SO4-2 = C5H11SH + 9.5 O2 # Pentanethiol - -llnl_gamma 3.0 - log_k -676.604 # from supcrt92 -# Enthalpy of formation: -34.530 kcal/mol # from supcrt92 - -delta_H 979810 cal/mol # from supcrt92 - -analytic -5.71970E+03 -8.46049E-01 -1.94013E+02 2.14026E+03 -3.61870E-01 -# -Range: 0-350 - -8.0000 H+ + 6.0000 HCO3- + 1.0000 SO4-2 = C6H13SH + 11.0 O2 # Hexanethiol - -llnl_gamma 3.0 - log_k -785.084 # from supcrt92 -# Enthalpy of formation: -40.200 kcal/mol # from supcrt92 - -delta_H 1134688 cal/mol # from supcrt92 - -analytic -6.63401E+03 -9.86521E-01 -2.25089E+02 2.48288E+03 -5.76590E-01 -# -Range: 0-350 - -9.0000 H+ + 7.0000 HCO3- + 1.0000 SO4-2 = C7H15SH + 12.5 O2 # Heptanethiol - -llnl_gamma 3.0 - log_k -893.762 # from supcrt92 -# Enthalpy of formation: -45.870 kcal/mol # from supcrt92 - -delta_H 1289566 cal/mol # from supcrt92 - -analytic -7.55009E+03 -1.12735E+00 -2.56223E+02 2.82618E+03 -8.06879E-01 -# -Range: 0-350 - -10.0000 H+ + 8.0000 HCO3- + 1.0000 SO4-2 = C8H17SH + 14.0 O2 # Octanethiol - -llnl_gamma 3.0 - log_k -1002.439 # from supcrt92 -# Enthalpy of formation: -51.540 kcal/mol # from supcrt92 - -delta_H 1444444 cal/mol # from supcrt92 - -analytic -8.46618E+03 -1.26818E+00 -2.87362E+02 3.16949E+03 -1.03755E+00 -# -Range: 0-350 - -11.0000 H+ + 9.0000 HCO3- + 1.0000 SO4-2 = C9H19SH + 15.5 O2 # Nonanethiol - -llnl_gamma 3.0 - log_k -1111.117 # from supcrt92 -# Enthalpy of formation: -57.210 kcal/mol # from supcrt92 - -delta_H 1599322 cal/mol # from supcrt92 - -analytic -9.38233E+03 -1.40904E+00 -3.18508E+02 3.51283E+03 -1.24321E+00 -# -Range: 0-350 - -12.0000 H+ + 10.0000 HCO3- + 1.0000 SO4-2 = C10H21SH + 17.0 O2 # Decanethiol - -llnl_gamma 3.0 - log_k -1219.795 # from supcrt92 -# Enthalpy of formation: -62.880 kcal/mol # from supcrt92 - -delta_H 1754200 cal/mol # from supcrt92 - -analytic -1.02985E+04 -1.54990E+00 -3.49643E+02 3.85617E+03 -1.48034E+00 -# -Range: 0-350 - -PHASES - -Toluene(l) # from J.Thom - C7H8 = C7H8 - log_k -2.2639168374931 - -analytic 1.9804E+01 2.0653E-02 1.5436E+00 -1.1409E+01 2.8885E-03 - -Toluene(g) # from J.Thom - C7H8 = C7H8 - log_k -.67116 - -analytic 7.43133e1 3.42616e-2 2.40651e0 -3.44352e1 -4.36135e0 - -CH4(g) # from J.Thom - CH4 = CH4 - log_k -2.8502 - -delta_H -13.0959 kJ/mol # Calculated enthalpy of reaction CH4(g) - -analytic -2.4027e+001 4.7146e-003 3.7227e+002 6.4264e+000 2.3362e+005 - -#################################### - -#End of data entered Feb. 4, 2011 - -################################# - -# 1122 minerals - -(UO2)2As2O7 - (UO2)2As2O7 +2.0000 H+ +1.0000 H2O = + 2.0000 H2AsO4- + 2.0000 UO2++ - log_k 7.7066 - -delta_H -145.281 kJ/mol # Calculated enthalpy of reaction (UO2)2As2O7 -# Enthalpy of formation: -3426 kJ/mol - -analytic -1.6147e+002 -6.3487e-002 1.0052e+004 6.2384e+001 1.5691e+002 -# -Range: 0-300 - -(UO2)2Cl3 - (UO2)2Cl3 = + 1.0000 UO2+ + 1.0000 UO2++ + 3.0000 Cl- - log_k 12.7339 - -delta_H -140.866 kJ/mol # Calculated enthalpy of reaction (UO2)2Cl3 -# Enthalpy of formation: -2404.5 kJ/mol - -analytic -2.3895e+002 -9.2925e-002 1.1722e+004 9.6999e+001 1.8298e+002 -# -Range: 0-300 - -(UO2)2P2O7 - (UO2)2P2O7 +1.0000 H2O = + 2.0000 HPO4-- + 2.0000 UO2++ - log_k -14.6827 - -delta_H -103.726 kJ/mol # Calculated enthalpy of reaction (UO2)2P2O7 -# Enthalpy of formation: -4232.6 kJ/mol - -analytic -3.4581e+002 -1.3987e-001 1.0703e+004 1.3613e+002 1.6712e+002 -# -Range: 0-300 - -(UO2)3(AsO4)2 - (UO2)3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 UO2++ - log_k 9.3177 - -delta_H -186.72 kJ/mol # Calculated enthalpy of reaction (UO2)3(AsO4)2 -# Enthalpy of formation: -4689.4 kJ/mol - -analytic -1.9693e+002 -7.3236e-002 1.2936e+004 7.4631e+001 2.0192e+002 -# -Range: 0-300 - -(UO2)3(PO4)2 - (UO2)3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 UO2++ - log_k -14.0241 - -delta_H -149.864 kJ/mol # Calculated enthalpy of reaction (UO2)3(PO4)2 -# Enthalpy of formation: -5491.3 kJ/mol - -analytic -3.6664e+002 -1.4347e-001 1.3486e+004 1.4148e+002 2.1054e+002 -# -Range: 0-300 - -(UO2)3(PO4)2:4H2O - (UO2)3(PO4)2:4H2O +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 UO2++ + 4.0000 H2O - log_k -27.0349 - -delta_H -45.4132 kJ/mol # Calculated enthalpy of reaction (UO2)3(PO4)2:4H2O -# Enthalpy of formation: -6739.1 kJ/mol - -analytic -1.5721e+002 -4.1375e-002 5.2046e+003 5.0531e+001 8.8434e+001 -# -Range: 0-200 - -(VO)3(PO4)2 - (VO)3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 VO++ - log_k 48.7864 - -delta_H 0 # Not possible to calculate enthalpy of reaction (VO)3(PO4)2 -# Enthalpy of formation: 0 kcal/mol - -Acanthite - Ag2S +1.0000 H+ = + 1.0000 HS- + 2.0000 Ag+ - log_k -36.0346 - -delta_H 226.982 kJ/mol # Calculated enthalpy of reaction Acanthite -# Enthalpy of formation: -7.55 kcal/mol - -analytic -1.6067e+002 -4.7139e-002 -7.4522e+003 6.6140e+001 -1.1624e+002 -# -Range: 0-300 - -Afwillite - Ca3Si2O4(OH)6 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 Ca++ + 6.0000 H2O - log_k 60.0452 - -delta_H -316.059 kJ/mol # Calculated enthalpy of reaction Afwillite -# Enthalpy of formation: -1143.31 kcal/mol - -analytic 1.8353e+001 1.9014e-003 1.8478e+004 -6.6311e+000 -4.0227e+005 -# -Range: 0-300 - -Ag - Ag +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Ag+ - log_k 7.9937 - -delta_H -34.1352 kJ/mol # Calculated enthalpy of reaction Ag -# Enthalpy of formation: 0 kcal/mol - -analytic -1.4144e+001 -3.8466e-003 2.2642e+003 6.3388e+000 3.5334e+001 -# -Range: 0-300 - -Ag3PO4 - Ag3PO4 +1.0000 H+ = + 1.0000 HPO4-- + 3.0000 Ag+ - log_k -5.2282 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ag3PO4 -# Enthalpy of formation: 0 kcal/mol - -Ahlfeldite - NiSeO3:2H2O = + 1.0000 Ni++ + 1.0000 SeO3-- + 2.0000 H2O - log_k -4.4894 - -delta_H -25.7902 kJ/mol # Calculated enthalpy of reaction Ahlfeldite -# Enthalpy of formation: -265.07 kcal/mol - -analytic -2.6210e+001 -1.6952e-002 1.0405e+003 9.4054e+000 1.7678e+001 -# -Range: 0-200 - -Akermanite - Ca2MgSi2O7 +6.0000 H+ = + 1.0000 Mg++ + 2.0000 Ca++ + 2.0000 SiO2 + 3.0000 H2O - log_k 45.3190 - -delta_H -288.575 kJ/mol # Calculated enthalpy of reaction Akermanite -# Enthalpy of formation: -926.497 kcal/mol - -analytic -4.8295e+001 -8.5613e-003 2.0880e+004 1.3798e+001 -7.1975e+005 -# -Range: 0-300 - -Al - Al +3.0000 H+ +0.7500 O2 = + 1.0000 Al+++ + 1.5000 H2O - log_k 149.9292 - -delta_H -958.059 kJ/mol # Calculated enthalpy of reaction Al -# Enthalpy of formation: 0 kJ/mol - -analytic -1.8752e+002 -4.6187e-002 5.7127e+004 6.6270e+001 -3.8952e+005 -# -Range: 0-300 - -Al2(SO4)3 - Al2(SO4)3 = + 2.0000 Al+++ + 3.0000 SO4-- - log_k 19.0535 - -delta_H -364.566 kJ/mol # Calculated enthalpy of reaction Al2(SO4)3 -# Enthalpy of formation: -3441.04 kJ/mol - -analytic -6.1001e+002 -2.4268e-001 2.9194e+004 2.4383e+002 4.5573e+002 -# -Range: 0-300 - -Al2(SO4)3:6H2O - Al2(SO4)3:6H2O = + 2.0000 Al+++ + 3.0000 SO4-- + 6.0000 H2O - log_k 1.6849 - -delta_H -208.575 kJ/mol # Calculated enthalpy of reaction Al2(SO4)3:6H2O -# Enthalpy of formation: -5312.06 kJ/mol - -analytic -7.1642e+002 -2.4552e-001 2.6064e+004 2.8441e+002 4.0691e+002 -# -Range: 0-300 - -AlF3 - AlF3 = + 1.0000 Al+++ + 3.0000 F- - log_k -17.2089 - -delta_H -34.0441 kJ/mol # Calculated enthalpy of reaction AlF3 -# Enthalpy of formation: -1510.4 kJ/mol - -analytic -3.9865e+002 -1.3388e-001 1.0211e+004 1.5642e+002 1.5945e+002 -# -Range: 0-300 - -Alabandite - MnS +1.0000 H+ = + 1.0000 HS- + 1.0000 Mn++ - log_k -0.3944 - -delta_H -23.3216 kJ/mol # Calculated enthalpy of reaction Alabandite -# Enthalpy of formation: -51 kcal/mol - -analytic -1.5515e+002 -4.8820e-002 4.9049e+003 6.1765e+001 7.6583e+001 -# -Range: 0-300 - -Alamosite - PbSiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 Pb++ + 1.0000 SiO2 - log_k 5.6733 - -delta_H -16.5164 kJ/mol # Calculated enthalpy of reaction Alamosite -# Enthalpy of formation: -1146.1 kJ/mol - -analytic 2.9941e+002 6.7871e-002 -8.1706e+003 -1.1582e+002 -1.3885e+002 -# -Range: 0-200 - -Albite - NaAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 2.0000 H2O + 3.0000 SiO2 - log_k 2.7645 - -delta_H -51.8523 kJ/mol # Calculated enthalpy of reaction Albite -# Enthalpy of formation: -939.68 kcal/mol - -analytic -1.1694e+001 1.4429e-002 1.3784e+004 -7.2866e+000 -1.6136e+006 -# -Range: 0-300 - -Albite_high - NaAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 2.0000 H2O + 3.0000 SiO2 - log_k 4.0832 - -delta_H -62.8562 kJ/mol # Calculated enthalpy of reaction Albite_high -# Enthalpy of formation: -937.05 kcal/mol - -analytic -1.8957e+001 1.3726e-002 1.4801e+004 -4.9732e+000 -1.6442e+006 -# -Range: 0-300 - -Albite_low - NaAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 2.0000 H2O + 3.0000 SiO2 - log_k 2.7645 - -delta_H -51.8523 kJ/mol # Calculated enthalpy of reaction Albite_low -# Enthalpy of formation: -939.68 kcal/mol - -analytic -1.2860e+001 1.4481e-002 1.3913e+004 -6.9417e+000 -1.6256e+006 -# -Range: 0-300 - -Alstonite - BaCa(CO3)2 +2.0000 H+ = + 1.0000 Ba++ + 1.0000 Ca++ + 2.0000 HCO3- - log_k 2.5843 - -delta_H 0 # Not possible to calculate enthalpy of reaction Alstonite -# Enthalpy of formation: 0 kcal/mol - -Alum-K - KAl(SO4)2:12H2O = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 SO4-- + 12.0000 H2O - log_k -4.8818 - -delta_H 14.4139 kJ/mol # Calculated enthalpy of reaction Alum-K -# Enthalpy of formation: -1447 kcal/mol - -analytic -8.8025e+002 -2.5706e-001 2.2399e+004 3.5434e+002 3.4978e+002 -# -Range: 0-300 - -Alunite - KAl3(OH)6(SO4)2 +6.0000 H+ = + 1.0000 K+ + 2.0000 SO4-- + 3.0000 Al+++ + 6.0000 H2O - log_k -0.3479 - -delta_H -231.856 kJ/mol # Calculated enthalpy of reaction Alunite -# Enthalpy of formation: -1235.6 kcal/mol - -analytic -6.8581e+002 -2.2455e-001 2.6886e+004 2.6758e+002 4.1973e+002 -# -Range: 0-300 - -Am - Am +3.0000 H+ +0.7500 O2 = + 1.0000 Am+++ + 1.5000 H2O - log_k 169.3900 - -delta_H -1036.36 kJ/mol # Calculated enthalpy of reaction Am -# Enthalpy of formation: 0 kJ/mol - -analytic -6.7924e+000 -8.9873e-003 5.3327e+004 0.0000e+000 0.0000e+000 -# -Range: 0-300 - -Am(OH)3 - Am(OH)3 +3.0000 H+ = + 1.0000 Am+++ + 3.0000 H2O - log_k 15.2218 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Am(OH)3(am) - Am(OH)3 +3.0000 H+ = + 1.0000 Am+++ + 3.0000 H2O - log_k 17.0217 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -Am2(CO3)3 - Am2(CO3)3 +3.0000 H+ = + 2.0000 Am+++ + 3.0000 HCO3- - log_k -2.3699 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am2(CO3)3 -# Enthalpy of formation: 0 kcal/mol - -Am2C3 - Am2C3 +4.5000 O2 +3.0000 H+ = + 2.0000 Am+++ + 3.0000 HCO3- - log_k 503.9594 - -delta_H -3097.6 kJ/mol # Calculated enthalpy of reaction Am2C3 -# Enthalpy of formation: -151 kJ/mol - -analytic 3.3907e+002 -4.2636e-003 1.4463e+005 -1.2891e+002 2.4559e+003 -# -Range: 0-200 - -Am2O3 - Am2O3 +6.0000 H+ = + 2.0000 Am+++ + 3.0000 H2O - log_k 51.7905 - -delta_H -400.515 kJ/mol # Calculated enthalpy of reaction Am2O3 -# Enthalpy of formation: -1690.4 kJ/mol - -analytic -9.2044e+001 -1.8883e-002 2.3028e+004 2.9192e+001 3.5935e+002 -# -Range: 0-300 - -AmBr3 - AmBr3 = + 1.0000 Am+++ + 3.0000 Br- - log_k 21.7826 - -delta_H -171.21 kJ/mol # Calculated enthalpy of reaction AmBr3 -# Enthalpy of formation: -810 kJ/mol - -analytic 1.0121e+001 -3.0622e-002 6.1964e+003 0.0000e+000 0.0000e+000 -# -Range: 0-200 - -AmCl3 - AmCl3 = + 1.0000 Am+++ + 3.0000 Cl- - log_k 14.3513 - -delta_H -140.139 kJ/mol # Calculated enthalpy of reaction AmCl3 -# Enthalpy of formation: -977.8 kJ/mol - -analytic -1.5000e+001 -3.6701e-002 5.2281e+003 9.1942e+000 8.8785e+001 -# -Range: 0-200 - -AmF3 - AmF3 = + 1.0000 Am+++ + 3.0000 F- - log_k -13.1190 - -delta_H -34.7428 kJ/mol # Calculated enthalpy of reaction AmF3 -# Enthalpy of formation: -1588 kJ/mol - -analytic -4.0514e+001 -3.7312e-002 4.1626e+002 1.4999e+001 7.0827e+000 -# -Range: 0-200 - -AmF4 - AmF4 = + 1.0000 Am++++ + 4.0000 F- - log_k -25.1354 - -delta_H -37.3904 kJ/mol # Calculated enthalpy of reaction AmF4 -# Enthalpy of formation: -1710 kJ/mol - -analytic -4.9592e+001 -4.5210e-002 -9.7251e+001 1.5457e+001 -1.6348e+000 -# -Range: 0-200 - -AmH2 - AmH2 +2.0000 H+ +1.0000 O2 = + 1.0000 Am++ + 2.0000 H2O - log_k 128.4208 - -delta_H -738.376 kJ/mol # Calculated enthalpy of reaction AmH2 -# Enthalpy of formation: -175.8 kJ/mol - -analytic 3.1175e+001 -1.4062e-002 3.6259e+004 -8.1600e+000 5.6578e+002 -# -Range: 0-300 - -AmI3 - AmI3 = + 1.0000 Am+++ + 3.0000 I- - log_k 24.7301 - -delta_H -175.407 kJ/mol # Calculated enthalpy of reaction AmI3 -# Enthalpy of formation: -612 kJ/mol - -analytic -1.3886e+001 -3.6651e-002 7.2094e+003 1.0247e+001 1.2243e+002 -# -Range: 0-200 - -AmO2 - AmO2 +4.0000 H+ = + 1.0000 Am++++ + 2.0000 H2O - log_k -9.4203 - -delta_H -45.4767 kJ/mol # Calculated enthalpy of reaction AmO2 -# Enthalpy of formation: -932.2 kJ/mol - -analytic -7.4658e+001 -1.1661e-002 4.2059e+003 2.2070e+001 6.5650e+001 -# -Range: 0-300 - -AmOBr - AmOBr +2.0000 H+ = + 1.0000 Am+++ + 1.0000 Br- + 1.0000 H2O - log_k 13.7637 - -delta_H -131.042 kJ/mol # Calculated enthalpy of reaction AmOBr -# Enthalpy of formation: -893 kJ/mol - -analytic -4.4394e+001 -1.7071e-002 7.3438e+003 1.5605e+001 1.2472e+002 -# -Range: 0-200 - -AmOCl - AmOCl +2.0000 H+ = + 1.0000 Am+++ + 1.0000 Cl- + 1.0000 H2O - log_k 11.3229 - -delta_H -119.818 kJ/mol # Calculated enthalpy of reaction AmOCl -# Enthalpy of formation: -949.8 kJ/mol - -analytic -1.2101e+002 -4.1027e-002 8.6801e+003 4.6651e+001 1.3548e+002 -# -Range: 0-300 - -AmOHCO3 - AmOHCO3 +2.0000 H+ = + 1.0000 Am+++ + 1.0000 H2O + 1.0000 HCO3- - log_k 3.1519 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmOHCO3 -# Enthalpy of formation: 0 kcal/mol - -AmPO4(am) - AmPO4 +1.0000 H+ = + 1.0000 Am+++ + 1.0000 HPO4-- - log_k -12.4682 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmPO4(am) -# Enthalpy of formation: 0 kcal/mol - -Amesite-14A - Mg4Al4Si2O10(OH)8 +20.0000 H+ = + 2.0000 SiO2 + 4.0000 Al+++ + 4.0000 Mg++ + 14.0000 H2O - log_k 75.4571 - -delta_H -797.098 kJ/mol # Calculated enthalpy of reaction Amesite-14A -# Enthalpy of formation: -2145.67 kcal/mol - -analytic -5.4326e+002 -1.4144e-001 5.4150e+004 1.9361e+002 8.4512e+002 -# -Range: 0-300 - -Analcime - Na.96Al.96Si2.04O6:H2O +3.8400 H+ = + 0.9600 Al+++ + 0.9600 Na+ + 2.0400 SiO2 + 2.9200 H2O - log_k 6.1396 - -delta_H -75.844 kJ/mol # Calculated enthalpy of reaction Analcime -# Enthalpy of formation: -3296.86 kJ/mol - -analytic -6.8694e+000 6.6052e-003 9.8260e+003 -4.8540e+000 -8.8780e+005 -# -Range: 0-300 - -Analcime-dehy - Na.96Al.96Si2.04O6 +3.8400 H+ = + 0.9600 Al+++ + 0.9600 Na+ + 1.9200 H2O + 2.0400 SiO2 - log_k 12.5023 - -delta_H -116.641 kJ/mol # Calculated enthalpy of reaction Analcime-dehy -# Enthalpy of formation: -2970.23 kJ/mol - -analytic -7.1134e+000 5.6181e-003 1.2185e+004 -5.0295e+000 -9.3890e+005 -# -Range: 0-300 - -Anatase - TiO2 +2.0000 H2O = + 1.0000 Ti(OH)4 - log_k -8.5586 - -delta_H 0 # Not possible to calculate enthalpy of reaction Anatase -# Enthalpy of formation: -939.942 kJ/mol - -Andalusite - Al2SiO5 +6.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 3.0000 H2O - log_k 15.9445 - -delta_H -235.233 kJ/mol # Calculated enthalpy of reaction Andalusite -# Enthalpy of formation: -615.866 kcal/mol - -analytic -7.1115e+001 -3.2234e-002 1.2308e+004 2.2357e+001 1.9208e+002 -# -Range: 0-300 - -Andradite - Ca3Fe2(SiO4)3 +12.0000 H+ = + 2.0000 Fe+++ + 3.0000 Ca++ + 3.0000 SiO2 + 6.0000 H2O - log_k 33.3352 - -delta_H -301.173 kJ/mol # Calculated enthalpy of reaction Andradite -# Enthalpy of formation: -1380.35 kcal/mol - -analytic 1.3884e+001 -2.3886e-002 1.5314e+004 -8.1606e+000 -4.2193e+005 -# -Range: 0-300 - -Anglesite - PbSO4 = + 1.0000 Pb++ + 1.0000 SO4-- - log_k -7.8527 - -delta_H 11.255 kJ/mol # Calculated enthalpy of reaction Anglesite -# Enthalpy of formation: -219.87 kcal/mol - -analytic -1.8583e+002 -7.3849e-002 2.8528e+003 7.6936e+001 4.4570e+001 -# -Range: 0-300 - -Anhydrite - CaSO4 = + 1.0000 Ca++ + 1.0000 SO4-- - log_k -4.3064 - -delta_H -18.577 kJ/mol # Calculated enthalpy of reaction Anhydrite -# Enthalpy of formation: -342.76 kcal/mol - -analytic -2.0986e+002 -7.8823e-002 5.0969e+003 8.5642e+001 7.9594e+001 -# -Range: 0-300 - -Annite - KFe3AlSi3O10(OH)2 +10.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 3.0000 Fe++ + 3.0000 SiO2 + 6.0000 H2O - log_k 29.4693 - -delta_H -259.964 kJ/mol # Calculated enthalpy of reaction Annite -# Enthalpy of formation: -1232.19 kcal/mol - -analytic -4.0186e+001 -1.4238e-002 1.8929e+004 7.9859e+000 -8.4343e+005 -# -Range: 0-300 - -Anorthite - CaAl2(SiO4)2 +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 2.0000 SiO2 + 4.0000 H2O - log_k 26.5780 - -delta_H -303.039 kJ/mol # Calculated enthalpy of reaction Anorthite -# Enthalpy of formation: -1007.55 kcal/mol - -analytic 3.9717e-001 -1.8751e-002 1.4897e+004 -6.3078e+000 -2.3885e+005 -# -Range: 0-300 - -Antarcticite - CaCl2:6H2O = + 1.0000 Ca++ + 2.0000 Cl- + 6.0000 H2O - log_k 4.0933 - -delta_H 0 # Not possible to calculate enthalpy of reaction Antarcticite -# Enthalpy of formation: 0 kcal/mol - -Anthophyllite - Mg7Si8O22(OH)2 +14.0000 H+ = + 7.0000 Mg++ + 8.0000 H2O + 8.0000 SiO2 - log_k 66.7965 - -delta_H -483.486 kJ/mol # Calculated enthalpy of reaction Anthophyllite -# Enthalpy of formation: -2888.75 kcal/mol - -analytic -1.2865e+002 1.9705e-002 5.4853e+004 1.9444e+001 -3.8080e+006 -# -Range: 0-300 - -Antigorite -# Mg48Si24O85(OH)62 +96.0000 H+ = + 34.0000 SiO2 + 48.0000 Mg++ + 79.0000 H2O - Mg48Si34O85(OH)62 +96.0000 H+ = + 34.0000 SiO2 + 48.0000 Mg++ + 79.0000 H2O - log_k 477.1943 - -delta_H -3364.43 kJ/mol # Calculated enthalpy of reaction Antigorite -# Enthalpy of formation: -17070.9 kcal/mol - -analytic -8.1630e+002 -6.7780e-002 2.5998e+005 2.2029e+002 -9.3275e+006 -# -Range: 0-300 - -Antlerite - Cu3(SO4)(OH)4 +4.0000 H+ = + 1.0000 SO4-- + 3.0000 Cu++ + 4.0000 H2O - log_k 8.7302 - -delta_H 0 # Not possible to calculate enthalpy of reaction Antlerite -# Enthalpy of formation: 0 kcal/mol - -Aphthitalite - NaK3(SO4)2 = + 1.0000 Na+ + 2.0000 SO4-- + 3.0000 K+ - log_k -3.8878 - -delta_H 0 # Not possible to calculate enthalpy of reaction Aphthitalite -# Enthalpy of formation: 0 kcal/mol - -Aragonite - CaCO3 +1.0000 H+ = + 1.0000 Ca++ + 1.0000 HCO3- - log_k 1.9931 - -delta_H -25.8027 kJ/mol # Calculated enthalpy of reaction Aragonite -# Enthalpy of formation: -288.531 kcal/mol - -analytic -1.4934e+002 -4.8043e-002 4.9089e+003 6.0284e+001 7.6644e+001 -# -Range: 0-300 - -Arcanite - K2SO4 = + 1.0000 SO4-- + 2.0000 K+ - log_k -1.8008 - -delta_H 23.836 kJ/mol # Calculated enthalpy of reaction Arcanite -# Enthalpy of formation: -1437.78 kJ/mol - -analytic -1.6428e+002 -6.7762e-002 1.9879e+003 7.1116e+001 3.1067e+001 -# -Range: 0-300 - -Arsenolite - As2O3 +3.0000 H2O = + 2.0000 H+ + 2.0000 H2AsO3- - log_k -19.8365 - -delta_H 84.5449 kJ/mol # Calculated enthalpy of reaction Arsenolite -# Enthalpy of formation: -656.619 kJ/mol - -analytic 5.1917e+000 -1.9397e-002 -6.0894e+003 4.7458e-001 -1.0341e+002 -# -Range: 0-200 - -Arsenopyrite - FeAsS +1.5000 H2O +0.5000 H+ = + 0.5000 AsH3 + 0.5000 H2AsO3- + 1.0000 Fe++ + 1.0000 HS- - log_k -14.4453 - -delta_H 28.0187 kJ/mol # Calculated enthalpy of reaction Arsenopyrite -# Enthalpy of formation: -42.079 kJ/mol - -Artinite - Mg2CO3(OH)2:3H2O +3.0000 H+ = + 1.0000 HCO3- + 2.0000 Mg++ + 5.0000 H2O - log_k 19.6560 - -delta_H -130.432 kJ/mol # Calculated enthalpy of reaction Artinite -# Enthalpy of formation: -698.043 kcal/mol - -analytic -2.8614e+002 -6.7344e-002 1.5230e+004 1.1104e+002 2.3773e+002 -# -Range: 0-300 - -As - As +1.5000 H2O +0.7500 O2 = + 1.0000 H+ + 1.0000 H2AsO3- - log_k 42.7079 - -delta_H -276.937 kJ/mol # Calculated enthalpy of reaction As -# Enthalpy of formation: 0 kJ/mol - -analytic -3.4700e+001 -3.1772e-002 1.3788e+004 1.6411e+001 2.1517e+002 -# -Range: 0-300 - -As2O5 - As2O5 +3.0000 H2O = + 2.0000 H+ + 2.0000 H2AsO4- - log_k 2.1601 - -delta_H -36.7345 kJ/mol # Calculated enthalpy of reaction As2O5 -# Enthalpy of formation: -924.87 kJ/mol - -analytic -1.4215e+002 -6.3459e-002 4.1222e+003 6.0369e+001 6.4365e+001 -# -Range: 0-300 - -As4O6(cubi) - As4O6 +6.0000 H2O = + 4.0000 H+ + 4.0000 H2AsO3- - log_k -39.7636 - -delta_H 169.792 kJ/mol # Calculated enthalpy of reaction As4O6(cubi) -# Enthalpy of formation: -1313.94 kJ/mol - -analytic -2.6300e+002 -1.1822e-001 -4.9004e+003 1.1108e+002 -7.6389e+001 -# -Range: 0-300 - -As4O6(mono) - As4O6 +6.0000 H2O = + 4.0000 H+ + 4.0000 H2AsO3- - log_k -40.0375 - -delta_H 165.452 kJ/mol # Calculated enthalpy of reaction As4O6(mono) -# Enthalpy of formation: -1309.6 kJ/mol - -analytic 9.2518e+000 -3.8823e-002 -1.1985e+004 9.9966e-001 -2.0352e+002 -# -Range: 0-200 - -Atacamite - Cu4Cl2(OH)6 +6.0000 H+ = + 2.0000 Cl- + 4.0000 Cu++ + 6.0000 H2O - log_k 14.2836 - -delta_H -132.001 kJ/mol # Calculated enthalpy of reaction Atacamite -# Enthalpy of formation: -1654.43 kJ/mol - -analytic -2.6623e+002 -4.8121e-002 1.5315e+004 9.8395e+001 2.6016e+002 -# -Range: 0-200 - -Au - Au +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Au+ - log_k -7.0864 - -delta_H 59.189 kJ/mol # Calculated enthalpy of reaction Au -# Enthalpy of formation: 0 kcal/mol - -analytic -7.6610e-001 -2.8520e-003 -3.0861e+003 1.9705e+000 -4.8156e+001 -# -Range: 0-300 - -Autunite-H - H2(UO2)2(PO4)2 = + 2.0000 HPO4-- + 2.0000 UO2++ - log_k -25.3372 - -delta_H -31.8599 kJ/mol # Calculated enthalpy of reaction Autunite-H -# Enthalpy of formation: -4590.3 kJ/mol - -analytic -3.2179e+001 -3.8038e-002 -6.8629e+002 8.2724e+000 -1.1644e+001 -# -Range: 0-200 - -Azurite - Cu3(CO3)2(OH)2 +4.0000 H+ = + 2.0000 H2O + 2.0000 HCO3- + 3.0000 Cu++ - log_k 9.1607 - -delta_H -122.298 kJ/mol # Calculated enthalpy of reaction Azurite -# Enthalpy of formation: -390.1 kcal/mol - -analytic -4.4042e+002 -1.1934e-001 1.8053e+004 1.7158e+002 2.8182e+002 -# -Range: 0-300 - -B - B +1.5000 H2O +0.7500 O2 = + 1.0000 B(OH)3 - log_k 109.5654 - -delta_H -636.677 kJ/mol # Calculated enthalpy of reaction B -# Enthalpy of formation: 0 kJ/mol - -analytic 8.0471e+001 1.2577e-003 2.9653e+004 -2.8593e+001 4.6268e+002 -# -Range: 0-300 - -B2O3 - B2O3 +3.0000 H2O = + 2.0000 B(OH)3 - log_k 5.5464 - -delta_H -18.0548 kJ/mol # Calculated enthalpy of reaction B2O3 -# Enthalpy of formation: -1273.5 kJ/mol - -analytic 9.0905e+001 5.5365e-003 -2.6629e+003 -3.1553e+001 -4.1578e+001 -# -Range: 0-300 - -Ba - Ba +2.0000 H+ +0.5000 O2 = + 1.0000 Ba++ + 1.0000 H2O - log_k 141.2465 - -delta_H -817.416 kJ/mol # Calculated enthalpy of reaction Ba -# Enthalpy of formation: 0 kJ/mol - -analytic -2.5033e+001 -1.3917e-002 4.2849e+004 1.0786e+001 6.6863e+002 -# -Range: 0-300 - -Ba(OH)2:8H2O - Ba(OH)2:8H2O +2.0000 H+ = + 1.0000 Ba++ + 10.0000 H2O - log_k 24.4911 - -delta_H -55.4363 kJ/mol # Calculated enthalpy of reaction Ba(OH)2:8H2O -# Enthalpy of formation: -3340.59 kJ/mol - -analytic -2.3888e+002 -1.5791e-003 1.4097e+004 8.7518e+001 2.3947e+002 -# -Range: 0-200 - -Ba2Si3O8 - Ba2Si3O8 +4.0000 H+ = + 2.0000 Ba++ + 2.0000 H2O + 3.0000 SiO2 - log_k 23.3284 - -delta_H -95.3325 kJ/mol # Calculated enthalpy of reaction Ba2Si3O8 -# Enthalpy of formation: -4184.73 kJ/mol - -analytic -8.7226e+001 9.3125e-003 2.3147e+004 2.2012e+001 -2.1714e+006 -# -Range: 0-300 - -Ba2SiO4 - Ba2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Ba++ + 2.0000 H2O - log_k 44.5930 - -delta_H -237.206 kJ/mol # Calculated enthalpy of reaction Ba2SiO4 -# Enthalpy of formation: -2287.46 kJ/mol - -analytic -7.0350e+000 -5.1744e-003 1.4786e+004 3.1091e+000 -3.6972e+005 -# -Range: 0-300 - -Ba2U2O7 - Ba2U2O7 +6.0000 H+ = + 2.0000 Ba++ + 2.0000 UO2+ + 3.0000 H2O - log_k 36.4635 - -delta_H -243.057 kJ/mol # Calculated enthalpy of reaction Ba2U2O7 -# Enthalpy of formation: -3740 kJ/mol - -analytic -9.2562e+001 5.3866e-003 1.6852e+004 2.8647e+001 2.8621e+002 -# -Range: 0-200 - -Ba3UO6 - Ba3UO6 +8.0000 H+ = + 1.0000 UO2++ + 3.0000 Ba++ + 4.0000 H2O - log_k 94.3709 - -delta_H -564.885 kJ/mol # Calculated enthalpy of reaction Ba3UO6 -# Enthalpy of formation: -3210.4 kJ/mol - -analytic -1.3001e+002 -1.7395e-002 3.3977e+004 4.6715e+001 5.7703e+002 -# -Range: 0-200 - -BaBr2 - BaBr2 = + 1.0000 Ba++ + 2.0000 Br- - log_k 5.6226 - -delta_H -23.3887 kJ/mol # Calculated enthalpy of reaction BaBr2 -# Enthalpy of formation: -757.262 kJ/mol - -analytic -1.7689e+002 -7.1918e-002 4.7187e+003 7.6010e+001 7.3683e+001 -# -Range: 0-300 - -BaBr2:2H2O - BaBr2:2H2O = + 1.0000 Ba++ + 2.0000 Br- + 2.0000 H2O - log_k 2.2523 - -delta_H 13.7736 kJ/mol # Calculated enthalpy of reaction BaBr2:2H2O -# Enthalpy of formation: -1366.1 kJ/mol - -analytic -1.5506e+001 -1.6281e-002 -8.5727e+002 1.0296e+001 -1.4552e+001 -# -Range: 0-200 - -BaCl2 - BaCl2 = + 1.0000 Ba++ + 2.0000 Cl- - log_k 2.2707 - -delta_H -13.1563 kJ/mol # Calculated enthalpy of reaction BaCl2 -# Enthalpy of formation: -858.647 kJ/mol - -analytic -2.0393e+002 -7.8925e-002 4.8846e+003 8.6204e+001 7.6280e+001 -# -Range: 0-300 - -BaCl2:2H2O - BaCl2:2H2O = + 1.0000 Ba++ + 2.0000 Cl- + 2.0000 H2O - log_k 0.2459 - -delta_H 16.558 kJ/mol # Calculated enthalpy of reaction BaCl2:2H2O -# Enthalpy of formation: -1460.04 kJ/mol - -analytic -2.0350e+002 -7.3577e-002 3.7914e+003 8.6051e+001 5.9221e+001 -# -Range: 0-300 - -BaCl2:H2O - BaCl2:H2O = + 1.0000 Ba++ + 1.0000 H2O + 2.0000 Cl- - log_k 0.8606 - -delta_H 2.89433 kJ/mol # Calculated enthalpy of reaction BaCl2:H2O -# Enthalpy of formation: -1160.54 kJ/mol - -analytic -1.9572e+002 -7.3938e-002 4.0553e+003 8.2842e+001 6.3336e+001 -# -Range: 0-300 - -BaCrO4 - BaCrO4 = + 1.0000 Ba++ + 1.0000 CrO4-- - log_k -9.9322 - -delta_H 25.9115 kJ/mol # Calculated enthalpy of reaction BaCrO4 -# Enthalpy of formation: -345.293 kcal/mol - -analytic 2.3142e+001 -1.6617e-002 -3.6883e+003 -6.3687e+000 -6.2640e+001 -# -Range: 0-200 - -BaHPO4 - BaHPO4 = + 1.0000 Ba++ + 1.0000 HPO4-- - log_k -7.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaHPO4 -# Enthalpy of formation: 0 kcal/mol - -BaI2 - BaI2 = + 1.0000 Ba++ + 2.0000 I- - log_k 11.0759 - -delta_H -46.0408 kJ/mol # Calculated enthalpy of reaction BaI2 -# Enthalpy of formation: -605.408 kJ/mol - -analytic -1.7511e+002 -7.2206e-002 5.8696e+003 7.5974e+001 9.1641e+001 -# -Range: 0-300 - -BaMnO4 - BaMnO4 = + 1.0000 Ba++ + 1.0000 MnO4-- - log_k -10.0900 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaMnO4 -# Enthalpy of formation: 0 kcal/mol - -BaO - BaO +2.0000 H+ = + 1.0000 Ba++ + 1.0000 H2O - log_k 47.8036 - -delta_H -270.184 kJ/mol # Calculated enthalpy of reaction BaO -# Enthalpy of formation: -553.298 kJ/mol - -analytic -7.3273e+001 -1.7149e-002 1.6811e+004 2.8560e+001 -7.7510e+004 -# -Range: 0-300 - -BaS - BaS +1.0000 H+ = + 1.0000 Ba++ + 1.0000 HS- - log_k 16.2606 - -delta_H -92.9004 kJ/mol # Calculated enthalpy of reaction BaS -# Enthalpy of formation: -460.852 kJ/mol - -analytic -1.1819e+002 -4.3420e-002 7.4296e+003 4.9489e+001 1.1597e+002 -# -Range: 0-300 - -BaSeO3 - BaSeO3 = + 1.0000 Ba++ + 1.0000 SeO3-- - log_k -6.5615 - -delta_H -5.5658 kJ/mol # Calculated enthalpy of reaction BaSeO3 -# Enthalpy of formation: -1041.27 kJ/mol - -analytic 2.9742e+001 -1.7073e-002 -2.4532e+003 -9.2936e+000 -4.1669e+001 -# -Range: 0-200 - -BaSeO4 - BaSeO4 = + 1.0000 Ba++ + 1.0000 SeO4-- - log_k -7.4468 - -delta_H 8.9782 kJ/mol # Calculated enthalpy of reaction BaSeO4 -# Enthalpy of formation: -1145.77 kJ/mol - -analytic 2.4274e+001 -1.6289e-002 -2.8520e+003 -6.9949e+000 -4.8439e+001 -# -Range: 0-200 - -BaSiF6 - BaSiF6 +2.0000 H2O = + 1.0000 Ba++ + 1.0000 SiO2 + 4.0000 H+ + 6.0000 F- - log_k -32.1771 - -delta_H 95.2555 kJ/mol # Calculated enthalpy of reaction BaSiF6 -# Enthalpy of formation: -2951.01 kJ/mol - -analytic -6.4766e+000 -3.8410e-002 0.0000e+000 0.0000e+000 -1.2701e+006 -# -Range: 0-200 - -BaU2O7 - BaU2O7 +6.0000 H+ = + 1.0000 Ba++ + 2.0000 UO2++ + 3.0000 H2O - log_k 21.9576 - -delta_H -195.959 kJ/mol # Calculated enthalpy of reaction BaU2O7 -# Enthalpy of formation: -3237.2 kJ/mol - -analytic -1.2254e+002 -1.0941e-002 1.4452e+004 4.0125e+001 2.4546e+002 -# -Range: 0-200 - -BaUO4 - BaUO4 +4.0000 H+ = + 1.0000 Ba++ + 1.0000 UO2++ + 2.0000 H2O - log_k 18.2007 - -delta_H -134.521 kJ/mol # Calculated enthalpy of reaction BaUO4 -# Enthalpy of formation: -1993.8 kJ/mol - -analytic -6.7113e+001 -1.6340e-002 8.7592e+003 2.4571e+001 1.3670e+002 -# -Range: 0-300 - -BaZrO3 - BaZrO3 +4.0000 H+ = + 1.0000 Ba++ + 1.0000 H2O + 1.0000 Zr(OH)2++ - log_k -94.4716 - -delta_H 505.159 kJ/mol # Calculated enthalpy of reaction BaZrO3 -# Enthalpy of formation: -578.27 kcal/mol - -analytic -5.3606e+001 -1.0096e-002 -2.4894e+004 1.8446e+001 -4.2271e+002 -# -Range: 0-200 - -Baddeleyite - ZrO2 +2.0000 H+ = + 1.0000 Zr(OH)2++ - log_k -7.9405 - -delta_H 9.72007 kJ/mol # Calculated enthalpy of reaction Baddeleyite -# Enthalpy of formation: -1100.56 kJ/mol - -analytic -2.5188e-001 -4.6374e-003 -1.0635e+003 -1.1055e+000 -1.6595e+001 -# -Range: 0-300 - -Barite - BaSO4 = + 1.0000 Ba++ + 1.0000 SO4-- - log_k -9.9711 - -delta_H 25.9408 kJ/mol # Calculated enthalpy of reaction Barite -# Enthalpy of formation: -352.1 kcal/mol - -analytic -1.8747e+002 -7.5521e-002 2.0790e+003 7.7998e+001 3.2497e+001 -# -Range: 0-300 - -Barytocalcite - BaCa(CO3)2 +2.0000 H+ = + 1.0000 Ba++ + 1.0000 Ca++ + 2.0000 HCO3- - log_k 2.7420 - -delta_H 0 # Not possible to calculate enthalpy of reaction Barytocalcite -# Enthalpy of formation: 0 kcal/mol - -Bassanite - CaSO4:0.5H2O = + 0.5000 H2O + 1.0000 Ca++ + 1.0000 SO4-- - log_k -3.6615 - -delta_H -18.711 kJ/mol # Calculated enthalpy of reaction Bassanite -# Enthalpy of formation: -1576.89 kJ/mol - -analytic -2.2010e+002 -8.0230e-002 5.5092e+003 8.9651e+001 8.6031e+001 -# -Range: 0-300 - -Bassetite - Fe(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Fe++ + 2.0000 HPO4-- + 2.0000 UO2++ - log_k -17.7240 - -delta_H -114.841 kJ/mol # Calculated enthalpy of reaction Bassetite -# Enthalpy of formation: -1099.33 kcal/mol - -analytic -5.7788e+001 -4.5400e-002 4.0119e+003 1.6216e+001 6.8147e+001 -# -Range: 0-200 - -Be - Be +2.0000 H+ +0.5000 O2 = + 1.0000 Be++ + 1.0000 H2O - log_k 104.2077 - -delta_H -662.608 kJ/mol # Calculated enthalpy of reaction Be -# Enthalpy of formation: 0 kJ/mol - -analytic -9.3960e+001 -2.4749e-002 3.6714e+004 3.3295e+001 5.7291e+002 -# -Range: 0-300 - -Be13U - Be13U +30.0000 H+ +7.5000 O2 = + 1.0000 U++++ + 13.0000 Be++ + 15.0000 H2O - log_k 1504.5350 - -delta_H -9601.04 kJ/mol # Calculated enthalpy of reaction Be13U -# Enthalpy of formation: -163.6 kJ/mol - -analytic -1.2388e+003 -3.2848e-001 5.2816e+005 4.3222e+002 8.2419e+003 -# -Range: 0-300 - -Beidellite-Ca - Ca.165Al2.33Si3.67O10(OH)2 +7.3200 H+ = + 0.1650 Ca++ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O - log_k 5.5914 - -delta_H -162.403 kJ/mol # Calculated enthalpy of reaction Beidellite-Ca -# Enthalpy of formation: -1370.66 kcal/mol - -analytic 2.3887e+001 4.4178e-003 1.5296e+004 -2.2343e+001 -1.4025e+006 -# -Range: 0-300 - -Beidellite-Cs - Cs.33Si3.67Al2.33O10(OH)2 +7.3200 H+ = + 0.3300 Cs+ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O - log_k 5.1541 - -delta_H -149.851 kJ/mol # Calculated enthalpy of reaction Beidellite-Cs -# Enthalpy of formation: -1372.59 kcal/mol - -analytic 2.1244e+001 2.1705e-003 1.4504e+004 -2.0250e+001 -1.3712e+006 -# -Range: 0-300 - -Beidellite-H - H.33Al2.33Si3.67O10(OH)2 +6.9900 H+ = + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O - log_k 4.6335 - -delta_H -154.65 kJ/mol # Calculated enthalpy of reaction Beidellite-H -# Enthalpy of formation: -1351.1 kcal/mol - -analytic 5.4070e+000 3.4064e-003 1.6284e+004 -1.6028e+001 -1.5014e+006 -# -Range: 0-300 - -Beidellite-K - K.33Al2.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 K+ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O - log_k 5.3088 - -delta_H -150.834 kJ/mol # Calculated enthalpy of reaction Beidellite-K -# Enthalpy of formation: -1371.9 kcal/mol - -analytic 1.0792e+001 3.4419e-003 1.5760e+004 -1.7333e+001 -1.4779e+006 -# -Range: 0-300 - -Beidellite-Mg - Mg.165Al2.33Si3.67O10(OH)2 +7.3200 H+ = + 0.1650 Mg++ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O - log_k 5.5537 - -delta_H -165.455 kJ/mol # Calculated enthalpy of reaction Beidellite-Mg -# Enthalpy of formation: -1366.89 kcal/mol - -analytic 1.3375e+001 3.0420e-003 1.5947e+004 -1.8728e+001 -1.4242e+006 -# -Range: 0-300 - -Beidellite-Na - Na.33Al2.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 Na+ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O - log_k 5.6473 - -delta_H -155.846 kJ/mol # Calculated enthalpy of reaction Beidellite-Na -# Enthalpy of formation: -1369.76 kcal/mol - -analytic 1.1504e+001 3.9871e-003 1.5818e+004 -1.7762e+001 -1.4485e+006 -# -Range: 0-300 - -Berlinite - AlPO4 +1.0000 H+ = + 1.0000 Al+++ + 1.0000 HPO4-- - log_k -7.2087 - -delta_H -96.6313 kJ/mol # Calculated enthalpy of reaction Berlinite -# Enthalpy of formation: -1733.85 kJ/mol - -analytic -2.8134e+002 -9.9933e-002 1.0308e+004 1.0883e+002 1.6094e+002 -# -Range: 0-300 - -Berndtite - SnS2 = + 1.0000 S2-- + 1.0000 Sn++ - log_k -34.5393 - -delta_H 0 # Not possible to calculate enthalpy of reaction Berndtite -# Enthalpy of formation: -36.7 kcal/mol - -analytic -2.0311e+002 -7.6462e-002 -4.9879e+003 8.4082e+001 -7.7772e+001 -# -Range: 0-300 - -Bieberite - CoSO4:7H2O = + 1.0000 Co++ + 1.0000 SO4-- + 7.0000 H2O - log_k -2.5051 - -delta_H 11.3885 kJ/mol # Calculated enthalpy of reaction Bieberite -# Enthalpy of formation: -2980.02 kJ/mol - -analytic -2.6405e+002 -7.2497e-002 6.6673e+003 1.0538e+002 1.0411e+002 -# -Range: 0-300 - -Birnessite - Mn8O14:5H2O +4.0000 H+ = + 3.0000 MnO4-- + 5.0000 Mn++ + 7.0000 H2O - log_k -85.5463 - -delta_H 0 # Not possible to calculate enthalpy of reaction Birnessite -# Enthalpy of formation: 0 kcal/mol - -Bischofite - MgCl2:6H2O = + 1.0000 Mg++ + 2.0000 Cl- + 6.0000 H2O - log_k 4.3923 - -delta_H 0 # Not possible to calculate enthalpy of reaction Bischofite -# Enthalpy of formation: 0 kcal/mol - -Bixbyite - Mn2O3 +6.0000 H+ = + 2.0000 Mn+++ + 3.0000 H2O - log_k -0.9655 - -delta_H -190.545 kJ/mol # Calculated enthalpy of reaction Bixbyite -# Enthalpy of formation: -958.971 kJ/mol - -analytic -1.1600e+002 -2.8056e-003 1.3418e+004 2.8639e+001 2.0941e+002 -# -Range: 0-300 - -Bloedite - Na2Mg(SO4)2:4H2O = + 1.0000 Mg++ + 2.0000 Na+ + 2.0000 SO4-- + 4.0000 H2O - log_k -2.4777 - -delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite -# Enthalpy of formation: 0 kcal/mol - -Boehmite - AlO2H +3.0000 H+ = + 1.0000 Al+++ + 2.0000 H2O - log_k 7.5642 - -delta_H -113.282 kJ/mol # Calculated enthalpy of reaction Boehmite -# Enthalpy of formation: -238.24 kcal/mol - -analytic -1.2196e+002 -3.1138e-002 8.8643e+003 4.4075e+001 1.3835e+002 -# -Range: 0-300 - -Boltwoodite - K(H3O)(UO2)SiO4 +3.0000 H+ = + 1.0000 K+ + 1.0000 SiO2 + 1.0000 UO2++ + 3.0000 H2O - log_k 14.8857 - -delta_H 0 # Not possible to calculate enthalpy of reaction Boltwoodite -# Enthalpy of formation: 0 kcal/mol - -Boltwoodite-Na - Na.7K.3(H3O)(UO2)SiO4:H2O +3.0000 H+ = + 0.3000 K+ + 0.7000 Na+ + 1.0000 SiO2 + 1.0000 UO2++ + 4.0000 H2O - log_k 14.5834 - -delta_H 0 # Not possible to calculate enthalpy of reaction Boltwoodite-Na -# Enthalpy of formation: 0 kcal/mol - -Borax - Na2(B4O5(OH)4):8H2O +2.0000 H+ = + 2.0000 Na+ + 4.0000 B(OH)3 + 5.0000 H2O - log_k 12.0395 - -delta_H 80.5145 kJ/mol # Calculated enthalpy of reaction Borax -# Enthalpy of formation: -6288.44 kJ/mol - -analytic 7.8374e+001 1.9328e-002 -5.3279e+003 -2.1914e+001 -8.3160e+001 -# -Range: 0-300 - -Boric_acid - B(OH)3 = + 1.0000 B(OH)3 - log_k -0.1583 - -delta_H 20.2651 kJ/mol # Calculated enthalpy of reaction Boric_acid -# Enthalpy of formation: -1094.8 kJ/mol - -analytic 3.9122e+001 6.4058e-003 -2.2525e+003 -1.3592e+001 -3.5160e+001 -# -Range: 0-300 - -Bornite - Cu5FeS4 +4.0000 H+ = + 1.0000 Cu++ + 1.0000 Fe++ + 4.0000 Cu+ + 4.0000 HS- - log_k -102.4369 - -delta_H 530.113 kJ/mol # Calculated enthalpy of reaction Bornite -# Enthalpy of formation: -79.922 kcal/mol - -analytic -7.0495e+002 -2.0082e-001 -9.1376e+003 2.8004e+002 -1.4238e+002 -# -Range: 0-300 - -Brezinaite - Cr3S4 +4.0000 H+ = + 1.0000 Cr++ + 2.0000 Cr+++ + 4.0000 HS- - log_k 2.7883 - -delta_H -216.731 kJ/mol # Calculated enthalpy of reaction Brezinaite -# Enthalpy of formation: -111.9 kcal/mol - -analytic -7.0528e+001 -3.6568e-002 1.0598e+004 1.9665e+001 1.8000e+002 -# -Range: 0-200 - -Brochantite - Cu4(SO4)(OH)6 +6.0000 H+ = + 1.0000 SO4-- + 4.0000 Cu++ + 6.0000 H2O - log_k 15.4363 - -delta_H -163.158 kJ/mol # Calculated enthalpy of reaction Brochantite -# Enthalpy of formation: -2198.72 kJ/mol - -analytic -2.3609e+002 -3.9046e-002 1.5970e+004 8.4701e+001 2.7127e+002 -# -Range: 0-200 - -Bromellite - BeO +2.0000 H+ = + 1.0000 Be++ + 1.0000 H2O - log_k 1.1309 - -delta_H -59.2743 kJ/mol # Calculated enthalpy of reaction Bromellite -# Enthalpy of formation: -609.4 kJ/mol - -analytic 1.4790e+002 -4.6004e-001 -3.2577e+004 4.0273e+001 -5.0837e+002 -# -Range: 0-300 - -Brucite - Mg(OH)2 +2.0000 H+ = + 1.0000 Mg++ + 2.0000 H2O - log_k 16.2980 - -delta_H -111.34 kJ/mol # Calculated enthalpy of reaction Brucite -# Enthalpy of formation: -221.39 kcal/mol - -analytic -1.0280e+002 -1.9759e-002 9.0180e+003 3.8282e+001 1.4075e+002 -# -Range: 0-300 - -Brushite - CaHPO4:2H2O = + 1.0000 Ca++ + 1.0000 HPO4-- + 2.0000 H2O - log_k 6.5500 - -delta_H 0 # Not possible to calculate enthalpy of reaction Brushite -# Enthalpy of formation: 0 kcal/mol - -Bunsenite - NiO +2.0000 H+ = + 1.0000 H2O + 1.0000 Ni++ - log_k 12.4719 - -delta_H -100.069 kJ/mol # Calculated enthalpy of reaction Bunsenite -# Enthalpy of formation: -57.3 kcal/mol - -analytic -8.1664e+001 -1.9796e-002 7.4064e+003 3.0385e+001 1.1559e+002 -# -Range: 0-300 - -Burkeite - Na6CO3(SO4)2 +1.0000 H+ = + 1.0000 HCO3- + 2.0000 SO4-- + 6.0000 Na+ - log_k 9.4866 - -delta_H 0 # Not possible to calculate enthalpy of reaction Burkeite -# Enthalpy of formation: 0 kcal/mol - -C - C +1.0000 H2O +1.0000 O2 = + 1.0000 H+ + 1.0000 HCO3- - log_k 64.1735 - -delta_H -391.961 kJ/mol # Calculated enthalpy of reaction C -# Enthalpy of formation: 0 kcal/mol - -analytic -3.5556e+001 -3.3691e-002 1.9774e+004 1.7548e+001 3.0856e+002 -# -Range: 0-300 - -Ca - Ca +2.0000 H+ +0.5000 O2 = + 1.0000 Ca++ + 1.0000 H2O - log_k 139.8465 - -delta_H -822.855 kJ/mol # Calculated enthalpy of reaction Ca -# Enthalpy of formation: 0 kJ/mol - -analytic -1.1328e+002 -2.6554e-002 4.7638e+004 4.1989e+001 -2.3545e+005 -# -Range: 0-300 - -Ca-Al_Pyroxene - CaAl2SiO6 +8.0000 H+ = + 1.0000 Ca++ + 1.0000 SiO2 + 2.0000 Al+++ + 4.0000 H2O - log_k 35.9759 - -delta_H -361.548 kJ/mol # Calculated enthalpy of reaction Ca-Al_Pyroxene -# Enthalpy of formation: -783.793 kcal/mol - -analytic -1.4664e+002 -5.0409e-002 2.1045e+004 5.1318e+001 3.2843e+002 -# -Range: 0-300 - -Ca2Al2O5:8H2O - Ca2Al2O5:8H2O +10.0000 H+ = + 2.0000 Al+++ + 2.0000 Ca++ + 13.0000 H2O - log_k 59.5687 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2Al2O5:8H2O -# Enthalpy of formation: 0 kcal/mol - -Ca2Cl2(OH)2:H2O - Ca2Cl2(OH)2:H2O +2.0000 H+ = + 2.0000 Ca++ + 2.0000 Cl- + 3.0000 H2O - log_k 26.2901 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2Cl2(OH)2:H2O -# Enthalpy of formation: 0 kcal/mol - -Ca2V2O7 - Ca2V2O7 +1.0000 H2O = + 2.0000 Ca++ + 2.0000 H+ + 2.0000 VO4--- - log_k -39.7129 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2V2O7 -# Enthalpy of formation: -3083.46 kJ/mol - -Ca3(AsO4)2 - Ca3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Ca++ - log_k 17.8160 - -delta_H -149.956 kJ/mol # Calculated enthalpy of reaction Ca3(AsO4)2 -# Enthalpy of formation: -3298.41 kJ/mol - -analytic -1.4011e+002 -4.2945e-002 1.0981e+004 5.4107e+001 1.8652e+002 -# -Range: 0-200 - -Ca3Al2O6 - Ca3Al2O6 +12.0000 H+ = + 2.0000 Al+++ + 3.0000 Ca++ + 6.0000 H2O - log_k 113.0460 - -delta_H -833.336 kJ/mol # Calculated enthalpy of reaction Ca3Al2O6 -# Enthalpy of formation: -857.492 kcal/mol - -analytic -2.7163e+002 -5.2897e-002 5.0815e+004 9.2946e+001 8.6300e+002 -# -Range: 0-200 - -Ca3V2O8 - Ca3V2O8 = + 2.0000 VO4--- + 3.0000 Ca++ - log_k -18.3234 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca3V2O8 -# Enthalpy of formation: -3778.1 kJ/mol - -Ca4Al2Fe2O10 - Ca4Al2Fe2O10 +20.0000 H+ = + 2.0000 Al+++ + 2.0000 Fe+++ + 4.0000 Ca++ + 10.0000 H2O - log_k 140.5050 - -delta_H -1139.86 kJ/mol # Calculated enthalpy of reaction Ca4Al2Fe2O10 -# Enthalpy of formation: -1211 kcal/mol - -analytic -4.1808e+002 -8.2787e-002 7.0288e+004 1.4043e+002 1.1937e+003 -# -Range: 0-200 - -Ca4Al2O7:13H2O - Ca4Al2O7:13H2O +14.0000 H+ = + 2.0000 Al+++ + 4.0000 Ca++ + 20.0000 H2O - log_k 107.2537 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Al2O7:13H2O -# Enthalpy of formation: 0 kcal/mol - -Ca4Al2O7:19H2O - Ca4Al2O7:19H2O +14.0000 H+ = + 2.0000 Al+++ + 4.0000 Ca++ + 26.0000 H2O - log_k 103.6812 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Al2O7:19H2O -# Enthalpy of formation: 0 kcal/mol - -Ca4Cl2(OH)6:13H2O - Ca4Cl2(OH)6:13H2O +6.0000 H+ = + 2.0000 Cl- + 4.0000 Ca++ + 19.0000 H2O - log_k 68.3283 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Cl2(OH)6:13H2O -# Enthalpy of formation: 0 kcal/mol - -CaAl2O4 - CaAl2O4 +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 4.0000 H2O - log_k 46.9541 - -delta_H -436.952 kJ/mol # Calculated enthalpy of reaction CaAl2O4 -# Enthalpy of formation: -555.996 kcal/mol - -analytic -3.0378e+002 -7.9356e-002 3.0096e+004 1.1049e+002 4.6971e+002 -# -Range: 0-300 - -CaAl2O4:10H2O - CaAl2O4:10H2O +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 14.0000 H2O - log_k 37.9946 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaAl2O4:10H2O -# Enthalpy of formation: 0 kcal/mol - -CaAl4O7 - CaAl4O7 +14.0000 H+ = + 1.0000 Ca++ + 4.0000 Al+++ + 7.0000 H2O - log_k 68.6138 - -delta_H -718.464 kJ/mol # Calculated enthalpy of reaction CaAl4O7 -# Enthalpy of formation: -951.026 kcal/mol - -analytic -3.1044e+002 -6.7078e-002 4.4566e+004 1.0085e+002 7.5689e+002 -# -Range: 0-200 - -CaSO4:0.5H2O(beta) - CaSO4:0.5H2O = + 0.5000 H2O + 1.0000 Ca++ + 1.0000 SO4-- - log_k -3.4934 - -delta_H -20.804 kJ/mol # Calculated enthalpy of reaction CaSO4:0.5H2O(beta) -# Enthalpy of formation: -1574.8 kJ/mol - -analytic -2.3054e+002 -8.2832e-002 5.9132e+003 9.3705e+001 9.2338e+001 -# -Range: 0-300 - -CaSeO3:2H2O - CaSeO3:2H2O = + 1.0000 Ca++ + 1.0000 SeO3-- + 2.0000 H2O - log_k -4.6213 - -delta_H -14.1963 kJ/mol # Calculated enthalpy of reaction CaSeO3:2H2O -# Enthalpy of formation: -384.741 kcal/mol - -analytic -4.1771e+001 -2.0735e-002 9.7870e+002 1.6180e+001 1.6634e+001 -# -Range: 0-200 - -CaSeO4 - CaSeO4 = + 1.0000 Ca++ + 1.0000 SeO4-- - log_k -3.0900 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaSeO4 -# Enthalpy of formation: 0 kcal/mol - -CaUO4 - CaUO4 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 UO2++ + 2.0000 H2O - log_k 15.9420 - -delta_H -131.46 kJ/mol # Calculated enthalpy of reaction CaUO4 -# Enthalpy of formation: -2002.3 kJ/mol - -analytic -8.7902e+001 -1.9810e-002 9.2354e+003 3.1832e+001 1.4414e+002 -# -Range: 0-300 - -CaV2O6 - CaV2O6 +2.0000 H2O = + 1.0000 Ca++ + 2.0000 VO4--- + 4.0000 H+ - log_k -51.3617 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaV2O6 -# Enthalpy of formation: -2329.34 kJ/mol - -CaZrO3 - CaZrO3 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O + 1.0000 Zr(OH)2++ - log_k -148.5015 - -delta_H 801.282 kJ/mol # Calculated enthalpy of reaction CaZrO3 -# Enthalpy of formation: -650.345 kcal/mol - -analytic -7.7908e+001 -1.4388e-002 -3.9635e+004 2.6932e+001 -6.7303e+002 -# -Range: 0-200 - -Cadmoselite - CdSe = + 1.0000 Cd++ + 1.0000 Se-- - log_k -33.8428 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cadmoselite -# Enthalpy of formation: -34.6 kcal/mol - -analytic -5.3432e+001 -1.3973e-002 -5.8989e+003 1.7591e+001 -9.2031e+001 -# -Range: 0-300 - -Calcite - CaCO3 +1.0000 H+ = + 1.0000 Ca++ + 1.0000 HCO3- - log_k 1.8487 - -delta_H -25.7149 kJ/mol # Calculated enthalpy of reaction Calcite -# Enthalpy of formation: -288.552 kcal/mol - -analytic -1.4978e+002 -4.8370e-002 4.8974e+003 6.0458e+001 7.6464e+001 -# -Range: 0-300 - -Calomel - Hg2Cl2 = + 1.0000 Hg2++ + 2.0000 Cl- - log_k -17.8241 - -delta_H 98.0267 kJ/mol # Calculated enthalpy of reaction Calomel -# Enthalpy of formation: -265.37 kJ/mol - -analytic -4.8868e+001 -2.5540e-002 -2.8439e+003 1.9475e+001 -4.8277e+001 -# -Range: 0-200 - -Carnallite - KMgCl3:6H2O = + 1.0000 K+ + 1.0000 Mg++ + 3.0000 Cl- + 6.0000 H2O - log_k 4.2721 - -delta_H 0 # Not possible to calculate enthalpy of reaction Carnallite -# Enthalpy of formation: 0 kcal/mol - -Carnotite - K2(UO2)2(VO4)2 = + 2.0000 K+ + 2.0000 UO2++ + 2.0000 VO4--- - log_k -56.3811 - -delta_H 0 # Not possible to calculate enthalpy of reaction Carnotite -# Enthalpy of formation: -1173.9 kJ/mol - -Cassiterite - SnO2 +2.0000 H+ = + 0.5000 O2 + 1.0000 H2O + 1.0000 Sn++ - log_k -46.1203 - -delta_H 280.048 kJ/mol # Calculated enthalpy of reaction Cassiterite -# Enthalpy of formation: -138.8 kcal/mol - -analytic -8.9264e+001 -1.5743e-002 -1.1497e+004 3.4917e+001 -1.7937e+002 -# -Range: 0-300 - -Cattierite - CoS2 = + 1.0000 Co++ + 1.0000 S2-- - log_k -29.9067 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cattierite -# Enthalpy of formation: -36.589 kcal/mol - -analytic -2.1970e+002 -7.8585e-002 -1.9592e+003 8.8809e+001 -3.0507e+001 -# -Range: 0-300 - -Cd - Cd +2.0000 H+ +0.5000 O2 = + 1.0000 Cd++ + 1.0000 H2O - log_k 56.6062 - -delta_H -355.669 kJ/mol # Calculated enthalpy of reaction Cd -# Enthalpy of formation: 0 kJ/mol - -analytic -7.2027e+001 -2.0250e-002 2.0474e+004 2.6814e+001 -3.2348e+004 -# -Range: 0-300 - -Cd(BO2)2 - Cd(BO2)2 +2.0000 H+ +2.0000 H2O = + 1.0000 Cd++ + 2.0000 B(OH)3 - log_k 9.8299 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(BO2)2 -# Enthalpy of formation: 0 kcal/mol - -Cd(IO3)2 - Cd(IO3)2 = + 1.0000 Cd++ + 2.0000 IO3- - log_k -7.5848 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(IO3)2 -# Enthalpy of formation: 0 kcal/mol - -Cd(OH)2 - Cd(OH)2 +2.0000 H+ = + 1.0000 Cd++ + 2.0000 H2O - log_k 13.7382 - -delta_H -87.0244 kJ/mol # Calculated enthalpy of reaction Cd(OH)2 -# Enthalpy of formation: -560.55 kJ/mol - -analytic -7.7001e+001 -6.9251e-003 7.4684e+003 2.7380e+001 1.2685e+002 -# -Range: 0-200 - -Cd(OH)Cl - Cd(OH)Cl +1.0000 H+ = + 1.0000 Cd++ + 1.0000 Cl- + 1.0000 H2O - log_k 3.5435 - -delta_H -30.3888 kJ/mol # Calculated enthalpy of reaction Cd(OH)Cl -# Enthalpy of formation: -498.427 kJ/mol - -analytic -4.5477e+001 -1.5809e-002 2.5333e+003 1.8279e+001 4.3035e+001 -# -Range: 0-200 - -Cd3(AsO4)2 - Cd3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Cd++ - log_k 4.0625 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(AsO4)2 -# Enthalpy of formation: 0 kcal/mol - -Cd3(PO4)2 - Cd3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Cd++ - log_k -7.8943 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(PO4)2 -# Enthalpy of formation: 0 kcal/mol - -Cd3(SO4)(OH)4 - Cd3(SO4)(OH)4 +4.0000 H+ = + 1.0000 SO4-- + 3.0000 Cd++ + 4.0000 H2O - log_k 22.5735 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(SO4)(OH)4 -# Enthalpy of formation: 0 kcal/mol - -Cd3(SO4)2(OH)2 - Cd3(SO4)2(OH)2 +2.0000 H+ = + 2.0000 H2O + 2.0000 SO4-- + 3.0000 Cd++ - log_k 6.7180 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(SO4)2(OH)2 -# Enthalpy of formation: 0 kcal/mol - -CdBr2 - CdBr2 = + 1.0000 Cd++ + 2.0000 Br- - log_k -1.8470 - -delta_H -2.67548 kJ/mol # Calculated enthalpy of reaction CdBr2 -# Enthalpy of formation: -316.229 kJ/mol - -analytic 1.3056e+000 -2.0628e-002 -1.3318e+003 3.0126e+000 -2.2616e+001 -# -Range: 0-200 - -CdBr2:4H2O - CdBr2:4H2O = + 1.0000 Cd++ + 2.0000 Br- + 4.0000 H2O - log_k -2.3378 - -delta_H 30.2812 kJ/mol # Calculated enthalpy of reaction CdBr2:4H2O -# Enthalpy of formation: -1492.54 kJ/mol - -analytic -1.0038e+002 -2.1045e-002 1.6896e+003 3.9864e+001 2.8726e+001 -# -Range: 0-200 - -CdCl2 - CdCl2 = + 1.0000 Cd++ + 2.0000 Cl- - log_k -0.6474 - -delta_H -18.5391 kJ/mol # Calculated enthalpy of reaction CdCl2 -# Enthalpy of formation: -391.518 kJ/mol - -analytic -1.5230e+001 -2.4574e-002 -8.1017e+001 8.9599e+000 -1.3702e+000 -# -Range: 0-200 - -CdCl2(NH3)2 - CdCl2(NH3)2 = + 1.0000 Cd++ + 2.0000 Cl- + 2.0000 NH3 - log_k -8.7864 - -delta_H 63.534 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)2 -# Enthalpy of formation: -636.265 kJ/mol - -analytic -5.5283e+001 -2.1791e-002 -2.1150e+003 2.4279e+001 -3.5896e+001 -# -Range: 0-200 - -CdCl2(NH3)4 - CdCl2(NH3)4 = + 1.0000 Cd++ + 2.0000 Cl- + 4.0000 NH3 - log_k -6.8044 - -delta_H 81.7931 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)4 -# Enthalpy of formation: -817.198 kJ/mol - -analytic -9.5682e+001 -1.8853e-002 -8.3875e+002 3.9322e+001 -1.4210e+001 -# -Range: 0-200 - -CdCl2(NH3)6 - CdCl2(NH3)6 = + 1.0000 Cd++ + 2.0000 Cl- + 6.0000 NH3 - log_k -4.7524 - -delta_H 97.2971 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)6 -# Enthalpy of formation: -995.376 kJ/mol - -analytic -1.3662e+002 -1.5941e-002 5.8572e+002 5.4415e+001 9.9937e+000 -# -Range: 0-200 - -CdCl2:H2O - CdCl2:H2O = + 1.0000 Cd++ + 1.0000 H2O + 2.0000 Cl- - log_k -1.6747 - -delta_H -7.44943 kJ/mol # Calculated enthalpy of reaction CdCl2:H2O -# Enthalpy of formation: -688.446 kJ/mol - -analytic -4.1097e+001 -2.4685e-002 5.2687e+002 1.8188e+001 8.9615e+000 -# -Range: 0-200 - -CdCr2O4 - CdCr2O4 +8.0000 H+ = + 1.0000 Cd++ + 2.0000 Cr+++ + 4.0000 H2O - log_k 14.9969 - -delta_H -255.676 kJ/mol # Calculated enthalpy of reaction CdCr2O4 -# Enthalpy of formation: -344.3 kcal/mol - -analytic -1.7446e+002 -9.1086e-003 1.9223e+004 5.1605e+001 3.2650e+002 -# -Range: 0-200 - -CdF2 - CdF2 = + 1.0000 Cd++ + 2.0000 F- - log_k -1.1464 - -delta_H -46.064 kJ/mol # Calculated enthalpy of reaction CdF2 -# Enthalpy of formation: -700.529 kJ/mol - -analytic -3.0654e+001 -2.4790e-002 1.7893e+003 1.2482e+001 3.0395e+001 -# -Range: 0-200 - -CdI2 - CdI2 = + 1.0000 Cd++ + 2.0000 I- - log_k -3.4825 - -delta_H 13.7164 kJ/mol # Calculated enthalpy of reaction CdI2 -# Enthalpy of formation: -203.419 kJ/mol - -analytic -1.5446e+001 -2.4758e-002 -1.6422e+003 1.0041e+001 -2.7882e+001 -# -Range: 0-200 - -CdS - CdS +1.0000 H+ = + 1.0000 Cd++ + 1.0000 HS- - log_k -15.9095 - -delta_H 70.1448 kJ/mol # Calculated enthalpy of reaction CdS -# Enthalpy of formation: -162.151 kJ/mol - -analytic -2.9492e+001 -1.5181e-002 -3.4695e+003 1.2019e+001 -5.8907e+001 -# -Range: 0-200 - -CdSO4 - CdSO4 = + 1.0000 Cd++ + 1.0000 SO4-- - log_k -0.1061 - -delta_H -52.1304 kJ/mol # Calculated enthalpy of reaction CdSO4 -# Enthalpy of formation: -933.369 kJ/mol - -analytic 7.7104e+000 -1.7161e-002 8.7067e+002 -2.2763e+000 1.4783e+001 -# -Range: 0-200 - -CdSO4:2.667H2O - CdSO4:2.667H2O = + 1.0000 Cd++ + 1.0000 SO4-- + 2.6670 H2O - log_k -1.8015 - -delta_H -18.5302 kJ/mol # Calculated enthalpy of reaction CdSO4:2.667H2O -# Enthalpy of formation: -1729.3 kJ/mol - -analytic -5.0331e+001 -1.4983e-002 2.0271e+003 1.8665e+001 3.4440e+001 -# -Range: 0-200 - -CdSO4:H2O - CdSO4:H2O = + 1.0000 Cd++ + 1.0000 H2O + 1.0000 SO4-- - log_k -1.6529 - -delta_H -31.6537 kJ/mol # Calculated enthalpy of reaction CdSO4:H2O -# Enthalpy of formation: -1239.68 kJ/mol - -analytic -1.7142e+001 -1.7295e-002 9.9184e+002 6.9943e+000 1.6849e+001 -# -Range: 0-200 - -CdSeO3 - CdSeO3 = + 1.0000 Cd++ + 1.0000 SeO3-- - log_k -8.8086 - -delta_H -9.92156 kJ/mol # Calculated enthalpy of reaction CdSeO3 -# Enthalpy of formation: -575.169 kJ/mol - -analytic 7.1762e+000 -1.8892e-002 -1.4680e+003 -2.1984e+000 -2.4932e+001 -# -Range: 0-200 - -CdSeO4 - CdSeO4 = + 1.0000 Cd++ + 1.0000 SeO4-- - log_k -2.2132 - -delta_H -41.9836 kJ/mol # Calculated enthalpy of reaction CdSeO4 -# Enthalpy of formation: -633.063 kJ/mol - -analytic -4.9901e+000 -1.9755e-002 7.3162e+002 2.5063e+000 1.2426e+001 -# -Range: 0-200 - -CdSiO3 - CdSiO3 +2.0000 H+ = + 1.0000 Cd++ + 1.0000 H2O + 1.0000 SiO2 - log_k 7.5136 - -delta_H -50.3427 kJ/mol # Calculated enthalpy of reaction CdSiO3 -# Enthalpy of formation: -1189.09 kJ/mol - -analytic 2.6419e+002 6.2488e-002 -5.3518e+003 -1.0401e+002 -9.0973e+001 -# -Range: 0-200 - -Ce - Ce +3.0000 H+ +0.7500 O2 = + 1.0000 Ce+++ + 1.5000 H2O - log_k 182.9563 - -delta_H -1120.06 kJ/mol # Calculated enthalpy of reaction Ce -# Enthalpy of formation: 0 kJ/mol - -analytic -5.1017e+001 -2.6149e-002 5.8511e+004 1.8382e+001 9.1302e+002 -# -Range: 0-300 - -Ce(OH)3 - Ce(OH)3 +3.0000 H+ = + 1.0000 Ce+++ + 3.0000 H2O - log_k 19.8852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Ce(OH)3(am) - Ce(OH)3 +3.0000 H+ = + 1.0000 Ce+++ + 3.0000 H2O - log_k 21.1852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -Ce2(CO3)3:8H2O - Ce2(CO3)3:8H2O +3.0000 H+ = + 2.0000 Ce+++ + 3.0000 HCO3- + 8.0000 H2O - log_k -4.1136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2(CO3)3:8H2O -# Enthalpy of formation: 0 kcal/mol - -Ce2O3 - Ce2O3 +6.0000 H+ = + 2.0000 Ce+++ + 3.0000 H2O - log_k 62.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2O3 -# Enthalpy of formation: 0 kcal/mol - -Ce3(PO4)4 - Ce3(PO4)4 +4.0000 H+ = + 3.0000 Ce++++ + 4.0000 HPO4-- - log_k -40.8127 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce3(PO4)4 -# Enthalpy of formation: 0 kcal/mol - -CeF3:.5H2O - CeF3:.5H2O = + 0.5000 H2O + 1.0000 Ce+++ + 3.0000 F- - log_k -18.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CeF3:.5H2O -# Enthalpy of formation: 0 kcal/mol - -CeO2 - CeO2 +4.0000 H+ = + 1.0000 Ce++++ + 2.0000 H2O - log_k -8.1600 - -delta_H 0 # Not possible to calculate enthalpy of reaction CeO2 -# Enthalpy of formation: 0 kcal/mol - -CePO4:10H2O - CePO4:10H2O +1.0000 H+ = + 1.0000 Ce+++ + 1.0000 HPO4-- + 10.0000 H2O - log_k -12.2782 - -delta_H 0 # Not possible to calculate enthalpy of reaction CePO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -Celadonite - KMgAlSi4O10(OH)2 +6.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 1.0000 Mg++ + 4.0000 H2O + 4.0000 SiO2 - log_k 7.4575 - -delta_H -74.3957 kJ/mol # Calculated enthalpy of reaction Celadonite -# Enthalpy of formation: -1394.9 kcal/mol - -analytic -3.3097e+001 1.7989e-002 1.8919e+004 -2.1219e+000 -2.0588e+006 -# -Range: 0-300 - -Celestite - SrSO4 = + 1.0000 SO4-- + 1.0000 Sr++ - log_k -5.6771 - -delta_H -7.40568 kJ/mol # Calculated enthalpy of reaction Celestite -# Enthalpy of formation: -347.3 kcal/mol - -analytic -1.9063e+002 -7.4552e-002 3.9050e+003 7.8416e+001 6.0991e+001 -# -Range: 0-300 - -Cerussite - PbCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Pb++ - log_k -3.2091 - -delta_H 13.8992 kJ/mol # Calculated enthalpy of reaction Cerussite -# Enthalpy of formation: -168 kcal/mol - -analytic -1.2887e+002 -4.4372e-002 2.2336e+003 5.3091e+001 3.4891e+001 -# -Range: 0-300 - -Chalcanthite - CuSO4:5H2O = + 1.0000 Cu++ + 1.0000 SO4-- + 5.0000 H2O - log_k -2.6215 - -delta_H 6.57556 kJ/mol # Calculated enthalpy of reaction Chalcanthite -# Enthalpy of formation: -2279.68 kJ/mol - -analytic -1.1262e+002 -1.5544e-002 3.6176e+003 4.1420e+001 6.1471e+001 -# -Range: 0-200 - -Chalcedony - SiO2 = + 1.0000 SiO2 - log_k -3.7281 - -delta_H 31.4093 kJ/mol # Calculated enthalpy of reaction Chalcedony -# Enthalpy of formation: -217.282 kcal/mol - -analytic -9.0068e+000 9.3241e-003 4.0535e+003 -1.0830e+000 -7.5077e+005 -# -Range: 0-300 - -Chalcocite - Cu2S +1.0000 H+ = + 1.0000 HS- + 2.0000 Cu+ - log_k -34.7342 - -delta_H 206.748 kJ/mol # Calculated enthalpy of reaction Chalcocite -# Enthalpy of formation: -19 kcal/mol - -analytic -1.3703e+002 -4.0727e-002 -7.1694e+003 5.5963e+001 -1.1183e+002 -# -Range: 0-300 - -Chalcocyanite - CuSO4 = + 1.0000 Cu++ + 1.0000 SO4-- - log_k 2.9239 - -delta_H -72.5128 kJ/mol # Calculated enthalpy of reaction Chalcocyanite -# Enthalpy of formation: -771.4 kJ/mol - -analytic 5.8173e+000 -1.6933e-002 2.0097e+003 -1.8583e+000 3.4126e+001 -# -Range: 0-200 - -Chalcopyrite - CuFeS2 +2.0000 H+ = + 1.0000 Cu++ + 1.0000 Fe++ + 2.0000 HS- - log_k -32.5638 - -delta_H 127.206 kJ/mol # Calculated enthalpy of reaction Chalcopyrite -# Enthalpy of formation: -44.453 kcal/mol - -analytic -3.1575e+002 -9.8947e-002 8.3400e+002 1.2522e+002 1.3106e+001 -# -Range: 0-300 - -Chamosite-7A - Fe2Al2SiO5(OH)4 +10.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 2.0000 Fe++ + 7.0000 H2O - log_k 32.8416 - -delta_H -364.213 kJ/mol # Calculated enthalpy of reaction Chamosite-7A -# Enthalpy of formation: -902.407 kcal/mol - -analytic -2.5581e+002 -7.0890e-002 2.4619e+004 9.1789e+001 3.8424e+002 -# -Range: 0-300 - -Chlorargyrite - AgCl = + 1.0000 Ag+ + 1.0000 Cl- - log_k -9.7453 - -delta_H 65.739 kJ/mol # Calculated enthalpy of reaction Chlorargyrite -# Enthalpy of formation: -30.37 kcal/mol - -analytic -9.6834e+001 -3.4624e-002 -1.1820e+003 4.0962e+001 -1.8415e+001 -# -Range: 0-300 - -Chloromagnesite - MgCl2 = + 1.0000 Mg++ + 2.0000 Cl- - log_k 21.8604 - -delta_H -158.802 kJ/mol # Calculated enthalpy of reaction Chloromagnesite -# Enthalpy of formation: -641.317 kJ/mol - -analytic -2.3640e+002 -8.2017e-002 1.3480e+004 9.5963e+001 2.1042e+002 -# -Range: 0-300 - -Chromite - FeCr2O4 +8.0000 H+ = + 1.0000 Fe++ + 2.0000 Cr+++ + 4.0000 H2O - log_k 15.1685 - -delta_H -267.755 kJ/mol # Calculated enthalpy of reaction Chromite -# Enthalpy of formation: -1444.83 kJ/mol - -analytic -1.9060e+002 -2.5695e-002 1.9465e+004 5.9865e+001 3.0379e+002 -# -Range: 0-300 - -Chrysocolla - CuSiH4O5 +2.0000 H+ = + 1.0000 Cu++ + 1.0000 SiO2 + 3.0000 H2O - log_k 6.2142 - -delta_H 0 # Not possible to calculate enthalpy of reaction Chrysocolla -# Enthalpy of formation: 0 kcal/mol - -Chrysotile - Mg3Si2O5(OH)4 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 Mg++ + 5.0000 H2O - log_k 31.1254 - -delta_H -218.041 kJ/mol # Calculated enthalpy of reaction Chrysotile -# Enthalpy of formation: -1043.12 kcal/mol - -analytic -9.2462e+001 -1.1359e-002 1.8312e+004 2.9289e+001 -6.2342e+005 -# -Range: 0-300 - -Cinnabar - HgS +1.0000 H+ = + 1.0000 HS- + 1.0000 Hg++ - log_k -38.9666 - -delta_H 207.401 kJ/mol # Calculated enthalpy of reaction Cinnabar -# Enthalpy of formation: -12.75 kcal/mol - -analytic -1.5413e+002 -4.6846e-002 -6.9806e+003 6.1639e+001 -1.0888e+002 -# -Range: 0-300 - -Claudetite - As2O3 +3.0000 H2O = + 2.0000 H+ + 2.0000 H2AsO3- - log_k -19.7647 - -delta_H 82.3699 kJ/mol # Calculated enthalpy of reaction Claudetite -# Enthalpy of formation: -654.444 kJ/mol - -analytic -1.4164e+002 -6.3704e-002 -2.1679e+003 5.9856e+001 -3.3787e+001 -# -Range: 0-300 - -Clausthalite - PbSe = + 1.0000 Pb++ + 1.0000 Se-- - log_k -36.2531 - -delta_H 0 # Not possible to calculate enthalpy of reaction Clausthalite -# Enthalpy of formation: -102.9 kJ/mol - -analytic -2.6473e+001 -1.0666e-002 -8.5540e+003 8.9226e+000 -1.3347e+002 -# -Range: 0-300 - -Clinochalcomenite - CuSeO3:2H2O = + 1.0000 Cu++ + 1.0000 SeO3-- + 2.0000 H2O - log_k -6.7873 - -delta_H -31.6645 kJ/mol # Calculated enthalpy of reaction Clinochalcomenite -# Enthalpy of formation: -235.066 kcal/mol - -analytic -4.6465e+001 -1.8071e-002 2.0307e+003 1.5455e+001 3.4499e+001 -# -Range: 0-200 - -Clinochlore-14A - Mg5Al2Si3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 3.0000 SiO2 + 5.0000 Mg++ + 12.0000 H2O - log_k 67.2391 - -delta_H -612.379 kJ/mol # Calculated enthalpy of reaction Clinochlore-14A -# Enthalpy of formation: -2116.96 kcal/mol - -analytic -2.0441e+002 -6.2268e-002 3.5388e+004 6.9239e+001 5.5225e+002 -# -Range: 0-300 - -Clinochlore-7A - Mg5Al2Si3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 3.0000 SiO2 + 5.0000 Mg++ + 12.0000 H2O - log_k 70.6124 - -delta_H -628.14 kJ/mol # Calculated enthalpy of reaction Clinochlore-7A -# Enthalpy of formation: -2113.2 kcal/mol - -analytic -2.1644e+002 -6.4187e-002 3.6548e+004 7.4123e+001 5.7037e+002 -# -Range: 0-300 - -Clinoptilolite -# Na.954K.543Ca.761Mg.124Sr.036Ba.062Mn.002Al3.45F +13.8680 H+ = + 0.0020 Mn++ + 0.0170 Fe+++ + 0.0360 Sr++ + 0.0620 Ba++ + 0.1240 Mg++ + 0.5430 K+ + 0.7610 Ca++ + 0.9540 Na+ + 3.4500 Al+++ + 14.5330 SiO2 17.8560 H2O - Na.954K.543Ca.761Mg.124Sr.036Ba.062Mn.002Al3.45Fe.017Si14.5330O46.922H21.844 +13.8680 H+ = + 0.0020 Mn++ + 0.0170 Fe+++ + 0.0360 Sr++ + 0.0620 Ba++ + 0.1240 Mg++ + 0.5430 K+ + 0.7610 Ca++ + 0.9540 Na+ + 3.4500 Al+++ + 14.5330 SiO2 + 17.8560 H2O - log_k -9.7861 - -delta_H -20.8784 kJ/mol # Calculated enthalpy of reaction Clinoptilolite -# Enthalpy of formation: -20587.8 kJ/mol - -analytic -1.3213e+000 6.4960e-002 5.0630e+004 -4.6120e+001 -7.4699e+006 -# -Range: 0-300 - -Clinoptilolite-Ca - Ca1.7335Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Ca++ + 3.4500 Al+++ + 14.5330 SiO2 + 17.8560 H2O - log_k -7.0095 - -delta_H -74.6745 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Ca -# Enthalpy of formation: -4919.84 kcal/mol - -analytic -4.4820e+001 5.3696e-002 5.4878e+004 -3.1459e+001 -7.5491e+006 -# -Range: 0-300 - -Clinoptilolite-Cs - Cs3.467Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Cs+ + 14.5330 SiO2 + 17.8560 H2O - log_k -13.0578 - -delta_H 96.9005 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Cs -# Enthalpy of formation: -4949.65 kcal/mol - -analytic -8.4746e+000 7.1997e-002 4.9675e+004 -4.1406e+001 -8.0632e+006 -# -Range: 0-300 - -Clinoptilolite-K - K3.467Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 K+ + 14.5330 SiO2 + 17.8560 H2O - log_k -10.9485 - -delta_H 67.4862 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-K -# Enthalpy of formation: -4937.77 kcal/mol - -analytic 1.1697e+001 6.9480e-002 4.7718e+004 -4.7442e+001 -7.6907e+006 -# -Range: 0-300 - -Clinoptilolite-NH4 - (NH4)3.467Al3.45Fe.017Si14.533O36:10.922H2O +10.4010 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 NH3 + 14.5330 SiO2 + 17.8560 H2O - log_k -42.4791 - -delta_H 0 # Not possible to calculate enthalpy of reaction Clinoptilolite-NH4 -# Enthalpy of formation: 0 kcal/mol - -Clinoptilolite-Na - Na3.467Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Na+ + 14.5330 SiO2 + 17.8560 H2O - log_k -7.1363 - -delta_H 2.32824 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Na -# Enthalpy of formation: -4912.36 kcal/mol - -analytic -3.4572e+001 6.8377e-002 5.1962e+004 -3.3426e+001 -7.5586e+006 -# -Range: 0-300 - -Clinoptilolite-Sr - Sr1.7335Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Sr++ + 3.4500 Al+++ + 14.5330 SiO2 + 17.8560 H2O - log_k -7.1491 - -delta_H -66.2129 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Sr -# Enthalpy of formation: -4925.1 kcal/mol - -analytic 3.2274e+001 6.7050e-002 5.0880e+004 -5.9597e+001 -7.3876e+006 -# -Range: 0-300 - -Clinoptilolite-dehy -# Sr.036Mg.124Ca.761Mn.002Ba.062K.543Na.954Al3.45F +13.8680 H+ = + 0.0020 Mn++ + 0.0170 Fe+++ + 0.0360 Sr++ + 0.0620 Ba++ + 0.1240 Mg++ + 0.5430 K+ + 0.7610 Ca++ + 0.9540 Na+ + 3.4500 Al+++ + 6.9340 H2O 14.5330 SiO2 - Sr.036Mg.124Ca.761Mn.002Ba.062K.543Na.954Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0020 Mn++ + 0.0170 Fe+++ + 0.0360 Sr++ + 0.0620 Ba++ + 0.1240 Mg++ + 0.5430 K+ + 0.7610 Ca++ + 0.9540 Na+ + 3.4500 Al+++ + 6.9340 H2O + 14.5330 SiO2 - log_k 25.8490 - -delta_H -276.592 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy -# Enthalpy of formation: -17210.2 kJ/mol - -analytic -2.0505e+002 6.0155e-002 8.2682e+004 1.5333e+001 -9.1369e+006 -# -Range: 0-300 - -Clinoptilolite-dehy-Ca - Ca1.7335Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Ca++ + 3.4500 Al+++ + 6.9340 H2O + 14.5330 SiO2 - log_k 28.6255 - -delta_H -329.278 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Ca -# Enthalpy of formation: -4112.83 kcal/mol - -analytic -1.2948e+002 6.5698e-002 8.0229e+004 -1.2812e+001 -8.8320e+006 -# -Range: 0-300 - -Clinoptilolite-dehy-Cs - Cs3.467Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Cs+ + 6.9340 H2O + 14.5330 SiO2 - log_k 22.5771 - -delta_H -164.837 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Cs -# Enthalpy of formation: -4140.93 kcal/mol - -analytic -1.2852e+002 7.9047e-002 7.7262e+004 -1.0422e+001 -9.4504e+006 -# -Range: 0-300 - -Clinoptilolite-dehy-K - K3.467Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 K+ + 6.9340 H2O + 14.5330 SiO2 - log_k 24.6865 - -delta_H -191.289 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-K -# Enthalpy of formation: -4129.76 kcal/mol - -analytic -1.2241e+002 7.4761e-002 7.6067e+004 -1.1315e+001 -9.1389e+006 -# -Range: 0-300 - -Clinoptilolite-dehy-NH4 - (NH4)3.467Al3.45Fe.017Si14.533O36 +10.4010 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 NH3 + 6.9340 H2O + 14.5330 SiO2 - log_k -6.8441 - -delta_H 0 # Not possible to calculate enthalpy of reaction Clinoptilolite-dehy-NH4 -# Enthalpy of formation: 0 kcal/mol - -Clinoptilolite-dehy-Na - Na3.467Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Na+ + 6.9340 H2O + 14.5330 SiO2 - log_k 28.4987 - -delta_H -253.798 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Na -# Enthalpy of formation: -4104.98 kcal/mol - -analytic -1.4386e+002 7.6846e-002 7.8723e+004 -5.9741e+000 -8.9159e+006 -# -Range: 0-300 - -Clinoptilolite-dehy-Sr - Sr1.7335Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Sr++ + 3.4500 Al+++ + 6.9340 H2O + 14.5330 SiO2 - log_k 28.4859 - -delta_H -321.553 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Sr -# Enthalpy of formation: -4117.92 kcal/mol - -analytic -1.8410e+002 6.0457e-002 8.3626e+004 6.4304e+000 -9.0962e+006 -# -Range: 0-300 - -Clinoptilolite-hy-Ca -# Ca1.7335Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Ca++ + 3.4500 Al+++ + 14.5330 SiO2 + 18.5790 H2O - Ca1.7335Al3.45Fe.017Si14.533O36:11.645H2O +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Ca++ + 3.4500 Al+++ + 14.5330 SiO2 + 18.5790 H2O - log_k -7.0108 - -delta_H -65.4496 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Ca -# Enthalpy of formation: -4971.44 kcal/mol - -analytic 8.6833e+001 7.1520e-002 4.6854e+004 -7.8023e+001 -7.0900e+006 -# -Range: 0-300 - -Clinoptilolite-hy-Cs -# Cs3.467Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Cs+ + 13.1640 H2O + 14.5330 SiO2 - Cs3.467Al3.45Fe.017Si14.533O36:6.23H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Cs+ + 13.1640 H2O + 14.5330 SiO2 - log_k -13.0621 - -delta_H 44.6397 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Cs -# Enthalpy of formation: -4616.61 kcal/mol - -analytic -2.3362e+001 7.4922e-002 5.4544e+004 -4.1092e+001 -8.3387e+006 -# -Range: 0-300 - -Clinoptilolite-hy-K -# K3.467Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 K+ + 14.4330 H2O + 14.5330 SiO2 - K3.467Al3.45Fe.017Si14.533O36:7.499H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 K+ + 14.4330 H2O + 14.5330 SiO2 - log_k -10.9523 - -delta_H 29.5879 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-K -# Enthalpy of formation: -4694.86 kcal/mol - -analytic 1.6223e+001 7.3919e-002 5.0447e+004 -5.2790e+001 -7.8484e+006 -# -Range: 0-300 - -Clinoptilolite-hy-Na -# Na3.467Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Na+ + 14.5330 SiO2 + 17.8110 H2O - Na3.467Al3.45Fe.017Si14.533O36:10.877H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Na+ + 14.5330 SiO2 + 17.8110 H2O - log_k -7.1384 - -delta_H 1.88166 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Na -# Enthalpy of formation: -4909.18 kcal/mol - -analytic -8.4189e+000 7.2018e-002 5.0501e+004 -4.2851e+001 -7.4714e+006 -# -Range: 0-300 - -Clinoptilolite-hy-Sr -# Sr1.7335Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Sr++ + 3.4500 Al+++ + 14.5330 SiO2 + 20.8270 H2O - Sr1.7335Al3.45Fe.017Si14.533O36:13.893H2O +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Sr++ + 3.4500 Al+++ + 14.5330 SiO2 + 20.8270 H2O - log_k -7.1498 - -delta_H -31.6858 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Sr -# Enthalpy of formation: -5136.33 kcal/mol - -analytic 1.0742e-001 5.9065e-002 4.9985e+004 -4.4648e+001 -7.3382e+006 -# -Range: 0-300 - -Clinozoisite - Ca2Al3Si3O12(OH) +13.0000 H+ = + 2.0000 Ca++ + 3.0000 Al+++ + 3.0000 SiO2 + 7.0000 H2O - log_k 43.2569 - -delta_H -457.755 kJ/mol # Calculated enthalpy of reaction Clinozoisite -# Enthalpy of formation: -1643.78 kcal/mol - -analytic -2.8690e+001 -3.7056e-002 2.2770e+004 3.7880e+000 -2.5834e+005 -# -Range: 0-300 - -Co - Co +2.0000 H+ +0.5000 O2 = + 1.0000 Co++ + 1.0000 H2O - log_k 52.5307 - -delta_H -337.929 kJ/mol # Calculated enthalpy of reaction Co -# Enthalpy of formation: 0 kJ/mol - -analytic -6.2703e+001 -2.0172e-002 1.8888e+004 2.3391e+001 2.9474e+002 -# -Range: 0-300 - -Co(NO3)2 - Co(NO3)2 = + 1.0000 Co++ + 2.0000 NO3- - log_k 8.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(NO3)2 -# Enthalpy of formation: 0 kcal/mol - -Co(OH)2 - Co(OH)2 +2.0000 H+ = + 1.0000 Co++ + 2.0000 H2O - log_k 12.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)2 -# Enthalpy of formation: 0 kcal/mol - -Co2SiO4 - Co2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Co++ + 2.0000 H2O - log_k 6.6808 - -delta_H -88.6924 kJ/mol # Calculated enthalpy of reaction Co2SiO4 -# Enthalpy of formation: -353.011 kcal/mol - -analytic -3.9978e+000 -3.7985e-003 5.1554e+003 -1.5033e+000 -1.6100e+005 -# -Range: 0-300 - -Co3(AsO4)2 - Co3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Co++ - log_k 8.5318 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co3(AsO4)2 -# Enthalpy of formation: 0 kcal/mol - -Co3(PO4)2 - Co3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Co++ - log_k -10.0123 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co3(PO4)2 -# Enthalpy of formation: 0 kcal/mol - -CoCl2 - CoCl2 = + 1.0000 Co++ + 2.0000 Cl- - log_k 8.2641 - -delta_H -79.5949 kJ/mol # Calculated enthalpy of reaction CoCl2 -# Enthalpy of formation: -312.722 kJ/mol - -analytic -2.2386e+002 -8.0936e-002 8.8631e+003 9.1528e+001 1.3837e+002 -# -Range: 0-300 - -CoCl2:2H2O - CoCl2:2H2O = + 1.0000 Co++ + 2.0000 Cl- + 2.0000 H2O - log_k 4.6661 - -delta_H -40.7876 kJ/mol # Calculated enthalpy of reaction CoCl2:2H2O -# Enthalpy of formation: -923.206 kJ/mol - -analytic -5.6411e+001 -2.3390e-002 3.0519e+003 2.3361e+001 5.1845e+001 -# -Range: 0-200 - -CoCl2:6H2O - CoCl2:6H2O = + 1.0000 Co++ + 2.0000 Cl- + 6.0000 H2O - log_k 2.6033 - -delta_H 8.32709 kJ/mol # Calculated enthalpy of reaction CoCl2:6H2O -# Enthalpy of formation: -2115.67 kJ/mol - -analytic -1.5066e+002 -2.2132e-002 5.0591e+003 5.7743e+001 8.5962e+001 -# -Range: 0-200 - -CoF2 - CoF2 = + 1.0000 Co++ + 2.0000 F- - log_k -5.1343 - -delta_H -36.6708 kJ/mol # Calculated enthalpy of reaction CoF2 -# Enthalpy of formation: -692.182 kJ/mol - -analytic -2.5667e+002 -8.4071e-002 7.6256e+003 1.0143e+002 1.1907e+002 -# -Range: 0-300 - -CoF3 - CoF3 = + 1.0000 Co+++ + 3.0000 F- - log_k -4.9558 - -delta_H -103.136 kJ/mol # Calculated enthalpy of reaction CoF3 -# Enthalpy of formation: -193.8 kcal/mol - -analytic -3.7854e+002 -1.2911e-001 1.3215e+004 1.4859e+002 2.0632e+002 -# -Range: 0-300 - -CoFe2O4 - CoFe2O4 +8.0000 H+ = + 1.0000 Co++ + 2.0000 Fe+++ + 4.0000 H2O - log_k 0.8729 - -delta_H -160.674 kJ/mol # Calculated enthalpy of reaction CoFe2O4 -# Enthalpy of formation: -272.466 kcal/mol - -analytic -3.0149e+002 -7.9159e-002 1.5683e+004 1.1046e+002 2.4480e+002 -# -Range: 0-300 - -CoHPO4 - CoHPO4 = + 1.0000 Co++ + 1.0000 HPO4-- - log_k -6.7223 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoHPO4 -# Enthalpy of formation: 0 kcal/mol - -CoO - CoO +2.0000 H+ = + 1.0000 Co++ + 1.0000 H2O - log_k 13.5553 - -delta_H -106.05 kJ/mol # Calculated enthalpy of reaction CoO -# Enthalpy of formation: -237.946 kJ/mol - -analytic -8.4424e+001 -1.9457e-002 7.8616e+003 3.1281e+001 1.2270e+002 -# -Range: 0-300 - -CoS - CoS +1.0000 H+ = + 1.0000 Co++ + 1.0000 HS- - log_k -7.3740 - -delta_H 10.1755 kJ/mol # Calculated enthalpy of reaction CoS -# Enthalpy of formation: -20.182 kcal/mol - -analytic -1.5128e+002 -4.8484e-002 2.9553e+003 5.9983e+001 4.6158e+001 -# -Range: 0-300 - -CoSO4 - CoSO4 = + 1.0000 Co++ + 1.0000 SO4-- - log_k 2.8996 - -delta_H -79.7952 kJ/mol # Calculated enthalpy of reaction CoSO4 -# Enthalpy of formation: -887.964 kJ/mol - -analytic -1.9907e+002 -7.7890e-002 7.7193e+003 8.0525e+001 1.2051e+002 -# -Range: 0-300 - -CoSO4.3Co(OH)2 - CoSO4(Co(OH)2)3 +6.0000 H+ = + 1.0000 SO4-- + 4.0000 Co++ + 6.0000 H2O - log_k 33.2193 - -delta_H -379.41 kJ/mol # Calculated enthalpy of reaction CoSO4.3Co(OH)2 -# Enthalpy of formation: -2477.85 kJ/mol - -analytic -2.2830e+002 -4.0197e-002 2.5937e+004 7.5367e+001 4.4053e+002 -# -Range: 0-200 - -CoSO4:6H2O - CoSO4:6H2O = + 1.0000 Co++ + 1.0000 SO4-- + 6.0000 H2O - log_k -2.3512 - -delta_H 1.08483 kJ/mol # Calculated enthalpy of reaction CoSO4:6H2O -# Enthalpy of formation: -2683.87 kJ/mol - -analytic -2.5469e+002 -7.3092e-002 6.6767e+003 1.0172e+002 1.0426e+002 -# -Range: 0-300 - -CoSO4:H2O - CoSO4:H2O = + 1.0000 Co++ + 1.0000 H2O + 1.0000 SO4-- - log_k -1.2111 - -delta_H -52.6556 kJ/mol # Calculated enthalpy of reaction CoSO4:H2O -# Enthalpy of formation: -287.032 kcal/mol - -analytic -1.0570e+001 -1.6196e-002 1.7180e+003 3.4000e+000 2.9178e+001 -# -Range: 0-200 - -CoSeO3 - CoSeO3 = + 1.0000 Co++ + 1.0000 SeO3-- - log_k -7.0800 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoSeO3 -# Enthalpy of formation: 0 kcal/mol - -CoWO4 - CoWO4 = + 1.0000 Co++ + 1.0000 WO4-- - log_k -12.2779 - -delta_H 13.6231 kJ/mol # Calculated enthalpy of reaction CoWO4 -# Enthalpy of formation: -274.256 kcal/mol - -analytic -3.7731e+001 -2.4719e-002 -1.0347e+003 1.4663e+001 -1.7558e+001 -# -Range: 0-200 - -Coesite - SiO2 = + 1.0000 SiO2 - log_k -3.1893 - -delta_H 28.6144 kJ/mol # Calculated enthalpy of reaction Coesite -# Enthalpy of formation: -216.614 kcal/mol - -analytic -9.7312e+000 9.1773e-003 4.2143e+003 -7.8065e-001 -7.4905e+005 -# -Range: 0-300 - -Coffinite - USiO4 +4.0000 H+ = + 1.0000 SiO2 + 1.0000 U++++ + 2.0000 H2O - log_k -8.0530 - -delta_H -49.2493 kJ/mol # Calculated enthalpy of reaction Coffinite -# Enthalpy of formation: -1991.33 kJ/mol - -analytic 2.3126e+002 6.2389e-002 -4.6189e+003 -9.7976e+001 -7.8517e+001 -# -Range: 0-200 - -Colemanite - Ca2B6O11:5H2O +4.0000 H+ +2.0000 H2O = + 2.0000 Ca++ + 6.0000 B(OH)3 - log_k 21.5148 - -delta_H 0 # Not possible to calculate enthalpy of reaction Colemanite -# Enthalpy of formation: 0 kcal/mol - -Cordierite_anhyd - Mg2Al4Si5O18 +16.0000 H+ = + 2.0000 Mg++ + 4.0000 Al+++ + 5.0000 SiO2 + 8.0000 H2O - log_k 52.3035 - -delta_H -626.219 kJ/mol # Calculated enthalpy of reaction Cordierite_anhyd -# Enthalpy of formation: -2183.2 kcal/mol - -analytic 2.6562e+000 -2.3801e-002 3.5192e+004 -1.9911e+001 -1.0894e+006 -# -Range: 0-300 - -Cordierite_hydr - Mg2Al4Si5O18:H2O +16.0000 H+ = + 2.0000 Mg++ + 4.0000 Al+++ + 5.0000 SiO2 + 9.0000 H2O - log_k 49.8235 - -delta_H -608.814 kJ/mol # Calculated enthalpy of reaction Cordierite_hydr -# Enthalpy of formation: -2255.68 kcal/mol - -analytic -1.2985e+002 -4.1335e-002 4.1566e+004 2.7892e+001 -1.4819e+006 -# -Range: 0-300 - -Corkite - PbFe3(PO4)(SO4)(OH)6 +7.0000 H+ = + 1.0000 HPO4-- + 1.0000 Pb++ + 1.0000 SO4-- + 3.0000 Fe+++ + 6.0000 H2O - log_k -9.7951 - -delta_H 0 # Not possible to calculate enthalpy of reaction Corkite -# Enthalpy of formation: 0 kcal/mol - -Corundum - Al2O3 +6.0000 H+ = + 2.0000 Al+++ + 3.0000 H2O - log_k 18.3121 - -delta_H -258.626 kJ/mol # Calculated enthalpy of reaction Corundum -# Enthalpy of formation: -400.5 kcal/mol - -analytic -1.4278e+002 -7.8519e-002 1.3776e+004 5.5881e+001 2.1501e+002 -# -Range: 0-300 - -Cotunnite - PbCl2 = + 1.0000 Pb++ + 2.0000 Cl- - log_k -4.8406 - -delta_H 26.1441 kJ/mol # Calculated enthalpy of reaction Cotunnite -# Enthalpy of formation: -359.383 kJ/mol - -analytic 1.9624e+001 -1.9161e-002 -3.4686e+003 -2.8806e+000 -5.8909e+001 -# -Range: 0-200 - -Covellite - CuS +1.0000 H+ = + 1.0000 Cu++ + 1.0000 HS- - log_k -22.8310 - -delta_H 101.88 kJ/mol # Calculated enthalpy of reaction Covellite -# Enthalpy of formation: -12.5 kcal/mol - -analytic -1.6068e+002 -4.9040e-002 -1.4234e+003 6.3536e+001 -2.2164e+001 -# -Range: 0-300 - -Cr - Cr +3.0000 H+ +0.7500 O2 = + 1.0000 Cr+++ + 1.5000 H2O - log_k 98.6784 - -delta_H -658.145 kJ/mol # Calculated enthalpy of reaction Cr -# Enthalpy of formation: 0 kJ/mol - -analytic -2.2488e+001 -5.5886e-003 3.4288e+004 3.1585e+000 5.3503e+002 -# -Range: 0-300 - -CrCl3 - CrCl3 = + 1.0000 Cr+++ + 3.0000 Cl- - log_k 17.9728 - -delta_H -183.227 kJ/mol # Calculated enthalpy of reaction CrCl3 -# Enthalpy of formation: -556.5 kJ/mol - -analytic -2.6348e+002 -9.5339e-002 1.4785e+004 1.0517e+002 2.3079e+002 -# -Range: 0-300 - -CrF3 - CrF3 = + 1.0000 Cr+++ + 3.0000 F- - log_k -8.5713 - -delta_H -85.5293 kJ/mol # Calculated enthalpy of reaction CrF3 -# Enthalpy of formation: -277.008 kcal/mol - -analytic -3.2175e+002 -1.0279e-001 1.1394e+004 1.2348e+002 1.7789e+002 -# -Range: 0-300 - -CrF4 - CrF4 +2.0000 H2O = + 0.5000 Cr++ + 0.5000 CrO4-- + 4.0000 F- + 4.0000 H+ - log_k -12.3132 - -delta_H -35.2125 kJ/mol # Calculated enthalpy of reaction CrF4 -# Enthalpy of formation: -298 kcal/mol - -analytic 4.3136e+001 -4.3783e-002 -3.6809e+003 -1.2153e+001 -6.2521e+001 -# -Range: 0-200 - -CrI3 - CrI3 = + 1.0000 Cr+++ + 3.0000 I- - log_k 25.6112 - -delta_H -204.179 kJ/mol # Calculated enthalpy of reaction CrI3 -# Enthalpy of formation: -49 kcal/mol - -analytic 4.9232e+000 -2.5164e-002 8.4026e+003 0.0000e+000 0.0000e+000 -# -Range: 0-200 - -CrO2 - CrO2 = + 0.5000 Cr++ + 0.5000 CrO4-- - log_k -19.1332 - -delta_H 85.9812 kJ/mol # Calculated enthalpy of reaction CrO2 -# Enthalpy of formation: -143 kcal/mol - -analytic 2.7763e+000 -7.7698e-003 -5.2893e+003 -7.4970e-001 -8.9821e+001 -# -Range: 0-200 - -CrO3 - CrO3 +1.0000 H2O = + 1.0000 CrO4-- + 2.0000 H+ - log_k -3.5221 - -delta_H -5.78647 kJ/mol # Calculated enthalpy of reaction CrO3 -# Enthalpy of formation: -140.9 kcal/mol - -analytic -1.3262e+002 -6.1411e-002 2.2083e+003 5.6564e+001 3.4497e+001 -# -Range: 0-300 - -CrS - CrS +1.0000 H+ = + 1.0000 Cr++ + 1.0000 HS- - log_k -0.6304 - -delta_H -26.15 kJ/mol # Calculated enthalpy of reaction CrS -# Enthalpy of formation: -31.9 kcal/mol - -analytic -1.1134e+002 -3.5954e-002 3.8744e+003 4.3815e+001 6.0490e+001 -# -Range: 0-300 - -Cristobalite(alpha) - SiO2 = + 1.0000 SiO2 - log_k -3.4488 - -delta_H 29.2043 kJ/mol # Calculated enthalpy of reaction Cristobalite(alpha) -# Enthalpy of formation: -216.755 kcal/mol - -analytic -1.1936e+001 9.0520e-003 4.3701e+003 -1.1464e-001 -7.6568e+005 -# -Range: 0-300 - -Cristobalite(beta) - SiO2 = + 1.0000 SiO2 - log_k -3.0053 - -delta_H 24.6856 kJ/mol # Calculated enthalpy of reaction Cristobalite(beta) -# Enthalpy of formation: -215.675 kcal/mol - -analytic -4.7414e+000 9.7567e-003 3.8831e+003 -2.5830e+000 -6.9636e+005 -# -Range: 0-300 - -Crocoite - PbCrO4 = + 1.0000 CrO4-- + 1.0000 Pb++ - log_k -12.7177 - -delta_H 48.6181 kJ/mol # Calculated enthalpy of reaction Crocoite -# Enthalpy of formation: -222 kcal/mol - -analytic 3.0842e+001 -1.4430e-002 -5.0292e+003 -9.0525e+000 -8.5414e+001 -# -Range: 0-200 - -Cronstedtite-7A - Fe2Fe2SiO5(OH)4 +10.0000 H+ = + 1.0000 SiO2 + 2.0000 Fe++ + 2.0000 Fe+++ + 7.0000 H2O - log_k 16.2603 - -delta_H -244.266 kJ/mol # Calculated enthalpy of reaction Cronstedtite-7A -# Enthalpy of formation: -697.413 kcal/mol - -analytic -2.3783e+002 -7.1026e-002 1.7752e+004 8.7147e+001 2.7707e+002 -# -Range: 0-300 - -Cs - Cs +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Cs+ - log_k 72.5987 - -delta_H -397.913 kJ/mol # Calculated enthalpy of reaction Cs -# Enthalpy of formation: 0 kJ/mol - -analytic -1.2875e+001 -7.3845e-003 2.1019e+004 6.9347e+000 3.2799e+002 -# -Range: 0-300 - -Cs2NaAmCl6 - Cs2NaAmCl6 = + 1.0000 Am+++ + 1.0000 Na+ + 2.0000 Cs+ + 6.0000 Cl- - log_k 11.7089 - -delta_H -59.7323 kJ/mol # Calculated enthalpy of reaction Cs2NaAmCl6 -# Enthalpy of formation: -2315.8 kJ/mol - -analytic 5.1683e+001 -5.0340e-002 -2.3205e+003 -6.9536e+000 -3.9422e+001 -# -Range: 0-200 - -Cs2U2O7 - Cs2U2O7 +6.0000 H+ = + 2.0000 Cs+ + 2.0000 UO2++ + 3.0000 H2O - log_k 31.0263 - -delta_H -191.57 kJ/mol # Calculated enthalpy of reaction Cs2U2O7 -# Enthalpy of formation: -3220 kJ/mol - -analytic -5.1436e+001 -7.4096e-003 1.2524e+004 1.7827e+001 -1.2899e+005 -# -Range: 0-300 - -Cs2U4O12 - Cs2U4O12 +8.0000 H+ = + 2.0000 Cs+ + 2.0000 UO2+ + 2.0000 UO2++ + 4.0000 H2O - log_k 18.9460 - -delta_H -175.862 kJ/mol # Calculated enthalpy of reaction Cs2U4O12 -# Enthalpy of formation: -5571.8 kJ/mol - -analytic -3.3411e+001 3.6196e-003 1.0508e+004 6.5823e+000 -2.3403e+004 -# -Range: 0-300 - -Cs2UO4 - Cs2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 Cs+ + 2.0000 H2O - log_k 35.8930 - -delta_H -178.731 kJ/mol # Calculated enthalpy of reaction Cs2UO4 -# Enthalpy of formation: -1928 kJ/mol - -analytic -3.0950e+001 -3.5650e-003 1.0690e+004 1.2949e+001 1.6682e+002 -# -Range: 0-300 - -Cu - Cu +2.0000 H+ +0.5000 O2 = + 1.0000 Cu++ + 1.0000 H2O - log_k 31.5118 - -delta_H -214.083 kJ/mol # Calculated enthalpy of reaction Cu -# Enthalpy of formation: 0 kcal/mol - -analytic -7.0719e+001 -2.0300e-002 1.2802e+004 2.6401e+001 1.9979e+002 -# -Range: 0-300 - -Cu3(PO4)2 - Cu3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Cu++ - log_k -12.2247 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cu3(PO4)2 -# Enthalpy of formation: 0 kcal/mol - -Cu3(PO4)2:3H2O - Cu3(PO4)2:3H2O +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Cu++ + 3.0000 H2O - log_k -10.4763 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cu3(PO4)2:3H2O -# Enthalpy of formation: 0 kcal/mol - -CuCl2 - CuCl2 = + 1.0000 Cu++ + 2.0000 Cl- - log_k 3.7308 - -delta_H -48.5965 kJ/mol # Calculated enthalpy of reaction CuCl2 -# Enthalpy of formation: -219.874 kJ/mol - -analytic -1.7803e+001 -2.4432e-002 1.5729e+003 9.5104e+000 2.6716e+001 -# -Range: 0-200 - -CuCr2O4 - CuCr2O4 +8.0000 H+ = + 1.0000 Cu++ + 2.0000 Cr+++ + 4.0000 H2O - log_k 16.2174 - -delta_H -268.768 kJ/mol # Calculated enthalpy of reaction CuCr2O4 -# Enthalpy of formation: -307.331 kcal/mol - -analytic -1.8199e+002 -1.0254e-002 2.0123e+004 5.4062e+001 3.4178e+002 -# -Range: 0-200 - -CuF - CuF = + 1.0000 Cu+ + 1.0000 F- - log_k 7.0800 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuF -# Enthalpy of formation: 0 kcal/mol - -CuF2 - CuF2 = + 1.0000 Cu++ + 2.0000 F- - log_k -0.6200 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuF2 -# Enthalpy of formation: 0 kcal/mol - -CuF2:2H2O - CuF2:2H2O = + 1.0000 Cu++ + 2.0000 F- + 2.0000 H2O - log_k -4.5500 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuF2:2H2O -# Enthalpy of formation: 0 kcal/mol - -CuSeO3 - CuSeO3 = + 1.0000 Cu++ + 1.0000 SeO3-- - log_k -7.6767 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuSeO3 -# Enthalpy of formation: 0 kcal/mol - -Cuprite - Cu2O +2.0000 H+ = + 1.0000 H2O + 2.0000 Cu+ - log_k -1.9031 - -delta_H 28.355 kJ/mol # Calculated enthalpy of reaction Cuprite -# Enthalpy of formation: -40.83 kcal/mol - -analytic -8.6240e+001 -1.1445e-002 1.7851e+003 3.3041e+001 2.7880e+001 -# -Range: 0-300 - -Daphnite-14A - Fe5AlAlSi3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 3.0000 SiO2 + 5.0000 Fe++ + 12.0000 H2O - log_k 52.2821 - -delta_H -517.561 kJ/mol # Calculated enthalpy of reaction Daphnite-14A -# Enthalpy of formation: -1693.04 kcal/mol - -analytic -1.5261e+002 -6.1392e-002 2.8283e+004 5.1788e+001 4.4137e+002 -# -Range: 0-300 - -Daphnite-7A - Fe5AlAlSi3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 3.0000 SiO2 + 5.0000 Fe++ + 12.0000 H2O - log_k 55.6554 - -delta_H -532.326 kJ/mol # Calculated enthalpy of reaction Daphnite-7A -# Enthalpy of formation: -1689.51 kcal/mol - -analytic -1.6430e+002 -6.3160e-002 2.9499e+004 5.6442e+001 4.6035e+002 -# -Range: 0-300 - -Dawsonite - NaAlCO3(OH)2 +3.0000 H+ = + 1.0000 Al+++ + 1.0000 HCO3- + 1.0000 Na+ + 2.0000 H2O - log_k 4.3464 - -delta_H -76.3549 kJ/mol # Calculated enthalpy of reaction Dawsonite -# Enthalpy of formation: -1963.96 kJ/mol - -analytic -1.1393e+002 -2.3487e-002 7.1758e+003 4.0900e+001 1.2189e+002 -# -Range: 0-200 - -Delafossite - CuFeO2 +4.0000 H+ = + 1.0000 Cu+ + 1.0000 Fe+++ + 2.0000 H2O - log_k -6.4172 - -delta_H -18.6104 kJ/mol # Calculated enthalpy of reaction Delafossite -# Enthalpy of formation: -126.904 kcal/mol - -analytic -1.5275e+002 -3.5478e-002 5.1404e+003 5.6437e+001 8.0255e+001 -# -Range: 0-300 - -Diaspore - AlHO2 +3.0000 H+ = + 1.0000 Al+++ + 2.0000 H2O - log_k 7.1603 - -delta_H -110.42 kJ/mol # Calculated enthalpy of reaction Diaspore -# Enthalpy of formation: -238.924 kcal/mol - -analytic -1.2618e+002 -3.1671e-002 8.8737e+003 4.5669e+001 1.3850e+002 -# -Range: 0-300 - -Dicalcium_silicate - Ca2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Ca++ + 2.0000 H2O - log_k 37.1725 - -delta_H -217.642 kJ/mol # Calculated enthalpy of reaction Dicalcium_silicate -# Enthalpy of formation: -2317.9 kJ/mol - -analytic -5.9723e+001 -1.3682e-002 1.5461e+004 2.1547e+001 -3.7732e+005 -# -Range: 0-300 - -Diopside - CaMgSi2O6 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 2.0000 H2O + 2.0000 SiO2 - log_k 20.9643 - -delta_H -133.775 kJ/mol # Calculated enthalpy of reaction Diopside -# Enthalpy of formation: -765.378 kcal/mol - -analytic 7.1240e+001 1.5514e-002 8.1437e+003 -3.0672e+001 -5.6880e+005 -# -Range: 0-300 - -Dioptase - CuSiO2(OH)2 +2.0000 H+ = + 1.0000 Cu++ + 1.0000 SiO2 + 2.0000 H2O - log_k 6.0773 - -delta_H -25.2205 kJ/mol # Calculated enthalpy of reaction Dioptase -# Enthalpy of formation: -1358.47 kJ/mol - -analytic 2.3913e+002 6.2669e-002 -5.4030e+003 -9.4420e+001 -9.1834e+001 -# -Range: 0-200 - -Dolomite - CaMg(CO3)2 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 2.0000 HCO3- - log_k 2.5135 - -delta_H -59.9651 kJ/mol # Calculated enthalpy of reaction Dolomite -# Enthalpy of formation: -556.631 kcal/mol - -analytic -3.1782e+002 -9.8179e-002 1.0845e+004 1.2657e+002 1.6932e+002 -# -Range: 0-300 - -Dolomite-dis - CaMg(CO3)2 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 2.0000 HCO3- - log_k 4.0579 - -delta_H -72.2117 kJ/mol # Calculated enthalpy of reaction Dolomite-dis -# Enthalpy of formation: -553.704 kcal/mol - -analytic -3.1706e+002 -9.7886e-002 1.1442e+004 1.2604e+002 1.7864e+002 -# -Range: 0-300 - -Dolomite-ord - CaMg(CO3)2 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 2.0000 HCO3- - log_k 2.5135 - -delta_H -59.9651 kJ/mol # Calculated enthalpy of reaction Dolomite-ord -# Enthalpy of formation: -556.631 kcal/mol - -analytic -3.1654e+002 -9.7902e-002 1.0805e+004 1.2607e+002 1.6870e+002 -# -Range: 0-300 - -Downeyite - SeO2 +1.0000 H2O = + 1.0000 SeO3-- + 2.0000 H+ - log_k -6.7503 - -delta_H 1.74473 kJ/mol # Calculated enthalpy of reaction Downeyite -# Enthalpy of formation: -53.8 kcal/mol - -analytic -1.2868e+002 -6.1183e-002 1.5802e+003 5.4490e+001 2.4696e+001 -# -Range: 0-300 - -Dy - Dy +3.0000 H+ +0.7500 O2 = + 1.0000 Dy+++ + 1.5000 H2O - log_k 180.8306 - -delta_H -1116.29 kJ/mol # Calculated enthalpy of reaction Dy -# Enthalpy of formation: 0 kJ/mol - -analytic -6.8317e+001 -2.8321e-002 5.8927e+004 2.4211e+001 9.1953e+002 -# -Range: 0-300 - -Dy(OH)3 - Dy(OH)3 +3.0000 H+ = + 1.0000 Dy+++ + 3.0000 H2O - log_k 15.8852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Dy(OH)3(am) - Dy(OH)3 +3.0000 H+ = + 1.0000 Dy+++ + 3.0000 H2O - log_k 17.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -Dy2(CO3)3 - Dy2(CO3)3 +3.0000 H+ = + 2.0000 Dy+++ + 3.0000 HCO3- - log_k -3.0136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy2(CO3)3 -# Enthalpy of formation: 0 kcal/mol - -Dy2O3 - Dy2O3 +6.0000 H+ = + 2.0000 Dy+++ + 3.0000 H2O - log_k 47.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy2O3 -# Enthalpy of formation: 0 kcal/mol - -DyF3:.5H2O - DyF3:.5H2O = + 0.5000 H2O + 1.0000 Dy+++ + 3.0000 F- - log_k -16.5000 - -delta_H 0 # Not possible to calculate enthalpy of reaction DyF3:.5H2O -# Enthalpy of formation: 0 kcal/mol - -DyPO4:10H2O - DyPO4:10H2O +1.0000 H+ = + 1.0000 Dy+++ + 1.0000 HPO4-- + 10.0000 H2O - log_k -11.9782 - -delta_H 0 # Not possible to calculate enthalpy of reaction DyPO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -Enstatite - MgSiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 Mg++ + 1.0000 SiO2 - log_k 11.3269 - -delta_H -82.7302 kJ/mol # Calculated enthalpy of reaction Enstatite -# Enthalpy of formation: -369.686 kcal/mol - -analytic -4.9278e+001 -3.2832e-003 9.5205e+003 1.4437e+001 -5.4324e+005 -# -Range: 0-300 - -Epidote - Ca2FeAl2Si3O12OH +13.0000 H+ = + 1.0000 Fe+++ + 2.0000 Al+++ + 2.0000 Ca++ + 3.0000 SiO2 + 7.0000 H2O - log_k 32.9296 - -delta_H -386.451 kJ/mol # Calculated enthalpy of reaction Epidote -# Enthalpy of formation: -1543.99 kcal/mol - -analytic -2.6187e+001 -3.6436e-002 1.9351e+004 3.3671e+000 -3.0319e+005 -# -Range: 0-300 - -Epidote-ord - FeCa2Al2(OH)(SiO4)3 +13.0000 H+ = + 1.0000 Fe+++ + 2.0000 Al+++ + 2.0000 Ca++ + 3.0000 SiO2 + 7.0000 H2O - log_k 32.9296 - -delta_H -386.351 kJ/mol # Calculated enthalpy of reaction Epidote-ord -# Enthalpy of formation: -1544.02 kcal/mol - -analytic 1.9379e+001 -3.2870e-002 1.5692e+004 -1.1901e+001 2.4485e+002 -# -Range: 0-300 - -Epsomite - MgSO4:7H2O = + 1.0000 Mg++ + 1.0000 SO4-- + 7.0000 H2O - log_k -1.9623 - -delta_H 0 # Not possible to calculate enthalpy of reaction Epsomite -# Enthalpy of formation: 0 kcal/mol - -Er - Er +3.0000 H+ +0.7500 O2 = + 1.0000 Er+++ + 1.5000 H2O - log_k 181.7102 - -delta_H -1124.66 kJ/mol # Calculated enthalpy of reaction Er -# Enthalpy of formation: 0 kJ/mol - -analytic -1.4459e+002 -3.8221e-002 6.4073e+004 5.1047e+001 -3.1503e+005 -# -Range: 0-300 - -Er(OH)3 - Er(OH)3 +3.0000 H+ = + 1.0000 Er+++ + 3.0000 H2O - log_k 14.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Er(OH)3(am) - Er(OH)3 +3.0000 H+ = + 1.0000 Er+++ + 3.0000 H2O - log_k 18.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -Er2(CO3)3 - Er2(CO3)3 +3.0000 H+ = + 2.0000 Er+++ + 3.0000 HCO3- - log_k -2.6136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er2(CO3)3 -# Enthalpy of formation: 0 kcal/mol - -Er2O3 - Er2O3 +6.0000 H+ = + 2.0000 Er+++ + 3.0000 H2O - log_k 42.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er2O3 -# Enthalpy of formation: 0 kcal/mol - -ErF3:.5H2O - ErF3:.5H2O = + 0.5000 H2O + 1.0000 Er+++ + 3.0000 F- - log_k -16.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction ErF3:.5H2O -# Enthalpy of formation: 0 kcal/mol - -ErPO4:10H2O - ErPO4:10H2O +1.0000 H+ = + 1.0000 Er+++ + 1.0000 HPO4-- + 10.0000 H2O - log_k -11.8782 - -delta_H 0 # Not possible to calculate enthalpy of reaction ErPO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -Erythrite - Co3(AsO4)2:8H2O +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Co++ + 8.0000 H2O - log_k 6.3930 - -delta_H 0 # Not possible to calculate enthalpy of reaction Erythrite -# Enthalpy of formation: 0 kcal/mol - -Eskolaite - Cr2O3 +2.0000 H2O +1.5000 O2 = + 2.0000 CrO4-- + 4.0000 H+ - log_k -9.1306 - -delta_H -32.6877 kJ/mol # Calculated enthalpy of reaction Eskolaite -# Enthalpy of formation: -1139.74 kJ/mol - -analytic -2.0411e+002 -1.2809e-001 2.2197e+003 9.1186e+001 3.4697e+001 -# -Range: 0-300 - -Ettringite - Ca6Al2(SO4)3(OH)12:26H2O +12.0000 H+ = + 2.0000 Al+++ + 3.0000 SO4-- + 6.0000 Ca++ + 38.0000 H2O - log_k 62.5362 - -delta_H -382.451 kJ/mol # Calculated enthalpy of reaction Ettringite -# Enthalpy of formation: -4193 kcal/mol - -analytic -1.0576e+003 -1.1585e-001 5.9580e+004 3.8585e+002 1.0121e+003 -# -Range: 0-200 - -Eu - Eu +3.0000 H+ +0.7500 O2 = + 1.0000 Eu+++ + 1.5000 H2O - log_k 165.1443 - -delta_H -1025.08 kJ/mol # Calculated enthalpy of reaction Eu -# Enthalpy of formation: 0 kJ/mol - -analytic -6.5749e+001 -2.8921e-002 5.4018e+004 2.3561e+001 8.4292e+002 -# -Range: 0-300 - -Eu(IO3)3:2H2O - Eu(IO3)3:2H2O = + 1.0000 Eu+++ + 2.0000 H2O + 3.0000 IO3- - log_k -11.6999 - -delta_H 20.8847 kJ/mol # Calculated enthalpy of reaction Eu(IO3)3:2H2O -# Enthalpy of formation: -1861.99 kJ/mol - -analytic -3.4616e+001 -1.9914e-002 -1.1966e+003 1.3276e+001 -2.0308e+001 -# -Range: 0-200 - -Eu(NO3)3:6H2O - Eu(NO3)3:6H2O = + 1.0000 Eu+++ + 3.0000 NO3- + 6.0000 H2O - log_k 1.3082 - -delta_H 15.2254 kJ/mol # Calculated enthalpy of reaction Eu(NO3)3:6H2O -# Enthalpy of formation: -2956.11 kJ/mol - -analytic -1.3205e+002 -2.0427e-002 3.9623e+003 5.0976e+001 6.7332e+001 -# -Range: 0-200 - -Eu(OH)2.5Cl.5 - Eu(OH)2.5Cl.5 +2.5000 H+ = + 0.5000 Cl- + 1.0000 Eu+++ + 2.5000 H2O - log_k 12.5546 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2.5Cl.5 -# Enthalpy of formation: 0 kcal/mol - -Eu(OH)2Cl - Eu(OH)2Cl +2.0000 H+ = + 1.0000 Cl- + 1.0000 Eu+++ + 2.0000 H2O - log_k 8.7974 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2Cl -# Enthalpy of formation: 0 kcal/mol - -Eu(OH)3 - Eu(OH)3 +3.0000 H+ = + 1.0000 Eu+++ + 3.0000 H2O - log_k 15.3482 - -delta_H -126.897 kJ/mol # Calculated enthalpy of reaction Eu(OH)3 -# Enthalpy of formation: -1336.04 kJ/mol - -analytic -6.3077e+001 -6.1421e-003 8.7323e+003 2.0595e+001 1.4831e+002 -# -Range: 0-200 - -Eu2(CO3)3:3H2O - Eu2(CO3)3:3H2O +3.0000 H+ = + 2.0000 Eu+++ + 3.0000 H2O + 3.0000 HCO3- - log_k -5.8707 - -delta_H -137.512 kJ/mol # Calculated enthalpy of reaction Eu2(CO3)3:3H2O -# Enthalpy of formation: -4000.65 kJ/mol - -analytic -1.4134e+002 -4.0240e-002 9.5883e+003 4.6591e+001 1.6287e+002 -# -Range: 0-200 - -Eu2(SO4)3:8H2O - Eu2(SO4)3:8H2O = + 2.0000 Eu+++ + 3.0000 SO4-- + 8.0000 H2O - log_k -10.8524 - -delta_H -86.59 kJ/mol # Calculated enthalpy of reaction Eu2(SO4)3:8H2O -# Enthalpy of formation: -6139.77 kJ/mol - -analytic -5.6582e+001 -3.8846e-002 3.3821e+003 1.8561e+001 5.7452e+001 -# -Range: 0-200 - -Eu2O3(cubic) - Eu2O3 +6.0000 H+ = + 2.0000 Eu+++ + 3.0000 H2O - log_k 51.7818 - -delta_H -406.403 kJ/mol # Calculated enthalpy of reaction Eu2O3(cubic) -# Enthalpy of formation: -1661.96 kJ/mol - -analytic -5.3469e+001 -1.2554e-002 2.1925e+004 1.4324e+001 3.7233e+002 -# -Range: 0-200 - -Eu2O3(monoclinic) - Eu2O3 +6.0000 H+ = + 2.0000 Eu+++ + 3.0000 H2O - log_k 53.3936 - -delta_H -417.481 kJ/mol # Calculated enthalpy of reaction Eu2O3(monoclinic) -# Enthalpy of formation: -1650.88 kJ/mol - -analytic -5.4022e+001 -1.2627e-002 2.2508e+004 1.4416e+001 3.8224e+002 -# -Range: 0-200 - -Eu3O4 - Eu3O4 +8.0000 H+ = + 1.0000 Eu++ + 2.0000 Eu+++ + 4.0000 H2O - log_k 87.0369 - -delta_H -611.249 kJ/mol # Calculated enthalpy of reaction Eu3O4 -# Enthalpy of formation: -2270.56 kJ/mol - -analytic -1.1829e+002 -2.0354e-002 3.4981e+004 3.8007e+001 5.9407e+002 -# -Range: 0-200 - -EuBr3 - EuBr3 = + 1.0000 Eu+++ + 3.0000 Br- - log_k 29.8934 - -delta_H -217.166 kJ/mol # Calculated enthalpy of reaction EuBr3 -# Enthalpy of formation: -752.769 kJ/mol - -analytic 6.0207e+001 -2.5234e-002 6.6823e+003 -1.8276e+001 1.1345e+002 -# -Range: 0-200 - -EuCl2 - EuCl2 = + 1.0000 Eu++ + 2.0000 Cl- - log_k 5.9230 - -delta_H -39.2617 kJ/mol # Calculated enthalpy of reaction EuCl2 -# Enthalpy of formation: -822.5 kJ/mol - -analytic -2.5741e+001 -2.4956e-002 1.5713e+003 1.3670e+001 2.6691e+001 -# -Range: 0-200 - -EuCl3 - EuCl3 = + 1.0000 Eu+++ + 3.0000 Cl- - log_k 19.7149 - -delta_H -170.861 kJ/mol # Calculated enthalpy of reaction EuCl3 -# Enthalpy of formation: -935.803 kJ/mol - -analytic 3.2865e+001 -3.1877e-002 4.9792e+003 -8.2294e+000 8.4542e+001 -# -Range: 0-200 - -EuCl3:6H2O - EuCl3:6H2O = + 1.0000 Eu+++ + 3.0000 Cl- + 6.0000 H2O - log_k 4.9090 - -delta_H -40.0288 kJ/mol # Calculated enthalpy of reaction EuCl3:6H2O -# Enthalpy of formation: -2781.66 kJ/mol - -analytic -1.0987e+002 -2.9851e-002 4.9991e+003 4.3198e+001 8.4930e+001 -# -Range: 0-200 - -EuF3:0.5H2O - EuF3:0.5H2O = + 0.5000 H2O + 1.0000 Eu+++ + 3.0000 F- - log_k -16.4847 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuF3:0.5H2O -# Enthalpy of formation: 0 kcal/mol - -EuO - EuO +2.0000 H+ = + 1.0000 Eu++ + 1.0000 H2O - log_k 37.4800 - -delta_H -221.196 kJ/mol # Calculated enthalpy of reaction EuO -# Enthalpy of formation: -592.245 kJ/mol - -analytic -8.9517e+001 -1.7523e-002 1.4385e+004 3.3933e+001 2.2449e+002 -# -Range: 0-300 - -EuOCl - EuOCl +2.0000 H+ = + 1.0000 Cl- + 1.0000 Eu+++ + 1.0000 H2O - log_k 15.6683 - -delta_H -147.173 kJ/mol # Calculated enthalpy of reaction EuOCl -# Enthalpy of formation: -911.17 kJ/mol - -analytic -7.7446e+000 -1.4960e-002 6.6242e+003 2.2813e+000 1.1249e+002 -# -Range: 0-200 - -EuOHCO3 - EuOHCO3 +2.0000 H+ = + 1.0000 Eu+++ + 1.0000 H2O + 1.0000 HCO3- - log_k 2.5239 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuOHCO3 -# Enthalpy of formation: 0 kcal/mol - -EuPO4:10H2O - EuPO4:10H2O +1.0000 H+ = + 1.0000 Eu+++ + 1.0000 HPO4-- + 10.0000 H2O - log_k -12.0782 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuPO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -EuS - EuS +1.0000 H+ = + 1.0000 Eu++ + 1.0000 HS- - log_k 14.9068 - -delta_H -96.4088 kJ/mol # Calculated enthalpy of reaction EuS -# Enthalpy of formation: -447.302 kJ/mol - -analytic -4.1026e+001 -1.5582e-002 5.7842e+003 1.6639e+001 9.8238e+001 -# -Range: 0-200 - -EuSO4 - EuSO4 = + 1.0000 Eu++ + 1.0000 SO4-- - log_k -8.8449 - -delta_H 33.873 kJ/mol # Calculated enthalpy of reaction EuSO4 -# Enthalpy of formation: -1471.08 kJ/mol - -analytic 3.0262e-001 -1.7571e-002 -3.0392e+003 2.5356e+000 -5.1610e+001 -# -Range: 0-200 - -Eucryptite - LiAlSiO4 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Li+ + 1.0000 SiO2 + 2.0000 H2O - log_k 13.6106 - -delta_H -141.818 kJ/mol # Calculated enthalpy of reaction Eucryptite -# Enthalpy of formation: -2124.41 kJ/mol - -analytic -2.2213e+000 -8.2498e-003 6.4838e+003 -1.4183e+000 1.0117e+002 -# -Range: 0-300 - -Fayalite - Fe2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Fe++ + 2.0000 H2O - log_k 19.1113 - -delta_H -152.256 kJ/mol # Calculated enthalpy of reaction Fayalite -# Enthalpy of formation: -354.119 kcal/mol - -analytic 1.3853e+001 -3.5501e-003 7.1496e+003 -6.8710e+000 -6.3310e+004 -# -Range: 0-300 - -Fe - Fe +2.0000 H+ +0.5000 O2 = + 1.0000 Fe++ + 1.0000 H2O - log_k 59.0325 - -delta_H -372.029 kJ/mol # Calculated enthalpy of reaction Fe -# Enthalpy of formation: 0 kcal/mol - -analytic -6.2882e+001 -2.0379e-002 2.0690e+004 2.3673e+001 3.2287e+002 -# -Range: 0-300 - -Fe(OH)2 - Fe(OH)2 +2.0000 H+ = + 1.0000 Fe++ + 2.0000 H2O - log_k 13.9045 - -delta_H -95.4089 kJ/mol # Calculated enthalpy of reaction Fe(OH)2 -# Enthalpy of formation: -568.525 kJ/mol - -analytic -8.6666e+001 -1.8440e-002 7.5723e+003 3.2597e+001 1.1818e+002 -# -Range: 0-300 - -Fe(OH)3 - Fe(OH)3 +3.0000 H+ = + 1.0000 Fe+++ + 3.0000 H2O - log_k 5.6556 - -delta_H -84.0824 kJ/mol # Calculated enthalpy of reaction Fe(OH)3 -# Enthalpy of formation: -823.013 kJ/mol - -analytic -1.3316e+002 -3.1284e-002 7.9753e+003 4.9052e+001 1.2449e+002 -# -Range: 0-300 - -Fe2(SO4)3 - Fe2(SO4)3 = + 2.0000 Fe+++ + 3.0000 SO4-- - log_k 3.2058 - -delta_H -250.806 kJ/mol # Calculated enthalpy of reaction Fe2(SO4)3 -# Enthalpy of formation: -2577.16 kJ/mol - -analytic -5.8649e+002 -2.3718e-001 2.2736e+004 2.3601e+002 3.5495e+002 -# -Range: 0-300 - -FeF2 - FeF2 = + 1.0000 Fe++ + 2.0000 F- - log_k -2.3817 - -delta_H -51.6924 kJ/mol # Calculated enthalpy of reaction FeF2 -# Enthalpy of formation: -711.26 kJ/mol - -analytic -2.5687e+002 -8.4091e-002 8.4262e+003 1.0154e+002 1.3156e+002 -# -Range: 0-300 - -FeF3 - FeF3 = + 1.0000 Fe+++ + 3.0000 F- - log_k -19.2388 - -delta_H -13.8072 kJ/mol # Calculated enthalpy of reaction FeF3 -# Enthalpy of formation: -249 kcal/mol - -analytic -1.6215e+001 -3.7450e-002 -1.8926e+003 5.8485e+000 -3.2134e+001 -# -Range: 0-200 - -FeO - FeO +2.0000 H+ = + 1.0000 Fe++ + 1.0000 H2O - log_k 13.5318 - -delta_H -106.052 kJ/mol # Calculated enthalpy of reaction FeO -# Enthalpy of formation: -65.02 kcal/mol - -analytic -7.8750e+001 -1.8268e-002 7.6852e+003 2.9074e+001 1.1994e+002 -# -Range: 0-300 - -FeSO4 - FeSO4 = + 1.0000 Fe++ + 1.0000 SO4-- - log_k 2.6565 - -delta_H -73.0878 kJ/mol # Calculated enthalpy of reaction FeSO4 -# Enthalpy of formation: -928.771 kJ/mol - -analytic -2.0794e+002 -7.6891e-002 7.8705e+003 8.3685e+001 1.2287e+002 -# -Range: 0-300 - -FeV2O4 - FeV2O4 +8.0000 H+ = + 1.0000 Fe++ + 2.0000 V+++ + 4.0000 H2O - log_k 280.5528 - -delta_H -1733.42 kJ/mol # Calculated enthalpy of reaction FeV2O4 -# Enthalpy of formation: -5.8 kcal/mol - -analytic -1.6736e+002 -1.9398e-002 9.5736e+004 5.3582e+001 1.6258e+003 -# -Range: 0-200 - -Ferrite-Ca - CaFe2O4 +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Fe+++ + 4.0000 H2O - log_k 21.5217 - -delta_H -264.738 kJ/mol # Calculated enthalpy of reaction Ferrite-Ca -# Enthalpy of formation: -363.494 kcal/mol - -analytic -2.8472e+002 -7.5870e-002 2.0688e+004 1.0485e+002 3.2289e+002 -# -Range: 0-300 - -Ferrite-Cu - CuFe2O4 +8.0000 H+ = + 1.0000 Cu++ + 2.0000 Fe+++ + 4.0000 H2O - log_k 10.3160 - -delta_H -211.647 kJ/mol # Calculated enthalpy of reaction Ferrite-Cu -# Enthalpy of formation: -965.178 kJ/mol - -analytic -3.1271e+002 -7.9976e-002 1.8818e+004 1.1466e+002 2.9374e+002 -# -Range: 0-300 - -Ferrite-Dicalcium - Ca2Fe2O5 +10.0000 H+ = + 2.0000 Ca++ + 2.0000 Fe+++ + 5.0000 H2O - log_k 56.8331 - -delta_H -475.261 kJ/mol # Calculated enthalpy of reaction Ferrite-Dicalcium -# Enthalpy of formation: -2139.26 kJ/mol - -analytic -3.6277e+002 -9.5015e-002 3.3898e+004 1.3506e+002 5.2906e+002 -# -Range: 0-300 - -Ferrite-Mg - MgFe2O4 +8.0000 H+ = + 1.0000 Mg++ + 2.0000 Fe+++ + 4.0000 H2O - log_k 21.0551 - -delta_H -280.056 kJ/mol # Calculated enthalpy of reaction Ferrite-Mg -# Enthalpy of formation: -1428.42 kJ/mol - -analytic -2.8297e+002 -7.4820e-002 2.1333e+004 1.0295e+002 3.3296e+002 -# -Range: 0-300 - -Ferrite-Zn - ZnFe2O4 +8.0000 H+ = + 1.0000 Zn++ + 2.0000 Fe+++ + 4.0000 H2O - log_k 11.7342 - -delta_H -226.609 kJ/mol # Calculated enthalpy of reaction Ferrite-Zn -# Enthalpy of formation: -1169.29 kJ/mol - -analytic -2.9809e+002 -7.7263e-002 1.9067e+004 1.0866e+002 2.9761e+002 -# -Range: 0-300 - -Ferroselite - FeSe2 +0.5000 H2O = + 0.2500 O2 + 1.0000 Fe+++ + 1.0000 H+ + 2.0000 Se-- - log_k -80.7998 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ferroselite -# Enthalpy of formation: -25 kcal/mol - -analytic -7.2971e+001 -2.4992e-002 -1.6246e+004 2.1860e+001 -2.5348e+002 -# -Range: 0-300 - -Ferrosilite - FeSiO3 +2.0000 H+ = + 1.0000 Fe++ + 1.0000 H2O + 1.0000 SiO2 - log_k 7.4471 - -delta_H -60.6011 kJ/mol # Calculated enthalpy of reaction Ferrosilite -# Enthalpy of formation: -285.658 kcal/mol - -analytic 9.0041e+000 3.7917e-003 5.1625e+003 -6.3009e+000 -3.9565e+005 -# -Range: 0-300 - -Fluorapatite - Ca5(PO4)3F +3.0000 H+ = + 1.0000 F- + 3.0000 HPO4-- + 5.0000 Ca++ - log_k -24.9940 - -delta_H -90.8915 kJ/mol # Calculated enthalpy of reaction Fluorapatite -# Enthalpy of formation: -6836.12 kJ/mol - -analytic -9.3648e+002 -3.2688e-001 2.4398e+004 3.7461e+002 3.8098e+002 -# -Range: 0-300 - -Fluorite - CaF2 = + 1.0000 Ca++ + 2.0000 F- - log_k -10.0370 - -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction Fluorite -# Enthalpy of formation: -293 kcal/mol - -analytic -2.5036e+002 -8.4183e-002 4.9525e+003 1.0054e+002 7.7353e+001 -# -Range: 0-300 - -Forsterite - Mg2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Mg++ - log_k 27.8626 - -delta_H -205.614 kJ/mol # Calculated enthalpy of reaction Forsterite -# Enthalpy of formation: -520 kcal/mol - -analytic -7.6195e+001 -1.4013e-002 1.4763e+004 2.5090e+001 -3.0379e+005 -# -Range: 0-300 - -Foshagite - Ca4Si3O9(OH)2:0.5H2O +8.0000 H+ = + 3.0000 SiO2 + 4.0000 Ca++ + 5.5000 H2O - log_k 65.9210 - -delta_H -359.839 kJ/mol # Calculated enthalpy of reaction Foshagite -# Enthalpy of formation: -1438.27 kcal/mol - -analytic 2.9983e+001 5.5272e-003 2.3427e+004 -1.3879e+001 -8.9461e+005 -# -Range: 0-300 - -Frankdicksonite - BaF2 = + 1.0000 Ba++ + 2.0000 F- - log_k -5.7600 - -delta_H 0 # Not possible to calculate enthalpy of reaction Frankdicksonite -# Enthalpy of formation: 0 kcal/mol - -Freboldite - CoSe = + 1.0000 Co++ + 1.0000 Se-- - log_k -24.3358 - -delta_H 0 # Not possible to calculate enthalpy of reaction Freboldite -# Enthalpy of formation: -15.295 kcal/mol - -analytic -1.3763e+001 -1.6924e-003 -3.6938e+003 9.3574e-001 -6.2723e+001 -# -Range: 0-200 - -Ga - Ga +3.0000 H+ +0.7500 O2 = + 1.0000 Ga+++ + 1.5000 H2O - log_k 92.3567 - -delta_H -631.368 kJ/mol # Calculated enthalpy of reaction Ga -# Enthalpy of formation: 0 kJ/mol - -analytic -1.3027e+002 -3.9539e-002 3.6027e+004 4.6280e+001 -8.5461e+004 -# -Range: 0-300 - -Galena - PbS +1.0000 H+ = + 1.0000 HS- + 1.0000 Pb++ - log_k -14.8544 - -delta_H 83.1361 kJ/mol # Calculated enthalpy of reaction Galena -# Enthalpy of formation: -23.5 kcal/mol - -analytic -1.2124e+002 -4.3477e-002 -1.6463e+003 5.0454e+001 -2.5654e+001 -# -Range: 0-300 - -Gaylussite - CaNa2(CO3)2:5H2O +2.0000 H+ = + 1.0000 Ca++ + 2.0000 HCO3- + 2.0000 Na+ + 5.0000 H2O - log_k 11.1641 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gaylussite -# Enthalpy of formation: 0 kcal/mol - -Gd - Gd +3.0000 H+ +0.7500 O2 = + 1.0000 Gd+++ + 1.5000 H2O - log_k 180.7573 - -delta_H -1106.67 kJ/mol # Calculated enthalpy of reaction Gd -# Enthalpy of formation: 0 kJ/mol - -analytic -3.3949e+002 -6.5698e-002 7.4278e+004 1.2189e+002 -9.7055e+005 -# -Range: 0-300 - -Gd(OH)3 - Gd(OH)3 +3.0000 H+ = + 1.0000 Gd+++ + 3.0000 H2O - log_k 15.5852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Gd(OH)3(am) - Gd(OH)3 +3.0000 H+ = + 1.0000 Gd+++ + 3.0000 H2O - log_k 17.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -Gd2(CO3)3 - Gd2(CO3)3 +3.0000 H+ = + 2.0000 Gd+++ + 3.0000 HCO3- - log_k -3.7136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd2(CO3)3 -# Enthalpy of formation: 0 kcal/mol - -Gd2O3 - Gd2O3 +6.0000 H+ = + 2.0000 Gd+++ + 3.0000 H2O - log_k 53.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd2O3 -# Enthalpy of formation: 0 kcal/mol - -GdF3:.5H2O - GdF3:.5H2O = + 0.5000 H2O + 1.0000 Gd+++ + 3.0000 F- - log_k -16.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction GdF3:.5H2O -# Enthalpy of formation: 0 kcal/mol - -GdPO4:10H2O - GdPO4:10H2O +1.0000 H+ = + 1.0000 Gd+++ + 1.0000 HPO4-- + 10.0000 H2O - log_k -11.9782 - -delta_H 0 # Not possible to calculate enthalpy of reaction GdPO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -Gehlenite - Ca2Al2SiO7 +10.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 2.0000 Ca++ + 5.0000 H2O - log_k 56.2997 - -delta_H -489.934 kJ/mol # Calculated enthalpy of reaction Gehlenite -# Enthalpy of formation: -951.225 kcal/mol - -analytic -2.1784e+002 -6.7200e-002 2.9779e+004 7.8488e+001 4.6473e+002 -# -Range: 0-300 - -Gibbsite - Al(OH)3 +3.0000 H+ = + 1.0000 Al+++ + 3.0000 H2O - log_k 7.7560 - -delta_H -102.788 kJ/mol # Calculated enthalpy of reaction Gibbsite -# Enthalpy of formation: -309.065 kcal/mol - -analytic -1.1403e+002 -3.6453e-002 7.7236e+003 4.3134e+001 1.2055e+002 -# -Range: 0-300 - -Gismondine - Ca2Al4Si4O16:9H2O +16.0000 H+ = + 2.0000 Ca++ + 4.0000 Al+++ + 4.0000 SiO2 + 17.0000 H2O - log_k 41.7170 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gismondine -# Enthalpy of formation: 0 kcal/mol - -Glauberite - Na2Ca(SO4)2 = + 1.0000 Ca++ + 2.0000 Na+ + 2.0000 SO4-- - log_k -5.4690 - -delta_H 0 # Not possible to calculate enthalpy of reaction Glauberite -# Enthalpy of formation: 0 kcal/mol - -Goethite - FeOOH +3.0000 H+ = + 1.0000 Fe+++ + 2.0000 H2O - log_k 0.5345 - -delta_H -61.9291 kJ/mol # Calculated enthalpy of reaction Goethite -# Enthalpy of formation: -559.328 kJ/mol - -analytic -6.0331e+001 -1.0847e-002 4.7759e+003 1.9429e+001 8.1122e+001 -# -Range: 0-200 - -Greenalite - Fe3Si2O5(OH)4 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 Fe++ + 5.0000 H2O - log_k 22.6701 - -delta_H -165.297 kJ/mol # Calculated enthalpy of reaction Greenalite -# Enthalpy of formation: -787.778 kcal/mol - -analytic -1.4187e+001 -3.8377e-003 1.1710e+004 1.6442e+000 -4.8290e+005 -# -Range: 0-300 - -Grossular - Ca3Al2(SiO4)3 +12.0000 H+ = + 2.0000 Al+++ + 3.0000 Ca++ + 3.0000 SiO2 + 6.0000 H2O - log_k 51.9228 - -delta_H -432.006 kJ/mol # Calculated enthalpy of reaction Grossular -# Enthalpy of formation: -1582.74 kcal/mol - -analytic 2.9389e+001 -2.2478e-002 2.0323e+004 -1.4624e+001 -2.5674e+005 -# -Range: 0-300 - -Gypsum - CaSO4:2H2O = + 1.0000 Ca++ + 1.0000 SO4-- + 2.0000 H2O - log_k -4.4823 - -delta_H -1.66746 kJ/mol # Calculated enthalpy of reaction Gypsum -# Enthalpy of formation: -2022.69 kJ/mol - -analytic -2.4417e+002 -8.3329e-002 5.5958e+003 9.9301e+001 8.7389e+001 -# -Range: 0-300 - -Gyrolite - Ca2Si3O7(OH)2:1.5H2O +4.0000 H+ = + 2.0000 Ca++ + 3.0000 SiO2 + 4.5000 H2O - log_k 22.9099 - -delta_H -82.862 kJ/mol # Calculated enthalpy of reaction Gyrolite -# Enthalpy of formation: -1176.55 kcal/mol - -analytic -2.4416e+001 1.4646e-002 1.6181e+004 2.3723e+000 -1.5369e+006 -# -Range: 0-300 - -HTcO4 - HTcO4 = + 1.0000 H+ + 1.0000 TcO4- - log_k 5.9566 - -delta_H -12.324 kJ/mol # Calculated enthalpy of reaction HTcO4 -# Enthalpy of formation: -703.945 kJ/mol - -analytic 3.0005e+001 7.6416e-003 -5.3546e+001 -1.0568e+001 -9.1953e-001 -# -Range: 0-200 - -Haiweeite - Ca(UO2)2(Si2O5)3:5H2O +6.0000 H+ = + 1.0000 Ca++ + 2.0000 UO2++ + 6.0000 SiO2 + 8.0000 H2O - log_k -7.0413 - -delta_H 0 # Not possible to calculate enthalpy of reaction Haiweeite -# Enthalpy of formation: 0 kcal/mol - -Halite - NaCl = + 1.0000 Cl- + 1.0000 Na+ - log_k 1.5855 - -delta_H 3.7405 kJ/mol # Calculated enthalpy of reaction Halite -# Enthalpy of formation: -98.26 kcal/mol - -analytic -1.0163e+002 -3.4761e-002 2.2796e+003 4.2802e+001 3.5602e+001 -# -Range: 0-300 - -Hatrurite - Ca3SiO5 +6.0000 H+ = + 1.0000 SiO2 + 3.0000 Ca++ + 3.0000 H2O - log_k 73.4056 - -delta_H -434.684 kJ/mol # Calculated enthalpy of reaction Hatrurite -# Enthalpy of formation: -700.234 kcal/mol - -analytic -4.5448e+001 -1.9998e-002 2.3800e+004 1.8494e+001 -7.3385e+004 -# -Range: 0-300 - -Hausmannite - Mn3O4 +8.0000 H+ = + 1.0000 Mn++ + 2.0000 Mn+++ + 4.0000 H2O - log_k 10.1598 - -delta_H -268.121 kJ/mol # Calculated enthalpy of reaction Hausmannite -# Enthalpy of formation: -1387.83 kJ/mol - -analytic -2.0600e+002 -2.2214e-002 2.0160e+004 6.2700e+001 3.1464e+002 -# -Range: 0-300 - -Heazlewoodite - Ni3S2 +4.0000 H+ +0.5000 O2 = + 1.0000 H2O + 2.0000 HS- + 3.0000 Ni++ - log_k 28.2477 - -delta_H -270.897 kJ/mol # Calculated enthalpy of reaction Heazlewoodite -# Enthalpy of formation: -203.012 kJ/mol - -analytic -3.5439e+002 -1.1740e-001 2.1811e+004 1.3919e+002 3.4044e+002 -# -Range: 0-300 - -Hedenbergite - CaFe(SiO3)2 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 Fe++ + 2.0000 H2O + 2.0000 SiO2 - log_k 19.6060 - -delta_H -124.507 kJ/mol # Calculated enthalpy of reaction Hedenbergite -# Enthalpy of formation: -678.276 kcal/mol - -analytic -1.9473e+001 1.5288e-003 1.2910e+004 2.1729e+000 -9.0058e+005 -# -Range: 0-300 - -Hematite - Fe2O3 +6.0000 H+ = + 2.0000 Fe+++ + 3.0000 H2O - log_k 0.1086 - -delta_H -129.415 kJ/mol # Calculated enthalpy of reaction Hematite -# Enthalpy of formation: -197.72 kcal/mol - -analytic -2.2015e+002 -6.0290e-002 1.1812e+004 8.0253e+001 1.8438e+002 -# -Range: 0-300 - -Hercynite - FeAl2O4 +8.0000 H+ = + 1.0000 Fe++ + 2.0000 Al+++ + 4.0000 H2O - log_k 28.8484 - -delta_H -345.961 kJ/mol # Calculated enthalpy of reaction Hercynite -# Enthalpy of formation: -1966.45 kJ/mol - -analytic -3.1848e+002 -7.9501e-002 2.5892e+004 1.1483e+002 4.0412e+002 -# -Range: 0-300 - -Herzenbergite - SnS +1.0000 H+ = + 1.0000 HS- + 1.0000 Sn++ - log_k -15.5786 - -delta_H 81.6466 kJ/mol # Calculated enthalpy of reaction Herzenbergite -# Enthalpy of formation: -25.464 kcal/mol - -analytic -1.3576e+002 -4.6594e-002 -1.1572e+003 5.5740e+001 -1.8018e+001 -# -Range: 0-300 - -Heulandite -# Ba.065Sr.175Ca.585K.132Na.383Al2.165Si6.835O18:6 +8.6600 H+ = + 0.0650 Ba++ + 0.1320 K+ + 0.1750 Sr++ + 0.3830 Na+ + 0.5850 Ca++ + 2.1650 Al+++ + 6.8350 SiO2 + 10.3300 H2O - Ba.065Sr.175Ca.585K.132Na.383Al2.165Si6.835O18:6H2O +8.6600 H+ = + 0.0650 Ba++ + 0.1320 K+ + 0.1750 Sr++ + 0.3830 Na+ + 0.5850 Ca++ + 2.1650 Al+++ + 6.8350 SiO2 + 10.3300 H2O - log_k 3.3506 - -delta_H -97.2942 kJ/mol # Calculated enthalpy of reaction Heulandite -# Enthalpy of formation: -10594.5 kJ/mol - -analytic -1.8364e+001 2.7879e-002 2.8426e+004 -1.7427e+001 -3.4723e+006 -# -Range: 0-300 - -Hexahydrite - MgSO4:6H2O = + 1.0000 Mg++ + 1.0000 SO4-- + 6.0000 H2O - log_k -1.7268 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hexahydrite -# Enthalpy of formation: 0 kcal/mol - -Hf(s) - Hf +4.0000 H+ +1.0000 O2 = + 1.0000 Hf++++ + 2.0000 H2O - log_k 189.9795 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf -# Enthalpy of formation: -0.003 kJ/mol - -HfB2 - HfB2 +2.7500 H+ +2.2500 H2O = + 0.7500 B(OH)3 + 1.0000 Hf++++ + 1.2500 BH4- - log_k 55.7691 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfB2 -# Enthalpy of formation: -78.6 kJ/mol - -HfBr2 - HfBr2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hf++++ + 2.0000 Br- - log_k 114.9446 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfBr2 -# Enthalpy of formation: -98 kJ/mol - -HfBr4 - HfBr4 = + 1.0000 Hf++++ + 4.0000 Br- - log_k 48.2921 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfBr4 -# Enthalpy of formation: -183.1 kJ/mol - -HfC - HfC +3.0000 H+ +2.0000 O2 = + 1.0000 H2O + 1.0000 HCO3- + 1.0000 Hf++++ - log_k 215.0827 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfC -# Enthalpy of formation: -54 kJ/mol - -HfCl2 - HfCl2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hf++++ + 2.0000 Cl- - log_k 109.1624 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfCl2 -# Enthalpy of formation: -125 kJ/mol - -HfCl4 - HfCl4 = + 1.0000 Hf++++ + 4.0000 Cl- - log_k 38.0919 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfCl4 -# Enthalpy of formation: -236.7 kJ/mol - -HfF2 - HfF2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hf++++ + 2.0000 F- - log_k 81.7647 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfF2 -# Enthalpy of formation: -235 kJ/mol - -HfF4 - HfF4 = + 1.0000 Hf++++ + 4.0000 F- - log_k -19.2307 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfF4 -# Enthalpy of formation: -461.4 kJ/mol - -HfI2 - HfI2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hf++++ + 2.0000 I- - log_k 117.4971 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfI2 -# Enthalpy of formation: -65 kJ/mol - -HfI4 - HfI4 = + 1.0000 Hf++++ + 4.0000 I- - log_k 54.1798 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfI4 -# Enthalpy of formation: -118 kJ/mol - -HfN - HfN +4.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Hf++++ + 1.0000 NH3 - log_k 69.4646 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfN -# Enthalpy of formation: -89.3 kJ/mol - -HfO2 - HfO2 +4.0000 H+ = + 1.0000 Hf++++ + 2.0000 H2O - log_k 1.1829 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfO2 -# Enthalpy of formation: -267.1 kJ/mol - -HfS2 - HfS2 +2.0000 H+ = + 1.0000 Hf++++ + 2.0000 HS- - log_k -1.5845 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfS2 -# Enthalpy of formation: -140 kJ/mol - -HfS3 - HfS3 +1.0000 H+ = + 1.0000 HS- + 1.0000 Hf++++ + 1.0000 S2-- - log_k -18.9936 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfS3 -# Enthalpy of formation: -149 kJ/mol - -Hg2SO4 - Hg2SO4 = + 1.0000 Hg2++ + 1.0000 SO4-- - log_k -6.1170 - -delta_H 0.30448 kJ/mol # Calculated enthalpy of reaction Hg2SO4 -# Enthalpy of formation: -743.09 kJ/mol - -analytic -3.2342e+001 -1.9881e-002 1.6292e+003 1.0781e+001 2.7677e+001 -# -Range: 0-200 - -Hg2SeO3 - Hg2SeO3 = + 1.0000 Hg2++ + 1.0000 SeO3-- - log_k -14.2132 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hg2SeO3 -# Enthalpy of formation: 0 kcal/mol - -HgSeO3 - HgSeO3 = + 1.0000 Hg++ + 1.0000 SeO3-- - log_k -13.8957 - -delta_H 0 # Not possible to calculate enthalpy of reaction HgSeO3 -# Enthalpy of formation: 0 kcal/mol - -Hillebrandite - Ca2SiO3(OH)2:0.17H2O +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Ca++ + 3.1700 H2O - log_k 36.8190 - -delta_H -203.074 kJ/mol # Calculated enthalpy of reaction Hillebrandite -# Enthalpy of formation: -637.404 kcal/mol - -analytic -1.9360e+001 -7.5176e-003 1.1947e+004 8.0558e+000 -1.4504e+005 -# -Range: 0-300 - -Hinsdalite - Al3PPbSO8(OH)6 +7.0000 H+ = + 1.0000 HPO4-- + 1.0000 Pb++ + 1.0000 SO4-- + 3.0000 Al+++ + 6.0000 H2O - log_k 9.8218 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hinsdalite -# Enthalpy of formation: 0 kcal/mol - -Ho - Ho +3.0000 H+ +0.7500 O2 = + 1.0000 Ho+++ + 1.5000 H2O - log_k 182.8097 - -delta_H -1126.75 kJ/mol # Calculated enthalpy of reaction Ho -# Enthalpy of formation: 0 kJ/mol - -analytic -6.5903e+001 -2.8190e-002 5.9370e+004 2.3421e+001 9.2643e+002 -# -Range: 0-300 - -Ho(OH)3 - Ho(OH)3 +3.0000 H+ = + 1.0000 Ho+++ + 3.0000 H2O - log_k 15.3852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Ho(OH)3(am) - Ho(OH)3 +3.0000 H+ = + 1.0000 Ho+++ + 3.0000 H2O - log_k 17.7852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -Ho2(CO3)3 - Ho2(CO3)3 +3.0000 H+ = + 2.0000 Ho+++ + 3.0000 HCO3- - log_k -2.8136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho2(CO3)3 -# Enthalpy of formation: 0 kcal/mol - -Ho2O3 - Ho2O3 +6.0000 H+ = + 2.0000 Ho+++ + 3.0000 H2O - log_k 47.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho2O3 -# Enthalpy of formation: 0 kcal/mol - -HoF3:.5H2O - HoF3:.5H2O = + 0.5000 H2O + 1.0000 Ho+++ + 3.0000 F- - log_k -16.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction HoF3:.5H2O -# Enthalpy of formation: 0 kcal/mol - -HoPO4:10H2O - HoPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Ho+++ + 10.0000 H2O - log_k -11.8782 - -delta_H 0 # Not possible to calculate enthalpy of reaction HoPO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -Hopeite - Zn3(PO4)2:4H2O +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Zn++ + 4.0000 H2O - log_k -10.6563 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hopeite -# Enthalpy of formation: 0 kcal/mol - -Huntite - CaMg3(CO3)4 +4.0000 H+ = + 1.0000 Ca++ + 3.0000 Mg++ + 4.0000 HCO3- - log_k 10.3010 - -delta_H -171.096 kJ/mol # Calculated enthalpy of reaction Huntite -# Enthalpy of formation: -1082.6 kcal/mol - -analytic -6.5000e+002 -1.9671e-001 2.4815e+004 2.5688e+002 3.8740e+002 -# -Range: 0-300 - -Hydroboracite - MgCaB6O11:6H2O +4.0000 H+ +1.0000 H2O = + 1.0000 Ca++ + 1.0000 Mg++ + 6.0000 B(OH)3 - log_k 20.3631 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hydroboracite -# Enthalpy of formation: 0 kcal/mol - -Hydrocerussite - Pb3(CO3)2(OH)2 +4.0000 H+ = + 2.0000 H2O + 2.0000 HCO3- + 3.0000 Pb++ - log_k 1.8477 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hydrocerussite -# Enthalpy of formation: 0 kcal/mol - -Hydromagnesite - Mg5(CO3)4(OH)2:4H2O +6.0000 H+ = + 4.0000 HCO3- + 5.0000 Mg++ + 6.0000 H2O - log_k 30.8539 - -delta_H -289.696 kJ/mol # Calculated enthalpy of reaction Hydromagnesite -# Enthalpy of formation: -1557.09 kcal/mol - -analytic -7.9288e+002 -2.1448e-001 3.6749e+004 3.0888e+002 5.7367e+002 -# -Range: 0-300 - -Hydrophilite - CaCl2 = + 1.0000 Ca++ + 2.0000 Cl- - log_k 11.7916 - -delta_H -81.4545 kJ/mol # Calculated enthalpy of reaction Hydrophilite -# Enthalpy of formation: -795.788 kJ/mol - -analytic -2.2278e+002 -8.1414e-002 9.0298e+003 9.2349e+001 1.4097e+002 -# -Range: 0-300 - -Hydroxylapatite - Ca5(OH)(PO4)3 +4.0000 H+ = + 1.0000 H2O + 3.0000 HPO4-- + 5.0000 Ca++ - log_k -3.0746 - -delta_H -191.982 kJ/mol # Calculated enthalpy of reaction Hydroxylapatite -# Enthalpy of formation: -6685.52 kJ/mol - -analytic -8.5221e+002 -2.9430e-001 2.8125e+004 3.4044e+002 4.3911e+002 -# -Range: 0-300 - -Hydrozincite - Zn5(OH)6(CO3)2 +8.0000 H+ = + 2.0000 HCO3- + 5.0000 Zn++ + 6.0000 H2O - log_k 30.3076 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hydrozincite -# Enthalpy of formation: 0 kcal/mol - -I2 - I2 +1.0000 H2O = + 0.5000 O2 + 2.0000 H+ + 2.0000 I- - log_k -24.8084 - -delta_H 165.967 kJ/mol # Calculated enthalpy of reaction I2 -# Enthalpy of formation: 0 kJ/mol - -analytic -1.7135e+002 -6.2810e-002 -4.7225e+003 7.3181e+001 -7.3640e+001 -# -Range: 0-300 - -Ice - H2O = + 1.0000 H2O - log_k 0.1387 - -delta_H 6.74879 kJ/mol # Calculated enthalpy of reaction Ice -# Enthalpy of formation: -69.93 kcal/mol - -analytic -2.3260e+001 4.7948e-004 7.7351e+002 8.3499e+000 1.3143e+001 -# -Range: 0-200 - -Illite - K0.6Mg0.25Al1.8Al0.5Si3.5O10(OH)2 +8.0000 H+ = + 0.2500 Mg++ + 0.6000 K+ + 2.3000 Al+++ + 3.5000 SiO2 + 5.0000 H2O - log_k 9.0260 - -delta_H -171.764 kJ/mol # Calculated enthalpy of reaction Illite -# Enthalpy of formation: -1394.71 kcal/mol - -analytic 2.6069e+001 -1.2553e-003 1.3670e+004 -2.0232e+001 -1.1204e+006 -# -Range: 0-300 - -Ilmenite - FeTiO3 +2.0000 H+ +1.0000 H2O = + 1.0000 Fe++ + 1.0000 Ti(OH)4 - log_k 0.9046 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ilmenite -# Enthalpy of formation: -1236.65 kJ/mol - -In - In +3.0000 H+ +0.7500 O2 = + 1.0000 In+++ + 1.5000 H2O - log_k 81.6548 - -delta_H -524.257 kJ/mol # Calculated enthalpy of reaction In -# Enthalpy of formation: 0 kJ/mol - -analytic -1.1773e+002 -3.7657e-002 3.1802e+004 4.2438e+001 -9.6348e+004 -# -Range: 0-300 - -Jadeite - NaAl(SiO3)2 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 2.0000 H2O + 2.0000 SiO2 - log_k 8.3888 - -delta_H -84.4415 kJ/mol # Calculated enthalpy of reaction Jadeite -# Enthalpy of formation: -722.116 kcal/mol - -analytic 1.5934e+000 5.0757e-003 9.5602e+003 -7.0164e+000 -8.4454e+005 -# -Range: 0-300 - -Jarosite - KFe3(SO4)2(OH)6 +6.0000 H+ = + 1.0000 K+ + 2.0000 SO4-- + 3.0000 Fe+++ + 6.0000 H2O - log_k -9.3706 - -delta_H -191.343 kJ/mol # Calculated enthalpy of reaction Jarosite -# Enthalpy of formation: -894.79 kcal/mol - -analytic -1.0813e+002 -5.0381e-002 9.6893e+003 3.2832e+001 1.6457e+002 -# -Range: 0-200 - -Jarosite-Na - NaFe3(SO4)2(OH)6 +6.0000 H+ = + 1.0000 Na+ + 2.0000 SO4-- + 3.0000 Fe+++ + 6.0000 H2O - log_k -5.4482 - -delta_H 0 # Not possible to calculate enthalpy of reaction Jarosite-Na -# Enthalpy of formation: 0 kcal/mol - -K - K +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 K+ - log_k 70.9861 - -delta_H -392.055 kJ/mol # Calculated enthalpy of reaction K -# Enthalpy of formation: 0 kJ/mol - -analytic -3.1102e+001 -1.0003e-002 2.1338e+004 1.3534e+001 3.3296e+002 -# -Range: 0-300 - -K-Feldspar - KAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 H2O + 3.0000 SiO2 - log_k -0.2753 - -delta_H -23.9408 kJ/mol # Calculated enthalpy of reaction K-Feldspar -# Enthalpy of formation: -949.188 kcal/mol - -analytic -1.0684e+000 1.3111e-002 1.1671e+004 -9.9129e+000 -1.5855e+006 -# -Range: 0-300 - -K2CO3:1.5H2O - K2CO3:1.5H2O +1.0000 H+ = + 1.0000 HCO3- + 1.5000 H2O + 2.0000 K+ - log_k 13.3785 - -delta_H 0 # Not possible to calculate enthalpy of reaction K2CO3:1.5H2O -# Enthalpy of formation: 0 kcal/mol - -K2O - K2O +2.0000 H+ = + 1.0000 H2O + 2.0000 K+ - log_k 84.0405 - -delta_H -427.006 kJ/mol # Calculated enthalpy of reaction K2O -# Enthalpy of formation: -86.8 kcal/mol - -analytic -1.8283e+001 -5.2255e-003 2.3184e+004 1.0553e+001 3.6177e+002 -# -Range: 0-300 - -K2Se - K2Se = + 1.0000 Se-- + 2.0000 K+ - log_k 11.2925 - -delta_H 0 # Not possible to calculate enthalpy of reaction K2Se -# Enthalpy of formation: -92 kcal/mol - -analytic 1.8182e+001 7.8828e-003 2.6345e+003 -7.3075e+000 4.4732e+001 -# -Range: 0-200 - -K2UO4 - K2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 K+ - log_k 33.8714 - -delta_H -174.316 kJ/mol # Calculated enthalpy of reaction K2UO4 -# Enthalpy of formation: -1920.7 kJ/mol - -analytic -7.0905e+001 -2.5680e-003 1.2244e+004 2.6056e+001 2.0794e+002 -# -Range: 0-200 - -K3H(SO4)2 - K3H(SO4)2 = + 1.0000 H+ + 2.0000 SO4-- + 3.0000 K+ - log_k -3.6233 - -delta_H 0 # Not possible to calculate enthalpy of reaction K3H(SO4)2 -# Enthalpy of formation: 0 kcal/mol - -K8H4(CO3)6:3H2O - K8H4(CO3)6:3H2O +2.0000 H+ = + 3.0000 H2O + 6.0000 HCO3- + 8.0000 K+ - log_k 27.7099 - -delta_H 0 # Not possible to calculate enthalpy of reaction K8H4(CO3)6:3H2O -# Enthalpy of formation: 0 kcal/mol - -KAl(SO4)2 - KAl(SO4)2 = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 SO4-- - log_k 3.3647 - -delta_H -139.485 kJ/mol # Calculated enthalpy of reaction KAl(SO4)2 -# Enthalpy of formation: -2470.29 kJ/mol - -analytic -4.2785e+002 -1.6303e-001 1.5311e+004 1.7312e+002 2.3904e+002 -# -Range: 0-300 - -KBr - KBr = + 1.0000 Br- + 1.0000 K+ - log_k 1.0691 - -delta_H 20.125 kJ/mol # Calculated enthalpy of reaction KBr -# Enthalpy of formation: -393.798 kJ/mol - -analytic -7.3164e+001 -3.1240e-002 4.8140e+002 3.3104e+001 7.5336e+000 -# -Range: 0-300 - -KMgCl3 - KMgCl3 = + 1.0000 K+ + 1.0000 Mg++ + 3.0000 Cl- - log_k 21.2618 - -delta_H -132.768 kJ/mol # Calculated enthalpy of reaction KMgCl3 -# Enthalpy of formation: -1086.6 kJ/mol - -analytic -8.4641e+000 -3.2688e-002 5.1496e+003 8.9652e+000 8.7450e+001 -# -Range: 0-200 - -KMgCl3:2H2O - KMgCl3:2H2O = + 1.0000 K+ + 1.0000 Mg++ + 2.0000 H2O + 3.0000 Cl- - log_k 13.9755 - -delta_H -76.8449 kJ/mol # Calculated enthalpy of reaction KMgCl3:2H2O -# Enthalpy of formation: -1714.2 kJ/mol - -analytic -5.9982e+001 -3.3015e-002 4.6174e+003 2.7602e+001 7.8431e+001 -# -Range: 0-200 - -KNaCO3:6H2O - KNaCO3:6H2O +1.0000 H+ = + 1.0000 HCO3- + 1.0000 K+ + 1.0000 Na+ + 6.0000 H2O - log_k 10.2593 - -delta_H 0 # Not possible to calculate enthalpy of reaction KNaCO3:6H2O -# Enthalpy of formation: 0 kcal/mol - -KTcO4 - KTcO4 = + 1.0000 K+ + 1.0000 TcO4- - log_k -2.2667 - -delta_H 53.2363 kJ/mol # Calculated enthalpy of reaction KTcO4 -# Enthalpy of formation: -1021.67 kJ/mol - -analytic 1.8058e+001 -8.4795e-004 -2.3985e+003 -4.1788e+000 -1.5029e+005 -# -Range: 0-300 - -KUO2AsO4 - KUO2AsO4 +2.0000 H+ = + 1.0000 H2AsO4- + 1.0000 K+ + 1.0000 UO2++ - log_k -4.1741 - -delta_H 0 # Not possible to calculate enthalpy of reaction KUO2AsO4 -# Enthalpy of formation: 0 kcal/mol - -Kainite - KMgClSO4:3H2O = + 1.0000 Cl- + 1.0000 K+ + 1.0000 Mg++ + 1.0000 SO4-- + 3.0000 H2O - log_k -0.3114 - -delta_H 0 # Not possible to calculate enthalpy of reaction Kainite -# Enthalpy of formation: 0 kcal/mol - -Kalicinite - KHCO3 = + 1.0000 HCO3- + 1.0000 K+ - log_k 0.2837 - -delta_H 0 # Not possible to calculate enthalpy of reaction Kalicinite -# Enthalpy of formation: 0 kcal/mol - -Kalsilite - KAlSiO4 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 1.0000 SiO2 + 2.0000 H2O - log_k 10.8987 - -delta_H -108.583 kJ/mol # Calculated enthalpy of reaction Kalsilite -# Enthalpy of formation: -509.408 kcal/mol - -analytic -6.7595e+000 -7.4301e-003 6.5380e+003 1.8999e-001 -2.2880e+005 -# -Range: 0-300 - -Kaolinite - Al2Si2O5(OH)4 +6.0000 H+ = + 2.0000 Al+++ + 2.0000 SiO2 + 5.0000 H2O - log_k 6.8101 - -delta_H -151.779 kJ/mol # Calculated enthalpy of reaction Kaolinite -# Enthalpy of formation: -982.221 kcal/mol - -analytic 1.6835e+001 -7.8939e-003 7.7636e+003 -1.2190e+001 -3.2354e+005 -# -Range: 0-300 - -Karelianite - V2O3 +6.0000 H+ = + 2.0000 V+++ + 3.0000 H2O - log_k 9.9424 - -delta_H -160.615 kJ/mol # Calculated enthalpy of reaction Karelianite -# Enthalpy of formation: -1218.98 kJ/mol - -analytic -2.7961e+001 -7.1499e-003 6.7749e+003 5.8146e+000 2.6039e+005 -# -Range: 0-300 - -Kasolite - Pb(UO2)SiO4:H2O +4.0000 H+ = + 1.0000 Pb++ + 1.0000 SiO2 + 1.0000 UO2++ + 3.0000 H2O - log_k 7.2524 - -delta_H 0 # Not possible to calculate enthalpy of reaction Kasolite -# Enthalpy of formation: 0 kcal/mol - -Katoite - Ca3Al2H12O12 +12.0000 H+ = + 2.0000 Al+++ + 3.0000 Ca++ + 12.0000 H2O - log_k 78.9437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Katoite -# Enthalpy of formation: 0 kcal/mol - -Kieserite - MgSO4:H2O = + 1.0000 H2O + 1.0000 Mg++ + 1.0000 SO4-- - log_k -0.2670 - -delta_H 0 # Not possible to calculate enthalpy of reaction Kieserite -# Enthalpy of formation: 0 kcal/mol - -Klockmannite - CuSe = + 1.0000 Cu++ + 1.0000 Se-- - log_k -41.6172 - -delta_H 0 # Not possible to calculate enthalpy of reaction Klockmannite -# Enthalpy of formation: -10 kcal/mol - -analytic -2.3021e+001 -2.1458e-003 -8.5938e+003 4.3900e+000 -1.4593e+002 -# -Range: 0-200 - -Krutaite - CuSe2 +1.0000 H2O = + 0.5000 O2 + 1.0000 Cu++ + 2.0000 H+ + 2.0000 Se-- - log_k -107.6901 - -delta_H 0 # Not possible to calculate enthalpy of reaction Krutaite -# Enthalpy of formation: -11.5 kcal/mol - -analytic -3.7735e+001 -8.7548e-004 -2.6352e+004 7.5528e+000 -4.4749e+002 -# -Range: 0-200 - -Kyanite - Al2SiO5 +6.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 3.0000 H2O - log_k 15.6740 - -delta_H -230.919 kJ/mol # Calculated enthalpy of reaction Kyanite -# Enthalpy of formation: -616.897 kcal/mol - -analytic -7.3335e+001 -3.2853e-002 1.2166e+004 2.3412e+001 1.8986e+002 -# -Range: 0-300 - -La - La +3.0000 H+ +0.7500 O2 = + 1.0000 La+++ + 1.5000 H2O - log_k 184.7155 - -delta_H -1129.26 kJ/mol # Calculated enthalpy of reaction La -# Enthalpy of formation: 0 kJ/mol - -analytic -5.9508e+001 -2.7578e-002 5.9327e+004 2.1589e+001 9.2577e+002 -# -Range: 0-300 - -La(OH)3 - La(OH)3 +3.0000 H+ = + 1.0000 La+++ + 3.0000 H2O - log_k 20.2852 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(OH)3 -# Enthalpy of formation: 0 kcal/mol - -La(OH)3(am) - La(OH)3 +3.0000 H+ = + 1.0000 La+++ + 3.0000 H2O - log_k 23.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -La2(CO3)3:8H2O - La2(CO3)3:8H2O +3.0000 H+ = + 2.0000 La+++ + 3.0000 HCO3- + 8.0000 H2O - log_k -4.3136 - -delta_H 0 # Not possible to calculate enthalpy of reaction La2(CO3)3:8H2O -# Enthalpy of formation: 0 kcal/mol - -La2O3 - La2O3 +6.0000 H+ = + 2.0000 La+++ + 3.0000 H2O - log_k 66.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction La2O3 -# Enthalpy of formation: 0 kcal/mol - -LaCl3 - LaCl3 = + 1.0000 La+++ + 3.0000 Cl- - log_k 14.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaCl3 -# Enthalpy of formation: 0 kcal/mol - -LaCl3:7H2O - LaCl3:7H2O = + 1.0000 La+++ + 3.0000 Cl- + 7.0000 H2O - log_k 4.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaCl3:7H2O -# Enthalpy of formation: 0 kcal/mol - -LaF3:.5H2O - LaF3:.5H2O = + 0.5000 H2O + 1.0000 La+++ + 3.0000 F- - log_k -18.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaF3:.5H2O -# Enthalpy of formation: 0 kcal/mol - -LaPO4:10H2O - LaPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 La+++ + 10.0000 H2O - log_k -12.3782 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaPO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -Lammerite - Cu3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Cu++ - log_k 1.5542 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lammerite -# Enthalpy of formation: 0 kcal/mol -Lanarkite - Pb2(SO4)O +2.0000 H+ = + 1.0000 H2O + 1.0000 SO4-- + 2.0000 Pb++ - log_k -0.4692 - -delta_H -22.014 kJ/mol # Calculated enthalpy of reaction Lanarkite -# Enthalpy of formation: -1171.59 kJ/mol - -analytic 5.1071e+000 -1.6655e-002 0.0000e+000 0.0000e+000 -5.5660e+004 -# -Range: 0-200 - -Lansfordite - MgCO3:5H2O +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Mg++ + 5.0000 H2O - log_k 4.8409 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lansfordite -# Enthalpy of formation: 0 kcal/mol - -Larnite - Ca2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Ca++ + 2.0000 H2O - log_k 38.4665 - -delta_H -227.061 kJ/mol # Calculated enthalpy of reaction Larnite -# Enthalpy of formation: -551.74 kcal/mol - -analytic 2.6900e+001 -2.1833e-003 1.0900e+004 -9.5257e+000 -7.2537e+004 -# -Range: 0-300 - -Laumontite - CaAl2Si4O12:4H2O +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 4.0000 SiO2 + 8.0000 H2O - log_k 13.6667 - -delta_H -184.657 kJ/mol # Calculated enthalpy of reaction Laumontite -# Enthalpy of formation: -1728.66 kcal/mol - -analytic 1.1904e+000 8.1763e-003 1.9005e+004 -1.4561e+001 -1.5851e+006 -# -Range: 0-300 - -Laurite - RuS2 = + 1.0000 Ru++ + 1.0000 S2-- - log_k -73.2649 - -delta_H 0 # Not possible to calculate enthalpy of reaction Laurite -# Enthalpy of formation: -199.586 kJ/mol - -Lawrencite - FeCl2 = + 1.0000 Fe++ + 2.0000 Cl- - log_k 9.0945 - -delta_H -84.7665 kJ/mol # Calculated enthalpy of reaction Lawrencite -# Enthalpy of formation: -341.65 kJ/mol - -analytic -2.2798e+002 -8.1819e-002 9.2620e+003 9.3097e+001 1.4459e+002 -# -Range: 0-300 - -Lawsonite - CaAl2Si2O7(OH)2:H2O +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 2.0000 SiO2 + 6.0000 H2O - log_k 22.2132 - -delta_H -244.806 kJ/mol # Calculated enthalpy of reaction Lawsonite -# Enthalpy of formation: -1158.1 kcal/mol - -analytic 1.3995e+001 -1.7668e-002 1.0119e+004 -8.3100e+000 1.5789e+002 -# -Range: 0-300 - -Leonite - K2Mg(SO4)2:4H2O = + 1.0000 Mg++ + 2.0000 K+ + 2.0000 SO4-- + 4.0000 H2O - log_k -4.1123 - -delta_H 0 # Not possible to calculate enthalpy of reaction Leonite -# Enthalpy of formation: 0 kcal/mol - -Li - Li +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Li+ - log_k 72.7622 - -delta_H -418.339 kJ/mol # Calculated enthalpy of reaction Li -# Enthalpy of formation: 0 kJ/mol - -analytic -1.0227e+002 -1.8118e-002 2.6262e+004 3.8056e+001 -1.6166e+005 -# -Range: 0-300 - -Li2Se - Li2Se +1.5000 O2 = + 1.0000 SeO3-- + 2.0000 Li+ - log_k 102.8341 - -delta_H -646.236 kJ/mol # Calculated enthalpy of reaction Li2Se -# Enthalpy of formation: -96 kcal/mol - -analytic 1.1933e+002 -6.9663e-003 2.7509e+004 -4.3124e+001 4.6710e+002 -# -Range: 0-200 - -Li2UO4 - Li2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 Li+ - log_k 27.8421 - -delta_H -179.384 kJ/mol # Calculated enthalpy of reaction Li2UO4 -# Enthalpy of formation: -1968.2 kJ/mol - -analytic -1.4470e+002 -1.2024e-002 1.4899e+004 5.0984e+001 2.5306e+002 -# -Range: 0-200 - -LiUO2AsO4 - LiUO2AsO4 +2.0000 H+ = + 1.0000 H2AsO4- + 1.0000 Li+ + 1.0000 UO2++ - log_k -0.7862 - -delta_H 0 # Not possible to calculate enthalpy of reaction LiUO2AsO4 -# Enthalpy of formation: 0 kcal/mol - -Lime - CaO +2.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O - log_k 32.5761 - -delta_H -193.832 kJ/mol # Calculated enthalpy of reaction Lime -# Enthalpy of formation: -151.79 kcal/mol - -analytic -7.2686e+001 -1.7654e-002 1.2199e+004 2.8128e+001 1.9037e+002 -# -Range: 0-300 - -Linnaeite - Co3S4 +4.0000 H+ = + 1.0000 Co++ + 2.0000 Co+++ + 4.0000 HS- - log_k -106.9017 - -delta_H 420.534 kJ/mol # Calculated enthalpy of reaction Linnaeite -# Enthalpy of formation: -85.81 kcal/mol - -analytic -6.0034e+002 -2.0179e-001 -9.2145e+003 2.3618e+002 -1.4361e+002 -# -Range: 0-300 - -Litharge - PbO +2.0000 H+ = + 1.0000 H2O + 1.0000 Pb++ - log_k 12.6388 - -delta_H -65.9118 kJ/mol # Calculated enthalpy of reaction Litharge -# Enthalpy of formation: -219.006 kJ/mol - -analytic -1.8683e+001 -2.0211e-003 4.1876e+003 7.2239e+000 7.1118e+001 -# -Range: 0-200 - -Lopezite - K2Cr2O7 +1.0000 H2O = + 2.0000 CrO4-- + 2.0000 H+ + 2.0000 K+ - log_k -17.4366 - -delta_H 81.9227 kJ/mol # Calculated enthalpy of reaction Lopezite -# Enthalpy of formation: -493.003 kcal/mol - -analytic 7.8359e+001 -2.2908e-002 -9.3812e+003 -2.3245e+001 -1.5933e+002 -# -Range: 0-200 - -Lu - Lu +3.0000 H+ +0.7500 O2 = + 1.0000 Lu+++ + 1.5000 H2O - log_k 181.3437 - -delta_H -1122.15 kJ/mol # Calculated enthalpy of reaction Lu -# Enthalpy of formation: 0 kJ/mol - -analytic -6.8950e+001 -2.8643e-002 5.9209e+004 2.4332e+001 9.2392e+002 -# -Range: 0-300 - -Lu(OH)3 - Lu(OH)3 +3.0000 H+ = + 1.0000 Lu+++ + 3.0000 H2O - log_k 14.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Lu(OH)3(am) - Lu(OH)3 +3.0000 H+ = + 1.0000 Lu+++ + 3.0000 H2O - log_k 18.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -Lu2(CO3)3 - Lu2(CO3)3 +3.0000 H+ = + 2.0000 Lu+++ + 3.0000 HCO3- - log_k -2.0136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu2(CO3)3 -# Enthalpy of formation: 0 kcal/mol - -Lu2O3 - Lu2O3 +6.0000 H+ = + 2.0000 Lu+++ + 3.0000 H2O - log_k 45.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu2O3 -# Enthalpy of formation: 0 kcal/mol - -LuF3:.5H2O - LuF3:.5H2O = + 0.5000 H2O + 1.0000 Lu+++ + 3.0000 F- - log_k -15.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction LuF3:.5H2O -# Enthalpy of formation: 0 kcal/mol - -LuPO4:10H2O - LuPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Lu+++ + 10.0000 H2O - log_k -11.6782 - -delta_H 0 # Not possible to calculate enthalpy of reaction LuPO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -Magnesiochromite - MgCr2O4 +8.0000 H+ = + 1.0000 Mg++ + 2.0000 Cr+++ + 4.0000 H2O - log_k 21.6927 - -delta_H -302.689 kJ/mol # Calculated enthalpy of reaction Magnesiochromite -# Enthalpy of formation: -1783.6 kJ/mol - -analytic -1.7376e+002 -8.7429e-003 2.1600e+004 5.0762e+001 3.6685e+002 -# -Range: 0-200 - -Magnesite - MgCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Mg++ - log_k 2.2936 - -delta_H -44.4968 kJ/mol # Calculated enthalpy of reaction Magnesite -# Enthalpy of formation: -265.63 kcal/mol - -analytic -1.6665e+002 -4.9469e-002 6.4344e+003 6.5506e+001 1.0045e+002 -# -Range: 0-300 - -Magnetite - Fe3O4 +8.0000 H+ = + 1.0000 Fe++ + 2.0000 Fe+++ + 4.0000 H2O - log_k 10.4724 - -delta_H -216.597 kJ/mol # Calculated enthalpy of reaction Magnetite -# Enthalpy of formation: -267.25 kcal/mol - -analytic -3.0510e+002 -7.9919e-002 1.8709e+004 1.1178e+002 2.9203e+002 -# -Range: 0-300 - -Malachite - Cu2CO3(OH)2 +3.0000 H+ = + 1.0000 HCO3- + 2.0000 Cu++ + 2.0000 H2O - log_k 5.9399 - -delta_H -76.2827 kJ/mol # Calculated enthalpy of reaction Malachite -# Enthalpy of formation: -251.9 kcal/mol - -analytic -2.7189e+002 -6.9454e-002 1.1451e+004 1.0511e+002 1.7877e+002 -# -Range: 0-300 - -Manganite - MnO(OH) +3.0000 H+ = + 1.0000 Mn+++ + 2.0000 H2O - log_k -0.1646 - -delta_H 0 # Not possible to calculate enthalpy of reaction Manganite -# Enthalpy of formation: 0 kcal/mol - -Manganosite - MnO +2.0000 H+ = + 1.0000 H2O + 1.0000 Mn++ - log_k 17.9240 - -delta_H -121.215 kJ/mol # Calculated enthalpy of reaction Manganosite -# Enthalpy of formation: -92.07 kcal/mol - -analytic -8.4114e+001 -1.8490e-002 8.7792e+003 3.1561e+001 1.3702e+002 -# -Range: 0-300 - -Margarite - CaAl4Si2O10(OH)2 +14.0000 H+ = + 1.0000 Ca++ + 2.0000 SiO2 + 4.0000 Al+++ + 8.0000 H2O - log_k 41.0658 - -delta_H -522.192 kJ/mol # Calculated enthalpy of reaction Margarite -# Enthalpy of formation: -1485.8 kcal/mol - -analytic -2.3138e+002 -8.2788e-002 3.0154e+004 7.9148e+001 4.7060e+002 -# -Range: 0-300 - -Massicot - PbO +2.0000 H+ = + 1.0000 H2O + 1.0000 Pb++ - log_k 12.8210 - -delta_H -67.6078 kJ/mol # Calculated enthalpy of reaction Massicot -# Enthalpy of formation: -217.31 kJ/mol - -analytic -1.8738e+001 -2.0125e-003 4.2739e+003 7.2018e+000 7.2584e+001 -# -Range: 0-200 - -Matlockite - PbFCl = + 1.0000 Cl- + 1.0000 F- + 1.0000 Pb++ - log_k -9.4300 - -delta_H 0 # Not possible to calculate enthalpy of reaction Matlockite -# Enthalpy of formation: 0 kcal/mol - -Maximum_Microcline - KAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 H2O + 3.0000 SiO2 - log_k -0.2753 - -delta_H -23.9408 kJ/mol # Calculated enthalpy of reaction Maximum_Microcline -# Enthalpy of formation: -949.188 kcal/mol - -analytic -9.4387e+000 1.3561e-002 1.2656e+004 -7.4925e+000 -1.6795e+006 -# -Range: 0-300 - -Mayenite - Ca12Al14O33 +66.0000 H+ = + 12.0000 Ca++ + 14.0000 Al+++ + 33.0000 H2O - log_k 494.2199 - -delta_H -4056.77 kJ/mol # Calculated enthalpy of reaction Mayenite -# Enthalpy of formation: -4644 kcal/mol - -analytic -1.4778e+003 -2.9898e-001 2.4918e+005 4.9518e+002 4.2319e+003 -# -Range: 0-200 - -Melanterite - FeSO4:7H2O = + 1.0000 Fe++ + 1.0000 SO4-- + 7.0000 H2O - log_k -2.3490 - -delta_H 11.7509 kJ/mol # Calculated enthalpy of reaction Melanterite -# Enthalpy of formation: -3014.48 kJ/mol - -analytic -2.6230e+002 -7.2469e-002 6.5854e+003 1.0484e+002 1.0284e+002 -# -Range: 0-300 - -Mercallite - KHSO4 = + 1.0000 H+ + 1.0000 K+ + 1.0000 SO4-- - log_k -1.4389 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mercallite -# Enthalpy of formation: 0 kcal/mol - -Merwinite - MgCa3(SiO4)2 +8.0000 H+ = + 1.0000 Mg++ + 2.0000 SiO2 + 3.0000 Ca++ + 4.0000 H2O - log_k 68.5140 - -delta_H -430.069 kJ/mol # Calculated enthalpy of reaction Merwinite -# Enthalpy of formation: -1090.8 kcal/mol - -analytic -2.2524e+002 -4.2525e-002 3.5619e+004 7.9984e+001 -9.8259e+005 -# -Range: 0-300 - -Mesolite - Na.676Ca.657Al1.99Si3.01O10:2.647H2O +7.9600 H+ = + 0.6570 Ca++ + 0.6760 Na+ + 1.9900 Al+++ + 3.0100 SiO2 + 6.6270 H2O - log_k 13.6191 - -delta_H -179.744 kJ/mol # Calculated enthalpy of reaction Mesolite -# Enthalpy of formation: -5947.05 kJ/mol - -analytic 7.1993e+000 5.9356e-003 1.4717e+004 -1.3627e+001 -9.8863e+005 -# -Range: 0-300 - -Metacinnabar - HgS +1.0000 H+ = + 1.0000 HS- + 1.0000 Hg++ - log_k -38.5979 - -delta_H 203.426 kJ/mol # Calculated enthalpy of reaction Metacinnabar -# Enthalpy of formation: -11.8 kcal/mol - -analytic -1.5399e+002 -4.6740e-002 -6.7875e+003 6.1456e+001 -1.0587e+002 -# -Range: 0-300 - -Mg - Mg +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Mg++ - log_k 122.5365 - -delta_H -745.731 kJ/mol # Calculated enthalpy of reaction Mg -# Enthalpy of formation: 0 kJ/mol - -analytic -6.5988e+001 -1.9356e-002 4.0318e+004 2.3862e+001 6.2914e+002 -# -Range: 0-300 - -Mg1.25SO4(OH)0.5:0.5H2O - Mg1.25SO4(OH)0.5:0.5H2O +0.5000 H+ = + 1.0000 H2O + 1.0000 SO4-- + 1.2500 Mg++ - log_k 5.2600 - -delta_H -97.1054 kJ/mol # Calculated enthalpy of reaction Mg1.25SO4(OH)0.5:0.5H2O -# Enthalpy of formation: -401.717 kcal/mol - -analytic -2.6791e+002 -8.7078e-002 1.1090e+004 1.0583e+002 1.7312e+002 -# -Range: 0-300 - -Mg1.5SO4(OH) - Mg1.5SO4(OH) +1.0000 H+ = + 1.0000 H2O + 1.0000 SO4-- + 1.5000 Mg++ - log_k 9.2551 - -delta_H -125.832 kJ/mol # Calculated enthalpy of reaction Mg1.5SO4(OH) -# Enthalpy of formation: -422.693 kcal/mol - -analytic -2.8698e+002 -9.1970e-002 1.3088e+004 1.1304e+002 2.0432e+002 -# -Range: 0-300 - -Mg2V2O7 - Mg2V2O7 +1.0000 H2O = + 2.0000 H+ + 2.0000 Mg++ + 2.0000 VO4--- - log_k -30.9025 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mg2V2O7 -# Enthalpy of formation: -2836.23 kJ/mol - -MgBr2 - MgBr2 = + 1.0000 Mg++ + 2.0000 Br- - log_k 28.5302 - -delta_H -190.15 kJ/mol # Calculated enthalpy of reaction MgBr2 -# Enthalpy of formation: -124 kcal/mol - -analytic -2.1245e+002 -7.6168e-002 1.4466e+004 8.6940e+001 2.2579e+002 -# -Range: 0-300 - -MgBr2:6H2O - MgBr2:6H2O = + 1.0000 Mg++ + 2.0000 Br- + 6.0000 H2O - log_k 5.1656 - -delta_H -14.2682 kJ/mol # Calculated enthalpy of reaction MgBr2:6H2O -# Enthalpy of formation: -2409.73 kJ/mol - -analytic -1.3559e+002 -1.6479e-002 5.8571e+003 5.0924e+001 9.9508e+001 -# -Range: 0-200 - -MgCl2:2H2O - MgCl2:2H2O = + 1.0000 Mg++ + 2.0000 Cl- + 2.0000 H2O - log_k 12.7763 - -delta_H -92.0895 kJ/mol # Calculated enthalpy of reaction MgCl2:2H2O -# Enthalpy of formation: -1279.71 kJ/mol - -analytic -2.5409e+002 -8.1413e-002 1.0941e+004 1.0281e+002 1.7080e+002 -# -Range: 0-300 - -MgCl2:4H2O - MgCl2:4H2O = + 1.0000 Mg++ + 2.0000 Cl- + 4.0000 H2O - log_k 7.3581 - -delta_H -44.4602 kJ/mol # Calculated enthalpy of reaction MgCl2:4H2O -# Enthalpy of formation: -1899.01 kJ/mol - -analytic -2.7604e+002 -8.1648e-002 9.5501e+003 1.1140e+002 1.4910e+002 -# -Range: 0-300 - -MgCl2:H2O - MgCl2:H2O = + 1.0000 H2O + 1.0000 Mg++ + 2.0000 Cl- - log_k 16.1187 - -delta_H -119.326 kJ/mol # Calculated enthalpy of reaction MgCl2:H2O -# Enthalpy of formation: -966.631 kJ/mol - -analytic -2.4414e+002 -8.1310e-002 1.1862e+004 9.8878e+001 1.8516e+002 -# -Range: 0-300 - -MgOHCl - MgOHCl +1.0000 H+ = + 1.0000 Cl- + 1.0000 H2O + 1.0000 Mg++ - log_k 15.9138 - -delta_H -118.897 kJ/mol # Calculated enthalpy of reaction MgOHCl -# Enthalpy of formation: -191.2 kcal/mol - -analytic -1.6614e+002 -4.9715e-002 1.0311e+004 6.5578e+001 1.6093e+002 -# -Range: 0-300 - -MgSO4 - MgSO4 = + 1.0000 Mg++ + 1.0000 SO4-- - log_k 4.8781 - -delta_H -90.6421 kJ/mol # Calculated enthalpy of reaction MgSO4 -# Enthalpy of formation: -1284.92 kJ/mol - -analytic -2.2439e+002 -7.9688e-002 9.3058e+003 8.9622e+001 1.4527e+002 -# -Range: 0-300 - -MgSeO3 - MgSeO3 = + 1.0000 Mg++ + 1.0000 SeO3-- - log_k 1.7191 - -delta_H -74.9647 kJ/mol # Calculated enthalpy of reaction MgSeO3 -# Enthalpy of formation: -215.15 kcal/mol - -analytic -2.2593e+002 -8.1045e-002 8.4609e+003 9.0278e+001 1.3209e+002 -# -Range: 0-300 - -MgSeO3:6H2O - MgSeO3:6H2O = + 1.0000 Mg++ + 1.0000 SeO3-- + 6.0000 H2O - log_k -3.4222 - -delta_H 11.7236 kJ/mol # Calculated enthalpy of reaction MgSeO3:6H2O -# Enthalpy of formation: -645.771 kcal/mol - -analytic -1.2807e+002 -1.5418e-002 4.0565e+003 4.6728e+001 6.8929e+001 -# -Range: 0-200 - -MgUO4 - MgUO4 +4.0000 H+ = + 1.0000 Mg++ + 1.0000 UO2++ + 2.0000 H2O - log_k 23.0023 - -delta_H -199.336 kJ/mol # Calculated enthalpy of reaction MgUO4 -# Enthalpy of formation: -1857.3 kJ/mol - -analytic -9.9954e+001 -2.0142e-002 1.3078e+004 3.4386e+001 2.0410e+002 -# -Range: 0-300 - -MgV2O6 - MgV2O6 +2.0000 H2O = + 1.0000 Mg++ + 2.0000 VO4--- + 4.0000 H+ - log_k -45.8458 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgV2O6 -# Enthalpy of formation: -2201.88 kJ/mol - -Millerite - NiS +1.0000 H+ = + 1.0000 HS- + 1.0000 Ni++ - log_k -8.0345 - -delta_H 12.089 kJ/mol # Calculated enthalpy of reaction Millerite -# Enthalpy of formation: -82.171 kJ/mol - -analytic -1.4848e+002 -4.8834e-002 2.6981e+003 5.8976e+001 4.2145e+001 -# -Range: 0-300 - -Minium - Pb3O4 +8.0000 H+ = + 1.0000 Pb++++ + 2.0000 Pb++ + 4.0000 H2O - log_k 16.2585 - -delta_H 0 # Not possible to calculate enthalpy of reaction Minium -# Enthalpy of formation: -718.493 kJ/mol - -Minnesotaite - Fe3Si4O10(OH)2 +6.0000 H+ = + 3.0000 Fe++ + 4.0000 H2O + 4.0000 SiO2 - log_k 13.9805 - -delta_H -105.211 kJ/mol # Calculated enthalpy of reaction Minnesotaite -# Enthalpy of formation: -1153.37 kcal/mol - -analytic -1.8812e+001 1.7261e-002 1.9804e+004 -6.4410e+000 -2.0433e+006 -# -Range: 0-300 - -Mirabilite - Na2SO4:10H2O = + 1.0000 SO4-- + 2.0000 Na+ + 10.0000 H2O - log_k -1.1398 - -delta_H 79.4128 kJ/mol # Calculated enthalpy of reaction Mirabilite -# Enthalpy of formation: -4328 kJ/mol - -analytic -2.1877e+002 -3.6692e-003 5.9214e+003 8.0361e+001 1.0063e+002 -# -Range: 0-200 - -Misenite - K8H6(SO4)7 = + 6.0000 H+ + 7.0000 SO4-- + 8.0000 K+ - log_k -11.0757 - -delta_H 0 # Not possible to calculate enthalpy of reaction Misenite -# Enthalpy of formation: 0 kcal/mol - -Mn - Mn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Mn++ - log_k 82.9505 - -delta_H -500.369 kJ/mol # Calculated enthalpy of reaction Mn -# Enthalpy of formation: 0 kJ/mol - -analytic -6.5558e+001 -2.0429e-002 2.7571e+004 2.5098e+001 4.3024e+002 -# -Range: 0-300 - -Mn(OH)2(am) - Mn(OH)2 +2.0000 H+ = + 1.0000 Mn++ + 2.0000 H2O - log_k 15.3102 - -delta_H -97.1779 kJ/mol # Calculated enthalpy of reaction Mn(OH)2(am) -# Enthalpy of formation: -695.096 kJ/mol - -analytic -7.8518e+001 -7.5357e-003 8.0198e+003 2.7955e+001 1.3621e+002 -# -Range: 0-200 - -Mn(OH)3 - Mn(OH)3 +3.0000 H+ = + 1.0000 Mn+++ + 3.0000 H2O - log_k 6.3412 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Mn3(PO4)2 - Mn3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Mn++ - log_k 0.8167 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn3(PO4)2 -# Enthalpy of formation: 0 kcal/mol - -MnCl2:2H2O - MnCl2:2H2O = + 1.0000 Mn++ + 2.0000 Cl- + 2.0000 H2O - log_k 4.0067 - -delta_H -34.4222 kJ/mol # Calculated enthalpy of reaction MnCl2:2H2O -# Enthalpy of formation: -1092.01 kJ/mol - -analytic -6.2823e+001 -2.3959e-002 2.9931e+003 2.5834e+001 5.0850e+001 -# -Range: 0-200 - -MnCl2:4H2O - MnCl2:4H2O = + 1.0000 Mn++ + 2.0000 Cl- + 4.0000 H2O - log_k 2.7563 - -delta_H -10.7019 kJ/mol # Calculated enthalpy of reaction MnCl2:4H2O -# Enthalpy of formation: -1687.41 kJ/mol - -analytic -1.1049e+002 -2.3376e-002 4.0458e+003 4.3097e+001 6.8742e+001 -# -Range: 0-200 - -MnCl2:H2O - MnCl2:H2O = + 1.0000 H2O + 1.0000 Mn++ + 2.0000 Cl- - log_k 5.5517 - -delta_H -50.8019 kJ/mol # Calculated enthalpy of reaction MnCl2:H2O -# Enthalpy of formation: -789.793 kJ/mol - -analytic -4.5051e+001 -2.5923e-002 2.8739e+003 1.9674e+001 4.8818e+001 -# -Range: 0-200 - -MnHPO4 - MnHPO4 = + 1.0000 HPO4-- + 1.0000 Mn++ - log_k -12.9470 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnHPO4 -# Enthalpy of formation: 0 kcal/mol - -MnO2(gamma) - MnO2 = + 0.5000 Mn++ + 0.5000 MnO4-- - log_k -16.1261 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnO2(gamma) -# Enthalpy of formation: 0 kcal/mol - -MnSO4 - MnSO4 = + 1.0000 Mn++ + 1.0000 SO4-- - log_k 2.6561 - -delta_H -64.8718 kJ/mol # Calculated enthalpy of reaction MnSO4 -# Enthalpy of formation: -1065.33 kJ/mol - -analytic -2.3088e+002 -8.2694e-002 8.1653e+003 9.3256e+001 1.2748e+002 -# -Range: 0-300 - -MnSe - MnSe = + 1.0000 Mn++ + 1.0000 Se-- - log_k -10.6848 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnSe -# Enthalpy of formation: -37 kcal/mol - -analytic -5.9960e+001 -1.5963e-002 1.2813e+003 2.0095e+001 2.0010e+001 -# -Range: 0-300 - -MnSeO3 - MnSeO3 = + 1.0000 Mn++ + 1.0000 SeO3-- - log_k -7.2700 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnSeO3 -# Enthalpy of formation: 0 kcal/mol - -MnSeO3:2H2O - MnSeO3:2H2O = + 1.0000 Mn++ + 1.0000 SeO3-- + 2.0000 H2O - log_k -6.3219 - -delta_H 14.0792 kJ/mol # Calculated enthalpy of reaction MnSeO3:2H2O -# Enthalpy of formation: -314.423 kcal/mol - -analytic -4.3625e+001 -2.0426e-002 -2.5368e+002 1.7876e+001 -4.2927e+000 -# -Range: 0-200 - -MnV2O6 - MnV2O6 +2.0000 H2O = + 1.0000 Mn++ + 2.0000 VO4--- + 4.0000 H+ - log_k -52.0751 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnV2O6 -# Enthalpy of formation: -447.9 kcal/mol - -Mo - Mo +1.5000 O2 +1.0000 H2O = + 1.0000 MoO4-- + 2.0000 H+ - log_k 109.3230 - -delta_H -693.845 kJ/mol # Calculated enthalpy of reaction Mo -# Enthalpy of formation: 0 kJ/mol - -analytic -2.0021e+002 -8.3006e-002 4.1629e+004 8.0219e+001 -3.4570e+005 -# -Range: 0-300 - -MoSe2 - MoSe2 +3.0000 H2O +0.5000 O2 = + 1.0000 MoO4-- + 2.0000 Se-- + 6.0000 H+ - log_k -55.1079 - -delta_H 0 # Not possible to calculate enthalpy of reaction MoSe2 -# Enthalpy of formation: -47 kcal/mol - -analytic 1.3882e+002 -1.8590e-003 -1.7231e+004 -5.4797e+001 -2.9265e+002 -# -Range: 0-200 - -Modderite - CoAs +3.0000 H+ = + 1.0000 AsH3 + 1.0000 Co+++ - log_k -49.5512 - -delta_H 189.016 kJ/mol # Calculated enthalpy of reaction Modderite -# Enthalpy of formation: -12.208 kcal/mol - -Molysite - FeCl3 = + 1.0000 Fe+++ + 3.0000 Cl- - log_k 13.5517 - -delta_H -151.579 kJ/mol # Calculated enthalpy of reaction Molysite -# Enthalpy of formation: -399.24 kJ/mol - -analytic -3.1810e+002 -1.2357e-001 1.3860e+004 1.3010e+002 2.1637e+002 -# -Range: 0-300 - -Monohydrocalcite - CaCO3:H2O +1.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O + 1.0000 HCO3- - log_k 2.6824 - -delta_H -20.5648 kJ/mol # Calculated enthalpy of reaction Monohydrocalcite -# Enthalpy of formation: -1498.29 kJ/mol - -analytic -7.2614e+001 -1.7217e-002 3.1850e+003 2.8185e+001 5.4111e+001 -# -Range: 0-200 - -Monteponite - CdO +2.0000 H+ = + 1.0000 Cd++ + 1.0000 H2O - log_k 15.0972 - -delta_H -103.386 kJ/mol # Calculated enthalpy of reaction Monteponite -# Enthalpy of formation: -258.35 kJ/mol - -analytic -5.0057e+001 -6.3629e-003 7.0898e+003 1.7486e+001 1.2041e+002 -# -Range: 0-200 - -Monticellite - CaMgSiO4 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 1.0000 SiO2 + 2.0000 H2O - log_k 29.5852 - -delta_H -195.711 kJ/mol # Calculated enthalpy of reaction Monticellite -# Enthalpy of formation: -540.8 kcal/mol - -analytic 1.5730e+001 -3.5567e-003 9.0789e+003 -6.3007e+000 1.4166e+002 -# -Range: 0-300 - -Montmor-Ca - Ca.165Mg.33Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.1650 Ca++ + 0.3300 Mg++ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 - log_k 2.4952 - -delta_H -100.154 kJ/mol # Calculated enthalpy of reaction Montmor-Ca -# Enthalpy of formation: -1361.5 kcal/mol - -analytic 6.0725e+000 1.0644e-002 1.6024e+004 -1.6334e+001 -1.7982e+006 -# -Range: 0-300 - -Montmor-Cs - Cs.33Mg.33Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.3300 Cs+ + 0.3300 Mg++ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 - log_k 1.9913 - -delta_H -87.2259 kJ/mol # Calculated enthalpy of reaction Montmor-Cs -# Enthalpy of formation: -1363.52 kcal/mol - -analytic 9.9136e+000 1.2496e-002 1.5650e+004 -1.7601e+001 -1.8434e+006 -# -Range: 0-300 - -Montmor-K - K.33Mg.33Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.3300 K+ + 0.3300 Mg++ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 - log_k 2.1423 - -delta_H -88.184 kJ/mol # Calculated enthalpy of reaction Montmor-K -# Enthalpy of formation: -1362.83 kcal/mol - -analytic 8.4757e+000 1.1219e-002 1.5654e+004 -1.6833e+001 -1.8386e+006 -# -Range: 0-300 - -Montmor-Mg - Mg.495Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.4950 Mg++ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 - log_k 2.3879 - -delta_H -102.608 kJ/mol # Calculated enthalpy of reaction Montmor-Mg -# Enthalpy of formation: -1357.87 kcal/mol - -analytic -6.8505e+000 9.0710e-003 1.6817e+004 -1.1887e+001 -1.8323e+006 -# -Range: 0-300 - -Montmor-Na - Na.33Mg.33Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.3300 Mg++ + 0.3300 Na+ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 - log_k 2.4844 - -delta_H -93.2165 kJ/mol # Calculated enthalpy of reaction Montmor-Na -# Enthalpy of formation: -1360.69 kcal/mol - -analytic 1.9601e+000 1.1342e-002 1.6051e+004 -1.4718e+001 -1.8160e+006 -# -Range: 0-300 - -Montroydite - HgO +2.0000 H+ = + 1.0000 H2O + 1.0000 Hg++ - log_k 2.4486 - -delta_H -24.885 kJ/mol # Calculated enthalpy of reaction Montroydite -# Enthalpy of formation: -90.79 kJ/mol - -analytic -8.7302e+001 -1.7618e-002 4.0086e+003 3.2957e+001 6.2576e+001 -# -Range: 0-300 - -Mordenite - Ca.2895Na.361Al.94Si5.06O12:3.468H2O +3.7600 H+ = + 0.2895 Ca++ + 0.3610 Na+ + 0.9400 Al+++ + 5.0600 SiO2 + 5.3480 H2O - log_k -5.1969 - -delta_H 16.7517 kJ/mol # Calculated enthalpy of reaction Mordenite -# Enthalpy of formation: -6736.64 kJ/mol - -analytic -5.4675e+001 3.2513e-002 2.3412e+004 -1.0419e+000 -3.2292e+006 -# -Range: 0-300 - -Mordenite-dehy - Ca.2895Na.361Al.94Si5.06O12 +3.7600 H+ = + 0.2895 Ca++ + 0.3610 Na+ + 0.9400 Al+++ + 1.8800 H2O + 5.0600 SiO2 - log_k 9.9318 - -delta_H -86.159 kJ/mol # Calculated enthalpy of reaction Mordenite-dehy -# Enthalpy of formation: -5642.44 kJ/mol - -analytic -5.0841e+001 2.5405e-002 2.7621e+004 -1.6331e+000 -3.1618e+006 -# -Range: 0-300 - -Morenosite - NiSO4:7H2O = + 1.0000 Ni++ + 1.0000 SO4-- + 7.0000 H2O - log_k -2.0140 - -delta_H 12.0185 kJ/mol # Calculated enthalpy of reaction Morenosite -# Enthalpy of formation: -2976.46 kJ/mol - -analytic -2.6654e+002 -7.2132e-002 6.7983e+003 1.0636e+002 1.0616e+002 -# -Range: 0-300 - -Muscovite - KAl3Si3O10(OH)2 +10.0000 H+ = + 1.0000 K+ + 3.0000 Al+++ + 3.0000 SiO2 + 6.0000 H2O - log_k 13.5858 - -delta_H -243.224 kJ/mol # Calculated enthalpy of reaction Muscovite -# Enthalpy of formation: -1427.41 kcal/mol - -analytic 3.3085e+001 -1.2425e-002 1.2477e+004 -2.0865e+001 -5.4692e+005 -# -Range: 0-300 - -NH4HSe - NH4HSe = + 1.0000 NH3 + 1.0000 Se-- + 2.0000 H+ - log_k -22.0531 - -delta_H 0 # Not possible to calculate enthalpy of reaction NH4HSe -# Enthalpy of formation: -133.041 kJ/mol - -analytic -8.8685e+000 6.7342e-003 -5.3028e+003 1.0468e+000 -9.0046e+001 -# -Range: 0-200 -Na - Na +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Na+ - log_k 67.3804 - -delta_H -380.185 kJ/mol # Calculated enthalpy of reaction Na -# Enthalpy of formation: 0 kJ/mol - -analytic -4.0458e+001 -8.7899e-003 2.1223e+004 1.5927e+001 -1.2715e+004 -# -Range: 0-300 - -Na2CO3 - Na2CO3 +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Na+ - log_k 11.1822 - -delta_H -39.8526 kJ/mol # Calculated enthalpy of reaction Na2CO3 -# Enthalpy of formation: -1130.68 kJ/mol - -analytic -1.5495e+002 -4.3374e-002 6.4821e+003 6.3571e+001 1.0119e+002 -# -Range: 0-300 - -Na2CO3:7H2O - Na2CO3:7H2O +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Na+ + 7.0000 H2O - log_k 9.9459 - -delta_H 27.7881 kJ/mol # Calculated enthalpy of reaction Na2CO3:7H2O -# Enthalpy of formation: -3199.19 kJ/mol - -analytic -2.0593e+002 -3.4509e-003 8.1601e+003 7.6594e+001 1.3864e+002 -# -Range: 0-200 - -Na2Cr2O7 - Na2Cr2O7 +1.0000 H2O = + 2.0000 CrO4-- + 2.0000 H+ + 2.0000 Na+ - log_k -10.1597 - -delta_H 21.9702 kJ/mol # Calculated enthalpy of reaction Na2Cr2O7 -# Enthalpy of formation: -473 kcal/mol - -analytic 4.4885e+001 -2.4919e-002 -5.0321e+003 -1.2430e+001 -8.5468e+001 -# -Range: 0-200 - -Na2CrO4 - Na2CrO4 = + 1.0000 CrO4-- + 2.0000 Na+ - log_k 2.9103 - -delta_H -19.5225 kJ/mol # Calculated enthalpy of reaction Na2CrO4 -# Enthalpy of formation: -320.8 kcal/mol - -analytic 5.4985e+000 -9.9008e-003 1.0510e+002 0.0000e+000 0.0000e+000 -# -Range: 0-200 - -Na2O - Na2O +2.0000 H+ = + 1.0000 H2O + 2.0000 Na+ - log_k 67.4269 - -delta_H -351.636 kJ/mol # Calculated enthalpy of reaction Na2O -# Enthalpy of formation: -99.14 kcal/mol - -analytic -6.3585e+001 -8.4695e-003 2.0923e+004 2.5601e+001 3.2651e+002 -# -Range: 0-300 - -Na2Se - Na2Se = + 1.0000 Se-- + 2.0000 Na+ - log_k 11.8352 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na2Se -# Enthalpy of formation: -81.9 kcal/mol - -analytic -6.0070e+000 8.2821e-003 4.5816e+003 0.0000e+000 0.0000e+000 -# -Range: 0-200 - -Na2Se2 - Na2Se2 +1.0000 H2O = + 0.5000 O2 + 2.0000 H+ + 2.0000 Na+ + 2.0000 Se-- - log_k -61.3466 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na2Se2 -# Enthalpy of formation: -92.8 kcal/mol - -analytic -2.7836e+001 7.7035e-003 -1.5040e+004 5.9131e+000 -2.5539e+002 -# -Range: 0-200 - -Na2SiO3 - Na2SiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 SiO2 + 2.0000 Na+ - log_k 22.2418 - -delta_H -82.7093 kJ/mol # Calculated enthalpy of reaction Na2SiO3 -# Enthalpy of formation: -373.19 kcal/mol - -analytic -3.4928e+001 5.6905e-003 1.0284e+004 1.1197e+001 -6.0134e+005 -# -Range: 0-300 - -Na2U2O7 - Na2U2O7 +6.0000 H+ = + 2.0000 Na+ + 2.0000 UO2++ + 3.0000 H2O - log_k 22.5917 - -delta_H -172.314 kJ/mol # Calculated enthalpy of reaction Na2U2O7 -# Enthalpy of formation: -3203.8 kJ/mol - -analytic -8.6640e+001 -1.0903e-002 1.1841e+004 2.9406e+001 1.8479e+002 -# -Range: 0-300 - -Na2UO4(alpha) - Na2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 Na+ - log_k 30.0231 - -delta_H -173.576 kJ/mol # Calculated enthalpy of reaction Na2UO4(alpha) -# Enthalpy of formation: -1897.7 kJ/mol - -analytic -7.9767e+001 -1.0253e-002 1.1963e+004 2.9386e+001 1.8669e+002 -# -Range: 0-300 - -Na3H(SO4)2 - Na3H(SO4)2 = + 1.0000 H+ + 2.0000 SO4-- + 3.0000 Na+ - log_k -0.8906 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na3H(SO4)2 -# Enthalpy of formation: 0 kcal/mol - -Na3UO4 - Na3UO4 +4.0000 H+ = + 1.0000 UO2+ + 2.0000 H2O + 3.0000 Na+ - log_k 56.2574 - -delta_H -293.703 kJ/mol # Calculated enthalpy of reaction Na3UO4 -# Enthalpy of formation: -2024 kJ/mol - -analytic -9.6724e+001 -6.2485e-003 1.9469e+004 3.6180e+001 3.0382e+002 -# -Range: 0-300 - -Na4Ca(SO4)3:2H2O - Na4Ca(SO4)3:2H2O = + 1.0000 Ca++ + 2.0000 H2O + 3.0000 SO4-- + 4.0000 Na+ - log_k -5.8938 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na4Ca(SO4)3:2H2O -# Enthalpy of formation: 0 kcal/mol - -Na4SiO4 - Na4SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 4.0000 Na+ - log_k 70.6449 - -delta_H -327.779 kJ/mol # Calculated enthalpy of reaction Na4SiO4 -# Enthalpy of formation: -497.8 kcal/mol - -analytic -1.1969e+002 -6.5032e-003 2.6469e+004 4.4626e+001 -6.2007e+005 -# -Range: 0-300 - -Na4UO2(CO3)3 - Na4UO2(CO3)3 +3.0000 H+ = + 1.0000 UO2++ + 3.0000 HCO3- + 4.0000 Na+ - log_k 4.0395 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na4UO2(CO3)3 -# Enthalpy of formation: 0 kcal/mol - -Na6Si2O7 - Na6Si2O7 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 H2O + 6.0000 Na+ - log_k 101.6199 - -delta_H -471.951 kJ/mol # Calculated enthalpy of reaction Na6Si2O7 -# Enthalpy of formation: -856.3 kcal/mol - -analytic -1.0590e+002 4.5576e-003 3.6830e+004 3.8030e+001 -1.0276e+006 -# -Range: 0-300 - -NaBr - NaBr = + 1.0000 Br- + 1.0000 Na+ - log_k 2.9739 - -delta_H -0.741032 kJ/mol # Calculated enthalpy of reaction NaBr -# Enthalpy of formation: -361.062 kJ/mol - -analytic -9.3227e+001 -3.2780e-002 2.2910e+003 3.9713e+001 3.5777e+001 -# -Range: 0-300 - -NaBr:2H2O - NaBr:2H2O = + 1.0000 Br- + 1.0000 Na+ + 2.0000 H2O - log_k 2.1040 - -delta_H 18.4883 kJ/mol # Calculated enthalpy of reaction NaBr:2H2O -# Enthalpy of formation: -951.968 kJ/mol - -analytic -4.1855e+001 -4.6170e-003 8.3883e+002 1.7182e+001 1.4259e+001 -# -Range: 0-200 - -NaFeO2 - NaFeO2 +4.0000 H+ = + 1.0000 Fe+++ + 1.0000 Na+ + 2.0000 H2O - log_k 19.8899 - -delta_H -163.339 kJ/mol # Calculated enthalpy of reaction NaFeO2 -# Enthalpy of formation: -698.218 kJ/mol - -analytic -7.0047e+001 -9.6226e-003 1.0647e+004 2.3071e+001 1.8082e+002 -# -Range: 0-200 - -NaNpO2CO3:3.5H2O - NaNpO2CO3:3.5H2O +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Na+ + 1.0000 NpO2+ + 3.5000 H2O - log_k -1.2342 - -delta_H 27.0979 kJ/mol # Calculated enthalpy of reaction NaNpO2CO3:3.5H2O -# Enthalpy of formation: -2935.76 kJ/mol - -analytic -1.4813e+002 -2.7355e-002 3.6537e+003 5.7701e+001 5.7055e+001 -# -Range: 0-300 - -NaTcO4 - NaTcO4 = + 1.0000 Na+ + 1.0000 TcO4- - log_k 1.5208 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaTcO4 -# Enthalpy of formation: 0 kcal/mol - -NaUO3 - NaUO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 Na+ + 1.0000 UO2+ - log_k 8.3371 - -delta_H -56.365 kJ/mol # Calculated enthalpy of reaction NaUO3 -# Enthalpy of formation: -1494.9 kJ/mol - -analytic -3.6363e+001 7.0505e-004 4.5359e+003 1.1828e+001 7.0790e+001 -# -Range: 0-300 - -Nahcolite - NaHCO3 = + 1.0000 HCO3- + 1.0000 Na+ - log_k -0.1118 - -delta_H 17.0247 kJ/mol # Calculated enthalpy of reaction Nahcolite -# Enthalpy of formation: -226.4 kcal/mol - -analytic -2.2282e+002 -5.9693e-002 5.4887e+003 8.9744e+001 8.5712e+001 -# -Range: 0-300 - -Nantokite - CuCl = + 1.0000 Cl- + 1.0000 Cu+ - log_k -6.7623 - -delta_H 41.9296 kJ/mol # Calculated enthalpy of reaction Nantokite -# Enthalpy of formation: -137.329 kJ/mol - -analytic -2.2442e+001 -1.1201e-002 -1.8709e+003 1.0221e+001 -3.1763e+001 -# -Range: 0-200 - -Natrolite - Na2Al2Si3O10:2H2O +8.0000 H+ = + 2.0000 Al+++ + 2.0000 Na+ + 3.0000 SiO2 + 6.0000 H2O - log_k 18.5204 - -delta_H -186.971 kJ/mol # Calculated enthalpy of reaction Natrolite -# Enthalpy of formation: -5718.56 kJ/mol - -analytic -2.7712e+001 -2.7963e-003 1.6075e+004 1.5332e+000 -9.5765e+005 -# -Range: 0-300 - -Natron - Na2CO3:10H2O +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Na+ + 10.0000 H2O - log_k 9.6102 - -delta_H 50.4781 kJ/mol # Calculated enthalpy of reaction Natron -# Enthalpy of formation: -4079.39 kJ/mol - -analytic -1.9981e+002 -2.9247e-002 5.2937e+003 8.0973e+001 8.2662e+001 -# -Range: 0-300 - -Natrosilite - Na2Si2O5 +2.0000 H+ = + 1.0000 H2O + 2.0000 Na+ + 2.0000 SiO2 - log_k 18.1337 - -delta_H -51.7686 kJ/mol # Calculated enthalpy of reaction Natrosilite -# Enthalpy of formation: -590.36 kcal/mol - -analytic -2.7628e+001 1.6865e-002 1.3302e+004 4.2356e+000 -1.2828e+006 -# -Range: 0-300 - -Naumannite - Ag2Se = + 1.0000 Se-- + 2.0000 Ag+ - log_k -57.4427 - -delta_H 0 # Not possible to calculate enthalpy of reaction Naumannite -# Enthalpy of formation: -37.441 kJ/mol - -analytic -5.3844e+001 -1.0965e-002 -1.4739e+004 1.9842e+001 -2.2998e+002 -# -Range: 0-300 - -Nd - Nd +3.0000 H+ +0.7500 O2 = + 1.0000 Nd+++ + 1.5000 H2O - log_k 182.2233 - -delta_H -1116.29 kJ/mol # Calculated enthalpy of reaction Nd -# Enthalpy of formation: 0 kJ/mol - -analytic -2.7390e+002 -5.6545e-002 7.1502e+004 9.7969e+001 -8.2482e+005 -# -Range: 0-300 - -Nd(OH)3 - Nd(OH)3 +3.0000 H+ = + 1.0000 Nd+++ + 3.0000 H2O - log_k 18.0852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Nd(OH)3(am) - Nd(OH)3 +3.0000 H+ = + 1.0000 Nd+++ + 3.0000 H2O - log_k 20.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -Nd(OH)3(c) - Nd(OH)3 +3.0000 H+ = + 1.0000 Nd+++ + 3.0000 H2O - log_k 15.7852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3(c) -# Enthalpy of formation: 0 kcal/mol - -Nd2(CO3)3 - Nd2(CO3)3 +3.0000 H+ = + 2.0000 Nd+++ + 3.0000 HCO3- - log_k -3.6636 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2(CO3)3 -# Enthalpy of formation: 0 kcal/mol - -Nd2O3 - Nd2O3 +6.0000 H+ = + 2.0000 Nd+++ + 3.0000 H2O - log_k 58.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2O3 -# Enthalpy of formation: 0 kcal/mol - -NdF3:.5H2O - NdF3:.5H2O = + 0.5000 H2O + 1.0000 Nd+++ + 3.0000 F- - log_k -18.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdF3:.5H2O -# Enthalpy of formation: 0 kcal/mol - -NdOHCO3 - NdOHCO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 HCO3- + 1.0000 Nd+++ - log_k 2.8239 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdOHCO3 -# Enthalpy of formation: 0 kcal/mol - -NdPO4:10H2O - NdPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Nd+++ + 10.0000 H2O - log_k -12.1782 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdPO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -Nepheline - NaAlSiO4 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 1.0000 SiO2 + 2.0000 H2O - log_k 13.8006 - -delta_H -135.068 kJ/mol # Calculated enthalpy of reaction Nepheline -# Enthalpy of formation: -500.241 kcal/mol - -analytic -2.4856e+001 -8.8171e-003 8.5653e+003 6.0904e+000 -2.2786e+005 -# -Range: 0-300 - -Nesquehonite - MgCO3:3H2O +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Mg++ + 3.0000 H2O - log_k 4.9955 - -delta_H -36.1498 kJ/mol # Calculated enthalpy of reaction Nesquehonite -# Enthalpy of formation: -472.576 kcal/mol - -analytic 1.3771e+002 -6.0397e-002 -3.5049e+004 -1.8831e+001 4.4213e+006 -# -Range: 0-300 - -Ni - Ni +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Ni++ - log_k 50.9914 - -delta_H -333.745 kJ/mol # Calculated enthalpy of reaction Ni -# Enthalpy of formation: 0 kcal/mol - -analytic -5.8308e+001 -2.0133e-002 1.8444e+004 2.1590e+001 2.8781e+002 -# -Range: 0-300 - -Ni(OH)2 - Ni(OH)2 +2.0000 H+ = + 1.0000 Ni++ + 2.0000 H2O - log_k 12.7485 - -delta_H -95.6523 kJ/mol # Calculated enthalpy of reaction Ni(OH)2 -# Enthalpy of formation: -529.998 kJ/mol - -analytic -6.5279e+001 -5.9499e-003 7.3471e+003 2.2290e+001 1.2479e+002 -# -Range: 0-200 - -Ni2P2O7 - Ni2P2O7 +1.0000 H2O = + 2.0000 HPO4-- + 2.0000 Ni++ - log_k -8.8991 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni2P2O7 -# Enthalpy of formation: 0 kcal/mol - -Ni2SiO4 - Ni2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Ni++ - log_k 14.3416 - -delta_H -127.629 kJ/mol # Calculated enthalpy of reaction Ni2SiO4 -# Enthalpy of formation: -341.705 kcal/mol - -analytic -4.0414e+001 -1.1194e-002 9.6515e+003 1.2026e+001 -3.6336e+005 -# -Range: 0-300 - -Ni3(PO4)2 - Ni3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Ni++ - log_k -6.6414 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni3(PO4)2 -# Enthalpy of formation: 0 kcal/mol - -NiCO3 - NiCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Ni++ - log_k 3.5118 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiCO3 -# Enthalpy of formation: 0 kcal/mol - -NiCl2 - NiCl2 = + 1.0000 Ni++ + 2.0000 Cl- - log_k 8.6113 - -delta_H -82.7969 kJ/mol # Calculated enthalpy of reaction NiCl2 -# Enthalpy of formation: -305.336 kJ/mol - -analytic -1.2416e+000 -2.3139e-002 2.6529e+003 3.1696e+000 4.5052e+001 -# -Range: 0-200 - -NiCl2:2H2O - NiCl2:2H2O = + 1.0000 Ni++ + 2.0000 Cl- + 2.0000 H2O - log_k 3.9327 - -delta_H -37.6746 kJ/mol # Calculated enthalpy of reaction NiCl2:2H2O -# Enthalpy of formation: -922.135 kJ/mol - -analytic -4.8814e+001 -2.2602e-002 2.5951e+003 2.0518e+001 4.4086e+001 -# -Range: 0-200 - -NiCl2:4H2O - NiCl2:4H2O = + 1.0000 Ni++ + 2.0000 Cl- + 4.0000 H2O - log_k 3.8561 - -delta_H -15.4373 kJ/mol # Calculated enthalpy of reaction NiCl2:4H2O -# Enthalpy of formation: -1516.05 kJ/mol - -analytic -1.0545e+002 -2.4691e-002 3.9978e+003 4.1727e+001 6.7926e+001 -# -Range: 0-200 - -NiF2 - NiF2 = + 1.0000 Ni++ + 2.0000 F- - log_k 0.8772 - -delta_H -73.1438 kJ/mol # Calculated enthalpy of reaction NiF2 -# Enthalpy of formation: -651.525 kJ/mol - -analytic -2.5291e+002 -8.4179e-002 9.3429e+003 1.0002e+002 1.4586e+002 -# -Range: 0-300 - -NiF2:4H2O - NiF2:4H2O = + 1.0000 Ni++ + 2.0000 F- + 4.0000 H2O - log_k -4.0588 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiF2:4H2O -# Enthalpy of formation: 0 kcal/mol - -NiSO4 - NiSO4 = + 1.0000 Ni++ + 1.0000 SO4-- - log_k 5.3197 - -delta_H -90.5092 kJ/mol # Calculated enthalpy of reaction NiSO4 -# Enthalpy of formation: -873.066 kJ/mol - -analytic -1.8878e+002 -7.6403e-002 7.9412e+003 7.6866e+001 1.2397e+002 -# -Range: 0-300 - -NiSO4:6H2O(alpha) - NiSO4:6H2O = + 1.0000 Ni++ + 1.0000 SO4-- + 6.0000 H2O - log_k -2.0072 - -delta_H 4.37983 kJ/mol # Calculated enthalpy of reaction NiSO4:6H2O(alpha) -# Enthalpy of formation: -2682.99 kJ/mol - -analytic -1.1937e+002 -1.3785e-002 4.1543e+003 4.3454e+001 7.0587e+001 -# -Range: 0-200 - -Nickelbischofite - NiCl2:6H2O = + 1.0000 Ni++ + 2.0000 Cl- + 6.0000 H2O - log_k 3.1681 - -delta_H 0.064088 kJ/mol # Calculated enthalpy of reaction Nickelbischofite -# Enthalpy of formation: -2103.23 kJ/mol - -analytic -1.4340e+002 -2.1257e-002 5.1858e+003 5.4759e+001 8.8112e+001 -# -Range: 0-200 - -Ningyoite - CaUP2O8:2H2O +2.0000 H+ = + 1.0000 Ca++ + 1.0000 U++++ + 2.0000 H2O + 2.0000 HPO4-- - log_k -29.7931 - -delta_H -36.4769 kJ/mol # Calculated enthalpy of reaction Ningyoite -# Enthalpy of formation: -1016.65 kcal/mol - -analytic -1.0274e+002 -4.9041e-002 1.7779e+003 3.2973e+001 3.0227e+001 -# -Range: 0-200 - -Niter - KNO3 = + 1.0000 K+ + 1.0000 NO3- - log_k -0.2061 - -delta_H 35.4794 kJ/mol # Calculated enthalpy of reaction Niter -# Enthalpy of formation: -494.46 kJ/mol - -analytic -6.5607e+001 -2.8165e-002 -4.0131e+002 3.0361e+001 -6.2425e+000 -# -Range: 0-300 - -Nitrobarite - Ba(NO3)2 = + 1.0000 Ba++ + 2.0000 NO3- - log_k -2.4523 - -delta_H 40.8161 kJ/mol # Calculated enthalpy of reaction Nitrobarite -# Enthalpy of formation: -992.082 kJ/mol - -analytic -1.6179e+002 -6.5831e-002 1.2142e+003 7.0664e+001 1.8995e+001 -# -Range: 0-300 - -Nontronite-Ca - Ca.165Fe2Al.33Si3.67H2O12 +7.3200 H+ = + 0.1650 Ca++ + 0.3300 Al+++ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O - log_k -11.5822 - -delta_H -38.138 kJ/mol # Calculated enthalpy of reaction Nontronite-Ca -# Enthalpy of formation: -1166.7 kcal/mol - -analytic 1.6291e+001 4.3557e-003 1.0221e+004 -1.8690e+001 -1.5427e+006 -# -Range: 0-300 - -Nontronite-Cs - Cs.33Si4Fe1.67Mg.33H2O12 +6.0000 H+ = + 0.3300 Cs+ + 0.3300 Mg++ + 1.6700 Fe+++ + 4.0000 H2O + 4.0000 SiO2 - log_k 5.7975 - -delta_H -86.6996 kJ/mol # Calculated enthalpy of reaction Nontronite-Cs -# Enthalpy of formation: -1168.54 kcal/mol - -analytic -1.1646e+001 1.0033e-002 1.7668e+004 -9.0129e+000 -2.0143e+006 -# -Range: 0-300 - -Nontronite-H - H.33Fe2Al.33Si3.67H2O12 +6.9900 H+ = + 0.3300 Al+++ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O - log_k -12.5401 - -delta_H -30.452 kJ/mol # Calculated enthalpy of reaction Nontronite-H -# Enthalpy of formation: -1147.12 kcal/mol - -analytic 9.7794e+001 1.4055e-002 4.7440e+003 -4.7272e+001 -1.2103e+006 -# -Range: 0-300 - -Nontronite-K - K.33Fe2Al.33Si3.67H2O12 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 K+ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O - log_k -11.8648 - -delta_H -26.5822 kJ/mol # Calculated enthalpy of reaction Nontronite-K -# Enthalpy of formation: -1167.93 kcal/mol - -analytic 1.3630e+001 4.7708e-003 1.0073e+004 -1.7407e+001 -1.5803e+006 -# -Range: 0-300 - -Nontronite-Mg - Mg.165Fe2Al.33Si3.67H2O12 +7.3200 H+ = + 0.1650 Mg++ + 0.3300 Al+++ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O - log_k -11.6200 - -delta_H -41.1779 kJ/mol # Calculated enthalpy of reaction Nontronite-Mg -# Enthalpy of formation: -1162.93 kcal/mol - -analytic 5.5961e+001 1.0139e-002 8.0777e+003 -3.3164e+001 -1.4031e+006 -# -Range: 0-300 - -Nontronite-Na - Na.33Fe2Al.33Si3.67H2O12 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 Na+ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O - log_k -11.5263 - -delta_H -31.5687 kJ/mol # Calculated enthalpy of reaction Nontronite-Na -# Enthalpy of formation: -1165.8 kcal/mol - -analytic 6.7915e+001 1.2851e-002 7.1218e+003 -3.7112e+001 -1.3758e+006 -# -Range: 0-300 - -Np - Np +4.0000 H+ +1.0000 O2 = + 1.0000 Np++++ + 2.0000 H2O - log_k 174.1077 - -delta_H -1115.54 kJ/mol # Calculated enthalpy of reaction Np -# Enthalpy of formation: 0 kJ/mol - -analytic -3.2136e+001 -1.4340e-002 5.7853e+004 6.6512e+000 9.0275e+002 -# -Range: 0-300 - -Np(HPO4)2 - Np(HPO4)2 = + 1.0000 Np++++ + 2.0000 HPO4-- - log_k -30.9786 - -delta_H -18.6219 kJ/mol # Calculated enthalpy of reaction Np(HPO4)2 -# Enthalpy of formation: -3121.54 kJ/mol - -analytic -3.6627e+002 -1.3955e-001 7.1370e+003 1.4261e+002 1.1147e+002 -# -Range: 0-300 - -Np(OH)4 - Np(OH)4 +4.0000 H+ = + 1.0000 Np++++ + 4.0000 H2O - log_k 0.8103 - -delta_H -78.4963 kJ/mol # Calculated enthalpy of reaction Np(OH)4 -# Enthalpy of formation: -1620.86 kJ/mol - -analytic -9.5122e+001 -1.0532e-002 7.1132e+003 3.0398e+001 1.1102e+002 -# -Range: 0-300 - -Np2O5 - Np2O5 +2.0000 H+ = + 1.0000 H2O + 2.0000 NpO2+ - log_k 9.5000 - -delta_H -94.4576 kJ/mol # Calculated enthalpy of reaction Np2O5 -# Enthalpy of formation: -513.232 kcal/mol - -analytic 5.9974e+003 1.4553e+000 -1.7396e+005 -2.3595e+003 -2.9689e+003 -# -Range: 25-150 - -NpO2 - NpO2 +4.0000 H+ = + 1.0000 Np++++ + 2.0000 H2O - log_k -7.8026 - -delta_H -53.6087 kJ/mol # Calculated enthalpy of reaction NpO2 -# Enthalpy of formation: -1074.07 kJ/mol - -analytic -7.0053e+001 -1.1017e-002 4.4742e+003 2.0421e+001 6.9836e+001 -# -Range: 0-300 - -NpO2(OH)2 - NpO2(OH)2 +2.0000 H+ = + 1.0000 NpO2++ + 2.0000 H2O - log_k 5.9851 - -delta_H -54.9977 kJ/mol # Calculated enthalpy of reaction NpO2(OH)2 -# Enthalpy of formation: -1377.16 kJ/mol - -analytic -2.7351e+001 -1.5987e-003 3.8301e+003 8.4735e+000 5.9773e+001 -# -Range: 0-300 - -NpO2OH(am) - NpO2OH +1.0000 H+ = + 1.0000 H2O + 1.0000 NpO2+ - log_k 4.2364 - -delta_H -39.6673 kJ/mol # Calculated enthalpy of reaction NpO2OH(am) -# Enthalpy of formation: -1224.16 kJ/mol - -analytic -3.8824e+000 6.7122e-003 2.5390e+003 -9.7040e-001 3.9619e+001 -# -Range: 0-300 - -Okenite - CaSi2O4(OH)2:H2O +2.0000 H+ = + 1.0000 Ca++ + 2.0000 SiO2 + 3.0000 H2O - log_k 10.3816 - -delta_H -19.4974 kJ/mol # Calculated enthalpy of reaction Okenite -# Enthalpy of formation: -749.641 kcal/mol - -analytic -7.7353e+001 1.5091e-002 1.3023e+004 2.1337e+001 -1.1831e+006 -# -Range: 0-300 - -Orpiment - As2S3 +6.0000 H2O = + 2.0000 H2AsO3- + 3.0000 HS- + 5.0000 H+ - log_k -79.4159 - -delta_H 406.539 kJ/mol # Calculated enthalpy of reaction Orpiment -# Enthalpy of formation: -169.423 kJ/mol - -analytic -3.3964e+002 -1.4977e-001 -1.5711e+004 1.4448e+002 -2.4505e+002 -# -Range: 0-300 - -Otavite - CdCO3 +1.0000 H+ = + 1.0000 Cd++ + 1.0000 HCO3- - log_k -1.7712 - -delta_H 0 # Not possible to calculate enthalpy of reaction Otavite -# Enthalpy of formation: 0 kcal/mol - -Ottemannite - Sn2S3 +3.0000 H+ = + 1.0000 Sn++ + 1.0000 Sn++++ + 3.0000 HS- - log_k -46.2679 - -delta_H 236.727 kJ/mol # Calculated enthalpy of reaction Ottemannite -# Enthalpy of formation: -63 kcal/mol - -analytic -6.2863e+001 -5.9171e-002 -1.3469e+004 3.2092e+001 -2.2870e+002 -# -Range: 0-200 - -Oxychloride-Mg - Mg2Cl(OH)3:4H2O +3.0000 H+ = + 1.0000 Cl- + 2.0000 Mg++ + 7.0000 H2O - log_k 25.8319 - -delta_H 0 # Not possible to calculate enthalpy of reaction Oxychloride-Mg -# Enthalpy of formation: 0 kcal/mol - -P - P +1.5000 H2O +1.2500 O2 = + 1.0000 HPO4-- + 2.0000 H+ - log_k 132.1032 - -delta_H -848.157 kJ/mol # Calculated enthalpy of reaction P -# Enthalpy of formation: 0 kJ/mol - -analytic -9.2727e+001 -6.8342e-002 4.3465e+004 4.0156e+001 6.7826e+002 -# -Range: 0-300 - -Paragonite - NaAl3Si3O10(OH)2 +10.0000 H+ = + 1.0000 Na+ + 3.0000 Al+++ + 3.0000 SiO2 + 6.0000 H2O - log_k 17.5220 - -delta_H -275.056 kJ/mol # Calculated enthalpy of reaction Paragonite -# Enthalpy of formation: -1416.96 kcal/mol - -analytic 3.5507e+001 -1.0720e-002 1.3519e+004 -2.2283e+001 -4.5657e+005 -# -Range: 0-300 - -Paralaurionite - PbClOH +1.0000 H+ = + 1.0000 Cl- + 1.0000 H2O + 1.0000 Pb++ - log_k 0.2035 - -delta_H 8.41948 kJ/mol # Calculated enthalpy of reaction Paralaurionite -# Enthalpy of formation: -460.417 kJ/mol - -analytic -1.1245e+001 -1.0520e-002 -5.3551e+002 6.6175e+000 -9.0896e+000 -# -Range: 0-200 - -Pargasite - NaCa2Al3Mg4Si6O22(OH)2 +22.0000 H+ = + 1.0000 Na+ + 2.0000 Ca++ + 3.0000 Al+++ + 4.0000 Mg++ + 6.0000 SiO2 + 12.0000 H2O - log_k 101.9939 - -delta_H -880.205 kJ/mol # Calculated enthalpy of reaction Pargasite -# Enthalpy of formation: -3016.62 kcal/mol - -analytic -6.7889e+001 -3.7817e-002 5.0493e+004 9.2705e+000 -1.0163e+006 -# -Range: 0-300 - -Parsonsite - Pb2UO2(PO4)2:2H2O +2.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 HPO4-- + 2.0000 Pb++ - log_k -27.7911 - -delta_H 0 # Not possible to calculate enthalpy of reaction Parsonsite -# Enthalpy of formation: 0 kcal/mol - -Pb - Pb +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Pb++ - log_k 47.1871 - -delta_H -278.851 kJ/mol # Calculated enthalpy of reaction Pb -# Enthalpy of formation: 0 kJ/mol - -analytic -3.1784e+001 -1.4816e-002 1.4984e+004 1.3383e+001 2.3381e+002 -# -Range: 0-300 - -Pb(H2PO4)2 - Pb(H2PO4)2 = + 1.0000 Pb++ + 2.0000 H+ + 2.0000 HPO4-- - log_k -9.8400 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(H2PO4)2 -# Enthalpy of formation: 0 kcal/mol - -Pb(IO3)2 - Pb(IO3)2 = + 1.0000 Pb++ + 2.0000 IO3- - log_k -12.5173 - -delta_H 53.7783 kJ/mol # Calculated enthalpy of reaction Pb(IO3)2 -# Enthalpy of formation: -495.525 kJ/mol - -analytic -5.3573e+000 -1.4164e-002 -3.6236e+003 3.7209e+000 -6.1532e+001 -# -Range: 0-200 - -Pb(N3)2(mono) - Pb(N3)2 = + 1.0000 Pb++ + 2.0000 N3- - log_k -8.3583 - -delta_H 72.9495 kJ/mol # Calculated enthalpy of reaction Pb(N3)2(mono) -# Enthalpy of formation: 478.251 kJ/mol - -analytic 6.0051e+001 -1.1168e-002 -7.0041e+003 -1.6812e+001 -1.1896e+002 -# -Range: 0-200 - -Pb(N3)2(orth) - Pb(N3)2 = + 1.0000 Pb++ + 2.0000 N3- - log_k -8.7963 - -delta_H 75.0615 kJ/mol # Calculated enthalpy of reaction Pb(N3)2(orth) -# Enthalpy of formation: 476.139 kJ/mol - -analytic 5.9779e+001 -1.1215e-002 -7.1081e+003 -1.6732e+001 -1.2073e+002 -# -Range: 0-200 - -Pb(Thiocyanate)2 - Pb(Thiocyanate)2 = + 1.0000 Pb++ + 2.0000 Thiocyanate- - log_k -0.0910 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(Thiocyanate)2 -# Enthalpy of formation: 151.212 kJ/mol - -analytic 7.4247e+000 -1.6226e-002 0.0000e+000 0.0000e+000 -2.3938e+005 -# -Range: 0-200 - -Pb2Cl2CO3 - Pb2Cl2CO3 +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Cl- + 2.0000 Pb++ - log_k -9.6180 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2Cl2CO3 -# Enthalpy of formation: 0 kcal/mol - -Pb2Cl5NH4 - Pb2Cl5NH4 = + 1.0000 H+ + 1.0000 NH3 + 2.0000 Pb++ + 5.0000 Cl- - log_k -19.6100 - -delta_H 119.617 kJ/mol # Calculated enthalpy of reaction Pb2Cl5NH4 -# Enthalpy of formation: -1034.51 kJ/mol - -analytic 1.3149e+001 -4.8598e-002 -9.8473e+003 5.9552e+000 -1.6723e+002 -# -Range: 0-200 - -Pb2O(N3)2 - Pb2O(N3)2 +2.0000 H+ = + 1.0000 H2O + 2.0000 N3- + 2.0000 Pb++ - log_k -13.7066 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2O(N3)2 -# Enthalpy of formation: 0 kcal/mol - -Pb2SiO4 - Pb2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Pb++ - log_k 18.0370 - -delta_H -83.9883 kJ/mol # Calculated enthalpy of reaction Pb2SiO4 -# Enthalpy of formation: -1363.55 kJ/mol - -analytic 2.7287e+002 6.3875e-002 -3.7001e+003 -1.0568e+002 -6.2927e+001 -# -Range: 0-200 - -Pb3(PO4)2 - Pb3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Pb++ - log_k -19.9744 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb3(PO4)2 -# Enthalpy of formation: 0 kcal/mol - -Pb3SO6 - Pb3SO6 +4.0000 H+ = + 1.0000 SO4-- + 2.0000 H2O + 3.0000 Pb++ - log_k 10.5981 - -delta_H -79.3438 kJ/mol # Calculated enthalpy of reaction Pb3SO6 -# Enthalpy of formation: -1399.17 kJ/mol - -analytic -5.3308e+000 -1.8639e-002 3.0245e+003 4.5760e+000 5.1362e+001 -# -Range: 0-200 - -Pb4Cl2(OH)6 - Pb4Cl2(OH)6 +6.0000 H+ = + 2.0000 Cl- + 4.0000 Pb++ + 6.0000 H2O - log_k 17.2793 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4Cl2(OH)6 -# Enthalpy of formation: 0 kcal/mol - -Pb4O(PO4)2 - Pb4O(PO4)2 +4.0000 H+ = + 1.0000 H2O + 2.0000 HPO4-- + 4.0000 Pb++ - log_k -12.5727 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4O(PO4)2 -# Enthalpy of formation: 0 kcal/mol - -Pb4SO7 - Pb4SO7 +6.0000 H+ = + 1.0000 SO4-- + 3.0000 H2O + 4.0000 Pb++ - log_k 21.7354 - -delta_H -136.566 kJ/mol # Calculated enthalpy of reaction Pb4SO7 -# Enthalpy of formation: -1626.87 kJ/mol - -analytic -2.6884e+001 -2.1429e-002 6.8390e+003 1.2951e+001 1.1614e+002 -# -Range: 0-200 - -PbBr2 - PbBr2 = + 1.0000 Pb++ + 2.0000 Br- - log_k -5.2413 - -delta_H 36.3838 kJ/mol # Calculated enthalpy of reaction PbBr2 -# Enthalpy of formation: -278.47 kJ/mol - -analytic 3.0977e+001 -1.6567e-002 -4.2879e+003 -6.8329e+000 -7.2825e+001 -# -Range: 0-200 - -PbBrF - PbBrF = + 1.0000 Br- + 1.0000 F- + 1.0000 Pb++ - log_k -8.0418 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBrF -# Enthalpy of formation: 0 kcal/mol - -PbCO3.PbO - PbCO3.PbO +3.0000 H+ = + 1.0000 H2O + 1.0000 HCO3- + 2.0000 Pb++ - log_k 9.6711 - -delta_H -55.4286 kJ/mol # Calculated enthalpy of reaction PbCO3.PbO -# Enthalpy of formation: -918.502 kJ/mol - -analytic -4.2160e+001 -1.4124e-002 3.8661e+003 1.7404e+001 6.5667e+001 -# -Range: 0-200 - -PbF2 - PbF2 = + 1.0000 Pb++ + 2.0000 F- - log_k -5.2047 - -delta_H -5.83772 kJ/mol # Calculated enthalpy of reaction PbF2 -# Enthalpy of formation: -663.937 kJ/mol - -analytic -2.2712e+002 -7.9552e-002 5.2198e+003 9.2173e+001 8.1516e+001 -# -Range: 0-300 - -PbFCl - PbFCl = + 1.0000 Cl- + 1.0000 F- + 1.0000 Pb++ - log_k -8.9820 - -delta_H 33.1852 kJ/mol # Calculated enthalpy of reaction PbFCl -# Enthalpy of formation: -534.692 kJ/mol - -analytic 6.1688e+000 -2.0732e-002 -3.4666e+003 1.0697e+000 -5.8869e+001 -# -Range: 0-200 - -PbHPO4 - PbHPO4 = + 1.0000 HPO4-- + 1.0000 Pb++ - log_k -15.7275 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbHPO4 -# Enthalpy of formation: 0 kcal/mol - -PbI2 - PbI2 = + 1.0000 Pb++ + 2.0000 I- - log_k -8.0418 - -delta_H 62.5717 kJ/mol # Calculated enthalpy of reaction PbI2 -# Enthalpy of formation: -175.456 kJ/mol - -analytic 1.5277e+001 -2.0582e-002 -5.1256e+003 0.0000e+000 0.0000e+000 -# -Range: 0-200 - -PbSO4(NH3)2 - PbSO4(NH3)2 = + 1.0000 Pb++ + 1.0000 SO4-- + 2.0000 NH3 - log_k -2.0213 - -delta_H 28.284 kJ/mol # Calculated enthalpy of reaction PbSO4(NH3)2 -# Enthalpy of formation: -1099.64 kJ/mol - -analytic 3.5718e-001 -1.0192e-002 -2.0095e+003 2.9853e+000 -3.4124e+001 -# -Range: 0-200 - -PbSO4(NH3)4 - PbSO4(NH3)4 = + 1.0000 Pb++ + 1.0000 SO4-- + 4.0000 NH3 - log_k 1.5024 - -delta_H 31.155 kJ/mol # Calculated enthalpy of reaction PbSO4(NH3)4 -# Enthalpy of formation: -1265.18 kJ/mol - -analytic -4.1080e+001 -7.2307e-003 6.6637e+001 1.7984e+001 1.1460e+000 -# -Range: 0-200 - -PbSeO4 - PbSeO4 = + 1.0000 Pb++ + 1.0000 SeO4-- - log_k -6.9372 - -delta_H 10.8967 kJ/mol # Calculated enthalpy of reaction PbSeO4 -# Enthalpy of formation: -609.125 kJ/mol - -analytic 3.1292e+001 -1.4192e-002 -3.0980e+003 -9.5448e+000 -5.2618e+001 -# -Range: 0-200 - -Pd - Pd +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Pd++ - log_k 12.0688 - -delta_H -103.709 kJ/mol # Calculated enthalpy of reaction Pd -# Enthalpy of formation: 0 kcal/mol - -analytic -6.2530e+001 -1.9774e-002 6.7013e+003 2.3441e+001 1.0459e+002 -# -Range: 0-300 - -PdO - PdO +2.0000 H+ = + 1.0000 H2O + 1.0000 Pd++ - log_k 0.0643 - -delta_H -24.422 kJ/mol # Calculated enthalpy of reaction PdO -# Enthalpy of formation: -20.4 kcal/mol - -analytic -8.8921e+001 -1.9031e-002 3.8537e+003 3.3028e+001 6.0159e+001 -# -Range: 0-300 - -Penroseite - NiSe2 +1.0000 H2O = + 0.5000 O2 + 1.0000 Ni++ + 2.0000 H+ + 2.0000 Se-- - log_k -98.8004 - -delta_H 0 # Not possible to calculate enthalpy of reaction Penroseite -# Enthalpy of formation: -26 kcal/mol - -analytic -4.7339e+001 -1.2035e-002 -2.3589e+004 1.2624e+001 -3.6808e+002 -# -Range: 0-300 - -Pentahydrite - MgSO4:5H2O = + 1.0000 Mg++ + 1.0000 SO4-- + 5.0000 H2O - log_k -1.3872 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pentahydrite -# Enthalpy of formation: 0 kcal/mol - -Periclase - MgO +2.0000 H+ = + 1.0000 H2O + 1.0000 Mg++ - log_k 21.3354 - -delta_H -150.139 kJ/mol # Calculated enthalpy of reaction Periclase -# Enthalpy of formation: -143.8 kcal/mol - -analytic -8.8465e+001 -1.8390e-002 1.0414e+004 3.2469e+001 1.6253e+002 -# -Range: 0-300 - -Petalite - LiAlSi4O10 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Li+ + 2.0000 H2O + 4.0000 SiO2 - log_k -3.8153 - -delta_H -13.1739 kJ/mol # Calculated enthalpy of reaction Petalite -# Enthalpy of formation: -4886.15 kJ/mol - -analytic -6.6355e+000 2.4316e-002 1.5949e+004 -1.3341e+001 -2.2265e+006 -# -Range: 0-300 - -Phlogopite - KAlMg3Si3O10(OH)2 +10.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 3.0000 Mg++ + 3.0000 SiO2 + 6.0000 H2O - log_k 37.4400 - -delta_H -310.503 kJ/mol # Calculated enthalpy of reaction Phlogopite -# Enthalpy of formation: -1488.07 kcal/mol - -analytic -8.7730e+001 -1.7253e-002 2.3748e+004 2.4465e+001 -8.9045e+005 -# -Range: 0-300 - -Phosgenite - Pb2(CO3)Cl2 +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Cl- + 2.0000 Pb++ - log_k -9.6355 - -delta_H 49.0844 kJ/mol # Calculated enthalpy of reaction Phosgenite -# Enthalpy of formation: -1071.34 kJ/mol - -analytic 3.4909e+000 -2.9365e-002 -4.6327e+003 4.5068e+000 -7.8671e+001 -# -Range: 0-200 - -Picromerite - K2Mg(SO4)2:6H2O = + 1.0000 Mg++ + 2.0000 K+ + 2.0000 SO4-- + 6.0000 H2O - log_k -4.4396 - -delta_H 0 # Not possible to calculate enthalpy of reaction Picromerite -# Enthalpy of formation: 0 kcal/mol - -Pirssonite - Na2Ca(CO3)2:2H2O +2.0000 H+ = + 1.0000 Ca++ + 2.0000 H2O + 2.0000 HCO3- + 2.0000 Na+ - log_k 11.3230 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pirssonite -# Enthalpy of formation: 0 kcal/mol - -Plattnerite - PbO2 +4.0000 H+ = + 1.0000 Pb++++ + 2.0000 H2O - log_k -7.9661 - -delta_H 0 # Not possible to calculate enthalpy of reaction Plattnerite -# Enthalpy of formation: -277.363 kJ/mol - -Plumbogummite - PbAl3(PO4)2(OH)5:H2O +7.0000 H+ = + 1.0000 Pb++ + 2.0000 HPO4-- + 3.0000 Al+++ + 6.0000 H2O - log_k -8.1463 - -delta_H 0 # Not possible to calculate enthalpy of reaction Plumbogummite -# Enthalpy of formation: 0 kcal/mol - -Pm - Pm +3.0000 H+ +0.7500 O2 = + 1.0000 Pm+++ + 1.5000 H2O - log_k 180.6737 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm -# Enthalpy of formation: 0 kcal/mol - -Pm(OH)3 - Pm(OH)3 +3.0000 H+ = + 1.0000 Pm+++ + 3.0000 H2O - log_k 17.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Pm(OH)3(am) - Pm(OH)3 +3.0000 H+ = + 1.0000 Pm+++ + 3.0000 H2O - log_k 18.2852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -Pm2(CO3)3 - Pm2(CO3)3 +3.0000 H+ = + 2.0000 Pm+++ + 3.0000 HCO3- - log_k -3.5636 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm2(CO3)3 -# Enthalpy of formation: 0 kcal/mol - -Pm2O3 - Pm2O3 +6.0000 H+ = + 2.0000 Pm+++ + 3.0000 H2O - log_k 48.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm2O3 -# Enthalpy of formation: 0 kcal/mol - -PmF3:.5H2O - PmF3:.5H2O = + 0.5000 H2O + 1.0000 Pm+++ + 3.0000 F- - log_k -18.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmF3:.5H2O -# Enthalpy of formation: 0 kcal/mol - -PmPO4:10H2O - PmPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Pm+++ + 10.0000 H2O - log_k -12.1782 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmPO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -Polydymite - Ni3S4 +2.0000 H+ = + 1.0000 S2-- + 2.0000 HS- + 3.0000 Ni++ - log_k -48.9062 - -delta_H 0 # Not possible to calculate enthalpy of reaction Polydymite -# Enthalpy of formation: -78.014 kcal/mol - -analytic -1.8030e+001 -4.6945e-002 -1.1557e+004 8.8339e+000 -1.9625e+002 -# -Range: 0-200 - -Polyhalite - K2MgCa2(SO4)4:2H2O = + 1.0000 Mg++ + 2.0000 Ca++ + 2.0000 H2O + 2.0000 K+ + 4.0000 SO4-- - log_k -14.3124 - -delta_H 0 # Not possible to calculate enthalpy of reaction Polyhalite -# Enthalpy of formation: 0 kcal/mol - -Portlandite - Ca(OH)2 +2.0000 H+ = + 1.0000 Ca++ + 2.0000 H2O - log_k 22.5552 - -delta_H -128.686 kJ/mol # Calculated enthalpy of reaction Portlandite -# Enthalpy of formation: -986.074 kJ/mol - -analytic -8.3848e+001 -1.8373e-002 9.3154e+003 3.2584e+001 1.4538e+002 -# -Range: 0-300 - -Pr - Pr +3.0000 H+ +0.7500 O2 = + 1.0000 Pr+++ + 1.5000 H2O - log_k 183.6893 - -delta_H -1125.92 kJ/mol # Calculated enthalpy of reaction Pr -# Enthalpy of formation: 0 kJ/mol - -analytic -4.1136e+002 -7.5853e-002 7.9974e+004 1.4718e+002 -1.3148e+006 -# -Range: 0-300 - -Pr(OH)3 - Pr(OH)3 +3.0000 H+ = + 1.0000 Pr+++ + 3.0000 H2O - log_k 19.5852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Pr(OH)3(am) - Pr(OH)3 +3.0000 H+ = + 1.0000 Pr+++ + 3.0000 H2O - log_k 21.0852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -Pr2(CO3)3 - Pr2(CO3)3 +3.0000 H+ = + 2.0000 Pr+++ + 3.0000 HCO3- - log_k -3.8136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr2(CO3)3 -# Enthalpy of formation: 0 kcal/mol - -Pr2O3 - Pr2O3 +6.0000 H+ = + 2.0000 Pr+++ + 3.0000 H2O - log_k 61.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr2O3 -# Enthalpy of formation: 0 kcal/mol - -PrF3:.5H2O - PrF3:.5H2O = + 0.5000 H2O + 1.0000 Pr+++ + 3.0000 F- - log_k -18.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PrF3:.5H2O -# Enthalpy of formation: 0 kcal/mol - -PrPO4:10H2O - PrPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Pr+++ + 10.0000 H2O - log_k -12.2782 - -delta_H 0 # Not possible to calculate enthalpy of reaction PrPO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -Prehnite - Ca2Al2Si3O10(OH)2 +10.0000 H+ = + 2.0000 Al+++ + 2.0000 Ca++ + 3.0000 SiO2 + 6.0000 H2O - log_k 32.9305 - -delta_H -311.875 kJ/mol # Calculated enthalpy of reaction Prehnite -# Enthalpy of formation: -1481.65 kcal/mol - -analytic -3.5763e+001 -2.1396e-002 2.0167e+004 6.3554e+000 -7.4967e+005 -# -Range: 0-300 - -Przhevalskite - Pb(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Pb++ + 2.0000 HPO4-- + 2.0000 UO2++ - log_k -20.0403 - -delta_H -71.1058 kJ/mol # Calculated enthalpy of reaction Przhevalskite -# Enthalpy of formation: -1087.51 kcal/mol - -analytic -2.9817e+001 -4.0756e-002 1.0077e+003 7.4885e+000 1.7122e+001 -# -Range: 0-200 - -Pseudowollastonite - CaSiO3 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O + 1.0000 SiO2 - log_k 13.9997 - -delta_H -79.4625 kJ/mol # Calculated enthalpy of reaction Pseudowollastonite -# Enthalpy of formation: -388.9 kcal/mol - -analytic 2.6691e+001 6.3323e-003 5.5723e+003 -1.1822e+001 -3.6038e+005 -# -Range: 0-300 - -Pu - Pu +4.0000 H+ +1.0000 O2 = + 1.0000 Pu++++ + 2.0000 H2O - log_k 170.3761 - -delta_H -1095.44 kJ/mol # Calculated enthalpy of reaction Pu -# Enthalpy of formation: 0 kJ/mol - -analytic -1.9321e+002 -3.4314e-002 6.6737e+004 6.3552e+001 -6.4737e+005 -# -Range: 0-300 - -Pu(HPO4)2 - Pu(HPO4)2 = + 1.0000 Pu++++ + 2.0000 HPO4-- - log_k -27.7025 - -delta_H -33.4449 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)2 -# Enthalpy of formation: -3086.61 kJ/mol - -analytic -3.6565e+002 -1.3961e-001 7.9105e+003 1.4265e+002 1.2354e+002 -# -Range: 0-300 - -Pu(OH)3 - Pu(OH)3 +3.0000 H+ = + 1.0000 Pu+++ + 3.0000 H2O - log_k 22.4499 - -delta_H -148.067 kJ/mol # Calculated enthalpy of reaction Pu(OH)3 -# Enthalpy of formation: -1301 kJ/mol - -analytic -6.1342e+001 -8.6952e-003 9.7733e+003 2.1664e+001 1.5252e+002 -# -Range: 0-300 - -Pu(OH)4 - Pu(OH)4 +4.0000 H+ = + 1.0000 Pu++++ + 4.0000 H2O - log_k 0.7578 - -delta_H -68.6543 kJ/mol # Calculated enthalpy of reaction Pu(OH)4 -# Enthalpy of formation: -1610.59 kJ/mol - -analytic -9.3473e+001 -1.0579e-002 6.5974e+003 3.0415e+001 1.0297e+002 -# -Range: 0-300 - -Pu2O3 - Pu2O3 +6.0000 H+ = + 2.0000 Pu+++ + 3.0000 H2O - log_k 48.1332 - -delta_H -360.26 kJ/mol # Calculated enthalpy of reaction Pu2O3 -# Enthalpy of formation: -1680.36 kJ/mol - -analytic -8.7831e+001 -1.9784e-002 2.0832e+004 2.9096e+001 3.2509e+002 -# -Range: 0-300 - -PuF3 - PuF3 = + 1.0000 Pu+++ + 3.0000 F- - log_k -10.1872 - -delta_H -46.2608 kJ/mol # Calculated enthalpy of reaction PuF3 -# Enthalpy of formation: -1551.33 kJ/mol - -analytic -3.1104e+002 -1.0854e-001 8.7435e+003 1.2279e+002 1.3653e+002 -# -Range: 0-300 - -PuF4 - PuF4 = + 1.0000 Pu++++ + 4.0000 F- - log_k -13.2091 - -delta_H -100.039 kJ/mol # Calculated enthalpy of reaction PuF4 -# Enthalpy of formation: -1777.24 kJ/mol - -analytic -4.3072e+002 -1.4500e-001 1.4076e+004 1.6709e+002 2.1977e+002 -# -Range: 0-300 - -PuO2 - PuO2 +4.0000 H+ = + 1.0000 Pu++++ + 2.0000 H2O - log_k -7.3646 - -delta_H -51.8827 kJ/mol # Calculated enthalpy of reaction PuO2 -# Enthalpy of formation: -1055.69 kJ/mol - -analytic -7.1933e+001 -1.1841e-002 4.4494e+003 2.1491e+001 6.9450e+001 -# -Range: 0-300 - -PuO2(OH)2 - PuO2(OH)2 +2.0000 H+ = + 1.0000 PuO2++ + 2.0000 H2O - log_k 3.5499 - -delta_H -35.7307 kJ/mol # Calculated enthalpy of reaction PuO2(OH)2 -# Enthalpy of formation: -1357.52 kJ/mol - -analytic -2.6536e+001 -1.6542e-003 2.8262e+003 8.5277e+000 4.4108e+001 -# -Range: 0-300 - -PuO2HPO4 - PuO2HPO4 = + 1.0000 HPO4-- + 1.0000 PuO2++ - log_k -12.6074 - -delta_H -10.108 kJ/mol # Calculated enthalpy of reaction PuO2HPO4 -# Enthalpy of formation: -2103.55 kJ/mol - -analytic -1.6296e+002 -6.6166e-002 3.0557e+003 6.4577e+001 4.7729e+001 -# -Range: 0-300 - -PuO2OH(am) - PuO2OH +1.0000 H+ = + 1.0000 H2O + 1.0000 PuO2+ - log_k 5.4628 - -delta_H -42.4933 kJ/mol # Calculated enthalpy of reaction PuO2OH(am) -# Enthalpy of formation: -1157.53 kJ/mol - -analytic -3.1316e+000 6.7573e-003 2.6884e+003 -9.8622e-001 4.1951e+001 -# -Range: 0-300 - -Pyrite - FeS2 +1.0000 H2O = + 0.2500 H+ + 0.2500 SO4-- + 1.0000 Fe++ + 1.7500 HS- - log_k -24.6534 - -delta_H 109.535 kJ/mol # Calculated enthalpy of reaction Pyrite -# Enthalpy of formation: -41 kcal/mol - -analytic -2.4195e+002 -8.7948e-002 -6.2911e+002 9.9248e+001 -9.7454e+000 -# -Range: 0-300 - -Pyrolusite - MnO2 = + 0.5000 Mn++ + 0.5000 MnO4-- - log_k -17.6439 - -delta_H 83.3804 kJ/mol # Calculated enthalpy of reaction Pyrolusite -# Enthalpy of formation: -520.031 kJ/mol - -analytic -1.1541e+002 -4.1665e-002 -1.8960e+003 4.7094e+001 -2.9551e+001 -# -Range: 0-300 - -Pyromorphite - Pb5(PO4)3Cl +3.0000 H+ = + 1.0000 Cl- + 3.0000 HPO4-- + 5.0000 Pb++ - log_k -47.8954 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite -# Enthalpy of formation: 0 kcal/mol - -Pyromorphite-OH - Pb5(OH)(PO4)3 +4.0000 H+ = + 1.0000 H2O + 3.0000 HPO4-- + 5.0000 Pb++ - log_k -26.2653 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite-OH -# Enthalpy of formation: 0 kcal/mol - -Pyrophyllite - Al2Si4O10(OH)2 +6.0000 H+ = + 2.0000 Al+++ + 4.0000 H2O + 4.0000 SiO2 - log_k 0.4397 - -delta_H -102.161 kJ/mol # Calculated enthalpy of reaction Pyrophyllite -# Enthalpy of formation: -1345.31 kcal/mol - -analytic 1.1066e+001 1.2707e-002 1.6417e+004 -1.9596e+001 -1.8791e+006 -# -Range: 0-300 - -Pyrrhotite - FeS +1.0000 H+ = + 1.0000 Fe++ + 1.0000 HS- - log_k -3.7193 - -delta_H -7.9496 kJ/mol # Calculated enthalpy of reaction Pyrrhotite -# Enthalpy of formation: -24 kcal/mol - -analytic -1.5785e+002 -5.2258e-002 3.9711e+003 6.3195e+001 6.2012e+001 -# -Range: 0-300 - -Quartz - SiO2 = + 1.0000 SiO2 - log_k -3.9993 - -delta_H 32.949 kJ/mol # Calculated enthalpy of reaction Quartz -# Enthalpy of formation: -217.65 kcal/mol - -analytic 7.7698e-002 1.0612e-002 3.4651e+003 -4.3551e+000 -7.2138e+005 -# -Range: 0-300 - -Ra - Ra +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Ra++ - log_k 141.3711 - -delta_H -807.374 kJ/mol # Calculated enthalpy of reaction Ra -# Enthalpy of formation: 0 kJ/mol - -analytic 4.9867e+001 5.9412e-003 4.0293e+004 -1.8356e+001 6.8421e+002 -# -Range: 0-200 - -Ra(NO3)2 - Ra(NO3)2 = + 1.0000 Ra++ + 2.0000 NO3- - log_k -2.2419 - -delta_H 50.4817 kJ/mol # Calculated enthalpy of reaction Ra(NO3)2 -# Enthalpy of formation: -991.706 kJ/mol - -analytic 2.2001e+001 -9.5263e-003 -3.9389e+003 -3.3143e+000 -6.6896e+001 -# -Range: 0-200 - -RaCl2:2H2O - RaCl2:2H2O = + 1.0000 Ra++ + 2.0000 Cl- + 2.0000 H2O - log_k -0.7647 - -delta_H 32.6266 kJ/mol # Calculated enthalpy of reaction RaCl2:2H2O -# Enthalpy of formation: -1466.07 kJ/mol - -analytic -2.5033e+001 -1.8918e-002 -1.5713e+003 1.4213e+001 -2.6673e+001 -# -Range: 0-200 - -RaSO4 - RaSO4 = + 1.0000 Ra++ + 1.0000 SO4-- - log_k -10.4499 - -delta_H 40.309 kJ/mol # Calculated enthalpy of reaction RaSO4 -# Enthalpy of formation: -1477.51 kJ/mol - -analytic 4.8025e+001 -1.1376e-002 -5.1347e+003 -1.5306e+001 -8.7211e+001 -# -Range: 0-200 - -Rankinite - Ca3Si2O7 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 Ca++ + 3.0000 H2O - log_k 51.9078 - -delta_H -302.089 kJ/mol # Calculated enthalpy of reaction Rankinite -# Enthalpy of formation: -941.7 kcal/mol - -analytic -9.6393e+001 -1.6592e-002 2.4832e+004 3.2541e+001 -9.4630e+005 -# -Range: 0-300 - -Rb - Rb +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Rb+ - log_k 71.1987 - -delta_H -391.009 kJ/mol # Calculated enthalpy of reaction Rb -# Enthalpy of formation: 0 kJ/mol - -analytic -2.1179e+001 -8.7978e-003 2.0934e+004 1.0011e+001 3.2667e+002 -# -Range: 0-300 - -Rb2UO4 - Rb2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 Rb+ - log_k 34.0089 - -delta_H -170.224 kJ/mol # Calculated enthalpy of reaction Rb2UO4 -# Enthalpy of formation: -1922.7 kJ/mol - -analytic -3.8205e+001 3.1862e-003 1.0973e+004 1.3925e+001 1.8636e+002 -# -Range: 0-200 - -Re - Re +1.7500 O2 +0.5000 H2O = + 1.0000 H+ + 1.0000 ReO4- - log_k 105.9749 - -delta_H -623.276 kJ/mol # Calculated enthalpy of reaction Re -# Enthalpy of formation: 0 kJ/mol - -analytic 1.4535e+001 -2.9877e-002 2.9910e+004 0.0000e+000 0.0000e+000 -# -Range: 0-300 - -Realgar - AsS +2.0000 H2O = + 0.5000 S2O4-- + 1.0000 AsH3 + 1.0000 H+ - log_k -60.2768 - -delta_H 0 # Not possible to calculate enthalpy of reaction Realgar -# Enthalpy of formation: -71.406 kJ/mol - -Rhodochrosite - MnCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Mn++ - log_k -0.1928 - -delta_H -21.3426 kJ/mol # Calculated enthalpy of reaction Rhodochrosite -# Enthalpy of formation: -212.521 kcal/mol - -analytic -1.6195e+002 -4.9344e-002 5.0937e+003 6.4402e+001 7.9531e+001 -# -Range: 0-300 - -Rhodonite - MnSiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 Mn++ + 1.0000 SiO2 - log_k 9.7301 - -delta_H -64.7121 kJ/mol # Calculated enthalpy of reaction Rhodonite -# Enthalpy of formation: -1319.42 kJ/mol - -analytic 2.0585e+001 4.9941e-003 4.5816e+003 -9.8212e+000 -3.0658e+005 -# -Range: 0-300 - -Ripidolite-14A - Mg3Fe2Al2Si3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 2.0000 Fe++ + 3.0000 Mg++ + 3.0000 SiO2 + 12.0000 H2O - log_k 60.9638 - -delta_H -572.472 kJ/mol # Calculated enthalpy of reaction Ripidolite-14A -# Enthalpy of formation: -1947.87 kcal/mol - -analytic -1.8376e+002 -6.1934e-002 3.2458e+004 6.2290e+001 5.0653e+002 -# -Range: 0-300 - -Ripidolite-7A - Mg3Fe2Al2Si3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 2.0000 Fe++ + 3.0000 Mg++ + 3.0000 SiO2 + 12.0000 H2O - log_k 64.3371 - -delta_H -586.325 kJ/mol # Calculated enthalpy of reaction Ripidolite-7A -# Enthalpy of formation: -1944.56 kcal/mol - -analytic -1.9557e+002 -6.3779e-002 3.3634e+004 6.7057e+001 5.2489e+002 -# -Range: 0-300 - -Romarchite - SnO +2.0000 H+ = + 1.0000 H2O + 1.0000 Sn++ - log_k 1.3625 - -delta_H -8.69017 kJ/mol # Calculated enthalpy of reaction Romarchite -# Enthalpy of formation: -68.34 kcal/mol - -analytic -6.3187e+001 -1.5821e-002 2.2786e+003 2.4900e+001 3.5574e+001 -# -Range: 0-300 - -Ru - Ru +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Ru++ - log_k 16.6701 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru -# Enthalpy of formation: 0 kJ/mol - -Ru(OH)3:H2O(am) - Ru(OH)3:H2O +3.0000 H+ = + 1.0000 Ru+++ + 4.0000 H2O - log_k 1.6338 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)3:H2O(am) -# Enthalpy of formation: 0 kcal/mol - -RuBr3 - RuBr3 = + 1.0000 Ru+++ + 3.0000 Br- - log_k 3.1479 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuBr3 -# Enthalpy of formation: -147.76 kJ/mol - -RuCl3 - RuCl3 = + 1.0000 Ru+++ + 3.0000 Cl- - log_k 10.8215 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl3 -# Enthalpy of formation: -221.291 kJ/mol - -RuI3 - RuI3 = + 1.0000 Ru+++ + 3.0000 I- - log_k -12.4614 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuI3 -# Enthalpy of formation: -58.425 kJ/mol - -RuO2 - RuO2 +2.0000 H+ = + 1.0000 Ru(OH)2++ - log_k -5.4835 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuO2 -# Enthalpy of formation: -307.233 kJ/mol - -RuO2:2H2O(am) - RuO2:2H2O +2.0000 H+ = + 1.0000 Ru(OH)2++ + 2.0000 H2O - log_k 0.9045 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuO2:2H2O(am) -# Enthalpy of formation: 0 kcal/mol - -RuO4 - RuO4 = + 1.0000 RuO4 - log_k -0.9636 - -delta_H 6.305 kJ/mol # Calculated enthalpy of reaction RuO4 -# Enthalpy of formation: -244.447 kJ/mol - -RuSe2 - RuSe2 +2.0000 H2O = + 1.0000 Ru(OH)2++ + 2.0000 H+ + 2.0000 Se-- - log_k -113.7236 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuSe2 -# Enthalpy of formation: -146.274 kJ/mol - -Rutherfordine - UO2CO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 UO2++ - log_k -4.1064 - -delta_H -19.4032 kJ/mol # Calculated enthalpy of reaction Rutherfordine -# Enthalpy of formation: -1689.53 kJ/mol - -analytic -8.8224e+001 -3.1434e-002 2.6675e+003 3.4161e+001 4.1650e+001 -# -Range: 0-300 - -Rutile - TiO2 +2.0000 H2O = + 1.0000 Ti(OH)4 - log_k -9.6452 - -delta_H 0 # Not possible to calculate enthalpy of reaction Rutile -# Enthalpy of formation: -226.107 kcal/mol - -S - S +1.0000 H2O = + 0.5000 O2 + 1.0000 H+ + 1.0000 HS- - log_k -45.0980 - -delta_H 263.663 kJ/mol # Calculated enthalpy of reaction S -# Enthalpy of formation: 0 kJ/mol - -analytic -8.8928e+001 -2.8454e-002 -1.1516e+004 3.6747e+001 -1.7966e+002 -# -Range: 0-300 - -Safflorite - CoAs2 +2.0000 H2O +1.0000 H+ +0.5000 O2 = + 1.0000 AsH3 + 1.0000 Co++ + 1.0000 H2AsO3- - log_k -3.6419 - -delta_H -52.7226 kJ/mol # Calculated enthalpy of reaction Safflorite -# Enthalpy of formation: -23.087 kcal/mol - -Saleeite - Mg(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Mg++ + 2.0000 HPO4-- + 2.0000 UO2++ - log_k -19.4575 - -delta_H -110.816 kJ/mol # Calculated enthalpy of reaction Saleeite -# Enthalpy of formation: -1189.61 kcal/mol - -analytic -6.0028e+001 -4.4391e-002 3.9168e+003 1.6428e+001 6.6533e+001 -# -Range: 0-200 - -Sanbornite - BaSi2O5 +2.0000 H+ = + 1.0000 Ba++ + 1.0000 H2O + 2.0000 SiO2 - log_k 9.4753 - -delta_H -31.0845 kJ/mol # Calculated enthalpy of reaction Sanbornite -# Enthalpy of formation: -2547.8 kJ/mol - -analytic -2.5381e+001 1.2999e-002 1.2330e+004 2.1053e+000 -1.3913e+006 -# -Range: 0-300 - -Sanidine_high - KAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 H2O + 3.0000 SiO2 - log_k 0.9239 - -delta_H -35.0284 kJ/mol # Calculated enthalpy of reaction Sanidine_high -# Enthalpy of formation: -946.538 kcal/mol - -analytic -3.4889e+000 1.4495e-002 1.2856e+004 -9.8978e+000 -1.6572e+006 -# -Range: 0-300 - -Saponite-Ca - Ca.165Mg3Al.33Si3.67O10(OH)2 +7.3200 H+ = + 0.1650 Ca++ + 0.3300 Al+++ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O - log_k 26.2900 - -delta_H -207.971 kJ/mol # Calculated enthalpy of reaction Saponite-Ca -# Enthalpy of formation: -1436.51 kcal/mol - -analytic -4.6904e+001 6.2555e-003 2.2572e+004 5.3198e+000 -1.5725e+006 -# -Range: 0-300 - -Saponite-Cs - Cs.33Si3.67Al.33Mg3O10(OH)2 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 Cs+ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O - log_k 25.8528 - -delta_H -195.407 kJ/mol # Calculated enthalpy of reaction Saponite-Cs -# Enthalpy of formation: -1438.44 kcal/mol - -analytic -7.7732e+001 -3.6418e-005 2.3346e+004 1.7578e+001 -1.6319e+006 -# -Range: 0-300 - -Saponite-H - H.33Mg3Al.33Si3.67O10(OH)2 +6.9900 H+ = + 0.3300 Al+++ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O - log_k 25.3321 - -delta_H -200.235 kJ/mol # Calculated enthalpy of reaction Saponite-H -# Enthalpy of formation: -1416.94 kcal/mol - -analytic -3.9828e+001 8.9566e-003 2.2165e+004 2.3941e+000 -1.5933e+006 -# -Range: 0-300 - -Saponite-K - K.33Mg3Al.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 K+ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O - log_k 26.0075 - -delta_H -196.402 kJ/mol # Calculated enthalpy of reaction Saponite-K -# Enthalpy of formation: -1437.74 kcal/mol - -analytic 3.2113e+001 1.8392e-002 1.7918e+004 -2.2874e+001 -1.3542e+006 -# -Range: 0-300 - -Saponite-Mg - Mg3.165Al.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 Al+++ + 3.1650 Mg++ + 3.6700 SiO2 + 4.6600 H2O - log_k 26.2523 - -delta_H -210.822 kJ/mol # Calculated enthalpy of reaction Saponite-Mg -# Enthalpy of formation: -1432.79 kcal/mol - -analytic 9.8888e+000 1.4320e-002 1.9418e+004 -1.5259e+001 -1.3716e+006 -# -Range: 0-300 - -Saponite-Na - Na.33Mg3Al.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 Na+ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O - log_k 26.3459 - -delta_H -201.401 kJ/mol # Calculated enthalpy of reaction Saponite-Na -# Enthalpy of formation: -1435.61 kcal/mol - -analytic -6.7611e+001 4.7327e-003 2.3586e+004 1.2868e+001 -1.6493e+006 -# -Range: 0-300 - -Sb - Sb +1.5000 H2O +0.7500 O2 = + 1.0000 Sb(OH)3 - log_k 52.7918 - -delta_H -335.931 kJ/mol # Calculated enthalpy of reaction Sb -# Enthalpy of formation: 0 kJ/mol - -Sb(OH)3 - Sb(OH)3 = + 1.0000 Sb(OH)3 - log_k -7.0953 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Sb2O3 - Sb2O3 +3.0000 H2O = + 2.0000 Sb(OH)3 - log_k -8.9600 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb2O3 -# Enthalpy of formation: 0 kcal/mol - -analytic 2.3982e+000 -7.6326e-005 -3.3787e+003 0.0000e+000 0.0000e+000 -# -Range: 0-300 - -Sb2O4 - Sb2O4 +3.0000 H2O = + 0.5000 O2 + 2.0000 Sb(OH)3 - log_k -39.6139 - -delta_H 211.121 kJ/mol # Calculated enthalpy of reaction Sb2O4 -# Enthalpy of formation: -907.251 kJ/mol - -Sb2O5 - Sb2O5 +3.0000 H2O = + 1.0000 O2 + 2.0000 Sb(OH)3 - log_k -46.9320 - -delta_H 269.763 kJ/mol # Calculated enthalpy of reaction Sb2O5 -# Enthalpy of formation: -971.96 kJ/mol - -Sb4O6(cubic) - Sb4O6 +6.0000 H2O = + 4.0000 Sb(OH)3 - log_k -19.6896 - -delta_H 59.898 kJ/mol # Calculated enthalpy of reaction Sb4O6(cubic) -# Enthalpy of formation: -1440.02 kJ/mol - -Sb4O6(orthorhombic) - Sb4O6 +6.0000 H2O = + 4.0000 Sb(OH)3 - log_k -17.0442 - -delta_H 37.314 kJ/mol # Calculated enthalpy of reaction Sb4O6(orthorhombic) -# Enthalpy of formation: -1417.44 kJ/mol - -SbBr3 - SbBr3 +3.0000 H2O = + 1.0000 Sb(OH)3 + 3.0000 Br- + 3.0000 H+ - log_k 1.0554 - -delta_H -21.5871 kJ/mol # Calculated enthalpy of reaction SbBr3 -# Enthalpy of formation: -259.197 kJ/mol - -SbCl3 - SbCl3 +3.0000 H2O = + 1.0000 Sb(OH)3 + 3.0000 Cl- + 3.0000 H+ - log_k 0.5878 - -delta_H -35.393 kJ/mol # Calculated enthalpy of reaction SbCl3 -# Enthalpy of formation: -382.12 kJ/mol - -Sc - Sc +3.0000 H+ +0.7500 O2 = + 1.0000 Sc+++ + 1.5000 H2O - log_k 167.2700 - -delta_H -1033.87 kJ/mol # Calculated enthalpy of reaction Sc -# Enthalpy of formation: 0 kJ/mol - -analytic -6.6922e+001 -2.9150e-002 5.4559e+004 2.4189e+001 8.5137e+002 -# -Range: 0-300 - -Scacchite - MnCl2 = + 1.0000 Mn++ + 2.0000 Cl- - log_k 8.7785 - -delta_H -73.4546 kJ/mol # Calculated enthalpy of reaction Scacchite -# Enthalpy of formation: -481.302 kJ/mol - -analytic -2.3476e+002 -8.2437e-002 9.0088e+003 9.6128e+001 1.4064e+002 -# -Range: 0-300 - -Schoepite - UO3:2H2O +2.0000 H+ = + 1.0000 UO2++ + 3.0000 H2O - log_k 4.8333 - -delta_H -50.415 kJ/mol # Calculated enthalpy of reaction Schoepite -# Enthalpy of formation: -1826.1 kJ/mol - -analytic 1.3645e+001 1.0884e-002 2.5412e+003 -8.3167e+000 3.9649e+001 -# -Range: 0-300 - -Schoepite-dehy(.393) - UO3:.393H2O +2.0000 H+ = + 1.0000 UO2++ + 1.3930 H2O - log_k 6.7243 - -delta_H -69.2728 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.393) -# Enthalpy of formation: -1347.9 kJ/mol - -analytic -5.6487e+001 -3.0358e-003 5.7044e+003 1.8179e+001 9.6887e+001 -# -Range: 0-200 - -Schoepite-dehy(.648) - UO3:.648H2O +2.0000 H+ = + 1.0000 UO2++ + 1.6480 H2O - log_k 6.2063 - -delta_H -65.4616 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.648) -# Enthalpy of formation: -1424.6 kJ/mol - -analytic -6.3010e+001 -3.0276e-003 5.8033e+003 2.0471e+001 9.8569e+001 -# -Range: 0-200 - -Schoepite-dehy(.85) - UO3:.85H2O +2.0000 H+ = + 1.0000 UO2++ + 1.8500 H2O - log_k 5.0970 - -delta_H -56.4009 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.85) -# Enthalpy of formation: -1491.4 kJ/mol - -analytic -6.7912e+001 -3.0420e-003 5.5690e+003 2.2323e+001 9.4593e+001 -# -Range: 0-200 - -Schoepite-dehy(.9) - UO3:.9H2O +2.0000 H+ = + 1.0000 UO2++ + 1.9000 H2O - log_k 5.0167 - -delta_H -55.7928 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.9) -# Enthalpy of formation: -1506.3 kJ/mol - -analytic -1.5998e+001 -2.0144e-003 3.2910e+003 4.2751e+000 5.1358e+001 -# -Range: 0-300 - -Schoepite-dehy(1.0) - UO3:H2O +2.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O - log_k 5.1031 - -delta_H -57.4767 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(1.0) -# Enthalpy of formation: -1533.2 kJ/mol - -analytic -7.2080e+001 -3.0503e-003 5.8024e+003 2.3695e+001 9.8557e+001 -# -Range: 0-200 - -Scolecite - CaAl2Si3O10:3H2O +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 3.0000 SiO2 + 7.0000 H2O - log_k 15.8767 - -delta_H -204.93 kJ/mol # Calculated enthalpy of reaction Scolecite -# Enthalpy of formation: -6048.92 kJ/mol - -analytic 5.0656e+001 -3.1485e-003 1.0574e+004 -2.5663e+001 -5.2769e+005 -# -Range: 0-300 - -Se - Se +1.0000 H2O +1.0000 O2 = + 1.0000 SeO3-- + 2.0000 H+ - log_k 26.1436 - -delta_H -211.221 kJ/mol # Calculated enthalpy of reaction Se -# Enthalpy of formation: 0 kJ/mol - -analytic -9.5144e+001 -6.5681e-002 1.0736e+004 4.2358e+001 1.6755e+002 -# -Range: 0-300 - -Se2O5 - Se2O5 +2.0000 H2O = + 1.0000 SeO3-- + 1.0000 SeO4-- + 4.0000 H+ - log_k 9.5047 - -delta_H -123.286 kJ/mol # Calculated enthalpy of reaction Se2O5 -# Enthalpy of formation: -98.8 kcal/mol - -analytic 1.1013e+002 -2.4491e-002 -5.6147e+002 -3.6960e+001 -9.5719e+000 -# -Range: 0-200 - -SeCl4 - SeCl4 +3.0000 H2O = + 1.0000 SeO3-- + 4.0000 Cl- + 6.0000 H+ - log_k 14.4361 - -delta_H -131.298 kJ/mol # Calculated enthalpy of reaction SeCl4 -# Enthalpy of formation: -45.1 kcal/mol - -analytic -4.0215e+002 -1.8323e-001 1.3074e+004 1.7267e+002 2.0413e+002 -# -Range: 0-300 - -SeO3 - SeO3 +1.0000 H2O = + 1.0000 SeO4-- + 2.0000 H+ - log_k 19.2015 - -delta_H -143.022 kJ/mol # Calculated enthalpy of reaction SeO3 -# Enthalpy of formation: -40.7 kcal/mol - -analytic -1.4199e+002 -6.4398e-002 9.5505e+003 5.9941e+001 1.4907e+002 -# -Range: 0-300 - -Sellaite - MgF2 = + 1.0000 Mg++ + 2.0000 F- - log_k -9.3843 - -delta_H -12.4547 kJ/mol # Calculated enthalpy of reaction Sellaite -# Enthalpy of formation: -1124.2 kJ/mol - -analytic -2.6901e+002 -8.5487e-002 6.8237e+003 1.0595e+002 1.0656e+002 -# -Range: 0-300 - -Sepiolite - Mg4Si6O15(OH)2:6H2O +8.0000 H+ = + 4.0000 Mg++ + 6.0000 SiO2 + 11.0000 H2O - log_k 30.4439 - -delta_H -157.339 kJ/mol # Calculated enthalpy of reaction Sepiolite -# Enthalpy of formation: -2418 kcal/mol - -analytic 1.8690e+001 4.7544e-002 2.6765e+004 -2.5301e+001 -2.6498e+006 -# -Range: 0-300 - -Shcherbinaite - V2O5 +2.0000 H+ = + 1.0000 H2O + 2.0000 VO2+ - log_k -1.4520 - -delta_H -34.7917 kJ/mol # Calculated enthalpy of reaction Shcherbinaite -# Enthalpy of formation: -1550.6 kJ/mol - -analytic -1.4791e+002 -2.2464e-002 6.6865e+003 5.2832e+001 1.0438e+002 -# -Range: 0-300 - -Si - Si +1.0000 O2 = + 1.0000 SiO2 - log_k 148.9059 - -delta_H -865.565 kJ/mol # Calculated enthalpy of reaction Si -# Enthalpy of formation: 0 kJ/mol - -analytic -5.7245e+002 -7.6302e-002 8.3516e+004 2.0045e+002 -2.8494e+006 -# -Range: 0-300 - -SiO2(am) - SiO2 = + 1.0000 SiO2 - log_k -2.7136 - -delta_H 20.0539 kJ/mol # Calculated enthalpy of reaction SiO2(am) -# Enthalpy of formation: -214.568 kcal/mol - -analytic 1.2109e+000 7.0767e-003 2.3634e+003 -3.4449e+000 -4.8591e+005 -# -Range: 0-300 - -Siderite - FeCO3 +1.0000 H+ = + 1.0000 Fe++ + 1.0000 HCO3- - log_k -0.1920 - -delta_H -32.5306 kJ/mol # Calculated enthalpy of reaction Siderite -# Enthalpy of formation: -179.173 kcal/mol - -analytic -1.5990e+002 -4.9361e-002 5.4947e+003 6.3032e+001 8.5787e+001 -# -Range: 0-300 - -Sillimanite - Al2SiO5 +6.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 3.0000 H2O - log_k 16.3080 - -delta_H -238.442 kJ/mol # Calculated enthalpy of reaction Sillimanite -# Enthalpy of formation: -615.099 kcal/mol - -analytic -7.1610e+001 -3.2196e-002 1.2493e+004 2.2449e+001 1.9496e+002 -# -Range: 0-300 - -Sklodowskite - Mg(H3O)2(UO2)2(SiO4)2:4H2O +6.0000 H+ = + 1.0000 Mg++ + 2.0000 SiO2 + 2.0000 UO2++ + 10.0000 H2O - log_k 13.7915 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sklodowskite -# Enthalpy of formation: 0 kcal/mol - -Sm - Sm +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Sm++ - log_k 133.1614 - -delta_H -783.944 kJ/mol # Calculated enthalpy of reaction Sm -# Enthalpy of formation: 0 kJ/mol - -analytic -7.1599e+001 -2.0083e-002 4.2693e+004 2.7291e+001 6.6621e+002 -# -Range: 0-300 - -Sm(OH)3 - Sm(OH)3 +3.0000 H+ = + 1.0000 Sm+++ + 3.0000 H2O - log_k 16.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Sm(OH)3(am) - Sm(OH)3 +3.0000 H+ = + 1.0000 Sm+++ + 3.0000 H2O - log_k 18.5852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -Sm2(CO3)3 - Sm2(CO3)3 +3.0000 H+ = + 2.0000 Sm+++ + 3.0000 HCO3- - log_k -3.5136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2(CO3)3 -# Enthalpy of formation: 0 kcal/mol - -Sm2(SO4)3 - Sm2(SO4)3 = + 2.0000 Sm+++ + 3.0000 SO4-- - log_k -9.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2(SO4)3 -# Enthalpy of formation: 0 kcal/mol - -Sm2O3 - Sm2O3 +6.0000 H+ = + 2.0000 Sm+++ + 3.0000 H2O - log_k 42.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2O3 -# Enthalpy of formation: 0 kcal/mol - -SmF3:.5H2O - SmF3:.5H2O = + 0.5000 H2O + 1.0000 Sm+++ + 3.0000 F- - log_k -17.5000 - -delta_H 0 # Not possible to calculate enthalpy of reaction SmF3:.5H2O -# Enthalpy of formation: 0 kcal/mol - -SmPO4:10H2O - SmPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Sm+++ + 10.0000 H2O - log_k -12.1782 - -delta_H 0 # Not possible to calculate enthalpy of reaction SmPO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -Smectite-high-Fe-Mg -# Ca.025Na.1K.2Fe++.5Fe+++.2Mg1.15Al1.25Si3.5H2O12 +8.0000 H+ = + 0.0250 Ca++ + 0.1000 Na+ + 0.2000 Fe+++ + 0.2000 K+ + 0.5000 Fe++ + 1.1500 Mg++ + 1.2500 Al+++ + 3.5000 SiO2 + 5.0000 H2O - Ca.025Na.1K.2Fe.5Fe.2Mg1.15Al1.25Si3.5H2O12 +8.0000 H+ = + 0.0250 Ca++ + 0.1000 Na+ + 0.2000 Fe+++ + 0.2000 K+ + 0.5000 Fe++ + 1.1500 Mg++ + 1.2500 Al+++ + 3.5000 SiO2 + 5.0000 H2O - log_k 17.4200 - -delta_H -199.841 kJ/mol # Calculated enthalpy of reaction Smectite-high-Fe-Mg -# Enthalpy of formation: -1351.39 kcal/mol - -analytic -9.6102e+000 1.2551e-003 1.8157e+004 -7.9862e+000 -1.3005e+006 -# -Range: 0-300 - -Smectite-low-Fe-Mg -# Ca.02Na.15K.2Fe++.29Fe+++.16Mg.9Al1.25Si3.75H2O1 +7.0000 H+ = + 0.0200 Ca++ + 0.1500 Na+ + 0.1600 Fe+++ + 0.2000 K+ + 0.2900 Fe++ + 0.9000 Mg++ + 1.2500 Al+++ + 3.7500 SiO2 + 4.5000 H2O - Ca.02Na.15K.2Fe.29Fe.16Mg.9Al1.25Si3.75H2O12 +7.0000 H+ = + 0.0200 Ca++ + 0.1500 Na+ + 0.1600 Fe+++ + 0.2000 K+ + 0.2900 Fe++ + 0.9000 Mg++ + 1.2500 Al+++ + 3.7500 SiO2 + 4.5000 H2O - log_k 11.0405 - -delta_H -144.774 kJ/mol # Calculated enthalpy of reaction Smectite-low-Fe-Mg -# Enthalpy of formation: -1352.12 kcal/mol - -analytic -1.7003e+001 6.9848e-003 1.8359e+004 -6.8896e+000 -1.6637e+006 -# -Range: 0-300 - -Smithsonite - ZnCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Zn++ - log_k 0.4633 - -delta_H -30.5348 kJ/mol # Calculated enthalpy of reaction Smithsonite -# Enthalpy of formation: -194.26 kcal/mol - -analytic -1.6452e+002 -5.0231e-002 5.5925e+003 6.5139e+001 8.7314e+001 -# -Range: 0-300 - -Sn - Sn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Sn++ - log_k 47.8615 - -delta_H -288.558 kJ/mol # Calculated enthalpy of reaction Sn -# Enthalpy of formation: 0 kcal/mol - -analytic -1.3075e+002 -3.3807e-002 1.9548e+004 5.0382e+001 -1.3868e+005 -# -Range: 0-300 - -Sn(OH)2 - Sn(OH)2 +2.0000 H+ = + 1.0000 Sn++ + 2.0000 H2O - log_k 1.8400 - -delta_H -19.6891 kJ/mol # Calculated enthalpy of reaction Sn(OH)2 -# Enthalpy of formation: -560.774 kJ/mol - -analytic -6.1677e+001 -5.3258e-003 3.3656e+003 2.1748e+001 5.7174e+001 -# -Range: 0-200 - -Sn(SO4)2 - Sn(SO4)2 = + 1.0000 Sn++++ + 2.0000 SO4-- - log_k 16.0365 - -delta_H -159.707 kJ/mol # Calculated enthalpy of reaction Sn(SO4)2 -# Enthalpy of formation: -389.4 kcal/mol - -analytic 1.7787e+001 -5.1758e-002 3.7671e+003 4.1861e-001 6.3965e+001 -# -Range: 0-200 - -Sn3S4 - Sn3S4 +4.0000 H+ = + 1.0000 Sn++++ + 2.0000 Sn++ + 4.0000 HS- - log_k -61.9790 - -delta_H 318.524 kJ/mol # Calculated enthalpy of reaction Sn3S4 -# Enthalpy of formation: -88.5 kcal/mol - -analytic -8.1325e+001 -7.4589e-002 -1.7953e+004 4.1138e+001 -3.0484e+002 -# -Range: 0-200 - -SnBr2 - SnBr2 = + 1.0000 Sn++ + 2.0000 Br- - log_k -1.4369 - -delta_H 8.24248 kJ/mol # Calculated enthalpy of reaction SnBr2 -# Enthalpy of formation: -62.15 kcal/mol - -analytic 2.5384e+001 -1.7350e-002 -2.6653e+003 -5.1400e+000 -4.5269e+001 -# -Range: 0-200 - -SnBr4 - SnBr4 = + 1.0000 Sn++++ + 4.0000 Br- - log_k 11.1272 - -delta_H -78.3763 kJ/mol # Calculated enthalpy of reaction SnBr4 -# Enthalpy of formation: -377.391 kJ/mol - -analytic 1.3516e+001 -5.5193e-002 -8.1888e+001 5.7935e+000 -1.3940e+000 -# -Range: 0-200 - -SnCl2 - SnCl2 = + 1.0000 Sn++ + 2.0000 Cl- - log_k 0.3225 - -delta_H -11.9913 kJ/mol # Calculated enthalpy of reaction SnCl2 -# Enthalpy of formation: -79.1 kcal/mol - -analytic 7.9717e+000 -2.1475e-002 -1.1676e+003 1.0749e+000 -1.9829e+001 -# -Range: 0-200 - -SnSO4 - SnSO4 = + 1.0000 SO4-- + 1.0000 Sn++ - log_k -23.9293 - -delta_H 96.232 kJ/mol # Calculated enthalpy of reaction SnSO4 -# Enthalpy of formation: -242.5 kcal/mol - -analytic 3.0046e+001 -1.4238e-002 -7.5915e+003 -9.8122e+000 -1.2892e+002 -# -Range: 0-200 - -SnSe - SnSe = + 1.0000 Se-- + 1.0000 Sn++ - log_k -32.9506 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnSe -# Enthalpy of formation: -21.2 kcal/mol - -analytic 4.2342e+000 9.5462e-004 -8.0009e+003 -4.2997e+000 -1.3587e+002 -# -Range: 0-200 - -SnSe2 - SnSe2 = + 1.0000 Sn++++ + 2.0000 Se-- - log_k -66.6570 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnSe2 -# Enthalpy of formation: -29.8 kcal/mol - -analytic -3.6819e+001 -2.0966e-002 -1.5197e+004 1.1070e+001 -2.5806e+002 -# -Range: 0-200 - -Soddyite - (UO2)2SiO4:2H2O +4.0000 H+ = + 1.0000 SiO2 + 2.0000 UO2++ + 4.0000 H2O - log_k 0.3920 - -delta_H 0 # Not possible to calculate enthalpy of reaction Soddyite -# Enthalpy of formation: 0 kcal/mol - -Sphaerocobaltite - CoCO3 +1.0000 H+ = + 1.0000 Co++ + 1.0000 HCO3- - log_k -0.2331 - -delta_H -30.7064 kJ/mol # Calculated enthalpy of reaction Sphaerocobaltite -# Enthalpy of formation: -171.459 kcal/mol - -analytic -1.5709e+002 -4.8957e-002 5.3158e+003 6.2075e+001 8.2995e+001 -# -Range: 0-300 - -Sphalerite - ZnS +1.0000 H+ = + 1.0000 HS- + 1.0000 Zn++ - log_k -11.4400 - -delta_H 35.5222 kJ/mol # Calculated enthalpy of reaction Sphalerite -# Enthalpy of formation: -49 kcal/mol - -analytic -1.5497e+002 -4.8953e-002 1.7850e+003 6.1472e+001 2.7899e+001 -# -Range: 0-300 - -Spinel - Al2MgO4 +8.0000 H+ = + 1.0000 Mg++ + 2.0000 Al+++ + 4.0000 H2O - log_k 37.6295 - -delta_H -398.108 kJ/mol # Calculated enthalpy of reaction Spinel -# Enthalpy of formation: -546.847 kcal/mol - -analytic -3.3895e+002 -8.3595e-002 2.9251e+004 1.2260e+002 4.5654e+002 -# -Range: 0-300 - -Spinel-Co - Co3O4 +8.0000 H+ = + 1.0000 Co++ + 2.0000 Co+++ + 4.0000 H2O - log_k -6.4852 - -delta_H -126.415 kJ/mol # Calculated enthalpy of reaction Spinel-Co -# Enthalpy of formation: -891 kJ/mol - -analytic -3.2239e+002 -8.0782e-002 1.4635e+004 1.1755e+002 2.2846e+002 -# -Range: 0-300 - -Spodumene - LiAlSi2O6 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Li+ + 2.0000 H2O + 2.0000 SiO2 - log_k 6.9972 - -delta_H -89.1817 kJ/mol # Calculated enthalpy of reaction Spodumene -# Enthalpy of formation: -3054.75 kJ/mol - -analytic -9.8111e+000 2.1191e-003 9.6920e+003 -3.0484e+000 -7.8822e+005 -# -Range: 0-300 - -Sr - Sr +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Sr++ - log_k 141.7816 - -delta_H -830.679 kJ/mol # Calculated enthalpy of reaction Sr -# Enthalpy of formation: 0 kJ/mol - -analytic -1.6271e+002 -3.1212e-002 5.1520e+004 5.9178e+001 -4.8390e+005 -# -Range: 0-300 - -Sr(NO3)2 - Sr(NO3)2 = + 1.0000 Sr++ + 2.0000 NO3- - log_k 1.1493 - -delta_H 13.7818 kJ/mol # Calculated enthalpy of reaction Sr(NO3)2 -# Enthalpy of formation: -978.311 kJ/mol - -analytic 2.8914e+000 -1.2487e-002 -1.4872e+003 2.8124e+000 -2.5256e+001 -# -Range: 0-200 - -Sr(NO3)2:4H2O - Sr(NO3)2:4H2O = + 1.0000 Sr++ + 2.0000 NO3- + 4.0000 H2O - log_k 0.6976 - -delta_H 47.9045 kJ/mol # Calculated enthalpy of reaction Sr(NO3)2:4H2O -# Enthalpy of formation: -2155.79 kJ/mol - -analytic -8.4518e+001 -9.1155e-003 1.0856e+003 3.4061e+001 1.8464e+001 -# -Range: 0-200 - -Sr(OH)2 - Sr(OH)2 +2.0000 H+ = + 1.0000 Sr++ + 2.0000 H2O - log_k 27.5229 - -delta_H -153.692 kJ/mol # Calculated enthalpy of reaction Sr(OH)2 -# Enthalpy of formation: -968.892 kJ/mol - -analytic -5.1871e+001 -2.9123e-003 1.0175e+004 1.8643e+001 1.7280e+002 -# -Range: 0-200 - -Sr2SiO4 - Sr2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Sr++ - log_k 42.8076 - -delta_H -244.583 kJ/mol # Calculated enthalpy of reaction Sr2SiO4 -# Enthalpy of formation: -2306.61 kJ/mol - -analytic 3.0319e+001 2.0204e-003 1.2729e+004 -1.1584e+001 -1.9480e+005 -# -Range: 0-300 - -Sr3(AsO4)2 - Sr3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Sr++ - log_k 20.6256 - -delta_H -152.354 kJ/mol # Calculated enthalpy of reaction Sr3(AsO4)2 -# Enthalpy of formation: -3319.49 kJ/mol - -analytic -8.4749e+001 -2.9367e-002 9.5849e+003 3.3126e+001 1.6279e+002 -# -Range: 0-200 - -SrBr2 - SrBr2 = + 1.0000 Sr++ + 2.0000 Br- - log_k 13.1128 - -delta_H -75.106 kJ/mol # Calculated enthalpy of reaction SrBr2 -# Enthalpy of formation: -718.808 kJ/mol - -analytic -1.8512e+002 -7.2423e-002 7.6861e+003 7.8401e+001 1.1999e+002 -# -Range: 0-300 - -SrBr2:6H2O - SrBr2:6H2O = + 1.0000 Sr++ + 2.0000 Br- + 6.0000 H2O - log_k 3.6678 - -delta_H 23.367 kJ/mol # Calculated enthalpy of reaction SrBr2:6H2O -# Enthalpy of formation: -2532.31 kJ/mol - -analytic -2.2470e+002 -6.7920e-002 4.9432e+003 9.3758e+001 7.7200e+001 -# -Range: 0-300 - -SrBr2:H2O - SrBr2:H2O = + 1.0000 H2O + 1.0000 Sr++ + 2.0000 Br- - log_k 9.6057 - -delta_H -47.5853 kJ/mol # Calculated enthalpy of reaction SrBr2:H2O -# Enthalpy of formation: -1032.17 kJ/mol - -analytic -1.9103e+002 -7.1402e-002 6.6358e+003 8.0673e+001 1.0360e+002 -# -Range: 0-300 - -SrCl2 - SrCl2 = + 1.0000 Sr++ + 2.0000 Cl- - log_k 7.9389 - -delta_H -55.0906 kJ/mol # Calculated enthalpy of reaction SrCl2 -# Enthalpy of formation: -829.976 kJ/mol - -analytic -2.0097e+002 -7.6193e-002 7.0396e+003 8.4050e+001 1.0991e+002 -# -Range: 0-300 - -SrCl2:2H2O - SrCl2:2H2O = + 1.0000 Sr++ + 2.0000 Cl- + 2.0000 H2O - log_k 3.3248 - -delta_H -17.7313 kJ/mol # Calculated enthalpy of reaction SrCl2:2H2O -# Enthalpy of formation: -1439.01 kJ/mol - -analytic -2.1551e+002 -7.4349e-002 5.9400e+003 8.9330e+001 9.2752e+001 -# -Range: 0-300 - -SrCl2:6H2O - SrCl2:6H2O = + 1.0000 Sr++ + 2.0000 Cl- + 6.0000 H2O - log_k 1.5038 - -delta_H 24.6964 kJ/mol # Calculated enthalpy of reaction SrCl2:6H2O -# Enthalpy of formation: -2624.79 kJ/mol - -analytic -1.3225e+002 -1.8260e-002 3.7077e+003 5.1224e+001 6.3008e+001 -# -Range: 0-200 - -SrCl2:H2O - SrCl2:H2O = + 1.0000 H2O + 1.0000 Sr++ + 2.0000 Cl- - log_k 4.7822 - -delta_H -33.223 kJ/mol # Calculated enthalpy of reaction SrCl2:H2O -# Enthalpy of formation: -1137.68 kJ/mol - -analytic -2.1825e+002 -7.7851e-002 6.5957e+003 9.0555e+001 1.0298e+002 -# -Range: 0-300 - -SrCrO4 - SrCrO4 = + 1.0000 CrO4-- + 1.0000 Sr++ - log_k -3.8849 - -delta_H -1.73636 kJ/mol # Calculated enthalpy of reaction SrCrO4 -# Enthalpy of formation: -341.855 kcal/mol - -analytic 2.3424e+001 -1.5589e-002 -2.1393e+003 -6.2628e+000 -3.6337e+001 -# -Range: 0-200 - -SrF2 - SrF2 = + 1.0000 Sr++ + 2.0000 F- - log_k -8.5400 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrF2 -# Enthalpy of formation: 0 kcal/mol - -SrHPO4 - SrHPO4 = + 1.0000 HPO4-- + 1.0000 Sr++ - log_k -6.2416 - -delta_H -19.7942 kJ/mol # Calculated enthalpy of reaction SrHPO4 -# Enthalpy of formation: -1823.19 kJ/mol - -analytic 5.4057e+000 -1.8533e-002 -8.2021e+002 -1.3667e+000 -1.3930e+001 -# -Range: 0-200 - -SrI2 - SrI2 = + 1.0000 Sr++ + 2.0000 I- - log_k 19.2678 - -delta_H -103.218 kJ/mol # Calculated enthalpy of reaction SrI2 -# Enthalpy of formation: -561.494 kJ/mol - -analytic -1.8168e+002 -7.2083e-002 9.0759e+003 7.7577e+001 1.4167e+002 -# -Range: 0-300 - -SrO - SrO +2.0000 H+ = + 1.0000 H2O + 1.0000 Sr++ - log_k 41.8916 - -delta_H -243.875 kJ/mol # Calculated enthalpy of reaction SrO -# Enthalpy of formation: -592.871 kJ/mol - -analytic -5.8463e+001 -1.4240e-002 1.4417e+004 2.2725e+001 2.2499e+002 -# -Range: 0-300 - -SrS - SrS +1.0000 H+ = + 1.0000 HS- + 1.0000 Sr++ - log_k 14.7284 - -delta_H -93.3857 kJ/mol # Calculated enthalpy of reaction SrS -# Enthalpy of formation: -473.63 kJ/mol - -analytic -1.3048e+002 -4.4837e-002 7.8429e+003 5.3442e+001 1.2242e+002 -# -Range: 0-300 - -SrSeO4 - SrSeO4 = + 1.0000 SeO4-- + 1.0000 Sr++ - log_k -4.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrSeO4 -# Enthalpy of formation: 0 kcal/mol - -SrSiO3 - SrSiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 SiO2 + 1.0000 Sr++ - log_k 14.8438 - -delta_H -79.6112 kJ/mol # Calculated enthalpy of reaction SrSiO3 -# Enthalpy of formation: -1634.83 kJ/mol - -analytic 2.2592e+001 6.0821e-003 5.9982e+003 -1.0213e+001 -3.9529e+005 -# -Range: 0-300 - -SrUO4(alpha) - SrUO4 +4.0000 H+ = + 1.0000 Sr++ + 1.0000 UO2++ + 2.0000 H2O - log_k 19.1650 - -delta_H -151.984 kJ/mol # Calculated enthalpy of reaction SrUO4(alpha) -# Enthalpy of formation: -1989.6 kJ/mol - -analytic -7.4169e+001 -1.6686e-002 9.8721e+003 2.6345e+001 1.5407e+002 -# -Range: 0-300 - -SrZrO3 - SrZrO3 +4.0000 H+ = + 1.0000 H2O + 1.0000 Sr++ + 1.0000 Zr(OH)2++ - log_k -131.4664 - -delta_H 706.983 kJ/mol # Calculated enthalpy of reaction SrZrO3 -# Enthalpy of formation: -629.677 kcal/mol - -analytic -5.8512e+001 -9.5738e-003 -3.5254e+004 1.9459e+001 -5.9865e+002 -# -Range: 0-200 - -Starkeyite - MgSO4:4H2O = + 1.0000 Mg++ + 1.0000 SO4-- + 4.0000 H2O - log_k -0.9999 - -delta_H 0 # Not possible to calculate enthalpy of reaction Starkeyite -# Enthalpy of formation: 0 kcal/mol - -Stibnite - Sb2S3 +6.0000 H2O = + 2.0000 Sb(OH)3 + 3.0000 H+ + 3.0000 HS- - log_k -53.1100 - -delta_H 0 # Not possible to calculate enthalpy of reaction Stibnite -# Enthalpy of formation: 0 kcal/mol - -analytic 2.5223e+001 -5.9186e-002 -2.0860e+004 3.6892e+000 -3.2551e+002 -# -Range: 0-300 - -Stilbite - Ca1.019Na.136K.006Al2.18Si6.82O18:7.33H2O +8.7200 H+ = + 0.0060 K+ + 0.1360 Na+ + 1.0190 Ca++ + 2.1800 Al+++ + 6.8200 SiO2 + 11.6900 H2O - log_k 1.0545 - -delta_H -83.0019 kJ/mol # Calculated enthalpy of reaction Stilbite -# Enthalpy of formation: -11005.7 kJ/mol - -analytic -2.4483e+001 3.0987e-002 2.8013e+004 -1.5802e+001 -3.4491e+006 -# -Range: 0-300 - -Stilleite - ZnSe = + 1.0000 Se-- + 1.0000 Zn++ - log_k -23.9693 - -delta_H 0 # Not possible to calculate enthalpy of reaction Stilleite -# Enthalpy of formation: -37.97 kcal/mol - -analytic -6.1948e+001 -1.7004e-002 -2.4498e+003 2.0712e+001 -3.8209e+001 -# -Range: 0-300 - -Strengite - FePO4:2H2O +1.0000 H+ = + 1.0000 Fe+++ + 1.0000 HPO4-- + 2.0000 H2O - log_k -11.3429 - -delta_H -37.107 kJ/mol # Calculated enthalpy of reaction Strengite -# Enthalpy of formation: -1876.23 kJ/mol - -analytic -2.7752e+002 -9.4014e-002 7.6862e+003 1.0846e+002 1.2002e+002 -# -Range: 0-300 - -Strontianite - SrCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Sr++ - log_k -0.3137 - -delta_H -8.23411 kJ/mol # Calculated enthalpy of reaction Strontianite -# Enthalpy of formation: -294.6 kcal/mol - -analytic -1.3577e+002 -4.4884e-002 3.5729e+003 5.5296e+001 5.5791e+001 -# -Range: 0-300 - -Sulfur from J.Thom - S + H2O = 0.5H+ + 0.25SO4-- + 0.75H2S - log_k -5.20733 - -analytic -7.22926e1 -1.87320e-2 7.37125e2 2.83697e1 -1.00039e2 - -Sylvite - KCl = + 1.0000 Cl- + 1.0000 K+ - log_k 0.8459 - -delta_H 17.4347 kJ/mol # Calculated enthalpy of reaction Sylvite -# Enthalpy of formation: -104.37 kcal/mol - -analytic -8.1204e+001 -3.3074e-002 8.2819e+002 3.6014e+001 1.2947e+001 -# -Range: 0-300 - -Syngenite - K2Ca(SO4)2:H2O = + 1.0000 Ca++ + 1.0000 H2O + 2.0000 K+ + 2.0000 SO4-- - log_k -7.6001 - -delta_H 0 # Not possible to calculate enthalpy of reaction Syngenite -# Enthalpy of formation: 0 kcal/mol - -Tachyhydrite - Mg2CaCl6:12H2O = + 1.0000 Ca++ + 2.0000 Mg++ + 6.0000 Cl- + 12.0000 H2O - log_k 17.1439 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tachyhydrite -# Enthalpy of formation: 0 kcal/mol - -Talc - Mg3Si4O10(OH)2 +6.0000 H+ = + 3.0000 Mg++ + 4.0000 H2O + 4.0000 SiO2 - log_k 21.1383 - -delta_H -148.737 kJ/mol # Calculated enthalpy of reaction Talc -# Enthalpy of formation: -1410.92 kcal/mol - -analytic 1.1164e+001 2.4724e-002 1.9810e+004 -1.7568e+001 -1.8241e+006 -# -Range: 0-300 - -Tarapacaite - K2CrO4 = + 1.0000 CrO4-- + 2.0000 K+ - log_k -0.4037 - -delta_H 17.8238 kJ/mol # Calculated enthalpy of reaction Tarapacaite -# Enthalpy of formation: -335.4 kcal/mol - -analytic 2.7953e+001 -1.0863e-002 -2.7589e+003 -6.4154e+000 -4.6859e+001 -# -Range: 0-200 - -Tb - Tb +3.0000 H+ +0.7500 O2 = + 1.0000 Tb+++ + 1.5000 H2O - log_k 181.4170 - -delta_H -1117.97 kJ/mol # Calculated enthalpy of reaction Tb -# Enthalpy of formation: 0 kJ/mol - -analytic -5.2354e+001 -2.6920e-002 5.8391e+004 1.8555e+001 9.1115e+002 -# -Range: 0-300 - -Tb(OH)3 - Tb(OH)3 +3.0000 H+ = + 1.0000 Tb+++ + 3.0000 H2O - log_k 15.6852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Tb(OH)3(am) - Tb(OH)3 +3.0000 H+ = + 1.0000 Tb+++ + 3.0000 H2O - log_k 18.7852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -Tb2(CO3)3 - Tb2(CO3)3 +3.0000 H+ = + 2.0000 Tb+++ + 3.0000 HCO3- - log_k -3.2136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb2(CO3)3 -# Enthalpy of formation: 0 kcal/mol - -Tb2O3 - Tb2O3 +6.0000 H+ = + 2.0000 Tb+++ + 3.0000 H2O - log_k 47.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb2O3 -# Enthalpy of formation: 0 kcal/mol - -TbF3:.5H2O - TbF3:.5H2O = + 0.5000 H2O + 1.0000 Tb+++ + 3.0000 F- - log_k -16.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction TbF3:.5H2O -# Enthalpy of formation: 0 kcal/mol - -TbPO4:10H2O - TbPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Tb+++ + 10.0000 H2O - log_k -11.9782 - -delta_H 0 # Not possible to calculate enthalpy of reaction TbPO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -Tc - Tc +1.7500 O2 +0.5000 H2O = + 1.0000 H+ + 1.0000 TcO4- - log_k 93.5811 - -delta_H -552.116 kJ/mol # Calculated enthalpy of reaction Tc -# Enthalpy of formation: 0 kJ/mol - -analytic 2.2670e+001 -1.2050e-002 3.0174e+004 -8.4053e+000 -5.2577e+005 -# -Range: 0-300 - -Tc(OH)2 - Tc(OH)2 +3.0000 H+ +0.2500 O2 = + 1.0000 Tc+++ + 2.5000 H2O - log_k 5.2714 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc(OH)2 -# Enthalpy of formation: 0 kcal/mol - -Tc(OH)3 - Tc(OH)3 +3.0000 H+ = + 1.0000 Tc+++ + 3.0000 H2O - log_k -9.2425 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Tc2O7 - Tc2O7 +1.0000 H2O = + 2.0000 H+ + 2.0000 TcO4- - log_k 13.1077 - -delta_H -26.5357 kJ/mol # Calculated enthalpy of reaction Tc2O7 -# Enthalpy of formation: -1120.16 kJ/mol - -analytic 8.7535e+001 1.5366e-002 -1.1919e+003 -3.0317e+001 -2.0271e+001 -# -Range: 0-200 - -Tc2S7 - Tc2S7 +8.0000 H2O = + 2.0000 TcO4- + 7.0000 HS- + 9.0000 H+ - log_k -230.2410 - -delta_H 1356.41 kJ/mol # Calculated enthalpy of reaction Tc2S7 -# Enthalpy of formation: -615 kJ/mol - -analytic 2.4560e+002 -4.3355e-002 -8.4192e+004 -7.2967e+001 -1.4298e+003 -# -Range: 0-200 - -Tc3O4 - Tc3O4 +9.0000 H+ +0.2500 O2 = + 3.0000 Tc+++ + 4.5000 H2O - log_k -19.2271 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc3O4 -# Enthalpy of formation: 0 kcal/mol - -Tc4O7 - Tc4O7 +10.0000 H+ = + 2.0000 Tc+++ + 2.0000 TcO++ + 5.0000 H2O - log_k -26.0149 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc4O7 -# Enthalpy of formation: 0 kcal/mol - -TcO2:2H2O(am) - TcO2:2H2O +2.0000 H+ = + 1.0000 TcO++ + 3.0000 H2O - log_k -4.2319 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO2:2H2O(am) -# Enthalpy of formation: 0 kcal/mol - -TcO3 - TcO3 +1.0000 H2O = + 1.0000 TcO4-- + 2.0000 H+ - log_k -23.1483 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO3 -# Enthalpy of formation: -540 kJ/mol - -TcOH - TcOH +3.0000 H+ +0.5000 O2 = + 1.0000 Tc+++ + 2.0000 H2O - log_k 24.9009 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcOH -# Enthalpy of formation: 0 kcal/mol - -TcS2 - TcS2 +1.0000 H2O = + 1.0000 TcO++ + 2.0000 HS- - log_k -65.9742 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcS2 -# Enthalpy of formation: -224 kJ/mol - -TcS3 - TcS3 +4.0000 H2O = + 1.0000 TcO4-- + 3.0000 HS- + 5.0000 H+ - log_k -119.5008 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcS3 -# Enthalpy of formation: -276 kJ/mol - -Tenorite - CuO +2.0000 H+ = + 1.0000 Cu++ + 1.0000 H2O - log_k 7.6560 - -delta_H -64.5047 kJ/mol # Calculated enthalpy of reaction Tenorite -# Enthalpy of formation: -37.2 kcal/mol - -analytic -8.9899e+001 -1.8886e-002 6.0346e+003 3.3517e+001 9.4191e+001 -# -Range: 0-300 - -Tephroite - Mn2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Mn++ - log_k 23.0781 - -delta_H -160.1 kJ/mol # Calculated enthalpy of reaction Tephroite -# Enthalpy of formation: -1730.47 kJ/mol - -analytic -3.2440e+001 -1.1023e-002 8.8910e+003 1.1691e+001 1.3875e+002 -# -Range: 0-300 - -Th - Th +4.0000 H+ +1.0000 O2 = + 1.0000 Th++++ + 2.0000 H2O - log_k 209.6028 - -delta_H -1328.56 kJ/mol # Calculated enthalpy of reaction Th -# Enthalpy of formation: 0 kJ/mol - -analytic -2.8256e+001 -1.1963e-002 6.8870e+004 4.2068e+000 1.0747e+003 -# -Range: 0-300 - -Th(NO3)4:5H2O - Th(NO3)4:5H2O = + 1.0000 Th++++ + 4.0000 NO3- + 5.0000 H2O - log_k 1.7789 - -delta_H -18.1066 kJ/mol # Calculated enthalpy of reaction Th(NO3)4:5H2O -# Enthalpy of formation: -3007.35 kJ/mol - -analytic -1.2480e+002 -2.0405e-002 5.1601e+003 4.6613e+001 8.7669e+001 -# -Range: 0-200 - -Th(OH)4 - Th(OH)4 +4.0000 H+ = + 1.0000 Th++++ + 4.0000 H2O - log_k 9.6543 - -delta_H -140.336 kJ/mol # Calculated enthalpy of reaction Th(OH)4 -# Enthalpy of formation: -423.527 kcal/mol - -analytic -1.4031e+002 -9.2493e-003 1.2345e+004 4.4990e+001 2.0968e+002 -# -Range: 0-200 - -Th(SO4)2 - Th(SO4)2 = + 1.0000 Th++++ + 2.0000 SO4-- - log_k -20.3006 - -delta_H -46.1064 kJ/mol # Calculated enthalpy of reaction Th(SO4)2 -# Enthalpy of formation: -2542.12 kJ/mol - -analytic -8.4525e+000 -3.5442e-002 0.0000e+000 0.0000e+000 -1.1540e+005 -# -Range: 0-200 - -Th2S3 - Th2S3 +5.0000 H+ +0.5000 O2 = + 1.0000 H2O + 2.0000 Th++++ + 3.0000 HS- - log_k 95.2290 - -delta_H -783.243 kJ/mol # Calculated enthalpy of reaction Th2S3 -# Enthalpy of formation: -1082.89 kJ/mol - -analytic -3.2969e+002 -1.1090e-001 4.6877e+004 1.2152e+002 7.3157e+002 -# -Range: 0-300 - -Th2Se3 - Th2Se3 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 2.0000 Th++++ + 3.0000 Se-- - log_k 59.1655 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th2Se3 -# Enthalpy of formation: -224 kcal/mol - -analytic -1.0083e+001 6.0240e-003 3.4039e+004 -1.8884e+001 5.7804e+002 -# -Range: 0-200 - -Th7S12 - Th7S12 +16.0000 H+ +1.0000 O2 = + 2.0000 H2O + 7.0000 Th++++ + 12.0000 HS- - log_k 204.0740 - -delta_H -1999.4 kJ/mol # Calculated enthalpy of reaction Th7S12 -# Enthalpy of formation: -4136.58 kJ/mol - -analytic -2.1309e+002 -1.4149e-001 9.8550e+004 5.2042e+001 1.6736e+003 -# -Range: 0-200 - -ThBr4 - ThBr4 = + 1.0000 Th++++ + 4.0000 Br- - log_k 34.0803 - -delta_H -290.23 kJ/mol # Calculated enthalpy of reaction ThBr4 -# Enthalpy of formation: -964.803 kJ/mol - -analytic 2.9902e+001 -3.3109e-002 1.0988e+004 -9.2209e+000 1.8657e+002 -# -Range: 0-200 - -ThCl4 - ThCl4 = + 1.0000 Th++++ + 4.0000 Cl- - log_k 23.8491 - -delta_H -251.094 kJ/mol # Calculated enthalpy of reaction ThCl4 -# Enthalpy of formation: -283.519 kcal/mol - -analytic -5.9340e+000 -4.1640e-002 9.8623e+003 3.6804e+000 1.6748e+002 -# -Range: 0-200 - -ThF4 - ThF4 = + 1.0000 Th++++ + 4.0000 F- - log_k -29.9946 - -delta_H -12.6733 kJ/mol # Calculated enthalpy of reaction ThF4 -# Enthalpy of formation: -501.371 kcal/mol - -analytic -4.2622e+002 -1.4222e-001 9.4201e+003 1.6446e+002 1.4712e+002 -# -Range: 0-300 - -ThF4:2.5H2O - ThF4:2.5H2O = + 1.0000 Th++++ + 2.5000 H2O + 4.0000 F- - log_k -31.8568 - -delta_H 22.6696 kJ/mol # Calculated enthalpy of reaction ThF4:2.5H2O -# Enthalpy of formation: -2847.68 kJ/mol - -analytic -1.1284e+002 -4.5422e-002 -2.5781e+002 3.8547e+001 -4.3396e+000 -# -Range: 0-200 - -ThI4 - ThI4 = + 1.0000 Th++++ + 4.0000 I- - log_k 45.1997 - -delta_H -332.818 kJ/mol # Calculated enthalpy of reaction ThI4 -# Enthalpy of formation: -663.811 kJ/mol - -analytic 1.4224e+000 -4.0379e-002 1.4193e+004 3.3137e+000 2.4102e+002 -# -Range: 0-200 - -ThS - ThS +3.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 HS- + 1.0000 Th++++ - log_k 96.0395 - -delta_H -669.906 kJ/mol # Calculated enthalpy of reaction ThS -# Enthalpy of formation: -394.993 kJ/mol - -analytic -1.3919e+001 -1.2372e-002 3.3883e+004 0.0000e+000 0.0000e+000 -# -Range: 0-200 - -ThS2 - ThS2 +2.0000 H+ = + 1.0000 Th++++ + 2.0000 HS- - log_k 10.7872 - -delta_H -175.369 kJ/mol # Calculated enthalpy of reaction ThS2 -# Enthalpy of formation: -625.867 kJ/mol - -analytic -3.7691e+001 -2.3714e-002 8.4673e+003 1.0970e+001 1.4380e+002 -# -Range: 0-200 - -Thenardite - Na2SO4 = + 1.0000 SO4-- + 2.0000 Na+ - log_k -0.3091 - -delta_H -2.33394 kJ/mol # Calculated enthalpy of reaction Thenardite -# Enthalpy of formation: -1387.87 kJ/mol - -analytic -2.1202e+002 -7.1613e-002 5.1083e+003 8.7244e+001 7.9773e+001 -# -Range: 0-300 - -Thermonatrite - Na2CO3:H2O +1.0000 H+ = + 1.0000 H2O + 1.0000 HCO3- + 2.0000 Na+ - log_k 10.9623 - -delta_H -27.5869 kJ/mol # Calculated enthalpy of reaction Thermonatrite -# Enthalpy of formation: -1428.78 kJ/mol - -analytic -1.4030e+002 -3.5263e-002 5.7840e+003 5.7528e+001 9.0295e+001 -# -Range: 0-300 - -Thorianite - ThO2 +4.0000 H+ = + 1.0000 Th++++ + 2.0000 H2O - log_k 1.8624 - -delta_H -114.296 kJ/mol # Calculated enthalpy of reaction Thorianite -# Enthalpy of formation: -1226.4 kJ/mol - -analytic -1.4249e+001 -2.4645e-003 4.3110e+003 -1.6605e-002 2.1598e+005 -# -Range: 0-300 - -Ti - Ti +2.0000 H2O +1.0000 O2 = + 1.0000 Ti(OH)4 - log_k 149.2978 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti -# Enthalpy of formation: 0 kJ/mol - -Ti2O3 - Ti2O3 +4.0000 H2O +0.5000 O2 = + 2.0000 Ti(OH)4 - log_k 42.9866 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti2O3 -# Enthalpy of formation: -1520.78 kJ/mol - -Ti3O5 - Ti3O5 +6.0000 H2O +0.5000 O2 = + 3.0000 Ti(OH)4 - log_k 34.6557 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti3O5 -# Enthalpy of formation: -2459.24 kJ/mol - -TiB2 - TiB2 +5.0000 H2O +2.5000 O2 = + 1.0000 Ti(OH)4 + 2.0000 B(OH)3 - log_k 312.4194 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiB2 -# Enthalpy of formation: -323.883 kJ/mol - -TiBr3 - TiBr3 +3.5000 H2O +0.2500 O2 = + 1.0000 Ti(OH)4 + 3.0000 Br- + 3.0000 H+ - log_k 47.7190 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr3 -# Enthalpy of formation: -548.378 kJ/mol - -TiBr4 - TiBr4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 Br- + 4.0000 H+ - log_k 32.9379 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr4 -# Enthalpy of formation: -616.822 kJ/mol - -TiC - TiC +3.0000 H2O +2.0000 O2 = + 1.0000 H+ + 1.0000 HCO3- + 1.0000 Ti(OH)4 - log_k 181.8139 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiC -# Enthalpy of formation: -184.346 kJ/mol - -TiCl2 - TiCl2 +3.0000 H2O +0.5000 O2 = + 1.0000 Ti(OH)4 + 2.0000 Cl- + 2.0000 H+ - log_k 70.9386 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl2 -# Enthalpy of formation: -514.012 kJ/mol - -TiCl3 - TiCl3 +3.5000 H2O +0.2500 O2 = + 1.0000 Ti(OH)4 + 3.0000 Cl- + 3.0000 H+ - log_k 39.3099 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl3 -# Enthalpy of formation: -720.775 kJ/mol - -TiF4(am) - TiF4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 F- + 4.0000 H+ - log_k -12.4409 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiF4(am) -# Enthalpy of formation: -1649.44 kJ/mol - -TiI4 - TiI4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 H+ + 4.0000 I- - log_k 34.5968 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiI4 -# Enthalpy of formation: -375.555 kJ/mol - -TiN - TiN +3.5000 H2O +0.2500 O2 = + 1.0000 NH3 + 1.0000 Ti(OH)4 - log_k 35.2344 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiN -# Enthalpy of formation: -338.304 kJ/mol - -TiO(alpha) - TiO +2.0000 H2O +0.5000 O2 = + 1.0000 Ti(OH)4 - log_k 61.1282 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiO(alpha) -# Enthalpy of formation: -519.835 kJ/mol - -Tiemannite - HgSe = + 1.0000 Hg++ + 1.0000 Se-- - log_k -58.2188 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tiemannite -# Enthalpy of formation: -10.4 kcal/mol - -analytic -5.7618e+001 -1.3891e-002 -1.3223e+004 1.9351e+001 -2.0632e+002 -# -Range: 0-300 - -Titanite - CaTiSiO5 +2.0000 H+ +1.0000 H2O = + 1.0000 Ca++ + 1.0000 SiO2 + 1.0000 Ti(OH)4 - log_k 719.5839 - -delta_H 0 # Not possible to calculate enthalpy of reaction Titanite -# Enthalpy of formation: 0 kcal/mol - -Tl - Tl +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Tl+ - log_k 27.1743 - -delta_H -134.53 kJ/mol # Calculated enthalpy of reaction Tl -# Enthalpy of formation: 0 kJ/mol - -analytic -3.7066e+001 -7.8341e-003 9.4594e+003 1.4896e+001 -1.7904e+005 -# -Range: 0-300 - -Tm - Tm +3.0000 H+ +0.7500 O2 = + 1.0000 Tm+++ + 1.5000 H2O - log_k 181.7102 - -delta_H -1124.66 kJ/mol # Calculated enthalpy of reaction Tm -# Enthalpy of formation: 0 kJ/mol - -analytic -6.7440e+001 -2.8476e-002 5.9332e+004 2.3715e+001 -5.9611e+003 -# -Range: 0-300 - -Tm(OH)3 - Tm(OH)3 +3.0000 H+ = + 1.0000 Tm+++ + 3.0000 H2O - log_k 14.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Tm(OH)3(am) - Tm(OH)3 +3.0000 H+ = + 1.0000 Tm+++ + 3.0000 H2O - log_k 17.2852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -Tm2(CO3)3 - Tm2(CO3)3 +3.0000 H+ = + 2.0000 Tm+++ + 3.0000 HCO3- - log_k -2.4136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm2(CO3)3 -# Enthalpy of formation: 0 kcal/mol - -Tm2O3 - Tm2O3 +6.0000 H+ = + 2.0000 Tm+++ + 3.0000 H2O - log_k 44.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm2O3 -# Enthalpy of formation: 0 kcal/mol - -TmF3:.5H2O - TmF3:.5H2O = + 0.5000 H2O + 1.0000 Tm+++ + 3.0000 F- - log_k -16.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction TmF3:.5H2O -# Enthalpy of formation: 0 kcal/mol - -TmPO4:10H2O - TmPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Tm+++ + 10.0000 H2O - log_k -11.8782 - -delta_H 0 # Not possible to calculate enthalpy of reaction TmPO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -Tobermorite-11A - Ca5Si6H11O22.5 +10.0000 H+ = + 5.0000 Ca++ + 6.0000 SiO2 + 10.5000 H2O - log_k 65.6121 - -delta_H -286.861 kJ/mol # Calculated enthalpy of reaction Tobermorite-11A -# Enthalpy of formation: -2556.42 kcal/mol - -analytic 7.9123e+001 3.9150e-002 2.9429e+004 -3.9191e+001 -2.4122e+006 -# -Range: 0-300 - -Tobermorite-14A - Ca5Si6H21O27.5 +10.0000 H+ = + 5.0000 Ca++ + 6.0000 SiO2 + 15.5000 H2O - log_k 63.8445 - -delta_H -230.959 kJ/mol # Calculated enthalpy of reaction Tobermorite-14A -# Enthalpy of formation: -2911.36 kcal/mol - -analytic -2.0789e+002 5.2472e-003 3.9698e+004 6.7797e+001 -2.7532e+006 -# -Range: 0-300 - -Tobermorite-9A - Ca5Si6H6O20 +10.0000 H+ = + 5.0000 Ca++ + 6.0000 SiO2 + 8.0000 H2O - log_k 69.0798 - -delta_H -329.557 kJ/mol # Calculated enthalpy of reaction Tobermorite-9A -# Enthalpy of formation: -2375.42 kcal/mol - -analytic -6.3384e+001 1.1722e-002 3.8954e+004 1.2268e+001 -2.8681e+006 -# -Range: 0-300 - -Todorokite - Mn7O12:3H2O +16.0000 H+ = + 1.0000 MnO4-- + 6.0000 Mn+++ + 11.0000 H2O - log_k -45.8241 - -delta_H 0 # Not possible to calculate enthalpy of reaction Todorokite -# Enthalpy of formation: 0 kcal/mol - -Torbernite - Cu(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Cu++ + 2.0000 HPO4-- + 2.0000 UO2++ - log_k -20.3225 - -delta_H -97.4022 kJ/mol # Calculated enthalpy of reaction Torbernite -# Enthalpy of formation: -1065.74 kcal/mol - -analytic -6.7128e+001 -4.5878e-002 3.5071e+003 1.9682e+001 5.9579e+001 -# -Range: 0-200 - -Tremolite - Ca2Mg5Si8O22(OH)2 +14.0000 H+ = + 2.0000 Ca++ + 5.0000 Mg++ + 8.0000 H2O + 8.0000 SiO2 - log_k 61.2367 - -delta_H -406.404 kJ/mol # Calculated enthalpy of reaction Tremolite -# Enthalpy of formation: -2944.04 kcal/mol - -analytic 8.5291e+001 4.6337e-002 3.9465e+004 -5.4414e+001 -3.1913e+006 -# -Range: 0-300 - -Trevorite - NiFe2O4 +8.0000 H+ = + 1.0000 Ni++ + 2.0000 Fe+++ + 4.0000 H2O - log_k 9.7876 - -delta_H -215.338 kJ/mol # Calculated enthalpy of reaction Trevorite -# Enthalpy of formation: -1081.15 kJ/mol - -analytic -1.4322e+002 -2.9429e-002 1.4518e+004 4.5698e+001 2.4658e+002 -# -Range: 0-200 - -Tridymite - SiO2 = + 1.0000 SiO2 - log_k -3.8278 - -delta_H 31.3664 kJ/mol # Calculated enthalpy of reaction Tridymite -# Enthalpy of formation: -909.065 kJ/mol - -analytic 3.1594e+002 6.9315e-002 -1.1358e+004 -1.2219e+002 -1.9299e+002 -# -Range: 0-200 - -Troilite - FeS +1.0000 H+ = + 1.0000 Fe++ + 1.0000 HS- - log_k -3.8184 - -delta_H -7.3296 kJ/mol # Calculated enthalpy of reaction Troilite -# Enthalpy of formation: -101.036 kJ/mol - -analytic -1.6146e+002 -5.3170e-002 4.0461e+003 6.4620e+001 6.3183e+001 -# -Range: 0-300 - -Trona-K - K2NaH(CO3)2:2H2O +1.0000 H+ = + 1.0000 Na+ + 2.0000 H2O + 2.0000 HCO3- + 2.0000 K+ - log_k 11.5891 - -delta_H 0 # Not possible to calculate enthalpy of reaction Trona-K -# Enthalpy of formation: 0 kcal/mol - -Tsumebite - Pb2Cu(PO4)(OH)3:3H2O +4.0000 H+ = + 1.0000 Cu++ + 1.0000 HPO4-- + 2.0000 Pb++ + 6.0000 H2O - log_k 2.5318 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tsumebite -# Enthalpy of formation: 0 kcal/mol - -Tyuyamunite - Ca(UO2)2(VO4)2 = + 1.0000 Ca++ + 2.0000 UO2++ + 2.0000 VO4--- - log_k -53.3757 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tyuyamunite -# Enthalpy of formation: -1164.52 kcal/mol - -U - U +2.0000 H+ +1.5000 O2 = + 1.0000 H2O + 1.0000 UO2++ - log_k 212.7800 - -delta_H -1286.64 kJ/mol # Calculated enthalpy of reaction U -# Enthalpy of formation: 0 kJ/mol - -analytic -2.4912e+002 -4.7104e-002 8.1115e+004 8.7008e+001 -1.0158e+006 -# -Range: 0-300 - -U(CO3)2 - U(CO3)2 +2.0000 H+ = + 1.0000 U++++ + 2.0000 HCO3- - log_k 7.5227 - -delta_H -170.691 kJ/mol # Calculated enthalpy of reaction U(CO3)2 -# Enthalpy of formation: -1800.38 kJ/mol - -analytic -8.5952e+001 -2.5086e-002 1.0177e+004 2.7002e+001 1.7285e+002 -# -Range: 0-200 - -U(HPO4)2:4H2O - U(HPO4)2:4H2O = + 1.0000 U++++ + 2.0000 HPO4-- + 4.0000 H2O - log_k -32.8650 - -delta_H 16.1008 kJ/mol # Calculated enthalpy of reaction U(HPO4)2:4H2O -# Enthalpy of formation: -4334.82 kJ/mol - -analytic -3.8694e+002 -1.3874e-001 6.4882e+003 1.5099e+002 1.0136e+002 -# -Range: 0-300 - -U(OH)2SO4 - U(OH)2SO4 +2.0000 H+ = + 1.0000 SO4-- + 1.0000 U++++ + 2.0000 H2O - log_k -3.0731 - -delta_H 0 # Not possible to calculate enthalpy of reaction U(OH)2SO4 -# Enthalpy of formation: 0 kcal/mol - -U(SO3)2 - U(SO3)2 = + 1.0000 U++++ + 2.0000 SO3-- - log_k -36.7499 - -delta_H 20.7008 kJ/mol # Calculated enthalpy of reaction U(SO3)2 -# Enthalpy of formation: -1883 kJ/mol - -analytic 5.8113e+001 -2.9981e-002 -7.0503e+003 -2.5175e+001 -1.1974e+002 -# -Range: 0-200 - -U(SO4)2 - U(SO4)2 = + 1.0000 U++++ + 2.0000 SO4-- - log_k -11.5178 - -delta_H -100.803 kJ/mol # Calculated enthalpy of reaction U(SO4)2 -# Enthalpy of formation: -2309.6 kJ/mol - -analytic 3.2215e+001 -2.8662e-002 7.1066e+002 -1.5190e+001 1.2057e+001 -# -Range: 0-200 - -U(SO4)2:4H2O - U(SO4)2:4H2O = + 1.0000 U++++ + 2.0000 SO4-- + 4.0000 H2O - log_k -11.5287 - -delta_H -70.5565 kJ/mol # Calculated enthalpy of reaction U(SO4)2:4H2O -# Enthalpy of formation: -3483.2 kJ/mol - -analytic -6.9548e+001 -2.9094e-002 3.8763e+003 2.1692e+001 6.5849e+001 -# -Range: 0-200 - -U(SO4)2:8H2O - U(SO4)2:8H2O = + 1.0000 U++++ + 2.0000 SO4-- + 8.0000 H2O - log_k -12.5558 - -delta_H -34.5098 kJ/mol # Calculated enthalpy of reaction U(SO4)2:8H2O -# Enthalpy of formation: -4662.6 kJ/mol - -analytic -1.7141e+002 -2.9548e-002 6.7423e+003 5.8614e+001 1.1455e+002 -# -Range: 0-200 - -U2C3 - U2C3 +4.5000 O2 +3.0000 H+ = + 2.0000 U+++ + 3.0000 HCO3- - log_k 455.3078 - -delta_H -2810.1 kJ/mol # Calculated enthalpy of reaction U2C3 -# Enthalpy of formation: -183.3 kJ/mol - -analytic -3.8340e+002 -1.5374e-001 1.5922e+005 1.4643e+002 -1.0584e+006 -# -Range: 0-300 - -U2F9 - U2F9 +2.0000 H2O = + 1.0000 U++++ + 1.0000 UO2+ + 4.0000 H+ + 9.0000 F- - log_k -45.5022 - -delta_H -46.8557 kJ/mol # Calculated enthalpy of reaction U2F9 -# Enthalpy of formation: -4015.92 kJ/mol - -analytic -8.8191e+002 -3.0477e-001 2.0493e+004 3.4690e+002 3.2003e+002 -# -Range: 0-300 - -U2O2Cl5 - U2O2Cl5 = + 1.0000 U++++ + 1.0000 UO2+ + 5.0000 Cl- - log_k 19.2752 - -delta_H -254.325 kJ/mol # Calculated enthalpy of reaction U2O2Cl5 -# Enthalpy of formation: -2197.4 kJ/mol - -analytic -4.3945e+002 -1.6239e-001 2.1694e+004 1.7551e+002 3.3865e+002 -# -Range: 0-300 - -U2O3F6 - U2O3F6 +1.0000 H2O = + 2.0000 H+ + 2.0000 UO2++ + 6.0000 F- - log_k -2.5066 - -delta_H -185.047 kJ/mol # Calculated enthalpy of reaction U2O3F6 -# Enthalpy of formation: -3579.2 kJ/mol - -analytic -3.2332e+001 -5.9519e-002 5.7857e+003 1.1372e+001 9.8260e+001 -# -Range: 0-200 - -U2S3 - U2S3 +3.0000 H+ = + 2.0000 U+++ + 3.0000 HS- - log_k 6.5279 - -delta_H -147.525 kJ/mol # Calculated enthalpy of reaction U2S3 -# Enthalpy of formation: -879 kJ/mol - -analytic -3.0494e+002 -1.0983e-001 1.3647e+004 1.2059e+002 2.1304e+002 -# -Range: 0-300 - -U2Se3 - U2Se3 +4.5000 O2 = + 2.0000 U+++ + 3.0000 SeO3-- - log_k 248.0372 - -delta_H -1740.18 kJ/mol # Calculated enthalpy of reaction U2Se3 -# Enthalpy of formation: -711 kJ/mol - -analytic 4.9999e+002 -1.6488e-002 6.4991e+004 -1.8795e+002 1.1035e+003 -# -Range: 0-200 - -U3As4 - U3As4 +5.2500 O2 +5.0000 H+ +1.5000 H2O = + 3.0000 U+++ + 4.0000 H2AsO3- - log_k 487.6802 - -delta_H -3114.02 kJ/mol # Calculated enthalpy of reaction U3As4 -# Enthalpy of formation: -720 kJ/mol - -analytic -9.0215e+002 -2.5804e-001 1.9974e+005 3.3331e+002 -2.4911e+006 -# -Range: 0-300 - -U3O5F8 - U3O5F8 +1.0000 H2O = + 2.0000 H+ + 3.0000 UO2++ + 8.0000 F- - log_k -2.7436 - -delta_H -260.992 kJ/mol # Calculated enthalpy of reaction U3O5F8 -# Enthalpy of formation: -5192.95 kJ/mol - -analytic -7.7653e+002 -2.7294e-001 2.9180e+004 3.0599e+002 4.5556e+002 -# -Range: 0-300 - -U3P4 - U3P4 +7.2500 O2 +1.5000 H2O +1.0000 H+ = + 3.0000 U+++ + 4.0000 HPO4-- - log_k 827.5586 - -delta_H -5275.9 kJ/mol # Calculated enthalpy of reaction U3P4 -# Enthalpy of formation: -843 kJ/mol - -analytic -2.7243e+003 -6.2927e-001 4.0130e+005 1.0021e+003 -7.6720e+006 -# -Range: 0-300 - -U3S5 - U3S5 +5.0000 H+ = + 1.0000 U++++ + 2.0000 U+++ + 5.0000 HS- - log_k -0.3680 - -delta_H -218.942 kJ/mol # Calculated enthalpy of reaction U3S5 -# Enthalpy of formation: -1431 kJ/mol - -analytic -1.1011e+002 -6.7959e-002 1.0369e+004 3.8481e+001 1.7611e+002 -# -Range: 0-200 - -U3Sb4 - U3Sb4 +9.0000 H+ +5.2500 O2 +1.5000 H2O = + 3.0000 U+++ + 4.0000 Sb(OH)3 - log_k 575.0349 - -delta_H -3618.1 kJ/mol # Calculated enthalpy of reaction U3Sb4 -# Enthalpy of formation: -451.9 kJ/mol - -U3Se4 - U3Se4 +6.2500 O2 +1.0000 H+ = + 0.5000 H2O + 3.0000 U+++ + 4.0000 SeO3-- - log_k 375.2823 - -delta_H -2588.16 kJ/mol # Calculated enthalpy of reaction U3Se4 -# Enthalpy of formation: -983 kJ/mol - -analytic 6.7219e+002 -2.2708e-002 1.0025e+005 -2.5317e+002 1.7021e+003 -# -Range: 0-200 - -U3Se5 - U3Se5 +7.2500 O2 +0.5000 H2O = + 1.0000 H+ + 3.0000 U+++ + 5.0000 SeO3-- - log_k 376.5747 - -delta_H -2652.38 kJ/mol # Calculated enthalpy of reaction U3Se5 -# Enthalpy of formation: -1130 kJ/mol - -analytic 8.3306e+002 -2.6526e-002 9.5737e+004 -3.1109e+002 1.6255e+003 -# -Range: 0-200 - -U4F17 - U4F17 +2.0000 H2O = + 1.0000 UO2+ + 3.0000 U++++ + 4.0000 H+ + 17.0000 F- - log_k -104.7657 - -delta_H -78.2955 kJ/mol # Calculated enthalpy of reaction U4F17 -# Enthalpy of formation: -7849.66 kJ/mol - -analytic -1.7466e+003 -5.9186e-001 4.0017e+004 6.8046e+002 6.2494e+002 -# -Range: 0-300 - -U5O12Cl - U5O12Cl +4.0000 H+ = + 1.0000 Cl- + 2.0000 H2O + 5.0000 UO2+ - log_k -18.7797 - -delta_H -9.99133 kJ/mol # Calculated enthalpy of reaction U5O12Cl -# Enthalpy of formation: -5854.4 kJ/mol - -analytic -7.3802e+001 2.9180e-002 4.6804e+003 1.2371e+001 7.9503e+001 -# -Range: 0-200 - -UAs - UAs +2.0000 H+ +1.5000 O2 = + 1.0000 H2AsO3- + 1.0000 U+++ - log_k 149.0053 - -delta_H -951.394 kJ/mol # Calculated enthalpy of reaction UAs -# Enthalpy of formation: -234.3 kJ/mol - -analytic -5.0217e+001 -4.2992e-002 4.8480e+004 1.9964e+001 7.5650e+002 -# -Range: 0-300 - -UAs2 - UAs2 +2.2500 O2 +1.5000 H2O +1.0000 H+ = + 1.0000 U+++ + 2.0000 H2AsO3- - log_k 189.1058 - -delta_H -1210.63 kJ/mol # Calculated enthalpy of reaction UAs2 -# Enthalpy of formation: -252 kJ/mol - -analytic -8.7361e+001 -7.5252e-002 6.1445e+004 3.7485e+001 9.5881e+002 -# -Range: 0-300 - -UBr2Cl - UBr2Cl = + 1.0000 Cl- + 1.0000 U+++ + 2.0000 Br- - log_k 17.7796 - -delta_H -148.586 kJ/mol # Calculated enthalpy of reaction UBr2Cl -# Enthalpy of formation: -750.6 kJ/mol - -analytic 3.0364e+000 -3.2187e-002 5.2314e+003 2.7418e+000 8.8836e+001 -# -Range: 0-200 - -UBr2Cl2 - UBr2Cl2 = + 1.0000 U++++ + 2.0000 Br- + 2.0000 Cl- - log_k 26.2185 - -delta_H -260.466 kJ/mol # Calculated enthalpy of reaction UBr2Cl2 -# Enthalpy of formation: -907.9 kJ/mol - -analytic 3.8089e+000 -3.8781e-002 1.0125e+004 0.0000e+000 0.0000e+000 -# -Range: 0-200 - -UBr3 - UBr3 = + 1.0000 U+++ + 3.0000 Br- - log_k 20.2249 - -delta_H -154.91 kJ/mol # Calculated enthalpy of reaction UBr3 -# Enthalpy of formation: -698.7 kJ/mol - -analytic -2.4366e+002 -9.8651e-002 1.2538e+004 1.0151e+002 1.9572e+002 -# -Range: 0-300 - -UBr3Cl - UBr3Cl = + 1.0000 Cl- + 1.0000 U++++ + 3.0000 Br- - log_k 29.1178 - -delta_H -270.49 kJ/mol # Calculated enthalpy of reaction UBr3Cl -# Enthalpy of formation: -852.3 kJ/mol - -analytic 1.1204e+001 -3.7109e-002 1.0473e+004 -2.4905e+000 1.7784e+002 -# -Range: 0-200 - -UBr4 - UBr4 = + 1.0000 U++++ + 4.0000 Br- - log_k 31.2904 - -delta_H -275.113 kJ/mol # Calculated enthalpy of reaction UBr4 -# Enthalpy of formation: -802.1 kJ/mol - -analytic -3.3800e+002 -1.2940e-001 2.0674e+004 1.3678e+002 3.2270e+002 -# -Range: 0-300 - -UBr5 - UBr5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 Br- - log_k 41.6312 - -delta_H -250.567 kJ/mol # Calculated enthalpy of reaction UBr5 -# Enthalpy of formation: -810.4 kJ/mol - -analytic -3.2773e+002 -1.4356e-001 1.8709e+004 1.4117e+002 2.9204e+002 -# -Range: 0-300 - -UBrCl2 - UBrCl2 = + 1.0000 Br- + 1.0000 U+++ + 2.0000 Cl- - log_k 14.5048 - -delta_H -132.663 kJ/mol # Calculated enthalpy of reaction UBrCl2 -# Enthalpy of formation: -812.1 kJ/mol - -analytic -5.3713e+000 -3.4256e-002 4.6251e+003 5.8875e+000 7.8542e+001 -# -Range: 0-200 - -UBrCl3 - UBrCl3 = + 1.0000 Br- + 1.0000 U++++ + 3.0000 Cl- - log_k 23.5258 - -delta_H -246.642 kJ/mol # Calculated enthalpy of reaction UBrCl3 -# Enthalpy of formation: -967.3 kJ/mol - -analytic -5.6867e+000 -4.1166e-002 9.6664e+003 3.6579e+000 1.6415e+002 -# -Range: 0-200 - -UC - UC +2.0000 H+ +1.7500 O2 = + 0.5000 H2O + 1.0000 HCO3- + 1.0000 U+++ - log_k 194.8241 - -delta_H -1202.82 kJ/mol # Calculated enthalpy of reaction UC -# Enthalpy of formation: -97.9 kJ/mol - -analytic -4.6329e+001 -4.4600e-002 6.1417e+004 1.9566e+001 9.5836e+002 -# -Range: 0-300 - -UC1.94(alpha) - UC1.94 +2.6900 O2 +1.0600 H+ +0.4400 H2O = + 1.0000 U+++ + 1.9400 HCO3- - log_k 257.1619 - -delta_H -1583.84 kJ/mol # Calculated enthalpy of reaction UC1.94(alpha) -# Enthalpy of formation: -85.324 kJ/mol - -analytic -5.8194e+002 -1.4610e-001 1.0917e+005 2.1638e+002 -1.6852e+006 -# -Range: 0-300 - -UCl2F2 - UCl2F2 = + 1.0000 U++++ + 2.0000 Cl- + 2.0000 F- - log_k -3.5085 - -delta_H -130.055 kJ/mol # Calculated enthalpy of reaction UCl2F2 -# Enthalpy of formation: -1466 kJ/mol - -analytic -3.9662e+002 -1.3879e-001 1.4710e+004 1.5562e+002 2.2965e+002 -# -Range: 0-300 - -UCl2I2 - UCl2I2 = + 1.0000 U++++ + 2.0000 Cl- + 2.0000 I- - log_k 30.2962 - -delta_H -270.364 kJ/mol # Calculated enthalpy of reaction UCl2I2 -# Enthalpy of formation: -768.8 kJ/mol - -analytic -1.2922e+001 -4.3178e-002 1.1219e+004 7.4562e+000 1.9052e+002 -# -Range: 0-200 - -UCl3 - UCl3 = + 1.0000 U+++ + 3.0000 Cl- - log_k 13.0062 - -delta_H -126.639 kJ/mol # Calculated enthalpy of reaction UCl3 -# Enthalpy of formation: -863.7 kJ/mol - -analytic -2.6388e+002 -1.0241e-001 1.1629e+004 1.0846e+002 1.8155e+002 -# -Range: 0-300 - -UCl3F - UCl3F = + 1.0000 F- + 1.0000 U++++ + 3.0000 Cl- - log_k 10.3200 - -delta_H -184.787 kJ/mol # Calculated enthalpy of reaction UCl3F -# Enthalpy of formation: -1243 kJ/mol - -analytic -3.7971e+002 -1.3681e-001 1.7127e+004 1.5086e+002 2.6736e+002 -# -Range: 0-300 - -UCl3I - UCl3I = + 1.0000 I- + 1.0000 U++++ + 3.0000 Cl- - log_k 25.5388 - -delta_H -251.041 kJ/mol # Calculated enthalpy of reaction UCl3I -# Enthalpy of formation: -898.3 kJ/mol - -analytic -1.3362e+001 -4.3214e-002 1.0167e+004 7.1426e+000 1.7265e+002 -# -Range: 0-200 - -UCl4 - UCl4 = + 1.0000 U++++ + 4.0000 Cl- - log_k 21.9769 - -delta_H -240.719 kJ/mol # Calculated enthalpy of reaction UCl4 -# Enthalpy of formation: -1018.8 kJ/mol - -analytic -3.6881e+002 -1.3618e-001 1.9685e+004 1.4763e+002 3.0727e+002 -# -Range: 0-300 - -UCl5 - UCl5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 Cl- - log_k 37.3147 - -delta_H -249.849 kJ/mol # Calculated enthalpy of reaction UCl5 -# Enthalpy of formation: -1039 kJ/mol - -analytic -3.6392e+002 -1.5133e-001 1.9617e+004 1.5376e+002 3.0622e+002 -# -Range: 0-300 - -UCl6 - UCl6 +2.0000 H2O = + 1.0000 UO2++ + 4.0000 H+ + 6.0000 Cl- - log_k 57.5888 - -delta_H -383.301 kJ/mol # Calculated enthalpy of reaction UCl6 -# Enthalpy of formation: -1066.5 kJ/mol - -analytic -4.5589e+002 -1.9203e-001 2.8029e+004 1.9262e+002 4.3750e+002 -# -Range: 0-300 - -UClF3 - UClF3 = + 1.0000 Cl- + 1.0000 U++++ + 3.0000 F- - log_k -17.5122 - -delta_H -74.3225 kJ/mol # Calculated enthalpy of reaction UClF3 -# Enthalpy of formation: -1690 kJ/mol - -analytic -4.1346e+002 -1.4077e-001 1.2237e+004 1.6036e+002 1.9107e+002 -# -Range: 0-300 - -UClI3 - UClI3 = + 1.0000 Cl- + 1.0000 U++++ + 3.0000 I- - log_k 35.2367 - -delta_H -285.187 kJ/mol # Calculated enthalpy of reaction UClI3 -# Enthalpy of formation: -643.8 kJ/mol - -analytic -1.1799e+001 -4.3208e-002 1.2045e+004 7.8829e+000 2.0455e+002 -# -Range: 0-200 - -UF3 - UF3 = + 1.0000 U+++ + 3.0000 F- - log_k -19.4125 - -delta_H 6.2572 kJ/mol # Calculated enthalpy of reaction UF3 -# Enthalpy of formation: -1501.4 kJ/mol - -analytic -3.1530e+002 -1.0945e-001 6.1335e+003 1.2443e+002 9.5799e+001 -# -Range: 0-300 - -UF4 - UF4 = + 1.0000 U++++ + 4.0000 F- - log_k -29.2004 - -delta_H -18.3904 kJ/mol # Calculated enthalpy of reaction UF4 -# Enthalpy of formation: -1914.2 kJ/mol - -analytic -4.2411e+002 -1.4147e-001 9.6621e+003 1.6352e+002 1.5089e+002 -# -Range: 0-300 - -UF4:2.5H2O - UF4:2.5H2O = + 1.0000 U++++ + 2.5000 H2O + 4.0000 F- - log_k -33.3685 - -delta_H 24.2888 kJ/mol # Calculated enthalpy of reaction UF4:2.5H2O -# Enthalpy of formation: -2671.47 kJ/mol - -analytic -4.4218e+002 -1.4305e-001 8.2922e+003 1.7118e+002 1.2952e+002 -# -Range: 0-300 - -UF5(alpha) - UF5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 F- - log_k -12.8376 - -delta_H -54.8883 kJ/mol # Calculated enthalpy of reaction UF5(alpha) -# Enthalpy of formation: -2075.3 kJ/mol - -analytic -4.5126e+002 -1.6121e-001 1.1997e+004 1.8030e+002 1.8733e+002 -# -Range: 0-300 - -UF5(beta) - UF5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 F- - log_k -13.1718 - -delta_H -46.9883 kJ/mol # Calculated enthalpy of reaction UF5(beta) -# Enthalpy of formation: -2083.2 kJ/mol - -analytic -4.5020e+002 -1.6121e-001 1.1584e+004 1.8030e+002 1.8089e+002 -# -Range: 0-300 - -UF6 - UF6 +2.0000 H2O = + 1.0000 UO2++ + 4.0000 H+ + 6.0000 F- - log_k 17.4292 - -delta_H -261.709 kJ/mol # Calculated enthalpy of reaction UF6 -# Enthalpy of formation: -2197.7 kJ/mol - -analytic -5.8427e+002 -2.1223e-001 2.5296e+004 2.3440e+002 3.9489e+002 -# -Range: 0-300 - -UH3(beta) - UH3 +3.0000 H+ +1.5000 O2 = + 1.0000 U+++ + 3.0000 H2O - log_k 199.7683 - -delta_H -1201.43 kJ/mol # Calculated enthalpy of reaction UH3(beta) -# Enthalpy of formation: -126.98 kJ/mol - -analytic 5.2870e+001 4.2151e-003 6.0167e+004 -2.2701e+001 1.0217e+003 -# -Range: 0-200 - -UI3 - UI3 = + 1.0000 U+++ + 3.0000 I- - log_k 29.0157 - -delta_H -192.407 kJ/mol # Calculated enthalpy of reaction UI3 -# Enthalpy of formation: -467.4 kJ/mol - -analytic -2.4505e+002 -9.9867e-002 1.4579e+004 1.0301e+002 2.2757e+002 -# -Range: 0-300 - -UI4 - UI4 = + 1.0000 U++++ + 4.0000 I- - log_k 39.3102 - -delta_H -300.01 kJ/mol # Calculated enthalpy of reaction UI4 -# Enthalpy of formation: -518.8 kJ/mol - -analytic -3.4618e+002 -1.3227e-001 2.2320e+004 1.4145e+002 3.4839e+002 -# -Range: 0-300 - -UN - UN +3.0000 H+ = + 1.0000 NH3 + 1.0000 U+++ - log_k 41.7130 - -delta_H -280.437 kJ/mol # Calculated enthalpy of reaction UN -# Enthalpy of formation: -290 kJ/mol - -analytic -1.6393e+002 -1.1679e-003 2.8845e+003 6.5637e+001 3.0122e+006 -# -Range: 0-300 - -UN1.59(alpha) - UN1.59 +1.8850 H2O +1.0000 H+ +0.0575 O2 = + 1.0000 UO2+ + 1.5900 NH3 - log_k 38.3930 - -delta_H -235.75 kJ/mol # Calculated enthalpy of reaction UN1.59(alpha) -# Enthalpy of formation: -379.2 kJ/mol - -analytic 1.8304e+001 1.1109e-002 1.2064e+004 -9.5741e+000 2.0485e+002 -# -Range: 0-200 - -UN1.73(alpha) - UN1.73 +2.0950 H2O +1.0000 H+ = + 0.0475 O2 + 1.0000 UO2+ + 1.7300 NH3 - log_k 27.2932 - -delta_H -169.085 kJ/mol # Calculated enthalpy of reaction UN1.73(alpha) -# Enthalpy of formation: -398.5 kJ/mol - -analytic 1.0012e+001 1.0398e-002 8.9348e+003 -6.3817e+000 1.5172e+002 -# -Range: 0-200 - -UO2(AsO3)2 - UO2(AsO3)2 +2.0000 H2O = + 1.0000 UO2++ + 2.0000 H2AsO4- - log_k 6.9377 - -delta_H -109.843 kJ/mol # Calculated enthalpy of reaction UO2(AsO3)2 -# Enthalpy of formation: -2156.6 kJ/mol - -analytic -1.6050e+002 -6.6472e-002 8.2129e+003 6.4533e+001 1.2820e+002 -# -Range: 0-300 - -UO2(IO3)2 - UO2(IO3)2 = + 1.0000 UO2++ + 2.0000 IO3- - log_k -7.2871 - -delta_H -0.3862 kJ/mol # Calculated enthalpy of reaction UO2(IO3)2 -# Enthalpy of formation: -1461.28 kJ/mol - -analytic -2.7047e+001 -1.4267e-002 -1.5055e+001 9.7226e+000 -2.4640e-001 -# -Range: 0-200 - -UO2(NO3)2 - UO2(NO3)2 = + 1.0000 UO2++ + 2.0000 NO3- - log_k 11.9598 - -delta_H -81.6219 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2 -# Enthalpy of formation: -1351 kJ/mol - -analytic -1.2216e+001 -1.1261e-002 3.9895e+003 5.7166e+000 6.7751e+001 -# -Range: 0-200 - -UO2(NO3)2:2H2O - UO2(NO3)2:2H2O = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 NO3- - log_k 4.9446 - -delta_H -25.5995 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:2H2O -# Enthalpy of formation: -1978.7 kJ/mol - -analytic -1.3989e+002 -5.2130e-002 4.3758e+003 5.8868e+001 6.8322e+001 -# -Range: 0-300 - -UO2(NO3)2:3H2O - UO2(NO3)2:3H2O = + 1.0000 UO2++ + 2.0000 NO3- + 3.0000 H2O - log_k 3.7161 - -delta_H -9.73686 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:3H2O -# Enthalpy of formation: -2280.4 kJ/mol - -analytic -1.5037e+002 -5.2234e-002 4.0783e+003 6.3024e+001 6.3682e+001 -# -Range: 0-300 - -UO2(NO3)2:6H2O - UO2(NO3)2:6H2O = + 1.0000 UO2++ + 2.0000 NO3- + 6.0000 H2O - log_k 2.3189 - -delta_H 19.8482 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:6H2O -# Enthalpy of formation: -3167.5 kJ/mol - -analytic -1.4019e+002 -4.3682e-002 2.7842e+003 5.9070e+001 4.3486e+001 -# -Range: 0-300 - -UO2(NO3)2:H2O - UO2(NO3)2:H2O = + 1.0000 H2O + 1.0000 UO2++ + 2.0000 NO3- - log_k 8.5103 - -delta_H -54.4602 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:H2O -# Enthalpy of formation: -1664 kJ/mol - -analytic -3.7575e+001 -1.1342e-002 3.7548e+003 1.4899e+001 6.3776e+001 -# -Range: 0-200 - -UO2(OH)2(beta) - UO2(OH)2 +2.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O - log_k 4.9457 - -delta_H -56.8767 kJ/mol # Calculated enthalpy of reaction UO2(OH)2(beta) -# Enthalpy of formation: -1533.8 kJ/mol - -analytic -1.7478e+001 -1.6806e-003 3.4226e+003 4.6260e+000 5.3412e+001 -# -Range: 0-300 - -UO2(PO3)2 - UO2(PO3)2 +2.0000 H2O = + 1.0000 UO2++ + 2.0000 H+ + 2.0000 HPO4-- - log_k -16.2805 - -delta_H -58.4873 kJ/mol # Calculated enthalpy of reaction UO2(PO3)2 -# Enthalpy of formation: -2973 kJ/mol - -analytic -3.2995e+002 -1.3747e-001 8.0652e+003 1.3237e+002 1.2595e+002 -# -Range: 0-300 - -UO2(am) - UO2 +4.0000 H+ = + 1.0000 U++++ + 2.0000 H2O - log_k 0.1091 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(am) -# Enthalpy of formation: 0 kcal/mol - -UO2.25 - UO2.25 +2.5000 H+ = + 0.5000 U++++ + 0.5000 UO2+ + 1.2500 H2O - log_k -4.8193 - -delta_H -37.1614 kJ/mol # Calculated enthalpy of reaction UO2.25 -# Enthalpy of formation: -1128.3 kJ/mol - -analytic -1.9073e+002 -4.1793e-002 7.3391e+003 7.0213e+001 1.1457e+002 -# -Range: 0-300 - -UO2.25(beta) - UO2.25 +2.5000 H+ = + 0.5000 U++++ + 0.5000 UO2+ + 1.2500 H2O - log_k -4.7593 - -delta_H -38.0614 kJ/mol # Calculated enthalpy of reaction UO2.25(beta) -# Enthalpy of formation: -1127.4 kJ/mol - -analytic -3.6654e+001 -2.4013e-003 2.9632e+003 9.1625e+000 4.6249e+001 -# -Range: 0-300 - -UO2.3333(beta) -# UO2.3333 +8.0000 H+ = + 0.3333 O2 + 2.0000 U++++ + 4.0000 H2O - (UO2.3333)2 + 8.0000 H+ = 0.3333 O2 + 2.0000 U++++ + 4.0000 H2O - log_k -27.7177 - -delta_H -1187.8 kJ/mol # Calculated enthalpy of reaction UO2.3333(beta) -# Enthalpy of formation: -1142 kJ/mol - -analytic -7.4790e+000 -6.8382e-004 -2.7277e+003 -7.2107e+000 6.1873e+005 -# -Range: 0-300 - -UO2.6667 -# UO2.6667 +8.0000 H+ = + 0.6667 O2 + 2.0000 U++++ + 4.0000 H2O - (UO2.6667)2 +8.0000 H+ = + 0.6667 O2 + 2.0000 U++++ + 4.0000 H2O - log_k -43.6051 - -delta_H -1142.24 kJ/mol # Calculated enthalpy of reaction UO2.6667 -# Enthalpy of formation: -1191.6 kJ/mol - -analytic 1.2095e+002 2.0118e-002 -1.4968e+004 -5.3552e+001 1.0813e+006 -# -Range: 0-300 - -UO2Br2 - UO2Br2 = + 1.0000 UO2++ + 2.0000 Br- - log_k 16.5103 - -delta_H -124.607 kJ/mol # Calculated enthalpy of reaction UO2Br2 -# Enthalpy of formation: -1137.4 kJ/mol - -analytic -1.4876e+002 -6.2715e-002 9.0200e+003 6.2108e+001 1.4079e+002 -# -Range: 0-300 - -UO2Br2:3H2O - UO2Br2:3H2O = + 1.0000 UO2++ + 2.0000 Br- + 3.0000 H2O - log_k 9.4113 - -delta_H -61.5217 kJ/mol # Calculated enthalpy of reaction UO2Br2:3H2O -# Enthalpy of formation: -2058 kJ/mol - -analytic -6.8507e+001 -1.6834e-002 5.1409e+003 2.6546e+001 8.7324e+001 -# -Range: 0-200 - -UO2Br2:H2O - UO2Br2:H2O = + 1.0000 H2O + 1.0000 UO2++ + 2.0000 Br- - log_k 12.1233 - -delta_H -91.945 kJ/mol # Calculated enthalpy of reaction UO2Br2:H2O -# Enthalpy of formation: -1455.9 kJ/mol - -analytic -1.7519e+001 -1.6603e-002 4.3544e+003 8.0748e+000 7.3950e+001 -# -Range: 0-200 - -UO2BrOH:2H2O - UO2BrOH:2H2O +1.0000 H+ = + 1.0000 Br- + 1.0000 UO2++ + 3.0000 H2O - log_k 4.2026 - -delta_H -39.8183 kJ/mol # Calculated enthalpy of reaction UO2BrOH:2H2O -# Enthalpy of formation: -1958.2 kJ/mol - -analytic -8.3411e+001 -1.0024e-002 5.0411e+003 2.9781e+001 8.5633e+001 -# -Range: 0-200 - -UO2CO3 - UO2CO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 UO2++ - log_k -4.1267 - -delta_H -19.2872 kJ/mol # Calculated enthalpy of reaction UO2CO3 -# Enthalpy of formation: -1689.65 kJ/mol - -analytic -4.4869e+001 -1.1541e-002 1.9475e+003 1.5215e+001 3.3086e+001 -# -Range: 0-200 - -UO2Cl - UO2Cl = + 1.0000 Cl- + 1.0000 UO2+ - log_k -0.5154 - -delta_H -21.1067 kJ/mol # Calculated enthalpy of reaction UO2Cl -# Enthalpy of formation: -1171.1 kJ/mol - -analytic -7.3291e+001 -2.5940e-002 2.5753e+003 2.9038e+001 4.0207e+001 -# -Range: 0-300 - -UO2Cl2 - UO2Cl2 = + 1.0000 UO2++ + 2.0000 Cl- - log_k 12.1394 - -delta_H -109.559 kJ/mol # Calculated enthalpy of reaction UO2Cl2 -# Enthalpy of formation: -1243.6 kJ/mol - -analytic -1.6569e+002 -6.6249e-002 8.6920e+003 6.8055e+001 1.3568e+002 -# -Range: 0-300 - -UO2Cl2:3H2O - UO2Cl2:3H2O = + 1.0000 UO2++ + 2.0000 Cl- + 3.0000 H2O - log_k 5.6163 - -delta_H -45.8743 kJ/mol # Calculated enthalpy of reaction UO2Cl2:3H2O -# Enthalpy of formation: -2164.8 kJ/mol - -analytic -8.4932e+001 -2.0867e-002 4.7594e+003 3.2654e+001 8.0850e+001 -# -Range: 0-200 - -UO2Cl2:H2O - UO2Cl2:H2O = + 1.0000 H2O + 1.0000 UO2++ + 2.0000 Cl- - log_k 8.2880 - -delta_H -79.1977 kJ/mol # Calculated enthalpy of reaction UO2Cl2:H2O -# Enthalpy of formation: -1559.8 kJ/mol - -analytic -3.4458e+001 -2.0630e-002 4.1231e+003 1.4170e+001 7.0029e+001 -# -Range: 0-200 - -UO2ClOH:2H2O - UO2ClOH:2H2O +1.0000 H+ = + 1.0000 Cl- + 1.0000 UO2++ + 3.0000 H2O - log_k 2.3064 - -delta_H -33.1947 kJ/mol # Calculated enthalpy of reaction UO2ClOH:2H2O -# Enthalpy of formation: -2010.4 kJ/mol - -analytic -9.1834e+001 -1.2041e-002 4.9131e+003 3.2835e+001 8.3462e+001 -# -Range: 0-200 - -UO2F2 - UO2F2 = + 1.0000 UO2++ + 2.0000 F- - log_k -7.2302 - -delta_H -36.1952 kJ/mol # Calculated enthalpy of reaction UO2F2 -# Enthalpy of formation: -1653.5 kJ/mol - -analytic -2.0303e+002 -7.1028e-002 5.9356e+003 7.9627e+001 9.2679e+001 -# -Range: 0-300 - -UO2F2:3H2O - UO2F2:3H2O = + 1.0000 UO2++ + 2.0000 F- + 3.0000 H2O - log_k -7.3692 - -delta_H -12.8202 kJ/mol # Calculated enthalpy of reaction UO2F2:3H2O -# Enthalpy of formation: -2534.39 kJ/mol - -analytic -1.0286e+002 -2.1223e-002 3.4855e+003 3.6420e+001 5.9224e+001 -# -Range: 0-200 - -UO2FOH - UO2FOH +1.0000 H+ = + 1.0000 F- + 1.0000 H2O + 1.0000 UO2++ - log_k -1.8426 - -delta_H -41.7099 kJ/mol # Calculated enthalpy of reaction UO2FOH -# Enthalpy of formation: -1598.48 kJ/mol - -analytic -4.9229e+001 -1.1984e-002 3.2086e+003 1.6244e+001 5.4503e+001 -# -Range: 0-200 - -UO2FOH:2H2O - UO2FOH:2H2O +1.0000 H+ = + 1.0000 F- + 1.0000 UO2++ + 3.0000 H2O - log_k -2.6606 - -delta_H -21.8536 kJ/mol # Calculated enthalpy of reaction UO2FOH:2H2O -# Enthalpy of formation: -2190.01 kJ/mol - -analytic -1.0011e+002 -1.2203e-002 4.5446e+003 3.4690e+001 7.7208e+001 -# -Range: 0-200 - -UO2FOH:H2O - UO2FOH:H2O +1.0000 H+ = + 1.0000 F- + 1.0000 UO2++ + 2.0000 H2O - log_k -2.2838 - -delta_H -31.5243 kJ/mol # Calculated enthalpy of reaction UO2FOH:H2O -# Enthalpy of formation: -1894.5 kJ/mol - -analytic -7.4628e+001 -1.2086e-002 3.8625e+003 2.5456e+001 6.5615e+001 -# -Range: 0-200 - -UO2HPO4 - UO2HPO4 = + 1.0000 HPO4-- + 1.0000 UO2++ - log_k -12.6782 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2HPO4 -# Enthalpy of formation: 0 kcal/mol - -UO2HPO4:4H2O - UO2HPO4:4H2O = + 1.0000 HPO4-- + 1.0000 UO2++ + 4.0000 H2O - log_k -13.0231 - -delta_H 15.5327 kJ/mol # Calculated enthalpy of reaction UO2HPO4:4H2O -# Enthalpy of formation: -3469.97 kJ/mol - -analytic -1.1784e+002 -1.9418e-002 2.7547e+003 4.0963e+001 4.6818e+001 -# -Range: 0-200 - -UO2SO3 - UO2SO3 = + 1.0000 SO3-- + 1.0000 UO2++ - log_k -15.9812 - -delta_H 6.4504 kJ/mol # Calculated enthalpy of reaction UO2SO3 -# Enthalpy of formation: -1661 kJ/mol - -analytic 2.5751e+001 -1.3871e-002 -3.0305e+003 -1.1090e+001 -5.1470e+001 -# -Range: 0-200 - -UO2SO4 - UO2SO4 = + 1.0000 SO4-- + 1.0000 UO2++ - log_k 1.9681 - -delta_H -83.4616 kJ/mol # Calculated enthalpy of reaction UO2SO4 -# Enthalpy of formation: -1845.14 kJ/mol - -analytic -1.5677e+002 -6.5310e-002 6.7411e+003 6.2867e+001 1.0523e+002 -# -Range: 0-300 - -UO2SO4:2.5H2O - UO2SO4:2.5H2O = + 1.0000 SO4-- + 1.0000 UO2++ + 2.5000 H2O - log_k -1.4912 - -delta_H -36.1984 kJ/mol # Calculated enthalpy of reaction UO2SO4:2.5H2O -# Enthalpy of formation: -2607 kJ/mol - -analytic -4.8908e+001 -1.3445e-002 2.8658e+003 1.6894e+001 4.8683e+001 -# -Range: 0-200 - -UO2SO4:3.5H2O - UO2SO4:3.5H2O = + 1.0000 SO4-- + 1.0000 UO2++ + 3.5000 H2O - log_k -1.4805 - -delta_H -27.4367 kJ/mol # Calculated enthalpy of reaction UO2SO4:3.5H2O -# Enthalpy of formation: -2901.6 kJ/mol - -analytic -7.4180e+001 -1.3565e-002 3.5963e+003 2.6136e+001 6.1096e+001 -# -Range: 0-200 - -UO2SO4:3H2O - UO2SO4:3H2O = + 1.0000 SO4-- + 1.0000 UO2++ + 3.0000 H2O - log_k -1.4028 - -delta_H -34.6176 kJ/mol # Calculated enthalpy of reaction UO2SO4:3H2O -# Enthalpy of formation: -2751.5 kJ/mol - -analytic -5.0134e+001 -1.0321e-002 3.0505e+003 1.6799e+001 5.1818e+001 -# -Range: 0-200 - -UO2SO4:H2O - UO2SO4:H2O = + 1.0000 H2O + 1.0000 SO4-- + 1.0000 UO2++ - log_k -6.0233 - -delta_H -39.1783 kJ/mol # Calculated enthalpy of reaction UO2SO4:H2O -# Enthalpy of formation: -519.9 kcal/mol - -analytic -1.8879e+002 -6.9827e-002 5.5636e+003 7.4717e+001 8.6870e+001 -# -Range: 0-300 - -UO3(alpha) - UO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 UO2++ - log_k 8.6391 - -delta_H -87.3383 kJ/mol # Calculated enthalpy of reaction UO3(alpha) -# Enthalpy of formation: -1217.5 kJ/mol - -analytic -1.4099e+001 -1.9063e-003 4.7742e+003 2.9478e+000 7.4501e+001 -# -Range: 0-300 - -UO3(beta) - UO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 UO2++ - log_k 8.3095 - -delta_H -84.5383 kJ/mol # Calculated enthalpy of reaction UO3(beta) -# Enthalpy of formation: -1220.3 kJ/mol - -analytic -1.2298e+001 -1.7800e-003 4.5621e+003 2.3593e+000 7.1191e+001 -# -Range: 0-300 - -UO3(gamma) - UO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 UO2++ - log_k 7.7073 - -delta_H -81.0383 kJ/mol # Calculated enthalpy of reaction UO3(gamma) -# Enthalpy of formation: -1223.8 kJ/mol - -analytic -1.1573e+001 -2.3560e-003 4.3124e+003 2.2305e+000 6.7294e+001 -# -Range: 0-300 - -UO3:.9H2O(alpha) - UO3:.9H2O +2.0000 H+ = + 1.0000 UO2++ + 1.9000 H2O - log_k 5.0167 - -delta_H -55.7928 kJ/mol # Calculated enthalpy of reaction UO3:.9H2O(alpha) -# Enthalpy of formation: -1506.3 kJ/mol - -analytic -6.9286e+001 -3.0624e-003 5.5984e+003 2.2809e+001 9.5092e+001 -# -Range: 0-200 - -UO3:2H2O - UO3:2H2O +2.0000 H+ = + 1.0000 UO2++ + 3.0000 H2O - log_k 4.8333 - -delta_H -50.415 kJ/mol # Calculated enthalpy of reaction UO3:2H2O -# Enthalpy of formation: -1826.1 kJ/mol - -analytic -5.9530e+001 -9.8107e-003 4.4975e+003 2.1098e+001 7.0196e+001 -# -Range: 0-300 - -UOBr2 - UOBr2 +2.0000 H+ = + 1.0000 H2O + 1.0000 U++++ + 2.0000 Br- - log_k 7.9722 - -delta_H -146.445 kJ/mol # Calculated enthalpy of reaction UOBr2 -# Enthalpy of formation: -973.6 kJ/mol - -analytic -2.0747e+002 -7.0500e-002 1.1746e+004 7.9629e+001 1.8334e+002 -# -Range: 0-300 - -UOBr3 - UOBr3 +1.0000 H2O = + 1.0000 UO2+ + 2.0000 H+ + 3.0000 Br- - log_k 23.5651 - -delta_H -149.799 kJ/mol # Calculated enthalpy of reaction UOBr3 -# Enthalpy of formation: -954 kJ/mol - -analytic -2.0001e+002 -8.4632e-002 1.1381e+004 8.5102e+001 1.7765e+002 -# -Range: 0-300 - -UOCl - UOCl +2.0000 H+ = + 1.0000 Cl- + 1.0000 H2O + 1.0000 U+++ - log_k 10.3872 - -delta_H -108.118 kJ/mol # Calculated enthalpy of reaction UOCl -# Enthalpy of formation: -833.9 kJ/mol - -analytic -1.1989e+002 -4.0791e-002 8.0834e+003 4.6600e+001 1.2617e+002 -# -Range: 0-300 - -UOCl2 - UOCl2 +2.0000 H+ = + 1.0000 H2O + 1.0000 U++++ + 2.0000 Cl- - log_k 5.4559 - -delta_H -141.898 kJ/mol # Calculated enthalpy of reaction UOCl2 -# Enthalpy of formation: -1069.3 kJ/mol - -analytic -2.2096e+002 -7.3329e-002 1.1858e+004 8.4250e+001 1.8509e+002 -# -Range: 0-300 - -UOCl3 - UOCl3 +1.0000 H2O = + 1.0000 UO2+ + 2.0000 H+ + 3.0000 Cl- - log_k 12.6370 - -delta_H -100.528 kJ/mol # Calculated enthalpy of reaction UOCl3 -# Enthalpy of formation: -1140 kJ/mol - -analytic -2.1934e+002 -8.8639e-002 9.3198e+003 9.1775e+001 1.4549e+002 -# -Range: 0-300 - -UOF2 - UOF2 +2.0000 H+ = + 1.0000 H2O + 1.0000 U++++ + 2.0000 F- - log_k -18.1473 - -delta_H -43.1335 kJ/mol # Calculated enthalpy of reaction UOF2 -# Enthalpy of formation: -1504.6 kJ/mol - -analytic -6.9471e+001 -2.6188e-002 2.5576e+003 2.0428e+001 4.3454e+001 -# -Range: 0-200 - -UOF2:H2O - UOF2:H2O +2.0000 H+ = + 1.0000 U++++ + 2.0000 F- + 2.0000 H2O - log_k -18.7019 - -delta_H -31.5719 kJ/mol # Calculated enthalpy of reaction UOF2:H2O -# Enthalpy of formation: -1802 kJ/mol - -analytic -9.5010e+001 -2.6355e-002 3.1474e+003 2.9746e+001 5.3480e+001 -# -Range: 0-200 - -UOF4 - UOF4 +1.0000 H2O = + 1.0000 UO2++ + 2.0000 H+ + 4.0000 F- - log_k 4.5737 - -delta_H -149.952 kJ/mol # Calculated enthalpy of reaction UOF4 -# Enthalpy of formation: -1924.6 kJ/mol - -analytic -5.9731e+000 -3.8581e-002 4.6903e+003 2.5464e+000 7.9649e+001 -# -Range: 0-200 - -UOFOH - UOFOH +3.0000 H+ = + 1.0000 F- + 1.0000 U++++ + 2.0000 H2O - log_k -8.9274 - -delta_H -71.5243 kJ/mol # Calculated enthalpy of reaction UOFOH -# Enthalpy of formation: -1426.7 kJ/mol - -analytic -9.2412e+001 -1.7293e-002 5.8150e+003 2.7940e+001 9.8779e+001 -# -Range: 0-200 - -UOFOH:.5H2O - UOFOH:.5H2O +1.0000 H+ +0.5000 O2 = + 1.0000 F- + 1.0000 UO2++ + 1.5000 H2O - log_k 24.5669 - -delta_H -200.938 kJ/mol # Calculated enthalpy of reaction UOFOH:.5H2O -# Enthalpy of formation: -1576.1 kJ/mol - -analytic -1.1024e+001 -7.7180e-003 1.0019e+004 1.7305e+000 1.7014e+002 -# -Range: 0-200 - -UP - UP +2.0000 O2 +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 U+++ - log_k 233.4928 - -delta_H -1487.11 kJ/mol # Calculated enthalpy of reaction UP -# Enthalpy of formation: -269.8 kJ/mol - -analytic -2.1649e+002 -9.0873e-002 8.3804e+004 8.1649e+001 -5.4044e+005 -# -Range: 0-300 - -UP2 - UP2 +3.2500 O2 +1.5000 H2O = + 1.0000 H+ + 1.0000 U+++ + 2.0000 HPO4-- - log_k 360.5796 - -delta_H -2301.07 kJ/mol # Calculated enthalpy of reaction UP2 -# Enthalpy of formation: -304 kJ/mol - -analytic -2.4721e+002 -1.5005e-001 1.2243e+005 9.9521e+001 -3.9706e+005 -# -Range: 0-300 - -UP2O7 - UP2O7 +1.0000 H2O = + 1.0000 U++++ + 2.0000 HPO4-- - log_k -32.9922 - -delta_H -37.5256 kJ/mol # Calculated enthalpy of reaction UP2O7 -# Enthalpy of formation: -2852 kJ/mol - -analytic -3.5910e+002 -1.3819e-001 7.6509e+003 1.3804e+002 1.1949e+002 -# -Range: 0-300 - -UP2O7:20H2O - UP2O7:20H2O = + 1.0000 U++++ + 2.0000 HPO4-- + 19.0000 H2O - log_k -28.6300 - -delta_H 0 # Not possible to calculate enthalpy of reaction UP2O7:20H2O -# Enthalpy of formation: 0 kcal/mol - -UPO5 - UPO5 +1.0000 H2O = + 1.0000 H+ + 1.0000 HPO4-- + 1.0000 UO2+ - log_k -19.5754 - -delta_H 32.6294 kJ/mol # Calculated enthalpy of reaction UPO5 -# Enthalpy of formation: -2064 kJ/mol - -analytic -1.5316e+002 -6.0911e-002 7.3255e+002 6.0317e+001 1.1476e+001 -# -Range: 0-300 - -US - US +2.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 HS- + 1.0000 U+++ - log_k 46.6547 - -delta_H -322.894 kJ/mol # Calculated enthalpy of reaction US -# Enthalpy of formation: -322.2 kJ/mol - -analytic -1.0845e+002 -4.0538e-002 1.8749e+004 4.2147e+001 2.9259e+002 -# -Range: 0-300 - -US1.9 - US1.9 +1.9000 H+ = + 0.2000 U+++ + 0.8000 U++++ + 1.9000 HS- - log_k -2.2816 - -delta_H -91.486 kJ/mol # Calculated enthalpy of reaction US1.9 -# Enthalpy of formation: -509.9 kJ/mol - -analytic -2.0534e+002 -6.8390e-002 8.8888e+003 7.8243e+001 1.3876e+002 -# -Range: 0-300 - -US2 - US2 +2.0000 H+ = + 1.0000 U++++ + 2.0000 HS- - log_k -2.3324 - -delta_H -103.017 kJ/mol # Calculated enthalpy of reaction US2 -# Enthalpy of formation: -520.4 kJ/mol - -analytic -2.1819e+002 -7.1522e-002 9.7782e+003 8.2586e+001 1.5264e+002 -# -Range: 0-300 - -US3 - US3 +2.0000 H2O = + 1.0000 H+ + 1.0000 UO2++ + 3.0000 HS- - log_k -16.6370 - -delta_H 43.9515 kJ/mol # Calculated enthalpy of reaction US3 -# Enthalpy of formation: -539.6 kJ/mol - -analytic -2.3635e+002 -9.5877e-002 1.9170e+003 9.7726e+001 2.9982e+001 -# -Range: 0-300 - -USb - USb +3.0000 H+ +1.5000 O2 = + 1.0000 Sb(OH)3 + 1.0000 U+++ - log_k 176.0723 - -delta_H -1106.19 kJ/mol # Calculated enthalpy of reaction USb -# Enthalpy of formation: -138.5 kJ/mol - -USb2 - USb2 +3.0000 H+ +2.2500 O2 +1.5000 H2O = + 1.0000 U+++ + 2.0000 Sb(OH)3 - log_k 223.1358 - -delta_H -1407.02 kJ/mol # Calculated enthalpy of reaction USb2 -# Enthalpy of formation: -173.6 kJ/mol - -Uranium-selenide - 1.0USe +1.7500 O2 +1.0000 H+ = + 0.5000 H2O + 1.0000 SeO3-- + 1.0000 U+++ - log_k 125.6086 - -delta_H -844.278 kJ/mol # Calculated enthalpy of reaction Uranium-selenide -# Enthalpy of formation: -275.7 kJ/mol - -analytic -1.0853e+002 -7.6251e-002 4.3230e+004 4.5189e+001 6.7460e+002 -# -Range: 0-300 - -USe2(alpha) - USe2 +2.7500 O2 +0.5000 H2O = + 1.0000 H+ + 1.0000 U+++ + 2.0000 SeO3-- - log_k 125.4445 - -delta_H -904.199 kJ/mol # Calculated enthalpy of reaction USe2(alpha) -# Enthalpy of formation: -427 kJ/mol - -analytic -2.0454e+002 -1.4191e-001 4.6114e+004 8.7906e+001 7.1963e+002 -# -Range: 0-300 - -USe2(beta) - USe2 +2.7500 O2 +0.5000 H2O = + 1.0000 H+ + 1.0000 U+++ + 2.0000 SeO3-- - log_k 125.2868 - -delta_H -904.199 kJ/mol # Calculated enthalpy of reaction USe2(beta) -# Enthalpy of formation: -427 kJ/mol - -analytic -2.0334e+002 -1.4147e-001 4.6082e+004 8.7349e+001 7.1913e+002 -# -Range: 0-300 - -USe3 - USe3 +3.7500 O2 +1.5000 H2O = + 1.0000 U+++ + 3.0000 H+ + 3.0000 SeO3-- - log_k 147.2214 - -delta_H -1090.42 kJ/mol # Calculated enthalpy of reaction USe3 -# Enthalpy of formation: -452 kJ/mol - -analytic 4.9201e+002 -1.3720e-002 3.2168e+004 -1.8131e+002 5.4609e+002 -# -Range: 0-200 - -Umangite - Cu3Se2 = + 1.0000 Cu++ + 2.0000 Cu+ + 2.0000 Se-- - log_k -93.8412 - -delta_H 0 # Not possible to calculate enthalpy of reaction Umangite -# Enthalpy of formation: -25 kcal/mol - -analytic -7.2308e+001 -2.2566e-003 -2.0738e+004 1.9677e+001 -3.5214e+002 -# -Range: 0-200 - -Uraninite - UO2 +4.0000 H+ = + 1.0000 U++++ + 2.0000 H2O - log_k -4.8372 - -delta_H -77.8767 kJ/mol # Calculated enthalpy of reaction Uraninite -# Enthalpy of formation: -1085 kJ/mol - -analytic -7.5776e+001 -1.0558e-002 5.9677e+003 2.1853e+001 9.3142e+001 -# -Range: 0-300 - -Uranocircite - Ba(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Ba++ + 2.0000 HPO4-- + 2.0000 UO2++ - log_k -19.8057 - -delta_H -72.3317 kJ/mol # Calculated enthalpy of reaction Uranocircite -# Enthalpy of formation: -1215.94 kcal/mol - -analytic -3.6843e+001 -4.3076e-002 1.2427e+003 1.0384e+001 2.1115e+001 -# -Range: 0-200 - -Uranophane - Ca(UO2)2(SiO3)2(OH)2 +6.0000 H+ = + 1.0000 Ca++ + 2.0000 SiO2 + 2.0000 UO2++ + 4.0000 H2O - log_k 17.2850 - -delta_H 0 # Not possible to calculate enthalpy of reaction Uranophane -# Enthalpy of formation: 0 kcal/mol - -V - V +3.0000 H+ +0.7500 O2 = + 1.0000 V+++ + 1.5000 H2O - log_k 106.9435 - -delta_H -680.697 kJ/mol # Calculated enthalpy of reaction V -# Enthalpy of formation: 0 kJ/mol - -analytic -1.0508e+002 -2.1334e-002 4.0364e+004 3.5012e+001 -3.2290e+005 -# -Range: 0-300 - -V2O4 - V2O4 +4.0000 H+ = + 2.0000 H2O + 2.0000 VO++ - log_k 8.5719 - -delta_H -117.564 kJ/mol # Calculated enthalpy of reaction V2O4 -# Enthalpy of formation: -1427.31 kJ/mol - -analytic -1.4429e+002 -3.7423e-002 9.7046e+003 5.3125e+001 1.5147e+002 -# -Range: 0-300 - -V3O5 - V3O5 +8.0000 H+ = + 1.0000 VO++ + 2.0000 V+++ + 4.0000 H2O - log_k 13.4312 - -delta_H -218.857 kJ/mol # Calculated enthalpy of reaction V3O5 -# Enthalpy of formation: -1933.17 kJ/mol - -analytic -1.7652e+002 -2.1959e-002 1.6814e+004 5.6618e+001 2.8559e+002 -# -Range: 0-200 - -V4O7 - V4O7 +10.0000 H+ = + 2.0000 V+++ + 2.0000 VO++ + 5.0000 H2O - log_k 18.7946 - -delta_H -284.907 kJ/mol # Calculated enthalpy of reaction V4O7 -# Enthalpy of formation: -2639.56 kJ/mol - -analytic -2.2602e+002 -3.0261e-002 2.1667e+004 7.3214e+001 3.6800e+002 -# -Range: 0-200 - -Vaesite - NiS2 +1.0000 H2O = + 0.2500 H+ + 0.2500 SO4-- + 1.0000 Ni++ + 1.7500 HS- - log_k -26.7622 - -delta_H 110.443 kJ/mol # Calculated enthalpy of reaction Vaesite -# Enthalpy of formation: -32.067 kcal/mol - -analytic 1.6172e+001 -2.2673e-002 -8.2514e+003 -3.4392e+000 -1.4013e+002 -# -Range: 0-200 - -Vivianite - Fe3(PO4)2:8H2O +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Fe++ + 8.0000 H2O - log_k -4.7237 - -delta_H 0 # Not possible to calculate enthalpy of reaction Vivianite -# Enthalpy of formation: 0 kcal/mol - -W - W +1.5000 O2 +1.0000 H2O = + 1.0000 WO4-- + 2.0000 H+ - log_k 123.4334 - -delta_H -771.668 kJ/mol # Calculated enthalpy of reaction W -# Enthalpy of formation: 0 kJ/mol - -analytic -1.0433e+002 -6.9470e-002 4.0134e+004 4.5993e+001 6.2629e+002 -# -Range: 0-300 - -Wairakite - CaAl2Si4O10(OH)4 +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 4.0000 SiO2 + 6.0000 H2O - log_k 18.0762 - -delta_H -237.781 kJ/mol # Calculated enthalpy of reaction Wairakite -# Enthalpy of formation: -1579.33 kcal/mol - -analytic -1.7914e+001 3.2944e-003 2.2782e+004 -9.0981e+000 -1.6934e+006 -# -Range: 0-300 - -Weeksite - K2(UO2)2(Si2O5)3:4H2O +6.0000 H+ = + 2.0000 K+ + 2.0000 UO2++ + 6.0000 SiO2 + 7.0000 H2O - log_k 15.3750 - -delta_H 0 # Not possible to calculate enthalpy of reaction Weeksite -# Enthalpy of formation: 0 kcal/mol - -Whitlockite - Ca3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Ca++ - log_k -4.2249 - -delta_H -116.645 kJ/mol # Calculated enthalpy of reaction Whitlockite -# Enthalpy of formation: -4096.77 kJ/mol - -analytic -5.3543e+002 -1.8842e-001 1.7176e+004 2.1406e+002 2.6817e+002 -# -Range: 0-300 - -Wilkmanite - Ni3Se4 +1.0000 H2O = + 0.5000 O2 + 2.0000 H+ + 3.0000 Ni++ + 4.0000 Se-- - log_k -152.8793 - -delta_H 0 # Not possible to calculate enthalpy of reaction Wilkmanite -# Enthalpy of formation: -60.285 kcal/mol - -analytic -1.9769e+002 -4.9968e-002 -2.8208e+004 6.2863e+001 -1.1322e+005 -# -Range: 0-300 - -Witherite - BaCO3 +1.0000 H+ = + 1.0000 Ba++ + 1.0000 HCO3- - log_k -2.9965 - -delta_H 17.1628 kJ/mol # Calculated enthalpy of reaction Witherite -# Enthalpy of formation: -297.5 kcal/mol - -analytic -1.2585e+002 -4.4315e-002 2.0227e+003 5.2239e+001 3.1600e+001 -# -Range: 0-300 - -Wollastonite - CaSiO3 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O + 1.0000 SiO2 - log_k 13.7605 - -delta_H -76.5756 kJ/mol # Calculated enthalpy of reaction Wollastonite -# Enthalpy of formation: -389.59 kcal/mol - -analytic 3.0931e+001 6.7466e-003 5.1749e+003 -1.3209e+001 -3.4579e+005 -# -Range: 0-300 - -Wurtzite - ZnS +1.0000 H+ = + 1.0000 HS- + 1.0000 Zn++ - log_k -9.1406 - -delta_H 22.3426 kJ/mol # Calculated enthalpy of reaction Wurtzite -# Enthalpy of formation: -45.85 kcal/mol - -analytic -1.5446e+002 -4.8874e-002 2.4551e+003 6.1278e+001 3.8355e+001 -# -Range: 0-300 - -Wustite - Fe.947O +2.0000 H+ = + 0.1060 Fe+++ + 0.8410 Fe++ + 1.0000 H2O - log_k 12.4113 - -delta_H -102.417 kJ/mol # Calculated enthalpy of reaction Wustite -# Enthalpy of formation: -266.265 kJ/mol - -analytic -7.6919e+001 -1.8433e-002 7.3823e+003 2.8312e+001 1.1522e+002 -# -Range: 0-300 - -Xonotlite - Ca6Si6O17(OH)2 +12.0000 H+ = + 6.0000 Ca++ + 6.0000 SiO2 + 7.0000 H2O - log_k 91.8267 - -delta_H -495.457 kJ/mol # Calculated enthalpy of reaction Xonotlite -# Enthalpy of formation: -2397.25 kcal/mol - -analytic 1.6080e+003 3.7309e-001 -2.2548e+004 -6.2716e+002 -3.8346e+002 -# -Range: 0-200 - -Y - Y +3.0000 H+ +0.7500 O2 = + 1.0000 Y+++ + 1.5000 H2O - log_k 184.5689 - -delta_H -1134.7 kJ/mol # Calculated enthalpy of reaction Y -# Enthalpy of formation: 0 kJ/mol - -analytic -6.2641e+001 -2.8062e-002 5.9667e+004 2.2394e+001 9.3107e+002 -# -Range: 0-300 - -Yb - Yb +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Yb++ - log_k 137.1930 - -delta_H -810.303 kJ/mol # Calculated enthalpy of reaction Yb -# Enthalpy of formation: 0 kJ/mol - -analytic -7.4712e+001 -2.0993e-002 4.4129e+004 2.8341e+001 6.8862e+002 -# -Range: 0-300 - -Yb(OH)3 - Yb(OH)3 +3.0000 H+ = + 1.0000 Yb+++ + 3.0000 H2O - log_k 14.6852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)3 -# Enthalpy of formation: 0 kcal/mol - -Yb(OH)3(am) - Yb(OH)3 +3.0000 H+ = + 1.0000 Yb+++ + 3.0000 H2O - log_k 18.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)3(am) -# Enthalpy of formation: 0 kcal/mol - -Yb2(CO3)3 - Yb2(CO3)3 +3.0000 H+ = + 2.0000 Yb+++ + 3.0000 HCO3- - log_k -2.3136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb2(CO3)3 -# Enthalpy of formation: 0 kcal/mol - -Yb2O3 - Yb2O3 +6.0000 H+ = + 2.0000 Yb+++ + 3.0000 H2O - log_k 47.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb2O3 -# Enthalpy of formation: 0 kcal/mol - -YbF3:.5H2O - YbF3:.5H2O = + 0.5000 H2O + 1.0000 Yb+++ + 3.0000 F- - log_k -16.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YbF3:.5H2O -# Enthalpy of formation: 0 kcal/mol - -YbPO4:10H2O - YbPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Yb+++ + 10.0000 H2O - log_k -11.7782 - -delta_H 0 # Not possible to calculate enthalpy of reaction YbPO4:10H2O -# Enthalpy of formation: 0 kcal/mol - -Zincite - ZnO +2.0000 H+ = + 1.0000 H2O + 1.0000 Zn++ - log_k 11.2087 - -delta_H -88.7638 kJ/mol # Calculated enthalpy of reaction Zincite -# Enthalpy of formation: -350.46 kJ/mol - -analytic -8.6681e+001 -1.9324e-002 7.1034e+003 3.2256e+001 1.1087e+002 -# -Range: 0-300 - -Zircon - ZrSiO4 +2.0000 H+ = + 1.0000 SiO2 + 1.0000 Zr(OH)2++ - log_k -15.4193 - -delta_H 64.8635 kJ/mol # Calculated enthalpy of reaction Zircon -# Enthalpy of formation: -2033.4 kJ/mol - -analytic 9.2639e+000 6.5416e-003 5.0759e+002 -8.4547e+000 -6.6155e+005 -# -Range: 0-300 - -Zn - Zn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Zn++ - log_k 68.8035 - -delta_H -433.157 kJ/mol # Calculated enthalpy of reaction Zn -# Enthalpy of formation: 0 kJ/mol - -analytic -6.4131e+001 -2.0009e-002 2.3921e+004 2.3702e+001 3.7329e+002 -# -Range: 0-300 - -Zn(BO2)2 - Zn(BO2)2 +2.0000 H+ +2.0000 H2O = + 1.0000 Zn++ + 2.0000 B(OH)3 - log_k 8.3130 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(BO2)2 -# Enthalpy of formation: 0 kcal/mol - -Zn(ClO4)2:6H2O - Zn(ClO4)2:6H2O = + 1.0000 Zn++ + 2.0000 ClO4- + 6.0000 H2O - log_k 5.6474 - -delta_H 6.31871 kJ/mol # Calculated enthalpy of reaction Zn(ClO4)2:6H2O -# Enthalpy of formation: -2133.39 kJ/mol - -analytic -1.8191e+002 -9.1383e-003 7.4822e+003 6.6751e+001 1.2712e+002 -# -Range: 0-200 - -Zn(IO3)2 - Zn(IO3)2 = + 1.0000 Zn++ + 2.0000 IO3- - log_k -5.3193 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(IO3)2 -# Enthalpy of formation: 0 kcal/mol - -Zn(NO3)2:6H2O - Zn(NO3)2:6H2O = + 1.0000 Zn++ + 2.0000 NO3- + 6.0000 H2O - log_k 3.4102 - -delta_H 24.7577 kJ/mol # Calculated enthalpy of reaction Zn(NO3)2:6H2O -# Enthalpy of formation: -2306.8 kJ/mol - -analytic -1.7152e+002 -1.6875e-002 5.6291e+003 6.5094e+001 9.5649e+001 -# -Range: 0-200 - -Zn(OH)2(beta) - Zn(OH)2 +2.0000 H+ = + 1.0000 Zn++ + 2.0000 H2O - log_k 11.9341 - -delta_H -83.2111 kJ/mol # Calculated enthalpy of reaction Zn(OH)2(beta) -# Enthalpy of formation: -641.851 kJ/mol - -analytic -7.7810e+001 -7.8548e-003 7.1994e+003 2.7455e+001 1.2228e+002 -# -Range: 0-200 - -Zn(OH)2(epsilon) - Zn(OH)2 +2.0000 H+ = + 1.0000 Zn++ + 2.0000 H2O - log_k 11.6625 - -delta_H -81.7811 kJ/mol # Calculated enthalpy of reaction Zn(OH)2(epsilon) -# Enthalpy of formation: -643.281 kJ/mol - -analytic -7.7938e+001 -7.8767e-003 7.1282e+003 2.7496e+001 1.2107e+002 -# -Range: 0-200 - -Zn(OH)2(gamma) - Zn(OH)2 +2.0000 H+ = + 1.0000 Zn++ + 2.0000 H2O - log_k 11.8832 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)2(gamma) -# Enthalpy of formation: 0 kcal/mol - -Zn2(OH)3Cl - Zn2(OH)3Cl +3.0000 H+ = + 1.0000 Cl- + 2.0000 Zn++ + 3.0000 H2O - log_k 15.2921 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2(OH)3Cl -# Enthalpy of formation: 0 kcal/mol - -Zn2SO4(OH)2 - Zn2SO4(OH)2 +2.0000 H+ = + 1.0000 SO4-- + 2.0000 H2O + 2.0000 Zn++ - log_k 7.5816 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2SO4(OH)2 -# Enthalpy of formation: 0 kcal/mol - -Zn2SiO4 - Zn2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Zn++ - log_k 13.8695 - -delta_H -119.399 kJ/mol # Calculated enthalpy of reaction Zn2SiO4 -# Enthalpy of formation: -1636.75 kJ/mol - -analytic 2.0970e+002 5.3663e-002 -1.2724e+002 -8.5445e+001 -2.2336e+000 -# -Range: 0-200 - -Zn2TiO4 - Zn2TiO4 +4.0000 H+ = + 1.0000 Ti(OH)4 + 2.0000 Zn++ - log_k 12.3273 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2TiO4 -# Enthalpy of formation: -1647.85 kJ/mol - -Zn3(AsO4)2 - Zn3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Zn++ - log_k 9.3122 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn3(AsO4)2 -# Enthalpy of formation: 0 kcal/mol - -Zn3O(SO4)2 - Zn3O(SO4)2 +2.0000 H+ = + 1.0000 H2O + 2.0000 SO4-- + 3.0000 Zn++ - log_k 19.1188 - -delta_H -258.253 kJ/mol # Calculated enthalpy of reaction Zn3O(SO4)2 -# Enthalpy of formation: -2306.95 kJ/mol - -analytic -3.9661e+001 -4.3860e-002 1.1301e+004 1.3709e+001 1.9193e+002 -# -Range: 0-200 - -Zn5(NO3)2(OH)8 - Zn5(NO3)2(OH)8 +8.0000 H+ = + 2.0000 NO3- + 5.0000 Zn++ + 8.0000 H2O - log_k 42.6674 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn5(NO3)2(OH)8 -# Enthalpy of formation: 0 kcal/mol - -ZnBr2 - ZnBr2 = + 1.0000 Zn++ + 2.0000 Br- - log_k 7.5787 - -delta_H -67.7622 kJ/mol # Calculated enthalpy of reaction ZnBr2 -# Enthalpy of formation: -328.63 kJ/mol - -analytic 6.5789e-002 -2.1477e-002 1.9840e+003 2.9302e+000 3.3691e+001 -# -Range: 0-200 - -ZnBr2:2H2O - ZnBr2:2H2O = + 1.0000 Zn++ + 2.0000 Br- + 2.0000 H2O - log_k 5.2999 - -delta_H -30.9268 kJ/mol # Calculated enthalpy of reaction ZnBr2:2H2O -# Enthalpy of formation: -937.142 kJ/mol - -analytic -4.9260e+001 -2.1682e-002 2.4325e+003 2.1360e+001 4.1324e+001 -# -Range: 0-200 - -ZnCO3:H2O - ZnCO3:H2O +1.0000 H+ = + 1.0000 H2O + 1.0000 HCO3- + 1.0000 Zn++ - log_k 0.1398 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnCO3:H2O -# Enthalpy of formation: 0 kcal/mol - -ZnCl2 - ZnCl2 = + 1.0000 Zn++ + 2.0000 Cl- - log_k 7.0880 - -delta_H -72.4548 kJ/mol # Calculated enthalpy of reaction ZnCl2 -# Enthalpy of formation: -415.09 kJ/mol - -analytic -1.6157e+001 -2.5405e-002 2.6505e+003 8.8584e+000 4.5015e+001 -# -Range: 0-200 - -ZnCl2(NH3)2 - ZnCl2(NH3)2 = + 1.0000 Zn++ + 2.0000 Cl- + 2.0000 NH3 - log_k -6.9956 - -delta_H 27.2083 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)2 -# Enthalpy of formation: -677.427 kJ/mol - -analytic -5.9409e+001 -2.2698e-002 -2.9178e+002 2.4308e+001 -4.9341e+000 -# -Range: 0-200 - -ZnCl2(NH3)4 - ZnCl2(NH3)4 = + 1.0000 Zn++ + 2.0000 Cl- + 4.0000 NH3 - log_k -6.6955 - -delta_H 56.2004 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)4 -# Enthalpy of formation: -869.093 kJ/mol - -analytic -9.9769e+001 -1.9793e-002 4.2916e+002 3.9412e+001 7.3223e+000 -# -Range: 0-200 - -ZnCl2(NH3)6 - ZnCl2(NH3)6 = + 1.0000 Zn++ + 2.0000 Cl- + 6.0000 NH3 - log_k -4.7311 - -delta_H 77.4225 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)6 -# Enthalpy of formation: -1052.99 kJ/mol - -analytic -1.3984e+002 -1.6896e-002 1.5559e+003 5.4524e+001 2.6470e+001 -# -Range: 0-200 - -ZnCr2O4 - ZnCr2O4 +8.0000 H+ = + 1.0000 Zn++ + 2.0000 Cr+++ + 4.0000 H2O - log_k 7.9161 - -delta_H -221.953 kJ/mol # Calculated enthalpy of reaction ZnCr2O4 -# Enthalpy of formation: -370.88 kcal/mol - -analytic -1.7603e+002 -1.0217e-002 1.7414e+004 5.1966e+001 2.9577e+002 -# -Range: 0-200 - -ZnF2 - ZnF2 = + 1.0000 Zn++ + 2.0000 F- - log_k -0.4418 - -delta_H -59.8746 kJ/mol # Calculated enthalpy of reaction ZnF2 -# Enthalpy of formation: -764.206 kJ/mol - -analytic -2.6085e+002 -8.4594e-002 9.0240e+003 1.0318e+002 1.4089e+002 -# -Range: 0-300 - -ZnI2 - ZnI2 = + 1.0000 Zn++ + 2.0000 I- - log_k 7.3885 - -delta_H -59.2332 kJ/mol # Calculated enthalpy of reaction ZnI2 -# Enthalpy of formation: -207.957 kJ/mol - -analytic -1.6472e+001 -2.5573e-002 2.0796e+003 9.9013e+000 3.5320e+001 -# -Range: 0-200 - -ZnSO4 - ZnSO4 = + 1.0000 SO4-- + 1.0000 Zn++ - log_k 3.5452 - -delta_H -80.132 kJ/mol # Calculated enthalpy of reaction ZnSO4 -# Enthalpy of formation: -982.855 kJ/mol - -analytic 6.9905e+000 -1.8046e-002 2.2566e+003 -2.2819e+000 3.8318e+001 -# -Range: 0-200 - -ZnSO4:6H2O - ZnSO4:6H2O = + 1.0000 SO4-- + 1.0000 Zn++ + 6.0000 H2O - log_k -1.6846 - -delta_H -0.412008 kJ/mol # Calculated enthalpy of reaction ZnSO4:6H2O -# Enthalpy of formation: -2777.61 kJ/mol - -analytic -1.4506e+002 -1.8736e-002 5.2179e+003 5.3121e+001 8.8657e+001 -# -Range: 0-200 - -ZnSO4:7H2O - ZnSO4:7H2O = + 1.0000 SO4-- + 1.0000 Zn++ + 7.0000 H2O - log_k -1.8683 - -delta_H 14.0417 kJ/mol # Calculated enthalpy of reaction ZnSO4:7H2O -# Enthalpy of formation: -3077.9 kJ/mol - -analytic -1.6943e+002 -1.8833e-002 5.6484e+003 6.2326e+001 9.5975e+001 -# -Range: 0-200 - -ZnSO4:H2O - ZnSO4:H2O = + 1.0000 H2O + 1.0000 SO4-- + 1.0000 Zn++ - log_k -0.5383 - -delta_H -44.2824 kJ/mol # Calculated enthalpy of reaction ZnSO4:H2O -# Enthalpy of formation: -1304.54 kJ/mol - -analytic -1.7908e+001 -1.8228e-002 1.5811e+003 7.0677e+000 2.6856e+001 -# -Range: 0-200 - -ZnSeO3:H2O - ZnSeO3:H2O = + 1.0000 H2O + 1.0000 SeO3-- + 1.0000 Zn++ - log_k -6.7408 - -delta_H -17.9056 kJ/mol # Calculated enthalpy of reaction ZnSeO3:H2O -# Enthalpy of formation: -930.511 kJ/mol - -analytic -1.8569e+001 -1.9929e-002 6.4377e+001 7.0892e+000 1.0996e+000 -# -Range: 0-200 - -Zoisite - Ca2Al3(SiO4)3OH +13.0000 H+ = + 2.0000 Ca++ + 3.0000 Al+++ + 3.0000 SiO2 + 7.0000 H2O - log_k 43.3017 - -delta_H -458.131 kJ/mol # Calculated enthalpy of reaction Zoisite -# Enthalpy of formation: -1643.69 kcal/mol - -analytic 2.5321e+000 -3.5886e-002 1.9902e+004 -6.2443e+000 3.1055e+002 -# -Range: 0-300 - -Zr - Zr +2.0000 H+ +1.0000 O2 = + 1.0000 Zr(OH)2++ - log_k 177.6471 - -delta_H -1078.71 kJ/mol # Calculated enthalpy of reaction Zr -# Enthalpy of formation: 0 kJ/mol - -analytic -2.8360e+001 -1.5214e-002 5.8045e+004 7.8012e+000 -3.0657e+005 -# -Range: 0-300 - -ZrB2 - ZrB2 +3.0000 H+ +2.0000 H2O +0.5000 O2 = + 1.0000 B(OH)3 + 1.0000 BH4- + 1.0000 Zr++++ - log_k 103.4666 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrB2 -# Enthalpy of formation: -326.628 kJ/mol - -ZrC - ZrC +3.0000 H+ +2.0000 O2 = + 1.0000 H2O + 1.0000 HCO3- + 1.0000 Zr++++ - log_k 207.0906 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrC -# Enthalpy of formation: -203.008 kJ/mol - -ZrCl - ZrCl +3.0000 H+ +0.7500 O2 = + 1.0000 Cl- + 1.0000 Zr++++ + 1.5000 H2O - log_k 130.9450 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl -# Enthalpy of formation: -303.211 kJ/mol - -ZrCl2 - ZrCl2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Zr++++ + 2.0000 Cl- - log_k 96.3205 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl2 -# Enthalpy of formation: -531.021 kJ/mol - -ZrCl3 - ZrCl3 +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Zr++++ + 3.0000 Cl- - log_k 62.4492 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl3 -# Enthalpy of formation: -754.997 kJ/mol - -ZrCl4 - ZrCl4 = + 1.0000 Zr++++ + 4.0000 Cl- - log_k 27.9824 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl4 -# Enthalpy of formation: -980.762 kJ/mol - -ZrF4(beta) - ZrF4 = + 1.0000 Zr++++ + 4.0000 F- - log_k -27.7564 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4(beta) -# Enthalpy of formation: -1911.26 kJ/mol - -ZrH2 - ZrH2 +4.0000 H+ +1.5000 O2 = + 1.0000 Zr++++ + 3.0000 H2O - log_k 198.3224 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrH2 -# Enthalpy of formation: -168.946 kJ/mol - -ZrN - ZrN +4.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 NH3 + 1.0000 Zr++++ - log_k 59.1271 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrN -# Enthalpy of formation: -365 kJ/mol - -O-phthalic_acid - H2O_phthalate = + 1.0000 O_phthalate-2 + 2.0000 H+ - log_k -9.7755 - -delta_H 0 # Not possible to calculate enthalpy of reaction O-phthalic_acid -# Enthalpy of formation: -186.88 kJ/mol - -analytic 7.3450e+001 1.9477e-002 -3.6511e+003 -3.1035e+001 -6.2027e+001 -# -Range: 0-200 -Br2(l) - Br2 +1.0000 H2O = + 0.5000 O2 + 2.0000 Br- + 2.0000 H+ - log_k -6.5419 - -delta_H 36.7648 kJ/mol # Calculated enthalpy of reaction Br2(l) -# Enthalpy of formation: 0 kJ/mol - -analytic -1.5875e+002 -5.8039e-002 1.5583e+003 6.6381e+001 2.4362e+001 -# -Range: 0-300 - -Hg(l) - Hg +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hg++ - log_k 14.1505 - -delta_H -109.608 kJ/mol # Calculated enthalpy of reaction Hg(l) -# Enthalpy of formation: 0 kcal/mol - -analytic -6.6462e+001 -1.8504e-002 7.3141e+003 2.4888e+001 1.1415e+002 -# -Range: 0-300 - -Ag(g) - Ag +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Ag+ - log_k 51.0924 - -delta_H -319.035 kJ/mol # Calculated enthalpy of reaction Ag(g) -# Enthalpy of formation: 284.9 kJ/mol - -analytic -5.8006e+000 1.7178e-003 1.6809e+004 0.0000e+000 0.0000e+000 -# -Range: 0-200 - -Al(g) - Al +3.0000 H+ +0.7500 O2 = + 1.0000 Al+++ + 1.5000 H2O - log_k 200.6258 - -delta_H -1288.06 kJ/mol # Calculated enthalpy of reaction Al(g) -# Enthalpy of formation: 330 kJ/mol - -analytic 9.6402e+000 -6.9301e-003 6.5270e+004 -1.0461e+001 1.1084e+003 -# -Range: 0-200 - -Am(g) - Am +3.0000 H+ +0.7500 O2 = + 1.0000 Am+++ + 1.5000 H2O - log_k 211.7865 - -delta_H -1320.16 kJ/mol # Calculated enthalpy of reaction Am(g) -# Enthalpy of formation: 283.8 kJ/mol - -analytic -1.4236e+001 -8.7560e-003 6.8166e+004 0.0000e+000 0.0000e+000 -# -Range: 0-300 - -AmF3(g) - AmF3 = + 1.0000 Am+++ + 3.0000 F- - log_k 49.8631 - -delta_H -455.843 kJ/mol # Calculated enthalpy of reaction AmF3(g) -# Enthalpy of formation: -1166.9 kJ/mol - -analytic -4.7209e+001 -3.6440e-002 2.2278e+004 1.3418e+001 3.7833e+002 -# -Range: 0-200 - -Ar(g) - Ar = + 1.0000 Ar - log_k -2.8587 - -delta_H -12.0081 kJ/mol # Calculated enthalpy of reaction Ar(g) -# Enthalpy of formation: 0 kcal/mol - -analytic -7.4387e+000 7.8991e-003 0.0000e+000 0.0000e+000 1.9830e+005 -# -Range: 0-300 - -B(g) - B +1.5000 H2O +0.7500 O2 = + 1.0000 B(OH)3 - log_k 200.8430 - -delta_H -1201.68 kJ/mol # Calculated enthalpy of reaction B(g) -# Enthalpy of formation: 565 kJ/mol - -analytic 1.0834e+002 1.0606e-002 5.8150e+004 -4.2720e+001 9.8743e+002 -# -Range: 0-200 - -BF3(g) - BF3 +3.0000 H2O = + 1.0000 B(OH)3 + 3.0000 F- + 3.0000 H+ - log_k -2.9664 - -delta_H -87.0627 kJ/mol # Calculated enthalpy of reaction BF3(g) -# Enthalpy of formation: -1136 kJ/mol - -analytic 5.2848e+001 -2.4617e-002 -1.8159e+002 -1.9350e+001 -3.1018e+000 -# -Range: 0-200 - -Be(g) - Be +2.0000 H+ +0.5000 O2 = + 1.0000 Be++ + 1.0000 H2O - log_k 361.9343 - -delta_H 0 # Not possible to calculate enthalpy of reaction Be(g) -# Enthalpy of formation: 0 kcal/mol - -Br2(g) - Br2 +1.0000 H2O = + 0.5000 O2 + 2.0000 Br- + 2.0000 H+ - log_k -5.9979 - -delta_H 5.85481 kJ/mol # Calculated enthalpy of reaction Br2(g) -# Enthalpy of formation: 30.91 kJ/mol - -analytic -3.2403e+000 -1.7609e-002 -1.4941e+003 3.0300e+000 -2.5370e+001 -# -Range: 0-200 - -C(g) - C +1.0000 H2O +1.0000 O2 = + 1.0000 H+ + 1.0000 HCO3- - log_k 181.7723 - -delta_H -1108.64 kJ/mol # Calculated enthalpy of reaction C(g) -# Enthalpy of formation: 716.68 kJ/mol - -analytic 1.0485e+002 1.7907e-003 5.2768e+004 -4.0661e+001 8.9605e+002 -# -Range: 0-200 - -C2H4(g) - C2H4 = + 1.0000 C2H4 - log_k -2.3236 - -delta_H -16.4431 kJ/mol # Calculated enthalpy of reaction Ethylene(g) -# Enthalpy of formation: 12.5 kcal/mol - -analytic -7.5368e+000 8.4676e-003 0.0000e+000 0.0000e+000 2.3971e+005 -# -Range: 0-300 - -CH4(g) - CH4 = + 1.0000 CH4 - log_k -2.8502 - -delta_H -13.0959 kJ/mol # Calculated enthalpy of reaction CH4(g) -# Enthalpy of formation: -17.88 kcal/mol - -analytic -2.4027e+001 4.7146e-003 3.7227e+002 6.4264e+000 2.3362e+005 -# -Range: 0-300 - -CO(g) -# CO +1.0000 H2O +0.5000 O2 = + 1.0000 H+ + 1.0000 HCO3- -# log_k 38.6934 -# -analytic -6.1217e+001 -3.1388e-002 1.5283e+004 2.3433e+001 2.3850e+002 -# -Range: 0-300 - CO = CO - log_k -3.0068 - -delta_H -10.4349 kJ/mol # Calculated enthalpy of reaction CO(g) -# Enthalpy of formation: -26.416 kcal/mol - -analytic -8.0849e+000 9.2114e-003 0.0000e+000 0.0000e+000 2.0813e+005 -# -Range: 0-300 - -CO2(g) - CO2 +1.0000 H2O = + 1.0000 H+ + 1.0000 HCO3- - log_k -7.8136 - -delta_H -10.5855 kJ/mol # Calculated enthalpy of reaction CO2(g) -# Enthalpy of formation: -94.051 kcal/mol - -analytic -8.5938e+001 -3.0431e-002 2.0702e+003 3.2427e+001 3.2328e+001 -# -Range: 0-300 - -Ca(g) - Ca +2.0000 H+ +0.5000 O2 = + 1.0000 Ca++ + 1.0000 H2O - log_k 165.0778 - -delta_H -1000.65 kJ/mol # Calculated enthalpy of reaction Ca(g) -# Enthalpy of formation: 177.8 kJ/mol - -analytic -7.3029e+000 -4.8208e-003 5.1822e+004 0.0000e+000 0.0000e+000 -# -Range: 0-200 - -Cd(g) - Cd +2.0000 H+ +0.5000 O2 = + 1.0000 Cd++ + 1.0000 H2O - log_k 70.1363 - -delta_H -467.469 kJ/mol # Calculated enthalpy of reaction Cd(g) -# Enthalpy of formation: 111.8 kJ/mol - -analytic -9.8665e+000 -3.0921e-003 2.4126e+004 0.0000e+000 0.0000e+000 -# -Range: 0-200 - -Cl2(g) - Cl2 +1.0000 H2O = + 0.5000 O2 + 2.0000 Cl- + 2.0000 H+ - log_k 3.0004 - -delta_H -54.3878 kJ/mol # Calculated enthalpy of reaction Cl2(g) -# Enthalpy of formation: 0 kJ/mol - -analytic -1.9456e+001 -2.1491e-002 2.0652e+003 8.8629e+000 3.5076e+001 -# -Range: 0-200 - -Cs(g) - Cs +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Cs+ - log_k 81.2805 - -delta_H -474.413 kJ/mol # Calculated enthalpy of reaction Cs(g) -# Enthalpy of formation: 76.5 kJ/mol - -analytic 4.1676e+001 9.1952e-003 2.3401e+004 -1.6824e+001 3.9736e+002 -# -Range: 0-200 - -Cu(g) - Cu +2.0000 H+ +0.5000 O2 = + 1.0000 Cu++ + 1.0000 H2O - log_k 83.6618 - -delta_H -551.483 kJ/mol # Calculated enthalpy of reaction Cu(g) -# Enthalpy of formation: 337.4 kJ/mol - -analytic -1.1249e+001 -2.7585e-003 2.8541e+004 0.0000e+000 0.0000e+000 -# -Range: 0-200 - -F2(g) - F2 +1.0000 H2O = + 0.5000 O2 + 2.0000 F- + 2.0000 H+ - log_k 55.7197 - -delta_H -390.924 kJ/mol # Calculated enthalpy of reaction F2(g) -# Enthalpy of formation: 0 kJ/mol - -analytic -3.2664e+001 -2.1035e-002 1.9974e+004 1.1174e+001 3.3920e+002 -# -Range: 0-200 - -H2(g) -# H2 +0.5000 O2 = + 1.0000 H2O -# log_k 43.0016 -# -analytic -1.1609e+001 -3.7580e-003 1.5068e+004 2.4198e+000 -7.0997e+004 -# -Range: 0-300 - H2 = H2 - log_k -3.1050 - -delta_H -4.184 kJ/mol # Calculated enthalpy of reaction H2(g) -# Enthalpy of formation: 0 kcal/mol - -analytic -9.3114e+000 4.6473e-003 -4.9335e+001 1.4341e+000 1.2815e+005 -# -Range: 0-300 - -H2O(g) - H2O = + 1.0000 H2O - log_k 1.5854 - -delta_H -43.4383 kJ/mol # Calculated enthalpy of reaction H2O(g) -# Enthalpy of formation: -57.935 kcal/mol - -analytic -1.4782e+001 1.0752e-003 2.7519e+003 2.7548e+000 4.2945e+001 -# -Range: 0-300 - -H2S(g) - H2S = + 1.0000 H+ + 1.0000 HS- - log_k -7.9759 - -delta_H 4.5229 kJ/mol # Calculated enthalpy of reaction H2S(g) -# Enthalpy of formation: -4.931 kcal/mol - -analytic -9.7354e+001 -3.1576e-002 1.8285e+003 3.7440e+001 2.8560e+001 -# -Range: 0-300 - -HBr(g) - HBr = + 1.0000 Br- + 1.0000 H+ - log_k 8.8815 - -delta_H -85.2134 kJ/mol # Calculated enthalpy of reaction HBr(g) -# Enthalpy of formation: -36.29 kJ/mol - -analytic 8.1303e+000 -6.6641e-003 3.3951e+003 -3.4973e+000 5.7651e+001 -# -Range: 0-200 - -HCl(g) - HCl = + 1.0000 Cl- + 1.0000 H+ - log_k 6.3055 - -delta_H -74.7697 kJ/mol # Calculated enthalpy of reaction HCl(g) -# Enthalpy of formation: -92.31 kJ/mol - -analytic -2.8144e-001 -8.6776e-003 3.0668e+003 -4.5105e-001 5.2078e+001 -# -Range: 0-200 - -HF(g) - HF = + 1.0000 F- + 1.0000 H+ - log_k 1.1126 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(g) -# Enthalpy of formation: 619.234 kJ/mol - -analytic -8.5783e+000 -8.8440e-003 2.6279e+003 1.4180e+000 4.4628e+001 -# -Range: 0-200 - -HI(g) - HI = + 1.0000 H+ + 1.0000 I- - log_k 9.3944 - -delta_H -83.4024 kJ/mol # Calculated enthalpy of reaction HI(g) -# Enthalpy of formation: 26.5 kJ/mol - -analytic 5.8250e-003 -8.7146e-003 3.5728e+003 0.0000e+000 0.0000e+000 -# -Range: 0-200 - -He(g) - He = + 1.0000 He - log_k -3.4143 - -delta_H -0.6276 kJ/mol # Calculated enthalpy of reaction He(g) -# Enthalpy of formation: 0 kcal/mol - -analytic -1.3402e+001 4.6358e-003 1.8295e+002 2.8070e+000 9.3373e+004 -# -Range: 0-300 - -Hf(g) - Hf +4.0000 H+ +1.0000 O2 = + 1.0000 Hf++++ + 2.0000 H2O - log_k 290.9782 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(g) -# Enthalpy of formation: 0 kJ/mol - -Hg(g) - Hg +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hg++ - log_k 19.7290 - -delta_H -170.988 kJ/mol # Calculated enthalpy of reaction Hg(g) -# Enthalpy of formation: 61.38 kJ/mol - -analytic -1.6232e+001 -3.2863e-003 8.9831e+003 2.7505e+000 1.5255e+002 -# -Range: 0-200 - -I2(g) - I2 +1.0000 H2O = + 0.5000 O2 + 2.0000 H+ + 2.0000 I- - log_k -21.4231 - -delta_H 103.547 kJ/mol # Calculated enthalpy of reaction I2(g) -# Enthalpy of formation: 62.42 kJ/mol - -analytic -2.0271e+001 -2.1890e-002 -6.0267e+003 1.0339e+001 -1.0233e+002 -# -Range: 0-200 - -K(g) - K +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 K+ - log_k 81.5815 - -delta_H -481.055 kJ/mol # Calculated enthalpy of reaction K(g) -# Enthalpy of formation: 89 kJ/mol - -analytic 1.0278e+001 3.0700e-003 2.4729e+004 -5.0763e+000 4.1994e+002 -# -Range: 0-200 - -Kr(g) - Kr = + 1.0000 Kr - log_k -2.6051 - -delta_H -15.2716 kJ/mol # Calculated enthalpy of reaction Kr(g) -# Enthalpy of formation: 0 kcal/mol - -analytic -2.1251e+001 4.8308e-003 4.2971e+002 5.3591e+000 2.2304e+005 -# -Range: 0-300 - -Li(g) - Li +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Li+ - log_k 94.9423 - -delta_H -577.639 kJ/mol # Calculated enthalpy of reaction Li(g) -# Enthalpy of formation: 159.3 kJ/mol - -analytic -2.5692e+001 -1.4385e-003 3.0936e+004 6.9899e+000 5.2535e+002 -# -Range: 0-200 - -Mg(g) - Mg +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Mg++ - log_k 142.2494 - -delta_H -892.831 kJ/mol # Calculated enthalpy of reaction Mg(g) -# Enthalpy of formation: 147.1 kJ/mol - -analytic -1.3470e+000 -7.7402e-004 4.5992e+004 -4.2207e+000 7.8101e+002 -# -Range: 0-200 - -N2(g) -# N2 +3.0000 H2O = + 1.5000 O2 + 2.0000 NH3 -# log_k -119.6473 -# -analytic 2.4168e+001 1.6489e-002 -3.6869e+004 -1.1181e+001 2.3178e+005 -# -Range: 0-300 - N2 = N2 - log_k -3.1864 - -delta_H -10.4391 kJ/mol # Calculated enthalpy of reaction N2(g) -# Enthalpy of formation: 0 kcal/mol - -analytic -7.6452e+000 7.9606e-003 0.0000e+000 0.0000e+000 1.8604e+005 -# -Range: 0-300 -NH3(g) - NH3 = + 1.0000 NH3 - log_k 1.7966 - -delta_H -35.2251 kJ/mol # Calculated enthalpy of reaction NH3(g) -# Enthalpy of formation: -11.021 kcal/mol - -analytic -1.8758e+001 3.3670e-004 2.5113e+003 4.8619e+000 3.9192e+001 -# -Range: 0-300 - -NO(g) - NO +0.5000 H2O +0.2500 O2 = + 1.0000 H+ + 1.0000 NO2- - log_k 0.7554 - -delta_H -48.8884 kJ/mol # Calculated enthalpy of reaction NO(g) -# Enthalpy of formation: 90.241 kJ/mol - -analytic 8.2147e+000 -1.2708e-001 -6.0593e+003 2.0504e+001 -9.4551e+001 -# -Range: 0-300 - -NO2(g) - NO2 +0.5000 H2O +0.2500 O2 = + 1.0000 H+ + 1.0000 NO3- - log_k 8.3673 - -delta_H -94.0124 kJ/mol # Calculated enthalpy of reaction NO2(g) -# Enthalpy of formation: 33.154 kJ/mol - -analytic 9.4389e+001 -2.7511e-001 -1.6783e+004 2.1127e+001 -2.6191e+002 -# -Range: 0-300 - -Na(g) - Na +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Na+ - log_k 80.8640 - -delta_H -487.685 kJ/mol # Calculated enthalpy of reaction Na(g) -# Enthalpy of formation: 107.5 kJ/mol - -analytic -6.0156e+000 2.4712e-003 2.5682e+004 0.0000e+000 0.0000e+000 -# -Range: 0-200 - -Ne(g) - Ne = + 1.0000 Ne - log_k -3.3462 - -delta_H -3.64008 kJ/mol # Calculated enthalpy of reaction Ne(g) -# Enthalpy of formation: 0 kcal/mol - -analytic -6.5169e+000 6.3991e-003 0.0000e+000 0.0000e+000 1.1271e+005 -# -Range: 0-300 - -O2(g) - O2 = + 1.0000 O2 - log_k -2.8983 - -delta_H -12.1336 kJ/mol # Calculated enthalpy of reaction O2(g) -# Enthalpy of formation: 0 kcal/mol - -analytic -7.5001e+000 7.8981e-003 0.0000e+000 0.0000e+000 2.0027e+005 -# -Range: 0-300 - -Pb(g) - Pb +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Pb++ - log_k 75.6090 - -delta_H -474.051 kJ/mol # Calculated enthalpy of reaction Pb(g) -# Enthalpy of formation: 195.2 kJ/mol - -analytic 2.5752e+001 2.1307e-003 2.3397e+004 -1.1825e+001 3.9730e+002 -# -Range: 0-200 - -Rb(g) - Rb +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Rb+ - log_k 80.4976 - -delta_H -471.909 kJ/mol # Calculated enthalpy of reaction Rb(g) -# Enthalpy of formation: 80.9 kJ/mol - -analytic 2.6839e+001 5.9775e-003 2.3720e+004 -1.1189e+001 4.0279e+002 -# -Range: 0-200 - -Rn(g) - Rn = + 1.0000 Rn - log_k -2.0451 - -delta_H -20.92 kJ/mol # Calculated enthalpy of reaction Rn(g) -# Enthalpy of formation: 0 kcal/mol - -analytic -3.0258e+001 4.9893e-003 1.4118e+002 8.8798e+000 3.8095e+005 -# -Range: 0-300 - -RuCl3(g) - RuCl3 = + 1.0000 Ru+++ + 3.0000 Cl- - log_k 41.5503 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl3(g) -# Enthalpy of formation: 16.84 kJ/mol - -RuO3(g) - RuO3 +1.0000 H2O = + 1.0000 RuO4-- + 2.0000 H+ - log_k 2.3859 - -delta_H -100.369 kJ/mol # Calculated enthalpy of reaction RuO3(g) -# Enthalpy of formation: -70.868 kJ/mol - -analytic 1.1106e+002 1.7191e-002 6.8526e+002 -4.6922e+001 1.1598e+001 -# -Range: 0-200 - -S2(g) - S2 +2.0000 H2O = + 0.5000 SO4-- + 1.5000 HS- + 2.5000 H+ - log_k -7.1449 - -delta_H -35.656 kJ/mol # Calculated enthalpy of reaction S2(g) -# Enthalpy of formation: 30.681 kcal/mol - -analytic -1.8815e+002 -7.7069e-002 4.8816e+003 7.5802e+001 7.6228e+001 -# -Range: 0-300 - -SO2(g) - SO2 = SO2 - log_k 0.1700 - -delta_H 0 # Not possible to calculate enthalpy of reaction SO2(g) -# Enthalpy of formation: 0 kcal/mol - -analytic -2.0205e+001 2.8861e-003 1.4862e+003 5.2958e+000 1.2721e+005 -# -Range: 0-300 - -Si(g) - Si +1.0000 O2 = + 1.0000 SiO2 - log_k 219.9509 - -delta_H -1315.57 kJ/mol # Calculated enthalpy of reaction Si(g) -# Enthalpy of formation: 450 kJ/mol - -analytic 4.1998e+002 8.0113e-002 5.4468e+004 -1.6433e+002 9.2480e+002 -# -Range: 0-200 - -SiF4(g) - SiF4 +2.0000 H2O = + 1.0000 SiO2 + 4.0000 F- + 4.0000 H+ - log_k -15.1931 - -delta_H -32.4123 kJ/mol # Calculated enthalpy of reaction SiF4(g) -# Enthalpy of formation: -1615 kJ/mol - -analytic 3.4941e+002 3.3668e-002 -1.2780e+004 -1.3410e+002 -2.1714e+002 -# -Range: 0-200 - -Sn(g) - Sn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Sn++ - log_k 94.5019 - -delta_H -589.758 kJ/mol # Calculated enthalpy of reaction Sn(g) -# Enthalpy of formation: 301.2 kJ/mol - -analytic 1.4875e+001 -5.6877e-005 2.9728e+004 -8.1131e+000 5.0482e+002 -# -Range: 0-200 - -Tc2O7(g) - Tc2O7 +1.0000 H2O = + 2.0000 H+ + 2.0000 TcO4- - log_k 21.3593 - -delta_H -158.131 kJ/mol # Calculated enthalpy of reaction Tc2O7(g) -# Enthalpy of formation: -988.569 kJ/mol - -analytic 7.4140e+001 1.5668e-002 5.6360e+003 -3.0860e+001 9.5682e+001 -# -Range: 0-200 - -Th(g) - Th +4.0000 H+ +1.0000 O2 = + 1.0000 Th++++ + 2.0000 H2O - log_k 307.8413 - -delta_H -1930.56 kJ/mol # Calculated enthalpy of reaction Th(g) -# Enthalpy of formation: 602 kJ/mol - -analytic 1.8496e+001 2.7318e-003 9.8807e+004 -1.7332e+001 1.6779e+003 -# -Range: 0-200 - -Ti(g) - Ti +2.0000 H2O +1.0000 O2 = + 1.0000 Ti(OH)4 - log_k 224.3510 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti(g) -# Enthalpy of formation: 473 kJ/mol - -TiBr4(g) - TiBr4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 Br- + 4.0000 H+ - log_k 36.6695 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr4(g) -# Enthalpy of formation: -549.339 kJ/mol - -TiCl4(g) - TiCl4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 Cl- + 4.0000 H+ - log_k 28.0518 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl4(g) -# Enthalpy of formation: -763.2 kJ/mol - -TiO(g) - TiO +2.0000 H2O +0.5000 O2 = + 1.0000 Ti(OH)4 - log_k 145.5711 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiO(g) -# Enthalpy of formation: 17.144 kJ/mol - -U(g) - U +2.0000 H+ +1.5000 O2 = + 1.0000 H2O + 1.0000 UO2++ - log_k 298.3441 - -delta_H -1819.64 kJ/mol # Calculated enthalpy of reaction U(g) -# Enthalpy of formation: 533 kJ/mol - -analytic 3.7536e+001 -6.3804e-003 9.2048e+004 -1.8614e+001 1.4363e+003 -# -Range: 0-300 - -U2Cl10(g) - U2Cl10 +4.0000 H2O = + 2.0000 UO2+ + 8.0000 H+ + 10.0000 Cl- - log_k 82.7621 - -delta_H -609.798 kJ/mol # Calculated enthalpy of reaction U2Cl10(g) -# Enthalpy of formation: -1967.9 kJ/mol - -analytic -7.5513e+002 -3.0070e-001 4.5824e+004 3.1267e+002 7.1526e+002 -# -Range: 0-300 - -U2Cl8(g) - U2Cl8 = + 2.0000 U++++ + 8.0000 Cl- - log_k 82.4059 - -delta_H -769.437 kJ/mol # Calculated enthalpy of reaction U2Cl8(g) -# Enthalpy of formation: -1749.6 kJ/mol - -analytic -7.4441e+002 -2.6943e-001 5.4358e+004 2.9287e+002 8.4843e+002 -# -Range: 0-300 - -U2F10(g) - U2F10 +4.0000 H2O = + 2.0000 UO2+ + 8.0000 H+ + 10.0000 F- - log_k -12.2888 - -delta_H -239.377 kJ/mol # Calculated enthalpy of reaction U2F10(g) -# Enthalpy of formation: -4021 kJ/mol - -analytic -9.1542e+002 -3.2040e-001 3.1047e+004 3.6143e+002 4.8473e+002 -# -Range: 0-300 - -UBr(g) - UBr +1.0000 O2 = + 1.0000 Br- + 1.0000 UO2+ - log_k 224.8412 - -delta_H -1381.5 kJ/mol # Calculated enthalpy of reaction UBr(g) -# Enthalpy of formation: 247 kJ/mol - -analytic -3.1193e+002 -6.3059e-002 8.7633e+004 1.1032e+002 -1.0104e+006 -# -Range: 0-300 - -UBr2(g) - UBr2 +1.0000 O2 = + 1.0000 UO2++ + 2.0000 Br- - log_k 192.6278 - -delta_H -1218.87 kJ/mol # Calculated enthalpy of reaction UBr2(g) -# Enthalpy of formation: -31 kJ/mol - -analytic -1.2277e+002 -6.4613e-002 6.4196e+004 4.8209e+001 1.0018e+003 -# -Range: 0-300 - -UBr3(g) - UBr3 = + 1.0000 U+++ + 3.0000 Br- - log_k 67.8918 - -delta_H -489.61 kJ/mol # Calculated enthalpy of reaction UBr3(g) -# Enthalpy of formation: -364 kJ/mol - -analytic -2.5784e+002 -9.7583e-002 3.0225e+004 1.0240e+002 4.7171e+002 -# -Range: 0-300 - -UBr4(g) - UBr4 = + 1.0000 U++++ + 4.0000 Br- - log_k 54.2926 - -delta_H -467.113 kJ/mol # Calculated enthalpy of reaction UBr4(g) -# Enthalpy of formation: -610.1 kJ/mol - -analytic -3.5205e+002 -1.2867e-001 3.0898e+004 1.3781e+002 4.8223e+002 -# -Range: 0-300 - -UBr5(g) - UBr5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 Br- - log_k 61.4272 - -delta_H -423.222 kJ/mol # Calculated enthalpy of reaction UBr5(g) -# Enthalpy of formation: -637.745 kJ/mol - -analytic -3.4693e+002 -1.4298e-001 2.8151e+004 1.4406e+002 4.3938e+002 -# -Range: 0-300 - -UCl(g) - UCl +1.0000 O2 = + 1.0000 Cl- + 1.0000 UO2+ - log_k 221.7887 - -delta_H -1368.27 kJ/mol # Calculated enthalpy of reaction UCl(g) -# Enthalpy of formation: 188.2 kJ/mol - -analytic -4.1941e+001 -2.7879e-002 7.0800e+004 1.3954e+001 1.1048e+003 -# -Range: 0-300 - -UCl2(g) - UCl2 +1.0000 O2 = + 1.0000 UO2++ + 2.0000 Cl- - log_k 183.7912 - -delta_H -1178.03 kJ/mol # Calculated enthalpy of reaction UCl2(g) -# Enthalpy of formation: -163 kJ/mol - -analytic -1.3677e+002 -6.7829e-002 6.2413e+004 5.3100e+001 9.7394e+002 -# -Range: 0-300 - -UCl3(g) - UCl3 = + 1.0000 U+++ + 3.0000 Cl- - log_k 58.6335 - -delta_H -453.239 kJ/mol # Calculated enthalpy of reaction UCl3(g) -# Enthalpy of formation: -537.1 kJ/mol - -analytic -2.7942e+002 -1.0243e-001 2.8859e+004 1.0982e+002 4.5040e+002 -# -Range: 0-300 - -UCl4(g) - UCl4 = + 1.0000 U++++ + 4.0000 Cl- - log_k 46.3988 - -delta_H -441.419 kJ/mol # Calculated enthalpy of reaction UCl4(g) -# Enthalpy of formation: -818.1 kJ/mol - -analytic -3.7971e+002 -1.3504e-001 3.0243e+004 1.4746e+002 4.7202e+002 -# -Range: 0-300 - -UCl5(g) - UCl5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 Cl- - log_k 54.5311 - -delta_H -406.349 kJ/mol # Calculated enthalpy of reaction UCl5(g) -# Enthalpy of formation: -882.5 kJ/mol - -analytic -3.8234e+002 -1.5109e-001 2.8170e+004 1.5654e+002 4.3968e+002 -# -Range: 0-300 - -UCl6(g) - UCl6 +2.0000 H2O = + 1.0000 UO2++ + 4.0000 H+ + 6.0000 Cl- - log_k 63.4791 - -delta_H -462.301 kJ/mol # Calculated enthalpy of reaction UCl6(g) -# Enthalpy of formation: -987.5 kJ/mol - -analytic -4.7128e+002 -1.9133e-001 3.2528e+004 1.9503e+002 5.0771e+002 -# -Range: 0-300 - -UF(g) - UF +1.0000 O2 = + 1.0000 F- + 1.0000 UO2+ - log_k 206.2684 - -delta_H -1296.34 kJ/mol # Calculated enthalpy of reaction UF(g) -# Enthalpy of formation: -52 kJ/mol - -analytic -6.1248e+001 -3.0360e-002 6.7619e+004 2.0095e+001 1.0551e+003 -# -Range: 0-300 - -UF2(g) - UF2 +1.0000 O2 = + 1.0000 UO2++ + 2.0000 F- - log_k 172.3563 - -delta_H -1147.56 kJ/mol # Calculated enthalpy of reaction UF2(g) -# Enthalpy of formation: -530 kJ/mol - -analytic -4.3462e+002 -1.0881e-001 7.6778e+004 1.5835e+002 -8.8536e+005 -# -Range: 0-300 - -UF3(g) - UF3 = + 1.0000 U+++ + 3.0000 F- - log_k 47.2334 - -delta_H -440.943 kJ/mol # Calculated enthalpy of reaction UF3(g) -# Enthalpy of formation: -1054.2 kJ/mol - -analytic -3.3058e+002 -1.0866e-001 2.9694e+004 1.2551e+002 4.6344e+002 -# -Range: 0-300 - -UF4(g) - UF4 = + 1.0000 U++++ + 4.0000 F- - log_k 14.5980 - -delta_H -331.39 kJ/mol # Calculated enthalpy of reaction UF4(g) -# Enthalpy of formation: -1601.2 kJ/mol - -analytic -4.4692e+002 -1.4314e-001 2.6427e+004 1.6791e+002 4.1250e+002 -# -Range: 0-300 - -UF5(g) - UF5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 F- - log_k 6.3801 - -delta_H -220.188 kJ/mol # Calculated enthalpy of reaction UF5(g) -# Enthalpy of formation: -1910 kJ/mol - -analytic -4.6981e+002 -1.6177e-001 2.0986e+004 1.8345e+002 3.2760e+002 -# -Range: 0-300 - -UF6(g) - UF6 +2.0000 H2O = + 1.0000 UO2++ + 4.0000 H+ + 6.0000 F- - log_k 18.2536 - -delta_H -310.809 kJ/mol # Calculated enthalpy of reaction UF6(g) -# Enthalpy of formation: -2148.6 kJ/mol - -analytic -5.7661e+002 -2.0409e-001 2.7680e+004 2.2743e+002 4.3209e+002 -# -Range: 0-300 - -UI(g) - UI +1.0000 O2 = + 1.0000 I- + 1.0000 UO2+ - log_k 230.8161 - -delta_H -1410.9 kJ/mol # Calculated enthalpy of reaction UI(g) -# Enthalpy of formation: 341 kJ/mol - -analytic -3.5819e+001 -2.6631e-002 7.2899e+004 1.2133e+001 1.1375e+003 -# -Range: 0-300 - -UI2(g) - UI2 +1.0000 O2 = + 1.0000 UO2++ + 2.0000 I- - log_k 194.5395 - -delta_H -1220.67 kJ/mol # Calculated enthalpy of reaction UI2(g) -# Enthalpy of formation: 100 kJ/mol - -analytic -3.3543e+002 -9.5116e-002 7.6218e+004 1.2543e+002 -6.8683e+005 -# -Range: 0-300 - -UI3(g) - UI3 = + 1.0000 U+++ + 3.0000 I- - log_k 75.6033 - -delta_H -519.807 kJ/mol # Calculated enthalpy of reaction UI3(g) -# Enthalpy of formation: -140 kJ/mol - -analytic -2.6095e+002 -9.8782e-002 3.1972e+004 1.0456e+002 4.9897e+002 -# -Range: 0-300 - -UI4(g) - UI4 = + 1.0000 U++++ + 4.0000 I- - log_k 64.3272 - -delta_H -510.01 kJ/mol # Calculated enthalpy of reaction UI4(g) -# Enthalpy of formation: -308.8 kJ/mol - -analytic -3.5645e+002 -1.3022e-001 3.3347e+004 1.4051e+002 5.2046e+002 -# -Range: 0-300 - -UO(g) - UO +2.0000 H+ +1.0000 O2 = + 1.0000 H2O + 1.0000 UO2++ - log_k 211.6585 - -delta_H -1323.2 kJ/mol # Calculated enthalpy of reaction UO(g) -# Enthalpy of formation: 30.5 kJ/mol - -analytic -1.8007e+002 -3.1985e-002 7.8469e+004 5.8892e+001 -6.8071e+005 -# -Range: 0-300 - -UO2(g) - UO2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 UO2++ - log_k 125.6027 - -delta_H -820.972 kJ/mol # Calculated enthalpy of reaction UO2(g) -# Enthalpy of formation: -477.8 kJ/mol - -analytic -5.2789e+000 -3.5754e-003 4.2074e+004 -3.7117e+000 6.5653e+002 -# -Range: 0-300 - -UO2Cl2(g) - UO2Cl2 = + 1.0000 UO2++ + 2.0000 Cl- - log_k 47.9630 - -delta_H -381.559 kJ/mol # Calculated enthalpy of reaction UO2Cl2(g) -# Enthalpy of formation: -971.6 kJ/mol - -analytic -1.8035e+002 -6.5574e-002 2.3064e+004 6.8894e+001 3.5994e+002 -# -Range: 0-300 - -UO2F2(g) - UO2F2 = + 1.0000 UO2++ + 2.0000 F- - log_k 34.6675 - -delta_H -337.195 kJ/mol # Calculated enthalpy of reaction UO2F2(g) -# Enthalpy of formation: -1352.5 kJ/mol - -analytic -2.1498e+002 -6.9882e-002 2.1774e+004 7.9780e+001 3.3983e+002 -# -Range: 0-300 - -UO3(g) - UO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 UO2++ - log_k 70.9480 - -delta_H -505.638 kJ/mol # Calculated enthalpy of reaction UO3(g) -# Enthalpy of formation: -799.2 kJ/mol - -analytic -3.2820e+001 -2.6807e-003 2.6914e+004 5.7767e+000 4.1997e+002 -# -Range: 0-300 - -UOF4(g) - UOF4 +1.0000 H2O = + 1.0000 UO2++ + 2.0000 H+ + 4.0000 F- - log_k 24.2848 - -delta_H -312.552 kJ/mol # Calculated enthalpy of reaction UOF4(g) -# Enthalpy of formation: -1762 kJ/mol - -analytic -3.9592e+002 -1.3699e-001 2.4127e+004 1.5359e+002 3.7660e+002 -# -Range: 0-300 - -Xe(g) - Xe = + 1.0000 Xe - log_k -2.3640 - -delta_H -18.8698 kJ/mol # Calculated enthalpy of reaction Xe(g) -# Enthalpy of formation: 0 kcal/mol - -analytic -2.0636e+001 5.1389e-003 2.0490e+002 5.1913e+000 2.8556e+005 -# -Range: 0-300 - -Zn(g) - Zn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Zn++ - log_k 85.4140 - -delta_H -563.557 kJ/mol # Calculated enthalpy of reaction Zn(g) -# Enthalpy of formation: 130.4 kJ/mol - -analytic -1.0898e+001 -3.9871e-003 2.9068e+004 0.0000e+000 0.0000e+000 -# -Range: 0-200 - -Zr(g) - Zr +4.0000 H+ +1.0000 O2 = + 1.0000 Zr++++ + 2.0000 H2O - log_k 277.1324 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(g) -# Enthalpy of formation: 608.948 kJ/mol - -ZrF4(g) - ZrF4 = + 1.0000 Zr++++ + 4.0000 F- - log_k 142.9515 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4(g) -# Enthalpy of formation: -858.24 kJ/mol - -EXCHANGE_MASTER_SPECIES - X X- -EXCHANGE_SPECIES - X- = X- - log_k 0.0 - - Na+ + X- = NaX - log_k 0.0 - -llnl_gamma 4.0 - - K+ + X- = KX - log_k 0.7 - -llnl_gamma 3.0 - delta_h -4.3 # Jardine & Sparks, 1984 - - Li+ + X- = LiX - log_k -0.08 - -llnl_gamma 6.0 - delta_h 1.4 # Merriam & Thomas, 1956 - - NH4+ + X- = NH4X - log_k 0.6 - -llnl_gamma 2.5 - delta_h -2.4 # Laudelout et al., 1968 - - Ca+2 + 2X- = CaX2 - log_k 0.8 - -llnl_gamma 6.0 - delta_h 7.2 # Van Bladel & Gheyl, 1980 - - Mg+2 + 2X- = MgX2 - log_k 0.6 - -llnl_gamma 8.0 - delta_h 7.4 # Laudelout et al., 1968 - - Sr+2 + 2X- = SrX2 - log_k 0.91 - -llnl_gamma 5.0 - delta_h 5.5 # Laudelout et al., 1968 - - Ba+2 + 2X- = BaX2 - log_k 0.91 - -llnl_gamma 5.0 - delta_h 4.5 # Laudelout et al., 1968 - - Mn+2 + 2X- = MnX2 - log_k 0.52 - -llnl_gamma 6.0 - - Fe+2 + 2X- = FeX2 - log_k 0.44 - -llnl_gamma 6.0 - - Cu+2 + 2X- = CuX2 - log_k 0.6 - -llnl_gamma 6.0 - - Zn+2 + 2X- = ZnX2 - log_k 0.8 - -llnl_gamma 6.0 - - Cd+2 + 2X- = CdX2 - log_k 0.8 - -llnl_gamma 5.0 - - Pb+2 + 2X- = PbX2 - log_k 1.05 - -llnl_gamma 4.5 - - Al+3 + 3X- = AlX3 - log_k 0.41 - -llnl_gamma 9.0 - - AlOH+2 + 2X- = AlOHX2 - log_k 0.89 - -llnl_gamma 4.5 - -SURFACE_MASTER_SPECIES - Hfo_s Hfo_sOH - Hfo_w Hfo_wOH -SURFACE_SPECIES -# All surface data from -# Dzombak and Morel, 1990 -# -# -# Acid-base data from table 5.7 -# -# strong binding site--Hfo_s, - - Hfo_sOH = Hfo_sOH - log_k 0.0 - - Hfo_sOH + H+ = Hfo_sOH2+ - log_k 7.29 # = pKa1,int - - Hfo_sOH = Hfo_sO- + H+ - log_k -8.93 # = -pKa2,int - -# weak binding site--Hfo_w - - Hfo_wOH = Hfo_wOH - log_k 0.0 - - Hfo_wOH + H+ = Hfo_wOH2+ - log_k 7.29 # = pKa1,int - - Hfo_wOH = Hfo_wO- + H+ - log_k -8.93 # = -pKa2,int - -############################################### -# CATIONS # -############################################### -# -# Cations from table 10.1 or 10.5 -# -# Calcium - Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - log_k 4.97 - - Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ - log_k -5.85 -# Strontium - Hfo_sOH + Sr+2 = Hfo_sOHSr+2 - log_k 5.01 - - Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ - log_k -6.58 - - Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+ - log_k -17.60 -# Barium - Hfo_sOH + Ba+2 = Hfo_sOHBa+2 - log_k 5.46 - - Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - log_k -7.2 # table 10.5 -# -# Cations from table 10.2 -# -# Cadmium - Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ - log_k 0.47 - - Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ - log_k -2.91 -# Zinc - Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ - log_k 0.99 - - Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ - log_k -1.99 -# Copper - Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ - log_k 2.89 - - Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ - log_k 0.6 # table 10.5 -# Lead - Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ - log_k 4.65 - - Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ - log_k 0.3 # table 10.5 -# -# Derived constants table 10.5 -# -# Magnesium - Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ - log_k -4.6 -# Manganese - Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ - log_k -0.4 # table 10.5 - - Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ - log_k -3.5 # table 10.5 -# Iron - Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ - log_k 0.7 # LFER using table 10.5 - - Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ - log_k -2.5 # LFER using table 10.5 - -############################################### -# ANIONS # -############################################### -# -# Anions from table 10.6 -# -# Phosphate - Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O - log_k 31.29 - - Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O - log_k 25.39 - - Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O - log_k 17.72 -# -# Anions from table 10.7 -# -# Borate - Hfo_wOH + B(OH)3 = Hfo_wH2BO3 + H2O - log_k 0.62 -# -# Anions from table 10.8 -# -# Sulfate - Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O - log_k 7.78 - - Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - log_k 0.79 -# -# Derived constants table 10.10 -# - Hfo_wOH + F- + H+ = Hfo_wF + H2O - log_k 8.7 - - Hfo_wOH + F- = Hfo_wOHF- - log_k 1.6 -# -# Carbonate: Van Geen et al., 1994 reoptimized for HFO -# 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L -# -# Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O -# log_k 12.56 -# -# Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O -# log_k 20.62 - -# 9/19/96 -# Added analytical expression for H2S, NH3, KSO4. -# Added species CaHSO4+. -# Added delta H for Goethite. - -RATES - -########### -#K-feldspar -########### -# -# Sverdrup, H.U., 1990, The kinetics of base cation release due to -# chemical weathering: Lund University Press, Lund, 246 p. -# -# Example of KINETICS data block for K-feldspar rate: -# KINETICS 1 -# K-feldspar -# -m0 2.16 # 10% K-fsp, 0.1 mm cubes -# -m 1.94 -# -parms 1.36e4 0.1 - -K-feldspar - -start - 1 rem specific rate from Sverdrup, 1990, in kmol/m2/s - 2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw) - 3 rem parm(2) = corrects for field rate relative to lab rate - 4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) - - 10 dif_temp = 1/TK - 1/298 - 20 pk_H = 12.5 + 3134 * dif_temp - 30 pk_w = 15.3 + 1838 * dif_temp - 40 pk_OH = 14.2 + 3134 * dif_temp - 50 pk_CO2 = 14.6 + 1677 * dif_temp - #60 pk_org = 13.9 + 1254 * dif_temp # rate increase with DOC - 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 - 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 - #72 rate = rate + 10^-pk_org * TOT("Doc")^0.4 - 80 moles = parm(1) * parm(2) * rate * (1 - SR("K-feldspar")) * time - 81 rem decrease rate on precipitation - 90 if SR("K-feldspar") > 1 then moles = moles * 0.1 - 100 save moles - -end - -########### -#Albite -########### -# -# Sverdrup, H.U., 1990, The kinetics of base cation release due to -# chemical weathering: Lund University Press, Lund, 246 p. -# -# Example of KINETICS data block for Albite rate: -# KINETICS 1 -# Albite -# -m0 0.43 # 2% Albite, 0.1 mm cubes -# -parms 2.72e3 0.1 - -Albite - -start - 1 rem specific rate from Sverdrup, 1990, in kmol/m2/s - 2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw) - 3 rem parm(2) = corrects for field rate relative to lab rate - 4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) - - 10 dif_temp = 1/TK - 1/298 - 20 pk_H = 12.5 + 3359 * dif_temp - 30 pk_w = 14.8 + 2648 * dif_temp - 40 pk_OH = 13.7 + 3359 * dif_temp - #41 rem ^12.9 in Sverdrup, but larger than for oligoclase... - 50 pk_CO2 = 14.0 + 1677 * dif_temp - #60 pk_org = 12.5 + 1254 * dif_temp # ...rate increase for DOC - 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 - 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 - #72 rate = rate + 10^-pk_org * TOT("Doc")^0.4 - 80 moles = parm(1) * parm(2) * rate * (1 - SR("Albite")) * time - 81 rem decrease rate on precipitation - 90 if SR("Albite") > 1 then moles = moles * 0.1 - 100 save moles - -end - -######## -#Calcite -######## -# -# Plummer, L.N., Wigley, T.M.L., and Parkhurst, D.L., 1978, -# American Journal of Science, v. 278, p. 179-216. -# -# Example of KINETICS data block for calcite rate: -# -# KINETICS 1 -# Calcite -# -tol 1e-8 -# -m0 3.e-3 -# -m 3.e-3 -# -parms 5.0 0.6 -Calcite - -start - 1 rem Modified from Plummer and others, 1978 - 2 rem parm(1) = A/V, 1/m parm(2) = exponent for m/m0 - - 10 si_cc = si("Calcite") - 20 if (m <= 0 and si_cc < 0) then goto 200 - 30 k1 = 10^(0.198 - 444.0 / (273.16 + tc) ) - 40 k2 = 10^(2.84 - 2177.0 / (273.16 + tc) ) - 50 if tc <= 25 then k3 = 10^(-5.86 - 317.0 / (273.16 + tc) ) - 60 if tc > 25 then k3 = 10^(-1.1 - 1737.0 / (273.16 + tc) ) - 70 t = 1 - 80 if m0 > 0 then t = m/m0 - 90 if t = 0 then t = 1 - 100 moles = parm(1) * (t)^parm(2) - 110 moles = moles * (k1 * act("H+") + k2 * act("CO2") + k3 * act("H2O")) - 120 moles = moles * (1 - 10^(2/3*si_cc)) - 130 moles = moles * time - 140 if (moles > m) then moles = m - 150 if (moles >= 0) then goto 200 - 160 temp = tot("Ca") - 170 mc = tot("C(4)") - 180 if mc < temp then temp = mc - 190 if -moles > temp then moles = -temp - 200 save moles - -end - -####### -#Pyrite -####### -# -# Williamson, M.A. and Rimstidt, J.D., 1994, -# Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454. -# -# Example of KINETICS data block for pyrite rate: -# KINETICS 1 -# Pyrite -# -tol 1e-8 -# -m0 5.e-4 -# -m 5.e-4 -# -parms 2.0 0.67 .5 -0.11 -Pyrite - -start - 1 rem Williamson and Rimstidt, 1994 - 2 rem parm(1) = log10(A/V, 1/dm) parm(2) = exp for (m/m0) - 3 rem parm(3) = exp for O2 parm(4) = exp for H+ - - 10 if (m <= 0) then goto 200 - 20 if (si("Pyrite") >= 0) then goto 200 - 20 rate = -10.19 + parm(1) + parm(3)*lm("O2") + parm(4)*lm("H+") + parm(2)*log10(m/m0) - 30 moles = 10^rate * time - 40 if (moles > m) then moles = m - 200 save moles - -end - -########## -#Organic_C -########## -# -# Example of KINETICS data block for Organic_C rate: -# KINETICS 1 -# Organic_C -# -tol 1e-8 -# # m in mol/kgw -# -m0 5e-3 -# -m 5e-3 -Organic_C - -start - 1 rem Additive Monod kinetics - 2 rem Electron acceptors: O2, NO3, and SO4 - - 10 if (m <= 0) then goto 200 - 20 mO2 = mol("O2") - 30 mNO3 = tot("N(5)") - 40 mSO4 = tot("S(6)") - 50 rate = 1.57e-9*mO2/(2.94e-4 + mO2) + 1.67e-11*mNO3/(1.55e-4 + mNO3) - 60 rate = rate + 1.e-13*mSO4/(1.e-4 + mSO4) - 70 moles = rate * m * (m/m0) * time - 80 if (moles > m) then moles = m - 200 save moles - -end - -########### -#Pyrolusite -########### -# -# Postma, D. and Appelo, C.A.J., 2000, GCA 64, in press -# -# Example of KINETICS data block for Pyrolusite -# KINETICS 1-12 -# Pyrolusite -# -tol 1.e-7 -# -m0 0.1 -# -m 0.1 -Pyrolusite - -start - 5 if (m <= 0.0) then goto 200 - 7 sr_pl = sr("Pyrolusite") - 9 if abs(1 - sr_pl) < 0.1 then goto 200 - 10 if (sr_pl > 1.0) then goto 100 - #20 rem initially 1 mol Fe+2 = 0.5 mol pyrolusite. k*A/V = 1/time (3 cells) - #22 rem time (3 cells) = 1.432e4. 1/time = 6.98e-5 - 30 Fe_t = tot("Fe(2)") - 32 if Fe_t < 1.e-8 then goto 200 - 40 moles = 6.98e-5 * Fe_t * (m/m0)^0.67 * time * (1 - sr_pl) - 50 if moles > Fe_t / 2 then moles = Fe_t / 2 - 70 if moles > m then moles = m - 90 goto 200 - 100 Mn_t = tot("Mn") - 110 moles = 2e-3 * 6.98e-5 * (1-sr_pl) * time - 120 if moles <= -Mn_t then moles = -Mn_t - 200 save moles - -end -END +# $Id: llnl.dat 4023 2010-02-09 21:02:42Z dlpark $ +#Data are from 'thermo.com.V8.R6.230' prepared by Jim Johnson at +#Lawrence Livermore National Laboratory, in Geochemist's Workbench +#format. Converted to Phreeqc format by Greg Anderson with help from +#David Parkhurst. A few organic species have been omitted. + +#Delta H of reaction calculated from Delta H of formations given in +#thermo.com.V8.R6.230 (8 Mar 2000). + +#Note that species have various valid temperature ranges, noted in +#the Range parameter. However, Phreeqc at present makes no use of +#this parameter, so it is the user's responsibility to remain in the +#valid temperature range for all the data used. + +#This version is relatively untested. Kindly send comments or +#corrections to Greg Anderson at greg@geology.utoronto.ca. + +LLNL_AQUEOUS_MODEL_PARAMETERS +-temperatures + 0.0100 25.0000 60.0000 100.0000 + 150.0000 200.0000 250.0000 300.0000 +#debye huckel a (adh) +-dh_a + 0.4939 0.5114 0.5465 0.5995 + 0.6855 0.7994 0.9593 1.2180 +#debye huckel b (bdh) +-dh_b + 0.3253 0.3288 0.3346 0.3421 + 0.3525 0.3639 0.3766 0.3925 +-bdot + 0.0374 0.0410 0.0438 0.0460 + 0.0470 0.0470 0.0340 0.0000 +#cco2 (coefficients for the Drummond (1981) polynomial) +-co2_coefs + -1.0312 0.0012806 + 255.9 0.4445 + -0.001606 +NAMED_EXPRESSIONS +# +# formation of O2 from H2O +# 2H2O = O2 + 4H+ + 4e- +# + Log_K_O2 + log_k -85.9951 + -delta_H 559.543 kJ/mol # Calculated enthalpy of reaction O2 +# Enthalpy of formation: -2.9 kcal/mol + -analytic 38.0229 7.99407E-03 -2.7655e+004 -1.4506e+001 199838.45 +# Range: 0-300 + + +SOLUTION_MASTER_SPECIES + +#element species alk gfw_formula element_gfw + +Acetate CH3COO- 0.0 CH3COO- 59.0252 +Ag Ag+ 0.0 Ag 107.8682 +Ag(1) Ag+ 0 Ag +Ag(2) Ag+2 0 Ag +Al Al+3 0.0 Al 26.9815 +Alkalinity HCO3- 1.0 Ca0.5(CO3)0.5 50.05 +Am Am+3 0.0 Am 243.0000 +Am(+2) Am+2 0.0 Am +Am(+3) Am+3 0.0 Am +Am(+4) Am+4 0.0 Am +Am(+5) AmO2+ 0.0 Am +Am(+6) AmO2+2 0.0 Am +Ar Ar 0.0 Ar 39.948 +As H2AsO4- 0.0 As 74.9216 +As(-3) AsH3 0.0 As +As(+3) H2AsO3- 0.0 As +As(+5) H2AsO4- 0.0 As +Au Au+ 0.0 Au 196.9665 +Au(+1) Au+ 0.0 Au +Au(+3) Au+3 0.0 Au +#B H3BO3 0.0 B 10.811 +B B(OH)3 0.0 B 10.811 +B(3) B(OH)3 0 B +B(-5) BH4- 0 B +Ba Ba+2 0.0 Ba 137.3270 +Be Be+2 0.0 Be 9.0122 +Br Br- 0.0 Br 79.904 +Br(-03) Br3- 0 Br +Br(-1) Br- 0 Br +Br(0) Br2 0 Br +Br(1) BrO- 0 Br +Br(5) BrO3- 0 Br +Br(7) BrO4- 0 Br +C(-4) CH4 0.0 CH4 +C(-3) C2H6 0.0 C2H6 +C(-2.667) C3H8 0 C3H8 +C(-2) C2H4 0.0 C2H4 +C(-1.14) C7H8 0 C7H8 +C(-1) C6H6 0 C6H6 +C(-0.667) C6H5OH 0 C6H5OH +C(-.286) C7H6O2 0 C7H6O2 +C HCO3- 1.0 HCO3 12.0110 +C(+1) C3H7COOH 0 C3H7COOH +C(+2) CO 0 C +C(+4) HCO3- 1.0 HCO3 +Ca Ca+2 0.0 Ca 40.078 +Cyanide Cyanide- 1.0 CN 26. +Cd Cd+2 0.0 Cd 112.411 +Ce Ce+3 0.0 Ce 140.115 +Ce(+2) Ce+2 0.0 Ce +Ce(+3) Ce+3 0.0 Ce +Ce(+4) Ce+4 0.0 Ce +Cl Cl- 0.0 Cl 35.4527 +Cl(-1) Cl- 0 Cl +Cl(1) ClO- 0 Cl +Cl(3) ClO2- 0 Cl +Cl(5) ClO3- 0 Cl +Cl(7) ClO4- 0 Cl +Co Co+2 0.0 Co 58.9332 +Co(+2) Co+2 0.0 Co +Co(+3) Co+3 0.0 Co +Cr CrO4-2 0.0 CrO4-2 51.9961 +Cr(+2) Cr+2 0.0 Cr +Cr(+3) Cr+3 0.0 Cr +Cr(+5) CrO4-3 0.0 Cr +Cr(+6) CrO4-2 0.0 Cr +Cs Cs+ 0.0 Cs 132.9054 +Cu Cu+2 0.0 Cu 63.546 +Cu(+1) Cu+1 0.0 Cu +Cu(+2) Cu+2 0.0 Cu +Dy Dy+3 0.0 Dy 162.50 +Dy(+2) Dy+2 0.0 Dy +Dy(+3) Dy+3 0.0 Dy +E e- 0.0 0.0 0.0 +Er Er+3 0.0 Er 167.26 +Er(+2) Er+2 0.0 Er +Er(+3) Er+3 0.0 Er +#Ethylene C2H4 0.0 C2H4 28.0536 +Eu Eu+3 0.0 Eu 151.965 +Eu(+2) Eu+2 0.0 Eu +Eu(+3) Eu+3 0.0 Eu +F F- 0.0 F 18.9984 +Fe Fe+2 0.0 Fe 55.847 +Fe(+2) Fe+2 0.0 Fe +Fe(+3) Fe+3 -2.0 Fe +Ga Ga+3 0.0 Ga 69.723 +Gd Gd+3 0.0 Gd 157.25 +Gd(+2) Gd+2 0.0 Gd +Gd(+3) Gd+3 0.0 Gd +H H+ -1. H 1.0079 +H(0) H2 0.0 H +H(+1) H+ -1. 0.0 +He He 0.0 He 4.0026 +He(0) He 0.0 He +Hf Hf+4 0.0 Hf 178.49 +Hg Hg+2 0.0 Hg 200.59 +Hg(+1) Hg2+2 0.0 Hg +Hg(+2) Hg+2 0.0 Hg +Ho Ho+3 0.0 Ho 164.9303 +Ho(+2) Ho+2 0.0 Ho +Ho(+3) Ho+3 0.0 Ho +I I- 0.0 I 126.9045 +I(-03) I3- 0 I +I(-1) I- 0.0 I +I(+1) IO- 0.0 I +I(+5) IO3- 0.0 I +I(+7) IO4- 0.0 I +In In+3 0.0 In 114.82 +K K+ 0.0 K 39.0983 +Kr Kr 0.0 Kr 83.80 +Kr(0) Kr 0.0 Kr +La La+3 0.0 La 138.9055 +La(2) La+2 0 La +La(3) La+3 0 La +Li Li+ 0.0 Li 6.9410 +Lu Lu+3 0.0 Lu 174.967 +Mg Mg+2 0.0 Mg 24.305 +Mn Mn+2 0.0 Mn 54.938 +Mn(+2) Mn+2 0.0 Mn +Mn(+3) Mn+3 0.0 Mn +Mn(+6) MnO4-2 0 Mn +Mn(+7) MnO4- 0 Mn +Mo MoO4-2 0.0 Mo 95.94 +N NH3 1.0 N 14.0067 +N(-3) NH3 1.0 N +N(-03) N3- 0.0 N +N(0) N2 0.0 N +N(+3) NO2- 0.0 N +N(+5) NO3- 0.0 N +Na Na+ 0.0 Na 22.9898 +Nd Nd+3 0.0 Nd 144.24 +Nd(+2) Nd+2 0.0 Nd +Nd(+3) Nd+3 0.0 Nd +Ne Ne 0.0 Ne 20.1797 +#Ne(0) Ne 0.0 Ne +Ni Ni+2 0.0 Ni 58.69 +Np Np+4 0.0 Np 237.048 +Np(+3) Np+3 0.0 Np +Np(+4) Np+4 0.0 Np +Np(+5) NpO2+ 0.0 Np +Np(+6) NpO2+2 0.0 Np +O H2O 0.0 O 15.994 +O(-2) H2O 0.0 0.0 +O(0) O2 0.0 O +O_phthalate O_phthalate-2 0 1 1 +P HPO4-2 2.0 P 30.9738 +P(-3) PH4+ 0 P +P(5) HPO4-2 2.0 P +Pb Pb+2 0.0 Pb 207.20 +Pb(+2) Pb+2 0.0 Pb +Pb(+4) Pb+4 0.0 Pb +Pd Pd+2 0.0 Pd 106.42 +Pm Pm+3 0.0 Pm 147.00 +Pm(+2) Pm+2 0.0 Pm +Pm(+3) Pm+3 0.0 Pm +Pr Pr+3 0.0 Pr 140.9076 +Pr(+2) Pr+2 0.0 Pr +Pr(+3) Pr+3 0.0 Pr +Pu Pu+4 0.0 Pu 244.00 +Pu(+3) Pu+3 0.0 Pu +Pu(+4) Pu+4 0.0 Pu +Pu(+5) PuO2+ 0.0 Pu +Pu(+6) PuO2+2 0.0 Pu +Ra Ra+2 0.0 Ra 226.025 +Rb Rb+ 0.0 Rb 85.4678 +Re ReO4- 0.0 Re 186.207 +Rn Rn 0.0 Rn 222.00 +Ru RuO4-2 0.0 Ru 101.07 +Ru(+2) Ru+2 0.0 Ru +Ru(+3) Ru+3 0.0 Ru +Ru(+4) Ru(OH)2+2 0.0 Ru +Ru(+6) RuO4-2 0.0 Ru +Ru(+7) RuO4- 0.0 Ru +Ru(+8) RuO4 0.0 Ru +S SO4-2 0.0 SO4 32.066 +S(-2) HS- 1.0 S +S(+2) S2O3-2 0.0 S +S(+3) S2O4-2 0.0 S +S(+4) SO3-2 0.0 S +S(+5) S2O5-2 0.0 S +S(+6) SO4-2 0.0 SO4 +S(+7) S2O8-2 0.0 S +S(+8) HSO5- 0.0 S +Sb Sb(OH)3 0.0 Sb 121.75 +Sc Sc+3 0.0 Sc 44.9559 +Se SeO3-2 0.0 Se 78.96 +Se(-2) HSe- 0.0 Se +Se(+4) SeO3-2 0.0 Se +Se(+6) SeO4-2 0.0 Se +Si SiO2 0.0 SiO2 28.0855 +Sm Sm+3 0.0 Sm 150.36 +Sm(+2) Sm+2 0.0 Sm +Sm(+3) Sm+3 0.0 Sm +Sn Sn+2 0.0 Sn 118.71 +Sn(+2) Sn+2 0.0 Sn +Sn(+4) Sn+4 0.0 Sn +Sr Sr+2 0.0 Sr 87.62 +Tb Tb+3 0.0 Tb 158.9253 +Tb(+2) Tb+2 0.0 Tb +Tb(+3) Tb+3 0.0 Tb +Tc TcO4- 0.0 Tc 98.00 +Tc(+3) Tc+3 0.0 Tc +Tc(+4) TcO+2 0.0 Tc +Tc(+5) TcO4-3 0.0 Tc +Tc(+6) TcO4-2 0.0 Tc +Tc(+7) TcO4- 0.0 Tc +Thiocyanate Thiocyanate- 0.0 SCN 58. +Th Th+4 0.0 Th 232.0381 +Ti Ti(OH)4 0.0 Ti 47.88 +Tl Tl+ 0.0 Tl 204.3833 +Tl(+1) Tl+ 0.0 Tl +Tl(+3) Tl+3 0.0 Tl +Tm Tm+3 0.0 Tm 168.9342 +Tm(+2) Tm+2 0.0 Tm +Tm(+3) Tm+3 0.0 Tm +U UO2+2 0.0 U 238.0289 +U(+3) U+3 0.0 U +U(+4) U+4 0.0 U +U(+5) UO2+ 0.0 U +U(+6) UO2+2 0.0 U +V VO+2 0.0 V 50.9415 +V(+3) V+3 0.0 V +V(+4) VO+2 0.0 V +V(+5) VO2+ 0.0 V +W WO4-2 0.0 W 183.85 +Xe Xe 0.0 Xe 131.29 +Xe(0) Xe 0.0 Xe +Y Y+3 0.0 Y 88.9059 +Yb Yb+3 0.0 Yb 173.04 +Yb(+2) Yb+2 0.0 Yb +Yb(+3) Yb+3 0.0 Yb +Zn Zn+2 0.0 Zn 65.39 +Zr Zr(OH)2+2 0.0 Zr 91.224 + +SOLUTION_SPECIES + +#HAcetate = HAcetate +# -llnl_gamma 3.0000 +# log_k 0 +# -delta_H 0 kJ/mol # Calculated enthalpy of reaction HAcetate +# Enthalpy of formation: -116.1 kcal/mol +CH3COO- = CH3COO- + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction CH3COO- +# Enthalpy of formation: -116.374 kcal/mol +Ag+ = Ag+ + -llnl_gamma 2.5000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ag+ +# Enthalpy of formation: 25.275 kcal/mol +Al+3 = Al+3 + -llnl_gamma 9.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Al+3 +# Enthalpy of formation: -128.681 kcal/mol +Am+3 = Am+3 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Am+3 +# Enthalpy of formation: -616.7 kJ/mol +Ar = Ar + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ar +# Enthalpy of formation: -2.87 kcal/mol +Au+ = Au+ + -llnl_gamma 4.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Au+ +# Enthalpy of formation: 47.58 kcal/mol +B(OH)3 = B(OH)3 + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction B(OH)3 +# Enthalpy of formation: -256.82 kcal/mol +Ba+2 = Ba+2 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ba+2 +# Enthalpy of formation: -128.5 kcal/mol +Be+2 = Be+2 + -llnl_gamma 8.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Be+2 +# Enthalpy of formation: -91.5 kcal/mol +Br- = Br- + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Br- +# Enthalpy of formation: -29.04 kcal/mol +Ca+2 = Ca+2 + -llnl_gamma 6.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ca+2 +# Enthalpy of formation: -129.8 kcal/mol +Cd+2 = Cd+2 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cd+2 +# Enthalpy of formation: -18.14 kcal/mol +Ce+3 = Ce+3 + -llnl_gamma 9.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ce+3 +# Enthalpy of formation: -167.4 kcal/mol +Cl- = Cl- + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cl- +# Enthalpy of formation: -39.933 kcal/mol +Co+2 = Co+2 + -llnl_gamma 6.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Co+2 +# Enthalpy of formation: -13.9 kcal/mol +CrO4-2 = CrO4-2 + -llnl_gamma 4.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction CrO4-2 +# Enthalpy of formation: -210.6 kcal/mol +Cs+ = Cs+ + -llnl_gamma 2.5000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cs+ +# Enthalpy of formation: -61.67 kcal/mol +Cu+2 = Cu+2 + -llnl_gamma 6.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cu+2 +# Enthalpy of formation: 15.7 kcal/mol +Dy+3 = Dy+3 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Dy+3 +# Enthalpy of formation: -166.5 kcal/mol +e- = e- + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction e- +# Enthalpy of formation: -0 kJ/mol +Er+3 = Er+3 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Er+3 +# Enthalpy of formation: -168.5 kcal/mol +#Ethylene = Ethylene +# -llnl_gamma 3.0000 +# log_k 0 +# -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ethylene +# Enthalpy of formation: 8.57 kcal/mol +Eu+3 = Eu+3 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Eu+3 +# Enthalpy of formation: -144.7 kcal/mol +F- = F- + -llnl_gamma 3.5000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction F- +# Enthalpy of formation: -80.15 kcal/mol +Fe+2 = Fe+2 + -llnl_gamma 6.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Fe+2 +# Enthalpy of formation: -22.05 kcal/mol +Ga+3 = Ga+3 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ga+3 +# Enthalpy of formation: -50.6 kcal/mol +Gd+3 = Gd+3 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Gd+3 +# Enthalpy of formation: -164.2 kcal/mol +H+ = H+ + -llnl_gamma 9.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction H+ +# Enthalpy of formation: -0 kJ/mol +He = He + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction He +# Enthalpy of formation: -0.15 kcal/mol +H2AsO4- = H2AsO4- + -llnl_gamma 4.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction H2AsO4- +# Enthalpy of formation: -217.39 kcal/mol +HCO3- = HCO3- + -llnl_gamma 4.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction HCO3- +# Enthalpy of formation: -164.898 kcal/mol +HPO4-2 = HPO4-2 + -llnl_gamma 4.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction HPO4-2 +# Enthalpy of formation: -308.815 kcal/mol +Hf+4 = Hf+4 + log_k 0 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf+4 +# Enthalpy of formation: -0 kcal/mol +Hg+2 = Hg+2 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Hg+2 +# Enthalpy of formation: 40.67 kcal/mol +Ho+3 = Ho+3 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ho+3 +# Enthalpy of formation: -169 kcal/mol +I- = I- + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction I- +# Enthalpy of formation: -13.6 kcal/mol +In+3 = In+3 + -llnl_gamma 9.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction In+3 +# Enthalpy of formation: -25 kcal/mol +K+ = K+ + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction K+ +# Enthalpy of formation: -60.27 kcal/mol +Kr = Kr + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Kr +# Enthalpy of formation: -3.65 kcal/mol +La+3 = La+3 + -llnl_gamma 9.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction La+3 +# Enthalpy of formation: -169.6 kcal/mol +Li+ = Li+ + -llnl_gamma 6.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Li+ +# Enthalpy of formation: -66.552 kcal/mol +Lu+3 = Lu+3 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Lu+3 +# Enthalpy of formation: -167.9 kcal/mol +Mg+2 = Mg+2 + -llnl_gamma 8.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Mg+2 +# Enthalpy of formation: -111.367 kcal/mol +Mn+2 = Mn+2 + -llnl_gamma 6.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Mn+2 +# Enthalpy of formation: -52.724 kcal/mol +MoO4-2 = MoO4-2 + -llnl_gamma 4.5000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction MoO4-2 +# Enthalpy of formation: -238.5 kcal/mol +NH3 = NH3 + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction NH3 +# Enthalpy of formation: -19.44 kcal/mol +Na+ = Na+ + -llnl_gamma 4.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Na+ +# Enthalpy of formation: -57.433 kcal/mol +Nd+3 = Nd+3 + -llnl_gamma 9.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Nd+3 +# Enthalpy of formation: -166.5 kcal/mol +Ne = Ne + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ne +# Enthalpy of formation: -0.87 kcal/mol +Ni+2 = Ni+2 + -llnl_gamma 6.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ni+2 +# Enthalpy of formation: -12.9 kcal/mol +Np+4 = Np+4 + -llnl_gamma 5.5000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Np+4 +# Enthalpy of formation: -556.001 kJ/mol +H2O = H2O + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction H2O +# Enthalpy of formation: -68.317 kcal/mol +O_phthalate-2 = O_phthalate-2 + -llnl_gamma 4.0000 + log_k 0 + -delta_H 0 # Not possible to calculate enthalpy of reaction O_phthalate-2 +# Enthalpy of formation: -0 kcal/mol +Pb+2 = Pb+2 + -llnl_gamma 4.5000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pb+2 +# Enthalpy of formation: 0.22 kcal/mol +Pd+2 = Pd+2 + -llnl_gamma 4.5000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pd+2 +# Enthalpy of formation: 42.08 kcal/mol +Pm+3 = Pm+3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pm+3 +# Enthalpy of formation: -688 kJ/mol +Pr+3 = Pr+3 + -llnl_gamma 9.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pr+3 +# Enthalpy of formation: -168.8 kcal/mol +Pu+4 = Pu+4 + -llnl_gamma 5.5000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pu+4 +# Enthalpy of formation: -535.893 kJ/mol +Ra+2 = Ra+2 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ra+2 +# Enthalpy of formation: -126.1 kcal/mol +Rb+ = Rb+ + -llnl_gamma 2.5000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Rb+ +# Enthalpy of formation: -60.02 kcal/mol +ReO4- = ReO4- + -llnl_gamma 4.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction ReO4- +# Enthalpy of formation: -188.2 kcal/mol +Rn = Rn + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Rn +# Enthalpy of formation: -5 kcal/mol +RuO4-2 = RuO4-2 + -llnl_gamma 4.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction RuO4-2 +# Enthalpy of formation: -457.075 kJ/mol +SO4-2 = SO4-2 + -llnl_gamma 4.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction SO4-2 +# Enthalpy of formation: -217.4 kcal/mol +Sb(OH)3 = Sb(OH)3 + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sb(OH)3 +# Enthalpy of formation: -773.789 kJ/mol +Sc+3 = Sc+3 + -llnl_gamma 9.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sc+3 +# Enthalpy of formation: -146.8 kcal/mol +SeO3-2 = SeO3-2 + -llnl_gamma 4.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction SeO3-2 +# Enthalpy of formation: -121.7 kcal/mol +SiO2 = SiO2 + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction SiO2 +# Enthalpy of formation: -209.775 kcal/mol +Sm+3 = Sm+3 + -llnl_gamma 9.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sm+3 +# Enthalpy of formation: -165.2 kcal/mol +Sn+2 = Sn+2 + -llnl_gamma 6.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sn+2 +# Enthalpy of formation: -2.1 kcal/mol +Sr+2 = Sr+2 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sr+2 +# Enthalpy of formation: -131.67 kcal/mol +Tb+3 = Tb+3 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tb+3 +# Enthalpy of formation: -166.9 kcal/mol +TcO4- = TcO4- + -llnl_gamma 4.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction TcO4- +# Enthalpy of formation: -716.269 kJ/mol +Th+4 = Th+4 + -llnl_gamma 11.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Th+4 +# Enthalpy of formation: -183.8 kcal/mol +Ti(OH)4 = Ti(OH)4 + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti(OH)4 +# Enthalpy of formation: -0 kcal/mol +Tl+ = Tl+ + -llnl_gamma 2.5000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tl+ +# Enthalpy of formation: 1.28 kcal/mol +Tm+3 = Tm+3 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tm+3 +# Enthalpy of formation: -168.5 kcal/mol +UO2+2 = UO2+2 + -llnl_gamma 4.5000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction UO2+2 +# Enthalpy of formation: -1019 kJ/mol +VO+2 = VO+2 + -llnl_gamma 4.5000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction VO+2 +# Enthalpy of formation: -116.3 kcal/mol +WO4-2 = WO4-2 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction WO4-2 +# Enthalpy of formation: -257.1 kcal/mol +Xe = Xe + -llnl_gamma 3.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Xe +# Enthalpy of formation: -4.51 kcal/mol +Y+3 = Y+3 + -llnl_gamma 9.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Y+3 +# Enthalpy of formation: -170.9 kcal/mol +Yb+3 = Yb+3 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Yb+3 +# Enthalpy of formation: -160.3 kcal/mol +Zn+2 = Zn+2 + -llnl_gamma 6.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Zn+2 +# Enthalpy of formation: -36.66 kcal/mol +Zr(OH)2+2 = Zr(OH)2+2 + -llnl_gamma 4.5000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Zr(OH)2+2 +# Enthalpy of formation: -260.717 kcal/mol + +2H2O = O2 + 4H+ + 4e- + -CO2_llnl_gamma + log_k -85.9951 + -delta_H 559.543 kJ/mol # Calculated enthalpy of reaction O2 +# Enthalpy of formation: -2.9 kcal/mol + -analytic 38.0229 7.99407E-03 -2.7655e+004 -1.4506e+001 199838.45 +# -Range: 0-300 + + 1.0000 SO4-- + 1.0000 H+ = HS- +2.0000 O2 + -llnl_gamma 3.5 + log_k -138.3169 + -delta_H 869.226 kJ/mol # Calculated enthalpy of reaction HS- +# Enthalpy of formation: -3.85 kcal/mol + -analytic 2.6251e+001 3.9525e-002 -4.5443e+004 -1.1107e+001 3.1843e+005 +# -Range: 0-300 + + .5000 O2 + 2.0000 HS- = S2-- + H2O +#2 HS- = S2-- +2 H+ + 2e- + -llnl_gamma 4.0 + log_k 33.2673 + -delta_H 0 # Not possible to calculate enthalpy of reaction S2-2 +# Enthalpy of formation: -0 kcal/mol + -analytic 0.21730E+02 -0.12307E-02 0.10098E+05 -0.88813E+01 0.15757E+03 + -mass_balance S(-2)2 +# -Range: 0-300 +# -add_logk Log_K_O2 0.5 + +2.0000 H+ + 2.0000 SO3-- = S2O3-- + O2 + H2O + -llnl_gamma 4.0 + log_k -40.2906 + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O3-2 +# Enthalpy of formation: -0 kcal/mol + -analytic 0.77679E+02 0.65761E-01 -0.15438E+05 -0.34651E+02 -0.24092E+03 +# -Range: 0-300 + + 1.0000 H+ + 1.0000 Ag+ + 0.2500 O2 = Ag++ +0.5000 H2O + -llnl_gamma 4.5 + log_k -12.1244 + -delta_H 22.9764 kJ/mol # Calculated enthalpy of reaction Ag+2 +# Enthalpy of formation: 64.2 kcal/mol + -analytic -4.7312e+001 -1.5239e-002 -4.1954e+002 1.6622e+001 -6.5328e+000 +# -Range: 0-300 + + 1.0000 Am+++ + 0.5000 H2O = Am++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -60.3792 + -delta_H 401.953 kJ/mol # Calculated enthalpy of reaction Am+2 +# Enthalpy of formation: -354.633 kJ/mol + -analytic 1.4922e+001 3.5993e-003 -2.0987e+004 -2.4146e+000 -3.2749e+002 +# -Range: 0-300 + + 1.0000 H+ + 1.0000 Am+++ + 0.2500 O2 = Am++++ +0.5000 H2O + -llnl_gamma 5.5 + log_k -22.7073 + -delta_H 70.8142 kJ/mol # Calculated enthalpy of reaction Am+4 +# Enthalpy of formation: -406 kJ/mol + -analytic -1.7460e+001 -2.2336e-003 -3.5139e+003 2.9102e+000 -5.4826e+001 +# -Range: 0-300 + + 1.0000 H2O + 1.0000 Am+++ + 0.5000 O2 = AmO2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -15.384 + -delta_H 104.345 kJ/mol # Calculated enthalpy of reaction AmO2+ +# Enthalpy of formation: -804.26 kJ/mol + -analytic 1.4110e+001 6.9728e-003 -4.2098e+003 -6.0936e+000 -2.1192e+005 +# -Range: 0-300 + + 1.0000 Am+++ + 0.7500 O2 + 0.5000 H2O = AmO2++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -20.862 + -delta_H 117.959 kJ/mol # Calculated enthalpy of reaction AmO2+2 +# Enthalpy of formation: -650.76 kJ/mol + -analytic 5.7163e+001 4.0278e-003 -8.4633e+003 -2.0550e+001 -1.3208e+002 +# -Range: 0-300 + + 1.0000 H2AsO4- + 1.0000 H+ = AsH3 +2.0000 O2 + -llnl_gamma 3.0 + log_k -155.1907 + -delta_H 931.183 kJ/mol # Calculated enthalpy of reaction AsH3 +# Enthalpy of formation: 10.968 kcal/mol + -analytic 2.8310e+002 9.6961e-002 -5.4830e+004 -1.1449e+002 -9.3119e+002 +# -Range: 0-200 + + 2.0000 H+ + 1.0000 Au+ + 0.5000 O2 = Au+++ +1.0000 H2O + -llnl_gamma 5.0 + log_k -4.3506 + -delta_H -73.2911 kJ/mol # Calculated enthalpy of reaction Au+3 +# Enthalpy of formation: 96.93 kcal/mol + -analytic -6.8661e+001 -2.6838e-002 4.4549e+003 2.3178e+001 6.9534e+001 +# -Range: 0-300 + + 1.0000 H2O + 1.0000 B(OH)3 = BH4- +2.0000 O2 +1.0000 H+ + -llnl_gamma 4.0 + log_k -237.1028 + -delta_H 1384.24 kJ/mol # Calculated enthalpy of reaction BH4- +# Enthalpy of formation: 48.131 kJ/mol + -analytic -7.4930e+001 -7.2794e-003 -6.9168e+004 2.9105e+001 -1.0793e+003 +# -Range: 0-300 + + 3.0000 Br- + 2.0000 H+ + 0.5000 O2 = Br3- +1.0000 H2O + -llnl_gamma 4.0 + log_k +7.0696 + -delta_H -45.6767 kJ/mol # Calculated enthalpy of reaction Br3- +# Enthalpy of formation: -31.17 kcal/mol + -analytic 1.4899e+002 6.4017e-002 -3.3831e+002 -6.4596e+001 -5.3232e+000 +# -Range: 0-300 + + 1.0000 Br- + 0.5000 O2 = BrO- + -llnl_gamma 4.0 + log_k -10.9167 + -delta_H 33.4302 kJ/mol # Calculated enthalpy of reaction BrO- +# Enthalpy of formation: -22.5 kcal/mol + -analytic 5.4335e+001 1.9509e-003 -4.2860e+003 -2.0799e+001 -6.6896e+001 +# -Range: 0-300 + + 1.5000 O2 + 1.0000 Br- = BrO3- + -llnl_gamma 3.5 + log_k -17.1443 + -delta_H 72.6342 kJ/mol # Calculated enthalpy of reaction BrO3- +# Enthalpy of formation: -16.03 kcal/mol + -analytic 3.7156e+001 -4.7855e-003 -4.6208e+003 -1.4136e+001 -2.1385e+005 +# -Range: 0-300 + + 2.0000 O2 + 1.0000 Br- = BrO4- + -llnl_gamma 4.0 + log_k -33.104 + -delta_H 158.741 kJ/mol # Calculated enthalpy of reaction BrO4- +# Enthalpy of formation: 3.1 kcal/mol + -analytic 8.1393e+001 -2.3409e-003 -1.2290e+004 -2.9336e+001 -1.9180e+002 +# -Range: 0-300 + +# 1.0000 NH3 + 1.0000 HCO3- = CN- +2.0000 H2O +0.5000 O2 +# -llnl_gamma 3.0 +# log_k -56.0505 +# -delta_H 344.151 kJ/mol # Calculated enthalpy of reaction CN- +# # Enthalpy of formation: 36 kcal/mol +# -analytic -1.1174e+001 3.8167e-003 -1.7063e+004 4.5349e+000 -2.6625e+002 +# # -Range: 0-300 + +Cyanide- = Cyanide- + log_k 0 + + H+ + HCO3- + H2O = CH4 + 2.0000 O2 + -llnl_gamma 3.0 + log_k -144.1412 + -delta_H 863.599 kJ/mol # Calculated enthalpy of reaction CH4 +# Enthalpy of formation: -21.01 kcal/mol + -analytic -0.41698E+02 0.36584E-01 -0.40675E+05 0.93479E+01 -0.63468E+03 +# -Range: 0-300 + + 2.0000 H+ + 2.0000 HCO3- + H2O = C2H6 + 3.5000 O2 + -llnl_gamma 3.0 + log_k -228.6072 + -delta_H 0 # Not possible to calculate enthalpy of reaction C2H6 +# Enthalpy of formation: -0 kcal/mol + -analytic 0.10777E+02 0.72105E-01 -0.67489E+05 -0.13915E+02 -0.10531E+04 +# -Range: 0-300 + + 2.000 H+ + 2.0000 HCO3- = C2H4 + 3.0000 O2 + -llnl_gamma 3.0 + log_k -254.5034 + -delta_H 1446.6 kJ/mol # Calculated enthalpy of reaction C2H4 +# Enthalpy of formation: 24.65 kcal/mol + -analytic -0.30329E+02 0.71187E-01 -0.73140E+05 0.00000E+00 0.00000E+00 +# -Range: 0-300 + + 1.0000 HCO3- + 1.0000 H+ = CO +1.0000 H2O +0.5000 O2 + -llnl_gamma 3.0 + log_k -41.7002 + -delta_H 277.069 kJ/mol # Calculated enthalpy of reaction CO +# Enthalpy of formation: -28.91 kcal/mol + -analytic 1.0028e+002 4.6877e-002 -1.8062e+004 -4.0263e+001 3.8031e+005 +# -Range: 0-300 + + 1.0000 Ce+++ + 0.5000 H2O = Ce++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -83.6754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce+2 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 H+ + 1.0000 Ce+++ + 0.2500 O2 = Ce++++ +0.5000 H2O + -llnl_gamma 5.5 + log_k -7.9154 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce+4 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 Cl- + 0.5000 O2 = ClO- + -llnl_gamma 4.0 + log_k -15.1014 + -delta_H 66.0361 kJ/mol # Calculated enthalpy of reaction ClO- +# Enthalpy of formation: -25.6 kcal/mol + -analytic 6.1314e+001 3.4812e-003 -6.0952e+003 -2.3043e+001 -9.5128e+001 +# -Range: 0-300 + + 1.0000 O2 + 1.0000 Cl- = ClO2- + -llnl_gamma 4.0 + log_k -23.108 + -delta_H 112.688 kJ/mol # Calculated enthalpy of reaction ClO2- +# Enthalpy of formation: -15.9 kcal/mol + -analytic 3.3638e+000 -6.1675e-003 -4.9726e+003 -2.0467e+000 -2.5769e+005 +# -Range: 0-300 + + 1.5000 O2 + 1.0000 Cl- = ClO3- + -llnl_gamma 3.5 + log_k -17.2608 + -delta_H 81.3077 kJ/mol # Calculated enthalpy of reaction ClO3- +# Enthalpy of formation: -24.85 kcal/mol + -analytic 2.8852e+001 -4.8281e-003 -4.6779e+003 -1.0772e+001 -2.0783e+005 +# -Range: 0-300 + + 2.0000 O2 + 1.0000 Cl- = ClO4- + -llnl_gamma 3.5 + log_k -15.7091 + -delta_H 62.0194 kJ/mol # Calculated enthalpy of reaction ClO4- +# Enthalpy of formation: -30.91 kcal/mol + -analytic 7.0280e+001 -6.8927e-005 -5.5690e+003 -2.6446e+001 -1.6596e+005 +# -Range: 0-300 + + 1.0000 H+ + 1.0000 Co++ + 0.2500 O2 = Co+++ +0.5000 H2O + -llnl_gamma 5.0 + log_k -11.4845 + -delta_H 10.3198 kJ/mol # Calculated enthalpy of reaction Co+3 +# Enthalpy of formation: 22 kcal/mol + -analytic -2.2827e+001 -1.2222e-002 -7.2117e+002 7.0306e+000 -1.1247e+001 +# -Range: 0-300 + + 4.0000 H+ + 1.0000 CrO4-- = Cr++ +2.0000 H2O +1.0000 O2 + -llnl_gamma 4.5 + log_k -21.6373 + -delta_H 153.829 kJ/mol # Calculated enthalpy of reaction Cr+2 +# Enthalpy of formation: -34.3 kcal/mol + -analytic 6.9003e+001 6.2884e-002 -6.9847e+003 -3.4720e+001 -1.0901e+002 +# -Range: 0-300 + + 5.0000 H+ + 1.0000 CrO4-- = Cr+++ +2.5000 H2O +0.7500 O2 + -llnl_gamma 9.0 + log_k +8.3842 + -delta_H -81.0336 kJ/mol # Calculated enthalpy of reaction Cr+3 +# Enthalpy of formation: -57 kcal/mol + -analytic 5.1963e+001 6.0932e-002 5.4256e+003 -3.2290e+001 8.4645e+001 +# -Range: 0-300 + + 0.5000 H2O + 1.0000 CrO4-- = CrO4--- +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.0 + log_k -19.7709 + -delta_H 0 # Not possible to calculate enthalpy of reaction CrO4-3 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 Cu++ + 0.5000 H2O = Cu+ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.0 + log_k -18.7704 + -delta_H 145.877 kJ/mol # Calculated enthalpy of reaction Cu+ +# Enthalpy of formation: 17.132 kcal/mol + -analytic 3.7909e+001 1.3731e-002 -8.1506e+003 -1.3508e+001 -1.2719e+002 +# -Range: 0-300 + + 1.0000 Dy+++ + 0.5000 H2O = Dy++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -61.0754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy+2 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 Er+++ + 0.5000 H2O = Er++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -70.1754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er+2 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 Eu+++ + 0.5000 H2O = Eu++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -27.5115 + -delta_H 217.708 kJ/mol # Calculated enthalpy of reaction Eu+2 +# Enthalpy of formation: -126.1 kcal/mol + -analytic 3.0300e+001 1.4126e-002 -1.2319e+004 -9.0585e+000 1.5289e+005 +# -Range: 0-300 + + 1.0000 H+ + 1.0000 Fe++ + 0.2500 O2 = Fe+++ +0.5000 H2O + -llnl_gamma 9.0 + log_k +8.4899 + -delta_H -97.209 kJ/mol # Calculated enthalpy of reaction Fe+3 +# Enthalpy of formation: -11.85 kcal/mol + -analytic -1.7808e+001 -1.1753e-002 4.7609e+003 5.5866e+000 7.4295e+001 +# -Range: 0-300 + + 1.0000 Gd+++ + 0.5000 H2O = Gd++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -84.6754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd+2 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 H2O = H2 +0.5000 O2 + -CO2_llnl_gamma + log_k -46.1066 + -delta_H 275.588 kJ/mol # Calculated enthalpy of reaction H2 +# Enthalpy of formation: -1 kcal/mol + -analytic 6.6835e+001 1.7172e-002 -1.8849e+004 -2.4092e+001 4.2501e+005 +# -Range: 0-300 + + 1.0000 H2AsO4- = H2AsO3- +0.5000 O2 + -llnl_gamma 4.0 + log_k -30.5349 + -delta_H 188.698 kJ/mol # Calculated enthalpy of reaction H2AsO3- +# Enthalpy of formation: -170.84 kcal/mol + -analytic 7.4245e+001 1.4885e-002 -1.4218e+004 -2.6403e+001 3.3822e+005 +# -Range: 0-300 + + 1.0000 SO4-- + 1.0000 H+ + 0.5000 O2 = HSO5- + -llnl_gamma 4.0 + log_k -17.2865 + -delta_H 140.038 kJ/mol # Calculated enthalpy of reaction HSO5- +# Enthalpy of formation: -185.38 kcal/mol + -analytic 5.9944e+001 3.0904e-002 -7.7494e+003 -2.4420e+001 -1.2094e+002 +# -Range: 0-300 + + 1.0000 SeO3-- + 1.0000 H+ = HSe- +1.5000 O2 + -llnl_gamma 4.0 + log_k -76.8418 + -delta_H 506.892 kJ/mol # Calculated enthalpy of reaction HSe- +# Enthalpy of formation: 3.8 kcal/mol + -analytic 4.7105e+001 4.3116e-002 -2.6949e+004 -1.9895e+001 2.5305e+005 +# -Range: 0-300 + + 2.0000 Hg++ + 1.0000 H2O = Hg2++ +2.0000 H+ +0.5000 O2 + -llnl_gamma 4.0 + log_k -12.208 + -delta_H 106.261 kJ/mol # Calculated enthalpy of reaction Hg2+2 +# Enthalpy of formation: 39.87 kcal/mol + -analytic 5.5010e+001 1.9050e-002 -4.7967e+003 -2.2952e+001 -7.4864e+001 +# -Range: 0-300 + + 1.0000 Ho+++ + 0.5000 H2O = Ho++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -67.3754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho+2 +# Enthalpy of formation: -0 kcal/mol + + 3.0000 I- + 2.0000 H+ + 0.5000 O2 = I3- +1.0000 H2O + -llnl_gamma 4.0 + log_k +24.7278 + -delta_H -160.528 kJ/mol # Calculated enthalpy of reaction I3- +# Enthalpy of formation: -12.3 kcal/mol + -analytic 1.4788e+002 6.6206e-002 5.7407e+003 -6.5517e+001 8.9535e+001 +# -Range: 0-300 + + 1.0000 I- + 0.5000 O2 = IO- + -llnl_gamma 4.0 + log_k -0.9038 + -delta_H -44.5596 kJ/mol # Calculated enthalpy of reaction IO- +# Enthalpy of formation: -25.7 kcal/mol + -analytic 2.7568e+000 -5.5671e-003 3.2484e+003 -3.9065e+000 -2.8800e+005 +# -Range: 0-300 + + 1.5000 O2 + 1.0000 I- = IO3- + -llnl_gamma 4.0 + log_k +17.6809 + -delta_H -146.231 kJ/mol # Calculated enthalpy of reaction IO3- +# Enthalpy of formation: -52.9 kcal/mol + -analytic -2.2971e+001 -1.3478e-002 9.5977e+003 6.6010e+000 -3.4371e+005 +# -Range: 0-300 + + 2.0000 O2 + 1.0000 I- = IO4- + -llnl_gamma 3.5 + log_k +6.9621 + -delta_H -70.2912 kJ/mol # Calculated enthalpy of reaction IO4- +# Enthalpy of formation: -36.2 kcal/mol + -analytic 2.1232e+001 -7.8107e-003 3.5803e+003 -8.5272e+000 -2.5422e+005 +# -Range: 0-300 + + 1.0000 La+++ + 0.5000 H2O = La++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -72.4754 + -delta_H 0 # Not possible to calculate enthalpy of reaction La+2 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 Mn++ + 1.0000 H+ + 0.2500 O2 = Mn+++ +0.5000 H2O + -llnl_gamma 5.0 + log_k -4.0811 + -delta_H -65.2892 kJ/mol # Calculated enthalpy of reaction Mn+3 +# Enthalpy of formation: -34.895 kcal/mol + -analytic 3.8873e+001 1.7458e-002 2.0757e+003 -2.2274e+001 3.2378e+001 +# -Range: 0-300 + + 2.0000 H2O + 1.0000 O2 + 1.0000 Mn++ = MnO4-- +4.0000 H+ + -llnl_gamma 4.0 + log_k -32.4146 + -delta_H 151.703 kJ/mol # Calculated enthalpy of reaction MnO4-2 +# Enthalpy of formation: -156 kcal/mol + -analytic -1.0407e+001 -4.6464e-002 -1.0515e+004 1.0943e+001 -1.6408e+002 +# -Range: 0-300 + + 2.0000 NH3 + 1.5000 O2 = N2 +3.0000 H2O + -llnl_gamma 3.0 + log_k +116.4609 + -delta_H -687.08 kJ/mol # Calculated enthalpy of reaction N2 +# Enthalpy of formation: -2.495 kcal/mol + -analytic -8.2621e+001 -1.4671e-002 4.0068e+004 2.9090e+001 -2.5924e+005 +# -Range: 0-300 + + 3.0000 NH3 + 2.0000 O2 = N3- +4.0000 H2O +1.0000 H+ + -llnl_gamma 4.0 + log_k +96.9680 + -delta_H -599.935 kJ/mol # Calculated enthalpy of reaction N3- +# Enthalpy of formation: 275.14 kJ/mol + -analytic -9.1080e+001 -4.0817e-002 3.6350e+004 3.4484e+001 -6.2678e+005 +# -Range: 0-300 + + 1.5000 O2 + 1.0000 NH3 = NO2- +1.0000 H+ +1.0000 H2O + -llnl_gamma 3.0 + log_k +46.8653 + -delta_H -290.901 kJ/mol # Calculated enthalpy of reaction NO2- +# Enthalpy of formation: -25 kcal/mol + -analytic -1.7011e+001 -3.3459e-002 1.3999e+004 1.1078e+001 -4.8255e+004 +# -Range: 0-300 + + 2.0000 O2 + 1.0000 NH3 = NO3- +1.0000 H+ +1.0000 H2O + -llnl_gamma 3.0 + log_k +62.1001 + -delta_H -387.045 kJ/mol # Calculated enthalpy of reaction NO3- +# Enthalpy of formation: -49.429 kcal/mol + -analytic -3.9468e+001 -3.9697e-002 2.0614e+004 1.8872e+001 -2.1917e+005 +# -Range: 0-300 + + 1.0000 Nd+++ + 0.5000 H2O = Nd++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -64.3754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd+2 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 Np++++ + 0.5000 H2O = Np+++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 5.0 + log_k -19.0131 + -delta_H 168.787 kJ/mol # Calculated enthalpy of reaction Np+3 +# Enthalpy of formation: -527.1 kJ/mol + -analytic 1.6615e+001 2.4645e-003 -8.9343e+003 -2.5829e+000 -1.3942e+002 +# -Range: 0-300 + + 1.5000 H2O + 1.0000 Np++++ + 0.2500 O2 = NpO2+ +3.0000 H+ + -llnl_gamma 4.0 + log_k +10.5928 + -delta_H 9.80089 kJ/mol # Calculated enthalpy of reaction NpO2+ +# Enthalpy of formation: -977.991 kJ/mol + -analytic 1.2566e+001 7.5467e-003 1.6921e+003 -2.7125e+000 -2.8381e+005 +# -Range: 0-300 + + 1.0000 Np++++ + 1.0000 H2O + 0.5000 O2 = NpO2++ +2.0000 H+ + -llnl_gamma 4.5 + log_k +11.2107 + -delta_H -12.5719 kJ/mol # Calculated enthalpy of reaction NpO2+2 +# Enthalpy of formation: -860.478 kJ/mol + -analytic 2.5510e+001 1.1973e-003 1.2753e+003 -6.7082e+000 -2.0792e+005 +# -Range: 0-300 + + 2.0000 H+ + 1.0000 Pb++ + 0.5000 O2 = Pb++++ +1.0000 H2O + -llnl_gamma 5.5 + log_k -14.1802 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb+4 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 Pm+++ + 0.5000 H2O = Pm++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -65.2754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm+2 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 Pr+++ + 0.5000 H2O = Pr++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -79.9754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr+2 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 Pu++++ + 0.5000 H2O = Pu+++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 5.0 + log_k -4.5071 + -delta_H 84.2268 kJ/mol # Calculated enthalpy of reaction Pu+3 +# Enthalpy of formation: -591.552 kJ/mol + -analytic 2.0655e+001 3.2688e-003 -4.7434e+003 -4.1907e+000 1.2944e+004 +# -Range: 0-300 + + 1.5000 H2O + 1.0000 Pu++++ + 0.2500 O2 = PuO2+ +3.0000 H+ + -llnl_gamma 4.0 + log_k +2.9369 + -delta_H 53.5009 kJ/mol # Calculated enthalpy of reaction PuO2+ +# Enthalpy of formation: -914.183 kJ/mol + -analytic -2.0464e+001 2.8265e-003 1.2131e+003 9.2156e+000 -3.8400e+005 +# -Range: 0-300 + + 1.0000 Pu++++ + 1.0000 H2O + 0.5000 O2 = PuO2++ +2.0000 H+ + -llnl_gamma 4.5 + log_k +8.1273 + -delta_H 6.22013 kJ/mol # Calculated enthalpy of reaction PuO2+2 +# Enthalpy of formation: -821.578 kJ/mol + -analytic 3.5219e+001 2.5202e-003 -2.4760e+002 -1.0120e+001 -1.7569e+005 +# -Range: 0-300 + + 4.0000 H+ + 1.0000 RuO4-- = Ru(OH)2++ +1.0000 H2O +0.5000 O2 + -llnl_gamma 4.5 + log_k +25.2470 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2+2 +# Enthalpy of formation: -0 kcal/mol + + 4.0000 H+ + 1.0000 RuO4-- = Ru++ +2.0000 H2O +1.0000 O2 + -llnl_gamma 4.5 + log_k +0.1610 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru+2 +# Enthalpy of formation: -0 kcal/mol + + 5.0000 H+ + 1.0000 RuO4-- = Ru+++ +2.5000 H2O +0.7500 O2 + -llnl_gamma 5.0 + log_k +17.6149 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru+3 +# Enthalpy of formation: -0 kcal/mol + + 2.0000 H+ + 1.0000 RuO4-- + 0.5000 O2 = RuO4 +1.0000 H2O + -llnl_gamma 3.0 + log_k +16.2672 + -delta_H -60.8385 kJ/mol # Calculated enthalpy of reaction RuO4 +# Enthalpy of formation: -238.142 kJ/mol + -analytic 1.9964e+002 6.8286e-002 -1.2020e+003 -8.0706e+001 -2.0481e+001 +# -Range: 0-200 + + 1.0000 RuO4-- + 1.0000 H+ + 0.2500 O2 = RuO4- +0.5000 H2O + -llnl_gamma 4.0 + log_k +11.6024 + -delta_H -16.1998 kJ/mol # Calculated enthalpy of reaction RuO4- +# Enthalpy of formation: -333.389 kJ/mol + -analytic -1.9653e+000 8.8623e-003 1.8588e+003 1.8998e+000 2.9005e+001 +# -Range: 0-300 + + 2.0000 H+ + 2.0000 SO3-- = S2O4-- + .500 O2 + H2O + -llnl_gamma 5.0 +# log_k -25.2075 + log_k -25.2076 + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O4-2 +# Enthalpy of formation: -0 kcal/mol +# -analytic -0.15158E+05 -0.31356E+01 0.47072E+06 0.58544E+04 0.73497E+04 + -analytic -2.3172e2 2.0393e-3 -7.1011e0 8.3239e1 9.4155e-1 +# changed 3/23/04, corrected to supcrt temperature dependence, GMA +# -Range: 0-300 + +# 2.0000 SO3-- + .500 O2 + 2.0000 H+ = S2O6-- + H2O +# H2O = .5 O2 + 2H+ + 2e- +2SO3-- = S2O6-- + 2e- + -llnl_gamma 4.0 + log_k 41.8289 + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O6-2 +# Enthalpy of formation: -0 kcal/mol + -analytic 0.14458E+03 0.61449E-01 0.71877E+04 -0.58657E+02 0.11211E+03 +# -Range: 0-300 + -add_logk Log_K_O2 0.5 + + + 2.0000 SO3-- + 1.500 O2 + 2.0000 H+ = S2O8-- + H2O + -llnl_gamma 4.0 + log_k 70.7489 + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O8-2 +# Enthalpy of formation: -0 kcal/mol + -analytic 0.18394E+03 0.60414E-01 0.13864E+05 -0.71804E+02 0.21628E+03 +# -Range: 0-300 + +O2 + H+ + 3.0000 HS- = S3-- + 2.0000 H2O +# 2H2O = O2 + 4H+ + 4e- +#3HS- = S3-- + 3H+ + 4e- + -llnl_gamma 4.0 + log_k 79.3915 + -delta_H 0 # Not possible to calculate enthalpy of reaction S3-2 +# Enthalpy of formation: -0 kcal/mol + -analytic -0.51626E+02 0.70208E-02 0.31797E+05 0.11927E+02 -0.64249E+06 + -mass_balance S(-2)3 +# -Range: 0-300 +# -add_logk Log_K_O2 1.0 + +# 3.0000 SO3-- + 4.0000 H+ = S3O6-- + .500 O2 + 2.0000 H2O +# .5 O2 + 2H+ + 2e- = H2O +3SO3-- + 6 H+ + 2e- = S3O6-- + 3H2O + -llnl_gamma 4.0 + log_k -6.2316 + -delta_H 0 # Not possible to calculate enthalpy of reaction S3O6-2 +# Enthalpy of formation: -0 kcal/mol + -analytic 0.23664E+03 0.12702E+00 -0.10110E+05 -0.99715E+02 -0.15783E+03 +# -Range: 0-300 + -add_logk Log_K_O2 -0.5 + +1.5000 O2 + 2.0000 H+ + 4.0000 HS- = S4-- + 3.0000 H2O +#4 HS- = S4-- + 4H+ + 6e- + -llnl_gamma 4.0 + log_k 125.2958 + -delta_H 0 # Not possible to calculate enthalpy of reaction S4-2 +# Enthalpy of formation: -0 kcal/mol + -analytic 0.20875E+03 0.58133E-01 0.33278E+05 -0.85833E+02 0.51921E+03 + -mass_balance S(-2)4 +# -Range: 0-300 +# -add_logk Log_K_O2 1.5 + +# 4.0000 SO3-- + 6.0000 H+ = S4O6-- + 1.500 O2 + 3.0000 H2O +4 SO3-- + 12 H+ + 6e- = S4O6-- + 6H2O + -llnl_gamma 4.0 + log_k -38.3859 + -delta_H 0 # Not possible to calculate enthalpy of reaction S4O6-2 +# Enthalpy of formation: -0 kcal/mol + -analytic 0.32239E+03 0.19555E+00 -0.23617E+05 -0.13729E+03 -0.36862E+03 +# -Range: 0-300 + -add_logk Log_K_O2 -1.5 + +2.0000 O2 + 3.0000 H+ + 5.0000 HS- = S5-- + 4.0000 H2O +#5 HS- = S5-- + 5H+ + 8e- + -llnl_gamma 4.0 + log_k 170.9802 + -delta_H 0 # Not possible to calculate enthalpy of reaction S5-2 +# Enthalpy of formation: -0 kcal/mol + -analytic 0.30329E+03 0.88033E-01 0.44739E+05 -0.12471E+03 0.69803E+03 + -mass_balance S(-2)5 +# -Range: 0-300 +# -add_logk Log_K_O2 2 + +# 5.0000 SO3-- + 8.0000 H+ = S5O6-- + 2.5000 O2 + 4.0000 H2O +# 2.5O2 + 10 H+ + 10e- = 5H2O +5SO3-- + 18H+ + 10e- = S5O6-- + 9H2O + -llnl_gamma 4.0 + log_k -99.4206 + -delta_H 0 # Not possible to calculate enthalpy of reaction S5O6-2 +# Enthalpy of formation: -0 kcal/mol + -analytic 0.42074E+03 0.25833E+00 -0.43878E+05 -0.18178E+03 -0.68480E+03 +# -Range: 0-300 + -add_logk Log_K_O2 -2.5 + +# 1.0000 H+ + HCO3- + HS- + NH3 = SCN- + 3.0000 H2O +# -llnl_gamma 3.5 +# log_k 3.0070 +# -delta_H 0 # Not possible to calculate enthalpy of reaction SCN- +## Enthalpy of formation: -0 kcal/mol +# -analytic 0.16539E+03 0.49623E-01 -0.44624E+04 -0.65544E+02 -0.69680E+02 +## -Range: 0-300 + +Thiocyanate- = Thiocyanate- + log_k 0.0 + + 1.0000 SO4-- = SO3-- +0.5000 O2 + -llnl_gamma 4.5 + log_k -46.6244 + -delta_H 267.985 kJ/mol # Calculated enthalpy of reaction SO3-2 +# Enthalpy of formation: -151.9 kcal/mol + -analytic -1.3771e+001 6.5102e-004 -1.3330e+004 4.7164e+000 -2.0800e+002 +# -Range: 0-300 + +1.0000 HSe- = Se-- + 1.0000 H+ + -llnl_gamma 4.0 + log_k -14.9534 + -delta_H 0 # Not possible to calculate enthalpy of reaction Se-2 +# Enthalpy of formation: -0 kcal/mol + -analytic 1.0244e+002 3.1346e-002 -5.4190e+003 -4.3871e+001 -8.4589e+001 +# -Range: 0-300 + + 1.0000 SeO3-- + 0.5000 O2 = SeO4-- + -llnl_gamma 4.0 + log_k +13.9836 + -delta_H -83.8892 kJ/mol # Calculated enthalpy of reaction SeO4-2 +# Enthalpy of formation: -143.2 kcal/mol + -analytic -7.2314e+001 -1.3657e-002 8.6969e+003 2.6182e+001 -3.1897e+005 +# -Range: 0-300 + + 1.0000 Sm+++ + 0.5000 H2O = Sm++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -47.9624 + -delta_H 326.911 kJ/mol # Calculated enthalpy of reaction Sm+2 +# Enthalpy of formation: -120.5 kcal/mol + -analytic -1.0217e+001 7.7548e-003 -1.6285e+004 5.4711e+000 9.1931e+004 +# -Range: 0-300 + + 2.0000 H+ + 1.0000 Sn++ + 0.5000 O2 = Sn++++ +1.0000 H2O + -llnl_gamma 11.0 + log_k +37.7020 + -delta_H -240.739 kJ/mol # Calculated enthalpy of reaction Sn+4 +# Enthalpy of formation: 7.229 kcal/mol + -analytic 3.2053e+001 -9.2307e-003 1.0378e+004 -1.0666e+001 1.6193e+002 +# -Range: 0-300 + + 1.0000 Tb+++ + 0.5000 H2O = Tb++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -78.7754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb+2 +# Enthalpy of formation: -0 kcal/mol + + 4.0000 H+ + 1.0000 TcO4- = Tc+++ +2.0000 H2O +1.0000 O2 + -llnl_gamma 5.0 + log_k -47.614 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc+3 +# Enthalpy of formation: -0 kcal/mol + + 3.0000 H+ + 1.0000 TcO4- = TcO++ +1.5000 H2O +0.7500 O2 + -llnl_gamma 4.5 + log_k -31.5059 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO+2 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 TcO4- + 0.5000 H2O = TcO4-- +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.0 + log_k -31.8197 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO4-2 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 TcO4- + 1.0000 H2O = TcO4--- +2.0000 H+ +0.5000 O2 + -llnl_gamma 4.0 + log_k -63.2889 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO4-3 +# Enthalpy of formation: -0 kcal/mol + + 2.0000 H+ + 1.0000 Tl+ + 0.5000 O2 = Tl+++ +1.0000 H2O + -llnl_gamma 5.0 + log_k -0.2751 + -delta_H -88.479 kJ/mol # Calculated enthalpy of reaction Tl+3 +# Enthalpy of formation: 47 kcal/mol + -analytic -6.7978e+001 -2.6430e-002 5.3106e+003 2.3340e+001 8.2887e+001 +# -Range: 0-300 + + 1.0000 Tm+++ + 0.5000 H2O = Tm++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -58.3754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm+2 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 UO2++ + 1.0000 H+ = U+++ +0.7500 O2 +0.5000 H2O + -llnl_gamma 5.0 + log_k -64.8028 + -delta_H 377.881 kJ/mol # Calculated enthalpy of reaction U+3 +# Enthalpy of formation: -489.1 kJ/mol + -analytic 2.5133e+001 6.4088e-003 -2.2542e+004 -8.1423e+000 3.4793e+005 +# -Range: 0-300 + + 2.0000 H+ + 1.0000 UO2++ = U++++ +1.0000 H2O +0.5000 O2 + -llnl_gamma 5.5 + log_k -33.9491 + -delta_H 135.895 kJ/mol # Calculated enthalpy of reaction U+4 +# Enthalpy of formation: -591.2 kJ/mol + -analytic 4.4837e+001 1.0129e-002 -1.1787e+004 -1.9194e+001 4.6436e+005 +# -Range: 0-300 + + 1.0000 UO2++ + 0.5000 H2O = UO2+ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.0 + log_k -20.0169 + -delta_H 133.759 kJ/mol # Calculated enthalpy of reaction UO2+ +# Enthalpy of formation: -1025.13 kJ/mol + -analytic 8.0480e+000 9.5845e-003 -6.5994e+003 -3.5515e+000 -1.0298e+002 +# -Range: 0-300 + + 1.0000 VO++ + 1.0000 H+ = V+++ +0.5000 H2O +0.2500 O2 + -llnl_gamma 5.0 + log_k -15.7191 + -delta_H 79.6069 kJ/mol # Calculated enthalpy of reaction V+3 +# Enthalpy of formation: -62.39 kcal/mol + -analytic 1.6167e+001 1.1963e-002 -4.2112e+003 -8.6126e+000 -6.5717e+001 +# -Range: 0-300 + + 1.0000 VO++ + 0.5000 H2O + 0.2500 O2 = VO2+ +1.0000 H+ + -llnl_gamma 4.0 + log_k +4.5774 + -delta_H -17.2234 kJ/mol # Calculated enthalpy of reaction VO2+ +# Enthalpy of formation: -155.3 kcal/mol + -analytic 1.9732e+000 5.3936e-003 1.2240e+003 -1.2539e+000 1.9098e+001 +# -Range: 0-300 + + 1.0000 VO2+ + 2.0000 H2O = VO4--- +4.0000 H+ + -llnl_gamma 4.0 + log_k -28.4475 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO4-3 +# Enthalpy of formation: -0 kcal/mol + + 1.0000 Yb+++ + 0.5000 H2O = Yb++ +1.0000 H+ +0.2500 O2 + -llnl_gamma 4.5 + log_k -39.4595 + -delta_H 280.05 kJ/mol # Calculated enthalpy of reaction Yb+2 +# Enthalpy of formation: -126.8 kcal/mol + -analytic 1.0773e+000 9.5995e-003 -1.3833e+004 1.0723e+000 3.1365e+004 +# -Range: 0-300 + + 2.0000 H+ + 1.0000 Zr(OH)2++ = Zr++++ +2.0000 H2O + -llnl_gamma 11.0 + log_k +0.2385 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr+4 +# Enthalpy of formation: -0 kcal/mol + +4.0000 HS- + 4.0000 H+ + 2.0000 Sb(OH)3 + 2.0000 NH3 = (NH4)2Sb2S4 +6.0000 H2O + -llnl_gamma 3.0 + log_k +67.6490 + -delta_H -424.665 kJ/mol # Calculated enthalpy of reaction (NH4)2Sb2S4 +# Enthalpy of formation: -484.321 kJ/mol + -analytic -3.9259e+002 -1.1727e-001 3.2073e+004 1.5667e+002 5.4478e+002 +# -Range: 0-200 + +2.0000 NpO2++ + 2.0000 H2O = (NpO2)2(OH)2++ +2.0000 H+ + -llnl_gamma 4.5 + log_k -6.4 + -delta_H 45.4397 kJ/mol # Calculated enthalpy of reaction (NpO2)2(OH)2+2 +# Enthalpy of formation: -537.092 kcal/mol + -analytic -4.7462e+001 -3.1413e-002 -2.1954e+003 2.3355e+001 -3.7424e+001 +# -Range: 25-150 + +5.0000 H2O + 3.0000 NpO2++ = (NpO2)3(OH)5+ +5.0000 H+ + -llnl_gamma 4.0 + log_k -17.5 + -delta_H 112.322 kJ/mol # Calculated enthalpy of reaction (NpO2)3(OH)5+ +# Enthalpy of formation: -931.717 kcal/mol + -analytic 5.4053e+002 9.1693e-002 -2.4404e+004 -2.0349e+002 -4.1639e+002 +# -Range: 25-150 + +2.0000 PuO2++ + 2.0000 H2O = (PuO2)2(OH)2++ +2.0000 H+ + -llnl_gamma 4.5 + log_k -8.2626 + -delta_H 57.8597 kJ/mol # Calculated enthalpy of reaction (PuO2)2(OH)2+2 +# Enthalpy of formation: -2156.97 kJ/mol + -analytic 6.5448e+001 -1.6194e-003 -5.9542e+003 -2.1522e+001 -9.2929e+001 +# -Range: 0-300 + +5.0000 H2O + 3.0000 PuO2++ = (PuO2)3(OH)5+ +5.0000 H+ + -llnl_gamma 4.0 + log_k -21.655 + -delta_H 139.617 kJ/mol # Calculated enthalpy of reaction (PuO2)3(OH)5+ +# Enthalpy of formation: -3754.31 kJ/mol + -analytic 1.6151e+002 5.8182e-003 -1.4002e+004 -5.5745e+001 -2.1854e+002 +# -Range: 0-300 + +4.0000 H2O + 2.0000 TcO++ = (TcO(OH)2)2 +4.0000 H+ + -llnl_gamma 3.0 + log_k -0.1271 + -delta_H 0 # Not possible to calculate enthalpy of reaction (TcO(OH)2)2 +# Enthalpy of formation: -0 kcal/mol + +12.0000 H2O + 11.0000 UO2++ + 6.0000 HCO3- = (UO2)11(CO3)6(OH)12-2 +18.0000 H+ + -llnl_gamma 4.0 + log_k -25.7347 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)11(CO3)6(OH)12-2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 UO2++ + 2.0000 H2O = (UO2)2(OH)2++ +2.0000 H+ + -llnl_gamma 4.5 + log_k -5.6346 + -delta_H 37.6127 kJ/mol # Calculated enthalpy of reaction (UO2)2(OH)2+2 +# Enthalpy of formation: -2572.06 kJ/mol + -analytic 6.4509e+001 -7.6875e-004 -4.8433e+003 -2.1689e+001 -7.5593e+001 +# -Range: 0-300 + +3.0000 H2O + 2.0000 UO2++ + 1.0000 HCO3- = (UO2)2CO3(OH)3- +4.0000 H+ + -llnl_gamma 4.0 + log_k -11.2229 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)2CO3(OH)3- +# Enthalpy of formation: -0 kcal/mol + +2.0000 UO2++ + 1.0000 H2O = (UO2)2OH+++ +1.0000 H+ + -llnl_gamma 5.0 + log_k -2.7072 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)2OH+3 +# Enthalpy of formation: -0 kcal/mol + +6.0000 HCO3- + 3.0000 UO2++ = (UO2)3(CO3)6-6 +6.0000 H+ + -llnl_gamma 4.0 + log_k -8.0601 + -delta_H 25.5204 kJ/mol # Calculated enthalpy of reaction (UO2)3(CO3)6-6 +# Enthalpy of formation: -7171.08 kJ/mol + -analytic 7.4044e+002 2.7299e-001 -1.7614e+004 -3.1149e+002 -2.7507e+002 +# -Range: 0-300 + +4.0000 H2O + 3.0000 UO2++ = (UO2)3(OH)4++ +4.0000 H+ + -llnl_gamma 4.5 + log_k -11.929 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)4+2 +# Enthalpy of formation: -0 kcal/mol + +5.0000 H2O + 3.0000 UO2++ = (UO2)3(OH)5+ +5.0000 H+ + -llnl_gamma 4.0 + log_k -15.5862 + -delta_H 97.1056 kJ/mol # Calculated enthalpy of reaction (UO2)3(OH)5+ +# Enthalpy of formation: -4389.09 kJ/mol + -analytic 1.6004e+002 7.0827e-003 -1.1700e+004 -5.5973e+001 -1.8261e+002 +# -Range: 0-300 + +4.0000 H2O + 3.0000 UO2++ + 1.0000 HCO3- = (UO2)3(OH)5CO2+ +4.0000 H+ + -llnl_gamma 4.0 + log_k -9.6194 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)5CO2+ +# Enthalpy of formation: -0 kcal/mol + +7.0000 H2O + 3.0000 UO2++ = (UO2)3(OH)7- +7.0000 H+ + -llnl_gamma 4.0 + log_k -31.0508 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)7- +# Enthalpy of formation: -0 kcal/mol + +3.0000 UO2++ + 3.0000 H2O + 1.0000 HCO3- = (UO2)3O(OH)2(HCO3)+ +4.0000 H+ + -llnl_gamma 4.0 + log_k -9.7129 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3O(OH)2(HCO3)+ +# Enthalpy of formation: -0 kcal/mol + +7.0000 H2O + 4.0000 UO2++ = (UO2)4(OH)7+ +7.0000 H+ + -llnl_gamma 4.0 + log_k -21.9508 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)4(OH)7+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 VO++ + 2.0000 H2O = (VO)2(OH)2++ +2.0000 H+ + -llnl_gamma 4.5 + log_k -6.67 + -delta_H 0 # Not possible to calculate enthalpy of reaction (VO)2(OH)2+2 +# Enthalpy of formation: -0 kcal/mol + +CH3COO- + H+ = CH3COOH + -llnl_gamma 4.5 + log_k 4.7572 + -delta_H 0 # Not possible to calculate enthalpy of reaction CH3COOH +# Enthalpy of formation: -0 kcal/mol + -analytic 0.96597E+02 0.34535E-01 -0.19753E+04 -0.38593E+02 -0.30850E+02 +# -Range: 0-300 + +H+ + 2.000 HCO3- = CH3COO- + 2.0000 O2 + -llnl_gamma 4.5 + log_k -146.7494 + -delta_H 0 # Not possible to calculate enthalpy of reaction CH3COO- +# Enthalpy of formation: -0 kcal/mol + -analytic -1.3108E+03 -2.3248E-01 -4.5380E+01 4.9843E+02 6.5945E-01 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Ag+ = Ag(CH3COO)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -8.8716 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ag(Acetate)2- +# Enthalpy of formation: -0 kcal/mol + -analytic -2.8207e+002 -5.3713e-002 9.5343e+003 1.0396e+002 1.4886e+002 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Ag+ = Ag(CO3)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -18.5062 + -delta_H 1.34306 kJ/mol # Calculated enthalpy of reaction Ag(CO3)2-3 +# Enthalpy of formation: -304.2 kcal/mol + -analytic -1.6671e+002 -4.5571e-002 3.7190e+003 6.0341e+001 5.8080e+001 +# -Range: 0-300 + +1.0000 Ag+ + 1.0000 CH3COOH = AgCH3COO +1.0000 H+ + -llnl_gamma 3.0 + log_k -4.0264 + -delta_H -3.4518 kJ/mol # Calculated enthalpy of reaction AgAcetate +# Enthalpy of formation: -91.65 kcal/mol + -analytic 6.9069e+000 -1.9415e-003 -1.9953e+003 -2.6175e+000 2.5092e+005 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Ag+ = AgCO3- +1.0000 H+ + -llnl_gamma 4.0 + log_k -7.6416 + -delta_H -8.27177 kJ/mol # Calculated enthalpy of reaction AgCO3- +# Enthalpy of formation: -141.6 kcal/mol + -analytic 6.5598e+000 -1.6477e-004 -4.7079e+002 -5.0807e+000 -7.3484e+000 +# -Range: 0-300 + +1.0000 Cl- + 1.0000 Ag+ = AgCl + -llnl_gamma 3.0 + log_k +3.2971 + -delta_H -15.1126 kJ/mol # Calculated enthalpy of reaction AgCl +# Enthalpy of formation: -18.27 kcal/mol + -analytic 1.0904e+002 3.5492e-002 -1.8455e+003 -4.4502e+001 -2.8830e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Ag+ = AgCl2- + -llnl_gamma 4.0 + log_k +5.2989 + -delta_H -27.3592 kJ/mol # Calculated enthalpy of reaction AgCl2- +# Enthalpy of formation: -61.13 kcal/mol + -analytic 9.2164e+001 4.0261e-002 -1.6597e+002 -3.9721e+001 -2.6171e+000 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Ag+ = AgCl3-- + -llnl_gamma 4.0 + log_k +5.1310 + -delta_H -47.7645 kJ/mol # Calculated enthalpy of reaction AgCl3-2 +# Enthalpy of formation: -105.94 kcal/mol + -analytic 4.3732e+000 2.9568e-002 3.9818e+003 -8.6428e+000 6.2131e+001 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Ag+ = AgCl4--- + -llnl_gamma 4.0 + log_k +3.8050 + -delta_H -32.4804 kJ/mol # Calculated enthalpy of reaction AgCl4-3 +# Enthalpy of formation: -142.22 kcal/mol + -analytic -1.6176e+001 2.9523e-002 0.0000e+000 0.0000e+000 9.9602e+005 +# -Range: 0-300 + +1.0000 F- + 1.0000 Ag+ = AgF + -llnl_gamma 3.0 + log_k -0.1668 + -delta_H -9.298 kJ/mol # Calculated enthalpy of reaction AgF +# Enthalpy of formation: -238.895 kJ/mol + -analytic -6.6024e+001 -2.2350e-002 1.9514e+003 2.6663e+001 3.3160e+001 +# -Range: 0-200 + +1.0000 NO3- + 1.0000 Ag+ = AgNO3 + -llnl_gamma 3.0 + log_k -0.1979 + -delta_H 4.45178 kJ/mol # Calculated enthalpy of reaction AgNO3 +# Enthalpy of formation: -23.09 kcal/mol + -analytic 7.3866e+001 2.6050e-002 -1.5923e+003 -3.0904e+001 -2.4868e+001 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Al+++ = Al(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -5.595 + -delta_H -46.8566 kJ/mol # Calculated enthalpy of reaction Al(Acetate)2+ +# Enthalpy of formation: -372.08 kcal/mol + -analytic -4.2528e+001 2.1431e-003 3.1658e+002 1.1585e+001 5.8604e+005 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Al+++ = Al(OH)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -10.5945 + -delta_H 98.2822 kJ/mol # Calculated enthalpy of reaction Al(OH)2+ +# Enthalpy of formation: -241.825 kcal/mol + -analytic 4.4036e+001 2.0168e-002 -5.5455e+003 -1.6987e+001 -8.6545e+001 +# -Range: 0-300 + +2.0000 SO4-- + 1.0000 Al+++ = Al(SO4)2- + -llnl_gamma 4.0 + log_k +4.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Al(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +28.0000 H2O + 13.0000 Al+++ = Al13O4(OH)24+7 +32.0000 H+ + -llnl_gamma 6.0 + log_k -98.73 + -delta_H 0 # Not possible to calculate enthalpy of reaction Al13O4(OH)24+7 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 2.0000 Al+++ = Al2(OH)2++++ +2.0000 H+ + -llnl_gamma 5.5 + log_k -7.6902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Al2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 3.0000 Al+++ = Al3(OH)4+5 +4.0000 H+ + -llnl_gamma 6.0 + log_k -13.8803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Al3(OH)4+5 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Al+++ + 1.0000 CH3COOH = AlCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.6923 + -delta_H -18.1962 kJ/mol # Calculated enthalpy of reaction AlAcetate+2 +# Enthalpy of formation: -249.13 kcal/mol + -analytic -1.9847e+001 2.0058e-003 -2.3653e+002 5.5454e+000 3.2362e+005 +# -Range: 0-300 + +1.0000 F- + 1.0000 Al+++ = AlF++ + -llnl_gamma 4.5 + log_k +7.0000 + -delta_H 0 # Not possible to calculate enthalpy of reaction AlF+2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 F- + 1.0000 Al+++ = AlF2+ + -llnl_gamma 4.0 + log_k +12.6000 + -delta_H 0 # Not possible to calculate enthalpy of reaction AlF2+ +# Enthalpy of formation: -0 kcal/mol + +3.0000 F- + 1.0000 Al+++ = AlF3 + -llnl_gamma 3.0 + log_k +16.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction AlF3 +# Enthalpy of formation: -0 kcal/mol + +4.0000 F- + 1.0000 Al+++ = AlF4- + -llnl_gamma 4.0 + log_k +19.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction AlF4- +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 H+ + 1.0000 Al+++ = AlH2PO4++ + -llnl_gamma 4.5 + log_k +3.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction AlH2PO4+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 Al+++ = AlHPO4+ + -llnl_gamma 4.0 + log_k +7.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction AlHPO4+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Al+++ = AlO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -22.8833 + -delta_H 180.899 kJ/mol # Calculated enthalpy of reaction AlO2- +# Enthalpy of formation: -222.079 kcal/mol + -analytic 1.0803e+001 -3.4379e-003 -9.7391e+003 0.0000e+000 0.0000e+000 +# -Range: 0-300 + +1.0000 H2O + 1.0000 Al+++ = AlOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -4.9571 + -delta_H 49.798 kJ/mol # Calculated enthalpy of reaction AlOH+2 +# Enthalpy of formation: -185.096 kcal/mol + -analytic -2.6224e-001 8.8816e-003 -1.8686e+003 -4.3195e-001 -2.9158e+001 +# -Range: 0-300 + +1.0000 SO4-- + 1.0000 Al+++ = AlSO4+ + -llnl_gamma 4.0 + log_k +3.0100 + -delta_H 0 # Not possible to calculate enthalpy of reaction AlSO4+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 HCO3- + 1.0000 Am+++ = Am(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -8.3868 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +3.0000 HCO3- + 1.0000 Am+++ = Am(CO3)3--- +3.0000 H+ + -llnl_gamma 4.0 + log_k -15.8302 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)3-3 +# Enthalpy of formation: -0 kcal/mol + +5.0000 HCO3- + 1.0000 Am++++ = Am(CO3)5-6 +5.0000 H+ + -llnl_gamma 4.0 + log_k -12.409 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)5-6 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Am+++ = Am(OH)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -14.1145 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)2+ +# Enthalpy of formation: -0 kcal/mol + +3.0000 H2O + 1.0000 Am+++ = Am(OH)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -25.7218 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Am+++ = Am(SO4)2- + -llnl_gamma 4.0 + log_k +5.2407 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 HCO3- + 1.0000 Am+++ = AmCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.5434 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmCO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Cl- + 1.0000 Am+++ = AmCl++ + -llnl_gamma 4.5 + log_k +1.0374 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmCl+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 F- + 1.0000 Am+++ = AmF++ + -llnl_gamma 4.5 + log_k +3.3601 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmF+2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 F- + 1.0000 Am+++ = AmF2+ + -llnl_gamma 4.0 + log_k +5.7204 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmF2+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 H+ + 1.0000 Am+++ = AmH2PO4++ + -llnl_gamma 4.5 + log_k +11.4119 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmH2PO4+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 N3- + 1.0000 Am+++ = AmN3++ + -llnl_gamma 4.5 + log_k +1.6699 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmN3+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 NO3- + 1.0000 Am+++ = AmNO3++ + -llnl_gamma 4.5 + log_k +1.3104 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmNO3+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2O + 1.0000 Am+++ = AmOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -6.4072 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmOH+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Am+++ = AmSO4+ + -llnl_gamma 4.0 + log_k +3.7703 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmSO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2AsO3- + 1.0000 H+ = As(OH)3 + -llnl_gamma 3.0 + log_k +9.2048 + -delta_H -27.4054 kJ/mol # Calculated enthalpy of reaction As(OH)3 +# Enthalpy of formation: -742.2 kJ/mol + -analytic 1.3020e+002 4.7513e-002 -1.1999e+003 -5.2993e+001 -2.0422e+001 +# -Range: 0-200 + +1.0000 H2AsO3- = AsO2- +1.0000 H2O + -llnl_gamma 4.0 + log_k 0.0111 + -delta_H 0 # Not possible to calculate enthalpy of reaction AsO2- +# Enthalpy of formation: -0 kcal/mol + -analytic -2.1509e+001 -1.7680e-002 -1.9261e+001 1.0841e+001 -2.9404e-001 +# -Range: 0-300 + +1.0000 H2AsO3- = AsO2OH-- +1.0000 H+ + -llnl_gamma 4.0 + log_k -11.0171 + -delta_H 25.514 kJ/mol # Calculated enthalpy of reaction AsO2OH-2 +# Enthalpy of formation: -164.742 kcal/mol + -analytic 1.4309e+002 1.8620e-002 -6.8596e+003 -5.5222e+001 -1.0708e+002 +# -Range: 0-300 + +1.0000 H2AsO4- + 1.0000 F- = AsO3F-- +1.0000 H2O + -llnl_gamma 4.0 + log_k +40.2451 + -delta_H 0 # Not possible to calculate enthalpy of reaction AsO3F-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2AsO4- = AsO4--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -18.3604 + -delta_H 21.4198 kJ/mol # Calculated enthalpy of reaction AsO4-3 +# Enthalpy of formation: -888.14 kJ/mol + -analytic -2.4979e+001 -1.2761e-002 2.8369e+003 3.4878e+000 -6.8736e+005 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Au+ = Au(CH3COO)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -9.0013 + -delta_H -8.91192 kJ/mol # Calculated enthalpy of reaction Au(CH3COO)2- +# Enthalpy of formation: -186.75 kcal/mol + -analytic -2.2338e+002 -4.6312e-002 7.0942e+003 8.2606e+001 1.1076e+002 +# -Range: 0-300 + +1.0000 Au+ + 1.0000 CH3COOH = AuCH3COO +1.0000 H+ + -llnl_gamma 3.0 + log_k -4.3174 + -delta_H 0.87864 kJ/mol # Calculated enthalpy of reaction AuCH3COO +# Enthalpy of formation: -68.31 kcal/mol + -analytic -1.1812e+000 -4.1120e-003 -1.4752e+003 4.5665e-001 1.7019e+005 +# -Range: 0-300 + +2.0000 B(OH)3 = B2O(OH)5- +1.0000 H+ + -llnl_gamma 4.0 + log_k -18.6851 + -delta_H 0 # Not possible to calculate enthalpy of reaction B2O(OH)5- +# Enthalpy of formation: -0 kcal/mol + +2.0000 F- + 1.0000 H+ + 1.0000 B(OH)3 = BF2(OH)2- +1.0000 H2O + -llnl_gamma 4.0 + log_k +6.6174 + -delta_H 0 # Not possible to calculate enthalpy of reaction BF2(OH)2- +# Enthalpy of formation: -0 kcal/mol + +3.0000 F- + 2.0000 H+ + 1.0000 B(OH)3 = BF3OH- +2.0000 H2O + -llnl_gamma 4.0 + log_k +13.1908 + -delta_H -178.577 kJ/mol # Calculated enthalpy of reaction BF3OH- +# Enthalpy of formation: -403.317 kcal/mol + -analytic 3.3411e+002 -3.7303e-002 -8.6507e+003 -1.1345e+002 -1.3508e+002 +# -Range: 0-300 + +4.0000 F- + 3.0000 H+ + 1.0000 B(OH)3 = BF4- +3.0000 H2O + -llnl_gamma 4.0 + log_k +18.0049 + -delta_H -16.4473 kJ/mol # Calculated enthalpy of reaction BF4- +# Enthalpy of formation: -376.4 kcal/mol + -analytic 2.5491e+002 1.0443e-001 -3.3332e+003 -1.0378e+002 -5.2087e+001 +# -Range: 0-300 + +1.0000 B(OH)3 = BO2- +1.0000 H+ +1.0000 H2O + -llnl_gamma 4.0 + log_k -9.2449 + -delta_H 16.3302 kJ/mol # Calculated enthalpy of reaction BO2- +# Enthalpy of formation: -184.6 kcal/mol + -analytic -1.0500e+002 -3.3447e-002 1.4706e+003 4.0724e+001 2.2978e+001 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Ba++ = Ba(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -8.0118 + -delta_H 11.255 kJ/mol # Calculated enthalpy of reaction Ba(CH3COO)2 +# Enthalpy of formation: -358.01 kcal/mol + -analytic -1.4566e+001 3.1394e-004 -3.9564e+003 5.1906e+000 6.1407e+005 +# -Range: 0-300 + +1.0000 O_phthalate-2 + 1.0000 Ba++ = Ba(O_phthalate) + -llnl_gamma 3.0 + log_k +2.3300 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ba(O_phthalate) +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2O + 1.0000 Ba++ + 1.0000 B(OH)3 = BaB(OH)4+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -7.8012 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaB(OH)4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Ba++ + 1.0000 CH3COOH = BaCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -3.7677 + -delta_H 7.322 kJ/mol # Calculated enthalpy of reaction BaCH3COO+ +# Enthalpy of formation: -242.85 kcal/mol + -analytic -1.5623e+001 2.9282e-003 -3.9534e+002 4.3959e+000 1.2829e+005 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Ba++ = BaCO3 +1.0000 H+ + -llnl_gamma 3.0 + log_k -7.6834 + -delta_H 31.5808 kJ/mol # Calculated enthalpy of reaction BaCO3 +# Enthalpy of formation: -285.85 kcal/mol + -analytic 2.1878e+002 5.2368e-002 -8.2472e+003 -8.6644e+001 -1.2875e+002 +# -Range: 0-300 + +1.0000 Cl- + 1.0000 Ba++ = BaCl+ + -llnl_gamma 4.0 + log_k -0.4977 + -delta_H 11.142 kJ/mol # Calculated enthalpy of reaction BaCl+ +# Enthalpy of formation: -165.77 kcal/mol + -analytic 1.1016e+002 4.2325e-002 -2.8039e+003 -4.6010e+001 -4.3785e+001 +# -Range: 0-300 + +1.0000 F- + 1.0000 Ba++ = BaF+ + -llnl_gamma 4.0 + log_k -0.1833 + -delta_H 8.95376 kJ/mol # Calculated enthalpy of reaction BaF+ +# Enthalpy of formation: -206.51 kcal/mol + -analytic 1.0349e+002 4.0336e-002 -2.5195e+003 -4.3334e+001 -3.9346e+001 +# -Range: 0-300 + +1.0000 NO3- + 1.0000 Ba++ = BaNO3+ + -llnl_gamma 4.0 + log_k +0.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaNO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2O + 1.0000 Ba++ = BaOH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -13.47 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaOH+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Be++ = Be(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -6.8023 + -delta_H -52.4255 kJ/mol # Calculated enthalpy of reaction Be(CH3COO)2 +# Enthalpy of formation: -336.23 kcal/mol + -analytic -3.5242e+001 5.1285e-003 -4.8914e+002 8.2862e+000 7.1774e+005 +# -Range: 0-300 + +1.0000 Be++ + 1.0000 CH3COOH = BeCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -3.1079 + -delta_H -22.761 kJ/mol # Calculated enthalpy of reaction BeCH3COO+ +# Enthalpy of formation: -213.04 kcal/mol + -analytic -1.9418e+001 5.2172e-004 -8.5071e+001 5.2755e+000 3.0215e+005 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Be++ = BeO2-- +4.0000 H+ + -llnl_gamma 4.0 + log_k -32.161 + -delta_H 163.737 kJ/mol # Calculated enthalpy of reaction BeO2-2 +# Enthalpy of formation: -189 kcal/mol + -analytic 7.0860e+000 -3.8474e-002 -1.1400e+004 4.2138e+000 -1.7789e+002 +# -Range: 0-300 + +2.0000 H+ + 2.0000 Br- + 0.5000 O2 = Br2 +1.0000 H2O + -llnl_gamma 3.0 + log_k +5.6834 + -delta_H 0 # Not possible to calculate enthalpy of reaction Br2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 HCO3- + 1.0000 H+ = CO2 +1.0000 H2O + -CO2_llnl_gamma + log_k +6.3447 + -delta_H -9.7027 kJ/mol # Calculated enthalpy of reaction CO2 +# Enthalpy of formation: -98.9 kcal/mol + -analytic -1.0534e+001 2.1746e-002 2.5216e+003 7.9125e-001 3.9351e+001 +# -Range: 0-300 + +1.0000 HCO3- = CO3-- +1.0000 H+ + -llnl_gamma 4.5 + log_k -10.3288 + -delta_H 14.6984 kJ/mol # Calculated enthalpy of reaction CO3-2 +# Enthalpy of formation: -161.385 kcal/mol + -analytic -6.9958e+001 -3.3526e-002 -7.0846e+001 2.8224e+001 -1.0849e+000 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Ca++ = Ca(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -7.3814 + -delta_H -2.7196 kJ/mol # Calculated enthalpy of reaction Ca(CH3COO)2 +# Enthalpy of formation: -362.65 kcal/mol + -analytic -1.0320e+001 4.0012e-003 -3.6281e+003 2.4421e+000 7.0175e+005 +# -Range: 0-300 + +1.0000 O_phthalate-2 + 1.0000 Ca++ = Ca(O_phthalate) + -llnl_gamma 3.0 + log_k +2.4200 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca(O_phthalate) +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2O + 1.0000 Ca++ + 1.0000 B(OH)3 = CaB(OH)4+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -7.4222 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaB(OH)4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Ca++ + 1.0000 CH3COOH = CaCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -3.8263 + -delta_H 1.17152 kJ/mol # Calculated enthalpy of reaction CaCH3COO+ +# Enthalpy of formation: -245.62 kcal/mol + -analytic -8.8826e+000 3.1672e-003 -1.0764e+003 2.0526e+000 2.3599e+005 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Ca++ = CaCO3 +1.0000 H+ + -llnl_gamma 3.0 + log_k -7.0017 + -delta_H 30.5767 kJ/mol # Calculated enthalpy of reaction CaCO3 +# Enthalpy of formation: -287.39 kcal/mol + -analytic 2.3045e+002 5.5350e-002 -8.5056e+003 -9.1096e+001 -1.3279e+002 +# -Range: 0-300 + +1.0000 Cl- + 1.0000 Ca++ = CaCl+ + -llnl_gamma 4.0 + log_k -0.6956 + -delta_H 2.02087 kJ/mol # Calculated enthalpy of reaction CaCl+ +# Enthalpy of formation: -169.25 kcal/mol + -analytic 8.1498e+001 3.8387e-002 -1.3763e+003 -3.5968e+001 -2.1501e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Ca++ = CaCl2 + -llnl_gamma 3.0 + log_k -0.6436 + -delta_H -5.8325 kJ/mol # Calculated enthalpy of reaction CaCl2 +# Enthalpy of formation: -211.06 kcal/mol + -analytic 1.8178e+002 7.6910e-002 -3.1088e+003 -7.8760e+001 -4.8563e+001 +# -Range: 0-300 + +1.0000 F- + 1.0000 Ca++ = CaF+ + -llnl_gamma 4.0 + log_k +0.6817 + -delta_H 5.6484 kJ/mol # Calculated enthalpy of reaction CaF+ +# Enthalpy of formation: -208.6 kcal/mol + -analytic 7.8058e+001 3.8276e-002 -1.3289e+003 -3.4071e+001 -2.0759e+001 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 H+ + 1.0000 Ca++ = CaH2PO4+ + -llnl_gamma 4.0 + log_k +1.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaH2PO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 HCO3- + 1.0000 Ca++ = CaHCO3+ + -llnl_gamma 4.0 + log_k +1.0467 + -delta_H 1.45603 kJ/mol # Calculated enthalpy of reaction CaHCO3+ +# Enthalpy of formation: -294.35 kcal/mol + -analytic 5.5985e+001 3.4639e-002 -3.6972e+002 -2.5864e+001 -5.7859e+000 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 Ca++ = CaHPO4 + -llnl_gamma 3.0 + log_k +2.7400 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaHPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 NO3- + 1.0000 Ca++ = CaNO3+ + -llnl_gamma 4.0 + log_k +0.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaNO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2O + 1.0000 Ca++ = CaOH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -12.85 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaOH+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Ca++ = CaP2O7-- +1.0000 H2O + -llnl_gamma 4.0 + log_k +3.0537 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaP2O7-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 Ca++ = CaPO4- +1.0000 H+ + -llnl_gamma 4.0 + log_k -5.8618 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaPO4- +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Ca++ = CaSO4 + -llnl_gamma 3.0 + log_k +2.1111 + -delta_H 5.4392 kJ/mol # Calculated enthalpy of reaction CaSO4 +# Enthalpy of formation: -345.9 kcal/mol + -analytic 2.8618e+002 8.4084e-002 -7.6880e+003 -1.1449e+002 -1.2005e+002 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Cd++ = Cd(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -6.3625 + -delta_H -17.4891 kJ/mol # Calculated enthalpy of reaction Cd(CH3COO)2 +# Enthalpy of formation: -254.52 kcal/mol + -analytic -1.9344e+001 2.5894e-003 -3.2847e+003 5.8489e+000 7.8041e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Cd++ = Cd(CH3COO)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -10.8558 + -delta_H -40.0409 kJ/mol # Calculated enthalpy of reaction Cd(CH3COO)3- +# Enthalpy of formation: -376.01 kcal/mol + -analytic 4.8290e+001 -3.4317e-003 -1.5122e+004 -1.3203e+001 2.2479e+006 +# -Range: 0-300 + +4.0000 CH3COOH + 1.0000 Cd++ = Cd(CH3COO)4-- +4.0000 H+ + -llnl_gamma 4.0 + log_k -16.9163 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(CH3COO)4-2 +# Enthalpy of formation: -0 kcal/mol + + 2.0000 Cyanide- + 1.0000 Cd++ = Cd(Cyanide)2 + -llnl_gamma 3.0 + log_k +10.3551 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)2 + # Enthalpy of formation: -0 kcal/mol + + 3.0000 Cyanide- + 1.0000 Cd++ = Cd(Cyanide)3- + -llnl_gamma 4.0 + log_k +14.8191 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)3- + # Enthalpy of formation: -0 kcal/mol + + 4.0000 Cyanide- + 1.0000 Cd++ = Cd(Cyanide)4-- + -llnl_gamma 4.0 + log_k +18.2670 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)4-2 + # Enthalpy of formation: -0 kcal/mol + + +2.0000 HCO3- + 1.0000 Cd++ = Cd(CO3)2-- +2.0000 H+ + -llnl_gamma 4.0 + log_k -14.2576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(CO3)2-2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 N3- + 1.0000 Cd++ = Cd(N3)2 + -llnl_gamma 0.0 + log_k +2.4606 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 N3- + 1.0000 Cd++ = Cd(N3)3- + -llnl_gamma 4.0 + log_k +3.1263 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)3- +# Enthalpy of formation: -0 kcal/mol + +4.0000 N3- + 1.0000 Cd++ = Cd(N3)4-- + -llnl_gamma 4.0 + log_k +3.4942 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)4-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 NH3 + 1.0000 Cd++ = Cd(NH3)++ + -llnl_gamma 4.5 + log_k +2.5295 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(NH3)+2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 NH3 + 1.0000 Cd++ = Cd(NH3)2++ + -llnl_gamma 4.5 + log_k +4.8760 + -delta_H -27.6533 kJ/mol # Calculated enthalpy of reaction Cd(NH3)2+2 +# Enthalpy of formation: -266.225 kJ/mol + -analytic 1.0738e+002 1.6071e-003 -3.2536e+003 -3.7202e+001 -5.0801e+001 +# -Range: 0-300 + +4.0000 NH3 + 1.0000 Cd++ = Cd(NH3)4++ + -llnl_gamma 4.5 + log_k +7.2914 + -delta_H -49.0684 kJ/mol # Calculated enthalpy of reaction Cd(NH3)4+2 +# Enthalpy of formation: -450.314 kJ/mol + -analytic 1.5670e+002 -9.4949e-003 -5.0986e+003 -5.2316e+001 -7.9603e+001 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Cd++ = Cd(OH)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -20.3402 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 H2O + 1.0000 Cd++ = Cd(OH)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -33.2852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)3- +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 1.0000 Cd++ = Cd(OH)4-- +4.0000 H+ + -llnl_gamma 4.0 + log_k -47.3303 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)4-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2O + 1.0000 Cl- + 1.0000 Cd++ = Cd(OH)Cl +1.0000 H+ + -llnl_gamma 3.0 + log_k -7.4328 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)Cl +# Enthalpy of formation: -0 kcal/mol + +2.0000 Thiocyanate- + 1.0000 Cd++ = Cd(Thiocyanate)2 + -llnl_gamma 3.0 + log_k +1.8649 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Thiocyanate)2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 Thiocyanate- + 1.0000 Cd++ = Cd(Thiocyanate)3- + -llnl_gamma 4.0 + log_k +1.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Thiocyanate)3- +# Enthalpy of formation: -0 kcal/mol + +2.0000 Cd++ + 1.0000 H2O = Cd2OH+++ +1.0000 H+ + -llnl_gamma 5.0 + log_k -9.3851 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd2OH+3 +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 4.0000 Cd++ = Cd4(OH)4++++ +4.0000 H+ + -llnl_gamma 5.5 + log_k -362.1263 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd4(OH)4+4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Cd++ + 1.0000 Br- = CdBr+ + -llnl_gamma 4.0 + log_k +2.1424 + -delta_H -3.35588 kJ/mol # Calculated enthalpy of reaction CdBr+ +# Enthalpy of formation: -200.757 kJ/mol + -analytic 1.4922e+002 5.0059e-002 -3.3035e+003 -6.0984e+001 -5.1593e+001 +# -Range: 0-300 + +2.0000 Br- + 1.0000 Cd++ = CdBr2 + -llnl_gamma 3.0 + log_k +2.8614 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdBr2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 Br- + 1.0000 Cd++ = CdBr3- + -llnl_gamma 4.0 + log_k +3.0968 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdBr3- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Cd++ + 1.0000 CH3COOH = CdCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.8294 + -delta_H -7.02912 kJ/mol # Calculated enthalpy of reaction CdCH3COO+ +# Enthalpy of formation: -135.92 kcal/mol + -analytic -8.8425e+000 1.7178e-003 -1.1758e+003 2.4435e+000 3.0321e+005 +# -Range: 0-300 + +1.0000 Cd++ + 1.0000 Cyanide- = CdCyanide+ + -llnl_gamma 4.0 + log_k +5.3129 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdCyanide+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 HCO3- + 1.0000 Cd++ = CdCO3 +1.0000 H+ + -llnl_gamma 3.0 + log_k -7.3288 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdCO3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Cl- + 1.0000 Cd++ = CdCl+ + -llnl_gamma 4.0 + log_k +2.7059 + -delta_H 2.33843 kJ/mol # Calculated enthalpy of reaction CdCl+ +# Enthalpy of formation: -240.639 kJ/mol +2.0000 Cl- + 1.0000 Cd++ = CdCl2 + -llnl_gamma 3.0 + log_k +3.3384 + -delta_H 5.1261 kJ/mol # Calculated enthalpy of reaction CdCl2 +# Enthalpy of formation: -404.931 kJ/mol + -analytic 1.4052e+002 4.9221e-002 -3.2625e+003 -5.6946e+001 -5.5451e+001 +# -Range: 0-200 + +3.0000 Cl- + 1.0000 Cd++ = CdCl3- + -llnl_gamma 4.0 + log_k +2.7112 + -delta_H 15.9388 kJ/mol # Calculated enthalpy of reaction CdCl3- +# Enthalpy of formation: -561.198 kJ/mol + -analytic 3.5108e+002 1.0219e-001 -9.9103e+003 -1.3965e+002 -1.5474e+002 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Cd++ = CdHCO3+ + -llnl_gamma 4.0 + log_k +1.5000 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdHCO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 I- + 1.0000 Cd++ = CdI+ + -llnl_gamma 4.0 + log_k +2.0710 + -delta_H -9.02584 kJ/mol # Calculated enthalpy of reaction CdI+ +# Enthalpy of formation: -141.826 kJ/mol + -analytic 1.5019e+002 5.0320e-002 -3.0810e+003 -6.1738e+001 -4.8120e+001 +# -Range: 0-300 + +2.0000 I- + 1.0000 Cd++ = CdI2 + -llnl_gamma 3.0 + log_k +3.4685 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdI2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 I- + 1.0000 Cd++ = CdI3- + -llnl_gamma 4.0 + log_k +4.5506 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdI3- +# Enthalpy of formation: -0 kcal/mol + +4.0000 I- + 1.0000 Cd++ = CdI4-- + -llnl_gamma 4.0 + log_k +5.3524 + -delta_H -38.8566 kJ/mol # Calculated enthalpy of reaction CdI4-2 +# Enthalpy of formation: -342.364 kJ/mol + -analytic 4.3154e+002 1.4257e-001 -8.4464e+003 -1.7795e+002 -1.3193e+002 +# -Range: 0-300 + +1.0000 N3- + 1.0000 Cd++ = CdN3+ + -llnl_gamma 4.0 + log_k +1.4970 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdN3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 NO2- + 1.0000 Cd++ = CdNO2+ + -llnl_gamma 4.0 + log_k +2.3700 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdNO2+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2O + 1.0000 Cd++ = CdOH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -10.0751 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdOH+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Cd++ = CdP2O7-- +1.0000 H2O + -llnl_gamma 4.0 + log_k +4.8094 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdP2O7-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Thiocyanate- + 1.0000 Cd++ = CdThiocyanate+ + -llnl_gamma 4.0 + log_k +1.3218 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdThiocyanate+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Cd++ = CdSO4 + -llnl_gamma 3.0 + log_k +0.0028 + -delta_H 0.20436 kJ/mol # Calculated enthalpy of reaction CdSO4 +# Enthalpy of formation: -985.295 kJ/mol + -analytic -8.9926e+000 -1.9109e-003 2.7454e+002 3.4949e+000 4.6651e+000 +# -Range: 0-200 + +1.0000 SeO4-- + 1.0000 Cd++ = CdSeO4 + -llnl_gamma 3.0 + log_k +2.2700 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdSeO4 +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Ce+++ = Ce(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.8159 + -delta_H -22.9702 kJ/mol # Calculated enthalpy of reaction Ce(CH3COO)2+ +# Enthalpy of formation: -405.09 kcal/mol + -analytic -3.4653e+001 2.0716e-004 -6.3400e+002 1.0678e+001 4.8922e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Ce+++ = Ce(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -8.151 + -delta_H -38.7438 kJ/mol # Calculated enthalpy of reaction Ce(CH3COO)3 +# Enthalpy of formation: -524.96 kcal/mol + -analytic -2.3361e+001 2.3896e-003 -1.8035e+003 5.0888e+000 7.1021e+005 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Ce+++ = Ce(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -8.1576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Ce+++ = Ce(HPO4)2- + -llnl_gamma 4.0 + log_k +8.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Ce++++ = Ce(OH)2++ +2.0000 H+ + -llnl_gamma 4.5 + log_k +2.0098 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)2+2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Ce+++ = Ce(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -6.1437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 2.0000 Ce++++ = Ce2(OH)2+6 +2.0000 H+ + -llnl_gamma 6.0 + log_k +3.0098 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2(OH)2+6 +# Enthalpy of formation: -0 kcal/mol + +5.0000 H2O + 3.0000 Ce+++ = Ce3(OH)5++++ +5.0000 H+ + -llnl_gamma 5.5 + log_k -33.4754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce3(OH)5+4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Ce+++ + 1.0000 Br- = CeBr++ + -llnl_gamma 4.5 + log_k +0.3797 + -delta_H 3.0585 kJ/mol # Calculated enthalpy of reaction CeBr+2 +# Enthalpy of formation: -195.709 kcal/mol + -analytic 7.5790e+001 3.6040e-002 -1.2647e+003 -3.3094e+001 -1.9757e+001 +# -Range: 0-300 + +1.0000 Ce+++ + 1.0000 CH3COOH = CeCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.0304 + -delta_H -12.0918 kJ/mol # Calculated enthalpy of reaction CeCH3COO+2 +# Enthalpy of formation: -286.39 kcal/mol + -analytic -1.6080e+001 6.6239e-004 -6.0721e+002 5.0845e+000 2.9512e+005 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Ce+++ = CeCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.9284 + -delta_H 93.345 kJ/mol # Calculated enthalpy of reaction CeCO3+ +# Enthalpy of formation: -309.988 kcal/mol + -analytic 2.3292e+002 5.3153e-002 -7.1180e+003 -9.2061e+001 -1.1114e+002 +# -Range: 0-300 + +1.0000 Cl- + 1.0000 Ce+++ = CeCl++ + -llnl_gamma 4.5 + log_k +0.3086 + -delta_H 14.7821 kJ/mol # Calculated enthalpy of reaction CeCl+2 +# Enthalpy of formation: -203.8 kcal/mol + -analytic 8.3534e+001 3.8166e-002 -2.0058e+003 -3.5504e+001 -3.1324e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Ce+++ = CeCl2+ + -llnl_gamma 4.0 + log_k +0.0308 + -delta_H 20.7777 kJ/mol # Calculated enthalpy of reaction CeCl2+ +# Enthalpy of formation: -242.3 kcal/mol + -analytic 2.3011e+002 8.1428e-002 -6.1292e+003 -9.4468e+001 -9.5708e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Ce+++ = CeCl3 + -llnl_gamma 3.0 + log_k -0.3936 + -delta_H 15.4766 kJ/mol # Calculated enthalpy of reaction CeCl3 +# Enthalpy of formation: -283.5 kcal/mol + -analytic 4.4073e+002 1.2994e-001 -1.2308e+004 -1.7722e+002 -1.9218e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Ce+++ = CeCl4- + -llnl_gamma 4.0 + log_k -0.7447 + -delta_H -1.95811 kJ/mol # Calculated enthalpy of reaction CeCl4- +# Enthalpy of formation: -327.6 kcal/mol + -analytic 5.2230e+002 1.3490e-001 -1.4859e+004 -2.0747e+002 -2.3201e+002 +# -Range: 0-300 + +1.0000 ClO4- + 1.0000 Ce+++ = CeClO4++ + -llnl_gamma 4.5 + log_k +1.9102 + -delta_H -49.0197 kJ/mol # Calculated enthalpy of reaction CeClO4+2 +# Enthalpy of formation: -210.026 kcal/mol + -analytic -1.3609e+001 1.8115e-002 3.9869e+003 -1.3033e+000 6.2215e+001 +# -Range: 0-300 + +1.0000 F- + 1.0000 Ce+++ = CeF++ + -llnl_gamma 4.5 + log_k +4.2221 + -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction CeF+2 +# Enthalpy of formation: -242 kcal/mol + -analytic 1.0303e+002 4.1730e-002 -2.8424e+003 -4.1094e+001 -4.4383e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Ce+++ = CeF2+ + -llnl_gamma 4.0 + log_k +7.2714 + -delta_H 15.0624 kJ/mol # Calculated enthalpy of reaction CeF2+ +# Enthalpy of formation: -324.1 kcal/mol + -analytic 2.5063e+002 8.5224e-002 -6.2219e+003 -1.0017e+002 -9.7160e+001 +# -Range: 0-300 + +3.0000 F- + 1.0000 Ce+++ = CeF3 + -llnl_gamma 3.0 + log_k +9.5144 + -delta_H -6.0668 kJ/mol # Calculated enthalpy of reaction CeF3 +# Enthalpy of formation: -409.3 kcal/mol + -analytic 4.6919e+002 1.3664e-001 -1.1745e+004 -1.8629e+002 -1.8340e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 Ce+++ = CeF4- + -llnl_gamma 4.0 + log_k +11.3909 + -delta_H -45.6056 kJ/mol # Calculated enthalpy of reaction CeF4- +# Enthalpy of formation: -498.9 kcal/mol + -analytic 5.3522e+002 1.3856e-001 -1.2722e+004 -2.1112e+002 -1.9868e+002 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 H+ + 1.0000 Ce+++ = CeH2PO4++ + -llnl_gamma 4.5 + log_k +9.6684 + -delta_H -16.2548 kJ/mol # Calculated enthalpy of reaction CeH2PO4+2 +# Enthalpy of formation: -480.1 kcal/mol + -analytic 1.1338e+002 6.3771e-002 5.2908e+001 -4.9649e+001 7.9189e-001 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Ce+++ = CeHCO3++ + -llnl_gamma 4.5 + log_k +1.9190 + -delta_H 8.77803 kJ/mol # Calculated enthalpy of reaction CeHCO3+2 +# Enthalpy of formation: -330.2 kcal/mol + -analytic 4.4441e+001 3.2077e-002 -3.0714e+002 -2.0622e+001 -4.8060e+000 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 Ce+++ = CeHPO4+ + -llnl_gamma 4.0 + log_k +5.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction CeHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 IO3- + 1.0000 Ce+++ = CeIO3++ + -llnl_gamma 4.5 + log_k +1.9000 + -delta_H -21.1627 kJ/mol # Calculated enthalpy of reaction CeIO3+2 +# Enthalpy of formation: -225.358 kcal/mol + -analytic 3.3756e+001 2.8528e-002 1.2847e+003 -1.8042e+001 2.0036e+001 +# -Range: 0-300 + +1.0000 NO3- + 1.0000 Ce+++ = CeNO3++ + -llnl_gamma 4.5 + log_k +1.3143 + -delta_H -26.6563 kJ/mol # Calculated enthalpy of reaction CeNO3+2 +# Enthalpy of formation: -223.2 kcal/mol + -analytic 2.2772e+001 2.5931e-002 1.9950e+003 -1.4490e+001 3.1124e+001 +# -Range: 0-300 + +1.0000 H2O + 1.0000 Ce+++ = CeO+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -16.4103 + -delta_H 112.202 kJ/mol # Calculated enthalpy of reaction CeO+ +# Enthalpy of formation: -208.9 kcal/mol + -analytic 1.9881e+002 3.1302e-002 -1.4331e+004 -7.1323e+001 -2.2368e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Ce+++ = CeO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -38.758 + -delta_H 308.503 kJ/mol # Calculated enthalpy of reaction CeO2- +# Enthalpy of formation: -230.3 kcal/mol + -analytic 1.0059e+002 3.4824e-003 -1.5873e+004 -3.3056e+001 -4.7656e+005 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Ce+++ = CeO2H +3.0000 H+ + -llnl_gamma 3.0 + log_k -26.1503 + -delta_H 228.17 kJ/mol # Calculated enthalpy of reaction CeO2H +# Enthalpy of formation: -249.5 kcal/mol + -analytic 3.5650e+002 4.6708e-002 -2.4320e+004 -1.2731e+002 -3.7959e+002 +# -Range: 0-300 + +1.0000 H2O + 1.0000 Ce+++ = CeOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -8.4206 + -delta_H 73.2911 kJ/mol # Calculated enthalpy of reaction CeOH+2 +# Enthalpy of formation: -218.2 kcal/mol + -analytic 7.5809e+001 1.2863e-002 -6.7244e+003 -2.6473e+001 -1.0495e+002 +# -Range: 0-300 + +1.0000 H2O + 1.0000 Ce++++ = CeOH+++ +1.0000 H+ + -llnl_gamma 5.0 + log_k +3.2049 + -delta_H 0 # Not possible to calculate enthalpy of reaction CeOH+3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 Ce+++ = CePO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k -0.9718 + -delta_H 0 # Not possible to calculate enthalpy of reaction CePO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Ce+++ = CeSO4+ + -llnl_gamma 4.0 + log_k -3.687 + -delta_H 19.2464 kJ/mol # Calculated enthalpy of reaction CeSO4+ +# Enthalpy of formation: -380.2 kcal/mol + -analytic 3.0156e+002 8.5149e-002 -1.1025e+004 -1.1866e+002 -1.7213e+002 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Co++ = Co(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -7.1468 + -delta_H -22.4262 kJ/mol # Calculated enthalpy of reaction Co(CH3COO)2 +# Enthalpy of formation: -251.46 kcal/mol + -analytic -2.0661e+001 2.9014e-003 -2.2146e+003 5.1702e+000 6.4968e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Co++ = Co(CH3COO)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -11.281 + -delta_H -48.2415 kJ/mol # Calculated enthalpy of reaction Co(CH3COO)3- +# Enthalpy of formation: -373.73 kcal/mol + -analytic 6.3384e+001 -4.0669e-003 -1.4715e+004 -1.9518e+001 2.1524e+006 +# -Range: 0-300 + +2.0000 HS- + 1.0000 Co++ = Co(HS)2 + -llnl_gamma 3.0 + log_k +9.0306 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(HS)2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Co++ = Co(OH)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -18.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)2 +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 1.0000 Co++ = Co(OH)4-- +4.0000 H+ + -llnl_gamma 4.0 + log_k -45.7803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)4-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2O + 2.0000 Co++ = Co2OH+++ +1.0000 H+ + -llnl_gamma 5.0 + log_k -11.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co2OH+3 +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 4.0000 Co++ = Co4(OH)4++++ +4.0000 H+ + -llnl_gamma 5.5 + log_k -30.3803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co4(OH)4+4 +# Enthalpy of formation: -0 kcal/mol + +2.0000 Br- + 1.0000 Co++ = CoBr2 + -llnl_gamma 3.0 + log_k -0.0358 + -delta_H -0.56568 kJ/mol # Calculated enthalpy of reaction CoBr2 +# Enthalpy of formation: -301.73 kJ/mol + -analytic 5.8731e+000 8.0908e-004 -1.8986e+002 -2.2295e+000 -3.2261e+000 +# -Range: 0-200 + +1.0000 Co++ + 1.0000 CH3COOH = CoCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -3.2985 + -delta_H -8.70272 kJ/mol # Calculated enthalpy of reaction CoCH3COO+ +# Enthalpy of formation: -132.08 kcal/mol + -analytic -5.4858e+000 1.9147e-003 -1.1292e+003 9.0555e-001 2.8223e+005 +# -Range: 0-300 + +1.0000 Co++ + 1.0000 Cl- = CoCl+ + -llnl_gamma 4.0 + log_k +0.1547 + -delta_H 1.71962 kJ/mol # Calculated enthalpy of reaction CoCl+ +# Enthalpy of formation: -53.422 kcal/mol + -analytic 1.5234e+002 5.6958e-002 -3.3258e+003 -6.3849e+001 -5.1942e+001 +# -Range: 0-300 + +1.0000 HS- + 1.0000 Co++ = CoHS+ + -llnl_gamma 4.0 + log_k +5.9813 + -delta_H 0 # Not possible to calculate enthalpy of reaction CoHS+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 I- + 1.0000 Co++ = CoI2 + -llnl_gamma 3.0 + log_k -0.0944 + -delta_H 3.1774 kJ/mol # Calculated enthalpy of reaction CoI2 +# Enthalpy of formation: -168.785 kJ/mol + -analytic 3.6029e+001 1.0128e-002 -1.1219e+003 -1.4301e+001 -1.9064e+001 +# -Range: 0-200 + +1.0000 NO3- + 1.0000 Co++ = CoNO3+ + -llnl_gamma 4.0 + log_k +0.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction CoNO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Co++ + S2O3-- = CoS2O3 + -llnl_gamma 3.0 + log_k 0.8063 + -delta_H 0 # Not possible to calculate enthalpy of reaction CoS2O3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Co++ = CoSO4 + -llnl_gamma 3.0 + log_k +0.0436 + -delta_H 0.3842 kJ/mol # Calculated enthalpy of reaction CoSO4 +# Enthalpy of formation: -967.375 kJ/mol + -analytic 2.4606e+000 1.0086e-003 -6.1450e+001 -1.0148e+000 -1.0444e+000 +# -Range: 0-200 + +1.0000 SeO4-- + 1.0000 Co++ = CoSeO4 + -llnl_gamma 3.0 + log_k +2.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction CoSeO4 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Cr+++ = Cr(OH)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -9.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)2+ +# Enthalpy of formation: -0 kcal/mol + +3.0000 H2O + 1.0000 Cr+++ = Cr(OH)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -18 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)3 +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 1.0000 Cr+++ = Cr(OH)4- +4.0000 H+ + -llnl_gamma 4.0 + log_k -27.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)4- +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 2.0000 Cr+++ = Cr2(OH)2++++ +2.0000 H+ + -llnl_gamma 5.5 + log_k -5.06 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H+ + 2.0000 CrO4-- = Cr2O7-- +1.0000 H2O + -llnl_gamma 4.0 + log_k +14.5192 + -delta_H -13.8783 kJ/mol # Calculated enthalpy of reaction Cr2O7-2 +# Enthalpy of formation: -356.2 kcal/mol + -analytic 1.3749e+002 6.5773e-002 -7.9472e+002 -5.6525e+001 -1.2441e+001 +# -Range: 0-300 + +4.0000 H2O + 3.0000 Cr+++ = Cr3(OH)4+5 +4.0000 H+ + -llnl_gamma 6.0 + log_k -8.15 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr3(OH)4+5 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Cr+++ + 1.0000 Br- = CrBr++ + -llnl_gamma 4.5 + log_k -2.7813 + -delta_H 33.564 kJ/mol # Calculated enthalpy of reaction CrBr+2 +# Enthalpy of formation: -78.018 kcal/mol + -analytic 9.4384e+001 3.4704e-002 -3.6750e+003 -3.8461e+001 -5.7373e+001 +# -Range: 0-300 + +1.0000 Cr+++ + 1.0000 Cl- = CrCl++ + -llnl_gamma 4.5 + log_k -0.149 + -delta_H 0 # Not possible to calculate enthalpy of reaction CrCl+2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 Cl- + 1.0000 Cr+++ = CrCl2+ + -llnl_gamma 4.0 + log_k +0.1596 + -delta_H 41.2919 kJ/mol # Calculated enthalpy of reaction CrCl2+ +# Enthalpy of formation: -126.997 kcal/mol + -analytic 2.0114e+002 7.3878e-002 -6.2218e+003 -8.1677e+001 -9.7144e+001 +# -Range: 0-300 + +1.0000 Cl- + 2.000 H+ + 1.0000 CrO4-- = CrO3Cl- + 1.0000 H2O + -llnl_gamma 4.0 + log_k 7.5270 + -delta_H 0 # Not possible to calculate enthalpy of reaction CrO3Cl- +# Enthalpy of formation: -0 kcal/mol + -analytic 2.7423e+002 1.0013e-001 -6.0072e+003 -1.1168e+002 -9.3817e+001 +# -Range: 0-300 + +1.0000 H2O + 1.0000 Cr+++ = CrOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -4 + -delta_H 0 # Not possible to calculate enthalpy of reaction CrOH+2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Cs+ = Cs(CH3COO)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -9.771 + -delta_H 1.2552 kJ/mol # Calculated enthalpy of reaction Cs(CH3COO)2- +# Enthalpy of formation: -293.57 kcal/mol + -analytic -1.6956e+002 -4.0378e-002 4.5773e+003 6.3241e+001 7.1475e+001 +# -Range: 0-300 + +1.0000 Cs+ + 1.0000 Br- = CsBr + -llnl_gamma 3.0 + log_k -0.2712 + -delta_H 10.9621 kJ/mol # Calculated enthalpy of reaction CsBr +# Enthalpy of formation: -88.09 kcal/mol + -analytic 1.2064e+002 3.2000e-002 -3.8770e+003 -4.7458e+001 -6.0533e+001 +# -Range: 0-300 + +1.0000 Cs+ + 1.0000 CH3COOH = CsCH3COO +1.0000 H+ + -llnl_gamma 3.0 + log_k -4.7352 + -delta_H 6.0668 kJ/mol # Calculated enthalpy of reaction CsCH3COO +# Enthalpy of formation: -176.32 kcal/mol + -analytic 2.4280e+001 -2.8642e-003 -3.1339e+003 -8.1616e+000 2.2684e+005 +# -Range: 0-300 + +1.0000 Cs+ + 1.0000 Cl- = CsCl + -llnl_gamma 3.0 + log_k -0.1385 + -delta_H 2.73215 kJ/mol # Calculated enthalpy of reaction CsCl +# Enthalpy of formation: -100.95 kcal/mol + -analytic 1.2472e+002 3.3730e-002 -3.9130e+003 -4.9212e+001 -6.1096e+001 +# -Range: 0-300 + +1.0000 I- + 1.0000 Cs+ = CsI + -llnl_gamma 3.0 + log_k +0.2639 + -delta_H -6.56888 kJ/mol # Calculated enthalpy of reaction CsI +# Enthalpy of formation: -76.84 kcal/mol + -analytic 1.1555e+002 3.1419e-002 -3.3496e+003 -4.5828e+001 -5.2302e+001 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Cu++ = Cu(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -5.8824 + -delta_H -25.899 kJ/mol # Calculated enthalpy of reaction Cu(CH3COO)2 +# Enthalpy of formation: -222.69 kcal/mol + -analytic -2.6689e+001 1.8048e-003 -1.8244e+003 7.7008e+000 6.5408e+005 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Cu+ = Cu(CH3COO)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -9.2139 + -delta_H -19.5476 kJ/mol # Calculated enthalpy of reaction Cu(CH3COO)2- +# Enthalpy of formation: -219.74 kcal/mol + -analytic -3.2712e+002 -5.9087e-002 1.1386e+004 1.2017e+002 1.7777e+002 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Cu++ = Cu(CH3COO)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -9.3788 + -delta_H -53.2205 kJ/mol # Calculated enthalpy of reaction Cu(CH3COO)3- +# Enthalpy of formation: -345.32 kcal/mol + -analytic 3.9475e+001 -6.2867e-003 -1.3233e+004 -1.0643e+001 2.1121e+006 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Cu++ = Cu(CO3)2-- +2.0000 H+ + -llnl_gamma 4.0 + log_k -10.4757 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cu(CO3)2-2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 NH3 + 1.0000 Cu++ = Cu(NH3)2++ + -llnl_gamma 4.5 + log_k +7.4512 + -delta_H -45.1269 kJ/mol # Calculated enthalpy of reaction Cu(NH3)2+2 +# Enthalpy of formation: -142.112 kJ/mol + -analytic 1.1526e+002 4.8192e-003 -2.5139e+003 -4.0733e+001 -3.9261e+001 +# -Range: 0-300 + +3.0000 NH3 + 1.0000 Cu++ = Cu(NH3)3++ + -llnl_gamma 4.5 + log_k +10.2719 + -delta_H -67.2779 kJ/mol # Calculated enthalpy of reaction Cu(NH3)3+2 +# Enthalpy of formation: -245.6 kJ/mol + -analytic 1.3945e+002 -3.8236e-004 -2.8137e+003 -4.8336e+001 -4.3946e+001 +# -Range: 0-300 + +2.0000 NO2- + 1.0000 Cu++ = Cu(NO2)2 + -llnl_gamma 3.0 + log_k +3.0300 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cu(NO2)2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Cu+ + 1.0000 CH3COOH = CuCH3COO +1.0000 H+ + -llnl_gamma 3.0 + log_k -4.4274 + -delta_H -4.19237 kJ/mol # Calculated enthalpy of reaction CuCH3COO +# Enthalpy of formation: -99.97 kcal/mol + -analytic 6.3784e+000 -4.5464e-004 -1.9995e+003 -2.8359e+000 2.7224e+005 +# -Range: 0-300 + +1.0000 Cu++ + 1.0000 CH3COOH = CuCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.5252 + -delta_H -11.3805 kJ/mol # Calculated enthalpy of reaction CuCH3COO+ +# Enthalpy of formation: -103.12 kcal/mol + -analytic -1.4930e+001 5.1278e-004 -3.4874e+002 4.3605e+000 2.3504e+005 +# -Range: 0-300 + +2.0000 H2O + 1.0000 HCO3- + 1.0000 Cu++ = CuCO3(OH)2-- +3.0000 H+ + -llnl_gamma 4.0 + log_k -23.444 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCO3(OH)2-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 HCO3- + 1.0000 Cu++ = CuCO3 +1.0000 H+ + -llnl_gamma 3.0 + log_k -3.3735 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCO3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Cu++ + 1.0000 Cl- = CuCl+ + -llnl_gamma 4.0 + log_k +0.4370 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 Cl- + 1.0000 Cu++ = CuCl2 + -llnl_gamma 3.0 + log_k +0.1585 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 Cl- + 1.0000 Cu+ = CuCl2- + -llnl_gamma 4.0 + log_k +4.8212 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl2- +# Enthalpy of formation: -0 kcal/mol + +3.0000 Cl- + 1.0000 Cu+ = CuCl3-- + -llnl_gamma 4.0 + log_k +5.6289 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl3-2 +# Enthalpy of formation: -0 kcal/mol + +4.0000 Cl- + 1.0000 Cu++ = CuCl4-- + -llnl_gamma 4.0 + log_k -4.5681 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl4-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 F- + 1.0000 Cu++ = CuF+ + -llnl_gamma 4.0 + log_k +1.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuF+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 H+ + 1.0000 Cu++ = CuH2PO4+ + -llnl_gamma 4.0 + log_k +8.9654 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuH2PO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 Cu++ = CuHPO4 + -llnl_gamma 3.0 + log_k +4.0600 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuHPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 NH3 + 1.0000 Cu++ = CuNH3++ + -llnl_gamma 4.5 + log_k +4.0400 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuNH3+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 NO2- + 1.0000 Cu++ = CuNO2+ + -llnl_gamma 4.0 + log_k +2.0200 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuNO2+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Cu++ = CuO2-- +4.0000 H+ + -llnl_gamma 4.0 + log_k -39.4497 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuO2-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2O + 1.0000 Cu++ = CuOH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -7.2875 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuOH+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 Cu++ = CuPO4- +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.4718 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuPO4- +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Cu++ = CuSO4 + -llnl_gamma 0.0 + log_k +2.3600 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuSO4 +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Dy+++ = Dy(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.9625 + -delta_H -29.3298 kJ/mol # Calculated enthalpy of reaction Dy(CH3COO)2+ +# Enthalpy of formation: -405.71 kcal/mol + -analytic -2.7249e+001 2.7507e-003 -1.7500e+003 7.9356e+000 6.8668e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Dy+++ = Dy(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -8.3489 + -delta_H -49.4549 kJ/mol # Calculated enthalpy of reaction Dy(CH3COO)3 +# Enthalpy of formation: -526.62 kcal/mol + -analytic -2.4199e+001 6.2065e-003 -2.8937e+003 5.0176e+000 1.0069e+006 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Dy+++ = Dy(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -7.4576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Dy+++ = Dy(HPO4)2- + -llnl_gamma 4.0 + log_k +9.8000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +# Redundant with DyO2- +#4.0000 H2O + 1.0000 Dy+++ = Dy(OH)4- +4.0000 H+ +# -llnl_gamma 4.0 +# log_k -33.4803 +# -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)4- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Dy+++ = Dy(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -3.4437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Dy+++ = Dy(SO4)2- + -llnl_gamma 4.0 + log_k +5.0000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Dy+++ + 1.0000 CH3COOH = DyCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.1037 + -delta_H -14.8532 kJ/mol # Calculated enthalpy of reaction DyCH3COO+2 +# Enthalpy of formation: -286.15 kcal/mol + -analytic -1.3635e+001 1.7329e-003 -9.4636e+002 4.0900e+000 3.6282e+005 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Dy+++ = DyCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.3324 + -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction DyCO3+ +# Enthalpy of formation: -310.1 kcal/mol + -analytic 2.3742e+002 5.4342e-002 -6.9953e+003 -9.3949e+001 -1.0922e+002 +# -Range: 0-300 + +1.0000 Dy+++ + 1.0000 Cl- = DyCl++ + -llnl_gamma 4.5 + log_k +0.2353 + -delta_H 13.5269 kJ/mol # Calculated enthalpy of reaction DyCl+2 +# Enthalpy of formation: -203.2 kcal/mol + -analytic 6.9134e+001 3.7129e-002 -1.3839e+003 -3.0432e+001 -2.1615e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Dy+++ = DyCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 17.4305 kJ/mol # Calculated enthalpy of reaction DyCl2+ +# Enthalpy of formation: -242.2 kcal/mol + -analytic 1.8868e+002 7.7901e-002 -4.3528e+003 -7.9735e+001 -6.7978e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Dy+++ = DyCl3 + -llnl_gamma 3.0 + log_k -0.4669 + -delta_H 8.78222 kJ/mol # Calculated enthalpy of reaction DyCl3 +# Enthalpy of formation: -284.2 kcal/mol + -analytic 3.6761e+002 1.2471e-001 -9.0651e+003 -1.5147e+002 -1.4156e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Dy+++ = DyCl4- + -llnl_gamma 4.0 + log_k -0.8913 + -delta_H -14.0917 kJ/mol # Calculated enthalpy of reaction DyCl4- +# Enthalpy of formation: -329.6 kcal/mol + -analytic 3.9134e+002 1.2288e-001 -9.2351e+003 -1.6078e+002 -1.4422e+002 +# -Range: 0-300 + +1.0000 F- + 1.0000 Dy+++ = DyF++ + -llnl_gamma 4.5 + log_k +4.6619 + -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction DyF+2 +# Enthalpy of formation: -241.1 kcal/mol + -analytic 9.1120e+001 4.1193e-002 -2.3302e+003 -3.6734e+001 -3.6388e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Dy+++ = DyF2+ + -llnl_gamma 4.0 + log_k +8.1510 + -delta_H 12.552 kJ/mol # Calculated enthalpy of reaction DyF2+ +# Enthalpy of formation: -323.8 kcal/mol + -analytic 2.1325e+002 8.2483e-002 -4.5864e+003 -8.6587e+001 -7.1629e+001 +# -Range: 0-300 + +3.0000 F- + 1.0000 Dy+++ = DyF3 + -llnl_gamma 3.0 + log_k +10.7605 + -delta_H -11.9244 kJ/mol # Calculated enthalpy of reaction DyF3 +# Enthalpy of formation: -409.8 kcal/mol + -analytic 3.9766e+002 1.3143e-001 -8.5607e+003 -1.6056e+002 -1.3370e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 Dy+++ = DyF4- + -llnl_gamma 4.0 + log_k +12.8569 + -delta_H -57.3208 kJ/mol # Calculated enthalpy of reaction DyF4- +# Enthalpy of formation: -500.8 kcal/mol + -analytic 4.1672e+002 1.2922e-001 -7.4445e+003 -1.6867e+002 -1.1629e+002 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 H+ + 1.0000 Dy+++ = DyH2PO4++ + -llnl_gamma 4.5 + log_k +9.3751 + -delta_H -18.3468 kJ/mol # Calculated enthalpy of reaction DyH2PO4+2 +# Enthalpy of formation: -479.7 kcal/mol + -analytic 9.8183e+001 6.2578e-002 7.1784e+002 -4.4383e+001 1.1172e+001 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Dy+++ = DyHCO3++ + -llnl_gamma 4.5 + log_k +1.6991 + -delta_H 7.10443 kJ/mol # Calculated enthalpy of reaction DyHCO3+2 +# Enthalpy of formation: -329.7 kcal/mol + -analytic 2.8465e+001 3.0703e-002 3.9229e+002 -1.5036e+001 6.1127e+000 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 Dy+++ = DyHPO4+ + -llnl_gamma 4.0 + log_k +5.8000 + -delta_H 0 # Not possible to calculate enthalpy of reaction DyHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 NO3- + 1.0000 Dy+++ = DyNO3++ + -llnl_gamma 4.5 + log_k +0.1415 + -delta_H -30.4219 kJ/mol # Calculated enthalpy of reaction DyNO3+2 +# Enthalpy of formation: -223.2 kcal/mol + -analytic 6.4353e+000 2.4556e-002 2.5866e+003 -8.9975e+000 4.0359e+001 +# -Range: 0-300 + +1.0000 H2O + 1.0000 Dy+++ = DyO+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -16.1171 + -delta_H 108.018 kJ/mol # Calculated enthalpy of reaction DyO+ +# Enthalpy of formation: -209 kcal/mol + -analytic 1.9069e+002 3.0358e-002 -1.3796e+004 -6.8532e+001 -2.1532e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Dy+++ = DyO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -33.4804 + -delta_H 273.776 kJ/mol # Calculated enthalpy of reaction DyO2- +# Enthalpy of formation: -237.7 kcal/mol + -analytic 7.7395e+001 4.4204e-004 -1.3570e+004 -2.4546e+001 -4.2320e+005 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Dy+++ = DyO2H +3.0000 H+ + -llnl_gamma 3.0 + log_k -24.8309 + -delta_H 217.71 kJ/mol # Calculated enthalpy of reaction DyO2H +# Enthalpy of formation: -251.1 kcal/mol + -analytic 3.3576e+002 4.6004e-002 -2.2868e+004 -1.2027e+002 -3.5693e+002 +# -Range: 0-300 + +1.0000 H2O + 1.0000 Dy+++ = DyOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -7.8342 + -delta_H 76.6383 kJ/mol # Calculated enthalpy of reaction DyOH+2 +# Enthalpy of formation: -216.5 kcal/mol + -analytic 7.0856e+001 1.2473e-002 -6.2419e+003 -2.4841e+001 -9.7420e+001 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 Dy+++ = DyPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k +0.1782 + -delta_H 0 # Not possible to calculate enthalpy of reaction DyPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Dy+++ = DySO4+ + -llnl_gamma 4.0 + log_k +3.6430 + -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction DySO4+ +# Enthalpy of formation: -379 kcal/mol + -analytic 3.0672e+002 8.6459e-002 -9.0386e+003 -1.2063e+002 -1.4113e+002 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Er+++ = Er(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.9844 + -delta_H -32.8026 kJ/mol # Calculated enthalpy of reaction Er(CH3COO)2+ +# Enthalpy of formation: -408.54 kcal/mol + -analytic -3.1458e+001 1.4715e-003 -1.0556e+003 9.1586e+000 6.1669e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Er+++ = Er(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -8.3783 + -delta_H -55.187 kJ/mol # Calculated enthalpy of reaction Er(CH3COO)3 +# Enthalpy of formation: -529.99 kcal/mol + -analytic -2.1575e+001 5.9740e-003 -2.0489e+003 3.3624e+000 8.8933e+005 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Er+++ = Er(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -7.2576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Er+++ = Er(HPO4)2- + -llnl_gamma 4.0 + log_k +10.0000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +# Redundant with ErO2- +#4.0000 H2O + 1.0000 Er+++ = Er(OH)4- +4.0000 H+ +# -llnl_gamma 4.0 +# log_k -32.5803 +# -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)4- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Er+++ = Er(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -3.2437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Er+++ = Er(SO4)2- + -llnl_gamma 4.0 + log_k +5.0000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Er+++ + 1.0000 CH3COOH = ErCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.1184 + -delta_H -16.4013 kJ/mol # Calculated enthalpy of reaction ErCH3COO+2 +# Enthalpy of formation: -288.52 kcal/mol + -analytic -1.2519e+001 1.5558e-003 -8.5344e+002 3.5918e+000 3.4888e+005 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Er+++ = ErCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.1858 + -delta_H 87.0188 kJ/mol # Calculated enthalpy of reaction ErCO3+ +# Enthalpy of formation: -312.6 kcal/mol + -analytic 2.3838e+002 5.4549e-002 -6.9433e+003 -9.4373e+001 -1.0841e+002 +# -Range: 0-300 + +1.0000 Er+++ + 1.0000 Cl- = ErCl++ + -llnl_gamma 4.5 + log_k +0.3086 + -delta_H 12.6901 kJ/mol # Calculated enthalpy of reaction ErCl+2 +# Enthalpy of formation: -205.4 kcal/mol + -analytic 7.4113e+001 3.7462e-002 -1.5300e+003 -3.2257e+001 -2.3896e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Er+++ = ErCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 15.3385 kJ/mol # Calculated enthalpy of reaction ErCl2+ +# Enthalpy of formation: -244.7 kcal/mol + -analytic 2.0259e+002 7.8907e-002 -4.8271e+003 -8.4835e+001 -7.5382e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Er+++ = ErCl3 + -llnl_gamma 3.0 + log_k -0.4669 + -delta_H 5.01662 kJ/mol # Calculated enthalpy of reaction ErCl3 +# Enthalpy of formation: -287.1 kcal/mol + -analytic 3.9721e+002 1.2757e-001 -1.0045e+004 -1.6244e+002 -1.5686e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Er+++ = ErCl4- + -llnl_gamma 4.0 + log_k -0.8913 + -delta_H -20.7861 kJ/mol # Calculated enthalpy of reaction ErCl4- +# Enthalpy of formation: -333.2 kcal/mol + -analytic 4.3471e+002 1.2627e-001 -1.0669e+004 -1.7677e+002 -1.6660e+002 +# -Range: 0-300 + +1.0000 F- + 1.0000 Er+++ = ErF++ + -llnl_gamma 4.5 + log_k +4.7352 + -delta_H 24.058 kJ/mol # Calculated enthalpy of reaction ErF+2 +# Enthalpy of formation: -242.9 kcal/mol + -analytic 9.7079e+001 4.1707e-002 -2.6028e+003 -3.8805e+001 -4.0643e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Er+++ = ErF2+ + -llnl_gamma 4.0 + log_k +8.2976 + -delta_H 12.9704 kJ/mol # Calculated enthalpy of reaction ErF2+ +# Enthalpy of formation: -325.7 kcal/mol + -analytic 2.2892e+002 8.3842e-002 -5.2174e+003 -9.2172e+001 -8.1481e+001 +# -Range: 0-300 + +3.0000 F- + 1.0000 Er+++ = ErF3 + -llnl_gamma 3.0 + log_k +10.9071 + -delta_H -12.3428 kJ/mol # Calculated enthalpy of reaction ErF3 +# Enthalpy of formation: -411.9 kcal/mol + -analytic 4.2782e+002 1.3425e-001 -9.7064e+003 -1.7148e+002 -1.5158e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 Er+++ = ErF4- + -llnl_gamma 4.0 + log_k +13.0768 + -delta_H -60.2496 kJ/mol # Calculated enthalpy of reaction ErF4- +# Enthalpy of formation: -503.5 kcal/mol + -analytic 4.6524e+002 1.3372e-001 -9.1895e+003 -1.8636e+002 -1.4353e+002 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 H+ + 1.0000 Er+++ = ErH2PO4++ + -llnl_gamma 4.5 + log_k +9.4484 + -delta_H -20.4388 kJ/mol # Calculated enthalpy of reaction ErH2PO4+2 +# Enthalpy of formation: -482.2 kcal/mol + -analytic 1.0254e+002 6.2786e-002 6.3590e+002 -4.6029e+001 9.8920e+000 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Er+++ = ErHCO3++ + -llnl_gamma 4.5 + log_k +1.7724 + -delta_H 5.01243 kJ/mol # Calculated enthalpy of reaction ErHCO3+2 +# Enthalpy of formation: -332.2 kcal/mol + -analytic 3.2450e+001 3.0822e-002 3.1601e+002 -1.6528e+001 4.9212e+000 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 Er+++ = ErHPO4+ + -llnl_gamma 4.0 + log_k +5.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction ErHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 NO3- + 1.0000 Er+++ = ErNO3++ + -llnl_gamma 4.5 + log_k +0.1415 + -delta_H -33.7691 kJ/mol # Calculated enthalpy of reaction ErNO3+2 +# Enthalpy of formation: -226 kcal/mol + -analytic 1.0381e+001 2.4710e-002 2.5752e+003 -1.0596e+001 4.0181e+001 +# -Range: 0-300 + +1.0000 H2O + 1.0000 Er+++ = ErO+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -15.9705 + -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction ErO+ +# Enthalpy of formation: -211.6 kcal/mol + -analytic 1.7556e+002 2.8655e-002 -1.3134e+004 -6.3050e+001 -2.0499e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Er+++ = ErO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -32.6008 + -delta_H 266.245 kJ/mol # Calculated enthalpy of reaction ErO2- +# Enthalpy of formation: -241.5 kcal/mol + -analytic 1.4987e+002 9.1241e-003 -1.8521e+004 -4.9740e+001 -2.8905e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Er+++ = ErO2H +3.0000 H+ + -llnl_gamma 3.0 + log_k -24.3178 + -delta_H 212.689 kJ/mol # Calculated enthalpy of reaction ErO2H +# Enthalpy of formation: -254.3 kcal/mol + -analytic 3.1493e+002 4.4381e-002 -2.1821e+004 -1.1287e+002 -3.4059e+002 +# -Range: 0-300 + +1.0000 H2O + 1.0000 Er+++ = ErOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -7.7609 + -delta_H 74.5463 kJ/mol # Calculated enthalpy of reaction ErOH+2 +# Enthalpy of formation: -219 kcal/mol + -analytic 5.7142e+001 1.0986e-002 -5.6684e+003 -1.9867e+001 -8.8467e+001 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 Er+++ = ErPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k +0.3782 + -delta_H 0 # Not possible to calculate enthalpy of reaction ErPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Er+++ = ErSO4+ + -llnl_gamma 4.0 + log_k +3.5697 + -delta_H 20.3008 kJ/mol # Calculated enthalpy of reaction ErSO4+ +# Enthalpy of formation: -381.048 kcal/mol + -analytic 3.0363e+002 8.5667e-002 -8.9667e+003 -1.1942e+002 -1.4001e+002 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Eu+++ = Eu(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.6912 + -delta_H -28.3257 kJ/mol # Calculated enthalpy of reaction Eu(CH3COO)2+ +# Enthalpy of formation: -383.67 kcal/mol + -analytic -2.7589e+001 1.5772e-003 -1.1008e+003 7.9899e+000 5.6652e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Eu+++ = Eu(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -7.9824 + -delta_H -47.3629 kJ/mol # Calculated enthalpy of reaction Eu(CH3COO)3 +# Enthalpy of formation: -504.32 kcal/mol + -analytic -3.7470e+001 1.9276e-003 -1.0318e+003 9.7078e+000 7.4558e+005 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Eu+++ = Eu(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -8.3993 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +3.0000 HCO3- + 1.0000 Eu+++ = Eu(CO3)3--- +3.0000 H+ + -llnl_gamma 4.0 + log_k -16.8155 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(CO3)3-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Eu+++ = Eu(HPO4)2- + -llnl_gamma 4.0 + log_k +9.6000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +# Redundant with EuO+ +#2.0000 H2O + 1.0000 Eu+++ = Eu(OH)2+ +2.0000 H+ +# -llnl_gamma 4.0 +# log_k -14.8609 +# -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2+ +## Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 HCO3- + 1.0000 Eu+++ = Eu(OH)2CO3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -17.8462 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2CO3- +# Enthalpy of formation: -0 kcal/mol + +# Redundant with EuO2H +#3.0000 H2O + 1.0000 Eu+++ = Eu(OH)3 +3.0000 H+ +# -llnl_gamma 3.0 +# log_k -24.1253 +# -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)3 +## Enthalpy of formation: -0 kcal/mol + +# Redundant with EuO2- +#4.0000 H2O + 1.0000 Eu+++ = Eu(OH)4- +4.0000 H+ +# -llnl_gamma 4.0 +# log_k -36.5958 +# -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)4- +## Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Eu+++ = Eu(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -3.9837 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Eu+++ = Eu(SO4)2- + -llnl_gamma 4.0 + log_k +5.4693 + -delta_H 25.627 kJ/mol # Calculated enthalpy of reaction Eu(SO4)2- +# Enthalpy of formation: -2399 kJ/mol + -analytic 4.5178e+002 1.2285e-001 -1.3400e+004 -1.7697e+002 -2.0922e+002 +# -Range: 0-300 + +2.0000 H2O + 2.0000 Eu+++ = Eu2(OH)2++++ +2.0000 H+ + -llnl_gamma 5.5 + log_k -6.9182 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Eu+++ + 1.0000 Br- = EuBr++ + -llnl_gamma 4.5 + log_k +0.5572 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuBr+2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 Br- + 1.0000 Eu+++ = EuBr2+ + -llnl_gamma 4.0 + log_k +0.2145 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuBr2+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Eu+++ + 1.0000 BrO3- = EuBrO3++ + -llnl_gamma 4.5 + log_k +4.5823 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuBrO3+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Eu+++ + 1.0000 CH3COOH = EuCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -1.9571 + -delta_H -14.5603 kJ/mol # Calculated enthalpy of reaction EuCH3COO+2 +# Enthalpy of formation: -264.28 kcal/mol + -analytic -1.5090e+001 1.0352e-003 -6.4435e+002 4.6225e+000 3.1649e+005 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Eu+++ = EuCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.4057 + -delta_H 90.7844 kJ/mol # Calculated enthalpy of reaction EuCO3+ +# Enthalpy of formation: -287.9 kcal/mol + -analytic 2.3548e+002 5.3819e-002 -6.9908e+003 -9.3137e+001 -1.0915e+002 +# -Range: 0-300 + +1.0000 Eu++ + 1.0000 Cl- = EuCl+ + -llnl_gamma 4.0 + log_k +0.3819 + -delta_H 8.50607 kJ/mol # Calculated enthalpy of reaction EuCl+ +# Enthalpy of formation: -164 kcal/mol + -analytic 6.8695e+001 3.7619e-002 -1.0809e+003 -3.0665e+001 -1.6887e+001 +# -Range: 0-300 + +1.0000 Eu+++ + 1.0000 Cl- = EuCl++ + -llnl_gamma 4.5 + log_k +0.3086 + -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction EuCl+2 +# Enthalpy of formation: -181.3 kcal/mol + -analytic 7.9275e+001 3.7878e-002 -1.7895e+003 -3.4041e+001 -2.7947e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Eu++ = EuCl2 + -llnl_gamma 3.0 + log_k +1.2769 + -delta_H 5.71534 kJ/mol # Calculated enthalpy of reaction EuCl2 +# Enthalpy of formation: -204.6 kcal/mol + -analytic 1.0474e+002 6.7132e-002 -7.0448e+002 -4.8928e+001 -1.1024e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Eu+++ = EuCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 18.6857 kJ/mol # Calculated enthalpy of reaction EuCl2+ +# Enthalpy of formation: -220.1 kcal/mol + -analytic 2.1758e+002 8.0336e-002 -5.5499e+003 -9.0087e+001 -8.6665e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Eu+++ = EuCl3 + -llnl_gamma 3.0 + log_k -0.4669 + -delta_H 11.2926 kJ/mol # Calculated enthalpy of reaction EuCl3 +# Enthalpy of formation: -261.8 kcal/mol + -analytic 4.2075e+002 1.2890e-001 -1.1288e+004 -1.7043e+002 -1.7627e+002 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Eu++ = EuCl3- + -llnl_gamma 4.0 + log_k +2.0253 + -delta_H -3.76978 kJ/mol # Calculated enthalpy of reaction EuCl3- +# Enthalpy of formation: -246.8 kcal/mol + -analytic 1.1546e+001 6.4683e-002 3.7299e+003 -1.6672e+001 5.8196e+001 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Eu+++ = EuCl4- + -llnl_gamma 4.0 + log_k -0.8913 + -delta_H -9.90771 kJ/mol # Calculated enthalpy of reaction EuCl4- +# Enthalpy of formation: -306.8 kcal/mol + -analytic 4.8122e+002 1.3081e-001 -1.2950e+004 -1.9302e+002 -2.0222e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Eu++ = EuCl4-- + -llnl_gamma 4.0 + log_k +2.8470 + -delta_H -19.9493 kJ/mol # Calculated enthalpy of reaction EuCl4-2 +# Enthalpy of formation: -290.6 kcal/mol + -analytic -1.2842e+002 5.0789e-002 9.8815e+003 3.3565e+001 1.5423e+002 +# -Range: 0-300 + +1.0000 F- + 1.0000 Eu++ = EuF+ + -llnl_gamma 4.0 + log_k -1.3487 + -delta_H 16.9452 kJ/mol # Calculated enthalpy of reaction EuF+ +# Enthalpy of formation: -202.2 kcal/mol + -analytic 6.2412e+001 3.5839e-002 -1.3660e+003 -2.8223e+001 -2.1333e+001 +# -Range: 0-300 + +1.0000 F- + 1.0000 Eu+++ = EuF++ + -llnl_gamma 4.5 + log_k +4.4420 + -delta_H 23.6396 kJ/mol # Calculated enthalpy of reaction EuF+2 +# Enthalpy of formation: -219.2 kcal/mol + -analytic 1.0063e+002 4.1834e-002 -2.7355e+003 -4.0195e+001 -4.2714e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Eu++ = EuF2 + -llnl_gamma 3.0 + log_k -2.0378 + -delta_H 17.5728 kJ/mol # Calculated enthalpy of reaction EuF2 +# Enthalpy of formation: -282.2 kcal/mol + -analytic 1.2065e+002 7.1705e-002 -1.7998e+003 -5.5760e+001 -2.8121e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Eu+++ = EuF2+ + -llnl_gamma 4.0 + log_k +7.7112 + -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction EuF2+ +# Enthalpy of formation: -301.7 kcal/mol + -analytic 2.4099e+002 8.4714e-002 -5.7702e+003 -9.6640e+001 -9.0109e+001 +# -Range: 0-300 + +3.0000 F- + 1.0000 Eu+++ = EuF3 + -llnl_gamma 3.0 + log_k +10.1741 + -delta_H -8.9956 kJ/mol # Calculated enthalpy of reaction EuF3 +# Enthalpy of formation: -387.3 kcal/mol + -analytic 4.5022e+002 1.3560e-001 -1.0801e+004 -1.7951e+002 -1.6867e+002 +# -Range: 0-300 + +3.0000 F- + 1.0000 Eu++ = EuF3- + -llnl_gamma 4.0 + log_k -2.5069 + -delta_H 3.5564 kJ/mol # Calculated enthalpy of reaction EuF3- +# Enthalpy of formation: -365.7 kcal/mol + -analytic -2.8441e+001 5.5972e-002 4.4573e+003 -2.2782e+000 6.9558e+001 +# -Range: 0-300 + +4.0000 F- + 1.0000 Eu+++ = EuF4- + -llnl_gamma 4.0 + log_k +12.1239 + -delta_H -52.3 kJ/mol # Calculated enthalpy of reaction EuF4- +# Enthalpy of formation: -477.8 kcal/mol + -analytic 5.0246e+002 1.3629e-001 -1.1092e+004 -1.9952e+002 -1.7323e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 Eu++ = EuF4-- + -llnl_gamma 4.0 + log_k -2.8294 + -delta_H -37.656 kJ/mol # Calculated enthalpy of reaction EuF4-2 +# Enthalpy of formation: -455.7 kcal/mol + -analytic -1.8730e+002 3.9237e-002 1.2303e+004 5.3179e+001 1.9204e+002 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 H+ + 1.0000 Eu+++ = EuH2PO4++ + -llnl_gamma 4.5 + log_k +9.4484 + -delta_H -17.0916 kJ/mol # Calculated enthalpy of reaction EuH2PO4+2 +# Enthalpy of formation: -457.6 kcal/mol + -analytic 1.0873e+002 6.3416e-002 2.7202e+002 -4.8113e+001 4.2122e+000 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Eu+++ = EuHCO3++ + -llnl_gamma 4.5 + log_k +1.6258 + -delta_H 8.77803 kJ/mol # Calculated enthalpy of reaction EuHCO3+2 +# Enthalpy of formation: -307.5 kcal/mol + -analytic 3.9266e+001 3.1608e-002 -9.8731e+001 -1.8875e+001 -1.5524e+000 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 Eu+++ = EuHPO4+ + -llnl_gamma 4.0 + log_k +5.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 IO3- + 1.0000 Eu+++ = EuIO3++ + -llnl_gamma 4.5 + log_k +2.1560 + -delta_H 11.8314 kJ/mol # Calculated enthalpy of reaction EuIO3+2 +# Enthalpy of formation: -814.927 kJ/mol + -analytic 1.4970e+002 4.7369e-002 -4.1559e+003 -5.9687e+001 -6.4893e+001 +# -Range: 0-300 + +1.0000 NO3- + 1.0000 Eu+++ = EuNO3++ + -llnl_gamma 4.5 + log_k +0.8745 + -delta_H -32.0955 kJ/mol # Calculated enthalpy of reaction EuNO3+2 +# Enthalpy of formation: -201.8 kcal/mol + -analytic 1.7398e+001 2.5467e-002 2.2683e+003 -1.2810e+001 3.5389e+001 +# -Range: 0-300 + +1.0000 H2O + 1.0000 Eu+++ = EuO+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -16.337 + -delta_H 110.947 kJ/mol # Calculated enthalpy of reaction EuO+ +# Enthalpy of formation: -186.5 kcal/mol + -analytic 1.8876e+002 3.0194e-002 -1.3836e+004 -6.7770e+001 -2.1595e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Eu+++ = EuO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -34.5066 + -delta_H 281.307 kJ/mol # Calculated enthalpy of reaction EuO2- +# Enthalpy of formation: -214.1 kcal/mol + -analytic 7.5244e+001 3.7089e-004 -1.3587e+004 -2.3859e+001 -4.6713e+005 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Eu+++ = EuO2H +3.0000 H+ + -llnl_gamma 3.0 + log_k -25.4173 + -delta_H 222.313 kJ/mol # Calculated enthalpy of reaction EuO2H +# Enthalpy of formation: -228.2 kcal/mol + -analytic 3.6754e+002 5.3868e-002 -2.4034e+004 -1.3272e+002 -3.7514e+002 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 H2O + 1.0000 Eu+++ = EuOH(CO3)2-- +3.0000 H+ + -llnl_gamma 4.0 + log_k -15.176 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuOH(CO3)2-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2O + 1.0000 Eu+++ = EuOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -7.9075 + -delta_H 78.0065 kJ/mol # Calculated enthalpy of reaction EuOH+2 +# Enthalpy of formation: -194.373 kcal/mol + -analytic 6.7691e+001 1.2066e-002 -6.1871e+003 -2.3617e+001 -9.6563e+001 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 H2O + 1.0000 Eu+++ = EuOHCO3 +2.0000 H+ + -llnl_gamma 3.0 + log_k -8.4941 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuOHCO3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 Eu+++ = EuPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k -0.1218 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Eu+++ = EuSO4+ + -llnl_gamma 4.0 + log_k +3.6430 + -delta_H 62.3416 kJ/mol # Calculated enthalpy of reaction EuSO4+ +# Enthalpy of formation: -347.2 kcal/mol + -analytic 3.0587e+002 8.6208e-002 -9.0387e+003 -1.2026e+002 -1.4113e+002 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Fe++ = Fe(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -7.0295 + -delta_H -20.2924 kJ/mol # Calculated enthalpy of reaction Fe(CH3COO)2 +# Enthalpy of formation: -259.1 kcal/mol + -analytic -2.9862e+001 1.3901e-003 -1.6908e+003 8.6283e+000 6.0125e+005 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Fe++ = Fe(OH)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -20.6 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Fe+++ = Fe(OH)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -5.67 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)2+ +# Enthalpy of formation: -0 kcal/mol + +3.0000 H2O + 1.0000 Fe+++ = Fe(OH)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -12 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)3 +# Enthalpy of formation: -0 kcal/mol + +3.0000 H2O + 1.0000 Fe++ = Fe(OH)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -31 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)3- +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 1.0000 Fe+++ = Fe(OH)4- +4.0000 H+ + -llnl_gamma 4.0 + log_k -21.6 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)4- +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 1.0000 Fe++ = Fe(OH)4-- +4.0000 H+ + -llnl_gamma 4.0 + log_k -46 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)4-2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Fe+++ = Fe(SO4)2- + -llnl_gamma 4.0 + log_k +3.2137 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 2.0000 Fe+++ = Fe2(OH)2++++ +2.0000 H+ + -llnl_gamma 5.5 + log_k -2.95 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 3.0000 Fe+++ = Fe3(OH)4+5 +4.0000 H+ + -llnl_gamma 6.0 + log_k -6.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe3(OH)4+5 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Fe++ + 1.0000 CH3COOH = FeCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -3.4671 + -delta_H -3.80744 kJ/mol # Calculated enthalpy of reaction FeCH3COO+ +# Enthalpy of formation: -139.06 kcal/mol + -analytic -1.3781e+001 9.6253e-004 -7.5310e+002 4.0135e+000 2.3416e+005 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Fe++ = FeCO3 +1.0000 H+ + -llnl_gamma 3.0 + log_k -5.5988 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeCO3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 HCO3- + 1.0000 Fe+++ = FeCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -0.6088 + -delta_H -50.208 kJ/mol # Calculated enthalpy of reaction FeCO3+ +# Enthalpy of formation: -188.748 kcal/mol + -analytic 1.7100e+002 8.0413e-002 -4.3217e+002 -7.8449e+001 -6.7948e+000 +# -Range: 0-300 + +1.0000 Fe++ + 1.0000 Cl- = FeCl+ + -llnl_gamma 4.0 + log_k -0.1605 + -delta_H 3.02503 kJ/mol # Calculated enthalpy of reaction FeCl+ +# Enthalpy of formation: -61.26 kcal/mol + -analytic 8.2435e+001 3.7755e-002 -1.4765e+003 -3.5918e+001 -2.3064e+001 +# -Range: 0-300 + +1.0000 Fe+++ + 1.0000 Cl- = FeCl++ + -llnl_gamma 4.5 + log_k -0.8108 + -delta_H 36.6421 kJ/mol # Calculated enthalpy of reaction FeCl+2 +# Enthalpy of formation: -180.018 kJ/mol + -analytic 1.6186e+002 5.9436e-002 -5.1913e+003 -6.5852e+001 -8.1053e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Fe++ = FeCl2 + -llnl_gamma 3.0 + log_k -2.4541 + -delta_H 6.46846 kJ/mol # Calculated enthalpy of reaction FeCl2 +# Enthalpy of formation: -100.37 kcal/mol + -analytic 1.9171e+002 7.8070e-002 -4.1048e+003 -8.2292e+001 -6.4108e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Fe+++ = FeCl2+ + -llnl_gamma 4.0 + log_k +2.1300 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl2+ +# Enthalpy of formation: -0 kcal/mol + +4.0000 Cl- + 1.0000 Fe+++ = FeCl4- + -llnl_gamma 4.0 + log_k -0.79 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl4- +# Enthalpy of formation: -0 kcal/mol + +4.0000 Cl- + 1.0000 Fe++ = FeCl4-- + -llnl_gamma 4.0 + log_k -1.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl4-2 +# Enthalpy of formation: -0 kcal/mol + -analytic -2.4108e+002 -6.0086e-003 9.7979e+003 8.4084e+001 1.5296e+002 +# -Range: 0-300 + +1.0000 Fe++ + 1.0000 F- = FeF+ + -llnl_gamma 4.0 + log_k +1.3600 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeF+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Fe+++ + 1.0000 F- = FeF++ + -llnl_gamma 4.5 + log_k +4.1365 + -delta_H 14.327 kJ/mol # Calculated enthalpy of reaction FeF+2 +# Enthalpy of formation: -370.601 kJ/mol + -analytic 1.7546e+002 6.3754e-002 -4.3166e+003 -7.1052e+001 -6.7408e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Fe+++ = FeF2+ + -llnl_gamma 4.0 + log_k +8.3498 + -delta_H 23.9776 kJ/mol # Calculated enthalpy of reaction FeF2+ +# Enthalpy of formation: -696.298 kJ/mol + -analytic 2.9080e+002 1.0393e-001 -7.2118e+003 -1.1688e+002 -1.1262e+002 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 H+ + 1.0000 Fe++ = FeH2PO4+ + -llnl_gamma 4.0 + log_k +2.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeH2PO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 H+ + 1.0000 Fe+++ = FeH2PO4++ + -llnl_gamma 4.5 + log_k +4.1700 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeH2PO4+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 HCO3- + 1.0000 Fe++ = FeHCO3+ + -llnl_gamma 4.0 + log_k +2.7200 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeHCO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 Fe++ = FeHPO4 + -llnl_gamma 3.0 + log_k +3.6000 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeHPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 Fe+++ = FeHPO4+ + -llnl_gamma 4.0 + log_k +10.1800 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 NO2- + 1.0000 Fe+++ = FeNO2++ + -llnl_gamma 4.5 + log_k +3.1500 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeNO2+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 NO3- + 1.0000 Fe+++ = FeNO3++ + -llnl_gamma 4.5 + log_k +1.0000 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeNO3+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2O + 1.0000 Fe++ = FeOH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -9.5 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeOH+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2O + 1.0000 Fe+++ = FeOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.19 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeOH+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 Fe++ = FePO4- +1.0000 H+ + -llnl_gamma 4.0 + log_k -4.3918 + -delta_H 0 # Not possible to calculate enthalpy of reaction FePO4- +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Fe++ = FeSO4 + -llnl_gamma 3.0 + log_k +2.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeSO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Fe+++ = FeSO4+ + -llnl_gamma 4.0 + log_k +1.9276 + -delta_H 27.181 kJ/mol # Calculated enthalpy of reaction FeSO4+ +# Enthalpy of formation: -932.001 kJ/mol + -analytic 2.5178e+002 1.0080e-001 -6.0977e+003 -1.0483e+002 -9.5223e+001 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Gd+++ = Gd(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.9625 + -delta_H -22.3426 kJ/mol # Calculated enthalpy of reaction Gd(CH3COO)2+ +# Enthalpy of formation: -401.74 kcal/mol + -analytic -4.3124e+001 1.2995e-004 -4.3494e+002 1.3677e+001 5.1224e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Gd+++ = Gd(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -8.3489 + -delta_H -37.9907 kJ/mol # Calculated enthalpy of reaction Gd(CH3COO)3 +# Enthalpy of formation: -521.58 kcal/mol + -analytic -8.8296e+001 -5.0939e-003 1.2268e+003 2.8513e+001 6.0745e+005 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Gd+++ = Gd(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -7.5576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Gd+++ = Gd(HPO4)2- + -llnl_gamma 4.0 + log_k +9.6000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +# Redundant with GdO2- +#4.0000 H2O + 1.0000 Gd+++ = Gd(OH)4- +4.0000 H+ +# -llnl_gamma 4.0 +# log_k -33.8803 +# -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)4- +## Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Gd+++ = Gd(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -3.9437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Gd+++ = Gd(SO4)2- + -llnl_gamma 4.0 + log_k +5.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Gd+++ + 1.0000 CH3COOH = GdCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.1037 + -delta_H -11.7152 kJ/mol # Calculated enthalpy of reaction GdCH3COO+2 +# Enthalpy of formation: -283.1 kcal/mol + -analytic -1.4118e+001 1.6660e-003 -7.5206e+002 4.2614e+000 3.1187e+005 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Gd+++ = GdCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.479 + -delta_H 89.9476 kJ/mol # Calculated enthalpy of reaction GdCO3+ +# Enthalpy of formation: -307.6 kcal/mol + -analytic 2.3628e+002 5.4100e-002 -7.0746e+003 -9.3413e+001 -1.1046e+002 +# -Range: 0-300 + +1.0000 Gd+++ + 1.0000 Cl- = GdCl++ + -llnl_gamma 4.5 + log_k +0.3086 + -delta_H 14.7821 kJ/mol # Calculated enthalpy of reaction GdCl+2 +# Enthalpy of formation: -200.6 kcal/mol + -analytic 8.0750e+001 3.8524e-002 -1.8591e+003 -3.4621e+001 -2.9034e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Gd+++ = GdCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 21.1961 kJ/mol # Calculated enthalpy of reaction GdCl2+ +# Enthalpy of formation: -239 kcal/mol + -analytic 2.1754e+002 8.0996e-002 -5.6121e+003 -9.0067e+001 -8.7635e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Gd+++ = GdCl3 + -llnl_gamma 3.0 + log_k -0.4669 + -delta_H 15.895 kJ/mol # Calculated enthalpy of reaction GdCl3 +# Enthalpy of formation: -280.2 kcal/mol + -analytic 4.1398e+002 1.2829e-001 -1.1230e+004 -1.6770e+002 -1.7535e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Gd+++ = GdCl4- + -llnl_gamma 4.0 + log_k -0.8913 + -delta_H -1.53971 kJ/mol # Calculated enthalpy of reaction GdCl4- +# Enthalpy of formation: -324.3 kcal/mol + -analytic 4.7684e+002 1.3157e-001 -1.3068e+004 -1.9118e+002 -2.0405e+002 +# -Range: 0-300 + +1.0000 Gd+++ + 1.0000 F- = GdF++ + -llnl_gamma 4.5 + log_k +4.5886 + -delta_H 21.1292 kJ/mol # Calculated enthalpy of reaction GdF+2 +# Enthalpy of formation: -239.3 kcal/mol + -analytic 1.0060e+002 4.2181e-002 -2.6024e+003 -4.0347e+001 -4.0637e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Gd+++ = GdF2+ + -llnl_gamma 4.0 + log_k +7.9311 + -delta_H 11.2968 kJ/mol # Calculated enthalpy of reaction GdF2+ +# Enthalpy of formation: -321.8 kcal/mol + -analytic 2.3793e+002 8.4732e-002 -5.4950e+003 -9.5689e+001 -8.5815e+001 +# -Range: 0-300 + +3.0000 F- + 1.0000 Gd+++ = GdF3 + -llnl_gamma 3.0 + log_k +10.4673 + -delta_H -11.506 kJ/mol # Calculated enthalpy of reaction GdF3 +# Enthalpy of formation: -407.4 kcal/mol + -analytic 4.4257e+002 1.3500e-001 -1.0377e+004 -1.7680e+002 -1.6205e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 Gd+++ = GdF4- + -llnl_gamma 4.0 + log_k +12.4904 + -delta_H -52.3 kJ/mol # Calculated enthalpy of reaction GdF4- +# Enthalpy of formation: -497.3 kcal/mol + -analytic 4.9026e+002 1.3534e-001 -1.0586e+004 -1.9501e+002 -1.6533e+002 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 H+ + 1.0000 Gd+++ = GdH2PO4++ + -llnl_gamma 4.5 + log_k +9.4484 + -delta_H -14.9996 kJ/mol # Calculated enthalpy of reaction GdH2PO4+2 +# Enthalpy of formation: -476.6 kcal/mol + -analytic 1.1058e+002 6.4124e-002 1.3451e+002 -4.8758e+001 2.0660e+000 +# -Range: 0-300 + +1.0000 HCO3- + 1.0000 Gd+++ = GdHCO3++ + -llnl_gamma 4.5 + log_k +1.6991 + -delta_H 10.0332 kJ/mol # Calculated enthalpy of reaction GdHCO3+2 +# Enthalpy of formation: -326.7 kcal/mol + -analytic 4.1973e+001 3.2521e-002 -2.3475e+002 -1.9864e+001 -3.6757e+000 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 Gd+++ = GdHPO4+ + -llnl_gamma 4.0 + log_k -185.109 + -delta_H 0 # Not possible to calculate enthalpy of reaction GdHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 NO3- + 1.0000 Gd+++ = GdNO3++ + -llnl_gamma 4.5 + log_k +0.4347 + -delta_H -25.8195 kJ/mol # Calculated enthalpy of reaction GdNO3+2 +# Enthalpy of formation: -219.8 kcal/mol + -analytic 2.0253e+001 2.6372e-002 1.8785e+003 -1.3723e+001 2.9306e+001 +# -Range: 0-300 + +1.0000 H2O + 1.0000 Gd+++ = GdO+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -16.337 + -delta_H 113.039 kJ/mol # Calculated enthalpy of reaction GdO+ +# Enthalpy of formation: -205.5 kcal/mol + -analytic 2.0599e+002 3.2521e-002 -1.4547e+004 -7.4048e+001 -2.2705e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Gd+++ = GdO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -34.4333 + -delta_H 283.817 kJ/mol # Calculated enthalpy of reaction GdO2- +# Enthalpy of formation: -233 kcal/mol + -analytic 1.2067e+002 6.6276e-003 -1.5531e+004 -4.0448e+001 -4.3587e+005 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Gd+++ = GdO2H +3.0000 H+ + -llnl_gamma 3.0 + log_k -25.2707 + -delta_H 224.405 kJ/mol # Calculated enthalpy of reaction GdO2H +# Enthalpy of formation: -247.2 kcal/mol + -analytic 3.6324e+002 4.7938e-002 -2.4275e+004 -1.2988e+002 -3.7889e+002 +# -Range: 0-300 + +1.0000 H2O + 1.0000 Gd+++ = GdOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -7.9075 + -delta_H 79.9855 kJ/mol # Calculated enthalpy of reaction GdOH+2 +# Enthalpy of formation: -213.4 kcal/mol + -analytic 8.3265e+001 1.4153e-002 -6.8229e+003 -2.9301e+001 -1.0649e+002 +# -Range: 0-300 + +1.0000 HPO4-- + 1.0000 Gd+++ = GdPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k -0.1218 + -delta_H 0 # Not possible to calculate enthalpy of reaction GdPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Gd+++ = GdSO4+ + -llnl_gamma 4.0 + log_k -3.687 + -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction GdSO4+ +# Enthalpy of formation: -376.8 kcal/mol + -analytic 3.0783e+002 8.6798e-002 -1.1246e+004 -1.2109e+002 -1.7557e+002 +# -Range: 0-300 + +1.0000 O_phthalate-2 + 1.0000 H+ = H(O_phthalate)- + -llnl_gamma 4.0 + log_k +5.4080 + -delta_H 0 # Not possible to calculate enthalpy of reaction H(O_phthalate)- +# Enthalpy of formation: -0 kcal/mol + +2.0000 H+ + 1.0000 CrO4-- = H2CrO4 + -llnl_gamma 3.0 + log_k +5.1750 + -delta_H 42.8274 kJ/mol # Calculated enthalpy of reaction H2CrO4 +# Enthalpy of formation: -200.364 kcal/mol + -analytic 4.2958e+002 1.4939e-001 -1.1474e+004 -1.7396e+002 -1.9499e+002 +# -Range: 0-200 + +2.0000 H+ + 2.0000 F- = H2F2 + -llnl_gamma 3.0 + log_k +6.7680 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2F2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 2.0000 H+ = H2P2O7-- +1.0000 H2O + -llnl_gamma 4.0 + log_k +12.0709 + -delta_H 19.7192 kJ/mol # Calculated enthalpy of reaction H2P2O7-2 +# Enthalpy of formation: -544.6 kcal/mol + -analytic 1.4825e+002 6.7021e-002 -2.8329e+003 -5.9251e+001 -4.4248e+001 +# -Range: 0-300 + +3.0000 H+ + 1.0000 HPO4-- + 1.0000 F- = H2PO3F +1.0000 H2O + -llnl_gamma 3.0 + log_k +12.1047 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2PO3F +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 H+ = H2PO4- + -llnl_gamma 4.0 + log_k +7.2054 + -delta_H -4.20492 kJ/mol # Calculated enthalpy of reaction H2PO4- +# Enthalpy of formation: -309.82 kcal/mol + -analytic 8.2149e+001 3.4077e-002 -1.0431e+003 -3.2970e+001 -1.6301e+001 +# -Range: 0-300 + +#1.0000 HS- + 1.0000 H+ = H2S +# -llnl_gamma 3.0 +# log_k +6.99 +# -analytic 1.2833e+002 5.1641e-002 -1.1681e+003 -5.3665e+001 -1.8266e+001 +# -Range: 0-300 +# these (above) H2S values are from +# Suleimenov & Seward, Geochim. Cosmochim. Acta, v. 61, p. 5187-5198. +# values below are the original Thermo.com.v8.r6.230 data from somewhere + +1.0000 HS- + 1.0000 H+ = H2S + -llnl_gamma 3.0 + log_k +6.9877 + -delta_H -21.5518 kJ/mol # Calculated enthalpy of reaction H2S +# Enthalpy of formation: -9.001 kcal/mol + -analytic 3.9283e+001 2.8727e-002 1.3477e+003 -1.8331e+001 2.1018e+001 +# -Range: 0-300 + +2.0000 H+ + 1.0000 SO3-- = H2SO3 + -llnl_gamma 3.0 + log_k +9.2132 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2SO3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H+ + 1.0000 SO4-- = H2SO4 + -llnl_gamma 3.0 + log_k -1.0209 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2SO4 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H+ + 1.0000 Se-- = H2Se + -llnl_gamma 3.0 + log_k +18.7606 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2Se +# Enthalpy of formation: 19.412 kJ/mol + -analytic 3.6902e+002 1.2855e-001 -5.5900e+003 -1.4946e+002 -9.5054e+001 +# -Range: 0-200 + +2.0000 H+ + 1.0000 SeO3-- = H2SeO3 + -llnl_gamma 3.0 + log_k +9.8589 + -delta_H 1.7238 kJ/mol # Calculated enthalpy of reaction H2SeO3 +# Enthalpy of formation: -507.469 kJ/mol + -analytic 2.7850e+002 1.0460e-001 -5.4934e+003 -1.1371e+002 -9.3383e+001 +# -Range: 0-200 + +2.0000 H2O + 1.0000 SiO2 = H2SiO4-- +2.0000 H+ + -llnl_gamma 4.0 + log_k -22.96 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2SiO4-2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H+ + 1.0000 TcO4-- = H2TcO4 + -llnl_gamma 3.0 + log_k +9.0049 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2TcO4 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 VO2+ = H2VO4- + 2.0000 H+ + -llnl_gamma 4.0 + log_k -7.0922 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2VO4- +# Enthalpy of formation: -0 kcal/mol + -analytic 1.7105e+001 -1.7503e-002 -4.2671e+003 -1.8910e+000 -6.6589e+001 +# -Range: 0-300 + +1.0000 H2AsO4- + 1.0000 H+ = H3AsO4 + -llnl_gamma 3.0 + log_k +2.2492 + -delta_H 7.17876 kJ/mol # Calculated enthalpy of reaction H3AsO4 +# Enthalpy of formation: -902.381 kJ/mol + -analytic 1.4043e+002 4.6288e-002 -3.5868e+003 -5.6560e+001 -6.0957e+001 +# -Range: 0-200 + +3.0000 H+ + 2.0000 HPO4-- = H3P2O7- +1.0000 H2O + -llnl_gamma 4.0 + log_k +14.4165 + -delta_H 21.8112 kJ/mol # Calculated enthalpy of reaction H3P2O7- +# Enthalpy of formation: -544.1 kcal/mol + -analytic 2.3157e+002 1.0161e-001 -4.3723e+003 -9.4050e+001 -6.8295e+001 +# -Range: 0-300 + +2.0000 H+ + 1.0000 HPO4-- = H3PO4 + -llnl_gamma 3.0 + log_k +9.3751 + -delta_H 3.74468 kJ/mol # Calculated enthalpy of reaction H3PO4 +# Enthalpy of formation: -307.92 kcal/mol + -analytic 1.8380e+002 6.7320e-002 -3.7792e+003 -7.3463e+001 -5.9025e+001 +# -Range: 0-300 + +8.0000 H2O + 4.0000 SiO2 = H4(H2SiO4)4---- +4.0000 H+ + -llnl_gamma 4.0 + log_k -35.94 + -delta_H 0 # Not possible to calculate enthalpy of reaction H4(H2SiO4)4-4 +# Enthalpy of formation: -0 kcal/mol + +4.0000 H+ + 2.0000 HPO4-- = H4P2O7 +1.0000 H2O + -llnl_gamma 3.0 + log_k +15.9263 + -delta_H 29.7226 kJ/mol # Calculated enthalpy of reaction H4P2O7 +# Enthalpy of formation: -2268.6 kJ/mol + -analytic 6.9026e+002 2.4309e-001 -1.6165e+004 -2.7989e+002 -2.7475e+002 +# -Range: 0-200 + +8.0000 H2O + 4.0000 SiO2 = H6(H2SiO4)4-- +2.0000 H+ + -llnl_gamma 4.0 + log_k -13.64 + -delta_H 0 # Not possible to calculate enthalpy of reaction H6(H2SiO4)4-2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Al+++ = HAlO2 +3.0000 H+ + -llnl_gamma 3.0 + log_k -16.4329 + -delta_H 144.704 kJ/mol # Calculated enthalpy of reaction HAlO2 +# Enthalpy of formation: -230.73 kcal/mol + -analytic 4.2012e+001 1.9980e-002 -7.7847e+003 -1.5470e+001 -1.2149e+002 +# -Range: 0-300 + +1.0000 H2AsO3- + 1.0000 H+ = HAsO2 +1.0000 H2O + -llnl_gamma 3.0 + log_k 9.2792 + -delta_H 0 # Not possible to calculate enthalpy of reaction HAsO2 +# Enthalpy of formation: -0 kcal/mol + -analytic 3.1290e+002 9.3052e-002 -6.5052e+003 -1.2510e+002 -1.1058e+002 +# -Range: 0-200 + +1.0000 H2AsO4- + 1.0000 H+ + 1.0000 F- = HAsO3F- +1.0000 H2O + -llnl_gamma 4.0 + log_k +46.1158 + -delta_H 0 # Not possible to calculate enthalpy of reaction HAsO3F- +# Enthalpy of formation: -0 kcal/mol + +1.0000 H2AsO4- = HAsO4-- +1.0000 H+ + -llnl_gamma 4.0 + log_k -6.7583 + -delta_H 3.22168 kJ/mol # Calculated enthalpy of reaction HAsO4-2 +# Enthalpy of formation: -216.62 kcal/mol + -analytic -8.4546e+001 -3.4630e-002 1.1829e+003 3.3997e+001 1.8483e+001 +# -Range: 0-300 + +3.0000 H+ + 2.0000 HS- + 1.0000 H2AsO3- = HAsS2 +3.0000 H2O + -llnl_gamma 3.0 + log_k +30.4803 + -delta_H 0 # Not possible to calculate enthalpy of reaction HAsS2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 H+ + 1.0000 BrO- = HBrO + -llnl_gamma 3.0 + log_k +8.3889 + -delta_H 0 # Not possible to calculate enthalpy of reaction HBrO +# Enthalpy of formation: -0 kcal/mol + +1.0000 H+ + 1.0000 Cyanide- = HCyanide + -llnl_gamma 3.0 + log_k +9.2359 + -delta_H -43.5136 kJ/mol # Calculated enthalpy of reaction HCyanide +# Enthalpy of formation: 25.6 kcal/mol + -analytic 1.0536e+001 2.3105e-002 3.3038e+003 -7.7786e+000 5.1550e+001 +# -Range: 0-300 + +1.0000 H+ + 1.0000 Cl- = HCl + -llnl_gamma 3.0 + log_k -0.67 + -delta_H 0 # Not possible to calculate enthalpy of reaction HCl +# Enthalpy of formation: -0 kcal/mol + -analytic 4.1893e+002 1.1103e-001 -1.1784e+004 -1.6697e+002 -1.8400e+002 +# -Range: 0-300 + +1.0000 H+ + 1.0000 ClO- = HClO + -llnl_gamma 3.0 + log_k +7.5692 + -delta_H 0 # Not possible to calculate enthalpy of reaction HClO +# Enthalpy of formation: -0 kcal/mol + +1.0000 H+ + 1.0000 ClO2- = HClO2 + -llnl_gamma 3.0 + log_k +3.1698 + -delta_H 0 # Not possible to calculate enthalpy of reaction HClO2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Co++ = HCoO2- +3.0000 H+ + -llnl_gamma 4.0 + log_k -21.243 + -delta_H 0 # Not possible to calculate enthalpy of reaction HCoO2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 H+ + 1.0000 CrO4-- = HCrO4- + -llnl_gamma 4.0 + log_k +6.4944 + -delta_H 2.9288 kJ/mol # Calculated enthalpy of reaction HCrO4- +# Enthalpy of formation: -209.9 kcal/mol + -analytic 4.4944e+001 3.2740e-002 1.8400e+002 -1.9722e+001 2.8578e+000 +# -Range: 0-300 + +1.0000 H+ + 1.0000 F- = HF + -llnl_gamma 3.0 + log_k +3.1681 + -delta_H 13.87 kJ/mol # Calculated enthalpy of reaction HF +# Enthalpy of formation: -76.835 kcal/mol + -analytic 8.6626e+001 3.2861e-002 -2.3026e+003 -3.4559e+001 -3.5956e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 H+ = HF2- + -llnl_gamma 4.0 + log_k +2.5509 + -delta_H 20.7526 kJ/mol # Calculated enthalpy of reaction HF2- +# Enthalpy of formation: -155.34 kcal/mol + -analytic 1.4359e+002 4.0866e-002 -4.6776e+003 -5.5574e+001 -7.3032e+001 +# -Range: 0-300 + +1.0000 IO3- + 1.0000 H+ = HIO3 + -llnl_gamma 3.0 + log_k +0.4915 + -delta_H 0 # Not possible to calculate enthalpy of reaction HIO3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 N3- + 1.0000 H+ = HN3 + -llnl_gamma 3.0 + log_k +4.7001 + -delta_H -15 kJ/mol # Calculated enthalpy of reaction HN3 +# Enthalpy of formation: 260.14 kJ/mol + -analytic 6.9976e+001 2.4359e-002 -7.1947e+002 -2.8339e+001 -1.2242e+001 +# -Range: 0-200 + +1.0000 NO2- + 1.0000 H+ = HNO2 + -llnl_gamma 3.0 + log_k +3.2206 + -delta_H -14.782 kJ/mol # Calculated enthalpy of reaction HNO2 +# Enthalpy of formation: -119.382 kJ/mol + -analytic 1.9653e+000 -1.1603e-004 0.0000e+000 0.0000e+000 1.1569e+005 +# -Range: 0-200 + +1.0000 NO3- + 1.0000 H+ = HNO3 + -llnl_gamma 3.0 + log_k -1.3025 + -delta_H 16.8155 kJ/mol # Calculated enthalpy of reaction HNO3 +# Enthalpy of formation: -45.41 kcal/mol + -analytic 9.9744e+001 3.4866e-002 -3.0975e+003 -4.0830e+001 -4.8363e+001 +# -Range: 0-300 + +2.0000 HPO4-- + 1.0000 H+ = HP2O7--- +1.0000 H2O + -llnl_gamma 4.0 + log_k +5.4498 + -delta_H 23.3326 kJ/mol # Calculated enthalpy of reaction HP2O7-3 +# Enthalpy of formation: -2274.99 kJ/mol + -analytic 3.9159e+002 1.5438e-001 -8.7071e+003 -1.6283e+002 -1.3598e+002 +# -Range: 0-300 + +2.0000 H+ + 1.0000 HPO4-- + 1.0000 F- = HPO3F- +1.0000 H2O + -llnl_gamma 4.0 + log_k +11.2988 + -delta_H 0 # Not possible to calculate enthalpy of reaction HPO3F- +# Enthalpy of formation: -0 kcal/mol + +1.0000 RuO4 + 1.0000 H2O = HRuO5- +1.0000 H+ + -llnl_gamma 4.0 + log_k -11.5244 + -delta_H 0 # Not possible to calculate enthalpy of reaction HRuO5- +# Enthalpy of formation: -0 kcal/mol + +1.0000 H+ + 1.0000 S2O3-- = HS2O3- + -llnl_gamma 4.0 + log_k 1.0139 + -delta_H 0 # Not possible to calculate enthalpy of reaction HS2O3- +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO3-- + 1.0000 H+ = HSO3- + -llnl_gamma 4.0 + log_k +7.2054 + -delta_H 9.33032 kJ/mol # Calculated enthalpy of reaction HSO3- +# Enthalpy of formation: -149.67 kcal/mol + -analytic 5.5899e+001 3.3623e-002 -5.0120e+002 -2.3040e+001 -7.8373e+000 +# -Range: 0-300 + +1.0000 SO4-- + 1.0000 H+ = HSO4- + -llnl_gamma 4.0 + log_k +1.9791 + -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction HSO4- +# Enthalpy of formation: -212.5 kcal/mol + -analytic 4.9619e+001 3.0368e-002 -1.1558e+003 -2.1335e+001 -1.8051e+001 +# -Range: 0-300 + +4.0000 HS- + 3.0000 H+ + 2.0000 Sb(OH)3 = HSb2S4- +6.0000 H2O + -llnl_gamma 4.0 + log_k +50.6100 + -delta_H 0 # Not possible to calculate enthalpy of reaction HSb2S4- +# Enthalpy of formation: -0 kcal/mol + -analytic 1.7540e+002 8.2177e-002 1.0786e+004 -7.4874e+001 1.6826e+002 +# -Range: 0-300 + +1.0000 SeO3-- + 1.0000 H+ = HSeO3- + -llnl_gamma 4.0 + log_k +7.2861 + -delta_H -5.35552 kJ/mol # Calculated enthalpy of reaction HSeO3- +# Enthalpy of formation: -122.98 kcal/mol + -analytic 5.0427e+001 3.2250e-002 2.9603e+002 -2.1711e+001 4.6044e+000 +# -Range: 0-300 + +1.0000 SeO4-- + 1.0000 H+ = HSeO4- + -llnl_gamma 4.0 + log_k +1.9058 + -delta_H 17.5728 kJ/mol # Calculated enthalpy of reaction HSeO4- +# Enthalpy of formation: -139 kcal/mol + -analytic 1.4160e+002 3.9801e-002 -4.5392e+003 -5.5088e+001 -7.0872e+001 +# -Range: 0-300 + +1.0000 SiO2 + 1.0000 H2O = HSiO3- +1.0000 H+ + -llnl_gamma 4.0 + log_k -9.9525 + -delta_H 25.991 kJ/mol # Calculated enthalpy of reaction HSiO3- +# Enthalpy of formation: -271.88 kcal/mol + -analytic 6.4211e+001 -2.4872e-002 -1.2707e+004 -1.4681e+001 1.0853e+006 +# -Range: 0-300 + +1.0000 TcO4-- + 1.0000 H+ = HTcO4- + -llnl_gamma 4.0 + log_k +8.7071 + -delta_H 0 # Not possible to calculate enthalpy of reaction HTcO4- +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 VO2+ = HVO4-- +3.0000 H+ + -llnl_gamma 4.0 + log_k -15.1553 + -delta_H 0 # Not possible to calculate enthalpy of reaction HVO4-2 +# Enthalpy of formation: -0 kcal/mol + -analytic -7.0660e+001 -5.2457e-002 -3.5380e+003 3.3534e+001 -5.5186e+001 +# -Range: 0-300 + +5.0000 H2O + 1.0000 Hf++++ = Hf(OH)5- +5.0000 H+ + -llnl_gamma 4.0 + log_k -17.1754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(OH)5- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Hf++++ + 1.0000 H2O = HfOH+++ +1.0000 H+ + -llnl_gamma 5.0 + log_k -0.2951 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfOH+3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Hg++ = Hg(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -2.6242 + -delta_H -30.334 kJ/mol # Calculated enthalpy of reaction Hg(CH3COO)2 +# Enthalpy of formation: -198.78 kcal/mol + -analytic -2.1959e+001 2.7774e-003 -3.2500e+003 7.7351e+000 9.1508e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Hg++ = Hg(CH3COO)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -4.3247 + -delta_H -59.7057 kJ/mol # Calculated enthalpy of reaction Hg(CH3COO)3- +# Enthalpy of formation: -321.9 kcal/mol + -analytic 2.1656e+001 -2.0392e-003 -1.2866e+004 -3.2932e+000 2.3073e+006 +# -Range: 0-300 + +1.0000 Hg++ + 1.0000 CH3COOH = HgCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -0.4691 + -delta_H -16.5686 kJ/mol # Calculated enthalpy of reaction HgCH3COO+ +# Enthalpy of formation: -79.39 kcal/mol + -analytic -1.6355e+001 1.9446e-003 -2.6676e+002 5.1978e+000 2.9805e+005 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Ho+++ = Ho(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.9844 + -delta_H -28.1583 kJ/mol # Calculated enthalpy of reaction Ho(CH3COO)2+ +# Enthalpy of formation: -407.93 kcal/mol + -analytic -2.7925e+001 2.5599e-003 -1.4779e+003 8.0785e+000 6.3736e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Ho+++ = Ho(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -8.3783 + -delta_H -47.5721 kJ/mol # Calculated enthalpy of reaction Ho(CH3COO)3 +# Enthalpy of formation: -528.67 kcal/mol + -analytic -6.5547e+001 -1.1963e-004 -1.8887e+002 1.9796e+001 7.9041e+005 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Ho+++ = Ho(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -7.3576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Ho+++ = Ho(HPO4)2- + -llnl_gamma 4.0 + log_k +9.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Ho+++ = Ho(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -3.3437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Ho+++ = Ho(SO4)2- + -llnl_gamma 4.0 + log_k +4.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Ho+++ + 1.0000 CH3COOH = HoCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.1184 + -delta_H -14.3093 kJ/mol # Calculated enthalpy of reaction HoCH3COO+2 +# Enthalpy of formation: -288.52 kcal/mol + -analytic -1.8265e+001 1.0753e-003 -6.0695e+002 5.7211e+000 3.3055e+005 +# -Range: 0-300 + +1.0000 Ho+++ + 1.0000 HCO3- = HoCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.2591 + -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction HoCO3+ +# Enthalpy of formation: -312.6 kcal/mol + -analytic 2.3773e+002 5.4448e-002 -6.9916e+003 -9.4063e+001 -1.0917e+002 +# -Range: 0-300 + +1.0000 Ho+++ + 1.0000 Cl- = HoCl++ + -llnl_gamma 4.5 + log_k +0.2353 + -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction HoCl+2 +# Enthalpy of formation: -205.6 kcal/mol + -analytic 7.3746e+001 3.7733e-002 -1.5627e+003 -3.2126e+001 -2.4407e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Ho+++ = HoCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 17.8489 kJ/mol # Calculated enthalpy of reaction HoCl2+ +# Enthalpy of formation: -244.6 kcal/mol + -analytic 1.9928e+002 7.9025e-002 -4.7775e+003 -8.3582e+001 -7.4607e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Ho+++ = HoCl3 + -llnl_gamma 3.0 + log_k -0.4669 + -delta_H 10.0374 kJ/mol # Calculated enthalpy of reaction HoCl3 +# Enthalpy of formation: -286.4 kcal/mol + -analytic 3.8608e+002 1.2638e-001 -9.8339e+003 -1.5809e+002 -1.5356e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Ho+++ = HoCl4- + -llnl_gamma 4.0 + log_k -0.8913 + -delta_H -12.4181 kJ/mol # Calculated enthalpy of reaction HoCl4- +# Enthalpy of formation: -331.7 kcal/mol + -analytic 4.2179e+002 1.2576e-001 -1.0495e+004 -1.7172e+002 -1.6388e+002 +# -Range: 0-300 + +1.0000 Ho+++ + 1.0000 F- = HoF++ + -llnl_gamma 4.5 + log_k +4.7352 + -delta_H 22.3844 kJ/mol # Calculated enthalpy of reaction HoF+2 +# Enthalpy of formation: -243.8 kcal/mol + -analytic 9.5294e+001 4.1702e-002 -2.4460e+003 -3.8296e+001 -3.8195e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Ho+++ = HoF2+ + -llnl_gamma 4.0 + log_k +8.2976 + -delta_H 11.7152 kJ/mol # Calculated enthalpy of reaction HoF2+ +# Enthalpy of formation: -326.5 kcal/mol + -analytic 2.2330e+002 8.3497e-002 -4.9105e+003 -9.0272e+001 -7.6690e+001 +# -Range: 0-300 + +3.0000 F- + 1.0000 Ho+++ = HoF3 + -llnl_gamma 3.0 + log_k +10.9071 + -delta_H -12.7612 kJ/mol # Calculated enthalpy of reaction HoF3 +# Enthalpy of formation: -412.5 kcal/mol + -analytic 4.1587e+002 1.3308e-001 -9.2193e+003 -1.6717e+002 -1.4398e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 Ho+++ = HoF4- + -llnl_gamma 4.0 + log_k +13.0035 + -delta_H -57.7392 kJ/mol # Calculated enthalpy of reaction HoF4- +# Enthalpy of formation: -503.4 kcal/mol + -analytic 4.4575e+002 1.3182e-001 -8.5485e+003 -1.7916e+002 -1.3352e+002 +# -Range: 0-300 + +1.0000 Ho+++ + 1.0000 HPO4-- + 1.0000 H+ = HoH2PO4++ + -llnl_gamma 4.5 + log_k +9.4484 + -delta_H -17.9284 kJ/mol # Calculated enthalpy of reaction HoH2PO4+2 +# Enthalpy of formation: -482.1 kcal/mol + -analytic 1.0273e+002 6.3161e-002 5.5160e+002 -4.6035e+001 8.5766e+000 +# -Range: 0-300 + +1.0000 Ho+++ + 1.0000 HCO3- = HoHCO3++ + -llnl_gamma 4.5 + log_k +1.6991 + -delta_H 7.52283 kJ/mol # Calculated enthalpy of reaction HoHCO3+2 +# Enthalpy of formation: -332.1 kcal/mol + -analytic 3.3420e+001 3.1394e-002 1.9804e+002 -1.6859e+001 3.0801e+000 +# -Range: 0-300 + +1.0000 Ho+++ + 1.0000 HPO4-- = HoHPO4+ + -llnl_gamma 4.0 + log_k +5.8000 + -delta_H 0 # Not possible to calculate enthalpy of reaction HoHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 NO3- + 1.0000 Ho+++ = HoNO3++ + -llnl_gamma 4.5 + log_k +0.2148 + -delta_H -30.0035 kJ/mol # Calculated enthalpy of reaction HoNO3+2 +# Enthalpy of formation: -225.6 kcal/mol + -analytic 1.1069e+001 2.5142e-002 2.3943e+003 -1.0650e+001 3.7358e+001 +# -Range: 0-300 + +1.0000 Ho+++ + 1.0000 H2O = HoO+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -16.0438 + -delta_H 108.437 kJ/mol # Calculated enthalpy of reaction HoO+ +# Enthalpy of formation: -211.4 kcal/mol + -analytic 1.9152e+002 3.0627e-002 -1.3817e+004 -6.8846e+001 -2.1565e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Ho+++ = HoO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -33.4804 + -delta_H 274.613 kJ/mol # Calculated enthalpy of reaction HoO2- +# Enthalpy of formation: -240 kcal/mol + -analytic 1.7987e+002 1.2731e-002 -2.0007e+004 -6.0642e+001 -3.1224e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Ho+++ = HoO2H +3.0000 H+ + -llnl_gamma 3.0 + log_k -24.5377 + -delta_H 216.873 kJ/mol # Calculated enthalpy of reaction HoO2H +# Enthalpy of formation: -253.8 kcal/mol + -analytic 3.3877e+002 4.6282e-002 -2.2925e+004 -1.2133e+002 -3.5782e+002 +# -Range: 0-300 + +1.0000 Ho+++ + 1.0000 H2O = HoOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -7.7609 + -delta_H 76.6383 kJ/mol # Calculated enthalpy of reaction HoOH+2 +# Enthalpy of formation: -219 kcal/mol + -analytic 7.1326e+001 1.2657e-002 -6.2461e+003 -2.5018e+001 -9.7485e+001 +# -Range: 0-300 + +1.0000 Ho+++ + 1.0000 HPO4-- = HoPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k +0.2782 + -delta_H 0 # Not possible to calculate enthalpy of reaction HoPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Ho+++ = HoSO4+ + -llnl_gamma 4.0 + log_k +3.5697 + -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction HoSO4+ +# Enthalpy of formation: -381.5 kcal/mol + -analytic 3.0709e+002 8.6579e-002 -9.0693e+003 -1.2078e+002 -1.4161e+002 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 K+ = K(CH3COO)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -10.2914 + -delta_H -1.79912 kJ/mol # Calculated enthalpy of reaction K(CH3COO)2- +# Enthalpy of formation: -292.9 kcal/mol + -analytic -2.3036e+002 -4.6369e-002 7.0305e+003 8.4997e+001 1.0977e+002 +# -Range: 0-300 + +1.0000 K+ + 1.0000 Br- = KBr + -llnl_gamma 3.0 + log_k -1.7372 + -delta_H 12.5102 kJ/mol # Calculated enthalpy of reaction KBr +# Enthalpy of formation: -86.32 kcal/mol + -analytic 1.1320e+002 3.4227e-002 -3.6401e+003 -4.5633e+001 -5.6833e+001 +# -Range: 0-300 + +1.0000 K+ + 1.0000 CH3COOH = KCH3COO +1.0000 H+ + -llnl_gamma 3.0 + log_k -5.0211 + -delta_H 4.8116 kJ/mol # Calculated enthalpy of reaction KCH3COO +# Enthalpy of formation: -175.22 kcal/mol + -analytic -2.6676e-001 -3.2675e-003 -1.7143e+003 -7.1907e-003 1.7726e+005 +# -Range: 0-300 + +1.0000 K+ + 1.0000 Cl- = KCl + -llnl_gamma 3.0 + log_k -1.4946 + -delta_H 14.1963 kJ/mol # Calculated enthalpy of reaction KCl +# Enthalpy of formation: -96.81 kcal/mol + -analytic 1.3650e+002 3.8405e-002 -4.4014e+003 -5.4421e+001 -6.8721e+001 +# -Range: 0-300 + +1.0000 K+ + 1.0000 HPO4-- = KHPO4- + -llnl_gamma 4.0 + log_k +0.7800 + -delta_H 0 # Not possible to calculate enthalpy of reaction KHPO4- +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 K+ + 1.0000 H+ = KHSO4 + -llnl_gamma 3.0 + log_k +0.8136 + -delta_H 29.8319 kJ/mol # Calculated enthalpy of reaction KHSO4 +# Enthalpy of formation: -270.54 kcal/mol + -analytic 1.2620e+002 5.7349e-002 -3.3670e+003 -5.3003e+001 -5.2576e+001 +# -Range: 0-300 + +1.0000 K+ + 1.0000 I- = KI + -llnl_gamma 3.0 + log_k -1.598 + -delta_H 9.16296 kJ/mol # Calculated enthalpy of reaction KI +# Enthalpy of formation: -71.68 kcal/mol + -analytic 1.0816e+002 3.3683e-002 -3.2143e+003 -4.4054e+001 -5.0187e+001 +# -Range: 0-300 + +1.0000 K+ + 1.0000 H2O = KOH +1.0000 H+ + -llnl_gamma 3.0 + log_k -14.46 + -delta_H 0 # Not possible to calculate enthalpy of reaction KOH +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 K+ = KP2O7--- +1.0000 H2O + -llnl_gamma 4.0 + log_k -1.4286 + -delta_H 34.1393 kJ/mol # Calculated enthalpy of reaction KP2O7-3 +# Enthalpy of formation: -2516.36 kJ/mol + -analytic 4.1930e+002 1.4676e-001 -1.1169e+004 -1.7255e+002 -1.7441e+002 +# -Range: 0-300 + +1.0000 SO4-- + 1.0000 K+ = KSO4- + -llnl_gamma 4.0 + log_k +0.8796 + -delta_H 2.88696 kJ/mol # Calculated enthalpy of reaction KSO4- +# Enthalpy of formation: -276.98 kcal/mol + -analytic 9.9073e+001 3.7817e-002 -2.1628e+003 -4.1297e+001 -3.3779e+001 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 La+++ = La(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -5.3949 + -delta_H -23.1375 kJ/mol # Calculated enthalpy of reaction La(CH3COO)2+ +# Enthalpy of formation: -407.33 kcal/mol + -analytic -1.2805e+001 2.8482e-003 -2.2521e+003 2.9108e+000 6.1659e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 La+++ = La(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -8.5982 + -delta_H -41.9237 kJ/mol # Calculated enthalpy of reaction La(CH3COO)3 +# Enthalpy of formation: -527.92 kcal/mol + -analytic -3.3456e+001 1.2371e-003 -1.5978e+003 8.6343e+000 7.5717e+005 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 La+++ = La(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -8.8576 + -delta_H 0 # Not possible to calculate enthalpy of reaction La(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 La+++ = La(HPO4)2- + -llnl_gamma 4.0 + log_k +8.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction La(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 La+++ = La(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -7.0437 + -delta_H 0 # Not possible to calculate enthalpy of reaction La(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 La+++ = La(SO4)2- + -llnl_gamma 4.0 + log_k +5.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction La(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 La+++ + 2.0000 H2O = La2(OH)2++++ +2.0000 H+ + -llnl_gamma 5.5 + log_k -22.9902 + -delta_H 0 # Not possible to calculate enthalpy of reaction La2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol + +9.0000 H2O + 5.0000 La+++ = La5(OH)9+6 +9.0000 H+ + -llnl_gamma 6.0 + log_k -71.1557 + -delta_H 0 # Not possible to calculate enthalpy of reaction La5(OH)9+6 +# Enthalpy of formation: -0 kcal/mol + +1.0000 La+++ + 1.0000 CH3COOH = LaCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.2063 + -delta_H -12.5938 kJ/mol # Calculated enthalpy of reaction LaCH3COO+2 +# Enthalpy of formation: -288.71 kcal/mol + -analytic -1.0803e+001 8.5239e-004 -1.1143e+003 3.3273e+000 3.4305e+005 +# -Range: 0-300 + +1.0000 La+++ + 1.0000 HCO3- = LaCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -3.212 + -delta_H 89.5292 kJ/mol # Calculated enthalpy of reaction LaCO3+ +# Enthalpy of formation: -313.1 kcal/mol + -analytic 2.3046e+002 5.2419e-002 -7.1063e+003 -9.1109e+001 -1.1095e+002 +# -Range: 0-300 + +1.0000 La+++ + 1.0000 Cl- = LaCl++ + -llnl_gamma 4.5 + log_k +0.3086 + -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction LaCl+2 +# Enthalpy of formation: -206.1 kcal/mol + -analytic 7.5802e+001 3.6641e-002 -1.7234e+003 -3.2578e+001 -2.6914e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 La+++ = LaCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 19.1041 kJ/mol # Calculated enthalpy of reaction LaCl2+ +# Enthalpy of formation: -244.9 kcal/mol + -analytic 2.1632e+002 7.9274e-002 -5.5883e+003 -8.9400e+001 -8.7264e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 La+++ = LaCl3 + -llnl_gamma 3.0 + log_k -0.3936 + -delta_H 12.5478 kJ/mol # Calculated enthalpy of reaction LaCl3 +# Enthalpy of formation: -286.4 kcal/mol + -analytic 4.2210e+002 1.2792e-001 -1.1444e+004 -1.7062e+002 -1.7869e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 La+++ = LaCl4- + -llnl_gamma 4.0 + log_k -0.818 + -delta_H -7.81571 kJ/mol # Calculated enthalpy of reaction LaCl4- +# Enthalpy of formation: -331.2 kcal/mol + -analytic 4.8802e+002 1.3053e-001 -1.3344e+004 -1.9518e+002 -2.0836e+002 +# -Range: 0-300 + +1.0000 La+++ + 1.0000 F- = LaF++ + -llnl_gamma 4.5 + log_k +3.8556 + -delta_H 26.5684 kJ/mol # Calculated enthalpy of reaction LaF+2 +# Enthalpy of formation: -243.4 kcal/mol + -analytic 9.6765e+001 4.0513e-002 -2.8042e+003 -3.8617e+001 -4.3785e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 La+++ = LaF2+ + -llnl_gamma 4.0 + log_k +6.6850 + -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction LaF2+ +# Enthalpy of formation: -325.2 kcal/mol + -analytic 2.3923e+002 8.3559e-002 -6.0536e+003 -9.5821e+001 -9.4531e+001 +# -Range: 0-300 + +3.0000 F- + 1.0000 La+++ = LaF3 + -llnl_gamma 3.0 + log_k +8.7081 + -delta_H -0.6276 kJ/mol # Calculated enthalpy of reaction LaF3 +# Enthalpy of formation: -410.2 kcal/mol + -analytic 4.5123e+002 1.3460e-001 -1.1334e+004 -1.7967e+002 -1.7699e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 La+++ = LaF4- + -llnl_gamma 4.0 + log_k +10.3647 + -delta_H -41.4216 kJ/mol # Calculated enthalpy of reaction LaF4- +# Enthalpy of formation: -500.1 kcal/mol + -analytic 5.0747e+002 1.3563e-001 -1.1903e+004 -2.0108e+002 -1.8588e+002 +# -Range: 0-300 + +1.0000 La+++ + 1.0000 HPO4-- + 1.0000 H+ = LaH2PO4++ + -llnl_gamma 4.5 + log_k +9.7417 + -delta_H -18.3468 kJ/mol # Calculated enthalpy of reaction LaH2PO4+2 +# Enthalpy of formation: -482.8 kcal/mol + -analytic 1.0530e+002 6.2177e-002 4.0686e+002 -4.6642e+001 6.3174e+000 +# -Range: 0-300 + +1.0000 La+++ + 1.0000 HCO3- = LaHCO3++ + -llnl_gamma 4.5 + log_k +1.9923 + -delta_H 6.68603 kJ/mol # Calculated enthalpy of reaction LaHCO3+2 +# Enthalpy of formation: -332.9 kcal/mol + -analytic 3.6032e+001 3.0405e-002 5.1281e+001 -1.7478e+001 7.8933e-001 +# -Range: 0-300 + +1.0000 La+++ + 1.0000 HPO4-- = LaHPO4+ + -llnl_gamma 4.0 + log_k +5.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction LaHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 NO3- + 1.0000 La+++ = LaNO3++ + -llnl_gamma 4.5 + log_k +0.5813 + -delta_H -29.1667 kJ/mol # Calculated enthalpy of reaction LaNO3+2 +# Enthalpy of formation: -226 kcal/mol + -analytic 1.4136e+001 2.4247e-002 2.1998e+003 -1.1371e+001 3.4322e+001 +# -Range: 0-300 + +1.0000 La+++ + 1.0000 H2O = LaO+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -18.1696 + -delta_H 121.407 kJ/mol # Calculated enthalpy of reaction LaO+ +# Enthalpy of formation: -208.9 kcal/mol + -analytic 1.8691e+002 2.9275e-002 -1.4385e+004 -6.6906e+001 -2.2452e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 La+++ = LaO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -40.8105 + -delta_H 318.126 kJ/mol # Calculated enthalpy of reaction LaO2- +# Enthalpy of formation: -230.2 kcal/mol + -analytic 1.8374e+002 1.2355e-002 -2.2472e+004 -6.1779e+001 -3.5070e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 La+++ = LaO2H +3.0000 H+ + -llnl_gamma 3.0 + log_k -27.9095 + -delta_H 237.375 kJ/mol # Calculated enthalpy of reaction LaO2H +# Enthalpy of formation: -249.5 kcal/mol + -analytic 3.3862e+002 4.4808e-002 -2.4083e+004 -1.2088e+002 -3.7589e+002 +# -Range: 0-300 + +1.0000 La+++ + 1.0000 H2O = LaOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -8.6405 + -delta_H 82.4959 kJ/mol # Calculated enthalpy of reaction LaOH+2 +# Enthalpy of formation: -218.2 kcal/mol + -analytic 6.5529e+001 1.1104e-002 -6.3920e+003 -2.2646e+001 -9.9760e+001 +# -Range: 0-300 + +1.0000 La+++ + 1.0000 HPO4-- = LaPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k -1.3618 + -delta_H 0 # Not possible to calculate enthalpy of reaction LaPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 La+++ = LaSO4+ + -llnl_gamma 4.0 + log_k +3.6430 + -delta_H 18.4096 kJ/mol # Calculated enthalpy of reaction LaSO4+ +# Enthalpy of formation: -382.6 kcal/mol + -analytic 3.0657e+002 8.4093e-002 -9.1074e+003 -1.2019e+002 -1.4220e+002 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Li+ = Li(CH3COO)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -9.2674 + -delta_H -24.7609 kJ/mol # Calculated enthalpy of reaction Li(CH3COO)2- +# Enthalpy of formation: -304.67 kcal/mol + -analytic -3.3702e+002 -6.0849e-002 1.1952e+004 1.2359e+002 1.8659e+002 +# -Range: 0-300 + +1.0000 Li+ + 1.0000 CH3COOH = LiCH3COO +1.0000 H+ + -llnl_gamma 3.0 + log_k -4.4589 + -delta_H -6.64419 kJ/mol # Calculated enthalpy of reaction LiCH3COO +# Enthalpy of formation: -184.24 kcal/mol + -analytic -3.8391e+000 -7.3938e-004 -1.0829e+003 3.4134e-001 2.1318e+005 +# -Range: 0-300 + +1.0000 Li+ + 1.0000 Cl- = LiCl + -llnl_gamma 3.0 + log_k -1.5115 + -delta_H 3.36812 kJ/mol # Calculated enthalpy of reaction LiCl +# Enthalpy of formation: -105.68 kcal/mol + -analytic 1.2484e+002 4.1941e-002 -3.2439e+003 -5.1708e+001 -5.0655e+001 +# -Range: 0-300 + +1.0000 Li+ + 1.0000 H2O = LiOH +1.0000 H+ + -llnl_gamma 3.0 + log_k -13.64 + -delta_H 0 # Not possible to calculate enthalpy of reaction LiOH +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Li+ = LiSO4- + -llnl_gamma 4.0 + log_k +0.7700 + -delta_H 0 # Not possible to calculate enthalpy of reaction LiSO4- +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Lu+++ = Lu(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.9625 + -delta_H -38.5346 kJ/mol # Calculated enthalpy of reaction Lu(CH3COO)2+ +# Enthalpy of formation: -409.31 kcal/mol + -analytic -2.7341e+001 2.5097e-003 -1.4157e+003 7.5026e+000 6.9682e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Lu+++ = Lu(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -8.3489 + -delta_H -64.5173 kJ/mol # Calculated enthalpy of reaction Lu(CH3COO)3 +# Enthalpy of formation: -531.62 kcal/mol + -analytic -5.0225e+001 3.3508e-003 -6.2901e+002 1.3262e+001 9.0737e+005 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Lu+++ = Lu(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -6.8576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Lu+++ = Lu(HPO4)2- + -llnl_gamma 4.0 + log_k +10.3000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Lu+++ = Lu(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -2.7437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Lu+++ = Lu(SO4)2- + -llnl_gamma 4.0 + log_k +5.3000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Lu+++ + 1.0000 CH3COOH = LuCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.1037 + -delta_H -18.9703 kJ/mol # Calculated enthalpy of reaction LuCH3COO+2 +# Enthalpy of formation: -288.534 kcal/mol + -analytic -6.5982e+000 2.4512e-003 -1.2666e+003 1.4226e+000 4.0045e+005 +# -Range: 0-300 + +1.0000 Lu+++ + 1.0000 HCO3- = LuCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.0392 + -delta_H 78.2324 kJ/mol # Calculated enthalpy of reaction LuCO3+ +# Enthalpy of formation: -314.1 kcal/mol + -analytic 2.3840e+002 5.4774e-002 -6.8317e+003 -9.4500e+001 -1.0667e+002 +# -Range: 0-300 + +1.0000 Lu+++ + 1.0000 Cl- = LuCl++ + -llnl_gamma 4.5 + log_k -0.0579 + -delta_H 13.5269 kJ/mol # Calculated enthalpy of reaction LuCl+2 +# Enthalpy of formation: -204.6 kcal/mol + -analytic 6.6161e+001 3.6521e-002 -1.2938e+003 -2.9397e+001 -2.0209e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Lu+++ = LuCl2+ + -llnl_gamma 4.0 + log_k -0.6289 + -delta_H 15.7569 kJ/mol # Calculated enthalpy of reaction LuCl2+ +# Enthalpy of formation: -244 kcal/mol + -analytic 1.8608e+002 7.7283e-002 -4.2349e+003 -7.9007e+001 -6.6137e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Lu+++ = LuCl3 + -llnl_gamma 3.0 + log_k -1.1999 + -delta_H 3.56895 kJ/mol # Calculated enthalpy of reaction LuCl3 +# Enthalpy of formation: -286.846 kcal/mol + -analytic 3.7060e+002 1.2564e-001 -8.9374e+003 -1.5325e+002 -1.3957e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Lu+++ = LuCl4- + -llnl_gamma 4.0 + log_k -1.771 + -delta_H -25.8069 kJ/mol # Calculated enthalpy of reaction LuCl4- +# Enthalpy of formation: -333.8 kcal/mol + -analytic 3.8876e+002 1.2200e-001 -8.6965e+003 -1.6071e+002 -1.3582e+002 +# -Range: 0-300 + +1.0000 Lu+++ + 1.0000 F- = LuF++ + -llnl_gamma 4.5 + log_k +4.8085 + -delta_H 25.7316 kJ/mol # Calculated enthalpy of reaction LuF+2 +# Enthalpy of formation: -241.9 kcal/mol + -analytic 9.0303e+001 4.0963e-002 -2.4140e+003 -3.6203e+001 -3.7694e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Lu+++ = LuF2+ + -llnl_gamma 4.0 + log_k +8.4442 + -delta_H 14.2256 kJ/mol # Calculated enthalpy of reaction LuF2+ +# Enthalpy of formation: -324.8 kcal/mol + -analytic 2.1440e+002 8.2559e-002 -4.7009e+003 -8.6790e+001 -7.3417e+001 +# -Range: 0-300 + +3.0000 F- + 1.0000 Lu+++ = LuF3 + -llnl_gamma 3.0 + log_k +11.0999 + -delta_H -12.3428 kJ/mol # Calculated enthalpy of reaction LuF3 +# Enthalpy of formation: -411.3 kcal/mol + -analytic 4.0247e+002 1.3233e-001 -8.6775e+003 -1.6232e+002 -1.3552e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 Lu+++ = LuF4- + -llnl_gamma 4.0 + log_k +13.2967 + -delta_H -64.0152 kJ/mol # Calculated enthalpy of reaction LuF4- +# Enthalpy of formation: -503.8 kcal/mol + -analytic 4.2541e+002 1.3070e-001 -7.4276e+003 -1.7220e+002 -1.1603e+002 +# -Range: 0-300 + +1.0000 Lu+++ + 1.0000 HPO4-- + 1.0000 H+ = LuH2PO4++ + -llnl_gamma 4.5 + log_k +9.5950 + -delta_H -23.786 kJ/mol # Calculated enthalpy of reaction LuH2PO4+2 +# Enthalpy of formation: -482.4 kcal/mol + -analytic 9.4223e+001 6.1797e-002 1.1102e+003 -4.3131e+001 1.7296e+001 +# -Range: 0-300 + +1.0000 Lu+++ + 1.0000 HCO3- = LuHCO3++ + -llnl_gamma 4.5 + log_k +1.9190 + -delta_H 1.66523 kJ/mol # Calculated enthalpy of reaction LuHCO3+2 +# Enthalpy of formation: -332.4 kcal/mol + -analytic 2.3187e+001 2.9604e-002 8.1268e+002 -1.3252e+001 1.2674e+001 +# -Range: 0-300 + +1.0000 Lu+++ + 1.0000 HPO4-- = LuHPO4+ + -llnl_gamma 4.0 + log_k +6.0000 + -delta_H 0 # Not possible to calculate enthalpy of reaction LuHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 NO3- + 1.0000 Lu+++ = LuNO3++ + -llnl_gamma 4.5 + log_k +0.5813 + -delta_H -41.7187 kJ/mol # Calculated enthalpy of reaction LuNO3+2 +# Enthalpy of formation: -227.3 kcal/mol + -analytic 1.7412e+000 2.3703e-002 3.2605e+003 -7.7334e+000 5.0876e+001 +# -Range: 0-300 + +1.0000 Lu+++ + 1.0000 H2O = LuO+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -15.3108 + -delta_H 99.6503 kJ/mol # Calculated enthalpy of reaction LuO+ +# Enthalpy of formation: -212.4 kcal/mol + -analytic 1.5946e+002 2.6603e-002 -1.2215e+004 -5.7276e+001 -1.9065e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Lu+++ = LuO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -31.9411 + -delta_H 258.713 kJ/mol # Calculated enthalpy of reaction LuO2- +# Enthalpy of formation: -242.7 kcal/mol + -analytic 1.1522e+002 5.0221e-003 -1.6847e+004 -3.7244e+001 -2.6292e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Lu+++ = LuO2H +3.0000 H+ + -llnl_gamma 3.0 + log_k -23.878 + -delta_H 206.832 kJ/mol # Calculated enthalpy of reaction LuO2H +# Enthalpy of formation: -255.1 kcal/mol + -analytic 2.8768e+002 4.2338e-002 -2.0443e+004 -1.0330e+002 -3.1907e+002 +# -Range: 0-300 + +1.0000 Lu+++ + 1.0000 H2O = LuOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -7.6143 + -delta_H 72.0359 kJ/mol # Calculated enthalpy of reaction LuOH+2 +# Enthalpy of formation: -219 kcal/mol + -analytic 4.2937e+001 9.2421e-003 -4.9953e+003 -1.4769e+001 -7.7960e+001 +# -Range: 0-300 + +1.0000 Lu+++ + 1.0000 HPO4-- = LuPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k +0.6782 + -delta_H 0 # Not possible to calculate enthalpy of reaction LuPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Lu+++ = LuSO4+ + -llnl_gamma 4.0 + log_k +3.5697 + -delta_H 19.5393 kJ/mol # Calculated enthalpy of reaction LuSO4+ +# Enthalpy of formation: -380.63 kcal/mol + -analytic 3.0108e+002 8.5238e-002 -8.8411e+003 -1.1850e+002 -1.3805e+002 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Mg++ = Mg(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -7.473 + -delta_H -23.8195 kJ/mol # Calculated enthalpy of reaction Mg(CH3COO)2 +# Enthalpy of formation: -349.26 kcal/mol + -analytic -4.3954e+001 -3.1842e-004 -1.2033e+003 1.3556e+001 6.3058e+005 +# -Range: 0-300 + +4.0000 Mg++ + 4.0000 H2O = Mg4(OH)4++++ +4.0000 H+ + -llnl_gamma 5.5 + log_k -39.75 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mg4(OH)4+4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Mg++ + 1.0000 H2O + 1.0000 B(OH)3 = MgB(OH)4+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -7.3467 + -delta_H 0 # Not possible to calculate enthalpy of reaction MgB(OH)4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Mg++ + 1.0000 CH3COOH = MgCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -3.4781 + -delta_H -8.42239 kJ/mol # Calculated enthalpy of reaction MgAcetate+ +# Enthalpy of formation: -229.48 kcal/mol + -analytic -2.3548e+001 -1.6071e-003 -4.2228e+002 7.7009e+000 2.5981e+005 +# -Range: 0-300 + +1.0000 Mg++ + 1.0000 HCO3- = MgCO3 +1.0000 H+ + -llnl_gamma 3.0 + log_k -7.3499 + -delta_H 23.8279 kJ/mol # Calculated enthalpy of reaction MgCO3 +# Enthalpy of formation: -270.57 kcal/mol + -analytic 2.3465e+002 5.5538e-002 -8.3947e+003 -9.3104e+001 -1.3106e+002 +# -Range: 0-300 + +1.0000 Mg++ + 1.0000 Cl- = MgCl+ + -llnl_gamma 4.0 + log_k -0.1349 + -delta_H -0.58576 kJ/mol # Calculated enthalpy of reaction MgCl+ +# Enthalpy of formation: -151.44 kcal/mol + -analytic 4.3363e+001 3.2858e-002 1.1878e+002 -2.1688e+001 1.8403e+000 +# -Range: 0-300 + +1.0000 Mg++ + 1.0000 F- = MgF+ + -llnl_gamma 4.0 + log_k +1.3524 + -delta_H 2.37233 kJ/mol # Calculated enthalpy of reaction MgF+ +# Enthalpy of formation: -190.95 kcal/mol + -analytic 6.4311e+001 3.5184e-002 -7.3241e+002 -2.8678e+001 -1.1448e+001 +# -Range: 0-300 + +1.0000 Mg++ + 1.0000 HPO4-- + 1.0000 H+ = MgH2PO4+ + -llnl_gamma 4.0 + log_k +1.6600 + -delta_H 0 # Not possible to calculate enthalpy of reaction MgH2PO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Mg++ + 1.0000 HCO3- = MgHCO3+ + -llnl_gamma 4.0 + log_k +1.0357 + -delta_H 2.15476 kJ/mol # Calculated enthalpy of reaction MgHCO3+ +# Enthalpy of formation: -275.75 kcal/mol + -analytic 3.8459e+001 3.0076e-002 9.8068e+001 -1.8869e+001 1.5187e+000 +# -Range: 0-300 + +1.0000 Mg++ + 1.0000 HPO4-- = MgHPO4 + -llnl_gamma 3.0 + log_k +2.9100 + -delta_H 0 # Not possible to calculate enthalpy of reaction MgHPO4 +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Mg++ = MgP2O7-- +1.0000 H2O + -llnl_gamma 4.0 + log_k +3.4727 + -delta_H 38.5451 kJ/mol # Calculated enthalpy of reaction MgP2O7-2 +# Enthalpy of formation: -2725.74 kJ/mol + -analytic 4.8038e+002 1.2530e-001 -1.5175e+004 -1.8724e+002 -2.3693e+002 +# -Range: 0-300 + +1.0000 Mg++ + 1.0000 HPO4-- = MgPO4- +1.0000 H+ + -llnl_gamma 4.0 + log_k -5.7328 + -delta_H 0 # Not possible to calculate enthalpy of reaction MgPO4- +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Mg++ = MgSO4 + -llnl_gamma 3.0 + log_k +2.4117 + -delta_H 19.6051 kJ/mol # Calculated enthalpy of reaction MgSO4 +# Enthalpy of formation: -1355.96 kJ/mol + -analytic 1.7994e+002 6.4715e-002 -4.7314e+003 -7.3123e+001 -8.0408e+001 +# -Range: 0-200 + +2.0000 CH3COOH + 1.0000 Mn++ = Mn(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -7.4547 + -delta_H -11.4893 kJ/mol # Calculated enthalpy of reaction Mn(CH3COO)2 +# Enthalpy of formation: -287.67 kcal/mol + -analytic -9.0558e-001 5.9656e-003 -4.3531e+003 -1.1063e+000 8.0323e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Mn++ = Mn(CH3COO)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -11.8747 + -delta_H -30.3591 kJ/mol # Calculated enthalpy of reaction Mn(CH3COO)3- +# Enthalpy of formation: -408.28 kcal/mol + -analytic -3.8531e+000 -9.9140e-003 -1.2065e+004 5.1424e+000 2.0175e+006 +# -Range: 0-300 + +2.0000 NO3- + 1.0000 Mn++ = Mn(NO3)2 + -llnl_gamma 3.0 + log_k +0.6000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(NO3)2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Mn++ = Mn(OH)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -22.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 H2O + 1.0000 Mn++ = Mn(OH)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -34.2278 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)3- +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 1.0000 Mn++ = Mn(OH)4-- +4.0000 H+ + -llnl_gamma 4.0 + log_k -48.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)4-2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 H2O + 2.0000 Mn++ = Mn2(OH)3+ +3.0000 H+ + -llnl_gamma 4.0 + log_k -23.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn2(OH)3+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 Mn++ + 1.0000 H2O = Mn2OH+++ +1.0000 H+ + -llnl_gamma 5.0 + log_k -10.56 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn2OH+3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Mn++ + 1.0000 CH3COOH = MnCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -3.5404 + -delta_H -3.07942 kJ/mol # Calculated enthalpy of reaction MnCH3COO+ +# Enthalpy of formation: -169.56 kcal/mol + -analytic -1.4061e+001 1.8149e-003 -8.6438e+002 4.0354e+000 2.5831e+005 +# -Range: 0-300 + +1.0000 Mn++ + 1.0000 HCO3- = MnCO3 +1.0000 H+ + -llnl_gamma 3.0 + log_k -5.8088 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnCO3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Mn++ + 1.0000 Cl- = MnCl+ + -llnl_gamma 4.0 + log_k +0.3013 + -delta_H 18.3134 kJ/mol # Calculated enthalpy of reaction MnCl+ +# Enthalpy of formation: -88.28 kcal/mol + -analytic 8.7072e+001 4.0361e-002 -2.1786e+003 -3.6966e+001 -3.4022e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Mn++ = MnCl3- + -llnl_gamma 4.0 + log_k -0.3324 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnCl3- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Mn++ + 1.0000 F- = MnF+ + -llnl_gamma 4.0 + log_k +1.4300 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnF+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Mn++ + 1.0000 HPO4-- + 1.0000 H+ = MnH2PO4+ + -llnl_gamma 4.0 + log_k +8.5554 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnH2PO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Mn++ + 1.0000 HCO3- = MnHCO3+ + -llnl_gamma 4.0 + log_k +0.8816 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnHCO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Mn++ + 1.0000 HPO4-- = MnHPO4 + -llnl_gamma 3.0 + log_k +3.5800 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnHPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 NO3- + 1.0000 Mn++ = MnNO3+ + -llnl_gamma 4.0 + log_k +0.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnNO3+ +# Enthalpy of formation: -0 kcal/mol + +1.5000 H2O + 1.2500 O2 + 1.0000 Mn++ = MnO4- +3.0000 H+ + -llnl_gamma 3.5 + log_k -20.2963 + -delta_H 123.112 kJ/mol # Calculated enthalpy of reaction MnO4- +# Enthalpy of formation: -129.4 kcal/mol + -analytic 1.8544e+001 -1.7618e-002 -6.7332e+003 -3.3193e+000 -2.4924e+005 +# -Range: 0-300 + +1.0000 Mn++ + 1.0000 H2O = MnOH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -10.59 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnOH+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Mn++ + 1.0000 HPO4-- = MnPO4- +1.0000 H+ + -llnl_gamma 4.0 + log_k -5.1318 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnPO4- +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Mn++ = MnSO4 + -llnl_gamma 3.0 + log_k +2.3529 + -delta_H 14.1168 kJ/mol # Calculated enthalpy of reaction MnSO4 +# Enthalpy of formation: -266.75 kcal/mol + -analytic 2.9448e+002 8.5294e-002 -8.1366e+003 -1.1729e+002 -1.2705e+002 +# -Range: 0-300 + +1.0000 SeO4-- + 1.0000 Mn++ = MnSeO4 + -llnl_gamma 3.0 + log_k +2.4300 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnSeO4 +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 NH3 = NH4(CH3COO)2- +1.0000 H+ + -llnl_gamma 4.0 + log_k -0.1928 + -delta_H -56.735 kJ/mol # Calculated enthalpy of reaction NH4(CH3COO)2- +# Enthalpy of formation: -265.2 kcal/mol + -analytic 3.7137e+001 -1.2242e-002 -8.4764e+003 -8.4308e+000 1.3883e+006 +# -Range: 0-300 + +1.0000 NH3 + 1.0000 H+ = NH4+ + -llnl_gamma 2.5 + log_k +9.2410 + -delta_H -51.9234 kJ/mol # Calculated enthalpy of reaction NH4+ +# Enthalpy of formation: -31.85 kcal/mol + -analytic -1.4527e+001 -5.0518e-003 3.0447e+003 6.0865e+000 4.7515e+001 +# -Range: 0-300 + +1.0000 NH3 + 1.0000 CH3COOH = NH4CH3COO + -llnl_gamma 3.0 + log_k +4.6964 + -delta_H -48.911 kJ/mol # Calculated enthalpy of reaction NH4CH3COO +# Enthalpy of formation: -147.23 kcal/mol + -analytic 1.4104e+001 -4.3664e-003 -1.0746e+003 -3.6999e+000 4.1428e+005 +# -Range: 0-300 + +1.0000 SO4-- + 1.0000 NH3 + 1.0000 H+ = NH4SO4- + -llnl_gamma 4.0 + log_k +0.9400 + -delta_H 0 # Not possible to calculate enthalpy of reaction NH4SO4- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Sb(OH)3 + 1.0000 NH3 = NH4SbO2 +1.0000 H2O + -llnl_gamma 3.0 + log_k -2.5797 + -delta_H 0 # Not possible to calculate enthalpy of reaction NH4SbO2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Na+ = Na(CH3COO)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -9.9989 + -delta_H -11.5771 kJ/mol # Calculated enthalpy of reaction Na(CH3COO)2- +# Enthalpy of formation: -292.4 kcal/mol + -analytic -2.9232e+002 -5.5708e-002 9.6601e+003 1.0772e+002 1.5082e+002 +# -Range: 0-300 + +1.0000 O_phthalate-2 + 1.0000 Na+ = Na(O_phthalate)- + -llnl_gamma 4.0 + log_k +0.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Na(O_phthalate)- +# Enthalpy of formation: -0 kcal/mol + +2.0000 Na+ + 2.0000 HPO4-- = Na2P2O7-- +1.0000 H2O + -llnl_gamma 4.0 + log_k +0.4437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Na2P2O7-2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Na+ + 1.0000 Al+++ = NaAlO2 +4.0000 H+ + -llnl_gamma 3.0 + log_k -23.6266 + -delta_H 190.326 kJ/mol # Calculated enthalpy of reaction NaAlO2 +# Enthalpy of formation: -277.259 kcal/mol + -analytic 1.2288e+002 3.4921e-002 -1.2808e+004 -4.6046e+001 -1.9990e+002 +# -Range: 0-300 + +1.0000 Na+ + 1.0000 H2O + 1.0000 B(OH)3 = NaB(OH)4 +1.0000 H+ + -llnl_gamma 3.0 + log_k -8.974 + -delta_H 0 # Not possible to calculate enthalpy of reaction NaB(OH)4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Na+ + 1.0000 Br- = NaBr + -llnl_gamma 3.0 + log_k -1.3568 + -delta_H 6.87431 kJ/mol # Calculated enthalpy of reaction NaBr +# Enthalpy of formation: -84.83 kcal/mol + -analytic 1.1871e+002 3.7271e-002 -3.4061e+003 -4.8386e+001 -5.3184e+001 +# -Range: 0-300 + +1.0000 Na+ + 1.0000 CH3COOH = NaCH3COO +1.0000 H+ + -llnl_gamma 3.0 + log_k -4.8606 + -delta_H -0.029288 kJ/mol # Calculated enthalpy of reaction NaCH3COO +# Enthalpy of formation: -173.54 kcal/mol + -analytic 6.4833e+000 -1.8739e-003 -2.0902e+003 -2.6121e+000 2.3990e+005 +# -Range: 0-300 + +1.0000 Na+ + 1.0000 HCO3- = NaCO3- +1.0000 H+ + -llnl_gamma 4.0 + log_k -9.8144 + -delta_H -5.6521 kJ/mol # Calculated enthalpy of reaction NaCO3- +# Enthalpy of formation: -935.885 kJ/mol + -analytic 1.6939e+002 5.3122e-004 -7.6768e+003 -6.2078e+001 -1.1984e+002 +# -Range: 0-300 + +1.0000 Na+ + 1.0000 Cl- = NaCl + -llnl_gamma 3.0 + log_k -0.777 + -delta_H 5.21326 kJ/mol # Calculated enthalpy of reaction NaCl +# Enthalpy of formation: -96.12 kcal/mol + -analytic 1.1398e+002 3.6386e-002 -3.0847e+003 -4.6571e+001 -4.8167e+001 +# -Range: 0-300 + +1.0000 Na+ + 1.0000 F- = NaF + -llnl_gamma 3.0 + log_k -0.9976 + -delta_H 7.20903 kJ/mol # Calculated enthalpy of reaction NaF +# Enthalpy of formation: -135.86 kcal/mol + -analytic 1.2507e+002 3.8619e-002 -3.5436e+003 -5.0787e+001 -5.5332e+001 +# -Range: 0-300 + +1.0000 Na+ + 1.0000 HCO3- = NaHCO3 + -llnl_gamma 3.0 + log_k +0.1541 + -delta_H -13.7741 kJ/mol # Calculated enthalpy of reaction NaHCO3 +# Enthalpy of formation: -944.007 kJ/mol + -analytic -9.0668e+001 -2.9866e-002 2.7947e+003 3.6515e+001 4.7489e+001 +# -Range: 0-200 + +2.0000 HPO4-- + 1.0000 Na+ + 1.0000 H+ = NaHP2O7-- +1.0000 H2O + -llnl_gamma 4.0 + log_k +6.8498 + -delta_H 0 # Not possible to calculate enthalpy of reaction NaHP2O7-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Na+ + 1.0000 HPO4-- = NaHPO4- + -llnl_gamma 4.0 + log_k +0.9200 + -delta_H 0 # Not possible to calculate enthalpy of reaction NaHPO4- +# Enthalpy of formation: -0 kcal/mol + +1.0000 SiO2 + 1.0000 Na+ + 1.0000 H2O = NaHSiO3 +1.0000 H+ + -llnl_gamma 3.0 + log_k -8.304 + -delta_H 11.6524 kJ/mol # Calculated enthalpy of reaction NaHSiO3 +# Enthalpy of formation: -332.74 kcal/mol + -analytic 3.6045e+001 -9.0411e-003 -6.6605e+003 -1.0447e+001 5.8415e+005 +# -Range: 0-300 + +1.0000 Na+ + 1.0000 I- = NaI + -llnl_gamma 3.0 + log_k -1.54 + -delta_H 7.33455 kJ/mol # Calculated enthalpy of reaction NaI +# Enthalpy of formation: -69.28 kcal/mol + -analytic 9.8742e+001 3.2917e-002 -2.7576e+003 -4.0748e+001 -4.3058e+001 +# -Range: 0-300 + +1.0000 Na+ + 1.0000 H2O = NaOH +1.0000 H+ + -llnl_gamma 3.0 + log_k -14.7948 + -delta_H 53.6514 kJ/mol # Calculated enthalpy of reaction NaOH +# Enthalpy of formation: -112.927 kcal/mol + -analytic 8.7326e+001 2.3555e-002 -5.4770e+003 -3.6678e+001 -8.5489e+001 +# -Range: 0-300 + +2.0000 HPO4-- + 1.0000 Na+ = NaP2O7--- +1.0000 H2O + -llnl_gamma 4.0 + log_k -1.4563 + -delta_H 0 # Not possible to calculate enthalpy of reaction NaP2O7-3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Na+ = NaSO4- + -llnl_gamma 4.0 + log_k +0.8200 + -delta_H 0 # Not possible to calculate enthalpy of reaction NaSO4- +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Nd+++ = Nd(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.9771 + -delta_H -22.6354 kJ/mol # Calculated enthalpy of reaction Nd(CH3COO)2+ +# Enthalpy of formation: -404.11 kcal/mol + -analytic -2.2128e+001 1.0975e-003 -7.1543e+002 5.8799e+000 4.1748e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Nd+++ = Nd(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -8.2976 + -delta_H -38.8694 kJ/mol # Calculated enthalpy of reaction Nd(CH3COO)3 +# Enthalpy of formation: -524.09 kcal/mol + -analytic -4.5726e+001 -2.6143e-003 5.9389e+002 1.2679e+001 4.3320e+005 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Nd+++ = Nd(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -8.0576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Nd+++ = Nd(HPO4)2- + -llnl_gamma 4.0 + log_k +9.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +# Redundant with NdO2- +#4.0000 H2O + 1.0000 Nd+++ = Nd(OH)4- +4.0000 H+ +# -llnl_gamma 4.0 +# log_k -37.0803 +# -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)4- +## Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Nd+++ = Nd(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -5.1437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Nd+++ = Nd(SO4)2- + -llnl_gamma 4.0 + log_k -255.7478 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 Nd+++ + 2.0000 H2O = Nd2(OH)2++++ +2.0000 H+ + -llnl_gamma 5.5 + log_k -13.8902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Nd+++ + 1.0000 CH3COOH = NdCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.0891 + -delta_H -12.0081 kJ/mol # Calculated enthalpy of reaction NdCH3COO+2 +# Enthalpy of formation: -285.47 kcal/mol + -analytic -1.6006e+001 4.1948e-004 -3.6469e+002 4.9280e+000 2.5187e+005 +# -Range: 0-300 + +1.0000 Nd+++ + 1.0000 HCO3- = NdCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.6256 + -delta_H 91.6212 kJ/mol # Calculated enthalpy of reaction NdCO3+ +# Enthalpy of formation: -309.5 kcal/mol + -analytic 2.3399e+002 5.3454e-002 -7.0513e+003 -9.2500e+001 -1.1010e+002 +# -Range: 0-300 + +1.0000 Nd+++ + 1.0000 Cl- = NdCl++ + -llnl_gamma 4.5 + log_k +0.3086 + -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction NdCl+2 +# Enthalpy of formation: -203 kcal/mol + -analytic 9.4587e+001 3.9331e-002 -2.4200e+003 -3.9550e+001 -3.7790e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Nd+++ = NdCl2+ + -llnl_gamma 4.0 + log_k +0.0308 + -delta_H 20.3593 kJ/mol # Calculated enthalpy of reaction NdCl2+ +# Enthalpy of formation: -241.5 kcal/mol + -analytic 2.5840e+002 8.4118e-002 -7.2056e+003 -1.0477e+002 -1.1251e+002 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Nd+++ = NdCl3 + -llnl_gamma 3.0 + log_k -0.3203 + -delta_H 15.0582 kJ/mol # Calculated enthalpy of reaction NdCl3 +# Enthalpy of formation: -282.7 kcal/mol + -analytic 4.9362e+002 1.3485e-001 -1.4309e+004 -1.9645e+002 -2.2343e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Nd+++ = NdCl4- + -llnl_gamma 4.0 + log_k -0.7447 + -delta_H -3.21331 kJ/mol # Calculated enthalpy of reaction NdCl4- +# Enthalpy of formation: -327 kcal/mol + -analytic 6.0548e+002 1.4227e-001 -1.8055e+004 -2.3765e+002 -2.8191e+002 +# -Range: 0-300 + +1.0000 Nd+++ + 1.0000 F- = NdF++ + -llnl_gamma 4.5 + log_k +4.3687 + -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction NdF+2 +# Enthalpy of formation: -241.2 kcal/mol + -analytic 1.1461e+002 4.3014e-002 -3.2461e+003 -4.5326e+001 -5.0687e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Nd+++ = NdF2+ + -llnl_gamma 4.0 + log_k +7.5646 + -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction NdF2+ +# Enthalpy of formation: -323.5 kcal/mol + -analytic 2.7901e+002 8.7910e-002 -7.2424e+003 -1.1046e+002 -1.1309e+002 +# -Range: 0-300 + +3.0000 F- + 1.0000 Nd+++ = NdF3 + -llnl_gamma 3.0 + log_k +9.8809 + -delta_H -8.1588 kJ/mol # Calculated enthalpy of reaction NdF3 +# Enthalpy of formation: -408.9 kcal/mol + -analytic 5.2220e+002 1.4154e-001 -1.3697e+004 -2.0551e+002 -2.1388e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 Nd+++ = NdF4- + -llnl_gamma 4.0 + log_k +11.8307 + -delta_H -48.5344 kJ/mol # Calculated enthalpy of reaction NdF4- +# Enthalpy of formation: -498.7 kcal/mol + -analytic 6.1972e+002 1.4620e-001 -1.5869e+004 -2.4175e+002 -2.4780e+002 +# -Range: 0-300 + +1.0000 Nd+++ + 1.0000 HPO4-- + 1.0000 H+ = NdH2PO4++ + -llnl_gamma 4.5 + log_k +9.5152 + -delta_H -15.736 kJ/mol # Calculated enthalpy of reaction NdH2PO4+2 +# Enthalpy of formation: -479.076 kcal/mol + -analytic 1.2450e+002 6.4953e-002 -4.0524e+002 -5.3728e+001 -6.3603e+000 +# -Range: 0-300 + +1.0000 Nd+++ + 1.0000 HCO3- = NdHCO3++ + -llnl_gamma 4.5 + log_k +1.8457 + -delta_H 9.19643 kJ/mol # Calculated enthalpy of reaction NdHCO3+2 +# Enthalpy of formation: -329.2 kcal/mol + -analytic 5.5530e+001 3.3254e-002 -7.3859e+002 -2.4690e+001 -1.1542e+001 +# -Range: 0-300 + +1.0000 Nd+++ + 1.0000 HPO4-- = NdHPO4+ + -llnl_gamma 4.0 + log_k +5.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction NdHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Nd+++ + 1.0000 NO3- = NdNO3++ + -llnl_gamma 4.5 + log_k +0.7902 + -delta_H -27.8529 kJ/mol # Calculated enthalpy of reaction NdNO3+2 +# Enthalpy of formation: -222.586 kcal/mol + -analytic 3.3850e+001 2.7112e-002 1.4404e+003 -1.8570e+001 2.2466e+001 +# -Range: 0-300 + +1.0000 Nd+++ + 1.0000 H2O = NdO+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -17.0701 + -delta_H 116.386 kJ/mol # Calculated enthalpy of reaction NdO+ +# Enthalpy of formation: -207 kcal/mol + -analytic 1.8961e+002 3.0563e-002 -1.4153e+004 -6.8024e+001 -2.2089e+002 +# -Range: 0-300 +2.0000 H2O + 1.0000 Nd+++ = NdO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -37.0721 + -delta_H 298.88 kJ/mol # Calculated enthalpy of reaction NdO2- +# Enthalpy of formation: -231.7 kcal/mol + -analytic 1.9606e+002 1.4784e-002 -2.1838e+004 -6.6399e+001 -3.4082e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Nd+++ = NdO2H +3.0000 H+ + -llnl_gamma 3.0 + log_k -26.3702 + -delta_H 230.681 kJ/mol # Calculated enthalpy of reaction NdO2H +# Enthalpy of formation: -248 kcal/mol + -analytic 3.4617e+002 4.5955e-002 -2.3960e+004 -1.2361e+002 -3.7398e+002 +# -Range: 0-300 + +1.0000 Nd+++ + 1.0000 H2O = NdOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -8.1274 + -delta_H 80.8223 kJ/mol # Calculated enthalpy of reaction NdOH+2 +# Enthalpy of formation: -215.5 kcal/mol + -analytic 6.6963e+001 1.2182e-002 -6.2797e+003 -2.3300e+001 -9.8008e+001 +# -Range: 0-300 + +1.0000 Nd+++ + 1.0000 HPO4-- = NdPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k -0.5218 + -delta_H 0 # Not possible to calculate enthalpy of reaction NdPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Nd+++ = NdSO4+ + -llnl_gamma 4.0 + log_k +3.6430 + -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction NdSO4+ +# Enthalpy of formation: -379.1 kcal/mol + -analytic 3.0267e+002 8.5362e-002 -8.9211e+003 -1.1902e+002 -1.3929e+002 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Ni++ = Ni(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -7.1908 + -delta_H -25.8571 kJ/mol # Calculated enthalpy of reaction Ni(CH3COO)2 +# Enthalpy of formation: -251.28 kcal/mol + -analytic -2.9660e+001 1.0643e-003 -1.0060e+003 7.9358e+000 5.2562e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Ni++ = Ni(CH3COO)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -11.3543 + -delta_H -53.6807 kJ/mol # Calculated enthalpy of reaction Ni(CH3COO)3- +# Enthalpy of formation: -374.03 kcal/mol + -analytic 5.0850e+001 -8.2435e-003 -1.3049e+004 -1.5410e+001 1.9704e+006 +# -Range: 0-300 + +2.0000 NH3 + 1.0000 Ni++ = Ni(NH3)2++ + -llnl_gamma 4.5 + log_k +5.0598 + -delta_H -29.7505 kJ/mol # Calculated enthalpy of reaction Ni(NH3)2+2 +# Enthalpy of formation: -246.398 kJ/mol + -analytic 1.0002e+002 5.2896e-003 -2.5967e+003 -3.5485e+001 -4.0548e+001 +# -Range: 0-300 + +6.0000 NH3 + 1.0000 Ni++ = Ni(NH3)6++ + -llnl_gamma 4.5 + log_k +8.7344 + -delta_H -88.0436 kJ/mol # Calculated enthalpy of reaction Ni(NH3)6+2 +# Enthalpy of formation: -630.039 kJ/mol + -analytic 1.9406e+002 -1.3467e-002 -5.2321e+003 -6.6168e+001 -8.1699e+001 +# -Range: 0-300 + +2.0000 NO3- + 1.0000 Ni++ = Ni(NO3)2 + -llnl_gamma 3.0 + log_k +0.1899 + -delta_H -1.54153 kJ/mol # Calculated enthalpy of reaction Ni(NO3)2 +# Enthalpy of formation: -469.137 kJ/mol + -analytic -4.2544e+001 -1.0101e-002 1.3496e+003 1.6663e+001 2.2933e+001 +# -Range: 0-200 + +2.0000 H2O + 1.0000 Ni++ = Ni(OH)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -19.9902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni(OH)2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 H2O + 1.0000 Ni++ = Ni(OH)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -30.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni(OH)3- +# Enthalpy of formation: -0 kcal/mol + +2.0000 Ni++ + 1.0000 H2O = Ni2OH+++ +1.0000 H+ + -llnl_gamma 5.0 + log_k -10.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni2OH+3 +# Enthalpy of formation: -0 kcal/mol + +4.0000 Ni++ + 4.0000 H2O = Ni4(OH)4++++ +4.0000 H+ + -llnl_gamma 5.5 + log_k -27.6803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni4(OH)4+4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Ni++ + 1.0000 Br- = NiBr+ + -llnl_gamma 4.0 + log_k -0.37 + -delta_H 0 # Not possible to calculate enthalpy of reaction NiBr+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Ni++ + 1.0000 CH3COOH = NiCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -3.3278 + -delta_H -10.2508 kJ/mol # Calculated enthalpy of reaction NiCH3COO+ +# Enthalpy of formation: -131.45 kcal/mol + -analytic -3.3110e+000 1.6895e-003 -1.0556e+003 2.7168e-002 2.6350e+005 +# -Range: 0-300 + +1.0000 Ni++ + 1.0000 Cl- = NiCl+ + -llnl_gamma 4.0 + log_k -0.9962 + -delta_H 5.99567 kJ/mol # Calculated enthalpy of reaction NiCl+ +# Enthalpy of formation: -51.4 kcal/mol + -analytic 9.5370e+001 3.8521e-002 -2.1746e+003 -4.0629e+001 -3.3961e+001 +# -Range: 0-300 + +2.0000 HPO4-- + 1.0000 Ni++ + 1.0000 H+ = NiHP2O7- +1.0000 H2O + -llnl_gamma 4.0 + log_k +9.2680 + -delta_H 0 # Not possible to calculate enthalpy of reaction NiHP2O7- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Ni++ + 1.0000 NO3- = NiNO3+ + -llnl_gamma 4.0 + log_k +0.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction NiNO3+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Ni++ = NiP2O7-- +1.0000 H2O + -llnl_gamma 4.0 + log_k +3.1012 + -delta_H 9.68819 kJ/mol # Calculated enthalpy of reaction NiP2O7-2 +# Enthalpy of formation: -2342.61 kJ/mol + -analytic 4.6809e+002 1.0985e-001 -1.4310e+004 -1.8173e+002 -2.2344e+002 +# -Range: 0-300 + +1.0000 SO4-- + 1.0000 Ni++ = NiSO4 + -llnl_gamma 3.0 + log_k +2.1257 + -delta_H 2.36814 kJ/mol # Calculated enthalpy of reaction NiSO4 +# Enthalpy of formation: -229.734 kcal/mol + -analytic 6.1187e+001 2.4211e-002 -1.2180e+003 -2.5130e+001 -2.0705e+001 +# -Range: 0-200 + +1.0000 SeO4-- + 1.0000 Ni++ = NiSeO4 + -llnl_gamma 3.0 + log_k +2.6700 + -delta_H 0 # Not possible to calculate enthalpy of reaction NiSeO4 +# Enthalpy of formation: -0 kcal/mol + +5.0000 HCO3- + 1.0000 Np++++ = Np(CO3)5-6 +5.0000 H+ + -llnl_gamma 4.0 + log_k -13.344 + -delta_H 92.7067 kJ/mol # Calculated enthalpy of reaction Np(CO3)5-6 +# Enthalpy of formation: -935.22 kcal/mol + -analytic 6.3005e+002 2.3388e-001 -1.8328e+004 -2.6334e+002 -2.8618e+002 +# -Range: 0-300 + +2.0000 HPO4-- + 2.0000 H+ + 1.0000 Np+++ = Np(H2PO4)2+ + -llnl_gamma 4.0 + log_k +3.7000 + -delta_H -1.55258 kJ/mol # Calculated enthalpy of reaction Np(H2PO4)2+ +# Enthalpy of formation: -743.981 kcal/mol + -analytic 7.8161e+002 2.8446e-001 -1.2330e+004 -3.3194e+002 -2.1056e+002 +# -Range: 25-150 + +3.0000 HPO4-- + 3.0000 H+ + 1.0000 Np+++ = Np(H2PO4)3 + -llnl_gamma 3.0 + log_k +5.6000 + -delta_H -21.8575 kJ/mol # Calculated enthalpy of reaction Np(H2PO4)3 +# Enthalpy of formation: -1057.65 kcal/mol + -analytic 1.5150e+003 4.4939e-001 -3.2766e+004 -6.1975e+002 -5.5934e+002 +# -Range: 25-150 + +2.0000 HPO4-- + 1.0000 Np++++ = Np(HPO4)2 + -llnl_gamma 3.0 + log_k +23.7000 + -delta_H -35.24 kJ/mol # Calculated enthalpy of reaction Np(HPO4)2 +# Enthalpy of formation: -758.94 kcal/mol + -analytic 4.7722e+002 2.1099e-001 -4.7296e+003 -2.0229e+002 -8.0831e+001 +# -Range: 25-150 + +3.0000 HPO4-- + 1.0000 Np++++ = Np(HPO4)3-- + -llnl_gamma 4.0 + log_k +33.4000 + -delta_H -44.9093 kJ/mol # Calculated enthalpy of reaction Np(HPO4)3-2 +# Enthalpy of formation: -1070.07 kcal/mol + -analytic -1.5951e+003 -3.6579e-001 5.1343e+004 6.3262e+002 8.7619e+002 +# -Range: 25-150 + +4.0000 HPO4-- + 1.0000 Np++++ = Np(HPO4)4---- + -llnl_gamma 4.0 + log_k +43.2000 + -delta_H -67.0803 kJ/mol # Calculated enthalpy of reaction Np(HPO4)4-4 +# Enthalpy of formation: -1384.18 kcal/mol + -analytic 5.8359e+003 1.5194e+000 -1.6349e+005 -2.3025e+003 -2.7903e+003 +# -Range: 25-150 + +5.0000 HPO4-- + 1.0000 Np++++ = Np(HPO4)5-6 + -llnl_gamma 4.0 + log_k +52.0000 + -delta_H -83.5401 kJ/mol # Calculated enthalpy of reaction Np(HPO4)5-6 +# Enthalpy of formation: -1696.93 kcal/mol + -analytic -1.8082e+003 -2.0018e-001 7.5155e+004 6.7400e+002 1.2824e+003 +# -Range: 25-150 + +2.0000 H2O + 1.0000 Np++++ = Np(OH)2++ +2.0000 H+ + -llnl_gamma 4.5 + log_k -2.8 + -delta_H 77.0669 kJ/mol # Calculated enthalpy of reaction Np(OH)2+2 +# Enthalpy of formation: -251.102 kcal/mol + -analytic 2.9299e+003 6.5812e-001 -9.5085e+004 -1.1356e+003 -1.6227e+003 +# -Range: 25-150 + +3.0000 H2O + 1.0000 Np++++ = Np(OH)3+ +3.0000 H+ + -llnl_gamma 4.0 + log_k -5.8 + -delta_H 99.5392 kJ/mol # Calculated enthalpy of reaction Np(OH)3+ +# Enthalpy of formation: -314.048 kcal/mol + -analytic -4.7723e+003 -1.1810e+000 1.3545e+005 1.8850e+003 2.3117e+003 +# -Range: 25-150 + +4.0000 H2O + 1.0000 Np++++ = Np(OH)4 +4.0000 H+ + -llnl_gamma 3.0 + log_k -9.6 + -delta_H 109.585 kJ/mol # Calculated enthalpy of reaction Np(OH)4 +# Enthalpy of formation: -379.964 kcal/mol + -analytic -5.5904e+003 -1.3639e+000 1.6112e+005 2.2013e+003 2.7498e+003 +# -Range: 25-150 + +2.0000 SO4-- + 1.0000 Np++++ = Np(SO4)2 + -llnl_gamma 3.0 + log_k +9.9000 + -delta_H 40.005 kJ/mol # Calculated enthalpy of reaction Np(SO4)2 +# Enthalpy of formation: -558.126 kcal/mol + -analytic -9.0765e+002 -1.8494e-001 2.7951e+004 3.5521e+002 4.7702e+002 +# -Range: 25-150 + +1.0000 Np++++ + 1.0000 Cl- = NpCl+++ + -llnl_gamma 5.0 + log_k +0.2000 + -delta_H 20.3737 kJ/mol # Calculated enthalpy of reaction NpCl+3 +# Enthalpy of formation: -167.951 kcal/mol + -analytic 8.3169e+002 2.6267e-001 -2.1618e+004 -3.3838e+002 -3.6898e+002 +# -Range: 25-150 + +2.0000 Cl- + 1.0000 Np++++ = NpCl2++ + -llnl_gamma 4.5 + log_k -0.1 + -delta_H 94.5853 kJ/mol # Calculated enthalpy of reaction NpCl2+2 +# Enthalpy of formation: -190.147 kcal/mol + -analytic -1.5751e+003 -3.8759e-001 4.2054e+004 6.2619e+002 7.1777e+002 +# -Range: 25-150 + +1.0000 Np++++ + 1.0000 F- = NpF+++ + -llnl_gamma 5.0 + log_k +8.7000 + -delta_H -3.43746 kJ/mol # Calculated enthalpy of reaction NpF+3 +# Enthalpy of formation: -213.859 kcal/mol + -analytic 2.7613e+000 1.3498e-003 -1.6411e+003 2.9074e+000 3.4192e+005 +# -Range: 25-150 + +2.0000 F- + 1.0000 Np++++ = NpF2++ + -llnl_gamma 4.5 + log_k +15.4000 + -delta_H 6.03094 kJ/mol # Calculated enthalpy of reaction NpF2+2 +# Enthalpy of formation: -291.746 kcal/mol + -analytic -2.6793e+002 -4.2056e-002 9.7952e+003 1.0629e+002 1.6715e+002 +# -Range: 25-150 + +1.0000 Np+++ + 1.0000 HPO4-- + 1.0000 H+ = NpH2PO4++ + -llnl_gamma 4.5 + log_k +2.4000 + -delta_H 6.0874 kJ/mol # Calculated enthalpy of reaction NpH2PO4+2 +# Enthalpy of formation: -433.34 kcal/mol + -analytic 6.0731e+003 1.4733e+000 -1.7919e+005 -2.3880e+003 -3.0582e+003 +# -Range: 25-150 + +1.0000 Np++++ + 1.0000 HPO4-- = NpHPO4++ + -llnl_gamma 4.5 + log_k +12.9000 + -delta_H 7.54554 kJ/mol # Calculated enthalpy of reaction NpHPO4+2 +# Enthalpy of formation: -439.899 kcal/mol + -analytic -7.2792e+003 -1.7476e+000 2.1770e+005 2.8624e+003 3.7154e+003 +# -Range: 25-150 + +2.0000 HCO3- + 1.0000 NpO2++ = NpO2(CO3)2-- +2.0000 H+ + -llnl_gamma 4.0 + log_k -6.6576 + -delta_H 57.2588 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)2-2 +# Enthalpy of formation: -521.77 kcal/mol + -analytic 2.6597e+002 7.5850e-002 -9.9987e+003 -1.0576e+002 -1.5610e+002 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 NpO2+ = NpO2(CO3)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -13.6576 + -delta_H 58.1553 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)2-3 +# Enthalpy of formation: -549.642 kcal/mol + -analytic 2.6012e+002 7.3174e-002 -1.0250e+004 -1.0556e+002 -1.6002e+002 +# -Range: 0-300 + +3.0000 HCO3- + 1.0000 NpO2+ = NpO2(CO3)3-5 +3.0000 H+ + -llnl_gamma 4.0 + log_k -22.4864 + -delta_H 70.176 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)3-5 +# Enthalpy of formation: -711.667 kcal/mol + -analytic 3.7433e+002 1.2938e-001 -1.2791e+004 -1.5861e+002 -1.9970e+002 +# -Range: 0-300 + +3.0000 HCO3- + 1.0000 NpO2++ = NpO2(CO3)3---- +3.0000 H+ + -llnl_gamma 4.0 + log_k -10.5864 + -delta_H 3.14711 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)3-4 +# Enthalpy of formation: -699.601 kcal/mol + -analytic 3.7956e+002 1.1163e-001 -1.0607e+004 -1.5674e+002 -1.6562e+002 +# -Range: 0-300 + +1.0000 NpO2+ + 1.0000 HCO3- = NpO2CO3- +1.0000 H+ + -llnl_gamma 4.0 + log_k -5.7288 + -delta_H 69.1634 kJ/mol # Calculated enthalpy of reaction NpO2CO3- +# Enthalpy of formation: -382.113 kcal/mol + -analytic 1.4634e+002 2.6576e-002 -8.2036e+003 -5.3534e+001 -1.2805e+002 +# -Range: 0-300 + +1.0000 NpO2+ + 1.0000 Cl- = NpO2Cl + -llnl_gamma 3.0 + log_k -0.4 + -delta_H 15.4492 kJ/mol # Calculated enthalpy of reaction NpO2Cl +# Enthalpy of formation: -269.986 kcal/mol + -analytic 4.5109e+002 9.0437e-002 -1.5453e+004 -1.7241e+002 -2.6371e+002 +# -Range: 25-150 + +1.0000 NpO2++ + 1.0000 Cl- = NpO2Cl+ + -llnl_gamma 4.0 + log_k -0.2 + -delta_H 11.6239 kJ/mol # Calculated enthalpy of reaction NpO2Cl+ +# Enthalpy of formation: -242.814 kcal/mol + -analytic -1.2276e+003 -2.5435e-001 3.8507e+004 4.7447e+002 6.5715e+002 +# -Range: 25-150 + +1.0000 NpO2+ + 1.0000 F- = NpO2F + -llnl_gamma 3.0 + log_k +1.0000 + -delta_H 34.2521 kJ/mol # Calculated enthalpy of reaction NpO2F +# Enthalpy of formation: -305.709 kcal/mol + -analytic -1.9364e+002 -4.4083e-002 4.5602e+003 7.7791e+001 7.7840e+001 +# -Range: 25-150 + +1.0000 NpO2++ + 1.0000 F- = NpO2F+ + -llnl_gamma 4.0 + log_k +4.6000 + -delta_H 0.883568 kJ/mol # Calculated enthalpy of reaction NpO2F+ +# Enthalpy of formation: -285.598 kcal/mol + -analytic 9.6320e+002 2.4799e-001 -2.7614e+004 -3.7985e+002 -4.7128e+002 +# -Range: 25-150 + +2.0000 F- + 1.0000 NpO2++ = NpO2F2 + -llnl_gamma 3.0 + log_k +7.8000 + -delta_H 2.60319 kJ/mol # Calculated enthalpy of reaction NpO2F2 +# Enthalpy of formation: -365.337 kcal/mol + -analytic 1.9648e+002 6.4083e-002 -4.5601e+003 -7.7790e+001 -7.7840e+001 +# -Range: 25-150 + +1.0000 NpO2+ + 1.0000 HPO4-- + 1.0000 H+ = NpO2H2PO4 + -llnl_gamma 3.0 + log_k +0.6000 + -delta_H 18.717 kJ/mol # Calculated enthalpy of reaction NpO2H2PO4 +# Enthalpy of formation: -538.087 kcal/mol + -analytic 1.0890e+003 2.7738e-001 -3.0654e+004 -4.3171e+002 -5.2317e+002 +# -Range: 25-150 + +1.0000 NpO2++ + 1.0000 HPO4-- + 1.0000 H+ = NpO2H2PO4+ + -llnl_gamma 4.0 + log_k +2.3000 + -delta_H 9.31014 kJ/mol # Calculated enthalpy of reaction NpO2H2PO4+ +# Enthalpy of formation: -512.249 kcal/mol + -analytic -5.6996e+003 -1.4008e+000 1.6898e+005 2.2441e+003 2.8838e+003 +# -Range: 25-150 + +1.0000 NpO2++ + 1.0000 HPO4-- = NpO2HPO4 + -llnl_gamma 3.0 + log_k +8.2000 + -delta_H -6.47609 kJ/mol # Calculated enthalpy of reaction NpO2HPO4 +# Enthalpy of formation: -516.022 kcal/mol + -analytic 4.8515e+003 1.2189e+000 -1.4069e+005 -1.9135e+003 -2.4011e+003 +# -Range: 25-150 + +1.0000 NpO2+ + 1.0000 HPO4-- = NpO2HPO4- + -llnl_gamma 4.0 + log_k +3.5000 + -delta_H 49.8668 kJ/mol # Calculated enthalpy of reaction NpO2HPO4- +# Enthalpy of formation: -530.642 kcal/mol + -analytic -4.1705e+003 -9.9302e-001 1.2287e+005 1.6399e+003 2.0969e+003 +# -Range: 25-150 + +1.0000 NpO2+ + 1.0000 H2O = NpO2OH +1.0000 H+ + -llnl_gamma 3.0 + log_k -8.9 + -delta_H 43.6285 kJ/mol # Calculated enthalpy of reaction NpO2OH +# Enthalpy of formation: -291.635 kcal/mol + -analytic -4.5710e+002 -1.2286e-001 1.0640e+004 1.8151e+002 1.8163e+002 +# -Range: 25-150 + +1.0000 NpO2++ + 1.0000 H2O = NpO2OH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -5.2 + -delta_H 43.3805 kJ/mol # Calculated enthalpy of reaction NpO2OH+ +# Enthalpy of formation: -263.608 kcal/mol + -analytic 1.7485e+002 4.0017e-002 -7.5154e+003 -6.7399e+001 -1.2823e+002 +# -Range: 25-150 + +1.0000 SO4-- + 1.0000 NpO2++ = NpO2SO4 + -llnl_gamma 3.0 + log_k +3.3000 + -delta_H 19.8789 kJ/mol # Calculated enthalpy of reaction NpO2SO4 +# Enthalpy of formation: -418.308 kcal/mol + -analytic -1.5624e+002 7.3296e-003 6.7555e+003 5.4435e+001 1.1527e+002 +# -Range: 25-150 + +1.0000 SO4-- + 1.0000 NpO2+ = NpO2SO4- + -llnl_gamma 4.0 + log_k +0.4000 + -delta_H 19.1395 kJ/mol # Calculated enthalpy of reaction NpO2SO4- +# Enthalpy of formation: -446.571 kcal/mol + -analytic -3.1804e+002 -9.3472e-002 7.6002e+003 1.2965e+002 1.2973e+002 +# -Range: 25-150 + +1.0000 Np+++ + 1.0000 H2O = NpOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -7 + -delta_H 50.1031 kJ/mol # Calculated enthalpy of reaction NpOH+2 +# Enthalpy of formation: -182.322 kcal/mol + -analytic 1.4062e+002 3.2671e-002 -6.7555e+003 -5.4435e+001 -1.1526e+002 +# -Range: 25-150 + +1.0000 Np++++ + 1.0000 H2O = NpOH+++ +1.0000 H+ + -llnl_gamma 5.0 + log_k -1 + -delta_H 51.0089 kJ/mol # Calculated enthalpy of reaction NpOH+3 +# Enthalpy of formation: -189.013 kcal/mol + -analytic -1.8373e+002 -5.2443e-002 2.7025e+003 7.6503e+001 4.6154e+001 +# -Range: 25-150 + +1.0000 SO4-- + 1.0000 Np++++ = NpSO4++ + -llnl_gamma 4.5 + log_k +5.5000 + -delta_H 20.7377 kJ/mol # Calculated enthalpy of reaction NpSO4+2 +# Enthalpy of formation: -345.331 kcal/mol + -analytic 3.9477e+002 1.1981e-001 -1.0978e+004 -1.5687e+002 -1.8736e+002 +# -Range: 25-150 + +1.0000 H2O = OH- +1.0000 H+ + -llnl_gamma 3.5 + log_k -13.9951 + -delta_H 55.8146 kJ/mol # Calculated enthalpy of reaction OH- +# Enthalpy of formation: -54.977 kcal/mol + -analytic -6.7506e+001 -3.0619e-002 -1.9901e+003 2.8004e+001 -3.1033e+001 +# -Range: 0-300 + +2.0000 HPO4-- = P2O7---- +1.0000 H2O + -llnl_gamma 4.0 + log_k -3.7463 + -delta_H 27.2256 kJ/mol # Calculated enthalpy of reaction P2O7-4 +# Enthalpy of formation: -2271.1 kJ/mol + -analytic 4.0885e+002 1.3243e-001 -1.1373e+004 -1.6727e+002 -1.7758e+002 +# -Range: 0-300 + +3.0000 H+ + 1.0000 HPO4-- = PH4+ +2.0000 O2 + -llnl_gamma 4.0 + log_k -212.7409 + -delta_H 0 # Not possible to calculate enthalpy of reaction PH4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- + 1.0000 H+ + 1.0000 F- = PO3F-- +1.0000 H2O + -llnl_gamma 4.0 + log_k +7.1993 + -delta_H 0 # Not possible to calculate enthalpy of reaction PO3F-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 HPO4-- = PO4--- +1.0000 H+ + -llnl_gamma 4.0 + log_k -12.3218 + -delta_H 14.7068 kJ/mol # Calculated enthalpy of reaction PO4-3 +# Enthalpy of formation: -305.3 kcal/mol + -analytic -7.6170e+001 -3.3574e-002 1.3405e+002 2.9658e+001 2.1140e+000 +# -Range: 0-300 + +2.0000 BrO3- + 1.0000 Pb++ = Pb(BrO3)2 + -llnl_gamma 3.0 + log_k +5.1939 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(BrO3)2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Pb++ = Pb(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -6.1133 + -delta_H 10.5437 kJ/mol # Calculated enthalpy of reaction Pb(CH3COO)2 +# Enthalpy of formation: -229.46 kcal/mol + -analytic -1.7315e+001 -1.0618e-003 -3.6365e+003 6.9263e+000 5.8659e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Pb++ = Pb(CH3COO)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -8.972 + -delta_H -2.84512 kJ/mol # Calculated enthalpy of reaction Pb(CH3COO)3- +# Enthalpy of formation: -348.76 kcal/mol + -analytic 1.2417e+001 -3.1481e-003 -9.4152e+003 -1.6846e+000 1.3623e+006 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Pb++ = Pb(CO3)2-- +2.0000 H+ + -llnl_gamma 4.0 + log_k -11.2576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(CO3)2-2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 ClO3- + 1.0000 Pb++ = Pb(ClO3)2 + -llnl_gamma 3.0 + log_k -0.5133 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(ClO3)2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Pb++ = Pb(OH)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -17.0902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 H2O + 1.0000 Pb++ = Pb(OH)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -28.0852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)3- +# Enthalpy of formation: -0 kcal/mol + +2.0000 Thiocyanate- + 1.0000 Pb++ = Pb(Thiocyanate)2 + -llnl_gamma 3.0 + log_k +1.2455 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(Thiocyanate)2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 Pb++ + 1.0000 H2O = Pb2OH+++ +1.0000 H+ + -llnl_gamma 5.0 + log_k -6.3951 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2OH+3 +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 3.0000 Pb++ = Pb3(OH)4++ +4.0000 H+ + -llnl_gamma 4.5 + log_k -23.8803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb3(OH)4+2 +# Enthalpy of formation: -0 kcal/mol + +4.0000 Pb++ + 4.0000 H2O = Pb4(OH)4++++ +4.0000 H+ + -llnl_gamma 5.5 + log_k -20.8803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4(OH)4+4 +# Enthalpy of formation: -0 kcal/mol + +8.0000 H2O + 6.0000 Pb++ = Pb6(OH)8++++ +8.0000 H+ + -llnl_gamma 5.5 + log_k -43.5606 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb6(OH)8+4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pb++ + 1.0000 Br- = PbBr+ + -llnl_gamma 4.0 + log_k +1.1831 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 Br- + 1.0000 Pb++ = PbBr2 + -llnl_gamma 3.0 + log_k +1.5062 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 Br- + 1.0000 Pb++ = PbBr3- + -llnl_gamma 4.0 + log_k +1.2336 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr3- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pb++ + 1.0000 BrO3- = PbBrO3+ + -llnl_gamma 4.0 + log_k +1.9373 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBrO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pb++ + 1.0000 CH3COOH = PbCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.3603 + -delta_H -2.33147e-15 kJ/mol # Calculated enthalpy of reaction PbCH3COO+ +# Enthalpy of formation: -115.88 kcal/mol + -analytic -2.6822e+001 1.0992e-003 7.3688e+002 8.4407e+000 7.0266e+004 +# -Range: 0-300 + +1.0000 Pb++ + 1.0000 HCO3- = PbCO3 +1.0000 H+ + -llnl_gamma 3.0 + log_k -3.7488 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbCO3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pb++ + 1.0000 Cl- = PbCl+ + -llnl_gamma 4.0 + log_k +1.4374 + -delta_H 4.53127 kJ/mol # Calculated enthalpy of reaction PbCl+ +# Enthalpy of formation: -38.63 kcal/mol + -analytic 1.1948e+002 4.3527e-002 -2.7666e+003 -4.9190e+001 -4.3206e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Pb++ = PbCl2 + -llnl_gamma 3.0 + log_k +2.0026 + -delta_H 8.14206 kJ/mol # Calculated enthalpy of reaction PbCl2 +# Enthalpy of formation: -77.7 kcal/mol + -analytic 2.2537e+002 7.7574e-002 -5.5112e+003 -9.2131e+001 -8.6064e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Pb++ = PbCl3- + -llnl_gamma 4.0 + log_k +1.6881 + -delta_H 7.86174 kJ/mol # Calculated enthalpy of reaction PbCl3- +# Enthalpy of formation: -117.7 kcal/mol + -analytic 2.5254e+002 8.9159e-002 -6.0116e+003 -1.0395e+002 -9.3880e+001 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Pb++ = PbCl4-- + -llnl_gamma 4.0 + log_k +1.4909 + -delta_H -7.18811 kJ/mol # Calculated enthalpy of reaction PbCl4-2 +# Enthalpy of formation: -161.23 kcal/mol + -analytic 1.4048e+002 7.6332e-002 -1.1507e+003 -6.3786e+001 -1.7997e+001 +# -Range: 0-300 + +1.0000 Pb++ + 1.0000 ClO3- = PbClO3+ + -llnl_gamma 4.0 + log_k -0.2208 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbClO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pb++ + 1.0000 F- = PbF+ + -llnl_gamma 4.0 + log_k +0.8284 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbF+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 F- + 1.0000 Pb++ = PbF2 + -llnl_gamma 3.0 + log_k +1.6132 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbF2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pb++ + 1.0000 HPO4-- + 1.0000 H+ = PbH2PO4+ + -llnl_gamma 4.0 + log_k +1.5000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbH2PO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pb++ + 1.0000 HPO4-- = PbHPO4 + -llnl_gamma 3.0 + log_k +3.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbHPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pb++ + 1.0000 I- = PbI+ + -llnl_gamma 4.0 + log_k +1.9597 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbI+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 I- + 1.0000 Pb++ = PbI2 + -llnl_gamma 3.0 + log_k +2.7615 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbI2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 I- + 1.0000 Pb++ = PbI3- + -llnl_gamma 4.0 + log_k +3.3355 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbI3- +# Enthalpy of formation: -0 kcal/mol + +4.0000 I- + 1.0000 Pb++ = PbI4-- + -llnl_gamma 4.0 + log_k +4.0672 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbI4-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pb++ + 1.0000 NO3- = PbNO3+ + -llnl_gamma 4.0 + log_k +1.2271 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbNO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pb++ + 1.0000 H2O = PbOH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -7.6951 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbOH+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Pb++ = PbP2O7-- +1.0000 H2O + -llnl_gamma 4.0 + log_k +7.4136 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbP2O7-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Thiocyanate- + 1.0000 Pb++ = PbThiocyanate+ + -llnl_gamma 4.0 + log_k +0.9827 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbThiocyanate+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pd++ + 1.0000 Cl- = PdCl+ + -llnl_gamma 4.0 + log_k +6.0993 + -delta_H -31.995 kJ/mol # Calculated enthalpy of reaction PdCl+ +# Enthalpy of formation: -5.5 kcal/mol + -analytic 7.2852e+001 3.6886e-002 7.3102e+002 -3.2402e+001 1.1385e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Pd++ = PdCl2 + -llnl_gamma 3.0 + log_k +10.7327 + -delta_H -66.1658 kJ/mol # Calculated enthalpy of reaction PdCl2 +# Enthalpy of formation: -53.6 kcal/mol + -analytic 1.6849e+002 7.9321e-002 8.2874e+002 -7.4416e+001 1.2882e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Pd++ = PdCl3- + -llnl_gamma 4.0 + log_k +13.0937 + -delta_H -101.592 kJ/mol # Calculated enthalpy of reaction PdCl3- +# Enthalpy of formation: -102 kcal/mol + -analytic 4.5978e+001 6.2999e-002 6.9333e+003 -3.0257e+001 1.0817e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Pd++ = PdCl4-- + -llnl_gamma 4.0 + log_k +15.1615 + -delta_H -152.08 kJ/mol # Calculated enthalpy of reaction PdCl4-2 +# Enthalpy of formation: -154 kcal/mol + -analytic -3.2209e+001 5.3432e-002 1.2180e+004 -3.7814e+000 1.9006e+002 +# -Range: 0-300 + +1.0000 Pd++ + 1.0000 H2O = PdO +2.0000 H+ + -llnl_gamma 3.0 + log_k -2.19 + -delta_H 6.43081 kJ/mol # Calculated enthalpy of reaction PdO +# Enthalpy of formation: -24.7 kcal/mol + -analytic 1.3587e+002 2.9292e-002 -4.6645e+003 -5.2997e+001 -7.2825e+001 +# -Range: 0-300 + +1.0000 Pd++ + 1.0000 H2O = PdOH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -1.0905 + -delta_H -3.19239 kJ/mol # Calculated enthalpy of reaction PdOH+ +# Enthalpy of formation: -27 kcal/mol + -analytic 1.4291e+001 5.8382e-003 -1.9881e+002 -6.6475e+000 -3.1065e+000 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Pm+++ = Pm(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -7.9576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Pm+++ = Pm(HPO4)2- + -llnl_gamma 4.0 + log_k +9.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Pm+++ = Pm(OH)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -16.7902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)2+ +# Enthalpy of formation: -0 kcal/mol + +3.0000 H2O + 1.0000 Pm+++ = Pm(OH)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -26.1852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Pm+++ = Pm(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.6837 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Pm+++ = Pm(SO4)2- + -llnl_gamma 4.0 + log_k +5.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pm+++ + 1.0000 HCO3- = PmCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.6288 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmCO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pm+++ + 1.0000 Cl- = PmCl++ + -llnl_gamma 4.5 + log_k +0.3400 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmCl+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pm+++ + 1.0000 F- = PmF++ + -llnl_gamma 4.5 + log_k +3.8000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmF+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pm+++ + 1.0000 HPO4-- + 1.0000 H+ = PmH2PO4++ + -llnl_gamma 4.5 + log_k +9.6054 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmH2PO4+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pm+++ + 1.0000 HCO3- = PmHCO3++ + -llnl_gamma 4.5 + log_k +2.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmHCO3+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pm+++ + 1.0000 HPO4-- = PmHPO4+ + -llnl_gamma 4.0 + log_k +5.5000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pm+++ + 1.0000 NO3- = PmNO3++ + -llnl_gamma 4.5 + log_k +1.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmNO3+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pm+++ + 1.0000 H2O = PmOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -7.9951 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmOH+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pm+++ + 1.0000 HPO4-- = PmPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k -0.3718 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Pm+++ = PmSO4+ + -llnl_gamma 4.0 + log_k +3.5000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmSO4+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Pr+++ = Pr(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.8525 + -delta_H -23.8906 kJ/mol # Calculated enthalpy of reaction Pr(CH3COO)2+ +# Enthalpy of formation: -406.71 kcal/mol + -analytic -1.6464e+001 6.2989e-004 -4.4771e+002 3.6947e+000 3.3816e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Pr+++ = Pr(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -8.2023 + -delta_H -40.3756 kJ/mol # Calculated enthalpy of reaction Pr(CH3COO)3 +# Enthalpy of formation: -526.75 kcal/mol + -analytic -1.2007e+001 4.9332e-004 0.0000e+000 0.0000e+000 3.2789e+005 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Pr+++ = Pr(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -8.1076 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Pr+++ = Pr(HPO4)2- + -llnl_gamma 4.0 + log_k +8.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Pr+++ = Pr(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -5.5637 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Pr+++ = Pr(SO4)2- + -llnl_gamma 4.0 + log_k +4.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pr+++ + 1.0000 CH3COOH = PrCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.0451 + -delta_H -12.4683 kJ/mol # Calculated enthalpy of reaction PrAcetate+2 +# Enthalpy of formation: -287.88 kcal/mol + -analytic -8.5624e+000 9.3878e-004 -5.7551e+002 2.2087e+000 2.4126e+005 +# -Range: 0-300 + +1.0000 Pr+++ + 1.0000 HCO3- = PrCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.7722 + -delta_H 92.458 kJ/mol # Calculated enthalpy of reaction PrCO3+ +# Enthalpy of formation: -311.6 kcal/mol + -analytic 2.2079e+002 5.2156e-002 -6.5821e+003 -8.7701e+001 -1.0277e+002 +# -Range: 0-300 + +1.0000 Pr+++ + 1.0000 Cl- = PrCl++ + -llnl_gamma 4.5 + log_k +0.3086 + -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction PrCl+2 +# Enthalpy of formation: -205.3 kcal/mol + -analytic 7.5152e+001 3.7446e-002 -1.6661e+003 -3.2490e+001 -2.6020e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Pr+++ = PrCl2+ + -llnl_gamma 4.0 + log_k +0.0308 + -delta_H 20.3593 kJ/mol # Calculated enthalpy of reaction PrCl2+ +# Enthalpy of formation: -243.8 kcal/mol + -analytic 2.2848e+002 8.1250e-002 -6.0401e+003 -9.3909e+001 -9.4318e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Pr+++ = PrCl3 + -llnl_gamma 3.0 + log_k -0.3203 + -delta_H 14.2214 kJ/mol # Calculated enthalpy of reaction PrCl3 +# Enthalpy of formation: -285.2 kcal/mol + -analytic 4.5016e+002 1.3095e-001 -1.2588e+004 -1.8075e+002 -1.9656e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Pr+++ = PrCl4- + -llnl_gamma 4.0 + log_k -0.7447 + -delta_H -4.05011 kJ/mol # Calculated enthalpy of reaction PrCl4- +# Enthalpy of formation: -329.5 kcal/mol + -analytic 5.4245e+002 1.3647e-001 -1.5564e+004 -2.1485e+002 -2.4302e+002 +# -Range: 0-300 + +1.0000 Pr+++ + 1.0000 F- = PrF++ + -llnl_gamma 4.5 + log_k +4.2221 + -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction PrF+2 +# Enthalpy of formation: -243.4 kcal/mol + -analytic 9.5146e+001 4.1115e-002 -2.5463e+003 -3.8236e+001 -3.9760e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Pr+++ = PrF2+ + -llnl_gamma 4.0 + log_k +7.3447 + -delta_H 14.644 kJ/mol # Calculated enthalpy of reaction PrF2+ +# Enthalpy of formation: -325.6 kcal/mol + -analytic 2.4997e+002 8.5251e-002 -6.1908e+003 -9.9912e+001 -9.6675e+001 +# -Range: 0-300 + +3.0000 F- + 1.0000 Pr+++ = PrF3 + -llnl_gamma 3.0 + log_k +9.6610 + -delta_H -6.4852 kJ/mol # Calculated enthalpy of reaction PrF3 +# Enthalpy of formation: -410.8 kcal/mol + -analytic 4.7885e+002 1.3764e-001 -1.2080e+004 -1.8980e+002 -1.8864e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 Pr+++ = PrF4- + -llnl_gamma 4.0 + log_k +11.5375 + -delta_H -47.2792 kJ/mol # Calculated enthalpy of reaction PrF4- +# Enthalpy of formation: -500.7 kcal/mol + -analytic 5.5774e+002 1.4067e-001 -1.3523e+004 -2.1933e+002 -2.1118e+002 +# -Range: 0-300 + +1.0000 Pr+++ + 1.0000 HPO4-- + 1.0000 H+ = PrH2PO4++ + -llnl_gamma 4.5 + log_k +9.5950 + -delta_H -16.2548 kJ/mol # Calculated enthalpy of reaction PrH2PO4+2 +# Enthalpy of formation: -481.5 kcal/mol + -analytic 1.0501e+002 6.3059e-002 3.8161e+002 -4.6656e+001 5.9234e+000 +# -Range: 0-300 + +1.0000 Pr+++ + 1.0000 HCO3- = PrHCO3++ + -llnl_gamma 4.5 + log_k +1.9190 + -delta_H -12.9788 kJ/mol # Calculated enthalpy of reaction PrHCO3+2 +# Enthalpy of formation: -336.8 kcal/mol + -analytic 2.2010e+001 2.8541e-002 1.4574e+003 -1.3522e+001 2.2734e+001 +# -Range: 0-300 + +1.0000 Pr+++ + 1.0000 HPO4-- = PrHPO4+ + -llnl_gamma 4.0 + log_k +5.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PrHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pr+++ + 1.0000 NO3- = PrNO3++ + -llnl_gamma 4.5 + log_k +0.6546 + -delta_H -27.9115 kJ/mol # Calculated enthalpy of reaction PrNO3+2 +# Enthalpy of formation: -224.9 kcal/mol + -analytic 1.4297e+001 2.5214e-002 2.1756e+003 -1.1490e+001 3.3943e+001 +# -Range: 0-300 + +1.0000 Pr+++ + 1.0000 H2O = PrO+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -17.29 + -delta_H 117.642 kJ/mol # Calculated enthalpy of reaction PrO+ +# Enthalpy of formation: -209 kcal/mol + -analytic 1.7927e+002 2.9467e-002 -1.3815e+004 -6.4259e+001 -2.1562e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Pr+++ = PrO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -37.5852 + -delta_H 301.39 kJ/mol # Calculated enthalpy of reaction PrO2- +# Enthalpy of formation: -233.4 kcal/mol + -analytic -4.4480e+001 -1.6327e-002 -7.9031e+003 1.9348e+001 -8.5440e+005 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Pr+++ = PrO2H +3.0000 H+ + -llnl_gamma 3.0 + log_k -26.5901 + -delta_H 231.517 kJ/mol # Calculated enthalpy of reaction PrO2H +# Enthalpy of formation: -250.1 kcal/mol + -analytic 3.3930e+002 4.4894e-002 -2.3769e+004 -1.2106e+002 -3.7099e+002 +# -Range: 0-300 + +1.0000 Pr+++ + 1.0000 H2O = PrOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -8.274 + -delta_H 81.2407 kJ/mol # Calculated enthalpy of reaction PrOH+2 +# Enthalpy of formation: -217.7 kcal/mol + -analytic 5.6599e+001 1.1073e-002 -5.9197e+003 -1.9525e+001 -9.2388e+001 +# -Range: 0-300 + +1.0000 Pr+++ + 1.0000 HPO4-- = PrPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k -0.7218 + -delta_H 0 # Not possible to calculate enthalpy of reaction PrPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Pr+++ = PrSO4+ + -llnl_gamma 4.0 + log_k -3.687 + -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction PrSO4+ +# Enthalpy of formation: -381.5 kcal/mol + -analytic 2.9156e+002 8.4671e-002 -1.0638e+004 -1.1509e+002 -1.6608e+002 +# -Range: 0-300 + +2.0000 HPO4-- + 1.0000 Pu++++ = Pu(HPO4)2 + -llnl_gamma 3.0 + log_k +23.8483 + -delta_H 25.9279 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)2 +# Enthalpy of formation: -3094.13 kJ/mol + -analytic 9.2387e+002 3.2577e-001 -2.0881e+004 -3.7466e+002 -3.5492e+002 +# -Range: 0-200 + +3.0000 HPO4-- + 1.0000 Pu++++ = Pu(HPO4)3-- + -llnl_gamma 4.0 + log_k +33.4599 + -delta_H -6.49412 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)3-2 +# Enthalpy of formation: -4418.63 kJ/mol + -analytic 6.4515e+002 2.3011e-001 -1.2752e+004 -2.5761e+002 -1.9917e+002 +# -Range: 0-300 + +4.0000 HPO4-- + 1.0000 Pu++++ = Pu(HPO4)4---- + -llnl_gamma 4.0 + log_k +43.2467 + -delta_H -77.4832 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)4-4 +# Enthalpy of formation: -5781.7 kJ/mol + -analytic 8.5301e+002 3.0730e-001 -1.3644e+004 -3.4573e+002 -2.1316e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Pu++++ = Pu(OH)2++ +2.0000 H+ + -llnl_gamma 4.5 + log_k -2.3235 + -delta_H 74.3477 kJ/mol # Calculated enthalpy of reaction Pu(OH)2+2 +# Enthalpy of formation: -1033.22 kJ/mol + -analytic 7.5979e+001 6.8394e-003 -6.3710e+003 -2.3833e+001 -9.9435e+001 +# -Range: 0-300 + +3.0000 H2O + 1.0000 Pu++++ = Pu(OH)3+ +3.0000 H+ + -llnl_gamma 4.0 + log_k -5.281 + -delta_H 96.578 kJ/mol # Calculated enthalpy of reaction Pu(OH)3+ +# Enthalpy of formation: -1296.83 kJ/mol + -analytic 1.0874e+002 1.4199e-002 -8.4954e+003 -3.6278e+001 -1.3259e+002 +# -Range: 0-300 + +4.0000 H2O + 1.0000 Pu++++ = Pu(OH)4 +4.0000 H+ + -llnl_gamma 3.0 + log_k -9.5174 + -delta_H 109.113 kJ/mol # Calculated enthalpy of reaction Pu(OH)4 +# Enthalpy of formation: -1570.13 kJ/mol + -analytic 2.7913e+002 1.0252e-001 -1.1289e+004 -1.1369e+002 -1.9181e+002 +# -Range: 0-200 + +2.0000 SO4-- + 1.0000 Pu++++ = Pu(SO4)2 + -llnl_gamma 3.0 + log_k +10.2456 + -delta_H 41.0122 kJ/mol # Calculated enthalpy of reaction Pu(SO4)2 +# Enthalpy of formation: -2314.08 kJ/mol + -analytic 5.3705e+002 1.9308e-001 -1.3213e+004 -2.1824e+002 -2.2457e+002 +# -Range: 0-200 + +2.0000 SO4-- + 1.0000 Pu+++ = Pu(SO4)2- + -llnl_gamma 4.0 + log_k +6.3200 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pu(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pu++++ + 1.0000 F- = PuF+++ + -llnl_gamma 5.0 + log_k +8.4600 + -delta_H 0 # Not possible to calculate enthalpy of reaction PuF+3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 F- + 1.0000 Pu++++ = PuF2++ + -llnl_gamma 4.5 + log_k +15.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PuF2+2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 F- + 1.0000 Pu++++ = PuF3+ + -llnl_gamma 4.0 + log_k +5.3000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PuF3+ +# Enthalpy of formation: -0 kcal/mol + +4.0000 F- + 1.0000 Pu++++ = PuF4 + -llnl_gamma 3.0 + log_k +4.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PuF4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Pu+++ + 1.0000 HPO4-- + 1.0000 H+ = PuH2PO4++ + -llnl_gamma 4.5 + log_k +9.6817 + -delta_H 28.597 kJ/mol # Calculated enthalpy of reaction PuH2PO4+2 +# Enthalpy of formation: -1855.04 kJ/mol + -analytic 2.1595e+002 6.4502e-002 -6.4723e+003 -8.2341e+001 -1.0106e+002 +# -Range: 0-300 + +1.0000 Pu++++ + 1.0000 HPO4-- = PuHPO4++ + -llnl_gamma 4.5 + log_k +13.0103 + -delta_H 40.306 kJ/mol # Calculated enthalpy of reaction PuHPO4+2 +# Enthalpy of formation: -1787.67 kJ/mol + -analytic 2.2662e+002 7.1073e-002 -6.9134e+003 -8.5504e+001 -1.0794e+002 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 PuO2++ = PuO2(CO3)2-- +2.0000 H+ + -llnl_gamma 4.0 + log_k -5.7428 + -delta_H 52.3345 kJ/mol # Calculated enthalpy of reaction PuO2(CO3)2-2 +# Enthalpy of formation: -2149.11 kJ/mol + -analytic 2.6589e+002 7.6132e-002 -9.7187e+003 -1.0577e+002 -1.5173e+002 +# -Range: 0-300 + +1.0000 PuO2++ + 1.0000 Cl- = PuO2Cl+ + -llnl_gamma 4.0 + log_k -0.2084 + -delta_H 11.6127 kJ/mol # Calculated enthalpy of reaction PuO2Cl+ +# Enthalpy of formation: -977.045 kJ/mol + -analytic 9.8385e+001 3.8617e-002 -2.5210e+003 -4.1075e+001 -3.9367e+001 +# -Range: 0-300 + +1.0000 PuO2++ + 1.0000 F- = PuO2F+ + -llnl_gamma 4.0 + log_k +5.6674 + -delta_H -5.2094 kJ/mol # Calculated enthalpy of reaction PuO2F+ +# Enthalpy of formation: -1162.13 kJ/mol + -analytic 1.1412e+002 4.1224e-002 -2.0503e+003 -4.6009e+001 -3.2027e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 PuO2++ = PuO2F2 + -llnl_gamma 3.0 + log_k +10.9669 + -delta_H -15.4738 kJ/mol # Calculated enthalpy of reaction PuO2F2 +# Enthalpy of formation: -1507.75 kJ/mol + -analytic 2.5502e+002 9.1597e-002 -4.4557e+003 -1.0362e+002 -7.5752e+001 +# -Range: 0-200 + +3.0000 F- + 1.0000 PuO2++ = PuO2F3- + -llnl_gamma 4.0 + log_k +15.9160 + -delta_H -29.4032 kJ/mol # Calculated enthalpy of reaction PuO2F3- +# Enthalpy of formation: -1857.02 kJ/mol + -analytic 3.6102e+002 8.6364e-002 -8.7129e+003 -1.3805e+002 -1.3606e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 PuO2++ = PuO2F4-- + -llnl_gamma 4.0 + log_k +18.7628 + -delta_H -39.9786 kJ/mol # Calculated enthalpy of reaction PuO2F4-2 +# Enthalpy of formation: -2202.95 kJ/mol + -analytic 4.6913e+002 1.3649e-001 -9.8336e+003 -1.8510e+002 -1.5358e+002 +# -Range: 0-300 + +1.0000 PuO2++ + 1.0000 HPO4-- + 1.0000 H+ = PuO2H2PO4+ + -llnl_gamma 4.0 + log_k +11.2059 + -delta_H -6.63904 kJ/mol # Calculated enthalpy of reaction PuO2H2PO4+ +# Enthalpy of formation: -2120.3 kJ/mol + -analytic 2.1053e+002 6.8671e-002 -4.3390e+003 -8.2930e+001 -6.7768e+001 +# -Range: 0-300 + +1.0000 PuO2+ + 1.0000 H2O = PuO2OH +1.0000 H+ + -llnl_gamma 3.0 + log_k -9.6674 + -delta_H 69.1763 kJ/mol # Calculated enthalpy of reaction PuO2OH +# Enthalpy of formation: -1130.85 kJ/mol + -analytic 7.1080e+001 2.6141e-002 -5.0337e+003 -2.8956e+001 -8.5504e+001 +# -Range: 0-200 + +1.0000 PuO2++ + 1.0000 H2O = PuO2OH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -5.6379 + -delta_H 45.2823 kJ/mol # Calculated enthalpy of reaction PuO2OH+ +# Enthalpy of formation: -1062.13 kJ/mol + -analytic -3.9012e+000 1.1645e-003 -1.1299e+003 1.3419e+000 -1.4364e+005 +# -Range: 0-300 + +1.0000 SO4-- + 1.0000 PuO2++ = PuO2SO4 + -llnl_gamma 3.0 + log_k +3.2658 + -delta_H 20.0746 kJ/mol # Calculated enthalpy of reaction PuO2SO4 +# Enthalpy of formation: -1711.11 kJ/mol + -analytic 2.0363e+002 7.3903e-002 -5.1940e+003 -8.2833e+001 -8.8273e+001 +# -Range: 0-200 + +1.0000 Pu+++ + 1.0000 H2O = PuOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -7.968 + -delta_H 53.5143 kJ/mol # Calculated enthalpy of reaction PuOH+2 +# Enthalpy of formation: -823.876 kJ/mol + -analytic 3.0065e+000 3.0278e-003 -1.9675e+003 -1.6100e+000 -1.1524e+005 +# -Range: 0-300 + +1.0000 Pu++++ + 1.0000 H2O = PuOH+++ +1.0000 H+ + -llnl_gamma 5.0 + log_k -0.5048 + -delta_H 48.1823 kJ/mol # Calculated enthalpy of reaction PuOH+3 +# Enthalpy of formation: -773.549 kJ/mol + -analytic 4.1056e+001 1.1119e-003 -3.9252e+003 -1.1609e+001 -6.1260e+001 +# -Range: 0-300 + +1.0000 SO4-- + 1.0000 Pu+++ = PuSO4+ + -llnl_gamma 4.0 + log_k +3.4935 + -delta_H 14.6006 kJ/mol # Calculated enthalpy of reaction PuSO4+ +# Enthalpy of formation: -1486.55 kJ/mol + -analytic 1.9194e+002 7.7154e-002 -4.2751e+003 -7.9646e+001 -6.6765e+001 +# -Range: 0-300 + +1.0000 SO4-- + 1.0000 Pu++++ = PuSO4++ + -llnl_gamma 4.5 + log_k +5.7710 + -delta_H 12.3336 kJ/mol # Calculated enthalpy of reaction PuSO4+2 +# Enthalpy of formation: -1433.16 kJ/mol + -analytic 1.9418e+002 7.5477e-002 -4.2767e+003 -7.9425e+001 -6.6792e+001 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Ra++ = Ra(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -7.9018 + -delta_H 21.0874 kJ/mol # Calculated enthalpy of reaction Ra(CH3COO)2 +# Enthalpy of formation: -353.26 kcal/mol + -analytic 2.2767e+001 3.1254e-003 -6.4558e+003 -7.2253e+000 7.0689e+005 +# -Range: 0-300 + +1.0000 Ra++ + 1.0000 CH3COOH = RaCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -3.709 + -delta_H 11.7989 kJ/mol # Calculated enthalpy of reaction RaCH3COO+ +# Enthalpy of formation: -239.38 kcal/mol + -analytic -1.8268e+001 2.9956e-003 1.9313e+001 5.2767e+000 4.9771e+004 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Rb+ = Rb(CH3COO)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -9.7636 + -delta_H -1.12968 kJ/mol # Calculated enthalpy of reaction Rb(CH3COO)2- +# Enthalpy of formation: -292.49 kcal/mol + -analytic -1.9198e+002 -4.2101e-002 5.5792e+003 7.1152e+001 8.7114e+001 +# -Range: 0-300 + +1.0000 Rb+ + 1.0000 Br- = RbBr + -llnl_gamma 3.0 + log_k -1.2168 + -delta_H 13.9327 kJ/mol # Calculated enthalpy of reaction RbBr +# Enthalpy of formation: -85.73 kcal/mol + -analytic 1.2054e+002 3.3825e-002 -3.9500e+003 -4.7920e+001 -6.1671e+001 +# -Range: 0-300 + +1.0000 Rb+ + 1.0000 CH3COOH = RbCH3COO +1.0000 H+ + -llnl_gamma 3.0 + log_k -4.7279 + -delta_H 4.89528 kJ/mol # Calculated enthalpy of reaction RbCH3COO +# Enthalpy of formation: -174.95 kcal/mol + -analytic 1.5661e+001 -2.4230e-003 -2.5280e+003 -5.4433e+000 2.0344e+005 +# -Range: 0-300 + +1.0000 Rb+ + 1.0000 Cl- = RbCl + -llnl_gamma 3.0 + log_k -0.9595 + -delta_H 13.1922 kJ/mol # Calculated enthalpy of reaction RbCl +# Enthalpy of formation: -96.8 kcal/mol + -analytic 1.2689e+002 3.5557e-002 -4.0822e+003 -5.0412e+001 -6.3736e+001 +# -Range: 0-300 + +1.0000 Rb+ + 1.0000 F- = RbF + -llnl_gamma 3.0 + log_k +0.9602 + -delta_H 1.92464 kJ/mol # Calculated enthalpy of reaction RbF +# Enthalpy of formation: -139.71 kcal/mol + -analytic 1.3893e+002 3.8188e-002 -3.8677e+003 -5.5109e+001 -6.0393e+001 +# -Range: 0-300 + +1.0000 Rb+ + 1.0000 I- = RbI + -llnl_gamma 3.0 + log_k -0.8136 + -delta_H 7.1128 kJ/mol # Calculated enthalpy of reaction RbI +# Enthalpy of formation: -71.92 kcal/mol + -analytic 1.1486e+002 3.3121e-002 -3.4217e+003 -4.6096e+001 -5.3426e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Ru+++ = Ru(Cl)2+ + -llnl_gamma 4.0 + log_k +3.7527 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(Cl)2+ +# Enthalpy of formation: -0 kcal/mol + +3.0000 Cl- + 1.0000 Ru+++ = Ru(Cl)3 + -llnl_gamma 3.0 + log_k +4.2976 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(Cl)3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Ru+++ = Ru(OH)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -3.5148 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Ru(OH)2++ + 1.0000 Cl- = Ru(OH)2Cl+ + -llnl_gamma 4.0 + log_k +1.3858 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 Cl- + 1.0000 Ru(OH)2++ = Ru(OH)2Cl2 + -llnl_gamma 3.0 + log_k +1.8081 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 Cl- + 1.0000 Ru(OH)2++ = Ru(OH)2Cl3- + -llnl_gamma 4.0 + log_k +1.6172 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl3- +# Enthalpy of formation: -0 kcal/mol + +4.0000 Cl- + 1.0000 Ru(OH)2++ = Ru(OH)2Cl4-- + -llnl_gamma 4.0 + log_k +2.7052 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl4-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Ru(OH)2++ = Ru(OH)2SO4 + -llnl_gamma 3.0 + log_k +1.7941 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2SO4 +# Enthalpy of formation: -0 kcal/mol + +#3.0000 H2O + 1.0000 Ru++ + 0.5000 O2 = Ru(OH)4 +2.0000 H+ +# Ru(OH)2++ +1.0000 H2O +0.5000 O2 = 4.0000 H+ + 1.0000 RuO4-- log_k -25.2470 +# 4.0000 H+ + 1.0000 RuO4-- = Ru++ +2.0000 H2O +1.0000 O2 log_k +0.1610 +#1 + 2 + 3 +2H2O + Ru(OH)2++ = Ru(OH)4 + 2H+ + -llnl_gamma 3.0 +# log_k +18.0322 + log_k -7.0538 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)4 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Ru+++ = Ru(SO4)2- + -llnl_gamma 4.0 + log_k +3.0627 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +4.0000 Ru(OH)2++ + 4.0000 H2O = Ru4(OH)12++++ +4.0000 H+ + -llnl_gamma 5.5 + log_k +7.1960 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru4(OH)12+4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Ru++ + 1.0000 Cl- = RuCl+ + -llnl_gamma 4.0 + log_k -0.4887 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Ru+++ + 1.0000 Cl- = RuCl++ + -llnl_gamma 4.5 + log_k +2.1742 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl+2 +# Enthalpy of formation: -0 kcal/mol + +4.0000 Cl- + 1.0000 Ru+++ = RuCl4- + -llnl_gamma 4.0 + log_k +4.1418 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl4- +# Enthalpy of formation: -0 kcal/mol + +5.0000 Cl- + 1.0000 Ru+++ = RuCl5-- + -llnl_gamma 4.0 + log_k +3.8457 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl5-2 +# Enthalpy of formation: -0 kcal/mol + +6.0000 Cl- + 1.0000 Ru+++ = RuCl6--- + -llnl_gamma 4.0 + log_k +3.4446 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl6-3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Ru+++ + 1.0000 H2O = RuOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.2392 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuOH+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Ru++ = RuSO4 + -llnl_gamma 3.0 + log_k +2.3547 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuSO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 SO4-- + 1.0000 Ru+++ = RuSO4+ + -llnl_gamma 4.0 + log_k +1.9518 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuSO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 HS- = S-- +1.0000 H+ + -llnl_gamma 5.0 + log_k -12.9351 + -delta_H 49.0364 kJ/mol # Calculated enthalpy of reaction S-2 +# Enthalpy of formation: 32.928 kJ/mol + -analytic 9.7756e+001 3.2913e-002 -5.0784e+003 -4.1812e+001 -7.9273e+001 +# -Range: 0-300 + +2.0000 H+ + 2.0000 SO3-- = S2O5-- + H2O + -llnl_gamma 4.0 + log_k 9.5934 + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O5-2 +# Enthalpy of formation: -0 kcal/mol + -analytic 0.12262E+03 0.62883E-01 -0.18005E+04 -0.50798E+02 -0.28132E+02 +# -Range: 0-300 + +2.0000 H+ + 1.0000 SO3-- = SO2 +1.0000 H2O + -llnl_gamma 3.0 + log_k +9.0656 + -delta_H 26.7316 kJ/mol # Calculated enthalpy of reaction SO2 +# Enthalpy of formation: -77.194 kcal/mol + -analytic 9.4048e+001 6.2127e-002 -1.1072e+003 -4.0310e+001 -1.7305e+001 +# -Range: 0-300 + +1.0000 Sb(OH)3 + 1.0000 H+ = Sb(OH)2+ +1.0000 H2O + -llnl_gamma 4.0 + log_k +1.4900 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)2+ +# Enthalpy of formation: -0 kcal/mol + + -analytic -4.9192e+000 -1.6439e-004 1.4777e+003 6.0724e-001 2.3059e+001 +# -Range: 0-300 + +1.0000 Sb(OH)3 + 1.0000 H+ + 1.0000 F- = Sb(OH)2F +1.0000 H2O + -llnl_gamma 3.0 + log_k +7.1700 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)2F +# Enthalpy of formation: -0 kcal/mol + + -analytic -1.6961e+002 5.7364e-002 2.7207e+004 3.7969e+001 -2.2834e+006 +# -Range: 0-300 + +1.0000 Sb(OH)3 + 1.0000 H2O = Sb(OH)4- +1.0000 H+ + -llnl_gamma 4.0 + log_k -11.92 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)4- +# Enthalpy of formation: -0 kcal/mol + + -analytic 4.9839e+001 -6.7112e-003 -4.8976e+003 -1.7138e+001 -8.3725e+004 +# -Range: 0-300 + +4.0000 HS- + 2.0000 Sb(OH)3 + 2.0000 H+ = Sb2S4-- +6.0000 H2O + -llnl_gamma 4.0 + log_k +39.1100 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb2S4-2 +# Enthalpy of formation: -0 kcal/mol + + -analytic 1.7631e+002 8.3686e-002 9.7091e+003 -7.8605e+001 1.5145e+002 +# -Range: 0-300 + +4.0000 Cl- + 3.0000 H+ + 1.0000 Sb(OH)3 = SbCl4- +3.0000 H2O + -llnl_gamma 4.0 + log_k +3.0720 + -delta_H 0 # Not possible to calculate enthalpy of reaction SbCl4- +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Sc+++ = Sc(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -3.7237 + -delta_H -43.1789 kJ/mol # Calculated enthalpy of reaction Sc(CH3COO)2+ +# Enthalpy of formation: -389.32 kcal/mol + -analytic -4.1862e+001 -3.9443e-005 2.1444e+002 1.2616e+001 5.5442e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Sc+++ = Sc(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -6.6777 + -delta_H -70.0402 kJ/mol # Calculated enthalpy of reaction Sc(CH3COO)3 +# Enthalpy of formation: -511.84 kcal/mol + -analytic -5.2525e+001 1.6181e-003 7.5022e+002 1.3988e+001 7.3540e+005 +# -Range: 0-300 + +1.0000 Sc+++ + 1.0000 CH3COOH = ScCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -1.4294 + -delta_H -21.7568 kJ/mol # Calculated enthalpy of reaction ScCH3COO+2 +# Enthalpy of formation: -268.1 kcal/mol + -analytic -2.3400e+001 1.3144e-004 1.1125e+002 7.3527e+000 3.0025e+005 +# -Range: 0-300 + +6.0000 F- + 4.0000 H+ + 1.0000 SiO2 = SiF6-- +2.0000 H2O + -llnl_gamma 4.0 + log_k +26.2749 + -delta_H -70.9565 kJ/mol # Calculated enthalpy of reaction SiF6-2 +# Enthalpy of formation: -571 kcal/mol + -analytic 2.3209e+002 1.0685e-001 5.8428e+002 -9.6798e+001 9.0486e+000 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Sm+++ = Sm(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.7132 + -delta_H -25.5224 kJ/mol # Calculated enthalpy of reaction Sm(CH3COO)2+ +# Enthalpy of formation: -403.5 kcal/mol + -analytic -1.4192e+001 2.1732e-003 -1.0267e+003 2.9516e+000 4.4389e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Sm+++ = Sm(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -7.8798 + -delta_H -43.5554 kJ/mol # Calculated enthalpy of reaction Sm(CH3COO)3 +# Enthalpy of formation: -523.91 kcal/mol + -analytic -2.0765e+001 1.1047e-003 -5.1181e+002 3.4797e+000 5.0618e+005 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Sm+++ = Sm(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -7.8576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Sm+++ = Sm(HPO4)2- + -llnl_gamma 4.0 + log_k +9.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +# Redundant with SmO2- +#4.0000 H2O + 1.0000 Sm+++ = Sm(OH)4- +4.0000 H+ +# -llnl_gamma 4.0 +# log_k -36.8803 +# -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)4- +## Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Sm+++ = Sm(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.2437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Sm+++ = Sm(SO4)2- + -llnl_gamma 4.0 + log_k +5.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Sm+++ + 1.0000 CH3COOH = SmCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -1.9205 + -delta_H -13.598 kJ/mol # Calculated enthalpy of reaction SmCH3COO+2 +# Enthalpy of formation: -284.55 kcal/mol + -analytic -1.1734e+001 1.0889e-003 -5.1061e+002 3.3317e+000 2.6395e+005 +# -Range: 0-300 + +1.0000 Sm+++ + 1.0000 HCO3- = SmCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.479 + -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction SmCO3+ +# Enthalpy of formation: -308.8 kcal/mol + -analytic 2.3486e+002 5.3703e-002 -7.0193e+003 -9.2863e+001 -1.0960e+002 +# -Range: 0-300 + +1.0000 Sm+++ + 1.0000 Cl- = SmCl++ + -llnl_gamma 4.5 + log_k +0.3086 + -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction SmCl+2 +# Enthalpy of formation: -201.7 kcal/mol + -analytic 9.4972e+001 3.9428e-002 -2.4198e+003 -3.9718e+001 -3.7787e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Sm+++ = SmCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 19.9409 kJ/mol # Calculated enthalpy of reaction SmCl2+ +# Enthalpy of formation: -240.3 kcal/mol + -analytic 2.5872e+002 8.4154e-002 -7.2061e+003 -1.0493e+002 -1.1252e+002 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Sm+++ = SmCl3 + -llnl_gamma 3.0 + log_k -0.3936 + -delta_H 13.803 kJ/mol # Calculated enthalpy of reaction SmCl3 +# Enthalpy of formation: -281.7 kcal/mol + -analytic 4.9535e+002 1.3520e-001 -1.4325e+004 -1.9720e+002 -2.2367e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Sm+++ = SmCl4- + -llnl_gamma 4.0 + log_k -0.818 + -delta_H -5.30531 kJ/mol # Calculated enthalpy of reaction SmCl4- +# Enthalpy of formation: -326.2 kcal/mol + -analytic 6.0562e+002 1.4212e-001 -1.7982e+004 -2.3782e+002 -2.8077e+002 +# -Range: 0-300 + +1.0000 Sm+++ + 1.0000 F- = SmF++ + -llnl_gamma 4.5 + log_k +4.3687 + -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction SmF+2 +# Enthalpy of formation: -239.9 kcal/mol + -analytic 1.1514e+002 4.3117e-002 -3.2853e+003 -4.5499e+001 -5.1297e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Sm+++ = SmF2+ + -llnl_gamma 4.0 + log_k +7.6379 + -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction SmF2+ +# Enthalpy of formation: -322.2 kcal/mol + -analytic 2.8030e+002 8.8143e-002 -7.2857e+003 -1.1092e+002 -1.1377e+002 +# -Range: 0-300 + +3.0000 F- + 1.0000 Sm+++ = SmF3 + -llnl_gamma 3.0 + log_k +10.0275 + -delta_H -8.5772 kJ/mol # Calculated enthalpy of reaction SmF3 +# Enthalpy of formation: -407.7 kcal/mol + -analytic 5.2425e+002 1.4191e-001 -1.3728e+004 -2.0628e+002 -2.1436e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 Sm+++ = SmF4- + -llnl_gamma 4.0 + log_k +11.9773 + -delta_H -49.7896 kJ/mol # Calculated enthalpy of reaction SmF4- +# Enthalpy of formation: -497.7 kcal/mol + -analytic 6.2228e+002 1.4659e-001 -1.5887e+004 -2.4275e+002 -2.4809e+002 +# -Range: 0-300 + +1.0000 Sm+++ + 1.0000 HPO4-- + 1.0000 H+ = SmH2PO4++ + -llnl_gamma 4.5 + log_k +9.4484 + -delta_H -15.8364 kJ/mol # Calculated enthalpy of reaction SmH2PO4+2 +# Enthalpy of formation: -477.8 kcal/mol + -analytic 1.2451e+002 6.4959e-002 -3.9576e+002 -5.3772e+001 -6.2124e+000 +# -Range: 0-300 + +1.0000 Sm+++ + 1.0000 HCO3- = SmHCO3++ + -llnl_gamma 4.5 + log_k +1.7724 + -delta_H 9.19643 kJ/mol # Calculated enthalpy of reaction SmHCO3+2 +# Enthalpy of formation: -327.9 kcal/mol + -analytic 5.5520e+001 3.3265e-002 -7.3142e+002 -2.4727e+001 -1.1430e+001 +# -Range: 0-300 + +1.0000 Sm+++ + 1.0000 HPO4-- = SmHPO4+ + -llnl_gamma 4.0 + log_k +5.6000 + -delta_H 0 # Not possible to calculate enthalpy of reaction SmHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Sm+++ + 1.0000 NO3- = SmNO3++ + -llnl_gamma 4.5 + log_k +0.8012 + -delta_H -29.1667 kJ/mol # Calculated enthalpy of reaction SmNO3+2 +# Enthalpy of formation: -221.6 kcal/mol + -analytic 3.3782e+001 2.7125e-002 1.5091e+003 -1.8632e+001 2.3537e+001 +# -Range: 0-300 + +1.0000 Sm+++ + 1.0000 H2O = SmO+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -16.4837 + -delta_H 113.039 kJ/mol # Calculated enthalpy of reaction SmO+ +# Enthalpy of formation: -206.5 kcal/mol + -analytic 1.8554e+002 3.0198e-002 -1.3791e+004 -6.6588e+001 -2.1526e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Sm+++ = SmO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -35.0197 + -delta_H 285.909 kJ/mol # Calculated enthalpy of reaction SmO2- +# Enthalpy of formation: -233.5 kcal/mol + -analytic 1.3508e+001 -8.3384e-003 -1.0325e+004 -1.5506e+000 -6.7392e+005 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Sm+++ = SmO2H +3.0000 H+ + -llnl_gamma 3.0 + log_k -25.9304 + -delta_H 226.497 kJ/mol # Calculated enthalpy of reaction SmO2H +# Enthalpy of formation: -247.7 kcal/mol + -analytic 3.6882e+002 5.3761e-002 -2.4317e+004 -1.3305e+002 -3.7956e+002 +# -Range: 0-300 + +1.0000 Sm+++ + 1.0000 H2O = SmOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -7.9808 + -delta_H 79.1487 kJ/mol # Calculated enthalpy of reaction SmOH+2 +# Enthalpy of formation: -214.6 kcal/mol + -analytic 6.3793e+001 1.1977e-002 -6.0852e+003 -2.2198e+001 -9.4972e+001 +# -Range: 0-300 + +1.0000 Sm+++ + 1.0000 HPO4-- = SmPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k -0.2218 + -delta_H 0 # Not possible to calculate enthalpy of reaction SmPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Sm+++ + 1.0000 SO4-- = SmSO4+ + -llnl_gamma 4.0 + log_k +3.6430 + -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction SmSO4+ +# Enthalpy of formation: -377.8 kcal/mol + -analytic 3.0597e+002 8.6258e-002 -9.0231e+003 -1.2032e+002 -1.4089e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Sn++ = Sn(OH)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -7.9102 + -delta_H 42.0534 kJ/mol # Calculated enthalpy of reaction Sn(OH)2 +# Enthalpy of formation: -128.683 kcal/mol + -analytic -3.7979e+001 -1.0893e-002 -1.2048e+003 1.5100e+001 -2.0445e+001 +# -Range: 0-200 + +2.0000 H2O + 1.0000 Sn++++ = Sn(OH)2++ +2.0000 H+ + -llnl_gamma 4.5 + log_k -0.1902 + -delta_H -2.02087 kJ/mol # Calculated enthalpy of reaction Sn(OH)2+2 +# Enthalpy of formation: -129.888 kcal/mol + -analytic -2.1675e+001 5.9697e-003 3.3953e+003 4.8158e+000 -3.2042e+005 +# -Range: 0-300 + +3.0000 H2O + 1.0000 Sn++++ = Sn(OH)3+ +3.0000 H+ + -llnl_gamma 4.0 + log_k +0.5148 + -delta_H -7.59396 kJ/mol # Calculated enthalpy of reaction Sn(OH)3+ +# Enthalpy of formation: -199.537 kcal/mol + -analytic -3.3294e+001 8.8580e-003 5.3803e+003 7.4994e+000 -4.8389e+005 +# -Range: 0-300 + +3.0000 H2O + 1.0000 Sn++ = Sn(OH)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -17.4052 + -delta_H 94.7007 kJ/mol # Calculated enthalpy of reaction Sn(OH)3- +# Enthalpy of formation: -184.417 kcal/mol + -analytic 1.5614e+002 1.9943e-002 -1.0700e+004 -5.8031e+001 -1.6701e+002 +# -Range: 0-300 + +4.0000 H2O + 1.0000 Sn++++ = Sn(OH)4 +4.0000 H+ + -llnl_gamma 3.0 + log_k +0.8497 + -delta_H -11.0583 kJ/mol # Calculated enthalpy of reaction Sn(OH)4 +# Enthalpy of formation: -268.682 kcal/mol + -analytic -7.9563e+001 -2.2641e-002 2.6682e+003 3.1614e+001 4.5337e+001 +# -Range: 0-200 + +2.0000 SO4-- + 1.0000 Sn++++ = Sn(SO4)2 + -llnl_gamma 3.0 + log_k -0.8072 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sn(SO4)2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Sn++ + 1.0000 Cl- = SnCl+ + -llnl_gamma 4.0 + log_k +1.0500 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl+ +# Enthalpy of formation: -0 kcal/mol + + -analytic 3.0558e+002 8.2458e-002 -8.9329e+003 -1.2088e+002 -1.3948e+002 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Sn++ = SnCl2 + -llnl_gamma 3.0 + log_k +1.7100 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl2 +# Enthalpy of formation: -0 kcal/mol + + -analytic 3.6600e+002 1.0753e-001 -1.0006e+004 -1.4660e+002 -1.5624e+002 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Sn++ = SnCl3- + -llnl_gamma 4.0 + log_k +1.6900 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl3- +# Enthalpy of formation: -0 kcal/mol + + -analytic 3.6019e+002 1.0602e-001 -1.0337e+004 -1.4363e+002 -1.6141e+002 +# -Range: 0-300 + +1.0000 Sn++ + 1.0000 F- = SnF+ + -llnl_gamma 4.0 + log_k +4.0800 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnF+ +# Enthalpy of formation: -0 kcal/mol + + -analytic 3.0020e+002 7.5485e-002 -8.4231e+003 -1.1734e+002 -1.3152e+002 +# -Range: 0-300 + +2.0000 F- + 1.0000 Sn++ = SnF2 + -llnl_gamma 3.0 + log_k +6.6800 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnF2 +# Enthalpy of formation: -0 kcal/mol + + -analytic 4.1241e+002 1.0988e-001 -1.1151e+004 -1.6207e+002 -1.7413e+002 +# -Range: 0-300 + +3.0000 F- + 1.0000 Sn++ = SnF3- + -llnl_gamma 4.0 + log_k +9.4600 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnF3- +# Enthalpy of formation: -0 kcal/mol + + -analytic 4.1793e+002 1.0898e-001 -1.1402e+004 -1.6273e+002 -1.7803e+002 +# -Range: 0-300 + +1.0000 Sn++ + 1.0000 H2O = SnOH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -3.9851 + -delta_H 21.2045 kJ/mol # Calculated enthalpy of reaction SnOH+ +# Enthalpy of formation: -65.349 kcal/mol + -analytic 7.7253e+001 1.9149e-002 -3.3745e+003 -3.0560e+001 -5.2679e+001 +# -Range: 0-300 + +1.0000 Sn++++ + 1.0000 H2O = SnOH+++ +1.0000 H+ + -llnl_gamma 5.0 + log_k +0.6049 + -delta_H -5.00406 kJ/mol # Calculated enthalpy of reaction SnOH+3 +# Enthalpy of formation: -62.284 kcal/mol + -analytic -1.1548e+001 2.8878e-003 1.9476e+003 2.6622e+000 -1.6274e+005 +# -Range: 0-300 + +1.0000 Sn++++ + 1.0000 SO4-- = SnSO4++ + -llnl_gamma 4.5 + log_k -3.1094 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnSO4+2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Sr++ = Sr(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -7.8212 + -delta_H 0.54392 kJ/mol # Calculated enthalpy of reaction Sr(CH3COO)2 +# Enthalpy of formation: -363.74 kcal/mol + -analytic 1.2965e+001 4.7082e-003 -5.2538e+003 -5.2337e+000 7.4721e+005 +# -Range: 0-300 + +1.0000 Sr++ + 1.0000 CH3COOH = SrCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -3.6724 + -delta_H 2.3012 kJ/mol # Calculated enthalpy of reaction SrCH3COO+ +# Enthalpy of formation: -247.22 kcal/mol + -analytic -1.4301e+001 1.2481e-003 -7.5690e+002 4.2760e+000 1.9800e+005 +# -Range: 0-300 + +1.0000 Sr++ + 1.0000 HCO3- = SrCO3 +1.0000 H+ + -llnl_gamma 3.0 + log_k -7.4635 + -delta_H 33.2544 kJ/mol # Calculated enthalpy of reaction SrCO3 +# Enthalpy of formation: -288.62 kcal/mol + -analytic 2.2303e+002 5.2582e-002 -8.4861e+003 -8.7975e+001 -1.3248e+002 +# -Range: 0-300 + +1.0000 Sr++ + 1.0000 Cl- = SrCl+ + -llnl_gamma 4.0 + log_k -0.2485 + -delta_H 7.58559 kJ/mol # Calculated enthalpy of reaction SrCl+ +# Enthalpy of formation: -169.79 kcal/mol + -analytic 9.4568e+001 3.9042e-002 -2.1458e+003 -4.0105e+001 -3.3511e+001 +# -Range: 0-300 + +1.0000 Sr++ + 1.0000 F- = SrF+ + -llnl_gamma 4.0 + log_k +0.1393 + -delta_H 4.8116 kJ/mol # Calculated enthalpy of reaction SrF+ +# Enthalpy of formation: -210.67 kcal/mol + -analytic 9.0295e+001 3.7609e-002 -1.9012e+003 -3.8379e+001 -2.9693e+001 +# -Range: 0-300 + +1.0000 Sr++ + 1.0000 HPO4-- + 1.0000 H+ = SrH2PO4+ + -llnl_gamma 4.0 + log_k +0.7300 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrH2PO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Sr++ + 1.0000 HPO4-- = SrHPO4 + -llnl_gamma 3.0 + log_k +2.0600 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrHPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Sr++ + 1.0000 NO3- = SrNO3+ + -llnl_gamma 4.0 + log_k +0.8000 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrNO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Sr++ + 1.0000 H2O = SrOH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -13.29 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrOH+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Sr++ = SrP2O7-- +1.0000 H2O + -llnl_gamma 4.0 + log_k +1.6537 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrP2O7-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Sr++ + 1.0000 SO4-- = SrSO4 + -llnl_gamma 3.0 + log_k +2.3000 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrSO4 +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Tb+++ = Tb(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.9625 + -delta_H -27.9491 kJ/mol # Calculated enthalpy of reaction Tb(CH3COO)2+ +# Enthalpy of formation: -405.78 kcal/mol + -analytic -2.3910e+001 1.3433e-003 -8.0800e+002 6.3895e+000 4.8619e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Tb+++ = Tb(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -8.3489 + -delta_H -47.1537 kJ/mol # Calculated enthalpy of reaction Tb(CH3COO)3 +# Enthalpy of formation: -526.47 kcal/mol + -analytic -1.0762e+001 4.2361e-003 -1.5620e+003 -3.9317e-001 6.5745e+005 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Tb+++ = Tb(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -7.5576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Tb+++ = Tb(HPO4)2- + -llnl_gamma 4.0 + log_k +9.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Tb+++ = Tb(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -3.6437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Tb+++ = Tb(SO4)2- + -llnl_gamma 4.0 + log_k +5.0000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Tb+++ + 1.0000 CH3COOH = TbCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.1037 + -delta_H -14.2256 kJ/mol # Calculated enthalpy of reaction TbCH3COO+2 +# Enthalpy of formation: -286.4 kcal/mol + -analytic -1.6817e+001 6.4290e-004 -3.4442e+002 5.0994e+000 2.7304e+005 +# -Range: 0-300 + +1.0000 Tb+++ + 1.0000 HCO3- = TbCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.4057 + -delta_H 89.5292 kJ/mol # Calculated enthalpy of reaction TbCO3+ +# Enthalpy of formation: -310.4 kcal/mol + -analytic 2.2347e+002 5.4185e-002 -6.4127e+003 -8.9112e+001 -1.0013e+002 +# -Range: 0-300 + +1.0000 Tb+++ + 1.0000 Cl- = TbCl++ + -llnl_gamma 4.5 + log_k +0.2353 + -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction TbCl+2 +# Enthalpy of formation: -203.5 kcal/mol + -analytic 7.1095e+001 3.7367e-002 -1.4676e+003 -3.1140e+001 -2.2921e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Tb+++ = TbCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 18.2673 kJ/mol # Calculated enthalpy of reaction TbCl2+ +# Enthalpy of formation: -242.4 kcal/mol + -analytic 2.0699e+002 7.9609e-002 -5.0958e+003 -8.6337e+001 -7.9576e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Tb+++ = TbCl3 + -llnl_gamma 3.0 + log_k -0.4669 + -delta_H 10.0374 kJ/mol # Calculated enthalpy of reaction TbCl3 +# Enthalpy of formation: -284.3 kcal/mol + -analytic 4.0764e+002 1.2809e-001 -1.0704e+004 -1.6583e+002 -1.6715e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Tb+++ = TbCl4- + -llnl_gamma 4.0 + log_k -0.8913 + -delta_H -11.5813 kJ/mol # Calculated enthalpy of reaction TbCl4- +# Enthalpy of formation: -329.4 kcal/mol + -analytic 4.6247e+002 1.2926e-001 -1.2117e+004 -1.8639e+002 -1.8921e+002 +# -Range: 0-300 + +1.0000 Tb+++ + 1.0000 F- = TbF++ + -llnl_gamma 4.5 + log_k +4.6619 + -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction TbF+2 +# Enthalpy of formation: -241.6 kcal/mol + -analytic 9.2579e+001 4.1327e-002 -2.3647e+003 -3.7293e+001 -3.6927e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Tb+++ = TbF2+ + -llnl_gamma 4.0 + log_k +8.1510 + -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction TbF2+ +# Enthalpy of formation: -324.3 kcal/mol + -analytic 2.3100e+002 8.4094e-002 -5.2548e+003 -9.3051e+001 -8.2065e+001 +# -Range: 0-300 + +3.0000 F- + 1.0000 Tb+++ = TbF3 + -llnl_gamma 3.0 + log_k +10.6872 + -delta_H -11.9244 kJ/mol # Calculated enthalpy of reaction TbF3 +# Enthalpy of formation: -410.2 kcal/mol + -analytic 4.3730e+002 1.3479e-001 -1.0128e+004 -1.7489e+002 -1.5817e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 Tb+++ = TbF4- + -llnl_gamma 4.0 + log_k +12.7836 + -delta_H -56.0656 kJ/mol # Calculated enthalpy of reaction TbF4- +# Enthalpy of formation: -500.9 kcal/mol + -analytic 4.8546e+002 1.3511e-001 -1.0189e+004 -1.9347e+002 -1.5913e+002 +# -Range: 0-300 + +1.0000 Tb+++ + 1.0000 HPO4-- + 1.0000 H+ = TbH2PO4++ + -llnl_gamma 4.5 + log_k +9.3751 + -delta_H -17.51 kJ/mol # Calculated enthalpy of reaction TbH2PO4+2 +# Enthalpy of formation: -479.9 kcal/mol + -analytic 1.0042e+002 6.2886e-002 6.0975e+002 -4.5178e+001 9.4847e+000 +# -Range: 0-300 + +1.0000 Tb+++ + 1.0000 HCO3- = TbHCO3++ + -llnl_gamma 4.5 + log_k +1.6991 + -delta_H -14.6524 kJ/mol # Calculated enthalpy of reaction TbHCO3+2 +# Enthalpy of formation: -335.3 kcal/mol + -analytic 1.7376e+001 2.8365e-002 1.6982e+003 -1.2044e+001 2.6494e+001 +# -Range: 0-300 + +1.0000 Tb+++ + 1.0000 HPO4-- = TbHPO4+ + -llnl_gamma 4.0 + log_k +5.8000 + -delta_H 0 # Not possible to calculate enthalpy of reaction TbHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Tb+++ + 1.0000 NO3- = TbNO3++ + -llnl_gamma 4.5 + log_k +0.5080 + -delta_H -31.2587 kJ/mol # Calculated enthalpy of reaction TbNO3+2 +# Enthalpy of formation: -223.8 kcal/mol + -analytic 8.7852e+000 2.4868e-002 2.5553e+003 -9.7944e+000 3.9871e+001 +# -Range: 0-300 + +1.0000 Tb+++ + 1.0000 H2O = TbO+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -16.1904 + -delta_H 109.692 kJ/mol # Calculated enthalpy of reaction TbO+ +# Enthalpy of formation: -209 kcal/mol + -analytic 1.7975e+002 2.9563e-002 -1.3407e+004 -6.4573e+001 -2.0926e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Tb+++ = TbO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -34.2134 + -delta_H 278.797 kJ/mol # Calculated enthalpy of reaction TbO2- +# Enthalpy of formation: -236.9 kcal/mol + -analytic 1.6924e+002 1.1804e-002 -1.9821e+004 -5.6781e+001 -3.0933e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Tb+++ = TbO2H +3.0000 H+ + -llnl_gamma 3.0 + log_k -25.0508 + -delta_H 219.802 kJ/mol # Calculated enthalpy of reaction TbO2H +# Enthalpy of formation: -251 kcal/mol + -analytic 3.2761e+002 4.5225e-002 -2.2652e+004 -1.1727e+002 -3.5356e+002 +# -Range: 0-300 + +1.0000 Tb+++ + 1.0000 H2O = TbOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -7.8342 + -delta_H 77.4751 kJ/mol # Calculated enthalpy of reaction TbOH+2 +# Enthalpy of formation: -216.7 kcal/mol + -analytic 5.9574e+001 1.1625e-002 -5.8143e+003 -2.0759e+001 -9.0744e+001 +# -Range: 0-300 + +1.0000 Tb+++ + 1.0000 HPO4-- = TbPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k +0.0782 + -delta_H 0 # Not possible to calculate enthalpy of reaction TbPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Tb+++ + 1.0000 SO4-- = TbSO4+ + -llnl_gamma 4.0 + log_k +3.6430 + -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction TbSO4+ +# Enthalpy of formation: -379.6 kcal/mol + -analytic 2.9633e+002 8.5155e-002 -8.6346e+003 -1.1682e+002 -1.3482e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 TcO++ = TcO(OH)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -3.3221 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO(OH)2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 TcO++ + 1.0000 H2O = TcOOH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -1.1355 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcOOH+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 2.0000 H+ + 1.0000 Th++++ = Th(H2PO4)2++ + -llnl_gamma 4.5 + log_k +23.2070 + -delta_H 0 # Not possible to calculate enthalpy of reaction Th(H2PO4)2+2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Th++++ = Th(HPO4)2 + -llnl_gamma 3.0 + log_k +22.6939 + -delta_H -13.644 kJ/mol # Calculated enthalpy of reaction Th(HPO4)2 +# Enthalpy of formation: -804.691 kcal/mol + -analytic 6.5208e+002 2.3099e-001 -1.2990e+004 -2.6457e+002 -2.2082e+002 +# -Range: 0-200 + +3.0000 HPO4-- + 1.0000 Th++++ = Th(HPO4)3-- + -llnl_gamma 4.0 + log_k +31.1894 + -delta_H 0 # Not possible to calculate enthalpy of reaction Th(HPO4)3-2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Th++++ = Th(OH)2++ +2.0000 H+ + -llnl_gamma 4.5 + log_k -7.1068 + -delta_H 58.668 kJ/mol # Calculated enthalpy of reaction Th(OH)2+2 +# Enthalpy of formation: -306.412 kcal/mol + -analytic -1.1274e+001 3.4195e-003 -3.7553e+002 3.1299e+000 -2.9696e+005 +# -Range: 0-300 + +3.0000 H2O + 1.0000 Th++++ = Th(OH)3+ +3.0000 H+ + -llnl_gamma 4.0 + log_k -11.8623 + -delta_H 86.1318 kJ/mol # Calculated enthalpy of reaction Th(OH)3+ +# Enthalpy of formation: -368.165 kcal/mol +4.0000 H2O + 1.0000 Th++++ = Th(OH)4 +4.0000 H+ + -llnl_gamma 3.0 + log_k -16.0315 + -delta_H 104.01 kJ/mol # Calculated enthalpy of reaction Th(OH)4 +# Enthalpy of formation: -432.209 kcal/mol + -analytic 2.9534e+001 1.5550e-002 -5.6680e+003 -1.2598e+001 -9.6262e+001 +# -Range: 0-200 + +2.0000 SO4-- + 1.0000 Th++++ = Th(SO4)2 + -llnl_gamma 3.0 + log_k +9.6170 + -delta_H 32.2377 kJ/mol # Calculated enthalpy of reaction Th(SO4)2 +# Enthalpy of formation: -610.895 kcal/mol + -analytic 4.6425e+002 1.6769e-001 -1.1195e+004 -1.8875e+002 -1.9027e+002 +# -Range: 0-200 + +3.0000 SO4-- + 1.0000 Th++++ = Th(SO4)3-- + -llnl_gamma 4.0 + log_k +10.4014 + -delta_H 0 # Not possible to calculate enthalpy of reaction Th(SO4)3-2 +# Enthalpy of formation: -0 kcal/mol + +4.0000 SO4-- + 1.0000 Th++++ = Th(SO4)4---- + -llnl_gamma 4.0 + log_k +8.4003 + -delta_H 0 # Not possible to calculate enthalpy of reaction Th(SO4)4-4 +# Enthalpy of formation: -0 kcal/mol + +2.0000 Th++++ + 2.0000 H2O = Th2(OH)2+6 +2.0000 H+ + -llnl_gamma 6.0 + log_k -6.4618 + -delta_H 63.7181 kJ/mol # Calculated enthalpy of reaction Th2(OH)2+6 +# Enthalpy of formation: -489.005 kcal/mol + -analytic 6.8838e+001 -4.1348e-003 -6.4415e+003 -2.1200e+001 -1.0053e+002 +# -Range: 0-300 + +8.0000 H2O + 4.0000 Th++++ = Th4(OH)8+8 +8.0000 H+ + -llnl_gamma 6.0 + log_k -21.7568 + -delta_H 245.245 kJ/mol # Calculated enthalpy of reaction Th4(OH)8+8 +# Enthalpy of formation: -1223.12 kcal/mol + -analytic 2.7826e+002 -2.3504e-003 -2.4410e+004 -8.7873e+001 -3.8097e+002 +# -Range: 0-300 + +15.0000 H2O + 6.0000 Th++++ = Th6(OH)15+9 +15.0000 H+ + -llnl_gamma 6.0 + log_k -37.7027 + -delta_H 458.248 kJ/mol # Calculated enthalpy of reaction Th6(OH)15+9 +# Enthalpy of formation: -2018.03 kcal/mol + -analytic 5.2516e+002 3.3015e-003 -4.5237e+004 -1.6654e+002 -7.0603e+002 +# -Range: 0-300 + +1.0000 Th++++ + 1.0000 Cl- = ThCl+++ + -llnl_gamma 5.0 + log_k +0.9536 + -delta_H 0.06276 kJ/mol # Calculated enthalpy of reaction ThCl+3 +# Enthalpy of formation: -223.718 kcal/mol + -analytic 9.7430e+001 3.9398e-002 -1.8653e+003 -4.1202e+001 -2.9135e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Th++++ = ThCl2++ + -llnl_gamma 4.5 + log_k +0.6758 + -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl2+2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 Cl- + 1.0000 Th++++ = ThCl3+ + -llnl_gamma 4.0 + log_k +1.4975 + -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl3+ +# Enthalpy of formation: -0 kcal/mol + +4.0000 Cl- + 1.0000 Th++++ = ThCl4 + -llnl_gamma 3.0 + log_k +1.0731 + -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Th++++ + 1.0000 F- = ThF+++ + -llnl_gamma 5.0 + log_k +7.8725 + -delta_H -4.87436 kJ/mol # Calculated enthalpy of reaction ThF+3 +# Enthalpy of formation: -265.115 kcal/mol + -analytic 1.1679e+002 3.9201e-002 -2.2118e+003 -4.5736e+001 -3.4548e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Th++++ = ThF2++ + -llnl_gamma 4.5 + log_k +14.0884 + -delta_H -7.77806 kJ/mol # Calculated enthalpy of reaction ThF2+2 +# Enthalpy of formation: -345.959 kcal/mol + -analytic 2.3200e+002 7.9567e-002 -4.4418e+003 -9.1617e+001 -6.9379e+001 +# -Range: 0-300 + +3.0000 F- + 1.0000 Th++++ = ThF3+ + -llnl_gamma 4.0 + log_k +18.7357 + -delta_H -11.7068 kJ/mol # Calculated enthalpy of reaction ThF3+ +# Enthalpy of formation: -427.048 kcal/mol + -analytic 3.4511e+002 1.2149e-001 -6.5065e+003 -1.3770e+002 -1.0163e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 Th++++ = ThF4 + -llnl_gamma 3.0 + log_k +22.1515 + -delta_H -14.8448 kJ/mol # Calculated enthalpy of reaction ThF4 +# Enthalpy of formation: -507.948 kcal/mol + -analytic 6.1206e+002 2.1878e-001 -1.1938e+004 -2.4857e+002 -2.0294e+002 +# -Range: 0-200 + +1.0000 Th++++ + 1.0000 HPO4-- + 1.0000 H+ = ThH2PO4+++ + -llnl_gamma 5.0 + log_k +11.7061 + -delta_H 0 # Not possible to calculate enthalpy of reaction ThH2PO4+3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H+ + 1.0000 Th++++ + 1.0000 HPO4-- = ThH3PO4++++ + -llnl_gamma 5.5 + log_k +11.1197 + -delta_H 0 # Not possible to calculate enthalpy of reaction ThH3PO4+4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Th++++ + 1.0000 HPO4-- = ThHPO4++ + -llnl_gamma 4.5 + log_k +10.6799 + -delta_H 0.1046 kJ/mol # Calculated enthalpy of reaction ThHPO4+2 +# Enthalpy of formation: -492.59 kcal/mol +1.0000 Th++++ + 1.0000 H2O = ThOH+++ +1.0000 H+ + -llnl_gamma 5.0 + log_k -3.8871 + -delta_H 25.0275 kJ/mol # Calculated enthalpy of reaction ThOH+3 +# Enthalpy of formation: -1029.83 kJ/mol + -analytic 1.0495e+001 5.1532e-003 -8.6396e+002 -4.8420e+000 -9.2609e+004 +# -Range: 0-300 + +1.0000 Th++++ + 1.0000 SO4-- = ThSO4++ + -llnl_gamma 4.5 + log_k +5.3143 + -delta_H 16.3511 kJ/mol # Calculated enthalpy of reaction ThSO4+2 +# Enthalpy of formation: -397.292 kcal/mol + -analytic 1.9443e+002 7.5245e-002 -4.5010e+003 -7.9379e+001 -7.0291e+001 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Tl+ = Tl(CH3COO)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -10.0129 + -delta_H 1.2552 kJ/mol # Calculated enthalpy of reaction Tl(CH3COO)2- +# Enthalpy of formation: -230.62 kcal/mol + -analytic -1.8123e+002 -4.0616e-002 5.0741e+003 6.7216e+001 7.9229e+001 +# -Range: 0-300 + +1.0000 Tl+ + 1.0000 CH3COOH = TlCH3COO +1.0000 H+ + -llnl_gamma 3.0 + log_k -4.8672 + -delta_H 6.15048 kJ/mol # Calculated enthalpy of reaction TlCH3COO +# Enthalpy of formation: -113.35 kcal/mol + -analytic 9.2977e+000 -3.4368e-003 -2.1748e+003 -3.1454e+000 1.7273e+005 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Tm+++ = Tm(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.9844 + -delta_H -32.5934 kJ/mol # Calculated enthalpy of reaction Tm(CH3COO)2+ +# Enthalpy of formation: -408.49 kcal/mol + -analytic -2.8983e+001 2.0256e-003 -1.1525e+003 8.2163e+000 6.1820e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Tm+++ = Tm(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -8.3783 + -delta_H -54.8104 kJ/mol # Calculated enthalpy of reaction Tm(CH3COO)3 +# Enthalpy of formation: -529.9 kcal/mol + -analytic -2.8900e+001 4.9633e-003 -1.6574e+003 6.0186e+000 8.6624e+005 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Tm+++ = Tm(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -7.1576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Tm+++ = Tm(HPO4)2- + -llnl_gamma 4.0 + log_k +10.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Tm+++ = Tm(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -3.0437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Tm+++ = Tm(SO4)2- + -llnl_gamma 4.0 + log_k +5.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Tm+++ + 1.0000 CH3COOH = TmCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.1184 + -delta_H -16.3176 kJ/mol # Calculated enthalpy of reaction TmCH3COO+2 +# Enthalpy of formation: -288.5 kcal/mol + -analytic -1.6068e+001 1.2043e-003 -6.2777e+002 4.8318e+000 3.3363e+005 +# -Range: 0-300 + +1.0000 Tm+++ + 1.0000 HCO3- = TmCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.1125 + -delta_H 86.6004 kJ/mol # Calculated enthalpy of reaction TmCO3+ +# Enthalpy of formation: -312.7 kcal/mol + -analytic 2.3889e+002 5.4733e-002 -6.9382e+003 -9.4581e+001 -1.0833e+002 +# -Range: 0-300 + +1.0000 Tm+++ + 1.0000 Cl- = TmCl++ + -llnl_gamma 4.5 + log_k +0.2353 + -delta_H 13.1085 kJ/mol # Calculated enthalpy of reaction TmCl+2 +# Enthalpy of formation: -205.3 kcal/mol + -analytic 7.4795e+001 3.7655e-002 -1.5701e+003 -3.2531e+001 -2.4523e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Tm+++ = TmCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 15.7569 kJ/mol # Calculated enthalpy of reaction TmCl2+ +# Enthalpy of formation: -244.6 kcal/mol + -analytic 2.0352e+002 7.9173e-002 -4.8574e+003 -8.5202e+001 -7.5855e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Tm+++ = TmCl3 + -llnl_gamma 3.0 + log_k -0.4669 + -delta_H 5.43502 kJ/mol # Calculated enthalpy of reaction TmCl3 +# Enthalpy of formation: -287 kcal/mol + -analytic 3.9793e+002 1.2777e-001 -1.0070e+004 -1.6272e+002 -1.5725e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Tm+++ = TmCl4- + -llnl_gamma 4.0 + log_k -0.8913 + -delta_H -20.3677 kJ/mol # Calculated enthalpy of reaction TmCl4- +# Enthalpy of formation: -333.1 kcal/mol + -analytic 4.3574e+002 1.2655e-001 -1.0713e+004 -1.7716e+002 -1.6730e+002 +# -Range: 0-300 + +1.0000 Tm+++ + 1.0000 F- = TmF++ + -llnl_gamma 4.5 + log_k +4.8085 + -delta_H 23.6396 kJ/mol # Calculated enthalpy of reaction TmF+2 +# Enthalpy of formation: -243 kcal/mol + -analytic 9.7686e+001 4.1890e-002 -2.5909e+003 -3.9059e+001 -4.0457e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Tm+++ = TmF2+ + -llnl_gamma 4.0 + log_k +8.3709 + -delta_H 12.552 kJ/mol # Calculated enthalpy of reaction TmF2+ +# Enthalpy of formation: -325.8 kcal/mol + -analytic 2.2986e+002 8.4119e-002 -5.2144e+003 -9.2558e+001 -8.1433e+001 +# -Range: 0-300 + +3.0000 F- + 1.0000 Tm+++ = TmF3 + -llnl_gamma 3.0 + log_k +10.9804 + -delta_H -12.7612 kJ/mol # Calculated enthalpy of reaction TmF3 +# Enthalpy of formation: -412 kcal/mol + -analytic 4.2855e+002 1.3445e-001 -9.7045e+003 -1.7177e+002 -1.5156e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 Tm+++ = TmF4- + -llnl_gamma 4.0 + log_k +13.1501 + -delta_H -60.668 kJ/mol # Calculated enthalpy of reaction TmF4- +# Enthalpy of formation: -503.6 kcal/mol + -analytic 4.6559e+002 1.3386e-001 -9.1790e+003 -1.8650e+002 -1.4337e+002 +# -Range: 0-300 + +1.0000 Tm+++ + 1.0000 HPO4-- + 1.0000 H+ = TmH2PO4++ + -llnl_gamma 4.5 + log_k +9.4484 + -delta_H -20.4388 kJ/mol # Calculated enthalpy of reaction TmH2PO4+2 +# Enthalpy of formation: -482.2 kcal/mol + -analytic 1.0360e+002 6.3085e-002 6.0731e+002 -4.6456e+001 9.4456e+000 +# -Range: 0-300 + +1.0000 Tm+++ + 1.0000 HCO3- = TmHCO3++ + -llnl_gamma 4.5 + log_k +1.7724 + -delta_H 5.01243 kJ/mol # Calculated enthalpy of reaction TmHCO3+2 +# Enthalpy of formation: -332.2 kcal/mol + -analytic 3.3102e+001 3.1010e-002 2.9880e+002 -1.6791e+001 4.6524e+000 +# -Range: 0-300 + +1.0000 Tm+++ + 1.0000 HPO4-- = TmHPO4+ + -llnl_gamma 4.0 + log_k +5.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction TmHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Tm+++ + 1.0000 NO3- = TmNO3++ + -llnl_gamma 4.5 + log_k +0.2148 + -delta_H -33.7691 kJ/mol # Calculated enthalpy of reaction TmNO3+2 +# Enthalpy of formation: -226 kcal/mol + -analytic 1.1085e+001 2.4898e-002 2.5664e+003 -1.0861e+001 4.0043e+001 +# -Range: 0-300 + +1.0000 Tm+++ + 1.0000 H2O = TmO+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -15.8972 + -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction TmO+ +# Enthalpy of formation: -211.6 kcal/mol + -analytic 1.7572e+002 2.8756e-002 -1.3096e+004 -6.3150e+001 -2.0441e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Tm+++ = TmO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -32.6741 + -delta_H 266.663 kJ/mol # Calculated enthalpy of reaction TmO2- +# Enthalpy of formation: -241.4 kcal/mol + -analytic 3.3118e+001 -5.2802e-003 -1.1318e+004 -8.4764e+000 -4.6998e+005 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Tm+++ = TmO2H +3.0000 H+ + -llnl_gamma 3.0 + log_k -24.1712 + -delta_H 211.853 kJ/mol # Calculated enthalpy of reaction TmO2H +# Enthalpy of formation: -254.5 kcal/mol + -analytic 3.1648e+002 4.4527e-002 -2.1821e+004 -1.1345e+002 -3.4059e+002 +# -Range: 0-300 + +1.0000 Tm+++ + 1.0000 H2O = TmOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -7.6876 + -delta_H 74.5463 kJ/mol # Calculated enthalpy of reaction TmOH+2 +# Enthalpy of formation: -219 kcal/mol + -analytic 5.7572e+001 1.1162e-002 -5.6381e+003 -2.0074e+001 -8.7994e+001 +# -Range: 0-300 + +1.0000 Tm+++ + 1.0000 HPO4-- = TmPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k +0.4782 + -delta_H 0 # Not possible to calculate enthalpy of reaction TmPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Tm+++ + 1.0000 SO4-- = TmSO4+ + -llnl_gamma 4.0 + log_k +3.5697 + -delta_H 19.9995 kJ/mol # Calculated enthalpy of reaction TmSO4+ +# Enthalpy of formation: -381.12 kcal/mol + -analytic 3.0441e+002 8.6070e-002 -8.9592e+003 -1.1979e+002 -1.3989e+002 +# -Range: 0-300 + +4.0000 HCO3- + 1.0000 U++++ = U(CO3)4---- +4.0000 H+ + -llnl_gamma 4.0 + log_k -6.2534 + -delta_H 0 # Not possible to calculate enthalpy of reaction U(CO3)4-4 +# Enthalpy of formation: -0 kcal/mol + +5.0000 HCO3- + 1.0000 U++++ = U(CO3)5-6 +5.0000 H+ + -llnl_gamma 4.0 + log_k -17.7169 + -delta_H 53.5172 kJ/mol # Calculated enthalpy of reaction U(CO3)5-6 +# Enthalpy of formation: -3987.35 kJ/mol + -analytic 6.3020e+002 1.9391e-001 -1.9238e+004 -2.5912e+002 -3.0038e+002 +# -Range: 0-300 + +2.0000 NO3- + 1.0000 U++++ = U(NO3)2++ + -llnl_gamma 4.5 + log_k +2.2610 + -delta_H 0 # Not possible to calculate enthalpy of reaction U(NO3)2+2 +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 1.0000 U++++ = U(OH)4 +4.0000 H+ + -llnl_gamma 3.0 + log_k -4.57 + -delta_H 78.7553 kJ/mol # Calculated enthalpy of reaction U(OH)4 +# Enthalpy of formation: -1655.8 kJ/mol + -analytic 2.6685e+002 9.8204e-002 -9.4428e+003 -1.0871e+002 -1.6045e+002 +# -Range: 0-200 + +2.0000 Thiocyanate- + 1.0000 U++++ = U(Thiocyanate)2++ + -llnl_gamma 4.5 + log_k +4.2600 + -delta_H 0 # Not possible to calculate enthalpy of reaction U(Thiocyanate)2+2 +# Enthalpy of formation: -456.4 kJ/mol + -analytic 6.2193e+000 2.7673e-002 2.4326e+003 -7.4158e+000 3.7957e+001 +# -Range: 0-300 + +2.0000 SO4-- + 1.0000 U++++ = U(SO4)2 + -llnl_gamma 3.0 + log_k +10.3507 + -delta_H 33.2232 kJ/mol # Calculated enthalpy of reaction U(SO4)2 +# Enthalpy of formation: -2377.18 kJ/mol + -analytic 4.9476e+002 1.7832e-001 -1.1901e+004 -2.0111e+002 -2.0227e+002 +# -Range: 0-200 + +1.0000 U++++ + 1.0000 Br- = UBr+++ + -llnl_gamma 5.0 + log_k +1.4240 + -delta_H 0 # Not possible to calculate enthalpy of reaction UBr+3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 U++++ + 1.0000 Cl- = UCl+++ + -llnl_gamma 5.0 + log_k +1.7073 + -delta_H -18.9993 kJ/mol # Calculated enthalpy of reaction UCl+3 +# Enthalpy of formation: -777.279 kJ/mol + -analytic 9.4418e+001 4.1718e-002 -7.0675e+002 -4.1532e+001 -1.1056e+001 +# -Range: 0-300 + +1.0000 U++++ + 1.0000 F- = UF+++ + -llnl_gamma 5.0 + log_k +9.2403 + -delta_H -5.6024 kJ/mol # Calculated enthalpy of reaction UF+3 +# Enthalpy of formation: -932.15 kJ/mol + -analytic 1.1828e+002 3.8097e-002 -2.2531e+003 -4.5594e+001 -3.5193e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 U++++ = UF2++ + -llnl_gamma 4.5 + log_k +16.1505 + -delta_H -3.5048 kJ/mol # Calculated enthalpy of reaction UF2+2 +# Enthalpy of formation: -1265.4 kJ/mol + -analytic 2.3537e+002 7.7064e-002 -4.8455e+003 -9.1296e+001 -7.5679e+001 +# -Range: 0-300 + +3.0000 F- + 1.0000 U++++ = UF3+ + -llnl_gamma 4.0 + log_k +21.4806 + -delta_H 0.4938 kJ/mol # Calculated enthalpy of reaction UF3+ +# Enthalpy of formation: -1596.75 kJ/mol + -analytic 3.5097e+002 1.1714e-001 -7.4569e+003 -1.3714e+002 -1.1646e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 U++++ = UF4 + -llnl_gamma 3.0 + log_k +25.4408 + -delta_H -4.2146 kJ/mol # Calculated enthalpy of reaction UF4 +# Enthalpy of formation: -1936.81 kJ/mol + -analytic 7.8549e+002 2.7922e-001 -1.6213e+004 -3.1881e+002 -2.7559e+002 +# -Range: 0-200 + +5.0000 F- + 1.0000 U++++ = UF5- + -llnl_gamma 4.0 + log_k +26.8110 + -delta_H 0 # Not possible to calculate enthalpy of reaction UF5- +# Enthalpy of formation: -0 kcal/mol + +6.0000 F- + 1.0000 U++++ = UF6-- + -llnl_gamma 4.0 + log_k +28.8412 + -delta_H 0 # Not possible to calculate enthalpy of reaction UF6-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 U++++ + 1.0000 I- = UI+++ + -llnl_gamma 5.0 + log_k +1.2151 + -delta_H 0 # Not possible to calculate enthalpy of reaction UI+3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 U++++ + 1.0000 NO3- = UNO3+++ + -llnl_gamma 5.0 + log_k +1.4506 + -delta_H 0 # Not possible to calculate enthalpy of reaction UNO3+3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 HCO3- + 1.0000 UO2++ = UO2(CO3)2-- +2.0000 H+ + -llnl_gamma 4.0 + log_k -3.7467 + -delta_H 47.9065 kJ/mol # Calculated enthalpy of reaction UO2(CO3)2-2 +# Enthalpy of formation: -2350.96 kJ/mol + -analytic 2.6569e+002 8.1552e-002 -9.0918e+003 -1.0638e+002 -1.4195e+002 +# -Range: 0-300 + +3.0000 HCO3- + 1.0000 UO2+ = UO2(CO3)3-5 +3.0000 H+ + -llnl_gamma 4.0 + log_k -23.6241 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(CO3)3-5 +# Enthalpy of formation: -0 kcal/mol + +3.0000 HCO3- + 1.0000 UO2++ = UO2(CO3)3---- +3.0000 H+ + -llnl_gamma 4.0 + log_k -9.4302 + -delta_H 4.9107 kJ/mol # Calculated enthalpy of reaction UO2(CO3)3-4 +# Enthalpy of formation: -3083.89 kJ/mol + -analytic 3.7918e+002 1.1789e-001 -1.0233e+004 -1.5738e+002 -1.5978e+002 +# -Range: 0-300 + +3.0000 H+ + 2.0000 HPO4-- + 1.0000 UO2++ = UO2(H2PO4)(H3PO4)+ + -llnl_gamma 4.0 + log_k +22.7537 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(H2PO4)(H3PO4)+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 2.0000 H+ + 1.0000 UO2++ = UO2(H2PO4)2 + -llnl_gamma 3.0 + log_k +21.7437 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(H2PO4)2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 IO3- + 1.0000 UO2++ = UO2(IO3)2 + -llnl_gamma 3.0 + log_k +2.9969 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(IO3)2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 N3- + 1.0000 UO2++ = UO2(N3)2 + -llnl_gamma 3.0 + log_k +4.3301 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 N3- + 1.0000 UO2++ = UO2(N3)3- + -llnl_gamma 4.0 + log_k +5.7401 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)3- +# Enthalpy of formation: -0 kcal/mol + +4.0000 N3- + 1.0000 UO2++ = UO2(N3)4-- + -llnl_gamma 4.0 + log_k +4.9200 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)4-2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 UO2++ = UO2(OH)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -10.3146 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 H2O + 1.0000 UO2++ = UO2(OH)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -19.2218 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)3- +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 1.0000 UO2++ = UO2(OH)4-- +4.0000 H+ + -llnl_gamma 4.0 + log_k -33.0291 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)4-2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 Thiocyanate- + 1.0000 UO2++ = UO2(Thiocyanate)2 + -llnl_gamma 3.0 + log_k +1.2401 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(Thiocyanate)2 +# Enthalpy of formation: -857.3 kJ/mol + -analytic 9.4216e+001 3.2840e-002 -2.4849e+003 -3.8162e+001 -4.2231e+001 +# -Range: 0-200 + +3.0000 Thiocyanate- + 1.0000 UO2++ = UO2(Thiocyanate)3- + -llnl_gamma 4.0 + log_k +2.1001 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(Thiocyanate)3- +# Enthalpy of formation: -783.8 kJ/mol + -analytic 1.6622e+001 2.2714e-002 4.9707e+002 -9.2785e+000 7.7512e+000 +# -Range: 0-300 + +2.0000 SO3-- + 1.0000 UO2++ = UO2(SO3)2-- + -llnl_gamma 4.0 + log_k +7.9101 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(SO3)2-2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 UO2++ = UO2(SO4)2-- + -llnl_gamma 4.0 + log_k +3.9806 + -delta_H 35.6242 kJ/mol # Calculated enthalpy of reaction UO2(SO4)2-2 +# Enthalpy of formation: -2802.58 kJ/mol + -analytic 3.9907e+002 1.3536e-001 -1.0813e+004 -1.6130e+002 -1.6884e+002 +# -Range: 0-300 + +1.0000 UO2++ + 1.0000 Br- = UO2Br+ + -llnl_gamma 4.0 + log_k +0.1840 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2Br+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 UO2++ + 1.0000 BrO3- = UO2BrO3+ + -llnl_gamma 4.0 + log_k +0.5510 + -delta_H 0.46952 kJ/mol # Calculated enthalpy of reaction UO2BrO3+ +# Enthalpy of formation: -1085.6 kJ/mol + -analytic 8.2618e+001 2.6921e-002 -2.0144e+003 -3.3673e+001 -3.1457e+001 +# -Range: 0-300 + +1.0000 UO2++ + 1.0000 HCO3- = UO2CO3 +1.0000 H+ + -llnl_gamma 3.0 + log_k -0.6634 + -delta_H 19.7032 kJ/mol # Calculated enthalpy of reaction UO2CO3 +# Enthalpy of formation: -1689.23 kJ/mol + -analytic 7.3898e+001 2.8127e-002 -2.4347e+003 -3.0217e+001 -4.1371e+001 +# -Range: 0-200 + +1.0000 UO2++ + 1.0000 Cl- = UO2Cl+ + -llnl_gamma 4.0 + log_k +0.1572 + -delta_H 8.00167 kJ/mol # Calculated enthalpy of reaction UO2Cl+ +# Enthalpy of formation: -1178.08 kJ/mol + -analytic 9.8139e+001 3.8869e-002 -2.3178e+003 -4.1133e+001 -3.6196e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 UO2++ = UO2Cl2 + -llnl_gamma 3.0 + log_k -1.1253 + -delta_H 15.0013 kJ/mol # Calculated enthalpy of reaction UO2Cl2 +# Enthalpy of formation: -1338.16 kJ/mol + -analytic 3.4087e+001 1.3840e-002 -1.3664e+003 -1.4043e+001 -2.3216e+001 +# -Range: 0-200 + +1.0000 UO2++ + 1.0000 ClO3- = UO2ClO3+ + -llnl_gamma 4.0 + log_k +0.4919 + -delta_H -3.9266 kJ/mol # Calculated enthalpy of reaction UO2ClO3+ +# Enthalpy of formation: -1126.9 kJ/mol + -analytic 9.6263e+001 2.8926e-002 -2.3068e+003 -3.9057e+001 -3.6025e+001 +# -Range: 0-300 + +1.0000 UO2++ + 1.0000 F- = UO2F+ + -llnl_gamma 4.0 + log_k +5.0502 + -delta_H 1.6976 kJ/mol # Calculated enthalpy of reaction UO2F+ +# Enthalpy of formation: -1352.65 kJ/mol + -analytic 1.1476e+002 4.0682e-002 -2.4467e+003 -4.5914e+001 -3.8212e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 UO2++ = UO2F2 + -llnl_gamma 3.0 + log_k +8.5403 + -delta_H 2.0962 kJ/mol # Calculated enthalpy of reaction UO2F2 +# Enthalpy of formation: -1687.6 kJ/mol + -analytic 2.7673e+002 9.9190e-002 -5.8371e+003 -1.1242e+002 -9.9219e+001 +# -Range: 0-200 + +3.0000 F- + 1.0000 UO2++ = UO2F3- + -llnl_gamma 4.0 + log_k +10.7806 + -delta_H 2.3428 kJ/mol # Calculated enthalpy of reaction UO2F3- +# Enthalpy of formation: -2022.7 kJ/mol + -analytic 3.3383e+002 9.2160e-002 -8.7975e+003 -1.2972e+002 -1.3738e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 UO2++ = UO2F4-- + -llnl_gamma 4.0 + log_k +11.5407 + -delta_H 0.2814 kJ/mol # Calculated enthalpy of reaction UO2F4-2 +# Enthalpy of formation: -2360.11 kJ/mol + -analytic 4.4324e+002 1.3808e-001 -1.0705e+004 -1.7657e+002 -1.6718e+002 +# -Range: 0-300 + +1.0000 UO2++ + 1.0000 HPO4-- + 1.0000 H+ = UO2H2PO4+ + -llnl_gamma 4.0 + log_k +11.6719 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2H2PO4+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 H+ + 1.0000 UO2++ + 1.0000 HPO4-- = UO2H3PO4++ + -llnl_gamma 4.5 + log_k +11.3119 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2H3PO4+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 UO2++ + 1.0000 HPO4-- = UO2HPO4 + -llnl_gamma 3.0 + log_k +8.4398 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2HPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 UO2++ + 1.0000 IO3- = UO2IO3+ + -llnl_gamma 4.0 + log_k +1.7036 + -delta_H 11.4336 kJ/mol # Calculated enthalpy of reaction UO2IO3+ +# Enthalpy of formation: -1228.9 kJ/mol + -analytic 1.0428e+002 2.9620e-002 -3.2441e+003 -4.0618e+001 -5.0651e+001 +# -Range: 0-300 + +1.0000 UO2++ + 1.0000 N3- = UO2N3+ + -llnl_gamma 4.0 + log_k +2.5799 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2N3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 UO2++ + 1.0000 NO3- = UO2NO3+ + -llnl_gamma 4.0 + log_k +0.2805 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2NO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 UO2++ + 1.0000 H2O = UO2OH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -5.2073 + -delta_H 43.1813 kJ/mol # Calculated enthalpy of reaction UO2OH+ +# Enthalpy of formation: -1261.66 kJ/mol + -analytic 3.4387e+001 6.0811e-003 -3.3068e+003 -1.2252e+001 -5.1609e+001 +# -Range: 0-300 + +1.0000 UO2++ + 1.0000 HPO4-- = UO2PO4- +1.0000 H+ + -llnl_gamma 4.0 + log_k +2.0798 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2PO4- +# Enthalpy of formation: -0 kcal/mol + +#2.0000 SO3-- + 2.0000 H+ + 1.0000 UO2++ = UO2S2O3 +1.0000 H2O +1.0000 O2 +#S2O3-- + O2 + H2O = 2.0000 H+ + 2.0000 SO3-- log_k 40.2906 +S2O3-- + UO2++ = UO2S2O3 + -llnl_gamma 3.0 +# log_k -38.0666 + log_k 2.224 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2S2O3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 UO2++ + 1.0000 Thiocyanate- = UO2Thiocyanate+ + -llnl_gamma 4.0 + log_k +1.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2Thiocyanate+ +# Enthalpy of formation: -939.38 kJ/mol + -analytic 4.7033e+000 1.2562e-002 4.9095e+002 -3.5097e+000 7.6593e+000 +# -Range: 0-300 + +1.0000 UO2++ + 1.0000 SO3-- = UO2SO3 + -llnl_gamma 3.0 + log_k +6.7532 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2SO3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 UO2++ + 1.0000 SO4-- = UO2SO4 + -llnl_gamma 3.0 + log_k +3.0703 + -delta_H 19.7626 kJ/mol # Calculated enthalpy of reaction UO2SO4 +# Enthalpy of formation: -1908.84 kJ/mol + -analytic 1.9514e+002 7.0951e-002 -4.9949e+003 -7.9394e+001 -8.4888e+001 +# -Range: 0-200 + +1.0000 U++++ + 1.0000 H2O = UOH+++ +1.0000 H+ + -llnl_gamma 5.0 + log_k -0.5472 + -delta_H 46.9183 kJ/mol # Calculated enthalpy of reaction UOH+3 +# Enthalpy of formation: -830.12 kJ/mol + -analytic 4.0793e+001 1.3563e-003 -3.8441e+003 -1.1659e+001 -5.9996e+001 +# -Range: 0-300 + +1.0000 U++++ + 1.0000 Thiocyanate- = UThiocyanate+++ + -llnl_gamma 5.0 + log_k +2.9700 + -delta_H 0 # Not possible to calculate enthalpy of reaction UThiocyanate+3 +# Enthalpy of formation: -541.8 kJ/mol + -analytic 4.0286e-001 1.5909e-002 2.3026e+003 -3.9973e+000 3.5929e+001 +# -Range: 0-300 + +1.0000 U++++ + 1.0000 SO4-- = USO4++ + -llnl_gamma 4.5 + log_k +6.5003 + -delta_H 8.2616 kJ/mol # Calculated enthalpy of reaction USO4+2 +# Enthalpy of formation: -1492.54 kJ/mol + -analytic 1.9418e+002 7.5458e-002 -4.0646e+003 -7.9416e+001 -6.3482e+001 +# -Range: 0-300 + +2.0000 H2O + 1.0000 V+++ = V(OH)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -5.9193 + -delta_H 0 # Not possible to calculate enthalpy of reaction V(OH)2+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 V+++ + 2.0000 H2O = V2(OH)2++++ +2.0000 H+ + -llnl_gamma 5.5 + log_k -3.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction V2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 VO2+ = VO(OH)3 +1.0000 H+ + -llnl_gamma 3.0 + log_k -3.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO(OH)3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 VO2+ = VO2(HPO4)2--- + -llnl_gamma 4.0 + log_k +8.6000 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2(HPO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 VO2+ = VO2(OH)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -7.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2(OH)2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 VO2+ + 1.0000 F- = VO2F + -llnl_gamma 3.0 + log_k +3.3500 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2F +# Enthalpy of formation: -0 kcal/mol + +2.0000 F- + 1.0000 VO2+ = VO2F2- + -llnl_gamma 4.0 + log_k +5.8100 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2F2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 VO2+ + 1.0000 HPO4-- + 1.0000 H+ = VO2H2PO4 + -llnl_gamma 3.0 + log_k +1.6800 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2H2PO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 VO2+ + 1.0000 HPO4-- = VO2HPO4- + -llnl_gamma 4.0 + log_k +5.8300 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2HPO4- +# Enthalpy of formation: -0 kcal/mol + +1.0000 VO2+ + 1.0000 SO4-- = VO2SO4- + -llnl_gamma 4.0 + log_k +1.5800 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2SO4- +# Enthalpy of formation: -0 kcal/mol + +1.0000 VO4--- + 1.0000 H+ = VO3OH-- + -llnl_gamma 4.0 + log_k +14.2600 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO3OH-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 VO++ + 1.0000 F- = VOF+ + -llnl_gamma 4.0 + log_k +4.0000 + -delta_H 0 # Not possible to calculate enthalpy of reaction VOF+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 F- + 1.0000 VO++ = VOF2 + -llnl_gamma 3.0 + log_k +6.7800 + -delta_H 0 # Not possible to calculate enthalpy of reaction VOF2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 V+++ + 1.0000 H2O = VOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.26 + -delta_H 0 # Not possible to calculate enthalpy of reaction VOH+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 VO++ + 1.0000 H2O = VOOH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -5.67 + -delta_H 0 # Not possible to calculate enthalpy of reaction VOOH+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 VO++ + 1.0000 SO4-- = VOSO4 + -llnl_gamma 3.0 + log_k +2.4800 + -delta_H 0 # Not possible to calculate enthalpy of reaction VOSO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 V+++ + 1.0000 SO4-- = VSO4+ + -llnl_gamma 4.0 + log_k +3.3300 + -delta_H 0 # Not possible to calculate enthalpy of reaction VSO4+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Y+++ = Y(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -4.9844 + -delta_H -34.8109 kJ/mol # Calculated enthalpy of reaction Y(CH3COO)2+ +# Enthalpy of formation: -411.42 kcal/mol + -analytic -3.3011e+001 6.1979e-004 -7.7468e+002 9.6380e+000 5.8814e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Y+++ = Y(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -8.3783 + -delta_H -58.4505 kJ/mol # Calculated enthalpy of reaction Y(CH3COO)3 +# Enthalpy of formation: -533.17 kcal/mol + -analytic -3.0086e+001 4.0213e-003 -1.1444e+003 6.1794e+000 8.0827e+005 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Y+++ = Y(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -7.3576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Y+++ = Y(HPO4)2- + -llnl_gamma 4.0 + log_k +9.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 H2O + 1.0000 Y+++ = Y(OH)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -16.3902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)2+ +# Enthalpy of formation: -0 kcal/mol + +3.0000 H2O + 1.0000 Y+++ = Y(OH)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -25.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)3 +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 1.0000 Y+++ = Y(OH)4- +4.0000 H+ + -llnl_gamma 4.0 + log_k -36.4803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)4- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Y+++ = Y(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -3.2437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Y+++ = Y(SO4)2- + -llnl_gamma 4.0 + log_k +4.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 Y+++ + 2.0000 H2O = Y2(OH)2++++ +2.0000 H+ + -llnl_gamma 5.5 + log_k -14.1902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Y+++ + 1.0000 CH3COOH = YCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.1184 + -delta_H -17.2799 kJ/mol # Calculated enthalpy of reaction YCH3COO+2 +# Enthalpy of formation: -291.13 kcal/mol + -analytic -1.2080e+001 1.2015e-003 -8.4186e+002 3.4522e+000 3.4647e+005 +# -Range: 0-300 + +1.0000 Y+++ + 1.0000 HCO3- = YCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.2788 + -delta_H 0 # Not possible to calculate enthalpy of reaction YCO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Y+++ + 1.0000 Cl- = YCl++ + -llnl_gamma 4.5 + log_k +0.3000 + -delta_H 0 # Not possible to calculate enthalpy of reaction YCl+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Y+++ + 1.0000 F- = YF++ + -llnl_gamma 4.5 + log_k +4.3000 + -delta_H 0 # Not possible to calculate enthalpy of reaction YF+2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 F- + 1.0000 Y+++ = YF2+ + -llnl_gamma 4.0 + log_k +7.8000 + -delta_H 0 # Not possible to calculate enthalpy of reaction YF2+ +# Enthalpy of formation: -0 kcal/mol + +3.0000 F- + 1.0000 Y+++ = YF3 + -llnl_gamma 3.0 + log_k +11.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction YF3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Y+++ + 1.0000 HPO4-- + 1.0000 H+ = YH2PO4++ + -llnl_gamma 4.5 + log_k +9.6054 + -delta_H 0 # Not possible to calculate enthalpy of reaction YH2PO4+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Y+++ + 1.0000 HCO3- = YHCO3++ + -llnl_gamma 4.5 + log_k +2.3000 + -delta_H 0 # Not possible to calculate enthalpy of reaction YHCO3+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Y+++ + 1.0000 HPO4-- = YHPO4+ + -llnl_gamma 4.0 + log_k +5.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction YHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Y+++ + 1.0000 NO3- = YNO3++ + -llnl_gamma 4.5 + log_k +0.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction YNO3+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Y+++ + 1.0000 H2O = YOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -7.6951 + -delta_H 0 # Not possible to calculate enthalpy of reaction YOH+2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Y+++ + 1.0000 HPO4-- = YPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k +0.2782 + -delta_H 0 # Not possible to calculate enthalpy of reaction YPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Y+++ + 1.0000 SO4-- = YSO4+ + -llnl_gamma 4.0 + log_k +3.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction YSO4+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 CH3COOH + 1.0000 Yb+++ = Yb(CH3COO)2+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -5.131 + -delta_H -30.334 kJ/mol # Calculated enthalpy of reaction Yb(CH3COO)2+ +# Enthalpy of formation: -399.75 kcal/mol + -analytic -3.4286e+001 9.4069e-004 -6.5120e+002 1.0071e+001 5.4773e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Yb+++ = Yb(CH3COO)3 +3.0000 H+ + -llnl_gamma 3.0 + log_k -8.5688 + -delta_H -51.4214 kJ/mol # Calculated enthalpy of reaction Yb(CH3COO)3 +# Enthalpy of formation: -520.89 kcal/mol + -analytic -6.2211e+001 -6.1589e-004 5.9577e+002 1.7954e+001 6.6116e+005 +# -Range: 0-300 + +2.0000 HCO3- + 1.0000 Yb+++ = Yb(CO3)2- +2.0000 H+ + -llnl_gamma 4.0 + log_k -7.0576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Yb+++ = Yb(HPO4)2- + -llnl_gamma 4.0 + log_k +10.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +# Redundant with YbO2- +#4.0000 H2O + 1.0000 Yb+++ = Yb(OH)4- +4.0000 H+ +# -llnl_gamma 4.0 +# log_k -32.6803 +# -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)4- +## Enthalpy of formation: -0 kcal/mol + +2.0000 HPO4-- + 1.0000 Yb+++ = Yb(PO4)2--- +2.0000 H+ + -llnl_gamma 4.0 + log_k -2.7437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Yb+++ = Yb(SO4)2- + -llnl_gamma 4.0 + log_k +5.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(SO4)2- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Yb+++ + 1.0000 CH3COOH = YbCH3COO++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -2.199 + -delta_H -15.2298 kJ/mol # Calculated enthalpy of reaction YbCH3COO+2 +# Enthalpy of formation: -280.04 kcal/mol + -analytic -8.5003e+000 2.2459e-003 -9.6434e+002 2.0630e+000 3.3550e+005 +# -Range: 0-300 + +1.0000 Yb+++ + 1.0000 HCO3- = YbCO3+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -2.0392 + -delta_H 82.8348 kJ/mol # Calculated enthalpy of reaction YbCO3+ +# Enthalpy of formation: -305.4 kcal/mol + -analytic 2.3533e+002 5.4436e-002 -6.7871e+003 -9.3280e+001 -1.0598e+002 +# -Range: 0-300 + +1.0000 Yb+++ + 1.0000 Cl- = YbCl++ + -llnl_gamma 4.5 + log_k +0.1620 + -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction YbCl+2 +# Enthalpy of formation: -196.9 kcal/mol + -analytic 8.0452e+001 3.8343e-002 -1.8176e+003 -3.4594e+001 -2.8386e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Yb+++ = YbCl2+ + -llnl_gamma 4.0 + log_k -0.2624 + -delta_H 17.4305 kJ/mol # Calculated enthalpy of reaction YbCl2+ +# Enthalpy of formation: -236 kcal/mol + -analytic 2.1708e+002 8.0550e-002 -5.4744e+003 -9.0101e+001 -8.5487e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Yb+++ = YbCl3 + -llnl_gamma 3.0 + log_k -0.7601 + -delta_H 8.36382 kJ/mol # Calculated enthalpy of reaction YbCl3 +# Enthalpy of formation: -278.1 kcal/mol + -analytic 4.0887e+002 1.2992e-001 -1.0578e+004 -1.6684e+002 -1.6518e+002 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Yb+++ = YbCl4- + -llnl_gamma 4.0 + log_k -1.1845 + -delta_H -15.7653 kJ/mol # Calculated enthalpy of reaction YbCl4- +# Enthalpy of formation: -323.8 kcal/mol + -analytic 4.7560e+002 1.3032e-001 -1.2452e+004 -1.9149e+002 -1.9444e+002 +# -Range: 0-300 + +1.0000 Yb+++ + 1.0000 F- = YbF++ + -llnl_gamma 4.5 + log_k +4.8085 + -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction YbF+2 +# Enthalpy of formation: -234.9 kcal/mol + -analytic 1.0291e+002 4.2493e-002 -2.7637e+003 -4.1008e+001 -4.3156e+001 +# -Range: 0-300 + +2.0000 F- + 1.0000 Yb+++ = YbF2+ + -llnl_gamma 4.0 + log_k +8.3709 + -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction YbF2+ +# Enthalpy of formation: -317.7 kcal/mol + -analytic 2.4281e+002 8.5385e-002 -5.6900e+003 -9.7299e+001 -8.8859e+001 +# -Range: 0-300 + +3.0000 F- + 1.0000 Yb+++ = YbF3 + -llnl_gamma 3.0 + log_k +11.0537 + -delta_H -13.1796 kJ/mol # Calculated enthalpy of reaction YbF3 +# Enthalpy of formation: -403.9 kcal/mol + -analytic 4.5227e+002 1.3659e-001 -1.0595e+004 -1.8038e+002 -1.6546e+002 +# -Range: 0-300 + +4.0000 F- + 1.0000 Yb+++ = YbF4- + -llnl_gamma 4.0 + log_k +13.2234 + -delta_H -60.2496 kJ/mol # Calculated enthalpy of reaction YbF4- +# Enthalpy of formation: -495.3 kcal/mol + -analytic 5.0369e+002 1.3726e-001 -1.0671e+004 -2.0026e+002 -1.6666e+002 +# -Range: 0-300 + +1.0000 Yb+++ + 1.0000 HPO4-- + 1.0000 H+ = YbH2PO4++ + -llnl_gamma 4.5 + log_k +9.5217 + -delta_H -20.0204 kJ/mol # Calculated enthalpy of reaction YbH2PO4+2 +# Enthalpy of formation: -473.9 kcal/mol + -analytic 1.0919e+002 6.3749e-002 3.8909e+002 -4.8469e+001 6.0389e+000 +# -Range: 0-300 + +1.0000 Yb+++ + 1.0000 HCO3- = YbHCO3++ + -llnl_gamma 4.5 + log_k +1.8398 + -delta_H 5.43083 kJ/mol # Calculated enthalpy of reaction YbHCO3+2 +# Enthalpy of formation: -323.9 kcal/mol + -analytic 3.9175e+001 3.1796e-002 6.9728e+001 -1.9002e+001 1.0762e+000 +# -Range: 0-300 + +1.0000 Yb+++ + 1.0000 HPO4-- = YbHPO4+ + -llnl_gamma 4.0 + log_k +6.0000 + -delta_H 0 # Not possible to calculate enthalpy of reaction YbHPO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Yb+++ + 1.0000 NO3- = YbNO3++ + -llnl_gamma 4.5 + log_k +0.2148 + -delta_H -32.9323 kJ/mol # Calculated enthalpy of reaction YbNO3+2 +# Enthalpy of formation: -217.6 kcal/mol + -analytic 1.7237e+001 2.5684e-002 2.2806e+003 -1.3055e+001 3.5581e+001 +# -Range: 0-300 + +1.0000 Yb+++ + 1.0000 H2O = YbO+ +2.0000 H+ + -llnl_gamma 4.0 + log_k -15.7506 + -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction YbO+ +# Enthalpy of formation: -203.4 kcal/mol + -analytic 1.7675e+002 2.9078e-002 -1.3106e+004 -6.3534e+001 -2.0456e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Yb+++ = YbO2- +4.0000 H+ + -llnl_gamma 4.0 + log_k -32.6741 + -delta_H 267.918 kJ/mol # Calculated enthalpy of reaction YbO2- +# Enthalpy of formation: -232.9 kcal/mol + -analytic 1.5529e+002 1.0053e-002 -1.8749e+004 -5.1764e+001 -2.9260e+002 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Yb+++ = YbO2H +3.0000 H+ + -llnl_gamma 3.0 + log_k -23.878 + -delta_H 211.016 kJ/mol # Calculated enthalpy of reaction YbO2H +# Enthalpy of formation: -246.5 kcal/mol + -analytic 3.2148e+002 4.4821e-002 -2.1971e+004 -1.1519e+002 -3.4293e+002 +# -Range: 0-300 + +1.0000 Yb+++ + 1.0000 H2O = YbOH++ +1.0000 H+ + -llnl_gamma 4.5 + log_k -7.6143 + -delta_H 74.9647 kJ/mol # Calculated enthalpy of reaction YbOH+2 +# Enthalpy of formation: -210.7 kcal/mol + -analytic 5.8142e+001 1.1402e-002 -5.6488e+003 -2.0289e+001 -8.8160e+001 +# -Range: 0-300 + +1.0000 Yb+++ + 1.0000 HPO4-- = YbPO4 +1.0000 H+ + -llnl_gamma 3.0 + log_k +0.5782 + -delta_H 0 # Not possible to calculate enthalpy of reaction YbPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Yb+++ + 1.0000 SO4-- = YbSO4+ + -llnl_gamma 4.0 + log_k +3.5697 + -delta_H 1424.65 kJ/mol # Calculated enthalpy of reaction YbSO4+ +# Enthalpy of formation: -37.2 kcal/mol + -analytic 3.0675e+002 8.6527e-002 -9.0298e+003 -1.2069e+002 -1.4099e+002 +# -Range: 0-300 + +2.0000 CH3COOH + 1.0000 Zn++ = Zn(CH3COO)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -6.062 + -delta_H -11.0458 kJ/mol # Calculated enthalpy of reaction Zn(CH3COO)2 +# Enthalpy of formation: -271.5 kcal/mol + -analytic -2.2038e+001 2.6133e-003 -2.7652e+003 6.8501e+000 6.7086e+005 +# -Range: 0-300 + +3.0000 CH3COOH + 1.0000 Zn++ = Zn(CH3COO)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -10.0715 + -delta_H 25.355 kJ/mol # Calculated enthalpy of reaction Zn(CH3COO)3- +# Enthalpy of formation: -378.9 kcal/mol + -analytic 3.5104e+001 -6.1568e-003 -1.3379e+004 -8.7697e+000 2.0670e+006 +# -Range: 0-300 + +4.0000 Cyanide- + 1.0000 Zn++ = Zn(Cyanide)4-- + -llnl_gamma 4.0 + log_k +16.7040 + -delta_H -107.305 kJ/mol # Calculated enthalpy of reaction Zn(Cyanide)4-2 +# Enthalpy of formation: 341.806 kJ/mol + -analytic 3.6586e+002 1.2655e-001 -2.9546e+003 -1.5232e+002 -4.6213e+001 +# -Range: 0-300 + +2.0000 N3- + 1.0000 Zn++ = Zn(N3)2 + -llnl_gamma 3.0 + log_k +1.1954 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(N3)2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zn++ + 1.0000 NH3 = Zn(NH3)++ + -llnl_gamma 4.5 + log_k +2.0527 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)+2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 NH3 + 1.0000 Zn++ = Zn(NH3)2++ + -llnl_gamma 4.5 + log_k +4.2590 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)2+2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 NH3 + 1.0000 Zn++ = Zn(NH3)3++ + -llnl_gamma 4.5 + log_k +6.4653 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)3+2 +# Enthalpy of formation: -0 kcal/mol + +4.0000 NH3 + 1.0000 Zn++ = Zn(NH3)4++ + -llnl_gamma 4.5 + log_k +8.3738 + -delta_H -54.9027 kJ/mol # Calculated enthalpy of reaction Zn(NH3)4+2 +# Enthalpy of formation: -533.636 kJ/mol + -analytic 1.5851e+002 -6.3376e-003 -4.6783e+003 -5.3560e+001 -7.3047e+001 +# -Range: 0-300 + +2.0000 H2O + 1.0000 Zn++ = Zn(OH)2 +2.0000 H+ + -llnl_gamma 3.0 + log_k -17.3282 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 H2O + 1.0000 Zn++ = Zn(OH)3- +3.0000 H+ + -llnl_gamma 4.0 + log_k -28.8369 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)3- +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 1.0000 Zn++ = Zn(OH)4-- +4.0000 H+ + -llnl_gamma 4.0 + log_k -41.6052 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)4-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zn++ + 1.0000 H2O + 1.0000 Cl- = Zn(OH)Cl +1.0000 H+ + -llnl_gamma 3.0 + log_k -7.5417 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)Cl +# Enthalpy of formation: -0 kcal/mol + +2.0000 Thiocyanate- + 1.0000 Zn++ = Zn(Thiocyanate)2 + -llnl_gamma 3.0 + log_k +0.8800 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(Thiocyanate)2 +# Enthalpy of formation: -0 kcal/mol + +4.0000 Thiocyanate- + 1.0000 Zn++ = Zn(Thiocyanate)4-- + -llnl_gamma 4.0 + log_k +1.2479 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(Thiocyanate)4-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zn++ + 1.0000 Br- = ZnBr+ + -llnl_gamma 4.0 + log_k -0.6365 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 Br- + 1.0000 Zn++ = ZnBr2 + -llnl_gamma 3.0 + log_k -1.0492 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 Br- + 1.0000 Zn++ = ZnBr3- + -llnl_gamma 4.0 + log_k -1.8474 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr3- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zn++ + 1.0000 CH3COOH = ZnCH3COO+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -3.1519 + -delta_H -9.87424 kJ/mol # Calculated enthalpy of reaction ZnCH3COO+ +# Enthalpy of formation: -155.12 kcal/mol + -analytic -7.9367e+000 2.8564e-003 -1.4514e+003 2.5010e+000 2.3343e+005 +# -Range: 0-300 + +1.0000 Zn++ + 1.0000 HCO3- = ZnCO3 +1.0000 H+ + -llnl_gamma 3.0 + log_k -6.4288 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnCO3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zn++ + 1.0000 Cl- = ZnCl+ + -llnl_gamma 4.0 + log_k +0.1986 + -delta_H 43.317 kJ/mol # Calculated enthalpy of reaction ZnCl+ +# Enthalpy of formation: -66.24 kcal/mol + -analytic 1.1235e+002 4.4461e-002 -4.1662e+003 -4.5023e+001 -6.5042e+001 +# -Range: 0-300 + +2.0000 Cl- + 1.0000 Zn++ = ZnCl2 + -llnl_gamma 3.0 + log_k +0.2507 + -delta_H 31.1541 kJ/mol # Calculated enthalpy of reaction ZnCl2 +# Enthalpy of formation: -109.08 kcal/mol + -analytic 1.7824e+002 7.5733e-002 -4.6251e+003 -7.4770e+001 -7.2224e+001 +# -Range: 0-300 + +3.0000 Cl- + 1.0000 Zn++ = ZnCl3- + -llnl_gamma 4.0 + log_k -0.0198 + -delta_H 22.5894 kJ/mol # Calculated enthalpy of reaction ZnCl3- +# Enthalpy of formation: -151.06 kcal/mol + -analytic 1.3889e+002 7.4712e-002 -2.1527e+003 -6.2200e+001 -3.3633e+001 +# -Range: 0-300 + +4.0000 Cl- + 1.0000 Zn++ = ZnCl4-- + -llnl_gamma 4.0 + log_k +0.8605 + -delta_H 4.98733 kJ/mol # Calculated enthalpy of reaction ZnCl4-2 +# Enthalpy of formation: -195.2 kcal/mol + -analytic 8.4294e+001 7.0021e-002 3.9150e+002 -4.2664e+001 6.0834e+000 +# -Range: 0-300 + +1.0000 Zn++ + 1.0000 ClO4- = ZnClO4+ + -llnl_gamma 4.0 + log_k +1.2768 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnClO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zn++ + 1.0000 F- = ZnF+ + -llnl_gamma 4.0 + log_k +1.1500 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnF+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zn++ + 1.0000 HPO4-- + 1.0000 H+ = ZnH2PO4+ + -llnl_gamma 4.0 + log_k +0.4300 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnH2PO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zn++ + 1.0000 HCO3- = ZnHCO3+ + -llnl_gamma 4.0 + log_k +1.4200 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnHCO3+ +# Enthalpy of formation: -0 kcal/mol + -analytic 5.1115e+002 1.2911e-001 -1.5292e+004 -2.0083e+002 -2.2721e+002 +# -Range: 25-300 + +1.0000 Zn++ + 1.0000 HPO4-- = ZnHPO4 + -llnl_gamma 3.0 + log_k +3.2600 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnHPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zn++ + 1.0000 I- = ZnI+ + -llnl_gamma 4.0 + log_k -3.0134 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI+ +# Enthalpy of formation: -0 kcal/mol + +2.0000 I- + 1.0000 Zn++ = ZnI2 + -llnl_gamma 3.0 + log_k -1.8437 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 I- + 1.0000 Zn++ = ZnI3- + -llnl_gamma 4.0 + log_k -2.0054 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI3- +# Enthalpy of formation: -0 kcal/mol + +4.0000 I- + 1.0000 Zn++ = ZnI4-- + -llnl_gamma 4.0 + log_k -2.6052 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI4-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zn++ + 1.0000 N3- = ZnN3+ + -llnl_gamma 4.0 + log_k +0.4420 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnN3+ +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zn++ + 1.0000 H2O = ZnOH+ +1.0000 H+ + -llnl_gamma 4.0 + log_k -8.96 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnOH+ +# Enthalpy of formation: -0 kcal/mol + -analytic -7.8600e-001 -2.9499e-004 -2.8673e+003 6.1892e-001 -4.2576e+001 +# -Range: 25-300 + +1.0000 Zn++ + 1.0000 HPO4-- = ZnPO4- +1.0000 H+ + -llnl_gamma 4.0 + log_k -4.3018 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnPO4- +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zn++ + 1.0000 SO4-- = ZnSO4 + -llnl_gamma 3.0 + log_k +2.3062 + -delta_H 15.277 kJ/mol # Calculated enthalpy of reaction ZnSO4 +# Enthalpy of formation: -1047.71 kJ/mol + -analytic 1.3640e+002 5.1256e-002 -3.4422e+003 -5.5695e+001 -5.8501e+001 +# -Range: 0-200 + +1.0000 Zn++ + 1.0000 SeO4-- = ZnSeO4 + -llnl_gamma 3.0 + log_k +2.1900 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnSeO4 +# Enthalpy of formation: -0 kcal/mol + +3.0000 H2O + 1.0000 Zr++++ = Zr(OH)3+ +3.0000 H+ + -llnl_gamma 4.0 + log_k -0.6693 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)3+ +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 1.0000 Zr++++ = Zr(OH)4 +4.0000 H+ + -llnl_gamma 3.0 + log_k -1.4666 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)4 +# Enthalpy of formation: -0 kcal/mol + +5.0000 H2O + 1.0000 Zr++++ = Zr(OH)5- +5.0000 H+ + -llnl_gamma 4.0 + log_k -15.9754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)5- +# Enthalpy of formation: -0 kcal/mol + +2.0000 SO4-- + 1.0000 Zr++++ = Zr(SO4)2 + -llnl_gamma 3.0 + log_k +6.2965 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(SO4)2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 SO4-- + 1.0000 Zr++++ = Zr(SO4)3-- + -llnl_gamma 4.0 + log_k +7.3007 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(SO4)3-2 +# Enthalpy of formation: -0 kcal/mol + +4.0000 H2O + 3.0000 Zr++++ = Zr3(OH)4+8 +4.0000 H+ + -llnl_gamma 6.0 + log_k -0.5803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr3(OH)4+8 +# Enthalpy of formation: -0 kcal/mol + +8.0000 H2O + 4.0000 Zr++++ = Zr4(OH)8+8 +8.0000 H+ + -llnl_gamma 6.0 + log_k -5.9606 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr4(OH)8+8 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zr++++ + 1.0000 F- = ZrF+++ + -llnl_gamma 5.0 + log_k +8.5835 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF+3 +# Enthalpy of formation: -0 kcal/mol + +2.0000 F- + 1.0000 Zr++++ = ZrF2++ + -llnl_gamma 4.5 + log_k +15.7377 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF2+2 +# Enthalpy of formation: -0 kcal/mol + +3.0000 F- + 1.0000 Zr++++ = ZrF3+ + -llnl_gamma 4.0 + log_k +21.2792 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF3+ +# Enthalpy of formation: -0 kcal/mol + +4.0000 F- + 1.0000 Zr++++ = ZrF4 + -llnl_gamma 3.0 + log_k +25.9411 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4 +# Enthalpy of formation: -0 kcal/mol + +5.0000 F- + 1.0000 Zr++++ = ZrF5- + -llnl_gamma 4.0 + log_k +30.3098 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF5- +# Enthalpy of formation: -0 kcal/mol + +6.0000 F- + 1.0000 Zr++++ = ZrF6-- + -llnl_gamma 4.0 + log_k +34.0188 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF6-2 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zr++++ + 1.0000 H2O = ZrOH+++ +1.0000 H+ + -llnl_gamma 5.0 + log_k +0.0457 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrOH+3 +# Enthalpy of formation: -0 kcal/mol + +1.0000 Zr++++ + 1.0000 SO4-- = ZrSO4++ + -llnl_gamma 4.5 + log_k +3.6064 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrSO4+2 +# Enthalpy of formation: -0 kcal/mol + +2.0000 H+ + 1.0000 O_phthalate-2 = H2O_phthalate + -llnl_gamma 3.0 + log_k +8.3580 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2O_phthalate +# Enthalpy of formation: -0 kcal/mol + + +###################### + +#Start of organic species added Feb. 4, 2011 + +####################### + +# 1-Butanamine, C4H9NH2 + + 2.0000 C2H5NH2 = C4H9NH2 + 1.0000 NH3 + -llnl_gamma 3.0 + log_k +7.0171 + -delta_h +36.110 kcal/mol + -analytic 2.6628e+000 1.4357e-003 1.7062e+003 -7.5117e-001 5.7612e+003 +# -Range: 0-300 + +# 1-Butanol, C4H9OH + + 2.0000 C2H5OH = C4H9OH + 1.0000 H2O + -llnl_gamma 3.0 + log_k +6.5001 + -delta_h +80.320 kcal/mol + -analytic -2.4958e+000 -1.9919e-003 2.3794e+003 6.5075e-001 3.7130e+001 +# -Range: 0-300 + +# 1-Butene, C4H8 + + 2.0000 C2H4 = C4H8 + -llnl_gamma 3.0 + log_k +13.6266 + -delta_h +5.635 kcal/mol + -analytic -6.9511e+000 -5.1950e-003 5.3537e+003 2.0720e+000 -8.5186e+004 +# -Range: 0-300 + +# 1-Butyne, C4H6 + + 2.0000 C2H2 + 1.0000 H2O = C4H6 + 0.5000 O2 + -llnl_gamma 3.0 + log_k -422.3711 + -delta_h -33.4 kcal/mol + -analytic 8.0147e+000 -1.9434e-003 -9.6752e+002 -3.5459e+000 8.7444e+004 +# -Range: 0-300 + +# 1-Heptanamine, C7H15NH2 + + 3.5000 C2H5NH2 = C7H15NH2 + 2.5000 NH3 + -llnl_gamma 3.0 + log_k +15.4646 + -delta_h +51.990 kcal/mol + -analytic 8.1328e+000 2.9346e-003 3.6672e+003 -2.3594e+000 5.7222e+001 +# -Range: 0-300 + +# 1-Heptanol, C7H15OH + + 3.5000 C2H5OH = C7H15OH + 2.5000 H2O + -llnl_gamma 3.0 + log_k +16.1733 + -delta_h +97.270 kcal/mol + -analytic 1.1253e+000 -1.4421e-003 5.3337e+003 -9.7252e-001 8.3227e+001 +# -Range: 0-300 + +# 1-Heptene, C7H14 + + 3.5000 C2H4 = C7H14 + -llnl_gamma 3.0 + log_k +30.5114 + -delta_h +22.670 kcal/mol + -analytic -1.1457e+001 -1.3165e-002 1.1832e+004 3.2374e+000 -1.6063e+005 +# -Range: 0-300 + +# 1-Heptyne, C7H12 + + 3.5000 C2H2 + 2.5000 H2O = C7H12 + 1.2500 O2 + -llnl_gamma 3.0 + log_k -748.8076 + -delta_h -16.98 kcal/mol + -analytic 6.8635e+000 -6.7966e-003 -3.7961e+003 -4.0767e+000 1.8009e+005 +# -Range: 0-300 + +# 1-Hexanamine, C6H13NH2 + + 3.0000 C2H5NH2 = C6H13NH2 + 2.0000 NH3 + -llnl_gamma 3.0 + log_k +12.3189 + -delta_h +46.320 kcal/mol + -analytic 2.7655e+000 2.2270e-003 3.0793e+003 -5.7977e-001 4.8049e+001 +# -Range: 0-300 + +# 1-Hexanol, C6H13OH + + 3.0000 C2H5OH = C6H13OH + 2.0000 H2O + -llnl_gamma 3.0 + log_k +13.8358 + -delta_h +92.690 kcal/mol + -analytic 1.2093e+001 -8.5858e-004 4.0578e+003 -4.6909e+000 6.3315e+001 +# -Range: 0-300 + +# 1-Hexene, C6H12 + + 3.0000 C2H4 = C6H12 + -llnl_gamma 3.0 + log_k +24.9076 + -delta_h +17.025 kcal/mol + -analytic -1.8354e+001 -1.1761e-002 1.0127e+004 5.8975e+000 -1.5953e+005 +# -Range: 0-300 + +# 1-Hexyne, C6H10 + + 3.0000 C2H2 + 2.0000 H2O = C6H10 + 1.0000 O2 + -llnl_gamma 3.0 + log_k -639.9392 + -delta_h -22.34 kcal/mol + -analytic 2.6448e+001 -2.4295e-003 -3.8892e+003 -1.0837e+001 2.0944e+005 +# -Range: 0-300 + +# 1-Octanamine, C8H17NH2 + + 4.0000 C2H5NH2 = C8H17NH2 + 3.0000 NH3 + -llnl_gamma 3.0 + log_k +18.6103 + -delta_h +57.660 kcal/mol + -analytic 9.9090e+000 3.5563e-003 4.4097e+003 -2.8869e+000 6.8807e+001 +# -Range: 0-300 + +# 1-Octanol, C8H12OH +# + 4.0000 C2H5OH = C8H12OH + 3.0000 H2O +# does not balance +# -llnl_gamma 3.0 +# log_k +19.7862 +# -delta_h +103.060 kcal/mol +# -analytic -1.0628e+001 -4.8545e-003 7.2441e+003 3.0590e+000 1.1304e+002 +# -Range: 0-300 + +# 1-Octene, C8H16 + + 4.0000 C2H4 = C8H16 + -llnl_gamma 3.0 + log_k +35.9760 + -delta_h +28.120 kcal/mol + -analytic -3.3408e+001 -1.8810e-002 1.5052e+004 1.1026e+001 -2.4723e+005 +# -Range: 0-300 + +# 1-Octyne, C8H14 + + 4.0000 C2H2 + 3.0000 H2O = C8H14 + 1.5000 O2 + -llnl_gamma 3.0 + log_k -857.5439 + -delta_h -11.33 kcal/mol + -analytic 4.5356e+001 -2.9242e-003 -6.8742e+003 -1.8272e+001 3.3648e+005 +# -Range: 0-300 + +# 1-Pentanamine, C5H11NH2 + + 2.5000 C2H5NH2 = C5H11NH2 + 1.5000 NH3 + -llnl_gamma 3.0 + log_k +9.1805 + -delta_h +40.650 kcal/mol + -analytic 8.4037e+000 2.7132e-003 1.9292e+003 -2.7349e+000 2.3844e+004 +# -Range: 0-300 + +# 1-Pentanol, C5H11OH + + 2.5000 C2H5OH = C5H11OH + 1.5000 H2O + -llnl_gamma 3.0 + log_k +11.1245 + -delta_h +87.730 kcal/mol + -analytic -9.8673e-001 -2.4789e-003 3.8322e+003 0.0000e+000 0.0000e+000 +# -Range: 0-300 + +# 1-Pentene, C5H10 + + 2.5000 C2H4 = C5H10 + -llnl_gamma 3.0 + log_k +19.1718 + -delta_h +11.200 kcal/mol + -analytic -5.8469e+001 -1.4970e-002 1.0267e+004 2.0489e+001 -2.6977e+005 +# -Range: 0-300 + +# 1-Pentyne, C5H8 + + 2.5000 C2H2 + 1.5000 H2O = C5H8 + 0.7500 O2 + -llnl_gamma 3.0 + log_k -531.1075 + -delta_h -27.8 kcal/mol + -analytic 5.0924e+000 -3.9604e-003 -1.7557e+003 -2.7988e+000 1.1194e+005 +# -Range: 0-300 + +# 1-Propanamine, C3H7NH2 + + 1.5000 C2H5NH2 = C3H7NH2 + 0.5000 NH3 + -llnl_gamma 3.0 + log_k +4.1279 + -delta_h +30.680 kcal/mol + -analytic 2.8174e+000 8.5281e-004 9.7545e+002 -8.9491e-001 1.5220e+001 +# -Range: 0-300 + +# 1-Propanol, C3H7OH + + 1.5000 C2H5OH = C3H7OH + 0.5000 H2O + -llnl_gamma 3.0 + log_k +3.8548 + -delta_h +75.320 kcal/mol + -analytic -2.8360e+000 -1.0577e-003 1.4368e+003 8.8413e-001 2.2421e+001 +# -Range: 0-300 + +# 1-Propene, C3H6 + + 1.5000 C2H4 = C3H6 + -llnl_gamma 3.0 + log_k +8.2573 + -delta_h +0.290 kcal/mol + -analytic 1.1038e+001 -3.4869e-004 2.3006e+003 -4.2007e+000 3.5895e+001 +# -Range: 0-300 + +# 1-Propyne, C3H4 + + 1.5000 C2H2 + 0.5000 H2O = C3H4 + 0.2500 O2 + -llnl_gamma 3.0 + log_k -313.6201 + -delta_h -38.97 kcal/mol + -analytic 2.4860e-002 -1.5316e-003 4.1336e+002 -3.4011e-001 3.0624e+004 +# -Range: 0-300 + +# # 2-Butanone, C4H8O CH3C(O)CH2CH3 +# + 4.0000 CH3COCH3 = C4H8O + 0.5000 O2 +# does not balance +# -llnl_gamma 3.0 +# log_k -1200.9839 +# -delta_h +67.880 kcal/mol +# -analytic -2.1942e+001 9.8502e-004 -9.1936e+003 6.9213e+000 1.6006e+005 +# -Range: 0-300 + +# 2-Heptanone, C7H14O correct formula +# + 7.0000 CH3COCH3 = C7H14O + 2.0000 O2 +# does not balance +# -llnl_gamma 3.0 +# log_k -2179.4136 +# -delta_h +84.890 kcal/mol +# -analytic -1.8734e+002 -6.9923e-003 -3.0077e+004 6.2205e+001 -4.6928e+002 +# -Range: 0-300 + +# 2-Hexanone, C6H12O +# + 6.0000 CH3COCH3 = C6H12O + 1.5000 O2 +# does not balance +# -llnl_gamma 3.0 +# log_k -1853.3802 +# -delta_h +79.220 kcal/mol +# -analytic 3.3773e+002 5.9197e-002 -5.0406e+004 -1.2439e+002 1.7107e+006 +# -Range: 0-300 + +# 2-Hydroxybutanoate, C4H7O3- + + 1.0000 C3H7COOH + 0.5000 O2 = C4H7O3- + 1.0000 H+ + -llnl_gamma 4.0 + log_k -3.8116 + -delta_h +169.810 kcal/mol + -analytic -5.4902e+001 -2.9840e-002 9.1382e+003 2.2664e+001 1.4261e+002 +# -Range: 0-300 + +# 2-Hydroxybutanoic, C4H8O3 + + 1.0000 C3H7COOH + 0.5000 O2 = C4H8O3 + -llnl_gamma 3.0 + log_k -332.1774 + -delta_h +169.670 kcal/mol + -analytic -3.0810e+001 -8.1378e-003 1.0507e+004 1.0709e+001 -1.5474e+005 +# -Range: 0-300 + +# 2-Hydroxydecanoate, C10H19O3- + + 5.0000 CH3COOH = C10H19O3- + 3.5000 O2 + 1.0000 H+ + -llnl_gamma 4.0 + log_k -3.7383 + -delta_h +203.930 kcal/mol + -analytic -2.8008e+002 -1.9653e-002 -6.9199e+004 9.7024e+001 -1.0797e+003 +# -Range: 0-300 + +# 2-Hydroxydecanoic, C10H20O3 + + 5.0000 CH3COOH = C10H20O3 + 3.5000 O2 + -llnl_gamma 3.0 + log_k -984.2221 + -delta_h +203.690 kcal/mol + -analytic -3.2602e+002 -2.4822e-002 -6.7352e+004 1.1523e+002 -1.0509e+003 +# -Range: 0-300 + +# 2-Hydroxyheptanoate, C7H13O3- + + 3.5000 CH3COOH = C7H13O3- + 2.0000 O2 + 1.0000 H+ + -llnl_gamma 4.0 + log_k -3.7383 + -delta_h +186.900 kcal/mol + -analytic -2.0491e+002 -2.6664e-002 -3.9557e+004 7.2979e+001 -6.1720e+002 +# -Range: 0-300 + +# 2-Hydroxyheptanoic, C7H14O3 + + 3.5000 CH3COOH = C7H14O3 + 2.0000 O2 + -llnl_gamma 3.0 + log_k -658.2107 + -delta_h +186.680 kcal/mol + -analytic -1.9142e+002 -1.4836e-002 -3.9307e+004 6.7281e+001 -6.1330e+002 +# -Range: 0-300 + +# 2-Hydroxyhexanoate, C6H11O3- + + 3.0000 CH3COOH = C6H11O3- + 1.5000 O2 + 1.0000 H+ + -llnl_gamma 4.0 + log_k -3.7384 + -delta_h +181.240 kcal/mol + -analytic -1.7865e+002 -2.8722e-002 -2.9711e+004 6.4493e+001 -4.6357e+002 +# -Range: 0-300 + +# 2-Hydroxyhexanoic, C6H12O3 + + 3.0000 CH3COOH = C6H12O3 + 1.5000 O2 + -llnl_gamma 3.0 + log_k -549.5329 + -delta_h +181.010 kcal/mol + -analytic 4.5831e+000 5.4145e-003 -3.9948e+004 -1.4677e+000 6.9991e+005 +# -Range: 0-300 + +# 2-Hydroxynonanoate, C9H17O3- + + 4.5000 CH3COOH = C9H17O3- + 3.0000 O2 + 1.0000 H+ + -llnl_gamma 4.0 + log_k -3.7383 + -delta_h +198.250 kcal/mol + -analytic -2.5572e+002 -2.2155e-002 -5.9298e+004 8.9284e+001 -9.2521e+002 +# -Range: 0-300 + +# 2-Hydroxynonanoic, C9H18O3 + + 4.5000 CH3COOH = C9H18O3 + 3.0000 O2 + -llnl_gamma 3.0 + log_k -875.5516 + -delta_h +198.020 kcal/mol + -analytic -1.1226e+002 -3.7272e-003 -6.9576e+004 4.0711e+001 8.3790e+005 +# -Range: 0-300 + +# 2-Hydroxyoctanoate, C8H15O3- + + 4.0000 CH3COOH = C8H15O3- + 2.5000 O2 + 1.0000 H+ + -llnl_gamma 4.0 + log_k -3.7383 + -delta_h +192.570 kcal/mol + -analytic 6.7477e+001 1.2723e-002 -6.7802e+004 -2.4249e+001 1.1992e+006 +# -Range: 0-300 + +# 2-Hydroxyoctanoic, C8H16O3 + + 4.0000 CH3COOH = C8H16O3 + 2.5000 O2 + -llnl_gamma 3.0 + log_k -766.8885 + -delta_h +192.350 kcal/mol + -analytic 1.8003e+002 3.4449e-002 -7.4099e+004 -6.4322e+001 1.6435e+006 +# -Range: 0-300 + +# 2-Hydroxypentanoate, C5H9O3- + + 1.0000 C4H9COOH + 0.5000 O2 = C5H9O3- + 1.0000 H+ + -llnl_gamma 4.0 + log_k -3.5918 + -delta_h +175.770 kcal/mol + -analytic -3.4964e+001 -2.4619e-002 8.6213e+003 1.4743e+001 1.3454e+002 +# -Range: 0-300 + +# 2-Hydroxypentanoic, C5H10O3 + + 1.0000 C4H9COOH + 0.5000 O2 = C5H10O3 + -llnl_gamma 3.0 + log_k -440.8552 + -delta_h +175.340 kcal/mol + -analytic -4.8323e+001 -1.0534e-002 1.1616e+004 1.6913e+001 -2.3478e+005 +# -Range: 0-300 + +# 2-Octanone, C8H16O +# + 8.0000 CH3COCH3 = C8H16O + 2.5000 O2 +# does not balance +# -llnl_gamma 3.0 +# log_k -2505.4468 +# -delta_h +90.560 kcal/mol +# -analytic 3.9776e+002 7.5718e-002 -7.4592e+004 -1.4798e+002 2.2610e+006 +# -Range: 0-300 + +# 2-Pentanone, C5H10O +# + 5.0000 CH3COCH3 = C5H10O + 1.0000 O2 +# does not balance +# -llnl_gamma 3.0 +# log_k -1527.6549 +# -delta_h +73.460 kcal/mol +# -analytic 2.2603e+002 3.9343e-002 -3.3782e+004 -8.3253e+001 1.1722e+006 +# -Range: 0-300 + +# Acetaldehyde, CH3CHO + + 1.0000 CH3COOH = CH3CHO + 0.5000 O2 + -llnl_gamma 3.0 + log_k -188.3673 + -delta_h +50.380 kcal/mol + -analytic 2.3139e+001 9.8759e-003 -1.4924e+004 -9.4191e+000 8.0783e+004 +# -Range: 0-300 + +# Acetamide, CH3CONH2 + + 1.0000 NH3 + 1.0000 CH3COOH = CH3CONH2 + 1.0000 H2O + -llnl_gamma 3.0 + log_k +4.6947 + -delta_h +77.290 kcal/mol + -analytic 2.4852e+001 5.3426e-003 1.3023e+003 -1.0554e+001 2.0315e+001 +# -Range: 0-300 + +# CH3COCH3, CH3COCH3 + + 3.0000 HCO3- + 3.0000 H+ = CH3COCH3 + 4.0000 O2 + -llnl_gamma 3.0 + log_k -291.8554 + -delta_h +61.720 kcal/mol + -analytic -2.5990E+03 -4.4302E-01 -5.7126E+02 9.8637E+02 -1.6901E-01 +# -Range: 0-300 + +# Adipate, C6H8O4-2 + + 3.0000 CH3COOH = C6H8O4-2 + 2.0000 H+ + 1.0000 H2O + 0.5000 O2 + -llnl_gamma 4.0 + log_k -9.8223 + -delta_h +227.780 kcal/mol + -analytic -1.6044e+002 -7.4583e-002 -9.1669e+003 6.5454e+001 -1.4299e+002 +# -Range: 0-300 + +# Adipic_acid, C6H10O4 + + 3.0000 CH3COOH = C6H10O4 + 1.0000 H2O + 0.5000 O2 + -llnl_gamma 3.0 + log_k -467.5962 + -delta_h +229.750 kcal/mol + -analytic -4.7527e+001 -1.3717e-002 -1.0191e+004 1.7857e+001 -1.5900e+002 +# -Range: 0-300 + +# Alanine, C3H7NO2 + + 1.0000 NH3 + 3.0000 HCO3- + 3.0000 H+ = C3H7NO2 + 1.0000 H2O + 3.0000 O2 + -llnl_gamma 3.0 + log_k -215.2132 + -delta_h +132.130 kcal/mol + -analytic -1.8686E+03 -3.1237E-01 -5.4608E+02 7.0646E+02 -8.7774E-03 +# -Range 0-300 + +# Alanylglycine, C5H10N2O3 + + 2.5000 C2H5NO2 = C5H10N2O3 + 0.7500 O2 + 0.5000 H2O + 0.5000 NH3 + -llnl_gamma 3.0 + log_k -326.317 + -delta_h +186.110 kcal/mol + -analytic 1.4154e+001 1.2917e-002 -2.0305e+004 -5.2689e+000 6.4481e+005 +# -Range: 0-300 + +# Asparagine, C4H8N2O3 + + 2.0000 C2H5NO2 = C4H8N2O3 + 1.0000 H2O + -llnl_gamma 3.0 + log_k +5.9386 + -delta_h +186.660 kcal/mol + -analytic -1.7915e+001 8.7354e-004 2.1119e+003 6.1432e+000 1.1658e+005 +# -Range: 0-300 + +# Aspartic_acid, C4H7NO4 + + 2.0000 C2H5NO2 = C4H7NO4 + 1.0000 NH3 + -llnl_gamma 3.0 + log_k +1.1340 + -delta_h +226.370 kcal/mol + -analytic -1.6456e+001 1.7980e-003 2.4086e+002 6.0721e+000 1.0866e+005 +# -Range: 0-300 + +# Azelaic_acid, C9H16O4 + + 4.5000 CH3COOH = C9H16O4 + 2.0000 O2 + 1.0000 H2O + -llnl_gamma 3.0 + log_k -795.8139 + -delta_h +240.700 kcal/mol + -analytic 2.0346e+002 2.5843e-002 -6.2187e+004 -7.1175e+001 1.4838e+006 +# -Range: 0-300 + +# Azelate, C9H14O4-2 + + 4.5000 CH3COOH = C9H14O4-2 + 2.0000 H+ + 2.0000 O2 + 1.0000 H2O + -llnl_gamma 4.0 + log_k -9.9176 + -delta_h +241.660 kcal/mol + -analytic -2.5031e+002 -7.0995e-002 -3.9050e+004 9.5249e+001 -6.0927e+002 +# -Range: 0-300 + +# Ba(Ala)+, Ba(C3H6NO2)+ + + 1.0000 Ba+2 + 1.0000 C3H7NO2 = Ba(C3H6NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -9.3949 + -delta_h +243.703 kcal/mol + -analytic -1.9975e+001 5.8683e-003 -3.7242e+003 7.5785e+000 2.2969e+005 +# -Range: 0-300 + +# Ba(Ala)2, Ba(C3H6NO2)2 + + 2.0000 C3H7NO2 + 1.0000 Ba+2 = Ba(C3H6NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -19.3096 + -delta_h +359.051 kcal/mol + -analytic 1.0973e+002 1.7563e-002 -2.0507e+004 -3.3504e+001 1.5490e+006 +# -Range: 0-300 + +# Ba(But)+, Ba(CH3(CH2)2CO2)+ + + 1.0000 C3H7COOH + 1.0000 Ba+2 = Ba(CH3(CH2)2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.8378 + -delta_h +253.285 kcal/mol + -analytic -1.6992e+001 3.8062e-003 -1.7104e+003 5.2858e+000 3.2839e+005 +# -Range: 0-300 + +# Ba(But)2, Ba(CH3(CH2)2CO2)2 + + 2.0000 C3H7COOH + 1.0000 Ba+2 = Ba(CH3(CH2)2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -9.9857 + -delta_h +378.066 kcal/mol + -analytic -2.9726e+000 1.9119e-003 -9.5963e+003 3.7172e+000 1.3721e+006 +# -Range: 0-300 + +# Ba(For)+, Ba(CHO2)+ + + 1.0000 HCOOH + 1.0000 Ba+2 = Ba(CHO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.3727 + -delta_h +228.918 kcal/mol + -analytic 8.0004e-001 1.5487e-003 -2.7467e+002 -1.0939e+000 -4.2863e+000 +# -Range: 0-300 + +# Ba(For)2, Ba(CHO2)2 + + 2.0000 HCOOH + 1.0000 Ba+2 = Ba(CHO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.296 + -delta_h +329.933 kcal/mol + -analytic 3.4358e+001 -2.1439e-003 -4.0534e+003 -1.1596e+001 2.9161e+005 +# -Range: 0-300 + +# Ba(Gly)+, Ba(C2H4NO2)+ + + 1.0000 C2H5NO2 + 1.0000 Ba+2 = Ba(C2H4NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -8.2881 + -delta_h +235.808 kcal/mol + -analytic -4.3238e+000 8.7896e-003 -3.1933e+003 1.1733e+000 1.0974e+005 +# -Range: 0-300 + +# Ba(Gly)2, Ba(C2H4NO2)2 + + 2.0000 C2H5NO2 + 1.0000 Ba+2 = Ba(C2H4NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -17.1868 + -delta_h +343.302 kcal/mol + -analytic 3.6958e+001 8.4550e-003 -1.2694e+004 -9.4136e+000 8.1935e+005 +# -Range: 0-300 + +# Ba(Glyc)+, Ba(CH3OCO2)+ + + 1.0000 C2H4O3 + 1.0000 Ba+2 = Ba(CH3OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.8338 + -delta_h +282.924 kcal/mol + -analytic -1.6504e+001 4.4210e-004 -4.2741e+002 5.3311e+000 1.5913e+005 +# -Range: 0-300 + +# Ba(Glyc)2, Ba(CH3OCO2)2 + + 2.0000 C2H4O3 + 1.0000 Ba+2 = Ba(CH3OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.9674 + -delta_h +436.833 kcal/mol + -analytic 5.7805e+000 -1.9337e-003 -5.5632e+003 -3.9310e-001 7.5344e+005 +# -Range: 0-300 + +# Ba(Lac)+, Ba(CH3CH2OCO2)+ + + 1.0000 C3H6O3 + 1.0000 Ba+2 = Ba(CH3CH2OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.223 + -delta_h +291.416 kcal/mol + -analytic -1.3618e+001 2.4575e-003 -1.0433e+003 4.2488e+000 2.3666e+005 +# -Range: 0-300 + +# Ba(Lac)2, Ba(CH3CH2OCO2)2 + + 2.0000 C3H6O3 + 1.0000 Ba+2 = Ba(CH3CH2OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.6762 + -delta_h +453.654 kcal/mol + -analytic 1.1971e+001 8.0125e-004 -7.9857e+003 -1.7124e+000 1.0808e+006 +# -Range: 0-300 + +# Ba(Pent)+, Ba(CH3(CH2)3CO2)+ + + 1.0000 C4H9COOH + 1.0000 Ba+2 = Ba(CH3(CH2)3CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -5.0673 + -delta_h +259.492 kcal/mol + -analytic -3.4714e+001 4.4831e-003 -2.0568e+003 1.1920e+001 5.1000e+005 +# -Range: 0-300 + +# Ba(Pent)2, Ba(CH3(CH2)3CO2)2 + + 2.0000 C4H9COOH + 1.0000 Ba+2 = Ba(CH3(CH2)3CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -10.4241 + -delta_h +389.909 kcal/mol + -analytic -3.2583e+001 3.5113e-003 -1.2204e+004 1.6052e+001 1.9881e+006 +# -Range: 0-300 + +# Ba(Prop)+, Ba(CH3CH2CO2)+ + + 1.0000 C2H5COOH + 1.0000 Ba+2 = Ba(CH3CH2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.7462 + -delta_h +248.190 kcal/mol + -analytic -5.3032e+000 4.7638e-003 -2.1690e+003 1.1454e+000 3.1960e+005 +# -Range: 0-300 + +# Ba(Prop)2, Ba(CH3CH2CO2)2 + + 2.0000 C2H5COOH + 1.0000 Ba+2 = Ba(CH3CH2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -9.823 + -delta_h +368.336 kcal/mol + -analytic -1.3636e+001 2.7509e-004 -7.6760e+003 6.8362e+000 1.1194e+006 +# -Range: 0-300 + +# Benzene, C6H6 + + 6.0000 HCO3- + 6.0000 H+ = C6H6 + 3.0000 H2O + 7.5 O2 + -llnl_gamma 3.0 + log_k -537.502 + -delta_h -12.23 kcal/mol + -analytic -4.7749E+03 -8.0212E-01 -6.4755E+02 1.8097E+03 -7.4941E-01 +# -Range: 0-300 + +# Benzoate, C7H5O2- + + 3.5000 CH3COOH = C7H5O2- + 4.0000 H2O + 1.0000 H+ + 0.5000 O2 + -llnl_gamma 6.0 + log_k -4.2001 + -delta_h +84.990 kcal/mol + -analytic -1.6676e+002 -3.8444e-002 -5.4403e+003 6.2663e+001 -8.4843e+001 +# -Range: 0-300 + +# Benzoic_acid, C7H6O2 + + 3.5000 CH3COOH = C7H6O2 + 4.0000 H2O + 0.5000 O2 + -llnl_gamma 3.0 + log_k -534.1773 + -delta_h +85.070 kcal/mol + -analytic 1.5144e+001 3.5834e-003 -1.3334e+004 -5.4195e+000 4.1964e+005 +# -Range: 0-300 + +# Butanal, CH3(CH2)2CHO + + 1.0000 C2H4 + 1.0000 CH3COOH = CH3(CH2)2CHO + 0.5000 O2 + -llnl_gamma 3.0 + log_k -406.1993 + -delta_h +61.070 kcal/mol + -analytic -1.2090e+001 -8.7356e-004 -9.4627e+003 3.4311e+000 -1.4765e+002 +# -Range: 0-300 + +# Butanoate, C3H7COO- + + 1.0000 C3H7COOH = C3H7COO- + 1.0000 H+ + -llnl_gamma 4.0 + log_k -4.8085 + -delta_h +128.630 kcal/mol + -analytic -8.2788e+001 -2.9877e-002 1.7558e+003 3.2727e+001 2.7421e+001 +# -Range: 0-300 + +# Butanoic_acid, C3H7COOH + + 4.0000 HCO3- + 4.0000 H+ = C3H7COOH + 5.0000 O2 + -llnl_gamma 3.0 + log_k -358.9446 + -delta_h +127.950 kcal/mol + -analytic -3.1892E+03 -5.4023E-01 -5.9261E+02 1.2095E+03 -3.5739E-01 +# -Range: 0-300 + +# Ca(Ala)+, Ca(C3H6NO2)+ + + 1.0000 Ca+2 + 1.0000 C3H7NO2 = Ca(C3H6NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -9.1245 + -delta_h +247.083 kcal/mol + -analytic 1.6971e+001 9.5706e-003 -6.1936e+003 -5.4079e+000 4.6397e+005 +# -Range: 0-300 + +# Ca(Ala)2, Ca(C3H6NO2)2 + + 2.0000 C3H7NO2 + 1.0000 Ca+2 = Ca(C3H6NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -18.8192 + -delta_h +364.714 kcal/mol + -analytic 2.3029e+001 8.5155e-003 -1.5061e+004 -3.5999e+000 1.3386e+006 +# -Range: 0-300 + +# Ca(But)+, Ca(CH3(CH2)2CO2)+ + + 1.0000 Ca+2 + 1.0000 C3H7COOH = Ca(CH3(CH2)2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.2976 + -delta_h +257.034 kcal/mol + -analytic -2.5048e+001 1.5166e-003 -1.4808e+003 8.3797e+000 4.0411e+005 +# -Range: 0-300 + +# Ca(But)2, Ca(CH3(CH2)2CO2)2 + + 2.0000 C3H7COOH + 1.0000 Ca+2 = Ca(CH3(CH2)2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -8.9955 + -delta_h +384.411 kcal/mol + -analytic 2.0646e+000 5.8047e-003 -9.1382e+003 5.9558e-001 1.4594e+006 +# -Range: 0-300 + +# Ca(For)+, Ca(CHO2)+ + + 1.0000 HCOOH + 1.0000 Ca+2 = Ca(CHO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.3229 + -delta_h +231.998 kcal/mol + -analytic 2.9298e+000 9.5453e-004 -6.9686e+002 -1.7506e+000 1.0103e+005 +# -Range: 0-300 + +# Ca(For)2, Ca(CHO2)2 + + 2.0000 HCOOH + 1.0000 Ca+2 = Ca(CHO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.2058 + -delta_h +335.050 kcal/mol + -analytic 2.6958e+001 -7.2777e-005 -3.1911e+003 -1.0215e+001 3.4188e+005 +# -Range: 0-300 + +# Ca(Gly)+, Ca(C2H4NO2)+ + + 1.0000 C2H5NO2 + 1.0000 Ca+2 = Ca(C2H4NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -8.4281 + -delta_h +238.629 kcal/mol + -analytic 9.6784e+000 9.2419e-003 -4.5102e+003 -3.5460e+000 2.7110e+005 +# -Range: 0-300 + +# Ca(Gly)2, Ca(C2H4NO2)2 + + 2.0000 C2H5NO2 + 1.0000 Ca+2 = Ca(C2H4NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -17.4463 + -delta_h +347.942 kcal/mol + -analytic 4.7335e+001 1.2694e-002 -1.3050e+004 -1.4305e+001 9.4368e+005 +# -Range: 0-300 + +# Ca(Glyc)+, Ca(CH3OCO2)+ + + 1.0000 C2H4O3 + 1.0000 Ca+2 = Ca(CH3OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.1836 + -delta_h +285.318 kcal/mol + -analytic -6.6096e+000 1.5353e-003 -1.1777e+003 2.0325e+000 2.5764e+005 +# -Range: 0-300 + +# Ca(Glyc)2, Ca(CH3OCO2)2 + + 2.0000 C2H4O3 + 1.0000 Ca+2 = Ca(CH3OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.777 + -delta_h +441.481 kcal/mol + -analytic 1.5520e+001 2.3781e-003 -5.6732e+003 -4.6723e+000 8.5347e+005 +# -Range: 0-300 + +# Ca(Lac)+, Ca(CH3CH2OCO2)+ + + 1.0000 C3H6O3 + 1.0000 Ca+2 = Ca(CH3CH2OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.4431 + -delta_h +294.436 kcal/mol + -analytic -1.3975e+001 1.7379e-003 -1.2135e+003 4.6597e+000 3.1702e+005 +# -Range: 0-300 + +# Ca(Lac)2, Ca(CH3CH2OCO2)2 + + 2.0000 C3H6O3 + 1.0000 Ca+2 = Ca(CH3CH2OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.2461 + -delta_h +459.217 kcal/mol + -analytic -1.6205e+001 -2.3672e-004 -5.8180e+003 7.5258e+000 1.0619e+006 +# -Range: 0-300 + +# Ca(Pent)+, Ca(CH3(CH2)3CO2)+ + + 1.0000 C4H9COOH + 1.0000 Ca+2 = Ca(CH3(CH2)3CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.5674 + -delta_h +263.187 kcal/mol + -analytic -3.1543e+001 3.4804e-003 -2.5576e+003 1.1076e+001 6.3392e+005 +# -Range: 0-300 + +# Ca(Pent)2, Ca(CH3(CH2)3CO2)2 + + 2.0000 C4H9COOH + 1.0000 Ca+2 = Ca(CH3(CH2)3CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -9.5042 + -delta_h +396.159 kcal/mol + -analytic -3.4318e+001 6.3122e-003 -1.1437e+004 1.5421e+001 2.0603e+006 +# -Range: 0-300 + +# Ca(Prop)+, Ca(CH3CH2CO2)+ + + 1.0000 C2H5COOH + 1.0000 Ca+2 = Ca(CH3CH2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.2163 + -delta_h +251.925 kcal/mol + -analytic -1.1303e+001 2.9020e-003 -2.0209e+003 3.4533e+000 3.9745e+005 +# -Range: 0-300 + +# Ca(Prop)2, Ca(CH3CH2CO2)2 + + 2.0000 C2H5COOH + 1.0000 Ca+2 = Ca(CH3CH2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -8.8533 + -delta_h +374.653 kcal/mol + -analytic -2.1746e+001 2.3077e-003 -6.4906e+003 8.4496e+000 1.1644e+006 +# -Range: 0-300 + +# Cd(Ala)+, Cd(C3H6NO2)+ + + 1.0000 Cd+2 + 1.0000 C3H7NO2 = Cd(C3H6NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -5.3348 + -delta_h +141.016 kcal/mol + -analytic -1.0583e+001 3.9676e-003 -4.0210e+003 5.0485e+000 4.5101e+005 +# -Range: 0-300 + +# Cd(Ala)2, Cd(C3H6NO2)2 + + 2.0000 C3H7NO2 + 1.0000 Cd+2 = Cd(C3H6NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -11.8894 + -delta_h +263.420 kcal/mol + -analytic 2.5164e+001 8.5032e-003 -1.3671e+004 -4.0957e+000 1.4600e+006 +# -Range: 0-300 + +# Cd(But)+, Cd(CH3(CH2)2CO2)+ + + 1.0000 Cd+2 + 1.0000 C3H7COOH = Cd(CH3(CH2)2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.2875 + -delta_h +147.174 kcal/mol + -analytic -2.4575e+001 -8.5197e-006 -1.6709e+003 8.7040e+000 4.7765e+005 +# -Range: 0-300 + +# Cd(But)2, Cd(CH3(CH2)2CO2)2 + + 2.0000 C3H7COOH + 1.0000 Cd+2 = Cd(CH3(CH2)2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.976 + -delta_h +276.419 kcal/mol + -analytic -5.3701e+000 4.5291e-003 -8.6471e+003 3.5125e+000 1.5458e+006 +# -Range: 0-300 + +# Cd(For)+, Cd(CHO2)+ + + 1.0000 HCOOH + 1.0000 Cd+2 = Cd(CHO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.9131 + -delta_h +121.320 kcal/mol + -analytic -5.5574e-001 -1.0359e-003 -8.1506e+002 -3.4199e-002 1.5786e+005 +# -Range: 0-300 + +# Cd(For)2, Cd(CHO2)2 + + 2.0000 HCOOH + 1.0000 Cd+2 = Cd(CHO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -3.6658 + -delta_h +226.403 kcal/mol + -analytic 2.2826e+000 -3.7353e-003 -1.8618e+003 -1.1085e+000 3.7009e+005 +# -Range: 0-300 + +# Cd(Gly)+, Cd(C2H4NO2)+ + + 1.0000 C2H5NO2 + 1.0000 Cd+2 = Cd(C2H4NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -5.0885 + -delta_h +132.088 kcal/mol + -analytic -1.0697e+001 4.7244e-003 -2.8241e+003 4.2651e+000 2.7816e+005 +# -Range: 0-300 + +# Cd(Gly)2, Cd(C2H4NO2)2 + + 2.0000 C2H5NO2 + 1.0000 Cd+2 = Cd(C2H4NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -11.1564 + -delta_h +246.607 kcal/mol + -analytic 1.7236e+001 8.4272e-003 -9.8265e+003 -3.4936e+000 9.5253e+005 +# -Range: 0-300 + +# Cd(Glyc)+, Cd(CH3OCO2)+ + + 1.0000 C2H4O3 + 1.0000 Cd+2 = Cd(CH3OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.9637 + -delta_h +174.381 kcal/mol + -analytic -2.7570e+000 5.5464e-004 -1.7718e+003 1.1165e+000 3.3942e+005 +# -Range: 0-300 + +# Cd(Glyc)2, Cd(CH3OCO2)2 + + 2.0000 C2H4O3 + 1.0000 Cd+2 = Cd(CH3OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.3775 + -delta_h +331.279 kcal/mol + -analytic 1.7413e+001 2.4215e-003 -6.1858e+003 -5.1146e+000 9.6988e+005 +# -Range: 0-300 + +# Cd(Lac)+, Cd(CH3CH2OCO2)+ + + 1.0000 C3H6O3 + 1.0000 Cd+2 = Cd(CH3CH2OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.1631 + -delta_h +183.519 kcal/mol + -analytic -1.3237e+001 2.9922e-004 -1.6309e+003 4.8863e+000 3.8920e+005 +# -Range: 0-300 + +# Cd(Lac)2, Cd(CH3CH2OCO2)2 + + 2.0000 C3H6O3 + 1.0000 Cd+2 = Cd(CH3CH2OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.736 + -delta_h +349.085 kcal/mol + -analytic -1.7558e+001 -6.8972e-004 -6.1408e+003 8.2844e+000 1.1691e+006 +# -Range: 0-300 + +# Cd(Pent)+, Cd(CH3(CH2)3CO2)+ + + 1.0000 C4H9COOH + 1.0000 Cd+2 = Cd(CH3(CH2)3CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.237 + -delta_h +153.764 kcal/mol + -analytic -1.4232e+001 4.3507e-003 -3.5842e+003 5.3294e+000 7.6047e+005 +# -Range: 0-300 + +# Cd(Pent)2, Cd(CH3(CH2)3CO2)2 + + 2.0000 C4H9COOH + 1.0000 Cd+2 = Cd(CH3(CH2)3CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.0742 + -delta_h +288.726 kcal/mol + -analytic -3.1302e+001 6.5168e-003 -1.1405e+004 1.4573e+001 2.1801e+006 +# -Range: 0-300 + +# Cd(Prop)+, Cd(CH3CH2CO2)+ + + 1.0000 C2H5COOH + 1.0000 Cd+2 = Cd(CH3CH2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.0068 + -delta_h +142.338 kcal/mol + -analytic -1.1700e+001 1.3228e-003 -2.0826e+003 4.0674e+000 4.6555e+005 +# -Range: 0-300 + +# Cd(Prop)2, Cd(CH3CH2CO2)2 + + 2.0000 C2H5COOH + 1.0000 Cd+2 = Cd(CH3CH2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.5531 + -delta_h +267.043 kcal/mol + -analytic -2.7887e+001 1.1740e-003 -6.0022e+003 1.0916e+001 1.2569e+006 +# -Range: 0-300 + +# Co(Ala)+, Co(C3H6NO2)+ + + 1.0000 Co+2 + 1.0000 C3H7NO2 = Co(C3H6NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -5.6449 + -delta_h +136.245 kcal/mol + -analytic -6.6326e+000 4.2270e-003 -4.1512e+003 3.5761e+000 4.2801e+005 +# -Range: 0-300 + +# Co(Ala)2, Co(C3H6NO2)2 + + 2.0000 C3H7NO2 + 1.0000 Co+2 = Co(C3H6NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -12.3196 + -delta_h +259.272 kcal/mol + -analytic 3.7901e+001 1.0752e-002 -1.3519e+004 -9.4658e+000 1.3658e+006 +# -Range: 0-300 + +# Co(But)+, Co(CH3(CH2)2CO2)+ + + 1.0000 Co+2 + 1.0000 C3H7COOH = Co(CH3(CH2)2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.0977 + -delta_h +144.234 kcal/mol + -analytic -1.2926e+001 1.1374e-003 -1.9544e+003 4.2567e+000 4.9139e+005 +# -Range: 0-300 + +# Co(But)2, Co(CH3(CH2)2CO2)2 + + 2.0000 C3H7COOH + 1.0000 Co+2 = Co(CH3(CH2)2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.806 + -delta_h +274.655 kcal/mol + -analytic -1.7789e+001 3.3292e-003 -6.6509e+003 6.8084e+000 1.3765e+006 +# -Range: 0-300 + +# Co(For)+, Co(CHO2)+ + + 1.0000 HCOOH + 1.0000 Co+2 = Co(CHO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.8934 + -delta_h +118.148 kcal/mol + -analytic 3.4604e+000 -7.0163e-004 -6.4686e+002 -1.8241e+000 1.3725e+005 +# -Range: 0-300 + +# Co(For)2, Co(CHO2)2 + + 2.0000 HCOOH + 1.0000 Co+2 = Co(CHO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.4259 + -delta_h +223.371 kcal/mol + -analytic 4.6480e+000 -2.8123e-003 -9.5823e+002 -3.1486e+000 2.4710e+005 +# -Range: 0-300 + +# Co(Gly)+, Co(C2H4NO2)+ + + 1.0000 C2H5NO2 + 1.0000 Co+2 = Co(C2H4NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.7081 + -delta_h +129.082 kcal/mol + -analytic -6.1033e+000 4.7861e-003 -2.7304e+003 2.4628e+000 2.7041e+005 +# -Range: 0-300 + +# Co(Gly)2, Co(C2H4NO2)2 + + 2.0000 C2H5NO2 + 1.0000 Co+2 = Co(C2H4NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -10.4666 + -delta_h +243.427 kcal/mol + -analytic 3.7958e+001 1.1767e-002 -9.8791e+003 -1.1599e+001 8.8179e+005 +# -Range: 0-300 + +# Co(Glyc)+, Co(CH3OCO2)+ + + 1.0000 C2H4O3 + 1.0000 Co+2 = Co(CH3OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.8538 + -delta_h +171.331 kcal/mol + -analytic -5.3556e+000 -1.8875e-004 -1.2450e+003 1.7558e+000 3.0214e+005 +# -Range: 0-300 + +# Co(Glyc)2, Co(CH3OCO2)2 + + 2.0000 C2H4O3 + 1.0000 Co+2 = Co(CH3OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.1774 + -delta_h +329.556 kcal/mol + -analytic 2.1760e+000 8.7672e-004 -4.0049e+003 -8.2381e-001 7.8900e+005 +# -Range: 0-300 + +# Co(Lac)+, Co(CH3CH2OCO2)+ + + 1.0000 C3H6O3 + 1.0000 Co+2 = Co(CH3CH2OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.5032 + -delta_h +179.856 kcal/mol + -analytic -8.0185e+000 4.8796e-004 -1.7264e+003 2.7704e+000 3.8387e+005 +# -Range: 0-300 + +# Co(Lac)2, Co(CH3CH2OCO2)2 + + 2.0000 C3H6O3 + 1.0000 Co+2 = Co(CH3CH2OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.2359 + -delta_h +346.408 kcal/mol + -analytic 2.9324e+000 2.8527e-003 -6.1528e+003 -3.0383e-001 1.1020e+006 +# -Range: 0-300 + +# Co(Pent)+, Co(CH3(CH2)3CO2)+ + + 1.0000 C4H9COOH + 1.0000 Co+2 = Co(CH3(CH2)3CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.1571 + -delta_h +150.673 kcal/mol + -analytic -2.2797e+001 2.4832e-003 -2.8121e+003 8.2127e+000 7.1396e+005 +# -Range: 0-300 + +# Co(Pent)2, Co(CH3(CH2)3CO2)2 + + 2.0000 C4H9COOH + 1.0000 Co+2 = Co(CH3(CH2)3CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.924 + -delta_h +286.935 kcal/mol + -analytic -3.2956e+001 6.8817e-003 -1.0002e+004 1.3976e+001 2.0436e+006 +# -Range: 0-300 + +# Co(Prop)+, Co(CH3CH2CO2)+ + + 1.0000 C2H5COOH + 1.0000 Co+2 = Co(CH3CH2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.5866 + -delta_h +138.347 kcal/mol + -analytic -5.0563e+000 1.9295e-003 -2.2644e+003 1.3628e+000 4.5635e+005 +# -Range: 0-300 + +# Co(Prop)2, Co(CH3CH2CO2)2 + + 2.0000 C2H5COOH + 1.0000 Co+2 = Co(CH3CH2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.6929 + -delta_h +263.492 kcal/mol + -analytic -1.4853e+001 3.7021e-003 -5.7739e+003 4.9977e+000 1.1637e+006 +# -Range: 0-300 + +# Cu(Ala)+, Cu(C3H6NO2)+ + + 1.0000 Cu+2 + 1.0000 C3H7NO2 = Cu(C3H6NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.8545 + -delta_h +109.970 kcal/mol + -analytic -1.1698e+001 4.4099e-003 -2.4550e+003 5.1251e+000 3.6414e+005 +# -Range: 0-300 + +# Cu(Ala)2, Cu(C3H6NO2)2 + + 2.0000 C3H7NO2 + 1.0000 Cu+2 = Cu(C3H6NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.3297 + -delta_h +237.360 kcal/mol + -analytic -1.2813e+001 3.4309e-003 -8.8197e+003 9.0075e+000 1.2248e+006 +# -Range: 0-300 + +# Cu(But)+, Cu(CH3(CH2)2CO2)+ + + 1.0000 Cu+2 + 1.0000 C3H7COOH = Cu(CH3(CH2)2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.6982 + -delta_h +114.768 kcal/mol + -analytic 1.9946e+000 3.2893e-003 -2.6114e+003 -1.1028e+000 5.1836e+005 +# -Range: 0-300 + +# Cu(But)2, Cu(CH3(CH2)2CO2)2 + + 2.0000 C3H7COOH + 1.0000 Cu+2 = Cu(CH3(CH2)2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.0656 + -delta_h +245.176 kcal/mol + -analytic -2.8831e+001 1.5210e-003 -6.1416e+003 1.1151e+001 1.3647e+006 +# -Range: 0-300 + +# Cu(For)+, CuCHO2+ + + 1.0000 HCOOH + 1.0000 Cu+2 = CuCHO2+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.7731 + -delta_h +88.300 kcal/mol + -analytic 1.8727e+000 -1.0020e-003 -5.0154e+002 -1.1966e+000 1.1576e+005 +# -Range: 0-300 + +# Cu(For)2, Cu(CHO2)2 + + 2.0000 HCOOH + 1.0000 Cu+2 = Cu(CHO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.206 + -delta_h +193.183 kcal/mol + -analytic 7.4586e+000 -2.6644e-003 -1.3786e+003 -3.7935e+000 2.8017e+005 +# -Range: 0-300 + +# Cu(Gly)+, Cu(C2H4NO2)+ + + 1.0000 C2H5NO2 + 1.0000 Cu+2 = Cu(C2H4NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.208 + -delta_h +102.408 kcal/mol + -analytic -1.2098e+001 4.5923e-003 -1.3603e+003 4.7714e+000 2.0346e+005 +# -Range: 0-300 + +# Cu(Gly)2, Cu(C2H4NO2)2 + + 2.0000 C2H5NO2 + 1.0000 Cu+2 = Cu(C2H4NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -3.7266 + -delta_h +221.770 kcal/mol + -analytic -6.9393e+000 5.1196e-003 -5.7575e+003 5.0366e+000 7.6022e+005 +# -Range: 0-300 + +# Cu(Glyc)+, Cu(CH3OCO2)+ + + 1.0000 C2H4O3 + 1.0000 Cu+2 = Cu(CH3OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -0.9434 + -delta_h +142.561 kcal/mol + -analytic -8.4029e+000 -5.9451e-004 -7.5383e+002 2.8746e+000 2.7225e+005 +# -Range: 0-300 + +# Cu(Glyc)2, Cu(CH3OCO2)2 + + 2.0000 C2H4O3 + 1.0000 Cu+2 = Cu(CH3OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -3.0075 + -delta_h +300.664 kcal/mol + -analytic -9.6849e+000 -1.0687e-003 -3.3286e+003 3.8217e+000 7.7552e+005 +# -Range: 0-300 + +# Cu(Lac)+, Cu(CH3CH2OCO2)+ + + 1.0000 C3H6O3 + 1.0000 Cu+2 = Cu(CH3CH2OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.3033 + -delta_h +151.481 kcal/mol + -analytic -1.1811e+001 3.4701e-005 -1.0895e+003 4.1370e+000 3.4922e+005 +# -Range: 0-300 + +# Cu(Lac)2, Cu(CH3CH2OCO2)2 + + 2.0000 C3H6O3 + 1.0000 Cu+2 = Cu(CH3CH2OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -3.5756 + -delta_h +318.184 kcal/mol + -analytic -9.7842e+000 7.7321e-004 -5.2869e+003 4.6546e+000 1.0864e+006 +# -Range: 0-300 + +# Cu(Pent)+, Cu(CH3(CH2)3CO2)+ + + 1.0000 C4H9COOH + 1.0000 Cu+2 = Cu(CH3(CH2)3CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.7473 + -delta_h +121.221 kcal/mol + -analytic -1.5283e+001 3.6782e-003 -3.0281e+003 5.4906e+000 7.1403e+005 +# -Range: 0-300 + +# Cu(Pent)2, Cu(CH3(CH2)3CO2)2 + + 2.0000 C4H9COOH + 1.0000 Cu+2 = Cu(CH3(CH2)3CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.1741 + -delta_h +257.470 kcal/mol + -analytic -2.9542e+001 7.1204e-003 -1.0296e+004 1.3112e+001 2.0784e+006 +# -Range: 0-300 + +# Cu(Prop)+, Cu(CH3CH2CO2)+ + + 1.0000 C2H5COOH + 1.0000 Cu+2 = Cu(CH3CH2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.6762 + -delta_h +109.577 kcal/mol + -analytic -1.3220e+001 7.8363e-004 -1.4925e+003 4.3301e+000 4.1063e+005 +# -Range: 0-300 + +# Cu(Prop)2, Cu(CH3CH2CO2)2 + + 2.0000 C2H5COOH + 1.0000 Cu+2 = Cu(CH3CH2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.0326 + -delta_h +235.268 kcal/mol + -analytic -1.0718e+001 3.9487e-003 -5.8699e+003 3.9089e+000 1.2053e+006 +# -Range: 0-300 + +# Decanal, CH3(CH2)8CHO + + 4.0000 C2H4 + 1.0000 CH3COOH = CH3(CH2)8CHO + 0.5000 O2 + -llnl_gamma 3.0 + log_k -1058.134 + -delta_h +95.290 kcal/mol + -analytic -7.6767e+001 -2.9579e-002 4.2940e+003 2.8063e+001 6.7027e+001 +# -Range: 0-300 + +# Decanoate, C10H19O2- + + 5.0000 CH3COOH = C10H19O2- + 4.0000 O2 + 1.0000 H+ + -llnl_gamma 4.0 + log_k -4.9185 + -delta_h +162.700 kcal/mol + -analytic -3.1511e+002 -2.1029e-002 -7.6356e+004 1.0982e+002 -1.1914e+003 +# -Range: 0-300 + +# Decanoic_acid, C10H20O2 + + 5.0000 CH3COOH = C10H20O2 + 4.0000 O2 + -llnl_gamma 3.0 + log_k -1010.8207 + -delta_h +162.200 kcal/mol + -analytic 1.9927e+002 4.5966e-002 -1.0812e+005 -7.0739e+001 2.1239e+006 +# -Range: 0-300 + +# Diglycine, C4H8N2O3 + + 2.0000 C2H5NO2 = C4H8N2O3 + 1.0000 H2O + -llnl_gamma 3.0 + log_k -2.5863 + -delta_h +175.640 kcal/mol + -analytic -9.6588e+000 2.9406e-003 -1.1504e+003 3.1397e+000 2.0330e+005 +# -Range: 0-300 + +# Diketopiperazine, C4H6N2O2 + + 2.0000 C2H5NO2 = C4H6N2O2 + 2.0000 H2O + -llnl_gamma 3.0 + log_k -4.7063 + -delta_h +99.300 kcal/mol + -analytic 3.4352e+000 4.6987e-003 -3.2032e+003 -4.8114e-001 2.1265e+005 +# -Range: 0-300 + +# Dodecanoate, C12H23O2- + + 6.0000 CH3COOH = C12H23O2- + 5.0000 O2 + 1.0000 H+ + -llnl_gamma 4.0 + log_k -4.9185 + -delta_h -174.04 kcal/mol + -analytic 5.7006e+002 1.0646e-001 -1.5130e+005 -2.0765e+002 3.4121e+006 +# -Range: 0-300 + +# Dodecanoic_acid, C12H24O2 + + 6.0000 CH3COOH = C12H24O2 + 5.0000 O2 + -llnl_gamma 3.0 + log_k -1228.1689 + -delta_h +173.540 kcal/mol + -analytic 6.5537e+002 1.1671e-001 -1.5726e+005 -2.3542e+002 3.8794e+006 +# -Range: 0-300 + +# Ethanamine, C2H5NH2 + + 1.0000 NH3 + 2.0000 HCO3- + 2.0000 H+ = C2H5NH2 + 3.0000 O2 + -llnl_gamma 3.0 + log_k -223.647 + -delta_h +23.830 kcal/mol + -analytic -1.9599E+03 -3.3677E-01 -5.4980E+02 7.4290E+02 -4.9475E-02 +# -Range: 0-300 + +# Ethane, C2H6 + + 1.0000 H2O + 2.0000 HCO3- + 2.0000 H+ = C2H6 + 3.5000 O2 + -llnl_gamma 3.0 + log_k -254.5034 + -delta_h +24.650 kcal/mol + -analytic -2.2475E+03 -3.8473E-01 -5.6009E+02 8.5243E+02 -1.2340E-01 +# -Range: 0-300 + +# Ethanol, C2H5OH + + 1.0000 H2O + 2.0000 HCO3- + 2.0000 H+ = C2H5OH + 3.0000 O2 + -llnl_gamma 3.0 + log_k -224.1415 + -delta_h +68.650 kcal/mol + -analytic -1.9805E+03 -3.3932E-01 -5.5095E+02 7.5133E+02 -5.5268E-02 +# -Range: 0-300 + +# Ethyne, C2H2 + + 2.0000 HCO3- + 2.0000 H+ = C2H2 + 1.0000 H2O + 2.5000 O2 + -llnl_gamma 3.0 + log_k -209.3843 + -delta_h -50.7 kcal/mol + -analytic -1.8747E+03 -3.1966E-01 -5.4744E+02 7.1215E+02 -3.1389E-02 +# -Range: 0-300 + +# Ethylacetate, CH3COOCH2CH3 + + 1.0000 C2H4 + 1.0000 CH3COOH = CH3COOCH2CH3 + -llnl_gamma 3.0 + log_k +2.9247 + -delta_h +116.840 kcal/mol + -analytic -1.2558e+001 -3.4591e-003 2.2166e+003 3.6667e+000 3.4592e+001 +# -Range: 0-300 + +# Ethylbenzene, C6H5C2H5 +# + 4.0000 C6H6 + 3.0000 H2O = C6H5C2H5 + 1.5000 O2 +# does not balance +# -llnl_gamma 3.0 +# log_k -2256.5242 +# -delta_h +2.500 kcal/mol +# -analytic 2.7546e+002 5.0556e-002 -4.5964e+004 -1.0201e+002 8.4857e+005 +# -Range: 0-300 + +# Eu(Ala)+, Eu(C3H6NO2)+ + + 1.0000 Eu+2 + 1.0000 C3H7NO2 = Eu(C3H6NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -9.2139 + -delta_h +242.060 kcal/mol + -analytic 1.4058e+001 1.0581e-002 -6.6420e+003 -4.0654e+000 5.2699e+005 +# -Range: 0-300 + +# Eu(Ala)2, Eu(C3H6NO2)2 + + 2.0000 C3H7NO2 + 1.0000 Eu+2 = Eu(C3H6NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -18.7503 + -delta_h +358.510 kcal/mol + -analytic 1.3352e+001 7.6973e-003 -1.7130e+004 1.7787e+000 1.6606e+006 +# -Range: 0-300 + +# Eu(But)+, Eu(CH3(CH2)2CO2)+ + + 1.0000 Eu+2 + 1.0000 C3H7COOH = Eu(CH3(CH2)2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.538 + -delta_h +251.804 kcal/mol + -analytic -1.5879e+001 3.8795e-003 -2.7555e+003 5.4947e+000 5.2007e+005 +# -Range: 0-300 + +# Eu(But)+2, Eu(CH3(CH2)2CO2)+2 + + 1.0000 Eu+3 + 1.0000 C3H7COOH = Eu(CH3(CH2)2CO2)+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.048 + -delta_h +276.036 kcal/mol + -analytic -9.7855e+000 1.8979e-003 -2.3175e+003 3.4425e+000 5.7272e+005 +# -Range: 0-300 + +# Eu(But)2, Eu(CH3(CH2)2CO2)2 + + 2.0000 C3H7COOH + 1.0000 Eu+2 = Eu(CH3(CH2)2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -9.5254 + -delta_h +377.392 kcal/mol + -analytic 1.1271e+001 7.7268e-003 -1.2418e+004 -8.4949e-001 1.8391e+006 +# -Range: 0-300 + +# Eu(But)2+, Eu(CH3(CH2)2CO2)2+ + + 2.0000 C3H7COOH + 1.0000 Eu+3 = Eu(CH3(CH2)2CO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.876 + -delta_h +405.964 kcal/mol + -analytic -3.4218e+000 7.6886e-003 -6.2895e+003 1.1718e+000 1.2875e+006 +# -Range: 0-300 + +# Eu(For)+, EuCHO2+ + + 1.0000 HCOOH + 1.0000 Eu+2 = EuCHO2+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.353 + -delta_h +227.054 kcal/mol + -analytic -3.3218e+000 9.1062e-004 -1.1082e+003 9.9294e-001 1.7476e+005 +# -Range: 0-300 + +# Eu(For)+2, EuCHO2+2 + + 1.0000 HCOOH + 1.0000 Eu+3 = EuCHO2+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -0.9632 + -delta_h +249.786 kcal/mol + -analytic 1.3475e+000 -5.3304e-004 -7.1045e+002 -7.9702e-001 1.9639e+005 +# -Range: 0-300 + +# Eu(For)2, Eu(CHO2)2 + + 2.0000 HCOOH + 1.0000 Eu+2 = Eu(CHO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.7961 + -delta_h +329.314 kcal/mol + -analytic 2.0204e+001 -4.0598e-004 -5.2985e+003 -5.9131e+000 6.6991e+005 +# -Range: 0-300 + +# Eu(For)2+, Eu(CHO2)2+ + + 2.0000 HCOOH + 1.0000 Eu+3 = Eu(CHO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -2.7158 + -delta_h +354.544 kcal/mol + -analytic 4.1316e+000 -3.0069e-003 -3.8235e+002 -2.6986e+000 1.7945e+005 +# -Range: 0-300 + +# Eu(Gly)+, Eu(C2H4NO2)+ + + 1.0000 C2H5NO2 + 1.0000 Eu+2 = Eu(C2H4NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -8.1283 + -delta_h +234.136 kcal/mol + -analytic -1.3352e+001 7.3561e-003 -3.7321e+003 5.0576e+000 2.7090e+005 +# -Range: 0-300 + +# Eu(Gly)2, Eu(C2H4NO2)2 + + 2.0000 C2H5NO2 + 1.0000 Eu+2 = Eu(C2H4NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -16.5066 + -delta_h +342.929 kcal/mol + -analytic 2.6146e+001 1.0368e-002 -1.4175e+004 -4.8232e+000 1.2226e+006 +# -Range: 0-300 + +# Eu(Glyc)+, Eu(CH3OCO2)+ + + 1.0000 C2H4O3 + 1.0000 Eu+2 = Eu(CH3OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.5333 + -delta_h +279.938 kcal/mol + -analytic -1.1341e+001 1.8436e-003 -1.7310e+003 4.1823e+000 3.3141e+005 +# -Range: 0-300 + +# Eu(Glyc)2, Eu(CH3OCO2)2 + + 2.0000 C2H4O3 + 1.0000 Eu+2 = Eu(CH3OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.757 + -delta_h +433.849 kcal/mol + -analytic 2.6027e+000 1.1080e-003 -7.8729e+003 1.8735e+000 1.1647e+006 +# -Range: 0-300 + +# Eu(Lac)+, Eu(CH3CH2OCO2)+ + + 1.0000 C3H6O3 + 1.0000 Eu+2 = Eu(CH3CH2OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.9328 + -delta_h +288.803 kcal/mol + -analytic -6.8714e+000 3.8415e-003 -2.4462e+003 2.5210e+000 4.2462e+005 +# -Range: 0-300 + +# Eu(Lac)2, Eu(CH3CH2OCO2)2 + + 2.0000 C3H6O3 + 1.0000 Eu+2 = Eu(CH3CH2OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.0656 + -delta_h +451.723 kcal/mol + -analytic 1.5690e+000 2.8366e-003 -9.6953e+003 3.0359e+000 1.4716e+006 +# -Range: 0-300 + +# Eu(Pent)+, Eu(CH3(CH2)3CO2)+ + + 1.0000 C4H9COOH + 1.0000 Eu+2 = Eu(CH3(CH2)3CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.8569 + -delta_h +257.888 kcal/mol + -analytic -1.8827e+001 6.5719e-003 -3.9749e+003 6.8334e+000 7.5209e+005 +# -Range: 0-300 + +# Eu(Pent)+2, Eu(CH3(CH2)3CO2)+2 + + 1.0000 C4H9COOH + 1.0000 Eu+3 = Eu(CH3(CH2)3CO2)+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.0773 + -delta_h +282.516 kcal/mol + -analytic -3.0633e+001 1.5481e-003 -2.5917e+003 1.1399e+001 7.6469e+005 +# -Range: 0-300 + +# Eu(Pent)2+, Eu(CH3(CH2)3CO2)2+ + + 2.0000 C4H9COOH + 1.0000 Eu+3 = Eu(CH3(CH2)3CO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.9441 + -delta_h +418.206 kcal/mol + -analytic -3.7682e+001 1.0658e-002 -8.0528e+003 1.4565e+001 1.8292e+006 +# -Range: 0-300 + +# Eu(Prop)+, Eu(CH3CH2CO2)+ + + 1.0000 C2H5COOH + 1.0000 Eu+2 = Eu(CH3CH2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.3262 + -delta_h +246.872 kcal/mol + -analytic -1.9603e+001 2.7407e-003 -2.2921e+003 6.8757e+000 4.5820e+005 +# -Range: 0-300 + +# Eu(Prop)+2, Eu(CH3CH2CO2)+2 + + 1.0000 C2H5COOH + 1.0000 Eu+3 = Eu(CH3CH2CO2)+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.0363 + -delta_h +270.831 kcal/mol + -analytic -1.0272e+001 1.5651e-003 -1.9970e+003 3.5396e+000 5.0897e+005 +# -Range: 0-300 + +# Eu(Prop)2, Eu(CH3CH2CO2)2 + + 2.0000 C2H5COOH + 1.0000 Eu+2 = Eu(CH3CH2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -9.3927 + -delta_h +367.621 kcal/mol + -analytic 4.1333e-001 5.9591e-003 -1.0532e+004 2.3781e+000 1.5907e+006 +# -Range: 0-300 + +# Eu(Prop)2+, Eu(CH3CH2CO2)2+ + + 2.0000 C2H5COOH + 1.0000 Eu+3 = Eu(CH3CH2CO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.8628 + -delta_h +396.115 kcal/mol + -analytic -1.7270e+001 4.2004e-003 -4.5560e+003 5.8571e+000 1.0648e+006 +# -Range: 0-300 + +# Fe(Ala)+, Fe(C3H6NO2)+ + + 1.0000 Fe+2 + 1.0000 C3H7NO2 = Fe(C3H6NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -5.4374 + -delta_h +145.225 kcal/mol + -analytic -6.8881e-001 4.8406e-003 -4.2771e+003 1.2355e+000 4.5422e+005 +# -Range: 0-300 + +# Fe(Ala)2, Fe(C3H6NO2)2 + + 2.0000 C3H7NO2 + 1.0000 Fe+2 = Fe(C3H6NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -12.0822 + -delta_h +268.535 kcal/mol + -analytic 1.0817e+001 7.0057e-003 -1.1636e+004 -9.2499e-002 1.2704e+006 +# -Range: 0-300 + +# Fe(But)+, Fe(CH3(CH2)2CO2)+ + + 1.0000 Fe+2 + 1.0000 C3H7COOH = Fe(CH3(CH2)2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.2003 + -delta_h +151.642 kcal/mol + -analytic -1.1468e+001 1.5002e-003 -2.0030e+003 3.6750e+000 4.8551e+005 +# -Range: 0-300 + +# Fe(But)2, Fe(CH3(CH2)2CO2)2 + + 2.0000 C3H7COOH + 1.0000 Fe+2 = Fe(CH3(CH2)2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.998 + -delta_h +281.765 kcal/mol + -analytic -2.8364e+001 1.7011e-003 -6.1151e+003 1.0670e+001 1.3334e+006 +# -Range: 0-300 + +# Fe(For)+, FeCHO2+ + + 1.0000 HCOOH + 1.0000 Fe+2 = FeCHO2+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.9256 + -delta_h +125.651 kcal/mol + -analytic -4.2844e-001 -1.1907e-003 -4.0278e+002 -4.4791e-001 1.1757e+005 +# -Range: 0-300 + +# Fe(For)2, Fe(CHO2)2 + + 2.0000 HCOOH + 1.0000 Fe+2 = Fe(CHO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.4889 + -delta_h +230.658 kcal/mol + -analytic 2.6286e+000 -3.2750e-003 -8.7717e+002 -2.3516e+000 2.3378e+005 +# -Range: 0-300 + +# Fe(Gly)+, Fe(C2H4NO2)+ + + 1.0000 C2H5NO2 + 1.0000 Fe+2 = Fe(C2H4NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -5.4609 + -delta_h +134.682 kcal/mol + -analytic -1.5456e+001 3.9367e-003 -2.4338e+003 5.8876e+000 2.1566e+005 +# -Range: 0-300 + +# Fe(Gly)2, Fe(C2H4NO2)2 + + 2.0000 C2H5NO2 + 1.0000 Fe+2 = Fe(C2H4NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -12.0191 + -delta_h +248.527 kcal/mol + -analytic -4.9791e+000 5.5006e-003 -7.9837e+003 3.9747e+000 7.3594e+005 +# -Range: 0-300 + +# Fe(Glyc)+, Fe(CH3OCO2)+ + + 1.0000 C2H4O3 + 1.0000 Fe+2 = Fe(CH3OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.6566 + -delta_h +179.149 kcal/mol + -analytic -1.1315e+001 -1.3546e-003 -9.1265e+002 4.0008e+000 2.8737e+005 +# -Range: 0-300 + +# Fe(Glyc)2, Fe(CH3OCO2)2 + + 2.0000 C2H4O3 + 1.0000 Fe+2 = Fe(CH3OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -3.8197 + -delta_h +337.416 kcal/mol + -analytic -2.4214e+001 -3.9432e-003 -2.6649e+003 9.0425e+000 7.2466e+005 +# -Range: 0-300 + +# Fe(Lac)+, Fe(CH3CH2OCO2)+ + + 1.0000 C3H6O3 + 1.0000 Fe+2 = Fe(CH3CH2OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.7453 + -delta_h +188.437 kcal/mol + -analytic -1.4649e+001 -2.7787e-004 -1.0617e+003 5.0960e+000 3.5122e+005 +# -Range: 0-300 + +# Fe(Lac)2, Fe(CH3CH2OCO2)2 + + 2.0000 C3H6O3 + 1.0000 Fe+2 = Fe(CH3CH2OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -3.9788 + -delta_h +355.495 kcal/mol + -analytic -1.6235e+001 -4.1634e-005 -4.7223e+003 6.6708e+000 1.0336e+006 +# -Range: 0-300 + +# Fe(Pent)+, Fe(CH3(CH2)3CO2)+ + + 1.0000 C4H9COOH + 1.0000 Fe+2 = Fe(CH3(CH2)3CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.2802 + -delta_h +158.054 kcal/mol + -analytic -2.6685e+001 2.0954e-003 -2.5680e+003 9.5548e+000 6.9089e+005 +# -Range: 0-300 + +# Fe(Pent)2, Fe(CH3(CH2)3CO2)2 + + 2.0000 C4H9COOH + 1.0000 Fe+2 = Fe(CH3(CH2)3CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.1571 + -delta_h +293.990 kcal/mol + -analytic -4.2465e+001 5.3731e-003 -9.5476e+003 1.7464e+001 2.0055e+006 +# -Range: 0-300 + +# Fe(Prop)+, Fe(CH3CH2CO2)+ + + 1.0000 C2H5COOH + 1.0000 Fe+2 = Fe(CH3CH2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.289 + -delta_h +146.301 kcal/mol + -analytic -7.3746e+000 1.6930e-003 -2.0030e+003 2.1641e+000 4.4097e+005 +# -Range: 0-300 + +# Fe(Prop)2, Fe(CH3CH2CO2)2 + + 2.0000 C2H5COOH + 1.0000 Fe+2 = Fe(CH3CH2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.1556 + -delta_h +271.598 kcal/mol + -analytic -1.9694e+001 2.8321e-003 -5.3596e+003 6.8142e+000 1.1417e+006 +# -Range: 0-300 + +# Formaldehyde, HCHO + + 1.0000 CH3COOH = HCHO + 0.5000 C2H4 + 0.5000 O2 + -llnl_gamma 3.0 + log_k -86.5725 + -delta_h +33.890 kcal/mol + -analytic 1.3515e+002 2.8915e-002 -2.5168e+004 -4.9725e+001 4.2808e+005 +# -Range: 0-300 + +# Formate, HCOO- + + 1.0000 HCOOH = HCOO- + 1.0000 H+ + -llnl_gamma 3.5 + log_k -3.753 + -delta_h +101.680 kcal/mol + -analytic -9.4187e+001 -3.4616e-002 1.8918e+003 3.8145e+001 2.9547e+001 +# -Range: 0-300 + +# Formic_acid, HCOOH + HCO3- + H+ 1.0000 = HCOOH + 0.5O2 + -llnl_gamma 3.0 + log_k -39.0524 + -delta_h +101.680 kcal/mol + -analytic -3.4508E+02 -4.9133E-02 -4.9396E+02 1.3024E+02 3.5416E-01 +# -Range: 0-300 + +# Gd(But)+2, Gd(CH3(CH2)2CO2)+2 + + 1.0000 Gd+3 + 1.0000 C3H7COOH = Gd(CH3(CH2)2CO2)+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.1778 + -delta_h +294.884 kcal/mol + -analytic -9.4460e+000 2.4870e-003 -2.3699e+003 3.2918e+000 5.6419e+005 +# -Range: 0-300 + +# Gd(But)2+, Gd(CH3(CH2)2CO2)2+ + + 2.0000 C3H7COOH + 1.0000 Gd+3 = Gd(CH3(CH2)2CO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.1157 + -delta_h +424.078 kcal/mol + -analytic -1.4589e+001 7.2722e-003 -5.7356e+003 5.1448e+000 1.2310e+006 +# -Range: 0-300 + +# Gd(For)+2, GdCHO2+2 + + 1.0000 Gd+3 + 1.0000 HCOOH = GdCHO2+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.0929 + -delta_h +268.634 kcal/mol + -analytic -6.8541e-001 -3.3966e-004 -6.4856e+002 -7.2227e-002 1.8259e+005 +# -Range: 0-300 + +# Gd(For)2+, Gd(CHO2)2+ + + 2.0000 HCOOH + 1.0000 Gd+3 = Gd(CHO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -2.9562 + -delta_h +372.659 kcal/mol + -analytic -3.5152e+000 -3.2979e-003 -1.3266e+002 1.3417e-001 1.4806e+005 +# -Range: 0-300 + +# Gd(Pent)+2, Gd(CH3(CH2)3CO2)+2 + + 1.0000 C4H9COOH + 1.0000 Gd+3 = Gd(CH3(CH2)3CO2)+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.2071 + -delta_h +301.364 kcal/mol + -analytic -2.8290e+001 2.4126e-003 -2.7617e+003 1.0531e+001 7.6352e+005 +# -Range: 0-300 + +# Gd(Pent)2+, Gd(CH3(CH2)3CO2)2+ + + 2.0000 C4H9COOH + 1.0000 Gd+3 = Gd(CH3(CH2)3CO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.1846 + -delta_h +436.320 kcal/mol + -analytic -5.3965e+001 9.5419e-003 -7.2168e+003 2.0378e+001 1.7572e+006 +# -Range: 0-300 + +# Gd(Prop)+2, GdCH3CH2CO2+2 + + 1.0000 C2H5COOH + 1.0000 Gd+3 = GdCH3CH2CO2+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.1763 + -delta_h +289.666 kcal/mol + -analytic -1.7869e+001 1.0366e-003 -1.6096e+003 6.2464e+000 4.7496e+005 +# -Range: 0-300 + +# Gd(Prop)2+, Gd(CH3CH2CO2)2+ + + 2.0000 C2H5COOH + 1.0000 Gd+3 = Gd(CH3CH2CO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.1127 + -delta_h +414.216 kcal/mol + -analytic -4.1151e+001 1.7684e-003 -3.3631e+003 1.4486e+001 9.7618e+005 +# -Range: 0-300 + +# Glutamic_acid, C5H9NO4 + + 2.5000 C2H5NO2 + 0.5000 H2O = C5H9NO4 + 1.5000 NH3 + 0.7500 O2 + -llnl_gamma 3.0 3.0 + log_k -321.9443 + -delta_h +232.000 kcal/mol + -analytic 1.3643e+002 3.2714e-002 -2.5437e+004 -4.8787e+001 7.4165e+005 +# -Range: 0-300 + +# Glutamine, C5H10N2O3 + + 2.5000 C2H5NO2 = C5H10N2O3 + 0.7500 O2 + 0.5000 H2O + 0.5000 NH3 + -llnl_gamma 3.0 + log_k +2.8622 + -delta_h +192.330 kcal/mol + -analytic 8.7755e+001 2.3462e-002 -2.1760e+004 -3.1651e+001 7.0288e+005 +# -Range: 0-300 + +# Glutarate, C5H6O4-2 + + 2.5000 CH3COOH = C5H6O4-2 + 2.0000 H+ + 1.0000 H2O + -llnl_gamma 4.0 + log_k -9.7563 + -delta_h +224.140 kcal/mol + -analytic -1.3762e+002 -7.5681e-002 1.3347e+003 5.7954e+001 2.0867e+001 +# -Range: 0-300 + +# Glutaric_acid, C5H8O4 + + 2.5000 CH3COOH = C5H8O4 + 1.0000 H2O + -llnl_gamma 3.0 + log_k -357.4964 + -delta_h +223.440 kcal/mol + -analytic -9.9184e+000 -1.0441e-002 -1.9203e+001 4.2761e+000 -2.9671e-001 +# -Range: 0-300 + +# Glycine, C2H5NO2 + + 1.0000 NH3 + 2.0000 HCO3- + 2.0000 H+ = C2H5NO2 + 1.0000 H2O + 1.5000 O2 + -llnl_gamma 3.0 + log_k -108.1715 + -delta_h +122.846 kcal/mol + -analytic -9.2863E+02 -1.5296E-01 -5.1446E+02 3.5064E+02 2.0391E-01 +# -Range: 0-300 + +# Glycolate, C2H3O3- + + 1.0000 C2H4O3 = C2H3O3- + 1.0000 H+ + -llnl_gamma 4.0 + log_k -3.8336 + -delta_h +154.700 kcal/mol + -analytic -9.9557e+001 -3.6800e-002 1.9551e+003 4.0462e+001 3.0537e+001 +# -Range: 0-300 + +# Glycolic_acid, C2H4O3 + + 2.0000 HCO3- + 2.0000 H+ = C2H4O3 + 1.5000 O2 + -llnl_gamma 3.0 + log_k -117.3507 + -delta_h +154.890 kcal/mol + -analytic -1.0189E+03 -1.6160E-01 -5.1773E+02 3.8447E+02 1.7876E-01 +# -Range: 0-300 + +# H-Adipate, C6H9O4- + + 3.0000 CH3COOH = C6H9O4- + 1.0000 H+ + 1.0000 H2O + 0.5000 O2 + -llnl_gamma 4.0 + log_k -4.4127 + -delta_h +227.130 kcal/mol + -analytic -5.8686e+001 -2.8724e-002 -1.0743e+004 2.3135e+001 -1.6761e+002 +# -Range: 0-300 + +# H-Azelate, C9H15O4- + + 4.5000 CH3COOH = C9H15O4- + 2.0000 O2 + 1.0000 H+ + 1.0000 H2O + -llnl_gamma 4.0 + log_k -4.5226 + -delta_h +240.970 kcal/mol + -analytic 2.2650e+002 2.5261e-002 -6.2618e+004 -8.1084e+001 1.3566e+006 +# -Range: 0-300 + +# H-Glutarate, C5H7O4- + + 2.5000 CH3COOH = C5H7O4- + 1.0000 H+ + 1.0000 H2O + -llnl_gamma 4.0 + log_k -4.3394 + -delta_h +223.570 kcal/mol + -analytic -4.0300e+001 -3.0858e-002 -9.3931e+001 1.7357e+001 -1.4538e+000 +# -Range: 0-300 + +# H-Malonate, C3H3O4- + + 1.5000 CH3COOH + 1.0000 O2 = C3H3O4- + 1.0000 H+ + 1.0000 H2O + -llnl_gamma 4.0 + log_k -2.8513 + -delta_h +207.850 kcal/mol + -analytic -5.6715e+000 -3.3611e-002 1.9552e+004 6.4983e+000 3.0509e+002 +# -Range: 0-300 + +# H-Oxalate, C2HO4- + + 1.5000 O2 + 1.0000 CH3COOH = C2HO4- + 1.0000 H+ + 1.0000 H2O + -llnl_gamma 4.0 + log_k -1.2703 + -delta_h +195.600 kcal/mol + -analytic 1.3266e+001 -3.3064e-002 2.8427e+004 0.0000e+000 0.0000e+000 +# -Range: 0-300 + +# H-Pimelate, C7H11O4- + + 3.5000 CH3COOH = C7H11O4- + 1.0000 H+ + 1.0000 H2O + 1.0000 O2 + -llnl_gamma 4.0 + log_k -4.486 + -delta_h +234.040 kcal/mol + -analytic -7.7415e+001 -2.6046e-002 -2.0605e+004 2.8981e+001 -3.2150e+002 +# -Range: 0-300 + +# H-Sebacate, C10H17O4- + + 5.0000 CH3COOH = C10H17O4- + 2.5000 O2 + 1.0000 H+ + 1.0000 H2O + -llnl_gamma 4.0 + log_k -4.5446 + -delta_h +246.230 kcal/mol + -analytic -1.5704e+002 -1.8900e-002 -5.1105e+004 5.4466e+001 -7.9740e+002 +# -Range: 0-300 + +# H-Suberate, C8H13O4- + + 4.0000 CH3COOH = C8H13O4- + 1.5000 O2 + 1.0000 H+ + 1.0000 H2O + -llnl_gamma 4.0 + log_k -4.508 + -delta_h +238.130 kcal/mol + -analytic -1.0933e+002 -2.4139e-002 -3.0563e+004 3.9365e+001 -4.7687e+002 +# -Range: 0-300 + +# H-Succinate, C4H5O4- + + 2.0000 CH3COOH + 0.5000 O2 = C4H5O4- + 1.0000 H+ + 1.0000 H2O + -llnl_gamma 4.0 + log_k -4.2075 + -delta_h +217.350 kcal/mol + -analytic -3.0274e+001 -3.3174e-002 1.0329e+004 1.4429e+001 1.6118e+002 +# -Range: 0-300 + +# HO2-, HO2- + + 1.0000 H2O + 0.5000 O2 = HO2- + 1.0000 H+ + -llnl_gamma 4.0 + log_k -28.3019 + -delta_h +38.320 kcal/mol + -analytic -4.1095e+001 -3.1617e-002 -7.2259e+003 1.8765e+001 -1.1274e+002 +# -Range: 0-300 + +# Heptanal, CH3(CH2)5CHO + + 2.5000 C2H4 + 1.0000 CH3COOH = CH3(CH2)5CHO + 0.5000 O2 + -llnl_gamma 3.0 + log_k -733.0243 + -delta_h +77.010 kcal/mol + -analytic -4.4470e+001 -1.5235e-002 -2.8387e+003 1.5763e+001 -4.4282e+001 +# -Range: 0-300 + +# Heptanoate, C6H13COO- + + 3.5000 CH3COOH = C6H13COO- + 2.5000 O2 + 1.0000 H+ + -llnl_gamma 4.0 + log_k -4.8928 + -delta_h +145.620 kcal/mol + -analytic -2.3984e+002 -2.7315e-002 -4.6686e+004 8.5594e+001 -7.2843e+002 +# -Range: 0-300 + +# Heptanoic_acid, C6H13COOH + + 3.5000 CH3COOH = C6H13COOH + 2.5000 O2 + -llnl_gamma 3.0 + log_k -684.8753 + -delta_h +145.080 kcal/mol + -analytic 4.8292e+002 8.0059e-002 -8.7380e+004 -1.7349e+002 2.4625e+006 +# -Range: 0-300 + +# Hexanal, CH3(CH2)4CHO + + 2.0000 C2H4 + 1.0000 CH3COOH = CH3(CH2)4CHO + 0.5000 O2 + -llnl_gamma 3.0 + log_k -623.3863 + -delta_h +72.650 kcal/mol + -analytic -3.3617e+001 -1.0435e-002 -4.8410e+003 1.1629e+001 -7.5530e+001 +# -Range: 0-300 + +# Hexanoate, C5H11COO- + + 3.0000 CH3COOH = C5H11COO- + 2.0000 O2 + 1.0000 H+ + -llnl_gamma 4.0 + log_k -4.8599 + -delta_h +139.870 kcal/mol + -analytic -2.1318e+002 -2.9283e-002 -3.6871e+004 7.6955e+001 -5.7527e+002 +# -Range: 0-300 + +# Hexanoic_acid, C5H11COOH + + 3.0000 CH3COOH = C5H11COOH + 2.0000 O2 + -llnl_gamma 3.0 + log_k -576.2928 + -delta_h +139.290 kcal/mol + -analytic 1.1076e+002 2.5510e-002 -5.4376e+004 -3.9703e+001 1.0632e+006 +# -Range: 0-300 + +# Isoleucine, C6H13NO2 + + 3.0000 C2H5NO2 + 2.0000 H2O = C6H13NO2 + 3.0000 O2 + 2.0000 NH3 + -llnl_gamma 3.0 + log_k +0.1466 + -delta_h +150.900 kcal/mol + -analytic -2.8273e+002 -1.9351e-003 -5.4209e+004 1.0027e+002 -8.4579e+002 +# -Range: 0-300 + +# K(But), K(CH3(CH2)2CO2) + + 1.0000 K+ + 1.0000 C3H7COOH = K(CH3(CH2)2CO2) + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.8078 + -delta_h +187.401 kcal/mol + -analytic 1.3634e+001 -2.1745e-003 -3.9995e+003 -3.9841e+000 4.8796e+005 +# -Range: 0-300 + +# K(But)2-, K(CH3(CH2)2CO2)2- + + 2.0000 C3H7COOH + 1.0000 K+ = K(CH3(CH2)2CO2)2- + 2.0000 H+ + -llnl_gamma 3.0 + log_k -9.9359 + -delta_h +316.310 kcal/mol + -analytic 5.5776e+001 -3.5589e-003 -1.2872e+004 -1.6024e+001 1.6171e+006 +# -Range: 0-300 + +# K(For), K(CHO2) + + 1.0000 K+ + 1.0000 HCOOH = K(CHO2) + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.7229 + -delta_h +161.151 kcal/mol + -analytic -2.4221e+000 -7.5713e-003 -6.7114e+002 1.2963e+000 -1.0472e+001 +# -Range: 0-300 + +# K(For)2-, K(CHO2)2- + + 2.0000 HCOOH + 1.0000 K+ = K(CHO2)2- + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.7757 + -delta_h +264.561 kcal/mol + -analytic -1.0611e+002 -3.9682e-002 2.1061e+003 4.1665e+001 3.2895e+001 +# -Range: 0-300 + +# K(Glyc), K(CH3OCO2) + + 1.0000 K+ + 1.0000 C2H4O3 = K(CH3OCO2) + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.8036 + -delta_h +214.171 kcal/mol + -analytic 2.8123e+001 -1.9061e-003 -3.6027e+003 -9.1691e+000 3.0378e+005 +# -Range: 0-300 + +# K(Glyc)2-, K(CH3OCO2)2- + + 2.0000 C2H4O3 + 1.0000 K+ = K(CH3OCO2)2- + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.7471 + -delta_h +370.519 kcal/mol + -analytic -2.2646e+002 -4.8542e-002 6.8259e+003 8.4988e+001 1.0658e+002 +# -Range: 0-300 + +# K(Lac), K(CH3CH2OCO2) + + 1.0000 C3H6O3 + 1.0000 K+ = K(CH3CH2OCO2) + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.8329 + -delta_h +223.541 kcal/mol + -analytic 1.4972e+001 -3.2999e-003 -3.4489e+003 -4.1956e+000 3.6756e+005 +# -Range: 0-300 + +# K(Lac)2-, K(CH3CH2OCO2)2- + + 2.0000 C3H6O3 + 1.0000 K+ = K(CH3CH2OCO2)2- + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.7955 + -delta_h +388.842 kcal/mol + -analytic 3.7819e+001 -9.5803e-003 -1.0074e+004 -9.1771e+000 1.2221e+006 +# -Range: 0-300 + +# K(Pent), K(CH3(CH2)3CO2) + + 1.0000 C4H9COOH + 1.0000 K+ = K(CH3(CH2)3CO2) + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.8371 + -delta_h +193.881 kcal/mol + -analytic 1.1271e+001 -4.4936e-004 -5.4272e+003 -2.5193e+000 7.5365e+005 +# -Range: 0-300 + +# K(Pent)2-, K(CH3(CH2)3CO2)2- + + 2.0000 C4H9COOH + 1.0000 K+ = K(CH3(CH2)3CO2)2- + 2.0000 H+ + -llnl_gamma 3.0 + log_k -10.0041 + -delta_h +328.765 kcal/mol + -analytic 7.8715e+000 -1.1792e-003 -1.3479e+004 1.7870e+000 2.0708e+006 +# -Range: 0-300 + +# K(Prop), KCH3CH2CO2 + + 1.0000 C2H5COOH + 1.0000 K+ = KCH3CH2CO2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.8664 + -delta_h +182.101 kcal/mol + -analytic 1.1437e+001 -2.2439e-003 -3.4860e+003 -3.4282e+000 4.0460e+005 +# -Range: 0-300 + +# K(Prop)2-, K(CH3CH2CO2)2- + + 2.0000 C2H5COOH + 1.0000 K+ = K(CH3CH2CO2)2- + 2.0000 H+ + -llnl_gamma 3.0 + log_k -10.0429 + -delta_h +306.125 kcal/mol + -analytic 3.7431e+001 -9.1342e-003 -1.1368e+004 -9.1819e+000 1.4324e+006 +# -Range: 0-300 + +# La(But)+2, La(CH3(CH2)2CO2)+2 + + 1.0000 La+3 + 1.0000 C3H7COOH = La(CH3(CH2)2CO2)+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.2078 + -delta_h +300.593 kcal/mol + -analytic -1.2213e+001 7.6865e-004 -2.3803e+003 4.5583e+000 5.7748e+005 +# -Range: 0-300 + +# La(But)2+, La(CH3(CH2)2CO2)2+ + + 2.0000 C3H7COOH + 1.0000 La+3 = La(CH3(CH2)2CO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.1758 + -delta_h +430.176 kcal/mol + -analytic -2.7187e+001 3.6155e-003 -5.1320e+003 9.9375e+000 1.2081e+006 +# -Range: 0-300 + +# La(For)+2, La(CHO2)+2 + + 1.0000 La+3 + 1.0000 HCOOH = La(CHO2)+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.123 + -delta_h +274.343 kcal/mol + -analytic 2.4425e+000 -1.1728e-003 -9.7383e+002 -9.4604e-001 2.1308e+005 +# -Range: 0-300 + +# La(For)2+, La(CHO2)2+ + + 2.0000 HCOOH + 1.0000 La+3 = La(CHO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -3.0163 + -delta_h +378.757 kcal/mol + -analytic 1.4193e+001 -2.4396e-003 -1.1566e+003 -6.0653e+000 2.1470e+005 +# -Range: 0-300 + +# La(Pent)+2, La(CH3(CH2)3CO2)+2 + + 1.0000 C4H9COOH + 1.0000 La+3 = La(CH3(CH2)3CO2)+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.2371 + -delta_h +307.073 kcal/mol + -analytic -2.4830e+001 1.6328e-003 -3.1022e+003 9.5351e+000 7.9458e+005 +# -Range: 0-300 + +# La(Pent)2+, La(CH3(CH2)3CO2)2+ + + 2.0000 C4H9COOH + 1.0000 La+3 = La(CH3(CH2)3CO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.2447 + -delta_h +442.418 kcal/mol + -analytic -4.1413e+001 9.3380e-003 -8.0438e+003 1.6147e+001 1.8186e+006 +# -Range: 0-300 + +# La(Prop)+2, La(CH3CH2CO2)+2 + + 1.0000 C2H5COOH + 1.0000 La+3 = La(CH3CH2CO2)+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.3764 + -delta_h +295.142 kcal/mol + -analytic -8.7100e+000 9.9977e-004 -2.3370e+003 3.2191e+000 5.2671e+005 +# -Range: 0-300 + +# La(Prop)2+, La(CH3CH2CO2)2+ + + 2.0000 C2H5COOH + 1.0000 La+3 = La(CH3CH2CO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.4829 + -delta_h +419.891 kcal/mol + -analytic -1.7985e+001 3.2712e-003 -4.8213e+003 6.3648e+000 1.0652e+006 +# -Range: 0-300 + +# Lactate, C3H5O3- + + 1.0000 C3H6O3 = C3H5O3- + 1.0000 H+ + -llnl_gamma 4.0 + log_k -3.8629 + -delta_h +164.070 kcal/mol + -analytic -8.2814e+001 -3.2149e-002 1.5440e+003 3.3680e+001 2.4117e+001 +# -Range: 0-300 + +# Lactic_acid, C3H6O3 + + 3.0000 HCO3- + 3.0000 H+ = C3H6O3 + 3.0000 O2 + -llnl_gamma 3.0 + log_k -223.4996 + -delta_h +164.000 kcal/mol + -analytic -1.9621E+03 -3.2360E-01 -5.5305E+02 7.4225E+02 -2.0548E-01 +# -Range: 0-300 + +# Leucine, C6H13NO2 + + 3.0000 C2H5NO2 + 2.0000 H2O = C6H13NO2 + 3.0000 O2 + 2.0000 NH3 + -llnl_gamma 3.0 + log_k -541.723 + -delta_h +151.070 kcal/mol + -analytic 2.4561e+002 6.5239e-002 -8.6593e+004 -8.7114e+001 2.1100e+006 +# -Range: 0-300 + +# Leucylglycine, C8H16N2O3 + + 4.0000 C2H5NO2 + 1.0000 H2O = C8H16N2O3 + 3.0000 O2 + 2.0000 NH3 + -llnl_gamma 3.0 + log_k -652.321 + -delta_h +202.660 kcal/mol + -analytic -3.3759e+002 -5.6274e-003 -5.2689e+004 1.1979e+002 -8.2207e+002 +# -Range: 0-300 + +# Malonate, C3H2O4-2 + + 1.5000 CH3COOH + 1.0000 O2 = C3H2O4-2 + 2.0000 H+ + 1.0000 H2O + -llnl_gamma 4.0 + log_k -2.8513 + -delta_h +207.850 kcal/mol + -analytic -9.9824e+001 -7.7578e-002 2.0986e+004 4.5594e+001 3.2750e+002 +# -Range: 0-300 + +# Malonic_acid, C3H4O4 + + 3.0000 HCO3- + 3.0000 H+ = C3H4O4 + 2.0000 O2 + 1.0000 H2O + -llnl_gamma 3.0 + log_k -144.1431 + -delta_h +207.870 kcal/mol + -analytic -1.2631E+03 -1.9613E-01 -5.2873E+02 4.7649E+02 -3.1921E-02 +# -Range: 0-300 + +# Methanamine, CH3NH2 + + 0.5000 NH3 + 0.5000 C2H5NH2 = CH3NH2 + -llnl_gamma 3.0 + log_k -3.7248 + -delta_h +16.320 kcal/mol + -analytic 3.6212e+000 9.9672e-004 -1.2549e+003 -1.3879e+000 -1.9583e+001 +# -Range: 0-300 + +# Methanol, CH3OH + + 0.5000 H2O + 0.5000 C2H5OH = CH3OH + -llnl_gamma 3.0 + log_k -5.8339 + -delta_h +58.870 kcal/mol + -analytic 1.0292e+001 2.0369e-003 -2.3980e+003 -3.5121e+000 -3.7422e+001 +# -Range: 0-300 + +# Methionine, C5H11NO2S +2.5000 C2H5NO2 + 1.0000 HS- + 1.0000 H+ + 0.5000 H2O = C5H11NO2S + 1.7500 O2 + 1.5000 NH3 + -llnl_gamma 3.0 + log_k -499.7659 + -delta_h +177.600 kcal/mol + -analytic -8.0509e+001 3.4730e-002 -2.3107e+004 2.2907e+001 -3.6054e+002 +# -Range: 0-300 + +# Mg(Ala)+, Mg(C3H6NO2)+ + + 1.0000 Mg+2 + 1.0000 C3H7NO2 = Mg(C3H6NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -8.4047 + -delta_h +231.745 kcal/mol + -analytic 3.2275e+000 3.8767e-003 -5.7267e+003 1.9424e-001 5.2913e+005 +# -Range: 0-300 + +# Mg(Ala)2, Mg(C3H6NO2)2 + + 2.0000 C3H7NO2 + 1.0000 Mg+2 = Mg(C3H6NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -17.4998 + -delta_h +352.641 kcal/mol + -analytic -2.6461e+000 5.2729e-003 -1.2622e+004 4.5793e+000 1.2982e+006 +# -Range: 0-300 + +# Mg(But)+, Mg(CH3(CH2)2CO2)+ + + 1.0000 Mg+2 + 1.0000 C3H7COOH = Mg(CH3(CH2)2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.2778 + -delta_h +240.741 kcal/mol + -analytic -2.1041e+000 1.4633e-003 -3.1485e+003 6.1810e-001 5.7229e+005 +# -Range: 0-300 + +# Mg(But)2, Mg(CH3(CH2)2CO2)2 + + 2.0000 C3H7COOH + 1.0000 Mg+2 = Mg(CH3(CH2)2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -8.9654 + -delta_h +370.578 kcal/mol + -analytic -2.8906e+001 1.7817e-003 -6.7997e+003 1.0694e+001 1.4036e+006 +# -Range: 0-300 + +# Mg(For)+, Mg(CHO2)+ + + 1.0000 Mg+2 + 1.0000 HCOOH = Mg(CHO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.3229 + -delta_h +215.678 kcal/mol + -analytic -3.9514e+000 -2.8298e-003 -5.6302e+002 1.0614e+000 1.5474e+005 +# -Range: 0-300 + +# Mg(For)2, Mg(CHO2)2 + + 2.0000 HCOOH + 1.0000 Mg+2 = Mg(CHO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.2058 + -delta_h +321.177 kcal/mol + -analytic -1.9131e+001 -6.0693e-003 4.0785e+001 5.2661e+000 2.2927e+005 +# -Range: 0-300 + +# Mg(Gly)+, Mg(C2H4NO2)+ + + 1.0000 Mg+2 + 1.0000 C2H5NO2 = Mg(C2H4NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -6.328 + -delta_h +225.174 kcal/mol + -analytic 2.0689e+001 7.1872e-003 -4.9739e+003 -6.9062e+000 4.1092e+005 +# -Range: 0-300 + +# Mg(Gly)2, Mg(C2H4NO2)2 + + 2.0000 C2H5NO2 + 1.0000 Mg+2 = Mg(C2H4NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -13.0966 + -delta_h +340.003 kcal/mol + -analytic -2.1284e+000 6.2771e-003 -8.3120e+003 2.3697e+000 8.1724e+005 +# -Range: 0-300 + +# Mg(Glyc)+, Mg(CH3OCO2)+ + + 1.0000 Mg+2 + 1.0000 C2H4O3 = Mg(CH3OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.5039 + -delta_h +266.450 kcal/mol + -analytic 4.1719e+000 4.8995e-004 -2.4071e+003 -1.0943e+000 3.5295e+005 +# -Range: 0-300 + +# Mg(Glyc)2, Mg(CH3OCO2)2 + + 2.0000 C2H4O3 + 1.0000 Mg+2 = Mg(CH3OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.3671 + -delta_h +424.040 kcal/mol + -analytic 1.1456e+001 1.9693e-003 -5.4799e+003 -3.5701e+000 8.7339e+005 +# -Range: 0-300 + +# Mg(Lac)+, Mg(CH3CH2OCO2)+ + + 1.0000 Mg+2 + 1.0000 C3H6O3 = Mg(CH3CH2OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.493 + -delta_h +274.593 kcal/mol + -analytic -5.8138e+000 4.6550e-004 -2.3971e+003 2.7483e+000 3.9437e+005 +# -Range: 0-300 + +# Mg(Lac)2, Mg(CH3CH2OCO2)2 + + 2.0000 C3H6O3 + 1.0000 Mg+2 = Mg(CH3CH2OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.3356 + -delta_h +440.700 kcal/mol + -analytic -9.2240e+000 7.2412e-004 -6.4088e+003 5.1184e+000 1.1140e+006 +# -Range: 0-300 + +# Mg(Pent)+, Mg(CH3(CH2)3CO2)+ + + 1.0000 C4H9COOH + 1.0000 Mg+2 = Mg(CH3(CH2)3CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.5571 + -delta_h +246.880 kcal/mol + -analytic -2.6885e+001 6.6381e-004 -3.2502e+003 9.9565e+000 7.4821e+005 +# -Range: 0-300 + +# Mg(Pent)2, Mg(CH3(CH2)3CO2)2 + + 2.0000 C4H9COOH + 1.0000 Mg+2 = Mg(CH3(CH2)3CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -9.4844 + -delta_h +382.313 kcal/mol + -analytic -3.1213e+001 7.2244e-003 -1.0963e+004 1.3204e+001 2.1088e+006 +# -Range: 0-300 + +# Mg(Prop)+, Mg(CH3CH2CO2)+ + + 1.0000 C2H5COOH + 1.0000 Mg+2 = Mg(CH3CH2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.1767 + -delta_h +235.660 kcal/mol + -analytic -1.5671e+001 -6.7187e-004 -2.0570e+003 5.4098e+000 4.6452e+005 +# -Range: 0-300 + +# Mg(Prop)2, Mg(CH3CH2CO2)2 + + 2.0000 C2H5COOH + 1.0000 Mg+2 = Mg(CH3CH2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -8.7726 + -delta_h +360.889 kcal/mol + -analytic -1.3652e+001 3.8826e-003 -6.2937e+003 4.4524e+000 1.2312e+006 +# -Range: 0-300 + +# Mn(Ala)+, Mn(C3H6NO2)+ + + 1.0000 Mn+2 + 1.0000 C3H7NO2 = Mn(C3H6NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -7.1248 + -delta_h +173.180 kcal/mol + -analytic -6.0922e+000 5.5095e-003 -4.5521e+003 3.1202e+000 4.3437e+005 +# -Range: 0-300 + +# Mn(Ala)2, Mn(C3H6NO2)2 + + 2.0000 C3H7NO2 + 1.0000 Mn+2 = Mn(C3H6NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -14.6792 + -delta_h +294.245 kcal/mol + -analytic -5.0476e-001 5.7769e-003 -1.2737e+004 4.7857e+000 1.3339e+006 +# -Range: 0-300 + +# Mn(But)+, Mn(CH3(CH2)2CO2)+ + + 1.0000 Mn+2 + 1.0000 C3H7COOH = Mn(CH3(CH2)2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.6079 + -delta_h +181.344 kcal/mol + -analytic -1.6910e+001 1.9388e-003 -1.9552e+003 5.6484e+000 4.7316e+005 +# -Range: 0-300 + +# Mn(But)2, Mn(CH3(CH2)2CO2)2 + + 2.0000 C3H7COOH + 1.0000 Mn+2 = Mn(CH3(CH2)2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.7354 + -delta_h +310.012 kcal/mol + -analytic -1.8458e+001 3.5123e-003 -7.8343e+003 7.8894e+000 1.4636e+006 +# -Range: 0-300 + +# Mn(For)+, Mn(CHO2)+ + + 1.0000 Mn+2 + 1.0000 HCOOH = Mn(CHO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.0532 + -delta_h +155.735 kcal/mol + -analytic -5.7235e+000 -8.3722e-004 -3.0900e+002 1.5086e+000 1.0934e+005 +# -Range: 0-300 + +# Mn(For)2, Mn(CHO2)2 + + 2.0000 HCOOH + 1.0000 Mn+2 = Mn(CHO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.7162 + -delta_h +259.601 kcal/mol + -analytic 1.2827e+001 -1.4127e-003 -2.4571e+003 -5.2411e+000 3.6438e+005 +# -Range: 0-300 + +# Mn(Gly)+, Mn(C2H4NO2)+ + + 1.0000 Mn+2 + 1.0000 C2H5NO2 = Mn(C2H4NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -6.1184 + -delta_h +165.803 kcal/mol + -analytic 1.2891e+001 8.7151e-003 -4.1826e+003 -4.5776e+000 3.3412e+005 +# -Range: 0-300 + +# Mn(Gly)2, Mn(C2H4NO2)2 + + 2.0000 C2H5NO2 + 1.0000 Mn+2 = Mn(C2H4NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -12.9266 + -delta_h +278.847 kcal/mol + -analytic -8.9549e+000 5.6683e-003 -8.5407e+003 5.5548e+000 8.2286e+005 +# -Range: 0-300 + +# Mn(Glyc)+, Mn(CH3OCO2)+ + + 1.0000 Mn+2 + 1.0000 C2H4O3 = Mn(CH3OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.2518 + -delta_h +208.594 kcal/mol + -analytic -7.3237e+000 7.7086e-004 -1.3628e+003 2.4657e+000 2.9532e+005 +# -Range: 0-300 + +# Mn(Glyc)2, Mn(CH3OCO2)2 + + 2.0000 C2H4O3 + 1.0000 Mn+2 = Mn(CH3OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.2373 + -delta_h +364.736 kcal/mol + -analytic -1.7505e+001 -1.6628e-003 -4.1763e+003 7.1162e+000 8.1623e+005 +# -Range: 0-300 + +# Mn(Lac)+, Mn(CH3CH2OCO2)+ + + 1.0000 Mn+2 + 1.0000 C3H6O3 = Mn(CH3CH2OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.4328 + -delta_h +217.756 kcal/mol + -analytic -1.6464e+001 7.1558e-004 -1.2885e+003 5.7494e+000 3.4911e+005 +# -Range: 0-300 + +# Mn(Lac)2, Mn(CH3CH2OCO2)2 + + 2.0000 C3H6O3 + 1.0000 Mn+2 = Mn(CH3CH2OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.2256 + -delta_h +383.047 kcal/mol + -analytic -1.8030e+001 1.4926e-004 -5.9277e+003 8.0913e+000 1.1243e+006 +# -Range: 0-300 + +# Mn(Pent)+, Mn(CH3(CH2)3CO2)+ + + 1.0000 C4H9COOH + 1.0000 Mn+2 = Mn(CH3(CH2)3CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.7669 + -delta_h +187.646 kcal/mol + -analytic -3.1330e+001 2.7885e-003 -2.5476e+003 1.1193e+001 6.7589e+005 +# -Range: 0-300 + +# Mn(Pent)2, Mn(CH3(CH2)3CO2)2 + + 2.0000 C4H9COOH + 1.0000 Mn+2 = Mn(CH3(CH2)3CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -8.044 + -delta_h +322.033 kcal/mol + -analytic -2.1011e+001 8.8159e-003 -1.1958e+004 1.0527e+001 2.1730e+006 +# -Range: 0-300 + +# Mn(Prop)+, Mn(CH3CH2CO2)+ + + 1.0000 C2H5COOH + 1.0000 Mn+2 = Mn(CH3CH2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.6167 + -delta_h +176.112 kcal/mol + -analytic -5.3912e+000 3.1110e-003 -2.3654e+003 1.4872e+000 4.5498e+005 +# -Range: 0-300 + +# Mn(Prop)2, Mn(CH3CH2CO2)2 + + 2.0000 C2H5COOH + 1.0000 Mn+2 = Mn(CH3CH2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.753 + -delta_h +300.037 kcal/mol + -analytic -5.4193e+000 5.1920e-003 -7.3047e+003 2.4858e+000 1.2892e+006 +# -Range: 0-300 + +# Na(But), Na(CH3(CH2)2CO2) + + 1.0000 Na+ + 1.0000 C3H7COOH = Na(CH3(CH2)2CO2) + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.788 + -delta_h +185.529 kcal/mol + -analytic 1.1463e+001 -1.9756e-003 -3.8987e+003 -3.3969e+000 5.1852e+005 +# -Range: 0-300 + +# Na(But)2-, Na(CH3(CH2)2CO2)2- + + 2.0000 C3H7COOH + 1.0000 Na+ = Na(CH3(CH2)2CO2)2- + 2.0000 H+ + -llnl_gamma 3.0 + log_k -9.8956 + -delta_h +315.475 kcal/mol + -analytic 2.9605e+001 -9.5353e-003 -1.2859e+004 -5.5837e+000 1.8051e+006 +# -Range: 0-300 + +# Na(For), Na(CHO2) + + 1.0000 Na+ + 1.0000 HCOOH = Na(CHO2) + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.7031 + -delta_h +159.279 kcal/mol + -analytic 1.9556e+001 -4.0171e-003 -1.9403e+003 -6.7907e+000 1.1139e+005 +# -Range: 0-300 + +# Na(For)2-, Na(CHO2)2- + + 2.0000 HCOOH + 1.0000 Na+ = Na(CHO2)2- + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.7362 + -delta_h +263.725 kcal/mol + -analytic -1.6907e+002 -4.9200e-002 4.7499e+003 6.4687e+001 7.4168e+001 +# -Range: 0-300 + +# Na(Glyc), Na(CH3OCO2) + + 1.0000 Na+ + 1.0000 C2H4O3 = Na(CH3OCO2) + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.7838 + -delta_h +212.299 kcal/mol + -analytic 6.5651e+000 -4.5298e-003 -2.4464e+003 -1.5701e+000 2.7550e+005 +# -Range: 0-300 + +# Na(Glyc)2-, Na(CH3OCO2)2- + + 2.0000 C2H4O3 + 1.0000 Na+ = Na(CH3OCO2)2- + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.7076 + -delta_h +369.684 kcal/mol + -analytic -2.9181e+002 -5.8674e-002 9.4836e+003 1.0904e+002 1.4807e+002 +# -Range: 0-300 + +# Na(Lac), Na(CH3CH2OCO2) + + 1.0000 Na+ + 1.0000 C3H6O3 = Na(CH3CH2OCO2) + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.8131 + -delta_h +221.669 kcal/mol + -analytic -8.9871e+000 -6.2002e-003 -2.1368e+003 4.2449e+000 3.2856e+005 +# -Range: 0-300 + +# Na(Lac)2-, Na(CH3CH2OCO2)2- + + 2.0000 C3H6O3 + 1.0000 Na+ = Na(CH3CH2OCO2)2- + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.7559 + -delta_h +388.006 kcal/mol + -analytic 5.9524e+001 -8.7468e-003 -1.2721e+004 -1.5993e+001 1.5628e+006 +# -Range: 0-300 + +# Na(Pent), Na(CH3(CH2)3CO2) + + 1.0000 C4H9COOH + 1.0000 Na+ = Na(CH3(CH2)3CO2) + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.8173 + -delta_h +192.009 kcal/mol + -analytic 8.1540e+000 -4.2441e-004 -5.2875e+003 -1.5765e+000 7.8307e+005 +# -Range: 0-300 + +# Na(Pent)2-, Na(CH3(CH2)3CO2)2- + + 2.0000 C4H9COOH + 1.0000 Na+ = Na(CH3(CH2)3CO2)2- + 2.0000 H+ + -llnl_gamma 3.0 + log_k -9.9645 + -delta_h +327.929 kcal/mol + -analytic 3.8577e+001 7.5820e-004 -1.6661e+004 -8.2211e+000 2.4438e+006 +# -Range: 0-300 + +# Na(Prop), Na(CH3CH2CO2) + + 1.0000 C2H5COOH + 1.0000 Na+ = Na(CH3CH2CO2) + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.8466 + -delta_h +180.229 kcal/mol + -analytic 1.7028e+000 -3.1352e-003 -2.9697e+003 -1.0967e-001 4.1170e+005 +# -Range: 0-300 + +# Na(Prop)2-, Na(CH3CH2CO2)2- + + 2.0000 C2H5COOH + 1.0000 Na+ = Na(CH3CH2CO2)2- + 2.0000 H+ + -llnl_gamma 3.0 + log_k -10.0026 + -delta_h +305.289 kcal/mol + -analytic 6.6077e+001 -6.9347e-003 -1.4292e+004 -1.8630e+001 1.7811e+006 +# -Range: 0-300 + +# Ni(Ala)+, Ni(C3H6NO2)+ + + 1.0000 Ni+2 + 1.0000 C3H7NO2 = Ni(C3H6NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.5249 + -delta_h +137.131 kcal/mol + -analytic 1.1604e+000 4.6374e-003 -4.1009e+003 7.4132e-001 4.3245e+005 +# -Range: 0-300 + +# Ni(Ala)2, Ni(C3H6NO2)2 + + 2.0000 C3H7NO2 + 1.0000 Ni+2 = Ni(C3H6NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -10.2291 + -delta_h +262.972 kcal/mol + -analytic 3.1888e+001 9.4817e-003 -1.1655e+004 -8.0444e+000 1.2513e+006 +# -Range: 0-300 + +# Ni(But)+, Ni(CH3(CH2)2CO2)+ + + 1.0000 Ni+2 + 1.0000 C3H7COOH = Ni(CH3(CH2)2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.0676 + -delta_h +143.687 kcal/mol + -analytic -1.1210e+001 7.7237e-004 -1.8584e+003 3.5695e+000 4.7362e+005 +# -Range: 0-300 + +# Ni(But)2, Ni(CH3(CH2)2CO2)2 + + 2.0000 C3H7COOH + 1.0000 Ni+2 = Ni(CH3(CH2)2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.7459 + -delta_h +274.625 kcal/mol + -analytic -3.4716e+000 4.8213e-003 -6.7033e+003 1.1666e+000 1.3261e+006 +# -Range: 0-300 + +# Ni(For)+, Ni(CHO2)+ + + 1.0000 Ni+2 + 1.0000 HCOOH = Ni(CHO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.8831 + -delta_h +117.573 kcal/mol + -analytic -4.4750e-001 -1.7720e-003 -2.1850e+002 -5.1560e-001 9.8346e+004 +# -Range: 0-300 + +# Ni(For)2, Ni(CHO2)2 + + 2.0000 HCOOH + 1.0000 Ni+2 = Ni(CHO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.4061 + -delta_h +223.287 kcal/mol + -analytic -1.1886e+001 -5.7362e-003 6.8286e+002 2.3397e+000 9.9533e+004 +# -Range: 0-300 + +# Ni(Gly)+, Ni(C2H4NO2)+ + + 1.0000 Ni+2 + 1.0000 C2H5NO2 = Ni(C2H4NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.6482 + -delta_h +129.289 kcal/mol + -analytic -4.6499e+000 4.5579e-003 -2.3704e+003 1.9662e+000 2.4331e+005 +# -Range: 0-300 + +# Ni(Gly)2, Ni(C2H4NO2)2 + + 2.0000 C2H5NO2 + 1.0000 Ni+2 = Ni(C2H4NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -8.5065 + -delta_h +246.055 kcal/mol + -analytic 7.2186e-001 5.9661e-003 -6.4762e+003 1.3110e+000 6.6544e+005 +# -Range: 0-300 + +# Ni(Glyc)+, Ni(CH3OCO2)+ + + 1.0000 Ni+2 + 1.0000 C2H4O3 = Ni(CH3OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.5738 + -delta_h +171.125 kcal/mol + -analytic -1.0297e+000 -1.2447e-004 -1.2044e+003 1.0906e-001 2.9085e+005 +# -Range: 0-300 + +# Ni(Glyc)2, Ni(CH3OCO2)2 + + 2.0000 C2H4O3 + 1.0000 Ni+2 = Ni(CH3OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -3.657 + -delta_h +330.154 kcal/mol + -analytic -1.0354e+001 -1.4250e-003 -2.4189e+003 3.2017e+000 6.5173e+005 +# -Range: 0-300 + +# Ni(Lac)+, Ni(CH3CH2OCO2)+ + + 1.0000 Ni+2 + 1.0000 C3H6O3 = Ni(CH3CH2OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.2731 + -delta_h +179.581 kcal/mol + -analytic -5.3952e+000 3.0639e-004 -1.6023e+003 1.7361e+000 3.6640e+005 +# -Range: 0-300 + +# Ni(Lac)2, Ni(CH3CH2OCO2)2 + + 2.0000 C3H6O3 + 1.0000 Ni+2 = Ni(CH3CH2OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.7961 + -delta_h +346.896 kcal/mol + -analytic 1.3452e+001 3.7748e-003 -5.8913e+003 -4.5655e+000 1.0409e+006 +# -Range: 0-300 + +# Ni(Pent)+, Ni(CH3(CH2)3CO2)+ + + 1.0000 C4H9COOH + 1.0000 Ni+2 = Ni(CH3(CH2)3CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.127 + -delta_h +150.126 kcal/mol + -analytic -1.8027e+001 2.5673e-003 -2.8802e+003 6.4190e+000 7.0514e+005 +# -Range: 0-300 + +# Ni(Pent)2, Ni(CH3(CH2)3CO2)2 + + 2.0000 C4H9COOH + 1.0000 Ni+2 = Ni(CH3(CH2)3CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.8741 + -delta_h +286.892 kcal/mol + -analytic -1.4118e+001 9.0210e-003 -1.0307e+004 6.7035e+000 2.0075e+006 +# -Range: 0-300 + +# Ni(Prop)+, Ni(CH3CH2CO2)+ + + 1.0000 C2H5COOH + 1.0000 Ni+2 = Ni(CH3CH2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.4561 + -delta_h +137.936 kcal/mol + -analytic -7.2594e+000 1.0617e-003 -1.9069e+003 2.0708e+000 4.2443e+005 +# -Range: 0-300 + +# Ni(Prop)2, Ni(CH3CH2CO2)2 + + 2.0000 C2H5COOH + 1.0000 Ni+2 = Ni(CH3CH2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.4532 + -delta_h +263.708 kcal/mol + -analytic -3.7965e+001 -1.2697e-004 -3.6918e+003 1.2846e+001 9.9382e+005 +# -Range: 0-300 + +# Nonanal, CH3(CH2)7CHO + + 3.5000 C2H4 + 1.0000 CH3COOH = CH3(CH2)7CHO + 0.5000 O2 + -llnl_gamma 3.0 + log_k -949.8594 + -delta_h +89.060 kcal/mol + -analytic -6.6011e+001 -2.4799e-002 1.8885e+003 2.3966e+001 2.9487e+001 +# -Range: 0-300 + +# Nonanoate, C9H17O2- + + 4.5000 CH3COOH = C9H17O2- + 3.5000 O2 + 1.0000 H+ + -llnl_gamma 4.0 + log_k -4.728 + -delta_h +156.990 kcal/mol + -analytic -2.9242e+002 -2.3233e-002 -6.6303e+004 1.0260e+002 -1.0345e+003 +# -Range: 0-300 + +# Nonanoic_acid, C9H18O2 + + 4.5000 CH3COOH = C9H18O2 + 3.5000 O2 + -llnl_gamma 3.0 + log_k -902.1429 + -delta_h +156.530 kcal/mol + -analytic 7.6545e+002 1.2327e-001 -1.2782e+005 -2.7455e+002 3.7974e+006 +# -Range: 0-300 + +# Octanal, CH3(CH2)6CHO + + 3.0000 C2H4 + 1.0000 CH3COOH = CH3(CH2)6CHO + 0.5000 O2 + -llnl_gamma 3.0 + log_k -841.0644 + -delta_h +83.550 kcal/mol + -analytic -5.5236e+001 -2.0015e-002 -3.6255e+002 1.9863e+001 -5.6412e+000 +# -Range: 0-300 + +# Octanoate, C7H15COO- + + 4.0000 CH3COOH = C7H15COO- + 3.0000 O2 + 1.0000 H+ + -llnl_gamma 4.0 + log_k -4.8965 + -delta_h +151.580 kcal/mol + -analytic -2.6026e+002 -2.5391e-002 -5.6736e+004 9.2101e+001 -8.8524e+002 +# -Range: 0-300 + +# Octanoic_acid, C7H15COOH + + 4.0000 CH3COOH = C7H15COOH + 3.0000 O2 + -llnl_gamma 3.0 + log_k -793.3332 + -delta_h +151.050 kcal/mol + -analytic -1.9247e+001 1.0829e-002 -7.1544e+004 7.6349e+000 1.0441e+006 +# -Range: 0-300 + +# Oxalate, C2O4-2 + + 1.5000 O2 + 1.0000 CH3COOH = C2O4-2 + 2.0000 H+ + 1.0000 H2O + -llnl_gamma 4.0 + log_k -1.2703 + -delta_h +195.600 kcal/mol + -analytic -6.1367e+001 -6.7813e-002 2.9725e+004 3.0857e+001 4.6385e+002 +# -Range: 0-300 + +# Oxalic_acid, C2H2O4 + + 2.0000 HCO3- + 2.0000 H+ = C2H2O4 + 0.5000 O2 + 1.0000 H2O + -llnl_gamma 3.0 + log_k -41.9377 + -delta_h +194.580 kcal/mol + -analytic -3.4531E+02 -3.8017E-02 -4.9420E+02 1.2783E+02 3.4954E-01 +# -Range: 0-300 + +# Pb(Ala)+, Pb(C3H6NO2)+ + + 1.0000 Pb+2 + 1.0000 C3H7NO2 = Pb(C3H6NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -5.3649 + -delta_h +120.275 kcal/mol + -analytic -2.6624e+001 4.7189e-003 -2.0605e+003 9.9803e+000 1.8534e+005 +# -Range: 0-300 + +# Pb(Ala)2, Pb(C3H6NO2)2 + + 2.0000 C3H7NO2 + 1.0000 Pb+2 = Pb(C3H6NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -12.4897 + -delta_h +239.191 kcal/mol + -analytic -9.5305e+000 7.6294e-006 -1.1822e+004 9.6291e+000 1.1454e+006 +# -Range: 0-300 + +# Pb(But)+, Pb(CH3(CH2)2CO2)+ + + 1.0000 Pb+2 + 1.0000 C3H7COOH = Pb(CH3(CH2)2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.0075 + -delta_h +126.856 kcal/mol + -analytic -2.1474e+001 2.8958e-003 -8.4396e+002 6.9308e+000 2.9372e+005 +# -Range: 0-300 + +# Pb(But)2, Pb(CH3(CH2)2CO2)2 + + 2.0000 C3H7COOH + 1.0000 Pb+2 = Pb(CH3(CH2)2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.6359 + -delta_h +253.472 kcal/mol + -analytic 2.0254e+001 4.4997e-003 -9.9101e+003 -4.4607e+000 1.4291e+006 +# -Range: 0-300 + +# Pb(For)+, Pb(CHO2)+ + + 1.0000 Pb+2 + 1.0000 HCOOH = Pb(CHO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.8633 + -delta_h +100.688 kcal/mol + -analytic 6.0621e+000 1.9339e-003 -3.7110e+002 -2.9296e+000 -5.7925e+000 +# -Range: 0-300 + +# Pb(For)2, Pb(CHO2)2 + + 2.0000 HCOOH + 1.0000 Pb+2 = Pb(CHO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.3658 + -delta_h +202.038 kcal/mol + -analytic 2.6259e+001 -4.0425e-003 -3.3586e+003 -8.4717e+000 2.5027e+005 +# -Range: 0-300 + +# Pb(Gly)+, Pb(C2H4NO2)+ + + 1.0000 Pb+2 + 1.0000 C2H5NO2 = Pb(C2H4NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.3086 + -delta_h +112.312 kcal/mol + -analytic -1.8673e+001 6.5915e-003 -1.1000e+003 6.3328e+000 3.8522e+004 +# -Range: 0-300 + +# Pb(Gly)2, Pb(C2H4NO2)2 + + 2.0000 C2H5NO2 + 1.0000 Pb+2 = Pb(C2H4NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -10.6968 + -delta_h +222.992 kcal/mol + -analytic 8.2909e+000 3.4522e-003 -9.2596e+003 1.1906e+000 7.2077e+005 +# -Range: 0-300 + +# Pb(Glyc)+, Pb(CH3OCO2)+ + + 1.0000 Pb+2 + 1.0000 C2H4O3 = Pb(CH3OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.5335 + -delta_h +154.267 kcal/mol + -analytic -1.4773e+001 6.3698e-004 -2.3399e+002 5.0111e+000 1.2864e+005 +# -Range: 0-300 + +# Pb(Glyc)2, Pb(CH3OCO2)2 + + 2.0000 C2H4O3 + 1.0000 Pb+2 = Pb(CH3OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -3.5873 + -delta_h +308.946 kcal/mol + -analytic 1.1096e+001 -3.0559e-003 -5.7676e+003 -1.2814e+000 7.7865e+005 +# -Range: 0-300 + +# Pb(Lac)+, Pb(CH3CH2OCO2)+ + + 1.0000 Pb+2 + 1.0000 C3H6O3 = Pb(CH3CH2OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.5833 + -delta_h +163.610 kcal/mol + -analytic -1.3871e+001 2.6871e-003 -5.0054e+002 4.4527e+000 1.9242e+005 +# -Range: 0-300 + +# Pb(Lac)2, Pb(CH3CH2OCO2)2 + + 2.0000 C3H6O3 + 1.0000 Pb+2 = Pb(CH3CH2OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -3.676 + -delta_h +327.120 kcal/mol + -analytic -4.4899e+000 -2.4870e-003 -6.4849e+003 4.8300e+000 1.0115e+006 +# -Range: 0-300 + +# Pb(Pent)+, Pb(CH3(CH2)3CO2)+ + + 1.0000 C4H9COOH + 1.0000 Pb+2 = Pb(CH3(CH2)3CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.0471 + -delta_h +133.322 kcal/mol + -analytic -2.4746e+001 5.6511e-003 -1.9305e+003 8.3485e+000 5.2061e+005 +# -Range: 0-300 + +# Pb(Pent)2, Pb(CH3(CH2)3CO2)2 + + 2.0000 C4H9COOH + 1.0000 Pb+2 = Pb(CH3(CH2)3CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.7246 + -delta_h +265.793 kcal/mol + -analytic -2.7005e+001 3.4894e-003 -1.1468e+004 1.4273e+001 1.9937e+006 +# -Range: 0-300 + +# Pb(Prop)+, Pb(CH3CH2CO2)+ + + 1.0000 C2H5COOH + 1.0000 Pb+2 = Pb(CH3CH2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.5567 + -delta_h +122.252 kcal/mol + -analytic -1.6614e+001 2.8882e-003 -8.1215e+002 5.2485e+000 2.6253e+005 +# -Range: 0-300 + +# Pb(Prop)2, Pb(CH3CH2CO2)2 + + 2.0000 C2H5COOH + 1.0000 Pb+2 = Pb(CH3CH2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.1631 + -delta_h +244.164 kcal/mol + -analytic -8.3280e+000 2.5204e-004 -6.9233e+003 5.1398e+000 1.1223e+006 +# -Range: 0-300 + +# Pentanal, CH3(CH2)3CHO + + 1.5000 C2H4 + 1.0000 CH3COOH = CH3(CH2)3CHO + 0.5000 O2 + -llnl_gamma 3.0 + log_k -514.6206 + -delta_h +67.100 kcal/mol + -analytic -2.2868e+001 -5.6572e-003 -7.1000e+003 7.5357e+000 -1.1078e+002 +# -Range: 0-300 + +# Pentanoate, C4H9COO- + + 1.0000 C4H9COOH = C4H9COO- + 1.0000 H+ + -llnl_gamma 4.0 + log_k -4.8452 + -delta_h +134.380 kcal/mol + -analytic -7.1959e+001 -2.5255e-002 1.5595e+003 2.8045e+001 2.4355e+001 +# -Range: 0-300 + +# Pentanoic_acid, C4H9COOH + + 5.0000 HCO3- + 5.0000 H+ = C4H9COOH + 6.5000 O2 + -llnl_gamma 3.0 + log_k -467.5638 + -delta_h +133.690 kcal/mol + -analytic -4.1508E+03 -7.0450E-01 -6.2821E+02 1.5740E+03 -6.3823E-01 +# -Range: 0-300 + +# Phenol, C6H5OH + + 6.0000 HCO3- + 6.0000 H+ = C6H5OH + 7.0000 O2 + 3.0000 H2O + -llnl_gamma 3.0 + log_k -503.3718 + -delta_h +36.640 kcal/mol + -analytic -4.4638E+03 -7.4406E-01 -6.3959E+02 1.6908E+03 -7.2665E-01 +# -Range: 0-300 + +# Phenylalanine, C9H11NO2 + + 4.5000 C2H5NO2 = C9H11NO2 + 3.5000 NH3 + 3.2500 O2 + 0.5000 H2O + -llnl_gamma 3.0 + log_k -715.0646 + -delta_h +110.080 kcal/mol + -analytic 4.3141e+002 9.9794e-002 -1.0397e+005 -1.5181e+002 3.1041e+006 +# -Range: 0-300 + +# Pimelate, C7H10O4-2 + + 3.5000 CH3COOH = C7H10O4-2 + 2.0000 H+ + 1.0000 H2O + 1.0000 O2 + -llnl_gamma 4.0 + log_k -4.486 + -delta_h +234.040 kcal/mol + -analytic -1.8597e+002 -7.3478e-002 -1.8772e+004 7.3883e+001 -2.9286e+002 +# -Range: 0-300 + +# Pimelic_acid, C7H12O4 + + 3.5000 CH3COOH = C7H12O4 + 1.0000 H2O + 1.0000 O2 + -llnl_gamma 3.0 + log_k -575.0718 + -delta_h +253.720 kcal/mol + -analytic -8.7817e+001 -1.7044e-002 -1.9448e+004 3.2348e+001 -3.0344e+002 +# -Range: 0-300 + +# Propanal, CH3CH2CHO + + 1.0000 CH3COOH + 0.5000 C2H4 = CH3CH2CHO + 0.5000 O2 + -llnl_gamma 3.0 + log_k -296.0849 + -delta_h +57.360 kcal/mol + -analytic -1.2713e+000 3.9198e-003 -1.1322e+004 -6.8971e-001 -1.7667e+002 +# -Range: 0-300 + +# Propane, C3H8 + + 1.5000 C2H6 + 0.2500 O2 = C3H8 + 0.5000 H2O + -llnl_gamma 3.0 + log_k -363.0881 + -delta_h +30.490 kcal/mol + -analytic -6.4646e+001 -1.3427e-002 9.8352e+003 2.3379e+001 -3.1351e+005 +# -Range: 0-300 + +#C7H8 from J.Thom + CH4 + C6H6 = C7H8 + H2 + -llnl_gamma 3.0 + log_k -7.82476 + -analytic -6.78979e1 -1.31838e-2 -1.34773e0 2.58679e1 9.83945e-1 +# -Range: 0-300 + +# Propanoate, C2H5COO- + + 1.0000 C2H5COOH = C2H5COO- + 1.0000 H+ + -llnl_gamma 4.0 + log_k -4.8892 + -delta_h +122.630 kcal/mol + -analytic -9.5201e+001 -3.2154e-002 2.0655e+003 3.7566e+001 3.2258e+001 +# -Range: 0-300 + +# C2H5COOH, C2H5COOH + + 3.0000 HCO3- + 3.0000 H+ = C2H5COOH + 3.5000 O2 + -llnl_gamma 3.0 + log_k -250.1276 + -delta_h +122.470 kcal/mol + -analytic -2.2143E+03 -3.6918E-01 -5.6115E+02 8.3892E+02 -1.6485E-01 +# -Range: 0-300 + +# Sebacate, C10H16O4-2 + + 5.0000 CH3COOH = C10H16O4-2 + 2.5000 O2 + 2.0000 H+ + 1.0000 H2O + -llnl_gamma 4.0 + log_k -4.5446 + -delta_h +246.230 kcal/mol + -analytic -2.7931e+002 -6.9587e-002 -4.8910e+004 1.0481e+002 -7.6312e+002 +# -Range: 0-300 + +# Sebacic_acid, C10H18O4 + + 5.0000 CH3COOH = C10H18O4 + 2.5000 O2 + 1.0000 H2O + -llnl_gamma 3.0 + log_k -904.7629 + -delta_h +246.000 kcal/mol + -analytic -2.2715e+002 -2.7047e-002 -4.8330e+004 8.1858e+001 -7.5408e+002 +# -Range: 0-300 + +# Serine, C3H7NO3 + + 1.5000 C2H5NO2 + 0.5000 H2O = C3H7NO3 + 0.5000 NH3 + 0.2500 O2 + -llnl_gamma 3.0 + log_k -189.3549 + -delta_h +170.800 kcal/mol + -analytic -3.4133e+001 -7.9911e-005 -6.6066e+003 1.1810e+001 -1.0308e+002 +# -Range: 0-300 + +# Sr(Ala)+, Sr(C3H6NO2)+ + + 1.0000 Sr+2 + 1.0000 C3H7NO2 = Sr(C3H6NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -9.6244 + -delta_h +247.624 kcal/mol + -analytic -1.5372e-001 6.3659e-003 -5.3387e+003 9.4940e-001 3.7366e+005 +# -Range: 0-300 + +# Sr(Ala)2, Sr(C3H6NO2)2 + + 2.0000 C3H7NO2 + 1.0000 Sr+2 = Sr(C3H6NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -19.7391 + -delta_h +363.933 kcal/mol + -analytic 2.2701e+001 5.7649e-003 -1.5582e+004 -2.6780e+000 1.3116e+006 +# -Range: 0-300 + +# Sr(But)+, Sr(CH3(CH2)2CO2)+ + + 1.0000 Sr+2 + 1.0000 C3H7COOH = Sr(CH3(CH2)2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.6876 + -delta_h +257.725 kcal/mol + -analytic 3.9063e+000 4.6099e-003 -3.2349e+003 -1.7801e+000 4.7152e+005 +# -Range: 0-300 + +# Sr(But)2, Sr(CH3(CH2)2CO2)2 + + 2.0000 C3H7COOH + 1.0000 Sr+2 = Sr(CH3(CH2)2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -9.716 + -delta_h +383.903 kcal/mol + -analytic -7.5798e+000 1.7956e-003 -9.0604e+003 4.8509e+000 1.3997e+006 +# -Range: 0-300 + +# Sr(For)+, Sr(CHO2)+ + + 1.0000 Sr+2 + 1.0000 HCOOH = Sr(CHO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.3632 + -delta_h +233.167 kcal/mol + -analytic -7.7187e+000 -1.6025e-003 -1.4308e+002 2.3659e+000 4.1368e+004 +# -Range: 0-300 + +# Sr(For)2, Sr(CHO2)2 + + 2.0000 HCOOH + 1.0000 Sr+2 = Sr(CHO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.2857 + -delta_h +335.415 kcal/mol + -analytic 1.2568e+001 -4.6580e-003 -2.6237e+003 -4.2863e+000 2.6225e+005 +# -Range: 0-300 + +# Sr(Gly)+, Sr(C2H4NO2)+ + + 1.0000 Sr+2 + 1.0000 C2H5NO2 = Sr(C2H4NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -8.8283 + -delta_h +239.307 kcal/mol + -analytic 2.8102e+000 7.4407e-003 -4.2138e+003 -8.6544e-001 2.1596e+005 +# -Range: 0-300 + +# Sr(Gly)2, Sr(C2H4NO2)2 + + 2.0000 C2H5NO2 + 1.0000 Sr+2 = Sr(C2H4NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -18.1764 + -delta_h +347.420 kcal/mol + -analytic -2.8343e+001 -5.5578e-004 -9.2508e+003 1.3694e+001 6.6583e+005 +# -Range: 0-300 + +# Sr(Glyc)+, Sr(CH3OCO2)+ + + 1.0000 Sr+2 + 1.0000 C2H4O3 = Sr(CH3OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.5237 + -delta_h +286.078 kcal/mol + -analytic -6.4133e+000 5.4199e-004 -1.3135e+003 2.2348e+000 2.3242e+005 +# -Range: 0-300 + +# Sr(Glyc)2, Sr(CH3OCO2)2 + + 2.0000 C2H4O3 + 1.0000 Sr+2 = Sr(CH3OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.3971 + -delta_h +441.109 kcal/mol + -analytic 1.3286e+001 -5.0599e-004 -5.9522e+003 -3.1148e+000 8.1395e+005 +# -Range: 0-300 + +# Sr(Lac)+, Sr(CH3CH2OCO2)+ + + 1.0000 Sr+2 + 1.0000 C3H6O3 = Sr(CH3CH2OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.8829 + -delta_h +295.697 kcal/mol + -analytic -4.0445e+000 1.9255e-003 -1.8712e+003 1.2700e+000 3.3209e+005 +# -Range: 0-300 + +# Sr(Lac)2, Sr(CH3CH2OCO2)2 + + 2.0000 C3H6O3 + 1.0000 Sr+2 = Sr(CH3CH2OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -6.0561 + -delta_h +459.421 kcal/mol + -analytic -1.4468e+001 -2.5097e-003 -6.2399e+003 7.4467e+000 1.0390e+006 +# -Range: 0-300 + +# Sr(Pent)+, Sr(CH3(CH2)3CO2)+ + Sr+2 + 1.0000 C4H9COOH = Sr(CH3(CH2)3CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -5.0475 + -delta_h +263.755 kcal/mol + -analytic -1.6735e+001 4.7533e-003 -3.4901e+003 5.9457e+000 6.4784e+005 +# -Range: 0-300 + +# Sr(Pent)2, Sr(CH3(CH2)3CO2)2 + + 2.0000 C4H9COOH + 1.0000 Sr+2 = Sr(CH3(CH2)3CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -10.3845 + -delta_h +395.432 kcal/mol + -analytic -2.1107e+001 5.6147e-003 -1.2655e+004 1.1415e+001 2.0705e+006 +# -Range: 0-300 + +# Sr(Prop)+, Sr(CH3CH2CO2)+ + Sr+2 + 1.0000 C2H5COOH = Sr(CH3CH2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.6568 + -delta_h +252.548 kcal/mol + -analytic -6.6891e+000 2.5586e-003 -2.4244e+003 2.0550e+000 3.8526e+005 +# -Range: 0-300 + +# Sr(Prop)2, Sr(CH3CH2CO2)2 + + 2.0000 C2H5COOH + 1.0000 Sr+2 = Sr(CH3CH2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -9.653 + -delta_h +374.036 kcal/mol + -analytic -1.7427e+001 2.9439e-004 -7.2086e+003 7.6682e+000 1.1487e+006 +# -Range: 0-300 + +# Suberate, C8H12O4-2 + + 4.0000 CH3COOH = C8H12O4-2 + 2.0000 H+ + 1.5000 O2 + 1.0000 H2O + -llnl_gamma 4.0 + log_k -4.508 + -delta_h +238.130 kcal/mol + -analytic -2.2072e+002 -7.2265e-002 -2.8694e+004 8.5459e+001 -4.4768e+002 +# -Range: 0-300 + +# Suberic_acid, C8H14O4 + + 4.0000 CH3COOH = C8H14O4 + 1.5000 O2 + 1.0000 H2O + -llnl_gamma 3.0 + log_k -685.0983 + -delta_h +237.760 kcal/mol + -analytic 3.0275e+002 3.8350e-002 -5.4760e+004 -1.0730e+002 1.5882e+006 +# -Range: 0-300 + +# Succinate, C4H4O4-2 + + 2.0000 CH3COOH + 0.5000 O2 = C4H4O4-2 + 2.0000 H+ + 1.0000 H2O + -llnl_gamma 4.0 + log_k -4.2075 + -delta_h +217.350 kcal/mol + -analytic -1.2187e+002 -7.6672e-002 1.1465e+004 5.2865e+001 1.7894e+002 +# -Range: 0-300 + +# Succinic_acid, C4H6O4 + + 4.0000 HCO3- + 4.0000 H+ = C4H6O4 + 1.0000 H2O + 3.5000 O2 + -llnl_gamma 3.0 + log_k -249.5736 + -delta_h +218.000 kcal/mol + -analytic -2.2145E+03 -3.6471E-01 -5.6115E+02 8.3864E+02 -1.6486E-01 +# -Range: 0-300 + +# Threonine, C4H9NO3 + + 2.0000 C2H5NO2 + 1.0000 H2O = C4H9NO3 + 1.0000 NH3 + 1.0000 O2 + -llnl_gamma 3.0 + log_k -298.0694 + -delta_h +179.100 kcal/mol + -analytic -1.0140e+002 6.4713e-004 -2.0508e+004 3.5679e+001 -3.1999e+002 +# -Range: 0-300 + +# Toluene, C6H5CH3 + + 7.0000 HCO3- + 7.0000 H+ = C6H5CH3 + 9.0000 O2 + 3.0000 H2O + -llnl_gamma 3.0 + log_k -643.4017 + -delta_h -3.28 kcal/mol + -analytic -5.7062E+03 -9.5845E-01 -6.8381E+02 2.1621E+03 -1.1553E+00 +# -Range: 0-300 + +# Tryptophan, C11H12N2O2 + + 5.5000 C2H5NO2 = C11H12N2O2 + 3.5000 NH3 + 3.2500 O2 + 2.5000 H2O + -llnl_gamma 3.0 + log_k -821.6547 + -delta_h +97.800 kcal/mol + -analytic 2.0110e+002 6.4379e-002 -9.2769e+004 -6.7930e+001 2.8656e+006 +# -Range: 0-300 + +# Tyrosine, C9H11NO3 + + 4.5000 C2H5NO2 = C9H11NO3 + 3.5000 NH3 + 2.7500 O2 + 0.5000 H2O + -llnl_gamma 3.0 + log_k -685.9078 + -delta_h +157.400 kcal/mol + -analytic 8.1097e+001 4.1846e-002 -7.3858e+004 -2.6230e+001 1.7718e+006 +# -Range: 0-300 + +# Undecanoate, C11H21O2- + + 5.5000 CH3COOH = C11H21O2- + 4.5000 O2 + 1.0000 H+ + -llnl_gamma 4.0 + log_k -4.9258 + -delta_h +168.370 kcal/mol + -analytic -3.4192e+002 -1.8413e-002 -8.6143e+004 1.1839e+002 -1.3441e+003 +# -Range: 0-300 + +# Undecanoic_acid, C11H22O2 + + 5.5000 CH3COOH = C11H22O2 + 4.5000 O2 + -llnl_gamma 3.0 + log_k -1119.4911 + -delta_h +167.870 kcal/mol + -analytic -3.8607e+002 -2.5829e-002 -8.4510e+004 1.3690e+002 -1.3186e+003 +# -Range: 0-300 + +# Urea, (NH2)2CO + + 2.0000 NH3 + 1.0000 HCO3- + 1.0000 H+ = (NH2)2CO + 2.0000 H2O + -llnl_gamma 3.0 + log_k -NH3(aq) + -delta_h +48.720 kcal/mol + -analytic 1.0904e+002 3.5979e-002 -6.9287e+002 -4.4776e+001 -1.0844e+001 +# -Range: 0-300 + +# Valine, C5H11NO2 + + 2.5000 C2H5NO2 + 1.5000 H2O = C5H11NO2 + 2.2500 O2 + 1.5000 NH3 + -llnl_gamma 3.0 + log_k +8.7263 + -delta_h +147.300 kcal/mol + -analytic 3.7382e+001 2.7415e-002 -5.6188e+004 -1.2674e+001 1.1178e+006 +# -Range: 0-300 + +# Yb(But)+2, Yb(CH3(CH2)2CO2)+2 + + 1.0000 Yb+3 + 1.0000 C3H7COOH = Yb(CH3(CH2)2CO2)+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.1382 + -delta_h +291.999 kcal/mol + -analytic -1.2860e+001 1.7057e-003 -2.0611e+003 4.3737e+000 5.6186e+005 +# -Range: 0-300 + +# Yb(But)2+, Yb(CH3(CH2)2CO2)2+ + + 2.0000 C3H7COOH + 1.0000 Yb+3 = Yb(CH3(CH2)2CO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.046 + -delta_h +422.417 kcal/mol + -analytic -2.4830e+001 4.6045e-003 -5.0416e+003 8.6785e+000 1.2339e+006 +# -Range: 0-300 + +# Yb(For)+2, Yb(CHO2)+2 + + 1.0000 Yb+3 + 1.0000 HCOOH = Yb(CHO2)+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.0533 + -delta_h +265.749 kcal/mol + -analytic -4.3955e+000 -1.0863e-003 -2.9561e+002 1.0868e+000 1.7552e+005 +# -Range: 0-300 + +# Yb(For)2+, Yb(CHO2)2+ + + 2.0000 HCOOH + 1.0000 Yb+3 = Yb(CHO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -2.8858 + -delta_h +370.998 kcal/mol + -analytic 1.6276e+000 -3.1580e-003 -1.1548e+002 -2.0889e+000 1.7727e+005 +# -Range: 0-300 + +# Yb(Pent)+2, Yb(CH3(CH2)3CO2)+2 + Yb+3 + 1.0000 C4H9COOH = Yb(CH3(CH2)3CO2)+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.1675 + -delta_h +298.479 kcal/mol + -analytic -2.3047e+001 2.8250e-003 -2.9411e+003 8.5036e+000 7.8951e+005 +# -Range: 0-300 + +# Yb(Pent)2+, Yb(CH3(CH2)3CO2)2+ + + 2.0000 C4H9COOH + 1.0000 Yb+3 = Yb(CH3(CH2)3CO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.1142 + -delta_h +434.659 kcal/mol + -analytic -5.2700e+001 8.2187e-003 -7.2378e+003 1.9860e+001 1.8060e+006 +# -Range: 0-300 + +# Yb(Prop)+2, Yb(CH3CH2CO2)+2 + Yb+3 + 1.0000 C2H5COOH = Yb(CH3CH2CO2)+2 + 1.0000 H+ + -llnl_gamma 3.0 + log_k -2.3266 + -delta_h +286.522 kcal/mol + -analytic -6.7242e+000 2.3108e-003 -2.1680e+003 2.0842e+000 5.1913e+005 +# -Range: 0-300 + +# Yb(Prop)2+, Yb(CH3CH2CO2)2+ + + 2.0000 C2H5COOH + 1.0000 Yb+3 = Yb(CH3CH2CO2)2+ + 2.0000 H+ + -llnl_gamma 3.0 + log_k -5.3927 + -delta_h +412.078 kcal/mol + -analytic -3.8113e+001 1.3154e-003 -3.4162e+003 1.3121e+001 1.0092e+006 +# -Range: 0-300 + +# Zn(Ala)+, Zn(C3H6NO2)+ + + 1.0000 Zn+2 + 1.0000 C3H7NO2 = Zn(C3H6NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -5.4147 + -delta_h +161.048 kcal/mol + -analytic 1.2672e+001 6.7980e-003 -5.1247e+003 -3.5266e+000 5.1686e+005 +# -Range: 0-300 + +# Zn(Ala)2, Zn(C3H6NO2)2 + + 2.0000 C3H7NO2 + 1.0000 Zn+2 = Zn(C3H6NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -11.4994 + -delta_h +283.389 kcal/mol + -analytic 4.4585e+001 1.2039e-002 -1.3805e+004 -1.1865e+001 1.4233e+006 +# -Range: 0-300 + +# Zn(But)+, Zn(CH3(CH2)2CO2)+ + + 1.0000 Zn+2 + 1.0000 C3H7COOH = Zn(CH3(CH2)2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.3682 + -delta_h +166.539 kcal/mol + -analytic -1.6276e+001 9.6461e-004 -1.8810e+003 5.4462e+000 4.8622e+005 +# -Range: 0-300 + +# Zn(But)2, Zn(CH3(CH2)2CO2)2 + + 2.0000 C3H7COOH + 1.0000 Zn+2 = Zn(CH3(CH2)2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.2956 + -delta_h +296.560 kcal/mol + -analytic -1.3591e+001 4.2586e-003 -7.2513e+003 5.4031e+000 1.4233e+006 +# -Range: 0-300 + +# Zn(For)+, Zn(CHO2)+ + + 1.0000 Zn+2 + 1.0000 HCOOH = Zn(CHO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.9828 + -delta_h +140.698 kcal/mol + -analytic -1.1156e+001 -2.5823e-003 7.3093e+001 3.4639e+000 1.0064e+005 +# -Range: 0-300 + +# Zn(For)2, Zn(CHO2)2 + + 2.0000 HCOOH + 1.0000 Zn+2 = Zn(CHO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -4.5857 + -delta_h +245.726 kcal/mol + -analytic -7.1074e-001 -3.3021e-003 -9.4938e+002 -1.0872e+000 2.6619e+005 +# -Range: 0-300 + +# Zn(Gly)+, Zn(C2H4NO2)+ + + 1.0000 Zn+2 + 1.0000 C2H5NO2 = Zn(C2H4NO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -4.398 + -delta_h +151.609 kcal/mol + -analytic 1.4690e+000 6.2605e-003 -3.1652e+003 -1.7705e-001 2.9610e+005 +# -Range: 0-300 + +# Zn(Gly)2, Zn(C2H4NO2)2 + + 2.0000 C2H5NO2 + 1.0000 Zn+2 = Zn(C2H4NO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -9.7468 + -delta_h +267.408 kcal/mol + -analytic -6.7271e+000 5.7103e-003 -7.3518e+003 4.5306e+000 7.7709e+005 +# -Range: 0-300 + +# Zn(Glyc)+, Zn(CH3OCO2)+ + + 1.0000 Zn+2 + 1.0000 C2H4O3 = Zn(CH3OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.4536 + -delta_h +194.550 kcal/mol + -analytic -1.1705e+001 -8.4917e-004 -8.2775e+002 4.0500e+000 2.9059e+005 +# -Range: 0-300 + +# Zn(Glyc)2, Zn(CH3OCO2)2 + + 2.0000 C2H4O3 + 1.0000 Zn+2 = Zn(CH3OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -3.4371 + -delta_h +353.139 kcal/mol + -analytic 6.2982e-001 9.5823e-004 -3.9294e+003 -1.4746e-001 8.1885e+005 +# -Range: 0-300 + +# Zn(Lac)+, Zn(CH3CH2OCO2)+ + + 1.0000 Zn+2 + 1.0000 C3H6O3 = Zn(CH3CH2OCO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -1.6632 + -delta_h +200.064 kcal/mol + -analytic -1.2294e+001 1.2442e-003 -1.5665e+003 4.7943e+000 3.2586e+005 +# -Range: 0-300 + +# Zn(Lac)2, Zn(CH3CH2OCO2)2 + + 2.0000 C3H6O3 + 1.0000 Zn+2 = Zn(CH3CH2OCO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -3.9758 + -delta_h +364.728 kcal/mol + -analytic 3.8951e+000 2.6835e-003 -7.1188e+003 1.0404e+000 1.1253e+006 +# -Range: 0-300 + +# Zn(Pent)+, Zn(CH3(CH2)3CO2)+ + Zn+2 + 1.0000 C4H9COOH = Zn(CH3(CH2)3CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.4869 + -delta_h +172.896 kcal/mol + -analytic -1.1325e+001 4.3921e-003 -3.5920e+003 4.0708e+000 7.5781e+005 +# -Range: 0-300 + +# Zn(Pent)2, Zn(CH3(CH2)3CO2)2 + + 2.0000 C4H9COOH + 1.0000 Zn+2 = Zn(CH3(CH2)3CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.5243 + -delta_h +308.690 kcal/mol + -analytic -1.2210e+001 1.0120e-002 -1.1570e+004 6.6228e+000 2.1453e+006 +# -Range: 0-300 + +# Zn(Prop)+, Zn(CH3CH2CO2)+ + Zn+2 + 1.0000 C2H5COOH = Zn(CH3CH2CO2)+ + 1.0000 H+ + -llnl_gamma 3.0 + log_k -3.6467 + -delta_h +160.939 kcal/mol + -analytic -1.2581e+001 1.0699e-003 -1.9249e+003 4.0899e+000 4.4167e+005 +# -Range: 0-300 + +# Zn(Prop)2, Zn(CH3CH2CO2)2 + + 2.0000 C2H5COOH + 1.0000 Zn+2 = Zn(CH3CH2CO2)2 + 2.0000 H+ + -llnl_gamma 3.0 + log_k -7.8029 + -delta_h +285.915 kcal/mol + -analytic 5.0990e+000 6.7118e-003 -7.1926e+003 -2.0259e+000 1.2684e+006 +# -Range: 0-300 + +# a-Aminobutyric_acid, C4H9NO2 + + 2.0000 C2H5NO2 + 1.0000 H2O = C4H9NO2 + 1.5000 O2 + 1.0000 NH3 + -llnl_gamma 3.0 + log_k +8.5576 + -delta_h +138.180 kcal/mol + -analytic -1.4296e+002 -5.6984e-004 -2.6712e+004 5.0706e+001 -4.1677e+002 +# -Range: 0-300 + +# m-Toluate, C8H7O2- + + 4.0000 CH3COOH = C8H7O2- + 4.0000 H2O + 1.0000 H+ + 1.0000 O2 + -llnl_gamma 4.0 + log_k -1.9205 + -delta_h +95.350 kcal/mol + -analytic -2.1064e+002 -3.7768e-002 -1.3591e+004 7.7265e+001 -2.1201e+002 +# -Range: 0-300 + +# m-Toluic_acid, C8H8O2 + + 4.0000 CH3COOH = C8H8O2 + 4.0000 H2O + 1.0000 O2 + -llnl_gamma 3.0 + log_k +2.3383 + -delta_h +95.450 kcal/mol + -analytic -3.8131e+000 4.7688e-003 -2.3805e+004 1.3041e+000 6.1998e+005 +# -Range: 0-300 + +# n-Butane, C4H10 + + 2.0000 C2H6 + 0.5000 O2 = C4H10 + 1.0000 H2O + -llnl_gamma 3.0 + log_k -471.7285 + -delta_h +36.230 kcal/mol + -analytic -4.4434e+001 -1.4522e-002 1.4959e+004 1.6121e+001 -3.5819e+005 +# -Range: 0-300 + +# n-Butylbenzene, C6H5C4H9 +# + 6.0000 H2O + 5.0000 C6H6 = C6H5C4H9 + 3.0000 O2 +# does not balance +# -llnl_gamma 3.0 +# log_k -2907.6453 +# -delta_h +14.430 kcal/mol +# -analytic 6.8560e+002 1.2459e-001 -1.0249e+005 -2.5284e+002 2.3594e+006 +# -Range: 0-300 + +# n-Heptane, C7H16 + + 3.5000 C2H6 + 1.2500 O2 = C7H16 + 2.5000 H2O + -llnl_gamma 3.0 + log_k -797.97 + -delta_h +52.950 kcal/mol + -analytic 1.3006e+002 -5.8965e-003 2.2874e+004 -4.5370e+001 3.5689e+002 +# -Range: 0-300 + +# n-Heptylbenzene, C6H5C7H15 +# + 10.5000 H2O + 6.5000 C6H6 = C6H5C7H15 + 5.2500 O2 +# does not balance +# -llnl_gamma 3.0 +# log_k -3886.5811 +# -delta_h +31.090 kcal/mol +# -analytic -5.4784e+001 4.5194e-002 -1.1072e+005 8.0680e+000 -1.7277e+003 +# -Range: 0-300 + +# n-Hexane, C6H14 + + 3.0000 C2H6 + 1.0000 O2 = C6H14 + 2.0000 H2O + -llnl_gamma 3.0 + log_k -689.2922 + -delta_h +47.400 kcal/mol + -analytic -8.0362e+001 -2.8468e-002 2.9412e+004 2.9224e+001 -7.0316e+005 +# -Range: 0-300 + +# n-Hexylbenzene, C6H5C6H13 + + 3.0000 H2O + 2.0000 C6H6 = C6H5C6H13 + 1.5000 O2 + -llnl_gamma 3.0 + log_k -1186.7026 + -delta_h +25.590 kcal/mol + -analytic 3.5759e+002 6.3935e-002 -5.2899e+004 -1.3148e+002 1.2819e+006 +# -Range: 0-300 + +# n-Octane, C8H18 + + 4.0000 C2H6 + 1.5000 O2 = C8H18 + 3.0000 H2O + -llnl_gamma 3.0 + log_k -906.6918 + -delta_h +59.410 kcal/mol + -analytic -1.4173e+002 -4.6447e-002 4.5236e+004 5.1540e+001 -1.1006e+006 +# -Range: 0-300 + +# n-Octylbenzene, C6H5C8H17 +# + 12.0000 H2O + 7.0000 C6H6 = C6H5C8H17 + 6.0000 O2 +# does not balance +# -llnl_gamma 3.0 +# log_k -4212.6143 +# -delta_h +36.760 kcal/mol +# -analytic 1.2934e+003 2.4001e-001 -2.0402e+005 -4.7773e+002 4.5749e+006 +# -Range: 0-300 + +# n-Pentane, C5H12 + + 2.5000 C2H6 + 0.7500 O2 = C5H12 + 1.5000 H2O + -llnl_gamma 3.0 + log_k -580.4385 + -delta_h +41.560 kcal/mol + -analytic 8.4526e+000 -1.1432e-002 1.8295e+004 -2.8367e+000 -3.1818e+005 +# -Range: 0-300 + +# n-Pentylbenzene, C6H5C5H11 +# + 7.5000 H2O + 5.5000 C6H6 = C6H5C5H11 + 3.7500 O2 +# does not balance +# -llnl_gamma 3.0 +# log_k -3233.7886 +# -delta_h +19.750 kcal/mol +# -analytic 2.9887e+002 7.2990e-002 -9.9228e+004 -1.1348e+002 1.3767e+006 +# -Range: 0-300 + +# n-Propylbenzene, C6H5C3H7 + + 1.5000 H2O + 1.5000 C6H6 = C6H5C3H7 + 0.7500 O2 + -llnl_gamma 3.0 + log_k -860.618 + -delta_h +8.630 kcal/mol + -analytic -4.3768e+000 6.3937e-003 -1.5469e+004 0.0000e+000 0.0000e+000 +# -Range: 0-300 + +# o-Toluate, C8H7O2- + + 4.0000 CH3COOH = C8H7O2- + 4.0000 H2O + 1.0000 H+ + 1.0000 O2 + -llnl_gamma 4.0 + log_k -3.9069 + -delta_h +94.070 kcal/mol + -analytic -2.2819e+002 -3.9422e-002 -1.3238e+004 8.3275e+001 -2.0650e+002 +# -Range: 0-300 + +# o-Toluic_acid, C8H8O2 + + 4.0000 CH3COOH = C8H8O2 + 4.0000 H2O + 1.0000 O2 + -llnl_gamma 3.0 + log_k -642.3493 + -delta_h +92.640 kcal/mol + -analytic 8.2106e+001 1.6240e-002 -2.9218e+004 -2.9637e+001 8.9007e+005 +# -Range: 0-300 + +# p-Toluate, C8H7O2- + + 4.0000 CH3COOH = C8H7O2- + 4.0000 H2O + 1.0000 H+ + 1.0000 O2 + -llnl_gamma 4.0 + log_k -1.6786 + -delta_h +96.160 kcal/mol + -analytic -1.9101e+002 -3.8193e-002 -1.4330e+004 7.0482e+001 -2.2355e+002 +# -Range: 0-300 + +# p-Toluic_acid, C8H8O2 + + 4.0000 CH3COOH = C8H8O2 + 4.0000 H2O + 1.0000 O2 + -llnl_gamma 3.0 + log_k +2.6901 + -delta_h +96.190 kcal/mol + -analytic 1.5812e+002 2.5784e-002 -3.1991e+004 -5.7207e+001 1.0103e+006 +# -Range: 0-300 + +# U(But)+2, U(CH3(CH2)2CO2)+2 + 1.0000 U+3 + 1.0000 C3H7COOH = U(CH3(CH2)2CO2)+2 + 1.0000 H+ + -llnl_gamma 4.5 + log_k -2.1498 + -delta_h 248.272 kcal/mol + -analytic 4.8984E+01 2.2598E-02 -5.4323E+02 -2.2538E+01 1.6299E+00 +# -Range: 0-300 + +# U(But)2+, U(CH3(CH2)2CO2)2+ + 1.0000 U+3 + 2.0000 C3H7COOH = U(CH3(CH2)2CO2)2+ + 2.0000 H+ + -llnl_gamma 4.5 + log_k -4.9572 + -delta_h 377.871 kcal/mol + -analytic 7.8056E+01 4.5216E-02 -5.4214E+02 -3.8131E+01 1.6380E+00 +# -Range: 0-300 + +# U(For)+2, U(CHO2)+2 + 1.0000 U+3 + 1.0000 HCOOH = U(CHO2)+2 + 1.0000 H+ + -llnl_gamma 4.5 + log_k -1.0650 + -delta_h 221.372 kj/mol + -analytic 3.4236E+01 7.8056E+01 4.5216E-02 -5.4214E+02 -3.8131E+01 1.6380E+00 +# -Range: 0-300 + +# U(For)2+, U(CHO2)2+ + 1.0000 U+3 + 2.0000 HCOOH = U(CHO2)2+ + 2.0000 H+ + -llnl_gamma 4.0 + log_k -2.2378 + -delta_h 325.914 kj/mol + -analytic 3.4236E+01 3.5094E-03 -5.4368E+02 -1.4325E+01 1.6273E+00 +# -Range: 0-300 + +# U(Pent)+2, U(CH3(CH2)3CO2)+2 + 1.0000 U+3 + 1.0000 C4H9COOH = U(CH3(CH2)3CO2)+2 + 1.0000 H+ + -llnl_gamma 4.5 + log_k -2.1791 + -delta_h 254.046 kj/mol + -analytic 6.0007E+01 3.2104E-02 -5.4273E+02 -2.8145E+01 1.6343E+00 +# -Range: 0-300 + +# U(Prop)+2, U(CH3CH2CO2)+2 + 1.0000 U+3 + 1.0000 C2H5COOH = U(CH3CH2CO2)+2 + 1.0000 H+ + -llnl_gamma 4.5 + log_k -2.2084 + -delta_h 242.291 kj/mol + -analytic 4.5186E+01 2.0784E-02 -5.4323E+02 -2.0809E+01 1.6310E+00 +# -Range: 0-300 + +# U(Prop)2+, U(CH3CH2CO2)2+ + 1.0000 U+3 + 2.0000 C2H5COOH = U(CH3CH2CO2)2+ + 2.0000 H+ + -llnl_gamma 4.0 + log_k -5.3149 + -delta_h 366.155 kj/mol + -analytic 6.7383E+01 3.8662E-02 -5.4239E+02 -3.3175E+01 1.6373E+00 +# -Range: 0-300 + +3.0000 H+ + 1.0000 HCO3- + 1.0000 SO4-2 = CH3SH + 3.5 O2 # Methanethiol + -llnl_gamma 3.0 + log_k -242.047 # from supcrt92 +# Enthalpy of formation: -11.650 kcal/mol # from supcrt92 + -delta_H 360498 cal/mol # from supcrt92 + -analytic -2.03598E+03 -2.78169E-01 -6.13323E+02 7.59329E+02 1.13938E+00 +# -Range: 0-350 + +4.0000 H+ + 2.0000 HCO3- + 1.0000 SO4-2 = C2H5SH + 5.0 O2 # Ethanethiol + -llnl_gamma 3.0 + log_k -349.764 # from supcrt92 +# Enthalpy of formation: -17.820 kcal/mol # from supcrt92 + -delta_H 514876 cal/mol # from supcrt92 + -analytic -2.96331E+03 -4.22107E-01 -1.00319E+02 1.10720E+03 2.90155E-01 +# -Range: 0-350 + +5.0000 H+ + 3.0000 HCO3- + 1.0000 SO4-2 = C3H7SH + 6.5 O2 # Propanethiol + -llnl_gamma 3.0 + log_k -458.757 # from supcrt92 +# Enthalpy of formation: -23.320 kcal/mol # from supcrt92 + -delta_H 669924 cal/mol # from supcrt92 + -analytic -3.88470E+03 -5.63950E-01 -1.31641E+02 1.45265E+03 6.67442E-02 +# -Range: 0-350 + +6.0000 H+ + 4.0000 HCO3- + 1.0000 SO4-2 = C4H9SH + 8.0 O2 # Butanethiol + -llnl_gamma 3.0 + log_k -567.530 # from supcrt92 +# Enthalpy of formation: -28.630 kcal/mol # from supcrt92 + -delta_H 825162 cal/mol # from supcrt92 + -analytic -4.80261E+03 -7.05108E-01 -1.62840E+02 1.79669E+03 -1.59893E-01 +# -Range: 0-350 + +7.0000 H+ + 5.0000 HCO3- + 1.0000 SO4-2 = C5H11SH + 9.5 O2 # Pentanethiol + -llnl_gamma 3.0 + log_k -676.604 # from supcrt92 +# Enthalpy of formation: -34.530 kcal/mol # from supcrt92 + -delta_H 979810 cal/mol # from supcrt92 + -analytic -5.71970E+03 -8.46049E-01 -1.94013E+02 2.14026E+03 -3.61870E-01 +# -Range: 0-350 + +8.0000 H+ + 6.0000 HCO3- + 1.0000 SO4-2 = C6H13SH + 11.0 O2 # Hexanethiol + -llnl_gamma 3.0 + log_k -785.084 # from supcrt92 +# Enthalpy of formation: -40.200 kcal/mol # from supcrt92 + -delta_H 1134688 cal/mol # from supcrt92 + -analytic -6.63401E+03 -9.86521E-01 -2.25089E+02 2.48288E+03 -5.76590E-01 +# -Range: 0-350 + +9.0000 H+ + 7.0000 HCO3- + 1.0000 SO4-2 = C7H15SH + 12.5 O2 # Heptanethiol + -llnl_gamma 3.0 + log_k -893.762 # from supcrt92 +# Enthalpy of formation: -45.870 kcal/mol # from supcrt92 + -delta_H 1289566 cal/mol # from supcrt92 + -analytic -7.55009E+03 -1.12735E+00 -2.56223E+02 2.82618E+03 -8.06879E-01 +# -Range: 0-350 + +10.0000 H+ + 8.0000 HCO3- + 1.0000 SO4-2 = C8H17SH + 14.0 O2 # Octanethiol + -llnl_gamma 3.0 + log_k -1002.439 # from supcrt92 +# Enthalpy of formation: -51.540 kcal/mol # from supcrt92 + -delta_H 1444444 cal/mol # from supcrt92 + -analytic -8.46618E+03 -1.26818E+00 -2.87362E+02 3.16949E+03 -1.03755E+00 +# -Range: 0-350 + +11.0000 H+ + 9.0000 HCO3- + 1.0000 SO4-2 = C9H19SH + 15.5 O2 # Nonanethiol + -llnl_gamma 3.0 + log_k -1111.117 # from supcrt92 +# Enthalpy of formation: -57.210 kcal/mol # from supcrt92 + -delta_H 1599322 cal/mol # from supcrt92 + -analytic -9.38233E+03 -1.40904E+00 -3.18508E+02 3.51283E+03 -1.24321E+00 +# -Range: 0-350 + +12.0000 H+ + 10.0000 HCO3- + 1.0000 SO4-2 = C10H21SH + 17.0 O2 # Decanethiol + -llnl_gamma 3.0 + log_k -1219.795 # from supcrt92 +# Enthalpy of formation: -62.880 kcal/mol # from supcrt92 + -delta_H 1754200 cal/mol # from supcrt92 + -analytic -1.02985E+04 -1.54990E+00 -3.49643E+02 3.85617E+03 -1.48034E+00 +# -Range: 0-350 + +PHASES + +Toluene(l) # from J.Thom + C7H8 = C7H8 + log_k -2.2639168374931 + -analytic 1.9804E+01 2.0653E-02 1.5436E+00 -1.1409E+01 2.8885E-03 + +Toluene(g) # from J.Thom + C7H8 = C7H8 + log_k -.67116 + -analytic 7.43133e1 3.42616e-2 2.40651e0 -3.44352e1 -4.36135e0 + +CH4(g) # from J.Thom + CH4 = CH4 + log_k -2.8502 + -delta_H -13.0959 kJ/mol # Calculated enthalpy of reaction CH4(g) + -analytic -2.4027e+001 4.7146e-003 3.7227e+002 6.4264e+000 2.3362e+005 + +#################################### + +#End of data entered Feb. 4, 2011 + +################################# + +# 1122 minerals + +(UO2)2As2O7 + (UO2)2As2O7 +2.0000 H+ +1.0000 H2O = + 2.0000 H2AsO4- + 2.0000 UO2++ + log_k 7.7066 + -delta_H -145.281 kJ/mol # Calculated enthalpy of reaction (UO2)2As2O7 +# Enthalpy of formation: -3426 kJ/mol + -analytic -1.6147e+002 -6.3487e-002 1.0052e+004 6.2384e+001 1.5691e+002 +# -Range: 0-300 + +(UO2)2Cl3 + (UO2)2Cl3 = + 1.0000 UO2+ + 1.0000 UO2++ + 3.0000 Cl- + log_k 12.7339 + -delta_H -140.866 kJ/mol # Calculated enthalpy of reaction (UO2)2Cl3 +# Enthalpy of formation: -2404.5 kJ/mol + -analytic -2.3895e+002 -9.2925e-002 1.1722e+004 9.6999e+001 1.8298e+002 +# -Range: 0-300 + +(UO2)2P2O7 + (UO2)2P2O7 +1.0000 H2O = + 2.0000 HPO4-- + 2.0000 UO2++ + log_k -14.6827 + -delta_H -103.726 kJ/mol # Calculated enthalpy of reaction (UO2)2P2O7 +# Enthalpy of formation: -4232.6 kJ/mol + -analytic -3.4581e+002 -1.3987e-001 1.0703e+004 1.3613e+002 1.6712e+002 +# -Range: 0-300 + +(UO2)3(AsO4)2 + (UO2)3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 UO2++ + log_k 9.3177 + -delta_H -186.72 kJ/mol # Calculated enthalpy of reaction (UO2)3(AsO4)2 +# Enthalpy of formation: -4689.4 kJ/mol + -analytic -1.9693e+002 -7.3236e-002 1.2936e+004 7.4631e+001 2.0192e+002 +# -Range: 0-300 + +(UO2)3(PO4)2 + (UO2)3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 UO2++ + log_k -14.0241 + -delta_H -149.864 kJ/mol # Calculated enthalpy of reaction (UO2)3(PO4)2 +# Enthalpy of formation: -5491.3 kJ/mol + -analytic -3.6664e+002 -1.4347e-001 1.3486e+004 1.4148e+002 2.1054e+002 +# -Range: 0-300 + +(UO2)3(PO4)2:4H2O + (UO2)3(PO4)2:4H2O +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 UO2++ + 4.0000 H2O + log_k -27.0349 + -delta_H -45.4132 kJ/mol # Calculated enthalpy of reaction (UO2)3(PO4)2:4H2O +# Enthalpy of formation: -6739.1 kJ/mol + -analytic -1.5721e+002 -4.1375e-002 5.2046e+003 5.0531e+001 8.8434e+001 +# -Range: 0-200 + +(VO)3(PO4)2 + (VO)3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 VO++ + log_k 48.7864 + -delta_H 0 # Not possible to calculate enthalpy of reaction (VO)3(PO4)2 +# Enthalpy of formation: 0 kcal/mol + +Acanthite + Ag2S +1.0000 H+ = + 1.0000 HS- + 2.0000 Ag+ + log_k -36.0346 + -delta_H 226.982 kJ/mol # Calculated enthalpy of reaction Acanthite +# Enthalpy of formation: -7.55 kcal/mol + -analytic -1.6067e+002 -4.7139e-002 -7.4522e+003 6.6140e+001 -1.1624e+002 +# -Range: 0-300 + +Afwillite + Ca3Si2O4(OH)6 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 Ca++ + 6.0000 H2O + log_k 60.0452 + -delta_H -316.059 kJ/mol # Calculated enthalpy of reaction Afwillite +# Enthalpy of formation: -1143.31 kcal/mol + -analytic 1.8353e+001 1.9014e-003 1.8478e+004 -6.6311e+000 -4.0227e+005 +# -Range: 0-300 + +Ag + Ag +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Ag+ + log_k 7.9937 + -delta_H -34.1352 kJ/mol # Calculated enthalpy of reaction Ag +# Enthalpy of formation: 0 kcal/mol + -analytic -1.4144e+001 -3.8466e-003 2.2642e+003 6.3388e+000 3.5334e+001 +# -Range: 0-300 + +Ag3PO4 + Ag3PO4 +1.0000 H+ = + 1.0000 HPO4-- + 3.0000 Ag+ + log_k -5.2282 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ag3PO4 +# Enthalpy of formation: 0 kcal/mol + +Ahlfeldite + NiSeO3:2H2O = + 1.0000 Ni++ + 1.0000 SeO3-- + 2.0000 H2O + log_k -4.4894 + -delta_H -25.7902 kJ/mol # Calculated enthalpy of reaction Ahlfeldite +# Enthalpy of formation: -265.07 kcal/mol + -analytic -2.6210e+001 -1.6952e-002 1.0405e+003 9.4054e+000 1.7678e+001 +# -Range: 0-200 + +Akermanite + Ca2MgSi2O7 +6.0000 H+ = + 1.0000 Mg++ + 2.0000 Ca++ + 2.0000 SiO2 + 3.0000 H2O + log_k 45.3190 + -delta_H -288.575 kJ/mol # Calculated enthalpy of reaction Akermanite +# Enthalpy of formation: -926.497 kcal/mol + -analytic -4.8295e+001 -8.5613e-003 2.0880e+004 1.3798e+001 -7.1975e+005 +# -Range: 0-300 + +Al + Al +3.0000 H+ +0.7500 O2 = + 1.0000 Al+++ + 1.5000 H2O + log_k 149.9292 + -delta_H -958.059 kJ/mol # Calculated enthalpy of reaction Al +# Enthalpy of formation: 0 kJ/mol + -analytic -1.8752e+002 -4.6187e-002 5.7127e+004 6.6270e+001 -3.8952e+005 +# -Range: 0-300 + +Al2(SO4)3 + Al2(SO4)3 = + 2.0000 Al+++ + 3.0000 SO4-- + log_k 19.0535 + -delta_H -364.566 kJ/mol # Calculated enthalpy of reaction Al2(SO4)3 +# Enthalpy of formation: -3441.04 kJ/mol + -analytic -6.1001e+002 -2.4268e-001 2.9194e+004 2.4383e+002 4.5573e+002 +# -Range: 0-300 + +Al2(SO4)3:6H2O + Al2(SO4)3:6H2O = + 2.0000 Al+++ + 3.0000 SO4-- + 6.0000 H2O + log_k 1.6849 + -delta_H -208.575 kJ/mol # Calculated enthalpy of reaction Al2(SO4)3:6H2O +# Enthalpy of formation: -5312.06 kJ/mol + -analytic -7.1642e+002 -2.4552e-001 2.6064e+004 2.8441e+002 4.0691e+002 +# -Range: 0-300 + +AlF3 + AlF3 = + 1.0000 Al+++ + 3.0000 F- + log_k -17.2089 + -delta_H -34.0441 kJ/mol # Calculated enthalpy of reaction AlF3 +# Enthalpy of formation: -1510.4 kJ/mol + -analytic -3.9865e+002 -1.3388e-001 1.0211e+004 1.5642e+002 1.5945e+002 +# -Range: 0-300 + +Alabandite + MnS +1.0000 H+ = + 1.0000 HS- + 1.0000 Mn++ + log_k -0.3944 + -delta_H -23.3216 kJ/mol # Calculated enthalpy of reaction Alabandite +# Enthalpy of formation: -51 kcal/mol + -analytic -1.5515e+002 -4.8820e-002 4.9049e+003 6.1765e+001 7.6583e+001 +# -Range: 0-300 + +Alamosite + PbSiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 Pb++ + 1.0000 SiO2 + log_k 5.6733 + -delta_H -16.5164 kJ/mol # Calculated enthalpy of reaction Alamosite +# Enthalpy of formation: -1146.1 kJ/mol + -analytic 2.9941e+002 6.7871e-002 -8.1706e+003 -1.1582e+002 -1.3885e+002 +# -Range: 0-200 + +Albite + NaAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 2.0000 H2O + 3.0000 SiO2 + log_k 2.7645 + -delta_H -51.8523 kJ/mol # Calculated enthalpy of reaction Albite +# Enthalpy of formation: -939.68 kcal/mol + -analytic -1.1694e+001 1.4429e-002 1.3784e+004 -7.2866e+000 -1.6136e+006 +# -Range: 0-300 + +Albite_high + NaAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 2.0000 H2O + 3.0000 SiO2 + log_k 4.0832 + -delta_H -62.8562 kJ/mol # Calculated enthalpy of reaction Albite_high +# Enthalpy of formation: -937.05 kcal/mol + -analytic -1.8957e+001 1.3726e-002 1.4801e+004 -4.9732e+000 -1.6442e+006 +# -Range: 0-300 + +Albite_low + NaAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 2.0000 H2O + 3.0000 SiO2 + log_k 2.7645 + -delta_H -51.8523 kJ/mol # Calculated enthalpy of reaction Albite_low +# Enthalpy of formation: -939.68 kcal/mol + -analytic -1.2860e+001 1.4481e-002 1.3913e+004 -6.9417e+000 -1.6256e+006 +# -Range: 0-300 + +Alstonite + BaCa(CO3)2 +2.0000 H+ = + 1.0000 Ba++ + 1.0000 Ca++ + 2.0000 HCO3- + log_k 2.5843 + -delta_H 0 # Not possible to calculate enthalpy of reaction Alstonite +# Enthalpy of formation: 0 kcal/mol + +Alum-K + KAl(SO4)2:12H2O = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 SO4-- + 12.0000 H2O + log_k -4.8818 + -delta_H 14.4139 kJ/mol # Calculated enthalpy of reaction Alum-K +# Enthalpy of formation: -1447 kcal/mol + -analytic -8.8025e+002 -2.5706e-001 2.2399e+004 3.5434e+002 3.4978e+002 +# -Range: 0-300 + +Alunite + KAl3(OH)6(SO4)2 +6.0000 H+ = + 1.0000 K+ + 2.0000 SO4-- + 3.0000 Al+++ + 6.0000 H2O + log_k -0.3479 + -delta_H -231.856 kJ/mol # Calculated enthalpy of reaction Alunite +# Enthalpy of formation: -1235.6 kcal/mol + -analytic -6.8581e+002 -2.2455e-001 2.6886e+004 2.6758e+002 4.1973e+002 +# -Range: 0-300 + +Am + Am +3.0000 H+ +0.7500 O2 = + 1.0000 Am+++ + 1.5000 H2O + log_k 169.3900 + -delta_H -1036.36 kJ/mol # Calculated enthalpy of reaction Am +# Enthalpy of formation: 0 kJ/mol + -analytic -6.7924e+000 -8.9873e-003 5.3327e+004 0.0000e+000 0.0000e+000 +# -Range: 0-300 + +Am(OH)3 + Am(OH)3 +3.0000 H+ = + 1.0000 Am+++ + 3.0000 H2O + log_k 15.2218 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Am(OH)3(am) + Am(OH)3 +3.0000 H+ = + 1.0000 Am+++ + 3.0000 H2O + log_k 17.0217 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +Am2(CO3)3 + Am2(CO3)3 +3.0000 H+ = + 2.0000 Am+++ + 3.0000 HCO3- + log_k -2.3699 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am2(CO3)3 +# Enthalpy of formation: 0 kcal/mol + +Am2C3 + Am2C3 +4.5000 O2 +3.0000 H+ = + 2.0000 Am+++ + 3.0000 HCO3- + log_k 503.9594 + -delta_H -3097.6 kJ/mol # Calculated enthalpy of reaction Am2C3 +# Enthalpy of formation: -151 kJ/mol + -analytic 3.3907e+002 -4.2636e-003 1.4463e+005 -1.2891e+002 2.4559e+003 +# -Range: 0-200 + +Am2O3 + Am2O3 +6.0000 H+ = + 2.0000 Am+++ + 3.0000 H2O + log_k 51.7905 + -delta_H -400.515 kJ/mol # Calculated enthalpy of reaction Am2O3 +# Enthalpy of formation: -1690.4 kJ/mol + -analytic -9.2044e+001 -1.8883e-002 2.3028e+004 2.9192e+001 3.5935e+002 +# -Range: 0-300 + +AmBr3 + AmBr3 = + 1.0000 Am+++ + 3.0000 Br- + log_k 21.7826 + -delta_H -171.21 kJ/mol # Calculated enthalpy of reaction AmBr3 +# Enthalpy of formation: -810 kJ/mol + -analytic 1.0121e+001 -3.0622e-002 6.1964e+003 0.0000e+000 0.0000e+000 +# -Range: 0-200 + +AmCl3 + AmCl3 = + 1.0000 Am+++ + 3.0000 Cl- + log_k 14.3513 + -delta_H -140.139 kJ/mol # Calculated enthalpy of reaction AmCl3 +# Enthalpy of formation: -977.8 kJ/mol + -analytic -1.5000e+001 -3.6701e-002 5.2281e+003 9.1942e+000 8.8785e+001 +# -Range: 0-200 + +AmF3 + AmF3 = + 1.0000 Am+++ + 3.0000 F- + log_k -13.1190 + -delta_H -34.7428 kJ/mol # Calculated enthalpy of reaction AmF3 +# Enthalpy of formation: -1588 kJ/mol + -analytic -4.0514e+001 -3.7312e-002 4.1626e+002 1.4999e+001 7.0827e+000 +# -Range: 0-200 + +AmF4 + AmF4 = + 1.0000 Am++++ + 4.0000 F- + log_k -25.1354 + -delta_H -37.3904 kJ/mol # Calculated enthalpy of reaction AmF4 +# Enthalpy of formation: -1710 kJ/mol + -analytic -4.9592e+001 -4.5210e-002 -9.7251e+001 1.5457e+001 -1.6348e+000 +# -Range: 0-200 + +AmH2 + AmH2 +2.0000 H+ +1.0000 O2 = + 1.0000 Am++ + 2.0000 H2O + log_k 128.4208 + -delta_H -738.376 kJ/mol # Calculated enthalpy of reaction AmH2 +# Enthalpy of formation: -175.8 kJ/mol + -analytic 3.1175e+001 -1.4062e-002 3.6259e+004 -8.1600e+000 5.6578e+002 +# -Range: 0-300 + +AmI3 + AmI3 = + 1.0000 Am+++ + 3.0000 I- + log_k 24.7301 + -delta_H -175.407 kJ/mol # Calculated enthalpy of reaction AmI3 +# Enthalpy of formation: -612 kJ/mol + -analytic -1.3886e+001 -3.6651e-002 7.2094e+003 1.0247e+001 1.2243e+002 +# -Range: 0-200 + +AmO2 + AmO2 +4.0000 H+ = + 1.0000 Am++++ + 2.0000 H2O + log_k -9.4203 + -delta_H -45.4767 kJ/mol # Calculated enthalpy of reaction AmO2 +# Enthalpy of formation: -932.2 kJ/mol + -analytic -7.4658e+001 -1.1661e-002 4.2059e+003 2.2070e+001 6.5650e+001 +# -Range: 0-300 + +AmOBr + AmOBr +2.0000 H+ = + 1.0000 Am+++ + 1.0000 Br- + 1.0000 H2O + log_k 13.7637 + -delta_H -131.042 kJ/mol # Calculated enthalpy of reaction AmOBr +# Enthalpy of formation: -893 kJ/mol + -analytic -4.4394e+001 -1.7071e-002 7.3438e+003 1.5605e+001 1.2472e+002 +# -Range: 0-200 + +AmOCl + AmOCl +2.0000 H+ = + 1.0000 Am+++ + 1.0000 Cl- + 1.0000 H2O + log_k 11.3229 + -delta_H -119.818 kJ/mol # Calculated enthalpy of reaction AmOCl +# Enthalpy of formation: -949.8 kJ/mol + -analytic -1.2101e+002 -4.1027e-002 8.6801e+003 4.6651e+001 1.3548e+002 +# -Range: 0-300 + +AmOHCO3 + AmOHCO3 +2.0000 H+ = + 1.0000 Am+++ + 1.0000 H2O + 1.0000 HCO3- + log_k 3.1519 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmOHCO3 +# Enthalpy of formation: 0 kcal/mol + +AmPO4(am) + AmPO4 +1.0000 H+ = + 1.0000 Am+++ + 1.0000 HPO4-- + log_k -12.4682 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmPO4(am) +# Enthalpy of formation: 0 kcal/mol + +Amesite-14A + Mg4Al4Si2O10(OH)8 +20.0000 H+ = + 2.0000 SiO2 + 4.0000 Al+++ + 4.0000 Mg++ + 14.0000 H2O + log_k 75.4571 + -delta_H -797.098 kJ/mol # Calculated enthalpy of reaction Amesite-14A +# Enthalpy of formation: -2145.67 kcal/mol + -analytic -5.4326e+002 -1.4144e-001 5.4150e+004 1.9361e+002 8.4512e+002 +# -Range: 0-300 + +Analcime + Na.96Al.96Si2.04O6:H2O +3.8400 H+ = + 0.9600 Al+++ + 0.9600 Na+ + 2.0400 SiO2 + 2.9200 H2O + log_k 6.1396 + -delta_H -75.844 kJ/mol # Calculated enthalpy of reaction Analcime +# Enthalpy of formation: -3296.86 kJ/mol + -analytic -6.8694e+000 6.6052e-003 9.8260e+003 -4.8540e+000 -8.8780e+005 +# -Range: 0-300 + +Analcime-dehy + Na.96Al.96Si2.04O6 +3.8400 H+ = + 0.9600 Al+++ + 0.9600 Na+ + 1.9200 H2O + 2.0400 SiO2 + log_k 12.5023 + -delta_H -116.641 kJ/mol # Calculated enthalpy of reaction Analcime-dehy +# Enthalpy of formation: -2970.23 kJ/mol + -analytic -7.1134e+000 5.6181e-003 1.2185e+004 -5.0295e+000 -9.3890e+005 +# -Range: 0-300 + +Anatase + TiO2 +2.0000 H2O = + 1.0000 Ti(OH)4 + log_k -8.5586 + -delta_H 0 # Not possible to calculate enthalpy of reaction Anatase +# Enthalpy of formation: -939.942 kJ/mol + +Andalusite + Al2SiO5 +6.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 3.0000 H2O + log_k 15.9445 + -delta_H -235.233 kJ/mol # Calculated enthalpy of reaction Andalusite +# Enthalpy of formation: -615.866 kcal/mol + -analytic -7.1115e+001 -3.2234e-002 1.2308e+004 2.2357e+001 1.9208e+002 +# -Range: 0-300 + +Andradite + Ca3Fe2(SiO4)3 +12.0000 H+ = + 2.0000 Fe+++ + 3.0000 Ca++ + 3.0000 SiO2 + 6.0000 H2O + log_k 33.3352 + -delta_H -301.173 kJ/mol # Calculated enthalpy of reaction Andradite +# Enthalpy of formation: -1380.35 kcal/mol + -analytic 1.3884e+001 -2.3886e-002 1.5314e+004 -8.1606e+000 -4.2193e+005 +# -Range: 0-300 + +Anglesite + PbSO4 = + 1.0000 Pb++ + 1.0000 SO4-- + log_k -7.8527 + -delta_H 11.255 kJ/mol # Calculated enthalpy of reaction Anglesite +# Enthalpy of formation: -219.87 kcal/mol + -analytic -1.8583e+002 -7.3849e-002 2.8528e+003 7.6936e+001 4.4570e+001 +# -Range: 0-300 + +Anhydrite + CaSO4 = + 1.0000 Ca++ + 1.0000 SO4-- + log_k -4.3064 + -delta_H -18.577 kJ/mol # Calculated enthalpy of reaction Anhydrite +# Enthalpy of formation: -342.76 kcal/mol + -analytic -2.0986e+002 -7.8823e-002 5.0969e+003 8.5642e+001 7.9594e+001 +# -Range: 0-300 + +Annite + KFe3AlSi3O10(OH)2 +10.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 3.0000 Fe++ + 3.0000 SiO2 + 6.0000 H2O + log_k 29.4693 + -delta_H -259.964 kJ/mol # Calculated enthalpy of reaction Annite +# Enthalpy of formation: -1232.19 kcal/mol + -analytic -4.0186e+001 -1.4238e-002 1.8929e+004 7.9859e+000 -8.4343e+005 +# -Range: 0-300 + +Anorthite + CaAl2(SiO4)2 +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 2.0000 SiO2 + 4.0000 H2O + log_k 26.5780 + -delta_H -303.039 kJ/mol # Calculated enthalpy of reaction Anorthite +# Enthalpy of formation: -1007.55 kcal/mol + -analytic 3.9717e-001 -1.8751e-002 1.4897e+004 -6.3078e+000 -2.3885e+005 +# -Range: 0-300 + +Antarcticite + CaCl2:6H2O = + 1.0000 Ca++ + 2.0000 Cl- + 6.0000 H2O + log_k 4.0933 + -delta_H 0 # Not possible to calculate enthalpy of reaction Antarcticite +# Enthalpy of formation: 0 kcal/mol + +Anthophyllite + Mg7Si8O22(OH)2 +14.0000 H+ = + 7.0000 Mg++ + 8.0000 H2O + 8.0000 SiO2 + log_k 66.7965 + -delta_H -483.486 kJ/mol # Calculated enthalpy of reaction Anthophyllite +# Enthalpy of formation: -2888.75 kcal/mol + -analytic -1.2865e+002 1.9705e-002 5.4853e+004 1.9444e+001 -3.8080e+006 +# -Range: 0-300 + +Antigorite +# Mg48Si24O85(OH)62 +96.0000 H+ = + 34.0000 SiO2 + 48.0000 Mg++ + 79.0000 H2O + Mg48Si34O85(OH)62 +96.0000 H+ = + 34.0000 SiO2 + 48.0000 Mg++ + 79.0000 H2O + log_k 477.1943 + -delta_H -3364.43 kJ/mol # Calculated enthalpy of reaction Antigorite +# Enthalpy of formation: -17070.9 kcal/mol + -analytic -8.1630e+002 -6.7780e-002 2.5998e+005 2.2029e+002 -9.3275e+006 +# -Range: 0-300 + +Antlerite + Cu3(SO4)(OH)4 +4.0000 H+ = + 1.0000 SO4-- + 3.0000 Cu++ + 4.0000 H2O + log_k 8.7302 + -delta_H 0 # Not possible to calculate enthalpy of reaction Antlerite +# Enthalpy of formation: 0 kcal/mol + +Aphthitalite + NaK3(SO4)2 = + 1.0000 Na+ + 2.0000 SO4-- + 3.0000 K+ + log_k -3.8878 + -delta_H 0 # Not possible to calculate enthalpy of reaction Aphthitalite +# Enthalpy of formation: 0 kcal/mol + +Aragonite + CaCO3 +1.0000 H+ = + 1.0000 Ca++ + 1.0000 HCO3- + log_k 1.9931 + -delta_H -25.8027 kJ/mol # Calculated enthalpy of reaction Aragonite +# Enthalpy of formation: -288.531 kcal/mol + -analytic -1.4934e+002 -4.8043e-002 4.9089e+003 6.0284e+001 7.6644e+001 +# -Range: 0-300 + +Arcanite + K2SO4 = + 1.0000 SO4-- + 2.0000 K+ + log_k -1.8008 + -delta_H 23.836 kJ/mol # Calculated enthalpy of reaction Arcanite +# Enthalpy of formation: -1437.78 kJ/mol + -analytic -1.6428e+002 -6.7762e-002 1.9879e+003 7.1116e+001 3.1067e+001 +# -Range: 0-300 + +Arsenolite + As2O3 +3.0000 H2O = + 2.0000 H+ + 2.0000 H2AsO3- + log_k -19.8365 + -delta_H 84.5449 kJ/mol # Calculated enthalpy of reaction Arsenolite +# Enthalpy of formation: -656.619 kJ/mol + -analytic 5.1917e+000 -1.9397e-002 -6.0894e+003 4.7458e-001 -1.0341e+002 +# -Range: 0-200 + +Arsenopyrite + FeAsS +1.5000 H2O +0.5000 H+ = + 0.5000 AsH3 + 0.5000 H2AsO3- + 1.0000 Fe++ + 1.0000 HS- + log_k -14.4453 + -delta_H 28.0187 kJ/mol # Calculated enthalpy of reaction Arsenopyrite +# Enthalpy of formation: -42.079 kJ/mol + +Artinite + Mg2CO3(OH)2:3H2O +3.0000 H+ = + 1.0000 HCO3- + 2.0000 Mg++ + 5.0000 H2O + log_k 19.6560 + -delta_H -130.432 kJ/mol # Calculated enthalpy of reaction Artinite +# Enthalpy of formation: -698.043 kcal/mol + -analytic -2.8614e+002 -6.7344e-002 1.5230e+004 1.1104e+002 2.3773e+002 +# -Range: 0-300 + +As + As +1.5000 H2O +0.7500 O2 = + 1.0000 H+ + 1.0000 H2AsO3- + log_k 42.7079 + -delta_H -276.937 kJ/mol # Calculated enthalpy of reaction As +# Enthalpy of formation: 0 kJ/mol + -analytic -3.4700e+001 -3.1772e-002 1.3788e+004 1.6411e+001 2.1517e+002 +# -Range: 0-300 + +As2O5 + As2O5 +3.0000 H2O = + 2.0000 H+ + 2.0000 H2AsO4- + log_k 2.1601 + -delta_H -36.7345 kJ/mol # Calculated enthalpy of reaction As2O5 +# Enthalpy of formation: -924.87 kJ/mol + -analytic -1.4215e+002 -6.3459e-002 4.1222e+003 6.0369e+001 6.4365e+001 +# -Range: 0-300 + +As4O6(cubi) + As4O6 +6.0000 H2O = + 4.0000 H+ + 4.0000 H2AsO3- + log_k -39.7636 + -delta_H 169.792 kJ/mol # Calculated enthalpy of reaction As4O6(cubi) +# Enthalpy of formation: -1313.94 kJ/mol + -analytic -2.6300e+002 -1.1822e-001 -4.9004e+003 1.1108e+002 -7.6389e+001 +# -Range: 0-300 + +As4O6(mono) + As4O6 +6.0000 H2O = + 4.0000 H+ + 4.0000 H2AsO3- + log_k -40.0375 + -delta_H 165.452 kJ/mol # Calculated enthalpy of reaction As4O6(mono) +# Enthalpy of formation: -1309.6 kJ/mol + -analytic 9.2518e+000 -3.8823e-002 -1.1985e+004 9.9966e-001 -2.0352e+002 +# -Range: 0-200 + +Atacamite + Cu4Cl2(OH)6 +6.0000 H+ = + 2.0000 Cl- + 4.0000 Cu++ + 6.0000 H2O + log_k 14.2836 + -delta_H -132.001 kJ/mol # Calculated enthalpy of reaction Atacamite +# Enthalpy of formation: -1654.43 kJ/mol + -analytic -2.6623e+002 -4.8121e-002 1.5315e+004 9.8395e+001 2.6016e+002 +# -Range: 0-200 + +Au + Au +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Au+ + log_k -7.0864 + -delta_H 59.189 kJ/mol # Calculated enthalpy of reaction Au +# Enthalpy of formation: 0 kcal/mol + -analytic -7.6610e-001 -2.8520e-003 -3.0861e+003 1.9705e+000 -4.8156e+001 +# -Range: 0-300 + +Autunite-H + H2(UO2)2(PO4)2 = + 2.0000 HPO4-- + 2.0000 UO2++ + log_k -25.3372 + -delta_H -31.8599 kJ/mol # Calculated enthalpy of reaction Autunite-H +# Enthalpy of formation: -4590.3 kJ/mol + -analytic -3.2179e+001 -3.8038e-002 -6.8629e+002 8.2724e+000 -1.1644e+001 +# -Range: 0-200 + +Azurite + Cu3(CO3)2(OH)2 +4.0000 H+ = + 2.0000 H2O + 2.0000 HCO3- + 3.0000 Cu++ + log_k 9.1607 + -delta_H -122.298 kJ/mol # Calculated enthalpy of reaction Azurite +# Enthalpy of formation: -390.1 kcal/mol + -analytic -4.4042e+002 -1.1934e-001 1.8053e+004 1.7158e+002 2.8182e+002 +# -Range: 0-300 + +B + B +1.5000 H2O +0.7500 O2 = + 1.0000 B(OH)3 + log_k 109.5654 + -delta_H -636.677 kJ/mol # Calculated enthalpy of reaction B +# Enthalpy of formation: 0 kJ/mol + -analytic 8.0471e+001 1.2577e-003 2.9653e+004 -2.8593e+001 4.6268e+002 +# -Range: 0-300 + +B2O3 + B2O3 +3.0000 H2O = + 2.0000 B(OH)3 + log_k 5.5464 + -delta_H -18.0548 kJ/mol # Calculated enthalpy of reaction B2O3 +# Enthalpy of formation: -1273.5 kJ/mol + -analytic 9.0905e+001 5.5365e-003 -2.6629e+003 -3.1553e+001 -4.1578e+001 +# -Range: 0-300 + +Ba + Ba +2.0000 H+ +0.5000 O2 = + 1.0000 Ba++ + 1.0000 H2O + log_k 141.2465 + -delta_H -817.416 kJ/mol # Calculated enthalpy of reaction Ba +# Enthalpy of formation: 0 kJ/mol + -analytic -2.5033e+001 -1.3917e-002 4.2849e+004 1.0786e+001 6.6863e+002 +# -Range: 0-300 + +Ba(OH)2:8H2O + Ba(OH)2:8H2O +2.0000 H+ = + 1.0000 Ba++ + 10.0000 H2O + log_k 24.4911 + -delta_H -55.4363 kJ/mol # Calculated enthalpy of reaction Ba(OH)2:8H2O +# Enthalpy of formation: -3340.59 kJ/mol + -analytic -2.3888e+002 -1.5791e-003 1.4097e+004 8.7518e+001 2.3947e+002 +# -Range: 0-200 + +Ba2Si3O8 + Ba2Si3O8 +4.0000 H+ = + 2.0000 Ba++ + 2.0000 H2O + 3.0000 SiO2 + log_k 23.3284 + -delta_H -95.3325 kJ/mol # Calculated enthalpy of reaction Ba2Si3O8 +# Enthalpy of formation: -4184.73 kJ/mol + -analytic -8.7226e+001 9.3125e-003 2.3147e+004 2.2012e+001 -2.1714e+006 +# -Range: 0-300 + +Ba2SiO4 + Ba2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Ba++ + 2.0000 H2O + log_k 44.5930 + -delta_H -237.206 kJ/mol # Calculated enthalpy of reaction Ba2SiO4 +# Enthalpy of formation: -2287.46 kJ/mol + -analytic -7.0350e+000 -5.1744e-003 1.4786e+004 3.1091e+000 -3.6972e+005 +# -Range: 0-300 + +Ba2U2O7 + Ba2U2O7 +6.0000 H+ = + 2.0000 Ba++ + 2.0000 UO2+ + 3.0000 H2O + log_k 36.4635 + -delta_H -243.057 kJ/mol # Calculated enthalpy of reaction Ba2U2O7 +# Enthalpy of formation: -3740 kJ/mol + -analytic -9.2562e+001 5.3866e-003 1.6852e+004 2.8647e+001 2.8621e+002 +# -Range: 0-200 + +Ba3UO6 + Ba3UO6 +8.0000 H+ = + 1.0000 UO2++ + 3.0000 Ba++ + 4.0000 H2O + log_k 94.3709 + -delta_H -564.885 kJ/mol # Calculated enthalpy of reaction Ba3UO6 +# Enthalpy of formation: -3210.4 kJ/mol + -analytic -1.3001e+002 -1.7395e-002 3.3977e+004 4.6715e+001 5.7703e+002 +# -Range: 0-200 + +BaBr2 + BaBr2 = + 1.0000 Ba++ + 2.0000 Br- + log_k 5.6226 + -delta_H -23.3887 kJ/mol # Calculated enthalpy of reaction BaBr2 +# Enthalpy of formation: -757.262 kJ/mol + -analytic -1.7689e+002 -7.1918e-002 4.7187e+003 7.6010e+001 7.3683e+001 +# -Range: 0-300 + +BaBr2:2H2O + BaBr2:2H2O = + 1.0000 Ba++ + 2.0000 Br- + 2.0000 H2O + log_k 2.2523 + -delta_H 13.7736 kJ/mol # Calculated enthalpy of reaction BaBr2:2H2O +# Enthalpy of formation: -1366.1 kJ/mol + -analytic -1.5506e+001 -1.6281e-002 -8.5727e+002 1.0296e+001 -1.4552e+001 +# -Range: 0-200 + +BaCl2 + BaCl2 = + 1.0000 Ba++ + 2.0000 Cl- + log_k 2.2707 + -delta_H -13.1563 kJ/mol # Calculated enthalpy of reaction BaCl2 +# Enthalpy of formation: -858.647 kJ/mol + -analytic -2.0393e+002 -7.8925e-002 4.8846e+003 8.6204e+001 7.6280e+001 +# -Range: 0-300 + +BaCl2:2H2O + BaCl2:2H2O = + 1.0000 Ba++ + 2.0000 Cl- + 2.0000 H2O + log_k 0.2459 + -delta_H 16.558 kJ/mol # Calculated enthalpy of reaction BaCl2:2H2O +# Enthalpy of formation: -1460.04 kJ/mol + -analytic -2.0350e+002 -7.3577e-002 3.7914e+003 8.6051e+001 5.9221e+001 +# -Range: 0-300 + +BaCl2:H2O + BaCl2:H2O = + 1.0000 Ba++ + 1.0000 H2O + 2.0000 Cl- + log_k 0.8606 + -delta_H 2.89433 kJ/mol # Calculated enthalpy of reaction BaCl2:H2O +# Enthalpy of formation: -1160.54 kJ/mol + -analytic -1.9572e+002 -7.3938e-002 4.0553e+003 8.2842e+001 6.3336e+001 +# -Range: 0-300 + +BaCrO4 + BaCrO4 = + 1.0000 Ba++ + 1.0000 CrO4-- + log_k -9.9322 + -delta_H 25.9115 kJ/mol # Calculated enthalpy of reaction BaCrO4 +# Enthalpy of formation: -345.293 kcal/mol + -analytic 2.3142e+001 -1.6617e-002 -3.6883e+003 -6.3687e+000 -6.2640e+001 +# -Range: 0-200 + +BaHPO4 + BaHPO4 = + 1.0000 Ba++ + 1.0000 HPO4-- + log_k -7.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaHPO4 +# Enthalpy of formation: 0 kcal/mol + +BaI2 + BaI2 = + 1.0000 Ba++ + 2.0000 I- + log_k 11.0759 + -delta_H -46.0408 kJ/mol # Calculated enthalpy of reaction BaI2 +# Enthalpy of formation: -605.408 kJ/mol + -analytic -1.7511e+002 -7.2206e-002 5.8696e+003 7.5974e+001 9.1641e+001 +# -Range: 0-300 + +BaMnO4 + BaMnO4 = + 1.0000 Ba++ + 1.0000 MnO4-- + log_k -10.0900 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaMnO4 +# Enthalpy of formation: 0 kcal/mol + +BaO + BaO +2.0000 H+ = + 1.0000 Ba++ + 1.0000 H2O + log_k 47.8036 + -delta_H -270.184 kJ/mol # Calculated enthalpy of reaction BaO +# Enthalpy of formation: -553.298 kJ/mol + -analytic -7.3273e+001 -1.7149e-002 1.6811e+004 2.8560e+001 -7.7510e+004 +# -Range: 0-300 + +BaS + BaS +1.0000 H+ = + 1.0000 Ba++ + 1.0000 HS- + log_k 16.2606 + -delta_H -92.9004 kJ/mol # Calculated enthalpy of reaction BaS +# Enthalpy of formation: -460.852 kJ/mol + -analytic -1.1819e+002 -4.3420e-002 7.4296e+003 4.9489e+001 1.1597e+002 +# -Range: 0-300 + +BaSeO3 + BaSeO3 = + 1.0000 Ba++ + 1.0000 SeO3-- + log_k -6.5615 + -delta_H -5.5658 kJ/mol # Calculated enthalpy of reaction BaSeO3 +# Enthalpy of formation: -1041.27 kJ/mol + -analytic 2.9742e+001 -1.7073e-002 -2.4532e+003 -9.2936e+000 -4.1669e+001 +# -Range: 0-200 + +BaSeO4 + BaSeO4 = + 1.0000 Ba++ + 1.0000 SeO4-- + log_k -7.4468 + -delta_H 8.9782 kJ/mol # Calculated enthalpy of reaction BaSeO4 +# Enthalpy of formation: -1145.77 kJ/mol + -analytic 2.4274e+001 -1.6289e-002 -2.8520e+003 -6.9949e+000 -4.8439e+001 +# -Range: 0-200 + +BaSiF6 + BaSiF6 +2.0000 H2O = + 1.0000 Ba++ + 1.0000 SiO2 + 4.0000 H+ + 6.0000 F- + log_k -32.1771 + -delta_H 95.2555 kJ/mol # Calculated enthalpy of reaction BaSiF6 +# Enthalpy of formation: -2951.01 kJ/mol + -analytic -6.4766e+000 -3.8410e-002 0.0000e+000 0.0000e+000 -1.2701e+006 +# -Range: 0-200 + +BaU2O7 + BaU2O7 +6.0000 H+ = + 1.0000 Ba++ + 2.0000 UO2++ + 3.0000 H2O + log_k 21.9576 + -delta_H -195.959 kJ/mol # Calculated enthalpy of reaction BaU2O7 +# Enthalpy of formation: -3237.2 kJ/mol + -analytic -1.2254e+002 -1.0941e-002 1.4452e+004 4.0125e+001 2.4546e+002 +# -Range: 0-200 + +BaUO4 + BaUO4 +4.0000 H+ = + 1.0000 Ba++ + 1.0000 UO2++ + 2.0000 H2O + log_k 18.2007 + -delta_H -134.521 kJ/mol # Calculated enthalpy of reaction BaUO4 +# Enthalpy of formation: -1993.8 kJ/mol + -analytic -6.7113e+001 -1.6340e-002 8.7592e+003 2.4571e+001 1.3670e+002 +# -Range: 0-300 + +BaZrO3 + BaZrO3 +4.0000 H+ = + 1.0000 Ba++ + 1.0000 H2O + 1.0000 Zr(OH)2++ + log_k -94.4716 + -delta_H 505.159 kJ/mol # Calculated enthalpy of reaction BaZrO3 +# Enthalpy of formation: -578.27 kcal/mol + -analytic -5.3606e+001 -1.0096e-002 -2.4894e+004 1.8446e+001 -4.2271e+002 +# -Range: 0-200 + +Baddeleyite + ZrO2 +2.0000 H+ = + 1.0000 Zr(OH)2++ + log_k -7.9405 + -delta_H 9.72007 kJ/mol # Calculated enthalpy of reaction Baddeleyite +# Enthalpy of formation: -1100.56 kJ/mol + -analytic -2.5188e-001 -4.6374e-003 -1.0635e+003 -1.1055e+000 -1.6595e+001 +# -Range: 0-300 + +Barite + BaSO4 = + 1.0000 Ba++ + 1.0000 SO4-- + log_k -9.9711 + -delta_H 25.9408 kJ/mol # Calculated enthalpy of reaction Barite +# Enthalpy of formation: -352.1 kcal/mol + -analytic -1.8747e+002 -7.5521e-002 2.0790e+003 7.7998e+001 3.2497e+001 +# -Range: 0-300 + +Barytocalcite + BaCa(CO3)2 +2.0000 H+ = + 1.0000 Ba++ + 1.0000 Ca++ + 2.0000 HCO3- + log_k 2.7420 + -delta_H 0 # Not possible to calculate enthalpy of reaction Barytocalcite +# Enthalpy of formation: 0 kcal/mol + +Bassanite + CaSO4:0.5H2O = + 0.5000 H2O + 1.0000 Ca++ + 1.0000 SO4-- + log_k -3.6615 + -delta_H -18.711 kJ/mol # Calculated enthalpy of reaction Bassanite +# Enthalpy of formation: -1576.89 kJ/mol + -analytic -2.2010e+002 -8.0230e-002 5.5092e+003 8.9651e+001 8.6031e+001 +# -Range: 0-300 + +Bassetite + Fe(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Fe++ + 2.0000 HPO4-- + 2.0000 UO2++ + log_k -17.7240 + -delta_H -114.841 kJ/mol # Calculated enthalpy of reaction Bassetite +# Enthalpy of formation: -1099.33 kcal/mol + -analytic -5.7788e+001 -4.5400e-002 4.0119e+003 1.6216e+001 6.8147e+001 +# -Range: 0-200 + +Be + Be +2.0000 H+ +0.5000 O2 = + 1.0000 Be++ + 1.0000 H2O + log_k 104.2077 + -delta_H -662.608 kJ/mol # Calculated enthalpy of reaction Be +# Enthalpy of formation: 0 kJ/mol + -analytic -9.3960e+001 -2.4749e-002 3.6714e+004 3.3295e+001 5.7291e+002 +# -Range: 0-300 + +Be13U + Be13U +30.0000 H+ +7.5000 O2 = + 1.0000 U++++ + 13.0000 Be++ + 15.0000 H2O + log_k 1504.5350 + -delta_H -9601.04 kJ/mol # Calculated enthalpy of reaction Be13U +# Enthalpy of formation: -163.6 kJ/mol + -analytic -1.2388e+003 -3.2848e-001 5.2816e+005 4.3222e+002 8.2419e+003 +# -Range: 0-300 + +Beidellite-Ca + Ca.165Al2.33Si3.67O10(OH)2 +7.3200 H+ = + 0.1650 Ca++ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O + log_k 5.5914 + -delta_H -162.403 kJ/mol # Calculated enthalpy of reaction Beidellite-Ca +# Enthalpy of formation: -1370.66 kcal/mol + -analytic 2.3887e+001 4.4178e-003 1.5296e+004 -2.2343e+001 -1.4025e+006 +# -Range: 0-300 + +Beidellite-Cs + Cs.33Si3.67Al2.33O10(OH)2 +7.3200 H+ = + 0.3300 Cs+ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O + log_k 5.1541 + -delta_H -149.851 kJ/mol # Calculated enthalpy of reaction Beidellite-Cs +# Enthalpy of formation: -1372.59 kcal/mol + -analytic 2.1244e+001 2.1705e-003 1.4504e+004 -2.0250e+001 -1.3712e+006 +# -Range: 0-300 + +Beidellite-H + H.33Al2.33Si3.67O10(OH)2 +6.9900 H+ = + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O + log_k 4.6335 + -delta_H -154.65 kJ/mol # Calculated enthalpy of reaction Beidellite-H +# Enthalpy of formation: -1351.1 kcal/mol + -analytic 5.4070e+000 3.4064e-003 1.6284e+004 -1.6028e+001 -1.5014e+006 +# -Range: 0-300 + +Beidellite-K + K.33Al2.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 K+ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O + log_k 5.3088 + -delta_H -150.834 kJ/mol # Calculated enthalpy of reaction Beidellite-K +# Enthalpy of formation: -1371.9 kcal/mol + -analytic 1.0792e+001 3.4419e-003 1.5760e+004 -1.7333e+001 -1.4779e+006 +# -Range: 0-300 + +Beidellite-Mg + Mg.165Al2.33Si3.67O10(OH)2 +7.3200 H+ = + 0.1650 Mg++ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O + log_k 5.5537 + -delta_H -165.455 kJ/mol # Calculated enthalpy of reaction Beidellite-Mg +# Enthalpy of formation: -1366.89 kcal/mol + -analytic 1.3375e+001 3.0420e-003 1.5947e+004 -1.8728e+001 -1.4242e+006 +# -Range: 0-300 + +Beidellite-Na + Na.33Al2.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 Na+ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O + log_k 5.6473 + -delta_H -155.846 kJ/mol # Calculated enthalpy of reaction Beidellite-Na +# Enthalpy of formation: -1369.76 kcal/mol + -analytic 1.1504e+001 3.9871e-003 1.5818e+004 -1.7762e+001 -1.4485e+006 +# -Range: 0-300 + +Berlinite + AlPO4 +1.0000 H+ = + 1.0000 Al+++ + 1.0000 HPO4-- + log_k -7.2087 + -delta_H -96.6313 kJ/mol # Calculated enthalpy of reaction Berlinite +# Enthalpy of formation: -1733.85 kJ/mol + -analytic -2.8134e+002 -9.9933e-002 1.0308e+004 1.0883e+002 1.6094e+002 +# -Range: 0-300 + +Berndtite + SnS2 = + 1.0000 S2-- + 1.0000 Sn++ + log_k -34.5393 + -delta_H 0 # Not possible to calculate enthalpy of reaction Berndtite +# Enthalpy of formation: -36.7 kcal/mol + -analytic -2.0311e+002 -7.6462e-002 -4.9879e+003 8.4082e+001 -7.7772e+001 +# -Range: 0-300 + +Bieberite + CoSO4:7H2O = + 1.0000 Co++ + 1.0000 SO4-- + 7.0000 H2O + log_k -2.5051 + -delta_H 11.3885 kJ/mol # Calculated enthalpy of reaction Bieberite +# Enthalpy of formation: -2980.02 kJ/mol + -analytic -2.6405e+002 -7.2497e-002 6.6673e+003 1.0538e+002 1.0411e+002 +# -Range: 0-300 + +Birnessite + Mn8O14:5H2O +4.0000 H+ = + 3.0000 MnO4-- + 5.0000 Mn++ + 7.0000 H2O + log_k -85.5463 + -delta_H 0 # Not possible to calculate enthalpy of reaction Birnessite +# Enthalpy of formation: 0 kcal/mol + +Bischofite + MgCl2:6H2O = + 1.0000 Mg++ + 2.0000 Cl- + 6.0000 H2O + log_k 4.3923 + -delta_H 0 # Not possible to calculate enthalpy of reaction Bischofite +# Enthalpy of formation: 0 kcal/mol + +Bixbyite + Mn2O3 +6.0000 H+ = + 2.0000 Mn+++ + 3.0000 H2O + log_k -0.9655 + -delta_H -190.545 kJ/mol # Calculated enthalpy of reaction Bixbyite +# Enthalpy of formation: -958.971 kJ/mol + -analytic -1.1600e+002 -2.8056e-003 1.3418e+004 2.8639e+001 2.0941e+002 +# -Range: 0-300 + +Bloedite + Na2Mg(SO4)2:4H2O = + 1.0000 Mg++ + 2.0000 Na+ + 2.0000 SO4-- + 4.0000 H2O + log_k -2.4777 + -delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite +# Enthalpy of formation: 0 kcal/mol + +Boehmite + AlO2H +3.0000 H+ = + 1.0000 Al+++ + 2.0000 H2O + log_k 7.5642 + -delta_H -113.282 kJ/mol # Calculated enthalpy of reaction Boehmite +# Enthalpy of formation: -238.24 kcal/mol + -analytic -1.2196e+002 -3.1138e-002 8.8643e+003 4.4075e+001 1.3835e+002 +# -Range: 0-300 + +Boltwoodite + K(H3O)(UO2)SiO4 +3.0000 H+ = + 1.0000 K+ + 1.0000 SiO2 + 1.0000 UO2++ + 3.0000 H2O + log_k 14.8857 + -delta_H 0 # Not possible to calculate enthalpy of reaction Boltwoodite +# Enthalpy of formation: 0 kcal/mol + +Boltwoodite-Na + Na.7K.3(H3O)(UO2)SiO4:H2O +3.0000 H+ = + 0.3000 K+ + 0.7000 Na+ + 1.0000 SiO2 + 1.0000 UO2++ + 4.0000 H2O + log_k 14.5834 + -delta_H 0 # Not possible to calculate enthalpy of reaction Boltwoodite-Na +# Enthalpy of formation: 0 kcal/mol + +Borax + Na2(B4O5(OH)4):8H2O +2.0000 H+ = + 2.0000 Na+ + 4.0000 B(OH)3 + 5.0000 H2O + log_k 12.0395 + -delta_H 80.5145 kJ/mol # Calculated enthalpy of reaction Borax +# Enthalpy of formation: -6288.44 kJ/mol + -analytic 7.8374e+001 1.9328e-002 -5.3279e+003 -2.1914e+001 -8.3160e+001 +# -Range: 0-300 + +Boric_acid + B(OH)3 = + 1.0000 B(OH)3 + log_k -0.1583 + -delta_H 20.2651 kJ/mol # Calculated enthalpy of reaction Boric_acid +# Enthalpy of formation: -1094.8 kJ/mol + -analytic 3.9122e+001 6.4058e-003 -2.2525e+003 -1.3592e+001 -3.5160e+001 +# -Range: 0-300 + +Bornite + Cu5FeS4 +4.0000 H+ = + 1.0000 Cu++ + 1.0000 Fe++ + 4.0000 Cu+ + 4.0000 HS- + log_k -102.4369 + -delta_H 530.113 kJ/mol # Calculated enthalpy of reaction Bornite +# Enthalpy of formation: -79.922 kcal/mol + -analytic -7.0495e+002 -2.0082e-001 -9.1376e+003 2.8004e+002 -1.4238e+002 +# -Range: 0-300 + +Brezinaite + Cr3S4 +4.0000 H+ = + 1.0000 Cr++ + 2.0000 Cr+++ + 4.0000 HS- + log_k 2.7883 + -delta_H -216.731 kJ/mol # Calculated enthalpy of reaction Brezinaite +# Enthalpy of formation: -111.9 kcal/mol + -analytic -7.0528e+001 -3.6568e-002 1.0598e+004 1.9665e+001 1.8000e+002 +# -Range: 0-200 + +Brochantite + Cu4(SO4)(OH)6 +6.0000 H+ = + 1.0000 SO4-- + 4.0000 Cu++ + 6.0000 H2O + log_k 15.4363 + -delta_H -163.158 kJ/mol # Calculated enthalpy of reaction Brochantite +# Enthalpy of formation: -2198.72 kJ/mol + -analytic -2.3609e+002 -3.9046e-002 1.5970e+004 8.4701e+001 2.7127e+002 +# -Range: 0-200 + +Bromellite + BeO +2.0000 H+ = + 1.0000 Be++ + 1.0000 H2O + log_k 1.1309 + -delta_H -59.2743 kJ/mol # Calculated enthalpy of reaction Bromellite +# Enthalpy of formation: -609.4 kJ/mol + -analytic 1.4790e+002 -4.6004e-001 -3.2577e+004 4.0273e+001 -5.0837e+002 +# -Range: 0-300 + +Brucite + Mg(OH)2 +2.0000 H+ = + 1.0000 Mg++ + 2.0000 H2O + log_k 16.2980 + -delta_H -111.34 kJ/mol # Calculated enthalpy of reaction Brucite +# Enthalpy of formation: -221.39 kcal/mol + -analytic -1.0280e+002 -1.9759e-002 9.0180e+003 3.8282e+001 1.4075e+002 +# -Range: 0-300 + +Brushite + CaHPO4:2H2O = + 1.0000 Ca++ + 1.0000 HPO4-- + 2.0000 H2O + log_k 6.5500 + -delta_H 0 # Not possible to calculate enthalpy of reaction Brushite +# Enthalpy of formation: 0 kcal/mol + +Bunsenite + NiO +2.0000 H+ = + 1.0000 H2O + 1.0000 Ni++ + log_k 12.4719 + -delta_H -100.069 kJ/mol # Calculated enthalpy of reaction Bunsenite +# Enthalpy of formation: -57.3 kcal/mol + -analytic -8.1664e+001 -1.9796e-002 7.4064e+003 3.0385e+001 1.1559e+002 +# -Range: 0-300 + +Burkeite + Na6CO3(SO4)2 +1.0000 H+ = + 1.0000 HCO3- + 2.0000 SO4-- + 6.0000 Na+ + log_k 9.4866 + -delta_H 0 # Not possible to calculate enthalpy of reaction Burkeite +# Enthalpy of formation: 0 kcal/mol + +C + C +1.0000 H2O +1.0000 O2 = + 1.0000 H+ + 1.0000 HCO3- + log_k 64.1735 + -delta_H -391.961 kJ/mol # Calculated enthalpy of reaction C +# Enthalpy of formation: 0 kcal/mol + -analytic -3.5556e+001 -3.3691e-002 1.9774e+004 1.7548e+001 3.0856e+002 +# -Range: 0-300 + +Ca + Ca +2.0000 H+ +0.5000 O2 = + 1.0000 Ca++ + 1.0000 H2O + log_k 139.8465 + -delta_H -822.855 kJ/mol # Calculated enthalpy of reaction Ca +# Enthalpy of formation: 0 kJ/mol + -analytic -1.1328e+002 -2.6554e-002 4.7638e+004 4.1989e+001 -2.3545e+005 +# -Range: 0-300 + +Ca-Al_Pyroxene + CaAl2SiO6 +8.0000 H+ = + 1.0000 Ca++ + 1.0000 SiO2 + 2.0000 Al+++ + 4.0000 H2O + log_k 35.9759 + -delta_H -361.548 kJ/mol # Calculated enthalpy of reaction Ca-Al_Pyroxene +# Enthalpy of formation: -783.793 kcal/mol + -analytic -1.4664e+002 -5.0409e-002 2.1045e+004 5.1318e+001 3.2843e+002 +# -Range: 0-300 + +Ca2Al2O5:8H2O + Ca2Al2O5:8H2O +10.0000 H+ = + 2.0000 Al+++ + 2.0000 Ca++ + 13.0000 H2O + log_k 59.5687 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2Al2O5:8H2O +# Enthalpy of formation: 0 kcal/mol + +Ca2Cl2(OH)2:H2O + Ca2Cl2(OH)2:H2O +2.0000 H+ = + 2.0000 Ca++ + 2.0000 Cl- + 3.0000 H2O + log_k 26.2901 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2Cl2(OH)2:H2O +# Enthalpy of formation: 0 kcal/mol + +Ca2V2O7 + Ca2V2O7 +1.0000 H2O = + 2.0000 Ca++ + 2.0000 H+ + 2.0000 VO4--- + log_k -39.7129 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2V2O7 +# Enthalpy of formation: -3083.46 kJ/mol + +Ca3(AsO4)2 + Ca3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Ca++ + log_k 17.8160 + -delta_H -149.956 kJ/mol # Calculated enthalpy of reaction Ca3(AsO4)2 +# Enthalpy of formation: -3298.41 kJ/mol + -analytic -1.4011e+002 -4.2945e-002 1.0981e+004 5.4107e+001 1.8652e+002 +# -Range: 0-200 + +Ca3Al2O6 + Ca3Al2O6 +12.0000 H+ = + 2.0000 Al+++ + 3.0000 Ca++ + 6.0000 H2O + log_k 113.0460 + -delta_H -833.336 kJ/mol # Calculated enthalpy of reaction Ca3Al2O6 +# Enthalpy of formation: -857.492 kcal/mol + -analytic -2.7163e+002 -5.2897e-002 5.0815e+004 9.2946e+001 8.6300e+002 +# -Range: 0-200 + +Ca3V2O8 + Ca3V2O8 = + 2.0000 VO4--- + 3.0000 Ca++ + log_k -18.3234 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca3V2O8 +# Enthalpy of formation: -3778.1 kJ/mol + +Ca4Al2Fe2O10 + Ca4Al2Fe2O10 +20.0000 H+ = + 2.0000 Al+++ + 2.0000 Fe+++ + 4.0000 Ca++ + 10.0000 H2O + log_k 140.5050 + -delta_H -1139.86 kJ/mol # Calculated enthalpy of reaction Ca4Al2Fe2O10 +# Enthalpy of formation: -1211 kcal/mol + -analytic -4.1808e+002 -8.2787e-002 7.0288e+004 1.4043e+002 1.1937e+003 +# -Range: 0-200 + +Ca4Al2O7:13H2O + Ca4Al2O7:13H2O +14.0000 H+ = + 2.0000 Al+++ + 4.0000 Ca++ + 20.0000 H2O + log_k 107.2537 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Al2O7:13H2O +# Enthalpy of formation: 0 kcal/mol + +Ca4Al2O7:19H2O + Ca4Al2O7:19H2O +14.0000 H+ = + 2.0000 Al+++ + 4.0000 Ca++ + 26.0000 H2O + log_k 103.6812 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Al2O7:19H2O +# Enthalpy of formation: 0 kcal/mol + +Ca4Cl2(OH)6:13H2O + Ca4Cl2(OH)6:13H2O +6.0000 H+ = + 2.0000 Cl- + 4.0000 Ca++ + 19.0000 H2O + log_k 68.3283 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Cl2(OH)6:13H2O +# Enthalpy of formation: 0 kcal/mol + +CaAl2O4 + CaAl2O4 +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 4.0000 H2O + log_k 46.9541 + -delta_H -436.952 kJ/mol # Calculated enthalpy of reaction CaAl2O4 +# Enthalpy of formation: -555.996 kcal/mol + -analytic -3.0378e+002 -7.9356e-002 3.0096e+004 1.1049e+002 4.6971e+002 +# -Range: 0-300 + +CaAl2O4:10H2O + CaAl2O4:10H2O +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 14.0000 H2O + log_k 37.9946 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaAl2O4:10H2O +# Enthalpy of formation: 0 kcal/mol + +CaAl4O7 + CaAl4O7 +14.0000 H+ = + 1.0000 Ca++ + 4.0000 Al+++ + 7.0000 H2O + log_k 68.6138 + -delta_H -718.464 kJ/mol # Calculated enthalpy of reaction CaAl4O7 +# Enthalpy of formation: -951.026 kcal/mol + -analytic -3.1044e+002 -6.7078e-002 4.4566e+004 1.0085e+002 7.5689e+002 +# -Range: 0-200 + +CaSO4:0.5H2O(beta) + CaSO4:0.5H2O = + 0.5000 H2O + 1.0000 Ca++ + 1.0000 SO4-- + log_k -3.4934 + -delta_H -20.804 kJ/mol # Calculated enthalpy of reaction CaSO4:0.5H2O(beta) +# Enthalpy of formation: -1574.8 kJ/mol + -analytic -2.3054e+002 -8.2832e-002 5.9132e+003 9.3705e+001 9.2338e+001 +# -Range: 0-300 + +CaSeO3:2H2O + CaSeO3:2H2O = + 1.0000 Ca++ + 1.0000 SeO3-- + 2.0000 H2O + log_k -4.6213 + -delta_H -14.1963 kJ/mol # Calculated enthalpy of reaction CaSeO3:2H2O +# Enthalpy of formation: -384.741 kcal/mol + -analytic -4.1771e+001 -2.0735e-002 9.7870e+002 1.6180e+001 1.6634e+001 +# -Range: 0-200 + +CaSeO4 + CaSeO4 = + 1.0000 Ca++ + 1.0000 SeO4-- + log_k -3.0900 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaSeO4 +# Enthalpy of formation: 0 kcal/mol + +CaUO4 + CaUO4 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 UO2++ + 2.0000 H2O + log_k 15.9420 + -delta_H -131.46 kJ/mol # Calculated enthalpy of reaction CaUO4 +# Enthalpy of formation: -2002.3 kJ/mol + -analytic -8.7902e+001 -1.9810e-002 9.2354e+003 3.1832e+001 1.4414e+002 +# -Range: 0-300 + +CaV2O6 + CaV2O6 +2.0000 H2O = + 1.0000 Ca++ + 2.0000 VO4--- + 4.0000 H+ + log_k -51.3617 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaV2O6 +# Enthalpy of formation: -2329.34 kJ/mol + +CaZrO3 + CaZrO3 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O + 1.0000 Zr(OH)2++ + log_k -148.5015 + -delta_H 801.282 kJ/mol # Calculated enthalpy of reaction CaZrO3 +# Enthalpy of formation: -650.345 kcal/mol + -analytic -7.7908e+001 -1.4388e-002 -3.9635e+004 2.6932e+001 -6.7303e+002 +# -Range: 0-200 + +Cadmoselite + CdSe = + 1.0000 Cd++ + 1.0000 Se-- + log_k -33.8428 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cadmoselite +# Enthalpy of formation: -34.6 kcal/mol + -analytic -5.3432e+001 -1.3973e-002 -5.8989e+003 1.7591e+001 -9.2031e+001 +# -Range: 0-300 + +Calcite + CaCO3 +1.0000 H+ = + 1.0000 Ca++ + 1.0000 HCO3- + log_k 1.8487 + -delta_H -25.7149 kJ/mol # Calculated enthalpy of reaction Calcite +# Enthalpy of formation: -288.552 kcal/mol + -analytic -1.4978e+002 -4.8370e-002 4.8974e+003 6.0458e+001 7.6464e+001 +# -Range: 0-300 + +Calomel + Hg2Cl2 = + 1.0000 Hg2++ + 2.0000 Cl- + log_k -17.8241 + -delta_H 98.0267 kJ/mol # Calculated enthalpy of reaction Calomel +# Enthalpy of formation: -265.37 kJ/mol + -analytic -4.8868e+001 -2.5540e-002 -2.8439e+003 1.9475e+001 -4.8277e+001 +# -Range: 0-200 + +Carnallite + KMgCl3:6H2O = + 1.0000 K+ + 1.0000 Mg++ + 3.0000 Cl- + 6.0000 H2O + log_k 4.2721 + -delta_H 0 # Not possible to calculate enthalpy of reaction Carnallite +# Enthalpy of formation: 0 kcal/mol + +Carnotite + K2(UO2)2(VO4)2 = + 2.0000 K+ + 2.0000 UO2++ + 2.0000 VO4--- + log_k -56.3811 + -delta_H 0 # Not possible to calculate enthalpy of reaction Carnotite +# Enthalpy of formation: -1173.9 kJ/mol + +Cassiterite + SnO2 +2.0000 H+ = + 0.5000 O2 + 1.0000 H2O + 1.0000 Sn++ + log_k -46.1203 + -delta_H 280.048 kJ/mol # Calculated enthalpy of reaction Cassiterite +# Enthalpy of formation: -138.8 kcal/mol + -analytic -8.9264e+001 -1.5743e-002 -1.1497e+004 3.4917e+001 -1.7937e+002 +# -Range: 0-300 + +Cattierite + CoS2 = + 1.0000 Co++ + 1.0000 S2-- + log_k -29.9067 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cattierite +# Enthalpy of formation: -36.589 kcal/mol + -analytic -2.1970e+002 -7.8585e-002 -1.9592e+003 8.8809e+001 -3.0507e+001 +# -Range: 0-300 + +Cd + Cd +2.0000 H+ +0.5000 O2 = + 1.0000 Cd++ + 1.0000 H2O + log_k 56.6062 + -delta_H -355.669 kJ/mol # Calculated enthalpy of reaction Cd +# Enthalpy of formation: 0 kJ/mol + -analytic -7.2027e+001 -2.0250e-002 2.0474e+004 2.6814e+001 -3.2348e+004 +# -Range: 0-300 + +Cd(BO2)2 + Cd(BO2)2 +2.0000 H+ +2.0000 H2O = + 1.0000 Cd++ + 2.0000 B(OH)3 + log_k 9.8299 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(BO2)2 +# Enthalpy of formation: 0 kcal/mol + +Cd(IO3)2 + Cd(IO3)2 = + 1.0000 Cd++ + 2.0000 IO3- + log_k -7.5848 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(IO3)2 +# Enthalpy of formation: 0 kcal/mol + +Cd(OH)2 + Cd(OH)2 +2.0000 H+ = + 1.0000 Cd++ + 2.0000 H2O + log_k 13.7382 + -delta_H -87.0244 kJ/mol # Calculated enthalpy of reaction Cd(OH)2 +# Enthalpy of formation: -560.55 kJ/mol + -analytic -7.7001e+001 -6.9251e-003 7.4684e+003 2.7380e+001 1.2685e+002 +# -Range: 0-200 + +Cd(OH)Cl + Cd(OH)Cl +1.0000 H+ = + 1.0000 Cd++ + 1.0000 Cl- + 1.0000 H2O + log_k 3.5435 + -delta_H -30.3888 kJ/mol # Calculated enthalpy of reaction Cd(OH)Cl +# Enthalpy of formation: -498.427 kJ/mol + -analytic -4.5477e+001 -1.5809e-002 2.5333e+003 1.8279e+001 4.3035e+001 +# -Range: 0-200 + +Cd3(AsO4)2 + Cd3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Cd++ + log_k 4.0625 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(AsO4)2 +# Enthalpy of formation: 0 kcal/mol + +Cd3(PO4)2 + Cd3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Cd++ + log_k -7.8943 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(PO4)2 +# Enthalpy of formation: 0 kcal/mol + +Cd3(SO4)(OH)4 + Cd3(SO4)(OH)4 +4.0000 H+ = + 1.0000 SO4-- + 3.0000 Cd++ + 4.0000 H2O + log_k 22.5735 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(SO4)(OH)4 +# Enthalpy of formation: 0 kcal/mol + +Cd3(SO4)2(OH)2 + Cd3(SO4)2(OH)2 +2.0000 H+ = + 2.0000 H2O + 2.0000 SO4-- + 3.0000 Cd++ + log_k 6.7180 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(SO4)2(OH)2 +# Enthalpy of formation: 0 kcal/mol + +CdBr2 + CdBr2 = + 1.0000 Cd++ + 2.0000 Br- + log_k -1.8470 + -delta_H -2.67548 kJ/mol # Calculated enthalpy of reaction CdBr2 +# Enthalpy of formation: -316.229 kJ/mol + -analytic 1.3056e+000 -2.0628e-002 -1.3318e+003 3.0126e+000 -2.2616e+001 +# -Range: 0-200 + +CdBr2:4H2O + CdBr2:4H2O = + 1.0000 Cd++ + 2.0000 Br- + 4.0000 H2O + log_k -2.3378 + -delta_H 30.2812 kJ/mol # Calculated enthalpy of reaction CdBr2:4H2O +# Enthalpy of formation: -1492.54 kJ/mol + -analytic -1.0038e+002 -2.1045e-002 1.6896e+003 3.9864e+001 2.8726e+001 +# -Range: 0-200 + +CdCl2 + CdCl2 = + 1.0000 Cd++ + 2.0000 Cl- + log_k -0.6474 + -delta_H -18.5391 kJ/mol # Calculated enthalpy of reaction CdCl2 +# Enthalpy of formation: -391.518 kJ/mol + -analytic -1.5230e+001 -2.4574e-002 -8.1017e+001 8.9599e+000 -1.3702e+000 +# -Range: 0-200 + +CdCl2(NH3)2 + CdCl2(NH3)2 = + 1.0000 Cd++ + 2.0000 Cl- + 2.0000 NH3 + log_k -8.7864 + -delta_H 63.534 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)2 +# Enthalpy of formation: -636.265 kJ/mol + -analytic -5.5283e+001 -2.1791e-002 -2.1150e+003 2.4279e+001 -3.5896e+001 +# -Range: 0-200 + +CdCl2(NH3)4 + CdCl2(NH3)4 = + 1.0000 Cd++ + 2.0000 Cl- + 4.0000 NH3 + log_k -6.8044 + -delta_H 81.7931 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)4 +# Enthalpy of formation: -817.198 kJ/mol + -analytic -9.5682e+001 -1.8853e-002 -8.3875e+002 3.9322e+001 -1.4210e+001 +# -Range: 0-200 + +CdCl2(NH3)6 + CdCl2(NH3)6 = + 1.0000 Cd++ + 2.0000 Cl- + 6.0000 NH3 + log_k -4.7524 + -delta_H 97.2971 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)6 +# Enthalpy of formation: -995.376 kJ/mol + -analytic -1.3662e+002 -1.5941e-002 5.8572e+002 5.4415e+001 9.9937e+000 +# -Range: 0-200 + +CdCl2:H2O + CdCl2:H2O = + 1.0000 Cd++ + 1.0000 H2O + 2.0000 Cl- + log_k -1.6747 + -delta_H -7.44943 kJ/mol # Calculated enthalpy of reaction CdCl2:H2O +# Enthalpy of formation: -688.446 kJ/mol + -analytic -4.1097e+001 -2.4685e-002 5.2687e+002 1.8188e+001 8.9615e+000 +# -Range: 0-200 + +CdCr2O4 + CdCr2O4 +8.0000 H+ = + 1.0000 Cd++ + 2.0000 Cr+++ + 4.0000 H2O + log_k 14.9969 + -delta_H -255.676 kJ/mol # Calculated enthalpy of reaction CdCr2O4 +# Enthalpy of formation: -344.3 kcal/mol + -analytic -1.7446e+002 -9.1086e-003 1.9223e+004 5.1605e+001 3.2650e+002 +# -Range: 0-200 + +CdF2 + CdF2 = + 1.0000 Cd++ + 2.0000 F- + log_k -1.1464 + -delta_H -46.064 kJ/mol # Calculated enthalpy of reaction CdF2 +# Enthalpy of formation: -700.529 kJ/mol + -analytic -3.0654e+001 -2.4790e-002 1.7893e+003 1.2482e+001 3.0395e+001 +# -Range: 0-200 + +CdI2 + CdI2 = + 1.0000 Cd++ + 2.0000 I- + log_k -3.4825 + -delta_H 13.7164 kJ/mol # Calculated enthalpy of reaction CdI2 +# Enthalpy of formation: -203.419 kJ/mol + -analytic -1.5446e+001 -2.4758e-002 -1.6422e+003 1.0041e+001 -2.7882e+001 +# -Range: 0-200 + +CdS + CdS +1.0000 H+ = + 1.0000 Cd++ + 1.0000 HS- + log_k -15.9095 + -delta_H 70.1448 kJ/mol # Calculated enthalpy of reaction CdS +# Enthalpy of formation: -162.151 kJ/mol + -analytic -2.9492e+001 -1.5181e-002 -3.4695e+003 1.2019e+001 -5.8907e+001 +# -Range: 0-200 + +CdSO4 + CdSO4 = + 1.0000 Cd++ + 1.0000 SO4-- + log_k -0.1061 + -delta_H -52.1304 kJ/mol # Calculated enthalpy of reaction CdSO4 +# Enthalpy of formation: -933.369 kJ/mol + -analytic 7.7104e+000 -1.7161e-002 8.7067e+002 -2.2763e+000 1.4783e+001 +# -Range: 0-200 + +CdSO4:2.667H2O + CdSO4:2.667H2O = + 1.0000 Cd++ + 1.0000 SO4-- + 2.6670 H2O + log_k -1.8015 + -delta_H -18.5302 kJ/mol # Calculated enthalpy of reaction CdSO4:2.667H2O +# Enthalpy of formation: -1729.3 kJ/mol + -analytic -5.0331e+001 -1.4983e-002 2.0271e+003 1.8665e+001 3.4440e+001 +# -Range: 0-200 + +CdSO4:H2O + CdSO4:H2O = + 1.0000 Cd++ + 1.0000 H2O + 1.0000 SO4-- + log_k -1.6529 + -delta_H -31.6537 kJ/mol # Calculated enthalpy of reaction CdSO4:H2O +# Enthalpy of formation: -1239.68 kJ/mol + -analytic -1.7142e+001 -1.7295e-002 9.9184e+002 6.9943e+000 1.6849e+001 +# -Range: 0-200 + +CdSeO3 + CdSeO3 = + 1.0000 Cd++ + 1.0000 SeO3-- + log_k -8.8086 + -delta_H -9.92156 kJ/mol # Calculated enthalpy of reaction CdSeO3 +# Enthalpy of formation: -575.169 kJ/mol + -analytic 7.1762e+000 -1.8892e-002 -1.4680e+003 -2.1984e+000 -2.4932e+001 +# -Range: 0-200 + +CdSeO4 + CdSeO4 = + 1.0000 Cd++ + 1.0000 SeO4-- + log_k -2.2132 + -delta_H -41.9836 kJ/mol # Calculated enthalpy of reaction CdSeO4 +# Enthalpy of formation: -633.063 kJ/mol + -analytic -4.9901e+000 -1.9755e-002 7.3162e+002 2.5063e+000 1.2426e+001 +# -Range: 0-200 + +CdSiO3 + CdSiO3 +2.0000 H+ = + 1.0000 Cd++ + 1.0000 H2O + 1.0000 SiO2 + log_k 7.5136 + -delta_H -50.3427 kJ/mol # Calculated enthalpy of reaction CdSiO3 +# Enthalpy of formation: -1189.09 kJ/mol + -analytic 2.6419e+002 6.2488e-002 -5.3518e+003 -1.0401e+002 -9.0973e+001 +# -Range: 0-200 + +Ce + Ce +3.0000 H+ +0.7500 O2 = + 1.0000 Ce+++ + 1.5000 H2O + log_k 182.9563 + -delta_H -1120.06 kJ/mol # Calculated enthalpy of reaction Ce +# Enthalpy of formation: 0 kJ/mol + -analytic -5.1017e+001 -2.6149e-002 5.8511e+004 1.8382e+001 9.1302e+002 +# -Range: 0-300 + +Ce(OH)3 + Ce(OH)3 +3.0000 H+ = + 1.0000 Ce+++ + 3.0000 H2O + log_k 19.8852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Ce(OH)3(am) + Ce(OH)3 +3.0000 H+ = + 1.0000 Ce+++ + 3.0000 H2O + log_k 21.1852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +Ce2(CO3)3:8H2O + Ce2(CO3)3:8H2O +3.0000 H+ = + 2.0000 Ce+++ + 3.0000 HCO3- + 8.0000 H2O + log_k -4.1136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2(CO3)3:8H2O +# Enthalpy of formation: 0 kcal/mol + +Ce2O3 + Ce2O3 +6.0000 H+ = + 2.0000 Ce+++ + 3.0000 H2O + log_k 62.3000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2O3 +# Enthalpy of formation: 0 kcal/mol + +Ce3(PO4)4 + Ce3(PO4)4 +4.0000 H+ = + 3.0000 Ce++++ + 4.0000 HPO4-- + log_k -40.8127 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce3(PO4)4 +# Enthalpy of formation: 0 kcal/mol + +CeF3:.5H2O + CeF3:.5H2O = + 0.5000 H2O + 1.0000 Ce+++ + 3.0000 F- + log_k -18.8000 + -delta_H 0 # Not possible to calculate enthalpy of reaction CeF3:.5H2O +# Enthalpy of formation: 0 kcal/mol + +CeO2 + CeO2 +4.0000 H+ = + 1.0000 Ce++++ + 2.0000 H2O + log_k -8.1600 + -delta_H 0 # Not possible to calculate enthalpy of reaction CeO2 +# Enthalpy of formation: 0 kcal/mol + +CePO4:10H2O + CePO4:10H2O +1.0000 H+ = + 1.0000 Ce+++ + 1.0000 HPO4-- + 10.0000 H2O + log_k -12.2782 + -delta_H 0 # Not possible to calculate enthalpy of reaction CePO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +Celadonite + KMgAlSi4O10(OH)2 +6.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 1.0000 Mg++ + 4.0000 H2O + 4.0000 SiO2 + log_k 7.4575 + -delta_H -74.3957 kJ/mol # Calculated enthalpy of reaction Celadonite +# Enthalpy of formation: -1394.9 kcal/mol + -analytic -3.3097e+001 1.7989e-002 1.8919e+004 -2.1219e+000 -2.0588e+006 +# -Range: 0-300 + +Celestite + SrSO4 = + 1.0000 SO4-- + 1.0000 Sr++ + log_k -5.6771 + -delta_H -7.40568 kJ/mol # Calculated enthalpy of reaction Celestite +# Enthalpy of formation: -347.3 kcal/mol + -analytic -1.9063e+002 -7.4552e-002 3.9050e+003 7.8416e+001 6.0991e+001 +# -Range: 0-300 + +Cerussite + PbCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Pb++ + log_k -3.2091 + -delta_H 13.8992 kJ/mol # Calculated enthalpy of reaction Cerussite +# Enthalpy of formation: -168 kcal/mol + -analytic -1.2887e+002 -4.4372e-002 2.2336e+003 5.3091e+001 3.4891e+001 +# -Range: 0-300 + +Chalcanthite + CuSO4:5H2O = + 1.0000 Cu++ + 1.0000 SO4-- + 5.0000 H2O + log_k -2.6215 + -delta_H 6.57556 kJ/mol # Calculated enthalpy of reaction Chalcanthite +# Enthalpy of formation: -2279.68 kJ/mol + -analytic -1.1262e+002 -1.5544e-002 3.6176e+003 4.1420e+001 6.1471e+001 +# -Range: 0-200 + +Chalcedony + SiO2 = + 1.0000 SiO2 + log_k -3.7281 + -delta_H 31.4093 kJ/mol # Calculated enthalpy of reaction Chalcedony +# Enthalpy of formation: -217.282 kcal/mol + -analytic -9.0068e+000 9.3241e-003 4.0535e+003 -1.0830e+000 -7.5077e+005 +# -Range: 0-300 + +Chalcocite + Cu2S +1.0000 H+ = + 1.0000 HS- + 2.0000 Cu+ + log_k -34.7342 + -delta_H 206.748 kJ/mol # Calculated enthalpy of reaction Chalcocite +# Enthalpy of formation: -19 kcal/mol + -analytic -1.3703e+002 -4.0727e-002 -7.1694e+003 5.5963e+001 -1.1183e+002 +# -Range: 0-300 + +Chalcocyanite + CuSO4 = + 1.0000 Cu++ + 1.0000 SO4-- + log_k 2.9239 + -delta_H -72.5128 kJ/mol # Calculated enthalpy of reaction Chalcocyanite +# Enthalpy of formation: -771.4 kJ/mol + -analytic 5.8173e+000 -1.6933e-002 2.0097e+003 -1.8583e+000 3.4126e+001 +# -Range: 0-200 + +Chalcopyrite + CuFeS2 +2.0000 H+ = + 1.0000 Cu++ + 1.0000 Fe++ + 2.0000 HS- + log_k -32.5638 + -delta_H 127.206 kJ/mol # Calculated enthalpy of reaction Chalcopyrite +# Enthalpy of formation: -44.453 kcal/mol + -analytic -3.1575e+002 -9.8947e-002 8.3400e+002 1.2522e+002 1.3106e+001 +# -Range: 0-300 + +Chamosite-7A + Fe2Al2SiO5(OH)4 +10.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 2.0000 Fe++ + 7.0000 H2O + log_k 32.8416 + -delta_H -364.213 kJ/mol # Calculated enthalpy of reaction Chamosite-7A +# Enthalpy of formation: -902.407 kcal/mol + -analytic -2.5581e+002 -7.0890e-002 2.4619e+004 9.1789e+001 3.8424e+002 +# -Range: 0-300 + +Chlorargyrite + AgCl = + 1.0000 Ag+ + 1.0000 Cl- + log_k -9.7453 + -delta_H 65.739 kJ/mol # Calculated enthalpy of reaction Chlorargyrite +# Enthalpy of formation: -30.37 kcal/mol + -analytic -9.6834e+001 -3.4624e-002 -1.1820e+003 4.0962e+001 -1.8415e+001 +# -Range: 0-300 + +Chloromagnesite + MgCl2 = + 1.0000 Mg++ + 2.0000 Cl- + log_k 21.8604 + -delta_H -158.802 kJ/mol # Calculated enthalpy of reaction Chloromagnesite +# Enthalpy of formation: -641.317 kJ/mol + -analytic -2.3640e+002 -8.2017e-002 1.3480e+004 9.5963e+001 2.1042e+002 +# -Range: 0-300 + +Chromite + FeCr2O4 +8.0000 H+ = + 1.0000 Fe++ + 2.0000 Cr+++ + 4.0000 H2O + log_k 15.1685 + -delta_H -267.755 kJ/mol # Calculated enthalpy of reaction Chromite +# Enthalpy of formation: -1444.83 kJ/mol + -analytic -1.9060e+002 -2.5695e-002 1.9465e+004 5.9865e+001 3.0379e+002 +# -Range: 0-300 + +Chrysocolla + CuSiH4O5 +2.0000 H+ = + 1.0000 Cu++ + 1.0000 SiO2 + 3.0000 H2O + log_k 6.2142 + -delta_H 0 # Not possible to calculate enthalpy of reaction Chrysocolla +# Enthalpy of formation: 0 kcal/mol + +Chrysotile + Mg3Si2O5(OH)4 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 Mg++ + 5.0000 H2O + log_k 31.1254 + -delta_H -218.041 kJ/mol # Calculated enthalpy of reaction Chrysotile +# Enthalpy of formation: -1043.12 kcal/mol + -analytic -9.2462e+001 -1.1359e-002 1.8312e+004 2.9289e+001 -6.2342e+005 +# -Range: 0-300 + +Cinnabar + HgS +1.0000 H+ = + 1.0000 HS- + 1.0000 Hg++ + log_k -38.9666 + -delta_H 207.401 kJ/mol # Calculated enthalpy of reaction Cinnabar +# Enthalpy of formation: -12.75 kcal/mol + -analytic -1.5413e+002 -4.6846e-002 -6.9806e+003 6.1639e+001 -1.0888e+002 +# -Range: 0-300 + +Claudetite + As2O3 +3.0000 H2O = + 2.0000 H+ + 2.0000 H2AsO3- + log_k -19.7647 + -delta_H 82.3699 kJ/mol # Calculated enthalpy of reaction Claudetite +# Enthalpy of formation: -654.444 kJ/mol + -analytic -1.4164e+002 -6.3704e-002 -2.1679e+003 5.9856e+001 -3.3787e+001 +# -Range: 0-300 + +Clausthalite + PbSe = + 1.0000 Pb++ + 1.0000 Se-- + log_k -36.2531 + -delta_H 0 # Not possible to calculate enthalpy of reaction Clausthalite +# Enthalpy of formation: -102.9 kJ/mol + -analytic -2.6473e+001 -1.0666e-002 -8.5540e+003 8.9226e+000 -1.3347e+002 +# -Range: 0-300 + +Clinochalcomenite + CuSeO3:2H2O = + 1.0000 Cu++ + 1.0000 SeO3-- + 2.0000 H2O + log_k -6.7873 + -delta_H -31.6645 kJ/mol # Calculated enthalpy of reaction Clinochalcomenite +# Enthalpy of formation: -235.066 kcal/mol + -analytic -4.6465e+001 -1.8071e-002 2.0307e+003 1.5455e+001 3.4499e+001 +# -Range: 0-200 + +Clinochlore-14A + Mg5Al2Si3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 3.0000 SiO2 + 5.0000 Mg++ + 12.0000 H2O + log_k 67.2391 + -delta_H -612.379 kJ/mol # Calculated enthalpy of reaction Clinochlore-14A +# Enthalpy of formation: -2116.96 kcal/mol + -analytic -2.0441e+002 -6.2268e-002 3.5388e+004 6.9239e+001 5.5225e+002 +# -Range: 0-300 + +Clinochlore-7A + Mg5Al2Si3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 3.0000 SiO2 + 5.0000 Mg++ + 12.0000 H2O + log_k 70.6124 + -delta_H -628.14 kJ/mol # Calculated enthalpy of reaction Clinochlore-7A +# Enthalpy of formation: -2113.2 kcal/mol + -analytic -2.1644e+002 -6.4187e-002 3.6548e+004 7.4123e+001 5.7037e+002 +# -Range: 0-300 + +Clinoptilolite +# Na.954K.543Ca.761Mg.124Sr.036Ba.062Mn.002Al3.45F +13.8680 H+ = + 0.0020 Mn++ + 0.0170 Fe+++ + 0.0360 Sr++ + 0.0620 Ba++ + 0.1240 Mg++ + 0.5430 K+ + 0.7610 Ca++ + 0.9540 Na+ + 3.4500 Al+++ + 14.5330 SiO2 17.8560 H2O + Na.954K.543Ca.761Mg.124Sr.036Ba.062Mn.002Al3.45Fe.017Si14.5330O46.922H21.844 +13.8680 H+ = + 0.0020 Mn++ + 0.0170 Fe+++ + 0.0360 Sr++ + 0.0620 Ba++ + 0.1240 Mg++ + 0.5430 K+ + 0.7610 Ca++ + 0.9540 Na+ + 3.4500 Al+++ + 14.5330 SiO2 + 17.8560 H2O + log_k -9.7861 + -delta_H -20.8784 kJ/mol # Calculated enthalpy of reaction Clinoptilolite +# Enthalpy of formation: -20587.8 kJ/mol + -analytic -1.3213e+000 6.4960e-002 5.0630e+004 -4.6120e+001 -7.4699e+006 +# -Range: 0-300 + +Clinoptilolite-Ca + Ca1.7335Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Ca++ + 3.4500 Al+++ + 14.5330 SiO2 + 17.8560 H2O + log_k -7.0095 + -delta_H -74.6745 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Ca +# Enthalpy of formation: -4919.84 kcal/mol + -analytic -4.4820e+001 5.3696e-002 5.4878e+004 -3.1459e+001 -7.5491e+006 +# -Range: 0-300 + +Clinoptilolite-Cs + Cs3.467Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Cs+ + 14.5330 SiO2 + 17.8560 H2O + log_k -13.0578 + -delta_H 96.9005 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Cs +# Enthalpy of formation: -4949.65 kcal/mol + -analytic -8.4746e+000 7.1997e-002 4.9675e+004 -4.1406e+001 -8.0632e+006 +# -Range: 0-300 + +Clinoptilolite-K + K3.467Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 K+ + 14.5330 SiO2 + 17.8560 H2O + log_k -10.9485 + -delta_H 67.4862 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-K +# Enthalpy of formation: -4937.77 kcal/mol + -analytic 1.1697e+001 6.9480e-002 4.7718e+004 -4.7442e+001 -7.6907e+006 +# -Range: 0-300 + +Clinoptilolite-NH4 + (NH4)3.467Al3.45Fe.017Si14.533O36:10.922H2O +10.4010 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 NH3 + 14.5330 SiO2 + 17.8560 H2O + log_k -42.4791 + -delta_H 0 # Not possible to calculate enthalpy of reaction Clinoptilolite-NH4 +# Enthalpy of formation: 0 kcal/mol + +Clinoptilolite-Na + Na3.467Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Na+ + 14.5330 SiO2 + 17.8560 H2O + log_k -7.1363 + -delta_H 2.32824 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Na +# Enthalpy of formation: -4912.36 kcal/mol + -analytic -3.4572e+001 6.8377e-002 5.1962e+004 -3.3426e+001 -7.5586e+006 +# -Range: 0-300 + +Clinoptilolite-Sr + Sr1.7335Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Sr++ + 3.4500 Al+++ + 14.5330 SiO2 + 17.8560 H2O + log_k -7.1491 + -delta_H -66.2129 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Sr +# Enthalpy of formation: -4925.1 kcal/mol + -analytic 3.2274e+001 6.7050e-002 5.0880e+004 -5.9597e+001 -7.3876e+006 +# -Range: 0-300 + +Clinoptilolite-dehy +# Sr.036Mg.124Ca.761Mn.002Ba.062K.543Na.954Al3.45F +13.8680 H+ = + 0.0020 Mn++ + 0.0170 Fe+++ + 0.0360 Sr++ + 0.0620 Ba++ + 0.1240 Mg++ + 0.5430 K+ + 0.7610 Ca++ + 0.9540 Na+ + 3.4500 Al+++ + 6.9340 H2O 14.5330 SiO2 + Sr.036Mg.124Ca.761Mn.002Ba.062K.543Na.954Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0020 Mn++ + 0.0170 Fe+++ + 0.0360 Sr++ + 0.0620 Ba++ + 0.1240 Mg++ + 0.5430 K+ + 0.7610 Ca++ + 0.9540 Na+ + 3.4500 Al+++ + 6.9340 H2O + 14.5330 SiO2 + log_k 25.8490 + -delta_H -276.592 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy +# Enthalpy of formation: -17210.2 kJ/mol + -analytic -2.0505e+002 6.0155e-002 8.2682e+004 1.5333e+001 -9.1369e+006 +# -Range: 0-300 + +Clinoptilolite-dehy-Ca + Ca1.7335Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Ca++ + 3.4500 Al+++ + 6.9340 H2O + 14.5330 SiO2 + log_k 28.6255 + -delta_H -329.278 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Ca +# Enthalpy of formation: -4112.83 kcal/mol + -analytic -1.2948e+002 6.5698e-002 8.0229e+004 -1.2812e+001 -8.8320e+006 +# -Range: 0-300 + +Clinoptilolite-dehy-Cs + Cs3.467Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Cs+ + 6.9340 H2O + 14.5330 SiO2 + log_k 22.5771 + -delta_H -164.837 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Cs +# Enthalpy of formation: -4140.93 kcal/mol + -analytic -1.2852e+002 7.9047e-002 7.7262e+004 -1.0422e+001 -9.4504e+006 +# -Range: 0-300 + +Clinoptilolite-dehy-K + K3.467Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 K+ + 6.9340 H2O + 14.5330 SiO2 + log_k 24.6865 + -delta_H -191.289 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-K +# Enthalpy of formation: -4129.76 kcal/mol + -analytic -1.2241e+002 7.4761e-002 7.6067e+004 -1.1315e+001 -9.1389e+006 +# -Range: 0-300 + +Clinoptilolite-dehy-NH4 + (NH4)3.467Al3.45Fe.017Si14.533O36 +10.4010 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 NH3 + 6.9340 H2O + 14.5330 SiO2 + log_k -6.8441 + -delta_H 0 # Not possible to calculate enthalpy of reaction Clinoptilolite-dehy-NH4 +# Enthalpy of formation: 0 kcal/mol + +Clinoptilolite-dehy-Na + Na3.467Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Na+ + 6.9340 H2O + 14.5330 SiO2 + log_k 28.4987 + -delta_H -253.798 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Na +# Enthalpy of formation: -4104.98 kcal/mol + -analytic -1.4386e+002 7.6846e-002 7.8723e+004 -5.9741e+000 -8.9159e+006 +# -Range: 0-300 + +Clinoptilolite-dehy-Sr + Sr1.7335Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Sr++ + 3.4500 Al+++ + 6.9340 H2O + 14.5330 SiO2 + log_k 28.4859 + -delta_H -321.553 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Sr +# Enthalpy of formation: -4117.92 kcal/mol + -analytic -1.8410e+002 6.0457e-002 8.3626e+004 6.4304e+000 -9.0962e+006 +# -Range: 0-300 + +Clinoptilolite-hy-Ca +# Ca1.7335Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Ca++ + 3.4500 Al+++ + 14.5330 SiO2 + 18.5790 H2O + Ca1.7335Al3.45Fe.017Si14.533O36:11.645H2O +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Ca++ + 3.4500 Al+++ + 14.5330 SiO2 + 18.5790 H2O + log_k -7.0108 + -delta_H -65.4496 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Ca +# Enthalpy of formation: -4971.44 kcal/mol + -analytic 8.6833e+001 7.1520e-002 4.6854e+004 -7.8023e+001 -7.0900e+006 +# -Range: 0-300 + +Clinoptilolite-hy-Cs +# Cs3.467Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Cs+ + 13.1640 H2O + 14.5330 SiO2 + Cs3.467Al3.45Fe.017Si14.533O36:6.23H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Cs+ + 13.1640 H2O + 14.5330 SiO2 + log_k -13.0621 + -delta_H 44.6397 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Cs +# Enthalpy of formation: -4616.61 kcal/mol + -analytic -2.3362e+001 7.4922e-002 5.4544e+004 -4.1092e+001 -8.3387e+006 +# -Range: 0-300 + +Clinoptilolite-hy-K +# K3.467Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 K+ + 14.4330 H2O + 14.5330 SiO2 + K3.467Al3.45Fe.017Si14.533O36:7.499H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 K+ + 14.4330 H2O + 14.5330 SiO2 + log_k -10.9523 + -delta_H 29.5879 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-K +# Enthalpy of formation: -4694.86 kcal/mol + -analytic 1.6223e+001 7.3919e-002 5.0447e+004 -5.2790e+001 -7.8484e+006 +# -Range: 0-300 + +Clinoptilolite-hy-Na +# Na3.467Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Na+ + 14.5330 SiO2 + 17.8110 H2O + Na3.467Al3.45Fe.017Si14.533O36:10.877H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Na+ + 14.5330 SiO2 + 17.8110 H2O + log_k -7.1384 + -delta_H 1.88166 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Na +# Enthalpy of formation: -4909.18 kcal/mol + -analytic -8.4189e+000 7.2018e-002 5.0501e+004 -4.2851e+001 -7.4714e+006 +# -Range: 0-300 + +Clinoptilolite-hy-Sr +# Sr1.7335Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Sr++ + 3.4500 Al+++ + 14.5330 SiO2 + 20.8270 H2O + Sr1.7335Al3.45Fe.017Si14.533O36:13.893H2O +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Sr++ + 3.4500 Al+++ + 14.5330 SiO2 + 20.8270 H2O + log_k -7.1498 + -delta_H -31.6858 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Sr +# Enthalpy of formation: -5136.33 kcal/mol + -analytic 1.0742e-001 5.9065e-002 4.9985e+004 -4.4648e+001 -7.3382e+006 +# -Range: 0-300 + +Clinozoisite + Ca2Al3Si3O12(OH) +13.0000 H+ = + 2.0000 Ca++ + 3.0000 Al+++ + 3.0000 SiO2 + 7.0000 H2O + log_k 43.2569 + -delta_H -457.755 kJ/mol # Calculated enthalpy of reaction Clinozoisite +# Enthalpy of formation: -1643.78 kcal/mol + -analytic -2.8690e+001 -3.7056e-002 2.2770e+004 3.7880e+000 -2.5834e+005 +# -Range: 0-300 + +Co + Co +2.0000 H+ +0.5000 O2 = + 1.0000 Co++ + 1.0000 H2O + log_k 52.5307 + -delta_H -337.929 kJ/mol # Calculated enthalpy of reaction Co +# Enthalpy of formation: 0 kJ/mol + -analytic -6.2703e+001 -2.0172e-002 1.8888e+004 2.3391e+001 2.9474e+002 +# -Range: 0-300 + +Co(NO3)2 + Co(NO3)2 = + 1.0000 Co++ + 2.0000 NO3- + log_k 8.0000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(NO3)2 +# Enthalpy of formation: 0 kcal/mol + +Co(OH)2 + Co(OH)2 +2.0000 H+ = + 1.0000 Co++ + 2.0000 H2O + log_k 12.3000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)2 +# Enthalpy of formation: 0 kcal/mol + +Co2SiO4 + Co2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Co++ + 2.0000 H2O + log_k 6.6808 + -delta_H -88.6924 kJ/mol # Calculated enthalpy of reaction Co2SiO4 +# Enthalpy of formation: -353.011 kcal/mol + -analytic -3.9978e+000 -3.7985e-003 5.1554e+003 -1.5033e+000 -1.6100e+005 +# -Range: 0-300 + +Co3(AsO4)2 + Co3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Co++ + log_k 8.5318 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co3(AsO4)2 +# Enthalpy of formation: 0 kcal/mol + +Co3(PO4)2 + Co3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Co++ + log_k -10.0123 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co3(PO4)2 +# Enthalpy of formation: 0 kcal/mol + +CoCl2 + CoCl2 = + 1.0000 Co++ + 2.0000 Cl- + log_k 8.2641 + -delta_H -79.5949 kJ/mol # Calculated enthalpy of reaction CoCl2 +# Enthalpy of formation: -312.722 kJ/mol + -analytic -2.2386e+002 -8.0936e-002 8.8631e+003 9.1528e+001 1.3837e+002 +# -Range: 0-300 + +CoCl2:2H2O + CoCl2:2H2O = + 1.0000 Co++ + 2.0000 Cl- + 2.0000 H2O + log_k 4.6661 + -delta_H -40.7876 kJ/mol # Calculated enthalpy of reaction CoCl2:2H2O +# Enthalpy of formation: -923.206 kJ/mol + -analytic -5.6411e+001 -2.3390e-002 3.0519e+003 2.3361e+001 5.1845e+001 +# -Range: 0-200 + +CoCl2:6H2O + CoCl2:6H2O = + 1.0000 Co++ + 2.0000 Cl- + 6.0000 H2O + log_k 2.6033 + -delta_H 8.32709 kJ/mol # Calculated enthalpy of reaction CoCl2:6H2O +# Enthalpy of formation: -2115.67 kJ/mol + -analytic -1.5066e+002 -2.2132e-002 5.0591e+003 5.7743e+001 8.5962e+001 +# -Range: 0-200 + +CoF2 + CoF2 = + 1.0000 Co++ + 2.0000 F- + log_k -5.1343 + -delta_H -36.6708 kJ/mol # Calculated enthalpy of reaction CoF2 +# Enthalpy of formation: -692.182 kJ/mol + -analytic -2.5667e+002 -8.4071e-002 7.6256e+003 1.0143e+002 1.1907e+002 +# -Range: 0-300 + +CoF3 + CoF3 = + 1.0000 Co+++ + 3.0000 F- + log_k -4.9558 + -delta_H -103.136 kJ/mol # Calculated enthalpy of reaction CoF3 +# Enthalpy of formation: -193.8 kcal/mol + -analytic -3.7854e+002 -1.2911e-001 1.3215e+004 1.4859e+002 2.0632e+002 +# -Range: 0-300 + +CoFe2O4 + CoFe2O4 +8.0000 H+ = + 1.0000 Co++ + 2.0000 Fe+++ + 4.0000 H2O + log_k 0.8729 + -delta_H -160.674 kJ/mol # Calculated enthalpy of reaction CoFe2O4 +# Enthalpy of formation: -272.466 kcal/mol + -analytic -3.0149e+002 -7.9159e-002 1.5683e+004 1.1046e+002 2.4480e+002 +# -Range: 0-300 + +CoHPO4 + CoHPO4 = + 1.0000 Co++ + 1.0000 HPO4-- + log_k -6.7223 + -delta_H 0 # Not possible to calculate enthalpy of reaction CoHPO4 +# Enthalpy of formation: 0 kcal/mol + +CoO + CoO +2.0000 H+ = + 1.0000 Co++ + 1.0000 H2O + log_k 13.5553 + -delta_H -106.05 kJ/mol # Calculated enthalpy of reaction CoO +# Enthalpy of formation: -237.946 kJ/mol + -analytic -8.4424e+001 -1.9457e-002 7.8616e+003 3.1281e+001 1.2270e+002 +# -Range: 0-300 + +CoS + CoS +1.0000 H+ = + 1.0000 Co++ + 1.0000 HS- + log_k -7.3740 + -delta_H 10.1755 kJ/mol # Calculated enthalpy of reaction CoS +# Enthalpy of formation: -20.182 kcal/mol + -analytic -1.5128e+002 -4.8484e-002 2.9553e+003 5.9983e+001 4.6158e+001 +# -Range: 0-300 + +CoSO4 + CoSO4 = + 1.0000 Co++ + 1.0000 SO4-- + log_k 2.8996 + -delta_H -79.7952 kJ/mol # Calculated enthalpy of reaction CoSO4 +# Enthalpy of formation: -887.964 kJ/mol + -analytic -1.9907e+002 -7.7890e-002 7.7193e+003 8.0525e+001 1.2051e+002 +# -Range: 0-300 + +CoSO4.3Co(OH)2 + CoSO4(Co(OH)2)3 +6.0000 H+ = + 1.0000 SO4-- + 4.0000 Co++ + 6.0000 H2O + log_k 33.2193 + -delta_H -379.41 kJ/mol # Calculated enthalpy of reaction CoSO4.3Co(OH)2 +# Enthalpy of formation: -2477.85 kJ/mol + -analytic -2.2830e+002 -4.0197e-002 2.5937e+004 7.5367e+001 4.4053e+002 +# -Range: 0-200 + +CoSO4:6H2O + CoSO4:6H2O = + 1.0000 Co++ + 1.0000 SO4-- + 6.0000 H2O + log_k -2.3512 + -delta_H 1.08483 kJ/mol # Calculated enthalpy of reaction CoSO4:6H2O +# Enthalpy of formation: -2683.87 kJ/mol + -analytic -2.5469e+002 -7.3092e-002 6.6767e+003 1.0172e+002 1.0426e+002 +# -Range: 0-300 + +CoSO4:H2O + CoSO4:H2O = + 1.0000 Co++ + 1.0000 H2O + 1.0000 SO4-- + log_k -1.2111 + -delta_H -52.6556 kJ/mol # Calculated enthalpy of reaction CoSO4:H2O +# Enthalpy of formation: -287.032 kcal/mol + -analytic -1.0570e+001 -1.6196e-002 1.7180e+003 3.4000e+000 2.9178e+001 +# -Range: 0-200 + +CoSeO3 + CoSeO3 = + 1.0000 Co++ + 1.0000 SeO3-- + log_k -7.0800 + -delta_H 0 # Not possible to calculate enthalpy of reaction CoSeO3 +# Enthalpy of formation: 0 kcal/mol + +CoWO4 + CoWO4 = + 1.0000 Co++ + 1.0000 WO4-- + log_k -12.2779 + -delta_H 13.6231 kJ/mol # Calculated enthalpy of reaction CoWO4 +# Enthalpy of formation: -274.256 kcal/mol + -analytic -3.7731e+001 -2.4719e-002 -1.0347e+003 1.4663e+001 -1.7558e+001 +# -Range: 0-200 + +Coesite + SiO2 = + 1.0000 SiO2 + log_k -3.1893 + -delta_H 28.6144 kJ/mol # Calculated enthalpy of reaction Coesite +# Enthalpy of formation: -216.614 kcal/mol + -analytic -9.7312e+000 9.1773e-003 4.2143e+003 -7.8065e-001 -7.4905e+005 +# -Range: 0-300 + +Coffinite + USiO4 +4.0000 H+ = + 1.0000 SiO2 + 1.0000 U++++ + 2.0000 H2O + log_k -8.0530 + -delta_H -49.2493 kJ/mol # Calculated enthalpy of reaction Coffinite +# Enthalpy of formation: -1991.33 kJ/mol + -analytic 2.3126e+002 6.2389e-002 -4.6189e+003 -9.7976e+001 -7.8517e+001 +# -Range: 0-200 + +Colemanite + Ca2B6O11:5H2O +4.0000 H+ +2.0000 H2O = + 2.0000 Ca++ + 6.0000 B(OH)3 + log_k 21.5148 + -delta_H 0 # Not possible to calculate enthalpy of reaction Colemanite +# Enthalpy of formation: 0 kcal/mol + +Cordierite_anhyd + Mg2Al4Si5O18 +16.0000 H+ = + 2.0000 Mg++ + 4.0000 Al+++ + 5.0000 SiO2 + 8.0000 H2O + log_k 52.3035 + -delta_H -626.219 kJ/mol # Calculated enthalpy of reaction Cordierite_anhyd +# Enthalpy of formation: -2183.2 kcal/mol + -analytic 2.6562e+000 -2.3801e-002 3.5192e+004 -1.9911e+001 -1.0894e+006 +# -Range: 0-300 + +Cordierite_hydr + Mg2Al4Si5O18:H2O +16.0000 H+ = + 2.0000 Mg++ + 4.0000 Al+++ + 5.0000 SiO2 + 9.0000 H2O + log_k 49.8235 + -delta_H -608.814 kJ/mol # Calculated enthalpy of reaction Cordierite_hydr +# Enthalpy of formation: -2255.68 kcal/mol + -analytic -1.2985e+002 -4.1335e-002 4.1566e+004 2.7892e+001 -1.4819e+006 +# -Range: 0-300 + +Corkite + PbFe3(PO4)(SO4)(OH)6 +7.0000 H+ = + 1.0000 HPO4-- + 1.0000 Pb++ + 1.0000 SO4-- + 3.0000 Fe+++ + 6.0000 H2O + log_k -9.7951 + -delta_H 0 # Not possible to calculate enthalpy of reaction Corkite +# Enthalpy of formation: 0 kcal/mol + +Corundum + Al2O3 +6.0000 H+ = + 2.0000 Al+++ + 3.0000 H2O + log_k 18.3121 + -delta_H -258.626 kJ/mol # Calculated enthalpy of reaction Corundum +# Enthalpy of formation: -400.5 kcal/mol + -analytic -1.4278e+002 -7.8519e-002 1.3776e+004 5.5881e+001 2.1501e+002 +# -Range: 0-300 + +Cotunnite + PbCl2 = + 1.0000 Pb++ + 2.0000 Cl- + log_k -4.8406 + -delta_H 26.1441 kJ/mol # Calculated enthalpy of reaction Cotunnite +# Enthalpy of formation: -359.383 kJ/mol + -analytic 1.9624e+001 -1.9161e-002 -3.4686e+003 -2.8806e+000 -5.8909e+001 +# -Range: 0-200 + +Covellite + CuS +1.0000 H+ = + 1.0000 Cu++ + 1.0000 HS- + log_k -22.8310 + -delta_H 101.88 kJ/mol # Calculated enthalpy of reaction Covellite +# Enthalpy of formation: -12.5 kcal/mol + -analytic -1.6068e+002 -4.9040e-002 -1.4234e+003 6.3536e+001 -2.2164e+001 +# -Range: 0-300 + +Cr + Cr +3.0000 H+ +0.7500 O2 = + 1.0000 Cr+++ + 1.5000 H2O + log_k 98.6784 + -delta_H -658.145 kJ/mol # Calculated enthalpy of reaction Cr +# Enthalpy of formation: 0 kJ/mol + -analytic -2.2488e+001 -5.5886e-003 3.4288e+004 3.1585e+000 5.3503e+002 +# -Range: 0-300 + +CrCl3 + CrCl3 = + 1.0000 Cr+++ + 3.0000 Cl- + log_k 17.9728 + -delta_H -183.227 kJ/mol # Calculated enthalpy of reaction CrCl3 +# Enthalpy of formation: -556.5 kJ/mol + -analytic -2.6348e+002 -9.5339e-002 1.4785e+004 1.0517e+002 2.3079e+002 +# -Range: 0-300 + +CrF3 + CrF3 = + 1.0000 Cr+++ + 3.0000 F- + log_k -8.5713 + -delta_H -85.5293 kJ/mol # Calculated enthalpy of reaction CrF3 +# Enthalpy of formation: -277.008 kcal/mol + -analytic -3.2175e+002 -1.0279e-001 1.1394e+004 1.2348e+002 1.7789e+002 +# -Range: 0-300 + +CrF4 + CrF4 +2.0000 H2O = + 0.5000 Cr++ + 0.5000 CrO4-- + 4.0000 F- + 4.0000 H+ + log_k -12.3132 + -delta_H -35.2125 kJ/mol # Calculated enthalpy of reaction CrF4 +# Enthalpy of formation: -298 kcal/mol + -analytic 4.3136e+001 -4.3783e-002 -3.6809e+003 -1.2153e+001 -6.2521e+001 +# -Range: 0-200 + +CrI3 + CrI3 = + 1.0000 Cr+++ + 3.0000 I- + log_k 25.6112 + -delta_H -204.179 kJ/mol # Calculated enthalpy of reaction CrI3 +# Enthalpy of formation: -49 kcal/mol + -analytic 4.9232e+000 -2.5164e-002 8.4026e+003 0.0000e+000 0.0000e+000 +# -Range: 0-200 + +CrO2 + CrO2 = + 0.5000 Cr++ + 0.5000 CrO4-- + log_k -19.1332 + -delta_H 85.9812 kJ/mol # Calculated enthalpy of reaction CrO2 +# Enthalpy of formation: -143 kcal/mol + -analytic 2.7763e+000 -7.7698e-003 -5.2893e+003 -7.4970e-001 -8.9821e+001 +# -Range: 0-200 + +CrO3 + CrO3 +1.0000 H2O = + 1.0000 CrO4-- + 2.0000 H+ + log_k -3.5221 + -delta_H -5.78647 kJ/mol # Calculated enthalpy of reaction CrO3 +# Enthalpy of formation: -140.9 kcal/mol + -analytic -1.3262e+002 -6.1411e-002 2.2083e+003 5.6564e+001 3.4497e+001 +# -Range: 0-300 + +CrS + CrS +1.0000 H+ = + 1.0000 Cr++ + 1.0000 HS- + log_k -0.6304 + -delta_H -26.15 kJ/mol # Calculated enthalpy of reaction CrS +# Enthalpy of formation: -31.9 kcal/mol + -analytic -1.1134e+002 -3.5954e-002 3.8744e+003 4.3815e+001 6.0490e+001 +# -Range: 0-300 + +Cristobalite(alpha) + SiO2 = + 1.0000 SiO2 + log_k -3.4488 + -delta_H 29.2043 kJ/mol # Calculated enthalpy of reaction Cristobalite(alpha) +# Enthalpy of formation: -216.755 kcal/mol + -analytic -1.1936e+001 9.0520e-003 4.3701e+003 -1.1464e-001 -7.6568e+005 +# -Range: 0-300 + +Cristobalite(beta) + SiO2 = + 1.0000 SiO2 + log_k -3.0053 + -delta_H 24.6856 kJ/mol # Calculated enthalpy of reaction Cristobalite(beta) +# Enthalpy of formation: -215.675 kcal/mol + -analytic -4.7414e+000 9.7567e-003 3.8831e+003 -2.5830e+000 -6.9636e+005 +# -Range: 0-300 + +Crocoite + PbCrO4 = + 1.0000 CrO4-- + 1.0000 Pb++ + log_k -12.7177 + -delta_H 48.6181 kJ/mol # Calculated enthalpy of reaction Crocoite +# Enthalpy of formation: -222 kcal/mol + -analytic 3.0842e+001 -1.4430e-002 -5.0292e+003 -9.0525e+000 -8.5414e+001 +# -Range: 0-200 + +Cronstedtite-7A + Fe2Fe2SiO5(OH)4 +10.0000 H+ = + 1.0000 SiO2 + 2.0000 Fe++ + 2.0000 Fe+++ + 7.0000 H2O + log_k 16.2603 + -delta_H -244.266 kJ/mol # Calculated enthalpy of reaction Cronstedtite-7A +# Enthalpy of formation: -697.413 kcal/mol + -analytic -2.3783e+002 -7.1026e-002 1.7752e+004 8.7147e+001 2.7707e+002 +# -Range: 0-300 + +Cs + Cs +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Cs+ + log_k 72.5987 + -delta_H -397.913 kJ/mol # Calculated enthalpy of reaction Cs +# Enthalpy of formation: 0 kJ/mol + -analytic -1.2875e+001 -7.3845e-003 2.1019e+004 6.9347e+000 3.2799e+002 +# -Range: 0-300 + +Cs2NaAmCl6 + Cs2NaAmCl6 = + 1.0000 Am+++ + 1.0000 Na+ + 2.0000 Cs+ + 6.0000 Cl- + log_k 11.7089 + -delta_H -59.7323 kJ/mol # Calculated enthalpy of reaction Cs2NaAmCl6 +# Enthalpy of formation: -2315.8 kJ/mol + -analytic 5.1683e+001 -5.0340e-002 -2.3205e+003 -6.9536e+000 -3.9422e+001 +# -Range: 0-200 + +Cs2U2O7 + Cs2U2O7 +6.0000 H+ = + 2.0000 Cs+ + 2.0000 UO2++ + 3.0000 H2O + log_k 31.0263 + -delta_H -191.57 kJ/mol # Calculated enthalpy of reaction Cs2U2O7 +# Enthalpy of formation: -3220 kJ/mol + -analytic -5.1436e+001 -7.4096e-003 1.2524e+004 1.7827e+001 -1.2899e+005 +# -Range: 0-300 + +Cs2U4O12 + Cs2U4O12 +8.0000 H+ = + 2.0000 Cs+ + 2.0000 UO2+ + 2.0000 UO2++ + 4.0000 H2O + log_k 18.9460 + -delta_H -175.862 kJ/mol # Calculated enthalpy of reaction Cs2U4O12 +# Enthalpy of formation: -5571.8 kJ/mol + -analytic -3.3411e+001 3.6196e-003 1.0508e+004 6.5823e+000 -2.3403e+004 +# -Range: 0-300 + +Cs2UO4 + Cs2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 Cs+ + 2.0000 H2O + log_k 35.8930 + -delta_H -178.731 kJ/mol # Calculated enthalpy of reaction Cs2UO4 +# Enthalpy of formation: -1928 kJ/mol + -analytic -3.0950e+001 -3.5650e-003 1.0690e+004 1.2949e+001 1.6682e+002 +# -Range: 0-300 + +Cu + Cu +2.0000 H+ +0.5000 O2 = + 1.0000 Cu++ + 1.0000 H2O + log_k 31.5118 + -delta_H -214.083 kJ/mol # Calculated enthalpy of reaction Cu +# Enthalpy of formation: 0 kcal/mol + -analytic -7.0719e+001 -2.0300e-002 1.2802e+004 2.6401e+001 1.9979e+002 +# -Range: 0-300 + +Cu3(PO4)2 + Cu3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Cu++ + log_k -12.2247 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cu3(PO4)2 +# Enthalpy of formation: 0 kcal/mol + +Cu3(PO4)2:3H2O + Cu3(PO4)2:3H2O +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Cu++ + 3.0000 H2O + log_k -10.4763 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cu3(PO4)2:3H2O +# Enthalpy of formation: 0 kcal/mol + +CuCl2 + CuCl2 = + 1.0000 Cu++ + 2.0000 Cl- + log_k 3.7308 + -delta_H -48.5965 kJ/mol # Calculated enthalpy of reaction CuCl2 +# Enthalpy of formation: -219.874 kJ/mol + -analytic -1.7803e+001 -2.4432e-002 1.5729e+003 9.5104e+000 2.6716e+001 +# -Range: 0-200 + +CuCr2O4 + CuCr2O4 +8.0000 H+ = + 1.0000 Cu++ + 2.0000 Cr+++ + 4.0000 H2O + log_k 16.2174 + -delta_H -268.768 kJ/mol # Calculated enthalpy of reaction CuCr2O4 +# Enthalpy of formation: -307.331 kcal/mol + -analytic -1.8199e+002 -1.0254e-002 2.0123e+004 5.4062e+001 3.4178e+002 +# -Range: 0-200 + +CuF + CuF = + 1.0000 Cu+ + 1.0000 F- + log_k 7.0800 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuF +# Enthalpy of formation: 0 kcal/mol + +CuF2 + CuF2 = + 1.0000 Cu++ + 2.0000 F- + log_k -0.6200 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuF2 +# Enthalpy of formation: 0 kcal/mol + +CuF2:2H2O + CuF2:2H2O = + 1.0000 Cu++ + 2.0000 F- + 2.0000 H2O + log_k -4.5500 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuF2:2H2O +# Enthalpy of formation: 0 kcal/mol + +CuSeO3 + CuSeO3 = + 1.0000 Cu++ + 1.0000 SeO3-- + log_k -7.6767 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuSeO3 +# Enthalpy of formation: 0 kcal/mol + +Cuprite + Cu2O +2.0000 H+ = + 1.0000 H2O + 2.0000 Cu+ + log_k -1.9031 + -delta_H 28.355 kJ/mol # Calculated enthalpy of reaction Cuprite +# Enthalpy of formation: -40.83 kcal/mol + -analytic -8.6240e+001 -1.1445e-002 1.7851e+003 3.3041e+001 2.7880e+001 +# -Range: 0-300 + +Daphnite-14A + Fe5AlAlSi3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 3.0000 SiO2 + 5.0000 Fe++ + 12.0000 H2O + log_k 52.2821 + -delta_H -517.561 kJ/mol # Calculated enthalpy of reaction Daphnite-14A +# Enthalpy of formation: -1693.04 kcal/mol + -analytic -1.5261e+002 -6.1392e-002 2.8283e+004 5.1788e+001 4.4137e+002 +# -Range: 0-300 + +Daphnite-7A + Fe5AlAlSi3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 3.0000 SiO2 + 5.0000 Fe++ + 12.0000 H2O + log_k 55.6554 + -delta_H -532.326 kJ/mol # Calculated enthalpy of reaction Daphnite-7A +# Enthalpy of formation: -1689.51 kcal/mol + -analytic -1.6430e+002 -6.3160e-002 2.9499e+004 5.6442e+001 4.6035e+002 +# -Range: 0-300 + +Dawsonite + NaAlCO3(OH)2 +3.0000 H+ = + 1.0000 Al+++ + 1.0000 HCO3- + 1.0000 Na+ + 2.0000 H2O + log_k 4.3464 + -delta_H -76.3549 kJ/mol # Calculated enthalpy of reaction Dawsonite +# Enthalpy of formation: -1963.96 kJ/mol + -analytic -1.1393e+002 -2.3487e-002 7.1758e+003 4.0900e+001 1.2189e+002 +# -Range: 0-200 + +Delafossite + CuFeO2 +4.0000 H+ = + 1.0000 Cu+ + 1.0000 Fe+++ + 2.0000 H2O + log_k -6.4172 + -delta_H -18.6104 kJ/mol # Calculated enthalpy of reaction Delafossite +# Enthalpy of formation: -126.904 kcal/mol + -analytic -1.5275e+002 -3.5478e-002 5.1404e+003 5.6437e+001 8.0255e+001 +# -Range: 0-300 + +Diaspore + AlHO2 +3.0000 H+ = + 1.0000 Al+++ + 2.0000 H2O + log_k 7.1603 + -delta_H -110.42 kJ/mol # Calculated enthalpy of reaction Diaspore +# Enthalpy of formation: -238.924 kcal/mol + -analytic -1.2618e+002 -3.1671e-002 8.8737e+003 4.5669e+001 1.3850e+002 +# -Range: 0-300 + +Dicalcium_silicate + Ca2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Ca++ + 2.0000 H2O + log_k 37.1725 + -delta_H -217.642 kJ/mol # Calculated enthalpy of reaction Dicalcium_silicate +# Enthalpy of formation: -2317.9 kJ/mol + -analytic -5.9723e+001 -1.3682e-002 1.5461e+004 2.1547e+001 -3.7732e+005 +# -Range: 0-300 + +Diopside + CaMgSi2O6 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 2.0000 H2O + 2.0000 SiO2 + log_k 20.9643 + -delta_H -133.775 kJ/mol # Calculated enthalpy of reaction Diopside +# Enthalpy of formation: -765.378 kcal/mol + -analytic 7.1240e+001 1.5514e-002 8.1437e+003 -3.0672e+001 -5.6880e+005 +# -Range: 0-300 + +Dioptase + CuSiO2(OH)2 +2.0000 H+ = + 1.0000 Cu++ + 1.0000 SiO2 + 2.0000 H2O + log_k 6.0773 + -delta_H -25.2205 kJ/mol # Calculated enthalpy of reaction Dioptase +# Enthalpy of formation: -1358.47 kJ/mol + -analytic 2.3913e+002 6.2669e-002 -5.4030e+003 -9.4420e+001 -9.1834e+001 +# -Range: 0-200 + +Dolomite + CaMg(CO3)2 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 2.0000 HCO3- + log_k 2.5135 + -delta_H -59.9651 kJ/mol # Calculated enthalpy of reaction Dolomite +# Enthalpy of formation: -556.631 kcal/mol + -analytic -3.1782e+002 -9.8179e-002 1.0845e+004 1.2657e+002 1.6932e+002 +# -Range: 0-300 + +Dolomite-dis + CaMg(CO3)2 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 2.0000 HCO3- + log_k 4.0579 + -delta_H -72.2117 kJ/mol # Calculated enthalpy of reaction Dolomite-dis +# Enthalpy of formation: -553.704 kcal/mol + -analytic -3.1706e+002 -9.7886e-002 1.1442e+004 1.2604e+002 1.7864e+002 +# -Range: 0-300 + +Dolomite-ord + CaMg(CO3)2 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 2.0000 HCO3- + log_k 2.5135 + -delta_H -59.9651 kJ/mol # Calculated enthalpy of reaction Dolomite-ord +# Enthalpy of formation: -556.631 kcal/mol + -analytic -3.1654e+002 -9.7902e-002 1.0805e+004 1.2607e+002 1.6870e+002 +# -Range: 0-300 + +Downeyite + SeO2 +1.0000 H2O = + 1.0000 SeO3-- + 2.0000 H+ + log_k -6.7503 + -delta_H 1.74473 kJ/mol # Calculated enthalpy of reaction Downeyite +# Enthalpy of formation: -53.8 kcal/mol + -analytic -1.2868e+002 -6.1183e-002 1.5802e+003 5.4490e+001 2.4696e+001 +# -Range: 0-300 + +Dy + Dy +3.0000 H+ +0.7500 O2 = + 1.0000 Dy+++ + 1.5000 H2O + log_k 180.8306 + -delta_H -1116.29 kJ/mol # Calculated enthalpy of reaction Dy +# Enthalpy of formation: 0 kJ/mol + -analytic -6.8317e+001 -2.8321e-002 5.8927e+004 2.4211e+001 9.1953e+002 +# -Range: 0-300 + +Dy(OH)3 + Dy(OH)3 +3.0000 H+ = + 1.0000 Dy+++ + 3.0000 H2O + log_k 15.8852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Dy(OH)3(am) + Dy(OH)3 +3.0000 H+ = + 1.0000 Dy+++ + 3.0000 H2O + log_k 17.4852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +Dy2(CO3)3 + Dy2(CO3)3 +3.0000 H+ = + 2.0000 Dy+++ + 3.0000 HCO3- + log_k -3.0136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy2(CO3)3 +# Enthalpy of formation: 0 kcal/mol + +Dy2O3 + Dy2O3 +6.0000 H+ = + 2.0000 Dy+++ + 3.0000 H2O + log_k 47.0000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy2O3 +# Enthalpy of formation: 0 kcal/mol + +DyF3:.5H2O + DyF3:.5H2O = + 0.5000 H2O + 1.0000 Dy+++ + 3.0000 F- + log_k -16.5000 + -delta_H 0 # Not possible to calculate enthalpy of reaction DyF3:.5H2O +# Enthalpy of formation: 0 kcal/mol + +DyPO4:10H2O + DyPO4:10H2O +1.0000 H+ = + 1.0000 Dy+++ + 1.0000 HPO4-- + 10.0000 H2O + log_k -11.9782 + -delta_H 0 # Not possible to calculate enthalpy of reaction DyPO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +Enstatite + MgSiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 Mg++ + 1.0000 SiO2 + log_k 11.3269 + -delta_H -82.7302 kJ/mol # Calculated enthalpy of reaction Enstatite +# Enthalpy of formation: -369.686 kcal/mol + -analytic -4.9278e+001 -3.2832e-003 9.5205e+003 1.4437e+001 -5.4324e+005 +# -Range: 0-300 + +Epidote + Ca2FeAl2Si3O12OH +13.0000 H+ = + 1.0000 Fe+++ + 2.0000 Al+++ + 2.0000 Ca++ + 3.0000 SiO2 + 7.0000 H2O + log_k 32.9296 + -delta_H -386.451 kJ/mol # Calculated enthalpy of reaction Epidote +# Enthalpy of formation: -1543.99 kcal/mol + -analytic -2.6187e+001 -3.6436e-002 1.9351e+004 3.3671e+000 -3.0319e+005 +# -Range: 0-300 + +Epidote-ord + FeCa2Al2(OH)(SiO4)3 +13.0000 H+ = + 1.0000 Fe+++ + 2.0000 Al+++ + 2.0000 Ca++ + 3.0000 SiO2 + 7.0000 H2O + log_k 32.9296 + -delta_H -386.351 kJ/mol # Calculated enthalpy of reaction Epidote-ord +# Enthalpy of formation: -1544.02 kcal/mol + -analytic 1.9379e+001 -3.2870e-002 1.5692e+004 -1.1901e+001 2.4485e+002 +# -Range: 0-300 + +Epsomite + MgSO4:7H2O = + 1.0000 Mg++ + 1.0000 SO4-- + 7.0000 H2O + log_k -1.9623 + -delta_H 0 # Not possible to calculate enthalpy of reaction Epsomite +# Enthalpy of formation: 0 kcal/mol + +Er + Er +3.0000 H+ +0.7500 O2 = + 1.0000 Er+++ + 1.5000 H2O + log_k 181.7102 + -delta_H -1124.66 kJ/mol # Calculated enthalpy of reaction Er +# Enthalpy of formation: 0 kJ/mol + -analytic -1.4459e+002 -3.8221e-002 6.4073e+004 5.1047e+001 -3.1503e+005 +# -Range: 0-300 + +Er(OH)3 + Er(OH)3 +3.0000 H+ = + 1.0000 Er+++ + 3.0000 H2O + log_k 14.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Er(OH)3(am) + Er(OH)3 +3.0000 H+ = + 1.0000 Er+++ + 3.0000 H2O + log_k 18.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +Er2(CO3)3 + Er2(CO3)3 +3.0000 H+ = + 2.0000 Er+++ + 3.0000 HCO3- + log_k -2.6136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er2(CO3)3 +# Enthalpy of formation: 0 kcal/mol + +Er2O3 + Er2O3 +6.0000 H+ = + 2.0000 Er+++ + 3.0000 H2O + log_k 42.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er2O3 +# Enthalpy of formation: 0 kcal/mol + +ErF3:.5H2O + ErF3:.5H2O = + 0.5000 H2O + 1.0000 Er+++ + 3.0000 F- + log_k -16.3000 + -delta_H 0 # Not possible to calculate enthalpy of reaction ErF3:.5H2O +# Enthalpy of formation: 0 kcal/mol + +ErPO4:10H2O + ErPO4:10H2O +1.0000 H+ = + 1.0000 Er+++ + 1.0000 HPO4-- + 10.0000 H2O + log_k -11.8782 + -delta_H 0 # Not possible to calculate enthalpy of reaction ErPO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +Erythrite + Co3(AsO4)2:8H2O +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Co++ + 8.0000 H2O + log_k 6.3930 + -delta_H 0 # Not possible to calculate enthalpy of reaction Erythrite +# Enthalpy of formation: 0 kcal/mol + +Eskolaite + Cr2O3 +2.0000 H2O +1.5000 O2 = + 2.0000 CrO4-- + 4.0000 H+ + log_k -9.1306 + -delta_H -32.6877 kJ/mol # Calculated enthalpy of reaction Eskolaite +# Enthalpy of formation: -1139.74 kJ/mol + -analytic -2.0411e+002 -1.2809e-001 2.2197e+003 9.1186e+001 3.4697e+001 +# -Range: 0-300 + +Ettringite + Ca6Al2(SO4)3(OH)12:26H2O +12.0000 H+ = + 2.0000 Al+++ + 3.0000 SO4-- + 6.0000 Ca++ + 38.0000 H2O + log_k 62.5362 + -delta_H -382.451 kJ/mol # Calculated enthalpy of reaction Ettringite +# Enthalpy of formation: -4193 kcal/mol + -analytic -1.0576e+003 -1.1585e-001 5.9580e+004 3.8585e+002 1.0121e+003 +# -Range: 0-200 + +Eu + Eu +3.0000 H+ +0.7500 O2 = + 1.0000 Eu+++ + 1.5000 H2O + log_k 165.1443 + -delta_H -1025.08 kJ/mol # Calculated enthalpy of reaction Eu +# Enthalpy of formation: 0 kJ/mol + -analytic -6.5749e+001 -2.8921e-002 5.4018e+004 2.3561e+001 8.4292e+002 +# -Range: 0-300 + +Eu(IO3)3:2H2O + Eu(IO3)3:2H2O = + 1.0000 Eu+++ + 2.0000 H2O + 3.0000 IO3- + log_k -11.6999 + -delta_H 20.8847 kJ/mol # Calculated enthalpy of reaction Eu(IO3)3:2H2O +# Enthalpy of formation: -1861.99 kJ/mol + -analytic -3.4616e+001 -1.9914e-002 -1.1966e+003 1.3276e+001 -2.0308e+001 +# -Range: 0-200 + +Eu(NO3)3:6H2O + Eu(NO3)3:6H2O = + 1.0000 Eu+++ + 3.0000 NO3- + 6.0000 H2O + log_k 1.3082 + -delta_H 15.2254 kJ/mol # Calculated enthalpy of reaction Eu(NO3)3:6H2O +# Enthalpy of formation: -2956.11 kJ/mol + -analytic -1.3205e+002 -2.0427e-002 3.9623e+003 5.0976e+001 6.7332e+001 +# -Range: 0-200 + +Eu(OH)2.5Cl.5 + Eu(OH)2.5Cl.5 +2.5000 H+ = + 0.5000 Cl- + 1.0000 Eu+++ + 2.5000 H2O + log_k 12.5546 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2.5Cl.5 +# Enthalpy of formation: 0 kcal/mol + +Eu(OH)2Cl + Eu(OH)2Cl +2.0000 H+ = + 1.0000 Cl- + 1.0000 Eu+++ + 2.0000 H2O + log_k 8.7974 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2Cl +# Enthalpy of formation: 0 kcal/mol + +Eu(OH)3 + Eu(OH)3 +3.0000 H+ = + 1.0000 Eu+++ + 3.0000 H2O + log_k 15.3482 + -delta_H -126.897 kJ/mol # Calculated enthalpy of reaction Eu(OH)3 +# Enthalpy of formation: -1336.04 kJ/mol + -analytic -6.3077e+001 -6.1421e-003 8.7323e+003 2.0595e+001 1.4831e+002 +# -Range: 0-200 + +Eu2(CO3)3:3H2O + Eu2(CO3)3:3H2O +3.0000 H+ = + 2.0000 Eu+++ + 3.0000 H2O + 3.0000 HCO3- + log_k -5.8707 + -delta_H -137.512 kJ/mol # Calculated enthalpy of reaction Eu2(CO3)3:3H2O +# Enthalpy of formation: -4000.65 kJ/mol + -analytic -1.4134e+002 -4.0240e-002 9.5883e+003 4.6591e+001 1.6287e+002 +# -Range: 0-200 + +Eu2(SO4)3:8H2O + Eu2(SO4)3:8H2O = + 2.0000 Eu+++ + 3.0000 SO4-- + 8.0000 H2O + log_k -10.8524 + -delta_H -86.59 kJ/mol # Calculated enthalpy of reaction Eu2(SO4)3:8H2O +# Enthalpy of formation: -6139.77 kJ/mol + -analytic -5.6582e+001 -3.8846e-002 3.3821e+003 1.8561e+001 5.7452e+001 +# -Range: 0-200 + +Eu2O3(cubic) + Eu2O3 +6.0000 H+ = + 2.0000 Eu+++ + 3.0000 H2O + log_k 51.7818 + -delta_H -406.403 kJ/mol # Calculated enthalpy of reaction Eu2O3(cubic) +# Enthalpy of formation: -1661.96 kJ/mol + -analytic -5.3469e+001 -1.2554e-002 2.1925e+004 1.4324e+001 3.7233e+002 +# -Range: 0-200 + +Eu2O3(monoclinic) + Eu2O3 +6.0000 H+ = + 2.0000 Eu+++ + 3.0000 H2O + log_k 53.3936 + -delta_H -417.481 kJ/mol # Calculated enthalpy of reaction Eu2O3(monoclinic) +# Enthalpy of formation: -1650.88 kJ/mol + -analytic -5.4022e+001 -1.2627e-002 2.2508e+004 1.4416e+001 3.8224e+002 +# -Range: 0-200 + +Eu3O4 + Eu3O4 +8.0000 H+ = + 1.0000 Eu++ + 2.0000 Eu+++ + 4.0000 H2O + log_k 87.0369 + -delta_H -611.249 kJ/mol # Calculated enthalpy of reaction Eu3O4 +# Enthalpy of formation: -2270.56 kJ/mol + -analytic -1.1829e+002 -2.0354e-002 3.4981e+004 3.8007e+001 5.9407e+002 +# -Range: 0-200 + +EuBr3 + EuBr3 = + 1.0000 Eu+++ + 3.0000 Br- + log_k 29.8934 + -delta_H -217.166 kJ/mol # Calculated enthalpy of reaction EuBr3 +# Enthalpy of formation: -752.769 kJ/mol + -analytic 6.0207e+001 -2.5234e-002 6.6823e+003 -1.8276e+001 1.1345e+002 +# -Range: 0-200 + +EuCl2 + EuCl2 = + 1.0000 Eu++ + 2.0000 Cl- + log_k 5.9230 + -delta_H -39.2617 kJ/mol # Calculated enthalpy of reaction EuCl2 +# Enthalpy of formation: -822.5 kJ/mol + -analytic -2.5741e+001 -2.4956e-002 1.5713e+003 1.3670e+001 2.6691e+001 +# -Range: 0-200 + +EuCl3 + EuCl3 = + 1.0000 Eu+++ + 3.0000 Cl- + log_k 19.7149 + -delta_H -170.861 kJ/mol # Calculated enthalpy of reaction EuCl3 +# Enthalpy of formation: -935.803 kJ/mol + -analytic 3.2865e+001 -3.1877e-002 4.9792e+003 -8.2294e+000 8.4542e+001 +# -Range: 0-200 + +EuCl3:6H2O + EuCl3:6H2O = + 1.0000 Eu+++ + 3.0000 Cl- + 6.0000 H2O + log_k 4.9090 + -delta_H -40.0288 kJ/mol # Calculated enthalpy of reaction EuCl3:6H2O +# Enthalpy of formation: -2781.66 kJ/mol + -analytic -1.0987e+002 -2.9851e-002 4.9991e+003 4.3198e+001 8.4930e+001 +# -Range: 0-200 + +EuF3:0.5H2O + EuF3:0.5H2O = + 0.5000 H2O + 1.0000 Eu+++ + 3.0000 F- + log_k -16.4847 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuF3:0.5H2O +# Enthalpy of formation: 0 kcal/mol + +EuO + EuO +2.0000 H+ = + 1.0000 Eu++ + 1.0000 H2O + log_k 37.4800 + -delta_H -221.196 kJ/mol # Calculated enthalpy of reaction EuO +# Enthalpy of formation: -592.245 kJ/mol + -analytic -8.9517e+001 -1.7523e-002 1.4385e+004 3.3933e+001 2.2449e+002 +# -Range: 0-300 + +EuOCl + EuOCl +2.0000 H+ = + 1.0000 Cl- + 1.0000 Eu+++ + 1.0000 H2O + log_k 15.6683 + -delta_H -147.173 kJ/mol # Calculated enthalpy of reaction EuOCl +# Enthalpy of formation: -911.17 kJ/mol + -analytic -7.7446e+000 -1.4960e-002 6.6242e+003 2.2813e+000 1.1249e+002 +# -Range: 0-200 + +EuOHCO3 + EuOHCO3 +2.0000 H+ = + 1.0000 Eu+++ + 1.0000 H2O + 1.0000 HCO3- + log_k 2.5239 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuOHCO3 +# Enthalpy of formation: 0 kcal/mol + +EuPO4:10H2O + EuPO4:10H2O +1.0000 H+ = + 1.0000 Eu+++ + 1.0000 HPO4-- + 10.0000 H2O + log_k -12.0782 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuPO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +EuS + EuS +1.0000 H+ = + 1.0000 Eu++ + 1.0000 HS- + log_k 14.9068 + -delta_H -96.4088 kJ/mol # Calculated enthalpy of reaction EuS +# Enthalpy of formation: -447.302 kJ/mol + -analytic -4.1026e+001 -1.5582e-002 5.7842e+003 1.6639e+001 9.8238e+001 +# -Range: 0-200 + +EuSO4 + EuSO4 = + 1.0000 Eu++ + 1.0000 SO4-- + log_k -8.8449 + -delta_H 33.873 kJ/mol # Calculated enthalpy of reaction EuSO4 +# Enthalpy of formation: -1471.08 kJ/mol + -analytic 3.0262e-001 -1.7571e-002 -3.0392e+003 2.5356e+000 -5.1610e+001 +# -Range: 0-200 + +Eucryptite + LiAlSiO4 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Li+ + 1.0000 SiO2 + 2.0000 H2O + log_k 13.6106 + -delta_H -141.818 kJ/mol # Calculated enthalpy of reaction Eucryptite +# Enthalpy of formation: -2124.41 kJ/mol + -analytic -2.2213e+000 -8.2498e-003 6.4838e+003 -1.4183e+000 1.0117e+002 +# -Range: 0-300 + +Fayalite + Fe2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Fe++ + 2.0000 H2O + log_k 19.1113 + -delta_H -152.256 kJ/mol # Calculated enthalpy of reaction Fayalite +# Enthalpy of formation: -354.119 kcal/mol + -analytic 1.3853e+001 -3.5501e-003 7.1496e+003 -6.8710e+000 -6.3310e+004 +# -Range: 0-300 + +Fe + Fe +2.0000 H+ +0.5000 O2 = + 1.0000 Fe++ + 1.0000 H2O + log_k 59.0325 + -delta_H -372.029 kJ/mol # Calculated enthalpy of reaction Fe +# Enthalpy of formation: 0 kcal/mol + -analytic -6.2882e+001 -2.0379e-002 2.0690e+004 2.3673e+001 3.2287e+002 +# -Range: 0-300 + +Fe(OH)2 + Fe(OH)2 +2.0000 H+ = + 1.0000 Fe++ + 2.0000 H2O + log_k 13.9045 + -delta_H -95.4089 kJ/mol # Calculated enthalpy of reaction Fe(OH)2 +# Enthalpy of formation: -568.525 kJ/mol + -analytic -8.6666e+001 -1.8440e-002 7.5723e+003 3.2597e+001 1.1818e+002 +# -Range: 0-300 + +Fe(OH)3 + Fe(OH)3 +3.0000 H+ = + 1.0000 Fe+++ + 3.0000 H2O + log_k 5.6556 + -delta_H -84.0824 kJ/mol # Calculated enthalpy of reaction Fe(OH)3 +# Enthalpy of formation: -823.013 kJ/mol + -analytic -1.3316e+002 -3.1284e-002 7.9753e+003 4.9052e+001 1.2449e+002 +# -Range: 0-300 + +Fe2(SO4)3 + Fe2(SO4)3 = + 2.0000 Fe+++ + 3.0000 SO4-- + log_k 3.2058 + -delta_H -250.806 kJ/mol # Calculated enthalpy of reaction Fe2(SO4)3 +# Enthalpy of formation: -2577.16 kJ/mol + -analytic -5.8649e+002 -2.3718e-001 2.2736e+004 2.3601e+002 3.5495e+002 +# -Range: 0-300 + +FeF2 + FeF2 = + 1.0000 Fe++ + 2.0000 F- + log_k -2.3817 + -delta_H -51.6924 kJ/mol # Calculated enthalpy of reaction FeF2 +# Enthalpy of formation: -711.26 kJ/mol + -analytic -2.5687e+002 -8.4091e-002 8.4262e+003 1.0154e+002 1.3156e+002 +# -Range: 0-300 + +FeF3 + FeF3 = + 1.0000 Fe+++ + 3.0000 F- + log_k -19.2388 + -delta_H -13.8072 kJ/mol # Calculated enthalpy of reaction FeF3 +# Enthalpy of formation: -249 kcal/mol + -analytic -1.6215e+001 -3.7450e-002 -1.8926e+003 5.8485e+000 -3.2134e+001 +# -Range: 0-200 + +FeO + FeO +2.0000 H+ = + 1.0000 Fe++ + 1.0000 H2O + log_k 13.5318 + -delta_H -106.052 kJ/mol # Calculated enthalpy of reaction FeO +# Enthalpy of formation: -65.02 kcal/mol + -analytic -7.8750e+001 -1.8268e-002 7.6852e+003 2.9074e+001 1.1994e+002 +# -Range: 0-300 + +FeSO4 + FeSO4 = + 1.0000 Fe++ + 1.0000 SO4-- + log_k 2.6565 + -delta_H -73.0878 kJ/mol # Calculated enthalpy of reaction FeSO4 +# Enthalpy of formation: -928.771 kJ/mol + -analytic -2.0794e+002 -7.6891e-002 7.8705e+003 8.3685e+001 1.2287e+002 +# -Range: 0-300 + +FeV2O4 + FeV2O4 +8.0000 H+ = + 1.0000 Fe++ + 2.0000 V+++ + 4.0000 H2O + log_k 280.5528 + -delta_H -1733.42 kJ/mol # Calculated enthalpy of reaction FeV2O4 +# Enthalpy of formation: -5.8 kcal/mol + -analytic -1.6736e+002 -1.9398e-002 9.5736e+004 5.3582e+001 1.6258e+003 +# -Range: 0-200 + +Ferrite-Ca + CaFe2O4 +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Fe+++ + 4.0000 H2O + log_k 21.5217 + -delta_H -264.738 kJ/mol # Calculated enthalpy of reaction Ferrite-Ca +# Enthalpy of formation: -363.494 kcal/mol + -analytic -2.8472e+002 -7.5870e-002 2.0688e+004 1.0485e+002 3.2289e+002 +# -Range: 0-300 + +Ferrite-Cu + CuFe2O4 +8.0000 H+ = + 1.0000 Cu++ + 2.0000 Fe+++ + 4.0000 H2O + log_k 10.3160 + -delta_H -211.647 kJ/mol # Calculated enthalpy of reaction Ferrite-Cu +# Enthalpy of formation: -965.178 kJ/mol + -analytic -3.1271e+002 -7.9976e-002 1.8818e+004 1.1466e+002 2.9374e+002 +# -Range: 0-300 + +Ferrite-Dicalcium + Ca2Fe2O5 +10.0000 H+ = + 2.0000 Ca++ + 2.0000 Fe+++ + 5.0000 H2O + log_k 56.8331 + -delta_H -475.261 kJ/mol # Calculated enthalpy of reaction Ferrite-Dicalcium +# Enthalpy of formation: -2139.26 kJ/mol + -analytic -3.6277e+002 -9.5015e-002 3.3898e+004 1.3506e+002 5.2906e+002 +# -Range: 0-300 + +Ferrite-Mg + MgFe2O4 +8.0000 H+ = + 1.0000 Mg++ + 2.0000 Fe+++ + 4.0000 H2O + log_k 21.0551 + -delta_H -280.056 kJ/mol # Calculated enthalpy of reaction Ferrite-Mg +# Enthalpy of formation: -1428.42 kJ/mol + -analytic -2.8297e+002 -7.4820e-002 2.1333e+004 1.0295e+002 3.3296e+002 +# -Range: 0-300 + +Ferrite-Zn + ZnFe2O4 +8.0000 H+ = + 1.0000 Zn++ + 2.0000 Fe+++ + 4.0000 H2O + log_k 11.7342 + -delta_H -226.609 kJ/mol # Calculated enthalpy of reaction Ferrite-Zn +# Enthalpy of formation: -1169.29 kJ/mol + -analytic -2.9809e+002 -7.7263e-002 1.9067e+004 1.0866e+002 2.9761e+002 +# -Range: 0-300 + +Ferroselite + FeSe2 +0.5000 H2O = + 0.2500 O2 + 1.0000 Fe+++ + 1.0000 H+ + 2.0000 Se-- + log_k -80.7998 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ferroselite +# Enthalpy of formation: -25 kcal/mol + -analytic -7.2971e+001 -2.4992e-002 -1.6246e+004 2.1860e+001 -2.5348e+002 +# -Range: 0-300 + +Ferrosilite + FeSiO3 +2.0000 H+ = + 1.0000 Fe++ + 1.0000 H2O + 1.0000 SiO2 + log_k 7.4471 + -delta_H -60.6011 kJ/mol # Calculated enthalpy of reaction Ferrosilite +# Enthalpy of formation: -285.658 kcal/mol + -analytic 9.0041e+000 3.7917e-003 5.1625e+003 -6.3009e+000 -3.9565e+005 +# -Range: 0-300 + +Fluorapatite + Ca5(PO4)3F +3.0000 H+ = + 1.0000 F- + 3.0000 HPO4-- + 5.0000 Ca++ + log_k -24.9940 + -delta_H -90.8915 kJ/mol # Calculated enthalpy of reaction Fluorapatite +# Enthalpy of formation: -6836.12 kJ/mol + -analytic -9.3648e+002 -3.2688e-001 2.4398e+004 3.7461e+002 3.8098e+002 +# -Range: 0-300 + +Fluorite + CaF2 = + 1.0000 Ca++ + 2.0000 F- + log_k -10.0370 + -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction Fluorite +# Enthalpy of formation: -293 kcal/mol + -analytic -2.5036e+002 -8.4183e-002 4.9525e+003 1.0054e+002 7.7353e+001 +# -Range: 0-300 + +Forsterite + Mg2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Mg++ + log_k 27.8626 + -delta_H -205.614 kJ/mol # Calculated enthalpy of reaction Forsterite +# Enthalpy of formation: -520 kcal/mol + -analytic -7.6195e+001 -1.4013e-002 1.4763e+004 2.5090e+001 -3.0379e+005 +# -Range: 0-300 + +Foshagite + Ca4Si3O9(OH)2:0.5H2O +8.0000 H+ = + 3.0000 SiO2 + 4.0000 Ca++ + 5.5000 H2O + log_k 65.9210 + -delta_H -359.839 kJ/mol # Calculated enthalpy of reaction Foshagite +# Enthalpy of formation: -1438.27 kcal/mol + -analytic 2.9983e+001 5.5272e-003 2.3427e+004 -1.3879e+001 -8.9461e+005 +# -Range: 0-300 + +Frankdicksonite + BaF2 = + 1.0000 Ba++ + 2.0000 F- + log_k -5.7600 + -delta_H 0 # Not possible to calculate enthalpy of reaction Frankdicksonite +# Enthalpy of formation: 0 kcal/mol + +Freboldite + CoSe = + 1.0000 Co++ + 1.0000 Se-- + log_k -24.3358 + -delta_H 0 # Not possible to calculate enthalpy of reaction Freboldite +# Enthalpy of formation: -15.295 kcal/mol + -analytic -1.3763e+001 -1.6924e-003 -3.6938e+003 9.3574e-001 -6.2723e+001 +# -Range: 0-200 + +Ga + Ga +3.0000 H+ +0.7500 O2 = + 1.0000 Ga+++ + 1.5000 H2O + log_k 92.3567 + -delta_H -631.368 kJ/mol # Calculated enthalpy of reaction Ga +# Enthalpy of formation: 0 kJ/mol + -analytic -1.3027e+002 -3.9539e-002 3.6027e+004 4.6280e+001 -8.5461e+004 +# -Range: 0-300 + +Galena + PbS +1.0000 H+ = + 1.0000 HS- + 1.0000 Pb++ + log_k -14.8544 + -delta_H 83.1361 kJ/mol # Calculated enthalpy of reaction Galena +# Enthalpy of formation: -23.5 kcal/mol + -analytic -1.2124e+002 -4.3477e-002 -1.6463e+003 5.0454e+001 -2.5654e+001 +# -Range: 0-300 + +Gaylussite + CaNa2(CO3)2:5H2O +2.0000 H+ = + 1.0000 Ca++ + 2.0000 HCO3- + 2.0000 Na+ + 5.0000 H2O + log_k 11.1641 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gaylussite +# Enthalpy of formation: 0 kcal/mol + +Gd + Gd +3.0000 H+ +0.7500 O2 = + 1.0000 Gd+++ + 1.5000 H2O + log_k 180.7573 + -delta_H -1106.67 kJ/mol # Calculated enthalpy of reaction Gd +# Enthalpy of formation: 0 kJ/mol + -analytic -3.3949e+002 -6.5698e-002 7.4278e+004 1.2189e+002 -9.7055e+005 +# -Range: 0-300 + +Gd(OH)3 + Gd(OH)3 +3.0000 H+ = + 1.0000 Gd+++ + 3.0000 H2O + log_k 15.5852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Gd(OH)3(am) + Gd(OH)3 +3.0000 H+ = + 1.0000 Gd+++ + 3.0000 H2O + log_k 17.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +Gd2(CO3)3 + Gd2(CO3)3 +3.0000 H+ = + 2.0000 Gd+++ + 3.0000 HCO3- + log_k -3.7136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd2(CO3)3 +# Enthalpy of formation: 0 kcal/mol + +Gd2O3 + Gd2O3 +6.0000 H+ = + 2.0000 Gd+++ + 3.0000 H2O + log_k 53.8000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd2O3 +# Enthalpy of formation: 0 kcal/mol + +GdF3:.5H2O + GdF3:.5H2O = + 0.5000 H2O + 1.0000 Gd+++ + 3.0000 F- + log_k -16.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction GdF3:.5H2O +# Enthalpy of formation: 0 kcal/mol + +GdPO4:10H2O + GdPO4:10H2O +1.0000 H+ = + 1.0000 Gd+++ + 1.0000 HPO4-- + 10.0000 H2O + log_k -11.9782 + -delta_H 0 # Not possible to calculate enthalpy of reaction GdPO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +Gehlenite + Ca2Al2SiO7 +10.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 2.0000 Ca++ + 5.0000 H2O + log_k 56.2997 + -delta_H -489.934 kJ/mol # Calculated enthalpy of reaction Gehlenite +# Enthalpy of formation: -951.225 kcal/mol + -analytic -2.1784e+002 -6.7200e-002 2.9779e+004 7.8488e+001 4.6473e+002 +# -Range: 0-300 + +Gibbsite + Al(OH)3 +3.0000 H+ = + 1.0000 Al+++ + 3.0000 H2O + log_k 7.7560 + -delta_H -102.788 kJ/mol # Calculated enthalpy of reaction Gibbsite +# Enthalpy of formation: -309.065 kcal/mol + -analytic -1.1403e+002 -3.6453e-002 7.7236e+003 4.3134e+001 1.2055e+002 +# -Range: 0-300 + +Gismondine + Ca2Al4Si4O16:9H2O +16.0000 H+ = + 2.0000 Ca++ + 4.0000 Al+++ + 4.0000 SiO2 + 17.0000 H2O + log_k 41.7170 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gismondine +# Enthalpy of formation: 0 kcal/mol + +Glauberite + Na2Ca(SO4)2 = + 1.0000 Ca++ + 2.0000 Na+ + 2.0000 SO4-- + log_k -5.4690 + -delta_H 0 # Not possible to calculate enthalpy of reaction Glauberite +# Enthalpy of formation: 0 kcal/mol + +Goethite + FeOOH +3.0000 H+ = + 1.0000 Fe+++ + 2.0000 H2O + log_k 0.5345 + -delta_H -61.9291 kJ/mol # Calculated enthalpy of reaction Goethite +# Enthalpy of formation: -559.328 kJ/mol + -analytic -6.0331e+001 -1.0847e-002 4.7759e+003 1.9429e+001 8.1122e+001 +# -Range: 0-200 + +Greenalite + Fe3Si2O5(OH)4 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 Fe++ + 5.0000 H2O + log_k 22.6701 + -delta_H -165.297 kJ/mol # Calculated enthalpy of reaction Greenalite +# Enthalpy of formation: -787.778 kcal/mol + -analytic -1.4187e+001 -3.8377e-003 1.1710e+004 1.6442e+000 -4.8290e+005 +# -Range: 0-300 + +Grossular + Ca3Al2(SiO4)3 +12.0000 H+ = + 2.0000 Al+++ + 3.0000 Ca++ + 3.0000 SiO2 + 6.0000 H2O + log_k 51.9228 + -delta_H -432.006 kJ/mol # Calculated enthalpy of reaction Grossular +# Enthalpy of formation: -1582.74 kcal/mol + -analytic 2.9389e+001 -2.2478e-002 2.0323e+004 -1.4624e+001 -2.5674e+005 +# -Range: 0-300 + +Gypsum + CaSO4:2H2O = + 1.0000 Ca++ + 1.0000 SO4-- + 2.0000 H2O + log_k -4.4823 + -delta_H -1.66746 kJ/mol # Calculated enthalpy of reaction Gypsum +# Enthalpy of formation: -2022.69 kJ/mol + -analytic -2.4417e+002 -8.3329e-002 5.5958e+003 9.9301e+001 8.7389e+001 +# -Range: 0-300 + +Gyrolite + Ca2Si3O7(OH)2:1.5H2O +4.0000 H+ = + 2.0000 Ca++ + 3.0000 SiO2 + 4.5000 H2O + log_k 22.9099 + -delta_H -82.862 kJ/mol # Calculated enthalpy of reaction Gyrolite +# Enthalpy of formation: -1176.55 kcal/mol + -analytic -2.4416e+001 1.4646e-002 1.6181e+004 2.3723e+000 -1.5369e+006 +# -Range: 0-300 + +HTcO4 + HTcO4 = + 1.0000 H+ + 1.0000 TcO4- + log_k 5.9566 + -delta_H -12.324 kJ/mol # Calculated enthalpy of reaction HTcO4 +# Enthalpy of formation: -703.945 kJ/mol + -analytic 3.0005e+001 7.6416e-003 -5.3546e+001 -1.0568e+001 -9.1953e-001 +# -Range: 0-200 + +Haiweeite + Ca(UO2)2(Si2O5)3:5H2O +6.0000 H+ = + 1.0000 Ca++ + 2.0000 UO2++ + 6.0000 SiO2 + 8.0000 H2O + log_k -7.0413 + -delta_H 0 # Not possible to calculate enthalpy of reaction Haiweeite +# Enthalpy of formation: 0 kcal/mol + +Halite + NaCl = + 1.0000 Cl- + 1.0000 Na+ + log_k 1.5855 + -delta_H 3.7405 kJ/mol # Calculated enthalpy of reaction Halite +# Enthalpy of formation: -98.26 kcal/mol + -analytic -1.0163e+002 -3.4761e-002 2.2796e+003 4.2802e+001 3.5602e+001 +# -Range: 0-300 + +Hatrurite + Ca3SiO5 +6.0000 H+ = + 1.0000 SiO2 + 3.0000 Ca++ + 3.0000 H2O + log_k 73.4056 + -delta_H -434.684 kJ/mol # Calculated enthalpy of reaction Hatrurite +# Enthalpy of formation: -700.234 kcal/mol + -analytic -4.5448e+001 -1.9998e-002 2.3800e+004 1.8494e+001 -7.3385e+004 +# -Range: 0-300 + +Hausmannite + Mn3O4 +8.0000 H+ = + 1.0000 Mn++ + 2.0000 Mn+++ + 4.0000 H2O + log_k 10.1598 + -delta_H -268.121 kJ/mol # Calculated enthalpy of reaction Hausmannite +# Enthalpy of formation: -1387.83 kJ/mol + -analytic -2.0600e+002 -2.2214e-002 2.0160e+004 6.2700e+001 3.1464e+002 +# -Range: 0-300 + +Heazlewoodite + Ni3S2 +4.0000 H+ +0.5000 O2 = + 1.0000 H2O + 2.0000 HS- + 3.0000 Ni++ + log_k 28.2477 + -delta_H -270.897 kJ/mol # Calculated enthalpy of reaction Heazlewoodite +# Enthalpy of formation: -203.012 kJ/mol + -analytic -3.5439e+002 -1.1740e-001 2.1811e+004 1.3919e+002 3.4044e+002 +# -Range: 0-300 + +Hedenbergite + CaFe(SiO3)2 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 Fe++ + 2.0000 H2O + 2.0000 SiO2 + log_k 19.6060 + -delta_H -124.507 kJ/mol # Calculated enthalpy of reaction Hedenbergite +# Enthalpy of formation: -678.276 kcal/mol + -analytic -1.9473e+001 1.5288e-003 1.2910e+004 2.1729e+000 -9.0058e+005 +# -Range: 0-300 + +Hematite + Fe2O3 +6.0000 H+ = + 2.0000 Fe+++ + 3.0000 H2O + log_k 0.1086 + -delta_H -129.415 kJ/mol # Calculated enthalpy of reaction Hematite +# Enthalpy of formation: -197.72 kcal/mol + -analytic -2.2015e+002 -6.0290e-002 1.1812e+004 8.0253e+001 1.8438e+002 +# -Range: 0-300 + +Hercynite + FeAl2O4 +8.0000 H+ = + 1.0000 Fe++ + 2.0000 Al+++ + 4.0000 H2O + log_k 28.8484 + -delta_H -345.961 kJ/mol # Calculated enthalpy of reaction Hercynite +# Enthalpy of formation: -1966.45 kJ/mol + -analytic -3.1848e+002 -7.9501e-002 2.5892e+004 1.1483e+002 4.0412e+002 +# -Range: 0-300 + +Herzenbergite + SnS +1.0000 H+ = + 1.0000 HS- + 1.0000 Sn++ + log_k -15.5786 + -delta_H 81.6466 kJ/mol # Calculated enthalpy of reaction Herzenbergite +# Enthalpy of formation: -25.464 kcal/mol + -analytic -1.3576e+002 -4.6594e-002 -1.1572e+003 5.5740e+001 -1.8018e+001 +# -Range: 0-300 + +Heulandite +# Ba.065Sr.175Ca.585K.132Na.383Al2.165Si6.835O18:6 +8.6600 H+ = + 0.0650 Ba++ + 0.1320 K+ + 0.1750 Sr++ + 0.3830 Na+ + 0.5850 Ca++ + 2.1650 Al+++ + 6.8350 SiO2 + 10.3300 H2O + Ba.065Sr.175Ca.585K.132Na.383Al2.165Si6.835O18:6H2O +8.6600 H+ = + 0.0650 Ba++ + 0.1320 K+ + 0.1750 Sr++ + 0.3830 Na+ + 0.5850 Ca++ + 2.1650 Al+++ + 6.8350 SiO2 + 10.3300 H2O + log_k 3.3506 + -delta_H -97.2942 kJ/mol # Calculated enthalpy of reaction Heulandite +# Enthalpy of formation: -10594.5 kJ/mol + -analytic -1.8364e+001 2.7879e-002 2.8426e+004 -1.7427e+001 -3.4723e+006 +# -Range: 0-300 + +Hexahydrite + MgSO4:6H2O = + 1.0000 Mg++ + 1.0000 SO4-- + 6.0000 H2O + log_k -1.7268 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hexahydrite +# Enthalpy of formation: 0 kcal/mol + +Hf(s) + Hf +4.0000 H+ +1.0000 O2 = + 1.0000 Hf++++ + 2.0000 H2O + log_k 189.9795 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf +# Enthalpy of formation: -0.003 kJ/mol + +HfB2 + HfB2 +2.7500 H+ +2.2500 H2O = + 0.7500 B(OH)3 + 1.0000 Hf++++ + 1.2500 BH4- + log_k 55.7691 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfB2 +# Enthalpy of formation: -78.6 kJ/mol + +HfBr2 + HfBr2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hf++++ + 2.0000 Br- + log_k 114.9446 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfBr2 +# Enthalpy of formation: -98 kJ/mol + +HfBr4 + HfBr4 = + 1.0000 Hf++++ + 4.0000 Br- + log_k 48.2921 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfBr4 +# Enthalpy of formation: -183.1 kJ/mol + +HfC + HfC +3.0000 H+ +2.0000 O2 = + 1.0000 H2O + 1.0000 HCO3- + 1.0000 Hf++++ + log_k 215.0827 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfC +# Enthalpy of formation: -54 kJ/mol + +HfCl2 + HfCl2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hf++++ + 2.0000 Cl- + log_k 109.1624 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfCl2 +# Enthalpy of formation: -125 kJ/mol + +HfCl4 + HfCl4 = + 1.0000 Hf++++ + 4.0000 Cl- + log_k 38.0919 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfCl4 +# Enthalpy of formation: -236.7 kJ/mol + +HfF2 + HfF2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hf++++ + 2.0000 F- + log_k 81.7647 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfF2 +# Enthalpy of formation: -235 kJ/mol + +HfF4 + HfF4 = + 1.0000 Hf++++ + 4.0000 F- + log_k -19.2307 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfF4 +# Enthalpy of formation: -461.4 kJ/mol + +HfI2 + HfI2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hf++++ + 2.0000 I- + log_k 117.4971 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfI2 +# Enthalpy of formation: -65 kJ/mol + +HfI4 + HfI4 = + 1.0000 Hf++++ + 4.0000 I- + log_k 54.1798 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfI4 +# Enthalpy of formation: -118 kJ/mol + +HfN + HfN +4.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Hf++++ + 1.0000 NH3 + log_k 69.4646 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfN +# Enthalpy of formation: -89.3 kJ/mol + +HfO2 + HfO2 +4.0000 H+ = + 1.0000 Hf++++ + 2.0000 H2O + log_k 1.1829 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfO2 +# Enthalpy of formation: -267.1 kJ/mol + +HfS2 + HfS2 +2.0000 H+ = + 1.0000 Hf++++ + 2.0000 HS- + log_k -1.5845 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfS2 +# Enthalpy of formation: -140 kJ/mol + +HfS3 + HfS3 +1.0000 H+ = + 1.0000 HS- + 1.0000 Hf++++ + 1.0000 S2-- + log_k -18.9936 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfS3 +# Enthalpy of formation: -149 kJ/mol + +Hg2SO4 + Hg2SO4 = + 1.0000 Hg2++ + 1.0000 SO4-- + log_k -6.1170 + -delta_H 0.30448 kJ/mol # Calculated enthalpy of reaction Hg2SO4 +# Enthalpy of formation: -743.09 kJ/mol + -analytic -3.2342e+001 -1.9881e-002 1.6292e+003 1.0781e+001 2.7677e+001 +# -Range: 0-200 + +Hg2SeO3 + Hg2SeO3 = + 1.0000 Hg2++ + 1.0000 SeO3-- + log_k -14.2132 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hg2SeO3 +# Enthalpy of formation: 0 kcal/mol + +HgSeO3 + HgSeO3 = + 1.0000 Hg++ + 1.0000 SeO3-- + log_k -13.8957 + -delta_H 0 # Not possible to calculate enthalpy of reaction HgSeO3 +# Enthalpy of formation: 0 kcal/mol + +Hillebrandite + Ca2SiO3(OH)2:0.17H2O +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Ca++ + 3.1700 H2O + log_k 36.8190 + -delta_H -203.074 kJ/mol # Calculated enthalpy of reaction Hillebrandite +# Enthalpy of formation: -637.404 kcal/mol + -analytic -1.9360e+001 -7.5176e-003 1.1947e+004 8.0558e+000 -1.4504e+005 +# -Range: 0-300 + +Hinsdalite + Al3PPbSO8(OH)6 +7.0000 H+ = + 1.0000 HPO4-- + 1.0000 Pb++ + 1.0000 SO4-- + 3.0000 Al+++ + 6.0000 H2O + log_k 9.8218 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hinsdalite +# Enthalpy of formation: 0 kcal/mol + +Ho + Ho +3.0000 H+ +0.7500 O2 = + 1.0000 Ho+++ + 1.5000 H2O + log_k 182.8097 + -delta_H -1126.75 kJ/mol # Calculated enthalpy of reaction Ho +# Enthalpy of formation: 0 kJ/mol + -analytic -6.5903e+001 -2.8190e-002 5.9370e+004 2.3421e+001 9.2643e+002 +# -Range: 0-300 + +Ho(OH)3 + Ho(OH)3 +3.0000 H+ = + 1.0000 Ho+++ + 3.0000 H2O + log_k 15.3852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Ho(OH)3(am) + Ho(OH)3 +3.0000 H+ = + 1.0000 Ho+++ + 3.0000 H2O + log_k 17.7852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +Ho2(CO3)3 + Ho2(CO3)3 +3.0000 H+ = + 2.0000 Ho+++ + 3.0000 HCO3- + log_k -2.8136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho2(CO3)3 +# Enthalpy of formation: 0 kcal/mol + +Ho2O3 + Ho2O3 +6.0000 H+ = + 2.0000 Ho+++ + 3.0000 H2O + log_k 47.3000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho2O3 +# Enthalpy of formation: 0 kcal/mol + +HoF3:.5H2O + HoF3:.5H2O = + 0.5000 H2O + 1.0000 Ho+++ + 3.0000 F- + log_k -16.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction HoF3:.5H2O +# Enthalpy of formation: 0 kcal/mol + +HoPO4:10H2O + HoPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Ho+++ + 10.0000 H2O + log_k -11.8782 + -delta_H 0 # Not possible to calculate enthalpy of reaction HoPO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +Hopeite + Zn3(PO4)2:4H2O +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Zn++ + 4.0000 H2O + log_k -10.6563 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hopeite +# Enthalpy of formation: 0 kcal/mol + +Huntite + CaMg3(CO3)4 +4.0000 H+ = + 1.0000 Ca++ + 3.0000 Mg++ + 4.0000 HCO3- + log_k 10.3010 + -delta_H -171.096 kJ/mol # Calculated enthalpy of reaction Huntite +# Enthalpy of formation: -1082.6 kcal/mol + -analytic -6.5000e+002 -1.9671e-001 2.4815e+004 2.5688e+002 3.8740e+002 +# -Range: 0-300 + +Hydroboracite + MgCaB6O11:6H2O +4.0000 H+ +1.0000 H2O = + 1.0000 Ca++ + 1.0000 Mg++ + 6.0000 B(OH)3 + log_k 20.3631 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hydroboracite +# Enthalpy of formation: 0 kcal/mol + +Hydrocerussite + Pb3(CO3)2(OH)2 +4.0000 H+ = + 2.0000 H2O + 2.0000 HCO3- + 3.0000 Pb++ + log_k 1.8477 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hydrocerussite +# Enthalpy of formation: 0 kcal/mol + +Hydromagnesite + Mg5(CO3)4(OH)2:4H2O +6.0000 H+ = + 4.0000 HCO3- + 5.0000 Mg++ + 6.0000 H2O + log_k 30.8539 + -delta_H -289.696 kJ/mol # Calculated enthalpy of reaction Hydromagnesite +# Enthalpy of formation: -1557.09 kcal/mol + -analytic -7.9288e+002 -2.1448e-001 3.6749e+004 3.0888e+002 5.7367e+002 +# -Range: 0-300 + +Hydrophilite + CaCl2 = + 1.0000 Ca++ + 2.0000 Cl- + log_k 11.7916 + -delta_H -81.4545 kJ/mol # Calculated enthalpy of reaction Hydrophilite +# Enthalpy of formation: -795.788 kJ/mol + -analytic -2.2278e+002 -8.1414e-002 9.0298e+003 9.2349e+001 1.4097e+002 +# -Range: 0-300 + +Hydroxylapatite + Ca5(OH)(PO4)3 +4.0000 H+ = + 1.0000 H2O + 3.0000 HPO4-- + 5.0000 Ca++ + log_k -3.0746 + -delta_H -191.982 kJ/mol # Calculated enthalpy of reaction Hydroxylapatite +# Enthalpy of formation: -6685.52 kJ/mol + -analytic -8.5221e+002 -2.9430e-001 2.8125e+004 3.4044e+002 4.3911e+002 +# -Range: 0-300 + +Hydrozincite + Zn5(OH)6(CO3)2 +8.0000 H+ = + 2.0000 HCO3- + 5.0000 Zn++ + 6.0000 H2O + log_k 30.3076 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hydrozincite +# Enthalpy of formation: 0 kcal/mol + +I2 + I2 +1.0000 H2O = + 0.5000 O2 + 2.0000 H+ + 2.0000 I- + log_k -24.8084 + -delta_H 165.967 kJ/mol # Calculated enthalpy of reaction I2 +# Enthalpy of formation: 0 kJ/mol + -analytic -1.7135e+002 -6.2810e-002 -4.7225e+003 7.3181e+001 -7.3640e+001 +# -Range: 0-300 + +Ice + H2O = + 1.0000 H2O + log_k 0.1387 + -delta_H 6.74879 kJ/mol # Calculated enthalpy of reaction Ice +# Enthalpy of formation: -69.93 kcal/mol + -analytic -2.3260e+001 4.7948e-004 7.7351e+002 8.3499e+000 1.3143e+001 +# -Range: 0-200 + +Illite + K0.6Mg0.25Al1.8Al0.5Si3.5O10(OH)2 +8.0000 H+ = + 0.2500 Mg++ + 0.6000 K+ + 2.3000 Al+++ + 3.5000 SiO2 + 5.0000 H2O + log_k 9.0260 + -delta_H -171.764 kJ/mol # Calculated enthalpy of reaction Illite +# Enthalpy of formation: -1394.71 kcal/mol + -analytic 2.6069e+001 -1.2553e-003 1.3670e+004 -2.0232e+001 -1.1204e+006 +# -Range: 0-300 + +Ilmenite + FeTiO3 +2.0000 H+ +1.0000 H2O = + 1.0000 Fe++ + 1.0000 Ti(OH)4 + log_k 0.9046 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ilmenite +# Enthalpy of formation: -1236.65 kJ/mol + +In + In +3.0000 H+ +0.7500 O2 = + 1.0000 In+++ + 1.5000 H2O + log_k 81.6548 + -delta_H -524.257 kJ/mol # Calculated enthalpy of reaction In +# Enthalpy of formation: 0 kJ/mol + -analytic -1.1773e+002 -3.7657e-002 3.1802e+004 4.2438e+001 -9.6348e+004 +# -Range: 0-300 + +Jadeite + NaAl(SiO3)2 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 2.0000 H2O + 2.0000 SiO2 + log_k 8.3888 + -delta_H -84.4415 kJ/mol # Calculated enthalpy of reaction Jadeite +# Enthalpy of formation: -722.116 kcal/mol + -analytic 1.5934e+000 5.0757e-003 9.5602e+003 -7.0164e+000 -8.4454e+005 +# -Range: 0-300 + +Jarosite + KFe3(SO4)2(OH)6 +6.0000 H+ = + 1.0000 K+ + 2.0000 SO4-- + 3.0000 Fe+++ + 6.0000 H2O + log_k -9.3706 + -delta_H -191.343 kJ/mol # Calculated enthalpy of reaction Jarosite +# Enthalpy of formation: -894.79 kcal/mol + -analytic -1.0813e+002 -5.0381e-002 9.6893e+003 3.2832e+001 1.6457e+002 +# -Range: 0-200 + +Jarosite-Na + NaFe3(SO4)2(OH)6 +6.0000 H+ = + 1.0000 Na+ + 2.0000 SO4-- + 3.0000 Fe+++ + 6.0000 H2O + log_k -5.4482 + -delta_H 0 # Not possible to calculate enthalpy of reaction Jarosite-Na +# Enthalpy of formation: 0 kcal/mol + +K + K +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 K+ + log_k 70.9861 + -delta_H -392.055 kJ/mol # Calculated enthalpy of reaction K +# Enthalpy of formation: 0 kJ/mol + -analytic -3.1102e+001 -1.0003e-002 2.1338e+004 1.3534e+001 3.3296e+002 +# -Range: 0-300 + +K-Feldspar + KAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 H2O + 3.0000 SiO2 + log_k -0.2753 + -delta_H -23.9408 kJ/mol # Calculated enthalpy of reaction K-Feldspar +# Enthalpy of formation: -949.188 kcal/mol + -analytic -1.0684e+000 1.3111e-002 1.1671e+004 -9.9129e+000 -1.5855e+006 +# -Range: 0-300 + +K2CO3:1.5H2O + K2CO3:1.5H2O +1.0000 H+ = + 1.0000 HCO3- + 1.5000 H2O + 2.0000 K+ + log_k 13.3785 + -delta_H 0 # Not possible to calculate enthalpy of reaction K2CO3:1.5H2O +# Enthalpy of formation: 0 kcal/mol + +K2O + K2O +2.0000 H+ = + 1.0000 H2O + 2.0000 K+ + log_k 84.0405 + -delta_H -427.006 kJ/mol # Calculated enthalpy of reaction K2O +# Enthalpy of formation: -86.8 kcal/mol + -analytic -1.8283e+001 -5.2255e-003 2.3184e+004 1.0553e+001 3.6177e+002 +# -Range: 0-300 + +K2Se + K2Se = + 1.0000 Se-- + 2.0000 K+ + log_k 11.2925 + -delta_H 0 # Not possible to calculate enthalpy of reaction K2Se +# Enthalpy of formation: -92 kcal/mol + -analytic 1.8182e+001 7.8828e-003 2.6345e+003 -7.3075e+000 4.4732e+001 +# -Range: 0-200 + +K2UO4 + K2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 K+ + log_k 33.8714 + -delta_H -174.316 kJ/mol # Calculated enthalpy of reaction K2UO4 +# Enthalpy of formation: -1920.7 kJ/mol + -analytic -7.0905e+001 -2.5680e-003 1.2244e+004 2.6056e+001 2.0794e+002 +# -Range: 0-200 + +K3H(SO4)2 + K3H(SO4)2 = + 1.0000 H+ + 2.0000 SO4-- + 3.0000 K+ + log_k -3.6233 + -delta_H 0 # Not possible to calculate enthalpy of reaction K3H(SO4)2 +# Enthalpy of formation: 0 kcal/mol + +K8H4(CO3)6:3H2O + K8H4(CO3)6:3H2O +2.0000 H+ = + 3.0000 H2O + 6.0000 HCO3- + 8.0000 K+ + log_k 27.7099 + -delta_H 0 # Not possible to calculate enthalpy of reaction K8H4(CO3)6:3H2O +# Enthalpy of formation: 0 kcal/mol + +KAl(SO4)2 + KAl(SO4)2 = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 SO4-- + log_k 3.3647 + -delta_H -139.485 kJ/mol # Calculated enthalpy of reaction KAl(SO4)2 +# Enthalpy of formation: -2470.29 kJ/mol + -analytic -4.2785e+002 -1.6303e-001 1.5311e+004 1.7312e+002 2.3904e+002 +# -Range: 0-300 + +KBr + KBr = + 1.0000 Br- + 1.0000 K+ + log_k 1.0691 + -delta_H 20.125 kJ/mol # Calculated enthalpy of reaction KBr +# Enthalpy of formation: -393.798 kJ/mol + -analytic -7.3164e+001 -3.1240e-002 4.8140e+002 3.3104e+001 7.5336e+000 +# -Range: 0-300 + +KMgCl3 + KMgCl3 = + 1.0000 K+ + 1.0000 Mg++ + 3.0000 Cl- + log_k 21.2618 + -delta_H -132.768 kJ/mol # Calculated enthalpy of reaction KMgCl3 +# Enthalpy of formation: -1086.6 kJ/mol + -analytic -8.4641e+000 -3.2688e-002 5.1496e+003 8.9652e+000 8.7450e+001 +# -Range: 0-200 + +KMgCl3:2H2O + KMgCl3:2H2O = + 1.0000 K+ + 1.0000 Mg++ + 2.0000 H2O + 3.0000 Cl- + log_k 13.9755 + -delta_H -76.8449 kJ/mol # Calculated enthalpy of reaction KMgCl3:2H2O +# Enthalpy of formation: -1714.2 kJ/mol + -analytic -5.9982e+001 -3.3015e-002 4.6174e+003 2.7602e+001 7.8431e+001 +# -Range: 0-200 + +KNaCO3:6H2O + KNaCO3:6H2O +1.0000 H+ = + 1.0000 HCO3- + 1.0000 K+ + 1.0000 Na+ + 6.0000 H2O + log_k 10.2593 + -delta_H 0 # Not possible to calculate enthalpy of reaction KNaCO3:6H2O +# Enthalpy of formation: 0 kcal/mol + +KTcO4 + KTcO4 = + 1.0000 K+ + 1.0000 TcO4- + log_k -2.2667 + -delta_H 53.2363 kJ/mol # Calculated enthalpy of reaction KTcO4 +# Enthalpy of formation: -1021.67 kJ/mol + -analytic 1.8058e+001 -8.4795e-004 -2.3985e+003 -4.1788e+000 -1.5029e+005 +# -Range: 0-300 + +KUO2AsO4 + KUO2AsO4 +2.0000 H+ = + 1.0000 H2AsO4- + 1.0000 K+ + 1.0000 UO2++ + log_k -4.1741 + -delta_H 0 # Not possible to calculate enthalpy of reaction KUO2AsO4 +# Enthalpy of formation: 0 kcal/mol + +Kainite + KMgClSO4:3H2O = + 1.0000 Cl- + 1.0000 K+ + 1.0000 Mg++ + 1.0000 SO4-- + 3.0000 H2O + log_k -0.3114 + -delta_H 0 # Not possible to calculate enthalpy of reaction Kainite +# Enthalpy of formation: 0 kcal/mol + +Kalicinite + KHCO3 = + 1.0000 HCO3- + 1.0000 K+ + log_k 0.2837 + -delta_H 0 # Not possible to calculate enthalpy of reaction Kalicinite +# Enthalpy of formation: 0 kcal/mol + +Kalsilite + KAlSiO4 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 1.0000 SiO2 + 2.0000 H2O + log_k 10.8987 + -delta_H -108.583 kJ/mol # Calculated enthalpy of reaction Kalsilite +# Enthalpy of formation: -509.408 kcal/mol + -analytic -6.7595e+000 -7.4301e-003 6.5380e+003 1.8999e-001 -2.2880e+005 +# -Range: 0-300 + +Kaolinite + Al2Si2O5(OH)4 +6.0000 H+ = + 2.0000 Al+++ + 2.0000 SiO2 + 5.0000 H2O + log_k 6.8101 + -delta_H -151.779 kJ/mol # Calculated enthalpy of reaction Kaolinite +# Enthalpy of formation: -982.221 kcal/mol + -analytic 1.6835e+001 -7.8939e-003 7.7636e+003 -1.2190e+001 -3.2354e+005 +# -Range: 0-300 + +Karelianite + V2O3 +6.0000 H+ = + 2.0000 V+++ + 3.0000 H2O + log_k 9.9424 + -delta_H -160.615 kJ/mol # Calculated enthalpy of reaction Karelianite +# Enthalpy of formation: -1218.98 kJ/mol + -analytic -2.7961e+001 -7.1499e-003 6.7749e+003 5.8146e+000 2.6039e+005 +# -Range: 0-300 + +Kasolite + Pb(UO2)SiO4:H2O +4.0000 H+ = + 1.0000 Pb++ + 1.0000 SiO2 + 1.0000 UO2++ + 3.0000 H2O + log_k 7.2524 + -delta_H 0 # Not possible to calculate enthalpy of reaction Kasolite +# Enthalpy of formation: 0 kcal/mol + +Katoite + Ca3Al2H12O12 +12.0000 H+ = + 2.0000 Al+++ + 3.0000 Ca++ + 12.0000 H2O + log_k 78.9437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Katoite +# Enthalpy of formation: 0 kcal/mol + +Kieserite + MgSO4:H2O = + 1.0000 H2O + 1.0000 Mg++ + 1.0000 SO4-- + log_k -0.2670 + -delta_H 0 # Not possible to calculate enthalpy of reaction Kieserite +# Enthalpy of formation: 0 kcal/mol + +Klockmannite + CuSe = + 1.0000 Cu++ + 1.0000 Se-- + log_k -41.6172 + -delta_H 0 # Not possible to calculate enthalpy of reaction Klockmannite +# Enthalpy of formation: -10 kcal/mol + -analytic -2.3021e+001 -2.1458e-003 -8.5938e+003 4.3900e+000 -1.4593e+002 +# -Range: 0-200 + +Krutaite + CuSe2 +1.0000 H2O = + 0.5000 O2 + 1.0000 Cu++ + 2.0000 H+ + 2.0000 Se-- + log_k -107.6901 + -delta_H 0 # Not possible to calculate enthalpy of reaction Krutaite +# Enthalpy of formation: -11.5 kcal/mol + -analytic -3.7735e+001 -8.7548e-004 -2.6352e+004 7.5528e+000 -4.4749e+002 +# -Range: 0-200 + +Kyanite + Al2SiO5 +6.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 3.0000 H2O + log_k 15.6740 + -delta_H -230.919 kJ/mol # Calculated enthalpy of reaction Kyanite +# Enthalpy of formation: -616.897 kcal/mol + -analytic -7.3335e+001 -3.2853e-002 1.2166e+004 2.3412e+001 1.8986e+002 +# -Range: 0-300 + +La + La +3.0000 H+ +0.7500 O2 = + 1.0000 La+++ + 1.5000 H2O + log_k 184.7155 + -delta_H -1129.26 kJ/mol # Calculated enthalpy of reaction La +# Enthalpy of formation: 0 kJ/mol + -analytic -5.9508e+001 -2.7578e-002 5.9327e+004 2.1589e+001 9.2577e+002 +# -Range: 0-300 + +La(OH)3 + La(OH)3 +3.0000 H+ = + 1.0000 La+++ + 3.0000 H2O + log_k 20.2852 + -delta_H 0 # Not possible to calculate enthalpy of reaction La(OH)3 +# Enthalpy of formation: 0 kcal/mol + +La(OH)3(am) + La(OH)3 +3.0000 H+ = + 1.0000 La+++ + 3.0000 H2O + log_k 23.4852 + -delta_H 0 # Not possible to calculate enthalpy of reaction La(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +La2(CO3)3:8H2O + La2(CO3)3:8H2O +3.0000 H+ = + 2.0000 La+++ + 3.0000 HCO3- + 8.0000 H2O + log_k -4.3136 + -delta_H 0 # Not possible to calculate enthalpy of reaction La2(CO3)3:8H2O +# Enthalpy of formation: 0 kcal/mol + +La2O3 + La2O3 +6.0000 H+ = + 2.0000 La+++ + 3.0000 H2O + log_k 66.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction La2O3 +# Enthalpy of formation: 0 kcal/mol + +LaCl3 + LaCl3 = + 1.0000 La+++ + 3.0000 Cl- + log_k 14.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction LaCl3 +# Enthalpy of formation: 0 kcal/mol + +LaCl3:7H2O + LaCl3:7H2O = + 1.0000 La+++ + 3.0000 Cl- + 7.0000 H2O + log_k 4.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction LaCl3:7H2O +# Enthalpy of formation: 0 kcal/mol + +LaF3:.5H2O + LaF3:.5H2O = + 0.5000 H2O + 1.0000 La+++ + 3.0000 F- + log_k -18.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction LaF3:.5H2O +# Enthalpy of formation: 0 kcal/mol + +LaPO4:10H2O + LaPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 La+++ + 10.0000 H2O + log_k -12.3782 + -delta_H 0 # Not possible to calculate enthalpy of reaction LaPO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +Lammerite + Cu3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Cu++ + log_k 1.5542 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lammerite +# Enthalpy of formation: 0 kcal/mol +Lanarkite + Pb2(SO4)O +2.0000 H+ = + 1.0000 H2O + 1.0000 SO4-- + 2.0000 Pb++ + log_k -0.4692 + -delta_H -22.014 kJ/mol # Calculated enthalpy of reaction Lanarkite +# Enthalpy of formation: -1171.59 kJ/mol + -analytic 5.1071e+000 -1.6655e-002 0.0000e+000 0.0000e+000 -5.5660e+004 +# -Range: 0-200 + +Lansfordite + MgCO3:5H2O +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Mg++ + 5.0000 H2O + log_k 4.8409 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lansfordite +# Enthalpy of formation: 0 kcal/mol + +Larnite + Ca2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Ca++ + 2.0000 H2O + log_k 38.4665 + -delta_H -227.061 kJ/mol # Calculated enthalpy of reaction Larnite +# Enthalpy of formation: -551.74 kcal/mol + -analytic 2.6900e+001 -2.1833e-003 1.0900e+004 -9.5257e+000 -7.2537e+004 +# -Range: 0-300 + +Laumontite + CaAl2Si4O12:4H2O +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 4.0000 SiO2 + 8.0000 H2O + log_k 13.6667 + -delta_H -184.657 kJ/mol # Calculated enthalpy of reaction Laumontite +# Enthalpy of formation: -1728.66 kcal/mol + -analytic 1.1904e+000 8.1763e-003 1.9005e+004 -1.4561e+001 -1.5851e+006 +# -Range: 0-300 + +Laurite + RuS2 = + 1.0000 Ru++ + 1.0000 S2-- + log_k -73.2649 + -delta_H 0 # Not possible to calculate enthalpy of reaction Laurite +# Enthalpy of formation: -199.586 kJ/mol + +Lawrencite + FeCl2 = + 1.0000 Fe++ + 2.0000 Cl- + log_k 9.0945 + -delta_H -84.7665 kJ/mol # Calculated enthalpy of reaction Lawrencite +# Enthalpy of formation: -341.65 kJ/mol + -analytic -2.2798e+002 -8.1819e-002 9.2620e+003 9.3097e+001 1.4459e+002 +# -Range: 0-300 + +Lawsonite + CaAl2Si2O7(OH)2:H2O +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 2.0000 SiO2 + 6.0000 H2O + log_k 22.2132 + -delta_H -244.806 kJ/mol # Calculated enthalpy of reaction Lawsonite +# Enthalpy of formation: -1158.1 kcal/mol + -analytic 1.3995e+001 -1.7668e-002 1.0119e+004 -8.3100e+000 1.5789e+002 +# -Range: 0-300 + +Leonite + K2Mg(SO4)2:4H2O = + 1.0000 Mg++ + 2.0000 K+ + 2.0000 SO4-- + 4.0000 H2O + log_k -4.1123 + -delta_H 0 # Not possible to calculate enthalpy of reaction Leonite +# Enthalpy of formation: 0 kcal/mol + +Li + Li +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Li+ + log_k 72.7622 + -delta_H -418.339 kJ/mol # Calculated enthalpy of reaction Li +# Enthalpy of formation: 0 kJ/mol + -analytic -1.0227e+002 -1.8118e-002 2.6262e+004 3.8056e+001 -1.6166e+005 +# -Range: 0-300 + +Li2Se + Li2Se +1.5000 O2 = + 1.0000 SeO3-- + 2.0000 Li+ + log_k 102.8341 + -delta_H -646.236 kJ/mol # Calculated enthalpy of reaction Li2Se +# Enthalpy of formation: -96 kcal/mol + -analytic 1.1933e+002 -6.9663e-003 2.7509e+004 -4.3124e+001 4.6710e+002 +# -Range: 0-200 + +Li2UO4 + Li2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 Li+ + log_k 27.8421 + -delta_H -179.384 kJ/mol # Calculated enthalpy of reaction Li2UO4 +# Enthalpy of formation: -1968.2 kJ/mol + -analytic -1.4470e+002 -1.2024e-002 1.4899e+004 5.0984e+001 2.5306e+002 +# -Range: 0-200 + +LiUO2AsO4 + LiUO2AsO4 +2.0000 H+ = + 1.0000 H2AsO4- + 1.0000 Li+ + 1.0000 UO2++ + log_k -0.7862 + -delta_H 0 # Not possible to calculate enthalpy of reaction LiUO2AsO4 +# Enthalpy of formation: 0 kcal/mol + +Lime + CaO +2.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O + log_k 32.5761 + -delta_H -193.832 kJ/mol # Calculated enthalpy of reaction Lime +# Enthalpy of formation: -151.79 kcal/mol + -analytic -7.2686e+001 -1.7654e-002 1.2199e+004 2.8128e+001 1.9037e+002 +# -Range: 0-300 + +Linnaeite + Co3S4 +4.0000 H+ = + 1.0000 Co++ + 2.0000 Co+++ + 4.0000 HS- + log_k -106.9017 + -delta_H 420.534 kJ/mol # Calculated enthalpy of reaction Linnaeite +# Enthalpy of formation: -85.81 kcal/mol + -analytic -6.0034e+002 -2.0179e-001 -9.2145e+003 2.3618e+002 -1.4361e+002 +# -Range: 0-300 + +Litharge + PbO +2.0000 H+ = + 1.0000 H2O + 1.0000 Pb++ + log_k 12.6388 + -delta_H -65.9118 kJ/mol # Calculated enthalpy of reaction Litharge +# Enthalpy of formation: -219.006 kJ/mol + -analytic -1.8683e+001 -2.0211e-003 4.1876e+003 7.2239e+000 7.1118e+001 +# -Range: 0-200 + +Lopezite + K2Cr2O7 +1.0000 H2O = + 2.0000 CrO4-- + 2.0000 H+ + 2.0000 K+ + log_k -17.4366 + -delta_H 81.9227 kJ/mol # Calculated enthalpy of reaction Lopezite +# Enthalpy of formation: -493.003 kcal/mol + -analytic 7.8359e+001 -2.2908e-002 -9.3812e+003 -2.3245e+001 -1.5933e+002 +# -Range: 0-200 + +Lu + Lu +3.0000 H+ +0.7500 O2 = + 1.0000 Lu+++ + 1.5000 H2O + log_k 181.3437 + -delta_H -1122.15 kJ/mol # Calculated enthalpy of reaction Lu +# Enthalpy of formation: 0 kJ/mol + -analytic -6.8950e+001 -2.8643e-002 5.9209e+004 2.4332e+001 9.2392e+002 +# -Range: 0-300 + +Lu(OH)3 + Lu(OH)3 +3.0000 H+ = + 1.0000 Lu+++ + 3.0000 H2O + log_k 14.4852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Lu(OH)3(am) + Lu(OH)3 +3.0000 H+ = + 1.0000 Lu+++ + 3.0000 H2O + log_k 18.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +Lu2(CO3)3 + Lu2(CO3)3 +3.0000 H+ = + 2.0000 Lu+++ + 3.0000 HCO3- + log_k -2.0136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu2(CO3)3 +# Enthalpy of formation: 0 kcal/mol + +Lu2O3 + Lu2O3 +6.0000 H+ = + 2.0000 Lu+++ + 3.0000 H2O + log_k 45.0000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu2O3 +# Enthalpy of formation: 0 kcal/mol + +LuF3:.5H2O + LuF3:.5H2O = + 0.5000 H2O + 1.0000 Lu+++ + 3.0000 F- + log_k -15.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction LuF3:.5H2O +# Enthalpy of formation: 0 kcal/mol + +LuPO4:10H2O + LuPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Lu+++ + 10.0000 H2O + log_k -11.6782 + -delta_H 0 # Not possible to calculate enthalpy of reaction LuPO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +Magnesiochromite + MgCr2O4 +8.0000 H+ = + 1.0000 Mg++ + 2.0000 Cr+++ + 4.0000 H2O + log_k 21.6927 + -delta_H -302.689 kJ/mol # Calculated enthalpy of reaction Magnesiochromite +# Enthalpy of formation: -1783.6 kJ/mol + -analytic -1.7376e+002 -8.7429e-003 2.1600e+004 5.0762e+001 3.6685e+002 +# -Range: 0-200 + +Magnesite + MgCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Mg++ + log_k 2.2936 + -delta_H -44.4968 kJ/mol # Calculated enthalpy of reaction Magnesite +# Enthalpy of formation: -265.63 kcal/mol + -analytic -1.6665e+002 -4.9469e-002 6.4344e+003 6.5506e+001 1.0045e+002 +# -Range: 0-300 + +Magnetite + Fe3O4 +8.0000 H+ = + 1.0000 Fe++ + 2.0000 Fe+++ + 4.0000 H2O + log_k 10.4724 + -delta_H -216.597 kJ/mol # Calculated enthalpy of reaction Magnetite +# Enthalpy of formation: -267.25 kcal/mol + -analytic -3.0510e+002 -7.9919e-002 1.8709e+004 1.1178e+002 2.9203e+002 +# -Range: 0-300 + +Malachite + Cu2CO3(OH)2 +3.0000 H+ = + 1.0000 HCO3- + 2.0000 Cu++ + 2.0000 H2O + log_k 5.9399 + -delta_H -76.2827 kJ/mol # Calculated enthalpy of reaction Malachite +# Enthalpy of formation: -251.9 kcal/mol + -analytic -2.7189e+002 -6.9454e-002 1.1451e+004 1.0511e+002 1.7877e+002 +# -Range: 0-300 + +Manganite + MnO(OH) +3.0000 H+ = + 1.0000 Mn+++ + 2.0000 H2O + log_k -0.1646 + -delta_H 0 # Not possible to calculate enthalpy of reaction Manganite +# Enthalpy of formation: 0 kcal/mol + +Manganosite + MnO +2.0000 H+ = + 1.0000 H2O + 1.0000 Mn++ + log_k 17.9240 + -delta_H -121.215 kJ/mol # Calculated enthalpy of reaction Manganosite +# Enthalpy of formation: -92.07 kcal/mol + -analytic -8.4114e+001 -1.8490e-002 8.7792e+003 3.1561e+001 1.3702e+002 +# -Range: 0-300 + +Margarite + CaAl4Si2O10(OH)2 +14.0000 H+ = + 1.0000 Ca++ + 2.0000 SiO2 + 4.0000 Al+++ + 8.0000 H2O + log_k 41.0658 + -delta_H -522.192 kJ/mol # Calculated enthalpy of reaction Margarite +# Enthalpy of formation: -1485.8 kcal/mol + -analytic -2.3138e+002 -8.2788e-002 3.0154e+004 7.9148e+001 4.7060e+002 +# -Range: 0-300 + +Massicot + PbO +2.0000 H+ = + 1.0000 H2O + 1.0000 Pb++ + log_k 12.8210 + -delta_H -67.6078 kJ/mol # Calculated enthalpy of reaction Massicot +# Enthalpy of formation: -217.31 kJ/mol + -analytic -1.8738e+001 -2.0125e-003 4.2739e+003 7.2018e+000 7.2584e+001 +# -Range: 0-200 + +Matlockite + PbFCl = + 1.0000 Cl- + 1.0000 F- + 1.0000 Pb++ + log_k -9.4300 + -delta_H 0 # Not possible to calculate enthalpy of reaction Matlockite +# Enthalpy of formation: 0 kcal/mol + +Maximum_Microcline + KAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 H2O + 3.0000 SiO2 + log_k -0.2753 + -delta_H -23.9408 kJ/mol # Calculated enthalpy of reaction Maximum_Microcline +# Enthalpy of formation: -949.188 kcal/mol + -analytic -9.4387e+000 1.3561e-002 1.2656e+004 -7.4925e+000 -1.6795e+006 +# -Range: 0-300 + +Mayenite + Ca12Al14O33 +66.0000 H+ = + 12.0000 Ca++ + 14.0000 Al+++ + 33.0000 H2O + log_k 494.2199 + -delta_H -4056.77 kJ/mol # Calculated enthalpy of reaction Mayenite +# Enthalpy of formation: -4644 kcal/mol + -analytic -1.4778e+003 -2.9898e-001 2.4918e+005 4.9518e+002 4.2319e+003 +# -Range: 0-200 + +Melanterite + FeSO4:7H2O = + 1.0000 Fe++ + 1.0000 SO4-- + 7.0000 H2O + log_k -2.3490 + -delta_H 11.7509 kJ/mol # Calculated enthalpy of reaction Melanterite +# Enthalpy of formation: -3014.48 kJ/mol + -analytic -2.6230e+002 -7.2469e-002 6.5854e+003 1.0484e+002 1.0284e+002 +# -Range: 0-300 + +Mercallite + KHSO4 = + 1.0000 H+ + 1.0000 K+ + 1.0000 SO4-- + log_k -1.4389 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mercallite +# Enthalpy of formation: 0 kcal/mol + +Merwinite + MgCa3(SiO4)2 +8.0000 H+ = + 1.0000 Mg++ + 2.0000 SiO2 + 3.0000 Ca++ + 4.0000 H2O + log_k 68.5140 + -delta_H -430.069 kJ/mol # Calculated enthalpy of reaction Merwinite +# Enthalpy of formation: -1090.8 kcal/mol + -analytic -2.2524e+002 -4.2525e-002 3.5619e+004 7.9984e+001 -9.8259e+005 +# -Range: 0-300 + +Mesolite + Na.676Ca.657Al1.99Si3.01O10:2.647H2O +7.9600 H+ = + 0.6570 Ca++ + 0.6760 Na+ + 1.9900 Al+++ + 3.0100 SiO2 + 6.6270 H2O + log_k 13.6191 + -delta_H -179.744 kJ/mol # Calculated enthalpy of reaction Mesolite +# Enthalpy of formation: -5947.05 kJ/mol + -analytic 7.1993e+000 5.9356e-003 1.4717e+004 -1.3627e+001 -9.8863e+005 +# -Range: 0-300 + +Metacinnabar + HgS +1.0000 H+ = + 1.0000 HS- + 1.0000 Hg++ + log_k -38.5979 + -delta_H 203.426 kJ/mol # Calculated enthalpy of reaction Metacinnabar +# Enthalpy of formation: -11.8 kcal/mol + -analytic -1.5399e+002 -4.6740e-002 -6.7875e+003 6.1456e+001 -1.0587e+002 +# -Range: 0-300 + +Mg + Mg +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Mg++ + log_k 122.5365 + -delta_H -745.731 kJ/mol # Calculated enthalpy of reaction Mg +# Enthalpy of formation: 0 kJ/mol + -analytic -6.5988e+001 -1.9356e-002 4.0318e+004 2.3862e+001 6.2914e+002 +# -Range: 0-300 + +Mg1.25SO4(OH)0.5:0.5H2O + Mg1.25SO4(OH)0.5:0.5H2O +0.5000 H+ = + 1.0000 H2O + 1.0000 SO4-- + 1.2500 Mg++ + log_k 5.2600 + -delta_H -97.1054 kJ/mol # Calculated enthalpy of reaction Mg1.25SO4(OH)0.5:0.5H2O +# Enthalpy of formation: -401.717 kcal/mol + -analytic -2.6791e+002 -8.7078e-002 1.1090e+004 1.0583e+002 1.7312e+002 +# -Range: 0-300 + +Mg1.5SO4(OH) + Mg1.5SO4(OH) +1.0000 H+ = + 1.0000 H2O + 1.0000 SO4-- + 1.5000 Mg++ + log_k 9.2551 + -delta_H -125.832 kJ/mol # Calculated enthalpy of reaction Mg1.5SO4(OH) +# Enthalpy of formation: -422.693 kcal/mol + -analytic -2.8698e+002 -9.1970e-002 1.3088e+004 1.1304e+002 2.0432e+002 +# -Range: 0-300 + +Mg2V2O7 + Mg2V2O7 +1.0000 H2O = + 2.0000 H+ + 2.0000 Mg++ + 2.0000 VO4--- + log_k -30.9025 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mg2V2O7 +# Enthalpy of formation: -2836.23 kJ/mol + +MgBr2 + MgBr2 = + 1.0000 Mg++ + 2.0000 Br- + log_k 28.5302 + -delta_H -190.15 kJ/mol # Calculated enthalpy of reaction MgBr2 +# Enthalpy of formation: -124 kcal/mol + -analytic -2.1245e+002 -7.6168e-002 1.4466e+004 8.6940e+001 2.2579e+002 +# -Range: 0-300 + +MgBr2:6H2O + MgBr2:6H2O = + 1.0000 Mg++ + 2.0000 Br- + 6.0000 H2O + log_k 5.1656 + -delta_H -14.2682 kJ/mol # Calculated enthalpy of reaction MgBr2:6H2O +# Enthalpy of formation: -2409.73 kJ/mol + -analytic -1.3559e+002 -1.6479e-002 5.8571e+003 5.0924e+001 9.9508e+001 +# -Range: 0-200 + +MgCl2:2H2O + MgCl2:2H2O = + 1.0000 Mg++ + 2.0000 Cl- + 2.0000 H2O + log_k 12.7763 + -delta_H -92.0895 kJ/mol # Calculated enthalpy of reaction MgCl2:2H2O +# Enthalpy of formation: -1279.71 kJ/mol + -analytic -2.5409e+002 -8.1413e-002 1.0941e+004 1.0281e+002 1.7080e+002 +# -Range: 0-300 + +MgCl2:4H2O + MgCl2:4H2O = + 1.0000 Mg++ + 2.0000 Cl- + 4.0000 H2O + log_k 7.3581 + -delta_H -44.4602 kJ/mol # Calculated enthalpy of reaction MgCl2:4H2O +# Enthalpy of formation: -1899.01 kJ/mol + -analytic -2.7604e+002 -8.1648e-002 9.5501e+003 1.1140e+002 1.4910e+002 +# -Range: 0-300 + +MgCl2:H2O + MgCl2:H2O = + 1.0000 H2O + 1.0000 Mg++ + 2.0000 Cl- + log_k 16.1187 + -delta_H -119.326 kJ/mol # Calculated enthalpy of reaction MgCl2:H2O +# Enthalpy of formation: -966.631 kJ/mol + -analytic -2.4414e+002 -8.1310e-002 1.1862e+004 9.8878e+001 1.8516e+002 +# -Range: 0-300 + +MgOHCl + MgOHCl +1.0000 H+ = + 1.0000 Cl- + 1.0000 H2O + 1.0000 Mg++ + log_k 15.9138 + -delta_H -118.897 kJ/mol # Calculated enthalpy of reaction MgOHCl +# Enthalpy of formation: -191.2 kcal/mol + -analytic -1.6614e+002 -4.9715e-002 1.0311e+004 6.5578e+001 1.6093e+002 +# -Range: 0-300 + +MgSO4 + MgSO4 = + 1.0000 Mg++ + 1.0000 SO4-- + log_k 4.8781 + -delta_H -90.6421 kJ/mol # Calculated enthalpy of reaction MgSO4 +# Enthalpy of formation: -1284.92 kJ/mol + -analytic -2.2439e+002 -7.9688e-002 9.3058e+003 8.9622e+001 1.4527e+002 +# -Range: 0-300 + +MgSeO3 + MgSeO3 = + 1.0000 Mg++ + 1.0000 SeO3-- + log_k 1.7191 + -delta_H -74.9647 kJ/mol # Calculated enthalpy of reaction MgSeO3 +# Enthalpy of formation: -215.15 kcal/mol + -analytic -2.2593e+002 -8.1045e-002 8.4609e+003 9.0278e+001 1.3209e+002 +# -Range: 0-300 + +MgSeO3:6H2O + MgSeO3:6H2O = + 1.0000 Mg++ + 1.0000 SeO3-- + 6.0000 H2O + log_k -3.4222 + -delta_H 11.7236 kJ/mol # Calculated enthalpy of reaction MgSeO3:6H2O +# Enthalpy of formation: -645.771 kcal/mol + -analytic -1.2807e+002 -1.5418e-002 4.0565e+003 4.6728e+001 6.8929e+001 +# -Range: 0-200 + +MgUO4 + MgUO4 +4.0000 H+ = + 1.0000 Mg++ + 1.0000 UO2++ + 2.0000 H2O + log_k 23.0023 + -delta_H -199.336 kJ/mol # Calculated enthalpy of reaction MgUO4 +# Enthalpy of formation: -1857.3 kJ/mol + -analytic -9.9954e+001 -2.0142e-002 1.3078e+004 3.4386e+001 2.0410e+002 +# -Range: 0-300 + +MgV2O6 + MgV2O6 +2.0000 H2O = + 1.0000 Mg++ + 2.0000 VO4--- + 4.0000 H+ + log_k -45.8458 + -delta_H 0 # Not possible to calculate enthalpy of reaction MgV2O6 +# Enthalpy of formation: -2201.88 kJ/mol + +Millerite + NiS +1.0000 H+ = + 1.0000 HS- + 1.0000 Ni++ + log_k -8.0345 + -delta_H 12.089 kJ/mol # Calculated enthalpy of reaction Millerite +# Enthalpy of formation: -82.171 kJ/mol + -analytic -1.4848e+002 -4.8834e-002 2.6981e+003 5.8976e+001 4.2145e+001 +# -Range: 0-300 + +Minium + Pb3O4 +8.0000 H+ = + 1.0000 Pb++++ + 2.0000 Pb++ + 4.0000 H2O + log_k 16.2585 + -delta_H 0 # Not possible to calculate enthalpy of reaction Minium +# Enthalpy of formation: -718.493 kJ/mol + +Minnesotaite + Fe3Si4O10(OH)2 +6.0000 H+ = + 3.0000 Fe++ + 4.0000 H2O + 4.0000 SiO2 + log_k 13.9805 + -delta_H -105.211 kJ/mol # Calculated enthalpy of reaction Minnesotaite +# Enthalpy of formation: -1153.37 kcal/mol + -analytic -1.8812e+001 1.7261e-002 1.9804e+004 -6.4410e+000 -2.0433e+006 +# -Range: 0-300 + +Mirabilite + Na2SO4:10H2O = + 1.0000 SO4-- + 2.0000 Na+ + 10.0000 H2O + log_k -1.1398 + -delta_H 79.4128 kJ/mol # Calculated enthalpy of reaction Mirabilite +# Enthalpy of formation: -4328 kJ/mol + -analytic -2.1877e+002 -3.6692e-003 5.9214e+003 8.0361e+001 1.0063e+002 +# -Range: 0-200 + +Misenite + K8H6(SO4)7 = + 6.0000 H+ + 7.0000 SO4-- + 8.0000 K+ + log_k -11.0757 + -delta_H 0 # Not possible to calculate enthalpy of reaction Misenite +# Enthalpy of formation: 0 kcal/mol + +Mn + Mn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Mn++ + log_k 82.9505 + -delta_H -500.369 kJ/mol # Calculated enthalpy of reaction Mn +# Enthalpy of formation: 0 kJ/mol + -analytic -6.5558e+001 -2.0429e-002 2.7571e+004 2.5098e+001 4.3024e+002 +# -Range: 0-300 + +Mn(OH)2(am) + Mn(OH)2 +2.0000 H+ = + 1.0000 Mn++ + 2.0000 H2O + log_k 15.3102 + -delta_H -97.1779 kJ/mol # Calculated enthalpy of reaction Mn(OH)2(am) +# Enthalpy of formation: -695.096 kJ/mol + -analytic -7.8518e+001 -7.5357e-003 8.0198e+003 2.7955e+001 1.3621e+002 +# -Range: 0-200 + +Mn(OH)3 + Mn(OH)3 +3.0000 H+ = + 1.0000 Mn+++ + 3.0000 H2O + log_k 6.3412 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Mn3(PO4)2 + Mn3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Mn++ + log_k 0.8167 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn3(PO4)2 +# Enthalpy of formation: 0 kcal/mol + +MnCl2:2H2O + MnCl2:2H2O = + 1.0000 Mn++ + 2.0000 Cl- + 2.0000 H2O + log_k 4.0067 + -delta_H -34.4222 kJ/mol # Calculated enthalpy of reaction MnCl2:2H2O +# Enthalpy of formation: -1092.01 kJ/mol + -analytic -6.2823e+001 -2.3959e-002 2.9931e+003 2.5834e+001 5.0850e+001 +# -Range: 0-200 + +MnCl2:4H2O + MnCl2:4H2O = + 1.0000 Mn++ + 2.0000 Cl- + 4.0000 H2O + log_k 2.7563 + -delta_H -10.7019 kJ/mol # Calculated enthalpy of reaction MnCl2:4H2O +# Enthalpy of formation: -1687.41 kJ/mol + -analytic -1.1049e+002 -2.3376e-002 4.0458e+003 4.3097e+001 6.8742e+001 +# -Range: 0-200 + +MnCl2:H2O + MnCl2:H2O = + 1.0000 H2O + 1.0000 Mn++ + 2.0000 Cl- + log_k 5.5517 + -delta_H -50.8019 kJ/mol # Calculated enthalpy of reaction MnCl2:H2O +# Enthalpy of formation: -789.793 kJ/mol + -analytic -4.5051e+001 -2.5923e-002 2.8739e+003 1.9674e+001 4.8818e+001 +# -Range: 0-200 + +MnHPO4 + MnHPO4 = + 1.0000 HPO4-- + 1.0000 Mn++ + log_k -12.9470 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnHPO4 +# Enthalpy of formation: 0 kcal/mol + +MnO2(gamma) + MnO2 = + 0.5000 Mn++ + 0.5000 MnO4-- + log_k -16.1261 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnO2(gamma) +# Enthalpy of formation: 0 kcal/mol + +MnSO4 + MnSO4 = + 1.0000 Mn++ + 1.0000 SO4-- + log_k 2.6561 + -delta_H -64.8718 kJ/mol # Calculated enthalpy of reaction MnSO4 +# Enthalpy of formation: -1065.33 kJ/mol + -analytic -2.3088e+002 -8.2694e-002 8.1653e+003 9.3256e+001 1.2748e+002 +# -Range: 0-300 + +MnSe + MnSe = + 1.0000 Mn++ + 1.0000 Se-- + log_k -10.6848 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnSe +# Enthalpy of formation: -37 kcal/mol + -analytic -5.9960e+001 -1.5963e-002 1.2813e+003 2.0095e+001 2.0010e+001 +# -Range: 0-300 + +MnSeO3 + MnSeO3 = + 1.0000 Mn++ + 1.0000 SeO3-- + log_k -7.2700 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnSeO3 +# Enthalpy of formation: 0 kcal/mol + +MnSeO3:2H2O + MnSeO3:2H2O = + 1.0000 Mn++ + 1.0000 SeO3-- + 2.0000 H2O + log_k -6.3219 + -delta_H 14.0792 kJ/mol # Calculated enthalpy of reaction MnSeO3:2H2O +# Enthalpy of formation: -314.423 kcal/mol + -analytic -4.3625e+001 -2.0426e-002 -2.5368e+002 1.7876e+001 -4.2927e+000 +# -Range: 0-200 + +MnV2O6 + MnV2O6 +2.0000 H2O = + 1.0000 Mn++ + 2.0000 VO4--- + 4.0000 H+ + log_k -52.0751 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnV2O6 +# Enthalpy of formation: -447.9 kcal/mol + +Mo + Mo +1.5000 O2 +1.0000 H2O = + 1.0000 MoO4-- + 2.0000 H+ + log_k 109.3230 + -delta_H -693.845 kJ/mol # Calculated enthalpy of reaction Mo +# Enthalpy of formation: 0 kJ/mol + -analytic -2.0021e+002 -8.3006e-002 4.1629e+004 8.0219e+001 -3.4570e+005 +# -Range: 0-300 + +MoSe2 + MoSe2 +3.0000 H2O +0.5000 O2 = + 1.0000 MoO4-- + 2.0000 Se-- + 6.0000 H+ + log_k -55.1079 + -delta_H 0 # Not possible to calculate enthalpy of reaction MoSe2 +# Enthalpy of formation: -47 kcal/mol + -analytic 1.3882e+002 -1.8590e-003 -1.7231e+004 -5.4797e+001 -2.9265e+002 +# -Range: 0-200 + +Modderite + CoAs +3.0000 H+ = + 1.0000 AsH3 + 1.0000 Co+++ + log_k -49.5512 + -delta_H 189.016 kJ/mol # Calculated enthalpy of reaction Modderite +# Enthalpy of formation: -12.208 kcal/mol + +Molysite + FeCl3 = + 1.0000 Fe+++ + 3.0000 Cl- + log_k 13.5517 + -delta_H -151.579 kJ/mol # Calculated enthalpy of reaction Molysite +# Enthalpy of formation: -399.24 kJ/mol + -analytic -3.1810e+002 -1.2357e-001 1.3860e+004 1.3010e+002 2.1637e+002 +# -Range: 0-300 + +Monohydrocalcite + CaCO3:H2O +1.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O + 1.0000 HCO3- + log_k 2.6824 + -delta_H -20.5648 kJ/mol # Calculated enthalpy of reaction Monohydrocalcite +# Enthalpy of formation: -1498.29 kJ/mol + -analytic -7.2614e+001 -1.7217e-002 3.1850e+003 2.8185e+001 5.4111e+001 +# -Range: 0-200 + +Monteponite + CdO +2.0000 H+ = + 1.0000 Cd++ + 1.0000 H2O + log_k 15.0972 + -delta_H -103.386 kJ/mol # Calculated enthalpy of reaction Monteponite +# Enthalpy of formation: -258.35 kJ/mol + -analytic -5.0057e+001 -6.3629e-003 7.0898e+003 1.7486e+001 1.2041e+002 +# -Range: 0-200 + +Monticellite + CaMgSiO4 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 1.0000 SiO2 + 2.0000 H2O + log_k 29.5852 + -delta_H -195.711 kJ/mol # Calculated enthalpy of reaction Monticellite +# Enthalpy of formation: -540.8 kcal/mol + -analytic 1.5730e+001 -3.5567e-003 9.0789e+003 -6.3007e+000 1.4166e+002 +# -Range: 0-300 + +Montmor-Ca + Ca.165Mg.33Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.1650 Ca++ + 0.3300 Mg++ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 + log_k 2.4952 + -delta_H -100.154 kJ/mol # Calculated enthalpy of reaction Montmor-Ca +# Enthalpy of formation: -1361.5 kcal/mol + -analytic 6.0725e+000 1.0644e-002 1.6024e+004 -1.6334e+001 -1.7982e+006 +# -Range: 0-300 + +Montmor-Cs + Cs.33Mg.33Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.3300 Cs+ + 0.3300 Mg++ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 + log_k 1.9913 + -delta_H -87.2259 kJ/mol # Calculated enthalpy of reaction Montmor-Cs +# Enthalpy of formation: -1363.52 kcal/mol + -analytic 9.9136e+000 1.2496e-002 1.5650e+004 -1.7601e+001 -1.8434e+006 +# -Range: 0-300 + +Montmor-K + K.33Mg.33Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.3300 K+ + 0.3300 Mg++ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 + log_k 2.1423 + -delta_H -88.184 kJ/mol # Calculated enthalpy of reaction Montmor-K +# Enthalpy of formation: -1362.83 kcal/mol + -analytic 8.4757e+000 1.1219e-002 1.5654e+004 -1.6833e+001 -1.8386e+006 +# -Range: 0-300 + +Montmor-Mg + Mg.495Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.4950 Mg++ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 + log_k 2.3879 + -delta_H -102.608 kJ/mol # Calculated enthalpy of reaction Montmor-Mg +# Enthalpy of formation: -1357.87 kcal/mol + -analytic -6.8505e+000 9.0710e-003 1.6817e+004 -1.1887e+001 -1.8323e+006 +# -Range: 0-300 + +Montmor-Na + Na.33Mg.33Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.3300 Mg++ + 0.3300 Na+ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 + log_k 2.4844 + -delta_H -93.2165 kJ/mol # Calculated enthalpy of reaction Montmor-Na +# Enthalpy of formation: -1360.69 kcal/mol + -analytic 1.9601e+000 1.1342e-002 1.6051e+004 -1.4718e+001 -1.8160e+006 +# -Range: 0-300 + +Montroydite + HgO +2.0000 H+ = + 1.0000 H2O + 1.0000 Hg++ + log_k 2.4486 + -delta_H -24.885 kJ/mol # Calculated enthalpy of reaction Montroydite +# Enthalpy of formation: -90.79 kJ/mol + -analytic -8.7302e+001 -1.7618e-002 4.0086e+003 3.2957e+001 6.2576e+001 +# -Range: 0-300 + +Mordenite + Ca.2895Na.361Al.94Si5.06O12:3.468H2O +3.7600 H+ = + 0.2895 Ca++ + 0.3610 Na+ + 0.9400 Al+++ + 5.0600 SiO2 + 5.3480 H2O + log_k -5.1969 + -delta_H 16.7517 kJ/mol # Calculated enthalpy of reaction Mordenite +# Enthalpy of formation: -6736.64 kJ/mol + -analytic -5.4675e+001 3.2513e-002 2.3412e+004 -1.0419e+000 -3.2292e+006 +# -Range: 0-300 + +Mordenite-dehy + Ca.2895Na.361Al.94Si5.06O12 +3.7600 H+ = + 0.2895 Ca++ + 0.3610 Na+ + 0.9400 Al+++ + 1.8800 H2O + 5.0600 SiO2 + log_k 9.9318 + -delta_H -86.159 kJ/mol # Calculated enthalpy of reaction Mordenite-dehy +# Enthalpy of formation: -5642.44 kJ/mol + -analytic -5.0841e+001 2.5405e-002 2.7621e+004 -1.6331e+000 -3.1618e+006 +# -Range: 0-300 + +Morenosite + NiSO4:7H2O = + 1.0000 Ni++ + 1.0000 SO4-- + 7.0000 H2O + log_k -2.0140 + -delta_H 12.0185 kJ/mol # Calculated enthalpy of reaction Morenosite +# Enthalpy of formation: -2976.46 kJ/mol + -analytic -2.6654e+002 -7.2132e-002 6.7983e+003 1.0636e+002 1.0616e+002 +# -Range: 0-300 + +Muscovite + KAl3Si3O10(OH)2 +10.0000 H+ = + 1.0000 K+ + 3.0000 Al+++ + 3.0000 SiO2 + 6.0000 H2O + log_k 13.5858 + -delta_H -243.224 kJ/mol # Calculated enthalpy of reaction Muscovite +# Enthalpy of formation: -1427.41 kcal/mol + -analytic 3.3085e+001 -1.2425e-002 1.2477e+004 -2.0865e+001 -5.4692e+005 +# -Range: 0-300 + +NH4HSe + NH4HSe = + 1.0000 NH3 + 1.0000 Se-- + 2.0000 H+ + log_k -22.0531 + -delta_H 0 # Not possible to calculate enthalpy of reaction NH4HSe +# Enthalpy of formation: -133.041 kJ/mol + -analytic -8.8685e+000 6.7342e-003 -5.3028e+003 1.0468e+000 -9.0046e+001 +# -Range: 0-200 +Na + Na +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Na+ + log_k 67.3804 + -delta_H -380.185 kJ/mol # Calculated enthalpy of reaction Na +# Enthalpy of formation: 0 kJ/mol + -analytic -4.0458e+001 -8.7899e-003 2.1223e+004 1.5927e+001 -1.2715e+004 +# -Range: 0-300 + +Na2CO3 + Na2CO3 +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Na+ + log_k 11.1822 + -delta_H -39.8526 kJ/mol # Calculated enthalpy of reaction Na2CO3 +# Enthalpy of formation: -1130.68 kJ/mol + -analytic -1.5495e+002 -4.3374e-002 6.4821e+003 6.3571e+001 1.0119e+002 +# -Range: 0-300 + +Na2CO3:7H2O + Na2CO3:7H2O +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Na+ + 7.0000 H2O + log_k 9.9459 + -delta_H 27.7881 kJ/mol # Calculated enthalpy of reaction Na2CO3:7H2O +# Enthalpy of formation: -3199.19 kJ/mol + -analytic -2.0593e+002 -3.4509e-003 8.1601e+003 7.6594e+001 1.3864e+002 +# -Range: 0-200 + +Na2Cr2O7 + Na2Cr2O7 +1.0000 H2O = + 2.0000 CrO4-- + 2.0000 H+ + 2.0000 Na+ + log_k -10.1597 + -delta_H 21.9702 kJ/mol # Calculated enthalpy of reaction Na2Cr2O7 +# Enthalpy of formation: -473 kcal/mol + -analytic 4.4885e+001 -2.4919e-002 -5.0321e+003 -1.2430e+001 -8.5468e+001 +# -Range: 0-200 + +Na2CrO4 + Na2CrO4 = + 1.0000 CrO4-- + 2.0000 Na+ + log_k 2.9103 + -delta_H -19.5225 kJ/mol # Calculated enthalpy of reaction Na2CrO4 +# Enthalpy of formation: -320.8 kcal/mol + -analytic 5.4985e+000 -9.9008e-003 1.0510e+002 0.0000e+000 0.0000e+000 +# -Range: 0-200 + +Na2O + Na2O +2.0000 H+ = + 1.0000 H2O + 2.0000 Na+ + log_k 67.4269 + -delta_H -351.636 kJ/mol # Calculated enthalpy of reaction Na2O +# Enthalpy of formation: -99.14 kcal/mol + -analytic -6.3585e+001 -8.4695e-003 2.0923e+004 2.5601e+001 3.2651e+002 +# -Range: 0-300 + +Na2Se + Na2Se = + 1.0000 Se-- + 2.0000 Na+ + log_k 11.8352 + -delta_H 0 # Not possible to calculate enthalpy of reaction Na2Se +# Enthalpy of formation: -81.9 kcal/mol + -analytic -6.0070e+000 8.2821e-003 4.5816e+003 0.0000e+000 0.0000e+000 +# -Range: 0-200 + +Na2Se2 + Na2Se2 +1.0000 H2O = + 0.5000 O2 + 2.0000 H+ + 2.0000 Na+ + 2.0000 Se-- + log_k -61.3466 + -delta_H 0 # Not possible to calculate enthalpy of reaction Na2Se2 +# Enthalpy of formation: -92.8 kcal/mol + -analytic -2.7836e+001 7.7035e-003 -1.5040e+004 5.9131e+000 -2.5539e+002 +# -Range: 0-200 + +Na2SiO3 + Na2SiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 SiO2 + 2.0000 Na+ + log_k 22.2418 + -delta_H -82.7093 kJ/mol # Calculated enthalpy of reaction Na2SiO3 +# Enthalpy of formation: -373.19 kcal/mol + -analytic -3.4928e+001 5.6905e-003 1.0284e+004 1.1197e+001 -6.0134e+005 +# -Range: 0-300 + +Na2U2O7 + Na2U2O7 +6.0000 H+ = + 2.0000 Na+ + 2.0000 UO2++ + 3.0000 H2O + log_k 22.5917 + -delta_H -172.314 kJ/mol # Calculated enthalpy of reaction Na2U2O7 +# Enthalpy of formation: -3203.8 kJ/mol + -analytic -8.6640e+001 -1.0903e-002 1.1841e+004 2.9406e+001 1.8479e+002 +# -Range: 0-300 + +Na2UO4(alpha) + Na2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 Na+ + log_k 30.0231 + -delta_H -173.576 kJ/mol # Calculated enthalpy of reaction Na2UO4(alpha) +# Enthalpy of formation: -1897.7 kJ/mol + -analytic -7.9767e+001 -1.0253e-002 1.1963e+004 2.9386e+001 1.8669e+002 +# -Range: 0-300 + +Na3H(SO4)2 + Na3H(SO4)2 = + 1.0000 H+ + 2.0000 SO4-- + 3.0000 Na+ + log_k -0.8906 + -delta_H 0 # Not possible to calculate enthalpy of reaction Na3H(SO4)2 +# Enthalpy of formation: 0 kcal/mol + +Na3UO4 + Na3UO4 +4.0000 H+ = + 1.0000 UO2+ + 2.0000 H2O + 3.0000 Na+ + log_k 56.2574 + -delta_H -293.703 kJ/mol # Calculated enthalpy of reaction Na3UO4 +# Enthalpy of formation: -2024 kJ/mol + -analytic -9.6724e+001 -6.2485e-003 1.9469e+004 3.6180e+001 3.0382e+002 +# -Range: 0-300 + +Na4Ca(SO4)3:2H2O + Na4Ca(SO4)3:2H2O = + 1.0000 Ca++ + 2.0000 H2O + 3.0000 SO4-- + 4.0000 Na+ + log_k -5.8938 + -delta_H 0 # Not possible to calculate enthalpy of reaction Na4Ca(SO4)3:2H2O +# Enthalpy of formation: 0 kcal/mol + +Na4SiO4 + Na4SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 4.0000 Na+ + log_k 70.6449 + -delta_H -327.779 kJ/mol # Calculated enthalpy of reaction Na4SiO4 +# Enthalpy of formation: -497.8 kcal/mol + -analytic -1.1969e+002 -6.5032e-003 2.6469e+004 4.4626e+001 -6.2007e+005 +# -Range: 0-300 + +Na4UO2(CO3)3 + Na4UO2(CO3)3 +3.0000 H+ = + 1.0000 UO2++ + 3.0000 HCO3- + 4.0000 Na+ + log_k 4.0395 + -delta_H 0 # Not possible to calculate enthalpy of reaction Na4UO2(CO3)3 +# Enthalpy of formation: 0 kcal/mol + +Na6Si2O7 + Na6Si2O7 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 H2O + 6.0000 Na+ + log_k 101.6199 + -delta_H -471.951 kJ/mol # Calculated enthalpy of reaction Na6Si2O7 +# Enthalpy of formation: -856.3 kcal/mol + -analytic -1.0590e+002 4.5576e-003 3.6830e+004 3.8030e+001 -1.0276e+006 +# -Range: 0-300 + +NaBr + NaBr = + 1.0000 Br- + 1.0000 Na+ + log_k 2.9739 + -delta_H -0.741032 kJ/mol # Calculated enthalpy of reaction NaBr +# Enthalpy of formation: -361.062 kJ/mol + -analytic -9.3227e+001 -3.2780e-002 2.2910e+003 3.9713e+001 3.5777e+001 +# -Range: 0-300 + +NaBr:2H2O + NaBr:2H2O = + 1.0000 Br- + 1.0000 Na+ + 2.0000 H2O + log_k 2.1040 + -delta_H 18.4883 kJ/mol # Calculated enthalpy of reaction NaBr:2H2O +# Enthalpy of formation: -951.968 kJ/mol + -analytic -4.1855e+001 -4.6170e-003 8.3883e+002 1.7182e+001 1.4259e+001 +# -Range: 0-200 + +NaFeO2 + NaFeO2 +4.0000 H+ = + 1.0000 Fe+++ + 1.0000 Na+ + 2.0000 H2O + log_k 19.8899 + -delta_H -163.339 kJ/mol # Calculated enthalpy of reaction NaFeO2 +# Enthalpy of formation: -698.218 kJ/mol + -analytic -7.0047e+001 -9.6226e-003 1.0647e+004 2.3071e+001 1.8082e+002 +# -Range: 0-200 + +NaNpO2CO3:3.5H2O + NaNpO2CO3:3.5H2O +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Na+ + 1.0000 NpO2+ + 3.5000 H2O + log_k -1.2342 + -delta_H 27.0979 kJ/mol # Calculated enthalpy of reaction NaNpO2CO3:3.5H2O +# Enthalpy of formation: -2935.76 kJ/mol + -analytic -1.4813e+002 -2.7355e-002 3.6537e+003 5.7701e+001 5.7055e+001 +# -Range: 0-300 + +NaTcO4 + NaTcO4 = + 1.0000 Na+ + 1.0000 TcO4- + log_k 1.5208 + -delta_H 0 # Not possible to calculate enthalpy of reaction NaTcO4 +# Enthalpy of formation: 0 kcal/mol + +NaUO3 + NaUO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 Na+ + 1.0000 UO2+ + log_k 8.3371 + -delta_H -56.365 kJ/mol # Calculated enthalpy of reaction NaUO3 +# Enthalpy of formation: -1494.9 kJ/mol + -analytic -3.6363e+001 7.0505e-004 4.5359e+003 1.1828e+001 7.0790e+001 +# -Range: 0-300 + +Nahcolite + NaHCO3 = + 1.0000 HCO3- + 1.0000 Na+ + log_k -0.1118 + -delta_H 17.0247 kJ/mol # Calculated enthalpy of reaction Nahcolite +# Enthalpy of formation: -226.4 kcal/mol + -analytic -2.2282e+002 -5.9693e-002 5.4887e+003 8.9744e+001 8.5712e+001 +# -Range: 0-300 + +Nantokite + CuCl = + 1.0000 Cl- + 1.0000 Cu+ + log_k -6.7623 + -delta_H 41.9296 kJ/mol # Calculated enthalpy of reaction Nantokite +# Enthalpy of formation: -137.329 kJ/mol + -analytic -2.2442e+001 -1.1201e-002 -1.8709e+003 1.0221e+001 -3.1763e+001 +# -Range: 0-200 + +Natrolite + Na2Al2Si3O10:2H2O +8.0000 H+ = + 2.0000 Al+++ + 2.0000 Na+ + 3.0000 SiO2 + 6.0000 H2O + log_k 18.5204 + -delta_H -186.971 kJ/mol # Calculated enthalpy of reaction Natrolite +# Enthalpy of formation: -5718.56 kJ/mol + -analytic -2.7712e+001 -2.7963e-003 1.6075e+004 1.5332e+000 -9.5765e+005 +# -Range: 0-300 + +Natron + Na2CO3:10H2O +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Na+ + 10.0000 H2O + log_k 9.6102 + -delta_H 50.4781 kJ/mol # Calculated enthalpy of reaction Natron +# Enthalpy of formation: -4079.39 kJ/mol + -analytic -1.9981e+002 -2.9247e-002 5.2937e+003 8.0973e+001 8.2662e+001 +# -Range: 0-300 + +Natrosilite + Na2Si2O5 +2.0000 H+ = + 1.0000 H2O + 2.0000 Na+ + 2.0000 SiO2 + log_k 18.1337 + -delta_H -51.7686 kJ/mol # Calculated enthalpy of reaction Natrosilite +# Enthalpy of formation: -590.36 kcal/mol + -analytic -2.7628e+001 1.6865e-002 1.3302e+004 4.2356e+000 -1.2828e+006 +# -Range: 0-300 + +Naumannite + Ag2Se = + 1.0000 Se-- + 2.0000 Ag+ + log_k -57.4427 + -delta_H 0 # Not possible to calculate enthalpy of reaction Naumannite +# Enthalpy of formation: -37.441 kJ/mol + -analytic -5.3844e+001 -1.0965e-002 -1.4739e+004 1.9842e+001 -2.2998e+002 +# -Range: 0-300 + +Nd + Nd +3.0000 H+ +0.7500 O2 = + 1.0000 Nd+++ + 1.5000 H2O + log_k 182.2233 + -delta_H -1116.29 kJ/mol # Calculated enthalpy of reaction Nd +# Enthalpy of formation: 0 kJ/mol + -analytic -2.7390e+002 -5.6545e-002 7.1502e+004 9.7969e+001 -8.2482e+005 +# -Range: 0-300 + +Nd(OH)3 + Nd(OH)3 +3.0000 H+ = + 1.0000 Nd+++ + 3.0000 H2O + log_k 18.0852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Nd(OH)3(am) + Nd(OH)3 +3.0000 H+ = + 1.0000 Nd+++ + 3.0000 H2O + log_k 20.4852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +Nd(OH)3(c) + Nd(OH)3 +3.0000 H+ = + 1.0000 Nd+++ + 3.0000 H2O + log_k 15.7852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3(c) +# Enthalpy of formation: 0 kcal/mol + +Nd2(CO3)3 + Nd2(CO3)3 +3.0000 H+ = + 2.0000 Nd+++ + 3.0000 HCO3- + log_k -3.6636 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2(CO3)3 +# Enthalpy of formation: 0 kcal/mol + +Nd2O3 + Nd2O3 +6.0000 H+ = + 2.0000 Nd+++ + 3.0000 H2O + log_k 58.6000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2O3 +# Enthalpy of formation: 0 kcal/mol + +NdF3:.5H2O + NdF3:.5H2O = + 0.5000 H2O + 1.0000 Nd+++ + 3.0000 F- + log_k -18.6000 + -delta_H 0 # Not possible to calculate enthalpy of reaction NdF3:.5H2O +# Enthalpy of formation: 0 kcal/mol + +NdOHCO3 + NdOHCO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 HCO3- + 1.0000 Nd+++ + log_k 2.8239 + -delta_H 0 # Not possible to calculate enthalpy of reaction NdOHCO3 +# Enthalpy of formation: 0 kcal/mol + +NdPO4:10H2O + NdPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Nd+++ + 10.0000 H2O + log_k -12.1782 + -delta_H 0 # Not possible to calculate enthalpy of reaction NdPO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +Nepheline + NaAlSiO4 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 1.0000 SiO2 + 2.0000 H2O + log_k 13.8006 + -delta_H -135.068 kJ/mol # Calculated enthalpy of reaction Nepheline +# Enthalpy of formation: -500.241 kcal/mol + -analytic -2.4856e+001 -8.8171e-003 8.5653e+003 6.0904e+000 -2.2786e+005 +# -Range: 0-300 + +Nesquehonite + MgCO3:3H2O +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Mg++ + 3.0000 H2O + log_k 4.9955 + -delta_H -36.1498 kJ/mol # Calculated enthalpy of reaction Nesquehonite +# Enthalpy of formation: -472.576 kcal/mol + -analytic 1.3771e+002 -6.0397e-002 -3.5049e+004 -1.8831e+001 4.4213e+006 +# -Range: 0-300 + +Ni + Ni +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Ni++ + log_k 50.9914 + -delta_H -333.745 kJ/mol # Calculated enthalpy of reaction Ni +# Enthalpy of formation: 0 kcal/mol + -analytic -5.8308e+001 -2.0133e-002 1.8444e+004 2.1590e+001 2.8781e+002 +# -Range: 0-300 + +Ni(OH)2 + Ni(OH)2 +2.0000 H+ = + 1.0000 Ni++ + 2.0000 H2O + log_k 12.7485 + -delta_H -95.6523 kJ/mol # Calculated enthalpy of reaction Ni(OH)2 +# Enthalpy of formation: -529.998 kJ/mol + -analytic -6.5279e+001 -5.9499e-003 7.3471e+003 2.2290e+001 1.2479e+002 +# -Range: 0-200 + +Ni2P2O7 + Ni2P2O7 +1.0000 H2O = + 2.0000 HPO4-- + 2.0000 Ni++ + log_k -8.8991 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni2P2O7 +# Enthalpy of formation: 0 kcal/mol + +Ni2SiO4 + Ni2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Ni++ + log_k 14.3416 + -delta_H -127.629 kJ/mol # Calculated enthalpy of reaction Ni2SiO4 +# Enthalpy of formation: -341.705 kcal/mol + -analytic -4.0414e+001 -1.1194e-002 9.6515e+003 1.2026e+001 -3.6336e+005 +# -Range: 0-300 + +Ni3(PO4)2 + Ni3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Ni++ + log_k -6.6414 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni3(PO4)2 +# Enthalpy of formation: 0 kcal/mol + +NiCO3 + NiCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Ni++ + log_k 3.5118 + -delta_H 0 # Not possible to calculate enthalpy of reaction NiCO3 +# Enthalpy of formation: 0 kcal/mol + +NiCl2 + NiCl2 = + 1.0000 Ni++ + 2.0000 Cl- + log_k 8.6113 + -delta_H -82.7969 kJ/mol # Calculated enthalpy of reaction NiCl2 +# Enthalpy of formation: -305.336 kJ/mol + -analytic -1.2416e+000 -2.3139e-002 2.6529e+003 3.1696e+000 4.5052e+001 +# -Range: 0-200 + +NiCl2:2H2O + NiCl2:2H2O = + 1.0000 Ni++ + 2.0000 Cl- + 2.0000 H2O + log_k 3.9327 + -delta_H -37.6746 kJ/mol # Calculated enthalpy of reaction NiCl2:2H2O +# Enthalpy of formation: -922.135 kJ/mol + -analytic -4.8814e+001 -2.2602e-002 2.5951e+003 2.0518e+001 4.4086e+001 +# -Range: 0-200 + +NiCl2:4H2O + NiCl2:4H2O = + 1.0000 Ni++ + 2.0000 Cl- + 4.0000 H2O + log_k 3.8561 + -delta_H -15.4373 kJ/mol # Calculated enthalpy of reaction NiCl2:4H2O +# Enthalpy of formation: -1516.05 kJ/mol + -analytic -1.0545e+002 -2.4691e-002 3.9978e+003 4.1727e+001 6.7926e+001 +# -Range: 0-200 + +NiF2 + NiF2 = + 1.0000 Ni++ + 2.0000 F- + log_k 0.8772 + -delta_H -73.1438 kJ/mol # Calculated enthalpy of reaction NiF2 +# Enthalpy of formation: -651.525 kJ/mol + -analytic -2.5291e+002 -8.4179e-002 9.3429e+003 1.0002e+002 1.4586e+002 +# -Range: 0-300 + +NiF2:4H2O + NiF2:4H2O = + 1.0000 Ni++ + 2.0000 F- + 4.0000 H2O + log_k -4.0588 + -delta_H 0 # Not possible to calculate enthalpy of reaction NiF2:4H2O +# Enthalpy of formation: 0 kcal/mol + +NiSO4 + NiSO4 = + 1.0000 Ni++ + 1.0000 SO4-- + log_k 5.3197 + -delta_H -90.5092 kJ/mol # Calculated enthalpy of reaction NiSO4 +# Enthalpy of formation: -873.066 kJ/mol + -analytic -1.8878e+002 -7.6403e-002 7.9412e+003 7.6866e+001 1.2397e+002 +# -Range: 0-300 + +NiSO4:6H2O(alpha) + NiSO4:6H2O = + 1.0000 Ni++ + 1.0000 SO4-- + 6.0000 H2O + log_k -2.0072 + -delta_H 4.37983 kJ/mol # Calculated enthalpy of reaction NiSO4:6H2O(alpha) +# Enthalpy of formation: -2682.99 kJ/mol + -analytic -1.1937e+002 -1.3785e-002 4.1543e+003 4.3454e+001 7.0587e+001 +# -Range: 0-200 + +Nickelbischofite + NiCl2:6H2O = + 1.0000 Ni++ + 2.0000 Cl- + 6.0000 H2O + log_k 3.1681 + -delta_H 0.064088 kJ/mol # Calculated enthalpy of reaction Nickelbischofite +# Enthalpy of formation: -2103.23 kJ/mol + -analytic -1.4340e+002 -2.1257e-002 5.1858e+003 5.4759e+001 8.8112e+001 +# -Range: 0-200 + +Ningyoite + CaUP2O8:2H2O +2.0000 H+ = + 1.0000 Ca++ + 1.0000 U++++ + 2.0000 H2O + 2.0000 HPO4-- + log_k -29.7931 + -delta_H -36.4769 kJ/mol # Calculated enthalpy of reaction Ningyoite +# Enthalpy of formation: -1016.65 kcal/mol + -analytic -1.0274e+002 -4.9041e-002 1.7779e+003 3.2973e+001 3.0227e+001 +# -Range: 0-200 + +Niter + KNO3 = + 1.0000 K+ + 1.0000 NO3- + log_k -0.2061 + -delta_H 35.4794 kJ/mol # Calculated enthalpy of reaction Niter +# Enthalpy of formation: -494.46 kJ/mol + -analytic -6.5607e+001 -2.8165e-002 -4.0131e+002 3.0361e+001 -6.2425e+000 +# -Range: 0-300 + +Nitrobarite + Ba(NO3)2 = + 1.0000 Ba++ + 2.0000 NO3- + log_k -2.4523 + -delta_H 40.8161 kJ/mol # Calculated enthalpy of reaction Nitrobarite +# Enthalpy of formation: -992.082 kJ/mol + -analytic -1.6179e+002 -6.5831e-002 1.2142e+003 7.0664e+001 1.8995e+001 +# -Range: 0-300 + +Nontronite-Ca + Ca.165Fe2Al.33Si3.67H2O12 +7.3200 H+ = + 0.1650 Ca++ + 0.3300 Al+++ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O + log_k -11.5822 + -delta_H -38.138 kJ/mol # Calculated enthalpy of reaction Nontronite-Ca +# Enthalpy of formation: -1166.7 kcal/mol + -analytic 1.6291e+001 4.3557e-003 1.0221e+004 -1.8690e+001 -1.5427e+006 +# -Range: 0-300 + +Nontronite-Cs + Cs.33Si4Fe1.67Mg.33H2O12 +6.0000 H+ = + 0.3300 Cs+ + 0.3300 Mg++ + 1.6700 Fe+++ + 4.0000 H2O + 4.0000 SiO2 + log_k 5.7975 + -delta_H -86.6996 kJ/mol # Calculated enthalpy of reaction Nontronite-Cs +# Enthalpy of formation: -1168.54 kcal/mol + -analytic -1.1646e+001 1.0033e-002 1.7668e+004 -9.0129e+000 -2.0143e+006 +# -Range: 0-300 + +Nontronite-H + H.33Fe2Al.33Si3.67H2O12 +6.9900 H+ = + 0.3300 Al+++ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O + log_k -12.5401 + -delta_H -30.452 kJ/mol # Calculated enthalpy of reaction Nontronite-H +# Enthalpy of formation: -1147.12 kcal/mol + -analytic 9.7794e+001 1.4055e-002 4.7440e+003 -4.7272e+001 -1.2103e+006 +# -Range: 0-300 + +Nontronite-K + K.33Fe2Al.33Si3.67H2O12 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 K+ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O + log_k -11.8648 + -delta_H -26.5822 kJ/mol # Calculated enthalpy of reaction Nontronite-K +# Enthalpy of formation: -1167.93 kcal/mol + -analytic 1.3630e+001 4.7708e-003 1.0073e+004 -1.7407e+001 -1.5803e+006 +# -Range: 0-300 + +Nontronite-Mg + Mg.165Fe2Al.33Si3.67H2O12 +7.3200 H+ = + 0.1650 Mg++ + 0.3300 Al+++ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O + log_k -11.6200 + -delta_H -41.1779 kJ/mol # Calculated enthalpy of reaction Nontronite-Mg +# Enthalpy of formation: -1162.93 kcal/mol + -analytic 5.5961e+001 1.0139e-002 8.0777e+003 -3.3164e+001 -1.4031e+006 +# -Range: 0-300 + +Nontronite-Na + Na.33Fe2Al.33Si3.67H2O12 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 Na+ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O + log_k -11.5263 + -delta_H -31.5687 kJ/mol # Calculated enthalpy of reaction Nontronite-Na +# Enthalpy of formation: -1165.8 kcal/mol + -analytic 6.7915e+001 1.2851e-002 7.1218e+003 -3.7112e+001 -1.3758e+006 +# -Range: 0-300 + +Np + Np +4.0000 H+ +1.0000 O2 = + 1.0000 Np++++ + 2.0000 H2O + log_k 174.1077 + -delta_H -1115.54 kJ/mol # Calculated enthalpy of reaction Np +# Enthalpy of formation: 0 kJ/mol + -analytic -3.2136e+001 -1.4340e-002 5.7853e+004 6.6512e+000 9.0275e+002 +# -Range: 0-300 + +Np(HPO4)2 + Np(HPO4)2 = + 1.0000 Np++++ + 2.0000 HPO4-- + log_k -30.9786 + -delta_H -18.6219 kJ/mol # Calculated enthalpy of reaction Np(HPO4)2 +# Enthalpy of formation: -3121.54 kJ/mol + -analytic -3.6627e+002 -1.3955e-001 7.1370e+003 1.4261e+002 1.1147e+002 +# -Range: 0-300 + +Np(OH)4 + Np(OH)4 +4.0000 H+ = + 1.0000 Np++++ + 4.0000 H2O + log_k 0.8103 + -delta_H -78.4963 kJ/mol # Calculated enthalpy of reaction Np(OH)4 +# Enthalpy of formation: -1620.86 kJ/mol + -analytic -9.5122e+001 -1.0532e-002 7.1132e+003 3.0398e+001 1.1102e+002 +# -Range: 0-300 + +Np2O5 + Np2O5 +2.0000 H+ = + 1.0000 H2O + 2.0000 NpO2+ + log_k 9.5000 + -delta_H -94.4576 kJ/mol # Calculated enthalpy of reaction Np2O5 +# Enthalpy of formation: -513.232 kcal/mol + -analytic 5.9974e+003 1.4553e+000 -1.7396e+005 -2.3595e+003 -2.9689e+003 +# -Range: 25-150 + +NpO2 + NpO2 +4.0000 H+ = + 1.0000 Np++++ + 2.0000 H2O + log_k -7.8026 + -delta_H -53.6087 kJ/mol # Calculated enthalpy of reaction NpO2 +# Enthalpy of formation: -1074.07 kJ/mol + -analytic -7.0053e+001 -1.1017e-002 4.4742e+003 2.0421e+001 6.9836e+001 +# -Range: 0-300 + +NpO2(OH)2 + NpO2(OH)2 +2.0000 H+ = + 1.0000 NpO2++ + 2.0000 H2O + log_k 5.9851 + -delta_H -54.9977 kJ/mol # Calculated enthalpy of reaction NpO2(OH)2 +# Enthalpy of formation: -1377.16 kJ/mol + -analytic -2.7351e+001 -1.5987e-003 3.8301e+003 8.4735e+000 5.9773e+001 +# -Range: 0-300 + +NpO2OH(am) + NpO2OH +1.0000 H+ = + 1.0000 H2O + 1.0000 NpO2+ + log_k 4.2364 + -delta_H -39.6673 kJ/mol # Calculated enthalpy of reaction NpO2OH(am) +# Enthalpy of formation: -1224.16 kJ/mol + -analytic -3.8824e+000 6.7122e-003 2.5390e+003 -9.7040e-001 3.9619e+001 +# -Range: 0-300 + +Okenite + CaSi2O4(OH)2:H2O +2.0000 H+ = + 1.0000 Ca++ + 2.0000 SiO2 + 3.0000 H2O + log_k 10.3816 + -delta_H -19.4974 kJ/mol # Calculated enthalpy of reaction Okenite +# Enthalpy of formation: -749.641 kcal/mol + -analytic -7.7353e+001 1.5091e-002 1.3023e+004 2.1337e+001 -1.1831e+006 +# -Range: 0-300 + +Orpiment + As2S3 +6.0000 H2O = + 2.0000 H2AsO3- + 3.0000 HS- + 5.0000 H+ + log_k -79.4159 + -delta_H 406.539 kJ/mol # Calculated enthalpy of reaction Orpiment +# Enthalpy of formation: -169.423 kJ/mol + -analytic -3.3964e+002 -1.4977e-001 -1.5711e+004 1.4448e+002 -2.4505e+002 +# -Range: 0-300 + +Otavite + CdCO3 +1.0000 H+ = + 1.0000 Cd++ + 1.0000 HCO3- + log_k -1.7712 + -delta_H 0 # Not possible to calculate enthalpy of reaction Otavite +# Enthalpy of formation: 0 kcal/mol + +Ottemannite + Sn2S3 +3.0000 H+ = + 1.0000 Sn++ + 1.0000 Sn++++ + 3.0000 HS- + log_k -46.2679 + -delta_H 236.727 kJ/mol # Calculated enthalpy of reaction Ottemannite +# Enthalpy of formation: -63 kcal/mol + -analytic -6.2863e+001 -5.9171e-002 -1.3469e+004 3.2092e+001 -2.2870e+002 +# -Range: 0-200 + +Oxychloride-Mg + Mg2Cl(OH)3:4H2O +3.0000 H+ = + 1.0000 Cl- + 2.0000 Mg++ + 7.0000 H2O + log_k 25.8319 + -delta_H 0 # Not possible to calculate enthalpy of reaction Oxychloride-Mg +# Enthalpy of formation: 0 kcal/mol + +P + P +1.5000 H2O +1.2500 O2 = + 1.0000 HPO4-- + 2.0000 H+ + log_k 132.1032 + -delta_H -848.157 kJ/mol # Calculated enthalpy of reaction P +# Enthalpy of formation: 0 kJ/mol + -analytic -9.2727e+001 -6.8342e-002 4.3465e+004 4.0156e+001 6.7826e+002 +# -Range: 0-300 + +Paragonite + NaAl3Si3O10(OH)2 +10.0000 H+ = + 1.0000 Na+ + 3.0000 Al+++ + 3.0000 SiO2 + 6.0000 H2O + log_k 17.5220 + -delta_H -275.056 kJ/mol # Calculated enthalpy of reaction Paragonite +# Enthalpy of formation: -1416.96 kcal/mol + -analytic 3.5507e+001 -1.0720e-002 1.3519e+004 -2.2283e+001 -4.5657e+005 +# -Range: 0-300 + +Paralaurionite + PbClOH +1.0000 H+ = + 1.0000 Cl- + 1.0000 H2O + 1.0000 Pb++ + log_k 0.2035 + -delta_H 8.41948 kJ/mol # Calculated enthalpy of reaction Paralaurionite +# Enthalpy of formation: -460.417 kJ/mol + -analytic -1.1245e+001 -1.0520e-002 -5.3551e+002 6.6175e+000 -9.0896e+000 +# -Range: 0-200 + +Pargasite + NaCa2Al3Mg4Si6O22(OH)2 +22.0000 H+ = + 1.0000 Na+ + 2.0000 Ca++ + 3.0000 Al+++ + 4.0000 Mg++ + 6.0000 SiO2 + 12.0000 H2O + log_k 101.9939 + -delta_H -880.205 kJ/mol # Calculated enthalpy of reaction Pargasite +# Enthalpy of formation: -3016.62 kcal/mol + -analytic -6.7889e+001 -3.7817e-002 5.0493e+004 9.2705e+000 -1.0163e+006 +# -Range: 0-300 + +Parsonsite + Pb2UO2(PO4)2:2H2O +2.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 HPO4-- + 2.0000 Pb++ + log_k -27.7911 + -delta_H 0 # Not possible to calculate enthalpy of reaction Parsonsite +# Enthalpy of formation: 0 kcal/mol + +Pb + Pb +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Pb++ + log_k 47.1871 + -delta_H -278.851 kJ/mol # Calculated enthalpy of reaction Pb +# Enthalpy of formation: 0 kJ/mol + -analytic -3.1784e+001 -1.4816e-002 1.4984e+004 1.3383e+001 2.3381e+002 +# -Range: 0-300 + +Pb(H2PO4)2 + Pb(H2PO4)2 = + 1.0000 Pb++ + 2.0000 H+ + 2.0000 HPO4-- + log_k -9.8400 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(H2PO4)2 +# Enthalpy of formation: 0 kcal/mol + +Pb(IO3)2 + Pb(IO3)2 = + 1.0000 Pb++ + 2.0000 IO3- + log_k -12.5173 + -delta_H 53.7783 kJ/mol # Calculated enthalpy of reaction Pb(IO3)2 +# Enthalpy of formation: -495.525 kJ/mol + -analytic -5.3573e+000 -1.4164e-002 -3.6236e+003 3.7209e+000 -6.1532e+001 +# -Range: 0-200 + +Pb(N3)2(mono) + Pb(N3)2 = + 1.0000 Pb++ + 2.0000 N3- + log_k -8.3583 + -delta_H 72.9495 kJ/mol # Calculated enthalpy of reaction Pb(N3)2(mono) +# Enthalpy of formation: 478.251 kJ/mol + -analytic 6.0051e+001 -1.1168e-002 -7.0041e+003 -1.6812e+001 -1.1896e+002 +# -Range: 0-200 + +Pb(N3)2(orth) + Pb(N3)2 = + 1.0000 Pb++ + 2.0000 N3- + log_k -8.7963 + -delta_H 75.0615 kJ/mol # Calculated enthalpy of reaction Pb(N3)2(orth) +# Enthalpy of formation: 476.139 kJ/mol + -analytic 5.9779e+001 -1.1215e-002 -7.1081e+003 -1.6732e+001 -1.2073e+002 +# -Range: 0-200 + +Pb(Thiocyanate)2 + Pb(Thiocyanate)2 = + 1.0000 Pb++ + 2.0000 Thiocyanate- + log_k -0.0910 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(Thiocyanate)2 +# Enthalpy of formation: 151.212 kJ/mol + -analytic 7.4247e+000 -1.6226e-002 0.0000e+000 0.0000e+000 -2.3938e+005 +# -Range: 0-200 + +Pb2Cl2CO3 + Pb2Cl2CO3 +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Cl- + 2.0000 Pb++ + log_k -9.6180 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2Cl2CO3 +# Enthalpy of formation: 0 kcal/mol + +Pb2Cl5NH4 + Pb2Cl5NH4 = + 1.0000 H+ + 1.0000 NH3 + 2.0000 Pb++ + 5.0000 Cl- + log_k -19.6100 + -delta_H 119.617 kJ/mol # Calculated enthalpy of reaction Pb2Cl5NH4 +# Enthalpy of formation: -1034.51 kJ/mol + -analytic 1.3149e+001 -4.8598e-002 -9.8473e+003 5.9552e+000 -1.6723e+002 +# -Range: 0-200 + +Pb2O(N3)2 + Pb2O(N3)2 +2.0000 H+ = + 1.0000 H2O + 2.0000 N3- + 2.0000 Pb++ + log_k -13.7066 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2O(N3)2 +# Enthalpy of formation: 0 kcal/mol + +Pb2SiO4 + Pb2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Pb++ + log_k 18.0370 + -delta_H -83.9883 kJ/mol # Calculated enthalpy of reaction Pb2SiO4 +# Enthalpy of formation: -1363.55 kJ/mol + -analytic 2.7287e+002 6.3875e-002 -3.7001e+003 -1.0568e+002 -6.2927e+001 +# -Range: 0-200 + +Pb3(PO4)2 + Pb3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Pb++ + log_k -19.9744 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb3(PO4)2 +# Enthalpy of formation: 0 kcal/mol + +Pb3SO6 + Pb3SO6 +4.0000 H+ = + 1.0000 SO4-- + 2.0000 H2O + 3.0000 Pb++ + log_k 10.5981 + -delta_H -79.3438 kJ/mol # Calculated enthalpy of reaction Pb3SO6 +# Enthalpy of formation: -1399.17 kJ/mol + -analytic -5.3308e+000 -1.8639e-002 3.0245e+003 4.5760e+000 5.1362e+001 +# -Range: 0-200 + +Pb4Cl2(OH)6 + Pb4Cl2(OH)6 +6.0000 H+ = + 2.0000 Cl- + 4.0000 Pb++ + 6.0000 H2O + log_k 17.2793 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4Cl2(OH)6 +# Enthalpy of formation: 0 kcal/mol + +Pb4O(PO4)2 + Pb4O(PO4)2 +4.0000 H+ = + 1.0000 H2O + 2.0000 HPO4-- + 4.0000 Pb++ + log_k -12.5727 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4O(PO4)2 +# Enthalpy of formation: 0 kcal/mol + +Pb4SO7 + Pb4SO7 +6.0000 H+ = + 1.0000 SO4-- + 3.0000 H2O + 4.0000 Pb++ + log_k 21.7354 + -delta_H -136.566 kJ/mol # Calculated enthalpy of reaction Pb4SO7 +# Enthalpy of formation: -1626.87 kJ/mol + -analytic -2.6884e+001 -2.1429e-002 6.8390e+003 1.2951e+001 1.1614e+002 +# -Range: 0-200 + +PbBr2 + PbBr2 = + 1.0000 Pb++ + 2.0000 Br- + log_k -5.2413 + -delta_H 36.3838 kJ/mol # Calculated enthalpy of reaction PbBr2 +# Enthalpy of formation: -278.47 kJ/mol + -analytic 3.0977e+001 -1.6567e-002 -4.2879e+003 -6.8329e+000 -7.2825e+001 +# -Range: 0-200 + +PbBrF + PbBrF = + 1.0000 Br- + 1.0000 F- + 1.0000 Pb++ + log_k -8.0418 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBrF +# Enthalpy of formation: 0 kcal/mol + +PbCO3.PbO + PbCO3.PbO +3.0000 H+ = + 1.0000 H2O + 1.0000 HCO3- + 2.0000 Pb++ + log_k 9.6711 + -delta_H -55.4286 kJ/mol # Calculated enthalpy of reaction PbCO3.PbO +# Enthalpy of formation: -918.502 kJ/mol + -analytic -4.2160e+001 -1.4124e-002 3.8661e+003 1.7404e+001 6.5667e+001 +# -Range: 0-200 + +PbF2 + PbF2 = + 1.0000 Pb++ + 2.0000 F- + log_k -5.2047 + -delta_H -5.83772 kJ/mol # Calculated enthalpy of reaction PbF2 +# Enthalpy of formation: -663.937 kJ/mol + -analytic -2.2712e+002 -7.9552e-002 5.2198e+003 9.2173e+001 8.1516e+001 +# -Range: 0-300 + +PbFCl + PbFCl = + 1.0000 Cl- + 1.0000 F- + 1.0000 Pb++ + log_k -8.9820 + -delta_H 33.1852 kJ/mol # Calculated enthalpy of reaction PbFCl +# Enthalpy of formation: -534.692 kJ/mol + -analytic 6.1688e+000 -2.0732e-002 -3.4666e+003 1.0697e+000 -5.8869e+001 +# -Range: 0-200 + +PbHPO4 + PbHPO4 = + 1.0000 HPO4-- + 1.0000 Pb++ + log_k -15.7275 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbHPO4 +# Enthalpy of formation: 0 kcal/mol + +PbI2 + PbI2 = + 1.0000 Pb++ + 2.0000 I- + log_k -8.0418 + -delta_H 62.5717 kJ/mol # Calculated enthalpy of reaction PbI2 +# Enthalpy of formation: -175.456 kJ/mol + -analytic 1.5277e+001 -2.0582e-002 -5.1256e+003 0.0000e+000 0.0000e+000 +# -Range: 0-200 + +PbSO4(NH3)2 + PbSO4(NH3)2 = + 1.0000 Pb++ + 1.0000 SO4-- + 2.0000 NH3 + log_k -2.0213 + -delta_H 28.284 kJ/mol # Calculated enthalpy of reaction PbSO4(NH3)2 +# Enthalpy of formation: -1099.64 kJ/mol + -analytic 3.5718e-001 -1.0192e-002 -2.0095e+003 2.9853e+000 -3.4124e+001 +# -Range: 0-200 + +PbSO4(NH3)4 + PbSO4(NH3)4 = + 1.0000 Pb++ + 1.0000 SO4-- + 4.0000 NH3 + log_k 1.5024 + -delta_H 31.155 kJ/mol # Calculated enthalpy of reaction PbSO4(NH3)4 +# Enthalpy of formation: -1265.18 kJ/mol + -analytic -4.1080e+001 -7.2307e-003 6.6637e+001 1.7984e+001 1.1460e+000 +# -Range: 0-200 + +PbSeO4 + PbSeO4 = + 1.0000 Pb++ + 1.0000 SeO4-- + log_k -6.9372 + -delta_H 10.8967 kJ/mol # Calculated enthalpy of reaction PbSeO4 +# Enthalpy of formation: -609.125 kJ/mol + -analytic 3.1292e+001 -1.4192e-002 -3.0980e+003 -9.5448e+000 -5.2618e+001 +# -Range: 0-200 + +Pd + Pd +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Pd++ + log_k 12.0688 + -delta_H -103.709 kJ/mol # Calculated enthalpy of reaction Pd +# Enthalpy of formation: 0 kcal/mol + -analytic -6.2530e+001 -1.9774e-002 6.7013e+003 2.3441e+001 1.0459e+002 +# -Range: 0-300 + +PdO + PdO +2.0000 H+ = + 1.0000 H2O + 1.0000 Pd++ + log_k 0.0643 + -delta_H -24.422 kJ/mol # Calculated enthalpy of reaction PdO +# Enthalpy of formation: -20.4 kcal/mol + -analytic -8.8921e+001 -1.9031e-002 3.8537e+003 3.3028e+001 6.0159e+001 +# -Range: 0-300 + +Penroseite + NiSe2 +1.0000 H2O = + 0.5000 O2 + 1.0000 Ni++ + 2.0000 H+ + 2.0000 Se-- + log_k -98.8004 + -delta_H 0 # Not possible to calculate enthalpy of reaction Penroseite +# Enthalpy of formation: -26 kcal/mol + -analytic -4.7339e+001 -1.2035e-002 -2.3589e+004 1.2624e+001 -3.6808e+002 +# -Range: 0-300 + +Pentahydrite + MgSO4:5H2O = + 1.0000 Mg++ + 1.0000 SO4-- + 5.0000 H2O + log_k -1.3872 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pentahydrite +# Enthalpy of formation: 0 kcal/mol + +Periclase + MgO +2.0000 H+ = + 1.0000 H2O + 1.0000 Mg++ + log_k 21.3354 + -delta_H -150.139 kJ/mol # Calculated enthalpy of reaction Periclase +# Enthalpy of formation: -143.8 kcal/mol + -analytic -8.8465e+001 -1.8390e-002 1.0414e+004 3.2469e+001 1.6253e+002 +# -Range: 0-300 + +Petalite + LiAlSi4O10 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Li+ + 2.0000 H2O + 4.0000 SiO2 + log_k -3.8153 + -delta_H -13.1739 kJ/mol # Calculated enthalpy of reaction Petalite +# Enthalpy of formation: -4886.15 kJ/mol + -analytic -6.6355e+000 2.4316e-002 1.5949e+004 -1.3341e+001 -2.2265e+006 +# -Range: 0-300 + +Phlogopite + KAlMg3Si3O10(OH)2 +10.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 3.0000 Mg++ + 3.0000 SiO2 + 6.0000 H2O + log_k 37.4400 + -delta_H -310.503 kJ/mol # Calculated enthalpy of reaction Phlogopite +# Enthalpy of formation: -1488.07 kcal/mol + -analytic -8.7730e+001 -1.7253e-002 2.3748e+004 2.4465e+001 -8.9045e+005 +# -Range: 0-300 + +Phosgenite + Pb2(CO3)Cl2 +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Cl- + 2.0000 Pb++ + log_k -9.6355 + -delta_H 49.0844 kJ/mol # Calculated enthalpy of reaction Phosgenite +# Enthalpy of formation: -1071.34 kJ/mol + -analytic 3.4909e+000 -2.9365e-002 -4.6327e+003 4.5068e+000 -7.8671e+001 +# -Range: 0-200 + +Picromerite + K2Mg(SO4)2:6H2O = + 1.0000 Mg++ + 2.0000 K+ + 2.0000 SO4-- + 6.0000 H2O + log_k -4.4396 + -delta_H 0 # Not possible to calculate enthalpy of reaction Picromerite +# Enthalpy of formation: 0 kcal/mol + +Pirssonite + Na2Ca(CO3)2:2H2O +2.0000 H+ = + 1.0000 Ca++ + 2.0000 H2O + 2.0000 HCO3- + 2.0000 Na+ + log_k 11.3230 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pirssonite +# Enthalpy of formation: 0 kcal/mol + +Plattnerite + PbO2 +4.0000 H+ = + 1.0000 Pb++++ + 2.0000 H2O + log_k -7.9661 + -delta_H 0 # Not possible to calculate enthalpy of reaction Plattnerite +# Enthalpy of formation: -277.363 kJ/mol + +Plumbogummite + PbAl3(PO4)2(OH)5:H2O +7.0000 H+ = + 1.0000 Pb++ + 2.0000 HPO4-- + 3.0000 Al+++ + 6.0000 H2O + log_k -8.1463 + -delta_H 0 # Not possible to calculate enthalpy of reaction Plumbogummite +# Enthalpy of formation: 0 kcal/mol + +Pm + Pm +3.0000 H+ +0.7500 O2 = + 1.0000 Pm+++ + 1.5000 H2O + log_k 180.6737 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm +# Enthalpy of formation: 0 kcal/mol + +Pm(OH)3 + Pm(OH)3 +3.0000 H+ = + 1.0000 Pm+++ + 3.0000 H2O + log_k 17.4852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Pm(OH)3(am) + Pm(OH)3 +3.0000 H+ = + 1.0000 Pm+++ + 3.0000 H2O + log_k 18.2852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +Pm2(CO3)3 + Pm2(CO3)3 +3.0000 H+ = + 2.0000 Pm+++ + 3.0000 HCO3- + log_k -3.5636 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm2(CO3)3 +# Enthalpy of formation: 0 kcal/mol + +Pm2O3 + Pm2O3 +6.0000 H+ = + 2.0000 Pm+++ + 3.0000 H2O + log_k 48.8000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm2O3 +# Enthalpy of formation: 0 kcal/mol + +PmF3:.5H2O + PmF3:.5H2O = + 0.5000 H2O + 1.0000 Pm+++ + 3.0000 F- + log_k -18.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmF3:.5H2O +# Enthalpy of formation: 0 kcal/mol + +PmPO4:10H2O + PmPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Pm+++ + 10.0000 H2O + log_k -12.1782 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmPO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +Polydymite + Ni3S4 +2.0000 H+ = + 1.0000 S2-- + 2.0000 HS- + 3.0000 Ni++ + log_k -48.9062 + -delta_H 0 # Not possible to calculate enthalpy of reaction Polydymite +# Enthalpy of formation: -78.014 kcal/mol + -analytic -1.8030e+001 -4.6945e-002 -1.1557e+004 8.8339e+000 -1.9625e+002 +# -Range: 0-200 + +Polyhalite + K2MgCa2(SO4)4:2H2O = + 1.0000 Mg++ + 2.0000 Ca++ + 2.0000 H2O + 2.0000 K+ + 4.0000 SO4-- + log_k -14.3124 + -delta_H 0 # Not possible to calculate enthalpy of reaction Polyhalite +# Enthalpy of formation: 0 kcal/mol + +Portlandite + Ca(OH)2 +2.0000 H+ = + 1.0000 Ca++ + 2.0000 H2O + log_k 22.5552 + -delta_H -128.686 kJ/mol # Calculated enthalpy of reaction Portlandite +# Enthalpy of formation: -986.074 kJ/mol + -analytic -8.3848e+001 -1.8373e-002 9.3154e+003 3.2584e+001 1.4538e+002 +# -Range: 0-300 + +Pr + Pr +3.0000 H+ +0.7500 O2 = + 1.0000 Pr+++ + 1.5000 H2O + log_k 183.6893 + -delta_H -1125.92 kJ/mol # Calculated enthalpy of reaction Pr +# Enthalpy of formation: 0 kJ/mol + -analytic -4.1136e+002 -7.5853e-002 7.9974e+004 1.4718e+002 -1.3148e+006 +# -Range: 0-300 + +Pr(OH)3 + Pr(OH)3 +3.0000 H+ = + 1.0000 Pr+++ + 3.0000 H2O + log_k 19.5852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Pr(OH)3(am) + Pr(OH)3 +3.0000 H+ = + 1.0000 Pr+++ + 3.0000 H2O + log_k 21.0852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +Pr2(CO3)3 + Pr2(CO3)3 +3.0000 H+ = + 2.0000 Pr+++ + 3.0000 HCO3- + log_k -3.8136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr2(CO3)3 +# Enthalpy of formation: 0 kcal/mol + +Pr2O3 + Pr2O3 +6.0000 H+ = + 2.0000 Pr+++ + 3.0000 H2O + log_k 61.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr2O3 +# Enthalpy of formation: 0 kcal/mol + +PrF3:.5H2O + PrF3:.5H2O = + 0.5000 H2O + 1.0000 Pr+++ + 3.0000 F- + log_k -18.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PrF3:.5H2O +# Enthalpy of formation: 0 kcal/mol + +PrPO4:10H2O + PrPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Pr+++ + 10.0000 H2O + log_k -12.2782 + -delta_H 0 # Not possible to calculate enthalpy of reaction PrPO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +Prehnite + Ca2Al2Si3O10(OH)2 +10.0000 H+ = + 2.0000 Al+++ + 2.0000 Ca++ + 3.0000 SiO2 + 6.0000 H2O + log_k 32.9305 + -delta_H -311.875 kJ/mol # Calculated enthalpy of reaction Prehnite +# Enthalpy of formation: -1481.65 kcal/mol + -analytic -3.5763e+001 -2.1396e-002 2.0167e+004 6.3554e+000 -7.4967e+005 +# -Range: 0-300 + +Przhevalskite + Pb(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Pb++ + 2.0000 HPO4-- + 2.0000 UO2++ + log_k -20.0403 + -delta_H -71.1058 kJ/mol # Calculated enthalpy of reaction Przhevalskite +# Enthalpy of formation: -1087.51 kcal/mol + -analytic -2.9817e+001 -4.0756e-002 1.0077e+003 7.4885e+000 1.7122e+001 +# -Range: 0-200 + +Pseudowollastonite + CaSiO3 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O + 1.0000 SiO2 + log_k 13.9997 + -delta_H -79.4625 kJ/mol # Calculated enthalpy of reaction Pseudowollastonite +# Enthalpy of formation: -388.9 kcal/mol + -analytic 2.6691e+001 6.3323e-003 5.5723e+003 -1.1822e+001 -3.6038e+005 +# -Range: 0-300 + +Pu + Pu +4.0000 H+ +1.0000 O2 = + 1.0000 Pu++++ + 2.0000 H2O + log_k 170.3761 + -delta_H -1095.44 kJ/mol # Calculated enthalpy of reaction Pu +# Enthalpy of formation: 0 kJ/mol + -analytic -1.9321e+002 -3.4314e-002 6.6737e+004 6.3552e+001 -6.4737e+005 +# -Range: 0-300 + +Pu(HPO4)2 + Pu(HPO4)2 = + 1.0000 Pu++++ + 2.0000 HPO4-- + log_k -27.7025 + -delta_H -33.4449 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)2 +# Enthalpy of formation: -3086.61 kJ/mol + -analytic -3.6565e+002 -1.3961e-001 7.9105e+003 1.4265e+002 1.2354e+002 +# -Range: 0-300 + +Pu(OH)3 + Pu(OH)3 +3.0000 H+ = + 1.0000 Pu+++ + 3.0000 H2O + log_k 22.4499 + -delta_H -148.067 kJ/mol # Calculated enthalpy of reaction Pu(OH)3 +# Enthalpy of formation: -1301 kJ/mol + -analytic -6.1342e+001 -8.6952e-003 9.7733e+003 2.1664e+001 1.5252e+002 +# -Range: 0-300 + +Pu(OH)4 + Pu(OH)4 +4.0000 H+ = + 1.0000 Pu++++ + 4.0000 H2O + log_k 0.7578 + -delta_H -68.6543 kJ/mol # Calculated enthalpy of reaction Pu(OH)4 +# Enthalpy of formation: -1610.59 kJ/mol + -analytic -9.3473e+001 -1.0579e-002 6.5974e+003 3.0415e+001 1.0297e+002 +# -Range: 0-300 + +Pu2O3 + Pu2O3 +6.0000 H+ = + 2.0000 Pu+++ + 3.0000 H2O + log_k 48.1332 + -delta_H -360.26 kJ/mol # Calculated enthalpy of reaction Pu2O3 +# Enthalpy of formation: -1680.36 kJ/mol + -analytic -8.7831e+001 -1.9784e-002 2.0832e+004 2.9096e+001 3.2509e+002 +# -Range: 0-300 + +PuF3 + PuF3 = + 1.0000 Pu+++ + 3.0000 F- + log_k -10.1872 + -delta_H -46.2608 kJ/mol # Calculated enthalpy of reaction PuF3 +# Enthalpy of formation: -1551.33 kJ/mol + -analytic -3.1104e+002 -1.0854e-001 8.7435e+003 1.2279e+002 1.3653e+002 +# -Range: 0-300 + +PuF4 + PuF4 = + 1.0000 Pu++++ + 4.0000 F- + log_k -13.2091 + -delta_H -100.039 kJ/mol # Calculated enthalpy of reaction PuF4 +# Enthalpy of formation: -1777.24 kJ/mol + -analytic -4.3072e+002 -1.4500e-001 1.4076e+004 1.6709e+002 2.1977e+002 +# -Range: 0-300 + +PuO2 + PuO2 +4.0000 H+ = + 1.0000 Pu++++ + 2.0000 H2O + log_k -7.3646 + -delta_H -51.8827 kJ/mol # Calculated enthalpy of reaction PuO2 +# Enthalpy of formation: -1055.69 kJ/mol + -analytic -7.1933e+001 -1.1841e-002 4.4494e+003 2.1491e+001 6.9450e+001 +# -Range: 0-300 + +PuO2(OH)2 + PuO2(OH)2 +2.0000 H+ = + 1.0000 PuO2++ + 2.0000 H2O + log_k 3.5499 + -delta_H -35.7307 kJ/mol # Calculated enthalpy of reaction PuO2(OH)2 +# Enthalpy of formation: -1357.52 kJ/mol + -analytic -2.6536e+001 -1.6542e-003 2.8262e+003 8.5277e+000 4.4108e+001 +# -Range: 0-300 + +PuO2HPO4 + PuO2HPO4 = + 1.0000 HPO4-- + 1.0000 PuO2++ + log_k -12.6074 + -delta_H -10.108 kJ/mol # Calculated enthalpy of reaction PuO2HPO4 +# Enthalpy of formation: -2103.55 kJ/mol + -analytic -1.6296e+002 -6.6166e-002 3.0557e+003 6.4577e+001 4.7729e+001 +# -Range: 0-300 + +PuO2OH(am) + PuO2OH +1.0000 H+ = + 1.0000 H2O + 1.0000 PuO2+ + log_k 5.4628 + -delta_H -42.4933 kJ/mol # Calculated enthalpy of reaction PuO2OH(am) +# Enthalpy of formation: -1157.53 kJ/mol + -analytic -3.1316e+000 6.7573e-003 2.6884e+003 -9.8622e-001 4.1951e+001 +# -Range: 0-300 + +Pyrite + FeS2 +1.0000 H2O = + 0.2500 H+ + 0.2500 SO4-- + 1.0000 Fe++ + 1.7500 HS- + log_k -24.6534 + -delta_H 109.535 kJ/mol # Calculated enthalpy of reaction Pyrite +# Enthalpy of formation: -41 kcal/mol + -analytic -2.4195e+002 -8.7948e-002 -6.2911e+002 9.9248e+001 -9.7454e+000 +# -Range: 0-300 + +Pyrolusite + MnO2 = + 0.5000 Mn++ + 0.5000 MnO4-- + log_k -17.6439 + -delta_H 83.3804 kJ/mol # Calculated enthalpy of reaction Pyrolusite +# Enthalpy of formation: -520.031 kJ/mol + -analytic -1.1541e+002 -4.1665e-002 -1.8960e+003 4.7094e+001 -2.9551e+001 +# -Range: 0-300 + +Pyromorphite + Pb5(PO4)3Cl +3.0000 H+ = + 1.0000 Cl- + 3.0000 HPO4-- + 5.0000 Pb++ + log_k -47.8954 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite +# Enthalpy of formation: 0 kcal/mol + +Pyromorphite-OH + Pb5(OH)(PO4)3 +4.0000 H+ = + 1.0000 H2O + 3.0000 HPO4-- + 5.0000 Pb++ + log_k -26.2653 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite-OH +# Enthalpy of formation: 0 kcal/mol + +Pyrophyllite + Al2Si4O10(OH)2 +6.0000 H+ = + 2.0000 Al+++ + 4.0000 H2O + 4.0000 SiO2 + log_k 0.4397 + -delta_H -102.161 kJ/mol # Calculated enthalpy of reaction Pyrophyllite +# Enthalpy of formation: -1345.31 kcal/mol + -analytic 1.1066e+001 1.2707e-002 1.6417e+004 -1.9596e+001 -1.8791e+006 +# -Range: 0-300 + +Pyrrhotite + FeS +1.0000 H+ = + 1.0000 Fe++ + 1.0000 HS- + log_k -3.7193 + -delta_H -7.9496 kJ/mol # Calculated enthalpy of reaction Pyrrhotite +# Enthalpy of formation: -24 kcal/mol + -analytic -1.5785e+002 -5.2258e-002 3.9711e+003 6.3195e+001 6.2012e+001 +# -Range: 0-300 + +Quartz + SiO2 = + 1.0000 SiO2 + log_k -3.9993 + -delta_H 32.949 kJ/mol # Calculated enthalpy of reaction Quartz +# Enthalpy of formation: -217.65 kcal/mol + -analytic 7.7698e-002 1.0612e-002 3.4651e+003 -4.3551e+000 -7.2138e+005 +# -Range: 0-300 + +Ra + Ra +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Ra++ + log_k 141.3711 + -delta_H -807.374 kJ/mol # Calculated enthalpy of reaction Ra +# Enthalpy of formation: 0 kJ/mol + -analytic 4.9867e+001 5.9412e-003 4.0293e+004 -1.8356e+001 6.8421e+002 +# -Range: 0-200 + +Ra(NO3)2 + Ra(NO3)2 = + 1.0000 Ra++ + 2.0000 NO3- + log_k -2.2419 + -delta_H 50.4817 kJ/mol # Calculated enthalpy of reaction Ra(NO3)2 +# Enthalpy of formation: -991.706 kJ/mol + -analytic 2.2001e+001 -9.5263e-003 -3.9389e+003 -3.3143e+000 -6.6896e+001 +# -Range: 0-200 + +RaCl2:2H2O + RaCl2:2H2O = + 1.0000 Ra++ + 2.0000 Cl- + 2.0000 H2O + log_k -0.7647 + -delta_H 32.6266 kJ/mol # Calculated enthalpy of reaction RaCl2:2H2O +# Enthalpy of formation: -1466.07 kJ/mol + -analytic -2.5033e+001 -1.8918e-002 -1.5713e+003 1.4213e+001 -2.6673e+001 +# -Range: 0-200 + +RaSO4 + RaSO4 = + 1.0000 Ra++ + 1.0000 SO4-- + log_k -10.4499 + -delta_H 40.309 kJ/mol # Calculated enthalpy of reaction RaSO4 +# Enthalpy of formation: -1477.51 kJ/mol + -analytic 4.8025e+001 -1.1376e-002 -5.1347e+003 -1.5306e+001 -8.7211e+001 +# -Range: 0-200 + +Rankinite + Ca3Si2O7 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 Ca++ + 3.0000 H2O + log_k 51.9078 + -delta_H -302.089 kJ/mol # Calculated enthalpy of reaction Rankinite +# Enthalpy of formation: -941.7 kcal/mol + -analytic -9.6393e+001 -1.6592e-002 2.4832e+004 3.2541e+001 -9.4630e+005 +# -Range: 0-300 + +Rb + Rb +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Rb+ + log_k 71.1987 + -delta_H -391.009 kJ/mol # Calculated enthalpy of reaction Rb +# Enthalpy of formation: 0 kJ/mol + -analytic -2.1179e+001 -8.7978e-003 2.0934e+004 1.0011e+001 3.2667e+002 +# -Range: 0-300 + +Rb2UO4 + Rb2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 Rb+ + log_k 34.0089 + -delta_H -170.224 kJ/mol # Calculated enthalpy of reaction Rb2UO4 +# Enthalpy of formation: -1922.7 kJ/mol + -analytic -3.8205e+001 3.1862e-003 1.0973e+004 1.3925e+001 1.8636e+002 +# -Range: 0-200 + +Re + Re +1.7500 O2 +0.5000 H2O = + 1.0000 H+ + 1.0000 ReO4- + log_k 105.9749 + -delta_H -623.276 kJ/mol # Calculated enthalpy of reaction Re +# Enthalpy of formation: 0 kJ/mol + -analytic 1.4535e+001 -2.9877e-002 2.9910e+004 0.0000e+000 0.0000e+000 +# -Range: 0-300 + +Realgar + AsS +2.0000 H2O = + 0.5000 S2O4-- + 1.0000 AsH3 + 1.0000 H+ + log_k -60.2768 + -delta_H 0 # Not possible to calculate enthalpy of reaction Realgar +# Enthalpy of formation: -71.406 kJ/mol + +Rhodochrosite + MnCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Mn++ + log_k -0.1928 + -delta_H -21.3426 kJ/mol # Calculated enthalpy of reaction Rhodochrosite +# Enthalpy of formation: -212.521 kcal/mol + -analytic -1.6195e+002 -4.9344e-002 5.0937e+003 6.4402e+001 7.9531e+001 +# -Range: 0-300 + +Rhodonite + MnSiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 Mn++ + 1.0000 SiO2 + log_k 9.7301 + -delta_H -64.7121 kJ/mol # Calculated enthalpy of reaction Rhodonite +# Enthalpy of formation: -1319.42 kJ/mol + -analytic 2.0585e+001 4.9941e-003 4.5816e+003 -9.8212e+000 -3.0658e+005 +# -Range: 0-300 + +Ripidolite-14A + Mg3Fe2Al2Si3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 2.0000 Fe++ + 3.0000 Mg++ + 3.0000 SiO2 + 12.0000 H2O + log_k 60.9638 + -delta_H -572.472 kJ/mol # Calculated enthalpy of reaction Ripidolite-14A +# Enthalpy of formation: -1947.87 kcal/mol + -analytic -1.8376e+002 -6.1934e-002 3.2458e+004 6.2290e+001 5.0653e+002 +# -Range: 0-300 + +Ripidolite-7A + Mg3Fe2Al2Si3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 2.0000 Fe++ + 3.0000 Mg++ + 3.0000 SiO2 + 12.0000 H2O + log_k 64.3371 + -delta_H -586.325 kJ/mol # Calculated enthalpy of reaction Ripidolite-7A +# Enthalpy of formation: -1944.56 kcal/mol + -analytic -1.9557e+002 -6.3779e-002 3.3634e+004 6.7057e+001 5.2489e+002 +# -Range: 0-300 + +Romarchite + SnO +2.0000 H+ = + 1.0000 H2O + 1.0000 Sn++ + log_k 1.3625 + -delta_H -8.69017 kJ/mol # Calculated enthalpy of reaction Romarchite +# Enthalpy of formation: -68.34 kcal/mol + -analytic -6.3187e+001 -1.5821e-002 2.2786e+003 2.4900e+001 3.5574e+001 +# -Range: 0-300 + +Ru + Ru +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Ru++ + log_k 16.6701 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru +# Enthalpy of formation: 0 kJ/mol + +Ru(OH)3:H2O(am) + Ru(OH)3:H2O +3.0000 H+ = + 1.0000 Ru+++ + 4.0000 H2O + log_k 1.6338 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)3:H2O(am) +# Enthalpy of formation: 0 kcal/mol + +RuBr3 + RuBr3 = + 1.0000 Ru+++ + 3.0000 Br- + log_k 3.1479 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuBr3 +# Enthalpy of formation: -147.76 kJ/mol + +RuCl3 + RuCl3 = + 1.0000 Ru+++ + 3.0000 Cl- + log_k 10.8215 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl3 +# Enthalpy of formation: -221.291 kJ/mol + +RuI3 + RuI3 = + 1.0000 Ru+++ + 3.0000 I- + log_k -12.4614 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuI3 +# Enthalpy of formation: -58.425 kJ/mol + +RuO2 + RuO2 +2.0000 H+ = + 1.0000 Ru(OH)2++ + log_k -5.4835 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuO2 +# Enthalpy of formation: -307.233 kJ/mol + +RuO2:2H2O(am) + RuO2:2H2O +2.0000 H+ = + 1.0000 Ru(OH)2++ + 2.0000 H2O + log_k 0.9045 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuO2:2H2O(am) +# Enthalpy of formation: 0 kcal/mol + +RuO4 + RuO4 = + 1.0000 RuO4 + log_k -0.9636 + -delta_H 6.305 kJ/mol # Calculated enthalpy of reaction RuO4 +# Enthalpy of formation: -244.447 kJ/mol + +RuSe2 + RuSe2 +2.0000 H2O = + 1.0000 Ru(OH)2++ + 2.0000 H+ + 2.0000 Se-- + log_k -113.7236 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuSe2 +# Enthalpy of formation: -146.274 kJ/mol + +Rutherfordine + UO2CO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 UO2++ + log_k -4.1064 + -delta_H -19.4032 kJ/mol # Calculated enthalpy of reaction Rutherfordine +# Enthalpy of formation: -1689.53 kJ/mol + -analytic -8.8224e+001 -3.1434e-002 2.6675e+003 3.4161e+001 4.1650e+001 +# -Range: 0-300 + +Rutile + TiO2 +2.0000 H2O = + 1.0000 Ti(OH)4 + log_k -9.6452 + -delta_H 0 # Not possible to calculate enthalpy of reaction Rutile +# Enthalpy of formation: -226.107 kcal/mol + +S + S +1.0000 H2O = + 0.5000 O2 + 1.0000 H+ + 1.0000 HS- + log_k -45.0980 + -delta_H 263.663 kJ/mol # Calculated enthalpy of reaction S +# Enthalpy of formation: 0 kJ/mol + -analytic -8.8928e+001 -2.8454e-002 -1.1516e+004 3.6747e+001 -1.7966e+002 +# -Range: 0-300 + +Safflorite + CoAs2 +2.0000 H2O +1.0000 H+ +0.5000 O2 = + 1.0000 AsH3 + 1.0000 Co++ + 1.0000 H2AsO3- + log_k -3.6419 + -delta_H -52.7226 kJ/mol # Calculated enthalpy of reaction Safflorite +# Enthalpy of formation: -23.087 kcal/mol + +Saleeite + Mg(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Mg++ + 2.0000 HPO4-- + 2.0000 UO2++ + log_k -19.4575 + -delta_H -110.816 kJ/mol # Calculated enthalpy of reaction Saleeite +# Enthalpy of formation: -1189.61 kcal/mol + -analytic -6.0028e+001 -4.4391e-002 3.9168e+003 1.6428e+001 6.6533e+001 +# -Range: 0-200 + +Sanbornite + BaSi2O5 +2.0000 H+ = + 1.0000 Ba++ + 1.0000 H2O + 2.0000 SiO2 + log_k 9.4753 + -delta_H -31.0845 kJ/mol # Calculated enthalpy of reaction Sanbornite +# Enthalpy of formation: -2547.8 kJ/mol + -analytic -2.5381e+001 1.2999e-002 1.2330e+004 2.1053e+000 -1.3913e+006 +# -Range: 0-300 + +Sanidine_high + KAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 H2O + 3.0000 SiO2 + log_k 0.9239 + -delta_H -35.0284 kJ/mol # Calculated enthalpy of reaction Sanidine_high +# Enthalpy of formation: -946.538 kcal/mol + -analytic -3.4889e+000 1.4495e-002 1.2856e+004 -9.8978e+000 -1.6572e+006 +# -Range: 0-300 + +Saponite-Ca + Ca.165Mg3Al.33Si3.67O10(OH)2 +7.3200 H+ = + 0.1650 Ca++ + 0.3300 Al+++ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O + log_k 26.2900 + -delta_H -207.971 kJ/mol # Calculated enthalpy of reaction Saponite-Ca +# Enthalpy of formation: -1436.51 kcal/mol + -analytic -4.6904e+001 6.2555e-003 2.2572e+004 5.3198e+000 -1.5725e+006 +# -Range: 0-300 + +Saponite-Cs + Cs.33Si3.67Al.33Mg3O10(OH)2 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 Cs+ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O + log_k 25.8528 + -delta_H -195.407 kJ/mol # Calculated enthalpy of reaction Saponite-Cs +# Enthalpy of formation: -1438.44 kcal/mol + -analytic -7.7732e+001 -3.6418e-005 2.3346e+004 1.7578e+001 -1.6319e+006 +# -Range: 0-300 + +Saponite-H + H.33Mg3Al.33Si3.67O10(OH)2 +6.9900 H+ = + 0.3300 Al+++ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O + log_k 25.3321 + -delta_H -200.235 kJ/mol # Calculated enthalpy of reaction Saponite-H +# Enthalpy of formation: -1416.94 kcal/mol + -analytic -3.9828e+001 8.9566e-003 2.2165e+004 2.3941e+000 -1.5933e+006 +# -Range: 0-300 + +Saponite-K + K.33Mg3Al.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 K+ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O + log_k 26.0075 + -delta_H -196.402 kJ/mol # Calculated enthalpy of reaction Saponite-K +# Enthalpy of formation: -1437.74 kcal/mol + -analytic 3.2113e+001 1.8392e-002 1.7918e+004 -2.2874e+001 -1.3542e+006 +# -Range: 0-300 + +Saponite-Mg + Mg3.165Al.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 Al+++ + 3.1650 Mg++ + 3.6700 SiO2 + 4.6600 H2O + log_k 26.2523 + -delta_H -210.822 kJ/mol # Calculated enthalpy of reaction Saponite-Mg +# Enthalpy of formation: -1432.79 kcal/mol + -analytic 9.8888e+000 1.4320e-002 1.9418e+004 -1.5259e+001 -1.3716e+006 +# -Range: 0-300 + +Saponite-Na + Na.33Mg3Al.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 Na+ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O + log_k 26.3459 + -delta_H -201.401 kJ/mol # Calculated enthalpy of reaction Saponite-Na +# Enthalpy of formation: -1435.61 kcal/mol + -analytic -6.7611e+001 4.7327e-003 2.3586e+004 1.2868e+001 -1.6493e+006 +# -Range: 0-300 + +Sb + Sb +1.5000 H2O +0.7500 O2 = + 1.0000 Sb(OH)3 + log_k 52.7918 + -delta_H -335.931 kJ/mol # Calculated enthalpy of reaction Sb +# Enthalpy of formation: 0 kJ/mol + +Sb(OH)3 + Sb(OH)3 = + 1.0000 Sb(OH)3 + log_k -7.0953 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Sb2O3 + Sb2O3 +3.0000 H2O = + 2.0000 Sb(OH)3 + log_k -8.9600 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb2O3 +# Enthalpy of formation: 0 kcal/mol + -analytic 2.3982e+000 -7.6326e-005 -3.3787e+003 0.0000e+000 0.0000e+000 +# -Range: 0-300 + +Sb2O4 + Sb2O4 +3.0000 H2O = + 0.5000 O2 + 2.0000 Sb(OH)3 + log_k -39.6139 + -delta_H 211.121 kJ/mol # Calculated enthalpy of reaction Sb2O4 +# Enthalpy of formation: -907.251 kJ/mol + +Sb2O5 + Sb2O5 +3.0000 H2O = + 1.0000 O2 + 2.0000 Sb(OH)3 + log_k -46.9320 + -delta_H 269.763 kJ/mol # Calculated enthalpy of reaction Sb2O5 +# Enthalpy of formation: -971.96 kJ/mol + +Sb4O6(cubic) + Sb4O6 +6.0000 H2O = + 4.0000 Sb(OH)3 + log_k -19.6896 + -delta_H 59.898 kJ/mol # Calculated enthalpy of reaction Sb4O6(cubic) +# Enthalpy of formation: -1440.02 kJ/mol + +Sb4O6(orthorhombic) + Sb4O6 +6.0000 H2O = + 4.0000 Sb(OH)3 + log_k -17.0442 + -delta_H 37.314 kJ/mol # Calculated enthalpy of reaction Sb4O6(orthorhombic) +# Enthalpy of formation: -1417.44 kJ/mol + +SbBr3 + SbBr3 +3.0000 H2O = + 1.0000 Sb(OH)3 + 3.0000 Br- + 3.0000 H+ + log_k 1.0554 + -delta_H -21.5871 kJ/mol # Calculated enthalpy of reaction SbBr3 +# Enthalpy of formation: -259.197 kJ/mol + +SbCl3 + SbCl3 +3.0000 H2O = + 1.0000 Sb(OH)3 + 3.0000 Cl- + 3.0000 H+ + log_k 0.5878 + -delta_H -35.393 kJ/mol # Calculated enthalpy of reaction SbCl3 +# Enthalpy of formation: -382.12 kJ/mol + +Sc + Sc +3.0000 H+ +0.7500 O2 = + 1.0000 Sc+++ + 1.5000 H2O + log_k 167.2700 + -delta_H -1033.87 kJ/mol # Calculated enthalpy of reaction Sc +# Enthalpy of formation: 0 kJ/mol + -analytic -6.6922e+001 -2.9150e-002 5.4559e+004 2.4189e+001 8.5137e+002 +# -Range: 0-300 + +Scacchite + MnCl2 = + 1.0000 Mn++ + 2.0000 Cl- + log_k 8.7785 + -delta_H -73.4546 kJ/mol # Calculated enthalpy of reaction Scacchite +# Enthalpy of formation: -481.302 kJ/mol + -analytic -2.3476e+002 -8.2437e-002 9.0088e+003 9.6128e+001 1.4064e+002 +# -Range: 0-300 + +Schoepite + UO3:2H2O +2.0000 H+ = + 1.0000 UO2++ + 3.0000 H2O + log_k 4.8333 + -delta_H -50.415 kJ/mol # Calculated enthalpy of reaction Schoepite +# Enthalpy of formation: -1826.1 kJ/mol + -analytic 1.3645e+001 1.0884e-002 2.5412e+003 -8.3167e+000 3.9649e+001 +# -Range: 0-300 + +Schoepite-dehy(.393) + UO3:.393H2O +2.0000 H+ = + 1.0000 UO2++ + 1.3930 H2O + log_k 6.7243 + -delta_H -69.2728 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.393) +# Enthalpy of formation: -1347.9 kJ/mol + -analytic -5.6487e+001 -3.0358e-003 5.7044e+003 1.8179e+001 9.6887e+001 +# -Range: 0-200 + +Schoepite-dehy(.648) + UO3:.648H2O +2.0000 H+ = + 1.0000 UO2++ + 1.6480 H2O + log_k 6.2063 + -delta_H -65.4616 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.648) +# Enthalpy of formation: -1424.6 kJ/mol + -analytic -6.3010e+001 -3.0276e-003 5.8033e+003 2.0471e+001 9.8569e+001 +# -Range: 0-200 + +Schoepite-dehy(.85) + UO3:.85H2O +2.0000 H+ = + 1.0000 UO2++ + 1.8500 H2O + log_k 5.0970 + -delta_H -56.4009 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.85) +# Enthalpy of formation: -1491.4 kJ/mol + -analytic -6.7912e+001 -3.0420e-003 5.5690e+003 2.2323e+001 9.4593e+001 +# -Range: 0-200 + +Schoepite-dehy(.9) + UO3:.9H2O +2.0000 H+ = + 1.0000 UO2++ + 1.9000 H2O + log_k 5.0167 + -delta_H -55.7928 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.9) +# Enthalpy of formation: -1506.3 kJ/mol + -analytic -1.5998e+001 -2.0144e-003 3.2910e+003 4.2751e+000 5.1358e+001 +# -Range: 0-300 + +Schoepite-dehy(1.0) + UO3:H2O +2.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + log_k 5.1031 + -delta_H -57.4767 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(1.0) +# Enthalpy of formation: -1533.2 kJ/mol + -analytic -7.2080e+001 -3.0503e-003 5.8024e+003 2.3695e+001 9.8557e+001 +# -Range: 0-200 + +Scolecite + CaAl2Si3O10:3H2O +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 3.0000 SiO2 + 7.0000 H2O + log_k 15.8767 + -delta_H -204.93 kJ/mol # Calculated enthalpy of reaction Scolecite +# Enthalpy of formation: -6048.92 kJ/mol + -analytic 5.0656e+001 -3.1485e-003 1.0574e+004 -2.5663e+001 -5.2769e+005 +# -Range: 0-300 + +Se + Se +1.0000 H2O +1.0000 O2 = + 1.0000 SeO3-- + 2.0000 H+ + log_k 26.1436 + -delta_H -211.221 kJ/mol # Calculated enthalpy of reaction Se +# Enthalpy of formation: 0 kJ/mol + -analytic -9.5144e+001 -6.5681e-002 1.0736e+004 4.2358e+001 1.6755e+002 +# -Range: 0-300 + +Se2O5 + Se2O5 +2.0000 H2O = + 1.0000 SeO3-- + 1.0000 SeO4-- + 4.0000 H+ + log_k 9.5047 + -delta_H -123.286 kJ/mol # Calculated enthalpy of reaction Se2O5 +# Enthalpy of formation: -98.8 kcal/mol + -analytic 1.1013e+002 -2.4491e-002 -5.6147e+002 -3.6960e+001 -9.5719e+000 +# -Range: 0-200 + +SeCl4 + SeCl4 +3.0000 H2O = + 1.0000 SeO3-- + 4.0000 Cl- + 6.0000 H+ + log_k 14.4361 + -delta_H -131.298 kJ/mol # Calculated enthalpy of reaction SeCl4 +# Enthalpy of formation: -45.1 kcal/mol + -analytic -4.0215e+002 -1.8323e-001 1.3074e+004 1.7267e+002 2.0413e+002 +# -Range: 0-300 + +SeO3 + SeO3 +1.0000 H2O = + 1.0000 SeO4-- + 2.0000 H+ + log_k 19.2015 + -delta_H -143.022 kJ/mol # Calculated enthalpy of reaction SeO3 +# Enthalpy of formation: -40.7 kcal/mol + -analytic -1.4199e+002 -6.4398e-002 9.5505e+003 5.9941e+001 1.4907e+002 +# -Range: 0-300 + +Sellaite + MgF2 = + 1.0000 Mg++ + 2.0000 F- + log_k -9.3843 + -delta_H -12.4547 kJ/mol # Calculated enthalpy of reaction Sellaite +# Enthalpy of formation: -1124.2 kJ/mol + -analytic -2.6901e+002 -8.5487e-002 6.8237e+003 1.0595e+002 1.0656e+002 +# -Range: 0-300 + +Sepiolite + Mg4Si6O15(OH)2:6H2O +8.0000 H+ = + 4.0000 Mg++ + 6.0000 SiO2 + 11.0000 H2O + log_k 30.4439 + -delta_H -157.339 kJ/mol # Calculated enthalpy of reaction Sepiolite +# Enthalpy of formation: -2418 kcal/mol + -analytic 1.8690e+001 4.7544e-002 2.6765e+004 -2.5301e+001 -2.6498e+006 +# -Range: 0-300 + +Shcherbinaite + V2O5 +2.0000 H+ = + 1.0000 H2O + 2.0000 VO2+ + log_k -1.4520 + -delta_H -34.7917 kJ/mol # Calculated enthalpy of reaction Shcherbinaite +# Enthalpy of formation: -1550.6 kJ/mol + -analytic -1.4791e+002 -2.2464e-002 6.6865e+003 5.2832e+001 1.0438e+002 +# -Range: 0-300 + +Si + Si +1.0000 O2 = + 1.0000 SiO2 + log_k 148.9059 + -delta_H -865.565 kJ/mol # Calculated enthalpy of reaction Si +# Enthalpy of formation: 0 kJ/mol + -analytic -5.7245e+002 -7.6302e-002 8.3516e+004 2.0045e+002 -2.8494e+006 +# -Range: 0-300 + +SiO2(am) + SiO2 = + 1.0000 SiO2 + log_k -2.7136 + -delta_H 20.0539 kJ/mol # Calculated enthalpy of reaction SiO2(am) +# Enthalpy of formation: -214.568 kcal/mol + -analytic 1.2109e+000 7.0767e-003 2.3634e+003 -3.4449e+000 -4.8591e+005 +# -Range: 0-300 + +Siderite + FeCO3 +1.0000 H+ = + 1.0000 Fe++ + 1.0000 HCO3- + log_k -0.1920 + -delta_H -32.5306 kJ/mol # Calculated enthalpy of reaction Siderite +# Enthalpy of formation: -179.173 kcal/mol + -analytic -1.5990e+002 -4.9361e-002 5.4947e+003 6.3032e+001 8.5787e+001 +# -Range: 0-300 + +Sillimanite + Al2SiO5 +6.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 3.0000 H2O + log_k 16.3080 + -delta_H -238.442 kJ/mol # Calculated enthalpy of reaction Sillimanite +# Enthalpy of formation: -615.099 kcal/mol + -analytic -7.1610e+001 -3.2196e-002 1.2493e+004 2.2449e+001 1.9496e+002 +# -Range: 0-300 + +Sklodowskite + Mg(H3O)2(UO2)2(SiO4)2:4H2O +6.0000 H+ = + 1.0000 Mg++ + 2.0000 SiO2 + 2.0000 UO2++ + 10.0000 H2O + log_k 13.7915 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sklodowskite +# Enthalpy of formation: 0 kcal/mol + +Sm + Sm +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Sm++ + log_k 133.1614 + -delta_H -783.944 kJ/mol # Calculated enthalpy of reaction Sm +# Enthalpy of formation: 0 kJ/mol + -analytic -7.1599e+001 -2.0083e-002 4.2693e+004 2.7291e+001 6.6621e+002 +# -Range: 0-300 + +Sm(OH)3 + Sm(OH)3 +3.0000 H+ = + 1.0000 Sm+++ + 3.0000 H2O + log_k 16.4852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Sm(OH)3(am) + Sm(OH)3 +3.0000 H+ = + 1.0000 Sm+++ + 3.0000 H2O + log_k 18.5852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +Sm2(CO3)3 + Sm2(CO3)3 +3.0000 H+ = + 2.0000 Sm+++ + 3.0000 HCO3- + log_k -3.5136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2(CO3)3 +# Enthalpy of formation: 0 kcal/mol + +Sm2(SO4)3 + Sm2(SO4)3 = + 2.0000 Sm+++ + 3.0000 SO4-- + log_k -9.8000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2(SO4)3 +# Enthalpy of formation: 0 kcal/mol + +Sm2O3 + Sm2O3 +6.0000 H+ = + 2.0000 Sm+++ + 3.0000 H2O + log_k 42.9000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2O3 +# Enthalpy of formation: 0 kcal/mol + +SmF3:.5H2O + SmF3:.5H2O = + 0.5000 H2O + 1.0000 Sm+++ + 3.0000 F- + log_k -17.5000 + -delta_H 0 # Not possible to calculate enthalpy of reaction SmF3:.5H2O +# Enthalpy of formation: 0 kcal/mol + +SmPO4:10H2O + SmPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Sm+++ + 10.0000 H2O + log_k -12.1782 + -delta_H 0 # Not possible to calculate enthalpy of reaction SmPO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +Smectite-high-Fe-Mg +# Ca.025Na.1K.2Fe++.5Fe+++.2Mg1.15Al1.25Si3.5H2O12 +8.0000 H+ = + 0.0250 Ca++ + 0.1000 Na+ + 0.2000 Fe+++ + 0.2000 K+ + 0.5000 Fe++ + 1.1500 Mg++ + 1.2500 Al+++ + 3.5000 SiO2 + 5.0000 H2O + Ca.025Na.1K.2Fe.5Fe.2Mg1.15Al1.25Si3.5H2O12 +8.0000 H+ = + 0.0250 Ca++ + 0.1000 Na+ + 0.2000 Fe+++ + 0.2000 K+ + 0.5000 Fe++ + 1.1500 Mg++ + 1.2500 Al+++ + 3.5000 SiO2 + 5.0000 H2O + log_k 17.4200 + -delta_H -199.841 kJ/mol # Calculated enthalpy of reaction Smectite-high-Fe-Mg +# Enthalpy of formation: -1351.39 kcal/mol + -analytic -9.6102e+000 1.2551e-003 1.8157e+004 -7.9862e+000 -1.3005e+006 +# -Range: 0-300 + +Smectite-low-Fe-Mg +# Ca.02Na.15K.2Fe++.29Fe+++.16Mg.9Al1.25Si3.75H2O1 +7.0000 H+ = + 0.0200 Ca++ + 0.1500 Na+ + 0.1600 Fe+++ + 0.2000 K+ + 0.2900 Fe++ + 0.9000 Mg++ + 1.2500 Al+++ + 3.7500 SiO2 + 4.5000 H2O + Ca.02Na.15K.2Fe.29Fe.16Mg.9Al1.25Si3.75H2O12 +7.0000 H+ = + 0.0200 Ca++ + 0.1500 Na+ + 0.1600 Fe+++ + 0.2000 K+ + 0.2900 Fe++ + 0.9000 Mg++ + 1.2500 Al+++ + 3.7500 SiO2 + 4.5000 H2O + log_k 11.0405 + -delta_H -144.774 kJ/mol # Calculated enthalpy of reaction Smectite-low-Fe-Mg +# Enthalpy of formation: -1352.12 kcal/mol + -analytic -1.7003e+001 6.9848e-003 1.8359e+004 -6.8896e+000 -1.6637e+006 +# -Range: 0-300 + +Smithsonite + ZnCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Zn++ + log_k 0.4633 + -delta_H -30.5348 kJ/mol # Calculated enthalpy of reaction Smithsonite +# Enthalpy of formation: -194.26 kcal/mol + -analytic -1.6452e+002 -5.0231e-002 5.5925e+003 6.5139e+001 8.7314e+001 +# -Range: 0-300 + +Sn + Sn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Sn++ + log_k 47.8615 + -delta_H -288.558 kJ/mol # Calculated enthalpy of reaction Sn +# Enthalpy of formation: 0 kcal/mol + -analytic -1.3075e+002 -3.3807e-002 1.9548e+004 5.0382e+001 -1.3868e+005 +# -Range: 0-300 + +Sn(OH)2 + Sn(OH)2 +2.0000 H+ = + 1.0000 Sn++ + 2.0000 H2O + log_k 1.8400 + -delta_H -19.6891 kJ/mol # Calculated enthalpy of reaction Sn(OH)2 +# Enthalpy of formation: -560.774 kJ/mol + -analytic -6.1677e+001 -5.3258e-003 3.3656e+003 2.1748e+001 5.7174e+001 +# -Range: 0-200 + +Sn(SO4)2 + Sn(SO4)2 = + 1.0000 Sn++++ + 2.0000 SO4-- + log_k 16.0365 + -delta_H -159.707 kJ/mol # Calculated enthalpy of reaction Sn(SO4)2 +# Enthalpy of formation: -389.4 kcal/mol + -analytic 1.7787e+001 -5.1758e-002 3.7671e+003 4.1861e-001 6.3965e+001 +# -Range: 0-200 + +Sn3S4 + Sn3S4 +4.0000 H+ = + 1.0000 Sn++++ + 2.0000 Sn++ + 4.0000 HS- + log_k -61.9790 + -delta_H 318.524 kJ/mol # Calculated enthalpy of reaction Sn3S4 +# Enthalpy of formation: -88.5 kcal/mol + -analytic -8.1325e+001 -7.4589e-002 -1.7953e+004 4.1138e+001 -3.0484e+002 +# -Range: 0-200 + +SnBr2 + SnBr2 = + 1.0000 Sn++ + 2.0000 Br- + log_k -1.4369 + -delta_H 8.24248 kJ/mol # Calculated enthalpy of reaction SnBr2 +# Enthalpy of formation: -62.15 kcal/mol + -analytic 2.5384e+001 -1.7350e-002 -2.6653e+003 -5.1400e+000 -4.5269e+001 +# -Range: 0-200 + +SnBr4 + SnBr4 = + 1.0000 Sn++++ + 4.0000 Br- + log_k 11.1272 + -delta_H -78.3763 kJ/mol # Calculated enthalpy of reaction SnBr4 +# Enthalpy of formation: -377.391 kJ/mol + -analytic 1.3516e+001 -5.5193e-002 -8.1888e+001 5.7935e+000 -1.3940e+000 +# -Range: 0-200 + +SnCl2 + SnCl2 = + 1.0000 Sn++ + 2.0000 Cl- + log_k 0.3225 + -delta_H -11.9913 kJ/mol # Calculated enthalpy of reaction SnCl2 +# Enthalpy of formation: -79.1 kcal/mol + -analytic 7.9717e+000 -2.1475e-002 -1.1676e+003 1.0749e+000 -1.9829e+001 +# -Range: 0-200 + +SnSO4 + SnSO4 = + 1.0000 SO4-- + 1.0000 Sn++ + log_k -23.9293 + -delta_H 96.232 kJ/mol # Calculated enthalpy of reaction SnSO4 +# Enthalpy of formation: -242.5 kcal/mol + -analytic 3.0046e+001 -1.4238e-002 -7.5915e+003 -9.8122e+000 -1.2892e+002 +# -Range: 0-200 + +SnSe + SnSe = + 1.0000 Se-- + 1.0000 Sn++ + log_k -32.9506 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnSe +# Enthalpy of formation: -21.2 kcal/mol + -analytic 4.2342e+000 9.5462e-004 -8.0009e+003 -4.2997e+000 -1.3587e+002 +# -Range: 0-200 + +SnSe2 + SnSe2 = + 1.0000 Sn++++ + 2.0000 Se-- + log_k -66.6570 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnSe2 +# Enthalpy of formation: -29.8 kcal/mol + -analytic -3.6819e+001 -2.0966e-002 -1.5197e+004 1.1070e+001 -2.5806e+002 +# -Range: 0-200 + +Soddyite + (UO2)2SiO4:2H2O +4.0000 H+ = + 1.0000 SiO2 + 2.0000 UO2++ + 4.0000 H2O + log_k 0.3920 + -delta_H 0 # Not possible to calculate enthalpy of reaction Soddyite +# Enthalpy of formation: 0 kcal/mol + +Sphaerocobaltite + CoCO3 +1.0000 H+ = + 1.0000 Co++ + 1.0000 HCO3- + log_k -0.2331 + -delta_H -30.7064 kJ/mol # Calculated enthalpy of reaction Sphaerocobaltite +# Enthalpy of formation: -171.459 kcal/mol + -analytic -1.5709e+002 -4.8957e-002 5.3158e+003 6.2075e+001 8.2995e+001 +# -Range: 0-300 + +Sphalerite + ZnS +1.0000 H+ = + 1.0000 HS- + 1.0000 Zn++ + log_k -11.4400 + -delta_H 35.5222 kJ/mol # Calculated enthalpy of reaction Sphalerite +# Enthalpy of formation: -49 kcal/mol + -analytic -1.5497e+002 -4.8953e-002 1.7850e+003 6.1472e+001 2.7899e+001 +# -Range: 0-300 + +Spinel + Al2MgO4 +8.0000 H+ = + 1.0000 Mg++ + 2.0000 Al+++ + 4.0000 H2O + log_k 37.6295 + -delta_H -398.108 kJ/mol # Calculated enthalpy of reaction Spinel +# Enthalpy of formation: -546.847 kcal/mol + -analytic -3.3895e+002 -8.3595e-002 2.9251e+004 1.2260e+002 4.5654e+002 +# -Range: 0-300 + +Spinel-Co + Co3O4 +8.0000 H+ = + 1.0000 Co++ + 2.0000 Co+++ + 4.0000 H2O + log_k -6.4852 + -delta_H -126.415 kJ/mol # Calculated enthalpy of reaction Spinel-Co +# Enthalpy of formation: -891 kJ/mol + -analytic -3.2239e+002 -8.0782e-002 1.4635e+004 1.1755e+002 2.2846e+002 +# -Range: 0-300 + +Spodumene + LiAlSi2O6 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Li+ + 2.0000 H2O + 2.0000 SiO2 + log_k 6.9972 + -delta_H -89.1817 kJ/mol # Calculated enthalpy of reaction Spodumene +# Enthalpy of formation: -3054.75 kJ/mol + -analytic -9.8111e+000 2.1191e-003 9.6920e+003 -3.0484e+000 -7.8822e+005 +# -Range: 0-300 + +Sr + Sr +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Sr++ + log_k 141.7816 + -delta_H -830.679 kJ/mol # Calculated enthalpy of reaction Sr +# Enthalpy of formation: 0 kJ/mol + -analytic -1.6271e+002 -3.1212e-002 5.1520e+004 5.9178e+001 -4.8390e+005 +# -Range: 0-300 + +Sr(NO3)2 + Sr(NO3)2 = + 1.0000 Sr++ + 2.0000 NO3- + log_k 1.1493 + -delta_H 13.7818 kJ/mol # Calculated enthalpy of reaction Sr(NO3)2 +# Enthalpy of formation: -978.311 kJ/mol + -analytic 2.8914e+000 -1.2487e-002 -1.4872e+003 2.8124e+000 -2.5256e+001 +# -Range: 0-200 + +Sr(NO3)2:4H2O + Sr(NO3)2:4H2O = + 1.0000 Sr++ + 2.0000 NO3- + 4.0000 H2O + log_k 0.6976 + -delta_H 47.9045 kJ/mol # Calculated enthalpy of reaction Sr(NO3)2:4H2O +# Enthalpy of formation: -2155.79 kJ/mol + -analytic -8.4518e+001 -9.1155e-003 1.0856e+003 3.4061e+001 1.8464e+001 +# -Range: 0-200 + +Sr(OH)2 + Sr(OH)2 +2.0000 H+ = + 1.0000 Sr++ + 2.0000 H2O + log_k 27.5229 + -delta_H -153.692 kJ/mol # Calculated enthalpy of reaction Sr(OH)2 +# Enthalpy of formation: -968.892 kJ/mol + -analytic -5.1871e+001 -2.9123e-003 1.0175e+004 1.8643e+001 1.7280e+002 +# -Range: 0-200 + +Sr2SiO4 + Sr2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Sr++ + log_k 42.8076 + -delta_H -244.583 kJ/mol # Calculated enthalpy of reaction Sr2SiO4 +# Enthalpy of formation: -2306.61 kJ/mol + -analytic 3.0319e+001 2.0204e-003 1.2729e+004 -1.1584e+001 -1.9480e+005 +# -Range: 0-300 + +Sr3(AsO4)2 + Sr3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Sr++ + log_k 20.6256 + -delta_H -152.354 kJ/mol # Calculated enthalpy of reaction Sr3(AsO4)2 +# Enthalpy of formation: -3319.49 kJ/mol + -analytic -8.4749e+001 -2.9367e-002 9.5849e+003 3.3126e+001 1.6279e+002 +# -Range: 0-200 + +SrBr2 + SrBr2 = + 1.0000 Sr++ + 2.0000 Br- + log_k 13.1128 + -delta_H -75.106 kJ/mol # Calculated enthalpy of reaction SrBr2 +# Enthalpy of formation: -718.808 kJ/mol + -analytic -1.8512e+002 -7.2423e-002 7.6861e+003 7.8401e+001 1.1999e+002 +# -Range: 0-300 + +SrBr2:6H2O + SrBr2:6H2O = + 1.0000 Sr++ + 2.0000 Br- + 6.0000 H2O + log_k 3.6678 + -delta_H 23.367 kJ/mol # Calculated enthalpy of reaction SrBr2:6H2O +# Enthalpy of formation: -2532.31 kJ/mol + -analytic -2.2470e+002 -6.7920e-002 4.9432e+003 9.3758e+001 7.7200e+001 +# -Range: 0-300 + +SrBr2:H2O + SrBr2:H2O = + 1.0000 H2O + 1.0000 Sr++ + 2.0000 Br- + log_k 9.6057 + -delta_H -47.5853 kJ/mol # Calculated enthalpy of reaction SrBr2:H2O +# Enthalpy of formation: -1032.17 kJ/mol + -analytic -1.9103e+002 -7.1402e-002 6.6358e+003 8.0673e+001 1.0360e+002 +# -Range: 0-300 + +SrCl2 + SrCl2 = + 1.0000 Sr++ + 2.0000 Cl- + log_k 7.9389 + -delta_H -55.0906 kJ/mol # Calculated enthalpy of reaction SrCl2 +# Enthalpy of formation: -829.976 kJ/mol + -analytic -2.0097e+002 -7.6193e-002 7.0396e+003 8.4050e+001 1.0991e+002 +# -Range: 0-300 + +SrCl2:2H2O + SrCl2:2H2O = + 1.0000 Sr++ + 2.0000 Cl- + 2.0000 H2O + log_k 3.3248 + -delta_H -17.7313 kJ/mol # Calculated enthalpy of reaction SrCl2:2H2O +# Enthalpy of formation: -1439.01 kJ/mol + -analytic -2.1551e+002 -7.4349e-002 5.9400e+003 8.9330e+001 9.2752e+001 +# -Range: 0-300 + +SrCl2:6H2O + SrCl2:6H2O = + 1.0000 Sr++ + 2.0000 Cl- + 6.0000 H2O + log_k 1.5038 + -delta_H 24.6964 kJ/mol # Calculated enthalpy of reaction SrCl2:6H2O +# Enthalpy of formation: -2624.79 kJ/mol + -analytic -1.3225e+002 -1.8260e-002 3.7077e+003 5.1224e+001 6.3008e+001 +# -Range: 0-200 + +SrCl2:H2O + SrCl2:H2O = + 1.0000 H2O + 1.0000 Sr++ + 2.0000 Cl- + log_k 4.7822 + -delta_H -33.223 kJ/mol # Calculated enthalpy of reaction SrCl2:H2O +# Enthalpy of formation: -1137.68 kJ/mol + -analytic -2.1825e+002 -7.7851e-002 6.5957e+003 9.0555e+001 1.0298e+002 +# -Range: 0-300 + +SrCrO4 + SrCrO4 = + 1.0000 CrO4-- + 1.0000 Sr++ + log_k -3.8849 + -delta_H -1.73636 kJ/mol # Calculated enthalpy of reaction SrCrO4 +# Enthalpy of formation: -341.855 kcal/mol + -analytic 2.3424e+001 -1.5589e-002 -2.1393e+003 -6.2628e+000 -3.6337e+001 +# -Range: 0-200 + +SrF2 + SrF2 = + 1.0000 Sr++ + 2.0000 F- + log_k -8.5400 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrF2 +# Enthalpy of formation: 0 kcal/mol + +SrHPO4 + SrHPO4 = + 1.0000 HPO4-- + 1.0000 Sr++ + log_k -6.2416 + -delta_H -19.7942 kJ/mol # Calculated enthalpy of reaction SrHPO4 +# Enthalpy of formation: -1823.19 kJ/mol + -analytic 5.4057e+000 -1.8533e-002 -8.2021e+002 -1.3667e+000 -1.3930e+001 +# -Range: 0-200 + +SrI2 + SrI2 = + 1.0000 Sr++ + 2.0000 I- + log_k 19.2678 + -delta_H -103.218 kJ/mol # Calculated enthalpy of reaction SrI2 +# Enthalpy of formation: -561.494 kJ/mol + -analytic -1.8168e+002 -7.2083e-002 9.0759e+003 7.7577e+001 1.4167e+002 +# -Range: 0-300 + +SrO + SrO +2.0000 H+ = + 1.0000 H2O + 1.0000 Sr++ + log_k 41.8916 + -delta_H -243.875 kJ/mol # Calculated enthalpy of reaction SrO +# Enthalpy of formation: -592.871 kJ/mol + -analytic -5.8463e+001 -1.4240e-002 1.4417e+004 2.2725e+001 2.2499e+002 +# -Range: 0-300 + +SrS + SrS +1.0000 H+ = + 1.0000 HS- + 1.0000 Sr++ + log_k 14.7284 + -delta_H -93.3857 kJ/mol # Calculated enthalpy of reaction SrS +# Enthalpy of formation: -473.63 kJ/mol + -analytic -1.3048e+002 -4.4837e-002 7.8429e+003 5.3442e+001 1.2242e+002 +# -Range: 0-300 + +SrSeO4 + SrSeO4 = + 1.0000 SeO4-- + 1.0000 Sr++ + log_k -4.4000 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrSeO4 +# Enthalpy of formation: 0 kcal/mol + +SrSiO3 + SrSiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 SiO2 + 1.0000 Sr++ + log_k 14.8438 + -delta_H -79.6112 kJ/mol # Calculated enthalpy of reaction SrSiO3 +# Enthalpy of formation: -1634.83 kJ/mol + -analytic 2.2592e+001 6.0821e-003 5.9982e+003 -1.0213e+001 -3.9529e+005 +# -Range: 0-300 + +SrUO4(alpha) + SrUO4 +4.0000 H+ = + 1.0000 Sr++ + 1.0000 UO2++ + 2.0000 H2O + log_k 19.1650 + -delta_H -151.984 kJ/mol # Calculated enthalpy of reaction SrUO4(alpha) +# Enthalpy of formation: -1989.6 kJ/mol + -analytic -7.4169e+001 -1.6686e-002 9.8721e+003 2.6345e+001 1.5407e+002 +# -Range: 0-300 + +SrZrO3 + SrZrO3 +4.0000 H+ = + 1.0000 H2O + 1.0000 Sr++ + 1.0000 Zr(OH)2++ + log_k -131.4664 + -delta_H 706.983 kJ/mol # Calculated enthalpy of reaction SrZrO3 +# Enthalpy of formation: -629.677 kcal/mol + -analytic -5.8512e+001 -9.5738e-003 -3.5254e+004 1.9459e+001 -5.9865e+002 +# -Range: 0-200 + +Starkeyite + MgSO4:4H2O = + 1.0000 Mg++ + 1.0000 SO4-- + 4.0000 H2O + log_k -0.9999 + -delta_H 0 # Not possible to calculate enthalpy of reaction Starkeyite +# Enthalpy of formation: 0 kcal/mol + +Stibnite + Sb2S3 +6.0000 H2O = + 2.0000 Sb(OH)3 + 3.0000 H+ + 3.0000 HS- + log_k -53.1100 + -delta_H 0 # Not possible to calculate enthalpy of reaction Stibnite +# Enthalpy of formation: 0 kcal/mol + -analytic 2.5223e+001 -5.9186e-002 -2.0860e+004 3.6892e+000 -3.2551e+002 +# -Range: 0-300 + +Stilbite + Ca1.019Na.136K.006Al2.18Si6.82O18:7.33H2O +8.7200 H+ = + 0.0060 K+ + 0.1360 Na+ + 1.0190 Ca++ + 2.1800 Al+++ + 6.8200 SiO2 + 11.6900 H2O + log_k 1.0545 + -delta_H -83.0019 kJ/mol # Calculated enthalpy of reaction Stilbite +# Enthalpy of formation: -11005.7 kJ/mol + -analytic -2.4483e+001 3.0987e-002 2.8013e+004 -1.5802e+001 -3.4491e+006 +# -Range: 0-300 + +Stilleite + ZnSe = + 1.0000 Se-- + 1.0000 Zn++ + log_k -23.9693 + -delta_H 0 # Not possible to calculate enthalpy of reaction Stilleite +# Enthalpy of formation: -37.97 kcal/mol + -analytic -6.1948e+001 -1.7004e-002 -2.4498e+003 2.0712e+001 -3.8209e+001 +# -Range: 0-300 + +Strengite + FePO4:2H2O +1.0000 H+ = + 1.0000 Fe+++ + 1.0000 HPO4-- + 2.0000 H2O + log_k -11.3429 + -delta_H -37.107 kJ/mol # Calculated enthalpy of reaction Strengite +# Enthalpy of formation: -1876.23 kJ/mol + -analytic -2.7752e+002 -9.4014e-002 7.6862e+003 1.0846e+002 1.2002e+002 +# -Range: 0-300 + +Strontianite + SrCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Sr++ + log_k -0.3137 + -delta_H -8.23411 kJ/mol # Calculated enthalpy of reaction Strontianite +# Enthalpy of formation: -294.6 kcal/mol + -analytic -1.3577e+002 -4.4884e-002 3.5729e+003 5.5296e+001 5.5791e+001 +# -Range: 0-300 + +Sulfur from J.Thom + S + H2O = 0.5H+ + 0.25SO4-- + 0.75H2S + log_k -5.20733 + -analytic -7.22926e1 -1.87320e-2 7.37125e2 2.83697e1 -1.00039e2 + +Sylvite + KCl = + 1.0000 Cl- + 1.0000 K+ + log_k 0.8459 + -delta_H 17.4347 kJ/mol # Calculated enthalpy of reaction Sylvite +# Enthalpy of formation: -104.37 kcal/mol + -analytic -8.1204e+001 -3.3074e-002 8.2819e+002 3.6014e+001 1.2947e+001 +# -Range: 0-300 + +Syngenite + K2Ca(SO4)2:H2O = + 1.0000 Ca++ + 1.0000 H2O + 2.0000 K+ + 2.0000 SO4-- + log_k -7.6001 + -delta_H 0 # Not possible to calculate enthalpy of reaction Syngenite +# Enthalpy of formation: 0 kcal/mol + +Tachyhydrite + Mg2CaCl6:12H2O = + 1.0000 Ca++ + 2.0000 Mg++ + 6.0000 Cl- + 12.0000 H2O + log_k 17.1439 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tachyhydrite +# Enthalpy of formation: 0 kcal/mol + +Talc + Mg3Si4O10(OH)2 +6.0000 H+ = + 3.0000 Mg++ + 4.0000 H2O + 4.0000 SiO2 + log_k 21.1383 + -delta_H -148.737 kJ/mol # Calculated enthalpy of reaction Talc +# Enthalpy of formation: -1410.92 kcal/mol + -analytic 1.1164e+001 2.4724e-002 1.9810e+004 -1.7568e+001 -1.8241e+006 +# -Range: 0-300 + +Tarapacaite + K2CrO4 = + 1.0000 CrO4-- + 2.0000 K+ + log_k -0.4037 + -delta_H 17.8238 kJ/mol # Calculated enthalpy of reaction Tarapacaite +# Enthalpy of formation: -335.4 kcal/mol + -analytic 2.7953e+001 -1.0863e-002 -2.7589e+003 -6.4154e+000 -4.6859e+001 +# -Range: 0-200 + +Tb + Tb +3.0000 H+ +0.7500 O2 = + 1.0000 Tb+++ + 1.5000 H2O + log_k 181.4170 + -delta_H -1117.97 kJ/mol # Calculated enthalpy of reaction Tb +# Enthalpy of formation: 0 kJ/mol + -analytic -5.2354e+001 -2.6920e-002 5.8391e+004 1.8555e+001 9.1115e+002 +# -Range: 0-300 + +Tb(OH)3 + Tb(OH)3 +3.0000 H+ = + 1.0000 Tb+++ + 3.0000 H2O + log_k 15.6852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Tb(OH)3(am) + Tb(OH)3 +3.0000 H+ = + 1.0000 Tb+++ + 3.0000 H2O + log_k 18.7852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +Tb2(CO3)3 + Tb2(CO3)3 +3.0000 H+ = + 2.0000 Tb+++ + 3.0000 HCO3- + log_k -3.2136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb2(CO3)3 +# Enthalpy of formation: 0 kcal/mol + +Tb2O3 + Tb2O3 +6.0000 H+ = + 2.0000 Tb+++ + 3.0000 H2O + log_k 47.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb2O3 +# Enthalpy of formation: 0 kcal/mol + +TbF3:.5H2O + TbF3:.5H2O = + 0.5000 H2O + 1.0000 Tb+++ + 3.0000 F- + log_k -16.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction TbF3:.5H2O +# Enthalpy of formation: 0 kcal/mol + +TbPO4:10H2O + TbPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Tb+++ + 10.0000 H2O + log_k -11.9782 + -delta_H 0 # Not possible to calculate enthalpy of reaction TbPO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +Tc + Tc +1.7500 O2 +0.5000 H2O = + 1.0000 H+ + 1.0000 TcO4- + log_k 93.5811 + -delta_H -552.116 kJ/mol # Calculated enthalpy of reaction Tc +# Enthalpy of formation: 0 kJ/mol + -analytic 2.2670e+001 -1.2050e-002 3.0174e+004 -8.4053e+000 -5.2577e+005 +# -Range: 0-300 + +Tc(OH)2 + Tc(OH)2 +3.0000 H+ +0.2500 O2 = + 1.0000 Tc+++ + 2.5000 H2O + log_k 5.2714 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc(OH)2 +# Enthalpy of formation: 0 kcal/mol + +Tc(OH)3 + Tc(OH)3 +3.0000 H+ = + 1.0000 Tc+++ + 3.0000 H2O + log_k -9.2425 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Tc2O7 + Tc2O7 +1.0000 H2O = + 2.0000 H+ + 2.0000 TcO4- + log_k 13.1077 + -delta_H -26.5357 kJ/mol # Calculated enthalpy of reaction Tc2O7 +# Enthalpy of formation: -1120.16 kJ/mol + -analytic 8.7535e+001 1.5366e-002 -1.1919e+003 -3.0317e+001 -2.0271e+001 +# -Range: 0-200 + +Tc2S7 + Tc2S7 +8.0000 H2O = + 2.0000 TcO4- + 7.0000 HS- + 9.0000 H+ + log_k -230.2410 + -delta_H 1356.41 kJ/mol # Calculated enthalpy of reaction Tc2S7 +# Enthalpy of formation: -615 kJ/mol + -analytic 2.4560e+002 -4.3355e-002 -8.4192e+004 -7.2967e+001 -1.4298e+003 +# -Range: 0-200 + +Tc3O4 + Tc3O4 +9.0000 H+ +0.2500 O2 = + 3.0000 Tc+++ + 4.5000 H2O + log_k -19.2271 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc3O4 +# Enthalpy of formation: 0 kcal/mol + +Tc4O7 + Tc4O7 +10.0000 H+ = + 2.0000 Tc+++ + 2.0000 TcO++ + 5.0000 H2O + log_k -26.0149 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc4O7 +# Enthalpy of formation: 0 kcal/mol + +TcO2:2H2O(am) + TcO2:2H2O +2.0000 H+ = + 1.0000 TcO++ + 3.0000 H2O + log_k -4.2319 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO2:2H2O(am) +# Enthalpy of formation: 0 kcal/mol + +TcO3 + TcO3 +1.0000 H2O = + 1.0000 TcO4-- + 2.0000 H+ + log_k -23.1483 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO3 +# Enthalpy of formation: -540 kJ/mol + +TcOH + TcOH +3.0000 H+ +0.5000 O2 = + 1.0000 Tc+++ + 2.0000 H2O + log_k 24.9009 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcOH +# Enthalpy of formation: 0 kcal/mol + +TcS2 + TcS2 +1.0000 H2O = + 1.0000 TcO++ + 2.0000 HS- + log_k -65.9742 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcS2 +# Enthalpy of formation: -224 kJ/mol + +TcS3 + TcS3 +4.0000 H2O = + 1.0000 TcO4-- + 3.0000 HS- + 5.0000 H+ + log_k -119.5008 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcS3 +# Enthalpy of formation: -276 kJ/mol + +Tenorite + CuO +2.0000 H+ = + 1.0000 Cu++ + 1.0000 H2O + log_k 7.6560 + -delta_H -64.5047 kJ/mol # Calculated enthalpy of reaction Tenorite +# Enthalpy of formation: -37.2 kcal/mol + -analytic -8.9899e+001 -1.8886e-002 6.0346e+003 3.3517e+001 9.4191e+001 +# -Range: 0-300 + +Tephroite + Mn2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Mn++ + log_k 23.0781 + -delta_H -160.1 kJ/mol # Calculated enthalpy of reaction Tephroite +# Enthalpy of formation: -1730.47 kJ/mol + -analytic -3.2440e+001 -1.1023e-002 8.8910e+003 1.1691e+001 1.3875e+002 +# -Range: 0-300 + +Th + Th +4.0000 H+ +1.0000 O2 = + 1.0000 Th++++ + 2.0000 H2O + log_k 209.6028 + -delta_H -1328.56 kJ/mol # Calculated enthalpy of reaction Th +# Enthalpy of formation: 0 kJ/mol + -analytic -2.8256e+001 -1.1963e-002 6.8870e+004 4.2068e+000 1.0747e+003 +# -Range: 0-300 + +Th(NO3)4:5H2O + Th(NO3)4:5H2O = + 1.0000 Th++++ + 4.0000 NO3- + 5.0000 H2O + log_k 1.7789 + -delta_H -18.1066 kJ/mol # Calculated enthalpy of reaction Th(NO3)4:5H2O +# Enthalpy of formation: -3007.35 kJ/mol + -analytic -1.2480e+002 -2.0405e-002 5.1601e+003 4.6613e+001 8.7669e+001 +# -Range: 0-200 + +Th(OH)4 + Th(OH)4 +4.0000 H+ = + 1.0000 Th++++ + 4.0000 H2O + log_k 9.6543 + -delta_H -140.336 kJ/mol # Calculated enthalpy of reaction Th(OH)4 +# Enthalpy of formation: -423.527 kcal/mol + -analytic -1.4031e+002 -9.2493e-003 1.2345e+004 4.4990e+001 2.0968e+002 +# -Range: 0-200 + +Th(SO4)2 + Th(SO4)2 = + 1.0000 Th++++ + 2.0000 SO4-- + log_k -20.3006 + -delta_H -46.1064 kJ/mol # Calculated enthalpy of reaction Th(SO4)2 +# Enthalpy of formation: -2542.12 kJ/mol + -analytic -8.4525e+000 -3.5442e-002 0.0000e+000 0.0000e+000 -1.1540e+005 +# -Range: 0-200 + +Th2S3 + Th2S3 +5.0000 H+ +0.5000 O2 = + 1.0000 H2O + 2.0000 Th++++ + 3.0000 HS- + log_k 95.2290 + -delta_H -783.243 kJ/mol # Calculated enthalpy of reaction Th2S3 +# Enthalpy of formation: -1082.89 kJ/mol + -analytic -3.2969e+002 -1.1090e-001 4.6877e+004 1.2152e+002 7.3157e+002 +# -Range: 0-300 + +Th2Se3 + Th2Se3 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 2.0000 Th++++ + 3.0000 Se-- + log_k 59.1655 + -delta_H 0 # Not possible to calculate enthalpy of reaction Th2Se3 +# Enthalpy of formation: -224 kcal/mol + -analytic -1.0083e+001 6.0240e-003 3.4039e+004 -1.8884e+001 5.7804e+002 +# -Range: 0-200 + +Th7S12 + Th7S12 +16.0000 H+ +1.0000 O2 = + 2.0000 H2O + 7.0000 Th++++ + 12.0000 HS- + log_k 204.0740 + -delta_H -1999.4 kJ/mol # Calculated enthalpy of reaction Th7S12 +# Enthalpy of formation: -4136.58 kJ/mol + -analytic -2.1309e+002 -1.4149e-001 9.8550e+004 5.2042e+001 1.6736e+003 +# -Range: 0-200 + +ThBr4 + ThBr4 = + 1.0000 Th++++ + 4.0000 Br- + log_k 34.0803 + -delta_H -290.23 kJ/mol # Calculated enthalpy of reaction ThBr4 +# Enthalpy of formation: -964.803 kJ/mol + -analytic 2.9902e+001 -3.3109e-002 1.0988e+004 -9.2209e+000 1.8657e+002 +# -Range: 0-200 + +ThCl4 + ThCl4 = + 1.0000 Th++++ + 4.0000 Cl- + log_k 23.8491 + -delta_H -251.094 kJ/mol # Calculated enthalpy of reaction ThCl4 +# Enthalpy of formation: -283.519 kcal/mol + -analytic -5.9340e+000 -4.1640e-002 9.8623e+003 3.6804e+000 1.6748e+002 +# -Range: 0-200 + +ThF4 + ThF4 = + 1.0000 Th++++ + 4.0000 F- + log_k -29.9946 + -delta_H -12.6733 kJ/mol # Calculated enthalpy of reaction ThF4 +# Enthalpy of formation: -501.371 kcal/mol + -analytic -4.2622e+002 -1.4222e-001 9.4201e+003 1.6446e+002 1.4712e+002 +# -Range: 0-300 + +ThF4:2.5H2O + ThF4:2.5H2O = + 1.0000 Th++++ + 2.5000 H2O + 4.0000 F- + log_k -31.8568 + -delta_H 22.6696 kJ/mol # Calculated enthalpy of reaction ThF4:2.5H2O +# Enthalpy of formation: -2847.68 kJ/mol + -analytic -1.1284e+002 -4.5422e-002 -2.5781e+002 3.8547e+001 -4.3396e+000 +# -Range: 0-200 + +ThI4 + ThI4 = + 1.0000 Th++++ + 4.0000 I- + log_k 45.1997 + -delta_H -332.818 kJ/mol # Calculated enthalpy of reaction ThI4 +# Enthalpy of formation: -663.811 kJ/mol + -analytic 1.4224e+000 -4.0379e-002 1.4193e+004 3.3137e+000 2.4102e+002 +# -Range: 0-200 + +ThS + ThS +3.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 HS- + 1.0000 Th++++ + log_k 96.0395 + -delta_H -669.906 kJ/mol # Calculated enthalpy of reaction ThS +# Enthalpy of formation: -394.993 kJ/mol + -analytic -1.3919e+001 -1.2372e-002 3.3883e+004 0.0000e+000 0.0000e+000 +# -Range: 0-200 + +ThS2 + ThS2 +2.0000 H+ = + 1.0000 Th++++ + 2.0000 HS- + log_k 10.7872 + -delta_H -175.369 kJ/mol # Calculated enthalpy of reaction ThS2 +# Enthalpy of formation: -625.867 kJ/mol + -analytic -3.7691e+001 -2.3714e-002 8.4673e+003 1.0970e+001 1.4380e+002 +# -Range: 0-200 + +Thenardite + Na2SO4 = + 1.0000 SO4-- + 2.0000 Na+ + log_k -0.3091 + -delta_H -2.33394 kJ/mol # Calculated enthalpy of reaction Thenardite +# Enthalpy of formation: -1387.87 kJ/mol + -analytic -2.1202e+002 -7.1613e-002 5.1083e+003 8.7244e+001 7.9773e+001 +# -Range: 0-300 + +Thermonatrite + Na2CO3:H2O +1.0000 H+ = + 1.0000 H2O + 1.0000 HCO3- + 2.0000 Na+ + log_k 10.9623 + -delta_H -27.5869 kJ/mol # Calculated enthalpy of reaction Thermonatrite +# Enthalpy of formation: -1428.78 kJ/mol + -analytic -1.4030e+002 -3.5263e-002 5.7840e+003 5.7528e+001 9.0295e+001 +# -Range: 0-300 + +Thorianite + ThO2 +4.0000 H+ = + 1.0000 Th++++ + 2.0000 H2O + log_k 1.8624 + -delta_H -114.296 kJ/mol # Calculated enthalpy of reaction Thorianite +# Enthalpy of formation: -1226.4 kJ/mol + -analytic -1.4249e+001 -2.4645e-003 4.3110e+003 -1.6605e-002 2.1598e+005 +# -Range: 0-300 + +Ti + Ti +2.0000 H2O +1.0000 O2 = + 1.0000 Ti(OH)4 + log_k 149.2978 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti +# Enthalpy of formation: 0 kJ/mol + +Ti2O3 + Ti2O3 +4.0000 H2O +0.5000 O2 = + 2.0000 Ti(OH)4 + log_k 42.9866 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti2O3 +# Enthalpy of formation: -1520.78 kJ/mol + +Ti3O5 + Ti3O5 +6.0000 H2O +0.5000 O2 = + 3.0000 Ti(OH)4 + log_k 34.6557 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti3O5 +# Enthalpy of formation: -2459.24 kJ/mol + +TiB2 + TiB2 +5.0000 H2O +2.5000 O2 = + 1.0000 Ti(OH)4 + 2.0000 B(OH)3 + log_k 312.4194 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiB2 +# Enthalpy of formation: -323.883 kJ/mol + +TiBr3 + TiBr3 +3.5000 H2O +0.2500 O2 = + 1.0000 Ti(OH)4 + 3.0000 Br- + 3.0000 H+ + log_k 47.7190 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr3 +# Enthalpy of formation: -548.378 kJ/mol + +TiBr4 + TiBr4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 Br- + 4.0000 H+ + log_k 32.9379 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr4 +# Enthalpy of formation: -616.822 kJ/mol + +TiC + TiC +3.0000 H2O +2.0000 O2 = + 1.0000 H+ + 1.0000 HCO3- + 1.0000 Ti(OH)4 + log_k 181.8139 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiC +# Enthalpy of formation: -184.346 kJ/mol + +TiCl2 + TiCl2 +3.0000 H2O +0.5000 O2 = + 1.0000 Ti(OH)4 + 2.0000 Cl- + 2.0000 H+ + log_k 70.9386 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl2 +# Enthalpy of formation: -514.012 kJ/mol + +TiCl3 + TiCl3 +3.5000 H2O +0.2500 O2 = + 1.0000 Ti(OH)4 + 3.0000 Cl- + 3.0000 H+ + log_k 39.3099 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl3 +# Enthalpy of formation: -720.775 kJ/mol + +TiF4(am) + TiF4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 F- + 4.0000 H+ + log_k -12.4409 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiF4(am) +# Enthalpy of formation: -1649.44 kJ/mol + +TiI4 + TiI4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 H+ + 4.0000 I- + log_k 34.5968 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiI4 +# Enthalpy of formation: -375.555 kJ/mol + +TiN + TiN +3.5000 H2O +0.2500 O2 = + 1.0000 NH3 + 1.0000 Ti(OH)4 + log_k 35.2344 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiN +# Enthalpy of formation: -338.304 kJ/mol + +TiO(alpha) + TiO +2.0000 H2O +0.5000 O2 = + 1.0000 Ti(OH)4 + log_k 61.1282 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiO(alpha) +# Enthalpy of formation: -519.835 kJ/mol + +Tiemannite + HgSe = + 1.0000 Hg++ + 1.0000 Se-- + log_k -58.2188 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tiemannite +# Enthalpy of formation: -10.4 kcal/mol + -analytic -5.7618e+001 -1.3891e-002 -1.3223e+004 1.9351e+001 -2.0632e+002 +# -Range: 0-300 + +Titanite + CaTiSiO5 +2.0000 H+ +1.0000 H2O = + 1.0000 Ca++ + 1.0000 SiO2 + 1.0000 Ti(OH)4 + log_k 719.5839 + -delta_H 0 # Not possible to calculate enthalpy of reaction Titanite +# Enthalpy of formation: 0 kcal/mol + +Tl + Tl +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Tl+ + log_k 27.1743 + -delta_H -134.53 kJ/mol # Calculated enthalpy of reaction Tl +# Enthalpy of formation: 0 kJ/mol + -analytic -3.7066e+001 -7.8341e-003 9.4594e+003 1.4896e+001 -1.7904e+005 +# -Range: 0-300 + +Tm + Tm +3.0000 H+ +0.7500 O2 = + 1.0000 Tm+++ + 1.5000 H2O + log_k 181.7102 + -delta_H -1124.66 kJ/mol # Calculated enthalpy of reaction Tm +# Enthalpy of formation: 0 kJ/mol + -analytic -6.7440e+001 -2.8476e-002 5.9332e+004 2.3715e+001 -5.9611e+003 +# -Range: 0-300 + +Tm(OH)3 + Tm(OH)3 +3.0000 H+ = + 1.0000 Tm+++ + 3.0000 H2O + log_k 14.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Tm(OH)3(am) + Tm(OH)3 +3.0000 H+ = + 1.0000 Tm+++ + 3.0000 H2O + log_k 17.2852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +Tm2(CO3)3 + Tm2(CO3)3 +3.0000 H+ = + 2.0000 Tm+++ + 3.0000 HCO3- + log_k -2.4136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm2(CO3)3 +# Enthalpy of formation: 0 kcal/mol + +Tm2O3 + Tm2O3 +6.0000 H+ = + 2.0000 Tm+++ + 3.0000 H2O + log_k 44.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm2O3 +# Enthalpy of formation: 0 kcal/mol + +TmF3:.5H2O + TmF3:.5H2O = + 0.5000 H2O + 1.0000 Tm+++ + 3.0000 F- + log_k -16.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction TmF3:.5H2O +# Enthalpy of formation: 0 kcal/mol + +TmPO4:10H2O + TmPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Tm+++ + 10.0000 H2O + log_k -11.8782 + -delta_H 0 # Not possible to calculate enthalpy of reaction TmPO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +Tobermorite-11A + Ca5Si6H11O22.5 +10.0000 H+ = + 5.0000 Ca++ + 6.0000 SiO2 + 10.5000 H2O + log_k 65.6121 + -delta_H -286.861 kJ/mol # Calculated enthalpy of reaction Tobermorite-11A +# Enthalpy of formation: -2556.42 kcal/mol + -analytic 7.9123e+001 3.9150e-002 2.9429e+004 -3.9191e+001 -2.4122e+006 +# -Range: 0-300 + +Tobermorite-14A + Ca5Si6H21O27.5 +10.0000 H+ = + 5.0000 Ca++ + 6.0000 SiO2 + 15.5000 H2O + log_k 63.8445 + -delta_H -230.959 kJ/mol # Calculated enthalpy of reaction Tobermorite-14A +# Enthalpy of formation: -2911.36 kcal/mol + -analytic -2.0789e+002 5.2472e-003 3.9698e+004 6.7797e+001 -2.7532e+006 +# -Range: 0-300 + +Tobermorite-9A + Ca5Si6H6O20 +10.0000 H+ = + 5.0000 Ca++ + 6.0000 SiO2 + 8.0000 H2O + log_k 69.0798 + -delta_H -329.557 kJ/mol # Calculated enthalpy of reaction Tobermorite-9A +# Enthalpy of formation: -2375.42 kcal/mol + -analytic -6.3384e+001 1.1722e-002 3.8954e+004 1.2268e+001 -2.8681e+006 +# -Range: 0-300 + +Todorokite + Mn7O12:3H2O +16.0000 H+ = + 1.0000 MnO4-- + 6.0000 Mn+++ + 11.0000 H2O + log_k -45.8241 + -delta_H 0 # Not possible to calculate enthalpy of reaction Todorokite +# Enthalpy of formation: 0 kcal/mol + +Torbernite + Cu(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Cu++ + 2.0000 HPO4-- + 2.0000 UO2++ + log_k -20.3225 + -delta_H -97.4022 kJ/mol # Calculated enthalpy of reaction Torbernite +# Enthalpy of formation: -1065.74 kcal/mol + -analytic -6.7128e+001 -4.5878e-002 3.5071e+003 1.9682e+001 5.9579e+001 +# -Range: 0-200 + +Tremolite + Ca2Mg5Si8O22(OH)2 +14.0000 H+ = + 2.0000 Ca++ + 5.0000 Mg++ + 8.0000 H2O + 8.0000 SiO2 + log_k 61.2367 + -delta_H -406.404 kJ/mol # Calculated enthalpy of reaction Tremolite +# Enthalpy of formation: -2944.04 kcal/mol + -analytic 8.5291e+001 4.6337e-002 3.9465e+004 -5.4414e+001 -3.1913e+006 +# -Range: 0-300 + +Trevorite + NiFe2O4 +8.0000 H+ = + 1.0000 Ni++ + 2.0000 Fe+++ + 4.0000 H2O + log_k 9.7876 + -delta_H -215.338 kJ/mol # Calculated enthalpy of reaction Trevorite +# Enthalpy of formation: -1081.15 kJ/mol + -analytic -1.4322e+002 -2.9429e-002 1.4518e+004 4.5698e+001 2.4658e+002 +# -Range: 0-200 + +Tridymite + SiO2 = + 1.0000 SiO2 + log_k -3.8278 + -delta_H 31.3664 kJ/mol # Calculated enthalpy of reaction Tridymite +# Enthalpy of formation: -909.065 kJ/mol + -analytic 3.1594e+002 6.9315e-002 -1.1358e+004 -1.2219e+002 -1.9299e+002 +# -Range: 0-200 + +Troilite + FeS +1.0000 H+ = + 1.0000 Fe++ + 1.0000 HS- + log_k -3.8184 + -delta_H -7.3296 kJ/mol # Calculated enthalpy of reaction Troilite +# Enthalpy of formation: -101.036 kJ/mol + -analytic -1.6146e+002 -5.3170e-002 4.0461e+003 6.4620e+001 6.3183e+001 +# -Range: 0-300 + +Trona-K + K2NaH(CO3)2:2H2O +1.0000 H+ = + 1.0000 Na+ + 2.0000 H2O + 2.0000 HCO3- + 2.0000 K+ + log_k 11.5891 + -delta_H 0 # Not possible to calculate enthalpy of reaction Trona-K +# Enthalpy of formation: 0 kcal/mol + +Tsumebite + Pb2Cu(PO4)(OH)3:3H2O +4.0000 H+ = + 1.0000 Cu++ + 1.0000 HPO4-- + 2.0000 Pb++ + 6.0000 H2O + log_k 2.5318 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tsumebite +# Enthalpy of formation: 0 kcal/mol + +Tyuyamunite + Ca(UO2)2(VO4)2 = + 1.0000 Ca++ + 2.0000 UO2++ + 2.0000 VO4--- + log_k -53.3757 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tyuyamunite +# Enthalpy of formation: -1164.52 kcal/mol + +U + U +2.0000 H+ +1.5000 O2 = + 1.0000 H2O + 1.0000 UO2++ + log_k 212.7800 + -delta_H -1286.64 kJ/mol # Calculated enthalpy of reaction U +# Enthalpy of formation: 0 kJ/mol + -analytic -2.4912e+002 -4.7104e-002 8.1115e+004 8.7008e+001 -1.0158e+006 +# -Range: 0-300 + +U(CO3)2 + U(CO3)2 +2.0000 H+ = + 1.0000 U++++ + 2.0000 HCO3- + log_k 7.5227 + -delta_H -170.691 kJ/mol # Calculated enthalpy of reaction U(CO3)2 +# Enthalpy of formation: -1800.38 kJ/mol + -analytic -8.5952e+001 -2.5086e-002 1.0177e+004 2.7002e+001 1.7285e+002 +# -Range: 0-200 + +U(HPO4)2:4H2O + U(HPO4)2:4H2O = + 1.0000 U++++ + 2.0000 HPO4-- + 4.0000 H2O + log_k -32.8650 + -delta_H 16.1008 kJ/mol # Calculated enthalpy of reaction U(HPO4)2:4H2O +# Enthalpy of formation: -4334.82 kJ/mol + -analytic -3.8694e+002 -1.3874e-001 6.4882e+003 1.5099e+002 1.0136e+002 +# -Range: 0-300 + +U(OH)2SO4 + U(OH)2SO4 +2.0000 H+ = + 1.0000 SO4-- + 1.0000 U++++ + 2.0000 H2O + log_k -3.0731 + -delta_H 0 # Not possible to calculate enthalpy of reaction U(OH)2SO4 +# Enthalpy of formation: 0 kcal/mol + +U(SO3)2 + U(SO3)2 = + 1.0000 U++++ + 2.0000 SO3-- + log_k -36.7499 + -delta_H 20.7008 kJ/mol # Calculated enthalpy of reaction U(SO3)2 +# Enthalpy of formation: -1883 kJ/mol + -analytic 5.8113e+001 -2.9981e-002 -7.0503e+003 -2.5175e+001 -1.1974e+002 +# -Range: 0-200 + +U(SO4)2 + U(SO4)2 = + 1.0000 U++++ + 2.0000 SO4-- + log_k -11.5178 + -delta_H -100.803 kJ/mol # Calculated enthalpy of reaction U(SO4)2 +# Enthalpy of formation: -2309.6 kJ/mol + -analytic 3.2215e+001 -2.8662e-002 7.1066e+002 -1.5190e+001 1.2057e+001 +# -Range: 0-200 + +U(SO4)2:4H2O + U(SO4)2:4H2O = + 1.0000 U++++ + 2.0000 SO4-- + 4.0000 H2O + log_k -11.5287 + -delta_H -70.5565 kJ/mol # Calculated enthalpy of reaction U(SO4)2:4H2O +# Enthalpy of formation: -3483.2 kJ/mol + -analytic -6.9548e+001 -2.9094e-002 3.8763e+003 2.1692e+001 6.5849e+001 +# -Range: 0-200 + +U(SO4)2:8H2O + U(SO4)2:8H2O = + 1.0000 U++++ + 2.0000 SO4-- + 8.0000 H2O + log_k -12.5558 + -delta_H -34.5098 kJ/mol # Calculated enthalpy of reaction U(SO4)2:8H2O +# Enthalpy of formation: -4662.6 kJ/mol + -analytic -1.7141e+002 -2.9548e-002 6.7423e+003 5.8614e+001 1.1455e+002 +# -Range: 0-200 + +U2C3 + U2C3 +4.5000 O2 +3.0000 H+ = + 2.0000 U+++ + 3.0000 HCO3- + log_k 455.3078 + -delta_H -2810.1 kJ/mol # Calculated enthalpy of reaction U2C3 +# Enthalpy of formation: -183.3 kJ/mol + -analytic -3.8340e+002 -1.5374e-001 1.5922e+005 1.4643e+002 -1.0584e+006 +# -Range: 0-300 + +U2F9 + U2F9 +2.0000 H2O = + 1.0000 U++++ + 1.0000 UO2+ + 4.0000 H+ + 9.0000 F- + log_k -45.5022 + -delta_H -46.8557 kJ/mol # Calculated enthalpy of reaction U2F9 +# Enthalpy of formation: -4015.92 kJ/mol + -analytic -8.8191e+002 -3.0477e-001 2.0493e+004 3.4690e+002 3.2003e+002 +# -Range: 0-300 + +U2O2Cl5 + U2O2Cl5 = + 1.0000 U++++ + 1.0000 UO2+ + 5.0000 Cl- + log_k 19.2752 + -delta_H -254.325 kJ/mol # Calculated enthalpy of reaction U2O2Cl5 +# Enthalpy of formation: -2197.4 kJ/mol + -analytic -4.3945e+002 -1.6239e-001 2.1694e+004 1.7551e+002 3.3865e+002 +# -Range: 0-300 + +U2O3F6 + U2O3F6 +1.0000 H2O = + 2.0000 H+ + 2.0000 UO2++ + 6.0000 F- + log_k -2.5066 + -delta_H -185.047 kJ/mol # Calculated enthalpy of reaction U2O3F6 +# Enthalpy of formation: -3579.2 kJ/mol + -analytic -3.2332e+001 -5.9519e-002 5.7857e+003 1.1372e+001 9.8260e+001 +# -Range: 0-200 + +U2S3 + U2S3 +3.0000 H+ = + 2.0000 U+++ + 3.0000 HS- + log_k 6.5279 + -delta_H -147.525 kJ/mol # Calculated enthalpy of reaction U2S3 +# Enthalpy of formation: -879 kJ/mol + -analytic -3.0494e+002 -1.0983e-001 1.3647e+004 1.2059e+002 2.1304e+002 +# -Range: 0-300 + +U2Se3 + U2Se3 +4.5000 O2 = + 2.0000 U+++ + 3.0000 SeO3-- + log_k 248.0372 + -delta_H -1740.18 kJ/mol # Calculated enthalpy of reaction U2Se3 +# Enthalpy of formation: -711 kJ/mol + -analytic 4.9999e+002 -1.6488e-002 6.4991e+004 -1.8795e+002 1.1035e+003 +# -Range: 0-200 + +U3As4 + U3As4 +5.2500 O2 +5.0000 H+ +1.5000 H2O = + 3.0000 U+++ + 4.0000 H2AsO3- + log_k 487.6802 + -delta_H -3114.02 kJ/mol # Calculated enthalpy of reaction U3As4 +# Enthalpy of formation: -720 kJ/mol + -analytic -9.0215e+002 -2.5804e-001 1.9974e+005 3.3331e+002 -2.4911e+006 +# -Range: 0-300 + +U3O5F8 + U3O5F8 +1.0000 H2O = + 2.0000 H+ + 3.0000 UO2++ + 8.0000 F- + log_k -2.7436 + -delta_H -260.992 kJ/mol # Calculated enthalpy of reaction U3O5F8 +# Enthalpy of formation: -5192.95 kJ/mol + -analytic -7.7653e+002 -2.7294e-001 2.9180e+004 3.0599e+002 4.5556e+002 +# -Range: 0-300 + +U3P4 + U3P4 +7.2500 O2 +1.5000 H2O +1.0000 H+ = + 3.0000 U+++ + 4.0000 HPO4-- + log_k 827.5586 + -delta_H -5275.9 kJ/mol # Calculated enthalpy of reaction U3P4 +# Enthalpy of formation: -843 kJ/mol + -analytic -2.7243e+003 -6.2927e-001 4.0130e+005 1.0021e+003 -7.6720e+006 +# -Range: 0-300 + +U3S5 + U3S5 +5.0000 H+ = + 1.0000 U++++ + 2.0000 U+++ + 5.0000 HS- + log_k -0.3680 + -delta_H -218.942 kJ/mol # Calculated enthalpy of reaction U3S5 +# Enthalpy of formation: -1431 kJ/mol + -analytic -1.1011e+002 -6.7959e-002 1.0369e+004 3.8481e+001 1.7611e+002 +# -Range: 0-200 + +U3Sb4 + U3Sb4 +9.0000 H+ +5.2500 O2 +1.5000 H2O = + 3.0000 U+++ + 4.0000 Sb(OH)3 + log_k 575.0349 + -delta_H -3618.1 kJ/mol # Calculated enthalpy of reaction U3Sb4 +# Enthalpy of formation: -451.9 kJ/mol + +U3Se4 + U3Se4 +6.2500 O2 +1.0000 H+ = + 0.5000 H2O + 3.0000 U+++ + 4.0000 SeO3-- + log_k 375.2823 + -delta_H -2588.16 kJ/mol # Calculated enthalpy of reaction U3Se4 +# Enthalpy of formation: -983 kJ/mol + -analytic 6.7219e+002 -2.2708e-002 1.0025e+005 -2.5317e+002 1.7021e+003 +# -Range: 0-200 + +U3Se5 + U3Se5 +7.2500 O2 +0.5000 H2O = + 1.0000 H+ + 3.0000 U+++ + 5.0000 SeO3-- + log_k 376.5747 + -delta_H -2652.38 kJ/mol # Calculated enthalpy of reaction U3Se5 +# Enthalpy of formation: -1130 kJ/mol + -analytic 8.3306e+002 -2.6526e-002 9.5737e+004 -3.1109e+002 1.6255e+003 +# -Range: 0-200 + +U4F17 + U4F17 +2.0000 H2O = + 1.0000 UO2+ + 3.0000 U++++ + 4.0000 H+ + 17.0000 F- + log_k -104.7657 + -delta_H -78.2955 kJ/mol # Calculated enthalpy of reaction U4F17 +# Enthalpy of formation: -7849.66 kJ/mol + -analytic -1.7466e+003 -5.9186e-001 4.0017e+004 6.8046e+002 6.2494e+002 +# -Range: 0-300 + +U5O12Cl + U5O12Cl +4.0000 H+ = + 1.0000 Cl- + 2.0000 H2O + 5.0000 UO2+ + log_k -18.7797 + -delta_H -9.99133 kJ/mol # Calculated enthalpy of reaction U5O12Cl +# Enthalpy of formation: -5854.4 kJ/mol + -analytic -7.3802e+001 2.9180e-002 4.6804e+003 1.2371e+001 7.9503e+001 +# -Range: 0-200 + +UAs + UAs +2.0000 H+ +1.5000 O2 = + 1.0000 H2AsO3- + 1.0000 U+++ + log_k 149.0053 + -delta_H -951.394 kJ/mol # Calculated enthalpy of reaction UAs +# Enthalpy of formation: -234.3 kJ/mol + -analytic -5.0217e+001 -4.2992e-002 4.8480e+004 1.9964e+001 7.5650e+002 +# -Range: 0-300 + +UAs2 + UAs2 +2.2500 O2 +1.5000 H2O +1.0000 H+ = + 1.0000 U+++ + 2.0000 H2AsO3- + log_k 189.1058 + -delta_H -1210.63 kJ/mol # Calculated enthalpy of reaction UAs2 +# Enthalpy of formation: -252 kJ/mol + -analytic -8.7361e+001 -7.5252e-002 6.1445e+004 3.7485e+001 9.5881e+002 +# -Range: 0-300 + +UBr2Cl + UBr2Cl = + 1.0000 Cl- + 1.0000 U+++ + 2.0000 Br- + log_k 17.7796 + -delta_H -148.586 kJ/mol # Calculated enthalpy of reaction UBr2Cl +# Enthalpy of formation: -750.6 kJ/mol + -analytic 3.0364e+000 -3.2187e-002 5.2314e+003 2.7418e+000 8.8836e+001 +# -Range: 0-200 + +UBr2Cl2 + UBr2Cl2 = + 1.0000 U++++ + 2.0000 Br- + 2.0000 Cl- + log_k 26.2185 + -delta_H -260.466 kJ/mol # Calculated enthalpy of reaction UBr2Cl2 +# Enthalpy of formation: -907.9 kJ/mol + -analytic 3.8089e+000 -3.8781e-002 1.0125e+004 0.0000e+000 0.0000e+000 +# -Range: 0-200 + +UBr3 + UBr3 = + 1.0000 U+++ + 3.0000 Br- + log_k 20.2249 + -delta_H -154.91 kJ/mol # Calculated enthalpy of reaction UBr3 +# Enthalpy of formation: -698.7 kJ/mol + -analytic -2.4366e+002 -9.8651e-002 1.2538e+004 1.0151e+002 1.9572e+002 +# -Range: 0-300 + +UBr3Cl + UBr3Cl = + 1.0000 Cl- + 1.0000 U++++ + 3.0000 Br- + log_k 29.1178 + -delta_H -270.49 kJ/mol # Calculated enthalpy of reaction UBr3Cl +# Enthalpy of formation: -852.3 kJ/mol + -analytic 1.1204e+001 -3.7109e-002 1.0473e+004 -2.4905e+000 1.7784e+002 +# -Range: 0-200 + +UBr4 + UBr4 = + 1.0000 U++++ + 4.0000 Br- + log_k 31.2904 + -delta_H -275.113 kJ/mol # Calculated enthalpy of reaction UBr4 +# Enthalpy of formation: -802.1 kJ/mol + -analytic -3.3800e+002 -1.2940e-001 2.0674e+004 1.3678e+002 3.2270e+002 +# -Range: 0-300 + +UBr5 + UBr5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 Br- + log_k 41.6312 + -delta_H -250.567 kJ/mol # Calculated enthalpy of reaction UBr5 +# Enthalpy of formation: -810.4 kJ/mol + -analytic -3.2773e+002 -1.4356e-001 1.8709e+004 1.4117e+002 2.9204e+002 +# -Range: 0-300 + +UBrCl2 + UBrCl2 = + 1.0000 Br- + 1.0000 U+++ + 2.0000 Cl- + log_k 14.5048 + -delta_H -132.663 kJ/mol # Calculated enthalpy of reaction UBrCl2 +# Enthalpy of formation: -812.1 kJ/mol + -analytic -5.3713e+000 -3.4256e-002 4.6251e+003 5.8875e+000 7.8542e+001 +# -Range: 0-200 + +UBrCl3 + UBrCl3 = + 1.0000 Br- + 1.0000 U++++ + 3.0000 Cl- + log_k 23.5258 + -delta_H -246.642 kJ/mol # Calculated enthalpy of reaction UBrCl3 +# Enthalpy of formation: -967.3 kJ/mol + -analytic -5.6867e+000 -4.1166e-002 9.6664e+003 3.6579e+000 1.6415e+002 +# -Range: 0-200 + +UC + UC +2.0000 H+ +1.7500 O2 = + 0.5000 H2O + 1.0000 HCO3- + 1.0000 U+++ + log_k 194.8241 + -delta_H -1202.82 kJ/mol # Calculated enthalpy of reaction UC +# Enthalpy of formation: -97.9 kJ/mol + -analytic -4.6329e+001 -4.4600e-002 6.1417e+004 1.9566e+001 9.5836e+002 +# -Range: 0-300 + +UC1.94(alpha) + UC1.94 +2.6900 O2 +1.0600 H+ +0.4400 H2O = + 1.0000 U+++ + 1.9400 HCO3- + log_k 257.1619 + -delta_H -1583.84 kJ/mol # Calculated enthalpy of reaction UC1.94(alpha) +# Enthalpy of formation: -85.324 kJ/mol + -analytic -5.8194e+002 -1.4610e-001 1.0917e+005 2.1638e+002 -1.6852e+006 +# -Range: 0-300 + +UCl2F2 + UCl2F2 = + 1.0000 U++++ + 2.0000 Cl- + 2.0000 F- + log_k -3.5085 + -delta_H -130.055 kJ/mol # Calculated enthalpy of reaction UCl2F2 +# Enthalpy of formation: -1466 kJ/mol + -analytic -3.9662e+002 -1.3879e-001 1.4710e+004 1.5562e+002 2.2965e+002 +# -Range: 0-300 + +UCl2I2 + UCl2I2 = + 1.0000 U++++ + 2.0000 Cl- + 2.0000 I- + log_k 30.2962 + -delta_H -270.364 kJ/mol # Calculated enthalpy of reaction UCl2I2 +# Enthalpy of formation: -768.8 kJ/mol + -analytic -1.2922e+001 -4.3178e-002 1.1219e+004 7.4562e+000 1.9052e+002 +# -Range: 0-200 + +UCl3 + UCl3 = + 1.0000 U+++ + 3.0000 Cl- + log_k 13.0062 + -delta_H -126.639 kJ/mol # Calculated enthalpy of reaction UCl3 +# Enthalpy of formation: -863.7 kJ/mol + -analytic -2.6388e+002 -1.0241e-001 1.1629e+004 1.0846e+002 1.8155e+002 +# -Range: 0-300 + +UCl3F + UCl3F = + 1.0000 F- + 1.0000 U++++ + 3.0000 Cl- + log_k 10.3200 + -delta_H -184.787 kJ/mol # Calculated enthalpy of reaction UCl3F +# Enthalpy of formation: -1243 kJ/mol + -analytic -3.7971e+002 -1.3681e-001 1.7127e+004 1.5086e+002 2.6736e+002 +# -Range: 0-300 + +UCl3I + UCl3I = + 1.0000 I- + 1.0000 U++++ + 3.0000 Cl- + log_k 25.5388 + -delta_H -251.041 kJ/mol # Calculated enthalpy of reaction UCl3I +# Enthalpy of formation: -898.3 kJ/mol + -analytic -1.3362e+001 -4.3214e-002 1.0167e+004 7.1426e+000 1.7265e+002 +# -Range: 0-200 + +UCl4 + UCl4 = + 1.0000 U++++ + 4.0000 Cl- + log_k 21.9769 + -delta_H -240.719 kJ/mol # Calculated enthalpy of reaction UCl4 +# Enthalpy of formation: -1018.8 kJ/mol + -analytic -3.6881e+002 -1.3618e-001 1.9685e+004 1.4763e+002 3.0727e+002 +# -Range: 0-300 + +UCl5 + UCl5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 Cl- + log_k 37.3147 + -delta_H -249.849 kJ/mol # Calculated enthalpy of reaction UCl5 +# Enthalpy of formation: -1039 kJ/mol + -analytic -3.6392e+002 -1.5133e-001 1.9617e+004 1.5376e+002 3.0622e+002 +# -Range: 0-300 + +UCl6 + UCl6 +2.0000 H2O = + 1.0000 UO2++ + 4.0000 H+ + 6.0000 Cl- + log_k 57.5888 + -delta_H -383.301 kJ/mol # Calculated enthalpy of reaction UCl6 +# Enthalpy of formation: -1066.5 kJ/mol + -analytic -4.5589e+002 -1.9203e-001 2.8029e+004 1.9262e+002 4.3750e+002 +# -Range: 0-300 + +UClF3 + UClF3 = + 1.0000 Cl- + 1.0000 U++++ + 3.0000 F- + log_k -17.5122 + -delta_H -74.3225 kJ/mol # Calculated enthalpy of reaction UClF3 +# Enthalpy of formation: -1690 kJ/mol + -analytic -4.1346e+002 -1.4077e-001 1.2237e+004 1.6036e+002 1.9107e+002 +# -Range: 0-300 + +UClI3 + UClI3 = + 1.0000 Cl- + 1.0000 U++++ + 3.0000 I- + log_k 35.2367 + -delta_H -285.187 kJ/mol # Calculated enthalpy of reaction UClI3 +# Enthalpy of formation: -643.8 kJ/mol + -analytic -1.1799e+001 -4.3208e-002 1.2045e+004 7.8829e+000 2.0455e+002 +# -Range: 0-200 + +UF3 + UF3 = + 1.0000 U+++ + 3.0000 F- + log_k -19.4125 + -delta_H 6.2572 kJ/mol # Calculated enthalpy of reaction UF3 +# Enthalpy of formation: -1501.4 kJ/mol + -analytic -3.1530e+002 -1.0945e-001 6.1335e+003 1.2443e+002 9.5799e+001 +# -Range: 0-300 + +UF4 + UF4 = + 1.0000 U++++ + 4.0000 F- + log_k -29.2004 + -delta_H -18.3904 kJ/mol # Calculated enthalpy of reaction UF4 +# Enthalpy of formation: -1914.2 kJ/mol + -analytic -4.2411e+002 -1.4147e-001 9.6621e+003 1.6352e+002 1.5089e+002 +# -Range: 0-300 + +UF4:2.5H2O + UF4:2.5H2O = + 1.0000 U++++ + 2.5000 H2O + 4.0000 F- + log_k -33.3685 + -delta_H 24.2888 kJ/mol # Calculated enthalpy of reaction UF4:2.5H2O +# Enthalpy of formation: -2671.47 kJ/mol + -analytic -4.4218e+002 -1.4305e-001 8.2922e+003 1.7118e+002 1.2952e+002 +# -Range: 0-300 + +UF5(alpha) + UF5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 F- + log_k -12.8376 + -delta_H -54.8883 kJ/mol # Calculated enthalpy of reaction UF5(alpha) +# Enthalpy of formation: -2075.3 kJ/mol + -analytic -4.5126e+002 -1.6121e-001 1.1997e+004 1.8030e+002 1.8733e+002 +# -Range: 0-300 + +UF5(beta) + UF5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 F- + log_k -13.1718 + -delta_H -46.9883 kJ/mol # Calculated enthalpy of reaction UF5(beta) +# Enthalpy of formation: -2083.2 kJ/mol + -analytic -4.5020e+002 -1.6121e-001 1.1584e+004 1.8030e+002 1.8089e+002 +# -Range: 0-300 + +UF6 + UF6 +2.0000 H2O = + 1.0000 UO2++ + 4.0000 H+ + 6.0000 F- + log_k 17.4292 + -delta_H -261.709 kJ/mol # Calculated enthalpy of reaction UF6 +# Enthalpy of formation: -2197.7 kJ/mol + -analytic -5.8427e+002 -2.1223e-001 2.5296e+004 2.3440e+002 3.9489e+002 +# -Range: 0-300 + +UH3(beta) + UH3 +3.0000 H+ +1.5000 O2 = + 1.0000 U+++ + 3.0000 H2O + log_k 199.7683 + -delta_H -1201.43 kJ/mol # Calculated enthalpy of reaction UH3(beta) +# Enthalpy of formation: -126.98 kJ/mol + -analytic 5.2870e+001 4.2151e-003 6.0167e+004 -2.2701e+001 1.0217e+003 +# -Range: 0-200 + +UI3 + UI3 = + 1.0000 U+++ + 3.0000 I- + log_k 29.0157 + -delta_H -192.407 kJ/mol # Calculated enthalpy of reaction UI3 +# Enthalpy of formation: -467.4 kJ/mol + -analytic -2.4505e+002 -9.9867e-002 1.4579e+004 1.0301e+002 2.2757e+002 +# -Range: 0-300 + +UI4 + UI4 = + 1.0000 U++++ + 4.0000 I- + log_k 39.3102 + -delta_H -300.01 kJ/mol # Calculated enthalpy of reaction UI4 +# Enthalpy of formation: -518.8 kJ/mol + -analytic -3.4618e+002 -1.3227e-001 2.2320e+004 1.4145e+002 3.4839e+002 +# -Range: 0-300 + +UN + UN +3.0000 H+ = + 1.0000 NH3 + 1.0000 U+++ + log_k 41.7130 + -delta_H -280.437 kJ/mol # Calculated enthalpy of reaction UN +# Enthalpy of formation: -290 kJ/mol + -analytic -1.6393e+002 -1.1679e-003 2.8845e+003 6.5637e+001 3.0122e+006 +# -Range: 0-300 + +UN1.59(alpha) + UN1.59 +1.8850 H2O +1.0000 H+ +0.0575 O2 = + 1.0000 UO2+ + 1.5900 NH3 + log_k 38.3930 + -delta_H -235.75 kJ/mol # Calculated enthalpy of reaction UN1.59(alpha) +# Enthalpy of formation: -379.2 kJ/mol + -analytic 1.8304e+001 1.1109e-002 1.2064e+004 -9.5741e+000 2.0485e+002 +# -Range: 0-200 + +UN1.73(alpha) + UN1.73 +2.0950 H2O +1.0000 H+ = + 0.0475 O2 + 1.0000 UO2+ + 1.7300 NH3 + log_k 27.2932 + -delta_H -169.085 kJ/mol # Calculated enthalpy of reaction UN1.73(alpha) +# Enthalpy of formation: -398.5 kJ/mol + -analytic 1.0012e+001 1.0398e-002 8.9348e+003 -6.3817e+000 1.5172e+002 +# -Range: 0-200 + +UO2(AsO3)2 + UO2(AsO3)2 +2.0000 H2O = + 1.0000 UO2++ + 2.0000 H2AsO4- + log_k 6.9377 + -delta_H -109.843 kJ/mol # Calculated enthalpy of reaction UO2(AsO3)2 +# Enthalpy of formation: -2156.6 kJ/mol + -analytic -1.6050e+002 -6.6472e-002 8.2129e+003 6.4533e+001 1.2820e+002 +# -Range: 0-300 + +UO2(IO3)2 + UO2(IO3)2 = + 1.0000 UO2++ + 2.0000 IO3- + log_k -7.2871 + -delta_H -0.3862 kJ/mol # Calculated enthalpy of reaction UO2(IO3)2 +# Enthalpy of formation: -1461.28 kJ/mol + -analytic -2.7047e+001 -1.4267e-002 -1.5055e+001 9.7226e+000 -2.4640e-001 +# -Range: 0-200 + +UO2(NO3)2 + UO2(NO3)2 = + 1.0000 UO2++ + 2.0000 NO3- + log_k 11.9598 + -delta_H -81.6219 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2 +# Enthalpy of formation: -1351 kJ/mol + -analytic -1.2216e+001 -1.1261e-002 3.9895e+003 5.7166e+000 6.7751e+001 +# -Range: 0-200 + +UO2(NO3)2:2H2O + UO2(NO3)2:2H2O = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 NO3- + log_k 4.9446 + -delta_H -25.5995 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:2H2O +# Enthalpy of formation: -1978.7 kJ/mol + -analytic -1.3989e+002 -5.2130e-002 4.3758e+003 5.8868e+001 6.8322e+001 +# -Range: 0-300 + +UO2(NO3)2:3H2O + UO2(NO3)2:3H2O = + 1.0000 UO2++ + 2.0000 NO3- + 3.0000 H2O + log_k 3.7161 + -delta_H -9.73686 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:3H2O +# Enthalpy of formation: -2280.4 kJ/mol + -analytic -1.5037e+002 -5.2234e-002 4.0783e+003 6.3024e+001 6.3682e+001 +# -Range: 0-300 + +UO2(NO3)2:6H2O + UO2(NO3)2:6H2O = + 1.0000 UO2++ + 2.0000 NO3- + 6.0000 H2O + log_k 2.3189 + -delta_H 19.8482 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:6H2O +# Enthalpy of formation: -3167.5 kJ/mol + -analytic -1.4019e+002 -4.3682e-002 2.7842e+003 5.9070e+001 4.3486e+001 +# -Range: 0-300 + +UO2(NO3)2:H2O + UO2(NO3)2:H2O = + 1.0000 H2O + 1.0000 UO2++ + 2.0000 NO3- + log_k 8.5103 + -delta_H -54.4602 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:H2O +# Enthalpy of formation: -1664 kJ/mol + -analytic -3.7575e+001 -1.1342e-002 3.7548e+003 1.4899e+001 6.3776e+001 +# -Range: 0-200 + +UO2(OH)2(beta) + UO2(OH)2 +2.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + log_k 4.9457 + -delta_H -56.8767 kJ/mol # Calculated enthalpy of reaction UO2(OH)2(beta) +# Enthalpy of formation: -1533.8 kJ/mol + -analytic -1.7478e+001 -1.6806e-003 3.4226e+003 4.6260e+000 5.3412e+001 +# -Range: 0-300 + +UO2(PO3)2 + UO2(PO3)2 +2.0000 H2O = + 1.0000 UO2++ + 2.0000 H+ + 2.0000 HPO4-- + log_k -16.2805 + -delta_H -58.4873 kJ/mol # Calculated enthalpy of reaction UO2(PO3)2 +# Enthalpy of formation: -2973 kJ/mol + -analytic -3.2995e+002 -1.3747e-001 8.0652e+003 1.3237e+002 1.2595e+002 +# -Range: 0-300 + +UO2(am) + UO2 +4.0000 H+ = + 1.0000 U++++ + 2.0000 H2O + log_k 0.1091 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(am) +# Enthalpy of formation: 0 kcal/mol + +UO2.25 + UO2.25 +2.5000 H+ = + 0.5000 U++++ + 0.5000 UO2+ + 1.2500 H2O + log_k -4.8193 + -delta_H -37.1614 kJ/mol # Calculated enthalpy of reaction UO2.25 +# Enthalpy of formation: -1128.3 kJ/mol + -analytic -1.9073e+002 -4.1793e-002 7.3391e+003 7.0213e+001 1.1457e+002 +# -Range: 0-300 + +UO2.25(beta) + UO2.25 +2.5000 H+ = + 0.5000 U++++ + 0.5000 UO2+ + 1.2500 H2O + log_k -4.7593 + -delta_H -38.0614 kJ/mol # Calculated enthalpy of reaction UO2.25(beta) +# Enthalpy of formation: -1127.4 kJ/mol + -analytic -3.6654e+001 -2.4013e-003 2.9632e+003 9.1625e+000 4.6249e+001 +# -Range: 0-300 + +UO2.3333(beta) +# UO2.3333 +8.0000 H+ = + 0.3333 O2 + 2.0000 U++++ + 4.0000 H2O + (UO2.3333)2 + 8.0000 H+ = 0.3333 O2 + 2.0000 U++++ + 4.0000 H2O + log_k -27.7177 + -delta_H -1187.8 kJ/mol # Calculated enthalpy of reaction UO2.3333(beta) +# Enthalpy of formation: -1142 kJ/mol + -analytic -7.4790e+000 -6.8382e-004 -2.7277e+003 -7.2107e+000 6.1873e+005 +# -Range: 0-300 + +UO2.6667 +# UO2.6667 +8.0000 H+ = + 0.6667 O2 + 2.0000 U++++ + 4.0000 H2O + (UO2.6667)2 +8.0000 H+ = + 0.6667 O2 + 2.0000 U++++ + 4.0000 H2O + log_k -43.6051 + -delta_H -1142.24 kJ/mol # Calculated enthalpy of reaction UO2.6667 +# Enthalpy of formation: -1191.6 kJ/mol + -analytic 1.2095e+002 2.0118e-002 -1.4968e+004 -5.3552e+001 1.0813e+006 +# -Range: 0-300 + +UO2Br2 + UO2Br2 = + 1.0000 UO2++ + 2.0000 Br- + log_k 16.5103 + -delta_H -124.607 kJ/mol # Calculated enthalpy of reaction UO2Br2 +# Enthalpy of formation: -1137.4 kJ/mol + -analytic -1.4876e+002 -6.2715e-002 9.0200e+003 6.2108e+001 1.4079e+002 +# -Range: 0-300 + +UO2Br2:3H2O + UO2Br2:3H2O = + 1.0000 UO2++ + 2.0000 Br- + 3.0000 H2O + log_k 9.4113 + -delta_H -61.5217 kJ/mol # Calculated enthalpy of reaction UO2Br2:3H2O +# Enthalpy of formation: -2058 kJ/mol + -analytic -6.8507e+001 -1.6834e-002 5.1409e+003 2.6546e+001 8.7324e+001 +# -Range: 0-200 + +UO2Br2:H2O + UO2Br2:H2O = + 1.0000 H2O + 1.0000 UO2++ + 2.0000 Br- + log_k 12.1233 + -delta_H -91.945 kJ/mol # Calculated enthalpy of reaction UO2Br2:H2O +# Enthalpy of formation: -1455.9 kJ/mol + -analytic -1.7519e+001 -1.6603e-002 4.3544e+003 8.0748e+000 7.3950e+001 +# -Range: 0-200 + +UO2BrOH:2H2O + UO2BrOH:2H2O +1.0000 H+ = + 1.0000 Br- + 1.0000 UO2++ + 3.0000 H2O + log_k 4.2026 + -delta_H -39.8183 kJ/mol # Calculated enthalpy of reaction UO2BrOH:2H2O +# Enthalpy of formation: -1958.2 kJ/mol + -analytic -8.3411e+001 -1.0024e-002 5.0411e+003 2.9781e+001 8.5633e+001 +# -Range: 0-200 + +UO2CO3 + UO2CO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 UO2++ + log_k -4.1267 + -delta_H -19.2872 kJ/mol # Calculated enthalpy of reaction UO2CO3 +# Enthalpy of formation: -1689.65 kJ/mol + -analytic -4.4869e+001 -1.1541e-002 1.9475e+003 1.5215e+001 3.3086e+001 +# -Range: 0-200 + +UO2Cl + UO2Cl = + 1.0000 Cl- + 1.0000 UO2+ + log_k -0.5154 + -delta_H -21.1067 kJ/mol # Calculated enthalpy of reaction UO2Cl +# Enthalpy of formation: -1171.1 kJ/mol + -analytic -7.3291e+001 -2.5940e-002 2.5753e+003 2.9038e+001 4.0207e+001 +# -Range: 0-300 + +UO2Cl2 + UO2Cl2 = + 1.0000 UO2++ + 2.0000 Cl- + log_k 12.1394 + -delta_H -109.559 kJ/mol # Calculated enthalpy of reaction UO2Cl2 +# Enthalpy of formation: -1243.6 kJ/mol + -analytic -1.6569e+002 -6.6249e-002 8.6920e+003 6.8055e+001 1.3568e+002 +# -Range: 0-300 + +UO2Cl2:3H2O + UO2Cl2:3H2O = + 1.0000 UO2++ + 2.0000 Cl- + 3.0000 H2O + log_k 5.6163 + -delta_H -45.8743 kJ/mol # Calculated enthalpy of reaction UO2Cl2:3H2O +# Enthalpy of formation: -2164.8 kJ/mol + -analytic -8.4932e+001 -2.0867e-002 4.7594e+003 3.2654e+001 8.0850e+001 +# -Range: 0-200 + +UO2Cl2:H2O + UO2Cl2:H2O = + 1.0000 H2O + 1.0000 UO2++ + 2.0000 Cl- + log_k 8.2880 + -delta_H -79.1977 kJ/mol # Calculated enthalpy of reaction UO2Cl2:H2O +# Enthalpy of formation: -1559.8 kJ/mol + -analytic -3.4458e+001 -2.0630e-002 4.1231e+003 1.4170e+001 7.0029e+001 +# -Range: 0-200 + +UO2ClOH:2H2O + UO2ClOH:2H2O +1.0000 H+ = + 1.0000 Cl- + 1.0000 UO2++ + 3.0000 H2O + log_k 2.3064 + -delta_H -33.1947 kJ/mol # Calculated enthalpy of reaction UO2ClOH:2H2O +# Enthalpy of formation: -2010.4 kJ/mol + -analytic -9.1834e+001 -1.2041e-002 4.9131e+003 3.2835e+001 8.3462e+001 +# -Range: 0-200 + +UO2F2 + UO2F2 = + 1.0000 UO2++ + 2.0000 F- + log_k -7.2302 + -delta_H -36.1952 kJ/mol # Calculated enthalpy of reaction UO2F2 +# Enthalpy of formation: -1653.5 kJ/mol + -analytic -2.0303e+002 -7.1028e-002 5.9356e+003 7.9627e+001 9.2679e+001 +# -Range: 0-300 + +UO2F2:3H2O + UO2F2:3H2O = + 1.0000 UO2++ + 2.0000 F- + 3.0000 H2O + log_k -7.3692 + -delta_H -12.8202 kJ/mol # Calculated enthalpy of reaction UO2F2:3H2O +# Enthalpy of formation: -2534.39 kJ/mol + -analytic -1.0286e+002 -2.1223e-002 3.4855e+003 3.6420e+001 5.9224e+001 +# -Range: 0-200 + +UO2FOH + UO2FOH +1.0000 H+ = + 1.0000 F- + 1.0000 H2O + 1.0000 UO2++ + log_k -1.8426 + -delta_H -41.7099 kJ/mol # Calculated enthalpy of reaction UO2FOH +# Enthalpy of formation: -1598.48 kJ/mol + -analytic -4.9229e+001 -1.1984e-002 3.2086e+003 1.6244e+001 5.4503e+001 +# -Range: 0-200 + +UO2FOH:2H2O + UO2FOH:2H2O +1.0000 H+ = + 1.0000 F- + 1.0000 UO2++ + 3.0000 H2O + log_k -2.6606 + -delta_H -21.8536 kJ/mol # Calculated enthalpy of reaction UO2FOH:2H2O +# Enthalpy of formation: -2190.01 kJ/mol + -analytic -1.0011e+002 -1.2203e-002 4.5446e+003 3.4690e+001 7.7208e+001 +# -Range: 0-200 + +UO2FOH:H2O + UO2FOH:H2O +1.0000 H+ = + 1.0000 F- + 1.0000 UO2++ + 2.0000 H2O + log_k -2.2838 + -delta_H -31.5243 kJ/mol # Calculated enthalpy of reaction UO2FOH:H2O +# Enthalpy of formation: -1894.5 kJ/mol + -analytic -7.4628e+001 -1.2086e-002 3.8625e+003 2.5456e+001 6.5615e+001 +# -Range: 0-200 + +UO2HPO4 + UO2HPO4 = + 1.0000 HPO4-- + 1.0000 UO2++ + log_k -12.6782 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2HPO4 +# Enthalpy of formation: 0 kcal/mol + +UO2HPO4:4H2O + UO2HPO4:4H2O = + 1.0000 HPO4-- + 1.0000 UO2++ + 4.0000 H2O + log_k -13.0231 + -delta_H 15.5327 kJ/mol # Calculated enthalpy of reaction UO2HPO4:4H2O +# Enthalpy of formation: -3469.97 kJ/mol + -analytic -1.1784e+002 -1.9418e-002 2.7547e+003 4.0963e+001 4.6818e+001 +# -Range: 0-200 + +UO2SO3 + UO2SO3 = + 1.0000 SO3-- + 1.0000 UO2++ + log_k -15.9812 + -delta_H 6.4504 kJ/mol # Calculated enthalpy of reaction UO2SO3 +# Enthalpy of formation: -1661 kJ/mol + -analytic 2.5751e+001 -1.3871e-002 -3.0305e+003 -1.1090e+001 -5.1470e+001 +# -Range: 0-200 + +UO2SO4 + UO2SO4 = + 1.0000 SO4-- + 1.0000 UO2++ + log_k 1.9681 + -delta_H -83.4616 kJ/mol # Calculated enthalpy of reaction UO2SO4 +# Enthalpy of formation: -1845.14 kJ/mol + -analytic -1.5677e+002 -6.5310e-002 6.7411e+003 6.2867e+001 1.0523e+002 +# -Range: 0-300 + +UO2SO4:2.5H2O + UO2SO4:2.5H2O = + 1.0000 SO4-- + 1.0000 UO2++ + 2.5000 H2O + log_k -1.4912 + -delta_H -36.1984 kJ/mol # Calculated enthalpy of reaction UO2SO4:2.5H2O +# Enthalpy of formation: -2607 kJ/mol + -analytic -4.8908e+001 -1.3445e-002 2.8658e+003 1.6894e+001 4.8683e+001 +# -Range: 0-200 + +UO2SO4:3.5H2O + UO2SO4:3.5H2O = + 1.0000 SO4-- + 1.0000 UO2++ + 3.5000 H2O + log_k -1.4805 + -delta_H -27.4367 kJ/mol # Calculated enthalpy of reaction UO2SO4:3.5H2O +# Enthalpy of formation: -2901.6 kJ/mol + -analytic -7.4180e+001 -1.3565e-002 3.5963e+003 2.6136e+001 6.1096e+001 +# -Range: 0-200 + +UO2SO4:3H2O + UO2SO4:3H2O = + 1.0000 SO4-- + 1.0000 UO2++ + 3.0000 H2O + log_k -1.4028 + -delta_H -34.6176 kJ/mol # Calculated enthalpy of reaction UO2SO4:3H2O +# Enthalpy of formation: -2751.5 kJ/mol + -analytic -5.0134e+001 -1.0321e-002 3.0505e+003 1.6799e+001 5.1818e+001 +# -Range: 0-200 + +UO2SO4:H2O + UO2SO4:H2O = + 1.0000 H2O + 1.0000 SO4-- + 1.0000 UO2++ + log_k -6.0233 + -delta_H -39.1783 kJ/mol # Calculated enthalpy of reaction UO2SO4:H2O +# Enthalpy of formation: -519.9 kcal/mol + -analytic -1.8879e+002 -6.9827e-002 5.5636e+003 7.4717e+001 8.6870e+001 +# -Range: 0-300 + +UO3(alpha) + UO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 UO2++ + log_k 8.6391 + -delta_H -87.3383 kJ/mol # Calculated enthalpy of reaction UO3(alpha) +# Enthalpy of formation: -1217.5 kJ/mol + -analytic -1.4099e+001 -1.9063e-003 4.7742e+003 2.9478e+000 7.4501e+001 +# -Range: 0-300 + +UO3(beta) + UO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 UO2++ + log_k 8.3095 + -delta_H -84.5383 kJ/mol # Calculated enthalpy of reaction UO3(beta) +# Enthalpy of formation: -1220.3 kJ/mol + -analytic -1.2298e+001 -1.7800e-003 4.5621e+003 2.3593e+000 7.1191e+001 +# -Range: 0-300 + +UO3(gamma) + UO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 UO2++ + log_k 7.7073 + -delta_H -81.0383 kJ/mol # Calculated enthalpy of reaction UO3(gamma) +# Enthalpy of formation: -1223.8 kJ/mol + -analytic -1.1573e+001 -2.3560e-003 4.3124e+003 2.2305e+000 6.7294e+001 +# -Range: 0-300 + +UO3:.9H2O(alpha) + UO3:.9H2O +2.0000 H+ = + 1.0000 UO2++ + 1.9000 H2O + log_k 5.0167 + -delta_H -55.7928 kJ/mol # Calculated enthalpy of reaction UO3:.9H2O(alpha) +# Enthalpy of formation: -1506.3 kJ/mol + -analytic -6.9286e+001 -3.0624e-003 5.5984e+003 2.2809e+001 9.5092e+001 +# -Range: 0-200 + +UO3:2H2O + UO3:2H2O +2.0000 H+ = + 1.0000 UO2++ + 3.0000 H2O + log_k 4.8333 + -delta_H -50.415 kJ/mol # Calculated enthalpy of reaction UO3:2H2O +# Enthalpy of formation: -1826.1 kJ/mol + -analytic -5.9530e+001 -9.8107e-003 4.4975e+003 2.1098e+001 7.0196e+001 +# -Range: 0-300 + +UOBr2 + UOBr2 +2.0000 H+ = + 1.0000 H2O + 1.0000 U++++ + 2.0000 Br- + log_k 7.9722 + -delta_H -146.445 kJ/mol # Calculated enthalpy of reaction UOBr2 +# Enthalpy of formation: -973.6 kJ/mol + -analytic -2.0747e+002 -7.0500e-002 1.1746e+004 7.9629e+001 1.8334e+002 +# -Range: 0-300 + +UOBr3 + UOBr3 +1.0000 H2O = + 1.0000 UO2+ + 2.0000 H+ + 3.0000 Br- + log_k 23.5651 + -delta_H -149.799 kJ/mol # Calculated enthalpy of reaction UOBr3 +# Enthalpy of formation: -954 kJ/mol + -analytic -2.0001e+002 -8.4632e-002 1.1381e+004 8.5102e+001 1.7765e+002 +# -Range: 0-300 + +UOCl + UOCl +2.0000 H+ = + 1.0000 Cl- + 1.0000 H2O + 1.0000 U+++ + log_k 10.3872 + -delta_H -108.118 kJ/mol # Calculated enthalpy of reaction UOCl +# Enthalpy of formation: -833.9 kJ/mol + -analytic -1.1989e+002 -4.0791e-002 8.0834e+003 4.6600e+001 1.2617e+002 +# -Range: 0-300 + +UOCl2 + UOCl2 +2.0000 H+ = + 1.0000 H2O + 1.0000 U++++ + 2.0000 Cl- + log_k 5.4559 + -delta_H -141.898 kJ/mol # Calculated enthalpy of reaction UOCl2 +# Enthalpy of formation: -1069.3 kJ/mol + -analytic -2.2096e+002 -7.3329e-002 1.1858e+004 8.4250e+001 1.8509e+002 +# -Range: 0-300 + +UOCl3 + UOCl3 +1.0000 H2O = + 1.0000 UO2+ + 2.0000 H+ + 3.0000 Cl- + log_k 12.6370 + -delta_H -100.528 kJ/mol # Calculated enthalpy of reaction UOCl3 +# Enthalpy of formation: -1140 kJ/mol + -analytic -2.1934e+002 -8.8639e-002 9.3198e+003 9.1775e+001 1.4549e+002 +# -Range: 0-300 + +UOF2 + UOF2 +2.0000 H+ = + 1.0000 H2O + 1.0000 U++++ + 2.0000 F- + log_k -18.1473 + -delta_H -43.1335 kJ/mol # Calculated enthalpy of reaction UOF2 +# Enthalpy of formation: -1504.6 kJ/mol + -analytic -6.9471e+001 -2.6188e-002 2.5576e+003 2.0428e+001 4.3454e+001 +# -Range: 0-200 + +UOF2:H2O + UOF2:H2O +2.0000 H+ = + 1.0000 U++++ + 2.0000 F- + 2.0000 H2O + log_k -18.7019 + -delta_H -31.5719 kJ/mol # Calculated enthalpy of reaction UOF2:H2O +# Enthalpy of formation: -1802 kJ/mol + -analytic -9.5010e+001 -2.6355e-002 3.1474e+003 2.9746e+001 5.3480e+001 +# -Range: 0-200 + +UOF4 + UOF4 +1.0000 H2O = + 1.0000 UO2++ + 2.0000 H+ + 4.0000 F- + log_k 4.5737 + -delta_H -149.952 kJ/mol # Calculated enthalpy of reaction UOF4 +# Enthalpy of formation: -1924.6 kJ/mol + -analytic -5.9731e+000 -3.8581e-002 4.6903e+003 2.5464e+000 7.9649e+001 +# -Range: 0-200 + +UOFOH + UOFOH +3.0000 H+ = + 1.0000 F- + 1.0000 U++++ + 2.0000 H2O + log_k -8.9274 + -delta_H -71.5243 kJ/mol # Calculated enthalpy of reaction UOFOH +# Enthalpy of formation: -1426.7 kJ/mol + -analytic -9.2412e+001 -1.7293e-002 5.8150e+003 2.7940e+001 9.8779e+001 +# -Range: 0-200 + +UOFOH:.5H2O + UOFOH:.5H2O +1.0000 H+ +0.5000 O2 = + 1.0000 F- + 1.0000 UO2++ + 1.5000 H2O + log_k 24.5669 + -delta_H -200.938 kJ/mol # Calculated enthalpy of reaction UOFOH:.5H2O +# Enthalpy of formation: -1576.1 kJ/mol + -analytic -1.1024e+001 -7.7180e-003 1.0019e+004 1.7305e+000 1.7014e+002 +# -Range: 0-200 + +UP + UP +2.0000 O2 +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 U+++ + log_k 233.4928 + -delta_H -1487.11 kJ/mol # Calculated enthalpy of reaction UP +# Enthalpy of formation: -269.8 kJ/mol + -analytic -2.1649e+002 -9.0873e-002 8.3804e+004 8.1649e+001 -5.4044e+005 +# -Range: 0-300 + +UP2 + UP2 +3.2500 O2 +1.5000 H2O = + 1.0000 H+ + 1.0000 U+++ + 2.0000 HPO4-- + log_k 360.5796 + -delta_H -2301.07 kJ/mol # Calculated enthalpy of reaction UP2 +# Enthalpy of formation: -304 kJ/mol + -analytic -2.4721e+002 -1.5005e-001 1.2243e+005 9.9521e+001 -3.9706e+005 +# -Range: 0-300 + +UP2O7 + UP2O7 +1.0000 H2O = + 1.0000 U++++ + 2.0000 HPO4-- + log_k -32.9922 + -delta_H -37.5256 kJ/mol # Calculated enthalpy of reaction UP2O7 +# Enthalpy of formation: -2852 kJ/mol + -analytic -3.5910e+002 -1.3819e-001 7.6509e+003 1.3804e+002 1.1949e+002 +# -Range: 0-300 + +UP2O7:20H2O + UP2O7:20H2O = + 1.0000 U++++ + 2.0000 HPO4-- + 19.0000 H2O + log_k -28.6300 + -delta_H 0 # Not possible to calculate enthalpy of reaction UP2O7:20H2O +# Enthalpy of formation: 0 kcal/mol + +UPO5 + UPO5 +1.0000 H2O = + 1.0000 H+ + 1.0000 HPO4-- + 1.0000 UO2+ + log_k -19.5754 + -delta_H 32.6294 kJ/mol # Calculated enthalpy of reaction UPO5 +# Enthalpy of formation: -2064 kJ/mol + -analytic -1.5316e+002 -6.0911e-002 7.3255e+002 6.0317e+001 1.1476e+001 +# -Range: 0-300 + +US + US +2.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 HS- + 1.0000 U+++ + log_k 46.6547 + -delta_H -322.894 kJ/mol # Calculated enthalpy of reaction US +# Enthalpy of formation: -322.2 kJ/mol + -analytic -1.0845e+002 -4.0538e-002 1.8749e+004 4.2147e+001 2.9259e+002 +# -Range: 0-300 + +US1.9 + US1.9 +1.9000 H+ = + 0.2000 U+++ + 0.8000 U++++ + 1.9000 HS- + log_k -2.2816 + -delta_H -91.486 kJ/mol # Calculated enthalpy of reaction US1.9 +# Enthalpy of formation: -509.9 kJ/mol + -analytic -2.0534e+002 -6.8390e-002 8.8888e+003 7.8243e+001 1.3876e+002 +# -Range: 0-300 + +US2 + US2 +2.0000 H+ = + 1.0000 U++++ + 2.0000 HS- + log_k -2.3324 + -delta_H -103.017 kJ/mol # Calculated enthalpy of reaction US2 +# Enthalpy of formation: -520.4 kJ/mol + -analytic -2.1819e+002 -7.1522e-002 9.7782e+003 8.2586e+001 1.5264e+002 +# -Range: 0-300 + +US3 + US3 +2.0000 H2O = + 1.0000 H+ + 1.0000 UO2++ + 3.0000 HS- + log_k -16.6370 + -delta_H 43.9515 kJ/mol # Calculated enthalpy of reaction US3 +# Enthalpy of formation: -539.6 kJ/mol + -analytic -2.3635e+002 -9.5877e-002 1.9170e+003 9.7726e+001 2.9982e+001 +# -Range: 0-300 + +USb + USb +3.0000 H+ +1.5000 O2 = + 1.0000 Sb(OH)3 + 1.0000 U+++ + log_k 176.0723 + -delta_H -1106.19 kJ/mol # Calculated enthalpy of reaction USb +# Enthalpy of formation: -138.5 kJ/mol + +USb2 + USb2 +3.0000 H+ +2.2500 O2 +1.5000 H2O = + 1.0000 U+++ + 2.0000 Sb(OH)3 + log_k 223.1358 + -delta_H -1407.02 kJ/mol # Calculated enthalpy of reaction USb2 +# Enthalpy of formation: -173.6 kJ/mol + +Uranium-selenide + 1.0USe +1.7500 O2 +1.0000 H+ = + 0.5000 H2O + 1.0000 SeO3-- + 1.0000 U+++ + log_k 125.6086 + -delta_H -844.278 kJ/mol # Calculated enthalpy of reaction Uranium-selenide +# Enthalpy of formation: -275.7 kJ/mol + -analytic -1.0853e+002 -7.6251e-002 4.3230e+004 4.5189e+001 6.7460e+002 +# -Range: 0-300 + +USe2(alpha) + USe2 +2.7500 O2 +0.5000 H2O = + 1.0000 H+ + 1.0000 U+++ + 2.0000 SeO3-- + log_k 125.4445 + -delta_H -904.199 kJ/mol # Calculated enthalpy of reaction USe2(alpha) +# Enthalpy of formation: -427 kJ/mol + -analytic -2.0454e+002 -1.4191e-001 4.6114e+004 8.7906e+001 7.1963e+002 +# -Range: 0-300 + +USe2(beta) + USe2 +2.7500 O2 +0.5000 H2O = + 1.0000 H+ + 1.0000 U+++ + 2.0000 SeO3-- + log_k 125.2868 + -delta_H -904.199 kJ/mol # Calculated enthalpy of reaction USe2(beta) +# Enthalpy of formation: -427 kJ/mol + -analytic -2.0334e+002 -1.4147e-001 4.6082e+004 8.7349e+001 7.1913e+002 +# -Range: 0-300 + +USe3 + USe3 +3.7500 O2 +1.5000 H2O = + 1.0000 U+++ + 3.0000 H+ + 3.0000 SeO3-- + log_k 147.2214 + -delta_H -1090.42 kJ/mol # Calculated enthalpy of reaction USe3 +# Enthalpy of formation: -452 kJ/mol + -analytic 4.9201e+002 -1.3720e-002 3.2168e+004 -1.8131e+002 5.4609e+002 +# -Range: 0-200 + +Umangite + Cu3Se2 = + 1.0000 Cu++ + 2.0000 Cu+ + 2.0000 Se-- + log_k -93.8412 + -delta_H 0 # Not possible to calculate enthalpy of reaction Umangite +# Enthalpy of formation: -25 kcal/mol + -analytic -7.2308e+001 -2.2566e-003 -2.0738e+004 1.9677e+001 -3.5214e+002 +# -Range: 0-200 + +Uraninite + UO2 +4.0000 H+ = + 1.0000 U++++ + 2.0000 H2O + log_k -4.8372 + -delta_H -77.8767 kJ/mol # Calculated enthalpy of reaction Uraninite +# Enthalpy of formation: -1085 kJ/mol + -analytic -7.5776e+001 -1.0558e-002 5.9677e+003 2.1853e+001 9.3142e+001 +# -Range: 0-300 + +Uranocircite + Ba(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Ba++ + 2.0000 HPO4-- + 2.0000 UO2++ + log_k -19.8057 + -delta_H -72.3317 kJ/mol # Calculated enthalpy of reaction Uranocircite +# Enthalpy of formation: -1215.94 kcal/mol + -analytic -3.6843e+001 -4.3076e-002 1.2427e+003 1.0384e+001 2.1115e+001 +# -Range: 0-200 + +Uranophane + Ca(UO2)2(SiO3)2(OH)2 +6.0000 H+ = + 1.0000 Ca++ + 2.0000 SiO2 + 2.0000 UO2++ + 4.0000 H2O + log_k 17.2850 + -delta_H 0 # Not possible to calculate enthalpy of reaction Uranophane +# Enthalpy of formation: 0 kcal/mol + +V + V +3.0000 H+ +0.7500 O2 = + 1.0000 V+++ + 1.5000 H2O + log_k 106.9435 + -delta_H -680.697 kJ/mol # Calculated enthalpy of reaction V +# Enthalpy of formation: 0 kJ/mol + -analytic -1.0508e+002 -2.1334e-002 4.0364e+004 3.5012e+001 -3.2290e+005 +# -Range: 0-300 + +V2O4 + V2O4 +4.0000 H+ = + 2.0000 H2O + 2.0000 VO++ + log_k 8.5719 + -delta_H -117.564 kJ/mol # Calculated enthalpy of reaction V2O4 +# Enthalpy of formation: -1427.31 kJ/mol + -analytic -1.4429e+002 -3.7423e-002 9.7046e+003 5.3125e+001 1.5147e+002 +# -Range: 0-300 + +V3O5 + V3O5 +8.0000 H+ = + 1.0000 VO++ + 2.0000 V+++ + 4.0000 H2O + log_k 13.4312 + -delta_H -218.857 kJ/mol # Calculated enthalpy of reaction V3O5 +# Enthalpy of formation: -1933.17 kJ/mol + -analytic -1.7652e+002 -2.1959e-002 1.6814e+004 5.6618e+001 2.8559e+002 +# -Range: 0-200 + +V4O7 + V4O7 +10.0000 H+ = + 2.0000 V+++ + 2.0000 VO++ + 5.0000 H2O + log_k 18.7946 + -delta_H -284.907 kJ/mol # Calculated enthalpy of reaction V4O7 +# Enthalpy of formation: -2639.56 kJ/mol + -analytic -2.2602e+002 -3.0261e-002 2.1667e+004 7.3214e+001 3.6800e+002 +# -Range: 0-200 + +Vaesite + NiS2 +1.0000 H2O = + 0.2500 H+ + 0.2500 SO4-- + 1.0000 Ni++ + 1.7500 HS- + log_k -26.7622 + -delta_H 110.443 kJ/mol # Calculated enthalpy of reaction Vaesite +# Enthalpy of formation: -32.067 kcal/mol + -analytic 1.6172e+001 -2.2673e-002 -8.2514e+003 -3.4392e+000 -1.4013e+002 +# -Range: 0-200 + +Vivianite + Fe3(PO4)2:8H2O +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Fe++ + 8.0000 H2O + log_k -4.7237 + -delta_H 0 # Not possible to calculate enthalpy of reaction Vivianite +# Enthalpy of formation: 0 kcal/mol + +W + W +1.5000 O2 +1.0000 H2O = + 1.0000 WO4-- + 2.0000 H+ + log_k 123.4334 + -delta_H -771.668 kJ/mol # Calculated enthalpy of reaction W +# Enthalpy of formation: 0 kJ/mol + -analytic -1.0433e+002 -6.9470e-002 4.0134e+004 4.5993e+001 6.2629e+002 +# -Range: 0-300 + +Wairakite + CaAl2Si4O10(OH)4 +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 4.0000 SiO2 + 6.0000 H2O + log_k 18.0762 + -delta_H -237.781 kJ/mol # Calculated enthalpy of reaction Wairakite +# Enthalpy of formation: -1579.33 kcal/mol + -analytic -1.7914e+001 3.2944e-003 2.2782e+004 -9.0981e+000 -1.6934e+006 +# -Range: 0-300 + +Weeksite + K2(UO2)2(Si2O5)3:4H2O +6.0000 H+ = + 2.0000 K+ + 2.0000 UO2++ + 6.0000 SiO2 + 7.0000 H2O + log_k 15.3750 + -delta_H 0 # Not possible to calculate enthalpy of reaction Weeksite +# Enthalpy of formation: 0 kcal/mol + +Whitlockite + Ca3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Ca++ + log_k -4.2249 + -delta_H -116.645 kJ/mol # Calculated enthalpy of reaction Whitlockite +# Enthalpy of formation: -4096.77 kJ/mol + -analytic -5.3543e+002 -1.8842e-001 1.7176e+004 2.1406e+002 2.6817e+002 +# -Range: 0-300 + +Wilkmanite + Ni3Se4 +1.0000 H2O = + 0.5000 O2 + 2.0000 H+ + 3.0000 Ni++ + 4.0000 Se-- + log_k -152.8793 + -delta_H 0 # Not possible to calculate enthalpy of reaction Wilkmanite +# Enthalpy of formation: -60.285 kcal/mol + -analytic -1.9769e+002 -4.9968e-002 -2.8208e+004 6.2863e+001 -1.1322e+005 +# -Range: 0-300 + +Witherite + BaCO3 +1.0000 H+ = + 1.0000 Ba++ + 1.0000 HCO3- + log_k -2.9965 + -delta_H 17.1628 kJ/mol # Calculated enthalpy of reaction Witherite +# Enthalpy of formation: -297.5 kcal/mol + -analytic -1.2585e+002 -4.4315e-002 2.0227e+003 5.2239e+001 3.1600e+001 +# -Range: 0-300 + +Wollastonite + CaSiO3 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O + 1.0000 SiO2 + log_k 13.7605 + -delta_H -76.5756 kJ/mol # Calculated enthalpy of reaction Wollastonite +# Enthalpy of formation: -389.59 kcal/mol + -analytic 3.0931e+001 6.7466e-003 5.1749e+003 -1.3209e+001 -3.4579e+005 +# -Range: 0-300 + +Wurtzite + ZnS +1.0000 H+ = + 1.0000 HS- + 1.0000 Zn++ + log_k -9.1406 + -delta_H 22.3426 kJ/mol # Calculated enthalpy of reaction Wurtzite +# Enthalpy of formation: -45.85 kcal/mol + -analytic -1.5446e+002 -4.8874e-002 2.4551e+003 6.1278e+001 3.8355e+001 +# -Range: 0-300 + +Wustite + Fe.947O +2.0000 H+ = + 0.1060 Fe+++ + 0.8410 Fe++ + 1.0000 H2O + log_k 12.4113 + -delta_H -102.417 kJ/mol # Calculated enthalpy of reaction Wustite +# Enthalpy of formation: -266.265 kJ/mol + -analytic -7.6919e+001 -1.8433e-002 7.3823e+003 2.8312e+001 1.1522e+002 +# -Range: 0-300 + +Xonotlite + Ca6Si6O17(OH)2 +12.0000 H+ = + 6.0000 Ca++ + 6.0000 SiO2 + 7.0000 H2O + log_k 91.8267 + -delta_H -495.457 kJ/mol # Calculated enthalpy of reaction Xonotlite +# Enthalpy of formation: -2397.25 kcal/mol + -analytic 1.6080e+003 3.7309e-001 -2.2548e+004 -6.2716e+002 -3.8346e+002 +# -Range: 0-200 + +Y + Y +3.0000 H+ +0.7500 O2 = + 1.0000 Y+++ + 1.5000 H2O + log_k 184.5689 + -delta_H -1134.7 kJ/mol # Calculated enthalpy of reaction Y +# Enthalpy of formation: 0 kJ/mol + -analytic -6.2641e+001 -2.8062e-002 5.9667e+004 2.2394e+001 9.3107e+002 +# -Range: 0-300 + +Yb + Yb +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Yb++ + log_k 137.1930 + -delta_H -810.303 kJ/mol # Calculated enthalpy of reaction Yb +# Enthalpy of formation: 0 kJ/mol + -analytic -7.4712e+001 -2.0993e-002 4.4129e+004 2.8341e+001 6.8862e+002 +# -Range: 0-300 + +Yb(OH)3 + Yb(OH)3 +3.0000 H+ = + 1.0000 Yb+++ + 3.0000 H2O + log_k 14.6852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)3 +# Enthalpy of formation: 0 kcal/mol + +Yb(OH)3(am) + Yb(OH)3 +3.0000 H+ = + 1.0000 Yb+++ + 3.0000 H2O + log_k 18.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)3(am) +# Enthalpy of formation: 0 kcal/mol + +Yb2(CO3)3 + Yb2(CO3)3 +3.0000 H+ = + 2.0000 Yb+++ + 3.0000 HCO3- + log_k -2.3136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb2(CO3)3 +# Enthalpy of formation: 0 kcal/mol + +Yb2O3 + Yb2O3 +6.0000 H+ = + 2.0000 Yb+++ + 3.0000 H2O + log_k 47.8000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb2O3 +# Enthalpy of formation: 0 kcal/mol + +YbF3:.5H2O + YbF3:.5H2O = + 0.5000 H2O + 1.0000 Yb+++ + 3.0000 F- + log_k -16.0000 + -delta_H 0 # Not possible to calculate enthalpy of reaction YbF3:.5H2O +# Enthalpy of formation: 0 kcal/mol + +YbPO4:10H2O + YbPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Yb+++ + 10.0000 H2O + log_k -11.7782 + -delta_H 0 # Not possible to calculate enthalpy of reaction YbPO4:10H2O +# Enthalpy of formation: 0 kcal/mol + +Zincite + ZnO +2.0000 H+ = + 1.0000 H2O + 1.0000 Zn++ + log_k 11.2087 + -delta_H -88.7638 kJ/mol # Calculated enthalpy of reaction Zincite +# Enthalpy of formation: -350.46 kJ/mol + -analytic -8.6681e+001 -1.9324e-002 7.1034e+003 3.2256e+001 1.1087e+002 +# -Range: 0-300 + +Zircon + ZrSiO4 +2.0000 H+ = + 1.0000 SiO2 + 1.0000 Zr(OH)2++ + log_k -15.4193 + -delta_H 64.8635 kJ/mol # Calculated enthalpy of reaction Zircon +# Enthalpy of formation: -2033.4 kJ/mol + -analytic 9.2639e+000 6.5416e-003 5.0759e+002 -8.4547e+000 -6.6155e+005 +# -Range: 0-300 + +Zn + Zn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Zn++ + log_k 68.8035 + -delta_H -433.157 kJ/mol # Calculated enthalpy of reaction Zn +# Enthalpy of formation: 0 kJ/mol + -analytic -6.4131e+001 -2.0009e-002 2.3921e+004 2.3702e+001 3.7329e+002 +# -Range: 0-300 + +Zn(BO2)2 + Zn(BO2)2 +2.0000 H+ +2.0000 H2O = + 1.0000 Zn++ + 2.0000 B(OH)3 + log_k 8.3130 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(BO2)2 +# Enthalpy of formation: 0 kcal/mol + +Zn(ClO4)2:6H2O + Zn(ClO4)2:6H2O = + 1.0000 Zn++ + 2.0000 ClO4- + 6.0000 H2O + log_k 5.6474 + -delta_H 6.31871 kJ/mol # Calculated enthalpy of reaction Zn(ClO4)2:6H2O +# Enthalpy of formation: -2133.39 kJ/mol + -analytic -1.8191e+002 -9.1383e-003 7.4822e+003 6.6751e+001 1.2712e+002 +# -Range: 0-200 + +Zn(IO3)2 + Zn(IO3)2 = + 1.0000 Zn++ + 2.0000 IO3- + log_k -5.3193 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(IO3)2 +# Enthalpy of formation: 0 kcal/mol + +Zn(NO3)2:6H2O + Zn(NO3)2:6H2O = + 1.0000 Zn++ + 2.0000 NO3- + 6.0000 H2O + log_k 3.4102 + -delta_H 24.7577 kJ/mol # Calculated enthalpy of reaction Zn(NO3)2:6H2O +# Enthalpy of formation: -2306.8 kJ/mol + -analytic -1.7152e+002 -1.6875e-002 5.6291e+003 6.5094e+001 9.5649e+001 +# -Range: 0-200 + +Zn(OH)2(beta) + Zn(OH)2 +2.0000 H+ = + 1.0000 Zn++ + 2.0000 H2O + log_k 11.9341 + -delta_H -83.2111 kJ/mol # Calculated enthalpy of reaction Zn(OH)2(beta) +# Enthalpy of formation: -641.851 kJ/mol + -analytic -7.7810e+001 -7.8548e-003 7.1994e+003 2.7455e+001 1.2228e+002 +# -Range: 0-200 + +Zn(OH)2(epsilon) + Zn(OH)2 +2.0000 H+ = + 1.0000 Zn++ + 2.0000 H2O + log_k 11.6625 + -delta_H -81.7811 kJ/mol # Calculated enthalpy of reaction Zn(OH)2(epsilon) +# Enthalpy of formation: -643.281 kJ/mol + -analytic -7.7938e+001 -7.8767e-003 7.1282e+003 2.7496e+001 1.2107e+002 +# -Range: 0-200 + +Zn(OH)2(gamma) + Zn(OH)2 +2.0000 H+ = + 1.0000 Zn++ + 2.0000 H2O + log_k 11.8832 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)2(gamma) +# Enthalpy of formation: 0 kcal/mol + +Zn2(OH)3Cl + Zn2(OH)3Cl +3.0000 H+ = + 1.0000 Cl- + 2.0000 Zn++ + 3.0000 H2O + log_k 15.2921 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2(OH)3Cl +# Enthalpy of formation: 0 kcal/mol + +Zn2SO4(OH)2 + Zn2SO4(OH)2 +2.0000 H+ = + 1.0000 SO4-- + 2.0000 H2O + 2.0000 Zn++ + log_k 7.5816 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2SO4(OH)2 +# Enthalpy of formation: 0 kcal/mol + +Zn2SiO4 + Zn2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Zn++ + log_k 13.8695 + -delta_H -119.399 kJ/mol # Calculated enthalpy of reaction Zn2SiO4 +# Enthalpy of formation: -1636.75 kJ/mol + -analytic 2.0970e+002 5.3663e-002 -1.2724e+002 -8.5445e+001 -2.2336e+000 +# -Range: 0-200 + +Zn2TiO4 + Zn2TiO4 +4.0000 H+ = + 1.0000 Ti(OH)4 + 2.0000 Zn++ + log_k 12.3273 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2TiO4 +# Enthalpy of formation: -1647.85 kJ/mol + +Zn3(AsO4)2 + Zn3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Zn++ + log_k 9.3122 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn3(AsO4)2 +# Enthalpy of formation: 0 kcal/mol + +Zn3O(SO4)2 + Zn3O(SO4)2 +2.0000 H+ = + 1.0000 H2O + 2.0000 SO4-- + 3.0000 Zn++ + log_k 19.1188 + -delta_H -258.253 kJ/mol # Calculated enthalpy of reaction Zn3O(SO4)2 +# Enthalpy of formation: -2306.95 kJ/mol + -analytic -3.9661e+001 -4.3860e-002 1.1301e+004 1.3709e+001 1.9193e+002 +# -Range: 0-200 + +Zn5(NO3)2(OH)8 + Zn5(NO3)2(OH)8 +8.0000 H+ = + 2.0000 NO3- + 5.0000 Zn++ + 8.0000 H2O + log_k 42.6674 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn5(NO3)2(OH)8 +# Enthalpy of formation: 0 kcal/mol + +ZnBr2 + ZnBr2 = + 1.0000 Zn++ + 2.0000 Br- + log_k 7.5787 + -delta_H -67.7622 kJ/mol # Calculated enthalpy of reaction ZnBr2 +# Enthalpy of formation: -328.63 kJ/mol + -analytic 6.5789e-002 -2.1477e-002 1.9840e+003 2.9302e+000 3.3691e+001 +# -Range: 0-200 + +ZnBr2:2H2O + ZnBr2:2H2O = + 1.0000 Zn++ + 2.0000 Br- + 2.0000 H2O + log_k 5.2999 + -delta_H -30.9268 kJ/mol # Calculated enthalpy of reaction ZnBr2:2H2O +# Enthalpy of formation: -937.142 kJ/mol + -analytic -4.9260e+001 -2.1682e-002 2.4325e+003 2.1360e+001 4.1324e+001 +# -Range: 0-200 + +ZnCO3:H2O + ZnCO3:H2O +1.0000 H+ = + 1.0000 H2O + 1.0000 HCO3- + 1.0000 Zn++ + log_k 0.1398 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnCO3:H2O +# Enthalpy of formation: 0 kcal/mol + +ZnCl2 + ZnCl2 = + 1.0000 Zn++ + 2.0000 Cl- + log_k 7.0880 + -delta_H -72.4548 kJ/mol # Calculated enthalpy of reaction ZnCl2 +# Enthalpy of formation: -415.09 kJ/mol + -analytic -1.6157e+001 -2.5405e-002 2.6505e+003 8.8584e+000 4.5015e+001 +# -Range: 0-200 + +ZnCl2(NH3)2 + ZnCl2(NH3)2 = + 1.0000 Zn++ + 2.0000 Cl- + 2.0000 NH3 + log_k -6.9956 + -delta_H 27.2083 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)2 +# Enthalpy of formation: -677.427 kJ/mol + -analytic -5.9409e+001 -2.2698e-002 -2.9178e+002 2.4308e+001 -4.9341e+000 +# -Range: 0-200 + +ZnCl2(NH3)4 + ZnCl2(NH3)4 = + 1.0000 Zn++ + 2.0000 Cl- + 4.0000 NH3 + log_k -6.6955 + -delta_H 56.2004 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)4 +# Enthalpy of formation: -869.093 kJ/mol + -analytic -9.9769e+001 -1.9793e-002 4.2916e+002 3.9412e+001 7.3223e+000 +# -Range: 0-200 + +ZnCl2(NH3)6 + ZnCl2(NH3)6 = + 1.0000 Zn++ + 2.0000 Cl- + 6.0000 NH3 + log_k -4.7311 + -delta_H 77.4225 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)6 +# Enthalpy of formation: -1052.99 kJ/mol + -analytic -1.3984e+002 -1.6896e-002 1.5559e+003 5.4524e+001 2.6470e+001 +# -Range: 0-200 + +ZnCr2O4 + ZnCr2O4 +8.0000 H+ = + 1.0000 Zn++ + 2.0000 Cr+++ + 4.0000 H2O + log_k 7.9161 + -delta_H -221.953 kJ/mol # Calculated enthalpy of reaction ZnCr2O4 +# Enthalpy of formation: -370.88 kcal/mol + -analytic -1.7603e+002 -1.0217e-002 1.7414e+004 5.1966e+001 2.9577e+002 +# -Range: 0-200 + +ZnF2 + ZnF2 = + 1.0000 Zn++ + 2.0000 F- + log_k -0.4418 + -delta_H -59.8746 kJ/mol # Calculated enthalpy of reaction ZnF2 +# Enthalpy of formation: -764.206 kJ/mol + -analytic -2.6085e+002 -8.4594e-002 9.0240e+003 1.0318e+002 1.4089e+002 +# -Range: 0-300 + +ZnI2 + ZnI2 = + 1.0000 Zn++ + 2.0000 I- + log_k 7.3885 + -delta_H -59.2332 kJ/mol # Calculated enthalpy of reaction ZnI2 +# Enthalpy of formation: -207.957 kJ/mol + -analytic -1.6472e+001 -2.5573e-002 2.0796e+003 9.9013e+000 3.5320e+001 +# -Range: 0-200 + +ZnSO4 + ZnSO4 = + 1.0000 SO4-- + 1.0000 Zn++ + log_k 3.5452 + -delta_H -80.132 kJ/mol # Calculated enthalpy of reaction ZnSO4 +# Enthalpy of formation: -982.855 kJ/mol + -analytic 6.9905e+000 -1.8046e-002 2.2566e+003 -2.2819e+000 3.8318e+001 +# -Range: 0-200 + +ZnSO4:6H2O + ZnSO4:6H2O = + 1.0000 SO4-- + 1.0000 Zn++ + 6.0000 H2O + log_k -1.6846 + -delta_H -0.412008 kJ/mol # Calculated enthalpy of reaction ZnSO4:6H2O +# Enthalpy of formation: -2777.61 kJ/mol + -analytic -1.4506e+002 -1.8736e-002 5.2179e+003 5.3121e+001 8.8657e+001 +# -Range: 0-200 + +ZnSO4:7H2O + ZnSO4:7H2O = + 1.0000 SO4-- + 1.0000 Zn++ + 7.0000 H2O + log_k -1.8683 + -delta_H 14.0417 kJ/mol # Calculated enthalpy of reaction ZnSO4:7H2O +# Enthalpy of formation: -3077.9 kJ/mol + -analytic -1.6943e+002 -1.8833e-002 5.6484e+003 6.2326e+001 9.5975e+001 +# -Range: 0-200 + +ZnSO4:H2O + ZnSO4:H2O = + 1.0000 H2O + 1.0000 SO4-- + 1.0000 Zn++ + log_k -0.5383 + -delta_H -44.2824 kJ/mol # Calculated enthalpy of reaction ZnSO4:H2O +# Enthalpy of formation: -1304.54 kJ/mol + -analytic -1.7908e+001 -1.8228e-002 1.5811e+003 7.0677e+000 2.6856e+001 +# -Range: 0-200 + +ZnSeO3:H2O + ZnSeO3:H2O = + 1.0000 H2O + 1.0000 SeO3-- + 1.0000 Zn++ + log_k -6.7408 + -delta_H -17.9056 kJ/mol # Calculated enthalpy of reaction ZnSeO3:H2O +# Enthalpy of formation: -930.511 kJ/mol + -analytic -1.8569e+001 -1.9929e-002 6.4377e+001 7.0892e+000 1.0996e+000 +# -Range: 0-200 + +Zoisite + Ca2Al3(SiO4)3OH +13.0000 H+ = + 2.0000 Ca++ + 3.0000 Al+++ + 3.0000 SiO2 + 7.0000 H2O + log_k 43.3017 + -delta_H -458.131 kJ/mol # Calculated enthalpy of reaction Zoisite +# Enthalpy of formation: -1643.69 kcal/mol + -analytic 2.5321e+000 -3.5886e-002 1.9902e+004 -6.2443e+000 3.1055e+002 +# -Range: 0-300 + +Zr + Zr +2.0000 H+ +1.0000 O2 = + 1.0000 Zr(OH)2++ + log_k 177.6471 + -delta_H -1078.71 kJ/mol # Calculated enthalpy of reaction Zr +# Enthalpy of formation: 0 kJ/mol + -analytic -2.8360e+001 -1.5214e-002 5.8045e+004 7.8012e+000 -3.0657e+005 +# -Range: 0-300 + +ZrB2 + ZrB2 +3.0000 H+ +2.0000 H2O +0.5000 O2 = + 1.0000 B(OH)3 + 1.0000 BH4- + 1.0000 Zr++++ + log_k 103.4666 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrB2 +# Enthalpy of formation: -326.628 kJ/mol + +ZrC + ZrC +3.0000 H+ +2.0000 O2 = + 1.0000 H2O + 1.0000 HCO3- + 1.0000 Zr++++ + log_k 207.0906 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrC +# Enthalpy of formation: -203.008 kJ/mol + +ZrCl + ZrCl +3.0000 H+ +0.7500 O2 = + 1.0000 Cl- + 1.0000 Zr++++ + 1.5000 H2O + log_k 130.9450 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl +# Enthalpy of formation: -303.211 kJ/mol + +ZrCl2 + ZrCl2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Zr++++ + 2.0000 Cl- + log_k 96.3205 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl2 +# Enthalpy of formation: -531.021 kJ/mol + +ZrCl3 + ZrCl3 +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Zr++++ + 3.0000 Cl- + log_k 62.4492 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl3 +# Enthalpy of formation: -754.997 kJ/mol + +ZrCl4 + ZrCl4 = + 1.0000 Zr++++ + 4.0000 Cl- + log_k 27.9824 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl4 +# Enthalpy of formation: -980.762 kJ/mol + +ZrF4(beta) + ZrF4 = + 1.0000 Zr++++ + 4.0000 F- + log_k -27.7564 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4(beta) +# Enthalpy of formation: -1911.26 kJ/mol + +ZrH2 + ZrH2 +4.0000 H+ +1.5000 O2 = + 1.0000 Zr++++ + 3.0000 H2O + log_k 198.3224 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrH2 +# Enthalpy of formation: -168.946 kJ/mol + +ZrN + ZrN +4.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 NH3 + 1.0000 Zr++++ + log_k 59.1271 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrN +# Enthalpy of formation: -365 kJ/mol + +O-phthalic_acid + H2O_phthalate = + 1.0000 O_phthalate-2 + 2.0000 H+ + log_k -9.7755 + -delta_H 0 # Not possible to calculate enthalpy of reaction O-phthalic_acid +# Enthalpy of formation: -186.88 kJ/mol + -analytic 7.3450e+001 1.9477e-002 -3.6511e+003 -3.1035e+001 -6.2027e+001 +# -Range: 0-200 +Br2(l) + Br2 +1.0000 H2O = + 0.5000 O2 + 2.0000 Br- + 2.0000 H+ + log_k -6.5419 + -delta_H 36.7648 kJ/mol # Calculated enthalpy of reaction Br2(l) +# Enthalpy of formation: 0 kJ/mol + -analytic -1.5875e+002 -5.8039e-002 1.5583e+003 6.6381e+001 2.4362e+001 +# -Range: 0-300 + +Hg(l) + Hg +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hg++ + log_k 14.1505 + -delta_H -109.608 kJ/mol # Calculated enthalpy of reaction Hg(l) +# Enthalpy of formation: 0 kcal/mol + -analytic -6.6462e+001 -1.8504e-002 7.3141e+003 2.4888e+001 1.1415e+002 +# -Range: 0-300 + +Ag(g) + Ag +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Ag+ + log_k 51.0924 + -delta_H -319.035 kJ/mol # Calculated enthalpy of reaction Ag(g) +# Enthalpy of formation: 284.9 kJ/mol + -analytic -5.8006e+000 1.7178e-003 1.6809e+004 0.0000e+000 0.0000e+000 +# -Range: 0-200 + +Al(g) + Al +3.0000 H+ +0.7500 O2 = + 1.0000 Al+++ + 1.5000 H2O + log_k 200.6258 + -delta_H -1288.06 kJ/mol # Calculated enthalpy of reaction Al(g) +# Enthalpy of formation: 330 kJ/mol + -analytic 9.6402e+000 -6.9301e-003 6.5270e+004 -1.0461e+001 1.1084e+003 +# -Range: 0-200 + +Am(g) + Am +3.0000 H+ +0.7500 O2 = + 1.0000 Am+++ + 1.5000 H2O + log_k 211.7865 + -delta_H -1320.16 kJ/mol # Calculated enthalpy of reaction Am(g) +# Enthalpy of formation: 283.8 kJ/mol + -analytic -1.4236e+001 -8.7560e-003 6.8166e+004 0.0000e+000 0.0000e+000 +# -Range: 0-300 + +AmF3(g) + AmF3 = + 1.0000 Am+++ + 3.0000 F- + log_k 49.8631 + -delta_H -455.843 kJ/mol # Calculated enthalpy of reaction AmF3(g) +# Enthalpy of formation: -1166.9 kJ/mol + -analytic -4.7209e+001 -3.6440e-002 2.2278e+004 1.3418e+001 3.7833e+002 +# -Range: 0-200 + +Ar(g) + Ar = + 1.0000 Ar + log_k -2.8587 + -delta_H -12.0081 kJ/mol # Calculated enthalpy of reaction Ar(g) +# Enthalpy of formation: 0 kcal/mol + -analytic -7.4387e+000 7.8991e-003 0.0000e+000 0.0000e+000 1.9830e+005 +# -Range: 0-300 + +B(g) + B +1.5000 H2O +0.7500 O2 = + 1.0000 B(OH)3 + log_k 200.8430 + -delta_H -1201.68 kJ/mol # Calculated enthalpy of reaction B(g) +# Enthalpy of formation: 565 kJ/mol + -analytic 1.0834e+002 1.0606e-002 5.8150e+004 -4.2720e+001 9.8743e+002 +# -Range: 0-200 + +BF3(g) + BF3 +3.0000 H2O = + 1.0000 B(OH)3 + 3.0000 F- + 3.0000 H+ + log_k -2.9664 + -delta_H -87.0627 kJ/mol # Calculated enthalpy of reaction BF3(g) +# Enthalpy of formation: -1136 kJ/mol + -analytic 5.2848e+001 -2.4617e-002 -1.8159e+002 -1.9350e+001 -3.1018e+000 +# -Range: 0-200 + +Be(g) + Be +2.0000 H+ +0.5000 O2 = + 1.0000 Be++ + 1.0000 H2O + log_k 361.9343 + -delta_H 0 # Not possible to calculate enthalpy of reaction Be(g) +# Enthalpy of formation: 0 kcal/mol + +Br2(g) + Br2 +1.0000 H2O = + 0.5000 O2 + 2.0000 Br- + 2.0000 H+ + log_k -5.9979 + -delta_H 5.85481 kJ/mol # Calculated enthalpy of reaction Br2(g) +# Enthalpy of formation: 30.91 kJ/mol + -analytic -3.2403e+000 -1.7609e-002 -1.4941e+003 3.0300e+000 -2.5370e+001 +# -Range: 0-200 + +C(g) + C +1.0000 H2O +1.0000 O2 = + 1.0000 H+ + 1.0000 HCO3- + log_k 181.7723 + -delta_H -1108.64 kJ/mol # Calculated enthalpy of reaction C(g) +# Enthalpy of formation: 716.68 kJ/mol + -analytic 1.0485e+002 1.7907e-003 5.2768e+004 -4.0661e+001 8.9605e+002 +# -Range: 0-200 + +C2H4(g) + C2H4 = + 1.0000 C2H4 + log_k -2.3236 + -delta_H -16.4431 kJ/mol # Calculated enthalpy of reaction Ethylene(g) +# Enthalpy of formation: 12.5 kcal/mol + -analytic -7.5368e+000 8.4676e-003 0.0000e+000 0.0000e+000 2.3971e+005 +# -Range: 0-300 + +CH4(g) + CH4 = + 1.0000 CH4 + log_k -2.8502 + -delta_H -13.0959 kJ/mol # Calculated enthalpy of reaction CH4(g) +# Enthalpy of formation: -17.88 kcal/mol + -analytic -2.4027e+001 4.7146e-003 3.7227e+002 6.4264e+000 2.3362e+005 +# -Range: 0-300 + +CO(g) +# CO +1.0000 H2O +0.5000 O2 = + 1.0000 H+ + 1.0000 HCO3- +# log_k 38.6934 +# -analytic -6.1217e+001 -3.1388e-002 1.5283e+004 2.3433e+001 2.3850e+002 +# -Range: 0-300 + CO = CO + log_k -3.0068 + -delta_H -10.4349 kJ/mol # Calculated enthalpy of reaction CO(g) +# Enthalpy of formation: -26.416 kcal/mol + -analytic -8.0849e+000 9.2114e-003 0.0000e+000 0.0000e+000 2.0813e+005 +# -Range: 0-300 + +CO2(g) + CO2 +1.0000 H2O = + 1.0000 H+ + 1.0000 HCO3- + log_k -7.8136 + -delta_H -10.5855 kJ/mol # Calculated enthalpy of reaction CO2(g) +# Enthalpy of formation: -94.051 kcal/mol + -analytic -8.5938e+001 -3.0431e-002 2.0702e+003 3.2427e+001 3.2328e+001 +# -Range: 0-300 + +Ca(g) + Ca +2.0000 H+ +0.5000 O2 = + 1.0000 Ca++ + 1.0000 H2O + log_k 165.0778 + -delta_H -1000.65 kJ/mol # Calculated enthalpy of reaction Ca(g) +# Enthalpy of formation: 177.8 kJ/mol + -analytic -7.3029e+000 -4.8208e-003 5.1822e+004 0.0000e+000 0.0000e+000 +# -Range: 0-200 + +Cd(g) + Cd +2.0000 H+ +0.5000 O2 = + 1.0000 Cd++ + 1.0000 H2O + log_k 70.1363 + -delta_H -467.469 kJ/mol # Calculated enthalpy of reaction Cd(g) +# Enthalpy of formation: 111.8 kJ/mol + -analytic -9.8665e+000 -3.0921e-003 2.4126e+004 0.0000e+000 0.0000e+000 +# -Range: 0-200 + +Cl2(g) + Cl2 +1.0000 H2O = + 0.5000 O2 + 2.0000 Cl- + 2.0000 H+ + log_k 3.0004 + -delta_H -54.3878 kJ/mol # Calculated enthalpy of reaction Cl2(g) +# Enthalpy of formation: 0 kJ/mol + -analytic -1.9456e+001 -2.1491e-002 2.0652e+003 8.8629e+000 3.5076e+001 +# -Range: 0-200 + +Cs(g) + Cs +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Cs+ + log_k 81.2805 + -delta_H -474.413 kJ/mol # Calculated enthalpy of reaction Cs(g) +# Enthalpy of formation: 76.5 kJ/mol + -analytic 4.1676e+001 9.1952e-003 2.3401e+004 -1.6824e+001 3.9736e+002 +# -Range: 0-200 + +Cu(g) + Cu +2.0000 H+ +0.5000 O2 = + 1.0000 Cu++ + 1.0000 H2O + log_k 83.6618 + -delta_H -551.483 kJ/mol # Calculated enthalpy of reaction Cu(g) +# Enthalpy of formation: 337.4 kJ/mol + -analytic -1.1249e+001 -2.7585e-003 2.8541e+004 0.0000e+000 0.0000e+000 +# -Range: 0-200 + +F2(g) + F2 +1.0000 H2O = + 0.5000 O2 + 2.0000 F- + 2.0000 H+ + log_k 55.7197 + -delta_H -390.924 kJ/mol # Calculated enthalpy of reaction F2(g) +# Enthalpy of formation: 0 kJ/mol + -analytic -3.2664e+001 -2.1035e-002 1.9974e+004 1.1174e+001 3.3920e+002 +# -Range: 0-200 + +H2(g) +# H2 +0.5000 O2 = + 1.0000 H2O +# log_k 43.0016 +# -analytic -1.1609e+001 -3.7580e-003 1.5068e+004 2.4198e+000 -7.0997e+004 +# -Range: 0-300 + H2 = H2 + log_k -3.1050 + -delta_H -4.184 kJ/mol # Calculated enthalpy of reaction H2(g) +# Enthalpy of formation: 0 kcal/mol + -analytic -9.3114e+000 4.6473e-003 -4.9335e+001 1.4341e+000 1.2815e+005 +# -Range: 0-300 + +H2O(g) + H2O = + 1.0000 H2O + log_k 1.5854 + -delta_H -43.4383 kJ/mol # Calculated enthalpy of reaction H2O(g) +# Enthalpy of formation: -57.935 kcal/mol + -analytic -1.4782e+001 1.0752e-003 2.7519e+003 2.7548e+000 4.2945e+001 +# -Range: 0-300 + +H2S(g) + H2S = + 1.0000 H+ + 1.0000 HS- + log_k -7.9759 + -delta_H 4.5229 kJ/mol # Calculated enthalpy of reaction H2S(g) +# Enthalpy of formation: -4.931 kcal/mol + -analytic -9.7354e+001 -3.1576e-002 1.8285e+003 3.7440e+001 2.8560e+001 +# -Range: 0-300 + +HBr(g) + HBr = + 1.0000 Br- + 1.0000 H+ + log_k 8.8815 + -delta_H -85.2134 kJ/mol # Calculated enthalpy of reaction HBr(g) +# Enthalpy of formation: -36.29 kJ/mol + -analytic 8.1303e+000 -6.6641e-003 3.3951e+003 -3.4973e+000 5.7651e+001 +# -Range: 0-200 + +HCl(g) + HCl = + 1.0000 Cl- + 1.0000 H+ + log_k 6.3055 + -delta_H -74.7697 kJ/mol # Calculated enthalpy of reaction HCl(g) +# Enthalpy of formation: -92.31 kJ/mol + -analytic -2.8144e-001 -8.6776e-003 3.0668e+003 -4.5105e-001 5.2078e+001 +# -Range: 0-200 + +HF(g) + HF = + 1.0000 F- + 1.0000 H+ + log_k 1.1126 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(g) +# Enthalpy of formation: 619.234 kJ/mol + -analytic -8.5783e+000 -8.8440e-003 2.6279e+003 1.4180e+000 4.4628e+001 +# -Range: 0-200 + +HI(g) + HI = + 1.0000 H+ + 1.0000 I- + log_k 9.3944 + -delta_H -83.4024 kJ/mol # Calculated enthalpy of reaction HI(g) +# Enthalpy of formation: 26.5 kJ/mol + -analytic 5.8250e-003 -8.7146e-003 3.5728e+003 0.0000e+000 0.0000e+000 +# -Range: 0-200 + +He(g) + He = + 1.0000 He + log_k -3.4143 + -delta_H -0.6276 kJ/mol # Calculated enthalpy of reaction He(g) +# Enthalpy of formation: 0 kcal/mol + -analytic -1.3402e+001 4.6358e-003 1.8295e+002 2.8070e+000 9.3373e+004 +# -Range: 0-300 + +Hf(g) + Hf +4.0000 H+ +1.0000 O2 = + 1.0000 Hf++++ + 2.0000 H2O + log_k 290.9782 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(g) +# Enthalpy of formation: 0 kJ/mol + +Hg(g) + Hg +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hg++ + log_k 19.7290 + -delta_H -170.988 kJ/mol # Calculated enthalpy of reaction Hg(g) +# Enthalpy of formation: 61.38 kJ/mol + -analytic -1.6232e+001 -3.2863e-003 8.9831e+003 2.7505e+000 1.5255e+002 +# -Range: 0-200 + +I2(g) + I2 +1.0000 H2O = + 0.5000 O2 + 2.0000 H+ + 2.0000 I- + log_k -21.4231 + -delta_H 103.547 kJ/mol # Calculated enthalpy of reaction I2(g) +# Enthalpy of formation: 62.42 kJ/mol + -analytic -2.0271e+001 -2.1890e-002 -6.0267e+003 1.0339e+001 -1.0233e+002 +# -Range: 0-200 + +K(g) + K +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 K+ + log_k 81.5815 + -delta_H -481.055 kJ/mol # Calculated enthalpy of reaction K(g) +# Enthalpy of formation: 89 kJ/mol + -analytic 1.0278e+001 3.0700e-003 2.4729e+004 -5.0763e+000 4.1994e+002 +# -Range: 0-200 + +Kr(g) + Kr = + 1.0000 Kr + log_k -2.6051 + -delta_H -15.2716 kJ/mol # Calculated enthalpy of reaction Kr(g) +# Enthalpy of formation: 0 kcal/mol + -analytic -2.1251e+001 4.8308e-003 4.2971e+002 5.3591e+000 2.2304e+005 +# -Range: 0-300 + +Li(g) + Li +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Li+ + log_k 94.9423 + -delta_H -577.639 kJ/mol # Calculated enthalpy of reaction Li(g) +# Enthalpy of formation: 159.3 kJ/mol + -analytic -2.5692e+001 -1.4385e-003 3.0936e+004 6.9899e+000 5.2535e+002 +# -Range: 0-200 + +Mg(g) + Mg +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Mg++ + log_k 142.2494 + -delta_H -892.831 kJ/mol # Calculated enthalpy of reaction Mg(g) +# Enthalpy of formation: 147.1 kJ/mol + -analytic -1.3470e+000 -7.7402e-004 4.5992e+004 -4.2207e+000 7.8101e+002 +# -Range: 0-200 + +N2(g) +# N2 +3.0000 H2O = + 1.5000 O2 + 2.0000 NH3 +# log_k -119.6473 +# -analytic 2.4168e+001 1.6489e-002 -3.6869e+004 -1.1181e+001 2.3178e+005 +# -Range: 0-300 + N2 = N2 + log_k -3.1864 + -delta_H -10.4391 kJ/mol # Calculated enthalpy of reaction N2(g) +# Enthalpy of formation: 0 kcal/mol + -analytic -7.6452e+000 7.9606e-003 0.0000e+000 0.0000e+000 1.8604e+005 +# -Range: 0-300 +NH3(g) + NH3 = + 1.0000 NH3 + log_k 1.7966 + -delta_H -35.2251 kJ/mol # Calculated enthalpy of reaction NH3(g) +# Enthalpy of formation: -11.021 kcal/mol + -analytic -1.8758e+001 3.3670e-004 2.5113e+003 4.8619e+000 3.9192e+001 +# -Range: 0-300 + +NO(g) + NO +0.5000 H2O +0.2500 O2 = + 1.0000 H+ + 1.0000 NO2- + log_k 0.7554 + -delta_H -48.8884 kJ/mol # Calculated enthalpy of reaction NO(g) +# Enthalpy of formation: 90.241 kJ/mol + -analytic 8.2147e+000 -1.2708e-001 -6.0593e+003 2.0504e+001 -9.4551e+001 +# -Range: 0-300 + +NO2(g) + NO2 +0.5000 H2O +0.2500 O2 = + 1.0000 H+ + 1.0000 NO3- + log_k 8.3673 + -delta_H -94.0124 kJ/mol # Calculated enthalpy of reaction NO2(g) +# Enthalpy of formation: 33.154 kJ/mol + -analytic 9.4389e+001 -2.7511e-001 -1.6783e+004 2.1127e+001 -2.6191e+002 +# -Range: 0-300 + +Na(g) + Na +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Na+ + log_k 80.8640 + -delta_H -487.685 kJ/mol # Calculated enthalpy of reaction Na(g) +# Enthalpy of formation: 107.5 kJ/mol + -analytic -6.0156e+000 2.4712e-003 2.5682e+004 0.0000e+000 0.0000e+000 +# -Range: 0-200 + +Ne(g) + Ne = + 1.0000 Ne + log_k -3.3462 + -delta_H -3.64008 kJ/mol # Calculated enthalpy of reaction Ne(g) +# Enthalpy of formation: 0 kcal/mol + -analytic -6.5169e+000 6.3991e-003 0.0000e+000 0.0000e+000 1.1271e+005 +# -Range: 0-300 + +O2(g) + O2 = + 1.0000 O2 + log_k -2.8983 + -delta_H -12.1336 kJ/mol # Calculated enthalpy of reaction O2(g) +# Enthalpy of formation: 0 kcal/mol + -analytic -7.5001e+000 7.8981e-003 0.0000e+000 0.0000e+000 2.0027e+005 +# -Range: 0-300 + +Pb(g) + Pb +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Pb++ + log_k 75.6090 + -delta_H -474.051 kJ/mol # Calculated enthalpy of reaction Pb(g) +# Enthalpy of formation: 195.2 kJ/mol + -analytic 2.5752e+001 2.1307e-003 2.3397e+004 -1.1825e+001 3.9730e+002 +# -Range: 0-200 + +Rb(g) + Rb +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Rb+ + log_k 80.4976 + -delta_H -471.909 kJ/mol # Calculated enthalpy of reaction Rb(g) +# Enthalpy of formation: 80.9 kJ/mol + -analytic 2.6839e+001 5.9775e-003 2.3720e+004 -1.1189e+001 4.0279e+002 +# -Range: 0-200 + +Rn(g) + Rn = + 1.0000 Rn + log_k -2.0451 + -delta_H -20.92 kJ/mol # Calculated enthalpy of reaction Rn(g) +# Enthalpy of formation: 0 kcal/mol + -analytic -3.0258e+001 4.9893e-003 1.4118e+002 8.8798e+000 3.8095e+005 +# -Range: 0-300 + +RuCl3(g) + RuCl3 = + 1.0000 Ru+++ + 3.0000 Cl- + log_k 41.5503 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl3(g) +# Enthalpy of formation: 16.84 kJ/mol + +RuO3(g) + RuO3 +1.0000 H2O = + 1.0000 RuO4-- + 2.0000 H+ + log_k 2.3859 + -delta_H -100.369 kJ/mol # Calculated enthalpy of reaction RuO3(g) +# Enthalpy of formation: -70.868 kJ/mol + -analytic 1.1106e+002 1.7191e-002 6.8526e+002 -4.6922e+001 1.1598e+001 +# -Range: 0-200 + +S2(g) + S2 +2.0000 H2O = + 0.5000 SO4-- + 1.5000 HS- + 2.5000 H+ + log_k -7.1449 + -delta_H -35.656 kJ/mol # Calculated enthalpy of reaction S2(g) +# Enthalpy of formation: 30.681 kcal/mol + -analytic -1.8815e+002 -7.7069e-002 4.8816e+003 7.5802e+001 7.6228e+001 +# -Range: 0-300 + +SO2(g) + SO2 = SO2 + log_k 0.1700 + -delta_H 0 # Not possible to calculate enthalpy of reaction SO2(g) +# Enthalpy of formation: 0 kcal/mol + -analytic -2.0205e+001 2.8861e-003 1.4862e+003 5.2958e+000 1.2721e+005 +# -Range: 0-300 + +Si(g) + Si +1.0000 O2 = + 1.0000 SiO2 + log_k 219.9509 + -delta_H -1315.57 kJ/mol # Calculated enthalpy of reaction Si(g) +# Enthalpy of formation: 450 kJ/mol + -analytic 4.1998e+002 8.0113e-002 5.4468e+004 -1.6433e+002 9.2480e+002 +# -Range: 0-200 + +SiF4(g) + SiF4 +2.0000 H2O = + 1.0000 SiO2 + 4.0000 F- + 4.0000 H+ + log_k -15.1931 + -delta_H -32.4123 kJ/mol # Calculated enthalpy of reaction SiF4(g) +# Enthalpy of formation: -1615 kJ/mol + -analytic 3.4941e+002 3.3668e-002 -1.2780e+004 -1.3410e+002 -2.1714e+002 +# -Range: 0-200 + +Sn(g) + Sn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Sn++ + log_k 94.5019 + -delta_H -589.758 kJ/mol # Calculated enthalpy of reaction Sn(g) +# Enthalpy of formation: 301.2 kJ/mol + -analytic 1.4875e+001 -5.6877e-005 2.9728e+004 -8.1131e+000 5.0482e+002 +# -Range: 0-200 + +Tc2O7(g) + Tc2O7 +1.0000 H2O = + 2.0000 H+ + 2.0000 TcO4- + log_k 21.3593 + -delta_H -158.131 kJ/mol # Calculated enthalpy of reaction Tc2O7(g) +# Enthalpy of formation: -988.569 kJ/mol + -analytic 7.4140e+001 1.5668e-002 5.6360e+003 -3.0860e+001 9.5682e+001 +# -Range: 0-200 + +Th(g) + Th +4.0000 H+ +1.0000 O2 = + 1.0000 Th++++ + 2.0000 H2O + log_k 307.8413 + -delta_H -1930.56 kJ/mol # Calculated enthalpy of reaction Th(g) +# Enthalpy of formation: 602 kJ/mol + -analytic 1.8496e+001 2.7318e-003 9.8807e+004 -1.7332e+001 1.6779e+003 +# -Range: 0-200 + +Ti(g) + Ti +2.0000 H2O +1.0000 O2 = + 1.0000 Ti(OH)4 + log_k 224.3510 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti(g) +# Enthalpy of formation: 473 kJ/mol + +TiBr4(g) + TiBr4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 Br- + 4.0000 H+ + log_k 36.6695 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr4(g) +# Enthalpy of formation: -549.339 kJ/mol + +TiCl4(g) + TiCl4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 Cl- + 4.0000 H+ + log_k 28.0518 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl4(g) +# Enthalpy of formation: -763.2 kJ/mol + +TiO(g) + TiO +2.0000 H2O +0.5000 O2 = + 1.0000 Ti(OH)4 + log_k 145.5711 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiO(g) +# Enthalpy of formation: 17.144 kJ/mol + +U(g) + U +2.0000 H+ +1.5000 O2 = + 1.0000 H2O + 1.0000 UO2++ + log_k 298.3441 + -delta_H -1819.64 kJ/mol # Calculated enthalpy of reaction U(g) +# Enthalpy of formation: 533 kJ/mol + -analytic 3.7536e+001 -6.3804e-003 9.2048e+004 -1.8614e+001 1.4363e+003 +# -Range: 0-300 + +U2Cl10(g) + U2Cl10 +4.0000 H2O = + 2.0000 UO2+ + 8.0000 H+ + 10.0000 Cl- + log_k 82.7621 + -delta_H -609.798 kJ/mol # Calculated enthalpy of reaction U2Cl10(g) +# Enthalpy of formation: -1967.9 kJ/mol + -analytic -7.5513e+002 -3.0070e-001 4.5824e+004 3.1267e+002 7.1526e+002 +# -Range: 0-300 + +U2Cl8(g) + U2Cl8 = + 2.0000 U++++ + 8.0000 Cl- + log_k 82.4059 + -delta_H -769.437 kJ/mol # Calculated enthalpy of reaction U2Cl8(g) +# Enthalpy of formation: -1749.6 kJ/mol + -analytic -7.4441e+002 -2.6943e-001 5.4358e+004 2.9287e+002 8.4843e+002 +# -Range: 0-300 + +U2F10(g) + U2F10 +4.0000 H2O = + 2.0000 UO2+ + 8.0000 H+ + 10.0000 F- + log_k -12.2888 + -delta_H -239.377 kJ/mol # Calculated enthalpy of reaction U2F10(g) +# Enthalpy of formation: -4021 kJ/mol + -analytic -9.1542e+002 -3.2040e-001 3.1047e+004 3.6143e+002 4.8473e+002 +# -Range: 0-300 + +UBr(g) + UBr +1.0000 O2 = + 1.0000 Br- + 1.0000 UO2+ + log_k 224.8412 + -delta_H -1381.5 kJ/mol # Calculated enthalpy of reaction UBr(g) +# Enthalpy of formation: 247 kJ/mol + -analytic -3.1193e+002 -6.3059e-002 8.7633e+004 1.1032e+002 -1.0104e+006 +# -Range: 0-300 + +UBr2(g) + UBr2 +1.0000 O2 = + 1.0000 UO2++ + 2.0000 Br- + log_k 192.6278 + -delta_H -1218.87 kJ/mol # Calculated enthalpy of reaction UBr2(g) +# Enthalpy of formation: -31 kJ/mol + -analytic -1.2277e+002 -6.4613e-002 6.4196e+004 4.8209e+001 1.0018e+003 +# -Range: 0-300 + +UBr3(g) + UBr3 = + 1.0000 U+++ + 3.0000 Br- + log_k 67.8918 + -delta_H -489.61 kJ/mol # Calculated enthalpy of reaction UBr3(g) +# Enthalpy of formation: -364 kJ/mol + -analytic -2.5784e+002 -9.7583e-002 3.0225e+004 1.0240e+002 4.7171e+002 +# -Range: 0-300 + +UBr4(g) + UBr4 = + 1.0000 U++++ + 4.0000 Br- + log_k 54.2926 + -delta_H -467.113 kJ/mol # Calculated enthalpy of reaction UBr4(g) +# Enthalpy of formation: -610.1 kJ/mol + -analytic -3.5205e+002 -1.2867e-001 3.0898e+004 1.3781e+002 4.8223e+002 +# -Range: 0-300 + +UBr5(g) + UBr5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 Br- + log_k 61.4272 + -delta_H -423.222 kJ/mol # Calculated enthalpy of reaction UBr5(g) +# Enthalpy of formation: -637.745 kJ/mol + -analytic -3.4693e+002 -1.4298e-001 2.8151e+004 1.4406e+002 4.3938e+002 +# -Range: 0-300 + +UCl(g) + UCl +1.0000 O2 = + 1.0000 Cl- + 1.0000 UO2+ + log_k 221.7887 + -delta_H -1368.27 kJ/mol # Calculated enthalpy of reaction UCl(g) +# Enthalpy of formation: 188.2 kJ/mol + -analytic -4.1941e+001 -2.7879e-002 7.0800e+004 1.3954e+001 1.1048e+003 +# -Range: 0-300 + +UCl2(g) + UCl2 +1.0000 O2 = + 1.0000 UO2++ + 2.0000 Cl- + log_k 183.7912 + -delta_H -1178.03 kJ/mol # Calculated enthalpy of reaction UCl2(g) +# Enthalpy of formation: -163 kJ/mol + -analytic -1.3677e+002 -6.7829e-002 6.2413e+004 5.3100e+001 9.7394e+002 +# -Range: 0-300 + +UCl3(g) + UCl3 = + 1.0000 U+++ + 3.0000 Cl- + log_k 58.6335 + -delta_H -453.239 kJ/mol # Calculated enthalpy of reaction UCl3(g) +# Enthalpy of formation: -537.1 kJ/mol + -analytic -2.7942e+002 -1.0243e-001 2.8859e+004 1.0982e+002 4.5040e+002 +# -Range: 0-300 + +UCl4(g) + UCl4 = + 1.0000 U++++ + 4.0000 Cl- + log_k 46.3988 + -delta_H -441.419 kJ/mol # Calculated enthalpy of reaction UCl4(g) +# Enthalpy of formation: -818.1 kJ/mol + -analytic -3.7971e+002 -1.3504e-001 3.0243e+004 1.4746e+002 4.7202e+002 +# -Range: 0-300 + +UCl5(g) + UCl5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 Cl- + log_k 54.5311 + -delta_H -406.349 kJ/mol # Calculated enthalpy of reaction UCl5(g) +# Enthalpy of formation: -882.5 kJ/mol + -analytic -3.8234e+002 -1.5109e-001 2.8170e+004 1.5654e+002 4.3968e+002 +# -Range: 0-300 + +UCl6(g) + UCl6 +2.0000 H2O = + 1.0000 UO2++ + 4.0000 H+ + 6.0000 Cl- + log_k 63.4791 + -delta_H -462.301 kJ/mol # Calculated enthalpy of reaction UCl6(g) +# Enthalpy of formation: -987.5 kJ/mol + -analytic -4.7128e+002 -1.9133e-001 3.2528e+004 1.9503e+002 5.0771e+002 +# -Range: 0-300 + +UF(g) + UF +1.0000 O2 = + 1.0000 F- + 1.0000 UO2+ + log_k 206.2684 + -delta_H -1296.34 kJ/mol # Calculated enthalpy of reaction UF(g) +# Enthalpy of formation: -52 kJ/mol + -analytic -6.1248e+001 -3.0360e-002 6.7619e+004 2.0095e+001 1.0551e+003 +# -Range: 0-300 + +UF2(g) + UF2 +1.0000 O2 = + 1.0000 UO2++ + 2.0000 F- + log_k 172.3563 + -delta_H -1147.56 kJ/mol # Calculated enthalpy of reaction UF2(g) +# Enthalpy of formation: -530 kJ/mol + -analytic -4.3462e+002 -1.0881e-001 7.6778e+004 1.5835e+002 -8.8536e+005 +# -Range: 0-300 + +UF3(g) + UF3 = + 1.0000 U+++ + 3.0000 F- + log_k 47.2334 + -delta_H -440.943 kJ/mol # Calculated enthalpy of reaction UF3(g) +# Enthalpy of formation: -1054.2 kJ/mol + -analytic -3.3058e+002 -1.0866e-001 2.9694e+004 1.2551e+002 4.6344e+002 +# -Range: 0-300 + +UF4(g) + UF4 = + 1.0000 U++++ + 4.0000 F- + log_k 14.5980 + -delta_H -331.39 kJ/mol # Calculated enthalpy of reaction UF4(g) +# Enthalpy of formation: -1601.2 kJ/mol + -analytic -4.4692e+002 -1.4314e-001 2.6427e+004 1.6791e+002 4.1250e+002 +# -Range: 0-300 + +UF5(g) + UF5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 F- + log_k 6.3801 + -delta_H -220.188 kJ/mol # Calculated enthalpy of reaction UF5(g) +# Enthalpy of formation: -1910 kJ/mol + -analytic -4.6981e+002 -1.6177e-001 2.0986e+004 1.8345e+002 3.2760e+002 +# -Range: 0-300 + +UF6(g) + UF6 +2.0000 H2O = + 1.0000 UO2++ + 4.0000 H+ + 6.0000 F- + log_k 18.2536 + -delta_H -310.809 kJ/mol # Calculated enthalpy of reaction UF6(g) +# Enthalpy of formation: -2148.6 kJ/mol + -analytic -5.7661e+002 -2.0409e-001 2.7680e+004 2.2743e+002 4.3209e+002 +# -Range: 0-300 + +UI(g) + UI +1.0000 O2 = + 1.0000 I- + 1.0000 UO2+ + log_k 230.8161 + -delta_H -1410.9 kJ/mol # Calculated enthalpy of reaction UI(g) +# Enthalpy of formation: 341 kJ/mol + -analytic -3.5819e+001 -2.6631e-002 7.2899e+004 1.2133e+001 1.1375e+003 +# -Range: 0-300 + +UI2(g) + UI2 +1.0000 O2 = + 1.0000 UO2++ + 2.0000 I- + log_k 194.5395 + -delta_H -1220.67 kJ/mol # Calculated enthalpy of reaction UI2(g) +# Enthalpy of formation: 100 kJ/mol + -analytic -3.3543e+002 -9.5116e-002 7.6218e+004 1.2543e+002 -6.8683e+005 +# -Range: 0-300 + +UI3(g) + UI3 = + 1.0000 U+++ + 3.0000 I- + log_k 75.6033 + -delta_H -519.807 kJ/mol # Calculated enthalpy of reaction UI3(g) +# Enthalpy of formation: -140 kJ/mol + -analytic -2.6095e+002 -9.8782e-002 3.1972e+004 1.0456e+002 4.9897e+002 +# -Range: 0-300 + +UI4(g) + UI4 = + 1.0000 U++++ + 4.0000 I- + log_k 64.3272 + -delta_H -510.01 kJ/mol # Calculated enthalpy of reaction UI4(g) +# Enthalpy of formation: -308.8 kJ/mol + -analytic -3.5645e+002 -1.3022e-001 3.3347e+004 1.4051e+002 5.2046e+002 +# -Range: 0-300 + +UO(g) + UO +2.0000 H+ +1.0000 O2 = + 1.0000 H2O + 1.0000 UO2++ + log_k 211.6585 + -delta_H -1323.2 kJ/mol # Calculated enthalpy of reaction UO(g) +# Enthalpy of formation: 30.5 kJ/mol + -analytic -1.8007e+002 -3.1985e-002 7.8469e+004 5.8892e+001 -6.8071e+005 +# -Range: 0-300 + +UO2(g) + UO2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 UO2++ + log_k 125.6027 + -delta_H -820.972 kJ/mol # Calculated enthalpy of reaction UO2(g) +# Enthalpy of formation: -477.8 kJ/mol + -analytic -5.2789e+000 -3.5754e-003 4.2074e+004 -3.7117e+000 6.5653e+002 +# -Range: 0-300 + +UO2Cl2(g) + UO2Cl2 = + 1.0000 UO2++ + 2.0000 Cl- + log_k 47.9630 + -delta_H -381.559 kJ/mol # Calculated enthalpy of reaction UO2Cl2(g) +# Enthalpy of formation: -971.6 kJ/mol + -analytic -1.8035e+002 -6.5574e-002 2.3064e+004 6.8894e+001 3.5994e+002 +# -Range: 0-300 + +UO2F2(g) + UO2F2 = + 1.0000 UO2++ + 2.0000 F- + log_k 34.6675 + -delta_H -337.195 kJ/mol # Calculated enthalpy of reaction UO2F2(g) +# Enthalpy of formation: -1352.5 kJ/mol + -analytic -2.1498e+002 -6.9882e-002 2.1774e+004 7.9780e+001 3.3983e+002 +# -Range: 0-300 + +UO3(g) + UO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 UO2++ + log_k 70.9480 + -delta_H -505.638 kJ/mol # Calculated enthalpy of reaction UO3(g) +# Enthalpy of formation: -799.2 kJ/mol + -analytic -3.2820e+001 -2.6807e-003 2.6914e+004 5.7767e+000 4.1997e+002 +# -Range: 0-300 + +UOF4(g) + UOF4 +1.0000 H2O = + 1.0000 UO2++ + 2.0000 H+ + 4.0000 F- + log_k 24.2848 + -delta_H -312.552 kJ/mol # Calculated enthalpy of reaction UOF4(g) +# Enthalpy of formation: -1762 kJ/mol + -analytic -3.9592e+002 -1.3699e-001 2.4127e+004 1.5359e+002 3.7660e+002 +# -Range: 0-300 + +Xe(g) + Xe = + 1.0000 Xe + log_k -2.3640 + -delta_H -18.8698 kJ/mol # Calculated enthalpy of reaction Xe(g) +# Enthalpy of formation: 0 kcal/mol + -analytic -2.0636e+001 5.1389e-003 2.0490e+002 5.1913e+000 2.8556e+005 +# -Range: 0-300 + +Zn(g) + Zn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Zn++ + log_k 85.4140 + -delta_H -563.557 kJ/mol # Calculated enthalpy of reaction Zn(g) +# Enthalpy of formation: 130.4 kJ/mol + -analytic -1.0898e+001 -3.9871e-003 2.9068e+004 0.0000e+000 0.0000e+000 +# -Range: 0-200 + +Zr(g) + Zr +4.0000 H+ +1.0000 O2 = + 1.0000 Zr++++ + 2.0000 H2O + log_k 277.1324 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(g) +# Enthalpy of formation: 608.948 kJ/mol + +ZrF4(g) + ZrF4 = + 1.0000 Zr++++ + 4.0000 F- + log_k 142.9515 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4(g) +# Enthalpy of formation: -858.24 kJ/mol + +EXCHANGE_MASTER_SPECIES + X X- +EXCHANGE_SPECIES + X- = X- + log_k 0.0 + + Na+ + X- = NaX + log_k 0.0 + -llnl_gamma 4.0 + + K+ + X- = KX + log_k 0.7 + -llnl_gamma 3.0 + delta_h -4.3 # Jardine & Sparks, 1984 + + Li+ + X- = LiX + log_k -0.08 + -llnl_gamma 6.0 + delta_h 1.4 # Merriam & Thomas, 1956 + + NH4+ + X- = NH4X + log_k 0.6 + -llnl_gamma 2.5 + delta_h -2.4 # Laudelout et al., 1968 + + Ca+2 + 2X- = CaX2 + log_k 0.8 + -llnl_gamma 6.0 + delta_h 7.2 # Van Bladel & Gheyl, 1980 + + Mg+2 + 2X- = MgX2 + log_k 0.6 + -llnl_gamma 8.0 + delta_h 7.4 # Laudelout et al., 1968 + + Sr+2 + 2X- = SrX2 + log_k 0.91 + -llnl_gamma 5.0 + delta_h 5.5 # Laudelout et al., 1968 + + Ba+2 + 2X- = BaX2 + log_k 0.91 + -llnl_gamma 5.0 + delta_h 4.5 # Laudelout et al., 1968 + + Mn+2 + 2X- = MnX2 + log_k 0.52 + -llnl_gamma 6.0 + + Fe+2 + 2X- = FeX2 + log_k 0.44 + -llnl_gamma 6.0 + + Cu+2 + 2X- = CuX2 + log_k 0.6 + -llnl_gamma 6.0 + + Zn+2 + 2X- = ZnX2 + log_k 0.8 + -llnl_gamma 6.0 + + Cd+2 + 2X- = CdX2 + log_k 0.8 + -llnl_gamma 5.0 + + Pb+2 + 2X- = PbX2 + log_k 1.05 + -llnl_gamma 4.5 + + Al+3 + 3X- = AlX3 + log_k 0.41 + -llnl_gamma 9.0 + + AlOH+2 + 2X- = AlOHX2 + log_k 0.89 + -llnl_gamma 4.5 + +SURFACE_MASTER_SPECIES + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH +SURFACE_SPECIES +# All surface data from +# Dzombak and Morel, 1990 +# +# +# Acid-base data from table 5.7 +# +# strong binding site--Hfo_s, + + Hfo_sOH = Hfo_sOH + log_k 0.0 + + Hfo_sOH + H+ = Hfo_sOH2+ + log_k 7.29 # = pKa1,int + + Hfo_sOH = Hfo_sO- + H+ + log_k -8.93 # = -pKa2,int + +# weak binding site--Hfo_w + + Hfo_wOH = Hfo_wOH + log_k 0.0 + + Hfo_wOH + H+ = Hfo_wOH2+ + log_k 7.29 # = pKa1,int + + Hfo_wOH = Hfo_wO- + H+ + log_k -8.93 # = -pKa2,int + +############################################### +# CATIONS # +############################################### +# +# Cations from table 10.1 or 10.5 +# +# Calcium + Hfo_sOH + Ca+2 = Hfo_sOHCa+2 + log_k 4.97 + + Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ + log_k -5.85 +# Strontium + Hfo_sOH + Sr+2 = Hfo_sOHSr+2 + log_k 5.01 + + Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ + log_k -6.58 + + Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+ + log_k -17.60 +# Barium + Hfo_sOH + Ba+2 = Hfo_sOHBa+2 + log_k 5.46 + + Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ + log_k -7.2 # table 10.5 +# +# Cations from table 10.2 +# +# Cadmium + Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ + log_k 0.47 + + Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ + log_k -2.91 +# Zinc + Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ + log_k 0.99 + + Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ + log_k -1.99 +# Copper + Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ + log_k 2.89 + + Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ + log_k 0.6 # table 10.5 +# Lead + Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ + log_k 4.65 + + Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ + log_k 0.3 # table 10.5 +# +# Derived constants table 10.5 +# +# Magnesium + Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ + log_k -4.6 +# Manganese + Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ + log_k -0.4 # table 10.5 + + Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ + log_k -3.5 # table 10.5 +# Iron + Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ + log_k 0.7 # LFER using table 10.5 + + Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ + log_k -2.5 # LFER using table 10.5 + +############################################### +# ANIONS # +############################################### +# +# Anions from table 10.6 +# +# Phosphate + Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O + log_k 31.29 + + Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O + log_k 25.39 + + Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O + log_k 17.72 +# +# Anions from table 10.7 +# +# Borate + Hfo_wOH + B(OH)3 = Hfo_wH2BO3 + H2O + log_k 0.62 +# +# Anions from table 10.8 +# +# Sulfate + Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O + log_k 7.78 + + Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 + log_k 0.79 +# +# Derived constants table 10.10 +# + Hfo_wOH + F- + H+ = Hfo_wF + H2O + log_k 8.7 + + Hfo_wOH + F- = Hfo_wOHF- + log_k 1.6 +# +# Carbonate: Van Geen et al., 1994 reoptimized for HFO +# 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L +# +# Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O +# log_k 12.56 +# +# Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O +# log_k 20.62 + +# 9/19/96 +# Added analytical expression for H2S, NH3, KSO4. +# Added species CaHSO4+. +# Added delta H for Goethite. + +RATES + +########### +#K-feldspar +########### +# +# Sverdrup, H.U., 1990, The kinetics of base cation release due to +# chemical weathering: Lund University Press, Lund, 246 p. +# +# Example of KINETICS data block for K-feldspar rate: +# KINETICS 1 +# K-feldspar +# -m0 2.16 # 10% K-fsp, 0.1 mm cubes +# -m 1.94 +# -parms 1.36e4 0.1 + +K-feldspar + -start + 1 rem specific rate from Sverdrup, 1990, in kmol/m2/s + 2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw) + 3 rem parm(2) = corrects for field rate relative to lab rate + 4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) + + 10 dif_temp = 1/TK - 1/298 + 20 pk_H = 12.5 + 3134 * dif_temp + 30 pk_w = 15.3 + 1838 * dif_temp + 40 pk_OH = 14.2 + 3134 * dif_temp + 50 pk_CO2 = 14.6 + 1677 * dif_temp + #60 pk_org = 13.9 + 1254 * dif_temp # rate increase with DOC + 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 + 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 + #72 rate = rate + 10^-pk_org * TOT("Doc")^0.4 + 80 moles = parm(1) * parm(2) * rate * (1 - SR("K-feldspar")) * time + 81 rem decrease rate on precipitation + 90 if SR("K-feldspar") > 1 then moles = moles * 0.1 + 100 save moles + -end + +########### +#Albite +########### +# +# Sverdrup, H.U., 1990, The kinetics of base cation release due to +# chemical weathering: Lund University Press, Lund, 246 p. +# +# Example of KINETICS data block for Albite rate: +# KINETICS 1 +# Albite +# -m0 0.43 # 2% Albite, 0.1 mm cubes +# -parms 2.72e3 0.1 + +Albite + -start + 1 rem specific rate from Sverdrup, 1990, in kmol/m2/s + 2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw) + 3 rem parm(2) = corrects for field rate relative to lab rate + 4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) + + 10 dif_temp = 1/TK - 1/298 + 20 pk_H = 12.5 + 3359 * dif_temp + 30 pk_w = 14.8 + 2648 * dif_temp + 40 pk_OH = 13.7 + 3359 * dif_temp + #41 rem ^12.9 in Sverdrup, but larger than for oligoclase... + 50 pk_CO2 = 14.0 + 1677 * dif_temp + #60 pk_org = 12.5 + 1254 * dif_temp # ...rate increase for DOC + 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 + 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 + #72 rate = rate + 10^-pk_org * TOT("Doc")^0.4 + 80 moles = parm(1) * parm(2) * rate * (1 - SR("Albite")) * time + 81 rem decrease rate on precipitation + 90 if SR("Albite") > 1 then moles = moles * 0.1 + 100 save moles + -end + +######## +#Calcite +######## +# +# Plummer, L.N., Wigley, T.M.L., and Parkhurst, D.L., 1978, +# American Journal of Science, v. 278, p. 179-216. +# +# Example of KINETICS data block for calcite rate: +# +# KINETICS 1 +# Calcite +# -tol 1e-8 +# -m0 3.e-3 +# -m 3.e-3 +# -parms 5.0 0.6 +Calcite + -start + 1 rem Modified from Plummer and others, 1978 + 2 rem parm(1) = A/V, 1/m parm(2) = exponent for m/m0 + + 10 si_cc = si("Calcite") + 20 if (m <= 0 and si_cc < 0) then goto 200 + 30 k1 = 10^(0.198 - 444.0 / (273.16 + tc) ) + 40 k2 = 10^(2.84 - 2177.0 / (273.16 + tc) ) + 50 if tc <= 25 then k3 = 10^(-5.86 - 317.0 / (273.16 + tc) ) + 60 if tc > 25 then k3 = 10^(-1.1 - 1737.0 / (273.16 + tc) ) + 70 t = 1 + 80 if m0 > 0 then t = m/m0 + 90 if t = 0 then t = 1 + 100 moles = parm(1) * (t)^parm(2) + 110 moles = moles * (k1 * act("H+") + k2 * act("CO2") + k3 * act("H2O")) + 120 moles = moles * (1 - 10^(2/3*si_cc)) + 130 moles = moles * time + 140 if (moles > m) then moles = m + 150 if (moles >= 0) then goto 200 + 160 temp = tot("Ca") + 170 mc = tot("C(4)") + 180 if mc < temp then temp = mc + 190 if -moles > temp then moles = -temp + 200 save moles + -end + +####### +#Pyrite +####### +# +# Williamson, M.A. and Rimstidt, J.D., 1994, +# Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454. +# +# Example of KINETICS data block for pyrite rate: +# KINETICS 1 +# Pyrite +# -tol 1e-8 +# -m0 5.e-4 +# -m 5.e-4 +# -parms 2.0 0.67 .5 -0.11 +Pyrite + -start + 1 rem Williamson and Rimstidt, 1994 + 2 rem parm(1) = log10(A/V, 1/dm) parm(2) = exp for (m/m0) + 3 rem parm(3) = exp for O2 parm(4) = exp for H+ + + 10 if (m <= 0) then goto 200 + 20 if (si("Pyrite") >= 0) then goto 200 + 20 rate = -10.19 + parm(1) + parm(3)*lm("O2") + parm(4)*lm("H+") + parm(2)*log10(m/m0) + 30 moles = 10^rate * time + 40 if (moles > m) then moles = m + 200 save moles + -end + +########## +#Organic_C +########## +# +# Example of KINETICS data block for Organic_C rate: +# KINETICS 1 +# Organic_C +# -tol 1e-8 +# # m in mol/kgw +# -m0 5e-3 +# -m 5e-3 +Organic_C + -start + 1 rem Additive Monod kinetics + 2 rem Electron acceptors: O2, NO3, and SO4 + + 10 if (m <= 0) then goto 200 + 20 mO2 = mol("O2") + 30 mNO3 = tot("N(5)") + 40 mSO4 = tot("S(6)") + 50 rate = 1.57e-9*mO2/(2.94e-4 + mO2) + 1.67e-11*mNO3/(1.55e-4 + mNO3) + 60 rate = rate + 1.e-13*mSO4/(1.e-4 + mSO4) + 70 moles = rate * m * (m/m0) * time + 80 if (moles > m) then moles = m + 200 save moles + -end + +########### +#Pyrolusite +########### +# +# Postma, D. and Appelo, C.A.J., 2000, GCA 64, in press +# +# Example of KINETICS data block for Pyrolusite +# KINETICS 1-12 +# Pyrolusite +# -tol 1.e-7 +# -m0 0.1 +# -m 0.1 +Pyrolusite + -start + 5 if (m <= 0.0) then goto 200 + 7 sr_pl = sr("Pyrolusite") + 9 if abs(1 - sr_pl) < 0.1 then goto 200 + 10 if (sr_pl > 1.0) then goto 100 + #20 rem initially 1 mol Fe+2 = 0.5 mol pyrolusite. k*A/V = 1/time (3 cells) + #22 rem time (3 cells) = 1.432e4. 1/time = 6.98e-5 + 30 Fe_t = tot("Fe(2)") + 32 if Fe_t < 1.e-8 then goto 200 + 40 moles = 6.98e-5 * Fe_t * (m/m0)^0.67 * time * (1 - sr_pl) + 50 if moles > Fe_t / 2 then moles = Fe_t / 2 + 70 if moles > m then moles = m + 90 goto 200 + 100 Mn_t = tot("Mn") + 110 moles = 2e-3 * 6.98e-5 * (1-sr_pl) * time + 120 if moles <= -Mn_t then moles = -Mn_t + 200 save moles + -end +END From 2dcf40623ff462e2b379cd5f8ed8299928d0a6fd Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Tue, 26 Mar 2024 17:51:00 -0600 Subject: [PATCH 132/384] normalized text files --- README.Fortran | 34 +++++++++++++++++----------------- 1 file changed, 17 insertions(+), 17 deletions(-) diff --git a/README.Fortran b/README.Fortran index 408ac795..bb5ca2dd 100644 --- a/README.Fortran +++ b/README.Fortran @@ -1,17 +1,17 @@ -In Fortran, you will need to include the source file IPhreeqc_interface.F90 -in your project files. This file defines the IPhreeqc Fortran module. This -is the preferred method to use IPhreeqc from a Fortran program. - - USE IPhreeqc - INTEGER(KIND=4) id - id = CreateIPhreeqc() - -Use of the include files IPhreeqc.f.inc and IPhreeqc.f90.inc has been -deprecated. To continue using them you must unset IPHREEQC_ENABLE_MODULE in -CMake builds or use the --disable-fortran-module in configure builds. If -either of these settings are used the Fortran include files will be -installed to the include directory. - - INCLUDE 'IPhreeqc.f90.inc' - INTEGER(KIND=4) id - id = CreateIPhreeqc() +In Fortran, you will need to include the source file IPhreeqc_interface.F90 +in your project files. This file defines the IPhreeqc Fortran module. This +is the preferred method to use IPhreeqc from a Fortran program. + + USE IPhreeqc + INTEGER(KIND=4) id + id = CreateIPhreeqc() + +Use of the include files IPhreeqc.f.inc and IPhreeqc.f90.inc has been +deprecated. To continue using them you must unset IPHREEQC_ENABLE_MODULE in +CMake builds or use the --disable-fortran-module in configure builds. If +either of these settings are used the Fortran include files will be +installed to the include directory. + + INCLUDE 'IPhreeqc.f90.inc' + INTEGER(KIND=4) id + id = CreateIPhreeqc() From c86d43662f03b2b55644da4077c9cf82c73c9a36 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Thu, 4 Apr 2024 21:21:51 -0600 Subject: [PATCH 133/384] release.txt --- RELEASE.TXT | 95 ++++++++++++++++++++++++++++++++++++++++++----------- 1 file changed, 75 insertions(+), 20 deletions(-) diff --git a/RELEASE.TXT b/RELEASE.TXT index 3012b298..3af3db05 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,4 +1,54 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + ----------------- + March 25, 2024 + ----------------- + DATABASES phreeqc.dat and Amm.dat: Three CALCULATE_VALUES definitions for + calculating the kinetic dissolution of silicate minerals have been defined + that can be invoked by copying a line of numbers from tables in Palandri + and Kharaka (2004), Sverdrup et al. (2019), or Hermansk et al. (2022, + 2023). The CALCULATE_VALUES definitions are included in the databases and + can be used in RATES definitions. Rate definitions Albite_PK, Albite_Svd, + and Albite_Hermanska in the databases use the CALCULATE_VALUES definitions. + More details are available at https://hydrochemistry.eu/ph3/release.html. + + DATABASES phreeqc.dat, Amm.dat, and pitzer.dat: The calculation of the + specific conductance can now be done with a Debye-Hckel-Onsager equation + that has both the electrophoretic and the relaxation term. (The standard + phreeqc calculation uses a simple electrophoretic term only.) For + individual ions, the equation can be multiplied with the viscosity ratio of + the solvent and the solution, and the ion-size a in the Debye-Hckel term + kappa_a can be made a function of the apparent molar volume of the ion. The + options are described and used in the databases. The additions extend the + applicability of the DHO equation to concentrations in the molar range, + reducing AARD (average of the absolute relative deviations) for SC and + transference numbers to less than 1% in many cases. For high KHCO3 + concentrations, the SCs indicate the presence of a KHCO3 complex that was + added to phreeqc.dat and Amm.dat. The AARD's are 0.18 % for NaCl, 0.48 % + for KCl, 0.51 % for MgCl2 and 0.89 % for CaCl2. More example files are + available at http://hydrochemistry.eu. + + PHREEQC Bug-fix: Option -density c[alculate] in SOLUTION_SPREAD was + corrected to give the iterated density of the solutions. + + PHREEQC: A new option has been added. The viscosity of the EDL + layer on SURFACE(s) can now be calculated and will then be used to + modify the diffusion coefficients. It is set by adding c(alculate) + after viscosity, for example, "-donnan 1e-8 viscosity calc". + + PHREEQC Bug-fix: Viscosity of the EDL layer on SURFACE(s), defined with, for + example, "-donnan 1e-8 viscosity 3", was omitted in Version 3.4.2. It is + now re-introduced in the calculations. + + PHREEQC Bug-fix: Basic now returns the contributions to the specific conductance + (t_sc("H+")) and the viscosity (f_visc("H+")) only when the species is present + in the solution. In previous versions a dummy value was returned when the + species was predefined, but absent in the actual solution calculation. + + PHREEQC Bug-fix: Limits for fugacity coefficients were set to be 0.01 < phi < 85 in + Peng-Robinson calculations. The limits were removed in version 3.7 (when calculating + H2S(g) solubilities). However, without the limits, all water turned into H2O(g) in some + cases and calculations failed. + ----------------- November 15, 2023 ----------------- @@ -27,7 +77,7 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ ----------------- June 1, 2023 ----------------- - Finalizing a Python version of PhreeqcRM that includes the BMI capabilities. + PhreeqcRM: Finalizing a Python version of PhreeqcRM that includes the BMI capabilities. Methods are documented in Python style and two test cases are available, one of which uses every Python method that is available. @@ -45,27 +95,26 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ viscosity of the solution when parameters are defined for the species with -viscosity. Actually, it gives the contribution of the species to the B and D terms in the Jones-Dole eqution, assuming that the A term is small. The fractional contribution can be negative, for - example f_visc("K+") is usually smaller than zero. + example f_visc("K+") is usually less than zero. - Bug-fix: High T/P water phi became too small. Now limit how small phi of water can be - so that gas phase has reasonable H2O(g). - Bug-fix: When -Vm parameters of SOLUTION_SPECIES were read after -viscosity parameters, the first viscosity parameter was set to 0. - Defined -analytical_expression and -gamma for Na2SO4, K2SO4 and MgSO4 and Mg(SO4)22- species in - PHREEQC.dat, fitting the activities from pitzer.dat from 0 - 200 C, and the solubilities of + Defined -analytical_expression and -gamma for Na2SO4, K2SO4 and MgSO4 and Mg(SO4)2-2 species in + phreeqc.dat and Amm.dat, fitting the activities from pitzer.dat from 0-200 C, and the solubilities of mirabilite/thenardite (Na2SO4), arcanite (K2SO4), and epsomite, hexahydrite, kieserite (MgSO4 - and new species Mg(SO4)22-). The parameters for calculating the apparent volume (-Vm) and the + and new species Mg(SO4)2-2). The parameters for calculating the apparent volume (-Vm) and the diffusion coefficients (-Dw) of the species were adapted using measured data of density and - conductance (SC). + conductance (SC). Example files are available at http://hydrochemistry.eu - Removed the NaCO3- species in PHREEQC.dat since they are not necessary for the calculation of - the specific conductance (SC) and their origin is unknown. Defined parameters in the - -analytical_expression, -gamma, -dw, -Vm and -viscosity for the NaHCO3 species in PHREEQC.dat, - using the data in Appelo, 2015, Appl. Geochem. 55, 62-71. (These data were used for defining - interaction parameters in pitzer.dat.) The parameters for the apparent volume (-Vm), the - diffusion coefficient (-Dw) and the viscosity of CO32- and HCO3- were adapted using measured + Removed the NaCO3- species in PHREEQC.dat since it is not necessary for the calculation of + the specific conductance (SC) and its origin is unknown. + + Defined parameters in the -analytical_expression, -gamma, -dw, -Vm and -viscosity for + the NaHCO3 species in phreeqc.dat and Amm.dat, using the data in Appelo, 2015, Appl. Geochem. + 55, 62-71. (These data were used for defining interaction parameters in + pitzer.dat.) The parameters for the apparent volume (-Vm), the diffusion + coefficient (-Dw) and the viscosity of CO3-2 and HCO3- were adapted using measured data of density, conductance and viscosity of binary solutions. The viscosity of the solution at P, T is now calculated and printed in the output file, and can @@ -81,7 +130,9 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ temperature and pressure of the solution, mi is the molality of species i, made dimensionless by dividing by 1 molal, and zi is the absolute charge number. A is derived from Debye-Hckel theory, and fan, B, D and n are coefficients that incorporate volume, ionic strength and - temperature effects. The coefficients are: + temperature effects. + + The coefficients are: B = b0 + b1 exp(-b2 tC) @@ -99,7 +150,8 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ n = ((1 + fI)^d3 + ((zi^2 + zi) / 2 * mi)^d3 / (2 + fI) - where fI averages ionic strength effects and d3 is a parameter. + where fI averages ionic strength effects and d3 is a coefficient. + The coefficients are fitted on measured viscosities of binary solutions and entered with item -viscosity under keyword SOLUTION_SPECIES, for example for H+: @@ -111,8 +163,10 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ When the solute concentrations are seawater-like or higher, the viscosity is different from pure water (see figure at). To obtain a valid model for natural waters with phreeqc.dat, the complexes of SO42- with the major cations were redefined, as noted above. - The A parameter in the Jones-Dole equation needs temperature dependent diffusion coefficients of the species, and therefore the parameters for calculating the I and T dependency of the diffusion coefficients (-dw parameters of SOLUTION_SPECIES) were refitted for SO42- and CO32- species. - Example files are in c:\phreeqc\viscosity. + The A parameter in the Jones-Dole equation needs temperature dependent diffusion coefficients + of the species, and therefore the parameters for calculating the I and T dependency of the + diffusion coefficients (-dw parameters of SOLUTION_SPECIES) were refitted for SO42- and CO32- + species. Example files are available at http://hydrochemistry.eu. Implicit calculations with option -fix_current will now account for changing concentrations in the boundary solutions of the column. @@ -146,7 +200,8 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ The temperature correction is always applied in multicomponent, diffusive transport and for calculating the viscosity. - The ionic strength correction is for electromigration calculations (Appelo, 2017, CCR 101, 102). The correction is applied when the option is set true in TRANSPORT, item -multi_D: + The ionic strength correction is for electromigration calculations (Appelo, 2017, CCR 101, 102). + The correction is applied when the option is set true in TRANSPORT, item -multi_D: -multi_d true 1e-9 0.3 0.05 1.0 true # multicomponent diffusion # true/false, default tracer diffusion coefficient (Dw = 1e-9 m2/s) in water at 25 C (used in From ad2440a3b6a8cb5724c3c71f97a948cb519ced57 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Sun, 14 Apr 2024 17:45:26 -0600 Subject: [PATCH 134/384] Tony changes 20240414, with correction to CH4 Vm. Changes to src. seaw_SC expanded. --- Amm.dat | 57 ++++++++++++++++++++++++++------------------------ phreeqc.dat | 60 ++++++++++++++++++++++++++++------------------------- pitzer.dat | 15 +++++++++----- 3 files changed, 72 insertions(+), 60 deletions(-) diff --git a/Amm.dat b/Amm.dat index 569be7ef..b1d6a9d9 100644 --- a/Amm.dat +++ b/Amm.dat @@ -63,14 +63,17 @@ SOLUTION_SPECIES H+ = H+ -gamma 9.0 0 -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 - -dw 9.31e-9 838 16.315 0.809 2.376 24.01 # The dw parameters are defined in ref. 3. -# Dw(25 C) dw_T a a2 visc a3 -# Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc * (viscos_0_tc / viscos)^2.353 + -dw 9.31e-9 838 16.315 0.809 2.376 24.01 0 +# Dw(25 C) dw_T a a2 visc a3 a_v_dif +# Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc +# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif -# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024 +# For SC, Dw(TK) *= (viscos_0_tc / viscos)^2.376 # a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Debye-Onsager eqn. # a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10) (not used in this database.) # -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database) + +# If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. e- = e- H2O = H2O -dw 2.299e-9 -254 @@ -141,9 +144,9 @@ CO3-2 = CO3-2 -dw 0.955e-9 -103 2.246 7.13e-2 0.3686 SO4-2 = SO4-2 -gamma 5.0 -0.04 - -Vm -7.77 43.17 141.1 -42.45 3.794 1.40e-2 0 100.9 -5.713e-2 1.011e-4 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC - -viscosity -0.7887 0.813 1.86e-3 1.27e-3 -1.38e-2 4.668 -9.86e-2 - -dw 1.07e-9 -109 17 + -Vm -7.77 43.17 176 -51.45 3.794 0 42.99 -541 -0.145 0.45 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC + -viscosity -0.30 0.501 2.57e-3 0.195 3.14e-2 2.015 0.605 + -dw 1.07e-9 -114 17 6.02e-2 4.94e-2 NO3- = NO3- -gamma 3.0 0 -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 @@ -151,7 +154,7 @@ NO3- = NO3- -dw 1.90e-9 104 1.11 AmmH+ = AmmH+ -gamma 2.5 0 - -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 + -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 -dw 1.98e-9 178 3.747 0 1.220 H3BO3 = H3BO3 @@ -245,7 +248,7 @@ CO3-2 + 2 H+ = CO2 + H2O CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O -log_k 41.071 -delta_h -61.039 kcal - -Vm .01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 -dw 1.85e-9 SO4-2 + H+ = HSO4- -log_k 1.988; -delta_h 3.85 kcal @@ -308,10 +311,10 @@ AmmH+ = Amm + H+ # -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 AmmH+ + SO4-2 = AmmHSO4- -gamma 6.54 -0.08 - -log_k 1.106; -delta_h 4.30 kcal # 1.1311278E+01 kcal - -Vm 11.35 0 -7.6971 0 3.531 0 7.608 0 0 0.410 - -viscosity 0.424 -0.641 0.108 7.3e-3 -3.39e-2 1.724 0.758 - -dw 1.35e-9 500 12.50 3.0 + -log_k 1.106; -delta_h 4.30 kcal + -Vm -3.23 0 -68.42 0 -14.27 0 68.51 0 -0.4099 0.2339 + -viscosity 0.24 0 0 3.3e-3 -0.10 0.528 0.748 + -dw 1.35e-9 500 12.50 3.0 -1 H3BO3 = H2BO3- + H+ -log_k -9.24 -delta_h 3.224 kcal @@ -409,16 +412,16 @@ Mg+2 + SO4-2 = MgSO4 -gamma 0 0.20 -log_k 2.42; -delta_h 19.0 kJ -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -Vm 14.19 -24.43 -30.57 0 1.194 0 0 0 0 0 - -viscosity -0.5787 0.8305 0 0.2147 -1.06e-4 1.202 0 + -Vm 8.65 -10.21 29.58 -18.60 1.061 + -viscosity 0.318 -5.4e-4 -3.42e-2 0.708 3.70e-3 0.696 -dw 4.45e-10 SO4-2 + MgSO4 = Mg(SO4)2-2 -gamma 7 0.047 -log_k 0.52; -delta_h -13.6 kJ -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -Vm 27.34 -30 -26.79 0 1.75e-2 0 0.4148 -0.6003 0 0 - -viscosity -6.34e-2 5e-4 -5.09e-2 0.1974 1.65e-2 1.568 0 - -dw 0.99e-9 -200 17 4 1.1758 + -Vm -8.14 -62.20 -15.96 3.29 -3.01 0 150 0 0.153 3.79e-2 + -viscosity -0.169 5e-4 -5.69e-2 0.110 2.03e-3 2.027 -1e-3 + -dw 0.845e-9 -200 8.0 0 0.965 Mg+2 + PO4-3 = MgPO4- -log_k 6.589 -delta_h 3.10 kcal @@ -438,8 +441,8 @@ Mg+2 + F- = MgF+ Na+ + OH- = NaOH -log_k -10 # remove this complex Na+ + HCO3- = NaHCO3 - -log_k -0.06; -delta_h 23 kJ - -gamma 0 0.1 + -log_k -0.06; -delta_h 21 kJ + -gamma 0 0.2 -Vm 7.95 0 0 0 0.609 -viscosity -4e-2 -2.717 1.67e-5 -dw 6.73e-10 @@ -447,9 +450,9 @@ Na+ + SO4-2 = NaSO4- -gamma 5.5 0 -log_k 0.6; -delta_h -14.4 kJ -analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC - -Vm 1e-5 20.45 0 -3.75 2.433 0 6.106 0 -1.05e-2 0.6604 - -viscosity -1.045 1.215 2.32e-4 4.82e-2 2.67e-2 1.634 0 - -dw 1.13e-9 -98 13.13 0.627 0.6047 + -Vm 1.99 -10.78 21.88 -12.70 1.601 5 32.38 501 1.565e-2 0.2325 + -viscosity 0.20 -5.93e-2 -4.0e-4 8.46e-3 1.78e-3 2.308 -0.208 + -dw 1.13e-9 -23 8.50 0.392 0.521 Na+ + HPO4-2 = NaHPO4- -log_k 0.29 -gamma 5.4 0 @@ -466,9 +469,9 @@ K+ + SO4-2 = KSO4- -gamma 5.4 0.19 -log_k 0.6; -delta_h -10.4 kJ -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC - -Vm 1e-5 -30 -113.5 21.88 1.5 0 114.0 0 -0.1241 2.281e-2 - -viscosity -0.4572 0.7833 7e-4 -1.014 4.60e-3 0.5757 -0.224 - -dw 0.85e-9 200 10.66 0 1.80 + -Vm 13.48 -18.03 61.74 -19.60 2.046 5.4 -17.32 0 0.1522 1.919 + -viscosity -1.0 1.06 1e-4 -0.464 3.78e-2 0.539 -0.690 + -dw 0.90e-9 63 8.48 0 1.80 K+ + HPO4-2 = KHPO4- -log_k 0.29 -gamma 5.4 0 @@ -2014,7 +2017,7 @@ Pyrolusite 110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME 200 SAVE moles * SOLN_VOL -end - + Albite_PK # Palandri and Kharaka, 2004 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END 20 put(affinity, -99, 1) # store value in memory diff --git a/phreeqc.dat b/phreeqc.dat index d632cbd4..81550e9e 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -63,14 +63,17 @@ SOLUTION_SPECIES H+ = H+ -gamma 9.0 0 -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 - -dw 9.31e-9 838 16.315 0.809 2.376 24.01 # The dw parameters are defined in ref. 3. -# Dw(25 C) dw_T a a2 visc a3 -# Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc * (viscos_0_tc / viscos)^2.353 + -dw 9.31e-9 838 16.315 0.809 2.376 24.01 0 +# Dw(25 C) dw_T a a2 visc a3 a_v_dif +# Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc +# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif -# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024 +# For SC, Dw(TK) *= (viscos_0_tc / viscos)^2.376 # a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Debye-Onsager eqn. # a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10) (not used in this database.) # -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database) + +# If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. e- = e- H2O = H2O -dw 2.299e-9 -254 @@ -141,9 +144,9 @@ CO3-2 = CO3-2 -dw 0.955e-9 -103 2.246 7.13e-2 0.3686 SO4-2 = SO4-2 -gamma 5.0 -0.04 - -Vm -7.77 43.17 141.1 -42.45 3.794 1.40e-2 0 100.9 -5.713e-2 1.011e-4 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC - -viscosity -0.7887 0.813 1.86e-3 1.27e-3 -1.38e-2 4.668 -9.86e-2 - -dw 1.07e-9 -109 17 + -Vm -7.77 43.17 176 -51.45 3.794 0 42.99 -541 -0.145 0.45 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC + -viscosity -0.30 0.501 2.57e-3 0.195 3.14e-2 2.015 0.605 + -dw 1.07e-9 -114 17 6.02e-2 4.94e-2 NO3- = NO3- -gamma 3.0 0 -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 @@ -151,7 +154,7 @@ NO3- = NO3- -dw 1.90e-9 104 1.11 #AmmH+ = AmmH+ # -gamma 2.5 0 -# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 +# -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 # -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 # -dw 1.98e-9 178 3.747 0 1.220 H3BO3 = H3BO3 @@ -245,7 +248,7 @@ CO3-2 + 2 H+ = CO2 + H2O CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O -log_k 41.071 -delta_h -61.039 kcal - -Vm .01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 -dw 1.85e-9 SO4-2 + H+ = HSO4- -log_k 1.988; -delta_h 3.85 kcal @@ -298,7 +301,7 @@ NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O -log_k 119.077 -delta_h -187.055 kcal -gamma 2.5 0 - -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 + -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 -dw 1.98e-9 178 3.747 0 1.220 @@ -317,10 +320,11 @@ NH4+ = NH3 + H+ # -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 #AmmH+ + SO4-2 = AmmHSO4- NH4+ + SO4-2 = NH4SO4- - -log_k 1.106; -delta_h 4.30 kcal # 1.1311278E+01 kcal - -Vm 11.35 0 -7.6971 0 3.531 0 7.608 0 0 0.410 - -viscosity 0.424 -0.641 0.108 7.3e-3 -3.39e-2 1.724 0.758 - -dw 1.35e-9 500 12.50 3.0 + -gamma 6.54 -0.08 + -log_k 1.106; -delta_h 4.30 kcal + -Vm -3.23 0 -68.42 0 -14.27 0 68.51 0 -0.4099 0.2339 + -viscosity 0.24 0 0 3.3e-3 -0.10 0.528 0.748 + -dw 1.35e-9 500 12.50 3.0 -1 H3BO3 = H2BO3- + H+ -log_k -9.24 -delta_h 3.224 kcal @@ -418,16 +422,16 @@ Mg+2 + SO4-2 = MgSO4 -gamma 0 0.20 -log_k 2.42; -delta_h 19.0 kJ -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -Vm 14.19 -24.43 -30.57 0 1.194 0 0 0 0 0 - -viscosity -0.5787 0.8305 0 0.2147 -1.06e-4 1.202 0 + -Vm 8.65 -10.21 29.58 -18.60 1.061 + -viscosity 0.318 -5.4e-4 -3.42e-2 0.708 3.70e-3 0.696 -dw 4.45e-10 SO4-2 + MgSO4 = Mg(SO4)2-2 -gamma 7 0.047 -log_k 0.52; -delta_h -13.6 kJ -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -Vm 27.34 -30 -26.79 0 1.75e-2 0 0.4148 -0.6003 0 0 - -viscosity -6.34e-2 5e-4 -5.09e-2 0.1974 1.65e-2 1.568 0 - -dw 0.99e-9 -200 17 4 1.1758 + -Vm -8.14 -62.20 -15.96 3.29 -3.01 0 150 0 0.153 3.79e-2 + -viscosity -0.169 5e-4 -5.69e-2 0.110 2.03e-3 2.027 -1e-3 + -dw 0.845e-9 -200 8.0 0 0.965 Mg+2 + PO4-3 = MgPO4- -log_k 6.589 -delta_h 3.10 kcal @@ -447,8 +451,8 @@ Mg+2 + F- = MgF+ Na+ + OH- = NaOH -log_k -10 # remove this complex Na+ + HCO3- = NaHCO3 - -log_k -0.06; -delta_h 23 kJ - -gamma 0 0.1 + -log_k -0.06; -delta_h 21 kJ + -gamma 0 0.2 -Vm 7.95 0 0 0 0.609 -viscosity -4e-2 -2.717 1.67e-5 -dw 6.73e-10 @@ -456,9 +460,9 @@ Na+ + SO4-2 = NaSO4- -gamma 5.5 0 -log_k 0.6; -delta_h -14.4 kJ -analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC - -Vm 1e-5 20.45 0 -3.75 2.433 0 6.106 0 -1.05e-2 0.6604 - -viscosity -1.045 1.215 2.32e-4 4.82e-2 2.67e-2 1.634 0 - -dw 1.13e-9 -98 13.13 0.627 0.6047 + -Vm 1.99 -10.78 21.88 -12.70 1.601 5 32.38 501 1.565e-2 0.2325 + -viscosity 0.20 -5.93e-2 -4.0e-4 8.46e-3 1.78e-3 2.308 -0.208 + -dw 1.13e-9 -23 8.50 0.392 0.521 Na+ + HPO4-2 = NaHPO4- -log_k 0.29 -gamma 5.4 0 @@ -475,9 +479,9 @@ K+ + SO4-2 = KSO4- -gamma 5.4 0.19 -log_k 0.6; -delta_h -10.4 kJ -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC - -Vm 1e-5 -30 -113.5 21.88 1.5 0 114.0 0 -0.1241 2.281e-2 - -viscosity -0.4572 0.7833 7e-4 -1.014 4.60e-3 0.5757 -0.224 - -dw 0.85e-9 200 10.66 0 1.80 + -Vm 13.48 -18.03 61.74 -19.60 2.046 5.4 -17.32 0 0.1522 1.919 + -viscosity -1.0 1.06 1e-4 -0.464 3.78e-2 0.539 -0.690 + -dw 0.90e-9 63 8.48 0 1.80 K+ + HPO4-2 = KHPO4- -log_k 0.29 -gamma 5.4 0 @@ -2026,7 +2030,7 @@ Pyrolusite 110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME 200 SAVE moles * SOLN_VOL -end - + Albite_PK # Palandri and Kharaka, 2004 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END 20 put(affinity, -99, 1) # store value in memory diff --git a/pitzer.dat b/pitzer.dat index 4d86d0da..4b40edcb 100644 --- a/pitzer.dat +++ b/pitzer.dat @@ -36,12 +36,17 @@ Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 - -dw 9.31e-9 823 5.314 0 3.0 24.01 # The dw parameters are # Dw(TK) = 9.31e-9 * exp(823 / TK - 823 / 298.15) * viscos_0_25 / viscos_0_tc * (viscos_0_tc / viscos)^3.0 + -dw 9.31e-9 823 5.314 0 3.0 24.01 0 +# Dw(25 C) dw_T a a2 visc a3 a_v_dif +# Dw(TK) = 9.31e-9 * exp(823 / TK - 823 / 298.15) * viscos_0_25 / viscos_0_tc +# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif -# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024 +# For SC, Dw(TK) *= (viscos_0_tc / viscos)^3.0 # a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5 in DHO eqn. # a3 = -10 ? ka = DH_B * a * mu^a2 in DHO. (Define a3 = -10.) # -5 < a3 < 5 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) + +# If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. e- = e- H2O = H2O -dw 2.299e-9 -254 @@ -90,9 +95,9 @@ CO3-2 = CO3-2 -viscosity 0 0.296 3.63e-2 2e-4 -1.90e-2 1.881 -1.754 -dw 0.955e-9 -60 2.257 0.1022 0.4136 SO4-2 = SO4-2 - -Vm -7.77 43.17 141.1 -42.45 3.794 0.3377 -2.6556 352.2 1.647e-3 0.3786 - -viscosity -1.11e-2 0.1534 1.72e-2 4.45e-4 2.03e-2 2.986 0.248 - -dw 1.07e-9 -68 0.3946 0.9106 0.8941 + -Vm -7.77 43.17 176 -51.45 3.794 0 4.97 20.5 -5.77e-2 0.45 + -viscosity -4.10e-2 0.1735 1.308e-2 2.16e-4 2.83e-2 3.375 0.210 + -dw 1.07e-9 -63 0.397 0.982 1.01 B(OH)3 = B(OH)3 -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt -dw 1.1e-9 From fbe17c9e10e5d468a074faab593e07b63dda68fe Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Sun, 14 Apr 2024 18:23:10 -0600 Subject: [PATCH 135/384] Tony's update to example 21 --- ex21 | 46 +++--- ex21.out | 496 +++++++++++++++---------------------------------------- radial | 110 ++++-------- 3 files changed, 194 insertions(+), 458 deletions(-) diff --git a/ex21 b/ex21 index 28d33213..61947398 100644 --- a/ex21 +++ b/ex21 @@ -1,6 +1,9 @@ +#DATABASE ../database/phreeqc.dat TITLE Diffusion through Opalinus Clay in a radial diffusion cell, Appelo, Van Loon and Wersin, 2010, GCA 74, 1201 +# NEW: viscosity effects in solution and Donnan EDL, (and, possibly correct co-ion in Donnan layer to the DLVO values) + +KNOBS; -tol 1e-16; -diagonal_scale true -KNOBS; -tol 1e-16 SOLUTION_MASTER_SPECIES # element species alk gfw_formula element_gfw Hto Hto 0.0 20 20 @@ -8,14 +11,14 @@ SOLUTION_MASTER_SPECIES Cl_tr Cl_tr- 0.0 36 36 Cs Cs+ 0.0 132.905 132.905 SOLUTION_SPECIES - Hto = Hto; log_k 0; -gamma 1e6 0; -dw 2.236e-9 - # Na_tr+ = Na_tr+; log_k 0; -gamma 4.0 0.075; -dw 1.33e-9; -erm_ddl 1.23 - # Cl_tr- = Cl_tr-; log_k 0; -gamma 3.5 0.015; -dw 1.31e-9 # dw = dw(water) / 1.55 = 2.03e-9 / 1.55 - # Cs+ = Cs+; log_k 0; -gamma 3.5 0.015; -dw 2.07e-9; -erm_ddl 1.23 -# adapted for the harmonic mean calc's in version 3.4.2 - Na_tr+ = Na_tr+; log_k 0; -gamma 4.0 0.075; -dw 1.33e-9; -erm_ddl 1.6 - Cl_tr- = Cl_tr-; log_k 0; -gamma 3.5 0.015; -dw 1.18e-9 # dw = dw(water) / 1.72 = 2.03e-9 / 1.72 - Cs+ = Cs+; log_k 0; -gamma 3.5 0.015; -dw 2.07e-9; -erm_ddl 1.6 +# start with finding tortuosity from HTO + Hto = Hto; log_k 0; -gamma 1e5 0; -dw 2.3e-9 0 0 0 0 0 0.5 # diffusion coefficient is multiplied by (viscos_0 /viscos)^0.5 +# estimate f_free and f_DL_charge, increase tortuosity + Cl_tr- = Cl_tr-; log_k 0; -gamma 3.5 0.015; -dw 1.17e-9 0 0 0 0 0 0.5 # increase tortuosity for anions: 2.03e-9 / 1.73 +# use erm_ddl to fit Na + Na_tr+ = Na_tr+; log_k 0; -gamma 4.0 0.075; -dw 1.33e-9 0 0 0 0 0 0.5 ; -erm_ddl 1.39 +# use interlayer diffusion to fit Cs + Cs+ = Cs+; log_k 0; -gamma 3.5 0.015; -dw 2.07e-9 0 0 0 0 0 0.5 ; -erm_ddl 1.39 SURFACE_MASTER_SPECIES Su_fes Su_fes- # Frayed Edge Sites Su_ii Su_ii- # Type II sites of intermediate strength @@ -49,7 +52,7 @@ SOLUTION 3 tracer solution pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 -# uncomment tracer concentrations and kg water 1 by 1... +# uncomment tracer concentrations and kg water 1 by 1... (the experimental water volumes are different) Hto 1.14e-6; -water 0.2 # Cl_tr 2.505e-2; -water 0.502 # Cs 1; Na_tr 1.87e-7; -water 1.02 @@ -79,7 +82,9 @@ USER_PUNCH # 140 CEC = 0.12 * rho_b_eps # CEC / (eq/L porewater) # adapted for the harmonic mean calc's in version 3.4.2 140 CEC = 0.09 * rho_b_eps # CEC / (eq/L porewater) -150 A_por = 37e3 * rho_b_eps # pore surface area / (m²/L porewater) +150 A_por = 37e3 * rho_b_eps # pore surface area / (m/L porewater) +151 correct_$ = ' false' +# 152 correct_$ = ' true' # if 'true' correct the co-ion concentrations in the Donnan volume 160 DIM tracer$(4), exp_time(4), scale_y1$(4), scale_y2$(4), profile_y1$(4), profile_y2$(4) 170 DATA 'Hto', 'Cl_tr', 'Na_tr', 'Cs' @@ -101,20 +106,19 @@ USER_PUNCH 310 READ profile_y2$(1), profile_y2$(2), profile_y2$(3), profile_y2$(4) # Define model parameters... -350 Dw = 2.5e-9 # default tracer diffusion coefficient / (m²/s) +350 Dw = 2.5e-9 # default tracer diffusion coefficient / (m/s) 360 nfilt1 = 1 # number of cells in filter 1 370 nfilt2 = 1 # number of cells in filter 2 380 nclay = 11 # number of clay cells -390 f_free = 0.117 # fraction of free pore water (0.01 - 1) +390 f_free = 0.02 # fraction of free pore water (0.01 - 1) 400 f_DL_charge = 0.45 # fraction of CEC charge in electrical double layer -410 tort_n = -0.99 # exponent in Archie's law, -1.045 without filters +# 400 f_free = 0.1 : f_DL_charge = 0.47 # higher f_free ===> higher f_DL_charge, found from Cl- and Na+ +410 tort_n = -0.975 # exponent in Archie's law, found from HTO 420 G_clay = por_clay^tort_n # geometrical factor -430 interlayer_D$ = 'false' # 'true' or 'false' for interlayer diffusion -# 440 G_IL = 700 # geometrical factor for clay interlayers - # adapted for the harmonic mean calc's in version 3.4.2 -440 G_IL = 1300 # geometrical factor for clay interlayers +430 interlayer_D$ = 'true' # 'true' or 'false' for interlayer diffusion +440 G_IL = 1300 # geometrical factor for clay interlayers... the initial rise of Cs suggests stagnant water, see Appelo et al for the calculation 450 punch_time = 60 * 60 * 6 # punch time / seconds -460 profile$ = 'true' # 'true' or 'false' for c/x profile visualization +460 profile$ = 'false' # 'true' or 'false' for c/x profile visualization 470 IF nfilt1 = 0 THEN thickn_filter1 = 0 480 IF nfilt2 = 0 THEN thickn_filter2 = 0 @@ -165,7 +169,7 @@ USER_PUNCH 900 punch nl$ + ' Su_ ' + TRIM(STR$(f_DL_charge * CEC * V_water)) + STR$(A_por) + ' ' + STR$(V_water) 910 punch nl$ + ' Su_ii ' + TRIM(STR$(7.88e-4 * rho_b_eps * V_water)) 920 punch nl$ + ' Su_fes ' + TRIM(STR$(7.4e-5 * rho_b_eps * V_water)) -930 IF f_free < 1 THEN punch nl$ + ' -Donnan ' + TRIM(STR$((1 - f_free) * 1e-3 / A_por)) +930 IF f_free < 1 THEN punch nl$ + ' -Donnan ' + TRIM(STR$((1 - f_free) * 1e-3 / A_por)) + ' viscosity calc' + ' correct ' + correct_$ 940 punch nl$ + 'EXCHANGE ' + num$ + ' -equil ' + num$ 950 punch nl$ + ' X ' + TRIM(STR$((1 - f_DL_charge) * CEC * V_water)) + nl$ 960 r1 = r1 + x @@ -197,7 +201,7 @@ USER_PUNCH # Define mixing factors for the diffusive flux between cells 1 and 2: # J_12 = -2 * Dw / (x_1 / g_1 + x_2 / g_2) * (c_2 - c_1) - # Multiply with dt * A / (V = 1e-3 m³). (Actual volumes are given with SOLUTION; -water) + # Multiply with dt * A / (V = 1e-3 m). (Actual volumes are given with SOLUTION; -water) # Use harmonic mean: g_1 = por_1 / G_1, g_2 = por_2 / G_2, x_1 = Delta(x_1), etc. 1400 IF nfilt1 > 0 THEN gf1 = por_filter1 / G_filter1 1410 IF nfilt2 > 0 THEN gf2 = por_filter2 / G_filter2 diff --git a/ex21.out b/ex21.out index b97d6ce4..44e054a0 100644 --- a/ex21.out +++ b/ex21.out @@ -1,4 +1,4 @@ - Input file: ../examples/ex21 + Input file: ex21 Output file: ex21.out Database file: ../database/phreeqc.dat @@ -13,15 +13,18 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + CALCULATE_VALUES RATES END ------------------------------------ Reading input data for simulation 1. ------------------------------------ + DATABASE ../database/phreeqc.dat TITLE Diffusion through Opalinus Clay in a radial diffusion cell, Appelo, Van Loon and Wersin, 2010, GCA 74, 1201 KNOBS tolerance 1e-16 + diagonal_scale true SOLUTION_MASTER_SPECIES Hto Hto 0.0 20 20 Na_tr Na_tr+ 0.0 22 22 @@ -30,22 +33,22 @@ Reading input data for simulation 1. SOLUTION_SPECIES Hto = Hto log_k 0 - gamma 1e6 0 - dw 2.236e-9 - Na_tr+ = Na_tr+ - log_k 0 - gamma 4.0 0.075 - dw 1.33e-9 - erm_ddl 1.6 + gamma 1e5 0 + dw 2.3e-9 0 0 0 0 0 0.5 # diffusion coefficient is multiplied by (viscos_0 /viscos)^0.5 Cl_tr- = Cl_tr- log_k 0 gamma 3.5 0.015 - dw 1.18e-9 # dw = dw(water) / 1.72 = 2.03e-9 / 1.72 + dw 1.17e-9 0 0 0 0 0 0.5 # increase tortuosity for anions: 2.03e-9 / 1.73 + Na_tr+ = Na_tr+ + log_k 0 + gamma 4.0 0.075 + dw 1.33e-9 0 0 0 0 0 0.5 + erm_ddl 1.39 Cs+ = Cs+ log_k 0 gamma 3.5 0.015 - dw 2.07e-9 - erm_ddl 1.6 + dw 2.07e-9 0 0 0 0 0 0.5 + erm_ddl 1.39 SURFACE_MASTER_SPECIES Su_fes Su_fes- # Frayed Edge Sites Su_ii Su_ii- # Type II sites of intermediate strength @@ -107,15 +110,15 @@ Initial solution 0. column with only cell 1, two boundary solutions 0 and 2. pH = 7.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 123 - Density (g/cm³) = 0.99708 + Specific Conductance (µS/cm, 25°C) = 122 + Density (g/cm³) = 0.99708 Volume (L) = 1.00298 Viscosity (mPa s) = 0.89026 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.000e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.417e-09 - Temperature (°C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.417e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 3 @@ -198,7 +201,8 @@ Reading input data for simulation 2. 120 por_clay = 0.159 130 rho_b_eps = 2.7 * (1 - por_clay) / por_clay # clay bulk density / porosity / (kg/L) 140 CEC = 0.09 * rho_b_eps # CEC / (eq/L porewater) - 150 A_por = 37e3 * rho_b_eps # pore surface area / (m²/L porewater) + 150 A_por = 37e3 * rho_b_eps # pore surface area / (m/L porewater) + 151 correct_$ = ' false' 160 DIM tracer$(4), exp_time(4), scale_y1$(4), scale_y2$(4), profile_y1$(4), profile_y2$(4) 170 DATA 'Hto', 'Cl_tr', 'Na_tr', 'Cs' 180 READ tracer$(1), tracer$(2), tracer$(3), tracer$(4) @@ -212,18 +216,18 @@ Reading input data for simulation 2. 290 READ profile_y1$(1), profile_y1$(2), profile_y1$(3), profile_y1$(4) 300 DATA '0 1.2e-9', '0 2.5e-5', '0 6e-10', '0 auto' 310 READ profile_y2$(1), profile_y2$(2), profile_y2$(3), profile_y2$(4) - 350 Dw = 2.5e-9 # default tracer diffusion coefficient / (m²/s) + 350 Dw = 2.5e-9 # default tracer diffusion coefficient / (m/s) 360 nfilt1 = 1 # number of cells in filter 1 370 nfilt2 = 1 # number of cells in filter 2 380 nclay = 11 # number of clay cells - 390 f_free = 0.117 # fraction of free pore water (0.01 - 1) + 390 f_free = 0.02 # fraction of free pore water (0.01 - 1) 400 f_DL_charge = 0.45 # fraction of CEC charge in electrical double layer - 410 tort_n = -0.99 # exponent in Archie's law, -1.045 without filters + 410 tort_n = -0.975 # exponent in Archie's law, found from HTO 420 G_clay = por_clay^tort_n # geometrical factor - 430 interlayer_D$ = 'false' # 'true' or 'false' for interlayer diffusion - 440 G_IL = 1300 # geometrical factor for clay interlayers + 430 interlayer_D$ = 'true' # 'true' or 'false' for interlayer diffusion + 440 G_IL = 1300 # geometrical factor for clay interlayers... the initial rise of Cs suggests stagnant water, see Appelo et al for the calculation 450 punch_time = 60 * 60 * 6 # punch time / seconds - 460 profile$ = 'true' # 'true' or 'false' for c/x profile visualization + 460 profile$ = 'false' # 'true' or 'false' for c/x profile visualization 470 IF nfilt1 = 0 THEN thickn_filter1 = 0 480 IF nfilt2 = 0 THEN thickn_filter2 = 0 490 IF tot("Hto") > 1e-10 THEN tracer = 1 ELSE IF tot("Cl_tr") > 1e-10 THEN tracer = 2 ELSE tracer = 3 @@ -264,7 +268,7 @@ Reading input data for simulation 2. 900 punch nl$ + ' Su_ ' + TRIM(STR$(f_DL_charge * CEC * V_water)) + STR$(A_por) + ' ' + STR$(V_water) 910 punch nl$ + ' Su_ii ' + TRIM(STR$(7.88e-4 * rho_b_eps * V_water)) 920 punch nl$ + ' Su_fes ' + TRIM(STR$(7.4e-5 * rho_b_eps * V_water)) - 930 IF f_free < 1 THEN punch nl$ + ' -Donnan ' + TRIM(STR$((1 - f_free) * 1e-3 / A_por)) + 930 IF f_free < 1 THEN punch nl$ + ' -Donnan ' + TRIM(STR$((1 - f_free) * 1e-3 / A_por)) + ' viscosity calc' + ' correct ' + correct_$ 940 punch nl$ + 'EXCHANGE ' + num$ + ' -equil ' + num$ 950 punch nl$ + ' X ' + TRIM(STR$((1 - f_DL_charge) * CEC * V_water)) + nl$ 960 r1 = r1 + x @@ -433,16 +437,16 @@ WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. pH = 7.600 pe = 13.120 Equilibrium with O2(g) - Specific Conductance (µS/cm, 23°C) = 28957 - Density (g/cm³) = 1.01168 + Specific Conductance (µS/cm, 23°C) = 29068 + Density (g/cm³) = 1.01168 Volume (L) = 0.20146 - Viscosity (mPa s) = 0.96825 + Viscosity (mPa s) = 0.96933 Activity of water = 0.990 - Ionic strength (mol/kgw) = 3.653e-01 + Ionic strength (mol/kgw) = 3.633e-01 Mass of water (kg) = 2.000e-01 - Total carbon (mol/kg) = 4.811e-04 - Total CO2 (mol/kg) = 4.811e-04 - Temperature (°C) = 23.00 + Total carbon (mol/kg) = 4.808e-04 + Total CO2 (mol/kg) = 4.808e-04 + Temperature (°C) = 23.00 Electrical balance (eq) = -1.312e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.10 Iterations = 6 @@ -454,92 +458,94 @@ WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 5.191e-07 3.419e-07 -6.285 -6.466 -0.181 -3.26 - H+ 3.238e-08 2.512e-08 -7.490 -7.600 -0.110 0.00 + OH- 5.188e-07 3.419e-07 -6.285 -6.466 -0.181 -3.26 + H+ 3.237e-08 2.512e-08 -7.490 -7.600 -0.110 0.00 H2O 5.551e+01 9.899e-01 1.744 -0.004 0.000 18.06 -C(4) 4.811e-04 - HCO3- 3.809e-04 2.707e-04 -3.419 -3.568 -0.148 25.73 - CaHCO3+ 3.057e-05 2.214e-05 -4.515 -4.655 -0.140 9.84 - NaHCO3 2.383e-05 2.891e-05 -4.623 -4.539 0.084 28.00 - MgHCO3+ 2.149e-05 1.449e-05 -4.668 -4.839 -0.171 5.70 - CO2 1.499e-05 1.585e-05 -4.824 -4.800 0.024 34.33 - CaCO3 4.767e-06 5.185e-06 -5.322 -5.285 0.037 -14.61 - MgCO3 1.903e-06 2.070e-06 -5.721 -5.684 0.037 -17.09 - CO3-2 1.901e-06 4.849e-07 -5.721 -6.314 -0.593 -1.67 - SrHCO3+ 6.993e-07 4.970e-07 -6.155 -6.304 -0.148 (0) - SrCO3 3.448e-08 3.750e-08 -7.462 -7.426 0.037 -14.14 - (CO2)2 3.964e-12 4.312e-12 -11.402 -11.365 0.037 68.67 +C(4) 4.808e-04 + HCO3- 3.732e-04 2.653e-04 -3.428 -3.576 -0.148 25.30 + NaHCO3 3.141e-05 3.713e-05 -4.503 -4.430 0.073 31.75 + CaHCO3+ 3.053e-05 2.211e-05 -4.515 -4.655 -0.140 9.84 + MgHCO3+ 2.162e-05 1.458e-05 -4.665 -4.836 -0.171 5.70 + CO2 1.470e-05 1.553e-05 -4.833 -4.809 0.024 34.33 + CaCO3 4.764e-06 5.180e-06 -5.322 -5.286 0.036 -14.61 + MgCO3 1.916e-06 2.083e-06 -5.718 -5.681 0.036 -17.09 + CO3-2 1.860e-06 4.753e-07 -5.731 -6.323 -0.593 -1.75 + SrHCO3+ 6.993e-07 4.972e-07 -6.155 -6.303 -0.148 (0) + KHCO3 1.203e-07 1.212e-07 -6.920 -6.916 0.003 41.01 + SrCO3 3.451e-08 3.752e-08 -7.462 -7.426 0.036 -14.14 + (CO2)2 3.810e-12 4.142e-12 -11.419 -11.383 0.036 68.67 Ca 2.580e-02 - Ca+2 2.384e-02 6.616e-03 -1.623 -2.179 -0.557 -17.02 - CaSO4 1.923e-03 2.092e-03 -2.716 -2.679 0.037 7.42 - CaHCO3+ 3.057e-05 2.214e-05 -4.515 -4.655 -0.140 9.84 - CaCO3 4.767e-06 5.185e-06 -5.322 -5.285 0.037 -14.61 - CaOH+ 5.916e-08 4.327e-08 -7.228 -7.364 -0.136 (0) - CaHSO4+ 4.591e-10 3.358e-10 -9.338 -9.474 -0.136 (0) + Ca+2 2.427e-02 6.744e-03 -1.615 -2.171 -0.556 -17.03 + CaSO4 1.495e-03 1.625e-03 -2.825 -2.789 0.036 7.42 + CaHCO3+ 3.053e-05 2.211e-05 -4.515 -4.655 -0.140 9.84 + CaCO3 4.764e-06 5.180e-06 -5.322 -5.286 0.036 -14.61 + CaOH+ 6.029e-08 4.411e-08 -7.220 -7.355 -0.136 (0) + CaHSO4+ 3.566e-10 2.609e-10 -9.448 -9.584 -0.136 (0) Cl 3.000e-01 - Cl- 3.000e-01 2.017e-01 -0.523 -0.695 -0.172 18.53 - HCl 1.235e-09 1.767e-09 -8.908 -8.753 0.155 (0) + Cl- 3.000e-01 2.018e-01 -0.523 -0.695 -0.172 18.53 + HCl 1.239e-09 1.768e-09 -8.907 -8.752 0.155 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.617 -44.580 0.037 28.61 + H2 0.000e+00 0.000e+00 -44.617 -44.580 0.036 28.61 Hto 1.140e-09 Hto 1.140e-09 1.140e-09 -8.943 -8.943 0.000 (0) K 1.610e-03 - K+ 1.595e-03 1.064e-03 -2.797 -2.973 -0.176 9.40 - KSO4- 1.464e-05 7.267e-06 -4.834 -5.139 -0.304 29.98 + K+ 1.584e-03 1.057e-03 -2.800 -2.976 -0.176 9.40 + KSO4- 2.634e-05 2.196e-05 -4.579 -4.658 -0.079 13.22 + KHCO3 1.203e-07 1.212e-07 -6.920 -6.916 0.003 41.01 Mg 1.690e-02 - Mg+2 1.509e-02 4.612e-03 -1.821 -2.336 -0.515 -20.64 - MgSO4 1.750e-03 2.071e-03 -2.757 -2.684 0.073 -1.17 - Mg(SO4)2-2 4.016e-05 1.278e-05 -4.396 -4.894 -0.497 46.11 - MgHCO3+ 2.149e-05 1.449e-05 -4.668 -4.839 -0.171 5.70 - MgCO3 1.903e-06 2.070e-06 -5.721 -5.684 0.037 -17.09 - MgOH+ 7.495e-07 5.502e-07 -6.125 -6.259 -0.134 (0) + Mg+2 1.548e-02 4.737e-03 -1.810 -2.324 -0.514 -20.64 + MgSO4 1.371e-03 1.621e-03 -2.863 -2.790 0.073 -8.62 + Mg(SO4)2-2 2.393e-05 7.622e-06 -4.621 -5.118 -0.497 27.97 + MgHCO3+ 2.162e-05 1.458e-05 -4.665 -4.836 -0.171 5.70 + MgCO3 1.916e-06 2.083e-06 -5.718 -5.681 0.036 -17.09 + MgOH+ 7.695e-07 5.652e-07 -6.114 -6.248 -0.134 (0) Na 2.400e-01 - Na+ 2.374e-01 1.721e-01 -0.624 -0.764 -0.140 -0.85 - NaSO4- 2.562e-03 1.263e-03 -2.591 -2.899 -0.307 18.52 - NaHCO3 2.383e-05 2.891e-05 -4.623 -4.539 0.084 28.00 - NaOH 5.408e-18 5.883e-18 -17.267 -17.230 0.037 (0) -O(0) 2.437e-04 - O2 1.218e-04 1.325e-04 -3.914 -3.878 0.037 30.24 + Na+ 2.347e-01 1.701e-01 -0.629 -0.769 -0.140 -0.85 + NaSO4- 5.252e-03 3.746e-03 -2.280 -2.426 -0.147 2.97 + NaHCO3 3.141e-05 3.713e-05 -4.503 -4.430 0.073 31.75 + NaOH 5.351e-18 5.818e-18 -17.272 -17.235 0.036 (0) +O(0) 2.438e-04 + O2 1.219e-04 1.325e-04 -3.914 -3.878 0.036 30.24 S(6) 1.410e-02 - SO4-2 7.729e-03 1.805e-03 -2.112 -2.743 -0.632 16.64 - NaSO4- 2.562e-03 1.263e-03 -2.591 -2.899 -0.307 18.52 - CaSO4 1.923e-03 2.092e-03 -2.716 -2.679 0.037 7.42 - MgSO4 1.750e-03 2.071e-03 -2.757 -2.684 0.073 -1.17 - SrSO4 4.061e-05 4.418e-05 -4.391 -4.355 0.037 24.16 - Mg(SO4)2-2 4.016e-05 1.278e-05 -4.396 -4.894 -0.497 46.11 - KSO4- 1.464e-05 7.267e-06 -4.834 -5.139 -0.304 29.98 - HSO4- 5.771e-09 4.222e-09 -8.239 -8.374 -0.136 40.64 - CaHSO4+ 4.591e-10 3.358e-10 -9.338 -9.474 -0.136 (0) + SO4-2 5.877e-03 1.376e-03 -2.231 -2.861 -0.631 32.28 + NaSO4- 5.252e-03 3.746e-03 -2.280 -2.426 -0.147 2.97 + CaSO4 1.495e-03 1.625e-03 -2.825 -2.789 0.036 7.42 + MgSO4 1.371e-03 1.621e-03 -2.863 -2.790 0.073 -8.62 + SrSO4 3.161e-05 3.437e-05 -4.500 -4.464 0.036 24.16 + KSO4- 2.634e-05 2.196e-05 -4.579 -4.658 -0.079 13.22 + Mg(SO4)2-2 2.393e-05 7.622e-06 -4.621 -5.118 -0.497 27.97 + HSO4- 4.398e-09 3.217e-09 -8.357 -8.493 -0.136 40.64 + CaHSO4+ 3.566e-10 2.609e-10 -9.448 -9.584 -0.136 (0) Sr 5.050e-04 - Sr+2 4.637e-04 1.285e-04 -3.334 -3.891 -0.557 -16.73 - SrSO4 4.061e-05 4.418e-05 -4.391 -4.355 0.037 24.16 - SrHCO3+ 6.993e-07 4.970e-07 -6.155 -6.304 -0.148 (0) - SrCO3 3.448e-08 3.750e-08 -7.462 -7.426 0.037 -14.14 - SrOH+ 3.705e-10 2.598e-10 -9.431 -9.585 -0.154 (0) + Sr+2 4.727e-04 1.312e-04 -3.325 -3.882 -0.557 -16.74 + SrSO4 3.161e-05 3.437e-05 -4.500 -4.464 0.036 24.16 + SrHCO3+ 6.993e-07 4.972e-07 -6.155 -6.303 -0.148 (0) + SrCO3 3.451e-08 3.752e-08 -7.462 -7.426 0.036 -14.14 + SrOH+ 3.781e-10 2.652e-10 -9.422 -9.576 -0.154 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(296 K, 1 atm) - Anhydrite -0.67 -4.92 -4.26 CaSO4 + Anhydrite -0.78 -5.03 -4.26 CaSO4 Aragonite -0.17 -8.49 -8.32 CaCO3 - Arcanite -6.78 -8.69 -1.91 K2SO4 + Arcanite -6.91 -8.81 -1.91 K2SO4 Calcite -0.03 -8.49 -8.47 CaCO3 - Celestite 0.01 -6.63 -6.65 SrSO4 - CO2(g) -3.36 -4.80 -1.44 CO2 + Celestite -0.10 -6.74 -6.65 SrSO4 + CO2(g) -3.36 -4.81 -1.44 CO2 Dolomite -0.09 -17.14 -17.05 CaMg(CO3)2 - Epsomite -3.36 -5.11 -1.75 MgSO4:7H2O - Gypsum -0.35 -4.93 -4.58 CaSO4:2H2O + Epsomite -3.47 -5.22 -1.75 MgSO4:7H2O + Gypsum -0.46 -5.04 -4.58 CaSO4:2H2O H2(g) -41.48 -44.58 -3.10 H2 H2O(g) -1.56 -0.00 1.55 H2O Halite -3.03 -1.46 1.57 NaCl - Hexahydrite -3.54 -5.11 -1.57 MgSO4:6H2O - Kieserite -3.91 -5.08 -1.17 MgSO4:H2O - Mirabilite -2.99 -4.32 -1.33 Na2SO4:10H2O + Hexahydrite -3.64 -5.21 -1.57 MgSO4:6H2O + Kieserite -4.02 -5.19 -1.17 MgSO4:H2O + Mirabilite -3.12 -4.44 -1.33 Na2SO4:10H2O O2(g) -1.00 -3.88 -2.88 O2 Pressure 0.1 atm, phi 1.000 Strontianite -0.94 -10.21 -9.27 SrCO3 Sylvite -4.56 -3.67 0.89 KCl - Thenardite -3.98 -4.27 -0.29 Na2SO4 + Thenardite -4.11 -4.40 -0.29 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -574,7 +580,7 @@ Reading input data for simulation 3. Fe(2) 0.0 Alkalinity 0.476 SOLUTION 5 - water 7.7322e-05 + water 1.3217e-05 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -592,12 +598,12 @@ Reading input data for simulation 3. Su_ 3.8224e-04 5.2840e+05 6.6087e-04 Su_ii 7.4371e-06 Su_fes 6.9841e-07 - donnan 1.6711e-09 + donnan 1.8546e-09 viscosity calc correct false EXCHANGE 5 equilibrate 5 X 4.6718e-04 SOLUTION 6 - water 9.5113e-05 + water 1.6259e-05 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -615,12 +621,12 @@ Reading input data for simulation 3. Su_ 4.7019e-04 5.2840e+05 8.1293e-04 Su_ii 9.1484e-06 Su_fes 8.5911e-07 - donnan 1.6711e-09 + donnan 1.8546e-09 viscosity calc correct false EXCHANGE 6 equilibrate 6 X 5.7468e-04 SOLUTION 7 - water 1.1291e-04 + water 1.9300e-05 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -638,12 +644,12 @@ Reading input data for simulation 3. Su_ 5.5814e-04 5.2840e+05 9.6500e-04 Su_ii 1.0860e-05 Su_fes 1.0198e-06 - donnan 1.6711e-09 + donnan 1.8546e-09 viscosity calc correct false EXCHANGE 7 equilibrate 7 X 6.8218e-04 SOLUTION 8 - water 1.3070e-04 + water 2.2341e-05 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -661,12 +667,12 @@ Reading input data for simulation 3. Su_ 6.4610e-04 5.2840e+05 1.1171e-03 Su_ii 1.2571e-05 Su_fes 1.1805e-06 - donnan 1.6711e-09 + donnan 1.8546e-09 viscosity calc correct false EXCHANGE 8 equilibrate 8 X 7.8967e-04 SOLUTION 9 - water 1.4849e-04 + water 2.5383e-05 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -684,12 +690,12 @@ Reading input data for simulation 3. Su_ 7.3405e-04 5.2840e+05 1.2691e-03 Su_ii 1.4282e-05 Su_fes 1.3412e-06 - donnan 1.6711e-09 + donnan 1.8546e-09 viscosity calc correct false EXCHANGE 9 equilibrate 9 X 8.9717e-04 SOLUTION 10 - water 1.6628e-04 + water 2.8424e-05 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -707,12 +713,12 @@ Reading input data for simulation 3. Su_ 8.2200e-04 5.2840e+05 1.4212e-03 Su_ii 1.5994e-05 Su_fes 1.5019e-06 - donnan 1.6711e-09 + donnan 1.8546e-09 viscosity calc correct false EXCHANGE 10 equilibrate 10 X 1.0047e-03 SOLUTION 11 - water 1.8407e-04 + water 3.1465e-05 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -730,12 +736,12 @@ Reading input data for simulation 3. Su_ 9.0996e-04 5.2840e+05 1.5733e-03 Su_ii 1.7705e-05 Su_fes 1.6626e-06 - donnan 1.6711e-09 + donnan 1.8546e-09 viscosity calc correct false EXCHANGE 11 equilibrate 11 X 1.1122e-03 SOLUTION 12 - water 2.0186e-04 + water 3.4507e-05 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -753,12 +759,12 @@ Reading input data for simulation 3. Su_ 9.9791e-04 5.2840e+05 1.7253e-03 Su_ii 1.9416e-05 Su_fes 1.8233e-06 - donnan 1.6711e-09 + donnan 1.8546e-09 viscosity calc correct false EXCHANGE 12 equilibrate 12 X 1.2197e-03 SOLUTION 13 - water 2.1966e-04 + water 3.7548e-05 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -776,12 +782,12 @@ Reading input data for simulation 3. Su_ 1.0859e-03 5.2840e+05 1.8774e-03 Su_ii 2.1127e-05 Su_fes 1.9840e-06 - donnan 1.6711e-09 + donnan 1.8546e-09 viscosity calc correct false EXCHANGE 13 equilibrate 13 X 1.3272e-03 SOLUTION 14 - water 2.3745e-04 + water 4.0589e-05 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -799,12 +805,12 @@ Reading input data for simulation 3. Su_ 1.1738e-03 5.2840e+05 2.0295e-03 Su_ii 2.2839e-05 Su_fes 2.1448e-06 - donnan 1.6711e-09 + donnan 1.8546e-09 viscosity calc correct false EXCHANGE 14 equilibrate 14 X 1.4347e-03 SOLUTION 15 - water 2.5524e-04 + water 4.3631e-05 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -822,7 +828,7 @@ Reading input data for simulation 3. Su_ 1.2618e-03 5.2840e+05 2.1815e-03 Su_ii 2.4550e-05 Su_fes 2.3055e-06 - donnan 1.6711e-09 + donnan 1.8546e-09 viscosity calc correct false EXCHANGE 15 equilibrate 15 X 1.5422e-03 @@ -874,29 +880,29 @@ Reading input data for simulation 3. MIX 3 4 6.6932e-04 MIX 4 - 5 1.9640e-04 + 5 2.0070e-04 MIX 5 - 6 1.5725e-04 + 6 1.6165e-04 MIX 6 - 7 1.8971e-04 + 7 1.9501e-04 MIX 7 - 8 2.2216e-04 + 8 2.2837e-04 MIX 8 - 9 2.5461e-04 + 9 2.6173e-04 MIX 9 - 10 2.8706e-04 + 10 2.9509e-04 MIX 10 - 11 3.1951e-04 + 11 3.2845e-04 MIX 11 - 12 3.5196e-04 + 12 3.6180e-04 MIX 12 - 13 3.8441e-04 + 13 3.9516e-04 MIX 13 - 14 4.1686e-04 + 14 4.2852e-04 MIX 14 - 15 4.4931e-04 + 15 4.6188e-04 MIX 15 - 16 7.7653e-04 + 16 7.9394e-04 MIX 16 17 4.2533e-03 END @@ -908,8 +914,8 @@ Reading input data for simulation 3. bcond 1 2 stagnant 15 timest 1.5429e+03 - multi_d true 2.5000e-09 1.5900e-01 0.0 9.9000e-01 - interlayer_d false 0.001 0.0 1300 + multi_d true 2.5000e-09 1.5900e-01 0.0 9.7500e-01 + interlayer_d true 0.001 0.0 1300 punch_frequency 14 punch_cells 17 USER_GRAPH 1 Example 21 @@ -928,245 +934,9 @@ WARNING: No porosities were read; used the value 1.59e-01 from -multi_D. 50 plot_xy days - dt / (2 * 3600 * 24), (a - get(2)) / dt / 8.2988e-03, color = Green, symbol = None 60 put(a, 2) 70 plot_xy days, equi("A_Hto"), y_axis = 2, color = Red, symbol = None - END + END WARNING: Calculating transport: 1 (mobile) cells, 1120 shifts, 1 mixruns... -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-17 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying increased tolerance 1e-15 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying diagonal scaling ... - -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-17 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying increased tolerance 1e-15 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying diagonal scaling ... - -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-17 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying increased tolerance 1e-15 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying diagonal scaling ... - -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-17 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying increased tolerance 1e-15 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying diagonal scaling ... - -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-17 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying increased tolerance 1e-15 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying diagonal scaling ... - -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-17 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying increased tolerance 1e-15 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying diagonal scaling ... - -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-17 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying increased tolerance 1e-15 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying diagonal scaling ... - -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-17 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying increased tolerance 1e-15 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying diagonal scaling ... - - TRANSPORT - shifts 0 - punch_frequency 2 - punch_cells 3-17 - USER_GRAPH 1 -WARNING: No porosities were read; used the value 1.59e-01 from -multi_D. - -detach - USER_GRAPH 5 Example 21 - -chart_title "Hto Concentration Profile: Filter1 | Clay | Filter2" - -axis_scale x_axis 0 2.2220e+01 - -axis_scale y_axis 0 1.2e-9 - -axis_scale sy_axis 0 1.2e-9 - -axis_titles "DISTANCE, IN MILLIMETERS" "FREE PORE-WATER MOLALITY" "TOTAL MOLALITY" - -headings Hto_free Hto_tot - -plot_concentration_vs x - -initial_solutions true - 10 IF cell_no = 3 THEN xval = 0 ELSE xval = get(14) - 20 IF (1 = 0 OR cell_no > 4) THEN GOTO 60 - 30 IF (cell_no = 4) THEN xval = xval + 0.5 * 1.8000e-03 - 40 IF (cell_no > 4 AND cell_no < 5) THEN xval = xval + 1.8000e-03 - 50 GOTO 200 - 60 IF (cell_no = 5) THEN xval = xval + 0.5 * 1.8000e-03 + 0.5 * 1.7109e-03 - 70 IF (cell_no > 5 AND cell_no < 16) THEN xval = xval + 1.7109e-03 ELSE GOTO 90 - 80 GOTO 200 - 90 IF (cell_no = 16) THEN xval = xval + 0.5 * 1.7109e-03 + 0.5 * 1.6000e-03 - 100 IF (cell_no > 16 AND cell_no <= 16) THEN xval = xval + 1.6000e-03 - 110 IF (cell_no = 17) THEN xval = xval + 0.5 * 1.6000e-03 - 200 y1 = TOT("Hto") - 210 plot_xy xval * 1e3, y1, color = Blue, symbol = Plus - 220 IF cell_no = 3 THEN put(y1, 15) - 230 IF (cell_no < 5 OR cell_no > 15) THEN GOTO 400 - 240 y2 = SYS("Hto") / (tot("water") + edl("water")) - 250 REM y2 = y2 / 1.4281e+01# conc / kg solid - 260 plot_xy xval * 1e3, y2, symbol = Circle, y_axis = 2 - 270 IF (cell_no > 6) THEN GOTO 400 - 280 IF 1 THEN plot_xy 1.8000e+00, get(15), color = Black, symbol = None - 290 IF 1 THEN plot_xy 2.0620e+01, get(15), color = Black, symbol = None - 300 put(0, 15) - 400 put(xval, 14) - END -WARNING: -Calculating transport: 1 (mobile) cells, 0 shifts, 1 mixruns... - - END diff --git a/radial b/radial index decf7574..dde9f8dc 100644 --- a/radial +++ b/radial @@ -9,7 +9,7 @@ SOLUTION 4; -water 1.3963e-03 # cells in Opalinus Clay... -SOLUTION 5; -water 7.7322e-05 +SOLUTION 5; -water 1.3217e-05 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 @@ -17,11 +17,11 @@ SURFACE 5; -equil 5; Su_ 3.8224e-04 5.2840e+05 6.6087e-04 Su_ii 7.4371e-06 Su_fes 6.9841e-07 - -Donnan 1.6711e-09 + -Donnan 1.8546e-09 viscosity calc correct false EXCHANGE 5; -equil 5; X 4.6718e-04 -SOLUTION 6; -water 9.5113e-05 +SOLUTION 6; -water 1.6259e-05 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 @@ -29,11 +29,11 @@ SURFACE 6; -equil 6; Su_ 4.7019e-04 5.2840e+05 8.1293e-04 Su_ii 9.1484e-06 Su_fes 8.5911e-07 - -Donnan 1.6711e-09 + -Donnan 1.8546e-09 viscosity calc correct false EXCHANGE 6; -equil 6; X 5.7468e-04 -SOLUTION 7; -water 1.1291e-04 +SOLUTION 7; -water 1.9300e-05 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 @@ -41,11 +41,11 @@ SURFACE 7; -equil 7; Su_ 5.5814e-04 5.2840e+05 9.6500e-04 Su_ii 1.0860e-05 Su_fes 1.0198e-06 - -Donnan 1.6711e-09 + -Donnan 1.8546e-09 viscosity calc correct false EXCHANGE 7; -equil 7; X 6.8218e-04 -SOLUTION 8; -water 1.3070e-04 +SOLUTION 8; -water 2.2341e-05 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 @@ -53,11 +53,11 @@ SURFACE 8; -equil 8; Su_ 6.4610e-04 5.2840e+05 1.1171e-03 Su_ii 1.2571e-05 Su_fes 1.1805e-06 - -Donnan 1.6711e-09 + -Donnan 1.8546e-09 viscosity calc correct false EXCHANGE 8; -equil 8; X 7.8967e-04 -SOLUTION 9; -water 1.4849e-04 +SOLUTION 9; -water 2.5383e-05 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 @@ -65,11 +65,11 @@ SURFACE 9; -equil 9; Su_ 7.3405e-04 5.2840e+05 1.2691e-03 Su_ii 1.4282e-05 Su_fes 1.3412e-06 - -Donnan 1.6711e-09 + -Donnan 1.8546e-09 viscosity calc correct false EXCHANGE 9; -equil 9; X 8.9717e-04 -SOLUTION 10; -water 1.6628e-04 +SOLUTION 10; -water 2.8424e-05 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 @@ -77,11 +77,11 @@ SURFACE 10; -equil 10; Su_ 8.2200e-04 5.2840e+05 1.4212e-03 Su_ii 1.5994e-05 Su_fes 1.5019e-06 - -Donnan 1.6711e-09 + -Donnan 1.8546e-09 viscosity calc correct false EXCHANGE 10; -equil 10; X 1.0047e-03 -SOLUTION 11; -water 1.8407e-04 +SOLUTION 11; -water 3.1465e-05 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 @@ -89,11 +89,11 @@ SURFACE 11; -equil 11; Su_ 9.0996e-04 5.2840e+05 1.5733e-03 Su_ii 1.7705e-05 Su_fes 1.6626e-06 - -Donnan 1.6711e-09 + -Donnan 1.8546e-09 viscosity calc correct false EXCHANGE 11; -equil 11; X 1.1122e-03 -SOLUTION 12; -water 2.0186e-04 +SOLUTION 12; -water 3.4507e-05 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 @@ -101,11 +101,11 @@ SURFACE 12; -equil 12; Su_ 9.9791e-04 5.2840e+05 1.7253e-03 Su_ii 1.9416e-05 Su_fes 1.8233e-06 - -Donnan 1.6711e-09 + -Donnan 1.8546e-09 viscosity calc correct false EXCHANGE 12; -equil 12; X 1.2197e-03 -SOLUTION 13; -water 2.1966e-04 +SOLUTION 13; -water 3.7548e-05 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 @@ -113,11 +113,11 @@ SURFACE 13; -equil 13; Su_ 1.0859e-03 5.2840e+05 1.8774e-03 Su_ii 2.1127e-05 Su_fes 1.9840e-06 - -Donnan 1.6711e-09 + -Donnan 1.8546e-09 viscosity calc correct false EXCHANGE 13; -equil 13; X 1.3272e-03 -SOLUTION 14; -water 2.3745e-04 +SOLUTION 14; -water 4.0589e-05 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 @@ -125,11 +125,11 @@ SURFACE 14; -equil 14; Su_ 1.1738e-03 5.2840e+05 2.0295e-03 Su_ii 2.2839e-05 Su_fes 2.1448e-06 - -Donnan 1.6711e-09 + -Donnan 1.8546e-09 viscosity calc correct false EXCHANGE 14; -equil 14; X 1.4347e-03 -SOLUTION 15; -water 2.5524e-04 +SOLUTION 15; -water 4.3631e-05 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 @@ -137,7 +137,7 @@ SURFACE 15; -equil 15; Su_ 1.2618e-03 5.2840e+05 2.1815e-03 Su_ii 2.4550e-05 Su_fes 2.3055e-06 - -Donnan 1.6711e-09 + -Donnan 1.8546e-09 viscosity calc correct false EXCHANGE 15; -equil 15; X 1.5422e-03 @@ -170,18 +170,18 @@ END # mixing factors... MIX 3; 4 6.6932e-04 -MIX 4; 5 1.9640e-04 -MIX 5; 6 1.5725e-04 -MIX 6; 7 1.8971e-04 -MIX 7; 8 2.2216e-04 -MIX 8; 9 2.5461e-04 -MIX 9; 10 2.8706e-04 -MIX 10; 11 3.1951e-04 -MIX 11; 12 3.5196e-04 -MIX 12; 13 3.8441e-04 -MIX 13; 14 4.1686e-04 -MIX 14; 15 4.4931e-04 -MIX 15; 16 7.7653e-04 +MIX 4; 5 2.0070e-04 +MIX 5; 6 1.6165e-04 +MIX 6; 7 1.9501e-04 +MIX 7; 8 2.2837e-04 +MIX 8; 9 2.6173e-04 +MIX 9; 10 2.9509e-04 +MIX 10; 11 3.2845e-04 +MIX 11; 12 3.6180e-04 +MIX 12; 13 3.9516e-04 +MIX 13; 14 4.2852e-04 +MIX 14; 15 4.6188e-04 +MIX 15; 16 7.9394e-04 MIX 16; 17 4.2533e-03 END TRANSPORT @@ -189,8 +189,8 @@ TRANSPORT -shifts 1120 -flow diff; -cells 1; -bcon 1 2; -stag 15 -time 1.5429e+03 - -multi_D true 2.5000e-09 1.5900e-01 0.0 9.9000e-01 - -interlayer_D false 0.001 0.0 1300 + -multi_D true 2.5000e-09 1.5900e-01 0.0 9.7500e-01 + -interlayer_D true 0.001 0.0 1300 -punch_fr 14; -punch_c 17 USER_GRAPH 1 Example 21 @@ -206,42 +206,4 @@ USER_GRAPH 1 Example 21 50 plot_xy days - dt / (2 * 3600 * 24), (a - get(2)) / dt / 8.2988e-03, color = Green, symbol = None 60 put(a, 2) 70 plot_xy days, equi("A_Hto"), y_axis = 2, color = Red, symbol = None -END -TRANSPORT - -shifts 0 - -punch_fr 2; -punch_c 3-17 -USER_GRAPH 1; -detach -USER_GRAPH 5 Example 21 - - -chart_title "Hto Concentration Profile: Filter1 | Clay | Filter2" - -axis_scale x_axis 0 2.2220e+01 - -axis_scale y_axis 0 1.2e-9 - -axis_scale sy_axis 0 1.2e-9 - -axis_titles "DISTANCE, IN MILLIMETERS" "FREE PORE-WATER MOLALITY" "TOTAL MOLALITY" - -headings Hto_free Hto_tot - -plot_concentration_vs x - -initial_solutions true - 10 IF cell_no = 3 THEN xval = 0 ELSE xval = get(14) - 20 IF (1 = 0 OR cell_no > 4) THEN GOTO 60 - 30 IF (cell_no = 4) THEN xval = xval + 0.5 * 1.8000e-03 - 40 IF (cell_no > 4 AND cell_no < 5) THEN xval = xval + 1.8000e-03 - 50 GOTO 200 - 60 IF (cell_no = 5) THEN xval = xval + 0.5 * 1.8000e-03 + 0.5 * 1.7109e-03 - 70 IF (cell_no > 5 AND cell_no < 16) THEN xval = xval + 1.7109e-03 ELSE GOTO 90 - 80 GOTO 200 - 90 IF (cell_no = 16) THEN xval = xval + 0.5 * 1.7109e-03 + 0.5 * 1.6000e-03 - 100 IF (cell_no > 16 AND cell_no <= 16) THEN xval = xval + 1.6000e-03 - 110 IF (cell_no = 17) THEN xval = xval + 0.5 * 1.6000e-03 - 200 y1 = TOT("Hto") - 210 plot_xy xval * 1e3, y1, color = Blue, symbol = Plus - 220 IF cell_no = 3 THEN put(y1, 15) - 230 IF (cell_no < 5 OR cell_no > 15) THEN GOTO 400 - 240 y2 = SYS("Hto") / (tot("water") + edl("water")) - 250 REM y2 = y2 / 1.4281e+01# conc / kg solid - 260 plot_xy xval * 1e3, y2, symbol = Circle, y_axis = 2 - 270 IF (cell_no > 6) THEN GOTO 400 - 280 IF 1 THEN plot_xy 1.8000e+00, get(15), color = Black, symbol = None - 290 IF 1 THEN plot_xy 2.0620e+01, get(15), color = Black, symbol = None - 300 put(0, 15) - 400 put(xval, 14) END From 666e4b813e661c25f2999236819b76d3c5a04563 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Mon, 15 Apr 2024 18:21:29 -0600 Subject: [PATCH 136/384] Issue 160 in phreeqc. llnl minimum temperature problem. There are several places where a SOLUTION is constructed to get lists or test the database. By default the SOLUTION is 25C, so if llnl has a minimum temperature greater (or maximum temperature less) than 25, an error is encountered. The fix is to change the temperature of the SOLUTIONs to the minimum temperature of the llnl grid if llnl is being used. --- IPhreeqc.cpp | 9 +++++++-- 1 file changed, 7 insertions(+), 2 deletions(-) diff --git a/IPhreeqc.cpp b/IPhreeqc.cpp index 11f57a0a..c71c42ac 100644 --- a/IPhreeqc.cpp +++ b/IPhreeqc.cpp @@ -1056,8 +1056,13 @@ int IPhreeqc::test_db(void) { std::ostringstream oss; int sn = this->PhreeqcPtr->next_user_number(Keywords::KEY_SOLUTION); - oss << "SOLUTION " << sn <<"; DELETE; -solution " << sn; - + //oss << "SOLUTION " << sn <<"; DELETE; -solution " << sn; + oss << "SOLUTION " << sn << ";"; + if (this->PhreeqcPtr->llnl_temp.size() > 0) + { + oss << "-temp " << this->PhreeqcPtr->llnl_temp[0] << ";"; + } + oss << "DELETE; -solution " << sn; this->PhreeqcPtr->set_reading_database(TRUE); int n = this->RunString(oss.str().c_str()); this->PhreeqcPtr->set_reading_database(FALSE); From 36acf3ff50e03e7985f71c24eb196e8f43e875c7 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Mon, 15 Apr 2024 20:28:18 -0600 Subject: [PATCH 137/384] updated RELEASE.TXT --- RELEASE.TXT | 13 +++++++++++++ 1 file changed, 13 insertions(+) diff --git a/RELEASE.TXT b/RELEASE.TXT index 3af3db05..53a367d7 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,4 +1,17 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + ----------------- + April 15, 2024 + ----------------- + PHREEQC: Fixed a memory error with iso.dat because it uses H3O+ instead of + H+. The SC variable was uninitialized in that situation. + + DATABASES: Amm.dat, phreeqc.dat, and pitzer.dat were updated with + revisions to viscosity and specific conductance. + + PhreeqcRM and IPhreeqc: Fixed bug with the temperature grid for llnl. Some + internal testing and list generators used the default temperature of 25C, + which caused an error if the temperature grid did not span 25C. + ----------------- March 25, 2024 ----------------- From 1ebe8191c254ea7a50f20876ef1bf21450f7887a Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Wed, 17 Apr 2024 00:16:57 +0000 Subject: [PATCH 138/384] Squashed 'phreeqcpp/' changes from 87919a0..7284fed 7284fed Fixed alignment for some of the utf-8 7babc4b Changed sprintf to snprintf 0d90285 Changed encoding to utf-8 3e00b23 Merge pull request #45 from dlparkhurst/viscosity 4aa8034 merged master into viscosity 166aec1 Tony tweak of t3 in transport.cpp 6a4443d used density_x. Added xsoln_visc test case 4ad0613 removed viscos_x and density_x 269d107 Tony's changes Mar 15, 2024 f50111a Tony's changes with added test cases. All test cases run git-subtree-dir: phreeqcpp git-subtree-split: 7284fed50f48610d24dc565cb530f6444940b4a3 --- Phreeqc.cpp | 6 +- Phreeqc.h | 7 +- Solution.cxx | 2 +- Solution.h | 4 +- Surface.cxx | 34 +- Surface.h | 9 +- SurfaceCharge.cxx | 45 +- SurfaceCharge.h | 6 + basicsubs.cpp | 995 ++++++++++++++++++++++---------------------- class_main.cpp | 6 +- gases.cpp | 3 +- global_structures.h | 4 +- integrate.cpp | 227 ++++++---- kinetics.cpp | 5 +- mainsubs.cpp | 14 +- model.cpp | 1 - prep.cpp | 56 ++- print.cpp | 38 +- read.cpp | 34 +- spread.cpp | 48 ++- step.cpp | 2 + structures.cpp | 1 + transport.cpp | 388 +++++++++++------ 23 files changed, 1145 insertions(+), 790 deletions(-) diff --git a/Phreeqc.cpp b/Phreeqc.cpp index 817bfa26..f67a2be5 100644 --- a/Phreeqc.cpp +++ b/Phreeqc.cpp @@ -583,7 +583,6 @@ void Phreeqc::init(void) solution_pe_x = 0; mu_x = 0; ah2o_x = 1.0; - density_x = 0; total_h_x = 0; total_o_x = 0; cb_x = 0; @@ -898,6 +897,7 @@ void Phreeqc::init(void) viscos = 0.0; viscos_0 = 0.0; viscos_0_25 = 0.0; + density_x = 0.0; rho_0 = 0.0; kappa_0 = 0.0; p_sat = 0.0; @@ -1714,6 +1714,7 @@ Phreeqc::InternalCopy(const Phreeqc* pSrc) viscos = pSrc->viscos; viscos_0 = pSrc->viscos_0; viscos_0_25 = pSrc->viscos_0_25; // viscosity of the solution, of pure water, of pure water at 25 C + density_x = pSrc->density_x; cell_pore_volume = pSrc->cell_pore_volume;; cell_porosity = pSrc->cell_porosity; cell_volume = pSrc->cell_volume; @@ -1722,9 +1723,6 @@ Phreeqc::InternalCopy(const Phreeqc* pSrc) sys_tot = pSrc->sys_tot; // solution properties V_solutes = pSrc->V_solutes; - viscos = pSrc->viscos; - viscos_0 = pSrc->viscos_0; - viscos_0_25 = pSrc->viscos_0_25; rho_0 = pSrc->rho_0; kappa_0 = pSrc->kappa_0; p_sat = pSrc->p_sat; diff --git a/Phreeqc.h b/Phreeqc.h index 5510379f..7a1e7e9f 100644 --- a/Phreeqc.h +++ b/Phreeqc.h @@ -283,7 +283,7 @@ public: int sum_diffuse_layer(cxxSurfaceCharge* surface_charge_ptr1); int calc_all_donnan(void); int calc_init_donnan(void); - LDBLE calc_psi_avg(cxxSurfaceCharge * charge_ptr, LDBLE surf_chrg_eq, LDBLE nDbl, std::vector &zcorr); + LDBLE calc_psi_avg(cxxSurfaceCharge * charge_ptr, LDBLE surf_chrg_eq, LDBLE nDbl, LDBLE f_free, std::vector &zcorr); LDBLE g_function(LDBLE x_value); LDBLE midpnt(LDBLE x1, LDBLE x2, int n); void polint(LDBLE* xa, LDBLE* ya, int n, LDBLE xv, LDBLE* yv, @@ -555,6 +555,7 @@ public: LDBLE calc_PR(std::vector phase_ptrs, LDBLE P, LDBLE TK, LDBLE V_m); LDBLE calc_PR(); int calc_vm(LDBLE tc, LDBLE pa); + LDBLE calc_vm0(const char *species_name, LDBLE tc, LDBLE pa, LDBLE mu); int clear(void); int convert_units(cxxSolution* solution_ptr); class unknown* find_surface_charge_unknown(std::string& str_ptr, int plane); @@ -995,7 +996,7 @@ public: LDBLE new_Dw); int reformat_surf(const char* comp_name, LDBLE fraction, const char* new_comp_name, LDBLE new_Dw, int cell); - LDBLE viscosity(void); + LDBLE viscosity(cxxSurface *surf_ptr); LDBLE calc_f_visc(const char *name); LDBLE calc_vm_Cl(void); int multi_D(LDBLE DDt, int mobile_cell, int stagnant); @@ -1274,7 +1275,6 @@ protected: LDBLE solution_pe_x; LDBLE mu_x; LDBLE ah2o_x; - LDBLE density_x; LDBLE total_h_x; LDBLE total_o_x; LDBLE cb_x; @@ -1614,6 +1614,7 @@ protected: int print_viscosity; LDBLE viscos, viscos_0, viscos_0_25; // viscosity of the solution, of pure water, of pure water at 25 C + LDBLE density_x; LDBLE cell_pore_volume; LDBLE cell_porosity; LDBLE cell_volume; diff --git a/Solution.cxx b/Solution.cxx index bc1bd80e..a326adf5 100644 --- a/Solution.cxx +++ b/Solution.cxx @@ -81,7 +81,7 @@ cxxSolution::operator =(const cxxSolution &rhs) this->total_h = rhs.total_h; this->total_o = rhs.total_o; this->density = rhs.density; - this->viscosity = rhs.viscosity; + this->viscosity = rhs.viscosity; this->cb = rhs.cb; this->mass_water = rhs.mass_water; this->soln_vol = rhs.soln_vol; diff --git a/Solution.h b/Solution.h index eef728d4..c4326a8a 100644 --- a/Solution.h +++ b/Solution.h @@ -49,8 +49,8 @@ class cxxSolution:public cxxNumKeyword void Set_cb(LDBLE l_cb) {this->cb = l_cb;} LDBLE Get_density() const {return this->density;} void Set_density(LDBLE l_density) {this->density = l_density;} - LDBLE Get_viscosity() const { return this->viscosity; } - void Set_viscosity(LDBLE l_viscos) { this->viscosity = l_viscos; } + LDBLE Get_viscosity() const { return this->viscosity; } + void Set_viscosity(LDBLE l_viscos) { this->viscosity = l_viscos; } LDBLE Get_mass_water() const {return this->mass_water;} void Set_mass_water(LDBLE l_mass_water) {this->mass_water = l_mass_water;} LDBLE Get_total_alkalinity() const {return this->total_alkalinity;} diff --git a/Surface.cxx b/Surface.cxx index ed55bb2d..f3f932a4 100644 --- a/Surface.cxx +++ b/Surface.cxx @@ -36,9 +36,10 @@ cxxSurface::cxxSurface(PHRQ_io *io) dl_type = NO_DL; sites_units = SITES_ABSOLUTE; only_counter_ions = false; - correct_GC = false; + correct_D = false; thickness = 1e-8; debye_lengths = 0.0; + calc_DDL_viscosity = false; DDL_viscosity = 1.0; DDL_limit = 0.8; transport = false; @@ -56,9 +57,10 @@ cxxNumKeyword(io) dl_type = NO_DL; sites_units = SITES_ABSOLUTE; only_counter_ions = false; - correct_GC = false; + correct_D = false; thickness = 1e-8; debye_lengths = 0.0; + calc_DDL_viscosity = false; DDL_viscosity = 1.0; DDL_limit = 0.8; transport = false; @@ -130,7 +132,7 @@ cxxSurface::dump_raw(std::ostream & s_oss, unsigned int indent, int *n_out) cons s_oss << indent1; s_oss << "-only_counter_ions " << this->only_counter_ions << "\n"; s_oss << indent1; - s_oss << "-correct_GC " << this->correct_GC << "\n"; + s_oss << "-correct_D " << this->correct_D << "\n"; s_oss << indent1; s_oss << "-thickness " << this->thickness << "\n"; s_oss << indent1; @@ -193,7 +195,7 @@ cxxSurface::read_raw(CParser & parser, bool check) this->Set_tidied(true); bool only_counter_ions_defined(false); - //bool correct_GC_defined(false); + //bool correct_D_defined(false); bool thickness_defined(false); bool type_defined(false); bool dl_type_defined(false); @@ -395,7 +397,7 @@ cxxSurface::read_raw(CParser & parser, bool check) case 11: // DDL_viscosity if (!(parser.get_iss() >> this->DDL_viscosity)) { - this->DDL_viscosity = 0.0; + this->DDL_viscosity = 1.0; parser.incr_input_error(); parser.error_msg("Expected numeric value for DDL_viscosity.", PHRQ_io::OT_CONTINUE); @@ -473,16 +475,16 @@ cxxSurface::read_raw(CParser & parser, bool check) PHRQ_io::OT_CONTINUE); } break; - case 19: // correct_GC - if (!(parser.get_iss() >> this->correct_GC)) + case 19: // correct_D + if (!(parser.get_iss() >> this->correct_D)) { - this->correct_GC = false; + this->correct_D = false; parser.incr_input_error(); parser. - error_msg("Expected boolean value for correct_GC.", + error_msg("Expected boolean value for correct_D.", PHRQ_io::OT_CONTINUE); } - //correct_GC_defined = true; + //correct_D_defined = true; break; } if (opt == CParser::OPT_EOF || opt == CParser::OPT_KEYWORD) @@ -498,11 +500,11 @@ cxxSurface::read_raw(CParser & parser, bool check) error_msg("Only_counter_ions not defined for SURFACE_RAW input.", PHRQ_io::OT_CONTINUE); } - //if (correct_GC_defined == false) + //if (correct_D_defined == false) //{ // parser.incr_input_error(); // parser. - // error_msg("correct_GC not defined for SURFACE_RAW input.", + // error_msg("correct_D not defined for SURFACE_RAW input.", // PHRQ_io::OT_CONTINUE); //} if (thickness_defined == false) @@ -582,7 +584,7 @@ cxxSurface::add(const cxxSurface & addee_in, LDBLE extensive) if (this->surface_comps.size() == 0) { this->only_counter_ions = addee.only_counter_ions; - this->correct_GC = addee.correct_GC; + this->correct_D = addee.correct_D; this->dl_type = addee.dl_type; this->type = addee.type; this->sites_units = addee.sites_units; @@ -754,7 +756,7 @@ cxxSurface::Serialize(Dictionary & dictionary, std::vector < int >&ints, doubles.push_back(this->debye_lengths); doubles.push_back(this->DDL_viscosity); doubles.push_back(this->DDL_limit); - ints.push_back(this->correct_GC ? 1 : 0); + ints.push_back(this->correct_D ? 1 : 0); ints.push_back(this->transport ? 1 : 0); this->totals.Serialize(dictionary, ints, doubles); ints.push_back(this->solution_equilibria ? 1 : 0); @@ -801,7 +803,7 @@ cxxSurface::Deserialize(Dictionary & dictionary, std::vector < int >&ints, this->debye_lengths = doubles[dd++]; this->DDL_viscosity = doubles[dd++]; this->DDL_limit = doubles[dd++]; - this->correct_GC = (ints[ii++] != 0); + this->correct_D = (ints[ii++] != 0); this->transport = (ints[ii++] != 0); this->totals.Deserialize(dictionary, ints, doubles, ii, dd); this->solution_equilibria = (ints[ii++] != 0); @@ -830,6 +832,6 @@ const std::vector< std::string >::value_type temp_vopts[] = { std::vector< std::string >::value_type("n_solution"), // 16 std::vector< std::string >::value_type("totals"), // 17 std::vector< std::string >::value_type("tidied"), // 18 - std::vector< std::string >::value_type("correct_gc") // 19 + std::vector< std::string >::value_type("correct_d") // 19 }; const std::vector< std::string > cxxSurface::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); diff --git a/Surface.h b/Surface.h index f01c716c..b9ba60dd 100644 --- a/Surface.h +++ b/Surface.h @@ -65,10 +65,12 @@ public: void Set_debye_lengths(LDBLE t) {debye_lengths = t;} LDBLE Get_DDL_viscosity(void) const {return DDL_viscosity;} void Set_DDL_viscosity(LDBLE t) {DDL_viscosity = t;} + void Calc_DDL_viscosity(bool tf) {calc_DDL_viscosity = tf;} + bool Get_calc_viscosity(void) const { return calc_DDL_viscosity; } LDBLE Get_DDL_limit(void) const {return DDL_limit;} void Set_DDL_limit(LDBLE t) {DDL_limit = t;} - bool Get_correct_GC(void) const { return correct_GC; } - void Set_correct_GC(bool tf) { correct_GC = tf; } + bool Get_correct_D(void) const { return correct_D; } + void Set_correct_D(bool tf) { correct_D = tf; } std::vector Donnan_factors; bool Get_transport(void) const {return transport;} void Set_transport(bool tf) {transport = tf;} @@ -93,8 +95,9 @@ protected: LDBLE thickness; LDBLE debye_lengths; LDBLE DDL_viscosity; + bool calc_DDL_viscosity; LDBLE DDL_limit; - bool correct_GC; + bool correct_D; bool transport; cxxNameDouble totals; bool solution_equilibria; diff --git a/SurfaceCharge.cxx b/SurfaceCharge.cxx index 5d2857d8..22624369 100644 --- a/SurfaceCharge.cxx +++ b/SurfaceCharge.cxx @@ -36,6 +36,8 @@ PHRQ_base(io) grams = 0.0; charge_balance = 0.0; mass_water = 0.0; + DDL_viscosity = 0.0; + f_free = 0.0; la_psi = 0.0; capacitance[0] = 1.0; capacitance[1] = 5.0; @@ -68,6 +70,7 @@ cxxSurfaceCharge::dump_xml(std::ostream & s_oss, unsigned int indent) const charge_balance << "\"" << "\n"; s_oss << indent0 << "mass_water=\"" << this-> mass_water << "\"" << "\n"; + s_oss << indent0 << "f_free=\"" << this->f_free << "\"" << "\n"; s_oss << indent0 << "la_psi=\"" << this->la_psi << "\"" << "\n"; s_oss << indent0 << "capacitance=\"" << this-> capacitance[0] << " " << this->capacitance[0] << "\"" << "\n"; @@ -98,6 +101,8 @@ cxxSurfaceCharge::dump_raw(std::ostream & s_oss, unsigned int indent) const s_oss << indent0 << "-grams " << this->grams << "\n"; s_oss << indent0 << "-charge_balance " << this->charge_balance << "\n"; s_oss << indent0 << "-mass_water " << this->mass_water << "\n"; + s_oss << indent0 << "-f_free " << this->f_free << "\n"; + s_oss << indent0 << "-ddl_viscosity " << this->DDL_viscosity << "\n"; s_oss << indent0 << "-la_psi " << this->la_psi << "\n"; s_oss << indent0 << "-capacitance0 " << this->capacitance[0] << "\n"; s_oss << indent0 << "-capacitance1 " << this->capacitance[1] << "\n"; @@ -155,6 +160,7 @@ cxxSurfaceCharge::read_raw(CParser & parser, bool check) bool capacitance0_defined(false); bool capacitance1_defined(false); bool g_map_first(true); + bool DDL_viscosity_defined(false); for (;;) { @@ -225,7 +231,6 @@ cxxSurfaceCharge::read_raw(CParser & parser, bool check) mass_water_defined = true; break; - case 5: // la_psi if (!(parser.get_iss() >> this->la_psi)) { @@ -366,10 +371,27 @@ cxxSurfaceCharge::read_raw(CParser & parser, bool check) } } opt_save = 16; - - - break; + case 17: // f_free of water + if (!(parser.get_iss() >> this->f_free)) + { + this->f_free = 0; + parser.incr_input_error(); + parser.error_msg("Expected numeric value for f_free of mass_water.", + PHRQ_io::OT_CONTINUE); + } + break; + case 18: // DDL_viscosity + if (!(parser.get_iss() >> this->DDL_viscosity)) + { + this->DDL_viscosity = 1.0; + parser.incr_input_error(); + parser.error_msg("Expected numeric value for DDL_viscosity.", + PHRQ_io::OT_CONTINUE); + } + DDL_viscosity_defined = true; + break; + } if (opt == CParser::OPT_EOF || opt == CParser::OPT_KEYWORD) break; @@ -454,9 +476,11 @@ cxxSurfaceCharge::add(const cxxSurfaceCharge & addee, LDBLE extensive) this->mass_water += addee.mass_water * extensive; this->la_psi = this->la_psi * f1 + addee.la_psi * f2; this->capacitance[0] = - this->capacitance[0] * f1 + this->capacitance[0] * f2; + this->capacitance[0] * f1 + addee.capacitance[0] * f2; this->capacitance[1] = - this->capacitance[1] * f1 + this->capacitance[1] * f2; + this->capacitance[1] * f1 + addee.capacitance[1] * f2; + this->f_free = this->f_free * f1 + addee.f_free * f2; + this->DDL_viscosity = this->DDL_viscosity * f1 + addee.DDL_viscosity * f2; this->diffuse_layer_totals.add_extensive(addee.diffuse_layer_totals, extensive); } @@ -486,6 +510,8 @@ cxxSurfaceCharge::Serialize(Dictionary & dictionary, std::vector < int >&ints, doubles.push_back(this->sigma1); doubles.push_back(this->sigma2); doubles.push_back(this->sigmaddl); + doubles.push_back(this->f_free); + doubles.push_back(this->DDL_viscosity); ints.push_back((int) this->g_map.size()); { std::map::iterator it; @@ -523,6 +549,8 @@ cxxSurfaceCharge::Deserialize(Dictionary & dictionary, std::vector < int >&ints, this->sigma1 = doubles[dd++]; this->sigma2 = doubles[dd++]; this->sigmaddl = doubles[dd++]; + this->f_free = doubles[dd++]; + this->DDL_viscosity = doubles[dd++]; { this->g_map.clear(); int count = ints[ii++]; @@ -581,6 +609,9 @@ const std::vector< std::string >::value_type temp_vopts[] = { std::vector< std::string >::value_type("sigma2"), // 13 std::vector< std::string >::value_type("sigmaddl"), // 14 std::vector< std::string >::value_type("g_map"), // 15 - std::vector< std::string >::value_type("diffuse_layer_species") // 16 + std::vector< std::string >::value_type("diffuse_layer_species"),// 16 + std::vector< std::string >::value_type("f_free"), // 17 + std::vector< std::string >::value_type("ddl_viscosity") // 18 + }; const std::vector< std::string > cxxSurfaceCharge::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); diff --git a/SurfaceCharge.h b/SurfaceCharge.h index 091b26b7..2333a331 100644 --- a/SurfaceCharge.h +++ b/SurfaceCharge.h @@ -87,6 +87,10 @@ public: void Set_charge_balance(LDBLE d) {this->charge_balance = d;} LDBLE Get_mass_water() const {return this->mass_water;} void Set_mass_water(LDBLE d) {this->mass_water = d;} + LDBLE Get_DDL_viscosity(void) const { return DDL_viscosity; } + void Set_DDL_viscosity(LDBLE t) { DDL_viscosity = t; } + LDBLE Get_f_free() const {return this->f_free;} + void Set_f_free(LDBLE d) {this->f_free = d;} LDBLE Get_la_psi() const {return this->la_psi;} void Set_la_psi(LDBLE d) {this->la_psi = d;} LDBLE Get_capacitance0() const {return this->capacitance[0];} @@ -117,6 +121,8 @@ protected: LDBLE grams; LDBLE charge_balance; LDBLE mass_water; + LDBLE DDL_viscosity; + LDBLE f_free; LDBLE la_psi; LDBLE capacitance[2]; cxxNameDouble diffuse_layer_totals; diff --git a/basicsubs.cpp b/basicsubs.cpp index bf545b4f..9f4116b8 100644 --- a/basicsubs.cpp +++ b/basicsubs.cpp @@ -22,20 +22,20 @@ static char THIS_FILE[] = __FILE__; /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -activity(const char* species_name) +activity(const char *species_name) /* ---------------------------------------------------------------------- */ { - class species* s_ptr; + class species *s_ptr; LDBLE a; s_ptr = s_search(species_name); if (s_ptr == s_h2o) { - a = pow((LDBLE)10., s_h2o->la); + a = pow((LDBLE) 10., s_h2o->la); } else if (s_ptr == s_eminus) { - a = pow((LDBLE)10., s_eminus->la); + a = pow((LDBLE) 10., s_eminus->la); } else if (s_ptr == NULL || s_ptr->in == FALSE) { @@ -43,17 +43,17 @@ activity(const char* species_name) } else { - a = pow((LDBLE)10., s_ptr->lm + s_ptr->lg); + a = pow((LDBLE) 10., s_ptr->lm + s_ptr->lg); } return (a); } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -activity_coefficient(const char* species_name) +activity_coefficient(const char *species_name) /* ---------------------------------------------------------------------- */ { - class species* s_ptr; + class species *s_ptr; LDBLE g, dum = 0.0; s_ptr = s_search(species_name); @@ -61,7 +61,7 @@ activity_coefficient(const char* species_name) { if (s_ptr->type == EX && s_ptr->equiv && s_ptr->alk) dum = log10(s_ptr->equiv / s_ptr->alk); - g = pow((LDBLE)10., s_ptr->lg - dum); + g = pow((LDBLE) 10., s_ptr->lg - dum); } else { @@ -72,10 +72,10 @@ activity_coefficient(const char* species_name) /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -log_activity_coefficient(const char* species_name) +log_activity_coefficient(const char *species_name) /* ---------------------------------------------------------------------- */ { - class species* s_ptr; + class species *s_ptr; LDBLE g, dum = 0.0; s_ptr = s_search(species_name); @@ -94,10 +94,10 @@ log_activity_coefficient(const char* species_name) /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -aqueous_vm(const char* species_name) +aqueous_vm(const char *species_name) /* ---------------------------------------------------------------------- */ { - class species* s_ptr; + class species *s_ptr; LDBLE g; s_ptr = s_search(species_name); @@ -113,10 +113,10 @@ aqueous_vm(const char* species_name) } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -phase_vm(const char* phase_name) +phase_vm(const char *phase_name) /* ---------------------------------------------------------------------- */ { - class phase* phase_ptr; + class phase *phase_ptr; int l; LDBLE g; @@ -136,7 +136,7 @@ LDBLE Phreeqc:: sa_declercq(double sa_type, double Sa, double d, double m, double m0, double gfw) /* ---------------------------------------------------------------------- */ { - if (sa_type == 0) + if (sa_type == 0) { // surface-area-calculation-Fixed_Surface return Sa; @@ -147,14 +147,14 @@ sa_declercq(double sa_type, double Sa, double d, double m, double m0, double gfw double mass0 = m0 * gfw; double V0 = mass0 / d; double St0 = mass0 * Sa; // total surface - double a0 = pow(V0, 1.0 / 3.0); // side length - double Sp0 = 6.0 * a0 * a0; // surface particle + double a0 = pow(V0, 1.0/3.0); // side length + double Sp0 = 6.0 * a0*a0; // surface particle double np = St0 / Sp0; // number of particles - double RATS = Sa / St0; + double RATS = Sa / St0; double mass = m * gfw; double V = mass / d; - double a = pow(V, 1.0 / 3.0); - double St = 6.0 * a * a * np; + double a = pow(V, 1.0/3.0); + double St = 6.0 * a*a*np; return St * RATS; // total current surface } else if (sa_type == 2) @@ -163,47 +163,34 @@ sa_declercq(double sa_type, double Sa, double d, double m, double m0, double gfw double mass0 = m0 * gfw; double V0 = mass0 / d; // volume double St0 = mass0 * Sa; // total surface - double a0 = pow(3.0 * V0 / (4.0 * pi), 1.0 / 3.0); // ((3*V0)/(4 * 3.14159265359))^(1/3) + double a0 = pow(3.0 * V0/(4.0 * pi), 1.0/3.0); // ((3*V0)/(4 * 3.14159265359))^(1/3) double Sp0 = (4.0 * pi) * a0 * a0; // surface particle double np = St0 / Sp0; // number of particles double RATS = Sa / St0; - + double mass = m * gfw; double V = mass / d; - double a = pow(3.0 * V / (4.0 * pi), 1.0 / 3.0); //((3*V)/(4 * 3.14159265359))^(1/3) + double a = pow(3.0 * V/(4.0 * pi), 1.0/3.0); //((3*V)/(4 * 3.14159265359))^(1/3) double St = 4.0 * pi * a * a * np; return St * RATS; // total current surface } - error_string = sformatf("Unknown surface area type in SA_DECLERCQ %d.", (int)sa_type); + error_string = sformatf( "Unknown surface area type in SA_DECLERCQ %d.", (int) sa_type); error_msg(error_string, CONTINUE); input_error++; return (MISSING); - + } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -diff_c(const char* species_name) +diff_c(const char *species_name) /* ---------------------------------------------------------------------- */ { - class species* s_ptr; - LDBLE ka, l_z, Dw, ff, sqrt_mu; + class species *s_ptr; + LDBLE ka, l_z, Dw, ff, sqrt_mu, a, a2, a3, av; sqrt_mu = sqrt(mu_x); s_ptr = s_search(species_name); - //LDBLE g; - //if (s_ptr != NULL /*&& s_ptr->in != FALSE && s_ptr->type < EMINUS*/) - //{ - // g = s_ptr->dw; - // if (s_ptr->dw_t) - // g *= exp(s_ptr->dw_t / tk_x - s_ptr->dw_t / 298.15); - // g *= viscos_0_25 / viscos * tk_x / 298.15; - //} - //else - //{ - // g = 0; - //} - //return (g); if (s_ptr == NULL) return(0); if ((Dw = s_ptr->dw) == 0) @@ -213,179 +200,99 @@ diff_c(const char* species_name) else return(0); } - if ((l_z = fabs(s_ptr->z)) == 0) + if (correct_Dw) { - //l_z = 1; // only a 1st approximation for correct_Dw in electrical field - } - else - { - if (s_ptr->dw_a2) - ka = DH_B * s_ptr->dw_a2 * sqrt_mu / (1 + pow(mu_x, 0.75)); - else - ka = DH_B * 4.73 * sqrt_mu / (1 + pow(mu_x, 0.75)); - if (s_ptr->dw_a) + if ((l_z = fabs(s_ptr->z)) == 0) { - ff = exp(-s_ptr->dw_a * DH_A * l_z * sqrt_mu / (1 + ka)); - //if (print_viscosity && s_ptr->dw_a_visc) - // ff *= pow((viscos_0 / viscos), s_ptr->dw_a_visc); + //l_z = 1; // only a 1st approximation for correct_Dw in electrical field } else { - ff = exp(-1.6 * DH_A * l_z * sqrt_mu / (1 + ka)); + if (print_viscosity) + { + a = (s_ptr->dw_a ? s_ptr->dw_a : 1.6); + a2 = (s_ptr->dw_a2 ? s_ptr->dw_a2 : 4.73); + av = (s_ptr->dw_a_visc ? pow((viscos_0 / viscos), s_ptr->dw_a_visc) : 1); + a3 = (s_ptr->dw_a3 ? pow(mu_x, s_ptr->dw_a3) : s_ptr->dw_a_visc ? 1 : pow(mu_x, 0.75)); + } + else + { + a = (s_ptr->dw_a ? s_ptr->dw_a : 1.6); + a2 = (s_ptr->dw_a2 ? s_ptr->dw_a2 : 4.73); + av = 1.0; + a3 = (s_ptr->dw_a3 ? pow(mu_x, s_ptr->dw_a3) : pow(mu_x, 0.75)); + } + ka = DH_B * a2 * sqrt_mu / (1 + a3); + ff = av * exp(-a * DH_A * l_z * sqrt_mu / (1 + ka)); + Dw *= ff; } - Dw *= ff; } - if (tk_x != 298.15 && s_ptr->dw_t) Dw *= exp(s_ptr->dw_t / tk_x - s_ptr->dw_t / 298.15); - s_ptr->dw_corr = Dw; - return (Dw * viscos_0_25 / viscos_0); + s_ptr->dw_corr = Dw * viscos_0_25 / viscos_0; + return s_ptr->dw_corr; } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -setdiff_c(const char* species_name, double d) +setdiff_c(const char *species_name, double d) /* ---------------------------------------------------------------------- */ { - class species* s_ptr; - LDBLE ka, l_z, Dw, ff, sqrt_mu; + class species *s_ptr; + LDBLE ka, l_z, Dw, ff, sqrt_mu, a, a2, a3, av; sqrt_mu = sqrt(mu_x); s_ptr = s_search(species_name); - - //LDBLE g; - //s_ptr = s_search(species_name); - //if (s_ptr != NULL) - //{ - - // s_ptr->dw = d; - // g = s_ptr->dw; - // if (s_ptr->dw_t) - // g *= exp(s_ptr->dw_t / tk_x - s_ptr->dw_t / 298.15); - // g *= viscos_0_25 / viscos * tk_x / 298.15;; - //} - //else - //{ - // g = 0; - //} - //return (g); if (s_ptr == NULL) return(0); Dw = s_ptr->dw = d; - if ((l_z = fabs(s_ptr->z)) == 0) + if (correct_Dw) { - //l_z = 1; // only a 1st approximation for correct_Dw in electrical field - } - else - { - if (s_ptr->dw_a2) - ka = DH_B * s_ptr->dw_a2 * sqrt_mu / (1 + pow(mu_x, 0.75)); - else - ka = DH_B * 4.73 * sqrt_mu / (1 + pow(mu_x, 0.75)); - if (s_ptr->dw_a) + if ((l_z = fabs(s_ptr->z)) == 0) { - ff = exp(-s_ptr->dw_a * DH_A * l_z * sqrt_mu / (1 + ka)); - //if (print_viscosity && s_ptr->dw_a_visc) - // ff *= pow((viscos_0 / viscos), s_ptr->dw_a_visc); + //l_z = 1; // only a 1st approximation for correct_Dw in electrical field } else { - ff = exp(-1.6 * DH_A * l_z * sqrt_mu / (1 + ka)); + if (print_viscosity) + { + a = (s_ptr->dw_a ? s_ptr->dw_a : 1.6); + a2 = (s_ptr->dw_a2 ? s_ptr->dw_a2 : 4.73); + av = (s_ptr->dw_a_visc ? pow((viscos_0 / viscos), s_ptr->dw_a_visc) : 1); + a3 = (s_ptr->dw_a3 ? pow(mu_x, s_ptr->dw_a3) : 1); + } + else + { + a = (s_ptr->dw_a ? s_ptr->dw_a : 1.6); + a2 = (s_ptr->dw_a2 ? s_ptr->dw_a2 : 4.73); + av = 1.0; + a3 = (s_ptr->dw_a3 ? pow(mu_x, s_ptr->dw_a3) : s_ptr->dw_a_visc ? 1 : pow(mu_x, 0.75)); + } + ka = DH_B * a2 * sqrt_mu / (1 + a3); + ff = av * exp(-a * DH_A * l_z * sqrt_mu / (1 + ka)); + Dw *= ff; } - Dw *= ff; } - if (tk_x != 298.15 && s_ptr->dw_t) - Dw *= exp(s_ptr->dw_t / tk_x - s_ptr->dw_t / 298.15); + Dw *= exp(s_ptr->dw_t / tk_x - s_ptr->dw_t / 298.15); - s_ptr->dw_corr = Dw; - return (Dw * viscos_0_25 / viscos_0); + s_ptr->dw_corr = Dw * viscos_0_25 / viscos_0; + return s_ptr->dw_corr; } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: calc_SC(void) /* ---------------------------------------------------------------------- */ { - //int i; - //LDBLE lm, a, l_z, Dw, SC, ff; - - //SC = 0; -# ifdef SKIP - for (i = 0; i < count_species_list; i++) - { - if (species_list[i].s->type == EX) - continue; - if (species_list[i].s->type == SURF) - continue; - if (i > 0 - && strcmp(species_list[i].s->name, - species_list[i - 1].s->name) == 0) - continue; - if (species_list[i].s == s_h2o) - continue; - if ((Dw = species_list[i].s->dw) == 0) - continue; - if ((l_z = fabs(species_list[i].s->z)) == 0) - continue; - - lm = species_list[i].s->lm; - if (lm > -9) - { - ff = (mu_x < .36 * l_z ? 0.6 / sqrt(l_z) : sqrt(mu_x) / l_z); - - ff *= species_list[i].s->lg; - if (ff > 0) ff = 0; - a = under(lm + ff); - if (species_list[i].s->dw_t) - Dw *= exp(species_list[i].s->dw_t / tk_x - species_list[i].s->dw_t / 298.15); // the viscosity multiplier is done in SC - SC += a * l_z * l_z * Dw; - } - } - SC *= 1e7 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298160.0); - /* correct for temperature dependency... - SC_T = SC_298 * (Dw_T / T) * (298 / Dw_298) and - Dw_T = Dw_298 * (T / 298) * (viscos_298 / viscos_T) give: - SC_T = SC_298 * (viscos_298 / viscos_T) - */ - SC *= viscos_0_25 / viscos; - - return (SC); - //# endif - for (i = 0; i < (int)this->s_x.size(); i++) - { - if (s_x[i]->type != AQ && s_x[i]->type != HPLUS) - continue; - if ((Dw = s_x[i]->dw) == 0) - continue; - if ((l_z = fabs(s_x[i]->z)) == 0) - continue; - - lm = s_x[i]->lm; - if (lm > -9) - { - ff = (mu_x < .36 * l_z ? 0.6 / sqrt(l_z) : sqrt(mu_x) / l_z); - - ff *= s_x[i]->lg; - if (ff > 0) ff = 0; - a = under(lm + ff); - if (s_x[i]->dw_t) - Dw *= exp(s_x[i]->dw_t / tk_x - s_x[i]->dw_t / 298.15); // the viscosity multiplier is done in SC - SC += a * l_z * l_z * Dw; - } - } - SC *= 1e7 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298160.0); - /* correct for temperature dependency... - SC_T = SC_298 * (Dw_T / T) * (298 / Dw_298) and - Dw_T = Dw_298 * (T / 298) * (viscos_298 / viscos_T) give: - SC_T = SC_298 * (viscos_298 / viscos_T) - */ - SC *= viscos_0_25 / viscos; - - return (SC); -# endif + class species *s_ptr; int i; - LDBLE ka, l_z, Dw, ff, sqrt_mu; + LDBLE ka, l_z, Dw, ff, sqrt_mu, a, a2, a3, av, v_Cl = 1; sqrt_mu = sqrt(mu_x); + bool Falk = false; + s_ptr = s_search("H+"); + if (s_ptr == NULL) + return(0); + else if (s_ptr->dw_a3 > 24) Falk = true; SC = 0; //LDBLE ta1, ta2, ta3, ta4; @@ -401,147 +308,252 @@ calc_SC(void) // break; // } //} - for (i = 0; i < (int)this->s_x.size(); i++) + av = 0; + if (!Falk) { - if (s_x[i]->type != AQ && s_x[i]->type != HPLUS) - continue; - if ((Dw = s_x[i]->dw) == 0) + for (i = 0; i < (int)this->s_x.size(); i++) { - if (correct_Dw) - Dw = default_Dw; - else + if (s_x[i]->type != AQ && s_x[i]->type != HPLUS) continue; - } - if (s_x[i]->lm < min_dif_LM) - continue; - if ((l_z = fabs(s_x[i]->z)) == 0) - { - //l_z = 1; // only a 1st approximation for correct_Dw in electrical field - } - else - { - if (s_x[i]->dw_a2) - ka = DH_B * s_x[i]->dw_a2 * sqrt_mu / (1 + pow(mu_x, 0.75)); - else + if ((Dw = s_x[i]->dw) == 0) { - ka = DH_B * 4.73 * sqrt_mu / (1 + pow(mu_x, 0.75)); - //ka = DH_B * ta1 * sqrt_mu / (1 + pow(mu_x, ta2)); - //ka = DH_B * ta1 * sqrt_mu / (1 + mu_x / ta2); + if (correct_Dw) + Dw = default_Dw; + else + continue; } - if (s_x[i]->dw_a) + if (s_x[i]->lm < min_dif_LM) + continue; + if (tk_x != 298.15) { - ff = exp(-s_x[i]->dw_a * DH_A * l_z * sqrt_mu / (1 + ka)); - //if (print_viscosity && s_x[i]->dw_a_visc) - // ff *= pow((viscos_0 / viscos), s_x[i]->dw_a_visc); + if (s_x[i]->dw_t) + Dw *= exp(s_x[i]->dw_t / tk_x - s_x[i]->dw_t / 298.15); + //else + //{ + // Dw *= exp(ta1 / tk_x - ta1 / 298.15); + //} + } + // correct for temperature dependent viscosity of pure water... + Dw *= viscos_0_25 / viscos_0; + s_x[i]->dw_corr = Dw; + if ((l_z = fabs(s_x[i]->z)) == 0) + { + //l_z = 1; // only a 1st approximation for correct_Dw in electrical field + continue; } else { - ff = exp(-1.6 * DH_A * l_z * sqrt_mu / (1 + ka)); - //ff = exp(-ta3 * DH_A * l_z * sqrt_mu / (1 + ka)); + //if (s_x[i]->dw_a2) + // ka = DH_B * s_x[i]->dw_a2 * sqrt_mu / (1 + pow(mu_x, 0.259)); + // //ka = DH_B * s_x[i]->dw_a2 * sqrt_mu / (1 + pow(mu_x, 0.75)); + //else + //{ + // ka = DH_B * 4.73 * sqrt_mu / (1 + pow(mu_x, 0.259)); + // //ka = DH_B * ta1 * sqrt_mu / (1 + pow(mu_x, ta2)); + // //ka = DH_B * ta1 * sqrt_mu / (1 + mu_x / ta2); + //} + //if (s_x[i]->dw_a) + //{ + // ff = exp(-s_x[i]->dw_a * DH_A * l_z * sqrt_mu / (1 + ka)); + // if (print_viscosity && s_x[i]->dw_a_visc) + // ff *= pow((viscos_0 / viscos), s_x[i]->dw_a_visc); + //} + //else + //{ + // ff = exp(-1.6 * DH_A * l_z * sqrt_mu / (1 + ka)); + // //ff = exp(-ta3 * DH_A * l_z * sqrt_mu / (1 + ka)); + //} + //Dw *= ff; + s_ptr = s_x[i]; + if (print_viscosity) + { + a = (s_ptr->dw_a ? s_ptr->dw_a : 1.6); + a2 = (s_ptr->dw_a2 ? s_ptr->dw_a2 : 4.73); + av = (s_ptr->dw_a_visc ? pow((viscos_0 / viscos), s_ptr->dw_a_visc) : 1); + a3 = (s_ptr->dw_a3 ? pow(mu_x, s_ptr->dw_a3) : s_ptr->dw_a_visc ? 1 : pow(mu_x, 0.75)); + } + else + { + a = (s_ptr->dw_a ? s_ptr->dw_a : 1.6); + a2 = (s_ptr->dw_a2 ? s_ptr->dw_a2 : 4.73); + av = 1.0; + a3 = (s_ptr->dw_a3 ? pow(mu_x, s_ptr->dw_a3) : pow(mu_x, 0.75)); + } + ka = DH_B * a2 * sqrt_mu / (1 + a3); + ff = av * exp(-a * DH_A * l_z * sqrt_mu / (1 + ka)); } + Dw *= ff; + s_x[i]->dw_t_SC = s_x[i]->moles / mass_water_aq_x * l_z * l_z * Dw; + SC += s_x[i]->dw_t_SC; } - if (tk_x != 298.15) + SC *= 1e7 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298150.0); + return (SC); + } + else + { + /* the phreeqc equation from Appelo, 2017, CCR 101, 102 with viscosity correction, e.g. for SO4-2 and its complexes: + Dw dw_t a a2 visc -5< a3 <5 + -dw 1.07e-9 236 0.7281 3.452 -0.1515 -3.043 # obsolete + or + Debye-Onsager with (1 + ka)^2 in the denominator, + for the individual ions according to their contribution to mu, with sqrt charge multiplier for B2 and + a in ka corrected by volume (or mu^a2, if a3 = -10), and * (viscos_0 / viscos)^av + Dw dw_t a a2 visc a3 = (0) or >5 + -dw 1.03e-9 -14 4.03 0.8341 1.679 # Li+, ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5 + */ + LDBLE q, sqrt_q, B1, B2, m_plus, m_min, eq_plus, eq_min, eq_dw_plus, eq_dw_min, z_plus, z_min, t1, Dw_SC; + + m_plus = m_min = eq_plus = eq_min = eq_dw_plus = eq_dw_min = z_plus = z_min = 0; + SC = 0; + LDBLE eps_c = eps_r; // Cl concentration corrected eps_r + // average z and Dw for transport numbers t1_0 and t2_0 at zero conc's, and q of the solution... + for (i = 0; i < (int)this->s_x.size(); i++) { - if (s_x[i]->dw_t) + if (s_x[i]->type != AQ && s_x[i]->type != HPLUS) + continue; + if (s_x[i]->lm < min_dif_LM) + continue; + if ((Dw = s_x[i]->dw) == 0) + { + if (correct_Dw) Dw = default_Dw; // or charge based...Dw = l_z > 0 ? 1.6e-9 / l_z : 2e-9 / -l_z; + else continue; + } + if (tk_x != 298.15 && s_x[i]->dw_t) Dw *= exp(s_x[i]->dw_t / tk_x - s_x[i]->dw_t / 298.15); - //else - //{ - // Dw *= exp(ta1 / tk_x - ta1 / 298.15); - //} + Dw *= viscos_0_25 / viscos_0; + s_x[i]->dw_corr = Dw; + + if ((l_z = s_x[i]->z) == 0) + continue; + + if (l_z > 0) + { + m_plus += s_x[i]->moles; + a = s_x[i]->moles * l_z; + eq_plus += a; + eq_dw_plus += a * Dw; + } + else + { + m_min += s_x[i]->moles; + a = s_x[i]->moles * l_z; + eq_min -= a; + eq_dw_min -= a * Dw; + } } - s_x[i]->dw_corr = Dw; + // q = z1 * z2 / ((z2 * t1_0 + z1 * t2_0) * (z1 + z2)); + // z1 = z_plus, z2 = z_min, t1_0 = (eq_dw_plus / m_plus) / (eq_dw_plus / m_plus + eq_dw_min / m_min) + //a = (eq_plus - eq_min) / 2; + //eq_min += a; + //eq_plus -= a; + z_plus = eq_plus / m_plus; // |av_z1| + z_min = eq_min / m_min; // |av_z2| + t1 = (eq_dw_plus / m_plus) / (eq_dw_plus / m_plus + eq_dw_min / m_min); + q = 1 / ((t1 / z_plus + (1 - t1) / z_min) * (z_min + z_plus)); + sqrt_q = sqrt(q); - s_x[i]->dw_t_SC = s_x[i]->moles / mass_water_aq_x * l_z * l_z * Dw; - SC += s_x[i]->dw_t_SC; - } - SC *= 1e7 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298150.0); - /* correct for viscosity dependency... - SC_T = SC_298 * (viscos_298 / viscos_T) - */ - SC *= viscos_0_25 / viscos_0; - return (SC); -} -#ifdef SKIP -/*Debye-Onsager according to Robinson and Stokes, 1954, JACS 75, 1991, - but with sqrt charge multiplier for B2 and mu^ff dependent ka */ -LDBLE q, B1, B2, m_plus, m_min, eq_plus, eq_min, eq_dw_plus, eq_dw_min, Sum_m_dw, z_plus, z_min, t1, t2, Dw_SC; + // B1 = relaxtion, B2 = electrophoresis in ll = (ll0 - B2 * sqrt(mu) / f2(1 + ka)) * (1 - B1 * sqrt(mu) / f1(1 + ka)) + a = 1.60218e-19 * 1.60218e-19 / (6 * pi); + B1 = a / (2 * 8.8542e-12 * eps_r * 1.38066e-23 * tk_x) * q / (1 + sqrt_q) * DH_B * 1e10 * z_plus * z_min; // DH_B is per Angstrom (*1e10) + B2 = a * AVOGADRO / viscos_0 * DH_B * 1e17; // DH_B per Angstrom (*1e10), viscos in mPa.s (*1e3), B2 in cm2 (*1e4) + //B1 = a / (2 * 8.8542e-12 * eps_c * 1.38066e-23 * tk_x) * q / (1 + sqrt_q) * DH_B * 1e10 * z_plus * z_min; // DH_B is per Angstrom (*1e10) + //B2 = a * AVOGADRO / viscos * DH_B * 1e17; // DH_B per Angstrom (*1e10), viscos in mPa.s (*1e3), B2 in cm2 (*1e4) -m_plus = m_min = eq_plus = eq_min = eq_dw_plus = eq_dw_min = Sum_m_dw = z_plus = z_min = 0; -SC = 0; -for (i = 0; i < (int)this->s_x.size(); i++) -{ - if (s_x[i]->type != AQ && s_x[i]->type != HPLUS) - continue; - if ((l_z = s_x[i]->z) == 0) - continue; - if ((lm = s_x[i]->lm) < -9) - continue; - if ((Dw = s_x[i]->dw) == 0) - Dw = 1e-9; - if (s_x[i]->dw_t) - Dw *= exp(s_x[i]->dw_t / tk_x - s_x[i]->dw_t / 298.15); // the viscosity multiplier cancels in q... - if (l_z > 0) - { - m_plus += s_x[i]->moles; - t1 = s_x[i]->moles * l_z; - eq_plus += t1; - eq_dw_plus += t1 * Dw; - Sum_m_dw += s_x[i]->moles * Dw; - } - else - { - m_min += s_x[i]->moles; - t1 = s_x[i]->moles * l_z; - eq_min -= t1; - eq_dw_min -= t1 * Dw; - Sum_m_dw += s_x[i]->moles * Dw; + LDBLE mu_plus, mu_min, lz, ll_SC, v0; + // the + and - contributions to mu, assuming -2, -1, 1, 2 charge numbers... + mu_min = 3 * m_min * (z_min - 1) + m_min; + mu_plus = 3 * m_plus * (z_plus - 1) + m_plus; + + Dw_SC = 1e4 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298.15e3); // for recalculating Dw to ll0 + t1 = calc_solution_volume(); + ll_SC = 0.5e3 * (eq_plus + eq_min) / t1 * mass_water_aq_x / t1; // recalculates ll to SC in uS/cm, with mu in mol/kgw + + for (i = 0; i < (int)this->s_x.size(); i++) + { + if (s_x[i]->type != AQ && s_x[i]->type != HPLUS) + continue; + if ((lz = s_x[i]->z) == 0) + continue; + if (s_x[i]->lm < min_dif_LM) + continue; + if ((Dw = s_x[i]->dw_corr) == 0) + continue; + l_z = fabs(lz); + a3 = s_x[i]->dw_a3; + if (a3 != 0 && a3 > -5.01 && a3 < 4.99) + { + // with the phreeqc equation... + s_ptr = s_x[i]; + a = (s_ptr->dw_a ? s_ptr->dw_a : 1.6); + a2 = (s_ptr->dw_a2 ? s_ptr->dw_a2 : 4.73); + a3 = pow(mu_x, a3); + if (print_viscosity) + av = (s_ptr->dw_a_visc ? pow((viscos_0 / viscos), s_ptr->dw_a_visc) : 1); + else + av = 1.0; + ka = DH_B * a2 * sqrt_mu / (1 + a3); + ff = av * exp(-a * DH_A * l_z * sqrt_mu / (1 + ka)); + + Dw *= ff; + s_x[i]->dw_t_SC = s_x[i]->moles / mass_water_aq_x * l_z * l_z * Dw; + SC += s_x[i]->dw_t_SC * 1e3 * Dw_SC; + } + else + { + // Falkenhagen... + if (!a3) a3 = 10; + a = (s_x[i]->dw_a ? s_x[i]->dw_a : 3.5); + a2 = (s_x[i]->dw_a2);// ? s_x[i]->dw_a2 : 0.5); + av = (s_x[i]->dw_a_visc);// ? s_x[i]->dw_a_visc : 0.8); + if (lz < -0.5/* && lz > -1.5*/) + { + // Mg and Ca give different numbers than H+, Li+, Na+ and K for anions... + t1 = (z_plus - 1); + //a -= a3 / 1000 * l_z * t1; + //a2 += a3 / 1000 * l_z * t1; + a -= 0.126 * l_z * t1; + a2 += 0.126 * l_z * t1; + //av += 0 * t1; + } + Dw *= Dw_SC * l_z; + if (!a2 || !strcmp(s_x[i]->name, "H+")) + t1 = 1; + else + { + v0 = calc_vm0(s_x[i]->name, tc_x, 1, 0); + t1 = 1 + (s_x[i]->rxn_x.logk[vm_tc] - v0); + if (a2 && t1 > 0) + t1 = pow(t1, a2); + //t1 = (t1 <= a3 / 10 ? a3 / 10 : t1); + t1 = (t1 < 1 ? 1 : t1); + } + if (a3 >= 5) + // with the vm correction of a in ka.. + ka = DH_B * a * t1 * sqrt_mu; + else + // with a mu^dw_a2 correction of a.. + ka = DH_B * a * pow((double)mu_x, a2); + + t1 = (Dw - B2 * l_z * sqrt_mu / (1 + ka)) * + (1 - B1 * sqrt_mu / ((1 + ka) * (1 + ka)));// +ka * ka / 6))); // S.cm2/eq / (kgw/L) + //t1 = (Dw - B2 * l_z * sqrt_mu / (1 + ka)) * + // (1 - B1 * sqrt_mu / ((1 + ka) *(1 + ka * sqrt_q + ka * ka / 6))); // S.cm2/eq / (kgw/L) + if (av) + t1 *= pow(viscos_0 / viscos, av); + + // fractional contribution in mu, and correct for charge imbalance + a2 = 2 / (eq_plus + eq_min); + a = (lz > 0 ? mu_plus / (eq_plus * a2) : mu_min / (eq_min * a2)); + t1 *= s_x[i]->moles * l_z * l_z / a; + t1 *= ll_SC; + s_x[i]->dw_t_SC = t1 / (1e3 * Dw_SC); + SC += t1; + } + } + return SC; } } -// Falkenhagen, q = (Sum(z1 * m1*Dw1) + Sum(z2 *m2*Dw2)) / ((Sum(m1*Dw1) + Sum(m2*Dw2))(av_z1 + av_z2)) -z_plus = eq_plus / m_plus; // |av_z1| -z_min = eq_min / m_min; // |av_z2| -q = (eq_dw_plus + eq_dw_min) / (Sum_m_dw * (z_min + z_plus)); -t1 = 1.60218e-19 * 1.60218e-19 / (6 * pi); -B1 = t1 / (2 * 8.8542e-12 * eps_r * 1.38066e-23 * tk_x) * -q / (1 + sqrt(q)) * DH_B * 1e10 * z_plus * z_min; // DH_B is per Angstrom (*1e10) -t2 = viscos_0; // (1 - 0.5) * viscos_0 + 0.5 * viscos; -B2 = t1 * AVOGADRO / t2 * DH_B * 1e17; // DH_B per Angstrom (*1e10), viscos in mPa.s (*1e3), B2 in cm2 (*1e4) - -Dw_SC = viscos_0_25 / t2 * 1e4 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298160.0); -for (i = 0; i < (int)this->s_x.size(); i++) -{ - if (s_x[i]->type != AQ && s_x[i]->type != HPLUS) - continue; - if ((l_z = fabs(s_x[i]->z)) == 0) - continue; - if ((lm = s_x[i]->lm) < -9) - continue; - if ((Dw = s_x[i]->dw) == 0) - Dw = 1e-9; - - Dw *= Dw_SC; - if (s_x[i]->dw_t) - Dw *= exp(s_x[i]->dw_t / tk_x - s_x[i]->dw_t / 298.15); // the viscosity factor is in Dw_SC - a = (s_x[i]->dw_a ? s_x[i]->dw_a : 3.5); - ka = DH_B * a; - if (s_x[i]->dw_a2) - ka *= pow((double)mu_x, s_x[i]->dw_a2); - else - ka *= sqrt_mu; - - // Falkenhagen... - //SC += under(lm) * l_z * l_z * (Dw - B2 * l_z * sqrt_mu / (1 + ka)) * (1 - B1 * sqrt_mu / - // ((1 + ka) * (1 + ka * sqrt(q) + ka * ka / 6))); - - t1 = (Dw - (B1 * Dw + B2) * sqrt_mu / (1 + ka)); - //t1 = (Dw - (B1 * Dw + B2 * sqrt(l_z)) * sqrt_mu / (1 + ka)); - //t1 = (Dw - (B1 * Dw + B2 * l_z * l_z) * sqrt_mu / (1 + ka)); - if (t1 > 0) - SC += under(lm) * l_z * l_z * t1; -} -return (SC * 1e3); -#endif /* VP: Density Start */ /* ---------------------------------------------------------------------- */ @@ -622,11 +634,12 @@ calc_dens(void) V_solutes += s_x[i]->moles * s_x[i]->logk[vm_tc]; } /* If pure water then return rho_0 */ - if (M_T == 0) - return rho_0; - else - return rho_0 * (1e3 + M_T / mass_water_aq_x) / (rho_0 * V_solutes / mass_water_aq_x + 1e3); - + density_x = rho_0; + if (M_T > 0.0) + { + density_x = rho_0 * (1e3 + M_T / mass_water_aq_x) / (rho_0 * V_solutes / mass_water_aq_x + 1e3); + } + return density_x; //M_T /= 1e3; //solution_mass = mass_water_aq_x + M_T; //V_solutes = M_T - rho_0 * V_solutes / 1e3; @@ -769,7 +782,7 @@ calc_logk_s(const char* name) class species* s_ptr; LDBLE lk, l_logk[MAX_LOG_K_INDICES]; - Utilities::strcpy_safe(token, MAX_LENGTH, name); + Utilities::strcpy_safe(token, MAX_LENGTH, name); s_ptr = s_search(token); if (s_ptr != NULL) { @@ -1246,7 +1259,7 @@ calc_t_sc(const char* name) calc_SC(); if (!SC) return (0); - LDBLE t = s_ptr->dw_t_SC * 1e7 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298150.0) * viscos_0_25 / viscos_0; + LDBLE t = s_ptr->dw_t_SC * 1e7 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298150.0); return (t / SC); } return (0); @@ -1387,7 +1400,7 @@ equi_phase_delta(const char* phase_name) /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -equivalent_fraction(const char* name, LDBLE * eq, std::string & elt_name) +equivalent_fraction(const char* name, LDBLE* eq, std::string& elt_name) /* ---------------------------------------------------------------------- */ { class species* s_ptr = s_search(name); @@ -1888,7 +1901,7 @@ saturation_ratio(const char* phase_name) /* ---------------------------------------------------------------------- */ int Phreeqc:: -saturation_index(const char* phase_name, LDBLE * iap, LDBLE * si) +saturation_index(const char* phase_name, LDBLE* iap, LDBLE* si) /* ---------------------------------------------------------------------- */ { class rxn_token* rxn_ptr; @@ -2062,7 +2075,7 @@ sum_match_ss(const char* mytemplate, const char* name) /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -list_ss(std::string ss_name, cxxNameDouble & composition) +list_ss(std::string ss_name, cxxNameDouble& composition) /* ---------------------------------------------------------------------- */ { LDBLE tot = 0; @@ -2711,7 +2724,7 @@ total_mole(const char* total_name) /* ---------------------------------------------------------------------- */ int Phreeqc:: -get_edl_species(cxxSurfaceCharge & charge_ref) +get_edl_species(cxxSurfaceCharge& charge_ref) /* ---------------------------------------------------------------------- */ { @@ -2749,7 +2762,7 @@ get_edl_species(cxxSurfaceCharge & charge_ref) } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -edl_species(const char* surf_name, LDBLE * count, char*** names, LDBLE * *moles, LDBLE * area, LDBLE * thickness) +edl_species(const char* surf_name, LDBLE* count, char*** names, LDBLE** moles, LDBLE* area, LDBLE* thickness) /* ---------------------------------------------------------------------- */ { /* @@ -2806,8 +2819,8 @@ edl_species(const char* surf_name, LDBLE * count, char*** names, LDBLE * *moles, } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -system_total(const char* total_name, LDBLE * count, char*** names, - char*** types, LDBLE * *moles, int isort) +system_total(const char* total_name, LDBLE* count, char*** names, + char*** types, LDBLE** moles, int isort) /* ---------------------------------------------------------------------- */ { /* @@ -2922,7 +2935,7 @@ system_total(const char* total_name, LDBLE * count, char*** names, /* ---------------------------------------------------------------------- */ std::string Phreeqc:: -kinetics_formula(std::string kin_name, cxxNameDouble & stoichiometry) +kinetics_formula(std::string kin_name, cxxNameDouble& stoichiometry) /* ---------------------------------------------------------------------- */ { /* @@ -2973,7 +2986,7 @@ kinetics_formula(std::string kin_name, cxxNameDouble & stoichiometry) } /* ---------------------------------------------------------------------- */ std::string Phreeqc:: -phase_formula(std::string phase_name, cxxNameDouble & stoichiometry) +phase_formula(std::string phase_name, cxxNameDouble& stoichiometry) /* ---------------------------------------------------------------------- */ { /* @@ -2996,7 +3009,7 @@ phase_formula(std::string phase_name, cxxNameDouble & stoichiometry) } /* ---------------------------------------------------------------------- */ std::string Phreeqc:: -species_formula(std::string phase_name, cxxNameDouble & stoichiometry) +species_formula(std::string phase_name, cxxNameDouble& stoichiometry) /* ---------------------------------------------------------------------- */ { /* @@ -3186,13 +3199,13 @@ int Phreeqc:: system_total_aq(void) /* ---------------------------------------------------------------------- */ { - /* - * Provides total moles in system and lists of species/phases in sort order - */ +/* + * Provides total moles in system and lists of species/phases in sort order + */ int i; - /* - * find total moles in aq, surface, and exchange - */ +/* + * find total moles in aq, surface, and exchange + */ for (i = 0; i < (int)this->s_x.size(); i++) { //if (s_x[i]->type != AQ) @@ -3213,13 +3226,13 @@ int Phreeqc:: system_total_ex(void) /* ---------------------------------------------------------------------- */ { - /* - * Provides total moles in system and lists of species/phases in sort order - */ +/* + * Provides total moles in system and lists of species/phases in sort order + */ int i; - /* - * find total moles in aq, surface, and exchange - */ +/* + * find total moles in aq, surface, and exchange + */ for (i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type != EX) @@ -3241,13 +3254,13 @@ int Phreeqc:: system_total_surf(void) /* ---------------------------------------------------------------------- */ { - /* - * Provides total moles in system and lists of species/phases in sort order - */ +/* + * Provides total moles in system and lists of species/phases in sort order + */ int i; - /* - * find total moles in aq, surface, and exchange - */ +/* + * find total moles in aq, surface, and exchange + */ for (i = 0; i < (int)this->s_x.size(); i++) { if (s_x[i]->type != SURF) @@ -3266,20 +3279,20 @@ int Phreeqc:: system_total_gas(void) /* ---------------------------------------------------------------------- */ { - /* - * Provides total moles in system and lists of species/phases in sort order - */ +/* + * Provides total moles in system and lists of species/phases in sort order + */ int i; - /* - * find total in gas phase - */ +/* + * find total in gas phase + */ if (use.Get_gas_phase_ptr() == NULL) return (OK); - cxxGasPhase* gas_phase_ptr = use.Get_gas_phase_ptr(); + cxxGasPhase *gas_phase_ptr = use.Get_gas_phase_ptr(); for (size_t j = 0; j < gas_phase_ptr->Get_gas_comps().size(); j++) { - class phase* phase_ptr = phase_bsearch(gas_phase_ptr->Get_gas_comps()[j].Get_phase_name().c_str(), + class phase *phase_ptr = phase_bsearch(gas_phase_ptr->Get_gas_comps()[j].Get_phase_name().c_str(), &i, FALSE); assert(phase_ptr); size_t count_sys = sys.size(); @@ -3296,24 +3309,24 @@ int Phreeqc:: system_total_equi(void) /* ---------------------------------------------------------------------- */ { - /* - * Equilibrium phases - */ +/* + * Equilibrium phases + */ if (use.Get_pp_assemblage_ptr() == NULL) return (OK); std::map comps = use.Get_pp_assemblage_ptr()->Get_pp_assemblage_comps(); std::map ::iterator it = comps.begin(); - for (; it != comps.end(); it++) + for ( ; it != comps.end(); it++) { - cxxPPassemblageComp* comp_ptr = &(it->second); - int l; - class phase* phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); - size_t count_sys = sys.size(); - sys.resize(count_sys + 1); - sys[count_sys].name = string_duplicate(phase_ptr->name); - sys[count_sys].moles = equi_phase(sys[count_sys].name); - sys_tot += sys[count_sys].moles; - sys[count_sys].type = string_duplicate("equi"); + cxxPPassemblageComp *comp_ptr = &(it->second); + int l; + class phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + size_t count_sys = sys.size(); + sys.resize(count_sys + 1); + sys[count_sys].name = string_duplicate(phase_ptr->name); + sys[count_sys].moles = equi_phase(sys[count_sys].name); + sys_tot += sys[count_sys].moles; + sys[count_sys].type = string_duplicate("equi"); } return (OK); } @@ -3322,21 +3335,21 @@ int Phreeqc:: system_total_kin(void) /* ---------------------------------------------------------------------- */ { - /* - * Equilibrium phases - */ +/* + * Equilibrium phases + */ if (use.Get_kinetics_ptr() == NULL) return (OK); std::vector comps = use.Get_kinetics_ptr()->Get_kinetics_comps(); - for (size_t i = 0; i < comps.size(); i++) + for (size_t i=0 ; i < comps.size(); i++) { - cxxKineticsComp* comp_ptr = &comps[i]; - size_t count_sys = sys.size(); - sys.resize(count_sys + 1); - sys[count_sys].name = string_duplicate(comp_ptr->Get_rate_name().c_str()); - sys[count_sys].moles = comp_ptr->Get_m(); - sys_tot += sys[count_sys].moles; - sys[count_sys].type = string_duplicate("kin"); + cxxKineticsComp *comp_ptr = &comps[i]; + size_t count_sys = sys.size(); + sys.resize(count_sys + 1); + sys[count_sys].name = string_duplicate(comp_ptr->Get_rate_name().c_str()); + sys[count_sys].moles = comp_ptr->Get_m(); + sys_tot += sys[count_sys].moles; + sys[count_sys].type = string_duplicate("kin"); } return (OK); } @@ -3345,24 +3358,24 @@ int Phreeqc:: system_total_ss(void) /* ---------------------------------------------------------------------- */ { - /* - * Provides total moles in system and lists of species/phases in sort order - */ +/* + * Provides total moles in system and lists of species/phases in sort order + */ - /* - * Solid solutions - */ +/* + * Solid solutions + */ if (use.Get_ss_assemblage_ptr() == NULL) return (OK); - std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); + std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); for (size_t k = 0; k < ss_ptrs.size(); k++) { - cxxSS* ss_ptr = ss_ptrs[k]; + cxxSS *ss_ptr = ss_ptrs[k]; for (size_t i = 0; i < ss_ptr->Get_ss_comps().size(); i++) { - cxxSScomp* comp_ptr = &(ss_ptr->Get_ss_comps()[i]); + cxxSScomp *comp_ptr = &(ss_ptr->Get_ss_comps()[i]); int l; - class phase* phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + class phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); size_t count_sys = sys.size(); sys.resize(count_sys + 1); sys[count_sys].name = string_duplicate(phase_ptr->name); @@ -3375,19 +3388,19 @@ system_total_ss(void) } /* ---------------------------------------------------------------------- */ int Phreeqc:: -system_total_elt(const char* total_name) +system_total_elt(const char *total_name) /* ---------------------------------------------------------------------- */ { - /* - * Provides total moles in system and lists of species/phases in sort order - */ +/* + * Provides total moles in system and lists of species/phases in sort order + */ int i, j, k; LDBLE molality, moles_excess, moles_surface, mass_water_surface; char name[MAX_LENGTH]; - /* - * find total moles in aq, surface, and exchange - */ +/* + * find total moles in aq, surface, and exchange + */ for (i = 0; i < (int)this->s_x.size(); i++) { count_elts = 0; @@ -3452,7 +3465,7 @@ system_total_elt(const char* total_name) { if (x[k]->type != SURFACE_CB) continue; - cxxSurfaceCharge* charge_ptr = use.Get_surface_ptr()->Find_charge(x[k]->surface_charge); + cxxSurfaceCharge *charge_ptr = use.Get_surface_ptr()->Find_charge(x[k]->surface_charge); i++; /* * Loop through all surface components, calculate each H2O surface (diffuse layer), @@ -3469,8 +3482,8 @@ system_total_elt(const char* total_name) moles_excess = mass_water_aq_x * molality * (charge_ptr->Get_g_map()[s_x[j]->z].Get_g() * s_x[j]->erm_ddl + - mass_water_surface / mass_water_aq_x * (s_x[j]->erm_ddl - - 1)); + mass_water_surface / mass_water_aq_x * (s_x[j]->erm_ddl - + 1)); moles_surface = mass_water_surface * molality + moles_excess; /* * Accumulate elements in diffuse layer @@ -3498,9 +3511,9 @@ system_total_elt(const char* total_name) } } } - /* - * find total moles in mineral phases - */ +/* + * find total moles in mineral phases + */ if (use.Get_pp_assemblage_in() == TRUE && use.Get_pp_assemblage_ptr() != NULL) { for (i = 0; i < count_unknowns; i++) @@ -3509,7 +3522,7 @@ system_total_elt(const char* total_name) continue; //std::map::iterator it; //it = pp_assemblage_ptr->Get_pp_assemblage_comps().find(x[i]->pp_assemblage_comp_name); - cxxPPassemblageComp* comp_ptr = (cxxPPassemblageComp*)x[i]->pp_assemblage_comp_ptr; + cxxPPassemblageComp * comp_ptr = (cxxPPassemblageComp * ) x[i]->pp_assemblage_comp_ptr; //if (it->second.Get_add_formula().size() > 0) if (comp_ptr->Get_add_formula().size() > 0) continue; @@ -3517,7 +3530,7 @@ system_total_elt(const char* total_name) paren_count = 0; int j; //class phase * phase_ptr = phase_bsearch(x[i]->pp_assemblage_comp_name, &j, FALSE); - class phase* phase_ptr = x[i]->phase; + class phase * phase_ptr = x[i]->phase; add_elt_list(phase_ptr->next_elt, x[i]->moles); elt_list_combine(); for (j = 0; j < count_elts; j++) @@ -3535,26 +3548,26 @@ system_total_elt(const char* total_name) } } } - /* - * Solid solutions - */ +/* + * Solid solutions + */ if (use.Get_ss_assemblage_ptr() != NULL) { - std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); + std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); for (size_t k = 0; k < ss_ptrs.size(); k++) { - cxxSS* ss_ptr = ss_ptrs[k]; + cxxSS *ss_ptr = ss_ptrs[k]; if (ss_ptr->Get_ss_in()) { for (size_t i = 0; i < ss_ptr->Get_ss_comps().size(); i++) { - cxxSScomp* comp_ptr = &(ss_ptr->Get_ss_comps()[i]); + cxxSScomp *comp_ptr = &(ss_ptr->Get_ss_comps()[i]); int l; - class phase* phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + class phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); count_elts = 0; paren_count = 0; add_elt_list(phase_ptr->next_elt, - comp_ptr->Get_moles()); + comp_ptr->Get_moles()); elt_list_combine(); for (j = 0; j < count_elts; j++) { @@ -3574,15 +3587,15 @@ system_total_elt(const char* total_name) } } } - /* - * find total in gas phase - */ +/* + * find total in gas phase + */ if (use.Get_gas_phase_ptr() != NULL) { - cxxGasPhase* gas_phase_ptr = use.Get_gas_phase_ptr(); + cxxGasPhase *gas_phase_ptr = use.Get_gas_phase_ptr(); for (size_t i = 0; i < gas_phase_ptr->Get_gas_comps().size(); i++) { - class phase* phase_ptr = + class phase *phase_ptr = phase_bsearch(gas_phase_ptr->Get_gas_comps()[i].Get_phase_name().c_str(), &k, FALSE); assert(phase_ptr); if (phase_ptr->in == TRUE) @@ -3615,19 +3628,19 @@ system_total_elt(const char* total_name) /* ---------------------------------------------------------------------- */ int Phreeqc:: -system_total_elt_secondary(const char* total_name) +system_total_elt_secondary(const char *total_name) /* ---------------------------------------------------------------------- */ { - /* - * Provides total moles in system and lists of species/phases in sort order - */ +/* + * Provides total moles in system and lists of species/phases in sort order + */ int i, j, k, l; LDBLE molality, moles_excess, moles_surface, mass_water_surface, sum, coef; char name[MAX_LENGTH]; - /* - * find total moles in aq, surface, and exchange - */ +/* + * find total moles in aq, surface, and exchange + */ for (i = 0; i < (int)this->s_x.size(); i++) { count_elts = 0; @@ -3693,7 +3706,7 @@ system_total_elt_secondary(const char* total_name) { if (x[k]->type != SURFACE_CB) continue; - cxxSurfaceCharge* charge_ptr = use.Get_surface_ptr()->Find_charge(x[k]->surface_charge); + cxxSurfaceCharge *charge_ptr = use.Get_surface_ptr()->Find_charge(x[k]->surface_charge); i++; /* * Loop through all surface components, calculate each H2O surface (diffuse layer), @@ -3744,9 +3757,9 @@ system_total_elt_secondary(const char* total_name) } } } - /* - * find total moles in mineral phases - */ +/* + * find total moles in mineral phases + */ if (use.Get_pp_assemblage_in() == TRUE && use.Get_pp_assemblage_ptr() != NULL) { for (i = 0; i < count_unknowns; i++) @@ -3755,7 +3768,7 @@ system_total_elt_secondary(const char* total_name) continue; //std::map::iterator it; //it = pp_assemblage_ptr->Get_pp_assemblage_comps().find(x[i]->pp_assemblage_comp_name); - cxxPPassemblageComp* comp_ptr = (cxxPPassemblageComp*)x[i]->pp_assemblage_comp_ptr; + cxxPPassemblageComp * comp_ptr = (cxxPPassemblageComp * ) x[i]->pp_assemblage_comp_ptr; //if (it->second.Get_add_formula().size() > 0) if (comp_ptr->Get_add_formula().size() > 0) continue; @@ -3763,8 +3776,8 @@ system_total_elt_secondary(const char* total_name) paren_count = 0; int j; //class phase * phase_ptr = phase_bsearch(x[i]->pp_assemblage_comp_name, &j, FALSE); - class phase* phase_ptr = x[i]->phase; - add_elt_list(phase_ptr->next_sys_total, x[i]->moles); + class phase * phase_ptr = x[i]->phase; + add_elt_list(phase_ptr->next_sys_total, x[i]->moles); elt_list_combine(); for (j = 0; j < count_elts; j++) { @@ -3782,26 +3795,26 @@ system_total_elt_secondary(const char* total_name) } } } - /* - * Solid solutions - */ +/* + * Solid solutions + */ if (use.Get_ss_assemblage_ptr() != NULL) { - std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); + std::vector ss_ptrs = use.Get_ss_assemblage_ptr()->Vectorize(); for (size_t i = 0; i < ss_ptrs.size(); i++) { - cxxSS* ss_ptr = ss_ptrs[i]; + cxxSS *ss_ptr = ss_ptrs[i]; if (ss_ptr->Get_ss_in()) { for (size_t k = 0; k < ss_ptr->Get_ss_comps().size(); k++) { - cxxSScomp* comp_ptr = &(ss_ptr->Get_ss_comps()[k]); + cxxSScomp *comp_ptr = &(ss_ptr->Get_ss_comps()[k]); int l; - class phase* phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + class phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); count_elts = 0; paren_count = 0; add_elt_list(phase_ptr->next_sys_total, - comp_ptr->Get_moles()); + comp_ptr->Get_moles()); elt_list_combine(); for (j = 0; j < count_elts; j++) { @@ -3821,15 +3834,15 @@ system_total_elt_secondary(const char* total_name) } } } - /* - * find total in gas phase - */ +/* + * find total in gas phase + */ if (use.Get_gas_phase_ptr() != NULL) { - cxxGasPhase* gas_phase_ptr = use.Get_gas_phase_ptr(); - for (size_t j = 0; j < gas_phase_ptr->Get_gas_comps().size(); j++) + cxxGasPhase *gas_phase_ptr = use.Get_gas_phase_ptr(); + for (size_t j = 0; j < gas_phase_ptr->Get_gas_comps().size(); j++) { - class phase* phase_ptr = + class phase *phase_ptr = phase_bsearch(gas_phase_ptr->Get_gas_comps()[j].Get_phase_name().c_str(), &i, FALSE); assert(phase_ptr); if (phase_ptr->in == TRUE) @@ -3837,13 +3850,13 @@ system_total_elt_secondary(const char* total_name) count_elts = 0; paren_count = 0; add_elt_list(phase_ptr->next_sys_total, - phase_ptr->moles_x); + phase_ptr->moles_x); elt_list_combine(); /* * Look for element */ - for (size_t j1 = 0; j1 < (size_t)count_elts; j1++) + for (size_t j1 = 0; j1 < (size_t) count_elts; j1++) { if (strcmp(elt_list[j1].elt->name, total_name) == 0) { @@ -3867,7 +3880,7 @@ int Phreeqc:: solution_number(void) /* ---------------------------------------------------------------------- */ { - Phreeqc* PhreeqcPtr = this; + Phreeqc * PhreeqcPtr = this; int soln_no = -999; if (PhreeqcPtr->state == TRANSPORT) { @@ -3900,17 +3913,17 @@ solution_number(void) } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -solution_sum_secondary(const char* total_name) +solution_sum_secondary(const char *total_name) /* ---------------------------------------------------------------------- */ { - /* - * Provides total moles in system and lists of species/phases in sort order - */ +/* + * Provides total moles in system and lists of species/phases in sort order + */ int i, j; LDBLE sum; - /* - * find total moles in aq, surface, and exchange - */ +/* + * find total moles in aq, surface, and exchange + */ sum = 0; for (i = 0; i < (int)this->s_x.size(); i++) { @@ -3944,13 +3957,13 @@ solution_sum_secondary(const char* total_name) /* ---------------------------------------------------------------------- */ int Phreeqc:: -system_species_compare(const void* ptr1, const void* ptr2) +system_species_compare(const void *ptr1, const void *ptr2) /* ---------------------------------------------------------------------- */ { - const class system_species* a, * b; + const class system_species *a, *b; - a = (const class system_species*)ptr1; - b = (const class system_species*)ptr2; + a = (const class system_species *) ptr1; + b = (const class system_species *) ptr2; if (a->moles < b->moles) return (1); if (a->moles > b->moles) @@ -3970,21 +3983,21 @@ system_species_compare_name(const void* ptr1, const void* ptr2) /* ---------------------------------------------------------------------- */ int Phreeqc:: -system_total_solids(cxxExchange * exchange_ptr, - cxxPPassemblage * pp_assemblage_ptr, - cxxGasPhase * gas_phase_ptr, - cxxSSassemblage * ss_assemblage_ptr, - cxxSurface * surface_ptr) - /* ---------------------------------------------------------------------- */ +system_total_solids(cxxExchange *exchange_ptr, + cxxPPassemblage *pp_assemblage_ptr, + cxxGasPhase *gas_phase_ptr, + cxxSSassemblage *ss_assemblage_ptr, + cxxSurface *surface_ptr) +/* ---------------------------------------------------------------------- */ { - /* - * Provides total moles in solid phases - */ +/* + * Provides total moles in solid phases + */ count_elts = 0; paren_count = 0; - /* - * find total moles in exchanger - */ +/* + * find total moles in exchanger + */ if (exchange_ptr != NULL) { for (size_t i = 0; i < exchange_ptr->Get_exchange_comps().size(); i++) @@ -4001,17 +4014,17 @@ system_total_solids(cxxExchange * exchange_ptr, } if (ss_assemblage_ptr != NULL) { - std::vector ss_ptrs = ss_assemblage_ptr->Vectorize(); + std::vector ss_ptrs = ss_assemblage_ptr->Vectorize(); for (size_t i = 0; i < ss_ptrs.size(); i++) { - cxxSS* ss_ptr = ss_ptrs[i]; + cxxSS *ss_ptr = ss_ptrs[i]; for (size_t j = 0; j < ss_ptr->Get_ss_comps().size(); j++) { - cxxSScomp* comp_ptr = &(ss_ptr->Get_ss_comps()[j]); + cxxSScomp *comp_ptr = &(ss_ptr->Get_ss_comps()[j]); int l; - class phase* phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); + class phase *phase_ptr = phase_bsearch(comp_ptr->Get_name().c_str(), &l, FALSE); add_elt_list(phase_ptr->next_elt, - comp_ptr->Get_moles()); + comp_ptr->Get_moles()); } } } @@ -4020,7 +4033,7 @@ system_total_solids(cxxExchange * exchange_ptr, for (size_t j = 0; j < gas_phase_ptr->Get_gas_comps().size(); j++) { int i; - class phase* phase_ptr = + class phase *phase_ptr = phase_bsearch(gas_phase_ptr->Get_gas_comps()[j].Get_phase_name().c_str(), &i, FALSE); add_elt_list(phase_ptr->next_elt, gas_phase_ptr->Get_gas_comps()[j].Get_moles()); } @@ -4028,13 +4041,13 @@ system_total_solids(cxxExchange * exchange_ptr, if (pp_assemblage_ptr != NULL) { std::map::iterator it; - it = pp_assemblage_ptr->Get_pp_assemblage_comps().begin(); - for (; it != pp_assemblage_ptr->Get_pp_assemblage_comps().end(); it++) + it = pp_assemblage_ptr->Get_pp_assemblage_comps().begin(); + for ( ; it != pp_assemblage_ptr->Get_pp_assemblage_comps().end(); it++) { int j; - class phase* phase_ptr = phase_bsearch(it->first.c_str(), &j, FALSE); + class phase * phase_ptr = phase_bsearch(it->first.c_str(), &j, FALSE); add_elt_list(phase_ptr->next_elt, - it->second.Get_moles()); + it->second.Get_moles()); } } elt_list_combine(); @@ -4042,14 +4055,14 @@ system_total_solids(cxxExchange * exchange_ptr, } LDBLE Phreeqc:: -iso_value(const char* total_name) +iso_value(const char *total_name) { int j; char token[MAX_LENGTH]; char my_total_name[MAX_LENGTH]; Utilities::strcpy_safe(token, MAX_LENGTH, ""); Utilities::strcpy_safe(my_total_name, MAX_LENGTH, total_name); - while (replace(" ", "_", my_total_name)); + while (replace(" ","_",my_total_name)); for (j = 0; j < (int)isotope_ratio.size(); j++) { if (isotope_ratio[j]->ratio == MISSING) @@ -4059,8 +4072,8 @@ iso_value(const char* total_name) return (isotope_ratio[j]->converted_ratio); } Utilities::strcpy_safe(my_total_name, MAX_LENGTH, total_name); - while (replace("[", "", my_total_name)); - while (replace("]", "", my_total_name)); + while (replace("[","",my_total_name)); + while (replace("]","",my_total_name)); Utilities::strcat_safe(token, MAX_LENGTH, "R("); Utilities::strcat_safe(token, MAX_LENGTH, my_total_name); Utilities::strcat_safe(token, MAX_LENGTH, ")"); @@ -4075,16 +4088,16 @@ iso_value(const char* total_name) return -1000.; } -char* Phreeqc:: -iso_unit(const char* total_name) +char * Phreeqc:: +iso_unit(const char *total_name) { int j; char token[MAX_LENGTH], unit[MAX_LENGTH]; - class master_isotope* master_isotope_ptr; + class master_isotope *master_isotope_ptr; char my_total_name[MAX_LENGTH]; Utilities::strcpy_safe(token, MAX_LENGTH, ""); Utilities::strcpy_safe(my_total_name, MAX_LENGTH, total_name); - while (replace(" ", "_", my_total_name)); + while (replace(" ","_",my_total_name)); Utilities::strcpy_safe(unit, MAX_LENGTH, "unknown"); for (j = 0; j < (int)isotope_ratio.size(); j++) { @@ -4100,8 +4113,8 @@ iso_unit(const char* total_name) return string_duplicate(unit); } Utilities::strcpy_safe(my_total_name, MAX_LENGTH, total_name); - while (replace("[", "", my_total_name)); - while (replace("]", "", my_total_name)); + while (replace("[","",my_total_name)); + while (replace("]","",my_total_name)); Utilities::strcat_safe(token, MAX_LENGTH, "R("); Utilities::strcat_safe(token, MAX_LENGTH, my_total_name); Utilities::strcat_safe(token, MAX_LENGTH, ")"); @@ -4122,13 +4135,13 @@ iso_unit(const char* total_name) } int Phreeqc:: -basic_compile(const char* commands, void** lnbase, void** vbase, void** lpbase) +basic_compile(const char *commands, void **lnbase, void **vbase, void **lpbase) { return this->basic_interpreter->basic_compile(commands, lnbase, vbase, lpbase); } int Phreeqc:: -basic_run(char* commands, void* lnbase, void* vbase, void* lpbase) +basic_run(char *commands, void *lnbase, void *vbase, void *lpbase) { return this->basic_interpreter->basic_run(commands, lnbase, vbase, lpbase); } @@ -4145,7 +4158,7 @@ basic_free(void) #include "BasicCallback.h" double Phreeqc:: -basic_callback(double x1, double x2, const char* str) +basic_callback(double x1, double x2, const char * str) { if (this->basicCallback) { @@ -4158,10 +4171,10 @@ basic_callback(double x1, double x2, const char* str) #ifdef IPHREEQC_NO_FORTRAN_MODULE double Phreeqc:: -basic_callback(double x1, double x2, char* str) +basic_callback(double x1, double x2, char * str) #else double Phreeqc:: -basic_callback(double x1, double x2, const char* str) +basic_callback(double x1, double x2, const char * str) #endif { double local_x1 = x1; @@ -4169,35 +4182,35 @@ basic_callback(double x1, double x2, const char* str) if (basic_callback_ptr != NULL) { - return (*basic_callback_ptr) (x1, x2, (const char*)str, basic_callback_cookie); + return (*basic_callback_ptr) (x1, x2, (const char *) str, basic_callback_cookie); } if (basic_fortran_callback_ptr != NULL) { #ifdef IPHREEQC_NO_FORTRAN_MODULE - return (*basic_fortran_callback_ptr) (&local_x1, &local_x2, str, (int)strlen(str)); + return (*basic_fortran_callback_ptr) (&local_x1, &local_x2, str, (int) strlen(str)); #else - return (*basic_fortran_callback_ptr) (&local_x1, &local_x2, str, (int)strlen(str)); + return (*basic_fortran_callback_ptr) (&local_x1, &local_x2, str, (int) strlen(str)); #endif } return 0; } -void -Phreeqc::register_basic_callback(double (*fcn)(double x1, double x2, const char* str, void* cookie), void* cookie1) +void +Phreeqc::register_basic_callback(double (*fcn)(double x1, double x2, const char *str, void *cookie), void *cookie1) { this->basic_callback_ptr = fcn; this->basic_callback_cookie = cookie1; } #ifdef IPHREEQC_NO_FORTRAN_MODULE -void -Phreeqc::register_fortran_basic_callback(double (*fcn)(double* x1, double* x2, char* str, size_t l)) +void +Phreeqc::register_fortran_basic_callback(double ( *fcn)(double *x1, double *x2, char *str, size_t l)) { this->basic_fortran_callback_ptr = fcn; } #else -void -Phreeqc::register_fortran_basic_callback(double (*fcn)(double* x1, double* x2, const char* str, int l)) +void +Phreeqc::register_fortran_basic_callback(double ( *fcn)(double *x1, double *x2, const char *str, int l)) { this->basic_fortran_callback_ptr = fcn; } diff --git a/class_main.cpp b/class_main.cpp index 03fb3e40..731f0227 100644 --- a/class_main.cpp +++ b/class_main.cpp @@ -299,7 +299,7 @@ write_banner(void) /* version */ #ifdef NPP - len = snprintf(buffer, sizeof(buffer), "* PHREEQC-%s *", "3.7.1"); + len = sprintf(buffer, "* PHREEQC-%s *", "3.7.3"); #else len = snprintf(buffer, sizeof(buffer), "* PHREEQC-%s *", "@VERSION@"); #endif @@ -323,7 +323,7 @@ write_banner(void) /* date */ #ifdef NPP - len = snprintf(buffer, sizeof(buffer), "%s", "March 20, 2023"); + len = sprintf(buffer, "%s", "March 14, 2024, with bug-fixes and new items"); #else len = snprintf(buffer, sizeof(buffer), "%s", "@VER_DATE@"); #endif @@ -507,7 +507,7 @@ process_file_names(int argc, char *argv[], std::istream **db_cookie, output_msg(sformatf(" Input file: %s\n", in_file.c_str())); output_msg(sformatf(" Output file: %s\n", out_file.c_str())); #ifdef NPP - output_msg(sformatf("Using PHREEQC: version 3.7.3, compiled March 20, 2023\n")); + output_msg(sformatf("Using PHREEQC: version 3.7.3, compiled March 14, 2024, with bug-fixes and new items\n")); #endif output_msg(sformatf("Database file: %s\n\n", token.c_str())); #ifdef NPP diff --git a/gases.cpp b/gases.cpp index 9f71089f..bfcc64d7 100644 --- a/gases.cpp +++ b/gases.cpp @@ -606,11 +606,10 @@ calc_PR(void) { phi = B_r * (rz - 1) - log(rz - B) + A / (2.828427 * B) * (B_r - 2.0 * phase_ptr->pr_aa_sum2 / a_aa_sum) * log((rz + 2.41421356 * B) / (rz - 0.41421356 * B)); - //phi = (phi > 4.44 ? 4.44 : (phi < -3 ? -3 : phi)); phi = (phi > 4.44 ? 4.44 : (phi < -4.6 ? -4.6 : phi)); } else - phi = -3.0; // fugacity coefficient = 0.05 + phi = -4.6; // fugacity coefficient = 0.01 phase_ptr->pr_phi = exp(phi); phase_ptr->pr_si_f = phi / LOG_10; // pr_si_f updated // **** diff --git a/global_structures.h b/global_structures.h index c4672cfe..e9d82f9d 100644 --- a/global_structures.h +++ b/global_structures.h @@ -716,9 +716,10 @@ public: dw = 0; // correct Dw for temperature: Dw(TK) = Dw(298.15) * exp(dw_t / TK - dw_t / 298.15) dw_t = 0; - // parms for calc'ng SC = SC0 * exp(-dw_a * z * mu^0.5 / (1 + DH_B * dw_a2 * mu^0.5)) + // parms for calc'ng SC = SC0 * exp(-dw_a * z * mu^0.5 / (1 + DH_B * dw_a2 * mu^0.5) / (1 + mu^dw_a3)) dw_a = 0; dw_a2 = 0; + dw_a3 = 0; dw_a_visc = 0; // viscosity correction of SC dw_t_SC = 0; // contribution to SC, for calc'ng transport number with BASIC dw_t_visc = 0; // contribution to viscosity @@ -781,6 +782,7 @@ public: LDBLE dw_t; LDBLE dw_a; LDBLE dw_a2; + LDBLE dw_a3; LDBLE dw_a_visc; LDBLE dw_t_SC; LDBLE dw_t_visc; diff --git a/integrate.cpp b/integrate.cpp index 8f20cd27..f2123696 100644 --- a/integrate.cpp +++ b/integrate.cpp @@ -733,58 +733,78 @@ calc_all_donnan(void) { bool converge; int cd_m; - LDBLE new_g, f_psi, surf_chrg_eq, psi_avg, f_sinh, A_surf, ratio_aq, ratio_aq_tot, co_ion; - LDBLE new_g2, f_psi2, surf_chrg_eq2, psi_avg2, dif, var1; + LDBLE new_g, f_psi, surf_chrg_eq, psi_avg, f_sinh, A_surf, ratio_aq, ratio_surf_aq, co_ion; + LDBLE new_g2, f_psi2, surf_chrg_eq2, psi_avg2, dif, var1, viscos; + cxxSurface *surf_ptr = use.Get_surface_ptr(); - if (use.Get_surface_ptr() == NULL) + if (surf_ptr == NULL) return (OK); f_sinh = sqrt(8000.0 * eps_r * EPSILON_ZERO * (R_KJ_DEG_MOL * 1000.0) * tk_x * mu_x); - bool only_count = use.Get_surface_ptr()->Get_only_counter_ions(); - bool correct_GC = use.Get_surface_ptr()->Get_correct_GC(); + bool only_count = surf_ptr->Get_only_counter_ions(); + bool correct_D = surf_ptr->Get_correct_D(); /* calculate g for each surface... */ - if (!calculating_deriv || use.Get_surface_ptr()->Get_debye_lengths() || - correct_GC) // DL_pitz && correct_GC + if (!calculating_deriv || surf_ptr->Get_debye_lengths() || + correct_D) // DL_pitz && correct_D initial_surface_water(); - LDBLE nDbl = 1; - if (correct_GC) + // z1, z2, fr_cat2 are the counter-ions, z_1, z_2, fr_ani2 are for co-ions. + LDBLE nDbl = 1, db_lim = 2, f_free, fr_cat2, fr_ani2; + LDBLE z1, z2, z_1, z_2; + z1 = z2 = z_1 = z_2 = f_free = fr_cat2 = fr_ani2 = 0; + /* + * sum eq of each charge number in solution... + */ + std::map::iterator it; + for (it = charge_group_map.begin(); it != charge_group_map.end(); it++) { - if ((nDbl = use.Get_surface_ptr()->Get_debye_lengths()) == 0) + it->second = 0.0; + } + charge_group_map.clear(); + for (int i = 0; i < (int)this->s_x.size(); i++) + { + if (s_x[i]->type > HPLUS) + continue; + charge_group_map[s_x[i]->z] += s_x[i]->z * s_x[i]->moles * s_x[i]->erm_ddl; + } + for (it = charge_group_map.begin(); it != charge_group_map.end(); it++) + { + if (it->first < -1.5) { z_2 += it->second; continue; } + else if (it->first < 0) { z_1 += it->second; continue; } + else if (it->first < 1.5) { z1 += it->second; continue; } + else { z2 += it->second; continue; } + } + if (correct_D) + { + if ((nDbl = surf_ptr->Get_debye_lengths()) == 0) { LDBLE debye_length = f_sinh / (F_C_MOL * mu_x * 4e3); - nDbl = use.Get_surface_ptr()->Get_thickness() / debye_length; - //use.Get_surface_ptr()->Set_debye_lengths(nDbl); + nDbl = surf_ptr->Get_thickness() / debye_length; + } + fr_ani2 = z_2 / (z_1 + z_2); + fr_cat2 = z2 / (z1 + z2); + db_lim = 2 - 0.5 * (fr_cat2 + fr_ani2); + if (nDbl > db_lim) + { + f_free = 1 - db_lim / nDbl; + if (f_free < 0) f_free = 0; } } converge = TRUE; + viscos = 0; for (int j = 0; j < count_unknowns; j++) { if (x[j]->type != SURFACE_CB) continue; - cxxSurfaceCharge *charge_ptr = use.Get_surface_ptr()->Find_charge(x[j]->surface_charge); + cxxSurfaceCharge *charge_ptr = surf_ptr->Find_charge(x[j]->surface_charge); if (debug_diffuse_layer == TRUE) output_msg(sformatf("Calc_all_g, X[%d]\n", j)); - /* - * sum eq of each charge number in solution... - */ - std::map::iterator it; - for (it = charge_group_map.begin(); it != charge_group_map.end(); it++) - { - it->second = 0.0; - } - charge_group_map.clear(); - for (int i = 0; i < (int)this->s_x.size(); i++) - { - if (s_x[i]->type > HPLUS) - continue; - charge_group_map[s_x[i]->z] += s_x[i]->z * s_x[i]->moles * s_x[i]->erm_ddl; - } + /* find surface charge from potential... */ A_surf = charge_ptr->Get_specific_area() * charge_ptr->Get_grams(); - if (use.Get_surface_ptr()->Get_type() == cxxSurface::CD_MUSIC) + if (surf_ptr->Get_type() == cxxSurface::CD_MUSIC) { f_psi = x[(size_t)j + 2]->master[0]->s->la * LOG_10; /* -FPsi/RT */ f_psi = f_psi / 2; @@ -797,7 +817,7 @@ calc_all_donnan(void) } surf_chrg_eq = A_surf * f_sinh * sinh(f_psi) / F_C_MOL; LDBLE lim_seq = 5e3; - if (correct_GC) lim_seq = 5e1; + if (correct_D) lim_seq = 5e3; if (fabs(surf_chrg_eq) > lim_seq) { surf_chrg_eq = (surf_chrg_eq < 0 ? -lim_seq : lim_seq); @@ -816,23 +836,24 @@ calc_all_donnan(void) std::vector zcorr(charge_group_map.size()); std::vector zcorr2(charge_group_map.size()); //LDBLE fD = 0; - psi_avg = calc_psi_avg(charge_ptr, surf_chrg_eq, nDbl, zcorr); - psi_avg2 = calc_psi_avg(charge_ptr, surf_chrg_eq2, nDbl, zcorr2); + psi_avg = calc_psi_avg(charge_ptr, surf_chrg_eq, nDbl, f_free, zcorr); + psi_avg2 = calc_psi_avg(charge_ptr, surf_chrg_eq2, nDbl, f_free, zcorr2); /*output_msg(sformatf( "psi's %e %e %e\n", f_psi, psi_avg, surf_chrg_eq)); */ /* fill in g's */ ratio_aq = charge_ptr->Get_mass_water() / mass_water_aq_x; - ratio_aq_tot = charge_ptr->Get_mass_water() / mass_water_bulk_x; - + ratio_surf_aq = charge_ptr->Get_mass_water() / mass_water_surfaces_x; + //ratio_surf_aq = charge_ptr->Get_mass_water() / mass_water_bulk_x; + if (correct_D) + ratio_aq *= (1 - f_free); int z_iter = 0; for (it = charge_group_map.begin(); it != charge_group_map.end(); it++) { LDBLE z = it->first, z1 = z; co_ion = surf_chrg_eq * z; - if (correct_GC) + if (correct_D) z1 = zcorr[z_iter]; - //z1 *= cgc[0] * pow(z_factor, abs(z)); if (!ratio_aq) { @@ -878,18 +899,18 @@ calc_all_donnan(void) /* save Boltzmann factor * water fraction for MCD calc's in transport */ if (converge) { - if (only_count) - { - if (co_ion > 0) // co-ions are not in the DL + if (only_count && co_ion > 0) // co-ions are not in the DL charge_ptr->Get_z_gMCD_map()[z] = 0; - else // assume that counter-ions have the free water conc for diffusion - charge_ptr->Get_z_gMCD_map()[z] = ratio_aq_tot; - } else - charge_ptr->Get_z_gMCD_map()[z] = (new_g / ratio_aq + 1) * ratio_aq_tot; + { + charge_ptr->Get_z_gMCD_map()[z] = (exp(cd_m * z1 * psi_avg) * (1 - f_free) + f_free) * + ratio_surf_aq;// * s_x[]->moles == mol_DL in charge_ptr + } } z_iter++; } + + charge_ptr->Set_f_free(f_free); if (debug_diffuse_layer == TRUE) { std::string name = x[j]->master[0]->elt->name; @@ -920,8 +941,9 @@ calc_init_donnan(void) /* ---------------------------------------------------------------------- */ { LDBLE f_psi, surf_chrg_eq, psi_avg, f_sinh, A_surf, ratio_aq; + cxxSurface *surf_ptr = use.Get_surface_ptr(); - if (use.Get_surface_ptr() == NULL) + if (surf_ptr == NULL) return (OK); f_sinh = //sqrt(8000.0 * EPSILON * EPSILON_ZERO * (R_KJ_DEG_MOL * 1000.0) * @@ -963,12 +985,12 @@ calc_init_donnan(void) { if (x[j]->type != SURFACE_CB) continue; - cxxSurfaceCharge *charge_ptr = use.Get_surface_ptr()->Find_charge(x[j]->surface_charge); + cxxSurfaceCharge *charge_ptr = surf_ptr->Find_charge(x[j]->surface_charge); charge_ptr->Get_g_map().clear(); /* find surface charge from potential... */ A_surf = charge_ptr->Get_specific_area() * charge_ptr->Get_grams(); - if (use.Get_surface_ptr()->Get_type() == cxxSurface::CD_MUSIC) + if (surf_ptr->Get_type() == cxxSurface::CD_MUSIC) { f_psi = x[(size_t)j + 2]->master[0]->s->la * LOG_10; /* -FPsi/RT */ f_psi = f_psi / 2; @@ -978,7 +1000,7 @@ calc_init_donnan(void) surf_chrg_eq = A_surf * f_sinh * sinh(f_psi) / F_C_MOL; /* find psi_avg that matches surface charge... */ - psi_avg = calc_psi_avg(charge_ptr, 0 * surf_chrg_eq, 0, zcorr); + psi_avg = calc_psi_avg(charge_ptr, 0 * surf_chrg_eq, 0, 0, zcorr); /* fill in g's */ ratio_aq = charge_ptr->Get_mass_water() / mass_water_aq_x; @@ -991,7 +1013,7 @@ calc_init_donnan(void) charge_ptr->Get_g_map()[z].Set_g(ratio_aq * (exp(-z * psi_avg) - 1)); - if (use.Get_surface_ptr()->Get_only_counter_ions() + if (surf_ptr->Get_only_counter_ions() && ((surf_chrg_eq < 0 && z < 0) || (surf_chrg_eq > 0 && z > 0))) charge_ptr->Get_g_map()[z].Set_g(-ratio_aq); @@ -1038,45 +1060,84 @@ calc_init_donnan(void) } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -calc_psi_avg(cxxSurfaceCharge *charge_ptr, LDBLE surf_chrg_eq, LDBLE nDbl, std::vector &zcorr) +calc_psi_avg(cxxSurfaceCharge *charge_ptr, LDBLE surf_chrg_eq, LDBLE nDbl, LDBLE f_free, std::vector &zcorr) /* ---------------------------------------------------------------------- */ { /* * calculate the average (F * Psi / RT) that lets the DL charge counter the surface charge */ - LDBLE fd, fd1, p, /*psi_DL, */p_psi = R_KJ_DEG_MOL * tk_x / F_KJ_V_EQ, temp, ratio_aq, z, z1, z1_c, eq, co_ion, sum_counter, sum_co; - + LDBLE fd, fd1, p, /*psi_DL, */p_psi = R_KJ_DEG_MOL * tk_x / F_KJ_V_EQ, temp, ratio_aq, z, Z1, Z1_c, eq, co_ion, sum_counter, sum_co; + LDBLE z1, z2, z_1, z_2; ratio_aq = charge_ptr->Get_mass_water() / mass_water_aq_x; p = 0; if (surf_chrg_eq == 0 || ratio_aq == 0) return (0.0); else if (surf_chrg_eq < 0) - p = -0.5 * log(-surf_chrg_eq * ratio_aq / mu_x + 1); + p = -0.5 * log(-surf_chrg_eq * ratio_aq * (1 - f_free) / mu_x + 1); else if (surf_chrg_eq > 0) - p = 0.5 * log(surf_chrg_eq * ratio_aq / mu_x + 1); + p = 0.5 * log(surf_chrg_eq * ratio_aq * (1 - f_free) / mu_x + 1); /* * Optimize p in SS{s_x[i]->moles * z_i * g(p)} = -surf_chrg_eq - * g(p) = exp(-p * z_i) * ratio_aq + * g(p) = exp(-p * z_i) * ratio_aq * (1 - f_free) * Elsewhere in PHREEQC, g is the excess, after subtraction of conc's for p = 0: * g(p) = (exp(-p *z_i) - 1) * ratio_aq - * with correct_GC true: - * correct ions to better match the integrated concentrations: - z == 1? z *= 0.285 cgc[6] - z == 2? z *= 0.372 cgc[7] - z == -1? z *= cgc[0] * (mu_x**( cgc[1] * nDbl**cgc[2] * (abs(surf_chrg_eq / A_surf / 1e-6)**cgc[3] * I ** cgc[4]) - z == -2? z *= cgc[0] * (mu_x**(cgc[5] * cgc[1] * nDbl**cgc[2] * (abs(surf_chrg_eq / A_surf / 1e-6)**cgc[3] * I ** cgc[4]) + * with correct_D true and f_free > 0: + c_edl = c_free * (f_free + (1 - f_free) * exp(-p * z_i)) + * with correct_D true and f_free == 0: + * correct ions to better match the integrated PB concentrations: + Gamma = abs(surf_chrg_eq / A_surf / 1e-6) + a = cgc[1] * nDbl**cgc[2] + b = Gamma**cgc[3] / abs(log10(I)) + counter_ions... + z == 1? z1 = cgc[0] * I**(a * b) + z == 2? z2 = 2 * cgc[4] * I**(cgc[5] * a * b) + co_ions... + c = cgc[7] * nDbl**cgc[8] * Gamma**cgc[9] + z == -1? z_1 = -cgc[6] * I**(c) + z == -2? z_2 = -2 * cgc[10] * I**(c * cgc[11]) + c_edl = c_free * exp(-p * z_i) */ - cxxSurface *surf_p = use.Get_surface_ptr(); - bool correct_GC = surf_p->Get_correct_GC(), local_correct_GC = correct_GC; - bool only_count = surf_p->Get_only_counter_ions(); - LDBLE Gamma = fabs(surf_chrg_eq) / (charge_ptr->Get_specific_area() * charge_ptr->Get_grams()) / 1e-6, - cgc[10] = { 0.36, 0.1721, 0.798, 0.287, 0.1457, 1.2, 0.285, 0.372 }; - - if (!surf_p->Donnan_factors.empty()) - std::copy(surf_p->Donnan_factors.begin(), surf_p->Donnan_factors.end(), cgc); - - cgc[1] *= pow(nDbl, cgc[2]) * pow(Gamma, cgc[3]) * pow(mu_x, cgc[4]); + cxxSurface *surf_ptr = use.Get_surface_ptr(); + bool correct_D = surf_ptr->Get_correct_D(), local_correct_D = correct_D; + bool only_count = surf_ptr->Get_only_counter_ions(); + LDBLE Gamma, cgc[12] = { 0.3805, -0.0106, 1.96, 0.812, + 0.395, 2.13, + 0.380, 0.0408, 0.799, 0.594, + 0.373, 1.181 }; + if (correct_D) + { + if (f_free) + { + z1 = z2 = z_1 = z_2 = 1; + } + else + { + if (!surf_ptr->Donnan_factors.empty()) + { + std::copy(std::begin(surf_ptr->Donnan_factors), std::end(surf_ptr->Donnan_factors), cgc); + z1 = cgc[0]; + z2 = cgc[1]; + z_1 = cgc[2]; + z_2 = cgc[3]; + } + else + { + Gamma = fabs(surf_chrg_eq) / (charge_ptr->Get_specific_area() * charge_ptr->Get_grams()) / 1e-6; + LDBLE a = cgc[1] * pow(nDbl, cgc[2]), + b = pow(Gamma, cgc[3]) / abs(log10(mu_x)); + // counter_ions... + z1 = cgc[0] * pow(mu_x, (a * b)); + z2 = cgc[4] * pow(mu_x, (cgc[5] * a * b)); + if (z1 > 1) z1 = 1; + if (z2 > 1) z2 = 1; + // co_ions... + LDBLE c = cgc[7] * pow(nDbl, cgc[8]) * pow(Gamma, cgc[9]); + z_1 = cgc[6] * pow(mu_x, c); + z_2 = cgc[10] * pow(mu_x, (c * cgc[11])); + } + } + } int l_iter = 0, z_iter; sum_co = sum_counter = 0; @@ -1085,16 +1146,16 @@ calc_psi_avg(cxxSurfaceCharge *charge_ptr, LDBLE surf_chrg_eq, LDBLE nDbl, std:: fd = surf_chrg_eq; fd1 = 0.0; z_iter = 0; - if (l_iter == 1 && local_correct_GC && fabs(sum_counter) < fabs(sum_co)) + if (l_iter == 1 && local_correct_D && fabs(sum_counter) < fabs(sum_co)) { - local_correct_GC = false; + local_correct_D = false; l_iter = 0; } std::map::iterator it; for (it = charge_group_map.begin(); it != charge_group_map.end(); it++) { z = it->first; - z1 = z; + Z1 = z; if (l_iter == 0) zcorr[z_iter] = z; co_ion = surf_chrg_eq * z; if (!z || (only_count && co_ion > 0)) @@ -1102,30 +1163,30 @@ calc_psi_avg(cxxSurfaceCharge *charge_ptr, LDBLE surf_chrg_eq, LDBLE nDbl, std:: z_iter++; continue; } - if (nDbl && local_correct_GC) + if (nDbl && local_correct_D) { /*psi_DL = fabs(p * p_psi);*/ if (co_ion < 0) {//counter-ion - if (fabs(z) > 1) temp = cgc[7]; - else temp = cgc[6]; + if (fabs(z) > 1.5) temp = z2; + else temp = z1; sum_counter += z * temp; } else {// co-ion - if (fabs(z) > 1) temp = cgc[0] * pow(mu_x, cgc[1] * cgc[5]); - else temp = cgc[0] * pow(mu_x, cgc[1]); + if (fabs(z) > 1.5) temp = z_2; + else temp = z_1; sum_co += z * temp; } zcorr[z_iter] = z * temp; } - z1 = zcorr[z_iter]; + Z1 = zcorr[z_iter]; eq = it->second; - temp = exp(-z1 * p) * ratio_aq; + temp = exp(-Z1 * p) * ratio_aq * (1 - f_free); fd += eq * temp; - fd1 -= z1 * eq * temp; - if (z == 1) z1_c = z1; + fd1 -= Z1 * eq * temp; + if (z == 1) Z1_c = Z1; z_iter++; } fd /= -fd1; @@ -1152,7 +1213,7 @@ calc_psi_avg(cxxSurfaceCharge *charge_ptr, LDBLE surf_chrg_eq, LDBLE nDbl, std:: if (debug_diffuse_layer == TRUE) output_msg(sformatf( "iter in calc_psi_avg = %d. g(+1) = %8f, surface charge = %12.4e, psi_DL = %12.3e V.\n", - l_iter, (double)(exp(-p) - 1), (double)surf_chrg_eq, (double)(p * z1_c * p_psi))); + l_iter, (double)(exp(-p) - 1), (double)surf_chrg_eq, (double)(p * Z1_c * p_psi))); return (p); } diff --git a/kinetics.cpp b/kinetics.cpp index 0472265c..d1158e2f 100644 --- a/kinetics.cpp +++ b/kinetics.cpp @@ -1579,7 +1579,10 @@ set_and_run(int i, int use_mix, int use_kinetics, int nsaver, converge = model(); } sum_species(); - viscosity(); + viscos = viscosity(NULL); + use.Get_solution_ptr()->Set_viscosity(viscos); + if (use.Get_surface_ptr() != NULL && dl_type_x != cxxSurface::NO_DL) + use.Get_surface_ptr()->Set_DDL_viscosity(viscosity(use.Get_surface_ptr())); return (converge); } diff --git a/mainsubs.cpp b/mainsubs.cpp index baa20e71..e57c6389 100644 --- a/mainsubs.cpp +++ b/mainsubs.cpp @@ -434,7 +434,10 @@ initial_solutions(int print) diagonal_scale = (diag) ? TRUE : FALSE; converge1 = check_residuals(); sum_species(); - viscosity(); + viscos = viscosity(NULL); + use.Get_solution_ptr()->Set_viscosity(viscos); + if (use.Get_surface_ptr() != NULL && dl_type_x != cxxSurface::NO_DL) + use.Get_surface_ptr()->Set_DDL_viscosity(viscosity(use.Get_surface_ptr())); add_isotopes(solution_ref); punch_all(); print_all(); @@ -537,7 +540,6 @@ initial_exchangers(int print) converge = model(); converge1 = check_residuals(); sum_species(); - viscosity(); species_list_sort(); print_exchange(); if (pr.user_print) @@ -1260,12 +1262,12 @@ xsolution_save(int n_user) temp_solution.Set_pe(solution_pe_x); temp_solution.Set_mu(mu_x); temp_solution.Set_ah2o(ah2o_x); - //temp_solution.Set_density(density_x); - temp_solution.Set_density(calc_dens()); - temp_solution.Set_viscosity(this->viscos); + // the subroutine is called at the start of a new simulation, and the following 2 go wrong since s_x is not updated + temp_solution.Set_density(density_x); + temp_solution.Set_viscosity(viscos); temp_solution.Set_total_h(total_h_x); temp_solution.Set_total_o(total_o_x); - temp_solution.Set_cb(cb_x); /* cb_x does not include surface charge sfter sum_species */ + temp_solution.Set_cb(cb_x); /* cb_x does not include surface charge after sum_species */ /* does include surface charge after step */ temp_solution.Set_mass_water(mass_water_aq_x); temp_solution.Set_total_alkalinity(total_alkalinity); diff --git a/model.cpp b/model.cpp index 60e077fb..863ff8d0 100644 --- a/model.cpp +++ b/model.cpp @@ -4891,7 +4891,6 @@ sum_species(void) solution_pe_x = -s_eminus->la; ah2o_x = exp(s_h2o->la * LOG_10); - density_x = 1.0; if (s_o2 != NULL) s_o2->moles = under(s_o2->lm) * mass_water_aq_x; if (s_h2 != NULL) diff --git a/prep.cpp b/prep.cpp index a8349d3e..e08cd5f8 100644 --- a/prep.cpp +++ b/prep.cpp @@ -3996,17 +3996,16 @@ calc_PR(std::vector phase_ptrs, LDBLE P, LDBLE TK, LDBLE V_m) { phi = B_r * (rz - 1) - log(rz - B) + A / (2.828427 * B) * (B_r - 2.0 * phase_ptr->pr_aa_sum2 / a_aa_sum) * log((rz + 2.41421356 * B) / (rz - 0.41421356 * B)); - //phi = (phi > 4.44 ? 4.44 : (phi < -3 ? -3 : phi)); phi = (phi > 4.44 ? 4.44 : (phi < -4.6 ? -4.6 : phi)); //if (phi > 4.44) // phi = 4.44; } else - phi = -3.0; // fugacity coefficient = 0.05 - //if (/*!strcmp(phase_ptr->name, "H2O(g)") && */phi < -3) + phi = -4.6; // fugacity coefficient = 0.01 + //if (!strcmp(phase_ptr->name, "H2O(g)") && phi < -4.6) //{ //// avoid such phi... - // phi = -3; + // phi = -4.6; //} phase_ptr->pr_phi = exp(phi); phase_ptr->pr_si_f = phi / LOG_10; @@ -5404,6 +5403,53 @@ calc_vm(LDBLE tc, LDBLE pa) return OK; } +LDBLE Phreeqc::calc_vm0(const char * species_name, LDBLE tc, LDBLE pa, LDBLE mu) +{ + /* + * Calculate molar volume of an aqueous species at tc, pa and mu + */ + if (llnl_temp.size() > 0) return OK; + class species *s_ptr; + LDBLE g = 0; + s_ptr = s_search(species_name); + if (s_ptr == s_h2o) + return 18.016 / rho_0; + if (s_ptr != NULL && s_ptr->in != FALSE && s_ptr->type < EMINUS && s_ptr->logk[vma1]) + { + LDBLE pb_s = 2600. + pa * 1.01325, TK_s = tc + 45.15, sqrt_mu = sqrt(mu); + /* supcrt volume at I = 0... */ + g = s_ptr->logk[vma1] + s_ptr->logk[vma2] / pb_s + + (s_ptr->logk[vma3] + s_ptr->logk[vma4] / pb_s) / TK_s - + s_ptr->logk[wref] * QBrn; + if (s_ptr->z) + { + /* the ionic strength term * I^0.5... */ + if (s_ptr->logk[b_Av] < 1e-5) + g += s_ptr->z * s_ptr->z * 0.5 * DH_Av * sqrt_mu; + else + { + /* limit the Debye-Hueckel slope by b... */ + /* pitzer... */ + //s_ptr->rxn_x.logk[vm_tc] += s_ptr->z * s_ptr->z * 0.5 * DH_Av * + // log(1 + s_ptr->logk[b_Av] * sqrt(mu_x)) / s_ptr->logk[b_Av]; + /* extended DH... */ + g += s_ptr->z * s_ptr->z * 0.5 * DH_Av * + sqrt_mu / (1 + s_ptr->logk[b_Av] * DH_B * sqrt_mu); + } + /* plus the volume terms * I... */ + if (s_ptr->logk[vmi1] != 0.0 || s_ptr->logk[vmi2] != 0.0 || s_ptr->logk[vmi3] != 0.0) + { + LDBLE bi = s_ptr->logk[vmi1] + s_ptr->logk[vmi2] / TK_s + s_ptr->logk[vmi3] * TK_s; + if (s_ptr->logk[vmi4] == 1.0) + g += bi * mu; + else + g += bi * pow(mu, s_ptr->logk[vmi4]); + } + } + } + return g; +} + /* ---------------------------------------------------------------------- */ int Phreeqc:: k_temp(LDBLE tc, LDBLE pa) /* pa - pressure in atm */ @@ -5419,7 +5465,7 @@ k_temp(LDBLE tc, LDBLE pa) /* pa - pressure in atm */ if (pa != current_pa) goto proceed; if (fabs(mu_x - current_mu) > 1e-3 * mu_x) goto proceed; if (mu_terms_in_logk) goto proceed; - return OK; + return OK; proceed: diff --git a/print.cpp b/print.cpp index e372db9b..325e1243 100644 --- a/print.cpp +++ b/print.cpp @@ -270,6 +270,16 @@ print_diffuse_layer(cxxSurfaceCharge *charge_ptr) output_msg(sformatf( "\tWater in diffuse layer: %8.3e kg, %4.1f%% of total DDL-water.\n", (double) charge_ptr->Get_mass_water(), (double) d)); + if (charge_ptr->Get_DDL_viscosity()) + { + if (d == 100) + output_msg(sformatf( + "\t\t viscosity: %7.5f mPa s.\n", (double)charge_ptr->Get_DDL_viscosity())); + else + output_msg(sformatf( + "\t\t viscosity: %7.5f mPa s for this DDL water. (%7.5f mPa s for total DDL-water.)\n", (double)charge_ptr->Get_DDL_viscosity(), (double)use.Get_surface_ptr()->Get_DDL_viscosity())); + } + if (use.Get_surface_ptr()->Get_debye_lengths() > 0 && d > 0) { sum_surfs = 0.0; @@ -279,8 +289,7 @@ print_diffuse_layer(cxxSurfaceCharge *charge_ptr) continue; cxxSurfaceCharge * charge_ptr_search = use.Get_surface_ptr()->Find_charge(x[j]->surface_charge); sum_surfs += - charge_ptr_search->Get_specific_area() * - charge_ptr_search->Get_grams(); + charge_ptr_search->Get_specific_area() * charge_ptr_search->Get_grams(); } r = 0.002 * mass_water_bulk_x / sum_surfs; output_msg(sformatf( @@ -304,10 +313,8 @@ print_diffuse_layer(cxxSurfaceCharge *charge_ptr) if (s_x[j]->type > HPLUS) continue; molality = under(s_x[j]->lm); - moles_excess = mass_water_aq_x * molality * (charge_ptr->Get_g_map()[s_x[j]->z].Get_g() * - s_x[j]->erm_ddl + - mass_water_surface / - mass_water_aq_x * (s_x[j]->erm_ddl - 1)); + moles_excess = mass_water_aq_x * molality * (charge_ptr->Get_g_map()[s_x[j]->z].Get_g() * s_x[j]->erm_ddl + + mass_water_surface / mass_water_aq_x * (s_x[j]->erm_ddl - 1)); moles_surface = mass_water_surface * molality + moles_excess; if (debug_diffuse_layer == TRUE) { @@ -336,17 +343,26 @@ print_diffuse_layer(cxxSurfaceCharge *charge_ptr) } else { - LDBLE exp_g = charge_ptr->Get_g_map()[1].Get_g() * mass_water_aq_x / mass_water_surface + 1; + LDBLE exp_g = charge_ptr->Get_g_map()[1].Get_g() * mass_water_aq_x / ((1 - charge_ptr->Get_f_free()) * mass_water_surface) + 1; LDBLE psi_DL = -log(exp_g) * R_KJ_DEG_MOL * tk_x / F_KJ_V_EQ; - if (use.Get_surface_ptr()->Get_correct_GC()) + if (use.Get_surface_ptr()->Get_correct_D()) + { output_msg(sformatf( "\n\tTotal moles in diffuse layer (excluding water), Donnan corrected to match Poisson-Boltzmann.")); + output_msg(sformatf( + "\n\tDonnan Layer potential, psi_DL = %10.3e V, for (1 - f_free) of DL water = %10.3e kg (f_free = %5.3f).\n\tBoltzmann factor, exp(-psi_DL * z * z_corr * F / RT) = %9.3e (= c_DL / c_free if z is +1)", + psi_DL, (1 - charge_ptr->Get_f_free()) * mass_water_surface, charge_ptr->Get_f_free(), exp_g)); + output_msg(sformatf( + "\n\t\tThus: Moles of Na+ = (c_DL * (1 - f_free) + f_free) * c_free * kg DDL-water\n\n")); + } else + { output_msg(sformatf( "\n\tTotal moles in diffuse layer (excluding water), Donnan calculation.")); - output_msg(sformatf( - "\n\tDonnan Layer potential, psi_DL = %10.3e V.\n\tBoltzmann factor, exp(-psi_DL * F / RT) = %9.3e (= c_DL / c_free if z is +1).\n\n", - psi_DL, exp_g)); + output_msg(sformatf( + "\n\tDonnan Layer potential, psi_DL = %10.3e V.\n\tBoltzmann factor, exp(-psi_DL * F / RT) = %9.3e (= c_DL / c_free if z is +1).\n\n", + psi_DL, exp_g)); + } } output_msg(sformatf("\tElement \t Moles\n")); for (j = 0; j < count_elts; j++) diff --git a/read.cpp b/read.cpp index 2ac1bea7..a5eed844 100644 --- a/read.cpp +++ b/read.cpp @@ -5499,9 +5499,17 @@ read_species(void) input_error++; break; } - s_ptr->dw_t = 0; s_ptr->dw_a = 0; s_ptr->dw_a2 = 0; s_ptr->dw_a_visc = 0; - i = sscanf(next_char, SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT, &s_ptr->dw, &s_ptr->dw_t, - &s_ptr->dw_a, &s_ptr->dw_a2, &s_ptr->dw_a_visc); + s_ptr->dw_t = 0; s_ptr->dw_a = 0; s_ptr->dw_a2 = 0; s_ptr->dw_a3 = 0; s_ptr->dw_a_visc = 0; + i = sscanf(next_char, SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT, + &s_ptr->dw, &s_ptr->dw_t, &s_ptr->dw_a, &s_ptr->dw_a2, &s_ptr->dw_a_visc, &s_ptr->dw_a3); + if (i < 1) + { + input_error++; + error_msg("Expecting numeric values for the diffusion coefficient, its temperature dependence, and coefficients for the SC calculation.", + CONTINUE); + return (ERROR); + } + s_ptr->dw_corr = s_ptr->dw; opt_save = OPTION_DEFAULT; break; @@ -6414,7 +6422,7 @@ read_surface(void) if (thickness != 0) { error_msg - ("You must enter EITHER thickness OR Debye lengths (1/k),\n and relative DDL viscosity, DDL limit.\nCorrect is (for example): -donnan 1e-8 viscosity 0.5 limit 0.9 correct_GC true\n or (default values): -donnan debye_lengths 1 viscosity 1 limit 0.8 correct_GC false", + ("You must enter EITHER thickness OR Debye lengths (1/k),\n and relative DDL viscosity, DDL limit.\nCorrect is (for example): -donnan 1e-8 viscosity 0.5 limit 0.9 correct_D true\n or (default values): -donnan debye_lengths 1 viscosity 1 limit 0.8 correct_D false", CONTINUE); error_msg(line_save, CONTINUE); input_error++; @@ -6442,12 +6450,12 @@ read_surface(void) copy_token(token1, &next_char); if (token1[0] == 'T' || token1[0] == 't' || token1[0] == 'F' || token1[0] == 'f') { - temp_surface.Set_correct_GC(get_true_false(token1.c_str(), TRUE) == TRUE); + temp_surface.Set_correct_D(get_true_false(token1.c_str(), TRUE) == TRUE); continue; } else { error_msg - ("Expected True or False for correct_GC (which brings co-ion concentrations closer to their integrated double layer value).", + ("Expected True or False for correct_D (which brings co-ion concentrations closer to their integrated double layer value).", CONTINUE); error_msg(line_save, CONTINUE); input_error++; @@ -6460,9 +6468,19 @@ read_surface(void) if (j == DIGIT) { (void)sscanf(token1.c_str(), SCANFORMAT, &dummy); + if(dummy == 0) + { + dummy = 1; temp_surface.Calc_DDL_viscosity(true); + } temp_surface.Set_DDL_viscosity(dummy); continue; } + else if (token1[0] == 'C' || token1[0] == 'c' ) + { + temp_surface.Calc_DDL_viscosity(true); + temp_surface.Set_DDL_viscosity(1.0); + continue; + } else if (j != EMPTY) { error_msg @@ -6601,10 +6619,10 @@ read_surface(void) i1++; continue; } - else if (i != EMPTY || i1 > 8) + else if (i != EMPTY || i1 > 4) { error_msg - ("Expected at most 8 numbers for the Donnan_factors for co- and counter-ions,\n z *= cgc[0] * (mu_x**(cgc[1] * nDbl**cgc[2] * (abs(surf_chrg_eq / A_surf / 1e-6)**cgc[3] * mu_x**(cgc[4])", + ("Expected 4 numbers for the Donnan_factors of single and double-charged coounter- and co-ions,\n z1, z2, z_1, z_2", CONTINUE); error_msg(line_save, CONTINUE); input_error++; diff --git a/spread.cpp b/spread.cpp index 1f442138..d2a385c3 100644 --- a/spread.cpp +++ b/spread.cpp @@ -162,8 +162,6 @@ read_solution_spread(void) { case 0: /* temp */ case 1: /* temperature */ - case 2: /* dens */ - case 3: /* density */ case 10: /* water */ if ((count == 2 || count == 3) && num == TRUE) { @@ -174,6 +172,18 @@ read_solution_spread(void) opt = OPTION_DEFAULT; } break; + case 2: /* dens */ + case 3: /* density */ + copy_token(token, &cptr); + if (count == 2 || count == 3 && (num == TRUE || token[0] == 'c' || token[0] == 'C')) + { + /* opt = opt; */ + } + else + { + opt = OPTION_DEFAULT; + } + break; case 6: /* ph */ case 7: /* pe */ if ((count == 2 || count == 3 || count == 4) @@ -285,33 +295,35 @@ read_solution_spread(void) break; case 2: /* density */ case 3: - //sscanf(next_char, SCANFORMAT, &(soln_defaults.density)); { - copy_token(token, &next_char); - if (sscanf(token.c_str(), SCANFORMAT, &dummy) != 1) - { - error_msg("Expecting numeric value for density.", PHRQ_io::OT_CONTINUE); - error_msg(line_save, PHRQ_io::OT_CONTINUE); - input_error++; - } - else - { - soln_defaults.density = dummy; - } int j = copy_token(token, &next_char); - if (j != EMPTY) + if (j == DIGIT) { - if (token[0] != 'c' && token[0] != 'C') + if (sscanf(token.c_str(), SCANFORMAT, &dummy) != 1) { - error_msg("Only option following density is c[alculate].", PHRQ_io::OT_CONTINUE); + error_msg("Expecting numeric value for density.", PHRQ_io::OT_CONTINUE); error_msg(line_save, PHRQ_io::OT_CONTINUE); input_error++; } else { - soln_defaults.calc_density = true; + soln_defaults.density = dummy; + copy_token(token, &next_char); + if (token[0] == 'c' || token[0] == 'C') + soln_defaults.calc_density = true; } } + else if (j != EMPTY) + { + if (token[0] != 'c' && token[0] != 'C') + { + error_msg("Options following density are numeric value or c[alculate].", PHRQ_io::OT_CONTINUE); + error_msg(line_save, PHRQ_io::OT_CONTINUE); + input_error++; + } + else + soln_defaults.calc_density = true; + } } break; case 4: /* units */ diff --git a/step.cpp b/step.cpp index bd960b36..be02a1f4 100644 --- a/step.cpp +++ b/step.cpp @@ -327,6 +327,7 @@ xsolution_zero(void) solution_pe_x = 0.0; mu_x = 0.0; ah2o_x = 0.0; + viscos = 0.0; density_x = 0.0; total_h_x = 0.0; total_o_x = 0.0; @@ -379,6 +380,7 @@ add_solution(cxxSolution *solution_ptr, LDBLE extensive, LDBLE intensive) solution_pe_x += solution_ptr->Get_pe() * intensive; mu_x += solution_ptr->Get_mu() * intensive; ah2o_x += solution_ptr->Get_ah2o() * intensive; + viscos += solution_ptr->Get_viscosity() * intensive; density_x += solution_ptr->Get_density() * intensive; total_h_x += solution_ptr->Get_total_h() * extensive; diff --git a/structures.cpp b/structures.cpp index 1580f0ae..618df125 100644 --- a/structures.cpp +++ b/structures.cpp @@ -1561,6 +1561,7 @@ s_init(class species *s_ptr) s_ptr->dw_t = 0.0; s_ptr->dw_a = 0.0; s_ptr->dw_a2 = 0.0; + s_ptr->dw_a3 = 0.0; s_ptr->erm_ddl = 1.0; s_ptr->equiv = 0; s_ptr->alk = 0.0; diff --git a/transport.cpp b/transport.cpp index 0bd3d649..31860db9 100644 --- a/transport.cpp +++ b/transport.cpp @@ -1891,7 +1891,10 @@ fill_spec(int l_cell_no, int ref_cell) * correct diffusion coefficient for temperature and viscosity, D_T = D_298 * viscos_298 / viscos * modify viscosity effect: Dw(TK) = Dw(298.15) * exp(dw_t / TK - dw_t / 298.15), SC data from Robinson and Stokes, 1959 */ - viscos = viscos_0; + if (print_viscosity) + viscos = Utilities::Rxn_find(Rxn_solution_map, l_cell_no)->Get_viscosity(); + else + viscos = viscos_0; /* * put temperature factor in por_factor which corrects for porous medium... */ @@ -2221,7 +2224,8 @@ diffuse_implicit(LDBLE DDt, int stagnant) // Transport of aqueous species is summarized into master species. // With electro-migration, transport of anions and cations is calculated in opposite directions since (sign) J = - z * dV. // Only available moles are transported, thus are > 0, but if concentrations oscillate, - // change max_mixf in input file: -implicit true 1 # max_mixf = 1 (default). + // decrease max_mixf in input file: -implicit true 0.7 # max_mixf = 0.7 (default = 1). + // or define time substeps: -time 0.5e6 year 20 # substeps = 20 (default = 1). int i, icell, cp, comp; // ifirst = (bcon_first == 2 ? 1 : 0); ilast = (bcon_last == 2 ? count_cells - 1 : count_cells); int ifirst, ilast; @@ -3725,37 +3729,74 @@ fill_m_s(class J_ij *l_J_ij, int l_J_ij_count_spec, int icell, int stagnant) /* ---------------------------------------------------------------------- */ void Phreeqc:: calc_b_ij(int icell, int jcell, int k, LDBLE b_i, LDBLE b_j, LDBLE g_i, LDBLE g_j, LDBLE free_i, LDBLE free_j, int stagnant) -/* ---------------------------------------------------------------------- */ +/* ---------------------------------------------------------------------- */ +//{ +// ct[icell].v_m[k].b_ij = b_i * (free_i + g_i) * b_j * (free_j + g_j) / (b_i * (free_i + g_i) + b_j * (free_j + g_j)); +// // At filterends, concentrations of ions change step-wise to the DL. +// // We take the harmonic mean for f_free, the average for the DL. +// if (ct[icell].v_m[k].z) +// { +// if (!g_i && g_j) +// { +// ct[icell].v_m[k].b_ij = free_j * b_i * b_j / (b_i + b_j) + +// b_i * (1 - free_j) / 4 + b_j * g_j / 4; +// } +// else if (g_i && !g_j) +// ct[icell].v_m[k].b_ij = free_i * b_i * b_j / (b_i + b_j) + +// b_j * (1 - free_i) / 4 + b_i * g_i / 4; +// } +// // for boundary cells... +// if (stagnant > 1) +// { /* for a diffusion experiment with well-mixed reservoir in cell 3 and the last stagnant cell, +// and with the mixf * 2 for the boundary cells in the input... */ +// if (icell == 3 && !g_i && g_j) +// ct[icell].v_m[k].b_ij = b_j * (free_j + g_j) / 2; +// else if (jcell == all_cells - 1 && !g_j && g_i) +// ct[icell].v_m[k].b_ij = b_i * (free_i + g_i) / 2; +// } +// else +// { +// if (icell == 0 || (icell == count_cells + 1 && jcell == count_cells + count_cells + 1)) +// ct[icell].v_m[k].b_ij = b_j * (free_j + g_j); +// else if (icell == count_cells && jcell == count_cells + 1) +// ct[icell].v_m[k].b_ij = b_i * (free_i + g_i); +// } +// if (ct[icell].v_m[k].z) +// ct[icell].Dz2c += ct[icell].v_m[k].b_ij * ct[icell].v_m[k].zc * ct[icell].v_m[k].z; +// return; +//} { - ct[icell].v_m[k].b_ij = b_i * (free_i + g_i) * b_j * (free_j + g_j) / (b_i * (free_i + g_i) + b_j * (free_j + g_j)); - // At filterends, concentrations of ions change step-wise to the DL. - // We take the harmonic mean for f_free, the average for the DL. - if (ct[icell].v_m[k].z) + // Oct. 2023, with g_i,j = exp(g*z) * SS (charge_ptr-water / aq_x) + LDBLE fg_i = (1 - free_i) * g_i, + fg_j = (1 - free_j) * g_j; + ct[icell].v_m[k].b_ij = b_i * (free_i + fg_i) * b_j * (free_j + fg_j) / (b_i * (free_i + fg_i) + b_j * (free_j + fg_j)); + // At filterends and boundary cells, concentrations of ions change step-wise to the DL. + // filter cells, harmonic mean for f_free, the average for the DL. + if (icell != 0 && icell != count_cells && ct[icell].v_m[k].z) { if (!g_i && g_j) - { - ct[icell].v_m[k].b_ij = free_j * b_i * b_j / (b_i + b_j) + - b_i * (1 - free_j) / 4 + b_j * g_j / 4; - } - else if (g_i && !g_j) + ct[icell].v_m[k].b_ij = b_i * free_j * b_j / (b_i + b_j) + + (b_i * (1 - free_j) + b_j * fg_j) / 4; + if (g_i && !g_j) ct[icell].v_m[k].b_ij = free_i * b_i * b_j / (b_i + b_j) + - b_j * (1 - free_i) / 4 + b_i * g_i / 4; + (b_j * (1 - free_i) + b_i * fg_i) / 4; } - // for boundary cells... + // for boundary cells, all z... if (stagnant > 1) { /* for a diffusion experiment with well-mixed reservoir in cell 3 and the last stagnant cell, and with the mixf * 2 for the boundary cells in the input... */ if (icell == 3 && !g_i && g_j) - ct[icell].v_m[k].b_ij = b_j * (free_j + g_j) / 2; + ct[icell].v_m[k].b_ij = b_j * (free_j + fg_j) / 2; else if (jcell == all_cells - 1 && !g_j && g_i) - ct[icell].v_m[k].b_ij = b_i * (free_i + g_i) / 2; + ct[icell].v_m[k].b_ij = b_i * (free_i + fg_i) / 2; } + // regular column... else { if (icell == 0 || (icell == count_cells + 1 && jcell == count_cells + count_cells + 1)) - ct[icell].v_m[k].b_ij = b_j * (free_j + g_j); + ct[icell].v_m[k].b_ij = b_j * (free_j + fg_j); else if (icell == count_cells && jcell == count_cells + 1) - ct[icell].v_m[k].b_ij = b_i * (free_i + g_i); + ct[icell].v_m[k].b_ij = b_i * (free_i + fg_i); } if (ct[icell].v_m[k].z) ct[icell].Dz2c += ct[icell].v_m[k].b_ij * ct[icell].v_m[k].zc * ct[icell].v_m[k].z; @@ -3788,7 +3829,7 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) b_i_ani = A1 / (G_i * h_i / 2) * Dw * {f_free + (1 - f_free) / Bm)}. 22/2/18: now calculates diffusion through EDL's of multiple, differently charged surfaces * stagnant TRUE: - * same eqn for J_ij, but multplies with 2 * mixf. (times 2, because mixf = A / (G_i * h_i)) + * same eqn for J_ij, but multiplies with 2 * mixf. (times 2, because mixf = A / (G_i * h_i)) * mixf_ij = mixf / (Dw / init_tort_f) / new_tort_f * new_por / init_por * mixf is defined in MIX; Dw is default multicomponent diffusion coefficient; * init_tort_f equals multi_Dpor^(-multi_Dn); new_pf = new tortuosity factor. @@ -3886,6 +3927,8 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) only_counter = TRUE; ct[icell].visc1 = s_ptr1->Get_DDL_viscosity(); + if (s_ptr1->Get_calc_viscosity()) + ct[icell].visc1 /= Utilities::Rxn_find(Rxn_solution_map, icell)->Get_viscosity(); /* find the immobile surface charges with DL... */ for (i = 0; i < (int)s_charge_p.size(); i++) { @@ -3913,6 +3956,8 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) only_counter = TRUE; ct[icell].visc2 = s_ptr2->Get_DDL_viscosity(); + if (s_ptr2->Get_calc_viscosity()) + ct[icell].visc2 /= Utilities::Rxn_find(Rxn_solution_map, jcell)->Get_viscosity(); for (i = 0; i < (int)s_charge_p.size(); i++) { @@ -4227,7 +4272,7 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) { g_i += it_sc->Get_z_gMCD_map()[ct[icell].v_m[k].z]; } - g_i *= sol_D[icell].spec[i].erm_ddl; + g_i *= sol_D[icell].spec[i].erm_ddl / ct[icell].visc1; } if (dl_aq2) { @@ -4250,7 +4295,7 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) } } } - g_j *= sol_D[icell].spec[i].erm_ddl; + g_j *= sol_D[icell].spec[i].erm_ddl / ct[icell].visc2; } } @@ -4343,7 +4388,7 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) } } } - g_i *= sol_D[jcell].spec[j].erm_ddl; + g_i *= sol_D[jcell].spec[j].erm_ddl / ct[icell].visc1; } if (dl_aq2) { @@ -4351,7 +4396,7 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) { g_j += it_sc->Get_z_gMCD_map()[ct[icell].v_m[k].z]; } - g_j *= sol_D[jcell].spec[j].erm_ddl; + g_j *= sol_D[jcell].spec[j].erm_ddl / ct[icell].visc2; } } b_i = A1; @@ -4437,7 +4482,7 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) { g_i += it_sc->Get_z_gMCD_map()[ct[icell].v_m[k].z]; } - g_i *= sol_D[icell].spec[i].erm_ddl; + g_i *= sol_D[icell].spec[i].erm_ddl / ct[icell].visc1; } if (dl_aq2) { @@ -4445,7 +4490,7 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) { g_j += it_sc->Get_z_gMCD_map()[ct[icell].v_m[k].z]; } - g_j *= sol_D[jcell].spec[j].erm_ddl; + g_j *= sol_D[jcell].spec[j].erm_ddl / ct[icell].visc2; } } b_i = A1 * sol_D[icell].spec[i].Dwt; @@ -5881,9 +5926,12 @@ LDBLE new_Dw, int l_cell) /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -viscosity(void) +viscosity(cxxSurface *surf_ptr) /* ---------------------------------------------------------------------- */ { + if (surf_ptr && !surf_ptr->Get_calc_viscosity()) + return surf_ptr->Get_DDL_viscosity(); + /* from Atkins, 1994. Physical Chemistry, 5th ed. */ //viscos = @@ -5892,7 +5940,7 @@ viscosity(void) // 0.000836 * (tc_x - 20) * (tc_x - 20)) / (109 + tc_x)); /* Huber et al., 2009, J. Phys. Chem. Ref. Data, Vol. 38, 101-125 */ LDBLE H[4] = { 1.67752, 2.20462, 0.6366564, -0.241605 }; - LDBLE Tb = tk_x / 647.096, denom = H[0], mu0; + LDBLE Tb = (tc_x + 273.15) / 647.096, denom = H[0], mu0; int i, j, i1; for (i = 1; i < 4; i++) denom += H[i] / pow(Tb, i); @@ -5964,124 +6012,216 @@ viscosity(void) both weighted by the equivalent concentration. */ LDBLE D1, D2, z1, z2, m_plus, m_min, eq_plus, eq_min, eq_dw_plus, eq_dw_min, t1, t2, t3, fan = 1; - LDBLE A, psi, Bc = 0, Dc = 0, Dw = 0.0, l_z, f_z, lm, V_an, m_an, V_Cl, tc; + LDBLE A, psi, Bc = 0, Dc = 0, Dw = 0.0, l_z, f_z, lm, V_an, m_an, V_Cl, tc, l_moles, l_water, l_mu_x, dw_t_visc; m_plus = m_min = eq_plus = eq_min = eq_dw_plus = eq_dw_min = V_an = m_an = V_Cl = 0; tc = (tc_x > 200) ? 200 : tc_x; - - for (i = 0; i < (int)this->s_x.size(); i++) + l_water = mass_water_aq_x; + l_mu_x = mu_x; + + + int i1_last; + if (surf_ptr == NULL) + i1_last = 1; + else { - if (s_x[i]->type != AQ && s_x[i]->type > HPLUS) - continue; - if ((lm = s_x[i]->lm) < -9) - continue; - if (s_x[i]->Jones_Dole[0] || s_x[i]->Jones_Dole[1] || s_x[i]->Jones_Dole[3]) + i1_last = (int)surf_ptr->Get_surface_charges().size(); + if (i1_last > 1) + i1_last += 1; + } + std::map z_g_map; + cxxSurfaceCharge s_charge_p; + LDBLE ratio_surf_aq = mass_water_surfaces_x / mass_water_aq_x; + for (i1 = 0; i1 < i1_last; i1++) + { + Bc = Dc = Dw = m_plus = m_min = eq_plus = eq_min = eq_dw_plus = eq_dw_min = V_an = m_an = 0; + if (surf_ptr) { - s_x[i]->dw_t_visc = 0; - t1 = s_x[i]->moles / mass_water_aq_x; - l_z = fabs(s_x[i]->z); - if (l_z) - f_z = (l_z * l_z + l_z) / 2; + z_g_map.clear(); + if (i1_last == 1 || i1 < i1_last - 1) + { + s_charge_p = surf_ptr->Get_surface_charges()[i1]; + l_water = s_charge_p.Get_mass_water(); + z_g_map.insert(s_charge_p.Get_z_gMCD_map().begin(), s_charge_p.Get_z_gMCD_map().end()); + for (auto& x : z_g_map) + x.second *= ratio_surf_aq; + } else - f_z = mu_x / t1; - //if data at tc's other than 25 are scarce, put the values found for 25 C in [7] and [8], optimize [1], [2], and [4]... - if (s_x[i]->Jones_Dole[7] || s_x[i]->Jones_Dole[8]) { - s_x[i]->Jones_Dole[0] = s_x[i]->Jones_Dole[7] - - s_x[i]->Jones_Dole[1] * exp(-s_x[i]->Jones_Dole[2] * 25.0); - s_x[i]->Jones_Dole[3] = - s_x[i]->Jones_Dole[8] / exp(-s_x[i]->Jones_Dole[4] * 25.0); + s_charge_p = surf_ptr->Get_surface_charges()[0]; + z_g_map.insert(s_charge_p.Get_z_gMCD_map().begin(), s_charge_p.Get_z_gMCD_map().end()); + for (i = 1; i < i1_last - 1; i++) + { + s_charge_p = surf_ptr->Get_surface_charges()[i]; + for (auto& x : z_g_map) + x.second += s_charge_p.Get_z_gMCD_map()[x.first]; + } + for (auto& x : z_g_map) + x.second *= ratio_surf_aq; + l_water = mass_water_surfaces_x; } - // find B * m and D * m * mu^d3 - s_x[i]->dw_t_visc = (s_x[i]->Jones_Dole[0] + - s_x[i]->Jones_Dole[1] * exp(-s_x[i]->Jones_Dole[2] * tc)) * t1; - Bc += s_x[i]->dw_t_visc; - // define f_I from the exponent of the D * m^d3 term... - if (s_x[i]->Jones_Dole[5] >= 1) - t2 = mu_x / 3 / s_x[i]->Jones_Dole[5]; - else if (s_x[i]->Jones_Dole[5] > 0.4) - t2 = -0.8 / s_x[i]->Jones_Dole[5]; - else - t2 = -1; - t3 = (s_x[i]->Jones_Dole[3] * exp(-s_x[i]->Jones_Dole[4] * tc)) * - t1 * (pow(mu_x, s_x[i]->Jones_Dole[5])*(1 + t2) + pow(t1 * f_z, s_x[i]->Jones_Dole[5])) / (2 + t2); - s_x[i]->dw_t_visc += t3; - Dc += t3; - //output_msg(sformatf("\t%s\t%e\t%e\t%e\n", s_x[i]->name, t1, Bc, Dc )); + l_mu_x = eq_plus = eq_min = 0; + for (i = 0; i < (int)this->s_x.size(); i++) + { + if (s_x[i]->type != AQ && s_x[i]->type > HPLUS) + continue; + if (s_x[i]->lm < -9 || s_x[i] == 0) + continue; + l_moles = s_x[i]->moles * s_x[i]->z * z_g_map.find(s_x[i]->z)->second; + if (s_x[i]->z < 0) + eq_min += l_moles; + else + eq_plus += l_moles; + l_mu_x += l_moles * s_x[i]->z; + } + l_mu_x += fabs(eq_plus + eq_min); + l_mu_x /= (2 * l_water); + eq_plus = eq_min = 0; } - // parms for A... - if ((l_z = s_x[i]->z) == 0) - continue; - Dw = s_x[i]->dw; - if (Dw) + + for (i = 0; i < (int)this->s_x.size(); i++) { - Dw *= (0.89 / viscos_0 * tk_x / 298.15); - if (s_x[i]->dw_t) - Dw *= exp(s_x[i]->dw_t / tk_x - s_x[i]->dw_t / 298.15); - } - if (l_z < 0) - { - if (!strcmp(s_x[i]->name, "Cl-")) - // volumina for f_an... + if (s_x[i]->type != AQ && s_x[i]->type > HPLUS) + continue; + if ((lm = s_x[i]->lm) < -9) + continue; + l_moles = s_x[i]->moles; + if (surf_ptr != NULL) { - V_Cl = s_x[i]->logk[vm_tc]; - V_an += V_Cl * s_x[i]->moles; - m_an += s_x[i]->moles; + l_moles *= z_g_map.find(s_x[i]->z)->second; } - else// if (s_x[i]->Jones_Dole[6]) + if (s_x[i]->Jones_Dole[0] || s_x[i]->Jones_Dole[1] || s_x[i]->Jones_Dole[3]) { - V_an += s_x[i]->logk[vm_tc] * s_x[i]->Jones_Dole[6] * s_x[i]->moles; - m_an += s_x[i]->moles; + dw_t_visc = 0; + t1 = l_moles / l_water; + l_z = fabs(s_x[i]->z); + if (l_z) + f_z = (l_z * l_z + l_z) / 2; + else + f_z = l_mu_x / t1; + //if data at tc's other than 25 are scarce, put the values found for 25 C in [7] and [8], optimize [1], [2], and [4]... + if (s_x[i]->Jones_Dole[7] || s_x[i]->Jones_Dole[8]) + { + s_x[i]->Jones_Dole[0] = s_x[i]->Jones_Dole[7] - + s_x[i]->Jones_Dole[1] * exp(-s_x[i]->Jones_Dole[2] * 25.0); + s_x[i]->Jones_Dole[3] = + s_x[i]->Jones_Dole[8] / exp(-s_x[i]->Jones_Dole[4] * 25.0); + } + // find B * m and D * m * mu^d3 + dw_t_visc = (s_x[i]->Jones_Dole[0] + + s_x[i]->Jones_Dole[1] * exp(-s_x[i]->Jones_Dole[2] * tc)) * t1; + Bc += dw_t_visc; + // define f_I from the exponent of the D * m^d3 term... + if (s_x[i]->Jones_Dole[5] >= 1) + t2 = l_mu_x / 3 / s_x[i]->Jones_Dole[5]; + else if (s_x[i]->Jones_Dole[5] > 0.4) + t2 = -0.8 / s_x[i]->Jones_Dole[5]; + else + t2 = -1; + t3 = (s_x[i]->Jones_Dole[3] * exp(-s_x[i]->Jones_Dole[4] * tc)) * + t1 * (pow(l_mu_x, s_x[i]->Jones_Dole[5])*(1 + t2) + pow(t1 * f_z, s_x[i]->Jones_Dole[5])) / (2 + t2); + if (t3 < -1e-5) // add this check + t3 = 0; + Dc += t3; + if (!surf_ptr) s_x[i]->dw_t_visc = dw_t_visc + t3; + //output_msg(sformatf("\t%s\t%e\t%e\t%e\n", s_x[i]->name, t1, Bc, Dc )); } + // parms for A... + if ((l_z = s_x[i]->z) == 0) + continue; + Dw = s_x[i]->dw; if (Dw) { - // anions for A... - m_min += s_x[i]->moles; - t1 = s_x[i]->moles * l_z; - eq_min -= t1; - eq_dw_min -= t1 / Dw; + Dw *= (0.89 / viscos_0 * tk_x / 298.15); + if (s_x[i]->dw_t) + Dw *= exp(s_x[i]->dw_t / tk_x - s_x[i]->dw_t / 298.15); + } + if (l_z < 0) + { + if (!strcmp(s_x[i]->name, "Cl-")) + // volumina for f_an... + { + V_Cl = s_x[i]->logk[vm_tc]; + V_an += V_Cl * l_moles; + m_an += l_moles; + } + else// if (s_x[i]->Jones_Dole[6]) + { + V_an += s_x[i]->logk[vm_tc] * s_x[i]->Jones_Dole[6] * l_moles; + m_an += l_moles; + } + if (Dw) + { + // anions for A... + m_min += l_moles; + t1 = l_moles * l_z; + eq_min -= t1; + eq_dw_min -= t1 / Dw; + } + } + else if (Dw) + { + // cations for A... + m_plus += l_moles; + t1 = l_moles * l_z; + eq_plus += t1; + eq_dw_plus += t1 / Dw; } } - else if (Dw) + if (m_plus && m_min && eq_dw_plus && eq_dw_min) { - // cations for A... - m_plus += s_x[i]->moles; - t1 = s_x[i]->moles * l_z; - eq_plus += t1; - eq_dw_plus += t1 / Dw; - } - } - if (m_plus && m_min && eq_dw_plus && eq_dw_min) - { - z1 = eq_plus / m_plus; z2 = eq_min / m_min; - D1 = eq_plus / eq_dw_plus; D2 = eq_min / eq_dw_min; + z1 = eq_plus / m_plus; z2 = eq_min / m_min; + D1 = eq_plus / eq_dw_plus; D2 = eq_min / eq_dw_min; - t1 = (D1 - D2) / (sqrt(D1 * z1 + D2 * z2) + sqrt((D1 + D2) * (z1 + z2))); - psi = (D1 * z2 + D2 * z1) / 4.0 - z1 * z2 * t1 * t1; - // Here A is A * viscos_0, avoids multiplication later on... - A = 4.3787e-14 * pow(tk_x, 1.5) / (sqrt(eps_r * (z1 + z2) / ((z1 > z2) ? z1 : z2)) * (D1 * D2)) * psi; - } - else - A = 0; - viscos = viscos_0 + A * sqrt((eq_plus + eq_min) / 2 / mass_water_aq_x); - if (m_an) - V_an /= m_an; - if (!V_Cl) - V_Cl = calc_vm_Cl(); - if (V_an) - fan = 2 - V_an / V_Cl; - //else - // fan = 1; - viscos += viscos_0 * fan * (Bc + Dc); - if (viscos < 0) - { - viscos = viscos_0; - warning_msg("viscosity < 0, reset to viscosity of pure water"); - } - for (i = 0; i < (int)this->s_x.size(); i++) - { - s_x[i]->dw_t_visc /= (Bc + Dc); + t1 = (D1 - D2) / (sqrt(D1 * z1 + D2 * z2) + sqrt((D1 + D2) * (z1 + z2))); + psi = (D1 * z2 + D2 * z1) / 4.0 - z1 * z2 * t1 * t1; + // Here A is A * viscos_0, avoids multiplication later on... + A = 4.3787e-14 * pow(tk_x, 1.5) / (sqrt(eps_r * (z1 + z2) / ((z1 > z2) ? z1 : z2)) * (D1 * D2)) * psi; + } + else + A = 0; + viscos = viscos_0 + A * sqrt((eq_plus + eq_min) / 2 / l_water); + if (m_an) + V_an /= m_an; + if (!V_Cl) + V_Cl = calc_vm_Cl(); + if (V_an) + fan = 2 - V_an / V_Cl; + //else + // fan = 1; + if (Dc < 0) + Dc = 0; // provisional... + viscos += viscos_0 * fan * (Bc + Dc); + if (viscos < 0) + { + viscos = viscos_0; + warning_msg("viscosity < 0, reset to viscosity of pure water"); + } + if (!surf_ptr) + { + for (i = 0; i < (int)this->s_x.size(); i++) + { + if (s_x[i]->type != AQ && s_x[i]->type > HPLUS) + continue; + if ((lm = s_x[i]->lm) < -9) + continue; + if (s_x[i]->Jones_Dole[0] || s_x[i]->Jones_Dole[1] || s_x[i]->Jones_Dole[3]) + s_x[i]->dw_t_visc /= (Bc + Dc); + } + } + else //if (surf_ptr->Get_calc_viscosity()) + { + if (i1_last == 1) + { + surf_ptr->Get_surface_charges()[i1].Set_DDL_viscosity(viscos); + surf_ptr->Set_DDL_viscosity(viscos); + } + else if (i1 < i1_last - 1) + surf_ptr->Get_surface_charges()[i1].Set_DDL_viscosity(viscos); + else if (i1 == i1_last - 1) + surf_ptr->Set_DDL_viscosity(viscos); + } } return viscos; } From 49d82d37607fa4814aa4f13df0960ffd36e8fdcf Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Tue, 16 Apr 2024 22:08:12 -0600 Subject: [PATCH 139/384] fix for new Valgrind problem. Added a newer CEMDATA database for the database collection. --- .../CEMDATA18-31-03-2022-phaseVol.dat | 1394 +++++++++++++++++ 1 file changed, 1394 insertions(+) create mode 100644 OtherDatabases/CEMDATA18-31-03-2022-phaseVol.dat diff --git a/OtherDatabases/CEMDATA18-31-03-2022-phaseVol.dat b/OtherDatabases/CEMDATA18-31-03-2022-phaseVol.dat new file mode 100644 index 00000000..14c26011 --- /dev/null +++ b/OtherDatabases/CEMDATA18-31-03-2022-phaseVol.dat @@ -0,0 +1,1394 @@ +# Cemdata18: A chemical thermodynamic database for hydrated Portland cements and alkali-activated materials +# Authors: Barbara Lothenbach, Dmitrii Kulik, Thomas Matschei, Magdalena Balonis, Luis Baquerizo, Belay Dilnesa, George Dan Miron, Rupert J. Myers +# Published in Cement and Concrete Research, 2018, in press +# +# Based on CEMDATA18 version 01 (09.10.2017) and PSI/Nagra 12/07 GEM format +# +# Exported to PHREEQC format using ThermoMatch (https://bitbucket.org/gems4/thermomatch) reactions generator and export modules +# +# Temperature dependence described by three-term analytical model +# Valid range : 0 - 100°C +# +# +# Phreeqc version date: 08.05.2018 +# update 03.12.2018 - added missing phases: zeoliteP_Ca, chabazite, M075SH, M15SH, zeoliteX, natrolite, zeoliteY +# update 08.01.2019 - corrected INFCNA formula and reaction; 23.09.2019 fixed logK to 17.4787 +# update 16.01.2019 - fixed a3 parameter from the logK analytical function (wrong converted from A[3]*ln(T) GEMS to +# phreeqc A[3]*log10(T); for phases aded in update update 03.12.2018) +# update 31.03.2022 - added missing C4FeCl2H10 (Fe Friedel's salt ideal composition) and reactions for Fe(OH)3(am) and Fe(OH)3(mic) with original source +# Hummel et al. (2002) Nagra/PSI Chemical Thermodynamic Data Base 01/01. Nagra Technical Report NTB 02-16 +# +# for questions contact: Barbara Lothenbach (barbara.lothenbach@empa.ch); G. Dan Miron (dan.miron@psi.ch) + +SOLUTION_MASTER_SPECIES + + +# +# elemen species alk gfw_formula element_gfw atomic number +# + + +Al AlO2- 0.0 AlO2 26.981541 # 13 +C CO3-2 0.0 CO3 12.0108 # 6 +# C(0) SCN- 0.0 SCN # +# C(-1) HCN 0.0 HCN # +C(+4) CO3-2 2.0 CO3 # +C(-4) CH4 0.0 CH4 # +Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05 # +Ca Ca+2 0.0 Ca 40.077999 # 20 +Cl Cl- 0.0 Cl 35.452999 # 17 +Cl(-1) Cl- 0.0 Cl # +Cl(7) ClO4- 0.0 ClO4 # +Fe FeO2- 0.0 FeO2 55.845001 # 26 +# Fe(2) FeS 0.0 FeS # +Fe(3) FeO2- 0.0 FeO2 # +H H+ 0.0 H 1.00795 # 1 +H(0) H2 0.0 H2 # +H(1) H+ -1.0 H # +K K+ 0.0 K 39.098301 # 19 +Mg Mg+2 0.0 Mg 24.305 # 12 +N NO3- 0.0 NO3 14.0067 # 7 +N(-3) NH4+ 0.0 NH4 # +N(0) N2 0.0 N2 # +# N(-1) HCN 0.0 HCN # +N(+5) NO3- 0.0 NO3 # +Na Na+ 0.0 Na 22.989799 # 11 +O H2O 0.0 O2 15.9994 # 8 +O(0) O2 0.0 O2 # +O(-2) H2O 0.0 H2O # +S SO4-2 0.0 S 32.067001 # 16 +S(-2) HS- 1.0 HS # +# S(0) S 0.0 S # +S(2) S2O3-2 0.0 S2O3 # +S(4) SO3-2 0.0 SO3 # +S(6) SO4-2 0.0 SO4 # +Si SiO2 0.0 SiO2 28.085501 # 14 +Sr Sr+2 0.0 Sr 87.620003 # 38 +E e- 0 0.0 0 # + + +SOLUTION_SPECIES + +# PMATCH MASTER SPECIES + + +AlO2- = AlO2- + -gamma 4 0.064 + -log_k 0.0 + +Ca+2 = Ca+2 + -gamma 4.86 0.15 + -log_k 0.0 + +Cl- = Cl- + -gamma 3.71 0.01 + -log_k 0.0 + +CO3-2 = CO3-2 + -gamma 5.4 0.064 + -log_k 0.0 + +e- = e- + -gamma 9 0.064 + -log_k 0.0 + +FeO2- = FeO2- + -gamma 4 0.064 + -log_k 0.0 + +H2O = H2O + -gamma 0.0 0 + -log_k 0.0 + +H+ = H+ + -gamma 9 0.064 + -log_k 0.0 + +K+ = K+ + -gamma 3.71 0.01 + -log_k 0.0 + +Mg+2 = Mg+2 + -gamma 5.46 0.22 + -log_k 0.0 + +Na+ = Na+ + -gamma 4.32 0.06 + -log_k 0.0 + +NO3- = NO3- + -gamma 3 0 + -log_k 0.0 + +SiO2 = SiO2 + -gamma 0.0 0 + -log_k 0.0 + +SO4-2 = SO4-2 + -gamma 5.31 -0.07 + -log_k 0.0 + +Sr+2 = Sr+2 + -gamma 5.48 0.11 + -log_k 0.0 + +# PMATCH SECONDARY MASTER SPECIES + + +H+ + FeO2- = FeO2H + -analytical_expression 29.546087 0 737.003635 -9.286176 0 0 0 + -gamma 0.0 0 + -log_K 9.039877 + +H2O + SiO2 = SiO3-2 + 2H+ + -analytical_expression -10.000668 0 -3917.496558 0 0 0 0 + -gamma 4 0.064 + -log_K -23.139999 + +H2O + SiO2 = HSiO3- + H+ + -analytical_expression 67.706653 0 -4741.842127 -24.899348 0 0 0 + -gamma 4 0.064 + -log_K -9.810017 + +Mg+2 + H2O = Mg(OH)+ + H+ + -analytical_expression -27.037806 0 -2051.344448 9.084125 0 0 0 + -gamma 4 0.064 + -log_K -11.44 + +Mg+2 + H2O + SiO2 = Mg(HSiO3)+ + H+ + -analytical_expression -24.956609 0 -403.475592 7.274665 0 0 0 + -gamma 4 0.064 + -log_K -8.31003 + +NO3- + 8e- + 9H+ = NH3 + 3H2O + -analytical_expression -107.400094 0 42212.00396 30.601079 0 0 0 + -gamma 0.0 0 + -log_K 109.900031 + +Na+ + H2O = NaOH + H+ + -analytical_expression 40.022689 0 -4902.375428 -15.260091 0 0 0 + -gamma 0.0 0 + -log_K -14.179994 + +H2O + K+ = KOH + H+ + -analytical_expression 55.772715 0 -5964.687625 -20.298401 0 0 0 + -gamma 0.0 0 + -log_K -14.45995 + +H2O = OH- + H+ + -analytical_expression 69.848379 0 -6215.240028 -25.461346 0 0 0 + -gamma 10.65 0.064 + -log_K -14.000072 + +CO3-2 + NO3- + SO4-2 + 16e- + 20H+ = SCN- + 10H2O + -analytical_expression -403.337321 0 68953.389243 132.954532 0 0 0 + -gamma 4 0.064 + -log_K 156.933672 + +CO3-2 + NO3- + 10e- + 13H+ = HCN + 6H2O + -analytical_expression -242.754542 0 48438.203406 79.874649 0 0 0 + -gamma 0.0 0 + -log_K 117.350397 + +CO3-2 + Sr+2 = Sr(CO3) + -analytical_expression -62.653523 0 2074.553325 23.642085 0 0 0 + -gamma 0.0 0 + -log_K 2.805165 + +CO3-2 + Sr+2 + H+ = SrHCO3+ + -analytical_expression -179.980045 0 9094.004136 65.062273 0 0 0 + -gamma 4 0.064 + -log_K 11.51358 + +e- + 4H+ + FeO2- = Fe+2 + 2H2O + -analytical_expression -122.476876 0 16777.048756 40.747293 0 0 0 + -gamma 5.08 0.16 + -log_K 34.619927 + +e- + 3H+ + FeO2- = FeOH+ + H2O + -analytical_expression -129.83045 0 14350.241615 43.169306 0 0 0 + -gamma 4 0.064 + -log_K 25.119997 + +NO3- + 8e- + 10H+ = NH4+ + 3H2O + -analytical_expression -103.801782 0 44761.476983 29.424107 0 0 0 + -gamma 2.5 0.064 + -log_K 119.136999 + +SO4-2 + 2e- + 2H+ = SO3-2 + H2O + -analytical_expression -16.749207 0 1175.143358 3.803176 0 0 0 + -gamma 4.5 0 + -log_K -3.396962 + +SO4-2 + Mg+2 = Mg(SO4) + -analytical_expression -65.503097 0 2716.841523 23.747178 0 0 0 + -gamma 0.0 0 + -log_K 2.36999 + +SO4-2 + K+ = KSO4- + -analytical_expression -72.976676 0 3150.048361 25.565951 0 0 0 + -gamma 4 0.064 + -log_K 0.850029 + +SO4-2 + H+ = HSO4- + -analytical_expression -95.450023 0 3428.229466 34.730939 0 0 0 + -gamma 4 0.064 + -log_K 1.987722 + +SO4-2 + Na+ = Na(SO4)- + -analytical_expression -67.94723 0 2908.645146 23.800045 0 0 0 + -gamma 4 0.064 + -log_K 0.700065 + +SO4-2 + Sr+2 = Sr(SO4) + -analytical_expression -65.057619 0 2594.980137 23.699973 0 0 0 + -gamma 0.0 0 + -log_K 2.289927 + +Sr+2 + H2O + SiO2 = SrSiO3 + 2H+ + -analytical_expression -0.03398 0 -5596.700024 0.0146 0 0 0 + -gamma 0.0 0 + -log_K -18.770009 + +Sr+2 + H2O = Sr(OH)+ + H+ + -analytical_expression 24.083524 0 -5334.855026 -7.872656 0 0 0 + -gamma 4 0.064 + -log_K -13.290021 + +SO4-2 + e- + 5H+ + FeO2- = FeHSO4+ + 2H2O + -analytical_expression -340.160684 0 26093.962654 117.331514 0 0 0 + -gamma 4 0.064 + -log_K 37.687879 + +SO4-2 + e- + 4H+ + FeO2- = Fe(SO4) + 2H2O + -analytical_expression -187.703581 0 19421.940132 64.431753 0 0 0 + -gamma 0.0 0 + -log_K 36.869911 + +SO4-2 + 4H+ + FeO2- = Fe(SO4)+ + 2H2O + -analytical_expression -179.460087 0 16269.573383 60.834841 0 0 0 + -gamma 4 0.064 + -log_K 25.639965 + +SO4-2 + 2e- + 3H+ = HSO3- + H2O + -analytical_expression -104.341666 0 4987.683177 36.952237 0 0 0 + -gamma 4 0.064 + -log_K 3.823027 + +SO4-2 + 5H+ + FeO2- = FeHSO4+2 + 2H2O + -analytical_expression -386.282594 0 27250.332754 129.707435 0 0 0 + -gamma 4 0.064 + -log_K 26.067958 + +SO4-2 + 8e- + 9H+ = HS- + 4H2O + -analytical_expression -135.448856 0 18639.971235 43.088749 0 0 0 + -gamma 3.5 0.064 + -log_K 33.690011 + +SO4-2 + AlO2- + 4H+ = Al(SO4)+ + 2H2O + -analytical_expression -92.70801 0 12391.461203 31.492469 0 0 0 + -gamma 4 0.064 + -log_K 26.779235 + +SO4-2 + 8e- + 10H+ = H2S + 4H2O + -analytical_expression -227.994702 0 24084.360505 75.934677 0 0 0 + -gamma 0 0 + -log_K 40.679974 + +CO3-2 + Na+ + H+ = NaHCO3 + -analytical_expression -150.324123 0 7758.548881 54.307766 0 0 0 + -gamma 0.0 0 + -log_K 10.078938 + +CO3-2 + Na+ = NaCO3- + -analytical_expression -72.698173 0 4313.391269 24.046388 0 0 0 + -gamma 4 0.064 + -log_K 1.269963 + +4H+ + FeO2- = Fe+3 + 2H2O + -analytical_expression -117.578761 0 14084.096983 37.156205 0 0 0 + -gamma 9 0 + -log_K 21.599876 + +3H+ + FeO2- = Fe(OH)+2 + H2O + -analytical_expression -100.979091 0 11351.458414 33.266688 0 0 0 + -gamma 4 0.064 + -log_K 19.409983 + +3Cl- + 4H+ + FeO2- = FeCl3 + 2H2O + -analytical_expression -403.034321 0 27439.514698 134.865165 0 0 0 + -gamma 0.0 0 + -log_K 22.729861 + +AlO2- + 2H+ = AlO+ + H2O + -analytical_expression -0.423917 0 3851.729324 -0.084762 0 0 0 + -gamma 4 0.064 + -log_K 12.285123 + +AlO2- + 3H+ = Al(OH)+2 + H2O + -analytical_expression -67.530882 0 9473.0536 21.693818 0 0 0 + -gamma 4 0.064 + -log_K 17.921907 + +AlO2- + H2O + SiO2 = AlSiO5-3 + 2H+ + -analytical_expression -10.000641 0 -3759.481479 0 0 0 0 + -gamma 4 0.064 + -log_K -22.609995 + +AlO2- + 3H+ + SiO2 = AlHSiO3+2 + H2O + -analytical_expression 49.32925 0 3459.291193 -16.35201 0 0 0 + -gamma 4 0.064 + -log_K 20.469103 + +AlO2- + 4H+ = Al+3 + 2H2O + -analytical_expression -32.960146 0 10342.694854 8.547302 0 0 0 + -gamma 6.65 0.19 + -log_K 22.879124 + +2SO4-2 + AlO2- + 4H+ = Al(SO4)2- + 2H2O + -analytical_expression -162.337197 0 15848.175089 55.754663 0 0 0 + -gamma 4 0.064 + -log_K 28.77922 + +2SO4-2 + 8e- + 10H+ = S2O3-2 + 5H2O + -analytical_expression -201.732708 0 22219.585517 66.771654 0 0 0 + -gamma 4 0.064 + -log_K 38.014086 + +2H2O = O2 + 4e- + 4H+ + -analytical_expression -37.318475 0 -27028.699677 16.968388 0 0 0 + -gamma 0.0 0 + -log_K -85.986052 + +2e- + 2H+ = H2 + -analytical_expression -52.093194 0 2359.24879 16.599428 0 0 0 + -gamma 0.0 0 + -log_K -3.105969 + +2H2O + 4SiO2 = Si4O10-4 + 4H+ + -analytical_expression -0.000122 0 -10822.837161 0 0 0 0 + -gamma 4 0.064 + -log_K -36.299995 + +2H+ + FeO2- = FeO+ + H2O + -analytical_expression -39.343808 0 6777.47262 13.151347 0 0 0 + -gamma 4 0.064 + -log_K 15.929981 + +2FeO2- + 6H+ = Fe2(OH)2+4 + 2H2O + -analytical_expression -228.211639 0 25217.742482 74.31241 0 0 0 + -gamma 4 0.064 + -log_K 40.249753 + +FeO2- + 3H+ + SiO2 = FeHSiO3+2 + H2O + -analytical_expression -40.172013 0 9342.250604 12.256824 0 0 0 + -gamma 4 0.064 + -log_K 21.489856 + +3FeO2- + 8H+ = Fe3(OH)4+5 + 2H2O + -analytical_expression -348.553863 0 39126.962643 111.468617 0 0 0 + -gamma 4 0.064 + -log_K 58.499629 + +2SO4-2 + 4H+ + FeO2- = Fe(SO4)2- + 2H2O + -analytical_expression -249.059673 0 19527.889672 85.087253 0 0 0 + -gamma 4 0.064 + -log_K 26.980004 + +SO4-2 + 8e- + 8H+ = S-2 + 4H2O + -analytical_expression -154.448832 0 18639.971266 43.088749 0 0 0 + -gamma 4 0.064 + -log_K 14.690011 + +2NO3- + 10e- + 12H+ = N2 + 6H2O + -analytical_expression -258.961738 0 79047.238923 81.272772 0 0 0 + -gamma 0.0 0 + -log_K 207.26792 + +AlO2- + H+ = AlO2H + -analytical_expression 58.704239 0 -1368.552981 -19.263945 0 0 0 + -gamma 0.0 0 + -log_K 6.446694 + +Ca+2 + H2O = Ca(OH)+ + H+ + -analytical_expression 14.192136 0 -4635.53095 -4.617086 0 0 0 + -gamma 4 0.064.064 + -log_K -12.780039 + +CO3-2 + e- + 4H+ + FeO2- = FeCO3 + 2H2O + -analytical_expression -186.917805 0 19661.212978 64.650733 0 0 0 + -gamma 0.0 0 + -log_K 38.999888 + +CO3-2 + Ca+2 + H+ = Ca(HCO3)+ + -analytical_expression -184.735846 0 9335.338708 66.625146 0 0 0 + -gamma 4 0.064 + -log_K 11.434569 + +CO3-2 + Ca+2 = CaCO3 + -analytical_expression -62.597364 0 2198.635138 23.620516 0 0 0 + -gamma 0.0 0 + -log_K 3.224223 + +CO3-2 + e- + 5H+ + FeO2- = FeHCO3+ + 2H2O + -analytical_expression -308.32264 0 26778.821505 107.279171 0 0 0 + -gamma 4 0.064 + -log_K 46.948848 + +CO3-2 + H+ = HCO3- + -analytical_expression -81.274179 0 4730.952703 30.607236 0 0 0 + -gamma 5.4 0 + -log_K 10.328936 + +CO3-2 + Mg+2 + H+ = Mg(HCO3)+ + -analytical_expression -188.634028 0 9470.015117 68.00288 0 0 0 + -gamma 4 0.064 + -log_K 11.397078 + +CO3-2 + Mg+2 = Mg(CO3) + -analytical_expression -63.463292 0 2552.360636 23.392206 0 0 0 + -gamma 0 0 + -log_K 2.979656 + +CO3-2 + 8e- + 10H+ = CH4 + 3H2O + -analytical_expression -246.104883 0 24658.587079 81.464185 0 0 0 + -gamma 0 0 + -log_K 38.17789 + +CO3-2 + 2H+ = CO2 + H2O + -analytical_expression -200.217775 0 10740.0203 73.098171 0 0 0 + -gamma 0.0 0 + -log_K 16.681026 + +Ca+2 + H2O + SiO2 = CaSiO3 + 2H+ + -analytical_expression -10.000639 0 -2546.007503 0 0 0 0 + -gamma 0 0 + -log_K -18.54 + +Ca+2 + H2O + SiO2 = Ca(HSiO3)+ + H+ + -analytical_expression -20.400451 0 -822.7361 5.880359 0 0 0 + -gamma 4 0.064 + -log_K -8.609958 + +Ca+2 + SO4-2 = CaSO4 + -analytical_expression -64.25357 0 2770.028075 23.141785 0 0 0 + -gamma 0.0 0 + -log_K 2.300088 + +Mg+2 + H2O + SiO2 = MgSiO3 + 2H+ + -analytical_expression 124.447476 0 -10098.720791 -43.652583 0 0 0 + -gamma 0 0 + -log_K -17.440008 + +Cl- + 4H2O = ClO4- + 8e- + 8H+ + -analytical_expression 49.886974 0 -63068.038263 -10.53711 0 0 0 + -gamma 3 0 + -log_K -187.715268 + +Cl- + e- + 4H+ + FeO2- = FeCl+ + 2H2O + -analytical_expression -206.567427 0 20469.070501 69.783235 0 0 0 + -gamma 4 0.064 + -log_K 34.759905 + +Cl- + 4H+ + FeO2- = FeCl+2 + 2H2O + -analytical_expression -190.269722 0 17206.948818 62.898167 0 0 0 + -gamma 4 0.064 + -log_K 23.079893 + +2Cl- + 4H+ + FeO2- = FeCl2+ + 2H2O + -analytical_expression -333.532333 0 23878.594387 112.01482 0 0 0 + -gamma 4 0.064 + -log_K 23.729853 + + + +PHASES + + +CH4(g) + CH4 + 3H2O = CO3-2 + 8e- + 10H+ + -Vm 24789.71191 + -analytical_expression 156.470612 0 -20218.503151 -52.416322 0 0 0 + -log_K -41.034386 + +CO2(g) + CO2 + H2O = CO3-2 + 2H+ + -Vm 24789.71191 + -analytical_expression 123.151237 0 -6471.092769 -48.330215 0 0 0 + -log_K -18.14878 + +H2(g) + H2 = 2e- + 2H+ + -Vm 24789.71191 + -analytical_expression -0.006568 0 0.285413 0.002204 0 0 0 + -log_K 0 + +H2O(g) + H2O = H2O + -Vm 24789.71191 + -analytical_expression -18.473651 0 2820.718831 4.244215 0 0 0 + -log_K 1.489127 + +H2S(g) + H2S + 4H2O = SO4-2 + 8e- + 10H+ + -Vm 24789.71191 + -analytical_expression 173.087205 0 -20865.981223 -58.499322 0 0 0 + -log_K -41.699938 + +N2(g) + N2 + 6H2O = 2NO3- + 10e- + 12H+ + -Vm 24789.71191 + -analytical_expression 182.234055 0 -75312.823228 -56.614603 0 0 0 + -log_K -210.455352 + +O2(g) + O2 + 4e- + 4H+ = 2H2O + -Vm 24789.71191 + -analytical_expression -39.356141 0 30857.471179 7.664541 0 0 0 + -log_K 83.104854 + +5CA + (CaO)1.25(SiO2)1(Al2O3)0.125(H2O)1.625 + 2.25H+ = 1.25Ca+2 + 0.25AlO2- + 2.75H2O + SiO2 + -Vm 57.3 + -analytical_expression -8.681198 0 5225.70552 2.847338 0 0 0 + -log_K 15.88995 + +5CNA + (CaO)1.25(SiO2)1(Al2O3)0.125(Na2O)0.25(H2O)1.375 + 2.75H+ = 1.25Ca+2 + 0.5Na+ + 0.25AlO2- + 2.75H2O + SiO2 + -Vm 64.51 + -analytical_expression -15.798737 0 7769.891839 5.245569 0 0 0 + -log_K 23.240018 + +AlOHam + Al(OH)3 = AlO2- + H+ + H2O + -Vm 31.956 + -analytical_expression 21.767964 0 -4668.909881 -8.028999 0 0 0 + -log_K -13.760077 + +AlOHmic + Al(OH)3 = AlO2- + H+ + H2O + -Vm 31.956 + -analytical_expression 18.115845 0 -3851.361281 -8.028975 0 0 0 + -log_K -14.670074 + +Amor-Sl + SiO2 = SiO2 + -Vm 29 + -analytical_expression 0 0 -809.189752 0 0 0 0 + -log_K -2.714066 + +Anh + CaSO4 = Ca+2 + SO4-2 + -Vm 45.94 + -analytical_expression 131.227142 0 -5228.525356 -47.707058 0 0 0 + -log_K -4.357536 + +Arg + CaCO3 = CO3-2 + Ca+2 + -Vm 34.15 + -analytical_expression 130.197564 0 -5675.517045 -48.293026 0 0 0 + -log_K -8.336133 + +Brc + Mg(OH)2 + 2H+ = Mg+2 + 2H2O + -Vm 24.63 + -analytical_expression -21.32009 0 6782.887663 6.227777 0 0 0 + -log_K 16.8401 + +C2AClH5 + Ca2AlCl(OH)6(H2O)2 + 2H+ = 2Ca+2 + Cl- + AlO2- + 6H2O + -Vm 136.15 + -analytical_expression 66.786476 0 1762.591495 -23.542598 0 0 0 + -log_K 14.365171 + +C2AH7.5 + Ca2Al2(OH)10(H2O)2.5 + 2H+ = 2Ca+2 + 2AlO2- + 8.5H2O + -Vm 179.71001 + -analytical_expression 17.808797 0 3827.297306 -6.644028 0 0 0 + -log_K 14.200141 + +C2AH65 + Ca2Al(OH)7(H2O)3 + 3H+ = 2Ca+2 + AlO2- + 8H2O + -Vm 137.235 + -analytical_expression 27.662014 0 7522.207466 -9.502063 0 0 0 + -log_K 29.376623 + +C2S + (CaO)2SiO2 + 4H+ = 2Ca+2 + 2H2O + SiO2 + -Vm 51.79 + -analytical_expression -4.75838 0 12467.437992 0.569296 0 0 0 + -log_K 38.567691 + +C3A + (CaO)3Al2O3 + 4H+ = 3Ca+2 + 2AlO2- + 2H2O + -Vm 89.217 + -analytical_expression 71.858176 0 21788.248051 -30.009988 0 0 0 + -log_K 71.013492 + +C3AFS0.84H4.32 + (AlFeO3)(Ca3O3(SiO2)0.84(H2O)4.32) + 4H+ = FeO2- + 3Ca+2 + AlO2- + 6.32H2O + 0.84SiO2 + -Vm 145.51 + -analytical_expression 84.816859 0 6813.298737 -34.506414 0 0 0 + -log_K 22.280635 + +C3AH6 + Ca3Al2O6(H2O)6 + 4H+ = 3Ca+2 + 2AlO2- + 8H2O + -Vm 149.702 + -analytical_expression 6.92717 0 11498.865007 -4.036936 0 0 0 + -log_K 35.500282 + +C3AS0.41H5.18 + Ca3Al2O6(SiO2)0.41(H2O)5.18 + 4H+ = 3Ca+2 + 2AlO2- + 7.18H2O + 0.41SiO2 + -Vm 146.12 + -analytical_expression 15.787929 0 9382.192907 -7.403224 0 0 0 + -log_K 28.932364 + +C3AS0.84H4.32 + AlCa3AlO6(SiO2)0.84(H2O)4.32 + 4H+ = 3Ca+2 + 2AlO2- + 6.32H2O + 0.84SiO2 + -Vm 142.492 + -analytical_expression 25.095111 0 8272.186752 -10.93384 0 0 0 + -log_K 25.780644 + +C3FH6 + Ca3Fe2O6(H2O)6 + 4H+ = 2FeO2- + 3Ca+2 + 8H2O + -Vm 155.287 + -analytical_expression 128.806374 0 8307.518545 -51.310648 0 0 0 + -log_K 29.700289 + +C3FS0.84H4.32 + (FeFeO3)(Ca3O3(SiO2)0.84(H2O)4.32) + 4H+ = 2FeO2- + 3Ca+2 + 6.32H2O + 0.84SiO2 + -Vm 148.523 + -analytical_expression 145.738478 0 5354.444017 -58.078978 0 0 0 + -log_K 19.980634 + +C3FS1.34H3.32 + Ca3Fe2O6(SiO2)1.34(H2O)3.32 + 4H+ = 2FeO2- + 3Ca+2 + 5.32H2O + 1.34SiO2 + -Vm 148.523 + -analytical_expression 155.93451 0 4156.512613 -62.109626 0 0 0 + -log_K 16.18562 + +C3S + (CaO)3SiO2 + 6H+ = 3Ca+2 + 3H2O + SiO2 + -Vm 73.18 + -analytical_expression -6.720801 0 23294.175088 0.748984 0 0 0 + -log_K 73.405906 + +C4AClH10 + Ca4Al2Cl2(OH)12(H2O)4 + 4H+ = 2Cl- + 4Ca+2 + 2AlO2- + 12H2O + -Vm 272.3 + -analytical_expression 133.572952 0 3525.182989 -47.085195 0 0 0 + -log_K 28.730289 + +C4FeCl2H10 + Ca4Fe2Cl2(OH)12(H2O)4 + 4H+ = 12H2O + 2FeO2- + 2Cl- + 4Ca+2 + -Vm 278.04000854492 + -analytical_expression 251.42095310846 0 3211.1112086654 -94.8876323436921 0 0 0 + -log_K 27.391529 + +C4AF + (CaO)4(Al2O3)(Fe2O3) + 4H+ = 2FeO2- + 4Ca+2 + 2AlO2- + 2H2O + -Vm 130.202 + -analytical_expression 307.746518 0 6436.091359 -112.699532 0 0 0 + -log_K 50.893809 + +C4AH11 + Ca4Al2(OH)14(H2O)4 + 6H+ = 4Ca+2 + 2AlO2- + 14H2O + -Vm 257.346 + -analytical_expression 75.788218 0 15723.564353 -27.493686 0 0 0 + -log_K 60.486292 + +C4AH13 + Ca4Al2(OH)14(H2O)6 + 6H+ = 4Ca+2 + 2AlO2- + 16H2O + -Vm 274.47001 + -analytical_expression 55.325344 0 15044.855527 -19.004596 0 0 0 + -log_K 58.751897 + +C4AH19 + Ca4Al2(OH)14(H2O)12 + 6H+ = 4Ca+2 + 2AlO2- + 22H2O + -Vm 368.69999 + -analytical_expression -11.900205 0 16241.7182 6.460722 0 0 0 + -log_K 58.550427 + +C4AsClH12 + Ca4Al2Cl(SO4)0.5(OH)12(H2O)6 + 4H+ = Cl- + 4Ca+2 + 0.5SO4-2 + 2AlO2- + 14H2O + -Vm 288.60001 + -analytical_expression 119.688175 0 3706.96797 -42.248411 0 0 0 + -log_K 27.470295 + +C4FH13 + Ca4Fe2(OH)14(H2O)6 + 6H+ = 2FeO2- + 4Ca+2 + 16H2O + -Vm 285.94 + -analytical_expression 138.614269 0 5051.345155 -41.341951 0 0 0 + -log_K 53.250431 + +C12A7 + (CaO)12(Al2O3)7 + 10H+ = 12Ca+2 + 14AlO2- + 5H2O + -Vm 517.79999 + -analytical_expression 523.897526 0 50319.498133 -212.361273 0 0 0 + -log_K 166.898035 + +CA2 + CaO(Al2O3)2 + H2O = Ca+2 + 4AlO2- + 2H+ + -Vm 89.04 + -analytical_expression 153.425544 0 -10161.804838 -60.379629 0 0 0 + -log_K -29.744525 + +CA + CaOAl2O3 = Ca+2 + 2AlO2- + -Vm 53.66 + -analytical_expression 77.01585 0 -458.174791 -30.627906 0 0 0 + -log_K -0.026104 + +CAH10 + CaOAl2O3(H2O)10 = Ca+2 + 2AlO2- + 10H2O + -Vm 193.985 + -analytical_expression 13.654578 0 -2505.455035 -5.191264 0 0 0 + -log_K -7.599997 + +Cal + CaCO3 = CO3-2 + Ca+2 + -Vm 36.934 + -analytical_expression 130.276347 0 -5689.203921 -48.36444 0 0 0 + -log_K -8.479966 + +Cls + SrSO4 = SO4-2 + Sr+2 + -Vm 46.25 + -analytical_expression 138.560301 0 -6425.421539 -49.967439 0 0 0 + -log_K -6.631871 + +CSH3T-T2C + ((CaO)0.75(SiO2)0.5(H2O)1.25)2 + 3H+ = 1.5Ca+2 + 4H2O + SiO2 + -Vm 80.5584 + -analytical_expression -18.242686 0 7428.082891 7.517428 0 0 0 + -log_K 25.270837 + +CSH3T-T5C + ((CaO)1(SiO2)1(H2O)2)1.25 + 2.5H+ = 1.25Ca+2 + 3.75H2O + 1.25SiO2 + -Vm 79.2605 + -analytical_expression -18.519024 0 5127.78826 7.864154 0 0 0 + -log_K 18.137305 + +CSH3T-TobH + (CaO)1(SiO2)1.5(H2O)2.5 + 2H+ = Ca+2 + 3.5H2O + 1.5SiO2 + -Vm 84.96 + -analytical_expression -18.821451 0 3282.489718 8.22098 0 0 0 + -log_K 12.528815 + +CSHQ-JenD + (CaO)1.5(SiO2)0.6667(H2O)2.5 + 3H+ = 1.5Ca+2 + 4H2O + 0.6667SiO2 + -Vm 81 + -analytical_expression -15.591756 0 8609.739692 6.24251 0 0 0 + -log_K 28.730362 + +CSHQ-JenH + (CaO)1.3333(SiO2)1(H2O)2.1667 + 2.6666H+ = 1.3333Ca+2 + 3.5H2O + SiO2 + -Vm 76 + -analytical_expression -17.10944 0 6470.553982 7.107847 0 0 0 + -log_K 22.179305 + +CSHQ-TobD + ((CaO)1.25(SiO2)1(H2O)2.75)0.6667 + 1.66675H+ = 0.833375Ca+2 + 2.6668H2O + 0.6667SiO2 + -Vm 48 + -analytical_expression -10.916344 0 3959.367696 4.563888 0 0 0 + -log_K 13.655314 + +CSHQ-TobH + (CaO)0.6667(SiO2)1(H2O)1.5 + 1.3334H+ = 0.6667Ca+2 + 2.1667H2O + SiO2 + -Vm 55 + -analytical_expression -12.519254 0 2163.381583 5.476331 0 0 0 + -log_K 8.286642 + +Dis-Dol + CaMg(CO3)2 = 2CO3-2 + Ca+2 + Mg+2 + -Vm 64.39 + -analytical_expression 251.91928 0 -10035.250176 -94.890789 0 0 0 + -log_K -16.539822 + +ECSH1-KSH + ((KOH)2.5SiO2H2O)0.2 + 0.5H+ = 0.7H2O + 0.2SiO2 + 0.5K+ + -Vm 12.4 + -analytical_expression -5.730562 0 1108.807169 3.035639 0 0 0 + -log_K 5.360034 + +ECSH1-NaSH + ((NaOH)2.5SiO2H2O)0.2 + 0.5H+ = 0.5Na+ + 0.7H2O + 0.2SiO2 + -Vm 10.5 + -analytical_expression -12.608734 0 1575.198378 5.146974 0 0 0 + -log_K 5.270073 + +ECSH1-SH + (SiO2H2O)1 = H2O + SiO2 + -Vm 33.8 + -analytical_expression 0 0 -775.067607 0 0 0 0 + -log_K -2.600016 + +ECSH1-SrSH + ((Sr(OH)2)1SiO2H2O)1 + 2H+ = Sr+2 + 3H2O + SiO2 + -Vm 64 + -analytical_expression -14.8975 0 4225.657132 6.516963 0 0 0 + -log_K 15.400027 + +ECSH1-TobCa + ((Ca(OH)2)0.8333SiO2H2O)1 + 1.6666H+ = 0.8333Ca+2 + 2.6666H2O + SiO2 + -Vm 68 + -analytical_expression -13.776918 0 3023.19863 5.923868 0 0 0 + -log_K 11.019995 + +ECSH2-JenCa + ((Ca(OH)2)1.6667SiO2H2O)0.6 + 2.00004H+ = 1.00002Ca+2 + 2.60004H2O + 0.6SiO2 + -Vm 36 + -analytical_expression -22.977998 0 5250.037507 9.284551 0 0 0 + -log_K 17.603574 + +ECSH2-KSH + ((KOH)2.5SiO2H2O)0.2 + 0.5H+ = 0.7H2O + 0.2SiO2 + 0.5K+ + -Vm 12.4 + -analytical_expression -5.730562 0 1257.985538 3.035639 0 0 0 + -log_K 5.860381 + +ECSH2-NaSH + ((NaOH)2.5SiO2H2O)0.2 + 0.5H+ = 0.5Na+ + 0.7H2O + 0.2SiO2 + -Vm 10.5 + -analytical_expression -12.608734 0 1724.011114 5.146974 0 0 0 + -log_K 5.769194 + +ECSH2-SrSH + ((Sr(OH)2)1SiO2H2O)1 + 2H+ = Sr+2 + 3H2O + SiO2 + -Vm 64 + -analytical_expression -14.8975 0 4463.945549 6.516963 0 0 0 + -log_K 16.19925 + +ECSH2-TobCa + ((Ca(OH)2)0.8333SiO2H2O)1 + 1.6666H+ = 0.8333Ca+2 + 2.6666H2O + SiO2 + -Vm 68 + -analytical_expression -13.776918 0 3023.19863 5.923868 0 0 0 + -log_K 11.019995 + +ettringite + ((H2O)2)Ca6Al2(SO4)3(OH)12(H2O)24 + 4H+ = 6Ca+2 + 3SO4-2 + 2AlO2- + 34H2O + -Vm 707.03003 + -analytical_expression 249.812807 0 -9575.448133 -83.467765 0 0 0 + -log_K 11.100288 + +ettringite03_ss + (SO4)Ca2Al0.6666667(OH)4(H2O)8.6666667 + 1.3333332H+ = 2Ca+2 + SO4-2 + 0.6666667AlO2- + 11.3333333H2O + 0.0000001e- # added + 0.0000001e- to charge balance the reaction + -Vm 235.67699 + -analytical_expression 83.270833 0 -3192.056993 -27.822547 0 0 0 + -log_K 3.699287 + +ettringite05 + Ca3Al(SO4)1.5(OH)6(H2O)13 + 2H+ = 3Ca+2 + 1.5SO4-2 + AlO2- + 17H2O + -Vm 353.51501 + -analytical_expression 124.906404 0 -4787.82619 -41.733882 0 0 0 + -log_K 5.549801 + +ettringite9 + Ca6Al2(SO4)3(OH)12(H2O)3 + 4H+ = 6Ca+2 + 3SO4-2 + 2AlO2- + 11H2O + -Vm 360.99998 + -analytical_expression 515.195568 0 -5706.663308 -181.076858 0 0 0 + -log_K 47.941168 + +Ettringite9_des + Ca6Al2(SO4)3(OH)12(H2O)3 + 4H+ = 6Ca+2 + 3SO4-2 + 2AlO2- + 11H2O + -Vm 360.99998 + -analytical_expression 515.195568 0 -5706.663308 -181.076858 0 0 0 + -log_K 47.941168 + +ettringite13 + Ca6Al2(SO4)3(OH)12(H2O)7 + 4H+ = 6Ca+2 + 3SO4-2 + 2AlO2- + 15H2O + -Vm 410.60001 + -analytical_expression 411.78326 0 9912.899169 -164.096652 0 0 0 + -log_K 38.931914 + +Ettringite13_des + Ca6Al2(SO4)3(OH)12(H2O)7 + 4H+ = 6Ca+2 + 3SO4-2 + 2AlO2- + 15H2O + -Vm 410.60001 + -analytical_expression 411.78326 0 9912.899169 -164.096652 0 0 0 + -log_K 38.931914 + +ettringite30 + Ca6Al2(SO4)3(OH)12(H2O)24 + 4H+ = 6Ca+2 + 3SO4-2 + 2AlO2- + 32H2O + -Vm 707.79999 + -analytical_expression 272.821479 0 -9993.558256 -91.956855 0 0 0 + -log_K 11.701736 + +Fe-ettringite05 + Ca3Fe(SO4)1.5(OH)6(H2O)13 + 2H+ = FeO2- + 3Ca+2 + 1.5SO4-2 + 17H2O + -Vm 358.77998 + -analytical_expression 197.364253 0 -8624.223942 -65.634539 0 0 0 + -log_K 5.999868 + +Fe-ettringite + Ca6Fe2(SO4)3(OH)12(H2O)26 + 4H+ = 2FeO2- + 6Ca+2 + 3SO4-2 + 34H2O + -Vm 717.55997 + -analytical_expression 394.728405 0 -17248.229444 -131.269079 0 0 0 + -log_K 12.000367 + +Fe-hemicarbonate + Ca3O3Fe2O3(CaCO3)0.5(CaO2H2)0.5(H2O)9.5 + 5H+ = 2FeO2- + 0.5CO3-2 + 4Ca+2 + 12.5H2O + -Vm 273.393 + -analytical_expression 193.828235 0 10447.417422 -76.660531 0 0 0 + -log_K 39.170367 + +Fe-monosulph05 + Ca2FeS0.5O5(H2O)6 + 2H+ = FeO2- + 2Ca+2 + 0.5SO4-2 + 7H2O + -Vm 160.56999 + -analytical_expression 120.283422 0 2063.244429 -46.465814 0 0 0 + -log_K 12.215835 + +Fe-monosulphate + Ca4Fe2SO10(H2O)12 + 4H+ = 2FeO2- + 4Ca+2 + SO4-2 + 14H2O + -Vm 321.13998 + -analytical_expression 240.566801 0 4126.078131 -92.931614 0 0 0 + -log_K 24.430286 + +Fe + Fe + 2H2O = FeO2- + 3e- + 4H+ + -Vm 7.092 + -analytical_expression 132.340967 0 -12404.074019 -44.182581 0 0 0 + -log_K -18.589211 + +Femonocarbonate + Ca4O4Fe2O3CO2(H2O)12 + 4H+ = 2FeO2- + CO3-2 + 4Ca+2 + 14H2O + -Vm 291.66599 + -analytical_expression 249.334962 0 1093.382606 -93.590513 0 0 0 + -log_K 21.410284 + +FeOOHmic + FeOOH = FeO2- + H+ + -Vm 34.3055 + -analytical_expression 100.061618 0 -8235.848429 -37.195525 0 0 0 + -log_K -19.600073 + +Fe(OH)3(am) + Fe(OH)3 = H2O + H+ + FeO2- + -Vm 34.0 + -analytical_expression 122.5787585403 0 -14084.096873518 -37.156204153846 0 0 0 + -log_K -16.599876 + +Fe(OH)3(mic) + Fe(OH)3 = H2O + H+ + FeO2- + -Vm 34.0 + -analytical_expression 120.57875815185 0 -14084.096873518 -37.156204153846 0 0 0 + -log_K -18.599876 + +FeCO3(pr) + FeCO3 + 2H2O = 4H+ + FeO2- + e- + CO3-2 + -Vm 0 + -analytical_expression 242.999905233 0 -22598.476532107 -85.7871290067801 0 0 0 + -log_K -45.070013 + +Gbs + Al(OH)3 = AlO2- + H+ + H2O + -Vm 31.956 + -analytical_expression 21.767948 0 -5075.650047 -8.028994 0 0 0 + -log_K -15.123224 + +Gp + CaSO4(H2O)2 = Ca+2 + SO4-2 + 2H2O + -Vm 74.69 + -analytical_expression 111.52996 0 -5116.920989 -39.988271 0 0 0 + -log_K -4.580905 + +Gr + C + 3H2O = CO3-2 + 4e- + 6H+ + -Vm 5.298 + -analytical_expression 162.956174 0 -16787.603977 -56.097644 0 0 0 + -log_K -32.159364 + +Gt + FeO(OH) = FeO2- + H+ + -Vm 20.82 + -analytical_expression 107.380005 0 -11314.633767 -37.192105 0 0 0 + -log_K -22.599869 + +Hem + Fe2O3 + H2O = 2FeO2- + 2H+ + -Vm 30.274 + -analytical_expression 223.79664 0 -21596.779136 -78.175762 0 0 0 + -log_K -42.079928 + +hemicarbonat10.5 + (CaO)3Al2O3(CaCO3)0.5(CaO2H2)0.5(H2O)10 + 5H+ = 0.5CO3-2 + 4Ca+2 + 2AlO2- + 13H2O + -Vm 261.264 + -analytical_expression 77.626118 0 10184.22042 -27.955532 0 0 0 + -log_K 42.602279 + +hemicarbonate + (CaO)3Al2O3(CaCO3)0.5(CaO2H2)0.5(H2O)11.5 + 5H+ = 0.5CO3-2 + 4Ca+2 + 2AlO2- + 14.5H2O + -Vm 284.515 + -analytical_expression 62.269608 0 9549.770855 -21.589162 0 0 0 + -log_K 40.870354 + +hemicarbonate9 + (CaO)3Al2O3(CaCO3)0.5(CaO2H2)0.5(H2O)8.5 + 5H+ = 0.5CO3-2 + 4Ca+2 + 2AlO2- + 11.5H2O + -Vm 249.26001 + -analytical_expression 93.058654 0 11173.871793 -34.321784 0 0 0 + -log_K 45.601854 + +hemihydrate + CaSO4(H2O)0.5 = Ca+2 + SO4-2 + 0.5H2O + -Vm 61.73 + -analytical_expression 126.983644 0 -4904.135062 -46.116125 0 0 0 + -log_K -3.591424 + +hydrotalcite + Mg4Al2O7(H2O)10 + 6H+ = 4Mg+2 + 2AlO2- + 13H2O + -Vm 220.2 + -analytical_expression -64.408885 0 14558.45083 17.606952 0 0 0 + -log_K 27.981048 + +INFCA + (CaO)1(SiO2)1.1875(Al2O3)0.15625(H2O)1.65625 + 1.6875H+ = Ca+2 + 0.3125AlO2- + 2.5H2O + 1.1875SiO2 + -Vm 59.31 + -analytical_expression -4.743157 0 2835.081302 1.693048 0 0 0 + -log_K 8.953727 + +INFCN + (CaO)1(SiO2)1.5(Na2O)0.3125(H2O)1.1875 + 2.625H+ = Ca+2 + 0.625Na+ + 2.5H2O + 1.5SiO2 + -Vm 71.07 + -analytical_expression -20.845546 0 6107.503138 7.727791 0 0 0 + -log_K 18.759957 + +INFCNA + (CaO)1(SiO2)1.1875(Al2O3)0.15625(Na2O)0.34375(H2O)1.3125 + 2.375H+ = 0.3125AlO2- + Ca+2 + 0.6875Na+ + 2.5H2O + 1.1875SiO2 # (CaO)1.25(SiO2)1(Al2O3)0.125(Na2O)0.25(H2O)1.375 + 2.75H+ = 1.25Ca+2 + 0.5Na+ + 0.25AlO2- + 2.75H2O + SiO2 + -Vm 64.51 + -analytical_expression -14.774576 0 5861.456900 4.990089 0 0 0 # -15.798737 0 7769.891839 5.245569 0 0 0 + -log_K 17.4787 #17.23247 # 23.240018 + +Jennite + (SiO2)1(CaO)1.666667(H2O)2.1 + 3.333334H+ = 1.666667Ca+2 + 3.766667H2O + SiO2 + -Vm 78.4 + -analytical_expression -19.396078 0 8669.561341 7.93557 0 0 0 + -log_K 29.311107 + +K2O + K2O + 2H+ = H2O + 2K+ + -Vm 40.38 + -analytical_expression 6.476756 0 22428.269631 0.967431 0 0 0 + -log_K 84.040201 + +K2SO4 + K2SO4 = SO4-2 + 2K+ + -Vm 65.5 + -analytical_expression 135.069553 0 -7146.619808 -45.622186 0 0 0 + -log_K -1.789931 + +Kln + Al2Si2O5(OH)4 = 2AlO2- + 2H+ + H2O + 2SiO2 + -Vm 99.52 + -analytical_expression 54.870319 0 -12400.265644 -20.854932 0 0 0 + -log_K -38.323299 + +KSiOH + ((KOH)2.5SiO2H2O)0.2 + 0.5H+ = 0.7H2O + 0.2SiO2 + 0.5K+ + -Vm 12.4 + -analytical_expression -5.730562 0 1187.456467 3.035639 0 0 0 + -log_K 5.763688 # fixed from 20 to 25 C standard state + +Lim + CaO + 2H+ = Ca+2 + H2O + -Vm 16.764 + -analytical_expression -1.936052 0 10151.015229 0.193158 0 0 0 + -log_K 32.576144 + +M4A-OH-LDH + Mg4Al2(OH)14(H2O)3 + 6H+ = 4Mg+2 + 2AlO2- + 13H2O + -Vm 219.1 + -analytical_expression -64.757092 0 16457.781625 17.72704 0 0 0 + -log_K 34.300378 + +M6A-OH-LDH + Mg6Al2(OH)18(H2O)3 + 10H+ = 6Mg+2 + 2AlO2- + 17H2O + -Vm 305.44001 + -analytical_expression -107.049491 0 30008.834801 30.062691 0 0 0 + -log_K 67.980719 + +M8A-OH-LDH + Mg8Al2(OH)22(H2O)3 + 14H+ = 8Mg+2 + 2AlO2- + 21H2O + -Vm 392.36 + -analytical_expression -149.690514 0 43575.149605 42.518503 0 0 0 + -log_K 101.660954 + +Mag + FeFe2O4 + 2H2O = 3FeO2- + e- + 4H+ + -Vm 44.524 + -analytical_expression 342.751579 0 -34317.547939 -119.4011 0 0 0 + -log_K -67.799781 + +Melanterite + FeSO4(H2O)7 = FeO2- + SO4-2 + e- + 4H+ + 5H2O + -Vm 146.5 + -analytical_expression 42.012261 0 -13764.024167 -13.205643 0 0 0 + -log_K -36.829266 + +Mg2AlC0.5OH + Mg2Al(OH)6(CO3)0.5(H2O)2 + 2H+ = 0.5CO3-2 + 2Mg+2 + AlO2- + 6H2O + -Vm 110.64 + -analytical_expression 52.087082 0 2427.559551 -21.950718 0 0 0 + -log_K 5.905352 + +Mg2FeC0.5OH + Mg2Fe(OH)6(CO3)0.5(H2O)2 + 2H+ = FeO2- + 0.5CO3-2 + 2Mg+2 + 6H2O + -Vm 118.24 + -analytical_expression 123.467564 0 -1619.112448 -45.350343 0 0 0 + -log_K 5.819333 + +Mg3AlC0.5OH + Mg3Al(OH)8(CO3)0.5(H2O)2.5 + 4H+ = 0.5CO3-2 + 3Mg+2 + AlO2- + 8.5H2O + -Vm 114.96 + -analytical_expression 30.767468 0 9200.105421 -15.723139 0 0 0 + -log_K 22.710152 + +Mg3FeC0.5OH + Mg3Fe(OH)8(CO3)0.5(H2O)2.5 + 4H+ = FeO2- + 0.5CO3-2 + 3Mg+2 + 8.5H2O + -Vm 119.04 + -analytical_expression 102.147972 0 5075.604806 -39.122772 0 0 0 + -log_K 22.364849 + +Mgs + MgCO3 = CO3-2 + Mg+2 + -Vm 28.02 + -analytical_expression 122.077828 0 -4543.697257 -46.52635 0 0 0 + -log_K -8.287956 + +monocarbonate05 + Ca2AlC0.5O4.5(H2O)5.5 + 2H+ = 0.5CO3-2 + 2Ca+2 + AlO2- + 6.5H2O + -Vm 130.979 + -analytical_expression 70.00517 0 1099.718617 -24.823618 0 0 0 + -log_K 12.265064 + +monocarbonate9 + Ca4Al2CO9(H2O)9 + 4H+ = CO3-2 + 4Ca+2 + 2AlO2- + 11H2O + -Vm 233.56001 + -analytical_expression 158.243914 0 4217.516791 -58.13549 0 0 0 + -log_K 28.529678 + +monocarbonate + Ca4Al2CO9(H2O)11 + 4H+ = CO3-2 + 4Ca+2 + 2AlO2- + 13H2O + -Vm 261.95801 + -analytical_expression 140.009891 0 2199.460032 -49.64706 0 0 0 + -log_K 24.530285 + +mononitrate + Ca4Al2(OH)12N2O6(H2O)4 + 4H+ = 4Ca+2 + 2NO3- + 2AlO2- + 12H2O + -Vm 296.6 + -analytical_expression 125.898043 0 2205.916688 -42.823015 0 0 0 + -log_K 27.330282 + +mononitrite + Ca4Al2(OH)12N2O4(H2O)4 = 4Ca+2 + 2NO3- + 4e- + 2AlO2- + 10H2O + -Vm 275.1 + -analytical_expression 155.801032 0 -16841.373096 -50.526302 0 0 0 + -log_K -25.773636 + +monosulphate9 + Ca4Al2SO10(H2O)9 + 4H+ = 4Ca+2 + SO4-2 + 2AlO2- + 11H2O + -Vm 274.59999 + -analytical_expression 159.852574 0 4550.796558 -58.584347 0 0 0 + -log_K 30.131523 + +monosulphate10_5 + Ca4Al2SO10(H2O)10.5 + 4H+ = 4Ca+2 + SO4-2 + 2AlO2- + 12.5H2O + -Vm 281.6 + -analytical_expression 145.904159 0 3409.965469 -52.21689 0 0 0 + -log_K 28.112004 + +monosulphate12 + Ca4Al2SO10(H2O)12 + 4H+ = 4Ca+2 + SO4-2 + 2AlO2- + 14H2O + -Vm 310.1 + -analytical_expression 129.176276 0 3298.866824 -45.84964 0 0 0 + -log_K 26.766183 + +monosulphate14 + Ca4Al2SO10(H2O)14 + 4H+ = 4Ca+2 + SO4-2 + 2AlO2- + 16H2O + -Vm 331.6 + -analytical_expression 102.943376 0 4849.121605 -37.359536 0 0 0 + -log_K 26.74029 + +monosulphate16 + Ca4Al2SO10(H2O)16 + 4H+ = 4Ca+2 + SO4-2 + 2AlO2- + 18H2O + -Vm 350.49999 + -analytical_expression 86.970337 0 3920.996004 -29.6115 0 0 0 + -log_K 26.825486 + +monosulphate1205 + Ca2AlS0.5O5(H2O)6 + 2H+ = 2Ca+2 + 0.5SO4-2 + AlO2- + 7H2O + -Vm 155 + -analytical_expression 64.588687 0 1649.307718 -22.925 0 0 0 + -log_K 13.382785 + +Na2O + Na2O + 2H+ = 2Na+ + H2O + -Vm 25 + -analytical_expression -23.111565 0 19655.835929 9.951451 0 0 0 + -log_K 67.426798 + +Na2SO4 + Na2SO4 = SO4-2 + 2Na+ + -Vm 53.33 + -analytical_expression 88.450221 0 -3841.556012 -30.659122 0 0 0 + -log_K -0.276627 + +NaSiOH + ((NaOH)2.5SiO2H2O)0.2 + 0.5H+ = 0.5Na+ + 0.7H2O + 0.2SiO2 + -Vm 10.5 + -analytical_expression -12.612802 0 1646.66001 5.148192 0 0 0 + -log_K 5.64873 # fixed from 20 to 25 C standard state + +Ord-Dol + CaMg(CO3)2 = 2CO3-2 + Ca+2 + Mg+2 + -Vm 64.34 + -analytical_expression 252.520277 0 -10378.423105 -94.890789 0 0 0 + -log_K -17.089923 + +Portlandite + Ca(OH)2 + 2H+ = Ca+2 + 2H2O + -Vm 33.06 + -analytical_expression -11.299363 0 7301.394065 3.883957 0 0 0 + -log_K 22.799937 + +Py + FeSS + 10H2O = FeO2- + 2SO4-2 + 15e- + 20H+ + -Vm 23.94 + -analytical_expression 494.259016 0 -62035.882103 -164.356773 0 0 0 + -log_K -120.499988 + +Qtz + SiO2 = SiO2 + -Vm 22.688 + -analytical_expression 0 0 -1117.053188 0 0 0 0 + -log_K -3.745943 + +Sd + FeCO3 + 2H2O = FeO2- + CO3-2 + e- + 4H+ + -Vm 29.378 + -analytical_expression 250.136977 0 -22250.818869 -89.320508 0 0 0 + -log_K -45.510001 + +straetlingite5_5 + Ca2Al2SiO7(H2O)5.5 + 2H+ = 2Ca+2 + 2AlO2- + 6.5H2O + SiO2 + -Vm 212.80001 + -analytical_expression 37.907778 0 2181.475531 -15.409059 0 0 0 + -log_K 7.084478 + +straetlingite7 + Ca2Al2SiO7(H2O)7 + 2H+ = 2Ca+2 + 2AlO2- + 8H2O + SiO2 + -Vm 215.49999 + -analytical_expression 23.157422 0 1202.259407 -9.042894 0 0 0 + -log_K 4.808689 + +straetlingite + Ca2Al2SiO7(H2O)8 + 2H+ = 2Ca+2 + 2AlO2- + 9H2O + SiO2 + -Vm 216.11 + -analytical_expression 11.402755 0 1366.913776 -4.798679 0 0 0 + -log_K 4.107923 + +Str + SrCO3 = CO3-2 + Sr+2 + -Vm 39.01 + -analytical_expression 135.252007 0 -6419.173204 -49.705385 0 0 0 + -log_K -9.270604 + +Sulfur + S + 4H2O = SO4-2 + 6e- + 8H+ + -Vm 15.61 + -analytical_expression 181.434769 0 -20059.230933 -60.591388 0 0 0 + -log_K -35.786877 + +syngenite + K2Ca(SO4)2H2O = Ca+2 + 2SO4-2 + H2O + 2K+ + -Vm 127.54 + -analytical_expression 256.448003 0 -12598.952713 -89.469888 0 0 0 + -log_K -7.200017 + +T2C-CNASHss + (CaO)1.5(SiO2)1(H2O)2.5 + 3H+ = 1.5Ca+2 + 4H2O + SiO2 + -Vm 80.6 + -analytical_expression -18.253184 0 7517.243302 7.519834 0 0 0 + -log_K 25.565334 + +T5C-CNASHss + (CaO)1.25(SiO2)1.25(H2O)2.5 + 2.5H+ = 1.25Ca+2 + 3.75H2O + 1.25SiO2 + -Vm 79.3 + -analytical_expression -18.534936 0 5220.492792 7.869445 0 0 0 + -log_K 18.445467 + +thaumasite + (CaSiO3)(CaSO4)(CaCO3)(H2O)15 + 2H+ = CO3-2 + 3Ca+2 + SO4-2 + 16H2O + SiO2 + -Vm 330 + -analytical_expression 167.233706 0 -8544.402669 -56.373637 0 0 0 + -log_K -0.939919 + +Tob-I + (SiO2)2.4(CaO)2(H2O)3.2 + 4H+ = 2Ca+2 + 5.2H2O + 2.4SiO2 + -Vm 140.8 + -analytical_expression -33.40536 0 7370.767991 14.318972 0 0 0 + -log_K 26.745369 + +Tob-II + (SiO2)1(CaO)0.833333(H2O)1.333333 + 1.666666H+ = 0.833333Ca+2 + 2.166666H2O + SiO2 + -Vm 58.7 + -analytical_expression -13.918819 0 3071.259317 5.96621 0 0 0 + -log_K 11.143844 + +TobH-CNASHss + (CaO)1(SiO2)1.5(H2O)2.5 + 2H+ = Ca+2 + 3.5H2O + 1.5SiO2 + -Vm 85 + -analytical_expression -18.816693 0 3362.507631 8.219057 0 0 0 + -log_K 12.797208 + +tricarboalu03 + (CO3)Ca2Al0.6666667(OH)4(H2O)8.6666667 + 1.3333332H+ = CO3-2 + 2Ca+2 + 0.6666667AlO2- + 11.3333333H2O + 0.0000001e- # added + 0.0000001e- to charge balance the reaction + -Vm 216.8 + -analytical_expression 82.318066 0 -2586.079211 -28.479545 0 0 0 + -log_K 3.167231 + +Tro + FeS + 6H2O = FeO2- + SO4-2 + 9e- + 12H+ + -Vm 18.2 + -analytical_expression 314.679591 0 -38228.907533 -105.106645 0 0 0 + -log_K -73.61999 + +zeoliteP_Ca + Ca(Al2Si2)O8(H2O)4.5 = 2AlO2- + Ca+2 + 2SiO2 + 4.5H2O + -Vm 152.85 + -analytical_expression 132.861 0 -5357.72 -54.635048311 0 0 0 + -log_k -20.3 + +chabazite + Ca(Al2Si4)O12(H2O)6 = 2AlO2- + Ca+2 + 4SiO2 + 6H2O + -Vm 251.16 + -analytical_expression 34.7164 0 -7737.68 -13.968471285 0 0 0 + -log_K -25.8 + +M075SH + Mg1.5Si2O5.5(H2O)2.5 = 1.5Mg+2 + 2SiO2 + 3OH- + H2O + -Vm 94.885 + -analytical_expression 189.002 0 -12089.2 -71.567338050 0 0 0 + -log_K -28.8 + +M15SH + Mg1.5SiO3.5(H2O)2.5 = 1.5Mg+2 + 1SiO2 + 3OH- + H2O + -Vm 74.32 + -analytical_expression 181.544 0 -10396.4 -68.757032944 0 0 0 + -log_K -23.57 + +zeoliteX + Na2(Al2Si2.5)O9(H2O)6.2 = 2AlO2- + 2Na+ + 2.5SiO2 + 6.2H2O + -Vm 213.6 + -analytical_expression 11.7196 0 -6871.84 -3.5447606731 0 0 0 + -log_K -20.1 + +natrolite + Na2(Al2Si3)O10(H2O)2 = 2AlO2- + 2Na+ + 3SiO2 + 2H2O + -Vm 169.2 + -analytical_expression 31.8586 0 -9899.44 -11.661534306 0 0 0 + -log_K -30.2 + +zeoliteY + Na2(Al2Si4)O12(H2O)8 = 2AlO2- + 2Na+ + 4SiO2 + 8H2O + -Vm 282.93 + -analytical_expression -4.67273 0 -7863.67 2.4440328952 0 0 0 + -log_K -25 From c378c74d7f2510092a8fca311f7ffbbb7ed96f1d Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Thu, 18 Apr 2024 18:16:55 +0000 Subject: [PATCH 140/384] Squashed 'phreeqcpp/' changes from 7284fed..89d028d 89d028d Tony's fix for Valgrind error in Debye1. 9716b89 fix for new Valgrind problem. Added a newer CEMDATA database for the database collection. eee3969 Merge branch 'master' into viscosity b575463 Merge branch 'master' into viscosity b74423e Issue resolution to be tested: Valgrind-Conditional jump or move depends on uninitialised value (SC) #48 67a69ae Tony changes 20240414, with correction to CH4 Vm. Changes to src. seaw_SC expanded. 34b880c Merge branch 'master' into viscosity 1819d3a Merge branch 'master' into viscosity git-subtree-dir: phreeqcpp git-subtree-split: 89d028d8321339d90539869f46da1143f23d4025 --- PBasic.cpp | 12 ++-- Phreeqc.h | 2 +- basicsubs.cpp | 137 +++++++++++++++----------------------------- global_structures.h | 24 +++++--- read.cpp | 6 +- transport.cpp | 129 +++++++++++++++++++++++++++-------------- 6 files changed, 158 insertions(+), 152 deletions(-) diff --git a/PBasic.cpp b/PBasic.cpp index 86c60359..058b63ed 100644 --- a/PBasic.cpp +++ b/PBasic.cpp @@ -3380,20 +3380,22 @@ factor(struct LOC_exec * LINK) case toksetdiff_c: { - double d; + double d, d_v_d = 0; require(toklp, LINK); const char* str = stringfactor(STR1, LINK); require(tokcomma, LINK); - // double arugument d = realexpr(LINK); + if (LINK->t != NULL && LINK->t->kind == tokcomma) + { + LINK->t = LINK->t->next; + d_v_d = realexpr(LINK); + } require(tokrp, LINK); - n.UU.val = (parse_all) ? 1 : PhreeqcPtr->setdiff_c(str, d); - - //PhreeqcPtr->PHRQ_free((void *) str); + n.UU.val = (parse_all) ? 1 : PhreeqcPtr->setdiff_c(str, d, d_v_d); } break; diff --git a/Phreeqc.h b/Phreeqc.h index 7a1e7e9f..fec912d7 100644 --- a/Phreeqc.h +++ b/Phreeqc.h @@ -110,7 +110,7 @@ public: LDBLE aqueous_vm(const char* species_name); LDBLE phase_vm(const char* phase_name); LDBLE diff_c(const char* species_name); - LDBLE setdiff_c(const char* species_name, double d); + LDBLE setdiff_c(const char * species_name, double d, double d_v_d); LDBLE flux_mcd(const char* species_name, int option); LDBLE sa_declercq(double type, double sa, double d, double m, double m0, double gfw); LDBLE calc_SC(void); diff --git a/basicsubs.cpp b/basicsubs.cpp index 9f4116b8..3ef3d6c5 100644 --- a/basicsubs.cpp +++ b/basicsubs.cpp @@ -178,7 +178,6 @@ sa_declercq(double sa_type, double Sa, double d, double m, double m0, double gfw error_msg(error_string, CONTINUE); input_error++; return (MISSING); - } /* ---------------------------------------------------------------------- */ @@ -187,97 +186,58 @@ diff_c(const char *species_name) /* ---------------------------------------------------------------------- */ { class species *s_ptr; - LDBLE ka, l_z, Dw, ff, sqrt_mu, a, a2, a3, av; - sqrt_mu = sqrt(mu_x); + LDBLE Dw; s_ptr = s_search(species_name); if (s_ptr == NULL) return(0); if ((Dw = s_ptr->dw) == 0) - { - if (correct_Dw) - Dw = default_Dw; - else - return(0); - } + return(0); if (correct_Dw) { - if ((l_z = fabs(s_ptr->z)) == 0) - { - //l_z = 1; // only a 1st approximation for correct_Dw in electrical field - } - else - { - if (print_viscosity) - { - a = (s_ptr->dw_a ? s_ptr->dw_a : 1.6); - a2 = (s_ptr->dw_a2 ? s_ptr->dw_a2 : 4.73); - av = (s_ptr->dw_a_visc ? pow((viscos_0 / viscos), s_ptr->dw_a_visc) : 1); - a3 = (s_ptr->dw_a3 ? pow(mu_x, s_ptr->dw_a3) : s_ptr->dw_a_visc ? 1 : pow(mu_x, 0.75)); - } - else - { - a = (s_ptr->dw_a ? s_ptr->dw_a : 1.6); - a2 = (s_ptr->dw_a2 ? s_ptr->dw_a2 : 4.73); - av = 1.0; - a3 = (s_ptr->dw_a3 ? pow(mu_x, s_ptr->dw_a3) : pow(mu_x, 0.75)); - } - ka = DH_B * a2 * sqrt_mu / (1 + a3); - ff = av * exp(-a * DH_A * l_z * sqrt_mu / (1 + ka)); - Dw *= ff; - } + calc_SC(); + Dw = s_ptr->dw_corr; } - if (tk_x != 298.15 && s_ptr->dw_t) - Dw *= exp(s_ptr->dw_t / tk_x - s_ptr->dw_t / 298.15); + else + { + if (tk_x != 298.15 && s_ptr->dw_t) + Dw *= exp(s_ptr->dw_t / tk_x - s_ptr->dw_t / 298.15); - s_ptr->dw_corr = Dw * viscos_0_25 / viscos_0; - return s_ptr->dw_corr; + Dw *= viscos_0_25 / viscos_0; + } + if (s_ptr->dw_a_v_dif) + Dw *= pow(viscos_0 / viscos, s_ptr->dw_a_v_dif); + return Dw; } + /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: -setdiff_c(const char *species_name, double d) +setdiff_c(const char *species_name, double d, double d_v_d) /* ---------------------------------------------------------------------- */ { class species *s_ptr; - LDBLE ka, l_z, Dw, ff, sqrt_mu, a, a2, a3, av; - sqrt_mu = sqrt(mu_x); + LDBLE Dw; s_ptr = s_search(species_name); if (s_ptr == NULL) return(0); Dw = s_ptr->dw = d; + s_ptr->dw_a_v_dif = d_v_d; if (correct_Dw) { - if ((l_z = fabs(s_ptr->z)) == 0) - { - //l_z = 1; // only a 1st approximation for correct_Dw in electrical field - } - else - { - if (print_viscosity) - { - a = (s_ptr->dw_a ? s_ptr->dw_a : 1.6); - a2 = (s_ptr->dw_a2 ? s_ptr->dw_a2 : 4.73); - av = (s_ptr->dw_a_visc ? pow((viscos_0 / viscos), s_ptr->dw_a_visc) : 1); - a3 = (s_ptr->dw_a3 ? pow(mu_x, s_ptr->dw_a3) : 1); - } - else - { - a = (s_ptr->dw_a ? s_ptr->dw_a : 1.6); - a2 = (s_ptr->dw_a2 ? s_ptr->dw_a2 : 4.73); - av = 1.0; - a3 = (s_ptr->dw_a3 ? pow(mu_x, s_ptr->dw_a3) : s_ptr->dw_a_visc ? 1 : pow(mu_x, 0.75)); - } - ka = DH_B * a2 * sqrt_mu / (1 + a3); - ff = av * exp(-a * DH_A * l_z * sqrt_mu / (1 + ka)); - Dw *= ff; - } + calc_SC(); + Dw = s_ptr->dw_corr; } - if (tk_x != 298.15 && s_ptr->dw_t) + else + { + if (tk_x != 298.15 && s_ptr->dw_t) Dw *= exp(s_ptr->dw_t / tk_x - s_ptr->dw_t / 298.15); - s_ptr->dw_corr = Dw * viscos_0_25 / viscos_0; - return s_ptr->dw_corr; + Dw *= viscos_0_25 / viscos_0; + } + if (d_v_d) + Dw *= pow(viscos_0 / viscos, d_v_d); + return Dw; } /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: @@ -287,6 +247,7 @@ calc_SC(void) class species *s_ptr; int i; LDBLE ka, l_z, Dw, ff, sqrt_mu, a, a2, a3, av, v_Cl = 1; + SC = 0; sqrt_mu = sqrt(mu_x); bool Falk = false; s_ptr = s_search("H+"); @@ -294,7 +255,6 @@ calc_SC(void) return(0); else if (s_ptr->dw_a3 > 24) Falk = true; - SC = 0; //LDBLE ta1, ta2, ta3, ta4; //for (i = 0; i < (int)this->s_x.size(); i++) //{ @@ -320,7 +280,10 @@ calc_SC(void) if (correct_Dw) Dw = default_Dw; else + { + s_x[i]->dw_corr = 0; continue; + } } if (s_x[i]->lm < min_dif_LM) continue; @@ -343,27 +306,6 @@ calc_SC(void) } else { - //if (s_x[i]->dw_a2) - // ka = DH_B * s_x[i]->dw_a2 * sqrt_mu / (1 + pow(mu_x, 0.259)); - // //ka = DH_B * s_x[i]->dw_a2 * sqrt_mu / (1 + pow(mu_x, 0.75)); - //else - //{ - // ka = DH_B * 4.73 * sqrt_mu / (1 + pow(mu_x, 0.259)); - // //ka = DH_B * ta1 * sqrt_mu / (1 + pow(mu_x, ta2)); - // //ka = DH_B * ta1 * sqrt_mu / (1 + mu_x / ta2); - //} - //if (s_x[i]->dw_a) - //{ - // ff = exp(-s_x[i]->dw_a * DH_A * l_z * sqrt_mu / (1 + ka)); - // if (print_viscosity && s_x[i]->dw_a_visc) - // ff *= pow((viscos_0 / viscos), s_x[i]->dw_a_visc); - //} - //else - //{ - // ff = exp(-1.6 * DH_A * l_z * sqrt_mu / (1 + ka)); - // //ff = exp(-ta3 * DH_A * l_z * sqrt_mu / (1 + ka)); - //} - //Dw *= ff; s_ptr = s_x[i]; if (print_viscosity) { @@ -384,6 +326,8 @@ calc_SC(void) } Dw *= ff; + if (correct_Dw) + s_x[i]->dw_corr = Dw; s_x[i]->dw_t_SC = s_x[i]->moles / mass_water_aq_x * l_z * l_z * Dw; SC += s_x[i]->dw_t_SC; } @@ -416,8 +360,13 @@ calc_SC(void) continue; if ((Dw = s_x[i]->dw) == 0) { - if (correct_Dw) Dw = default_Dw; // or charge based...Dw = l_z > 0 ? 1.6e-9 / l_z : 2e-9 / -l_z; - else continue; + if (correct_Dw) + Dw = default_Dw; // or charge based...Dw = l_z > 0 ? 1.6e-9 / l_z : 2e-9 / -l_z; + else + { + s_x[i]->dw_corr = 0; + continue; + } } if (tk_x != 298.15 && s_x[i]->dw_t) Dw *= exp(s_x[i]->dw_t / tk_x - s_x[i]->dw_t / 298.15); @@ -496,6 +445,8 @@ calc_SC(void) ff = av * exp(-a * DH_A * l_z * sqrt_mu / (1 + ka)); Dw *= ff; + if (correct_Dw) + s_x[i]->dw_corr = Dw; s_x[i]->dw_t_SC = s_x[i]->moles / mass_water_aq_x * l_z * l_z * Dw; SC += s_x[i]->dw_t_SC * 1e3 * Dw_SC; } @@ -540,7 +491,9 @@ calc_SC(void) //t1 = (Dw - B2 * l_z * sqrt_mu / (1 + ka)) * // (1 - B1 * sqrt_mu / ((1 + ka) *(1 + ka * sqrt_q + ka * ka / 6))); // S.cm2/eq / (kgw/L) if (av) - t1 *= pow(viscos_0 / viscos, av); + t1 *= pow(viscos_0 / viscos, av); + if (correct_Dw) + s_x[i]->dw_corr *= t1 / Dw; // fractional contribution in mu, and correct for charge imbalance a2 = 2 / (eq_plus + eq_min); diff --git a/global_structures.h b/global_structures.h index e9d82f9d..50aae97a 100644 --- a/global_structures.h +++ b/global_structures.h @@ -14,7 +14,7 @@ # define NAN nan("1") # endif #endif -#define MISSING -9999.999 +#define MISSING -9999.999 #include "NA.h" /* NA = not available */ #define F_C_MOL 96493.5 /* C/mol or joule/volt-eq */ @@ -712,18 +712,18 @@ public: secondary = NULL; gfw = 0; // gram formula wt of species z = 0; // charge of species - // tracer diffusion coefficient in water at 25oC, m2/s - dw = 0; - // correct Dw for temperature: Dw(TK) = Dw(298.15) * exp(dw_t / TK - dw_t / 298.15) - dw_t = 0; + dw = 0; // tracer diffusion coefficient in water at 25oC, m2/s + dw_t = 0; // correct Dw for temperature: Dw(TK) = Dw(298.15) * exp(dw_t / TK - dw_t / 298.15) // parms for calc'ng SC = SC0 * exp(-dw_a * z * mu^0.5 / (1 + DH_B * dw_a2 * mu^0.5) / (1 + mu^dw_a3)) + // with DHO: ka = DH_B * dw_a * (1 + DD(V_apparent)^dw_a2 * sqrt_mu, dw_a3 is a switch, see calc_SC in PBasic dw_a = 0; dw_a2 = 0; dw_a3 = 0; - dw_a_visc = 0; // viscosity correction of SC + dw_a_visc = 0; // exponent in viscosity correction of SC + dw_a_v_dif = 0; // exponent in viscosity correction of D, the diffusion coefficient of the species dw_t_SC = 0; // contribution to SC, for calc'ng transport number with BASIC dw_t_visc = 0; // contribution to viscosity - dw_corr = 0; // dw corrected for TK and mu + dw_corr = 0; // dw corrected for mu and TK erm_ddl = 0; // enrichment factor in DDL equiv = 0; // equivalents in exchange species alk = 0; // alkalinity of species, used for cec in exchange @@ -784,6 +784,7 @@ public: LDBLE dw_a2; LDBLE dw_a3; LDBLE dw_a_visc; + LDBLE dw_a_v_dif; LDBLE dw_t_SC; LDBLE dw_t_visc; LDBLE dw_corr; @@ -1489,6 +1490,8 @@ public: Dwt = 0; // temperature factor for Dw dw_t = 0; + // viscosity factor for Dw + dw_a_v_dif = 0; // enrichment factor in ddl erm_ddl = 0; } @@ -1502,6 +1505,7 @@ public: LDBLE z; LDBLE Dwt; LDBLE dw_t; + LDBLE dw_a_v_dif; LDBLE erm_ddl; }; @@ -1517,7 +1521,9 @@ public: count_exch_spec = 0; // total moles of X-, max X- in transport step in sol_D[1], tk exch_total = 0, x_max = 0, tk_x = 0; - // (tk_x * viscos_0_25) / (298 * viscos) + // (tk_x * viscos_0_25) / (298 * viscos_0) + viscos_f0 = 0; + // (viscos_0) / (298 * viscos) viscos_f = 0; spec = NULL; spec_size = 0; @@ -1525,7 +1531,7 @@ public: int count_spec; int count_exch_spec; LDBLE exch_total, x_max, tk_x; - LDBLE viscos_f; + LDBLE viscos_f0, viscos_f; class spec* spec; int spec_size; }; diff --git a/read.cpp b/read.cpp index a5eed844..24f6c8c5 100644 --- a/read.cpp +++ b/read.cpp @@ -5499,9 +5499,9 @@ read_species(void) input_error++; break; } - s_ptr->dw_t = 0; s_ptr->dw_a = 0; s_ptr->dw_a2 = 0; s_ptr->dw_a3 = 0; s_ptr->dw_a_visc = 0; - i = sscanf(next_char, SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT, - &s_ptr->dw, &s_ptr->dw_t, &s_ptr->dw_a, &s_ptr->dw_a2, &s_ptr->dw_a_visc, &s_ptr->dw_a3); + s_ptr->dw_t = 0; s_ptr->dw_a = 0; s_ptr->dw_a2 = 0; s_ptr->dw_a3 = 0; s_ptr->dw_a_visc = 0; s_ptr->dw_a_v_dif = 0; + i = sscanf(next_char, SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT SCANFORMAT, + &s_ptr->dw, &s_ptr->dw_t, &s_ptr->dw_a, &s_ptr->dw_a2, &s_ptr->dw_a_visc, &s_ptr->dw_a3, &s_ptr->dw_a_v_dif); if (i < 1) { input_error++; diff --git a/transport.cpp b/transport.cpp index 31860db9..d6b0535c 100644 --- a/transport.cpp +++ b/transport.cpp @@ -115,6 +115,7 @@ transport(void) sol_D[i].count_exch_spec = 0; sol_D[i].exch_total = 0; sol_D[i].x_max = 0; + sol_D[i].viscos_f0 = 1.0; sol_D[i].viscos_f = 1.0; sol_D[i].tk_x = 298.15; sol_D[i].spec = NULL; @@ -1640,14 +1641,14 @@ init_heat_mix(int l_nmix) { if (implicit) { - LDBLE viscos_f; + LDBLE viscos_f0; l_heat_nmix = l_nmix; for (i = 1; i <= count_cells + 1; i++) { heat_mix_array[i - 1] = heat_mix_array[i] / l_heat_nmix; /* for implicit, m[i] has mixf with higher cell */ - viscos_f = sol_D[i - 1].viscos_f * exp(heat_diffc / sol_D[i - 1].tk_x - heat_diffc / 298.15); - viscos_f += sol_D[i].viscos_f * exp(heat_diffc / sol_D[i].tk_x - heat_diffc / 298.15); - heat_mix_array[i - 1] *= (viscos_f / 2); + viscos_f0 = sol_D[i - 1].viscos_f0 * exp(heat_diffc / sol_D[i - 1].tk_x - heat_diffc / 298.15); + viscos_f0 += sol_D[i].viscos_f0 * exp(heat_diffc / sol_D[i].tk_x - heat_diffc / 298.15); + heat_mix_array[i - 1] *= (viscos_f0 / 2); } } else @@ -1821,7 +1822,7 @@ fill_spec(int l_cell_no, int ref_cell) class master *master_ptr; LDBLE dum, dum2; LDBLE lm; - LDBLE por, por_il, viscos_f, viscos_il_f, viscos; + LDBLE por, por_il, viscos_f0, viscos_f, viscos_il_f0, viscos_il_f, viscos; bool x_max_done = false; std::set loc_spec_names; @@ -1860,13 +1861,14 @@ fill_spec(int l_cell_no, int ref_cell) sol_D[l_cell_no].spec[i].z = 0.0; sol_D[l_cell_no].spec[i].Dwt = 0.0; sol_D[l_cell_no].spec[i].dw_t = 0.0; + sol_D[l_cell_no].spec[i].dw_a_v_dif = 0.0; sol_D[l_cell_no].spec[i].erm_ddl = 0.0; sol_D[l_cell_no].count_exch_spec = sol_D[l_cell_no].count_spec = 0; } sol_D[l_cell_no].tk_x = tk_x; - viscos_f = viscos_il_f = 1.0; + viscos_f0 = viscos_il_f0 = viscos_f = viscos_il_f = 1.0; if (l_cell_no == 0) { por = cell_data[1].por; @@ -1883,10 +1885,10 @@ fill_spec(int l_cell_no, int ref_cell) por_il = cell_data[l_cell_no].por_il; } if (por < multi_Dpor_lim) - por = viscos_f = 0.0; + por = viscos_f0 = viscos_f = 0.0; if (por_il < interlayer_Dpor_lim) - por_il = viscos_il_f = 0.0; + por_il = viscos_il_f0 = viscos_il_f = 0.0; /* * correct diffusion coefficient for temperature and viscosity, D_T = D_298 * viscos_298 / viscos * modify viscosity effect: Dw(TK) = Dw(298.15) * exp(dw_t / TK - dw_t / 298.15), SC data from Robinson and Stokes, 1959 @@ -1898,10 +1900,14 @@ fill_spec(int l_cell_no, int ref_cell) /* * put temperature factor in por_factor which corrects for porous medium... */ - dum = viscos_0_25 / viscos; - viscos_f *= dum; - viscos_il_f *= dum; - sol_D[l_cell_no].viscos_f = dum; + dum = viscos_0_25 / viscos_0; + dum2 = viscos_0 / viscos; + viscos_f0 *= dum; + viscos_il_f0 *= dum; + sol_D[l_cell_no].viscos_f0 = dum; + viscos_f *= dum2; + viscos_il_f *= dum2; + sol_D[l_cell_no].viscos_f = dum2; count_spec = count_exch_spec = 0; /* @@ -2002,6 +2008,10 @@ fill_spec(int l_cell_no, int ref_cell) else sol_D[l_cell_no].spec[count_spec].Dwt = s_ptr2->dw * viscos_il_f; } + if (s_ptr2->dw_a_v_dif) + sol_D[l_cell_no].spec[count_spec].dw_a_v_dif = s_ptr2->dw_a_v_dif; + else + sol_D[l_cell_no].spec[count_spec].dw_a_v_dif = 0.0; //if (implicit) // && name_ret.second && (l_cell_no > 1 || (l_cell_no == 1 && bcon_first != 2))) //{ @@ -2089,22 +2099,29 @@ fill_spec(int l_cell_no, int ref_cell) sol_D[l_cell_no].spec[count_spec].lg = s_ptr->lg; sol_D[l_cell_no].spec[count_spec].z = s_ptr->z; if (s_ptr->dw == 0) - sol_D[l_cell_no].spec[count_spec].Dwt = default_Dw * viscos_f; + sol_D[l_cell_no].spec[count_spec].Dwt = default_Dw; else { if (s_ptr->dw_t) { sol_D[l_cell_no].spec[count_spec].Dwt = s_ptr->dw * - exp(s_ptr->dw_t / tk_x - s_ptr->dw_t / 298.15) * viscos_f; + exp(s_ptr->dw_t / tk_x - s_ptr->dw_t / 298.15); sol_D[l_cell_no].spec[count_spec].dw_t = s_ptr->dw_t; } else - sol_D[l_cell_no].spec[count_spec].Dwt = s_ptr->dw * viscos_f; + sol_D[l_cell_no].spec[count_spec].Dwt = s_ptr->dw; } + if (s_ptr->dw_a_v_dif) + { + sol_D[l_cell_no].spec[count_spec].dw_a_v_dif = s_ptr->dw_a_v_dif; + sol_D[l_cell_no].spec[count_spec].Dwt *= pow(viscos_0 / viscos, s_ptr->dw_a_v_dif); + } + else + sol_D[l_cell_no].spec[count_spec].dw_a_v_dif = 0.0; if (correct_Dw) { //calc_SC(); // removed that neutral species are corrected as if z = 1, but is viscosity-dependent - sol_D[l_cell_no].spec[count_spec].Dwt = s_ptr->dw_corr * viscos_f; + sol_D[l_cell_no].spec[count_spec].Dwt = s_ptr->dw_corr; } if (l_cell_no <= count_cells + 1 && sol_D[l_cell_no].spec[count_spec].Dwt * pow(por, multi_Dn) > diffc_max) diffc_max = sol_D[l_cell_no].spec[count_spec].Dwt * pow(por, multi_Dn); @@ -4272,7 +4289,11 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) { g_i += it_sc->Get_z_gMCD_map()[ct[icell].v_m[k].z]; } - g_i *= sol_D[icell].spec[i].erm_ddl / ct[icell].visc1; + dum = ct[icell].visc1; + if (sol_D[icell].spec[i].dw_a_v_dif) + dum = pow(dum, sol_D[icell].spec[i].dw_a_v_dif); + g_i *= sol_D[icell].spec[i].erm_ddl / dum; + //g_i *= sol_D[icell].spec[i].erm_ddl / ct[icell].visc1; } if (dl_aq2) { @@ -4295,7 +4316,11 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) } } } - g_j *= sol_D[icell].spec[i].erm_ddl / ct[icell].visc2; + dum = ct[icell].visc2; + if (sol_D[icell].spec[i].dw_a_v_dif) + dum = pow(dum, sol_D[icell].spec[i].dw_a_v_dif); + g_j *= sol_D[icell].spec[i].erm_ddl / dum; + //g_j *= sol_D[icell].spec[i].erm_ddl / ct[icell].visc2; } } @@ -4305,11 +4330,13 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) b_j *= sol_D[icell].spec[i].Dwt; else { - dum2 = sol_D[icell].spec[i].Dwt / sol_D[icell].viscos_f; + dum2 = sol_D[icell].spec[i].Dwt / sol_D[icell].viscos_f0; dum2 *= exp(sol_D[icell].spec[i].dw_t / sol_D[jcell].tk_x - sol_D[icell].spec[i].dw_t / sol_D[icell].tk_x); - dum2 *= sol_D[jcell].viscos_f; + dum2 *= sol_D[jcell].viscos_f0; b_j *= dum2; } + if (sol_D[icell].spec[i].dw_a_v_dif) + b_j *= pow(sol_D[jcell].viscos_f / sol_D[icell].viscos_f, sol_D[icell].spec[i].dw_a_v_dif); calc_b_ij(icell, jcell, k, b_i, b_j, g_i, g_j, f_free_i, f_free_j, stagnant); k++; @@ -4388,7 +4415,11 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) } } } - g_i *= sol_D[jcell].spec[j].erm_ddl / ct[icell].visc1; + dum = ct[icell].visc1; + if (sol_D[jcell].spec[j].dw_a_v_dif) + dum = pow(dum, sol_D[icell].spec[j].dw_a_v_dif); + g_i *= sol_D[jcell].spec[j].erm_ddl / dum; + //g_i *= sol_D[jcell].spec[j].erm_ddl / ct[icell].visc1; } if (dl_aq2) { @@ -4396,7 +4427,12 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) { g_j += it_sc->Get_z_gMCD_map()[ct[icell].v_m[k].z]; } - g_j *= sol_D[jcell].spec[j].erm_ddl / ct[icell].visc2; + + dum = ct[icell].visc2; + if (sol_D[jcell].spec[j].dw_a_v_dif) + dum = pow(dum, sol_D[jcell].spec[j].dw_a_v_dif); + g_j *= sol_D[jcell].spec[j].erm_ddl / dum; + //g_j *= sol_D[jcell].spec[j].erm_ddl / ct[icell].visc2; } } b_i = A1; @@ -4405,11 +4441,14 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) b_i *= sol_D[jcell].spec[j].Dwt; else { - dum2 = sol_D[jcell].spec[j].Dwt / sol_D[jcell].viscos_f; + dum2 = sol_D[jcell].spec[j].Dwt / sol_D[jcell].viscos_f0; dum2 *= exp(sol_D[jcell].spec[j].dw_t / sol_D[icell].tk_x - sol_D[jcell].spec[j].dw_t / sol_D[jcell].tk_x); - dum2 *= sol_D[icell].viscos_f; + dum2 *= sol_D[icell].viscos_f0; b_i *= dum2; } + if (sol_D[icell].spec[i].dw_a_v_dif) + b_i *= pow(sol_D[icell].viscos_f / sol_D[jcell].viscos_f, sol_D[icell].spec[i].dw_a_v_dif); + calc_b_ij(icell, jcell, k, b_i, b_j, g_i, g_j, f_free_i, f_free_j, stagnant); k++; @@ -4482,7 +4521,11 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) { g_i += it_sc->Get_z_gMCD_map()[ct[icell].v_m[k].z]; } - g_i *= sol_D[icell].spec[i].erm_ddl / ct[icell].visc1; + dum = ct[icell].visc1; + if (sol_D[icell].spec[i].dw_a_v_dif) + dum = pow(dum, sol_D[icell].spec[i].dw_a_v_dif); + g_i *= sol_D[icell].spec[i].erm_ddl / dum; + //g_i *= sol_D[icell].spec[i].erm_ddl / ct[icell].visc1; } if (dl_aq2) { @@ -4490,7 +4533,11 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) { g_j += it_sc->Get_z_gMCD_map()[ct[icell].v_m[k].z]; } - g_j *= sol_D[jcell].spec[j].erm_ddl / ct[icell].visc2; + dum = ct[icell].visc2; + if (sol_D[jcell].spec[j].dw_a_v_dif) + dum = pow(dum, sol_D[jcell].spec[j].dw_a_v_dif); + g_j *= sol_D[jcell].spec[j].erm_ddl / dum; + //g_j *= sol_D[jcell].spec[j].erm_ddl / ct[icell].visc2; } } b_i = A1 * sol_D[icell].spec[i].Dwt; @@ -4874,12 +4921,11 @@ Step (from cell 1 to count_cells + 1): LDBLE lav, A_ij, por, Dp1, Dp2; cxxMix * mix_ptr; cxxSurface *surface_ptr1, *surface_ptr2; - LDBLE viscos_f; + LDBLE viscos_f0; /* * temperature and viscosity correction for MCD coefficient, D_T = D_298 * viscos_298 / viscos */ - viscos_f = viscos_0; - viscos_f = viscos_0_25 / viscos_f; + viscos_f0 = viscos_0_25 / viscos_0; //n1 = 0; //n2 = n1 + 1; @@ -5089,7 +5135,7 @@ Step (from cell 1 to count_cells + 1): Dp2 = (Dp2 + Dp1) / 2; /* and the mixing factor... */ - mcd_mixf = Dp2 * viscos_f * A_ij * DDt / lav; + mcd_mixf = Dp2 * viscos_f0 * A_ij * DDt / lav; } mixf = mixf_store + mcd_mixf; @@ -5165,7 +5211,7 @@ Step (from cell 1 to count_cells + 1): Dp1 = (Dp1 + Dp2) / 2; /* and the mixing factor... */ - mcd_mixf = Dp1 * viscos_f * A_ij * DDt / lav; + mcd_mixf = Dp1 * viscos_f0 * A_ij * DDt / lav; } mixf = mixf_store + mcd_mixf; @@ -5545,12 +5591,11 @@ diff_stag_surf(int mobile_cell) LDBLE Dp1, Dp2; cxxMix *mix_ptr; cxxSurface *surface_ptr1, *surface_ptr2; - LDBLE viscos_f; + LDBLE viscos_f0; /* * temperature and viscosity correction for MCD coefficient, D_T = D_298 * Tk * viscos_298 / (298 * viscos) */ - viscos_f = viscos_0; - viscos_f = viscos_0_25 / viscos_f; + viscos_f0 = viscos_0_25 / viscos_0; cxxSurface surface_n1, surface_n2; cxxSurface *surface_n1_ptr = &surface_n1; @@ -5698,7 +5743,7 @@ diff_stag_surf(int mobile_cell) if (multi_Dflag) { Dp2 = comp_k_ptr->Get_Dw() * - pow(cell_data[i2].por, multi_Dn) * viscos_f; + pow(cell_data[i2].por, multi_Dn) * viscos_f0; Dp1 = 0; if (surf1) { @@ -5708,7 +5753,7 @@ diff_stag_surf(int mobile_cell) if (strcmp(comp_k1_ptr->Get_formula().c_str(), comp_k_ptr->Get_formula().c_str()) != 0) continue; - Dp1 = comp_k1_ptr->Get_Dw() * pow(cell_data[i1].por, multi_Dn) * viscos_f; + Dp1 = comp_k1_ptr->Get_Dw() * pow(cell_data[i1].por, multi_Dn) * viscos_f0; break; } } @@ -5757,7 +5802,7 @@ diff_stag_surf(int mobile_cell) /* find diffusion coefficients of surfaces... */ if (multi_Dflag) { - Dp1 = comp_k_ptr->Get_Dw() * pow(cell_data[i1].por, multi_Dn) * viscos_f; + Dp1 = comp_k_ptr->Get_Dw() * pow(cell_data[i1].por, multi_Dn) * viscos_f0; Dp2 = 0; if (surf2) @@ -5768,7 +5813,7 @@ diff_stag_surf(int mobile_cell) if (strcmp(comp_k1_ptr->Get_formula().c_str(), comp_k_ptr->Get_formula().c_str()) != 0) continue; - Dp2 = comp_k1_ptr->Get_Dw() * pow(cell_data[i2].por, multi_Dn) * viscos_f; + Dp2 = comp_k1_ptr->Get_Dw() * pow(cell_data[i2].por, multi_Dn) * viscos_f0; break; } } @@ -6121,7 +6166,7 @@ viscosity(cxxSurface *surf_ptr) t2 = -1; t3 = (s_x[i]->Jones_Dole[3] * exp(-s_x[i]->Jones_Dole[4] * tc)) * t1 * (pow(l_mu_x, s_x[i]->Jones_Dole[5])*(1 + t2) + pow(t1 * f_z, s_x[i]->Jones_Dole[5])) / (2 + t2); - if (t3 < -1e-5) // add this check + if (t3 < -1e-5) t3 = 0; Dc += t3; if (!surf_ptr) s_x[i]->dw_t_visc = dw_t_visc + t3; @@ -6186,10 +6231,10 @@ viscosity(cxxSurface *surf_ptr) V_an /= m_an; if (!V_Cl) V_Cl = calc_vm_Cl(); - if (V_an) + if (V_an && V_Cl) fan = 2 - V_an / V_Cl; - //else - // fan = 1; + else + fan = 1; if (Dc < 0) Dc = 0; // provisional... viscos += viscos_0 * fan * (Bc + Dc); From 47ace2e02e76a5e1e39a23583d47ed4f00794093 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Thu, 18 Apr 2024 13:10:26 -0600 Subject: [PATCH 141/384] Changed examples/ex21 encoding to UTF-8 --- ex21 | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/ex21 b/ex21 index 61947398..8b043549 100644 --- a/ex21 +++ b/ex21 @@ -82,7 +82,7 @@ USER_PUNCH # 140 CEC = 0.12 * rho_b_eps # CEC / (eq/L porewater) # adapted for the harmonic mean calc's in version 3.4.2 140 CEC = 0.09 * rho_b_eps # CEC / (eq/L porewater) -150 A_por = 37e3 * rho_b_eps # pore surface area / (m/L porewater) +150 A_por = 37e3 * rho_b_eps # pore surface area / (m²/L porewater) 151 correct_$ = ' false' # 152 correct_$ = ' true' # if 'true' correct the co-ion concentrations in the Donnan volume @@ -106,7 +106,7 @@ USER_PUNCH 310 READ profile_y2$(1), profile_y2$(2), profile_y2$(3), profile_y2$(4) # Define model parameters... -350 Dw = 2.5e-9 # default tracer diffusion coefficient / (m/s) +350 Dw = 2.5e-9 # default tracer diffusion coefficient / (m²/s) 360 nfilt1 = 1 # number of cells in filter 1 370 nfilt2 = 1 # number of cells in filter 2 380 nclay = 11 # number of clay cells @@ -201,7 +201,7 @@ USER_PUNCH # Define mixing factors for the diffusive flux between cells 1 and 2: # J_12 = -2 * Dw / (x_1 / g_1 + x_2 / g_2) * (c_2 - c_1) - # Multiply with dt * A / (V = 1e-3 m). (Actual volumes are given with SOLUTION; -water) + # Multiply with dt * A / (V = 1e-3 m³). (Actual volumes are given with SOLUTION; -water) # Use harmonic mean: g_1 = por_1 / G_1, g_2 = por_2 / G_2, x_1 = Delta(x_1), etc. 1400 IF nfilt1 > 0 THEN gf1 = por_filter1 / G_filter1 1410 IF nfilt2 > 0 THEN gf2 = por_filter2 / G_filter2 From a9d1de8fa2842e839fabadc1f4a49fe3afb23ab1 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Thu, 18 Apr 2024 13:41:57 -0600 Subject: [PATCH 142/384] Updated output files (from windows) --- ex1.out | 321 +- ex10.out | 39 +- ex11.out | 11 +- ex11trn.sel | 172 +- ex12.out | 1 + ex12.sel | 124 +- ex12a.out | 1 + ex12a.sel | 90 +- ex13a.out | 7 +- ex13ac.out | 7 +- ex13b.out | 7 +- ex13c.out | 7 +- ex14.out | 497 +- ex14.sel | 402 +- ex16.out | 143 +- ex17.out | 28 +- ex17b.out | 360 +- ex18.out | 303 +- ex19.out | 1 + ex19b.out | 1 + ex2.out | 1221 ++-- ex2.sel | 80 +- ex20a.out | 78 +- ex20b.out | 16334 +++++++++++++++++++++++++------------------------- ex21.out | 19 +- ex22.out | 4008 +++++++------ ex2b.out | 1 + ex3.out | 665 +- ex4.out | 181 +- ex5.out | 913 +-- ex5.sel | 10 +- ex6.out | 201 +- ex6A-B.sel | 24 +- ex7.out | 197 +- ex7.sel | 6 +- ex8.out | 205 +- ex8.sel | 6 +- ex9.out | 47 +- 38 files changed, 13375 insertions(+), 13343 deletions(-) diff --git a/ex1.out b/ex1.out index be4a317d..0b4be6c4 100644 --- a/ex1.out +++ b/ex1.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + CALCULATE_VALUES RATES END ------------------------------------ @@ -111,7 +112,7 @@ Initial solution 1. SEAWATER FROM NORDSTROM AND OTHERS (1979) N(-3) 1.724e-06 1.724e-06 N(5) 4.847e-06 4.847e-06 Na 4.854e-01 4.854e-01 - O(0) 4.377e-04 4.377e-04 Equilibrium with O2(g) + O(0) 4.381e-04 4.381e-04 Equilibrium with O2(g) S(6) 2.926e-02 2.926e-02 Si 7.382e-05 7.382e-05 U 1.437e-08 1.437e-08 @@ -120,27 +121,27 @@ Initial solution 1. SEAWATER FROM NORDSTROM AND OTHERS (1979) pH = 8.220 pe = 8.451 - Specific Conductance (µS/cm, 25°C) = 52731 - Density (g/cm³) = 1.02327 - Volume (L) = 1.01279 - Viscosity (mPa s) = 0.95702 + Specific Conductance (µS/cm, 25°C) = 52855 + Density (g/cm³) = 1.02328 + Volume (L) = 1.01278 + Viscosity (mPa s) = 0.96027 Activity of water = 0.981 - Ionic strength (mol/kgw) = 6.741e-01 + Ionic strength (mol/kgw) = 6.704e-01 Mass of water (kg) = 1.000e+00 - Total carbon (mol/kg) = 2.239e-03 - Total CO2 (mol/kg) = 2.239e-03 + Total carbon (mol/kg) = 2.240e-03 + Total CO2 (mol/kg) = 2.240e-03 Temperature (°C) = 25.00 Electrical balance (eq) = 7.936e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.07 Iterations = 7 Total H = 1.110148e+02 - Total O = 5.563071e+01 + Total O = 5.563072e+01 ---------------------------------Redox couples--------------------------------- Redox couple pe Eh (volts) - N(-3)/N(5) 4.6754 0.2766 + N(-3)/N(5) 4.6747 0.2765 O(-2)/O(0) 12.4061 0.7339 ----------------------------Distribution of species---------------------------- @@ -148,182 +149,184 @@ Initial solution 1. SEAWATER FROM NORDSTROM AND OTHERS (1979) Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 2.705e-06 1.647e-06 -5.568 -5.783 -0.215 -2.63 - H+ 7.983e-09 6.026e-09 -8.098 -8.220 -0.122 0.00 - H2O 5.551e+01 9.806e-01 1.744 -0.009 0.000 18.07 -C(4) 2.239e-03 - HCO3- 1.572e-03 1.062e-03 -2.804 -2.974 -0.170 26.61 - MgHCO3+ 2.743e-04 1.725e-04 -3.562 -3.763 -0.201 5.82 - NaHCO3 1.700e-04 2.429e-04 -3.770 -3.615 0.155 28.00 - MgCO3 9.375e-05 1.095e-04 -4.028 -3.961 0.067 -17.09 - CaHCO3+ 4.751e-05 3.287e-05 -4.323 -4.483 -0.160 9.96 - CO3-2 3.972e-05 8.263e-06 -4.401 -5.083 -0.682 -0.40 - CaCO3 2.884e-05 3.369e-05 -4.540 -4.473 0.067 -14.60 - CO2 1.324e-05 1.467e-05 -4.878 -4.834 0.044 34.43 - UO2(CO3)3-4 1.262e-08 1.180e-10 -7.899 -9.928 -2.029 (0) - UO2(CO3)2-2 1.746e-09 5.430e-10 -8.758 -9.265 -0.507 (0) - MnCO3 2.699e-10 3.153e-10 -9.569 -9.501 0.067 (0) - MnHCO3+ 6.852e-11 4.545e-11 -10.164 -10.342 -0.178 (0) - UO2CO3 6.874e-12 8.028e-12 -11.163 -11.095 0.067 (0) - (CO2)2 3.382e-12 3.949e-12 -11.471 -11.403 0.067 68.87 - FeCO3 1.902e-20 2.222e-20 -19.721 -19.653 0.067 (0) - FeHCO3+ 1.593e-20 1.190e-20 -19.798 -19.924 -0.127 (0) + OH- 2.703e-06 1.647e-06 -5.568 -5.783 -0.215 -2.64 + H+ 7.981e-09 6.026e-09 -8.098 -8.220 -0.122 0.00 + H2O 5.551e+01 9.806e-01 1.744 -0.008 0.000 18.07 +C(4) 2.240e-03 + HCO3- 1.520e-03 1.027e-03 -2.818 -2.988 -0.170 25.99 + MgHCO3+ 2.745e-04 1.727e-04 -3.562 -3.763 -0.201 5.82 + NaHCO3 2.221e-04 3.024e-04 -3.653 -3.519 0.134 31.73 + MgCO3 9.394e-05 1.096e-04 -4.027 -3.960 0.067 -17.09 + CaHCO3+ 4.703e-05 3.256e-05 -4.328 -4.487 -0.160 9.96 + CO3-2 3.835e-05 7.992e-06 -4.416 -5.097 -0.681 -0.52 + CaCO3 2.859e-05 3.336e-05 -4.544 -4.477 0.067 -14.60 + CO2 1.281e-05 1.419e-05 -4.892 -4.848 0.044 34.43 + KHCO3 2.929e-06 2.972e-06 -5.533 -5.527 0.006 41.03 + UO2(CO3)3-4 1.257e-08 1.167e-10 -7.901 -9.933 -2.032 (0) + UO2(CO3)2-2 1.788e-09 5.550e-10 -8.748 -9.256 -0.508 (0) + MnCO3 2.657e-10 3.100e-10 -9.576 -9.509 0.067 (0) + MnHCO3+ 6.735e-11 4.469e-11 -10.172 -10.350 -0.178 (0) + UO2CO3 7.271e-12 8.484e-12 -11.138 -11.071 0.067 (0) + (CO2)2 3.166e-12 3.694e-12 -11.500 -11.432 0.067 68.87 + FeCO3 1.840e-20 2.147e-20 -19.735 -19.668 0.067 (0) + FeHCO3+ 1.541e-20 1.150e-20 -19.812 -19.939 -0.127 (0) Ca 1.066e-02 - Ca+2 9.706e-03 2.427e-03 -2.013 -2.615 -0.602 -16.70 - CaSO4 8.788e-04 1.026e-03 -3.056 -2.989 0.067 7.50 - CaHCO3+ 4.751e-05 3.287e-05 -4.323 -4.483 -0.160 9.96 - CaCO3 2.884e-05 3.369e-05 -4.540 -4.473 0.067 -14.60 - CaOH+ 8.777e-08 6.554e-08 -7.057 -7.183 -0.127 (0) - CaHSO4+ 5.444e-11 4.065e-11 -10.264 -10.391 -0.127 (0) + Ca+2 9.933e-03 2.485e-03 -2.003 -2.605 -0.602 -16.70 + CaSO4 6.518e-04 7.606e-04 -3.186 -3.119 0.067 7.50 + CaHCO3+ 4.703e-05 3.256e-05 -4.328 -4.487 -0.160 9.96 + CaCO3 2.859e-05 3.336e-05 -4.544 -4.477 0.067 -14.60 + CaOH+ 8.992e-08 6.712e-08 -7.046 -7.173 -0.127 (0) + CaHSO4+ 4.036e-11 3.012e-11 -10.394 -10.521 -0.127 (0) Cl 5.657e-01 - Cl- 5.657e-01 3.568e-01 -0.247 -0.448 -0.200 18.79 - MnCl+ 1.053e-09 6.982e-10 -8.978 -9.156 -0.178 -2.79 - HCl 3.826e-10 7.407e-10 -9.417 -9.130 0.287 (0) - MnCl2 9.313e-11 1.088e-10 -10.031 -9.964 0.067 85.89 - MnCl3- 1.612e-11 1.069e-11 -10.793 -10.971 -0.178 45.79 - FeCl+2 1.518e-18 2.939e-19 -17.819 -18.532 -0.713 (0) - FeCl2+ 7.062e-19 4.684e-19 -18.151 -18.329 -0.178 (0) - FeCl+ 7.393e-20 5.521e-20 -19.131 -19.258 -0.127 (0) - FeCl3 1.431e-20 1.671e-20 -19.844 -19.777 0.067 (0) -Fe(2) 6.471e-19 - Fe+2 4.889e-19 1.121e-19 -18.311 -18.950 -0.640 -20.71 - FeCl+ 7.393e-20 5.521e-20 -19.131 -19.258 -0.127 (0) - FeSO4 4.059e-20 4.740e-20 -19.392 -19.324 0.067 18.97 - FeCO3 1.902e-20 2.222e-20 -19.721 -19.653 0.067 (0) - FeHCO3+ 1.593e-20 1.190e-20 -19.798 -19.924 -0.127 (0) - FeOH+ 8.696e-21 5.768e-21 -20.061 -20.239 -0.178 (0) - Fe(OH)2 6.840e-24 7.989e-24 -23.165 -23.098 0.067 (0) - Fe(OH)3- 7.282e-26 4.830e-26 -25.138 -25.316 -0.178 (0) - FeHSO4+ 2.514e-27 1.877e-27 -26.600 -26.726 -0.127 (0) + Cl- 5.657e-01 3.570e-01 -0.247 -0.447 -0.200 18.79 + MnCl+ 1.070e-09 7.103e-10 -8.970 -9.149 -0.178 -2.79 + HCl 3.842e-10 7.411e-10 -9.415 -9.130 0.285 (0) + MnCl2 9.486e-11 1.107e-10 -10.023 -9.956 0.067 85.89 + MnCl3- 1.640e-11 1.089e-11 -10.785 -10.963 -0.178 45.78 + FeCl+2 1.515e-18 2.938e-19 -17.820 -18.532 -0.712 (0) + FeCl2+ 7.061e-19 4.686e-19 -18.151 -18.329 -0.178 (0) + FeCl+ 7.395e-20 5.520e-20 -19.131 -19.258 -0.127 (0) + FeCl3 1.434e-20 1.673e-20 -19.844 -19.777 0.067 (0) +Fe(2) 6.337e-19 + Fe+2 4.878e-19 1.120e-19 -18.312 -18.951 -0.639 -20.72 + FeCl+ 7.395e-20 5.520e-20 -19.131 -19.258 -0.127 (0) + FeSO4 2.938e-20 3.428e-20 -19.532 -19.465 0.067 18.97 + FeCO3 1.840e-20 2.147e-20 -19.735 -19.668 0.067 (0) + FeHCO3+ 1.541e-20 1.150e-20 -19.812 -19.939 -0.127 (0) + FeOH+ 8.686e-21 5.764e-21 -20.061 -20.239 -0.178 (0) + Fe(OH)2 6.842e-24 7.984e-24 -23.165 -23.098 0.067 (0) + Fe(OH)3- 7.275e-26 4.828e-26 -25.138 -25.316 -0.178 (0) + FeHSO4+ 1.819e-27 1.358e-27 -26.740 -26.867 -0.127 (0) Fe(3) 3.711e-08 - Fe(OH)3 2.771e-08 3.237e-08 -7.557 -7.490 0.067 (0) - Fe(OH)4- 7.113e-09 4.804e-09 -8.148 -8.318 -0.170 (0) - Fe(OH)2+ 2.286e-09 1.544e-09 -8.641 -8.811 -0.170 (0) - FeOH+2 1.480e-13 2.865e-14 -12.830 -13.543 -0.713 (0) - FeCl+2 1.518e-18 2.939e-19 -17.819 -18.532 -0.713 (0) - FeSO4+ 1.072e-18 7.111e-19 -17.970 -18.148 -0.178 (0) - FeCl2+ 7.062e-19 4.684e-19 -18.151 -18.329 -0.178 (0) - Fe+3 3.430e-19 2.727e-20 -18.465 -19.564 -1.100 (0) - Fe(SO4)2- 4.955e-20 3.700e-20 -19.305 -19.432 -0.127 (0) - FeCl3 1.431e-20 1.671e-20 -19.844 -19.777 0.067 (0) - Fe2(OH)2+4 2.362e-24 2.210e-26 -23.627 -25.656 -2.029 (0) - FeHSO4+2 3.689e-26 1.147e-26 -25.433 -25.940 -0.507 (0) - Fe3(OH)4+5 1.055e-29 7.127e-33 -28.977 -32.147 -3.170 (0) + Fe(OH)3 2.772e-08 3.235e-08 -7.557 -7.490 0.067 (0) + Fe(OH)4- 7.107e-09 4.802e-09 -8.148 -8.319 -0.170 (0) + Fe(OH)2+ 2.284e-09 1.543e-09 -8.641 -8.812 -0.170 (0) + FeOH+2 1.477e-13 2.863e-14 -12.831 -13.543 -0.712 (0) + FeCl+2 1.515e-18 2.938e-19 -17.820 -18.532 -0.712 (0) + FeSO4+ 7.749e-19 5.142e-19 -18.111 -18.289 -0.178 (0) + FeCl2+ 7.061e-19 4.686e-19 -18.151 -18.329 -0.178 (0) + Fe+3 3.420e-19 2.725e-20 -18.466 -19.565 -1.099 (0) + Fe(SO4)2- 2.594e-20 1.936e-20 -19.586 -19.713 -0.127 (0) + FeCl3 1.434e-20 1.673e-20 -19.844 -19.777 0.067 (0) + Fe2(OH)2+4 2.378e-24 2.207e-26 -23.624 -25.656 -2.032 (0) + FeHSO4+2 2.673e-26 8.297e-27 -25.573 -26.081 -0.508 (0) + Fe3(OH)4+5 1.066e-29 7.114e-33 -28.972 -32.148 -3.176 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.470 -44.402 0.067 28.61 + H2 0.000e+00 0.000e+00 -44.469 -44.402 0.067 28.61 K 1.058e-02 - K+ 1.043e-02 6.501e-03 -1.982 -2.187 -0.205 9.66 - KSO4- 1.471e-04 5.683e-05 -3.832 -4.245 -0.413 32.21 + K+ 1.039e-02 6.478e-03 -1.983 -2.189 -0.205 9.66 + KSO4- 1.873e-04 1.697e-04 -3.728 -3.770 -0.043 11.35 + KHCO3 2.929e-06 2.972e-06 -5.533 -5.527 0.006 41.03 Mg 5.507e-02 - Mg+2 4.811e-02 1.389e-02 -1.318 -1.857 -0.540 -20.41 - MgSO4 6.339e-03 8.646e-03 -2.198 -2.063 0.135 -0.83 - MgHCO3+ 2.743e-04 1.725e-04 -3.562 -3.763 -0.201 5.82 - Mg(SO4)2-2 2.394e-04 6.773e-05 -3.621 -4.169 -0.548 48.54 - MgCO3 9.375e-05 1.095e-04 -4.028 -3.961 0.067 -17.09 - MgOH+ 1.164e-05 8.204e-06 -4.934 -5.086 -0.152 (0) + Mg+2 4.980e-02 1.437e-02 -1.303 -1.842 -0.540 -20.42 + MgSO4 4.757e-03 6.477e-03 -2.323 -2.189 0.134 -7.92 + MgHCO3+ 2.745e-04 1.727e-04 -3.562 -3.763 -0.201 5.82 + Mg(SO4)2-2 1.297e-04 3.672e-05 -3.887 -4.435 -0.548 32.91 + MgCO3 9.394e-05 1.096e-04 -4.027 -3.960 0.067 -17.09 + MgOH+ 1.205e-05 8.493e-06 -4.919 -5.071 -0.152 (0) Mn(2) 3.773e-09 - Mn+2 2.095e-09 4.803e-10 -8.679 -9.318 -0.640 -16.36 - MnCl+ 1.053e-09 6.982e-10 -8.978 -9.156 -0.178 -2.79 - MnCO3 2.699e-10 3.153e-10 -9.569 -9.501 0.067 (0) - MnSO4 1.739e-10 2.031e-10 -9.760 -9.692 0.067 22.54 - MnCl2 9.313e-11 1.088e-10 -10.031 -9.964 0.067 85.89 - MnHCO3+ 6.852e-11 4.545e-11 -10.164 -10.342 -0.178 (0) - MnCl3- 1.612e-11 1.069e-11 -10.793 -10.971 -0.178 45.79 - MnOH+ 3.029e-12 2.009e-12 -11.519 -11.697 -0.178 (0) - Mn(OH)3- 4.946e-20 3.281e-20 -19.306 -19.484 -0.178 (0) - Mn(NO3)2 1.325e-20 1.548e-20 -19.878 -19.810 0.067 41.04 -Mn(3) 5.274e-26 - Mn+3 5.274e-26 4.193e-27 -25.278 -26.377 -1.100 (0) + Mn+2 2.127e-09 4.883e-10 -8.672 -9.311 -0.639 -16.37 + MnCl+ 1.070e-09 7.103e-10 -8.970 -9.149 -0.178 -2.79 + MnCO3 2.657e-10 3.100e-10 -9.576 -9.509 0.067 (0) + MnSO4 1.281e-10 1.495e-10 -9.893 -9.825 0.067 22.54 + MnCl2 9.486e-11 1.107e-10 -10.023 -9.956 0.067 85.89 + MnHCO3+ 6.735e-11 4.469e-11 -10.172 -10.350 -0.178 (0) + MnCl3- 1.640e-11 1.089e-11 -10.785 -10.963 -0.178 45.78 + MnOH+ 3.078e-12 2.043e-12 -11.512 -11.690 -0.178 (0) + Mn(OH)3- 5.027e-20 3.336e-20 -19.299 -19.477 -0.178 (0) + Mn(NO3)2 1.350e-20 1.576e-20 -19.870 -19.802 0.067 41.04 +Mn(3) 5.351e-26 + Mn+3 5.351e-26 4.263e-27 -25.272 -26.370 -1.099 (0) N(-3) 1.724e-06 - NH4+ 1.597e-06 8.981e-07 -5.797 -6.047 -0.250 18.44 - NH3 7.272e-08 8.494e-08 -7.138 -7.071 0.067 24.42 - NH4SO4- 5.343e-08 2.752e-08 -7.272 -7.560 -0.288 40.39 + NH4+ 1.618e-06 9.103e-07 -5.791 -6.041 -0.250 18.48 + NH3 7.378e-08 8.610e-08 -7.132 -7.065 0.067 24.42 + NH4SO4- 3.206e-08 2.000e-08 -7.494 -7.699 -0.205 18.66 N(5) 4.847e-06 - NO3- 4.847e-06 2.845e-06 -5.314 -5.546 -0.231 30.29 - Mn(NO3)2 1.325e-20 1.548e-20 -19.878 -19.810 0.067 41.04 + NO3- 4.847e-06 2.847e-06 -5.314 -5.546 -0.231 30.29 + Mn(NO3)2 1.350e-20 1.576e-20 -19.870 -19.802 0.067 41.04 Na 4.854e-01 - Na+ 4.769e-01 3.422e-01 -0.322 -0.466 -0.144 -0.50 - NaSO4- 8.339e-03 3.180e-03 -2.079 -2.498 -0.419 20.67 - NaHCO3 1.700e-04 2.429e-04 -3.770 -3.615 0.155 28.00 - NaOH 4.827e-17 5.637e-17 -16.316 -16.249 0.067 (0) -O(0) 4.377e-04 - O2 2.189e-04 2.556e-04 -3.660 -3.592 0.067 30.40 + Na+ 4.712e-01 3.381e-01 -0.327 -0.471 -0.144 -0.51 + NaSO4- 1.396e-02 9.474e-03 -1.855 -2.023 -0.168 8.22 + NaHCO3 2.221e-04 3.024e-04 -3.653 -3.519 0.134 31.73 + NaOH 4.773e-17 5.570e-17 -16.321 -16.254 0.067 (0) +O(0) 4.381e-04 + O2 2.190e-04 2.556e-04 -3.659 -3.592 0.067 30.40 S(6) 2.926e-02 - SO4-2 1.307e-02 2.378e-03 -1.884 -2.624 -0.740 17.77 - NaSO4- 8.339e-03 3.180e-03 -2.079 -2.498 -0.419 20.67 - MgSO4 6.339e-03 8.646e-03 -2.198 -2.063 0.135 -0.83 - CaSO4 8.788e-04 1.026e-03 -3.056 -2.989 0.067 7.50 - Mg(SO4)2-2 2.394e-04 6.773e-05 -3.621 -4.169 -0.548 48.54 - KSO4- 1.471e-04 5.683e-05 -3.832 -4.245 -0.413 32.21 - NH4SO4- 5.343e-08 2.752e-08 -7.272 -7.560 -0.288 40.39 - HSO4- 1.866e-09 1.393e-09 -8.729 -8.856 -0.127 40.96 - MnSO4 1.739e-10 2.031e-10 -9.760 -9.692 0.067 22.54 - CaHSO4+ 5.444e-11 4.065e-11 -10.264 -10.391 -0.127 (0) - FeSO4+ 1.072e-18 7.111e-19 -17.970 -18.148 -0.178 (0) - Fe(SO4)2- 4.955e-20 3.700e-20 -19.305 -19.432 -0.127 (0) - FeSO4 4.059e-20 4.740e-20 -19.392 -19.324 0.067 18.97 - FeHSO4+2 3.689e-26 1.147e-26 -25.433 -25.940 -0.507 (0) - FeHSO4+ 2.514e-27 1.877e-27 -26.600 -26.726 -0.127 (0) + NaSO4- 1.396e-02 9.474e-03 -1.855 -2.023 -0.168 8.22 + SO4-2 9.440e-03 1.721e-03 -2.025 -2.764 -0.739 38.41 + MgSO4 4.757e-03 6.477e-03 -2.323 -2.189 0.134 -7.92 + CaSO4 6.518e-04 7.606e-04 -3.186 -3.119 0.067 7.50 + KSO4- 1.873e-04 1.697e-04 -3.728 -3.770 -0.043 11.35 + Mg(SO4)2-2 1.297e-04 3.672e-05 -3.887 -4.435 -0.548 32.91 + NH4SO4- 3.206e-08 2.000e-08 -7.494 -7.699 -0.205 18.66 + HSO4- 1.351e-09 1.008e-09 -8.869 -8.996 -0.127 40.96 + MnSO4 1.281e-10 1.495e-10 -9.893 -9.825 0.067 22.54 + CaHSO4+ 4.036e-11 3.012e-11 -10.394 -10.521 -0.127 (0) + FeSO4+ 7.749e-19 5.142e-19 -18.111 -18.289 -0.178 (0) + FeSO4 2.938e-20 3.428e-20 -19.532 -19.465 0.067 18.97 + Fe(SO4)2- 2.594e-20 1.936e-20 -19.586 -19.713 -0.127 (0) + FeHSO4+2 2.673e-26 8.297e-27 -25.573 -26.081 -0.508 (0) + FeHSO4+ 1.819e-27 1.358e-27 -26.740 -26.867 -0.127 (0) Si 7.382e-05 - H4SiO4 7.061e-05 8.247e-05 -4.151 -4.084 0.067 52.08 - H3SiO4- 3.209e-06 2.018e-06 -5.494 -5.695 -0.201 28.72 - H2SiO4-2 1.095e-10 2.278e-11 -9.961 -10.642 -0.682 (0) -U(4) 9.204e-22 - U(OH)5- 9.202e-22 6.872e-22 -21.036 -21.163 -0.127 (0) - U(OH)4 1.470e-25 1.716e-25 -24.833 -24.765 0.067 (0) - U+4 0.000e+00 0.000e+00 -47.044 -49.073 -2.029 (0) -U(5) 1.445e-18 - UO2+ 1.445e-18 1.079e-18 -17.840 -17.967 -0.127 (0) + H4SiO4 7.062e-05 8.241e-05 -4.151 -4.084 0.067 52.08 + H3SiO4- 3.205e-06 2.017e-06 -5.494 -5.695 -0.201 28.72 + H2SiO4-2 1.092e-10 2.276e-11 -9.962 -10.643 -0.681 (0) +U(4) 1.010e-21 + U(OH)5- 1.009e-21 7.535e-22 -20.996 -21.123 -0.127 (0) + U(OH)4 1.613e-25 1.882e-25 -24.792 -24.725 0.067 (0) + U+4 0.000e+00 0.000e+00 -47.001 -49.033 -2.032 (0) +U(5) 1.582e-18 + UO2+ 1.582e-18 1.181e-18 -17.801 -17.928 -0.127 (0) U(6) 1.437e-08 - UO2(CO3)3-4 1.262e-08 1.180e-10 -7.899 -9.928 -2.029 (0) - UO2(CO3)2-2 1.746e-09 5.430e-10 -8.758 -9.265 -0.507 (0) - UO2CO3 6.874e-12 8.028e-12 -11.163 -11.095 0.067 (0) - UO2OH+ 3.018e-14 2.254e-14 -13.520 -13.647 -0.127 (0) - UO2+2 2.696e-16 8.384e-17 -15.569 -16.077 -0.507 (0) - (UO2)2(OH)2+2 1.416e-21 4.405e-22 -20.849 -21.356 -0.507 (0) - (UO2)3(OH)5+ 2.059e-23 1.538e-23 -22.686 -22.813 -0.127 (0) + UO2(CO3)3-4 1.257e-08 1.167e-10 -7.901 -9.933 -2.032 (0) + UO2(CO3)2-2 1.788e-09 5.550e-10 -8.748 -9.256 -0.508 (0) + UO2CO3 7.271e-12 8.484e-12 -11.138 -11.071 0.067 (0) + UO2OH+ 3.300e-14 2.463e-14 -13.481 -13.609 -0.127 (0) + UO2+2 2.952e-16 9.161e-17 -15.530 -16.038 -0.508 (0) + (UO2)2(OH)2+2 1.695e-21 5.259e-22 -20.771 -21.279 -0.508 (0) + (UO2)3(OH)5+ 2.688e-23 2.006e-23 -22.571 -22.698 -0.127 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -0.96 -5.24 -4.28 CaSO4 - Aragonite 0.64 -7.70 -8.34 CaCO3 - Arcanite -5.12 -7.00 -1.88 K2SO4 + Anhydrite -1.09 -5.37 -4.28 CaSO4 + Aragonite 0.63 -7.70 -8.34 CaCO3 + Arcanite -5.26 -7.14 -1.88 K2SO4 Calcite 0.78 -7.70 -8.48 CaCO3 Chalcedony -0.52 -4.07 -3.55 SiO2 - Chrysotile 3.37 35.57 32.20 Mg3Si2O5(OH)4 - CO2(g) -3.37 -4.83 -1.47 CO2 - Dolomite 2.45 -14.64 -17.08 CaMg(CO3)2 - Epsomite -2.80 -4.54 -1.74 MgSO4:7H2O + Chrysotile 3.42 35.62 32.20 Mg3Si2O5(OH)4 + CO2(g) -3.38 -4.85 -1.47 CO2 + Dolomite 2.44 -14.64 -17.08 CaMg(CO3)2 + Epsomite -2.93 -4.67 -1.74 MgSO4:7H2O Fe(OH)3(a) 0.18 5.07 4.89 Fe(OH)3 Goethite 6.08 5.08 -1.00 FeOOH - Gypsum -0.67 -5.26 -4.58 CaSO4:2H2O + Gypsum -0.80 -5.39 -4.58 CaSO4:2H2O H2(g) -41.30 -44.40 -3.10 H2 H2O(g) -1.51 -0.01 1.50 H2O - Halite -2.48 -0.91 1.57 NaCl - Hausmannite 1.55 62.58 61.03 Mn3O4 + Halite -2.49 -0.92 1.57 NaCl + Hausmannite 1.57 62.60 61.03 Mn3O4 Hematite 14.17 10.17 -4.01 Fe2O3 - Hexahydrite -2.97 -4.53 -1.57 MgSO4:6H2O - Jarosite-K -7.65 -16.86 -9.21 KFe3(SO4)2(OH)6 - Kieserite -3.33 -4.49 -1.16 MgSO4:H2O - Manganite 2.39 27.73 25.34 MnOOH - Melanterite -19.42 -21.63 -2.21 FeSO4:7H2O - Mirabilite -2.40 -3.64 -1.24 Na2SO4:10H2O - NH3(g) -8.87 -7.07 1.80 NH3 + Hexahydrite -3.09 -4.66 -1.57 MgSO4:6H2O + Jarosite-K -7.93 -17.14 -9.21 KFe3(SO4)2(OH)6 + Kieserite -3.45 -4.62 -1.16 MgSO4:H2O + Manganite 2.40 27.74 25.34 MnOOH + Melanterite -19.57 -21.77 -2.21 FeSO4:7H2O + Mirabilite -2.55 -3.79 -1.24 Na2SO4:10H2O + NH3(g) -8.86 -7.07 1.80 NH3 O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000 - Pyrochroite -8.10 7.10 15.20 Mn(OH)2 - Pyrolusite 6.97 48.35 41.38 MnO2:H2O + Pyrochroite -8.09 7.11 15.20 Mn(OH)2 + Pyrolusite 6.98 48.36 41.38 MnO2:H2O Quartz -0.09 -4.07 -3.98 SiO2 - Rhodochrosite -3.27 -14.40 -11.13 MnCO3 - Sepiolite 1.16 16.92 15.76 Mg2Si3O7.5OH:3H2O - Sepiolite(d) -1.74 16.92 18.66 Mg2Si3O7.5OH:3H2O - Siderite -13.14 -24.03 -10.89 FeCO3 - SiO2(a) -1.35 -4.07 -2.71 SiO2 - Sylvite -3.53 -2.63 0.90 KCl - Talc 6.05 27.45 21.40 Mg3Si4O10(OH)2 - Thenardite -3.25 -3.56 -0.30 Na2SO4 - Uraninite -12.72 -16.21 -3.49 UO2 + Rhodochrosite -3.28 -14.41 -11.13 MnCO3 + Sepiolite 1.19 16.95 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -1.71 16.95 18.66 Mg2Si3O7.5OH:3H2O + Siderite -13.16 -24.05 -10.89 FeCO3 + SiO2(a) -1.36 -4.07 -2.71 SiO2 + Sylvite -3.54 -2.64 0.90 KCl + Talc 6.09 27.49 21.40 Mg3Si4O10(OH)2 + Thenardite -3.41 -3.71 -0.30 Na2SO4 + Uraninite -12.68 -16.17 -3.49 UO2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. diff --git a/ex10.out b/ex10.out index 14307fca..95629a1f 100644 --- a/ex10.out +++ b/ex10.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + CALCULATE_VALUES RATES END ------------------------------------ @@ -119,17 +120,17 @@ Initial solution 1. pH = 7.969 Charge balance pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 676 + Specific Conductance (µS/cm, 25°C) = 686 Density (g/cm³) = 0.99755 Volume (L) = 1.00309 - Viscosity (mPa s) = 0.89349 + Viscosity (mPa s) = 0.89426 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.105e-02 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 7.864e-03 Total CO2 (mol/kg) = 7.864e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = -5.380e-15 + Electrical balance (eq) = -5.424e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 8 Total H = 1.110200e+02 @@ -146,11 +147,11 @@ Initial solution 1. C(-4) 0.000e+00 CH4 0.000e+00 0.000e+00 -75.159 -75.158 0.001 35.46 C(4) 7.864e-03 - HCO3- 7.326e-03 6.602e-03 -2.135 -2.180 -0.045 24.66 + HCO3- 7.326e-03 6.602e-03 -2.135 -2.180 -0.045 24.65 CaHCO3+ 2.211e-04 1.996e-04 -3.655 -3.700 -0.044 9.73 CO2 1.592e-04 1.595e-04 -3.798 -3.797 0.001 34.43 CaCO3 1.144e-04 1.147e-04 -3.941 -3.940 0.001 -14.60 - CO3-2 4.369e-05 2.882e-05 -4.360 -4.540 -0.181 -3.76 + CO3-2 4.369e-05 2.882e-05 -4.360 -4.540 -0.181 -3.65 (CO2)2 4.657e-10 4.669e-10 -9.332 -9.331 0.001 68.87 Ca 3.932e-03 Ca+2 3.596e-03 2.370e-03 -2.444 -2.625 -0.181 -17.91 @@ -204,18 +205,18 @@ CO2(g) -0.01 -1.48 -1.47 1.000e+01 9.961e+00 -3.934e-02 ----------------------------Description of solution---------------------------- pH = 6.064 Charge balance - pe = 11.821 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 1713 + pe = 11.815 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 1721 Density (g/cm³) = 0.99872 Volume (L) = 1.00431 - Viscosity (mPa s) = 0.89762 + Viscosity (mPa s) = 0.89965 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.901e-02 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 2.103e-02 Total CO2 (mol/kg) = 5.379e-02 Temperature (°C) = 25.00 - Electrical balance (eq) = 2.415e-12 + Electrical balance (eq) = 2.316e-12 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 10 Total H = 1.110200e+02 @@ -230,23 +231,23 @@ CO2(g) -0.01 -1.48 -1.47 1.000e+01 9.961e+00 -3.934e-02 OH- 1.386e-08 1.173e-08 -7.858 -7.931 -0.073 -3.95 H2O 5.551e+01 9.989e-01 1.744 -0.000 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.181 -120.178 0.003 35.46 + CH4 0.000e+00 0.000e+00 -120.128 -120.125 0.003 35.46 C(4) 5.379e-02 CO2 3.273e-02 3.287e-02 -1.485 -1.483 0.002 34.43 - HCO3- 1.976e-02 1.694e-02 -1.704 -1.771 -0.067 24.77 + HCO3- 1.976e-02 1.694e-02 -1.704 -1.771 -0.067 24.73 CaHCO3+ 1.257e-03 1.082e-03 -2.901 -2.966 -0.065 9.77 (CO2)2 1.970e-05 1.984e-05 -4.705 -4.703 0.003 68.87 CaCO3 7.698e-06 7.750e-06 -5.114 -5.111 0.003 -14.60 - CO3-2 1.704e-06 9.217e-07 -5.769 -6.035 -0.267 -3.47 + CO3-2 1.704e-06 9.217e-07 -5.769 -6.035 -0.267 -3.39 Ca 1.051e-02 Ca+2 9.251e-03 5.005e-03 -2.034 -2.301 -0.267 -17.74 CaHCO3+ 1.257e-03 1.082e-03 -2.901 -2.966 -0.065 9.77 CaCO3 7.698e-06 7.750e-06 -5.114 -5.111 0.003 -14.60 CaOH+ 1.130e-09 9.625e-10 -8.947 -9.017 -0.070 (0) -H(0) 2.380e-39 - H2 1.190e-39 1.198e-39 -38.924 -38.922 0.003 28.61 -O(0) 5.758e-15 - O2 2.879e-15 2.898e-15 -14.541 -14.538 0.003 30.40 +H(0) 2.454e-39 + H2 1.227e-39 1.235e-39 -38.911 -38.908 0.003 28.61 +O(0) 5.417e-15 + O2 2.709e-15 2.727e-15 -14.567 -14.564 0.003 30.40 ------------------------------Saturation indices------------------------------- @@ -254,11 +255,11 @@ O(0) 5.758e-15 Aragonite 0.00 -8.34 -8.34 CaCO3 Calcite 0.14 -8.34 -8.48 CaCO3 - CH4(g) -117.38 -120.18 -2.80 CH4 + CH4(g) -117.32 -120.13 -2.80 CH4 CO2(g) -0.01 -1.48 -1.47 CO2 Pressure 1.0 atm, phi 0.995 - H2(g) -35.82 -38.92 -3.10 H2 + H2(g) -35.81 -38.91 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - O2(g) -11.65 -14.54 -2.89 O2 + O2(g) -11.67 -14.56 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. diff --git a/ex11.out b/ex11.out index b95f8075..c9af3143 100644 --- a/ex11.out +++ b/ex11.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + CALCULATE_VALUES RATES END ------------------------------------ @@ -59,16 +60,16 @@ Initial solution 0. CaCl2 pH = 6.995 Charge balance pe = 13.632 Equilibrium with O2(g) - Specific Conductance (µS/cm, 25°C) = 152 + Specific Conductance (µS/cm, 25°C) = 155 Density (g/cm³) = 0.99710 Volume (L) = 1.00298 Viscosity (mPa s) = 0.89067 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.800e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 2.687e-21 + Total alkalinity (eq/kg) = -1.854e-20 Temperature (°C) = 25.00 - Electrical balance (eq) = 4.260e-18 + Electrical balance (eq) = 2.979e-18 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 4 Total H = 1.110124e+02 @@ -125,9 +126,9 @@ Initial solution 1. Initial solution for column Activity of water = 1.000 Ionic strength (mol/kgw) = 1.200e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.247e-19 + Total alkalinity (eq/kg) = -1.017e-18 Temperature (°C) = 25.00 - Electrical balance (eq) = -9.243e-17 + Electrical balance (eq) = -9.088e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 3 (7 overall) Total H = 1.110124e+02 diff --git a/ex11trn.sel b/ex11trn.sel index 3b0c3ea9..c1c2d809 100644 --- a/ex11trn.sel +++ b/ex11trn.sel @@ -7,96 +7,96 @@ 5 1.000000000001e-03 0.000000000000e+00 2.000000000001e-04 0.000000000000e+00 1.375000000000e-01 6 1.000000000001e-03 0.000000000000e+00 2.000000000001e-04 0.000000000000e+00 1.625000000000e-01 7 1.000000000001e-03 0.000000000000e+00 2.000000000001e-04 0.000000000000e+00 1.875000000000e-01 - 8 1.000000000001e-03 3.099695935215e-22 2.000000000001e-04 0.000000000000e+00 2.125000000000e-01 - 9 1.000000000001e-03 1.500942119490e-17 2.000000000001e-04 0.000000000000e+00 2.375000000000e-01 - 10 1.000000000001e-03 6.337830597343e-15 2.000000000001e-04 0.000000000000e+00 2.625000000000e-01 + 8 1.000000000001e-03 3.099695935214e-22 2.000000000001e-04 0.000000000000e+00 2.125000000000e-01 + 9 1.000000000001e-03 1.500942119489e-17 2.000000000001e-04 0.000000000000e+00 2.375000000000e-01 + 10 1.000000000001e-03 6.337830597342e-15 2.000000000001e-04 0.000000000000e+00 2.625000000000e-01 11 1.000000000001e-03 4.494808745371e-13 2.000000000001e-04 0.000000000000e+00 2.875000000000e-01 - 12 1.000000000001e-03 1.148716249619e-11 2.000000000001e-04 0.000000000000e+00 3.125000000000e-01 - 13 1.000000000001e-03 1.502206823479e-10 2.000000000001e-04 0.000000000000e+00 3.375000000000e-01 + 12 1.000000000001e-03 1.148716249618e-11 2.000000000001e-04 0.000000000000e+00 3.125000000000e-01 + 13 1.000000000001e-03 1.502206823478e-10 2.000000000001e-04 0.000000000000e+00 3.375000000000e-01 14 1.000000000001e-03 1.222542814082e-09 2.000000000001e-04 0.000000000000e+00 3.625000000000e-01 - 15 1.000000000001e-03 6.992469594649e-09 2.000000000001e-04 0.000000000000e+00 3.875000000000e-01 - 16 1.000000000001e-03 3.048043444698e-08 2.000000000001e-04 0.000000000000e+00 4.125000000000e-01 - 17 1.000000000001e-03 1.071736887963e-07 2.000000000002e-04 0.000000000000e+00 4.375000000000e-01 + 15 1.000000000001e-03 6.992469594648e-09 2.000000000001e-04 0.000000000000e+00 3.875000000000e-01 + 16 1.000000000001e-03 3.048043444697e-08 2.000000000001e-04 0.000000000000e+00 4.125000000000e-01 + 17 1.000000000000e-03 1.071736887963e-07 2.000000000002e-04 0.000000000000e+00 4.375000000000e-01 18 1.000000000000e-03 3.167880513057e-07 2.000000000004e-04 0.000000000000e+00 4.625000000000e-01 - 19 9.999999999996e-04 8.119152414854e-07 2.000000000010e-04 0.000000000000e+00 4.875000000000e-01 + 19 9.999999999996e-04 8.119152414853e-07 2.000000000010e-04 0.000000000000e+00 4.875000000000e-01 20 9.999999999969e-04 1.847753785443e-06 2.000000000038e-04 0.000000000000e+00 5.125000000000e-01 - 21 9.999999999827e-04 3.804229077196e-06 2.000000000179e-04 0.000000000000e+00 5.375000000000e-01 - 22 9.999999999205e-04 7.191769368189e-06 2.000000000800e-04 0.000000000000e+00 5.625000000000e-01 + 21 9.999999999827e-04 3.804229077195e-06 2.000000000179e-04 0.000000000000e+00 5.375000000000e-01 + 22 9.999999999205e-04 7.191769368188e-06 2.000000000800e-04 0.000000000000e+00 5.625000000000e-01 23 9.999999996780e-04 1.263506022590e-05 2.000000003226e-04 0.000000000000e+00 5.875000000000e-01 24 9.999999988273e-04 2.083413717341e-05 2.000000011732e-04 0.000000000000e+00 6.125000000000e-01 - 25 9.999999961127e-04 3.250742767802e-05 2.000000038882e-04 0.000000000000e+00 6.375000000000e-01 - 26 9.999999881437e-04 4.832522920787e-05 2.000000118574e-04 0.000000000000e+00 6.625000000000e-01 - 27 9.999999664327e-04 6.884373212030e-05 2.000000335677e-04 0.000000000000e+00 6.875000000000e-01 - 28 9.999999111053e-04 9.444901160400e-05 2.000000888947e-04 0.000000000000e+00 7.125000000000e-01 - 29 9.999997783000e-04 1.253179893826e-04 2.000002216984e-04 0.000000000000e+00 7.375000000000e-01 + 25 9.999999961127e-04 3.250742767801e-05 2.000000038882e-04 0.000000000000e+00 6.375000000000e-01 + 26 9.999999881436e-04 4.832522920786e-05 2.000000118574e-04 0.000000000000e+00 6.625000000000e-01 + 27 9.999999664326e-04 6.884373212029e-05 2.000000335677e-04 0.000000000000e+00 6.875000000000e-01 + 28 9.999999111053e-04 9.444901160399e-05 2.000000888947e-04 0.000000000000e+00 7.125000000000e-01 + 29 9.999997782999e-04 1.253179893826e-04 2.000002216984e-04 0.000000000000e+00 7.375000000000e-01 30 9.999994762263e-04 1.614000573149e-04 2.000005237713e-04 0.000000000000e+00 7.625000000000e-01 - 31 9.999988216502e-04 2.024196971846e-04 2.000011783465e-04 0.000000000000e+00 7.875000000000e-01 - 32 9.999974639178e-04 2.478976466375e-04 2.000025360781e-04 0.000000000000e+00 8.125000000000e-01 - 33 9.999947567697e-04 2.971862880220e-04 2.000052432252e-04 0.000000000000e+00 8.375000000000e-01 - 34 9.999895484281e-04 3.495140484287e-04 2.000104515659e-04 0.000000000000e+00 8.625000000000e-01 - 35 9.999798465392e-04 4.040335770973e-04 2.000201534538e-04 0.000000000000e+00 8.875000000000e-01 - 36 9.999622949298e-04 4.598690859752e-04 2.000377050624e-04 0.000000000000e+00 9.125000000000e-01 - 37 9.999313715132e-04 5.161592448425e-04 2.000686284782e-04 0.000000000000e+00 9.375000000000e-01 - 38 9.998781779397e-04 5.720931802493e-04 2.001218220510e-04 0.000000000000e+00 9.625000000000e-01 - 39 9.997886375331e-04 6.269382550212e-04 2.002113624570e-04 0.000000000000e+00 9.875000000000e-01 - 40 9.996408433314e-04 6.800592808324e-04 2.003591566593e-04 0.000000000000e+00 1.012500000000e+00 - 41 9.994011963775e-04 7.309295762326e-04 2.005988036125e-04 0.000000000000e+00 1.037500000000e+00 - 42 9.990188398152e-04 7.791348087969e-04 2.009811601743e-04 0.000000000000e+00 1.062500000000e+00 - 43 9.984177243188e-04 8.243708674759e-04 2.015822756709e-04 0.000000000000e+00 1.087500000000e+00 - 44 9.974854440236e-04 8.664371340742e-04 2.025145559657e-04 0.000000000000e+00 1.112500000000e+00 - 45 9.960577965330e-04 9.052265038234e-04 2.039422034561e-04 0.000000000000e+00 1.137500000000e+00 - 46 9.938979448382e-04 9.407133877484e-04 2.061020551496e-04 0.000000000000e+00 1.162500000000e+00 - 47 9.906693148736e-04 9.729407531500e-04 2.093306851138e-04 0.000000000000e+00 1.187500000000e+00 - 48 9.859023902773e-04 1.002007055046e-03 2.140976097099e-04 0.000000000000e+00 1.212500000000e+00 - 49 9.789581361260e-04 1.028053705197e-03 2.210418638610e-04 0.000000000000e+00 1.237500000000e+00 - 50 9.689960048286e-04 1.051253532901e-03 2.310039951582e-04 0.000000000000e+00 1.262500000000e+00 - 51 9.549633447245e-04 1.071800523379e-03 2.450366552621e-04 0.000000000000e+00 1.287500000000e+00 - 52 9.356347670799e-04 1.089900980030e-03 2.643652329064e-04 0.000000000000e+00 1.312500000000e+00 - 53 9.097384638238e-04 1.105766147280e-03 2.902615361621e-04 0.000000000000e+00 1.337500000000e+00 - 54 8.761960899973e-04 1.119606249493e-03 3.238039099884e-04 0.000000000000e+00 1.362500000000e+00 - 55 8.344533301405e-04 1.131625845338e-03 3.655466698448e-04 0.000000000000e+00 1.387500000000e+00 - 56 7.847919650473e-04 1.142020362046e-03 4.152080349377e-04 0.000000000000e+00 1.412500000000e+00 - 57 7.284538372956e-04 1.150973656035e-03 4.715461626890e-04 3.531139650447e-28 1.437500000000e+00 - 58 6.674661295227e-04 1.158656441394e-03 5.325338704615e-04 4.216133178628e-26 1.462500000000e+00 - 59 6.042301758574e-04 1.165225432017e-03 5.957698241264e-04 2.112623929983e-24 1.487500000000e+00 - 60 5.410707042898e-04 1.170823053924e-03 6.589292956936e-04 9.154192241727e-23 1.512500000000e+00 - 61 4.799177066702e-04 1.175577598780e-03 7.200822933128e-04 3.514353871319e-21 1.537500000000e+00 - 62 4.221746364517e-04 1.179603706072e-03 7.778253635310e-04 1.207213754715e-19 1.562500000000e+00 - 63 3.687296865687e-04 1.183003078326e-03 8.312703134136e-04 3.694071268522e-18 1.587500000000e+00 - 64 3.200378094464e-04 1.185865350144e-03 8.799621905353e-04 1.035721724574e-16 1.612500000000e+00 - 65 2.762284431581e-04 1.188269047043e-03 9.237715568181e-04 2.657316487854e-15 1.637500000000e+00 - 66 2.371960440987e-04 1.190282583742e-03 9.628039557569e-04 6.272120679345e-14 1.662500000000e+00 - 67 2.026802660674e-04 1.191965263410e-03 9.973197311050e-04 1.404108206719e-12 1.687500000000e+00 - 68 1.723175379750e-04 1.193368249525e-03 1.027682402586e-03 2.970943178905e-11 1.712500000000e+00 - 69 1.456986526363e-04 1.194535490349e-03 1.054300174205e-03 5.865691832992e-10 1.737500000000e+00 - 70 1.223834694922e-04 1.195504582884e-03 1.077593516928e-03 1.150677988409e-08 1.762500000000e+00 - 71 1.019262303181e-04 1.196307568531e-03 1.097657241060e-03 2.082643005687e-07 1.787500000000e+00 - 72 8.381480436901e-05 1.196971656899e-03 1.109525476375e-03 3.329859617620e-06 1.812500000000e+00 - 73 6.668225222763e-05 1.197519877322e-03 1.024937206780e-03 5.419027048699e-05 1.837500000000e+00 - 74 5.053198367588e-05 1.197971659937e-03 7.350507107017e-04 2.072086528056e-04 1.862500000000e+00 - 75 3.879701357384e-05 1.198343349753e-03 5.356918142740e-04 3.127555860725e-04 1.887500000000e+00 - 76 3.007678322714e-05 1.198648658204e-03 4.021188008075e-04 3.839022079803e-04 1.912500000000e+00 - 77 2.344463549477e-05 1.198899057198e-03 3.068522371398e-04 4.348515636811e-04 1.937500000000e+00 - 78 1.834047972303e-05 1.199104120994e-03 2.366187847935e-04 4.725203677407e-04 1.962500000000e+00 - 79 1.438416333579e-05 1.199271821253e-03 1.838015689079e-04 5.009071338775e-04 1.987500000000e+00 - 80 1.130287552752e-05 1.199408780438e-03 1.435541337147e-04 5.225714953785e-04 2.012500000000e+00 - 81 8.894854154079e-06 1.199520488471e-03 1.125953626074e-04 5.392548916190e-04 2.037500000000e+00 - 82 7.008145850795e-06 1.199611487223e-03 8.861328635320e-05 5.521892838979e-04 2.062500000000e+00 - 83 5.526939767874e-06 1.199685527006e-03 6.993373977280e-05 5.622696602297e-04 2.087500000000e+00 - 84 4.362237388662e-06 1.199745698858e-03 5.532050326723e-05 5.701586296722e-04 2.112500000000e+00 - 85 3.445231625609e-06 1.199794545991e-03 4.384740222240e-05 5.763536830762e-04 2.137500000000e+00 - 86 2.722483623507e-06 1.199834157394e-03 3.481279241271e-05 5.812323619830e-04 2.162500000000e+00 - 87 2.152343734149e-06 1.199866246233e-03 2.768046312183e-05 5.850835965728e-04 2.187500000000e+00 - 88 1.702259901998e-06 1.199892215323e-03 2.203774543631e-05 5.881299973321e-04 2.212500000000e+00 - 89 1.346733078605e-06 1.199913211686e-03 1.756522033718e-05 5.905440232932e-04 2.237500000000e+00 - 90 1.065752199291e-06 1.199930171882e-03 1.401446577322e-05 5.924598910147e-04 2.262500000000e+00 - 91 8.435890597760e-07 1.199943859609e-03 1.119149963190e-05 5.939824556553e-04 2.287500000000e+00 - 92 6.678659094751e-07 1.199954896813e-03 8.944331673348e-06 5.951939012097e-04 2.312500000000e+00 - 93 5.288312745980e-07 1.199963789378e-03 7.153523668271e-06 5.961588225295e-04 2.337500000000e+00 - 94 4.187957414419e-07 1.199970948302e-03 5.724978921438e-06 5.969281126694e-04 2.362500000000e+00 - 95 3.316912256402e-07 1.199976707113e-03 4.584400974699e-06 5.975419539006e-04 2.387500000000e+00 - 96 2.627259549752e-07 1.199981336185e-03 3.673012861550e-06 5.980321305924e-04 2.412500000000e+00 - 97 2.081138874130e-07 1.199985054463e-03 2.944235324396e-06 5.984238253947e-04 2.437500000000e+00 - 98 1.648621779962e-07 1.199988039067e-03 2.361099157045e-06 5.987370193330e-04 2.462500000000e+00 - 99 1.306040218714e-07 1.199990433149e-03 1.894222604006e-06 5.989875866876e-04 2.487500000000e+00 - 100 1.034670378744e-07 1.199992352295e-03 1.520225735969e-06 5.991881536136e-04 2.512500000000e+00 + 31 9.999988216501e-04 2.024196971846e-04 2.000011783465e-04 0.000000000000e+00 7.875000000000e-01 + 32 9.999974639177e-04 2.478976466374e-04 2.000025360780e-04 0.000000000000e+00 8.125000000000e-01 + 33 9.999947567695e-04 2.971862880219e-04 2.000052432252e-04 0.000000000000e+00 8.375000000000e-01 + 34 9.999895484279e-04 3.495140484286e-04 2.000104515658e-04 0.000000000000e+00 8.625000000000e-01 + 35 9.999798465390e-04 4.040335770972e-04 2.000201534538e-04 0.000000000000e+00 8.875000000000e-01 + 36 9.999622949296e-04 4.598690859751e-04 2.000377050623e-04 0.000000000000e+00 9.125000000000e-01 + 37 9.999313715129e-04 5.161592448424e-04 2.000686284782e-04 0.000000000000e+00 9.375000000000e-01 + 38 9.998781779394e-04 5.720931802492e-04 2.001218220509e-04 0.000000000000e+00 9.625000000000e-01 + 39 9.997886375328e-04 6.269382550211e-04 2.002113624569e-04 0.000000000000e+00 9.875000000000e-01 + 40 9.996408433311e-04 6.800592808323e-04 2.003591566592e-04 0.000000000000e+00 1.012500000000e+00 + 41 9.994011963772e-04 7.309295762325e-04 2.005988036124e-04 0.000000000000e+00 1.037500000000e+00 + 42 9.990188398148e-04 7.791348087968e-04 2.009811601742e-04 0.000000000000e+00 1.062500000000e+00 + 43 9.984177243185e-04 8.243708674758e-04 2.015822756708e-04 0.000000000000e+00 1.087500000000e+00 + 44 9.974854440232e-04 8.664371340741e-04 2.025145559656e-04 0.000000000000e+00 1.112500000000e+00 + 45 9.960577965326e-04 9.052265038233e-04 2.039422034560e-04 0.000000000000e+00 1.137500000000e+00 + 46 9.938979448378e-04 9.407133877483e-04 2.061020551494e-04 0.000000000000e+00 1.162500000000e+00 + 47 9.906693148732e-04 9.729407531498e-04 2.093306851137e-04 0.000000000000e+00 1.187500000000e+00 + 48 9.859023902769e-04 1.002007055046e-03 2.140976097098e-04 0.000000000000e+00 1.212500000000e+00 + 49 9.789581361256e-04 1.028053705197e-03 2.210418638608e-04 0.000000000000e+00 1.237500000000e+00 + 50 9.689960048283e-04 1.051253532901e-03 2.310039951580e-04 0.000000000000e+00 1.262500000000e+00 + 51 9.549633447242e-04 1.071800523379e-03 2.450366552618e-04 0.000000000000e+00 1.287500000000e+00 + 52 9.356347670797e-04 1.089900980030e-03 2.643652329060e-04 0.000000000000e+00 1.312500000000e+00 + 53 9.097384638237e-04 1.105766147280e-03 2.902615361617e-04 0.000000000000e+00 1.337500000000e+00 + 54 8.761960899973e-04 1.119606249493e-03 3.238039099878e-04 0.000000000000e+00 1.362500000000e+00 + 55 8.344533301406e-04 1.131625845338e-03 3.655466698441e-04 0.000000000000e+00 1.387500000000e+00 + 56 7.847919650475e-04 1.142020362045e-03 4.152080349369e-04 0.000000000000e+00 1.412500000000e+00 + 57 7.284538372959e-04 1.150973656035e-03 4.715461626881e-04 3.531139650212e-28 1.437500000000e+00 + 58 6.674661295231e-04 1.158656441394e-03 5.325338704605e-04 4.216133178351e-26 1.462500000000e+00 + 59 6.042301758578e-04 1.165225432017e-03 5.957698241254e-04 2.112623929847e-24 1.487500000000e+00 + 60 5.410707042902e-04 1.170823053923e-03 6.589292956926e-04 9.154192241146e-23 1.512500000000e+00 + 61 4.799177066706e-04 1.175577598779e-03 7.200822933118e-04 3.514353871101e-21 1.537500000000e+00 + 62 4.221746364521e-04 1.179603706071e-03 7.778253635299e-04 1.207213754641e-19 1.562500000000e+00 + 63 3.687296865690e-04 1.183003078326e-03 8.312703134126e-04 3.694071268300e-18 1.587500000000e+00 + 64 3.200378094467e-04 1.185865350144e-03 8.799621905343e-04 1.035721724513e-16 1.612500000000e+00 + 65 2.762284431584e-04 1.188269047043e-03 9.237715568171e-04 2.657316487699e-15 1.637500000000e+00 + 66 2.371960440990e-04 1.190282583741e-03 9.628039557559e-04 6.272120678983e-14 1.662500000000e+00 + 67 2.026802660677e-04 1.191965263410e-03 9.973197311041e-04 1.404108206640e-12 1.687500000000e+00 + 68 1.723175379753e-04 1.193368249524e-03 1.027682402586e-03 2.970943178733e-11 1.712500000000e+00 + 69 1.456986526365e-04 1.194535490349e-03 1.054300174205e-03 5.865691832664e-10 1.737500000000e+00 + 70 1.223834694923e-04 1.195504582884e-03 1.077593516927e-03 1.150677988345e-08 1.762500000000e+00 + 71 1.019262303182e-04 1.196307568531e-03 1.097657241059e-03 2.082643005567e-07 1.787500000000e+00 + 72 8.381480436917e-05 1.196971656899e-03 1.109525476375e-03 3.329859617447e-06 1.812500000000e+00 + 73 6.668225222783e-05 1.197519877322e-03 1.024937206784e-03 5.419027048444e-05 1.837500000000e+00 + 74 5.053198367604e-05 1.197971659937e-03 7.350507107061e-04 2.072086528030e-04 1.862500000000e+00 + 75 3.879701357395e-05 1.198343349753e-03 5.356918142768e-04 3.127555860708e-04 1.887500000000e+00 + 76 3.007678322722e-05 1.198648658204e-03 4.021188008094e-04 3.839022079790e-04 1.912500000000e+00 + 77 2.344463549483e-05 1.198899057198e-03 3.068522371412e-04 4.348515636801e-04 1.937500000000e+00 + 78 1.834047972307e-05 1.199104120993e-03 2.366187847945e-04 4.725203677398e-04 1.962500000000e+00 + 79 1.438416333582e-05 1.199271821253e-03 1.838015689086e-04 5.009071338768e-04 1.987500000000e+00 + 80 1.130287552755e-05 1.199408780437e-03 1.435541337153e-04 5.225714953778e-04 2.012500000000e+00 + 81 8.894854154099e-06 1.199520488471e-03 1.125953626079e-04 5.392548916185e-04 2.037500000000e+00 + 82 7.008145850810e-06 1.199611487223e-03 8.861328635354e-05 5.521892838974e-04 2.062500000000e+00 + 83 5.526939767886e-06 1.199685527005e-03 6.993373977306e-05 5.622696602292e-04 2.087500000000e+00 + 84 4.362237388672e-06 1.199745698858e-03 5.532050326743e-05 5.701586296717e-04 2.112500000000e+00 + 85 3.445231625616e-06 1.199794545990e-03 4.384740222256e-05 5.763536830758e-04 2.137500000000e+00 + 86 2.722483623513e-06 1.199834157394e-03 3.481279241283e-05 5.812323619826e-04 2.162500000000e+00 + 87 2.152343734153e-06 1.199866246232e-03 2.768046312193e-05 5.850835965725e-04 2.187500000000e+00 + 88 1.702259902002e-06 1.199892215323e-03 2.203774543638e-05 5.881299973317e-04 2.212500000000e+00 + 89 1.346733078607e-06 1.199913211686e-03 1.756522033724e-05 5.905440232928e-04 2.237500000000e+00 + 90 1.065752199293e-06 1.199930171882e-03 1.401446577327e-05 5.924598910143e-04 2.262500000000e+00 + 91 8.435890597776e-07 1.199943859609e-03 1.119149963194e-05 5.939824556550e-04 2.287500000000e+00 + 92 6.678659094764e-07 1.199954896813e-03 8.944331673377e-06 5.951939012093e-04 2.312500000000e+00 + 93 5.288312745990e-07 1.199963789378e-03 7.153523668295e-06 5.961588225292e-04 2.337500000000e+00 + 94 4.187957414427e-07 1.199970948301e-03 5.724978921457e-06 5.969281126691e-04 2.362500000000e+00 + 95 3.316912256408e-07 1.199976707113e-03 4.584400974714e-06 5.975419539002e-04 2.387500000000e+00 + 96 2.627259549757e-07 1.199981336185e-03 3.673012861562e-06 5.980321305921e-04 2.412500000000e+00 + 97 2.081138874134e-07 1.199985054462e-03 2.944235324406e-06 5.984238253944e-04 2.437500000000e+00 + 98 1.648621779965e-07 1.199988039067e-03 2.361099157053e-06 5.987370193327e-04 2.462500000000e+00 + 99 1.306040218716e-07 1.199990433149e-03 1.894222604012e-06 5.989875866872e-04 2.487500000000e+00 + 100 1.034670378746e-07 1.199992352295e-03 1.520225735974e-06 5.991881536132e-04 2.512500000000e+00 diff --git a/ex12.out b/ex12.out index b7047e21..0a1b776d 100644 --- a/ex12.out +++ b/ex12.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + CALCULATE_VALUES RATES END ------------------------------------ diff --git a/ex12.sel b/ex12.sel index 3aeab6d2..5bafa096 100644 --- a/ex12.sel +++ b/ex12.sel @@ -2,7 +2,7 @@ -99 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 -99 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 -99 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 - 0 2.400000000000e+01 2.400000000001e+01 0.000000000000e+00 2.400000000001e+01 + 0 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 0.166666 0.000000000000e+00 0.000000000000e+00 2.400000000000e+01 0.000000000000e+00 0.499999 0.000000000000e+00 0.000000000000e+00 2.400000000000e+01 0.000000000000e+00 0.833333 0.000000000000e+00 0.000000000000e+00 2.400000000000e+01 0.000000000000e+00 @@ -63,64 +63,64 @@ 19.1666 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 19.5 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 19.8333 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 - 0 2.400000000000e+01 2.400000000001e+01 0.000000000000e+00 2.400000000001e+01 - 0.166666 2.173421535788e+01 2.173403615953e+01 2.265963837555e+00 2.269804797033e+01 - 0.499999 1.732877881413e+01 1.732819001088e+01 6.671809981450e+00 2.011807085413e+01 - 0.833333 1.328084086748e+01 1.327978568454e+01 1.072021430459e+01 1.760856603205e+01 - 1.16667 9.764795286473e+00 9.763307030588e+00 1.423669295684e+01 1.521227157407e+01 - 1.5 6.876991640216e+00 6.875215357914e+00 1.712478462909e+01 1.296595961052e+01 - 1.83333 4.633455928133e+00 4.631602980060e+00 1.936839700748e+01 1.089879733963e+01 - 2.16666 2.983966658034e+00 2.982242889576e+00 2.101775709911e+01 9.031344427785e+00 - 2.5 1.835677067050e+00 1.834226374349e+00 2.216577361581e+01 7.375229710913e+00 - 2.83333 1.078314727713e+00 1.077198297073e+00 2.292280169465e+01 5.933476222847e+00 - 3.16666 6.047305557783e-01 6.039382767912e-01 2.339606171644e+01 4.701379781822e+00 - 3.5 3.237709470080e-01 3.232490525631e-01 2.367675094204e+01 3.667800399955e+00 - 3.83333 1.655104664086e-01 1.651896628001e-01 2.383481033299e+01 2.816701882845e+00 - 4.16666 8.080257204240e-02 8.061777229747e-02 2.391938222449e+01 2.128773573946e+00 - 4.5 3.768568646672e-02 3.758557520673e-02 2.396241442239e+01 1.582986272154e+00 - 4.83333 1.679767756894e-02 1.674652868457e-02 2.398325346955e+01 1.157966472263e+00 - 5.16666 7.158752063679e-03 7.134045500772e-03 2.399286595323e+01 8.331126368302e-01 - 5.49999 2.918449214332e-03 2.907143229950e-03 2.399709285587e+01 5.894176946330e-01 - 5.83333 1.138722696040e-03 1.133812460283e-03 2.399886618691e+01 4.099979928623e-01 - 6.16666 4.254688736287e-04 4.234417524586e-04 2.399957655782e+01 2.803568840130e-01 - 6.49999 1.523139982618e-04 1.515173752174e-04 2.399984848234e+01 1.884293356575e-01 - 6.83333 5.227267557720e-05 5.197429168621e-05 2.399994802552e+01 1.244625136586e-01 - 7.16666 1.720732480116e-05 1.710067686707e-05 2.399998289920e+01 8.078763518550e-02 - 7.49999 5.436192373459e-06 5.399780020750e-06 2.399999460014e+01 5.153271367857e-02 - 7.83333 1.649130959657e-06 1.637243353855e-06 2.399999836271e+01 3.231654723820e-02 - 8.16666 4.806491381349e-07 4.769347036536e-07 2.399999952304e+01 1.995365519989e-02 - 8.49999 1.346725366297e-07 1.335606226395e-07 2.399999986642e+01 1.218958904341e-02 - 8.83332 3.634765898121e-08 3.602792250425e-08 2.399999996396e+01 7.477287156792e-03 - 9.16666 9.688623034758e-09 9.597781456181e-09 2.399999999040e+01 4.798487471579e-03 - 9.49999 3.521368975345e-09 3.486221174492e-09 2.399999999651e+01 3.529761278079e-03 - 9.83332 5.266906600210e-09 5.215747970469e-09 2.399999999478e+01 3.350250042338e-03 - 10.1667 1.826871464229e-08 1.810246493771e-08 2.399999998189e+01 4.187235209478e-03 - 10.5 6.734356349056e-08 6.676736728834e-08 2.399999993323e+01 6.195716015130e-03 - 10.8333 2.402639314420e-07 2.383343475330e-07 2.399999976165e+01 9.768664014259e-03 - 11.1667 8.242843018529e-07 8.180891310089e-07 2.399999918189e+01 1.557505013667e-02 - 11.5 2.716922549622e-06 2.697877300180e-06 2.399999730209e+01 2.462264894765e-02 - 11.8333 8.598959192629e-06 8.542946913497e-06 2.399999145700e+01 3.834165440595e-02 - 12.1667 2.611819663843e-05 2.596074280449e-05 2.399997403917e+01 5.868305693760e-02 - 12.5 7.608967015818e-05 7.566701745603e-05 2.399992433285e+01 8.822247450201e-02 - 12.8333 2.124941138159e-04 2.114118449121e-04 2.399978858796e+01 1.302558794738e-01 - 13.1667 5.685367828663e-04 5.658959587677e-04 2.399943410375e+01 1.888688939345e-01 - 13.5 1.456506511045e-03 1.450373187820e-03 2.399854962640e+01 2.689568433456e-01 - 13.8333 3.570772369452e-03 3.557230846963e-03 2.399644276858e+01 3.761696764504e-01 - 14.1667 8.372702446682e-03 8.344318209107e-03 2.399165568100e+01 5.167554989993e-01 - 14.5 1.876668623423e-02 1.871028306260e-02 2.398128971588e+01 6.972801618698e-01 - 14.8333 4.018855158439e-02 4.008246069530e-02 2.395991753791e+01 9.242091443387e-01 - 15.1667 8.218587185627e-02 8.199729506176e-02 2.391800270314e+01 1.203352315083e+00 - 15.5 1.604262488969e-01 1.601100284715e-01 2.383988996926e+01 1.539191520809e+00 - 15.8333 2.987859018573e-01 2.982865097096e-01 2.370171348749e+01 1.934133647612e+00 - 16.1667 5.307585250720e-01 5.300169112942e-01 2.346998308535e+01 2.387754908519e+00 - 16.5 8.989956902916e-01 8.979611508073e-01 2.310203884528e+01 2.896121734266e+00 - 16.8333 1.451582042996e+00 1.450226361452e+00 2.254977363414e+01 3.451285434102e+00 - 17.1666 2.233972730862e+00 2.232300602876e+00 2.176769939234e+01 4.041047732562e+00 - 17.5 3.276610346604e+00 3.274658958333e+00 2.072534103671e+01 4.649079608378e+00 - 17.8333 4.580032365347e+00 4.577856581120e+00 1.942214341402e+01 5.255445898757e+00 - 18.1666 6.101263069883e+00 6.098911107801e+00 1.790108888776e+01 5.837544906627e+00 - 18.5 7.746550873541e+00 7.744044086582e+00 1.625595590970e+01 6.371420572386e+00 - 18.8333 9.375124349924e+00 9.372456106636e+00 1.462754389061e+01 6.833351769771e+00 - 19.1666 1.081616435699e+01 1.081332243663e+01 1.318667756164e+01 7.201577340319e+00 - 19.5 1.189711477283e+01 1.189411416971e+01 1.210588582944e+01 7.457984760712e+00 - 19.8333 1.247718192302e+01 1.247408415261e+01 1.152591584704e+01 7.589581188890e+00 + 0 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 + 0.166666 2.173421535788e+01 2.173403615953e+01 2.265963837554e+00 2.269804797032e+01 + 0.499999 1.732877881413e+01 1.732819001087e+01 6.671809981447e+00 2.011807085412e+01 + 0.833333 1.328084086748e+01 1.327978568454e+01 1.072021430458e+01 1.760856603204e+01 + 1.16667 9.764795286473e+00 9.763307030585e+00 1.423669295683e+01 1.521227157407e+01 + 1.5 6.876991640216e+00 6.875215357913e+00 1.712478462908e+01 1.296595961051e+01 + 1.83333 4.633455928133e+00 4.631602980060e+00 1.936839700747e+01 1.089879733963e+01 + 2.16666 2.983966658034e+00 2.982242889576e+00 2.101775709910e+01 9.031344427781e+00 + 2.5 1.835677067050e+00 1.834226374349e+00 2.216577361580e+01 7.375229710910e+00 + 2.83333 1.078314727713e+00 1.077198297073e+00 2.292280169464e+01 5.933476222844e+00 + 3.16666 6.047305557783e-01 6.039382767914e-01 2.339606171644e+01 4.701379781820e+00 + 3.5 3.237709470080e-01 3.232490525632e-01 2.367675094204e+01 3.667800399953e+00 + 3.83333 1.655104664086e-01 1.651896628001e-01 2.383481033299e+01 2.816701882844e+00 + 4.16666 8.080257204240e-02 8.061777229753e-02 2.391938222449e+01 2.128773573946e+00 + 4.5 3.768568646672e-02 3.758557520676e-02 2.396241442239e+01 1.582986272153e+00 + 4.83333 1.679767756894e-02 1.674652868459e-02 2.398325346955e+01 1.157966472262e+00 + 5.16666 7.158752063679e-03 7.134045500782e-03 2.399286595322e+01 8.331126368298e-01 + 5.49999 2.918449214332e-03 2.907143229955e-03 2.399709285586e+01 5.894176946328e-01 + 5.83333 1.138722696040e-03 1.133812460285e-03 2.399886618691e+01 4.099979928622e-01 + 6.16666 4.254688736287e-04 4.234417524596e-04 2.399957655782e+01 2.803568840129e-01 + 6.49999 1.523139982618e-04 1.515173752178e-04 2.399984848233e+01 1.884293356574e-01 + 6.83333 5.227267557720e-05 5.197429168637e-05 2.399994802552e+01 1.244625136586e-01 + 7.16666 1.720732480116e-05 1.710067686712e-05 2.399998289920e+01 8.078763518547e-02 + 7.49999 5.436192373459e-06 5.399780020770e-06 2.399999460014e+01 5.153271367855e-02 + 7.83333 1.649130959657e-06 1.637243353861e-06 2.399999836271e+01 3.231654723819e-02 + 8.16666 4.806491381349e-07 4.769347036557e-07 2.399999952303e+01 1.995365519988e-02 + 8.49999 1.346725366297e-07 1.335606226401e-07 2.399999986642e+01 1.218958904340e-02 + 8.83332 3.634765898121e-08 3.602792250445e-08 2.399999996396e+01 7.477287156789e-03 + 9.16666 9.688623034758e-09 9.597781456237e-09 2.399999999039e+01 4.798487471577e-03 + 9.49999 3.521368975345e-09 3.486221174512e-09 2.399999999651e+01 3.529761278078e-03 + 9.83332 5.266906600210e-09 5.215747970494e-09 2.399999999478e+01 3.350250042338e-03 + 10.1667 1.826871464229e-08 1.810246493779e-08 2.399999998189e+01 4.187235209478e-03 + 10.5 6.734356349056e-08 6.676736728859e-08 2.399999993322e+01 6.195716015130e-03 + 10.8333 2.402639314420e-07 2.383343475339e-07 2.399999976165e+01 9.768664014259e-03 + 11.1667 8.242843018529e-07 8.180891310115e-07 2.399999918189e+01 1.557505013666e-02 + 11.5 2.716922549622e-06 2.697877300187e-06 2.399999730208e+01 2.462264894765e-02 + 11.8333 8.598959192629e-06 8.542946913518e-06 2.399999145699e+01 3.834165440595e-02 + 12.1667 2.611819663843e-05 2.596074280454e-05 2.399997403917e+01 5.868305693760e-02 + 12.5 7.608967015818e-05 7.566701745618e-05 2.399992433285e+01 8.822247450200e-02 + 12.8333 2.124941138159e-04 2.114118449125e-04 2.399978858795e+01 1.302558794738e-01 + 13.1667 5.685367828663e-04 5.658959587685e-04 2.399943410375e+01 1.888688939345e-01 + 13.5 1.456506511045e-03 1.450373187822e-03 2.399854962640e+01 2.689568433456e-01 + 13.8333 3.570772369452e-03 3.557230846966e-03 2.399644276858e+01 3.761696764504e-01 + 14.1667 8.372702446682e-03 8.344318209114e-03 2.399165568100e+01 5.167554989993e-01 + 14.5 1.876668623423e-02 1.871028306261e-02 2.398128971588e+01 6.972801618698e-01 + 14.8333 4.018855158439e-02 4.008246069532e-02 2.395991753791e+01 9.242091443386e-01 + 15.1667 8.218587185627e-02 8.199729506180e-02 2.391800270313e+01 1.203352315083e+00 + 15.5 1.604262488969e-01 1.601100284715e-01 2.383988996925e+01 1.539191520808e+00 + 15.8333 2.987859018573e-01 2.982865097097e-01 2.370171348749e+01 1.934133647612e+00 + 16.1667 5.307585250720e-01 5.300169112943e-01 2.346998308535e+01 2.387754908519e+00 + 16.5 8.989956902916e-01 8.979611508074e-01 2.310203884528e+01 2.896121734265e+00 + 16.8333 1.451582042996e+00 1.450226361452e+00 2.254977363414e+01 3.451285434101e+00 + 17.1666 2.233972730862e+00 2.232300602876e+00 2.176769939234e+01 4.041047732561e+00 + 17.5 3.276610346604e+00 3.274658958333e+00 2.072534103671e+01 4.649079608377e+00 + 17.8333 4.580032365347e+00 4.577856581120e+00 1.942214341402e+01 5.255445898756e+00 + 18.1666 6.101263069883e+00 6.098911107801e+00 1.790108888775e+01 5.837544906627e+00 + 18.5 7.746550873541e+00 7.744044086582e+00 1.625595590970e+01 6.371420572385e+00 + 18.8333 9.375124349924e+00 9.372456106636e+00 1.462754389061e+01 6.833351769770e+00 + 19.1666 1.081616435699e+01 1.081332243663e+01 1.318667756164e+01 7.201577340318e+00 + 19.5 1.189711477283e+01 1.189411416971e+01 1.210588582943e+01 7.457984760712e+00 + 19.8333 1.247718192302e+01 1.247408415261e+01 1.152591584704e+01 7.589581188889e+00 diff --git a/ex12a.out b/ex12a.out index a208c7c7..7f886c42 100644 --- a/ex12a.out +++ b/ex12a.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + CALCULATE_VALUES RATES END ------------------------------------ diff --git a/ex12a.sel b/ex12a.sel index 737186d3..ed20e23d 100644 --- a/ex12a.sel +++ b/ex12a.sel @@ -1,5 +1,5 @@ dist_x temp Na_mmol K_mmol Cl_mmol error_Cl error_Na - 0 2.400000000000e+01 2.400000000001e+01 0.000000000000e+00 2.400000000001e+01 + 0 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 0.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 1.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 2.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 @@ -20,17 +20,17 @@ 17.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 18.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 19.5 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 - 0 2.400000000000e+01 2.400000000001e+01 0.000000000000e+00 2.400000000001e+01 -2.401100845928e-11 -2.401057130896e-11 - 0.5 1.686181418415e+01 1.686133609178e+01 7.138663899854e+00 2.011377529319e+01 4.381717848272e-06 5.068336357383e-04 - 1.5 6.421492325960e+00 6.419558988193e+00 1.758044099841e+01 1.294968671941e+01 1.730376475858e-05 5.127073405275e-04 - 2.5 1.759908541854e+00 1.758534659760e+00 2.224146533044e+01 7.342808261289e+00 3.561257293223e-05 9.186006160917e-05 - 3.5 3.571924631562e-01 3.567054178267e-01 2.364329457694e+01 3.623408283677e+00 4.959925524357e-05 -3.682506955372e-05 - 4.5 5.490209781371e-02 5.479279662420e-02 2.394520720114e+01 1.538555967128e+00 5.006313596798e-05 -1.968447681420e-05 - 5.5 6.484238380348e-03 6.467124487003e-03 2.399353287476e+01 5.556625533108e-01 3.820767165765e-05 -4.051252484619e-06 - 6.5 5.926340095484e-04 5.906785140034e-04 2.399940932133e+01 1.684990632467e-01 2.262672987214e-05 -4.873052767781e-07 - 7.5 4.190926756604e-05 4.174299654829e-05 2.399995825704e+01 4.224784404202e-02 1.054699173426e-05 -3.900783491554e-08 - 8.5 2.276345750780e-06 2.265781717013e-06 2.399999773430e+01 8.664946370890e-03 3.823149392512e-06 -2.221207693064e-09 - 9.5 1.396593677778e-07 1.389123928276e-07 2.399999986118e+01 2.055609847092e-03 + 0 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 -2.400000337355e-11 -2.400000684299e-11 + 0.5 1.686181418415e+01 1.686133609177e+01 7.138663899854e+00 2.011377529319e+01 4.381717856952e-06 5.068336357464e-04 + 1.5 6.421492325960e+00 6.419558988189e+00 1.758044099840e+01 1.294968671940e+01 1.730376476416e-05 5.127073405313e-04 + 2.5 1.759908541854e+00 1.758534659759e+00 2.224146533044e+01 7.342808261286e+00 3.561257293540e-05 9.186006161037e-05 + 3.5 3.571924631562e-01 3.567054178264e-01 2.364329457693e+01 3.623408283676e+00 4.959925524514e-05 -3.682506955347e-05 + 4.5 5.490209781371e-02 5.479279662416e-02 2.394520720113e+01 1.538555967128e+00 5.006313596864e-05 -1.968447681416e-05 + 5.5 6.484238380348e-03 6.467124486998e-03 2.399353287476e+01 5.556625533105e-01 3.820767165789e-05 -4.051252484614e-06 + 6.5 5.926340095484e-04 5.906785140029e-04 2.399940932133e+01 1.684990632467e-01 2.262672987221e-05 -4.873052767777e-07 + 7.5 4.190926756604e-05 4.174299654826e-05 2.399995825704e+01 4.224784404200e-02 1.054699173428e-05 -3.900783491551e-08 + 8.5 2.276345750780e-06 2.265781717011e-06 2.399999773430e+01 8.664946370886e-03 3.823149392516e-06 -2.221207693063e-09 + 9.5 1.396593677778e-07 1.389123928275e-07 2.399999986118e+01 2.055609847092e-03 10.5 1.138869021831e-06 1.133447609651e-06 2.399999886664e+01 4.374443607422e-03 11.5 2.090811414205e-05 2.082226931298e-05 2.399997917780e+01 2.044715368546e-02 12.5 2.951795282278e-04 2.941575642002e-04 2.399970584241e+01 7.995922685932e-02 @@ -101,44 +101,44 @@ 19.1667 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 19.5 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 19.8333 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 - 0.166667 2.173421305916e+01 2.173403386064e+01 2.265966136453e+00 2.269804666232e+01 - 0.5 1.732877230198e+01 1.732818349806e+01 6.671816494266e+00 2.011806700219e+01 9.000885020996e-08 3.998622945188e-05 - 0.833333 1.328083118787e+01 1.327977600374e+01 1.072022398538e+01 1.760855984596e+01 - 1.16667 9.764783869793e+00 9.763295612556e+00 1.423670437487e+01 1.521226338238e+01 - 1.5 6.876979954453e+00 6.875203671277e+00 1.712479631572e+01 1.296594983170e+01 1.040652464979e-06 5.706265744324e-05 - 1.83333 4.633445178532e+00 4.631592230631e+00 1.936840775690e+01 1.089878644682e+01 - 2.16667 2.983957613764e+00 2.982233846718e+00 2.101776614197e+01 9.031332911154e+00 - 2.5 1.835670035272e+00 1.834219344985e+00 2.216578064517e+01 7.375218041925e+00 3.202792296072e-06 1.617537638391e-05 - 2.83333 1.078309641703e+00 1.077193213981e+00 2.292280677774e+01 5.933464823770e+00 - 3.16667 6.047271172834e-01 6.039348411910e-01 2.339606515204e+01 4.701369003158e+00 - 3.5 3.237687663205e-01 3.232468743681e-01 2.367675312023e+01 3.667790507030e+00 5.217031890525e-06 -3.366526095183e-06 - 3.83333 1.655091653734e-01 1.651883636812e-01 2.383481163211e+01 2.816693051605e+00 - 4.16667 8.080184009388e-02 8.061704168694e-02 2.391938295510e+01 2.128765894912e+00 - 4.5 3.768529738011e-02 3.758518697828e-02 2.396241481061e+01 1.582979760725e+00 5.639342371762e-06 -2.476867168276e-06 - 4.83333 1.679748179371e-02 1.674633341903e-02 2.398325366481e+01 1.157961083143e+00 - 5.16667 7.158658672534e-03 7.133952391650e-03 2.399286604633e+01 8.331082803358e-01 - 5.5 2.918406916536e-03 2.907101078214e-03 2.399709289802e+01 5.894142528792e-01 4.455972089240e-06 -4.912290758305e-07 - 5.83333 1.138704483513e-03 1.133794318824e-03 2.399886620505e+01 4.099953343115e-01 - 6.16667 4.254614091982e-04 4.234343206141e-04 2.399957656525e+01 2.803548753978e-01 - 6.5 1.523110828883e-04 1.515144739609e-04 2.399984848524e+01 1.884278508359e-01 2.697942282987e-06 -4.814123673560e-08 - 6.83333 5.227158933236e-05 5.197321123251e-05 2.399994802660e+01 1.244614394111e-01 - 7.16667 1.720693831522e-05 1.710029263506e-05 2.399998289958e+01 8.078687428985e-02 - 7.5 5.436060934909e-06 5.399649415902e-06 2.399999460027e+01 5.153218579106e-02 1.262649985228e-06 -2.664487783145e-09 - 7.83333 1.649088195275e-06 1.637200882996e-06 2.399999836275e+01 3.231618817632e-02 - 8.16667 4.806358157844e-07 4.769214798039e-07 2.399999952305e+01 1.995341519605e-02 - 8.5 1.346685590700e-07 1.335566766313e-07 2.399999986642e+01 1.218943044883e-02 2.986653145740e-07 -8.898265268258e-11 - 8.83333 3.634651793240e-08 3.602679113547e-08 2.399999996396e+01 7.477181955867e-03 - 9.16667 9.688299803978e-09 9.597461159252e-09 2.399999999040e+01 4.798414843919e-03 - 9.5 3.521245209155e-09 3.486098607352e-09 2.399999999651e+01 3.529705336617e-03 - 9.83333 5.266729325119e-09 5.215572366277e-09 2.399999999478e+01 3.350197792357e-03 - 10.1667 1.826814042878e-08 1.810189577526e-08 2.399999998189e+01 4.187174719459e-03 + 0.166667 2.173421305916e+01 2.173403386063e+01 2.265966136452e+00 2.269804666231e+01 + 0.5 1.732877230198e+01 1.732818349806e+01 6.671816494265e+00 2.011806700218e+01 9.000885944563e-08 3.998622946029e-05 + 0.833333 1.328083118787e+01 1.327977600374e+01 1.072022398538e+01 1.760855984595e+01 + 1.16667 9.764783869793e+00 9.763295612551e+00 1.423670437487e+01 1.521226338238e+01 + 1.5 6.876979954453e+00 6.875203671273e+00 1.712479631572e+01 1.296594983169e+01 1.040652470946e-06 5.706265744742e-05 + 1.83333 4.633445178532e+00 4.631592230628e+00 1.936840775690e+01 1.089878644681e+01 + 2.16667 2.983957613764e+00 2.982233846716e+00 2.101776614197e+01 9.031332911150e+00 + 2.5 1.835670035272e+00 1.834219344984e+00 2.216578064517e+01 7.375218041922e+00 3.202792299459e-06 1.617537638526e-05 + 2.83333 1.078309641703e+00 1.077193213980e+00 2.292280677773e+01 5.933464823767e+00 + 3.16667 6.047271172834e-01 6.039348411906e-01 2.339606515204e+01 4.701369003156e+00 + 3.5 3.237687663205e-01 3.232468743679e-01 2.367675312023e+01 3.667790507028e+00 5.217031892205e-06 -3.366526094913e-06 + 3.83333 1.655091653734e-01 1.651883636811e-01 2.383481163211e+01 2.816693051604e+00 + 4.16667 8.080184009388e-02 8.061704168687e-02 2.391938295510e+01 2.128765894911e+00 + 4.5 3.768529738011e-02 3.758518697824e-02 2.396241481061e+01 1.582979760724e+00 5.639342372489e-06 -2.476867168243e-06 + 4.83333 1.679748179371e-02 1.674633341902e-02 2.398325366481e+01 1.157961083143e+00 + 5.16667 7.158658672534e-03 7.133952391643e-03 2.399286604633e+01 8.331082803354e-01 + 5.5 2.918406916536e-03 2.907101078212e-03 2.399709289802e+01 5.894142528789e-01 4.455972089510e-06 -4.912290758279e-07 + 5.83333 1.138704483513e-03 1.133794318823e-03 2.399886620505e+01 4.099953343114e-01 + 6.16667 4.254614091982e-04 4.234343206137e-04 2.399957656525e+01 2.803548753976e-01 + 6.5 1.523110828883e-04 1.515144739607e-04 2.399984848524e+01 1.884278508358e-01 2.697942283073e-06 -4.814123673546e-08 + 6.83333 5.227158933236e-05 5.197321123247e-05 2.399994802660e+01 1.244614394110e-01 + 7.16667 1.720693831522e-05 1.710029263504e-05 2.399998289958e+01 8.078687428981e-02 + 7.5 5.436060934909e-06 5.399649415897e-06 2.399999460027e+01 5.153218579103e-02 1.262649985251e-06 -2.664487783140e-09 + 7.83333 1.649088195275e-06 1.637200882995e-06 2.399999836275e+01 3.231618817631e-02 + 8.16667 4.806358157844e-07 4.769214798034e-07 2.399999952305e+01 1.995341519604e-02 + 8.5 1.346685590700e-07 1.335566766312e-07 2.399999986642e+01 1.218943044882e-02 2.986653145795e-07 -8.898265268245e-11 + 8.83333 3.634651793240e-08 3.602679113544e-08 2.399999996396e+01 7.477181955864e-03 + 9.16667 9.688299803978e-09 9.597461159243e-09 2.399999999040e+01 4.798414843917e-03 + 9.5 3.521245209155e-09 3.486098607350e-09 2.399999999651e+01 3.529705336616e-03 + 9.83333 5.266729325119e-09 5.215572366276e-09 2.399999999478e+01 3.350197792357e-03 + 10.1667 1.826814042878e-08 1.810189577525e-08 2.399999998189e+01 4.187174719459e-03 10.5 6.734157441183e-08 6.676539459885e-08 2.399999993322e+01 6.195634766519e-03 10.8333 2.402572726136e-07 2.383277400061e-07 2.399999976166e+01 9.768547401637e-03 - 11.1667 8.242629300769e-07 8.180679126565e-07 2.399999918191e+01 1.557488011882e-02 + 11.1667 8.242629300769e-07 8.180679126564e-07 2.399999918191e+01 1.557488011882e-02 11.5 2.716856871595e-06 2.697812059732e-06 2.399999730215e+01 2.462240289906e-02 11.8333 8.598766106045e-06 8.542755015542e-06 2.399999145719e+01 3.834130428025e-02 12.1667 2.611765408526e-05 2.596020332212e-05 2.399997403971e+01 5.868256892109e-02 - 12.5 7.608821445992e-05 7.566556929143e-05 2.399992433429e+01 8.822180939210e-02 + 12.5 7.608821445992e-05 7.566556929142e-05 2.399992433429e+01 8.822180939210e-02 12.8333 2.124903882618e-04 2.114081368791e-04 2.399978859166e+01 1.302549940497e-01 13.1667 5.685276979853e-04 5.658869124423e-04 2.399943411280e+01 1.888677435760e-01 13.5 1.456485427866e-03 1.450352184743e-03 2.399854964740e+01 2.689553860821e-01 diff --git a/ex13a.out b/ex13a.out index 687ebc49..65c5d82a 100644 --- a/ex13a.out +++ b/ex13a.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + CALCULATE_VALUES RATES END ------------------------------------ @@ -141,7 +142,7 @@ Initial solution 1. pH = 7.000 pe = 13.622 Equilibrium with O2(g) - Specific Conductance (µS/cm, 25°C) = 140 + Specific Conductance (µS/cm, 25°C) = 141 Density (g/cm³) = 0.99711 Volume (L) = 1.00301 Viscosity (mPa s) = 0.89011 @@ -227,7 +228,7 @@ X 1.000e-03 mol pH = 7.000 Charge balance pe = 13.622 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 140 + Specific Conductance (µS/cm, 25°C) = 141 Density (g/cm³) = 0.99711 Volume (L) = 1.00301 Viscosity (mPa s) = 0.89011 @@ -255,7 +256,7 @@ H(0) 0.000e+00 K 1.000e-03 K+ 1.000e-03 9.649e-04 -3.000 -3.016 -0.016 9.01 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -62.898 -62.914 -0.016 17.96 + NH4+ 0.000e+00 0.000e+00 -62.898 -62.914 -0.016 17.89 NH3 0.000e+00 0.000e+00 -65.158 -65.158 0.000 24.42 N(0) 1.351e-19 N2 6.757e-20 6.759e-20 -19.170 -19.170 0.000 29.29 diff --git a/ex13ac.out b/ex13ac.out index c1ffbb60..7f601aa2 100644 --- a/ex13ac.out +++ b/ex13ac.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + CALCULATE_VALUES RATES END ------------------------------------ @@ -141,7 +142,7 @@ Initial solution 1. pH = 7.000 pe = 13.622 Equilibrium with O2(g) - Specific Conductance (µS/cm, 25°C) = 140 + Specific Conductance (µS/cm, 25°C) = 141 Density (g/cm³) = 0.99711 Volume (L) = 1.00301 Viscosity (mPa s) = 0.89011 @@ -227,7 +228,7 @@ X 1.000e-03 mol pH = 7.000 Charge balance pe = 13.622 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 140 + Specific Conductance (µS/cm, 25°C) = 141 Density (g/cm³) = 0.99711 Volume (L) = 1.00301 Viscosity (mPa s) = 0.89011 @@ -255,7 +256,7 @@ H(0) 0.000e+00 K 1.000e-03 K+ 1.000e-03 9.649e-04 -3.000 -3.016 -0.016 9.01 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -62.898 -62.914 -0.016 17.96 + NH4+ 0.000e+00 0.000e+00 -62.898 -62.914 -0.016 17.89 NH3 0.000e+00 0.000e+00 -65.158 -65.158 0.000 24.42 N(0) 1.351e-19 N2 6.757e-20 6.759e-20 -19.170 -19.170 0.000 29.29 diff --git a/ex13b.out b/ex13b.out index d3c45b2c..229de687 100644 --- a/ex13b.out +++ b/ex13b.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + CALCULATE_VALUES RATES END ------------------------------------ @@ -141,7 +142,7 @@ Initial solution 1. pH = 7.000 pe = 13.622 Equilibrium with O2(g) - Specific Conductance (µS/cm, 25°C) = 140 + Specific Conductance (µS/cm, 25°C) = 141 Density (g/cm³) = 0.99711 Volume (L) = 1.00301 Viscosity (mPa s) = 0.89011 @@ -227,7 +228,7 @@ X 1.000e-03 mol pH = 7.000 Charge balance pe = 13.622 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 140 + Specific Conductance (µS/cm, 25°C) = 141 Density (g/cm³) = 0.99711 Volume (L) = 1.00301 Viscosity (mPa s) = 0.89011 @@ -255,7 +256,7 @@ H(0) 0.000e+00 K 1.000e-03 K+ 1.000e-03 9.649e-04 -3.000 -3.016 -0.016 9.01 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -62.898 -62.914 -0.016 17.96 + NH4+ 0.000e+00 0.000e+00 -62.898 -62.914 -0.016 17.89 NH3 0.000e+00 0.000e+00 -65.158 -65.158 0.000 24.42 N(0) 1.351e-19 N2 6.757e-20 6.759e-20 -19.170 -19.170 0.000 29.29 diff --git a/ex13c.out b/ex13c.out index 5b39c4a4..5bbf0c8a 100644 --- a/ex13c.out +++ b/ex13c.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + CALCULATE_VALUES RATES END ------------------------------------ @@ -141,7 +142,7 @@ Initial solution 1. pH = 7.000 pe = 13.622 Equilibrium with O2(g) - Specific Conductance (µS/cm, 25°C) = 140 + Specific Conductance (µS/cm, 25°C) = 141 Density (g/cm³) = 0.99711 Volume (L) = 1.00301 Viscosity (mPa s) = 0.89011 @@ -227,7 +228,7 @@ X 1.000e-03 mol pH = 7.000 Charge balance pe = 13.622 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 140 + Specific Conductance (µS/cm, 25°C) = 141 Density (g/cm³) = 0.99711 Volume (L) = 1.00301 Viscosity (mPa s) = 0.89011 @@ -255,7 +256,7 @@ H(0) 0.000e+00 K 1.000e-03 K+ 1.000e-03 9.649e-04 -3.000 -3.016 -0.016 9.01 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -62.898 -62.914 -0.016 17.96 + NH4+ 0.000e+00 0.000e+00 -62.898 -62.914 -0.016 17.89 NH3 0.000e+00 0.000e+00 -65.158 -65.158 0.000 24.42 N(0) 1.351e-19 N2 6.757e-20 6.759e-20 -19.170 -19.170 0.000 29.29 diff --git a/ex14.out b/ex14.out index f83c0560..28655381 100644 --- a/ex14.out +++ b/ex14.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + CALCULATE_VALUES RATES END ------------------------------------ @@ -87,19 +88,19 @@ Initial solution 1. Brine pH = 5.713 pe = 14.962 Equilibrium with O2(g) - Specific Conductance (µS/cm, 25°C) = 264118 - Density (g/cm³) = 1.21637 - Volume (L) = 1.13692 - Viscosity (mPa s) = 1.95530 + Specific Conductance (µS/cm, 25°C) = 243034 + Density (g/cm³) = 1.21640 + Volume (L) = 1.13690 + Viscosity (mPa s) = 1.95436 Activity of water = 0.785 Ionic strength (mol/kgw) = 7.269e+00 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 3.725e-03 + Total alkalinity (eq/kg) = 3.726e-03 Total CO2 (mol/kg) = 3.960e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = -2.164e-15 + Electrical balance (eq) = -2.013e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 12 + Iterations = 11 Total H = 1.110162e+02 Total O = 5.553686e+01 @@ -113,83 +114,83 @@ Initial solution 1. Brine H2O 5.551e+01 7.846e-01 1.744 -0.105 0.000 18.07 As 2.500e-08 H2AsO4- 2.498e-08 1.374e-07 -7.602 -6.862 0.740 (0) - H3AsO4 8.668e-12 4.623e-11 -11.062 -10.335 0.727 (0) - HAsO4-2 8.510e-12 7.778e-09 -11.070 -8.109 2.961 (0) - AsO4-3 2.765e-21 1.270e-14 -20.558 -13.896 6.662 (0) + H3AsO4 8.668e-12 4.622e-11 -11.062 -10.335 0.727 (0) + HAsO4-2 8.511e-12 7.778e-09 -11.070 -8.109 2.961 (0) + AsO4-3 2.766e-21 1.270e-14 -20.558 -13.896 6.662 (0) C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -144.672 -143.945 0.727 35.46 + CH4 0.000e+00 0.000e+00 -144.675 -143.948 0.727 35.46 C(4) 3.960e-03 - CaHCO3+ 1.913e-03 1.159e-03 -2.718 -2.936 -0.218 10.08 - MgHCO3+ 1.571e-03 7.824e-04 -2.804 -3.107 -0.303 6.01 - CO2 2.346e-04 7.083e-04 -3.630 -3.150 0.480 34.43 - HCO3- 2.207e-04 1.276e-04 -3.656 -3.894 -0.238 36.42 - NaHCO3 1.947e-05 9.149e-04 -4.711 -3.039 1.672 28.00 - CaCO3 6.929e-07 3.695e-06 -6.159 -5.432 0.727 -14.60 - MgCO3 2.898e-07 1.545e-06 -6.538 -5.811 0.727 -17.09 - CO3-2 2.763e-08 3.091e-09 -7.559 -8.510 -0.951 9.50 - (CO2)2 1.727e-09 9.208e-09 -8.763 -8.036 0.727 68.87 + CaHCO3+ 1.902e-03 1.152e-03 -2.721 -2.939 -0.218 10.08 + MgHCO3+ 1.562e-03 7.781e-04 -2.806 -3.109 -0.303 6.01 + CO2 2.334e-04 7.045e-04 -3.632 -3.152 0.480 34.43 + HCO3- 2.195e-04 1.270e-04 -3.659 -3.896 -0.238 37.32 + NaHCO3 4.169e-05 1.186e-03 -4.380 -2.926 1.454 31.73 + CaCO3 6.889e-07 3.674e-06 -6.162 -5.435 0.727 -14.60 + MgCO3 2.882e-07 1.537e-06 -6.540 -5.813 0.727 -17.09 + CO3-2 2.748e-08 3.075e-09 -7.561 -8.512 -0.951 10.19 + (CO2)2 1.709e-09 9.111e-09 -8.767 -8.040 0.727 68.87 Ca 4.655e-01 - Ca+2 4.635e-01 7.115e-01 -0.334 -0.148 0.186 -13.79 - CaHCO3+ 1.913e-03 1.159e-03 -2.718 -2.936 -0.218 10.08 - CaSO4 1.076e-04 5.737e-04 -3.968 -3.241 0.727 7.50 - CaCO3 6.929e-07 3.695e-06 -6.159 -5.432 0.727 -14.60 - CaOH+ 8.702e-09 4.785e-08 -8.060 -7.320 0.740 (0) - CaHSO4+ 1.328e-09 7.302e-09 -8.877 -8.137 0.740 (0) + Ca+2 4.633e-01 7.112e-01 -0.334 -0.148 0.186 -13.79 + CaHCO3+ 1.902e-03 1.152e-03 -2.721 -2.939 -0.218 10.08 + CaSO4 3.220e-04 1.717e-03 -3.492 -2.765 0.727 7.50 + CaCO3 6.889e-07 3.674e-06 -6.162 -5.435 0.727 -14.60 + CaOH+ 8.698e-09 4.782e-08 -8.061 -7.320 0.740 (0) + CaHSO4+ 3.975e-09 2.186e-08 -8.401 -7.660 0.740 (0) Cl 6.642e+00 Cl- 6.642e+00 4.165e+00 0.822 0.620 -0.203 20.27 - HCl 2.238e-09 2.778e-06 -8.650 -5.556 3.094 (0) + HCl 2.239e-09 2.778e-06 -8.650 -5.556 3.094 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -45.226 -44.499 0.727 28.61 Mg 1.609e-01 - Mg+2 1.593e-01 5.239e-01 -0.798 -0.281 0.517 -17.22 - MgHCO3+ 1.571e-03 7.824e-04 -2.804 -3.107 -0.303 6.01 - MgSO4 2.187e-05 6.220e-04 -4.660 -3.206 1.454 -0.83 - MgOH+ 1.231e-06 7.707e-07 -5.910 -6.113 -0.204 (0) - MgCO3 2.898e-07 1.545e-06 -6.538 -5.811 0.727 -17.09 - Mg(SO4)2-2 2.456e-08 9.289e-09 -7.610 -8.032 -0.422 60.47 + Mg+2 1.593e-01 5.238e-01 -0.798 -0.281 0.517 -17.22 + MgHCO3+ 1.562e-03 7.781e-04 -2.806 -3.109 -0.303 6.01 + MgSO4 6.548e-05 1.862e-03 -4.184 -2.730 1.454 -7.92 + MgOH+ 1.231e-06 7.705e-07 -5.910 -6.113 -0.204 (0) + MgCO3 2.882e-07 1.537e-06 -6.540 -5.813 0.727 -17.09 + Mg(SO4)2-2 2.202e-07 8.328e-08 -6.657 -7.079 -0.422 54.97 Na 5.402e+00 - Na+ 5.397e+00 1.072e+01 0.732 1.030 0.298 1.52 - NaSO4- 4.504e-03 1.899e-04 -2.346 -3.722 -1.375 44.00 - NaHCO3 1.947e-05 9.149e-04 -4.711 -3.039 1.672 28.00 + Na+ 5.398e+00 1.072e+01 0.732 1.030 0.298 1.52 + NaSO4- 4.064e-03 2.370e-03 -2.391 -2.625 -0.234 35.76 + NaHCO3 4.169e-05 1.186e-03 -4.380 -2.926 1.454 31.73 NaOH 8.245e-19 4.397e-18 -18.084 -17.357 0.727 (0) -O(0) 9.586e-05 +O(0) 9.587e-05 O2 4.793e-05 2.556e-04 -4.319 -3.592 0.727 30.40 S(-2) 0.000e+00 - H2S 0.000e+00 0.000e+00 -141.880 -141.153 0.727 36.27 - HS- 0.000e+00 0.000e+00 -142.046 -142.382 -0.335 23.12 - S-2 0.000e+00 0.000e+00 -148.573 -149.587 -1.013 (0) - (H2S)2 0.000e+00 0.000e+00 -284.311 -283.584 0.727 30.09 + H2S 0.000e+00 0.000e+00 -141.404 -140.677 0.727 36.27 + HS- 0.000e+00 0.000e+00 -141.570 -141.905 -0.335 23.12 + S-2 0.000e+00 0.000e+00 -148.097 -149.110 -1.013 (0) + (H2S)2 0.000e+00 0.000e+00 -283.358 -282.631 0.727 30.09 S(6) 4.725e-03 - NaSO4- 4.504e-03 1.899e-04 -2.346 -3.722 -1.375 44.00 - CaSO4 1.076e-04 5.737e-04 -3.968 -3.241 0.727 7.50 - SO4-2 9.132e-05 4.534e-06 -4.039 -5.344 -1.304 24.85 - MgSO4 2.187e-05 6.220e-04 -4.660 -3.206 1.454 -0.83 - Mg(SO4)2-2 2.456e-08 9.289e-09 -7.610 -8.032 -0.422 60.47 - CaHSO4+ 1.328e-09 7.302e-09 -8.877 -8.137 0.740 (0) - HSO4- 1.553e-10 8.536e-10 -9.809 -9.069 0.740 42.16 + NaSO4- 4.064e-03 2.370e-03 -2.391 -2.625 -0.234 35.76 + CaSO4 3.220e-04 1.717e-03 -3.492 -2.765 0.727 7.50 + SO4-2 2.735e-04 1.358e-05 -3.563 -4.867 -1.304 85.83 + MgSO4 6.548e-05 1.862e-03 -4.184 -2.730 1.454 -7.92 + Mg(SO4)2-2 2.202e-07 8.328e-08 -6.657 -7.079 -0.422 54.97 + CaHSO4+ 3.975e-09 2.186e-08 -8.401 -7.660 0.740 (0) + HSO4- 4.649e-10 2.556e-09 -9.333 -8.592 0.740 42.16 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -1.21 -5.49 -4.28 CaSO4 + Anhydrite -0.74 -5.02 -4.28 CaSO4 Aragonite -0.32 -8.66 -8.34 CaCO3 Calcite -0.18 -8.66 -8.48 CaCO3 - CH4(g) -141.14 -143.95 -2.80 CH4 + CH4(g) -141.15 -143.95 -2.80 CH4 CO2(g) -1.68 -3.15 -1.47 CO2 - Dolomite -0.36 -17.45 -17.08 CaMg(CO3)2 - Epsomite -4.62 -6.36 -1.74 MgSO4:7H2O - Gypsum -1.12 -5.70 -4.58 CaSO4:2H2O + Dolomite -0.37 -17.45 -17.08 CaMg(CO3)2 + Epsomite -4.15 -5.89 -1.74 MgSO4:7H2O + Gypsum -0.64 -5.23 -4.58 CaSO4:2H2O H2(g) -41.40 -44.50 -3.10 H2 H2O(g) -1.61 -0.11 1.50 H2O - H2S(g) -140.16 -148.09 -7.94 H2S + H2S(g) -139.68 -147.62 -7.94 H2S Halite 0.08 1.65 1.57 NaCl - Hexahydrite -4.69 -6.26 -1.57 MgSO4:6H2O - Kieserite -4.57 -5.73 -1.16 MgSO4:H2O - Mirabilite -3.10 -4.34 -1.24 Na2SO4:10H2O + Hexahydrite -4.21 -5.78 -1.57 MgSO4:6H2O + Kieserite -4.09 -5.25 -1.16 MgSO4:H2O + Mirabilite -2.62 -3.86 -1.24 Na2SO4:10H2O O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000 - Sulfur -104.69 -99.80 4.88 S - Thenardite -2.98 -3.28 -0.30 Na2SO4 + Sulfur -104.21 -99.33 4.88 S + Thenardite -2.51 -2.81 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -229,15 +230,15 @@ Using pure phase assemblage 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Calcite 0.00 -8.48 -8.48 1.000e-01 1.049e-01 4.907e-03 -Dolomite 0.00 -17.08 -17.08 1.600e+00 1.598e+00 -2.489e-03 +Calcite 0.00 -8.48 -8.48 1.000e-01 1.049e-01 4.857e-03 +Dolomite 0.00 -17.08 -17.08 1.600e+00 1.598e+00 -2.464e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles As 2.500e-08 2.500e-08 - C 4.031e-03 4.031e-03 + C 4.032e-03 4.032e-03 Ca 4.631e-01 4.631e-01 Cl 6.642e+00 6.642e+00 Mg 1.634e-01 1.634e-01 @@ -246,111 +247,111 @@ Dolomite 0.00 -17.08 -17.08 1.600e+00 1.598e+00 -2.489e-03 ----------------------------Description of solution---------------------------- - pH = 5.879 Charge balance - pe = 14.796 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 264107 - Density (g/cm³) = 1.21635 - Volume (L) = 1.13691 - Viscosity (mPa s) = 1.95565 + pH = 5.881 Charge balance + pe = 14.794 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 242989 + Density (g/cm³) = 1.21638 + Volume (L) = 1.13689 + Viscosity (mPa s) = 1.95471 Activity of water = 0.785 Ionic strength (mol/kgw) = 7.269e+00 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 3.867e-03 - Total CO2 (mol/kg) = 4.031e-03 + Total alkalinity (eq/kg) = 3.869e-03 + Total CO2 (mol/kg) = 4.032e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 7.756e-13 + Electrical balance (eq) = 8.401e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110162e+02 - Total O = 5.553707e+01 + Total O = 5.553708e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.882e-06 1.322e-06 -5.725 -5.879 -0.153 0.00 - OH- 1.300e-08 6.005e-09 -7.886 -8.221 -0.335 6.33 + H+ 1.872e-06 1.315e-06 -5.728 -5.881 -0.153 0.00 + OH- 1.307e-08 6.038e-09 -7.884 -8.219 -0.335 6.33 H2O 5.551e+01 7.846e-01 1.744 -0.105 0.000 18.07 As 2.500e-08 H2AsO4- 2.498e-08 1.374e-07 -7.602 -6.862 0.740 (0) - HAsO4-2 1.246e-11 1.139e-08 -10.904 -7.944 2.961 (0) - H3AsO4 5.919e-12 3.157e-11 -11.228 -10.501 0.727 (0) - AsO4-3 5.930e-21 2.724e-14 -20.227 -13.565 6.662 (0) + HAsO4-2 1.253e-11 1.145e-08 -10.902 -7.941 2.961 (0) + H3AsO4 5.887e-12 3.139e-11 -11.230 -10.503 0.727 (0) + AsO4-3 5.997e-21 2.753e-14 -20.222 -13.560 6.662 (0) C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -144.824 -144.097 0.727 35.46 -C(4) 4.031e-03 - CaHCO3+ 1.967e-03 1.191e-03 -2.706 -2.924 -0.218 10.08 - MgHCO3+ 1.648e-03 8.210e-04 -2.783 -3.086 -0.303 6.01 - HCO3- 2.281e-04 1.319e-04 -3.642 -3.880 -0.238 36.42 - CO2 1.656e-04 5.000e-04 -3.781 -3.301 0.480 34.43 - NaHCO3 2.013e-05 9.457e-04 -4.696 -3.024 1.672 28.00 + CH4 0.000e+00 0.000e+00 -144.828 -144.101 0.727 35.46 +C(4) 4.032e-03 + CaHCO3+ 1.956e-03 1.185e-03 -2.709 -2.926 -0.218 10.08 + MgHCO3+ 1.640e-03 8.166e-04 -2.785 -3.088 -0.303 6.01 + HCO3- 2.270e-04 1.313e-04 -3.644 -3.882 -0.238 37.31 + CO2 1.639e-04 4.948e-04 -3.785 -3.306 0.480 34.43 + NaHCO3 4.311e-05 1.226e-03 -4.365 -2.912 1.454 31.73 CaCO3 1.043e-06 5.563e-06 -5.982 -5.255 0.727 -14.60 MgCO3 4.453e-07 2.375e-06 -6.351 -5.624 0.727 -17.09 - CO3-2 4.182e-08 4.679e-09 -7.379 -8.330 -0.951 9.50 - (CO2)2 8.605e-10 4.588e-09 -9.065 -8.338 0.727 68.87 + CO3-2 4.184e-08 4.681e-09 -7.378 -8.330 -0.951 10.19 + (CO2)2 8.427e-10 4.494e-09 -9.074 -8.347 0.727 68.87 Ca 4.631e-01 - Ca+2 4.610e-01 7.077e-01 -0.336 -0.150 0.186 -13.79 - CaHCO3+ 1.967e-03 1.191e-03 -2.706 -2.924 -0.218 10.08 - CaSO4 1.070e-04 5.707e-04 -3.971 -3.244 0.727 7.50 + Ca+2 4.608e-01 7.074e-01 -0.336 -0.150 0.186 -13.79 + CaHCO3+ 1.956e-03 1.185e-03 -2.709 -2.926 -0.218 10.08 + CaSO4 3.204e-04 1.708e-03 -3.494 -2.767 0.727 7.50 CaCO3 1.043e-06 5.563e-06 -5.982 -5.255 0.727 -14.60 - CaOH+ 1.267e-08 6.969e-08 -7.897 -7.157 0.740 (0) - CaHSO4+ 9.022e-10 4.961e-09 -9.045 -8.304 0.740 (0) + CaOH+ 1.274e-08 7.004e-08 -7.895 -7.155 0.740 (0) + CaHSO4+ 2.686e-09 1.477e-08 -8.571 -7.831 0.740 (0) Cl 6.642e+00 Cl- 6.642e+00 4.165e+00 0.822 0.620 -0.203 20.27 - HCl 1.529e-09 1.897e-06 -8.816 -5.722 3.094 (0) + HCl 1.521e-09 1.887e-06 -8.818 -5.724 3.094 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -45.226 -44.499 0.727 28.61 Mg 1.634e-01 - Mg+2 1.617e-01 5.318e-01 -0.791 -0.274 0.517 -17.22 - MgHCO3+ 1.648e-03 8.210e-04 -2.783 -3.086 -0.303 6.01 - MgSO4 2.220e-05 6.314e-04 -4.654 -3.200 1.454 -0.83 - MgOH+ 1.831e-06 1.146e-06 -5.737 -5.941 -0.204 (0) + Mg+2 1.617e-01 5.316e-01 -0.791 -0.274 0.517 -17.22 + MgHCO3+ 1.640e-03 8.166e-04 -2.785 -3.088 -0.303 6.01 + MgSO4 6.648e-05 1.890e-03 -4.177 -2.723 1.454 -7.92 + MgOH+ 1.840e-06 1.151e-06 -5.735 -5.939 -0.204 (0) MgCO3 4.453e-07 2.375e-06 -6.351 -5.624 0.727 -17.09 - Mg(SO4)2-2 2.494e-08 9.431e-09 -7.603 -8.025 -0.422 60.47 + Mg(SO4)2-2 2.236e-07 8.455e-08 -6.651 -7.073 -0.422 54.97 Na 5.402e+00 - Na+ 5.397e+00 1.072e+01 0.732 1.030 0.298 1.52 - NaSO4- 4.504e-03 1.899e-04 -2.346 -3.721 -1.375 43.99 - NaHCO3 2.013e-05 9.457e-04 -4.696 -3.024 1.672 28.00 - NaOH 1.207e-18 6.438e-18 -17.918 -17.191 0.727 (0) -O(0) 9.586e-05 + Na+ 5.398e+00 1.072e+01 0.732 1.030 0.298 1.52 + NaSO4- 4.064e-03 2.370e-03 -2.391 -2.625 -0.234 35.76 + NaHCO3 4.311e-05 1.226e-03 -4.365 -2.912 1.454 31.73 + NaOH 1.214e-18 6.474e-18 -17.916 -17.189 0.727 (0) +O(0) 9.587e-05 O2 4.793e-05 2.556e-04 -4.319 -3.592 0.727 30.40 S(-2) 0.000e+00 - H2S 0.000e+00 0.000e+00 -142.211 -141.484 0.727 36.27 - HS- 0.000e+00 0.000e+00 -142.212 -142.547 -0.335 23.12 - S-2 0.000e+00 0.000e+00 -148.573 -149.587 -1.013 (0) - (H2S)2 0.000e+00 0.000e+00 -284.974 -284.247 0.727 30.09 + HS- 0.000e+00 0.000e+00 -141.738 -142.073 -0.335 23.12 + H2S 0.000e+00 0.000e+00 -141.739 -141.013 0.727 36.27 + S-2 0.000e+00 0.000e+00 -148.097 -149.110 -1.013 (0) + (H2S)2 0.000e+00 0.000e+00 -284.030 -283.303 0.727 30.09 S(6) 4.725e-03 - NaSO4- 4.504e-03 1.899e-04 -2.346 -3.721 -1.375 43.99 - CaSO4 1.070e-04 5.707e-04 -3.971 -3.244 0.727 7.50 - SO4-2 9.132e-05 4.534e-06 -4.039 -5.343 -1.304 24.85 - MgSO4 2.220e-05 6.314e-04 -4.654 -3.200 1.454 -0.83 - Mg(SO4)2-2 2.494e-08 9.431e-09 -7.603 -8.025 -0.422 60.47 - CaHSO4+ 9.022e-10 4.961e-09 -9.045 -8.304 0.740 (0) - HSO4- 1.060e-10 5.830e-10 -9.975 -9.234 0.740 42.16 + NaSO4- 4.064e-03 2.370e-03 -2.391 -2.625 -0.234 35.76 + CaSO4 3.204e-04 1.708e-03 -3.494 -2.767 0.727 7.50 + SO4-2 2.735e-04 1.358e-05 -3.563 -4.867 -1.304 85.83 + MgSO4 6.648e-05 1.890e-03 -4.177 -2.723 1.454 -7.92 + Mg(SO4)2-2 2.236e-07 8.455e-08 -6.651 -7.073 -0.422 54.97 + CaHSO4+ 2.686e-09 1.477e-08 -8.571 -7.831 0.740 (0) + HSO4- 3.158e-10 1.737e-09 -9.501 -8.760 0.740 42.16 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -1.22 -5.49 -4.28 CaSO4 + Anhydrite -0.74 -5.02 -4.28 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -141.29 -144.10 -2.80 CH4 - CO2(g) -1.83 -3.30 -1.47 CO2 + CH4(g) -141.30 -144.10 -2.80 CH4 + CO2(g) -1.84 -3.31 -1.47 CO2 Dolomite 0.00 -17.08 -17.08 CaMg(CO3)2 - Epsomite -4.62 -6.36 -1.74 MgSO4:7H2O - Gypsum -1.12 -5.70 -4.58 CaSO4:2H2O + Epsomite -4.14 -5.88 -1.74 MgSO4:7H2O + Gypsum -0.65 -5.23 -4.58 CaSO4:2H2O H2(g) -41.40 -44.50 -3.10 H2 H2O(g) -1.61 -0.11 1.50 H2O - H2S(g) -140.49 -148.43 -7.94 H2S + H2S(g) -140.02 -147.95 -7.94 H2S Halite 0.08 1.65 1.57 NaCl - Hexahydrite -4.68 -6.25 -1.57 MgSO4:6H2O - Kieserite -4.56 -5.72 -1.16 MgSO4:H2O - Mirabilite -3.10 -4.34 -1.24 Na2SO4:10H2O + Hexahydrite -4.21 -5.77 -1.57 MgSO4:6H2O + Kieserite -4.09 -5.25 -1.16 MgSO4:H2O + Mirabilite -2.62 -3.86 -1.24 Na2SO4:10H2O O2(g) -0.70 -3.59 -2.89 O2 - Sulfur -105.02 -100.14 4.88 S - Thenardite -2.98 -3.28 -0.30 Na2SO4 + Sulfur -104.55 -99.66 4.88 S + Thenardite -2.51 -2.81 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -384,8 +385,8 @@ X 1.000e+00 mol Species Moles alents Fraction Gamma NaX 9.010e-01 9.010e-01 9.010e-01 0.298 - CaX2 4.053e-02 8.105e-02 8.105e-02 0.186 - MgX2 8.970e-03 1.794e-02 1.794e-02 0.517 + CaX2 4.051e-02 8.102e-02 8.102e-02 0.186 + MgX2 8.966e-03 1.793e-02 1.793e-02 0.517 ------------------------------------------------------ Beginning of initial surface-composition calculations. @@ -396,11 +397,11 @@ Surface 1. Diffuse Double Layer Surface-Complexation Model Surf - 5.179e-02 Surface charge, eq - 2.776e-01 sigma, C/m² - 4.071e-02 psi, V - -1.584e+00 -F*psi/RT - 2.051e-01 exp(-F*psi/RT) + 5.172e-02 Surface charge, eq + 2.772e-01 sigma, C/m² + 4.066e-02 psi, V + -1.583e+00 -F*psi/RT + 2.054e-01 exp(-F*psi/RT) 6.000e+02 specific area, m²/g 1.800e+04 m² for 3.000e+01 g @@ -410,12 +411,12 @@ Surf Mole Log Species Moles Fraction Molality Molality - SurfOH2+ 5.673e-02 0.810 5.673e-02 -1.246 - SurfOH 1.073e-02 0.153 1.073e-02 -1.969 - SurfOHAsO4-3 1.289e-03 0.018 1.289e-03 -2.890 - SurfHAsO4- 1.028e-03 0.015 1.028e-03 -2.988 - SurfH2AsO4 1.759e-04 0.003 1.759e-04 -3.755 - SurfO- 4.649e-05 0.001 4.649e-05 -4.333 + SurfOH2+ 5.669e-02 0.810 5.669e-02 -1.246 + SurfOH 1.076e-02 0.154 1.076e-02 -1.968 + SurfOHAsO4-3 1.299e-03 0.019 1.299e-03 -2.886 + SurfHAsO4- 1.029e-03 0.015 1.029e-03 -2.988 + SurfH2AsO4 1.754e-04 0.003 1.754e-04 -3.756 + SurfO- 4.679e-05 0.001 4.679e-05 -4.330 ------------------ End of simulation. @@ -463,17 +464,17 @@ Initial solution 0. 20 x precipitation pH = 4.600 pe = 16.022 Equilibrium with O2(g) - Specific Conductance (µS/cm, 25°C) = 82 + Specific Conductance (µS/cm, 25°C) = 81 Density (g/cm³) = 0.99708 Volume (L) = 1.00298 - Viscosity (mPa s) = 0.89051 + Viscosity (mPa s) = 0.89050 Activity of water = 1.000 - Ionic strength (mol/kgw) = 1.037e-03 + Ionic strength (mol/kgw) = 1.036e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = -2.630e-05 Total CO2 (mol/kg) = 1.096e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = 7.501e-16 + Electrical balance (eq) = 7.480e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 9 Total H = 1.110125e+02 @@ -491,53 +492,53 @@ C(-4) 0.000e+00 CH4 0.000e+00 0.000e+00 -145.553 -145.553 0.000 35.46 C(4) 1.096e-05 CO2 1.076e-05 1.076e-05 -4.968 -4.968 0.000 34.43 - HCO3- 1.975e-07 1.906e-07 -6.704 -6.720 -0.016 24.55 + HCO3- 1.975e-07 1.906e-07 -6.704 -6.720 -0.016 24.58 CaHCO3+ 4.061e-10 3.919e-10 -9.391 -9.407 -0.015 9.67 - MgHCO3+ 6.871e-11 6.627e-11 -10.163 -10.179 -0.016 5.48 - NaHCO3 1.506e-11 1.507e-11 -10.822 -10.822 0.000 28.00 + MgHCO3+ 6.872e-11 6.627e-11 -10.163 -10.179 -0.016 5.48 + NaHCO3 1.957e-11 1.958e-11 -10.708 -10.708 0.000 31.73 (CO2)2 2.126e-12 2.127e-12 -11.672 -11.672 0.000 68.87 - CO3-2 4.106e-13 3.558e-13 -12.387 -12.449 -0.062 -4.07 - CaCO3 9.631e-14 9.633e-14 -13.016 -13.016 0.000 -14.60 + CO3-2 4.105e-13 3.558e-13 -12.387 -12.449 -0.062 -3.93 + CaCO3 9.632e-14 9.634e-14 -13.016 -13.016 0.000 -14.60 MgCO3 1.009e-14 1.009e-14 -13.996 -13.996 0.000 -17.09 Ca 1.916e-04 Ca+2 1.860e-04 1.612e-04 -3.731 -3.793 -0.062 -18.14 - CaSO4 5.640e-06 5.642e-06 -5.249 -5.249 0.000 7.50 - CaHSO4+ 9.659e-10 9.315e-10 -9.015 -9.031 -0.016 (0) + CaSO4 5.634e-06 5.635e-06 -5.249 -5.249 0.000 7.50 + CaHSO4+ 9.648e-10 9.304e-10 -9.016 -9.031 -0.016 (0) CaHCO3+ 4.061e-10 3.919e-10 -9.391 -9.407 -0.015 9.67 CaOH+ 1.104e-12 1.065e-12 -11.957 -11.973 -0.016 (0) - CaCO3 9.631e-14 9.633e-14 -13.016 -13.016 0.000 -14.60 + CaCO3 9.632e-14 9.634e-14 -13.016 -13.016 0.000 -14.60 Cl 1.337e-04 Cl- 1.337e-04 1.289e-04 -3.874 -3.890 -0.016 18.08 HCl 1.114e-09 1.116e-09 -8.953 -8.952 0.000 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.394 -44.394 0.000 28.61 Mg 3.580e-05 - Mg+2 3.426e-05 2.972e-05 -4.465 -4.527 -0.062 -21.82 - MgSO4 1.531e-06 1.532e-06 -5.815 -5.815 0.000 -0.83 - Mg(SO4)2-2 1.143e-09 9.931e-10 -8.942 -9.003 -0.061 34.98 - MgHCO3+ 6.871e-11 6.627e-11 -10.163 -10.179 -0.016 5.48 - MgOH+ 4.450e-12 4.295e-12 -11.352 -11.367 -0.015 (0) + Mg+2 3.427e-05 2.972e-05 -4.465 -4.527 -0.062 -21.82 + MgSO4 1.529e-06 1.530e-06 -5.816 -5.815 0.000 -7.92 + Mg(SO4)2-2 1.140e-09 9.908e-10 -8.943 -9.004 -0.061 -4.49 + MgHCO3+ 6.872e-11 6.627e-11 -10.163 -10.179 -0.016 5.48 + MgOH+ 4.450e-12 4.296e-12 -11.352 -11.367 -0.015 (0) MgCO3 1.009e-14 1.009e-14 -13.996 -13.996 0.000 -17.09 Na 1.227e-04 - Na+ 1.226e-04 1.182e-04 -3.912 -3.927 -0.016 -1.48 - NaSO4- 9.443e-08 9.092e-08 -7.025 -7.041 -0.016 14.54 - NaHCO3 1.506e-11 1.507e-11 -10.822 -10.822 0.000 28.00 - NaOH 4.763e-24 4.764e-24 -23.322 -23.322 0.000 (0) + Na+ 1.223e-04 1.179e-04 -3.913 -3.928 -0.016 -1.48 + NaSO4- 3.912e-07 3.775e-07 -6.408 -6.423 -0.016 -20.88 + NaHCO3 1.957e-11 1.958e-11 -10.708 -10.708 0.000 31.73 + NaOH 4.751e-24 4.753e-24 -23.323 -23.323 0.000 (0) O(0) 5.111e-04 O2 2.555e-04 2.556e-04 -3.593 -3.592 0.000 30.40 S(-2) 0.000e+00 - H2S 0.000e+00 0.000e+00 -137.289 -137.289 0.000 36.27 - HS- 0.000e+00 0.000e+00 -139.615 -139.631 -0.016 20.60 - S-2 0.000e+00 0.000e+00 -147.887 -147.949 -0.062 (0) - (H2S)2 0.000e+00 0.000e+00 -275.857 -275.857 0.000 30.09 + H2S 0.000e+00 0.000e+00 -137.290 -137.290 0.000 36.27 + HS- 0.000e+00 0.000e+00 -139.616 -139.632 -0.016 20.60 + S-2 0.000e+00 0.000e+00 -147.887 -147.950 -0.062 (0) + (H2S)2 0.000e+00 0.000e+00 -275.858 -275.858 0.000 30.09 S(6) 2.351e-04 - SO4-2 2.273e-04 1.969e-04 -3.643 -3.706 -0.062 14.79 - CaSO4 5.640e-06 5.642e-06 -5.249 -5.249 0.000 7.50 - MgSO4 1.531e-06 1.532e-06 -5.815 -5.815 0.000 -0.83 - HSO4- 4.985e-07 4.808e-07 -6.302 -6.318 -0.016 40.28 - NaSO4- 9.443e-08 9.092e-08 -7.025 -7.041 -0.016 14.54 - Mg(SO4)2-2 1.143e-09 9.931e-10 -8.942 -9.003 -0.061 34.98 - CaHSO4+ 9.659e-10 9.315e-10 -9.015 -9.031 -0.016 (0) + SO4-2 2.270e-04 1.966e-04 -3.644 -3.706 -0.062 15.61 + CaSO4 5.634e-06 5.635e-06 -5.249 -5.249 0.000 7.50 + MgSO4 1.529e-06 1.530e-06 -5.816 -5.815 0.000 -7.92 + HSO4- 4.979e-07 4.802e-07 -6.303 -6.319 -0.016 40.28 + NaSO4- 3.912e-07 3.775e-07 -6.408 -6.423 -0.016 -20.88 + Mg(SO4)2-2 1.140e-09 9.908e-10 -8.943 -9.004 -0.061 -4.49 + CaHSO4+ 9.648e-10 9.304e-10 -9.016 -9.031 -0.016 (0) ------------------------------Saturation indices------------------------------- @@ -553,7 +554,7 @@ S(6) 2.351e-04 Gypsum -2.92 -7.50 -4.58 CaSO4:2H2O H2(g) -41.29 -44.39 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -136.29 -144.23 -7.94 H2S + H2S(g) -136.30 -144.23 -7.94 H2S Halite -9.39 -7.82 1.57 NaCl Hexahydrite -6.67 -8.23 -1.57 MgSO4:6H2O Kieserite -7.07 -8.23 -1.16 MgSO4:H2O @@ -587,7 +588,7 @@ Dolomite 0.00 -17.08 -17.08 1.600e+00 1.599e+00 -1.366e-03 Elements Molality Moles - C 7.132e-03 7.132e-03 + C 7.133e-03 7.132e-03 Ca 1.874e-03 1.874e-03 Cl 1.337e-04 1.337e-04 Mg 1.402e-03 1.402e-03 @@ -598,17 +599,17 @@ Dolomite 0.00 -17.08 -17.08 1.600e+00 1.599e+00 -1.366e-03 pH = 7.048 Charge balance pe = 13.574 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 588 + Specific Conductance (µS/cm, 25°C) = 604 Density (g/cm³) = 0.99747 Volume (L) = 1.00305 - Viscosity (mPa s) = 0.89326 + Viscosity (mPa s) = 0.89401 Activity of water = 1.000 Ionic strength (mol/kgw) = 9.649e-03 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 6.070e-03 - Total CO2 (mol/kg) = 7.132e-03 + Total CO2 (mol/kg) = 7.133e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 2.096e-15 + Electrical balance (eq) = 2.082e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 9 Total H = 1.110125e+02 @@ -624,55 +625,55 @@ Dolomite 0.00 -17.08 -17.08 1.600e+00 1.599e+00 -1.366e-03 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 0.000e+00 CH4 0.000e+00 0.000e+00 -143.556 -143.555 0.001 35.46 -C(4) 7.132e-03 - HCO3- 5.895e-03 5.344e-03 -2.229 -2.272 -0.043 24.65 +C(4) 7.133e-03 + HCO3- 5.895e-03 5.344e-03 -2.230 -2.272 -0.043 24.65 CO2 1.074e-03 1.076e-03 -2.969 -2.968 0.001 34.43 CaHCO3+ 8.885e-05 8.066e-05 -4.051 -4.093 -0.042 9.72 MgHCO3+ 6.157e-05 5.559e-05 -4.211 -4.255 -0.044 5.53 CaCO3 5.551e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 - CO3-2 4.146e-06 2.799e-06 -5.382 -5.553 -0.171 -3.79 + CO3-2 4.146e-06 2.799e-06 -5.382 -5.553 -0.171 -3.67 MgCO3 2.369e-06 2.375e-06 -5.625 -5.624 0.001 -17.09 - NaHCO3 3.930e-07 3.951e-07 -6.406 -6.403 0.002 28.00 + NaHCO3 5.111e-07 5.134e-07 -6.291 -6.290 0.002 31.73 (CO2)2 2.120e-08 2.125e-08 -7.674 -7.673 0.001 68.87 Ca 1.874e-03 Ca+2 1.754e-03 1.183e-03 -2.756 -2.927 -0.171 -17.93 CaHCO3+ 8.885e-05 8.066e-05 -4.051 -4.093 -0.042 9.72 - CaSO4 2.555e-05 2.560e-05 -4.593 -4.592 0.001 7.50 + CaSO4 2.553e-05 2.558e-05 -4.593 -4.592 0.001 7.50 CaCO3 5.551e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 CaOH+ 2.427e-09 2.193e-09 -8.615 -8.659 -0.044 (0) - CaHSO4+ 1.668e-11 1.507e-11 -10.778 -10.822 -0.044 (0) + CaHSO4+ 1.667e-11 1.506e-11 -10.778 -10.822 -0.044 (0) Cl 1.337e-04 Cl- 1.337e-04 1.206e-04 -3.874 -3.919 -0.045 18.14 HCl 3.686e-12 3.721e-12 -11.433 -11.429 0.004 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.395 -44.394 0.001 28.61 Mg 1.402e-03 - Mg+2 1.310e-03 8.890e-04 -2.883 -3.051 -0.168 -21.62 + Mg+2 1.310e-03 8.891e-04 -2.883 -3.051 -0.168 -21.62 MgHCO3+ 6.157e-05 5.559e-05 -4.211 -4.255 -0.044 5.53 - MgSO4 2.820e-05 2.833e-05 -4.550 -4.548 0.002 -0.83 + MgSO4 2.818e-05 2.831e-05 -4.550 -4.548 0.002 -7.92 MgCO3 2.369e-06 2.375e-06 -5.625 -5.624 0.001 -17.09 MgOH+ 3.965e-08 3.605e-08 -7.402 -7.443 -0.041 (0) - Mg(SO4)2-2 1.653e-08 1.136e-08 -7.782 -7.945 -0.163 38.49 + Mg(SO4)2-2 1.650e-08 1.134e-08 -7.782 -7.945 -0.163 6.69 Na 1.227e-04 - Na+ 1.222e-04 1.106e-04 -3.913 -3.956 -0.043 -1.38 - NaHCO3 3.930e-07 3.951e-07 -6.406 -6.403 0.002 28.00 - NaSO4- 5.900e-08 5.257e-08 -7.229 -7.279 -0.050 14.84 - NaOH 1.247e-21 1.250e-21 -20.904 -20.903 0.001 (0) + Na+ 1.219e-04 1.103e-04 -3.914 -3.957 -0.043 -1.38 + NaHCO3 5.111e-07 5.134e-07 -6.291 -6.290 0.002 31.73 + NaSO4- 2.408e-07 2.184e-07 -6.618 -6.661 -0.043 -15.24 + NaOH 1.244e-21 1.247e-21 -20.905 -20.904 0.001 (0) O(0) 5.111e-04 O2 2.556e-04 2.561e-04 -3.593 -3.592 0.001 30.40 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -142.245 -142.290 -0.045 20.67 H2S 0.000e+00 0.000e+00 -142.397 -142.396 0.001 36.27 S-2 0.000e+00 0.000e+00 -147.987 -148.160 -0.173 (0) - (H2S)2 0.000e+00 0.000e+00 -286.071 -286.070 0.001 30.09 + (H2S)2 0.000e+00 0.000e+00 -286.072 -286.071 0.001 30.09 S(6) 2.351e-04 - SO4-2 1.812e-04 1.217e-04 -3.742 -3.915 -0.173 15.04 - MgSO4 2.820e-05 2.833e-05 -4.550 -4.548 0.002 -0.83 - CaSO4 2.555e-05 2.560e-05 -4.593 -4.592 0.001 7.50 - NaSO4- 5.900e-08 5.257e-08 -7.229 -7.279 -0.050 14.84 - Mg(SO4)2-2 1.653e-08 1.136e-08 -7.782 -7.945 -0.163 38.49 - HSO4- 1.173e-09 1.059e-09 -8.931 -8.975 -0.044 40.34 - CaHSO4+ 1.668e-11 1.507e-11 -10.778 -10.822 -0.044 (0) + SO4-2 1.811e-04 1.216e-04 -3.742 -3.915 -0.173 17.83 + MgSO4 2.818e-05 2.831e-05 -4.550 -4.548 0.002 -7.92 + CaSO4 2.553e-05 2.558e-05 -4.593 -4.592 0.001 7.50 + NaSO4- 2.408e-07 2.184e-07 -6.618 -6.661 -0.043 -15.24 + Mg(SO4)2-2 1.650e-08 1.134e-08 -7.782 -7.945 -0.163 6.69 + HSO4- 1.172e-09 1.059e-09 -8.931 -8.975 -0.044 40.34 + CaHSO4+ 1.667e-11 1.506e-11 -10.778 -10.822 -0.044 (0) ------------------------------Saturation indices------------------------------- @@ -689,7 +690,7 @@ S(6) 2.351e-04 H2(g) -41.29 -44.39 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O H2S(g) -141.40 -149.34 -7.94 H2S - Halite -9.44 -7.87 1.57 NaCl + Halite -9.45 -7.88 1.57 NaCl Hexahydrite -5.40 -6.97 -1.57 MgSO4:6H2O Kieserite -5.80 -6.97 -1.16 MgSO4:H2O Mirabilite -10.59 -11.83 -1.24 Na2SO4:10H2O @@ -943,18 +944,18 @@ Using pure phase assemblage 1. Pure-phase assemblage after simulation 5. Phase SI log IAP log K(T, P) Initial Final Delta Calcite -0.00 -8.48 -8.48 0.000e+00 0 0.000e+00 -Dolomite 0.00 -17.08 -17.08 1.569e+00 1.569e+00 3.047e-07 +Dolomite 0.00 -17.08 -17.08 1.569e+00 1.569e+00 3.059e-07 ------------------------------Surface composition------------------------------ Diffuse Double Layer Surface-Complexation Model Surf - 2.274e-03 Surface charge, eq - 1.219e-02 sigma, C/m² - 4.736e-02 psi, V - -1.843e+00 -F*psi/RT - 1.583e-01 exp(-F*psi/RT) + 2.271e-03 Surface charge, eq + 1.218e-02 sigma, C/m² + 4.731e-02 psi, V + -1.842e+00 -F*psi/RT + 1.586e-01 exp(-F*psi/RT) 6.000e+02 specific area, m²/g 1.800e+04 m² for 3.000e+01 g @@ -964,12 +965,12 @@ Surf Mole Log Species Moles Fraction Molality Molality - SurfOH 4.969e-02 0.710 4.969e-02 -1.304 - SurfOH2+ 1.374e-02 0.196 1.374e-02 -1.862 - SurfO- 4.117e-03 0.059 4.117e-03 -2.385 - SurfOHAsO4-3 2.448e-03 0.035 2.448e-03 -2.611 - SurfHAsO4- 4.191e-06 0.000 4.191e-06 -5.378 - SurfH2AsO4 3.750e-08 0.000 3.750e-08 -7.426 + SurfOH 4.967e-02 0.710 4.967e-02 -1.304 + SurfOH2+ 1.376e-02 0.197 1.376e-02 -1.861 + SurfO- 4.108e-03 0.059 4.108e-03 -2.386 + SurfOHAsO4-3 2.458e-03 0.035 2.458e-03 -2.609 + SurfHAsO4- 4.223e-06 0.000 4.223e-06 -5.374 + SurfH2AsO4 3.785e-08 0.000 3.785e-08 -7.422 -----------------------------Exchange composition------------------------------ @@ -980,15 +981,15 @@ X 1.000e+00 mol CaX2 3.379e-01 6.758e-01 6.758e-01 -0.171 MgX2 1.616e-01 3.232e-01 3.232e-01 -0.168 - NaX 9.585e-04 9.585e-04 9.585e-04 -0.043 + NaX 9.561e-04 9.561e-04 9.561e-04 -0.043 -----------------------------Solution composition------------------------------ Elements Molality Moles - As 3.503e-10 3.503e-10 - C 7.132e-03 7.131e-03 - Ca 1.862e-03 1.861e-03 + As 3.537e-10 3.537e-10 + C 7.132e-03 7.132e-03 + Ca 1.861e-03 1.861e-03 Cl 1.337e-04 1.337e-04 Mg 1.414e-03 1.414e-03 Na 1.227e-04 1.227e-04 @@ -998,17 +999,17 @@ X 1.000e+00 mol pH = 7.048 Charge balance pe = 13.574 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 588 + Specific Conductance (µS/cm, 25°C) = 603 Density (g/cm³) = 0.99747 Volume (L) = 1.00305 - Viscosity (mPa s) = 0.89326 + Viscosity (mPa s) = 0.89401 Activity of water = 1.000 Ionic strength (mol/kgw) = 9.647e-03 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 6.069e-03 Total CO2 (mol/kg) = 7.132e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.593e-09 + Electrical balance (eq) = 5.623e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 13 Total H = 1.110125e+02 @@ -1022,62 +1023,62 @@ X 1.000e+00 mol OH- 1.253e-07 1.129e-07 -6.902 -6.947 -0.045 -4.04 H+ 9.797e-08 8.960e-08 -7.009 -7.048 -0.039 0.00 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 -As 3.503e-10 - HAsO4-2 2.186e-10 1.456e-10 -9.660 -9.837 -0.177 (0) - H2AsO4- 1.317e-10 1.190e-10 -9.880 -9.925 -0.044 (0) - AsO4-3 1.282e-14 5.138e-15 -13.892 -14.289 -0.397 (0) - H3AsO4 1.848e-15 1.852e-15 -14.733 -14.732 0.001 (0) +As 3.537e-10 + HAsO4-2 2.207e-10 1.470e-10 -9.656 -9.833 -0.177 (0) + H2AsO4- 1.330e-10 1.201e-10 -9.876 -9.920 -0.044 (0) + AsO4-3 1.295e-14 5.188e-15 -13.888 -14.285 -0.397 (0) + H3AsO4 1.866e-15 1.870e-15 -14.729 -14.728 0.001 (0) C(-4) 0.000e+00 CH4 0.000e+00 0.000e+00 -143.556 -143.555 0.001 35.46 C(4) 7.132e-03 HCO3- 5.894e-03 5.343e-03 -2.230 -2.272 -0.043 24.65 CO2 1.075e-03 1.076e-03 -2.969 -2.968 0.001 34.43 CaHCO3+ 8.825e-05 8.012e-05 -4.054 -4.096 -0.042 9.72 - MgHCO3+ 6.207e-05 5.604e-05 -4.207 -4.251 -0.044 5.53 + MgHCO3+ 6.207e-05 5.605e-05 -4.207 -4.251 -0.044 5.53 CaCO3 5.510e-06 5.522e-06 -5.259 -5.258 0.001 -14.60 - CO3-2 4.143e-06 2.797e-06 -5.383 -5.553 -0.171 -3.79 + CO3-2 4.142e-06 2.796e-06 -5.383 -5.553 -0.171 -3.67 MgCO3 2.387e-06 2.392e-06 -5.622 -5.621 0.001 -17.09 - NaHCO3 3.930e-07 3.951e-07 -6.406 -6.403 0.002 28.00 + NaHCO3 5.111e-07 5.134e-07 -6.291 -6.290 0.002 31.73 (CO2)2 2.122e-08 2.127e-08 -7.673 -7.672 0.001 68.87 -Ca 1.862e-03 +Ca 1.861e-03 Ca+2 1.742e-03 1.175e-03 -2.759 -2.930 -0.171 -17.93 CaHCO3+ 8.825e-05 8.012e-05 -4.054 -4.096 -0.042 9.72 - CaSO4 2.537e-05 2.543e-05 -4.596 -4.595 0.001 7.50 + CaSO4 2.535e-05 2.541e-05 -4.596 -4.595 0.001 7.50 CaCO3 5.510e-06 5.522e-06 -5.259 -5.258 0.001 -14.60 CaOH+ 2.410e-09 2.177e-09 -8.618 -8.662 -0.044 (0) - CaHSO4+ 1.658e-11 1.498e-11 -10.780 -10.825 -0.044 (0) + CaHSO4+ 1.657e-11 1.496e-11 -10.781 -10.825 -0.044 (0) Cl 1.337e-04 Cl- 1.337e-04 1.206e-04 -3.874 -3.919 -0.045 18.14 - HCl 3.688e-12 3.723e-12 -11.433 -11.429 0.004 (0) + HCl 3.688e-12 3.724e-12 -11.433 -11.429 0.004 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.395 -44.394 0.001 28.61 Mg 1.414e-03 Mg+2 1.321e-03 8.965e-04 -2.879 -3.047 -0.168 -21.62 - MgHCO3+ 6.207e-05 5.604e-05 -4.207 -4.251 -0.044 5.53 - MgSO4 2.843e-05 2.856e-05 -4.546 -4.544 0.002 -0.83 + MgHCO3+ 6.207e-05 5.605e-05 -4.207 -4.251 -0.044 5.53 + MgSO4 2.841e-05 2.854e-05 -4.547 -4.545 0.002 -7.92 MgCO3 2.387e-06 2.392e-06 -5.622 -5.621 0.001 -17.09 MgOH+ 3.996e-08 3.632e-08 -7.398 -7.440 -0.041 (0) - Mg(SO4)2-2 1.666e-08 1.144e-08 -7.778 -7.941 -0.163 38.49 + Mg(SO4)2-2 1.663e-08 1.143e-08 -7.779 -7.942 -0.163 6.69 Na 1.227e-04 - Na+ 1.222e-04 1.106e-04 -3.913 -3.956 -0.043 -1.38 - NaHCO3 3.930e-07 3.951e-07 -6.406 -6.403 0.002 28.00 - NaSO4- 5.899e-08 5.256e-08 -7.229 -7.279 -0.050 14.84 - NaOH 1.246e-21 1.249e-21 -20.904 -20.903 0.001 (0) + Na+ 1.219e-04 1.103e-04 -3.914 -3.957 -0.043 -1.38 + NaHCO3 5.111e-07 5.134e-07 -6.291 -6.290 0.002 31.73 + NaSO4- 2.408e-07 2.183e-07 -6.618 -6.661 -0.043 -15.24 + NaOH 1.243e-21 1.246e-21 -20.905 -20.904 0.001 (0) O(0) 5.111e-04 O2 2.556e-04 2.561e-04 -3.593 -3.592 0.001 30.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -142.244 -142.289 -0.045 20.67 - H2S 0.000e+00 0.000e+00 -142.396 -142.395 0.001 36.27 - S-2 0.000e+00 0.000e+00 -147.987 -148.160 -0.173 (0) - (H2S)2 0.000e+00 0.000e+00 -286.070 -286.069 0.001 30.09 + HS- 0.000e+00 0.000e+00 -142.245 -142.290 -0.045 20.67 + H2S 0.000e+00 0.000e+00 -142.397 -142.396 0.001 36.27 + S-2 0.000e+00 0.000e+00 -147.988 -148.160 -0.173 (0) + (H2S)2 0.000e+00 0.000e+00 -286.071 -286.070 0.001 30.09 S(6) 2.351e-04 - SO4-2 1.812e-04 1.217e-04 -3.742 -3.915 -0.173 15.04 - MgSO4 2.843e-05 2.856e-05 -4.546 -4.544 0.002 -0.83 - CaSO4 2.537e-05 2.543e-05 -4.596 -4.595 0.001 7.50 - NaSO4- 5.899e-08 5.256e-08 -7.229 -7.279 -0.050 14.84 - Mg(SO4)2-2 1.666e-08 1.144e-08 -7.778 -7.941 -0.163 38.49 - HSO4- 1.173e-09 1.060e-09 -8.931 -8.975 -0.044 40.34 - CaHSO4+ 1.658e-11 1.498e-11 -10.780 -10.825 -0.044 (0) + SO4-2 1.810e-04 1.216e-04 -3.742 -3.915 -0.173 17.83 + MgSO4 2.841e-05 2.854e-05 -4.547 -4.545 0.002 -7.92 + CaSO4 2.535e-05 2.541e-05 -4.596 -4.595 0.001 7.50 + NaSO4- 2.408e-07 2.183e-07 -6.618 -6.661 -0.043 -15.24 + Mg(SO4)2-2 1.663e-08 1.143e-08 -7.779 -7.942 -0.163 6.69 + HSO4- 1.172e-09 1.059e-09 -8.931 -8.975 -0.044 40.34 + CaHSO4+ 1.657e-11 1.496e-11 -10.781 -10.825 -0.044 (0) ------------------------------Saturation indices------------------------------- @@ -1090,11 +1091,11 @@ S(6) 2.351e-04 CO2(g) -1.50 -2.97 -1.47 CO2 Dolomite 0.00 -17.08 -17.08 CaMg(CO3)2 Epsomite -5.22 -6.96 -1.74 MgSO4:7H2O - Gypsum -2.26 -6.84 -4.58 CaSO4:2H2O + Gypsum -2.26 -6.85 -4.58 CaSO4:2H2O H2(g) -41.29 -44.39 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O H2S(g) -141.40 -149.34 -7.94 H2S - Halite -9.44 -7.87 1.57 NaCl + Halite -9.45 -7.88 1.57 NaCl Hexahydrite -5.40 -6.96 -1.57 MgSO4:6H2O Kieserite -5.80 -6.96 -1.16 MgSO4:H2O Mirabilite -10.59 -11.83 -1.24 Na2SO4:10H2O diff --git a/ex14.sel b/ex14.sel index bbfcec5b..03767844 100644 --- a/ex14.sel +++ b/ex14.sel @@ -1,202 +1,202 @@ step m_Ca m_Mg m_Na umol_As pH mmol_sorbedAs - 1 4.6308e-01 1.6339e-01 5.4020e+00 2.5000e-02 5.8786e+00 0.0000e+00 - 1 3.4327e-04 2.4766e-04 9.3588e-02 1.4981e-03 7.2249e+00 2.4922e+00 - 2 2.8134e-05 1.9155e-05 2.3251e-02 1.7865e-01 8.6678e+00 2.4920e+00 - 3 1.4944e-05 9.4043e-06 1.4415e-02 1.1859e+00 9.1722e+00 2.4908e+00 - 4 1.3035e-05 7.9897e-06 1.2375e-02 2.0059e+00 9.3149e+00 2.4888e+00 - 5 1.2625e-05 7.6873e-06 1.1591e-02 2.3392e+00 9.3565e+00 2.4865e+00 - 6 1.2652e-05 7.7097e-06 1.1203e-02 2.3871e+00 9.3613e+00 2.4841e+00 - 7 1.2855e-05 7.8626e-06 1.0972e-02 2.3063e+00 9.3510e+00 2.4818e+00 - 8 1.3141e-05 8.0776e-06 1.0812e-02 2.1765e+00 9.3343e+00 2.4796e+00 - 9 1.3473e-05 8.3263e-06 1.0686e-02 2.0333e+00 9.3149e+00 2.4776e+00 - 10 1.3833e-05 8.5963e-06 1.0578e-02 1.8915e+00 9.2945e+00 2.4757e+00 - 11 1.4214e-05 8.8822e-06 1.0481e-02 1.7565e+00 9.2738e+00 2.4739e+00 - 12 1.4614e-05 9.1817e-06 1.0391e-02 1.6301e+00 9.2531e+00 2.4723e+00 - 13 1.5031e-05 9.4944e-06 1.0306e-02 1.5127e+00 9.2325e+00 2.4708e+00 - 14 1.5466e-05 9.8202e-06 1.0226e-02 1.4036e+00 9.2119e+00 2.4694e+00 - 15 1.5919e-05 1.0160e-05 1.0151e-02 1.3025e+00 9.1915e+00 2.4681e+00 - 16 1.6391e-05 1.0514e-05 1.0078e-02 1.2086e+00 9.1712e+00 2.4669e+00 - 17 1.6884e-05 1.0884e-05 1.0009e-02 1.1215e+00 9.1510e+00 2.4658e+00 - 18 1.7399e-05 1.1270e-05 9.9436e-03 1.0406e+00 9.1309e+00 2.4647e+00 - 19 1.7937e-05 1.1673e-05 9.8806e-03 9.6530e-01 9.1108e+00 2.4638e+00 - 20 1.8500e-05 1.2095e-05 9.8202e-03 8.9530e-01 9.0907e+00 2.4629e+00 - 21 1.9088e-05 1.2536e-05 9.7623e-03 8.3017e-01 9.0707e+00 2.4620e+00 - 22 1.9705e-05 1.2999e-05 9.7066e-03 7.6955e-01 9.0507e+00 2.4613e+00 - 23 2.0352e-05 1.3483e-05 9.6531e-03 7.1311e-01 9.0306e+00 2.4605e+00 - 24 2.1030e-05 1.3992e-05 9.6016e-03 6.6055e-01 9.0106e+00 2.4599e+00 - 25 2.1742e-05 1.4526e-05 9.5519e-03 6.1160e-01 8.9904e+00 2.4593e+00 - 26 2.2490e-05 1.5086e-05 9.5040e-03 5.6601e-01 8.9703e+00 2.4587e+00 - 27 2.3276e-05 1.5676e-05 9.4577e-03 5.2355e-01 8.9501e+00 2.4582e+00 - 28 2.4103e-05 1.6296e-05 9.4129e-03 4.8400e-01 8.9297e+00 2.4577e+00 - 29 2.4975e-05 1.6950e-05 9.3695e-03 4.4718e-01 8.9094e+00 2.4573e+00 - 30 2.5893e-05 1.7638e-05 9.3274e-03 4.1289e-01 8.8889e+00 2.4568e+00 - 31 2.6861e-05 1.8364e-05 9.2866e-03 3.8098e-01 8.8683e+00 2.4565e+00 - 32 2.7883e-05 1.9130e-05 9.2469e-03 3.5129e-01 8.8475e+00 2.4561e+00 - 33 2.8962e-05 1.9940e-05 9.2083e-03 3.2367e-01 8.8267e+00 2.4558e+00 - 34 3.0104e-05 2.0795e-05 9.1706e-03 2.9799e-01 8.8057e+00 2.4555e+00 - 35 3.1311e-05 2.1701e-05 9.1338e-03 2.7413e-01 8.7845e+00 2.4552e+00 - 36 3.2589e-05 2.2659e-05 9.0978e-03 2.5196e-01 8.7632e+00 2.4550e+00 - 37 3.3944e-05 2.3675e-05 9.0625e-03 2.3138e-01 8.7417e+00 2.4547e+00 - 38 3.5381e-05 2.4752e-05 9.0279e-03 2.1228e-01 8.7200e+00 2.4545e+00 - 39 3.6906e-05 2.5896e-05 8.9938e-03 1.9457e-01 8.6982e+00 2.4543e+00 - 40 3.8527e-05 2.7111e-05 8.9603e-03 1.7817e-01 8.6761e+00 2.4541e+00 - 41 4.0250e-05 2.8404e-05 8.9271e-03 1.6297e-01 8.6538e+00 2.4540e+00 - 42 4.2085e-05 2.9779e-05 8.8942e-03 1.4892e-01 8.6313e+00 2.4538e+00 - 43 4.4039e-05 3.1245e-05 8.8616e-03 1.3593e-01 8.6085e+00 2.4537e+00 - 44 4.6123e-05 3.2808e-05 8.8292e-03 1.2393e-01 8.5856e+00 2.4536e+00 - 45 4.8348e-05 3.4476e-05 8.7967e-03 1.1285e-01 8.5623e+00 2.4535e+00 - 46 5.0725e-05 3.6258e-05 8.7643e-03 1.0265e-01 8.5388e+00 2.4534e+00 - 47 5.3267e-05 3.8165e-05 8.7317e-03 9.3246e-02 8.5150e+00 2.4533e+00 - 48 5.5988e-05 4.0205e-05 8.6989e-03 8.4599e-02 8.4910e+00 2.4532e+00 - 49 5.8905e-05 4.2392e-05 8.6657e-03 7.6655e-02 8.4666e+00 2.4531e+00 - 50 6.2033e-05 4.4738e-05 8.6320e-03 6.9364e-02 8.4420e+00 2.4530e+00 - 51 6.5393e-05 4.7257e-05 8.5977e-03 6.2681e-02 8.4170e+00 2.4530e+00 - 52 6.9004e-05 4.9965e-05 8.5627e-03 5.6563e-02 8.3917e+00 2.4529e+00 - 53 7.2890e-05 5.2879e-05 8.5268e-03 5.0970e-02 8.3661e+00 2.4529e+00 - 54 7.7076e-05 5.6019e-05 8.4899e-03 4.5865e-02 8.3401e+00 2.4528e+00 - 55 8.1590e-05 5.9404e-05 8.4518e-03 4.1211e-02 8.3138e+00 2.4528e+00 - 56 8.6463e-05 6.3058e-05 8.4123e-03 3.6975e-02 8.2872e+00 2.4527e+00 - 57 9.1728e-05 6.7006e-05 8.3712e-03 3.3125e-02 8.2602e+00 2.4527e+00 - 58 9.7424e-05 7.1277e-05 8.3283e-03 2.9633e-02 8.2328e+00 2.4527e+00 - 59 1.0359e-04 7.5902e-05 8.2834e-03 2.6469e-02 8.2051e+00 2.4526e+00 - 60 1.1028e-04 8.0915e-05 8.2362e-03 2.3609e-02 8.1769e+00 2.4526e+00 - 61 1.1753e-04 8.6353e-05 8.1864e-03 2.1027e-02 8.1485e+00 2.4526e+00 - 62 1.2540e-04 9.2259e-05 8.1338e-03 1.8701e-02 8.1196e+00 2.4526e+00 - 63 1.3396e-04 9.8677e-05 8.0781e-03 1.6609e-02 8.0904e+00 2.4526e+00 - 64 1.4327e-04 1.0566e-04 8.0188e-03 1.4732e-02 8.0608e+00 2.4526e+00 - 65 1.5340e-04 1.1326e-04 7.9557e-03 1.3050e-02 8.0308e+00 2.4525e+00 - 66 1.6443e-04 1.2153e-04 7.8884e-03 1.1547e-02 8.0006e+00 2.4525e+00 - 67 1.7646e-04 1.3055e-04 7.8163e-03 1.0206e-02 7.9700e+00 2.4525e+00 - 68 1.8956e-04 1.4037e-04 7.7391e-03 9.0127e-03 7.9391e+00 2.4525e+00 - 69 2.0385e-04 1.5109e-04 7.6564e-03 7.9523e-03 7.9079e+00 2.4525e+00 - 70 2.1943e-04 1.6277e-04 7.5675e-03 7.0121e-03 7.8764e+00 2.4525e+00 - 71 2.3641e-04 1.7551e-04 7.4721e-03 6.1803e-03 7.8448e+00 2.4525e+00 - 72 2.5491e-04 1.8938e-04 7.3695e-03 5.4460e-03 7.8129e+00 2.4525e+00 - 73 2.7506e-04 2.0449e-04 7.2594e-03 4.7990e-03 7.7810e+00 2.4525e+00 - 74 2.9698e-04 2.2093e-04 7.1411e-03 4.2301e-03 7.7490e+00 2.4525e+00 - 75 3.2079e-04 2.3879e-04 7.0142e-03 3.7309e-03 7.7170e+00 2.4525e+00 - 76 3.4663e-04 2.5817e-04 6.8783e-03 3.2935e-03 7.6850e+00 2.4525e+00 - 77 3.7460e-04 2.7915e-04 6.7329e-03 2.9111e-03 7.6532e+00 2.4525e+00 - 78 4.0481e-04 3.0180e-04 6.5777e-03 2.5772e-03 7.6216e+00 2.4525e+00 - 79 4.3735e-04 3.2620e-04 6.4126e-03 2.2861e-03 7.5903e+00 2.4525e+00 - 80 4.7228e-04 3.5239e-04 6.2375e-03 2.0328e-03 7.5594e+00 2.4525e+00 - 81 5.0964e-04 3.8040e-04 6.0523e-03 1.8125e-03 7.5290e+00 2.4525e+00 - 82 5.4942e-04 4.1023e-04 5.8574e-03 1.6212e-03 7.4993e+00 2.4525e+00 - 83 5.9159e-04 4.4185e-04 5.6532e-03 1.4552e-03 7.4702e+00 2.4525e+00 - 84 6.3606e-04 4.7519e-04 5.4403e-03 1.3112e-03 7.4419e+00 2.4525e+00 - 85 6.8269e-04 5.1015e-04 5.2195e-03 1.1863e-03 7.4144e+00 2.4524e+00 - 86 7.3129e-04 5.4658e-04 4.9919e-03 1.0781e-03 7.3880e+00 2.4524e+00 - 87 7.8148e-04 5.8445e-04 4.7587e-03 9.8433e-04 7.3626e+00 2.4524e+00 - 88 8.3234e-04 6.2418e-04 4.5208e-03 9.0282e-04 7.3382e+00 2.4524e+00 - 89 8.8427e-04 6.6480e-04 4.2805e-03 8.3217e-04 7.3150e+00 2.4524e+00 - 90 9.3689e-04 7.0600e-04 4.0393e-03 7.7092e-04 7.2930e+00 2.4524e+00 - 91 9.8982e-04 7.4749e-04 3.7990e-03 7.1779e-04 7.2722e+00 2.4524e+00 - 92 1.0426e-03 7.8893e-04 3.5610e-03 6.7168e-04 7.2528e+00 2.4524e+00 - 93 1.0950e-03 8.3003e-04 3.3272e-03 6.3161e-04 7.2345e+00 2.4524e+00 - 94 1.1465e-03 8.7047e-04 3.0990e-03 5.9677e-04 7.2175e+00 2.4524e+00 - 95 1.1967e-03 9.0999e-04 2.8778e-03 5.6644e-04 7.2018e+00 2.4524e+00 - 96 1.2455e-03 9.4832e-04 2.6648e-03 5.4001e-04 7.1872e+00 2.4524e+00 - 97 1.2924e-03 9.8524e-04 2.4609e-03 5.1695e-04 7.1738e+00 2.4524e+00 - 98 1.3373e-03 1.0206e-03 2.2671e-03 4.9681e-04 7.1614e+00 2.4524e+00 - 99 1.3800e-03 1.0542e-03 2.0838e-03 4.7920e-04 7.1502e+00 2.4524e+00 - 100 1.4204e-03 1.0859e-03 1.9114e-03 4.6379e-04 7.1398e+00 2.4524e+00 - 101 1.4583e-03 1.1157e-03 1.7502e-03 4.5028e-04 7.1305e+00 2.4524e+00 - 102 1.4938e-03 1.1436e-03 1.6001e-03 4.3843e-04 7.1219e+00 2.4524e+00 - 103 1.5268e-03 1.1696e-03 1.4610e-03 4.2803e-04 7.1142e+00 2.4524e+00 - 104 1.5574e-03 1.1936e-03 1.3326e-03 4.1889e-04 7.1072e+00 2.4524e+00 - 105 1.5857e-03 1.2158e-03 1.2145e-03 4.1085e-04 7.1009e+00 2.4524e+00 - 106 1.6116e-03 1.2361e-03 1.1063e-03 4.0378e-04 7.0953e+00 2.4524e+00 - 107 1.6354e-03 1.2547e-03 1.0075e-03 3.9755e-04 7.0902e+00 2.4524e+00 - 108 1.6572e-03 1.2717e-03 9.1753e-04 3.9205e-04 7.0856e+00 2.4524e+00 - 109 1.6770e-03 1.2872e-03 8.3580e-04 3.8721e-04 7.0815e+00 2.4524e+00 - 110 1.6949e-03 1.3012e-03 7.6174e-04 3.8293e-04 7.0778e+00 2.4524e+00 - 111 1.7112e-03 1.3139e-03 6.9479e-04 3.7915e-04 7.0745e+00 2.4524e+00 - 112 1.7260e-03 1.3253e-03 6.3437e-04 3.7582e-04 7.0715e+00 2.4524e+00 - 113 1.7393e-03 1.3356e-03 5.7995e-04 3.7287e-04 7.0689e+00 2.4524e+00 - 114 1.7513e-03 1.3449e-03 5.3101e-04 3.7026e-04 7.0665e+00 2.4524e+00 - 115 1.7621e-03 1.3532e-03 4.8706e-04 3.6796e-04 7.0644e+00 2.4524e+00 - 116 1.7719e-03 1.3606e-03 4.4765e-04 3.6592e-04 7.0626e+00 2.4524e+00 - 117 1.7806e-03 1.3673e-03 4.1234e-04 3.6411e-04 7.0609e+00 2.4524e+00 - 118 1.7884e-03 1.3732e-03 3.8074e-04 3.6251e-04 7.0594e+00 2.4524e+00 - 119 1.7955e-03 1.3785e-03 3.5249e-04 3.6110e-04 7.0581e+00 2.4524e+00 - 120 1.8018e-03 1.3833e-03 3.2725e-04 3.5985e-04 7.0569e+00 2.4524e+00 - 121 1.8074e-03 1.3875e-03 3.0472e-04 3.5874e-04 7.0559e+00 2.4524e+00 - 122 1.8125e-03 1.3912e-03 2.8462e-04 3.5776e-04 7.0549e+00 2.4524e+00 - 123 1.8170e-03 1.3945e-03 2.6670e-04 3.5689e-04 7.0541e+00 2.4524e+00 - 124 1.8211e-03 1.3975e-03 2.5074e-04 3.5611e-04 7.0534e+00 2.4524e+00 - 125 1.8247e-03 1.4001e-03 2.3651e-04 3.5543e-04 7.0527e+00 2.4524e+00 - 126 1.8279e-03 1.4024e-03 2.2385e-04 3.5483e-04 7.0521e+00 2.4524e+00 - 127 1.8308e-03 1.4044e-03 2.1258e-04 3.5429e-04 7.0516e+00 2.4524e+00 - 128 1.8334e-03 1.4062e-03 2.0256e-04 3.5382e-04 7.0512e+00 2.4524e+00 - 129 1.8358e-03 1.4078e-03 1.9364e-04 3.5339e-04 7.0507e+00 2.4524e+00 - 130 1.8378e-03 1.4092e-03 1.8571e-04 3.5302e-04 7.0504e+00 2.4524e+00 - 131 1.8397e-03 1.4104e-03 1.7866e-04 3.5269e-04 7.0501e+00 2.4524e+00 - 132 1.8414e-03 1.4115e-03 1.7239e-04 3.5240e-04 7.0498e+00 2.4524e+00 - 133 1.8429e-03 1.4125e-03 1.6682e-04 3.5214e-04 7.0495e+00 2.4524e+00 - 134 1.8443e-03 1.4133e-03 1.6187e-04 3.5191e-04 7.0493e+00 2.4524e+00 - 135 1.8455e-03 1.4140e-03 1.5748e-04 3.5171e-04 7.0491e+00 2.4524e+00 - 136 1.8466e-03 1.4146e-03 1.5357e-04 3.5153e-04 7.0489e+00 2.4524e+00 - 137 1.8476e-03 1.4152e-03 1.5011e-04 3.5137e-04 7.0488e+00 2.4524e+00 - 138 1.8485e-03 1.4156e-03 1.4703e-04 3.5123e-04 7.0486e+00 2.4524e+00 - 139 1.8493e-03 1.4160e-03 1.4429e-04 3.5110e-04 7.0485e+00 2.4524e+00 - 140 1.8500e-03 1.4164e-03 1.4186e-04 3.5099e-04 7.0484e+00 2.4524e+00 - 141 1.8507e-03 1.4166e-03 1.3971e-04 3.5090e-04 7.0483e+00 2.4524e+00 - 142 1.8513e-03 1.4169e-03 1.3779e-04 3.5081e-04 7.0482e+00 2.4524e+00 - 143 1.8518e-03 1.4171e-03 1.3609e-04 3.5074e-04 7.0482e+00 2.4524e+00 - 144 1.8524e-03 1.4172e-03 1.3459e-04 3.5067e-04 7.0481e+00 2.4524e+00 - 145 1.8528e-03 1.4174e-03 1.3325e-04 3.5061e-04 7.0480e+00 2.4524e+00 - 146 1.8532e-03 1.4175e-03 1.3206e-04 3.5056e-04 7.0480e+00 2.4524e+00 - 147 1.8536e-03 1.4176e-03 1.3100e-04 3.5051e-04 7.0479e+00 2.4524e+00 - 148 1.8540e-03 1.4176e-03 1.3007e-04 3.5047e-04 7.0479e+00 2.4524e+00 - 149 1.8543e-03 1.4176e-03 1.2924e-04 3.5044e-04 7.0479e+00 2.4524e+00 - 150 1.8546e-03 1.4177e-03 1.2850e-04 3.5041e-04 7.0478e+00 2.4524e+00 - 151 1.8549e-03 1.4177e-03 1.2784e-04 3.5038e-04 7.0478e+00 2.4524e+00 - 152 1.8552e-03 1.4177e-03 1.2726e-04 3.5036e-04 7.0478e+00 2.4524e+00 - 153 1.8555e-03 1.4176e-03 1.2675e-04 3.5033e-04 7.0478e+00 2.4524e+00 - 154 1.8557e-03 1.4176e-03 1.2629e-04 3.5032e-04 7.0478e+00 2.4524e+00 - 155 1.8559e-03 1.4176e-03 1.2588e-04 3.5030e-04 7.0477e+00 2.4524e+00 - 156 1.8561e-03 1.4175e-03 1.2552e-04 3.5029e-04 7.0477e+00 2.4524e+00 - 157 1.8563e-03 1.4175e-03 1.2520e-04 3.5028e-04 7.0477e+00 2.4524e+00 - 158 1.8565e-03 1.4174e-03 1.2492e-04 3.5027e-04 7.0477e+00 2.4524e+00 - 159 1.8567e-03 1.4173e-03 1.2467e-04 3.5026e-04 7.0477e+00 2.4524e+00 - 160 1.8569e-03 1.4173e-03 1.2444e-04 3.5025e-04 7.0477e+00 2.4524e+00 - 161 1.8571e-03 1.4172e-03 1.2425e-04 3.5025e-04 7.0477e+00 2.4524e+00 - 162 1.8572e-03 1.4171e-03 1.2407e-04 3.5024e-04 7.0477e+00 2.4524e+00 - 163 1.8574e-03 1.4170e-03 1.2391e-04 3.5024e-04 7.0477e+00 2.4524e+00 - 164 1.8575e-03 1.4169e-03 1.2377e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 165 1.8577e-03 1.4168e-03 1.2365e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 166 1.8578e-03 1.4168e-03 1.2354e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 167 1.8580e-03 1.4167e-03 1.2345e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 168 1.8581e-03 1.4166e-03 1.2336e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 169 1.8582e-03 1.4165e-03 1.2328e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 170 1.8583e-03 1.4164e-03 1.2322e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 171 1.8585e-03 1.4163e-03 1.2316e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 172 1.8586e-03 1.4162e-03 1.2310e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 173 1.8587e-03 1.4161e-03 1.2306e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 174 1.8588e-03 1.4160e-03 1.2301e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 175 1.8590e-03 1.4159e-03 1.2298e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 176 1.8591e-03 1.4158e-03 1.2294e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 177 1.8592e-03 1.4157e-03 1.2291e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 178 1.8593e-03 1.4156e-03 1.2289e-04 3.5023e-04 7.0477e+00 2.4524e+00 - 179 1.8594e-03 1.4155e-03 1.2286e-04 3.5024e-04 7.0477e+00 2.4524e+00 - 180 1.8595e-03 1.4154e-03 1.2284e-04 3.5024e-04 7.0477e+00 2.4524e+00 - 181 1.8596e-03 1.4153e-03 1.2283e-04 3.5024e-04 7.0477e+00 2.4524e+00 - 182 1.8597e-03 1.4152e-03 1.2281e-04 3.5024e-04 7.0477e+00 2.4524e+00 - 183 1.8598e-03 1.4151e-03 1.2279e-04 3.5024e-04 7.0477e+00 2.4524e+00 - 184 1.8599e-03 1.4150e-03 1.2278e-04 3.5025e-04 7.0477e+00 2.4524e+00 - 185 1.8601e-03 1.4150e-03 1.2277e-04 3.5025e-04 7.0477e+00 2.4524e+00 - 186 1.8602e-03 1.4149e-03 1.2276e-04 3.5025e-04 7.0477e+00 2.4524e+00 - 187 1.8603e-03 1.4148e-03 1.2275e-04 3.5025e-04 7.0477e+00 2.4524e+00 - 188 1.8604e-03 1.4147e-03 1.2274e-04 3.5026e-04 7.0477e+00 2.4524e+00 - 189 1.8605e-03 1.4146e-03 1.2274e-04 3.5026e-04 7.0477e+00 2.4524e+00 - 190 1.8606e-03 1.4145e-03 1.2273e-04 3.5026e-04 7.0477e+00 2.4524e+00 - 191 1.8607e-03 1.4144e-03 1.2273e-04 3.5026e-04 7.0477e+00 2.4524e+00 - 192 1.8608e-03 1.4143e-03 1.2272e-04 3.5027e-04 7.0477e+00 2.4524e+00 - 193 1.8608e-03 1.4142e-03 1.2272e-04 3.5027e-04 7.0477e+00 2.4524e+00 - 194 1.8609e-03 1.4141e-03 1.2271e-04 3.5027e-04 7.0477e+00 2.4524e+00 - 195 1.8610e-03 1.4140e-03 1.2271e-04 3.5027e-04 7.0477e+00 2.4524e+00 - 196 1.8611e-03 1.4140e-03 1.2271e-04 3.5028e-04 7.0477e+00 2.4524e+00 - 197 1.8612e-03 1.4139e-03 1.2270e-04 3.5028e-04 7.0477e+00 2.4524e+00 - 198 1.8613e-03 1.4138e-03 1.2270e-04 3.5028e-04 7.0477e+00 2.4524e+00 - 199 1.8614e-03 1.4137e-03 1.2270e-04 3.5028e-04 7.0477e+00 2.4524e+00 - 200 1.8615e-03 1.4136e-03 1.2270e-04 3.5028e-04 7.0477e+00 2.4524e+00 + 1 4.6311e-01 1.6336e-01 5.4020e+00 2.5000e-02 5.8810e+00 0.0000e+00 + 1 3.3982e-04 2.4501e-04 9.3753e-02 1.5319e-03 7.2305e+00 2.5031e+00 + 2 2.7841e-05 1.8927e-05 2.3197e-02 1.8488e-01 8.6742e+00 2.5029e+00 + 3 1.4871e-05 9.3459e-06 1.4410e-02 1.2141e+00 9.1757e+00 2.5017e+00 + 4 1.2989e-05 7.9525e-06 1.2379e-02 2.0465e+00 9.3176e+00 2.4996e+00 + 5 1.2586e-05 7.6552e-06 1.1597e-02 2.3837e+00 9.3589e+00 2.4972e+00 + 6 1.2614e-05 7.6785e-06 1.1209e-02 2.4314e+00 9.3635e+00 2.4948e+00 + 7 1.2816e-05 7.8309e-06 1.0979e-02 2.3487e+00 9.3532e+00 2.4925e+00 + 8 1.3101e-05 8.0448e-06 1.0819e-02 2.2165e+00 9.3364e+00 2.4902e+00 + 9 1.3431e-05 8.2921e-06 1.0692e-02 2.0706e+00 9.3171e+00 2.4882e+00 + 10 1.3789e-05 8.5605e-06 1.0584e-02 1.9262e+00 9.2967e+00 2.4863e+00 + 11 1.4169e-05 8.8445e-06 1.0486e-02 1.7887e+00 9.2760e+00 2.4845e+00 + 12 1.4566e-05 9.1422e-06 1.0396e-02 1.6601e+00 9.2553e+00 2.4828e+00 + 13 1.4981e-05 9.4529e-06 1.0312e-02 1.5405e+00 9.2346e+00 2.4813e+00 + 14 1.5413e-05 9.7768e-06 1.0232e-02 1.4295e+00 9.2141e+00 2.4798e+00 + 15 1.5863e-05 1.0114e-05 1.0156e-02 1.3265e+00 9.1937e+00 2.4785e+00 + 16 1.6333e-05 1.0466e-05 1.0083e-02 1.2309e+00 9.1734e+00 2.4773e+00 + 17 1.6823e-05 1.0834e-05 1.0014e-02 1.1422e+00 9.1532e+00 2.4761e+00 + 18 1.7335e-05 1.1217e-05 9.9480e-03 1.0598e+00 9.1331e+00 2.4751e+00 + 19 1.7870e-05 1.1618e-05 9.8848e-03 9.8312e-01 9.1130e+00 2.4741e+00 + 20 1.8430e-05 1.2037e-05 9.8243e-03 9.1184e-01 9.0929e+00 2.4732e+00 + 21 1.9015e-05 1.2476e-05 9.7662e-03 8.4551e-01 9.0729e+00 2.4723e+00 + 22 1.9628e-05 1.2936e-05 9.7104e-03 7.8377e-01 9.0528e+00 2.4716e+00 + 23 2.0271e-05 1.3417e-05 9.6568e-03 7.2629e-01 9.0328e+00 2.4708e+00 + 24 2.0946e-05 1.3923e-05 9.6051e-03 6.7276e-01 9.0127e+00 2.4702e+00 + 25 2.1654e-05 1.4453e-05 9.5553e-03 6.2290e-01 8.9926e+00 2.4695e+00 + 26 2.2398e-05 1.5011e-05 9.5073e-03 5.7646e-01 8.9724e+00 2.4690e+00 + 27 2.3180e-05 1.5597e-05 9.4609e-03 5.3321e-01 8.9522e+00 2.4684e+00 + 28 2.4003e-05 1.6214e-05 9.4160e-03 4.9293e-01 8.9319e+00 2.4679e+00 + 29 2.4869e-05 1.6863e-05 9.3725e-03 4.5542e-01 8.9115e+00 2.4675e+00 + 30 2.5782e-05 1.7548e-05 9.3303e-03 4.2050e-01 8.8910e+00 2.4671e+00 + 31 2.6746e-05 1.8269e-05 9.2894e-03 3.8799e-01 8.8704e+00 2.4667e+00 + 32 2.7762e-05 1.9031e-05 9.2497e-03 3.5775e-01 8.8496e+00 2.4663e+00 + 33 2.8836e-05 1.9836e-05 9.2109e-03 3.2961e-01 8.8288e+00 2.4660e+00 + 34 2.9971e-05 2.0687e-05 9.1732e-03 3.0345e-01 8.8078e+00 2.4657e+00 + 35 3.1172e-05 2.1587e-05 9.1363e-03 2.7914e-01 8.7866e+00 2.4654e+00 + 36 3.2444e-05 2.2540e-05 9.1003e-03 2.5656e-01 8.7653e+00 2.4651e+00 + 37 3.3792e-05 2.3551e-05 9.0650e-03 2.3559e-01 8.7438e+00 2.4649e+00 + 38 3.5222e-05 2.4622e-05 9.0303e-03 2.1614e-01 8.7221e+00 2.4647e+00 + 39 3.6740e-05 2.5760e-05 8.9962e-03 1.9810e-01 8.7002e+00 2.4645e+00 + 40 3.8353e-05 2.6969e-05 8.9626e-03 1.8138e-01 8.6781e+00 2.4643e+00 + 41 4.0068e-05 2.8254e-05 8.9294e-03 1.6591e-01 8.6558e+00 2.4641e+00 + 42 4.1894e-05 2.9623e-05 8.8965e-03 1.5159e-01 8.6333e+00 2.4640e+00 + 43 4.3840e-05 3.1081e-05 8.8639e-03 1.3835e-01 8.6105e+00 2.4638e+00 + 44 4.5915e-05 3.2636e-05 8.8314e-03 1.2613e-01 8.5875e+00 2.4637e+00 + 45 4.8130e-05 3.4296e-05 8.7990e-03 1.1485e-01 8.5643e+00 2.4636e+00 + 46 5.0496e-05 3.6070e-05 8.7665e-03 1.0445e-01 8.5407e+00 2.4635e+00 + 47 5.3028e-05 3.7968e-05 8.7339e-03 9.4876e-02 8.5169e+00 2.4634e+00 + 48 5.5738e-05 3.9999e-05 8.7011e-03 8.6070e-02 8.4928e+00 2.4633e+00 + 49 5.8643e-05 4.2176e-05 8.6679e-03 7.7978e-02 8.4685e+00 2.4632e+00 + 50 6.1760e-05 4.4512e-05 8.6342e-03 7.0553e-02 8.4438e+00 2.4632e+00 + 51 6.5107e-05 4.7021e-05 8.6000e-03 6.3747e-02 8.4188e+00 2.4631e+00 + 52 6.8705e-05 4.9718e-05 8.5650e-03 5.7517e-02 8.3935e+00 2.4631e+00 + 53 7.2578e-05 5.2621e-05 8.5292e-03 5.1822e-02 8.3678e+00 2.4630e+00 + 54 7.6750e-05 5.5748e-05 8.4923e-03 4.6624e-02 8.3418e+00 2.4630e+00 + 55 8.1250e-05 5.9121e-05 8.4542e-03 4.1886e-02 8.3155e+00 2.4629e+00 + 56 8.6108e-05 6.2763e-05 8.4147e-03 3.7574e-02 8.2888e+00 2.4629e+00 + 57 9.1359e-05 6.6699e-05 8.3737e-03 3.3655e-02 8.2617e+00 2.4628e+00 + 58 9.7040e-05 7.0957e-05 8.3308e-03 3.0101e-02 8.2343e+00 2.4628e+00 + 59 1.0319e-04 7.5569e-05 8.2860e-03 2.6881e-02 8.2065e+00 2.4628e+00 + 60 1.0986e-04 8.0568e-05 8.2388e-03 2.3971e-02 8.1784e+00 2.4628e+00 + 61 1.1710e-04 8.5993e-05 8.1891e-03 2.1344e-02 8.1498e+00 2.4627e+00 + 62 1.2496e-04 9.1886e-05 8.1366e-03 1.8978e-02 8.1209e+00 2.4627e+00 + 63 1.3350e-04 9.8292e-05 8.0809e-03 1.6851e-02 8.0916e+00 2.4627e+00 + 64 1.4280e-04 1.0526e-04 8.0217e-03 1.4942e-02 8.0620e+00 2.4627e+00 + 65 1.5292e-04 1.1285e-04 7.9586e-03 1.3233e-02 8.0320e+00 2.4627e+00 + 66 1.6395e-04 1.2111e-04 7.8912e-03 1.1705e-02 8.0016e+00 2.4627e+00 + 67 1.7596e-04 1.3012e-04 7.8192e-03 1.0342e-02 7.9709e+00 2.4627e+00 + 68 1.8907e-04 1.3994e-04 7.7420e-03 9.1295e-03 7.9399e+00 2.4626e+00 + 69 2.0336e-04 1.5066e-04 7.6592e-03 8.0524e-03 7.9087e+00 2.4626e+00 + 70 2.1894e-04 1.6234e-04 7.5703e-03 7.0978e-03 7.8771e+00 2.4626e+00 + 71 2.3593e-04 1.7508e-04 7.4748e-03 6.2535e-03 7.8454e+00 2.4626e+00 + 72 2.5446e-04 1.8897e-04 7.3722e-03 5.5084e-03 7.8135e+00 2.4626e+00 + 73 2.7463e-04 2.0409e-04 7.2618e-03 4.8521e-03 7.7814e+00 2.4626e+00 + 74 2.9659e-04 2.2055e-04 7.1434e-03 4.2752e-03 7.7493e+00 2.4626e+00 + 75 3.2045e-04 2.3845e-04 7.0162e-03 3.7691e-03 7.7172e+00 2.4626e+00 + 76 3.4635e-04 2.5786e-04 6.8800e-03 3.3259e-03 7.6851e+00 2.4626e+00 + 77 3.7440e-04 2.7889e-04 6.7342e-03 2.9386e-03 7.6532e+00 2.4626e+00 + 78 4.0470e-04 3.0161e-04 6.5786e-03 2.6006e-03 7.6215e+00 2.4626e+00 + 79 4.3734e-04 3.2608e-04 6.4130e-03 2.3060e-03 7.5901e+00 2.4626e+00 + 80 4.7239e-04 3.5236e-04 6.2372e-03 2.0498e-03 7.5592e+00 2.4626e+00 + 81 5.0989e-04 3.8047e-04 6.0514e-03 1.8271e-03 7.5287e+00 2.4626e+00 + 82 5.4982e-04 4.1041e-04 5.8558e-03 1.6337e-03 7.4988e+00 2.4626e+00 + 83 5.9216e-04 4.4215e-04 5.6508e-03 1.4660e-03 7.4697e+00 2.4626e+00 + 84 6.3681e-04 4.7562e-04 5.4371e-03 1.3206e-03 7.4413e+00 2.4626e+00 + 85 6.8364e-04 5.1072e-04 5.2154e-03 1.1946e-03 7.4138e+00 2.4626e+00 + 86 7.3244e-04 5.4730e-04 4.9870e-03 1.0855e-03 7.3873e+00 2.4626e+00 + 87 7.8274e-04 5.8543e-04 4.7528e-03 9.9091e-04 7.3618e+00 2.4626e+00 + 88 8.3380e-04 6.2532e-04 4.5141e-03 9.0878e-04 7.3374e+00 2.4626e+00 + 89 8.8593e-04 6.6610e-04 4.2730e-03 8.3762e-04 7.3142e+00 2.4626e+00 + 90 9.3873e-04 7.0745e-04 4.0310e-03 7.7596e-04 7.2921e+00 2.4626e+00 + 91 9.9182e-04 7.4907e-04 3.7899e-03 7.2250e-04 7.2714e+00 2.4626e+00 + 92 1.0448e-03 7.9064e-04 3.5514e-03 6.7611e-04 7.2519e+00 2.4626e+00 + 93 1.0973e-03 8.3185e-04 3.3171e-03 6.3583e-04 7.2337e+00 2.4626e+00 + 94 1.1489e-03 8.7238e-04 3.0885e-03 6.0081e-04 7.2167e+00 2.4626e+00 + 95 1.1992e-03 9.1197e-04 2.8670e-03 5.7034e-04 7.2009e+00 2.4626e+00 + 96 1.2480e-03 9.5035e-04 2.6538e-03 5.4379e-04 7.1864e+00 2.4626e+00 + 97 1.2950e-03 9.8730e-04 2.4499e-03 5.2064e-04 7.1730e+00 2.4626e+00 + 98 1.3399e-03 1.0226e-03 2.2561e-03 5.0043e-04 7.1607e+00 2.4626e+00 + 99 1.3826e-03 1.0562e-03 2.0729e-03 4.8276e-04 7.1494e+00 2.4626e+00 + 100 1.4229e-03 1.0879e-03 1.9008e-03 4.6730e-04 7.1392e+00 2.4626e+00 + 101 1.4608e-03 1.1177e-03 1.7399e-03 4.5375e-04 7.1298e+00 2.4626e+00 + 102 1.4962e-03 1.1456e-03 1.5901e-03 4.4188e-04 7.1214e+00 2.4626e+00 + 103 1.5291e-03 1.1715e-03 1.4514e-03 4.3145e-04 7.1137e+00 2.4626e+00 + 104 1.5596e-03 1.1954e-03 1.3234e-03 4.2230e-04 7.1067e+00 2.4626e+00 + 105 1.5877e-03 1.2175e-03 1.2058e-03 4.1425e-04 7.1005e+00 2.4626e+00 + 106 1.6136e-03 1.2378e-03 1.0981e-03 4.0716e-04 7.0948e+00 2.4626e+00 + 107 1.6372e-03 1.2563e-03 9.9978e-04 4.0092e-04 7.0897e+00 2.4626e+00 + 108 1.6589e-03 1.2732e-03 9.1028e-04 3.9542e-04 7.0852e+00 2.4626e+00 + 109 1.6785e-03 1.2885e-03 8.2903e-04 3.9057e-04 7.0811e+00 2.4626e+00 + 110 1.6964e-03 1.3025e-03 7.5545e-04 3.8630e-04 7.0774e+00 2.4626e+00 + 111 1.7126e-03 1.3151e-03 6.8895e-04 3.8252e-04 7.0742e+00 2.4626e+00 + 112 1.7273e-03 1.3264e-03 6.2897e-04 3.7919e-04 7.0712e+00 2.4626e+00 + 113 1.7405e-03 1.3366e-03 5.7496e-04 3.7624e-04 7.0686e+00 2.4626e+00 + 114 1.7524e-03 1.3458e-03 5.2642e-04 3.7363e-04 7.0663e+00 2.4626e+00 + 115 1.7631e-03 1.3541e-03 4.8284e-04 3.7133e-04 7.0642e+00 2.4626e+00 + 116 1.7727e-03 1.3615e-03 4.4378e-04 3.6929e-04 7.0624e+00 2.4626e+00 + 117 1.7814e-03 1.3681e-03 4.0879e-04 3.6749e-04 7.0607e+00 2.4626e+00 + 118 1.7892e-03 1.3740e-03 3.7750e-04 3.6590e-04 7.0592e+00 2.4626e+00 + 119 1.7961e-03 1.3792e-03 3.4953e-04 3.6449e-04 7.0579e+00 2.4626e+00 + 120 1.8024e-03 1.3839e-03 3.2455e-04 3.6324e-04 7.0568e+00 2.4626e+00 + 121 1.8080e-03 1.3880e-03 3.0226e-04 3.6213e-04 7.0557e+00 2.4626e+00 + 122 1.8130e-03 1.3917e-03 2.8239e-04 3.6115e-04 7.0548e+00 2.4626e+00 + 123 1.8174e-03 1.3950e-03 2.6467e-04 3.6028e-04 7.0540e+00 2.4626e+00 + 124 1.8214e-03 1.3979e-03 2.4889e-04 3.5952e-04 7.0533e+00 2.4626e+00 + 125 1.8250e-03 1.4005e-03 2.3484e-04 3.5883e-04 7.0526e+00 2.4626e+00 + 126 1.8282e-03 1.4028e-03 2.2233e-04 3.5823e-04 7.0520e+00 2.4626e+00 + 127 1.8311e-03 1.4048e-03 2.1121e-04 3.5770e-04 7.0515e+00 2.4626e+00 + 128 1.8337e-03 1.4066e-03 2.0131e-04 3.5723e-04 7.0511e+00 2.4626e+00 + 129 1.8360e-03 1.4081e-03 1.9251e-04 3.5681e-04 7.0507e+00 2.4626e+00 + 130 1.8380e-03 1.4095e-03 1.8469e-04 3.5644e-04 7.0503e+00 2.4626e+00 + 131 1.8399e-03 1.4107e-03 1.7774e-04 3.5611e-04 7.0500e+00 2.4626e+00 + 132 1.8415e-03 1.4118e-03 1.7156e-04 3.5582e-04 7.0497e+00 2.4626e+00 + 133 1.8430e-03 1.4127e-03 1.6607e-04 3.5556e-04 7.0495e+00 2.4626e+00 + 134 1.8444e-03 1.4135e-03 1.6120e-04 3.5533e-04 7.0493e+00 2.4626e+00 + 135 1.8456e-03 1.4142e-03 1.5687e-04 3.5513e-04 7.0491e+00 2.4626e+00 + 136 1.8467e-03 1.4148e-03 1.5302e-04 3.5495e-04 7.0489e+00 2.4626e+00 + 137 1.8476e-03 1.4153e-03 1.4961e-04 3.5479e-04 7.0488e+00 2.4626e+00 + 138 1.8485e-03 1.4158e-03 1.4658e-04 3.5465e-04 7.0486e+00 2.4626e+00 + 139 1.8493e-03 1.4162e-03 1.4389e-04 3.5453e-04 7.0485e+00 2.4626e+00 + 140 1.8500e-03 1.4165e-03 1.4150e-04 3.5442e-04 7.0484e+00 2.4626e+00 + 141 1.8507e-03 1.4168e-03 1.3938e-04 3.5433e-04 7.0483e+00 2.4626e+00 + 142 1.8513e-03 1.4170e-03 1.3750e-04 3.5424e-04 7.0482e+00 2.4626e+00 + 143 1.8519e-03 1.4172e-03 1.3583e-04 3.5417e-04 7.0481e+00 2.4626e+00 + 144 1.8524e-03 1.4174e-03 1.3435e-04 3.5410e-04 7.0481e+00 2.4626e+00 + 145 1.8528e-03 1.4175e-03 1.3303e-04 3.5404e-04 7.0480e+00 2.4626e+00 + 146 1.8532e-03 1.4176e-03 1.3187e-04 3.5399e-04 7.0480e+00 2.4626e+00 + 147 1.8536e-03 1.4177e-03 1.3083e-04 3.5394e-04 7.0479e+00 2.4626e+00 + 148 1.8540e-03 1.4177e-03 1.2991e-04 3.5390e-04 7.0479e+00 2.4626e+00 + 149 1.8543e-03 1.4177e-03 1.2910e-04 3.5387e-04 7.0479e+00 2.4626e+00 + 150 1.8546e-03 1.4178e-03 1.2837e-04 3.5384e-04 7.0478e+00 2.4626e+00 + 151 1.8549e-03 1.4178e-03 1.2773e-04 3.5381e-04 7.0478e+00 2.4626e+00 + 152 1.8552e-03 1.4177e-03 1.2716e-04 3.5379e-04 7.0478e+00 2.4626e+00 + 153 1.8554e-03 1.4177e-03 1.2666e-04 3.5377e-04 7.0478e+00 2.4626e+00 + 154 1.8557e-03 1.4177e-03 1.2621e-04 3.5375e-04 7.0477e+00 2.4626e+00 + 155 1.8559e-03 1.4176e-03 1.2581e-04 3.5374e-04 7.0477e+00 2.4626e+00 + 156 1.8561e-03 1.4176e-03 1.2546e-04 3.5372e-04 7.0477e+00 2.4626e+00 + 157 1.8563e-03 1.4175e-03 1.2514e-04 3.5371e-04 7.0477e+00 2.4626e+00 + 158 1.8565e-03 1.4175e-03 1.2487e-04 3.5370e-04 7.0477e+00 2.4626e+00 + 159 1.8567e-03 1.4174e-03 1.2462e-04 3.5369e-04 7.0477e+00 2.4626e+00 + 160 1.8568e-03 1.4173e-03 1.2440e-04 3.5369e-04 7.0477e+00 2.4626e+00 + 161 1.8570e-03 1.4173e-03 1.2421e-04 3.5368e-04 7.0477e+00 2.4626e+00 + 162 1.8572e-03 1.4172e-03 1.2404e-04 3.5368e-04 7.0477e+00 2.4626e+00 + 163 1.8573e-03 1.4171e-03 1.2388e-04 3.5367e-04 7.0477e+00 2.4626e+00 + 164 1.8575e-03 1.4170e-03 1.2375e-04 3.5367e-04 7.0477e+00 2.4625e+00 + 165 1.8576e-03 1.4169e-03 1.2363e-04 3.5367e-04 7.0477e+00 2.4625e+00 + 166 1.8578e-03 1.4168e-03 1.2352e-04 3.5367e-04 7.0477e+00 2.4625e+00 + 167 1.8579e-03 1.4167e-03 1.2343e-04 3.5366e-04 7.0477e+00 2.4625e+00 + 168 1.8580e-03 1.4166e-03 1.2334e-04 3.5366e-04 7.0477e+00 2.4625e+00 + 169 1.8582e-03 1.4165e-03 1.2327e-04 3.5366e-04 7.0477e+00 2.4625e+00 + 170 1.8583e-03 1.4165e-03 1.2320e-04 3.5366e-04 7.0477e+00 2.4625e+00 + 171 1.8584e-03 1.4164e-03 1.2314e-04 3.5366e-04 7.0477e+00 2.4625e+00 + 172 1.8586e-03 1.4163e-03 1.2309e-04 3.5366e-04 7.0477e+00 2.4625e+00 + 173 1.8587e-03 1.4162e-03 1.2304e-04 3.5367e-04 7.0477e+00 2.4625e+00 + 174 1.8588e-03 1.4161e-03 1.2300e-04 3.5367e-04 7.0477e+00 2.4625e+00 + 175 1.8589e-03 1.4160e-03 1.2297e-04 3.5367e-04 7.0477e+00 2.4625e+00 + 176 1.8590e-03 1.4159e-03 1.2294e-04 3.5367e-04 7.0477e+00 2.4625e+00 + 177 1.8591e-03 1.4158e-03 1.2291e-04 3.5367e-04 7.0477e+00 2.4625e+00 + 178 1.8593e-03 1.4157e-03 1.2288e-04 3.5367e-04 7.0477e+00 2.4625e+00 + 179 1.8594e-03 1.4156e-03 1.2286e-04 3.5367e-04 7.0477e+00 2.4625e+00 + 180 1.8595e-03 1.4155e-03 1.2284e-04 3.5368e-04 7.0477e+00 2.4625e+00 + 181 1.8596e-03 1.4154e-03 1.2282e-04 3.5368e-04 7.0477e+00 2.4625e+00 + 182 1.8597e-03 1.4153e-03 1.2281e-04 3.5368e-04 7.0477e+00 2.4625e+00 + 183 1.8598e-03 1.4152e-03 1.2279e-04 3.5368e-04 7.0477e+00 2.4625e+00 + 184 1.8599e-03 1.4151e-03 1.2278e-04 3.5369e-04 7.0477e+00 2.4625e+00 + 185 1.8600e-03 1.4150e-03 1.2277e-04 3.5369e-04 7.0477e+00 2.4625e+00 + 186 1.8601e-03 1.4149e-03 1.2276e-04 3.5369e-04 7.0477e+00 2.4625e+00 + 187 1.8602e-03 1.4148e-03 1.2275e-04 3.5369e-04 7.0477e+00 2.4625e+00 + 188 1.8603e-03 1.4147e-03 1.2274e-04 3.5369e-04 7.0477e+00 2.4625e+00 + 189 1.8604e-03 1.4146e-03 1.2274e-04 3.5370e-04 7.0477e+00 2.4625e+00 + 190 1.8605e-03 1.4145e-03 1.2273e-04 3.5370e-04 7.0477e+00 2.4625e+00 + 191 1.8606e-03 1.4145e-03 1.2272e-04 3.5370e-04 7.0477e+00 2.4625e+00 + 192 1.8607e-03 1.4144e-03 1.2272e-04 3.5370e-04 7.0477e+00 2.4625e+00 + 193 1.8608e-03 1.4143e-03 1.2271e-04 3.5371e-04 7.0477e+00 2.4625e+00 + 194 1.8609e-03 1.4142e-03 1.2271e-04 3.5371e-04 7.0477e+00 2.4625e+00 + 195 1.8610e-03 1.4141e-03 1.2271e-04 3.5371e-04 7.0477e+00 2.4625e+00 + 196 1.8611e-03 1.4140e-03 1.2270e-04 3.5371e-04 7.0477e+00 2.4625e+00 + 197 1.8612e-03 1.4139e-03 1.2270e-04 3.5372e-04 7.0477e+00 2.4625e+00 + 198 1.8613e-03 1.4138e-03 1.2270e-04 3.5372e-04 7.0477e+00 2.4625e+00 + 199 1.8614e-03 1.4137e-03 1.2270e-04 3.5372e-04 7.0477e+00 2.4625e+00 + 200 1.8615e-03 1.4137e-03 1.2270e-04 3.5372e-04 7.0477e+00 2.4625e+00 diff --git a/ex16.out b/ex16.out index 3e9887f3..14f1f55a 100644 --- a/ex16.out +++ b/ex16.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + CALCULATE_VALUES RATES END ------------------------------------ @@ -78,12 +79,12 @@ Initial solution 1. pH = 6.200 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 37 + Specific Conductance (µS/cm, 25°C) = 38 Density (g/cm³) = 0.99708 Volume (L) = 1.00300 - Viscosity (mPa s) = 0.89033 + Viscosity (mPa s) = 0.89038 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.852e-04 + Ionic strength (mol/kgw) = 4.851e-04 Mass of water (kg) = 1.000e+00 Total carbon (mol/kg) = 7.825e-04 Total CO2 (mol/kg) = 7.825e-04 @@ -104,52 +105,54 @@ Initial solution 1. H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 C(4) 7.825e-04 CO2 4.540e-04 4.540e-04 -3.343 -3.343 0.000 34.43 - HCO3- 3.281e-04 3.200e-04 -3.484 -3.495 -0.011 24.54 + HCO3- 3.281e-04 3.200e-04 -3.484 -3.495 -0.011 24.57 CaHCO3+ 2.940e-07 2.868e-07 -6.532 -6.542 -0.011 9.66 - MgHCO3+ 1.003e-07 9.779e-08 -6.999 -7.010 -0.011 5.47 - NaHCO3 2.795e-08 2.796e-08 -7.554 -7.554 0.000 28.00 - CO3-2 2.628e-08 2.379e-08 -7.580 -7.624 -0.043 -4.11 + MgHCO3+ 1.003e-07 9.778e-08 -6.999 -7.010 -0.011 5.47 + NaHCO3 3.640e-08 3.641e-08 -7.439 -7.439 0.000 31.73 + CO3-2 2.628e-08 2.379e-08 -7.580 -7.624 -0.043 -3.97 + KHCO3 3.902e-09 3.902e-09 -8.409 -8.409 0.000 41.03 (CO2)2 3.783e-09 3.783e-09 -8.422 -8.422 0.000 68.87 - CaCO3 2.806e-09 2.807e-09 -8.552 -8.552 0.000 -14.60 + CaCO3 2.806e-09 2.806e-09 -8.552 -8.552 0.000 -14.60 MgCO3 5.927e-10 5.927e-10 -9.227 -9.227 0.000 -17.09 Ca 7.800e-05 Ca+2 7.760e-05 7.023e-05 -4.110 -4.153 -0.043 -18.17 CaHCO3+ 2.940e-07 2.868e-07 -6.532 -6.542 -0.011 9.66 - CaSO4 1.110e-07 1.110e-07 -6.955 -6.955 0.000 7.50 - CaCO3 2.806e-09 2.807e-09 -8.552 -8.552 0.000 -14.60 + CaSO4 1.108e-07 1.108e-07 -6.955 -6.955 0.000 7.50 + CaCO3 2.806e-09 2.806e-09 -8.552 -8.552 0.000 -14.60 CaOH+ 1.894e-11 1.847e-11 -10.723 -10.733 -0.011 (0) - CaHSO4+ 4.721e-13 4.604e-13 -12.326 -12.337 -0.011 (0) + CaHSO4+ 4.713e-13 4.596e-13 -12.327 -12.338 -0.011 (0) Cl 1.400e-05 Cl- 1.400e-05 1.365e-05 -4.854 -4.865 -0.011 18.07 HCl 2.966e-12 2.967e-12 -11.528 -11.528 0.000 (0) H(0) 5.636e-24 H2 2.818e-24 2.818e-24 -23.550 -23.550 0.000 28.61 K 2.800e-05 - K+ 2.800e-05 2.730e-05 -4.553 -4.564 -0.011 9.00 - KSO4- 9.153e-10 8.919e-10 -9.038 -9.050 -0.011 17.32 + K+ 2.799e-05 2.730e-05 -4.553 -4.564 -0.011 9.00 + KHCO3 3.902e-09 3.902e-09 -8.409 -8.409 0.000 41.03 + KSO4- 3.777e-09 3.685e-09 -8.423 -8.434 -0.011 14.13 Mg 2.900e-05 Mg+2 2.884e-05 2.611e-05 -4.540 -4.583 -0.043 -21.86 - MgHCO3+ 1.003e-07 9.779e-08 -6.999 -7.010 -0.011 5.47 - MgSO4 6.076e-08 6.077e-08 -7.216 -7.216 0.000 -0.83 + MgHCO3+ 1.003e-07 9.778e-08 -6.999 -7.010 -0.011 5.47 + MgSO4 6.066e-08 6.067e-08 -7.217 -7.217 0.000 -7.92 MgCO3 5.927e-10 5.927e-10 -9.227 -9.227 0.000 -17.09 MgOH+ 1.540e-10 1.503e-10 -9.812 -9.823 -0.011 (0) - Mg(SO4)2-2 1.963e-12 1.779e-12 -11.707 -11.750 -0.043 33.91 + Mg(SO4)2-2 1.957e-12 1.773e-12 -11.709 -11.751 -0.043 -8.04 Na 1.340e-04 - Na+ 1.340e-04 1.307e-04 -3.873 -3.884 -0.011 -1.49 - NaHCO3 2.795e-08 2.796e-08 -7.554 -7.554 0.000 28.00 - NaSO4- 4.656e-09 4.537e-09 -8.332 -8.343 -0.011 14.50 - NaOH 2.096e-22 2.096e-22 -21.679 -21.679 0.000 (0) + Na+ 1.339e-04 1.306e-04 -3.873 -3.884 -0.011 -1.49 + NaHCO3 3.640e-08 3.641e-08 -7.439 -7.439 0.000 31.73 + NaSO4- 1.934e-08 1.887e-08 -7.713 -7.724 -0.011 -22.22 + NaOH 2.095e-22 2.096e-22 -21.679 -21.679 0.000 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -45.280 -45.280 0.000 30.40 S(6) 1.000e-05 - SO4-2 9.823e-06 8.889e-06 -5.008 -5.051 -0.043 14.75 - CaSO4 1.110e-07 1.110e-07 -6.955 -6.955 0.000 7.50 - MgSO4 6.076e-08 6.077e-08 -7.216 -7.216 0.000 -0.83 - NaSO4- 4.656e-09 4.537e-09 -8.332 -8.343 -0.011 14.50 - KSO4- 9.153e-10 8.919e-10 -9.038 -9.050 -0.011 17.32 - HSO4- 5.592e-10 5.453e-10 -9.252 -9.263 -0.011 40.27 - Mg(SO4)2-2 1.963e-12 1.779e-12 -11.707 -11.750 -0.043 33.91 - CaHSO4+ 4.721e-13 4.604e-13 -12.326 -12.337 -0.011 (0) + SO4-2 9.805e-06 8.873e-06 -5.009 -5.052 -0.043 15.25 + CaSO4 1.108e-07 1.108e-07 -6.955 -6.955 0.000 7.50 + MgSO4 6.066e-08 6.067e-08 -7.217 -7.217 0.000 -7.92 + NaSO4- 1.934e-08 1.887e-08 -7.713 -7.724 -0.011 -22.22 + KSO4- 3.777e-09 3.685e-09 -8.423 -8.434 -0.011 14.13 + HSO4- 5.582e-10 5.443e-10 -9.253 -9.264 -0.011 40.27 + Mg(SO4)2-2 1.957e-12 1.773e-12 -11.709 -11.751 -0.043 -8.04 + CaHSO4+ 4.713e-13 4.596e-13 -12.327 -12.338 -0.011 (0) Si 2.730e-04 H4SiO4 2.729e-04 2.730e-04 -3.564 -3.564 0.000 52.08 H3SiO4- 6.542e-08 6.379e-08 -7.184 -7.195 -0.011 27.96 @@ -159,7 +162,7 @@ Si 2.730e-04 Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -4.93 -9.20 -4.28 CaSO4 + Anhydrite -4.93 -9.21 -4.28 CaSO4 Aragonite -3.44 -11.78 -8.34 CaCO3 Arcanite -12.30 -14.18 -1.88 K2SO4 Calcite -3.30 -11.78 -8.48 CaCO3 @@ -167,13 +170,13 @@ Si 2.730e-04 Chrysotile -15.88 16.32 32.20 Mg3Si2O5(OH)4 CO2(g) -1.87 -3.34 -1.47 CO2 Dolomite -6.90 -23.98 -17.08 CaMg(CO3)2 - Epsomite -7.90 -9.63 -1.74 MgSO4:7H2O - Gypsum -4.62 -9.20 -4.58 CaSO4:2H2O + Epsomite -7.90 -9.64 -1.74 MgSO4:7H2O + Gypsum -4.62 -9.21 -4.58 CaSO4:2H2O H2(g) -20.45 -23.55 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -10.32 -8.75 1.57 NaCl - Hexahydrite -8.07 -9.63 -1.57 MgSO4:6H2O - Kieserite -8.47 -9.63 -1.16 MgSO4:H2O + Hexahydrite -8.07 -9.64 -1.57 MgSO4:6H2O + Kieserite -8.47 -9.64 -1.16 MgSO4:H2O Mirabilite -11.58 -12.82 -1.24 Na2SO4:10H2O O2(g) -42.39 -45.28 -2.89 O2 Quartz 0.42 -3.56 -3.98 SiO2 @@ -206,10 +209,10 @@ Initial solution 2. pH = 6.800 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 95 + Specific Conductance (µS/cm, 25°C) = 97 Density (g/cm³) = 0.99712 Volume (L) = 1.00301 - Viscosity (mPa s) = 0.89066 + Viscosity (mPa s) = 0.89080 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.313e-03 Mass of water (kg) = 1.000e+00 @@ -231,53 +234,55 @@ Initial solution 2. OH- 6.652e-08 6.386e-08 -7.177 -7.195 -0.018 -4.10 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 C(4) 1.199e-03 - HCO3- 8.907e-04 8.558e-04 -3.050 -3.068 -0.017 24.56 + HCO3- 8.907e-04 8.558e-04 -3.050 -3.068 -0.017 24.58 CO2 3.049e-04 3.050e-04 -3.516 -3.516 0.000 34.43 - CaHCO3+ 2.484e-06 2.388e-06 -5.605 -5.622 -0.017 9.68 - MgHCO3+ 6.230e-07 5.982e-07 -6.205 -6.223 -0.018 5.48 - CO3-2 2.972e-07 2.532e-07 -6.527 -6.596 -0.069 -4.05 - NaHCO3 1.422e-07 1.423e-07 -6.847 -6.847 0.000 28.00 - CaCO3 9.300e-08 9.302e-08 -7.032 -7.031 0.000 -14.60 + CaHCO3+ 2.484e-06 2.387e-06 -5.605 -5.622 -0.017 9.68 + MgHCO3+ 6.230e-07 5.982e-07 -6.206 -6.223 -0.018 5.48 + CO3-2 2.971e-07 2.532e-07 -6.527 -6.597 -0.069 -3.92 + NaHCO3 1.851e-07 1.852e-07 -6.733 -6.732 0.000 31.73 + CaCO3 9.299e-08 9.302e-08 -7.032 -7.031 0.000 -14.60 + KHCO3 1.467e-08 1.467e-08 -7.834 -7.834 0.000 41.03 MgCO3 1.443e-08 1.444e-08 -7.841 -7.841 0.000 -17.09 - (CO2)2 1.707e-09 1.707e-09 -8.768 -8.768 0.000 68.87 + (CO2)2 1.706e-09 1.707e-09 -8.768 -8.768 0.000 68.87 Ca 2.600e-04 Ca+2 2.567e-04 2.187e-04 -3.591 -3.660 -0.070 -18.13 - CaHCO3+ 2.484e-06 2.388e-06 -5.605 -5.622 -0.017 9.68 - CaSO4 7.901e-07 7.903e-07 -6.102 -6.102 0.000 7.50 - CaCO3 9.300e-08 9.302e-08 -7.032 -7.031 0.000 -14.60 + CaHCO3+ 2.484e-06 2.387e-06 -5.605 -5.622 -0.017 9.68 + CaSO4 7.878e-07 7.880e-07 -6.104 -6.103 0.000 7.50 + CaCO3 9.299e-08 9.302e-08 -7.032 -7.031 0.000 -14.60 CaOH+ 2.385e-10 2.290e-10 -9.623 -9.640 -0.018 (0) - CaHSO4+ 8.575e-13 8.234e-13 -12.067 -12.084 -0.018 (0) + CaHSO4+ 8.550e-13 8.209e-13 -12.068 -12.086 -0.018 (0) Cl 3.000e-05 Cl- 3.000e-05 2.880e-05 -4.523 -4.541 -0.018 18.08 HCl 1.571e-12 1.573e-12 -11.804 -11.803 0.001 (0) H(0) 3.555e-25 H2 1.778e-25 1.778e-25 -24.750 -24.750 0.000 28.61 K 4.000e-05 - K+ 4.000e-05 3.840e-05 -4.398 -4.416 -0.018 9.01 - KSO4- 2.993e-09 2.869e-09 -8.524 -8.542 -0.018 18.43 + K+ 3.998e-05 3.838e-05 -4.398 -4.416 -0.018 9.01 + KHCO3 1.467e-08 1.467e-08 -7.834 -7.834 0.000 41.03 + KSO4- 1.231e-08 1.183e-08 -7.910 -7.927 -0.017 14.15 Mg 7.101e-05 Mg+2 7.005e-05 5.974e-05 -4.155 -4.224 -0.069 -21.81 - MgHCO3+ 6.230e-07 5.982e-07 -6.205 -6.223 -0.018 5.48 - MgSO4 3.177e-07 3.179e-07 -6.498 -6.498 0.000 -0.83 + MgHCO3+ 6.230e-07 5.982e-07 -6.206 -6.223 -0.018 5.48 + MgSO4 3.168e-07 3.170e-07 -6.499 -6.499 0.000 -7.92 MgCO3 1.443e-08 1.444e-08 -7.841 -7.841 0.000 -17.09 MgOH+ 1.424e-09 1.369e-09 -8.847 -8.864 -0.017 (0) - Mg(SO4)2-2 2.490e-11 2.128e-11 -10.604 -10.672 -0.068 35.32 + Mg(SO4)2-2 2.476e-11 2.116e-11 -10.606 -10.675 -0.068 -3.36 Na 2.590e-04 - Na+ 2.589e-04 2.486e-04 -3.587 -3.604 -0.018 -1.47 - NaHCO3 1.422e-07 1.423e-07 -6.847 -6.847 0.000 28.00 - NaSO4- 2.060e-08 1.974e-08 -7.686 -7.705 -0.018 14.55 - NaOH 1.587e-21 1.588e-21 -20.799 -20.799 0.000 (0) + Na+ 2.588e-04 2.485e-04 -3.587 -3.605 -0.018 -1.47 + NaHCO3 1.851e-07 1.852e-07 -6.733 -6.732 0.000 31.73 + NaSO4- 8.532e-08 8.198e-08 -7.069 -7.086 -0.017 -20.41 + NaOH 1.587e-21 1.587e-21 -20.800 -20.799 0.000 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -42.880 -42.880 0.000 30.40 S(6) 2.500e-05 - SO4-2 2.387e-05 2.032e-05 -4.622 -4.692 -0.070 14.81 - CaSO4 7.901e-07 7.903e-07 -6.102 -6.102 0.000 7.50 - MgSO4 3.177e-07 3.179e-07 -6.498 -6.498 0.000 -0.83 - NaSO4- 2.060e-08 1.974e-08 -7.686 -7.705 -0.018 14.55 - KSO4- 2.993e-09 2.869e-09 -8.524 -8.542 -0.018 18.43 - HSO4- 3.262e-10 3.132e-10 -9.487 -9.504 -0.018 40.28 - Mg(SO4)2-2 2.490e-11 2.128e-11 -10.604 -10.672 -0.068 35.32 - CaHSO4+ 8.575e-13 8.234e-13 -12.067 -12.084 -0.018 (0) + SO4-2 2.380e-05 2.026e-05 -4.623 -4.693 -0.070 15.76 + CaSO4 7.878e-07 7.880e-07 -6.104 -6.103 0.000 7.50 + MgSO4 3.168e-07 3.170e-07 -6.499 -6.499 0.000 -7.92 + NaSO4- 8.532e-08 8.198e-08 -7.069 -7.086 -0.017 -20.41 + KSO4- 1.231e-08 1.183e-08 -7.910 -7.927 -0.017 14.15 + HSO4- 3.252e-10 3.123e-10 -9.488 -9.505 -0.018 40.28 + Mg(SO4)2-2 2.476e-11 2.116e-11 -10.606 -10.675 -0.068 -3.36 + CaHSO4+ 8.550e-13 8.209e-13 -12.068 -12.086 -0.018 (0) Si 4.100e-04 H4SiO4 4.096e-04 4.098e-04 -3.388 -3.387 0.000 52.08 H3SiO4- 3.970e-07 3.812e-07 -6.401 -6.419 -0.018 27.98 @@ -287,9 +292,9 @@ Si 4.100e-04 Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -4.07 -8.35 -4.28 CaSO4 + Anhydrite -4.08 -8.35 -4.28 CaSO4 Aragonite -1.92 -10.26 -8.34 CaCO3 - Arcanite -11.64 -13.52 -1.88 K2SO4 + Arcanite -11.65 -13.53 -1.88 K2SO4 Calcite -1.78 -10.26 -8.48 CaCO3 Chalcedony 0.16 -3.39 -3.55 SiO2 Chrysotile -10.85 21.35 32.20 Mg3Si2O5(OH)4 @@ -299,9 +304,9 @@ Si 4.100e-04 Gypsum -3.77 -8.35 -4.58 CaSO4:2H2O H2(g) -21.65 -24.75 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - Halite -9.71 -8.14 1.57 NaCl + Halite -9.72 -8.15 1.57 NaCl Hexahydrite -7.35 -8.92 -1.57 MgSO4:6H2O - Kieserite -7.75 -8.92 -1.16 MgSO4:H2O + Kieserite -7.76 -8.92 -1.16 MgSO4:H2O Mirabilite -10.66 -11.90 -1.24 Na2SO4:10H2O O2(g) -39.99 -42.88 -2.89 O2 Quartz 0.59 -3.39 -3.98 SiO2 @@ -364,7 +369,7 @@ Solution fractions: Minimum Maximum Solution 2 1.000e+00 1.000e+00 1.000e+00 Phase mole transfers: Minimum Maximum Formula (Approximate SI in solution 1, 2 at 298 K, 1 atm) - Halite 1.600e-05 1.490e-05 1.710e-05 NaCl (-10.32, -9.71) + Halite 1.600e-05 1.490e-05 1.710e-05 NaCl (-10.32, -9.72) Gypsum 1.500e-05 1.413e-05 1.588e-05 CaSO4:2H2O ( -4.62, -3.77) Kaolinite -3.392e-05 -5.587e-05 -1.224e-05 Al2Si2O5(OH)4 ( , ) Ca-Montmorillon -8.090e-05 -1.100e-04 -5.154e-05 Ca0.165Al2.33Si3.67O10(OH ( , ) @@ -426,7 +431,7 @@ Solution fractions: Minimum Maximum Solution 2 1.000e+00 1.000e+00 1.000e+00 Phase mole transfers: Minimum Maximum Formula (Approximate SI in solution 1, 2 at 298 K, 1 atm) - Halite 1.600e-05 1.490e-05 1.710e-05 NaCl (-10.32, -9.71) + Halite 1.600e-05 1.490e-05 1.710e-05 NaCl (-10.32, -9.72) Gypsum 1.500e-05 1.413e-05 1.588e-05 CaSO4:2H2O ( -4.62, -3.77) Kaolinite -1.282e-04 -1.403e-04 -1.159e-04 Al2Si2O5(OH)4 ( , ) CO2(g) 3.140e-04 2.490e-04 3.795e-04 CO2 ( -1.87, -2.05) diff --git a/ex17.out b/ex17.out index 7665baae..d3673e9a 100644 --- a/ex17.out +++ b/ex17.out @@ -90,10 +90,10 @@ Initial solution 1. Black Sea water pH = 8.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 30482 - Density (g/cm³) = 1.01090 - Volume (L) = 1.00790 - Viscosity (mPa s) = 0.92638 + Specific Conductance (µS/cm, 25°C) = 29775 + Density (g/cm³) = 1.01091 + Volume (L) = 1.00789 + Viscosity (mPa s) = 0.92658 Activity of water = 0.990 Ionic strength (mol/kgw) = 3.751e-01 Mass of water (kg) = 1.000e+00 @@ -138,8 +138,8 @@ Mg 2.807e-02 Na 2.544e-01 Na+ 2.544e-01 1.837e-01 -0.595 -0.736 -0.141 -0.74 S(6) 1.527e-02 - SO4-2 1.527e-02 2.084e-03 -1.816 -2.681 -0.865 18.12 - HSO4- 2.901e-09 1.985e-09 -8.537 -8.702 -0.165 40.79 + SO4-2 1.527e-02 2.084e-03 -1.816 -2.681 -0.865 17.45 + HSO4- 2.961e-09 2.026e-09 -8.529 -8.693 -0.165 40.79 ------------------------------Saturation indices------------------------------- @@ -212,14 +212,14 @@ Initial solution 2. Composition during halite precipitation pH = 5.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 189938 - Density (g/cm³) = 1.27454 - Volume (L) = 1.12971 - Viscosity (mPa s) = 3.68619 + Specific Conductance (µS/cm, 25°C) = 149839 + Density (g/cm³) = 1.27237 + Volume (L) = 1.13163 + Viscosity (mPa s) = 3.75438 Activity of water = 0.678 Ionic strength (mol/kgw) = 1.111e+01 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 7.522e-06 + Total alkalinity (eq/kg) = 7.463e-06 Total CO2 (mol/kg) = 6.950e-06 Temperature (°C) = 25.00 Electrical balance (eq) = 4.629e-02 @@ -258,8 +258,8 @@ Mg 2.354e+00 Na 2.720e+00 Na+ 2.720e+00 8.832e+00 0.435 0.946 0.511 2.22 S(6) 8.986e-01 - SO4-2 8.986e-01 2.396e-03 -0.046 -2.621 -2.574 28.39 - HSO4- 2.838e-06 2.282e-06 -5.547 -5.642 -0.095 42.44 + SO4-2 8.986e-01 2.396e-03 -0.046 -2.621 -2.574 30.53 + HSO4- 2.897e-06 2.329e-06 -5.538 -5.633 -0.095 42.44 ------------------------------Saturation indices------------------------------- @@ -324,7 +324,7 @@ Solution 2: Composition during halite precipitation Input Delta Input+Delta pH 5.000e+00 + 0.000e+00 = 5.000e+00 - Alkalinity 7.522e-06 + -1.880e-07 = 7.334e-06 + Alkalinity 7.463e-06 + -1.866e-07 = 7.277e-06 Br 3.785e-02 + 9.440e-04 = 3.880e-02 C(4) 6.950e-06 + 1.737e-07 = 7.123e-06 Ca 0.000e+00 + 0.000e+00 = 0.000e+00 diff --git a/ex17b.out b/ex17b.out index eddc464d..4eec2395 100644 --- a/ex17b.out +++ b/ex17b.out @@ -92,10 +92,10 @@ Initial solution 1. Black Sea water pH = 8.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 30482 - Density (g/cm³) = 1.01090 - Volume (L) = 1.00790 - Viscosity (mPa s) = 0.92638 + Specific Conductance (µS/cm, 25°C) = 29775 + Density (g/cm³) = 1.01091 + Volume (L) = 1.00789 + Viscosity (mPa s) = 0.92658 Activity of water = 0.990 Ionic strength (mol/kgw) = 3.751e-01 Mass of water (kg) = 1.000e+00 @@ -140,8 +140,8 @@ Mg 2.807e-02 Na 2.544e-01 Na+ 2.544e-01 1.837e-01 -0.595 -0.736 -0.141 -0.74 S(6) 1.527e-02 - SO4-2 1.527e-02 2.084e-03 -1.816 -2.681 -0.865 18.12 - HSO4- 2.901e-09 1.985e-09 -8.537 -8.702 -0.165 40.79 + SO4-2 1.527e-02 2.084e-03 -1.816 -2.681 -0.865 17.45 + HSO4- 2.961e-09 2.026e-09 -8.529 -8.693 -0.165 40.79 ------------------------------Saturation indices------------------------------- @@ -255,10 +255,10 @@ Polyhalite -9.73 -23.47 -13.74 0.000e+00 0 0.000e+00 pH = 8.000 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 30482 - Density (g/cm³) = 1.01090 - Volume (L) = 1.00790 - Viscosity (mPa s) = 0.92638 + Specific Conductance (µS/cm, 25°C) = 29775 + Density (g/cm³) = 1.01091 + Volume (L) = 1.00789 + Viscosity (mPa s) = 0.92658 Activity of water = 0.990 Ionic strength (mol/kgw) = 3.751e-01 Mass of water (kg) = 1.000e+00 @@ -303,8 +303,8 @@ Mg 2.807e-02 Na 2.544e-01 Na+ 2.544e-01 1.837e-01 -0.595 -0.736 -0.141 -0.74 S(6) 1.527e-02 - SO4-2 1.527e-02 2.084e-03 -1.816 -2.681 -0.865 18.12 - HSO4- 2.901e-09 1.985e-09 -8.537 -8.702 -0.165 40.79 + SO4-2 1.527e-02 2.084e-03 -1.816 -2.681 -0.865 17.45 + HSO4- 2.961e-09 2.026e-09 -8.529 -8.693 -0.165 40.79 ------------------------------Saturation indices------------------------------- @@ -414,10 +414,10 @@ Polyhalite -7.26 -21.00 -13.74 0.000e+00 0 0.000e+00 pH = 7.848 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 73783 - Density (g/cm³) = 1.03526 + Specific Conductance (µS/cm, 25°C) = 73054 + Density (g/cm³) = 1.03527 Volume (L) = 0.35767 - Viscosity (mPa s) = 0.99317 + Viscosity (mPa s) = 0.99372 Activity of water = 0.972 Ionic strength (mol/kgw) = 1.065e+00 Mass of water (kg) = 3.514e-01 @@ -445,7 +445,7 @@ Polyhalite -7.26 -21.00 -13.74 0.000e+00 0 0.000e+00 Br 1.252e-03 Br- 1.252e-03 7.919e-04 -2.902 -3.101 -0.199 25.39 C(4) 6.589e-04 - HCO3- 6.116e-04 3.357e-04 -3.214 -3.474 -0.260 27.27 + HCO3- 6.116e-04 3.357e-04 -3.214 -3.474 -0.260 27.28 CO3-2 1.917e-05 1.083e-06 -4.717 -5.965 -1.248 0.59 MgCO3 1.884e-05 1.884e-05 -4.725 -4.725 0.000 -17.09 CO2 9.195e-06 1.076e-05 -5.036 -4.968 0.068 34.43 @@ -462,8 +462,8 @@ Mg 7.987e-02 Na 7.238e-01 Na+ 7.238e-01 5.140e-01 -0.140 -0.289 -0.149 -0.27 S(6) 4.345e-02 - SO4-2 4.345e-02 2.642e-03 -1.362 -2.578 -1.216 19.70 - HSO4- 5.845e-09 3.572e-09 -8.233 -8.447 -0.214 41.13 + SO4-2 4.345e-02 2.642e-03 -1.362 -2.578 -1.216 19.50 + HSO4- 5.966e-09 3.646e-09 -8.224 -8.438 -0.214 41.13 ------------------------------Saturation indices------------------------------- @@ -573,10 +573,10 @@ Polyhalite -6.70 -20.44 -13.74 0.000e+00 0 0.000e+00 pH = 7.793 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 88277 - Density (g/cm³) = 1.04463 + Specific Conductance (µS/cm, 25°C) = 88022 + Density (g/cm³) = 1.04464 Volume (L) = 0.28547 - Viscosity (mPa s) = 1.02147 + Viscosity (mPa s) = 1.02215 Activity of water = 0.965 Ionic strength (mol/kgw) = 1.340e+00 Mass of water (kg) = 2.794e-01 @@ -621,8 +621,8 @@ Mg 1.005e-01 Na 9.105e-01 Na+ 9.105e-01 6.552e-01 -0.041 -0.184 -0.143 -0.14 S(6) 5.466e-02 - SO4-2 5.466e-02 2.683e-03 -1.262 -2.571 -1.309 20.17 - HSO4- 6.924e-09 4.119e-09 -8.160 -8.385 -0.226 41.22 + SO4-2 5.466e-02 2.683e-03 -1.262 -2.571 -1.309 20.11 + HSO4- 7.066e-09 4.204e-09 -8.151 -8.376 -0.226 41.22 ------------------------------Saturation indices------------------------------- @@ -732,10 +732,10 @@ Polyhalite -5.93 -19.68 -13.74 0.000e+00 0 0.000e+00 pH = 7.710 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 110217 - Density (g/cm³) = 1.06017 + Specific Conductance (µS/cm, 25°C) = 110997 + Density (g/cm³) = 1.06016 Volume (L) = 0.21331 - Viscosity (mPa s) = 1.07209 + Viscosity (mPa s) = 1.07296 Activity of water = 0.952 Ionic strength (mol/kgw) = 1.805e+00 Mass of water (kg) = 2.073e-01 @@ -765,7 +765,7 @@ Br 2.123e-03 C(4) 5.530e-04 HCO3- 5.064e-04 2.392e-04 -3.295 -3.621 -0.326 28.42 MgCO3 2.004e-05 2.004e-05 -4.698 -4.698 0.000 -17.09 - CO3-2 1.833e-05 5.618e-07 -4.737 -6.250 -1.514 2.21 + CO3-2 1.833e-05 5.618e-07 -4.737 -6.250 -1.514 2.22 CO2 8.248e-06 1.076e-05 -5.084 -4.968 0.115 34.43 Ca 2.664e-02 Ca+2 2.664e-02 6.991e-03 -1.575 -2.155 -0.581 -16.03 @@ -780,8 +780,8 @@ Mg 1.354e-01 Na 1.227e+00 Na+ 1.227e+00 9.140e-01 0.089 -0.039 -0.128 0.06 S(6) 7.367e-02 - SO4-2 7.367e-02 2.673e-03 -1.133 -2.573 -1.440 20.87 - HSO4- 8.654e-09 4.964e-09 -8.063 -8.304 -0.241 41.36 + SO4-2 7.367e-02 2.673e-03 -1.133 -2.573 -1.440 21.01 + HSO4- 8.832e-09 5.066e-09 -8.054 -8.295 -0.241 41.36 ------------------------------Saturation indices------------------------------- @@ -891,10 +891,10 @@ Polyhalite -4.92 -18.67 -13.74 0.000e+00 0 0.000e+00 pH = 7.595 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 147344 - Density (g/cm³) = 1.09024 - Volume (L) = 0.14119 - Viscosity (mPa s) = 1.18521 + Specific Conductance (µS/cm, 25°C) = 149856 + Density (g/cm³) = 1.09018 + Volume (L) = 0.14120 + Viscosity (mPa s) = 1.18635 Activity of water = 0.923 Ionic strength (mol/kgw) = 2.742e+00 Mass of water (kg) = 1.352e-01 @@ -924,7 +924,7 @@ Br 3.255e-03 C(4) 4.882e-04 HCO3- 4.370e-04 1.778e-04 -3.360 -3.750 -0.390 29.65 MgCO3 2.558e-05 2.558e-05 -4.592 -4.592 0.000 -17.09 - CO3-2 1.848e-05 3.201e-07 -4.733 -6.495 -1.761 3.92 + CO3-2 1.848e-05 3.201e-07 -4.733 -6.495 -1.761 3.93 CO2 7.188e-06 1.076e-05 -5.143 -4.968 0.175 34.43 Ca 3.443e-02 Ca+2 3.443e-02 1.227e-02 -1.463 -1.911 -0.448 -15.60 @@ -939,8 +939,8 @@ Mg 2.076e-01 Na 1.881e+00 Na+ 1.881e+00 1.553e+00 0.274 0.191 -0.083 0.40 S(6) 1.067e-01 - SO4-2 1.067e-01 2.402e-03 -0.972 -2.619 -1.648 22.05 - HSO4- 1.074e-08 5.820e-09 -7.969 -8.235 -0.266 41.57 + SO4-2 1.067e-01 2.402e-03 -0.972 -2.619 -1.648 22.52 + HSO4- 1.096e-08 5.940e-09 -7.960 -8.226 -0.266 41.57 ------------------------------Saturation indices------------------------------- @@ -1050,10 +1050,10 @@ Polyhalite -4.70 -18.44 -13.74 0.000e+00 0 0.000e+00 pH = 7.573 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 161102 - Density (g/cm³) = 1.10245 - Volume (L) = 0.12316 - Viscosity (mPa s) = 1.23782 + Specific Conductance (µS/cm, 25°C) = 163778 + Density (g/cm³) = 1.10237 + Volume (L) = 0.12317 + Viscosity (mPa s) = 1.23905 Activity of water = 0.909 Ionic strength (mol/kgw) = 3.136e+00 Mass of water (kg) = 1.172e-01 @@ -1098,8 +1098,8 @@ Mg 2.396e-01 Na 2.171e+00 Na+ 2.171e+00 1.894e+00 0.337 0.277 -0.059 0.52 S(6) 1.162e-01 - SO4-2 1.162e-01 2.210e-03 -0.935 -2.656 -1.721 22.49 - HSO4- 1.060e-08 5.624e-09 -7.975 -8.250 -0.275 41.65 + SO4-2 1.162e-01 2.210e-03 -0.935 -2.656 -1.721 23.07 + HSO4- 1.081e-08 5.739e-09 -7.966 -8.241 -0.275 41.65 ------------------------------Saturation indices------------------------------- @@ -1209,10 +1209,10 @@ Polyhalite -4.40 -18.15 -13.74 0.000e+00 0 0.000e+00 pH = 7.546 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 177871 - Density (g/cm³) = 1.11861 - Volume (L) = 0.10514 - Viscosity (mPa s) = 1.31475 + Specific Conductance (µS/cm, 25°C) = 180007 + Density (g/cm³) = 1.11850 + Volume (L) = 0.10515 + Viscosity (mPa s) = 1.31607 Activity of water = 0.890 Ionic strength (mol/kgw) = 3.673e+00 Mass of water (kg) = 9.912e-02 @@ -1240,9 +1240,9 @@ Polyhalite -4.40 -18.15 -13.74 0.000e+00 0 0.000e+00 Br 4.441e-03 Br- 4.441e-03 3.024e-03 -2.353 -2.519 -0.167 25.96 C(4) 5.058e-04 - HCO3- 4.339e-04 1.533e-04 -3.363 -3.815 -0.452 30.72 + HCO3- 4.339e-04 1.533e-04 -3.363 -3.815 -0.452 30.73 MgCO3 4.351e-05 4.351e-05 -4.361 -4.361 0.000 -17.09 - CO3-2 2.218e-05 2.465e-07 -4.654 -6.608 -1.954 5.41 + CO3-2 2.218e-05 2.465e-07 -4.654 -6.608 -1.954 5.42 CO2 6.266e-06 1.076e-05 -5.203 -4.968 0.235 34.43 Ca 2.998e-02 Ca+2 2.998e-02 1.593e-02 -1.523 -1.798 -0.275 -15.20 @@ -1257,8 +1257,8 @@ Mg 2.832e-01 Na 2.566e+00 Na+ 2.566e+00 2.428e+00 0.409 0.385 -0.024 0.68 S(6) 1.287e-01 - SO4-2 1.287e-01 1.987e-03 -0.891 -2.702 -1.811 23.04 - HSO4- 1.044e-08 5.390e-09 -7.981 -8.268 -0.287 41.74 + SO4-2 1.287e-01 1.987e-03 -0.891 -2.702 -1.811 23.77 + HSO4- 1.065e-08 5.501e-09 -7.973 -8.260 -0.287 41.74 ------------------------------Saturation indices------------------------------- @@ -1368,10 +1368,10 @@ Polyhalite -4.00 -17.74 -13.74 0.000e+00 0 0.000e+00 pH = 7.508 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 198669 - Density (g/cm³) = 1.14104 - Volume (L) = 0.08715 - Viscosity (mPa s) = 1.43745 + Specific Conductance (µS/cm, 25°C) = 198384 + Density (g/cm³) = 1.14090 + Volume (L) = 0.08716 + Viscosity (mPa s) = 1.43886 Activity of water = 0.861 Ionic strength (mol/kgw) = 4.446e+00 Mass of water (kg) = 8.107e-02 @@ -1416,8 +1416,8 @@ Mg 3.463e-01 Na 3.138e+00 Na+ 3.138e+00 3.377e+00 0.497 0.529 0.032 0.88 S(6) 1.463e-01 - SO4-2 1.463e-01 1.730e-03 -0.835 -2.762 -1.927 23.76 - HSO4- 1.028e-08 5.113e-09 -7.988 -8.291 -0.303 41.85 + SO4-2 1.463e-01 1.730e-03 -0.835 -2.762 -1.927 24.69 + HSO4- 1.049e-08 5.218e-09 -7.979 -8.282 -0.303 41.85 ------------------------------Saturation indices------------------------------- @@ -1527,10 +1527,10 @@ Polyhalite -3.38 -17.12 -13.74 0.000e+00 0 0.000e+00 pH = 7.454 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 224762 - Density (g/cm³) = 1.17441 - Volume (L) = 0.06920 - Viscosity (mPa s) = 1.66148 + Specific Conductance (µS/cm, 25°C) = 216929 + Density (g/cm³) = 1.17419 + Volume (L) = 0.06922 + Viscosity (mPa s) = 1.66307 Activity of water = 0.811 Ionic strength (mol/kgw) = 5.663e+00 Mass of water (kg) = 6.302e-02 @@ -1575,8 +1575,8 @@ Mg 4.454e-01 Na 4.036e+00 Na+ 4.036e+00 5.442e+00 0.606 0.736 0.130 1.18 S(6) 1.742e-01 - SO4-2 1.742e-01 1.429e-03 -0.759 -2.845 -2.086 24.79 - HSO4- 1.023e-08 4.788e-09 -7.990 -8.320 -0.330 42.00 + SO4-2 1.742e-01 1.429e-03 -0.759 -2.845 -2.086 25.99 + HSO4- 1.044e-08 4.886e-09 -7.981 -8.311 -0.330 42.00 ------------------------------Saturation indices------------------------------- @@ -1686,10 +1686,10 @@ Polyhalite -2.55 -16.29 -13.74 0.000e+00 0 0.000e+00 pH = 7.359 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 249347 - Density (g/cm³) = 1.21449 - Volume (L) = 0.05087 - Viscosity (mPa s) = 2.02761 + Specific Conductance (µS/cm, 25°C) = 226117 + Density (g/cm³) = 1.21418 + Volume (L) = 0.05088 + Viscosity (mPa s) = 2.03087 Activity of water = 0.739 Ionic strength (mol/kgw) = 7.301e+00 Mass of water (kg) = 4.504e-02 @@ -1734,8 +1734,8 @@ Mg 6.232e-01 Na 5.118e+00 Na+ 5.118e+00 9.795e+00 0.709 0.991 0.282 1.53 S(6) 1.916e-01 - SO4-2 1.916e-01 1.013e-03 -0.718 -2.994 -2.277 26.00 - HSO4- 9.651e-09 4.224e-09 -8.015 -8.374 -0.359 42.17 + SO4-2 1.916e-01 1.013e-03 -0.718 -2.994 -2.277 27.52 + HSO4- 9.849e-09 4.310e-09 -8.007 -8.365 -0.359 42.17 ------------------------------Saturation indices------------------------------- @@ -1845,10 +1845,10 @@ Polyhalite -1.68 -15.43 -13.74 0.000e+00 0 0.000e+00 pH = 7.364 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 236925 - Density (g/cm³) = 1.22037 - Volume (L) = 0.03049 - Viscosity (mPa s) = 2.19147 + Specific Conductance (µS/cm, 25°C) = 214023 + Density (g/cm³) = 1.21997 + Volume (L) = 0.03050 + Viscosity (mPa s) = 2.19817 Activity of water = 0.729 Ionic strength (mol/kgw) = 7.901e+00 Mass of water (kg) = 2.709e-02 @@ -1893,8 +1893,8 @@ Mg 1.036e+00 Na 4.391e+00 Na+ 4.391e+00 9.485e+00 0.643 0.977 0.334 1.64 S(6) 2.312e-01 - SO4-2 2.312e-01 1.052e-03 -0.636 -2.978 -2.342 26.41 - HSO4- 8.284e-09 4.332e-09 -8.082 -8.363 -0.281 42.22 + SO4-2 2.312e-01 1.052e-03 -0.636 -2.978 -2.342 28.04 + HSO4- 8.454e-09 4.421e-09 -8.073 -8.354 -0.281 42.22 ------------------------------Saturation indices------------------------------- @@ -2004,10 +2004,10 @@ Polyhalite -1.34 -15.08 -13.74 0.000e+00 0 0.000e+00 pH = 7.367 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 231007 - Density (g/cm³) = 1.22383 - Volume (L) = 0.02540 - Viscosity (mPa s) = 2.29181 + Specific Conductance (µS/cm, 25°C) = 207654 + Density (g/cm³) = 1.22336 + Volume (L) = 0.02541 + Viscosity (mPa s) = 2.30055 Activity of water = 0.724 Ionic strength (mol/kgw) = 8.219e+00 Mass of water (kg) = 2.260e-02 @@ -2029,7 +2029,7 @@ Polyhalite -1.34 -15.08 -13.74 0.000e+00 0 0.000e+00 MacInnes Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.396e-06 1.704e-07 -5.855 -6.768 -0.913 7.52 + OH- 1.396e-06 1.704e-07 -5.855 -6.768 -0.913 7.53 H+ 3.969e-09 4.297e-08 -8.401 -7.367 1.035 0.00 H2O 5.551e+01 7.235e-01 1.744 -0.141 0.000 18.07 Br 1.947e-02 @@ -2052,8 +2052,8 @@ Mg 1.242e+00 Na 4.043e+00 Na+ 4.043e+00 9.316e+00 0.607 0.969 0.362 1.71 S(6) 2.554e-01 - SO4-2 2.554e-01 1.073e-03 -0.593 -2.969 -2.376 26.62 - HSO4- 7.711e-09 4.394e-09 -8.113 -8.357 -0.244 42.24 + SO4-2 2.554e-01 1.073e-03 -0.593 -2.969 -2.376 28.31 + HSO4- 7.870e-09 4.484e-09 -8.104 -8.348 -0.244 42.24 ------------------------------Saturation indices------------------------------- @@ -2139,7 +2139,7 @@ CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 1.326e-06 Calcite 0.00 -8.41 -8.41 3.446e-04 3.382e-04 -6.361e-06 Carnallite -2.67 1.76 4.42 0.000e+00 0 0.000e+00 Epsomite -0.81 -2.66 -1.85 0.000e+00 0 0.000e+00 -Glauberite 0.00 -5.35 -5.35 4.231e-03 4.522e-03 2.908e-04 +Glauberite -0.00 -5.35 -5.35 4.231e-03 4.522e-03 2.908e-04 Gypsum 0.00 -4.60 -4.60 1.036e-03 8.218e-04 -2.145e-04 Halite 0.00 1.58 1.58 1.545e-01 1.812e-01 2.664e-02 Hexahydrite -0.95 -2.52 -1.57 0.000e+00 0 0.000e+00 @@ -2163,10 +2163,10 @@ Polyhalite -0.87 -14.62 -13.74 0.000e+00 0 0.000e+00 pH = 7.371 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 222459 - Density (g/cm³) = 1.22975 - Volume (L) = 0.02032 - Viscosity (mPa s) = 2.47250 + Specific Conductance (µS/cm, 25°C) = 197529 + Density (g/cm³) = 1.22919 + Volume (L) = 0.02033 + Viscosity (mPa s) = 2.48495 Activity of water = 0.714 Ionic strength (mol/kgw) = 8.723e+00 Mass of water (kg) = 1.810e-02 @@ -2211,8 +2211,8 @@ Mg 1.550e+00 Na 3.544e+00 Na+ 3.544e+00 9.044e+00 0.550 0.956 0.407 1.80 S(6) 2.985e-01 - SO4-2 2.985e-01 1.109e-03 -0.525 -2.955 -2.430 26.96 - HSO4- 6.970e-09 4.496e-09 -8.157 -8.347 -0.190 42.28 + SO4-2 2.985e-01 1.109e-03 -0.525 -2.955 -2.430 28.72 + HSO4- 7.113e-09 4.588e-09 -8.148 -8.338 -0.190 42.28 ------------------------------Saturation indices------------------------------- @@ -2233,7 +2233,7 @@ S(6) 2.985e-01 Epsomite -0.81 -2.66 -1.85 MgSO4:7H2O Gaylussite -4.86 -14.28 -9.42 CaNa2(CO3)2:5H2O Glaserite -2.82 -6.63 -3.80 NaK3(SO4)2 - Glauberite 0.00 -5.35 -5.35 Na2Ca(SO4)2 + Glauberite -0.00 -5.35 -5.35 Na2Ca(SO4)2 Goergeyite 3.61 -25.75 -29.37 K2Ca5(SO4)6H2O Gypsum 0.00 -4.60 -4.60 CaSO4:2H2O H2O(g) -1.65 -0.15 1.50 H2O @@ -2322,10 +2322,10 @@ Polyhalite -0.42 -14.16 -13.74 0.000e+00 0 0.000e+00 pH = 7.375 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 213703 - Density (g/cm³) = 1.23728 - Volume (L) = 0.01674 - Viscosity (mPa s) = 2.71674 + Specific Conductance (µS/cm, 25°C) = 185821 + Density (g/cm³) = 1.23656 + Volume (L) = 0.01675 + Viscosity (mPa s) = 2.73450 Activity of water = 0.702 Ionic strength (mol/kgw) = 9.307e+00 Mass of water (kg) = 1.493e-02 @@ -2347,7 +2347,7 @@ Polyhalite -0.42 -14.16 -13.74 0.000e+00 0 0.000e+00 MacInnes Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 2.254e-06 1.686e-07 -5.647 -6.773 -1.126 8.89 + OH- 2.254e-06 1.686e-07 -5.647 -6.773 -1.126 8.88 H+ 2.982e-09 4.214e-08 -8.525 -7.375 1.150 0.00 H2O 5.551e+01 7.019e-01 1.744 -0.154 0.000 18.07 Br 2.947e-02 @@ -2355,7 +2355,7 @@ Br 2.947e-02 C(4) 3.330e-03 MgCO3 2.432e-03 2.432e-03 -2.614 -2.614 0.000 -17.09 HCO3- 6.924e-04 8.164e-05 -3.160 -4.088 -0.928 35.90 - CO3-2 2.028e-04 8.870e-08 -3.693 -7.052 -3.359 12.52 + CO3-2 2.028e-04 8.870e-08 -3.693 -7.052 -3.359 12.51 CO2 3.191e-06 1.076e-05 -5.496 -4.968 0.528 34.43 Ca 7.467e-03 Ca+2 7.467e-03 4.427e-02 -2.127 -1.354 0.773 -13.02 @@ -2370,8 +2370,8 @@ Mg 1.880e+00 Na 3.045e+00 Na+ 3.045e+00 8.730e+00 0.484 0.941 0.457 1.91 S(6) 3.561e-01 - SO4-2 3.561e-01 1.150e-03 -0.448 -2.939 -2.491 27.32 - HSO4- 6.314e-09 4.618e-09 -8.200 -8.336 -0.136 42.32 + SO4-2 3.561e-01 1.150e-03 -0.448 -2.939 -2.491 29.18 + HSO4- 6.444e-09 4.713e-09 -8.191 -8.327 -0.136 42.32 ------------------------------Saturation indices------------------------------- @@ -2457,7 +2457,7 @@ CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 4.803e-07 Calcite 0.00 -8.41 -8.41 3.284e-04 3.238e-04 -4.588e-06 Carnallite -2.26 2.17 4.42 0.000e+00 0 0.000e+00 Epsomite -0.60 -2.45 -1.85 0.000e+00 0 0.000e+00 -Glauberite 0.00 -5.35 -5.35 4.552e-03 4.508e-03 -4.353e-05 +Glauberite -0.00 -5.35 -5.35 4.552e-03 4.508e-03 -4.353e-05 Gypsum 0.00 -4.60 -4.60 8.495e-04 9.107e-04 6.112e-05 Halite 0.00 1.58 1.58 1.998e-01 2.051e-01 5.274e-03 Hexahydrite -0.73 -2.29 -1.57 0.000e+00 0 0.000e+00 @@ -2481,10 +2481,10 @@ Polyhalite -0.26 -14.00 -13.74 0.000e+00 0 0.000e+00 pH = 7.377 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 210567 - Density (g/cm³) = 1.24041 - Volume (L) = 0.01573 - Viscosity (mPa s) = 2.82291 + Specific Conductance (µS/cm, 25°C) = 181272 + Density (g/cm³) = 1.23961 + Volume (L) = 0.01574 + Viscosity (mPa s) = 2.84317 Activity of water = 0.697 Ionic strength (mol/kgw) = 9.534e+00 Mass of water (kg) = 1.403e-02 @@ -2493,8 +2493,8 @@ Polyhalite -0.26 -14.00 -13.74 0.000e+00 0 0.000e+00 Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.18 - Iterations = 32 - Gamma iterations = 6 + Iterations = 9 + Gamma iterations = 3 Osmotic coefficient = 1.68139 Density of water = 0.99704 Total H = 1.557491e+00 @@ -2529,8 +2529,8 @@ Mg 2.001e+00 Na 2.871e+00 Na+ 2.871e+00 8.608e+00 0.458 0.935 0.477 1.95 S(6) 3.809e-01 - SO4-2 3.809e-01 1.167e-03 -0.419 -2.933 -2.514 27.46 - HSO4- 6.104e-09 4.667e-09 -8.214 -8.331 -0.117 42.34 + SO4-2 3.809e-01 1.167e-03 -0.419 -2.933 -2.514 29.36 + HSO4- 6.229e-09 4.763e-09 -8.206 -8.322 -0.117 42.34 ------------------------------Saturation indices------------------------------- @@ -2551,7 +2551,7 @@ S(6) 3.809e-01 Epsomite -0.60 -2.45 -1.85 MgSO4:7H2O Gaylussite -4.95 -14.37 -9.42 CaNa2(CO3)2:5H2O Glaserite -2.37 -6.17 -3.80 NaK3(SO4)2 - Glauberite 0.00 -5.35 -5.35 Na2Ca(SO4)2 + Glauberite -0.00 -5.35 -5.35 Na2Ca(SO4)2 Goergeyite 4.02 -25.35 -29.37 K2Ca5(SO4)6H2O Gypsum 0.00 -4.60 -4.60 CaSO4:2H2O H2O(g) -1.66 -0.16 1.50 H2O @@ -2613,7 +2613,7 @@ Phase SI log IAP log K(T, P) Initial Final Delta Anhydrite -0.03 -4.28 -4.25 0.000e+00 0 0.000e+00 Bischofite -2.59 2.00 4.59 0.000e+00 0 0.000e+00 CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 5.638e-07 -Calcite 0.00 -8.41 -8.41 3.238e-04 3.178e-04 -6.007e-06 +Calcite -0.00 -8.41 -8.41 3.238e-04 3.178e-04 -6.007e-06 Carnallite -2.14 2.28 4.42 0.000e+00 0 0.000e+00 Epsomite -0.54 -2.39 -1.85 0.000e+00 0 0.000e+00 Glauberite 0.00 -5.35 -5.35 4.508e-03 4.428e-03 -8.034e-05 @@ -2640,10 +2640,10 @@ Polyhalite -0.08 -13.82 -13.74 0.000e+00 0 0.000e+00 pH = 7.379 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 207036 - Density (g/cm³) = 1.24421 - Volume (L) = 0.01471 - Viscosity (mPa s) = 2.95651 + Specific Conductance (µS/cm, 25°C) = 175925 + Density (g/cm³) = 1.24332 + Volume (L) = 0.01472 + Viscosity (mPa s) = 2.98015 Activity of water = 0.691 Ionic strength (mol/kgw) = 9.803e+00 Mass of water (kg) = 1.313e-02 @@ -2686,10 +2686,10 @@ Mg 2.139e+00 MgCO3 3.427e-03 3.427e-03 -2.465 -2.465 0.000 -17.09 MgOH+ 1.246e-03 1.170e-03 -2.905 -2.932 -0.027 (0) Na 2.680e+00 - Na+ 2.680e+00 8.467e+00 0.428 0.928 0.500 1.99 + Na+ 2.680e+00 8.467e+00 0.428 0.928 0.500 2.00 S(6) 4.118e-01 - SO4-2 4.118e-01 1.186e-03 -0.385 -2.926 -2.541 27.62 - HSO4- 5.883e-09 4.725e-09 -8.230 -8.326 -0.095 42.36 + SO4-2 4.118e-01 1.186e-03 -0.385 -2.926 -2.541 29.56 + HSO4- 6.004e-09 4.822e-09 -8.222 -8.317 -0.095 42.36 ------------------------------Saturation indices------------------------------- @@ -2703,7 +2703,7 @@ S(6) 4.118e-01 Bloedite -0.63 -2.98 -2.35 Na2Mg(SO4)2:4H2O Brucite -1.01 -11.89 -10.88 Mg(OH)2 Burkeite -6.57 -7.34 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.41 -8.41 CaCO3 + Calcite -0.00 -8.41 -8.41 CaCO3 Carnallite -2.14 2.28 4.42 KMgCl3:6H2O CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 Dolomite 3.29 -13.80 -17.09 CaMg(CO3)2 @@ -2799,10 +2799,10 @@ Polyhalite 0.00 -13.74 -13.74 0.000e+00 2.746e-04 2.746e-04 pH = 7.379 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 202501 - Density (g/cm³) = 1.24735 - Volume (L) = 0.01368 - Viscosity (mPa s) = 3.09874 + Specific Conductance (µS/cm, 25°C) = 169804 + Density (g/cm³) = 1.24638 + Volume (L) = 0.01369 + Viscosity (mPa s) = 3.12540 Activity of water = 0.686 Ionic strength (mol/kgw) = 1.005e+01 Mass of water (kg) = 1.221e-02 @@ -2811,8 +2811,8 @@ Polyhalite 0.00 -13.74 -13.74 0.000e+00 2.746e-04 2.746e-04 Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.32 - Iterations = 23 - Gamma iterations = 5 + Iterations = 9 + Gamma iterations = 3 Osmotic coefficient = 1.75312 Density of water = 0.99704 Total H = 1.355889e+00 @@ -2847,8 +2847,8 @@ Mg 2.276e+00 Na 2.509e+00 Na+ 2.509e+00 8.367e+00 0.399 0.923 0.523 2.04 S(6) 4.419e-01 - SO4-2 4.419e-01 1.196e-03 -0.355 -2.922 -2.568 27.77 - HSO4- 5.641e-09 4.763e-09 -8.249 -8.322 -0.074 42.37 + SO4-2 4.419e-01 1.196e-03 -0.355 -2.922 -2.568 29.75 + HSO4- 5.757e-09 4.861e-09 -8.240 -8.313 -0.074 42.37 ------------------------------Saturation indices------------------------------- @@ -2935,7 +2935,7 @@ Calcite 0.00 -8.41 -8.41 3.121e-04 3.058e-04 -6.308e-06 Carnallite -2.05 2.38 4.42 0.000e+00 0 0.000e+00 Epsomite -0.42 -2.27 -1.85 0.000e+00 0 0.000e+00 Glauberite -0.00 -5.35 -5.35 3.869e-03 3.038e-03 -8.316e-04 -Gypsum 0.00 -4.60 -4.60 1.036e-03 1.033e-03 -3.627e-06 +Gypsum -0.00 -4.60 -4.60 1.036e-03 1.033e-03 -3.627e-06 Halite 0.00 1.58 1.58 2.160e-01 2.218e-01 5.863e-03 Hexahydrite -0.54 -2.10 -1.57 0.000e+00 0 0.000e+00 Kieserite -1.00 -1.27 -0.27 0.000e+00 0 0.000e+00 @@ -2958,10 +2958,10 @@ Polyhalite 0.00 -13.74 -13.74 2.746e-04 7.008e-04 4.262e-04 pH = 7.378 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 196990 - Density (g/cm³) = 1.25038 - Volume (L) = 0.01263 - Viscosity (mPa s) = 3.26247 + Specific Conductance (µS/cm, 25°C) = 162768 + Density (g/cm³) = 1.24930 + Volume (L) = 0.01264 + Viscosity (mPa s) = 3.29229 Activity of water = 0.680 Ionic strength (mol/kgw) = 1.029e+01 Mass of water (kg) = 1.130e-02 @@ -3006,8 +3006,8 @@ Mg 2.423e+00 Na 2.341e+00 Na+ 2.341e+00 8.287e+00 0.369 0.918 0.549 2.08 S(6) 4.744e-01 - SO4-2 4.744e-01 1.200e-03 -0.324 -2.921 -2.597 27.91 - HSO4- 5.377e-09 4.790e-09 -8.269 -8.320 -0.050 42.39 + SO4-2 4.744e-01 1.200e-03 -0.324 -2.921 -2.597 29.93 + HSO4- 5.488e-09 4.888e-09 -8.261 -8.311 -0.050 42.39 ------------------------------Saturation indices------------------------------- @@ -3030,7 +3030,7 @@ S(6) 4.744e-01 Glaserite -2.40 -6.21 -3.80 NaK3(SO4)2 Glauberite -0.00 -5.35 -5.35 Na2Ca(SO4)2 Goergeyite 4.10 -25.27 -29.37 K2Ca5(SO4)6H2O - Gypsum 0.00 -4.60 -4.60 CaSO4:2H2O + Gypsum -0.00 -4.60 -4.60 CaSO4:2H2O H2O(g) -1.67 -0.17 1.50 H2O Halite 0.00 1.58 1.58 NaCl Hexahydrite -0.54 -2.10 -1.57 MgSO4:6H2O @@ -3093,7 +3093,7 @@ CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 3.369e-07 Calcite 0.00 -8.41 -8.41 3.058e-04 3.007e-04 -5.076e-06 Carnallite -2.03 2.40 4.42 0.000e+00 0 0.000e+00 Epsomite -0.38 -2.23 -1.85 0.000e+00 0 0.000e+00 -Glauberite -0.00 -5.35 -5.35 3.038e-03 2.540e-03 -4.976e-04 +Glauberite 0.00 -5.35 -5.35 3.038e-03 2.540e-03 -4.976e-04 Gypsum 0.00 -4.60 -4.60 1.033e-03 1.058e-03 2.566e-05 Halite 0.00 1.58 1.58 2.218e-01 2.253e-01 3.499e-03 Hexahydrite -0.49 -2.06 -1.57 0.000e+00 0 0.000e+00 @@ -3117,10 +3117,10 @@ Polyhalite 0.00 -13.74 -13.74 7.008e-04 9.425e-04 2.417e-04 pH = 7.377 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 193305 - Density (g/cm³) = 1.25269 - Volume (L) = 0.01200 - Viscosity (mPa s) = 3.38595 + Specific Conductance (µS/cm, 25°C) = 157939 + Density (g/cm³) = 1.25155 + Volume (L) = 0.01201 + Viscosity (mPa s) = 3.41850 Activity of water = 0.676 Ionic strength (mol/kgw) = 1.047e+01 Mass of water (kg) = 1.075e-02 @@ -3165,8 +3165,8 @@ Mg 2.524e+00 Na 2.227e+00 Na+ 2.227e+00 8.227e+00 0.348 0.915 0.567 2.11 S(6) 4.989e-01 - SO4-2 4.989e-01 1.203e-03 -0.302 -2.920 -2.618 28.02 - HSO4- 5.210e-09 4.811e-09 -8.283 -8.318 -0.035 42.40 + SO4-2 4.989e-01 1.203e-03 -0.302 -2.920 -2.618 30.06 + HSO4- 5.318e-09 4.910e-09 -8.274 -8.309 -0.035 42.40 ------------------------------Saturation indices------------------------------- @@ -3187,7 +3187,7 @@ S(6) 4.989e-01 Epsomite -0.38 -2.23 -1.85 MgSO4:7H2O Gaylussite -5.07 -14.49 -9.42 CaNa2(CO3)2:5H2O Glaserite -2.50 -6.30 -3.80 NaK3(SO4)2 - Glauberite -0.00 -5.35 -5.35 Na2Ca(SO4)2 + Glauberite 0.00 -5.35 -5.35 Na2Ca(SO4)2 Goergeyite 4.05 -25.31 -29.37 K2Ca5(SO4)6H2O Gypsum 0.00 -4.60 -4.60 CaSO4:2H2O H2O(g) -1.67 -0.17 1.50 H2O @@ -3252,12 +3252,12 @@ CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 3.978e-07 Calcite 0.00 -8.41 -8.41 3.007e-04 2.942e-04 -6.456e-06 Carnallite -2.01 2.42 4.42 0.000e+00 0 0.000e+00 Epsomite -0.34 -2.19 -1.85 0.000e+00 0 0.000e+00 -Glauberite -0.00 -5.35 -5.35 2.540e-03 2.040e-03 -4.999e-04 +Glauberite 0.00 -5.35 -5.35 2.540e-03 2.040e-03 -4.999e-04 Gypsum 0.00 -4.60 -4.60 1.058e-03 1.112e-03 5.332e-05 Halite 0.00 1.58 1.58 2.253e-01 2.288e-01 3.484e-03 Hexahydrite -0.45 -2.01 -1.57 0.000e+00 0 0.000e+00 Kieserite -0.88 -1.15 -0.27 0.000e+00 0 0.000e+00 -Polyhalite -0.00 -13.74 -13.74 9.425e-04 1.172e-03 2.296e-04 +Polyhalite 0.00 -13.74 -13.74 9.425e-04 1.172e-03 2.296e-04 -----------------------------Solution composition------------------------------ @@ -3276,10 +3276,10 @@ Polyhalite -0.00 -13.74 -13.74 9.425e-04 1.172e-03 2.296e-04 pH = 7.376 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 189287 - Density (g/cm³) = 1.25552 - Volume (L) = 0.01138 - Viscosity (mPa s) = 3.53535 + Specific Conductance (µS/cm, 25°C) = 152554 + Density (g/cm³) = 1.25429 + Volume (L) = 0.01139 + Viscosity (mPa s) = 3.57162 Activity of water = 0.672 Ionic strength (mol/kgw) = 1.068e+01 Mass of water (kg) = 1.020e-02 @@ -3324,8 +3324,8 @@ Mg 2.638e+00 Na 2.104e+00 Na+ 2.104e+00 8.154e+00 0.323 0.911 0.588 2.15 S(6) 5.286e-01 - SO4-2 5.286e-01 1.207e-03 -0.277 -2.918 -2.641 28.14 - HSO4- 5.038e-09 4.837e-09 -8.298 -8.315 -0.018 42.41 + SO4-2 5.286e-01 1.207e-03 -0.277 -2.918 -2.641 30.21 + HSO4- 5.141e-09 4.936e-09 -8.289 -8.307 -0.018 42.41 ------------------------------Saturation indices------------------------------- @@ -3346,7 +3346,7 @@ S(6) 5.286e-01 Epsomite -0.34 -2.19 -1.85 MgSO4:7H2O Gaylussite -5.10 -14.52 -9.42 CaNa2(CO3)2:5H2O Glaserite -2.61 -6.42 -3.80 NaK3(SO4)2 - Glauberite -0.00 -5.35 -5.35 Na2Ca(SO4)2 + Glauberite 0.00 -5.35 -5.35 Na2Ca(SO4)2 Goergeyite 4.01 -25.36 -29.37 K2Ca5(SO4)6H2O Gypsum 0.00 -4.60 -4.60 CaSO4:2H2O H2O(g) -1.68 -0.17 1.50 H2O @@ -3369,7 +3369,7 @@ S(6) 5.286e-01 Nesquehonite -0.48 -5.65 -5.17 MgCO3:3H2O Pentahydrite -0.56 -1.84 -1.28 MgSO4:5H2O Pirssonite -4.76 -14.00 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite -0.00 -13.74 -13.74 K2MgCa2(SO4)4:2H2O + Polyhalite 0.00 -13.74 -13.74 K2MgCa2(SO4)4:2H2O Portlandite -9.73 -14.92 -5.19 Ca(OH)2 Schoenite -1.60 -5.93 -4.33 K2Mg(SO4)2:6H2O Sylvite -0.73 0.17 0.90 KCl @@ -3411,7 +3411,7 @@ CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 4.567e-07 Calcite 0.00 -8.41 -8.41 2.942e-04 2.856e-04 -8.634e-06 Carnallite -1.98 2.44 4.42 0.000e+00 0 0.000e+00 Epsomite -0.29 -2.14 -1.85 0.000e+00 0 0.000e+00 -Glauberite 0.00 -5.35 -5.35 2.040e-03 1.544e-03 -4.957e-04 +Glauberite -0.00 -5.35 -5.35 2.040e-03 1.544e-03 -4.957e-04 Gypsum -0.00 -4.60 -4.60 1.112e-03 0 -1.112e-03 Halite 0.00 1.58 1.58 2.288e-01 2.321e-01 3.235e-03 Hexahydrite -0.40 -1.96 -1.57 0.000e+00 0 0.000e+00 @@ -3435,10 +3435,10 @@ Polyhalite 0.00 -13.74 -13.74 1.172e-03 1.369e-03 1.969e-04 pH = 7.378 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 185142 - Density (g/cm³) = 1.25892 - Volume (L) = 0.01080 - Viscosity (mPa s) = 3.70710 + Specific Conductance (µS/cm, 25°C) = 146876 + Density (g/cm³) = 1.25755 + Volume (L) = 0.01081 + Viscosity (mPa s) = 3.74839 Activity of water = 0.667 Ionic strength (mol/kgw) = 1.091e+01 Mass of water (kg) = 9.689e-03 @@ -3447,7 +3447,7 @@ Polyhalite 0.00 -13.74 -13.74 1.172e-03 1.369e-03 1.969e-04 Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.60 - Iterations = 13 + Iterations = 11 Gamma iterations = 4 Osmotic coefficient = 1.89560 Density of water = 0.99704 @@ -3460,7 +3460,7 @@ Polyhalite 0.00 -13.74 -13.74 1.172e-03 1.369e-03 1.969e-04 MacInnes Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 4.322e-06 1.613e-07 -5.364 -6.792 -1.428 10.86 + OH- 4.322e-06 1.613e-07 -5.364 -6.792 -1.428 10.87 H+ 1.934e-09 4.184e-08 -8.713 -7.378 1.335 0.00 H2O 5.551e+01 6.665e-01 1.744 -0.176 0.000 18.07 Br 4.542e-02 @@ -3468,23 +3468,23 @@ Br 4.542e-02 C(4) 9.222e-03 MgCO3 7.372e-03 7.372e-03 -2.132 -2.132 0.000 -17.09 HCO3- 1.107e-03 7.810e-05 -2.956 -4.107 -1.151 37.14 - CO3-2 7.413e-04 8.547e-08 -3.130 -7.068 -3.938 14.21 + CO3-2 7.413e-04 8.547e-08 -3.130 -7.068 -3.938 14.22 CO2 2.728e-06 1.076e-05 -5.564 -4.968 0.596 34.43 Ca 4.617e-03 - Ca+2 4.617e-03 4.595e-02 -2.336 -1.338 0.998 -12.43 + Ca+2 4.617e-03 4.595e-02 -2.336 -1.338 0.998 -12.42 Cl 6.294e+00 Cl- 6.294e+00 4.724e+00 0.799 0.674 -0.125 20.69 K 2.293e-01 - K+ 2.293e-01 2.918e-01 -0.640 -0.535 0.105 14.24 + K+ 2.293e-01 2.918e-01 -0.640 -0.535 0.105 14.25 Mg 2.756e+00 - Mg+2 2.746e+00 1.018e+02 0.439 2.008 1.569 -15.68 + Mg+2 2.746e+00 1.018e+02 0.439 2.008 1.569 -15.67 MgCO3 7.372e-03 7.372e-03 -2.132 -2.132 0.000 -17.09 MgOH+ 2.160e-03 2.517e-03 -2.666 -2.599 0.067 (0) Na 1.983e+00 Na+ 1.983e+00 8.077e+00 0.297 0.907 0.610 2.18 S(6) 5.653e-01 - SO4-2 5.653e-01 1.220e-03 -0.248 -2.913 -2.666 28.27 - HSO4- 4.875e-09 4.864e-09 -8.312 -8.313 -0.001 42.42 + SO4-2 5.653e-01 1.220e-03 -0.248 -2.913 -2.666 30.38 + HSO4- 4.975e-09 4.964e-09 -8.303 -8.304 -0.001 42.42 ------------------------------Saturation indices------------------------------- @@ -3505,7 +3505,7 @@ S(6) 5.653e-01 Epsomite -0.29 -2.14 -1.85 MgSO4:7H2O Gaylussite -5.12 -14.54 -9.42 CaNa2(CO3)2:5H2O Glaserite -2.72 -6.52 -3.80 NaK3(SO4)2 - Glauberite 0.00 -5.35 -5.35 Na2Ca(SO4)2 + Glauberite -0.00 -5.35 -5.35 Na2Ca(SO4)2 Goergeyite 3.95 -25.42 -29.37 K2Ca5(SO4)6H2O Gypsum -0.00 -4.60 -4.60 CaSO4:2H2O H2O(g) -1.68 -0.18 1.50 H2O @@ -3570,7 +3570,7 @@ CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 6.284e-07 Calcite 0.00 -8.41 -8.41 2.856e-04 2.716e-04 -1.398e-05 Carnallite -1.96 2.46 4.42 0.000e+00 0 0.000e+00 Epsomite -0.23 -2.08 -1.85 0.000e+00 0 0.000e+00 -Glauberite 0.00 -5.35 -5.35 1.544e-03 9.450e-04 -5.993e-04 +Glauberite -0.00 -5.35 -5.35 1.544e-03 9.450e-04 -5.993e-04 Gypsum -0.01 -4.61 -4.60 0.000e+00 0 0.000e+00 Halite 0.00 1.58 1.58 2.321e-01 2.356e-01 3.547e-03 Hexahydrite -0.33 -1.90 -1.57 0.000e+00 0 0.000e+00 @@ -3594,10 +3594,10 @@ Polyhalite 0.00 -13.74 -13.74 1.369e-03 1.563e-03 1.942e-04 pH = 7.386 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 180044 - Density (g/cm³) = 1.26371 - Volume (L) = 0.01018 - Viscosity (mPa s) = 3.94431 + Specific Conductance (µS/cm, 25°C) = 139761 + Density (g/cm³) = 1.26219 + Volume (L) = 0.01020 + Viscosity (mPa s) = 3.99402 Activity of water = 0.660 Ionic strength (mol/kgw) = 1.122e+01 Mass of water (kg) = 9.142e-03 @@ -3619,7 +3619,7 @@ Polyhalite 0.00 -13.74 -13.74 1.369e-03 1.563e-03 1.942e-04 MacInnes Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 4.862e-06 1.623e-07 -5.313 -6.790 -1.476 11.24 + OH- 4.862e-06 1.623e-07 -5.313 -6.790 -1.476 11.25 H+ 1.765e-09 4.115e-08 -8.753 -7.386 1.368 0.00 H2O 5.551e+01 6.600e-01 1.744 -0.180 0.000 18.07 Br 4.814e-02 @@ -3642,8 +3642,8 @@ Mg 2.900e+00 Na 1.845e+00 Na+ 1.845e+00 7.984e+00 0.266 0.902 0.636 2.24 S(6) 6.200e-01 - SO4-2 6.200e-01 1.249e-03 -0.208 -2.903 -2.696 28.44 - HSO4- 4.695e-09 4.896e-09 -8.328 -8.310 0.018 42.44 + SO4-2 6.200e-01 1.249e-03 -0.208 -2.903 -2.696 30.60 + HSO4- 4.791e-09 4.997e-09 -8.320 -8.301 0.018 42.44 ------------------------------Saturation indices------------------------------- @@ -3664,7 +3664,7 @@ S(6) 6.200e-01 Epsomite -0.23 -2.08 -1.85 MgSO4:7H2O Gaylussite -5.14 -14.56 -9.42 CaNa2(CO3)2:5H2O Glaserite -2.84 -6.65 -3.80 NaK3(SO4)2 - Glauberite 0.00 -5.35 -5.35 Na2Ca(SO4)2 + Glauberite -0.00 -5.35 -5.35 Na2Ca(SO4)2 Goergeyite 3.87 -25.50 -29.37 K2Ca5(SO4)6H2O Gypsum -0.01 -4.61 -4.60 CaSO4:2H2O H2O(g) -1.68 -0.18 1.50 H2O @@ -3753,10 +3753,10 @@ Polyhalite 0.00 -13.74 -13.74 1.563e-03 1.740e-03 1.768e-04 pH = 7.394 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 174324 - Density (g/cm³) = 1.26978 - Volume (L) = 0.00957 - Viscosity (mPa s) = 4.24936 + Specific Conductance (µS/cm, 25°C) = 131643 + Density (g/cm³) = 1.26804 + Volume (L) = 0.00958 + Viscosity (mPa s) = 4.31212 Activity of water = 0.652 Ionic strength (mol/kgw) = 1.158e+01 Mass of water (kg) = 8.595e-03 @@ -3785,7 +3785,7 @@ Br 5.121e-02 Br- 5.121e-02 7.144e-02 -1.291 -1.146 0.145 26.54 C(4) 1.410e-02 MgCO3 1.149e-02 1.149e-02 -1.940 -1.940 0.000 -17.09 - HCO3- 1.399e-03 7.922e-05 -2.854 -4.101 -1.247 37.64 + HCO3- 1.399e-03 7.922e-05 -2.854 -4.101 -1.247 37.65 CO3-2 1.213e-03 8.990e-08 -2.916 -7.046 -4.130 14.91 CO2 2.533e-06 1.076e-05 -5.596 -4.968 0.628 34.43 Ca 3.676e-03 @@ -3801,8 +3801,8 @@ Mg 3.063e+00 Na 1.697e+00 Na+ 1.697e+00 7.876e+00 0.230 0.896 0.667 2.30 S(6) 6.901e-01 - SO4-2 6.901e-01 1.284e-03 -0.161 -2.892 -2.730 28.65 - HSO4- 4.512e-09 4.934e-09 -8.346 -8.307 0.039 42.46 + SO4-2 6.901e-01 1.284e-03 -0.161 -2.892 -2.730 30.86 + HSO4- 4.605e-09 5.036e-09 -8.337 -8.298 0.039 42.46 ------------------------------Saturation indices------------------------------- diff --git a/ex18.out b/ex18.out index e92ed683..8c1a47c5 100644 --- a/ex18.out +++ b/ex18.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + CALCULATE_VALUES RATES END ------------------------------------ @@ -117,12 +118,12 @@ Initial solution 1. Recharge number 3 pH = 7.550 pe = 0.000 - Specific Conductance (µS/cm, 10°C) = 271 + Specific Conductance (µS/cm, 10°C) = 277 Density (g/cm³) = 0.99999 Volume (L) = 1.00035 - Viscosity (mPa s) = 1.31276 + Viscosity (mPa s) = 1.31356 Activity of water = 1.000 - Ionic strength (mol/kgw) = 6.543e-03 + Ionic strength (mol/kgw) = 6.542e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 4.016e-03 Total CO2 (mol/kg) = 4.300e-03 @@ -142,16 +143,17 @@ Initial solution 1. Recharge number 3 H+ 3.038e-08 2.818e-08 -7.517 -7.550 -0.033 0.00 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.02 C(4) 4.300e-03 - HCO3- 3.929e-03 3.622e-03 -2.406 -2.441 -0.035 22.87 + HCO3- 3.929e-03 3.622e-03 -2.406 -2.441 -0.035 22.89 CO2 2.971e-04 2.974e-04 -3.527 -3.527 0.000 33.66 MgHCO3+ 3.094e-05 2.845e-05 -4.510 -4.546 -0.036 4.93 CaHCO3+ 3.027e-05 2.794e-05 -4.519 -4.554 -0.035 8.96 - CO3-2 5.766e-06 4.167e-06 -5.239 -5.380 -0.141 -6.29 + CO3-2 5.765e-06 4.167e-06 -5.239 -5.380 -0.141 -6.10 CaCO3 4.730e-06 4.737e-06 -5.325 -5.324 0.001 -14.66 MgCO3 2.204e-06 2.208e-06 -5.657 -5.656 0.001 -17.07 FeHCO3+ 2.086e-07 1.919e-07 -6.681 -6.717 -0.036 (0) FeCO3 5.288e-08 5.296e-08 -7.277 -7.276 0.001 (0) - NaHCO3 2.455e-08 2.463e-08 -7.610 -7.608 0.002 28.00 + NaHCO3 3.675e-08 3.686e-08 -7.435 -7.433 0.001 31.86 + KHCO3 2.291e-08 2.291e-08 -7.640 -7.640 0.000 40.92 (CO2)2 9.408e-10 9.423e-10 -9.026 -9.026 0.001 67.31 Ca 1.200e-03 Ca+2 1.152e-03 8.324e-04 -2.938 -3.080 -0.141 -18.31 @@ -168,42 +170,43 @@ Fe(2) 1.000e-06 Fe+2 7.297e-07 5.298e-07 -6.137 -6.276 -0.139 -23.20 FeHCO3+ 2.086e-07 1.919e-07 -6.681 -6.717 -0.036 (0) FeCO3 5.288e-08 5.296e-08 -7.277 -7.276 0.001 (0) - FeSO4 6.846e-09 6.856e-09 -8.165 -8.164 0.001 39.09 + FeSO4 6.844e-09 6.855e-09 -8.165 -8.164 0.001 39.09 FeOH+ 1.965e-09 1.811e-09 -8.707 -8.742 -0.036 (0) FeCl+ 1.461e-11 1.344e-11 -10.835 -10.872 -0.036 (0) Fe(OH)2 1.369e-13 1.371e-13 -12.864 -12.863 0.001 (0) - FeHSO4+ 1.358e-15 1.249e-15 -14.867 -14.903 -0.036 (0) + FeHSO4+ 1.357e-15 1.249e-15 -14.867 -14.904 -0.036 (0) Fe(OH)3- 1.678e-16 1.546e-16 -15.775 -15.811 -0.036 (0) H(0) 1.316e-18 H2 6.579e-19 6.588e-19 -18.182 -18.181 0.001 28.63 K 2.000e-05 - K+ 1.999e-05 1.837e-05 -4.699 -4.736 -0.037 8.43 - KSO4- 9.288e-09 8.467e-09 -8.032 -8.072 -0.040 19.30 + K+ 1.995e-05 1.833e-05 -4.700 -4.737 -0.037 8.43 + KSO4- 2.828e-08 2.615e-08 -7.548 -7.582 -0.034 12.38 + KHCO3 2.291e-08 2.291e-08 -7.640 -7.640 0.000 40.92 Mg 1.010e-03 Mg+2 9.648e-04 7.000e-04 -3.016 -3.155 -0.139 -21.10 MgHCO3+ 3.094e-05 2.845e-05 -4.510 -4.546 -0.036 4.93 - MgSO4 1.203e-05 1.206e-05 -4.920 -4.918 0.001 -4.13 + MgSO4 1.203e-05 1.206e-05 -4.920 -4.919 0.001 -14.55 MgCO3 2.204e-06 2.208e-06 -5.657 -5.656 0.001 -17.07 MgOH+ 2.321e-08 2.144e-08 -7.634 -7.669 -0.034 (0) - Mg(SO4)2-2 7.112e-09 5.204e-09 -8.148 -8.284 -0.136 35.28 + Mg(SO4)2-2 7.109e-09 5.202e-09 -8.148 -8.284 -0.136 1.52 Na 2.000e-05 - Na+ 1.996e-05 1.838e-05 -4.700 -4.736 -0.036 -2.42 - NaHCO3 2.455e-08 2.463e-08 -7.610 -7.608 0.002 28.00 - NaSO4- 1.104e-08 1.006e-08 -7.957 -7.997 -0.040 13.45 - NaOH 1.899e-22 1.902e-22 -21.722 -21.721 0.001 (0) + Na+ 1.994e-05 1.836e-05 -4.700 -4.736 -0.036 -2.42 + NaHCO3 3.675e-08 3.686e-08 -7.435 -7.433 0.001 31.86 + NaSO4- 2.687e-08 2.478e-08 -7.571 -7.606 -0.035 -19.98 + NaOH 1.896e-22 1.899e-22 -21.722 -21.721 0.001 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -61.151 -61.151 0.001 28.94 S(6) 1.600e-04 - SO4-2 1.352e-04 9.734e-05 -3.869 -4.012 -0.143 11.93 + SO4-2 1.351e-04 9.732e-05 -3.869 -4.012 -0.143 14.48 CaSO4 1.277e-05 1.279e-05 -4.894 -4.893 0.001 6.78 - MgSO4 1.203e-05 1.206e-05 -4.920 -4.918 0.001 -4.13 - NaSO4- 1.104e-08 1.006e-08 -7.957 -7.997 -0.040 13.45 - KSO4- 9.288e-09 8.467e-09 -8.032 -8.072 -0.040 19.30 - Mg(SO4)2-2 7.112e-09 5.204e-09 -8.148 -8.284 -0.136 35.28 - FeSO4 6.846e-09 6.856e-09 -8.165 -8.164 0.001 39.09 - HSO4- 2.132e-10 1.961e-10 -9.671 -9.708 -0.036 38.92 + MgSO4 1.203e-05 1.206e-05 -4.920 -4.919 0.001 -14.55 + KSO4- 2.828e-08 2.615e-08 -7.548 -7.582 -0.034 12.38 + NaSO4- 2.687e-08 2.478e-08 -7.571 -7.606 -0.035 -19.98 + Mg(SO4)2-2 7.109e-09 5.202e-09 -8.148 -8.284 -0.136 1.52 + FeSO4 6.844e-09 6.855e-09 -8.165 -8.164 0.001 39.09 + HSO4- 2.131e-10 1.960e-10 -9.671 -9.708 -0.036 38.92 CaHSO4+ 2.133e-12 1.962e-12 -11.671 -11.707 -0.036 (0) - FeHSO4+ 1.358e-15 1.249e-15 -14.867 -14.903 -0.036 (0) + FeHSO4+ 1.357e-15 1.249e-15 -14.867 -14.904 -0.036 (0) ------------------------------Saturation indices------------------------------- @@ -211,7 +214,7 @@ S(6) 1.600e-04 Anhydrite -2.97 -7.09 -4.12 CaSO4 Aragonite -0.20 -8.46 -8.25 CaCO3 - Arcanite -11.37 -13.48 -2.11 K2SO4 + Arcanite -11.37 -13.49 -2.11 K2SO4 Calcite -0.06 -8.46 -8.40 CaCO3 CH2O -33.73 -33.73 0.00 CH2O CO2(g) -2.26 -3.53 -1.27 CO2 @@ -228,7 +231,7 @@ S(6) 1.600e-04 O2(g) -58.39 -61.15 -2.76 O2 Siderite -0.86 -11.66 -10.79 FeCO3 Sylvite -9.47 -9.47 0.00 KCl - Thenardite -13.25 -13.48 -0.23 Na2SO4 + Thenardite -13.26 -13.48 -0.23 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -253,18 +256,18 @@ Initial solution 2. Mysse pH = 6.610 pe = 0.000 - Specific Conductance (µS/cm, 63°C) = 9924 - Density (g/cm³) = 0.98525 - Volume (L) = 1.01937 - Viscosity (mPa s) = 0.45381 + Specific Conductance (µS/cm, 63°C) = 10510 + Density (g/cm³) = 0.98523 + Volume (L) = 1.01939 + Viscosity (mPa s) = 0.45611 Activity of water = 0.999 - Ionic strength (mol/kgw) = 7.390e-02 + Ionic strength (mol/kgw) = 7.104e-02 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 5.286e-03 Total CO2 (mol/kg) = 6.870e-03 Temperature (°C) = 63.00 Electrical balance (eq) = 3.215e-03 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 3.14 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 3.23 Iterations = 8 (16 overall) Total H = 1.110179e+02 Total O = 5.560451e+01 @@ -273,118 +276,120 @@ Initial solution 2. Mysse Redox couple pe Eh (volts) - S(-2)/S(6) -3.6464 -0.2432 + S(-2)/S(6) -3.6540 -0.2437 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 5.980e-07 4.607e-07 -6.223 -6.337 -0.113 -3.62 - H+ 2.965e-07 2.455e-07 -6.528 -6.610 -0.082 0.00 + OH- 5.957e-07 4.608e-07 -6.225 -6.337 -0.112 -3.63 + H+ 2.959e-07 2.455e-07 -6.529 -6.610 -0.081 0.00 H2O 5.551e+01 9.985e-01 1.744 -0.001 0.000 18.35 C(4) 6.870e-03 - HCO3- 4.610e-03 3.661e-03 -2.336 -2.436 -0.100 26.07 - CO2 1.753e-03 1.773e-03 -2.756 -2.751 0.005 36.36 - CaHCO3+ 2.375e-04 1.901e-04 -3.624 -3.721 -0.097 10.66 - NaHCO3 1.921e-04 1.997e-04 -3.717 -3.700 0.017 28.00 - MgHCO3+ 5.656e-05 4.396e-05 -4.247 -4.357 -0.109 6.11 - CaCO3 1.588e-05 1.616e-05 -4.799 -4.792 0.007 -14.51 - CO3-2 2.732e-06 1.086e-06 -5.563 -5.964 -0.401 -2.45 - MgCO3 1.396e-06 1.420e-06 -5.855 -5.848 0.007 -17.09 - (CO2)2 1.558e-07 1.585e-07 -6.807 -6.800 0.007 72.72 - FeHCO3+ 1.149e-08 9.014e-09 -7.940 -8.045 -0.105 (0) - FeCO3 6.308e-10 6.417e-10 -9.200 -9.193 0.007 (0) + HCO3- 4.595e-03 3.660e-03 -2.338 -2.436 -0.099 25.86 + CO2 1.753e-03 1.772e-03 -2.756 -2.751 0.005 36.36 + CaHCO3+ 2.484e-04 1.994e-04 -3.605 -3.700 -0.095 10.66 + NaHCO3 1.852e-04 1.914e-04 -3.732 -3.718 0.014 31.20 + MgHCO3+ 6.121e-05 4.775e-05 -4.213 -4.321 -0.108 6.10 + CaCO3 1.668e-05 1.695e-05 -4.778 -4.771 0.007 -14.51 + KHCO3 5.118e-06 5.126e-06 -5.291 -5.290 0.001 41.50 + CO3-2 2.699e-06 1.086e-06 -5.569 -5.964 -0.395 -2.58 + MgCO3 1.518e-06 1.543e-06 -5.819 -5.812 0.007 -17.09 + (CO2)2 1.559e-07 1.584e-07 -6.807 -6.800 0.007 72.72 + FeHCO3+ 1.158e-08 9.117e-09 -7.936 -8.040 -0.104 (0) + FeCO3 6.385e-10 6.490e-10 -9.195 -9.188 0.007 (0) Ca 1.128e-02 - Ca+2 7.562e-03 3.022e-03 -2.121 -2.520 -0.398 -17.56 - CaSO4 3.465e-03 3.524e-03 -2.460 -2.453 0.007 8.42 - CaHCO3+ 2.375e-04 1.901e-04 -3.624 -3.721 -0.097 10.66 - CaCO3 1.588e-05 1.616e-05 -4.799 -4.792 0.007 -14.51 - CaHSO4+ 1.436e-08 1.127e-08 -7.843 -7.948 -0.105 (0) - CaOH+ 2.600e-09 2.040e-09 -8.585 -8.690 -0.105 (0) + Ca+2 7.843e-03 3.171e-03 -2.106 -2.499 -0.393 -17.58 + CaSO4 3.172e-03 3.224e-03 -2.499 -2.492 0.007 8.42 + CaHCO3+ 2.484e-04 1.994e-04 -3.605 -3.700 -0.095 10.66 + CaCO3 1.668e-05 1.695e-05 -4.778 -4.771 0.007 -14.51 + CaHSO4+ 1.310e-08 1.031e-08 -7.883 -7.987 -0.104 (0) + CaOH+ 2.719e-09 2.141e-09 -8.566 -8.669 -0.104 (0) Cl 1.785e-02 - Cl- 1.785e-02 1.382e-02 -1.748 -1.859 -0.111 18.29 - HCl 8.590e-10 9.235e-10 -9.066 -9.035 0.031 (0) - FeCl+ 5.987e-10 4.698e-10 -9.223 -9.328 -0.105 (0) + Cl- 1.785e-02 1.388e-02 -1.748 -1.858 -0.109 18.29 + HCl 8.646e-10 9.269e-10 -9.063 -9.033 0.030 (0) + FeCl+ 6.060e-10 4.771e-10 -9.218 -9.321 -0.104 (0) Fe(2) 4.000e-07 - Fe(HS)2 2.817e-07 2.865e-07 -6.550 -6.543 0.007 (0) - Fe+2 5.993e-08 2.462e-08 -7.222 -7.609 -0.386 -19.94 - FeSO4 4.060e-08 4.130e-08 -7.391 -7.384 0.007 -6.81 - FeHCO3+ 1.149e-08 9.014e-09 -7.940 -8.045 -0.105 (0) - Fe(HS)3- 4.544e-09 3.566e-09 -8.343 -8.448 -0.105 (0) - FeCO3 6.308e-10 6.417e-10 -9.200 -9.193 0.007 (0) - FeCl+ 5.987e-10 4.698e-10 -9.223 -9.328 -0.105 (0) - FeOH+ 4.978e-10 3.930e-10 -9.303 -9.406 -0.103 (0) - Fe(OH)2 2.509e-13 2.552e-13 -12.601 -12.593 0.007 (0) - FeHSO4+ 1.170e-13 9.183e-14 -12.932 -13.037 -0.105 (0) - Fe(OH)3- 6.802e-17 5.370e-17 -16.167 -16.270 -0.103 (0) -H(0) 1.177e-09 - H2 5.885e-10 5.986e-10 -9.230 -9.223 0.007 28.58 + Fe(HS)2 2.863e-07 2.910e-07 -6.543 -6.536 0.007 (0) + Fe+2 5.995e-08 2.491e-08 -7.222 -7.604 -0.381 -19.95 + FeSO4 3.584e-08 3.643e-08 -7.446 -7.439 0.007 -6.81 + FeHCO3+ 1.158e-08 9.117e-09 -7.936 -8.040 -0.104 (0) + Fe(HS)3- 4.609e-09 3.628e-09 -8.336 -8.440 -0.104 (0) + FeCO3 6.385e-10 6.490e-10 -9.195 -9.188 0.007 (0) + FeCl+ 6.060e-10 4.771e-10 -9.218 -9.321 -0.104 (0) + FeOH+ 5.020e-10 3.976e-10 -9.299 -9.401 -0.101 (0) + Fe(OH)2 2.540e-13 2.582e-13 -12.595 -12.588 0.007 (0) + FeHSO4+ 1.029e-13 8.100e-14 -12.988 -13.092 -0.104 (0) + Fe(OH)3- 6.860e-17 5.434e-17 -16.164 -16.265 -0.101 (0) +H(0) 1.219e-09 + H2 6.097e-10 6.198e-10 -9.215 -9.208 0.007 28.58 K 2.540e-03 - K+ 2.503e-03 1.934e-03 -2.601 -2.714 -0.112 10.02 - KSO4- 3.662e-05 2.600e-05 -4.436 -4.585 -0.149 24.41 + K+ 2.340e-03 1.814e-03 -2.631 -2.741 -0.111 10.01 + KSO4- 1.954e-04 1.605e-04 -3.709 -3.794 -0.085 15.45 + KHCO3 5.118e-06 5.126e-06 -5.291 -5.290 0.001 41.50 Mg 4.540e-03 - MgSO4 2.578e-03 2.668e-03 -2.589 -2.574 0.015 2.94 - Mg+2 1.847e-03 7.643e-04 -2.733 -3.117 -0.383 -22.47 - MgHCO3+ 5.656e-05 4.396e-05 -4.247 -4.357 -0.109 6.11 - Mg(SO4)2-2 5.602e-05 2.438e-05 -4.252 -4.613 -0.361 50.17 - MgCO3 1.396e-06 1.420e-06 -5.855 -5.848 0.007 -17.09 - MgOH+ 2.939e-07 2.368e-07 -6.532 -6.626 -0.094 (0) + MgSO4 2.446e-03 2.527e-03 -2.612 -2.597 0.014 -0.04 + Mg+2 1.986e-03 8.303e-04 -2.702 -3.081 -0.379 -22.49 + MgHCO3+ 6.121e-05 4.775e-05 -4.213 -4.321 -0.108 6.10 + Mg(SO4)2-2 4.582e-05 2.013e-05 -4.339 -4.696 -0.357 26.89 + MgCO3 1.518e-06 1.543e-06 -5.819 -5.812 0.007 -17.09 + MgOH+ 3.185e-07 2.573e-07 -6.497 -6.590 -0.093 (0) Na 3.189e-02 - Na+ 3.123e-02 2.464e-02 -1.505 -1.608 -0.103 0.10 - NaSO4- 4.703e-04 3.335e-04 -3.328 -3.477 -0.149 16.08 - NaHCO3 1.921e-04 1.997e-04 -3.717 -3.700 0.017 28.00 - NaOH 1.116e-18 1.135e-18 -17.952 -17.945 0.007 (0) + Na+ 2.911e-02 2.304e-02 -1.536 -1.638 -0.102 0.09 + NaSO4- 2.598e-03 2.072e-03 -2.585 -2.684 -0.098 -3.67 + NaHCO3 1.852e-04 1.914e-04 -3.732 -3.718 0.014 31.20 + NaOH 1.044e-18 1.062e-18 -17.981 -17.974 0.007 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.066 -63.058 0.007 32.51 + O2 0.000e+00 0.000e+00 -63.096 -63.089 0.007 32.51 S(-2) 2.600e-04 - HS- 1.483e-04 1.143e-04 -3.829 -3.942 -0.113 21.39 - H2S 1.111e-04 1.130e-04 -3.954 -3.947 0.007 42.59 - Fe(HS)2 2.817e-07 2.865e-07 -6.550 -6.543 0.007 (0) - Fe(HS)3- 4.544e-09 3.566e-09 -8.343 -8.448 -0.105 (0) - S-2 1.456e-09 5.657e-10 -8.837 -9.247 -0.411 (0) - (H2S)2 1.345e-09 1.368e-09 -8.871 -8.864 0.007 27.88 + HS- 1.480e-04 1.145e-04 -3.830 -3.941 -0.112 21.38 + H2S 1.114e-04 1.132e-04 -3.953 -3.946 0.007 42.59 + Fe(HS)2 2.863e-07 2.910e-07 -6.543 -6.536 0.007 (0) + Fe(HS)3- 4.609e-09 3.628e-09 -8.336 -8.440 -0.104 (0) + S-2 1.440e-09 5.667e-10 -8.842 -9.247 -0.405 (0) + (H2S)2 1.351e-09 1.373e-09 -8.869 -8.862 0.007 27.88 S(6) 1.986e-02 - SO4-2 1.320e-02 5.093e-03 -1.880 -2.293 -0.414 16.79 - CaSO4 3.465e-03 3.524e-03 -2.460 -2.453 0.007 8.42 - MgSO4 2.578e-03 2.668e-03 -2.589 -2.574 0.015 2.94 - NaSO4- 4.703e-04 3.335e-04 -3.328 -3.477 -0.149 16.08 - Mg(SO4)2-2 5.602e-05 2.438e-05 -4.252 -4.613 -0.361 50.17 - KSO4- 3.662e-05 2.600e-05 -4.436 -4.585 -0.149 24.41 - HSO4- 3.953e-07 3.102e-07 -6.403 -6.508 -0.105 41.70 - FeSO4 4.060e-08 4.130e-08 -7.391 -7.384 0.007 -6.81 - CaHSO4+ 1.436e-08 1.127e-08 -7.843 -7.948 -0.105 (0) - FeHSO4+ 1.170e-13 9.183e-14 -12.932 -13.037 -0.105 (0) + SO4-2 1.136e-02 4.441e-03 -1.945 -2.353 -0.408 23.91 + CaSO4 3.172e-03 3.224e-03 -2.499 -2.492 0.007 8.42 + NaSO4- 2.598e-03 2.072e-03 -2.585 -2.684 -0.098 -3.67 + MgSO4 2.446e-03 2.527e-03 -2.612 -2.597 0.014 -0.04 + KSO4- 1.954e-04 1.605e-04 -3.709 -3.794 -0.085 15.45 + Mg(SO4)2-2 4.582e-05 2.013e-05 -4.339 -4.696 -0.357 26.89 + HSO4- 3.436e-07 2.705e-07 -6.464 -6.568 -0.104 41.70 + FeSO4 3.584e-08 3.643e-08 -7.446 -7.439 0.007 -6.81 + CaHSO4+ 1.310e-08 1.031e-08 -7.883 -7.987 -0.104 (0) + FeHSO4+ 1.029e-13 8.100e-14 -12.988 -13.092 -0.104 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(336 K, 1 atm) - Anhydrite -0.07 -4.81 -4.75 CaSO4 - Aragonite 0.19 -8.48 -8.67 CaCO3 - Arcanite -6.17 -7.72 -1.55 K2SO4 - Calcite 0.44 -8.48 -8.92 CaCO3 - CH2O -14.60 -14.60 0.00 CH2O + Anhydrite -0.11 -4.85 -4.75 CaSO4 + Aragonite 0.21 -8.46 -8.67 CaCO3 + Arcanite -6.28 -7.84 -1.55 K2SO4 + Calcite 0.46 -8.46 -8.92 CaCO3 + CH2O -14.57 -14.57 0.00 CH2O CO2(g) -0.95 -2.75 -1.80 CO2 - Dolomite 0.49 -17.56 -18.06 CaMg(CO3)2 - Epsomite -3.91 -5.41 -1.50 MgSO4:7H2O - FeS(ppt) -1.03 -4.94 -3.92 FeS - Gypsum -0.15 -4.81 -4.66 CaSO4:2H2O - H2(g) -6.08 -9.22 -3.14 H2 + Dolomite 0.55 -17.51 -18.06 CaMg(CO3)2 + Epsomite -3.94 -5.44 -1.50 MgSO4:7H2O + FeS(ppt) -1.02 -4.93 -3.92 FeS + Gypsum -0.19 -4.85 -4.66 CaSO4:2H2O + H2(g) -6.07 -9.21 -3.14 H2 H2O(g) -0.65 -0.00 0.65 H2O H2S(g) -2.63 -10.55 -7.92 H2S - Halite -5.06 -3.47 1.60 NaCl - Hexahydrite -3.90 -5.41 -1.51 MgSO4:6H2O - Kieserite -4.09 -5.41 -1.32 MgSO4:H2O - Mackinawite -0.29 -4.94 -4.65 FeS - Melanterite -8.05 -9.91 -1.85 FeSO4:7H2O - Mirabilite -5.46 -5.52 -0.06 Na2SO4:10H2O - O2(g) -59.99 -63.06 -3.07 O2 - Pyrite 7.98 -9.57 -17.54 FeS2 - Siderite -2.48 -13.57 -11.10 FeCO3 - Sulfur -2.11 1.98 4.09 S - Sylvite -4.57 -4.57 0.00 KCl - Thenardite -5.02 -5.51 -0.49 Na2SO4 + Halite -5.09 -3.50 1.60 NaCl + Hexahydrite -3.92 -5.44 -1.51 MgSO4:6H2O + Kieserite -4.11 -5.43 -1.32 MgSO4:H2O + Mackinawite -0.29 -4.93 -4.65 FeS + Melanterite -8.11 -9.96 -1.85 FeSO4:7H2O + Mirabilite -5.58 -5.63 -0.06 Na2SO4:10H2O + O2(g) -60.02 -63.09 -3.07 O2 + Pyrite 7.97 -9.57 -17.54 FeS2 + Siderite -2.47 -13.57 -11.10 FeCO3 + Sulfur -2.13 1.97 4.09 S + Sylvite -4.60 -4.60 0.00 KCl + Thenardite -5.14 -5.63 -0.49 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -430,7 +435,7 @@ Solution 2: Mysse Cl 1.785e-02 + 0.000e+00 = 1.785e-02 Fe(2) 4.000e-07 + 0.000e+00 = 4.000e-07 Fe(3) 0.000e+00 + 0.000e+00 = 0.000e+00 - H(0) 1.177e-09 + 0.000e+00 = 1.177e-09 + H(0) 1.219e-09 + 0.000e+00 = 1.219e-09 K 2.540e-03 + 0.000e+00 = 2.540e-03 Mg 4.540e-03 + 0.000e+00 = 4.540e-03 Na 3.189e-02 + -1.229e-03 = 3.066e-02 @@ -446,8 +451,8 @@ Solution 2: Mysse Isotopic composition of phases: 13C Dolomite 3 + 0 = 3 13C Calcite -1.5 + 0 = -1.5 - 34S Anhydrite 13.5 + -0.715702 = 12.7843 - 13C CH2O -25 + 3.93546 = -21.0645 + 34S Anhydrite 13.5 + -0.715402 = 12.7846 + 13C CH2O -25 + 3.93324 = -21.0668 34S Pyrite -22 + 2 = -20 Solution fractions: Minimum Maximum @@ -455,24 +460,24 @@ Solution fractions: Minimum Maximum Solution 2 1.000e+00 1.000e+00 1.000e+00 Phase mole transfers: Minimum Maximum Formula (Approximate SI in solution 1, 2 at 336 K, 1 atm) - Dolomite 1.120e-02 1.022e-02 1.194e-02 CaMg(CO3)2 ( 1.06, 0.49) - Calcite -2.404e-02 -2.597e-02 -2.113e-02 CaCO3 ( 0.46, 0.44) - Anhydrite 2.293e-02 2.037e-02 2.378e-02 CaSO4 ( -2.35, -0.07) + Dolomite 1.120e-02 1.022e-02 1.194e-02 CaMg(CO3)2 ( 1.06, 0.55) + Calcite -2.404e-02 -2.597e-02 -2.113e-02 CaCO3 ( 0.46, 0.46) + Anhydrite 2.293e-02 2.037e-02 2.378e-02 CaSO4 ( -2.35, -0.11) CH2O 4.222e-03 2.482e-03 5.808e-03 CH2O ( , ) - Goethite 9.867e-04 5.146e-04 1.418e-03 FeOOH ( , ) - Pyrite -9.873e-04 -1.417e-03 -5.163e-04 FeS2 ( , ) - MgX2 -7.665e-03 -8.591e-03 -6.972e-03 MgX2 ( , ) + Goethite 9.866e-04 5.145e-04 1.418e-03 FeOOH ( , ) + Pyrite -9.872e-04 -1.417e-03 -5.162e-04 FeS2 ( , ) + MgX2 -7.666e-03 -8.591e-03 -6.972e-03 MgX2 ( , ) NaX 1.533e-02 1.394e-02 1.718e-02 NaX ( , ) - Halite 1.531e-02 1.429e-02 1.633e-02 NaCl (-11.07, -5.06) - Sylvite 2.520e-03 2.392e-03 2.648e-03 KCl ( -9.47, -4.57) + Halite 1.531e-02 1.429e-02 1.633e-02 NaCl (-11.07, -5.09) + Sylvite 2.520e-03 2.392e-03 2.648e-03 KCl ( -9.47, -4.60) Redox mole transfers: - Fe(3) 9.867e-04 - H(0) -1.177e-09 - S(-2) -2.235e-03 + Fe(3) 9.866e-04 + H(0) -1.219e-09 + S(-2) -2.234e-03 -Sum of residuals (epsilons in documentation): 2.313e+00 -Sum of delta/uncertainty limit: 4.445e+00 +Sum of residuals (epsilons in documentation): 2.312e+00 +Sum of delta/uncertainty limit: 4.444e+00 Maximum fractional error in element concentration: 5.000e-02 Model contains minimum number of phases. @@ -509,12 +514,12 @@ Solution 2: Mysse pH 6.610e+00 + 0.000e+00 = 6.610e+00 Alkalinity 5.286e-03 + 0.000e+00 = 5.286e-03 C(-4) 0.000e+00 + 0.000e+00 = 0.000e+00 - C(4) 6.870e-03 + -3.426e-04 = 6.527e-03 + C(4) 6.870e-03 + -3.424e-04 = 6.528e-03 Ca 1.128e-02 + 0.000e+00 = 1.128e-02 Cl 1.785e-02 + 0.000e+00 = 1.785e-02 Fe(2) 4.000e-07 + 0.000e+00 = 4.000e-07 Fe(3) 0.000e+00 + 0.000e+00 = 0.000e+00 - H(0) 1.177e-09 + 0.000e+00 = 1.177e-09 + H(0) 1.219e-09 + 0.000e+00 = 1.219e-09 K 2.540e-03 + 0.000e+00 = 2.540e-03 Mg 4.540e-03 + 0.000e+00 = 4.540e-03 Na 3.189e-02 + -1.229e-03 = 3.066e-02 @@ -530,7 +535,7 @@ Solution 2: Mysse Isotopic composition of phases: 13C Dolomite 3 + 2 = 5 13C Calcite -1.5 + -1 = -2.5 - 34S Anhydrite 13.5 + -0.146069 = 13.3539 + 34S Anhydrite 13.5 + -0.146098 = 13.3539 13C CH2O -25 + 5 = -20 34S Pyrite -22 + 2 = -20 @@ -539,23 +544,23 @@ Solution fractions: Minimum Maximum Solution 2 1.000e+00 1.000e+00 1.000e+00 Phase mole transfers: Minimum Maximum Formula (Approximate SI in solution 1, 2 at 336 K, 1 atm) - Dolomite 5.446e-03 4.995e-03 5.842e-03 CaMg(CO3)2 ( 1.06, 0.49) - Calcite -1.215e-02 -1.337e-02 -1.066e-02 CaCO3 ( 0.46, 0.44) - Anhydrite 2.254e-02 2.037e-02 2.298e-02 CaSO4 ( -2.35, -0.07) - CH2O 3.488e-03 2.482e-03 4.301e-03 CH2O ( , ) - Goethite 7.909e-04 5.146e-04 1.016e-03 FeOOH ( , ) - Pyrite -7.915e-04 -1.015e-03 -5.163e-04 FeS2 ( , ) - Ca.75Mg.25X2 -7.665e-03 -8.591e-03 -6.972e-03 Ca.75Mg.25X2 ( , ) + Dolomite 5.446e-03 4.995e-03 5.842e-03 CaMg(CO3)2 ( 1.06, 0.55) + Calcite -1.215e-02 -1.337e-02 -1.066e-02 CaCO3 ( 0.46, 0.46) + Anhydrite 2.254e-02 2.037e-02 2.298e-02 CaSO4 ( -2.35, -0.11) + CH2O 3.488e-03 2.482e-03 4.302e-03 CH2O ( , ) + Goethite 7.909e-04 5.145e-04 1.016e-03 FeOOH ( , ) + Pyrite -7.915e-04 -1.015e-03 -5.162e-04 FeS2 ( , ) + Ca.75Mg.25X2 -7.666e-03 -8.591e-03 -6.972e-03 Ca.75Mg.25X2 ( , ) NaX 1.533e-02 1.394e-02 1.718e-02 NaX ( , ) - Halite 1.531e-02 1.429e-02 1.633e-02 NaCl (-11.07, -5.06) - Sylvite 2.520e-03 2.392e-03 2.648e-03 KCl ( -9.47, -4.57) + Halite 1.531e-02 1.429e-02 1.633e-02 NaCl (-11.07, -5.09) + Sylvite 2.520e-03 2.392e-03 2.648e-03 KCl ( -9.47, -4.60) Redox mole transfers: Fe(3) 7.909e-04 - H(0) -1.177e-09 + H(0) -1.219e-09 S(-2) -1.843e-03 -Sum of residuals (epsilons in documentation): 3.321e+00 +Sum of residuals (epsilons in documentation): 3.320e+00 Sum of delta/uncertainty limit: 7.370e+00 Maximum fractional error in element concentration: 5.000e-02 diff --git a/ex19.out b/ex19.out index 32b57c60..5fd0dfb7 100644 --- a/ex19.out +++ b/ex19.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + CALCULATE_VALUES RATES END ------------------------------------ diff --git a/ex19b.out b/ex19b.out index effb8a87..6549cfff 100644 --- a/ex19b.out +++ b/ex19b.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + CALCULATE_VALUES RATES END ------------------------------------ diff --git a/ex2.out b/ex2.out index ef3ccc3c..60e613ad 100644 --- a/ex2.out +++ b/ex2.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + CALCULATE_VALUES RATES END ------------------------------------ @@ -136,10 +137,10 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.855e-01 pH = 7.066 Charge balance pe = 10.745 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 2269 - Density (g/cm³) = 0.99907 - Volume (L) = 0.96736 - Viscosity (mPa s) = 0.89989 + Specific Conductance (µS/cm, 25°C) = 2485 + Density (g/cm³) = 0.99901 + Volume (L) = 0.96742 + Viscosity (mPa s) = 0.89855 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.174e-02 Mass of water (kg) = 9.645e-01 @@ -164,17 +165,17 @@ Ca 1.505e-02 CaSO4 4.611e-03 4.656e-03 -2.336 -2.332 0.004 7.50 CaOH+ 1.200e-08 9.980e-09 -7.921 -8.001 -0.080 (0) CaHSO4+ 3.161e-09 2.629e-09 -8.500 -8.580 -0.080 (0) -H(0) 3.354e-39 - H2 1.677e-39 1.693e-39 -38.776 -38.771 0.004 28.61 -O(0) 2.879e-15 - O2 1.439e-15 1.453e-15 -14.842 -14.838 0.004 30.40 +H(0) 3.347e-39 + H2 1.674e-39 1.690e-39 -38.776 -38.772 0.004 28.61 +O(0) 2.889e-15 + O2 1.445e-15 1.458e-15 -14.840 -14.836 0.004 30.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -118.112 -118.196 -0.084 20.77 - H2S 0.000e+00 0.000e+00 -118.325 -118.320 0.004 36.27 - S-2 0.000e+00 0.000e+00 -123.736 -124.048 -0.312 (0) - (H2S)2 0.000e+00 0.000e+00 -237.923 -237.919 0.004 30.09 + HS- 0.000e+00 0.000e+00 -118.115 -118.199 -0.084 20.77 + H2S 0.000e+00 0.000e+00 -118.328 -118.324 0.004 36.27 + S-2 0.000e+00 0.000e+00 -123.739 -124.051 -0.312 (0) + (H2S)2 0.000e+00 0.000e+00 -237.929 -237.925 0.004 30.09 S(6) 1.505e-02 - SO4-2 1.043e-02 5.067e-03 -1.982 -2.295 -0.314 15.44 + SO4-2 1.043e-02 5.067e-03 -1.982 -2.295 -0.314 21.14 CaSO4 4.611e-03 4.656e-03 -2.336 -2.332 0.004 7.50 HSO4- 5.088e-08 4.231e-08 -7.293 -7.374 -0.080 40.44 CaHSO4+ 3.161e-09 2.629e-09 -8.500 -8.580 -0.080 (0) @@ -187,8 +188,8 @@ S(6) 1.505e-02 Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O H2(g) -35.67 -38.77 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -117.33 -125.26 -7.94 H2S - O2(g) -11.95 -14.84 -2.89 O2 + H2S(g) -117.33 -125.27 -7.94 H2S + O2(g) -11.94 -14.84 -2.89 O2 Sulfur -87.58 -82.70 4.88 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -219,10 +220,10 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.854e-01 pH = 7.052 Charge balance pe = 10.676 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 26°C) = 2320 - Density (g/cm³) = 0.99882 - Volume (L) = 0.96762 - Viscosity (mPa s) = 0.87981 + Specific Conductance (µS/cm, 26°C) = 2545 + Density (g/cm³) = 0.99876 + Volume (L) = 0.96768 + Viscosity (mPa s) = 0.87847 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.180e-02 Mass of water (kg) = 9.645e-01 @@ -257,7 +258,7 @@ S(-2) 0.000e+00 S-2 0.000e+00 0.000e+00 -123.192 -123.505 -0.313 (0) (H2S)2 0.000e+00 0.000e+00 -236.857 -236.853 0.004 30.05 S(6) 1.509e-02 - SO4-2 1.045e-02 5.066e-03 -1.981 -2.295 -0.314 15.57 + SO4-2 1.045e-02 5.066e-03 -1.981 -2.295 -0.314 21.26 CaSO4 4.645e-03 4.690e-03 -2.333 -2.329 0.004 7.54 HSO4- 5.369e-08 4.462e-08 -7.270 -7.350 -0.080 40.50 CaHSO4+ 3.335e-09 2.772e-09 -8.477 -8.557 -0.080 (0) @@ -302,10 +303,10 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.854e-01 pH = 7.039 Charge balance pe = 10.607 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 27°C) = 2370 - Density (g/cm³) = 0.99855 - Volume (L) = 0.96789 - Viscosity (mPa s) = 0.86044 + Specific Conductance (µS/cm, 27°C) = 2606 + Density (g/cm³) = 0.99849 + Volume (L) = 0.96794 + Viscosity (mPa s) = 0.85909 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.185e-02 Mass of water (kg) = 9.645e-01 @@ -340,7 +341,7 @@ S(-2) 0.000e+00 S-2 0.000e+00 0.000e+00 -122.649 -122.963 -0.313 (0) (H2S)2 0.000e+00 0.000e+00 -235.792 -235.787 0.004 30.00 S(6) 1.514e-02 - SO4-2 1.046e-02 5.065e-03 -1.980 -2.295 -0.315 15.69 + SO4-2 1.046e-02 5.065e-03 -1.980 -2.295 -0.315 21.37 CaSO4 4.677e-03 4.722e-03 -2.330 -2.326 0.004 7.57 HSO4- 5.663e-08 4.705e-08 -7.247 -7.327 -0.080 40.57 CaHSO4+ 3.517e-09 2.922e-09 -8.454 -8.534 -0.080 (0) @@ -385,10 +386,10 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.854e-01 pH = 7.025 Charge balance pe = 10.539 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 28°C) = 2420 - Density (g/cm³) = 0.99827 - Volume (L) = 0.96816 - Viscosity (mPa s) = 0.84175 + Specific Conductance (µS/cm, 28°C) = 2667 + Density (g/cm³) = 0.99821 + Volume (L) = 0.96822 + Viscosity (mPa s) = 0.84040 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.189e-02 Mass of water (kg) = 9.645e-01 @@ -413,17 +414,17 @@ Ca 1.518e-02 CaSO4 4.708e-03 4.754e-03 -2.327 -2.323 0.004 7.61 CaOH+ 1.094e-08 9.082e-09 -7.961 -8.042 -0.081 (0) CaHSO4+ 3.708e-09 3.080e-09 -8.431 -8.511 -0.081 (0) -H(0) 1.013e-38 - H2 5.063e-39 5.112e-39 -38.296 -38.291 0.004 28.60 -O(0) 2.870e-15 - O2 1.435e-15 1.449e-15 -14.843 -14.839 0.004 30.63 +H(0) 1.011e-38 + H2 5.056e-39 5.105e-39 -38.296 -38.292 0.004 28.60 +O(0) 2.877e-15 + O2 1.439e-15 1.452e-15 -14.842 -14.838 0.004 30.63 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -116.539 -116.624 -0.085 20.89 - H2S 0.000e+00 0.000e+00 -116.750 -116.745 0.004 36.98 - S-2 0.000e+00 0.000e+00 -122.114 -122.428 -0.314 (0) - (H2S)2 0.000e+00 0.000e+00 -234.741 -234.737 0.004 29.96 + HS- 0.000e+00 0.000e+00 -116.541 -116.626 -0.085 20.89 + H2S 0.000e+00 0.000e+00 -116.752 -116.748 0.004 36.98 + S-2 0.000e+00 0.000e+00 -122.116 -122.430 -0.314 (0) + (H2S)2 0.000e+00 0.000e+00 -234.746 -234.742 0.004 29.96 S(6) 1.518e-02 - SO4-2 1.047e-02 5.063e-03 -1.980 -2.296 -0.316 15.80 + SO4-2 1.047e-02 5.063e-03 -1.980 -2.296 -0.316 21.48 CaSO4 4.708e-03 4.754e-03 -2.327 -2.323 0.004 7.61 HSO4- 5.973e-08 4.961e-08 -7.224 -7.304 -0.081 40.63 CaHSO4+ 3.708e-09 3.080e-09 -8.431 -8.511 -0.081 (0) @@ -437,7 +438,7 @@ S(6) 1.518e-02 H2(g) -35.18 -38.29 -3.11 H2 H2O(g) -1.43 -0.00 1.43 H2O H2S(g) -115.72 -123.65 -7.93 H2S - O2(g) -11.93 -14.84 -2.91 O2 + O2(g) -11.92 -14.84 -2.91 O2 Sulfur -86.43 -81.62 4.81 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -468,10 +469,10 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.853e-01 pH = 7.012 Charge balance pe = 10.472 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 29°C) = 2470 - Density (g/cm³) = 0.99799 - Volume (L) = 0.96844 - Viscosity (mPa s) = 0.82371 + Specific Conductance (µS/cm, 29°C) = 2727 + Density (g/cm³) = 0.99793 + Volume (L) = 0.96850 + Viscosity (mPa s) = 0.82236 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.193e-02 Mass of water (kg) = 9.645e-01 @@ -496,17 +497,17 @@ Ca 1.522e-02 CaSO4 4.738e-03 4.783e-03 -2.324 -2.320 0.004 7.64 CaOH+ 1.060e-08 8.803e-09 -7.975 -8.055 -0.081 (0) CaHSO4+ 3.908e-09 3.244e-09 -8.408 -8.489 -0.081 (0) -H(0) 1.451e-38 - H2 7.256e-39 7.326e-39 -38.139 -38.135 0.004 28.60 -O(0) 2.887e-15 - O2 1.444e-15 1.458e-15 -14.841 -14.836 0.004 30.70 +H(0) 1.452e-38 + H2 7.258e-39 7.329e-39 -38.139 -38.135 0.004 28.60 +O(0) 2.886e-15 + O2 1.443e-15 1.457e-15 -14.841 -14.837 0.004 30.70 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -116.028 -116.113 -0.085 20.93 - H2S 0.000e+00 0.000e+00 -116.238 -116.233 0.004 37.21 - S-2 0.000e+00 0.000e+00 -121.587 -121.901 -0.315 (0) - (H2S)2 0.000e+00 0.000e+00 -233.707 -233.703 0.004 29.91 + HS- 0.000e+00 0.000e+00 -116.027 -116.112 -0.085 20.93 + H2S 0.000e+00 0.000e+00 -116.237 -116.233 0.004 37.21 + S-2 0.000e+00 0.000e+00 -121.586 -121.901 -0.315 (0) + (H2S)2 0.000e+00 0.000e+00 -233.706 -233.702 0.004 29.91 S(6) 1.522e-02 - SO4-2 1.048e-02 5.060e-03 -1.980 -2.296 -0.316 15.91 + SO4-2 1.048e-02 5.060e-03 -1.980 -2.296 -0.316 21.58 CaSO4 4.738e-03 4.783e-03 -2.324 -2.320 0.004 7.64 HSO4- 6.298e-08 5.228e-08 -7.201 -7.282 -0.081 40.69 CaHSO4+ 3.908e-09 3.244e-09 -8.408 -8.489 -0.081 (0) @@ -517,11 +518,11 @@ S(6) 1.522e-02 Anhydrite -0.26 -4.58 -4.32 CaSO4 Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2(g) -35.03 -38.14 -3.11 H2 + H2(g) -35.03 -38.13 -3.11 H2 H2O(g) -1.40 -0.00 1.40 H2O H2S(g) -115.20 -123.12 -7.93 H2S O2(g) -11.92 -14.84 -2.92 O2 - Sulfur -86.06 -81.27 4.79 S + Sulfur -86.05 -81.27 4.79 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -551,10 +552,10 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.853e-01 pH = 6.999 Charge balance pe = 10.404 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 30°C) = 2521 - Density (g/cm³) = 0.99769 - Volume (L) = 0.96874 - Viscosity (mPa s) = 0.80628 + Specific Conductance (µS/cm, 30°C) = 2788 + Density (g/cm³) = 0.99763 + Volume (L) = 0.96879 + Viscosity (mPa s) = 0.80493 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.196e-02 Mass of water (kg) = 9.645e-01 @@ -579,17 +580,17 @@ Ca 1.526e-02 CaSO4 4.766e-03 4.812e-03 -2.322 -2.318 0.004 7.68 CaOH+ 1.028e-08 8.533e-09 -7.988 -8.069 -0.081 (0) CaHSO4+ 4.117e-09 3.416e-09 -8.385 -8.466 -0.081 (0) -H(0) 2.086e-38 - H2 1.043e-38 1.053e-38 -37.982 -37.977 0.004 28.60 -O(0) 2.873e-15 - O2 1.436e-15 1.450e-15 -14.843 -14.839 0.004 30.77 +H(0) 2.087e-38 + H2 1.044e-38 1.054e-38 -37.981 -37.977 0.004 28.60 +O(0) 2.871e-15 + O2 1.436e-15 1.449e-15 -14.843 -14.839 0.004 30.77 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -115.511 -115.596 -0.085 20.97 + HS- 0.000e+00 0.000e+00 -115.510 -115.595 -0.085 20.97 H2S 0.000e+00 0.000e+00 -115.719 -115.715 0.004 37.42 - S-2 0.000e+00 0.000e+00 -121.054 -121.369 -0.315 (0) - (H2S)2 0.000e+00 0.000e+00 -232.660 -232.656 0.004 29.87 + S-2 0.000e+00 0.000e+00 -121.053 -121.368 -0.315 (0) + (H2S)2 0.000e+00 0.000e+00 -232.659 -232.655 0.004 29.87 S(6) 1.526e-02 - SO4-2 1.049e-02 5.056e-03 -1.979 -2.296 -0.317 16.01 + SO4-2 1.049e-02 5.056e-03 -1.979 -2.296 -0.317 21.68 CaSO4 4.766e-03 4.812e-03 -2.322 -2.318 0.004 7.68 HSO4- 6.639e-08 5.509e-08 -7.178 -7.259 -0.081 40.74 CaHSO4+ 4.117e-09 3.416e-09 -8.385 -8.466 -0.081 (0) @@ -634,10 +635,10 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.853e-01 pH = 6.986 Charge balance pe = 10.338 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 31°C) = 2571 - Density (g/cm³) = 0.99739 - Volume (L) = 0.96904 - Viscosity (mPa s) = 0.78944 + Specific Conductance (µS/cm, 31°C) = 2849 + Density (g/cm³) = 0.99733 + Volume (L) = 0.96909 + Viscosity (mPa s) = 0.78810 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.198e-02 Mass of water (kg) = 9.645e-01 @@ -662,17 +663,17 @@ Ca 1.529e-02 CaSO4 4.792e-03 4.839e-03 -2.319 -2.315 0.004 7.71 CaOH+ 9.972e-09 8.273e-09 -8.001 -8.082 -0.081 (0) CaHSO4+ 4.335e-09 3.596e-09 -8.363 -8.444 -0.081 (0) -H(0) 2.976e-38 - H2 1.488e-38 1.503e-38 -37.827 -37.823 0.004 28.60 -O(0) 2.890e-15 - O2 1.445e-15 1.459e-15 -14.840 -14.836 0.004 30.84 +H(0) 2.975e-38 + H2 1.488e-38 1.502e-38 -37.827 -37.823 0.004 28.60 +O(0) 2.892e-15 + O2 1.446e-15 1.460e-15 -14.840 -14.836 0.004 30.84 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -115.007 -115.092 -0.085 21.00 - H2S 0.000e+00 0.000e+00 -115.214 -115.210 0.004 37.64 - S-2 0.000e+00 0.000e+00 -120.533 -120.849 -0.316 (0) - (H2S)2 0.000e+00 0.000e+00 -231.640 -231.635 0.004 29.82 + H2S 0.000e+00 0.000e+00 -115.215 -115.210 0.004 37.64 + S-2 0.000e+00 0.000e+00 -120.534 -120.850 -0.316 (0) + (H2S)2 0.000e+00 0.000e+00 -231.641 -231.636 0.004 29.82 S(6) 1.529e-02 - SO4-2 1.050e-02 5.052e-03 -1.979 -2.297 -0.318 16.11 + SO4-2 1.050e-02 5.052e-03 -1.979 -2.297 -0.318 21.77 CaSO4 4.792e-03 4.839e-03 -2.319 -2.315 0.004 7.71 HSO4- 6.997e-08 5.804e-08 -7.155 -7.236 -0.081 40.80 CaHSO4+ 4.335e-09 3.596e-09 -8.363 -8.444 -0.081 (0) @@ -717,10 +718,10 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.852e-01 pH = 6.973 Charge balance pe = 10.271 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 32°C) = 2620 - Density (g/cm³) = 0.99708 - Volume (L) = 0.96935 - Viscosity (mPa s) = 0.77316 + Specific Conductance (µS/cm, 32°C) = 2910 + Density (g/cm³) = 0.99702 + Volume (L) = 0.96940 + Viscosity (mPa s) = 0.77182 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.200e-02 Mass of water (kg) = 9.645e-01 @@ -755,7 +756,7 @@ S(-2) 0.000e+00 S-2 0.000e+00 0.000e+00 -120.006 -120.323 -0.316 (0) (H2S)2 0.000e+00 0.000e+00 -230.605 -230.601 0.004 29.78 S(6) 1.532e-02 - SO4-2 1.050e-02 5.047e-03 -1.979 -2.297 -0.318 16.19 + SO4-2 1.050e-02 5.047e-03 -1.979 -2.297 -0.318 21.85 CaSO4 4.818e-03 4.864e-03 -2.317 -2.313 0.004 7.74 HSO4- 7.372e-08 6.113e-08 -7.132 -7.214 -0.081 40.85 CaHSO4+ 4.563e-09 3.784e-09 -8.341 -8.422 -0.081 (0) @@ -800,10 +801,10 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.852e-01 pH = 6.960 Charge balance pe = 10.206 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 33°C) = 2670 - Density (g/cm³) = 0.99675 - Volume (L) = 0.96966 - Viscosity (mPa s) = 0.75742 + Specific Conductance (µS/cm, 33°C) = 2971 + Density (g/cm³) = 0.99669 + Volume (L) = 0.96972 + Viscosity (mPa s) = 0.75608 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.201e-02 Mass of water (kg) = 9.645e-01 @@ -838,7 +839,7 @@ S(-2) 0.000e+00 S-2 0.000e+00 0.000e+00 -119.493 -119.810 -0.317 (0) (H2S)2 0.000e+00 0.000e+00 -229.596 -229.592 0.004 29.73 S(6) 1.534e-02 - SO4-2 1.050e-02 5.042e-03 -1.979 -2.297 -0.319 16.27 + SO4-2 1.050e-02 5.042e-03 -1.979 -2.297 -0.319 21.92 CaSO4 4.841e-03 4.889e-03 -2.315 -2.311 0.004 7.77 HSO4- 7.765e-08 6.436e-08 -7.110 -7.191 -0.081 40.90 CaHSO4+ 4.801e-09 3.980e-09 -8.319 -8.400 -0.081 (0) @@ -882,11 +883,11 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.852e-01 ----------------------------Description of solution---------------------------- pH = 6.947 Charge balance - pe = 10.140 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 34°C) = 2720 - Density (g/cm³) = 0.99642 - Volume (L) = 0.96999 - Viscosity (mPa s) = 0.74219 + pe = 10.139 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 34°C) = 3031 + Density (g/cm³) = 0.99636 + Volume (L) = 0.97005 + Viscosity (mPa s) = 0.74085 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.201e-02 Mass of water (kg) = 9.645e-01 @@ -911,17 +912,17 @@ Ca 1.537e-02 CaSO4 4.864e-03 4.911e-03 -2.313 -2.309 0.004 7.80 CaOH+ 9.105e-09 7.545e-09 -8.041 -8.122 -0.082 (0) CaHSO4+ 5.049e-09 4.184e-09 -8.297 -8.378 -0.082 (0) -H(0) 8.610e-38 - H2 4.305e-38 4.347e-38 -37.366 -37.362 0.004 28.60 -O(0) 2.881e-15 - O2 1.440e-15 1.454e-15 -14.842 -14.837 0.004 31.04 +H(0) 8.628e-38 + H2 4.314e-38 4.356e-38 -37.365 -37.361 0.004 28.60 +O(0) 2.869e-15 + O2 1.434e-15 1.448e-15 -14.843 -14.839 0.004 31.04 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -113.496 -113.582 -0.086 21.10 - H2S 0.000e+00 0.000e+00 -113.699 -113.695 0.004 38.25 - S-2 0.000e+00 0.000e+00 -118.976 -119.293 -0.318 (0) - (H2S)2 0.000e+00 0.000e+00 -228.581 -228.577 0.004 29.68 + HS- 0.000e+00 0.000e+00 -113.493 -113.579 -0.086 21.10 + H2S 0.000e+00 0.000e+00 -113.696 -113.692 0.004 38.25 + S-2 0.000e+00 0.000e+00 -118.972 -119.289 -0.318 (0) + (H2S)2 0.000e+00 0.000e+00 -228.574 -228.570 0.004 29.68 S(6) 1.537e-02 - SO4-2 1.050e-02 5.036e-03 -1.979 -2.298 -0.319 16.35 + SO4-2 1.050e-02 5.036e-03 -1.979 -2.298 -0.319 21.99 CaSO4 4.864e-03 4.911e-03 -2.313 -2.309 0.004 7.80 HSO4- 8.176e-08 6.775e-08 -7.087 -7.169 -0.082 40.95 CaHSO4+ 5.049e-09 4.184e-09 -8.297 -8.378 -0.082 (0) @@ -934,7 +935,7 @@ S(6) 1.537e-02 Gypsum 0.00 -4.59 -4.59 CaSO4:2H2O H2(g) -34.24 -37.36 -3.12 H2 H2O(g) -1.28 -0.00 1.28 H2O - H2S(g) -112.61 -120.53 -7.92 H2S + H2S(g) -112.60 -120.53 -7.92 H2S O2(g) -11.89 -14.84 -2.95 O2 Sulfur -84.20 -79.52 4.68 S @@ -966,10 +967,10 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.852e-01 pH = 6.935 Charge balance pe = 10.074 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 35°C) = 2769 - Density (g/cm³) = 0.99608 - Volume (L) = 0.97032 - Viscosity (mPa s) = 0.72744 + Specific Conductance (µS/cm, 35°C) = 3092 + Density (g/cm³) = 0.99603 + Volume (L) = 0.97038 + Viscosity (mPa s) = 0.72612 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.200e-02 Mass of water (kg) = 9.645e-01 @@ -995,16 +996,16 @@ Ca 1.539e-02 CaOH+ 8.836e-09 7.319e-09 -8.054 -8.136 -0.082 (0) CaHSO4+ 5.308e-09 4.397e-09 -8.275 -8.357 -0.082 (0) H(0) 1.222e-37 - H2 6.109e-38 6.168e-38 -37.214 -37.210 0.004 28.60 -O(0) 2.875e-15 - O2 1.437e-15 1.451e-15 -14.842 -14.838 0.004 31.10 + H2 6.111e-38 6.170e-38 -37.214 -37.210 0.004 28.60 +O(0) 2.873e-15 + O2 1.437e-15 1.451e-15 -14.843 -14.838 0.004 31.10 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -112.999 -113.085 -0.086 21.12 + HS- 0.000e+00 0.000e+00 -112.998 -113.084 -0.086 21.12 H2S 0.000e+00 0.000e+00 -113.200 -113.196 0.004 38.44 S-2 0.000e+00 0.000e+00 -118.462 -118.780 -0.318 (0) - (H2S)2 0.000e+00 0.000e+00 -227.574 -227.569 0.004 29.63 + (H2S)2 0.000e+00 0.000e+00 -227.572 -227.568 0.004 29.63 S(6) 1.539e-02 - SO4-2 1.050e-02 5.029e-03 -1.979 -2.299 -0.320 16.42 + SO4-2 1.050e-02 5.029e-03 -1.979 -2.299 -0.320 22.06 CaSO4 4.885e-03 4.932e-03 -2.311 -2.307 0.004 7.83 HSO4- 8.607e-08 7.130e-08 -7.065 -7.147 -0.082 40.99 CaHSO4+ 5.308e-09 4.397e-09 -8.275 -8.357 -0.082 (0) @@ -1048,19 +1049,19 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.851e-01 ----------------------------Description of solution---------------------------- pH = 6.922 Charge balance - pe = 10.010 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 36°C) = 2818 - Density (g/cm³) = 0.99574 - Volume (L) = 0.97066 - Viscosity (mPa s) = 0.71317 + pe = 10.009 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 36°C) = 3153 + Density (g/cm³) = 0.99568 + Volume (L) = 0.97072 + Viscosity (mPa s) = 0.71185 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.199e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 36.00 - Electrical balance (eq) = -1.209e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 16 + Iterations = 18 Total H = 1.070719e+02 Total O = 5.359535e+01 @@ -1077,17 +1078,17 @@ Ca 1.540e-02 CaSO4 4.905e-03 4.952e-03 -2.309 -2.305 0.004 7.86 CaOH+ 8.576e-09 7.102e-09 -8.067 -8.149 -0.082 (0) CaHSO4+ 5.578e-09 4.619e-09 -8.254 -8.335 -0.082 (0) -H(0) 1.728e-37 - H2 8.638e-38 8.722e-38 -37.064 -37.059 0.004 28.60 -O(0) 2.877e-15 - O2 1.438e-15 1.452e-15 -14.842 -14.838 0.004 31.16 +H(0) 1.729e-37 + H2 8.645e-38 8.729e-38 -37.063 -37.059 0.004 28.60 +O(0) 2.872e-15 + O2 1.436e-15 1.450e-15 -14.843 -14.839 0.004 31.16 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -112.507 -112.593 -0.086 21.15 - H2S 0.000e+00 0.000e+00 -112.707 -112.702 0.004 38.63 - S-2 0.000e+00 0.000e+00 -117.955 -118.273 -0.319 (0) - (H2S)2 0.000e+00 0.000e+00 -226.577 -226.573 0.004 29.58 + HS- 0.000e+00 0.000e+00 -112.505 -112.592 -0.086 21.15 + H2S 0.000e+00 0.000e+00 -112.705 -112.701 0.004 38.63 + S-2 0.000e+00 0.000e+00 -117.953 -118.272 -0.319 (0) + (H2S)2 0.000e+00 0.000e+00 -226.574 -226.570 0.004 29.58 S(6) 1.540e-02 - SO4-2 1.050e-02 5.021e-03 -1.979 -2.299 -0.320 16.48 + SO4-2 1.050e-02 5.021e-03 -1.979 -2.299 -0.320 22.12 CaSO4 4.905e-03 4.952e-03 -2.309 -2.305 0.004 7.86 HSO4- 9.058e-08 7.501e-08 -7.043 -7.125 -0.082 41.04 CaHSO4+ 5.578e-09 4.619e-09 -8.254 -8.335 -0.082 (0) @@ -1100,7 +1101,7 @@ S(6) 1.540e-02 Gypsum 0.00 -4.59 -4.59 CaSO4:2H2O H2(g) -33.94 -37.06 -3.12 H2 H2O(g) -1.23 -0.00 1.23 H2O - H2S(g) -111.60 -119.52 -7.92 H2S + H2S(g) -111.59 -119.51 -7.92 H2S O2(g) -11.88 -14.84 -2.96 O2 Sulfur -83.47 -78.84 4.63 S @@ -1131,11 +1132,11 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.851e-01 ----------------------------Description of solution---------------------------- pH = 6.910 Charge balance - pe = -1.777 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 37°C) = 2867 - Density (g/cm³) = 0.99538 - Volume (L) = 0.97101 - Viscosity (mPa s) = 0.69934 + pe = -1.778 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 37°C) = 3213 + Density (g/cm³) = 0.99532 + Volume (L) = 0.97107 + Viscosity (mPa s) = 0.69803 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.197e-02 Mass of water (kg) = 9.645e-01 @@ -1143,7 +1144,7 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.851e-01 Temperature (°C) = 37.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 50 + Iterations = 46 Total H = 1.070719e+02 Total O = 5.359542e+01 @@ -1160,17 +1161,17 @@ Ca 1.541e-02 CaSO4 4.923e-03 4.971e-03 -2.308 -2.304 0.004 7.88 CaOH+ 8.325e-09 6.892e-09 -8.080 -8.162 -0.082 (0) CaHSO4+ 5.859e-09 4.850e-09 -8.232 -8.314 -0.082 (0) -H(0) 6.797e-14 - H2 3.398e-14 3.431e-14 -13.469 -13.465 0.004 28.60 +H(0) 6.798e-14 + H2 3.399e-14 3.432e-14 -13.469 -13.464 0.004 28.60 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -61.733 -61.728 0.004 31.22 -S(-2) 9.473e-19 - HS- 5.797e-19 4.752e-19 -18.237 -18.323 -0.086 21.17 - H2S 3.676e-19 3.712e-19 -18.435 -18.430 0.004 38.82 - S-2 2.142e-24 1.028e-24 -23.669 -23.988 -0.319 (0) - (H2S)2 9.464e-39 9.556e-39 -38.024 -38.020 0.004 29.53 + O2 0.000e+00 0.000e+00 -61.733 -61.729 0.004 31.22 +S(-2) 9.482e-19 + HS- 5.803e-19 4.757e-19 -18.236 -18.323 -0.086 21.17 + H2S 3.679e-19 3.715e-19 -18.434 -18.430 0.004 38.82 + S-2 2.144e-24 1.029e-24 -23.669 -23.988 -0.319 (0) + (H2S)2 9.483e-39 9.575e-39 -38.023 -38.019 0.004 29.53 S(6) 1.541e-02 - SO4-2 1.049e-02 5.013e-03 -1.979 -2.300 -0.321 16.54 + SO4-2 1.049e-02 5.013e-03 -1.979 -2.300 -0.321 22.17 CaSO4 4.923e-03 4.971e-03 -2.308 -2.304 0.004 7.88 HSO4- 9.530e-08 7.889e-08 -7.021 -7.103 -0.082 41.08 CaHSO4+ 5.859e-09 4.850e-09 -8.232 -8.314 -0.082 (0) @@ -1215,10 +1216,10 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.851e-01 pH = 6.898 Charge balance pe = 9.881 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 38°C) = 2916 - Density (g/cm³) = 0.99502 - Volume (L) = 0.97137 - Viscosity (mPa s) = 0.68594 + Specific Conductance (µS/cm, 38°C) = 3273 + Density (g/cm³) = 0.99496 + Volume (L) = 0.97143 + Viscosity (mPa s) = 0.68464 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.194e-02 Mass of water (kg) = 9.645e-01 @@ -1243,17 +1244,17 @@ Ca 1.543e-02 CaSO4 4.940e-03 4.988e-03 -2.306 -2.302 0.004 7.91 CaOH+ 8.083e-09 6.689e-09 -8.092 -8.175 -0.082 (0) CaHSO4+ 6.152e-09 5.091e-09 -8.211 -8.293 -0.082 (0) -H(0) 3.435e-37 - H2 1.718e-37 1.734e-37 -36.765 -36.761 0.004 28.59 -O(0) 2.873e-15 - O2 1.436e-15 1.450e-15 -14.843 -14.839 0.004 31.28 +H(0) 3.434e-37 + H2 1.717e-37 1.734e-37 -36.765 -36.761 0.004 28.59 +O(0) 2.874e-15 + O2 1.437e-15 1.451e-15 -14.842 -14.838 0.004 31.28 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -111.531 -111.617 -0.086 21.19 - H2S 0.000e+00 0.000e+00 -111.727 -111.722 0.004 39.00 - S-2 0.000e+00 0.000e+00 -116.947 -117.267 -0.320 (0) - (H2S)2 0.000e+00 0.000e+00 -224.599 -224.595 0.004 29.47 + HS- 0.000e+00 0.000e+00 -111.531 -111.618 -0.086 21.19 + H2S 0.000e+00 0.000e+00 -111.727 -111.723 0.004 39.00 + S-2 0.000e+00 0.000e+00 -116.948 -117.268 -0.320 (0) + (H2S)2 0.000e+00 0.000e+00 -224.600 -224.596 0.004 29.47 S(6) 1.543e-02 - SO4-2 1.049e-02 5.005e-03 -1.979 -2.301 -0.321 16.59 + SO4-2 1.049e-02 5.005e-03 -1.979 -2.301 -0.321 22.22 CaSO4 4.940e-03 4.988e-03 -2.306 -2.302 0.004 7.91 HSO4- 1.002e-07 8.295e-08 -6.999 -7.081 -0.082 41.12 CaHSO4+ 6.152e-09 5.091e-09 -8.211 -8.293 -0.082 (0) @@ -1266,7 +1267,7 @@ S(6) 1.543e-02 Gypsum 0.00 -4.59 -4.59 CaSO4:2H2O H2(g) -33.64 -36.76 -3.13 H2 H2O(g) -1.18 -0.00 1.18 H2O - H2S(g) -110.60 -118.51 -7.92 H2S + H2S(g) -110.60 -118.52 -7.92 H2S O2(g) -11.86 -14.84 -2.97 O2 Sulfur -82.76 -78.17 4.59 S @@ -1298,10 +1299,10 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.851e-01 pH = 6.886 Charge balance pe = 9.848 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 39°C) = 2964 - Density (g/cm³) = 0.99465 - Volume (L) = 0.97173 - Viscosity (mPa s) = 0.67295 + Specific Conductance (µS/cm, 39°C) = 3333 + Density (g/cm³) = 0.99459 + Volume (L) = 0.97179 + Viscosity (mPa s) = 0.67166 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.191e-02 Mass of water (kg) = 9.645e-01 @@ -1336,7 +1337,7 @@ S(-2) 0.000e+00 S-2 0.000e+00 0.000e+00 -116.693 -117.013 -0.320 (0) (H2S)2 0.000e+00 0.000e+00 -224.107 -224.103 0.004 29.42 S(6) 1.543e-02 - SO4-2 1.048e-02 4.995e-03 -1.980 -2.301 -0.322 16.63 + SO4-2 1.048e-02 4.995e-03 -1.980 -2.301 -0.322 22.26 CaSO4 4.955e-03 5.003e-03 -2.305 -2.301 0.004 7.94 HSO4- 1.054e-07 8.720e-08 -6.977 -7.060 -0.082 41.15 CaHSO4+ 6.456e-09 5.341e-09 -8.190 -8.272 -0.082 (0) @@ -1380,11 +1381,11 @@ Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 ----------------------------Description of solution---------------------------- pH = 6.874 Charge balance - pe = 9.755 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 40°C) = 3012 - Density (g/cm³) = 0.99427 - Volume (L) = 0.97211 - Viscosity (mPa s) = 0.66036 + pe = 9.754 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 40°C) = 3392 + Density (g/cm³) = 0.99421 + Volume (L) = 0.97216 + Viscosity (mPa s) = 0.65908 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.187e-02 Mass of water (kg) = 9.645e-01 @@ -1409,17 +1410,17 @@ Ca 1.544e-02 CaSO4 4.969e-03 5.017e-03 -2.304 -2.300 0.004 7.96 CaOH+ 7.624e-09 6.306e-09 -8.118 -8.200 -0.082 (0) CaHSO4+ 6.773e-09 5.602e-09 -8.169 -8.252 -0.082 (0) -H(0) 6.740e-37 - H2 3.370e-37 3.403e-37 -36.472 -36.468 0.004 28.59 -O(0) 2.896e-15 - O2 1.448e-15 1.462e-15 -14.839 -14.835 0.004 31.40 +H(0) 6.742e-37 + H2 3.371e-37 3.404e-37 -36.472 -36.468 0.004 28.59 +O(0) 2.894e-15 + O2 1.447e-15 1.461e-15 -14.840 -14.835 0.004 31.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -110.576 -110.662 -0.087 21.23 + HS- 0.000e+00 0.000e+00 -110.575 -110.662 -0.087 21.23 H2S 0.000e+00 0.000e+00 -110.767 -110.763 0.004 39.35 - S-2 0.000e+00 0.000e+00 -115.961 -116.282 -0.320 (0) - (H2S)2 0.000e+00 0.000e+00 -222.663 -222.659 0.004 29.37 + S-2 0.000e+00 0.000e+00 -115.961 -116.281 -0.320 (0) + (H2S)2 0.000e+00 0.000e+00 -222.662 -222.658 0.004 29.37 S(6) 1.544e-02 - SO4-2 1.047e-02 4.985e-03 -1.980 -2.302 -0.322 16.67 + SO4-2 1.047e-02 4.985e-03 -1.980 -2.302 -0.322 22.30 CaSO4 4.969e-03 5.017e-03 -2.304 -2.300 0.004 7.96 HSO4- 1.108e-07 9.163e-08 -6.956 -7.038 -0.082 41.19 CaHSO4+ 6.773e-09 5.602e-09 -8.169 -8.252 -0.082 (0) @@ -1434,7 +1435,7 @@ S(6) 1.544e-02 H2O(g) -1.14 -0.00 1.14 H2O H2S(g) -109.62 -117.54 -7.92 H2S O2(g) -11.85 -14.84 -2.98 O2 - Sulfur -82.06 -77.51 4.55 S + Sulfur -82.05 -77.51 4.55 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1464,10 +1465,10 @@ Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 pH = 6.862 Charge balance pe = 9.691 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 41°C) = 3060 - Density (g/cm³) = 0.99388 - Volume (L) = 0.97248 - Viscosity (mPa s) = 0.64814 + Specific Conductance (µS/cm, 41°C) = 3452 + Density (g/cm³) = 0.99382 + Volume (L) = 0.97254 + Viscosity (mPa s) = 0.64688 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.182e-02 Mass of water (kg) = 9.645e-01 @@ -1492,17 +1493,17 @@ Ca 1.544e-02 CaSO4 4.982e-03 5.030e-03 -2.303 -2.298 0.004 7.99 CaOH+ 7.407e-09 6.124e-09 -8.130 -8.213 -0.083 (0) CaHSO4+ 7.102e-09 5.872e-09 -8.149 -8.231 -0.083 (0) -H(0) 9.462e-37 - H2 4.731e-37 4.777e-37 -36.325 -36.321 0.004 28.59 -O(0) 2.876e-15 - O2 1.438e-15 1.452e-15 -14.842 -14.838 0.004 31.46 +H(0) 9.453e-37 + H2 4.727e-37 4.772e-37 -36.325 -36.321 0.004 28.59 +O(0) 2.881e-15 + O2 1.441e-15 1.455e-15 -14.841 -14.837 0.004 31.46 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -110.093 -110.180 -0.087 21.25 - H2S 0.000e+00 0.000e+00 -110.283 -110.279 0.004 39.52 - S-2 0.000e+00 0.000e+00 -115.464 -115.785 -0.321 (0) - (H2S)2 0.000e+00 0.000e+00 -221.686 -221.681 0.004 29.31 + HS- 0.000e+00 0.000e+00 -110.095 -110.182 -0.087 21.25 + H2S 0.000e+00 0.000e+00 -110.285 -110.280 0.004 39.52 + S-2 0.000e+00 0.000e+00 -115.465 -115.786 -0.321 (0) + (H2S)2 0.000e+00 0.000e+00 -221.689 -221.685 0.004 29.31 S(6) 1.544e-02 - SO4-2 1.046e-02 4.975e-03 -1.981 -2.303 -0.323 16.71 + SO4-2 1.046e-02 4.975e-03 -1.981 -2.303 -0.323 22.33 CaSO4 4.982e-03 5.030e-03 -2.303 -2.298 0.004 7.99 HSO4- 1.164e-07 9.626e-08 -6.934 -7.017 -0.083 41.22 CaHSO4+ 7.102e-09 5.872e-09 -8.149 -8.231 -0.083 (0) @@ -1547,10 +1548,10 @@ Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 pH = 6.850 Charge balance pe = 9.628 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 42°C) = 3108 - Density (g/cm³) = 0.99348 - Volume (L) = 0.97287 - Viscosity (mPa s) = 0.63629 + Specific Conductance (µS/cm, 42°C) = 3511 + Density (g/cm³) = 0.99343 + Volume (L) = 0.97293 + Viscosity (mPa s) = 0.63504 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.177e-02 Mass of water (kg) = 9.645e-01 @@ -1580,12 +1581,12 @@ H(0) 1.318e-36 O(0) 2.890e-15 O2 1.445e-15 1.459e-15 -14.840 -14.836 0.004 31.51 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -109.625 -109.712 -0.087 21.27 + HS- 0.000e+00 0.000e+00 -109.625 -109.712 -0.087 21.26 H2S 0.000e+00 0.000e+00 -109.812 -109.808 0.004 39.69 S-2 0.000e+00 0.000e+00 -114.980 -115.301 -0.321 (0) (H2S)2 0.000e+00 0.000e+00 -220.735 -220.731 0.004 29.26 S(6) 1.544e-02 - SO4-2 1.044e-02 4.964e-03 -1.981 -2.304 -0.323 16.74 + SO4-2 1.044e-02 4.964e-03 -1.981 -2.304 -0.323 22.35 CaSO4 4.993e-03 5.042e-03 -2.302 -2.297 0.004 8.01 HSO4- 1.223e-07 1.011e-07 -6.913 -6.995 -0.083 41.26 CaHSO4+ 7.443e-09 6.153e-09 -8.128 -8.211 -0.083 (0) @@ -1630,10 +1631,10 @@ Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 pH = 6.839 Charge balance pe = 9.566 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 43°C) = 3155 - Density (g/cm³) = 0.99308 - Volume (L) = 0.97326 - Viscosity (mPa s) = 0.62478 + Specific Conductance (µS/cm, 43°C) = 3570 + Density (g/cm³) = 0.99302 + Volume (L) = 0.97332 + Viscosity (mPa s) = 0.62355 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.171e-02 Mass of water (kg) = 9.645e-01 @@ -1658,17 +1659,17 @@ Ca 1.543e-02 CaSO4 5.003e-03 5.052e-03 -2.301 -2.297 0.004 8.04 CaHSO4+ 7.798e-09 6.445e-09 -8.108 -8.191 -0.083 (0) CaOH+ 6.994e-09 5.780e-09 -8.155 -8.238 -0.083 (0) -H(0) 1.839e-36 - H2 9.196e-37 9.285e-37 -36.036 -36.032 0.004 28.59 -O(0) 2.879e-15 - O2 1.439e-15 1.453e-15 -14.842 -14.838 0.004 31.57 +H(0) 1.840e-36 + H2 9.199e-37 9.288e-37 -36.036 -36.032 0.004 28.59 +O(0) 2.877e-15 + O2 1.439e-15 1.452e-15 -14.842 -14.838 0.004 31.57 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -109.151 -109.238 -0.087 21.28 H2S 0.000e+00 0.000e+00 -109.336 -109.332 0.004 39.86 - S-2 0.000e+00 0.000e+00 -114.491 -114.813 -0.322 (0) - (H2S)2 0.000e+00 0.000e+00 -219.775 -219.771 0.004 29.20 + S-2 0.000e+00 0.000e+00 -114.490 -114.812 -0.322 (0) + (H2S)2 0.000e+00 0.000e+00 -219.774 -219.770 0.004 29.20 S(6) 1.543e-02 - SO4-2 1.043e-02 4.952e-03 -1.982 -2.305 -0.323 16.77 + SO4-2 1.043e-02 4.952e-03 -1.982 -2.305 -0.323 22.38 CaSO4 5.003e-03 5.052e-03 -2.301 -2.297 0.004 8.04 HSO4- 1.284e-07 1.061e-07 -6.891 -6.974 -0.083 41.29 CaHSO4+ 7.798e-09 6.445e-09 -8.108 -8.191 -0.083 (0) @@ -1713,10 +1714,10 @@ Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 pH = 6.827 Charge balance pe = 9.503 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 44°C) = 3201 - Density (g/cm³) = 0.99267 - Volume (L) = 0.97367 - Viscosity (mPa s) = 0.61361 + Specific Conductance (µS/cm, 44°C) = 3628 + Density (g/cm³) = 0.99261 + Volume (L) = 0.97372 + Viscosity (mPa s) = 0.61239 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.165e-02 Mass of water (kg) = 9.645e-01 @@ -1741,17 +1742,17 @@ Ca 1.542e-02 CaSO4 5.012e-03 5.060e-03 -2.300 -2.296 0.004 8.06 CaHSO4+ 8.167e-09 6.747e-09 -8.088 -8.171 -0.083 (0) CaOH+ 6.799e-09 5.617e-09 -8.168 -8.250 -0.083 (0) -H(0) 2.558e-36 - H2 1.279e-36 1.292e-36 -35.893 -35.889 0.004 28.59 -O(0) 2.875e-15 - O2 1.438e-15 1.451e-15 -14.842 -14.838 0.004 31.62 +H(0) 2.560e-36 + H2 1.280e-36 1.292e-36 -35.893 -35.889 0.004 28.59 +O(0) 2.872e-15 + O2 1.436e-15 1.450e-15 -14.843 -14.839 0.004 31.62 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -108.683 -108.770 -0.087 21.29 - H2S 0.000e+00 0.000e+00 -108.866 -108.862 0.004 40.02 - S-2 0.000e+00 0.000e+00 -114.007 -114.330 -0.322 (0) - (H2S)2 0.000e+00 0.000e+00 -218.827 -218.822 0.004 29.14 + HS- 0.000e+00 0.000e+00 -108.682 -108.769 -0.087 21.29 + H2S 0.000e+00 0.000e+00 -108.865 -108.861 0.004 40.02 + S-2 0.000e+00 0.000e+00 -114.006 -114.329 -0.322 (0) + (H2S)2 0.000e+00 0.000e+00 -218.824 -218.820 0.004 29.14 S(6) 1.542e-02 - SO4-2 1.041e-02 4.940e-03 -1.982 -2.306 -0.324 16.79 + SO4-2 1.041e-02 4.940e-03 -1.982 -2.306 -0.324 22.39 CaSO4 5.012e-03 5.060e-03 -2.300 -2.296 0.004 8.06 HSO4- 1.348e-07 1.114e-07 -6.870 -6.953 -0.083 41.32 CaHSO4+ 8.167e-09 6.747e-09 -8.088 -8.171 -0.083 (0) @@ -1796,10 +1797,10 @@ Gypsum 0.00 -4.61 -4.61 1.000e+00 1.985e+00 9.851e-01 pH = 6.816 Charge balance pe = 9.442 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 45°C) = 3248 - Density (g/cm³) = 0.99225 - Volume (L) = 0.97407 - Viscosity (mPa s) = 0.60276 + Specific Conductance (µS/cm, 45°C) = 3686 + Density (g/cm³) = 0.99220 + Volume (L) = 0.97413 + Viscosity (mPa s) = 0.60156 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.158e-02 Mass of water (kg) = 9.645e-01 @@ -1826,7 +1827,7 @@ Ca 1.541e-02 CaOH+ 6.610e-09 5.460e-09 -8.180 -8.263 -0.083 (0) H(0) 3.538e-36 H2 1.769e-36 1.786e-36 -35.752 -35.748 0.004 28.59 -O(0) 2.894e-15 +O(0) 2.893e-15 O2 1.447e-15 1.461e-15 -14.840 -14.835 0.004 31.67 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -108.225 -108.312 -0.087 21.30 @@ -1834,7 +1835,7 @@ S(-2) 0.000e+00 S-2 0.000e+00 0.000e+00 -113.534 -113.856 -0.323 (0) (H2S)2 0.000e+00 0.000e+00 -217.897 -217.893 0.004 29.09 S(6) 1.541e-02 - SO4-2 1.040e-02 4.927e-03 -1.983 -2.307 -0.324 16.81 + SO4-2 1.040e-02 4.927e-03 -1.983 -2.307 -0.324 22.41 CaSO4 5.019e-03 5.068e-03 -2.299 -2.295 0.004 8.08 HSO4- 1.415e-07 1.169e-07 -6.849 -6.932 -0.083 41.35 CaHSO4+ 8.549e-09 7.061e-09 -8.068 -8.151 -0.083 (0) @@ -1879,10 +1880,10 @@ Gypsum 0.00 -4.61 -4.61 1.000e+00 1.985e+00 9.851e-01 pH = 6.805 Charge balance pe = 9.381 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 46°C) = 3294 - Density (g/cm³) = 0.99183 - Volume (L) = 0.97449 - Viscosity (mPa s) = 0.59222 + Specific Conductance (µS/cm, 46°C) = 3744 + Density (g/cm³) = 0.99177 + Volume (L) = 0.97454 + Viscosity (mPa s) = 0.59103 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.151e-02 Mass of water (kg) = 9.645e-01 @@ -1907,17 +1908,17 @@ Ca 1.540e-02 CaSO4 5.025e-03 5.073e-03 -2.299 -2.295 0.004 8.11 CaHSO4+ 8.945e-09 7.386e-09 -8.048 -8.132 -0.083 (0) CaOH+ 6.428e-09 5.308e-09 -8.192 -8.275 -0.083 (0) -H(0) 4.904e-36 - H2 2.452e-36 2.475e-36 -35.611 -35.606 0.004 28.59 -O(0) 2.887e-15 - O2 1.444e-15 1.458e-15 -14.841 -14.836 0.004 31.72 +H(0) 4.905e-36 + H2 2.453e-36 2.476e-36 -35.610 -35.606 0.004 28.59 +O(0) 2.886e-15 + O2 1.443e-15 1.457e-15 -14.841 -14.837 0.004 31.72 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -107.762 -107.850 -0.087 21.31 - H2S 0.000e+00 0.000e+00 -107.940 -107.936 0.004 40.33 - S-2 0.000e+00 0.000e+00 -113.056 -113.379 -0.323 (0) - (H2S)2 0.000e+00 0.000e+00 -216.959 -216.955 0.004 29.03 + HS- 0.000e+00 0.000e+00 -107.762 -107.849 -0.087 21.31 + H2S 0.000e+00 0.000e+00 -107.939 -107.935 0.004 40.33 + S-2 0.000e+00 0.000e+00 -113.055 -113.378 -0.323 (0) + (H2S)2 0.000e+00 0.000e+00 -216.958 -216.954 0.004 29.03 S(6) 1.540e-02 - SO4-2 1.038e-02 4.914e-03 -1.984 -2.309 -0.325 16.82 + SO4-2 1.038e-02 4.914e-03 -1.984 -2.309 -0.325 22.42 CaSO4 5.025e-03 5.073e-03 -2.299 -2.295 0.004 8.11 HSO4- 1.485e-07 1.226e-07 -6.828 -6.912 -0.083 41.37 CaHSO4+ 8.945e-09 7.386e-09 -8.048 -8.132 -0.083 (0) @@ -1962,10 +1963,10 @@ Gypsum 0.00 -4.61 -4.61 1.000e+00 1.985e+00 9.852e-01 pH = 6.794 Charge balance pe = 9.319 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 47°C) = 3339 - Density (g/cm³) = 0.99140 - Volume (L) = 0.97491 - Viscosity (mPa s) = 0.58198 + Specific Conductance (µS/cm, 47°C) = 3801 + Density (g/cm³) = 0.99134 + Volume (L) = 0.97497 + Viscosity (mPa s) = 0.58080 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.142e-02 Mass of water (kg) = 9.645e-01 @@ -1990,17 +1991,17 @@ Ca 1.539e-02 CaSO4 5.030e-03 5.078e-03 -2.298 -2.294 0.004 8.13 CaHSO4+ 9.355e-09 7.723e-09 -8.029 -8.112 -0.083 (0) CaOH+ 6.252e-09 5.162e-09 -8.204 -8.287 -0.083 (0) -H(0) 6.791e-36 - H2 3.396e-36 3.428e-36 -35.469 -35.465 0.004 28.59 -O(0) 2.874e-15 - O2 1.437e-15 1.451e-15 -14.843 -14.838 0.004 31.77 +H(0) 6.790e-36 + H2 3.395e-36 3.427e-36 -35.469 -35.465 0.004 28.59 +O(0) 2.875e-15 + O2 1.438e-15 1.451e-15 -14.842 -14.838 0.004 31.77 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -107.300 -107.388 -0.087 21.32 - H2S 0.000e+00 0.000e+00 -107.475 -107.471 0.004 40.48 - S-2 0.000e+00 0.000e+00 -112.579 -112.902 -0.323 (0) - (H2S)2 0.000e+00 0.000e+00 -216.022 -216.018 0.004 28.97 + HS- 0.000e+00 0.000e+00 -107.301 -107.388 -0.087 21.32 + H2S 0.000e+00 0.000e+00 -107.476 -107.472 0.004 40.48 + S-2 0.000e+00 0.000e+00 -112.579 -112.903 -0.323 (0) + (H2S)2 0.000e+00 0.000e+00 -216.023 -216.019 0.004 28.97 S(6) 1.539e-02 - SO4-2 1.036e-02 4.900e-03 -1.985 -2.310 -0.325 16.82 + SO4-2 1.036e-02 4.900e-03 -1.985 -2.310 -0.325 22.42 CaSO4 5.030e-03 5.078e-03 -2.298 -2.294 0.004 8.13 HSO4- 1.557e-07 1.286e-07 -6.808 -6.891 -0.083 41.40 CaHSO4+ 9.355e-09 7.723e-09 -8.029 -8.112 -0.083 (0) @@ -2011,11 +2012,11 @@ S(6) 1.539e-02 Anhydrite -0.07 -4.61 -4.54 CaSO4 Gypsum 0.00 -4.61 -4.61 CaSO4:2H2O - H2(g) -32.33 -35.46 -3.13 H2 + H2(g) -32.33 -35.47 -3.13 H2 H2O(g) -0.98 -0.00 0.98 H2O H2S(g) -106.27 -114.18 -7.91 H2S O2(g) -11.82 -14.84 -3.02 O2 - Sulfur -79.65 -75.24 4.40 S + Sulfur -79.65 -75.25 4.40 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2044,11 +2045,11 @@ Gypsum 0.00 -4.61 -4.61 1.000e+00 1.985e+00 9.852e-01 ----------------------------Description of solution---------------------------- pH = 6.783 Charge balance - pe = 9.288 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 48°C) = 3384 - Density (g/cm³) = 0.99096 - Volume (L) = 0.97534 - Viscosity (mPa s) = 0.57202 + pe = 9.215 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 48°C) = 3858 + Density (g/cm³) = 0.99090 + Volume (L) = 0.97540 + Viscosity (mPa s) = 0.57086 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.134e-02 Mass of water (kg) = 9.645e-01 @@ -2073,17 +2074,17 @@ Ca 1.537e-02 CaSO4 5.033e-03 5.081e-03 -2.298 -2.294 0.004 8.15 CaHSO4+ 9.781e-09 8.072e-09 -8.010 -8.093 -0.083 (0) CaOH+ 6.083e-09 5.020e-09 -8.216 -8.299 -0.083 (0) -H(0) 8.174e-36 - H2 4.087e-36 4.126e-36 -35.389 -35.384 0.004 28.59 -O(0) 3.771e-15 - O2 1.886e-15 1.904e-15 -14.725 -14.720 0.004 31.83 +H(0) 1.144e-35 + H2 5.722e-36 5.777e-36 -35.242 -35.238 0.004 28.59 +O(0) 1.924e-15 + O2 9.621e-16 9.713e-16 -15.017 -15.013 0.004 31.83 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -107.082 -107.169 -0.088 21.33 - H2S 0.000e+00 0.000e+00 -107.254 -107.250 0.004 40.63 - S-2 0.000e+00 0.000e+00 -112.345 -112.669 -0.324 (0) - (H2S)2 0.000e+00 0.000e+00 -215.572 -215.568 0.004 28.91 + HS- 0.000e+00 0.000e+00 -106.497 -106.585 -0.088 21.33 + H2S 0.000e+00 0.000e+00 -106.670 -106.665 0.004 40.63 + S-2 0.000e+00 0.000e+00 -111.760 -112.084 -0.324 (0) + (H2S)2 0.000e+00 0.000e+00 -214.403 -214.399 0.004 28.91 S(6) 1.537e-02 - SO4-2 1.033e-02 4.886e-03 -1.986 -2.311 -0.325 16.83 + SO4-2 1.033e-02 4.886e-03 -1.986 -2.311 -0.325 22.42 CaSO4 5.033e-03 5.081e-03 -2.298 -2.294 0.004 8.15 HSO4- 1.633e-07 1.348e-07 -6.787 -6.870 -0.083 41.42 CaHSO4+ 9.781e-09 8.072e-09 -8.010 -8.093 -0.083 (0) @@ -2094,11 +2095,11 @@ S(6) 1.537e-02 Anhydrite -0.06 -4.61 -4.55 CaSO4 Gypsum 0.00 -4.61 -4.61 CaSO4:2H2O - H2(g) -32.25 -35.38 -3.14 H2 + H2(g) -32.10 -35.24 -3.14 H2 H2O(g) -0.96 -0.00 0.96 H2O - H2S(g) -106.04 -113.95 -7.91 H2S - O2(g) -11.70 -14.72 -3.02 O2 - Sulfur -79.49 -75.11 4.38 S + H2S(g) -105.45 -113.37 -7.91 H2S + O2(g) -11.99 -15.01 -3.02 O2 + Sulfur -79.05 -74.67 4.38 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2128,10 +2129,10 @@ Gypsum 0.00 -4.62 -4.62 1.000e+00 1.985e+00 9.852e-01 pH = 6.773 Charge balance pe = 9.197 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 49°C) = 3429 - Density (g/cm³) = 0.99051 - Volume (L) = 0.97578 - Viscosity (mPa s) = 0.56234 + Specific Conductance (µS/cm, 49°C) = 3914 + Density (g/cm³) = 0.99045 + Volume (L) = 0.97583 + Viscosity (mPa s) = 0.56120 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.125e-02 Mass of water (kg) = 9.645e-01 @@ -2157,16 +2158,16 @@ Ca 1.535e-02 CaHSO4+ 1.022e-08 8.434e-09 -7.991 -8.074 -0.083 (0) CaOH+ 5.919e-09 4.884e-09 -8.228 -8.311 -0.083 (0) H(0) 1.294e-35 - H2 6.471e-36 6.533e-36 -35.189 -35.185 0.004 28.59 -O(0) 2.849e-15 - O2 1.424e-15 1.438e-15 -14.846 -14.842 0.004 31.88 + H2 6.469e-36 6.531e-36 -35.189 -35.185 0.004 28.59 +O(0) 2.851e-15 + O2 1.425e-15 1.439e-15 -14.846 -14.842 0.004 31.88 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -106.386 -106.474 -0.088 21.33 + HS- 0.000e+00 0.000e+00 -106.387 -106.474 -0.088 21.33 H2S 0.000e+00 0.000e+00 -106.556 -106.552 0.004 40.78 - S-2 0.000e+00 0.000e+00 -111.634 -111.958 -0.324 (0) - (H2S)2 0.000e+00 0.000e+00 -214.168 -214.164 0.004 28.84 + S-2 0.000e+00 0.000e+00 -111.635 -111.959 -0.324 (0) + (H2S)2 0.000e+00 0.000e+00 -214.169 -214.165 0.004 28.84 S(6) 1.535e-02 - SO4-2 1.031e-02 4.872e-03 -1.987 -2.312 -0.326 16.83 + SO4-2 1.031e-02 4.872e-03 -1.987 -2.312 -0.326 22.42 CaSO4 5.035e-03 5.083e-03 -2.298 -2.294 0.004 8.17 HSO4- 1.711e-07 1.412e-07 -6.767 -6.850 -0.083 41.44 CaHSO4+ 1.022e-08 8.434e-09 -7.991 -8.074 -0.083 (0) @@ -2177,7 +2178,7 @@ S(6) 1.535e-02 Anhydrite -0.05 -4.62 -4.56 CaSO4 Gypsum 0.00 -4.62 -4.62 CaSO4:2H2O - H2(g) -32.05 -35.18 -3.14 H2 + H2(g) -32.05 -35.19 -3.14 H2 H2O(g) -0.94 -0.00 0.94 H2O H2S(g) -105.33 -113.25 -7.91 H2S O2(g) -11.82 -14.84 -3.03 O2 @@ -2211,18 +2212,18 @@ Gypsum 0.00 -4.62 -4.62 1.000e+00 1.985e+00 9.852e-01 pH = 6.762 Charge balance pe = -1.655 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 3473 - Density (g/cm³) = 0.99006 - Volume (L) = 0.97622 - Viscosity (mPa s) = 0.55292 + Specific Conductance (µS/cm, 50°C) = 3970 + Density (g/cm³) = 0.99000 + Volume (L) = 0.97627 + Viscosity (mPa s) = 0.55180 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.115e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 50.00 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 48 + Iterations = 44 Total H = 1.070716e+02 Total O = 5.359489e+01 @@ -2239,17 +2240,17 @@ Ca 1.532e-02 CaSO4 5.036e-03 5.084e-03 -2.298 -2.294 0.004 8.19 CaHSO4+ 1.068e-08 8.808e-09 -7.972 -8.055 -0.084 (0) CaOH+ 5.761e-09 4.752e-09 -8.240 -8.323 -0.084 (0) -H(0) 6.798e-14 - H2 3.399e-14 3.432e-14 -13.469 -13.465 0.004 28.59 +H(0) 6.797e-14 + H2 3.399e-14 3.431e-14 -13.469 -13.465 0.004 28.59 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -58.012 -58.007 0.004 31.92 -S(-2) 4.156e-20 - HS- 2.472e-20 2.020e-20 -19.607 -19.695 -0.088 21.34 - H2S 1.684e-20 1.700e-20 -19.774 -19.770 0.004 40.92 - S-2 1.446e-25 6.853e-26 -24.840 -25.164 -0.324 (0) + O2 0.000e+00 0.000e+00 -58.011 -58.007 0.004 31.92 +S(-2) 4.152e-20 + HS- 2.470e-20 2.018e-20 -19.607 -19.695 -0.088 21.34 + H2S 1.682e-20 1.698e-20 -19.774 -19.770 0.004 40.92 + S-2 1.445e-25 6.847e-26 -24.840 -25.164 -0.324 (0) (H2S)2 0.000e+00 0.000e+00 -40.597 -40.593 0.004 28.78 S(6) 1.532e-02 - SO4-2 1.029e-02 4.856e-03 -1.988 -2.314 -0.326 16.82 + SO4-2 1.029e-02 4.856e-03 -1.988 -2.314 -0.326 22.41 CaSO4 5.036e-03 5.084e-03 -2.298 -2.294 0.004 8.19 HSO4- 1.793e-07 1.479e-07 -6.746 -6.830 -0.084 41.46 CaHSO4+ 1.068e-08 8.808e-09 -7.972 -8.055 -0.084 (0) @@ -2264,7 +2265,7 @@ S(6) 1.532e-02 H2O(g) -0.92 -0.00 0.92 H2O H2S(g) -18.54 -26.46 -7.91 H2S O2(g) -54.98 -58.01 -3.03 O2 - Sulfur -13.90 -9.55 4.34 S + Sulfur -13.90 -9.56 4.34 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2293,19 +2294,19 @@ Gypsum 0.00 -4.62 -4.62 1.000e+00 1.985e+00 9.852e-01 ----------------------------Description of solution---------------------------- pH = 6.752 Charge balance - pe = 9.078 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 51°C) = 3517 - Density (g/cm³) = 0.98960 - Volume (L) = 0.97667 - Viscosity (mPa s) = 0.54376 + pe = -2.096 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 51°C) = 4025 + Density (g/cm³) = 0.98954 + Volume (L) = 0.97672 + Viscosity (mPa s) = 0.54265 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.105e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 51.00 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.208e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 + Iterations = 47 Total H = 1.070714e+02 Total O = 5.359474e+01 @@ -2322,17 +2323,17 @@ Ca 1.530e-02 CaSO4 5.036e-03 5.083e-03 -2.298 -2.294 0.004 8.21 CaHSO4+ 1.115e-08 9.194e-09 -7.953 -8.036 -0.084 (0) CaOH+ 5.608e-09 4.625e-09 -8.251 -8.335 -0.084 (0) -H(0) 2.423e-35 - H2 1.212e-35 1.223e-35 -34.917 -34.912 0.004 28.59 -O(0) 2.880e-15 - O2 1.440e-15 1.454e-15 -14.842 -14.838 0.004 31.97 -S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -105.501 -105.588 -0.088 21.34 - H2S 0.000e+00 0.000e+00 -105.665 -105.661 0.004 41.06 - S-2 0.000e+00 0.000e+00 -110.718 -111.043 -0.325 (0) - (H2S)2 0.000e+00 0.000e+00 -212.371 -212.367 0.004 28.72 +H(0) 5.384e-13 + H2 2.692e-13 2.718e-13 -12.570 -12.566 0.004 28.59 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -59.535 -59.531 0.004 31.97 +S(-2) 1.297e-16 + HS- 7.693e-17 6.285e-17 -16.114 -16.202 -0.088 21.34 + H2S 5.273e-17 5.323e-17 -16.278 -16.274 0.004 41.06 + S-2 4.659e-22 2.206e-22 -21.332 -21.656 -0.325 (0) + (H2S)2 2.524e-34 2.548e-34 -33.598 -33.594 0.004 28.72 S(6) 1.530e-02 - SO4-2 1.026e-02 4.841e-03 -1.989 -2.315 -0.326 16.81 + SO4-2 1.026e-02 4.841e-03 -1.989 -2.315 -0.326 22.40 CaSO4 5.036e-03 5.083e-03 -2.298 -2.294 0.004 8.21 HSO4- 1.879e-07 1.549e-07 -6.726 -6.810 -0.084 41.48 CaHSO4+ 1.115e-08 9.194e-09 -7.953 -8.036 -0.084 (0) @@ -2343,11 +2344,11 @@ S(6) 1.530e-02 Anhydrite -0.03 -4.62 -4.59 CaSO4 Gypsum 0.00 -4.62 -4.62 CaSO4:2H2O - H2(g) -31.78 -34.91 -3.14 H2 + H2(g) -9.43 -12.57 -3.14 H2 H2O(g) -0.89 -0.00 0.89 H2O - H2S(g) -104.43 -112.34 -7.91 H2S - O2(g) -11.80 -14.84 -3.03 O2 - Sulfur -78.32 -74.00 4.32 S + H2S(g) -15.04 -22.95 -7.91 H2S + O2(g) -56.50 -59.53 -3.03 O2 + Sulfur -11.28 -6.96 4.32 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2377,10 +2378,10 @@ Gypsum 0.00 -4.63 -4.63 1.000e+00 1.985e+00 9.853e-01 pH = 6.742 Charge balance pe = 9.047 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 52°C) = 3560 - Density (g/cm³) = 0.98913 - Volume (L) = 0.97712 - Viscosity (mPa s) = 0.53485 + Specific Conductance (µS/cm, 52°C) = 4079 + Density (g/cm³) = 0.98908 + Volume (L) = 0.97718 + Viscosity (mPa s) = 0.53376 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.094e-02 Mass of water (kg) = 9.645e-01 @@ -2405,17 +2406,17 @@ Ca 1.527e-02 CaSO4 5.034e-03 5.082e-03 -2.298 -2.294 0.004 8.23 CaHSO4+ 1.163e-08 9.594e-09 -7.934 -8.018 -0.084 (0) CaOH+ 5.460e-09 4.503e-09 -8.263 -8.347 -0.084 (0) -H(0) 2.901e-35 - H2 1.451e-35 1.464e-35 -34.838 -34.834 0.004 28.59 -O(0) 3.761e-15 - O2 1.880e-15 1.898e-15 -14.726 -14.722 0.004 32.02 +H(0) 2.900e-35 + H2 1.450e-35 1.464e-35 -34.839 -34.835 0.004 28.59 +O(0) 3.763e-15 + O2 1.882e-15 1.899e-15 -14.725 -14.721 0.004 32.02 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -105.289 -105.377 -0.088 21.34 - H2S 0.000e+00 0.000e+00 -105.450 -105.446 0.004 41.20 - S-2 0.000e+00 0.000e+00 -110.492 -110.817 -0.325 (0) - (H2S)2 0.000e+00 0.000e+00 -211.936 -211.932 0.004 28.65 + HS- 0.000e+00 0.000e+00 -105.290 -105.378 -0.088 21.34 + H2S 0.000e+00 0.000e+00 -105.451 -105.447 0.004 41.20 + S-2 0.000e+00 0.000e+00 -110.493 -110.818 -0.325 (0) + (H2S)2 0.000e+00 0.000e+00 -211.937 -211.933 0.004 28.65 S(6) 1.527e-02 - SO4-2 1.023e-02 4.825e-03 -1.990 -2.317 -0.327 16.80 + SO4-2 1.023e-02 4.825e-03 -1.990 -2.317 -0.327 22.38 CaSO4 5.034e-03 5.082e-03 -2.298 -2.294 0.004 8.23 HSO4- 1.967e-07 1.622e-07 -6.706 -6.790 -0.084 41.50 CaHSO4+ 1.163e-08 9.594e-09 -7.934 -8.018 -0.084 (0) @@ -2428,7 +2429,7 @@ S(6) 1.527e-02 Gypsum 0.00 -4.63 -4.63 CaSO4:2H2O H2(g) -31.70 -34.83 -3.14 H2 H2O(g) -0.87 -0.00 0.87 H2O - H2S(g) -104.20 -112.12 -7.91 H2S + H2S(g) -104.21 -112.12 -7.91 H2S O2(g) -11.68 -14.72 -3.04 O2 Sulfur -78.17 -73.87 4.30 S @@ -2460,10 +2461,10 @@ Gypsum 0.00 -4.63 -4.63 1.000e+00 1.985e+00 9.853e-01 pH = 6.732 Charge balance pe = 8.915 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 53°C) = 3602 - Density (g/cm³) = 0.98866 - Volume (L) = 0.97759 - Viscosity (mPa s) = 0.52617 + Specific Conductance (µS/cm, 53°C) = 4134 + Density (g/cm³) = 0.98860 + Volume (L) = 0.97764 + Viscosity (mPa s) = 0.52510 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.083e-02 Mass of water (kg) = 9.645e-01 @@ -2488,17 +2489,17 @@ Ca 1.524e-02 CaSO4 5.031e-03 5.078e-03 -2.298 -2.294 0.004 8.25 CaHSO4+ 1.214e-08 1.001e-08 -7.916 -8.000 -0.084 (0) CaOH+ 5.318e-09 4.384e-09 -8.274 -8.358 -0.084 (0) -H(0) 5.522e-35 - H2 2.761e-35 2.787e-35 -34.559 -34.555 0.004 28.59 -O(0) 1.936e-15 - O2 9.678e-16 9.770e-16 -15.014 -15.010 0.004 32.07 +H(0) 5.523e-35 + H2 2.761e-35 2.788e-35 -34.559 -34.555 0.004 28.59 +O(0) 1.935e-15 + O2 9.674e-16 9.766e-16 -15.014 -15.010 0.004 32.07 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -104.272 -104.360 -0.088 21.34 H2S 0.000e+00 0.000e+00 -104.430 -104.426 0.004 41.34 - S-2 0.000e+00 0.000e+00 -109.460 -109.785 -0.325 (0) - (H2S)2 0.000e+00 0.000e+00 -209.889 -209.885 0.004 28.59 + S-2 0.000e+00 0.000e+00 -109.459 -109.785 -0.325 (0) + (H2S)2 0.000e+00 0.000e+00 -209.888 -209.884 0.004 28.59 S(6) 1.524e-02 - SO4-2 1.021e-02 4.808e-03 -1.991 -2.318 -0.327 16.78 + SO4-2 1.021e-02 4.808e-03 -1.991 -2.318 -0.327 22.36 CaSO4 5.031e-03 5.078e-03 -2.298 -2.294 0.004 8.25 HSO4- 2.059e-07 1.698e-07 -6.686 -6.770 -0.084 41.52 CaHSO4+ 1.214e-08 1.001e-08 -7.916 -8.000 -0.084 (0) @@ -2543,18 +2544,18 @@ Gypsum 0.00 -4.63 -4.63 1.000e+00 1.985e+00 9.853e-01 pH = 6.722 Charge balance pe = -1.622 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 54°C) = 3644 - Density (g/cm³) = 0.98818 - Volume (L) = 0.97806 - Viscosity (mPa s) = 0.51773 + Specific Conductance (µS/cm, 54°C) = 4187 + Density (g/cm³) = 0.98812 + Volume (L) = 0.97811 + Viscosity (mPa s) = 0.51666 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.071e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 54.00 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 47 + Iterations = 53 Total H = 1.070711e+02 Total O = 5.359420e+01 @@ -2576,12 +2577,12 @@ H(0) 6.798e-14 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -56.926 -56.922 0.004 32.11 S(-2) 1.656e-20 - HS- 9.742e-21 7.955e-21 -20.011 -20.099 -0.088 21.34 - H2S 6.815e-21 6.879e-21 -20.167 -20.162 0.004 41.47 - S-2 6.549e-26 3.095e-26 -25.184 -25.509 -0.326 (0) - (H2S)2 0.000e+00 0.000e+00 -41.355 -41.350 0.004 28.52 + HS- 9.743e-21 7.956e-21 -20.011 -20.099 -0.088 21.34 + H2S 6.816e-21 6.880e-21 -20.166 -20.162 0.004 41.47 + S-2 6.550e-26 3.095e-26 -25.184 -25.509 -0.326 (0) + (H2S)2 0.000e+00 0.000e+00 -41.354 -41.350 0.004 28.52 S(6) 1.520e-02 - SO4-2 1.018e-02 4.791e-03 -1.992 -2.320 -0.327 16.76 + SO4-2 1.018e-02 4.791e-03 -1.992 -2.320 -0.327 22.34 CaSO4 5.027e-03 5.074e-03 -2.299 -2.295 0.004 8.27 HSO4- 2.155e-07 1.777e-07 -6.666 -6.750 -0.084 41.53 CaHSO4+ 1.266e-08 1.043e-08 -7.898 -7.982 -0.084 (0) @@ -2626,10 +2627,10 @@ Gypsum -0.01 -4.64 -4.63 1.000e+00 0 -1.000e+00 pH = 6.711 Charge balance pe = 8.832 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 55°C) = 3653 - Density (g/cm³) = 0.98767 - Volume (L) = 1.05111 - Viscosity (mPa s) = 0.50945 + Specific Conductance (µS/cm, 55°C) = 4201 + Density (g/cm³) = 0.98762 + Volume (L) = 1.05117 + Viscosity (mPa s) = 0.50842 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.020e-02 Mass of water (kg) = 1.036e+00 @@ -2654,17 +2655,17 @@ Ca 1.500e-02 CaSO4 4.953e-03 4.999e-03 -2.305 -2.301 0.004 8.29 CaHSO4+ 1.303e-08 1.074e-08 -7.885 -7.969 -0.084 (0) CaOH+ 5.000e-09 4.123e-09 -8.301 -8.385 -0.084 (0) -H(0) 8.743e-35 - H2 4.372e-35 4.412e-35 -34.359 -34.355 0.004 28.58 -O(0) 2.654e-15 - O2 1.327e-15 1.339e-15 -14.877 -14.873 0.004 32.16 +H(0) 8.750e-35 + H2 4.375e-35 4.416e-35 -34.359 -34.355 0.004 28.58 +O(0) 2.650e-15 + O2 1.325e-15 1.337e-15 -14.878 -14.874 0.004 32.16 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -103.677 -103.764 -0.088 21.34 - H2S 0.000e+00 0.000e+00 -103.828 -103.824 0.004 41.61 - S-2 0.000e+00 0.000e+00 -108.836 -109.160 -0.325 (0) - (H2S)2 0.000e+00 0.000e+00 -208.670 -208.666 0.004 28.46 + HS- 0.000e+00 0.000e+00 -103.675 -103.763 -0.088 21.34 + H2S 0.000e+00 0.000e+00 -103.826 -103.822 0.004 41.61 + S-2 0.000e+00 0.000e+00 -108.834 -109.159 -0.325 (0) + (H2S)2 0.000e+00 0.000e+00 -208.667 -208.663 0.004 28.46 S(6) 1.500e-02 - SO4-2 1.005e-02 4.742e-03 -1.998 -2.324 -0.326 16.73 + SO4-2 1.005e-02 4.742e-03 -1.998 -2.324 -0.326 22.28 CaSO4 4.953e-03 4.999e-03 -2.305 -2.301 0.004 8.29 HSO4- 2.242e-07 1.849e-07 -6.649 -6.733 -0.084 41.54 CaHSO4+ 1.303e-08 1.074e-08 -7.885 -7.969 -0.084 (0) @@ -2675,10 +2676,10 @@ S(6) 1.500e-02 Anhydrite 0.00 -4.64 -4.64 CaSO4 Gypsum -0.01 -4.64 -4.63 CaSO4:2H2O - H2(g) -31.22 -34.36 -3.14 H2 + H2(g) -31.22 -34.35 -3.14 H2 H2O(g) -0.81 -0.00 0.81 H2O - H2S(g) -102.56 -110.48 -7.92 H2S - O2(g) -11.82 -14.87 -3.05 O2 + H2S(g) -102.56 -110.47 -7.92 H2S + O2(g) -11.83 -14.87 -3.05 O2 Sulfur -76.98 -72.74 4.25 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -2708,11 +2709,11 @@ Gypsum -0.02 -4.65 -4.64 1.000e+00 0 -1.000e+00 ----------------------------Description of solution---------------------------- pH = 6.700 Charge balance - pe = 8.775 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 56°C) = 3641 - Density (g/cm³) = 0.98714 - Volume (L) = 1.05163 - Viscosity (mPa s) = 0.50137 + pe = 8.805 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 56°C) = 4190 + Density (g/cm³) = 0.98709 + Volume (L) = 1.05168 + Viscosity (mPa s) = 0.50037 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.946e-02 Mass of water (kg) = 1.036e+00 @@ -2737,17 +2738,17 @@ Ca 1.470e-02 CaSO4 4.838e-03 4.882e-03 -2.315 -2.311 0.004 8.31 CaHSO4+ 1.330e-08 1.098e-08 -7.876 -7.960 -0.083 (0) CaOH+ 4.799e-09 3.961e-09 -8.319 -8.402 -0.083 (0) -H(0) 1.190e-34 - H2 5.949e-35 6.003e-35 -34.226 -34.222 0.004 28.58 -O(0) 2.644e-15 - O2 1.322e-15 1.334e-15 -14.879 -14.875 0.004 32.20 +H(0) 1.034e-34 + H2 5.168e-35 5.215e-35 -34.287 -34.283 0.004 28.58 +O(0) 3.503e-15 + O2 1.752e-15 1.768e-15 -14.757 -14.753 0.004 32.20 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -103.245 -103.333 -0.087 21.34 - H2S 0.000e+00 0.000e+00 -103.391 -103.387 0.004 41.74 - S-2 0.000e+00 0.000e+00 -108.392 -108.715 -0.323 (0) - (H2S)2 0.000e+00 0.000e+00 -207.791 -207.787 0.004 28.39 + HS- 0.000e+00 0.000e+00 -103.490 -103.577 -0.087 21.34 + H2S 0.000e+00 0.000e+00 -103.636 -103.632 0.004 41.74 + S-2 0.000e+00 0.000e+00 -108.636 -108.959 -0.323 (0) + (H2S)2 0.000e+00 0.000e+00 -208.280 -208.276 0.004 28.39 S(6) 1.470e-02 - SO4-2 9.866e-03 4.672e-03 -2.006 -2.330 -0.325 16.69 + SO4-2 9.866e-03 4.672e-03 -2.006 -2.330 -0.325 22.21 CaSO4 4.838e-03 4.882e-03 -2.315 -2.311 0.004 8.31 HSO4- 2.323e-07 1.918e-07 -6.634 -6.717 -0.083 41.55 CaHSO4+ 1.330e-08 1.098e-08 -7.876 -7.960 -0.083 (0) @@ -2758,11 +2759,11 @@ S(6) 1.470e-02 Anhydrite 0.00 -4.65 -4.65 CaSO4 Gypsum -0.02 -4.65 -4.64 CaSO4:2H2O - H2(g) -31.08 -34.22 -3.14 H2 + H2(g) -31.14 -34.28 -3.14 H2 H2O(g) -0.79 -0.00 0.79 H2O - H2S(g) -102.12 -110.03 -7.92 H2S - O2(g) -11.82 -14.87 -3.05 O2 - Sulfur -76.66 -72.44 4.23 S + H2S(g) -102.36 -110.28 -7.92 H2S + O2(g) -11.70 -14.75 -3.05 O2 + Sulfur -76.85 -72.62 4.23 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2791,11 +2792,11 @@ Gypsum -0.03 -4.67 -4.64 1.000e+00 0 -1.000e+00 ----------------------------Description of solution---------------------------- pH = 6.690 Charge balance - pe = 8.718 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 57°C) = 3628 - Density (g/cm³) = 0.98661 - Volume (L) = 1.05215 - Viscosity (mPa s) = 0.49349 + pe = 8.748 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 57°C) = 4178 + Density (g/cm³) = 0.98656 + Volume (L) = 1.05221 + Viscosity (mPa s) = 0.49252 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.874e-02 Mass of water (kg) = 1.036e+00 @@ -2820,17 +2821,17 @@ Ca 1.441e-02 CaSO4 4.725e-03 4.767e-03 -2.326 -2.322 0.004 8.32 CaHSO4+ 1.357e-08 1.121e-08 -7.868 -7.950 -0.083 (0) CaOH+ 4.607e-09 3.806e-09 -8.337 -8.419 -0.083 (0) -H(0) 1.607e-34 - H2 8.034e-35 8.106e-35 -34.095 -34.091 0.004 28.58 -O(0) 2.663e-15 - O2 1.332e-15 1.343e-15 -14.876 -14.872 0.004 32.25 +H(0) 1.400e-34 + H2 7.001e-35 7.064e-35 -34.155 -34.151 0.004 28.58 +O(0) 3.507e-15 + O2 1.754e-15 1.769e-15 -14.756 -14.752 0.004 32.25 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -102.827 -102.913 -0.087 21.33 - H2S 0.000e+00 0.000e+00 -102.968 -102.964 0.004 41.86 - S-2 0.000e+00 0.000e+00 -107.961 -108.282 -0.321 (0) - (H2S)2 0.000e+00 0.000e+00 -206.937 -206.934 0.004 28.32 + HS- 0.000e+00 0.000e+00 -103.066 -103.153 -0.087 21.33 + H2S 0.000e+00 0.000e+00 -103.207 -103.203 0.004 41.86 + S-2 0.000e+00 0.000e+00 -108.200 -108.521 -0.321 (0) + (H2S)2 0.000e+00 0.000e+00 -207.416 -207.412 0.004 28.32 S(6) 1.441e-02 - SO4-2 9.684e-03 4.603e-03 -2.014 -2.337 -0.323 16.65 + SO4-2 9.684e-03 4.603e-03 -2.014 -2.337 -0.323 22.13 CaSO4 4.725e-03 4.767e-03 -2.326 -2.322 0.004 8.32 HSO4- 2.407e-07 1.989e-07 -6.619 -6.701 -0.083 41.56 CaHSO4+ 1.357e-08 1.121e-08 -7.868 -7.950 -0.083 (0) @@ -2841,11 +2842,11 @@ S(6) 1.441e-02 Anhydrite 0.00 -4.67 -4.67 CaSO4 Gypsum -0.03 -4.67 -4.64 CaSO4:2H2O - H2(g) -30.95 -34.09 -3.14 H2 + H2(g) -31.01 -34.15 -3.14 H2 H2O(g) -0.77 -0.00 0.77 H2O - H2S(g) -101.69 -109.60 -7.92 H2S - O2(g) -11.82 -14.87 -3.06 O2 - Sulfur -76.35 -72.15 4.21 S + H2S(g) -101.93 -109.84 -7.92 H2S + O2(g) -11.70 -14.75 -3.06 O2 + Sulfur -76.53 -72.33 4.21 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2875,10 +2876,10 @@ Gypsum -0.04 -4.68 -4.64 1.000e+00 0 -1.000e+00 pH = 6.679 Charge balance pe = 8.661 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 58°C) = 3614 - Density (g/cm³) = 0.98607 - Volume (L) = 1.05269 - Viscosity (mPa s) = 0.48582 + Specific Conductance (µS/cm, 58°C) = 4165 + Density (g/cm³) = 0.98602 + Volume (L) = 1.05274 + Viscosity (mPa s) = 0.48488 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.802e-02 Mass of water (kg) = 1.036e+00 @@ -2903,17 +2904,17 @@ Ca 1.412e-02 CaSO4 4.613e-03 4.654e-03 -2.336 -2.332 0.004 8.34 CaHSO4+ 1.384e-08 1.144e-08 -7.859 -7.941 -0.082 (0) CaOH+ 4.424e-09 3.658e-09 -8.354 -8.437 -0.082 (0) -H(0) 2.181e-34 - H2 1.091e-34 1.100e-34 -33.962 -33.959 0.004 28.58 -O(0) 2.646e-15 - O2 1.323e-15 1.334e-15 -14.878 -14.875 0.004 32.29 +H(0) 2.180e-34 + H2 1.090e-34 1.100e-34 -33.962 -33.959 0.004 28.58 +O(0) 2.648e-15 + O2 1.324e-15 1.335e-15 -14.878 -14.874 0.004 32.29 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -102.398 -102.485 -0.086 21.32 - H2S 0.000e+00 0.000e+00 -102.534 -102.531 0.004 41.99 - S-2 0.000e+00 0.000e+00 -107.520 -107.840 -0.320 (0) - (H2S)2 0.000e+00 0.000e+00 -206.065 -206.061 0.004 28.25 + HS- 0.000e+00 0.000e+00 -102.399 -102.485 -0.086 21.32 + H2S 0.000e+00 0.000e+00 -102.535 -102.531 0.004 41.99 + S-2 0.000e+00 0.000e+00 -107.521 -107.840 -0.320 (0) + (H2S)2 0.000e+00 0.000e+00 -206.066 -206.062 0.004 28.25 S(6) 1.412e-02 - SO4-2 9.504e-03 4.535e-03 -2.022 -2.343 -0.321 16.61 + SO4-2 9.504e-03 4.535e-03 -2.022 -2.343 -0.321 22.05 CaSO4 4.613e-03 4.654e-03 -2.336 -2.332 0.004 8.34 HSO4- 2.493e-07 2.061e-07 -6.603 -6.686 -0.082 41.57 CaHSO4+ 1.384e-08 1.144e-08 -7.859 -7.941 -0.082 (0) @@ -2958,10 +2959,10 @@ Gypsum -0.04 -4.69 -4.65 1.000e+00 0 -1.000e+00 pH = 6.669 Charge balance pe = 8.605 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 59°C) = 3599 - Density (g/cm³) = 0.98553 - Volume (L) = 1.05323 - Viscosity (mPa s) = 0.47834 + Specific Conductance (µS/cm, 59°C) = 4151 + Density (g/cm³) = 0.98548 + Volume (L) = 1.05328 + Viscosity (mPa s) = 0.47744 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.731e-02 Mass of water (kg) = 1.036e+00 @@ -2986,17 +2987,17 @@ Ca 1.383e-02 CaSO4 4.504e-03 4.543e-03 -2.346 -2.343 0.004 8.36 CaHSO4+ 1.411e-08 1.168e-08 -7.850 -7.932 -0.082 (0) CaOH+ 4.249e-09 3.517e-09 -8.372 -8.454 -0.082 (0) -H(0) 2.942e-34 - H2 1.471e-34 1.484e-34 -33.832 -33.829 0.004 28.58 -O(0) 2.652e-15 - O2 1.326e-15 1.338e-15 -14.877 -14.874 0.004 32.34 +H(0) 2.943e-34 + H2 1.472e-34 1.484e-34 -33.832 -33.828 0.004 28.58 +O(0) 2.651e-15 + O2 1.325e-15 1.337e-15 -14.878 -14.874 0.004 32.34 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -101.981 -102.067 -0.086 21.31 - H2S 0.000e+00 0.000e+00 -102.112 -102.108 0.004 42.11 + HS- 0.000e+00 0.000e+00 -101.980 -102.066 -0.086 21.31 + H2S 0.000e+00 0.000e+00 -102.111 -102.107 0.004 42.11 S-2 0.000e+00 0.000e+00 -107.090 -107.408 -0.318 (0) - (H2S)2 0.000e+00 0.000e+00 -205.213 -205.210 0.004 28.18 + (H2S)2 0.000e+00 0.000e+00 -205.212 -205.208 0.004 28.18 S(6) 1.383e-02 - SO4-2 9.328e-03 4.468e-03 -2.030 -2.350 -0.320 16.56 + SO4-2 9.328e-03 4.468e-03 -2.030 -2.350 -0.320 21.96 CaSO4 4.504e-03 4.543e-03 -2.346 -2.343 0.004 8.36 HSO4- 2.581e-07 2.137e-07 -6.588 -6.670 -0.082 41.58 CaHSO4+ 1.411e-08 1.168e-08 -7.850 -7.932 -0.082 (0) @@ -3009,7 +3010,7 @@ S(6) 1.383e-02 Gypsum -0.04 -4.69 -4.65 CaSO4:2H2O H2(g) -30.69 -33.83 -3.14 H2 H2O(g) -0.73 -0.00 0.73 H2O - H2S(g) -100.82 -108.74 -7.92 H2S + H2S(g) -100.82 -108.73 -7.92 H2S O2(g) -11.81 -14.87 -3.06 O2 Sulfur -75.73 -71.56 4.17 S @@ -3040,11 +3041,11 @@ Gypsum -0.05 -4.71 -4.65 1.000e+00 0 -1.000e+00 ----------------------------Description of solution---------------------------- pH = 6.658 Charge balance - pe = 8.548 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 60°C) = 3584 - Density (g/cm³) = 0.98498 - Volume (L) = 1.05377 - Viscosity (mPa s) = 0.47105 + pe = 8.549 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 60°C) = 4137 + Density (g/cm³) = 0.98493 + Volume (L) = 1.05382 + Viscosity (mPa s) = 0.47018 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.662e-02 Mass of water (kg) = 1.036e+00 @@ -3069,17 +3070,17 @@ Ca 1.355e-02 CaSO4 4.397e-03 4.434e-03 -2.357 -2.353 0.004 8.37 CaHSO4+ 1.439e-08 1.192e-08 -7.842 -7.924 -0.082 (0) CaOH+ 4.081e-09 3.382e-09 -8.389 -8.471 -0.082 (0) -H(0) 3.973e-34 - H2 1.986e-34 2.003e-34 -33.702 -33.698 0.004 28.58 -O(0) 2.644e-15 - O2 1.322e-15 1.333e-15 -14.879 -14.875 0.004 32.38 +H(0) 3.967e-34 + H2 1.983e-34 2.000e-34 -33.703 -33.699 0.004 28.58 +O(0) 2.652e-15 + O2 1.326e-15 1.337e-15 -14.877 -14.874 0.004 32.38 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -101.561 -101.646 -0.085 21.30 - H2S 0.000e+00 0.000e+00 -101.687 -101.683 0.004 42.24 - S-2 0.000e+00 0.000e+00 -106.658 -106.974 -0.317 (0) - (H2S)2 0.000e+00 0.000e+00 -204.357 -204.354 0.004 28.10 + HS- 0.000e+00 0.000e+00 -101.563 -101.649 -0.085 21.30 + H2S 0.000e+00 0.000e+00 -101.689 -101.686 0.004 42.24 + S-2 0.000e+00 0.000e+00 -106.660 -106.977 -0.317 (0) + (H2S)2 0.000e+00 0.000e+00 -204.362 -204.359 0.004 28.10 S(6) 1.355e-02 - SO4-2 9.154e-03 4.402e-03 -2.038 -2.356 -0.318 16.50 + SO4-2 9.154e-03 4.402e-03 -2.038 -2.356 -0.318 21.87 CaSO4 4.397e-03 4.434e-03 -2.357 -2.353 0.004 8.37 HSO4- 2.672e-07 2.214e-07 -6.573 -6.655 -0.082 41.58 CaHSO4+ 1.439e-08 1.192e-08 -7.842 -7.924 -0.082 (0) @@ -3092,8 +3093,8 @@ S(6) 1.355e-02 Gypsum -0.05 -4.71 -4.65 CaSO4:2H2O H2(g) -30.56 -33.70 -3.14 H2 H2O(g) -0.71 -0.00 0.71 H2O - H2S(g) -100.39 -108.30 -7.92 H2S - O2(g) -11.81 -14.88 -3.06 O2 + H2S(g) -100.39 -108.31 -7.92 H2S + O2(g) -11.81 -14.87 -3.06 O2 Sulfur -75.42 -71.27 4.15 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -3124,10 +3125,10 @@ Gypsum -0.06 -4.72 -4.66 1.000e+00 0 -1.000e+00 pH = 6.648 Charge balance pe = 8.493 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 61°C) = 3568 - Density (g/cm³) = 0.98442 - Volume (L) = 1.05433 - Viscosity (mPa s) = 0.46394 + Specific Conductance (µS/cm, 61°C) = 4121 + Density (g/cm³) = 0.98438 + Volume (L) = 1.05438 + Viscosity (mPa s) = 0.46310 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.594e-02 Mass of water (kg) = 1.036e+00 @@ -3152,17 +3153,17 @@ Ca 1.328e-02 CaSO4 4.291e-03 4.327e-03 -2.367 -2.364 0.004 8.39 CaHSO4+ 1.466e-08 1.216e-08 -7.834 -7.915 -0.081 (0) CaOH+ 3.922e-09 3.252e-09 -8.407 -8.488 -0.081 (0) -H(0) 5.318e-34 - H2 2.659e-34 2.681e-34 -33.575 -33.572 0.004 28.58 -O(0) 2.672e-15 - O2 1.336e-15 1.347e-15 -14.874 -14.871 0.004 32.42 +H(0) 5.333e-34 + H2 2.666e-34 2.688e-34 -33.574 -33.571 0.004 28.58 +O(0) 2.658e-15 + O2 1.329e-15 1.340e-15 -14.877 -14.873 0.004 32.42 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -101.156 -101.240 -0.085 21.29 - H2S 0.000e+00 0.000e+00 -101.276 -101.273 0.004 42.36 - S-2 0.000e+00 0.000e+00 -106.240 -106.555 -0.315 (0) - (H2S)2 0.000e+00 0.000e+00 -203.530 -203.527 0.004 28.03 + HS- 0.000e+00 0.000e+00 -101.151 -101.236 -0.085 21.29 + H2S 0.000e+00 0.000e+00 -101.271 -101.268 0.004 42.36 + S-2 0.000e+00 0.000e+00 -106.235 -106.550 -0.315 (0) + (H2S)2 0.000e+00 0.000e+00 -203.521 -203.517 0.004 28.03 S(6) 1.328e-02 - SO4-2 8.984e-03 4.336e-03 -2.047 -2.363 -0.316 16.45 + SO4-2 8.984e-03 4.336e-03 -2.047 -2.363 -0.316 21.78 CaSO4 4.291e-03 4.327e-03 -2.367 -2.364 0.004 8.39 HSO4- 2.766e-07 2.294e-07 -6.558 -6.639 -0.081 41.59 CaHSO4+ 1.466e-08 1.216e-08 -7.834 -7.915 -0.081 (0) @@ -3175,8 +3176,8 @@ S(6) 1.328e-02 Gypsum -0.06 -4.72 -4.66 CaSO4:2H2O H2(g) -30.43 -33.57 -3.14 H2 H2O(g) -0.69 -0.00 0.69 H2O - H2S(g) -99.97 -107.89 -7.92 H2S - O2(g) -11.80 -14.87 -3.07 O2 + H2S(g) -99.96 -107.88 -7.92 H2S + O2(g) -11.81 -14.87 -3.07 O2 Sulfur -75.12 -70.99 4.13 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -3206,11 +3207,11 @@ Gypsum -0.07 -4.73 -4.66 1.000e+00 0 -1.000e+00 ----------------------------Description of solution---------------------------- pH = 6.638 Charge balance - pe = 8.437 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 62°C) = 3552 - Density (g/cm³) = 0.98387 - Volume (L) = 1.05489 - Viscosity (mPa s) = 0.45701 + pe = 8.491 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 62°C) = 4105 + Density (g/cm³) = 0.98382 + Volume (L) = 1.05493 + Viscosity (mPa s) = 0.45620 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.526e-02 Mass of water (kg) = 1.036e+00 @@ -3235,17 +3236,17 @@ Ca 1.300e-02 CaSO4 4.188e-03 4.222e-03 -2.378 -2.375 0.004 8.41 CaHSO4+ 1.494e-08 1.240e-08 -7.826 -7.906 -0.081 (0) CaOH+ 3.769e-09 3.128e-09 -8.424 -8.505 -0.081 (0) -H(0) 7.178e-34 - H2 3.589e-34 3.618e-34 -33.445 -33.441 0.004 28.58 -O(0) 2.647e-15 - O2 1.323e-15 1.334e-15 -14.878 -14.875 0.004 32.47 +H(0) 5.591e-34 + H2 2.795e-34 2.818e-34 -33.554 -33.550 0.004 28.58 +O(0) 4.363e-15 + O2 2.181e-15 2.199e-15 -14.661 -14.658 0.004 32.47 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -100.735 -100.820 -0.084 21.28 - H2S 0.000e+00 0.000e+00 -100.851 -100.847 0.004 42.48 - S-2 0.000e+00 0.000e+00 -105.808 -106.121 -0.313 (0) - (H2S)2 0.000e+00 0.000e+00 -202.673 -202.670 0.004 27.96 + HS- 0.000e+00 0.000e+00 -101.169 -101.254 -0.084 21.28 + H2S 0.000e+00 0.000e+00 -101.285 -101.281 0.004 42.48 + S-2 0.000e+00 0.000e+00 -106.242 -106.555 -0.313 (0) + (H2S)2 0.000e+00 0.000e+00 -203.542 -203.538 0.004 27.96 S(6) 1.300e-02 - SO4-2 8.816e-03 4.271e-03 -2.055 -2.369 -0.315 16.39 + SO4-2 8.816e-03 4.271e-03 -2.055 -2.369 -0.315 21.69 CaSO4 4.188e-03 4.222e-03 -2.378 -2.375 0.004 8.41 HSO4- 2.862e-07 2.376e-07 -6.543 -6.624 -0.081 41.59 CaHSO4+ 1.494e-08 1.240e-08 -7.826 -7.906 -0.081 (0) @@ -3256,11 +3257,11 @@ S(6) 1.300e-02 Anhydrite 0.00 -4.73 -4.73 CaSO4 Gypsum -0.07 -4.73 -4.66 CaSO4:2H2O - H2(g) -30.30 -33.44 -3.14 H2 + H2(g) -30.41 -33.55 -3.14 H2 H2O(g) -0.67 -0.00 0.67 H2O - H2S(g) -99.54 -107.46 -7.92 H2S - O2(g) -11.80 -14.87 -3.07 O2 - Sulfur -74.81 -70.70 4.11 S + H2S(g) -99.97 -107.89 -7.92 H2S + O2(g) -11.59 -14.66 -3.07 O2 + Sulfur -75.14 -71.02 4.11 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3290,10 +3291,10 @@ Gypsum -0.08 -4.75 -4.66 1.000e+00 0 -1.000e+00 pH = 6.628 Charge balance pe = 8.383 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 63°C) = 3535 - Density (g/cm³) = 0.98330 - Volume (L) = 1.05545 - Viscosity (mPa s) = 0.45025 + Specific Conductance (µS/cm, 63°C) = 4087 + Density (g/cm³) = 0.98326 + Volume (L) = 1.05550 + Viscosity (mPa s) = 0.44947 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.460e-02 Mass of water (kg) = 1.036e+00 @@ -3324,11 +3325,11 @@ O(0) 2.681e-15 O2 1.340e-15 1.351e-15 -14.873 -14.869 0.003 32.51 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -100.337 -100.421 -0.084 21.27 - H2S 0.000e+00 0.000e+00 -100.447 -100.443 0.003 42.59 + H2S 0.000e+00 0.000e+00 -100.447 -100.444 0.003 42.59 S-2 0.000e+00 0.000e+00 -105.397 -105.709 -0.312 (0) - (H2S)2 0.000e+00 0.000e+00 -201.860 -201.857 0.003 27.88 + (H2S)2 0.000e+00 0.000e+00 -201.861 -201.857 0.003 27.88 S(6) 1.274e-02 - SO4-2 8.650e-03 4.207e-03 -2.063 -2.376 -0.313 16.33 + SO4-2 8.650e-03 4.207e-03 -2.063 -2.376 -0.313 21.59 CaSO4 4.086e-03 4.119e-03 -2.389 -2.385 0.003 8.42 HSO4- 2.961e-07 2.460e-07 -6.529 -6.609 -0.080 41.59 CaHSO4+ 1.522e-08 1.265e-08 -7.818 -7.898 -0.080 (0) @@ -3373,10 +3374,10 @@ Gypsum -0.09 -4.76 -4.67 1.000e+00 0 -1.000e+00 pH = 6.618 Charge balance pe = 8.328 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 64°C) = 3517 - Density (g/cm³) = 0.98273 - Volume (L) = 1.05603 - Viscosity (mPa s) = 0.44366 + Specific Conductance (µS/cm, 64°C) = 4069 + Density (g/cm³) = 0.98269 + Volume (L) = 1.05607 + Viscosity (mPa s) = 0.44290 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.395e-02 Mass of water (kg) = 1.036e+00 @@ -3411,7 +3412,7 @@ S(-2) 0.000e+00 S-2 0.000e+00 0.000e+00 -104.977 -105.287 -0.310 (0) (H2S)2 0.000e+00 0.000e+00 -201.028 -201.025 0.003 27.81 S(6) 1.247e-02 - SO4-2 8.488e-03 4.143e-03 -2.071 -2.383 -0.311 16.26 + SO4-2 8.488e-03 4.143e-03 -2.071 -2.383 -0.311 21.50 CaSO4 3.986e-03 4.018e-03 -2.399 -2.396 0.003 8.44 HSO4- 3.062e-07 2.547e-07 -6.514 -6.594 -0.080 41.59 CaHSO4+ 1.550e-08 1.289e-08 -7.810 -7.890 -0.080 (0) @@ -3456,10 +3457,10 @@ Gypsum -0.10 -4.77 -4.67 1.000e+00 0 -1.000e+00 pH = 6.608 Charge balance pe = 8.273 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 65°C) = 3499 - Density (g/cm³) = 0.98216 - Volume (L) = 1.05661 - Viscosity (mPa s) = 0.43723 + Specific Conductance (µS/cm, 65°C) = 4051 + Density (g/cm³) = 0.98212 + Volume (L) = 1.05665 + Viscosity (mPa s) = 0.43649 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.331e-02 Mass of water (kg) = 1.036e+00 @@ -3484,17 +3485,17 @@ Ca 1.222e-02 CaSO4 3.888e-03 3.918e-03 -2.410 -2.407 0.003 8.45 CaHSO4+ 1.578e-08 1.314e-08 -7.802 -7.881 -0.080 (0) CaOH+ 3.350e-09 2.789e-09 -8.475 -8.555 -0.080 (0) -H(0) 1.712e-33 - H2 8.558e-34 8.624e-34 -33.068 -33.064 0.003 28.58 -O(0) 2.679e-15 - O2 1.339e-15 1.350e-15 -14.873 -14.870 0.003 32.59 +H(0) 1.710e-33 + H2 8.551e-34 8.617e-34 -33.068 -33.065 0.003 28.58 +O(0) 2.683e-15 + O2 1.342e-15 1.352e-15 -14.872 -14.869 0.003 32.59 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -99.525 -99.608 -0.083 21.24 - H2S 0.000e+00 0.000e+00 -99.624 -99.621 0.003 42.82 - S-2 0.000e+00 0.000e+00 -104.561 -104.869 -0.308 (0) - (H2S)2 0.000e+00 0.000e+00 -200.205 -200.201 0.003 27.73 + HS- 0.000e+00 0.000e+00 -99.527 -99.610 -0.083 21.24 + H2S 0.000e+00 0.000e+00 -99.626 -99.623 0.003 42.82 + S-2 0.000e+00 0.000e+00 -104.562 -104.871 -0.308 (0) + (H2S)2 0.000e+00 0.000e+00 -200.207 -200.204 0.003 27.73 S(6) 1.222e-02 - SO4-2 8.328e-03 4.080e-03 -2.079 -2.389 -0.310 16.19 + SO4-2 8.328e-03 4.080e-03 -2.079 -2.389 -0.310 21.40 CaSO4 3.888e-03 3.918e-03 -2.410 -2.407 0.003 8.45 HSO4- 3.167e-07 2.636e-07 -6.499 -6.579 -0.080 41.59 CaHSO4+ 1.578e-08 1.314e-08 -7.802 -7.881 -0.080 (0) @@ -3539,10 +3540,10 @@ Gypsum -0.11 -4.79 -4.67 1.000e+00 0 -1.000e+00 pH = 6.598 Charge balance pe = 8.218 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 66°C) = 3481 - Density (g/cm³) = 0.98158 - Volume (L) = 1.05720 - Viscosity (mPa s) = 0.43095 + Specific Conductance (µS/cm, 66°C) = 4031 + Density (g/cm³) = 0.98154 + Volume (L) = 1.05724 + Viscosity (mPa s) = 0.43024 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.268e-02 Mass of water (kg) = 1.036e+00 @@ -3577,7 +3578,7 @@ S(-2) 0.000e+00 S-2 0.000e+00 0.000e+00 -104.146 -104.453 -0.307 (0) (H2S)2 0.000e+00 0.000e+00 -199.383 -199.380 0.003 27.65 S(6) 1.196e-02 - SO4-2 8.170e-03 4.018e-03 -2.088 -2.396 -0.308 16.11 + SO4-2 8.170e-03 4.018e-03 -2.088 -2.396 -0.308 21.29 CaSO4 3.793e-03 3.821e-03 -2.421 -2.418 0.003 8.47 HSO4- 3.274e-07 2.728e-07 -6.485 -6.564 -0.079 41.59 CaHSO4+ 1.606e-08 1.338e-08 -7.794 -7.873 -0.079 (0) @@ -3622,10 +3623,10 @@ Gypsum -0.12 -4.80 -4.68 1.000e+00 0 -1.000e+00 pH = 6.589 Charge balance pe = 8.164 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 67°C) = 3461 - Density (g/cm³) = 0.98099 - Volume (L) = 1.05779 - Viscosity (mPa s) = 0.42482 + Specific Conductance (µS/cm, 67°C) = 4011 + Density (g/cm³) = 0.98095 + Volume (L) = 1.05783 + Viscosity (mPa s) = 0.42414 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.206e-02 Mass of water (kg) = 1.036e+00 @@ -3660,7 +3661,7 @@ S(-2) 0.000e+00 S-2 0.000e+00 0.000e+00 -103.737 -104.042 -0.305 (0) (H2S)2 0.000e+00 0.000e+00 -198.573 -198.570 0.003 27.57 S(6) 1.171e-02 - SO4-2 8.015e-03 3.957e-03 -2.096 -2.403 -0.307 16.04 + SO4-2 8.015e-03 3.957e-03 -2.096 -2.403 -0.307 21.19 CaSO4 3.699e-03 3.726e-03 -2.432 -2.429 0.003 8.48 HSO4- 3.384e-07 2.823e-07 -6.471 -6.549 -0.079 41.59 CaHSO4+ 1.635e-08 1.363e-08 -7.787 -7.865 -0.079 (0) @@ -3705,10 +3706,10 @@ Gypsum -0.13 -4.81 -4.68 1.000e+00 0 -1.000e+00 pH = 6.579 Charge balance pe = 8.110 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 68°C) = 3442 - Density (g/cm³) = 0.98040 - Volume (L) = 1.05839 - Viscosity (mPa s) = 0.41884 + Specific Conductance (µS/cm, 68°C) = 3990 + Density (g/cm³) = 0.98037 + Volume (L) = 1.05843 + Viscosity (mPa s) = 0.41818 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.145e-02 Mass of water (kg) = 1.036e+00 @@ -3733,17 +3734,17 @@ Ca 1.147e-02 CaSO4 3.606e-03 3.633e-03 -2.443 -2.440 0.003 8.50 CaHSO4+ 1.663e-08 1.388e-08 -7.779 -7.858 -0.078 (0) CaOH+ 2.984e-09 2.491e-09 -8.525 -8.604 -0.078 (0) -H(0) 4.045e-33 - H2 2.022e-33 2.037e-33 -32.694 -32.691 0.003 28.58 -O(0) 2.677e-15 - O2 1.338e-15 1.348e-15 -14.873 -14.870 0.003 32.71 +H(0) 4.040e-33 + H2 2.020e-33 2.035e-33 -32.695 -32.692 0.003 28.58 +O(0) 2.683e-15 + O2 1.342e-15 1.351e-15 -14.872 -14.869 0.003 32.71 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -98.327 -98.408 -0.082 21.19 - H2S 0.000e+00 0.000e+00 -98.409 -98.406 0.003 43.16 - S-2 0.000e+00 0.000e+00 -103.325 -103.629 -0.304 (0) - (H2S)2 0.000e+00 0.000e+00 -197.759 -197.755 0.003 27.49 + HS- 0.000e+00 0.000e+00 -98.329 -98.410 -0.082 21.19 + H2S 0.000e+00 0.000e+00 -98.411 -98.408 0.003 43.16 + S-2 0.000e+00 0.000e+00 -103.327 -103.631 -0.304 (0) + (H2S)2 0.000e+00 0.000e+00 -197.763 -197.760 0.003 27.49 S(6) 1.147e-02 - SO4-2 7.863e-03 3.896e-03 -2.104 -2.409 -0.305 15.96 + SO4-2 7.863e-03 3.896e-03 -2.104 -2.409 -0.305 21.08 CaSO4 3.606e-03 3.633e-03 -2.443 -2.440 0.003 8.50 HSO4- 3.498e-07 2.920e-07 -6.456 -6.535 -0.078 41.59 CaHSO4+ 1.663e-08 1.388e-08 -7.779 -7.858 -0.078 (0) @@ -3757,7 +3758,7 @@ S(6) 1.147e-02 H2(g) -29.55 -32.69 -3.14 H2 H2O(g) -0.55 -0.00 0.55 H2O H2S(g) -97.06 -104.99 -7.93 H2S - O2(g) -11.79 -14.87 -3.08 O2 + O2(g) -11.78 -14.87 -3.08 O2 Sulfur -73.03 -69.03 4.00 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -3788,10 +3789,10 @@ Gypsum -0.14 -4.83 -4.69 1.000e+00 0 -1.000e+00 pH = 6.570 Charge balance pe = 8.057 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 69°C) = 3422 - Density (g/cm³) = 0.97981 - Volume (L) = 1.05900 - Viscosity (mPa s) = 0.41299 + Specific Conductance (µS/cm, 69°C) = 3969 + Density (g/cm³) = 0.97977 + Volume (L) = 1.05904 + Viscosity (mPa s) = 0.41236 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.086e-02 Mass of water (kg) = 1.036e+00 @@ -3816,17 +3817,17 @@ Ca 1.123e-02 CaSO4 3.516e-03 3.541e-03 -2.454 -2.451 0.003 8.51 CaHSO4+ 1.692e-08 1.413e-08 -7.772 -7.850 -0.078 (0) CaOH+ 2.872e-09 2.400e-09 -8.542 -8.620 -0.078 (0) -H(0) 5.360e-33 - H2 2.680e-33 2.699e-33 -32.572 -32.569 0.003 28.58 -O(0) 2.685e-15 - O2 1.343e-15 1.352e-15 -14.872 -14.869 0.003 32.75 +H(0) 5.355e-33 + H2 2.678e-33 2.697e-33 -32.572 -32.569 0.003 28.58 +O(0) 2.690e-15 + O2 1.345e-15 1.355e-15 -14.871 -14.868 0.003 32.75 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -97.935 -98.016 -0.081 21.17 - H2S 0.000e+00 0.000e+00 -98.012 -98.009 0.003 43.27 - S-2 0.000e+00 0.000e+00 -102.922 -103.224 -0.302 (0) - (H2S)2 0.000e+00 0.000e+00 -196.959 -196.956 0.003 27.41 + HS- 0.000e+00 0.000e+00 -97.937 -98.018 -0.081 21.17 + H2S 0.000e+00 0.000e+00 -98.014 -98.010 0.003 43.27 + S-2 0.000e+00 0.000e+00 -102.923 -103.225 -0.302 (0) + (H2S)2 0.000e+00 0.000e+00 -196.962 -196.959 0.003 27.41 S(6) 1.123e-02 - SO4-2 7.714e-03 3.837e-03 -2.113 -2.416 -0.303 15.87 + SO4-2 7.714e-03 3.837e-03 -2.113 -2.416 -0.303 20.97 CaSO4 3.516e-03 3.541e-03 -2.454 -2.451 0.003 8.51 HSO4- 3.614e-07 3.019e-07 -6.442 -6.520 -0.078 41.58 CaHSO4+ 1.692e-08 1.413e-08 -7.772 -7.850 -0.078 (0) @@ -3871,10 +3872,10 @@ Gypsum -0.15 -4.84 -4.69 1.000e+00 0 -1.000e+00 pH = 6.561 Charge balance pe = 8.003 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 70°C) = 3401 - Density (g/cm³) = 0.97921 - Volume (L) = 1.05961 - Viscosity (mPa s) = 0.40729 + Specific Conductance (µS/cm, 70°C) = 3946 + Density (g/cm³) = 0.97917 + Volume (L) = 1.05965 + Viscosity (mPa s) = 0.40667 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.027e-02 Mass of water (kg) = 1.036e+00 @@ -3909,7 +3910,7 @@ S(-2) 0.000e+00 S-2 0.000e+00 0.000e+00 -102.517 -102.818 -0.300 (0) (H2S)2 0.000e+00 0.000e+00 -196.159 -196.156 0.003 27.32 S(6) 1.099e-02 - SO4-2 7.567e-03 3.778e-03 -2.121 -2.423 -0.302 15.78 + SO4-2 7.567e-03 3.778e-03 -2.121 -2.423 -0.302 20.86 CaSO4 3.428e-03 3.452e-03 -2.465 -2.462 0.003 8.53 HSO4- 3.733e-07 3.122e-07 -6.428 -6.506 -0.078 41.58 CaHSO4+ 1.720e-08 1.438e-08 -7.764 -7.842 -0.078 (0) @@ -3954,18 +3955,18 @@ Gypsum -0.16 -4.85 -4.70 1.000e+00 0 -1.000e+00 pH = 6.552 Charge balance pe = 7.950 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 71°C) = 3380 - Density (g/cm³) = 0.97861 - Volume (L) = 1.06023 - Viscosity (mPa s) = 0.40171 + Specific Conductance (µS/cm, 71°C) = 3924 + Density (g/cm³) = 0.97857 + Volume (L) = 1.06027 + Viscosity (mPa s) = 0.40112 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.969e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 71.00 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 16 + Iterations = 14 Total H = 1.150124e+02 Total O = 5.755082e+01 @@ -3982,17 +3983,17 @@ Ca 1.076e-02 CaSO4 3.341e-03 3.364e-03 -2.476 -2.473 0.003 8.54 CaHSO4+ 1.748e-08 1.464e-08 -7.757 -7.835 -0.077 (0) CaOH+ 2.663e-09 2.229e-09 -8.575 -8.652 -0.077 (0) -H(0) 9.401e-33 - H2 4.700e-33 4.733e-33 -32.328 -32.325 0.003 28.58 -O(0) 2.683e-15 - O2 1.342e-15 1.351e-15 -14.872 -14.869 0.003 32.83 +H(0) 9.405e-33 + H2 4.703e-33 4.735e-33 -32.328 -32.325 0.003 28.58 +O(0) 2.681e-15 + O2 1.340e-15 1.349e-15 -14.873 -14.870 0.003 32.83 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -97.153 -97.233 -0.080 21.12 - H2S 0.000e+00 0.000e+00 -97.218 -97.215 0.003 43.48 - S-2 0.000e+00 0.000e+00 -102.115 -102.414 -0.299 (0) - (H2S)2 0.000e+00 0.000e+00 -195.362 -195.359 0.003 27.24 + HS- 0.000e+00 0.000e+00 -97.152 -97.232 -0.080 21.12 + H2S 0.000e+00 0.000e+00 -97.217 -97.215 0.003 43.48 + S-2 0.000e+00 0.000e+00 -102.114 -102.413 -0.299 (0) + (H2S)2 0.000e+00 0.000e+00 -195.361 -195.358 0.003 27.24 S(6) 1.076e-02 - SO4-2 7.422e-03 3.719e-03 -2.129 -2.430 -0.300 15.69 + SO4-2 7.422e-03 3.719e-03 -2.129 -2.430 -0.300 20.74 CaSO4 3.341e-03 3.364e-03 -2.476 -2.473 0.003 8.54 HSO4- 3.856e-07 3.227e-07 -6.414 -6.491 -0.077 41.57 CaHSO4+ 1.748e-08 1.464e-08 -7.757 -7.835 -0.077 (0) @@ -4037,10 +4038,10 @@ Gypsum -0.17 -4.87 -4.70 1.000e+00 0 -1.000e+00 pH = 6.543 Charge balance pe = 7.926 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 72°C) = 3359 - Density (g/cm³) = 0.97800 - Volume (L) = 1.06086 - Viscosity (mPa s) = 0.39627 + Specific Conductance (µS/cm, 72°C) = 3900 + Density (g/cm³) = 0.97796 + Volume (L) = 1.06090 + Viscosity (mPa s) = 0.39569 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.912e-02 Mass of water (kg) = 1.036e+00 @@ -4071,11 +4072,11 @@ O(0) 3.505e-15 O2 1.752e-15 1.764e-15 -14.756 -14.753 0.003 32.87 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -96.998 -97.077 -0.080 21.10 - H2S 0.000e+00 0.000e+00 -97.057 -97.055 0.003 43.59 + H2S 0.000e+00 0.000e+00 -97.057 -97.054 0.003 43.59 S-2 0.000e+00 0.000e+00 -101.948 -102.245 -0.297 (0) (H2S)2 0.000e+00 0.000e+00 -195.036 -195.033 0.003 27.16 S(6) 1.054e-02 - SO4-2 7.280e-03 3.662e-03 -2.138 -2.436 -0.298 15.60 + SO4-2 7.280e-03 3.662e-03 -2.138 -2.436 -0.298 20.63 CaSO4 3.256e-03 3.278e-03 -2.487 -2.484 0.003 8.55 HSO4- 3.981e-07 3.336e-07 -6.400 -6.477 -0.077 41.56 CaHSO4+ 1.777e-08 1.489e-08 -7.750 -7.827 -0.077 (0) @@ -4120,10 +4121,10 @@ Gypsum -0.18 -4.88 -4.70 1.000e+00 0 -1.000e+00 pH = 6.534 Charge balance pe = 7.873 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 73°C) = 3337 - Density (g/cm³) = 0.97738 - Volume (L) = 1.06149 - Viscosity (mPa s) = 0.39095 + Specific Conductance (µS/cm, 73°C) = 3876 + Density (g/cm³) = 0.97735 + Volume (L) = 1.06153 + Viscosity (mPa s) = 0.39039 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.856e-02 Mass of water (kg) = 1.036e+00 @@ -4148,17 +4149,17 @@ Ca 1.031e-02 CaSO4 3.173e-03 3.194e-03 -2.499 -2.496 0.003 8.57 CaHSO4+ 1.806e-08 1.514e-08 -7.743 -7.820 -0.076 (0) CaOH+ 2.471e-09 2.072e-09 -8.607 -8.684 -0.076 (0) -H(0) 1.433e-32 - H2 7.164e-33 7.211e-33 -32.145 -32.142 0.003 28.58 -O(0) 3.504e-15 - O2 1.752e-15 1.764e-15 -14.756 -14.754 0.003 32.91 +H(0) 1.432e-32 + H2 7.162e-33 7.209e-33 -32.145 -32.142 0.003 28.58 +O(0) 3.506e-15 + O2 1.753e-15 1.765e-15 -14.756 -14.753 0.003 32.91 S(-2) 0.000e+00 HS- 0.000e+00 0.000e+00 -96.613 -96.692 -0.079 21.08 H2S 0.000e+00 0.000e+00 -96.667 -96.664 0.003 43.69 - S-2 0.000e+00 0.000e+00 -101.551 -101.846 -0.296 (0) - (H2S)2 0.000e+00 0.000e+00 -194.250 -194.247 0.003 27.07 + S-2 0.000e+00 0.000e+00 -101.551 -101.847 -0.296 (0) + (H2S)2 0.000e+00 0.000e+00 -194.251 -194.248 0.003 27.07 S(6) 1.031e-02 - SO4-2 7.141e-03 3.605e-03 -2.146 -2.443 -0.297 15.50 + SO4-2 7.141e-03 3.605e-03 -2.146 -2.443 -0.297 20.51 CaSO4 3.173e-03 3.194e-03 -2.499 -2.496 0.003 8.57 HSO4- 4.110e-07 3.447e-07 -6.386 -6.463 -0.076 41.55 CaHSO4+ 1.806e-08 1.514e-08 -7.743 -7.820 -0.076 (0) @@ -4203,10 +4204,10 @@ Gypsum -0.18 -4.89 -4.71 1.000e+00 0 -1.000e+00 pH = 6.525 Charge balance pe = 7.790 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 74°C) = 3315 - Density (g/cm³) = 0.97677 - Volume (L) = 1.06213 - Viscosity (mPa s) = 0.38575 + Specific Conductance (µS/cm, 74°C) = 3852 + Density (g/cm³) = 0.97673 + Volume (L) = 1.06217 + Viscosity (mPa s) = 0.38521 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.802e-02 Mass of water (kg) = 1.036e+00 @@ -4231,17 +4232,17 @@ Ca 1.010e-02 CaSO4 3.092e-03 3.112e-03 -2.510 -2.507 0.003 8.58 CaHSO4+ 1.834e-08 1.540e-08 -7.737 -7.813 -0.076 (0) CaOH+ 2.381e-09 1.999e-09 -8.623 -8.699 -0.076 (0) -H(0) 2.167e-32 - H2 1.083e-32 1.090e-32 -31.965 -31.962 0.003 28.58 -O(0) 2.656e-15 - O2 1.328e-15 1.336e-15 -14.877 -14.874 0.003 32.95 +H(0) 2.168e-32 + H2 1.084e-32 1.091e-32 -31.965 -31.962 0.003 28.58 +O(0) 2.653e-15 + O2 1.326e-15 1.335e-15 -14.877 -14.875 0.003 32.95 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -95.989 -96.068 -0.079 21.05 - H2S 0.000e+00 0.000e+00 -96.037 -96.035 0.003 43.79 - S-2 0.000e+00 0.000e+00 -100.915 -101.209 -0.294 (0) - (H2S)2 0.000e+00 0.000e+00 -192.987 -192.984 0.003 26.98 + HS- 0.000e+00 0.000e+00 -95.988 -96.067 -0.079 21.05 + H2S 0.000e+00 0.000e+00 -96.036 -96.034 0.003 43.79 + S-2 0.000e+00 0.000e+00 -100.914 -101.208 -0.294 (0) + (H2S)2 0.000e+00 0.000e+00 -192.985 -192.982 0.003 26.98 S(6) 1.010e-02 - SO4-2 7.004e-03 3.549e-03 -2.155 -2.450 -0.295 15.40 + SO4-2 7.004e-03 3.549e-03 -2.155 -2.450 -0.295 20.38 CaSO4 3.092e-03 3.112e-03 -2.510 -2.507 0.003 8.58 HSO4- 4.242e-07 3.561e-07 -6.372 -6.448 -0.076 41.54 CaHSO4+ 1.834e-08 1.540e-08 -7.737 -7.813 -0.076 (0) @@ -4286,10 +4287,10 @@ Gypsum -0.19 -4.91 -4.71 1.000e+00 0 -1.000e+00 pH = 6.516 Charge balance pe = 7.738 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 3292 - Density (g/cm³) = 0.97614 - Volume (L) = 1.06278 - Viscosity (mPa s) = 0.38066 + Specific Conductance (µS/cm, 75°C) = 3827 + Density (g/cm³) = 0.97611 + Volume (L) = 1.06282 + Viscosity (mPa s) = 0.38014 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.748e-02 Mass of water (kg) = 1.036e+00 @@ -4314,17 +4315,17 @@ Ca 9.882e-03 CaSO4 3.012e-03 3.031e-03 -2.521 -2.518 0.003 8.59 CaHSO4+ 1.863e-08 1.565e-08 -7.730 -7.805 -0.076 (0) CaOH+ 2.295e-09 1.928e-09 -8.639 -8.715 -0.076 (0) -H(0) 2.852e-32 - H2 1.426e-32 1.435e-32 -31.846 -31.843 0.003 28.58 -O(0) 2.650e-15 - O2 1.325e-15 1.333e-15 -14.878 -14.875 0.003 32.99 +H(0) 2.849e-32 + H2 1.424e-32 1.433e-32 -31.846 -31.844 0.003 28.58 +O(0) 2.655e-15 + O2 1.327e-15 1.336e-15 -14.877 -14.874 0.003 32.99 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -95.607 -95.685 -0.078 21.03 - H2S 0.000e+00 0.000e+00 -95.649 -95.647 0.003 43.89 - S-2 0.000e+00 0.000e+00 -100.521 -100.813 -0.293 (0) - (H2S)2 0.000e+00 0.000e+00 -192.206 -192.204 0.003 26.89 + HS- 0.000e+00 0.000e+00 -95.609 -95.687 -0.078 21.03 + H2S 0.000e+00 0.000e+00 -95.651 -95.648 0.003 43.89 + S-2 0.000e+00 0.000e+00 -100.523 -100.815 -0.293 (0) + (H2S)2 0.000e+00 0.000e+00 -192.210 -192.207 0.003 26.89 S(6) 9.882e-03 - SO4-2 6.869e-03 3.493e-03 -2.163 -2.457 -0.294 15.29 + SO4-2 6.869e-03 3.493e-03 -2.163 -2.457 -0.294 20.26 CaSO4 3.012e-03 3.031e-03 -2.521 -2.518 0.003 8.59 HSO4- 4.377e-07 3.678e-07 -6.359 -6.434 -0.076 41.53 CaHSO4+ 1.863e-08 1.565e-08 -7.730 -7.805 -0.076 (0) @@ -4338,7 +4339,7 @@ S(6) 9.882e-03 H2(g) -28.71 -31.84 -3.13 H2 H2O(g) -0.42 -0.00 0.42 H2O H2S(g) -94.26 -102.20 -7.94 H2S - O2(g) -11.78 -14.88 -3.10 O2 + O2(g) -11.78 -14.87 -3.10 O2 Sulfur -71.02 -67.14 3.88 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. diff --git a/ex2.sel b/ex2.sel index 7ec7fa6f..46d6a684 100644 --- a/ex2.sel +++ b/ex2.sel @@ -1,53 +1,53 @@ sim state soln dist_x time step pH pe temp si_anhydrite si_gypsum 1 i_soln 1 -99 -99 -99 7 4 25.000 -999.9990 -999.9990 - 1 react 1 -99 0 1 7.06605 10.7446 25.000 -0.3045 0.0000 + 1 react 1 -99 0 1 7.06605 10.745 25.000 -0.3045 0.0000 1 react 1 -99 0 2 7.0524 10.6757 26.000 -0.2935 0.0000 1 react 1 -99 0 3 7.03885 10.6068 27.000 -0.2825 0.0000 - 1 react 1 -99 0 4 7.0254 10.5389 28.000 -0.2716 0.0000 - 1 react 1 -99 0 5 7.01206 10.472 29.000 -0.2608 0.0000 + 1 react 1 -99 0 4 7.0254 10.5392 28.000 -0.2716 0.0000 + 1 react 1 -99 0 5 7.01206 10.4719 29.000 -0.2608 0.0000 1 react 1 -99 0 6 6.99884 10.4042 30.000 -0.2500 0.0000 - 1 react 1 -99 0 7 6.98574 10.3381 31.000 -0.2392 0.0000 + 1 react 1 -99 0 7 6.98574 10.3382 31.000 -0.2392 0.0000 1 react 1 -99 0 8 6.97276 10.2711 32.000 -0.2285 0.0000 1 react 1 -99 0 9 6.95991 10.2057 33.000 -0.2179 0.0000 - 1 react 1 -99 0 10 6.94718 10.1398 34.000 -0.2073 0.0000 - 1 react 1 -99 0 11 6.93459 10.0744 35.000 -0.1967 0.0000 - 1 react 1 -99 0 12 6.92213 10.0096 36.000 -0.1862 0.0000 - 1 react 1 -99 0 13 6.90981 -1.77748 37.000 -0.1757 0.0000 - 1 react 1 -99 0 14 6.89762 9.88087 38.000 -0.1653 0.0000 + 1 react 1 -99 0 10 6.94718 10.1394 34.000 -0.2073 0.0000 + 1 react 1 -99 0 11 6.93459 10.0743 35.000 -0.1967 0.0000 + 1 react 1 -99 0 12 6.92213 10.0094 36.000 -0.1862 0.0000 + 1 react 1 -99 0 13 6.90981 -1.77753 37.000 -0.1757 0.0000 + 1 react 1 -99 0 14 6.89762 9.88094 38.000 -0.1653 0.0000 1 react 1 -99 0 15 6.88557 9.8475 39.000 -0.1549 0.0000 - 1 react 1 -99 0 16 6.87366 9.75454 40.000 -0.1445 0.0000 - 1 react 1 -99 0 17 6.86189 9.6907 41.000 -0.1342 0.0000 + 1 react 1 -99 0 16 6.87366 9.75448 40.000 -0.1445 0.0000 + 1 react 1 -99 0 17 6.86189 9.69091 41.000 -0.1342 0.0000 1 react 1 -99 0 18 6.85026 9.62849 42.000 -0.1239 0.0000 - 1 react 1 -99 0 19 6.83878 9.56563 43.000 -0.1137 0.0000 - 1 react 1 -99 0 20 6.82743 9.50339 44.000 -0.1035 0.0000 - 1 react 1 -99 0 21 6.81623 9.4423 45.000 -0.0934 0.0000 - 1 react 1 -99 0 22 6.80517 9.38059 46.000 -0.0833 0.0000 - 1 react 1 -99 0 23 6.79425 9.31892 47.000 -0.0732 0.0000 - 1 react 1 -99 0 24 6.78347 9.28758 48.000 -0.0632 0.0000 - 1 react 1 -99 0 25 6.77284 9.19657 49.000 -0.0532 0.0000 - 1 react 1 -99 0 26 6.76235 -1.65497 50.000 -0.0432 0.0000 - 1 react 1 -99 0 27 6.752 9.07753 51.000 -0.0333 0.0000 - 1 react 1 -99 0 28 6.7418 9.04685 52.000 -0.0234 0.0000 - 1 react 1 -99 0 29 6.73173 8.91536 53.000 -0.0136 0.0000 - 1 react 1 -99 0 30 6.72181 -1.62166 54.000 -0.0038 0.0000 - 1 react 1 -99 0 31 6.71125 8.83248 55.000 0.0000 -0.0060 - 1 react 1 -99 0 32 6.70039 8.7747 56.000 0.0000 -0.0157 - 1 react 1 -99 0 33 6.68965 8.71845 57.000 0.0000 -0.0254 - 1 react 1 -99 0 34 6.67903 8.66099 58.000 0.0000 -0.0350 - 1 react 1 -99 0 35 6.66853 8.60479 59.000 0.0000 -0.0446 - 1 react 1 -99 0 36 6.65815 8.54826 60.000 0.0000 -0.0542 - 1 react 1 -99 0 37 6.64789 8.4935 61.000 0.0000 -0.0638 - 1 react 1 -99 0 38 6.63774 8.43683 62.000 0.0000 -0.0733 - 1 react 1 -99 0 39 6.62771 8.38286 63.000 0.0000 -0.0828 + 1 react 1 -99 0 19 6.83878 9.56557 43.000 -0.1137 0.0000 + 1 react 1 -99 0 20 6.82743 9.50326 44.000 -0.1035 0.0000 + 1 react 1 -99 0 21 6.81623 9.44229 45.000 -0.0934 0.0000 + 1 react 1 -99 0 22 6.80517 9.38053 46.000 -0.0833 0.0000 + 1 react 1 -99 0 23 6.79425 9.31897 47.000 -0.0732 0.0000 + 1 react 1 -99 0 24 6.78347 9.21452 48.000 -0.0632 0.0000 + 1 react 1 -99 0 25 6.77284 9.19666 49.000 -0.0532 0.0000 + 1 react 1 -99 0 26 6.76235 -1.65493 50.000 -0.0432 0.0000 + 1 react 1 -99 0 27 6.752 -2.0958 51.000 -0.0333 0.0000 + 1 react 1 -99 0 28 6.7418 9.04692 52.000 -0.0234 0.0000 + 1 react 1 -99 0 29 6.73173 8.91531 53.000 -0.0136 0.0000 + 1 react 1 -99 0 30 6.72181 -1.62167 54.000 -0.0038 0.0000 + 1 react 1 -99 0 31 6.71125 8.8323 55.000 0.0000 -0.0060 + 1 react 1 -99 0 32 6.70039 8.80527 56.000 0.0000 -0.0157 + 1 react 1 -99 0 33 6.68965 8.74835 57.000 0.0000 -0.0254 + 1 react 1 -99 0 34 6.67903 8.66106 58.000 0.0000 -0.0350 + 1 react 1 -99 0 35 6.66853 8.60472 59.000 0.0000 -0.0446 + 1 react 1 -99 0 36 6.65815 8.54858 60.000 0.0000 -0.0542 + 1 react 1 -99 0 37 6.64789 8.49291 61.000 0.0000 -0.0638 + 1 react 1 -99 0 38 6.63774 8.4911 62.000 0.0000 -0.0733 + 1 react 1 -99 0 39 6.62771 8.38287 63.000 0.0000 -0.0828 1 react 1 -99 0 40 6.6178 8.32762 64.000 0.0000 -0.0922 - 1 react 1 -99 0 41 6.608 8.27289 65.000 0.0000 -0.1016 + 1 react 1 -99 0 41 6.608 8.27306 65.000 0.0000 -0.1016 1 react 1 -99 0 42 6.59833 8.21823 66.000 0.0000 -0.1110 1 react 1 -99 0 43 6.58876 8.16425 67.000 0.0000 -0.1204 - 1 react 1 -99 0 44 6.57931 8.10992 68.000 0.0000 -0.1297 - 1 react 1 -99 0 45 6.56998 8.05651 69.000 0.0000 -0.1390 + 1 react 1 -99 0 44 6.57931 8.11019 68.000 0.0000 -0.1297 + 1 react 1 -99 0 45 6.56998 8.0567 69.000 0.0000 -0.1390 1 react 1 -99 0 46 6.56075 8.00299 70.000 0.0000 -0.1483 - 1 react 1 -99 0 47 6.55165 7.94963 71.000 0.0000 -0.1575 - 1 react 1 -99 0 48 6.54265 7.92563 72.000 0.0000 -0.1667 - 1 react 1 -99 0 49 6.53376 7.87284 73.000 0.0000 -0.1758 - 1 react 1 -99 0 50 6.52499 7.79021 74.000 0.0000 -0.1850 - 1 react 1 -99 0 51 6.51633 7.73768 75.000 0.0000 -0.1941 + 1 react 1 -99 0 47 6.55165 7.94953 71.000 0.0000 -0.1575 + 1 react 1 -99 0 48 6.54265 7.92562 72.000 0.0000 -0.1667 + 1 react 1 -99 0 49 6.53376 7.8729 73.000 0.0000 -0.1758 + 1 react 1 -99 0 50 6.52499 7.79009 74.000 0.0000 -0.1850 + 1 react 1 -99 0 51 6.51633 7.73789 75.000 0.0000 -0.1941 diff --git a/ex20a.out b/ex20a.out index 629dc8c7..ce948b54 100644 --- a/ex20a.out +++ b/ex20a.out @@ -217,8 +217,8 @@ Calcite 2.54e-07 Isotope Ratio Ratio Input Units - R(D) 1.55760e-04 -1.3101e-11 permil - R(18O) 2.00520e-03 -3.9447e-07 permil + R(D) 1.55760e-04 -6.6613e-13 permil + R(18O) 2.00520e-03 -3.9446e-07 permil R(13C) 1.11802e-02 -0.00026756 permil R(D) H2O(l) 1.55760e-04 1.138e-05 permil R(18O) H2O(l) 2.00520e-03 -3.9132e-05 permil @@ -249,15 +249,15 @@ Alpha D OH-/H2O(l) 0.23812 -1435 -1435 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha D H3O+/H2O(l) 1.0417 40.82 40.82 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha D H2(aq)/H2O(l) 1 5.7732e-12 0 +Alpha D H2(aq)/H2O(l) 1 -2.2204e-12 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha D HCO3-/H2O(l) 1 2.2555e-09 0 -Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 +Alpha D HCO3-/H2O(l) 1 2.2549e-09 0 +Alpha 18O HCO3-/H2O(l) 1 -2.1094e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 18O CO3-2/H2O(l) 1 -1.5554e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5561e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha D CH4(aq)/H2O(l) 1 -3.7507e-09 0 -Alpha 13C CH4(aq)/CO2(aq) 1 -4.2188e-12 0 +Alpha D CH4(aq)/H2O(l) 1 -3.7301e-09 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.8874e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 @@ -284,7 +284,7 @@ Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Temperature (°C) = 25.00 Electrical balance (eq) = 1.667e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 64 + Iterations = 94 Total H = 1.109971e+02 Total O = 5.540110e+01 @@ -296,18 +296,18 @@ Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 OH- 1.661e-06 1.575e-06 -5.780 -5.803 -0.023 (0) H3O+ 6.648e-09 6.328e-09 -8.177 -8.199 -0.021 0.00 H2O 5.556e+01 9.977e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.777e-27 - CH4 2.775e-27 2.777e-27 -26.557 -26.556 0.000 (0) - CH3D 1.729e-30 1.730e-30 -29.762 -29.762 0.000 (0) +C(-4) 2.760e-27 + CH4 2.758e-27 2.759e-27 -26.559 -26.559 0.000 (0) + CH3D 1.718e-30 1.719e-30 -29.765 -29.765 0.000 (0) C(4) 1.984e-03 HCO3- 1.916e-03 1.817e-03 -2.718 -2.741 -0.023 (0) CO2 2.597e-05 2.598e-05 -4.586 -4.585 0.000 (0) CO3-2 1.661e-05 1.344e-05 -4.780 -4.872 -0.092 (0) CaHCO3+ 5.917e-06 5.618e-06 -5.228 -5.250 -0.023 (0) CaCO3 5.466e-06 5.469e-06 -5.262 -5.262 0.000 (0) - HCO2[18O]- 3.842e-06 3.644e-06 -5.415 -5.438 -0.023 (0) HCO[18O]O- 3.842e-06 3.644e-06 -5.415 -5.438 -0.023 (0) HC[18O]O2- 3.842e-06 3.644e-06 -5.415 -5.438 -0.023 (0) + HCO2[18O]- 3.842e-06 3.644e-06 -5.415 -5.438 -0.023 (0) NaHCO3 1.340e-06 1.341e-06 -5.873 -5.873 0.000 (0) NaCO3- 3.463e-07 3.284e-07 -6.461 -6.484 -0.023 (0) DCO3- 2.985e-07 2.831e-07 -6.525 -6.548 -0.023 (0) @@ -315,14 +315,14 @@ C(4) 1.984e-03 CO2[18O]-2 9.993e-08 8.086e-08 -7.000 -7.092 -0.092 (0) CaCO2[18O] 3.288e-08 3.290e-08 -7.483 -7.483 0.000 (0) CaHCO2[18O]+ 1.186e-08 1.126e-08 -7.926 -7.948 -0.023 (0) - CaHCO[18O]O+ 1.186e-08 1.126e-08 -7.926 -7.948 -0.023 (0) CaHC[18O]O2+ 1.186e-08 1.126e-08 -7.926 -7.948 -0.023 (0) + CaHCO[18O]O+ 1.186e-08 1.126e-08 -7.926 -7.948 -0.023 (0) HCO[18O]2- 7.705e-09 7.307e-09 -8.113 -8.136 -0.023 (0) HC[18O]2O- 7.705e-09 7.307e-09 -8.113 -8.136 -0.023 (0) HC[18O]O[18O]- 7.705e-09 7.307e-09 -8.113 -8.136 -0.023 (0) + NaHC[18O]O2 2.687e-09 2.689e-09 -8.571 -8.570 0.000 (0) NaHCO2[18O] 2.687e-09 2.689e-09 -8.571 -8.570 0.000 (0) NaHCO[18O]O 2.687e-09 2.689e-09 -8.571 -8.570 0.000 (0) - NaHC[18O]O2 2.687e-09 2.689e-09 -8.571 -8.570 0.000 (0) NaCO2[18O]- 2.083e-09 1.976e-09 -8.681 -8.704 -0.023 (0) Ca 3.098e-04 Ca+2 2.982e-04 2.422e-04 -3.525 -3.616 -0.090 (0) @@ -332,21 +332,21 @@ Ca 3.098e-04 Ca[13C]O3 6.104e-08 6.107e-08 -7.214 -7.214 0.000 (0) CaCO2[18O] 3.288e-08 3.290e-08 -7.483 -7.483 0.000 (0) CaHCO2[18O]+ 1.186e-08 1.126e-08 -7.926 -7.948 -0.023 (0) - CaHCO[18O]O+ 1.186e-08 1.126e-08 -7.926 -7.948 -0.023 (0) CaHC[18O]O2+ 1.186e-08 1.126e-08 -7.926 -7.948 -0.023 (0) + CaHCO[18O]O+ 1.186e-08 1.126e-08 -7.926 -7.948 -0.023 (0) CaDCO3+ 9.216e-10 8.750e-10 -9.035 -9.058 -0.023 (0) Ca[13C]O2[18O] 3.672e-10 3.674e-10 -9.435 -9.435 0.000 (0) -D(0) 5.656e-19 - HD 5.655e-19 5.658e-19 -18.248 -18.247 0.000 (0) - D2 4.404e-23 4.406e-23 -22.356 -22.356 0.000 (0) +D(0) 5.647e-19 + HD 5.646e-19 5.649e-19 -18.248 -18.248 0.000 (0) + D2 4.397e-23 4.399e-23 -22.357 -22.357 0.000 (0) D(1) 1.734e-02 HDO 1.731e-02 3.108e-04 -1.762 -3.507 -1.746 (0) HD[18O] 3.470e-05 6.233e-07 -4.460 -6.205 -1.746 (0) D2O 1.348e-06 2.421e-08 -5.870 -7.616 -1.746 (0) DCO3- 2.985e-07 2.831e-07 -6.525 -6.548 -0.023 (0) -H(0) 3.632e-15 - H2 1.815e-15 1.816e-15 -14.741 -14.741 0.000 (0) - HD 5.655e-19 5.658e-19 -18.248 -18.247 0.000 (0) +H(0) 3.626e-15 + H2 1.812e-15 1.813e-15 -14.742 -14.742 0.000 (0) + HD 5.646e-19 5.649e-19 -18.248 -18.248 0.000 (0) Na 1.385e-03 Na+ 1.383e-03 1.312e-03 -2.859 -2.882 -0.023 (0) NaHCO3 1.340e-06 1.341e-06 -5.873 -5.873 0.000 (0) @@ -358,11 +358,11 @@ Na 1.385e-03 NaHC[18O]O2 2.687e-09 2.689e-09 -8.571 -8.570 0.000 (0) NaCO2[18O]- 2.083e-09 1.976e-09 -8.681 -8.704 -0.023 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -62.901 -62.900 0.000 (0) - O[18O] 0.000e+00 0.000e+00 -65.297 -65.297 0.000 (0) -[13C](-4) 3.079e-29 - [13C]H4 3.077e-29 3.078e-29 -28.512 -28.512 0.000 (0) - [13C]H3D 1.917e-32 1.918e-32 -31.717 -31.717 0.000 (0) + O2 0.000e+00 0.000e+00 -62.899 -62.899 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -65.296 -65.296 0.000 (0) +[13C](-4) 3.059e-29 + [13C]H4 3.057e-29 3.059e-29 -28.515 -28.514 0.000 (0) + [13C]H3D 1.905e-32 1.906e-32 -31.720 -31.720 0.000 (0) [13C](4) 2.218e-05 H[13C]O3- 2.143e-05 2.032e-05 -4.669 -4.692 -0.023 (0) [13C]O2 2.878e-07 2.880e-07 -6.541 -6.541 0.000 (0) @@ -370,20 +370,20 @@ O(0) 0.000e+00 CaH[13C]O3+ 6.616e-08 6.281e-08 -7.179 -7.202 -0.023 (0) Ca[13C]O3 6.104e-08 6.107e-08 -7.214 -7.214 0.000 (0) H[13C]O2[18O]- 4.296e-08 4.075e-08 -7.367 -7.390 -0.023 (0) - H[13C]O[18O]O- 4.296e-08 4.075e-08 -7.367 -7.390 -0.023 (0) H[13C][18O]O2- 4.296e-08 4.075e-08 -7.367 -7.390 -0.023 (0) + H[13C]O[18O]O- 4.296e-08 4.075e-08 -7.367 -7.390 -0.023 (0) NaH[13C]O3 1.499e-08 1.499e-08 -7.824 -7.824 0.000 (0) Na[13C]O3- 3.866e-09 3.667e-09 -8.413 -8.436 -0.023 (0) D[13C]O3- 3.337e-09 3.165e-09 -8.477 -8.500 -0.023 (0) [13C]O[18O] 1.203e-09 1.204e-09 -8.920 -8.920 0.000 (0) [13C]O2[18O]-2 1.116e-09 9.028e-10 -8.952 -9.044 -0.092 (0) Ca[13C]O2[18O] 3.672e-10 3.674e-10 -9.435 -9.435 0.000 (0) - CaH[13C]O2[18O]+ 1.327e-10 1.260e-10 -9.877 -9.900 -0.023 (0) - CaH[13C]O[18O]O+ 1.327e-10 1.260e-10 -9.877 -9.900 -0.023 (0) CaH[13C][18O]O2+ 1.327e-10 1.260e-10 -9.877 -9.900 -0.023 (0) - H[13C]O[18O]2- 8.615e-11 8.171e-11 -10.065 -10.088 -0.023 (0) + CaH[13C]O[18O]O+ 1.327e-10 1.260e-10 -9.877 -9.900 -0.023 (0) + CaH[13C]O2[18O]+ 1.327e-10 1.260e-10 -9.877 -9.900 -0.023 (0) H[13C][18O]2O- 8.615e-11 8.171e-11 -10.065 -10.088 -0.023 (0) H[13C][18O]O[18O]- 8.615e-11 8.171e-11 -10.065 -10.088 -0.023 (0) + H[13C]O[18O]2- 8.615e-11 8.171e-11 -10.065 -10.088 -0.023 (0) NaH[13C]O2[18O] 3.005e-11 3.007e-11 -10.522 -10.522 0.000 (0) NaH[13C]O[18O]O 3.005e-11 3.007e-11 -10.522 -10.522 0.000 (0) NaH[13C][18O]O2 3.005e-11 3.007e-11 -10.522 -10.522 0.000 (0) @@ -392,11 +392,11 @@ O(0) 0.000e+00 H2[18O] 1.114e-01 2.001e-03 -0.953 -2.699 -1.746 (0) HD[18O] 3.470e-05 6.233e-07 -4.460 -6.205 -1.746 (0) HCO2[18O]- 3.842e-06 3.644e-06 -5.415 -5.438 -0.023 (0) - HCO[18O]O- 3.842e-06 3.644e-06 -5.415 -5.438 -0.023 (0) HC[18O]O2- 3.842e-06 3.644e-06 -5.415 -5.438 -0.023 (0) + HCO[18O]O- 3.842e-06 3.644e-06 -5.415 -5.438 -0.023 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -65.297 -65.297 0.000 (0) - [18O]2 0.000e+00 0.000e+00 -68.296 -68.296 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -65.296 -65.296 0.000 (0) + [18O]2 0.000e+00 0.000e+00 -68.295 -68.295 0.000 (0) ------------------------------Saturation indices------------------------------- @@ -407,10 +407,10 @@ O(0) 0.000e+00 [13C]H2D2(g) -32.49 -36.13 -3.64 [13C]H2D2 [13C]H3D(g) -28.86 -32.32 -3.46 [13C]H3D [13C]H4(g) -25.65 -28.51 -2.86 [13C]H4 - [13C]HD3(g) -36.47 -39.93 -3.46 [13C]HD3 + [13C]HD3(g) -36.48 -39.94 -3.46 [13C]HD3 [13C]O2(g) -5.07 -6.54 -1.47 [13C]O2 [13C]O[18O](g) -7.45 -9.24 -1.79 [13C]O[18O] - [18O]2(g) -66.01 -68.30 -2.29 [18O]2 + [18O]2(g) -66.00 -68.29 -2.29 [18O]2 C[18O]2(g) -8.48 -9.98 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.01 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -421,8 +421,8 @@ O(0) 0.000e+00 CaCO[18O]2(s) -4.90 2.80 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 CD4(g) -38.93 -41.79 -2.86 CD4 - CH2D2(g) -30.53 -34.17 -3.64 CH2D2 - CH3D(g) -26.90 -30.36 -3.46 CH3D + CH2D2(g) -30.54 -34.17 -3.64 CH2D2 + CH3D(g) -26.90 -30.37 -3.46 CH3D CH4(g) -23.70 -26.56 -2.86 CH4 CHD3(g) -34.52 -37.98 -3.46 CHD3 CO2(g) -3.12 -4.59 -1.47 CO2 @@ -437,7 +437,7 @@ O(0) 0.000e+00 HD[18O](g) -7.75 -6.51 1.25 HD[18O] HDO(g) -5.05 -3.81 1.24 HDO O2(g) -60.01 -62.90 -2.89 O2 - O[18O](g) -62.71 -65.60 -2.89 O[18O] + O[18O](g) -62.70 -65.60 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. diff --git a/ex20b.out b/ex20b.out index 70043349..ac7b8d00 100644 --- a/ex20b.out +++ b/ex20b.out @@ -354,14 +354,14 @@ Calcite 0.00e+00 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 1.3323e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 3.6713e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.3067e-10 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.3323e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -7.7716e-13 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -3.3307e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 6.8834e-12 0 -----------------------------Solution composition------------------------------ @@ -376,14 +376,14 @@ Alpha 14C CH4(aq)/CO2(aq) 1 -7.7716e-13 0 ----------------------------Description of solution---------------------------- pH = 5.863 Charge balance - pe = 0.247 Adjusted to redox equilibrium + pe = 0.219 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 1.495e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 1.003e-03 Total CO2 (mol/kg) = 3.912e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.367e-14 + Electrical balance (eq) = 3.883e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 18 Total H = 1.110126e+02 @@ -397,44 +397,44 @@ Alpha 14C CH4(aq)/CO2(aq) 1 -7.7716e-13 0 H3O+ 1.426e-06 1.369e-06 -5.846 -5.863 -0.018 0.00 OH- 7.606e-09 7.282e-09 -8.119 -8.138 -0.019 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 9.506e-28 - CH4 9.506e-28 9.510e-28 -27.022 -27.022 0.000 (0) +C(-4) 1.584e-27 + CH4 1.584e-27 1.584e-27 -26.800 -26.800 0.000 (0) C(4) 3.912e-03 CO2 2.907e-03 2.908e-03 -2.537 -2.536 0.000 (0) HCO3- 9.821e-04 9.406e-04 -3.008 -3.027 -0.019 (0) CO[18O] 1.209e-05 1.209e-05 -4.918 -4.918 0.000 (0) CaHCO3+ 5.241e-06 5.023e-06 -5.281 -5.299 -0.018 (0) - HCO2[18O]- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) - HCO[18O]O- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) HC[18O]O2- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) + HCO[18O]O- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) + HCO2[18O]- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) CO3-2 3.822e-08 3.216e-08 -7.418 -7.493 -0.075 (0) CaCO3 2.260e-08 2.261e-08 -7.646 -7.646 0.000 (0) C[18O]2 1.257e-08 1.257e-08 -7.901 -7.901 0.000 (0) CaHCO2[18O]+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) - CaHCO[18O]O+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) CaHC[18O]O2+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) + CaHCO[18O]O+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) Ca 5.014e-04 Ca+2 4.961e-04 4.184e-04 -3.304 -3.378 -0.074 (0) CaHCO3+ 5.241e-06 5.023e-06 -5.281 -5.299 -0.018 (0) CaH[13C]O3+ 5.770e-08 5.530e-08 -7.239 -7.257 -0.018 (0) CaCO3 2.260e-08 2.261e-08 -7.646 -7.646 0.000 (0) CaHCO2[18O]+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) - CaHCO[18O]O+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) CaHC[18O]O2+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) -H(0) 8.541e-16 - H2 4.271e-16 4.272e-16 -15.370 -15.369 0.000 (0) + CaHCO[18O]O+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) +H(0) 9.704e-16 + H2 4.852e-16 4.854e-16 -15.314 -15.314 0.000 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -61.643 -61.643 0.000 (0) - O[18O] 0.000e+00 0.000e+00 -64.042 -64.042 0.000 (0) -[13C](-4) 1.038e-29 - [13C]H4 1.038e-29 1.038e-29 -28.984 -28.984 0.000 (0) + O2 0.000e+00 0.000e+00 -61.754 -61.754 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -64.153 -64.153 0.000 (0) +[13C](-4) 1.729e-29 + [13C]H4 1.729e-29 1.729e-29 -28.762 -28.762 0.000 (0) [13C](4) 4.280e-05 [13C]O2 3.173e-05 3.174e-05 -4.499 -4.498 0.000 (0) H[13C]O3- 1.081e-05 1.036e-05 -4.966 -4.985 -0.019 (0) [13C]O[18O] 1.319e-07 1.320e-07 -6.880 -6.879 0.000 (0) CaH[13C]O3+ 5.770e-08 5.530e-08 -7.239 -7.257 -0.018 (0) - H[13C]O2[18O]- 2.157e-08 2.066e-08 -7.666 -7.685 -0.019 (0) H[13C]O[18O]O- 2.157e-08 2.066e-08 -7.666 -7.685 -0.019 (0) + H[13C]O2[18O]- 2.157e-08 2.066e-08 -7.666 -7.685 -0.019 (0) H[13C][18O]O2- 2.157e-08 2.066e-08 -7.666 -7.685 -0.019 (0) [13C]O3-2 4.202e-10 3.535e-10 -9.377 -9.452 -0.075 (0) Ca[13C]O3 2.484e-10 2.485e-10 -9.605 -9.605 0.000 (0) @@ -442,52 +442,52 @@ O(0) 0.000e+00 CaH[13C]O2[18O]+ 1.151e-10 1.103e-10 -9.939 -9.957 -0.018 (0) CaH[13C]O[18O]O+ 1.151e-10 1.103e-10 -9.939 -9.957 -0.018 (0) CaH[13C][18O]O2+ 1.151e-10 1.103e-10 -9.939 -9.957 -0.018 (0) - H[13C]O[18O]2- 4.304e-11 4.122e-11 -10.366 -10.385 -0.019 (0) H[13C][18O]2O- 4.304e-11 4.122e-11 -10.366 -10.385 -0.019 (0) H[13C][18O]O[18O]- 4.304e-11 4.122e-11 -10.366 -10.385 -0.019 (0) -[14C](-4) 9.824e-40 - [14C]H4 9.824e-40 9.828e-40 -39.008 -39.008 0.000 (0) + H[13C]O[18O]2- 4.304e-11 4.122e-11 -10.366 -10.385 -0.019 (0) +[14C](-4) 1.637e-39 + [14C]H4 1.637e-39 1.638e-39 -38.786 -38.786 0.000 (0) [14C](4) 4.061e-15 [14C]O2 3.004e-15 3.005e-15 -14.522 -14.522 0.000 (0) H[14C]O3- 1.033e-15 9.890e-16 -14.986 -15.005 -0.019 (0) [14C]O[18O] 1.249e-17 1.250e-17 -16.903 -16.903 0.000 (0) CaH[14C]O3+ 5.511e-18 5.281e-18 -17.259 -17.277 -0.018 (0) - H[14C]O2[18O]- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) - H[14C]O[18O]O- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) H[14C][18O]O2- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) + H[14C]O[18O]O- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) + H[14C]O2[18O]- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) [14C]O3-2 4.008e-20 3.372e-20 -19.397 -19.472 -0.075 (0) Ca[14C]O3 2.369e-20 2.370e-20 -19.625 -19.625 0.000 (0) [14C][18O]2 1.299e-20 1.299e-20 -19.887 -19.886 0.000 (0) CaH[14C]O2[18O]+ 1.099e-20 1.054e-20 -19.959 -19.977 -0.018 (0) - CaH[14C]O[18O]O+ 1.099e-20 1.054e-20 -19.959 -19.977 -0.018 (0) CaH[14C][18O]O2+ 1.099e-20 1.054e-20 -19.959 -19.977 -0.018 (0) + CaH[14C]O[18O]O+ 1.099e-20 1.054e-20 -19.959 -19.977 -0.018 (0) H[14C]O[18O]2- 4.111e-21 3.937e-21 -20.386 -20.405 -0.019 (0) - H[14C][18O]2O- 4.111e-21 3.937e-21 -20.386 -20.405 -0.019 (0) H[14C][18O]O[18O]- 4.111e-21 3.937e-21 -20.386 -20.405 -0.019 (0) + H[14C][18O]2O- 4.111e-21 3.937e-21 -20.386 -20.405 -0.019 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) CO[18O] 1.209e-05 1.209e-05 -4.918 -4.918 0.000 (0) - HCO2[18O]- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) HCO[18O]O- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) + HCO2[18O]- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) HC[18O]O2- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) [13C]O[18O] 1.319e-07 1.320e-07 -6.880 -6.879 0.000 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -64.042 -64.042 0.000 (0) - [18O]2 0.000e+00 0.000e+00 -67.043 -67.043 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -64.153 -64.153 0.000 (0) + [18O]2 0.000e+00 0.000e+00 -67.154 -67.154 0.000 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.40 -9.90 -1.50 [13C][18O]2 - [13C]H4(g) -26.12 -28.98 -2.86 [13C]H4 + [13C]H4(g) -25.90 -28.76 -2.86 [13C]H4 [13C]O2(g) -3.03 -4.50 -1.47 [13C]O2 [13C]O[18O](g) -5.41 -7.20 -1.79 [13C]O[18O] [14C][18O]2(g) -18.42 -19.92 -1.50 [14C][18O]2 - [14C]H4(g) -36.15 -39.01 -2.86 [14C]H4 + [14C]H4(g) -35.93 -38.79 -2.86 [14C]H4 [14C]O2(g) -13.05 -14.52 -1.47 [14C]O2 [14C]O[18O](g) -15.44 -17.22 -1.79 [14C]O[18O] - [18O]2(g) -64.75 -67.04 -2.29 [18O]2 + [18O]2(g) -64.86 -67.15 -2.29 [18O]2 C[18O]2(g) -6.43 -7.94 -1.50 C[18O]2 Ca[13C][18O]3(s) -12.41 -4.25 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -6.56 1.15 7.71 Ca[13C]O2[18O] @@ -501,14 +501,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -4.60 3.11 7.71 CaCO2[18O] CaCO[18O]2(s) -7.29 0.41 7.70 CaCO[18O]2 Calcite -2.39 -10.87 -8.48 CaCO3 - CH4(g) -24.16 -27.02 -2.86 CH4 + CH4(g) -23.94 -26.80 -2.86 CH4 CO2(g) -1.07 -2.54 -1.47 CO2 CO[18O](g) -3.45 -5.24 -1.79 CO[18O] - H2(g) -12.22 -15.37 -3.15 H2 + H2(g) -12.16 -15.31 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -58.75 -61.64 -2.89 O2 - O[18O](g) -61.45 -64.34 -2.89 O[18O] + O2(g) -58.86 -61.75 -2.89 O2 + O[18O](g) -61.56 -64.45 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -617,10 +617,10 @@ Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.9496e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.9261e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 0 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.2212e-12 0 Alpha 14C CH4(aq)/CO2(aq) 0 -1000 0 -----------------------------Solution composition------------------------------ @@ -636,14 +636,14 @@ Alpha 14C CH4(aq)/CO2(aq) 0 -1000 0 ----------------------------Description of solution---------------------------- pH = 6.235 Charge balance - pe = 0.081 Adjusted to redox equilibrium + pe = 0.013 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 2.970e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 2.006e-03 Total CO2 (mol/kg) = 4.408e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.501e-14 + Electrical balance (eq) = 3.897e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 5 Total H = 1.110126e+02 @@ -657,101 +657,101 @@ Alpha 14C CH4(aq)/CO2(aq) 0 -1000 0 H3O+ 6.146e-07 5.816e-07 -6.211 -6.235 -0.024 0.00 OH- 1.821e-08 1.714e-08 -7.740 -7.766 -0.026 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.780e-29 - CH4 1.780e-29 1.781e-29 -28.750 -28.749 0.000 (0) +C(-4) 6.181e-29 + CH4 6.181e-29 6.185e-29 -28.209 -28.209 0.000 (0) C(4) 4.408e-03 CO2 2.414e-03 2.416e-03 -2.617 -2.617 0.000 (0) HCO3- 1.953e-03 1.840e-03 -2.709 -2.735 -0.026 (0) CaHCO3+ 1.936e-05 1.827e-05 -4.713 -4.738 -0.025 (0) CO[18O] 1.004e-05 1.005e-05 -4.998 -4.998 0.000 (0) - HCO2[18O]- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) HCO[18O]O- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) + HCO2[18O]- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) HC[18O]O2- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) CaCO3 1.934e-07 1.935e-07 -6.714 -6.713 0.000 (0) CO3-2 1.880e-07 1.481e-07 -6.726 -6.830 -0.104 (0) CaHCO2[18O]+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) - CaHCO[18O]O+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) CaHC[18O]O2+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) + CaHCO[18O]O+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) C[18O]2 1.044e-08 1.044e-08 -7.981 -7.981 0.000 (0) HCO[18O]2- 7.773e-09 7.323e-09 -8.109 -8.135 -0.026 (0) - HC[18O]2O- 7.773e-09 7.323e-09 -8.109 -8.135 -0.026 (0) HC[18O]O[18O]- 7.773e-09 7.323e-09 -8.109 -8.135 -0.026 (0) + HC[18O]2O- 7.773e-09 7.323e-09 -8.109 -8.135 -0.026 (0) Ca 1.003e-03 Ca+2 9.830e-04 7.781e-04 -3.007 -3.109 -0.102 (0) CaHCO3+ 1.936e-05 1.827e-05 -4.713 -4.738 -0.025 (0) CaH[13C]O3+ 2.134e-07 2.013e-07 -6.671 -6.696 -0.025 (0) CaCO3 1.934e-07 1.935e-07 -6.714 -6.713 0.000 (0) CaHCO2[18O]+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) - CaHCO[18O]O+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) CaHC[18O]O2+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) + CaHCO[18O]O+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) Ca[13C]O3 2.128e-09 2.130e-09 -8.672 -8.672 0.000 (0) CaCO2[18O] 1.158e-09 1.158e-09 -8.936 -8.936 0.000 (0) -H(0) 3.309e-16 - H2 1.654e-16 1.656e-16 -15.781 -15.781 0.000 (0) +H(0) 4.517e-16 + H2 2.258e-16 2.260e-16 -15.646 -15.646 0.000 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -60.820 -60.820 0.000 (0) - O[18O] 0.000e+00 0.000e+00 -63.219 -63.219 0.000 (0) -[13C](-4) 1.945e-31 - [13C]H4 1.945e-31 1.946e-31 -30.711 -30.711 0.000 (0) + O2 0.000e+00 0.000e+00 -61.090 -61.090 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -63.489 -63.489 0.000 (0) +[13C](-4) 6.753e-31 + [13C]H4 6.753e-31 6.758e-31 -30.170 -30.170 0.000 (0) [13C](4) 4.835e-05 [13C]O2 2.638e-05 2.639e-05 -4.579 -4.578 0.000 (0) H[13C]O3- 2.152e-05 2.027e-05 -4.667 -4.693 -0.026 (0) CaH[13C]O3+ 2.134e-07 2.013e-07 -6.671 -6.696 -0.025 (0) [13C]O[18O] 1.097e-07 1.098e-07 -6.960 -6.960 0.000 (0) H[13C]O2[18O]- 4.294e-08 4.045e-08 -7.367 -7.393 -0.026 (0) - H[13C]O[18O]O- 4.294e-08 4.045e-08 -7.367 -7.393 -0.026 (0) H[13C][18O]O2- 4.294e-08 4.045e-08 -7.367 -7.393 -0.026 (0) + H[13C]O[18O]O- 4.294e-08 4.045e-08 -7.367 -7.393 -0.026 (0) Ca[13C]O3 2.128e-09 2.130e-09 -8.672 -8.672 0.000 (0) [13C]O3-2 2.069e-09 1.629e-09 -8.684 -8.788 -0.104 (0) CaH[13C]O2[18O]+ 4.258e-10 4.016e-10 -9.371 -9.396 -0.025 (0) CaH[13C]O[18O]O+ 4.258e-10 4.016e-10 -9.371 -9.396 -0.025 (0) CaH[13C][18O]O2+ 4.258e-10 4.016e-10 -9.371 -9.396 -0.025 (0) [13C][18O]2 1.140e-10 1.141e-10 -9.943 -9.943 0.000 (0) - H[13C]O[18O]2- 8.566e-11 8.070e-11 -10.067 -10.093 -0.026 (0) H[13C][18O]2O- 8.566e-11 8.070e-11 -10.067 -10.093 -0.026 (0) H[13C][18O]O[18O]- 8.566e-11 8.070e-11 -10.067 -10.093 -0.026 (0) + H[13C]O[18O]2- 8.566e-11 8.070e-11 -10.067 -10.093 -0.026 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -40.789 -40.788 0.000 (0) + [14C]H4 0.000e+00 0.000e+00 -40.248 -40.248 0.000 (0) [14C](4) 4.061e-15 [14C]O2 2.207e-15 2.208e-15 -14.656 -14.656 0.000 (0) H[14C]O3- 1.816e-15 1.711e-15 -14.741 -14.767 -0.026 (0) CaH[14C]O3+ 1.801e-17 1.699e-17 -16.745 -16.770 -0.025 (0) [14C]O[18O] 9.176e-18 9.182e-18 -17.037 -17.037 0.000 (0) - H[14C]O2[18O]- 3.623e-18 3.413e-18 -17.441 -17.467 -0.026 (0) H[14C]O[18O]O- 3.623e-18 3.413e-18 -17.441 -17.467 -0.026 (0) + H[14C]O2[18O]- 3.623e-18 3.413e-18 -17.441 -17.467 -0.026 (0) H[14C][18O]O2- 3.623e-18 3.413e-18 -17.441 -17.467 -0.026 (0) Ca[14C]O3 1.794e-19 1.795e-19 -18.746 -18.746 0.000 (0) [14C]O3-2 1.743e-19 1.373e-19 -18.759 -18.862 -0.104 (0) - CaH[14C]O2[18O]+ 3.593e-20 3.389e-20 -19.445 -19.470 -0.025 (0) CaH[14C]O[18O]O+ 3.593e-20 3.389e-20 -19.445 -19.470 -0.025 (0) + CaH[14C]O2[18O]+ 3.593e-20 3.389e-20 -19.445 -19.470 -0.025 (0) CaH[14C][18O]O2+ 3.593e-20 3.389e-20 -19.445 -19.470 -0.025 (0) [14C][18O]2 9.539e-21 9.545e-21 -20.021 -20.020 0.000 (0) - H[14C]O[18O]2- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) - H[14C][18O]2O- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) H[14C][18O]O[18O]- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) + H[14C][18O]2O- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) + H[14C]O[18O]2- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) CO[18O] 1.004e-05 1.005e-05 -4.998 -4.998 0.000 (0) HCO2[18O]- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) - HCO[18O]O- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) HC[18O]O2- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) + HCO[18O]O- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -63.219 -63.219 0.000 (0) - [18O]2 0.000e+00 0.000e+00 -66.220 -66.220 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -63.489 -63.489 0.000 (0) + [18O]2 0.000e+00 0.000e+00 -66.490 -66.490 0.000 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.48 -9.98 -1.50 [13C][18O]2 - [13C]H4(g) -27.85 -30.71 -2.86 [13C]H4 + [13C]H4(g) -27.31 -30.17 -2.86 [13C]H4 [13C]O2(g) -3.11 -4.58 -1.47 [13C]O2 [13C]O[18O](g) -5.49 -7.28 -1.79 [13C]O[18O] [14C][18O]2(g) -18.55 -20.06 -1.50 [14C][18O]2 - [14C]H4(g) -37.93 -40.79 -2.86 [14C]H4 + [14C]H4(g) -37.39 -40.25 -2.86 [14C]H4 [14C]O2(g) -13.19 -14.66 -1.47 [14C]O2 [14C]O[18O](g) -15.57 -17.36 -1.79 [14C]O[18O] - [18O]2(g) -63.93 -66.22 -2.29 [18O]2 + [18O]2(g) -64.20 -66.49 -2.29 [18O]2 C[18O]2(g) -6.51 -8.02 -1.50 C[18O]2 Ca[13C][18O]3(s) -11.48 -3.32 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -5.63 2.08 7.71 Ca[13C]O2[18O] @@ -765,14 +765,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -3.67 4.04 7.71 CaCO2[18O] CaCO[18O]2(s) -6.36 1.34 7.70 CaCO[18O]2 Calcite -1.46 -9.94 -8.48 CaCO3 - CH4(g) -25.89 -28.75 -2.86 CH4 + CH4(g) -25.35 -28.21 -2.86 CH4 CO2(g) -1.15 -2.62 -1.47 CO2 CO[18O](g) -3.53 -5.32 -1.79 CO[18O] - H2(g) -12.63 -15.78 -3.15 H2 + H2(g) -12.50 -15.65 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -57.93 -60.82 -2.89 O2 - O[18O](g) -60.63 -63.52 -2.89 O[18O] + O2(g) -58.20 -61.09 -2.89 O2 + O[18O](g) -60.90 -63.79 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -876,12 +876,12 @@ Calcite 0.00e+00 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2373e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2795e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.9934e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8096e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 @@ -898,14 +898,14 @@ Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 ----------------------------Description of solution---------------------------- pH = 6.503 Charge balance - pe = 11.499 Adjusted to redox equilibrium + pe = 11.498 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 4.428e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 3.009e-03 Total CO2 (mol/kg) = 4.904e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.766e-13 + Electrical balance (eq) = 5.037e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 17 Total H = 1.110126e+02 @@ -920,22 +920,22 @@ Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 OH- 3.415e-08 3.176e-08 -7.467 -7.498 -0.032 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.333 -122.333 0.000 (0) + CH4 0.000e+00 0.000e+00 -122.330 -122.330 0.000 (0) C(4) 4.904e-03 HCO3- 2.915e-03 2.713e-03 -2.535 -2.567 -0.031 (0) CO2 1.921e-03 1.923e-03 -2.716 -2.716 0.000 (0) CaHCO3+ 4.102e-05 3.825e-05 -4.387 -4.417 -0.030 (0) CO[18O] 7.989e-06 7.997e-06 -5.097 -5.097 0.000 (0) HCO2[18O]- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) - HCO[18O]O- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) HC[18O]O2- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) + HCO[18O]O- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) CaCO3 7.501e-07 7.509e-07 -6.125 -6.124 0.000 (0) CO3-2 5.390e-07 4.046e-07 -6.268 -6.393 -0.125 (0) CaHCO2[18O]+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) CaHCO[18O]O+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) CaHC[18O]O2+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) - HCO[18O]2- 1.160e-08 1.080e-08 -7.935 -7.967 -0.031 (0) HC[18O]2O- 1.160e-08 1.080e-08 -7.935 -7.967 -0.031 (0) + HCO[18O]2- 1.160e-08 1.080e-08 -7.935 -7.967 -0.031 (0) HC[18O]O[18O]- 1.160e-08 1.080e-08 -7.935 -7.967 -0.031 (0) C[18O]2 8.305e-09 8.314e-09 -8.081 -8.080 0.000 (0) Ca 1.504e-03 @@ -944,62 +944,62 @@ Ca 1.504e-03 CaCO3 7.501e-07 7.509e-07 -6.125 -6.124 0.000 (0) CaH[13C]O3+ 4.525e-07 4.219e-07 -6.344 -6.375 -0.030 (0) CaHCO2[18O]+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) - CaHCO[18O]O+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) CaHC[18O]O2+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) + CaHCO[18O]O+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) Ca[13C]O3 8.262e-09 8.270e-09 -8.083 -8.082 0.000 (0) CaCO2[18O] 4.490e-09 4.494e-09 -8.348 -8.347 0.000 (0) -H(0) 1.407e-39 - H2 7.037e-40 7.044e-40 -39.153 -39.152 0.000 (0) -O(0) 1.679e-14 - O2 8.360e-15 8.369e-15 -14.078 -14.077 0.000 (0) - O[18O] 3.336e-17 3.339e-17 -16.477 -16.476 0.000 (0) +H(0) 1.410e-39 + H2 7.048e-40 7.055e-40 -39.152 -39.152 0.000 (0) +O(0) 1.673e-14 + O2 8.334e-15 8.342e-15 -14.079 -14.079 0.000 (0) + O[18O] 3.326e-17 3.329e-17 -16.478 -16.478 0.000 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.294 -124.294 0.000 (0) + [13C]H4 0.000e+00 0.000e+00 -124.292 -124.291 0.000 (0) [13C](4) 5.391e-05 H[13C]O3- 3.215e-05 2.993e-05 -4.493 -4.524 -0.031 (0) [13C]O2 2.101e-05 2.103e-05 -4.678 -4.677 0.000 (0) CaH[13C]O3+ 4.525e-07 4.219e-07 -6.344 -6.375 -0.030 (0) [13C]O[18O] 8.736e-08 8.745e-08 -7.059 -7.058 0.000 (0) H[13C]O2[18O]- 6.415e-08 5.971e-08 -7.193 -7.224 -0.031 (0) - H[13C]O[18O]O- 6.415e-08 5.971e-08 -7.193 -7.224 -0.031 (0) H[13C][18O]O2- 6.415e-08 5.971e-08 -7.193 -7.224 -0.031 (0) + H[13C]O[18O]O- 6.415e-08 5.971e-08 -7.193 -7.224 -0.031 (0) Ca[13C]O3 8.262e-09 8.270e-09 -8.083 -8.082 0.000 (0) [13C]O3-2 5.937e-09 4.456e-09 -8.226 -8.351 -0.125 (0) - CaH[13C]O2[18O]+ 9.027e-10 8.418e-10 -9.044 -9.075 -0.030 (0) CaH[13C]O[18O]O+ 9.027e-10 8.418e-10 -9.044 -9.075 -0.030 (0) CaH[13C][18O]O2+ 9.027e-10 8.418e-10 -9.044 -9.075 -0.030 (0) + CaH[13C]O2[18O]+ 9.027e-10 8.418e-10 -9.044 -9.075 -0.030 (0) H[13C]O[18O]2- 1.280e-10 1.191e-10 -9.893 -9.924 -0.031 (0) H[13C][18O]2O- 1.280e-10 1.191e-10 -9.893 -9.924 -0.031 (0) H[13C][18O]O[18O]- 1.280e-10 1.191e-10 -9.893 -9.924 -0.031 (0) [13C][18O]2 9.082e-11 9.091e-11 -10.042 -10.041 0.000 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.420 -134.419 0.000 (0) + [14C]H4 0.000e+00 0.000e+00 -134.417 -134.416 0.000 (0) [14C](4) 4.061e-15 H[14C]O3- 2.430e-15 2.262e-15 -14.614 -14.645 -0.031 (0) [14C]O2 1.574e-15 1.576e-15 -14.803 -14.802 0.000 (0) CaH[14C]O3+ 3.420e-17 3.189e-17 -16.466 -16.496 -0.030 (0) [14C]O[18O] 6.547e-18 6.553e-18 -17.184 -17.184 0.000 (0) - H[14C]O2[18O]- 4.849e-18 4.513e-18 -17.314 -17.346 -0.031 (0) H[14C]O[18O]O- 4.849e-18 4.513e-18 -17.314 -17.346 -0.031 (0) + H[14C]O2[18O]- 4.849e-18 4.513e-18 -17.314 -17.346 -0.031 (0) H[14C][18O]O2- 4.849e-18 4.513e-18 -17.314 -17.346 -0.031 (0) Ca[14C]O3 6.236e-19 6.242e-19 -18.205 -18.205 0.000 (0) [14C]O3-2 4.481e-19 3.364e-19 -18.349 -18.473 -0.125 (0) CaH[14C]O2[18O]+ 6.824e-20 6.363e-20 -19.166 -19.196 -0.030 (0) - CaH[14C]O[18O]O+ 6.824e-20 6.363e-20 -19.166 -19.196 -0.030 (0) CaH[14C][18O]O2+ 6.824e-20 6.363e-20 -19.166 -19.196 -0.030 (0) + CaH[14C]O[18O]O+ 6.824e-20 6.363e-20 -19.166 -19.196 -0.030 (0) H[14C]O[18O]2- 9.674e-21 9.005e-21 -20.014 -20.046 -0.031 (0) - H[14C][18O]2O- 9.674e-21 9.005e-21 -20.014 -20.046 -0.031 (0) H[14C][18O]O[18O]- 9.674e-21 9.005e-21 -20.014 -20.046 -0.031 (0) + H[14C][18O]2O- 9.674e-21 9.005e-21 -20.014 -20.046 -0.031 (0) [14C][18O]2 6.806e-21 6.813e-21 -20.167 -20.167 0.000 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) CO[18O] 7.989e-06 7.997e-06 -5.097 -5.097 0.000 (0) - HCO2[18O]- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) - HCO[18O]O- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) HC[18O]O2- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) -[18O](0) 3.343e-17 - O[18O] 3.336e-17 3.339e-17 -16.477 -16.476 0.000 (0) - [18O]2 3.328e-20 3.331e-20 -19.478 -19.477 0.000 (0) + HCO[18O]O- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) + HCO2[18O]- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) +[18O](0) 3.332e-17 + O[18O] 3.326e-17 3.329e-17 -16.478 -16.478 0.000 (0) + [18O]2 3.318e-20 3.321e-20 -19.479 -19.479 0.000 (0) ------------------------------Saturation indices------------------------------- @@ -1033,7 +1033,7 @@ O(0) 1.679e-14 H2(g) -36.00 -39.15 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.18 -14.08 -2.89 O2 + O2(g) -11.19 -14.08 -2.89 O2 O[18O](g) -13.89 -16.78 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -1138,12 +1138,12 @@ Calcite 0.00e+00 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2771e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2545e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 +Alpha 18O HCO3-/H2O(l) 1 0 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -2.0204e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8202e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 @@ -1160,14 +1160,14 @@ Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 ----------------------------Description of solution---------------------------- pH = 6.750 Charge balance - pe = 11.241 Adjusted to redox equilibrium + pe = 11.210 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 5.871e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.012e-03 Total CO2 (mol/kg) = 5.400e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 5.094e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 4 Total H = 1.110126e+02 @@ -1182,22 +1182,22 @@ Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 OH- 6.090e-08 5.607e-08 -7.215 -7.251 -0.036 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.370 -122.369 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.123 -122.122 0.001 (0) C(4) 5.400e-03 HCO3- 3.868e-03 3.565e-03 -2.413 -2.448 -0.035 (0) CO2 1.430e-03 1.432e-03 -2.845 -2.844 0.001 (0) CaHCO3+ 6.931e-05 6.403e-05 -4.159 -4.194 -0.034 (0) HCO2[18O]- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) - HCO[18O]O- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) HC[18O]O2- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) + HCO[18O]O- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) CO[18O] 5.945e-06 5.953e-06 -5.226 -5.225 0.001 (0) CaCO3 2.216e-06 2.219e-06 -5.654 -5.654 0.001 (0) CO3-2 1.300e-06 9.385e-07 -5.886 -6.028 -0.142 (0) CaHCO2[18O]+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) - CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) CaHC[18O]O2+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) - HCO[18O]2- 1.540e-08 1.419e-08 -7.813 -7.848 -0.035 (0) + CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) HC[18O]2O- 1.540e-08 1.419e-08 -7.813 -7.848 -0.035 (0) + HCO[18O]2- 1.540e-08 1.419e-08 -7.813 -7.848 -0.035 (0) HC[18O]O[18O]- 1.540e-08 1.419e-08 -7.813 -7.848 -0.035 (0) CaCO2[18O] 1.326e-08 1.328e-08 -7.877 -7.877 0.001 (0) CO2[18O]-2 7.783e-09 5.618e-09 -8.109 -8.250 -0.142 (0) @@ -1208,30 +1208,30 @@ Ca 2.006e-03 CaCO3 2.216e-06 2.219e-06 -5.654 -5.654 0.001 (0) CaH[13C]O3+ 7.650e-07 7.067e-07 -6.116 -6.151 -0.034 (0) CaHCO2[18O]+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) - CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) CaHC[18O]O2+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) + CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) Ca[13C]O3 2.442e-08 2.445e-08 -7.612 -7.612 0.001 (0) CaCO2[18O] 1.326e-08 1.328e-08 -7.877 -7.877 0.001 (0) -H(0) 1.483e-39 - H2 7.415e-40 7.425e-40 -39.130 -39.129 0.001 (0) -O(0) 1.510e-14 - O2 7.521e-15 7.531e-15 -14.124 -14.123 0.001 (0) - O[18O] 3.001e-17 3.005e-17 -16.523 -16.522 0.001 (0) +H(0) 1.710e-39 + H2 8.549e-40 8.560e-40 -39.068 -39.068 0.001 (0) +O(0) 1.136e-14 + O2 5.658e-15 5.666e-15 -14.247 -14.247 0.001 (0) + O[18O] 2.258e-17 2.261e-17 -16.646 -16.646 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.331 -124.330 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.084 -124.083 0.001 (0) [13C](4) 5.947e-05 H[13C]O3- 4.269e-05 3.935e-05 -4.370 -4.405 -0.035 (0) [13C]O2 1.564e-05 1.566e-05 -4.806 -4.805 0.001 (0) CaH[13C]O3+ 7.650e-07 7.067e-07 -6.116 -6.151 -0.034 (0) H[13C]O2[18O]- 8.518e-08 7.851e-08 -7.070 -7.105 -0.035 (0) - H[13C]O[18O]O- 8.518e-08 7.851e-08 -7.070 -7.105 -0.035 (0) H[13C][18O]O2- 8.518e-08 7.851e-08 -7.070 -7.105 -0.035 (0) + H[13C]O[18O]O- 8.518e-08 7.851e-08 -7.070 -7.105 -0.035 (0) [13C]O[18O] 6.505e-08 6.514e-08 -7.187 -7.186 0.001 (0) Ca[13C]O3 2.442e-08 2.445e-08 -7.612 -7.612 0.001 (0) [13C]O3-2 1.433e-08 1.034e-08 -7.844 -7.985 -0.142 (0) + CaH[13C][18O]O2+ 1.526e-09 1.410e-09 -8.816 -8.851 -0.034 (0) CaH[13C]O2[18O]+ 1.526e-09 1.410e-09 -8.816 -8.851 -0.034 (0) CaH[13C]O[18O]O+ 1.526e-09 1.410e-09 -8.816 -8.851 -0.034 (0) - CaH[13C][18O]O2+ 1.526e-09 1.410e-09 -8.816 -8.851 -0.034 (0) H[13C]O[18O]2- 1.699e-10 1.566e-10 -9.770 -9.805 -0.035 (0) H[13C][18O]2O- 1.699e-10 1.566e-10 -9.770 -9.805 -0.035 (0) H[13C][18O]O[18O]- 1.699e-10 1.566e-10 -9.770 -9.805 -0.035 (0) @@ -1239,52 +1239,52 @@ O(0) 1.510e-14 [13C]O2[18O]-2 8.578e-11 6.191e-11 -10.067 -10.208 -0.142 (0) [13C][18O]2 6.763e-11 6.772e-11 -10.170 -10.169 0.001 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.499 -134.499 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -134.252 -134.251 0.001 (0) [14C](4) 4.061e-15 H[14C]O3- 2.922e-15 2.694e-15 -14.534 -14.570 -0.035 (0) [14C]O2 1.062e-15 1.063e-15 -14.974 -14.973 0.001 (0) CaH[14C]O3+ 5.236e-17 4.837e-17 -16.281 -16.315 -0.034 (0) - H[14C]O2[18O]- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) - H[14C]O[18O]O- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) H[14C][18O]O2- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) + H[14C]O[18O]O- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) + H[14C]O2[18O]- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) [14C]O[18O] 4.414e-18 4.420e-18 -17.355 -17.355 0.001 (0) Ca[14C]O3 1.669e-18 1.671e-18 -17.777 -17.777 0.001 (0) [14C]O3-2 9.796e-19 7.070e-19 -18.009 -18.151 -0.142 (0) CaH[14C]O2[18O]+ 1.045e-19 9.651e-20 -18.981 -19.015 -0.034 (0) - CaH[14C]O[18O]O+ 1.045e-19 9.651e-20 -18.981 -19.015 -0.034 (0) CaH[14C][18O]O2+ 1.045e-19 9.651e-20 -18.981 -19.015 -0.034 (0) - H[14C]O[18O]2- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) - H[14C][18O]2O- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) + CaH[14C]O[18O]O+ 1.045e-19 9.651e-20 -18.981 -19.015 -0.034 (0) H[14C][18O]O[18O]- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) + H[14C][18O]2O- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) + H[14C]O[18O]2- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) Ca[14C]O2[18O] 9.991e-21 1.000e-20 -20.000 -20.000 0.001 (0) [14C]O2[18O]-2 5.863e-21 4.232e-21 -20.232 -20.373 -0.142 (0) [14C][18O]2 4.589e-21 4.595e-21 -20.338 -20.338 0.001 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) - HCO[18O]O- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) HC[18O]O2- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) + HCO[18O]O- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) CO[18O] 5.945e-06 5.953e-06 -5.226 -5.225 0.001 (0) CaHCO2[18O]+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) CaHC[18O]O2+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) -[18O](0) 3.007e-17 - O[18O] 3.001e-17 3.005e-17 -16.523 -16.522 0.001 (0) - [18O]2 2.994e-20 2.998e-20 -19.524 -19.523 0.001 (0) +[18O](0) 2.262e-17 + O[18O] 2.258e-17 2.261e-17 -16.646 -16.646 0.001 (0) + [18O]2 2.252e-20 2.256e-20 -19.647 -19.647 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.70 -10.21 -1.50 [13C][18O]2 - [13C]H4(g) -121.47 -124.33 -2.86 [13C]H4 + [13C]H4(g) -121.22 -124.08 -2.86 [13C]H4 [13C]O2(g) -3.34 -4.81 -1.47 [13C]O2 [13C]O[18O](g) -5.72 -7.51 -1.79 [13C]O[18O] [14C][18O]2(g) -18.87 -20.37 -1.50 [14C][18O]2 - [14C]H4(g) -131.64 -134.50 -2.86 [14C]H4 + [14C]H4(g) -131.39 -134.25 -2.86 [14C]H4 [14C]O2(g) -13.50 -14.97 -1.47 [14C]O2 [14C]O[18O](g) -15.89 -17.67 -1.79 [14C]O[18O] - [18O]2(g) -17.23 -19.52 -2.29 [18O]2 + [18O]2(g) -17.36 -19.65 -2.29 [18O]2 C[18O]2(g) -6.74 -8.24 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.42 -2.26 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.57 3.14 7.71 Ca[13C]O2[18O] @@ -1298,14 +1298,14 @@ O(0) 1.510e-14 CaCO2[18O](s) -2.61 5.10 7.71 CaCO2[18O] CaCO[18O]2(s) -5.30 2.40 7.70 CaCO[18O]2 Calcite -0.40 -8.88 -8.48 CaCO3 - CH4(g) -119.51 -122.37 -2.86 CH4 + CH4(g) -119.26 -122.12 -2.86 CH4 CO2(g) -1.38 -2.84 -1.47 CO2 CO[18O](g) -3.76 -5.54 -1.79 CO[18O] - H2(g) -35.98 -39.13 -3.15 H2 + H2(g) -35.92 -39.07 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.23 -14.12 -2.89 O2 - O[18O](g) -13.93 -16.82 -2.89 O[18O] + O2(g) -11.35 -14.25 -2.89 O2 + O[18O](g) -14.05 -16.95 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1412,12 +1412,12 @@ Calcite 5.60e-05 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2738e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2545e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7115e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.653e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -1437,16 +1437,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.984 Adjusted to redox equilibrium + pe = 10.791 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.841e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 5.094e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 73 + Iterations = 77 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -1459,24 +1459,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.385 -122.384 0.001 (0) + CH4 0.000e+00 0.000e+00 -120.842 -120.842 0.001 (0) C(4) 5.841e-03 HCO3- 4.704e-03 4.304e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.976e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.802e-06 1.963e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -1484,50 +1484,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.097e-06 1.006e-06 -5.960 -5.997 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.023e-08 6.033e-08 -7.220 -7.219 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.609e-39 - H2 8.044e-40 8.057e-40 -39.095 -39.094 0.001 (0) -O(0) 1.282e-14 - O2 6.385e-15 6.396e-15 -14.195 -14.194 0.001 (0) - O[18O] 2.548e-17 2.552e-17 -16.594 -16.593 0.001 (0) +H(0) 3.910e-39 + H2 1.955e-39 1.958e-39 -38.709 -38.708 0.001 (0) +O(0) 2.171e-15 + O2 1.081e-15 1.083e-15 -14.966 -14.965 0.001 (0) + O[18O] 4.314e-18 4.321e-18 -17.365 -17.364 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.346 -124.345 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -122.803 -122.802 0.001 (0) [13C](4) 6.441e-05 H[13C]O3- 5.195e-05 4.753e-05 -4.284 -4.323 -0.039 (0) [13C]O2 1.090e-05 1.092e-05 -4.962 -4.962 0.001 (0) CaH[13C]O3+ 1.097e-06 1.006e-06 -5.960 -5.997 -0.037 (0) - H[13C]O2[18O]- 1.037e-07 9.483e-08 -6.984 -7.023 -0.039 (0) - H[13C]O[18O]O- 1.037e-07 9.483e-08 -6.984 -7.023 -0.039 (0) H[13C][18O]O2- 1.037e-07 9.483e-08 -6.984 -7.023 -0.039 (0) + H[13C]O[18O]O- 1.037e-07 9.483e-08 -6.984 -7.023 -0.039 (0) + H[13C]O2[18O]- 1.037e-07 9.483e-08 -6.984 -7.023 -0.039 (0) Ca[13C]O3 6.023e-08 6.033e-08 -7.220 -7.219 0.001 (0) [13C]O[18O] 4.534e-08 4.542e-08 -7.343 -7.343 0.001 (0) [13C]O3-2 3.090e-08 2.164e-08 -7.510 -7.665 -0.155 (0) + CaH[13C][18O]O2+ 2.189e-09 2.008e-09 -8.660 -8.697 -0.037 (0) CaH[13C]O2[18O]+ 2.189e-09 2.008e-09 -8.660 -8.697 -0.037 (0) CaH[13C]O[18O]O+ 2.189e-09 2.008e-09 -8.660 -8.697 -0.037 (0) - CaH[13C][18O]O2+ 2.189e-09 2.008e-09 -8.660 -8.697 -0.037 (0) Ca[13C]O2[18O] 3.605e-10 3.611e-10 -9.443 -9.442 0.001 (0) - H[13C]O[18O]2- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) - H[13C][18O]2O- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) H[13C][18O]O[18O]- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) + H[13C][18O]2O- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) + H[13C]O[18O]2- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) [13C]O2[18O]-2 1.849e-10 1.295e-10 -9.733 -9.888 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.553 -134.552 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -133.011 -133.010 0.001 (0) [14C](4) 4.023e-15 H[14C]O3- 3.250e-15 2.973e-15 -14.488 -14.527 -0.039 (0) [14C]O2 6.762e-16 6.773e-16 -15.170 -15.169 0.001 (0) CaH[14C]O3+ 6.862e-17 6.295e-17 -16.164 -16.201 -0.037 (0) - H[14C]O2[18O]- 6.483e-18 5.931e-18 -17.188 -17.227 -0.039 (0) - H[14C]O[18O]O- 6.483e-18 5.931e-18 -17.188 -17.227 -0.039 (0) H[14C][18O]O2- 6.483e-18 5.931e-18 -17.188 -17.227 -0.039 (0) + H[14C]O[18O]O- 6.483e-18 5.931e-18 -17.188 -17.227 -0.039 (0) + H[14C]O2[18O]- 6.483e-18 5.931e-18 -17.188 -17.227 -0.039 (0) Ca[14C]O3 3.762e-18 3.768e-18 -17.425 -17.424 0.001 (0) [14C]O[18O] 2.812e-18 2.816e-18 -17.551 -17.550 0.001 (0) [14C]O3-2 1.930e-18 1.352e-18 -17.715 -17.869 -0.155 (0) CaH[14C]O2[18O]+ 1.369e-19 1.256e-19 -18.864 -18.901 -0.037 (0) - CaH[14C]O[18O]O+ 1.369e-19 1.256e-19 -18.864 -18.901 -0.037 (0) CaH[14C][18O]O2+ 1.369e-19 1.256e-19 -18.864 -18.901 -0.037 (0) + CaH[14C]O[18O]O+ 1.369e-19 1.256e-19 -18.864 -18.901 -0.037 (0) Ca[14C]O2[18O] 2.252e-20 2.255e-20 -19.648 -19.647 0.001 (0) H[14C]O[18O]2- 1.294e-20 1.183e-20 -19.888 -19.927 -0.039 (0) H[14C][18O]2O- 1.294e-20 1.183e-20 -19.888 -19.927 -0.039 (0) @@ -1536,29 +1536,29 @@ O(0) 1.282e-14 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.553e-17 - O[18O] 2.548e-17 2.552e-17 -16.594 -16.593 0.001 (0) - [18O]2 2.542e-20 2.546e-20 -19.595 -19.594 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 4.323e-18 + O[18O] 4.314e-18 4.321e-18 -17.365 -17.364 0.001 (0) + [18O]2 4.304e-21 4.311e-21 -20.366 -20.365 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.48 -124.34 -2.86 [13C]H4 + [13C]H4(g) -119.94 -122.80 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.07 -20.57 -1.50 [14C][18O]2 - [14C]H4(g) -131.69 -134.55 -2.86 [14C]H4 + [14C]H4(g) -130.15 -133.01 -2.86 [14C]H4 [14C]O2(g) -13.70 -15.17 -1.47 [14C]O2 [14C]O[18O](g) -16.08 -17.87 -1.79 [14C]O[18O] - [18O]2(g) -17.30 -19.59 -2.29 [18O]2 + [18O]2(g) -18.08 -20.37 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -1572,14 +1572,14 @@ O(0) 1.282e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.52 -122.38 -2.86 CH4 + CH4(g) -117.98 -120.84 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.94 -39.09 -3.15 H2 + H2(g) -35.56 -38.71 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.30 -14.19 -2.89 O2 - O[18O](g) -14.00 -16.89 -2.89 O[18O] + O2(g) -12.07 -14.97 -2.89 O2 + O[18O](g) -14.77 -17.67 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1603,6 +1603,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 12. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -1664,7 +1670,6 @@ Calcite 5.00e-04 R(18O) H2O(l) 1.99518e-03 -4.9969 permil R(18O) OH- 1.92121e-03 -41.884 permil R(18O) H3O+ 2.04132e-03 18.011 permil - R(18O) O2(aq) 1.99518e-03 -4.9969 permil R(13C) CO2(aq) 1.09594e-02 -19.751 permil R(14C) CO2(aq) 6.25457e-13 53.19 pmc R(18O) CO2(aq) 2.07915e-03 36.877 permil @@ -1674,6 +1679,8 @@ Calcite 5.00e-04 R(18O) CO3-2 1.99518e-03 -4.9969 permil R(13C) CO3-2 1.10389e-02 -12.642 permil R(14C) CO3-2 6.34562e-13 53.964 pmc + R(13C) CH4(aq) 1.09594e-02 -19.751 permil + R(14C) CH4(aq) 6.25457e-13 53.19 pmc R(18O) Calcite 2.05262e-03 23.649 permil R(13C) Calcite 1.10766e-02 -9.2642 permil R(14C) Calcite 6.38911e-13 54.334 pmc @@ -1686,14 +1693,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2267e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 6.6613e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7817e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7905e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.7431e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -4.885e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -1711,16 +1719,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.946 Adjusted to redox equilibrium + pe = -1.455 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.841e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 5.094e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 71 + Iterations = 133 (234 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -1732,14 +1740,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.078 -122.078 0.001 (0) +C(-4) 1.346e-23 + CH4 1.346e-23 1.348e-23 -22.871 -22.870 0.001 (0) C(4) 5.841e-03 HCO3- 4.704e-03 4.304e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -1748,9 +1756,9 @@ C(4) 5.841e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -1758,23 +1766,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.098e-06 1.007e-06 -5.959 -5.997 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.028e-08 6.038e-08 -7.220 -7.219 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.919e-39 - H2 9.597e-40 9.612e-40 -39.018 -39.017 0.001 (0) -O(0) 9.008e-15 - O2 4.486e-15 4.493e-15 -14.348 -14.347 0.001 (0) - O[18O] 1.790e-17 1.793e-17 -16.747 -16.746 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.039 -124.038 0.001 (0) +H(0) 1.216e-14 + H2 6.081e-15 6.091e-15 -14.216 -14.215 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -63.952 -63.951 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.351 -66.350 0.001 (0) +[13C](-4) 1.475e-25 + [13C]H4 1.475e-25 1.477e-25 -24.831 -24.831 0.001 (0) [13C](4) 6.447e-05 H[13C]O3- 5.200e-05 4.757e-05 -4.284 -4.323 -0.039 (0) [13C]O2 1.091e-05 1.093e-05 -4.962 -4.961 0.001 (0) CaH[13C]O3+ 1.098e-06 1.007e-06 -5.959 -5.997 -0.037 (0) - H[13C]O2[18O]- 1.038e-07 9.492e-08 -6.984 -7.023 -0.039 (0) H[13C]O[18O]O- 1.038e-07 9.492e-08 -6.984 -7.023 -0.039 (0) + H[13C]O2[18O]- 1.038e-07 9.492e-08 -6.984 -7.023 -0.039 (0) H[13C][18O]O2- 1.038e-07 9.492e-08 -6.984 -7.023 -0.039 (0) Ca[13C]O3 6.028e-08 6.038e-08 -7.220 -7.219 0.001 (0) [13C]O[18O] 4.539e-08 4.546e-08 -7.343 -7.342 0.001 (0) @@ -1783,56 +1791,56 @@ O(0) 9.008e-15 CaH[13C]O[18O]O+ 2.191e-09 2.010e-09 -8.659 -8.697 -0.037 (0) CaH[13C][18O]O2+ 2.191e-09 2.010e-09 -8.659 -8.697 -0.037 (0) Ca[13C]O2[18O] 3.608e-10 3.614e-10 -9.443 -9.442 0.001 (0) - H[13C]O[18O]2- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) - H[13C][18O]2O- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) H[13C][18O]O[18O]- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) + H[13C][18O]2O- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) + H[13C]O[18O]2- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) [13C]O2[18O]-2 1.851e-10 1.297e-10 -9.733 -9.887 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.282 -134.281 0.001 (0) +[14C](-4) 8.417e-36 + [14C]H4 8.417e-36 8.431e-36 -35.075 -35.074 0.001 (0) [14C](4) 3.706e-15 H[14C]O3- 2.994e-15 2.739e-15 -14.524 -14.562 -0.039 (0) [14C]O2 6.229e-16 6.239e-16 -15.206 -15.205 0.001 (0) CaH[14C]O3+ 6.321e-17 5.799e-17 -16.199 -16.237 -0.037 (0) - H[14C]O2[18O]- 5.973e-18 5.464e-18 -17.224 -17.262 -0.039 (0) - H[14C]O[18O]O- 5.973e-18 5.464e-18 -17.224 -17.262 -0.039 (0) H[14C][18O]O2- 5.973e-18 5.464e-18 -17.224 -17.262 -0.039 (0) + H[14C]O[18O]O- 5.973e-18 5.464e-18 -17.224 -17.262 -0.039 (0) + H[14C]O2[18O]- 5.973e-18 5.464e-18 -17.224 -17.262 -0.039 (0) Ca[14C]O3 3.465e-18 3.471e-18 -17.460 -17.460 0.001 (0) [14C]O[18O] 2.590e-18 2.594e-18 -17.587 -17.586 0.001 (0) [14C]O3-2 1.778e-18 1.245e-18 -17.750 -17.905 -0.155 (0) CaH[14C]O2[18O]+ 1.261e-19 1.157e-19 -18.899 -18.937 -0.037 (0) - CaH[14C]O[18O]O+ 1.261e-19 1.157e-19 -18.899 -18.937 -0.037 (0) CaH[14C][18O]O2+ 1.261e-19 1.157e-19 -18.899 -18.937 -0.037 (0) + CaH[14C]O[18O]O+ 1.261e-19 1.157e-19 -18.899 -18.937 -0.037 (0) Ca[14C]O2[18O] 2.074e-20 2.078e-20 -19.683 -19.682 0.001 (0) - H[14C]O[18O]2- 1.192e-20 1.090e-20 -19.924 -19.962 -0.039 (0) H[14C][18O]2O- 1.192e-20 1.090e-20 -19.924 -19.962 -0.039 (0) H[14C][18O]O[18O]- 1.192e-20 1.090e-20 -19.924 -19.962 -0.039 (0) + H[14C]O[18O]2- 1.192e-20 1.090e-20 -19.924 -19.962 -0.039 (0) [14C]O2[18O]-2 1.064e-20 7.454e-21 -19.973 -20.128 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.794e-17 - O[18O] 1.790e-17 1.793e-17 -16.747 -16.746 0.001 (0) - [18O]2 1.786e-20 1.789e-20 -19.748 -19.747 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -66.351 -66.350 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -69.352 -69.351 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.18 -124.04 -2.86 [13C]H4 + [13C]H4(g) -21.97 -24.83 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.10 -20.60 -1.50 [14C][18O]2 - [14C]H4(g) -131.42 -134.28 -2.86 [14C]H4 + [14C]H4(g) -32.21 -35.07 -2.86 [14C]H4 [14C]O2(g) -13.74 -15.20 -1.47 [14C]O2 [14C]O[18O](g) -16.12 -17.90 -1.79 [14C]O[18O] - [18O]2(g) -17.46 -19.75 -2.29 [18O]2 + [18O]2(g) -67.06 -69.35 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -1846,14 +1854,14 @@ O(0) 9.008e-15 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.22 -122.08 -2.86 CH4 + CH4(g) -20.01 -22.87 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.87 -39.02 -3.15 H2 + H2(g) -11.07 -14.22 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.46 -14.35 -2.89 O2 - O[18O](g) -14.16 -17.05 -2.89 O[18O] + O2(g) -61.06 -63.95 -2.89 O2 + O[18O](g) -63.76 -66.65 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1968,14 +1976,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.4385e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -8.2157e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6691e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.542e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 7.1054e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.5321e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 3.1086e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -3.1086e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -1993,16 +2001,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.710 Adjusted to redox equilibrium + pe = -1.627 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 5.094e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 66 (167 overall) + Iterations = 79 (180 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -2014,25 +2022,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.477e-21 - CH4 1.477e-21 1.480e-21 -20.831 -20.830 0.001 (0) +C(-4) 3.178e-22 + CH4 3.178e-22 3.183e-22 -21.498 -21.497 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.304e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.963e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -2040,81 +2048,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.099e-06 1.008e-06 -5.959 -5.996 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.034e-08 6.044e-08 -7.219 -7.219 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.936e-14 - H2 1.968e-14 1.971e-14 -13.706 -13.705 0.001 (0) +H(0) 2.681e-14 + H2 1.340e-14 1.343e-14 -13.873 -13.872 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.972 -64.971 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.371 -67.370 0.001 (0) -[13C](-4) 1.620e-23 - [13C]H4 1.620e-23 1.623e-23 -22.790 -22.790 0.001 (0) + O2 0.000e+00 0.000e+00 -64.638 -64.638 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.037 -67.037 0.001 (0) +[13C](-4) 3.486e-24 + [13C]H4 3.486e-24 3.491e-24 -23.458 -23.457 0.001 (0) [13C](4) 6.453e-05 H[13C]O3- 5.205e-05 4.762e-05 -4.284 -4.322 -0.039 (0) [13C]O2 1.092e-05 1.094e-05 -4.962 -4.961 0.001 (0) CaH[13C]O3+ 1.099e-06 1.008e-06 -5.959 -5.996 -0.037 (0) H[13C]O2[18O]- 1.038e-07 9.500e-08 -6.984 -7.022 -0.039 (0) - H[13C]O[18O]O- 1.038e-07 9.500e-08 -6.984 -7.022 -0.039 (0) H[13C][18O]O2- 1.038e-07 9.500e-08 -6.984 -7.022 -0.039 (0) + H[13C]O[18O]O- 1.038e-07 9.500e-08 -6.984 -7.022 -0.039 (0) Ca[13C]O3 6.034e-08 6.044e-08 -7.219 -7.219 0.001 (0) [13C]O[18O] 4.543e-08 4.550e-08 -7.343 -7.342 0.001 (0) [13C]O3-2 3.095e-08 2.168e-08 -7.509 -7.664 -0.155 (0) - CaH[13C]O2[18O]+ 2.193e-09 2.012e-09 -8.659 -8.696 -0.037 (0) CaH[13C]O[18O]O+ 2.193e-09 2.012e-09 -8.659 -8.696 -0.037 (0) CaH[13C][18O]O2+ 2.193e-09 2.012e-09 -8.659 -8.696 -0.037 (0) + CaH[13C]O2[18O]+ 2.193e-09 2.012e-09 -8.659 -8.696 -0.037 (0) Ca[13C]O2[18O] 3.612e-10 3.618e-10 -9.442 -9.442 0.001 (0) - H[13C]O[18O]2- 2.072e-10 1.896e-10 -9.684 -9.722 -0.039 (0) - H[13C][18O]2O- 2.072e-10 1.896e-10 -9.684 -9.722 -0.039 (0) H[13C][18O]O[18O]- 2.072e-10 1.896e-10 -9.684 -9.722 -0.039 (0) + H[13C][18O]2O- 2.072e-10 1.896e-10 -9.684 -9.722 -0.039 (0) + H[13C]O[18O]2- 2.072e-10 1.896e-10 -9.684 -9.722 -0.039 (0) [13C]O2[18O]-2 1.853e-10 1.298e-10 -9.732 -9.887 -0.155 (0) -[14C](-4) 8.511e-34 - [14C]H4 8.511e-34 8.525e-34 -33.070 -33.069 0.001 (0) +[14C](-4) 1.831e-34 + [14C]H4 1.831e-34 1.834e-34 -33.737 -33.737 0.001 (0) [14C](4) 3.414e-15 H[14C]O3- 2.758e-15 2.523e-15 -14.559 -14.598 -0.039 (0) [14C]O2 5.738e-16 5.748e-16 -15.241 -15.241 0.001 (0) CaH[14C]O3+ 5.823e-17 5.342e-17 -16.235 -16.272 -0.037 (0) - H[14C]O2[18O]- 5.502e-18 5.034e-18 -17.259 -17.298 -0.039 (0) - H[14C]O[18O]O- 5.502e-18 5.034e-18 -17.259 -17.298 -0.039 (0) H[14C][18O]O2- 5.502e-18 5.034e-18 -17.259 -17.298 -0.039 (0) + H[14C]O[18O]O- 5.502e-18 5.034e-18 -17.259 -17.298 -0.039 (0) + H[14C]O2[18O]- 5.502e-18 5.034e-18 -17.259 -17.298 -0.039 (0) Ca[14C]O3 3.192e-18 3.198e-18 -17.496 -17.495 0.001 (0) [14C]O[18O] 2.386e-18 2.390e-18 -17.622 -17.622 0.001 (0) [14C]O3-2 1.638e-18 1.147e-18 -17.786 -17.940 -0.155 (0) CaH[14C]O2[18O]+ 1.162e-19 1.066e-19 -18.935 -18.972 -0.037 (0) - CaH[14C]O[18O]O+ 1.162e-19 1.066e-19 -18.935 -18.972 -0.037 (0) CaH[14C][18O]O2+ 1.162e-19 1.066e-19 -18.935 -18.972 -0.037 (0) + CaH[14C]O[18O]O+ 1.162e-19 1.066e-19 -18.935 -18.972 -0.037 (0) Ca[14C]O2[18O] 1.911e-20 1.914e-20 -19.719 -19.718 0.001 (0) + H[14C][18O]O[18O]- 1.098e-20 1.004e-20 -19.959 -19.998 -0.039 (0) H[14C]O[18O]2- 1.098e-20 1.004e-20 -19.959 -19.998 -0.039 (0) H[14C][18O]2O- 1.098e-20 1.004e-20 -19.959 -19.998 -0.039 (0) - H[14C][18O]O[18O]- 1.098e-20 1.004e-20 -19.959 -19.998 -0.039 (0) [14C]O2[18O]-2 9.802e-21 6.867e-21 -20.009 -20.163 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.371 -67.370 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.372 -70.371 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.037 -67.037 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.038 -70.038 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.93 -22.79 -2.86 [13C]H4 + [13C]H4(g) -20.60 -23.46 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.14 -20.64 -1.50 [14C][18O]2 - [14C]H4(g) -30.21 -33.07 -2.86 [14C]H4 + [14C]H4(g) -30.88 -33.74 -2.86 [14C]H4 [14C]O2(g) -13.77 -15.24 -1.47 [14C]O2 [14C]O[18O](g) -16.15 -17.94 -1.79 [14C]O[18O] - [18O]2(g) -68.08 -70.37 -2.29 [18O]2 + [18O]2(g) -67.75 -70.04 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -2128,14 +2136,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.97 -20.83 -2.86 CH4 + CH4(g) -18.64 -21.50 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.56 -13.71 -3.15 H2 + H2(g) -10.72 -13.87 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.08 -64.97 -2.89 O2 - O[18O](g) -64.78 -67.67 -2.89 O[18O] + O2(g) -61.75 -64.64 -2.89 O2 + O[18O](g) -64.45 -67.34 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2159,12 +2167,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 14. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -2250,14 +2252,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6441e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7215e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -3.3307e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -9.992e-13 0 +Alpha 13C CH4(aq)/CO2(aq) 1 2.2204e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -6.1062e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -2275,16 +2277,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.918 Adjusted to redox equilibrium + pe = -1.851 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 5.094e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 176 (277 overall) + Iterations = 80 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -2296,15 +2298,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 6.803e-20 - CH4 6.803e-20 6.814e-20 -19.167 -19.167 0.001 (0) +C(-4) 1.988e-20 + CH4 1.988e-20 1.991e-20 -19.702 -19.701 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.963e-06 -5.553 -5.707 -0.155 (0) @@ -2312,9 +2314,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -2322,50 +2324,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.100e-06 1.009e-06 -5.959 -5.996 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.039e-08 6.049e-08 -7.219 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.025e-13 - H2 5.127e-14 5.136e-14 -13.290 -13.289 0.001 (0) +H(0) 7.540e-14 + H2 3.770e-14 3.776e-14 -13.424 -13.423 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.804 -65.803 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.203 -68.202 0.001 (0) -[13C](-4) 7.468e-22 - [13C]H4 7.468e-22 7.481e-22 -21.127 -21.126 0.001 (0) + O2 0.000e+00 0.000e+00 -65.537 -65.536 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.936 -67.935 0.001 (0) +[13C](-4) 2.182e-22 + [13C]H4 2.182e-22 2.186e-22 -21.661 -21.660 0.001 (0) [13C](4) 6.458e-05 H[13C]O3- 5.209e-05 4.766e-05 -4.283 -4.322 -0.039 (0) [13C]O2 1.093e-05 1.095e-05 -4.961 -4.961 0.001 (0) CaH[13C]O3+ 1.100e-06 1.009e-06 -5.959 -5.996 -0.037 (0) - H[13C]O2[18O]- 1.039e-07 9.508e-08 -6.983 -7.022 -0.039 (0) - H[13C]O[18O]O- 1.039e-07 9.508e-08 -6.983 -7.022 -0.039 (0) H[13C][18O]O2- 1.039e-07 9.508e-08 -6.983 -7.022 -0.039 (0) + H[13C]O[18O]O- 1.039e-07 9.508e-08 -6.983 -7.022 -0.039 (0) + H[13C]O2[18O]- 1.039e-07 9.508e-08 -6.983 -7.022 -0.039 (0) Ca[13C]O3 6.039e-08 6.049e-08 -7.219 -7.218 0.001 (0) [13C]O[18O] 4.546e-08 4.554e-08 -7.342 -7.342 0.001 (0) [13C]O3-2 3.098e-08 2.170e-08 -7.509 -7.664 -0.155 (0) + CaH[13C][18O]O2+ 2.195e-09 2.013e-09 -8.659 -8.696 -0.037 (0) CaH[13C]O2[18O]+ 2.195e-09 2.013e-09 -8.659 -8.696 -0.037 (0) CaH[13C]O[18O]O+ 2.195e-09 2.013e-09 -8.659 -8.696 -0.037 (0) - CaH[13C][18O]O2+ 2.195e-09 2.013e-09 -8.659 -8.696 -0.037 (0) Ca[13C]O2[18O] 3.615e-10 3.620e-10 -9.442 -9.441 0.001 (0) - H[13C]O[18O]2- 2.074e-10 1.897e-10 -9.683 -9.722 -0.039 (0) - H[13C][18O]2O- 2.074e-10 1.897e-10 -9.683 -9.722 -0.039 (0) H[13C][18O]O[18O]- 2.074e-10 1.897e-10 -9.683 -9.722 -0.039 (0) + H[13C][18O]2O- 2.074e-10 1.897e-10 -9.683 -9.722 -0.039 (0) + H[13C]O[18O]2- 2.074e-10 1.897e-10 -9.683 -9.722 -0.039 (0) [13C]O2[18O]-2 1.854e-10 1.299e-10 -9.732 -9.886 -0.155 (0) -[14C](-4) 3.611e-32 - [14C]H4 3.611e-32 3.617e-32 -31.442 -31.442 0.001 (0) +[14C](-4) 1.055e-32 + [14C]H4 1.055e-32 1.057e-32 -31.977 -31.976 0.001 (0) [14C](4) 3.145e-15 H[14C]O3- 2.541e-15 2.324e-15 -14.595 -14.634 -0.039 (0) [14C]O2 5.286e-16 5.295e-16 -15.277 -15.276 0.001 (0) CaH[14C]O3+ 5.365e-17 4.921e-17 -16.270 -16.308 -0.037 (0) - H[14C]O2[18O]- 5.069e-18 4.637e-18 -17.295 -17.334 -0.039 (0) - H[14C]O[18O]O- 5.069e-18 4.637e-18 -17.295 -17.334 -0.039 (0) H[14C][18O]O2- 5.069e-18 4.637e-18 -17.295 -17.334 -0.039 (0) + H[14C]O[18O]O- 5.069e-18 4.637e-18 -17.295 -17.334 -0.039 (0) + H[14C]O2[18O]- 5.069e-18 4.637e-18 -17.295 -17.334 -0.039 (0) Ca[14C]O3 2.941e-18 2.946e-18 -17.532 -17.531 0.001 (0) [14C]O[18O] 2.198e-18 2.202e-18 -17.658 -17.657 0.001 (0) [14C]O3-2 1.509e-18 1.057e-18 -17.821 -17.976 -0.155 (0) CaH[14C]O2[18O]+ 1.070e-19 9.819e-20 -18.970 -19.008 -0.037 (0) - CaH[14C]O[18O]O+ 1.070e-19 9.819e-20 -18.970 -19.008 -0.037 (0) CaH[14C][18O]O2+ 1.070e-19 9.819e-20 -18.970 -19.008 -0.037 (0) + CaH[14C]O[18O]O+ 1.070e-19 9.819e-20 -18.970 -19.008 -0.037 (0) Ca[14C]O2[18O] 1.760e-20 1.763e-20 -19.754 -19.754 0.001 (0) H[14C]O[18O]2- 1.011e-20 9.252e-21 -19.995 -20.034 -0.039 (0) H[14C][18O]2O- 1.011e-20 9.252e-21 -19.995 -20.034 -0.039 (0) @@ -2374,29 +2376,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.203 -68.202 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.204 -71.203 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.936 -67.935 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.937 -70.936 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.27 -21.13 -2.86 [13C]H4 + [13C]H4(g) -18.80 -21.66 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.17 -20.68 -1.50 [14C][18O]2 - [14C]H4(g) -28.58 -31.44 -2.86 [14C]H4 + [14C]H4(g) -29.12 -31.98 -2.86 [14C]H4 [14C]O2(g) -13.81 -15.28 -1.47 [14C]O2 [14C]O[18O](g) -16.19 -17.98 -1.79 [14C]O[18O] - [18O]2(g) -68.91 -71.20 -2.29 [18O]2 + [18O]2(g) -68.65 -70.94 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -2410,14 +2412,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.31 -19.17 -2.86 CH4 + CH4(g) -16.84 -19.70 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.14 -13.29 -3.15 H2 + H2(g) -10.27 -13.42 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.91 -65.80 -2.89 O2 - O[18O](g) -65.61 -68.50 -2.89 O[18O] + O2(g) -62.64 -65.54 -2.89 O2 + O[18O](g) -65.34 -68.24 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2526,14 +2528,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.5503e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6498e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6854e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.1102e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 8.8818e-13 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -2.8866e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 3.3307e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -2551,16 +2553,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.984 Adjusted to redox equilibrium + pe = -1.832 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.829e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 47 + Iterations = 58 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -2572,25 +2574,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.274e-19 - CH4 2.274e-19 2.277e-19 -18.643 -18.643 0.001 (0) +C(-4) 1.391e-20 + CH4 1.391e-20 1.393e-20 -19.857 -19.856 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.963e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -2598,23 +2600,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.101e-06 1.010e-06 -5.958 -5.996 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.043e-08 6.053e-08 -7.219 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.387e-13 - H2 6.933e-14 6.944e-14 -13.159 -13.158 0.001 (0) +H(0) 6.896e-14 + H2 3.448e-14 3.453e-14 -13.462 -13.462 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.066 -66.065 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.465 -68.464 0.001 (0) -[13C](-4) 2.498e-21 - [13C]H4 2.498e-21 2.502e-21 -20.602 -20.602 0.001 (0) + O2 0.000e+00 0.000e+00 -65.459 -65.458 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.858 -67.857 0.001 (0) +[13C](-4) 1.528e-22 + [13C]H4 1.528e-22 1.531e-22 -21.816 -21.815 0.001 (0) [13C](4) 6.463e-05 H[13C]O3- 5.213e-05 4.769e-05 -4.283 -4.322 -0.039 (0) [13C]O2 1.094e-05 1.096e-05 -4.961 -4.960 0.001 (0) CaH[13C]O3+ 1.101e-06 1.010e-06 -5.958 -5.996 -0.037 (0) - H[13C]O2[18O]- 1.040e-07 9.515e-08 -6.983 -7.022 -0.039 (0) H[13C]O[18O]O- 1.040e-07 9.515e-08 -6.983 -7.022 -0.039 (0) + H[13C]O2[18O]- 1.040e-07 9.515e-08 -6.983 -7.022 -0.039 (0) H[13C][18O]O2- 1.040e-07 9.515e-08 -6.983 -7.022 -0.039 (0) Ca[13C]O3 6.043e-08 6.053e-08 -7.219 -7.218 0.001 (0) [13C]O[18O] 4.550e-08 4.557e-08 -7.342 -7.341 0.001 (0) @@ -2623,56 +2625,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.196e-09 2.015e-09 -8.658 -8.696 -0.037 (0) CaH[13C][18O]O2+ 2.196e-09 2.015e-09 -8.658 -8.696 -0.037 (0) Ca[13C]O2[18O] 3.617e-10 3.623e-10 -9.442 -9.441 0.001 (0) - H[13C]O[18O]2- 2.075e-10 1.898e-10 -9.683 -9.722 -0.039 (0) - H[13C][18O]2O- 2.075e-10 1.898e-10 -9.683 -9.722 -0.039 (0) H[13C][18O]O[18O]- 2.075e-10 1.898e-10 -9.683 -9.722 -0.039 (0) + H[13C][18O]2O- 2.075e-10 1.898e-10 -9.683 -9.722 -0.039 (0) + H[13C]O[18O]2- 2.075e-10 1.898e-10 -9.683 -9.722 -0.039 (0) [13C]O2[18O]-2 1.856e-10 1.300e-10 -9.732 -9.886 -0.155 (0) -[14C](-4) 1.112e-31 - [14C]H4 1.112e-31 1.114e-31 -30.954 -30.953 0.001 (0) +[14C](-4) 6.801e-33 + [14C]H4 6.801e-33 6.812e-33 -32.167 -32.167 0.001 (0) [14C](4) 2.897e-15 H[14C]O3- 2.340e-15 2.141e-15 -14.631 -14.669 -0.039 (0) [14C]O2 4.870e-16 4.878e-16 -15.312 -15.312 0.001 (0) CaH[14C]O3+ 4.942e-17 4.534e-17 -16.306 -16.344 -0.037 (0) - H[14C]O2[18O]- 4.670e-18 4.272e-18 -17.331 -17.369 -0.039 (0) - H[14C]O[18O]O- 4.670e-18 4.272e-18 -17.331 -17.369 -0.039 (0) H[14C][18O]O2- 4.670e-18 4.272e-18 -17.331 -17.369 -0.039 (0) + H[14C]O[18O]O- 4.670e-18 4.272e-18 -17.331 -17.369 -0.039 (0) + H[14C]O2[18O]- 4.670e-18 4.272e-18 -17.331 -17.369 -0.039 (0) Ca[14C]O3 2.709e-18 2.714e-18 -17.567 -17.566 0.001 (0) [14C]O[18O] 2.025e-18 2.028e-18 -17.694 -17.693 0.001 (0) [14C]O3-2 1.390e-18 9.736e-19 -17.857 -18.012 -0.155 (0) CaH[14C]O2[18O]+ 9.861e-20 9.045e-20 -19.006 -19.044 -0.037 (0) - CaH[14C]O[18O]O+ 9.861e-20 9.045e-20 -19.006 -19.044 -0.037 (0) CaH[14C][18O]O2+ 9.861e-20 9.045e-20 -19.006 -19.044 -0.037 (0) + CaH[14C]O[18O]O+ 9.861e-20 9.045e-20 -19.006 -19.044 -0.037 (0) Ca[14C]O2[18O] 1.622e-20 1.624e-20 -19.790 -19.789 0.001 (0) - H[14C]O[18O]2- 9.317e-21 8.523e-21 -20.031 -20.069 -0.039 (0) H[14C][18O]2O- 9.317e-21 8.523e-21 -20.031 -20.069 -0.039 (0) H[14C][18O]O[18O]- 9.317e-21 8.523e-21 -20.031 -20.069 -0.039 (0) + H[14C]O[18O]2- 9.317e-21 8.523e-21 -20.031 -20.069 -0.039 (0) [14C]O2[18O]-2 8.319e-21 5.828e-21 -20.080 -20.234 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.465 -68.464 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.466 -71.465 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.858 -67.857 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.859 -70.858 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.74 -20.60 -2.86 [13C]H4 + [13C]H4(g) -18.96 -21.82 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.21 -20.71 -1.50 [14C][18O]2 - [14C]H4(g) -28.09 -30.95 -2.86 [14C]H4 + [14C]H4(g) -29.31 -32.17 -2.86 [14C]H4 [14C]O2(g) -13.84 -15.31 -1.47 [14C]O2 [14C]O[18O](g) -16.22 -18.01 -1.79 [14C]O[18O] - [18O]2(g) -69.17 -71.47 -2.29 [18O]2 + [18O]2(g) -68.57 -70.86 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -2686,14 +2688,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.78 -18.64 -2.86 CH4 + CH4(g) -17.00 -19.86 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.01 -13.16 -3.15 H2 + H2(g) -10.31 -13.46 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.17 -66.06 -2.89 O2 - O[18O](g) -65.87 -68.77 -2.89 O[18O] + O2(g) -62.57 -65.46 -2.89 O2 + O[18O](g) -65.27 -68.16 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2802,14 +2804,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.4385e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6473e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7835e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.2101e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.0214e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -6.1062e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 2.2204e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -2827,16 +2829,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.979 Adjusted to redox equilibrium + pe = -1.890 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.828e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 51 + Iterations = 53 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -2848,15 +2850,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.099e-19 - CH4 2.099e-19 2.102e-19 -18.678 -18.677 0.001 (0) +C(-4) 4.094e-20 + CH4 4.094e-20 4.101e-20 -19.388 -19.387 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.963e-06 -5.553 -5.707 -0.155 (0) @@ -2864,9 +2866,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -2874,81 +2876,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.048e-08 6.057e-08 -7.218 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.359e-13 - H2 6.796e-14 6.807e-14 -13.168 -13.167 0.001 (0) +H(0) 9.032e-14 + H2 4.516e-14 4.524e-14 -13.345 -13.345 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.048 -66.048 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.447 -68.447 0.001 (0) -[13C](-4) 2.308e-21 - [13C]H4 2.308e-21 2.312e-21 -20.637 -20.636 0.001 (0) + O2 0.000e+00 0.000e+00 -65.693 -65.693 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.092 -68.092 0.001 (0) +[13C](-4) 4.501e-22 + [13C]H4 4.501e-22 4.509e-22 -21.347 -21.346 0.001 (0) [13C](4) 6.467e-05 H[13C]O3- 5.217e-05 4.772e-05 -4.283 -4.321 -0.039 (0) [13C]O2 1.095e-05 1.097e-05 -4.961 -4.960 0.001 (0) CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) H[13C]O2[18O]- 1.041e-07 9.522e-08 -6.983 -7.021 -0.039 (0) - H[13C]O[18O]O- 1.041e-07 9.522e-08 -6.983 -7.021 -0.039 (0) H[13C][18O]O2- 1.041e-07 9.522e-08 -6.983 -7.021 -0.039 (0) + H[13C]O[18O]O- 1.041e-07 9.522e-08 -6.983 -7.021 -0.039 (0) Ca[13C]O3 6.048e-08 6.057e-08 -7.218 -7.218 0.001 (0) [13C]O[18O] 4.553e-08 4.560e-08 -7.342 -7.341 0.001 (0) [13C]O3-2 3.102e-08 2.173e-08 -7.508 -7.663 -0.155 (0) - CaH[13C]O2[18O]+ 2.198e-09 2.016e-09 -8.658 -8.695 -0.037 (0) CaH[13C]O[18O]O+ 2.198e-09 2.016e-09 -8.658 -8.695 -0.037 (0) CaH[13C][18O]O2+ 2.198e-09 2.016e-09 -8.658 -8.695 -0.037 (0) + CaH[13C]O2[18O]+ 2.198e-09 2.016e-09 -8.658 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.620e-10 3.626e-10 -9.441 -9.441 0.001 (0) - H[13C]O[18O]2- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) - H[13C][18O]2O- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) H[13C][18O]O[18O]- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) + H[13C][18O]2O- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) + H[13C]O[18O]2- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) [13C]O2[18O]-2 1.857e-10 1.301e-10 -9.731 -9.886 -0.155 (0) -[14C](-4) 9.456e-32 - [14C]H4 9.456e-32 9.471e-32 -31.024 -31.024 0.001 (0) +[14C](-4) 1.844e-32 + [14C]H4 1.844e-32 1.847e-32 -31.734 -31.733 0.001 (0) [14C](4) 2.669e-15 H[14C]O3- 2.156e-15 1.972e-15 -14.666 -14.705 -0.039 (0) [14C]O2 4.486e-16 4.494e-16 -15.348 -15.347 0.001 (0) CaH[14C]O3+ 4.553e-17 4.176e-17 -16.342 -16.379 -0.037 (0) - H[14C]O2[18O]- 4.302e-18 3.935e-18 -17.366 -17.405 -0.039 (0) - H[14C]O[18O]O- 4.302e-18 3.935e-18 -17.366 -17.405 -0.039 (0) H[14C][18O]O2- 4.302e-18 3.935e-18 -17.366 -17.405 -0.039 (0) + H[14C]O[18O]O- 4.302e-18 3.935e-18 -17.366 -17.405 -0.039 (0) + H[14C]O2[18O]- 4.302e-18 3.935e-18 -17.366 -17.405 -0.039 (0) Ca[14C]O3 2.496e-18 2.500e-18 -17.603 -17.602 0.001 (0) [14C]O[18O] 1.866e-18 1.869e-18 -17.729 -17.728 0.001 (0) [14C]O3-2 1.280e-18 8.969e-19 -17.893 -18.047 -0.155 (0) CaH[14C]O2[18O]+ 9.084e-20 8.333e-20 -19.042 -19.079 -0.037 (0) - CaH[14C]O[18O]O+ 9.084e-20 8.333e-20 -19.042 -19.079 -0.037 (0) CaH[14C][18O]O2+ 9.084e-20 8.333e-20 -19.042 -19.079 -0.037 (0) + CaH[14C]O[18O]O+ 9.084e-20 8.333e-20 -19.042 -19.079 -0.037 (0) Ca[14C]O2[18O] 1.494e-20 1.496e-20 -19.826 -19.825 0.001 (0) + H[14C][18O]O[18O]- 8.583e-21 7.852e-21 -20.066 -20.105 -0.039 (0) H[14C]O[18O]2- 8.583e-21 7.852e-21 -20.066 -20.105 -0.039 (0) H[14C][18O]2O- 8.583e-21 7.852e-21 -20.066 -20.105 -0.039 (0) - H[14C][18O]O[18O]- 8.583e-21 7.852e-21 -20.066 -20.105 -0.039 (0) [14C]O2[18O]-2 7.664e-21 5.369e-21 -20.116 -20.270 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.447 -68.447 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.448 -71.448 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.092 -68.092 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.093 -71.093 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.78 -20.64 -2.86 [13C]H4 + [13C]H4(g) -18.49 -21.35 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.24 -20.75 -1.50 [14C][18O]2 - [14C]H4(g) -28.16 -31.02 -2.86 [14C]H4 + [14C]H4(g) -28.87 -31.73 -2.86 [14C]H4 [14C]O2(g) -13.88 -15.35 -1.47 [14C]O2 [14C]O[18O](g) -16.26 -18.05 -1.79 [14C]O[18O] - [18O]2(g) -69.16 -71.45 -2.29 [18O]2 + [18O]2(g) -68.80 -71.09 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -2962,14 +2964,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.82 -18.68 -2.86 CH4 + CH4(g) -16.53 -19.39 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.02 -13.17 -3.15 H2 + H2(g) -10.19 -13.34 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.16 -66.05 -2.89 O2 - O[18O](g) -65.86 -68.75 -2.89 O[18O] + O2(g) -62.80 -65.69 -2.89 O2 + O[18O](g) -65.50 -68.39 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3078,14 +3080,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7083e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7113e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.5099e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.3434e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.3101e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 4.885e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -3103,16 +3105,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.882 Adjusted to redox equilibrium + pe = -1.781 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.828e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 56 + Iterations = 86 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -3124,25 +3126,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.521e-20 - CH4 3.521e-20 3.527e-20 -19.453 -19.453 0.001 (0) +C(-4) 5.433e-21 + CH4 5.433e-21 5.442e-21 -20.265 -20.264 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -3150,50 +3152,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.051e-08 6.061e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 8.698e-14 - H2 4.349e-14 4.356e-14 -13.362 -13.361 0.001 (0) +H(0) 5.451e-14 + H2 2.726e-14 2.730e-14 -13.565 -13.564 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.661 -65.660 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.060 -68.059 0.001 (0) -[13C](-4) 3.874e-22 - [13C]H4 3.874e-22 3.881e-22 -21.412 -21.411 0.001 (0) + O2 0.000e+00 0.000e+00 -65.255 -65.254 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.654 -67.653 0.001 (0) +[13C](-4) 5.977e-23 + [13C]H4 5.977e-23 5.987e-23 -22.224 -22.223 0.001 (0) [13C](4) 6.471e-05 H[13C]O3- 5.220e-05 4.776e-05 -4.282 -4.321 -0.039 (0) [13C]O2 1.096e-05 1.097e-05 -4.960 -4.960 0.001 (0) CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) - H[13C]O2[18O]- 1.041e-07 9.528e-08 -6.982 -7.021 -0.039 (0) - H[13C]O[18O]O- 1.041e-07 9.528e-08 -6.982 -7.021 -0.039 (0) H[13C][18O]O2- 1.041e-07 9.528e-08 -6.982 -7.021 -0.039 (0) + H[13C]O[18O]O- 1.041e-07 9.528e-08 -6.982 -7.021 -0.039 (0) + H[13C]O2[18O]- 1.041e-07 9.528e-08 -6.982 -7.021 -0.039 (0) Ca[13C]O3 6.051e-08 6.061e-08 -7.218 -7.217 0.001 (0) [13C]O[18O] 4.556e-08 4.563e-08 -7.341 -7.341 0.001 (0) [13C]O3-2 3.104e-08 2.175e-08 -7.508 -7.663 -0.155 (0) + CaH[13C][18O]O2+ 2.199e-09 2.017e-09 -8.658 -8.695 -0.037 (0) CaH[13C]O2[18O]+ 2.199e-09 2.017e-09 -8.658 -8.695 -0.037 (0) CaH[13C]O[18O]O+ 2.199e-09 2.017e-09 -8.658 -8.695 -0.037 (0) - CaH[13C][18O]O2+ 2.199e-09 2.017e-09 -8.658 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.622e-10 3.628e-10 -9.441 -9.440 0.001 (0) - H[13C]O[18O]2- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) H[13C][18O]O[18O]- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]2O- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) + H[13C]O[18O]2- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.858e-10 1.302e-10 -9.731 -9.886 -0.155 (0) -[14C](-4) 1.461e-32 - [14C]H4 1.461e-32 1.464e-32 -31.835 -31.835 0.001 (0) +[14C](-4) 2.255e-33 + [14C]H4 2.255e-33 2.258e-33 -32.647 -32.646 0.001 (0) [14C](4) 2.459e-15 H[14C]O3- 1.986e-15 1.817e-15 -14.702 -14.741 -0.039 (0) [14C]O2 4.133e-16 4.140e-16 -15.384 -15.383 0.001 (0) CaH[14C]O3+ 4.194e-17 3.847e-17 -16.377 -16.415 -0.037 (0) - H[14C]O2[18O]- 3.963e-18 3.625e-18 -17.402 -17.441 -0.039 (0) - H[14C]O[18O]O- 3.963e-18 3.625e-18 -17.402 -17.441 -0.039 (0) H[14C][18O]O2- 3.963e-18 3.625e-18 -17.402 -17.441 -0.039 (0) + H[14C]O[18O]O- 3.963e-18 3.625e-18 -17.402 -17.441 -0.039 (0) + H[14C]O2[18O]- 3.963e-18 3.625e-18 -17.402 -17.441 -0.039 (0) Ca[14C]O3 2.299e-18 2.303e-18 -17.638 -17.638 0.001 (0) [14C]O[18O] 1.719e-18 1.721e-18 -17.765 -17.764 0.001 (0) [14C]O3-2 1.179e-18 8.263e-19 -17.928 -18.083 -0.155 (0) CaH[14C]O2[18O]+ 8.368e-20 7.676e-20 -19.077 -19.115 -0.037 (0) - CaH[14C]O[18O]O+ 8.368e-20 7.676e-20 -19.077 -19.115 -0.037 (0) CaH[14C][18O]O2+ 8.368e-20 7.676e-20 -19.077 -19.115 -0.037 (0) + CaH[14C]O[18O]O+ 8.368e-20 7.676e-20 -19.077 -19.115 -0.037 (0) Ca[14C]O2[18O] 1.376e-20 1.379e-20 -19.861 -19.861 0.001 (0) H[14C]O[18O]2- 7.907e-21 7.233e-21 -20.102 -20.141 -0.039 (0) H[14C][18O]2O- 7.907e-21 7.233e-21 -20.102 -20.141 -0.039 (0) @@ -3202,29 +3204,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.060 -68.059 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.061 -71.060 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.654 -67.653 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.655 -70.654 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.55 -21.41 -2.86 [13C]H4 + [13C]H4(g) -19.36 -22.22 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.28 -20.78 -1.50 [14C][18O]2 - [14C]H4(g) -28.97 -31.83 -2.86 [14C]H4 + [14C]H4(g) -29.79 -32.65 -2.86 [14C]H4 [14C]O2(g) -13.91 -15.38 -1.47 [14C]O2 [14C]O[18O](g) -16.30 -18.08 -1.79 [14C]O[18O] - [18O]2(g) -68.77 -71.06 -2.29 [18O]2 + [18O]2(g) -68.36 -70.65 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -3238,14 +3240,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.59 -19.45 -2.86 CH4 + CH4(g) -17.40 -20.26 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.21 -13.36 -3.15 H2 + H2(g) -10.41 -13.56 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.77 -65.66 -2.89 O2 - O[18O](g) -65.47 -68.36 -2.89 O[18O] + O2(g) -62.36 -65.25 -2.89 O2 + O[18O](g) -65.06 -67.95 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3269,6 +3271,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 18. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -3354,14 +3362,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 0 0 +Alpha 18O HCO3-/H2O(l) 1 -4.4409e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5409e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6107e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 9.992e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.2212e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.2212e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.843e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -3379,16 +3387,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.901 Adjusted to redox equilibrium + pe = -1.754 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.828e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 77 + Iterations = 99 (200 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -3400,14 +3408,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 5.008e-20 - CH4 5.008e-20 5.016e-20 -19.300 -19.300 0.001 (0) +C(-4) 3.311e-21 + CH4 3.311e-21 3.316e-21 -20.480 -20.479 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -3416,9 +3424,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -3426,23 +3434,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.103e-06 1.012e-06 -5.957 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.055e-08 6.065e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 9.499e-14 - H2 4.749e-14 4.757e-14 -13.323 -13.323 0.001 (0) +H(0) 4.817e-14 + H2 2.408e-14 2.412e-14 -13.618 -13.618 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.737 -65.736 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.136 -68.135 0.001 (0) -[13C](-4) 5.513e-22 - [13C]H4 5.513e-22 5.522e-22 -21.259 -21.258 0.001 (0) + O2 0.000e+00 0.000e+00 -65.147 -65.147 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.546 -67.546 0.001 (0) +[13C](-4) 3.644e-23 + [13C]H4 3.644e-23 3.650e-23 -22.438 -22.438 0.001 (0) [13C](4) 6.475e-05 H[13C]O3- 5.223e-05 4.778e-05 -4.282 -4.321 -0.039 (0) [13C]O2 1.096e-05 1.098e-05 -4.960 -4.959 0.001 (0) CaH[13C]O3+ 1.103e-06 1.012e-06 -5.957 -5.995 -0.037 (0) - H[13C]O2[18O]- 1.042e-07 9.534e-08 -6.982 -7.021 -0.039 (0) H[13C]O[18O]O- 1.042e-07 9.534e-08 -6.982 -7.021 -0.039 (0) + H[13C]O2[18O]- 1.042e-07 9.534e-08 -6.982 -7.021 -0.039 (0) H[13C][18O]O2- 1.042e-07 9.534e-08 -6.982 -7.021 -0.039 (0) Ca[13C]O3 6.055e-08 6.065e-08 -7.218 -7.217 0.001 (0) [13C]O[18O] 4.559e-08 4.566e-08 -7.341 -7.340 0.001 (0) @@ -3451,56 +3459,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.201e-09 2.019e-09 -8.657 -8.695 -0.037 (0) CaH[13C][18O]O2+ 2.201e-09 2.019e-09 -8.657 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.624e-10 3.630e-10 -9.441 -9.440 0.001 (0) - H[13C]O[18O]2- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) H[13C][18O]O[18O]- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]2O- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) + H[13C]O[18O]2- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.859e-10 1.302e-10 -9.731 -9.885 -0.155 (0) -[14C](-4) 1.915e-32 - [14C]H4 1.915e-32 1.918e-32 -31.718 -31.717 0.001 (0) +[14C](-4) 1.266e-33 + [14C]H4 1.266e-33 1.268e-33 -32.898 -32.897 0.001 (0) [14C](4) 2.265e-15 H[14C]O3- 1.830e-15 1.674e-15 -14.738 -14.776 -0.039 (0) [14C]O2 3.807e-16 3.814e-16 -15.419 -15.419 0.001 (0) CaH[14C]O3+ 3.864e-17 3.544e-17 -16.413 -16.450 -0.037 (0) - H[14C]O2[18O]- 3.651e-18 3.340e-18 -17.438 -17.476 -0.039 (0) - H[14C]O[18O]O- 3.651e-18 3.340e-18 -17.438 -17.476 -0.039 (0) H[14C][18O]O2- 3.651e-18 3.340e-18 -17.438 -17.476 -0.039 (0) + H[14C]O[18O]O- 3.651e-18 3.340e-18 -17.438 -17.476 -0.039 (0) + H[14C]O2[18O]- 3.651e-18 3.340e-18 -17.438 -17.476 -0.039 (0) Ca[14C]O3 2.118e-18 2.122e-18 -17.674 -17.673 0.001 (0) [14C]O[18O] 1.583e-18 1.586e-18 -17.800 -17.800 0.001 (0) [14C]O3-2 1.087e-18 7.612e-19 -17.964 -18.118 -0.155 (0) CaH[14C]O2[18O]+ 7.709e-20 7.072e-20 -19.113 -19.150 -0.037 (0) - CaH[14C]O[18O]O+ 7.709e-20 7.072e-20 -19.113 -19.150 -0.037 (0) CaH[14C][18O]O2+ 7.709e-20 7.072e-20 -19.113 -19.150 -0.037 (0) + CaH[14C]O[18O]O+ 7.709e-20 7.072e-20 -19.113 -19.150 -0.037 (0) Ca[14C]O2[18O] 1.268e-20 1.270e-20 -19.897 -19.896 0.001 (0) - H[14C]O[18O]2- 7.284e-21 6.664e-21 -20.138 -20.176 -0.039 (0) H[14C][18O]2O- 7.284e-21 6.664e-21 -20.138 -20.176 -0.039 (0) H[14C][18O]O[18O]- 7.284e-21 6.664e-21 -20.138 -20.176 -0.039 (0) + H[14C]O[18O]2- 7.284e-21 6.664e-21 -20.138 -20.176 -0.039 (0) [14C]O2[18O]-2 6.504e-21 4.556e-21 -20.187 -20.341 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.136 -68.135 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.137 -71.137 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.546 -67.546 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.547 -70.547 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.40 -21.26 -2.86 [13C]H4 + [13C]H4(g) -19.58 -22.44 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.32 -20.82 -1.50 [14C][18O]2 - [14C]H4(g) -28.86 -31.72 -2.86 [14C]H4 + [14C]H4(g) -30.04 -32.90 -2.86 [14C]H4 [14C]O2(g) -13.95 -15.42 -1.47 [14C]O2 [14C]O[18O](g) -16.33 -18.12 -1.79 [14C]O[18O] - [18O]2(g) -68.85 -71.14 -2.29 [18O]2 + [18O]2(g) -68.26 -70.55 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -3514,14 +3522,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.44 -19.30 -2.86 CH4 + CH4(g) -17.62 -20.48 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.17 -13.32 -3.15 H2 + H2(g) -10.47 -13.62 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.84 -65.74 -2.89 O2 - O[18O](g) -65.54 -68.44 -2.89 O[18O] + O2(g) -62.25 -65.15 -2.89 O2 + O[18O](g) -64.95 -67.85 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3545,6 +3553,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 19. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -3630,14 +3644,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6324e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7043e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 3.1086e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 7.3275e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.1102e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 4.6629e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -3655,16 +3669,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.911 Adjusted to redox equilibrium + pe = -1.824 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.828e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 97 + Iterations = 98 (199 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -3676,25 +3690,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 6.028e-20 - CH4 6.028e-20 6.038e-20 -19.220 -19.219 0.001 (0) +C(-4) 1.204e-20 + CH4 1.204e-20 1.206e-20 -19.919 -19.919 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -3702,81 +3716,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.104e-06 1.012e-06 -5.957 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.058e-08 6.068e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 9.950e-14 - H2 4.975e-14 4.983e-14 -13.303 -13.303 0.001 (0) +H(0) 6.651e-14 + H2 3.326e-14 3.331e-14 -13.478 -13.477 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.777 -65.777 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.176 -68.176 0.001 (0) -[13C](-4) 6.640e-22 - [13C]H4 6.640e-22 6.651e-22 -21.178 -21.177 0.001 (0) + O2 0.000e+00 0.000e+00 -65.428 -65.427 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.827 -67.826 0.001 (0) +[13C](-4) 1.326e-22 + [13C]H4 1.326e-22 1.328e-22 -21.878 -21.877 0.001 (0) [13C](4) 6.479e-05 H[13C]O3- 5.226e-05 4.781e-05 -4.282 -4.320 -0.039 (0) [13C]O2 1.097e-05 1.099e-05 -4.960 -4.959 0.001 (0) CaH[13C]O3+ 1.104e-06 1.012e-06 -5.957 -5.995 -0.037 (0) H[13C]O2[18O]- 1.043e-07 9.539e-08 -6.982 -7.021 -0.039 (0) - H[13C]O[18O]O- 1.043e-07 9.539e-08 -6.982 -7.021 -0.039 (0) H[13C][18O]O2- 1.043e-07 9.539e-08 -6.982 -7.021 -0.039 (0) + H[13C]O[18O]O- 1.043e-07 9.539e-08 -6.982 -7.021 -0.039 (0) Ca[13C]O3 6.058e-08 6.068e-08 -7.218 -7.217 0.001 (0) [13C]O[18O] 4.561e-08 4.568e-08 -7.341 -7.340 0.001 (0) [13C]O3-2 3.108e-08 2.177e-08 -7.508 -7.662 -0.155 (0) - CaH[13C]O2[18O]+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) CaH[13C]O[18O]O+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) CaH[13C][18O]O2+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) + CaH[13C]O2[18O]+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.626e-10 3.632e-10 -9.441 -9.440 0.001 (0) - H[13C]O[18O]2- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) H[13C][18O]O[18O]- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]2O- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) + H[13C]O[18O]2- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.860e-10 1.303e-10 -9.730 -9.885 -0.155 (0) -[14C](-4) 2.123e-32 - [14C]H4 2.123e-32 2.127e-32 -31.673 -31.672 0.001 (0) +[14C](-4) 4.239e-33 + [14C]H4 4.239e-33 4.246e-33 -32.373 -32.372 0.001 (0) [14C](4) 2.087e-15 H[14C]O3- 1.686e-15 1.542e-15 -14.773 -14.812 -0.039 (0) [14C]O2 3.507e-16 3.513e-16 -15.455 -15.454 0.001 (0) CaH[14C]O3+ 3.559e-17 3.265e-17 -16.449 -16.486 -0.037 (0) - H[14C]O2[18O]- 3.363e-18 3.077e-18 -17.473 -17.512 -0.039 (0) - H[14C]O[18O]O- 3.363e-18 3.077e-18 -17.473 -17.512 -0.039 (0) H[14C][18O]O2- 3.363e-18 3.077e-18 -17.473 -17.512 -0.039 (0) + H[14C]O[18O]O- 3.363e-18 3.077e-18 -17.473 -17.512 -0.039 (0) + H[14C]O2[18O]- 3.363e-18 3.077e-18 -17.473 -17.512 -0.039 (0) Ca[14C]O3 1.951e-18 1.955e-18 -17.710 -17.709 0.001 (0) [14C]O[18O] 1.458e-18 1.461e-18 -17.836 -17.835 0.001 (0) [14C]O3-2 1.001e-18 7.012e-19 -18.000 -18.154 -0.155 (0) CaH[14C]O2[18O]+ 7.102e-20 6.515e-20 -19.149 -19.186 -0.037 (0) - CaH[14C]O[18O]O+ 7.102e-20 6.515e-20 -19.149 -19.186 -0.037 (0) CaH[14C][18O]O2+ 7.102e-20 6.515e-20 -19.149 -19.186 -0.037 (0) + CaH[14C]O[18O]O+ 7.102e-20 6.515e-20 -19.149 -19.186 -0.037 (0) Ca[14C]O2[18O] 1.168e-20 1.170e-20 -19.933 -19.932 0.001 (0) + H[14C][18O]O[18O]- 6.710e-21 6.139e-21 -20.173 -20.212 -0.039 (0) H[14C]O[18O]2- 6.710e-21 6.139e-21 -20.173 -20.212 -0.039 (0) H[14C][18O]2O- 6.710e-21 6.139e-21 -20.173 -20.212 -0.039 (0) - H[14C][18O]O[18O]- 6.710e-21 6.139e-21 -20.173 -20.212 -0.039 (0) [14C]O2[18O]-2 5.991e-21 4.197e-21 -20.222 -20.377 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.176 -68.176 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.177 -71.177 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.827 -67.826 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.828 -70.827 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.32 -21.18 -2.86 [13C]H4 + [13C]H4(g) -19.02 -21.88 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.35 -20.85 -1.50 [14C][18O]2 - [14C]H4(g) -28.81 -31.67 -2.86 [14C]H4 + [14C]H4(g) -29.51 -32.37 -2.86 [14C]H4 [14C]O2(g) -13.99 -15.45 -1.47 [14C]O2 [14C]O[18O](g) -16.37 -18.15 -1.79 [14C]O[18O] - [18O]2(g) -68.89 -71.18 -2.29 [18O]2 + [18O]2(g) -68.54 -70.83 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -3790,14 +3804,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.36 -19.22 -2.86 CH4 + CH4(g) -17.06 -19.92 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.15 -13.30 -3.15 H2 + H2(g) -10.33 -13.48 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.88 -65.78 -2.89 O2 - O[18O](g) -65.58 -68.48 -2.89 O[18O] + O2(g) -62.53 -65.43 -2.89 O2 + O[18O](g) -65.23 -68.13 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3912,14 +3926,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.9944e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.5503e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7133e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.65e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.9984e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.8541e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -3.1086e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 6.8834e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -3937,16 +3951,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.943 Adjusted to redox equilibrium + pe = -1.903 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.828e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 93 (194 overall) + Iterations = 104 (205 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -3958,15 +3972,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.074e-19 - CH4 1.074e-19 1.076e-19 -18.969 -18.968 0.001 (0) +C(-4) 5.185e-20 + CH4 5.185e-20 5.194e-20 -19.285 -19.285 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -3974,9 +3988,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -3984,50 +3998,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.104e-06 1.013e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.061e-08 6.071e-08 -7.217 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.149e-13 - H2 5.747e-14 5.757e-14 -13.241 -13.240 0.001 (0) +H(0) 9.582e-14 + H2 4.791e-14 4.799e-14 -13.320 -13.319 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.903 -65.902 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.302 -68.301 0.001 (0) -[13C](-4) 1.183e-21 - [13C]H4 1.183e-21 1.185e-21 -20.927 -20.926 0.001 (0) + O2 0.000e+00 0.000e+00 -65.745 -65.744 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.144 -68.143 0.001 (0) +[13C](-4) 5.714e-22 + [13C]H4 5.714e-22 5.723e-22 -21.243 -21.242 0.001 (0) [13C](4) 6.482e-05 H[13C]O3- 5.228e-05 4.783e-05 -4.282 -4.320 -0.039 (0) [13C]O2 1.097e-05 1.099e-05 -4.960 -4.959 0.001 (0) CaH[13C]O3+ 1.104e-06 1.013e-06 -5.957 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.043e-07 9.544e-08 -6.982 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.043e-07 9.544e-08 -6.982 -7.020 -0.039 (0) H[13C][18O]O2- 1.043e-07 9.544e-08 -6.982 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.043e-07 9.544e-08 -6.982 -7.020 -0.039 (0) + H[13C]O2[18O]- 1.043e-07 9.544e-08 -6.982 -7.020 -0.039 (0) Ca[13C]O3 6.061e-08 6.071e-08 -7.217 -7.217 0.001 (0) [13C]O[18O] 4.563e-08 4.571e-08 -7.341 -7.340 0.001 (0) [13C]O3-2 3.109e-08 2.178e-08 -7.507 -7.662 -0.155 (0) + CaH[13C][18O]O2+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) CaH[13C]O2[18O]+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.628e-10 3.634e-10 -9.440 -9.440 0.001 (0) - H[13C]O[18O]2- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) - H[13C][18O]2O- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) + H[13C][18O]2O- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) [13C]O2[18O]-2 1.861e-10 1.304e-10 -9.730 -9.885 -0.155 (0) -[14C](-4) 3.485e-32 - [14C]H4 3.485e-32 3.490e-32 -31.458 -31.457 0.001 (0) +[14C](-4) 1.682e-32 + [14C]H4 1.682e-32 1.685e-32 -31.774 -31.773 0.001 (0) [14C](4) 1.922e-15 H[14C]O3- 1.553e-15 1.421e-15 -14.809 -14.848 -0.039 (0) [14C]O2 3.231e-16 3.236e-16 -15.491 -15.490 0.001 (0) CaH[14C]O3+ 3.279e-17 3.008e-17 -16.484 -16.522 -0.037 (0) - H[14C]O2[18O]- 3.098e-18 2.834e-18 -17.509 -17.548 -0.039 (0) - H[14C]O[18O]O- 3.098e-18 2.834e-18 -17.509 -17.548 -0.039 (0) H[14C][18O]O2- 3.098e-18 2.834e-18 -17.509 -17.548 -0.039 (0) + H[14C]O[18O]O- 3.098e-18 2.834e-18 -17.509 -17.548 -0.039 (0) + H[14C]O2[18O]- 3.098e-18 2.834e-18 -17.509 -17.548 -0.039 (0) Ca[14C]O3 1.798e-18 1.801e-18 -17.745 -17.745 0.001 (0) [14C]O[18O] 1.344e-18 1.346e-18 -17.872 -17.871 0.001 (0) [14C]O3-2 9.221e-19 6.460e-19 -18.035 -18.190 -0.155 (0) CaH[14C]O2[18O]+ 6.542e-20 6.002e-20 -19.184 -19.222 -0.037 (0) - CaH[14C]O[18O]O+ 6.542e-20 6.002e-20 -19.184 -19.222 -0.037 (0) CaH[14C][18O]O2+ 6.542e-20 6.002e-20 -19.184 -19.222 -0.037 (0) + CaH[14C]O[18O]O+ 6.542e-20 6.002e-20 -19.184 -19.222 -0.037 (0) Ca[14C]O2[18O] 1.076e-20 1.078e-20 -19.968 -19.967 0.001 (0) H[14C]O[18O]2- 6.181e-21 5.655e-21 -20.209 -20.248 -0.039 (0) H[14C][18O]2O- 6.181e-21 5.655e-21 -20.209 -20.248 -0.039 (0) @@ -4036,29 +4050,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.302 -68.301 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.303 -71.302 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.144 -68.143 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.145 -71.144 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.07 -20.93 -2.86 [13C]H4 + [13C]H4(g) -18.38 -21.24 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.39 -20.89 -1.50 [14C][18O]2 - [14C]H4(g) -28.60 -31.46 -2.86 [14C]H4 + [14C]H4(g) -28.91 -31.77 -2.86 [14C]H4 [14C]O2(g) -14.02 -15.49 -1.47 [14C]O2 [14C]O[18O](g) -16.40 -18.19 -1.79 [14C]O[18O] - [18O]2(g) -69.01 -71.30 -2.29 [18O]2 + [18O]2(g) -68.85 -71.14 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -4072,14 +4086,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.11 -18.97 -2.86 CH4 + CH4(g) -16.42 -19.28 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.09 -13.24 -3.15 H2 + H2(g) -10.17 -13.32 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.01 -65.90 -2.89 O2 - O[18O](g) -65.71 -68.60 -2.89 O[18O] + O2(g) -62.85 -65.74 -2.89 O2 + O[18O](g) -65.55 -68.44 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4103,6 +4117,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 21. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -4188,14 +4208,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6426e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.567e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.8874e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -6.1062e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 7.7716e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.9984e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -4213,16 +4233,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.923 Adjusted to redox equilibrium + pe = -1.728 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.844e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 44 + Iterations = 132 (233 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -4234,25 +4254,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 7.443e-20 - CH4 7.443e-20 7.455e-20 -19.128 -19.128 0.001 (0) +C(-4) 2.058e-21 + CH4 2.058e-21 2.062e-21 -20.687 -20.686 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -4260,23 +4280,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.105e-06 1.013e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.064e-08 6.074e-08 -7.217 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.049e-13 - H2 5.244e-14 5.253e-14 -13.280 -13.280 0.001 (0) +H(0) 4.277e-14 + H2 2.138e-14 2.142e-14 -13.670 -13.669 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.823 -65.823 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.222 -68.222 0.001 (0) -[13C](-4) 8.206e-22 - [13C]H4 8.206e-22 8.219e-22 -21.086 -21.085 0.001 (0) + O2 0.000e+00 0.000e+00 -65.044 -65.043 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.443 -67.442 0.001 (0) +[13C](-4) 2.269e-23 + [13C]H4 2.269e-23 2.273e-23 -22.644 -22.643 0.001 (0) [13C](4) 6.485e-05 H[13C]O3- 5.231e-05 4.786e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.098e-05 1.100e-05 -4.959 -4.959 0.001 (0) CaH[13C]O3+ 1.105e-06 1.013e-06 -5.957 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.044e-07 9.548e-08 -6.981 -7.020 -0.039 (0) H[13C]O[18O]O- 1.044e-07 9.548e-08 -6.981 -7.020 -0.039 (0) + H[13C]O2[18O]- 1.044e-07 9.548e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.044e-07 9.548e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.064e-08 6.074e-08 -7.217 -7.217 0.001 (0) [13C]O[18O] 4.565e-08 4.573e-08 -7.341 -7.340 0.001 (0) @@ -4285,56 +4305,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.204e-09 2.022e-09 -8.657 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.204e-09 2.022e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.630e-10 3.636e-10 -9.440 -9.439 0.001 (0) - H[13C]O[18O]2- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.862e-10 1.304e-10 -9.730 -9.885 -0.155 (0) -[14C](-4) 2.225e-32 - [14C]H4 2.225e-32 2.228e-32 -31.653 -31.652 0.001 (0) +[14C](-4) 6.152e-34 + [14C]H4 6.152e-34 6.162e-34 -33.211 -33.210 0.001 (0) [14C](4) 1.771e-15 H[14C]O3- 1.431e-15 1.309e-15 -14.845 -14.883 -0.039 (0) [14C]O2 2.977e-16 2.981e-16 -15.526 -15.526 0.001 (0) CaH[14C]O3+ 3.021e-17 2.771e-17 -16.520 -16.557 -0.037 (0) - H[14C]O2[18O]- 2.854e-18 2.611e-18 -17.545 -17.583 -0.039 (0) - H[14C]O[18O]O- 2.854e-18 2.611e-18 -17.545 -17.583 -0.039 (0) H[14C][18O]O2- 2.854e-18 2.611e-18 -17.545 -17.583 -0.039 (0) + H[14C]O[18O]O- 2.854e-18 2.611e-18 -17.545 -17.583 -0.039 (0) + H[14C]O2[18O]- 2.854e-18 2.611e-18 -17.545 -17.583 -0.039 (0) Ca[14C]O3 1.656e-18 1.659e-18 -17.781 -17.780 0.001 (0) [14C]O[18O] 1.238e-18 1.240e-18 -17.907 -17.907 0.001 (0) [14C]O3-2 8.495e-19 5.951e-19 -18.071 -18.225 -0.155 (0) CaH[14C]O2[18O]+ 6.027e-20 5.529e-20 -19.220 -19.257 -0.037 (0) - CaH[14C]O[18O]O+ 6.027e-20 5.529e-20 -19.220 -19.257 -0.037 (0) CaH[14C][18O]O2+ 6.027e-20 5.529e-20 -19.220 -19.257 -0.037 (0) + CaH[14C]O[18O]O+ 6.027e-20 5.529e-20 -19.220 -19.257 -0.037 (0) Ca[14C]O2[18O] 9.912e-21 9.928e-21 -20.004 -20.003 0.001 (0) - H[14C]O[18O]2- 5.695e-21 5.210e-21 -20.245 -20.283 -0.039 (0) H[14C][18O]2O- 5.695e-21 5.210e-21 -20.245 -20.283 -0.039 (0) H[14C][18O]O[18O]- 5.695e-21 5.210e-21 -20.245 -20.283 -0.039 (0) + H[14C]O[18O]2- 5.695e-21 5.210e-21 -20.245 -20.283 -0.039 (0) [14C]O2[18O]-2 5.085e-21 3.562e-21 -20.294 -20.448 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.222 -68.222 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.223 -71.223 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.443 -67.442 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.444 -70.443 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.23 -21.09 -2.86 [13C]H4 + [13C]H4(g) -19.78 -22.64 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.42 -20.93 -1.50 [14C][18O]2 - [14C]H4(g) -28.79 -31.65 -2.86 [14C]H4 + [14C]H4(g) -30.35 -33.21 -2.86 [14C]H4 [14C]O2(g) -14.06 -15.53 -1.47 [14C]O2 [14C]O[18O](g) -16.44 -18.23 -1.79 [14C]O[18O] - [18O]2(g) -68.93 -71.22 -2.29 [18O]2 + [18O]2(g) -68.15 -70.44 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -4348,14 +4368,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.27 -19.13 -2.86 CH4 + CH4(g) -17.83 -20.69 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.13 -13.28 -3.15 H2 + H2(g) -10.52 -13.67 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.93 -65.82 -2.89 O2 - O[18O](g) -65.63 -68.52 -2.89 O[18O] + O2(g) -62.15 -65.04 -2.89 O2 + O[18O](g) -64.85 -67.74 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4446,6 +4466,7 @@ Calcite 5.00e-04 R(18O) H2O(l) 1.99518e-03 -4.9955 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.012 permil + R(18O) O2(aq) 1.99518e-03 -4.9955 permil R(13C) CO2(aq) 1.10294e-02 -13.486 permil R(14C) CO2(aq) 2.75358e-13 23.417 pmc R(18O) CO2(aq) 2.07915e-03 36.878 permil @@ -4455,8 +4476,6 @@ Calcite 5.00e-04 R(18O) CO3-2 1.99518e-03 -4.9955 permil R(13C) CO3-2 1.11094e-02 -6.3315 permil R(14C) CO3-2 2.79366e-13 23.758 pmc - R(13C) CH4(aq) 1.10294e-02 -13.486 permil - R(14C) CH4(aq) 2.75358e-13 23.417 pmc R(18O) Calcite 2.05262e-03 23.651 permil R(13C) Calcite 1.11474e-02 -2.9325 permil R(14C) Calcite 2.81281e-13 23.921 pmc @@ -4469,15 +4488,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 +Alpha 18O O2(aq)/H2O(l) 1 -2.2684e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6652e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8585e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -3.3307e-13 0 -Alpha 14C CH4(aq)/CO2(aq) 1 4.2188e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -4495,16 +4513,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.837 Adjusted to redox equilibrium + pe = 10.737 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.844e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 90 (191 overall) + Iterations = 134 (235 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -4516,15 +4534,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.531e-20 - CH4 1.531e-20 1.533e-20 -19.815 -19.814 0.001 (0) +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -120.404 -120.403 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -4532,9 +4550,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -4542,81 +4560,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.067e-08 6.077e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.063e-14 - H2 3.531e-14 3.537e-14 -13.452 -13.451 0.001 (0) -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.480 -65.479 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.879 -67.878 0.001 (0) -[13C](-4) 1.688e-22 - [13C]H4 1.688e-22 1.691e-22 -21.773 -21.772 0.001 (0) +H(0) 5.032e-39 + H2 2.516e-39 2.520e-39 -38.599 -38.599 0.001 (0) +O(0) 1.311e-15 + O2 6.527e-16 6.537e-16 -15.185 -15.185 0.001 (0) + O[18O] 2.604e-18 2.609e-18 -17.584 -17.584 0.001 (0) +[13C](-4) 0.000e+00 + [13C]H4 0.000e+00 0.000e+00 -122.362 -122.361 0.001 (0) [13C](4) 6.488e-05 H[13C]O3- 5.233e-05 4.788e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.098e-05 1.100e-05 -4.959 -4.959 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.957 -5.994 -0.037 (0) H[13C]O2[18O]- 1.044e-07 9.552e-08 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.044e-07 9.552e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.044e-07 9.552e-08 -6.981 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.044e-07 9.552e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.067e-08 6.077e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.567e-08 4.575e-08 -7.340 -7.340 0.001 (0) [13C]O3-2 3.112e-08 2.180e-08 -7.507 -7.662 -0.155 (0) - CaH[13C]O2[18O]+ 2.205e-09 2.022e-09 -8.657 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.205e-09 2.022e-09 -8.657 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.205e-09 2.022e-09 -8.657 -8.694 -0.037 (0) + CaH[13C]O2[18O]+ 2.205e-09 2.022e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.631e-10 3.637e-10 -9.440 -9.439 0.001 (0) - H[13C]O[18O]2- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.863e-10 1.305e-10 -9.730 -9.884 -0.155 (0) -[14C](-4) 4.215e-33 - [14C]H4 4.215e-33 4.222e-33 -32.375 -32.374 0.001 (0) +[14C](-4) 0.000e+00 + [14C]H4 0.000e+00 0.000e+00 -132.964 -132.963 0.001 (0) [14C](4) 1.631e-15 H[14C]O3- 1.318e-15 1.206e-15 -14.880 -14.919 -0.039 (0) [14C]O2 2.742e-16 2.747e-16 -15.562 -15.561 0.001 (0) CaH[14C]O3+ 2.783e-17 2.553e-17 -16.556 -16.593 -0.037 (0) - H[14C]O2[18O]- 2.629e-18 2.405e-18 -17.580 -17.619 -0.039 (0) - H[14C]O[18O]O- 2.629e-18 2.405e-18 -17.580 -17.619 -0.039 (0) H[14C][18O]O2- 2.629e-18 2.405e-18 -17.580 -17.619 -0.039 (0) + H[14C]O[18O]O- 2.629e-18 2.405e-18 -17.580 -17.619 -0.039 (0) + H[14C]O2[18O]- 2.629e-18 2.405e-18 -17.580 -17.619 -0.039 (0) Ca[14C]O3 1.526e-18 1.528e-18 -17.817 -17.816 0.001 (0) [14C]O[18O] 1.140e-18 1.142e-18 -17.943 -17.942 0.001 (0) [14C]O3-2 7.826e-19 5.482e-19 -18.106 -18.261 -0.155 (0) CaH[14C]O2[18O]+ 5.552e-20 5.093e-20 -19.256 -19.293 -0.037 (0) - CaH[14C]O[18O]O+ 5.552e-20 5.093e-20 -19.256 -19.293 -0.037 (0) CaH[14C][18O]O2+ 5.552e-20 5.093e-20 -19.256 -19.293 -0.037 (0) + CaH[14C]O[18O]O+ 5.552e-20 5.093e-20 -19.256 -19.293 -0.037 (0) Ca[14C]O2[18O] 9.131e-21 9.146e-21 -20.039 -20.039 0.001 (0) + H[14C][18O]O[18O]- 5.246e-21 4.799e-21 -20.280 -20.319 -0.039 (0) H[14C]O[18O]2- 5.246e-21 4.799e-21 -20.280 -20.319 -0.039 (0) H[14C][18O]2O- 5.246e-21 4.799e-21 -20.280 -20.319 -0.039 (0) - H[14C][18O]O[18O]- 5.246e-21 4.799e-21 -20.280 -20.319 -0.039 (0) [14C]O2[18O]-2 4.684e-21 3.282e-21 -20.329 -20.484 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.879 -67.878 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.880 -70.879 0.001 (0) +[18O](0) 2.610e-18 + O[18O] 2.604e-18 2.609e-18 -17.584 -17.584 0.001 (0) + [18O]2 2.598e-21 2.602e-21 -20.585 -20.585 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.91 -21.77 -2.86 [13C]H4 + [13C]H4(g) -119.50 -122.36 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.46 -20.96 -1.50 [14C][18O]2 - [14C]H4(g) -29.51 -32.37 -2.86 [14C]H4 + [14C]H4(g) -130.10 -132.96 -2.86 [14C]H4 [14C]O2(g) -14.09 -15.56 -1.47 [14C]O2 [14C]O[18O](g) -16.47 -18.26 -1.79 [14C]O[18O] - [18O]2(g) -68.59 -70.88 -2.29 [18O]2 + [18O]2(g) -18.29 -20.58 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -4630,14 +4648,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.95 -19.81 -2.86 CH4 + CH4(g) -117.54 -120.40 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.30 -13.45 -3.15 H2 + H2(g) -35.45 -38.60 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.59 -65.48 -2.89 O2 - O[18O](g) -65.29 -68.18 -2.89 O[18O] + O2(g) -12.29 -15.18 -2.89 O2 + O[18O](g) -14.99 -17.88 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4661,6 +4679,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 23. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -4746,14 +4770,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.9936e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6596e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5774e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.1102e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -2.7756e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.1324e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.3767e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -4771,16 +4795,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.891 Adjusted to redox equilibrium + pe = -1.621 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.843e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 94 + Iterations = 92 (193 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -4792,25 +4816,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.135e-20 - CH4 4.135e-20 4.142e-20 -19.384 -19.383 0.001 (0) +C(-4) 2.835e-22 + CH4 2.835e-22 2.840e-22 -21.547 -21.547 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -4818,50 +4842,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.069e-08 6.079e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 9.055e-14 - H2 4.527e-14 4.535e-14 -13.344 -13.343 0.001 (0) +H(0) 2.606e-14 + H2 1.303e-14 1.305e-14 -13.885 -13.884 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.696 -65.695 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.095 -68.094 0.001 (0) -[13C](-4) 4.563e-22 - [13C]H4 4.563e-22 4.570e-22 -21.341 -21.340 0.001 (0) + O2 0.000e+00 0.000e+00 -64.614 -64.613 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.013 -67.012 0.001 (0) +[13C](-4) 3.128e-24 + [13C]H4 3.128e-24 3.133e-24 -23.505 -23.504 0.001 (0) [13C](4) 6.490e-05 H[13C]O3- 5.235e-05 4.789e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.956 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.044e-07 9.556e-08 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.044e-07 9.556e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.044e-07 9.556e-08 -6.981 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.044e-07 9.556e-08 -6.981 -7.020 -0.039 (0) + H[13C]O2[18O]- 1.044e-07 9.556e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.069e-08 6.079e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.569e-08 4.577e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.113e-08 2.181e-08 -7.507 -7.661 -0.155 (0) + CaH[13C][18O]O2+ 2.206e-09 2.023e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O2[18O]+ 2.206e-09 2.023e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.206e-09 2.023e-09 -8.656 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.206e-09 2.023e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.633e-10 3.639e-10 -9.440 -9.439 0.001 (0) - H[13C]O[18O]2- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.863e-10 1.305e-10 -9.730 -9.884 -0.155 (0) -[14C](-4) 1.049e-32 - [14C]H4 1.049e-32 1.051e-32 -31.979 -31.979 0.001 (0) +[14C](-4) 7.191e-35 + [14C]H4 7.191e-35 7.203e-35 -34.143 -34.142 0.001 (0) [14C](4) 1.503e-15 H[14C]O3- 1.214e-15 1.111e-15 -14.916 -14.954 -0.039 (0) [14C]O2 2.526e-16 2.530e-16 -15.598 -15.597 0.001 (0) CaH[14C]O3+ 2.564e-17 2.352e-17 -16.591 -16.629 -0.037 (0) - H[14C]O2[18O]- 2.422e-18 2.216e-18 -17.616 -17.654 -0.039 (0) - H[14C]O[18O]O- 2.422e-18 2.216e-18 -17.616 -17.654 -0.039 (0) H[14C][18O]O2- 2.422e-18 2.216e-18 -17.616 -17.654 -0.039 (0) + H[14C]O[18O]O- 2.422e-18 2.216e-18 -17.616 -17.654 -0.039 (0) + H[14C]O2[18O]- 2.422e-18 2.216e-18 -17.616 -17.654 -0.039 (0) Ca[14C]O3 1.405e-18 1.408e-18 -17.852 -17.851 0.001 (0) [14C]O[18O] 1.050e-18 1.052e-18 -17.979 -17.978 0.001 (0) [14C]O3-2 7.209e-19 5.051e-19 -18.142 -18.297 -0.155 (0) CaH[14C]O2[18O]+ 5.115e-20 4.692e-20 -19.291 -19.329 -0.037 (0) - CaH[14C]O[18O]O+ 5.115e-20 4.692e-20 -19.291 -19.329 -0.037 (0) CaH[14C][18O]O2+ 5.115e-20 4.692e-20 -19.291 -19.329 -0.037 (0) + CaH[14C]O[18O]O+ 5.115e-20 4.692e-20 -19.291 -19.329 -0.037 (0) Ca[14C]O2[18O] 8.412e-21 8.426e-21 -20.075 -20.074 0.001 (0) H[14C]O[18O]2- 4.833e-21 4.421e-21 -20.316 -20.354 -0.039 (0) H[14C][18O]2O- 4.833e-21 4.421e-21 -20.316 -20.354 -0.039 (0) @@ -4870,29 +4894,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.095 -68.094 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.096 -71.095 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.013 -67.012 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.014 -70.013 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.48 -21.34 -2.86 [13C]H4 + [13C]H4(g) -20.64 -23.50 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.49 -21.00 -1.50 [14C][18O]2 - [14C]H4(g) -29.12 -31.98 -2.86 [14C]H4 + [14C]H4(g) -31.28 -34.14 -2.86 [14C]H4 [14C]O2(g) -14.13 -15.60 -1.47 [14C]O2 [14C]O[18O](g) -16.51 -18.30 -1.79 [14C]O[18O] - [18O]2(g) -68.80 -71.09 -2.29 [18O]2 + [18O]2(g) -67.72 -70.01 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -4906,14 +4930,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.52 -19.38 -2.86 CH4 + CH4(g) -18.69 -21.55 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.19 -13.34 -3.15 H2 + H2(g) -10.73 -13.88 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.80 -65.69 -2.89 O2 - O[18O](g) -65.50 -68.39 -2.89 O[18O] + O2(g) -61.72 -64.61 -2.89 O2 + O[18O](g) -64.42 -67.31 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4937,12 +4961,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 24. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -5028,14 +5046,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7513e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.535e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -7.7716e-13 0 -Alpha 14C CH4(aq)/CO2(aq) 1 7.3275e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 0 0 +Alpha 14C CH4(aq)/CO2(aq) 1 2.2204e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -5053,16 +5071,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.767 Adjusted to redox equilibrium + pe = -1.735 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.843e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 98 (199 overall) + Iterations = 77 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -5074,14 +5092,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.221e-21 - CH4 4.221e-21 4.228e-21 -20.375 -20.374 0.001 (0) +C(-4) 2.331e-21 + CH4 2.331e-21 2.334e-21 -20.633 -20.632 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -5090,9 +5108,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -5100,23 +5118,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.014e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.071e-08 6.081e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.118e-14 - H2 2.559e-14 2.563e-14 -13.592 -13.591 0.001 (0) +H(0) 4.412e-14 + H2 2.206e-14 2.210e-14 -13.656 -13.656 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.200 -65.199 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.599 -67.598 0.001 (0) -[13C](-4) 4.659e-23 - [13C]H4 4.659e-23 4.667e-23 -22.332 -22.331 0.001 (0) + O2 0.000e+00 0.000e+00 -65.071 -65.070 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.470 -67.469 0.001 (0) +[13C](-4) 2.572e-23 + [13C]H4 2.572e-23 2.577e-23 -22.590 -22.589 0.001 (0) [13C](4) 6.493e-05 H[13C]O3- 5.237e-05 4.791e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.014e-06 -5.956 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.045e-07 9.559e-08 -6.981 -7.020 -0.039 (0) H[13C]O[18O]O- 1.045e-07 9.559e-08 -6.981 -7.020 -0.039 (0) + H[13C]O2[18O]- 1.045e-07 9.559e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.045e-07 9.559e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.071e-08 6.081e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.571e-08 4.578e-08 -7.340 -7.339 0.001 (0) @@ -5125,56 +5143,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.206e-09 2.024e-09 -8.656 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.206e-09 2.024e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.634e-10 3.640e-10 -9.440 -9.439 0.001 (0) - H[13C]O[18O]2- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.864e-10 1.306e-10 -9.730 -9.884 -0.155 (0) -[14C](-4) 9.864e-34 - [14C]H4 9.864e-34 9.880e-34 -33.006 -33.005 0.001 (0) +[14C](-4) 5.446e-34 + [14C]H4 5.446e-34 5.455e-34 -33.264 -33.263 0.001 (0) [14C](4) 1.385e-15 H[14C]O3- 1.118e-15 1.023e-15 -14.951 -14.990 -0.039 (0) [14C]O2 2.327e-16 2.331e-16 -15.633 -15.632 0.001 (0) CaH[14C]O3+ 2.362e-17 2.166e-17 -16.627 -16.664 -0.037 (0) - H[14C]O2[18O]- 2.231e-18 2.041e-18 -17.651 -17.690 -0.039 (0) - H[14C]O[18O]O- 2.231e-18 2.041e-18 -17.651 -17.690 -0.039 (0) H[14C][18O]O2- 2.231e-18 2.041e-18 -17.651 -17.690 -0.039 (0) + H[14C]O[18O]O- 2.231e-18 2.041e-18 -17.651 -17.690 -0.039 (0) + H[14C]O2[18O]- 2.231e-18 2.041e-18 -17.651 -17.690 -0.039 (0) Ca[14C]O3 1.295e-18 1.297e-18 -17.888 -17.887 0.001 (0) [14C]O[18O] 9.677e-19 9.693e-19 -18.014 -18.014 0.001 (0) [14C]O3-2 6.641e-19 4.653e-19 -18.178 -18.332 -0.155 (0) CaH[14C]O2[18O]+ 4.712e-20 4.322e-20 -19.327 -19.364 -0.037 (0) - CaH[14C]O[18O]O+ 4.712e-20 4.322e-20 -19.327 -19.364 -0.037 (0) CaH[14C][18O]O2+ 4.712e-20 4.322e-20 -19.327 -19.364 -0.037 (0) + CaH[14C]O[18O]O+ 4.712e-20 4.322e-20 -19.327 -19.364 -0.037 (0) Ca[14C]O2[18O] 7.749e-21 7.762e-21 -20.111 -20.110 0.001 (0) - H[14C]O[18O]2- 4.452e-21 4.073e-21 -20.351 -20.390 -0.039 (0) H[14C][18O]2O- 4.452e-21 4.073e-21 -20.351 -20.390 -0.039 (0) H[14C][18O]O[18O]- 4.452e-21 4.073e-21 -20.351 -20.390 -0.039 (0) + H[14C]O[18O]2- 4.452e-21 4.073e-21 -20.351 -20.390 -0.039 (0) [14C]O2[18O]-2 3.975e-21 2.785e-21 -20.401 -20.555 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.599 -67.598 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.600 -70.599 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.470 -67.469 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.471 -70.470 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.47 -22.33 -2.86 [13C]H4 + [13C]H4(g) -19.73 -22.59 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.53 -21.03 -1.50 [14C][18O]2 - [14C]H4(g) -30.15 -33.01 -2.86 [14C]H4 + [14C]H4(g) -30.40 -33.26 -2.86 [14C]H4 [14C]O2(g) -14.16 -15.63 -1.47 [14C]O2 [14C]O[18O](g) -16.55 -18.33 -1.79 [14C]O[18O] - [18O]2(g) -68.31 -70.60 -2.29 [18O]2 + [18O]2(g) -68.18 -70.47 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -5188,14 +5206,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.51 -20.37 -2.86 CH4 + CH4(g) -17.77 -20.63 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.44 -13.59 -3.15 H2 + H2(g) -10.51 -13.66 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.31 -65.20 -2.89 O2 - O[18O](g) -65.01 -67.90 -2.89 O[18O] + O2(g) -62.18 -65.07 -2.89 O2 + O[18O](g) -64.88 -67.77 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5280,6 +5298,7 @@ Calcite 5.00e-04 R(18O) H2O(l) 1.99518e-03 -4.9951 permil R(18O) OH- 1.92122e-03 -41.882 permil R(18O) H3O+ 2.04132e-03 18.013 permil + R(18O) O2(aq) 1.99518e-03 -4.9951 permil R(13C) CO2(aq) 1.10415e-02 -12.409 permil R(14C) CO2(aq) 2.15280e-13 18.308 pmc R(18O) CO2(aq) 2.07915e-03 36.879 permil @@ -5289,8 +5308,6 @@ Calcite 5.00e-04 R(18O) CO3-2 1.99518e-03 -4.9951 permil R(13C) CO3-2 1.11215e-02 -5.2466 permil R(14C) CO3-2 2.18414e-13 18.574 pmc - R(13C) CH4(aq) 1.10415e-02 -12.409 permil - R(14C) CH4(aq) 2.15280e-13 18.308 pmc R(18O) Calcite 2.05263e-03 23.651 permil R(13C) Calcite 1.11596e-02 -1.8439 permil R(14C) Calcite 2.19911e-13 18.702 pmc @@ -5303,15 +5320,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 +Alpha 18O O2(aq)/H2O(l) 1 -2.2516e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6316e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.69e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -6.1062e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 6.2172e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -5329,16 +5345,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.633 Adjusted to redox equilibrium + pe = 10.863 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.844e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 77 + Iterations = 95 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -5350,25 +5366,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.551e-22 - CH4 3.551e-22 3.556e-22 -21.450 -21.449 0.001 (0) +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -121.419 -121.419 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -5376,81 +5392,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.073e-08 6.083e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.756e-14 - H2 1.378e-14 1.380e-14 -13.861 -13.860 0.001 (0) -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.663 -64.662 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.062 -67.061 0.001 (0) -[13C](-4) 3.920e-24 - [13C]H4 3.920e-24 3.927e-24 -23.407 -23.406 0.001 (0) +H(0) 2.805e-39 + H2 1.402e-39 1.405e-39 -38.853 -38.852 0.001 (0) +O(0) 4.218e-15 + O2 2.101e-15 2.104e-15 -14.678 -14.677 0.001 (0) + O[18O] 8.383e-18 8.397e-18 -17.077 -17.076 0.001 (0) +[13C](-4) 0.000e+00 + [13C]H4 0.000e+00 0.000e+00 -123.376 -123.376 0.001 (0) [13C](4) 6.495e-05 H[13C]O3- 5.239e-05 4.793e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) H[13C]O2[18O]- 1.045e-07 9.562e-08 -6.981 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.045e-07 9.562e-08 -6.981 -7.019 -0.039 (0) H[13C][18O]O2- 1.045e-07 9.562e-08 -6.981 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.045e-07 9.562e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.073e-08 6.083e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.572e-08 4.580e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.115e-08 2.183e-08 -7.506 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) + CaH[13C]O2[18O]+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.635e-10 3.641e-10 -9.439 -9.439 0.001 (0) - H[13C]O[18O]2- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.865e-10 1.306e-10 -9.729 -9.884 -0.155 (0) -[14C](-4) 7.644e-35 - [14C]H4 7.644e-35 7.656e-35 -34.117 -34.116 0.001 (0) +[14C](-4) 0.000e+00 + [14C]H4 0.000e+00 0.000e+00 -134.086 -134.086 0.001 (0) [14C](4) 1.275e-15 H[14C]O3- 1.030e-15 9.426e-16 -14.987 -15.026 -0.039 (0) [14C]O2 2.144e-16 2.147e-16 -15.669 -15.668 0.001 (0) CaH[14C]O3+ 2.176e-17 1.996e-17 -16.662 -16.700 -0.037 (0) - H[14C]O2[18O]- 2.056e-18 1.881e-18 -17.687 -17.726 -0.039 (0) - H[14C]O[18O]O- 2.056e-18 1.881e-18 -17.687 -17.726 -0.039 (0) H[14C][18O]O2- 2.056e-18 1.881e-18 -17.687 -17.726 -0.039 (0) + H[14C]O[18O]O- 2.056e-18 1.881e-18 -17.687 -17.726 -0.039 (0) + H[14C]O2[18O]- 2.056e-18 1.881e-18 -17.687 -17.726 -0.039 (0) Ca[14C]O3 1.193e-18 1.195e-18 -17.923 -17.923 0.001 (0) [14C]O[18O] 8.915e-19 8.929e-19 -18.050 -18.049 0.001 (0) [14C]O3-2 6.118e-19 4.286e-19 -18.213 -18.368 -0.155 (0) CaH[14C]O2[18O]+ 4.341e-20 3.982e-20 -19.362 -19.400 -0.037 (0) - CaH[14C]O[18O]O+ 4.341e-20 3.982e-20 -19.362 -19.400 -0.037 (0) CaH[14C][18O]O2+ 4.341e-20 3.982e-20 -19.362 -19.400 -0.037 (0) + CaH[14C]O[18O]O+ 4.341e-20 3.982e-20 -19.362 -19.400 -0.037 (0) Ca[14C]O2[18O] 7.139e-21 7.151e-21 -20.146 -20.146 0.001 (0) + H[14C][18O]O[18O]- 4.101e-21 3.752e-21 -20.387 -20.426 -0.039 (0) H[14C]O[18O]2- 4.101e-21 3.752e-21 -20.387 -20.426 -0.039 (0) H[14C][18O]2O- 4.101e-21 3.752e-21 -20.387 -20.426 -0.039 (0) - H[14C][18O]O[18O]- 4.101e-21 3.752e-21 -20.387 -20.426 -0.039 (0) [14C]O2[18O]-2 3.662e-21 2.566e-21 -20.436 -20.591 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.062 -67.061 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.063 -70.062 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 8.400e-18 + O[18O] 8.383e-18 8.397e-18 -17.077 -17.076 0.001 (0) + [18O]2 8.363e-21 8.377e-21 -20.078 -20.077 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -20.55 -23.41 -2.86 [13C]H4 + [13C]H4(g) -120.52 -123.38 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.56 -21.07 -1.50 [14C][18O]2 - [14C]H4(g) -31.26 -34.12 -2.86 [14C]H4 + [14C]H4(g) -131.23 -134.09 -2.86 [14C]H4 [14C]O2(g) -14.20 -15.67 -1.47 [14C]O2 [14C]O[18O](g) -16.58 -18.37 -1.79 [14C]O[18O] - [18O]2(g) -67.77 -70.06 -2.29 [18O]2 + [18O]2(g) -17.79 -20.08 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -5464,14 +5480,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -18.59 -21.45 -2.86 CH4 + CH4(g) -118.56 -121.42 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.71 -13.86 -3.15 H2 + H2(g) -35.70 -38.85 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -61.77 -64.66 -2.89 O2 - O[18O](g) -64.47 -67.36 -2.89 O[18O] + O2(g) -11.78 -14.68 -2.89 O2 + O[18O](g) -14.48 -17.38 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5495,6 +5511,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 26. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -5578,12 +5600,12 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2489e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2614e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.1102e-12 0 +Alpha 18O HCO3-/H2O(l) 1 1.3323e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7759e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.9051e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -5603,16 +5625,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.895 Adjusted to redox equilibrium + pe = 10.954 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.843e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 59 + Iterations = 92 (193 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -5625,14 +5647,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -121.670 -121.669 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.147 -122.147 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -5640,9 +5662,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -5650,50 +5672,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.075e-08 6.085e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.428e-39 - H2 1.214e-39 1.216e-39 -38.916 -38.915 0.001 (0) -O(0) 5.627e-15 - O2 2.803e-15 2.807e-15 -14.552 -14.552 0.001 (0) - O[18O] 1.118e-17 1.120e-17 -16.951 -16.951 0.001 (0) +H(0) 1.845e-39 + H2 9.224e-40 9.239e-40 -39.035 -39.034 0.001 (0) +O(0) 9.751e-15 + O2 4.856e-15 4.864e-15 -14.314 -14.313 0.001 (0) + O[18O] 1.938e-17 1.941e-17 -16.713 -16.712 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -123.627 -123.626 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.104 -124.103 0.001 (0) [13C](4) 6.497e-05 H[13C]O3- 5.240e-05 4.794e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-07 9.565e-08 -6.981 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.565e-08 -6.981 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.565e-08 -6.981 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.565e-08 -6.981 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.046e-07 9.565e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.075e-08 6.085e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.574e-08 4.581e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.116e-08 2.183e-08 -7.506 -7.661 -0.155 (0) + CaH[13C][18O]O2+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O2[18O]+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.636e-10 3.642e-10 -9.439 -9.439 0.001 (0) - H[13C]O[18O]2- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.865e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.372 -134.372 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -134.850 -134.849 0.001 (0) [14C](4) 1.175e-15 H[14C]O3- 9.491e-16 8.683e-16 -15.023 -15.061 -0.039 (0) [14C]O2 1.975e-16 1.978e-16 -15.704 -15.704 0.001 (0) CaH[14C]O3+ 2.004e-17 1.839e-17 -16.698 -16.736 -0.037 (0) - H[14C]O2[18O]- 1.894e-18 1.732e-18 -17.723 -17.761 -0.039 (0) - H[14C]O[18O]O- 1.894e-18 1.732e-18 -17.723 -17.761 -0.039 (0) H[14C][18O]O2- 1.894e-18 1.732e-18 -17.723 -17.761 -0.039 (0) + H[14C]O[18O]O- 1.894e-18 1.732e-18 -17.723 -17.761 -0.039 (0) + H[14C]O2[18O]- 1.894e-18 1.732e-18 -17.723 -17.761 -0.039 (0) Ca[14C]O3 1.099e-18 1.101e-18 -17.959 -17.958 0.001 (0) [14C]O[18O] 8.212e-19 8.226e-19 -18.086 -18.085 0.001 (0) [14C]O3-2 5.636e-19 3.949e-19 -18.249 -18.404 -0.155 (0) CaH[14C]O2[18O]+ 3.999e-20 3.668e-20 -19.398 -19.436 -0.037 (0) - CaH[14C]O[18O]O+ 3.999e-20 3.668e-20 -19.398 -19.436 -0.037 (0) CaH[14C][18O]O2+ 3.999e-20 3.668e-20 -19.398 -19.436 -0.037 (0) + CaH[14C]O[18O]O+ 3.999e-20 3.668e-20 -19.398 -19.436 -0.037 (0) Ca[14C]O2[18O] 6.577e-21 6.587e-21 -20.182 -20.181 0.001 (0) H[14C]O[18O]2- 3.778e-21 3.457e-21 -20.423 -20.461 -0.039 (0) H[14C][18O]2O- 3.778e-21 3.457e-21 -20.423 -20.461 -0.039 (0) @@ -5702,29 +5724,29 @@ O(0) 5.627e-15 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.121e-17 - O[18O] 1.118e-17 1.120e-17 -16.951 -16.951 0.001 (0) - [18O]2 1.116e-20 1.117e-20 -19.952 -19.952 0.001 (0) +[18O](0) 1.942e-17 + O[18O] 1.938e-17 1.941e-17 -16.713 -16.712 0.001 (0) + [18O]2 1.933e-20 1.936e-20 -19.714 -19.713 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -120.77 -123.63 -2.86 [13C]H4 + [13C]H4(g) -121.24 -124.10 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.60 -21.10 -1.50 [14C][18O]2 - [14C]H4(g) -131.51 -134.37 -2.86 [14C]H4 + [14C]H4(g) -131.99 -134.85 -2.86 [14C]H4 [14C]O2(g) -14.24 -15.70 -1.47 [14C]O2 [14C]O[18O](g) -16.62 -18.40 -1.79 [14C]O[18O] - [18O]2(g) -17.66 -19.95 -2.29 [18O]2 + [18O]2(g) -17.42 -19.71 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -5738,14 +5760,14 @@ O(0) 5.627e-15 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -118.81 -121.67 -2.86 CH4 + CH4(g) -119.29 -122.15 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.77 -38.92 -3.15 H2 + H2(g) -35.88 -39.03 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.66 -14.55 -2.89 O2 - O[18O](g) -14.36 -17.25 -2.89 O[18O] + O2(g) -11.42 -14.31 -2.89 O2 + O[18O](g) -14.12 -17.01 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5852,12 +5874,12 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2571e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.27e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7135e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7033e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -5877,16 +5899,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.019 Adjusted to redox equilibrium + pe = 10.999 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.843e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 87 + Iterations = 95 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -5899,24 +5921,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.665 -122.664 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.504 -122.503 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -5924,23 +5946,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.077e-08 6.087e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.370e-39 - H2 6.848e-40 6.859e-40 -39.164 -39.164 0.001 (0) -O(0) 1.769e-14 - O2 8.810e-15 8.824e-15 -14.055 -14.054 0.001 (0) - O[18O] 3.515e-17 3.521e-17 -16.454 -16.453 0.001 (0) +H(0) 1.503e-39 + H2 7.513e-40 7.525e-40 -39.124 -39.123 0.001 (0) +O(0) 1.470e-14 + O2 7.320e-15 7.332e-15 -14.136 -14.135 0.001 (0) + O[18O] 2.921e-17 2.926e-17 -16.534 -16.534 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.621 -124.621 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.460 -124.460 0.001 (0) [13C](4) 6.499e-05 H[13C]O3- 5.242e-05 4.796e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-07 9.568e-08 -6.981 -7.019 -0.039 (0) H[13C]O[18O]O- 1.046e-07 9.568e-08 -6.981 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.046e-07 9.568e-08 -6.981 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.568e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.077e-08 6.087e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.575e-08 4.582e-08 -7.340 -7.339 0.001 (0) @@ -5949,56 +5971,56 @@ O(0) 1.769e-14 CaH[13C]O[18O]O+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.637e-10 3.643e-10 -9.439 -9.439 0.001 (0) - H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -135.403 -135.402 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -135.242 -135.241 0.001 (0) [14C](4) 1.082e-15 H[14C]O3- 8.744e-16 7.999e-16 -15.058 -15.097 -0.039 (0) [14C]O2 1.819e-16 1.822e-16 -15.740 -15.739 0.001 (0) CaH[14C]O3+ 1.846e-17 1.694e-17 -16.734 -16.771 -0.037 (0) - H[14C]O2[18O]- 1.745e-18 1.596e-18 -17.758 -17.797 -0.039 (0) - H[14C]O[18O]O- 1.745e-18 1.596e-18 -17.758 -17.797 -0.039 (0) H[14C][18O]O2- 1.745e-18 1.596e-18 -17.758 -17.797 -0.039 (0) + H[14C]O[18O]O- 1.745e-18 1.596e-18 -17.758 -17.797 -0.039 (0) + H[14C]O2[18O]- 1.745e-18 1.596e-18 -17.758 -17.797 -0.039 (0) Ca[14C]O3 1.012e-18 1.014e-18 -17.995 -17.994 0.001 (0) [14C]O[18O] 7.565e-19 7.578e-19 -18.121 -18.120 0.001 (0) [14C]O3-2 5.192e-19 3.638e-19 -18.285 -18.439 -0.155 (0) CaH[14C]O2[18O]+ 3.684e-20 3.379e-20 -19.434 -19.471 -0.037 (0) - CaH[14C]O[18O]O+ 3.684e-20 3.379e-20 -19.434 -19.471 -0.037 (0) CaH[14C][18O]O2+ 3.684e-20 3.379e-20 -19.434 -19.471 -0.037 (0) + CaH[14C]O[18O]O+ 3.684e-20 3.379e-20 -19.434 -19.471 -0.037 (0) Ca[14C]O2[18O] 6.059e-21 6.068e-21 -20.218 -20.217 0.001 (0) - H[14C]O[18O]2- 3.481e-21 3.184e-21 -20.458 -20.497 -0.039 (0) H[14C][18O]2O- 3.481e-21 3.184e-21 -20.458 -20.497 -0.039 (0) H[14C][18O]O[18O]- 3.481e-21 3.184e-21 -20.458 -20.497 -0.039 (0) + H[14C]O[18O]2- 3.481e-21 3.184e-21 -20.458 -20.497 -0.039 (0) [14C]O2[18O]-2 3.108e-21 2.177e-21 -20.508 -20.662 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.522e-17 - O[18O] 3.515e-17 3.521e-17 -16.454 -16.453 0.001 (0) - [18O]2 3.507e-20 3.513e-20 -19.455 -19.454 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.927e-17 + O[18O] 2.921e-17 2.926e-17 -16.534 -16.534 0.001 (0) + [18O]2 2.914e-20 2.919e-20 -19.536 -19.535 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.76 -124.62 -2.86 [13C]H4 + [13C]H4(g) -121.60 -124.46 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.64 -21.14 -1.50 [14C][18O]2 - [14C]H4(g) -132.54 -135.40 -2.86 [14C]H4 + [14C]H4(g) -132.38 -135.24 -2.86 [14C]H4 [14C]O2(g) -14.27 -15.74 -1.47 [14C]O2 [14C]O[18O](g) -16.65 -18.44 -1.79 [14C]O[18O] - [18O]2(g) -17.16 -19.45 -2.29 [18O]2 + [18O]2(g) -17.24 -19.53 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -6012,14 +6034,14 @@ O(0) 1.769e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.80 -122.66 -2.86 CH4 + CH4(g) -119.64 -122.50 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.01 -39.16 -3.15 H2 + H2(g) -35.97 -39.12 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.16 -14.05 -2.89 O2 - O[18O](g) -13.86 -16.75 -2.89 O[18O] + O2(g) -11.24 -14.13 -2.89 O2 + O[18O](g) -13.94 -16.83 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6043,6 +6065,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 28. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -6126,12 +6154,12 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2639e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2777e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.4385e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.72e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7817e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -6151,16 +6179,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.020 Adjusted to redox equilibrium + pe = 11.044 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.844e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 73 + Iterations = 78 (179 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -6173,14 +6201,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.673 -122.673 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.860 -122.859 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -6188,9 +6216,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -6198,81 +6226,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.078e-08 6.088e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.363e-39 - H2 6.814e-40 6.825e-40 -39.167 -39.166 0.001 (0) -O(0) 1.787e-14 - O2 8.897e-15 8.912e-15 -14.051 -14.050 0.001 (0) - O[18O] 3.550e-17 3.556e-17 -16.450 -16.449 0.001 (0) +H(0) 1.224e-39 + H2 6.120e-40 6.130e-40 -39.213 -39.213 0.001 (0) +O(0) 2.215e-14 + O2 1.103e-14 1.105e-14 -13.957 -13.957 0.001 (0) + O[18O] 4.402e-17 4.409e-17 -16.356 -16.356 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.630 -124.629 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.817 -124.816 0.001 (0) [13C](4) 6.500e-05 H[13C]O3- 5.243e-05 4.797e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) H[13C]O2[18O]- 1.046e-07 9.570e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.570e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.570e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.570e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.078e-08 6.088e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.576e-08 4.584e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.118e-08 2.184e-08 -7.506 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.638e-10 3.644e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -135.447 -135.446 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -135.634 -135.633 0.001 (0) [14C](4) 9.972e-16 H[14C]O3- 8.055e-16 7.369e-16 -15.094 -15.133 -0.039 (0) [14C]O2 1.676e-16 1.679e-16 -15.776 -15.775 0.001 (0) CaH[14C]O3+ 1.701e-17 1.560e-17 -16.769 -16.807 -0.037 (0) - H[14C]O2[18O]- 1.607e-18 1.470e-18 -17.794 -17.833 -0.039 (0) - H[14C]O[18O]O- 1.607e-18 1.470e-18 -17.794 -17.833 -0.039 (0) H[14C][18O]O2- 1.607e-18 1.470e-18 -17.794 -17.833 -0.039 (0) + H[14C]O[18O]O- 1.607e-18 1.470e-18 -17.794 -17.833 -0.039 (0) + H[14C]O2[18O]- 1.607e-18 1.470e-18 -17.794 -17.833 -0.039 (0) Ca[14C]O3 9.325e-19 9.340e-19 -18.030 -18.030 0.001 (0) [14C]O[18O] 6.970e-19 6.981e-19 -18.157 -18.156 0.001 (0) [14C]O3-2 4.783e-19 3.351e-19 -18.320 -18.475 -0.155 (0) CaH[14C]O2[18O]+ 3.394e-20 3.113e-20 -19.469 -19.507 -0.037 (0) - CaH[14C]O[18O]O+ 3.394e-20 3.113e-20 -19.469 -19.507 -0.037 (0) CaH[14C][18O]O2+ 3.394e-20 3.113e-20 -19.469 -19.507 -0.037 (0) + CaH[14C]O[18O]O+ 3.394e-20 3.113e-20 -19.469 -19.507 -0.037 (0) Ca[14C]O2[18O] 5.581e-21 5.590e-21 -20.253 -20.253 0.001 (0) + H[14C][18O]O[18O]- 3.206e-21 2.934e-21 -20.494 -20.533 -0.039 (0) H[14C]O[18O]2- 3.206e-21 2.934e-21 -20.494 -20.533 -0.039 (0) H[14C][18O]2O- 3.206e-21 2.934e-21 -20.494 -20.533 -0.039 (0) - H[14C][18O]O[18O]- 3.206e-21 2.934e-21 -20.494 -20.533 -0.039 (0) [14C]O2[18O]-2 2.863e-21 2.006e-21 -20.543 -20.698 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.557e-17 - O[18O] 3.550e-17 3.556e-17 -16.450 -16.449 0.001 (0) - [18O]2 3.542e-20 3.548e-20 -19.451 -19.450 0.001 (0) +[18O](0) 4.411e-17 + O[18O] 4.402e-17 4.409e-17 -16.356 -16.356 0.001 (0) + [18O]2 4.391e-20 4.399e-20 -19.357 -19.357 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.77 -124.63 -2.86 [13C]H4 + [13C]H4(g) -121.96 -124.82 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.67 -21.18 -1.50 [14C][18O]2 - [14C]H4(g) -132.59 -135.45 -2.86 [14C]H4 + [14C]H4(g) -132.77 -135.63 -2.86 [14C]H4 [14C]O2(g) -14.31 -15.77 -1.47 [14C]O2 [14C]O[18O](g) -16.69 -18.48 -1.79 [14C]O[18O] - [18O]2(g) -17.16 -19.45 -2.29 [18O]2 + [18O]2(g) -17.07 -19.36 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -6286,14 +6314,14 @@ O(0) 1.787e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.81 -122.67 -2.86 CH4 + CH4(g) -120.00 -122.86 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.02 -39.17 -3.15 H2 + H2(g) -36.06 -39.21 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.16 -14.05 -2.89 O2 - O[18O](g) -13.86 -16.75 -2.89 O[18O] + O2(g) -11.06 -13.96 -2.89 O2 + O[18O](g) -13.76 -16.66 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6317,12 +6345,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 29. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -6406,12 +6428,12 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2684e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2504e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.663e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5867e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -6431,16 +6453,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.972 Adjusted to redox equilibrium + pe = 10.751 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.843e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 112 (213 overall) + Iterations = 70 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -6453,24 +6475,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.285 -122.284 0.001 (0) + CH4 0.000e+00 0.000e+00 -120.523 -120.522 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -6478,50 +6500,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.080e-08 6.090e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.704e-39 - H2 8.522e-40 8.536e-40 -39.069 -39.069 0.001 (0) -O(0) 1.142e-14 - O2 5.689e-15 5.698e-15 -14.245 -14.244 0.001 (0) - O[18O] 2.270e-17 2.274e-17 -16.644 -16.643 0.001 (0) +H(0) 4.699e-39 + H2 2.349e-39 2.353e-39 -38.629 -38.628 0.001 (0) +O(0) 1.503e-15 + O2 7.485e-16 7.497e-16 -15.126 -15.125 0.001 (0) + O[18O] 2.987e-18 2.992e-18 -17.525 -17.524 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.241 -124.241 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -122.480 -122.479 0.001 (0) [13C](4) 6.502e-05 H[13C]O3- 5.244e-05 4.798e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.080e-08 6.090e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.577e-08 4.585e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.119e-08 2.185e-08 -7.506 -7.661 -0.155 (0) + CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.639e-10 3.645e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -135.094 -135.094 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -133.333 -133.332 0.001 (0) [14C](4) 9.186e-16 H[14C]O3- 7.420e-16 6.789e-16 -15.130 -15.168 -0.039 (0) [14C]O2 1.544e-16 1.547e-16 -15.811 -15.811 0.001 (0) CaH[14C]O3+ 1.567e-17 1.437e-17 -16.805 -16.842 -0.037 (0) - H[14C]O2[18O]- 1.481e-18 1.354e-18 -17.830 -17.868 -0.039 (0) - H[14C]O[18O]O- 1.481e-18 1.354e-18 -17.830 -17.868 -0.039 (0) H[14C][18O]O2- 1.481e-18 1.354e-18 -17.830 -17.868 -0.039 (0) + H[14C]O[18O]O- 1.481e-18 1.354e-18 -17.830 -17.868 -0.039 (0) + H[14C]O2[18O]- 1.481e-18 1.354e-18 -17.830 -17.868 -0.039 (0) Ca[14C]O3 8.590e-19 8.604e-19 -18.066 -18.065 0.001 (0) [14C]O[18O] 6.421e-19 6.431e-19 -18.192 -18.192 0.001 (0) [14C]O3-2 4.407e-19 3.087e-19 -18.356 -18.510 -0.155 (0) CaH[14C]O2[18O]+ 3.126e-20 2.868e-20 -19.505 -19.542 -0.037 (0) - CaH[14C]O[18O]O+ 3.126e-20 2.868e-20 -19.505 -19.542 -0.037 (0) CaH[14C][18O]O2+ 3.126e-20 2.868e-20 -19.505 -19.542 -0.037 (0) + CaH[14C]O[18O]O+ 3.126e-20 2.868e-20 -19.505 -19.542 -0.037 (0) Ca[14C]O2[18O] 5.142e-21 5.150e-21 -20.289 -20.288 0.001 (0) H[14C]O[18O]2- 2.954e-21 2.702e-21 -20.530 -20.568 -0.039 (0) H[14C][18O]2O- 2.954e-21 2.702e-21 -20.530 -20.568 -0.039 (0) @@ -6530,29 +6552,29 @@ O(0) 1.142e-14 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.274e-17 - O[18O] 2.270e-17 2.274e-17 -16.644 -16.643 0.001 (0) - [18O]2 2.264e-20 2.268e-20 -19.645 -19.644 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.993e-18 + O[18O] 2.987e-18 2.992e-18 -17.525 -17.524 0.001 (0) + [18O]2 2.980e-21 2.984e-21 -20.526 -20.525 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.38 -124.24 -2.86 [13C]H4 + [13C]H4(g) -119.62 -122.48 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.71 -21.21 -1.50 [14C][18O]2 - [14C]H4(g) -132.23 -135.09 -2.86 [14C]H4 + [14C]H4(g) -130.47 -133.33 -2.86 [14C]H4 [14C]O2(g) -14.34 -15.81 -1.47 [14C]O2 [14C]O[18O](g) -16.72 -18.51 -1.79 [14C]O[18O] - [18O]2(g) -17.35 -19.64 -2.29 [18O]2 + [18O]2(g) -18.23 -20.53 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -6566,14 +6588,14 @@ O(0) 1.142e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.42 -122.28 -2.86 CH4 + CH4(g) -117.66 -120.52 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.92 -39.07 -3.15 H2 + H2(g) -35.48 -38.63 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.35 -14.24 -2.89 O2 - O[18O](g) -14.05 -16.94 -2.89 O[18O] + O2(g) -12.23 -15.13 -2.89 O2 + O[18O](g) -14.93 -17.83 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6658,6 +6680,7 @@ Calcite 5.00e-04 R(18O) H2O(l) 1.99519e-03 -4.9944 permil R(18O) OH- 1.92122e-03 -41.882 permil R(18O) H3O+ 2.04132e-03 18.013 permil + R(18O) O2(aq) 1.99519e-03 -4.9944 permil R(13C) CO2(aq) 1.10560e-02 -11.109 permil R(14C) CO2(aq) 1.42838e-13 12.147 pmc R(18O) CO2(aq) 2.07915e-03 36.879 permil @@ -6667,8 +6690,6 @@ Calcite 5.00e-04 R(18O) CO3-2 1.99519e-03 -4.9944 permil R(13C) CO3-2 1.11362e-02 -3.937 permil R(14C) CO3-2 1.44918e-13 12.324 pmc - R(13C) CH4(aq) 1.10560e-02 -11.109 permil - R(14C) CH4(aq) 1.42838e-13 12.147 pmc R(18O) Calcite 2.05263e-03 23.652 permil R(13C) Calcite 1.11743e-02 -0.52978 permil R(14C) Calcite 1.45911e-13 12.409 pmc @@ -6681,15 +6702,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 +Alpha 18O O2(aq)/H2O(l) 1 -2.2877e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7228e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7185e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 6.4393e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -6.2172e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -6707,16 +6727,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.294 Adjusted to redox equilibrium + pe = 10.739 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.843e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 77 + Iterations = 74 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -6728,14 +6748,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 6.922e-25 - CH4 6.922e-25 6.933e-25 -24.160 -24.159 0.001 (0) +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -120.427 -120.426 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -6744,9 +6764,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -6754,23 +6774,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.081e-08 6.091e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.792e-15 - H2 2.896e-15 2.901e-15 -14.538 -14.537 0.001 (0) -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.307 -63.307 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -65.706 -65.706 0.001 (0) -[13C](-4) 7.653e-27 - [13C]H4 7.653e-27 7.665e-27 -26.116 -26.115 0.001 (0) +H(0) 4.967e-39 + H2 2.483e-39 2.488e-39 -38.605 -38.604 0.001 (0) +O(0) 1.345e-15 + O2 6.699e-16 6.710e-16 -15.174 -15.173 0.001 (0) + O[18O] 2.673e-18 2.677e-18 -17.573 -17.572 0.001 (0) +[13C](-4) 0.000e+00 + [13C]H4 0.000e+00 0.000e+00 -122.383 -122.382 0.001 (0) [13C](4) 6.503e-05 H[13C]O3- 5.245e-05 4.799e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.081e-08 6.091e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.578e-08 4.586e-08 -7.339 -7.339 0.001 (0) @@ -6779,56 +6799,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.640e-10 3.646e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) -[14C](-4) 9.887e-38 - [14C]H4 9.887e-38 9.903e-38 -37.005 -37.004 0.001 (0) +[14C](-4) 0.000e+00 + [14C]H4 0.000e+00 0.000e+00 -133.272 -133.271 0.001 (0) [14C](4) 8.462e-16 H[14C]O3- 6.836e-16 6.254e-16 -15.165 -15.204 -0.039 (0) [14C]O2 1.422e-16 1.425e-16 -15.847 -15.846 0.001 (0) CaH[14C]O3+ 1.444e-17 1.324e-17 -16.841 -16.878 -0.037 (0) - H[14C]O2[18O]- 1.364e-18 1.248e-18 -17.865 -17.904 -0.039 (0) - H[14C]O[18O]O- 1.364e-18 1.248e-18 -17.865 -17.904 -0.039 (0) H[14C][18O]O2- 1.364e-18 1.248e-18 -17.865 -17.904 -0.039 (0) + H[14C]O[18O]O- 1.364e-18 1.248e-18 -17.865 -17.904 -0.039 (0) + H[14C]O2[18O]- 1.364e-18 1.248e-18 -17.865 -17.904 -0.039 (0) Ca[14C]O3 7.913e-19 7.926e-19 -18.102 -18.101 0.001 (0) [14C]O[18O] 5.915e-19 5.925e-19 -18.228 -18.227 0.001 (0) [14C]O3-2 4.059e-19 2.844e-19 -18.392 -18.546 -0.155 (0) CaH[14C]O2[18O]+ 2.880e-20 2.642e-20 -19.541 -19.578 -0.037 (0) - CaH[14C]O[18O]O+ 2.880e-20 2.642e-20 -19.541 -19.578 -0.037 (0) CaH[14C][18O]O2+ 2.880e-20 2.642e-20 -19.541 -19.578 -0.037 (0) + CaH[14C]O[18O]O+ 2.880e-20 2.642e-20 -19.541 -19.578 -0.037 (0) Ca[14C]O2[18O] 4.737e-21 4.744e-21 -20.325 -20.324 0.001 (0) - H[14C]O[18O]2- 2.721e-21 2.490e-21 -20.565 -20.604 -0.039 (0) H[14C][18O]2O- 2.721e-21 2.490e-21 -20.565 -20.604 -0.039 (0) H[14C][18O]O[18O]- 2.721e-21 2.490e-21 -20.565 -20.604 -0.039 (0) + H[14C]O[18O]2- 2.721e-21 2.490e-21 -20.565 -20.604 -0.039 (0) [14C]O2[18O]-2 2.430e-21 1.702e-21 -20.614 -20.769 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -65.706 -65.706 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -68.708 -68.707 0.001 (0) +[18O](0) 2.678e-18 + O[18O] 2.673e-18 2.677e-18 -17.573 -17.572 0.001 (0) + [18O]2 2.667e-21 2.671e-21 -20.574 -20.573 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -23.26 -26.12 -2.86 [13C]H4 + [13C]H4(g) -119.52 -122.38 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.74 -21.25 -1.50 [14C][18O]2 - [14C]H4(g) -34.14 -37.00 -2.86 [14C]H4 + [14C]H4(g) -130.41 -133.27 -2.86 [14C]H4 [14C]O2(g) -14.38 -15.85 -1.47 [14C]O2 [14C]O[18O](g) -16.76 -18.55 -1.79 [14C]O[18O] - [18O]2(g) -66.42 -68.71 -2.29 [18O]2 + [18O]2(g) -18.28 -20.57 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -6842,14 +6862,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -21.30 -24.16 -2.86 CH4 + CH4(g) -117.57 -120.43 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -11.39 -14.54 -3.15 H2 + H2(g) -35.45 -38.60 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -60.41 -63.31 -2.89 O2 - O[18O](g) -63.11 -66.01 -2.89 O[18O] + O2(g) -12.28 -15.17 -2.89 O2 + O[18O](g) -14.98 -17.87 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6873,12 +6893,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 31. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -6964,14 +6978,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5865e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5808e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -7.3275e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -7.1054e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.0325e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -6.1062e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -6989,16 +7003,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.706 Adjusted to redox equilibrium + pe = -1.504 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.843e-13 + Electrical balance (eq) = 5.396e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 86 (187 overall) + Iterations = 77 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -7010,25 +7024,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.370e-21 - CH4 1.370e-21 1.373e-21 -20.863 -20.862 0.001 (0) +C(-4) 3.301e-23 + CH4 3.301e-23 3.306e-23 -22.481 -22.481 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -7036,81 +7050,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.863e-14 - H2 1.932e-14 1.935e-14 -13.714 -13.713 0.001 (0) +H(0) 1.522e-14 + H2 7.610e-15 7.622e-15 -14.119 -14.118 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.956 -64.955 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.355 -67.354 0.001 (0) -[13C](-4) 1.515e-23 - [13C]H4 1.515e-23 1.518e-23 -22.819 -22.819 0.001 (0) + O2 0.000e+00 0.000e+00 -64.147 -64.146 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.546 -66.545 0.001 (0) +[13C](-4) 3.650e-25 + [13C]H4 3.650e-25 3.656e-25 -24.438 -24.437 0.001 (0) [13C](4) 6.505e-05 H[13C]O3- 5.247e-05 4.800e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.579e-08 4.587e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.120e-08 2.186e-08 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.308e-10 -9.729 -9.883 -0.155 (0) -[14C](-4) 1.803e-34 - [14C]H4 1.803e-34 1.806e-34 -33.744 -33.743 0.001 (0) +[14C](-4) 4.343e-36 + [14C]H4 4.343e-36 4.350e-36 -35.362 -35.361 0.001 (0) [14C](4) 7.796e-16 H[14C]O3- 6.297e-16 5.761e-16 -15.201 -15.239 -0.039 (0) [14C]O2 1.310e-16 1.313e-16 -15.883 -15.882 0.001 (0) CaH[14C]O3+ 1.330e-17 1.220e-17 -16.876 -16.914 -0.037 (0) - H[14C]O2[18O]- 1.256e-18 1.149e-18 -17.901 -17.939 -0.039 (0) - H[14C]O[18O]O- 1.256e-18 1.149e-18 -17.901 -17.939 -0.039 (0) H[14C][18O]O2- 1.256e-18 1.149e-18 -17.901 -17.939 -0.039 (0) + H[14C]O[18O]O- 1.256e-18 1.149e-18 -17.901 -17.939 -0.039 (0) + H[14C]O2[18O]- 1.256e-18 1.149e-18 -17.901 -17.939 -0.039 (0) Ca[14C]O3 7.290e-19 7.302e-19 -18.137 -18.137 0.001 (0) [14C]O[18O] 5.449e-19 5.458e-19 -18.264 -18.263 0.001 (0) [14C]O3-2 3.740e-19 2.620e-19 -18.427 -18.582 -0.155 (0) CaH[14C]O2[18O]+ 2.653e-20 2.434e-20 -19.576 -19.614 -0.037 (0) - CaH[14C]O[18O]O+ 2.653e-20 2.434e-20 -19.576 -19.614 -0.037 (0) CaH[14C][18O]O2+ 2.653e-20 2.434e-20 -19.576 -19.614 -0.037 (0) + CaH[14C]O[18O]O+ 2.653e-20 2.434e-20 -19.576 -19.614 -0.037 (0) Ca[14C]O2[18O] 4.364e-21 4.371e-21 -20.360 -20.359 0.001 (0) + H[14C][18O]O[18O]- 2.507e-21 2.293e-21 -20.601 -20.640 -0.039 (0) H[14C]O[18O]2- 2.507e-21 2.293e-21 -20.601 -20.640 -0.039 (0) H[14C][18O]2O- 2.507e-21 2.293e-21 -20.601 -20.640 -0.039 (0) - H[14C][18O]O[18O]- 2.507e-21 2.293e-21 -20.601 -20.640 -0.039 (0) [14C]O2[18O]-2 2.238e-21 1.568e-21 -20.650 -20.805 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.355 -67.354 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.356 -70.355 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.546 -66.545 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -69.547 -69.546 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.96 -22.82 -2.86 [13C]H4 + [13C]H4(g) -21.58 -24.44 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.78 -21.28 -1.50 [14C][18O]2 - [14C]H4(g) -30.88 -33.74 -2.86 [14C]H4 + [14C]H4(g) -32.50 -35.36 -2.86 [14C]H4 [14C]O2(g) -14.41 -15.88 -1.47 [14C]O2 [14C]O[18O](g) -16.79 -18.58 -1.79 [14C]O[18O] - [18O]2(g) -68.06 -70.36 -2.29 [18O]2 + [18O]2(g) -67.26 -69.55 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -7124,14 +7138,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -18.00 -20.86 -2.86 CH4 + CH4(g) -19.62 -22.48 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.56 -13.71 -3.15 H2 + H2(g) -10.97 -14.12 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.06 -64.96 -2.89 O2 - O[18O](g) -64.76 -67.66 -2.89 O[18O] + O2(g) -61.25 -64.15 -2.89 O2 + O[18O](g) -63.95 -66.85 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7240,14 +7254,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7131e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6409e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.0214e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.8541e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.1102e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.3545e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -7265,16 +7279,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.821 Adjusted to redox equilibrium + pe = -1.474 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.843e-13 + Electrical balance (eq) = 5.396e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 92 + Iterations = 100 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -7286,15 +7300,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.143e-20 - CH4 1.143e-20 1.145e-20 -19.942 -19.941 0.001 (0) +C(-4) 1.896e-23 + CH4 1.896e-23 1.899e-23 -22.722 -22.721 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -7302,9 +7316,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -7312,50 +7326,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.566e-14 - H2 3.283e-14 3.288e-14 -13.484 -13.483 0.001 (0) +H(0) 1.325e-14 + H2 6.625e-15 6.636e-15 -14.179 -14.178 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.416 -65.416 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.815 -67.815 0.001 (0) -[13C](-4) 1.264e-22 - [13C]H4 1.264e-22 1.266e-22 -21.898 -21.897 0.001 (0) + O2 0.000e+00 0.000e+00 -64.026 -64.026 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.425 -66.425 0.001 (0) +[13C](-4) 2.097e-25 + [13C]H4 2.097e-25 2.101e-25 -24.678 -24.678 0.001 (0) [13C](4) 6.506e-05 H[13C]O3- 5.248e-05 4.801e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.580e-08 4.587e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.121e-08 2.186e-08 -7.506 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) -[14C](-4) 1.386e-33 - [14C]H4 1.386e-33 1.388e-33 -32.858 -32.858 0.001 (0) +[14C](-4) 2.299e-36 + [14C]H4 2.299e-36 2.303e-36 -35.639 -35.638 0.001 (0) [14C](4) 7.182e-16 H[14C]O3- 5.801e-16 5.307e-16 -15.236 -15.275 -0.039 (0) [14C]O2 1.207e-16 1.209e-16 -15.918 -15.918 0.001 (0) CaH[14C]O3+ 1.225e-17 1.124e-17 -16.912 -16.949 -0.037 (0) - H[14C]O2[18O]- 1.157e-18 1.059e-18 -17.936 -17.975 -0.039 (0) - H[14C]O[18O]O- 1.157e-18 1.059e-18 -17.936 -17.975 -0.039 (0) H[14C][18O]O2- 1.157e-18 1.059e-18 -17.936 -17.975 -0.039 (0) + H[14C]O[18O]O- 1.157e-18 1.059e-18 -17.936 -17.975 -0.039 (0) + H[14C]O2[18O]- 1.157e-18 1.059e-18 -17.936 -17.975 -0.039 (0) Ca[14C]O3 6.716e-19 6.727e-19 -18.173 -18.172 0.001 (0) [14C]O[18O] 5.020e-19 5.028e-19 -18.299 -18.299 0.001 (0) [14C]O3-2 3.445e-19 2.413e-19 -18.463 -18.617 -0.155 (0) CaH[14C]O2[18O]+ 2.444e-20 2.242e-20 -19.612 -19.649 -0.037 (0) - CaH[14C]O[18O]O+ 2.444e-20 2.242e-20 -19.612 -19.649 -0.037 (0) CaH[14C][18O]O2+ 2.444e-20 2.242e-20 -19.612 -19.649 -0.037 (0) + CaH[14C]O[18O]O+ 2.444e-20 2.242e-20 -19.612 -19.649 -0.037 (0) Ca[14C]O2[18O] 4.020e-21 4.026e-21 -20.396 -20.395 0.001 (0) H[14C]O[18O]2- 2.309e-21 2.113e-21 -20.637 -20.675 -0.039 (0) H[14C][18O]2O- 2.309e-21 2.113e-21 -20.637 -20.675 -0.039 (0) @@ -7364,29 +7378,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.815 -67.815 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.816 -70.816 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.425 -66.425 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -69.426 -69.426 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.04 -21.90 -2.86 [13C]H4 + [13C]H4(g) -21.82 -24.68 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.81 -21.32 -1.50 [14C][18O]2 - [14C]H4(g) -30.00 -32.86 -2.86 [14C]H4 + [14C]H4(g) -32.78 -35.64 -2.86 [14C]H4 [14C]O2(g) -14.45 -15.92 -1.47 [14C]O2 [14C]O[18O](g) -16.83 -18.62 -1.79 [14C]O[18O] - [18O]2(g) -68.53 -70.82 -2.29 [18O]2 + [18O]2(g) -67.14 -69.43 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -7400,14 +7414,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.08 -19.94 -2.86 CH4 + CH4(g) -19.86 -22.72 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.33 -13.48 -3.15 H2 + H2(g) -11.03 -14.18 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.52 -65.42 -2.89 O2 - O[18O](g) -65.22 -68.12 -2.89 O[18O] + O2(g) -61.13 -64.03 -2.89 O2 + O[18O](g) -63.83 -66.73 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7431,12 +7445,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 33. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -7522,14 +7530,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6374e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6317e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -9.2149e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -5.3291e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.3101e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -5.5511e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -7547,16 +7555,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.829 Adjusted to redox equilibrium + pe = -1.842 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.296e-13 + Electrical balance (eq) = 5.396e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 51 (152 overall) + Iterations = 79 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -7568,25 +7576,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.310e-20 - CH4 1.310e-20 1.312e-20 -19.883 -19.882 0.001 (0) +C(-4) 1.673e-20 + CH4 1.673e-20 1.676e-20 -19.777 -19.776 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -7594,23 +7602,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.793e-14 - H2 3.397e-14 3.402e-14 -13.469 -13.468 0.001 (0) +H(0) 7.222e-14 + H2 3.611e-14 3.617e-14 -13.442 -13.442 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.446 -65.445 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.845 -67.844 0.001 (0) -[13C](-4) 1.449e-22 - [13C]H4 1.449e-22 1.452e-22 -21.839 -21.838 0.001 (0) + O2 0.000e+00 0.000e+00 -65.499 -65.498 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.898 -67.897 0.001 (0) +[13C](-4) 1.851e-22 + [13C]H4 1.851e-22 1.854e-22 -21.733 -21.732 0.001 (0) [13C](4) 6.507e-05 H[13C]O3- 5.248e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.588e-08 -7.339 -7.338 0.001 (0) @@ -7619,56 +7627,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) -[14C](-4) 1.463e-33 - [14C]H4 1.463e-33 1.465e-33 -32.835 -32.834 0.001 (0) +[14C](-4) 1.868e-33 + [14C]H4 1.868e-33 1.871e-33 -32.729 -32.728 0.001 (0) [14C](4) 6.616e-16 H[14C]O3- 5.344e-16 4.889e-16 -15.272 -15.311 -0.039 (0) [14C]O2 1.112e-16 1.114e-16 -15.954 -15.953 0.001 (0) CaH[14C]O3+ 1.129e-17 1.035e-17 -16.947 -16.985 -0.037 (0) - H[14C]O2[18O]- 1.066e-18 9.755e-19 -17.972 -18.011 -0.039 (0) - H[14C]O[18O]O- 1.066e-18 9.755e-19 -17.972 -18.011 -0.039 (0) H[14C][18O]O2- 1.066e-18 9.755e-19 -17.972 -18.011 -0.039 (0) + H[14C]O[18O]O- 1.066e-18 9.755e-19 -17.972 -18.011 -0.039 (0) + H[14C]O2[18O]- 1.066e-18 9.755e-19 -17.972 -18.011 -0.039 (0) Ca[14C]O3 6.187e-19 6.197e-19 -18.209 -18.208 0.001 (0) [14C]O[18O] 4.624e-19 4.632e-19 -18.335 -18.334 0.001 (0) [14C]O3-2 3.174e-19 2.223e-19 -18.498 -18.653 -0.155 (0) CaH[14C]O2[18O]+ 2.252e-20 2.066e-20 -19.647 -19.685 -0.037 (0) - CaH[14C]O[18O]O+ 2.252e-20 2.066e-20 -19.647 -19.685 -0.037 (0) CaH[14C][18O]O2+ 2.252e-20 2.066e-20 -19.647 -19.685 -0.037 (0) + CaH[14C]O[18O]O+ 2.252e-20 2.066e-20 -19.647 -19.685 -0.037 (0) Ca[14C]O2[18O] 3.703e-21 3.709e-21 -20.431 -20.431 0.001 (0) - H[14C]O[18O]2- 2.127e-21 1.946e-21 -20.672 -20.711 -0.039 (0) H[14C][18O]2O- 2.127e-21 1.946e-21 -20.672 -20.711 -0.039 (0) H[14C][18O]O[18O]- 2.127e-21 1.946e-21 -20.672 -20.711 -0.039 (0) + H[14C]O[18O]2- 2.127e-21 1.946e-21 -20.672 -20.711 -0.039 (0) [14C]O2[18O]-2 1.900e-21 1.331e-21 -20.721 -20.876 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.845 -67.844 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.846 -70.845 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.898 -67.897 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.899 -70.898 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.98 -21.84 -2.86 [13C]H4 + [13C]H4(g) -18.87 -21.73 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.85 -21.35 -1.50 [14C][18O]2 - [14C]H4(g) -29.97 -32.83 -2.86 [14C]H4 + [14C]H4(g) -29.87 -32.73 -2.86 [14C]H4 [14C]O2(g) -14.48 -15.95 -1.47 [14C]O2 [14C]O[18O](g) -16.87 -18.65 -1.79 [14C]O[18O] - [18O]2(g) -68.56 -70.85 -2.29 [18O]2 + [18O]2(g) -68.61 -70.90 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -7682,14 +7690,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.02 -19.88 -2.86 CH4 + CH4(g) -16.92 -19.78 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.32 -13.47 -3.15 H2 + H2(g) -10.29 -13.44 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.55 -65.45 -2.89 O2 - O[18O](g) -65.25 -68.15 -2.89 O[18O] + O2(g) -62.61 -65.50 -2.89 O2 + O[18O](g) -65.31 -68.20 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7713,12 +7721,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 34. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -7804,14 +7806,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6239e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.512e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -8.4377e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.2546e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 9.77e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 3.7748e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -7829,16 +7831,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.784 Adjusted to redox equilibrium + pe = -1.823 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.295e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 118 (219 overall) + Iterations = 84 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -7850,15 +7852,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 5.806e-21 - CH4 5.806e-21 5.815e-21 -20.236 -20.235 0.001 (0) +C(-4) 1.175e-20 + CH4 1.175e-20 1.177e-20 -19.930 -19.929 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -7866,9 +7868,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -7876,81 +7878,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.543e-14 - H2 2.771e-14 2.776e-14 -13.557 -13.557 0.001 (0) +H(0) 6.611e-14 + H2 3.305e-14 3.311e-14 -13.481 -13.480 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.269 -65.269 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.668 -67.668 0.001 (0) -[13C](-4) 6.423e-23 - [13C]H4 6.423e-23 6.434e-23 -22.192 -22.192 0.001 (0) + O2 0.000e+00 0.000e+00 -65.422 -65.422 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.821 -67.821 0.001 (0) +[13C](-4) 1.300e-22 + [13C]H4 1.300e-22 1.302e-22 -21.886 -21.885 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.249e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.589e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.729 -9.883 -0.155 (0) -[14C](-4) 5.973e-34 - [14C]H4 5.973e-34 5.983e-34 -33.224 -33.223 0.001 (0) +[14C](-4) 1.208e-33 + [14C]H4 1.208e-33 1.210e-33 -32.918 -32.917 0.001 (0) [14C](4) 6.095e-16 H[14C]O3- 4.923e-16 4.504e-16 -15.308 -15.346 -0.039 (0) [14C]O2 1.024e-16 1.026e-16 -15.990 -15.989 0.001 (0) CaH[14C]O3+ 1.040e-17 9.537e-18 -16.983 -17.021 -0.037 (0) - H[14C]O2[18O]- 9.823e-19 8.987e-19 -18.008 -18.046 -0.039 (0) - H[14C]O[18O]O- 9.823e-19 8.987e-19 -18.008 -18.046 -0.039 (0) H[14C][18O]O2- 9.823e-19 8.987e-19 -18.008 -18.046 -0.039 (0) + H[14C]O[18O]O- 9.823e-19 8.987e-19 -18.008 -18.046 -0.039 (0) + H[14C]O2[18O]- 9.823e-19 8.987e-19 -18.008 -18.046 -0.039 (0) Ca[14C]O3 5.699e-19 5.709e-19 -18.244 -18.243 0.001 (0) [14C]O[18O] 4.260e-19 4.267e-19 -18.371 -18.370 0.001 (0) [14C]O3-2 2.924e-19 2.048e-19 -18.534 -18.689 -0.155 (0) CaH[14C]O2[18O]+ 2.074e-20 1.903e-20 -19.683 -19.721 -0.037 (0) - CaH[14C]O[18O]O+ 2.074e-20 1.903e-20 -19.683 -19.721 -0.037 (0) CaH[14C][18O]O2+ 2.074e-20 1.903e-20 -19.683 -19.721 -0.037 (0) + CaH[14C]O[18O]O+ 2.074e-20 1.903e-20 -19.683 -19.721 -0.037 (0) Ca[14C]O2[18O] 3.411e-21 3.417e-21 -20.467 -20.466 0.001 (0) + H[14C][18O]O[18O]- 1.960e-21 1.793e-21 -20.708 -20.746 -0.039 (0) H[14C]O[18O]2- 1.960e-21 1.793e-21 -20.708 -20.746 -0.039 (0) H[14C][18O]2O- 1.960e-21 1.793e-21 -20.708 -20.746 -0.039 (0) - H[14C][18O]O[18O]- 1.960e-21 1.793e-21 -20.708 -20.746 -0.039 (0) [14C]O2[18O]-2 1.750e-21 1.226e-21 -20.757 -20.912 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.668 -67.668 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.669 -70.669 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.821 -67.821 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.822 -70.822 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.33 -22.19 -2.86 [13C]H4 + [13C]H4(g) -19.03 -21.89 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.89 -21.39 -1.50 [14C][18O]2 - [14C]H4(g) -30.36 -33.22 -2.86 [14C]H4 + [14C]H4(g) -30.06 -32.92 -2.86 [14C]H4 [14C]O2(g) -14.52 -15.99 -1.47 [14C]O2 [14C]O[18O](g) -16.90 -18.69 -1.79 [14C]O[18O] - [18O]2(g) -68.38 -70.67 -2.29 [18O]2 + [18O]2(g) -68.53 -70.82 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -7964,14 +7966,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.38 -20.24 -2.86 CH4 + CH4(g) -17.07 -19.93 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.41 -13.56 -3.15 H2 + H2(g) -10.33 -13.48 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.38 -65.27 -2.89 O2 - O[18O](g) -65.08 -67.97 -2.89 O[18O] + O2(g) -62.53 -65.42 -2.89 O2 + O[18O](g) -65.23 -68.12 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8086,14 +8088,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6355e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5896e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -4.996e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.1213e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.2212e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 8.8818e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -8111,16 +8113,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.775 Adjusted to redox equilibrium + pe = -1.807 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.295e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 113 (214 overall) + Iterations = 67 (168 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -8132,25 +8134,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.840e-21 - CH4 4.840e-21 4.848e-21 -20.315 -20.314 0.001 (0) +C(-4) 8.738e-21 + CH4 8.738e-21 8.753e-21 -20.059 -20.058 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -8158,50 +8160,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.296e-14 - H2 2.648e-14 2.653e-14 -13.577 -13.576 0.001 (0) +H(0) 6.139e-14 + H2 3.070e-14 3.075e-14 -13.513 -13.512 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.230 -65.229 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.629 -67.628 0.001 (0) -[13C](-4) 5.356e-23 - [13C]H4 5.356e-23 5.365e-23 -22.271 -22.270 0.001 (0) + O2 0.000e+00 0.000e+00 -65.358 -65.357 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.757 -67.756 0.001 (0) +[13C](-4) 9.670e-23 + [13C]H4 9.670e-23 9.686e-23 -22.015 -22.014 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.590e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 4.587e-34 - [14C]H4 4.587e-34 4.595e-34 -33.338 -33.338 0.001 (0) +[14C](-4) 8.282e-34 + [14C]H4 8.282e-34 8.295e-34 -33.082 -33.081 0.001 (0) [14C](4) 5.615e-16 H[14C]O3- 4.536e-16 4.149e-16 -15.343 -15.382 -0.039 (0) [14C]O2 9.438e-17 9.453e-17 -16.025 -16.024 0.001 (0) CaH[14C]O3+ 9.578e-18 8.786e-18 -17.019 -17.056 -0.037 (0) - H[14C]O2[18O]- 9.049e-19 8.279e-19 -18.043 -18.082 -0.039 (0) - H[14C]O[18O]O- 9.049e-19 8.279e-19 -18.043 -18.082 -0.039 (0) H[14C][18O]O2- 9.049e-19 8.279e-19 -18.043 -18.082 -0.039 (0) + H[14C]O[18O]O- 9.049e-19 8.279e-19 -18.043 -18.082 -0.039 (0) + H[14C]O2[18O]- 9.049e-19 8.279e-19 -18.043 -18.082 -0.039 (0) Ca[14C]O3 5.250e-19 5.259e-19 -18.280 -18.279 0.001 (0) [14C]O[18O] 3.924e-19 3.931e-19 -18.406 -18.406 0.001 (0) [14C]O3-2 2.693e-19 1.887e-19 -18.570 -18.724 -0.155 (0) CaH[14C]O2[18O]+ 1.911e-20 1.753e-20 -19.719 -19.756 -0.037 (0) - CaH[14C]O[18O]O+ 1.911e-20 1.753e-20 -19.719 -19.756 -0.037 (0) CaH[14C][18O]O2+ 1.911e-20 1.753e-20 -19.719 -19.756 -0.037 (0) + CaH[14C]O[18O]O+ 1.911e-20 1.753e-20 -19.719 -19.756 -0.037 (0) Ca[14C]O2[18O] 3.143e-21 3.148e-21 -20.503 -20.502 0.001 (0) H[14C]O[18O]2- 1.805e-21 1.652e-21 -20.743 -20.782 -0.039 (0) H[14C][18O]2O- 1.805e-21 1.652e-21 -20.743 -20.782 -0.039 (0) @@ -8210,29 +8212,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.629 -67.628 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.630 -70.629 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.757 -67.756 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.758 -70.757 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.41 -22.27 -2.86 [13C]H4 + [13C]H4(g) -19.15 -22.01 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.92 -21.42 -1.50 [14C][18O]2 - [14C]H4(g) -30.48 -33.34 -2.86 [14C]H4 + [14C]H4(g) -30.22 -33.08 -2.86 [14C]H4 [14C]O2(g) -14.56 -16.02 -1.47 [14C]O2 [14C]O[18O](g) -16.94 -18.72 -1.79 [14C]O[18O] - [18O]2(g) -68.34 -70.63 -2.29 [18O]2 + [18O]2(g) -68.47 -70.76 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -8246,14 +8248,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.45 -20.31 -2.86 CH4 + CH4(g) -17.20 -20.06 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.43 -13.58 -3.15 H2 + H2(g) -10.36 -13.51 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.34 -65.23 -2.89 O2 - O[18O](g) -65.04 -67.93 -2.89 O[18O] + O2(g) -62.47 -65.36 -2.89 O2 + O[18O](g) -65.17 -68.06 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8344,7 +8346,6 @@ Calcite 5.00e-04 R(18O) H2O(l) 1.99519e-03 -4.9936 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.014 permil - R(18O) O2(aq) 1.99519e-03 -4.9936 permil R(13C) CO2(aq) 1.10672e-02 -10.111 permil R(14C) CO2(aq) 8.73076e-14 7.4248 pmc R(18O) CO2(aq) 2.07915e-03 36.88 permil @@ -8354,6 +8355,8 @@ Calcite 5.00e-04 R(18O) CO3-2 1.99519e-03 -4.9936 permil R(13C) CO3-2 1.11474e-02 -2.9316 permil R(14C) CO3-2 8.85785e-14 7.5329 pmc + R(13C) CH4(aq) 1.10672e-02 -10.111 permil + R(14C) CH4(aq) 8.73076e-14 7.4248 pmc R(18O) Calcite 2.05263e-03 23.653 permil R(13C) Calcite 1.11856e-02 0.47905 permil R(14C) Calcite 8.91855e-14 7.5845 pmc @@ -8366,14 +8369,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2539e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.7716e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6162e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5654e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -7.7716e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -9.1038e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -8391,16 +8395,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.740 Adjusted to redox equilibrium + pe = -1.759 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.295e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 81 (182 overall) + Iterations = 118 (219 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -8412,14 +8416,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.436 -120.435 0.001 (0) +C(-4) 3.600e-21 + CH4 3.600e-21 3.606e-21 -20.444 -20.443 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -8428,9 +8432,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -8438,23 +8442,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.942e-39 - H2 2.471e-39 2.475e-39 -38.607 -38.606 0.001 (0) -O(0) 1.359e-15 - O2 6.767e-16 6.779e-16 -15.170 -15.169 0.001 (0) - O[18O] 2.700e-18 2.705e-18 -17.569 -17.568 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -122.392 -122.391 0.001 (0) +H(0) 4.919e-14 + H2 2.459e-14 2.463e-14 -13.609 -13.608 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.166 -65.165 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.565 -67.564 0.001 (0) +[13C](-4) 3.985e-23 + [13C]H4 3.985e-23 3.991e-23 -22.400 -22.399 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.590e-08 -7.339 -7.338 0.001 (0) @@ -8463,56 +8467,56 @@ O(0) 1.359e-15 CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -133.495 -133.494 0.001 (0) +[14C](-4) 3.143e-34 + [14C]H4 3.143e-34 3.149e-34 -33.503 -33.502 0.001 (0) [14C](4) 5.172e-16 H[14C]O3- 4.178e-16 3.823e-16 -15.379 -15.418 -0.039 (0) [14C]O2 8.694e-17 8.708e-17 -16.061 -16.060 0.001 (0) CaH[14C]O3+ 8.823e-18 8.094e-18 -17.054 -17.092 -0.037 (0) - H[14C]O2[18O]- 8.336e-19 7.627e-19 -18.079 -18.118 -0.039 (0) - H[14C]O[18O]O- 8.336e-19 7.627e-19 -18.079 -18.118 -0.039 (0) H[14C][18O]O2- 8.336e-19 7.627e-19 -18.079 -18.118 -0.039 (0) + H[14C]O[18O]O- 8.336e-19 7.627e-19 -18.079 -18.118 -0.039 (0) + H[14C]O2[18O]- 8.336e-19 7.627e-19 -18.079 -18.118 -0.039 (0) Ca[14C]O3 4.837e-19 4.845e-19 -18.315 -18.315 0.001 (0) [14C]O[18O] 3.615e-19 3.621e-19 -18.442 -18.441 0.001 (0) [14C]O3-2 2.481e-19 1.738e-19 -18.605 -18.760 -0.155 (0) CaH[14C]O2[18O]+ 1.760e-20 1.615e-20 -19.754 -19.792 -0.037 (0) - CaH[14C]O[18O]O+ 1.760e-20 1.615e-20 -19.754 -19.792 -0.037 (0) CaH[14C][18O]O2+ 1.760e-20 1.615e-20 -19.754 -19.792 -0.037 (0) + CaH[14C]O[18O]O+ 1.760e-20 1.615e-20 -19.754 -19.792 -0.037 (0) Ca[14C]O2[18O] 2.895e-21 2.900e-21 -20.538 -20.538 0.001 (0) - H[14C]O[18O]2- 1.663e-21 1.522e-21 -20.779 -20.818 -0.039 (0) H[14C][18O]2O- 1.663e-21 1.522e-21 -20.779 -20.818 -0.039 (0) H[14C][18O]O[18O]- 1.663e-21 1.522e-21 -20.779 -20.818 -0.039 (0) + H[14C]O[18O]2- 1.663e-21 1.522e-21 -20.779 -20.818 -0.039 (0) [14C]O2[18O]-2 1.485e-21 1.040e-21 -20.828 -20.983 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.706e-18 - O[18O] 2.700e-18 2.705e-18 -17.569 -17.568 0.001 (0) - [18O]2 2.694e-21 2.698e-21 -20.570 -20.569 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -67.565 -67.564 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.566 -70.565 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -119.53 -122.39 -2.86 [13C]H4 + [13C]H4(g) -19.54 -22.40 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.96 -21.46 -1.50 [14C][18O]2 - [14C]H4(g) -130.63 -133.49 -2.86 [14C]H4 + [14C]H4(g) -30.64 -33.50 -2.86 [14C]H4 [14C]O2(g) -14.59 -16.06 -1.47 [14C]O2 [14C]O[18O](g) -16.97 -18.76 -1.79 [14C]O[18O] - [18O]2(g) -18.28 -20.57 -2.29 [18O]2 + [18O]2(g) -68.27 -70.56 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -8526,14 +8530,14 @@ O(0) 1.359e-15 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -117.57 -120.43 -2.86 CH4 + CH4(g) -17.58 -20.44 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.46 -38.61 -3.15 H2 + H2(g) -10.46 -13.61 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -12.28 -15.17 -2.89 O2 - O[18O](g) -14.98 -17.87 -2.89 O[18O] + O2(g) -62.27 -65.16 -2.89 O2 + O[18O](g) -64.97 -67.86 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8645,11 +8649,11 @@ Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6684e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7498e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 9.3259e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.1102e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -7.8826e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -7.9936e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -8667,16 +8671,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.375 Adjusted to redox equilibrium + pe = -1.545 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.295e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 71 + Iterations = 95 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -8688,25 +8692,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.093e-24 - CH4 3.093e-24 3.099e-24 -23.510 -23.509 0.001 (0) +C(-4) 7.068e-23 + CH4 7.068e-23 7.079e-23 -22.151 -22.150 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -8714,81 +8718,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 8.421e-15 - H2 4.211e-15 4.218e-15 -14.376 -14.375 0.001 (0) +H(0) 1.841e-14 + H2 9.206e-15 9.221e-15 -14.036 -14.035 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.633 -63.632 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -66.032 -66.031 0.001 (0) -[13C](-4) 3.424e-26 - [13C]H4 3.424e-26 3.430e-26 -25.465 -25.465 0.001 (0) + O2 0.000e+00 0.000e+00 -64.312 -64.311 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.711 -66.710 0.001 (0) +[13C](-4) 7.823e-25 + [13C]H4 7.823e-25 7.836e-25 -24.107 -24.106 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 2.488e-37 - [14C]H4 2.488e-37 2.492e-37 -36.604 -36.603 0.001 (0) +[14C](-4) 5.685e-36 + [14C]H4 5.685e-36 5.694e-36 -35.245 -35.245 0.001 (0) [14C](4) 4.765e-16 H[14C]O3- 3.849e-16 3.521e-16 -15.415 -15.453 -0.039 (0) [14C]O2 8.009e-17 8.022e-17 -16.096 -16.096 0.001 (0) CaH[14C]O3+ 8.128e-18 7.456e-18 -17.090 -17.127 -0.037 (0) - H[14C]O2[18O]- 7.680e-19 7.026e-19 -18.115 -18.153 -0.039 (0) - H[14C]O[18O]O- 7.680e-19 7.026e-19 -18.115 -18.153 -0.039 (0) H[14C][18O]O2- 7.680e-19 7.026e-19 -18.115 -18.153 -0.039 (0) + H[14C]O[18O]O- 7.680e-19 7.026e-19 -18.115 -18.153 -0.039 (0) + H[14C]O2[18O]- 7.680e-19 7.026e-19 -18.115 -18.153 -0.039 (0) Ca[14C]O3 4.456e-19 4.463e-19 -18.351 -18.350 0.001 (0) [14C]O[18O] 3.330e-19 3.336e-19 -18.477 -18.477 0.001 (0) [14C]O3-2 2.286e-19 1.601e-19 -18.641 -18.796 -0.155 (0) CaH[14C]O2[18O]+ 1.622e-20 1.488e-20 -19.790 -19.827 -0.037 (0) - CaH[14C]O[18O]O+ 1.622e-20 1.488e-20 -19.790 -19.827 -0.037 (0) CaH[14C][18O]O2+ 1.622e-20 1.488e-20 -19.790 -19.827 -0.037 (0) + CaH[14C]O[18O]O+ 1.622e-20 1.488e-20 -19.790 -19.827 -0.037 (0) Ca[14C]O2[18O] 2.667e-21 2.671e-21 -20.574 -20.573 0.001 (0) + H[14C][18O]O[18O]- 1.532e-21 1.402e-21 -20.815 -20.853 -0.039 (0) H[14C]O[18O]2- 1.532e-21 1.402e-21 -20.815 -20.853 -0.039 (0) H[14C][18O]2O- 1.532e-21 1.402e-21 -20.815 -20.853 -0.039 (0) - H[14C][18O]O[18O]- 1.532e-21 1.402e-21 -20.815 -20.853 -0.039 (0) [14C]O2[18O]-2 1.368e-21 9.585e-22 -20.864 -21.018 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -66.032 -66.031 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -69.033 -69.032 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.711 -66.710 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -69.712 -69.711 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -22.60 -25.46 -2.86 [13C]H4 + [13C]H4(g) -21.25 -24.11 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.99 -21.50 -1.50 [14C][18O]2 - [14C]H4(g) -33.74 -36.60 -2.86 [14C]H4 + [14C]H4(g) -32.38 -35.24 -2.86 [14C]H4 [14C]O2(g) -14.63 -16.10 -1.47 [14C]O2 [14C]O[18O](g) -17.01 -18.80 -1.79 [14C]O[18O] - [18O]2(g) -66.74 -69.03 -2.29 [18O]2 + [18O]2(g) -67.42 -69.71 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -8802,14 +8806,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -20.65 -23.51 -2.86 CH4 + CH4(g) -19.29 -22.15 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -11.22 -14.37 -3.15 H2 + H2(g) -10.89 -14.04 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -60.74 -63.63 -2.89 O2 - O[18O](g) -63.44 -66.33 -2.89 O[18O] + O2(g) -61.42 -64.31 -2.89 O2 + O[18O](g) -64.12 -67.01 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8916,12 +8920,12 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2675e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.245e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6194e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6309e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -8941,16 +8945,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.034 Adjusted to redox equilibrium + pe = 10.690 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.296e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 100 + Iterations = 98 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -8963,14 +8967,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.787 -122.786 0.001 (0) + CH4 0.000e+00 0.000e+00 -120.033 -120.032 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -8978,9 +8982,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -8988,50 +8992,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.089e-08 6.099e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.277e-39 - H2 6.384e-40 6.394e-40 -39.195 -39.194 0.001 (0) -O(0) 2.036e-14 - O2 1.014e-14 1.015e-14 -13.994 -13.993 0.001 (0) - O[18O] 4.045e-17 4.052e-17 -16.393 -16.392 0.001 (0) +H(0) 6.232e-39 + H2 3.116e-39 3.121e-39 -38.506 -38.506 0.001 (0) +O(0) 8.545e-16 + O2 4.255e-16 4.262e-16 -15.371 -15.370 0.001 (0) + O[18O] 1.698e-18 1.701e-18 -17.770 -17.769 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.742 -124.742 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -121.988 -121.988 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.252e-05 4.805e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.587e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.587e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.587e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.587e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.587e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.089e-08 6.099e-08 -7.215 -7.215 0.001 (0) [13C]O[18O] 4.584e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -135.917 -135.916 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -133.163 -133.162 0.001 (0) [14C](4) 4.390e-16 H[14C]O3- 3.546e-16 3.244e-16 -15.450 -15.489 -0.039 (0) [14C]O2 7.378e-17 7.390e-17 -16.132 -16.131 0.001 (0) CaH[14C]O3+ 7.488e-18 6.869e-18 -17.126 -17.163 -0.037 (0) - H[14C]O2[18O]- 7.075e-19 6.473e-19 -18.150 -18.189 -0.039 (0) - H[14C]O[18O]O- 7.075e-19 6.473e-19 -18.150 -18.189 -0.039 (0) H[14C][18O]O2- 7.075e-19 6.473e-19 -18.150 -18.189 -0.039 (0) + H[14C]O[18O]O- 7.075e-19 6.473e-19 -18.150 -18.189 -0.039 (0) + H[14C]O2[18O]- 7.075e-19 6.473e-19 -18.150 -18.189 -0.039 (0) Ca[14C]O3 4.105e-19 4.112e-19 -18.387 -18.386 0.001 (0) [14C]O[18O] 3.068e-19 3.073e-19 -18.513 -18.512 0.001 (0) [14C]O3-2 2.106e-19 1.475e-19 -18.677 -18.831 -0.155 (0) CaH[14C]O2[18O]+ 1.494e-20 1.370e-20 -19.826 -19.863 -0.037 (0) - CaH[14C]O[18O]O+ 1.494e-20 1.370e-20 -19.826 -19.863 -0.037 (0) CaH[14C][18O]O2+ 1.494e-20 1.370e-20 -19.826 -19.863 -0.037 (0) + CaH[14C]O[18O]O+ 1.494e-20 1.370e-20 -19.826 -19.863 -0.037 (0) Ca[14C]O2[18O] 2.457e-21 2.461e-21 -20.610 -20.609 0.001 (0) H[14C]O[18O]2- 1.412e-21 1.291e-21 -20.850 -20.889 -0.039 (0) H[14C][18O]2O- 1.412e-21 1.291e-21 -20.850 -20.889 -0.039 (0) @@ -9040,29 +9044,29 @@ O(0) 2.036e-14 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.053e-17 - O[18O] 4.045e-17 4.052e-17 -16.393 -16.392 0.001 (0) - [18O]2 4.035e-20 4.042e-20 -19.394 -19.393 0.001 (0) +[18O](0) 1.701e-18 + O[18O] 1.698e-18 1.701e-18 -17.770 -17.769 0.001 (0) + [18O]2 1.694e-21 1.697e-21 -20.771 -20.770 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.88 -124.74 -2.86 [13C]H4 + [13C]H4(g) -119.13 -121.99 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.03 -21.53 -1.50 [14C][18O]2 - [14C]H4(g) -133.06 -135.92 -2.86 [14C]H4 + [14C]H4(g) -130.30 -133.16 -2.86 [14C]H4 [14C]O2(g) -14.66 -16.13 -1.47 [14C]O2 [14C]O[18O](g) -17.04 -18.83 -1.79 [14C]O[18O] - [18O]2(g) -17.10 -19.39 -2.29 [18O]2 + [18O]2(g) -18.48 -20.77 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -9076,14 +9080,14 @@ O(0) 2.036e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.93 -122.79 -2.86 CH4 + CH4(g) -117.17 -120.03 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.04 -39.19 -3.15 H2 + H2(g) -35.36 -38.51 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.10 -13.99 -2.89 O2 - O[18O](g) -13.80 -16.69 -2.89 O[18O] + O2(g) -12.48 -15.37 -2.89 O2 + O[18O](g) -15.18 -18.07 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9107,6 +9111,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 39. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -9190,12 +9200,12 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.241e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2448e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.758e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6954e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -9215,16 +9225,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.084 Adjusted to redox equilibrium + pe = 10.980 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.295e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 70 + Iterations = 70 (171 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -9237,24 +9247,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.182 -123.181 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.356 -122.355 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -9262,23 +9272,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.089e-08 6.099e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.017e-39 - H2 5.084e-40 5.093e-40 -39.294 -39.293 0.001 (0) -O(0) 3.209e-14 - O2 1.598e-14 1.601e-14 -13.796 -13.796 0.001 (0) - O[18O] 6.377e-17 6.388e-17 -16.195 -16.195 0.001 (0) +H(0) 1.636e-39 + H2 8.182e-40 8.195e-40 -39.087 -39.086 0.001 (0) +O(0) 1.239e-14 + O2 6.172e-15 6.182e-15 -14.210 -14.209 0.001 (0) + O[18O] 2.463e-17 2.467e-17 -16.609 -16.608 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.138 -125.137 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.311 -124.311 0.001 (0) [13C](4) 6.512e-05 H[13C]O3- 5.253e-05 4.805e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.588e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.588e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.588e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.588e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.089e-08 6.099e-08 -7.215 -7.215 0.001 (0) [13C]O[18O] 4.584e-08 4.592e-08 -7.339 -7.338 0.001 (0) @@ -9287,56 +9297,56 @@ O(0) 3.209e-14 CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.645e-10 3.651e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.870e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.348 -136.347 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -135.521 -135.521 0.001 (0) [14C](4) 4.044e-16 H[14C]O3- 3.267e-16 2.989e-16 -15.486 -15.525 -0.039 (0) [14C]O2 6.797e-17 6.808e-17 -16.168 -16.167 0.001 (0) CaH[14C]O3+ 6.898e-18 6.328e-18 -17.161 -17.199 -0.037 (0) - H[14C]O2[18O]- 6.518e-19 5.963e-19 -18.186 -18.225 -0.039 (0) - H[14C]O[18O]O- 6.518e-19 5.963e-19 -18.186 -18.225 -0.039 (0) H[14C][18O]O2- 6.518e-19 5.963e-19 -18.186 -18.225 -0.039 (0) + H[14C]O[18O]O- 6.518e-19 5.963e-19 -18.186 -18.225 -0.039 (0) + H[14C]O2[18O]- 6.518e-19 5.963e-19 -18.186 -18.225 -0.039 (0) Ca[14C]O3 3.782e-19 3.788e-19 -18.422 -18.422 0.001 (0) [14C]O[18O] 2.826e-19 2.831e-19 -18.549 -18.548 0.001 (0) [14C]O3-2 1.940e-19 1.359e-19 -18.712 -18.867 -0.155 (0) CaH[14C]O2[18O]+ 1.376e-20 1.263e-20 -19.861 -19.899 -0.037 (0) - CaH[14C]O[18O]O+ 1.376e-20 1.263e-20 -19.861 -19.899 -0.037 (0) CaH[14C][18O]O2+ 1.376e-20 1.263e-20 -19.861 -19.899 -0.037 (0) + CaH[14C]O[18O]O+ 1.376e-20 1.263e-20 -19.861 -19.899 -0.037 (0) Ca[14C]O2[18O] 2.263e-21 2.267e-21 -20.645 -20.645 0.001 (0) - H[14C]O[18O]2- 1.300e-21 1.190e-21 -20.886 -20.925 -0.039 (0) H[14C][18O]2O- 1.300e-21 1.190e-21 -20.886 -20.925 -0.039 (0) H[14C][18O]O[18O]- 1.300e-21 1.190e-21 -20.886 -20.925 -0.039 (0) + H[14C]O[18O]2- 1.300e-21 1.190e-21 -20.886 -20.925 -0.039 (0) [14C]O2[18O]-2 1.161e-21 8.134e-22 -20.935 -21.090 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 6.390e-17 - O[18O] 6.377e-17 6.388e-17 -16.195 -16.195 0.001 (0) - [18O]2 6.362e-20 6.372e-20 -19.196 -19.196 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.468e-17 + O[18O] 2.463e-17 2.467e-17 -16.609 -16.608 0.001 (0) + [18O]2 2.457e-20 2.461e-20 -19.610 -19.609 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.28 -125.14 -2.86 [13C]H4 + [13C]H4(g) -121.45 -124.31 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.06 -21.57 -1.50 [14C][18O]2 - [14C]H4(g) -133.49 -136.35 -2.86 [14C]H4 + [14C]H4(g) -132.66 -135.52 -2.86 [14C]H4 [14C]O2(g) -14.70 -16.17 -1.47 [14C]O2 [14C]O[18O](g) -17.08 -18.87 -1.79 [14C]O[18O] - [18O]2(g) -16.91 -19.20 -2.29 [18O]2 + [18O]2(g) -17.32 -19.61 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -9350,14 +9360,14 @@ O(0) 3.209e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.32 -123.18 -2.86 CH4 + CH4(g) -119.49 -122.35 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.14 -39.29 -3.15 H2 + H2(g) -35.94 -39.09 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.90 -13.80 -2.89 O2 - O[18O](g) -13.60 -16.50 -2.89 O[18O] + O2(g) -11.32 -14.21 -2.89 O2 + O[18O](g) -14.02 -16.91 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9381,12 +9391,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 40. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -9448,7 +9452,6 @@ Calcite 5.00e-04 R(18O) H2O(l) 1.99519e-03 -4.993 permil R(18O) OH- 1.92122e-03 -41.88 permil R(18O) H3O+ 2.04132e-03 18.015 permil - R(18O) O2(aq) 1.99519e-03 -4.993 permil R(13C) CO2(aq) 1.10721e-02 -9.6709 permil R(14C) CO2(aq) 6.28814e-14 5.3476 pmc R(18O) CO2(aq) 2.07915e-03 36.881 permil @@ -9458,6 +9461,8 @@ Calcite 5.00e-04 R(18O) CO3-2 1.99519e-03 -4.993 permil R(13C) CO3-2 1.11524e-02 -2.4887 permil R(14C) CO3-2 6.37967e-14 5.4254 pmc + R(13C) CH4(aq) 1.10721e-02 -9.6709 permil + R(14C) CH4(aq) 6.28814e-14 5.3476 pmc R(18O) Calcite 2.05263e-03 23.653 permil R(13C) Calcite 1.11905e-02 0.92343 permil R(14C) Calcite 6.42339e-14 5.4626 pmc @@ -9470,14 +9475,15 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2811e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.753e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5644e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 6.2172e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.6653e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -9495,16 +9501,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.786 Adjusted to redox equilibrium + pe = -1.371 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.295e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 163 (264 overall) + Iterations = 83 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -9516,15 +9522,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.803 -120.802 0.001 (0) +C(-4) 2.861e-24 + CH4 2.861e-24 2.865e-24 -23.544 -23.543 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -9532,9 +9538,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -9542,81 +9548,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.090e-08 6.100e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.000e-39 - H2 2.000e-39 2.003e-39 -38.699 -38.698 0.001 (0) -O(0) 2.074e-15 - O2 1.033e-15 1.035e-15 -14.986 -14.985 0.001 (0) - O[18O] 4.122e-18 4.129e-18 -17.385 -17.384 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -122.759 -122.758 0.001 (0) +H(0) 8.258e-15 + H2 4.129e-15 4.136e-15 -14.384 -14.383 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -63.616 -63.615 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.015 -66.014 0.001 (0) +[13C](-4) 3.167e-26 + [13C]H4 3.167e-26 3.172e-26 -25.499 -25.499 0.001 (0) [13C](4) 6.513e-05 H[13C]O3- 5.253e-05 4.806e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.018e-06 -5.955 -5.992 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.589e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.589e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.589e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.589e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.090e-08 6.100e-08 -7.215 -7.215 0.001 (0) [13C]O[18O] 4.585e-08 4.592e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.124e-08 2.188e-08 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.645e-10 3.651e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.870e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.004 -134.004 0.001 (0) +[14C](-4) 1.799e-37 + [14C]H4 1.799e-37 1.802e-37 -36.745 -36.744 0.001 (0) [14C](4) 3.725e-16 H[14C]O3- 3.009e-16 2.753e-16 -15.522 -15.560 -0.039 (0) [14C]O2 6.262e-17 6.272e-17 -16.203 -16.203 0.001 (0) CaH[14C]O3+ 6.355e-18 5.829e-18 -17.197 -17.234 -0.037 (0) - H[14C]O2[18O]- 6.004e-19 5.493e-19 -18.222 -18.260 -0.039 (0) - H[14C]O[18O]O- 6.004e-19 5.493e-19 -18.222 -18.260 -0.039 (0) H[14C][18O]O2- 6.004e-19 5.493e-19 -18.222 -18.260 -0.039 (0) + H[14C]O[18O]O- 6.004e-19 5.493e-19 -18.222 -18.260 -0.039 (0) + H[14C]O2[18O]- 6.004e-19 5.493e-19 -18.222 -18.260 -0.039 (0) Ca[14C]O3 3.484e-19 3.489e-19 -18.458 -18.457 0.001 (0) [14C]O[18O] 2.604e-19 2.608e-19 -18.584 -18.584 0.001 (0) [14C]O3-2 1.787e-19 1.252e-19 -18.748 -18.902 -0.155 (0) CaH[14C]O2[18O]+ 1.268e-20 1.163e-20 -19.897 -19.934 -0.037 (0) - CaH[14C]O[18O]O+ 1.268e-20 1.163e-20 -19.897 -19.934 -0.037 (0) CaH[14C][18O]O2+ 1.268e-20 1.163e-20 -19.897 -19.934 -0.037 (0) + CaH[14C]O[18O]O+ 1.268e-20 1.163e-20 -19.897 -19.934 -0.037 (0) Ca[14C]O2[18O] 2.085e-21 2.089e-21 -20.681 -20.680 0.001 (0) + H[14C][18O]O[18O]- 1.198e-21 1.096e-21 -20.922 -20.960 -0.039 (0) H[14C]O[18O]2- 1.198e-21 1.096e-21 -20.922 -20.960 -0.039 (0) H[14C][18O]2O- 1.198e-21 1.096e-21 -20.922 -20.960 -0.039 (0) - H[14C][18O]O[18O]- 1.198e-21 1.096e-21 -20.922 -20.960 -0.039 (0) [14C]O2[18O]-2 1.070e-21 7.493e-22 -20.971 -21.125 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.131e-18 - O[18O] 4.122e-18 4.129e-18 -17.385 -17.384 0.001 (0) - [18O]2 4.112e-21 4.119e-21 -20.386 -20.385 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -66.015 -66.014 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -69.016 -69.015 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -119.90 -122.76 -2.86 [13C]H4 + [13C]H4(g) -22.64 -25.50 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.10 -21.60 -1.50 [14C][18O]2 - [14C]H4(g) -131.14 -134.00 -2.86 [14C]H4 + [14C]H4(g) -33.88 -36.74 -2.86 [14C]H4 [14C]O2(g) -14.73 -16.20 -1.47 [14C]O2 [14C]O[18O](g) -17.12 -18.90 -1.79 [14C]O[18O] - [18O]2(g) -18.09 -20.39 -2.29 [18O]2 + [18O]2(g) -66.72 -69.01 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -9630,14 +9636,14 @@ O(0) 2.074e-15 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -117.94 -120.80 -2.86 CH4 + CH4(g) -20.68 -23.54 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.55 -38.70 -3.15 H2 + H2(g) -11.23 -14.38 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -12.09 -14.99 -2.89 O2 - O[18O](g) -14.79 -17.69 -2.89 O[18O] + O2(g) -60.72 -63.61 -2.89 O2 + O[18O](g) -63.42 -66.31 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9661,12 +9667,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 41. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -9752,14 +9752,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 1.1102e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7878e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6539e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.4988e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.1324e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 3.7748e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 4.4409e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -9777,16 +9777,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.842 Adjusted to redox equilibrium + pe = -1.748 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.295e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 65 (166 overall) + Iterations = 100 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -9798,25 +9798,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.685e-20 - CH4 1.685e-20 1.687e-20 -19.774 -19.773 0.001 (0) +C(-4) 2.946e-21 + CH4 2.946e-21 2.951e-21 -20.531 -20.530 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -9824,50 +9824,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.090e-08 6.100e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.234e-14 - H2 3.617e-14 3.623e-14 -13.442 -13.441 0.001 (0) +H(0) 4.678e-14 + H2 2.339e-14 2.343e-14 -13.631 -13.630 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.501 -65.500 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.900 -67.899 0.001 (0) -[13C](-4) 1.865e-22 - [13C]H4 1.865e-22 1.868e-22 -21.729 -21.729 0.001 (0) + O2 0.000e+00 0.000e+00 -65.122 -65.121 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.521 -67.520 0.001 (0) +[13C](-4) 3.262e-23 + [13C]H4 3.262e-23 3.267e-23 -22.487 -22.486 0.001 (0) [13C](4) 6.513e-05 H[13C]O3- 5.253e-05 4.806e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.018e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.589e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.589e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.589e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.589e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.589e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.090e-08 6.100e-08 -7.215 -7.215 0.001 (0) [13C]O[18O] 4.585e-08 4.593e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.124e-08 2.189e-08 -7.505 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.645e-10 3.651e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.870e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 9.758e-34 - [14C]H4 9.758e-34 9.774e-34 -33.011 -33.010 0.001 (0) +[14C](-4) 1.706e-34 + [14C]H4 1.706e-34 1.709e-34 -33.768 -33.767 0.001 (0) [14C](4) 3.432e-16 H[14C]O3- 2.772e-16 2.536e-16 -15.557 -15.596 -0.039 (0) [14C]O2 5.768e-17 5.778e-17 -16.239 -16.238 0.001 (0) CaH[14C]O3+ 5.854e-18 5.370e-18 -17.233 -17.270 -0.037 (0) - H[14C]O2[18O]- 5.531e-19 5.060e-19 -18.257 -18.296 -0.039 (0) - H[14C]O[18O]O- 5.531e-19 5.060e-19 -18.257 -18.296 -0.039 (0) H[14C][18O]O2- 5.531e-19 5.060e-19 -18.257 -18.296 -0.039 (0) + H[14C]O[18O]O- 5.531e-19 5.060e-19 -18.257 -18.296 -0.039 (0) + H[14C]O2[18O]- 5.531e-19 5.060e-19 -18.257 -18.296 -0.039 (0) Ca[14C]O3 3.209e-19 3.215e-19 -18.494 -18.493 0.001 (0) [14C]O[18O] 2.399e-19 2.403e-19 -18.620 -18.619 0.001 (0) [14C]O3-2 1.646e-19 1.153e-19 -18.783 -18.938 -0.155 (0) CaH[14C]O2[18O]+ 1.168e-20 1.071e-20 -19.933 -19.970 -0.037 (0) - CaH[14C]O[18O]O+ 1.168e-20 1.071e-20 -19.933 -19.970 -0.037 (0) CaH[14C][18O]O2+ 1.168e-20 1.071e-20 -19.933 -19.970 -0.037 (0) + CaH[14C]O[18O]O+ 1.168e-20 1.071e-20 -19.933 -19.970 -0.037 (0) Ca[14C]O2[18O] 1.921e-21 1.924e-21 -20.716 -20.716 0.001 (0) H[14C]O[18O]2- 1.104e-21 1.010e-21 -20.957 -20.996 -0.039 (0) H[14C][18O]2O- 1.104e-21 1.010e-21 -20.957 -20.996 -0.039 (0) @@ -9876,29 +9876,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.900 -67.899 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.901 -70.900 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.521 -67.520 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.522 -70.521 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.87 -21.73 -2.86 [13C]H4 + [13C]H4(g) -19.63 -22.49 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.13 -21.64 -1.50 [14C][18O]2 - [14C]H4(g) -30.15 -33.01 -2.86 [14C]H4 + [14C]H4(g) -30.91 -33.77 -2.86 [14C]H4 [14C]O2(g) -14.77 -16.24 -1.47 [14C]O2 [14C]O[18O](g) -17.15 -18.94 -1.79 [14C]O[18O] - [18O]2(g) -68.61 -70.90 -2.29 [18O]2 + [18O]2(g) -68.23 -70.52 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -9912,14 +9912,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.91 -19.77 -2.86 CH4 + CH4(g) -17.67 -20.53 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.29 -13.44 -3.15 H2 + H2(g) -10.48 -13.63 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.61 -65.50 -2.89 O2 - O[18O](g) -65.31 -68.20 -2.89 O[18O] + O2(g) -62.23 -65.12 -2.89 O2 + O[18O](g) -64.93 -67.82 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9943,6 +9943,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 42. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -10028,14 +10034,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6321e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6174e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -9.992e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.4322e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.3545e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 7.5495e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -10053,16 +10059,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.910 Adjusted to redox equilibrium + pe = -1.651 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.295e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 57 + Iterations = 90 (191 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -10074,14 +10080,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 5.915e-20 - CH4 5.915e-20 5.925e-20 -19.228 -19.227 0.001 (0) +C(-4) 4.946e-22 + CH4 4.946e-22 4.954e-22 -21.306 -21.305 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -10090,9 +10096,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -10100,23 +10106,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.091e-08 6.101e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 9.903e-14 - H2 4.951e-14 4.960e-14 -13.305 -13.305 0.001 (0) +H(0) 2.995e-14 + H2 1.497e-14 1.500e-14 -13.825 -13.824 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.773 -65.773 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.172 -68.172 0.001 (0) -[13C](-4) 6.551e-22 - [13C]H4 6.551e-22 6.561e-22 -21.184 -21.183 0.001 (0) + O2 0.000e+00 0.000e+00 -64.735 -64.734 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.133 -67.133 0.001 (0) +[13C](-4) 5.477e-24 + [13C]H4 5.477e-24 5.486e-24 -23.261 -23.261 0.001 (0) [13C](4) 6.514e-05 H[13C]O3- 5.254e-05 4.807e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.018e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.590e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.590e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.590e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.590e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.091e-08 6.101e-08 -7.215 -7.215 0.001 (0) [13C]O[18O] 4.586e-08 4.593e-08 -7.339 -7.338 0.001 (0) @@ -10125,56 +10131,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.646e-10 3.652e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.870e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 3.157e-33 - [14C]H4 3.157e-33 3.162e-33 -32.501 -32.500 0.001 (0) +[14C](-4) 2.640e-35 + [14C]H4 2.640e-35 2.644e-35 -34.578 -34.578 0.001 (0) [14C](4) 3.162e-16 H[14C]O3- 2.554e-16 2.336e-16 -15.593 -15.631 -0.039 (0) [14C]O2 5.314e-17 5.323e-17 -16.275 -16.274 0.001 (0) CaH[14C]O3+ 5.393e-18 4.947e-18 -17.268 -17.306 -0.037 (0) - H[14C]O2[18O]- 5.095e-19 4.662e-19 -18.293 -18.331 -0.039 (0) - H[14C]O[18O]O- 5.095e-19 4.662e-19 -18.293 -18.331 -0.039 (0) H[14C][18O]O2- 5.095e-19 4.662e-19 -18.293 -18.331 -0.039 (0) + H[14C]O[18O]O- 5.095e-19 4.662e-19 -18.293 -18.331 -0.039 (0) + H[14C]O2[18O]- 5.095e-19 4.662e-19 -18.293 -18.331 -0.039 (0) Ca[14C]O3 2.956e-19 2.961e-19 -18.529 -18.529 0.001 (0) [14C]O[18O] 2.210e-19 2.213e-19 -18.656 -18.655 0.001 (0) [14C]O3-2 1.517e-19 1.062e-19 -18.819 -18.974 -0.155 (0) CaH[14C]O2[18O]+ 1.076e-20 9.870e-21 -19.968 -20.006 -0.037 (0) - CaH[14C]O[18O]O+ 1.076e-20 9.870e-21 -19.968 -20.006 -0.037 (0) CaH[14C][18O]O2+ 1.076e-20 9.870e-21 -19.968 -20.006 -0.037 (0) + CaH[14C]O[18O]O+ 1.076e-20 9.870e-21 -19.968 -20.006 -0.037 (0) Ca[14C]O2[18O] 1.770e-21 1.773e-21 -20.752 -20.751 0.001 (0) - H[14C]O[18O]2- 1.017e-21 9.301e-22 -20.993 -21.031 -0.039 (0) H[14C][18O]2O- 1.017e-21 9.301e-22 -20.993 -21.031 -0.039 (0) H[14C][18O]O[18O]- 1.017e-21 9.301e-22 -20.993 -21.031 -0.039 (0) + H[14C]O[18O]2- 1.017e-21 9.301e-22 -20.993 -21.031 -0.039 (0) [14C]O2[18O]-2 9.078e-22 6.359e-22 -21.042 -21.197 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.172 -68.172 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.173 -71.173 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.133 -67.133 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.135 -70.134 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.32 -21.18 -2.86 [13C]H4 + [13C]H4(g) -20.40 -23.26 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.17 -21.67 -1.50 [14C][18O]2 - [14C]H4(g) -29.64 -32.50 -2.86 [14C]H4 + [14C]H4(g) -31.72 -34.58 -2.86 [14C]H4 [14C]O2(g) -14.81 -16.27 -1.47 [14C]O2 [14C]O[18O](g) -17.19 -18.97 -1.79 [14C]O[18O] - [18O]2(g) -68.88 -71.17 -2.29 [18O]2 + [18O]2(g) -67.84 -70.13 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -10188,14 +10194,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.37 -19.23 -2.86 CH4 + CH4(g) -18.45 -21.31 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.15 -13.30 -3.15 H2 + H2(g) -10.67 -13.82 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.88 -65.77 -2.89 O2 - O[18O](g) -65.58 -68.47 -2.89 O[18O] + O2(g) -61.84 -64.73 -2.89 O2 + O[18O](g) -64.54 -67.43 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10219,12 +10225,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 43. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -10310,14 +10310,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7408e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6641e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.4433e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -6.2172e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -8.1046e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -6.3283e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -10335,16 +10335,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.907 Adjusted to redox equilibrium + pe = -1.804 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.295e-13 + Electrical balance (eq) = 5.395e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 96 (197 overall) + Iterations = 54 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -10356,25 +10356,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 5.580e-20 - CH4 5.580e-20 5.589e-20 -19.253 -19.253 0.001 (0) +C(-4) 8.270e-21 + CH4 8.270e-21 8.283e-21 -20.083 -20.082 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -10382,81 +10382,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.091e-08 6.101e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 9.759e-14 - H2 4.880e-14 4.888e-14 -13.312 -13.311 0.001 (0) +H(0) 6.055e-14 + H2 3.028e-14 3.033e-14 -13.519 -13.518 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.761 -65.760 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.160 -68.159 0.001 (0) -[13C](-4) 6.179e-22 - [13C]H4 6.179e-22 6.189e-22 -21.209 -21.208 0.001 (0) + O2 0.000e+00 0.000e+00 -65.346 -65.345 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.745 -67.744 0.001 (0) +[13C](-4) 9.158e-23 + [13C]H4 9.158e-23 9.174e-23 -22.038 -22.037 0.001 (0) [13C](4) 6.514e-05 H[13C]O3- 5.254e-05 4.807e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.591e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.591e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.591e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.591e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.091e-08 6.101e-08 -7.215 -7.215 0.001 (0) [13C]O[18O] 4.586e-08 4.593e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.125e-08 2.189e-08 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.646e-10 3.652e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.092e-10 1.914e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.092e-10 1.914e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.092e-10 1.914e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.870e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 2.743e-33 - [14C]H4 2.743e-33 2.748e-33 -32.562 -32.561 0.001 (0) +[14C](-4) 4.065e-34 + [14C]H4 4.065e-34 4.072e-34 -33.391 -33.390 0.001 (0) [14C](4) 2.913e-16 H[14C]O3- 2.353e-16 2.152e-16 -15.628 -15.667 -0.039 (0) [14C]O2 4.895e-17 4.904e-17 -16.310 -16.309 0.001 (0) CaH[14C]O3+ 4.968e-18 4.557e-18 -17.304 -17.341 -0.037 (0) - H[14C]O2[18O]- 4.694e-19 4.294e-19 -18.328 -18.367 -0.039 (0) - H[14C]O[18O]O- 4.694e-19 4.294e-19 -18.328 -18.367 -0.039 (0) H[14C][18O]O2- 4.694e-19 4.294e-19 -18.328 -18.367 -0.039 (0) + H[14C]O[18O]O- 4.694e-19 4.294e-19 -18.328 -18.367 -0.039 (0) + H[14C]O2[18O]- 4.694e-19 4.294e-19 -18.328 -18.367 -0.039 (0) Ca[14C]O3 2.724e-19 2.728e-19 -18.565 -18.564 0.001 (0) [14C]O[18O] 2.036e-19 2.039e-19 -18.691 -18.691 0.001 (0) [14C]O3-2 1.397e-19 9.788e-20 -18.855 -19.009 -0.155 (0) CaH[14C]O2[18O]+ 9.912e-21 9.093e-21 -20.004 -20.041 -0.037 (0) - CaH[14C]O[18O]O+ 9.912e-21 9.093e-21 -20.004 -20.041 -0.037 (0) CaH[14C][18O]O2+ 9.912e-21 9.093e-21 -20.004 -20.041 -0.037 (0) + CaH[14C]O[18O]O+ 9.912e-21 9.093e-21 -20.004 -20.041 -0.037 (0) Ca[14C]O2[18O] 1.630e-21 1.633e-21 -20.788 -20.787 0.001 (0) + H[14C][18O]O[18O]- 9.366e-22 8.568e-22 -21.028 -21.067 -0.039 (0) H[14C]O[18O]2- 9.366e-22 8.568e-22 -21.028 -21.067 -0.039 (0) H[14C][18O]2O- 9.366e-22 8.568e-22 -21.028 -21.067 -0.039 (0) - H[14C][18O]O[18O]- 9.366e-22 8.568e-22 -21.028 -21.067 -0.039 (0) [14C]O2[18O]-2 8.363e-22 5.858e-22 -21.078 -21.232 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.160 -68.159 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.161 -71.160 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.745 -67.744 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.746 -70.745 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.35 -21.21 -2.86 [13C]H4 + [13C]H4(g) -19.18 -22.04 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.21 -21.71 -1.50 [14C][18O]2 - [14C]H4(g) -29.70 -32.56 -2.86 [14C]H4 + [14C]H4(g) -30.53 -33.39 -2.86 [14C]H4 [14C]O2(g) -14.84 -16.31 -1.47 [14C]O2 [14C]O[18O](g) -17.22 -19.01 -1.79 [14C]O[18O] - [18O]2(g) -68.87 -71.16 -2.29 [18O]2 + [18O]2(g) -68.46 -70.75 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -10470,14 +10470,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.39 -19.25 -2.86 CH4 + CH4(g) -17.22 -20.08 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.16 -13.31 -3.15 H2 + H2(g) -10.37 -13.52 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.87 -65.76 -2.89 O2 - O[18O](g) -65.57 -68.46 -2.89 O[18O] + O2(g) -62.45 -65.35 -2.89 O2 + O[18O](g) -65.15 -68.05 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10501,12 +10501,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 44. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -10592,14 +10586,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.2164e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6745e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.66e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 3.9968e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.2212e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 4.4409e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.1102e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -10617,16 +10611,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.847 Adjusted to redox equilibrium + pe = -1.687 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.295e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 115 (216 overall) + Iterations = 51 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -10638,15 +10632,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.831e-20 - CH4 1.831e-20 1.834e-20 -19.737 -19.737 0.001 (0) +C(-4) 9.647e-22 + CH4 9.647e-22 9.663e-22 -21.016 -21.015 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -10654,9 +10648,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -10664,50 +10658,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.092e-08 6.102e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.387e-14 - H2 3.693e-14 3.699e-14 -13.433 -13.432 0.001 (0) +H(0) 3.539e-14 + H2 1.769e-14 1.772e-14 -13.752 -13.751 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.519 -65.518 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.918 -67.917 0.001 (0) -[13C](-4) 2.028e-22 - [13C]H4 2.028e-22 2.032e-22 -21.693 -21.692 0.001 (0) + O2 0.000e+00 0.000e+00 -64.880 -64.879 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.279 -67.278 0.001 (0) +[13C](-4) 1.069e-23 + [13C]H4 1.069e-23 1.070e-23 -22.971 -22.971 0.001 (0) [13C](4) 6.515e-05 H[13C]O3- 5.255e-05 4.807e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.592e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.592e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.592e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.592e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.592e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.092e-08 6.102e-08 -7.215 -7.215 0.001 (0) [13C]O[18O] 4.586e-08 4.594e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.125e-08 2.189e-08 -7.505 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.646e-10 3.652e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.870e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 8.294e-34 - [14C]H4 8.294e-34 8.308e-34 -33.081 -33.081 0.001 (0) +[14C](-4) 4.369e-35 + [14C]H4 4.369e-35 4.376e-35 -34.360 -34.359 0.001 (0) [14C](4) 2.683e-16 H[14C]O3- 2.167e-16 1.983e-16 -15.664 -15.703 -0.039 (0) [14C]O2 4.510e-17 4.517e-17 -16.346 -16.345 0.001 (0) CaH[14C]O3+ 4.577e-18 4.198e-18 -17.339 -17.377 -0.037 (0) - H[14C]O2[18O]- 4.324e-19 3.956e-19 -18.364 -18.403 -0.039 (0) - H[14C]O[18O]O- 4.324e-19 3.956e-19 -18.364 -18.403 -0.039 (0) H[14C][18O]O2- 4.324e-19 3.956e-19 -18.364 -18.403 -0.039 (0) + H[14C]O[18O]O- 4.324e-19 3.956e-19 -18.364 -18.403 -0.039 (0) + H[14C]O2[18O]- 4.324e-19 3.956e-19 -18.364 -18.403 -0.039 (0) Ca[14C]O3 2.509e-19 2.513e-19 -18.600 -18.600 0.001 (0) [14C]O[18O] 1.875e-19 1.878e-19 -18.727 -18.726 0.001 (0) [14C]O3-2 1.287e-19 9.017e-20 -18.890 -19.045 -0.155 (0) CaH[14C]O2[18O]+ 9.132e-21 8.377e-21 -20.039 -20.077 -0.037 (0) - CaH[14C]O[18O]O+ 9.132e-21 8.377e-21 -20.039 -20.077 -0.037 (0) CaH[14C][18O]O2+ 9.132e-21 8.377e-21 -20.039 -20.077 -0.037 (0) + CaH[14C]O[18O]O+ 9.132e-21 8.377e-21 -20.039 -20.077 -0.037 (0) Ca[14C]O2[18O] 1.502e-21 1.504e-21 -20.823 -20.823 0.001 (0) H[14C]O[18O]2- 8.628e-22 7.893e-22 -21.064 -21.103 -0.039 (0) H[14C][18O]2O- 8.628e-22 7.893e-22 -21.064 -21.103 -0.039 (0) @@ -10716,29 +10710,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.918 -67.917 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.919 -70.918 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.279 -67.278 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.280 -70.279 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.83 -21.69 -2.86 [13C]H4 + [13C]H4(g) -20.11 -22.97 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.24 -21.75 -1.50 [14C][18O]2 - [14C]H4(g) -30.22 -33.08 -2.86 [14C]H4 + [14C]H4(g) -31.50 -34.36 -2.86 [14C]H4 [14C]O2(g) -14.88 -16.35 -1.47 [14C]O2 [14C]O[18O](g) -17.26 -19.05 -1.79 [14C]O[18O] - [18O]2(g) -68.63 -70.92 -2.29 [18O]2 + [18O]2(g) -67.99 -70.28 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -10752,14 +10746,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.88 -19.74 -2.86 CH4 + CH4(g) -18.15 -21.01 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.28 -13.43 -3.15 H2 + H2(g) -10.60 -13.75 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.63 -65.52 -2.89 O2 - O[18O](g) -65.33 -68.22 -2.89 O[18O] + O2(g) -61.99 -64.88 -2.89 O2 + O[18O](g) -64.69 -67.58 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10783,6 +10777,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 45. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -10868,14 +10868,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6444e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5635e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.2212e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 4.2188e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -6.6613e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.7319e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -10893,16 +10893,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.882 Adjusted to redox equilibrium + pe = -1.736 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.295e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 49 + Iterations = 74 (175 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -10914,25 +10914,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.534e-20 - CH4 3.534e-20 3.540e-20 -19.452 -19.451 0.001 (0) +C(-4) 2.387e-21 + CH4 2.387e-21 2.391e-21 -20.622 -20.621 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -10940,23 +10940,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.092e-08 6.102e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 8.706e-14 - H2 4.353e-14 4.360e-14 -13.361 -13.360 0.001 (0) +H(0) 4.438e-14 + H2 2.219e-14 2.223e-14 -13.654 -13.653 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.661 -65.661 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.060 -68.060 0.001 (0) -[13C](-4) 3.914e-22 - [13C]H4 3.914e-22 3.921e-22 -21.407 -21.407 0.001 (0) + O2 0.000e+00 0.000e+00 -65.076 -65.076 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.475 -67.475 0.001 (0) +[13C](-4) 2.644e-23 + [13C]H4 2.644e-23 2.648e-23 -22.578 -22.577 0.001 (0) [13C](4) 6.515e-05 H[13C]O3- 5.255e-05 4.808e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.592e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.592e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.592e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.592e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.092e-08 6.102e-08 -7.215 -7.215 0.001 (0) [13C]O[18O] 4.587e-08 4.594e-08 -7.339 -7.338 0.001 (0) @@ -10965,56 +10965,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.646e-10 3.652e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 1.474e-33 - [14C]H4 1.474e-33 1.477e-33 -32.831 -32.831 0.001 (0) +[14C](-4) 9.959e-35 + [14C]H4 9.959e-35 9.975e-35 -34.002 -34.001 0.001 (0) [14C](4) 2.472e-16 H[14C]O3- 1.997e-16 1.827e-16 -15.700 -15.738 -0.039 (0) [14C]O2 4.155e-17 4.161e-17 -16.381 -16.381 0.001 (0) CaH[14C]O3+ 4.216e-18 3.868e-18 -17.375 -17.413 -0.037 (0) - H[14C]O2[18O]- 3.984e-19 3.645e-19 -18.400 -18.438 -0.039 (0) - H[14C]O[18O]O- 3.984e-19 3.645e-19 -18.400 -18.438 -0.039 (0) H[14C][18O]O2- 3.984e-19 3.645e-19 -18.400 -18.438 -0.039 (0) + H[14C]O[18O]O- 3.984e-19 3.645e-19 -18.400 -18.438 -0.039 (0) + H[14C]O2[18O]- 3.984e-19 3.645e-19 -18.400 -18.438 -0.039 (0) Ca[14C]O3 2.311e-19 2.315e-19 -18.636 -18.635 0.001 (0) [14C]O[18O] 1.728e-19 1.730e-19 -18.763 -18.762 0.001 (0) [14C]O3-2 1.186e-19 8.306e-20 -18.926 -19.081 -0.155 (0) CaH[14C]O2[18O]+ 8.412e-21 7.717e-21 -20.075 -20.113 -0.037 (0) - CaH[14C]O[18O]O+ 8.412e-21 7.717e-21 -20.075 -20.113 -0.037 (0) CaH[14C][18O]O2+ 8.412e-21 7.717e-21 -20.075 -20.113 -0.037 (0) + CaH[14C]O[18O]O+ 8.412e-21 7.717e-21 -20.075 -20.113 -0.037 (0) Ca[14C]O2[18O] 1.383e-21 1.386e-21 -20.859 -20.858 0.001 (0) - H[14C]O[18O]2- 7.948e-22 7.272e-22 -21.100 -21.138 -0.039 (0) H[14C][18O]2O- 7.948e-22 7.272e-22 -21.100 -21.138 -0.039 (0) H[14C][18O]O[18O]- 7.948e-22 7.272e-22 -21.100 -21.138 -0.039 (0) + H[14C]O[18O]2- 7.948e-22 7.272e-22 -21.100 -21.138 -0.039 (0) [14C]O2[18O]-2 7.097e-22 4.972e-22 -21.149 -21.303 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.060 -68.060 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.062 -71.061 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.475 -67.475 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.476 -70.476 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.55 -21.41 -2.86 [13C]H4 + [13C]H4(g) -19.72 -22.58 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.28 -21.78 -1.50 [14C][18O]2 - [14C]H4(g) -29.97 -32.83 -2.86 [14C]H4 + [14C]H4(g) -31.14 -34.00 -2.86 [14C]H4 [14C]O2(g) -14.91 -16.38 -1.47 [14C]O2 [14C]O[18O](g) -17.29 -19.08 -1.79 [14C]O[18O] - [18O]2(g) -68.77 -71.06 -2.29 [18O]2 + [18O]2(g) -68.19 -70.48 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -11028,14 +11028,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.59 -19.45 -2.86 CH4 + CH4(g) -17.76 -20.62 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.21 -13.36 -3.15 H2 + H2(g) -10.50 -13.65 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.77 -65.66 -2.89 O2 - O[18O](g) -65.47 -68.36 -2.89 O[18O] + O2(g) -62.18 -65.08 -2.89 O2 + O[18O](g) -64.88 -67.78 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11059,6 +11059,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 46. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -11144,14 +11150,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6011e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7528e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.9984e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 3.9968e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 9.3259e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 2.176e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -11169,16 +11175,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.928 Adjusted to redox equilibrium + pe = -1.663 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.295e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 58 + Iterations = 141 (242 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -11190,15 +11196,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 8.216e-20 - CH4 8.216e-20 8.229e-20 -19.085 -19.085 0.001 (0) +C(-4) 6.150e-22 + CH4 6.150e-22 6.160e-22 -21.211 -21.210 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -11206,9 +11212,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -11216,81 +11222,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.092e-08 6.102e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.075e-13 - H2 5.375e-14 5.384e-14 -13.270 -13.269 0.001 (0) +H(0) 3.162e-14 + H2 1.581e-14 1.584e-14 -13.801 -13.800 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.845 -65.844 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.244 -68.243 0.001 (0) -[13C](-4) 9.101e-22 - [13C]H4 9.101e-22 9.116e-22 -21.041 -21.040 0.001 (0) + O2 0.000e+00 0.000e+00 -64.782 -64.781 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.181 -67.180 0.001 (0) +[13C](-4) 6.812e-24 + [13C]H4 6.812e-24 6.824e-24 -23.167 -23.166 0.001 (0) [13C](4) 6.515e-05 H[13C]O3- 5.255e-05 4.808e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.593e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.593e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.593e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.593e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.092e-08 6.102e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.587e-08 4.594e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.125e-08 2.189e-08 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.647e-10 3.653e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 3.158e-33 - [14C]H4 3.158e-33 3.163e-33 -32.501 -32.500 0.001 (0) +[14C](-4) 2.364e-35 + [14C]H4 2.364e-35 2.368e-35 -34.626 -34.626 0.001 (0) [14C](4) 2.277e-16 H[14C]O3- 1.839e-16 1.683e-16 -15.735 -15.774 -0.039 (0) [14C]O2 3.827e-17 3.834e-17 -16.417 -16.416 0.001 (0) CaH[14C]O3+ 3.884e-18 3.563e-18 -17.411 -17.448 -0.037 (0) - H[14C]O2[18O]- 3.670e-19 3.357e-19 -18.435 -18.474 -0.039 (0) - H[14C]O[18O]O- 3.670e-19 3.357e-19 -18.435 -18.474 -0.039 (0) H[14C][18O]O2- 3.670e-19 3.357e-19 -18.435 -18.474 -0.039 (0) + H[14C]O[18O]O- 3.670e-19 3.357e-19 -18.435 -18.474 -0.039 (0) + H[14C]O2[18O]- 3.670e-19 3.357e-19 -18.435 -18.474 -0.039 (0) Ca[14C]O3 2.129e-19 2.133e-19 -18.672 -18.671 0.001 (0) [14C]O[18O] 1.592e-19 1.594e-19 -18.798 -18.797 0.001 (0) [14C]O3-2 1.092e-19 7.652e-20 -18.962 -19.116 -0.155 (0) CaH[14C]O2[18O]+ 7.750e-21 7.109e-21 -20.111 -20.148 -0.037 (0) - CaH[14C]O[18O]O+ 7.750e-21 7.109e-21 -20.111 -20.148 -0.037 (0) CaH[14C][18O]O2+ 7.750e-21 7.109e-21 -20.111 -20.148 -0.037 (0) + CaH[14C]O[18O]O+ 7.750e-21 7.109e-21 -20.111 -20.148 -0.037 (0) Ca[14C]O2[18O] 1.275e-21 1.277e-21 -20.895 -20.894 0.001 (0) + H[14C][18O]O[18O]- 7.322e-22 6.699e-22 -21.135 -21.174 -0.039 (0) H[14C]O[18O]2- 7.322e-22 6.699e-22 -21.135 -21.174 -0.039 (0) H[14C][18O]2O- 7.322e-22 6.699e-22 -21.135 -21.174 -0.039 (0) - H[14C][18O]O[18O]- 7.322e-22 6.699e-22 -21.135 -21.174 -0.039 (0) [14C]O2[18O]-2 6.538e-22 4.580e-22 -21.185 -21.339 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.244 -68.243 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.245 -71.244 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.181 -67.180 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.182 -70.181 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.18 -21.04 -2.86 [13C]H4 + [13C]H4(g) -20.31 -23.17 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.31 -21.82 -1.50 [14C][18O]2 - [14C]H4(g) -29.64 -32.50 -2.86 [14C]H4 + [14C]H4(g) -31.77 -34.63 -2.86 [14C]H4 [14C]O2(g) -14.95 -16.42 -1.47 [14C]O2 [14C]O[18O](g) -17.33 -19.12 -1.79 [14C]O[18O] - [18O]2(g) -68.95 -71.24 -2.29 [18O]2 + [18O]2(g) -67.89 -70.18 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -11304,14 +11310,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.22 -19.08 -2.86 CH4 + CH4(g) -18.35 -21.21 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.12 -13.27 -3.15 H2 + H2(g) -10.65 -13.80 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.95 -65.84 -2.89 O2 - O[18O](g) -65.65 -68.54 -2.89 O[18O] + O2(g) -61.89 -64.78 -2.89 O2 + O[18O](g) -64.59 -67.48 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11420,14 +11426,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 0 0 +Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6854e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6772e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 13C CH4(aq)/CO2(aq) 1 4.2188e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -6.1062e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 2.2204e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -11445,16 +11451,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.845 Adjusted to redox equilibrium + pe = -1.739 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.316e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 55 + Iterations = 85 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -11466,25 +11472,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.773e-20 - CH4 1.773e-20 1.775e-20 -19.751 -19.751 0.001 (0) +C(-4) 2.532e-21 + CH4 2.532e-21 2.536e-21 -20.597 -20.596 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -11492,50 +11498,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.093e-08 6.103e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.327e-14 - H2 3.663e-14 3.669e-14 -13.436 -13.435 0.001 (0) +H(0) 4.504e-14 + H2 2.252e-14 2.256e-14 -13.647 -13.647 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.512 -65.511 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.911 -67.910 0.001 (0) -[13C](-4) 1.964e-22 - [13C]H4 1.964e-22 1.967e-22 -21.707 -21.706 0.001 (0) + O2 0.000e+00 0.000e+00 -65.089 -65.088 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.488 -67.487 0.001 (0) +[13C](-4) 2.805e-23 + [13C]H4 2.805e-23 2.810e-23 -22.552 -22.551 0.001 (0) [13C](4) 6.516e-05 H[13C]O3- 5.256e-05 4.808e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.593e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.593e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.593e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.593e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.593e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.093e-08 6.103e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.587e-08 4.595e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.126e-08 2.190e-08 -7.505 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.647e-10 3.653e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 6.276e-34 - [14C]H4 6.276e-34 6.286e-34 -33.202 -33.202 0.001 (0) +[14C](-4) 8.965e-35 + [14C]H4 8.965e-35 8.980e-35 -34.047 -34.047 0.001 (0) [14C](4) 2.098e-16 H[14C]O3- 1.694e-16 1.550e-16 -15.771 -15.810 -0.039 (0) [14C]O2 3.526e-17 3.532e-17 -16.453 -16.452 0.001 (0) CaH[14C]O3+ 3.578e-18 3.282e-18 -17.446 -17.484 -0.037 (0) - H[14C]O2[18O]- 3.381e-19 3.093e-19 -18.471 -18.510 -0.039 (0) - H[14C]O[18O]O- 3.381e-19 3.093e-19 -18.471 -18.510 -0.039 (0) H[14C][18O]O2- 3.381e-19 3.093e-19 -18.471 -18.510 -0.039 (0) + H[14C]O[18O]O- 3.381e-19 3.093e-19 -18.471 -18.510 -0.039 (0) + H[14C]O2[18O]- 3.381e-19 3.093e-19 -18.471 -18.510 -0.039 (0) Ca[14C]O3 1.962e-19 1.965e-19 -18.707 -18.707 0.001 (0) [14C]O[18O] 1.466e-19 1.469e-19 -18.834 -18.833 0.001 (0) [14C]O3-2 1.006e-19 7.049e-20 -18.997 -19.152 -0.155 (0) CaH[14C]O2[18O]+ 7.139e-21 6.549e-21 -20.146 -20.184 -0.037 (0) - CaH[14C]O[18O]O+ 7.139e-21 6.549e-21 -20.146 -20.184 -0.037 (0) CaH[14C][18O]O2+ 7.139e-21 6.549e-21 -20.146 -20.184 -0.037 (0) + CaH[14C]O[18O]O+ 7.139e-21 6.549e-21 -20.146 -20.184 -0.037 (0) Ca[14C]O2[18O] 1.174e-21 1.176e-21 -20.930 -20.930 0.001 (0) H[14C]O[18O]2- 6.745e-22 6.171e-22 -21.171 -21.210 -0.039 (0) H[14C][18O]2O- 6.745e-22 6.171e-22 -21.171 -21.210 -0.039 (0) @@ -11544,29 +11550,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.911 -67.910 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.912 -70.911 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.488 -67.487 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.489 -70.488 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.85 -21.71 -2.86 [13C]H4 + [13C]H4(g) -19.69 -22.55 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.35 -21.85 -1.50 [14C][18O]2 - [14C]H4(g) -30.34 -33.20 -2.86 [14C]H4 + [14C]H4(g) -31.19 -34.05 -2.86 [14C]H4 [14C]O2(g) -14.98 -16.45 -1.47 [14C]O2 [14C]O[18O](g) -17.36 -19.15 -1.79 [14C]O[18O] - [18O]2(g) -68.62 -70.91 -2.29 [18O]2 + [18O]2(g) -68.20 -70.49 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -11580,14 +11586,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.89 -19.75 -2.86 CH4 + CH4(g) -17.74 -20.60 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.29 -13.44 -3.15 H2 + H2(g) -10.50 -13.65 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.62 -65.51 -2.89 O2 - O[18O](g) -65.32 -68.21 -2.89 O[18O] + O2(g) -62.20 -65.09 -2.89 O2 + O[18O](g) -64.90 -67.79 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11611,12 +11617,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 48. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -11702,14 +11702,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 2.2204e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6611e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.719e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -3.5527e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -5.7732e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 2.8866e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -7.5495e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -11727,16 +11727,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.895 Adjusted to redox equilibrium + pe = -1.898 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 65 (166 overall) + Iterations = 62 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -11748,14 +11748,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.432e-20 - CH4 4.432e-20 4.439e-20 -19.353 -19.353 0.001 (0) +C(-4) 4.671e-20 + CH4 4.671e-20 4.679e-20 -19.331 -19.330 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -11764,9 +11764,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -11774,23 +11774,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.093e-08 6.103e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 9.213e-14 - H2 4.607e-14 4.614e-14 -13.337 -13.336 0.001 (0) +H(0) 9.335e-14 + H2 4.668e-14 4.675e-14 -13.331 -13.330 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.711 -65.710 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.110 -68.109 0.001 (0) -[13C](-4) 4.910e-22 - [13C]H4 4.910e-22 4.918e-22 -21.309 -21.308 0.001 (0) + O2 0.000e+00 0.000e+00 -65.722 -65.721 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.121 -68.120 0.001 (0) +[13C](-4) 5.175e-22 + [13C]H4 5.175e-22 5.184e-22 -21.286 -21.285 0.001 (0) [13C](4) 6.516e-05 H[13C]O3- 5.256e-05 4.808e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.594e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.594e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.594e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.594e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.093e-08 6.103e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.587e-08 4.595e-08 -7.338 -7.338 0.001 (0) @@ -11799,56 +11799,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.214e-09 2.031e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.647e-10 3.653e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 1.446e-33 - [14C]H4 1.446e-33 1.448e-33 -32.840 -32.839 0.001 (0) +[14C](-4) 1.524e-33 + [14C]H4 1.524e-33 1.526e-33 -32.817 -32.816 0.001 (0) [14C](4) 1.932e-16 H[14C]O3- 1.561e-16 1.428e-16 -15.807 -15.845 -0.039 (0) [14C]O2 3.248e-17 3.253e-17 -16.488 -16.488 0.001 (0) CaH[14C]O3+ 3.296e-18 3.024e-18 -17.482 -17.519 -0.037 (0) - H[14C]O2[18O]- 3.114e-19 2.849e-19 -18.507 -18.545 -0.039 (0) - H[14C]O[18O]O- 3.114e-19 2.849e-19 -18.507 -18.545 -0.039 (0) H[14C][18O]O2- 3.114e-19 2.849e-19 -18.507 -18.545 -0.039 (0) + H[14C]O[18O]O- 3.114e-19 2.849e-19 -18.507 -18.545 -0.039 (0) + H[14C]O2[18O]- 3.114e-19 2.849e-19 -18.507 -18.545 -0.039 (0) Ca[14C]O3 1.807e-19 1.810e-19 -18.743 -18.742 0.001 (0) [14C]O[18O] 1.351e-19 1.353e-19 -18.869 -18.869 0.001 (0) [14C]O3-2 9.270e-20 6.494e-20 -19.033 -19.187 -0.155 (0) CaH[14C]O2[18O]+ 6.577e-21 6.033e-21 -20.182 -20.219 -0.037 (0) - CaH[14C]O[18O]O+ 6.577e-21 6.033e-21 -20.182 -20.219 -0.037 (0) CaH[14C][18O]O2+ 6.577e-21 6.033e-21 -20.182 -20.219 -0.037 (0) + CaH[14C]O[18O]O+ 6.577e-21 6.033e-21 -20.182 -20.219 -0.037 (0) Ca[14C]O2[18O] 1.082e-21 1.083e-21 -20.966 -20.965 0.001 (0) - H[14C]O[18O]2- 6.214e-22 5.685e-22 -21.207 -21.245 -0.039 (0) H[14C][18O]2O- 6.214e-22 5.685e-22 -21.207 -21.245 -0.039 (0) H[14C][18O]O[18O]- 6.214e-22 5.685e-22 -21.207 -21.245 -0.039 (0) + H[14C]O[18O]2- 6.214e-22 5.685e-22 -21.207 -21.245 -0.039 (0) [14C]O2[18O]-2 5.549e-22 3.887e-22 -21.256 -21.410 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.110 -68.109 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.111 -71.110 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.121 -68.120 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.122 -71.121 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.45 -21.31 -2.86 [13C]H4 + [13C]H4(g) -18.43 -21.29 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.38 -21.89 -1.50 [14C][18O]2 - [14C]H4(g) -29.98 -32.84 -2.86 [14C]H4 + [14C]H4(g) -29.96 -32.82 -2.86 [14C]H4 [14C]O2(g) -15.02 -16.49 -1.47 [14C]O2 [14C]O[18O](g) -17.40 -19.19 -1.79 [14C]O[18O] - [18O]2(g) -68.82 -71.11 -2.29 [18O]2 + [18O]2(g) -68.83 -71.12 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -11862,14 +11862,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.49 -19.35 -2.86 CH4 + CH4(g) -16.47 -19.33 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.19 -13.34 -3.15 H2 + H2(g) -10.18 -13.33 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.82 -65.71 -2.89 O2 - O[18O](g) -65.52 -68.41 -2.89 O[18O] + O2(g) -62.83 -65.72 -2.89 O2 + O[18O](g) -65.53 -68.42 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11893,6 +11893,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 49. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -11978,14 +11984,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8272e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7465e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -5.9952e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.6209e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -6.2172e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 6.2172e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -12003,16 +12009,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.930 Adjusted to redox equilibrium + pe = -1.856 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 62 + Iterations = 120 (221 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -12024,25 +12030,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 8.431e-20 - CH4 8.431e-20 8.445e-20 -19.074 -19.073 0.001 (0) +C(-4) 2.172e-20 + CH4 2.172e-20 2.176e-20 -19.663 -19.662 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -12050,81 +12056,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.093e-08 6.103e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.082e-13 - H2 5.410e-14 5.419e-14 -13.267 -13.266 0.001 (0) +H(0) 7.709e-14 + H2 3.854e-14 3.861e-14 -13.414 -13.413 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.850 -65.850 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.249 -68.249 0.001 (0) -[13C](-4) 9.341e-22 - [13C]H4 9.341e-22 9.356e-22 -21.030 -21.029 0.001 (0) + O2 0.000e+00 0.000e+00 -65.556 -65.555 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.955 -67.954 0.001 (0) +[13C](-4) 2.407e-22 + [13C]H4 2.407e-22 2.411e-22 -21.619 -21.618 0.001 (0) [13C](4) 6.516e-05 H[13C]O3- 5.256e-05 4.809e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.594e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.594e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.594e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.594e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.093e-08 6.103e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.587e-08 4.595e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.126e-08 2.190e-08 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.215e-09 2.031e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.215e-09 2.031e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.215e-09 2.031e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.031e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.647e-10 3.653e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.533e-33 - [14C]H4 2.533e-33 2.538e-33 -32.596 -32.596 0.001 (0) +[14C](-4) 6.528e-34 + [14C]H4 6.528e-34 6.538e-34 -33.185 -33.185 0.001 (0) [14C](4) 1.780e-16 H[14C]O3- 1.438e-16 1.316e-16 -15.842 -15.881 -0.039 (0) [14C]O2 2.992e-17 2.997e-17 -16.524 -16.523 0.001 (0) CaH[14C]O3+ 3.037e-18 2.786e-18 -17.518 -17.555 -0.037 (0) - H[14C]O2[18O]- 2.869e-19 2.625e-19 -18.542 -18.581 -0.039 (0) - H[14C]O[18O]O- 2.869e-19 2.625e-19 -18.542 -18.581 -0.039 (0) H[14C][18O]O2- 2.869e-19 2.625e-19 -18.542 -18.581 -0.039 (0) + H[14C]O[18O]O- 2.869e-19 2.625e-19 -18.542 -18.581 -0.039 (0) + H[14C]O2[18O]- 2.869e-19 2.625e-19 -18.542 -18.581 -0.039 (0) Ca[14C]O3 1.665e-19 1.667e-19 -18.779 -18.778 0.001 (0) [14C]O[18O] 1.244e-19 1.246e-19 -18.905 -18.904 0.001 (0) [14C]O3-2 8.540e-20 5.982e-20 -19.069 -19.223 -0.155 (0) CaH[14C]O2[18O]+ 6.059e-21 5.558e-21 -20.218 -20.255 -0.037 (0) - CaH[14C]O[18O]O+ 6.059e-21 5.558e-21 -20.218 -20.255 -0.037 (0) CaH[14C][18O]O2+ 6.059e-21 5.558e-21 -20.218 -20.255 -0.037 (0) + CaH[14C]O[18O]O+ 6.059e-21 5.558e-21 -20.218 -20.255 -0.037 (0) Ca[14C]O2[18O] 9.964e-22 9.981e-22 -21.002 -21.001 0.001 (0) + H[14C][18O]O[18O]- 5.724e-22 5.237e-22 -21.242 -21.281 -0.039 (0) H[14C]O[18O]2- 5.724e-22 5.237e-22 -21.242 -21.281 -0.039 (0) H[14C][18O]2O- 5.724e-22 5.237e-22 -21.242 -21.281 -0.039 (0) - H[14C][18O]O[18O]- 5.724e-22 5.237e-22 -21.242 -21.281 -0.039 (0) [14C]O2[18O]-2 5.111e-22 3.581e-22 -21.291 -21.446 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.249 -68.249 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.250 -71.250 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.955 -67.954 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.956 -70.955 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.17 -21.03 -2.86 [13C]H4 + [13C]H4(g) -18.76 -21.62 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.42 -21.92 -1.50 [14C][18O]2 - [14C]H4(g) -29.74 -32.60 -2.86 [14C]H4 + [14C]H4(g) -30.32 -33.18 -2.86 [14C]H4 [14C]O2(g) -15.05 -16.52 -1.47 [14C]O2 [14C]O[18O](g) -17.44 -19.22 -1.79 [14C]O[18O] - [18O]2(g) -68.96 -71.25 -2.29 [18O]2 + [18O]2(g) -68.66 -70.96 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -12138,14 +12144,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.21 -19.07 -2.86 CH4 + CH4(g) -16.80 -19.66 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.12 -13.27 -3.15 H2 + H2(g) -10.26 -13.41 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.96 -65.85 -2.89 O2 - O[18O](g) -65.66 -68.55 -2.89 O[18O] + O2(g) -62.66 -65.56 -2.89 O2 + O[18O](g) -65.36 -68.26 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12254,14 +12260,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6657e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7226e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.4544e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.6542e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 6.2172e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 3.9968e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -12279,16 +12285,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.851 Adjusted to redox equilibrium + pe = -1.653 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 51 + Iterations = 84 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -12300,15 +12306,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.973e-20 - CH4 1.973e-20 1.976e-20 -19.705 -19.704 0.001 (0) +C(-4) 5.161e-22 + CH4 5.161e-22 5.170e-22 -21.287 -21.287 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -12316,9 +12322,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -12326,50 +12332,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.094e-08 6.104e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.526e-14 - H2 3.763e-14 3.769e-14 -13.424 -13.424 0.001 (0) +H(0) 3.027e-14 + H2 1.513e-14 1.516e-14 -13.820 -13.819 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.535 -65.534 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.934 -67.933 0.001 (0) -[13C](-4) 2.186e-22 - [13C]H4 2.186e-22 2.189e-22 -21.660 -21.660 0.001 (0) + O2 0.000e+00 0.000e+00 -64.744 -64.743 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.143 -67.142 0.001 (0) +[13C](-4) 5.718e-24 + [13C]H4 5.718e-24 5.728e-24 -23.243 -23.242 0.001 (0) [13C](4) 6.517e-05 H[13C]O3- 5.256e-05 4.809e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.094e-08 6.104e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.588e-08 4.595e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.126e-08 2.190e-08 -7.505 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.647e-10 3.653e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 5.461e-34 - [14C]H4 5.461e-34 5.470e-34 -33.263 -33.262 0.001 (0) +[14C](-4) 1.429e-35 + [14C]H4 1.429e-35 1.431e-35 -34.845 -34.844 0.001 (0) [14C](4) 1.640e-16 H[14C]O3- 1.325e-16 1.212e-16 -15.878 -15.917 -0.039 (0) [14C]O2 2.757e-17 2.761e-17 -16.560 -16.559 0.001 (0) CaH[14C]O3+ 2.797e-18 2.566e-18 -17.553 -17.591 -0.037 (0) - H[14C]O2[18O]- 2.643e-19 2.418e-19 -18.578 -18.617 -0.039 (0) - H[14C]O[18O]O- 2.643e-19 2.418e-19 -18.578 -18.617 -0.039 (0) H[14C][18O]O2- 2.643e-19 2.418e-19 -18.578 -18.617 -0.039 (0) + H[14C]O[18O]O- 2.643e-19 2.418e-19 -18.578 -18.617 -0.039 (0) + H[14C]O2[18O]- 2.643e-19 2.418e-19 -18.578 -18.617 -0.039 (0) Ca[14C]O3 1.534e-19 1.536e-19 -18.814 -18.814 0.001 (0) [14C]O[18O] 1.146e-19 1.148e-19 -18.941 -18.940 0.001 (0) [14C]O3-2 7.867e-20 5.511e-20 -19.104 -19.259 -0.155 (0) CaH[14C]O2[18O]+ 5.581e-21 5.120e-21 -20.253 -20.291 -0.037 (0) - CaH[14C]O[18O]O+ 5.581e-21 5.120e-21 -20.253 -20.291 -0.037 (0) CaH[14C][18O]O2+ 5.581e-21 5.120e-21 -20.253 -20.291 -0.037 (0) + CaH[14C]O[18O]O+ 5.581e-21 5.120e-21 -20.253 -20.291 -0.037 (0) Ca[14C]O2[18O] 9.179e-22 9.194e-22 -21.037 -21.036 0.001 (0) H[14C]O[18O]2- 5.274e-22 4.825e-22 -21.278 -21.317 -0.039 (0) H[14C][18O]2O- 5.274e-22 4.825e-22 -21.278 -21.317 -0.039 (0) @@ -12378,29 +12384,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.934 -67.933 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.935 -70.934 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.143 -67.142 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.144 -70.143 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.80 -21.66 -2.86 [13C]H4 + [13C]H4(g) -20.38 -23.24 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.46 -21.96 -1.50 [14C][18O]2 - [14C]H4(g) -30.40 -33.26 -2.86 [14C]H4 + [14C]H4(g) -31.98 -34.84 -2.86 [14C]H4 [14C]O2(g) -15.09 -16.56 -1.47 [14C]O2 [14C]O[18O](g) -17.47 -19.26 -1.79 [14C]O[18O] - [18O]2(g) -68.64 -70.93 -2.29 [18O]2 + [18O]2(g) -67.85 -70.14 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -12414,14 +12420,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.84 -19.70 -2.86 CH4 + CH4(g) -18.43 -21.29 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.27 -13.42 -3.15 H2 + H2(g) -10.67 -13.82 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.64 -65.53 -2.89 O2 - O[18O](g) -65.34 -68.23 -2.89 O[18O] + O2(g) -61.85 -64.74 -2.89 O2 + O[18O](g) -64.55 -67.44 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12445,6 +12451,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 51. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -12530,14 +12542,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6761e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7342e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -2.3315e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.0325e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.954e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.3323e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -12555,16 +12567,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.884 Adjusted to redox equilibrium + pe = -1.729 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 53 + Iterations = 130 (231 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -12576,25 +12588,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.605e-20 - CH4 3.605e-20 3.610e-20 -19.443 -19.442 0.001 (0) +C(-4) 2.072e-21 + CH4 2.072e-21 2.075e-21 -20.684 -20.683 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -12602,23 +12614,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.094e-08 6.104e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 8.749e-14 - H2 4.375e-14 4.382e-14 -13.359 -13.358 0.001 (0) +H(0) 4.284e-14 + H2 2.142e-14 2.146e-14 -13.669 -13.668 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.666 -65.665 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.065 -68.064 0.001 (0) -[13C](-4) 3.994e-22 - [13C]H4 3.994e-22 4.000e-22 -21.399 -21.398 0.001 (0) + O2 0.000e+00 0.000e+00 -65.046 -65.045 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.445 -67.444 0.001 (0) +[13C](-4) 2.296e-23 + [13C]H4 2.296e-23 2.299e-23 -22.639 -22.638 0.001 (0) [13C](4) 6.517e-05 H[13C]O3- 5.257e-05 4.809e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.094e-08 6.104e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.588e-08 4.595e-08 -7.338 -7.338 0.001 (0) @@ -12627,56 +12639,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 9.192e-34 - [14C]H4 9.192e-34 9.207e-34 -33.037 -33.036 0.001 (0) +[14C](-4) 5.284e-35 + [14C]H4 5.284e-35 5.293e-35 -34.277 -34.276 0.001 (0) [14C](4) 1.511e-16 H[14C]O3- 1.220e-16 1.117e-16 -15.913 -15.952 -0.039 (0) [14C]O2 2.539e-17 2.544e-17 -16.595 -16.595 0.001 (0) CaH[14C]O3+ 2.577e-18 2.364e-18 -17.589 -17.626 -0.037 (0) - H[14C]O2[18O]- 2.435e-19 2.228e-19 -18.614 -18.652 -0.039 (0) - H[14C]O[18O]O- 2.435e-19 2.228e-19 -18.614 -18.652 -0.039 (0) H[14C][18O]O2- 2.435e-19 2.228e-19 -18.614 -18.652 -0.039 (0) + H[14C]O[18O]O- 2.435e-19 2.228e-19 -18.614 -18.652 -0.039 (0) + H[14C]O2[18O]- 2.435e-19 2.228e-19 -18.614 -18.652 -0.039 (0) Ca[14C]O3 1.413e-19 1.415e-19 -18.850 -18.849 0.001 (0) [14C]O[18O] 1.056e-19 1.058e-19 -18.976 -18.976 0.001 (0) [14C]O3-2 7.247e-20 5.077e-20 -19.140 -19.294 -0.155 (0) CaH[14C]O2[18O]+ 5.142e-21 4.717e-21 -20.289 -20.326 -0.037 (0) - CaH[14C]O[18O]O+ 5.142e-21 4.717e-21 -20.289 -20.326 -0.037 (0) CaH[14C][18O]O2+ 5.142e-21 4.717e-21 -20.289 -20.326 -0.037 (0) + CaH[14C]O[18O]O+ 5.142e-21 4.717e-21 -20.289 -20.326 -0.037 (0) Ca[14C]O2[18O] 8.456e-22 8.470e-22 -21.073 -21.072 0.001 (0) - H[14C]O[18O]2- 4.858e-22 4.445e-22 -21.314 -21.352 -0.039 (0) H[14C][18O]2O- 4.858e-22 4.445e-22 -21.314 -21.352 -0.039 (0) H[14C][18O]O[18O]- 4.858e-22 4.445e-22 -21.314 -21.352 -0.039 (0) + H[14C]O[18O]2- 4.858e-22 4.445e-22 -21.314 -21.352 -0.039 (0) [14C]O2[18O]-2 4.338e-22 3.039e-22 -21.363 -21.517 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.065 -68.064 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.066 -71.065 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.445 -67.444 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.446 -70.445 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.54 -21.40 -2.86 [13C]H4 + [13C]H4(g) -19.78 -22.64 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.49 -21.99 -1.50 [14C][18O]2 - [14C]H4(g) -30.18 -33.04 -2.86 [14C]H4 + [14C]H4(g) -31.42 -34.28 -2.86 [14C]H4 [14C]O2(g) -15.13 -16.59 -1.47 [14C]O2 [14C]O[18O](g) -17.51 -19.29 -1.79 [14C]O[18O] - [18O]2(g) -68.77 -71.07 -2.29 [18O]2 + [18O]2(g) -68.15 -70.44 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -12690,14 +12702,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.58 -19.44 -2.86 CH4 + CH4(g) -17.82 -20.68 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.21 -13.36 -3.15 H2 + H2(g) -10.52 -13.67 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.77 -65.67 -2.89 O2 - O[18O](g) -65.47 -68.37 -2.89 O[18O] + O2(g) -62.15 -65.04 -2.89 O2 + O[18O](g) -64.85 -67.74 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12721,6 +12733,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 52. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -12806,14 +12824,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6332e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7574e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 6.8834e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 9.1038e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 2.8866e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -7.4385e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -12831,16 +12849,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.808 Adjusted to redox equilibrium + pe = -1.658 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 91 + Iterations = 69 (170 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -12852,15 +12870,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 9.033e-21 - CH4 9.033e-21 9.048e-21 -20.044 -20.043 0.001 (0) +C(-4) 5.618e-22 + CH4 5.618e-22 5.628e-22 -21.250 -21.250 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -12868,9 +12886,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -12878,81 +12896,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.094e-08 6.104e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.190e-14 - H2 3.095e-14 3.100e-14 -13.509 -13.509 0.001 (0) +H(0) 3.091e-14 + H2 1.546e-14 1.548e-14 -13.811 -13.810 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.365 -65.365 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.764 -67.764 0.001 (0) -[13C](-4) 1.001e-22 - [13C]H4 1.001e-22 1.002e-22 -22.000 -21.999 0.001 (0) + O2 0.000e+00 0.000e+00 -64.762 -64.761 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.161 -67.160 0.001 (0) +[13C](-4) 6.225e-24 + [13C]H4 6.225e-24 6.235e-24 -23.206 -23.205 0.001 (0) [13C](4) 6.517e-05 H[13C]O3- 5.257e-05 4.809e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.595e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.094e-08 6.104e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.588e-08 4.596e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.126e-08 2.190e-08 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.122e-34 - [14C]H4 2.122e-34 2.126e-34 -33.673 -33.673 0.001 (0) +[14C](-4) 1.320e-35 + [14C]H4 1.320e-35 1.322e-35 -34.879 -34.879 0.001 (0) [14C](4) 1.392e-16 H[14C]O3- 1.124e-16 1.029e-16 -15.949 -15.988 -0.039 (0) [14C]O2 2.339e-17 2.343e-17 -16.631 -16.630 0.001 (0) CaH[14C]O3+ 2.374e-18 2.178e-18 -17.625 -17.662 -0.037 (0) - H[14C]O2[18O]- 2.243e-19 2.052e-19 -18.649 -18.688 -0.039 (0) - H[14C]O[18O]O- 2.243e-19 2.052e-19 -18.649 -18.688 -0.039 (0) H[14C][18O]O2- 2.243e-19 2.052e-19 -18.649 -18.688 -0.039 (0) + H[14C]O[18O]O- 2.243e-19 2.052e-19 -18.649 -18.688 -0.039 (0) + H[14C]O2[18O]- 2.243e-19 2.052e-19 -18.649 -18.688 -0.039 (0) Ca[14C]O3 1.301e-19 1.304e-19 -18.886 -18.885 0.001 (0) [14C]O[18O] 9.728e-20 9.744e-20 -19.012 -19.011 0.001 (0) [14C]O3-2 6.676e-20 4.677e-20 -19.175 -19.330 -0.155 (0) CaH[14C]O2[18O]+ 4.737e-21 4.345e-21 -20.325 -20.362 -0.037 (0) - CaH[14C]O[18O]O+ 4.737e-21 4.345e-21 -20.325 -20.362 -0.037 (0) CaH[14C][18O]O2+ 4.737e-21 4.345e-21 -20.325 -20.362 -0.037 (0) + CaH[14C]O[18O]O+ 4.737e-21 4.345e-21 -20.325 -20.362 -0.037 (0) Ca[14C]O2[18O] 7.790e-22 7.803e-22 -21.108 -21.108 0.001 (0) + H[14C][18O]O[18O]- 4.475e-22 4.094e-22 -21.349 -21.388 -0.039 (0) H[14C]O[18O]2- 4.475e-22 4.094e-22 -21.349 -21.388 -0.039 (0) H[14C][18O]2O- 4.475e-22 4.094e-22 -21.349 -21.388 -0.039 (0) - H[14C][18O]O[18O]- 4.475e-22 4.094e-22 -21.349 -21.388 -0.039 (0) [14C]O2[18O]-2 3.996e-22 2.800e-22 -21.398 -21.553 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.764 -67.764 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.765 -70.765 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.161 -67.160 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.162 -70.161 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.14 -22.00 -2.86 [13C]H4 + [13C]H4(g) -20.35 -23.21 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.53 -22.03 -1.50 [14C][18O]2 - [14C]H4(g) -30.81 -33.67 -2.86 [14C]H4 + [14C]H4(g) -32.02 -34.88 -2.86 [14C]H4 [14C]O2(g) -15.16 -16.63 -1.47 [14C]O2 [14C]O[18O](g) -17.54 -19.33 -1.79 [14C]O[18O] - [18O]2(g) -68.47 -70.76 -2.29 [18O]2 + [18O]2(g) -67.87 -70.16 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -12966,14 +12984,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.18 -20.04 -2.86 CH4 + CH4(g) -18.39 -21.25 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.36 -13.51 -3.15 H2 + H2(g) -10.66 -13.81 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.47 -65.36 -2.89 O2 - O[18O](g) -65.17 -68.06 -2.89 O[18O] + O2(g) -61.87 -64.76 -2.89 O2 + O[18O](g) -64.57 -67.46 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12997,12 +13015,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 53. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -13088,14 +13100,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.8842e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.4409e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5992e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5854e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -4.996e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.1102e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 5.3291e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -5.107e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -13113,16 +13125,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.821 Adjusted to redox equilibrium + pe = -1.323 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 102 (203 overall) + Iterations = 65 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -13134,25 +13146,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.138e-20 - CH4 1.138e-20 1.140e-20 -19.944 -19.943 0.001 (0) +C(-4) 1.189e-24 + CH4 1.189e-24 1.191e-24 -23.925 -23.924 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -13160,50 +13172,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.094e-08 6.104e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.559e-14 - H2 3.279e-14 3.285e-14 -13.484 -13.484 0.001 (0) +H(0) 6.630e-15 + H2 3.315e-15 3.321e-15 -14.480 -14.479 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.415 -65.415 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.814 -67.814 0.001 (0) -[13C](-4) 1.261e-22 - [13C]H4 1.261e-22 1.263e-22 -21.899 -21.899 0.001 (0) + O2 0.000e+00 0.000e+00 -63.425 -63.424 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -65.824 -65.823 0.001 (0) +[13C](-4) 1.317e-26 + [13C]H4 1.317e-26 1.319e-26 -25.880 -25.880 0.001 (0) [13C](4) 6.517e-05 H[13C]O3- 5.257e-05 4.809e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.094e-08 6.104e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.588e-08 4.596e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.126e-08 2.190e-08 -7.505 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.463e-34 - [14C]H4 2.463e-34 2.467e-34 -33.609 -33.608 0.001 (0) +[14C](-4) 2.572e-38 + [14C]H4 2.572e-38 2.577e-38 -37.590 -37.589 0.001 (0) [14C](4) 1.282e-16 H[14C]O3- 1.036e-16 9.475e-17 -15.985 -16.023 -0.039 (0) [14C]O2 2.155e-17 2.159e-17 -16.667 -16.666 0.001 (0) CaH[14C]O3+ 2.187e-18 2.006e-18 -17.660 -17.698 -0.037 (0) - H[14C]O2[18O]- 2.066e-19 1.891e-19 -18.685 -18.723 -0.039 (0) - H[14C]O[18O]O- 2.066e-19 1.891e-19 -18.685 -18.723 -0.039 (0) H[14C][18O]O2- 2.066e-19 1.891e-19 -18.685 -18.723 -0.039 (0) + H[14C]O[18O]O- 2.066e-19 1.891e-19 -18.685 -18.723 -0.039 (0) + H[14C]O2[18O]- 2.066e-19 1.891e-19 -18.685 -18.723 -0.039 (0) Ca[14C]O3 1.199e-19 1.201e-19 -18.921 -18.920 0.001 (0) [14C]O[18O] 8.962e-20 8.976e-20 -19.048 -19.047 0.001 (0) [14C]O3-2 6.150e-20 4.309e-20 -19.211 -19.366 -0.155 (0) CaH[14C]O2[18O]+ 4.364e-21 4.003e-21 -20.360 -20.398 -0.037 (0) - CaH[14C]O[18O]O+ 4.364e-21 4.003e-21 -20.360 -20.398 -0.037 (0) CaH[14C][18O]O2+ 4.364e-21 4.003e-21 -20.360 -20.398 -0.037 (0) + CaH[14C]O[18O]O+ 4.364e-21 4.003e-21 -20.360 -20.398 -0.037 (0) Ca[14C]O2[18O] 7.176e-22 7.188e-22 -21.144 -21.143 0.001 (0) H[14C]O[18O]2- 4.123e-22 3.772e-22 -21.385 -21.423 -0.039 (0) H[14C][18O]2O- 4.123e-22 3.772e-22 -21.385 -21.423 -0.039 (0) @@ -13212,29 +13224,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.814 -67.814 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.815 -70.815 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -65.824 -65.823 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -68.825 -68.824 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.04 -21.90 -2.86 [13C]H4 + [13C]H4(g) -23.02 -25.88 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.56 -22.07 -1.50 [14C][18O]2 - [14C]H4(g) -30.75 -33.61 -2.86 [14C]H4 + [14C]H4(g) -34.73 -37.59 -2.86 [14C]H4 [14C]O2(g) -15.20 -16.67 -1.47 [14C]O2 [14C]O[18O](g) -17.58 -19.37 -1.79 [14C]O[18O] - [18O]2(g) -68.52 -70.81 -2.29 [18O]2 + [18O]2(g) -66.53 -68.82 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -13248,14 +13260,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.08 -19.94 -2.86 CH4 + CH4(g) -21.06 -23.92 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.33 -13.48 -3.15 H2 + H2(g) -11.33 -14.48 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.52 -65.41 -2.89 O2 - O[18O](g) -65.22 -68.11 -2.89 O[18O] + O2(g) -60.53 -63.42 -2.89 O2 + O[18O](g) -63.23 -66.12 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13279,6 +13291,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 54. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -13364,14 +13382,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7167e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.57e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 8.8818e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.2212e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -6.2172e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -2.2204e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -13389,16 +13407,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.862 Adjusted to redox equilibrium + pe = -1.682 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 98 + Iterations = 57 (158 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -13410,14 +13428,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.418e-20 - CH4 2.418e-20 2.422e-20 -19.617 -19.616 0.001 (0) +C(-4) 8.730e-22 + CH4 8.730e-22 8.745e-22 -21.059 -21.058 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -13426,9 +13444,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -13436,23 +13454,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.918e-14 - H2 3.959e-14 3.966e-14 -13.402 -13.402 0.001 (0) +H(0) 3.452e-14 + H2 1.726e-14 1.729e-14 -13.763 -13.762 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.579 -65.578 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.978 -67.977 0.001 (0) -[13C](-4) 2.679e-22 - [13C]H4 2.679e-22 2.684e-22 -21.572 -21.571 0.001 (0) + O2 0.000e+00 0.000e+00 -64.858 -64.857 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.257 -67.256 0.001 (0) +[13C](-4) 9.674e-24 + [13C]H4 9.674e-24 9.690e-24 -23.014 -23.014 0.001 (0) [13C](4) 6.518e-05 H[13C]O3- 5.257e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.588e-08 4.596e-08 -7.338 -7.338 0.001 (0) @@ -13461,56 +13479,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 4.821e-34 - [14C]H4 4.821e-34 4.829e-34 -33.317 -33.316 0.001 (0) +[14C](-4) 1.741e-35 + [14C]H4 1.741e-35 1.743e-35 -34.759 -34.759 0.001 (0) [14C](4) 1.181e-16 H[14C]O3- 9.541e-17 8.729e-17 -16.020 -16.059 -0.039 (0) [14C]O2 1.985e-17 1.989e-17 -16.702 -16.701 0.001 (0) CaH[14C]O3+ 2.015e-18 1.848e-18 -17.696 -17.733 -0.037 (0) - H[14C]O2[18O]- 1.904e-19 1.742e-19 -18.720 -18.759 -0.039 (0) - H[14C]O[18O]O- 1.904e-19 1.742e-19 -18.720 -18.759 -0.039 (0) H[14C][18O]O2- 1.904e-19 1.742e-19 -18.720 -18.759 -0.039 (0) + H[14C]O[18O]O- 1.904e-19 1.742e-19 -18.720 -18.759 -0.039 (0) + H[14C]O2[18O]- 1.904e-19 1.742e-19 -18.720 -18.759 -0.039 (0) Ca[14C]O3 1.105e-19 1.106e-19 -18.957 -18.956 0.001 (0) [14C]O[18O] 8.256e-20 8.269e-20 -19.083 -19.083 0.001 (0) [14C]O3-2 5.666e-20 3.969e-20 -19.247 -19.401 -0.155 (0) CaH[14C]O2[18O]+ 4.020e-21 3.688e-21 -20.396 -20.433 -0.037 (0) - CaH[14C]O[18O]O+ 4.020e-21 3.688e-21 -20.396 -20.433 -0.037 (0) CaH[14C][18O]O2+ 4.020e-21 3.688e-21 -20.396 -20.433 -0.037 (0) + CaH[14C]O[18O]O+ 4.020e-21 3.688e-21 -20.396 -20.433 -0.037 (0) Ca[14C]O2[18O] 6.611e-22 6.622e-22 -21.180 -21.179 0.001 (0) - H[14C]O[18O]2- 3.798e-22 3.475e-22 -21.420 -21.459 -0.039 (0) H[14C][18O]2O- 3.798e-22 3.475e-22 -21.420 -21.459 -0.039 (0) H[14C][18O]O[18O]- 3.798e-22 3.475e-22 -21.420 -21.459 -0.039 (0) + H[14C]O[18O]2- 3.798e-22 3.475e-22 -21.420 -21.459 -0.039 (0) [14C]O2[18O]-2 3.391e-22 2.376e-22 -21.470 -21.624 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.978 -67.977 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.979 -70.978 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.257 -67.256 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.258 -70.257 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.71 -21.57 -2.86 [13C]H4 + [13C]H4(g) -20.15 -23.01 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.60 -22.10 -1.50 [14C][18O]2 - [14C]H4(g) -30.46 -33.32 -2.86 [14C]H4 + [14C]H4(g) -31.90 -34.76 -2.86 [14C]H4 [14C]O2(g) -15.23 -16.70 -1.47 [14C]O2 [14C]O[18O](g) -17.61 -19.40 -1.79 [14C]O[18O] - [18O]2(g) -68.69 -70.98 -2.29 [18O]2 + [18O]2(g) -67.97 -70.26 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -13524,14 +13542,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.76 -19.62 -2.86 CH4 + CH4(g) -18.20 -21.06 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.25 -13.40 -3.15 H2 + H2(g) -10.61 -13.76 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.69 -65.58 -2.89 O2 - O[18O](g) -65.39 -68.28 -2.89 O[18O] + O2(g) -61.96 -64.86 -2.89 O2 + O[18O](g) -64.66 -67.56 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13555,6 +13573,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 55. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -13640,14 +13664,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6732e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6622e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -7.7716e-13 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -9.992e-13 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.1102e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 2.2204e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -13665,16 +13689,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.893 Adjusted to redox equilibrium + pe = -1.671 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 96 + Iterations = 90 (191 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -13686,25 +13710,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.323e-20 - CH4 4.323e-20 4.330e-20 -19.364 -19.363 0.001 (0) +C(-4) 7.222e-22 + CH4 7.222e-22 7.234e-22 -21.141 -21.141 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -13712,81 +13736,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 9.156e-14 - H2 4.578e-14 4.586e-14 -13.339 -13.339 0.001 (0) +H(0) 3.292e-14 + H2 1.646e-14 1.649e-14 -13.784 -13.783 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.705 -65.705 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.104 -68.104 0.001 (0) -[13C](-4) 4.791e-22 - [13C]H4 4.791e-22 4.799e-22 -21.320 -21.319 0.001 (0) + O2 0.000e+00 0.000e+00 -64.817 -64.816 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.216 -67.215 0.001 (0) +[13C](-4) 8.003e-24 + [13C]H4 8.003e-24 8.016e-24 -23.097 -23.096 0.001 (0) [13C](4) 6.518e-05 H[13C]O3- 5.257e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.596e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.588e-08 4.596e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.126e-08 2.190e-08 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 7.941e-34 - [14C]H4 7.941e-34 7.954e-34 -33.100 -33.099 0.001 (0) +[14C](-4) 1.326e-35 + [14C]H4 1.326e-35 1.329e-35 -34.877 -34.877 0.001 (0) [14C](4) 1.088e-16 H[14C]O3- 8.790e-17 8.041e-17 -16.056 -16.095 -0.039 (0) [14C]O2 1.829e-17 1.832e-17 -16.738 -16.737 0.001 (0) CaH[14C]O3+ 1.856e-18 1.703e-18 -17.731 -17.769 -0.037 (0) - H[14C]O2[18O]- 1.754e-19 1.604e-19 -18.756 -18.795 -0.039 (0) - H[14C]O[18O]O- 1.754e-19 1.604e-19 -18.756 -18.795 -0.039 (0) H[14C][18O]O2- 1.754e-19 1.604e-19 -18.756 -18.795 -0.039 (0) + H[14C]O[18O]O- 1.754e-19 1.604e-19 -18.756 -18.795 -0.039 (0) + H[14C]O2[18O]- 1.754e-19 1.604e-19 -18.756 -18.795 -0.039 (0) Ca[14C]O3 1.018e-19 1.019e-19 -18.992 -18.992 0.001 (0) [14C]O[18O] 7.605e-20 7.618e-20 -19.119 -19.118 0.001 (0) [14C]O3-2 5.220e-20 3.657e-20 -19.282 -19.437 -0.155 (0) CaH[14C]O2[18O]+ 3.703e-21 3.397e-21 -20.431 -20.469 -0.037 (0) - CaH[14C]O[18O]O+ 3.703e-21 3.397e-21 -20.431 -20.469 -0.037 (0) CaH[14C][18O]O2+ 3.703e-21 3.397e-21 -20.431 -20.469 -0.037 (0) + CaH[14C]O[18O]O+ 3.703e-21 3.397e-21 -20.431 -20.469 -0.037 (0) Ca[14C]O2[18O] 6.090e-22 6.100e-22 -21.215 -21.215 0.001 (0) + H[14C][18O]O[18O]- 3.499e-22 3.201e-22 -21.456 -21.495 -0.039 (0) H[14C]O[18O]2- 3.499e-22 3.201e-22 -21.456 -21.495 -0.039 (0) H[14C][18O]2O- 3.499e-22 3.201e-22 -21.456 -21.495 -0.039 (0) - H[14C][18O]O[18O]- 3.499e-22 3.201e-22 -21.456 -21.495 -0.039 (0) [14C]O2[18O]-2 3.124e-22 2.189e-22 -21.505 -21.660 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.104 -68.104 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.105 -71.105 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.216 -67.215 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.217 -70.216 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.46 -21.32 -2.86 [13C]H4 + [13C]H4(g) -20.24 -23.10 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.63 -22.14 -1.50 [14C][18O]2 - [14C]H4(g) -30.24 -33.10 -2.86 [14C]H4 + [14C]H4(g) -32.02 -34.88 -2.86 [14C]H4 [14C]O2(g) -15.27 -16.74 -1.47 [14C]O2 [14C]O[18O](g) -17.65 -19.44 -1.79 [14C]O[18O] - [18O]2(g) -68.81 -71.10 -2.29 [18O]2 + [18O]2(g) -67.93 -70.22 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -13800,14 +13824,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.50 -19.36 -2.86 CH4 + CH4(g) -18.28 -21.14 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.19 -13.34 -3.15 H2 + H2(g) -10.63 -13.78 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.81 -65.70 -2.89 O2 - O[18O](g) -65.51 -68.40 -2.89 O[18O] + O2(g) -61.92 -64.82 -2.89 O2 + O[18O](g) -64.62 -67.52 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13831,6 +13855,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 56. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -13916,14 +13946,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6446e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7669e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.632e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.6431e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 7.3275e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -7.7716e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -13941,16 +13971,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.993 Adjusted to redox equilibrium + pe = -1.881 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 79 + Iterations = 75 (176 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -13962,15 +13992,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.725e-19 - CH4 2.725e-19 2.730e-19 -18.565 -18.564 0.001 (0) +C(-4) 3.469e-20 + CH4 3.469e-20 3.475e-20 -19.460 -19.459 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -13978,9 +14008,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -13988,50 +14018,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.451e-13 - H2 7.254e-14 7.266e-14 -13.139 -13.139 0.001 (0) +H(0) 8.666e-14 + H2 4.333e-14 4.340e-14 -13.363 -13.362 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.105 -66.104 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.504 -68.503 0.001 (0) -[13C](-4) 3.020e-21 - [13C]H4 3.020e-21 3.025e-21 -20.520 -20.519 0.001 (0) + O2 0.000e+00 0.000e+00 -65.657 -65.657 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.056 -68.056 0.001 (0) +[13C](-4) 3.844e-22 + [13C]H4 3.844e-22 3.851e-22 -21.415 -21.414 0.001 (0) [13C](4) 6.518e-05 H[13C]O3- 5.257e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.589e-08 4.596e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.127e-08 2.190e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 4.611e-33 - [14C]H4 4.611e-33 4.619e-33 -32.336 -32.335 0.001 (0) +[14C](-4) 5.870e-34 + [14C]H4 5.870e-34 5.880e-34 -33.231 -33.231 0.001 (0) [14C](4) 1.002e-16 H[14C]O3- 8.097e-17 7.408e-17 -16.092 -16.130 -0.039 (0) [14C]O2 1.685e-17 1.688e-17 -16.773 -16.773 0.001 (0) CaH[14C]O3+ 1.710e-18 1.569e-18 -17.767 -17.805 -0.037 (0) - H[14C]O2[18O]- 1.616e-19 1.478e-19 -18.792 -18.830 -0.039 (0) - H[14C]O[18O]O- 1.616e-19 1.478e-19 -18.792 -18.830 -0.039 (0) H[14C][18O]O2- 1.616e-19 1.478e-19 -18.792 -18.830 -0.039 (0) + H[14C]O[18O]O- 1.616e-19 1.478e-19 -18.792 -18.830 -0.039 (0) + H[14C]O2[18O]- 1.616e-19 1.478e-19 -18.792 -18.830 -0.039 (0) Ca[14C]O3 9.374e-20 9.389e-20 -19.028 -19.027 0.001 (0) [14C]O[18O] 7.006e-20 7.018e-20 -19.155 -19.154 0.001 (0) [14C]O3-2 4.808e-20 3.369e-20 -19.318 -19.473 -0.155 (0) CaH[14C]O2[18O]+ 3.412e-21 3.129e-21 -20.467 -20.505 -0.037 (0) - CaH[14C]O[18O]O+ 3.412e-21 3.129e-21 -20.467 -20.505 -0.037 (0) CaH[14C][18O]O2+ 3.412e-21 3.129e-21 -20.467 -20.505 -0.037 (0) + CaH[14C]O[18O]O+ 3.412e-21 3.129e-21 -20.467 -20.505 -0.037 (0) Ca[14C]O2[18O] 5.611e-22 5.620e-22 -21.251 -21.250 0.001 (0) H[14C]O[18O]2- 3.223e-22 2.949e-22 -21.492 -21.530 -0.039 (0) H[14C][18O]2O- 3.223e-22 2.949e-22 -21.492 -21.530 -0.039 (0) @@ -14040,29 +14070,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.504 -68.503 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.505 -71.504 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.056 -68.056 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.058 -71.057 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.66 -20.52 -2.86 [13C]H4 + [13C]H4(g) -18.55 -21.41 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.67 -22.17 -1.50 [14C][18O]2 - [14C]H4(g) -29.48 -32.34 -2.86 [14C]H4 + [14C]H4(g) -30.37 -33.23 -2.86 [14C]H4 [14C]O2(g) -15.30 -16.77 -1.47 [14C]O2 [14C]O[18O](g) -17.69 -19.47 -1.79 [14C]O[18O] - [18O]2(g) -69.21 -71.50 -2.29 [18O]2 + [18O]2(g) -68.77 -71.06 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -14076,14 +14106,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.70 -18.56 -2.86 CH4 + CH4(g) -16.60 -19.46 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.99 -13.14 -3.15 H2 + H2(g) -10.21 -13.36 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.21 -66.10 -2.89 O2 - O[18O](g) -65.91 -68.80 -2.89 O[18O] + O2(g) -62.76 -65.66 -2.89 O2 + O[18O](g) -65.46 -68.36 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -14192,14 +14222,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5483e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5987e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.7764e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 3.7748e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -7.3275e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 3.1086e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -14217,16 +14247,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.040 Adjusted to redox equilibrium + pe = -1.862 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 99 + Iterations = 52 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -14238,25 +14268,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 6.455e-19 - CH4 6.455e-19 6.466e-19 -18.190 -18.189 0.001 (0) +C(-4) 2.404e-20 + CH4 2.404e-20 2.408e-20 -19.619 -19.618 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -14264,23 +14294,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.800e-13 - H2 8.999e-14 9.014e-14 -13.046 -13.045 0.001 (0) +H(0) 7.907e-14 + H2 3.953e-14 3.960e-14 -13.403 -13.402 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.292 -66.292 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.691 -68.691 0.001 (0) -[13C](-4) 7.154e-21 - [13C]H4 7.154e-21 7.165e-21 -20.145 -20.145 0.001 (0) + O2 0.000e+00 0.000e+00 -65.578 -65.577 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.977 -67.976 0.001 (0) +[13C](-4) 2.664e-22 + [13C]H4 2.664e-22 2.668e-22 -21.575 -21.574 0.001 (0) [13C](4) 6.518e-05 H[13C]O3- 5.258e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.589e-08 4.596e-08 -7.338 -7.338 0.001 (0) @@ -14289,56 +14319,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.006e-32 - [14C]H4 1.006e-32 1.008e-32 -31.997 -31.997 0.001 (0) +[14C](-4) 3.747e-34 + [14C]H4 3.747e-34 3.753e-34 -33.426 -33.426 0.001 (0) [14C](4) 9.234e-17 H[14C]O3- 7.459e-17 6.824e-17 -16.127 -16.166 -0.039 (0) [14C]O2 1.552e-17 1.555e-17 -16.809 -16.808 0.001 (0) CaH[14C]O3+ 1.575e-18 1.445e-18 -17.803 -17.840 -0.037 (0) - H[14C]O2[18O]- 1.488e-19 1.362e-19 -18.827 -18.866 -0.039 (0) - H[14C]O[18O]O- 1.488e-19 1.362e-19 -18.827 -18.866 -0.039 (0) H[14C][18O]O2- 1.488e-19 1.362e-19 -18.827 -18.866 -0.039 (0) + H[14C]O[18O]O- 1.488e-19 1.362e-19 -18.827 -18.866 -0.039 (0) + H[14C]O2[18O]- 1.488e-19 1.362e-19 -18.827 -18.866 -0.039 (0) Ca[14C]O3 8.635e-20 8.649e-20 -19.064 -19.063 0.001 (0) [14C]O[18O] 6.454e-20 6.465e-20 -19.190 -19.189 0.001 (0) [14C]O3-2 4.430e-20 3.103e-20 -19.354 -19.508 -0.155 (0) CaH[14C]O2[18O]+ 3.143e-21 2.883e-21 -20.503 -20.540 -0.037 (0) - CaH[14C]O[18O]O+ 3.143e-21 2.883e-21 -20.503 -20.540 -0.037 (0) CaH[14C][18O]O2+ 3.143e-21 2.883e-21 -20.503 -20.540 -0.037 (0) + CaH[14C]O[18O]O+ 3.143e-21 2.883e-21 -20.503 -20.540 -0.037 (0) Ca[14C]O2[18O] 5.169e-22 5.177e-22 -21.287 -21.286 0.001 (0) - H[14C]O[18O]2- 2.969e-22 2.717e-22 -21.527 -21.566 -0.039 (0) H[14C][18O]2O- 2.969e-22 2.717e-22 -21.527 -21.566 -0.039 (0) H[14C][18O]O[18O]- 2.969e-22 2.717e-22 -21.527 -21.566 -0.039 (0) + H[14C]O[18O]2- 2.969e-22 2.717e-22 -21.527 -21.566 -0.039 (0) [14C]O2[18O]-2 2.651e-22 1.857e-22 -21.577 -21.731 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.691 -68.691 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.692 -71.692 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.977 -67.976 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.978 -70.977 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.28 -20.14 -2.86 [13C]H4 + [13C]H4(g) -18.71 -21.57 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.70 -22.21 -1.50 [14C][18O]2 - [14C]H4(g) -29.14 -32.00 -2.86 [14C]H4 + [14C]H4(g) -30.57 -33.43 -2.86 [14C]H4 [14C]O2(g) -15.34 -16.81 -1.47 [14C]O2 [14C]O[18O](g) -17.72 -19.51 -1.79 [14C]O[18O] - [18O]2(g) -69.40 -71.69 -2.29 [18O]2 + [18O]2(g) -68.69 -70.98 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -14352,14 +14382,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.33 -18.19 -2.86 CH4 + CH4(g) -16.76 -19.62 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.90 -13.05 -3.15 H2 + H2(g) -10.25 -13.40 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.40 -66.29 -2.89 O2 - O[18O](g) -66.10 -68.99 -2.89 O[18O] + O2(g) -62.68 -65.58 -2.89 O2 + O[18O](g) -65.38 -68.28 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -14383,6 +14413,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 58. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -14468,14 +14504,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5798e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5461e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -4.3299e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -8.3267e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.1435e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.1102e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -14493,16 +14529,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.143 Adjusted to redox equilibrium + pe = -1.995 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 96 + Iterations = 57 (158 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -14514,15 +14550,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.282e-18 - CH4 4.282e-18 4.289e-18 -17.368 -17.368 0.001 (0) +C(-4) 2.793e-19 + CH4 2.793e-19 2.798e-19 -18.554 -18.553 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -14530,9 +14566,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -14540,81 +14576,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.889e-13 - H2 1.444e-13 1.447e-13 -12.840 -12.840 0.001 (0) +H(0) 1.460e-13 + H2 7.299e-14 7.311e-14 -13.137 -13.136 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.703 -66.702 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.102 -69.101 0.001 (0) -[13C](-4) 4.746e-20 - [13C]H4 4.746e-20 4.753e-20 -19.324 -19.323 0.001 (0) + O2 0.000e+00 0.000e+00 -66.110 -66.110 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.509 -68.509 0.001 (0) +[13C](-4) 3.095e-21 + [13C]H4 3.095e-21 3.101e-21 -20.509 -20.509 0.001 (0) [13C](4) 6.518e-05 H[13C]O3- 5.258e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.957 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.589e-08 4.596e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.127e-08 2.190e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 6.149e-32 - [14C]H4 6.149e-32 6.159e-32 -31.211 -31.210 0.001 (0) +[14C](-4) 4.011e-33 + [14C]H4 4.011e-33 4.018e-33 -32.397 -32.396 0.001 (0) [14C](4) 8.507e-17 H[14C]O3- 6.872e-17 6.287e-17 -16.163 -16.202 -0.039 (0) [14C]O2 1.430e-17 1.432e-17 -16.845 -16.844 0.001 (0) CaH[14C]O3+ 1.451e-18 1.331e-18 -17.838 -17.876 -0.037 (0) - H[14C]O2[18O]- 1.371e-19 1.254e-19 -18.863 -18.902 -0.039 (0) - H[14C]O[18O]O- 1.371e-19 1.254e-19 -18.863 -18.902 -0.039 (0) H[14C][18O]O2- 1.371e-19 1.254e-19 -18.863 -18.902 -0.039 (0) + H[14C]O[18O]O- 1.371e-19 1.254e-19 -18.863 -18.902 -0.039 (0) + H[14C]O2[18O]- 1.371e-19 1.254e-19 -18.863 -18.902 -0.039 (0) Ca[14C]O3 7.955e-20 7.968e-20 -19.099 -19.099 0.001 (0) [14C]O[18O] 5.946e-20 5.956e-20 -19.226 -19.225 0.001 (0) [14C]O3-2 4.081e-20 2.859e-20 -19.389 -19.544 -0.155 (0) CaH[14C]O2[18O]+ 2.895e-21 2.656e-21 -20.538 -20.576 -0.037 (0) - CaH[14C]O[18O]O+ 2.895e-21 2.656e-21 -20.538 -20.576 -0.037 (0) CaH[14C][18O]O2+ 2.895e-21 2.656e-21 -20.538 -20.576 -0.037 (0) + CaH[14C]O[18O]O+ 2.895e-21 2.656e-21 -20.538 -20.576 -0.037 (0) Ca[14C]O2[18O] 4.762e-22 4.769e-22 -21.322 -21.322 0.001 (0) + H[14C][18O]O[18O]- 2.736e-22 2.503e-22 -21.563 -21.602 -0.039 (0) H[14C]O[18O]2- 2.736e-22 2.503e-22 -21.563 -21.602 -0.039 (0) H[14C][18O]2O- 2.736e-22 2.503e-22 -21.563 -21.602 -0.039 (0) - H[14C][18O]O[18O]- 2.736e-22 2.503e-22 -21.563 -21.602 -0.039 (0) [14C]O2[18O]-2 2.443e-22 1.711e-22 -21.612 -21.767 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.102 -69.101 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.103 -72.103 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.509 -68.509 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.510 -71.510 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.46 -19.32 -2.86 [13C]H4 + [13C]H4(g) -17.65 -20.51 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.74 -22.24 -1.50 [14C][18O]2 - [14C]H4(g) -28.35 -31.21 -2.86 [14C]H4 + [14C]H4(g) -29.54 -32.40 -2.86 [14C]H4 [14C]O2(g) -15.38 -16.84 -1.47 [14C]O2 [14C]O[18O](g) -17.76 -19.54 -1.79 [14C]O[18O] - [18O]2(g) -69.81 -72.10 -2.29 [18O]2 + [18O]2(g) -69.22 -71.51 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -14628,14 +14664,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.51 -17.37 -2.86 CH4 + CH4(g) -15.69 -18.55 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.69 -12.84 -3.15 H2 + H2(g) -9.99 -13.14 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.81 -66.70 -2.89 O2 - O[18O](g) -66.51 -69.40 -2.89 O[18O] + O2(g) -63.22 -66.11 -2.89 O2 + O[18O](g) -65.92 -68.81 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -14659,12 +14695,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 59. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -14750,14 +14780,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 6.6613e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -7.9936e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6852e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6446e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 8.8818e-13 0 -Alpha 14C CH4(aq)/CO2(aq) 1 7.1054e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.5543e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.1102e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -14775,16 +14805,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.193 Adjusted to redox equilibrium + pe = -2.042 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 113 (214 overall) + Iterations = 64 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -14796,25 +14826,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.078e-17 - CH4 1.078e-17 1.080e-17 -16.967 -16.967 0.001 (0) +C(-4) 6.713e-19 + CH4 6.713e-19 6.724e-19 -18.173 -18.172 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -14822,50 +14852,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.639e-13 - H2 1.819e-13 1.822e-13 -12.740 -12.739 0.001 (0) +H(0) 1.818e-13 + H2 9.088e-14 9.103e-14 -13.042 -13.041 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.904 -66.903 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.303 -69.302 0.001 (0) -[13C](-4) 1.195e-19 - [13C]H4 1.195e-19 1.197e-19 -18.923 -18.922 0.001 (0) + O2 0.000e+00 0.000e+00 -66.301 -66.300 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.700 -68.699 0.001 (0) +[13C](-4) 7.439e-21 + [13C]H4 7.439e-21 7.451e-21 -20.128 -20.128 0.001 (0) [13C](4) 6.518e-05 H[13C]O3- 5.258e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.589e-08 4.596e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.127e-08 2.190e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.426e-31 - [14C]H4 1.426e-31 1.428e-31 -30.846 -30.845 0.001 (0) +[14C](-4) 8.880e-33 + [14C]H4 8.880e-33 8.894e-33 -32.052 -32.051 0.001 (0) [14C](4) 7.837e-17 H[14C]O3- 6.330e-17 5.792e-17 -16.199 -16.237 -0.039 (0) [14C]O2 1.317e-17 1.319e-17 -16.880 -16.880 0.001 (0) CaH[14C]O3+ 1.337e-18 1.226e-18 -17.874 -17.911 -0.037 (0) - H[14C]O2[18O]- 1.263e-19 1.156e-19 -18.899 -18.937 -0.039 (0) - H[14C]O[18O]O- 1.263e-19 1.156e-19 -18.899 -18.937 -0.039 (0) H[14C][18O]O2- 1.263e-19 1.156e-19 -18.899 -18.937 -0.039 (0) + H[14C]O[18O]O- 1.263e-19 1.156e-19 -18.899 -18.937 -0.039 (0) + H[14C]O2[18O]- 1.263e-19 1.156e-19 -18.899 -18.937 -0.039 (0) Ca[14C]O3 7.328e-20 7.340e-20 -19.135 -19.134 0.001 (0) [14C]O[18O] 5.478e-20 5.487e-20 -19.261 -19.261 0.001 (0) [14C]O3-2 3.759e-20 2.634e-20 -19.425 -19.579 -0.155 (0) CaH[14C]O2[18O]+ 2.667e-21 2.447e-21 -20.574 -20.611 -0.037 (0) - CaH[14C]O[18O]O+ 2.667e-21 2.447e-21 -20.574 -20.611 -0.037 (0) CaH[14C][18O]O2+ 2.667e-21 2.447e-21 -20.574 -20.611 -0.037 (0) + CaH[14C]O[18O]O+ 2.667e-21 2.447e-21 -20.574 -20.611 -0.037 (0) Ca[14C]O2[18O] 4.386e-22 4.394e-22 -21.358 -21.357 0.001 (0) H[14C]O[18O]2- 2.520e-22 2.306e-22 -21.599 -21.637 -0.039 (0) H[14C][18O]2O- 2.520e-22 2.306e-22 -21.599 -21.637 -0.039 (0) @@ -14874,29 +14904,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.303 -69.302 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.304 -72.303 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.700 -68.699 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.701 -71.700 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.06 -18.92 -2.86 [13C]H4 + [13C]H4(g) -17.27 -20.13 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.78 -22.28 -1.50 [14C][18O]2 - [14C]H4(g) -27.99 -30.85 -2.86 [14C]H4 + [14C]H4(g) -29.19 -32.05 -2.86 [14C]H4 [14C]O2(g) -15.41 -16.88 -1.47 [14C]O2 [14C]O[18O](g) -17.79 -19.58 -1.79 [14C]O[18O] - [18O]2(g) -70.01 -72.30 -2.29 [18O]2 + [18O]2(g) -69.41 -71.70 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -14910,14 +14940,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.11 -16.97 -2.86 CH4 + CH4(g) -15.31 -18.17 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.59 -12.74 -3.15 H2 + H2(g) -9.89 -13.04 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.01 -66.90 -2.89 O2 - O[18O](g) -66.71 -69.60 -2.89 O[18O] + O2(g) -63.41 -66.30 -2.89 O2 + O[18O](g) -66.11 -69.00 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -14941,12 +14971,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 60. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -15032,14 +15056,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.4385e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7426e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.565e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -3.7748e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 4.4409e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.2434e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 5.9952e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -15057,16 +15081,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.201 Adjusted to redox equilibrium + pe = -2.059 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 128 (229 overall) + Iterations = 98 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -15078,14 +15102,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.246e-17 - CH4 1.246e-17 1.248e-17 -16.905 -16.904 0.001 (0) +C(-4) 9.176e-19 + CH4 9.176e-19 9.191e-19 -18.037 -18.037 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -15094,9 +15118,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -15104,23 +15128,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.772e-13 - H2 1.886e-13 1.889e-13 -12.724 -12.724 0.001 (0) +H(0) 1.965e-13 + H2 9.826e-14 9.843e-14 -13.008 -13.007 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.935 -66.934 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.334 -69.333 0.001 (0) -[13C](-4) 1.381e-19 - [13C]H4 1.381e-19 1.383e-19 -18.860 -18.859 0.001 (0) + O2 0.000e+00 0.000e+00 -66.369 -66.368 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.768 -68.767 0.001 (0) +[13C](-4) 1.017e-20 + [13C]H4 1.017e-20 1.019e-20 -19.993 -19.992 0.001 (0) [13C](4) 6.518e-05 H[13C]O3- 5.258e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.018e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.597e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) @@ -15129,56 +15153,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.518e-31 - [14C]H4 1.518e-31 1.521e-31 -30.819 -30.818 0.001 (0) +[14C](-4) 1.118e-32 + [14C]H4 1.118e-32 1.120e-32 -31.952 -31.951 0.001 (0) [14C](4) 7.219e-17 H[14C]O3- 5.832e-17 5.335e-17 -16.234 -16.273 -0.039 (0) [14C]O2 1.213e-17 1.215e-17 -16.916 -16.915 0.001 (0) CaH[14C]O3+ 1.231e-18 1.130e-18 -17.910 -17.947 -0.037 (0) - H[14C]O2[18O]- 1.164e-19 1.065e-19 -18.934 -18.973 -0.039 (0) - H[14C]O[18O]O- 1.164e-19 1.065e-19 -18.934 -18.973 -0.039 (0) H[14C][18O]O2- 1.164e-19 1.065e-19 -18.934 -18.973 -0.039 (0) + H[14C]O[18O]O- 1.164e-19 1.065e-19 -18.934 -18.973 -0.039 (0) + H[14C]O2[18O]- 1.164e-19 1.065e-19 -18.934 -18.973 -0.039 (0) Ca[14C]O3 6.751e-20 6.762e-20 -19.171 -19.170 0.001 (0) [14C]O[18O] 5.046e-20 5.054e-20 -19.297 -19.296 0.001 (0) [14C]O3-2 3.463e-20 2.426e-20 -19.461 -19.615 -0.155 (0) CaH[14C]O2[18O]+ 2.457e-21 2.254e-21 -20.610 -20.647 -0.037 (0) - CaH[14C]O[18O]O+ 2.457e-21 2.254e-21 -20.610 -20.647 -0.037 (0) CaH[14C][18O]O2+ 2.457e-21 2.254e-21 -20.610 -20.647 -0.037 (0) + CaH[14C]O[18O]O+ 2.457e-21 2.254e-21 -20.610 -20.647 -0.037 (0) Ca[14C]O2[18O] 4.041e-22 4.048e-22 -21.394 -21.393 0.001 (0) - H[14C]O[18O]2- 2.322e-22 2.124e-22 -21.634 -21.673 -0.039 (0) H[14C][18O]2O- 2.322e-22 2.124e-22 -21.634 -21.673 -0.039 (0) H[14C][18O]O[18O]- 2.322e-22 2.124e-22 -21.634 -21.673 -0.039 (0) + H[14C]O[18O]2- 2.322e-22 2.124e-22 -21.634 -21.673 -0.039 (0) [14C]O2[18O]-2 2.073e-22 1.452e-22 -21.683 -21.838 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.334 -69.333 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.335 -72.334 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.768 -68.767 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.769 -71.768 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.00 -18.86 -2.86 [13C]H4 + [13C]H4(g) -17.13 -19.99 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.81 -22.32 -1.50 [14C][18O]2 - [14C]H4(g) -27.96 -30.82 -2.86 [14C]H4 + [14C]H4(g) -29.09 -31.95 -2.86 [14C]H4 [14C]O2(g) -15.45 -16.92 -1.47 [14C]O2 [14C]O[18O](g) -17.83 -19.62 -1.79 [14C]O[18O] - [18O]2(g) -70.04 -72.33 -2.29 [18O]2 + [18O]2(g) -69.48 -71.77 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -15192,14 +15216,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.04 -16.90 -2.86 CH4 + CH4(g) -15.18 -18.04 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.57 -12.72 -3.15 H2 + H2(g) -9.86 -13.01 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.04 -66.93 -2.89 O2 - O[18O](g) -66.74 -69.63 -2.89 O[18O] + O2(g) -63.48 -66.37 -2.89 O2 + O[18O](g) -66.18 -69.07 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -15223,12 +15247,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 61. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -15314,14 +15332,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.5503e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5726e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5291e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -8.1046e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -6.2172e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -2.9976e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.1102e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -15339,16 +15357,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.198 Adjusted to redox equilibrium + pe = -2.038 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 97 (198 overall) + Iterations = 96 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -15360,25 +15378,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.184e-17 - CH4 1.184e-17 1.185e-17 -16.927 -16.926 0.001 (0) +C(-4) 6.172e-19 + CH4 6.172e-19 6.182e-19 -18.210 -18.209 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -15386,81 +15404,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.724e-13 - H2 1.862e-13 1.865e-13 -12.730 -12.729 0.001 (0) +H(0) 1.780e-13 + H2 8.899e-14 8.914e-14 -13.051 -13.050 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.924 -66.923 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.323 -69.322 0.001 (0) -[13C](-4) 1.312e-19 - [13C]H4 1.312e-19 1.314e-19 -18.882 -18.881 0.001 (0) + O2 0.000e+00 0.000e+00 -66.283 -66.282 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.682 -68.681 0.001 (0) +[13C](-4) 6.840e-21 + [13C]H4 6.840e-21 6.851e-21 -20.165 -20.164 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.648e-10 3.654e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.329e-31 - [14C]H4 1.329e-31 1.331e-31 -30.877 -30.876 0.001 (0) +[14C](-4) 6.929e-33 + [14C]H4 6.929e-33 6.940e-33 -32.159 -32.159 0.001 (0) [14C](4) 6.651e-17 H[14C]O3- 5.372e-17 4.915e-17 -16.270 -16.308 -0.039 (0) [14C]O2 1.118e-17 1.120e-17 -16.952 -16.951 0.001 (0) CaH[14C]O3+ 1.134e-18 1.041e-18 -17.945 -17.983 -0.037 (0) - H[14C]O2[18O]- 1.072e-19 9.807e-20 -18.970 -19.008 -0.039 (0) - H[14C]O[18O]O- 1.072e-19 9.807e-20 -18.970 -19.008 -0.039 (0) H[14C][18O]O2- 1.072e-19 9.807e-20 -18.970 -19.008 -0.039 (0) + H[14C]O[18O]O- 1.072e-19 9.807e-20 -18.970 -19.008 -0.039 (0) + H[14C]O2[18O]- 1.072e-19 9.807e-20 -18.970 -19.008 -0.039 (0) Ca[14C]O3 6.219e-20 6.230e-20 -19.206 -19.206 0.001 (0) [14C]O[18O] 4.649e-20 4.656e-20 -19.333 -19.332 0.001 (0) [14C]O3-2 3.190e-20 2.235e-20 -19.496 -19.651 -0.155 (0) CaH[14C]O2[18O]+ 2.264e-21 2.076e-21 -20.645 -20.683 -0.037 (0) - CaH[14C]O[18O]O+ 2.264e-21 2.076e-21 -20.645 -20.683 -0.037 (0) CaH[14C][18O]O2+ 2.264e-21 2.076e-21 -20.645 -20.683 -0.037 (0) + CaH[14C]O[18O]O+ 2.264e-21 2.076e-21 -20.645 -20.683 -0.037 (0) Ca[14C]O2[18O] 3.723e-22 3.729e-22 -21.429 -21.428 0.001 (0) + H[14C][18O]O[18O]- 2.139e-22 1.957e-22 -21.670 -21.708 -0.039 (0) H[14C]O[18O]2- 2.139e-22 1.957e-22 -21.670 -21.708 -0.039 (0) H[14C][18O]2O- 2.139e-22 1.957e-22 -21.670 -21.708 -0.039 (0) - H[14C][18O]O[18O]- 2.139e-22 1.957e-22 -21.670 -21.708 -0.039 (0) [14C]O2[18O]-2 1.910e-22 1.338e-22 -21.719 -21.874 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.323 -69.322 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.324 -72.323 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.682 -68.681 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.683 -71.682 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.02 -18.88 -2.86 [13C]H4 + [13C]H4(g) -17.30 -20.16 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.85 -22.35 -1.50 [14C][18O]2 - [14C]H4(g) -28.02 -30.88 -2.86 [14C]H4 + [14C]H4(g) -29.30 -32.16 -2.86 [14C]H4 [14C]O2(g) -15.48 -16.95 -1.47 [14C]O2 [14C]O[18O](g) -17.86 -19.65 -1.79 [14C]O[18O] - [18O]2(g) -70.03 -72.32 -2.29 [18O]2 + [18O]2(g) -69.39 -71.68 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -15474,14 +15492,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.07 -16.93 -2.86 CH4 + CH4(g) -15.35 -18.21 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.58 -12.73 -3.15 H2 + H2(g) -9.90 -13.05 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.03 -66.92 -2.89 O2 - O[18O](g) -66.73 -69.62 -2.89 O[18O] + O2(g) -63.39 -66.28 -2.89 O2 + O[18O](g) -66.09 -68.98 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -15505,6 +15523,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 62. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -15590,14 +15614,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.9944e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.623e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6459e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.521e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -9.1038e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -4.1078e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -6.2172e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -15615,16 +15639,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.200 Adjusted to redox equilibrium + pe = -2.004 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 77 + Iterations = 98 (199 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -15636,15 +15660,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.220e-17 - CH4 1.220e-17 1.222e-17 -16.914 -16.913 0.001 (0) +C(-4) 3.344e-19 + CH4 3.344e-19 3.349e-19 -18.476 -18.475 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -15652,9 +15676,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -15662,50 +15686,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.753e-13 - H2 1.876e-13 1.880e-13 -12.727 -12.726 0.001 (0) +H(0) 1.527e-13 + H2 7.635e-14 7.647e-14 -13.117 -13.117 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.931 -66.930 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.330 -69.329 0.001 (0) -[13C](-4) 1.352e-19 - [13C]H4 1.352e-19 1.354e-19 -18.869 -18.868 0.001 (0) + O2 0.000e+00 0.000e+00 -66.149 -66.149 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.548 -68.548 0.001 (0) +[13C](-4) 3.706e-21 + [13C]H4 3.706e-21 3.712e-21 -20.431 -20.430 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.262e-31 - [14C]H4 1.262e-31 1.264e-31 -30.899 -30.898 0.001 (0) +[14C](-4) 3.458e-33 + [14C]H4 3.458e-33 3.464e-33 -32.461 -32.460 0.001 (0) [14C](4) 6.127e-17 H[14C]O3- 4.949e-17 4.528e-17 -16.305 -16.344 -0.039 (0) [14C]O2 1.030e-17 1.032e-17 -16.987 -16.987 0.001 (0) CaH[14C]O3+ 1.045e-18 9.587e-19 -17.981 -18.018 -0.037 (0) - H[14C]O2[18O]- 9.875e-20 9.034e-20 -19.005 -19.044 -0.039 (0) - H[14C]O[18O]O- 9.875e-20 9.034e-20 -19.005 -19.044 -0.039 (0) H[14C][18O]O2- 9.875e-20 9.034e-20 -19.005 -19.044 -0.039 (0) + H[14C]O[18O]O- 9.875e-20 9.034e-20 -19.005 -19.044 -0.039 (0) + H[14C]O2[18O]- 9.875e-20 9.034e-20 -19.005 -19.044 -0.039 (0) Ca[14C]O3 5.729e-20 5.739e-20 -19.242 -19.241 0.001 (0) [14C]O[18O] 4.282e-20 4.289e-20 -19.368 -19.368 0.001 (0) [14C]O3-2 2.939e-20 2.059e-20 -19.532 -19.686 -0.155 (0) CaH[14C]O2[18O]+ 2.085e-21 1.913e-21 -20.681 -20.718 -0.037 (0) - CaH[14C]O[18O]O+ 2.085e-21 1.913e-21 -20.681 -20.718 -0.037 (0) CaH[14C][18O]O2+ 2.085e-21 1.913e-21 -20.681 -20.718 -0.037 (0) + CaH[14C]O[18O]O+ 2.085e-21 1.913e-21 -20.681 -20.718 -0.037 (0) Ca[14C]O2[18O] 3.429e-22 3.435e-22 -21.465 -21.464 0.001 (0) H[14C]O[18O]2- 1.970e-22 1.802e-22 -21.705 -21.744 -0.039 (0) H[14C][18O]2O- 1.970e-22 1.802e-22 -21.705 -21.744 -0.039 (0) @@ -15714,29 +15738,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.330 -69.329 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.331 -72.330 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.548 -68.548 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.550 -71.549 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.01 -18.87 -2.86 [13C]H4 + [13C]H4(g) -17.57 -20.43 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.88 -22.39 -1.50 [14C][18O]2 - [14C]H4(g) -28.04 -30.90 -2.86 [14C]H4 + [14C]H4(g) -29.60 -32.46 -2.86 [14C]H4 [14C]O2(g) -15.52 -16.99 -1.47 [14C]O2 [14C]O[18O](g) -17.90 -19.69 -1.79 [14C]O[18O] - [18O]2(g) -70.04 -72.33 -2.29 [18O]2 + [18O]2(g) -69.26 -71.55 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -15750,14 +15774,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.05 -16.91 -2.86 CH4 + CH4(g) -15.62 -18.48 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.58 -12.73 -3.15 H2 + H2(g) -9.97 -13.12 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.04 -66.93 -2.89 O2 - O[18O](g) -66.74 -69.63 -2.89 O[18O] + O2(g) -63.26 -66.15 -2.89 O2 + O[18O](g) -65.96 -68.85 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -15872,14 +15896,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6628e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5477e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -3.3307e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.1213e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.5543e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 4.885e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -15897,16 +15921,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.227 Adjusted to redox equilibrium + pe = -2.051 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 78 (179 overall) + Iterations = 118 (219 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -15918,25 +15942,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.004e-17 - CH4 2.004e-17 2.007e-17 -16.698 -16.697 0.001 (0) +C(-4) 7.807e-19 + CH4 7.807e-19 7.820e-19 -18.107 -18.107 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -15944,23 +15968,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.248e-13 - H2 2.124e-13 2.128e-13 -12.673 -12.672 0.001 (0) +H(0) 1.888e-13 + H2 9.438e-14 9.453e-14 -13.025 -13.024 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.038 -67.038 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.437 -69.437 0.001 (0) -[13C](-4) 2.221e-19 - [13C]H4 2.221e-19 2.224e-19 -18.653 -18.653 0.001 (0) + O2 0.000e+00 0.000e+00 -66.334 -66.333 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.733 -68.732 0.001 (0) +[13C](-4) 8.653e-21 + [13C]H4 8.653e-21 8.667e-21 -20.063 -20.062 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) @@ -15969,56 +15993,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.909e-31 - [14C]H4 1.909e-31 1.912e-31 -30.719 -30.718 0.001 (0) +[14C](-4) 7.438e-33 + [14C]H4 7.438e-33 7.451e-33 -32.129 -32.128 0.001 (0) [14C](4) 5.644e-17 H[14C]O3- 4.559e-17 4.171e-17 -16.341 -16.380 -0.039 (0) [14C]O2 9.487e-18 9.503e-18 -17.023 -17.022 0.001 (0) CaH[14C]O3+ 9.628e-19 8.832e-19 -18.016 -18.054 -0.037 (0) - H[14C]O2[18O]- 9.097e-20 8.322e-20 -19.041 -19.080 -0.039 (0) - H[14C]O[18O]O- 9.097e-20 8.322e-20 -19.041 -19.080 -0.039 (0) H[14C][18O]O2- 9.097e-20 8.322e-20 -19.041 -19.080 -0.039 (0) + H[14C]O[18O]O- 9.097e-20 8.322e-20 -19.041 -19.080 -0.039 (0) + H[14C]O2[18O]- 9.097e-20 8.322e-20 -19.041 -19.080 -0.039 (0) Ca[14C]O3 5.278e-20 5.287e-20 -19.278 -19.277 0.001 (0) [14C]O[18O] 3.945e-20 3.952e-20 -19.404 -19.403 0.001 (0) [14C]O3-2 2.708e-20 1.897e-20 -19.567 -19.722 -0.155 (0) CaH[14C]O2[18O]+ 1.921e-21 1.762e-21 -20.716 -20.754 -0.037 (0) - CaH[14C]O[18O]O+ 1.921e-21 1.762e-21 -20.716 -20.754 -0.037 (0) CaH[14C][18O]O2+ 1.921e-21 1.762e-21 -20.716 -20.754 -0.037 (0) + CaH[14C]O[18O]O+ 1.921e-21 1.762e-21 -20.716 -20.754 -0.037 (0) Ca[14C]O2[18O] 3.159e-22 3.164e-22 -21.500 -21.500 0.001 (0) - H[14C]O[18O]2- 1.815e-22 1.660e-22 -21.741 -21.780 -0.039 (0) H[14C][18O]2O- 1.815e-22 1.660e-22 -21.741 -21.780 -0.039 (0) H[14C][18O]O[18O]- 1.815e-22 1.660e-22 -21.741 -21.780 -0.039 (0) + H[14C]O[18O]2- 1.815e-22 1.660e-22 -21.741 -21.780 -0.039 (0) [14C]O2[18O]-2 1.621e-22 1.135e-22 -21.790 -21.945 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.437 -69.437 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.438 -72.438 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.733 -68.732 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.734 -71.733 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.79 -18.65 -2.86 [13C]H4 + [13C]H4(g) -17.20 -20.06 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.92 -22.42 -1.50 [14C][18O]2 - [14C]H4(g) -27.86 -30.72 -2.86 [14C]H4 + [14C]H4(g) -29.27 -32.13 -2.86 [14C]H4 [14C]O2(g) -15.55 -17.02 -1.47 [14C]O2 [14C]O[18O](g) -17.94 -19.72 -1.79 [14C]O[18O] - [18O]2(g) -70.15 -72.44 -2.29 [18O]2 + [18O]2(g) -69.44 -71.73 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -16032,14 +16056,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.84 -16.70 -2.86 CH4 + CH4(g) -15.25 -18.11 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.52 -12.67 -3.15 H2 + H2(g) -9.87 -13.02 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.15 -67.04 -2.89 O2 - O[18O](g) -66.85 -69.74 -2.89 O[18O] + O2(g) -63.44 -66.33 -2.89 O2 + O[18O](g) -66.14 -69.03 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -16148,14 +16172,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6089e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5606e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 2.2204e-13 0 -Alpha 14C CH4(aq)/CO2(aq) 1 8.2157e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 5.107e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 5.107e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -16173,16 +16197,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.256 Adjusted to redox equilibrium + pe = -2.145 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 51 + Iterations = 89 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -16194,15 +16218,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.407e-17 - CH4 3.407e-17 3.413e-17 -16.468 -16.467 0.001 (0) +C(-4) 4.479e-18 + CH4 4.479e-18 4.486e-18 -17.349 -17.348 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -16210,9 +16234,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -16220,81 +16244,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.851e-13 - H2 2.426e-13 2.430e-13 -12.615 -12.614 0.001 (0) +H(0) 2.921e-13 + H2 1.461e-13 1.463e-13 -12.835 -12.835 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.154 -67.153 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.553 -69.552 0.001 (0) -[13C](-4) 3.776e-19 - [13C]H4 3.776e-19 3.782e-19 -18.423 -18.422 0.001 (0) + O2 0.000e+00 0.000e+00 -66.713 -66.712 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.112 -69.111 0.001 (0) +[13C](-4) 4.964e-20 + [13C]H4 4.964e-20 4.972e-20 -19.304 -19.303 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.990e-31 - [14C]H4 2.990e-31 2.995e-31 -30.524 -30.524 0.001 (0) +[14C](-4) 3.931e-32 + [14C]H4 3.931e-32 3.938e-32 -31.405 -31.405 0.001 (0) [14C](4) 5.200e-17 H[14C]O3- 4.200e-17 3.843e-17 -16.377 -16.415 -0.039 (0) [14C]O2 8.740e-18 8.754e-18 -17.058 -17.058 0.001 (0) CaH[14C]O3+ 8.870e-19 8.136e-19 -18.052 -18.090 -0.037 (0) - H[14C]O2[18O]- 8.380e-20 7.667e-20 -19.077 -19.115 -0.039 (0) - H[14C]O[18O]O- 8.380e-20 7.667e-20 -19.077 -19.115 -0.039 (0) H[14C][18O]O2- 8.380e-20 7.667e-20 -19.077 -19.115 -0.039 (0) + H[14C]O[18O]O- 8.380e-20 7.667e-20 -19.077 -19.115 -0.039 (0) + H[14C]O2[18O]- 8.380e-20 7.667e-20 -19.077 -19.115 -0.039 (0) Ca[14C]O3 4.862e-20 4.870e-20 -19.313 -19.312 0.001 (0) [14C]O[18O] 3.634e-20 3.640e-20 -19.440 -19.439 0.001 (0) [14C]O3-2 2.494e-20 1.747e-20 -19.603 -19.758 -0.155 (0) CaH[14C]O2[18O]+ 1.770e-21 1.623e-21 -20.752 -20.790 -0.037 (0) - CaH[14C]O[18O]O+ 1.770e-21 1.623e-21 -20.752 -20.790 -0.037 (0) CaH[14C][18O]O2+ 1.770e-21 1.623e-21 -20.752 -20.790 -0.037 (0) + CaH[14C]O[18O]O+ 1.770e-21 1.623e-21 -20.752 -20.790 -0.037 (0) Ca[14C]O2[18O] 2.910e-22 2.915e-22 -21.536 -21.535 0.001 (0) + H[14C][18O]O[18O]- 1.672e-22 1.530e-22 -21.777 -21.815 -0.039 (0) H[14C]O[18O]2- 1.672e-22 1.530e-22 -21.777 -21.815 -0.039 (0) H[14C][18O]2O- 1.672e-22 1.530e-22 -21.777 -21.815 -0.039 (0) - H[14C][18O]O[18O]- 1.672e-22 1.530e-22 -21.777 -21.815 -0.039 (0) [14C]O2[18O]-2 1.493e-22 1.046e-22 -21.826 -21.981 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.553 -69.552 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.554 -72.553 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.112 -69.111 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.113 -72.112 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.56 -18.42 -2.86 [13C]H4 + [13C]H4(g) -16.44 -19.30 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.95 -22.46 -1.50 [14C][18O]2 - [14C]H4(g) -27.66 -30.52 -2.86 [14C]H4 + [14C]H4(g) -28.54 -31.40 -2.86 [14C]H4 [14C]O2(g) -15.59 -17.06 -1.47 [14C]O2 [14C]O[18O](g) -17.97 -19.76 -1.79 [14C]O[18O] - [18O]2(g) -70.26 -72.55 -2.29 [18O]2 + [18O]2(g) -69.82 -72.11 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -16308,14 +16332,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.61 -16.47 -2.86 CH4 + CH4(g) -14.49 -17.35 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.46 -12.61 -3.15 H2 + H2(g) -9.68 -12.83 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.26 -67.15 -2.89 O2 - O[18O](g) -66.96 -69.85 -2.89 O[18O] + O2(g) -63.82 -66.71 -2.89 O2 + O[18O](g) -66.52 -69.41 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -16430,14 +16454,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7167e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7349e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -3.3307e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 8.8818e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.5543e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 7.3275e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -16455,16 +16479,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.217 Adjusted to redox equilibrium + pe = -2.029 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 119 (220 overall) + Iterations = 178 (279 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -16476,25 +16500,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.684e-17 - CH4 1.684e-17 1.687e-17 -16.774 -16.773 0.001 (0) +C(-4) 5.279e-19 + CH4 5.279e-19 5.287e-19 -18.277 -18.277 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -16502,50 +16526,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.068e-13 - H2 2.034e-13 2.037e-13 -12.692 -12.691 0.001 (0) +H(0) 1.712e-13 + H2 8.558e-14 8.572e-14 -13.068 -13.067 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.001 -67.000 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.400 -69.399 0.001 (0) -[13C](-4) 1.866e-19 - [13C]H4 1.866e-19 1.869e-19 -18.729 -18.728 0.001 (0) + O2 0.000e+00 0.000e+00 -66.249 -66.248 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.648 -68.647 0.001 (0) +[13C](-4) 5.850e-21 + [13C]H4 5.850e-21 5.860e-21 -20.233 -20.232 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.362e-31 - [14C]H4 1.362e-31 1.364e-31 -30.866 -30.865 0.001 (0) +[14C](-4) 4.268e-33 + [14C]H4 4.268e-33 4.275e-33 -32.370 -32.369 0.001 (0) [14C](4) 4.790e-17 H[14C]O3- 3.869e-17 3.540e-17 -16.412 -16.451 -0.039 (0) [14C]O2 8.051e-18 8.065e-18 -17.094 -17.093 0.001 (0) CaH[14C]O3+ 8.171e-19 7.495e-19 -18.088 -18.125 -0.037 (0) - H[14C]O2[18O]- 7.720e-20 7.063e-20 -19.112 -19.151 -0.039 (0) - H[14C]O[18O]O- 7.720e-20 7.063e-20 -19.112 -19.151 -0.039 (0) H[14C][18O]O2- 7.720e-20 7.063e-20 -19.112 -19.151 -0.039 (0) + H[14C]O[18O]O- 7.720e-20 7.063e-20 -19.112 -19.151 -0.039 (0) + H[14C]O2[18O]- 7.720e-20 7.063e-20 -19.112 -19.151 -0.039 (0) Ca[14C]O3 4.479e-20 4.487e-20 -19.349 -19.348 0.001 (0) [14C]O[18O] 3.348e-20 3.354e-20 -19.475 -19.475 0.001 (0) [14C]O3-2 2.298e-20 1.610e-20 -19.639 -19.793 -0.155 (0) CaH[14C]O2[18O]+ 1.630e-21 1.495e-21 -20.788 -20.825 -0.037 (0) - CaH[14C]O[18O]O+ 1.630e-21 1.495e-21 -20.788 -20.825 -0.037 (0) CaH[14C][18O]O2+ 1.630e-21 1.495e-21 -20.788 -20.825 -0.037 (0) + CaH[14C]O[18O]O+ 1.630e-21 1.495e-21 -20.788 -20.825 -0.037 (0) Ca[14C]O2[18O] 2.681e-22 2.686e-22 -21.572 -21.571 0.001 (0) H[14C]O[18O]2- 1.540e-22 1.409e-22 -21.812 -21.851 -0.039 (0) H[14C][18O]2O- 1.540e-22 1.409e-22 -21.812 -21.851 -0.039 (0) @@ -16554,29 +16578,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.400 -69.399 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.401 -72.400 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.648 -68.647 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.649 -71.648 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.87 -18.73 -2.86 [13C]H4 + [13C]H4(g) -17.37 -20.23 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.99 -22.49 -1.50 [14C][18O]2 - [14C]H4(g) -28.01 -30.87 -2.86 [14C]H4 + [14C]H4(g) -29.51 -32.37 -2.86 [14C]H4 [14C]O2(g) -15.62 -17.09 -1.47 [14C]O2 [14C]O[18O](g) -18.01 -19.79 -1.79 [14C]O[18O] - [18O]2(g) -70.11 -72.40 -2.29 [18O]2 + [18O]2(g) -69.36 -71.65 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -16590,14 +16614,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.91 -16.77 -2.86 CH4 + CH4(g) -15.42 -18.28 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.54 -12.69 -3.15 H2 + H2(g) -9.92 -13.07 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.11 -67.00 -2.89 O2 - O[18O](g) -66.81 -69.70 -2.89 O[18O] + O2(g) -63.36 -66.25 -2.89 O2 + O[18O](g) -66.06 -68.95 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -16712,14 +16736,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.785e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7299e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 7.1054e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -5.3291e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -3.3307e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.1102e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -16737,16 +16761,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.218 Adjusted to redox equilibrium + pe = -2.064 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 59 (160 overall) + Iterations = 75 (176 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -16758,14 +16782,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.697e-17 - CH4 1.697e-17 1.699e-17 -16.770 -16.770 0.001 (0) +C(-4) 9.984e-19 + CH4 9.984e-19 1.000e-18 -18.001 -18.000 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -16774,9 +16798,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -16784,23 +16808,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.075e-13 - H2 2.038e-13 2.041e-13 -12.691 -12.690 0.001 (0) +H(0) 2.007e-13 + H2 1.004e-13 1.005e-13 -12.998 -12.998 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.002 -67.001 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.401 -69.400 0.001 (0) -[13C](-4) 1.880e-19 - [13C]H4 1.880e-19 1.883e-19 -18.726 -18.725 0.001 (0) + O2 0.000e+00 0.000e+00 -66.387 -66.386 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.786 -68.785 0.001 (0) +[13C](-4) 1.107e-20 + [13C]H4 1.107e-20 1.108e-20 -19.956 -19.955 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) @@ -16809,56 +16833,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.264e-31 - [14C]H4 1.264e-31 1.266e-31 -30.898 -30.898 0.001 (0) +[14C](-4) 7.436e-33 + [14C]H4 7.436e-33 7.449e-33 -32.129 -32.128 0.001 (0) [14C](4) 4.413e-17 H[14C]O3- 3.565e-17 3.261e-17 -16.448 -16.487 -0.039 (0) [14C]O2 7.417e-18 7.429e-18 -17.130 -17.129 0.001 (0) CaH[14C]O3+ 7.527e-19 6.905e-19 -18.123 -18.161 -0.037 (0) - H[14C]O2[18O]- 7.112e-20 6.507e-20 -19.148 -19.187 -0.039 (0) - H[14C]O[18O]O- 7.112e-20 6.507e-20 -19.148 -19.187 -0.039 (0) H[14C][18O]O2- 7.112e-20 6.507e-20 -19.148 -19.187 -0.039 (0) + H[14C]O[18O]O- 7.112e-20 6.507e-20 -19.148 -19.187 -0.039 (0) + H[14C]O2[18O]- 7.112e-20 6.507e-20 -19.148 -19.187 -0.039 (0) Ca[14C]O3 4.126e-20 4.133e-20 -19.384 -19.384 0.001 (0) [14C]O[18O] 3.084e-20 3.089e-20 -19.511 -19.510 0.001 (0) [14C]O3-2 2.117e-20 1.483e-20 -19.674 -19.829 -0.155 (0) CaH[14C]O2[18O]+ 1.502e-21 1.378e-21 -20.823 -20.861 -0.037 (0) - CaH[14C]O[18O]O+ 1.502e-21 1.378e-21 -20.823 -20.861 -0.037 (0) CaH[14C][18O]O2+ 1.502e-21 1.378e-21 -20.823 -20.861 -0.037 (0) + CaH[14C]O[18O]O+ 1.502e-21 1.378e-21 -20.823 -20.861 -0.037 (0) Ca[14C]O2[18O] 2.470e-22 2.474e-22 -21.607 -21.607 0.001 (0) - H[14C]O[18O]2- 1.419e-22 1.298e-22 -21.848 -21.887 -0.039 (0) H[14C][18O]2O- 1.419e-22 1.298e-22 -21.848 -21.887 -0.039 (0) H[14C][18O]O[18O]- 1.419e-22 1.298e-22 -21.848 -21.887 -0.039 (0) + H[14C]O[18O]2- 1.419e-22 1.298e-22 -21.848 -21.887 -0.039 (0) [14C]O2[18O]-2 1.267e-22 8.876e-23 -21.897 -22.052 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.401 -69.400 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.402 -72.401 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.786 -68.785 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.787 -71.786 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.87 -18.73 -2.86 [13C]H4 + [13C]H4(g) -17.10 -19.96 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.03 -22.53 -1.50 [14C][18O]2 - [14C]H4(g) -28.04 -30.90 -2.86 [14C]H4 + [14C]H4(g) -29.27 -32.13 -2.86 [14C]H4 [14C]O2(g) -15.66 -17.13 -1.47 [14C]O2 [14C]O[18O](g) -18.04 -19.83 -1.79 [14C]O[18O] - [18O]2(g) -70.11 -72.40 -2.29 [18O]2 + [18O]2(g) -69.50 -71.79 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -16872,14 +16896,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.91 -16.77 -2.86 CH4 + CH4(g) -15.14 -18.00 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.54 -12.69 -3.15 H2 + H2(g) -9.85 -13.00 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.11 -67.00 -2.89 O2 - O[18O](g) -66.81 -69.70 -2.89 O[18O] + O2(g) -63.49 -66.39 -2.89 O2 + O[18O](g) -66.19 -69.09 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -16903,6 +16927,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 67. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -16988,14 +17018,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.9936e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6065e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7544e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -4.1078e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -5.9952e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -6.9944e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.521e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -17013,16 +17043,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.245 Adjusted to redox equilibrium + pe = -2.179 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 54 + Iterations = 127 (228 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -17034,25 +17064,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.803e-17 - CH4 2.803e-17 2.808e-17 -16.552 -16.552 0.001 (0) +C(-4) 8.337e-18 + CH4 8.337e-18 8.350e-18 -17.079 -17.078 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -17060,81 +17090,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.620e-13 - H2 2.310e-13 2.314e-13 -12.636 -12.636 0.001 (0) +H(0) 3.412e-13 + H2 1.706e-13 1.709e-13 -12.768 -12.767 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.111 -67.110 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.510 -69.509 0.001 (0) -[13C](-4) 3.107e-19 - [13C]H4 3.107e-19 3.112e-19 -18.508 -18.507 0.001 (0) + O2 0.000e+00 0.000e+00 -66.848 -66.847 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.247 -69.246 0.001 (0) +[13C](-4) 9.240e-20 + [13C]H4 9.240e-20 9.255e-20 -19.034 -19.034 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.924e-31 - [14C]H4 1.924e-31 1.927e-31 -30.716 -30.715 0.001 (0) +[14C](-4) 5.720e-32 + [14C]H4 5.720e-32 5.730e-32 -31.243 -31.242 0.001 (0) [14C](4) 4.065e-17 H[14C]O3- 3.284e-17 3.004e-17 -16.484 -16.522 -0.039 (0) [14C]O2 6.833e-18 6.844e-18 -17.165 -17.165 0.001 (0) CaH[14C]O3+ 6.934e-19 6.361e-19 -18.159 -18.196 -0.037 (0) - H[14C]O2[18O]- 6.552e-20 5.994e-20 -19.184 -19.222 -0.039 (0) - H[14C]O[18O]O- 6.552e-20 5.994e-20 -19.184 -19.222 -0.039 (0) H[14C][18O]O2- 6.552e-20 5.994e-20 -19.184 -19.222 -0.039 (0) + H[14C]O[18O]O- 6.552e-20 5.994e-20 -19.184 -19.222 -0.039 (0) + H[14C]O2[18O]- 6.552e-20 5.994e-20 -19.184 -19.222 -0.039 (0) Ca[14C]O3 3.801e-20 3.808e-20 -19.420 -19.419 0.001 (0) [14C]O[18O] 2.841e-20 2.846e-20 -19.546 -19.546 0.001 (0) [14C]O3-2 1.950e-20 1.366e-20 -19.710 -19.865 -0.155 (0) CaH[14C]O2[18O]+ 1.384e-21 1.269e-21 -20.859 -20.896 -0.037 (0) - CaH[14C]O[18O]O+ 1.384e-21 1.269e-21 -20.859 -20.896 -0.037 (0) CaH[14C][18O]O2+ 1.384e-21 1.269e-21 -20.859 -20.896 -0.037 (0) + CaH[14C]O[18O]O+ 1.384e-21 1.269e-21 -20.859 -20.896 -0.037 (0) Ca[14C]O2[18O] 2.275e-22 2.279e-22 -21.643 -21.642 0.001 (0) + H[14C][18O]O[18O]- 1.307e-22 1.196e-22 -21.884 -21.922 -0.039 (0) H[14C]O[18O]2- 1.307e-22 1.196e-22 -21.884 -21.922 -0.039 (0) H[14C][18O]2O- 1.307e-22 1.196e-22 -21.884 -21.922 -0.039 (0) - H[14C][18O]O[18O]- 1.307e-22 1.196e-22 -21.884 -21.922 -0.039 (0) [14C]O2[18O]-2 1.167e-22 8.177e-23 -21.933 -22.087 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.510 -69.509 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.511 -72.511 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.247 -69.246 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.248 -72.247 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.65 -18.51 -2.86 [13C]H4 + [13C]H4(g) -16.17 -19.03 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.06 -22.56 -1.50 [14C][18O]2 - [14C]H4(g) -27.86 -30.72 -2.86 [14C]H4 + [14C]H4(g) -28.38 -31.24 -2.86 [14C]H4 [14C]O2(g) -15.70 -17.16 -1.47 [14C]O2 [14C]O[18O](g) -18.08 -19.86 -1.79 [14C]O[18O] - [18O]2(g) -70.22 -72.51 -2.29 [18O]2 + [18O]2(g) -69.96 -72.25 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -17148,14 +17178,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.69 -16.55 -2.86 CH4 + CH4(g) -14.22 -17.08 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.49 -12.64 -3.15 H2 + H2(g) -9.62 -12.77 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.22 -67.11 -2.89 O2 - O[18O](g) -66.92 -69.81 -2.89 O[18O] + O2(g) -63.95 -66.85 -2.89 O2 + O[18O](g) -66.65 -69.55 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -17270,14 +17300,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 4.4409e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5252e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6076e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.1324e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 5.3291e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -3.1086e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.3212e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -17295,16 +17325,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.243 Adjusted to redox equilibrium + pe = -2.211 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 128 (229 overall) + Iterations = 64 (165 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -17316,15 +17346,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.708e-17 - CH4 2.708e-17 2.712e-17 -16.567 -16.567 0.001 (0) +C(-4) 1.490e-17 + CH4 1.490e-17 1.493e-17 -16.827 -16.826 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -17332,9 +17362,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -17342,50 +17372,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.581e-13 - H2 2.290e-13 2.294e-13 -12.640 -12.639 0.001 (0) +H(0) 3.945e-13 + H2 1.973e-13 1.976e-13 -12.705 -12.704 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.104 -67.103 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.503 -69.502 0.001 (0) -[13C](-4) 3.001e-19 - [13C]H4 3.001e-19 3.006e-19 -18.523 -18.522 0.001 (0) + O2 0.000e+00 0.000e+00 -66.974 -66.973 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.373 -69.372 0.001 (0) +[13C](-4) 1.652e-19 + [13C]H4 1.652e-19 1.654e-19 -18.782 -18.781 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.712e-31 - [14C]H4 1.712e-31 1.714e-31 -30.767 -30.766 0.001 (0) +[14C](-4) 9.419e-32 + [14C]H4 9.419e-32 9.435e-32 -31.026 -31.025 0.001 (0) [14C](4) 3.745e-17 H[14C]O3- 3.025e-17 2.768e-17 -16.519 -16.558 -0.039 (0) [14C]O2 6.295e-18 6.305e-18 -17.201 -17.200 0.001 (0) CaH[14C]O3+ 6.388e-19 5.860e-19 -18.195 -18.232 -0.037 (0) - H[14C]O2[18O]- 6.036e-20 5.522e-20 -19.219 -19.258 -0.039 (0) - H[14C]O[18O]O- 6.036e-20 5.522e-20 -19.219 -19.258 -0.039 (0) H[14C][18O]O2- 6.036e-20 5.522e-20 -19.219 -19.258 -0.039 (0) + H[14C]O[18O]O- 6.036e-20 5.522e-20 -19.219 -19.258 -0.039 (0) + H[14C]O2[18O]- 6.036e-20 5.522e-20 -19.219 -19.258 -0.039 (0) Ca[14C]O3 3.502e-20 3.508e-20 -19.456 -19.455 0.001 (0) [14C]O[18O] 2.618e-20 2.622e-20 -19.582 -19.581 0.001 (0) [14C]O3-2 1.796e-20 1.258e-20 -19.746 -19.900 -0.155 (0) CaH[14C]O2[18O]+ 1.275e-21 1.169e-21 -20.895 -20.932 -0.037 (0) - CaH[14C]O[18O]O+ 1.275e-21 1.169e-21 -20.895 -20.932 -0.037 (0) CaH[14C][18O]O2+ 1.275e-21 1.169e-21 -20.895 -20.932 -0.037 (0) + CaH[14C]O[18O]O+ 1.275e-21 1.169e-21 -20.895 -20.932 -0.037 (0) Ca[14C]O2[18O] 2.096e-22 2.100e-22 -21.679 -21.678 0.001 (0) H[14C]O[18O]2- 1.204e-22 1.102e-22 -21.919 -21.958 -0.039 (0) H[14C][18O]2O- 1.204e-22 1.102e-22 -21.919 -21.958 -0.039 (0) @@ -17394,29 +17424,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.503 -69.502 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.504 -72.503 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.373 -69.372 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.374 -72.373 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.66 -18.52 -2.86 [13C]H4 + [13C]H4(g) -15.92 -18.78 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.10 -22.60 -1.50 [14C][18O]2 - [14C]H4(g) -27.91 -30.77 -2.86 [14C]H4 + [14C]H4(g) -28.17 -31.03 -2.86 [14C]H4 [14C]O2(g) -15.73 -17.20 -1.47 [14C]O2 [14C]O[18O](g) -18.11 -19.90 -1.79 [14C]O[18O] - [18O]2(g) -70.21 -72.50 -2.29 [18O]2 + [18O]2(g) -70.08 -72.37 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -17430,14 +17460,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.71 -16.57 -2.86 CH4 + CH4(g) -13.97 -16.83 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.49 -12.64 -3.15 H2 + H2(g) -9.55 -12.70 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.21 -67.10 -2.89 O2 - O[18O](g) -66.91 -69.80 -2.89 O[18O] + O2(g) -64.08 -66.97 -2.89 O2 + O[18O](g) -66.78 -69.67 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -17546,14 +17576,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6285e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6371e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -6.2172e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -5.9952e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 0 0 +Alpha 14C CH4(aq)/CO2(aq) 1 5.9952e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -17571,16 +17601,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.272 Adjusted to redox equilibrium + pe = -2.238 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 100 + Iterations = 99 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -17592,25 +17622,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.638e-17 - CH4 4.638e-17 4.646e-17 -16.334 -16.333 0.001 (0) +C(-4) 2.453e-17 + CH4 2.453e-17 2.457e-17 -16.610 -16.610 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -17618,23 +17648,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.240e-13 - H2 2.620e-13 2.624e-13 -12.582 -12.581 0.001 (0) +H(0) 4.469e-13 + H2 2.234e-13 2.238e-13 -12.651 -12.650 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.221 -67.220 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.620 -69.619 0.001 (0) -[13C](-4) 5.141e-19 - [13C]H4 5.141e-19 5.149e-19 -18.289 -18.288 0.001 (0) + O2 0.000e+00 0.000e+00 -67.082 -67.082 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.481 -69.480 0.001 (0) +[13C](-4) 2.719e-19 + [13C]H4 2.719e-19 2.723e-19 -18.566 -18.565 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.598e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.589e-08 4.597e-08 -7.338 -7.338 0.001 (0) @@ -17643,56 +17673,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.215e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.701e-31 - [14C]H4 2.701e-31 2.705e-31 -30.568 -30.568 0.001 (0) +[14C](-4) 1.429e-31 + [14C]H4 1.429e-31 1.431e-31 -30.845 -30.844 0.001 (0) [14C](4) 3.450e-17 H[14C]O3- 2.787e-17 2.550e-17 -16.555 -16.594 -0.039 (0) [14C]O2 5.799e-18 5.808e-18 -17.237 -17.236 0.001 (0) CaH[14C]O3+ 5.885e-19 5.398e-19 -18.230 -18.268 -0.037 (0) - H[14C]O2[18O]- 5.560e-20 5.087e-20 -19.255 -19.294 -0.039 (0) - H[14C]O[18O]O- 5.560e-20 5.087e-20 -19.255 -19.294 -0.039 (0) H[14C][18O]O2- 5.560e-20 5.087e-20 -19.255 -19.294 -0.039 (0) + H[14C]O[18O]O- 5.560e-20 5.087e-20 -19.255 -19.294 -0.039 (0) + H[14C]O2[18O]- 5.560e-20 5.087e-20 -19.255 -19.294 -0.039 (0) Ca[14C]O3 3.226e-20 3.231e-20 -19.491 -19.491 0.001 (0) [14C]O[18O] 2.411e-20 2.415e-20 -19.618 -19.617 0.001 (0) [14C]O3-2 1.655e-20 1.159e-20 -19.781 -19.936 -0.155 (0) CaH[14C]O2[18O]+ 1.174e-21 1.077e-21 -20.930 -20.968 -0.037 (0) - CaH[14C]O[18O]O+ 1.174e-21 1.077e-21 -20.930 -20.968 -0.037 (0) CaH[14C][18O]O2+ 1.174e-21 1.077e-21 -20.930 -20.968 -0.037 (0) + CaH[14C]O[18O]O+ 1.174e-21 1.077e-21 -20.930 -20.968 -0.037 (0) Ca[14C]O2[18O] 1.931e-22 1.934e-22 -21.714 -21.714 0.001 (0) - H[14C]O[18O]2- 1.109e-22 1.015e-22 -21.955 -21.994 -0.039 (0) H[14C][18O]2O- 1.109e-22 1.015e-22 -21.955 -21.994 -0.039 (0) H[14C][18O]O[18O]- 1.109e-22 1.015e-22 -21.955 -21.994 -0.039 (0) + H[14C]O[18O]2- 1.109e-22 1.015e-22 -21.955 -21.994 -0.039 (0) [14C]O2[18O]-2 9.906e-23 6.939e-23 -22.004 -22.159 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.620 -69.619 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.621 -72.620 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.481 -69.480 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.482 -72.482 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.43 -18.29 -2.86 [13C]H4 + [13C]H4(g) -15.70 -18.56 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.13 -22.64 -1.50 [14C][18O]2 - [14C]H4(g) -27.71 -30.57 -2.86 [14C]H4 + [14C]H4(g) -27.98 -30.84 -2.86 [14C]H4 [14C]O2(g) -15.77 -17.24 -1.47 [14C]O2 [14C]O[18O](g) -18.15 -19.94 -1.79 [14C]O[18O] - [18O]2(g) -70.33 -72.62 -2.29 [18O]2 + [18O]2(g) -70.19 -72.48 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -17706,14 +17736,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.47 -16.33 -2.86 CH4 + CH4(g) -13.75 -16.61 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.43 -12.58 -3.15 H2 + H2(g) -9.50 -12.65 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.33 -67.22 -2.89 O2 - O[18O](g) -67.03 -69.92 -2.89 O[18O] + O2(g) -64.19 -67.08 -2.89 O2 + O[18O](g) -66.89 -69.78 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -17828,14 +17858,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6535e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7274e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.4211e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -4.2188e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -6.8834e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -9.1038e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -17853,16 +17883,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.275 Adjusted to redox equilibrium + pe = -2.242 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 78 (179 overall) + Iterations = 97 (198 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -17874,15 +17904,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.914e-17 - CH4 4.914e-17 4.923e-17 -16.309 -16.308 0.001 (0) +C(-4) 2.640e-17 + CH4 2.640e-17 2.644e-17 -16.578 -16.578 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -17890,9 +17920,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -17900,81 +17930,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.317e-13 - H2 2.658e-13 2.663e-13 -12.575 -12.575 0.001 (0) +H(0) 4.551e-13 + H2 2.276e-13 2.279e-13 -12.643 -12.642 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.233 -67.232 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.632 -69.631 0.001 (0) -[13C](-4) 5.447e-19 - [13C]H4 5.447e-19 5.456e-19 -18.264 -18.263 0.001 (0) + O2 0.000e+00 0.000e+00 -67.098 -67.097 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.497 -69.496 0.001 (0) +[13C](-4) 2.926e-19 + [13C]H4 2.926e-19 2.931e-19 -18.534 -18.533 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.636e-31 - [14C]H4 2.636e-31 2.641e-31 -30.579 -30.578 0.001 (0) +[14C](-4) 1.416e-31 + [14C]H4 1.416e-31 1.418e-31 -30.849 -30.848 0.001 (0) [14C](4) 3.178e-17 H[14C]O3- 2.567e-17 2.349e-17 -16.591 -16.629 -0.039 (0) [14C]O2 5.342e-18 5.351e-18 -17.272 -17.272 0.001 (0) CaH[14C]O3+ 5.421e-19 4.973e-19 -18.266 -18.303 -0.037 (0) - H[14C]O2[18O]- 5.122e-20 4.686e-20 -19.291 -19.329 -0.039 (0) - H[14C]O[18O]O- 5.122e-20 4.686e-20 -19.291 -19.329 -0.039 (0) H[14C][18O]O2- 5.122e-20 4.686e-20 -19.291 -19.329 -0.039 (0) + H[14C]O[18O]O- 5.122e-20 4.686e-20 -19.291 -19.329 -0.039 (0) + H[14C]O2[18O]- 5.122e-20 4.686e-20 -19.291 -19.329 -0.039 (0) Ca[14C]O3 2.972e-20 2.977e-20 -19.527 -19.526 0.001 (0) [14C]O[18O] 2.221e-20 2.225e-20 -19.653 -19.653 0.001 (0) [14C]O3-2 1.525e-20 1.068e-20 -19.817 -19.971 -0.155 (0) CaH[14C]O2[18O]+ 1.082e-21 9.922e-22 -20.966 -21.003 -0.037 (0) - CaH[14C]O[18O]O+ 1.082e-21 9.922e-22 -20.966 -21.003 -0.037 (0) CaH[14C][18O]O2+ 1.082e-21 9.922e-22 -20.966 -21.003 -0.037 (0) + CaH[14C]O[18O]O+ 1.082e-21 9.922e-22 -20.966 -21.003 -0.037 (0) Ca[14C]O2[18O] 1.779e-22 1.782e-22 -21.750 -21.749 0.001 (0) + H[14C][18O]O[18O]- 1.022e-22 9.350e-23 -21.991 -22.029 -0.039 (0) H[14C]O[18O]2- 1.022e-22 9.350e-23 -21.991 -22.029 -0.039 (0) H[14C][18O]2O- 1.022e-22 9.350e-23 -21.991 -22.029 -0.039 (0) - H[14C][18O]O[18O]- 1.022e-22 9.350e-23 -21.991 -22.029 -0.039 (0) [14C]O2[18O]-2 9.125e-23 6.393e-23 -22.040 -22.194 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.632 -69.631 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.633 -72.632 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.497 -69.496 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.498 -72.497 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.40 -18.26 -2.86 [13C]H4 + [13C]H4(g) -15.67 -18.53 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.17 -22.67 -1.50 [14C][18O]2 - [14C]H4(g) -27.72 -30.58 -2.86 [14C]H4 + [14C]H4(g) -27.99 -30.85 -2.86 [14C]H4 [14C]O2(g) -15.80 -17.27 -1.47 [14C]O2 [14C]O[18O](g) -18.18 -19.97 -1.79 [14C]O[18O] - [18O]2(g) -70.34 -72.63 -2.29 [18O]2 + [18O]2(g) -70.21 -72.50 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -17988,14 +18018,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.45 -16.31 -2.86 CH4 + CH4(g) -13.72 -16.58 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.42 -12.57 -3.15 H2 + H2(g) -9.49 -12.64 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.34 -67.23 -2.89 O2 - O[18O](g) -67.04 -69.93 -2.89 O[18O] + O2(g) -64.21 -67.10 -2.89 O2 + O[18O](g) -66.91 -69.80 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -18019,6 +18049,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 71. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -18104,14 +18140,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.9936e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7574e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6915e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.5321e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 8.8818e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.3101e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 8.8818e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -18129,16 +18165,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.265 Adjusted to redox equilibrium + pe = -2.215 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 76 + Iterations = 71 (172 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -18150,25 +18186,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.078e-17 - CH4 4.078e-17 4.085e-17 -16.390 -16.389 0.001 (0) +C(-4) 1.623e-17 + CH4 1.623e-17 1.626e-17 -16.790 -16.789 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -18176,50 +18212,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.074e-13 - H2 2.537e-13 2.541e-13 -12.596 -12.595 0.001 (0) +H(0) 4.031e-13 + H2 2.015e-13 2.019e-13 -12.696 -12.695 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.193 -67.192 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.592 -69.591 0.001 (0) -[13C](-4) 4.520e-19 - [13C]H4 4.520e-19 4.528e-19 -18.345 -18.344 0.001 (0) + O2 0.000e+00 0.000e+00 -66.993 -66.992 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.392 -69.391 0.001 (0) +[13C](-4) 1.799e-19 + [13C]H4 1.799e-19 1.802e-19 -18.745 -18.744 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.016e-31 - [14C]H4 2.016e-31 2.019e-31 -30.696 -30.695 0.001 (0) +[14C](-4) 8.022e-32 + [14C]H4 8.022e-32 8.035e-32 -31.096 -31.095 0.001 (0) [14C](4) 2.928e-17 H[14C]O3- 2.365e-17 2.164e-17 -16.626 -16.665 -0.039 (0) [14C]O2 4.921e-18 4.929e-18 -17.308 -17.307 0.001 (0) CaH[14C]O3+ 4.994e-19 4.581e-19 -18.302 -18.339 -0.037 (0) - H[14C]O2[18O]- 4.719e-20 4.317e-20 -19.326 -19.365 -0.039 (0) - H[14C]O[18O]O- 4.719e-20 4.317e-20 -19.326 -19.365 -0.039 (0) H[14C][18O]O2- 4.719e-20 4.317e-20 -19.326 -19.365 -0.039 (0) + H[14C]O[18O]O- 4.719e-20 4.317e-20 -19.326 -19.365 -0.039 (0) + H[14C]O2[18O]- 4.719e-20 4.317e-20 -19.326 -19.365 -0.039 (0) Ca[14C]O3 2.738e-20 2.742e-20 -19.563 -19.562 0.001 (0) [14C]O[18O] 2.046e-20 2.050e-20 -19.689 -19.688 0.001 (0) [14C]O3-2 1.404e-20 9.839e-21 -19.852 -20.007 -0.155 (0) CaH[14C]O2[18O]+ 9.964e-22 9.141e-22 -21.002 -21.039 -0.037 (0) - CaH[14C]O[18O]O+ 9.964e-22 9.141e-22 -21.002 -21.039 -0.037 (0) CaH[14C][18O]O2+ 9.964e-22 9.141e-22 -21.002 -21.039 -0.037 (0) + CaH[14C]O[18O]O+ 9.964e-22 9.141e-22 -21.002 -21.039 -0.037 (0) Ca[14C]O2[18O] 1.639e-22 1.641e-22 -21.785 -21.785 0.001 (0) H[14C]O[18O]2- 9.415e-23 8.613e-23 -22.026 -22.065 -0.039 (0) H[14C][18O]2O- 9.415e-23 8.613e-23 -22.026 -22.065 -0.039 (0) @@ -18228,29 +18264,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.592 -69.591 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.593 -72.592 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.392 -69.391 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.393 -72.392 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.48 -18.34 -2.86 [13C]H4 + [13C]H4(g) -15.88 -18.74 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.20 -22.71 -1.50 [14C][18O]2 - [14C]H4(g) -27.83 -30.69 -2.86 [14C]H4 + [14C]H4(g) -28.23 -31.09 -2.86 [14C]H4 [14C]O2(g) -15.84 -17.31 -1.47 [14C]O2 [14C]O[18O](g) -18.22 -20.01 -1.79 [14C]O[18O] - [18O]2(g) -70.30 -72.59 -2.29 [18O]2 + [18O]2(g) -70.10 -72.39 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -18264,14 +18300,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.53 -16.39 -2.86 CH4 + CH4(g) -13.93 -16.79 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.44 -12.59 -3.15 H2 + H2(g) -9.54 -12.69 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.30 -67.19 -2.89 O2 - O[18O](g) -67.00 -69.89 -2.89 O[18O] + O2(g) -64.10 -66.99 -2.89 O2 + O[18O](g) -66.80 -69.69 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -18386,14 +18422,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -8.4377e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6239e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5591e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -2.7756e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -2.9976e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.1102e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -9.992e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -18411,16 +18447,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.259 Adjusted to redox equilibrium + pe = -2.199 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 69 (170 overall) + Iterations = 151 (252 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -18432,14 +18468,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.600e-17 - CH4 3.600e-17 3.606e-17 -16.444 -16.443 0.001 (0) +C(-4) 1.198e-17 + CH4 1.198e-17 1.200e-17 -16.921 -16.921 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -18448,9 +18484,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -18458,23 +18494,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.919e-13 - H2 2.459e-13 2.463e-13 -12.609 -12.608 0.001 (0) +H(0) 3.736e-13 + H2 1.868e-13 1.871e-13 -12.729 -12.728 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.166 -67.165 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.565 -69.564 0.001 (0) -[13C](-4) 3.990e-19 - [13C]H4 3.990e-19 3.997e-19 -18.399 -18.398 0.001 (0) + O2 0.000e+00 0.000e+00 -66.927 -66.926 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.326 -69.325 0.001 (0) +[13C](-4) 1.328e-19 + [13C]H4 1.328e-19 1.330e-19 -18.877 -18.876 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.338 0.001 (0) @@ -18483,56 +18519,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.639e-31 - [14C]H4 1.639e-31 1.642e-31 -30.785 -30.785 0.001 (0) +[14C](-4) 5.455e-32 + [14C]H4 5.455e-32 5.464e-32 -31.263 -31.262 0.001 (0) [14C](4) 2.697e-17 H[14C]O3- 2.179e-17 1.993e-17 -16.662 -16.700 -0.039 (0) [14C]O2 4.534e-18 4.541e-18 -17.344 -17.343 0.001 (0) CaH[14C]O3+ 4.601e-19 4.220e-19 -18.337 -18.375 -0.037 (0) - H[14C]O2[18O]- 4.347e-20 3.977e-20 -19.362 -19.400 -0.039 (0) - H[14C]O[18O]O- 4.347e-20 3.977e-20 -19.362 -19.400 -0.039 (0) H[14C][18O]O2- 4.347e-20 3.977e-20 -19.362 -19.400 -0.039 (0) + H[14C]O[18O]O- 4.347e-20 3.977e-20 -19.362 -19.400 -0.039 (0) + H[14C]O2[18O]- 4.347e-20 3.977e-20 -19.362 -19.400 -0.039 (0) Ca[14C]O3 2.522e-20 2.526e-20 -19.598 -19.598 0.001 (0) [14C]O[18O] 1.885e-20 1.888e-20 -19.725 -19.724 0.001 (0) [14C]O3-2 1.294e-20 9.064e-21 -19.888 -20.043 -0.155 (0) CaH[14C]O2[18O]+ 9.180e-22 8.421e-22 -21.037 -21.075 -0.037 (0) - CaH[14C]O[18O]O+ 9.180e-22 8.421e-22 -21.037 -21.075 -0.037 (0) CaH[14C][18O]O2+ 9.180e-22 8.421e-22 -21.037 -21.075 -0.037 (0) + CaH[14C]O[18O]O+ 9.180e-22 8.421e-22 -21.037 -21.075 -0.037 (0) Ca[14C]O2[18O] 1.510e-22 1.512e-22 -21.821 -21.820 0.001 (0) - H[14C]O[18O]2- 8.673e-23 7.935e-23 -22.062 -22.100 -0.039 (0) H[14C][18O]2O- 8.673e-23 7.935e-23 -22.062 -22.100 -0.039 (0) H[14C][18O]O[18O]- 8.673e-23 7.935e-23 -22.062 -22.100 -0.039 (0) + H[14C]O[18O]2- 8.673e-23 7.935e-23 -22.062 -22.100 -0.039 (0) [14C]O2[18O]-2 7.744e-23 5.425e-23 -22.111 -22.266 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.565 -69.564 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.566 -72.565 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.326 -69.325 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.327 -72.326 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.54 -18.40 -2.86 [13C]H4 + [13C]H4(g) -16.02 -18.88 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.24 -22.74 -1.50 [14C][18O]2 - [14C]H4(g) -27.92 -30.78 -2.86 [14C]H4 + [14C]H4(g) -28.40 -31.26 -2.86 [14C]H4 [14C]O2(g) -15.87 -17.34 -1.47 [14C]O2 [14C]O[18O](g) -18.26 -20.04 -1.79 [14C]O[18O] - [18O]2(g) -70.27 -72.56 -2.29 [18O]2 + [18O]2(g) -70.04 -72.33 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -18546,14 +18582,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.58 -16.44 -2.86 CH4 + CH4(g) -14.06 -16.92 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.46 -12.61 -3.15 H2 + H2(g) -9.58 -12.73 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.27 -67.16 -2.89 O2 - O[18O](g) -66.97 -69.86 -2.89 O[18O] + O2(g) -64.03 -66.93 -2.89 O2 + O[18O](g) -66.73 -69.63 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -18668,14 +18704,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.8842e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 Alpha 18O CO3-2/H2O(l) 1 -1.5529e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 9.3259e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -3.2196e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 2.2204e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -9.77e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -18693,16 +18729,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.247 Adjusted to redox equilibrium + pe = -2.165 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 117 (218 overall) + Iterations = 98 (199 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -18714,25 +18750,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.910e-17 - CH4 2.910e-17 2.915e-17 -16.536 -16.535 0.001 (0) +C(-4) 6.407e-18 + CH4 6.407e-18 6.417e-18 -17.193 -17.193 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -18740,81 +18776,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.664e-13 - H2 2.332e-13 2.336e-13 -12.632 -12.632 0.001 (0) +H(0) 3.195e-13 + H2 1.597e-13 1.600e-13 -12.797 -12.796 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.119 -67.119 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.518 -69.518 0.001 (0) -[13C](-4) 3.226e-19 - [13C]H4 3.226e-19 3.231e-19 -18.491 -18.491 0.001 (0) + O2 0.000e+00 0.000e+00 -66.791 -66.790 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.190 -69.189 0.001 (0) +[13C](-4) 7.101e-20 + [13C]H4 7.101e-20 7.113e-20 -19.149 -19.148 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.221e-31 - [14C]H4 1.221e-31 1.223e-31 -30.913 -30.913 0.001 (0) +[14C](-4) 2.687e-32 + [14C]H4 2.687e-32 2.691e-32 -31.571 -31.570 0.001 (0) [14C](4) 2.485e-17 H[14C]O3- 2.007e-17 1.836e-17 -16.697 -16.736 -0.039 (0) [14C]O2 4.176e-18 4.183e-18 -17.379 -17.378 0.001 (0) CaH[14C]O3+ 4.238e-19 3.888e-19 -18.373 -18.410 -0.037 (0) - H[14C]O2[18O]- 4.005e-20 3.664e-20 -19.397 -19.436 -0.039 (0) - H[14C]O[18O]O- 4.005e-20 3.664e-20 -19.397 -19.436 -0.039 (0) H[14C][18O]O2- 4.005e-20 3.664e-20 -19.397 -19.436 -0.039 (0) + H[14C]O[18O]O- 4.005e-20 3.664e-20 -19.397 -19.436 -0.039 (0) + H[14C]O2[18O]- 4.005e-20 3.664e-20 -19.397 -19.436 -0.039 (0) Ca[14C]O3 2.324e-20 2.327e-20 -19.634 -19.633 0.001 (0) [14C]O[18O] 1.737e-20 1.740e-20 -19.760 -19.760 0.001 (0) [14C]O3-2 1.192e-20 8.350e-21 -19.924 -20.078 -0.155 (0) CaH[14C]O2[18O]+ 8.456e-22 7.757e-22 -21.073 -21.110 -0.037 (0) - CaH[14C]O[18O]O+ 8.456e-22 7.757e-22 -21.073 -21.110 -0.037 (0) CaH[14C][18O]O2+ 8.456e-22 7.757e-22 -21.073 -21.110 -0.037 (0) + CaH[14C]O[18O]O+ 8.456e-22 7.757e-22 -21.073 -21.110 -0.037 (0) Ca[14C]O2[18O] 1.391e-22 1.393e-22 -21.857 -21.856 0.001 (0) + H[14C][18O]O[18O]- 7.990e-23 7.310e-23 -22.097 -22.136 -0.039 (0) H[14C]O[18O]2- 7.990e-23 7.310e-23 -22.097 -22.136 -0.039 (0) H[14C][18O]2O- 7.990e-23 7.310e-23 -22.097 -22.136 -0.039 (0) - H[14C][18O]O[18O]- 7.990e-23 7.310e-23 -22.097 -22.136 -0.039 (0) [14C]O2[18O]-2 7.134e-23 4.998e-23 -22.147 -22.301 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.518 -69.518 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.519 -72.519 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.190 -69.189 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.191 -72.190 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.63 -18.49 -2.86 [13C]H4 + [13C]H4(g) -16.29 -19.15 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.27 -22.78 -1.50 [14C][18O]2 - [14C]H4(g) -28.05 -30.91 -2.86 [14C]H4 + [14C]H4(g) -28.71 -31.57 -2.86 [14C]H4 [14C]O2(g) -15.91 -17.38 -1.47 [14C]O2 [14C]O[18O](g) -18.29 -20.08 -1.79 [14C]O[18O] - [18O]2(g) -70.23 -72.52 -2.29 [18O]2 + [18O]2(g) -69.90 -72.19 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -18828,14 +18864,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.68 -16.54 -2.86 CH4 + CH4(g) -14.33 -17.19 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.48 -12.63 -3.15 H2 + H2(g) -9.65 -12.80 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.23 -67.12 -2.89 O2 - O[18O](g) -66.93 -69.82 -2.89 O[18O] + O2(g) -63.90 -66.79 -2.89 O2 + O[18O](g) -66.60 -69.49 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -18950,14 +18986,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.3323e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7137e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6414e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -5.218e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.7319e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.2212e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.8874e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -18975,16 +19011,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.273 Adjusted to redox equilibrium + pe = -2.176 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 128 (229 overall) + Iterations = 112 (213 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -18996,15 +19032,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.715e-17 - CH4 4.715e-17 4.723e-17 -16.326 -16.326 0.001 (0) +C(-4) 7.947e-18 + CH4 7.947e-18 7.960e-18 -17.100 -17.099 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -19012,9 +19048,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -19022,50 +19058,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.262e-13 - H2 2.631e-13 2.635e-13 -12.580 -12.579 0.001 (0) +H(0) 3.371e-13 + H2 1.686e-13 1.688e-13 -12.773 -12.772 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.224 -67.223 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.623 -69.622 0.001 (0) -[13C](-4) 5.227e-19 - [13C]H4 5.227e-19 5.235e-19 -18.282 -18.281 0.001 (0) + O2 0.000e+00 0.000e+00 -66.837 -66.837 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.236 -69.236 0.001 (0) +[13C](-4) 8.809e-20 + [13C]H4 8.809e-20 8.823e-20 -19.055 -19.054 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.822e-31 - [14C]H4 1.822e-31 1.825e-31 -30.739 -30.739 0.001 (0) +[14C](-4) 3.071e-32 + [14C]H4 3.071e-32 3.076e-32 -31.513 -31.512 0.001 (0) [14C](4) 2.289e-17 H[14C]O3- 1.849e-17 1.692e-17 -16.733 -16.772 -0.039 (0) [14C]O2 3.847e-18 3.854e-18 -17.415 -17.414 0.001 (0) CaH[14C]O3+ 3.905e-19 3.582e-19 -18.408 -18.446 -0.037 (0) - H[14C]O2[18O]- 3.689e-20 3.375e-20 -19.433 -19.472 -0.039 (0) - H[14C]O[18O]O- 3.689e-20 3.375e-20 -19.433 -19.472 -0.039 (0) H[14C][18O]O2- 3.689e-20 3.375e-20 -19.433 -19.472 -0.039 (0) + H[14C]O[18O]O- 3.689e-20 3.375e-20 -19.433 -19.472 -0.039 (0) + H[14C]O2[18O]- 3.689e-20 3.375e-20 -19.433 -19.472 -0.039 (0) Ca[14C]O3 2.140e-20 2.144e-20 -19.669 -19.669 0.001 (0) [14C]O[18O] 1.600e-20 1.603e-20 -19.796 -19.795 0.001 (0) [14C]O3-2 1.098e-20 7.692e-21 -19.959 -20.114 -0.155 (0) CaH[14C]O2[18O]+ 7.790e-22 7.146e-22 -21.108 -21.146 -0.037 (0) - CaH[14C]O[18O]O+ 7.790e-22 7.146e-22 -21.108 -21.146 -0.037 (0) CaH[14C][18O]O2+ 7.790e-22 7.146e-22 -21.108 -21.146 -0.037 (0) + CaH[14C]O[18O]O+ 7.790e-22 7.146e-22 -21.108 -21.146 -0.037 (0) Ca[14C]O2[18O] 1.281e-22 1.283e-22 -21.892 -21.892 0.001 (0) H[14C]O[18O]2- 7.361e-23 6.734e-23 -22.133 -22.172 -0.039 (0) H[14C][18O]2O- 7.361e-23 6.734e-23 -22.133 -22.172 -0.039 (0) @@ -19074,29 +19110,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.623 -69.622 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.624 -72.623 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.236 -69.236 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.238 -72.237 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.42 -18.28 -2.86 [13C]H4 + [13C]H4(g) -16.19 -19.05 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.31 -22.81 -1.50 [14C][18O]2 - [14C]H4(g) -27.88 -30.74 -2.86 [14C]H4 + [14C]H4(g) -28.65 -31.51 -2.86 [14C]H4 [14C]O2(g) -15.95 -17.41 -1.47 [14C]O2 [14C]O[18O](g) -18.33 -20.11 -1.79 [14C]O[18O] - [18O]2(g) -70.33 -72.62 -2.29 [18O]2 + [18O]2(g) -69.95 -72.24 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -19110,14 +19146,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.47 -16.33 -2.86 CH4 + CH4(g) -14.24 -17.10 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.43 -12.58 -3.15 H2 + H2(g) -9.62 -12.77 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.33 -67.22 -2.89 O2 - O[18O](g) -67.03 -69.92 -2.89 O[18O] + O2(g) -63.94 -66.84 -2.89 O2 + O[18O](g) -66.64 -69.54 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -19141,12 +19177,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 75. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -19232,14 +19262,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6207e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.584e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.2101e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.7764e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -8.8818e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.1102e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -19257,16 +19287,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.289 Adjusted to redox equilibrium + pe = -2.201 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 52 (153 overall) + Iterations = 73 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -19278,25 +19308,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 6.330e-17 - CH4 6.330e-17 6.341e-17 -16.199 -16.198 0.001 (0) +C(-4) 1.254e-17 + CH4 1.254e-17 1.256e-17 -16.902 -16.901 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -19304,23 +19334,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.664e-13 - H2 2.832e-13 2.837e-13 -12.548 -12.547 0.001 (0) +H(0) 3.779e-13 + H2 1.889e-13 1.892e-13 -12.724 -12.723 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.288 -67.287 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.687 -69.686 0.001 (0) -[13C](-4) 7.017e-19 - [13C]H4 7.017e-19 7.028e-19 -18.154 -18.153 0.001 (0) + O2 0.000e+00 0.000e+00 -66.937 -66.936 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.336 -69.335 0.001 (0) +[13C](-4) 1.390e-19 + [13C]H4 1.390e-19 1.392e-19 -18.857 -18.856 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.338 0.001 (0) @@ -19329,56 +19359,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.253e-31 - [14C]H4 2.253e-31 2.257e-31 -30.647 -30.646 0.001 (0) +[14C](-4) 4.464e-32 + [14C]H4 4.464e-32 4.471e-32 -31.350 -31.350 0.001 (0) [14C](4) 2.109e-17 H[14C]O3- 1.703e-17 1.558e-17 -16.769 -16.807 -0.039 (0) [14C]O2 3.544e-18 3.550e-18 -17.450 -17.450 0.001 (0) CaH[14C]O3+ 3.597e-19 3.300e-19 -18.444 -18.482 -0.037 (0) - H[14C]O2[18O]- 3.399e-20 3.109e-20 -19.469 -19.507 -0.039 (0) - H[14C]O[18O]O- 3.399e-20 3.109e-20 -19.469 -19.507 -0.039 (0) H[14C][18O]O2- 3.399e-20 3.109e-20 -19.469 -19.507 -0.039 (0) + H[14C]O[18O]O- 3.399e-20 3.109e-20 -19.469 -19.507 -0.039 (0) + H[14C]O2[18O]- 3.399e-20 3.109e-20 -19.469 -19.507 -0.039 (0) Ca[14C]O3 1.972e-20 1.975e-20 -19.705 -19.704 0.001 (0) [14C]O[18O] 1.474e-20 1.476e-20 -19.832 -19.831 0.001 (0) [14C]O3-2 1.012e-20 7.086e-21 -19.995 -20.150 -0.155 (0) CaH[14C]O2[18O]+ 7.177e-22 6.583e-22 -21.144 -21.182 -0.037 (0) - CaH[14C]O[18O]O+ 7.177e-22 6.583e-22 -21.144 -21.182 -0.037 (0) CaH[14C][18O]O2+ 7.177e-22 6.583e-22 -21.144 -21.182 -0.037 (0) + CaH[14C]O[18O]O+ 7.177e-22 6.583e-22 -21.144 -21.182 -0.037 (0) Ca[14C]O2[18O] 1.180e-22 1.182e-22 -21.928 -21.927 0.001 (0) - H[14C]O[18O]2- 6.781e-23 6.204e-23 -22.169 -22.207 -0.039 (0) H[14C][18O]2O- 6.781e-23 6.204e-23 -22.169 -22.207 -0.039 (0) H[14C][18O]O[18O]- 6.781e-23 6.204e-23 -22.169 -22.207 -0.039 (0) + H[14C]O[18O]2- 6.781e-23 6.204e-23 -22.169 -22.207 -0.039 (0) [14C]O2[18O]-2 6.055e-23 4.242e-23 -22.218 -22.372 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.687 -69.686 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.688 -72.687 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.336 -69.335 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.337 -72.336 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.29 -18.15 -2.86 [13C]H4 + [13C]H4(g) -16.00 -18.86 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.35 -22.85 -1.50 [14C][18O]2 - [14C]H4(g) -27.79 -30.65 -2.86 [14C]H4 + [14C]H4(g) -28.49 -31.35 -2.86 [14C]H4 [14C]O2(g) -15.98 -17.45 -1.47 [14C]O2 [14C]O[18O](g) -18.36 -20.15 -1.79 [14C]O[18O] - [18O]2(g) -70.40 -72.69 -2.29 [18O]2 + [18O]2(g) -70.05 -72.34 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -19392,14 +19422,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.34 -16.20 -2.86 CH4 + CH4(g) -14.04 -16.90 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.40 -12.55 -3.15 H2 + H2(g) -9.57 -12.72 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.40 -67.29 -2.89 O2 - O[18O](g) -67.10 -69.99 -2.89 O[18O] + O2(g) -64.04 -66.94 -2.89 O2 + O[18O](g) -66.74 -69.64 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -19423,12 +19453,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 76. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -19514,14 +19538,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6571e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8248e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.1102e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 3.1086e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.1102e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 4.885e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -19539,16 +19563,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.300 Adjusted to redox equilibrium + pe = -2.202 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 107 (208 overall) + Iterations = 82 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -19560,15 +19584,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 7.700e-17 - CH4 7.700e-17 7.713e-17 -16.114 -16.113 0.001 (0) +C(-4) 1.269e-17 + CH4 1.269e-17 1.271e-17 -16.897 -16.896 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -19576,9 +19600,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -19586,81 +19610,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.948e-13 - H2 2.974e-13 2.979e-13 -12.527 -12.526 0.001 (0) +H(0) 3.790e-13 + H2 1.895e-13 1.898e-13 -12.722 -12.722 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.331 -67.330 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.730 -69.729 0.001 (0) -[13C](-4) 8.535e-19 - [13C]H4 8.535e-19 8.549e-19 -18.069 -18.068 0.001 (0) + O2 0.000e+00 0.000e+00 -66.939 -66.938 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.338 -69.337 0.001 (0) +[13C](-4) 1.406e-19 + [13C]H4 1.406e-19 1.409e-19 -18.852 -18.851 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.338 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.525e-31 - [14C]H4 2.525e-31 2.529e-31 -30.598 -30.597 0.001 (0) +[14C](-4) 4.160e-32 + [14C]H4 4.160e-32 4.167e-32 -31.381 -31.380 0.001 (0) [14C](4) 1.943e-17 H[14C]O3- 1.569e-17 1.436e-17 -16.804 -16.843 -0.039 (0) [14C]O2 3.265e-18 3.271e-18 -17.486 -17.485 0.001 (0) CaH[14C]O3+ 3.314e-19 3.040e-19 -18.480 -18.517 -0.037 (0) - H[14C]O2[18O]- 3.131e-20 2.864e-20 -19.504 -19.543 -0.039 (0) - H[14C]O[18O]O- 3.131e-20 2.864e-20 -19.504 -19.543 -0.039 (0) H[14C][18O]O2- 3.131e-20 2.864e-20 -19.504 -19.543 -0.039 (0) + H[14C]O[18O]O- 3.131e-20 2.864e-20 -19.504 -19.543 -0.039 (0) + H[14C]O2[18O]- 3.131e-20 2.864e-20 -19.504 -19.543 -0.039 (0) Ca[14C]O3 1.817e-20 1.820e-20 -19.741 -19.740 0.001 (0) [14C]O[18O] 1.358e-20 1.360e-20 -19.867 -19.866 0.001 (0) [14C]O3-2 9.319e-21 6.528e-21 -20.031 -20.185 -0.155 (0) CaH[14C]O2[18O]+ 6.611e-22 6.065e-22 -21.180 -21.217 -0.037 (0) - CaH[14C]O[18O]O+ 6.611e-22 6.065e-22 -21.180 -21.217 -0.037 (0) CaH[14C][18O]O2+ 6.611e-22 6.065e-22 -21.180 -21.217 -0.037 (0) + CaH[14C]O[18O]O+ 6.611e-22 6.065e-22 -21.180 -21.217 -0.037 (0) Ca[14C]O2[18O] 1.087e-22 1.089e-22 -21.964 -21.963 0.001 (0) + H[14C][18O]O[18O]- 6.247e-23 5.715e-23 -22.204 -22.243 -0.039 (0) H[14C]O[18O]2- 6.247e-23 5.715e-23 -22.204 -22.243 -0.039 (0) H[14C][18O]2O- 6.247e-23 5.715e-23 -22.204 -22.243 -0.039 (0) - H[14C][18O]O[18O]- 6.247e-23 5.715e-23 -22.204 -22.243 -0.039 (0) [14C]O2[18O]-2 5.578e-23 3.907e-23 -22.254 -22.408 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.730 -69.729 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.731 -72.730 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.338 -69.337 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.339 -72.338 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.21 -18.07 -2.86 [13C]H4 + [13C]H4(g) -15.99 -18.85 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.38 -22.89 -1.50 [14C][18O]2 - [14C]H4(g) -27.74 -30.60 -2.86 [14C]H4 + [14C]H4(g) -28.52 -31.38 -2.86 [14C]H4 [14C]O2(g) -16.02 -17.49 -1.47 [14C]O2 [14C]O[18O](g) -18.40 -20.19 -1.79 [14C]O[18O] - [18O]2(g) -70.44 -72.73 -2.29 [18O]2 + [18O]2(g) -70.05 -72.34 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -19674,14 +19698,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.25 -16.11 -2.86 CH4 + CH4(g) -14.04 -16.90 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.38 -12.53 -3.15 H2 + H2(g) -9.57 -12.72 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.44 -67.33 -2.89 O2 - O[18O](g) -67.14 -70.03 -2.89 O[18O] + O2(g) -64.05 -66.94 -2.89 O2 + O[18O](g) -66.75 -69.64 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -19796,14 +19820,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5545e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5835e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -8.1046e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.0214e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -4.4409e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -4.3299e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -19821,16 +19845,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.319 Adjusted to redox equilibrium + pe = -2.245 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 60 (161 overall) + Iterations = 104 (205 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -19842,25 +19866,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.091e-16 - CH4 1.091e-16 1.093e-16 -15.962 -15.962 0.001 (0) +C(-4) 2.810e-17 + CH4 2.810e-17 2.815e-17 -16.551 -16.551 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -19868,50 +19892,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.489e-13 - H2 3.245e-13 3.250e-13 -12.489 -12.488 0.001 (0) +H(0) 4.623e-13 + H2 2.312e-13 2.315e-13 -12.636 -12.635 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.406 -67.406 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.805 -69.805 0.001 (0) -[13C](-4) 1.209e-18 - [13C]H4 1.209e-18 1.211e-18 -17.918 -17.917 0.001 (0) + O2 0.000e+00 0.000e+00 -67.112 -67.111 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.511 -69.510 0.001 (0) +[13C](-4) 3.115e-19 + [13C]H4 3.115e-19 3.120e-19 -18.507 -18.506 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.295e-31 - [14C]H4 3.295e-31 3.300e-31 -30.482 -30.481 0.001 (0) +[14C](-4) 8.490e-32 + [14C]H4 8.490e-32 8.504e-32 -31.071 -31.070 0.001 (0) [14C](4) 1.790e-17 H[14C]O3- 1.446e-17 1.323e-17 -16.840 -16.879 -0.039 (0) [14C]O2 3.008e-18 3.013e-18 -17.522 -17.521 0.001 (0) CaH[14C]O3+ 3.053e-19 2.800e-19 -18.515 -18.553 -0.037 (0) - H[14C]O2[18O]- 2.884e-20 2.639e-20 -19.540 -19.579 -0.039 (0) - H[14C]O[18O]O- 2.884e-20 2.639e-20 -19.540 -19.579 -0.039 (0) H[14C][18O]O2- 2.884e-20 2.639e-20 -19.540 -19.579 -0.039 (0) + H[14C]O[18O]O- 2.884e-20 2.639e-20 -19.540 -19.579 -0.039 (0) + H[14C]O2[18O]- 2.884e-20 2.639e-20 -19.540 -19.579 -0.039 (0) Ca[14C]O3 1.673e-20 1.676e-20 -19.776 -19.776 0.001 (0) [14C]O[18O] 1.251e-20 1.253e-20 -19.903 -19.902 0.001 (0) [14C]O3-2 8.585e-21 6.014e-21 -20.066 -20.221 -0.155 (0) CaH[14C]O2[18O]+ 6.091e-22 5.587e-22 -21.215 -21.253 -0.037 (0) - CaH[14C]O[18O]O+ 6.091e-22 5.587e-22 -21.215 -21.253 -0.037 (0) CaH[14C][18O]O2+ 6.091e-22 5.587e-22 -21.215 -21.253 -0.037 (0) + CaH[14C]O[18O]O+ 6.091e-22 5.587e-22 -21.215 -21.253 -0.037 (0) Ca[14C]O2[18O] 1.002e-22 1.003e-22 -21.999 -21.999 0.001 (0) H[14C]O[18O]2- 5.755e-23 5.265e-23 -22.240 -22.279 -0.039 (0) H[14C][18O]2O- 5.755e-23 5.265e-23 -22.240 -22.279 -0.039 (0) @@ -19920,29 +19944,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.805 -69.805 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.806 -72.806 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.511 -69.510 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.512 -72.511 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.06 -17.92 -2.86 [13C]H4 + [13C]H4(g) -15.65 -18.51 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.42 -22.92 -1.50 [14C][18O]2 - [14C]H4(g) -27.62 -30.48 -2.86 [14C]H4 + [14C]H4(g) -28.21 -31.07 -2.86 [14C]H4 [14C]O2(g) -16.05 -17.52 -1.47 [14C]O2 [14C]O[18O](g) -18.43 -20.22 -1.79 [14C]O[18O] - [18O]2(g) -70.52 -72.81 -2.29 [18O]2 + [18O]2(g) -70.22 -72.51 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -19956,14 +19980,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.10 -15.96 -2.86 CH4 + CH4(g) -13.69 -16.55 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.34 -12.49 -3.15 H2 + H2(g) -9.49 -12.64 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.51 -67.41 -2.89 O2 - O[18O](g) -67.21 -70.11 -2.89 O[18O] + O2(g) -64.22 -67.11 -2.89 O2 + O[18O](g) -66.92 -69.81 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -19987,12 +20011,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 78. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -20078,14 +20096,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5581e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6689e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 3.3307e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 7.3275e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -7.7716e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -7.8826e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -20103,16 +20121,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.337 Adjusted to redox equilibrium + pe = -2.252 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.720e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 154 (255 overall) + Iterations = 84 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -20124,14 +20142,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.533e-16 - CH4 1.533e-16 1.535e-16 -15.814 -15.814 0.001 (0) +C(-4) 3.205e-17 + CH4 3.205e-17 3.210e-17 -16.494 -16.494 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -20140,9 +20158,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -20150,23 +20168,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.066e-13 - H2 3.533e-13 3.539e-13 -12.452 -12.451 0.001 (0) +H(0) 4.778e-13 + H2 2.389e-13 2.393e-13 -12.622 -12.621 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.480 -67.479 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.879 -69.878 0.001 (0) -[13C](-4) 1.699e-18 - [13C]H4 1.699e-18 1.702e-18 -17.770 -17.769 0.001 (0) + O2 0.000e+00 0.000e+00 -67.140 -67.140 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.539 -69.539 0.001 (0) +[13C](-4) 3.552e-19 + [13C]H4 3.552e-19 3.558e-19 -18.450 -18.449 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) @@ -20175,56 +20193,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 4.266e-31 - [14C]H4 4.266e-31 4.273e-31 -30.370 -30.369 0.001 (0) +[14C](-4) 8.917e-32 + [14C]H4 8.917e-32 8.932e-32 -31.050 -31.049 0.001 (0) [14C](4) 1.649e-17 H[14C]O3- 1.332e-17 1.218e-17 -16.876 -16.914 -0.039 (0) [14C]O2 2.771e-18 2.776e-18 -17.557 -17.557 0.001 (0) CaH[14C]O3+ 2.812e-19 2.580e-19 -18.551 -18.588 -0.037 (0) - H[14C]O2[18O]- 2.657e-20 2.431e-20 -19.576 -19.614 -0.039 (0) - H[14C]O[18O]O- 2.657e-20 2.431e-20 -19.576 -19.614 -0.039 (0) H[14C][18O]O2- 2.657e-20 2.431e-20 -19.576 -19.614 -0.039 (0) + H[14C]O[18O]O- 2.657e-20 2.431e-20 -19.576 -19.614 -0.039 (0) + H[14C]O2[18O]- 2.657e-20 2.431e-20 -19.576 -19.614 -0.039 (0) Ca[14C]O3 1.542e-20 1.544e-20 -19.812 -19.811 0.001 (0) [14C]O[18O] 1.152e-20 1.154e-20 -19.938 -19.938 0.001 (0) [14C]O3-2 7.908e-21 5.540e-21 -20.102 -20.256 -0.155 (0) CaH[14C]O2[18O]+ 5.611e-22 5.147e-22 -21.251 -21.288 -0.037 (0) - CaH[14C]O[18O]O+ 5.611e-22 5.147e-22 -21.251 -21.288 -0.037 (0) CaH[14C][18O]O2+ 5.611e-22 5.147e-22 -21.251 -21.288 -0.037 (0) + CaH[14C]O[18O]O+ 5.611e-22 5.147e-22 -21.251 -21.288 -0.037 (0) Ca[14C]O2[18O] 9.228e-23 9.243e-23 -22.035 -22.034 0.001 (0) - H[14C]O[18O]2- 5.301e-23 4.850e-23 -22.276 -22.314 -0.039 (0) H[14C][18O]2O- 5.301e-23 4.850e-23 -22.276 -22.314 -0.039 (0) H[14C][18O]O[18O]- 5.301e-23 4.850e-23 -22.276 -22.314 -0.039 (0) + H[14C]O[18O]2- 5.301e-23 4.850e-23 -22.276 -22.314 -0.039 (0) [14C]O2[18O]-2 4.734e-23 3.316e-23 -22.325 -22.479 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.879 -69.878 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.880 -72.879 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.539 -69.539 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.540 -72.540 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.91 -17.77 -2.86 [13C]H4 + [13C]H4(g) -15.59 -18.45 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.45 -22.96 -1.50 [14C][18O]2 - [14C]H4(g) -27.51 -30.37 -2.86 [14C]H4 + [14C]H4(g) -28.19 -31.05 -2.86 [14C]H4 [14C]O2(g) -16.09 -17.56 -1.47 [14C]O2 [14C]O[18O](g) -18.47 -20.26 -1.79 [14C]O[18O] - [18O]2(g) -70.59 -72.88 -2.29 [18O]2 + [18O]2(g) -70.25 -72.54 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -20238,14 +20256,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.95 -15.81 -2.86 CH4 + CH4(g) -13.63 -16.49 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.30 -12.45 -3.15 H2 + H2(g) -9.47 -12.62 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.59 -67.48 -2.89 O2 - O[18O](g) -67.29 -70.18 -2.89 O[18O] + O2(g) -64.25 -67.14 -2.89 O2 + O[18O](g) -66.95 -69.84 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -20360,14 +20378,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7081e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6559e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.1546e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -9.2149e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 2.2204e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -3.8858e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -20385,16 +20403,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.340 Adjusted to redox equilibrium + pe = -2.236 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.774e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 54 (155 overall) + Iterations = 52 (153 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -20406,25 +20424,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.629e-16 - CH4 1.629e-16 1.631e-16 -15.788 -15.787 0.001 (0) +C(-4) 2.384e-17 + CH4 2.384e-17 2.388e-17 -16.623 -16.622 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -20432,81 +20450,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.173e-13 - H2 3.587e-13 3.593e-13 -12.445 -12.445 0.001 (0) +H(0) 4.437e-13 + H2 2.219e-13 2.222e-13 -12.654 -12.653 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.493 -67.493 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.892 -69.892 0.001 (0) -[13C](-4) 1.805e-18 - [13C]H4 1.805e-18 1.808e-18 -17.743 -17.743 0.001 (0) + O2 0.000e+00 0.000e+00 -67.076 -67.075 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.475 -69.474 0.001 (0) +[13C](-4) 2.643e-19 + [13C]H4 2.643e-19 2.647e-19 -18.578 -18.577 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 4.175e-31 - [14C]H4 4.175e-31 4.182e-31 -30.379 -30.379 0.001 (0) +[14C](-4) 6.112e-32 + [14C]H4 6.112e-32 6.122e-32 -31.214 -31.213 0.001 (0) [14C](4) 1.519e-17 H[14C]O3- 1.227e-17 1.122e-17 -16.911 -16.950 -0.039 (0) [14C]O2 2.553e-18 2.557e-18 -17.593 -17.592 0.001 (0) CaH[14C]O3+ 2.591e-19 2.376e-19 -18.587 -18.624 -0.037 (0) - H[14C]O2[18O]- 2.448e-20 2.239e-20 -19.611 -19.650 -0.039 (0) - H[14C]O[18O]O- 2.448e-20 2.239e-20 -19.611 -19.650 -0.039 (0) H[14C][18O]O2- 2.448e-20 2.239e-20 -19.611 -19.650 -0.039 (0) + H[14C]O[18O]O- 2.448e-20 2.239e-20 -19.611 -19.650 -0.039 (0) + H[14C]O2[18O]- 2.448e-20 2.239e-20 -19.611 -19.650 -0.039 (0) Ca[14C]O3 1.420e-20 1.423e-20 -19.848 -19.847 0.001 (0) [14C]O[18O] 1.062e-20 1.063e-20 -19.974 -19.973 0.001 (0) [14C]O3-2 7.285e-21 5.104e-21 -20.138 -20.292 -0.155 (0) CaH[14C]O2[18O]+ 5.169e-22 4.742e-22 -21.287 -21.324 -0.037 (0) - CaH[14C]O[18O]O+ 5.169e-22 4.742e-22 -21.287 -21.324 -0.037 (0) CaH[14C][18O]O2+ 5.169e-22 4.742e-22 -21.287 -21.324 -0.037 (0) + CaH[14C]O[18O]O+ 5.169e-22 4.742e-22 -21.287 -21.324 -0.037 (0) Ca[14C]O2[18O] 8.501e-23 8.515e-23 -22.071 -22.070 0.001 (0) + H[14C][18O]O[18O]- 4.884e-23 4.468e-23 -22.311 -22.350 -0.039 (0) H[14C]O[18O]2- 4.884e-23 4.468e-23 -22.311 -22.350 -0.039 (0) H[14C][18O]2O- 4.884e-23 4.468e-23 -22.311 -22.350 -0.039 (0) - H[14C][18O]O[18O]- 4.884e-23 4.468e-23 -22.311 -22.350 -0.039 (0) [14C]O2[18O]-2 4.361e-23 3.055e-23 -22.360 -22.515 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.892 -69.892 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.893 -72.893 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.475 -69.474 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.476 -72.475 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.88 -17.74 -2.86 [13C]H4 + [13C]H4(g) -15.72 -18.58 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.49 -22.99 -1.50 [14C][18O]2 - [14C]H4(g) -27.52 -30.38 -2.86 [14C]H4 + [14C]H4(g) -28.35 -31.21 -2.86 [14C]H4 [14C]O2(g) -16.12 -17.59 -1.47 [14C]O2 [14C]O[18O](g) -18.51 -20.29 -1.79 [14C]O[18O] - [18O]2(g) -70.60 -72.89 -2.29 [18O]2 + [18O]2(g) -70.19 -72.48 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -20520,14 +20538,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.93 -15.79 -2.86 CH4 + CH4(g) -13.76 -16.62 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.29 -12.44 -3.15 H2 + H2(g) -9.50 -12.65 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.60 -67.49 -2.89 O2 - O[18O](g) -67.30 -70.19 -2.89 O[18O] + O2(g) -64.18 -67.08 -2.89 O2 + O[18O](g) -66.88 -69.78 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -20551,12 +20569,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 80. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -20642,14 +20654,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6467e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7558e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 6.4393e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 2.2204e-13 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.7208e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -2.1427e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -20667,16 +20679,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.340 Adjusted to redox equilibrium + pe = -2.219 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.774e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 78 (179 overall) + Iterations = 64 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -20688,15 +20700,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.621e-16 - CH4 1.621e-16 1.624e-16 -15.790 -15.789 0.001 (0) +C(-4) 1.737e-17 + CH4 1.737e-17 1.740e-17 -16.760 -16.759 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -20704,9 +20716,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -20714,50 +20726,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.165e-13 - H2 3.583e-13 3.588e-13 -12.446 -12.445 0.001 (0) +H(0) 4.100e-13 + H2 2.050e-13 2.053e-13 -12.688 -12.688 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.492 -67.492 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.891 -69.891 0.001 (0) -[13C](-4) 1.797e-18 - [13C]H4 1.797e-18 1.800e-18 -17.745 -17.745 0.001 (0) + O2 0.000e+00 0.000e+00 -67.007 -67.007 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.406 -69.406 0.001 (0) +[13C](-4) 1.926e-19 + [13C]H4 1.926e-19 1.929e-19 -18.715 -18.715 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.829e-31 - [14C]H4 3.829e-31 3.835e-31 -30.417 -30.416 0.001 (0) +[14C](-4) 4.103e-32 + [14C]H4 4.103e-32 4.110e-32 -31.387 -31.386 0.001 (0) [14C](4) 1.399e-17 H[14C]O3- 1.130e-17 1.034e-17 -16.947 -16.985 -0.039 (0) [14C]O2 2.352e-18 2.356e-18 -17.629 -17.628 0.001 (0) CaH[14C]O3+ 2.387e-19 2.189e-19 -18.622 -18.660 -0.037 (0) - H[14C]O2[18O]- 2.255e-20 2.063e-20 -19.647 -19.686 -0.039 (0) - H[14C]O[18O]O- 2.255e-20 2.063e-20 -19.647 -19.686 -0.039 (0) H[14C][18O]O2- 2.255e-20 2.063e-20 -19.647 -19.686 -0.039 (0) + H[14C]O[18O]O- 2.255e-20 2.063e-20 -19.647 -19.686 -0.039 (0) + H[14C]O2[18O]- 2.255e-20 2.063e-20 -19.647 -19.686 -0.039 (0) Ca[14C]O3 1.308e-20 1.310e-20 -19.883 -19.883 0.001 (0) [14C]O[18O] 9.779e-21 9.795e-21 -20.010 -20.009 0.001 (0) [14C]O3-2 6.711e-21 4.702e-21 -20.173 -20.328 -0.155 (0) CaH[14C]O2[18O]+ 4.762e-22 4.368e-22 -21.322 -21.360 -0.037 (0) - CaH[14C]O[18O]O+ 4.762e-22 4.368e-22 -21.322 -21.360 -0.037 (0) CaH[14C][18O]O2+ 4.762e-22 4.368e-22 -21.322 -21.360 -0.037 (0) + CaH[14C]O[18O]O+ 4.762e-22 4.368e-22 -21.322 -21.360 -0.037 (0) Ca[14C]O2[18O] 7.831e-23 7.844e-23 -22.106 -22.105 0.001 (0) H[14C]O[18O]2- 4.499e-23 4.116e-23 -22.347 -22.386 -0.039 (0) H[14C][18O]2O- 4.499e-23 4.116e-23 -22.347 -22.386 -0.039 (0) @@ -20766,29 +20778,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.891 -69.891 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.892 -72.892 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.406 -69.406 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.407 -72.407 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.88 -17.74 -2.86 [13C]H4 + [13C]H4(g) -15.85 -18.71 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.52 -23.03 -1.50 [14C][18O]2 - [14C]H4(g) -27.56 -30.42 -2.86 [14C]H4 + [14C]H4(g) -28.53 -31.39 -2.86 [14C]H4 [14C]O2(g) -16.16 -17.63 -1.47 [14C]O2 [14C]O[18O](g) -18.54 -20.33 -1.79 [14C]O[18O] - [18O]2(g) -70.60 -72.89 -2.29 [18O]2 + [18O]2(g) -70.12 -72.41 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -20802,14 +20814,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.93 -15.79 -2.86 CH4 + CH4(g) -13.90 -16.76 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.30 -12.45 -3.15 H2 + H2(g) -9.54 -12.69 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.60 -67.49 -2.89 O2 - O[18O](g) -67.30 -70.19 -2.89 O[18O] + O2(g) -64.11 -67.01 -2.89 O2 + O[18O](g) -66.81 -69.71 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -20904,7 +20916,7 @@ Calcite 5.00e-04 R(14C) CO2(aq) 2.17557e-15 0.18502 pmc R(18O) CO2(aq) 2.07917e-03 36.887 permil R(18O) HCO3- 1.99520e-03 -4.9873 permil - R(13C) HCO3- 1.11808e-02 0.050964 permil + R(13C) HCO3- 1.11808e-02 0.050965 permil R(14C) HCO3- 2.21359e-15 0.18825 pmc R(18O) CO3-2 1.99520e-03 -4.9873 permil R(13C) CO3-2 1.11647e-02 -1.3842 permil @@ -20924,14 +20936,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.6613e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7571e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.658e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.199e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.8208e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 2.2204e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.2212e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -20949,16 +20961,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.333 Adjusted to redox equilibrium + pe = -2.194 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.774e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 118 (219 overall) + Iterations = 81 (182 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -20970,25 +20982,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.426e-16 - CH4 1.426e-16 1.429e-16 -15.846 -15.845 0.001 (0) +C(-4) 1.098e-17 + CH4 1.098e-17 1.100e-17 -16.959 -16.959 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -20996,23 +21008,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.939e-13 - H2 3.470e-13 3.475e-13 -12.460 -12.459 0.001 (0) +H(0) 3.655e-13 + H2 1.828e-13 1.831e-13 -12.738 -12.737 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.464 -67.464 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.863 -69.863 0.001 (0) -[13C](-4) 1.581e-18 - [13C]H4 1.581e-18 1.584e-18 -17.801 -17.800 0.001 (0) + O2 0.000e+00 0.000e+00 -66.908 -66.907 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.307 -69.306 0.001 (0) +[13C](-4) 1.217e-19 + [13C]H4 1.217e-19 1.219e-19 -18.915 -18.914 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) @@ -21021,56 +21033,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.103e-31 - [14C]H4 3.103e-31 3.108e-31 -30.508 -30.507 0.001 (0) +[14C](-4) 2.389e-32 + [14C]H4 2.389e-32 2.393e-32 -31.622 -31.621 0.001 (0) [14C](4) 1.289e-17 H[14C]O3- 1.041e-17 9.525e-18 -16.982 -17.021 -0.039 (0) [14C]O2 2.166e-18 2.170e-18 -17.664 -17.664 0.001 (0) CaH[14C]O3+ 2.199e-19 2.017e-19 -18.658 -18.695 -0.037 (0) - H[14C]O2[18O]- 2.077e-20 1.900e-20 -19.683 -19.721 -0.039 (0) - H[14C]O[18O]O- 2.077e-20 1.900e-20 -19.683 -19.721 -0.039 (0) H[14C][18O]O2- 2.077e-20 1.900e-20 -19.683 -19.721 -0.039 (0) + H[14C]O[18O]O- 2.077e-20 1.900e-20 -19.683 -19.721 -0.039 (0) + H[14C]O2[18O]- 2.077e-20 1.900e-20 -19.683 -19.721 -0.039 (0) Ca[14C]O3 1.205e-20 1.207e-20 -19.919 -19.918 0.001 (0) [14C]O[18O] 9.009e-21 9.023e-21 -20.045 -20.045 0.001 (0) [14C]O3-2 6.183e-21 4.331e-21 -20.209 -20.363 -0.155 (0) CaH[14C]O2[18O]+ 4.387e-22 4.024e-22 -21.358 -21.395 -0.037 (0) - CaH[14C]O[18O]O+ 4.387e-22 4.024e-22 -21.358 -21.395 -0.037 (0) CaH[14C][18O]O2+ 4.387e-22 4.024e-22 -21.358 -21.395 -0.037 (0) + CaH[14C]O[18O]O+ 4.387e-22 4.024e-22 -21.358 -21.395 -0.037 (0) Ca[14C]O2[18O] 7.214e-23 7.226e-23 -22.142 -22.141 0.001 (0) - H[14C]O[18O]2- 4.145e-23 3.792e-23 -22.383 -22.421 -0.039 (0) H[14C][18O]2O- 4.145e-23 3.792e-23 -22.383 -22.421 -0.039 (0) H[14C][18O]O[18O]- 4.145e-23 3.792e-23 -22.383 -22.421 -0.039 (0) + H[14C]O[18O]2- 4.145e-23 3.792e-23 -22.383 -22.421 -0.039 (0) [14C]O2[18O]-2 3.701e-23 2.593e-23 -22.432 -22.586 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.863 -69.863 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.865 -72.864 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.307 -69.306 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.308 -72.307 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.94 -17.80 -2.86 [13C]H4 + [13C]H4(g) -16.05 -18.91 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.56 -23.06 -1.50 [14C][18O]2 - [14C]H4(g) -27.65 -30.51 -2.86 [14C]H4 + [14C]H4(g) -28.76 -31.62 -2.86 [14C]H4 [14C]O2(g) -16.19 -17.66 -1.47 [14C]O2 [14C]O[18O](g) -18.58 -20.36 -1.79 [14C]O[18O] - [18O]2(g) -70.57 -72.86 -2.29 [18O]2 + [18O]2(g) -70.02 -72.31 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -21084,14 +21096,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.99 -15.85 -2.86 CH4 + CH4(g) -14.10 -16.96 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.31 -12.46 -3.15 H2 + H2(g) -9.59 -12.74 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.57 -67.46 -2.89 O2 - O[18O](g) -67.27 -70.16 -2.89 O[18O] + O2(g) -64.01 -66.91 -2.89 O2 + O[18O](g) -66.71 -69.61 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -21186,7 +21198,7 @@ Calcite 5.00e-04 R(14C) CO2(aq) 2.00420e-15 0.17044 pmc R(18O) CO2(aq) 2.07917e-03 36.887 permil R(18O) HCO3- 1.99520e-03 -4.9872 permil - R(13C) HCO3- 1.11808e-02 0.054113 permil + R(13C) HCO3- 1.11808e-02 0.054114 permil R(14C) HCO3- 2.03922e-15 0.17342 pmc R(18O) CO3-2 1.99520e-03 -4.9872 permil R(13C) CO3-2 1.11648e-02 -1.3811 permil @@ -21206,14 +21218,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 6.6613e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6768e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7755e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.1324e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -9.992e-13 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.0436e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 2.2204e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -21231,16 +21243,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.335 Adjusted to redox equilibrium + pe = -2.179 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.774e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 111 (212 overall) + Iterations = 63 (164 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -21252,15 +21264,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.460e-16 - CH4 1.460e-16 1.463e-16 -15.836 -15.835 0.001 (0) +C(-4) 8.305e-18 + CH4 8.305e-18 8.319e-18 -17.081 -17.080 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -21268,9 +21280,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -21278,81 +21290,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.980e-13 - H2 3.490e-13 3.496e-13 -12.457 -12.456 0.001 (0) +H(0) 3.409e-13 + H2 1.704e-13 1.707e-13 -12.768 -12.768 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.470 -67.469 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.869 -69.868 0.001 (0) -[13C](-4) 1.619e-18 - [13C]H4 1.619e-18 1.621e-18 -17.791 -17.790 0.001 (0) + O2 0.000e+00 0.000e+00 -66.847 -66.846 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.246 -69.245 0.001 (0) +[13C](-4) 9.205e-20 + [13C]H4 9.205e-20 9.221e-20 -19.036 -19.035 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.655 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.927e-31 - [14C]H4 2.927e-31 2.932e-31 -30.534 -30.533 0.001 (0) +[14C](-4) 1.664e-32 + [14C]H4 1.664e-32 1.667e-32 -31.779 -31.778 0.001 (0) [14C](4) 1.187e-17 H[14C]O3- 9.591e-18 8.775e-18 -17.018 -17.057 -0.039 (0) [14C]O2 1.996e-18 1.999e-18 -17.700 -17.699 0.001 (0) CaH[14C]O3+ 2.025e-19 1.858e-19 -18.693 -18.731 -0.037 (0) - H[14C]O2[18O]- 1.914e-20 1.751e-20 -19.718 -19.757 -0.039 (0) - H[14C]O[18O]O- 1.914e-20 1.751e-20 -19.718 -19.757 -0.039 (0) H[14C][18O]O2- 1.914e-20 1.751e-20 -19.718 -19.757 -0.039 (0) + H[14C]O[18O]O- 1.914e-20 1.751e-20 -19.718 -19.757 -0.039 (0) + H[14C]O2[18O]- 1.914e-20 1.751e-20 -19.718 -19.757 -0.039 (0) Ca[14C]O3 1.110e-20 1.112e-20 -19.955 -19.954 0.001 (0) [14C]O[18O] 8.299e-21 8.313e-21 -20.081 -20.080 0.001 (0) [14C]O3-2 5.696e-21 3.990e-21 -20.244 -20.399 -0.155 (0) CaH[14C]O2[18O]+ 4.041e-22 3.707e-22 -21.394 -21.431 -0.037 (0) - CaH[14C]O[18O]O+ 4.041e-22 3.707e-22 -21.394 -21.431 -0.037 (0) CaH[14C][18O]O2+ 4.041e-22 3.707e-22 -21.394 -21.431 -0.037 (0) + CaH[14C]O[18O]O+ 4.041e-22 3.707e-22 -21.394 -21.431 -0.037 (0) Ca[14C]O2[18O] 6.646e-23 6.657e-23 -22.177 -22.177 0.001 (0) + H[14C][18O]O[18O]- 3.818e-23 3.493e-23 -22.418 -22.457 -0.039 (0) H[14C]O[18O]2- 3.818e-23 3.493e-23 -22.418 -22.457 -0.039 (0) H[14C][18O]2O- 3.818e-23 3.493e-23 -22.418 -22.457 -0.039 (0) - H[14C][18O]O[18O]- 3.818e-23 3.493e-23 -22.418 -22.457 -0.039 (0) [14C]O2[18O]-2 3.409e-23 2.388e-23 -22.467 -22.622 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.869 -69.868 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.870 -72.869 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.246 -69.245 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.247 -72.246 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.93 -17.79 -2.86 [13C]H4 + [13C]H4(g) -16.18 -19.04 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.60 -23.10 -1.50 [14C][18O]2 - [14C]H4(g) -27.67 -30.53 -2.86 [14C]H4 + [14C]H4(g) -28.92 -31.78 -2.86 [14C]H4 [14C]O2(g) -16.23 -17.70 -1.47 [14C]O2 [14C]O[18O](g) -18.61 -20.40 -1.79 [14C]O[18O] - [18O]2(g) -70.58 -72.87 -2.29 [18O]2 + [18O]2(g) -69.96 -72.25 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -21366,14 +21378,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.97 -15.83 -2.86 CH4 + CH4(g) -14.22 -17.08 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.31 -12.46 -3.15 H2 + H2(g) -9.62 -12.77 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.58 -67.47 -2.89 O2 - O[18O](g) -67.28 -70.17 -2.89 O[18O] + O2(g) -63.95 -66.85 -2.89 O2 + O[18O](g) -66.65 -69.55 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -21482,14 +21494,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6898e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7063e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.8874e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.9984e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.3989e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.2212e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -21507,16 +21519,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.349 Adjusted to redox equilibrium + pe = -2.209 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.835e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 59 + Iterations = 50 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -21528,25 +21540,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.918e-16 - CH4 1.918e-16 1.921e-16 -15.717 -15.716 0.001 (0) +C(-4) 1.444e-17 + CH4 1.444e-17 1.447e-17 -16.840 -16.840 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -21554,50 +21566,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.473e-13 - H2 3.736e-13 3.743e-13 -12.428 -12.427 0.001 (0) +H(0) 3.914e-13 + H2 1.957e-13 1.960e-13 -12.708 -12.708 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.529 -67.528 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.928 -69.927 0.001 (0) -[13C](-4) 2.126e-18 - [13C]H4 2.126e-18 2.130e-18 -17.672 -17.672 0.001 (0) + O2 0.000e+00 0.000e+00 -66.967 -66.966 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.366 -69.365 0.001 (0) +[13C](-4) 1.601e-19 + [13C]H4 1.601e-19 1.603e-19 -18.796 -18.795 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.096e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.542e-31 - [14C]H4 3.542e-31 3.547e-31 -30.451 -30.450 0.001 (0) +[14C](-4) 2.667e-32 + [14C]H4 2.667e-32 2.671e-32 -31.574 -31.573 0.001 (0) [14C](4) 1.094e-17 H[14C]O3- 8.836e-18 8.084e-18 -17.054 -17.092 -0.039 (0) [14C]O2 1.839e-18 1.842e-18 -17.736 -17.735 0.001 (0) CaH[14C]O3+ 1.866e-19 1.712e-19 -18.729 -18.767 -0.037 (0) - H[14C]O2[18O]- 1.763e-20 1.613e-20 -19.754 -19.792 -0.039 (0) - H[14C]O[18O]O- 1.763e-20 1.613e-20 -19.754 -19.792 -0.039 (0) H[14C][18O]O2- 1.763e-20 1.613e-20 -19.754 -19.792 -0.039 (0) + H[14C]O[18O]O- 1.763e-20 1.613e-20 -19.754 -19.792 -0.039 (0) + H[14C]O2[18O]- 1.763e-20 1.613e-20 -19.754 -19.792 -0.039 (0) Ca[14C]O3 1.023e-20 1.025e-20 -19.990 -19.989 0.001 (0) [14C]O[18O] 7.645e-21 7.658e-21 -20.117 -20.116 0.001 (0) [14C]O3-2 5.247e-21 3.676e-21 -20.280 -20.435 -0.155 (0) CaH[14C]O2[18O]+ 3.723e-22 3.415e-22 -21.429 -21.467 -0.037 (0) - CaH[14C]O[18O]O+ 3.723e-22 3.415e-22 -21.429 -21.467 -0.037 (0) CaH[14C][18O]O2+ 3.723e-22 3.415e-22 -21.429 -21.467 -0.037 (0) + CaH[14C]O[18O]O+ 3.723e-22 3.415e-22 -21.429 -21.467 -0.037 (0) Ca[14C]O2[18O] 6.122e-23 6.132e-23 -22.213 -22.212 0.001 (0) H[14C]O[18O]2- 3.517e-23 3.218e-23 -22.454 -22.492 -0.039 (0) H[14C][18O]2O- 3.517e-23 3.218e-23 -22.454 -22.492 -0.039 (0) @@ -21606,29 +21618,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.928 -69.927 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.929 -72.928 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.366 -69.365 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.367 -72.367 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.81 -17.67 -2.86 [13C]H4 + [13C]H4(g) -15.93 -18.79 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.63 -23.13 -1.50 [14C][18O]2 - [14C]H4(g) -27.59 -30.45 -2.86 [14C]H4 + [14C]H4(g) -28.71 -31.57 -2.86 [14C]H4 [14C]O2(g) -16.27 -17.73 -1.47 [14C]O2 [14C]O[18O](g) -18.65 -20.43 -1.79 [14C]O[18O] - [18O]2(g) -70.64 -72.93 -2.29 [18O]2 + [18O]2(g) -70.08 -72.37 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -21642,14 +21654,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.86 -15.72 -2.86 CH4 + CH4(g) -13.98 -16.84 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.28 -12.43 -3.15 H2 + H2(g) -9.56 -12.71 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.64 -67.53 -2.89 O2 - O[18O](g) -67.34 -70.23 -2.89 O[18O] + O2(g) -64.07 -66.97 -2.89 O2 + O[18O](g) -66.77 -69.67 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -21673,12 +21685,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 84. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -21764,14 +21770,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7969e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7585e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.2101e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -5.9952e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 5.107e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 5.107e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -21789,16 +21795,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.340 Adjusted to redox equilibrium + pe = -2.164 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.317e-13 + Electrical balance (eq) = 5.835e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 111 (212 overall) + Iterations = 48 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -21810,14 +21816,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.604e-16 - CH4 1.604e-16 1.607e-16 -15.795 -15.794 0.001 (0) +C(-4) 6.357e-18 + CH4 6.357e-18 6.367e-18 -17.197 -17.196 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -21826,9 +21832,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -21836,23 +21842,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.146e-13 - H2 3.573e-13 3.579e-13 -12.447 -12.446 0.001 (0) +H(0) 3.188e-13 + H2 1.594e-13 1.597e-13 -12.797 -12.797 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.490 -67.489 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.889 -69.888 0.001 (0) -[13C](-4) 1.778e-18 - [13C]H4 1.778e-18 1.781e-18 -17.750 -17.749 0.001 (0) + O2 0.000e+00 0.000e+00 -66.789 -66.788 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.188 -69.187 0.001 (0) +[13C](-4) 7.046e-20 + [13C]H4 7.046e-20 7.057e-20 -19.152 -19.151 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) @@ -21861,56 +21867,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.729e-31 - [14C]H4 2.729e-31 2.733e-31 -30.564 -30.563 0.001 (0) +[14C](-4) 1.081e-32 + [14C]H4 1.081e-32 1.083e-32 -31.966 -31.965 0.001 (0) [14C](4) 1.008e-17 H[14C]O3- 8.140e-18 7.447e-18 -17.089 -17.128 -0.039 (0) [14C]O2 1.694e-18 1.697e-18 -17.771 -17.770 0.001 (0) CaH[14C]O3+ 1.719e-19 1.577e-19 -18.765 -18.802 -0.037 (0) - H[14C]O2[18O]- 1.624e-20 1.486e-20 -19.789 -19.828 -0.039 (0) - H[14C]O[18O]O- 1.624e-20 1.486e-20 -19.789 -19.828 -0.039 (0) H[14C][18O]O2- 1.624e-20 1.486e-20 -19.789 -19.828 -0.039 (0) + H[14C]O[18O]O- 1.624e-20 1.486e-20 -19.789 -19.828 -0.039 (0) + H[14C]O2[18O]- 1.624e-20 1.486e-20 -19.789 -19.828 -0.039 (0) Ca[14C]O3 9.423e-21 9.438e-21 -20.026 -20.025 0.001 (0) [14C]O[18O] 7.043e-21 7.055e-21 -20.152 -20.152 0.001 (0) [14C]O3-2 4.834e-21 3.386e-21 -20.316 -20.470 -0.155 (0) CaH[14C]O2[18O]+ 3.429e-22 3.146e-22 -21.465 -21.502 -0.037 (0) - CaH[14C]O[18O]O+ 3.429e-22 3.146e-22 -21.465 -21.502 -0.037 (0) CaH[14C][18O]O2+ 3.429e-22 3.146e-22 -21.465 -21.502 -0.037 (0) + CaH[14C]O[18O]O+ 3.429e-22 3.146e-22 -21.465 -21.502 -0.037 (0) Ca[14C]O2[18O] 5.640e-23 5.649e-23 -22.249 -22.248 0.001 (0) - H[14C]O[18O]2- 3.240e-23 2.964e-23 -22.489 -22.528 -0.039 (0) H[14C][18O]2O- 3.240e-23 2.964e-23 -22.489 -22.528 -0.039 (0) H[14C][18O]O[18O]- 3.240e-23 2.964e-23 -22.489 -22.528 -0.039 (0) + H[14C]O[18O]2- 3.240e-23 2.964e-23 -22.489 -22.528 -0.039 (0) [14C]O2[18O]-2 2.893e-23 2.027e-23 -22.539 -22.693 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.889 -69.888 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.890 -72.889 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.188 -69.187 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.189 -72.188 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.89 -17.75 -2.86 [13C]H4 + [13C]H4(g) -16.29 -19.15 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.67 -23.17 -1.50 [14C][18O]2 - [14C]H4(g) -27.70 -30.56 -2.86 [14C]H4 + [14C]H4(g) -29.11 -31.97 -2.86 [14C]H4 [14C]O2(g) -16.30 -17.77 -1.47 [14C]O2 [14C]O[18O](g) -18.68 -20.47 -1.79 [14C]O[18O] - [18O]2(g) -70.60 -72.89 -2.29 [18O]2 + [18O]2(g) -69.90 -72.19 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -21924,14 +21930,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.93 -15.79 -2.86 CH4 + CH4(g) -14.34 -17.20 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.30 -12.45 -3.15 H2 + H2(g) -9.65 -12.80 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.60 -67.49 -2.89 O2 - O[18O](g) -67.30 -70.19 -2.89 O[18O] + O2(g) -63.90 -66.79 -2.89 O2 + O[18O](g) -66.60 -69.49 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -22020,7 +22026,7 @@ Calcite 5.00e-04 R(14C) CO2(aq) 1.56690e-15 0.13325 pmc R(18O) CO2(aq) 2.07917e-03 36.887 permil R(18O) HCO3- 1.99520e-03 -4.9868 permil - R(13C) HCO3- 1.11809e-02 0.062154 permil + R(13C) HCO3- 1.11809e-02 0.062153 permil R(14C) HCO3- 1.59429e-15 0.13558 pmc R(18O) CO3-2 1.99520e-03 -4.9868 permil R(13C) CO3-2 1.11648e-02 -1.373 permil @@ -22040,14 +22046,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5747e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5583e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 8.8818e-13 0 -Alpha 14C CH4(aq)/CO2(aq) 1 2.8866e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 5.107e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.3323e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -22065,16 +22071,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.339 Adjusted to redox equilibrium + pe = -2.173 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.392e-13 + Electrical balance (eq) = 5.835e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 73 + Iterations = 76 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -22086,25 +22092,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.575e-16 - CH4 1.575e-16 1.577e-16 -15.803 -15.802 0.001 (0) +C(-4) 7.435e-18 + CH4 7.435e-18 7.447e-18 -17.129 -17.128 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -22112,81 +22118,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.113e-13 - H2 3.557e-13 3.562e-13 -12.449 -12.448 0.001 (0) +H(0) 3.316e-13 + H2 1.658e-13 1.661e-13 -12.780 -12.780 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.486 -67.485 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.885 -69.884 0.001 (0) -[13C](-4) 1.746e-18 - [13C]H4 1.746e-18 1.748e-18 -17.758 -17.757 0.001 (0) + O2 0.000e+00 0.000e+00 -66.823 -66.822 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.222 -69.221 0.001 (0) +[13C](-4) 8.241e-20 + [13C]H4 8.241e-20 8.255e-20 -19.084 -19.083 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.032e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.032e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.032e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.467e-31 - [14C]H4 2.467e-31 2.472e-31 -30.608 -30.607 0.001 (0) +[14C](-4) 1.165e-32 + [14C]H4 1.165e-32 1.167e-32 -31.934 -31.933 0.001 (0) [14C](4) 9.283e-18 H[14C]O3- 7.499e-18 6.860e-18 -17.125 -17.164 -0.039 (0) [14C]O2 1.560e-18 1.563e-18 -17.807 -17.806 0.001 (0) CaH[14C]O3+ 1.583e-19 1.453e-19 -18.800 -18.838 -0.037 (0) - H[14C]O2[18O]- 1.496e-20 1.369e-20 -19.825 -19.864 -0.039 (0) - H[14C]O[18O]O- 1.496e-20 1.369e-20 -19.825 -19.864 -0.039 (0) H[14C][18O]O2- 1.496e-20 1.369e-20 -19.825 -19.864 -0.039 (0) + H[14C]O[18O]O- 1.496e-20 1.369e-20 -19.825 -19.864 -0.039 (0) + H[14C]O2[18O]- 1.496e-20 1.369e-20 -19.825 -19.864 -0.039 (0) Ca[14C]O3 8.681e-21 8.695e-21 -20.061 -20.061 0.001 (0) [14C]O[18O] 6.488e-21 6.499e-21 -20.188 -20.187 0.001 (0) [14C]O3-2 4.453e-21 3.120e-21 -20.351 -20.506 -0.155 (0) CaH[14C]O2[18O]+ 3.159e-22 2.898e-22 -21.500 -21.538 -0.037 (0) - CaH[14C]O[18O]O+ 3.159e-22 2.898e-22 -21.500 -21.538 -0.037 (0) CaH[14C][18O]O2+ 3.159e-22 2.898e-22 -21.500 -21.538 -0.037 (0) + CaH[14C]O[18O]O+ 3.159e-22 2.898e-22 -21.500 -21.538 -0.037 (0) Ca[14C]O2[18O] 5.196e-23 5.204e-23 -22.284 -22.284 0.001 (0) + H[14C][18O]O[18O]- 2.985e-23 2.731e-23 -22.525 -22.564 -0.039 (0) H[14C]O[18O]2- 2.985e-23 2.731e-23 -22.525 -22.564 -0.039 (0) H[14C][18O]2O- 2.985e-23 2.731e-23 -22.525 -22.564 -0.039 (0) - H[14C][18O]O[18O]- 2.985e-23 2.731e-23 -22.525 -22.564 -0.039 (0) [14C]O2[18O]-2 2.665e-23 1.867e-23 -22.574 -22.729 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.885 -69.884 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.886 -72.885 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.222 -69.221 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.223 -72.222 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.90 -17.76 -2.86 [13C]H4 + [13C]H4(g) -16.22 -19.08 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.70 -23.21 -1.50 [14C][18O]2 - [14C]H4(g) -27.75 -30.61 -2.86 [14C]H4 + [14C]H4(g) -29.07 -31.93 -2.86 [14C]H4 [14C]O2(g) -16.34 -17.81 -1.47 [14C]O2 [14C]O[18O](g) -18.72 -20.51 -1.79 [14C]O[18O] - [18O]2(g) -70.59 -72.89 -2.29 [18O]2 + [18O]2(g) -69.93 -72.22 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -22200,14 +22206,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.94 -15.80 -2.86 CH4 + CH4(g) -14.27 -17.13 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.30 -12.45 -3.15 H2 + H2(g) -9.63 -12.78 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.59 -67.49 -2.89 O2 - O[18O](g) -67.29 -70.19 -2.89 O[18O] + O2(g) -63.93 -66.82 -2.89 O2 + O[18O](g) -66.63 -69.52 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -22231,6 +22237,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 86. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -22316,14 +22328,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.2164e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6341e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6543e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -6.1062e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.843e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.5543e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 3.7748e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -22341,16 +22353,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.330 Adjusted to redox equilibrium + pe = -2.141 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.392e-13 + Electrical balance (eq) = 5.834e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 61 + Iterations = 125 (226 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -22362,15 +22374,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.340e-16 - CH4 1.340e-16 1.342e-16 -15.873 -15.872 0.001 (0) +C(-4) 4.115e-18 + CH4 4.115e-18 4.122e-18 -17.386 -17.385 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -22378,9 +22390,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -22388,50 +22400,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.832e-13 - H2 3.416e-13 3.422e-13 -12.466 -12.466 0.001 (0) +H(0) 2.860e-13 + H2 1.430e-13 1.432e-13 -12.845 -12.844 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.451 -67.450 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.850 -69.849 0.001 (0) -[13C](-4) 1.485e-18 - [13C]H4 1.485e-18 1.488e-18 -17.828 -17.827 0.001 (0) + O2 0.000e+00 0.000e+00 -66.695 -66.694 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.094 -69.093 0.001 (0) +[13C](-4) 4.561e-20 + [13C]H4 4.561e-20 4.569e-20 -19.341 -19.340 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.110e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.934e-31 - [14C]H4 1.934e-31 1.938e-31 -30.713 -30.713 0.001 (0) +[14C](-4) 5.940e-33 + [14C]H4 5.940e-33 5.950e-33 -32.226 -32.225 0.001 (0) [14C](4) 8.552e-18 H[14C]O3- 6.908e-18 6.320e-18 -17.161 -17.199 -0.039 (0) [14C]O2 1.437e-18 1.440e-18 -17.842 -17.842 0.001 (0) CaH[14C]O3+ 1.459e-19 1.338e-19 -18.836 -18.874 -0.037 (0) - H[14C]O2[18O]- 1.378e-20 1.261e-20 -19.861 -19.899 -0.039 (0) - H[14C]O[18O]O- 1.378e-20 1.261e-20 -19.861 -19.899 -0.039 (0) H[14C][18O]O2- 1.378e-20 1.261e-20 -19.861 -19.899 -0.039 (0) + H[14C]O[18O]O- 1.378e-20 1.261e-20 -19.861 -19.899 -0.039 (0) + H[14C]O2[18O]- 1.378e-20 1.261e-20 -19.861 -19.899 -0.039 (0) Ca[14C]O3 7.997e-21 8.010e-21 -20.097 -20.096 0.001 (0) [14C]O[18O] 5.977e-21 5.987e-21 -20.224 -20.223 0.001 (0) [14C]O3-2 4.102e-21 2.874e-21 -20.387 -20.542 -0.155 (0) CaH[14C]O2[18O]+ 2.910e-22 2.670e-22 -21.536 -21.574 -0.037 (0) - CaH[14C]O[18O]O+ 2.910e-22 2.670e-22 -21.536 -21.574 -0.037 (0) CaH[14C][18O]O2+ 2.910e-22 2.670e-22 -21.536 -21.574 -0.037 (0) + CaH[14C]O[18O]O+ 2.910e-22 2.670e-22 -21.536 -21.574 -0.037 (0) Ca[14C]O2[18O] 4.787e-23 4.794e-23 -22.320 -22.319 0.001 (0) H[14C]O[18O]2- 2.750e-23 2.516e-23 -22.561 -22.599 -0.039 (0) H[14C][18O]2O- 2.750e-23 2.516e-23 -22.561 -22.599 -0.039 (0) @@ -22440,29 +22452,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.850 -69.849 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.851 -72.850 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.094 -69.093 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.095 -72.094 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.97 -17.83 -2.86 [13C]H4 + [13C]H4(g) -16.48 -19.34 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.74 -23.24 -1.50 [14C][18O]2 - [14C]H4(g) -27.85 -30.71 -2.86 [14C]H4 + [14C]H4(g) -29.37 -32.23 -2.86 [14C]H4 [14C]O2(g) -16.37 -17.84 -1.47 [14C]O2 [14C]O[18O](g) -18.75 -20.54 -1.79 [14C]O[18O] - [18O]2(g) -70.56 -72.85 -2.29 [18O]2 + [18O]2(g) -69.80 -72.09 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -22476,14 +22488,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.01 -15.87 -2.86 CH4 + CH4(g) -14.52 -17.38 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.32 -12.47 -3.15 H2 + H2(g) -9.69 -12.84 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.56 -67.45 -2.89 O2 - O[18O](g) -67.26 -70.15 -2.89 O[18O] + O2(g) -63.80 -66.69 -2.89 O2 + O[18O](g) -66.50 -69.39 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -22592,14 +22604,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6013e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6886e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.5099e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 3.1086e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 7.1054e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -2.1538e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -22617,16 +22629,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.319 Adjusted to redox equilibrium + pe = -2.093 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.392e-13 + Electrical balance (eq) = 5.834e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 91 + Iterations = 100 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -22638,25 +22650,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.107e-16 - CH4 1.107e-16 1.109e-16 -15.956 -15.955 0.001 (0) +C(-4) 1.714e-18 + CH4 1.714e-18 1.717e-18 -17.766 -17.765 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -22664,23 +22676,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.514e-13 - H2 3.257e-13 3.262e-13 -12.487 -12.486 0.001 (0) +H(0) 2.298e-13 + H2 1.149e-13 1.151e-13 -12.940 -12.939 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.409 -67.409 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.808 -69.808 0.001 (0) -[13C](-4) 1.227e-18 - [13C]H4 1.227e-18 1.229e-18 -17.911 -17.910 0.001 (0) + O2 0.000e+00 0.000e+00 -66.504 -66.504 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.903 -68.903 0.001 (0) +[13C](-4) 1.900e-20 + [13C]H4 1.900e-20 1.903e-20 -19.721 -19.721 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) @@ -22689,56 +22701,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.472e-31 - [14C]H4 1.472e-31 1.475e-31 -30.832 -30.831 0.001 (0) +[14C](-4) 2.279e-33 + [14C]H4 2.279e-33 2.283e-33 -32.642 -32.641 0.001 (0) [14C](4) 7.878e-18 H[14C]O3- 6.364e-18 5.822e-18 -17.196 -17.235 -0.039 (0) [14C]O2 1.324e-18 1.326e-18 -17.878 -17.877 0.001 (0) CaH[14C]O3+ 1.344e-19 1.233e-19 -18.872 -18.909 -0.037 (0) - H[14C]O2[18O]- 1.270e-20 1.162e-20 -19.896 -19.935 -0.039 (0) - H[14C]O[18O]O- 1.270e-20 1.162e-20 -19.896 -19.935 -0.039 (0) H[14C][18O]O2- 1.270e-20 1.162e-20 -19.896 -19.935 -0.039 (0) + H[14C]O[18O]O- 1.270e-20 1.162e-20 -19.896 -19.935 -0.039 (0) + H[14C]O2[18O]- 1.270e-20 1.162e-20 -19.896 -19.935 -0.039 (0) Ca[14C]O3 7.367e-21 7.379e-21 -20.133 -20.132 0.001 (0) [14C]O[18O] 5.506e-21 5.515e-21 -20.259 -20.258 0.001 (0) [14C]O3-2 3.779e-21 2.647e-21 -20.423 -20.577 -0.155 (0) CaH[14C]O2[18O]+ 2.681e-22 2.460e-22 -21.572 -21.609 -0.037 (0) - CaH[14C]O[18O]O+ 2.681e-22 2.460e-22 -21.572 -21.609 -0.037 (0) CaH[14C][18O]O2+ 2.681e-22 2.460e-22 -21.572 -21.609 -0.037 (0) + CaH[14C]O[18O]O+ 2.681e-22 2.460e-22 -21.572 -21.609 -0.037 (0) Ca[14C]O2[18O] 4.410e-23 4.417e-23 -22.356 -22.355 0.001 (0) - H[14C]O[18O]2- 2.533e-23 2.318e-23 -22.596 -22.635 -0.039 (0) H[14C][18O]2O- 2.533e-23 2.318e-23 -22.596 -22.635 -0.039 (0) H[14C][18O]O[18O]- 2.533e-23 2.318e-23 -22.596 -22.635 -0.039 (0) + H[14C]O[18O]2- 2.533e-23 2.318e-23 -22.596 -22.635 -0.039 (0) [14C]O2[18O]-2 2.262e-23 1.585e-23 -22.646 -22.800 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.808 -69.808 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.810 -72.809 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.903 -68.903 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.904 -71.904 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.05 -17.91 -2.86 [13C]H4 + [13C]H4(g) -16.86 -19.72 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.77 -23.28 -1.50 [14C][18O]2 - [14C]H4(g) -27.97 -30.83 -2.86 [14C]H4 + [14C]H4(g) -29.78 -32.64 -2.86 [14C]H4 [14C]O2(g) -16.41 -17.88 -1.47 [14C]O2 [14C]O[18O](g) -18.79 -20.58 -1.79 [14C]O[18O] - [18O]2(g) -70.52 -72.81 -2.29 [18O]2 + [18O]2(g) -69.61 -71.90 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -22752,14 +22764,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.10 -15.96 -2.86 CH4 + CH4(g) -14.91 -17.77 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.34 -12.49 -3.15 H2 + H2(g) -9.79 -12.94 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.52 -67.41 -2.89 O2 - O[18O](g) -67.22 -70.11 -2.89 O[18O] + O2(g) -63.61 -66.50 -2.89 O2 + O[18O](g) -66.31 -69.20 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -22868,14 +22880,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.4966e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6507e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.1102e-13 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.0214e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.6209e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -6.3283e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -22893,16 +22905,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.322 Adjusted to redox equilibrium + pe = -2.101 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.392e-13 + Electrical balance (eq) = 5.834e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 78 + Iterations = 80 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -22914,15 +22926,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.162e-16 - CH4 1.162e-16 1.164e-16 -15.935 -15.934 0.001 (0) +C(-4) 1.972e-18 + CH4 1.972e-18 1.975e-18 -17.705 -17.704 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -22930,9 +22942,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -22940,81 +22952,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.592e-13 - H2 3.296e-13 3.302e-13 -12.482 -12.481 0.001 (0) +H(0) 2.379e-13 + H2 1.190e-13 1.192e-13 -12.925 -12.924 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.420 -67.419 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.819 -69.818 0.001 (0) -[13C](-4) 1.288e-18 - [13C]H4 1.288e-18 1.290e-18 -17.890 -17.889 0.001 (0) + O2 0.000e+00 0.000e+00 -66.535 -66.534 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.934 -68.933 0.001 (0) +[13C](-4) 2.185e-20 + [13C]H4 2.185e-20 2.189e-20 -19.660 -19.660 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.423e-31 - [14C]H4 1.423e-31 1.426e-31 -30.847 -30.846 0.001 (0) +[14C](-4) 2.415e-33 + [14C]H4 2.415e-33 2.419e-33 -32.617 -32.616 0.001 (0) [14C](4) 7.257e-18 H[14C]O3- 5.862e-18 5.363e-18 -17.232 -17.271 -0.039 (0) [14C]O2 1.220e-18 1.222e-18 -17.914 -17.913 0.001 (0) CaH[14C]O3+ 1.238e-19 1.136e-19 -18.907 -18.945 -0.037 (0) - H[14C]O2[18O]- 1.170e-20 1.070e-20 -19.932 -19.971 -0.039 (0) - H[14C]O[18O]O- 1.170e-20 1.070e-20 -19.932 -19.971 -0.039 (0) H[14C][18O]O2- 1.170e-20 1.070e-20 -19.932 -19.971 -0.039 (0) + H[14C]O[18O]O- 1.170e-20 1.070e-20 -19.932 -19.971 -0.039 (0) + H[14C]O2[18O]- 1.170e-20 1.070e-20 -19.932 -19.971 -0.039 (0) Ca[14C]O3 6.787e-21 6.798e-21 -20.168 -20.168 0.001 (0) [14C]O[18O] 5.073e-21 5.081e-21 -20.295 -20.294 0.001 (0) [14C]O3-2 3.481e-21 2.439e-21 -20.458 -20.613 -0.155 (0) CaH[14C]O2[18O]+ 2.470e-22 2.266e-22 -21.607 -21.645 -0.037 (0) - CaH[14C]O[18O]O+ 2.470e-22 2.266e-22 -21.607 -21.645 -0.037 (0) CaH[14C][18O]O2+ 2.470e-22 2.266e-22 -21.607 -21.645 -0.037 (0) + CaH[14C]O[18O]O+ 2.470e-22 2.266e-22 -21.607 -21.645 -0.037 (0) Ca[14C]O2[18O] 4.062e-23 4.069e-23 -22.391 -22.391 0.001 (0) + H[14C][18O]O[18O]- 2.334e-23 2.135e-23 -22.632 -22.671 -0.039 (0) H[14C]O[18O]2- 2.334e-23 2.135e-23 -22.632 -22.671 -0.039 (0) H[14C][18O]2O- 2.334e-23 2.135e-23 -22.632 -22.671 -0.039 (0) - H[14C][18O]O[18O]- 2.334e-23 2.135e-23 -22.632 -22.671 -0.039 (0) [14C]O2[18O]-2 2.084e-23 1.460e-23 -22.681 -22.836 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.819 -69.818 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.820 -72.819 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.934 -68.933 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.935 -71.934 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.03 -17.89 -2.86 [13C]H4 + [13C]H4(g) -16.80 -19.66 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.81 -23.31 -1.50 [14C][18O]2 - [14C]H4(g) -27.99 -30.85 -2.86 [14C]H4 + [14C]H4(g) -29.76 -32.62 -2.86 [14C]H4 [14C]O2(g) -16.44 -17.91 -1.47 [14C]O2 [14C]O[18O](g) -18.83 -20.61 -1.79 [14C]O[18O] - [18O]2(g) -70.53 -72.82 -2.29 [18O]2 + [18O]2(g) -69.64 -71.93 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -23028,14 +23040,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.07 -15.93 -2.86 CH4 + CH4(g) -14.84 -17.70 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.33 -12.48 -3.15 H2 + H2(g) -9.77 -12.92 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.53 -67.42 -2.89 O2 - O[18O](g) -67.23 -70.12 -2.89 O[18O] + O2(g) -63.64 -66.53 -2.89 O2 + O[18O](g) -66.34 -69.23 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -23059,12 +23071,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 89. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -23130,7 +23136,7 @@ Calcite 5.00e-04 R(14C) CO2(aq) 1.12852e-15 0.095972 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil R(18O) HCO3- 1.99520e-03 -4.9862 permil - R(13C) HCO3- 1.11810e-02 0.070221 permil + R(13C) HCO3- 1.11810e-02 0.07022 permil R(14C) HCO3- 1.14824e-15 0.097649 pmc R(18O) CO3-2 1.99520e-03 -4.9862 permil R(13C) CO3-2 1.11649e-02 -1.365 permil @@ -23150,14 +23156,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7502e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6666e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.0436e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.6431e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.2212e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.199e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -23175,16 +23181,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.337 Adjusted to redox equilibrium + pe = -2.117 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.425e-13 + Electrical balance (eq) = 5.834e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 53 (154 overall) + Iterations = 84 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -23196,25 +23202,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.517e-16 - CH4 1.517e-16 1.520e-16 -15.819 -15.818 0.001 (0) +C(-4) 2.636e-18 + CH4 2.636e-18 2.640e-18 -17.579 -17.578 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -23222,50 +23228,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.047e-13 - H2 3.524e-13 3.530e-13 -12.453 -12.452 0.001 (0) +H(0) 2.559e-13 + H2 1.279e-13 1.281e-13 -12.893 -12.892 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.478 -67.477 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.877 -69.876 0.001 (0) -[13C](-4) 1.682e-18 - [13C]H4 1.682e-18 1.685e-18 -17.774 -17.773 0.001 (0) + O2 0.000e+00 0.000e+00 -66.598 -66.597 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.997 -68.996 0.001 (0) +[13C](-4) 2.922e-20 + [13C]H4 2.922e-20 2.927e-20 -19.534 -19.534 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.712e-31 - [14C]H4 1.712e-31 1.715e-31 -30.766 -30.766 0.001 (0) +[14C](-4) 2.975e-33 + [14C]H4 2.975e-33 2.980e-33 -32.527 -32.526 0.001 (0) [14C](4) 6.686e-18 H[14C]O3- 5.401e-18 4.941e-18 -17.268 -17.306 -0.039 (0) [14C]O2 1.124e-18 1.126e-18 -17.949 -17.949 0.001 (0) CaH[14C]O3+ 1.140e-19 1.046e-19 -18.943 -18.980 -0.037 (0) - H[14C]O2[18O]- 1.078e-20 9.858e-21 -19.968 -20.006 -0.039 (0) - H[14C]O[18O]O- 1.078e-20 9.858e-21 -19.968 -20.006 -0.039 (0) H[14C][18O]O2- 1.078e-20 9.858e-21 -19.968 -20.006 -0.039 (0) + H[14C]O[18O]O- 1.078e-20 9.858e-21 -19.968 -20.006 -0.039 (0) + H[14C]O2[18O]- 1.078e-20 9.858e-21 -19.968 -20.006 -0.039 (0) Ca[14C]O3 6.252e-21 6.262e-21 -20.204 -20.203 0.001 (0) [14C]O[18O] 4.673e-21 4.681e-21 -20.330 -20.330 0.001 (0) [14C]O3-2 3.207e-21 2.247e-21 -20.494 -20.648 -0.155 (0) CaH[14C]O2[18O]+ 2.275e-22 2.087e-22 -21.643 -21.680 -0.037 (0) - CaH[14C]O[18O]O+ 2.275e-22 2.087e-22 -21.643 -21.680 -0.037 (0) CaH[14C][18O]O2+ 2.275e-22 2.087e-22 -21.643 -21.680 -0.037 (0) + CaH[14C]O[18O]O+ 2.275e-22 2.087e-22 -21.643 -21.680 -0.037 (0) Ca[14C]O2[18O] 3.742e-23 3.748e-23 -22.427 -22.426 0.001 (0) H[14C]O[18O]2- 2.150e-23 1.967e-23 -22.668 -22.706 -0.039 (0) H[14C][18O]2O- 2.150e-23 1.967e-23 -22.668 -22.706 -0.039 (0) @@ -23274,29 +23280,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.877 -69.876 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.878 -72.877 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.997 -68.996 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.998 -71.997 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.91 -17.77 -2.86 [13C]H4 + [13C]H4(g) -16.67 -19.53 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.85 -23.35 -1.50 [14C][18O]2 - [14C]H4(g) -27.91 -30.77 -2.86 [14C]H4 + [14C]H4(g) -29.67 -32.53 -2.86 [14C]H4 [14C]O2(g) -16.48 -17.95 -1.47 [14C]O2 [14C]O[18O](g) -18.86 -20.65 -1.79 [14C]O[18O] - [18O]2(g) -70.59 -72.88 -2.29 [18O]2 + [18O]2(g) -69.71 -72.00 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -23310,14 +23316,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.96 -15.82 -2.86 CH4 + CH4(g) -14.72 -17.58 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.30 -12.45 -3.15 H2 + H2(g) -9.74 -12.89 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.58 -67.48 -2.89 O2 - O[18O](g) -67.28 -70.18 -2.89 O[18O] + O2(g) -63.70 -66.60 -2.89 O2 + O[18O](g) -66.40 -69.30 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -23341,12 +23347,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 90. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -23412,7 +23412,7 @@ Calcite 5.00e-04 R(14C) CO2(aq) 1.03963e-15 0.088412 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil R(18O) HCO3- 1.99520e-03 -4.9861 permil - R(13C) HCO3- 1.11810e-02 0.071858 permil + R(13C) HCO3- 1.11810e-02 0.071857 permil R(14C) HCO3- 1.05779e-15 0.089957 pmc R(18O) CO3-2 1.99520e-03 -4.9861 permil R(13C) CO3-2 1.11650e-02 -1.3633 permil @@ -23432,14 +23432,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.692e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.585e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.3323e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 7.1054e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -5.3291e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 3.1086e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -23457,16 +23457,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.315 Adjusted to redox equilibrium + pe = -2.079 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.424e-13 + Electrical balance (eq) = 5.834e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 122 (223 overall) + Iterations = 61 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -23478,14 +23478,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.020e-16 - CH4 1.020e-16 1.022e-16 -15.991 -15.991 0.001 (0) +C(-4) 1.314e-18 + CH4 1.314e-18 1.316e-18 -17.881 -17.881 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -23494,9 +23494,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -23504,23 +23504,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.381e-13 - H2 3.191e-13 3.196e-13 -12.496 -12.495 0.001 (0) +H(0) 2.150e-13 + H2 1.075e-13 1.077e-13 -12.969 -12.968 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.392 -67.391 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.791 -69.790 0.001 (0) -[13C](-4) 1.131e-18 - [13C]H4 1.131e-18 1.132e-18 -17.947 -17.946 0.001 (0) + O2 0.000e+00 0.000e+00 -66.447 -66.446 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.846 -68.845 0.001 (0) +[13C](-4) 1.457e-20 + [13C]H4 1.457e-20 1.459e-20 -19.837 -19.836 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) @@ -23529,56 +23529,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.060e-31 - [14C]H4 1.060e-31 1.062e-31 -30.975 -30.974 0.001 (0) +[14C](-4) 1.366e-33 + [14C]H4 1.366e-33 1.369e-33 -32.864 -32.864 0.001 (0) [14C](4) 6.159e-18 H[14C]O3- 4.975e-18 4.552e-18 -17.303 -17.342 -0.039 (0) [14C]O2 1.035e-18 1.037e-18 -17.985 -17.984 0.001 (0) CaH[14C]O3+ 1.051e-19 9.638e-20 -18.979 -19.016 -0.037 (0) - H[14C]O2[18O]- 9.927e-21 9.082e-21 -20.003 -20.042 -0.039 (0) - H[14C]O[18O]O- 9.927e-21 9.082e-21 -20.003 -20.042 -0.039 (0) H[14C][18O]O2- 9.927e-21 9.082e-21 -20.003 -20.042 -0.039 (0) + H[14C]O[18O]O- 9.927e-21 9.082e-21 -20.003 -20.042 -0.039 (0) + H[14C]O2[18O]- 9.927e-21 9.082e-21 -20.003 -20.042 -0.039 (0) Ca[14C]O3 5.759e-21 5.769e-21 -20.240 -20.239 0.001 (0) [14C]O[18O] 4.305e-21 4.312e-21 -20.366 -20.365 0.001 (0) [14C]O3-2 2.955e-21 2.070e-21 -20.530 -20.684 -0.155 (0) CaH[14C]O2[18O]+ 2.096e-22 1.923e-22 -21.679 -21.716 -0.037 (0) - CaH[14C]O[18O]O+ 2.096e-22 1.923e-22 -21.679 -21.716 -0.037 (0) CaH[14C][18O]O2+ 2.096e-22 1.923e-22 -21.679 -21.716 -0.037 (0) + CaH[14C]O[18O]O+ 2.096e-22 1.923e-22 -21.679 -21.716 -0.037 (0) Ca[14C]O2[18O] 3.447e-23 3.453e-23 -22.463 -22.462 0.001 (0) - H[14C]O[18O]2- 1.981e-23 1.812e-23 -22.703 -22.742 -0.039 (0) H[14C][18O]2O- 1.981e-23 1.812e-23 -22.703 -22.742 -0.039 (0) H[14C][18O]O[18O]- 1.981e-23 1.812e-23 -22.703 -22.742 -0.039 (0) + H[14C]O[18O]2- 1.981e-23 1.812e-23 -22.703 -22.742 -0.039 (0) [14C]O2[18O]-2 1.768e-23 1.239e-23 -22.752 -22.907 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.791 -69.790 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.792 -72.791 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.846 -68.845 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.847 -71.846 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.09 -17.95 -2.86 [13C]H4 + [13C]H4(g) -16.98 -19.84 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.88 -23.38 -1.50 [14C][18O]2 - [14C]H4(g) -28.11 -30.97 -2.86 [14C]H4 + [14C]H4(g) -30.00 -32.86 -2.86 [14C]H4 [14C]O2(g) -16.52 -17.98 -1.47 [14C]O2 [14C]O[18O](g) -18.90 -20.68 -1.79 [14C]O[18O] - [18O]2(g) -70.50 -72.79 -2.29 [18O]2 + [18O]2(g) -69.56 -71.85 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -23592,14 +23592,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.13 -15.99 -2.86 CH4 + CH4(g) -15.02 -17.88 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.35 -12.50 -3.15 H2 + H2(g) -9.82 -12.97 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.50 -67.39 -2.89 O2 - O[18O](g) -67.20 -70.09 -2.89 O[18O] + O2(g) -63.55 -66.45 -2.89 O2 + O[18O](g) -66.25 -69.15 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -23623,6 +23623,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 91. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -23708,14 +23714,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.2164e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5146e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6089e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -7.7716e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -8.2157e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 4.4409e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 4.2188e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -23733,16 +23739,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.333 Adjusted to redox equilibrium + pe = -2.096 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.424e-13 + Electrical balance (eq) = 5.834e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 92 + Iterations = 58 (159 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -23754,25 +23760,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.424e-16 - CH4 1.424e-16 1.426e-16 -15.847 -15.846 0.001 (0) +C(-4) 1.788e-18 + CH4 1.788e-18 1.791e-18 -17.748 -17.747 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -23780,81 +23786,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.936e-13 - H2 3.468e-13 3.474e-13 -12.460 -12.459 0.001 (0) +H(0) 2.322e-13 + H2 1.161e-13 1.163e-13 -12.935 -12.934 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.464 -67.463 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.863 -69.862 0.001 (0) -[13C](-4) 1.578e-18 - [13C]H4 1.578e-18 1.581e-18 -17.802 -17.801 0.001 (0) + O2 0.000e+00 0.000e+00 -66.514 -66.513 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.913 -68.912 0.001 (0) +[13C](-4) 1.982e-20 + [13C]H4 1.982e-20 1.985e-20 -19.703 -19.702 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.363e-31 - [14C]H4 1.363e-31 1.366e-31 -30.865 -30.865 0.001 (0) +[14C](-4) 1.713e-33 + [14C]H4 1.713e-33 1.715e-33 -32.766 -32.766 0.001 (0) [14C](4) 5.674e-18 H[14C]O3- 4.583e-18 4.193e-18 -17.339 -17.377 -0.039 (0) [14C]O2 9.537e-19 9.553e-19 -18.021 -18.020 0.001 (0) CaH[14C]O3+ 9.679e-20 8.878e-20 -19.014 -19.052 -0.037 (0) - H[14C]O2[18O]- 9.145e-21 8.366e-21 -20.039 -20.077 -0.039 (0) - H[14C]O[18O]O- 9.145e-21 8.366e-21 -20.039 -20.077 -0.039 (0) H[14C][18O]O2- 9.145e-21 8.366e-21 -20.039 -20.077 -0.039 (0) + H[14C]O[18O]O- 9.145e-21 8.366e-21 -20.039 -20.077 -0.039 (0) + H[14C]O2[18O]- 9.145e-21 8.366e-21 -20.039 -20.077 -0.039 (0) Ca[14C]O3 5.306e-21 5.315e-21 -20.275 -20.275 0.001 (0) [14C]O[18O] 3.966e-21 3.972e-21 -20.402 -20.401 0.001 (0) [14C]O3-2 2.722e-21 1.907e-21 -20.565 -20.720 -0.155 (0) CaH[14C]O2[18O]+ 1.931e-22 1.771e-22 -21.714 -21.752 -0.037 (0) - CaH[14C]O[18O]O+ 1.931e-22 1.771e-22 -21.714 -21.752 -0.037 (0) CaH[14C][18O]O2+ 1.931e-22 1.771e-22 -21.714 -21.752 -0.037 (0) + CaH[14C]O[18O]O+ 1.931e-22 1.771e-22 -21.714 -21.752 -0.037 (0) Ca[14C]O2[18O] 3.176e-23 3.181e-23 -22.498 -22.497 0.001 (0) + H[14C][18O]O[18O]- 1.825e-23 1.669e-23 -22.739 -22.777 -0.039 (0) H[14C]O[18O]2- 1.825e-23 1.669e-23 -22.739 -22.777 -0.039 (0) H[14C][18O]2O- 1.825e-23 1.669e-23 -22.739 -22.777 -0.039 (0) - H[14C][18O]O[18O]- 1.825e-23 1.669e-23 -22.739 -22.777 -0.039 (0) [14C]O2[18O]-2 1.629e-23 1.141e-23 -22.788 -22.943 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.863 -69.862 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.864 -72.863 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.913 -68.912 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.914 -71.913 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.94 -17.80 -2.86 [13C]H4 + [13C]H4(g) -16.84 -19.70 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.92 -23.42 -1.50 [14C][18O]2 - [14C]H4(g) -28.00 -30.86 -2.86 [14C]H4 + [14C]H4(g) -29.91 -32.77 -2.86 [14C]H4 [14C]O2(g) -16.55 -18.02 -1.47 [14C]O2 [14C]O[18O](g) -18.93 -20.72 -1.79 [14C]O[18O] - [18O]2(g) -70.57 -72.86 -2.29 [18O]2 + [18O]2(g) -69.62 -71.91 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -23868,14 +23874,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.99 -15.85 -2.86 CH4 + CH4(g) -14.89 -17.75 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.31 -12.46 -3.15 H2 + H2(g) -9.78 -12.93 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.57 -67.46 -2.89 O2 - O[18O](g) -67.27 -70.16 -2.89 O[18O] + O2(g) -63.62 -66.51 -2.89 O2 + O[18O](g) -66.32 -69.21 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -23899,12 +23905,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 92. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -23979,7 +23979,7 @@ Calcite 5.00e-04 R(14C) CH4(aq) 8.82289e-16 0.075032 pmc R(18O) Calcite 2.05264e-03 23.661 permil R(13C) Calcite 1.12032e-02 2.0556 permil - R(14C) Calcite 9.01268e-16 0.076646 pmc + R(14C) Calcite 9.01267e-16 0.076646 pmc --------------------------------Isotope Alphas--------------------------------- @@ -23990,14 +23990,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6337e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7676e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.1102e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.3323e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 3.3307e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -4.996e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -24015,16 +24015,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.343 Adjusted to redox equilibrium + pe = -2.073 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.424e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 109 (210 overall) + Iterations = 55 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -24036,15 +24036,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.712e-16 - CH4 1.712e-16 1.715e-16 -15.767 -15.766 0.001 (0) +C(-4) 1.170e-18 + CH4 1.170e-18 1.172e-18 -17.932 -17.931 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -24052,9 +24052,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -24062,50 +24062,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.263e-13 - H2 3.632e-13 3.638e-13 -12.440 -12.439 0.001 (0) +H(0) 2.089e-13 + H2 1.044e-13 1.046e-13 -12.981 -12.980 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.504 -67.503 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.903 -69.902 0.001 (0) -[13C](-4) 1.898e-18 - [13C]H4 1.898e-18 1.901e-18 -17.722 -17.721 0.001 (0) + O2 0.000e+00 0.000e+00 -66.422 -66.421 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.821 -68.820 0.001 (0) +[13C](-4) 1.297e-20 + [13C]H4 1.297e-20 1.299e-20 -19.887 -19.886 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.510e-31 - [14C]H4 1.510e-31 1.513e-31 -30.821 -30.820 0.001 (0) +[14C](-4) 1.033e-33 + [14C]H4 1.033e-33 1.034e-33 -32.986 -32.985 0.001 (0) [14C](4) 5.227e-18 H[14C]O3- 4.222e-18 3.863e-18 -17.374 -17.413 -0.039 (0) [14C]O2 8.786e-19 8.800e-19 -18.056 -18.056 0.001 (0) CaH[14C]O3+ 8.916e-20 8.179e-20 -19.050 -19.087 -0.037 (0) - H[14C]O2[18O]- 8.424e-21 7.707e-21 -20.074 -20.113 -0.039 (0) - H[14C]O[18O]O- 8.424e-21 7.707e-21 -20.074 -20.113 -0.039 (0) H[14C][18O]O2- 8.424e-21 7.707e-21 -20.074 -20.113 -0.039 (0) + H[14C]O[18O]O- 8.424e-21 7.707e-21 -20.074 -20.113 -0.039 (0) + H[14C]O2[18O]- 8.424e-21 7.707e-21 -20.074 -20.113 -0.039 (0) Ca[14C]O3 4.888e-21 4.896e-21 -20.311 -20.310 0.001 (0) [14C]O[18O] 3.653e-21 3.659e-21 -20.437 -20.437 0.001 (0) [14C]O3-2 2.507e-21 1.757e-21 -20.601 -20.755 -0.155 (0) CaH[14C]O2[18O]+ 1.779e-22 1.632e-22 -21.750 -21.787 -0.037 (0) - CaH[14C]O[18O]O+ 1.779e-22 1.632e-22 -21.750 -21.787 -0.037 (0) CaH[14C][18O]O2+ 1.779e-22 1.632e-22 -21.750 -21.787 -0.037 (0) + CaH[14C]O[18O]O+ 1.779e-22 1.632e-22 -21.750 -21.787 -0.037 (0) Ca[14C]O2[18O] 2.926e-23 2.930e-23 -22.534 -22.533 0.001 (0) H[14C]O[18O]2- 1.681e-23 1.538e-23 -22.774 -22.813 -0.039 (0) H[14C][18O]2O- 1.681e-23 1.538e-23 -22.774 -22.813 -0.039 (0) @@ -24114,29 +24114,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.903 -69.902 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.904 -72.903 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.821 -68.820 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.822 -71.821 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.86 -17.72 -2.86 [13C]H4 + [13C]H4(g) -17.03 -19.89 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.95 -23.46 -1.50 [14C][18O]2 - [14C]H4(g) -27.96 -30.82 -2.86 [14C]H4 + [14C]H4(g) -30.13 -32.99 -2.86 [14C]H4 [14C]O2(g) -16.59 -18.06 -1.47 [14C]O2 [14C]O[18O](g) -18.97 -20.76 -1.79 [14C]O[18O] - [18O]2(g) -70.61 -72.90 -2.29 [18O]2 + [18O]2(g) -69.53 -71.82 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -24150,14 +24150,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.91 -15.77 -2.86 CH4 + CH4(g) -15.07 -17.93 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.29 -12.44 -3.15 H2 + H2(g) -9.83 -12.98 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.61 -67.50 -2.89 O2 - O[18O](g) -67.31 -70.20 -2.89 O[18O] + O2(g) -63.53 -66.42 -2.89 O2 + O[18O](g) -66.23 -69.12 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -24181,12 +24181,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 93. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -24272,14 +24266,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.5503e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6092e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5781e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 7.1054e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.1324e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.9984e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -8.2157e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -24297,16 +24291,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.346 Adjusted to redox equilibrium + pe = -2.109 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.424e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 80 (181 overall) + Iterations = 64 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -24318,25 +24312,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.806e-16 - CH4 1.806e-16 1.809e-16 -15.743 -15.743 0.001 (0) +C(-4) 2.300e-18 + CH4 2.300e-18 2.303e-18 -17.638 -17.638 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -24344,23 +24338,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.361e-13 - H2 3.681e-13 3.687e-13 -12.434 -12.433 0.001 (0) +H(0) 2.473e-13 + H2 1.236e-13 1.238e-13 -12.908 -12.907 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.516 -67.515 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.915 -69.914 0.001 (0) -[13C](-4) 2.002e-18 - [13C]H4 2.002e-18 2.005e-18 -17.699 -17.698 0.001 (0) + O2 0.000e+00 0.000e+00 -66.568 -66.567 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.967 -68.966 0.001 (0) +[13C](-4) 2.549e-20 + [13C]H4 2.549e-20 2.553e-20 -19.594 -19.593 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) @@ -24369,56 +24363,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.468e-31 - [14C]H4 1.468e-31 1.471e-31 -30.833 -30.833 0.001 (0) +[14C](-4) 1.869e-33 + [14C]H4 1.869e-33 1.872e-33 -32.728 -32.728 0.001 (0) [14C](4) 4.815e-18 H[14C]O3- 3.890e-18 3.559e-18 -17.410 -17.449 -0.039 (0) [14C]O2 8.094e-19 8.107e-19 -18.092 -18.091 0.001 (0) CaH[14C]O3+ 8.214e-20 7.535e-20 -19.085 -19.123 -0.037 (0) - H[14C]O2[18O]- 7.761e-21 7.100e-21 -20.110 -20.149 -0.039 (0) - H[14C]O[18O]O- 7.761e-21 7.100e-21 -20.110 -20.149 -0.039 (0) H[14C][18O]O2- 7.761e-21 7.100e-21 -20.110 -20.149 -0.039 (0) + H[14C]O[18O]O- 7.761e-21 7.100e-21 -20.110 -20.149 -0.039 (0) + H[14C]O2[18O]- 7.761e-21 7.100e-21 -20.110 -20.149 -0.039 (0) Ca[14C]O3 4.503e-21 4.510e-21 -20.347 -20.346 0.001 (0) [14C]O[18O] 3.366e-21 3.371e-21 -20.473 -20.472 0.001 (0) [14C]O3-2 2.310e-21 1.618e-21 -20.636 -20.791 -0.155 (0) CaH[14C]O2[18O]+ 1.639e-22 1.503e-22 -21.785 -21.823 -0.037 (0) - CaH[14C]O[18O]O+ 1.639e-22 1.503e-22 -21.785 -21.823 -0.037 (0) CaH[14C][18O]O2+ 1.639e-22 1.503e-22 -21.785 -21.823 -0.037 (0) + CaH[14C]O[18O]O+ 1.639e-22 1.503e-22 -21.785 -21.823 -0.037 (0) Ca[14C]O2[18O] 2.695e-23 2.700e-23 -22.569 -22.569 0.001 (0) - H[14C]O[18O]2- 1.548e-23 1.417e-23 -22.810 -22.849 -0.039 (0) H[14C][18O]2O- 1.548e-23 1.417e-23 -22.810 -22.849 -0.039 (0) H[14C][18O]O[18O]- 1.548e-23 1.417e-23 -22.810 -22.849 -0.039 (0) + H[14C]O[18O]2- 1.548e-23 1.417e-23 -22.810 -22.849 -0.039 (0) [14C]O2[18O]-2 1.383e-23 9.686e-24 -22.859 -23.014 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.915 -69.914 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.916 -72.915 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.967 -68.966 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.968 -71.968 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.84 -17.70 -2.86 [13C]H4 + [13C]H4(g) -16.73 -19.59 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.99 -23.49 -1.50 [14C][18O]2 - [14C]H4(g) -27.97 -30.83 -2.86 [14C]H4 + [14C]H4(g) -29.87 -32.73 -2.86 [14C]H4 [14C]O2(g) -16.62 -18.09 -1.47 [14C]O2 [14C]O[18O](g) -19.00 -20.79 -1.79 [14C]O[18O] - [18O]2(g) -70.62 -72.92 -2.29 [18O]2 + [18O]2(g) -69.68 -71.97 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -24432,14 +24426,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.88 -15.74 -2.86 CH4 + CH4(g) -14.78 -17.64 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.28 -12.43 -3.15 H2 + H2(g) -9.76 -12.91 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.62 -67.52 -2.89 O2 - O[18O](g) -67.32 -70.22 -2.89 O[18O] + O2(g) -63.68 -66.57 -2.89 O2 + O[18O](g) -66.38 -69.27 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -24463,12 +24457,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 94. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -24534,7 +24522,7 @@ Calcite 5.00e-04 R(14C) CO2(aq) 7.48764e-16 0.063677 pmc R(18O) CO2(aq) 2.07917e-03 36.889 permil R(18O) HCO3- 1.99520e-03 -4.9855 permil - R(13C) HCO3- 1.11811e-02 0.077218 permil + R(13C) HCO3- 1.11811e-02 0.077217 permil R(14C) HCO3- 7.61849e-16 0.064789 pmc R(18O) CO3-2 1.99520e-03 -4.9855 permil R(13C) CO3-2 1.11650e-02 -1.358 permil @@ -24554,14 +24542,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 +Alpha 18O HCO3-/H2O(l) 1 8.8818e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6176e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.653e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 3.9968e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.1102e-13 0 +Alpha 13C CH4(aq)/CO2(aq) 1 8.2157e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 8.4377e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -24579,16 +24567,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.344 Adjusted to redox equilibrium + pe = -2.118 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.424e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 118 (219 overall) + Iterations = 97 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -24600,15 +24588,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.741e-16 - CH4 1.741e-16 1.743e-16 -15.759 -15.759 0.001 (0) +C(-4) 2.727e-18 + CH4 2.727e-18 2.732e-18 -17.564 -17.564 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -24616,9 +24604,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -24626,81 +24614,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.294e-13 - H2 3.647e-13 3.653e-13 -12.438 -12.437 0.001 (0) +H(0) 2.580e-13 + H2 1.290e-13 1.292e-13 -12.889 -12.889 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.508 -67.507 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.907 -69.906 0.001 (0) -[13C](-4) 1.929e-18 - [13C]H4 1.929e-18 1.933e-18 -17.715 -17.714 0.001 (0) + O2 0.000e+00 0.000e+00 -66.605 -66.605 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.004 -69.004 0.001 (0) +[13C](-4) 3.023e-20 + [13C]H4 3.023e-20 3.028e-20 -19.520 -19.519 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.303e-31 - [14C]H4 1.303e-31 1.305e-31 -30.885 -30.884 0.001 (0) +[14C](-4) 2.042e-33 + [14C]H4 2.042e-33 2.046e-33 -32.690 -32.689 0.001 (0) [14C](4) 4.436e-18 H[14C]O3- 3.583e-18 3.278e-18 -17.446 -17.484 -0.039 (0) [14C]O2 7.456e-19 7.468e-19 -18.127 -18.127 0.001 (0) CaH[14C]O3+ 7.567e-20 6.941e-20 -19.121 -19.159 -0.037 (0) - H[14C]O2[18O]- 7.149e-21 6.541e-21 -20.146 -20.184 -0.039 (0) - H[14C]O[18O]O- 7.149e-21 6.541e-21 -20.146 -20.184 -0.039 (0) H[14C][18O]O2- 7.149e-21 6.541e-21 -20.146 -20.184 -0.039 (0) + H[14C]O[18O]O- 7.149e-21 6.541e-21 -20.146 -20.184 -0.039 (0) + H[14C]O2[18O]- 7.149e-21 6.541e-21 -20.146 -20.184 -0.039 (0) Ca[14C]O3 4.148e-21 4.155e-21 -20.382 -20.381 0.001 (0) [14C]O[18O] 3.100e-21 3.106e-21 -20.509 -20.508 0.001 (0) [14C]O3-2 2.128e-21 1.491e-21 -20.672 -20.827 -0.155 (0) CaH[14C]O2[18O]+ 1.510e-22 1.385e-22 -21.821 -21.859 -0.037 (0) - CaH[14C]O[18O]O+ 1.510e-22 1.385e-22 -21.821 -21.859 -0.037 (0) CaH[14C][18O]O2+ 1.510e-22 1.385e-22 -21.821 -21.859 -0.037 (0) + CaH[14C]O[18O]O+ 1.510e-22 1.385e-22 -21.821 -21.859 -0.037 (0) Ca[14C]O2[18O] 2.483e-23 2.487e-23 -22.605 -22.604 0.001 (0) + H[14C][18O]O[18O]- 1.426e-23 1.305e-23 -22.846 -22.884 -0.039 (0) H[14C]O[18O]2- 1.426e-23 1.305e-23 -22.846 -22.884 -0.039 (0) H[14C][18O]2O- 1.426e-23 1.305e-23 -22.846 -22.884 -0.039 (0) - H[14C][18O]O[18O]- 1.426e-23 1.305e-23 -22.846 -22.884 -0.039 (0) [14C]O2[18O]-2 1.274e-23 8.923e-24 -22.895 -23.049 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.907 -69.906 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.908 -72.907 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.004 -69.004 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.005 -72.005 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.85 -17.71 -2.86 [13C]H4 + [13C]H4(g) -16.66 -19.52 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.02 -23.53 -1.50 [14C][18O]2 - [14C]H4(g) -28.02 -30.88 -2.86 [14C]H4 + [14C]H4(g) -29.83 -32.69 -2.86 [14C]H4 [14C]O2(g) -16.66 -18.13 -1.47 [14C]O2 [14C]O[18O](g) -19.04 -20.83 -1.79 [14C]O[18O] - [18O]2(g) -70.62 -72.91 -2.29 [18O]2 + [18O]2(g) -69.71 -72.00 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -24714,14 +24702,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.90 -15.76 -2.86 CH4 + CH4(g) -14.70 -17.56 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.29 -12.44 -3.15 H2 + H2(g) -9.74 -12.89 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.61 -67.51 -2.89 O2 - O[18O](g) -67.31 -70.21 -2.89 O[18O] + O2(g) -63.71 -66.60 -2.89 O2 + O[18O](g) -66.41 -69.30 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -24836,14 +24824,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5629e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7333e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 2.6645e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 7.1054e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 8.8818e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.5321e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -24861,16 +24849,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.363 Adjusted to redox equilibrium + pe = -2.160 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.424e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 99 (200 overall) + Iterations = 82 (183 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -24882,25 +24870,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.476e-16 - CH4 2.476e-16 2.480e-16 -15.606 -15.606 0.001 (0) +C(-4) 5.816e-18 + CH4 5.816e-18 5.826e-18 -17.235 -17.235 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -24908,50 +24896,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.965e-13 - H2 3.982e-13 3.989e-13 -12.400 -12.399 0.001 (0) +H(0) 3.118e-13 + H2 1.559e-13 1.562e-13 -12.807 -12.806 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.584 -67.583 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.983 -69.982 0.001 (0) -[13C](-4) 2.744e-18 - [13C]H4 2.744e-18 2.749e-18 -17.562 -17.561 0.001 (0) + O2 0.000e+00 0.000e+00 -66.770 -66.769 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.169 -69.168 0.001 (0) +[13C](-4) 6.447e-20 + [13C]H4 6.447e-20 6.458e-20 -19.191 -19.190 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.708e-31 - [14C]H4 1.708e-31 1.710e-31 -30.768 -30.767 0.001 (0) +[14C](-4) 4.012e-33 + [14C]H4 4.012e-33 4.019e-33 -32.397 -32.396 0.001 (0) [14C](4) 4.087e-18 H[14C]O3- 3.301e-18 3.020e-18 -17.481 -17.520 -0.039 (0) [14C]O2 6.869e-19 6.880e-19 -18.163 -18.162 0.001 (0) CaH[14C]O3+ 6.971e-20 6.394e-20 -19.157 -19.194 -0.037 (0) - H[14C]O2[18O]- 6.586e-21 6.026e-21 -20.181 -20.220 -0.039 (0) - H[14C]O[18O]O- 6.586e-21 6.026e-21 -20.181 -20.220 -0.039 (0) H[14C][18O]O2- 6.586e-21 6.026e-21 -20.181 -20.220 -0.039 (0) + H[14C]O[18O]O- 6.586e-21 6.026e-21 -20.181 -20.220 -0.039 (0) + H[14C]O2[18O]- 6.586e-21 6.026e-21 -20.181 -20.220 -0.039 (0) Ca[14C]O3 3.821e-21 3.828e-21 -20.418 -20.417 0.001 (0) [14C]O[18O] 2.856e-21 2.861e-21 -20.544 -20.543 0.001 (0) [14C]O3-2 1.960e-21 1.373e-21 -20.708 -20.862 -0.155 (0) CaH[14C]O2[18O]+ 1.391e-22 1.276e-22 -21.857 -21.894 -0.037 (0) - CaH[14C]O[18O]O+ 1.391e-22 1.276e-22 -21.857 -21.894 -0.037 (0) CaH[14C][18O]O2+ 1.391e-22 1.276e-22 -21.857 -21.894 -0.037 (0) + CaH[14C]O[18O]O+ 1.391e-22 1.276e-22 -21.857 -21.894 -0.037 (0) Ca[14C]O2[18O] 2.287e-23 2.291e-23 -22.641 -22.640 0.001 (0) H[14C]O[18O]2- 1.314e-23 1.202e-23 -22.881 -22.920 -0.039 (0) H[14C][18O]2O- 1.314e-23 1.202e-23 -22.881 -22.920 -0.039 (0) @@ -24960,29 +24948,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.983 -69.982 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.984 -72.984 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.169 -69.168 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.170 -72.169 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.70 -17.56 -2.86 [13C]H4 + [13C]H4(g) -16.33 -19.19 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.06 -23.56 -1.50 [14C][18O]2 - [14C]H4(g) -27.91 -30.77 -2.86 [14C]H4 + [14C]H4(g) -29.54 -32.40 -2.86 [14C]H4 [14C]O2(g) -16.69 -18.16 -1.47 [14C]O2 [14C]O[18O](g) -19.08 -20.86 -1.79 [14C]O[18O] - [18O]2(g) -70.69 -72.98 -2.29 [18O]2 + [18O]2(g) -69.88 -72.17 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -24996,14 +24984,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.75 -15.61 -2.86 CH4 + CH4(g) -14.37 -17.23 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.25 -12.40 -3.15 H2 + H2(g) -9.66 -12.81 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.69 -67.58 -2.89 O2 - O[18O](g) -67.39 -70.28 -2.89 O[18O] + O2(g) -63.88 -66.77 -2.89 O2 + O[18O](g) -66.58 -69.47 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -25027,6 +25015,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 96. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -25112,14 +25106,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7717e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6745e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -5.9952e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -4.2188e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.0436e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.8763e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -25137,16 +25131,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.357 Adjusted to redox equilibrium + pe = -2.144 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.429e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 64 + Iterations = 105 (206 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -25158,14 +25152,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.213e-16 - CH4 2.213e-16 2.217e-16 -15.655 -15.654 0.001 (0) +C(-4) 4.373e-18 + CH4 4.373e-18 4.380e-18 -17.359 -17.359 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -25174,9 +25168,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -25184,23 +25178,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.745e-13 - H2 3.872e-13 3.879e-13 -12.412 -12.411 0.001 (0) +H(0) 2.904e-13 + H2 1.452e-13 1.454e-13 -12.838 -12.837 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.560 -67.559 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.959 -69.958 0.001 (0) -[13C](-4) 2.453e-18 - [13C]H4 2.453e-18 2.457e-18 -17.610 -17.610 0.001 (0) + O2 0.000e+00 0.000e+00 -66.708 -66.707 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.107 -69.106 0.001 (0) +[13C](-4) 4.847e-20 + [13C]H4 4.847e-20 4.855e-20 -19.315 -19.314 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) @@ -25209,56 +25203,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.406e-31 - [14C]H4 1.406e-31 1.409e-31 -30.852 -30.851 0.001 (0) +[14C](-4) 2.779e-33 + [14C]H4 2.779e-33 2.783e-33 -32.556 -32.555 0.001 (0) [14C](4) 3.765e-18 H[14C]O3- 3.041e-18 2.782e-18 -17.517 -17.556 -0.039 (0) [14C]O2 6.328e-19 6.338e-19 -18.199 -18.198 0.001 (0) CaH[14C]O3+ 6.422e-20 5.891e-20 -19.192 -19.230 -0.037 (0) - H[14C]O2[18O]- 6.067e-21 5.551e-21 -20.217 -20.256 -0.039 (0) - H[14C]O[18O]O- 6.067e-21 5.551e-21 -20.217 -20.256 -0.039 (0) H[14C][18O]O2- 6.067e-21 5.551e-21 -20.217 -20.256 -0.039 (0) + H[14C]O[18O]O- 6.067e-21 5.551e-21 -20.217 -20.256 -0.039 (0) + H[14C]O2[18O]- 6.067e-21 5.551e-21 -20.217 -20.256 -0.039 (0) Ca[14C]O3 3.520e-21 3.526e-21 -20.453 -20.453 0.001 (0) [14C]O[18O] 2.631e-21 2.636e-21 -20.580 -20.579 0.001 (0) [14C]O3-2 1.806e-21 1.265e-21 -20.743 -20.898 -0.155 (0) CaH[14C]O2[18O]+ 1.281e-22 1.175e-22 -21.892 -21.930 -0.037 (0) - CaH[14C]O[18O]O+ 1.281e-22 1.175e-22 -21.892 -21.930 -0.037 (0) CaH[14C][18O]O2+ 1.281e-22 1.175e-22 -21.892 -21.930 -0.037 (0) + CaH[14C]O[18O]O+ 1.281e-22 1.175e-22 -21.892 -21.930 -0.037 (0) Ca[14C]O2[18O] 2.107e-23 2.111e-23 -22.676 -22.676 0.001 (0) - H[14C]O[18O]2- 1.211e-23 1.108e-23 -22.917 -22.956 -0.039 (0) H[14C][18O]2O- 1.211e-23 1.108e-23 -22.917 -22.956 -0.039 (0) H[14C][18O]O[18O]- 1.211e-23 1.108e-23 -22.917 -22.956 -0.039 (0) + H[14C]O[18O]2- 1.211e-23 1.108e-23 -22.917 -22.956 -0.039 (0) [14C]O2[18O]-2 1.081e-23 7.572e-24 -22.966 -23.121 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.959 -69.958 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.960 -72.959 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.107 -69.106 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.108 -72.107 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.75 -17.61 -2.86 [13C]H4 + [13C]H4(g) -16.45 -19.31 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.09 -23.60 -1.50 [14C][18O]2 - [14C]H4(g) -27.99 -30.85 -2.86 [14C]H4 + [14C]H4(g) -29.70 -32.56 -2.86 [14C]H4 [14C]O2(g) -16.73 -18.20 -1.47 [14C]O2 [14C]O[18O](g) -19.11 -20.90 -1.79 [14C]O[18O] - [18O]2(g) -70.67 -72.96 -2.29 [18O]2 + [18O]2(g) -69.82 -72.11 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -25272,14 +25266,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.79 -15.65 -2.86 CH4 + CH4(g) -14.50 -17.36 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.26 -12.41 -3.15 H2 + H2(g) -9.69 -12.84 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.67 -67.56 -2.89 O2 - O[18O](g) -67.37 -70.26 -2.89 O[18O] + O2(g) -63.81 -66.71 -2.89 O2 + O[18O](g) -66.51 -69.41 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -25388,14 +25382,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6959e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8087e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.5321e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 9.1038e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 3.9968e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -8.2157e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -25413,16 +25407,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.372 Adjusted to redox equilibrium + pe = -2.167 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.429e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 60 + Iterations = 98 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -25434,25 +25428,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.914e-16 - CH4 2.914e-16 2.918e-16 -15.536 -15.535 0.001 (0) +C(-4) 6.711e-18 + CH4 6.711e-18 6.722e-18 -17.173 -17.172 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -25460,81 +25454,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 8.296e-13 - H2 4.148e-13 4.155e-13 -12.382 -12.381 0.001 (0) +H(0) 3.232e-13 + H2 1.616e-13 1.619e-13 -12.792 -12.791 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.620 -67.619 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -70.019 -70.018 0.001 (0) -[13C](-4) 3.230e-18 - [13C]H4 3.230e-18 3.235e-18 -17.491 -17.490 0.001 (0) + O2 0.000e+00 0.000e+00 -66.801 -66.800 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.200 -69.199 0.001 (0) +[13C](-4) 7.439e-20 + [13C]H4 7.439e-20 7.451e-20 -19.128 -19.128 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.597e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.706e-31 - [14C]H4 1.706e-31 1.708e-31 -30.768 -30.767 0.001 (0) +[14C](-4) 3.929e-33 + [14C]H4 3.929e-33 3.935e-33 -32.406 -32.405 0.001 (0) [14C](4) 3.468e-18 H[14C]O3- 2.801e-18 2.563e-18 -17.553 -17.591 -0.039 (0) [14C]O2 5.829e-19 5.839e-19 -18.234 -18.234 0.001 (0) CaH[14C]O3+ 5.916e-20 5.427e-20 -19.228 -19.265 -0.037 (0) - H[14C]O2[18O]- 5.589e-21 5.114e-21 -20.253 -20.291 -0.039 (0) - H[14C]O[18O]O- 5.589e-21 5.114e-21 -20.253 -20.291 -0.039 (0) H[14C][18O]O2- 5.589e-21 5.114e-21 -20.253 -20.291 -0.039 (0) + H[14C]O[18O]O- 5.589e-21 5.114e-21 -20.253 -20.291 -0.039 (0) + H[14C]O2[18O]- 5.589e-21 5.114e-21 -20.253 -20.291 -0.039 (0) Ca[14C]O3 3.243e-21 3.248e-21 -20.489 -20.488 0.001 (0) [14C]O[18O] 2.424e-21 2.428e-21 -20.615 -20.615 0.001 (0) [14C]O3-2 1.664e-21 1.165e-21 -20.779 -20.934 -0.155 (0) CaH[14C]O2[18O]+ 1.180e-22 1.083e-22 -21.928 -21.965 -0.037 (0) - CaH[14C]O[18O]O+ 1.180e-22 1.083e-22 -21.928 -21.965 -0.037 (0) CaH[14C][18O]O2+ 1.180e-22 1.083e-22 -21.928 -21.965 -0.037 (0) + CaH[14C]O[18O]O+ 1.180e-22 1.083e-22 -21.928 -21.965 -0.037 (0) Ca[14C]O2[18O] 1.941e-23 1.944e-23 -22.712 -22.711 0.001 (0) + H[14C][18O]O[18O]- 1.115e-23 1.020e-23 -22.953 -22.991 -0.039 (0) H[14C]O[18O]2- 1.115e-23 1.020e-23 -22.953 -22.991 -0.039 (0) H[14C][18O]2O- 1.115e-23 1.020e-23 -22.953 -22.991 -0.039 (0) - H[14C][18O]O[18O]- 1.115e-23 1.020e-23 -22.953 -22.991 -0.039 (0) [14C]O2[18O]-2 9.958e-24 6.976e-24 -23.002 -23.156 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -70.019 -70.018 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -73.020 -73.019 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.200 -69.199 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.201 -72.200 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.63 -17.49 -2.86 [13C]H4 + [13C]H4(g) -16.27 -19.13 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.13 -23.63 -1.50 [14C][18O]2 - [14C]H4(g) -27.91 -30.77 -2.86 [14C]H4 + [14C]H4(g) -29.55 -32.41 -2.86 [14C]H4 [14C]O2(g) -16.77 -18.23 -1.47 [14C]O2 [14C]O[18O](g) -19.15 -20.93 -1.79 [14C]O[18O] - [18O]2(g) -70.73 -73.02 -2.29 [18O]2 + [18O]2(g) -69.91 -72.20 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -25548,14 +25542,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.67 -15.53 -2.86 CH4 + CH4(g) -14.31 -17.17 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.23 -12.38 -3.15 H2 + H2(g) -9.64 -12.79 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.73 -67.62 -2.89 O2 - O[18O](g) -67.43 -70.32 -2.89 O[18O] + O2(g) -63.91 -66.80 -2.89 O2 + O[18O](g) -66.61 -69.50 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -25585,6 +25579,12 @@ WARNING: Numerical method failed with this set of convergence parameters. WARNING: Trying reduced tolerance 1e-16 ... +WARNING: Maximum iterations exceeded, 200 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying increased tolerance 1e-14 ... + Using solution 1. Solution after simulation 98. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -25670,14 +25670,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6843e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6593e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.8874e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -3.9968e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -8.8818e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -2.1427e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -25695,16 +25695,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.387 Adjusted to redox equilibrium + pe = -2.188 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.431e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 57 (158 overall) + Iterations = 115 (417 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -25716,15 +25716,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.806e-16 - CH4 3.806e-16 3.812e-16 -15.420 -15.419 0.001 (0) +C(-4) 9.738e-18 + CH4 9.738e-18 9.754e-18 -17.012 -17.011 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -25732,9 +25732,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -25742,50 +25742,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 8.869e-13 - H2 4.435e-13 4.442e-13 -12.353 -12.352 0.001 (0) +H(0) 3.547e-13 + H2 1.774e-13 1.777e-13 -12.751 -12.750 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.678 -67.677 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -70.077 -70.076 0.001 (0) -[13C](-4) 4.219e-18 - [13C]H4 4.219e-18 4.226e-18 -17.375 -17.374 0.001 (0) + O2 0.000e+00 0.000e+00 -66.882 -66.881 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.281 -69.280 0.001 (0) +[13C](-4) 1.079e-19 + [13C]H4 1.079e-19 1.081e-19 -18.967 -18.966 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.598e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.053e-31 - [14C]H4 2.053e-31 2.056e-31 -30.688 -30.687 0.001 (0) +[14C](-4) 5.252e-33 + [14C]H4 5.252e-33 5.260e-33 -32.280 -32.279 0.001 (0) [14C](4) 3.195e-18 H[14C]O3- 2.581e-18 2.361e-18 -17.588 -17.627 -0.039 (0) [14C]O2 5.370e-19 5.379e-19 -18.270 -18.269 0.001 (0) CaH[14C]O3+ 5.450e-20 4.999e-20 -19.264 -19.301 -0.037 (0) - H[14C]O2[18O]- 5.149e-21 4.711e-21 -20.288 -20.327 -0.039 (0) - H[14C]O[18O]O- 5.149e-21 4.711e-21 -20.288 -20.327 -0.039 (0) H[14C][18O]O2- 5.149e-21 4.711e-21 -20.288 -20.327 -0.039 (0) + H[14C]O[18O]O- 5.149e-21 4.711e-21 -20.288 -20.327 -0.039 (0) + H[14C]O2[18O]- 5.149e-21 4.711e-21 -20.288 -20.327 -0.039 (0) Ca[14C]O3 2.988e-21 2.992e-21 -20.525 -20.524 0.001 (0) [14C]O[18O] 2.233e-21 2.237e-21 -20.651 -20.650 0.001 (0) [14C]O3-2 1.533e-21 1.074e-21 -20.815 -20.969 -0.155 (0) CaH[14C]O2[18O]+ 1.087e-22 9.974e-23 -21.964 -22.001 -0.037 (0) - CaH[14C]O[18O]O+ 1.087e-22 9.974e-23 -21.964 -22.001 -0.037 (0) CaH[14C][18O]O2+ 1.087e-22 9.974e-23 -21.964 -22.001 -0.037 (0) + CaH[14C]O[18O]O+ 1.087e-22 9.974e-23 -21.964 -22.001 -0.037 (0) Ca[14C]O2[18O] 1.788e-23 1.791e-23 -22.748 -22.747 0.001 (0) H[14C]O[18O]2- 1.027e-23 9.399e-24 -22.988 -23.027 -0.039 (0) H[14C][18O]2O- 1.027e-23 9.399e-24 -22.988 -23.027 -0.039 (0) @@ -25794,29 +25794,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -70.077 -70.076 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -73.078 -73.077 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.281 -69.280 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.282 -72.281 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.51 -17.37 -2.86 [13C]H4 + [13C]H4(g) -16.11 -18.97 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.17 -23.67 -1.50 [14C][18O]2 - [14C]H4(g) -27.83 -30.69 -2.86 [14C]H4 + [14C]H4(g) -29.42 -32.28 -2.86 [14C]H4 [14C]O2(g) -16.80 -18.27 -1.47 [14C]O2 [14C]O[18O](g) -19.18 -20.97 -1.79 [14C]O[18O] - [18O]2(g) -70.79 -73.08 -2.29 [18O]2 + [18O]2(g) -69.99 -72.28 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -25830,14 +25830,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.56 -15.42 -2.86 CH4 + CH4(g) -14.15 -17.01 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.20 -12.35 -3.15 H2 + H2(g) -9.60 -12.75 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.78 -67.68 -2.89 O2 - O[18O](g) -67.48 -70.38 -2.89 O[18O] + O2(g) -63.99 -66.88 -2.89 O2 + O[18O](g) -66.69 -69.58 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -25861,6 +25861,12 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying reduced tolerance 1e-16 ... + Using solution 1. Solution after simulation 99. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -25946,14 +25952,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 +Alpha 18O HCO3-/H2O(l) 1 8.8818e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6285e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5585e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -4.996e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.1324e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.7764e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 0 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -25971,16 +25977,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.397 Adjusted to redox equilibrium + pe = -2.243 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.431e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 89 + Iterations = 112 (213 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -25992,25 +25998,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.625e-16 - CH4 4.625e-16 4.633e-16 -15.335 -15.334 0.001 (0) +C(-4) 2.686e-17 + CH4 2.686e-17 2.691e-17 -16.571 -16.570 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -26018,23 +26024,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 9.312e-13 - H2 4.656e-13 4.664e-13 -12.332 -12.331 0.001 (0) +H(0) 4.572e-13 + H2 2.286e-13 2.290e-13 -12.641 -12.640 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.720 -67.719 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -70.119 -70.118 0.001 (0) -[13C](-4) 5.127e-18 - [13C]H4 5.127e-18 5.135e-18 -17.290 -17.289 0.001 (0) + O2 0.000e+00 0.000e+00 -67.102 -67.101 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.501 -69.500 0.001 (0) +[13C](-4) 2.978e-19 + [13C]H4 2.978e-19 2.983e-19 -18.526 -18.525 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.598e-08 -7.338 -7.337 0.001 (0) @@ -26043,56 +26049,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.298e-31 - [14C]H4 2.298e-31 2.302e-31 -30.639 -30.638 0.001 (0) +[14C](-4) 1.335e-32 + [14C]H4 1.335e-32 1.337e-32 -31.875 -31.874 0.001 (0) [14C](4) 2.943e-18 H[14C]O3- 2.377e-18 2.175e-18 -17.624 -17.663 -0.039 (0) [14C]O2 4.947e-19 4.955e-19 -18.306 -18.305 0.001 (0) CaH[14C]O3+ 5.020e-20 4.605e-20 -19.299 -19.337 -0.037 (0) - H[14C]O2[18O]- 4.744e-21 4.340e-21 -20.324 -20.363 -0.039 (0) - H[14C]O[18O]O- 4.744e-21 4.340e-21 -20.324 -20.363 -0.039 (0) H[14C][18O]O2- 4.744e-21 4.340e-21 -20.324 -20.363 -0.039 (0) + H[14C]O[18O]O- 4.744e-21 4.340e-21 -20.324 -20.363 -0.039 (0) + H[14C]O2[18O]- 4.744e-21 4.340e-21 -20.324 -20.363 -0.039 (0) Ca[14C]O3 2.752e-21 2.757e-21 -20.560 -20.560 0.001 (0) [14C]O[18O] 2.057e-21 2.061e-21 -20.687 -20.686 0.001 (0) [14C]O3-2 1.412e-21 9.891e-22 -20.850 -21.005 -0.155 (0) CaH[14C]O2[18O]+ 1.002e-22 9.189e-23 -21.999 -22.037 -0.037 (0) - CaH[14C]O[18O]O+ 1.002e-22 9.189e-23 -21.999 -22.037 -0.037 (0) CaH[14C][18O]O2+ 1.002e-22 9.189e-23 -21.999 -22.037 -0.037 (0) + CaH[14C]O[18O]O+ 1.002e-22 9.189e-23 -21.999 -22.037 -0.037 (0) Ca[14C]O2[18O] 1.647e-23 1.650e-23 -22.783 -22.782 0.001 (0) - H[14C]O[18O]2- 9.464e-24 8.659e-24 -23.024 -23.063 -0.039 (0) H[14C][18O]2O- 9.464e-24 8.659e-24 -23.024 -23.063 -0.039 (0) H[14C][18O]O[18O]- 9.464e-24 8.659e-24 -23.024 -23.063 -0.039 (0) + H[14C]O[18O]2- 9.464e-24 8.659e-24 -23.024 -23.063 -0.039 (0) [14C]O2[18O]-2 8.451e-24 5.920e-24 -23.073 -23.228 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -70.119 -70.118 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -73.120 -73.119 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.501 -69.500 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.502 -72.501 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.43 -17.29 -2.86 [13C]H4 + [13C]H4(g) -15.67 -18.53 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.20 -23.70 -1.50 [14C][18O]2 - [14C]H4(g) -27.78 -30.64 -2.86 [14C]H4 + [14C]H4(g) -29.01 -31.87 -2.86 [14C]H4 [14C]O2(g) -16.84 -18.30 -1.47 [14C]O2 [14C]O[18O](g) -19.22 -21.00 -1.79 [14C]O[18O] - [18O]2(g) -70.83 -73.12 -2.29 [18O]2 + [18O]2(g) -70.21 -72.50 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -26106,14 +26112,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.47 -15.33 -2.86 CH4 + CH4(g) -13.71 -16.57 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.18 -12.33 -3.15 H2 + H2(g) -9.49 -12.64 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.83 -67.72 -2.89 O2 - O[18O](g) -67.53 -70.42 -2.89 O[18O] + O2(g) -64.21 -67.10 -2.89 O2 + O[18O](g) -66.91 -69.80 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -26137,12 +26143,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 100. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -26228,14 +26228,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6439e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6269e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 8.2157e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.6431e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -8.1046e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -5.9952e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -26253,16 +26253,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.397 Adjusted to redox equilibrium + pe = -2.244 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.431e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 149 (250 overall) + Iterations = 63 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -26274,15 +26274,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.613e-16 - CH4 4.613e-16 4.621e-16 -15.336 -15.335 0.001 (0) +C(-4) 2.776e-17 + CH4 2.776e-17 2.781e-17 -16.557 -16.556 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -26290,9 +26290,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -26300,81 +26300,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 9.306e-13 - H2 4.653e-13 4.661e-13 -12.332 -12.332 0.001 (0) +H(0) 4.609e-13 + H2 2.305e-13 2.308e-13 -12.637 -12.637 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.719 -67.719 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -70.118 -70.118 0.001 (0) -[13C](-4) 5.114e-18 - [13C]H4 5.114e-18 5.122e-18 -17.291 -17.291 0.001 (0) + O2 0.000e+00 0.000e+00 -67.109 -67.108 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.508 -69.507 0.001 (0) +[13C](-4) 3.077e-19 + [13C]H4 3.077e-19 3.082e-19 -18.512 -18.511 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.598e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.111e-31 - [14C]H4 2.111e-31 2.115e-31 -30.675 -30.675 0.001 (0) +[14C](-4) 1.270e-32 + [14C]H4 1.270e-32 1.273e-32 -31.896 -31.895 0.001 (0) [14C](4) 2.711e-18 H[14C]O3- 2.190e-18 2.004e-18 -17.660 -17.698 -0.039 (0) [14C]O2 4.557e-19 4.565e-19 -18.341 -18.341 0.001 (0) CaH[14C]O3+ 4.625e-20 4.243e-20 -19.335 -19.372 -0.037 (0) - H[14C]O2[18O]- 4.370e-21 3.998e-21 -20.360 -20.398 -0.039 (0) - H[14C]O[18O]O- 4.370e-21 3.998e-21 -20.360 -20.398 -0.039 (0) H[14C][18O]O2- 4.370e-21 3.998e-21 -20.360 -20.398 -0.039 (0) + H[14C]O[18O]O- 4.370e-21 3.998e-21 -20.360 -20.398 -0.039 (0) + H[14C]O2[18O]- 4.370e-21 3.998e-21 -20.360 -20.398 -0.039 (0) Ca[14C]O3 2.535e-21 2.540e-21 -20.596 -20.595 0.001 (0) [14C]O[18O] 1.895e-21 1.898e-21 -20.722 -20.722 0.001 (0) [14C]O3-2 1.301e-21 9.112e-22 -20.886 -21.040 -0.155 (0) CaH[14C]O2[18O]+ 9.228e-23 8.465e-23 -22.035 -22.072 -0.037 (0) - CaH[14C]O[18O]O+ 9.228e-23 8.465e-23 -22.035 -22.072 -0.037 (0) CaH[14C][18O]O2+ 9.228e-23 8.465e-23 -22.035 -22.072 -0.037 (0) + CaH[14C]O[18O]O+ 9.228e-23 8.465e-23 -22.035 -22.072 -0.037 (0) Ca[14C]O2[18O] 1.518e-23 1.520e-23 -22.819 -22.818 0.001 (0) + H[14C][18O]O[18O]- 8.719e-24 7.977e-24 -23.060 -23.098 -0.039 (0) H[14C]O[18O]2- 8.719e-24 7.977e-24 -23.060 -23.098 -0.039 (0) H[14C][18O]2O- 8.719e-24 7.977e-24 -23.060 -23.098 -0.039 (0) - H[14C][18O]O[18O]- 8.719e-24 7.977e-24 -23.060 -23.098 -0.039 (0) [14C]O2[18O]-2 7.785e-24 5.454e-24 -23.109 -23.263 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -70.118 -70.118 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -73.119 -73.119 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.508 -69.507 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.509 -72.508 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.43 -17.29 -2.86 [13C]H4 + [13C]H4(g) -15.65 -18.51 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.24 -23.74 -1.50 [14C][18O]2 - [14C]H4(g) -27.81 -30.67 -2.86 [14C]H4 + [14C]H4(g) -29.04 -31.90 -2.86 [14C]H4 [14C]O2(g) -16.87 -18.34 -1.47 [14C]O2 [14C]O[18O](g) -19.25 -21.04 -1.79 [14C]O[18O] - [18O]2(g) -70.83 -73.12 -2.29 [18O]2 + [18O]2(g) -70.22 -72.51 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -26388,14 +26388,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.48 -15.34 -2.86 CH4 + CH4(g) -13.70 -16.56 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.18 -12.33 -3.15 H2 + H2(g) -9.49 -12.64 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.83 -67.72 -2.89 O2 - O[18O](g) -67.53 -70.42 -2.89 O[18O] + O2(g) -64.22 -67.11 -2.89 O2 + O[18O](g) -66.92 -69.81 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -26510,14 +26510,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.4385e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6328e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6813e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -5.218e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -2.9976e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.2212e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 4.885e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -26535,16 +26535,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.411 Adjusted to redox equilibrium + pe = -2.273 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.431e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 96 (197 overall) + Iterations = 115 (216 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -26556,25 +26556,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 5.956e-16 - CH4 5.956e-16 5.966e-16 -15.225 -15.224 0.001 (0) +C(-4) 4.735e-17 + CH4 4.735e-17 4.743e-17 -16.325 -16.324 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -26582,50 +26582,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 9.920e-13 - H2 4.960e-13 4.968e-13 -12.305 -12.304 0.001 (0) +H(0) 5.267e-13 + H2 2.634e-13 2.638e-13 -12.579 -12.579 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.775 -67.774 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -70.174 -70.173 0.001 (0) -[13C](-4) 6.602e-18 - [13C]H4 6.602e-18 6.613e-18 -17.180 -17.180 0.001 (0) + O2 0.000e+00 0.000e+00 -67.225 -67.224 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.624 -69.623 0.001 (0) +[13C](-4) 5.248e-19 + [13C]H4 5.248e-19 5.257e-19 -18.280 -18.279 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.598e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.511e-31 - [14C]H4 2.511e-31 2.515e-31 -30.600 -30.599 0.001 (0) +[14C](-4) 1.996e-32 + [14C]H4 1.996e-32 2.000e-32 -31.700 -31.699 0.001 (0) [14C](4) 2.498e-18 H[14C]O3- 2.018e-18 1.846e-18 -17.695 -17.734 -0.039 (0) [14C]O2 4.198e-19 4.205e-19 -18.377 -18.376 0.001 (0) CaH[14C]O3+ 4.261e-20 3.908e-20 -19.371 -19.408 -0.037 (0) - H[14C]O2[18O]- 4.026e-21 3.683e-21 -20.395 -20.434 -0.039 (0) - H[14C]O[18O]O- 4.026e-21 3.683e-21 -20.395 -20.434 -0.039 (0) H[14C][18O]O2- 4.026e-21 3.683e-21 -20.395 -20.434 -0.039 (0) + H[14C]O[18O]O- 4.026e-21 3.683e-21 -20.395 -20.434 -0.039 (0) + H[14C]O2[18O]- 4.026e-21 3.683e-21 -20.395 -20.434 -0.039 (0) Ca[14C]O3 2.336e-21 2.340e-21 -20.632 -20.631 0.001 (0) [14C]O[18O] 1.746e-21 1.749e-21 -20.758 -20.757 0.001 (0) [14C]O3-2 1.198e-21 8.394e-22 -20.921 -21.076 -0.155 (0) CaH[14C]O2[18O]+ 8.501e-23 7.798e-23 -22.071 -22.108 -0.037 (0) - CaH[14C]O[18O]O+ 8.501e-23 7.798e-23 -22.071 -22.108 -0.037 (0) CaH[14C][18O]O2+ 8.501e-23 7.798e-23 -22.071 -22.108 -0.037 (0) + CaH[14C]O[18O]O+ 8.501e-23 7.798e-23 -22.071 -22.108 -0.037 (0) Ca[14C]O2[18O] 1.398e-23 1.400e-23 -22.854 -22.854 0.001 (0) H[14C]O[18O]2- 8.032e-24 7.348e-24 -23.095 -23.134 -0.039 (0) H[14C][18O]2O- 8.032e-24 7.348e-24 -23.095 -23.134 -0.039 (0) @@ -26634,29 +26634,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -70.174 -70.173 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -73.175 -73.174 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.624 -69.623 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.625 -72.624 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.32 -17.18 -2.86 [13C]H4 + [13C]H4(g) -15.42 -18.28 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.27 -23.78 -1.50 [14C][18O]2 - [14C]H4(g) -27.74 -30.60 -2.86 [14C]H4 + [14C]H4(g) -28.84 -31.70 -2.86 [14C]H4 [14C]O2(g) -16.91 -18.38 -1.47 [14C]O2 [14C]O[18O](g) -19.29 -21.08 -1.79 [14C]O[18O] - [18O]2(g) -70.88 -73.17 -2.29 [18O]2 + [18O]2(g) -70.33 -72.62 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -26670,14 +26670,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.36 -15.22 -2.86 CH4 + CH4(g) -13.46 -16.32 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.15 -12.30 -3.15 H2 + H2(g) -9.43 -12.58 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.88 -67.77 -2.89 O2 - O[18O](g) -67.58 -70.47 -2.89 O[18O] + O2(g) -64.33 -67.22 -2.89 O2 + O[18O](g) -67.03 -69.92 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -26792,14 +26792,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7261e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.635e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -9.4369e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 3.1086e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 4.4409e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.0436e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -26817,16 +26817,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.436 Adjusted to redox equilibrium + pe = -2.309 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.431e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 160 (261 overall) + Iterations = 75 (176 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -26838,14 +26838,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 9.393e-16 - CH4 9.393e-16 9.409e-16 -15.027 -15.026 0.001 (0) +C(-4) 9.146e-17 + CH4 9.146e-17 9.161e-17 -16.039 -16.038 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -26854,9 +26854,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -26864,23 +26864,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.112e-12 - H2 5.558e-13 5.567e-13 -12.255 -12.254 0.001 (0) +H(0) 6.210e-13 + H2 3.105e-13 3.110e-13 -12.508 -12.507 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.874 -67.873 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -70.273 -70.272 0.001 (0) -[13C](-4) 1.041e-17 - [13C]H4 1.041e-17 1.043e-17 -16.982 -16.982 0.001 (0) + O2 0.000e+00 0.000e+00 -67.368 -67.367 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.767 -69.766 0.001 (0) +[13C](-4) 1.014e-18 + [13C]H4 1.014e-18 1.015e-18 -17.994 -17.993 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.598e-08 -7.338 -7.337 0.001 (0) @@ -26889,56 +26889,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.648e-31 - [14C]H4 3.648e-31 3.654e-31 -30.438 -30.437 0.001 (0) +[14C](-4) 3.552e-32 + [14C]H4 3.552e-32 3.558e-32 -31.449 -31.449 0.001 (0) [14C](4) 2.301e-18 H[14C]O3- 1.859e-18 1.701e-18 -17.731 -17.769 -0.039 (0) [14C]O2 3.868e-19 3.874e-19 -18.413 -18.412 0.001 (0) CaH[14C]O3+ 3.925e-20 3.601e-20 -19.406 -19.444 -0.037 (0) - H[14C]O2[18O]- 3.709e-21 3.393e-21 -20.431 -20.469 -0.039 (0) - H[14C]O[18O]O- 3.709e-21 3.393e-21 -20.431 -20.469 -0.039 (0) H[14C][18O]O2- 3.709e-21 3.393e-21 -20.431 -20.469 -0.039 (0) + H[14C]O[18O]O- 3.709e-21 3.393e-21 -20.431 -20.469 -0.039 (0) + H[14C]O2[18O]- 3.709e-21 3.393e-21 -20.431 -20.469 -0.039 (0) Ca[14C]O3 2.152e-21 2.155e-21 -20.667 -20.666 0.001 (0) [14C]O[18O] 1.608e-21 1.611e-21 -20.794 -20.793 0.001 (0) [14C]O3-2 1.104e-21 7.733e-22 -20.957 -21.112 -0.155 (0) CaH[14C]O2[18O]+ 7.831e-23 7.184e-23 -22.106 -22.144 -0.037 (0) - CaH[14C]O[18O]O+ 7.831e-23 7.184e-23 -22.106 -22.144 -0.037 (0) CaH[14C][18O]O2+ 7.831e-23 7.184e-23 -22.106 -22.144 -0.037 (0) + CaH[14C]O[18O]O+ 7.831e-23 7.184e-23 -22.106 -22.144 -0.037 (0) Ca[14C]O2[18O] 1.288e-23 1.290e-23 -22.890 -22.889 0.001 (0) - H[14C]O[18O]2- 7.399e-24 6.769e-24 -23.131 -23.169 -0.039 (0) H[14C][18O]2O- 7.399e-24 6.769e-24 -23.131 -23.169 -0.039 (0) H[14C][18O]O[18O]- 7.399e-24 6.769e-24 -23.131 -23.169 -0.039 (0) + H[14C]O[18O]2- 7.399e-24 6.769e-24 -23.131 -23.169 -0.039 (0) [14C]O2[18O]-2 6.607e-24 4.628e-24 -23.180 -23.335 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -70.273 -70.272 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -73.274 -73.273 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.767 -69.766 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.768 -72.767 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.12 -16.98 -2.86 [13C]H4 + [13C]H4(g) -15.13 -17.99 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.31 -23.81 -1.50 [14C][18O]2 - [14C]H4(g) -27.58 -30.44 -2.86 [14C]H4 + [14C]H4(g) -28.59 -31.45 -2.86 [14C]H4 [14C]O2(g) -16.94 -18.41 -1.47 [14C]O2 [14C]O[18O](g) -19.32 -21.11 -1.79 [14C]O[18O] - [18O]2(g) -70.98 -73.27 -2.29 [18O]2 + [18O]2(g) -70.48 -72.77 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -26952,14 +26952,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.17 -15.03 -2.86 CH4 + CH4(g) -13.18 -16.04 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.10 -12.25 -3.15 H2 + H2(g) -9.36 -12.51 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.98 -67.87 -2.89 O2 - O[18O](g) -67.68 -70.57 -2.89 O[18O] + O2(g) -64.47 -67.37 -2.89 O2 + O[18O](g) -67.17 -70.07 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -27074,14 +27074,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 2.2204e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -6.9944e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6498e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5581e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 3.9968e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.0103e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 7.1054e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.954e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -27099,16 +27099,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.443 Adjusted to redox equilibrium + pe = -2.318 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.431e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 115 (216 overall) + Iterations = 125 (226 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -27120,25 +27120,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.078e-15 - CH4 1.078e-15 1.079e-15 -14.968 -14.967 0.001 (0) +C(-4) 1.086e-16 + CH4 1.086e-16 1.088e-16 -15.964 -15.964 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -27146,81 +27146,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.150e-12 - H2 5.752e-13 5.762e-13 -12.240 -12.239 0.001 (0) +H(0) 6.482e-13 + H2 3.241e-13 3.246e-13 -12.489 -12.489 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.904 -67.903 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -70.303 -70.302 0.001 (0) -[13C](-4) 1.194e-17 - [13C]H4 1.194e-17 1.196e-17 -16.923 -16.922 0.001 (0) + O2 0.000e+00 0.000e+00 -67.405 -67.405 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.804 -69.804 0.001 (0) +[13C](-4) 1.204e-18 + [13C]H4 1.204e-18 1.206e-18 -17.920 -17.919 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.598e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.856e-31 - [14C]H4 3.856e-31 3.862e-31 -30.414 -30.413 0.001 (0) +[14C](-4) 3.885e-32 + [14C]H4 3.885e-32 3.891e-32 -31.411 -31.410 0.001 (0) [14C](4) 2.120e-18 H[14C]O3- 1.712e-18 1.567e-18 -17.766 -17.805 -0.039 (0) [14C]O2 3.563e-19 3.569e-19 -18.448 -18.447 0.001 (0) CaH[14C]O3+ 3.616e-20 3.317e-20 -19.442 -19.479 -0.037 (0) - H[14C]O2[18O]- 3.416e-21 3.126e-21 -20.466 -20.505 -0.039 (0) - H[14C]O[18O]O- 3.416e-21 3.126e-21 -20.466 -20.505 -0.039 (0) H[14C][18O]O2- 3.416e-21 3.126e-21 -20.466 -20.505 -0.039 (0) + H[14C]O[18O]O- 3.416e-21 3.126e-21 -20.466 -20.505 -0.039 (0) + H[14C]O2[18O]- 3.416e-21 3.126e-21 -20.466 -20.505 -0.039 (0) Ca[14C]O3 1.982e-21 1.985e-21 -20.703 -20.702 0.001 (0) [14C]O[18O] 1.482e-21 1.484e-21 -20.829 -20.829 0.001 (0) [14C]O3-2 1.017e-21 7.124e-22 -20.993 -21.147 -0.155 (0) CaH[14C]O2[18O]+ 7.214e-23 6.618e-23 -22.142 -22.179 -0.037 (0) - CaH[14C]O[18O]O+ 7.214e-23 6.618e-23 -22.142 -22.179 -0.037 (0) CaH[14C][18O]O2+ 7.214e-23 6.618e-23 -22.142 -22.179 -0.037 (0) + CaH[14C]O[18O]O+ 7.214e-23 6.618e-23 -22.142 -22.179 -0.037 (0) Ca[14C]O2[18O] 1.186e-23 1.188e-23 -22.926 -22.925 0.001 (0) + H[14C][18O]O[18O]- 6.816e-24 6.236e-24 -23.166 -23.205 -0.039 (0) H[14C]O[18O]2- 6.816e-24 6.236e-24 -23.166 -23.205 -0.039 (0) H[14C][18O]2O- 6.816e-24 6.236e-24 -23.166 -23.205 -0.039 (0) - H[14C][18O]O[18O]- 6.816e-24 6.236e-24 -23.166 -23.205 -0.039 (0) [14C]O2[18O]-2 6.086e-24 4.264e-24 -23.216 -23.370 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -70.303 -70.302 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -73.304 -73.303 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.804 -69.804 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.805 -72.805 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.06 -16.92 -2.86 [13C]H4 + [13C]H4(g) -15.06 -17.92 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.34 -23.85 -1.50 [14C][18O]2 - [14C]H4(g) -27.55 -30.41 -2.86 [14C]H4 + [14C]H4(g) -28.55 -31.41 -2.86 [14C]H4 [14C]O2(g) -16.98 -18.45 -1.47 [14C]O2 [14C]O[18O](g) -19.36 -21.15 -1.79 [14C]O[18O] - [18O]2(g) -71.01 -73.30 -2.29 [18O]2 + [18O]2(g) -70.51 -72.80 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -27234,14 +27234,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.11 -14.97 -2.86 CH4 + CH4(g) -13.10 -15.96 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.09 -12.24 -3.15 H2 + H2(g) -9.34 -12.49 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -65.01 -67.90 -2.89 O2 - O[18O](g) -67.71 -70.60 -2.89 O[18O] + O2(g) -64.51 -67.40 -2.89 O2 + O[18O](g) -67.21 -70.10 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -27356,14 +27356,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.8842e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6696e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5767e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.5321e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.4988e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -7.2164e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -2.9976e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -27381,16 +27381,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.438 Adjusted to redox equilibrium + pe = -2.310 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.431e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 110 (211 overall) + Iterations = 112 (213 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -27402,15 +27402,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 9.892e-16 - CH4 9.892e-16 9.908e-16 -15.005 -15.004 0.001 (0) +C(-4) 9.291e-17 + CH4 9.291e-17 9.307e-17 -16.032 -16.031 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -27418,9 +27418,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -27428,50 +27428,50 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.126e-12 - H2 5.631e-13 5.640e-13 -12.249 -12.249 0.001 (0) +H(0) 6.234e-13 + H2 3.117e-13 3.122e-13 -12.506 -12.506 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.885 -67.884 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -70.284 -70.283 0.001 (0) -[13C](-4) 1.096e-17 - [13C]H4 1.096e-17 1.098e-17 -16.960 -16.959 0.001 (0) + O2 0.000e+00 0.000e+00 -67.371 -67.371 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.770 -69.770 0.001 (0) +[13C](-4) 1.030e-18 + [13C]H4 1.030e-18 1.032e-18 -17.987 -17.986 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.598e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) + CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.261e-31 - [14C]H4 3.261e-31 3.266e-31 -30.487 -30.486 0.001 (0) +[14C](-4) 3.063e-32 + [14C]H4 3.063e-32 3.068e-32 -31.514 -31.513 0.001 (0) [14C](4) 1.953e-18 H[14C]O3- 1.577e-18 1.443e-18 -17.802 -17.841 -0.039 (0) [14C]O2 3.282e-19 3.288e-19 -18.484 -18.483 0.001 (0) CaH[14C]O3+ 3.331e-20 3.056e-20 -19.477 -19.515 -0.037 (0) - H[14C]O2[18O]- 3.147e-21 2.879e-21 -20.502 -20.541 -0.039 (0) - H[14C]O[18O]O- 3.147e-21 2.879e-21 -20.502 -20.541 -0.039 (0) H[14C][18O]O2- 3.147e-21 2.879e-21 -20.502 -20.541 -0.039 (0) + H[14C]O[18O]O- 3.147e-21 2.879e-21 -20.502 -20.541 -0.039 (0) + H[14C]O2[18O]- 3.147e-21 2.879e-21 -20.502 -20.541 -0.039 (0) Ca[14C]O3 1.826e-21 1.829e-21 -20.738 -20.738 0.001 (0) [14C]O[18O] 1.365e-21 1.367e-21 -20.865 -20.864 0.001 (0) [14C]O3-2 9.368e-22 6.562e-22 -21.028 -21.183 -0.155 (0) CaH[14C]O2[18O]+ 6.646e-23 6.097e-23 -22.177 -22.215 -0.037 (0) - CaH[14C]O[18O]O+ 6.646e-23 6.097e-23 -22.177 -22.215 -0.037 (0) CaH[14C][18O]O2+ 6.646e-23 6.097e-23 -22.177 -22.215 -0.037 (0) + CaH[14C]O[18O]O+ 6.646e-23 6.097e-23 -22.177 -22.215 -0.037 (0) Ca[14C]O2[18O] 1.093e-23 1.095e-23 -22.961 -22.961 0.001 (0) H[14C]O[18O]2- 6.280e-24 5.745e-24 -23.202 -23.241 -0.039 (0) H[14C][18O]2O- 6.280e-24 5.745e-24 -23.202 -23.241 -0.039 (0) @@ -27480,29 +27480,29 @@ O(0) 0.000e+00 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -70.284 -70.283 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -73.285 -73.284 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.770 -69.770 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.771 -72.771 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.10 -16.96 -2.86 [13C]H4 + [13C]H4(g) -15.13 -17.99 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.38 -23.88 -1.50 [14C][18O]2 - [14C]H4(g) -27.63 -30.49 -2.86 [14C]H4 + [14C]H4(g) -28.65 -31.51 -2.86 [14C]H4 [14C]O2(g) -17.01 -18.48 -1.47 [14C]O2 [14C]O[18O](g) -19.40 -21.18 -1.79 [14C]O[18O] - [18O]2(g) -70.99 -73.28 -2.29 [18O]2 + [18O]2(g) -70.48 -72.77 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -27516,14 +27516,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.14 -15.00 -2.86 CH4 + CH4(g) -13.17 -16.03 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.10 -12.25 -3.15 H2 + H2(g) -9.36 -12.51 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.99 -67.88 -2.89 O2 - O[18O](g) -67.69 -70.58 -2.89 O[18O] + O2(g) -64.48 -67.37 -2.89 O2 + O[18O](g) -67.18 -70.07 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -27547,12 +27547,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 105. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -27638,14 +27632,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.8842e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6515e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7619e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 4.2188e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.2212e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 9.992e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.843e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -27663,16 +27657,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.448 Adjusted to redox equilibrium + pe = -2.327 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.431e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 111 (212 overall) + Iterations = 51 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -27684,25 +27678,25 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.179e-15 - CH4 1.179e-15 1.181e-15 -14.929 -14.928 0.001 (0) +C(-4) 1.279e-16 + CH4 1.279e-16 1.281e-16 -15.893 -15.892 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -27710,23 +27704,23 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.177e-12 - H2 5.883e-13 5.892e-13 -12.230 -12.230 0.001 (0) +H(0) 6.753e-13 + H2 3.376e-13 3.382e-13 -12.472 -12.471 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.923 -67.922 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -70.322 -70.321 0.001 (0) -[13C](-4) 1.307e-17 - [13C]H4 1.307e-17 1.309e-17 -16.884 -16.883 0.001 (0) + O2 0.000e+00 0.000e+00 -67.441 -67.440 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.840 -69.839 0.001 (0) +[13C](-4) 1.418e-18 + [13C]H4 1.418e-18 1.420e-18 -17.848 -17.848 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.598e-08 -7.338 -7.337 0.001 (0) @@ -27735,56 +27729,56 @@ O(0) 0.000e+00 CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.579e-31 - [14C]H4 3.579e-31 3.585e-31 -30.446 -30.446 0.001 (0) +[14C](-4) 3.884e-32 + [14C]H4 3.884e-32 3.891e-32 -31.411 -31.410 0.001 (0) [14C](4) 1.799e-18 H[14C]O3- 1.453e-18 1.329e-18 -17.838 -17.876 -0.039 (0) [14C]O2 3.024e-19 3.029e-19 -18.519 -18.519 0.001 (0) CaH[14C]O3+ 3.069e-20 2.815e-20 -19.513 -19.551 -0.037 (0) - H[14C]O2[18O]- 2.899e-21 2.653e-21 -20.538 -20.576 -0.039 (0) - H[14C]O[18O]O- 2.899e-21 2.653e-21 -20.538 -20.576 -0.039 (0) H[14C][18O]O2- 2.899e-21 2.653e-21 -20.538 -20.576 -0.039 (0) + H[14C]O[18O]O- 2.899e-21 2.653e-21 -20.538 -20.576 -0.039 (0) + H[14C]O2[18O]- 2.899e-21 2.653e-21 -20.538 -20.576 -0.039 (0) Ca[14C]O3 1.682e-21 1.685e-21 -20.774 -20.773 0.001 (0) [14C]O[18O] 1.257e-21 1.259e-21 -20.901 -20.900 0.001 (0) [14C]O3-2 8.630e-22 6.045e-22 -21.064 -21.219 -0.155 (0) CaH[14C]O2[18O]+ 6.123e-23 5.616e-23 -22.213 -22.251 -0.037 (0) - CaH[14C]O[18O]O+ 6.123e-23 5.616e-23 -22.213 -22.251 -0.037 (0) CaH[14C][18O]O2+ 6.123e-23 5.616e-23 -22.213 -22.251 -0.037 (0) + CaH[14C]O[18O]O+ 6.123e-23 5.616e-23 -22.213 -22.251 -0.037 (0) Ca[14C]O2[18O] 1.007e-23 1.009e-23 -22.997 -22.996 0.001 (0) - H[14C]O[18O]2- 5.785e-24 5.292e-24 -23.238 -23.276 -0.039 (0) H[14C][18O]2O- 5.785e-24 5.292e-24 -23.238 -23.276 -0.039 (0) H[14C][18O]O[18O]- 5.785e-24 5.292e-24 -23.238 -23.276 -0.039 (0) + H[14C]O[18O]2- 5.785e-24 5.292e-24 -23.238 -23.276 -0.039 (0) [14C]O2[18O]-2 5.165e-24 3.619e-24 -23.287 -23.441 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -70.322 -70.321 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -73.323 -73.322 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.840 -69.839 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.841 -72.840 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.02 -16.88 -2.86 [13C]H4 + [13C]H4(g) -14.99 -17.85 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.42 -23.92 -1.50 [14C][18O]2 - [14C]H4(g) -27.59 -30.45 -2.86 [14C]H4 + [14C]H4(g) -28.55 -31.41 -2.86 [14C]H4 [14C]O2(g) -17.05 -18.52 -1.47 [14C]O2 [14C]O[18O](g) -19.43 -21.22 -1.79 [14C]O[18O] - [18O]2(g) -71.03 -73.32 -2.29 [18O]2 + [18O]2(g) -70.55 -72.84 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -27798,14 +27792,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.07 -14.93 -2.86 CH4 + CH4(g) -13.03 -15.89 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.08 -12.23 -3.15 H2 + H2(g) -9.32 -12.47 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -65.03 -67.92 -2.89 O2 - O[18O](g) -67.73 -70.62 -2.89 O[18O] + O2(g) -64.55 -67.44 -2.89 O2 + O[18O](g) -67.25 -70.14 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -27829,12 +27823,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 106. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -27920,14 +27908,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7256e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7341e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.1324e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 7.3275e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.0214e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 8.2157e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -27945,16 +27933,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.455 Adjusted to redox equilibrium + pe = -2.337 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.431e-13 + Electrical balance (eq) = 5.891e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 103 (204 overall) + Iterations = 52 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -27966,15 +27954,15 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.355e-15 - CH4 1.355e-15 1.357e-15 -14.868 -14.867 0.001 (0) +C(-4) 1.521e-16 + CH4 1.521e-16 1.524e-16 -15.818 -15.817 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -27982,9 +27970,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -27992,81 +27980,81 @@ Ca 2.451e-03 CaCO3 5.460e-06 5.469e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.218e-12 - H2 6.091e-13 6.101e-13 -12.215 -12.215 0.001 (0) +H(0) 7.052e-13 + H2 3.526e-13 3.532e-13 -12.453 -12.452 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.953 -67.953 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -70.352 -70.352 0.001 (0) -[13C](-4) 1.502e-17 - [13C]H4 1.502e-17 1.504e-17 -16.823 -16.823 0.001 (0) + O2 0.000e+00 0.000e+00 -67.478 -67.478 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.877 -69.877 0.001 (0) +[13C](-4) 1.686e-18 + [13C]H4 1.686e-18 1.689e-18 -17.773 -17.772 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) CaH[13C]O3+ 1.111e-06 1.019e-06 -5.954 -5.992 -0.037 (0) H[13C]O2[18O]- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) H[13C][18O]O2- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.049e-07 9.599e-08 -6.979 -7.018 -0.039 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) [13C]O[18O] 4.590e-08 4.598e-08 -7.338 -7.337 0.001 (0) [13C]O3-2 3.127e-08 2.191e-08 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C]O[18O]O+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) CaH[13C][18O]O2+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) + CaH[13C]O2[18O]+ 2.216e-09 2.033e-09 -8.654 -8.692 -0.037 (0) Ca[13C]O2[18O] 3.649e-10 3.655e-10 -9.438 -9.437 0.001 (0) - H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.790e-31 - [14C]H4 3.790e-31 3.796e-31 -30.421 -30.421 0.001 (0) +[14C](-4) 4.256e-32 + [14C]H4 4.256e-32 4.263e-32 -31.371 -31.370 0.001 (0) [14C](4) 1.657e-18 H[14C]O3- 1.339e-18 1.225e-18 -17.873 -17.912 -0.039 (0) [14C]O2 2.786e-19 2.790e-19 -18.555 -18.554 0.001 (0) CaH[14C]O3+ 2.827e-20 2.593e-20 -19.549 -19.586 -0.037 (0) - H[14C]O2[18O]- 2.671e-21 2.444e-21 -20.573 -20.612 -0.039 (0) - H[14C]O[18O]O- 2.671e-21 2.444e-21 -20.573 -20.612 -0.039 (0) H[14C][18O]O2- 2.671e-21 2.444e-21 -20.573 -20.612 -0.039 (0) + H[14C]O[18O]O- 2.671e-21 2.444e-21 -20.573 -20.612 -0.039 (0) + H[14C]O2[18O]- 2.671e-21 2.444e-21 -20.573 -20.612 -0.039 (0) Ca[14C]O3 1.550e-21 1.552e-21 -20.810 -20.809 0.001 (0) [14C]O[18O] 1.158e-21 1.160e-21 -20.936 -20.935 0.001 (0) [14C]O3-2 7.950e-22 5.569e-22 -21.100 -21.254 -0.155 (0) CaH[14C]O2[18O]+ 5.640e-23 5.174e-23 -22.249 -22.286 -0.037 (0) - CaH[14C]O[18O]O+ 5.640e-23 5.174e-23 -22.249 -22.286 -0.037 (0) CaH[14C][18O]O2+ 5.640e-23 5.174e-23 -22.249 -22.286 -0.037 (0) + CaH[14C]O[18O]O+ 5.640e-23 5.174e-23 -22.249 -22.286 -0.037 (0) Ca[14C]O2[18O] 9.276e-24 9.291e-24 -23.033 -23.032 0.001 (0) + H[14C][18O]O[18O]- 5.329e-24 4.876e-24 -23.273 -23.312 -0.039 (0) H[14C]O[18O]2- 5.329e-24 4.876e-24 -23.273 -23.312 -0.039 (0) H[14C][18O]2O- 5.329e-24 4.876e-24 -23.273 -23.312 -0.039 (0) - H[14C][18O]O[18O]- 5.329e-24 4.876e-24 -23.273 -23.312 -0.039 (0) [14C]O2[18O]-2 4.758e-24 3.334e-24 -23.323 -23.477 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.585e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -70.352 -70.352 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -73.353 -73.353 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.877 -69.877 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.879 -72.878 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -13.96 -16.82 -2.86 [13C]H4 + [13C]H4(g) -14.91 -17.77 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.45 -23.95 -1.50 [14C][18O]2 - [14C]H4(g) -27.56 -30.42 -2.86 [14C]H4 + [14C]H4(g) -28.51 -31.37 -2.86 [14C]H4 [14C]O2(g) -17.09 -18.55 -1.47 [14C]O2 [14C]O[18O](g) -19.47 -21.25 -1.79 [14C]O[18O] - [18O]2(g) -71.06 -73.35 -2.29 [18O]2 + [18O]2(g) -70.59 -72.88 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -28080,14 +28068,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.01 -14.87 -2.86 CH4 + CH4(g) -12.96 -15.82 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.06 -12.21 -3.15 H2 + H2(g) -9.30 -12.45 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -65.06 -67.95 -2.89 O2 - O[18O](g) -67.76 -70.65 -2.89 O[18O] + O2(g) -64.59 -67.48 -2.89 O2 + O[18O](g) -67.29 -70.18 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -28353,14 +28341,14 @@ Calcite 0.00e+00 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 1.3323e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 3.6713e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.3067e-10 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.3323e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -7.7716e-13 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -3.3307e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 6.8834e-12 0 -----------------------------Solution composition------------------------------ @@ -28375,14 +28363,14 @@ Alpha 14C CH4(aq)/CO2(aq) 1 -7.7716e-13 0 ----------------------------Description of solution---------------------------- pH = 5.863 Charge balance - pe = 0.247 Adjusted to redox equilibrium + pe = 0.219 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 1.495e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 1.003e-03 Total CO2 (mol/kg) = 3.912e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.367e-14 + Electrical balance (eq) = 3.883e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 18 Total H = 1.110126e+02 @@ -28396,44 +28384,44 @@ Alpha 14C CH4(aq)/CO2(aq) 1 -7.7716e-13 0 H3O+ 1.426e-06 1.369e-06 -5.846 -5.863 -0.018 0.00 OH- 7.606e-09 7.282e-09 -8.119 -8.138 -0.019 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 9.506e-28 - CH4 9.506e-28 9.510e-28 -27.022 -27.022 0.000 (0) +C(-4) 1.584e-27 + CH4 1.584e-27 1.584e-27 -26.800 -26.800 0.000 (0) C(4) 3.912e-03 CO2 2.907e-03 2.908e-03 -2.537 -2.536 0.000 (0) HCO3- 9.821e-04 9.406e-04 -3.008 -3.027 -0.019 (0) CO[18O] 1.209e-05 1.209e-05 -4.918 -4.918 0.000 (0) CaHCO3+ 5.241e-06 5.023e-06 -5.281 -5.299 -0.018 (0) - HCO2[18O]- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) - HCO[18O]O- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) HC[18O]O2- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) + HCO[18O]O- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) + HCO2[18O]- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) CO3-2 3.822e-08 3.216e-08 -7.418 -7.493 -0.075 (0) CaCO3 2.260e-08 2.261e-08 -7.646 -7.646 0.000 (0) C[18O]2 1.257e-08 1.257e-08 -7.901 -7.901 0.000 (0) CaHCO2[18O]+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) - CaHCO[18O]O+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) CaHC[18O]O2+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) + CaHCO[18O]O+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) Ca 5.014e-04 Ca+2 4.961e-04 4.184e-04 -3.304 -3.378 -0.074 (0) CaHCO3+ 5.241e-06 5.023e-06 -5.281 -5.299 -0.018 (0) CaH[13C]O3+ 5.770e-08 5.530e-08 -7.239 -7.257 -0.018 (0) CaCO3 2.260e-08 2.261e-08 -7.646 -7.646 0.000 (0) CaHCO2[18O]+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) - CaHCO[18O]O+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) CaHC[18O]O2+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) -H(0) 8.541e-16 - H2 4.271e-16 4.272e-16 -15.370 -15.369 0.000 (0) + CaHCO[18O]O+ 1.046e-08 1.002e-08 -7.981 -7.999 -0.018 (0) +H(0) 9.704e-16 + H2 4.852e-16 4.854e-16 -15.314 -15.314 0.000 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -61.643 -61.643 0.000 (0) - O[18O] 0.000e+00 0.000e+00 -64.042 -64.042 0.000 (0) -[13C](-4) 1.038e-29 - [13C]H4 1.038e-29 1.038e-29 -28.984 -28.984 0.000 (0) + O2 0.000e+00 0.000e+00 -61.754 -61.754 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -64.153 -64.153 0.000 (0) +[13C](-4) 1.729e-29 + [13C]H4 1.729e-29 1.729e-29 -28.762 -28.762 0.000 (0) [13C](4) 4.280e-05 [13C]O2 3.173e-05 3.174e-05 -4.499 -4.498 0.000 (0) H[13C]O3- 1.081e-05 1.036e-05 -4.966 -4.985 -0.019 (0) [13C]O[18O] 1.319e-07 1.320e-07 -6.880 -6.879 0.000 (0) CaH[13C]O3+ 5.770e-08 5.530e-08 -7.239 -7.257 -0.018 (0) - H[13C]O2[18O]- 2.157e-08 2.066e-08 -7.666 -7.685 -0.019 (0) H[13C]O[18O]O- 2.157e-08 2.066e-08 -7.666 -7.685 -0.019 (0) + H[13C]O2[18O]- 2.157e-08 2.066e-08 -7.666 -7.685 -0.019 (0) H[13C][18O]O2- 2.157e-08 2.066e-08 -7.666 -7.685 -0.019 (0) [13C]O3-2 4.202e-10 3.535e-10 -9.377 -9.452 -0.075 (0) Ca[13C]O3 2.484e-10 2.485e-10 -9.605 -9.605 0.000 (0) @@ -28441,52 +28429,52 @@ O(0) 0.000e+00 CaH[13C]O2[18O]+ 1.151e-10 1.103e-10 -9.939 -9.957 -0.018 (0) CaH[13C]O[18O]O+ 1.151e-10 1.103e-10 -9.939 -9.957 -0.018 (0) CaH[13C][18O]O2+ 1.151e-10 1.103e-10 -9.939 -9.957 -0.018 (0) - H[13C]O[18O]2- 4.304e-11 4.122e-11 -10.366 -10.385 -0.019 (0) H[13C][18O]2O- 4.304e-11 4.122e-11 -10.366 -10.385 -0.019 (0) H[13C][18O]O[18O]- 4.304e-11 4.122e-11 -10.366 -10.385 -0.019 (0) -[14C](-4) 9.824e-40 - [14C]H4 9.824e-40 9.828e-40 -39.008 -39.008 0.000 (0) + H[13C]O[18O]2- 4.304e-11 4.122e-11 -10.366 -10.385 -0.019 (0) +[14C](-4) 1.637e-39 + [14C]H4 1.637e-39 1.638e-39 -38.786 -38.786 0.000 (0) [14C](4) 4.061e-15 [14C]O2 3.004e-15 3.005e-15 -14.522 -14.522 0.000 (0) H[14C]O3- 1.033e-15 9.890e-16 -14.986 -15.005 -0.019 (0) [14C]O[18O] 1.249e-17 1.250e-17 -16.903 -16.903 0.000 (0) CaH[14C]O3+ 5.511e-18 5.281e-18 -17.259 -17.277 -0.018 (0) - H[14C]O2[18O]- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) - H[14C]O[18O]O- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) H[14C][18O]O2- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) + H[14C]O[18O]O- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) + H[14C]O2[18O]- 2.060e-18 1.973e-18 -17.686 -17.705 -0.019 (0) [14C]O3-2 4.008e-20 3.372e-20 -19.397 -19.472 -0.075 (0) Ca[14C]O3 2.369e-20 2.370e-20 -19.625 -19.625 0.000 (0) [14C][18O]2 1.299e-20 1.299e-20 -19.887 -19.886 0.000 (0) CaH[14C]O2[18O]+ 1.099e-20 1.054e-20 -19.959 -19.977 -0.018 (0) - CaH[14C]O[18O]O+ 1.099e-20 1.054e-20 -19.959 -19.977 -0.018 (0) CaH[14C][18O]O2+ 1.099e-20 1.054e-20 -19.959 -19.977 -0.018 (0) + CaH[14C]O[18O]O+ 1.099e-20 1.054e-20 -19.959 -19.977 -0.018 (0) H[14C]O[18O]2- 4.111e-21 3.937e-21 -20.386 -20.405 -0.019 (0) - H[14C][18O]2O- 4.111e-21 3.937e-21 -20.386 -20.405 -0.019 (0) H[14C][18O]O[18O]- 4.111e-21 3.937e-21 -20.386 -20.405 -0.019 (0) + H[14C][18O]2O- 4.111e-21 3.937e-21 -20.386 -20.405 -0.019 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) CO[18O] 1.209e-05 1.209e-05 -4.918 -4.918 0.000 (0) - HCO2[18O]- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) HCO[18O]O- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) + HCO2[18O]- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) HC[18O]O2- 1.959e-06 1.877e-06 -5.708 -5.727 -0.019 (0) [13C]O[18O] 1.319e-07 1.320e-07 -6.880 -6.879 0.000 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -64.042 -64.042 0.000 (0) - [18O]2 0.000e+00 0.000e+00 -67.043 -67.043 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -64.153 -64.153 0.000 (0) + [18O]2 0.000e+00 0.000e+00 -67.154 -67.154 0.000 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.40 -9.90 -1.50 [13C][18O]2 - [13C]H4(g) -26.12 -28.98 -2.86 [13C]H4 + [13C]H4(g) -25.90 -28.76 -2.86 [13C]H4 [13C]O2(g) -3.03 -4.50 -1.47 [13C]O2 [13C]O[18O](g) -5.41 -7.20 -1.79 [13C]O[18O] [14C][18O]2(g) -18.42 -19.92 -1.50 [14C][18O]2 - [14C]H4(g) -36.15 -39.01 -2.86 [14C]H4 + [14C]H4(g) -35.93 -38.79 -2.86 [14C]H4 [14C]O2(g) -13.05 -14.52 -1.47 [14C]O2 [14C]O[18O](g) -15.44 -17.22 -1.79 [14C]O[18O] - [18O]2(g) -64.75 -67.04 -2.29 [18O]2 + [18O]2(g) -64.86 -67.15 -2.29 [18O]2 C[18O]2(g) -6.43 -7.94 -1.50 C[18O]2 Ca[13C][18O]3(s) -12.41 -4.25 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -6.56 1.15 7.71 Ca[13C]O2[18O] @@ -28500,14 +28488,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -4.60 3.11 7.71 CaCO2[18O] CaCO[18O]2(s) -7.29 0.41 7.70 CaCO[18O]2 Calcite -2.39 -10.87 -8.48 CaCO3 - CH4(g) -24.16 -27.02 -2.86 CH4 + CH4(g) -23.94 -26.80 -2.86 CH4 CO2(g) -1.07 -2.54 -1.47 CO2 CO[18O](g) -3.45 -5.24 -1.79 CO[18O] - H2(g) -12.22 -15.37 -3.15 H2 + H2(g) -12.16 -15.31 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -58.75 -61.64 -2.89 O2 - O[18O](g) -61.45 -64.34 -2.89 O[18O] + O2(g) -58.86 -61.75 -2.89 O2 + O[18O](g) -61.56 -64.45 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -28599,10 +28587,10 @@ Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.9496e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.9261e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 0 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.2212e-12 0 Alpha 14C CH4(aq)/CO2(aq) 0 -1000 0 -----------------------------Solution composition------------------------------ @@ -28618,14 +28606,14 @@ Alpha 14C CH4(aq)/CO2(aq) 0 -1000 0 ----------------------------Description of solution---------------------------- pH = 6.235 Charge balance - pe = 0.081 Adjusted to redox equilibrium + pe = 0.013 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 2.970e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 2.006e-03 Total CO2 (mol/kg) = 4.408e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.501e-14 + Electrical balance (eq) = 3.897e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 5 Total H = 1.110126e+02 @@ -28639,101 +28627,101 @@ Alpha 14C CH4(aq)/CO2(aq) 0 -1000 0 H3O+ 6.146e-07 5.816e-07 -6.211 -6.235 -0.024 0.00 OH- 1.821e-08 1.714e-08 -7.740 -7.766 -0.026 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.780e-29 - CH4 1.780e-29 1.781e-29 -28.750 -28.749 0.000 (0) +C(-4) 6.181e-29 + CH4 6.181e-29 6.185e-29 -28.209 -28.209 0.000 (0) C(4) 4.408e-03 CO2 2.414e-03 2.416e-03 -2.617 -2.617 0.000 (0) HCO3- 1.953e-03 1.840e-03 -2.709 -2.735 -0.026 (0) CaHCO3+ 1.936e-05 1.827e-05 -4.713 -4.738 -0.025 (0) CO[18O] 1.004e-05 1.005e-05 -4.998 -4.998 0.000 (0) - HCO2[18O]- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) HCO[18O]O- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) + HCO2[18O]- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) HC[18O]O2- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) CaCO3 1.934e-07 1.935e-07 -6.714 -6.713 0.000 (0) CO3-2 1.880e-07 1.481e-07 -6.726 -6.830 -0.104 (0) CaHCO2[18O]+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) - CaHCO[18O]O+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) CaHC[18O]O2+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) + CaHCO[18O]O+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) C[18O]2 1.044e-08 1.044e-08 -7.981 -7.981 0.000 (0) HCO[18O]2- 7.773e-09 7.323e-09 -8.109 -8.135 -0.026 (0) - HC[18O]2O- 7.773e-09 7.323e-09 -8.109 -8.135 -0.026 (0) HC[18O]O[18O]- 7.773e-09 7.323e-09 -8.109 -8.135 -0.026 (0) + HC[18O]2O- 7.773e-09 7.323e-09 -8.109 -8.135 -0.026 (0) Ca 1.003e-03 Ca+2 9.830e-04 7.781e-04 -3.007 -3.109 -0.102 (0) CaHCO3+ 1.936e-05 1.827e-05 -4.713 -4.738 -0.025 (0) CaH[13C]O3+ 2.134e-07 2.013e-07 -6.671 -6.696 -0.025 (0) CaCO3 1.934e-07 1.935e-07 -6.714 -6.713 0.000 (0) CaHCO2[18O]+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) - CaHCO[18O]O+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) CaHC[18O]O2+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) + CaHCO[18O]O+ 3.863e-08 3.644e-08 -7.413 -7.438 -0.025 (0) Ca[13C]O3 2.128e-09 2.130e-09 -8.672 -8.672 0.000 (0) CaCO2[18O] 1.158e-09 1.158e-09 -8.936 -8.936 0.000 (0) -H(0) 3.309e-16 - H2 1.654e-16 1.656e-16 -15.781 -15.781 0.000 (0) +H(0) 4.517e-16 + H2 2.258e-16 2.260e-16 -15.646 -15.646 0.000 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -60.820 -60.820 0.000 (0) - O[18O] 0.000e+00 0.000e+00 -63.219 -63.219 0.000 (0) -[13C](-4) 1.945e-31 - [13C]H4 1.945e-31 1.946e-31 -30.711 -30.711 0.000 (0) + O2 0.000e+00 0.000e+00 -61.090 -61.090 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -63.489 -63.489 0.000 (0) +[13C](-4) 6.753e-31 + [13C]H4 6.753e-31 6.758e-31 -30.170 -30.170 0.000 (0) [13C](4) 4.835e-05 [13C]O2 2.638e-05 2.639e-05 -4.579 -4.578 0.000 (0) H[13C]O3- 2.152e-05 2.027e-05 -4.667 -4.693 -0.026 (0) CaH[13C]O3+ 2.134e-07 2.013e-07 -6.671 -6.696 -0.025 (0) [13C]O[18O] 1.097e-07 1.098e-07 -6.960 -6.960 0.000 (0) H[13C]O2[18O]- 4.294e-08 4.045e-08 -7.367 -7.393 -0.026 (0) - H[13C]O[18O]O- 4.294e-08 4.045e-08 -7.367 -7.393 -0.026 (0) H[13C][18O]O2- 4.294e-08 4.045e-08 -7.367 -7.393 -0.026 (0) + H[13C]O[18O]O- 4.294e-08 4.045e-08 -7.367 -7.393 -0.026 (0) Ca[13C]O3 2.128e-09 2.130e-09 -8.672 -8.672 0.000 (0) [13C]O3-2 2.069e-09 1.629e-09 -8.684 -8.788 -0.104 (0) CaH[13C]O2[18O]+ 4.258e-10 4.016e-10 -9.371 -9.396 -0.025 (0) CaH[13C]O[18O]O+ 4.258e-10 4.016e-10 -9.371 -9.396 -0.025 (0) CaH[13C][18O]O2+ 4.258e-10 4.016e-10 -9.371 -9.396 -0.025 (0) [13C][18O]2 1.140e-10 1.141e-10 -9.943 -9.943 0.000 (0) - H[13C]O[18O]2- 8.566e-11 8.070e-11 -10.067 -10.093 -0.026 (0) H[13C][18O]2O- 8.566e-11 8.070e-11 -10.067 -10.093 -0.026 (0) H[13C][18O]O[18O]- 8.566e-11 8.070e-11 -10.067 -10.093 -0.026 (0) + H[13C]O[18O]2- 8.566e-11 8.070e-11 -10.067 -10.093 -0.026 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -40.789 -40.788 0.000 (0) + [14C]H4 0.000e+00 0.000e+00 -40.248 -40.248 0.000 (0) [14C](4) 4.061e-15 [14C]O2 2.207e-15 2.208e-15 -14.656 -14.656 0.000 (0) H[14C]O3- 1.816e-15 1.711e-15 -14.741 -14.767 -0.026 (0) CaH[14C]O3+ 1.801e-17 1.699e-17 -16.745 -16.770 -0.025 (0) [14C]O[18O] 9.176e-18 9.182e-18 -17.037 -17.037 0.000 (0) - H[14C]O2[18O]- 3.623e-18 3.413e-18 -17.441 -17.467 -0.026 (0) H[14C]O[18O]O- 3.623e-18 3.413e-18 -17.441 -17.467 -0.026 (0) + H[14C]O2[18O]- 3.623e-18 3.413e-18 -17.441 -17.467 -0.026 (0) H[14C][18O]O2- 3.623e-18 3.413e-18 -17.441 -17.467 -0.026 (0) Ca[14C]O3 1.794e-19 1.795e-19 -18.746 -18.746 0.000 (0) [14C]O3-2 1.743e-19 1.373e-19 -18.759 -18.862 -0.104 (0) - CaH[14C]O2[18O]+ 3.593e-20 3.389e-20 -19.445 -19.470 -0.025 (0) CaH[14C]O[18O]O+ 3.593e-20 3.389e-20 -19.445 -19.470 -0.025 (0) + CaH[14C]O2[18O]+ 3.593e-20 3.389e-20 -19.445 -19.470 -0.025 (0) CaH[14C][18O]O2+ 3.593e-20 3.389e-20 -19.445 -19.470 -0.025 (0) [14C][18O]2 9.539e-21 9.545e-21 -20.021 -20.020 0.000 (0) - H[14C]O[18O]2- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) - H[14C][18O]2O- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) H[14C][18O]O[18O]- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) + H[14C][18O]2O- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) + H[14C]O[18O]2- 7.229e-21 6.810e-21 -20.141 -20.167 -0.026 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) CO[18O] 1.004e-05 1.005e-05 -4.998 -4.998 0.000 (0) HCO2[18O]- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) - HCO[18O]O- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) HC[18O]O2- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) + HCO[18O]O- 3.896e-06 3.670e-06 -5.409 -5.435 -0.026 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -63.219 -63.219 0.000 (0) - [18O]2 0.000e+00 0.000e+00 -66.220 -66.220 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -63.489 -63.489 0.000 (0) + [18O]2 0.000e+00 0.000e+00 -66.490 -66.490 0.000 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.48 -9.98 -1.50 [13C][18O]2 - [13C]H4(g) -27.85 -30.71 -2.86 [13C]H4 + [13C]H4(g) -27.31 -30.17 -2.86 [13C]H4 [13C]O2(g) -3.11 -4.58 -1.47 [13C]O2 [13C]O[18O](g) -5.49 -7.28 -1.79 [13C]O[18O] [14C][18O]2(g) -18.55 -20.06 -1.50 [14C][18O]2 - [14C]H4(g) -37.93 -40.79 -2.86 [14C]H4 + [14C]H4(g) -37.39 -40.25 -2.86 [14C]H4 [14C]O2(g) -13.19 -14.66 -1.47 [14C]O2 [14C]O[18O](g) -15.57 -17.36 -1.79 [14C]O[18O] - [18O]2(g) -63.93 -66.22 -2.29 [18O]2 + [18O]2(g) -64.20 -66.49 -2.29 [18O]2 C[18O]2(g) -6.51 -8.02 -1.50 C[18O]2 Ca[13C][18O]3(s) -11.48 -3.32 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -5.63 2.08 7.71 Ca[13C]O2[18O] @@ -28747,14 +28735,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -3.67 4.04 7.71 CaCO2[18O] CaCO[18O]2(s) -6.36 1.34 7.70 CaCO[18O]2 Calcite -1.46 -9.94 -8.48 CaCO3 - CH4(g) -25.89 -28.75 -2.86 CH4 + CH4(g) -25.35 -28.21 -2.86 CH4 CO2(g) -1.15 -2.62 -1.47 CO2 CO[18O](g) -3.53 -5.32 -1.79 CO[18O] - H2(g) -12.63 -15.78 -3.15 H2 + H2(g) -12.50 -15.65 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -57.93 -60.82 -2.89 O2 - O[18O](g) -60.63 -63.52 -2.89 O[18O] + O2(g) -58.20 -61.09 -2.89 O2 + O[18O](g) -60.90 -63.79 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -28841,12 +28829,12 @@ Calcite 0.00e+00 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2373e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2795e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.9934e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8096e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 @@ -28863,14 +28851,14 @@ Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 ----------------------------Description of solution---------------------------- pH = 6.503 Charge balance - pe = 11.499 Adjusted to redox equilibrium + pe = 11.498 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 4.428e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 3.009e-03 Total CO2 (mol/kg) = 4.904e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.766e-13 + Electrical balance (eq) = 5.037e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 17 Total H = 1.110126e+02 @@ -28885,22 +28873,22 @@ Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 OH- 3.415e-08 3.176e-08 -7.467 -7.498 -0.032 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.333 -122.333 0.000 (0) + CH4 0.000e+00 0.000e+00 -122.330 -122.330 0.000 (0) C(4) 4.904e-03 HCO3- 2.915e-03 2.713e-03 -2.535 -2.567 -0.031 (0) CO2 1.921e-03 1.923e-03 -2.716 -2.716 0.000 (0) CaHCO3+ 4.102e-05 3.825e-05 -4.387 -4.417 -0.030 (0) CO[18O] 7.989e-06 7.997e-06 -5.097 -5.097 0.000 (0) HCO2[18O]- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) - HCO[18O]O- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) HC[18O]O2- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) + HCO[18O]O- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) CaCO3 7.501e-07 7.509e-07 -6.125 -6.124 0.000 (0) CO3-2 5.390e-07 4.046e-07 -6.268 -6.393 -0.125 (0) CaHCO2[18O]+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) CaHCO[18O]O+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) CaHC[18O]O2+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) - HCO[18O]2- 1.160e-08 1.080e-08 -7.935 -7.967 -0.031 (0) HC[18O]2O- 1.160e-08 1.080e-08 -7.935 -7.967 -0.031 (0) + HCO[18O]2- 1.160e-08 1.080e-08 -7.935 -7.967 -0.031 (0) HC[18O]O[18O]- 1.160e-08 1.080e-08 -7.935 -7.967 -0.031 (0) C[18O]2 8.305e-09 8.314e-09 -8.081 -8.080 0.000 (0) Ca 1.504e-03 @@ -28909,62 +28897,62 @@ Ca 1.504e-03 CaCO3 7.501e-07 7.509e-07 -6.125 -6.124 0.000 (0) CaH[13C]O3+ 4.525e-07 4.219e-07 -6.344 -6.375 -0.030 (0) CaHCO2[18O]+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) - CaHCO[18O]O+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) CaHC[18O]O2+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) + CaHCO[18O]O+ 8.184e-08 7.632e-08 -7.087 -7.117 -0.030 (0) Ca[13C]O3 8.262e-09 8.270e-09 -8.083 -8.082 0.000 (0) CaCO2[18O] 4.490e-09 4.494e-09 -8.348 -8.347 0.000 (0) -H(0) 1.407e-39 - H2 7.037e-40 7.044e-40 -39.153 -39.152 0.000 (0) -O(0) 1.679e-14 - O2 8.360e-15 8.369e-15 -14.078 -14.077 0.000 (0) - O[18O] 3.336e-17 3.339e-17 -16.477 -16.476 0.000 (0) +H(0) 1.410e-39 + H2 7.048e-40 7.055e-40 -39.152 -39.152 0.000 (0) +O(0) 1.673e-14 + O2 8.334e-15 8.342e-15 -14.079 -14.079 0.000 (0) + O[18O] 3.326e-17 3.329e-17 -16.478 -16.478 0.000 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.294 -124.294 0.000 (0) + [13C]H4 0.000e+00 0.000e+00 -124.292 -124.291 0.000 (0) [13C](4) 5.391e-05 H[13C]O3- 3.215e-05 2.993e-05 -4.493 -4.524 -0.031 (0) [13C]O2 2.101e-05 2.103e-05 -4.678 -4.677 0.000 (0) CaH[13C]O3+ 4.525e-07 4.219e-07 -6.344 -6.375 -0.030 (0) [13C]O[18O] 8.736e-08 8.745e-08 -7.059 -7.058 0.000 (0) H[13C]O2[18O]- 6.415e-08 5.971e-08 -7.193 -7.224 -0.031 (0) - H[13C]O[18O]O- 6.415e-08 5.971e-08 -7.193 -7.224 -0.031 (0) H[13C][18O]O2- 6.415e-08 5.971e-08 -7.193 -7.224 -0.031 (0) + H[13C]O[18O]O- 6.415e-08 5.971e-08 -7.193 -7.224 -0.031 (0) Ca[13C]O3 8.262e-09 8.270e-09 -8.083 -8.082 0.000 (0) [13C]O3-2 5.937e-09 4.456e-09 -8.226 -8.351 -0.125 (0) - CaH[13C]O2[18O]+ 9.027e-10 8.418e-10 -9.044 -9.075 -0.030 (0) CaH[13C]O[18O]O+ 9.027e-10 8.418e-10 -9.044 -9.075 -0.030 (0) CaH[13C][18O]O2+ 9.027e-10 8.418e-10 -9.044 -9.075 -0.030 (0) + CaH[13C]O2[18O]+ 9.027e-10 8.418e-10 -9.044 -9.075 -0.030 (0) H[13C]O[18O]2- 1.280e-10 1.191e-10 -9.893 -9.924 -0.031 (0) H[13C][18O]2O- 1.280e-10 1.191e-10 -9.893 -9.924 -0.031 (0) H[13C][18O]O[18O]- 1.280e-10 1.191e-10 -9.893 -9.924 -0.031 (0) [13C][18O]2 9.082e-11 9.091e-11 -10.042 -10.041 0.000 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.420 -134.419 0.000 (0) + [14C]H4 0.000e+00 0.000e+00 -134.417 -134.416 0.000 (0) [14C](4) 4.061e-15 H[14C]O3- 2.430e-15 2.262e-15 -14.614 -14.645 -0.031 (0) [14C]O2 1.574e-15 1.576e-15 -14.803 -14.802 0.000 (0) CaH[14C]O3+ 3.420e-17 3.189e-17 -16.466 -16.496 -0.030 (0) [14C]O[18O] 6.547e-18 6.553e-18 -17.184 -17.184 0.000 (0) - H[14C]O2[18O]- 4.849e-18 4.513e-18 -17.314 -17.346 -0.031 (0) H[14C]O[18O]O- 4.849e-18 4.513e-18 -17.314 -17.346 -0.031 (0) + H[14C]O2[18O]- 4.849e-18 4.513e-18 -17.314 -17.346 -0.031 (0) H[14C][18O]O2- 4.849e-18 4.513e-18 -17.314 -17.346 -0.031 (0) Ca[14C]O3 6.236e-19 6.242e-19 -18.205 -18.205 0.000 (0) [14C]O3-2 4.481e-19 3.364e-19 -18.349 -18.473 -0.125 (0) CaH[14C]O2[18O]+ 6.824e-20 6.363e-20 -19.166 -19.196 -0.030 (0) - CaH[14C]O[18O]O+ 6.824e-20 6.363e-20 -19.166 -19.196 -0.030 (0) CaH[14C][18O]O2+ 6.824e-20 6.363e-20 -19.166 -19.196 -0.030 (0) + CaH[14C]O[18O]O+ 6.824e-20 6.363e-20 -19.166 -19.196 -0.030 (0) H[14C]O[18O]2- 9.674e-21 9.005e-21 -20.014 -20.046 -0.031 (0) - H[14C][18O]2O- 9.674e-21 9.005e-21 -20.014 -20.046 -0.031 (0) H[14C][18O]O[18O]- 9.674e-21 9.005e-21 -20.014 -20.046 -0.031 (0) + H[14C][18O]2O- 9.674e-21 9.005e-21 -20.014 -20.046 -0.031 (0) [14C][18O]2 6.806e-21 6.813e-21 -20.167 -20.167 0.000 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) CO[18O] 7.989e-06 7.997e-06 -5.097 -5.097 0.000 (0) - HCO2[18O]- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) - HCO[18O]O- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) HC[18O]O2- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) -[18O](0) 3.343e-17 - O[18O] 3.336e-17 3.339e-17 -16.477 -16.476 0.000 (0) - [18O]2 3.328e-20 3.331e-20 -19.478 -19.477 0.000 (0) + HCO[18O]O- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) + HCO2[18O]- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) +[18O](0) 3.332e-17 + O[18O] 3.326e-17 3.329e-17 -16.478 -16.478 0.000 (0) + [18O]2 3.318e-20 3.321e-20 -19.479 -19.479 0.000 (0) ------------------------------Saturation indices------------------------------- @@ -28998,7 +28986,7 @@ O(0) 1.679e-14 H2(g) -36.00 -39.15 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.18 -14.08 -2.89 O2 + O2(g) -11.19 -14.08 -2.89 O2 O[18O](g) -13.89 -16.78 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -29086,12 +29074,12 @@ Calcite 0.00e+00 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2771e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2545e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 +Alpha 18O HCO3-/H2O(l) 1 0 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -2.0204e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8202e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 @@ -29108,14 +29096,14 @@ Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 ----------------------------Description of solution---------------------------- pH = 6.750 Charge balance - pe = 11.241 Adjusted to redox equilibrium + pe = 11.210 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 5.871e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.012e-03 Total CO2 (mol/kg) = 5.400e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 5.094e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 4 Total H = 1.110126e+02 @@ -29130,22 +29118,22 @@ Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 OH- 6.090e-08 5.607e-08 -7.215 -7.251 -0.036 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.370 -122.369 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.123 -122.122 0.001 (0) C(4) 5.400e-03 HCO3- 3.868e-03 3.565e-03 -2.413 -2.448 -0.035 (0) CO2 1.430e-03 1.432e-03 -2.845 -2.844 0.001 (0) CaHCO3+ 6.931e-05 6.403e-05 -4.159 -4.194 -0.034 (0) HCO2[18O]- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) - HCO[18O]O- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) HC[18O]O2- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) + HCO[18O]O- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) CO[18O] 5.945e-06 5.953e-06 -5.226 -5.225 0.001 (0) CaCO3 2.216e-06 2.219e-06 -5.654 -5.654 0.001 (0) CO3-2 1.300e-06 9.385e-07 -5.886 -6.028 -0.142 (0) CaHCO2[18O]+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) - CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) CaHC[18O]O2+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) - HCO[18O]2- 1.540e-08 1.419e-08 -7.813 -7.848 -0.035 (0) + CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) HC[18O]2O- 1.540e-08 1.419e-08 -7.813 -7.848 -0.035 (0) + HCO[18O]2- 1.540e-08 1.419e-08 -7.813 -7.848 -0.035 (0) HC[18O]O[18O]- 1.540e-08 1.419e-08 -7.813 -7.848 -0.035 (0) CaCO2[18O] 1.326e-08 1.328e-08 -7.877 -7.877 0.001 (0) CO2[18O]-2 7.783e-09 5.618e-09 -8.109 -8.250 -0.142 (0) @@ -29156,30 +29144,30 @@ Ca 2.006e-03 CaCO3 2.216e-06 2.219e-06 -5.654 -5.654 0.001 (0) CaH[13C]O3+ 7.650e-07 7.067e-07 -6.116 -6.151 -0.034 (0) CaHCO2[18O]+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) - CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) CaHC[18O]O2+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) + CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) Ca[13C]O3 2.442e-08 2.445e-08 -7.612 -7.612 0.001 (0) CaCO2[18O] 1.326e-08 1.328e-08 -7.877 -7.877 0.001 (0) -H(0) 1.483e-39 - H2 7.415e-40 7.425e-40 -39.130 -39.129 0.001 (0) -O(0) 1.510e-14 - O2 7.521e-15 7.531e-15 -14.124 -14.123 0.001 (0) - O[18O] 3.001e-17 3.005e-17 -16.523 -16.522 0.001 (0) +H(0) 1.710e-39 + H2 8.549e-40 8.560e-40 -39.068 -39.068 0.001 (0) +O(0) 1.136e-14 + O2 5.658e-15 5.666e-15 -14.247 -14.247 0.001 (0) + O[18O] 2.258e-17 2.261e-17 -16.646 -16.646 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.331 -124.330 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.084 -124.083 0.001 (0) [13C](4) 5.947e-05 H[13C]O3- 4.269e-05 3.935e-05 -4.370 -4.405 -0.035 (0) [13C]O2 1.564e-05 1.566e-05 -4.806 -4.805 0.001 (0) CaH[13C]O3+ 7.650e-07 7.067e-07 -6.116 -6.151 -0.034 (0) H[13C]O2[18O]- 8.518e-08 7.851e-08 -7.070 -7.105 -0.035 (0) - H[13C]O[18O]O- 8.518e-08 7.851e-08 -7.070 -7.105 -0.035 (0) H[13C][18O]O2- 8.518e-08 7.851e-08 -7.070 -7.105 -0.035 (0) + H[13C]O[18O]O- 8.518e-08 7.851e-08 -7.070 -7.105 -0.035 (0) [13C]O[18O] 6.505e-08 6.514e-08 -7.187 -7.186 0.001 (0) Ca[13C]O3 2.442e-08 2.445e-08 -7.612 -7.612 0.001 (0) [13C]O3-2 1.433e-08 1.034e-08 -7.844 -7.985 -0.142 (0) + CaH[13C][18O]O2+ 1.526e-09 1.410e-09 -8.816 -8.851 -0.034 (0) CaH[13C]O2[18O]+ 1.526e-09 1.410e-09 -8.816 -8.851 -0.034 (0) CaH[13C]O[18O]O+ 1.526e-09 1.410e-09 -8.816 -8.851 -0.034 (0) - CaH[13C][18O]O2+ 1.526e-09 1.410e-09 -8.816 -8.851 -0.034 (0) H[13C]O[18O]2- 1.699e-10 1.566e-10 -9.770 -9.805 -0.035 (0) H[13C][18O]2O- 1.699e-10 1.566e-10 -9.770 -9.805 -0.035 (0) H[13C][18O]O[18O]- 1.699e-10 1.566e-10 -9.770 -9.805 -0.035 (0) @@ -29187,52 +29175,52 @@ O(0) 1.510e-14 [13C]O2[18O]-2 8.578e-11 6.191e-11 -10.067 -10.208 -0.142 (0) [13C][18O]2 6.763e-11 6.772e-11 -10.170 -10.169 0.001 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.499 -134.499 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -134.252 -134.251 0.001 (0) [14C](4) 4.061e-15 H[14C]O3- 2.922e-15 2.694e-15 -14.534 -14.570 -0.035 (0) [14C]O2 1.062e-15 1.063e-15 -14.974 -14.973 0.001 (0) CaH[14C]O3+ 5.236e-17 4.837e-17 -16.281 -16.315 -0.034 (0) - H[14C]O2[18O]- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) - H[14C]O[18O]O- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) H[14C][18O]O2- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) + H[14C]O[18O]O- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) + H[14C]O2[18O]- 5.831e-18 5.374e-18 -17.234 -17.270 -0.035 (0) [14C]O[18O] 4.414e-18 4.420e-18 -17.355 -17.355 0.001 (0) Ca[14C]O3 1.669e-18 1.671e-18 -17.777 -17.777 0.001 (0) [14C]O3-2 9.796e-19 7.070e-19 -18.009 -18.151 -0.142 (0) CaH[14C]O2[18O]+ 1.045e-19 9.651e-20 -18.981 -19.015 -0.034 (0) - CaH[14C]O[18O]O+ 1.045e-19 9.651e-20 -18.981 -19.015 -0.034 (0) CaH[14C][18O]O2+ 1.045e-19 9.651e-20 -18.981 -19.015 -0.034 (0) - H[14C]O[18O]2- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) - H[14C][18O]2O- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) + CaH[14C]O[18O]O+ 1.045e-19 9.651e-20 -18.981 -19.015 -0.034 (0) H[14C][18O]O[18O]- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) + H[14C][18O]2O- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) + H[14C]O[18O]2- 1.163e-20 1.072e-20 -19.934 -19.970 -0.035 (0) Ca[14C]O2[18O] 9.991e-21 1.000e-20 -20.000 -20.000 0.001 (0) [14C]O2[18O]-2 5.863e-21 4.232e-21 -20.232 -20.373 -0.142 (0) [14C][18O]2 4.589e-21 4.595e-21 -20.338 -20.338 0.001 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) - HCO[18O]O- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) HC[18O]O2- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) + HCO[18O]O- 7.717e-06 7.113e-06 -5.113 -5.148 -0.035 (0) CO[18O] 5.945e-06 5.953e-06 -5.226 -5.225 0.001 (0) CaHCO2[18O]+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) CaHC[18O]O2+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) -[18O](0) 3.007e-17 - O[18O] 3.001e-17 3.005e-17 -16.523 -16.522 0.001 (0) - [18O]2 2.994e-20 2.998e-20 -19.524 -19.523 0.001 (0) +[18O](0) 2.262e-17 + O[18O] 2.258e-17 2.261e-17 -16.646 -16.646 0.001 (0) + [18O]2 2.252e-20 2.256e-20 -19.647 -19.647 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.70 -10.21 -1.50 [13C][18O]2 - [13C]H4(g) -121.47 -124.33 -2.86 [13C]H4 + [13C]H4(g) -121.22 -124.08 -2.86 [13C]H4 [13C]O2(g) -3.34 -4.81 -1.47 [13C]O2 [13C]O[18O](g) -5.72 -7.51 -1.79 [13C]O[18O] [14C][18O]2(g) -18.87 -20.37 -1.50 [14C][18O]2 - [14C]H4(g) -131.64 -134.50 -2.86 [14C]H4 + [14C]H4(g) -131.39 -134.25 -2.86 [14C]H4 [14C]O2(g) -13.50 -14.97 -1.47 [14C]O2 [14C]O[18O](g) -15.89 -17.67 -1.79 [14C]O[18O] - [18O]2(g) -17.23 -19.52 -2.29 [18O]2 + [18O]2(g) -17.36 -19.65 -2.29 [18O]2 C[18O]2(g) -6.74 -8.24 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.42 -2.26 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.57 3.14 7.71 Ca[13C]O2[18O] @@ -29246,14 +29234,14 @@ O(0) 1.510e-14 CaCO2[18O](s) -2.61 5.10 7.71 CaCO2[18O] CaCO[18O]2(s) -5.30 2.40 7.70 CaCO[18O]2 Calcite -0.40 -8.88 -8.48 CaCO3 - CH4(g) -119.51 -122.37 -2.86 CH4 + CH4(g) -119.26 -122.12 -2.86 CH4 CO2(g) -1.38 -2.84 -1.47 CO2 CO[18O](g) -3.76 -5.54 -1.79 CO[18O] - H2(g) -35.98 -39.13 -3.15 H2 + H2(g) -35.92 -39.07 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.23 -14.12 -2.89 O2 - O[18O](g) -13.93 -16.82 -2.89 O[18O] + O2(g) -11.35 -14.25 -2.89 O2 + O[18O](g) -14.05 -16.95 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -29343,12 +29331,12 @@ Calcite 5.60e-05 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2455e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2545e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6868e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.653e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -29368,16 +29356,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.983 Adjusted to redox equilibrium + pe = 10.791 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.841e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 5.094e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 80 + Iterations = 77 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -29390,24 +29378,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.379 -122.378 0.001 (0) + CH4 0.000e+00 0.000e+00 -120.842 -120.842 0.001 (0) C(4) 5.841e-03 HCO3- 4.704e-03 4.304e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.976e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.802e-06 1.963e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -29415,50 +29403,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.097e-06 1.006e-06 -5.960 -5.997 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.023e-08 6.033e-08 -7.220 -7.219 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.614e-39 - H2 8.071e-40 8.085e-40 -39.093 -39.092 0.001 (0) -O(0) 1.273e-14 - O2 6.342e-15 6.352e-15 -14.198 -14.197 0.001 (0) - O[18O] 2.531e-17 2.535e-17 -16.597 -16.596 0.001 (0) +H(0) 3.910e-39 + H2 1.955e-39 1.958e-39 -38.709 -38.708 0.001 (0) +O(0) 2.171e-15 + O2 1.081e-15 1.083e-15 -14.966 -14.965 0.001 (0) + O[18O] 4.314e-18 4.321e-18 -17.365 -17.364 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.340 -124.339 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -122.803 -122.802 0.001 (0) [13C](4) 6.441e-05 H[13C]O3- 5.195e-05 4.753e-05 -4.284 -4.323 -0.039 (0) [13C]O2 1.090e-05 1.092e-05 -4.962 -4.962 0.001 (0) CaH[13C]O3+ 1.097e-06 1.006e-06 -5.960 -5.997 -0.037 (0) - H[13C]O2[18O]- 1.037e-07 9.483e-08 -6.984 -7.023 -0.039 (0) - H[13C]O[18O]O- 1.037e-07 9.483e-08 -6.984 -7.023 -0.039 (0) H[13C][18O]O2- 1.037e-07 9.483e-08 -6.984 -7.023 -0.039 (0) + H[13C]O[18O]O- 1.037e-07 9.483e-08 -6.984 -7.023 -0.039 (0) + H[13C]O2[18O]- 1.037e-07 9.483e-08 -6.984 -7.023 -0.039 (0) Ca[13C]O3 6.023e-08 6.033e-08 -7.220 -7.219 0.001 (0) [13C]O[18O] 4.534e-08 4.542e-08 -7.343 -7.343 0.001 (0) [13C]O3-2 3.090e-08 2.164e-08 -7.510 -7.665 -0.155 (0) + CaH[13C][18O]O2+ 2.189e-09 2.008e-09 -8.660 -8.697 -0.037 (0) CaH[13C]O2[18O]+ 2.189e-09 2.008e-09 -8.660 -8.697 -0.037 (0) CaH[13C]O[18O]O+ 2.189e-09 2.008e-09 -8.660 -8.697 -0.037 (0) - CaH[13C][18O]O2+ 2.189e-09 2.008e-09 -8.660 -8.697 -0.037 (0) Ca[13C]O2[18O] 3.605e-10 3.611e-10 -9.443 -9.442 0.001 (0) - H[13C]O[18O]2- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) - H[13C][18O]2O- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) H[13C][18O]O[18O]- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) + H[13C][18O]2O- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) + H[13C]O[18O]2- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) [13C]O2[18O]-2 1.849e-10 1.295e-10 -9.733 -9.888 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.547 -134.547 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -133.011 -133.010 0.001 (0) [14C](4) 4.023e-15 H[14C]O3- 3.250e-15 2.973e-15 -14.488 -14.527 -0.039 (0) [14C]O2 6.762e-16 6.773e-16 -15.170 -15.169 0.001 (0) CaH[14C]O3+ 6.862e-17 6.295e-17 -16.164 -16.201 -0.037 (0) - H[14C]O2[18O]- 6.483e-18 5.931e-18 -17.188 -17.227 -0.039 (0) - H[14C]O[18O]O- 6.483e-18 5.931e-18 -17.188 -17.227 -0.039 (0) H[14C][18O]O2- 6.483e-18 5.931e-18 -17.188 -17.227 -0.039 (0) + H[14C]O[18O]O- 6.483e-18 5.931e-18 -17.188 -17.227 -0.039 (0) + H[14C]O2[18O]- 6.483e-18 5.931e-18 -17.188 -17.227 -0.039 (0) Ca[14C]O3 3.762e-18 3.768e-18 -17.425 -17.424 0.001 (0) [14C]O[18O] 2.812e-18 2.816e-18 -17.551 -17.550 0.001 (0) [14C]O3-2 1.930e-18 1.352e-18 -17.715 -17.869 -0.155 (0) CaH[14C]O2[18O]+ 1.369e-19 1.256e-19 -18.864 -18.901 -0.037 (0) - CaH[14C]O[18O]O+ 1.369e-19 1.256e-19 -18.864 -18.901 -0.037 (0) CaH[14C][18O]O2+ 1.369e-19 1.256e-19 -18.864 -18.901 -0.037 (0) + CaH[14C]O[18O]O+ 1.369e-19 1.256e-19 -18.864 -18.901 -0.037 (0) Ca[14C]O2[18O] 2.252e-20 2.255e-20 -19.648 -19.647 0.001 (0) H[14C]O[18O]2- 1.294e-20 1.183e-20 -19.888 -19.927 -0.039 (0) H[14C][18O]2O- 1.294e-20 1.183e-20 -19.888 -19.927 -0.039 (0) @@ -29467,29 +29455,29 @@ O(0) 1.273e-14 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.536e-17 - O[18O] 2.531e-17 2.535e-17 -16.597 -16.596 0.001 (0) - [18O]2 2.524e-20 2.529e-20 -19.598 -19.597 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 4.323e-18 + O[18O] 4.314e-18 4.321e-18 -17.365 -17.364 0.001 (0) + [18O]2 4.304e-21 4.311e-21 -20.366 -20.365 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.48 -124.34 -2.86 [13C]H4 + [13C]H4(g) -119.94 -122.80 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.07 -20.57 -1.50 [14C][18O]2 - [14C]H4(g) -131.69 -134.55 -2.86 [14C]H4 + [14C]H4(g) -130.15 -133.01 -2.86 [14C]H4 [14C]O2(g) -13.70 -15.17 -1.47 [14C]O2 [14C]O[18O](g) -16.08 -17.87 -1.79 [14C]O[18O] - [18O]2(g) -17.31 -19.60 -2.29 [18O]2 + [18O]2(g) -18.08 -20.37 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -29503,14 +29491,14 @@ O(0) 1.273e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.52 -122.38 -2.86 CH4 + CH4(g) -117.98 -120.84 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.94 -39.09 -3.15 H2 + H2(g) -35.56 -38.71 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.30 -14.20 -2.89 O2 - O[18O](g) -14.00 -16.90 -2.89 O[18O] + O2(g) -12.07 -14.97 -2.89 O2 + O[18O](g) -14.77 -17.67 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -29574,23 +29562,24 @@ Calcite 5.56e-04 R(18O) 1.99518e-03 -4.9954 permil R(13C) 1.10383e-02 -12.693 permil - R(14C) 6.34987e-13 54.001 pmc + R(14C) 6.34990e-13 54.001 pmc R(18O) H2O(l) 1.99518e-03 -4.9969 permil R(18O) OH- 1.92121e-03 -41.884 permil R(18O) H3O+ 2.04132e-03 18.011 permil - R(18O) O2(aq) 1.99518e-03 -4.9969 permil R(13C) CO2(aq) 1.09593e-02 -19.759 permil - R(14C) CO2(aq) 6.25925e-13 53.23 pmc + R(14C) CO2(aq) 6.25927e-13 53.23 pmc R(18O) CO2(aq) 2.07915e-03 36.877 permil R(18O) HCO3- 1.99518e-03 -4.9969 permil R(13C) HCO3- 1.10546e-02 -11.231 permil - R(14C) HCO3- 6.36863e-13 54.16 pmc + R(14C) HCO3- 6.36865e-13 54.16 pmc R(18O) CO3-2 1.99518e-03 -4.9969 permil R(13C) CO3-2 1.10388e-02 -12.65 permil - R(14C) CO3-2 6.35036e-13 54.005 pmc + R(14C) CO3-2 6.35038e-13 54.005 pmc + R(13C) CH4(aq) 1.09593e-02 -19.759 permil + R(14C) CH4(aq) 6.25927e-13 53.23 pmc R(18O) Calcite 2.05262e-03 23.649 permil R(13C) Calcite 1.10765e-02 -9.2726 permil - R(14C) Calcite 6.39388e-13 54.375 pmc + R(14C) Calcite 6.39390e-13 54.375 pmc --------------------------------Isotope Alphas--------------------------------- @@ -29600,14 +29589,15 @@ Calcite 5.56e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2552e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5969e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.637e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 1.3323e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.1324e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -29625,16 +29615,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.893 Adjusted to redox equilibrium + pe = -1.460 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.841e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 4.012e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 5 + Iterations = 19 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -29646,14 +29636,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -121.655 -121.655 0.001 (0) +C(-4) 1.483e-23 + CH4 1.483e-23 1.486e-23 -22.829 -22.828 0.001 (0) C(4) 5.841e-03 HCO3- 4.704e-03 4.304e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -29662,9 +29652,9 @@ C(4) 5.841e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -29672,23 +29662,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.098e-06 1.007e-06 -5.959 -5.997 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.028e-08 6.038e-08 -7.220 -7.219 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.449e-39 - H2 1.224e-39 1.226e-39 -38.912 -38.911 0.001 (0) -O(0) 5.535e-15 - O2 2.756e-15 2.761e-15 -14.560 -14.559 0.001 (0) - O[18O] 1.100e-17 1.102e-17 -16.959 -16.958 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -123.616 -123.615 0.001 (0) +H(0) 1.246e-14 + H2 6.231e-15 6.241e-15 -14.205 -14.205 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -63.973 -63.972 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.372 -66.371 0.001 (0) +[13C](-4) 1.626e-25 + [13C]H4 1.626e-25 1.628e-25 -24.789 -24.788 0.001 (0) [13C](4) 6.447e-05 H[13C]O3- 5.200e-05 4.757e-05 -4.284 -4.323 -0.039 (0) [13C]O2 1.091e-05 1.093e-05 -4.962 -4.961 0.001 (0) CaH[13C]O3+ 1.098e-06 1.007e-06 -5.959 -5.997 -0.037 (0) - H[13C]O2[18O]- 1.038e-07 9.492e-08 -6.984 -7.023 -0.039 (0) H[13C]O[18O]O- 1.038e-07 9.492e-08 -6.984 -7.023 -0.039 (0) + H[13C]O2[18O]- 1.038e-07 9.492e-08 -6.984 -7.023 -0.039 (0) H[13C][18O]O2- 1.038e-07 9.492e-08 -6.984 -7.023 -0.039 (0) Ca[13C]O3 6.028e-08 6.038e-08 -7.220 -7.219 0.001 (0) [13C]O[18O] 4.539e-08 4.546e-08 -7.343 -7.342 0.001 (0) @@ -29697,56 +29687,56 @@ O(0) 5.535e-15 CaH[13C]O[18O]O+ 2.191e-09 2.010e-09 -8.659 -8.697 -0.037 (0) CaH[13C][18O]O2+ 2.191e-09 2.010e-09 -8.659 -8.697 -0.037 (0) Ca[13C]O2[18O] 3.608e-10 3.614e-10 -9.443 -9.442 0.001 (0) - H[13C]O[18O]2- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) - H[13C][18O]2O- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) H[13C][18O]O[18O]- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) + H[13C][18O]2O- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) + H[13C]O[18O]2- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) [13C]O2[18O]-2 1.851e-10 1.297e-10 -9.733 -9.887 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -133.859 -133.858 0.001 (0) +[14C](-4) 9.285e-36 + [14C]H4 9.285e-36 9.301e-36 -35.032 -35.031 0.001 (0) [14C](4) 3.709e-15 H[14C]O3- 2.996e-15 2.741e-15 -14.523 -14.562 -0.039 (0) [14C]O2 6.234e-16 6.244e-16 -15.205 -15.205 0.001 (0) CaH[14C]O3+ 6.326e-17 5.803e-17 -16.199 -16.236 -0.037 (0) - H[14C]O2[18O]- 5.977e-18 5.468e-18 -17.224 -17.262 -0.039 (0) - H[14C]O[18O]O- 5.977e-18 5.468e-18 -17.224 -17.262 -0.039 (0) H[14C][18O]O2- 5.977e-18 5.468e-18 -17.224 -17.262 -0.039 (0) + H[14C]O[18O]O- 5.977e-18 5.468e-18 -17.224 -17.262 -0.039 (0) + H[14C]O2[18O]- 5.977e-18 5.468e-18 -17.224 -17.262 -0.039 (0) Ca[14C]O3 3.468e-18 3.474e-18 -17.460 -17.459 0.001 (0) [14C]O[18O] 2.592e-18 2.596e-18 -17.586 -17.586 0.001 (0) [14C]O3-2 1.779e-18 1.246e-18 -17.750 -17.904 -0.155 (0) CaH[14C]O2[18O]+ 1.262e-19 1.158e-19 -18.899 -18.936 -0.037 (0) - CaH[14C]O[18O]O+ 1.262e-19 1.158e-19 -18.899 -18.936 -0.037 (0) CaH[14C][18O]O2+ 1.262e-19 1.158e-19 -18.899 -18.936 -0.037 (0) + CaH[14C]O[18O]O+ 1.262e-19 1.158e-19 -18.899 -18.936 -0.037 (0) Ca[14C]O2[18O] 2.076e-20 2.079e-20 -19.683 -19.682 0.001 (0) - H[14C]O[18O]2- 1.193e-20 1.091e-20 -19.924 -19.962 -0.039 (0) H[14C][18O]2O- 1.193e-20 1.091e-20 -19.924 -19.962 -0.039 (0) H[14C][18O]O[18O]- 1.193e-20 1.091e-20 -19.924 -19.962 -0.039 (0) + H[14C]O[18O]2- 1.193e-20 1.091e-20 -19.924 -19.962 -0.039 (0) [14C]O2[18O]-2 1.065e-20 7.460e-21 -19.973 -20.127 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.102e-17 - O[18O] 1.100e-17 1.102e-17 -16.959 -16.958 0.001 (0) - [18O]2 1.097e-20 1.099e-20 -19.960 -19.959 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -66.372 -66.371 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -69.373 -69.372 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -120.75 -123.61 -2.86 [13C]H4 + [13C]H4(g) -21.93 -24.79 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.10 -20.60 -1.50 [14C][18O]2 - [14C]H4(g) -131.00 -133.86 -2.86 [14C]H4 + [14C]H4(g) -32.17 -35.03 -2.86 [14C]H4 [14C]O2(g) -13.74 -15.20 -1.47 [14C]O2 [14C]O[18O](g) -16.12 -17.90 -1.79 [14C]O[18O] - [18O]2(g) -17.67 -19.96 -2.29 [18O]2 + [18O]2(g) -67.08 -69.37 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -29760,14 +29750,14 @@ O(0) 5.535e-15 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -118.79 -121.65 -2.86 CH4 + CH4(g) -19.97 -22.83 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.76 -38.91 -3.15 H2 + H2(g) -11.05 -14.20 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.67 -14.56 -2.89 O2 - O[18O](g) -14.37 -17.26 -2.89 O[18O] + O2(g) -61.08 -63.97 -2.89 O2 + O[18O](g) -63.78 -66.67 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -29831,23 +29821,23 @@ Calcite 1.06e-03 R(18O) 1.99518e-03 -4.9952 permil R(13C) 1.10474e-02 -11.877 permil - R(14C) 5.89002e-13 50.09 pmc + R(14C) 5.89005e-13 50.09 pmc R(18O) H2O(l) 1.99518e-03 -4.9968 permil R(18O) OH- 1.92121e-03 -41.884 permil R(18O) H3O+ 2.04132e-03 18.011 permil R(18O) O2(aq) 1.99518e-03 -4.9968 permil R(13C) CO2(aq) 1.09684e-02 -18.949 permil - R(14C) CO2(aq) 5.80595e-13 49.375 pmc + R(14C) CO2(aq) 5.80599e-13 49.375 pmc R(18O) CO2(aq) 2.07915e-03 36.877 permil R(18O) HCO3- 1.99518e-03 -4.9968 permil R(13C) HCO3- 1.10638e-02 -10.413 permil - R(14C) HCO3- 5.90741e-13 50.238 pmc + R(14C) HCO3- 5.90745e-13 50.238 pmc R(18O) CO3-2 1.99518e-03 -4.9968 permil R(13C) CO3-2 1.10479e-02 -11.834 permil - R(14C) CO3-2 5.89047e-13 50.094 pmc + R(14C) CO3-2 5.89051e-13 50.094 pmc R(18O) Calcite 2.05262e-03 23.649 permil R(13C) Calcite 1.10857e-02 -8.4535 permil - R(14C) Calcite 5.93084e-13 50.437 pmc + R(14C) Calcite 5.93088e-13 50.437 pmc --------------------------------Isotope Alphas--------------------------------- @@ -29857,12 +29847,12 @@ Calcite 1.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2345e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2516e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6426e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6414e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -29882,16 +29872,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.211 Adjusted to redox equilibrium + pe = 10.997 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 4 + Iterations = 15 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -29904,24 +29894,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.198 -124.198 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.489 -122.488 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.304e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.963e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -29929,81 +29919,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.099e-06 1.008e-06 -5.959 -5.996 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.033e-08 6.043e-08 -7.219 -7.219 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.664e-40 - H2 2.832e-40 2.837e-40 -39.548 -39.547 0.001 (0) -O(0) 1.034e-13 - O2 5.150e-14 5.159e-14 -13.288 -13.287 0.001 (0) - O[18O] 2.055e-16 2.059e-16 -15.687 -15.686 0.001 (0) +H(0) 1.515e-39 + H2 7.576e-40 7.588e-40 -39.121 -39.120 0.001 (0) +O(0) 1.445e-14 + O2 7.198e-15 7.210e-15 -14.143 -14.142 0.001 (0) + O[18O] 2.872e-17 2.877e-17 -16.542 -16.541 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.158 -126.158 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.449 -124.448 0.001 (0) [13C](4) 6.452e-05 H[13C]O3- 5.204e-05 4.761e-05 -4.284 -4.322 -0.039 (0) [13C]O2 1.092e-05 1.094e-05 -4.962 -4.961 0.001 (0) CaH[13C]O3+ 1.099e-06 1.008e-06 -5.959 -5.996 -0.037 (0) H[13C]O2[18O]- 1.038e-07 9.500e-08 -6.984 -7.022 -0.039 (0) - H[13C]O[18O]O- 1.038e-07 9.500e-08 -6.984 -7.022 -0.039 (0) H[13C][18O]O2- 1.038e-07 9.500e-08 -6.984 -7.022 -0.039 (0) + H[13C]O[18O]O- 1.038e-07 9.500e-08 -6.984 -7.022 -0.039 (0) Ca[13C]O3 6.033e-08 6.043e-08 -7.219 -7.219 0.001 (0) [13C]O[18O] 4.542e-08 4.550e-08 -7.343 -7.342 0.001 (0) [13C]O3-2 3.095e-08 2.168e-08 -7.509 -7.664 -0.155 (0) - CaH[13C]O2[18O]+ 2.193e-09 2.011e-09 -8.659 -8.696 -0.037 (0) CaH[13C]O[18O]O+ 2.193e-09 2.011e-09 -8.659 -8.696 -0.037 (0) CaH[13C][18O]O2+ 2.193e-09 2.011e-09 -8.659 -8.696 -0.037 (0) + CaH[13C]O2[18O]+ 2.193e-09 2.011e-09 -8.659 -8.696 -0.037 (0) Ca[13C]O2[18O] 3.611e-10 3.617e-10 -9.442 -9.442 0.001 (0) - H[13C]O[18O]2- 2.072e-10 1.895e-10 -9.684 -9.722 -0.039 (0) - H[13C][18O]2O- 2.072e-10 1.895e-10 -9.684 -9.722 -0.039 (0) H[13C][18O]O[18O]- 2.072e-10 1.895e-10 -9.684 -9.722 -0.039 (0) + H[13C][18O]2O- 2.072e-10 1.895e-10 -9.684 -9.722 -0.039 (0) + H[13C]O[18O]2- 2.072e-10 1.895e-10 -9.684 -9.722 -0.039 (0) [13C]O2[18O]-2 1.853e-10 1.298e-10 -9.732 -9.887 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.435 -136.434 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -134.725 -134.725 0.001 (0) [14C](4) 3.440e-15 H[14C]O3- 2.779e-15 2.542e-15 -14.556 -14.595 -0.039 (0) [14C]O2 5.782e-16 5.792e-16 -15.238 -15.237 0.001 (0) CaH[14C]O3+ 5.868e-17 5.383e-17 -16.232 -16.269 -0.037 (0) - H[14C]O2[18O]- 5.544e-18 5.072e-18 -17.256 -17.295 -0.039 (0) - H[14C]O[18O]O- 5.544e-18 5.072e-18 -17.256 -17.295 -0.039 (0) H[14C][18O]O2- 5.544e-18 5.072e-18 -17.256 -17.295 -0.039 (0) + H[14C]O[18O]O- 5.544e-18 5.072e-18 -17.256 -17.295 -0.039 (0) + H[14C]O2[18O]- 5.544e-18 5.072e-18 -17.256 -17.295 -0.039 (0) Ca[14C]O3 3.217e-18 3.222e-18 -17.493 -17.492 0.001 (0) [14C]O[18O] 2.404e-18 2.408e-18 -17.619 -17.618 0.001 (0) [14C]O3-2 1.650e-18 1.156e-18 -17.782 -17.937 -0.155 (0) CaH[14C]O2[18O]+ 1.171e-19 1.074e-19 -18.932 -18.969 -0.037 (0) - CaH[14C]O[18O]O+ 1.171e-19 1.074e-19 -18.932 -18.969 -0.037 (0) CaH[14C][18O]O2+ 1.171e-19 1.074e-19 -18.932 -18.969 -0.037 (0) + CaH[14C]O[18O]O+ 1.171e-19 1.074e-19 -18.932 -18.969 -0.037 (0) Ca[14C]O2[18O] 1.925e-20 1.929e-20 -19.715 -19.715 0.001 (0) + H[14C][18O]O[18O]- 1.106e-20 1.012e-20 -19.956 -19.995 -0.039 (0) H[14C]O[18O]2- 1.106e-20 1.012e-20 -19.956 -19.995 -0.039 (0) H[14C][18O]2O- 1.106e-20 1.012e-20 -19.956 -19.995 -0.039 (0) - H[14C][18O]O[18O]- 1.106e-20 1.012e-20 -19.956 -19.995 -0.039 (0) - [14C]O2[18O]-2 9.877e-21 6.919e-21 -20.005 -20.160 -0.155 (0) + [14C]O2[18O]-2 9.877e-21 6.920e-21 -20.005 -20.160 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.059e-16 - O[18O] 2.055e-16 2.059e-16 -15.687 -15.686 0.001 (0) - [18O]2 2.050e-19 2.054e-19 -18.688 -18.687 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.878e-17 + O[18O] 2.872e-17 2.877e-17 -16.542 -16.541 0.001 (0) + [18O]2 2.865e-20 2.870e-20 -19.543 -19.542 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.30 -126.16 -2.86 [13C]H4 + [13C]H4(g) -121.59 -124.45 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.13 -20.64 -1.50 [14C][18O]2 - [14C]H4(g) -133.57 -136.43 -2.86 [14C]H4 + [14C]H4(g) -131.86 -134.72 -2.86 [14C]H4 [14C]O2(g) -13.77 -15.24 -1.47 [14C]O2 [14C]O[18O](g) -16.15 -17.94 -1.79 [14C]O[18O] - [18O]2(g) -16.40 -18.69 -2.29 [18O]2 + [18O]2(g) -17.25 -19.54 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -30017,14 +30007,14 @@ O(0) 1.034e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.34 -124.20 -2.86 CH4 + CH4(g) -119.63 -122.49 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.40 -39.55 -3.15 H2 + H2(g) -35.97 -39.12 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.40 -13.29 -2.89 O2 - O[18O](g) -13.10 -15.99 -2.89 O[18O] + O2(g) -11.25 -14.14 -2.89 O2 + O[18O](g) -13.95 -16.84 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -30088,23 +30078,23 @@ Calcite 1.56e-03 R(18O) 1.99518e-03 -4.9951 permil R(13C) 1.10553e-02 -11.171 permil - R(14C) 5.49227e-13 46.707 pmc + R(14C) 5.49230e-13 46.708 pmc R(18O) H2O(l) 1.99518e-03 -4.9966 permil R(18O) OH- 1.92121e-03 -41.884 permil R(18O) H3O+ 2.04132e-03 18.011 permil R(18O) O2(aq) 1.99518e-03 -4.9966 permil R(13C) CO2(aq) 1.09762e-02 -18.247 permil - R(14C) CO2(aq) 5.41388e-13 46.041 pmc + R(14C) CO2(aq) 5.41392e-13 46.041 pmc R(18O) CO2(aq) 2.07915e-03 36.877 permil R(18O) HCO3- 1.99518e-03 -4.9966 permil R(13C) HCO3- 1.10717e-02 -9.7061 permil - R(14C) HCO3- 5.50849e-13 46.845 pmc + R(14C) HCO3- 5.50853e-13 46.846 pmc R(18O) CO3-2 1.99518e-03 -4.9966 permil R(13C) CO3-2 1.10558e-02 -11.127 permil - R(14C) CO3-2 5.49269e-13 46.711 pmc + R(14C) CO3-2 5.49273e-13 46.711 pmc R(18O) Calcite 2.05262e-03 23.65 permil R(13C) Calcite 1.10936e-02 -7.7446 permil - R(14C) Calcite 5.53033e-13 47.031 pmc + R(14C) Calcite 5.53037e-13 47.031 pmc --------------------------------Isotope Alphas--------------------------------- @@ -30114,12 +30104,12 @@ Calcite 1.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2536e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2702e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 4.4409e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6112e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6221e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -30139,14 +30129,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.207 Adjusted to redox equilibrium + pe = 11.052 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 4 Total H = 1.110126e+02 @@ -30161,14 +30151,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.168 -124.167 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.926 -122.925 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.963e-06 -5.553 -5.707 -0.155 (0) @@ -30176,9 +30166,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.873e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -30186,50 +30176,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.100e-06 1.009e-06 -5.959 -5.996 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.038e-08 6.048e-08 -7.219 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.764e-40 - H2 2.882e-40 2.887e-40 -39.540 -39.540 0.001 (0) -O(0) 9.987e-14 - O2 4.974e-14 4.982e-14 -13.303 -13.303 0.001 (0) - O[18O] 1.985e-16 1.988e-16 -15.702 -15.702 0.001 (0) +H(0) 1.178e-39 + H2 5.891e-40 5.900e-40 -39.230 -39.229 0.001 (0) +O(0) 2.391e-14 + O2 1.191e-14 1.193e-14 -13.924 -13.924 0.001 (0) + O[18O] 4.751e-17 4.759e-17 -16.323 -16.323 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.128 -126.127 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.886 -124.885 0.001 (0) [13C](4) 6.457e-05 H[13C]O3- 5.208e-05 4.765e-05 -4.283 -4.322 -0.039 (0) [13C]O2 1.093e-05 1.095e-05 -4.961 -4.961 0.001 (0) CaH[13C]O3+ 1.100e-06 1.009e-06 -5.959 -5.996 -0.037 (0) - H[13C]O2[18O]- 1.039e-07 9.506e-08 -6.983 -7.022 -0.039 (0) - H[13C]O[18O]O- 1.039e-07 9.506e-08 -6.983 -7.022 -0.039 (0) H[13C][18O]O2- 1.039e-07 9.506e-08 -6.983 -7.022 -0.039 (0) + H[13C]O[18O]O- 1.039e-07 9.506e-08 -6.983 -7.022 -0.039 (0) + H[13C]O2[18O]- 1.039e-07 9.506e-08 -6.983 -7.022 -0.039 (0) Ca[13C]O3 6.038e-08 6.048e-08 -7.219 -7.218 0.001 (0) [13C]O[18O] 4.545e-08 4.553e-08 -7.342 -7.342 0.001 (0) [13C]O3-2 3.097e-08 2.170e-08 -7.509 -7.664 -0.155 (0) + CaH[13C][18O]O2+ 2.194e-09 2.013e-09 -8.659 -8.696 -0.037 (0) CaH[13C]O2[18O]+ 2.194e-09 2.013e-09 -8.659 -8.696 -0.037 (0) CaH[13C]O[18O]O+ 2.194e-09 2.013e-09 -8.659 -8.696 -0.037 (0) - CaH[13C][18O]O2+ 2.194e-09 2.013e-09 -8.659 -8.696 -0.037 (0) Ca[13C]O2[18O] 3.614e-10 3.620e-10 -9.442 -9.441 0.001 (0) - H[13C]O[18O]2- 2.073e-10 1.897e-10 -9.683 -9.722 -0.039 (0) - H[13C][18O]2O- 2.073e-10 1.897e-10 -9.683 -9.722 -0.039 (0) H[13C][18O]O[18O]- 2.073e-10 1.897e-10 -9.683 -9.722 -0.039 (0) + H[13C][18O]2O- 2.073e-10 1.897e-10 -9.683 -9.722 -0.039 (0) + H[13C]O[18O]2- 2.073e-10 1.897e-10 -9.683 -9.722 -0.039 (0) [13C]O2[18O]-2 1.854e-10 1.299e-10 -9.732 -9.886 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.435 -136.434 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -135.193 -135.192 0.001 (0) [14C](4) 3.208e-15 H[14C]O3- 2.591e-15 2.371e-15 -14.587 -14.625 -0.039 (0) [14C]O2 5.392e-16 5.401e-16 -15.268 -15.268 0.001 (0) CaH[14C]O3+ 5.472e-17 5.019e-17 -16.262 -16.299 -0.037 (0) - H[14C]O2[18O]- 5.170e-18 4.730e-18 -17.287 -17.325 -0.039 (0) - H[14C]O[18O]O- 5.170e-18 4.730e-18 -17.287 -17.325 -0.039 (0) H[14C][18O]O2- 5.170e-18 4.730e-18 -17.287 -17.325 -0.039 (0) + H[14C]O[18O]O- 5.170e-18 4.730e-18 -17.287 -17.325 -0.039 (0) + H[14C]O2[18O]- 5.170e-18 4.730e-18 -17.287 -17.325 -0.039 (0) Ca[14C]O3 3.000e-18 3.005e-18 -17.523 -17.522 0.001 (0) [14C]O[18O] 2.242e-18 2.246e-18 -17.649 -17.649 0.001 (0) [14C]O3-2 1.539e-18 1.078e-18 -17.813 -17.967 -0.155 (0) CaH[14C]O2[18O]+ 1.092e-19 1.001e-19 -18.962 -18.999 -0.037 (0) - CaH[14C]O[18O]O+ 1.092e-19 1.001e-19 -18.962 -18.999 -0.037 (0) CaH[14C][18O]O2+ 1.092e-19 1.001e-19 -18.962 -18.999 -0.037 (0) + CaH[14C]O[18O]O+ 1.092e-19 1.001e-19 -18.962 -18.999 -0.037 (0) Ca[14C]O2[18O] 1.795e-20 1.798e-20 -19.746 -19.745 0.001 (0) H[14C]O[18O]2- 1.031e-20 9.437e-21 -19.987 -20.025 -0.039 (0) H[14C][18O]2O- 1.031e-20 9.437e-21 -19.987 -20.025 -0.039 (0) @@ -30238,29 +30228,29 @@ O(0) 9.987e-14 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.989e-16 - O[18O] 1.985e-16 1.988e-16 -15.702 -15.702 0.001 (0) - [18O]2 1.980e-19 1.983e-19 -18.703 -18.703 0.001 (0) +[18O](0) 4.760e-17 + O[18O] 4.751e-17 4.759e-17 -16.323 -16.323 0.001 (0) + [18O]2 4.739e-20 4.747e-20 -19.324 -19.324 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.27 -126.13 -2.86 [13C]H4 + [13C]H4(g) -122.03 -124.89 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.16 -20.67 -1.50 [14C][18O]2 - [14C]H4(g) -133.57 -136.43 -2.86 [14C]H4 + [14C]H4(g) -132.33 -135.19 -2.86 [14C]H4 [14C]O2(g) -13.80 -15.27 -1.47 [14C]O2 [14C]O[18O](g) -16.18 -17.97 -1.79 [14C]O[18O] - [18O]2(g) -16.41 -18.70 -2.29 [18O]2 + [18O]2(g) -17.03 -19.32 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -30274,14 +30264,14 @@ O(0) 9.987e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.31 -124.17 -2.86 CH4 + CH4(g) -120.07 -122.93 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.39 -39.54 -3.15 H2 + H2(g) -36.08 -39.23 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.41 -13.30 -2.89 O2 - O[18O](g) -13.11 -16.00 -2.89 O[18O] + O2(g) -11.03 -13.92 -2.89 O2 + O[18O](g) -13.73 -16.62 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -30345,23 +30335,23 @@ Calcite 2.06e-03 R(18O) 1.99518e-03 -4.995 permil R(13C) 1.10622e-02 -10.553 permil - R(14C) 5.14484e-13 43.753 pmc + R(14C) 5.14487e-13 43.753 pmc R(18O) H2O(l) 1.99518e-03 -4.9965 permil R(18O) OH- 1.92121e-03 -41.884 permil R(18O) H3O+ 2.04132e-03 18.011 permil R(18O) O2(aq) 1.99518e-03 -4.9965 permil R(13C) CO2(aq) 1.09830e-02 -17.634 permil - R(14C) CO2(aq) 5.07141e-13 43.128 pmc + R(14C) CO2(aq) 5.07144e-13 43.129 pmc R(18O) CO2(aq) 2.07915e-03 36.877 permil R(18O) HCO3- 1.99518e-03 -4.9965 permil R(13C) HCO3- 1.10786e-02 -9.0879 permil - R(14C) HCO3- 5.16004e-13 43.882 pmc + R(14C) HCO3- 5.16007e-13 43.882 pmc R(18O) CO3-2 1.99518e-03 -4.9965 permil R(13C) CO3-2 1.10627e-02 -10.51 permil - R(14C) CO3-2 5.14524e-13 43.756 pmc + R(14C) CO3-2 5.14527e-13 43.756 pmc R(18O) Calcite 2.05262e-03 23.65 permil R(13C) Calcite 1.11005e-02 -7.1253 permil - R(14C) Calcite 5.18050e-13 44.056 pmc + R(14C) Calcite 5.18053e-13 44.056 pmc --------------------------------Isotope Alphas--------------------------------- @@ -30371,12 +30361,12 @@ Calcite 2.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2489e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2647e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6954e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5002e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -30396,14 +30386,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.221 Adjusted to redox equilibrium + pe = 10.996 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.823e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -30418,24 +30408,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.281 -124.280 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.481 -122.480 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.963e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -30443,23 +30433,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.100e-06 1.009e-06 -5.958 -5.996 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.041e-08 6.051e-08 -7.219 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.403e-40 - H2 2.701e-40 2.706e-40 -39.568 -39.568 0.001 (0) -O(0) 1.137e-13 - O2 5.662e-14 5.671e-14 -13.247 -13.246 0.001 (0) - O[18O] 2.259e-16 2.263e-16 -15.646 -15.645 0.001 (0) +H(0) 1.522e-39 + H2 7.612e-40 7.625e-40 -39.118 -39.118 0.001 (0) +O(0) 1.432e-14 + O2 7.129e-15 7.141e-15 -14.147 -14.146 0.001 (0) + O[18O] 2.845e-17 2.850e-17 -16.546 -16.545 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.240 -126.239 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.440 -124.439 0.001 (0) [13C](4) 6.461e-05 H[13C]O3- 5.211e-05 4.768e-05 -4.283 -4.322 -0.039 (0) [13C]O2 1.094e-05 1.096e-05 -4.961 -4.960 0.001 (0) CaH[13C]O3+ 1.100e-06 1.009e-06 -5.958 -5.996 -0.037 (0) - H[13C]O2[18O]- 1.040e-07 9.512e-08 -6.983 -7.022 -0.039 (0) H[13C]O[18O]O- 1.040e-07 9.512e-08 -6.983 -7.022 -0.039 (0) + H[13C]O2[18O]- 1.040e-07 9.512e-08 -6.983 -7.022 -0.039 (0) H[13C][18O]O2- 1.040e-07 9.512e-08 -6.983 -7.022 -0.039 (0) Ca[13C]O3 6.041e-08 6.051e-08 -7.219 -7.218 0.001 (0) [13C]O[18O] 4.548e-08 4.556e-08 -7.342 -7.341 0.001 (0) @@ -30468,56 +30458,56 @@ O(0) 1.137e-13 CaH[13C]O[18O]O+ 2.196e-09 2.014e-09 -8.658 -8.696 -0.037 (0) CaH[13C][18O]O2+ 2.196e-09 2.014e-09 -8.658 -8.696 -0.037 (0) Ca[13C]O2[18O] 3.616e-10 3.622e-10 -9.442 -9.441 0.001 (0) - H[13C]O[18O]2- 2.074e-10 1.898e-10 -9.683 -9.722 -0.039 (0) - H[13C][18O]2O- 2.074e-10 1.898e-10 -9.683 -9.722 -0.039 (0) H[13C][18O]O[18O]- 2.074e-10 1.898e-10 -9.683 -9.722 -0.039 (0) + H[13C][18O]2O- 2.074e-10 1.898e-10 -9.683 -9.722 -0.039 (0) + H[13C]O[18O]2- 2.074e-10 1.898e-10 -9.683 -9.722 -0.039 (0) [13C]O2[18O]-2 1.855e-10 1.300e-10 -9.732 -9.886 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.575 -136.575 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -134.776 -134.775 0.001 (0) [14C](4) 3.005e-15 H[14C]O3- 2.427e-15 2.221e-15 -14.615 -14.654 -0.039 (0) [14C]O2 5.051e-16 5.059e-16 -15.297 -15.296 0.001 (0) CaH[14C]O3+ 5.126e-17 4.702e-17 -16.290 -16.328 -0.037 (0) - H[14C]O2[18O]- 4.843e-18 4.430e-18 -17.315 -17.354 -0.039 (0) - H[14C]O[18O]O- 4.843e-18 4.430e-18 -17.315 -17.354 -0.039 (0) - H[14C][18O]O2- 4.843e-18 4.430e-18 -17.315 -17.354 -0.039 (0) + H[14C][18O]O2- 4.843e-18 4.431e-18 -17.315 -17.354 -0.039 (0) + H[14C]O[18O]O- 4.843e-18 4.431e-18 -17.315 -17.354 -0.039 (0) + H[14C]O2[18O]- 4.843e-18 4.431e-18 -17.315 -17.354 -0.039 (0) Ca[14C]O3 2.810e-18 2.814e-18 -17.551 -17.551 0.001 (0) [14C]O[18O] 2.100e-18 2.104e-18 -17.678 -17.677 0.001 (0) [14C]O3-2 1.441e-18 1.010e-18 -17.841 -17.996 -0.155 (0) CaH[14C]O2[18O]+ 1.023e-19 9.381e-20 -18.990 -19.028 -0.037 (0) - CaH[14C]O[18O]O+ 1.023e-19 9.381e-20 -18.990 -19.028 -0.037 (0) CaH[14C][18O]O2+ 1.023e-19 9.381e-20 -18.990 -19.028 -0.037 (0) + CaH[14C]O[18O]O+ 1.023e-19 9.381e-20 -18.990 -19.028 -0.037 (0) Ca[14C]O2[18O] 1.682e-20 1.685e-20 -19.774 -19.774 0.001 (0) - H[14C]O[18O]2- 9.662e-21 8.840e-21 -20.015 -20.054 -0.039 (0) H[14C][18O]2O- 9.662e-21 8.840e-21 -20.015 -20.054 -0.039 (0) H[14C][18O]O[18O]- 9.662e-21 8.840e-21 -20.015 -20.054 -0.039 (0) + H[14C]O[18O]2- 9.662e-21 8.840e-21 -20.015 -20.054 -0.039 (0) [14C]O2[18O]-2 8.628e-21 6.044e-21 -20.064 -20.219 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.264e-16 - O[18O] 2.259e-16 2.263e-16 -15.646 -15.645 0.001 (0) - [18O]2 2.254e-19 2.257e-19 -18.647 -18.646 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.851e-17 + O[18O] 2.845e-17 2.850e-17 -16.546 -16.545 0.001 (0) + [18O]2 2.838e-20 2.843e-20 -19.547 -19.546 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.38 -126.24 -2.86 [13C]H4 + [13C]H4(g) -121.58 -124.44 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.19 -20.70 -1.50 [14C][18O]2 - [14C]H4(g) -133.71 -136.57 -2.86 [14C]H4 + [14C]H4(g) -131.91 -134.77 -2.86 [14C]H4 [14C]O2(g) -13.83 -15.30 -1.47 [14C]O2 [14C]O[18O](g) -16.21 -18.00 -1.79 [14C]O[18O] - [18O]2(g) -16.36 -18.65 -2.29 [18O]2 + [18O]2(g) -17.26 -19.55 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -30531,14 +30521,14 @@ O(0) 1.137e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.42 -124.28 -2.86 CH4 + CH4(g) -119.62 -122.48 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.42 -39.57 -3.15 H2 + H2(g) -35.97 -39.12 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.35 -13.25 -2.89 O2 - O[18O](g) -13.05 -15.95 -2.89 O[18O] + O2(g) -11.25 -14.15 -2.89 O2 + O[18O](g) -13.95 -16.85 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -30602,23 +30592,23 @@ Calcite 2.56e-03 R(18O) 1.99518e-03 -4.9948 permil R(13C) 1.10683e-02 -10.009 permil - R(14C) 4.83875e-13 41.15 pmc + R(14C) 4.83878e-13 41.15 pmc R(18O) H2O(l) 1.99518e-03 -4.9963 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.011 permil R(18O) O2(aq) 1.99518e-03 -4.9963 permil R(13C) CO2(aq) 1.09891e-02 -17.094 permil - R(14C) CO2(aq) 4.76969e-13 40.562 pmc + R(14C) CO2(aq) 4.76972e-13 40.563 pmc R(18O) CO2(aq) 2.07915e-03 36.877 permil R(18O) HCO3- 1.99518e-03 -4.9963 permil R(13C) HCO3- 1.10847e-02 -8.5432 permil - R(14C) HCO3- 4.85304e-13 41.271 pmc + R(14C) HCO3- 4.85308e-13 41.272 pmc R(18O) CO3-2 1.99518e-03 -4.9963 permil R(13C) CO3-2 1.10688e-02 -9.966 permil - R(14C) CO3-2 4.83913e-13 41.153 pmc + R(14C) CO3-2 4.83916e-13 41.153 pmc R(18O) Calcite 2.05262e-03 23.65 permil R(13C) Calcite 1.11066e-02 -6.5794 permil - R(14C) Calcite 4.87229e-13 41.435 pmc + R(14C) Calcite 4.87232e-13 41.435 pmc --------------------------------Isotope Alphas--------------------------------- @@ -30628,12 +30618,12 @@ Calcite 2.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2545e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2714e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5706e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6498e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -30653,14 +30643,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.242 Adjusted to redox equilibrium + pe = 11.186 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.823e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -30675,14 +30665,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.447 -124.446 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.997 -123.996 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.963e-06 -5.553 -5.707 -0.155 (0) @@ -30690,9 +30680,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -30700,81 +30690,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.101e-06 1.010e-06 -5.958 -5.996 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.045e-08 6.055e-08 -7.219 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.909e-40 - H2 2.454e-40 2.459e-40 -39.610 -39.609 0.001 (0) -O(0) 1.377e-13 - O2 6.858e-14 6.869e-14 -13.164 -13.163 0.001 (0) - O[18O] 2.736e-16 2.741e-16 -15.563 -15.562 0.001 (0) +H(0) 6.360e-40 + H2 3.180e-40 3.185e-40 -39.498 -39.497 0.001 (0) +O(0) 8.203e-14 + O2 4.085e-14 4.092e-14 -13.389 -13.388 0.001 (0) + O[18O] 1.630e-16 1.633e-16 -15.788 -15.787 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.406 -126.405 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.956 -125.955 0.001 (0) [13C](4) 6.464e-05 H[13C]O3- 5.214e-05 4.770e-05 -4.283 -4.321 -0.039 (0) [13C]O2 1.094e-05 1.096e-05 -4.961 -4.960 0.001 (0) CaH[13C]O3+ 1.101e-06 1.010e-06 -5.958 -5.996 -0.037 (0) H[13C]O2[18O]- 1.040e-07 9.517e-08 -6.983 -7.021 -0.039 (0) - H[13C]O[18O]O- 1.040e-07 9.517e-08 -6.983 -7.021 -0.039 (0) H[13C][18O]O2- 1.040e-07 9.517e-08 -6.983 -7.021 -0.039 (0) + H[13C]O[18O]O- 1.040e-07 9.517e-08 -6.983 -7.021 -0.039 (0) Ca[13C]O3 6.045e-08 6.055e-08 -7.219 -7.218 0.001 (0) [13C]O[18O] 4.551e-08 4.558e-08 -7.342 -7.341 0.001 (0) [13C]O3-2 3.101e-08 2.172e-08 -7.509 -7.663 -0.155 (0) - CaH[13C]O2[18O]+ 2.197e-09 2.015e-09 -8.658 -8.696 -0.037 (0) CaH[13C]O[18O]O+ 2.197e-09 2.015e-09 -8.658 -8.696 -0.037 (0) CaH[13C][18O]O2+ 2.197e-09 2.015e-09 -8.658 -8.696 -0.037 (0) + CaH[13C]O2[18O]+ 2.197e-09 2.015e-09 -8.658 -8.696 -0.037 (0) Ca[13C]O2[18O] 3.618e-10 3.624e-10 -9.442 -9.441 0.001 (0) - H[13C]O[18O]2- 2.076e-10 1.899e-10 -9.683 -9.721 -0.039 (0) - H[13C][18O]2O- 2.076e-10 1.899e-10 -9.683 -9.721 -0.039 (0) H[13C][18O]O[18O]- 2.076e-10 1.899e-10 -9.683 -9.721 -0.039 (0) + H[13C][18O]2O- 2.076e-10 1.899e-10 -9.683 -9.721 -0.039 (0) + H[13C]O[18O]2- 2.076e-10 1.899e-10 -9.683 -9.721 -0.039 (0) [13C]O2[18O]-2 1.856e-10 1.300e-10 -9.731 -9.886 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.769 -136.768 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.319 -136.318 0.001 (0) [14C](4) 2.826e-15 H[14C]O3- 2.283e-15 2.088e-15 -14.642 -14.680 -0.039 (0) [14C]O2 4.750e-16 4.758e-16 -15.323 -15.323 0.001 (0) CaH[14C]O3+ 4.821e-17 4.422e-17 -16.317 -16.354 -0.037 (0) - H[14C]O2[18O]- 4.555e-18 4.167e-18 -17.342 -17.380 -0.039 (0) - H[14C]O[18O]O- 4.555e-18 4.167e-18 -17.342 -17.380 -0.039 (0) H[14C][18O]O2- 4.555e-18 4.167e-18 -17.342 -17.380 -0.039 (0) + H[14C]O[18O]O- 4.555e-18 4.167e-18 -17.342 -17.380 -0.039 (0) + H[14C]O2[18O]- 4.555e-18 4.167e-18 -17.342 -17.380 -0.039 (0) Ca[14C]O3 2.643e-18 2.647e-18 -17.578 -17.577 0.001 (0) [14C]O[18O] 1.975e-18 1.978e-18 -17.704 -17.704 0.001 (0) [14C]O3-2 1.356e-18 9.497e-19 -17.868 -18.022 -0.155 (0) CaH[14C]O2[18O]+ 9.618e-20 8.823e-20 -19.017 -19.054 -0.037 (0) - CaH[14C]O[18O]O+ 9.618e-20 8.823e-20 -19.017 -19.054 -0.037 (0) CaH[14C][18O]O2+ 9.618e-20 8.823e-20 -19.017 -19.054 -0.037 (0) + CaH[14C]O[18O]O+ 9.618e-20 8.823e-20 -19.017 -19.054 -0.037 (0) Ca[14C]O2[18O] 1.582e-20 1.584e-20 -19.801 -19.800 0.001 (0) + H[14C][18O]O[18O]- 9.087e-21 8.314e-21 -20.042 -20.080 -0.039 (0) H[14C]O[18O]2- 9.087e-21 8.314e-21 -20.042 -20.080 -0.039 (0) H[14C][18O]2O- 9.087e-21 8.314e-21 -20.042 -20.080 -0.039 (0) - H[14C][18O]O[18O]- 9.087e-21 8.314e-21 -20.042 -20.080 -0.039 (0) [14C]O2[18O]-2 8.114e-21 5.684e-21 -20.091 -20.245 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.742e-16 - O[18O] 2.736e-16 2.741e-16 -15.563 -15.562 0.001 (0) - [18O]2 2.730e-19 2.734e-19 -18.564 -18.563 0.001 (0) +[18O](0) 1.633e-16 + O[18O] 1.630e-16 1.633e-16 -15.788 -15.787 0.001 (0) + [18O]2 1.626e-19 1.629e-19 -18.789 -18.788 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.55 -126.41 -2.86 [13C]H4 + [13C]H4(g) -123.10 -125.96 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.22 -20.72 -1.50 [14C][18O]2 - [14C]H4(g) -133.91 -136.77 -2.86 [14C]H4 + [14C]H4(g) -133.46 -136.32 -2.86 [14C]H4 [14C]O2(g) -13.85 -15.32 -1.47 [14C]O2 [14C]O[18O](g) -16.24 -18.02 -1.79 [14C]O[18O] - [18O]2(g) -16.27 -18.56 -2.29 [18O]2 + [18O]2(g) -16.50 -18.79 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -30788,14 +30778,14 @@ O(0) 1.377e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.59 -124.45 -2.86 CH4 + CH4(g) -121.14 -124.00 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.46 -39.61 -3.15 H2 + H2(g) -36.35 -39.50 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.27 -13.16 -2.89 O2 - O[18O](g) -12.97 -15.86 -2.89 O[18O] + O2(g) -10.50 -13.39 -2.89 O2 + O[18O](g) -13.20 -16.09 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -30859,23 +30849,23 @@ Calcite 3.06e-03 R(18O) 1.99518e-03 -4.9947 permil R(13C) 1.10737e-02 -9.5264 permil - R(14C) 4.56704e-13 38.839 pmc + R(14C) 4.56707e-13 38.839 pmc R(18O) H2O(l) 1.99518e-03 -4.9962 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.012 permil R(18O) O2(aq) 1.99518e-03 -4.9962 permil R(13C) CO2(aq) 1.09944e-02 -16.615 permil - R(14C) CO2(aq) 4.50186e-13 38.285 pmc + R(14C) CO2(aq) 4.50189e-13 38.285 pmc R(18O) CO2(aq) 2.07915e-03 36.878 permil R(18O) HCO3- 1.99518e-03 -4.9962 permil R(13C) HCO3- 1.10901e-02 -8.0594 permil - R(14C) HCO3- 4.58053e-13 38.954 pmc + R(14C) HCO3- 4.58056e-13 38.954 pmc R(18O) CO3-2 1.99518e-03 -4.9962 permil R(13C) CO3-2 1.10742e-02 -9.4829 permil - R(14C) CO3-2 4.56739e-13 38.842 pmc + R(14C) CO3-2 4.56742e-13 38.842 pmc R(18O) Calcite 2.05262e-03 23.65 permil R(13C) Calcite 1.11121e-02 -6.0947 permil - R(14C) Calcite 4.59869e-13 39.108 pmc + R(14C) Calcite 4.59872e-13 39.109 pmc --------------------------------Isotope Alphas--------------------------------- @@ -30885,12 +30875,12 @@ Calcite 3.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2752e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2932e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6707e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6845e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -30910,14 +30900,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.233 Adjusted to redox equilibrium + pe = 11.170 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.823e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -30932,24 +30922,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.379 -124.378 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.869 -123.868 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.963e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -30957,50 +30947,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.048e-08 6.058e-08 -7.218 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.105e-40 - H2 2.553e-40 2.557e-40 -39.593 -39.592 0.001 (0) -O(0) 1.273e-13 - O2 6.341e-14 6.351e-14 -13.198 -13.197 0.001 (0) - O[18O] 2.530e-16 2.534e-16 -15.597 -15.596 0.001 (0) +H(0) 6.846e-40 + H2 3.423e-40 3.429e-40 -39.466 -39.465 0.001 (0) +O(0) 7.080e-14 + O2 3.526e-14 3.532e-14 -13.453 -13.452 0.001 (0) + O[18O] 1.407e-16 1.409e-16 -15.852 -15.851 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.338 -126.337 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.828 -125.827 0.001 (0) [13C](4) 6.467e-05 H[13C]O3- 5.217e-05 4.773e-05 -4.283 -4.321 -0.039 (0) [13C]O2 1.095e-05 1.097e-05 -4.961 -4.960 0.001 (0) CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) - H[13C]O2[18O]- 1.041e-07 9.522e-08 -6.983 -7.021 -0.039 (0) - H[13C]O[18O]O- 1.041e-07 9.522e-08 -6.983 -7.021 -0.039 (0) H[13C][18O]O2- 1.041e-07 9.522e-08 -6.983 -7.021 -0.039 (0) + H[13C]O[18O]O- 1.041e-07 9.522e-08 -6.983 -7.021 -0.039 (0) + H[13C]O2[18O]- 1.041e-07 9.522e-08 -6.983 -7.021 -0.039 (0) Ca[13C]O3 6.048e-08 6.058e-08 -7.218 -7.218 0.001 (0) [13C]O[18O] 4.553e-08 4.560e-08 -7.342 -7.341 0.001 (0) [13C]O3-2 3.102e-08 2.173e-08 -7.508 -7.663 -0.155 (0) + CaH[13C][18O]O2+ 2.198e-09 2.016e-09 -8.658 -8.695 -0.037 (0) CaH[13C]O2[18O]+ 2.198e-09 2.016e-09 -8.658 -8.695 -0.037 (0) CaH[13C]O[18O]O+ 2.198e-09 2.016e-09 -8.658 -8.695 -0.037 (0) - CaH[13C][18O]O2+ 2.198e-09 2.016e-09 -8.658 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.620e-10 3.626e-10 -9.441 -9.441 0.001 (0) - H[13C]O[18O]2- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) - H[13C][18O]2O- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) H[13C][18O]O[18O]- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) + H[13C][18O]2O- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) + H[13C]O[18O]2- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) [13C]O2[18O]-2 1.857e-10 1.301e-10 -9.731 -9.886 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.726 -136.725 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.216 -136.215 0.001 (0) [14C](4) 2.667e-15 H[14C]O3- 2.155e-15 1.971e-15 -14.667 -14.705 -0.039 (0) [14C]O2 4.483e-16 4.491e-16 -15.348 -15.348 0.001 (0) CaH[14C]O3+ 4.550e-17 4.174e-17 -16.342 -16.379 -0.037 (0) - H[14C]O2[18O]- 4.299e-18 3.933e-18 -17.367 -17.405 -0.039 (0) - H[14C]O[18O]O- 4.299e-18 3.933e-18 -17.367 -17.405 -0.039 (0) H[14C][18O]O2- 4.299e-18 3.933e-18 -17.367 -17.405 -0.039 (0) + H[14C]O[18O]O- 4.299e-18 3.933e-18 -17.367 -17.405 -0.039 (0) + H[14C]O2[18O]- 4.299e-18 3.933e-18 -17.367 -17.405 -0.039 (0) Ca[14C]O3 2.494e-18 2.498e-18 -17.603 -17.602 0.001 (0) [14C]O[18O] 1.864e-18 1.867e-18 -17.729 -17.729 0.001 (0) [14C]O3-2 1.280e-18 8.964e-19 -17.893 -18.048 -0.155 (0) CaH[14C]O2[18O]+ 9.078e-20 8.327e-20 -19.042 -19.079 -0.037 (0) - CaH[14C]O[18O]O+ 9.078e-20 8.327e-20 -19.042 -19.079 -0.037 (0) CaH[14C][18O]O2+ 9.078e-20 8.327e-20 -19.042 -19.079 -0.037 (0) + CaH[14C]O[18O]O+ 9.078e-20 8.327e-20 -19.042 -19.079 -0.037 (0) Ca[14C]O2[18O] 1.493e-20 1.495e-20 -19.826 -19.825 0.001 (0) H[14C]O[18O]2- 8.577e-21 7.847e-21 -20.067 -20.105 -0.039 (0) H[14C][18O]2O- 8.577e-21 7.847e-21 -20.067 -20.105 -0.039 (0) @@ -31009,29 +30999,29 @@ O(0) 1.273e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.535e-16 - O[18O] 2.530e-16 2.534e-16 -15.597 -15.596 0.001 (0) - [18O]2 2.524e-19 2.528e-19 -18.598 -18.597 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.410e-16 + O[18O] 1.407e-16 1.409e-16 -15.852 -15.851 0.001 (0) + [18O]2 1.404e-19 1.406e-19 -18.853 -18.852 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.48 -126.34 -2.86 [13C]H4 + [13C]H4(g) -122.97 -125.83 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.24 -20.75 -1.50 [14C][18O]2 - [14C]H4(g) -133.86 -136.72 -2.86 [14C]H4 + [14C]H4(g) -133.36 -136.22 -2.86 [14C]H4 [14C]O2(g) -13.88 -15.35 -1.47 [14C]O2 [14C]O[18O](g) -16.26 -18.05 -1.79 [14C]O[18O] - [18O]2(g) -16.31 -18.60 -2.29 [18O]2 + [18O]2(g) -16.56 -18.85 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -31045,14 +31035,14 @@ O(0) 1.273e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.52 -124.38 -2.86 CH4 + CH4(g) -121.01 -123.87 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.44 -39.59 -3.15 H2 + H2(g) -36.31 -39.46 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.30 -13.20 -2.89 O2 - O[18O](g) -13.00 -15.90 -2.89 O[18O] + O2(g) -10.56 -13.45 -2.89 O2 + O[18O](g) -13.26 -16.15 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -31116,23 +31106,23 @@ Calcite 3.56e-03 R(18O) 1.99518e-03 -4.9946 permil R(13C) 1.10785e-02 -9.0946 permil - R(14C) 4.32422e-13 36.774 pmc + R(14C) 4.32425e-13 36.774 pmc R(18O) H2O(l) 1.99518e-03 -4.9961 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.012 permil R(18O) O2(aq) 1.99518e-03 -4.9961 permil R(13C) CO2(aq) 1.09992e-02 -16.186 permil - R(14C) CO2(aq) 4.26250e-13 36.249 pmc + R(14C) CO2(aq) 4.26253e-13 36.249 pmc R(18O) CO2(aq) 2.07915e-03 36.878 permil R(18O) HCO3- 1.99518e-03 -4.9961 permil R(13C) HCO3- 1.10949e-02 -7.627 permil - R(14C) HCO3- 4.33699e-13 36.883 pmc + R(14C) HCO3- 4.33702e-13 36.883 pmc R(18O) CO3-2 1.99518e-03 -4.9961 permil R(13C) CO3-2 1.10790e-02 -9.0512 permil - R(14C) CO3-2 4.32455e-13 36.777 pmc + R(14C) CO3-2 4.32458e-13 36.777 pmc R(18O) Calcite 2.05262e-03 23.65 permil R(13C) Calcite 1.11169e-02 -5.6615 permil - R(14C) Calcite 4.35419e-13 37.029 pmc + R(14C) Calcite 4.35422e-13 37.029 pmc --------------------------------Isotope Alphas--------------------------------- @@ -31142,12 +31132,12 @@ Calcite 3.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2464e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2645e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.745e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6209e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -31167,14 +31157,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.219 Adjusted to redox equilibrium + pe = 11.187 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -31189,13 +31179,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.263 -124.262 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.012 -124.011 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -31204,9 +31194,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -31214,23 +31204,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.050e-08 6.060e-08 -7.218 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.459e-40 - H2 2.730e-40 2.734e-40 -39.564 -39.563 0.001 (0) -O(0) 1.113e-13 - O2 5.545e-14 5.554e-14 -13.256 -13.255 0.001 (0) - O[18O] 2.213e-16 2.216e-16 -15.655 -15.654 0.001 (0) +H(0) 6.308e-40 + H2 3.154e-40 3.159e-40 -39.501 -39.500 0.001 (0) +O(0) 8.341e-14 + O2 4.154e-14 4.161e-14 -13.382 -13.381 0.001 (0) + O[18O] 1.657e-16 1.660e-16 -15.781 -15.780 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.221 -126.220 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.970 -125.970 0.001 (0) [13C](4) 6.470e-05 H[13C]O3- 5.219e-05 4.775e-05 -4.282 -4.321 -0.039 (0) [13C]O2 1.095e-05 1.097e-05 -4.960 -4.960 0.001 (0) CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) - H[13C]O2[18O]- 1.041e-07 9.526e-08 -6.982 -7.021 -0.039 (0) H[13C]O[18O]O- 1.041e-07 9.526e-08 -6.982 -7.021 -0.039 (0) + H[13C]O2[18O]- 1.041e-07 9.526e-08 -6.982 -7.021 -0.039 (0) H[13C][18O]O2- 1.041e-07 9.526e-08 -6.982 -7.021 -0.039 (0) Ca[13C]O3 6.050e-08 6.060e-08 -7.218 -7.218 0.001 (0) [13C]O[18O] 4.555e-08 4.562e-08 -7.342 -7.341 0.001 (0) @@ -31239,56 +31229,56 @@ O(0) 1.113e-13 CaH[13C]O[18O]O+ 2.199e-09 2.017e-09 -8.658 -8.695 -0.037 (0) CaH[13C][18O]O2+ 2.199e-09 2.017e-09 -8.658 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.621e-10 3.627e-10 -9.441 -9.440 0.001 (0) - H[13C]O[18O]2- 2.077e-10 1.901e-10 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.077e-10 1.901e-10 -9.682 -9.721 -0.039 (0) H[13C][18O]O[18O]- 2.077e-10 1.901e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]2O- 2.077e-10 1.901e-10 -9.682 -9.721 -0.039 (0) + H[13C]O[18O]2- 2.077e-10 1.901e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.858e-10 1.301e-10 -9.731 -9.886 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.633 -136.632 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.382 -136.381 0.001 (0) [14C](4) 2.525e-15 H[14C]O3- 2.040e-15 1.866e-15 -14.690 -14.729 -0.039 (0) [14C]O2 4.245e-16 4.252e-16 -15.372 -15.371 0.001 (0) CaH[14C]O3+ 4.308e-17 3.952e-17 -16.366 -16.403 -0.037 (0) - H[14C]O2[18O]- 4.070e-18 3.724e-18 -17.390 -17.429 -0.039 (0) - H[14C]O[18O]O- 4.070e-18 3.724e-18 -17.390 -17.429 -0.039 (0) H[14C][18O]O2- 4.070e-18 3.724e-18 -17.390 -17.429 -0.039 (0) - Ca[14C]O3 2.362e-18 2.365e-18 -17.627 -17.626 0.001 (0) + H[14C]O[18O]O- 4.070e-18 3.724e-18 -17.390 -17.429 -0.039 (0) + H[14C]O2[18O]- 4.070e-18 3.724e-18 -17.390 -17.429 -0.039 (0) + Ca[14C]O3 2.362e-18 2.366e-18 -17.627 -17.626 0.001 (0) [14C]O[18O] 1.765e-18 1.768e-18 -17.753 -17.753 0.001 (0) [14C]O3-2 1.211e-18 8.487e-19 -17.917 -18.071 -0.155 (0) CaH[14C]O2[18O]+ 8.595e-20 7.885e-20 -19.066 -19.103 -0.037 (0) - CaH[14C]O[18O]O+ 8.595e-20 7.885e-20 -19.066 -19.103 -0.037 (0) CaH[14C][18O]O2+ 8.595e-20 7.885e-20 -19.066 -19.103 -0.037 (0) + CaH[14C]O[18O]O+ 8.595e-20 7.885e-20 -19.066 -19.103 -0.037 (0) Ca[14C]O2[18O] 1.414e-20 1.416e-20 -19.850 -19.849 0.001 (0) - H[14C]O[18O]2- 8.121e-21 7.430e-21 -20.090 -20.129 -0.039 (0) H[14C][18O]2O- 8.121e-21 7.430e-21 -20.090 -20.129 -0.039 (0) H[14C][18O]O[18O]- 8.121e-21 7.430e-21 -20.090 -20.129 -0.039 (0) + H[14C]O[18O]2- 8.121e-21 7.430e-21 -20.090 -20.129 -0.039 (0) [14C]O2[18O]-2 7.251e-21 5.080e-21 -20.140 -20.294 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.217e-16 - O[18O] 2.213e-16 2.216e-16 -15.655 -15.654 0.001 (0) - [18O]2 2.207e-19 2.211e-19 -18.656 -18.655 0.001 (0) +[18O](0) 1.661e-16 + O[18O] 1.657e-16 1.660e-16 -15.781 -15.780 0.001 (0) + [18O]2 1.654e-19 1.656e-19 -18.782 -18.781 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.36 -126.22 -2.86 [13C]H4 + [13C]H4(g) -123.11 -125.97 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.27 -20.77 -1.50 [14C][18O]2 - [14C]H4(g) -133.77 -136.63 -2.86 [14C]H4 + [14C]H4(g) -133.52 -136.38 -2.86 [14C]H4 [14C]O2(g) -13.90 -15.37 -1.47 [14C]O2 [14C]O[18O](g) -16.28 -18.07 -1.79 [14C]O[18O] - [18O]2(g) -16.37 -18.66 -2.29 [18O]2 + [18O]2(g) -16.49 -18.78 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -31302,14 +31292,14 @@ O(0) 1.113e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.40 -124.26 -2.86 CH4 + CH4(g) -121.15 -124.01 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.41 -39.56 -3.15 H2 + H2(g) -36.35 -39.50 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.36 -13.26 -2.89 O2 - O[18O](g) -13.06 -15.96 -2.89 O[18O] + O2(g) -10.49 -13.38 -2.89 O2 + O[18O](g) -13.19 -16.08 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -31363,7 +31353,7 @@ Calcite 4.06e-03 Ca[13C]O[18O]2(s) 5.60e-10 6.93e-11 1.38e-07 Ca[13C][18O]3(s) 3.83e-13 4.74e-14 9.45e-11 Ca[14C]O3(s) 1.65e-15 1.26e-16 4.06e-13 - Ca[14C]O2[18O](s) 1.01e-17 7.78e-19 2.50e-15 + Ca[14C]O2[18O](s) 1.02e-17 7.78e-19 2.50e-15 Ca[14C]O[18O]2(s) 2.08e-20 1.60e-21 5.14e-18 Ca[14C][18O]3(s) 1.43e-23 1.09e-24 3.51e-21 @@ -31373,23 +31363,23 @@ Calcite 4.06e-03 R(18O) 1.99519e-03 -4.9944 permil R(13C) 1.10829e-02 -8.7063 permil - R(14C) 4.10592e-13 34.918 pmc + R(14C) 4.10595e-13 34.918 pmc R(18O) H2O(l) 1.99518e-03 -4.9959 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.012 permil R(18O) O2(aq) 1.99518e-03 -4.9959 permil R(13C) CO2(aq) 1.10035e-02 -15.801 permil - R(14C) CO2(aq) 4.04732e-13 34.419 pmc + R(14C) CO2(aq) 4.04734e-13 34.419 pmc R(18O) CO2(aq) 2.07915e-03 36.878 permil R(18O) HCO3- 1.99518e-03 -4.9959 permil R(13C) HCO3- 1.10993e-02 -7.2382 permil - R(14C) HCO3- 4.11805e-13 35.021 pmc + R(14C) HCO3- 4.11807e-13 35.021 pmc R(18O) CO3-2 1.99518e-03 -4.9959 permil R(13C) CO3-2 1.10833e-02 -8.6629 permil - R(14C) CO3-2 4.10624e-13 34.92 pmc + R(14C) CO3-2 4.10626e-13 34.921 pmc R(18O) Calcite 2.05262e-03 23.65 permil R(13C) Calcite 1.11213e-02 -5.2719 permil - R(14C) Calcite 4.13438e-13 35.16 pmc + R(14C) Calcite 4.13440e-13 35.16 pmc --------------------------------Isotope Alphas--------------------------------- @@ -31399,12 +31389,12 @@ Calcite 4.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2669e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2532e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5905e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5379e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -31424,14 +31414,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.231 Adjusted to redox equilibrium + pe = 11.219 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -31446,24 +31436,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.361 -124.361 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.262 -124.261 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -31471,81 +31461,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.053e-08 6.062e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.157e-40 - H2 2.579e-40 2.583e-40 -39.589 -39.588 0.001 (0) -O(0) 1.248e-13 - O2 6.213e-14 6.224e-14 -13.207 -13.206 0.001 (0) - O[18O] 2.479e-16 2.483e-16 -15.606 -15.605 0.001 (0) +H(0) 5.462e-40 + H2 2.731e-40 2.736e-40 -39.564 -39.563 0.001 (0) +O(0) 1.112e-13 + O2 5.539e-14 5.548e-14 -13.257 -13.256 0.001 (0) + O[18O] 2.210e-16 2.214e-16 -15.656 -15.655 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.320 -126.319 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.220 -126.219 0.001 (0) [13C](4) 6.473e-05 H[13C]O3- 5.221e-05 4.776e-05 -4.282 -4.321 -0.039 (0) [13C]O2 1.096e-05 1.098e-05 -4.960 -4.960 0.001 (0) CaH[13C]O3+ 1.102e-06 1.011e-06 -5.958 -5.995 -0.037 (0) H[13C]O2[18O]- 1.042e-07 9.530e-08 -6.982 -7.021 -0.039 (0) - H[13C]O[18O]O- 1.042e-07 9.530e-08 -6.982 -7.021 -0.039 (0) H[13C][18O]O2- 1.042e-07 9.530e-08 -6.982 -7.021 -0.039 (0) + H[13C]O[18O]O- 1.042e-07 9.530e-08 -6.982 -7.021 -0.039 (0) Ca[13C]O3 6.053e-08 6.062e-08 -7.218 -7.217 0.001 (0) [13C]O[18O] 4.557e-08 4.564e-08 -7.341 -7.341 0.001 (0) [13C]O3-2 3.105e-08 2.175e-08 -7.508 -7.663 -0.155 (0) - CaH[13C]O2[18O]+ 2.200e-09 2.018e-09 -8.658 -8.695 -0.037 (0) CaH[13C]O[18O]O+ 2.200e-09 2.018e-09 -8.658 -8.695 -0.037 (0) CaH[13C][18O]O2+ 2.200e-09 2.018e-09 -8.658 -8.695 -0.037 (0) + CaH[13C]O2[18O]+ 2.200e-09 2.018e-09 -8.658 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.623e-10 3.629e-10 -9.441 -9.440 0.001 (0) - H[13C]O[18O]2- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) H[13C][18O]O[18O]- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]2O- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) + H[13C]O[18O]2- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.858e-10 1.302e-10 -9.731 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.754 -136.753 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.654 -136.654 0.001 (0) [14C](4) 2.398e-15 - H[14C]O3- 1.937e-15 1.772e-15 -14.713 -14.752 -0.039 (0) + H[14C]O3- 1.937e-15 1.772e-15 -14.713 -14.751 -0.039 (0) [14C]O2 4.031e-16 4.037e-16 -15.395 -15.394 0.001 (0) CaH[14C]O3+ 4.090e-17 3.752e-17 -16.388 -16.426 -0.037 (0) - H[14C]O2[18O]- 3.865e-18 3.536e-18 -17.413 -17.452 -0.039 (0) - H[14C]O[18O]O- 3.865e-18 3.536e-18 -17.413 -17.452 -0.039 (0) H[14C][18O]O2- 3.865e-18 3.536e-18 -17.413 -17.452 -0.039 (0) + H[14C]O[18O]O- 3.865e-18 3.536e-18 -17.413 -17.452 -0.039 (0) + H[14C]O2[18O]- 3.865e-18 3.536e-18 -17.413 -17.452 -0.039 (0) Ca[14C]O3 2.242e-18 2.246e-18 -17.649 -17.649 0.001 (0) [14C]O[18O] 1.676e-18 1.679e-18 -17.776 -17.775 0.001 (0) [14C]O3-2 1.150e-18 8.058e-19 -17.939 -18.094 -0.155 (0) CaH[14C]O2[18O]+ 8.161e-20 7.486e-20 -19.088 -19.126 -0.037 (0) - CaH[14C]O[18O]O+ 8.161e-20 7.486e-20 -19.088 -19.126 -0.037 (0) CaH[14C][18O]O2+ 8.161e-20 7.486e-20 -19.088 -19.126 -0.037 (0) + CaH[14C]O[18O]O+ 8.161e-20 7.486e-20 -19.088 -19.126 -0.037 (0) Ca[14C]O2[18O] 1.342e-20 1.344e-20 -19.872 -19.871 0.001 (0) - H[14C]O[18O]2- 7.711e-21 7.054e-21 -20.113 -20.152 -0.039 (0) - H[14C][18O]2O- 7.711e-21 7.054e-21 -20.113 -20.152 -0.039 (0) - H[14C][18O]O[18O]- 7.711e-21 7.054e-21 -20.113 -20.152 -0.039 (0) + H[14C][18O]O[18O]- 7.711e-21 7.055e-21 -20.113 -20.152 -0.039 (0) + H[14C]O[18O]2- 7.711e-21 7.055e-21 -20.113 -20.152 -0.039 (0) + H[14C][18O]2O- 7.711e-21 7.055e-21 -20.113 -20.152 -0.039 (0) [14C]O2[18O]-2 6.885e-21 4.823e-21 -20.162 -20.317 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.484e-16 - O[18O] 2.479e-16 2.483e-16 -15.606 -15.605 0.001 (0) - [18O]2 2.473e-19 2.477e-19 -18.607 -18.606 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.215e-16 + O[18O] 2.210e-16 2.214e-16 -15.656 -15.655 0.001 (0) + [18O]2 2.205e-19 2.209e-19 -18.657 -18.656 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.46 -126.32 -2.86 [13C]H4 + [13C]H4(g) -123.36 -126.22 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.29 -20.79 -1.50 [14C][18O]2 - [14C]H4(g) -133.89 -136.75 -2.86 [14C]H4 + [14C]H4(g) -133.79 -136.65 -2.86 [14C]H4 [14C]O2(g) -13.93 -15.39 -1.47 [14C]O2 [14C]O[18O](g) -16.31 -18.09 -1.79 [14C]O[18O] - [18O]2(g) -16.32 -18.61 -2.29 [18O]2 + [18O]2(g) -16.37 -18.66 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -31559,14 +31549,14 @@ O(0) 1.248e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.50 -124.36 -2.86 CH4 + CH4(g) -121.40 -124.26 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.44 -39.59 -3.15 H2 + H2(g) -36.41 -39.56 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.31 -13.21 -2.89 O2 - O[18O](g) -13.01 -15.91 -2.89 O[18O] + O2(g) -10.36 -13.26 -2.89 O2 + O[18O](g) -13.06 -15.96 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -31630,23 +31620,23 @@ Calcite 4.56e-03 R(18O) 1.99519e-03 -4.9943 permil R(13C) 1.10868e-02 -8.3553 permil - R(14C) 3.90860e-13 33.24 pmc + R(14C) 3.90862e-13 33.24 pmc R(18O) H2O(l) 1.99518e-03 -4.9958 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.012 permil R(18O) O2(aq) 1.99518e-03 -4.9958 permil R(13C) CO2(aq) 1.10074e-02 -15.452 permil - R(14C) CO2(aq) 3.85281e-13 32.765 pmc + R(14C) CO2(aq) 3.85284e-13 32.765 pmc R(18O) CO2(aq) 2.07915e-03 36.878 permil R(18O) HCO3- 1.99518e-03 -4.9958 permil R(13C) HCO3- 1.11032e-02 -6.8866 permil - R(14C) HCO3- 3.92014e-13 33.338 pmc + R(14C) HCO3- 3.92017e-13 33.338 pmc R(18O) CO3-2 1.99518e-03 -4.9958 permil R(13C) CO3-2 1.10873e-02 -8.3119 permil - R(14C) CO3-2 3.90890e-13 33.242 pmc + R(14C) CO3-2 3.90893e-13 33.242 pmc R(18O) Calcite 2.05262e-03 23.65 permil R(13C) Calcite 1.11252e-02 -4.9196 permil - R(14C) Calcite 3.93569e-13 33.47 pmc + R(14C) Calcite 3.93571e-13 33.47 pmc --------------------------------Isotope Alphas--------------------------------- @@ -31656,12 +31646,12 @@ Calcite 4.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2405e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.258e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 4.4409e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6779e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6883e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -31681,14 +31671,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.211 Adjusted to redox equilibrium + pe = 11.204 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -31703,14 +31693,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.201 -124.201 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.145 -124.144 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -31718,9 +31708,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -31728,50 +31718,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.103e-06 1.012e-06 -5.957 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.055e-08 6.065e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.655e-40 - H2 2.828e-40 2.832e-40 -39.549 -39.548 0.001 (0) -O(0) 1.038e-13 - O2 5.167e-14 5.176e-14 -13.287 -13.286 0.001 (0) - O[18O] 2.062e-16 2.065e-16 -15.686 -15.685 0.001 (0) +H(0) 5.841e-40 + H2 2.920e-40 2.925e-40 -39.535 -39.534 0.001 (0) +O(0) 9.726e-14 + O2 4.844e-14 4.852e-14 -13.315 -13.314 0.001 (0) + O[18O] 1.933e-16 1.936e-16 -15.714 -15.713 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.160 -126.159 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.103 -126.103 0.001 (0) [13C](4) 6.475e-05 H[13C]O3- 5.223e-05 4.778e-05 -4.282 -4.321 -0.039 (0) [13C]O2 1.096e-05 1.098e-05 -4.960 -4.959 0.001 (0) CaH[13C]O3+ 1.103e-06 1.012e-06 -5.957 -5.995 -0.037 (0) - H[13C]O2[18O]- 1.042e-07 9.533e-08 -6.982 -7.021 -0.039 (0) - H[13C]O[18O]O- 1.042e-07 9.533e-08 -6.982 -7.021 -0.039 (0) H[13C][18O]O2- 1.042e-07 9.533e-08 -6.982 -7.021 -0.039 (0) + H[13C]O[18O]O- 1.042e-07 9.533e-08 -6.982 -7.021 -0.039 (0) + H[13C]O2[18O]- 1.042e-07 9.533e-08 -6.982 -7.021 -0.039 (0) Ca[13C]O3 6.055e-08 6.065e-08 -7.218 -7.217 0.001 (0) [13C]O[18O] 4.558e-08 4.566e-08 -7.341 -7.340 0.001 (0) [13C]O3-2 3.106e-08 2.176e-08 -7.508 -7.662 -0.155 (0) + CaH[13C][18O]O2+ 2.200e-09 2.019e-09 -8.657 -8.695 -0.037 (0) CaH[13C]O2[18O]+ 2.200e-09 2.019e-09 -8.657 -8.695 -0.037 (0) CaH[13C]O[18O]O+ 2.200e-09 2.019e-09 -8.657 -8.695 -0.037 (0) - CaH[13C][18O]O2+ 2.200e-09 2.019e-09 -8.657 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.624e-10 3.630e-10 -9.441 -9.440 0.001 (0) - H[13C]O[18O]2- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) H[13C][18O]O[18O]- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]2O- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) + H[13C]O[18O]2- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.859e-10 1.302e-10 -9.731 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.615 -136.615 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.559 -136.559 0.001 (0) [14C](4) 2.283e-15 H[14C]O3- 1.844e-15 1.687e-15 -14.734 -14.773 -0.039 (0) [14C]O2 3.837e-16 3.843e-16 -15.416 -15.415 0.001 (0) CaH[14C]O3+ 3.894e-17 3.572e-17 -16.410 -16.447 -0.037 (0) - H[14C]O2[18O]- 3.679e-18 3.366e-18 -17.434 -17.473 -0.039 (0) - H[14C]O[18O]O- 3.679e-18 3.366e-18 -17.434 -17.473 -0.039 (0) H[14C][18O]O2- 3.679e-18 3.366e-18 -17.434 -17.473 -0.039 (0) + H[14C]O[18O]O- 3.679e-18 3.366e-18 -17.434 -17.473 -0.039 (0) + H[14C]O2[18O]- 3.679e-18 3.366e-18 -17.434 -17.473 -0.039 (0) Ca[14C]O3 2.135e-18 2.138e-18 -17.671 -17.670 0.001 (0) [14C]O[18O] 1.595e-18 1.598e-18 -17.797 -17.796 0.001 (0) [14C]O3-2 1.095e-18 7.671e-19 -17.961 -18.115 -0.155 (0) CaH[14C]O2[18O]+ 7.769e-20 7.127e-20 -19.110 -19.147 -0.037 (0) - CaH[14C]O[18O]O+ 7.769e-20 7.127e-20 -19.110 -19.147 -0.037 (0) CaH[14C][18O]O2+ 7.769e-20 7.127e-20 -19.110 -19.147 -0.037 (0) + CaH[14C]O[18O]O+ 7.769e-20 7.127e-20 -19.110 -19.147 -0.037 (0) Ca[14C]O2[18O] 1.278e-20 1.280e-20 -19.894 -19.893 0.001 (0) H[14C]O[18O]2- 7.340e-21 6.715e-21 -20.134 -20.173 -0.039 (0) H[14C][18O]2O- 7.340e-21 6.715e-21 -20.134 -20.173 -0.039 (0) @@ -31780,29 +31770,29 @@ O(0) 1.038e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.066e-16 - O[18O] 2.062e-16 2.065e-16 -15.686 -15.685 0.001 (0) - [18O]2 2.057e-19 2.060e-19 -18.687 -18.686 0.001 (0) +[18O](0) 1.937e-16 + O[18O] 1.933e-16 1.936e-16 -15.714 -15.713 0.001 (0) + [18O]2 1.928e-19 1.931e-19 -18.715 -18.714 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.30 -126.16 -2.86 [13C]H4 + [13C]H4(g) -123.24 -126.10 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.31 -20.82 -1.50 [14C][18O]2 - [14C]H4(g) -133.75 -136.61 -2.86 [14C]H4 + [14C]H4(g) -133.70 -136.56 -2.86 [14C]H4 [14C]O2(g) -13.95 -15.42 -1.47 [14C]O2 [14C]O[18O](g) -16.33 -18.12 -1.79 [14C]O[18O] - [18O]2(g) -16.40 -18.69 -2.29 [18O]2 + [18O]2(g) -16.42 -18.71 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -31816,14 +31806,14 @@ O(0) 1.038e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.34 -124.20 -2.86 CH4 + CH4(g) -121.28 -124.14 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.40 -39.55 -3.15 H2 + H2(g) -36.38 -39.53 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.39 -13.29 -2.89 O2 - O[18O](g) -13.09 -15.99 -2.89 O[18O] + O2(g) -10.42 -13.31 -2.89 O2 + O[18O](g) -13.12 -16.01 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -31887,23 +31877,23 @@ Calcite 5.06e-03 R(18O) 1.99519e-03 -4.9941 permil R(13C) 1.10904e-02 -8.0364 permil - R(14C) 3.72937e-13 31.715 pmc + R(14C) 3.72940e-13 31.716 pmc R(18O) H2O(l) 1.99518e-03 -4.9957 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.012 permil R(18O) O2(aq) 1.99518e-03 -4.9957 permil R(13C) CO2(aq) 1.10110e-02 -15.135 permil - R(14C) CO2(aq) 3.67615e-13 31.263 pmc + R(14C) CO2(aq) 3.67617e-13 31.263 pmc R(18O) CO2(aq) 2.07915e-03 36.878 permil R(18O) HCO3- 1.99518e-03 -4.9957 permil R(13C) HCO3- 1.11068e-02 -6.5673 permil - R(14C) HCO3- 3.74039e-13 31.809 pmc + R(14C) HCO3- 3.74041e-13 31.809 pmc R(18O) CO3-2 1.99518e-03 -4.9957 permil R(13C) CO3-2 1.10908e-02 -7.993 permil - R(14C) CO3-2 3.72966e-13 31.718 pmc + R(14C) CO3-2 3.72969e-13 31.718 pmc R(18O) Calcite 2.05262e-03 23.651 permil R(13C) Calcite 1.11288e-02 -4.5996 permil - R(14C) Calcite 3.75522e-13 31.935 pmc + R(14C) Calcite 3.75525e-13 31.935 pmc --------------------------------Isotope Alphas--------------------------------- @@ -31913,12 +31903,12 @@ Calcite 5.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2669e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2523e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6164e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6979e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -31938,14 +31928,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.217 Adjusted to redox equilibrium + pe = 11.175 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -31960,24 +31950,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.249 -124.249 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.915 -123.914 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -31985,23 +31975,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.103e-06 1.012e-06 -5.957 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.057e-08 6.067e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.500e-40 - H2 2.750e-40 2.755e-40 -39.561 -39.560 0.001 (0) -O(0) 1.097e-13 - O2 5.462e-14 5.471e-14 -13.263 -13.262 0.001 (0) - O[18O] 2.180e-16 2.183e-16 -15.662 -15.661 0.001 (0) +H(0) 6.668e-40 + H2 3.334e-40 3.339e-40 -39.477 -39.476 0.001 (0) +O(0) 7.464e-14 + O2 3.717e-14 3.723e-14 -13.430 -13.429 0.001 (0) + O[18O] 1.483e-16 1.486e-16 -15.829 -15.828 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.208 -126.207 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.873 -125.873 0.001 (0) [13C](4) 6.477e-05 H[13C]O3- 5.224e-05 4.780e-05 -4.282 -4.321 -0.039 (0) [13C]O2 1.097e-05 1.098e-05 -4.960 -4.959 0.001 (0) CaH[13C]O3+ 1.103e-06 1.012e-06 -5.957 -5.995 -0.037 (0) - H[13C]O2[18O]- 1.042e-07 9.536e-08 -6.982 -7.021 -0.039 (0) H[13C]O[18O]O- 1.042e-07 9.536e-08 -6.982 -7.021 -0.039 (0) + H[13C]O2[18O]- 1.042e-07 9.536e-08 -6.982 -7.021 -0.039 (0) H[13C][18O]O2- 1.042e-07 9.536e-08 -6.982 -7.021 -0.039 (0) Ca[13C]O3 6.057e-08 6.067e-08 -7.218 -7.217 0.001 (0) [13C]O[18O] 4.560e-08 4.567e-08 -7.341 -7.340 0.001 (0) @@ -32010,56 +32000,56 @@ O(0) 1.097e-13 CaH[13C]O[18O]O+ 2.201e-09 2.019e-09 -8.657 -8.695 -0.037 (0) CaH[13C][18O]O2+ 2.201e-09 2.019e-09 -8.657 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.625e-10 3.631e-10 -9.441 -9.440 0.001 (0) - H[13C]O[18O]2- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) H[13C][18O]O[18O]- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]2O- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) + H[13C]O[18O]2- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.860e-10 1.303e-10 -9.731 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.684 -136.683 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.350 -136.349 0.001 (0) [14C](4) 2.178e-15 H[14C]O3- 1.759e-15 1.610e-15 -14.755 -14.793 -0.039 (0) [14C]O2 3.661e-16 3.667e-16 -15.436 -15.436 0.001 (0) CaH[14C]O3+ 3.715e-17 3.408e-17 -16.430 -16.467 -0.037 (0) - H[14C]O2[18O]- 3.510e-18 3.211e-18 -17.455 -17.493 -0.039 (0) - H[14C]O[18O]O- 3.510e-18 3.211e-18 -17.455 -17.493 -0.039 (0) H[14C][18O]O2- 3.510e-18 3.211e-18 -17.455 -17.493 -0.039 (0) + H[14C]O[18O]O- 3.510e-18 3.211e-18 -17.455 -17.493 -0.039 (0) + H[14C]O2[18O]- 3.510e-18 3.211e-18 -17.455 -17.493 -0.039 (0) Ca[14C]O3 2.037e-18 2.040e-18 -17.691 -17.690 0.001 (0) [14C]O[18O] 1.522e-18 1.525e-18 -17.817 -17.817 0.001 (0) [14C]O3-2 1.045e-18 7.319e-19 -17.981 -18.136 -0.155 (0) - CaH[14C]O2[18O]+ 7.413e-20 6.800e-20 -19.130 -19.168 -0.037 (0) - CaH[14C]O[18O]O+ 7.413e-20 6.800e-20 -19.130 -19.168 -0.037 (0) - CaH[14C][18O]O2+ 7.413e-20 6.800e-20 -19.130 -19.168 -0.037 (0) + CaH[14C]O2[18O]+ 7.413e-20 6.800e-20 -19.130 -19.167 -0.037 (0) + CaH[14C][18O]O2+ 7.413e-20 6.800e-20 -19.130 -19.167 -0.037 (0) + CaH[14C]O[18O]O+ 7.413e-20 6.800e-20 -19.130 -19.167 -0.037 (0) Ca[14C]O2[18O] 1.219e-20 1.221e-20 -19.914 -19.913 0.001 (0) - H[14C]O[18O]2- 7.004e-21 6.407e-21 -20.155 -20.193 -0.039 (0) - H[14C][18O]2O- 7.004e-21 6.407e-21 -20.155 -20.193 -0.039 (0) - H[14C][18O]O[18O]- 7.004e-21 6.407e-21 -20.155 -20.193 -0.039 (0) + H[14C][18O]2O- 7.004e-21 6.408e-21 -20.155 -20.193 -0.039 (0) + H[14C][18O]O[18O]- 7.004e-21 6.408e-21 -20.155 -20.193 -0.039 (0) + H[14C]O[18O]2- 7.004e-21 6.408e-21 -20.155 -20.193 -0.039 (0) [14C]O2[18O]-2 6.254e-21 4.381e-21 -20.204 -20.358 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.184e-16 - O[18O] 2.180e-16 2.183e-16 -15.662 -15.661 0.001 (0) - [18O]2 2.174e-19 2.178e-19 -18.663 -18.662 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.486e-16 + O[18O] 1.483e-16 1.486e-16 -15.829 -15.828 0.001 (0) + [18O]2 1.480e-19 1.482e-19 -18.830 -18.829 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.35 -126.21 -2.86 [13C]H4 + [13C]H4(g) -123.01 -125.87 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.33 -20.84 -1.50 [14C][18O]2 - [14C]H4(g) -133.82 -136.68 -2.86 [14C]H4 + [14C]H4(g) -133.49 -136.35 -2.86 [14C]H4 [14C]O2(g) -13.97 -15.44 -1.47 [14C]O2 [14C]O[18O](g) -16.35 -18.14 -1.79 [14C]O[18O] - [18O]2(g) -16.37 -18.66 -2.29 [18O]2 + [18O]2(g) -16.54 -18.83 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -32073,14 +32063,14 @@ O(0) 1.097e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.39 -124.25 -2.86 CH4 + CH4(g) -121.05 -123.91 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.41 -39.56 -3.15 H2 + H2(g) -36.33 -39.48 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.37 -13.26 -2.89 O2 - O[18O](g) -13.07 -15.96 -2.89 O[18O] + O2(g) -10.54 -13.43 -2.89 O2 + O[18O](g) -13.24 -16.13 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -32144,23 +32134,23 @@ Calcite 5.56e-03 R(18O) 1.99519e-03 -4.994 permil R(13C) 1.10936e-02 -7.7455 permil - R(14C) 3.56587e-13 30.325 pmc + R(14C) 3.56589e-13 30.325 pmc R(18O) H2O(l) 1.99518e-03 -4.9955 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.012 permil R(18O) O2(aq) 1.99518e-03 -4.9955 permil R(13C) CO2(aq) 1.10142e-02 -14.847 permil - R(14C) CO2(aq) 3.51497e-13 29.892 pmc + R(14C) CO2(aq) 3.51499e-13 29.892 pmc R(18O) CO2(aq) 2.07915e-03 36.878 permil R(18O) HCO3- 1.99518e-03 -4.9955 permil R(13C) HCO3- 1.11100e-02 -6.2759 permil - R(14C) HCO3- 3.57640e-13 30.414 pmc + R(14C) HCO3- 3.57642e-13 30.415 pmc R(18O) CO3-2 1.99518e-03 -4.9955 permil R(13C) CO3-2 1.10941e-02 -7.702 permil - R(14C) CO3-2 3.56614e-13 30.327 pmc + R(14C) CO3-2 3.56616e-13 30.327 pmc R(18O) Calcite 2.05262e-03 23.651 permil R(13C) Calcite 1.11320e-02 -4.3077 permil - R(14C) Calcite 3.59058e-13 30.535 pmc + R(14C) Calcite 3.59060e-13 30.535 pmc --------------------------------Isotope Alphas--------------------------------- @@ -32170,12 +32160,12 @@ Calcite 5.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2466e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2647e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6591e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6028e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -32195,14 +32185,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.241 Adjusted to redox equilibrium + pe = 11.216 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -32217,14 +32207,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.437 -124.436 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.238 -124.237 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -32232,9 +32222,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -32242,81 +32232,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.104e-06 1.012e-06 -5.957 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.058e-08 6.068e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.937e-40 - H2 2.468e-40 2.473e-40 -39.608 -39.607 0.001 (0) -O(0) 1.361e-13 - O2 6.780e-14 6.791e-14 -13.169 -13.168 0.001 (0) - O[18O] 2.706e-16 2.710e-16 -15.568 -15.567 0.001 (0) +H(0) 5.538e-40 + H2 2.769e-40 2.774e-40 -39.558 -39.557 0.001 (0) +O(0) 1.082e-13 + O2 5.388e-14 5.397e-14 -13.269 -13.268 0.001 (0) + O[18O] 2.150e-16 2.154e-16 -15.668 -15.667 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.395 -126.395 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.196 -126.195 0.001 (0) [13C](4) 6.479e-05 H[13C]O3- 5.226e-05 4.781e-05 -4.282 -4.320 -0.039 (0) [13C]O2 1.097e-05 1.099e-05 -4.960 -4.959 0.001 (0) CaH[13C]O3+ 1.104e-06 1.012e-06 -5.957 -5.995 -0.037 (0) H[13C]O2[18O]- 1.043e-07 9.539e-08 -6.982 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.043e-07 9.539e-08 -6.982 -7.020 -0.039 (0) H[13C][18O]O2- 1.043e-07 9.539e-08 -6.982 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.043e-07 9.539e-08 -6.982 -7.020 -0.039 (0) Ca[13C]O3 6.058e-08 6.068e-08 -7.218 -7.217 0.001 (0) [13C]O[18O] 4.561e-08 4.569e-08 -7.341 -7.340 0.001 (0) [13C]O3-2 3.108e-08 2.177e-08 -7.508 -7.662 -0.155 (0) - CaH[13C]O2[18O]+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) CaH[13C]O[18O]O+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) CaH[13C][18O]O2+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) + CaH[13C]O2[18O]+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.626e-10 3.632e-10 -9.441 -9.440 0.001 (0) - H[13C]O[18O]2- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) H[13C][18O]O[18O]- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) + H[13C][18O]2O- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) + H[13C]O[18O]2- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.860e-10 1.303e-10 -9.730 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.891 -136.891 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.692 -136.691 0.001 (0) [14C](4) 2.083e-15 H[14C]O3- 1.682e-15 1.539e-15 -14.774 -14.813 -0.039 (0) [14C]O2 3.500e-16 3.506e-16 -15.456 -15.455 0.001 (0) CaH[14C]O3+ 3.552e-17 3.259e-17 -16.449 -16.487 -0.037 (0) - H[14C]O2[18O]- 3.356e-18 3.071e-18 -17.474 -17.513 -0.039 (0) - H[14C]O[18O]O- 3.356e-18 3.071e-18 -17.474 -17.513 -0.039 (0) H[14C][18O]O2- 3.356e-18 3.071e-18 -17.474 -17.513 -0.039 (0) + H[14C]O[18O]O- 3.356e-18 3.071e-18 -17.474 -17.513 -0.039 (0) + H[14C]O2[18O]- 3.356e-18 3.071e-18 -17.474 -17.513 -0.039 (0) Ca[14C]O3 1.947e-18 1.951e-18 -17.711 -17.710 0.001 (0) [14C]O[18O] 1.456e-18 1.458e-18 -17.837 -17.836 0.001 (0) [14C]O3-2 9.990e-19 6.998e-19 -18.000 -18.155 -0.155 (0) - CaH[14C]O2[18O]+ 7.088e-20 6.502e-20 -19.150 -19.187 -0.037 (0) - CaH[14C]O[18O]O+ 7.088e-20 6.502e-20 -19.150 -19.187 -0.037 (0) - CaH[14C][18O]O2+ 7.088e-20 6.502e-20 -19.150 -19.187 -0.037 (0) + CaH[14C]O2[18O]+ 7.088e-20 6.502e-20 -19.149 -19.187 -0.037 (0) + CaH[14C][18O]O2+ 7.088e-20 6.502e-20 -19.149 -19.187 -0.037 (0) + CaH[14C]O[18O]O+ 7.088e-20 6.502e-20 -19.149 -19.187 -0.037 (0) Ca[14C]O2[18O] 1.166e-20 1.168e-20 -19.933 -19.933 0.001 (0) + H[14C][18O]O[18O]- 6.697e-21 6.127e-21 -20.174 -20.213 -0.039 (0) H[14C]O[18O]2- 6.697e-21 6.127e-21 -20.174 -20.213 -0.039 (0) H[14C][18O]2O- 6.697e-21 6.127e-21 -20.174 -20.213 -0.039 (0) - H[14C][18O]O[18O]- 6.697e-21 6.127e-21 -20.174 -20.213 -0.039 (0) [14C]O2[18O]-2 5.980e-21 4.189e-21 -20.223 -20.378 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.711e-16 - O[18O] 2.706e-16 2.710e-16 -15.568 -15.567 0.001 (0) - [18O]2 2.699e-19 2.703e-19 -18.569 -18.568 0.001 (0) +[18O](0) 2.154e-16 + O[18O] 2.150e-16 2.154e-16 -15.668 -15.667 0.001 (0) + [18O]2 2.145e-19 2.149e-19 -18.669 -18.668 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.53 -126.39 -2.86 [13C]H4 + [13C]H4(g) -123.33 -126.19 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.35 -20.86 -1.50 [14C][18O]2 - [14C]H4(g) -134.03 -136.89 -2.86 [14C]H4 + [14C]H4(g) -133.83 -136.69 -2.86 [14C]H4 [14C]O2(g) -13.99 -15.46 -1.47 [14C]O2 [14C]O[18O](g) -16.37 -18.16 -1.79 [14C]O[18O] - [18O]2(g) -16.28 -18.57 -2.29 [18O]2 + [18O]2(g) -16.38 -18.67 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -32330,14 +32320,14 @@ O(0) 1.361e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.58 -124.44 -2.86 CH4 + CH4(g) -121.38 -124.24 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.46 -39.61 -3.15 H2 + H2(g) -36.41 -39.56 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.28 -13.17 -2.89 O2 - O[18O](g) -12.98 -15.87 -2.89 O[18O] + O2(g) -10.38 -13.27 -2.89 O2 + O[18O](g) -13.08 -15.97 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -32401,23 +32391,23 @@ Calcite 6.06e-03 R(18O) 1.99519e-03 -4.9939 permil R(13C) 1.10966e-02 -7.4789 permil - R(14C) 3.41609e-13 29.051 pmc + R(14C) 3.41611e-13 29.051 pmc R(18O) H2O(l) 1.99518e-03 -4.9954 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.012 permil R(18O) O2(aq) 1.99518e-03 -4.9954 permil R(13C) CO2(aq) 1.10172e-02 -14.582 permil - R(14C) CO2(aq) 3.36734e-13 28.637 pmc + R(14C) CO2(aq) 3.36736e-13 28.637 pmc R(18O) CO2(aq) 2.07915e-03 36.878 permil R(18O) HCO3- 1.99518e-03 -4.9954 permil R(13C) HCO3- 1.11130e-02 -6.0089 permil - R(14C) HCO3- 3.42618e-13 29.137 pmc + R(14C) HCO3- 3.42620e-13 29.137 pmc R(18O) CO3-2 1.99518e-03 -4.9954 permil R(13C) CO3-2 1.10971e-02 -7.4354 permil - R(14C) CO3-2 3.41636e-13 29.053 pmc + R(14C) CO3-2 3.41638e-13 29.054 pmc R(18O) Calcite 2.05262e-03 23.651 permil R(13C) Calcite 1.11350e-02 -4.0402 permil - R(14C) Calcite 3.43977e-13 29.253 pmc + R(14C) Calcite 3.43979e-13 29.253 pmc --------------------------------Isotope Alphas--------------------------------- @@ -32427,12 +32417,12 @@ Calcite 6.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2469e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2666e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7744e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5854e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -32452,14 +32442,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.269 Adjusted to redox equilibrium + pe = 11.206 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -32474,24 +32464,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.661 -124.661 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.156 -124.156 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -32499,50 +32489,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.104e-06 1.013e-06 -5.957 -5.995 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.060e-08 6.070e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.339e-40 - H2 2.170e-40 2.173e-40 -39.664 -39.663 0.001 (0) -O(0) 1.762e-13 - O2 8.777e-14 8.792e-14 -13.057 -13.056 0.001 (0) - O[18O] 3.502e-16 3.508e-16 -15.456 -15.455 0.001 (0) +H(0) 5.803e-40 + H2 2.901e-40 2.906e-40 -39.537 -39.537 0.001 (0) +O(0) 9.854e-14 + O2 4.907e-14 4.916e-14 -13.309 -13.308 0.001 (0) + O[18O] 1.958e-16 1.961e-16 -15.708 -15.707 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.619 -126.619 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.114 -126.114 0.001 (0) [13C](4) 6.481e-05 H[13C]O3- 5.227e-05 4.782e-05 -4.282 -4.320 -0.039 (0) [13C]O2 1.097e-05 1.099e-05 -4.960 -4.959 0.001 (0) CaH[13C]O3+ 1.104e-06 1.013e-06 -5.957 -5.995 -0.037 (0) - H[13C]O2[18O]- 1.043e-07 9.541e-08 -6.982 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.043e-07 9.541e-08 -6.982 -7.020 -0.039 (0) H[13C][18O]O2- 1.043e-07 9.541e-08 -6.982 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.043e-07 9.541e-08 -6.982 -7.020 -0.039 (0) + H[13C]O2[18O]- 1.043e-07 9.541e-08 -6.982 -7.020 -0.039 (0) Ca[13C]O3 6.060e-08 6.070e-08 -7.218 -7.217 0.001 (0) [13C]O[18O] 4.562e-08 4.570e-08 -7.341 -7.340 0.001 (0) [13C]O3-2 3.109e-08 2.178e-08 -7.507 -7.662 -0.155 (0) + CaH[13C][18O]O2+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) CaH[13C]O2[18O]+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) CaH[13C]O[18O]O+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) - CaH[13C][18O]O2+ 2.202e-09 2.020e-09 -8.657 -8.695 -0.037 (0) Ca[13C]O2[18O] 3.627e-10 3.633e-10 -9.440 -9.440 0.001 (0) - H[13C]O[18O]2- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) - H[13C][18O]2O- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) + H[13C][18O]2O- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) [13C]O2[18O]-2 1.861e-10 1.304e-10 -9.730 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.134 -137.133 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.629 -136.628 0.001 (0) [14C](4) 1.995e-15 H[14C]O3- 1.612e-15 1.474e-15 -14.793 -14.831 -0.039 (0) [14C]O2 3.353e-16 3.359e-16 -15.475 -15.474 0.001 (0) CaH[14C]O3+ 3.403e-17 3.122e-17 -16.468 -16.506 -0.037 (0) - H[14C]O2[18O]- 3.215e-18 2.942e-18 -17.493 -17.531 -0.039 (0) - H[14C]O[18O]O- 3.215e-18 2.942e-18 -17.493 -17.531 -0.039 (0) H[14C][18O]O2- 3.215e-18 2.942e-18 -17.493 -17.531 -0.039 (0) + H[14C]O[18O]O- 3.215e-18 2.942e-18 -17.493 -17.531 -0.039 (0) + H[14C]O2[18O]- 3.215e-18 2.942e-18 -17.493 -17.531 -0.039 (0) Ca[14C]O3 1.866e-18 1.869e-18 -17.729 -17.728 0.001 (0) [14C]O[18O] 1.394e-18 1.397e-18 -17.856 -17.855 0.001 (0) [14C]O3-2 9.570e-19 6.704e-19 -18.019 -18.174 -0.155 (0) CaH[14C]O2[18O]+ 6.790e-20 6.229e-20 -19.168 -19.206 -0.037 (0) - CaH[14C]O[18O]O+ 6.790e-20 6.229e-20 -19.168 -19.206 -0.037 (0) CaH[14C][18O]O2+ 6.790e-20 6.229e-20 -19.168 -19.206 -0.037 (0) + CaH[14C]O[18O]O+ 6.790e-20 6.229e-20 -19.168 -19.206 -0.037 (0) Ca[14C]O2[18O] 1.117e-20 1.119e-20 -19.952 -19.951 0.001 (0) H[14C]O[18O]2- 6.415e-21 5.869e-21 -20.193 -20.231 -0.039 (0) H[14C][18O]2O- 6.415e-21 5.869e-21 -20.193 -20.231 -0.039 (0) @@ -32551,29 +32541,29 @@ O(0) 1.762e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.509e-16 - O[18O] 3.502e-16 3.508e-16 -15.456 -15.455 0.001 (0) - [18O]2 3.494e-19 3.500e-19 -18.457 -18.456 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.962e-16 + O[18O] 1.958e-16 1.961e-16 -15.708 -15.707 0.001 (0) + [18O]2 1.954e-19 1.957e-19 -18.709 -18.708 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.76 -126.62 -2.86 [13C]H4 + [13C]H4(g) -123.25 -126.11 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.37 -20.87 -1.50 [14C][18O]2 - [14C]H4(g) -134.27 -137.13 -2.86 [14C]H4 + [14C]H4(g) -133.77 -136.63 -2.86 [14C]H4 [14C]O2(g) -14.01 -15.47 -1.47 [14C]O2 [14C]O[18O](g) -16.39 -18.17 -1.79 [14C]O[18O] - [18O]2(g) -16.17 -18.46 -2.29 [18O]2 + [18O]2(g) -16.42 -18.71 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -32587,14 +32577,14 @@ O(0) 1.762e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.80 -124.66 -2.86 CH4 + CH4(g) -121.30 -124.16 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.51 -39.66 -3.15 H2 + H2(g) -36.39 -39.54 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.16 -13.06 -2.89 O2 - O[18O](g) -12.86 -15.76 -2.89 O[18O] + O2(g) -10.42 -13.31 -2.89 O2 + O[18O](g) -13.12 -16.01 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -32658,23 +32648,23 @@ Calcite 6.56e-03 R(18O) 1.99519e-03 -4.9937 permil R(13C) 1.10993e-02 -7.2338 permil - R(14C) 3.27839e-13 27.88 pmc + R(14C) 3.27841e-13 27.88 pmc R(18O) H2O(l) 1.99518e-03 -4.9952 permil R(18O) OH- 1.92122e-03 -41.882 permil R(18O) H3O+ 2.04132e-03 18.013 permil R(18O) O2(aq) 1.99518e-03 -4.9952 permil R(13C) CO2(aq) 1.10199e-02 -14.339 permil - R(14C) CO2(aq) 3.23160e-13 27.482 pmc + R(14C) CO2(aq) 3.23162e-13 27.482 pmc R(18O) CO2(aq) 2.07915e-03 36.879 permil R(18O) HCO3- 1.99518e-03 -4.9952 permil R(13C) HCO3- 1.11158e-02 -5.7634 permil - R(14C) HCO3- 3.28808e-13 27.963 pmc + R(14C) HCO3- 3.28810e-13 27.963 pmc R(18O) CO3-2 1.99518e-03 -4.9952 permil R(13C) CO3-2 1.10998e-02 -7.1903 permil - R(14C) CO3-2 3.27865e-13 27.882 pmc + R(14C) CO3-2 3.27867e-13 27.882 pmc R(18O) Calcite 2.05262e-03 23.651 permil R(13C) Calcite 1.11378e-02 -3.7942 permil - R(14C) Calcite 3.30111e-13 28.073 pmc + R(14C) Calcite 3.30114e-13 28.074 pmc --------------------------------Isotope Alphas--------------------------------- @@ -32684,12 +32674,12 @@ Calcite 6.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2711e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2251e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.4409e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -7.6605e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8168e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6954e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -32709,14 +32699,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.264 Adjusted to redox equilibrium + pe = 11.226 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -32731,13 +32721,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.621 -124.621 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.321 -124.321 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -32746,9 +32736,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -32756,23 +32746,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.104e-06 1.013e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.061e-08 6.071e-08 -7.217 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.440e-40 - H2 2.220e-40 2.224e-40 -39.654 -39.653 0.001 (0) -O(0) 1.683e-13 - O2 8.381e-14 8.395e-14 -13.077 -13.076 0.001 (0) - O[18O] 3.344e-16 3.350e-16 -15.476 -15.475 0.001 (0) +H(0) 5.277e-40 + H2 2.638e-40 2.643e-40 -39.579 -39.578 0.001 (0) +O(0) 1.192e-13 + O2 5.935e-14 5.944e-14 -13.227 -13.226 0.001 (0) + O[18O] 2.368e-16 2.372e-16 -15.626 -15.625 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.579 -126.578 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.279 -126.279 0.001 (0) [13C](4) 6.482e-05 H[13C]O3- 5.229e-05 4.783e-05 -4.282 -4.320 -0.039 (0) [13C]O2 1.097e-05 1.099e-05 -4.960 -4.959 0.001 (0) CaH[13C]O3+ 1.104e-06 1.013e-06 -5.957 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.043e-07 9.544e-08 -6.982 -7.020 -0.039 (0) H[13C]O[18O]O- 1.043e-07 9.544e-08 -6.982 -7.020 -0.039 (0) + H[13C]O2[18O]- 1.043e-07 9.544e-08 -6.982 -7.020 -0.039 (0) H[13C][18O]O2- 1.043e-07 9.544e-08 -6.982 -7.020 -0.039 (0) Ca[13C]O3 6.061e-08 6.071e-08 -7.217 -7.217 0.001 (0) [13C]O[18O] 4.563e-08 4.571e-08 -7.341 -7.340 0.001 (0) @@ -32781,56 +32771,56 @@ O(0) 1.683e-13 CaH[13C]O[18O]O+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.628e-10 3.634e-10 -9.440 -9.440 0.001 (0) - H[13C]O[18O]2- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) - H[13C][18O]2O- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) + H[13C][18O]2O- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) [13C]O2[18O]-2 1.861e-10 1.304e-10 -9.730 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.112 -137.111 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.812 -136.811 0.001 (0) [14C](4) 1.915e-15 H[14C]O3- 1.547e-15 1.415e-15 -14.811 -14.849 -0.039 (0) - [14C]O2 3.218e-16 3.223e-16 -15.492 -15.492 0.001 (0) + [14C]O2 3.218e-16 3.224e-16 -15.492 -15.492 0.001 (0) CaH[14C]O3+ 3.266e-17 2.996e-17 -16.486 -16.523 -0.037 (0) - H[14C]O2[18O]- 3.086e-18 2.823e-18 -17.511 -17.549 -0.039 (0) - H[14C]O[18O]O- 3.086e-18 2.823e-18 -17.511 -17.549 -0.039 (0) H[14C][18O]O2- 3.086e-18 2.823e-18 -17.511 -17.549 -0.039 (0) + H[14C]O[18O]O- 3.086e-18 2.823e-18 -17.511 -17.549 -0.039 (0) + H[14C]O2[18O]- 3.086e-18 2.823e-18 -17.511 -17.549 -0.039 (0) Ca[14C]O3 1.790e-18 1.793e-18 -17.747 -17.746 0.001 (0) [14C]O[18O] 1.338e-18 1.340e-18 -17.873 -17.873 0.001 (0) [14C]O3-2 9.185e-19 6.434e-19 -18.037 -18.192 -0.155 (0) - CaH[14C]O2[18O]+ 6.516e-20 5.977e-20 -19.186 -19.223 -0.037 (0) - CaH[14C]O[18O]O+ 6.516e-20 5.977e-20 -19.186 -19.223 -0.037 (0) - CaH[14C][18O]O2+ 6.516e-20 5.977e-20 -19.186 -19.223 -0.037 (0) + CaH[14C]O2[18O]+ 6.516e-20 5.978e-20 -19.186 -19.223 -0.037 (0) + CaH[14C][18O]O2+ 6.516e-20 5.978e-20 -19.186 -19.223 -0.037 (0) + CaH[14C]O[18O]O+ 6.516e-20 5.978e-20 -19.186 -19.223 -0.037 (0) Ca[14C]O2[18O] 1.072e-20 1.073e-20 -19.970 -19.969 0.001 (0) - H[14C]O[18O]2- 6.157e-21 5.633e-21 -20.211 -20.249 -0.039 (0) H[14C][18O]2O- 6.157e-21 5.633e-21 -20.211 -20.249 -0.039 (0) H[14C][18O]O[18O]- 6.157e-21 5.633e-21 -20.211 -20.249 -0.039 (0) + H[14C]O[18O]2- 6.157e-21 5.633e-21 -20.211 -20.249 -0.039 (0) [14C]O2[18O]-2 5.497e-21 3.851e-21 -20.260 -20.414 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.351e-16 - O[18O] 3.344e-16 3.350e-16 -15.476 -15.475 0.001 (0) - [18O]2 3.336e-19 3.342e-19 -18.477 -18.476 0.001 (0) +[18O](0) 2.373e-16 + O[18O] 2.368e-16 2.372e-16 -15.626 -15.625 0.001 (0) + [18O]2 2.362e-19 2.366e-19 -18.627 -18.626 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.72 -126.58 -2.86 [13C]H4 + [13C]H4(g) -123.42 -126.28 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.39 -20.89 -1.50 [14C][18O]2 - [14C]H4(g) -134.25 -137.11 -2.86 [14C]H4 + [14C]H4(g) -133.95 -136.81 -2.86 [14C]H4 [14C]O2(g) -14.02 -15.49 -1.47 [14C]O2 [14C]O[18O](g) -16.40 -18.19 -1.79 [14C]O[18O] - [18O]2(g) -16.19 -18.48 -2.29 [18O]2 + [18O]2(g) -16.34 -18.63 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -32844,14 +32834,14 @@ O(0) 1.683e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.76 -124.62 -2.86 CH4 + CH4(g) -121.46 -124.32 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.50 -39.65 -3.15 H2 + H2(g) -36.43 -39.58 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.18 -13.08 -2.89 O2 - O[18O](g) -12.88 -15.78 -2.89 O[18O] + O2(g) -10.33 -13.23 -2.89 O2 + O[18O](g) -13.03 -15.93 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -32915,23 +32905,23 @@ Calcite 7.06e-03 R(18O) 1.99519e-03 -4.9936 permil R(13C) 1.11019e-02 -7.0076 permil - R(14C) 3.15136e-13 26.8 pmc + R(14C) 3.15138e-13 26.8 pmc R(18O) H2O(l) 1.99518e-03 -4.9951 permil R(18O) OH- 1.92122e-03 -41.882 permil R(18O) H3O+ 2.04132e-03 18.013 permil R(18O) O2(aq) 1.99518e-03 -4.9951 permil R(13C) CO2(aq) 1.10224e-02 -14.114 permil - R(14C) CO2(aq) 3.10639e-13 26.417 pmc + R(14C) CO2(aq) 3.10641e-13 26.418 pmc R(18O) CO2(aq) 2.07915e-03 36.879 permil R(18O) HCO3- 1.99518e-03 -4.9951 permil R(13C) HCO3- 1.11183e-02 -5.537 permil - R(14C) HCO3- 3.16067e-13 26.879 pmc + R(14C) HCO3- 3.16069e-13 26.879 pmc R(18O) CO3-2 1.99518e-03 -4.9951 permil R(13C) CO3-2 1.11023e-02 -6.9641 permil - R(14C) CO3-2 3.15161e-13 26.802 pmc + R(14C) CO3-2 3.15163e-13 26.802 pmc R(18O) Calcite 2.05263e-03 23.651 permil R(13C) Calcite 1.11403e-02 -3.5673 permil - R(14C) Calcite 3.17321e-13 26.986 pmc + R(14C) Calcite 3.17323e-13 26.986 pmc --------------------------------Isotope Alphas--------------------------------- @@ -32941,12 +32931,12 @@ Calcite 7.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2536e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2721e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7503e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6972e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -32966,14 +32956,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.294 Adjusted to redox equilibrium + pe = 11.242 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -32988,24 +32978,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.863 -124.862 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.445 -124.445 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -33013,81 +33003,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.104e-06 1.013e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.063e-08 6.073e-08 -7.217 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.864e-40 - H2 1.932e-40 1.935e-40 -39.714 -39.713 0.001 (0) -O(0) 2.223e-13 - O2 1.107e-13 1.109e-13 -12.956 -12.955 0.001 (0) - O[18O] 4.417e-16 4.424e-16 -15.355 -15.354 0.001 (0) +H(0) 4.914e-40 + H2 2.457e-40 2.461e-40 -39.610 -39.609 0.001 (0) +O(0) 1.374e-13 + O2 6.844e-14 6.856e-14 -13.165 -13.164 0.001 (0) + O[18O] 2.731e-16 2.736e-16 -15.564 -15.563 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.821 -126.820 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.403 -126.402 0.001 (0) [13C](4) 6.484e-05 H[13C]O3- 5.230e-05 4.785e-05 -4.282 -4.320 -0.039 (0) [13C]O2 1.098e-05 1.099e-05 -4.960 -4.959 0.001 (0) CaH[13C]O3+ 1.104e-06 1.013e-06 -5.957 -5.994 -0.037 (0) H[13C]O2[18O]- 1.043e-07 9.546e-08 -6.982 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.043e-07 9.546e-08 -6.982 -7.020 -0.039 (0) H[13C][18O]O2- 1.043e-07 9.546e-08 -6.982 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.043e-07 9.546e-08 -6.982 -7.020 -0.039 (0) Ca[13C]O3 6.063e-08 6.073e-08 -7.217 -7.217 0.001 (0) [13C]O[18O] 4.564e-08 4.572e-08 -7.341 -7.340 0.001 (0) [13C]O3-2 3.110e-08 2.179e-08 -7.507 -7.662 -0.155 (0) - CaH[13C]O2[18O]+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) + CaH[13C]O2[18O]+ 2.203e-09 2.021e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.629e-10 3.635e-10 -9.440 -9.440 0.001 (0) - H[13C]O[18O]2- 2.082e-10 1.905e-10 -9.682 -9.720 -0.039 (0) - H[13C][18O]2O- 2.082e-10 1.905e-10 -9.682 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.082e-10 1.905e-10 -9.682 -9.720 -0.039 (0) + H[13C][18O]2O- 2.082e-10 1.905e-10 -9.682 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.082e-10 1.905e-10 -9.682 -9.720 -0.039 (0) [13C]O2[18O]-2 1.862e-10 1.304e-10 -9.730 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.371 -137.370 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.953 -136.952 0.001 (0) [14C](4) 1.840e-15 H[14C]O3- 1.487e-15 1.360e-15 -14.828 -14.866 -0.039 (0) - [14C]O2 3.093e-16 3.099e-16 -15.510 -15.509 0.001 (0) + [14C]O2 3.094e-16 3.099e-16 -15.510 -15.509 0.001 (0) CaH[14C]O3+ 3.139e-17 2.880e-17 -16.503 -16.541 -0.037 (0) - H[14C]O2[18O]- 2.966e-18 2.714e-18 -17.528 -17.566 -0.039 (0) - H[14C]O[18O]O- 2.966e-18 2.714e-18 -17.528 -17.566 -0.039 (0) H[14C][18O]O2- 2.966e-18 2.714e-18 -17.528 -17.566 -0.039 (0) + H[14C]O[18O]O- 2.966e-18 2.714e-18 -17.528 -17.566 -0.039 (0) + H[14C]O2[18O]- 2.966e-18 2.714e-18 -17.528 -17.566 -0.039 (0) Ca[14C]O3 1.721e-18 1.724e-18 -17.764 -17.763 0.001 (0) [14C]O[18O] 1.286e-18 1.288e-18 -17.891 -17.890 0.001 (0) [14C]O3-2 8.829e-19 6.185e-19 -18.054 -18.209 -0.155 (0) CaH[14C]O2[18O]+ 6.264e-20 5.746e-20 -19.203 -19.241 -0.037 (0) - CaH[14C]O[18O]O+ 6.264e-20 5.746e-20 -19.203 -19.241 -0.037 (0) CaH[14C][18O]O2+ 6.264e-20 5.746e-20 -19.203 -19.241 -0.037 (0) + CaH[14C]O[18O]O+ 6.264e-20 5.746e-20 -19.203 -19.241 -0.037 (0) Ca[14C]O2[18O] 1.030e-20 1.032e-20 -19.987 -19.986 0.001 (0) + H[14C][18O]O[18O]- 5.918e-21 5.414e-21 -20.228 -20.266 -0.039 (0) H[14C]O[18O]2- 5.918e-21 5.414e-21 -20.228 -20.266 -0.039 (0) H[14C][18O]2O- 5.918e-21 5.414e-21 -20.228 -20.266 -0.039 (0) - H[14C][18O]O[18O]- 5.918e-21 5.414e-21 -20.228 -20.266 -0.039 (0) [14C]O2[18O]-2 5.284e-21 3.702e-21 -20.277 -20.432 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.426e-16 - O[18O] 4.417e-16 4.424e-16 -15.355 -15.354 0.001 (0) - [18O]2 4.406e-19 4.413e-19 -18.356 -18.355 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.737e-16 + O[18O] 2.731e-16 2.736e-16 -15.564 -15.563 0.001 (0) + [18O]2 2.725e-19 2.729e-19 -18.565 -18.564 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.96 -126.82 -2.86 [13C]H4 + [13C]H4(g) -123.54 -126.40 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.41 -20.91 -1.50 [14C][18O]2 - [14C]H4(g) -134.51 -137.37 -2.86 [14C]H4 + [14C]H4(g) -134.09 -136.95 -2.86 [14C]H4 [14C]O2(g) -14.04 -15.51 -1.47 [14C]O2 [14C]O[18O](g) -16.42 -18.21 -1.79 [14C]O[18O] - [18O]2(g) -16.06 -18.36 -2.29 [18O]2 + [18O]2(g) -16.27 -18.56 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -33101,14 +33091,14 @@ O(0) 2.223e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.00 -124.86 -2.86 CH4 + CH4(g) -121.58 -124.44 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.56 -39.71 -3.15 H2 + H2(g) -36.46 -39.61 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.06 -12.96 -2.89 O2 - O[18O](g) -12.76 -15.66 -2.89 O[18O] + O2(g) -10.27 -13.16 -2.89 O2 + O[18O](g) -12.97 -15.86 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -33172,23 +33162,23 @@ Calcite 7.56e-03 R(18O) 1.99519e-03 -4.9934 permil R(13C) 1.11042e-02 -6.7983 permil - R(14C) 3.03381e-13 25.8 pmc + R(14C) 3.03383e-13 25.8 pmc R(18O) H2O(l) 1.99518e-03 -4.995 permil R(18O) OH- 1.92122e-03 -41.882 permil R(18O) H3O+ 2.04132e-03 18.013 permil R(18O) O2(aq) 1.99518e-03 -4.995 permil R(13C) CO2(aq) 1.10247e-02 -13.906 permil - R(14C) CO2(aq) 2.99051e-13 25.432 pmc + R(14C) CO2(aq) 2.99053e-13 25.432 pmc R(18O) CO2(aq) 2.07915e-03 36.879 permil R(18O) HCO3- 1.99518e-03 -4.995 permil R(13C) HCO3- 1.11206e-02 -5.3273 permil - R(14C) HCO3- 3.04277e-13 25.876 pmc + R(14C) HCO3- 3.04279e-13 25.877 pmc R(18O) CO3-2 1.99518e-03 -4.995 permil R(13C) CO3-2 1.11047e-02 -6.7548 permil - R(14C) CO3-2 3.03405e-13 25.802 pmc + R(14C) CO3-2 3.03407e-13 25.802 pmc R(18O) Calcite 2.05263e-03 23.651 permil R(13C) Calcite 1.11427e-02 -3.3572 permil - R(14C) Calcite 3.05484e-13 25.979 pmc + R(14C) Calcite 3.05486e-13 25.979 pmc --------------------------------Isotope Alphas--------------------------------- @@ -33198,12 +33188,12 @@ Calcite 7.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2589e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2775e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.9944e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6561e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7398e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -33223,14 +33213,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.302 Adjusted to redox equilibrium + pe = 11.263 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.823e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -33245,14 +33235,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.924 -124.924 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.620 -124.619 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -33260,9 +33250,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -33270,50 +33260,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.105e-06 1.013e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.064e-08 6.074e-08 -7.217 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.730e-40 - H2 1.865e-40 1.868e-40 -39.729 -39.729 0.001 (0) -O(0) 2.386e-13 - O2 1.188e-13 1.190e-13 -12.925 -12.924 0.001 (0) - O[18O] 4.741e-16 4.749e-16 -15.324 -15.323 0.001 (0) +H(0) 4.445e-40 + H2 2.222e-40 2.226e-40 -39.653 -39.652 0.001 (0) +O(0) 1.679e-13 + O2 8.364e-14 8.378e-14 -13.078 -13.077 0.001 (0) + O[18O] 3.338e-16 3.343e-16 -15.477 -15.476 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.882 -126.881 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.577 -126.576 0.001 (0) [13C](4) 6.485e-05 H[13C]O3- 5.231e-05 4.786e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.098e-05 1.100e-05 -4.959 -4.959 0.001 (0) CaH[13C]O3+ 1.105e-06 1.013e-06 -5.957 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.044e-07 9.548e-08 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.044e-07 9.548e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.044e-07 9.548e-08 -6.981 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.044e-07 9.548e-08 -6.981 -7.020 -0.039 (0) + H[13C]O2[18O]- 1.044e-07 9.548e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.064e-08 6.074e-08 -7.217 -7.217 0.001 (0) [13C]O[18O] 4.565e-08 4.573e-08 -7.341 -7.340 0.001 (0) [13C]O3-2 3.111e-08 2.179e-08 -7.507 -7.662 -0.155 (0) + CaH[13C][18O]O2+ 2.204e-09 2.022e-09 -8.657 -8.694 -0.037 (0) CaH[13C]O2[18O]+ 2.204e-09 2.022e-09 -8.657 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.204e-09 2.022e-09 -8.657 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.204e-09 2.022e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.630e-10 3.636e-10 -9.440 -9.439 0.001 (0) - H[13C]O[18O]2- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.862e-10 1.304e-10 -9.730 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.449 -137.448 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.144 -137.143 0.001 (0) [14C](4) 1.772e-15 H[14C]O3- 1.431e-15 1.309e-15 -14.844 -14.883 -0.039 (0) [14C]O2 2.978e-16 2.983e-16 -15.526 -15.525 0.001 (0) CaH[14C]O3+ 3.022e-17 2.772e-17 -16.520 -16.557 -0.037 (0) - H[14C]O2[18O]- 2.856e-18 2.612e-18 -17.544 -17.583 -0.039 (0) - H[14C]O[18O]O- 2.856e-18 2.612e-18 -17.544 -17.583 -0.039 (0) H[14C][18O]O2- 2.856e-18 2.612e-18 -17.544 -17.583 -0.039 (0) + H[14C]O[18O]O- 2.856e-18 2.612e-18 -17.544 -17.583 -0.039 (0) + H[14C]O2[18O]- 2.856e-18 2.612e-18 -17.544 -17.583 -0.039 (0) Ca[14C]O3 1.657e-18 1.660e-18 -17.781 -17.780 0.001 (0) [14C]O[18O] 1.238e-18 1.240e-18 -17.907 -17.906 0.001 (0) [14C]O3-2 8.499e-19 5.954e-19 -18.071 -18.225 -0.155 (0) CaH[14C]O2[18O]+ 6.030e-20 5.532e-20 -19.220 -19.257 -0.037 (0) - CaH[14C]O[18O]O+ 6.030e-20 5.532e-20 -19.220 -19.257 -0.037 (0) CaH[14C][18O]O2+ 6.030e-20 5.532e-20 -19.220 -19.257 -0.037 (0) + CaH[14C]O[18O]O+ 6.030e-20 5.532e-20 -19.220 -19.257 -0.037 (0) Ca[14C]O2[18O] 9.917e-21 9.933e-21 -20.004 -20.003 0.001 (0) H[14C]O[18O]2- 5.697e-21 5.212e-21 -20.244 -20.283 -0.039 (0) H[14C][18O]2O- 5.697e-21 5.212e-21 -20.244 -20.283 -0.039 (0) @@ -33322,29 +33312,29 @@ O(0) 2.386e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.750e-16 - O[18O] 4.741e-16 4.749e-16 -15.324 -15.323 0.001 (0) - [18O]2 4.729e-19 4.737e-19 -18.325 -18.324 0.001 (0) +[18O](0) 3.344e-16 + O[18O] 3.338e-16 3.343e-16 -15.477 -15.476 0.001 (0) + [18O]2 3.330e-19 3.335e-19 -18.478 -18.477 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.02 -126.88 -2.86 [13C]H4 + [13C]H4(g) -123.72 -126.58 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.42 -20.93 -1.50 [14C][18O]2 - [14C]H4(g) -134.59 -137.45 -2.86 [14C]H4 + [14C]H4(g) -134.28 -137.14 -2.86 [14C]H4 [14C]O2(g) -14.06 -15.53 -1.47 [14C]O2 [14C]O[18O](g) -16.44 -18.23 -1.79 [14C]O[18O] - [18O]2(g) -16.03 -18.32 -2.29 [18O]2 + [18O]2(g) -16.19 -18.48 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -33358,14 +33348,14 @@ O(0) 2.386e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.06 -124.92 -2.86 CH4 + CH4(g) -121.76 -124.62 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.58 -39.73 -3.15 H2 + H2(g) -36.50 -39.65 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.03 -12.92 -2.89 O2 - O[18O](g) -12.73 -15.62 -2.89 O[18O] + O2(g) -10.18 -13.08 -2.89 O2 + O[18O](g) -12.88 -15.78 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -33429,23 +33419,23 @@ Calcite 8.06e-03 R(18O) 1.99519e-03 -4.9933 permil R(13C) 1.11064e-02 -6.604 permil - R(14C) 2.92472e-13 24.872 pmc + R(14C) 2.92474e-13 24.873 pmc R(18O) H2O(l) 1.99518e-03 -4.9948 permil R(18O) OH- 1.92122e-03 -41.882 permil R(18O) H3O+ 2.04132e-03 18.013 permil R(18O) O2(aq) 1.99518e-03 -4.9948 permil R(13C) CO2(aq) 1.10269e-02 -13.713 permil - R(14C) CO2(aq) 2.88297e-13 24.517 pmc + R(14C) CO2(aq) 2.88299e-13 24.518 pmc R(18O) CO2(aq) 2.07915e-03 36.879 permil R(18O) HCO3- 1.99518e-03 -4.9948 permil R(13C) HCO3- 1.11228e-02 -5.1328 permil - R(14C) HCO3- 2.93335e-13 24.946 pmc + R(14C) HCO3- 2.93337e-13 24.946 pmc R(18O) CO3-2 1.99518e-03 -4.9948 permil R(13C) CO3-2 1.11069e-02 -6.5605 permil - R(14C) CO3-2 2.92494e-13 24.874 pmc + R(14C) CO3-2 2.92496e-13 24.874 pmc R(18O) Calcite 2.05263e-03 23.651 permil R(13C) Calcite 1.11448e-02 -3.1623 permil - R(14C) Calcite 2.94499e-13 25.045 pmc + R(14C) Calcite 2.94501e-13 25.045 pmc --------------------------------Isotope Alphas--------------------------------- @@ -33455,12 +33445,12 @@ Calcite 8.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2575e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2434e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.6605e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6124e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6931e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -33480,14 +33470,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.296 Adjusted to redox equilibrium + pe = 11.246 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.823e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -33502,24 +33492,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.882 -124.881 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.476 -124.476 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -33527,23 +33517,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.105e-06 1.013e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.065e-08 6.075e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.822e-40 - H2 1.911e-40 1.914e-40 -39.719 -39.718 0.001 (0) -O(0) 2.271e-13 - O2 1.131e-13 1.133e-13 -12.946 -12.946 0.001 (0) - O[18O] 4.514e-16 4.521e-16 -15.345 -15.345 0.001 (0) +H(0) 4.827e-40 + H2 2.414e-40 2.418e-40 -39.617 -39.617 0.001 (0) +O(0) 1.424e-13 + O2 7.092e-14 7.104e-14 -13.149 -13.148 0.001 (0) + O[18O] 2.830e-16 2.835e-16 -15.548 -15.547 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.839 -126.839 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.434 -126.433 0.001 (0) [13C](4) 6.486e-05 H[13C]O3- 5.232e-05 4.786e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.098e-05 1.100e-05 -4.959 -4.959 0.001 (0) CaH[13C]O3+ 1.105e-06 1.013e-06 -5.957 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.044e-07 9.550e-08 -6.981 -7.020 -0.039 (0) H[13C]O[18O]O- 1.044e-07 9.550e-08 -6.981 -7.020 -0.039 (0) + H[13C]O2[18O]- 1.044e-07 9.550e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.044e-07 9.550e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.065e-08 6.075e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.566e-08 4.574e-08 -7.340 -7.340 0.001 (0) @@ -33552,56 +33542,56 @@ O(0) 2.271e-13 CaH[13C]O[18O]O+ 2.204e-09 2.022e-09 -8.657 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.204e-09 2.022e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.630e-10 3.636e-10 -9.440 -9.439 0.001 (0) - H[13C]O[18O]2- 2.083e-10 1.905e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.083e-10 1.905e-10 -9.681 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.083e-10 1.905e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.083e-10 1.905e-10 -9.681 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.083e-10 1.905e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.862e-10 1.305e-10 -9.730 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.422 -137.421 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.016 -137.016 0.001 (0) [14C](4) 1.708e-15 H[14C]O3- 1.380e-15 1.262e-15 -14.860 -14.899 -0.039 (0) [14C]O2 2.871e-16 2.876e-16 -15.542 -15.541 0.001 (0) CaH[14C]O3+ 2.914e-17 2.673e-17 -16.536 -16.573 -0.037 (0) - H[14C]O2[18O]- 2.753e-18 2.519e-18 -17.560 -17.599 -0.039 (0) - H[14C]O[18O]O- 2.753e-18 2.519e-18 -17.560 -17.599 -0.039 (0) H[14C][18O]O2- 2.753e-18 2.519e-18 -17.560 -17.599 -0.039 (0) + H[14C]O[18O]O- 2.753e-18 2.519e-18 -17.560 -17.599 -0.039 (0) + H[14C]O2[18O]- 2.753e-18 2.519e-18 -17.560 -17.599 -0.039 (0) Ca[14C]O3 1.597e-18 1.600e-18 -17.797 -17.796 0.001 (0) [14C]O[18O] 1.194e-18 1.196e-18 -17.923 -17.922 0.001 (0) [14C]O3-2 8.194e-19 5.740e-19 -18.087 -18.241 -0.155 (0) CaH[14C]O2[18O]+ 5.813e-20 5.333e-20 -19.236 -19.273 -0.037 (0) - CaH[14C]O[18O]O+ 5.813e-20 5.333e-20 -19.236 -19.273 -0.037 (0) CaH[14C][18O]O2+ 5.813e-20 5.333e-20 -19.236 -19.273 -0.037 (0) + CaH[14C]O[18O]O+ 5.813e-20 5.333e-20 -19.236 -19.273 -0.037 (0) Ca[14C]O2[18O] 9.560e-21 9.576e-21 -20.020 -20.019 0.001 (0) - H[14C]O[18O]2- 5.492e-21 5.025e-21 -20.260 -20.299 -0.039 (0) - H[14C][18O]2O- 5.492e-21 5.025e-21 -20.260 -20.299 -0.039 (0) - H[14C][18O]O[18O]- 5.492e-21 5.025e-21 -20.260 -20.299 -0.039 (0) + H[14C][18O]2O- 5.493e-21 5.025e-21 -20.260 -20.299 -0.039 (0) + H[14C][18O]O[18O]- 5.493e-21 5.025e-21 -20.260 -20.299 -0.039 (0) + H[14C]O[18O]2- 5.493e-21 5.025e-21 -20.260 -20.299 -0.039 (0) [14C]O2[18O]-2 4.904e-21 3.436e-21 -20.309 -20.464 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.523e-16 - O[18O] 4.514e-16 4.521e-16 -15.345 -15.345 0.001 (0) - [18O]2 4.503e-19 4.510e-19 -18.346 -18.346 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.836e-16 + O[18O] 2.830e-16 2.835e-16 -15.548 -15.547 0.001 (0) + [18O]2 2.823e-19 2.828e-19 -18.549 -18.549 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.98 -126.84 -2.86 [13C]H4 + [13C]H4(g) -123.57 -126.43 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.44 -20.94 -1.50 [14C][18O]2 - [14C]H4(g) -134.56 -137.42 -2.86 [14C]H4 + [14C]H4(g) -134.16 -137.02 -2.86 [14C]H4 [14C]O2(g) -14.07 -15.54 -1.47 [14C]O2 [14C]O[18O](g) -16.45 -18.24 -1.79 [14C]O[18O] - [18O]2(g) -16.06 -18.35 -2.29 [18O]2 + [18O]2(g) -16.26 -18.55 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -33615,14 +33605,14 @@ O(0) 2.271e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.02 -124.88 -2.86 CH4 + CH4(g) -121.62 -124.48 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.57 -39.72 -3.15 H2 + H2(g) -36.47 -39.62 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.05 -12.95 -2.89 O2 - O[18O](g) -12.75 -15.65 -2.89 O[18O] + O2(g) -10.26 -13.15 -2.89 O2 + O[18O](g) -12.96 -15.85 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -33686,23 +33676,23 @@ Calcite 8.56e-03 R(18O) 1.99519e-03 -4.9932 permil R(13C) 1.11084e-02 -6.4232 permil - R(14C) 2.82319e-13 24.009 pmc + R(14C) 2.82321e-13 24.009 pmc R(18O) H2O(l) 1.99518e-03 -4.9947 permil R(18O) OH- 1.92122e-03 -41.882 permil R(18O) H3O+ 2.04132e-03 18.013 permil R(18O) O2(aq) 1.99518e-03 -4.9947 permil R(13C) CO2(aq) 1.10289e-02 -13.534 permil - R(14C) CO2(aq) 2.78290e-13 23.666 pmc + R(14C) CO2(aq) 2.78292e-13 23.667 pmc R(18O) CO2(aq) 2.07915e-03 36.879 permil R(18O) HCO3- 1.99518e-03 -4.9947 permil R(13C) HCO3- 1.11248e-02 -4.9517 permil - R(14C) HCO3- 2.83153e-13 24.08 pmc + R(14C) HCO3- 2.83155e-13 24.08 pmc R(18O) CO3-2 1.99518e-03 -4.9947 permil R(13C) CO3-2 1.11089e-02 -6.3797 permil - R(14C) CO3-2 2.82341e-13 24.011 pmc + R(14C) CO3-2 2.82343e-13 24.011 pmc R(18O) Calcite 2.05263e-03 23.652 permil R(13C) Calcite 1.11469e-02 -2.9809 permil - R(14C) Calcite 2.84276e-13 24.175 pmc + R(14C) Calcite 2.84278e-13 24.176 pmc --------------------------------Isotope Alphas--------------------------------- @@ -33712,12 +33702,12 @@ Calcite 8.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2502e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2675e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5609e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6435e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -33737,14 +33727,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.304 Adjusted to redox equilibrium + pe = 11.262 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.823e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -33759,14 +33749,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.943 -124.942 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.609 -124.609 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.112e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -33774,9 +33764,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -33784,81 +33774,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.066e-08 6.076e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.690e-40 - H2 1.845e-40 1.848e-40 -39.734 -39.733 0.001 (0) -O(0) 2.438e-13 - O2 1.214e-13 1.216e-13 -12.916 -12.915 0.001 (0) - O[18O] 4.844e-16 4.852e-16 -15.315 -15.314 0.001 (0) +H(0) 4.471e-40 + H2 2.236e-40 2.239e-40 -39.651 -39.650 0.001 (0) +O(0) 1.660e-13 + O2 8.267e-14 8.280e-14 -13.083 -13.082 0.001 (0) + O[18O] 3.299e-16 3.304e-16 -15.482 -15.481 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.901 -126.900 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.567 -126.566 0.001 (0) [13C](4) 6.487e-05 H[13C]O3- 5.233e-05 4.787e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.098e-05 1.100e-05 -4.959 -4.959 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.957 -5.994 -0.037 (0) H[13C]O2[18O]- 1.044e-07 9.552e-08 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.044e-07 9.552e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.044e-07 9.552e-08 -6.981 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.044e-07 9.552e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.066e-08 6.076e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.567e-08 4.575e-08 -7.340 -7.340 0.001 (0) [13C]O3-2 3.112e-08 2.180e-08 -7.507 -7.662 -0.155 (0) - CaH[13C]O2[18O]+ 2.205e-09 2.022e-09 -8.657 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.205e-09 2.022e-09 -8.657 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.205e-09 2.022e-09 -8.657 -8.694 -0.037 (0) + CaH[13C]O2[18O]+ 2.205e-09 2.022e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.631e-10 3.637e-10 -9.440 -9.439 0.001 (0) - H[13C]O[18O]2- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.863e-10 1.305e-10 -9.730 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.499 -137.498 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.165 -137.164 0.001 (0) [14C](4) 1.649e-15 H[14C]O3- 1.332e-15 1.218e-15 -14.876 -14.914 -0.039 (0) [14C]O2 2.771e-16 2.776e-16 -15.557 -15.557 0.001 (0) CaH[14C]O3+ 2.812e-17 2.580e-17 -16.551 -16.588 -0.037 (0) - H[14C]O2[18O]- 2.657e-18 2.431e-18 -17.576 -17.614 -0.039 (0) - H[14C]O[18O]O- 2.657e-18 2.431e-18 -17.576 -17.614 -0.039 (0) H[14C][18O]O2- 2.657e-18 2.431e-18 -17.576 -17.614 -0.039 (0) + H[14C]O[18O]O- 2.657e-18 2.431e-18 -17.576 -17.614 -0.039 (0) + H[14C]O2[18O]- 2.657e-18 2.431e-18 -17.576 -17.614 -0.039 (0) Ca[14C]O3 1.542e-18 1.544e-18 -17.812 -17.811 0.001 (0) [14C]O[18O] 1.152e-18 1.154e-18 -17.938 -17.938 0.001 (0) [14C]O3-2 7.909e-19 5.541e-19 -18.102 -18.256 -0.155 (0) - CaH[14C]O2[18O]+ 5.611e-20 5.147e-20 -19.251 -19.288 -0.037 (0) - CaH[14C]O[18O]O+ 5.611e-20 5.147e-20 -19.251 -19.288 -0.037 (0) - CaH[14C][18O]O2+ 5.611e-20 5.147e-20 -19.251 -19.288 -0.037 (0) + CaH[14C]O2[18O]+ 5.611e-20 5.148e-20 -19.251 -19.288 -0.037 (0) + CaH[14C][18O]O2+ 5.611e-20 5.148e-20 -19.251 -19.288 -0.037 (0) + CaH[14C]O[18O]O+ 5.611e-20 5.148e-20 -19.251 -19.288 -0.037 (0) Ca[14C]O2[18O] 9.229e-21 9.244e-21 -20.035 -20.034 0.001 (0) - H[14C]O[18O]2- 5.302e-21 4.850e-21 -20.276 -20.314 -0.039 (0) - H[14C][18O]2O- 5.302e-21 4.850e-21 -20.276 -20.314 -0.039 (0) - H[14C][18O]O[18O]- 5.302e-21 4.850e-21 -20.276 -20.314 -0.039 (0) + H[14C][18O]O[18O]- 5.302e-21 4.851e-21 -20.276 -20.314 -0.039 (0) + H[14C]O[18O]2- 5.302e-21 4.851e-21 -20.276 -20.314 -0.039 (0) + H[14C][18O]2O- 5.302e-21 4.851e-21 -20.276 -20.314 -0.039 (0) [14C]O2[18O]-2 4.734e-21 3.316e-21 -20.325 -20.479 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.854e-16 - O[18O] 4.844e-16 4.852e-16 -15.315 -15.314 0.001 (0) - [18O]2 4.832e-19 4.840e-19 -18.316 -18.315 0.001 (0) +[18O](0) 3.305e-16 + O[18O] 3.299e-16 3.304e-16 -15.482 -15.481 0.001 (0) + [18O]2 3.291e-19 3.296e-19 -18.483 -18.482 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.04 -126.90 -2.86 [13C]H4 + [13C]H4(g) -123.71 -126.57 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.45 -20.96 -1.50 [14C][18O]2 - [14C]H4(g) -134.64 -137.50 -2.86 [14C]H4 + [14C]H4(g) -134.30 -137.16 -2.86 [14C]H4 [14C]O2(g) -14.09 -15.56 -1.47 [14C]O2 [14C]O[18O](g) -16.47 -18.26 -1.79 [14C]O[18O] - [18O]2(g) -16.02 -18.32 -2.29 [18O]2 + [18O]2(g) -16.19 -18.48 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -33872,14 +33862,14 @@ O(0) 2.438e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.08 -124.94 -2.86 CH4 + CH4(g) -121.75 -124.61 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.58 -39.73 -3.15 H2 + H2(g) -36.50 -39.65 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.02 -12.92 -2.89 O2 - O[18O](g) -12.72 -15.62 -2.89 O[18O] + O2(g) -10.19 -13.08 -2.89 O2 + O[18O](g) -12.89 -15.78 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -33943,23 +33933,23 @@ Calcite 9.06e-03 R(18O) 1.99519e-03 -4.993 permil R(13C) 1.11103e-02 -6.2545 permil - R(14C) 2.72848e-13 23.204 pmc + R(14C) 2.72850e-13 23.204 pmc R(18O) H2O(l) 1.99518e-03 -4.9945 permil R(18O) OH- 1.92122e-03 -41.882 permil R(18O) H3O+ 2.04132e-03 18.013 permil R(18O) O2(aq) 1.99518e-03 -4.9945 permil R(13C) CO2(aq) 1.10308e-02 -13.366 permil - R(14C) CO2(aq) 2.68954e-13 22.872 pmc + R(14C) CO2(aq) 2.68956e-13 22.873 pmc R(18O) CO2(aq) 2.07915e-03 36.879 permil R(18O) HCO3- 1.99518e-03 -4.9945 permil R(13C) HCO3- 1.11267e-02 -4.7828 permil - R(14C) HCO3- 2.73654e-13 23.272 pmc + R(14C) HCO3- 2.73656e-13 23.272 pmc R(18O) CO3-2 1.99518e-03 -4.9945 permil R(13C) CO3-2 1.11108e-02 -6.211 permil - R(14C) CO3-2 2.72869e-13 23.205 pmc + R(14C) CO3-2 2.72871e-13 23.206 pmc R(18O) Calcite 2.05263e-03 23.652 permil R(13C) Calcite 1.11488e-02 -2.8116 permil - R(14C) Calcite 2.74739e-13 23.364 pmc + R(14C) Calcite 2.74741e-13 23.365 pmc --------------------------------Isotope Alphas--------------------------------- @@ -33969,12 +33959,12 @@ Calcite 9.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2348e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2847e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.6613e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7715e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.648e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -33994,14 +33984,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.315 Adjusted to redox equilibrium + pe = 11.270 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.823e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -34016,24 +34006,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.032 -125.031 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.669 -124.669 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -34041,50 +34031,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.067e-08 6.077e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.506e-40 - H2 1.753e-40 1.756e-40 -39.756 -39.755 0.001 (0) -O(0) 2.699e-13 - O2 1.344e-13 1.346e-13 -12.872 -12.871 0.001 (0) - O[18O] 5.363e-16 5.372e-16 -15.271 -15.270 0.001 (0) +H(0) 4.320e-40 + H2 2.160e-40 2.163e-40 -39.666 -39.665 0.001 (0) +O(0) 1.778e-13 + O2 8.857e-14 8.871e-14 -13.053 -13.052 0.001 (0) + O[18O] 3.534e-16 3.540e-16 -15.452 -15.451 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.989 -126.988 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.627 -126.626 0.001 (0) [13C](4) 6.489e-05 H[13C]O3- 5.234e-05 4.788e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.098e-05 1.100e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.957 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.044e-07 9.553e-08 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.044e-07 9.553e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.044e-07 9.553e-08 -6.981 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.044e-07 9.553e-08 -6.981 -7.020 -0.039 (0) + H[13C]O2[18O]- 1.044e-07 9.553e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.067e-08 6.077e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.568e-08 4.575e-08 -7.340 -7.340 0.001 (0) [13C]O3-2 3.112e-08 2.180e-08 -7.507 -7.661 -0.155 (0) + CaH[13C][18O]O2+ 2.205e-09 2.023e-09 -8.657 -8.694 -0.037 (0) CaH[13C]O2[18O]+ 2.205e-09 2.023e-09 -8.657 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.205e-09 2.023e-09 -8.657 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.205e-09 2.023e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.632e-10 3.638e-10 -9.440 -9.439 0.001 (0) - H[13C]O[18O]2- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.863e-10 1.305e-10 -9.730 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.602 -137.601 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.240 -137.239 0.001 (0) [14C](4) 1.593e-15 H[14C]O3- 1.287e-15 1.178e-15 -14.890 -14.929 -0.039 (0) [14C]O2 2.678e-16 2.683e-16 -15.572 -15.571 0.001 (0) CaH[14C]O3+ 2.718e-17 2.493e-17 -16.566 -16.603 -0.037 (0) - H[14C]O2[18O]- 2.568e-18 2.350e-18 -17.590 -17.629 -0.039 (0) - H[14C]O[18O]O- 2.568e-18 2.350e-18 -17.590 -17.629 -0.039 (0) H[14C][18O]O2- 2.568e-18 2.350e-18 -17.590 -17.629 -0.039 (0) + H[14C]O[18O]O- 2.568e-18 2.350e-18 -17.590 -17.629 -0.039 (0) + H[14C]O2[18O]- 2.568e-18 2.350e-18 -17.590 -17.629 -0.039 (0) Ca[14C]O3 1.490e-18 1.493e-18 -17.827 -17.826 0.001 (0) [14C]O[18O] 1.114e-18 1.116e-18 -17.953 -17.953 0.001 (0) [14C]O3-2 7.644e-19 5.355e-19 -18.117 -18.271 -0.155 (0) CaH[14C]O2[18O]+ 5.423e-20 4.975e-20 -19.266 -19.303 -0.037 (0) - CaH[14C]O[18O]O+ 5.423e-20 4.975e-20 -19.266 -19.303 -0.037 (0) CaH[14C][18O]O2+ 5.423e-20 4.975e-20 -19.266 -19.303 -0.037 (0) + CaH[14C]O[18O]O+ 5.423e-20 4.975e-20 -19.266 -19.303 -0.037 (0) Ca[14C]O2[18O] 8.919e-21 8.934e-21 -20.050 -20.049 0.001 (0) H[14C]O[18O]2- 5.124e-21 4.688e-21 -20.290 -20.329 -0.039 (0) H[14C][18O]2O- 5.124e-21 4.688e-21 -20.290 -20.329 -0.039 (0) @@ -34093,29 +34083,29 @@ O(0) 2.699e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.374e-16 - O[18O] 5.363e-16 5.372e-16 -15.271 -15.270 0.001 (0) - [18O]2 5.350e-19 5.359e-19 -18.272 -18.271 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 3.541e-16 + O[18O] 3.534e-16 3.540e-16 -15.452 -15.451 0.001 (0) + [18O]2 3.526e-19 3.532e-19 -18.453 -18.452 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.13 -126.99 -2.86 [13C]H4 + [13C]H4(g) -123.77 -126.63 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.47 -20.97 -1.50 [14C][18O]2 - [14C]H4(g) -134.74 -137.60 -2.86 [14C]H4 + [14C]H4(g) -134.38 -137.24 -2.86 [14C]H4 [14C]O2(g) -14.10 -15.57 -1.47 [14C]O2 [14C]O[18O](g) -16.48 -18.27 -1.79 [14C]O[18O] - [18O]2(g) -15.98 -18.27 -2.29 [18O]2 + [18O]2(g) -16.16 -18.45 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -34129,14 +34119,14 @@ O(0) 2.699e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.17 -125.03 -2.86 CH4 + CH4(g) -121.81 -124.67 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.61 -39.76 -3.15 H2 + H2(g) -36.51 -39.66 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.98 -12.87 -2.89 O2 - O[18O](g) -12.68 -15.57 -2.89 O[18O] + O2(g) -10.16 -13.05 -2.89 O2 + O[18O](g) -12.86 -15.75 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -34200,23 +34190,23 @@ Calcite 9.56e-03 R(18O) 1.99519e-03 -4.9929 permil R(13C) 1.11120e-02 -6.0968 permil - R(14C) 2.63992e-13 22.45 pmc + R(14C) 2.63994e-13 22.451 pmc R(18O) H2O(l) 1.99519e-03 -4.9944 permil R(18O) OH- 1.92122e-03 -41.882 permil R(18O) H3O+ 2.04132e-03 18.013 permil R(18O) O2(aq) 1.99519e-03 -4.9944 permil R(13C) CO2(aq) 1.10325e-02 -13.21 permil - R(14C) CO2(aq) 2.60224e-13 22.13 pmc + R(14C) CO2(aq) 2.60226e-13 22.13 pmc R(18O) CO2(aq) 2.07915e-03 36.879 permil R(18O) HCO3- 1.99519e-03 -4.9944 permil R(13C) HCO3- 1.11285e-02 -4.6248 permil - R(14C) HCO3- 2.64772e-13 22.517 pmc + R(14C) HCO3- 2.64773e-13 22.517 pmc R(18O) CO3-2 1.99519e-03 -4.9944 permil R(13C) CO3-2 1.11125e-02 -6.0532 permil - R(14C) CO3-2 2.64012e-13 22.452 pmc + R(14C) CO3-2 2.64014e-13 22.452 pmc R(18O) Calcite 2.05263e-03 23.652 permil R(13C) Calcite 1.11505e-02 -2.6533 permil - R(14C) Calcite 2.65822e-13 22.606 pmc + R(14C) Calcite 2.65823e-13 22.606 pmc --------------------------------Isotope Alphas--------------------------------- @@ -34226,12 +34216,12 @@ Calcite 9.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2471e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2652e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5683e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7181e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -34251,14 +34241,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.316 Adjusted to redox equilibrium + pe = 11.263 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -34273,13 +34263,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.042 -125.041 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.614 -124.613 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -34288,9 +34278,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -34298,23 +34288,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.957 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.068e-08 6.078e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.486e-40 - H2 1.743e-40 1.746e-40 -39.759 -39.758 0.001 (0) -O(0) 2.731e-13 - O2 1.360e-13 1.362e-13 -12.867 -12.866 0.001 (0) - O[18O] 5.426e-16 5.435e-16 -15.265 -15.265 0.001 (0) +H(0) 4.459e-40 + H2 2.229e-40 2.233e-40 -39.652 -39.651 0.001 (0) +O(0) 1.669e-13 + O2 8.312e-14 8.326e-14 -13.080 -13.080 0.001 (0) + O[18O] 3.317e-16 3.322e-16 -15.479 -15.479 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.999 -126.998 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.571 -126.571 0.001 (0) [13C](4) 6.490e-05 H[13C]O3- 5.234e-05 4.789e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.099e-05 1.100e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.105e-06 1.014e-06 -5.957 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.044e-07 9.555e-08 -6.981 -7.020 -0.039 (0) H[13C]O[18O]O- 1.044e-07 9.555e-08 -6.981 -7.020 -0.039 (0) + H[13C]O2[18O]- 1.044e-07 9.555e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.044e-07 9.555e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.068e-08 6.078e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.569e-08 4.576e-08 -7.340 -7.340 0.001 (0) @@ -34323,56 +34313,56 @@ O(0) 2.731e-13 CaH[13C]O[18O]O+ 2.205e-09 2.023e-09 -8.657 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.205e-09 2.023e-09 -8.657 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.632e-10 3.638e-10 -9.440 -9.439 0.001 (0) - H[13C]O[18O]2- 2.084e-10 1.906e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.084e-10 1.906e-10 -9.681 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.084e-10 1.906e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.084e-10 1.906e-10 -9.681 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.084e-10 1.906e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.863e-10 1.305e-10 -9.730 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.626 -137.626 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.199 -137.198 0.001 (0) [14C](4) 1.542e-15 H[14C]O3- 1.245e-15 1.139e-15 -14.905 -14.943 -0.039 (0) [14C]O2 2.591e-16 2.596e-16 -15.586 -15.586 0.001 (0) CaH[14C]O3+ 2.630e-17 2.412e-17 -16.580 -16.618 -0.037 (0) - H[14C]O2[18O]- 2.485e-18 2.273e-18 -17.605 -17.643 -0.039 (0) - H[14C]O[18O]O- 2.485e-18 2.273e-18 -17.605 -17.643 -0.039 (0) H[14C][18O]O2- 2.485e-18 2.273e-18 -17.605 -17.643 -0.039 (0) + H[14C]O[18O]O- 2.485e-18 2.273e-18 -17.605 -17.643 -0.039 (0) + H[14C]O2[18O]- 2.485e-18 2.273e-18 -17.605 -17.643 -0.039 (0) Ca[14C]O3 1.442e-18 1.444e-18 -17.841 -17.840 0.001 (0) [14C]O[18O] 1.078e-18 1.079e-18 -17.968 -17.967 0.001 (0) [14C]O3-2 7.396e-19 5.181e-19 -18.131 -18.286 -0.155 (0) CaH[14C]O2[18O]+ 5.247e-20 4.813e-20 -19.280 -19.318 -0.037 (0) - CaH[14C]O[18O]O+ 5.247e-20 4.813e-20 -19.280 -19.318 -0.037 (0) CaH[14C][18O]O2+ 5.247e-20 4.813e-20 -19.280 -19.318 -0.037 (0) + CaH[14C]O[18O]O+ 5.247e-20 4.813e-20 -19.280 -19.318 -0.037 (0) Ca[14C]O2[18O] 8.629e-21 8.644e-21 -20.064 -20.063 0.001 (0) - H[14C]O[18O]2- 4.958e-21 4.536e-21 -20.305 -20.343 -0.039 (0) H[14C][18O]2O- 4.958e-21 4.536e-21 -20.305 -20.343 -0.039 (0) H[14C][18O]O[18O]- 4.958e-21 4.536e-21 -20.305 -20.343 -0.039 (0) + H[14C]O[18O]2- 4.958e-21 4.536e-21 -20.305 -20.343 -0.039 (0) [14C]O2[18O]-2 4.427e-21 3.101e-21 -20.354 -20.508 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.437e-16 - O[18O] 5.426e-16 5.435e-16 -15.265 -15.265 0.001 (0) - [18O]2 5.413e-19 5.422e-19 -18.267 -18.266 0.001 (0) +[18O](0) 3.323e-16 + O[18O] 3.317e-16 3.322e-16 -15.479 -15.479 0.001 (0) + [18O]2 3.309e-19 3.314e-19 -18.480 -18.480 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.14 -127.00 -2.86 [13C]H4 + [13C]H4(g) -123.71 -126.57 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.48 -20.99 -1.50 [14C][18O]2 - [14C]H4(g) -134.77 -137.63 -2.86 [14C]H4 + [14C]H4(g) -134.34 -137.20 -2.86 [14C]H4 [14C]O2(g) -14.12 -15.59 -1.47 [14C]O2 [14C]O[18O](g) -16.50 -18.29 -1.79 [14C]O[18O] - [18O]2(g) -15.98 -18.27 -2.29 [18O]2 + [18O]2(g) -16.19 -18.48 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -34386,14 +34376,14 @@ O(0) 2.731e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.18 -125.04 -2.86 CH4 + CH4(g) -121.75 -124.61 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.61 -39.76 -3.15 H2 + H2(g) -36.50 -39.65 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.97 -12.87 -2.89 O2 - O[18O](g) -12.67 -15.57 -2.89 O[18O] + O2(g) -10.19 -13.08 -2.89 O2 + O[18O](g) -12.89 -15.78 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -34457,23 +34447,23 @@ Calcite 1.01e-02 R(18O) 1.99519e-03 -4.9927 permil R(13C) 1.11137e-02 -5.9489 permil - R(14C) 2.55692e-13 21.745 pmc + R(14C) 2.55694e-13 21.745 pmc R(18O) H2O(l) 1.99519e-03 -4.9943 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.014 permil R(18O) O2(aq) 1.99519e-03 -4.9943 permil R(13C) CO2(aq) 1.10342e-02 -13.063 permil - R(14C) CO2(aq) 2.52043e-13 21.434 pmc + R(14C) CO2(aq) 2.52045e-13 21.434 pmc R(18O) CO2(aq) 2.07915e-03 36.88 permil R(18O) HCO3- 1.99519e-03 -4.9943 permil R(13C) HCO3- 1.11301e-02 -4.4767 permil - R(14C) HCO3- 2.56448e-13 21.809 pmc + R(14C) HCO3- 2.56449e-13 21.809 pmc R(18O) CO3-2 1.99519e-03 -4.9943 permil R(13C) CO3-2 1.11142e-02 -5.9054 permil - R(14C) CO3-2 2.55712e-13 21.746 pmc + R(14C) CO3-2 2.55714e-13 21.746 pmc R(18O) Calcite 2.05263e-03 23.652 permil R(13C) Calcite 1.11522e-02 -2.5049 permil - R(14C) Calcite 2.57465e-13 21.895 pmc + R(14C) Calcite 2.57466e-13 21.895 pmc --------------------------------Isotope Alphas--------------------------------- @@ -34483,12 +34473,12 @@ Calcite 1.01e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2536e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2393e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.6605e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6993e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6444e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -34508,14 +34498,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.320 Adjusted to redox equilibrium + pe = 11.281 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -34530,24 +34520,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.070 -125.069 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.759 -124.758 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -34555,81 +34545,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.014e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.069e-08 6.079e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.430e-40 - H2 1.715e-40 1.718e-40 -39.766 -39.765 0.001 (0) -O(0) 2.821e-13 - O2 1.405e-13 1.407e-13 -12.852 -12.852 0.001 (0) - O[18O] 5.605e-16 5.614e-16 -15.251 -15.251 0.001 (0) +H(0) 4.103e-40 + H2 2.052e-40 2.055e-40 -39.688 -39.687 0.001 (0) +O(0) 1.971e-13 + O2 9.816e-14 9.832e-14 -13.008 -13.007 0.001 (0) + O[18O] 3.917e-16 3.923e-16 -15.407 -15.406 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.027 -127.026 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.716 -126.715 0.001 (0) [13C](4) 6.490e-05 H[13C]O3- 5.235e-05 4.790e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.014e-06 -5.956 -5.994 -0.037 (0) H[13C]O2[18O]- 1.045e-07 9.556e-08 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.045e-07 9.556e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.045e-07 9.556e-08 -6.981 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.045e-07 9.556e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.069e-08 6.079e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.569e-08 4.577e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.113e-08 2.181e-08 -7.507 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.206e-09 2.023e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.206e-09 2.023e-09 -8.656 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.206e-09 2.023e-09 -8.656 -8.694 -0.037 (0) + CaH[13C]O2[18O]+ 2.206e-09 2.023e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.633e-10 3.639e-10 -9.440 -9.439 0.001 (0) - H[13C]O[18O]2- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.864e-10 1.305e-10 -9.730 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.668 -137.668 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.357 -137.356 0.001 (0) [14C](4) 1.493e-15 H[14C]O3- 1.206e-15 1.104e-15 -14.919 -14.957 -0.039 (0) [14C]O2 2.510e-16 2.514e-16 -15.600 -15.600 0.001 (0) CaH[14C]O3+ 2.547e-17 2.337e-17 -16.594 -16.631 -0.037 (0) - H[14C]O2[18O]- 2.407e-18 2.202e-18 -17.619 -17.657 -0.039 (0) - H[14C]O[18O]O- 2.407e-18 2.202e-18 -17.619 -17.657 -0.039 (0) H[14C][18O]O2- 2.407e-18 2.202e-18 -17.619 -17.657 -0.039 (0) + H[14C]O[18O]O- 2.407e-18 2.202e-18 -17.619 -17.657 -0.039 (0) + H[14C]O2[18O]- 2.407e-18 2.202e-18 -17.619 -17.657 -0.039 (0) Ca[14C]O3 1.396e-18 1.399e-18 -17.855 -17.854 0.001 (0) [14C]O[18O] 1.044e-18 1.045e-18 -17.981 -17.981 0.001 (0) [14C]O3-2 7.163e-19 5.018e-19 -18.145 -18.299 -0.155 (0) CaH[14C]O2[18O]+ 5.082e-20 4.662e-20 -19.294 -19.331 -0.037 (0) - CaH[14C]O[18O]O+ 5.082e-20 4.662e-20 -19.294 -19.331 -0.037 (0) CaH[14C][18O]O2+ 5.082e-20 4.662e-20 -19.294 -19.331 -0.037 (0) + CaH[14C]O[18O]O+ 5.082e-20 4.662e-20 -19.294 -19.331 -0.037 (0) Ca[14C]O2[18O] 8.358e-21 8.372e-21 -20.078 -20.077 0.001 (0) + H[14C][18O]O[18O]- 4.802e-21 4.393e-21 -20.319 -20.357 -0.039 (0) H[14C]O[18O]2- 4.802e-21 4.393e-21 -20.319 -20.357 -0.039 (0) H[14C][18O]2O- 4.802e-21 4.393e-21 -20.319 -20.357 -0.039 (0) - H[14C][18O]O[18O]- 4.802e-21 4.393e-21 -20.319 -20.357 -0.039 (0) [14C]O2[18O]-2 4.288e-21 3.004e-21 -20.368 -20.522 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.616e-16 - O[18O] 5.605e-16 5.614e-16 -15.251 -15.251 0.001 (0) - [18O]2 5.592e-19 5.601e-19 -18.252 -18.252 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 3.925e-16 + O[18O] 3.917e-16 3.923e-16 -15.407 -15.406 0.001 (0) + [18O]2 3.908e-19 3.914e-19 -18.408 -18.407 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.17 -127.03 -2.86 [13C]H4 + [13C]H4(g) -123.86 -126.72 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.50 -21.00 -1.50 [14C][18O]2 - [14C]H4(g) -134.81 -137.67 -2.86 [14C]H4 + [14C]H4(g) -134.50 -137.36 -2.86 [14C]H4 [14C]O2(g) -14.13 -15.60 -1.47 [14C]O2 [14C]O[18O](g) -16.51 -18.30 -1.79 [14C]O[18O] - [18O]2(g) -15.96 -18.25 -2.29 [18O]2 + [18O]2(g) -16.12 -18.41 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -34643,14 +34633,14 @@ O(0) 2.821e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.21 -125.07 -2.86 CH4 + CH4(g) -121.90 -124.76 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.62 -39.77 -3.15 H2 + H2(g) -36.54 -39.69 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.96 -12.85 -2.89 O2 - O[18O](g) -12.66 -15.55 -2.89 O[18O] + O2(g) -10.11 -13.01 -2.89 O2 + O[18O](g) -12.82 -15.71 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -34714,23 +34704,23 @@ Calcite 1.06e-02 R(18O) 1.99519e-03 -4.9926 permil R(13C) 1.11152e-02 -5.8101 permil - R(14C) 2.47899e-13 21.082 pmc + R(14C) 2.47901e-13 21.082 pmc R(18O) H2O(l) 1.99519e-03 -4.9941 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.014 permil R(18O) O2(aq) 1.99519e-03 -4.9941 permil R(13C) CO2(aq) 1.10357e-02 -12.925 permil - R(14C) CO2(aq) 2.44361e-13 20.781 pmc + R(14C) CO2(aq) 2.44362e-13 20.781 pmc R(18O) CO2(aq) 2.07915e-03 36.88 permil R(18O) HCO3- 1.99519e-03 -4.9941 permil R(13C) HCO3- 1.11317e-02 -4.3377 permil - R(14C) HCO3- 2.48631e-13 21.144 pmc + R(14C) HCO3- 2.48633e-13 21.144 pmc R(18O) CO3-2 1.99519e-03 -4.9941 permil R(13C) CO3-2 1.11157e-02 -5.7665 permil - R(14C) CO3-2 2.47918e-13 21.083 pmc + R(14C) CO3-2 2.47920e-13 21.084 pmc R(18O) Calcite 2.05263e-03 23.652 permil R(13C) Calcite 1.11538e-02 -2.3656 permil - R(14C) Calcite 2.49617e-13 21.228 pmc + R(14C) Calcite 2.49619e-13 21.228 pmc --------------------------------Isotope Alphas--------------------------------- @@ -34740,12 +34730,12 @@ Calcite 1.06e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2582e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2756e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7283e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6046e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -34765,14 +34755,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.317 Adjusted to redox equilibrium + pe = 11.273 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -34787,14 +34777,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.051 -125.051 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.699 -124.698 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -34802,9 +34792,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -34812,50 +34802,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.014e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.070e-08 6.080e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.467e-40 - H2 1.733e-40 1.736e-40 -39.761 -39.760 0.001 (0) -O(0) 2.761e-13 - O2 1.375e-13 1.377e-13 -12.862 -12.861 0.001 (0) - O[18O] 5.487e-16 5.496e-16 -15.261 -15.260 0.001 (0) +H(0) 4.246e-40 + H2 2.123e-40 2.126e-40 -39.673 -39.672 0.001 (0) +O(0) 1.841e-13 + O2 9.167e-14 9.182e-14 -13.038 -13.037 0.001 (0) + O[18O] 3.658e-16 3.664e-16 -15.437 -15.436 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.009 -127.008 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.656 -126.656 0.001 (0) [13C](4) 6.491e-05 H[13C]O3- 5.236e-05 4.790e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.014e-06 -5.956 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.045e-07 9.557e-08 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.045e-07 9.557e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.045e-07 9.557e-08 -6.981 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.045e-07 9.557e-08 -6.981 -7.020 -0.039 (0) + H[13C]O2[18O]- 1.045e-07 9.557e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.070e-08 6.080e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.570e-08 4.577e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.114e-08 2.181e-08 -7.507 -7.661 -0.155 (0) + CaH[13C][18O]O2+ 2.206e-09 2.024e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O2[18O]+ 2.206e-09 2.024e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.206e-09 2.024e-09 -8.656 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.206e-09 2.024e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.633e-10 3.639e-10 -9.440 -9.439 0.001 (0) - H[13C]O[18O]2- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.864e-10 1.306e-10 -9.730 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.663 -137.663 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.311 -137.310 0.001 (0) [14C](4) 1.448e-15 H[14C]O3- 1.169e-15 1.070e-15 -14.932 -14.971 -0.039 (0) [14C]O2 2.433e-16 2.437e-16 -15.614 -15.613 0.001 (0) CaH[14C]O3+ 2.470e-17 2.265e-17 -16.607 -16.645 -0.037 (0) - H[14C]O2[18O]- 2.333e-18 2.135e-18 -17.632 -17.671 -0.039 (0) - H[14C]O[18O]O- 2.333e-18 2.135e-18 -17.632 -17.671 -0.039 (0) H[14C][18O]O2- 2.333e-18 2.135e-18 -17.632 -17.671 -0.039 (0) + H[14C]O[18O]O- 2.333e-18 2.135e-18 -17.632 -17.671 -0.039 (0) + H[14C]O2[18O]- 2.333e-18 2.135e-18 -17.632 -17.671 -0.039 (0) Ca[14C]O3 1.354e-18 1.356e-18 -17.868 -17.868 0.001 (0) [14C]O[18O] 1.012e-18 1.014e-18 -17.995 -17.994 0.001 (0) [14C]O3-2 6.945e-19 4.865e-19 -18.158 -18.313 -0.155 (0) CaH[14C]O2[18O]+ 4.927e-20 4.520e-20 -19.307 -19.345 -0.037 (0) - CaH[14C]O[18O]O+ 4.927e-20 4.520e-20 -19.307 -19.345 -0.037 (0) CaH[14C][18O]O2+ 4.927e-20 4.520e-20 -19.307 -19.345 -0.037 (0) + CaH[14C]O[18O]O+ 4.927e-20 4.520e-20 -19.307 -19.345 -0.037 (0) Ca[14C]O2[18O] 8.103e-21 8.117e-21 -20.091 -20.091 0.001 (0) H[14C]O[18O]2- 4.655e-21 4.259e-21 -20.332 -20.371 -0.039 (0) H[14C][18O]2O- 4.655e-21 4.259e-21 -20.332 -20.371 -0.039 (0) @@ -34864,29 +34854,29 @@ O(0) 2.761e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.498e-16 - O[18O] 5.487e-16 5.496e-16 -15.261 -15.260 0.001 (0) - [18O]2 5.473e-19 5.482e-19 -18.262 -18.261 0.001 (0) +[18O](0) 3.665e-16 + O[18O] 3.658e-16 3.664e-16 -15.437 -15.436 0.001 (0) + [18O]2 3.649e-19 3.655e-19 -18.438 -18.437 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.15 -127.01 -2.86 [13C]H4 + [13C]H4(g) -123.80 -126.66 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.51 -21.01 -1.50 [14C][18O]2 - [14C]H4(g) -134.80 -137.66 -2.86 [14C]H4 + [14C]H4(g) -134.45 -137.31 -2.86 [14C]H4 [14C]O2(g) -14.14 -15.61 -1.47 [14C]O2 [14C]O[18O](g) -16.53 -18.31 -1.79 [14C]O[18O] - [18O]2(g) -15.97 -18.26 -2.29 [18O]2 + [18O]2(g) -16.15 -18.44 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -34900,14 +34890,14 @@ O(0) 2.761e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.19 -125.05 -2.86 CH4 + CH4(g) -121.84 -124.70 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.61 -39.76 -3.15 H2 + H2(g) -36.52 -39.67 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.97 -12.86 -2.89 O2 - O[18O](g) -12.67 -15.56 -2.89 O[18O] + O2(g) -10.14 -13.04 -2.89 O2 + O[18O](g) -12.84 -15.74 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -34971,23 +34961,23 @@ Calcite 1.11e-02 R(18O) 1.99519e-03 -4.9925 permil R(13C) 1.11167e-02 -5.6794 permil - R(14C) 2.40566e-13 20.458 pmc + R(14C) 2.40568e-13 20.458 pmc R(18O) H2O(l) 1.99519e-03 -4.994 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.014 permil R(18O) O2(aq) 1.99519e-03 -4.994 permil R(13C) CO2(aq) 1.10371e-02 -12.795 permil - R(14C) CO2(aq) 2.37133e-13 20.166 pmc + R(14C) CO2(aq) 2.37135e-13 20.166 pmc R(18O) CO2(aq) 2.07915e-03 36.88 permil R(18O) HCO3- 1.99519e-03 -4.994 permil R(13C) HCO3- 1.11332e-02 -4.2068 permil - R(14C) HCO3- 2.41277e-13 20.519 pmc + R(14C) HCO3- 2.41279e-13 20.519 pmc R(18O) CO3-2 1.99519e-03 -4.994 permil R(13C) CO3-2 1.11172e-02 -5.6359 permil - R(14C) CO3-2 2.40585e-13 20.46 pmc + R(14C) CO3-2 2.40587e-13 20.46 pmc R(18O) Calcite 2.05263e-03 23.652 permil R(13C) Calcite 1.11552e-02 -2.2345 permil - R(14C) Calcite 2.42234e-13 20.6 pmc + R(14C) Calcite 2.42235e-13 20.6 pmc --------------------------------Isotope Alphas--------------------------------- @@ -34997,12 +34987,12 @@ Calcite 1.11e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.226e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2758e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6491e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5935e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -35022,14 +35012,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.320 Adjusted to redox equilibrium + pe = 11.273 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -35044,24 +35034,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.074 -125.073 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.700 -124.699 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -35069,23 +35059,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.014e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.071e-08 6.081e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.422e-40 - H2 1.711e-40 1.714e-40 -39.767 -39.766 0.001 (0) -O(0) 2.834e-13 - O2 1.411e-13 1.414e-13 -12.850 -12.850 0.001 (0) - O[18O] 5.631e-16 5.641e-16 -15.249 -15.249 0.001 (0) +H(0) 4.245e-40 + H2 2.122e-40 2.126e-40 -39.673 -39.672 0.001 (0) +O(0) 1.842e-13 + O2 9.173e-14 9.188e-14 -13.038 -13.037 0.001 (0) + O[18O] 3.660e-16 3.666e-16 -15.436 -15.436 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.031 -127.030 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.657 -126.656 0.001 (0) [13C](4) 6.492e-05 H[13C]O3- 5.237e-05 4.791e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.014e-06 -5.956 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.045e-07 9.559e-08 -6.981 -7.020 -0.039 (0) H[13C]O[18O]O- 1.045e-07 9.559e-08 -6.981 -7.020 -0.039 (0) + H[13C]O2[18O]- 1.045e-07 9.559e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.045e-07 9.559e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.071e-08 6.081e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.570e-08 4.578e-08 -7.340 -7.339 0.001 (0) @@ -35094,56 +35084,56 @@ O(0) 2.834e-13 CaH[13C]O[18O]O+ 2.206e-09 2.024e-09 -8.656 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.206e-09 2.024e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.634e-10 3.640e-10 -9.440 -9.439 0.001 (0) - H[13C]O[18O]2- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.864e-10 1.306e-10 -9.730 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.699 -137.698 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.325 -137.324 0.001 (0) [14C](4) 1.405e-15 H[14C]O3- 1.135e-15 1.038e-15 -14.945 -14.984 -0.039 (0) [14C]O2 2.361e-16 2.365e-16 -15.627 -15.626 0.001 (0) - CaH[14C]O3+ 2.396e-17 2.198e-17 -16.620 -16.658 -0.037 (0) - H[14C]O2[18O]- 2.264e-18 2.072e-18 -17.645 -17.684 -0.039 (0) - H[14C]O[18O]O- 2.264e-18 2.072e-18 -17.645 -17.684 -0.039 (0) + CaH[14C]O3+ 2.397e-17 2.198e-17 -16.620 -16.658 -0.037 (0) H[14C][18O]O2- 2.264e-18 2.072e-18 -17.645 -17.684 -0.039 (0) + H[14C]O[18O]O- 2.264e-18 2.072e-18 -17.645 -17.684 -0.039 (0) + H[14C]O2[18O]- 2.264e-18 2.072e-18 -17.645 -17.684 -0.039 (0) Ca[14C]O3 1.314e-18 1.316e-18 -17.881 -17.881 0.001 (0) [14C]O[18O] 9.820e-19 9.836e-19 -18.008 -18.007 0.001 (0) [14C]O3-2 6.739e-19 4.721e-19 -18.171 -18.326 -0.155 (0) CaH[14C]O2[18O]+ 4.781e-20 4.386e-20 -19.320 -19.358 -0.037 (0) - CaH[14C]O[18O]O+ 4.781e-20 4.386e-20 -19.320 -19.358 -0.037 (0) CaH[14C][18O]O2+ 4.781e-20 4.386e-20 -19.320 -19.358 -0.037 (0) + CaH[14C]O[18O]O+ 4.781e-20 4.386e-20 -19.320 -19.358 -0.037 (0) Ca[14C]O2[18O] 7.864e-21 7.877e-21 -20.104 -20.104 0.001 (0) - H[14C]O[18O]2- 4.518e-21 4.133e-21 -20.345 -20.384 -0.039 (0) H[14C][18O]2O- 4.518e-21 4.133e-21 -20.345 -20.384 -0.039 (0) H[14C][18O]O[18O]- 4.518e-21 4.133e-21 -20.345 -20.384 -0.039 (0) + H[14C]O[18O]2- 4.518e-21 4.133e-21 -20.345 -20.384 -0.039 (0) [14C]O2[18O]-2 4.034e-21 2.826e-21 -20.394 -20.549 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.643e-16 - O[18O] 5.631e-16 5.641e-16 -15.249 -15.249 0.001 (0) - [18O]2 5.618e-19 5.627e-19 -18.250 -18.250 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 3.667e-16 + O[18O] 3.660e-16 3.666e-16 -15.436 -15.436 0.001 (0) + [18O]2 3.651e-19 3.657e-19 -18.438 -18.437 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.17 -127.03 -2.86 [13C]H4 + [13C]H4(g) -123.80 -126.66 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.52 -21.03 -1.50 [14C][18O]2 - [14C]H4(g) -134.84 -137.70 -2.86 [14C]H4 + [14C]H4(g) -134.46 -137.32 -2.86 [14C]H4 [14C]O2(g) -14.16 -15.63 -1.47 [14C]O2 [14C]O[18O](g) -16.54 -18.33 -1.79 [14C]O[18O] - [18O]2(g) -15.96 -18.25 -2.29 [18O]2 + [18O]2(g) -16.15 -18.44 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -35157,14 +35147,14 @@ O(0) 2.834e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.21 -125.07 -2.86 CH4 + CH4(g) -121.84 -124.70 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.62 -39.77 -3.15 H2 + H2(g) -36.52 -39.67 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.96 -12.85 -2.89 O2 - O[18O](g) -12.66 -15.55 -2.89 O[18O] + O2(g) -10.14 -13.04 -2.89 O2 + O[18O](g) -12.84 -15.74 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -35228,23 +35218,23 @@ Calcite 1.16e-02 R(18O) 1.99519e-03 -4.9923 permil R(13C) 1.11181e-02 -5.5563 permil - R(14C) 2.33655e-13 19.871 pmc + R(14C) 2.33657e-13 19.871 pmc R(18O) H2O(l) 1.99519e-03 -4.9939 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.014 permil R(18O) O2(aq) 1.99519e-03 -4.9939 permil R(13C) CO2(aq) 1.10385e-02 -12.673 permil - R(14C) CO2(aq) 2.30320e-13 19.587 pmc + R(14C) CO2(aq) 2.30322e-13 19.587 pmc R(18O) CO2(aq) 2.07915e-03 36.88 permil R(18O) HCO3- 1.99519e-03 -4.9939 permil R(13C) HCO3- 1.11345e-02 -4.0835 permil - R(14C) HCO3- 2.34345e-13 19.929 pmc + R(14C) HCO3- 2.34347e-13 19.929 pmc R(18O) CO3-2 1.99519e-03 -4.9939 permil R(13C) CO3-2 1.11186e-02 -5.5127 permil - R(14C) CO3-2 2.33673e-13 19.872 pmc + R(14C) CO3-2 2.33675e-13 19.872 pmc R(18O) Calcite 2.05263e-03 23.652 permil R(13C) Calcite 1.11566e-02 -2.1109 permil - R(14C) Calcite 2.35275e-13 20.008 pmc + R(14C) Calcite 2.35276e-13 20.008 pmc --------------------------------Isotope Alphas--------------------------------- @@ -35254,12 +35244,12 @@ Calcite 1.16e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2243e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2419e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.7724e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6718e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6163e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -35279,14 +35269,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.321 Adjusted to redox equilibrium + pe = 11.262 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.129e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -35301,14 +35291,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.082 -125.081 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.606 -124.606 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -35316,9 +35306,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -35326,81 +35316,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.072e-08 6.082e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.407e-40 - H2 1.703e-40 1.706e-40 -39.769 -39.768 0.001 (0) -O(0) 2.860e-13 - O2 1.424e-13 1.426e-13 -12.846 -12.846 0.001 (0) - O[18O] 5.683e-16 5.692e-16 -15.245 -15.245 0.001 (0) +H(0) 4.479e-40 + H2 2.239e-40 2.243e-40 -39.650 -39.649 0.001 (0) +O(0) 1.654e-13 + O2 8.238e-14 8.251e-14 -13.084 -13.083 0.001 (0) + O[18O] 3.287e-16 3.293e-16 -15.483 -15.482 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.039 -127.038 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.563 -126.563 0.001 (0) [13C](4) 6.493e-05 H[13C]O3- 5.237e-05 4.791e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) H[13C]O2[18O]- 1.045e-07 9.560e-08 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.045e-07 9.560e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.045e-07 9.560e-08 -6.981 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.045e-07 9.560e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.072e-08 6.082e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.571e-08 4.579e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.115e-08 2.182e-08 -7.507 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.207e-09 2.024e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.207e-09 2.024e-09 -8.656 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.207e-09 2.024e-09 -8.656 -8.694 -0.037 (0) + CaH[13C]O2[18O]+ 2.207e-09 2.024e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.634e-10 3.640e-10 -9.440 -9.439 0.001 (0) - H[13C]O[18O]2- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.864e-10 1.306e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.719 -137.719 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.244 -137.243 0.001 (0) [14C](4) 1.365e-15 H[14C]O3- 1.102e-15 1.008e-15 -14.958 -14.996 -0.039 (0) [14C]O2 2.294e-16 2.297e-16 -15.639 -15.639 0.001 (0) CaH[14C]O3+ 2.328e-17 2.135e-17 -16.633 -16.671 -0.037 (0) - H[14C]O2[18O]- 2.199e-18 2.012e-18 -17.658 -17.696 -0.039 (0) - H[14C]O[18O]O- 2.199e-18 2.012e-18 -17.658 -17.696 -0.039 (0) H[14C][18O]O2- 2.199e-18 2.012e-18 -17.658 -17.696 -0.039 (0) + H[14C]O[18O]O- 2.199e-18 2.012e-18 -17.658 -17.696 -0.039 (0) + H[14C]O2[18O]- 2.199e-18 2.012e-18 -17.658 -17.696 -0.039 (0) Ca[14C]O3 1.276e-18 1.278e-18 -17.894 -17.893 0.001 (0) - [14C]O[18O] 9.537e-19 9.553e-19 -18.021 -18.020 0.001 (0) + [14C]O[18O] 9.538e-19 9.553e-19 -18.021 -18.020 0.001 (0) [14C]O3-2 6.546e-19 4.586e-19 -18.184 -18.339 -0.155 (0) CaH[14C]O2[18O]+ 4.644e-20 4.260e-20 -19.333 -19.371 -0.037 (0) - CaH[14C]O[18O]O+ 4.644e-20 4.260e-20 -19.333 -19.371 -0.037 (0) CaH[14C][18O]O2+ 4.644e-20 4.260e-20 -19.333 -19.371 -0.037 (0) + CaH[14C]O[18O]O+ 4.644e-20 4.260e-20 -19.333 -19.371 -0.037 (0) Ca[14C]O2[18O] 7.638e-21 7.650e-21 -20.117 -20.116 0.001 (0) + H[14C][18O]O[18O]- 4.388e-21 4.014e-21 -20.358 -20.396 -0.039 (0) H[14C]O[18O]2- 4.388e-21 4.014e-21 -20.358 -20.396 -0.039 (0) H[14C][18O]2O- 4.388e-21 4.014e-21 -20.358 -20.396 -0.039 (0) - H[14C][18O]O[18O]- 4.388e-21 4.014e-21 -20.358 -20.396 -0.039 (0) [14C]O2[18O]-2 3.918e-21 2.745e-21 -20.407 -20.561 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.694e-16 - O[18O] 5.683e-16 5.692e-16 -15.245 -15.245 0.001 (0) - [18O]2 5.669e-19 5.678e-19 -18.247 -18.246 0.001 (0) +[18O](0) 3.294e-16 + O[18O] 3.287e-16 3.293e-16 -15.483 -15.482 0.001 (0) + [18O]2 3.279e-19 3.285e-19 -18.484 -18.484 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.18 -127.04 -2.86 [13C]H4 + [13C]H4(g) -123.70 -126.56 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.54 -21.04 -1.50 [14C][18O]2 - [14C]H4(g) -134.86 -137.72 -2.86 [14C]H4 + [14C]H4(g) -134.38 -137.24 -2.86 [14C]H4 [14C]O2(g) -14.17 -15.64 -1.47 [14C]O2 [14C]O[18O](g) -16.55 -18.34 -1.79 [14C]O[18O] - [18O]2(g) -15.96 -18.25 -2.29 [18O]2 + [18O]2(g) -16.19 -18.48 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -35414,14 +35404,14 @@ O(0) 2.860e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.22 -125.08 -2.86 CH4 + CH4(g) -121.75 -124.61 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.62 -39.77 -3.15 H2 + H2(g) -36.50 -39.65 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.95 -12.85 -2.89 O2 - O[18O](g) -12.65 -15.55 -2.89 O[18O] + O2(g) -10.19 -13.08 -2.89 O2 + O[18O](g) -12.89 -15.78 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -35485,23 +35475,23 @@ Calcite 1.21e-02 R(18O) 1.99519e-03 -4.9922 permil R(13C) 1.11194e-02 -5.44 permil - R(14C) 2.27130e-13 19.316 pmc + R(14C) 2.27132e-13 19.316 pmc R(18O) H2O(l) 1.99519e-03 -4.9937 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.014 permil R(18O) O2(aq) 1.99519e-03 -4.9937 permil R(13C) CO2(aq) 1.10398e-02 -12.558 permil - R(14C) CO2(aq) 2.23888e-13 19.04 pmc + R(14C) CO2(aq) 2.23890e-13 19.04 pmc R(18O) CO2(aq) 2.07915e-03 36.88 permil R(18O) HCO3- 1.99519e-03 -4.9937 permil R(13C) HCO3- 1.11358e-02 -3.967 permil - R(14C) HCO3- 2.27801e-13 19.373 pmc + R(14C) HCO3- 2.27802e-13 19.373 pmc R(18O) CO3-2 1.99519e-03 -4.9937 permil R(13C) CO3-2 1.11199e-02 -5.3964 permil - R(14C) CO3-2 2.27148e-13 19.317 pmc + R(14C) CO3-2 2.27149e-13 19.317 pmc R(18O) Calcite 2.05263e-03 23.653 permil R(13C) Calcite 1.11579e-02 -1.9942 permil - R(14C) Calcite 2.28704e-13 19.45 pmc + R(14C) Calcite 2.28706e-13 19.45 pmc --------------------------------Isotope Alphas--------------------------------- @@ -35511,12 +35501,12 @@ Calcite 1.21e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.253e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2723e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6643e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6119e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -35536,14 +35526,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.317 Adjusted to redox equilibrium + pe = 11.260 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -35558,24 +35548,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.049 -125.049 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.589 -124.588 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -35583,50 +35573,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.072e-08 6.082e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.471e-40 - H2 1.735e-40 1.738e-40 -39.761 -39.760 0.001 (0) -O(0) 2.755e-13 - O2 1.372e-13 1.374e-13 -12.863 -12.862 0.001 (0) - O[18O] 5.474e-16 5.483e-16 -15.262 -15.261 0.001 (0) +H(0) 4.525e-40 + H2 2.262e-40 2.266e-40 -39.645 -39.645 0.001 (0) +O(0) 1.621e-13 + O2 8.072e-14 8.085e-14 -13.093 -13.092 0.001 (0) + O[18O] 3.221e-16 3.226e-16 -15.492 -15.491 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.006 -127.006 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.546 -126.545 0.001 (0) [13C](4) 6.494e-05 H[13C]O3- 5.238e-05 4.792e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.045e-07 9.561e-08 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.045e-07 9.561e-08 -6.981 -7.020 -0.039 (0) H[13C][18O]O2- 1.045e-07 9.561e-08 -6.981 -7.020 -0.039 (0) + H[13C]O[18O]O- 1.045e-07 9.561e-08 -6.981 -7.020 -0.039 (0) + H[13C]O2[18O]- 1.045e-07 9.561e-08 -6.981 -7.020 -0.039 (0) Ca[13C]O3 6.072e-08 6.082e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.572e-08 4.579e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.115e-08 2.182e-08 -7.507 -7.661 -0.155 (0) + CaH[13C][18O]O2+ 2.207e-09 2.024e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O2[18O]+ 2.207e-09 2.024e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.207e-09 2.024e-09 -8.656 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.207e-09 2.024e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.635e-10 3.641e-10 -9.440 -9.439 0.001 (0) - H[13C]O[18O]2- 2.085e-10 1.908e-10 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.085e-10 1.908e-10 -9.681 -9.720 -0.039 (0) H[13C][18O]O[18O]- 2.085e-10 1.908e-10 -9.681 -9.720 -0.039 (0) + H[13C][18O]2O- 2.085e-10 1.908e-10 -9.681 -9.720 -0.039 (0) + H[13C]O[18O]2- 2.085e-10 1.908e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.864e-10 1.306e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.699 -137.699 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.239 -137.238 0.001 (0) [14C](4) 1.326e-15 H[14C]O3- 1.071e-15 9.803e-16 -14.970 -15.009 -0.039 (0) [14C]O2 2.230e-16 2.233e-16 -15.652 -15.651 0.001 (0) CaH[14C]O3+ 2.263e-17 2.076e-17 -16.645 -16.683 -0.037 (0) - H[14C]O2[18O]- 2.138e-18 1.956e-18 -17.670 -17.709 -0.039 (0) - H[14C]O[18O]O- 2.138e-18 1.956e-18 -17.670 -17.709 -0.039 (0) H[14C][18O]O2- 2.138e-18 1.956e-18 -17.670 -17.709 -0.039 (0) + H[14C]O[18O]O- 2.138e-18 1.956e-18 -17.670 -17.709 -0.039 (0) + H[14C]O2[18O]- 2.138e-18 1.956e-18 -17.670 -17.709 -0.039 (0) Ca[14C]O3 1.240e-18 1.242e-18 -17.906 -17.906 0.001 (0) [14C]O[18O] 9.271e-19 9.286e-19 -18.033 -18.032 0.001 (0) [14C]O3-2 6.363e-19 4.458e-19 -18.196 -18.351 -0.155 (0) CaH[14C]O2[18O]+ 4.514e-20 4.141e-20 -19.345 -19.383 -0.037 (0) - CaH[14C]O[18O]O+ 4.514e-20 4.141e-20 -19.345 -19.383 -0.037 (0) CaH[14C][18O]O2+ 4.514e-20 4.141e-20 -19.345 -19.383 -0.037 (0) + CaH[14C]O[18O]O+ 4.514e-20 4.141e-20 -19.345 -19.383 -0.037 (0) Ca[14C]O2[18O] 7.424e-21 7.437e-21 -20.129 -20.129 0.001 (0) H[14C]O[18O]2- 4.265e-21 3.902e-21 -20.370 -20.409 -0.039 (0) H[14C][18O]2O- 4.265e-21 3.902e-21 -20.370 -20.409 -0.039 (0) @@ -35635,29 +35625,29 @@ O(0) 2.755e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.485e-16 - O[18O] 5.474e-16 5.483e-16 -15.262 -15.261 0.001 (0) - [18O]2 5.461e-19 5.470e-19 -18.263 -18.262 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 3.228e-16 + O[18O] 3.221e-16 3.226e-16 -15.492 -15.491 0.001 (0) + [18O]2 3.213e-19 3.219e-19 -18.493 -18.492 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.15 -127.01 -2.86 [13C]H4 + [13C]H4(g) -123.69 -126.55 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.55 -21.05 -1.50 [14C][18O]2 - [14C]H4(g) -134.84 -137.70 -2.86 [14C]H4 + [14C]H4(g) -134.38 -137.24 -2.86 [14C]H4 [14C]O2(g) -14.18 -15.65 -1.47 [14C]O2 [14C]O[18O](g) -16.56 -18.35 -1.79 [14C]O[18O] - [18O]2(g) -15.97 -18.26 -2.29 [18O]2 + [18O]2(g) -16.20 -18.49 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -35671,14 +35661,14 @@ O(0) 2.755e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.19 -125.05 -2.86 CH4 + CH4(g) -121.73 -124.59 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.61 -39.76 -3.15 H2 + H2(g) -36.49 -39.64 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.97 -12.86 -2.89 O2 - O[18O](g) -12.67 -15.56 -2.89 O[18O] + O2(g) -10.20 -13.09 -2.89 O2 + O[18O](g) -12.90 -15.79 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -35742,23 +35732,23 @@ Calcite 1.26e-02 R(18O) 1.99519e-03 -4.9921 permil R(13C) 1.11206e-02 -5.3301 permil - R(14C) 2.20960e-13 18.791 pmc + R(14C) 2.20961e-13 18.791 pmc R(18O) H2O(l) 1.99519e-03 -4.9936 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.014 permil R(18O) O2(aq) 1.99519e-03 -4.9936 permil R(13C) CO2(aq) 1.10410e-02 -12.448 permil - R(14C) CO2(aq) 2.17806e-13 18.523 pmc + R(14C) CO2(aq) 2.17807e-13 18.523 pmc R(18O) CO2(aq) 2.07915e-03 36.88 permil R(18O) HCO3- 1.99519e-03 -4.9936 permil R(13C) HCO3- 1.11371e-02 -3.8569 permil - R(14C) HCO3- 2.21612e-13 18.846 pmc + R(14C) HCO3- 2.21614e-13 18.846 pmc R(18O) CO3-2 1.99519e-03 -4.9936 permil R(13C) CO3-2 1.11211e-02 -5.2865 permil - R(14C) CO3-2 2.20977e-13 18.792 pmc + R(14C) CO3-2 2.20978e-13 18.792 pmc R(18O) Calcite 2.05263e-03 23.653 permil R(13C) Calcite 1.11591e-02 -1.8839 permil - R(14C) Calcite 2.22491e-13 18.921 pmc + R(14C) Calcite 2.22492e-13 18.921 pmc --------------------------------Isotope Alphas--------------------------------- @@ -35768,12 +35758,12 @@ Calcite 1.26e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2486e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2669e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6257e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7769e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -35793,14 +35783,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.301 Adjusted to redox equilibrium + pe = 11.258 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -35815,13 +35805,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.919 -124.918 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.573 -124.572 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.933e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -35830,9 +35820,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -35840,23 +35830,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.073e-08 6.083e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.742e-40 - H2 1.871e-40 1.874e-40 -39.728 -39.727 0.001 (0) -O(0) 2.370e-13 - O2 1.180e-13 1.182e-13 -12.928 -12.927 0.001 (0) - O[18O] 4.710e-16 4.718e-16 -15.327 -15.326 0.001 (0) +H(0) 4.565e-40 + H2 2.283e-40 2.286e-40 -39.642 -39.641 0.001 (0) +O(0) 1.592e-13 + O2 7.929e-14 7.942e-14 -13.101 -13.100 0.001 (0) + O[18O] 3.164e-16 3.169e-16 -15.500 -15.499 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.876 -126.875 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.530 -126.529 0.001 (0) [13C](4) 6.494e-05 H[13C]O3- 5.238e-05 4.793e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.045e-07 9.562e-08 -6.981 -7.019 -0.039 (0) H[13C]O[18O]O- 1.045e-07 9.562e-08 -6.981 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.045e-07 9.562e-08 -6.981 -7.019 -0.039 (0) H[13C][18O]O2- 1.045e-07 9.562e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.073e-08 6.083e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.572e-08 4.580e-08 -7.340 -7.339 0.001 (0) @@ -35865,56 +35855,56 @@ O(0) 2.370e-13 CaH[13C]O[18O]O+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.635e-10 3.641e-10 -9.439 -9.439 0.001 (0) - H[13C]O[18O]2- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.865e-10 1.306e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.581 -137.580 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.235 -137.234 0.001 (0) [14C](4) 1.290e-15 H[14C]O3- 1.042e-15 9.536e-16 -14.982 -15.021 -0.039 (0) [14C]O2 2.169e-16 2.173e-16 -15.664 -15.663 0.001 (0) CaH[14C]O3+ 2.201e-17 2.019e-17 -16.657 -16.695 -0.037 (0) - H[14C]O2[18O]- 2.080e-18 1.903e-18 -17.682 -17.721 -0.039 (0) - H[14C]O[18O]O- 2.080e-18 1.903e-18 -17.682 -17.721 -0.039 (0) H[14C][18O]O2- 2.080e-18 1.903e-18 -17.682 -17.721 -0.039 (0) + H[14C]O[18O]O- 2.080e-18 1.903e-18 -17.682 -17.721 -0.039 (0) + H[14C]O2[18O]- 2.080e-18 1.903e-18 -17.682 -17.721 -0.039 (0) Ca[14C]O3 1.207e-18 1.209e-18 -17.918 -17.918 0.001 (0) [14C]O[18O] 9.019e-19 9.034e-19 -18.045 -18.044 0.001 (0) [14C]O3-2 6.190e-19 4.336e-19 -18.208 -18.363 -0.155 (0) CaH[14C]O2[18O]+ 4.392e-20 4.029e-20 -19.357 -19.395 -0.037 (0) - CaH[14C]O[18O]O+ 4.392e-20 4.029e-20 -19.357 -19.395 -0.037 (0) CaH[14C][18O]O2+ 4.392e-20 4.029e-20 -19.357 -19.395 -0.037 (0) + CaH[14C]O[18O]O+ 4.392e-20 4.029e-20 -19.357 -19.395 -0.037 (0) Ca[14C]O2[18O] 7.223e-21 7.235e-21 -20.141 -20.141 0.001 (0) - H[14C]O[18O]2- 4.149e-21 3.796e-21 -20.382 -20.421 -0.039 (0) H[14C][18O]2O- 4.149e-21 3.796e-21 -20.382 -20.421 -0.039 (0) H[14C][18O]O[18O]- 4.149e-21 3.796e-21 -20.382 -20.421 -0.039 (0) + H[14C]O[18O]2- 4.149e-21 3.796e-21 -20.382 -20.421 -0.039 (0) [14C]O2[18O]-2 3.705e-21 2.596e-21 -20.431 -20.586 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.719e-16 - O[18O] 4.710e-16 4.718e-16 -15.327 -15.326 0.001 (0) - [18O]2 4.699e-19 4.706e-19 -18.328 -18.327 0.001 (0) +[18O](0) 3.170e-16 + O[18O] 3.164e-16 3.169e-16 -15.500 -15.499 0.001 (0) + [18O]2 3.156e-19 3.162e-19 -18.501 -18.500 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.02 -126.88 -2.86 [13C]H4 + [13C]H4(g) -123.67 -126.53 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.56 -21.06 -1.50 [14C][18O]2 - [14C]H4(g) -134.72 -137.58 -2.86 [14C]H4 + [14C]H4(g) -134.37 -137.23 -2.86 [14C]H4 [14C]O2(g) -14.19 -15.66 -1.47 [14C]O2 [14C]O[18O](g) -16.58 -18.36 -1.79 [14C]O[18O] - [18O]2(g) -16.04 -18.33 -2.29 [18O]2 + [18O]2(g) -16.21 -18.50 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -35928,14 +35918,14 @@ O(0) 2.370e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.06 -124.92 -2.86 CH4 + CH4(g) -121.71 -124.57 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.58 -39.73 -3.15 H2 + H2(g) -36.49 -39.64 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.03 -12.93 -2.89 O2 - O[18O](g) -12.73 -15.63 -2.89 O[18O] + O2(g) -10.21 -13.10 -2.89 O2 + O[18O](g) -12.91 -15.80 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -35999,23 +35989,23 @@ Calcite 1.31e-02 R(18O) 1.99519e-03 -4.9919 permil R(13C) 1.11218e-02 -5.2259 permil - R(14C) 2.15115e-13 18.294 pmc + R(14C) 2.15117e-13 18.294 pmc R(18O) H2O(l) 1.99519e-03 -4.9934 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.014 permil R(18O) O2(aq) 1.99519e-03 -4.9934 permil R(13C) CO2(aq) 1.10422e-02 -12.345 permil - R(14C) CO2(aq) 2.12045e-13 18.033 pmc + R(14C) CO2(aq) 2.12047e-13 18.033 pmc R(18O) CO2(aq) 2.07915e-03 36.88 permil R(18O) HCO3- 1.99519e-03 -4.9934 permil R(13C) HCO3- 1.11382e-02 -3.7526 permil - R(14C) HCO3- 2.15751e-13 18.348 pmc + R(14C) HCO3- 2.15752e-13 18.348 pmc R(18O) CO3-2 1.99519e-03 -4.9934 permil R(13C) CO3-2 1.11223e-02 -5.1823 permil - R(14C) CO3-2 2.15132e-13 18.295 pmc + R(14C) CO3-2 2.15133e-13 18.295 pmc R(18O) Calcite 2.05263e-03 23.653 permil R(13C) Calcite 1.11603e-02 -1.7794 permil - R(14C) Calcite 2.16606e-13 18.421 pmc + R(14C) Calcite 2.16608e-13 18.421 pmc --------------------------------Isotope Alphas--------------------------------- @@ -36025,12 +36015,12 @@ Calcite 1.31e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2766e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2947e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7346e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6793e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -36050,14 +36040,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.300 Adjusted to redox equilibrium + pe = 11.228 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.129e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -36072,24 +36062,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.910 -124.909 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.336 -124.335 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -36097,81 +36087,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.074e-08 6.084e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.760e-40 - H2 1.880e-40 1.883e-40 -39.726 -39.725 0.001 (0) -O(0) 2.347e-13 - O2 1.169e-13 1.171e-13 -12.932 -12.932 0.001 (0) - O[18O] 4.663e-16 4.671e-16 -15.331 -15.331 0.001 (0) +H(0) 5.233e-40 + H2 2.617e-40 2.621e-40 -39.582 -39.582 0.001 (0) +O(0) 1.212e-13 + O2 6.035e-14 6.044e-14 -13.219 -13.219 0.001 (0) + O[18O] 2.408e-16 2.412e-16 -15.618 -15.618 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.867 -126.866 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.293 -126.292 0.001 (0) [13C](4) 6.495e-05 H[13C]O3- 5.239e-05 4.793e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.101e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) H[13C]O2[18O]- 1.045e-07 9.563e-08 -6.981 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.045e-07 9.563e-08 -6.981 -7.019 -0.039 (0) H[13C][18O]O2- 1.045e-07 9.563e-08 -6.981 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.045e-07 9.563e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.074e-08 6.084e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.573e-08 4.580e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.116e-08 2.183e-08 -7.506 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) + CaH[13C]O2[18O]+ 2.207e-09 2.025e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.635e-10 3.641e-10 -9.439 -9.439 0.001 (0) - H[13C]O[18O]2- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.865e-10 1.306e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.584 -137.583 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.010 -137.009 0.001 (0) [14C](4) 1.256e-15 H[14C]O3- 1.015e-15 9.284e-16 -14.994 -15.032 -0.039 (0) [14C]O2 2.112e-16 2.115e-16 -15.675 -15.675 0.001 (0) CaH[14C]O3+ 2.143e-17 1.966e-17 -16.669 -16.706 -0.037 (0) - H[14C]O2[18O]- 2.025e-18 1.852e-18 -17.694 -17.732 -0.039 (0) - H[14C]O[18O]O- 2.025e-18 1.852e-18 -17.694 -17.732 -0.039 (0) H[14C][18O]O2- 2.025e-18 1.852e-18 -17.694 -17.732 -0.039 (0) + H[14C]O[18O]O- 2.025e-18 1.852e-18 -17.694 -17.732 -0.039 (0) + H[14C]O2[18O]- 2.025e-18 1.852e-18 -17.694 -17.732 -0.039 (0) Ca[14C]O3 1.175e-18 1.177e-18 -17.930 -17.929 0.001 (0) [14C]O[18O] 8.781e-19 8.795e-19 -18.056 -18.056 0.001 (0) [14C]O3-2 6.026e-19 4.222e-19 -18.220 -18.375 -0.155 (0) CaH[14C]O2[18O]+ 4.276e-20 3.922e-20 -19.369 -19.406 -0.037 (0) - CaH[14C]O[18O]O+ 4.276e-20 3.922e-20 -19.369 -19.406 -0.037 (0) CaH[14C][18O]O2+ 4.276e-20 3.922e-20 -19.369 -19.406 -0.037 (0) + CaH[14C]O[18O]O+ 4.276e-20 3.922e-20 -19.369 -19.406 -0.037 (0) Ca[14C]O2[18O] 7.032e-21 7.043e-21 -20.153 -20.152 0.001 (0) + H[14C][18O]O[18O]- 4.040e-21 3.696e-21 -20.394 -20.432 -0.039 (0) H[14C]O[18O]2- 4.040e-21 3.696e-21 -20.394 -20.432 -0.039 (0) H[14C][18O]2O- 4.040e-21 3.696e-21 -20.394 -20.432 -0.039 (0) - H[14C][18O]O[18O]- 4.040e-21 3.696e-21 -20.394 -20.432 -0.039 (0) [14C]O2[18O]-2 3.607e-21 2.527e-21 -20.443 -20.597 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.673e-16 - O[18O] 4.663e-16 4.671e-16 -15.331 -15.331 0.001 (0) - [18O]2 4.652e-19 4.660e-19 -18.332 -18.332 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.413e-16 + O[18O] 2.408e-16 2.412e-16 -15.618 -15.618 0.001 (0) + [18O]2 2.402e-19 2.406e-19 -18.619 -18.619 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.01 -126.87 -2.86 [13C]H4 + [13C]H4(g) -123.43 -126.29 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.57 -21.07 -1.50 [14C][18O]2 - [14C]H4(g) -134.72 -137.58 -2.86 [14C]H4 + [14C]H4(g) -134.15 -137.01 -2.86 [14C]H4 [14C]O2(g) -14.21 -15.67 -1.47 [14C]O2 [14C]O[18O](g) -16.59 -18.37 -1.79 [14C]O[18O] - [18O]2(g) -16.04 -18.33 -2.29 [18O]2 + [18O]2(g) -16.33 -18.62 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -36185,14 +36175,14 @@ O(0) 2.347e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.05 -124.91 -2.86 CH4 + CH4(g) -121.48 -124.34 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.58 -39.73 -3.15 H2 + H2(g) -36.43 -39.58 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.04 -12.93 -2.89 O2 - O[18O](g) -12.74 -15.63 -2.89 O[18O] + O2(g) -10.33 -13.22 -2.89 O2 + O[18O](g) -13.03 -15.92 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -36247,7 +36237,7 @@ Calcite 1.36e-02 Ca[13C][18O]3(s) 1.29e-12 4.76e-14 9.49e-11 Ca[14C]O3(s) 2.81e-15 3.21e-17 2.07e-13 Ca[14C]O2[18O](s) 1.73e-17 1.98e-19 1.28e-15 - Ca[14C]O[18O]2(s) 3.55e-20 4.05e-22 2.62e-18 + Ca[14C]O[18O]2(s) 3.55e-20 4.06e-22 2.62e-18 Ca[14C][18O]3(s) 2.43e-23 2.77e-25 1.79e-21 --------------------------------Isotope Ratios--------------------------------- @@ -36256,23 +36246,23 @@ Calcite 1.36e-02 R(18O) 1.99519e-03 -4.9918 permil R(13C) 1.11229e-02 -5.1271 permil - R(14C) 2.09572e-13 17.822 pmc + R(14C) 2.09574e-13 17.823 pmc R(18O) H2O(l) 1.99519e-03 -4.9933 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.015 permil R(18O) O2(aq) 1.99519e-03 -4.9933 permil R(13C) CO2(aq) 1.10433e-02 -12.247 permil - R(14C) CO2(aq) 2.06581e-13 17.568 pmc + R(14C) CO2(aq) 2.06583e-13 17.568 pmc R(18O) CO2(aq) 2.07915e-03 36.881 permil R(18O) HCO3- 1.99519e-03 -4.9933 permil R(13C) HCO3- 1.11394e-02 -3.6537 permil - R(14C) HCO3- 2.10191e-13 17.875 pmc + R(14C) HCO3- 2.10193e-13 17.875 pmc R(18O) CO3-2 1.99519e-03 -4.9933 permil R(13C) CO3-2 1.11234e-02 -5.0835 permil - R(14C) CO3-2 2.09588e-13 17.824 pmc + R(14C) CO3-2 2.09590e-13 17.824 pmc R(18O) Calcite 2.05263e-03 23.653 permil R(13C) Calcite 1.11614e-02 -1.6802 permil - R(14C) Calcite 2.11025e-13 17.946 pmc + R(14C) Calcite 2.11026e-13 17.946 pmc --------------------------------Isotope Alphas--------------------------------- @@ -36282,12 +36272,12 @@ Calcite 1.36e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2412e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2258e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6772e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7569e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -36307,14 +36297,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.291 Adjusted to redox equilibrium + pe = 11.203 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -36329,14 +36319,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.840 -124.839 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.132 -124.131 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -36344,9 +36334,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -36354,51 +36344,51 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.074e-08 6.084e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.916e-40 - H2 1.958e-40 1.961e-40 -39.708 -39.708 0.001 (0) -O(0) 2.164e-13 - O2 1.078e-13 1.080e-13 -12.967 -12.967 0.001 (0) - O[18O] 4.301e-16 4.308e-16 -15.366 -15.366 0.001 (0) +H(0) 5.886e-40 + H2 2.943e-40 2.948e-40 -39.531 -39.530 0.001 (0) +O(0) 9.578e-14 + O2 4.770e-14 4.778e-14 -13.321 -13.321 0.001 (0) + O[18O] 1.903e-16 1.907e-16 -15.720 -15.720 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.797 -126.796 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.089 -126.088 0.001 (0) [13C](4) 6.496e-05 H[13C]O3- 5.240e-05 4.793e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.106e-06 1.015e-06 -5.956 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.045e-07 9.564e-08 -6.981 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.045e-07 9.564e-08 -6.981 -7.019 -0.039 (0) H[13C][18O]O2- 1.045e-07 9.564e-08 -6.981 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.045e-07 9.564e-08 -6.981 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.045e-07 9.564e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.074e-08 6.084e-08 -7.217 -7.216 0.001 (0) [13C]O[18O] 4.573e-08 4.580e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.116e-08 2.183e-08 -7.506 -7.661 -0.155 (0) + CaH[13C][18O]O2+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O2[18O]+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C]O[18O]O+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.636e-10 3.642e-10 -9.439 -9.439 0.001 (0) - H[13C]O[18O]2- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.865e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.525 -137.524 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.817 -136.816 0.001 (0) [14C](4) 1.224e-15 H[14C]O3- 9.887e-16 9.045e-16 -15.005 -15.044 -0.039 (0) [14C]O2 2.057e-16 2.061e-16 -15.687 -15.686 0.001 (0) CaH[14C]O3+ 2.088e-17 1.915e-17 -16.680 -16.718 -0.037 (0) - H[14C]O2[18O]- 1.973e-18 1.805e-18 -17.705 -17.744 -0.039 (0) - H[14C]O[18O]O- 1.973e-18 1.805e-18 -17.705 -17.744 -0.039 (0) H[14C][18O]O2- 1.973e-18 1.805e-18 -17.705 -17.744 -0.039 (0) - Ca[14C]O3 1.144e-18 1.146e-18 -17.941 -17.941 0.001 (0) - [14C]O[18O] 8.554e-19 8.568e-19 -18.068 -18.067 0.001 (0) + H[14C]O[18O]O- 1.973e-18 1.805e-18 -17.705 -17.744 -0.039 (0) + H[14C]O2[18O]- 1.973e-18 1.805e-18 -17.705 -17.744 -0.039 (0) + Ca[14C]O3 1.145e-18 1.146e-18 -17.941 -17.941 0.001 (0) + [14C]O[18O] 8.554e-19 8.569e-19 -18.068 -18.067 0.001 (0) [14C]O3-2 5.871e-19 4.113e-19 -18.231 -18.386 -0.155 (0) CaH[14C]O2[18O]+ 4.165e-20 3.821e-20 -19.380 -19.418 -0.037 (0) - CaH[14C]O[18O]O+ 4.165e-20 3.821e-20 -19.380 -19.418 -0.037 (0) CaH[14C][18O]O2+ 4.165e-20 3.821e-20 -19.380 -19.418 -0.037 (0) - Ca[14C]O2[18O] 6.850e-21 6.862e-21 -20.164 -20.164 0.001 (0) + CaH[14C]O[18O]O+ 4.165e-20 3.821e-20 -19.380 -19.418 -0.037 (0) + Ca[14C]O2[18O] 6.851e-21 6.862e-21 -20.164 -20.164 0.001 (0) H[14C]O[18O]2- 3.936e-21 3.601e-21 -20.405 -20.444 -0.039 (0) H[14C][18O]2O- 3.936e-21 3.601e-21 -20.405 -20.444 -0.039 (0) H[14C][18O]O[18O]- 3.936e-21 3.601e-21 -20.405 -20.444 -0.039 (0) @@ -36406,29 +36396,29 @@ O(0) 2.164e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.310e-16 - O[18O] 4.301e-16 4.308e-16 -15.366 -15.366 0.001 (0) - [18O]2 4.291e-19 4.298e-19 -18.367 -18.367 0.001 (0) +[18O](0) 1.907e-16 + O[18O] 1.903e-16 1.907e-16 -15.720 -15.720 0.001 (0) + [18O]2 1.899e-19 1.902e-19 -18.722 -18.721 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.94 -126.80 -2.86 [13C]H4 + [13C]H4(g) -123.23 -126.09 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.58 -21.09 -1.50 [14C][18O]2 - [14C]H4(g) -134.66 -137.52 -2.86 [14C]H4 + [14C]H4(g) -133.96 -136.82 -2.86 [14C]H4 [14C]O2(g) -14.22 -15.69 -1.47 [14C]O2 [14C]O[18O](g) -16.60 -18.39 -1.79 [14C]O[18O] - [18O]2(g) -16.08 -18.37 -2.29 [18O]2 + [18O]2(g) -16.43 -18.72 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -36442,14 +36432,14 @@ O(0) 2.164e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.98 -124.84 -2.86 CH4 + CH4(g) -121.27 -124.13 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.56 -39.71 -3.15 H2 + H2(g) -36.38 -39.53 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.07 -12.97 -2.89 O2 - O[18O](g) -12.77 -15.67 -2.89 O[18O] + O2(g) -10.43 -13.32 -2.89 O2 + O[18O](g) -13.13 -16.02 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -36513,23 +36503,23 @@ Calcite 1.41e-02 R(18O) 1.99519e-03 -4.9916 permil R(13C) 1.11239e-02 -5.0333 permil - R(14C) 2.04308e-13 17.375 pmc + R(14C) 2.04309e-13 17.375 pmc R(18O) H2O(l) 1.99519e-03 -4.9932 permil R(18O) OH- 1.92122e-03 -41.88 permil R(18O) H3O+ 2.04132e-03 18.015 permil R(18O) O2(aq) 1.99519e-03 -4.9932 permil R(13C) CO2(aq) 1.10443e-02 -12.154 permil - R(14C) CO2(aq) 2.01392e-13 17.127 pmc + R(14C) CO2(aq) 2.01393e-13 17.127 pmc R(18O) CO2(aq) 2.07915e-03 36.881 permil R(18O) HCO3- 1.99519e-03 -4.9932 permil R(13C) HCO3- 1.11404e-02 -3.5597 permil - R(14C) HCO3- 2.04911e-13 17.426 pmc + R(14C) HCO3- 2.04913e-13 17.426 pmc R(18O) CO3-2 1.99519e-03 -4.9932 permil R(13C) CO3-2 1.11244e-02 -4.9897 permil - R(14C) CO3-2 2.04324e-13 17.376 pmc + R(14C) CO3-2 2.04325e-13 17.376 pmc R(18O) Calcite 2.05263e-03 23.653 permil R(13C) Calcite 1.11625e-02 -1.5861 permil - R(14C) Calcite 2.05724e-13 17.495 pmc + R(14C) Calcite 2.05725e-13 17.495 pmc --------------------------------Isotope Alphas--------------------------------- @@ -36539,12 +36529,12 @@ Calcite 1.41e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2704e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2564e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.717e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7297e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -36564,14 +36554,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.294 Adjusted to redox equilibrium + pe = 11.201 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.129e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -36586,24 +36576,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.862 -124.861 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.119 -124.119 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -36611,23 +36601,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.994 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.075e-08 6.085e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.866e-40 - H2 1.933e-40 1.936e-40 -39.714 -39.713 0.001 (0) -O(0) 2.220e-13 - O2 1.106e-13 1.108e-13 -12.956 -12.956 0.001 (0) - O[18O] 4.412e-16 4.419e-16 -15.355 -15.355 0.001 (0) +H(0) 5.928e-40 + H2 2.964e-40 2.969e-40 -39.528 -39.527 0.001 (0) +O(0) 9.442e-14 + O2 4.702e-14 4.710e-14 -13.328 -13.327 0.001 (0) + O[18O] 1.876e-16 1.879e-16 -15.727 -15.726 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.819 -126.818 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.076 -126.075 0.001 (0) [13C](4) 6.496e-05 H[13C]O3- 5.240e-05 4.794e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.045e-07 9.565e-08 -6.981 -7.019 -0.039 (0) H[13C]O[18O]O- 1.045e-07 9.565e-08 -6.981 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.045e-07 9.565e-08 -6.981 -7.019 -0.039 (0) H[13C][18O]O2- 1.045e-07 9.565e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.075e-08 6.085e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.573e-08 4.581e-08 -7.340 -7.339 0.001 (0) @@ -36636,56 +36626,56 @@ O(0) 2.220e-13 CaH[13C]O[18O]O+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) CaH[13C][18O]O2+ 2.208e-09 2.025e-09 -8.656 -8.694 -0.037 (0) Ca[13C]O2[18O] 3.636e-10 3.642e-10 -9.439 -9.439 0.001 (0) - H[13C]O[18O]2- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.865e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.558 -137.557 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.815 -136.815 0.001 (0) [14C](4) 1.193e-15 H[14C]O3- 9.638e-16 8.818e-16 -15.016 -15.055 -0.039 (0) [14C]O2 2.006e-16 2.009e-16 -15.698 -15.697 0.001 (0) CaH[14C]O3+ 2.035e-17 1.867e-17 -16.691 -16.729 -0.037 (0) - H[14C]O2[18O]- 1.923e-18 1.759e-18 -17.716 -17.755 -0.039 (0) - H[14C]O[18O]O- 1.923e-18 1.759e-18 -17.716 -17.755 -0.039 (0) H[14C][18O]O2- 1.923e-18 1.759e-18 -17.716 -17.755 -0.039 (0) + H[14C]O[18O]O- 1.923e-18 1.759e-18 -17.716 -17.755 -0.039 (0) + H[14C]O2[18O]- 1.923e-18 1.759e-18 -17.716 -17.755 -0.039 (0) Ca[14C]O3 1.116e-18 1.118e-18 -17.952 -17.952 0.001 (0) [14C]O[18O] 8.340e-19 8.353e-19 -18.079 -18.078 0.001 (0) [14C]O3-2 5.724e-19 4.010e-19 -18.242 -18.397 -0.155 (0) CaH[14C]O2[18O]+ 4.061e-20 3.725e-20 -19.391 -19.429 -0.037 (0) - CaH[14C]O[18O]O+ 4.061e-20 3.725e-20 -19.391 -19.429 -0.037 (0) CaH[14C][18O]O2+ 4.061e-20 3.725e-20 -19.391 -19.429 -0.037 (0) + CaH[14C]O[18O]O+ 4.061e-20 3.725e-20 -19.391 -19.429 -0.037 (0) Ca[14C]O2[18O] 6.678e-21 6.689e-21 -20.175 -20.175 0.001 (0) - H[14C]O[18O]2- 3.837e-21 3.510e-21 -20.416 -20.455 -0.039 (0) H[14C][18O]2O- 3.837e-21 3.510e-21 -20.416 -20.455 -0.039 (0) H[14C][18O]O[18O]- 3.837e-21 3.510e-21 -20.416 -20.455 -0.039 (0) + H[14C]O[18O]2- 3.837e-21 3.510e-21 -20.416 -20.455 -0.039 (0) [14C]O2[18O]-2 3.426e-21 2.400e-21 -20.465 -20.620 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.421e-16 - O[18O] 4.412e-16 4.419e-16 -15.355 -15.355 0.001 (0) - [18O]2 4.402e-19 4.409e-19 -18.356 -18.356 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.880e-16 + O[18O] 1.876e-16 1.879e-16 -15.727 -15.726 0.001 (0) + [18O]2 1.872e-19 1.875e-19 -18.728 -18.727 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.96 -126.82 -2.86 [13C]H4 + [13C]H4(g) -123.22 -126.08 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.59 -21.10 -1.50 [14C][18O]2 - [14C]H4(g) -134.70 -137.56 -2.86 [14C]H4 + [14C]H4(g) -133.95 -136.81 -2.86 [14C]H4 [14C]O2(g) -14.23 -15.70 -1.47 [14C]O2 [14C]O[18O](g) -16.61 -18.40 -1.79 [14C]O[18O] - [18O]2(g) -16.07 -18.36 -2.29 [18O]2 + [18O]2(g) -16.44 -18.73 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -36699,14 +36689,14 @@ O(0) 2.220e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.00 -124.86 -2.86 CH4 + CH4(g) -121.26 -124.12 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.56 -39.71 -3.15 H2 + H2(g) -36.38 -39.53 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.06 -12.96 -2.89 O2 - O[18O](g) -12.76 -15.66 -2.89 O[18O] + O2(g) -10.43 -13.33 -2.89 O2 + O[18O](g) -13.13 -16.03 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -36770,23 +36760,23 @@ Calcite 1.46e-02 R(18O) 1.99519e-03 -4.9915 permil R(13C) 1.11249e-02 -4.944 permil - R(14C) 1.99301e-13 16.949 pmc + R(14C) 1.99303e-13 16.949 pmc R(18O) H2O(l) 1.99519e-03 -4.993 permil R(18O) OH- 1.92122e-03 -41.88 permil R(18O) H3O+ 2.04132e-03 18.015 permil R(18O) O2(aq) 1.99519e-03 -4.993 permil R(13C) CO2(aq) 1.10453e-02 -12.065 permil - R(14C) CO2(aq) 1.96457e-13 16.707 pmc + R(14C) CO2(aq) 1.96458e-13 16.707 pmc R(18O) CO2(aq) 2.07915e-03 36.881 permil R(18O) HCO3- 1.99519e-03 -4.993 permil R(13C) HCO3- 1.11414e-02 -3.4703 permil - R(14C) HCO3- 1.99890e-13 16.999 pmc + R(14C) HCO3- 1.99891e-13 16.999 pmc R(18O) CO3-2 1.99519e-03 -4.993 permil R(13C) CO3-2 1.11254e-02 -4.9004 permil - R(14C) CO3-2 1.99317e-13 16.95 pmc + R(14C) CO3-2 1.99318e-13 16.95 pmc R(18O) Calcite 2.05263e-03 23.653 permil R(13C) Calcite 1.11635e-02 -1.4965 permil - R(14C) Calcite 2.00683e-13 17.066 pmc + R(14C) Calcite 2.00684e-13 17.067 pmc --------------------------------Isotope Alphas--------------------------------- @@ -36796,12 +36786,12 @@ Calcite 1.46e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.3027e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2552e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 2.2204e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7444e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6891e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -36821,14 +36811,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.291 Adjusted to redox equilibrium + pe = 11.140 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.129e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -36843,14 +36833,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.843 -124.842 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.634 -123.633 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -36858,9 +36848,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -36868,81 +36858,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.075e-08 6.085e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.909e-40 - H2 1.954e-40 1.958e-40 -39.709 -39.708 0.001 (0) -O(0) 2.172e-13 - O2 1.082e-13 1.083e-13 -12.966 -12.965 0.001 (0) - O[18O] 4.316e-16 4.323e-16 -15.365 -15.364 0.001 (0) +H(0) 7.840e-40 + H2 3.920e-40 3.926e-40 -39.407 -39.406 0.001 (0) +O(0) 5.399e-14 + O2 2.689e-14 2.693e-14 -13.570 -13.570 0.001 (0) + O[18O] 1.073e-16 1.075e-16 -15.969 -15.969 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.800 -126.799 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.591 -125.590 0.001 (0) [13C](4) 6.497e-05 H[13C]O3- 5.240e-05 4.794e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) H[13C]O2[18O]- 1.046e-07 9.566e-08 -6.981 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.566e-08 -6.981 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.566e-08 -6.981 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.566e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.075e-08 6.085e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.574e-08 4.581e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.116e-08 2.183e-08 -7.506 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.208e-09 2.025e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.208e-09 2.025e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.208e-09 2.025e-09 -8.656 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.208e-09 2.025e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.636e-10 3.642e-10 -9.439 -9.439 0.001 (0) - H[13C]O[18O]2- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.865e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.550 -137.549 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.340 -136.340 0.001 (0) [14C](4) 1.164e-15 H[14C]O3- 9.402e-16 8.602e-16 -15.027 -15.065 -0.039 (0) [14C]O2 1.956e-16 1.960e-16 -15.709 -15.708 0.001 (0) CaH[14C]O3+ 1.985e-17 1.821e-17 -16.702 -16.740 -0.037 (0) - H[14C]O2[18O]- 1.876e-18 1.716e-18 -17.727 -17.765 -0.039 (0) - H[14C]O[18O]O- 1.876e-18 1.716e-18 -17.727 -17.765 -0.039 (0) H[14C][18O]O2- 1.876e-18 1.716e-18 -17.727 -17.765 -0.039 (0) + H[14C]O[18O]O- 1.876e-18 1.716e-18 -17.727 -17.765 -0.039 (0) + H[14C]O2[18O]- 1.876e-18 1.716e-18 -17.727 -17.765 -0.039 (0) Ca[14C]O3 1.088e-18 1.090e-18 -17.963 -17.962 0.001 (0) [14C]O[18O] 8.135e-19 8.149e-19 -18.090 -18.089 0.001 (0) [14C]O3-2 5.583e-19 3.911e-19 -18.253 -18.408 -0.155 (0) CaH[14C]O2[18O]+ 3.961e-20 3.634e-20 -19.402 -19.440 -0.037 (0) - CaH[14C]O[18O]O+ 3.961e-20 3.634e-20 -19.402 -19.440 -0.037 (0) CaH[14C][18O]O2+ 3.961e-20 3.634e-20 -19.402 -19.440 -0.037 (0) + CaH[14C]O[18O]O+ 3.961e-20 3.634e-20 -19.402 -19.440 -0.037 (0) Ca[14C]O2[18O] 6.515e-21 6.525e-21 -20.186 -20.185 0.001 (0) + H[14C][18O]O[18O]- 3.743e-21 3.424e-21 -20.427 -20.465 -0.039 (0) H[14C]O[18O]2- 3.743e-21 3.424e-21 -20.427 -20.465 -0.039 (0) H[14C][18O]2O- 3.743e-21 3.424e-21 -20.427 -20.465 -0.039 (0) - H[14C][18O]O[18O]- 3.743e-21 3.424e-21 -20.427 -20.465 -0.039 (0) [14C]O2[18O]-2 3.342e-21 2.341e-21 -20.476 -20.631 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.324e-16 - O[18O] 4.316e-16 4.323e-16 -15.365 -15.364 0.001 (0) - [18O]2 4.305e-19 4.312e-19 -18.366 -18.365 0.001 (0) +[18O](0) 1.075e-16 + O[18O] 1.073e-16 1.075e-16 -15.969 -15.969 0.001 (0) + [18O]2 1.070e-19 1.072e-19 -18.971 -18.970 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.94 -126.80 -2.86 [13C]H4 + [13C]H4(g) -122.73 -125.59 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.60 -21.11 -1.50 [14C][18O]2 - [14C]H4(g) -134.69 -137.55 -2.86 [14C]H4 + [14C]H4(g) -133.48 -136.34 -2.86 [14C]H4 [14C]O2(g) -14.24 -15.71 -1.47 [14C]O2 [14C]O[18O](g) -16.62 -18.41 -1.79 [14C]O[18O] - [18O]2(g) -16.07 -18.37 -2.29 [18O]2 + [18O]2(g) -16.68 -18.97 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -36956,14 +36946,14 @@ O(0) 2.172e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.98 -124.84 -2.86 CH4 + CH4(g) -120.77 -123.63 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.56 -39.71 -3.15 H2 + H2(g) -36.26 -39.41 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.07 -12.97 -2.89 O2 - O[18O](g) -12.77 -15.67 -2.89 O[18O] + O2(g) -10.68 -13.57 -2.89 O2 + O[18O](g) -13.38 -16.27 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -37027,23 +37017,23 @@ Calcite 1.51e-02 R(18O) 1.99519e-03 -4.9914 permil R(13C) 1.11259e-02 -4.8591 permil - R(14C) 1.94534e-13 16.544 pmc + R(14C) 1.94536e-13 16.544 pmc R(18O) H2O(l) 1.99519e-03 -4.9929 permil R(18O) OH- 1.92122e-03 -41.88 permil R(18O) H3O+ 2.04132e-03 18.015 permil R(18O) O2(aq) 1.99519e-03 -4.9929 permil R(13C) CO2(aq) 1.10463e-02 -11.981 permil - R(14C) CO2(aq) 1.91758e-13 16.307 pmc + R(14C) CO2(aq) 1.91759e-13 16.308 pmc R(18O) CO2(aq) 2.07915e-03 36.881 permil R(18O) HCO3- 1.99519e-03 -4.9929 permil R(13C) HCO3- 1.11424e-02 -3.3852 permil - R(14C) HCO3- 1.95109e-13 16.592 pmc + R(14C) HCO3- 1.95110e-13 16.593 pmc R(18O) CO3-2 1.99519e-03 -4.9929 permil R(13C) CO3-2 1.11264e-02 -4.8155 permil - R(14C) CO3-2 1.94549e-13 16.545 pmc + R(14C) CO3-2 1.94551e-13 16.545 pmc R(18O) Calcite 2.05263e-03 23.653 permil R(13C) Calcite 1.11644e-02 -1.4113 permil - R(14C) Calcite 1.95883e-13 16.658 pmc + R(14C) Calcite 1.95884e-13 16.658 pmc --------------------------------Isotope Alphas--------------------------------- @@ -37053,12 +37043,12 @@ Calcite 1.51e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2375e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2571e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.7716e-12 0 +Alpha 18O HCO3-/H2O(l) 1 1.3323e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.75e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.833e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -37078,14 +37068,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.297 Adjusted to redox equilibrium + pe = 11.161 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.129e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -37100,24 +37090,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.887 -124.886 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.799 -123.798 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -37125,50 +37115,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.076e-08 6.086e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.810e-40 - H2 1.905e-40 1.908e-40 -39.720 -39.719 0.001 (0) -O(0) 2.285e-13 - O2 1.138e-13 1.140e-13 -12.944 -12.943 0.001 (0) - O[18O] 4.542e-16 4.549e-16 -15.343 -15.342 0.001 (0) +H(0) 7.129e-40 + H2 3.565e-40 3.570e-40 -39.448 -39.447 0.001 (0) +O(0) 6.529e-14 + O2 3.251e-14 3.257e-14 -13.488 -13.487 0.001 (0) + O[18O] 1.297e-16 1.300e-16 -15.887 -15.886 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.844 -126.843 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.756 -125.755 0.001 (0) [13C](4) 6.498e-05 H[13C]O3- 5.241e-05 4.795e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-07 9.566e-08 -6.981 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.566e-08 -6.981 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.566e-08 -6.981 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.566e-08 -6.981 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.046e-07 9.566e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.076e-08 6.086e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.574e-08 4.582e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.117e-08 2.183e-08 -7.506 -7.661 -0.155 (0) + CaH[13C][18O]O2+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.637e-10 3.643e-10 -9.439 -9.439 0.001 (0) - H[13C]O[18O]2- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.604 -137.604 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.516 -136.515 0.001 (0) [14C](4) 1.136e-15 H[14C]O3- 9.177e-16 8.396e-16 -15.037 -15.076 -0.039 (0) [14C]O2 1.910e-16 1.913e-16 -15.719 -15.718 0.001 (0) CaH[14C]O3+ 1.938e-17 1.778e-17 -16.713 -16.750 -0.037 (0) - H[14C]O2[18O]- 1.831e-18 1.675e-18 -17.737 -17.776 -0.039 (0) - H[14C]O[18O]O- 1.831e-18 1.675e-18 -17.737 -17.776 -0.039 (0) H[14C][18O]O2- 1.831e-18 1.675e-18 -17.737 -17.776 -0.039 (0) + H[14C]O[18O]O- 1.831e-18 1.675e-18 -17.737 -17.776 -0.039 (0) + H[14C]O2[18O]- 1.831e-18 1.675e-18 -17.737 -17.776 -0.039 (0) Ca[14C]O3 1.062e-18 1.064e-18 -17.974 -17.973 0.001 (0) [14C]O[18O] 7.941e-19 7.954e-19 -18.100 -18.099 0.001 (0) [14C]O3-2 5.450e-19 3.818e-19 -18.264 -18.418 -0.155 (0) - CaH[14C]O2[18O]+ 3.866e-20 3.547e-20 -19.413 -19.450 -0.037 (0) - CaH[14C]O[18O]O+ 3.866e-20 3.547e-20 -19.413 -19.450 -0.037 (0) - CaH[14C][18O]O2+ 3.866e-20 3.547e-20 -19.413 -19.450 -0.037 (0) + CaH[14C]O2[18O]+ 3.867e-20 3.547e-20 -19.413 -19.450 -0.037 (0) + CaH[14C][18O]O2+ 3.867e-20 3.547e-20 -19.413 -19.450 -0.037 (0) + CaH[14C]O[18O]O+ 3.867e-20 3.547e-20 -19.413 -19.450 -0.037 (0) Ca[14C]O2[18O] 6.359e-21 6.369e-21 -20.197 -20.196 0.001 (0) H[14C]O[18O]2- 3.653e-21 3.342e-21 -20.437 -20.476 -0.039 (0) H[14C][18O]2O- 3.653e-21 3.342e-21 -20.437 -20.476 -0.039 (0) @@ -37177,29 +37167,29 @@ O(0) 2.285e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.551e-16 - O[18O] 4.542e-16 4.549e-16 -15.343 -15.342 0.001 (0) - [18O]2 4.531e-19 4.538e-19 -18.344 -18.343 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.300e-16 + O[18O] 1.297e-16 1.300e-16 -15.887 -15.886 0.001 (0) + [18O]2 1.294e-19 1.296e-19 -18.888 -18.887 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.98 -126.84 -2.86 [13C]H4 + [13C]H4(g) -122.89 -125.75 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.61 -21.12 -1.50 [14C][18O]2 - [14C]H4(g) -134.74 -137.60 -2.86 [14C]H4 + [14C]H4(g) -133.66 -136.52 -2.86 [14C]H4 [14C]O2(g) -14.25 -15.72 -1.47 [14C]O2 [14C]O[18O](g) -16.63 -18.42 -1.79 [14C]O[18O] - [18O]2(g) -16.05 -18.34 -2.29 [18O]2 + [18O]2(g) -16.60 -18.89 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -37213,14 +37203,14 @@ O(0) 2.285e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.03 -124.89 -2.86 CH4 + CH4(g) -120.94 -123.80 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.57 -39.72 -3.15 H2 + H2(g) -36.30 -39.45 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.05 -12.94 -2.89 O2 - O[18O](g) -12.75 -15.64 -2.89 O[18O] + O2(g) -10.59 -13.49 -2.89 O2 + O[18O](g) -13.29 -16.19 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -37284,23 +37274,23 @@ Calcite 1.56e-02 R(18O) 1.99519e-03 -4.9912 permil R(13C) 1.11268e-02 -4.7781 permil - R(14C) 1.89990e-13 16.157 pmc + R(14C) 1.89991e-13 16.157 pmc R(18O) H2O(l) 1.99519e-03 -4.9927 permil R(18O) OH- 1.92122e-03 -41.88 permil R(18O) H3O+ 2.04132e-03 18.015 permil R(18O) O2(aq) 1.99519e-03 -4.9927 permil R(13C) CO2(aq) 1.10472e-02 -11.9 permil - R(14C) CO2(aq) 1.87278e-13 15.927 pmc + R(14C) CO2(aq) 1.87280e-13 15.927 pmc R(18O) CO2(aq) 2.07915e-03 36.881 permil R(18O) HCO3- 1.99519e-03 -4.9927 permil R(13C) HCO3- 1.11433e-02 -3.3041 permil - R(14C) HCO3- 1.90551e-13 16.205 pmc + R(14C) HCO3- 1.90552e-13 16.205 pmc R(18O) CO3-2 1.99519e-03 -4.9927 permil R(13C) CO3-2 1.11273e-02 -4.7344 permil - R(14C) CO3-2 1.90005e-13 16.158 pmc + R(14C) CO3-2 1.90006e-13 16.159 pmc R(18O) Calcite 2.05263e-03 23.654 permil R(13C) Calcite 1.11653e-02 -1.33 permil - R(14C) Calcite 1.91307e-13 16.269 pmc + R(14C) Calcite 1.91308e-13 16.269 pmc --------------------------------Isotope Alphas--------------------------------- @@ -37310,12 +37300,12 @@ Calcite 1.56e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2743e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2605e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.4409e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6824e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.562e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -37335,14 +37325,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.290 Adjusted to redox equilibrium + pe = 11.162 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.129e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -37357,13 +37347,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.834 -124.833 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.810 -123.810 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -37372,9 +37362,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -37382,23 +37372,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.076e-08 6.086e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.929e-40 - H2 1.965e-40 1.968e-40 -39.707 -39.706 0.001 (0) -O(0) 2.149e-13 - O2 1.070e-13 1.072e-13 -12.970 -12.970 0.001 (0) - O[18O] 4.272e-16 4.279e-16 -15.369 -15.369 0.001 (0) +H(0) 7.082e-40 + H2 3.541e-40 3.547e-40 -39.451 -39.450 0.001 (0) +O(0) 6.616e-14 + O2 3.295e-14 3.300e-14 -13.482 -13.481 0.001 (0) + O[18O] 1.315e-16 1.317e-16 -15.881 -15.880 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.791 -126.790 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.767 -125.766 0.001 (0) [13C](4) 6.498e-05 H[13C]O3- 5.241e-05 4.795e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-07 9.567e-08 -6.981 -7.019 -0.039 (0) H[13C]O[18O]O- 1.046e-07 9.567e-08 -6.981 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.046e-07 9.567e-08 -6.981 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.567e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.076e-08 6.086e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.575e-08 4.582e-08 -7.340 -7.339 0.001 (0) @@ -37407,56 +37397,56 @@ O(0) 2.149e-13 CaH[13C]O[18O]O+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.637e-10 3.643e-10 -9.439 -9.439 0.001 (0) - H[13C]O[18O]2- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.561 -137.561 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.538 -136.537 0.001 (0) [14C](4) 1.110e-15 H[14C]O3- 8.963e-16 8.200e-16 -15.048 -15.086 -0.039 (0) [14C]O2 1.865e-16 1.868e-16 -15.729 -15.729 0.001 (0) CaH[14C]O3+ 1.893e-17 1.736e-17 -16.723 -16.760 -0.037 (0) - H[14C]O2[18O]- 1.788e-18 1.636e-18 -17.748 -17.786 -0.039 (0) - H[14C]O[18O]O- 1.788e-18 1.636e-18 -17.748 -17.786 -0.039 (0) H[14C][18O]O2- 1.788e-18 1.636e-18 -17.748 -17.786 -0.039 (0) + H[14C]O[18O]O- 1.788e-18 1.636e-18 -17.748 -17.786 -0.039 (0) + H[14C]O2[18O]- 1.788e-18 1.636e-18 -17.748 -17.786 -0.039 (0) Ca[14C]O3 1.038e-18 1.039e-18 -17.984 -17.983 0.001 (0) [14C]O[18O] 7.755e-19 7.768e-19 -18.110 -18.110 0.001 (0) - [14C]O3-2 5.322e-19 3.729e-19 -18.274 -18.428 -0.155 (0) + [14C]O3-2 5.323e-19 3.729e-19 -18.274 -18.428 -0.155 (0) CaH[14C]O2[18O]+ 3.776e-20 3.464e-20 -19.423 -19.460 -0.037 (0) - CaH[14C]O[18O]O+ 3.776e-20 3.464e-20 -19.423 -19.460 -0.037 (0) CaH[14C][18O]O2+ 3.776e-20 3.464e-20 -19.423 -19.460 -0.037 (0) + CaH[14C]O[18O]O+ 3.776e-20 3.464e-20 -19.423 -19.460 -0.037 (0) Ca[14C]O2[18O] 6.210e-21 6.221e-21 -20.207 -20.206 0.001 (0) - H[14C]O[18O]2- 3.568e-21 3.264e-21 -20.448 -20.486 -0.039 (0) H[14C][18O]2O- 3.568e-21 3.264e-21 -20.448 -20.486 -0.039 (0) H[14C][18O]O[18O]- 3.568e-21 3.264e-21 -20.448 -20.486 -0.039 (0) + H[14C]O[18O]2- 3.568e-21 3.264e-21 -20.448 -20.486 -0.039 (0) [14C]O2[18O]-2 3.186e-21 2.232e-21 -20.497 -20.651 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.280e-16 - O[18O] 4.272e-16 4.279e-16 -15.369 -15.369 0.001 (0) - [18O]2 4.261e-19 4.268e-19 -18.370 -18.370 0.001 (0) +[18O](0) 1.317e-16 + O[18O] 1.315e-16 1.317e-16 -15.881 -15.880 0.001 (0) + [18O]2 1.312e-19 1.314e-19 -18.882 -18.881 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.93 -126.79 -2.86 [13C]H4 + [13C]H4(g) -122.91 -125.77 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.63 -21.13 -1.50 [14C][18O]2 - [14C]H4(g) -134.70 -137.56 -2.86 [14C]H4 + [14C]H4(g) -133.68 -136.54 -2.86 [14C]H4 [14C]O2(g) -14.26 -15.73 -1.47 [14C]O2 [14C]O[18O](g) -16.64 -18.43 -1.79 [14C]O[18O] - [18O]2(g) -16.08 -18.37 -2.29 [18O]2 + [18O]2(g) -16.59 -18.88 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -37470,14 +37460,14 @@ O(0) 2.149e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.97 -124.83 -2.86 CH4 + CH4(g) -120.95 -123.81 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.56 -39.71 -3.15 H2 + H2(g) -36.30 -39.45 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.08 -12.97 -2.89 O2 - O[18O](g) -12.78 -15.67 -2.89 O[18O] + O2(g) -10.59 -13.48 -2.89 O2 + O[18O](g) -13.29 -16.18 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -37541,23 +37531,23 @@ Calcite 1.61e-02 R(18O) 1.99519e-03 -4.9911 permil R(13C) 1.11276e-02 -4.7007 permil - R(14C) 1.85653e-13 15.788 pmc + R(14C) 1.85654e-13 15.788 pmc R(18O) H2O(l) 1.99519e-03 -4.9926 permil R(18O) OH- 1.92122e-03 -41.88 permil R(18O) H3O+ 2.04132e-03 18.015 permil R(18O) O2(aq) 1.99519e-03 -4.9926 permil R(13C) CO2(aq) 1.10480e-02 -11.824 permil - R(14C) CO2(aq) 1.83003e-13 15.563 pmc + R(14C) CO2(aq) 1.83005e-13 15.563 pmc R(18O) CO2(aq) 2.07915e-03 36.881 permil R(18O) HCO3- 1.99519e-03 -4.9926 permil R(13C) HCO3- 1.11441e-02 -3.2267 permil - R(14C) HCO3- 1.86202e-13 15.835 pmc + R(14C) HCO3- 1.86203e-13 15.835 pmc R(18O) CO3-2 1.99519e-03 -4.9926 permil R(13C) CO3-2 1.11281e-02 -4.6571 permil - R(14C) CO3-2 1.85667e-13 15.79 pmc + R(14C) CO3-2 1.85669e-13 15.79 pmc R(18O) Calcite 2.05263e-03 23.654 permil R(13C) Calcite 1.11662e-02 -1.2524 permil - R(14C) Calcite 1.86940e-13 15.898 pmc + R(14C) Calcite 1.86941e-13 15.898 pmc --------------------------------Isotope Alphas--------------------------------- @@ -37567,12 +37557,12 @@ Calcite 1.61e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2512e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2686e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.5503e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.72e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6639e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -37592,14 +37582,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.295 Adjusted to redox equilibrium + pe = 11.186 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.129e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -37614,24 +37604,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.871 -124.871 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.003 -124.003 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -37639,81 +37629,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.077e-08 6.087e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.845e-40 - H2 1.922e-40 1.926e-40 -39.716 -39.715 0.001 (0) -O(0) 2.245e-13 - O2 1.118e-13 1.120e-13 -12.952 -12.951 0.001 (0) - O[18O] 4.461e-16 4.468e-16 -15.351 -15.350 0.001 (0) +H(0) 6.338e-40 + H2 3.169e-40 3.174e-40 -39.499 -39.498 0.001 (0) +O(0) 8.262e-14 + O2 4.114e-14 4.121e-14 -13.386 -13.385 0.001 (0) + O[18O] 1.642e-16 1.645e-16 -15.785 -15.784 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.828 -126.827 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.960 -125.959 0.001 (0) [13C](4) 6.499e-05 H[13C]O3- 5.242e-05 4.796e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) H[13C]O2[18O]- 1.046e-07 9.568e-08 -6.981 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.568e-08 -6.981 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.568e-08 -6.981 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.568e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.077e-08 6.087e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.575e-08 4.582e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.117e-08 2.184e-08 -7.506 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.208e-09 2.026e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.637e-10 3.643e-10 -9.439 -9.439 0.001 (0) - H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.609 -137.608 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.741 -136.740 0.001 (0) [14C](4) 1.084e-15 H[14C]O3- 8.758e-16 8.013e-16 -15.058 -15.096 -0.039 (0) [14C]O2 1.822e-16 1.825e-16 -15.739 -15.739 0.001 (0) CaH[14C]O3+ 1.849e-17 1.697e-17 -16.733 -16.770 -0.037 (0) - H[14C]O2[18O]- 1.747e-18 1.599e-18 -17.758 -17.796 -0.039 (0) - H[14C]O[18O]O- 1.747e-18 1.599e-18 -17.758 -17.796 -0.039 (0) H[14C][18O]O2- 1.747e-18 1.599e-18 -17.758 -17.796 -0.039 (0) + H[14C]O[18O]O- 1.747e-18 1.599e-18 -17.758 -17.796 -0.039 (0) + H[14C]O2[18O]- 1.747e-18 1.599e-18 -17.758 -17.796 -0.039 (0) Ca[14C]O3 1.014e-18 1.016e-18 -17.994 -17.993 0.001 (0) [14C]O[18O] 7.578e-19 7.591e-19 -18.120 -18.120 0.001 (0) [14C]O3-2 5.201e-19 3.644e-19 -18.284 -18.438 -0.155 (0) CaH[14C]O2[18O]+ 3.690e-20 3.385e-20 -19.433 -19.470 -0.037 (0) - CaH[14C]O[18O]O+ 3.690e-20 3.385e-20 -19.433 -19.470 -0.037 (0) CaH[14C][18O]O2+ 3.690e-20 3.385e-20 -19.433 -19.470 -0.037 (0) + CaH[14C]O[18O]O+ 3.690e-20 3.385e-20 -19.433 -19.470 -0.037 (0) Ca[14C]O2[18O] 6.069e-21 6.079e-21 -20.217 -20.216 0.001 (0) + H[14C][18O]O[18O]- 3.486e-21 3.190e-21 -20.458 -20.496 -0.039 (0) H[14C]O[18O]2- 3.486e-21 3.190e-21 -20.458 -20.496 -0.039 (0) H[14C][18O]2O- 3.486e-21 3.190e-21 -20.458 -20.496 -0.039 (0) - H[14C][18O]O[18O]- 3.486e-21 3.190e-21 -20.458 -20.496 -0.039 (0) [14C]O2[18O]-2 3.113e-21 2.181e-21 -20.507 -20.661 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.469e-16 - O[18O] 4.461e-16 4.468e-16 -15.351 -15.350 0.001 (0) - [18O]2 4.450e-19 4.457e-19 -18.352 -18.351 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.645e-16 + O[18O] 1.642e-16 1.645e-16 -15.785 -15.784 0.001 (0) + [18O]2 1.638e-19 1.641e-19 -18.786 -18.785 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.97 -126.83 -2.86 [13C]H4 + [13C]H4(g) -123.10 -125.96 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.64 -21.14 -1.50 [14C][18O]2 - [14C]H4(g) -134.75 -137.61 -2.86 [14C]H4 + [14C]H4(g) -133.88 -136.74 -2.86 [14C]H4 [14C]O2(g) -14.27 -15.74 -1.47 [14C]O2 [14C]O[18O](g) -16.65 -18.44 -1.79 [14C]O[18O] - [18O]2(g) -16.06 -18.35 -2.29 [18O]2 + [18O]2(g) -16.49 -18.79 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -37727,14 +37717,14 @@ O(0) 2.245e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.01 -124.87 -2.86 CH4 + CH4(g) -121.14 -124.00 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.57 -39.72 -3.15 H2 + H2(g) -36.35 -39.50 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.06 -12.95 -2.89 O2 - O[18O](g) -12.76 -15.65 -2.89 O[18O] + O2(g) -10.49 -13.38 -2.89 O2 + O[18O](g) -13.19 -16.08 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -37798,23 +37788,23 @@ Calcite 1.66e-02 R(18O) 1.99519e-03 -4.9909 permil R(13C) 1.11285e-02 -4.6269 permil - R(14C) 1.81510e-13 15.436 pmc + R(14C) 1.81511e-13 15.436 pmc R(18O) H2O(l) 1.99519e-03 -4.9925 permil R(18O) OH- 1.92122e-03 -41.88 permil R(18O) H3O+ 2.04132e-03 18.015 permil R(18O) O2(aq) 1.99519e-03 -4.9925 permil R(13C) CO2(aq) 1.10488e-02 -11.75 permil - R(14C) CO2(aq) 1.78919e-13 15.216 pmc + R(14C) CO2(aq) 1.78920e-13 15.216 pmc R(18O) CO2(aq) 2.07915e-03 36.881 permil R(18O) HCO3- 1.99519e-03 -4.9925 permil R(13C) HCO3- 1.11450e-02 -3.1527 permil - R(14C) HCO3- 1.82046e-13 15.482 pmc + R(14C) HCO3- 1.82047e-13 15.482 pmc R(18O) CO3-2 1.99519e-03 -4.9925 permil R(13C) CO3-2 1.11290e-02 -4.5833 permil - R(14C) CO3-2 1.81524e-13 15.437 pmc + R(14C) CO3-2 1.81525e-13 15.437 pmc R(18O) Calcite 2.05263e-03 23.654 permil R(13C) Calcite 1.11670e-02 -1.1783 permil - R(14C) Calcite 1.82768e-13 15.543 pmc + R(14C) Calcite 1.82769e-13 15.543 pmc --------------------------------Isotope Alphas--------------------------------- @@ -37824,12 +37814,12 @@ Calcite 1.66e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2639e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2816e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7805e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8633e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -37849,14 +37839,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.313 Adjusted to redox equilibrium + pe = 11.229 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.129e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -37871,14 +37861,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.015 -125.014 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.347 -124.347 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -37886,9 +37876,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -37896,50 +37886,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.077e-08 6.087e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.541e-40 - H2 1.770e-40 1.773e-40 -39.752 -39.751 0.001 (0) -O(0) 2.647e-13 - O2 1.318e-13 1.320e-13 -12.880 -12.879 0.001 (0) - O[18O] 5.260e-16 5.268e-16 -15.279 -15.278 0.001 (0) +H(0) 5.199e-40 + H2 2.599e-40 2.604e-40 -39.585 -39.584 0.001 (0) +O(0) 1.228e-13 + O2 6.114e-14 6.124e-14 -13.214 -13.213 0.001 (0) + O[18O] 2.440e-16 2.444e-16 -15.613 -15.612 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.971 -126.971 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.304 -126.303 0.001 (0) [13C](4) 6.499e-05 H[13C]O3- 5.242e-05 4.796e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.015e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-07 9.569e-08 -6.981 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.569e-08 -6.981 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.569e-08 -6.981 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.569e-08 -6.981 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.046e-07 9.569e-08 -6.981 -7.019 -0.039 (0) Ca[13C]O3 6.077e-08 6.087e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.575e-08 4.583e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.117e-08 2.184e-08 -7.506 -7.661 -0.155 (0) + CaH[13C][18O]O2+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.638e-10 3.644e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C][18O]2O- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.762 -137.761 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.095 -137.094 0.001 (0) [14C](4) 1.060e-15 H[14C]O3- 8.563e-16 7.834e-16 -15.067 -15.106 -0.039 (0) [14C]O2 1.782e-16 1.785e-16 -15.749 -15.748 0.001 (0) CaH[14C]O3+ 1.808e-17 1.659e-17 -16.743 -16.780 -0.037 (0) - H[14C]O2[18O]- 1.708e-18 1.563e-18 -17.767 -17.806 -0.039 (0) - H[14C]O[18O]O- 1.708e-18 1.563e-18 -17.767 -17.806 -0.039 (0) H[14C][18O]O2- 1.708e-18 1.563e-18 -17.767 -17.806 -0.039 (0) + H[14C]O[18O]O- 1.708e-18 1.563e-18 -17.767 -17.806 -0.039 (0) + H[14C]O2[18O]- 1.708e-18 1.563e-18 -17.767 -17.806 -0.039 (0) Ca[14C]O3 9.912e-19 9.929e-19 -18.004 -18.003 0.001 (0) [14C]O[18O] 7.409e-19 7.421e-19 -18.130 -18.130 0.001 (0) [14C]O3-2 5.085e-19 3.562e-19 -18.294 -18.448 -0.155 (0) CaH[14C]O2[18O]+ 3.608e-20 3.309e-20 -19.443 -19.480 -0.037 (0) - CaH[14C]O[18O]O+ 3.608e-20 3.309e-20 -19.443 -19.480 -0.037 (0) CaH[14C][18O]O2+ 3.608e-20 3.309e-20 -19.443 -19.480 -0.037 (0) + CaH[14C]O[18O]O+ 3.608e-20 3.309e-20 -19.443 -19.480 -0.037 (0) Ca[14C]O2[18O] 5.933e-21 5.943e-21 -20.227 -20.226 0.001 (0) H[14C]O[18O]2- 3.409e-21 3.118e-21 -20.467 -20.506 -0.039 (0) H[14C][18O]2O- 3.409e-21 3.118e-21 -20.467 -20.506 -0.039 (0) @@ -37948,29 +37938,29 @@ O(0) 2.647e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.270e-16 - O[18O] 5.260e-16 5.268e-16 -15.279 -15.278 0.001 (0) - [18O]2 5.247e-19 5.256e-19 -18.280 -18.279 0.001 (0) +[18O](0) 2.445e-16 + O[18O] 2.440e-16 2.444e-16 -15.613 -15.612 0.001 (0) + [18O]2 2.434e-19 2.438e-19 -18.614 -18.613 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.11 -126.97 -2.86 [13C]H4 + [13C]H4(g) -123.44 -126.30 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.64 -21.15 -1.50 [14C][18O]2 - [14C]H4(g) -134.90 -137.76 -2.86 [14C]H4 + [14C]H4(g) -134.23 -137.09 -2.86 [14C]H4 [14C]O2(g) -14.28 -15.75 -1.47 [14C]O2 [14C]O[18O](g) -16.66 -18.45 -1.79 [14C]O[18O] - [18O]2(g) -15.99 -18.28 -2.29 [18O]2 + [18O]2(g) -16.32 -18.61 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -37984,14 +37974,14 @@ O(0) 2.647e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.15 -125.01 -2.86 CH4 + CH4(g) -121.49 -124.35 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.60 -39.75 -3.15 H2 + H2(g) -36.43 -39.58 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.99 -12.88 -2.89 O2 - O[18O](g) -12.69 -15.58 -2.89 O[18O] + O2(g) -10.32 -13.21 -2.89 O2 + O[18O](g) -13.02 -15.91 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -38055,23 +38045,23 @@ Calcite 1.71e-02 R(18O) 1.99519e-03 -4.9908 permil R(13C) 1.11293e-02 -4.5562 permil - R(14C) 1.77548e-13 15.099 pmc + R(14C) 1.77549e-13 15.099 pmc R(18O) H2O(l) 1.99519e-03 -4.9923 permil R(18O) OH- 1.92122e-03 -41.88 permil R(18O) H3O+ 2.04132e-03 18.016 permil R(18O) O2(aq) 1.99519e-03 -4.9923 permil R(13C) CO2(aq) 1.10496e-02 -11.68 permil - R(14C) CO2(aq) 1.75013e-13 14.884 pmc + R(14C) CO2(aq) 1.75015e-13 14.884 pmc R(18O) CO2(aq) 2.07916e-03 36.882 permil R(18O) HCO3- 1.99519e-03 -4.9923 permil R(13C) HCO3- 1.11457e-02 -3.0819 permil - R(14C) HCO3- 1.78072e-13 15.144 pmc + R(14C) HCO3- 1.78073e-13 15.144 pmc R(18O) CO3-2 1.99519e-03 -4.9923 permil R(13C) CO3-2 1.11297e-02 -4.5126 permil - R(14C) CO3-2 1.77561e-13 15.1 pmc + R(14C) CO3-2 1.77562e-13 15.1 pmc R(18O) Calcite 2.05263e-03 23.654 permil R(13C) Calcite 1.11678e-02 -1.1074 permil - R(14C) Calcite 1.78778e-13 15.204 pmc + R(14C) Calcite 1.78779e-13 15.204 pmc --------------------------------Isotope Alphas--------------------------------- @@ -38081,12 +38071,12 @@ Calcite 1.71e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2495e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2656e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.7716e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8121e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8223e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -38106,14 +38096,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.322 Adjusted to redox equilibrium + pe = 11.244 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.129e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -38128,24 +38118,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.091 -125.090 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.460 -124.459 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -38153,23 +38143,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.078e-08 6.088e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.389e-40 - H2 1.695e-40 1.697e-40 -39.771 -39.770 0.001 (0) -O(0) 2.889e-13 - O2 1.439e-13 1.441e-13 -12.842 -12.841 0.001 (0) - O[18O] 5.741e-16 5.750e-16 -15.241 -15.240 0.001 (0) +H(0) 4.873e-40 + H2 2.436e-40 2.440e-40 -39.613 -39.613 0.001 (0) +O(0) 1.397e-13 + O2 6.959e-14 6.971e-14 -13.157 -13.157 0.001 (0) + O[18O] 2.777e-16 2.782e-16 -15.556 -15.556 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.047 -127.047 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.417 -126.416 0.001 (0) [13C](4) 6.499e-05 H[13C]O3- 5.242e-05 4.796e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-07 9.569e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.046e-07 9.569e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.046e-07 9.569e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.569e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.078e-08 6.088e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.576e-08 4.583e-08 -7.340 -7.339 0.001 (0) @@ -38178,56 +38168,56 @@ O(0) 2.889e-13 CaH[13C]O[18O]O+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.638e-10 3.644e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.848 -137.847 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.217 -137.216 0.001 (0) [14C](4) 1.037e-15 H[14C]O3- 8.376e-16 7.663e-16 -15.077 -15.116 -0.039 (0) [14C]O2 1.743e-16 1.746e-16 -15.759 -15.758 0.001 (0) CaH[14C]O3+ 1.769e-17 1.622e-17 -16.752 -16.790 -0.037 (0) - H[14C]O2[18O]- 1.671e-18 1.529e-18 -17.777 -17.816 -0.039 (0) - H[14C]O[18O]O- 1.671e-18 1.529e-18 -17.777 -17.816 -0.039 (0) H[14C][18O]O2- 1.671e-18 1.529e-18 -17.777 -17.816 -0.039 (0) + H[14C]O[18O]O- 1.671e-18 1.529e-18 -17.777 -17.816 -0.039 (0) + H[14C]O2[18O]- 1.671e-18 1.529e-18 -17.777 -17.816 -0.039 (0) Ca[14C]O3 9.696e-19 9.712e-19 -18.013 -18.013 0.001 (0) [14C]O[18O] 7.247e-19 7.259e-19 -18.140 -18.139 0.001 (0) [14C]O3-2 4.974e-19 3.484e-19 -18.303 -18.458 -0.155 (0) CaH[14C]O2[18O]+ 3.529e-20 3.237e-20 -19.452 -19.490 -0.037 (0) - CaH[14C]O[18O]O+ 3.529e-20 3.237e-20 -19.452 -19.490 -0.037 (0) CaH[14C][18O]O2+ 3.529e-20 3.237e-20 -19.452 -19.490 -0.037 (0) + CaH[14C]O[18O]O+ 3.529e-20 3.237e-20 -19.452 -19.490 -0.037 (0) Ca[14C]O2[18O] 5.804e-21 5.813e-21 -20.236 -20.236 0.001 (0) - H[14C]O[18O]2- 3.334e-21 3.050e-21 -20.477 -20.516 -0.039 (0) H[14C][18O]2O- 3.334e-21 3.050e-21 -20.477 -20.516 -0.039 (0) H[14C][18O]O[18O]- 3.334e-21 3.050e-21 -20.477 -20.516 -0.039 (0) + H[14C]O[18O]2- 3.334e-21 3.050e-21 -20.477 -20.516 -0.039 (0) [14C]O2[18O]-2 2.977e-21 2.086e-21 -20.526 -20.681 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.752e-16 - O[18O] 5.741e-16 5.750e-16 -15.241 -15.240 0.001 (0) - [18O]2 5.727e-19 5.736e-19 -18.242 -18.241 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.783e-16 + O[18O] 2.777e-16 2.782e-16 -15.556 -15.556 0.001 (0) + [18O]2 2.770e-19 2.775e-19 -18.557 -18.557 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.19 -127.05 -2.86 [13C]H4 + [13C]H4(g) -123.56 -126.42 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.65 -21.16 -1.50 [14C][18O]2 - [14C]H4(g) -134.99 -137.85 -2.86 [14C]H4 + [14C]H4(g) -134.36 -137.22 -2.86 [14C]H4 [14C]O2(g) -14.29 -15.76 -1.47 [14C]O2 [14C]O[18O](g) -16.67 -18.46 -1.79 [14C]O[18O] - [18O]2(g) -15.95 -18.24 -2.29 [18O]2 + [18O]2(g) -16.27 -18.56 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -38241,14 +38231,14 @@ O(0) 2.889e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.23 -125.09 -2.86 CH4 + CH4(g) -121.60 -124.46 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.62 -39.77 -3.15 H2 + H2(g) -36.46 -39.61 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.95 -12.84 -2.89 O2 - O[18O](g) -12.65 -15.54 -2.89 O[18O] + O2(g) -10.26 -13.16 -2.89 O2 + O[18O](g) -12.96 -15.86 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -38312,23 +38302,23 @@ Calcite 1.76e-02 R(18O) 1.99519e-03 -4.9907 permil R(13C) 1.11300e-02 -4.4886 permil - R(14C) 1.73754e-13 14.776 pmc + R(14C) 1.73756e-13 14.777 pmc R(18O) H2O(l) 1.99519e-03 -4.9922 permil R(18O) OH- 1.92122e-03 -41.879 permil R(18O) H3O+ 2.04133e-03 18.016 permil R(18O) O2(aq) 1.99519e-03 -4.9922 permil R(13C) CO2(aq) 1.10504e-02 -11.613 permil - R(14C) CO2(aq) 1.71275e-13 14.566 pmc + R(14C) CO2(aq) 1.71276e-13 14.566 pmc R(18O) CO2(aq) 2.07916e-03 36.882 permil R(18O) HCO3- 1.99519e-03 -4.9922 permil R(13C) HCO3- 1.11465e-02 -3.0142 permil - R(14C) HCO3- 1.74268e-13 14.82 pmc + R(14C) HCO3- 1.74269e-13 14.82 pmc R(18O) CO3-2 1.99519e-03 -4.9922 permil R(13C) CO3-2 1.11305e-02 -4.445 permil - R(14C) CO3-2 1.73768e-13 14.778 pmc + R(14C) CO3-2 1.73769e-13 14.778 pmc R(18O) Calcite 2.05263e-03 23.654 permil R(13C) Calcite 1.11686e-02 -1.0395 permil - R(14C) Calcite 1.74959e-13 14.879 pmc + R(14C) Calcite 1.74960e-13 14.879 pmc --------------------------------Isotope Alphas--------------------------------- @@ -38338,12 +38328,12 @@ Calcite 1.76e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2727e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2564e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.7724e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6998e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.575e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -38363,14 +38353,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.319 Adjusted to redox equilibrium + pe = 11.231 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.129e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -38385,14 +38375,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.066 -125.066 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.360 -124.359 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -38400,9 +38390,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -38410,81 +38400,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.078e-08 6.088e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.437e-40 - H2 1.718e-40 1.721e-40 -39.765 -39.764 0.001 (0) -O(0) 2.809e-13 - O2 1.399e-13 1.401e-13 -12.854 -12.853 0.001 (0) - O[18O] 5.582e-16 5.592e-16 -15.253 -15.252 0.001 (0) +H(0) 5.161e-40 + H2 2.580e-40 2.585e-40 -39.588 -39.588 0.001 (0) +O(0) 1.246e-13 + O2 6.205e-14 6.215e-14 -13.207 -13.207 0.001 (0) + O[18O] 2.476e-16 2.480e-16 -15.606 -15.606 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.023 -127.022 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.317 -126.316 0.001 (0) [13C](4) 6.500e-05 H[13C]O3- 5.243e-05 4.797e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) H[13C]O2[18O]- 1.046e-07 9.570e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.570e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.570e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.570e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.078e-08 6.088e-08 -7.216 -7.216 0.001 (0) [13C]O[18O] 4.576e-08 4.583e-08 -7.340 -7.339 0.001 (0) [13C]O3-2 3.118e-08 2.184e-08 -7.506 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.638e-10 3.644e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.833 -137.832 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.126 -137.126 0.001 (0) [14C](4) 1.015e-15 H[14C]O3- 8.197e-16 7.499e-16 -15.086 -15.125 -0.039 (0) [14C]O2 1.706e-16 1.708e-16 -15.768 -15.767 0.001 (0) CaH[14C]O3+ 1.731e-17 1.588e-17 -16.762 -16.799 -0.037 (0) - H[14C]O2[18O]- 1.635e-18 1.496e-18 -17.786 -17.825 -0.039 (0) - H[14C]O[18O]O- 1.635e-18 1.496e-18 -17.786 -17.825 -0.039 (0) H[14C][18O]O2- 1.635e-18 1.496e-18 -17.786 -17.825 -0.039 (0) - Ca[14C]O3 9.489e-19 9.504e-19 -18.023 -18.022 0.001 (0) + H[14C]O[18O]O- 1.635e-18 1.496e-18 -17.786 -17.825 -0.039 (0) + H[14C]O2[18O]- 1.635e-18 1.496e-18 -17.786 -17.825 -0.039 (0) + Ca[14C]O3 9.489e-19 9.505e-19 -18.023 -18.022 0.001 (0) [14C]O[18O] 7.092e-19 7.104e-19 -18.149 -18.148 0.001 (0) [14C]O3-2 4.868e-19 3.410e-19 -18.313 -18.467 -0.155 (0) CaH[14C]O2[18O]+ 3.453e-20 3.168e-20 -19.462 -19.499 -0.037 (0) - CaH[14C]O[18O]O+ 3.453e-20 3.168e-20 -19.462 -19.499 -0.037 (0) CaH[14C][18O]O2+ 3.453e-20 3.168e-20 -19.462 -19.499 -0.037 (0) + CaH[14C]O[18O]O+ 3.453e-20 3.168e-20 -19.462 -19.499 -0.037 (0) Ca[14C]O2[18O] 5.680e-21 5.689e-21 -20.246 -20.245 0.001 (0) + H[14C][18O]O[18O]- 3.263e-21 2.985e-21 -20.486 -20.525 -0.039 (0) H[14C]O[18O]2- 3.263e-21 2.985e-21 -20.486 -20.525 -0.039 (0) H[14C][18O]2O- 3.263e-21 2.985e-21 -20.486 -20.525 -0.039 (0) - H[14C][18O]O[18O]- 3.263e-21 2.985e-21 -20.486 -20.525 -0.039 (0) [14C]O2[18O]-2 2.914e-21 2.041e-21 -20.536 -20.690 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.594e-16 - O[18O] 5.582e-16 5.592e-16 -15.253 -15.252 0.001 (0) - [18O]2 5.569e-19 5.578e-19 -18.254 -18.254 0.001 (0) +[18O](0) 2.481e-16 + O[18O] 2.476e-16 2.480e-16 -15.606 -15.606 0.001 (0) + [18O]2 2.470e-19 2.474e-19 -18.607 -18.607 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.16 -127.02 -2.86 [13C]H4 + [13C]H4(g) -123.46 -126.32 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.66 -21.17 -1.50 [14C][18O]2 - [14C]H4(g) -134.97 -137.83 -2.86 [14C]H4 + [14C]H4(g) -134.27 -137.13 -2.86 [14C]H4 [14C]O2(g) -14.30 -15.77 -1.47 [14C]O2 [14C]O[18O](g) -16.68 -18.47 -1.79 [14C]O[18O] - [18O]2(g) -15.96 -18.25 -2.29 [18O]2 + [18O]2(g) -16.32 -18.61 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -38498,14 +38488,14 @@ O(0) 2.809e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.21 -125.07 -2.86 CH4 + CH4(g) -121.50 -124.36 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.61 -39.76 -3.15 H2 + H2(g) -36.44 -39.59 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.96 -12.85 -2.89 O2 - O[18O](g) -12.66 -15.55 -2.89 O[18O] + O2(g) -10.31 -13.21 -2.89 O2 + O[18O](g) -13.01 -15.91 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -38569,23 +38559,23 @@ Calcite 1.81e-02 R(18O) 1.99519e-03 -4.9905 permil R(13C) 1.11307e-02 -4.4238 permil - R(14C) 1.70120e-13 14.467 pmc + R(14C) 1.70121e-13 14.467 pmc R(18O) H2O(l) 1.99519e-03 -4.9921 permil R(18O) OH- 1.92122e-03 -41.879 permil R(18O) H3O+ 2.04133e-03 18.016 permil R(18O) O2(aq) 1.99519e-03 -4.9921 permil R(13C) CO2(aq) 1.10511e-02 -11.549 permil - R(14C) CO2(aq) 1.67692e-13 14.261 pmc + R(14C) CO2(aq) 1.67693e-13 14.261 pmc R(18O) CO2(aq) 2.07916e-03 36.882 permil R(18O) HCO3- 1.99519e-03 -4.9921 permil R(13C) HCO3- 1.11472e-02 -2.9493 permil - R(14C) HCO3- 1.70623e-13 14.51 pmc + R(14C) HCO3- 1.70624e-13 14.51 pmc R(18O) CO3-2 1.99519e-03 -4.9921 permil R(13C) CO3-2 1.11312e-02 -4.3802 permil - R(14C) CO3-2 1.70133e-13 14.468 pmc + R(14C) CO3-2 1.70134e-13 14.469 pmc R(18O) Calcite 2.05263e-03 23.654 permil R(13C) Calcite 1.11693e-02 -0.9745 permil - R(14C) Calcite 1.71299e-13 14.568 pmc + R(14C) Calcite 1.71300e-13 14.568 pmc --------------------------------Isotope Alphas--------------------------------- @@ -38595,12 +38585,12 @@ Calcite 1.81e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2384e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2536e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6959e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7072e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -38620,14 +38610,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.328 Adjusted to redox equilibrium + pe = 11.227 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.129e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -38642,24 +38632,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.139 -125.138 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.331 -124.330 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -38667,50 +38657,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.078e-08 6.088e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.297e-40 - H2 1.648e-40 1.651e-40 -39.783 -39.782 0.001 (0) -O(0) 3.053e-13 - O2 1.520e-13 1.523e-13 -12.818 -12.817 0.001 (0) - O[18O] 6.067e-16 6.077e-16 -15.217 -15.216 0.001 (0) +H(0) 5.248e-40 + H2 2.624e-40 2.628e-40 -39.581 -39.580 0.001 (0) +O(0) 1.205e-13 + O2 6.001e-14 6.011e-14 -13.222 -13.221 0.001 (0) + O[18O] 2.395e-16 2.398e-16 -15.621 -15.620 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.095 -127.095 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.288 -126.287 0.001 (0) [13C](4) 6.500e-05 H[13C]O3- 5.243e-05 4.797e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-07 9.571e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.571e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.571e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.571e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.046e-07 9.571e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.078e-08 6.088e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.576e-08 4.584e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.118e-08 2.184e-08 -7.506 -7.661 -0.155 (0) + CaH[13C][18O]O2+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.209e-09 2.026e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.638e-10 3.644e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.914 -137.913 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.107 -137.106 0.001 (0) [14C](4) 9.935e-16 H[14C]O3- 8.025e-16 7.342e-16 -15.096 -15.134 -0.039 (0) [14C]O2 1.670e-16 1.673e-16 -15.777 -15.777 0.001 (0) CaH[14C]O3+ 1.695e-17 1.555e-17 -16.771 -16.808 -0.037 (0) - H[14C]O2[18O]- 1.601e-18 1.465e-18 -17.796 -17.834 -0.039 (0) - H[14C]O[18O]O- 1.601e-18 1.465e-18 -17.796 -17.834 -0.039 (0) H[14C][18O]O2- 1.601e-18 1.465e-18 -17.796 -17.834 -0.039 (0) + H[14C]O[18O]O- 1.601e-18 1.465e-18 -17.796 -17.834 -0.039 (0) + H[14C]O2[18O]- 1.601e-18 1.465e-18 -17.796 -17.834 -0.039 (0) Ca[14C]O3 9.290e-19 9.306e-19 -18.032 -18.031 0.001 (0) [14C]O[18O] 6.944e-19 6.955e-19 -18.158 -18.158 0.001 (0) [14C]O3-2 4.766e-19 3.339e-19 -18.322 -18.476 -0.155 (0) CaH[14C]O2[18O]+ 3.381e-20 3.102e-20 -19.471 -19.508 -0.037 (0) - CaH[14C]O[18O]O+ 3.381e-20 3.102e-20 -19.471 -19.508 -0.037 (0) CaH[14C][18O]O2+ 3.381e-20 3.102e-20 -19.471 -19.508 -0.037 (0) + CaH[14C]O[18O]O+ 3.381e-20 3.102e-20 -19.471 -19.508 -0.037 (0) Ca[14C]O2[18O] 5.561e-21 5.570e-21 -20.255 -20.254 0.001 (0) H[14C]O[18O]2- 3.195e-21 2.923e-21 -20.496 -20.534 -0.039 (0) H[14C][18O]2O- 3.195e-21 2.923e-21 -20.496 -20.534 -0.039 (0) @@ -38719,29 +38709,29 @@ O(0) 3.053e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 6.079e-16 - O[18O] 6.067e-16 6.077e-16 -15.217 -15.216 0.001 (0) - [18O]2 6.052e-19 6.062e-19 -18.218 -18.217 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.399e-16 + O[18O] 2.395e-16 2.398e-16 -15.621 -15.620 0.001 (0) + [18O]2 2.389e-19 2.393e-19 -18.622 -18.621 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.23 -127.09 -2.86 [13C]H4 + [13C]H4(g) -123.43 -126.29 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.67 -21.18 -1.50 [14C][18O]2 - [14C]H4(g) -135.05 -137.91 -2.86 [14C]H4 + [14C]H4(g) -134.25 -137.11 -2.86 [14C]H4 [14C]O2(g) -14.31 -15.78 -1.47 [14C]O2 [14C]O[18O](g) -16.69 -18.48 -1.79 [14C]O[18O] - [18O]2(g) -15.93 -18.22 -2.29 [18O]2 + [18O]2(g) -16.33 -18.62 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -38755,14 +38745,14 @@ O(0) 3.053e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.28 -125.14 -2.86 CH4 + CH4(g) -121.47 -124.33 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.63 -39.78 -3.15 H2 + H2(g) -36.43 -39.58 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.92 -12.82 -2.89 O2 - O[18O](g) -12.62 -15.52 -2.89 O[18O] + O2(g) -10.33 -13.22 -2.89 O2 + O[18O](g) -13.03 -15.92 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -38826,23 +38816,23 @@ Calcite 1.86e-02 R(18O) 1.99519e-03 -4.9904 permil R(13C) 1.11314e-02 -4.3617 permil - R(14C) 1.66635e-13 14.171 pmc + R(14C) 1.66636e-13 14.171 pmc R(18O) H2O(l) 1.99519e-03 -4.9919 permil R(18O) OH- 1.92122e-03 -41.879 permil R(18O) H3O+ 2.04133e-03 18.016 permil R(18O) O2(aq) 1.99519e-03 -4.9919 permil R(13C) CO2(aq) 1.10518e-02 -11.487 permil - R(14C) CO2(aq) 1.64256e-13 13.969 pmc + R(14C) CO2(aq) 1.64257e-13 13.969 pmc R(18O) CO2(aq) 2.07916e-03 36.882 permil R(18O) HCO3- 1.99519e-03 -4.9919 permil R(13C) HCO3- 1.11479e-02 -2.8871 permil - R(14C) HCO3- 1.67127e-13 14.213 pmc + R(14C) HCO3- 1.67128e-13 14.213 pmc R(18O) CO3-2 1.99519e-03 -4.9919 permil R(13C) CO3-2 1.11319e-02 -4.318 permil - R(14C) CO3-2 1.66647e-13 14.172 pmc + R(14C) CO3-2 1.66648e-13 14.172 pmc R(18O) Calcite 2.05263e-03 23.654 permil R(13C) Calcite 1.11700e-02 -0.91214 permil - R(14C) Calcite 1.67789e-13 14.269 pmc + R(14C) Calcite 1.67791e-13 14.269 pmc --------------------------------Isotope Alphas--------------------------------- @@ -38852,12 +38842,12 @@ Calcite 1.86e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2343e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.251e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.6613e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6414e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5861e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -38877,14 +38867,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.324 Adjusted to redox equilibrium + pe = 11.215 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -38899,13 +38889,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.102 -125.101 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.235 -124.234 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -38914,9 +38904,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -38924,23 +38914,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.079e-08 6.089e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.367e-40 - H2 1.683e-40 1.686e-40 -39.774 -39.773 0.001 (0) -O(0) 2.927e-13 - O2 1.458e-13 1.460e-13 -12.836 -12.836 0.001 (0) - O[18O] 5.817e-16 5.826e-16 -15.235 -15.235 0.001 (0) +H(0) 5.547e-40 + H2 2.773e-40 2.778e-40 -39.557 -39.556 0.001 (0) +O(0) 1.078e-13 + O2 5.371e-14 5.380e-14 -13.270 -13.269 0.001 (0) + O[18O] 2.143e-16 2.147e-16 -15.669 -15.668 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.059 -127.058 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.191 -126.191 0.001 (0) [13C](4) 6.501e-05 H[13C]O3- 5.244e-05 4.797e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.102e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-07 9.571e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.046e-07 9.571e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.046e-07 9.571e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.571e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.079e-08 6.089e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.576e-08 4.584e-08 -7.339 -7.339 0.001 (0) @@ -38949,56 +38939,56 @@ O(0) 2.927e-13 CaH[13C]O[18O]O+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.638e-10 3.644e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.308e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.887 -137.886 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.019 -137.019 0.001 (0) [14C](4) 9.731e-16 H[14C]O3- 7.861e-16 7.192e-16 -15.105 -15.143 -0.039 (0) [14C]O2 1.636e-16 1.638e-16 -15.786 -15.786 0.001 (0) CaH[14C]O3+ 1.660e-17 1.523e-17 -16.780 -16.817 -0.037 (0) - H[14C]O2[18O]- 1.568e-18 1.435e-18 -17.805 -17.843 -0.039 (0) - H[14C]O[18O]O- 1.568e-18 1.435e-18 -17.805 -17.843 -0.039 (0) H[14C][18O]O2- 1.568e-18 1.435e-18 -17.805 -17.843 -0.039 (0) + H[14C]O[18O]O- 1.568e-18 1.435e-18 -17.805 -17.843 -0.039 (0) + H[14C]O2[18O]- 1.568e-18 1.435e-18 -17.805 -17.843 -0.039 (0) Ca[14C]O3 9.100e-19 9.115e-19 -18.041 -18.040 0.001 (0) [14C]O[18O] 6.802e-19 6.813e-19 -18.167 -18.167 0.001 (0) [14C]O3-2 4.668e-19 3.270e-19 -18.331 -18.485 -0.155 (0) CaH[14C]O2[18O]+ 3.312e-20 3.038e-20 -19.480 -19.517 -0.037 (0) - CaH[14C]O[18O]O+ 3.312e-20 3.038e-20 -19.480 -19.517 -0.037 (0) CaH[14C][18O]O2+ 3.312e-20 3.038e-20 -19.480 -19.517 -0.037 (0) + CaH[14C]O[18O]O+ 3.312e-20 3.038e-20 -19.480 -19.517 -0.037 (0) Ca[14C]O2[18O] 5.447e-21 5.456e-21 -20.264 -20.263 0.001 (0) - H[14C]O[18O]2- 3.129e-21 2.863e-21 -20.505 -20.543 -0.039 (0) H[14C][18O]2O- 3.129e-21 2.863e-21 -20.505 -20.543 -0.039 (0) H[14C][18O]O[18O]- 3.129e-21 2.863e-21 -20.505 -20.543 -0.039 (0) + H[14C]O[18O]2- 3.129e-21 2.863e-21 -20.505 -20.543 -0.039 (0) [14C]O2[18O]-2 2.794e-21 1.957e-21 -20.554 -20.708 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.829e-16 - O[18O] 5.817e-16 5.826e-16 -15.235 -15.235 0.001 (0) - [18O]2 5.803e-19 5.812e-19 -18.236 -18.236 0.001 (0) +[18O](0) 2.148e-16 + O[18O] 2.143e-16 2.147e-16 -15.669 -15.668 0.001 (0) + [18O]2 2.138e-19 2.142e-19 -18.670 -18.669 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.20 -127.06 -2.86 [13C]H4 + [13C]H4(g) -123.33 -126.19 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.68 -21.19 -1.50 [14C][18O]2 - [14C]H4(g) -135.03 -137.89 -2.86 [14C]H4 + [14C]H4(g) -134.16 -137.02 -2.86 [14C]H4 [14C]O2(g) -14.32 -15.79 -1.47 [14C]O2 [14C]O[18O](g) -16.70 -18.49 -1.79 [14C]O[18O] - [18O]2(g) -15.95 -18.24 -2.29 [18O]2 + [18O]2(g) -16.38 -18.67 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -39012,14 +39002,14 @@ O(0) 2.927e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.24 -125.10 -2.86 CH4 + CH4(g) -121.37 -124.23 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.62 -39.77 -3.15 H2 + H2(g) -36.41 -39.56 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.94 -12.84 -2.89 O2 - O[18O](g) -12.64 -15.54 -2.89 O[18O] + O2(g) -10.38 -13.27 -2.89 O2 + O[18O](g) -13.08 -15.97 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -39083,23 +39073,23 @@ Calcite 1.91e-02 R(18O) 1.99519e-03 -4.9903 permil R(13C) 1.11321e-02 -4.302 permil - R(14C) 1.63289e-13 13.886 pmc + R(14C) 1.63290e-13 13.887 pmc R(18O) H2O(l) 1.99519e-03 -4.9918 permil R(18O) OH- 1.92122e-03 -41.879 permil R(18O) H3O+ 2.04133e-03 18.016 permil R(18O) O2(aq) 1.99519e-03 -4.9918 permil R(13C) CO2(aq) 1.10524e-02 -11.428 permil - R(14C) CO2(aq) 1.60959e-13 13.688 pmc + R(14C) CO2(aq) 1.60960e-13 13.688 pmc R(18O) CO2(aq) 2.07916e-03 36.882 permil R(18O) HCO3- 1.99519e-03 -4.9918 permil R(13C) HCO3- 1.11486e-02 -2.8273 permil - R(14C) HCO3- 1.63771e-13 13.927 pmc + R(14C) HCO3- 1.63772e-13 13.928 pmc R(18O) CO3-2 1.99519e-03 -4.9918 permil R(13C) CO3-2 1.11326e-02 -4.2584 permil - R(14C) CO3-2 1.63302e-13 13.888 pmc + R(14C) CO3-2 1.63303e-13 13.888 pmc R(18O) Calcite 2.05263e-03 23.655 permil R(13C) Calcite 1.11707e-02 -0.85228 permil - R(14C) Calcite 1.64421e-13 13.983 pmc + R(14C) Calcite 1.64422e-13 13.983 pmc --------------------------------Isotope Alphas--------------------------------- @@ -39109,12 +39099,12 @@ Calcite 1.91e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2714e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2558e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6787e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6929e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -39134,14 +39124,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.330 Adjusted to redox equilibrium + pe = 11.231 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.824e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -39156,24 +39146,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.152 -125.151 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.363 -124.362 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -39181,81 +39171,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.079e-08 6.089e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.273e-40 - H2 1.636e-40 1.639e-40 -39.786 -39.785 0.001 (0) -O(0) 3.098e-13 - O2 1.543e-13 1.546e-13 -12.812 -12.811 0.001 (0) - O[18O] 6.158e-16 6.168e-16 -15.211 -15.210 0.001 (0) +H(0) 5.153e-40 + H2 2.576e-40 2.581e-40 -39.589 -39.588 0.001 (0) +O(0) 1.250e-13 + O2 6.224e-14 6.234e-14 -13.206 -13.205 0.001 (0) + O[18O] 2.484e-16 2.488e-16 -15.605 -15.604 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.108 -127.107 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.319 -126.319 0.001 (0) [13C](4) 6.501e-05 H[13C]O3- 5.244e-05 4.797e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.102e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) H[13C]O2[18O]- 1.046e-07 9.572e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.572e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.572e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.572e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.079e-08 6.089e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.577e-08 4.584e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.118e-08 2.185e-08 -7.506 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.639e-10 3.645e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.945 -137.944 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.156 -137.155 0.001 (0) [14C](4) 9.536e-16 H[14C]O3- 7.703e-16 7.047e-16 -15.113 -15.152 -0.039 (0) [14C]O2 1.603e-16 1.605e-16 -15.795 -15.794 0.001 (0) CaH[14C]O3+ 1.627e-17 1.492e-17 -16.789 -16.826 -0.037 (0) - H[14C]O2[18O]- 1.537e-18 1.406e-18 -17.813 -17.852 -0.039 (0) - H[14C]O[18O]O- 1.537e-18 1.406e-18 -17.813 -17.852 -0.039 (0) H[14C][18O]O2- 1.537e-18 1.406e-18 -17.813 -17.852 -0.039 (0) + H[14C]O[18O]O- 1.537e-18 1.406e-18 -17.813 -17.852 -0.039 (0) + H[14C]O2[18O]- 1.537e-18 1.406e-18 -17.813 -17.852 -0.039 (0) Ca[14C]O3 8.917e-19 8.932e-19 -18.050 -18.049 0.001 (0) [14C]O[18O] 6.665e-19 6.676e-19 -18.176 -18.175 0.001 (0) [14C]O3-2 4.574e-19 3.205e-19 -18.340 -18.494 -0.155 (0) CaH[14C]O2[18O]+ 3.245e-20 2.977e-20 -19.489 -19.526 -0.037 (0) - CaH[14C]O[18O]O+ 3.245e-20 2.977e-20 -19.489 -19.526 -0.037 (0) CaH[14C][18O]O2+ 3.245e-20 2.977e-20 -19.489 -19.526 -0.037 (0) + CaH[14C]O[18O]O+ 3.245e-20 2.977e-20 -19.489 -19.526 -0.037 (0) Ca[14C]O2[18O] 5.338e-21 5.346e-21 -20.273 -20.272 0.001 (0) + H[14C][18O]O[18O]- 3.066e-21 2.805e-21 -20.513 -20.552 -0.039 (0) H[14C]O[18O]2- 3.066e-21 2.805e-21 -20.513 -20.552 -0.039 (0) H[14C][18O]2O- 3.066e-21 2.805e-21 -20.513 -20.552 -0.039 (0) - H[14C][18O]O[18O]- 3.066e-21 2.805e-21 -20.513 -20.552 -0.039 (0) [14C]O2[18O]-2 2.738e-21 1.918e-21 -20.563 -20.717 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 6.170e-16 - O[18O] 6.158e-16 6.168e-16 -15.211 -15.210 0.001 (0) - [18O]2 6.143e-19 6.153e-19 -18.212 -18.211 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.489e-16 + O[18O] 2.484e-16 2.488e-16 -15.605 -15.604 0.001 (0) + [18O]2 2.478e-19 2.482e-19 -18.606 -18.605 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.25 -127.11 -2.86 [13C]H4 + [13C]H4(g) -123.46 -126.32 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.69 -21.19 -1.50 [14C][18O]2 - [14C]H4(g) -135.08 -137.94 -2.86 [14C]H4 + [14C]H4(g) -134.30 -137.16 -2.86 [14C]H4 [14C]O2(g) -14.33 -15.79 -1.47 [14C]O2 [14C]O[18O](g) -16.71 -18.49 -1.79 [14C]O[18O] - [18O]2(g) -15.92 -18.21 -2.29 [18O]2 + [18O]2(g) -16.31 -18.61 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -39269,14 +39259,14 @@ O(0) 3.098e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.29 -125.15 -2.86 CH4 + CH4(g) -121.50 -124.36 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.64 -39.79 -3.15 H2 + H2(g) -36.44 -39.59 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.92 -12.81 -2.89 O2 - O[18O](g) -12.62 -15.51 -2.89 O[18O] + O2(g) -10.31 -13.21 -2.89 O2 + O[18O](g) -13.01 -15.91 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -39340,23 +39330,23 @@ Calcite 1.96e-02 R(18O) 1.99519e-03 -4.9901 permil R(13C) 1.11327e-02 -4.2447 permil - R(14C) 1.60075e-13 13.613 pmc + R(14C) 1.60076e-13 13.613 pmc R(18O) H2O(l) 1.99519e-03 -4.9916 permil R(18O) OH- 1.92122e-03 -41.879 permil R(18O) H3O+ 2.04133e-03 18.016 permil R(18O) O2(aq) 1.99519e-03 -4.9916 permil R(13C) CO2(aq) 1.10531e-02 -11.371 permil - R(14C) CO2(aq) 1.57791e-13 13.419 pmc + R(14C) CO2(aq) 1.57792e-13 13.419 pmc R(18O) CO2(aq) 2.07916e-03 36.882 permil R(18O) HCO3- 1.99519e-03 -4.9916 permil R(13C) HCO3- 1.11492e-02 -2.7699 permil - R(14C) HCO3- 1.60548e-13 13.653 pmc + R(14C) HCO3- 1.60549e-13 13.653 pmc R(18O) CO3-2 1.99519e-03 -4.9916 permil R(13C) CO3-2 1.11332e-02 -4.2011 permil - R(14C) CO3-2 1.60088e-13 13.614 pmc + R(14C) CO3-2 1.60089e-13 13.614 pmc R(18O) Calcite 2.05263e-03 23.655 permil R(13C) Calcite 1.11713e-02 -0.79477 permil - R(14C) Calcite 1.61185e-13 13.707 pmc + R(14C) Calcite 1.61186e-13 13.708 pmc --------------------------------Isotope Alphas--------------------------------- @@ -39366,12 +39356,12 @@ Calcite 1.96e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2845e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2691e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7544e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6972e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -39391,14 +39381,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.328 Adjusted to redox equilibrium + pe = 11.214 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.823e-13 + Electrical balance (eq) = 3.128e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -39413,14 +39403,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.140 -125.139 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.225 -124.224 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -39428,9 +39418,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -39438,51 +39428,51 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.079e-08 6.089e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.295e-40 - H2 1.647e-40 1.650e-40 -39.783 -39.782 0.001 (0) -O(0) 3.057e-13 - O2 1.522e-13 1.525e-13 -12.818 -12.817 0.001 (0) - O[18O] 6.074e-16 6.084e-16 -15.217 -15.216 0.001 (0) +H(0) 5.579e-40 + H2 2.790e-40 2.794e-40 -39.554 -39.554 0.001 (0) +O(0) 1.066e-13 + O2 5.309e-14 5.318e-14 -13.275 -13.274 0.001 (0) + O[18O] 2.118e-16 2.122e-16 -15.674 -15.673 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.096 -127.095 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.181 -126.181 0.001 (0) [13C](4) 6.501e-05 H[13C]O3- 5.244e-05 4.798e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.102e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-07 9.572e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.572e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.572e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.572e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.046e-07 9.572e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.079e-08 6.089e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.577e-08 4.585e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.119e-08 2.185e-08 -7.506 -7.661 -0.155 (0) + CaH[13C][18O]O2+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.209e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.639e-10 3.645e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.942 -137.941 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.027 -137.026 0.001 (0) [14C](4) 9.348e-16 - H[14C]O3- 7.551e-16 6.909e-16 -15.122 -15.161 -0.039 (0) + H[14C]O3- 7.552e-16 6.909e-16 -15.122 -15.161 -0.039 (0) [14C]O2 1.571e-16 1.574e-16 -15.804 -15.803 0.001 (0) CaH[14C]O3+ 1.595e-17 1.463e-17 -16.797 -16.835 -0.037 (0) - H[14C]O2[18O]- 1.507e-18 1.378e-18 -17.822 -17.861 -0.039 (0) - H[14C]O[18O]O- 1.507e-18 1.378e-18 -17.822 -17.861 -0.039 (0) H[14C][18O]O2- 1.507e-18 1.378e-18 -17.822 -17.861 -0.039 (0) + H[14C]O[18O]O- 1.507e-18 1.378e-18 -17.822 -17.861 -0.039 (0) + H[14C]O2[18O]- 1.507e-18 1.378e-18 -17.822 -17.861 -0.039 (0) Ca[14C]O3 8.742e-19 8.756e-19 -18.058 -18.058 0.001 (0) [14C]O[18O] 6.534e-19 6.545e-19 -18.185 -18.184 0.001 (0) [14C]O3-2 4.484e-19 3.142e-19 -18.348 -18.503 -0.155 (0) CaH[14C]O2[18O]+ 3.182e-20 2.919e-20 -19.497 -19.535 -0.037 (0) - CaH[14C]O[18O]O+ 3.182e-20 2.919e-20 -19.497 -19.535 -0.037 (0) CaH[14C][18O]O2+ 3.182e-20 2.919e-20 -19.497 -19.535 -0.037 (0) - Ca[14C]O2[18O] 5.232e-21 5.241e-21 -20.281 -20.281 0.001 (0) + CaH[14C]O[18O]O+ 3.182e-20 2.919e-20 -19.497 -19.535 -0.037 (0) + Ca[14C]O2[18O] 5.233e-21 5.241e-21 -20.281 -20.281 0.001 (0) H[14C]O[18O]2- 3.006e-21 2.750e-21 -20.522 -20.561 -0.039 (0) H[14C][18O]2O- 3.006e-21 2.750e-21 -20.522 -20.561 -0.039 (0) H[14C][18O]O[18O]- 3.006e-21 2.750e-21 -20.522 -20.561 -0.039 (0) @@ -39490,29 +39480,29 @@ O(0) 3.057e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.385e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 6.086e-16 - O[18O] 6.074e-16 6.084e-16 -15.217 -15.216 0.001 (0) - [18O]2 6.060e-19 6.070e-19 -18.218 -18.217 0.001 (0) +[18O](0) 2.123e-16 + O[18O] 2.118e-16 2.122e-16 -15.674 -15.673 0.001 (0) + [18O]2 2.113e-19 2.117e-19 -18.675 -18.674 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.24 -127.10 -2.86 [13C]H4 + [13C]H4(g) -123.32 -126.18 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.70 -21.20 -1.50 [14C][18O]2 - [14C]H4(g) -135.08 -137.94 -2.86 [14C]H4 + [14C]H4(g) -134.17 -137.03 -2.86 [14C]H4 [14C]O2(g) -14.33 -15.80 -1.47 [14C]O2 [14C]O[18O](g) -16.72 -18.50 -1.79 [14C]O[18O] - [18O]2(g) -15.93 -18.22 -2.29 [18O]2 + [18O]2(g) -16.38 -18.67 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -39526,14 +39516,14 @@ O(0) 3.057e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.28 -125.14 -2.86 CH4 + CH4(g) -121.36 -124.22 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.63 -39.78 -3.15 H2 + H2(g) -36.40 -39.55 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.92 -12.82 -2.89 O2 - O[18O](g) -12.62 -15.52 -2.89 O[18O] + O2(g) -10.38 -13.27 -2.89 O2 + O[18O](g) -13.08 -15.97 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -39597,23 +39587,23 @@ Calcite 2.01e-02 R(18O) 1.99519e-03 -4.99 permil R(13C) 1.11334e-02 -4.1896 permil - R(14C) 1.56985e-13 13.35 pmc + R(14C) 1.56987e-13 13.35 pmc R(18O) H2O(l) 1.99519e-03 -4.9915 permil R(18O) OH- 1.92122e-03 -41.879 permil R(18O) H3O+ 2.04133e-03 18.016 permil R(18O) O2(aq) 1.99519e-03 -4.9915 permil R(13C) CO2(aq) 1.10537e-02 -11.316 permil - R(14C) CO2(aq) 1.54745e-13 13.16 pmc + R(14C) CO2(aq) 1.54746e-13 13.16 pmc R(18O) CO2(aq) 2.07916e-03 36.882 permil R(18O) HCO3- 1.99519e-03 -4.9915 permil R(13C) HCO3- 1.11498e-02 -2.7148 permil - R(14C) HCO3- 1.57449e-13 13.39 pmc + R(14C) HCO3- 1.57450e-13 13.39 pmc R(18O) CO3-2 1.99519e-03 -4.9915 permil R(13C) CO3-2 1.11338e-02 -4.146 permil - R(14C) CO3-2 1.56998e-13 13.351 pmc + R(14C) CO3-2 1.56999e-13 13.351 pmc R(18O) Calcite 2.05263e-03 23.655 permil R(13C) Calcite 1.11719e-02 -0.73948 permil - R(14C) Calcite 1.58074e-13 13.443 pmc + R(14C) Calcite 1.58075e-13 13.443 pmc --------------------------------Isotope Alphas--------------------------------- @@ -39623,12 +39613,12 @@ Calcite 2.01e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2752e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2593e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5427e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6922e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -39648,14 +39638,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.329 Adjusted to redox equilibrium + pe = 11.163 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.823e-13 + Electrical balance (eq) = 3.127e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -39670,24 +39660,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.146 -125.145 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.813 -123.812 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -39695,23 +39685,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.080e-08 6.090e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.283e-40 - H2 1.641e-40 1.644e-40 -39.785 -39.784 0.001 (0) -O(0) 3.079e-13 - O2 1.533e-13 1.536e-13 -12.814 -12.814 0.001 (0) - O[18O] 6.119e-16 6.129e-16 -15.213 -15.213 0.001 (0) +H(0) 7.071e-40 + H2 3.535e-40 3.541e-40 -39.452 -39.451 0.001 (0) +O(0) 6.637e-14 + O2 3.305e-14 3.311e-14 -13.481 -13.480 0.001 (0) + O[18O] 1.319e-16 1.321e-16 -15.880 -15.879 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.103 -127.102 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.770 -125.769 0.001 (0) [13C](4) 6.502e-05 H[13C]O3- 5.244e-05 4.798e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.107e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.080e-08 6.090e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.577e-08 4.585e-08 -7.339 -7.339 0.001 (0) @@ -39720,56 +39710,56 @@ O(0) 3.079e-13 CaH[13C]O[18O]O+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.639e-10 3.645e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.956 -137.956 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.624 -136.623 0.001 (0) [14C](4) 9.168e-16 H[14C]O3- 7.406e-16 6.775e-16 -15.130 -15.169 -0.039 (0) [14C]O2 1.541e-16 1.544e-16 -15.812 -15.811 0.001 (0) CaH[14C]O3+ 1.564e-17 1.435e-17 -16.806 -16.843 -0.037 (0) - H[14C]O2[18O]- 1.478e-18 1.352e-18 -17.830 -17.869 -0.039 (0) - H[14C]O[18O]O- 1.478e-18 1.352e-18 -17.830 -17.869 -0.039 (0) H[14C][18O]O2- 1.478e-18 1.352e-18 -17.830 -17.869 -0.039 (0) + H[14C]O[18O]O- 1.478e-18 1.352e-18 -17.830 -17.869 -0.039 (0) + H[14C]O2[18O]- 1.478e-18 1.352e-18 -17.830 -17.869 -0.039 (0) Ca[14C]O3 8.573e-19 8.587e-19 -18.067 -18.066 0.001 (0) [14C]O[18O] 6.408e-19 6.418e-19 -18.193 -18.193 0.001 (0) [14C]O3-2 4.398e-19 3.081e-19 -18.357 -18.511 -0.155 (0) CaH[14C]O2[18O]+ 3.120e-20 2.862e-20 -19.506 -19.543 -0.037 (0) - CaH[14C]O[18O]O+ 3.120e-20 2.862e-20 -19.506 -19.543 -0.037 (0) CaH[14C][18O]O2+ 3.120e-20 2.862e-20 -19.506 -19.543 -0.037 (0) - Ca[14C]O2[18O] 5.131e-21 5.140e-21 -20.290 -20.289 0.001 (0) - H[14C]O[18O]2- 2.948e-21 2.697e-21 -20.530 -20.569 -0.039 (0) + CaH[14C]O[18O]O+ 3.120e-20 2.862e-20 -19.506 -19.543 -0.037 (0) + Ca[14C]O2[18O] 5.132e-21 5.140e-21 -20.290 -20.289 0.001 (0) H[14C][18O]2O- 2.948e-21 2.697e-21 -20.530 -20.569 -0.039 (0) H[14C][18O]O[18O]- 2.948e-21 2.697e-21 -20.530 -20.569 -0.039 (0) + H[14C]O[18O]2- 2.948e-21 2.697e-21 -20.530 -20.569 -0.039 (0) [14C]O2[18O]-2 2.632e-21 1.844e-21 -20.580 -20.734 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 6.131e-16 - O[18O] 6.119e-16 6.129e-16 -15.213 -15.213 0.001 (0) - [18O]2 6.104e-19 6.114e-19 -18.214 -18.214 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.322e-16 + O[18O] 1.319e-16 1.321e-16 -15.880 -15.879 0.001 (0) + [18O]2 1.316e-19 1.318e-19 -18.881 -18.880 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.24 -127.10 -2.86 [13C]H4 + [13C]H4(g) -122.91 -125.77 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.71 -21.21 -1.50 [14C][18O]2 - [14C]H4(g) -135.10 -137.96 -2.86 [14C]H4 + [14C]H4(g) -133.76 -136.62 -2.86 [14C]H4 [14C]O2(g) -14.34 -15.81 -1.47 [14C]O2 [14C]O[18O](g) -16.72 -18.51 -1.79 [14C]O[18O] - [18O]2(g) -15.92 -18.21 -2.29 [18O]2 + [18O]2(g) -16.59 -18.88 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -39783,14 +39773,14 @@ O(0) 3.079e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.29 -125.15 -2.86 CH4 + CH4(g) -120.95 -123.81 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.63 -39.78 -3.15 H2 + H2(g) -36.30 -39.45 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.92 -12.81 -2.89 O2 - O[18O](g) -12.62 -15.51 -2.89 O[18O] + O2(g) -10.59 -13.48 -2.89 O2 + O[18O](g) -13.29 -16.18 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -39854,23 +39844,23 @@ Calcite 2.06e-02 R(18O) 1.99519e-03 -4.9898 permil R(13C) 1.11340e-02 -4.1366 permil - R(14C) 1.54013e-13 13.098 pmc + R(14C) 1.54014e-13 13.098 pmc R(18O) H2O(l) 1.99519e-03 -4.9914 permil R(18O) OH- 1.92122e-03 -41.879 permil R(18O) H3O+ 2.04133e-03 18.017 permil R(18O) O2(aq) 1.99519e-03 -4.9914 permil R(13C) CO2(aq) 1.10543e-02 -11.264 permil - R(14C) CO2(aq) 1.51815e-13 12.911 pmc + R(14C) CO2(aq) 1.51816e-13 12.911 pmc R(18O) CO2(aq) 2.07916e-03 36.883 permil R(18O) HCO3- 1.99519e-03 -4.9914 permil R(13C) HCO3- 1.11504e-02 -2.6617 permil - R(14C) HCO3- 1.54468e-13 13.136 pmc + R(14C) HCO3- 1.54469e-13 13.136 pmc R(18O) CO3-2 1.99519e-03 -4.9914 permil R(13C) CO3-2 1.11344e-02 -4.0929 permil - R(14C) CO3-2 1.54025e-13 13.099 pmc + R(14C) CO3-2 1.54026e-13 13.099 pmc R(18O) Calcite 2.05263e-03 23.655 permil R(13C) Calcite 1.11725e-02 -0.68629 permil - R(14C) Calcite 1.55080e-13 13.188 pmc + R(14C) Calcite 1.55081e-13 13.188 pmc --------------------------------Isotope Alphas--------------------------------- @@ -39880,12 +39870,12 @@ Calcite 2.06e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.241e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2267e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6863e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5661e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -39905,14 +39895,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.327 Adjusted to redox equilibrium + pe = 11.140 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.823e-13 + Electrical balance (eq) = 3.127e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -39927,14 +39917,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.131 -125.131 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.629 -123.628 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -39942,9 +39932,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -39952,81 +39942,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.080e-08 6.090e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.311e-40 - H2 1.655e-40 1.658e-40 -39.781 -39.780 0.001 (0) -O(0) 3.027e-13 - O2 1.507e-13 1.510e-13 -12.822 -12.821 0.001 (0) - O[18O] 6.015e-16 6.025e-16 -15.221 -15.220 0.001 (0) +H(0) 7.864e-40 + H2 3.932e-40 3.938e-40 -39.405 -39.405 0.001 (0) +O(0) 5.366e-14 + O2 2.672e-14 2.677e-14 -13.573 -13.572 0.001 (0) + O[18O] 1.066e-16 1.068e-16 -15.972 -15.971 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.088 -127.087 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.585 -125.584 0.001 (0) [13C](4) 6.502e-05 H[13C]O3- 5.245e-05 4.798e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) H[13C]O2[18O]- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.573e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.080e-08 6.090e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.577e-08 4.585e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.119e-08 2.185e-08 -7.506 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.639e-10 3.645e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.950 -137.949 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.447 -136.447 0.001 (0) [14C](4) 8.994e-16 - H[14C]O3- 7.265e-16 6.647e-16 -15.139 -15.177 -0.039 (0) + H[14C]O3- 7.266e-16 6.647e-16 -15.139 -15.177 -0.039 (0) [14C]O2 1.512e-16 1.514e-16 -15.821 -15.820 0.001 (0) CaH[14C]O3+ 1.534e-17 1.407e-17 -16.814 -16.852 -0.037 (0) - H[14C]O2[18O]- 1.450e-18 1.326e-18 -17.839 -17.877 -0.039 (0) - H[14C]O[18O]O- 1.450e-18 1.326e-18 -17.839 -17.877 -0.039 (0) H[14C][18O]O2- 1.450e-18 1.326e-18 -17.839 -17.877 -0.039 (0) + H[14C]O[18O]O- 1.450e-18 1.326e-18 -17.839 -17.877 -0.039 (0) + H[14C]O2[18O]- 1.450e-18 1.326e-18 -17.839 -17.877 -0.039 (0) Ca[14C]O3 8.411e-19 8.425e-19 -18.075 -18.074 0.001 (0) [14C]O[18O] 6.287e-19 6.297e-19 -18.202 -18.201 0.001 (0) [14C]O3-2 4.315e-19 3.023e-19 -18.365 -18.520 -0.155 (0) CaH[14C]O2[18O]+ 3.061e-20 2.808e-20 -19.514 -19.552 -0.037 (0) - CaH[14C]O[18O]O+ 3.061e-20 2.808e-20 -19.514 -19.552 -0.037 (0) CaH[14C][18O]O2+ 3.061e-20 2.808e-20 -19.514 -19.552 -0.037 (0) + CaH[14C]O[18O]O+ 3.061e-20 2.808e-20 -19.514 -19.552 -0.037 (0) Ca[14C]O2[18O] 5.034e-21 5.043e-21 -20.298 -20.297 0.001 (0) + H[14C][18O]O[18O]- 2.892e-21 2.646e-21 -20.539 -20.577 -0.039 (0) H[14C]O[18O]2- 2.892e-21 2.646e-21 -20.539 -20.577 -0.039 (0) H[14C][18O]2O- 2.892e-21 2.646e-21 -20.539 -20.577 -0.039 (0) - H[14C][18O]O[18O]- 2.892e-21 2.646e-21 -20.539 -20.577 -0.039 (0) [14C]O2[18O]-2 2.583e-21 1.809e-21 -20.588 -20.743 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 6.027e-16 - O[18O] 6.015e-16 6.025e-16 -15.221 -15.220 0.001 (0) - [18O]2 6.001e-19 6.011e-19 -18.222 -18.221 0.001 (0) +[18O](0) 1.069e-16 + O[18O] 1.066e-16 1.068e-16 -15.972 -15.971 0.001 (0) + [18O]2 1.064e-19 1.066e-19 -18.973 -18.972 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.23 -127.09 -2.86 [13C]H4 + [13C]H4(g) -122.72 -125.58 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.72 -21.22 -1.50 [14C][18O]2 - [14C]H4(g) -135.09 -137.95 -2.86 [14C]H4 + [14C]H4(g) -133.59 -136.45 -2.86 [14C]H4 [14C]O2(g) -14.35 -15.82 -1.47 [14C]O2 [14C]O[18O](g) -16.73 -18.52 -1.79 [14C]O[18O] - [18O]2(g) -15.93 -18.22 -2.29 [18O]2 + [18O]2(g) -16.68 -18.97 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -40040,14 +40030,14 @@ O(0) 3.027e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.27 -125.13 -2.86 CH4 + CH4(g) -120.77 -123.63 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.63 -39.78 -3.15 H2 + H2(g) -36.25 -39.40 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.93 -12.82 -2.89 O2 - O[18O](g) -12.63 -15.52 -2.89 O[18O] + O2(g) -10.68 -13.57 -2.89 O2 + O[18O](g) -13.38 -16.27 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -40117,17 +40107,17 @@ Calcite 2.11e-02 R(18O) H3O+ 2.04133e-03 18.017 permil R(18O) O2(aq) 1.99519e-03 -4.9912 permil R(13C) CO2(aq) 1.10548e-02 -11.213 permil - R(14C) CO2(aq) 1.48993e-13 12.671 pmc + R(14C) CO2(aq) 1.48994e-13 12.671 pmc R(18O) CO2(aq) 2.07916e-03 36.883 permil R(18O) HCO3- 1.99519e-03 -4.9912 permil R(13C) HCO3- 1.11510e-02 -2.6105 permil - R(14C) HCO3- 1.51597e-13 12.892 pmc + R(14C) HCO3- 1.51598e-13 12.892 pmc R(18O) CO3-2 1.99519e-03 -4.9912 permil R(13C) CO3-2 1.11350e-02 -4.0419 permil - R(14C) CO3-2 1.51162e-13 12.855 pmc + R(14C) CO3-2 1.51163e-13 12.855 pmc R(18O) Calcite 2.05263e-03 23.655 permil R(13C) Calcite 1.11731e-02 -0.63507 permil - R(14C) Calcite 1.52198e-13 12.943 pmc + R(14C) Calcite 1.52199e-13 12.943 pmc --------------------------------Isotope Alphas--------------------------------- @@ -40137,12 +40127,12 @@ Calcite 2.11e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2512e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2358e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6798e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.625e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -40162,14 +40152,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.318 Adjusted to redox equilibrium + pe = 11.131 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.823e-13 + Electrical balance (eq) = 3.127e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -40184,24 +40174,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.055 -125.054 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.559 -123.559 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -40209,50 +40199,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.080e-08 6.090e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.459e-40 - H2 1.730e-40 1.733e-40 -39.762 -39.761 0.001 (0) -O(0) 2.773e-13 - O2 1.381e-13 1.383e-13 -12.860 -12.859 0.001 (0) - O[18O] 5.510e-16 5.519e-16 -15.259 -15.258 0.001 (0) +H(0) 8.183e-40 + H2 4.092e-40 4.098e-40 -39.388 -39.387 0.001 (0) +O(0) 4.955e-14 + O2 2.468e-14 2.472e-14 -13.608 -13.607 0.001 (0) + O[18O] 9.847e-17 9.863e-17 -16.007 -16.006 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.011 -127.011 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.516 -125.515 0.001 (0) [13C](4) 6.503e-05 H[13C]O3- 5.245e-05 4.798e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-07 9.574e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-07 9.574e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.046e-07 9.574e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.046e-07 9.574e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.046e-07 9.574e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.080e-08 6.090e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.578e-08 4.585e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.119e-08 2.185e-08 -7.506 -7.661 -0.155 (0) + CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.639e-10 3.645e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.882 -137.881 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.386 -136.385 0.001 (0) [14C](4) 8.827e-16 H[14C]O3- 7.130e-16 6.523e-16 -15.147 -15.186 -0.039 (0) [14C]O2 1.484e-16 1.486e-16 -15.829 -15.828 0.001 (0) CaH[14C]O3+ 1.506e-17 1.381e-17 -16.822 -16.860 -0.037 (0) - H[14C]O2[18O]- 1.423e-18 1.302e-18 -17.847 -17.886 -0.039 (0) - H[14C]O[18O]O- 1.423e-18 1.302e-18 -17.847 -17.886 -0.039 (0) H[14C][18O]O2- 1.423e-18 1.302e-18 -17.847 -17.886 -0.039 (0) + H[14C]O[18O]O- 1.423e-18 1.302e-18 -17.847 -17.886 -0.039 (0) + H[14C]O2[18O]- 1.423e-18 1.302e-18 -17.847 -17.886 -0.039 (0) Ca[14C]O3 8.254e-19 8.268e-19 -18.083 -18.083 0.001 (0) [14C]O[18O] 6.170e-19 6.180e-19 -18.210 -18.209 0.001 (0) [14C]O3-2 4.234e-19 2.966e-19 -18.373 -18.528 -0.155 (0) CaH[14C]O2[18O]+ 3.004e-20 2.756e-20 -19.522 -19.560 -0.037 (0) - CaH[14C]O[18O]O+ 3.004e-20 2.756e-20 -19.522 -19.560 -0.037 (0) CaH[14C][18O]O2+ 3.004e-20 2.756e-20 -19.522 -19.560 -0.037 (0) + CaH[14C]O[18O]O+ 3.004e-20 2.756e-20 -19.522 -19.560 -0.037 (0) Ca[14C]O2[18O] 4.941e-21 4.949e-21 -20.306 -20.305 0.001 (0) H[14C]O[18O]2- 2.838e-21 2.597e-21 -20.547 -20.586 -0.039 (0) H[14C][18O]2O- 2.838e-21 2.597e-21 -20.547 -20.586 -0.039 (0) @@ -40261,29 +40251,29 @@ O(0) 2.773e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.521e-16 - O[18O] 5.510e-16 5.519e-16 -15.259 -15.258 0.001 (0) - [18O]2 5.497e-19 5.506e-19 -18.260 -18.259 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 9.867e-17 + O[18O] 9.847e-17 9.863e-17 -16.007 -16.006 0.001 (0) + [18O]2 9.824e-20 9.840e-20 -19.008 -19.007 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.15 -127.01 -2.86 [13C]H4 + [13C]H4(g) -122.66 -125.52 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.72 -21.23 -1.50 [14C][18O]2 - [14C]H4(g) -135.02 -137.88 -2.86 [14C]H4 + [14C]H4(g) -133.53 -136.39 -2.86 [14C]H4 [14C]O2(g) -14.36 -15.83 -1.47 [14C]O2 [14C]O[18O](g) -16.74 -18.53 -1.79 [14C]O[18O] - [18O]2(g) -15.97 -18.26 -2.29 [18O]2 + [18O]2(g) -16.72 -19.01 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -40297,14 +40287,14 @@ O(0) 2.773e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.19 -125.05 -2.86 CH4 + CH4(g) -120.70 -123.56 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.61 -39.76 -3.15 H2 + H2(g) -36.24 -39.39 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.97 -12.86 -2.89 O2 - O[18O](g) -12.67 -15.56 -2.89 O[18O] + O2(g) -10.71 -13.61 -2.89 O2 + O[18O](g) -13.41 -16.31 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -40368,23 +40358,23 @@ Calcite 2.16e-02 R(18O) 1.99519e-03 -4.9896 permil R(13C) 1.11351e-02 -4.0364 permil - R(14C) 1.48393e-13 12.62 pmc + R(14C) 1.48394e-13 12.62 pmc R(18O) H2O(l) 1.99519e-03 -4.9911 permil R(18O) OH- 1.92123e-03 -41.878 permil R(18O) H3O+ 2.04133e-03 18.017 permil R(18O) O2(aq) 1.99519e-03 -4.9911 permil R(13C) CO2(aq) 1.10554e-02 -11.164 permil - R(14C) CO2(aq) 1.46275e-13 12.44 pmc + R(14C) CO2(aq) 1.46276e-13 12.44 pmc R(18O) CO2(aq) 2.07916e-03 36.883 permil R(18O) HCO3- 1.99519e-03 -4.9911 permil R(13C) HCO3- 1.11516e-02 -2.5613 permil - R(14C) HCO3- 1.48831e-13 12.657 pmc + R(14C) HCO3- 1.48832e-13 12.657 pmc R(18O) CO3-2 1.99519e-03 -4.9911 permil R(13C) CO3-2 1.11356e-02 -3.9927 permil - R(14C) CO3-2 1.48404e-13 12.621 pmc + R(14C) CO3-2 1.48405e-13 12.621 pmc R(18O) Calcite 2.05263e-03 23.655 permil R(13C) Calcite 1.11737e-02 -0.58571 permil - R(14C) Calcite 1.49421e-13 12.707 pmc + R(14C) Calcite 1.49422e-13 12.707 pmc --------------------------------Isotope Alphas--------------------------------- @@ -40394,12 +40384,12 @@ Calcite 2.16e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2732e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2902e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.3323e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.6605e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6359e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7165e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -40419,14 +40409,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.320 Adjusted to redox equilibrium + pe = 11.091 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.823e-13 + Electrical balance (eq) = 3.126e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -40441,13 +40431,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.075 -125.074 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.244 -123.243 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -40456,9 +40446,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -40466,23 +40456,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.081e-08 6.091e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.420e-40 - H2 1.710e-40 1.713e-40 -39.767 -39.766 0.001 (0) -O(0) 2.836e-13 - O2 1.412e-13 1.415e-13 -12.850 -12.849 0.001 (0) - O[18O] 5.636e-16 5.646e-16 -15.249 -15.248 0.001 (0) +H(0) 9.814e-40 + H2 4.907e-40 4.915e-40 -39.309 -39.308 0.001 (0) +O(0) 3.445e-14 + O2 1.716e-14 1.719e-14 -13.766 -13.765 0.001 (0) + O[18O] 6.846e-17 6.858e-17 -16.165 -16.164 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.031 -127.030 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.200 -125.199 0.001 (0) [13C](4) 6.503e-05 H[13C]O3- 5.245e-05 4.799e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.574e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.574e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.574e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.574e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.081e-08 6.091e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.578e-08 4.585e-08 -7.339 -7.339 0.001 (0) @@ -40491,56 +40481,56 @@ O(0) 2.836e-13 CaH[13C]O[18O]O+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.640e-10 3.646e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.910 -137.909 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.078 -136.078 0.001 (0) [14C](4) 8.666e-16 H[14C]O3- 7.000e-16 6.404e-16 -15.155 -15.194 -0.039 (0) [14C]O2 1.457e-16 1.459e-16 -15.837 -15.836 0.001 (0) CaH[14C]O3+ 1.478e-17 1.356e-17 -16.830 -16.868 -0.037 (0) - H[14C]O2[18O]- 1.397e-18 1.278e-18 -17.855 -17.894 -0.039 (0) - H[14C]O[18O]O- 1.397e-18 1.278e-18 -17.855 -17.894 -0.039 (0) H[14C][18O]O2- 1.397e-18 1.278e-18 -17.855 -17.894 -0.039 (0) + H[14C]O[18O]O- 1.397e-18 1.278e-18 -17.855 -17.894 -0.039 (0) + H[14C]O2[18O]- 1.397e-18 1.278e-18 -17.855 -17.894 -0.039 (0) Ca[14C]O3 8.104e-19 8.117e-19 -18.091 -18.091 0.001 (0) [14C]O[18O] 6.057e-19 6.067e-19 -18.218 -18.217 0.001 (0) [14C]O3-2 4.157e-19 2.912e-19 -18.381 -18.536 -0.155 (0) CaH[14C]O2[18O]+ 2.949e-20 2.706e-20 -19.530 -19.568 -0.037 (0) - CaH[14C]O[18O]O+ 2.949e-20 2.706e-20 -19.530 -19.568 -0.037 (0) CaH[14C][18O]O2+ 2.949e-20 2.706e-20 -19.530 -19.568 -0.037 (0) + CaH[14C]O[18O]O+ 2.949e-20 2.706e-20 -19.530 -19.568 -0.037 (0) Ca[14C]O2[18O] 4.851e-21 4.859e-21 -20.314 -20.313 0.001 (0) - H[14C]O[18O]2- 2.787e-21 2.549e-21 -20.555 -20.594 -0.039 (0) H[14C][18O]2O- 2.787e-21 2.549e-21 -20.555 -20.594 -0.039 (0) H[14C][18O]O[18O]- 2.787e-21 2.549e-21 -20.555 -20.594 -0.039 (0) + H[14C]O[18O]2- 2.787e-21 2.549e-21 -20.555 -20.594 -0.039 (0) [14C]O2[18O]-2 2.488e-21 1.743e-21 -20.604 -20.759 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.648e-16 - O[18O] 5.636e-16 5.646e-16 -15.249 -15.248 0.001 (0) - [18O]2 5.623e-19 5.632e-19 -18.250 -18.249 0.001 (0) +[18O](0) 6.860e-17 + O[18O] 6.846e-17 6.858e-17 -16.165 -16.164 0.001 (0) + [18O]2 6.830e-20 6.841e-20 -19.166 -19.165 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.17 -127.03 -2.86 [13C]H4 + [13C]H4(g) -122.34 -125.20 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.73 -21.24 -1.50 [14C][18O]2 - [14C]H4(g) -135.05 -137.91 -2.86 [14C]H4 + [14C]H4(g) -133.22 -136.08 -2.86 [14C]H4 [14C]O2(g) -14.37 -15.84 -1.47 [14C]O2 [14C]O[18O](g) -16.75 -18.54 -1.79 [14C]O[18O] - [18O]2(g) -15.96 -18.25 -2.29 [18O]2 + [18O]2(g) -16.87 -19.16 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -40554,14 +40544,14 @@ O(0) 2.836e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.21 -125.07 -2.86 CH4 + CH4(g) -120.38 -123.24 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.62 -39.77 -3.15 H2 + H2(g) -36.16 -39.31 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.96 -12.85 -2.89 O2 - O[18O](g) -12.66 -15.55 -2.89 O[18O] + O2(g) -10.87 -13.76 -2.89 O2 + O[18O](g) -13.57 -16.46 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -40625,23 +40615,23 @@ Calcite 2.21e-02 R(18O) 1.99520e-03 -4.9894 permil R(13C) 1.11356e-02 -3.9889 permil - R(14C) 1.45734e-13 12.394 pmc + R(14C) 1.45735e-13 12.394 pmc R(18O) H2O(l) 1.99519e-03 -4.9909 permil R(18O) OH- 1.92123e-03 -41.878 permil R(18O) H3O+ 2.04133e-03 18.017 permil R(18O) O2(aq) 1.99519e-03 -4.9909 permil R(13C) CO2(aq) 1.10559e-02 -11.117 permil - R(14C) CO2(aq) 1.43654e-13 12.217 pmc + R(14C) CO2(aq) 1.43655e-13 12.217 pmc R(18O) CO2(aq) 2.07916e-03 36.883 permil R(18O) HCO3- 1.99519e-03 -4.9909 permil R(13C) HCO3- 1.11521e-02 -2.5138 permil - R(14C) HCO3- 1.46164e-13 12.43 pmc + R(14C) HCO3- 1.46165e-13 12.43 pmc R(18O) CO3-2 1.99519e-03 -4.9909 permil R(13C) CO3-2 1.11361e-02 -3.9453 permil - R(14C) CO3-2 1.45745e-13 12.394 pmc + R(14C) CO3-2 1.45746e-13 12.395 pmc R(18O) Calcite 2.05263e-03 23.655 permil R(13C) Calcite 1.11742e-02 -0.53813 permil - R(14C) Calcite 1.46744e-13 12.479 pmc + R(14C) Calcite 1.46745e-13 12.479 pmc --------------------------------Isotope Alphas--------------------------------- @@ -40651,12 +40641,12 @@ Calcite 2.21e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2405e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2589e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.3323e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7378e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6137e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -40676,14 +40666,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.320 Adjusted to redox equilibrium + pe = 11.142 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.822e-13 + Electrical balance (eq) = 3.126e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -40698,24 +40688,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.071 -125.071 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.651 -123.651 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -40723,81 +40713,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.081e-08 6.091e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.427e-40 - H2 1.713e-40 1.716e-40 -39.766 -39.765 0.001 (0) -O(0) 2.826e-13 - O2 1.407e-13 1.410e-13 -12.852 -12.851 0.001 (0) - O[18O] 5.615e-16 5.624e-16 -15.251 -15.250 0.001 (0) +H(0) 7.761e-40 + H2 3.880e-40 3.887e-40 -39.411 -39.410 0.001 (0) +O(0) 5.509e-14 + O2 2.744e-14 2.748e-14 -13.562 -13.561 0.001 (0) + O[18O] 1.095e-16 1.097e-16 -15.961 -15.960 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.028 -127.027 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.608 -125.607 0.001 (0) [13C](4) 6.503e-05 H[13C]O3- 5.245e-05 4.799e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.958 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.081e-08 6.091e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.578e-08 4.586e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.119e-08 2.185e-08 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.640e-10 3.646e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.914 -137.913 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.494 -136.493 0.001 (0) [14C](4) 8.511e-16 H[14C]O3- 6.875e-16 6.290e-16 -15.163 -15.201 -0.039 (0) [14C]O2 1.431e-16 1.433e-16 -15.845 -15.844 0.001 (0) CaH[14C]O3+ 1.452e-17 1.332e-17 -16.838 -16.876 -0.037 (0) - H[14C]O2[18O]- 1.372e-18 1.255e-18 -17.863 -17.901 -0.039 (0) - H[14C]O[18O]O- 1.372e-18 1.255e-18 -17.863 -17.901 -0.039 (0) H[14C][18O]O2- 1.372e-18 1.255e-18 -17.863 -17.901 -0.039 (0) + H[14C]O[18O]O- 1.372e-18 1.255e-18 -17.863 -17.901 -0.039 (0) + H[14C]O2[18O]- 1.372e-18 1.255e-18 -17.863 -17.901 -0.039 (0) Ca[14C]O3 7.959e-19 7.972e-19 -18.099 -18.098 0.001 (0) [14C]O[18O] 5.949e-19 5.958e-19 -18.226 -18.225 0.001 (0) [14C]O3-2 4.083e-19 2.860e-19 -18.389 -18.544 -0.155 (0) CaH[14C]O2[18O]+ 2.897e-20 2.657e-20 -19.538 -19.576 -0.037 (0) - CaH[14C]O[18O]O+ 2.897e-20 2.657e-20 -19.538 -19.576 -0.037 (0) CaH[14C][18O]O2+ 2.897e-20 2.657e-20 -19.538 -19.576 -0.037 (0) + CaH[14C]O[18O]O+ 2.897e-20 2.657e-20 -19.538 -19.576 -0.037 (0) Ca[14C]O2[18O] 4.764e-21 4.772e-21 -20.322 -20.321 0.001 (0) + H[14C][18O]O[18O]- 2.737e-21 2.504e-21 -20.563 -20.601 -0.039 (0) H[14C]O[18O]2- 2.737e-21 2.504e-21 -20.563 -20.601 -0.039 (0) H[14C][18O]2O- 2.737e-21 2.504e-21 -20.563 -20.601 -0.039 (0) - H[14C][18O]O[18O]- 2.737e-21 2.504e-21 -20.563 -20.601 -0.039 (0) [14C]O2[18O]-2 2.444e-21 1.712e-21 -20.612 -20.767 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.626e-16 - O[18O] 5.615e-16 5.624e-16 -15.251 -15.250 0.001 (0) - [18O]2 5.602e-19 5.611e-19 -18.252 -18.251 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.097e-16 + O[18O] 1.095e-16 1.097e-16 -15.961 -15.960 0.001 (0) + [18O]2 1.092e-19 1.094e-19 -18.962 -18.961 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.17 -127.03 -2.86 [13C]H4 + [13C]H4(g) -122.75 -125.61 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.74 -21.24 -1.50 [14C][18O]2 - [14C]H4(g) -135.05 -137.91 -2.86 [14C]H4 + [14C]H4(g) -133.63 -136.49 -2.86 [14C]H4 [14C]O2(g) -14.38 -15.84 -1.47 [14C]O2 [14C]O[18O](g) -16.76 -18.54 -1.79 [14C]O[18O] - [18O]2(g) -15.96 -18.25 -2.29 [18O]2 + [18O]2(g) -16.67 -18.96 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -40811,14 +40801,14 @@ O(0) 2.826e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.21 -125.07 -2.86 CH4 + CH4(g) -120.79 -123.65 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.62 -39.77 -3.15 H2 + H2(g) -36.26 -39.41 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.96 -12.85 -2.89 O2 - O[18O](g) -12.66 -15.55 -2.89 O[18O] + O2(g) -10.67 -13.56 -2.89 O2 + O[18O](g) -13.37 -16.26 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -40882,23 +40872,23 @@ Calcite 2.26e-02 R(18O) 1.99520e-03 -4.9893 permil R(13C) 1.11361e-02 -3.9432 permil - R(14C) 1.43168e-13 12.175 pmc + R(14C) 1.43169e-13 12.175 pmc R(18O) H2O(l) 1.99519e-03 -4.9908 permil R(18O) OH- 1.92123e-03 -41.878 permil R(18O) H3O+ 2.04133e-03 18.017 permil R(18O) O2(aq) 1.99519e-03 -4.9908 permil R(13C) CO2(aq) 1.10564e-02 -11.072 permil - R(14C) CO2(aq) 1.41125e-13 12.002 pmc + R(14C) CO2(aq) 1.41126e-13 12.002 pmc R(18O) CO2(aq) 2.07916e-03 36.883 permil R(18O) HCO3- 1.99519e-03 -4.9908 permil R(13C) HCO3- 1.11526e-02 -2.468 permil - R(14C) HCO3- 1.43591e-13 12.211 pmc + R(14C) HCO3- 1.43592e-13 12.211 pmc R(18O) CO3-2 1.99519e-03 -4.9908 permil R(13C) CO3-2 1.11366e-02 -3.8995 permil - R(14C) CO3-2 1.43179e-13 12.176 pmc + R(14C) CO3-2 1.43180e-13 12.176 pmc R(18O) Calcite 2.05263e-03 23.656 permil R(13C) Calcite 1.11747e-02 -0.49222 permil - R(14C) Calcite 1.44161e-13 12.26 pmc + R(14C) Calcite 1.44162e-13 12.26 pmc --------------------------------Isotope Alphas--------------------------------- @@ -40908,12 +40898,12 @@ Calcite 2.26e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2536e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2712e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7017e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5783e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -40933,14 +40923,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.329 Adjusted to redox equilibrium + pe = 11.171 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.822e-13 + Electrical balance (eq) = 3.126e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -40955,14 +40945,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.141 -125.141 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.877 -123.876 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -40970,9 +40960,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -40980,50 +40970,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.081e-08 6.091e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.292e-40 - H2 1.646e-40 1.649e-40 -39.784 -39.783 0.001 (0) -O(0) 3.062e-13 - O2 1.525e-13 1.527e-13 -12.817 -12.816 0.001 (0) - O[18O] 6.085e-16 6.095e-16 -15.216 -15.215 0.001 (0) +H(0) 6.815e-40 + H2 3.407e-40 3.413e-40 -39.468 -39.467 0.001 (0) +O(0) 7.145e-14 + O2 3.558e-14 3.564e-14 -13.449 -13.448 0.001 (0) + O[18O] 1.420e-16 1.422e-16 -15.848 -15.847 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.098 -127.097 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.834 -125.833 0.001 (0) [13C](4) 6.503e-05 H[13C]O3- 5.246e-05 4.799e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.575e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.081e-08 6.091e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.578e-08 4.586e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.120e-08 2.185e-08 -7.506 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.640e-10 3.646e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.992 -137.991 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.728 -136.727 0.001 (0) [14C](4) 8.361e-16 H[14C]O3- 6.754e-16 6.179e-16 -15.170 -15.209 -0.039 (0) [14C]O2 1.405e-16 1.408e-16 -15.852 -15.852 0.001 (0) CaH[14C]O3+ 1.426e-17 1.308e-17 -16.846 -16.883 -0.037 (0) - H[14C]O2[18O]- 1.348e-18 1.233e-18 -17.870 -17.909 -0.039 (0) - H[14C]O[18O]O- 1.348e-18 1.233e-18 -17.870 -17.909 -0.039 (0) H[14C][18O]O2- 1.348e-18 1.233e-18 -17.870 -17.909 -0.039 (0) - Ca[14C]O3 7.818e-19 7.831e-19 -18.107 -18.106 0.001 (0) - [14C]O[18O] 5.844e-19 5.853e-19 -18.233 -18.233 0.001 (0) + H[14C]O[18O]O- 1.348e-18 1.233e-18 -17.870 -17.909 -0.039 (0) + H[14C]O2[18O]- 1.348e-18 1.233e-18 -17.870 -17.909 -0.039 (0) + Ca[14C]O3 7.819e-19 7.831e-19 -18.107 -18.106 0.001 (0) + [14C]O[18O] 5.844e-19 5.854e-19 -18.233 -18.233 0.001 (0) [14C]O3-2 4.011e-19 2.810e-19 -18.397 -18.551 -0.155 (0) CaH[14C]O2[18O]+ 2.846e-20 2.610e-20 -19.546 -19.583 -0.037 (0) - CaH[14C]O[18O]O+ 2.846e-20 2.610e-20 -19.546 -19.583 -0.037 (0) CaH[14C][18O]O2+ 2.846e-20 2.610e-20 -19.546 -19.583 -0.037 (0) + CaH[14C]O[18O]O+ 2.846e-20 2.610e-20 -19.546 -19.583 -0.037 (0) Ca[14C]O2[18O] 4.680e-21 4.688e-21 -20.330 -20.329 0.001 (0) H[14C]O[18O]2- 2.689e-21 2.460e-21 -20.570 -20.609 -0.039 (0) H[14C][18O]2O- 2.689e-21 2.460e-21 -20.570 -20.609 -0.039 (0) @@ -41032,29 +41022,29 @@ O(0) 3.062e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 6.097e-16 - O[18O] 6.085e-16 6.095e-16 -15.216 -15.215 0.001 (0) - [18O]2 6.070e-19 6.080e-19 -18.217 -18.216 0.001 (0) +[18O](0) 1.423e-16 + O[18O] 1.420e-16 1.422e-16 -15.848 -15.847 0.001 (0) + [18O]2 1.416e-19 1.419e-19 -18.849 -18.848 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.24 -127.10 -2.86 [13C]H4 + [13C]H4(g) -122.97 -125.83 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.75 -21.25 -1.50 [14C][18O]2 - [14C]H4(g) -135.13 -137.99 -2.86 [14C]H4 + [14C]H4(g) -133.87 -136.73 -2.86 [14C]H4 [14C]O2(g) -14.38 -15.85 -1.47 [14C]O2 [14C]O[18O](g) -16.76 -18.55 -1.79 [14C]O[18O] - [18O]2(g) -15.93 -18.22 -2.29 [18O]2 + [18O]2(g) -16.56 -18.85 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -41068,14 +41058,14 @@ O(0) 3.062e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.28 -125.14 -2.86 CH4 + CH4(g) -121.02 -123.88 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.63 -39.78 -3.15 H2 + H2(g) -36.32 -39.47 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.92 -12.82 -2.89 O2 - O[18O](g) -12.62 -15.52 -2.89 O[18O] + O2(g) -10.56 -13.45 -2.89 O2 + O[18O](g) -13.26 -16.15 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -41139,23 +41129,23 @@ Calcite 2.31e-02 R(18O) 1.99520e-03 -4.9891 permil R(13C) 1.11366e-02 -3.899 permil - R(14C) 1.40692e-13 11.965 pmc + R(14C) 1.40693e-13 11.965 pmc R(18O) H2O(l) 1.99519e-03 -4.9907 permil R(18O) OH- 1.92123e-03 -41.878 permil R(18O) H3O+ 2.04133e-03 18.017 permil R(18O) O2(aq) 1.99519e-03 -4.9907 permil R(13C) CO2(aq) 1.10569e-02 -11.028 permil - R(14C) CO2(aq) 1.38684e-13 11.794 pmc + R(14C) CO2(aq) 1.38685e-13 11.794 pmc R(18O) CO2(aq) 2.07916e-03 36.883 permil R(18O) HCO3- 1.99519e-03 -4.9907 permil R(13C) HCO3- 1.11531e-02 -2.4237 permil - R(14C) HCO3- 1.41107e-13 12 pmc + R(14C) HCO3- 1.41108e-13 12 pmc R(18O) CO3-2 1.99519e-03 -4.9907 permil R(13C) CO3-2 1.11371e-02 -3.8554 permil - R(14C) CO3-2 1.40703e-13 11.966 pmc + R(14C) CO3-2 1.40704e-13 11.966 pmc R(18O) Calcite 2.05263e-03 23.656 permil R(13C) Calcite 1.11752e-02 -0.44789 permil - R(14C) Calcite 1.41667e-13 12.048 pmc + R(14C) Calcite 1.41668e-13 12.048 pmc --------------------------------Isotope Alphas--------------------------------- @@ -41165,12 +41155,12 @@ Calcite 2.31e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2797e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2645e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7285e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7417e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -41190,14 +41180,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.327 Adjusted to redox equilibrium + pe = 11.165 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.822e-13 + Electrical balance (eq) = 3.126e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -41212,24 +41202,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.131 -125.130 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.831 -123.830 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -41237,23 +41227,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.311e-40 - H2 1.656e-40 1.658e-40 -39.781 -39.780 0.001 (0) -O(0) 3.027e-13 - O2 1.507e-13 1.510e-13 -12.822 -12.821 0.001 (0) - O[18O] 6.015e-16 6.025e-16 -15.221 -15.220 0.001 (0) +H(0) 6.998e-40 + H2 3.499e-40 3.505e-40 -39.456 -39.455 0.001 (0) +O(0) 6.776e-14 + O2 3.375e-14 3.380e-14 -13.472 -13.471 0.001 (0) + O[18O] 1.347e-16 1.349e-16 -15.871 -15.870 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.087 -127.087 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.788 -125.787 0.001 (0) [13C](4) 6.504e-05 H[13C]O3- 5.246e-05 4.799e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.579e-08 4.586e-08 -7.339 -7.339 0.001 (0) @@ -41262,56 +41252,56 @@ O(0) 3.027e-13 CaH[13C]O[18O]O+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.210e-09 2.027e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.640e-10 3.646e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.989 -137.988 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.689 -136.688 0.001 (0) [14C](4) 8.216e-16 H[14C]O3- 6.637e-16 6.072e-16 -15.178 -15.217 -0.039 (0) [14C]O2 1.381e-16 1.383e-16 -15.860 -15.859 0.001 (0) CaH[14C]O3+ 1.402e-17 1.286e-17 -16.853 -16.891 -0.037 (0) - H[14C]O2[18O]- 1.324e-18 1.211e-18 -17.878 -17.917 -0.039 (0) - H[14C]O[18O]O- 1.324e-18 1.211e-18 -17.878 -17.917 -0.039 (0) H[14C][18O]O2- 1.324e-18 1.211e-18 -17.878 -17.917 -0.039 (0) + H[14C]O[18O]O- 1.324e-18 1.211e-18 -17.878 -17.917 -0.039 (0) + H[14C]O2[18O]- 1.324e-18 1.211e-18 -17.878 -17.917 -0.039 (0) Ca[14C]O3 7.683e-19 7.696e-19 -18.114 -18.114 0.001 (0) [14C]O[18O] 5.743e-19 5.752e-19 -18.241 -18.240 0.001 (0) [14C]O3-2 3.941e-19 2.761e-19 -18.404 -18.559 -0.155 (0) CaH[14C]O2[18O]+ 2.796e-20 2.565e-20 -19.553 -19.591 -0.037 (0) - CaH[14C]O[18O]O+ 2.796e-20 2.565e-20 -19.553 -19.591 -0.037 (0) CaH[14C][18O]O2+ 2.796e-20 2.565e-20 -19.553 -19.591 -0.037 (0) + CaH[14C]O[18O]O+ 2.796e-20 2.565e-20 -19.553 -19.591 -0.037 (0) Ca[14C]O2[18O] 4.599e-21 4.606e-21 -20.337 -20.337 0.001 (0) - H[14C]O[18O]2- 2.642e-21 2.417e-21 -20.578 -20.617 -0.039 (0) H[14C][18O]2O- 2.642e-21 2.417e-21 -20.578 -20.617 -0.039 (0) H[14C][18O]O[18O]- 2.642e-21 2.417e-21 -20.578 -20.617 -0.039 (0) + H[14C]O[18O]2- 2.642e-21 2.417e-21 -20.578 -20.617 -0.039 (0) [14C]O2[18O]-2 2.359e-21 1.653e-21 -20.627 -20.782 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 6.027e-16 - O[18O] 6.015e-16 6.025e-16 -15.221 -15.220 0.001 (0) - [18O]2 6.000e-19 6.010e-19 -18.222 -18.221 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.349e-16 + O[18O] 1.347e-16 1.349e-16 -15.871 -15.870 0.001 (0) + [18O]2 1.343e-19 1.346e-19 -18.872 -18.871 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.23 -127.09 -2.86 [13C]H4 + [13C]H4(g) -122.93 -125.79 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.76 -21.26 -1.50 [14C][18O]2 - [14C]H4(g) -135.13 -137.99 -2.86 [14C]H4 + [14C]H4(g) -133.83 -136.69 -2.86 [14C]H4 [14C]O2(g) -14.39 -15.86 -1.47 [14C]O2 [14C]O[18O](g) -16.77 -18.56 -1.79 [14C]O[18O] - [18O]2(g) -15.93 -18.22 -2.29 [18O]2 + [18O]2(g) -16.58 -18.87 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -41325,14 +41315,14 @@ O(0) 3.027e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.27 -125.13 -2.86 CH4 + CH4(g) -120.97 -123.83 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.63 -39.78 -3.15 H2 + H2(g) -36.31 -39.46 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.93 -12.82 -2.89 O2 - O[18O](g) -12.63 -15.52 -2.89 O[18O] + O2(g) -10.58 -13.47 -2.89 O2 + O[18O](g) -13.28 -16.17 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -41396,7 +41386,7 @@ Calcite 2.36e-02 R(18O) 1.99520e-03 -4.989 permil R(13C) 1.11371e-02 -3.8563 permil - R(14C) 1.38299e-13 11.761 pmc + R(14C) 1.38300e-13 11.761 pmc R(18O) H2O(l) 1.99519e-03 -4.9905 permil R(18O) OH- 1.92123e-03 -41.878 permil R(18O) H3O+ 2.04133e-03 18.017 permil @@ -41406,13 +41396,13 @@ Calcite 2.36e-02 R(18O) CO2(aq) 2.07916e-03 36.883 permil R(18O) HCO3- 1.99519e-03 -4.9905 permil R(13C) HCO3- 1.11536e-02 -2.381 permil - R(14C) HCO3- 1.38708e-13 11.796 pmc + R(14C) HCO3- 1.38709e-13 11.796 pmc R(18O) CO3-2 1.99519e-03 -4.9905 permil R(13C) CO3-2 1.11376e-02 -3.8127 permil - R(14C) CO3-2 1.38310e-13 11.762 pmc + R(14C) CO3-2 1.38311e-13 11.762 pmc R(18O) Calcite 2.05263e-03 23.656 permil R(13C) Calcite 1.11757e-02 -0.40507 permil - R(14C) Calcite 1.39258e-13 11.843 pmc + R(14C) Calcite 1.39259e-13 11.843 pmc --------------------------------Isotope Alphas--------------------------------- @@ -41422,12 +41412,12 @@ Calcite 2.36e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2569e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2732e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6174e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6309e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -41447,14 +41437,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.326 Adjusted to redox equilibrium + pe = 11.180 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.822e-13 + Electrical balance (eq) = 3.126e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -41469,14 +41459,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.120 -125.119 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.954 -123.953 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -41484,9 +41474,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -41494,81 +41484,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.333e-40 - H2 1.667e-40 1.669e-40 -39.778 -39.777 0.001 (0) -O(0) 2.987e-13 - O2 1.487e-13 1.490e-13 -12.828 -12.827 0.001 (0) - O[18O] 5.935e-16 5.945e-16 -15.227 -15.226 0.001 (0) +H(0) 6.520e-40 + H2 3.260e-40 3.265e-40 -39.487 -39.486 0.001 (0) +O(0) 7.806e-14 + O2 3.887e-14 3.894e-14 -13.410 -13.410 0.001 (0) + O[18O] 1.551e-16 1.554e-16 -15.809 -15.809 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.076 -127.075 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.910 -125.910 0.001 (0) [13C](4) 6.504e-05 H[13C]O3- 5.246e-05 4.800e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.579e-08 4.586e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.120e-08 2.186e-08 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.640e-10 3.646e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.985 -137.984 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.819 -136.819 0.001 (0) [14C](4) 8.077e-16 H[14C]O3- 6.524e-16 5.969e-16 -15.185 -15.224 -0.039 (0) [14C]O2 1.358e-16 1.360e-16 -15.867 -15.867 0.001 (0) CaH[14C]O3+ 1.378e-17 1.264e-17 -16.861 -16.898 -0.037 (0) - H[14C]O2[18O]- 1.302e-18 1.191e-18 -17.885 -17.924 -0.039 (0) - H[14C]O[18O]O- 1.302e-18 1.191e-18 -17.885 -17.924 -0.039 (0) H[14C][18O]O2- 1.302e-18 1.191e-18 -17.885 -17.924 -0.039 (0) + H[14C]O[18O]O- 1.302e-18 1.191e-18 -17.885 -17.924 -0.039 (0) + H[14C]O2[18O]- 1.302e-18 1.191e-18 -17.885 -17.924 -0.039 (0) Ca[14C]O3 7.553e-19 7.565e-19 -18.122 -18.121 0.001 (0) [14C]O[18O] 5.645e-19 5.654e-19 -18.248 -18.248 0.001 (0) [14C]O3-2 3.874e-19 2.714e-19 -18.412 -18.566 -0.155 (0) CaH[14C]O2[18O]+ 2.749e-20 2.522e-20 -19.561 -19.598 -0.037 (0) - CaH[14C]O[18O]O+ 2.749e-20 2.522e-20 -19.561 -19.598 -0.037 (0) CaH[14C][18O]O2+ 2.749e-20 2.522e-20 -19.561 -19.598 -0.037 (0) + CaH[14C]O[18O]O+ 2.749e-20 2.522e-20 -19.561 -19.598 -0.037 (0) Ca[14C]O2[18O] 4.521e-21 4.528e-21 -20.345 -20.344 0.001 (0) + H[14C][18O]O[18O]- 2.597e-21 2.376e-21 -20.586 -20.624 -0.039 (0) H[14C]O[18O]2- 2.597e-21 2.376e-21 -20.586 -20.624 -0.039 (0) H[14C][18O]2O- 2.597e-21 2.376e-21 -20.586 -20.624 -0.039 (0) - H[14C][18O]O[18O]- 2.597e-21 2.376e-21 -20.586 -20.624 -0.039 (0) [14C]O2[18O]-2 2.319e-21 1.625e-21 -20.635 -20.789 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.947e-16 - O[18O] 5.935e-16 5.945e-16 -15.227 -15.226 0.001 (0) - [18O]2 5.921e-19 5.931e-19 -18.228 -18.227 0.001 (0) +[18O](0) 1.554e-16 + O[18O] 1.551e-16 1.554e-16 -15.809 -15.809 0.001 (0) + [18O]2 1.547e-19 1.550e-19 -18.810 -18.810 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.22 -127.08 -2.86 [13C]H4 + [13C]H4(g) -123.05 -125.91 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.76 -21.27 -1.50 [14C][18O]2 - [14C]H4(g) -135.12 -137.98 -2.86 [14C]H4 + [14C]H4(g) -133.96 -136.82 -2.86 [14C]H4 [14C]O2(g) -14.40 -15.87 -1.47 [14C]O2 [14C]O[18O](g) -16.78 -18.57 -1.79 [14C]O[18O] - [18O]2(g) -15.94 -18.23 -2.29 [18O]2 + [18O]2(g) -16.52 -18.81 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -41582,14 +41572,14 @@ O(0) 2.987e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.26 -125.12 -2.86 CH4 + CH4(g) -121.09 -123.95 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.63 -39.78 -3.15 H2 + H2(g) -36.34 -39.49 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.93 -12.83 -2.89 O2 - O[18O](g) -12.63 -15.53 -2.89 O[18O] + O2(g) -10.52 -13.41 -2.89 O2 + O[18O](g) -13.22 -16.11 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -41653,17 +41643,17 @@ Calcite 2.41e-02 R(18O) 1.99520e-03 -4.9889 permil R(13C) 1.11375e-02 -3.8151 permil - R(14C) 1.35987e-13 11.565 pmc + R(14C) 1.35988e-13 11.565 pmc R(18O) H2O(l) 1.99519e-03 -4.9904 permil R(18O) OH- 1.92123e-03 -41.878 permil R(18O) H3O+ 2.04133e-03 18.018 permil R(18O) O2(aq) 1.99519e-03 -4.9904 permil R(13C) CO2(aq) 1.10578e-02 -10.944 permil - R(14C) CO2(aq) 1.34046e-13 11.4 pmc + R(14C) CO2(aq) 1.34047e-13 11.4 pmc R(18O) CO2(aq) 2.07916e-03 36.884 permil R(18O) HCO3- 1.99519e-03 -4.9904 permil R(13C) HCO3- 1.11540e-02 -2.3397 permil - R(14C) HCO3- 1.36389e-13 11.599 pmc + R(14C) HCO3- 1.36390e-13 11.599 pmc R(18O) CO3-2 1.99519e-03 -4.9904 permil R(13C) CO3-2 1.11380e-02 -3.7714 permil R(14C) CO3-2 1.35998e-13 11.566 pmc @@ -41679,12 +41669,12 @@ Calcite 2.41e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2464e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2301e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.57e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5804e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -41704,14 +41694,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.321 Adjusted to redox equilibrium + pe = 11.119 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.126e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -41726,24 +41716,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.082 -125.081 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.462 -123.462 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -41751,50 +41741,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.406e-40 - H2 1.703e-40 1.706e-40 -39.769 -39.768 0.001 (0) -O(0) 2.860e-13 - O2 1.424e-13 1.426e-13 -12.846 -12.846 0.001 (0) - O[18O] 5.683e-16 5.692e-16 -15.245 -15.245 0.001 (0) +H(0) 8.653e-40 + H2 4.326e-40 4.333e-40 -39.364 -39.363 0.001 (0) +O(0) 4.432e-14 + O2 2.207e-14 2.211e-14 -13.656 -13.655 0.001 (0) + O[18O] 8.808e-17 8.823e-17 -16.055 -16.054 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.038 -127.037 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.419 -125.418 0.001 (0) [13C](4) 6.504e-05 H[13C]O3- 5.246e-05 4.800e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.576e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.579e-08 4.586e-08 -7.339 -7.339 0.001 (0) [13C]O3-2 3.120e-08 2.186e-08 -7.506 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.640e-10 3.646e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.955 -137.954 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.335 -136.335 0.001 (0) [14C](4) 7.942e-16 H[14C]O3- 6.415e-16 5.869e-16 -15.193 -15.231 -0.039 (0) [14C]O2 1.335e-16 1.337e-16 -15.875 -15.874 0.001 (0) CaH[14C]O3+ 1.355e-17 1.243e-17 -16.868 -16.906 -0.037 (0) - H[14C]O2[18O]- 1.280e-18 1.171e-18 -17.893 -17.931 -0.039 (0) - H[14C]O[18O]O- 1.280e-18 1.171e-18 -17.893 -17.931 -0.039 (0) H[14C][18O]O2- 1.280e-18 1.171e-18 -17.893 -17.931 -0.039 (0) + H[14C]O[18O]O- 1.280e-18 1.171e-18 -17.893 -17.931 -0.039 (0) + H[14C]O2[18O]- 1.280e-18 1.171e-18 -17.893 -17.931 -0.039 (0) Ca[14C]O3 7.426e-19 7.439e-19 -18.129 -18.129 0.001 (0) [14C]O[18O] 5.551e-19 5.560e-19 -18.256 -18.255 0.001 (0) [14C]O3-2 3.810e-19 2.669e-19 -18.419 -18.574 -0.155 (0) CaH[14C]O2[18O]+ 2.703e-20 2.479e-20 -19.568 -19.606 -0.037 (0) - CaH[14C]O[18O]O+ 2.703e-20 2.479e-20 -19.568 -19.606 -0.037 (0) CaH[14C][18O]O2+ 2.703e-20 2.479e-20 -19.568 -19.606 -0.037 (0) + CaH[14C]O[18O]O+ 2.703e-20 2.479e-20 -19.568 -19.606 -0.037 (0) Ca[14C]O2[18O] 4.445e-21 4.452e-21 -20.352 -20.351 0.001 (0) H[14C]O[18O]2- 2.554e-21 2.336e-21 -20.593 -20.631 -0.039 (0) H[14C][18O]2O- 2.554e-21 2.336e-21 -20.593 -20.631 -0.039 (0) @@ -41803,29 +41793,29 @@ O(0) 2.860e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.694e-16 - O[18O] 5.683e-16 5.692e-16 -15.245 -15.245 0.001 (0) - [18O]2 5.669e-19 5.678e-19 -18.246 -18.246 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 8.826e-17 + O[18O] 8.808e-17 8.823e-17 -16.055 -16.054 0.001 (0) + [18O]2 8.787e-20 8.802e-20 -19.056 -19.055 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.18 -127.04 -2.86 [13C]H4 + [13C]H4(g) -122.56 -125.42 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.77 -21.27 -1.50 [14C][18O]2 - [14C]H4(g) -135.09 -137.95 -2.86 [14C]H4 + [14C]H4(g) -133.47 -136.33 -2.86 [14C]H4 [14C]O2(g) -14.41 -15.87 -1.47 [14C]O2 [14C]O[18O](g) -16.79 -18.57 -1.79 [14C]O[18O] - [18O]2(g) -15.96 -18.25 -2.29 [18O]2 + [18O]2(g) -16.77 -19.06 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -41839,14 +41829,14 @@ O(0) 2.860e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.22 -125.08 -2.86 CH4 + CH4(g) -120.60 -123.46 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.62 -39.77 -3.15 H2 + H2(g) -36.21 -39.36 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.95 -12.85 -2.89 O2 - O[18O](g) -12.65 -15.55 -2.89 O[18O] + O2(g) -10.76 -13.66 -2.89 O2 + O[18O](g) -13.46 -16.36 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -41910,23 +41900,23 @@ Calcite 2.46e-02 R(18O) 1.99520e-03 -4.9887 permil R(13C) 1.11380e-02 -3.7752 permil - R(14C) 1.33751e-13 11.374 pmc + R(14C) 1.33752e-13 11.375 pmc R(18O) H2O(l) 1.99519e-03 -4.9903 permil R(18O) OH- 1.92123e-03 -41.878 permil R(18O) H3O+ 2.04133e-03 18.018 permil R(18O) O2(aq) 1.99519e-03 -4.9903 permil R(13C) CO2(aq) 1.10583e-02 -10.905 permil - R(14C) CO2(aq) 1.31842e-13 11.212 pmc + R(14C) CO2(aq) 1.31843e-13 11.212 pmc R(18O) CO2(aq) 2.07916e-03 36.884 permil R(18O) HCO3- 1.99519e-03 -4.9903 permil R(13C) HCO3- 1.11545e-02 -2.2998 permil - R(14C) HCO3- 1.34146e-13 11.408 pmc + R(14C) HCO3- 1.34147e-13 11.408 pmc R(18O) CO3-2 1.99519e-03 -4.9903 permil R(13C) CO3-2 1.11385e-02 -3.7315 permil - R(14C) CO3-2 1.33761e-13 11.375 pmc + R(14C) CO3-2 1.33762e-13 11.375 pmc R(18O) Calcite 2.05264e-03 23.656 permil R(13C) Calcite 1.11766e-02 -0.32366 permil - R(14C) Calcite 1.34678e-13 11.453 pmc + R(14C) Calcite 1.34679e-13 11.453 pmc --------------------------------Isotope Alphas--------------------------------- @@ -41936,12 +41926,12 @@ Calcite 2.46e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2834e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2669e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6622e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7435e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -41961,14 +41951,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.331 Adjusted to redox equilibrium + pe = 11.183 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.822e-13 + Electrical balance (eq) = 3.126e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -41983,13 +41973,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.162 -125.162 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.978 -123.978 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -41998,9 +41988,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -42008,23 +41998,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.252e-40 - H2 1.626e-40 1.629e-40 -39.789 -39.788 0.001 (0) -O(0) 3.137e-13 - O2 1.562e-13 1.565e-13 -12.806 -12.805 0.001 (0) - O[18O] 6.235e-16 6.245e-16 -15.205 -15.204 0.001 (0) +H(0) 6.429e-40 + H2 3.215e-40 3.220e-40 -39.493 -39.492 0.001 (0) +O(0) 8.028e-14 + O2 3.998e-14 4.004e-14 -13.398 -13.397 0.001 (0) + O[18O] 1.595e-16 1.598e-16 -15.797 -15.796 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.119 -127.118 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.935 -125.934 0.001 (0) [13C](4) 6.505e-05 H[13C]O3- 5.247e-05 4.800e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.579e-08 4.587e-08 -7.339 -7.339 0.001 (0) @@ -42033,56 +42023,56 @@ O(0) 3.137e-13 CaH[13C]O[18O]O+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.210e-09 2.028e-09 -8.656 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.042 -138.042 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.858 -136.858 0.001 (0) [14C](4) 7.811e-16 H[14C]O3- 6.310e-16 5.772e-16 -15.200 -15.239 -0.039 (0) [14C]O2 1.313e-16 1.315e-16 -15.882 -15.881 0.001 (0) CaH[14C]O3+ 1.332e-17 1.222e-17 -16.875 -16.913 -0.037 (0) - H[14C]O2[18O]- 1.259e-18 1.152e-18 -17.900 -17.939 -0.039 (0) - H[14C]O[18O]O- 1.259e-18 1.152e-18 -17.900 -17.939 -0.039 (0) H[14C][18O]O2- 1.259e-18 1.152e-18 -17.900 -17.939 -0.039 (0) + H[14C]O[18O]O- 1.259e-18 1.152e-18 -17.900 -17.939 -0.039 (0) + H[14C]O2[18O]- 1.259e-18 1.152e-18 -17.900 -17.939 -0.039 (0) Ca[14C]O3 7.304e-19 7.316e-19 -18.136 -18.136 0.001 (0) [14C]O[18O] 5.459e-19 5.468e-19 -18.263 -18.262 0.001 (0) [14C]O3-2 3.747e-19 2.625e-19 -18.426 -18.581 -0.155 (0) CaH[14C]O2[18O]+ 2.658e-20 2.439e-20 -19.575 -19.613 -0.037 (0) - CaH[14C]O[18O]O+ 2.658e-20 2.439e-20 -19.575 -19.613 -0.037 (0) CaH[14C][18O]O2+ 2.658e-20 2.439e-20 -19.575 -19.613 -0.037 (0) + CaH[14C]O[18O]O+ 2.658e-20 2.439e-20 -19.575 -19.613 -0.037 (0) Ca[14C]O2[18O] 4.372e-21 4.379e-21 -20.359 -20.359 0.001 (0) - H[14C]O[18O]2- 2.512e-21 2.298e-21 -20.600 -20.639 -0.039 (0) H[14C][18O]2O- 2.512e-21 2.298e-21 -20.600 -20.639 -0.039 (0) H[14C][18O]O[18O]- 2.512e-21 2.298e-21 -20.600 -20.639 -0.039 (0) + H[14C]O[18O]2- 2.512e-21 2.298e-21 -20.600 -20.639 -0.039 (0) [14C]O2[18O]-2 2.243e-21 1.571e-21 -20.649 -20.804 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 6.247e-16 - O[18O] 6.235e-16 6.245e-16 -15.205 -15.204 0.001 (0) - [18O]2 6.220e-19 6.230e-19 -18.206 -18.206 0.001 (0) +[18O](0) 1.598e-16 + O[18O] 1.595e-16 1.598e-16 -15.797 -15.796 0.001 (0) + [18O]2 1.591e-19 1.594e-19 -18.798 -18.797 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.26 -127.12 -2.86 [13C]H4 + [13C]H4(g) -123.07 -125.93 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.78 -21.28 -1.50 [14C][18O]2 - [14C]H4(g) -135.18 -138.04 -2.86 [14C]H4 + [14C]H4(g) -134.00 -136.86 -2.86 [14C]H4 [14C]O2(g) -14.41 -15.88 -1.47 [14C]O2 [14C]O[18O](g) -16.79 -18.58 -1.79 [14C]O[18O] - [18O]2(g) -15.92 -18.21 -2.29 [18O]2 + [18O]2(g) -16.51 -18.80 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -42096,14 +42086,14 @@ O(0) 3.137e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.30 -125.16 -2.86 CH4 + CH4(g) -121.12 -123.98 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.64 -39.79 -3.15 H2 + H2(g) -36.34 -39.49 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.91 -12.81 -2.89 O2 - O[18O](g) -12.61 -15.51 -2.89 O[18O] + O2(g) -10.51 -13.40 -2.89 O2 + O[18O](g) -13.21 -16.10 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -42167,23 +42157,23 @@ Calcite 2.51e-02 R(18O) 1.99520e-03 -4.9886 permil R(13C) 1.11384e-02 -3.7366 permil - R(14C) 1.31587e-13 11.19 pmc + R(14C) 1.31588e-13 11.19 pmc R(18O) H2O(l) 1.99519e-03 -4.9901 permil R(18O) OH- 1.92123e-03 -41.877 permil R(18O) H3O+ 2.04133e-03 18.018 permil R(18O) O2(aq) 1.99519e-03 -4.9901 permil R(13C) CO2(aq) 1.10587e-02 -10.866 permil - R(14C) CO2(aq) 1.29709e-13 11.031 pmc + R(14C) CO2(aq) 1.29710e-13 11.031 pmc R(18O) CO2(aq) 2.07916e-03 36.884 permil R(18O) HCO3- 1.99519e-03 -4.9901 permil R(13C) HCO3- 1.11549e-02 -2.2611 permil - R(14C) HCO3- 1.31975e-13 11.223 pmc + R(14C) HCO3- 1.31976e-13 11.224 pmc R(18O) CO3-2 1.99519e-03 -4.9901 permil R(13C) CO3-2 1.11389e-02 -3.6929 permil - R(14C) CO3-2 1.31597e-13 11.191 pmc + R(14C) CO3-2 1.31598e-13 11.191 pmc R(18O) Calcite 2.05264e-03 23.656 permil R(13C) Calcite 1.11770e-02 -0.28493 permil - R(14C) Calcite 1.32499e-13 11.268 pmc + R(14C) Calcite 1.32500e-13 11.268 pmc --------------------------------Isotope Alphas--------------------------------- @@ -42193,12 +42183,12 @@ Calcite 2.51e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2371e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2536e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6366e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6487e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -42218,14 +42208,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.330 Adjusted to redox equilibrium + pe = 11.196 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.126e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -42240,24 +42230,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.154 -125.154 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.079 -124.079 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -42265,81 +42255,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.267e-40 - H2 1.634e-40 1.636e-40 -39.787 -39.786 0.001 (0) -O(0) 3.108e-13 - O2 1.548e-13 1.551e-13 -12.810 -12.810 0.001 (0) - O[18O] 6.177e-16 6.187e-16 -15.209 -15.209 0.001 (0) +H(0) 6.067e-40 + H2 3.033e-40 3.038e-40 -39.518 -39.517 0.001 (0) +O(0) 9.016e-14 + O2 4.490e-14 4.498e-14 -13.348 -13.347 0.001 (0) + O[18O] 1.792e-16 1.795e-16 -15.747 -15.746 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.111 -127.110 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.036 -126.035 0.001 (0) [13C](4) 6.505e-05 H[13C]O3- 5.247e-05 4.800e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.579e-08 4.587e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.120e-08 2.186e-08 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.041 -138.041 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.966 -136.966 0.001 (0) [14C](4) 7.685e-16 H[14C]O3- 6.208e-16 5.679e-16 -15.207 -15.246 -0.039 (0) [14C]O2 1.292e-16 1.294e-16 -15.889 -15.888 0.001 (0) CaH[14C]O3+ 1.311e-17 1.202e-17 -16.882 -16.920 -0.037 (0) - H[14C]O2[18O]- 1.239e-18 1.133e-18 -17.907 -17.946 -0.039 (0) - H[14C]O[18O]O- 1.239e-18 1.133e-18 -17.907 -17.946 -0.039 (0) H[14C][18O]O2- 1.239e-18 1.133e-18 -17.907 -17.946 -0.039 (0) + H[14C]O[18O]O- 1.239e-18 1.133e-18 -17.907 -17.946 -0.039 (0) + H[14C]O2[18O]- 1.239e-18 1.133e-18 -17.907 -17.946 -0.039 (0) Ca[14C]O3 7.186e-19 7.198e-19 -18.144 -18.143 0.001 (0) [14C]O[18O] 5.371e-19 5.380e-19 -18.270 -18.269 0.001 (0) [14C]O3-2 3.686e-19 2.582e-19 -18.433 -18.588 -0.155 (0) CaH[14C]O2[18O]+ 2.615e-20 2.399e-20 -19.582 -19.620 -0.037 (0) - CaH[14C]O[18O]O+ 2.615e-20 2.399e-20 -19.582 -19.620 -0.037 (0) CaH[14C][18O]O2+ 2.615e-20 2.399e-20 -19.582 -19.620 -0.037 (0) + CaH[14C]O[18O]O+ 2.615e-20 2.399e-20 -19.582 -19.620 -0.037 (0) Ca[14C]O2[18O] 4.301e-21 4.308e-21 -20.366 -20.366 0.001 (0) + H[14C][18O]O[18O]- 2.471e-21 2.261e-21 -20.607 -20.646 -0.039 (0) H[14C]O[18O]2- 2.471e-21 2.261e-21 -20.607 -20.646 -0.039 (0) H[14C][18O]2O- 2.471e-21 2.261e-21 -20.607 -20.646 -0.039 (0) - H[14C][18O]O[18O]- 2.471e-21 2.261e-21 -20.607 -20.646 -0.039 (0) [14C]O2[18O]-2 2.206e-21 1.546e-21 -20.656 -20.811 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 6.189e-16 - O[18O] 6.177e-16 6.187e-16 -15.209 -15.209 0.001 (0) - [18O]2 6.162e-19 6.172e-19 -18.210 -18.210 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.795e-16 + O[18O] 1.792e-16 1.795e-16 -15.747 -15.746 0.001 (0) + [18O]2 1.787e-19 1.790e-19 -18.748 -18.747 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.25 -127.11 -2.86 [13C]H4 + [13C]H4(g) -123.17 -126.03 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.78 -21.29 -1.50 [14C][18O]2 - [14C]H4(g) -135.18 -138.04 -2.86 [14C]H4 + [14C]H4(g) -134.11 -136.97 -2.86 [14C]H4 [14C]O2(g) -14.42 -15.89 -1.47 [14C]O2 [14C]O[18O](g) -16.80 -18.59 -1.79 [14C]O[18O] - [18O]2(g) -15.92 -18.21 -2.29 [18O]2 + [18O]2(g) -16.46 -18.75 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -42353,14 +42343,14 @@ O(0) 3.108e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.29 -125.15 -2.86 CH4 + CH4(g) -121.22 -124.08 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.64 -39.79 -3.15 H2 + H2(g) -36.37 -39.52 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.92 -12.81 -2.89 O2 - O[18O](g) -12.62 -15.51 -2.89 O[18O] + O2(g) -10.45 -13.35 -2.89 O2 + O[18O](g) -13.15 -16.05 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -42424,7 +42414,7 @@ Calcite 2.56e-02 R(18O) 1.99520e-03 -4.9885 permil R(13C) 1.11388e-02 -3.6992 permil - R(14C) 1.29492e-13 11.012 pmc + R(14C) 1.29493e-13 11.012 pmc R(18O) H2O(l) 1.99519e-03 -4.99 permil R(18O) OH- 1.92123e-03 -41.877 permil R(18O) H3O+ 2.04133e-03 18.018 permil @@ -42434,13 +42424,13 @@ Calcite 2.56e-02 R(18O) CO2(aq) 2.07916e-03 36.884 permil R(18O) HCO3- 1.99519e-03 -4.99 permil R(13C) HCO3- 1.11553e-02 -2.2237 permil - R(14C) HCO3- 1.29874e-13 11.045 pmc + R(14C) HCO3- 1.29875e-13 11.045 pmc R(18O) CO3-2 1.99519e-03 -4.99 permil R(13C) CO3-2 1.11393e-02 -3.6556 permil - R(14C) CO3-2 1.29502e-13 11.013 pmc + R(14C) CO3-2 1.29503e-13 11.013 pmc R(18O) Calcite 2.05264e-03 23.656 permil R(13C) Calcite 1.11774e-02 -0.24743 permil - R(14C) Calcite 1.30389e-13 11.089 pmc + R(14C) Calcite 1.30390e-13 11.089 pmc --------------------------------Isotope Alphas--------------------------------- @@ -42450,12 +42440,12 @@ Calcite 2.56e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2421e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2582e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 2.2204e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7139e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7258e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -42475,14 +42465,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.338 Adjusted to redox equilibrium + pe = 11.199 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.126e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -42497,14 +42487,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.218 -125.218 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.103 -124.102 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -42512,9 +42502,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -42522,50 +42512,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.149e-40 - H2 1.575e-40 1.577e-40 -39.803 -39.802 0.001 (0) -O(0) 3.346e-13 - O2 1.666e-13 1.669e-13 -12.778 -12.778 0.001 (0) - O[18O] 6.649e-16 6.660e-16 -15.177 -15.177 0.001 (0) +H(0) 5.985e-40 + H2 2.992e-40 2.997e-40 -39.524 -39.523 0.001 (0) +O(0) 9.265e-14 + O2 4.614e-14 4.622e-14 -13.336 -13.335 0.001 (0) + O[18O] 1.841e-16 1.844e-16 -15.735 -15.734 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.174 -127.174 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.059 -126.058 0.001 (0) [13C](4) 6.505e-05 H[13C]O3- 5.247e-05 4.800e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.577e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.579e-08 4.587e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.120e-08 2.186e-08 -7.506 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.112 -138.112 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.997 -136.996 0.001 (0) [14C](4) 7.562e-16 H[14C]O3- 6.109e-16 5.589e-16 -15.214 -15.253 -0.039 (0) [14C]O2 1.271e-16 1.273e-16 -15.896 -15.895 0.001 (0) CaH[14C]O3+ 1.290e-17 1.183e-17 -16.889 -16.927 -0.037 (0) - H[14C]O2[18O]- 1.219e-18 1.115e-18 -17.914 -17.953 -0.039 (0) - H[14C]O[18O]O- 1.219e-18 1.115e-18 -17.914 -17.953 -0.039 (0) H[14C][18O]O2- 1.219e-18 1.115e-18 -17.914 -17.953 -0.039 (0) + H[14C]O[18O]O- 1.219e-18 1.115e-18 -17.914 -17.953 -0.039 (0) + H[14C]O2[18O]- 1.219e-18 1.115e-18 -17.914 -17.953 -0.039 (0) Ca[14C]O3 7.072e-19 7.083e-19 -18.150 -18.150 0.001 (0) [14C]O[18O] 5.286e-19 5.294e-19 -18.277 -18.276 0.001 (0) [14C]O3-2 3.628e-19 2.541e-19 -18.440 -18.595 -0.155 (0) CaH[14C]O2[18O]+ 2.574e-20 2.361e-20 -19.589 -19.627 -0.037 (0) - CaH[14C]O[18O]O+ 2.574e-20 2.361e-20 -19.589 -19.627 -0.037 (0) CaH[14C][18O]O2+ 2.574e-20 2.361e-20 -19.589 -19.627 -0.037 (0) + CaH[14C]O[18O]O+ 2.574e-20 2.361e-20 -19.589 -19.627 -0.037 (0) Ca[14C]O2[18O] 4.233e-21 4.240e-21 -20.373 -20.373 0.001 (0) H[14C]O[18O]2- 2.432e-21 2.225e-21 -20.614 -20.653 -0.039 (0) H[14C][18O]2O- 2.432e-21 2.225e-21 -20.614 -20.653 -0.039 (0) @@ -42574,29 +42564,29 @@ O(0) 3.346e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 6.662e-16 - O[18O] 6.649e-16 6.660e-16 -15.177 -15.177 0.001 (0) - [18O]2 6.633e-19 6.644e-19 -18.178 -18.178 0.001 (0) +[18O](0) 1.845e-16 + O[18O] 1.841e-16 1.844e-16 -15.735 -15.734 0.001 (0) + [18O]2 1.837e-19 1.840e-19 -18.736 -18.735 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.31 -127.17 -2.86 [13C]H4 + [13C]H4(g) -123.20 -126.06 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.79 -21.30 -1.50 [14C][18O]2 - [14C]H4(g) -135.25 -138.11 -2.86 [14C]H4 + [14C]H4(g) -134.14 -137.00 -2.86 [14C]H4 [14C]O2(g) -14.43 -15.90 -1.47 [14C]O2 [14C]O[18O](g) -16.81 -18.60 -1.79 [14C]O[18O] - [18O]2(g) -15.89 -18.18 -2.29 [18O]2 + [18O]2(g) -16.44 -18.74 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -42610,14 +42600,14 @@ O(0) 3.346e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.36 -125.22 -2.86 CH4 + CH4(g) -121.24 -124.10 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.65 -39.80 -3.15 H2 + H2(g) -36.37 -39.52 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.89 -12.78 -2.89 O2 - O[18O](g) -12.59 -15.48 -2.89 O[18O] + O2(g) -10.44 -13.34 -2.89 O2 + O[18O](g) -13.14 -16.04 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -42681,23 +42671,23 @@ Calcite 2.61e-02 R(18O) 1.99520e-03 -4.9883 permil R(13C) 1.11392e-02 -3.663 permil - R(14C) 1.27462e-13 10.84 pmc + R(14C) 1.27463e-13 10.84 pmc R(18O) H2O(l) 1.99519e-03 -4.9898 permil R(18O) OH- 1.92123e-03 -41.877 permil R(18O) H3O+ 2.04133e-03 18.018 permil R(18O) O2(aq) 1.99519e-03 -4.9898 permil R(13C) CO2(aq) 1.10595e-02 -10.793 permil - R(14C) CO2(aq) 1.25643e-13 10.685 pmc + R(14C) CO2(aq) 1.25644e-13 10.685 pmc R(18O) CO2(aq) 2.07916e-03 36.884 permil R(18O) HCO3- 1.99519e-03 -4.9898 permil R(13C) HCO3- 1.11557e-02 -2.1874 permil - R(14C) HCO3- 1.27839e-13 10.872 pmc + R(14C) HCO3- 1.27840e-13 10.872 pmc R(18O) CO3-2 1.99519e-03 -4.9898 permil R(13C) CO3-2 1.11397e-02 -3.6194 permil - R(14C) CO3-2 1.27472e-13 10.841 pmc + R(14C) CO3-2 1.27473e-13 10.841 pmc R(18O) Calcite 2.05264e-03 23.657 permil R(13C) Calcite 1.11778e-02 -0.2111 permil - R(14C) Calcite 1.28346e-13 10.915 pmc + R(14C) Calcite 1.28347e-13 10.915 pmc --------------------------------Isotope Alphas--------------------------------- @@ -42707,12 +42697,12 @@ Calcite 2.61e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2623e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2475e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7748e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7224e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -42732,14 +42722,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.339 Adjusted to redox equilibrium + pe = 11.183 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.126e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -42754,24 +42744,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.222 -125.222 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.976 -123.976 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -42779,23 +42769,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.142e-40 - H2 1.571e-40 1.574e-40 -39.804 -39.803 0.001 (0) -O(0) 3.361e-13 - O2 1.674e-13 1.677e-13 -12.776 -12.776 0.001 (0) - O[18O] 6.680e-16 6.691e-16 -15.175 -15.175 0.001 (0) +H(0) 6.437e-40 + H2 3.219e-40 3.224e-40 -39.492 -39.492 0.001 (0) +O(0) 8.008e-14 + O2 3.988e-14 3.995e-14 -13.399 -13.399 0.001 (0) + O[18O] 1.591e-16 1.594e-16 -15.798 -15.798 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.179 -127.178 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.932 -125.932 0.001 (0) [13C](4) 6.505e-05 H[13C]O3- 5.247e-05 4.800e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.580e-08 4.587e-08 -7.339 -7.338 0.001 (0) @@ -42804,56 +42794,56 @@ O(0) 3.361e-13 CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -138.123 -138.122 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.877 -136.876 0.001 (0) [14C](4) 7.444e-16 H[14C]O3- 6.013e-16 5.501e-16 -15.221 -15.260 -0.039 (0) [14C]O2 1.251e-16 1.253e-16 -15.903 -15.902 0.001 (0) CaH[14C]O3+ 1.270e-17 1.165e-17 -16.896 -16.934 -0.037 (0) - H[14C]O2[18O]- 1.200e-18 1.098e-18 -17.921 -17.960 -0.039 (0) - H[14C]O[18O]O- 1.200e-18 1.098e-18 -17.921 -17.960 -0.039 (0) H[14C][18O]O2- 1.200e-18 1.098e-18 -17.921 -17.960 -0.039 (0) + H[14C]O[18O]O- 1.200e-18 1.098e-18 -17.921 -17.960 -0.039 (0) + H[14C]O2[18O]- 1.200e-18 1.098e-18 -17.921 -17.960 -0.039 (0) Ca[14C]O3 6.961e-19 6.972e-19 -18.157 -18.157 0.001 (0) [14C]O[18O] 5.203e-19 5.211e-19 -18.284 -18.283 0.001 (0) [14C]O3-2 3.571e-19 2.501e-19 -18.447 -18.602 -0.155 (0) CaH[14C]O2[18O]+ 2.533e-20 2.324e-20 -19.596 -19.634 -0.037 (0) - CaH[14C]O[18O]O+ 2.533e-20 2.324e-20 -19.596 -19.634 -0.037 (0) CaH[14C][18O]O2+ 2.533e-20 2.324e-20 -19.596 -19.634 -0.037 (0) + CaH[14C]O[18O]O+ 2.533e-20 2.324e-20 -19.596 -19.634 -0.037 (0) Ca[14C]O2[18O] 4.166e-21 4.173e-21 -20.380 -20.380 0.001 (0) - H[14C]O[18O]2- 2.394e-21 2.190e-21 -20.621 -20.660 -0.039 (0) H[14C][18O]2O- 2.394e-21 2.190e-21 -20.621 -20.660 -0.039 (0) H[14C][18O]O[18O]- 2.394e-21 2.190e-21 -20.621 -20.660 -0.039 (0) + H[14C]O[18O]2- 2.394e-21 2.190e-21 -20.621 -20.660 -0.039 (0) [14C]O2[18O]-2 2.137e-21 1.497e-21 -20.670 -20.825 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 6.693e-16 - O[18O] 6.680e-16 6.691e-16 -15.175 -15.175 0.001 (0) - [18O]2 6.664e-19 6.675e-19 -18.176 -18.176 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.595e-16 + O[18O] 1.591e-16 1.594e-16 -15.798 -15.798 0.001 (0) + [18O]2 1.588e-19 1.590e-19 -18.799 -18.799 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.32 -127.18 -2.86 [13C]H4 + [13C]H4(g) -123.07 -125.93 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.80 -21.30 -1.50 [14C][18O]2 - [14C]H4(g) -135.26 -138.12 -2.86 [14C]H4 + [14C]H4(g) -134.02 -136.88 -2.86 [14C]H4 [14C]O2(g) -14.43 -15.90 -1.47 [14C]O2 [14C]O[18O](g) -16.81 -18.60 -1.79 [14C]O[18O] - [18O]2(g) -15.89 -18.18 -2.29 [18O]2 + [18O]2(g) -16.51 -18.80 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -42867,14 +42857,14 @@ O(0) 3.361e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.36 -125.22 -2.86 CH4 + CH4(g) -121.12 -123.98 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.65 -39.80 -3.15 H2 + H2(g) -36.34 -39.49 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.88 -12.78 -2.89 O2 - O[18O](g) -12.58 -15.48 -2.89 O[18O] + O2(g) -10.51 -13.40 -2.89 O2 + O[18O](g) -13.21 -16.10 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -42930,7 +42920,7 @@ Calcite 2.66e-02 Ca[14C]O3(s) 3.30e-15 1.14e-17 1.24e-13 Ca[14C]O2[18O](s) 2.03e-17 7.01e-20 7.65e-16 Ca[14C]O[18O]2(s) 4.17e-20 1.44e-22 1.57e-18 - Ca[14C][18O]3(s) 2.85e-23 9.84e-26 1.07e-21 + Ca[14C][18O]3(s) 2.85e-23 9.85e-26 1.07e-21 --------------------------------Isotope Ratios--------------------------------- @@ -42944,17 +42934,17 @@ Calcite 2.66e-02 R(18O) H3O+ 2.04133e-03 18.018 permil R(18O) O2(aq) 1.99519e-03 -4.9897 permil R(13C) CO2(aq) 1.10599e-02 -10.759 permil - R(14C) CO2(aq) 1.23704e-13 10.52 pmc + R(14C) CO2(aq) 1.23705e-13 10.52 pmc R(18O) CO2(aq) 2.07916e-03 36.884 permil R(18O) HCO3- 1.99519e-03 -4.9897 permil R(13C) HCO3- 1.11561e-02 -2.1523 permil - R(14C) HCO3- 1.25866e-13 10.704 pmc + R(14C) HCO3- 1.25867e-13 10.704 pmc R(18O) CO3-2 1.99519e-03 -4.9897 permil R(13C) CO3-2 1.11401e-02 -3.5843 permil - R(14C) CO3-2 1.25505e-13 10.673 pmc + R(14C) CO3-2 1.25506e-13 10.673 pmc R(18O) Calcite 2.05264e-03 23.657 permil R(13C) Calcite 1.11782e-02 -0.1759 permil - R(14C) Calcite 1.26365e-13 10.746 pmc + R(14C) Calcite 1.26366e-13 10.746 pmc --------------------------------Isotope Alphas--------------------------------- @@ -42964,12 +42954,12 @@ Calcite 2.66e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.268e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2539e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.2164e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7072e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7211e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -42989,14 +42979,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.319 Adjusted to redox equilibrium + pe = 11.067 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -43011,14 +43001,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -125.067 -125.066 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.049 -123.048 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -43026,9 +43016,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -43036,81 +43026,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.437e-40 - H2 1.718e-40 1.721e-40 -39.765 -39.764 0.001 (0) -O(0) 2.810e-13 - O2 1.399e-13 1.402e-13 -12.854 -12.853 0.001 (0) - O[18O] 5.584e-16 5.593e-16 -15.253 -15.252 0.001 (0) +H(0) 1.098e-39 + H2 5.489e-40 5.498e-40 -39.261 -39.260 0.001 (0) +O(0) 2.754e-14 + O2 1.371e-14 1.374e-14 -13.863 -13.862 0.001 (0) + O[18O] 5.472e-17 5.481e-17 -16.262 -16.261 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -127.023 -127.022 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.005 -125.005 0.001 (0) [13C](4) 6.505e-05 H[13C]O3- 5.247e-05 4.801e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.580e-08 4.587e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.121e-08 2.186e-08 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.974 -137.973 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -135.957 -135.956 0.001 (0) [14C](4) 7.329e-16 H[14C]O3- 5.920e-16 5.416e-16 -15.228 -15.266 -0.039 (0) [14C]O2 1.232e-16 1.234e-16 -15.909 -15.909 0.001 (0) CaH[14C]O3+ 1.250e-17 1.147e-17 -16.903 -16.941 -0.037 (0) - H[14C]O2[18O]- 1.181e-18 1.081e-18 -17.928 -17.966 -0.039 (0) - H[14C]O[18O]O- 1.181e-18 1.081e-18 -17.928 -17.966 -0.039 (0) H[14C][18O]O2- 1.181e-18 1.081e-18 -17.928 -17.966 -0.039 (0) + H[14C]O[18O]O- 1.181e-18 1.081e-18 -17.928 -17.966 -0.039 (0) + H[14C]O2[18O]- 1.181e-18 1.081e-18 -17.928 -17.966 -0.039 (0) Ca[14C]O3 6.853e-19 6.865e-19 -18.164 -18.163 0.001 (0) - [14C]O[18O] 5.122e-19 5.131e-19 -18.291 -18.290 0.001 (0) + [14C]O[18O] 5.123e-19 5.131e-19 -18.291 -18.290 0.001 (0) [14C]O3-2 3.516e-19 2.463e-19 -18.454 -18.609 -0.155 (0) CaH[14C]O2[18O]+ 2.494e-20 2.288e-20 -19.603 -19.641 -0.037 (0) - CaH[14C]O[18O]O+ 2.494e-20 2.288e-20 -19.603 -19.641 -0.037 (0) CaH[14C][18O]O2+ 2.494e-20 2.288e-20 -19.603 -19.641 -0.037 (0) + CaH[14C]O[18O]O+ 2.494e-20 2.288e-20 -19.603 -19.641 -0.037 (0) Ca[14C]O2[18O] 4.102e-21 4.109e-21 -20.387 -20.386 0.001 (0) + H[14C][18O]O[18O]- 2.357e-21 2.156e-21 -20.628 -20.666 -0.039 (0) H[14C]O[18O]2- 2.357e-21 2.156e-21 -20.628 -20.666 -0.039 (0) H[14C][18O]2O- 2.357e-21 2.156e-21 -20.628 -20.666 -0.039 (0) - H[14C][18O]O[18O]- 2.357e-21 2.156e-21 -20.628 -20.666 -0.039 (0) [14C]O2[18O]-2 2.104e-21 1.474e-21 -20.677 -20.831 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.595e-16 - O[18O] 5.584e-16 5.593e-16 -15.253 -15.252 0.001 (0) - [18O]2 5.570e-19 5.579e-19 -18.254 -18.253 0.001 (0) +[18O](0) 5.483e-17 + O[18O] 5.472e-17 5.481e-17 -16.262 -16.261 0.001 (0) + [18O]2 5.459e-20 5.468e-20 -19.263 -19.262 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.16 -127.02 -2.86 [13C]H4 + [13C]H4(g) -122.14 -125.00 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.81 -21.31 -1.50 [14C][18O]2 - [14C]H4(g) -135.11 -137.97 -2.86 [14C]H4 + [14C]H4(g) -133.10 -135.96 -2.86 [14C]H4 [14C]O2(g) -14.44 -15.91 -1.47 [14C]O2 [14C]O[18O](g) -16.82 -18.61 -1.79 [14C]O[18O] - [18O]2(g) -15.96 -18.25 -2.29 [18O]2 + [18O]2(g) -16.97 -19.26 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -43124,14 +43114,14 @@ O(0) 2.810e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.21 -125.07 -2.86 CH4 + CH4(g) -120.19 -123.05 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.61 -39.76 -3.15 H2 + H2(g) -36.11 -39.26 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.96 -12.85 -2.89 O2 - O[18O](g) -12.66 -15.55 -2.89 O[18O] + O2(g) -10.97 -13.86 -2.89 O2 + O[18O](g) -13.67 -16.56 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -43208,10 +43198,10 @@ Calcite 2.71e-02 R(14C) HCO3- 1.23954e-13 10.541 pmc R(18O) CO3-2 1.99519e-03 -4.9896 permil R(13C) CO3-2 1.11405e-02 -3.5503 permil - R(14C) CO3-2 1.23598e-13 10.511 pmc + R(14C) CO3-2 1.23599e-13 10.511 pmc R(18O) Calcite 2.05264e-03 23.657 permil R(13C) Calcite 1.11786e-02 -0.14176 permil - R(14C) Calcite 1.24445e-13 10.583 pmc + R(14C) Calcite 1.24446e-13 10.583 pmc --------------------------------Isotope Alphas--------------------------------- @@ -43221,12 +43211,12 @@ Calcite 2.71e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2264e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.246e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6704e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5489e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -43240,20 +43230,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.506e-05 6.487e-05 - [14C] 7.217e-16 7.196e-16 + [14C] 7.218e-16 7.196e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.303 Adjusted to redox equilibrium + pe = 10.853 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -43268,24 +43258,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.937 -124.936 0.001 (0) + CH4 0.000e+00 0.000e+00 -121.334 -121.333 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -43293,50 +43283,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.703e-40 - H2 1.852e-40 1.855e-40 -39.732 -39.732 0.001 (0) -O(0) 2.419e-13 - O2 1.205e-13 1.207e-13 -12.919 -12.918 0.001 (0) - O[18O] 4.808e-16 4.816e-16 -15.318 -15.317 0.001 (0) +H(0) 2.946e-39 + H2 1.473e-39 1.475e-39 -38.832 -38.831 0.001 (0) +O(0) 3.823e-15 + O2 1.904e-15 1.907e-15 -14.720 -14.720 0.001 (0) + O[18O] 7.598e-18 7.611e-18 -17.119 -17.119 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.893 -126.892 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -123.290 -123.290 0.001 (0) [13C](4) 6.506e-05 H[13C]O3- 5.247e-05 4.801e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.016e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.578e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.580e-08 4.587e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.121e-08 2.186e-08 -7.506 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.851 -137.850 0.001 (0) -[14C](4) 7.217e-16 + [14C]H4 0.000e+00 0.000e+00 -134.248 -134.248 0.001 (0) +[14C](4) 7.218e-16 H[14C]O3- 5.830e-16 5.334e-16 -15.234 -15.273 -0.039 (0) [14C]O2 1.213e-16 1.215e-16 -15.916 -15.915 0.001 (0) CaH[14C]O3+ 1.231e-17 1.129e-17 -16.910 -16.947 -0.037 (0) - H[14C]O2[18O]- 1.163e-18 1.064e-18 -17.934 -17.973 -0.039 (0) - H[14C]O[18O]O- 1.163e-18 1.064e-18 -17.934 -17.973 -0.039 (0) H[14C][18O]O2- 1.163e-18 1.064e-18 -17.934 -17.973 -0.039 (0) + H[14C]O[18O]O- 1.163e-18 1.064e-18 -17.934 -17.973 -0.039 (0) + H[14C]O2[18O]- 1.163e-18 1.064e-18 -17.934 -17.973 -0.039 (0) Ca[14C]O3 6.749e-19 6.760e-19 -18.171 -18.170 0.001 (0) [14C]O[18O] 5.045e-19 5.053e-19 -18.297 -18.296 0.001 (0) [14C]O3-2 3.462e-19 2.425e-19 -18.461 -18.615 -0.155 (0) CaH[14C]O2[18O]+ 2.456e-20 2.253e-20 -19.610 -19.647 -0.037 (0) - CaH[14C]O[18O]O+ 2.456e-20 2.253e-20 -19.610 -19.647 -0.037 (0) CaH[14C][18O]O2+ 2.456e-20 2.253e-20 -19.610 -19.647 -0.037 (0) + CaH[14C]O[18O]O+ 2.456e-20 2.253e-20 -19.610 -19.647 -0.037 (0) Ca[14C]O2[18O] 4.040e-21 4.046e-21 -20.394 -20.393 0.001 (0) H[14C]O[18O]2- 2.321e-21 2.123e-21 -20.634 -20.673 -0.039 (0) H[14C][18O]2O- 2.321e-21 2.123e-21 -20.634 -20.673 -0.039 (0) @@ -43345,29 +43335,29 @@ O(0) 2.419e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.817e-16 - O[18O] 4.808e-16 4.816e-16 -15.318 -15.317 0.001 (0) - [18O]2 4.796e-19 4.804e-19 -18.319 -18.318 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 7.613e-18 + O[18O] 7.598e-18 7.611e-18 -17.119 -17.119 0.001 (0) + [18O]2 7.580e-21 7.592e-21 -20.120 -20.120 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.03 -126.89 -2.86 [13C]H4 + [13C]H4(g) -120.43 -123.29 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.81 -21.32 -1.50 [14C][18O]2 - [14C]H4(g) -134.99 -137.85 -2.86 [14C]H4 + [14C]H4(g) -131.39 -134.25 -2.86 [14C]H4 [14C]O2(g) -14.45 -15.92 -1.47 [14C]O2 [14C]O[18O](g) -16.83 -18.62 -1.79 [14C]O[18O] - [18O]2(g) -16.03 -18.32 -2.29 [18O]2 + [18O]2(g) -17.83 -20.12 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -43381,14 +43371,14 @@ O(0) 2.419e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.08 -124.94 -2.86 CH4 + CH4(g) -118.47 -121.33 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.58 -39.73 -3.15 H2 + H2(g) -35.68 -38.83 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.03 -12.92 -2.89 O2 - O[18O](g) -12.73 -15.62 -2.89 O[18O] + O2(g) -11.83 -14.72 -2.89 O2 + O[18O](g) -14.53 -17.42 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -43458,17 +43448,17 @@ Calcite 2.76e-02 R(18O) H3O+ 2.04133e-03 18.018 permil R(18O) O2(aq) 1.99520e-03 -4.9894 permil R(13C) CO2(aq) 1.10607e-02 -10.692 permil - R(14C) CO2(aq) 1.20001e-13 10.205 pmc + R(14C) CO2(aq) 1.20002e-13 10.205 pmc R(18O) CO2(aq) 2.07916e-03 36.885 permil R(18O) HCO3- 1.99520e-03 -4.9894 permil R(13C) HCO3- 1.11569e-02 -2.0852 permil - R(14C) HCO3- 1.22098e-13 10.383 pmc + R(14C) HCO3- 1.22099e-13 10.384 pmc R(18O) CO3-2 1.99520e-03 -4.9894 permil R(13C) CO3-2 1.11409e-02 -3.5173 permil - R(14C) CO3-2 1.21748e-13 10.354 pmc + R(14C) CO3-2 1.21749e-13 10.354 pmc R(18O) Calcite 2.05264e-03 23.657 permil R(13C) Calcite 1.11790e-02 -0.10865 permil - R(14C) Calcite 1.22582e-13 10.425 pmc + R(14C) Calcite 1.22583e-13 10.425 pmc --------------------------------Isotope Alphas--------------------------------- @@ -43478,12 +43468,12 @@ Calcite 2.76e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2375e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2558e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5581e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6396e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -43503,14 +43493,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.297 Adjusted to redox equilibrium + pe = 11.471 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.126e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -43525,13 +43515,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.886 -124.886 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.284 -126.283 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -43540,9 +43530,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -43550,23 +43540,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.812e-40 - H2 1.906e-40 1.909e-40 -39.720 -39.719 0.001 (0) -O(0) 2.283e-13 - O2 1.137e-13 1.139e-13 -12.944 -12.944 0.001 (0) - O[18O] 4.537e-16 4.545e-16 -15.343 -15.342 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.069 -40.068 0.001 (0) +O(0) 1.141e-12 + O2 5.681e-13 5.691e-13 -12.246 -12.245 0.001 (0) + O[18O] 2.267e-15 2.271e-15 -14.645 -14.644 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.842 -126.842 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.240 -128.239 0.001 (0) [13C](4) 6.506e-05 H[13C]O3- 5.248e-05 4.801e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.580e-08 4.588e-08 -7.339 -7.338 0.001 (0) @@ -43575,56 +43565,56 @@ O(0) 2.283e-13 CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.807 -137.806 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.204 -139.204 0.001 (0) [14C](4) 7.109e-16 H[14C]O3- 5.743e-16 5.254e-16 -15.241 -15.280 -0.039 (0) [14C]O2 1.195e-16 1.197e-16 -15.923 -15.922 0.001 (0) CaH[14C]O3+ 1.213e-17 1.112e-17 -16.916 -16.954 -0.037 (0) - H[14C]O2[18O]- 1.146e-18 1.048e-18 -17.941 -17.980 -0.039 (0) - H[14C]O[18O]O- 1.146e-18 1.048e-18 -17.941 -17.980 -0.039 (0) H[14C][18O]O2- 1.146e-18 1.048e-18 -17.941 -17.980 -0.039 (0) + H[14C]O[18O]O- 1.146e-18 1.048e-18 -17.941 -17.980 -0.039 (0) + H[14C]O2[18O]- 1.146e-18 1.048e-18 -17.941 -17.980 -0.039 (0) Ca[14C]O3 6.648e-19 6.659e-19 -18.177 -18.177 0.001 (0) [14C]O[18O] 4.969e-19 4.977e-19 -18.304 -18.303 0.001 (0) [14C]O3-2 3.410e-19 2.389e-19 -18.467 -18.622 -0.155 (0) CaH[14C]O2[18O]+ 2.420e-20 2.220e-20 -19.616 -19.654 -0.037 (0) - CaH[14C]O[18O]O+ 2.420e-20 2.220e-20 -19.616 -19.654 -0.037 (0) CaH[14C][18O]O2+ 2.420e-20 2.220e-20 -19.616 -19.654 -0.037 (0) + CaH[14C]O[18O]O+ 2.420e-20 2.220e-20 -19.616 -19.654 -0.037 (0) Ca[14C]O2[18O] 3.979e-21 3.986e-21 -20.400 -20.399 0.001 (0) - H[14C]O[18O]2- 2.286e-21 2.092e-21 -20.641 -20.680 -0.039 (0) H[14C][18O]2O- 2.286e-21 2.092e-21 -20.641 -20.680 -0.039 (0) H[14C][18O]O[18O]- 2.286e-21 2.092e-21 -20.641 -20.680 -0.039 (0) + H[14C]O[18O]2- 2.286e-21 2.092e-21 -20.641 -20.680 -0.039 (0) [14C]O2[18O]-2 2.041e-21 1.430e-21 -20.690 -20.845 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.546e-16 - O[18O] 4.537e-16 4.545e-16 -15.343 -15.342 0.001 (0) - [18O]2 4.526e-19 4.534e-19 -18.344 -18.344 0.001 (0) +[18O](0) 2.272e-15 + O[18O] 2.267e-15 2.271e-15 -14.645 -14.644 0.001 (0) + [18O]2 2.262e-18 2.265e-18 -17.646 -17.645 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.98 -126.84 -2.86 [13C]H4 + [13C]H4(g) -125.38 -128.24 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.82 -21.32 -1.50 [14C][18O]2 - [14C]H4(g) -134.95 -137.81 -2.86 [14C]H4 + [14C]H4(g) -136.34 -139.20 -2.86 [14C]H4 [14C]O2(g) -14.45 -15.92 -1.47 [14C]O2 [14C]O[18O](g) -16.83 -18.62 -1.79 [14C]O[18O] - [18O]2(g) -16.05 -18.34 -2.29 [18O]2 + [18O]2(g) -15.35 -17.64 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -43638,14 +43628,14 @@ O(0) 2.283e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.03 -124.89 -2.86 CH4 + CH4(g) -123.42 -126.28 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.57 -39.72 -3.15 H2 + H2(g) -36.92 -40.07 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.05 -12.94 -2.89 O2 - O[18O](g) -12.75 -15.64 -2.89 O[18O] + O2(g) -9.35 -12.24 -2.89 O2 + O[18O](g) -12.05 -14.94 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -43709,13 +43699,13 @@ Calcite 2.81e-02 R(18O) 1.99520e-03 -4.9878 permil R(13C) 1.11407e-02 -3.5289 permil - R(14C) 1.19943e-13 10.2 pmc + R(14C) 1.19944e-13 10.2 pmc R(18O) H2O(l) 1.99520e-03 -4.9893 permil R(18O) OH- 1.92123e-03 -41.877 permil R(18O) H3O+ 2.04133e-03 18.019 permil R(18O) O2(aq) 1.99520e-03 -4.9893 permil R(13C) CO2(aq) 1.10610e-02 -10.66 permil - R(14C) CO2(aq) 1.18231e-13 10.055 pmc + R(14C) CO2(aq) 1.18232e-13 10.055 pmc R(18O) CO2(aq) 2.07916e-03 36.885 permil R(18O) HCO3- 1.99520e-03 -4.9893 permil R(13C) HCO3- 1.11572e-02 -2.0531 permil @@ -43735,12 +43725,12 @@ Calcite 2.81e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2675e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2532e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.2164e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6709e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.685e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -43760,14 +43750,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.306 Adjusted to redox equilibrium + pe = 11.472 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -43782,24 +43772,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.963 -124.962 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.291 -126.290 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -43807,81 +43797,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.648e-40 - H2 1.824e-40 1.827e-40 -39.739 -39.738 0.001 (0) -O(0) 2.494e-13 - O2 1.242e-13 1.244e-13 -12.906 -12.905 0.001 (0) - O[18O] 4.956e-16 4.964e-16 -15.305 -15.304 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.071 -40.070 0.001 (0) +O(0) 1.150e-12 + O2 5.728e-13 5.738e-13 -12.242 -12.241 0.001 (0) + O[18O] 2.286e-15 2.290e-15 -14.641 -14.640 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.919 -126.918 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.247 -128.246 0.001 (0) [13C](4) 6.506e-05 H[13C]O3- 5.248e-05 4.801e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.580e-08 4.588e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.121e-08 2.186e-08 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.641e-10 3.647e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.890 -137.890 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.218 -139.217 0.001 (0) [14C](4) 7.005e-16 H[14C]O3- 5.658e-16 5.177e-16 -15.247 -15.286 -0.039 (0) [14C]O2 1.177e-16 1.179e-16 -15.929 -15.928 0.001 (0) CaH[14C]O3+ 1.195e-17 1.096e-17 -16.923 -16.960 -0.037 (0) - H[14C]O2[18O]- 1.129e-18 1.033e-18 -17.947 -17.986 -0.039 (0) - H[14C]O[18O]O- 1.129e-18 1.033e-18 -17.947 -17.986 -0.039 (0) H[14C][18O]O2- 1.129e-18 1.033e-18 -17.947 -17.986 -0.039 (0) + H[14C]O[18O]O- 1.129e-18 1.033e-18 -17.947 -17.986 -0.039 (0) + H[14C]O2[18O]- 1.129e-18 1.033e-18 -17.947 -17.986 -0.039 (0) Ca[14C]O3 6.550e-19 6.561e-19 -18.184 -18.183 0.001 (0) [14C]O[18O] 4.896e-19 4.904e-19 -18.310 -18.309 0.001 (0) [14C]O3-2 3.360e-19 2.354e-19 -18.474 -18.628 -0.155 (0) CaH[14C]O2[18O]+ 2.384e-20 2.187e-20 -19.623 -19.660 -0.037 (0) - CaH[14C]O[18O]O+ 2.384e-20 2.187e-20 -19.623 -19.660 -0.037 (0) CaH[14C][18O]O2+ 2.384e-20 2.187e-20 -19.623 -19.660 -0.037 (0) + CaH[14C]O[18O]O+ 2.384e-20 2.187e-20 -19.623 -19.660 -0.037 (0) Ca[14C]O2[18O] 3.921e-21 3.927e-21 -20.407 -20.406 0.001 (0) + H[14C][18O]O[18O]- 2.252e-21 2.061e-21 -20.647 -20.686 -0.039 (0) H[14C]O[18O]2- 2.252e-21 2.061e-21 -20.647 -20.686 -0.039 (0) H[14C][18O]2O- 2.252e-21 2.061e-21 -20.647 -20.686 -0.039 (0) - H[14C][18O]O[18O]- 2.252e-21 2.061e-21 -20.647 -20.686 -0.039 (0) [14C]O2[18O]-2 2.011e-21 1.409e-21 -20.697 -20.851 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.966e-16 - O[18O] 4.956e-16 4.964e-16 -15.305 -15.304 0.001 (0) - [18O]2 4.944e-19 4.952e-19 -18.306 -18.305 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.290e-15 + O[18O] 2.286e-15 2.290e-15 -14.641 -14.640 0.001 (0) + [18O]2 2.280e-18 2.284e-18 -17.642 -17.641 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.06 -126.92 -2.86 [13C]H4 + [13C]H4(g) -125.39 -128.25 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.82 -21.33 -1.50 [14C][18O]2 - [14C]H4(g) -135.03 -137.89 -2.86 [14C]H4 + [14C]H4(g) -136.36 -139.22 -2.86 [14C]H4 [14C]O2(g) -14.46 -15.93 -1.47 [14C]O2 [14C]O[18O](g) -16.84 -18.63 -1.79 [14C]O[18O] - [18O]2(g) -16.01 -18.31 -2.29 [18O]2 + [18O]2(g) -15.35 -17.64 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -43895,14 +43885,14 @@ O(0) 2.494e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.10 -124.96 -2.86 CH4 + CH4(g) -123.43 -126.29 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.59 -39.74 -3.15 H2 + H2(g) -36.92 -40.07 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.01 -12.91 -2.89 O2 - O[18O](g) -12.71 -15.61 -2.89 O[18O] + O2(g) -9.35 -12.24 -2.89 O2 + O[18O](g) -12.05 -14.94 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -43966,23 +43956,23 @@ Calcite 2.86e-02 R(18O) 1.99520e-03 -4.9876 permil R(13C) 1.11411e-02 -3.4978 permil - R(14C) 1.18200e-13 10.052 pmc + R(14C) 1.18201e-13 10.052 pmc R(18O) H2O(l) 1.99520e-03 -4.9891 permil R(18O) OH- 1.92123e-03 -41.877 permil R(18O) H3O+ 2.04133e-03 18.019 permil R(18O) O2(aq) 1.99520e-03 -4.9891 permil R(13C) CO2(aq) 1.10614e-02 -10.629 permil - R(14C) CO2(aq) 1.16513e-13 9.9085 pmc + R(14C) CO2(aq) 1.16514e-13 9.9086 pmc R(18O) CO2(aq) 2.07916e-03 36.885 permil R(18O) HCO3- 1.99520e-03 -4.9891 permil R(13C) HCO3- 1.11576e-02 -2.022 permil - R(14C) HCO3- 1.18549e-13 10.082 pmc + R(14C) HCO3- 1.18550e-13 10.082 pmc R(18O) CO3-2 1.99520e-03 -4.9891 permil R(13C) CO3-2 1.11416e-02 -3.4541 permil - R(14C) CO3-2 1.18209e-13 10.053 pmc + R(14C) CO3-2 1.18210e-13 10.053 pmc R(18O) Calcite 2.05264e-03 23.657 permil - R(13C) Calcite 1.11797e-02 -0.045306 permil - R(14C) Calcite 1.19019e-13 10.122 pmc + R(13C) Calcite 1.11797e-02 -0.045305 permil + R(14C) Calcite 1.19020e-13 10.122 pmc --------------------------------Isotope Alphas--------------------------------- @@ -43992,12 +43982,12 @@ Calcite 2.86e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2525e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2382e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.6613e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7006e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6469e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -44017,14 +44007,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.290 Adjusted to redox equilibrium + pe = 11.470 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -44039,14 +44029,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.835 -124.834 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.270 -126.269 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -44054,9 +44044,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -44064,50 +44054,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.927e-40 - H2 1.963e-40 1.967e-40 -39.707 -39.706 0.001 (0) -O(0) 2.152e-13 - O2 1.072e-13 1.073e-13 -12.970 -12.969 0.001 (0) - O[18O] 4.276e-16 4.283e-16 -15.369 -15.368 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.066 -40.065 0.001 (0) +O(0) 1.123e-12 + O2 5.593e-13 5.602e-13 -12.252 -12.252 0.001 (0) + O[18O] 2.232e-15 2.235e-15 -14.651 -14.651 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.791 -126.790 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.226 -128.225 0.001 (0) [13C](4) 6.506e-05 H[13C]O3- 5.248e-05 4.801e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.579e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.580e-08 4.588e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.121e-08 2.186e-08 -7.506 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.768 -137.768 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.204 -139.203 0.001 (0) [14C](4) 6.903e-16 H[14C]O3- 5.576e-16 5.101e-16 -15.254 -15.292 -0.039 (0) [14C]O2 1.160e-16 1.162e-16 -15.935 -15.935 0.001 (0) CaH[14C]O3+ 1.177e-17 1.080e-17 -16.929 -16.967 -0.037 (0) - H[14C]O2[18O]- 1.113e-18 1.018e-18 -17.954 -17.992 -0.039 (0) - H[14C]O[18O]O- 1.113e-18 1.018e-18 -17.954 -17.992 -0.039 (0) H[14C][18O]O2- 1.113e-18 1.018e-18 -17.954 -17.992 -0.039 (0) + H[14C]O[18O]O- 1.113e-18 1.018e-18 -17.954 -17.992 -0.039 (0) + H[14C]O2[18O]- 1.113e-18 1.018e-18 -17.954 -17.992 -0.039 (0) Ca[14C]O3 6.455e-19 6.466e-19 -18.190 -18.189 0.001 (0) [14C]O[18O] 4.825e-19 4.833e-19 -18.317 -18.316 0.001 (0) [14C]O3-2 3.311e-19 2.320e-19 -18.480 -18.635 -0.155 (0) CaH[14C]O2[18O]+ 2.349e-20 2.155e-20 -19.629 -19.667 -0.037 (0) - CaH[14C]O[18O]O+ 2.349e-20 2.155e-20 -19.629 -19.667 -0.037 (0) CaH[14C][18O]O2+ 2.349e-20 2.155e-20 -19.629 -19.667 -0.037 (0) + CaH[14C]O[18O]O+ 2.349e-20 2.155e-20 -19.629 -19.667 -0.037 (0) Ca[14C]O2[18O] 3.864e-21 3.870e-21 -20.413 -20.412 0.001 (0) H[14C]O[18O]2- 2.220e-21 2.031e-21 -20.654 -20.692 -0.039 (0) H[14C][18O]2O- 2.220e-21 2.031e-21 -20.654 -20.692 -0.039 (0) @@ -44116,29 +44106,29 @@ O(0) 2.152e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.285e-16 - O[18O] 4.276e-16 4.283e-16 -15.369 -15.368 0.001 (0) - [18O]2 4.266e-19 4.273e-19 -18.370 -18.369 0.001 (0) +[18O](0) 2.236e-15 + O[18O] 2.232e-15 2.235e-15 -14.651 -14.651 0.001 (0) + [18O]2 2.226e-18 2.230e-18 -17.652 -17.652 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.93 -126.79 -2.86 [13C]H4 + [13C]H4(g) -125.37 -128.23 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.83 -21.33 -1.50 [14C][18O]2 - [14C]H4(g) -134.91 -137.77 -2.86 [14C]H4 + [14C]H4(g) -136.34 -139.20 -2.86 [14C]H4 [14C]O2(g) -14.47 -15.93 -1.47 [14C]O2 [14C]O[18O](g) -16.85 -18.63 -1.79 [14C]O[18O] - [18O]2(g) -16.08 -18.37 -2.29 [18O]2 + [18O]2(g) -15.36 -17.65 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -44152,14 +44142,14 @@ O(0) 2.152e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.97 -124.83 -2.86 CH4 + CH4(g) -123.41 -126.27 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.56 -39.71 -3.15 H2 + H2(g) -36.92 -40.07 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.08 -12.97 -2.89 O2 - O[18O](g) -12.78 -15.67 -2.89 O[18O] + O2(g) -9.36 -12.25 -2.89 O2 + O[18O](g) -12.06 -14.95 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -44223,23 +44213,23 @@ Calcite 2.91e-02 R(18O) 1.99520e-03 -4.9875 permil R(13C) 1.11414e-02 -3.4676 permil - R(14C) 1.16507e-13 9.908 pmc + R(14C) 1.16508e-13 9.9081 pmc R(18O) H2O(l) 1.99520e-03 -4.989 permil R(18O) OH- 1.92123e-03 -41.876 permil R(18O) H3O+ 2.04133e-03 18.019 permil R(18O) O2(aq) 1.99520e-03 -4.989 permil R(13C) CO2(aq) 1.10617e-02 -10.599 permil - R(14C) CO2(aq) 1.14844e-13 9.7666 pmc + R(14C) CO2(aq) 1.14845e-13 9.7667 pmc R(18O) CO2(aq) 2.07916e-03 36.885 permil R(18O) HCO3- 1.99520e-03 -4.989 permil R(13C) HCO3- 1.11579e-02 -1.9917 permil - R(14C) HCO3- 1.16851e-13 9.9373 pmc + R(14C) HCO3- 1.16852e-13 9.9373 pmc R(18O) CO3-2 1.99520e-03 -4.989 permil R(13C) CO3-2 1.11419e-02 -3.4239 permil - R(14C) CO3-2 1.16516e-13 9.9088 pmc + R(14C) CO3-2 1.16517e-13 9.9088 pmc R(18O) Calcite 2.05264e-03 23.657 permil - R(13C) Calcite 1.11800e-02 -0.014995 permil - R(14C) Calcite 1.17314e-13 9.9767 pmc + R(13C) Calcite 1.11800e-02 -0.014994 permil + R(14C) Calcite 1.17315e-13 9.9767 pmc --------------------------------Isotope Alphas--------------------------------- @@ -44249,12 +44239,12 @@ Calcite 2.91e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.26e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2455e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6845e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6968e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -44274,14 +44264,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.278 Adjusted to redox equilibrium + pe = 11.468 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -44296,24 +44286,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.738 -124.738 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.258 -126.257 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -44321,23 +44311,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.151e-40 - H2 2.076e-40 2.079e-40 -39.683 -39.682 0.001 (0) -O(0) 1.925e-13 - O2 9.589e-14 9.604e-14 -13.018 -13.018 0.001 (0) - O[18O] 3.826e-16 3.833e-16 -15.417 -15.417 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.063 -40.062 0.001 (0) +O(0) 1.107e-12 + O2 5.515e-13 5.524e-13 -12.258 -12.258 0.001 (0) + O[18O] 2.201e-15 2.204e-15 -14.657 -14.657 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.694 -126.694 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.214 -128.213 0.001 (0) [13C](4) 6.506e-05 H[13C]O3- 5.248e-05 4.801e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.588e-08 -7.339 -7.338 0.001 (0) @@ -44346,56 +44336,56 @@ O(0) 1.925e-13 CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.678 -137.677 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.198 -139.197 0.001 (0) [14C](4) 6.804e-16 H[14C]O3- 5.496e-16 5.028e-16 -15.260 -15.299 -0.039 (0) [14C]O2 1.144e-16 1.146e-16 -15.942 -15.941 0.001 (0) CaH[14C]O3+ 1.161e-17 1.065e-17 -16.935 -16.973 -0.037 (0) - H[14C]O2[18O]- 1.097e-18 1.003e-18 -17.960 -17.999 -0.039 (0) - H[14C]O[18O]O- 1.097e-18 1.003e-18 -17.960 -17.999 -0.039 (0) H[14C][18O]O2- 1.097e-18 1.003e-18 -17.960 -17.999 -0.039 (0) - Ca[14C]O3 6.362e-19 6.373e-19 -18.196 -18.196 0.001 (0) + H[14C]O[18O]O- 1.097e-18 1.003e-18 -17.960 -17.999 -0.039 (0) + H[14C]O2[18O]- 1.097e-18 1.003e-18 -17.960 -17.999 -0.039 (0) + Ca[14C]O3 6.363e-19 6.373e-19 -18.196 -18.196 0.001 (0) [14C]O[18O] 4.756e-19 4.763e-19 -18.323 -18.322 0.001 (0) [14C]O3-2 3.264e-19 2.286e-19 -18.486 -18.641 -0.155 (0) CaH[14C]O2[18O]+ 2.316e-20 2.124e-20 -19.635 -19.673 -0.037 (0) - CaH[14C]O[18O]O+ 2.316e-20 2.124e-20 -19.635 -19.673 -0.037 (0) CaH[14C][18O]O2+ 2.316e-20 2.124e-20 -19.635 -19.673 -0.037 (0) + CaH[14C]O[18O]O+ 2.316e-20 2.124e-20 -19.635 -19.673 -0.037 (0) Ca[14C]O2[18O] 3.808e-21 3.815e-21 -20.419 -20.419 0.001 (0) - H[14C]O[18O]2- 2.188e-21 2.002e-21 -20.660 -20.699 -0.039 (0) H[14C][18O]2O- 2.188e-21 2.002e-21 -20.660 -20.699 -0.039 (0) H[14C][18O]O[18O]- 2.188e-21 2.002e-21 -20.660 -20.699 -0.039 (0) + H[14C]O[18O]2- 2.188e-21 2.002e-21 -20.660 -20.699 -0.039 (0) [14C]O2[18O]-2 1.954e-21 1.369e-21 -20.709 -20.864 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.834e-16 - O[18O] 3.826e-16 3.833e-16 -15.417 -15.417 0.001 (0) - [18O]2 3.817e-19 3.823e-19 -18.418 -18.418 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.205e-15 + O[18O] 2.201e-15 2.204e-15 -14.657 -14.657 0.001 (0) + [18O]2 2.195e-18 2.199e-18 -17.658 -17.658 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.83 -126.69 -2.86 [13C]H4 + [13C]H4(g) -125.35 -128.21 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.84 -21.34 -1.50 [14C][18O]2 - [14C]H4(g) -134.82 -137.68 -2.86 [14C]H4 + [14C]H4(g) -136.34 -139.20 -2.86 [14C]H4 [14C]O2(g) -14.47 -15.94 -1.47 [14C]O2 [14C]O[18O](g) -16.85 -18.64 -1.79 [14C]O[18O] - [18O]2(g) -16.13 -18.42 -2.29 [18O]2 + [18O]2(g) -15.37 -17.66 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -44409,14 +44399,14 @@ O(0) 1.925e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.88 -124.74 -2.86 CH4 + CH4(g) -123.40 -126.26 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.53 -39.68 -3.15 H2 + H2(g) -36.91 -40.06 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.13 -13.02 -2.89 O2 - O[18O](g) -12.83 -15.72 -2.89 O[18O] + O2(g) -9.37 -12.26 -2.89 O2 + O[18O](g) -12.07 -14.96 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -44486,16 +44476,16 @@ Calcite 2.96e-02 R(18O) H3O+ 2.04133e-03 18.019 permil R(18O) O2(aq) 1.99520e-03 -4.9889 permil R(13C) CO2(aq) 1.10620e-02 -10.57 permil - R(14C) CO2(aq) 1.13222e-13 9.6287 pmc + R(14C) CO2(aq) 1.13223e-13 9.6287 pmc R(18O) CO2(aq) 2.07916e-03 36.885 permil R(18O) HCO3- 1.99520e-03 -4.9889 permil R(13C) HCO3- 1.11583e-02 -1.9623 permil - R(14C) HCO3- 1.15201e-13 9.7969 pmc + R(14C) HCO3- 1.15202e-13 9.797 pmc R(18O) CO3-2 1.99520e-03 -4.9889 permil R(13C) CO3-2 1.11422e-02 -3.3946 permil - R(14C) CO3-2 1.14870e-13 9.7688 pmc + R(14C) CO3-2 1.14871e-13 9.7689 pmc R(18O) Calcite 2.05264e-03 23.658 permil - R(13C) Calcite 1.11804e-02 0.014461 permil + R(13C) Calcite 1.11804e-02 0.014462 permil R(14C) Calcite 1.15658e-13 9.8358 pmc --------------------------------Isotope Alphas--------------------------------- @@ -44506,12 +44496,12 @@ Calcite 2.96e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2553e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2716e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7905e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6654e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -44531,14 +44521,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.274 Adjusted to redox equilibrium + pe = 11.469 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -44553,14 +44543,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.701 -124.700 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.263 -126.262 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -44568,9 +44558,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -44578,81 +44568,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.241e-40 - H2 2.121e-40 2.124e-40 -39.674 -39.673 0.001 (0) -O(0) 1.845e-13 - O2 9.188e-14 9.203e-14 -13.037 -13.036 0.001 (0) - O[18O] 3.666e-16 3.672e-16 -15.436 -15.435 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.064 -40.063 0.001 (0) +O(0) 1.114e-12 + O2 5.546e-13 5.555e-13 -12.256 -12.255 0.001 (0) + O[18O] 2.213e-15 2.217e-15 -14.655 -14.654 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.657 -126.657 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.219 -128.218 0.001 (0) [13C](4) 6.507e-05 H[13C]O3- 5.248e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.588e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.121e-08 2.187e-08 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.647 -137.646 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.209 -139.208 0.001 (0) [14C](4) 6.708e-16 - H[14C]O3- 5.418e-16 4.957e-16 -15.266 -15.305 -0.039 (0) + H[14C]O3- 5.419e-16 4.957e-16 -15.266 -15.305 -0.039 (0) [14C]O2 1.127e-16 1.129e-16 -15.948 -15.947 0.001 (0) CaH[14C]O3+ 1.144e-17 1.050e-17 -16.941 -16.979 -0.037 (0) - H[14C]O2[18O]- 1.081e-18 9.891e-19 -17.966 -18.005 -0.039 (0) - H[14C]O[18O]O- 1.081e-18 9.891e-19 -17.966 -18.005 -0.039 (0) H[14C][18O]O2- 1.081e-18 9.891e-19 -17.966 -18.005 -0.039 (0) + H[14C]O[18O]O- 1.081e-18 9.891e-19 -17.966 -18.005 -0.039 (0) + H[14C]O2[18O]- 1.081e-18 9.891e-19 -17.966 -18.005 -0.039 (0) Ca[14C]O3 6.273e-19 6.283e-19 -18.203 -18.202 0.001 (0) [14C]O[18O] 4.688e-19 4.696e-19 -18.329 -18.328 0.001 (0) [14C]O3-2 3.218e-19 2.254e-19 -18.492 -18.647 -0.155 (0) CaH[14C]O2[18O]+ 2.283e-20 2.094e-20 -19.642 -19.679 -0.037 (0) - CaH[14C]O[18O]O+ 2.283e-20 2.094e-20 -19.642 -19.679 -0.037 (0) CaH[14C][18O]O2+ 2.283e-20 2.094e-20 -19.642 -19.679 -0.037 (0) + CaH[14C]O[18O]O+ 2.283e-20 2.094e-20 -19.642 -19.679 -0.037 (0) Ca[14C]O2[18O] 3.755e-21 3.761e-21 -20.425 -20.425 0.001 (0) + H[14C][18O]O[18O]- 2.157e-21 1.973e-21 -20.666 -20.705 -0.039 (0) H[14C]O[18O]2- 2.157e-21 1.973e-21 -20.666 -20.705 -0.039 (0) H[14C][18O]2O- 2.157e-21 1.973e-21 -20.666 -20.705 -0.039 (0) - H[14C][18O]O[18O]- 2.157e-21 1.973e-21 -20.666 -20.705 -0.039 (0) [14C]O2[18O]-2 1.926e-21 1.349e-21 -20.715 -20.870 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.674e-16 - O[18O] 3.666e-16 3.672e-16 -15.436 -15.435 0.001 (0) - [18O]2 3.657e-19 3.663e-19 -18.437 -18.436 0.001 (0) +[18O](0) 2.217e-15 + O[18O] 2.213e-15 2.217e-15 -14.655 -14.654 0.001 (0) + [18O]2 2.208e-18 2.211e-18 -17.656 -17.655 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.80 -126.66 -2.86 [13C]H4 + [13C]H4(g) -125.36 -128.22 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.84 -21.35 -1.50 [14C][18O]2 - [14C]H4(g) -134.79 -137.65 -2.86 [14C]H4 + [14C]H4(g) -136.35 -139.21 -2.86 [14C]H4 [14C]O2(g) -14.48 -15.95 -1.47 [14C]O2 [14C]O[18O](g) -16.86 -18.65 -1.79 [14C]O[18O] - [18O]2(g) -16.15 -18.44 -2.29 [18O]2 + [18O]2(g) -15.37 -17.66 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -44666,14 +44656,14 @@ O(0) 1.845e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.84 -124.70 -2.86 CH4 + CH4(g) -123.40 -126.26 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.52 -39.67 -3.15 H2 + H2(g) -36.91 -40.06 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.14 -13.04 -2.89 O2 - O[18O](g) -12.84 -15.74 -2.89 O[18O] + O2(g) -9.36 -12.26 -2.89 O2 + O[18O](g) -12.06 -14.96 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -44737,7 +44727,7 @@ Calcite 3.01e-02 R(18O) 1.99520e-03 -4.9872 permil R(13C) 1.11421e-02 -3.4097 permil - R(14C) 1.13262e-13 9.632 pmc + R(14C) 1.13263e-13 9.6321 pmc R(18O) H2O(l) 1.99520e-03 -4.9887 permil R(18O) OH- 1.92123e-03 -41.876 permil R(18O) H3O+ 2.04133e-03 18.019 permil @@ -44747,13 +44737,13 @@ Calcite 3.01e-02 R(18O) CO2(aq) 2.07916e-03 36.885 permil R(18O) HCO3- 1.99520e-03 -4.9887 permil R(13C) HCO3- 1.11586e-02 -1.9337 permil - R(14C) HCO3- 1.13597e-13 9.6605 pmc + R(14C) HCO3- 1.13597e-13 9.6606 pmc R(18O) CO3-2 1.99520e-03 -4.9887 permil R(13C) CO3-2 1.11426e-02 -3.366 permil - R(14C) CO3-2 1.13271e-13 9.6328 pmc + R(14C) CO3-2 1.13272e-13 9.6329 pmc R(18O) Calcite 2.05264e-03 23.658 permil R(13C) Calcite 1.11807e-02 0.043097 permil - R(14C) Calcite 1.14047e-13 9.6988 pmc + R(14C) Calcite 1.14048e-13 9.6989 pmc --------------------------------Isotope Alphas--------------------------------- @@ -44763,12 +44753,12 @@ Calcite 3.01e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2732e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2908e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.9936e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6476e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5935e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -44788,14 +44778,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.267 Adjusted to redox equilibrium + pe = 11.467 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -44810,24 +44800,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.646 -124.645 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.248 -126.247 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -44835,50 +44825,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.084e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.378e-40 - H2 2.189e-40 2.192e-40 -39.660 -39.659 0.001 (0) -O(0) 1.731e-13 - O2 8.623e-14 8.637e-14 -13.064 -13.064 0.001 (0) - O[18O] 3.441e-16 3.447e-16 -15.463 -15.463 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.060 -40.060 0.001 (0) +O(0) 1.095e-12 + O2 5.454e-13 5.463e-13 -12.263 -12.263 0.001 (0) + O[18O] 2.176e-15 2.180e-15 -14.662 -14.662 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.602 -126.601 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.204 -128.204 0.001 (0) [13C](4) 6.507e-05 H[13C]O3- 5.248e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.580e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.084e-08 6.095e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.588e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.121e-08 2.187e-08 -7.506 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.211e-09 2.028e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.598 -137.597 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.200 -139.200 0.001 (0) [14C](4) 6.614e-16 H[14C]O3- 5.343e-16 4.888e-16 -15.272 -15.311 -0.039 (0) [14C]O2 1.112e-16 1.114e-16 -15.954 -15.953 0.001 (0) CaH[14C]O3+ 1.128e-17 1.035e-17 -16.948 -16.985 -0.037 (0) - H[14C]O2[18O]- 1.066e-18 9.753e-19 -17.972 -18.011 -0.039 (0) - H[14C]O[18O]O- 1.066e-18 9.753e-19 -17.972 -18.011 -0.039 (0) H[14C][18O]O2- 1.066e-18 9.753e-19 -17.972 -18.011 -0.039 (0) + H[14C]O[18O]O- 1.066e-18 9.753e-19 -17.972 -18.011 -0.039 (0) + H[14C]O2[18O]- 1.066e-18 9.753e-19 -17.972 -18.011 -0.039 (0) Ca[14C]O3 6.185e-19 6.195e-19 -18.209 -18.208 0.001 (0) [14C]O[18O] 4.623e-19 4.631e-19 -18.335 -18.334 0.001 (0) [14C]O3-2 3.173e-19 2.223e-19 -18.499 -18.653 -0.155 (0) CaH[14C]O2[18O]+ 2.251e-20 2.065e-20 -19.648 -19.685 -0.037 (0) - CaH[14C]O[18O]O+ 2.251e-20 2.065e-20 -19.648 -19.685 -0.037 (0) CaH[14C][18O]O2+ 2.251e-20 2.065e-20 -19.648 -19.685 -0.037 (0) + CaH[14C]O[18O]O+ 2.251e-20 2.065e-20 -19.648 -19.685 -0.037 (0) Ca[14C]O2[18O] 3.702e-21 3.708e-21 -20.432 -20.431 0.001 (0) H[14C]O[18O]2- 2.127e-21 1.946e-21 -20.672 -20.711 -0.039 (0) H[14C][18O]2O- 2.127e-21 1.946e-21 -20.672 -20.711 -0.039 (0) @@ -44887,29 +44877,29 @@ O(0) 1.731e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.448e-16 - O[18O] 3.441e-16 3.447e-16 -15.463 -15.463 0.001 (0) - [18O]2 3.433e-19 3.438e-19 -18.464 -18.464 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.181e-15 + O[18O] 2.176e-15 2.180e-15 -14.662 -14.662 0.001 (0) + [18O]2 2.171e-18 2.175e-18 -17.663 -17.663 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.74 -126.60 -2.86 [13C]H4 + [13C]H4(g) -125.34 -128.20 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.85 -21.35 -1.50 [14C][18O]2 - [14C]H4(g) -134.74 -137.60 -2.86 [14C]H4 + [14C]H4(g) -136.34 -139.20 -2.86 [14C]H4 [14C]O2(g) -14.48 -15.95 -1.47 [14C]O2 [14C]O[18O](g) -16.87 -18.65 -1.79 [14C]O[18O] - [18O]2(g) -16.17 -18.46 -2.29 [18O]2 + [18O]2(g) -15.37 -17.66 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -44923,14 +44913,14 @@ O(0) 1.731e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.79 -124.65 -2.86 CH4 + CH4(g) -123.39 -126.25 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.51 -39.66 -3.15 H2 + H2(g) -36.91 -40.06 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.17 -13.06 -2.89 O2 - O[18O](g) -12.87 -15.76 -2.89 O[18O] + O2(g) -9.37 -12.26 -2.89 O2 + O[18O](g) -12.07 -14.96 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -44994,23 +44984,23 @@ Calcite 3.06e-02 R(18O) 1.99520e-03 -4.9871 permil R(13C) 1.11424e-02 -3.382 permil - R(14C) 1.11706e-13 9.4998 pmc + R(14C) 1.11707e-13 9.4998 pmc R(18O) H2O(l) 1.99520e-03 -4.9886 permil R(18O) OH- 1.92123e-03 -41.876 permil R(18O) H3O+ 2.04133e-03 18.019 permil R(18O) O2(aq) 1.99520e-03 -4.9886 permil R(13C) CO2(aq) 1.10626e-02 -10.514 permil - R(14C) CO2(aq) 1.10112e-13 9.3642 pmc + R(14C) CO2(aq) 1.10113e-13 9.3642 pmc R(18O) CO2(aq) 2.07916e-03 36.886 permil R(18O) HCO3- 1.99520e-03 -4.9886 permil R(13C) HCO3- 1.11589e-02 -1.9059 permil - R(14C) HCO3- 1.12036e-13 9.5278 pmc + R(14C) HCO3- 1.12037e-13 9.5279 pmc R(18O) CO3-2 1.99520e-03 -4.9886 permil R(13C) CO3-2 1.11429e-02 -3.3383 permil - R(14C) CO3-2 1.11715e-13 9.5005 pmc + R(14C) CO3-2 1.11716e-13 9.5005 pmc R(18O) Calcite 2.05264e-03 23.658 permil - R(13C) Calcite 1.11810e-02 0.070946 permil - R(14C) Calcite 1.12481e-13 9.5656 pmc + R(13C) Calcite 1.11810e-02 0.070947 permil + R(14C) Calcite 1.12481e-13 9.5657 pmc --------------------------------Isotope Alphas--------------------------------- @@ -45020,12 +45010,12 @@ Calcite 3.06e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2807e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2643e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7109e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7243e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -45045,14 +45035,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.277 Adjusted to redox equilibrium + pe = 11.469 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -45067,13 +45057,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.728 -124.728 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.267 -126.267 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -45082,9 +45072,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -45092,23 +45082,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.175e-40 - H2 2.087e-40 2.091e-40 -39.680 -39.680 0.001 (0) -O(0) 1.904e-13 - O2 9.481e-14 9.497e-14 -13.023 -13.022 0.001 (0) - O[18O] 3.783e-16 3.790e-16 -15.422 -15.421 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.065 -40.064 0.001 (0) +O(0) 1.120e-12 + O2 5.575e-13 5.584e-13 -12.254 -12.253 0.001 (0) + O[18O] 2.225e-15 2.228e-15 -14.653 -14.652 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.685 -126.684 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.223 -128.223 0.001 (0) [13C](4) 6.507e-05 H[13C]O3- 5.249e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.588e-08 -7.339 -7.338 0.001 (0) @@ -45117,56 +45107,56 @@ O(0) 1.904e-13 CaH[13C]O[18O]O+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.687 -137.686 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.225 -139.225 0.001 (0) [14C](4) 6.524e-16 H[14C]O3- 5.270e-16 4.821e-16 -15.278 -15.317 -0.039 (0) [14C]O2 1.097e-16 1.098e-16 -15.960 -15.959 0.001 (0) CaH[14C]O3+ 1.113e-17 1.021e-17 -16.954 -16.991 -0.037 (0) - H[14C]O2[18O]- 1.051e-18 9.619e-19 -17.978 -18.017 -0.039 (0) - H[14C]O[18O]O- 1.051e-18 9.619e-19 -17.978 -18.017 -0.039 (0) H[14C][18O]O2- 1.051e-18 9.619e-19 -17.978 -18.017 -0.039 (0) + H[14C]O[18O]O- 1.051e-18 9.619e-19 -17.978 -18.017 -0.039 (0) + H[14C]O2[18O]- 1.051e-18 9.619e-19 -17.978 -18.017 -0.039 (0) Ca[14C]O3 6.100e-19 6.110e-19 -18.215 -18.214 0.001 (0) [14C]O[18O] 4.560e-19 4.567e-19 -18.341 -18.340 0.001 (0) [14C]O3-2 3.129e-19 2.192e-19 -18.505 -18.659 -0.155 (0) CaH[14C]O2[18O]+ 2.220e-20 2.037e-20 -19.654 -19.691 -0.037 (0) - CaH[14C]O[18O]O+ 2.220e-20 2.037e-20 -19.654 -19.691 -0.037 (0) CaH[14C][18O]O2+ 2.220e-20 2.037e-20 -19.654 -19.691 -0.037 (0) + CaH[14C]O[18O]O+ 2.220e-20 2.037e-20 -19.654 -19.691 -0.037 (0) Ca[14C]O2[18O] 3.651e-21 3.657e-21 -20.438 -20.437 0.001 (0) - H[14C]O[18O]2- 2.098e-21 1.919e-21 -20.678 -20.717 -0.039 (0) H[14C][18O]2O- 2.098e-21 1.919e-21 -20.678 -20.717 -0.039 (0) H[14C][18O]O[18O]- 2.098e-21 1.919e-21 -20.678 -20.717 -0.039 (0) + H[14C]O[18O]2- 2.098e-21 1.919e-21 -20.678 -20.717 -0.039 (0) [14C]O2[18O]-2 1.873e-21 1.312e-21 -20.727 -20.882 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.791e-16 - O[18O] 3.783e-16 3.790e-16 -15.422 -15.421 0.001 (0) - [18O]2 3.774e-19 3.780e-19 -18.423 -18.422 0.001 (0) +[18O](0) 2.229e-15 + O[18O] 2.225e-15 2.228e-15 -14.653 -14.652 0.001 (0) + [18O]2 2.219e-18 2.223e-18 -17.654 -17.653 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.82 -126.68 -2.86 [13C]H4 + [13C]H4(g) -125.36 -128.22 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.86 -21.36 -1.50 [14C][18O]2 - [14C]H4(g) -134.83 -137.69 -2.86 [14C]H4 + [14C]H4(g) -136.36 -139.22 -2.86 [14C]H4 [14C]O2(g) -14.49 -15.96 -1.47 [14C]O2 [14C]O[18O](g) -16.87 -18.66 -1.79 [14C]O[18O] - [18O]2(g) -16.13 -18.42 -2.29 [18O]2 + [18O]2(g) -15.36 -17.65 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -45180,14 +45170,14 @@ O(0) 1.904e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.87 -124.73 -2.86 CH4 + CH4(g) -123.41 -126.27 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.53 -39.68 -3.15 H2 + H2(g) -36.91 -40.06 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.13 -13.02 -2.89 O2 - O[18O](g) -12.83 -15.72 -2.89 O[18O] + O2(g) -9.36 -12.25 -2.89 O2 + O[18O](g) -12.06 -14.95 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -45251,23 +45241,23 @@ Calcite 3.11e-02 R(18O) 1.99520e-03 -4.9869 permil R(13C) 1.11427e-02 -3.355 permil - R(14C) 1.10193e-13 9.371 pmc + R(14C) 1.10194e-13 9.3711 pmc R(18O) H2O(l) 1.99520e-03 -4.9885 permil R(18O) OH- 1.92123e-03 -41.876 permil R(18O) H3O+ 2.04133e-03 18.019 permil R(18O) O2(aq) 1.99520e-03 -4.9885 permil R(13C) CO2(aq) 1.10629e-02 -10.488 permil - R(14C) CO2(aq) 1.08620e-13 9.2373 pmc + R(14C) CO2(aq) 1.08621e-13 9.2374 pmc R(18O) CO2(aq) 2.07916e-03 36.886 permil R(18O) HCO3- 1.99520e-03 -4.9885 permil R(13C) HCO3- 1.11592e-02 -1.8789 permil - R(14C) HCO3- 1.10518e-13 9.3987 pmc + R(14C) HCO3- 1.10519e-13 9.3988 pmc R(18O) CO3-2 1.99520e-03 -4.9885 permil R(13C) CO3-2 1.11432e-02 -3.3113 permil - R(14C) CO3-2 1.10201e-13 9.3718 pmc + R(14C) CO3-2 1.10202e-13 9.3718 pmc R(18O) Calcite 2.05264e-03 23.658 permil - R(13C) Calcite 1.11813e-02 0.098041 permil - R(14C) Calcite 1.10957e-13 9.436 pmc + R(13C) Calcite 1.11813e-02 0.098042 permil + R(14C) Calcite 1.10957e-13 9.4361 pmc --------------------------------Isotope Alphas--------------------------------- @@ -45277,12 +45267,12 @@ Calcite 3.11e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2471e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2308e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.675e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6884e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -45302,14 +45292,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.264 Adjusted to redox equilibrium + pe = 11.467 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -45324,24 +45314,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.625 -124.624 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.245 -126.244 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -45349,81 +45339,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.432e-40 - H2 2.216e-40 2.220e-40 -39.654 -39.654 0.001 (0) -O(0) 1.689e-13 - O2 8.412e-14 8.426e-14 -13.075 -13.074 0.001 (0) - O[18O] 3.357e-16 3.362e-16 -15.474 -15.473 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.059 -40.059 0.001 (0) +O(0) 1.091e-12 + O2 5.432e-13 5.441e-13 -12.265 -12.264 0.001 (0) + O[18O] 2.168e-15 2.171e-15 -14.664 -14.663 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.581 -126.580 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.201 -128.200 0.001 (0) [13C](4) 6.507e-05 H[13C]O3- 5.249e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.589e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.121e-08 2.187e-08 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.589 -137.588 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.209 -139.208 0.001 (0) [14C](4) 6.435e-16 H[14C]O3- 5.198e-16 4.756e-16 -15.284 -15.323 -0.039 (0) [14C]O2 1.082e-16 1.083e-16 -15.966 -15.965 0.001 (0) CaH[14C]O3+ 1.098e-17 1.007e-17 -16.960 -16.997 -0.037 (0) - H[14C]O2[18O]- 1.037e-18 9.489e-19 -17.984 -18.023 -0.039 (0) - H[14C]O[18O]O- 1.037e-18 9.489e-19 -17.984 -18.023 -0.039 (0) H[14C][18O]O2- 1.037e-18 9.489e-19 -17.984 -18.023 -0.039 (0) + H[14C]O[18O]O- 1.037e-18 9.489e-19 -17.984 -18.023 -0.039 (0) + H[14C]O2[18O]- 1.037e-18 9.489e-19 -17.984 -18.023 -0.039 (0) Ca[14C]O3 6.018e-19 6.028e-19 -18.221 -18.220 0.001 (0) [14C]O[18O] 4.498e-19 4.505e-19 -18.347 -18.346 0.001 (0) [14C]O3-2 3.087e-19 2.163e-19 -18.510 -18.665 -0.155 (0) CaH[14C]O2[18O]+ 2.190e-20 2.009e-20 -19.660 -19.697 -0.037 (0) - CaH[14C]O[18O]O+ 2.190e-20 2.009e-20 -19.660 -19.697 -0.037 (0) CaH[14C][18O]O2+ 2.190e-20 2.009e-20 -19.660 -19.697 -0.037 (0) + CaH[14C]O[18O]O+ 2.190e-20 2.009e-20 -19.660 -19.697 -0.037 (0) Ca[14C]O2[18O] 3.602e-21 3.608e-21 -20.443 -20.443 0.001 (0) + H[14C][18O]O[18O]- 2.069e-21 1.893e-21 -20.684 -20.723 -0.039 (0) H[14C]O[18O]2- 2.069e-21 1.893e-21 -20.684 -20.723 -0.039 (0) H[14C][18O]2O- 2.069e-21 1.893e-21 -20.684 -20.723 -0.039 (0) - H[14C][18O]O[18O]- 2.069e-21 1.893e-21 -20.684 -20.723 -0.039 (0) [14C]O2[18O]-2 1.848e-21 1.294e-21 -20.733 -20.888 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.363e-16 - O[18O] 3.357e-16 3.362e-16 -15.474 -15.473 0.001 (0) - [18O]2 3.349e-19 3.354e-19 -18.475 -18.474 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.172e-15 + O[18O] 2.168e-15 2.171e-15 -14.664 -14.663 0.001 (0) + [18O]2 2.162e-18 2.166e-18 -17.665 -17.664 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.72 -126.58 -2.86 [13C]H4 + [13C]H4(g) -125.34 -128.20 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.86 -21.37 -1.50 [14C][18O]2 - [14C]H4(g) -134.73 -137.59 -2.86 [14C]H4 + [14C]H4(g) -136.35 -139.21 -2.86 [14C]H4 [14C]O2(g) -14.50 -15.97 -1.47 [14C]O2 [14C]O[18O](g) -16.88 -18.67 -1.79 [14C]O[18O] - [18O]2(g) -16.18 -18.47 -2.29 [18O]2 + [18O]2(g) -15.37 -17.66 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -45437,14 +45427,14 @@ O(0) 1.689e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.76 -124.62 -2.86 CH4 + CH4(g) -123.38 -126.24 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.50 -39.65 -3.15 H2 + H2(g) -36.91 -40.06 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.18 -13.07 -2.89 O2 - O[18O](g) -12.88 -15.77 -2.89 O[18O] + O2(g) -9.37 -12.26 -2.89 O2 + O[18O](g) -12.07 -14.96 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -45508,23 +45498,23 @@ Calcite 3.16e-02 R(18O) 1.99520e-03 -4.9868 permil R(13C) 1.11430e-02 -3.3287 permil - R(14C) 1.08720e-13 9.2458 pmc + R(14C) 1.08721e-13 9.2458 pmc R(18O) H2O(l) 1.99520e-03 -4.9883 permil R(18O) OH- 1.92123e-03 -41.876 permil R(18O) H3O+ 2.04133e-03 18.02 permil R(18O) O2(aq) 1.99520e-03 -4.9883 permil R(13C) CO2(aq) 1.10632e-02 -10.461 permil - R(14C) CO2(aq) 1.07168e-13 9.1138 pmc + R(14C) CO2(aq) 1.07169e-13 9.1139 pmc R(18O) CO2(aq) 2.07916e-03 36.886 permil R(18O) HCO3- 1.99520e-03 -4.9883 permil R(13C) HCO3- 1.11595e-02 -1.8526 permil - R(14C) HCO3- 1.09041e-13 9.2731 pmc + R(14C) HCO3- 1.09042e-13 9.2731 pmc R(18O) CO3-2 1.99520e-03 -4.9883 permil R(13C) CO3-2 1.11435e-02 -3.285 permil - R(14C) CO3-2 1.08728e-13 9.2465 pmc + R(14C) CO3-2 1.08729e-13 9.2466 pmc R(18O) Calcite 2.05264e-03 23.658 permil R(13C) Calcite 1.11816e-02 0.12441 permil - R(14C) Calcite 1.09473e-13 9.3099 pmc + R(14C) Calcite 1.09474e-13 9.3099 pmc --------------------------------Isotope Alphas--------------------------------- @@ -45534,12 +45524,12 @@ Calcite 3.16e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2705e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2534e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 +Alpha 18O HCO3-/H2O(l) 1 6.6613e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5177e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5287e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -45559,14 +45549,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.273 Adjusted to redox equilibrium + pe = 11.464 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -45581,14 +45571,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.697 -124.696 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.222 -126.221 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -45596,9 +45586,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -45606,50 +45596,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.251e-40 - H2 2.125e-40 2.129e-40 -39.673 -39.672 0.001 (0) -O(0) 1.836e-13 - O2 9.145e-14 9.160e-14 -13.039 -13.038 0.001 (0) - O[18O] 3.649e-16 3.655e-16 -15.438 -15.437 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.054 -40.053 0.001 (0) +O(0) 1.063e-12 + O2 5.292e-13 5.301e-13 -12.276 -12.276 0.001 (0) + O[18O] 2.112e-15 2.115e-15 -14.675 -14.675 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.653 -126.653 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.178 -128.177 0.001 (0) [13C](4) 6.507e-05 H[13C]O3- 5.249e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.103e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.589e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.121e-08 2.187e-08 -7.506 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.211e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.667 -137.666 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.192 -139.191 0.001 (0) [14C](4) 6.349e-16 H[14C]O3- 5.129e-16 4.692e-16 -15.290 -15.329 -0.039 (0) [14C]O2 1.067e-16 1.069e-16 -15.972 -15.971 0.001 (0) CaH[14C]O3+ 1.083e-17 9.935e-18 -16.965 -17.003 -0.037 (0) - H[14C]O2[18O]- 1.023e-18 9.362e-19 -17.990 -18.029 -0.039 (0) - H[14C]O[18O]O- 1.023e-18 9.362e-19 -17.990 -18.029 -0.039 (0) H[14C][18O]O2- 1.023e-18 9.362e-19 -17.990 -18.029 -0.039 (0) + H[14C]O[18O]O- 1.023e-18 9.362e-19 -17.990 -18.029 -0.039 (0) + H[14C]O2[18O]- 1.023e-18 9.362e-19 -17.990 -18.029 -0.039 (0) Ca[14C]O3 5.937e-19 5.947e-19 -18.226 -18.226 0.001 (0) [14C]O[18O] 4.438e-19 4.445e-19 -18.353 -18.352 0.001 (0) [14C]O3-2 3.046e-19 2.134e-19 -18.516 -18.671 -0.155 (0) CaH[14C]O2[18O]+ 2.161e-20 1.982e-20 -19.665 -19.703 -0.037 (0) - CaH[14C]O[18O]O+ 2.161e-20 1.982e-20 -19.665 -19.703 -0.037 (0) CaH[14C][18O]O2+ 2.161e-20 1.982e-20 -19.665 -19.703 -0.037 (0) + CaH[14C]O[18O]O+ 2.161e-20 1.982e-20 -19.665 -19.703 -0.037 (0) Ca[14C]O2[18O] 3.554e-21 3.560e-21 -20.449 -20.449 0.001 (0) H[14C]O[18O]2- 2.042e-21 1.868e-21 -20.690 -20.729 -0.039 (0) H[14C][18O]2O- 2.042e-21 1.868e-21 -20.690 -20.729 -0.039 (0) @@ -45658,29 +45648,29 @@ O(0) 1.836e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.657e-16 - O[18O] 3.649e-16 3.655e-16 -15.438 -15.437 0.001 (0) - [18O]2 3.640e-19 3.646e-19 -18.439 -18.438 0.001 (0) +[18O](0) 2.116e-15 + O[18O] 2.112e-15 2.115e-15 -14.675 -14.675 0.001 (0) + [18O]2 2.107e-18 2.110e-18 -17.676 -17.676 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.79 -126.65 -2.86 [13C]H4 + [13C]H4(g) -125.32 -128.18 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.87 -21.37 -1.50 [14C][18O]2 - [14C]H4(g) -134.81 -137.67 -2.86 [14C]H4 + [14C]H4(g) -136.33 -139.19 -2.86 [14C]H4 [14C]O2(g) -14.50 -15.97 -1.47 [14C]O2 [14C]O[18O](g) -16.88 -18.67 -1.79 [14C]O[18O] - [18O]2(g) -16.15 -18.44 -2.29 [18O]2 + [18O]2(g) -15.39 -17.68 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -45694,14 +45684,14 @@ O(0) 1.836e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.84 -124.70 -2.86 CH4 + CH4(g) -123.36 -126.22 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.52 -39.67 -3.15 H2 + H2(g) -36.90 -40.05 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.15 -13.04 -2.89 O2 - O[18O](g) -12.85 -15.74 -2.89 O[18O] + O2(g) -9.38 -12.28 -2.89 O2 + O[18O](g) -12.08 -14.98 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -45765,23 +45755,23 @@ Calcite 3.21e-02 R(18O) 1.99520e-03 -4.9867 permil R(13C) 1.11433e-02 -3.3031 permil - R(14C) 1.07286e-13 9.1238 pmc + R(14C) 1.07287e-13 9.1239 pmc R(18O) H2O(l) 1.99520e-03 -4.9882 permil R(18O) OH- 1.92123e-03 -41.876 permil R(18O) H3O+ 2.04133e-03 18.02 permil R(18O) O2(aq) 1.99520e-03 -4.9882 permil R(13C) CO2(aq) 1.10635e-02 -10.436 permil - R(14C) CO2(aq) 1.05755e-13 8.9936 pmc + R(14C) CO2(aq) 1.05755e-13 8.9937 pmc R(18O) CO2(aq) 2.07916e-03 36.886 permil R(18O) HCO3- 1.99520e-03 -4.9882 permil R(13C) HCO3- 1.11598e-02 -1.8269 permil R(14C) HCO3- 1.07603e-13 9.1508 pmc R(18O) CO3-2 1.99520e-03 -4.9882 permil R(13C) CO3-2 1.11438e-02 -3.2594 permil - R(14C) CO3-2 1.07294e-13 9.1245 pmc + R(14C) CO3-2 1.07295e-13 9.1246 pmc R(18O) Calcite 2.05264e-03 23.658 permil R(13C) Calcite 1.11819e-02 0.15009 permil - R(14C) Calcite 1.08029e-13 9.1871 pmc + R(14C) Calcite 1.08030e-13 9.1871 pmc --------------------------------Isotope Alphas--------------------------------- @@ -45791,12 +45781,12 @@ Calcite 3.21e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2532e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2684e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6904e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7013e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -45816,14 +45806,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.280 Adjusted to redox equilibrium + pe = 11.463 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -45838,24 +45828,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.754 -124.753 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.215 -126.214 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -45863,23 +45853,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.115e-40 - H2 2.057e-40 2.061e-40 -39.687 -39.686 0.001 (0) -O(0) 1.960e-13 - O2 9.761e-14 9.777e-14 -13.010 -13.010 0.001 (0) - O[18O] 3.895e-16 3.902e-16 -15.409 -15.409 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.052 -40.051 0.001 (0) +O(0) 1.054e-12 + O2 5.248e-13 5.256e-13 -12.280 -12.279 0.001 (0) + O[18O] 2.094e-15 2.097e-15 -14.679 -14.678 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.710 -126.709 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.171 -128.170 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.249e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.581e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.589e-08 -7.339 -7.338 0.001 (0) @@ -45888,56 +45878,56 @@ O(0) 1.960e-13 CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.729 -137.729 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.190 -139.190 0.001 (0) [14C](4) 6.265e-16 H[14C]O3- 5.061e-16 4.630e-16 -15.296 -15.334 -0.039 (0) [14C]O2 1.053e-16 1.055e-16 -15.978 -15.977 0.001 (0) CaH[14C]O3+ 1.069e-17 9.804e-18 -16.971 -17.009 -0.037 (0) - H[14C]O2[18O]- 1.010e-18 9.238e-19 -17.996 -18.034 -0.039 (0) - H[14C]O[18O]O- 1.010e-18 9.238e-19 -17.996 -18.034 -0.039 (0) H[14C][18O]O2- 1.010e-18 9.238e-19 -17.996 -18.034 -0.039 (0) + H[14C]O[18O]O- 1.010e-18 9.238e-19 -17.996 -18.034 -0.039 (0) + H[14C]O2[18O]- 1.010e-18 9.238e-19 -17.996 -18.034 -0.039 (0) Ca[14C]O3 5.859e-19 5.869e-19 -18.232 -18.231 0.001 (0) [14C]O[18O] 4.379e-19 4.386e-19 -18.359 -18.358 0.001 (0) [14C]O3-2 3.006e-19 2.106e-19 -18.522 -18.677 -0.155 (0) CaH[14C]O2[18O]+ 2.132e-20 1.956e-20 -19.671 -19.709 -0.037 (0) - CaH[14C]O[18O]O+ 2.132e-20 1.956e-20 -19.671 -19.709 -0.037 (0) CaH[14C][18O]O2+ 2.132e-20 1.956e-20 -19.671 -19.709 -0.037 (0) + CaH[14C]O[18O]O+ 2.132e-20 1.956e-20 -19.671 -19.709 -0.037 (0) Ca[14C]O2[18O] 3.507e-21 3.513e-21 -20.455 -20.454 0.001 (0) - H[14C]O[18O]2- 2.015e-21 1.843e-21 -20.696 -20.734 -0.039 (0) H[14C][18O]2O- 2.015e-21 1.843e-21 -20.696 -20.734 -0.039 (0) H[14C][18O]O[18O]- 2.015e-21 1.843e-21 -20.696 -20.734 -0.039 (0) + H[14C]O[18O]2- 2.015e-21 1.843e-21 -20.696 -20.734 -0.039 (0) [14C]O2[18O]-2 1.799e-21 1.260e-21 -20.745 -20.900 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.903e-16 - O[18O] 3.895e-16 3.902e-16 -15.409 -15.409 0.001 (0) - [18O]2 3.886e-19 3.892e-19 -18.411 -18.410 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.098e-15 + O[18O] 2.094e-15 2.097e-15 -14.679 -14.678 0.001 (0) + [18O]2 2.089e-18 2.092e-18 -17.680 -17.679 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.85 -126.71 -2.86 [13C]H4 + [13C]H4(g) -125.31 -128.17 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.87 -21.38 -1.50 [14C][18O]2 - [14C]H4(g) -134.87 -137.73 -2.86 [14C]H4 + [14C]H4(g) -136.33 -139.19 -2.86 [14C]H4 [14C]O2(g) -14.51 -15.98 -1.47 [14C]O2 [14C]O[18O](g) -16.89 -18.68 -1.79 [14C]O[18O] - [18O]2(g) -16.12 -18.41 -2.29 [18O]2 + [18O]2(g) -15.39 -17.68 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -45951,14 +45941,14 @@ O(0) 1.960e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.89 -124.75 -2.86 CH4 + CH4(g) -123.35 -126.21 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.54 -39.69 -3.15 H2 + H2(g) -36.90 -40.05 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.12 -13.01 -2.89 O2 - O[18O](g) -12.82 -15.71 -2.89 O[18O] + O2(g) -9.39 -12.28 -2.89 O2 + O[18O](g) -12.09 -14.98 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -46022,23 +46012,23 @@ Calcite 3.26e-02 R(18O) 1.99520e-03 -4.9865 permil R(13C) 1.11435e-02 -3.2782 permil - R(14C) 1.05889e-13 9.005 pmc + R(14C) 1.05890e-13 9.0051 pmc R(18O) H2O(l) 1.99520e-03 -4.988 permil R(18O) OH- 1.92123e-03 -41.875 permil R(18O) H3O+ 2.04133e-03 18.02 permil R(18O) O2(aq) 1.99520e-03 -4.988 permil R(13C) CO2(aq) 1.10638e-02 -10.411 permil - R(14C) CO2(aq) 1.04378e-13 8.8765 pmc + R(14C) CO2(aq) 1.04378e-13 8.8766 pmc R(18O) CO2(aq) 2.07916e-03 36.886 permil R(18O) HCO3- 1.99520e-03 -4.988 permil R(13C) HCO3- 1.11601e-02 -1.802 permil - R(14C) HCO3- 1.06202e-13 9.0316 pmc + R(14C) HCO3- 1.06202e-13 9.0317 pmc R(18O) CO3-2 1.99520e-03 -4.988 permil R(13C) CO3-2 1.11440e-02 -3.2345 permil - R(14C) CO3-2 1.05897e-13 9.0057 pmc + R(14C) CO3-2 1.05898e-13 9.0058 pmc R(18O) Calcite 2.05264e-03 23.658 permil R(13C) Calcite 1.11822e-02 0.1751 permil - R(14C) Calcite 1.06623e-13 9.0674 pmc + R(14C) Calcite 1.06624e-13 9.0675 pmc --------------------------------Isotope Alphas--------------------------------- @@ -46048,12 +46038,12 @@ Calcite 3.26e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.261e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.243e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.9944e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5572e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -46073,14 +46063,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.288 Adjusted to redox equilibrium + pe = 11.461 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -46095,14 +46085,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.815 -124.814 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.197 -126.196 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -46110,9 +46100,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -46120,81 +46110,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.972e-40 - H2 1.986e-40 1.989e-40 -39.702 -39.701 0.001 (0) -O(0) 2.103e-13 - O2 1.048e-13 1.049e-13 -12.980 -12.979 0.001 (0) - O[18O] 4.180e-16 4.187e-16 -15.379 -15.378 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.047 -40.047 0.001 (0) +O(0) 1.032e-12 + O2 5.141e-13 5.150e-13 -12.289 -12.288 0.001 (0) + O[18O] 2.052e-15 2.055e-15 -14.688 -14.687 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.771 -126.770 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.153 -128.152 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.249e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.581e-08 4.589e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.796 -137.796 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.178 -139.178 0.001 (0) [14C](4) 6.184e-16 H[14C]O3- 4.995e-16 4.570e-16 -15.301 -15.340 -0.039 (0) [14C]O2 1.039e-16 1.041e-16 -15.983 -15.983 0.001 (0) CaH[14C]O3+ 1.055e-17 9.676e-18 -16.977 -17.014 -0.037 (0) - H[14C]O2[18O]- 9.966e-19 9.118e-19 -18.001 -18.040 -0.039 (0) - H[14C]O[18O]O- 9.966e-19 9.118e-19 -18.001 -18.040 -0.039 (0) - H[14C][18O]O2- 9.966e-19 9.118e-19 -18.001 -18.040 -0.039 (0) + H[14C][18O]O2- 9.967e-19 9.118e-19 -18.001 -18.040 -0.039 (0) + H[14C]O[18O]O- 9.967e-19 9.118e-19 -18.001 -18.040 -0.039 (0) + H[14C]O2[18O]- 9.967e-19 9.118e-19 -18.001 -18.040 -0.039 (0) Ca[14C]O3 5.783e-19 5.792e-19 -18.238 -18.237 0.001 (0) [14C]O[18O] 4.322e-19 4.329e-19 -18.364 -18.364 0.001 (0) [14C]O3-2 2.966e-19 2.078e-19 -18.528 -18.682 -0.155 (0) CaH[14C]O2[18O]+ 2.105e-20 1.931e-20 -19.677 -19.714 -0.037 (0) - CaH[14C]O[18O]O+ 2.105e-20 1.931e-20 -19.677 -19.714 -0.037 (0) CaH[14C][18O]O2+ 2.105e-20 1.931e-20 -19.677 -19.714 -0.037 (0) + CaH[14C]O[18O]O+ 2.105e-20 1.931e-20 -19.677 -19.714 -0.037 (0) Ca[14C]O2[18O] 3.461e-21 3.467e-21 -20.461 -20.460 0.001 (0) + H[14C][18O]O[18O]- 1.989e-21 1.819e-21 -20.701 -20.740 -0.039 (0) H[14C]O[18O]2- 1.989e-21 1.819e-21 -20.701 -20.740 -0.039 (0) H[14C][18O]2O- 1.989e-21 1.819e-21 -20.701 -20.740 -0.039 (0) - H[14C][18O]O[18O]- 1.989e-21 1.819e-21 -20.701 -20.740 -0.039 (0) [14C]O2[18O]-2 1.776e-21 1.244e-21 -20.751 -20.905 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.188e-16 - O[18O] 4.180e-16 4.187e-16 -15.379 -15.378 0.001 (0) - [18O]2 4.170e-19 4.177e-19 -18.380 -18.379 0.001 (0) +[18O](0) 2.056e-15 + O[18O] 2.052e-15 2.055e-15 -14.688 -14.687 0.001 (0) + [18O]2 2.047e-18 2.050e-18 -17.689 -17.688 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.91 -126.77 -2.86 [13C]H4 + [13C]H4(g) -125.29 -128.15 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.88 -21.38 -1.50 [14C][18O]2 - [14C]H4(g) -134.94 -137.80 -2.86 [14C]H4 + [14C]H4(g) -136.32 -139.18 -2.86 [14C]H4 [14C]O2(g) -14.51 -15.98 -1.47 [14C]O2 [14C]O[18O](g) -16.90 -18.68 -1.79 [14C]O[18O] - [18O]2(g) -16.09 -18.38 -2.29 [18O]2 + [18O]2(g) -15.40 -17.69 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -46208,14 +46198,14 @@ O(0) 2.103e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.95 -124.81 -2.86 CH4 + CH4(g) -123.34 -126.20 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.55 -39.70 -3.15 H2 + H2(g) -36.90 -40.05 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.09 -12.98 -2.89 O2 - O[18O](g) -12.79 -15.68 -2.89 O[18O] + O2(g) -9.40 -12.29 -2.89 O2 + O[18O](g) -12.10 -14.99 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -46279,23 +46269,23 @@ Calcite 3.31e-02 R(18O) 1.99520e-03 -4.9864 permil R(13C) 1.11438e-02 -3.2539 permil - R(14C) 1.04528e-13 8.8893 pmc + R(14C) 1.04529e-13 8.8894 pmc R(18O) H2O(l) 1.99520e-03 -4.9879 permil R(18O) OH- 1.92123e-03 -41.875 permil R(18O) H3O+ 2.04133e-03 18.02 permil R(18O) O2(aq) 1.99520e-03 -4.9879 permil R(13C) CO2(aq) 1.10641e-02 -10.387 permil - R(14C) CO2(aq) 1.03036e-13 8.7624 pmc + R(14C) CO2(aq) 1.03037e-13 8.7625 pmc R(18O) CO2(aq) 2.07916e-03 36.886 permil R(18O) HCO3- 1.99520e-03 -4.9879 permil R(13C) HCO3- 1.11603e-02 -1.7777 permil - R(14C) HCO3- 1.04837e-13 8.9156 pmc + R(14C) HCO3- 1.04838e-13 8.9156 pmc R(18O) CO3-2 1.99520e-03 -4.9879 permil R(13C) CO3-2 1.11443e-02 -3.2102 permil - R(14C) CO3-2 1.04536e-13 8.89 pmc + R(14C) CO3-2 1.04537e-13 8.89 pmc R(18O) Calcite 2.05264e-03 23.659 permil R(13C) Calcite 1.11824e-02 0.19946 permil - R(14C) Calcite 1.05253e-13 8.9509 pmc + R(14C) Calcite 1.05253e-13 8.951 pmc --------------------------------Isotope Alphas--------------------------------- @@ -46305,12 +46295,12 @@ Calcite 3.31e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.263e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2439e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7794e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.584e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -46330,14 +46320,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.288 Adjusted to redox equilibrium + pe = 11.458 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -46352,24 +46342,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.812 -124.811 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.178 -126.177 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -46377,50 +46367,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.979e-40 - H2 1.989e-40 1.993e-40 -39.701 -39.701 0.001 (0) -O(0) 2.096e-13 - O2 1.044e-13 1.046e-13 -12.981 -12.981 0.001 (0) - O[18O] 4.166e-16 4.173e-16 -15.380 -15.380 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.043 -40.042 0.001 (0) +O(0) 1.010e-12 + O2 5.031e-13 5.039e-13 -12.298 -12.298 0.001 (0) + O[18O] 2.007e-15 2.011e-15 -14.697 -14.697 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.768 -126.768 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.134 -128.133 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.249e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.108e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.589e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.642e-10 3.648e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.799 -137.798 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.165 -139.164 0.001 (0) [14C](4) 6.104e-16 H[14C]O3- 4.931e-16 4.511e-16 -15.307 -15.346 -0.039 (0) [14C]O2 1.026e-16 1.028e-16 -15.989 -15.988 0.001 (0) CaH[14C]O3+ 1.041e-17 9.552e-18 -16.982 -17.020 -0.037 (0) - H[14C]O2[18O]- 9.838e-19 9.001e-19 -18.007 -18.046 -0.039 (0) - H[14C]O[18O]O- 9.838e-19 9.001e-19 -18.007 -18.046 -0.039 (0) H[14C][18O]O2- 9.838e-19 9.001e-19 -18.007 -18.046 -0.039 (0) + H[14C]O[18O]O- 9.838e-19 9.001e-19 -18.007 -18.046 -0.039 (0) + H[14C]O2[18O]- 9.838e-19 9.001e-19 -18.007 -18.046 -0.039 (0) Ca[14C]O3 5.708e-19 5.718e-19 -18.243 -18.243 0.001 (0) [14C]O[18O] 4.267e-19 4.274e-19 -18.370 -18.369 0.001 (0) [14C]O3-2 2.928e-19 2.051e-19 -18.533 -18.688 -0.155 (0) CaH[14C]O2[18O]+ 2.078e-20 1.906e-20 -19.682 -19.720 -0.037 (0) - CaH[14C]O[18O]O+ 2.078e-20 1.906e-20 -19.682 -19.720 -0.037 (0) CaH[14C][18O]O2+ 2.078e-20 1.906e-20 -19.682 -19.720 -0.037 (0) + CaH[14C]O[18O]O+ 2.078e-20 1.906e-20 -19.682 -19.720 -0.037 (0) Ca[14C]O2[18O] 3.417e-21 3.422e-21 -20.466 -20.466 0.001 (0) H[14C]O[18O]2- 1.963e-21 1.796e-21 -20.707 -20.746 -0.039 (0) H[14C][18O]2O- 1.963e-21 1.796e-21 -20.707 -20.746 -0.039 (0) @@ -46429,29 +46419,29 @@ O(0) 2.096e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.174e-16 - O[18O] 4.166e-16 4.173e-16 -15.380 -15.380 0.001 (0) - [18O]2 4.156e-19 4.163e-19 -18.381 -18.381 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 2.011e-15 + O[18O] 2.007e-15 2.011e-15 -14.697 -14.697 0.001 (0) + [18O]2 2.003e-18 2.006e-18 -17.698 -17.698 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.91 -126.77 -2.86 [13C]H4 + [13C]H4(g) -125.27 -128.13 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.88 -21.39 -1.50 [14C][18O]2 - [14C]H4(g) -134.94 -137.80 -2.86 [14C]H4 + [14C]H4(g) -136.30 -139.16 -2.86 [14C]H4 [14C]O2(g) -14.52 -15.99 -1.47 [14C]O2 [14C]O[18O](g) -16.90 -18.69 -1.79 [14C]O[18O] - [18O]2(g) -16.09 -18.38 -2.29 [18O]2 + [18O]2(g) -15.41 -17.70 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -46465,14 +46455,14 @@ O(0) 2.096e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.95 -124.81 -2.86 CH4 + CH4(g) -123.32 -126.18 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.55 -39.70 -3.15 H2 + H2(g) -36.89 -40.04 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.09 -12.98 -2.89 O2 - O[18O](g) -12.79 -15.68 -2.89 O[18O] + O2(g) -9.41 -12.30 -2.89 O2 + O[18O](g) -12.11 -15.00 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -46536,23 +46526,23 @@ Calcite 3.36e-02 R(18O) 1.99520e-03 -4.9862 permil R(13C) 1.11441e-02 -3.2302 permil - R(14C) 1.03202e-13 8.7765 pmc + R(14C) 1.03202e-13 8.7766 pmc R(18O) H2O(l) 1.99520e-03 -4.9878 permil R(18O) OH- 1.92123e-03 -41.875 permil R(18O) H3O+ 2.04133e-03 18.02 permil R(18O) O2(aq) 1.99520e-03 -4.9878 permil R(13C) CO2(aq) 1.10643e-02 -10.364 permil - R(14C) CO2(aq) 1.01729e-13 8.6512 pmc + R(14C) CO2(aq) 1.01730e-13 8.6513 pmc R(18O) CO2(aq) 2.07916e-03 36.886 permil R(18O) HCO3- 1.99520e-03 -4.9878 permil R(13C) HCO3- 1.11606e-02 -1.754 permil - R(14C) HCO3- 1.03507e-13 8.8024 pmc + R(14C) HCO3- 1.03507e-13 8.8025 pmc R(18O) CO3-2 1.99520e-03 -4.9878 permil R(13C) CO3-2 1.11446e-02 -3.1865 permil R(14C) CO3-2 1.03210e-13 8.7772 pmc R(18O) Calcite 2.05264e-03 23.659 permil R(13C) Calcite 1.11827e-02 0.22321 permil - R(14C) Calcite 1.03917e-13 8.8373 pmc + R(14C) Calcite 1.03918e-13 8.8374 pmc --------------------------------Isotope Alphas--------------------------------- @@ -46562,12 +46552,12 @@ Calcite 3.36e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.226e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2723e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5852e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.4578e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -46587,14 +46577,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.278 Adjusted to redox equilibrium + pe = 11.458 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -46609,13 +46599,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.733 -124.732 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.174 -126.174 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -46624,9 +46614,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -46634,23 +46624,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.165e-40 - H2 2.082e-40 2.086e-40 -39.681 -39.681 0.001 (0) -O(0) 1.913e-13 - O2 9.527e-14 9.543e-14 -13.021 -13.020 0.001 (0) - O[18O] 3.802e-16 3.808e-16 -15.420 -15.419 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.042 -40.041 0.001 (0) +O(0) 1.006e-12 + O2 5.010e-13 5.018e-13 -12.300 -12.299 0.001 (0) + O[18O] 1.999e-15 2.003e-15 -14.699 -14.698 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.689 -126.688 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.130 -128.130 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.249e-05 4.803e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.589e-08 -7.339 -7.338 0.001 (0) @@ -46659,56 +46649,56 @@ O(0) 1.913e-13 CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.725 -137.725 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.167 -139.166 0.001 (0) [14C](4) 6.027e-16 H[14C]O3- 4.868e-16 4.454e-16 -15.313 -15.351 -0.039 (0) [14C]O2 1.013e-16 1.015e-16 -15.994 -15.994 0.001 (0) CaH[14C]O3+ 1.028e-17 9.431e-18 -16.988 -17.025 -0.037 (0) - H[14C]O2[18O]- 9.714e-19 8.887e-19 -18.013 -18.051 -0.039 (0) - H[14C]O[18O]O- 9.714e-19 8.887e-19 -18.013 -18.051 -0.039 (0) H[14C][18O]O2- 9.714e-19 8.887e-19 -18.013 -18.051 -0.039 (0) + H[14C]O[18O]O- 9.714e-19 8.887e-19 -18.013 -18.051 -0.039 (0) + H[14C]O2[18O]- 9.714e-19 8.887e-19 -18.013 -18.051 -0.039 (0) Ca[14C]O3 5.636e-19 5.645e-19 -18.249 -18.248 0.001 (0) [14C]O[18O] 4.212e-19 4.219e-19 -18.375 -18.375 0.001 (0) [14C]O3-2 2.891e-19 2.025e-19 -18.539 -18.693 -0.155 (0) CaH[14C]O2[18O]+ 2.051e-20 1.882e-20 -19.688 -19.725 -0.037 (0) - CaH[14C]O[18O]O+ 2.051e-20 1.882e-20 -19.688 -19.725 -0.037 (0) CaH[14C][18O]O2+ 2.051e-20 1.882e-20 -19.688 -19.725 -0.037 (0) + CaH[14C]O[18O]O+ 2.051e-20 1.882e-20 -19.688 -19.725 -0.037 (0) Ca[14C]O2[18O] 3.373e-21 3.379e-21 -20.472 -20.471 0.001 (0) - H[14C]O[18O]2- 1.938e-21 1.773e-21 -20.713 -20.751 -0.039 (0) H[14C][18O]2O- 1.938e-21 1.773e-21 -20.713 -20.751 -0.039 (0) H[14C][18O]O[18O]- 1.938e-21 1.773e-21 -20.713 -20.751 -0.039 (0) - [14C]O2[18O]-2 1.730e-21 1.212e-21 -20.762 -20.916 -0.155 (0) + H[14C]O[18O]2- 1.938e-21 1.773e-21 -20.713 -20.751 -0.039 (0) + [14C]O2[18O]-2 1.731e-21 1.212e-21 -20.762 -20.916 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.809e-16 - O[18O] 3.802e-16 3.808e-16 -15.420 -15.419 0.001 (0) - [18O]2 3.793e-19 3.799e-19 -18.421 -18.420 0.001 (0) +[18O](0) 2.003e-15 + O[18O] 1.999e-15 2.003e-15 -14.699 -14.698 0.001 (0) + [18O]2 1.994e-18 1.998e-18 -17.700 -17.699 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.83 -126.69 -2.86 [13C]H4 + [13C]H4(g) -125.27 -128.13 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.89 -21.39 -1.50 [14C][18O]2 - [14C]H4(g) -134.86 -137.72 -2.86 [14C]H4 + [14C]H4(g) -136.31 -139.17 -2.86 [14C]H4 [14C]O2(g) -14.52 -15.99 -1.47 [14C]O2 [14C]O[18O](g) -16.91 -18.69 -1.79 [14C]O[18O] - [18O]2(g) -16.13 -18.42 -2.29 [18O]2 + [18O]2(g) -15.41 -17.70 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -46722,14 +46712,14 @@ O(0) 1.913e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.87 -124.73 -2.86 CH4 + CH4(g) -123.31 -126.17 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.53 -39.68 -3.15 H2 + H2(g) -36.89 -40.04 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.13 -13.02 -2.89 O2 - O[18O](g) -12.83 -15.72 -2.89 O[18O] + O2(g) -9.41 -12.30 -2.89 O2 + O[18O](g) -12.11 -15.00 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -46793,23 +46783,23 @@ Calcite 3.41e-02 R(18O) 1.99520e-03 -4.9861 permil R(13C) 1.11443e-02 -3.2072 permil - R(14C) 1.01909e-13 8.6665 pmc + R(14C) 1.01909e-13 8.6666 pmc R(18O) H2O(l) 1.99520e-03 -4.9876 permil R(18O) OH- 1.92123e-03 -41.875 permil R(18O) H3O+ 2.04133e-03 18.02 permil R(18O) O2(aq) 1.99520e-03 -4.9876 permil R(13C) CO2(aq) 1.10646e-02 -10.341 permil - R(14C) CO2(aq) 1.00454e-13 8.5428 pmc + R(14C) CO2(aq) 1.00455e-13 8.5429 pmc R(18O) CO2(aq) 2.07916e-03 36.887 permil R(18O) HCO3- 1.99520e-03 -4.9876 permil R(13C) HCO3- 1.11608e-02 -1.7309 permil - R(14C) HCO3- 1.02210e-13 8.6921 pmc + R(14C) HCO3- 1.02210e-13 8.6922 pmc R(18O) CO3-2 1.99520e-03 -4.9876 permil R(13C) CO3-2 1.11448e-02 -3.1635 permil - R(14C) CO3-2 1.01917e-13 8.6672 pmc + R(14C) CO3-2 1.01917e-13 8.6673 pmc R(18O) Calcite 2.05264e-03 23.659 permil R(13C) Calcite 1.11830e-02 0.24636 permil - R(14C) Calcite 1.02615e-13 8.7266 pmc + R(14C) Calcite 1.02616e-13 8.7267 pmc --------------------------------Isotope Alphas--------------------------------- @@ -46819,12 +46809,12 @@ Calcite 3.41e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2482e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2292e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.4329e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.648e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -46844,14 +46834,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.276 Adjusted to redox equilibrium + pe = 11.458 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -46866,24 +46856,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.720 -124.719 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.172 -126.171 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -46891,81 +46881,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.196e-40 - H2 2.098e-40 2.102e-40 -39.678 -39.677 0.001 (0) -O(0) 1.884e-13 - O2 9.385e-14 9.400e-14 -13.028 -13.027 0.001 (0) - O[18O] 3.745e-16 3.751e-16 -15.427 -15.426 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.041 -40.041 0.001 (0) +O(0) 1.003e-12 + O2 4.996e-13 5.005e-13 -12.301 -12.301 0.001 (0) + O[18O] 1.994e-15 1.997e-15 -14.700 -14.700 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.676 -126.675 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.128 -128.127 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.589e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.718 -137.717 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.170 -139.169 0.001 (0) [14C](4) 5.951e-16 H[14C]O3- 4.807e-16 4.398e-16 -15.318 -15.357 -0.039 (0) [14C]O2 1.000e-16 1.002e-16 -16.000 -15.999 0.001 (0) CaH[14C]O3+ 1.015e-17 9.313e-18 -16.993 -17.031 -0.037 (0) - H[14C]O2[18O]- 9.592e-19 8.775e-19 -18.018 -18.057 -0.039 (0) - H[14C]O[18O]O- 9.592e-19 8.775e-19 -18.018 -18.057 -0.039 (0) H[14C][18O]O2- 9.592e-19 8.775e-19 -18.018 -18.057 -0.039 (0) + H[14C]O[18O]O- 9.592e-19 8.775e-19 -18.018 -18.057 -0.039 (0) + H[14C]O2[18O]- 9.592e-19 8.775e-19 -18.018 -18.057 -0.039 (0) Ca[14C]O3 5.565e-19 5.574e-19 -18.255 -18.254 0.001 (0) [14C]O[18O] 4.160e-19 4.167e-19 -18.381 -18.380 0.001 (0) [14C]O3-2 2.855e-19 2.000e-19 -18.544 -18.699 -0.155 (0) CaH[14C]O2[18O]+ 2.025e-20 1.858e-20 -19.693 -19.731 -0.037 (0) - CaH[14C]O[18O]O+ 2.025e-20 1.858e-20 -19.693 -19.731 -0.037 (0) CaH[14C][18O]O2+ 2.025e-20 1.858e-20 -19.693 -19.731 -0.037 (0) + CaH[14C]O[18O]O+ 2.025e-20 1.858e-20 -19.693 -19.731 -0.037 (0) Ca[14C]O2[18O] 3.331e-21 3.337e-21 -20.477 -20.477 0.001 (0) + H[14C][18O]O[18O]- 1.914e-21 1.751e-21 -20.718 -20.757 -0.039 (0) H[14C]O[18O]2- 1.914e-21 1.751e-21 -20.718 -20.757 -0.039 (0) H[14C][18O]2O- 1.914e-21 1.751e-21 -20.718 -20.757 -0.039 (0) - H[14C][18O]O[18O]- 1.914e-21 1.751e-21 -20.718 -20.757 -0.039 (0) [14C]O2[18O]-2 1.709e-21 1.197e-21 -20.767 -20.922 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.752e-16 - O[18O] 3.745e-16 3.751e-16 -15.427 -15.426 0.001 (0) - [18O]2 3.736e-19 3.742e-19 -18.428 -18.427 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.998e-15 + O[18O] 1.994e-15 1.997e-15 -14.700 -14.700 0.001 (0) + [18O]2 1.989e-18 1.992e-18 -17.701 -17.701 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.81 -126.67 -2.86 [13C]H4 + [13C]H4(g) -125.27 -128.13 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.90 -21.40 -1.50 [14C][18O]2 - [14C]H4(g) -134.86 -137.72 -2.86 [14C]H4 + [14C]H4(g) -136.31 -139.17 -2.86 [14C]H4 [14C]O2(g) -14.53 -16.00 -1.47 [14C]O2 [14C]O[18O](g) -16.91 -18.70 -1.79 [14C]O[18O] - [18O]2(g) -16.14 -18.43 -2.29 [18O]2 + [18O]2(g) -15.41 -17.70 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -46979,14 +46969,14 @@ O(0) 1.884e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.86 -124.72 -2.86 CH4 + CH4(g) -123.31 -126.17 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.53 -39.68 -3.15 H2 + H2(g) -36.89 -40.04 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.13 -13.03 -2.89 O2 - O[18O](g) -12.83 -15.73 -2.89 O[18O] + O2(g) -9.41 -12.30 -2.89 O2 + O[18O](g) -12.11 -15.00 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -47056,17 +47046,17 @@ Calcite 3.46e-02 R(18O) H3O+ 2.04133e-03 18.02 permil R(18O) O2(aq) 1.99520e-03 -4.9875 permil R(13C) CO2(aq) 1.10648e-02 -10.318 permil - R(14C) CO2(aq) 9.92111e-14 8.4371 pmc + R(14C) CO2(aq) 9.92117e-14 8.4372 pmc R(18O) CO2(aq) 2.07917e-03 36.887 permil R(18O) HCO3- 1.99520e-03 -4.9875 permil R(13C) HCO3- 1.11611e-02 -1.7083 permil R(14C) HCO3- 1.00945e-13 8.5846 pmc R(18O) CO3-2 1.99520e-03 -4.9875 permil R(13C) CO3-2 1.11451e-02 -3.141 permil - R(14C) CO3-2 1.00655e-13 8.5599 pmc + R(14C) CO3-2 1.00656e-13 8.56 pmc R(18O) Calcite 2.05264e-03 23.659 permil R(13C) Calcite 1.11832e-02 0.26894 permil - R(14C) Calcite 1.01345e-13 8.6186 pmc + R(14C) Calcite 1.01346e-13 8.6187 pmc --------------------------------Isotope Alphas--------------------------------- @@ -47076,12 +47066,12 @@ Calcite 3.46e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2657e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2466e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.1102e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.577e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7233e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -47101,14 +47091,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.282 Adjusted to redox equilibrium + pe = 11.461 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -47123,14 +47113,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.766 -124.765 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.199 -126.198 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -47138,9 +47128,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -47148,50 +47138,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.086e-40 - H2 2.043e-40 2.046e-40 -39.690 -39.689 0.001 (0) -O(0) 1.988e-13 - O2 9.901e-14 9.917e-14 -13.004 -13.004 0.001 (0) - O[18O] 3.951e-16 3.957e-16 -15.403 -15.403 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.048 -40.047 0.001 (0) +O(0) 1.035e-12 + O2 5.155e-13 5.163e-13 -12.288 -12.287 0.001 (0) + O[18O] 2.057e-15 2.060e-15 -14.687 -14.686 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.722 -126.721 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.155 -128.154 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.582e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.589e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.769 -137.769 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.203 -139.202 0.001 (0) [14C](4) 5.878e-16 H[14C]O3- 4.748e-16 4.344e-16 -15.323 -15.362 -0.039 (0) - [14C]O2 9.879e-17 9.896e-17 -16.005 -16.005 0.001 (0) + [14C]O2 9.880e-17 9.896e-17 -16.005 -16.005 0.001 (0) CaH[14C]O3+ 1.003e-17 9.197e-18 -16.999 -17.036 -0.037 (0) - H[14C]O2[18O]- 9.473e-19 8.667e-19 -18.024 -18.062 -0.039 (0) - H[14C]O[18O]O- 9.473e-19 8.667e-19 -18.024 -18.062 -0.039 (0) H[14C][18O]O2- 9.473e-19 8.667e-19 -18.024 -18.062 -0.039 (0) + H[14C]O[18O]O- 9.473e-19 8.667e-19 -18.024 -18.062 -0.039 (0) + H[14C]O2[18O]- 9.473e-19 8.667e-19 -18.024 -18.062 -0.039 (0) Ca[14C]O3 5.496e-19 5.505e-19 -18.260 -18.259 0.001 (0) [14C]O[18O] 4.108e-19 4.115e-19 -18.386 -18.386 0.001 (0) [14C]O3-2 2.820e-19 1.975e-19 -18.550 -18.704 -0.155 (0) CaH[14C]O2[18O]+ 2.000e-20 1.835e-20 -19.699 -19.736 -0.037 (0) - CaH[14C]O[18O]O+ 2.000e-20 1.835e-20 -19.699 -19.736 -0.037 (0) CaH[14C][18O]O2+ 2.000e-20 1.835e-20 -19.699 -19.736 -0.037 (0) + CaH[14C]O[18O]O+ 2.000e-20 1.835e-20 -19.699 -19.736 -0.037 (0) Ca[14C]O2[18O] 3.290e-21 3.295e-21 -20.483 -20.482 0.001 (0) H[14C]O[18O]2- 1.890e-21 1.729e-21 -20.724 -20.762 -0.039 (0) H[14C][18O]2O- 1.890e-21 1.729e-21 -20.724 -20.762 -0.039 (0) @@ -47200,29 +47190,29 @@ O(0) 1.988e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.959e-16 - O[18O] 3.951e-16 3.957e-16 -15.403 -15.403 0.001 (0) - [18O]2 3.941e-19 3.948e-19 -18.404 -18.404 0.001 (0) +[18O](0) 2.061e-15 + O[18O] 2.057e-15 2.060e-15 -14.687 -14.686 0.001 (0) + [18O]2 2.052e-18 2.055e-18 -17.688 -17.687 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.86 -126.72 -2.86 [13C]H4 + [13C]H4(g) -125.29 -128.15 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.90 -21.40 -1.50 [14C][18O]2 - [14C]H4(g) -134.91 -137.77 -2.86 [14C]H4 + [14C]H4(g) -136.34 -139.20 -2.86 [14C]H4 [14C]O2(g) -14.54 -16.00 -1.47 [14C]O2 [14C]O[18O](g) -16.92 -18.70 -1.79 [14C]O[18O] - [18O]2(g) -16.11 -18.40 -2.29 [18O]2 + [18O]2(g) -15.40 -17.69 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -47236,14 +47226,14 @@ O(0) 1.988e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.91 -124.77 -2.86 CH4 + CH4(g) -123.34 -126.20 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.54 -39.69 -3.15 H2 + H2(g) -36.90 -40.05 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.11 -13.00 -2.89 O2 - O[18O](g) -12.81 -15.70 -2.89 O[18O] + O2(g) -9.39 -12.29 -2.89 O2 + O[18O](g) -12.09 -14.99 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -47307,23 +47297,23 @@ Calcite 3.51e-02 R(18O) 1.99520e-03 -4.9858 permil R(13C) 1.11448e-02 -3.1627 permil - R(14C) 9.94173e-14 8.4547 pmc + R(14C) 9.94179e-14 8.4547 pmc R(18O) H2O(l) 1.99520e-03 -4.9873 permil R(18O) OH- 1.92123e-03 -41.875 permil R(18O) H3O+ 2.04133e-03 18.021 permil R(18O) O2(aq) 1.99520e-03 -4.9873 permil R(13C) CO2(aq) 1.10651e-02 -10.297 permil - R(14C) CO2(aq) 9.79984e-14 8.334 pmc + R(14C) CO2(aq) 9.79990e-14 8.334 pmc R(18O) CO2(aq) 2.07917e-03 36.887 permil R(18O) HCO3- 1.99520e-03 -4.9873 permil R(13C) HCO3- 1.11613e-02 -1.6863 permil - R(14C) HCO3- 9.97109e-14 8.4796 pmc + R(14C) HCO3- 9.97116e-14 8.4797 pmc R(18O) CO3-2 1.99520e-03 -4.9873 permil R(13C) CO3-2 1.11453e-02 -3.119 permil - R(14C) CO3-2 9.94249e-14 8.4553 pmc + R(14C) CO3-2 9.94256e-14 8.4554 pmc R(18O) Calcite 2.05264e-03 23.659 permil R(13C) Calcite 1.11835e-02 0.29097 permil - R(14C) Calcite 1.00106e-13 8.5133 pmc + R(14C) Calcite 1.00107e-13 8.5133 pmc --------------------------------Isotope Alphas--------------------------------- @@ -47333,12 +47323,12 @@ Calcite 3.51e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2469e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2934e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.5503e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.798e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6028e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -47358,14 +47348,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.265 Adjusted to redox equilibrium + pe = 11.457 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -47380,24 +47370,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.632 -124.632 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.169 -126.168 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -47405,23 +47395,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.412e-40 - H2 2.206e-40 2.210e-40 -39.656 -39.656 0.001 (0) -O(0) 1.704e-13 - O2 8.488e-14 8.502e-14 -13.071 -13.070 0.001 (0) - O[18O] 3.387e-16 3.393e-16 -15.470 -15.469 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.040 -40.040 0.001 (0) +O(0) 9.995e-13 + O2 4.978e-13 4.986e-13 -12.303 -12.302 0.001 (0) + O[18O] 1.986e-15 1.990e-15 -14.702 -14.701 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.588 -126.588 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.125 -128.124 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.583e-08 -6.980 -7.019 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.583e-08 -6.980 -7.019 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.583e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.583e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.589e-08 -7.339 -7.338 0.001 (0) @@ -47430,56 +47420,56 @@ O(0) 1.704e-13 CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.641 -137.640 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.178 -139.177 0.001 (0) [14C](4) 5.806e-16 H[14C]O3- 4.690e-16 4.291e-16 -15.329 -15.367 -0.039 (0) [14C]O2 9.759e-17 9.775e-17 -16.011 -16.010 0.001 (0) CaH[14C]O3+ 9.904e-18 9.085e-18 -17.004 -17.042 -0.037 (0) - H[14C]O2[18O]- 9.357e-19 8.561e-19 -18.029 -18.067 -0.039 (0) - H[14C]O[18O]O- 9.357e-19 8.561e-19 -18.029 -18.067 -0.039 (0) H[14C][18O]O2- 9.357e-19 8.561e-19 -18.029 -18.067 -0.039 (0) + H[14C]O[18O]O- 9.357e-19 8.561e-19 -18.029 -18.067 -0.039 (0) + H[14C]O2[18O]- 9.357e-19 8.561e-19 -18.029 -18.067 -0.039 (0) Ca[14C]O3 5.429e-19 5.438e-19 -18.265 -18.265 0.001 (0) [14C]O[18O] 4.058e-19 4.065e-19 -18.392 -18.391 0.001 (0) [14C]O3-2 2.785e-19 1.951e-19 -18.555 -18.710 -0.155 (0) CaH[14C]O2[18O]+ 1.976e-20 1.813e-20 -19.704 -19.742 -0.037 (0) - CaH[14C]O[18O]O+ 1.976e-20 1.813e-20 -19.704 -19.742 -0.037 (0) CaH[14C][18O]O2+ 1.976e-20 1.813e-20 -19.704 -19.742 -0.037 (0) + CaH[14C]O[18O]O+ 1.976e-20 1.813e-20 -19.704 -19.742 -0.037 (0) Ca[14C]O2[18O] 3.250e-21 3.255e-21 -20.488 -20.487 0.001 (0) - H[14C]O[18O]2- 1.867e-21 1.708e-21 -20.729 -20.768 -0.039 (0) H[14C][18O]2O- 1.867e-21 1.708e-21 -20.729 -20.768 -0.039 (0) H[14C][18O]O[18O]- 1.867e-21 1.708e-21 -20.729 -20.768 -0.039 (0) + H[14C]O[18O]2- 1.867e-21 1.708e-21 -20.729 -20.768 -0.039 (0) [14C]O2[18O]-2 1.667e-21 1.168e-21 -20.778 -20.933 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.394e-16 - O[18O] 3.387e-16 3.393e-16 -15.470 -15.469 0.001 (0) - [18O]2 3.379e-19 3.384e-19 -18.471 -18.471 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.990e-15 + O[18O] 1.986e-15 1.990e-15 -14.702 -14.701 0.001 (0) + [18O]2 1.981e-18 1.985e-18 -17.703 -17.702 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.73 -126.59 -2.86 [13C]H4 + [13C]H4(g) -125.26 -128.12 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.91 -21.41 -1.50 [14C][18O]2 - [14C]H4(g) -134.78 -137.64 -2.86 [14C]H4 + [14C]H4(g) -136.32 -139.18 -2.86 [14C]H4 [14C]O2(g) -14.54 -16.01 -1.47 [14C]O2 [14C]O[18O](g) -16.92 -18.71 -1.79 [14C]O[18O] - [18O]2(g) -16.18 -18.47 -2.29 [18O]2 + [18O]2(g) -15.41 -17.70 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -47493,14 +47483,14 @@ O(0) 1.704e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.77 -124.63 -2.86 CH4 + CH4(g) -123.31 -126.17 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.51 -39.66 -3.15 H2 + H2(g) -36.89 -40.04 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.18 -13.07 -2.89 O2 - O[18O](g) -12.88 -15.77 -2.89 O[18O] + O2(g) -9.41 -12.30 -2.89 O2 + O[18O](g) -12.11 -15.00 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -47564,23 +47554,23 @@ Calcite 3.56e-02 R(18O) 1.99520e-03 -4.9857 permil R(13C) 1.11451e-02 -3.1413 permil - R(14C) 9.82167e-14 8.3526 pmc + R(14C) 9.82173e-14 8.3526 pmc R(18O) H2O(l) 1.99520e-03 -4.9872 permil R(18O) OH- 1.92123e-03 -41.875 permil R(18O) H3O+ 2.04134e-03 18.021 permil R(18O) O2(aq) 1.99520e-03 -4.9872 permil R(13C) CO2(aq) 1.10653e-02 -10.275 permil - R(14C) CO2(aq) 9.68149e-14 8.2333 pmc + R(14C) CO2(aq) 9.68155e-14 8.2334 pmc R(18O) CO2(aq) 2.07917e-03 36.887 permil R(18O) HCO3- 1.99520e-03 -4.9872 permil R(13C) HCO3- 1.11616e-02 -1.6649 permil - R(14C) HCO3- 9.85068e-14 8.3772 pmc + R(14C) HCO3- 9.85074e-14 8.3773 pmc R(18O) CO3-2 1.99520e-03 -4.9872 permil R(13C) CO3-2 1.11456e-02 -3.0976 permil - R(14C) CO3-2 9.82243e-14 8.3532 pmc + R(14C) CO3-2 9.82249e-14 8.3533 pmc R(18O) Calcite 2.05264e-03 23.659 permil R(13C) Calcite 1.11837e-02 0.31246 permil - R(14C) Calcite 9.88974e-14 8.4104 pmc + R(14C) Calcite 9.88980e-14 8.4105 pmc --------------------------------Isotope Alphas--------------------------------- @@ -47590,12 +47580,12 @@ Calcite 3.56e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2893e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2716e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.803e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8134e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -47615,14 +47605,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.262 Adjusted to redox equilibrium + pe = 11.455 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -47637,14 +47627,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.605 -124.604 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.152 -126.151 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -47652,9 +47642,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -47662,81 +47652,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.483e-40 - H2 2.242e-40 2.245e-40 -39.649 -39.649 0.001 (0) -O(0) 1.651e-13 - O2 8.222e-14 8.235e-14 -13.085 -13.084 0.001 (0) - O[18O] 3.281e-16 3.286e-16 -15.484 -15.483 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.036 -40.035 0.001 (0) +O(0) 9.800e-13 + O2 4.881e-13 4.889e-13 -12.312 -12.311 0.001 (0) + O[18O] 1.948e-15 1.951e-15 -14.711 -14.710 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.561 -126.560 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.108 -128.107 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.047e-07 9.583e-08 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.583e-08 -6.980 -7.019 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.583e-08 -6.980 -7.019 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.583e-08 -6.980 -7.019 -0.039 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.590e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.619 -137.618 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.166 -139.165 0.001 (0) [14C](4) 5.736e-16 H[14C]O3- 4.633e-16 4.239e-16 -15.334 -15.373 -0.039 (0) [14C]O2 9.641e-17 9.657e-17 -16.016 -16.015 0.001 (0) CaH[14C]O3+ 9.784e-18 8.975e-18 -17.009 -17.047 -0.037 (0) - H[14C]O2[18O]- 9.244e-19 8.457e-19 -18.034 -18.073 -0.039 (0) - H[14C]O[18O]O- 9.244e-19 8.457e-19 -18.034 -18.073 -0.039 (0) H[14C][18O]O2- 9.244e-19 8.457e-19 -18.034 -18.073 -0.039 (0) + H[14C]O[18O]O- 9.244e-19 8.457e-19 -18.034 -18.073 -0.039 (0) + H[14C]O2[18O]- 9.244e-19 8.457e-19 -18.034 -18.073 -0.039 (0) Ca[14C]O3 5.364e-19 5.372e-19 -18.271 -18.270 0.001 (0) [14C]O[18O] 4.009e-19 4.016e-19 -18.397 -18.396 0.001 (0) [14C]O3-2 2.751e-19 1.928e-19 -18.560 -18.715 -0.155 (0) CaH[14C]O2[18O]+ 1.952e-20 1.791e-20 -19.709 -19.747 -0.037 (0) - CaH[14C]O[18O]O+ 1.952e-20 1.791e-20 -19.709 -19.747 -0.037 (0) CaH[14C][18O]O2+ 1.952e-20 1.791e-20 -19.709 -19.747 -0.037 (0) + CaH[14C]O[18O]O+ 1.952e-20 1.791e-20 -19.709 -19.747 -0.037 (0) Ca[14C]O2[18O] 3.210e-21 3.216e-21 -20.493 -20.493 0.001 (0) + H[14C][18O]O[18O]- 1.844e-21 1.687e-21 -20.734 -20.773 -0.039 (0) H[14C]O[18O]2- 1.844e-21 1.687e-21 -20.734 -20.773 -0.039 (0) H[14C][18O]2O- 1.844e-21 1.687e-21 -20.734 -20.773 -0.039 (0) - H[14C][18O]O[18O]- 1.844e-21 1.687e-21 -20.734 -20.773 -0.039 (0) [14C]O2[18O]-2 1.647e-21 1.154e-21 -20.783 -20.938 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.287e-16 - O[18O] 3.281e-16 3.286e-16 -15.484 -15.483 0.001 (0) - [18O]2 3.273e-19 3.278e-19 -18.485 -18.484 0.001 (0) +[18O](0) 1.951e-15 + O[18O] 1.948e-15 1.951e-15 -14.711 -14.710 0.001 (0) + [18O]2 1.943e-18 1.946e-18 -17.712 -17.711 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.70 -126.56 -2.86 [13C]H4 + [13C]H4(g) -125.25 -128.11 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.91 -21.42 -1.50 [14C][18O]2 - [14C]H4(g) -134.76 -137.62 -2.86 [14C]H4 + [14C]H4(g) -136.31 -139.17 -2.86 [14C]H4 [14C]O2(g) -14.55 -16.02 -1.47 [14C]O2 [14C]O[18O](g) -16.93 -18.72 -1.79 [14C]O[18O] - [18O]2(g) -16.19 -18.48 -2.29 [18O]2 + [18O]2(g) -15.42 -17.71 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -47750,14 +47740,14 @@ O(0) 1.651e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.74 -124.60 -2.86 CH4 + CH4(g) -123.29 -126.15 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.50 -39.65 -3.15 H2 + H2(g) -36.89 -40.04 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.19 -13.08 -2.89 O2 - O[18O](g) -12.89 -15.78 -2.89 O[18O] + O2(g) -9.42 -12.31 -2.89 O2 + O[18O](g) -12.12 -15.01 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -47821,23 +47811,23 @@ Calcite 3.61e-02 R(18O) 1.99520e-03 -4.9856 permil R(13C) 1.11453e-02 -3.1204 permil - R(14C) 9.70448e-14 8.2529 pmc + R(14C) 9.70454e-14 8.2529 pmc R(18O) H2O(l) 1.99520e-03 -4.9871 permil R(18O) OH- 1.92123e-03 -41.875 permil R(18O) H3O+ 2.04134e-03 18.021 permil R(18O) O2(aq) 1.99520e-03 -4.9871 permil R(13C) CO2(aq) 1.10656e-02 -10.255 permil - R(14C) CO2(aq) 9.56597e-14 8.1351 pmc + R(14C) CO2(aq) 9.56603e-14 8.1352 pmc R(18O) CO2(aq) 2.07917e-03 36.887 permil R(18O) HCO3- 1.99520e-03 -4.9871 permil R(13C) HCO3- 1.11618e-02 -1.644 permil - R(14C) HCO3- 9.73314e-14 8.2773 pmc + R(14C) HCO3- 9.73320e-14 8.2773 pmc R(18O) CO3-2 1.99520e-03 -4.9871 permil R(13C) CO3-2 1.11458e-02 -3.0767 permil - R(14C) CO3-2 9.70523e-14 8.2535 pmc + R(14C) CO3-2 9.70529e-14 8.2536 pmc R(18O) Calcite 2.05264e-03 23.659 permil R(13C) Calcite 1.11839e-02 0.33345 permil - R(14C) Calcite 9.77174e-14 8.3101 pmc + R(14C) Calcite 9.77180e-14 8.3101 pmc --------------------------------Isotope Alphas--------------------------------- @@ -47847,12 +47837,12 @@ Calcite 3.61e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2639e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2795e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.6613e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5761e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7241e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -47872,14 +47862,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.267 Adjusted to redox equilibrium + pe = 11.454 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -47894,24 +47884,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.651 -124.650 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.141 -126.140 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -47919,50 +47909,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.366e-40 - H2 2.183e-40 2.187e-40 -39.661 -39.660 0.001 (0) -O(0) 1.740e-13 - O2 8.668e-14 8.682e-14 -13.062 -13.061 0.001 (0) - O[18O] 3.459e-16 3.464e-16 -15.461 -15.460 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.033 -40.033 0.001 (0) +O(0) 9.677e-13 + O2 4.819e-13 4.827e-13 -12.317 -12.316 0.001 (0) + O[18O] 1.923e-15 1.926e-15 -14.716 -14.715 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.607 -126.606 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.097 -128.096 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.590e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.670 -137.669 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.160 -139.159 0.001 (0) [14C](4) 5.667e-16 H[14C]O3- 4.578e-16 4.188e-16 -15.339 -15.378 -0.039 (0) - [14C]O2 9.526e-17 9.541e-17 -16.021 -16.020 0.001 (0) + [14C]O2 9.526e-17 9.542e-17 -16.021 -16.020 0.001 (0) CaH[14C]O3+ 9.667e-18 8.868e-18 -17.015 -17.052 -0.037 (0) - H[14C]O2[18O]- 9.134e-19 8.356e-19 -18.039 -18.078 -0.039 (0) - H[14C]O[18O]O- 9.134e-19 8.356e-19 -18.039 -18.078 -0.039 (0) H[14C][18O]O2- 9.134e-19 8.356e-19 -18.039 -18.078 -0.039 (0) + H[14C]O[18O]O- 9.134e-19 8.356e-19 -18.039 -18.078 -0.039 (0) + H[14C]O2[18O]- 9.134e-19 8.356e-19 -18.039 -18.078 -0.039 (0) Ca[14C]O3 5.300e-19 5.308e-19 -18.276 -18.275 0.001 (0) [14C]O[18O] 3.961e-19 3.968e-19 -18.402 -18.401 0.001 (0) [14C]O3-2 2.719e-19 1.905e-19 -18.566 -18.720 -0.155 (0) CaH[14C]O2[18O]+ 1.929e-20 1.769e-20 -19.715 -19.752 -0.037 (0) - CaH[14C]O[18O]O+ 1.929e-20 1.769e-20 -19.715 -19.752 -0.037 (0) CaH[14C][18O]O2+ 1.929e-20 1.769e-20 -19.715 -19.752 -0.037 (0) + CaH[14C]O[18O]O+ 1.929e-20 1.769e-20 -19.715 -19.752 -0.037 (0) Ca[14C]O2[18O] 3.172e-21 3.177e-21 -20.499 -20.498 0.001 (0) H[14C]O[18O]2- 1.822e-21 1.667e-21 -20.739 -20.778 -0.039 (0) H[14C][18O]2O- 1.822e-21 1.667e-21 -20.739 -20.778 -0.039 (0) @@ -47971,29 +47961,29 @@ O(0) 1.740e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.466e-16 - O[18O] 3.459e-16 3.464e-16 -15.461 -15.460 0.001 (0) - [18O]2 3.450e-19 3.456e-19 -18.462 -18.461 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.927e-15 + O[18O] 1.923e-15 1.926e-15 -14.716 -14.715 0.001 (0) + [18O]2 1.918e-18 1.922e-18 -17.717 -17.716 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.75 -126.61 -2.86 [13C]H4 + [13C]H4(g) -125.24 -128.10 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.92 -21.42 -1.50 [14C][18O]2 - [14C]H4(g) -134.81 -137.67 -2.86 [14C]H4 + [14C]H4(g) -136.30 -139.16 -2.86 [14C]H4 [14C]O2(g) -14.55 -16.02 -1.47 [14C]O2 [14C]O[18O](g) -16.93 -18.72 -1.79 [14C]O[18O] - [18O]2(g) -16.17 -18.46 -2.29 [18O]2 + [18O]2(g) -15.43 -17.72 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -48007,14 +47997,14 @@ O(0) 1.740e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.79 -124.65 -2.86 CH4 + CH4(g) -123.28 -126.14 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.51 -39.66 -3.15 H2 + H2(g) -36.88 -40.03 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.17 -13.06 -2.89 O2 - O[18O](g) -12.87 -15.76 -2.89 O[18O] + O2(g) -9.42 -12.32 -2.89 O2 + O[18O](g) -12.12 -15.02 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -48078,23 +48068,23 @@ Calcite 3.66e-02 R(18O) 1.99520e-03 -4.9854 permil R(13C) 1.11455e-02 -3.1 permil - R(14C) 9.59005e-14 8.1556 pmc + R(14C) 9.59011e-14 8.1556 pmc R(18O) H2O(l) 1.99520e-03 -4.9869 permil R(18O) OH- 1.92123e-03 -41.874 permil R(18O) H3O+ 2.04134e-03 18.021 permil R(18O) O2(aq) 1.99520e-03 -4.9869 permil R(13C) CO2(aq) 1.10658e-02 -10.234 permil - R(14C) CO2(aq) 9.45318e-14 8.0392 pmc + R(14C) CO2(aq) 9.45324e-14 8.0392 pmc R(18O) CO2(aq) 2.07917e-03 36.887 permil R(18O) HCO3- 1.99520e-03 -4.9869 permil R(13C) HCO3- 1.11620e-02 -1.6235 permil - R(14C) HCO3- 9.61838e-14 8.1797 pmc + R(14C) HCO3- 9.61844e-14 8.1797 pmc R(18O) CO3-2 1.99520e-03 -4.9869 permil R(13C) CO3-2 1.11460e-02 -3.0563 permil - R(14C) CO3-2 9.59079e-14 8.1562 pmc + R(14C) CO3-2 9.59085e-14 8.1563 pmc R(18O) Calcite 2.05264e-03 23.66 permil R(13C) Calcite 1.11842e-02 0.35394 permil - R(14C) Calcite 9.65651e-14 8.2121 pmc + R(14C) Calcite 9.65658e-14 8.2122 pmc --------------------------------Isotope Alphas--------------------------------- @@ -48104,12 +48094,12 @@ Calcite 3.66e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2373e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2523e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7204e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -48123,20 +48113,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.509e-05 6.490e-05 - [14C] 5.600e-16 5.584e-16 + [14C] 5.601e-16 5.584e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.237 Adjusted to redox equilibrium + pe = 11.451 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -48151,13 +48141,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.405 -124.404 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.121 -126.120 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -48166,9 +48156,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -48176,23 +48166,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.029e-40 - H2 2.515e-40 2.519e-40 -39.600 -39.599 0.001 (0) -O(0) 1.312e-13 - O2 6.534e-14 6.544e-14 -13.185 -13.184 0.001 (0) - O[18O] 2.607e-16 2.612e-16 -15.584 -15.583 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.029 -40.028 0.001 (0) +O(0) 9.460e-13 + O2 4.711e-13 4.719e-13 -12.327 -12.326 0.001 (0) + O[18O] 1.880e-15 1.883e-15 -14.726 -14.725 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.361 -126.360 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.077 -128.076 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.047e-07 9.583e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.590e-08 -7.339 -7.338 0.001 (0) @@ -48201,56 +48191,56 @@ O(0) 1.312e-13 CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.429 -137.429 0.001 (0) -[14C](4) 5.600e-16 + [14C]H4 0.000e+00 0.000e+00 -139.145 -139.145 0.001 (0) +[14C](4) 5.601e-16 H[14C]O3- 4.524e-16 4.139e-16 -15.344 -15.383 -0.039 (0) [14C]O2 9.414e-17 9.429e-17 -16.026 -16.026 0.001 (0) - CaH[14C]O3+ 9.553e-18 8.763e-18 -17.020 -17.057 -0.037 (0) - H[14C]O2[18O]- 9.026e-19 8.258e-19 -18.044 -18.083 -0.039 (0) - H[14C]O[18O]O- 9.026e-19 8.258e-19 -18.044 -18.083 -0.039 (0) + CaH[14C]O3+ 9.553e-18 8.764e-18 -17.020 -17.057 -0.037 (0) H[14C][18O]O2- 9.026e-19 8.258e-19 -18.044 -18.083 -0.039 (0) + H[14C]O[18O]O- 9.026e-19 8.258e-19 -18.044 -18.083 -0.039 (0) + H[14C]O2[18O]- 9.026e-19 8.258e-19 -18.044 -18.083 -0.039 (0) Ca[14C]O3 5.237e-19 5.246e-19 -18.281 -18.280 0.001 (0) [14C]O[18O] 3.914e-19 3.921e-19 -18.407 -18.407 0.001 (0) [14C]O3-2 2.687e-19 1.882e-19 -18.571 -18.725 -0.155 (0) - CaH[14C]O2[18O]+ 1.906e-20 1.748e-20 -19.720 -19.757 -0.037 (0) - CaH[14C]O[18O]O+ 1.906e-20 1.748e-20 -19.720 -19.757 -0.037 (0) - CaH[14C][18O]O2+ 1.906e-20 1.748e-20 -19.720 -19.757 -0.037 (0) + CaH[14C]O2[18O]+ 1.906e-20 1.749e-20 -19.720 -19.757 -0.037 (0) + CaH[14C][18O]O2+ 1.906e-20 1.749e-20 -19.720 -19.757 -0.037 (0) + CaH[14C]O[18O]O+ 1.906e-20 1.749e-20 -19.720 -19.757 -0.037 (0) Ca[14C]O2[18O] 3.135e-21 3.140e-21 -20.504 -20.503 0.001 (0) - H[14C]O[18O]2- 1.801e-21 1.648e-21 -20.745 -20.783 -0.039 (0) H[14C][18O]2O- 1.801e-21 1.648e-21 -20.745 -20.783 -0.039 (0) H[14C][18O]O[18O]- 1.801e-21 1.648e-21 -20.745 -20.783 -0.039 (0) + H[14C]O[18O]2- 1.801e-21 1.648e-21 -20.745 -20.783 -0.039 (0) [14C]O2[18O]-2 1.608e-21 1.127e-21 -20.794 -20.948 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.612e-16 - O[18O] 2.607e-16 2.612e-16 -15.584 -15.583 0.001 (0) - [18O]2 2.601e-19 2.605e-19 -18.585 -18.584 0.001 (0) +[18O](0) 1.884e-15 + O[18O] 1.880e-15 1.883e-15 -14.726 -14.725 0.001 (0) + [18O]2 1.875e-18 1.879e-18 -17.727 -17.726 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.50 -126.36 -2.86 [13C]H4 + [13C]H4(g) -125.22 -128.08 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.92 -21.43 -1.50 [14C][18O]2 - [14C]H4(g) -134.57 -137.43 -2.86 [14C]H4 + [14C]H4(g) -136.28 -139.14 -2.86 [14C]H4 [14C]O2(g) -14.56 -16.03 -1.47 [14C]O2 [14C]O[18O](g) -16.94 -18.73 -1.79 [14C]O[18O] - [18O]2(g) -16.29 -18.58 -2.29 [18O]2 + [18O]2(g) -15.44 -17.73 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -48264,14 +48254,14 @@ O(0) 1.312e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.54 -124.40 -2.86 CH4 + CH4(g) -123.26 -126.12 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.45 -39.60 -3.15 H2 + H2(g) -36.88 -40.03 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.29 -13.18 -2.89 O2 - O[18O](g) -12.99 -15.88 -2.89 O[18O] + O2(g) -9.43 -12.33 -2.89 O2 + O[18O](g) -12.13 -15.03 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -48327,7 +48317,7 @@ Calcite 3.71e-02 Ca[14C]O3(s) 3.48e-15 6.47e-18 9.38e-14 Ca[14C]O2[18O](s) 2.14e-17 3.98e-20 5.78e-16 Ca[14C]O[18O]2(s) 4.39e-20 8.18e-23 1.19e-18 - Ca[14C][18O]3(s) 3.01e-23 5.59e-26 8.11e-22 + Ca[14C][18O]3(s) 3.01e-23 5.60e-26 8.11e-22 --------------------------------Isotope Ratios--------------------------------- @@ -48335,23 +48325,23 @@ Calcite 3.71e-02 R(18O) 1.99520e-03 -4.9853 permil R(13C) 1.11458e-02 -3.08 permil - R(14C) 9.47829e-14 8.0605 pmc + R(14C) 9.47835e-14 8.0606 pmc R(18O) H2O(l) 1.99520e-03 -4.9868 permil R(18O) OH- 1.92123e-03 -41.874 permil R(18O) H3O+ 2.04134e-03 18.021 permil R(18O) O2(aq) 1.99520e-03 -4.9868 permil R(13C) CO2(aq) 1.10660e-02 -10.215 permil - R(14C) CO2(aq) 9.34301e-14 7.9455 pmc + R(14C) CO2(aq) 9.34307e-14 7.9455 pmc R(18O) CO2(aq) 2.07917e-03 36.887 permil R(18O) HCO3- 1.99520e-03 -4.9868 permil R(13C) HCO3- 1.11623e-02 -1.6035 permil - R(14C) HCO3- 9.50628e-14 8.0843 pmc + R(14C) HCO3- 9.50635e-14 8.0844 pmc R(18O) CO3-2 1.99520e-03 -4.9868 permil R(13C) CO3-2 1.11463e-02 -3.0363 permil - R(14C) CO3-2 9.47902e-14 8.0612 pmc + R(14C) CO3-2 9.47908e-14 8.0612 pmc R(18O) Calcite 2.05264e-03 23.66 permil R(13C) Calcite 1.11844e-02 0.37395 permil - R(14C) Calcite 9.54398e-14 8.1164 pmc + R(14C) Calcite 9.54404e-14 8.1165 pmc --------------------------------Isotope Alphas--------------------------------- @@ -48361,12 +48351,12 @@ Calcite 3.71e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2734e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2558e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7387e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7508e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -48386,14 +48376,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.233 Adjusted to redox equilibrium + pe = 11.451 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -48408,24 +48398,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.378 -124.377 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.117 -126.117 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -48433,81 +48423,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.109e-40 - H2 2.555e-40 2.559e-40 -39.593 -39.592 0.001 (0) -O(0) 1.271e-13 - O2 6.331e-14 6.341e-14 -13.199 -13.198 0.001 (0) - O[18O] 2.526e-16 2.530e-16 -15.598 -15.597 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.028 -40.027 0.001 (0) +O(0) 9.420e-13 + O2 4.691e-13 4.699e-13 -12.329 -12.328 0.001 (0) + O[18O] 1.872e-15 1.875e-15 -14.728 -14.727 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.334 -126.333 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.073 -128.073 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.583e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.583e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.583e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.583e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.590e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.407 -137.406 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.147 -139.146 0.001 (0) [14C](4) 5.535e-16 H[14C]O3- 4.471e-16 4.091e-16 -15.350 -15.388 -0.039 (0) [14C]O2 9.304e-17 9.319e-17 -16.031 -16.031 0.001 (0) CaH[14C]O3+ 9.442e-18 8.661e-18 -17.025 -17.062 -0.037 (0) - H[14C]O2[18O]- 8.921e-19 8.162e-19 -18.050 -18.088 -0.039 (0) - H[14C]O[18O]O- 8.921e-19 8.162e-19 -18.050 -18.088 -0.039 (0) H[14C][18O]O2- 8.921e-19 8.162e-19 -18.050 -18.088 -0.039 (0) + H[14C]O[18O]O- 8.921e-19 8.162e-19 -18.050 -18.088 -0.039 (0) + H[14C]O2[18O]- 8.921e-19 8.162e-19 -18.050 -18.088 -0.039 (0) Ca[14C]O3 5.176e-19 5.185e-19 -18.286 -18.285 0.001 (0) [14C]O[18O] 3.869e-19 3.875e-19 -18.412 -18.412 0.001 (0) [14C]O3-2 2.655e-19 1.860e-19 -18.576 -18.730 -0.155 (0) CaH[14C]O2[18O]+ 1.884e-20 1.728e-20 -19.725 -19.762 -0.037 (0) - CaH[14C]O[18O]O+ 1.884e-20 1.728e-20 -19.725 -19.762 -0.037 (0) CaH[14C][18O]O2+ 1.884e-20 1.728e-20 -19.725 -19.762 -0.037 (0) + CaH[14C]O[18O]O+ 1.884e-20 1.728e-20 -19.725 -19.762 -0.037 (0) Ca[14C]O2[18O] 3.098e-21 3.103e-21 -20.509 -20.508 0.001 (0) + H[14C][18O]O[18O]- 1.780e-21 1.628e-21 -20.750 -20.788 -0.039 (0) H[14C]O[18O]2- 1.780e-21 1.628e-21 -20.750 -20.788 -0.039 (0) H[14C][18O]2O- 1.780e-21 1.628e-21 -20.750 -20.788 -0.039 (0) - H[14C][18O]O[18O]- 1.780e-21 1.628e-21 -20.750 -20.788 -0.039 (0) [14C]O2[18O]-2 1.589e-21 1.113e-21 -20.799 -20.953 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.531e-16 - O[18O] 2.526e-16 2.530e-16 -15.598 -15.597 0.001 (0) - [18O]2 2.520e-19 2.524e-19 -18.599 -18.598 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.876e-15 + O[18O] 1.872e-15 1.875e-15 -14.728 -14.727 0.001 (0) + [18O]2 1.867e-18 1.871e-18 -17.729 -17.728 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.47 -126.33 -2.86 [13C]H4 + [13C]H4(g) -125.21 -128.07 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.93 -21.43 -1.50 [14C][18O]2 - [14C]H4(g) -134.55 -137.41 -2.86 [14C]H4 + [14C]H4(g) -136.29 -139.15 -2.86 [14C]H4 [14C]O2(g) -14.56 -16.03 -1.47 [14C]O2 [14C]O[18O](g) -16.94 -18.73 -1.79 [14C]O[18O] - [18O]2(g) -16.31 -18.60 -2.29 [18O]2 + [18O]2(g) -15.44 -17.73 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -48521,14 +48511,14 @@ O(0) 1.271e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.52 -124.38 -2.86 CH4 + CH4(g) -123.26 -126.12 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.44 -39.59 -3.15 H2 + H2(g) -36.88 -40.03 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.31 -13.20 -2.89 O2 - O[18O](g) -13.01 -15.90 -2.89 O[18O] + O2(g) -9.44 -12.33 -2.89 O2 + O[18O](g) -12.14 -15.03 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -48592,23 +48582,23 @@ Calcite 3.76e-02 R(18O) 1.99520e-03 -4.9851 permil R(13C) 1.11460e-02 -3.0605 permil - R(14C) 9.36910e-14 7.9677 pmc + R(14C) 9.36916e-14 7.9677 pmc R(18O) H2O(l) 1.99520e-03 -4.9867 permil R(18O) OH- 1.92123e-03 -41.874 permil R(18O) H3O+ 2.04134e-03 18.021 permil R(18O) O2(aq) 1.99520e-03 -4.9867 permil R(13C) CO2(aq) 1.10662e-02 -10.195 permil - R(14C) CO2(aq) 9.23538e-14 7.854 pmc + R(14C) CO2(aq) 9.23544e-14 7.854 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil R(18O) HCO3- 1.99520e-03 -4.9867 permil R(13C) HCO3- 1.11625e-02 -1.584 permil - R(14C) HCO3- 9.39678e-14 7.9912 pmc + R(14C) HCO3- 9.39684e-14 7.9913 pmc R(18O) CO3-2 1.99520e-03 -4.9867 permil R(13C) CO3-2 1.11465e-02 -3.0168 permil - R(14C) CO3-2 9.36982e-14 7.9683 pmc + R(14C) CO3-2 9.36988e-14 7.9683 pmc R(18O) Calcite 2.05264e-03 23.66 permil R(13C) Calcite 1.11846e-02 0.3935 permil - R(14C) Calcite 9.43404e-14 8.0229 pmc + R(14C) Calcite 9.43410e-14 8.023 pmc --------------------------------Isotope Alphas--------------------------------- @@ -48618,12 +48608,12 @@ Calcite 3.76e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2782e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2278e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.8842e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6941e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7045e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -48637,20 +48627,20 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 C 5.840e-03 5.823e-03 Ca 2.451e-03 2.444e-03 [13C] 6.509e-05 6.490e-05 - [14C] 5.471e-16 5.455e-16 + [14C] 5.471e-16 5.456e-16 [18O] 1.109e-01 1.106e-01 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.195 Adjusted to redox equilibrium + pe = 11.448 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -48665,14 +48655,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.071 -124.071 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.095 -126.094 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -48680,9 +48670,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -48690,50 +48680,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.094e-40 - H2 3.047e-40 3.052e-40 -39.516 -39.515 0.001 (0) -O(0) 8.935e-14 - O2 4.450e-14 4.457e-14 -13.352 -13.351 0.001 (0) - O[18O] 1.776e-16 1.779e-16 -15.751 -15.750 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.022 -40.021 0.001 (0) +O(0) 9.183e-13 + O2 4.573e-13 4.581e-13 -12.340 -12.339 0.001 (0) + O[18O] 1.825e-15 1.828e-15 -14.739 -14.738 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.027 -126.027 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.051 -128.050 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.590e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.106 -137.105 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.130 -139.129 0.001 (0) [14C](4) 5.471e-16 H[14C]O3- 4.420e-16 4.044e-16 -15.355 -15.393 -0.039 (0) [14C]O2 9.197e-17 9.212e-17 -16.036 -16.036 0.001 (0) CaH[14C]O3+ 9.333e-18 8.562e-18 -17.030 -17.067 -0.037 (0) - H[14C]O2[18O]- 8.818e-19 8.068e-19 -18.055 -18.093 -0.039 (0) - H[14C]O[18O]O- 8.818e-19 8.068e-19 -18.055 -18.093 -0.039 (0) H[14C][18O]O2- 8.818e-19 8.068e-19 -18.055 -18.093 -0.039 (0) + H[14C]O[18O]O- 8.818e-19 8.068e-19 -18.055 -18.093 -0.039 (0) + H[14C]O2[18O]- 8.818e-19 8.068e-19 -18.055 -18.093 -0.039 (0) Ca[14C]O3 5.116e-19 5.125e-19 -18.291 -18.290 0.001 (0) [14C]O[18O] 3.824e-19 3.831e-19 -18.417 -18.417 0.001 (0) [14C]O3-2 2.625e-19 1.839e-19 -18.581 -18.735 -0.155 (0) CaH[14C]O2[18O]+ 1.862e-20 1.708e-20 -19.730 -19.767 -0.037 (0) - CaH[14C]O[18O]O+ 1.862e-20 1.708e-20 -19.730 -19.767 -0.037 (0) CaH[14C][18O]O2+ 1.862e-20 1.708e-20 -19.730 -19.767 -0.037 (0) + CaH[14C]O[18O]O+ 1.862e-20 1.708e-20 -19.730 -19.767 -0.037 (0) Ca[14C]O2[18O] 3.063e-21 3.068e-21 -20.514 -20.513 0.001 (0) H[14C]O[18O]2- 1.759e-21 1.610e-21 -20.755 -20.793 -0.039 (0) H[14C][18O]2O- 1.759e-21 1.610e-21 -20.755 -20.793 -0.039 (0) @@ -48742,29 +48732,29 @@ O(0) 8.935e-14 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.779e-16 - O[18O] 1.776e-16 1.779e-16 -15.751 -15.750 0.001 (0) - [18O]2 1.771e-19 1.774e-19 -18.752 -18.751 0.001 (0) +[18O](0) 1.829e-15 + O[18O] 1.825e-15 1.828e-15 -14.739 -14.738 0.001 (0) + [18O]2 1.821e-18 1.824e-18 -17.740 -17.739 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.17 -126.03 -2.86 [13C]H4 + [13C]H4(g) -125.19 -128.05 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.93 -21.44 -1.50 [14C][18O]2 - [14C]H4(g) -134.25 -137.11 -2.86 [14C]H4 + [14C]H4(g) -136.27 -139.13 -2.86 [14C]H4 [14C]O2(g) -14.57 -16.04 -1.47 [14C]O2 [14C]O[18O](g) -16.95 -18.74 -1.79 [14C]O[18O] - [18O]2(g) -16.46 -18.75 -2.29 [18O]2 + [18O]2(g) -15.45 -17.74 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -48778,14 +48768,14 @@ O(0) 8.935e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.21 -124.07 -2.86 CH4 + CH4(g) -123.23 -126.09 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.37 -39.52 -3.15 H2 + H2(g) -36.87 -40.02 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.46 -13.35 -2.89 O2 - O[18O](g) -13.16 -16.05 -2.89 O[18O] + O2(g) -9.45 -12.34 -2.89 O2 + O[18O](g) -12.15 -15.04 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -48849,23 +48839,23 @@ Calcite 3.81e-02 R(18O) 1.99520e-03 -4.985 permil R(13C) 1.11462e-02 -3.0415 permil - R(14C) 9.26240e-14 7.8769 pmc + R(14C) 9.26246e-14 7.877 pmc R(18O) H2O(l) 1.99520e-03 -4.9865 permil R(18O) OH- 1.92123e-03 -41.874 permil R(18O) H3O+ 2.04134e-03 18.021 permil R(18O) O2(aq) 1.99520e-03 -4.9865 permil R(13C) CO2(aq) 1.10664e-02 -10.176 permil - R(14C) CO2(aq) 9.13021e-14 7.7645 pmc + R(14C) CO2(aq) 9.13027e-14 7.7646 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil R(18O) HCO3- 1.99520e-03 -4.9865 permil R(13C) HCO3- 1.11627e-02 -1.565 permil - R(14C) HCO3- 9.28976e-14 7.9002 pmc + R(14C) HCO3- 9.28982e-14 7.9003 pmc R(18O) CO3-2 1.99520e-03 -4.9865 permil R(13C) CO3-2 1.11467e-02 -2.9978 permil - R(14C) CO3-2 9.26312e-14 7.8776 pmc + R(14C) CO3-2 9.26318e-14 7.8776 pmc R(18O) Calcite 2.05264e-03 23.66 permil R(13C) Calcite 1.11848e-02 0.4126 permil - R(14C) Calcite 9.32660e-14 7.9315 pmc + R(14C) Calcite 9.32666e-14 7.9316 pmc --------------------------------Isotope Alphas--------------------------------- @@ -48875,12 +48865,12 @@ Calcite 3.81e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2484e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2958e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7013e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7794e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -48900,14 +48890,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.192 Adjusted to redox equilibrium + pe = 11.448 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -48922,24 +48912,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.047 -124.047 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.100 -126.099 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -48947,23 +48937,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.180e-40 - H2 3.090e-40 3.095e-40 -39.510 -39.509 0.001 (0) -O(0) 8.690e-14 - O2 4.328e-14 4.335e-14 -13.364 -13.363 0.001 (0) - O[18O] 1.727e-16 1.730e-16 -15.763 -15.762 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.023 -40.022 0.001 (0) +O(0) 9.231e-13 + O2 4.597e-13 4.605e-13 -12.337 -12.337 0.001 (0) + O[18O] 1.835e-15 1.838e-15 -14.736 -14.736 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.003 -126.003 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.056 -128.055 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.582e-08 4.590e-08 -7.339 -7.338 0.001 (0) @@ -48972,56 +48962,56 @@ O(0) 8.690e-14 CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.087 -137.086 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.139 -139.139 0.001 (0) [14C](4) 5.409e-16 H[14C]O3- 4.369e-16 3.997e-16 -15.360 -15.398 -0.039 (0) [14C]O2 9.092e-17 9.107e-17 -16.041 -16.041 0.001 (0) CaH[14C]O3+ 9.227e-18 8.464e-18 -17.035 -17.072 -0.037 (0) - H[14C]O2[18O]- 8.718e-19 7.976e-19 -18.060 -18.098 -0.039 (0) - H[14C]O[18O]O- 8.718e-19 7.976e-19 -18.060 -18.098 -0.039 (0) H[14C][18O]O2- 8.718e-19 7.976e-19 -18.060 -18.098 -0.039 (0) + H[14C]O[18O]O- 8.718e-19 7.976e-19 -18.060 -18.098 -0.039 (0) + H[14C]O2[18O]- 8.718e-19 7.976e-19 -18.060 -18.098 -0.039 (0) Ca[14C]O3 5.058e-19 5.067e-19 -18.296 -18.295 0.001 (0) [14C]O[18O] 3.781e-19 3.787e-19 -18.422 -18.422 0.001 (0) [14C]O3-2 2.595e-19 1.818e-19 -18.586 -18.740 -0.155 (0) CaH[14C]O2[18O]+ 1.841e-20 1.689e-20 -19.735 -19.772 -0.037 (0) - CaH[14C]O[18O]O+ 1.841e-20 1.689e-20 -19.735 -19.772 -0.037 (0) CaH[14C][18O]O2+ 1.841e-20 1.689e-20 -19.735 -19.772 -0.037 (0) + CaH[14C]O[18O]O+ 1.841e-20 1.689e-20 -19.735 -19.772 -0.037 (0) Ca[14C]O2[18O] 3.028e-21 3.033e-21 -20.519 -20.518 0.001 (0) - H[14C]O[18O]2- 1.739e-21 1.591e-21 -20.760 -20.798 -0.039 (0) H[14C][18O]2O- 1.739e-21 1.591e-21 -20.760 -20.798 -0.039 (0) H[14C][18O]O[18O]- 1.739e-21 1.591e-21 -20.760 -20.798 -0.039 (0) + H[14C]O[18O]2- 1.739e-21 1.591e-21 -20.760 -20.798 -0.039 (0) [14C]O2[18O]-2 1.553e-21 1.088e-21 -20.809 -20.963 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.730e-16 - O[18O] 1.727e-16 1.730e-16 -15.763 -15.762 0.001 (0) - [18O]2 1.723e-19 1.726e-19 -18.764 -18.763 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.838e-15 + O[18O] 1.835e-15 1.838e-15 -14.736 -14.736 0.001 (0) + [18O]2 1.830e-18 1.833e-18 -17.738 -17.737 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.14 -126.00 -2.86 [13C]H4 + [13C]H4(g) -125.20 -128.06 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.94 -21.44 -1.50 [14C][18O]2 - [14C]H4(g) -134.23 -137.09 -2.86 [14C]H4 + [14C]H4(g) -136.28 -139.14 -2.86 [14C]H4 [14C]O2(g) -14.57 -16.04 -1.47 [14C]O2 [14C]O[18O](g) -16.95 -18.74 -1.79 [14C]O[18O] - [18O]2(g) -16.47 -18.76 -2.29 [18O]2 + [18O]2(g) -15.45 -17.74 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -49035,14 +49025,14 @@ O(0) 8.690e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.19 -124.05 -2.86 CH4 + CH4(g) -123.24 -126.10 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.36 -39.51 -3.15 H2 + H2(g) -36.87 -40.02 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.47 -13.36 -2.89 O2 - O[18O](g) -13.17 -16.06 -2.89 O[18O] + O2(g) -9.44 -12.34 -2.89 O2 + O[18O](g) -12.14 -15.04 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -49106,23 +49096,23 @@ Calcite 3.86e-02 R(18O) 1.99520e-03 -4.9849 permil R(13C) 1.11464e-02 -3.0229 permil - R(14C) 9.15811e-14 7.7882 pmc + R(14C) 9.15817e-14 7.7883 pmc R(18O) H2O(l) 1.99520e-03 -4.9864 permil R(18O) OH- 1.92123e-03 -41.874 permil R(18O) H3O+ 2.04134e-03 18.022 permil R(18O) O2(aq) 1.99520e-03 -4.9864 permil R(13C) CO2(aq) 1.10666e-02 -10.158 permil - R(14C) CO2(aq) 9.02740e-14 7.6771 pmc + R(14C) CO2(aq) 9.02746e-14 7.6771 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil R(18O) HCO3- 1.99520e-03 -4.9864 permil R(13C) HCO3- 1.11629e-02 -1.5463 permil - R(14C) HCO3- 9.18516e-14 7.8113 pmc + R(14C) HCO3- 9.18522e-14 7.8113 pmc R(18O) CO3-2 1.99520e-03 -4.9864 permil R(13C) CO3-2 1.11469e-02 -2.9792 permil - R(14C) CO3-2 9.15881e-14 7.7888 pmc + R(14C) CO3-2 9.15887e-14 7.7889 pmc R(18O) Calcite 2.05264e-03 23.66 permil R(13C) Calcite 1.11850e-02 0.43128 permil - R(14C) Calcite 9.22158e-14 7.8422 pmc + R(14C) Calcite 9.22164e-14 7.8423 pmc --------------------------------Isotope Alphas--------------------------------- @@ -49132,12 +49122,12 @@ Calcite 3.86e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.253e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2342e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6167e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.763e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -49157,14 +49147,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.177 Adjusted to redox equilibrium + pe = 11.449 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -49179,14 +49169,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.928 -123.928 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.103 -126.102 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -49194,9 +49184,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -49204,81 +49194,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.617e-40 - H2 3.308e-40 3.314e-40 -39.480 -39.480 0.001 (0) -O(0) 7.579e-14 - O2 3.774e-14 3.781e-14 -13.423 -13.422 0.001 (0) - O[18O] 1.506e-16 1.509e-16 -15.822 -15.821 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.024 -40.023 0.001 (0) +O(0) 9.264e-13 + O2 4.614e-13 4.621e-13 -12.336 -12.335 0.001 (0) + O[18O] 1.841e-15 1.844e-15 -14.735 -14.734 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.884 -125.884 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.059 -128.058 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.590e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.122e-08 2.187e-08 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.439 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.973 -136.972 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.147 -139.147 0.001 (0) [14C](4) 5.348e-16 H[14C]O3- 4.320e-16 3.952e-16 -15.364 -15.403 -0.039 (0) [14C]O2 8.990e-17 9.004e-17 -16.046 -16.046 0.001 (0) CaH[14C]O3+ 9.123e-18 8.369e-18 -17.040 -17.077 -0.037 (0) - H[14C]O2[18O]- 8.620e-19 7.886e-19 -18.065 -18.103 -0.039 (0) - H[14C]O[18O]O- 8.620e-19 7.886e-19 -18.065 -18.103 -0.039 (0) H[14C][18O]O2- 8.620e-19 7.886e-19 -18.065 -18.103 -0.039 (0) + H[14C]O[18O]O- 8.620e-19 7.886e-19 -18.065 -18.103 -0.039 (0) + H[14C]O2[18O]- 8.620e-19 7.886e-19 -18.065 -18.103 -0.039 (0) Ca[14C]O3 5.001e-19 5.009e-19 -18.301 -18.300 0.001 (0) [14C]O[18O] 3.738e-19 3.744e-19 -18.427 -18.427 0.001 (0) [14C]O3-2 2.566e-19 1.797e-19 -18.591 -18.745 -0.155 (0) CaH[14C]O2[18O]+ 1.820e-20 1.670e-20 -19.740 -19.777 -0.037 (0) - CaH[14C]O[18O]O+ 1.820e-20 1.670e-20 -19.740 -19.777 -0.037 (0) CaH[14C][18O]O2+ 1.820e-20 1.670e-20 -19.740 -19.777 -0.037 (0) + CaH[14C]O[18O]O+ 1.820e-20 1.670e-20 -19.740 -19.777 -0.037 (0) Ca[14C]O2[18O] 2.994e-21 2.998e-21 -20.524 -20.523 0.001 (0) + H[14C][18O]O[18O]- 1.720e-21 1.573e-21 -20.765 -20.803 -0.039 (0) H[14C]O[18O]2- 1.720e-21 1.573e-21 -20.765 -20.803 -0.039 (0) H[14C][18O]2O- 1.720e-21 1.573e-21 -20.765 -20.803 -0.039 (0) - H[14C][18O]O[18O]- 1.720e-21 1.573e-21 -20.765 -20.803 -0.039 (0) [14C]O2[18O]-2 1.536e-21 1.076e-21 -20.814 -20.968 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.509e-16 - O[18O] 1.506e-16 1.509e-16 -15.822 -15.821 0.001 (0) - [18O]2 1.503e-19 1.505e-19 -18.823 -18.822 0.001 (0) +[18O](0) 1.845e-15 + O[18O] 1.841e-15 1.844e-15 -14.735 -14.734 0.001 (0) + [18O]2 1.837e-18 1.840e-18 -17.736 -17.735 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.02 -125.88 -2.86 [13C]H4 + [13C]H4(g) -125.20 -128.06 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.94 -21.45 -1.50 [14C][18O]2 - [14C]H4(g) -134.11 -136.97 -2.86 [14C]H4 + [14C]H4(g) -136.29 -139.15 -2.86 [14C]H4 [14C]O2(g) -14.58 -16.05 -1.47 [14C]O2 [14C]O[18O](g) -16.96 -18.75 -1.79 [14C]O[18O] - [18O]2(g) -16.53 -18.82 -2.29 [18O]2 + [18O]2(g) -15.44 -17.74 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -49292,14 +49282,14 @@ O(0) 7.579e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.07 -123.93 -2.86 CH4 + CH4(g) -123.24 -126.10 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.33 -39.48 -3.15 H2 + H2(g) -36.87 -40.02 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.53 -13.42 -2.89 O2 - O[18O](g) -13.23 -16.12 -2.89 O[18O] + O2(g) -9.44 -12.34 -2.89 O2 + O[18O](g) -12.14 -15.04 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -49363,23 +49353,23 @@ Calcite 3.91e-02 R(18O) 1.99520e-03 -4.9847 permil R(13C) 1.11466e-02 -3.0047 permil - R(14C) 9.05613e-14 7.7015 pmc + R(14C) 9.05619e-14 7.7016 pmc R(18O) H2O(l) 1.99520e-03 -4.9862 permil R(18O) OH- 1.92123e-03 -41.874 permil R(18O) H3O+ 2.04134e-03 18.022 permil R(18O) O2(aq) 1.99520e-03 -4.9862 permil R(13C) CO2(aq) 1.10668e-02 -10.14 permil - R(14C) CO2(aq) 8.92688e-14 7.5916 pmc + R(14C) CO2(aq) 8.92694e-14 7.5917 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil R(18O) HCO3- 1.99520e-03 -4.9862 permil R(13C) HCO3- 1.11631e-02 -1.5281 permil - R(14C) HCO3- 9.08288e-14 7.7243 pmc + R(14C) HCO3- 9.08294e-14 7.7243 pmc R(18O) CO3-2 1.99520e-03 -4.9862 permil R(13C) CO3-2 1.11471e-02 -2.961 permil - R(14C) CO3-2 9.05683e-14 7.7021 pmc + R(14C) CO3-2 9.05689e-14 7.7022 pmc R(18O) Calcite 2.05264e-03 23.66 permil R(13C) Calcite 1.11852e-02 0.44954 permil - R(14C) Calcite 9.11890e-14 7.7549 pmc + R(14C) Calcite 9.11896e-14 7.755 pmc --------------------------------Isotope Alphas--------------------------------- @@ -49389,12 +49379,12 @@ Calcite 3.91e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2575e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2394e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6303e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7767e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -49414,14 +49404,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.205 Adjusted to redox equilibrium + pe = 11.451 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -49436,24 +49426,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.148 -124.147 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.123 -126.122 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -49461,50 +49451,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.831e-40 - H2 2.915e-40 2.920e-40 -39.535 -39.535 0.001 (0) -O(0) 9.760e-14 - O2 4.861e-14 4.869e-14 -13.313 -13.313 0.001 (0) - O[18O] 1.940e-16 1.943e-16 -15.712 -15.712 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.029 -40.028 0.001 (0) +O(0) 9.480e-13 + O2 4.721e-13 4.729e-13 -12.326 -12.325 0.001 (0) + O[18O] 1.884e-15 1.887e-15 -14.725 -14.724 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.104 -126.103 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.079 -128.078 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.590e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.187e-08 -7.505 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.197 -137.197 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.172 -139.171 0.001 (0) [14C](4) 5.289e-16 H[14C]O3- 4.272e-16 3.908e-16 -15.369 -15.408 -0.039 (0) [14C]O2 8.889e-17 8.904e-17 -16.051 -16.050 0.001 (0) CaH[14C]O3+ 9.021e-18 8.276e-18 -17.045 -17.082 -0.037 (0) - H[14C]O2[18O]- 8.524e-19 7.798e-19 -18.069 -18.108 -0.039 (0) - H[14C]O[18O]O- 8.524e-19 7.798e-19 -18.069 -18.108 -0.039 (0) H[14C][18O]O2- 8.524e-19 7.798e-19 -18.069 -18.108 -0.039 (0) + H[14C]O[18O]O- 8.524e-19 7.798e-19 -18.069 -18.108 -0.039 (0) + H[14C]O2[18O]- 8.524e-19 7.798e-19 -18.069 -18.108 -0.039 (0) Ca[14C]O3 4.946e-19 4.954e-19 -18.306 -18.305 0.001 (0) [14C]O[18O] 3.697e-19 3.703e-19 -18.432 -18.431 0.001 (0) [14C]O3-2 2.537e-19 1.777e-19 -18.596 -18.750 -0.155 (0) CaH[14C]O2[18O]+ 1.800e-20 1.651e-20 -19.745 -19.782 -0.037 (0) - CaH[14C]O[18O]O+ 1.800e-20 1.651e-20 -19.745 -19.782 -0.037 (0) CaH[14C][18O]O2+ 1.800e-20 1.651e-20 -19.745 -19.782 -0.037 (0) + CaH[14C]O[18O]O+ 1.800e-20 1.651e-20 -19.745 -19.782 -0.037 (0) Ca[14C]O2[18O] 2.960e-21 2.965e-21 -20.529 -20.528 0.001 (0) H[14C]O[18O]2- 1.701e-21 1.556e-21 -20.769 -20.808 -0.039 (0) H[14C][18O]2O- 1.701e-21 1.556e-21 -20.769 -20.808 -0.039 (0) @@ -49513,29 +49503,29 @@ O(0) 9.760e-14 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.943e-16 - O[18O] 1.940e-16 1.943e-16 -15.712 -15.712 0.001 (0) - [18O]2 1.935e-19 1.938e-19 -18.713 -18.713 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.888e-15 + O[18O] 1.884e-15 1.887e-15 -14.725 -14.724 0.001 (0) + [18O]2 1.879e-18 1.883e-18 -17.726 -17.725 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.24 -126.10 -2.86 [13C]H4 + [13C]H4(g) -125.22 -128.08 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.95 -21.45 -1.50 [14C][18O]2 - [14C]H4(g) -134.34 -137.20 -2.86 [14C]H4 + [14C]H4(g) -136.31 -139.17 -2.86 [14C]H4 [14C]O2(g) -14.58 -16.05 -1.47 [14C]O2 [14C]O[18O](g) -16.96 -18.75 -1.79 [14C]O[18O] - [18O]2(g) -16.42 -18.71 -2.29 [18O]2 + [18O]2(g) -15.43 -17.73 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -49549,14 +49539,14 @@ O(0) 9.760e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.29 -124.15 -2.86 CH4 + CH4(g) -123.26 -126.12 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.38 -39.53 -3.15 H2 + H2(g) -36.88 -40.03 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.42 -13.31 -2.89 O2 - O[18O](g) -13.12 -16.01 -2.89 O[18O] + O2(g) -9.43 -12.33 -2.89 O2 + O[18O](g) -12.13 -15.03 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -49620,23 +49610,23 @@ Calcite 3.96e-02 R(18O) 1.99520e-03 -4.9846 permil R(13C) 1.11468e-02 -2.9869 permil - R(14C) 8.95640e-14 7.6167 pmc + R(14C) 8.95646e-14 7.6168 pmc R(18O) H2O(l) 1.99520e-03 -4.9861 permil R(18O) OH- 1.92124e-03 -41.874 permil R(18O) H3O+ 2.04134e-03 18.022 permil R(18O) O2(aq) 1.99520e-03 -4.9861 permil R(13C) CO2(aq) 1.10670e-02 -10.122 permil - R(14C) CO2(aq) 8.82858e-14 7.508 pmc + R(14C) CO2(aq) 8.82863e-14 7.5081 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil R(18O) HCO3- 1.99520e-03 -4.9861 permil R(13C) HCO3- 1.11633e-02 -1.5103 permil - R(14C) HCO3- 8.98286e-14 7.6392 pmc + R(14C) HCO3- 8.98292e-14 7.6393 pmc R(18O) CO3-2 1.99520e-03 -4.9861 permil R(13C) CO3-2 1.11473e-02 -2.9432 permil - R(14C) CO3-2 8.95709e-14 7.6173 pmc + R(14C) CO3-2 8.95715e-14 7.6174 pmc R(18O) Calcite 2.05264e-03 23.66 permil R(13C) Calcite 1.11854e-02 0.4674 permil - R(14C) Calcite 9.01848e-14 7.6695 pmc + R(14C) Calcite 9.01854e-14 7.6696 pmc --------------------------------Isotope Alphas--------------------------------- @@ -49646,12 +49636,12 @@ Calcite 3.96e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2653e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2464e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5974e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6083e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -49671,14 +49661,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.208 Adjusted to redox equilibrium + pe = 11.453 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -49693,13 +49683,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.174 -124.173 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.132 -126.131 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -49708,9 +49698,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -49718,23 +49708,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.744e-40 - H2 2.872e-40 2.877e-40 -39.542 -39.541 0.001 (0) -O(0) 1.006e-13 - O2 5.008e-14 5.017e-14 -13.300 -13.300 0.001 (0) - O[18O] 1.999e-16 2.002e-16 -15.699 -15.699 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.031 -40.031 0.001 (0) +O(0) 9.582e-13 + O2 4.772e-13 4.780e-13 -12.321 -12.321 0.001 (0) + O[18O] 1.904e-15 1.907e-15 -14.720 -14.720 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.130 -126.129 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.088 -128.087 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.590e-08 -7.339 -7.338 0.001 (0) @@ -49743,56 +49733,56 @@ O(0) 1.006e-13 CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.643e-10 3.649e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.228 -137.228 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.186 -139.186 0.001 (0) [14C](4) 5.230e-16 H[14C]O3- 4.225e-16 3.865e-16 -15.374 -15.413 -0.039 (0) [14C]O2 8.792e-17 8.806e-17 -16.056 -16.055 0.001 (0) CaH[14C]O3+ 8.922e-18 8.184e-18 -17.050 -17.087 -0.037 (0) - H[14C]O2[18O]- 8.430e-19 7.712e-19 -18.074 -18.113 -0.039 (0) - H[14C]O[18O]O- 8.430e-19 7.712e-19 -18.074 -18.113 -0.039 (0) H[14C][18O]O2- 8.430e-19 7.712e-19 -18.074 -18.113 -0.039 (0) + H[14C]O[18O]O- 8.430e-19 7.712e-19 -18.074 -18.113 -0.039 (0) + H[14C]O2[18O]- 8.430e-19 7.712e-19 -18.074 -18.113 -0.039 (0) Ca[14C]O3 4.891e-19 4.899e-19 -18.311 -18.310 0.001 (0) [14C]O[18O] 3.656e-19 3.662e-19 -18.437 -18.436 0.001 (0) [14C]O3-2 2.509e-19 1.758e-19 -18.600 -18.755 -0.155 (0) CaH[14C]O2[18O]+ 1.780e-20 1.633e-20 -19.750 -19.787 -0.037 (0) - CaH[14C]O[18O]O+ 1.780e-20 1.633e-20 -19.750 -19.787 -0.037 (0) CaH[14C][18O]O2+ 1.780e-20 1.633e-20 -19.750 -19.787 -0.037 (0) + CaH[14C]O[18O]O+ 1.780e-20 1.633e-20 -19.750 -19.787 -0.037 (0) Ca[14C]O2[18O] 2.928e-21 2.932e-21 -20.533 -20.533 0.001 (0) - H[14C]O[18O]2- 1.682e-21 1.539e-21 -20.774 -20.813 -0.039 (0) H[14C][18O]2O- 1.682e-21 1.539e-21 -20.774 -20.813 -0.039 (0) H[14C][18O]O[18O]- 1.682e-21 1.539e-21 -20.774 -20.813 -0.039 (0) + H[14C]O[18O]2- 1.682e-21 1.539e-21 -20.774 -20.813 -0.039 (0) [14C]O2[18O]-2 1.502e-21 1.052e-21 -20.823 -20.978 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.003e-16 - O[18O] 1.999e-16 2.002e-16 -15.699 -15.699 0.001 (0) - [18O]2 1.994e-19 1.997e-19 -18.700 -18.700 0.001 (0) +[18O](0) 1.908e-15 + O[18O] 1.904e-15 1.907e-15 -14.720 -14.720 0.001 (0) + [18O]2 1.900e-18 1.903e-18 -17.721 -17.721 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.27 -126.13 -2.86 [13C]H4 + [13C]H4(g) -125.23 -128.09 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.95 -21.46 -1.50 [14C][18O]2 - [14C]H4(g) -134.37 -137.23 -2.86 [14C]H4 + [14C]H4(g) -136.33 -139.19 -2.86 [14C]H4 [14C]O2(g) -14.59 -16.06 -1.47 [14C]O2 [14C]O[18O](g) -16.97 -18.76 -1.79 [14C]O[18O] - [18O]2(g) -16.41 -18.70 -2.29 [18O]2 + [18O]2(g) -15.43 -17.72 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -49806,14 +49796,14 @@ O(0) 1.006e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.31 -124.17 -2.86 CH4 + CH4(g) -123.27 -126.13 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.39 -39.54 -3.15 H2 + H2(g) -36.88 -40.03 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.41 -13.30 -2.89 O2 - O[18O](g) -13.11 -16.00 -2.89 O[18O] + O2(g) -9.43 -12.32 -2.89 O2 + O[18O](g) -12.13 -15.02 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -49877,23 +49867,23 @@ Calcite 4.01e-02 R(18O) 1.99521e-03 -4.9844 permil R(13C) 1.11470e-02 -2.9695 permil - R(14C) 8.85885e-14 7.5338 pmc + R(14C) 8.85891e-14 7.5338 pmc R(18O) H2O(l) 1.99520e-03 -4.986 permil R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.022 permil R(18O) O2(aq) 1.99520e-03 -4.986 permil R(13C) CO2(aq) 1.10672e-02 -10.105 permil - R(14C) CO2(aq) 8.73241e-14 7.4262 pmc + R(14C) CO2(aq) 8.73247e-14 7.4263 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil R(18O) HCO3- 1.99520e-03 -4.986 permil R(13C) HCO3- 1.11635e-02 -1.4928 permil - R(14C) HCO3- 8.88502e-14 7.556 pmc + R(14C) HCO3- 8.88507e-14 7.5561 pmc R(18O) CO3-2 1.99520e-03 -4.986 permil R(13C) CO3-2 1.11475e-02 -2.9258 permil - R(14C) CO3-2 8.85953e-14 7.5343 pmc + R(14C) CO3-2 8.85959e-14 7.5344 pmc R(18O) Calcite 2.05264e-03 23.661 permil R(13C) Calcite 1.11856e-02 0.48487 permil - R(14C) Calcite 8.92025e-14 7.586 pmc + R(14C) Calcite 8.92030e-14 7.586 pmc --------------------------------Isotope Alphas--------------------------------- @@ -49903,12 +49893,12 @@ Calcite 4.01e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2757e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2569e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 +Alpha 18O HCO3-/H2O(l) 1 1.1102e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6439e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6513e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -49928,14 +49918,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.144 Adjusted to redox equilibrium + pe = 11.448 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -49950,24 +49940,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.660 -123.659 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.097 -126.096 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -49975,81 +49965,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.722e-40 - H2 3.861e-40 3.867e-40 -39.413 -39.413 0.001 (0) -O(0) 5.565e-14 - O2 2.771e-14 2.776e-14 -13.557 -13.557 0.001 (0) - O[18O] 1.106e-16 1.108e-16 -15.956 -15.956 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.022 -40.022 0.001 (0) +O(0) 9.198e-13 + O2 4.581e-13 4.588e-13 -12.339 -12.338 0.001 (0) + O[18O] 1.828e-15 1.831e-15 -14.738 -14.737 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.616 -125.615 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.053 -128.052 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.584e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.590e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.719 -136.718 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.155 -139.155 0.001 (0) [14C](4) 5.173e-16 H[14C]O3- 4.179e-16 3.823e-16 -15.379 -15.418 -0.039 (0) [14C]O2 8.696e-17 8.710e-17 -16.061 -16.060 0.001 (0) CaH[14C]O3+ 8.825e-18 8.095e-18 -17.054 -17.092 -0.037 (0) - H[14C]O2[18O]- 8.338e-19 7.628e-19 -18.079 -18.118 -0.039 (0) - H[14C]O[18O]O- 8.338e-19 7.628e-19 -18.079 -18.118 -0.039 (0) H[14C][18O]O2- 8.338e-19 7.628e-19 -18.079 -18.118 -0.039 (0) + H[14C]O[18O]O- 8.338e-19 7.628e-19 -18.079 -18.118 -0.039 (0) + H[14C]O2[18O]- 8.338e-19 7.628e-19 -18.079 -18.118 -0.039 (0) Ca[14C]O3 4.838e-19 4.846e-19 -18.315 -18.315 0.001 (0) [14C]O[18O] 3.616e-19 3.622e-19 -18.442 -18.441 0.001 (0) [14C]O3-2 2.482e-19 1.739e-19 -18.605 -18.760 -0.155 (0) CaH[14C]O2[18O]+ 1.761e-20 1.615e-20 -19.754 -19.792 -0.037 (0) - CaH[14C]O[18O]O+ 1.761e-20 1.615e-20 -19.754 -19.792 -0.037 (0) CaH[14C][18O]O2+ 1.761e-20 1.615e-20 -19.754 -19.792 -0.037 (0) + CaH[14C]O[18O]O+ 1.761e-20 1.615e-20 -19.754 -19.792 -0.037 (0) Ca[14C]O2[18O] 2.896e-21 2.900e-21 -20.538 -20.538 0.001 (0) + H[14C][18O]O[18O]- 1.664e-21 1.522e-21 -20.779 -20.818 -0.039 (0) H[14C]O[18O]2- 1.664e-21 1.522e-21 -20.779 -20.818 -0.039 (0) H[14C][18O]2O- 1.664e-21 1.522e-21 -20.779 -20.818 -0.039 (0) - H[14C][18O]O[18O]- 1.664e-21 1.522e-21 -20.779 -20.818 -0.039 (0) [14C]O2[18O]-2 1.485e-21 1.041e-21 -20.828 -20.983 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.108e-16 - O[18O] 1.106e-16 1.108e-16 -15.956 -15.956 0.001 (0) - [18O]2 1.103e-19 1.105e-19 -18.957 -18.957 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.832e-15 + O[18O] 1.828e-15 1.831e-15 -14.738 -14.737 0.001 (0) + [18O]2 1.824e-18 1.827e-18 -17.739 -17.738 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.76 -125.62 -2.86 [13C]H4 + [13C]H4(g) -125.19 -128.05 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.96 -21.46 -1.50 [14C][18O]2 - [14C]H4(g) -133.86 -136.72 -2.86 [14C]H4 + [14C]H4(g) -136.29 -139.15 -2.86 [14C]H4 [14C]O2(g) -14.59 -16.06 -1.47 [14C]O2 [14C]O[18O](g) -16.97 -18.76 -1.79 [14C]O[18O] - [18O]2(g) -16.67 -18.96 -2.29 [18O]2 + [18O]2(g) -15.45 -17.74 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -50063,14 +50053,14 @@ O(0) 5.565e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.80 -123.66 -2.86 CH4 + CH4(g) -123.24 -126.10 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.26 -39.41 -3.15 H2 + H2(g) -36.87 -40.02 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.66 -13.56 -2.89 O2 - O[18O](g) -13.36 -16.26 -2.89 O[18O] + O2(g) -9.45 -12.34 -2.89 O2 + O[18O](g) -12.15 -15.04 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -50134,23 +50124,23 @@ Calcite 4.06e-02 R(18O) 1.99521e-03 -4.9843 permil R(13C) 1.11472e-02 -2.9524 permil - R(14C) 8.76340e-14 7.4526 pmc + R(14C) 8.76345e-14 7.4526 pmc R(18O) H2O(l) 1.99520e-03 -4.9858 permil R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.022 permil R(18O) O2(aq) 1.99520e-03 -4.9858 permil R(13C) CO2(aq) 1.10674e-02 -10.088 permil - R(14C) CO2(aq) 8.63832e-14 7.3462 pmc + R(14C) CO2(aq) 8.63838e-14 7.3463 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil R(18O) HCO3- 1.99520e-03 -4.9858 permil R(13C) HCO3- 1.11637e-02 -1.4758 permil - R(14C) HCO3- 8.78928e-14 7.4746 pmc + R(14C) HCO3- 8.78934e-14 7.4746 pmc R(18O) CO3-2 1.99520e-03 -4.9858 permil R(13C) CO3-2 1.11477e-02 -2.9087 permil - R(14C) CO3-2 8.76407e-14 7.4532 pmc + R(14C) CO3-2 8.76413e-14 7.4532 pmc R(18O) Calcite 2.05264e-03 23.661 permil R(13C) Calcite 1.11858e-02 0.50196 permil - R(14C) Calcite 8.82413e-14 7.5042 pmc + R(14C) Calcite 8.82419e-14 7.5043 pmc --------------------------------Isotope Alphas--------------------------------- @@ -50160,12 +50150,12 @@ Calcite 4.06e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2569e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2373e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6868e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6954e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -50185,14 +50175,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.121 Adjusted to redox equilibrium + pe = 11.449 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -50207,14 +50197,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.483 -123.483 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.101 -126.100 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -50222,9 +50212,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -50232,50 +50222,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 8.549e-40 - H2 4.275e-40 4.282e-40 -39.369 -39.368 0.001 (0) -O(0) 4.540e-14 - O2 2.261e-14 2.265e-14 -13.646 -13.645 0.001 (0) - O[18O] 9.023e-17 9.038e-17 -16.045 -16.044 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.023 -40.023 0.001 (0) +O(0) 9.243e-13 + O2 4.603e-13 4.611e-13 -12.337 -12.336 0.001 (0) + O[18O] 1.837e-15 1.840e-15 -14.736 -14.735 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.439 -125.439 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.057 -128.056 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.590e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.547 -136.546 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.164 -139.164 0.001 (0) [14C](4) 5.118e-16 H[14C]O3- 4.134e-16 3.782e-16 -15.384 -15.422 -0.039 (0) [14C]O2 8.602e-17 8.616e-17 -16.065 -16.065 0.001 (0) CaH[14C]O3+ 8.730e-18 8.008e-18 -17.059 -17.096 -0.037 (0) - H[14C]O2[18O]- 8.248e-19 7.546e-19 -18.084 -18.122 -0.039 (0) - H[14C]O[18O]O- 8.248e-19 7.546e-19 -18.084 -18.122 -0.039 (0) H[14C][18O]O2- 8.248e-19 7.546e-19 -18.084 -18.122 -0.039 (0) + H[14C]O[18O]O- 8.248e-19 7.546e-19 -18.084 -18.122 -0.039 (0) + H[14C]O2[18O]- 8.248e-19 7.546e-19 -18.084 -18.122 -0.039 (0) Ca[14C]O3 4.786e-19 4.794e-19 -18.320 -18.319 0.001 (0) [14C]O[18O] 3.577e-19 3.583e-19 -18.446 -18.446 0.001 (0) [14C]O3-2 2.455e-19 1.720e-19 -18.610 -18.765 -0.155 (0) CaH[14C]O2[18O]+ 1.742e-20 1.598e-20 -19.759 -19.796 -0.037 (0) - CaH[14C]O[18O]O+ 1.742e-20 1.598e-20 -19.759 -19.796 -0.037 (0) CaH[14C][18O]O2+ 1.742e-20 1.598e-20 -19.759 -19.796 -0.037 (0) + CaH[14C]O[18O]O+ 1.742e-20 1.598e-20 -19.759 -19.796 -0.037 (0) Ca[14C]O2[18O] 2.865e-21 2.869e-21 -20.543 -20.542 0.001 (0) H[14C]O[18O]2- 1.646e-21 1.506e-21 -20.784 -20.822 -0.039 (0) H[14C][18O]2O- 1.646e-21 1.506e-21 -20.784 -20.822 -0.039 (0) @@ -50284,29 +50274,29 @@ O(0) 4.540e-14 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 9.041e-17 - O[18O] 9.023e-17 9.038e-17 -16.045 -16.044 0.001 (0) - [18O]2 9.001e-20 9.016e-20 -19.046 -19.045 0.001 (0) +[18O](0) 1.841e-15 + O[18O] 1.837e-15 1.840e-15 -14.736 -14.735 0.001 (0) + [18O]2 1.833e-18 1.836e-18 -17.737 -17.736 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.58 -125.44 -2.86 [13C]H4 + [13C]H4(g) -125.20 -128.06 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.96 -21.46 -1.50 [14C][18O]2 - [14C]H4(g) -133.69 -136.55 -2.86 [14C]H4 + [14C]H4(g) -136.30 -139.16 -2.86 [14C]H4 [14C]O2(g) -14.60 -16.06 -1.47 [14C]O2 [14C]O[18O](g) -16.98 -18.76 -1.79 [14C]O[18O] - [18O]2(g) -16.75 -19.04 -2.29 [18O]2 + [18O]2(g) -15.45 -17.74 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -50320,14 +50310,14 @@ O(0) 4.540e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.62 -123.48 -2.86 CH4 + CH4(g) -123.24 -126.10 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.22 -39.37 -3.15 H2 + H2(g) -36.87 -40.02 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.75 -13.64 -2.89 O2 - O[18O](g) -13.45 -16.34 -2.89 O[18O] + O2(g) -9.44 -12.34 -2.89 O2 + O[18O](g) -12.14 -15.04 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -50391,23 +50381,23 @@ Calcite 4.11e-02 R(18O) 1.99521e-03 -4.9842 permil R(13C) 1.11474e-02 -2.9358 permil - R(14C) 8.66998e-14 7.3731 pmc + R(14C) 8.67003e-14 7.3732 pmc R(18O) H2O(l) 1.99520e-03 -4.9857 permil R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.022 permil R(18O) O2(aq) 1.99520e-03 -4.9857 permil R(13C) CO2(aq) 1.10676e-02 -10.071 permil - R(14C) CO2(aq) 8.54624e-14 7.2679 pmc + R(14C) CO2(aq) 8.54629e-14 7.2679 pmc R(18O) CO2(aq) 2.07917e-03 36.889 permil R(18O) HCO3- 1.99520e-03 -4.9857 permil R(13C) HCO3- 1.11639e-02 -1.4591 permil - R(14C) HCO3- 8.69559e-14 7.3949 pmc + R(14C) HCO3- 8.69564e-14 7.395 pmc R(18O) CO3-2 1.99520e-03 -4.9857 permil R(13C) CO3-2 1.11479e-02 -2.8921 permil - R(14C) CO3-2 8.67065e-14 7.3737 pmc + R(14C) CO3-2 8.67070e-14 7.3738 pmc R(18O) Calcite 2.05264e-03 23.661 permil R(13C) Calcite 1.11860e-02 0.51869 permil - R(14C) Calcite 8.73007e-14 7.4242 pmc + R(14C) Calcite 8.73012e-14 7.4243 pmc --------------------------------Isotope Alphas--------------------------------- @@ -50417,12 +50407,12 @@ Calcite 4.11e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2414e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2545e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.7716e-12 0 +Alpha 18O HCO3-/H2O(l) 1 0 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6523e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5259e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -50442,14 +50432,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.129 Adjusted to redox equilibrium + pe = 11.447 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -50464,24 +50454,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.546 -123.545 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.091 -126.090 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -50489,23 +50479,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 8.248e-40 - H2 4.124e-40 4.131e-40 -39.385 -39.384 0.001 (0) -O(0) 4.878e-14 - O2 2.429e-14 2.433e-14 -13.614 -13.614 0.001 (0) - O[18O] 9.695e-17 9.711e-17 -16.013 -16.013 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.021 -40.020 0.001 (0) +O(0) 9.134e-13 + O2 4.549e-13 4.556e-13 -12.342 -12.341 0.001 (0) + O[18O] 1.815e-15 1.818e-15 -14.741 -14.740 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.502 -125.501 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.046 -128.046 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.590e-08 -7.339 -7.338 0.001 (0) @@ -50514,56 +50504,56 @@ O(0) 4.878e-14 CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.614 -136.613 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.159 -139.158 0.001 (0) [14C](4) 5.063e-16 H[14C]O3- 4.090e-16 3.742e-16 -15.388 -15.427 -0.039 (0) [14C]O2 8.510e-17 8.524e-17 -16.070 -16.069 0.001 (0) CaH[14C]O3+ 8.637e-18 7.923e-18 -17.064 -17.101 -0.037 (0) - H[14C]O2[18O]- 8.160e-19 7.466e-19 -18.088 -18.127 -0.039 (0) - H[14C]O[18O]O- 8.160e-19 7.466e-19 -18.088 -18.127 -0.039 (0) H[14C][18O]O2- 8.160e-19 7.466e-19 -18.088 -18.127 -0.039 (0) + H[14C]O[18O]O- 8.160e-19 7.466e-19 -18.088 -18.127 -0.039 (0) + H[14C]O2[18O]- 8.160e-19 7.466e-19 -18.088 -18.127 -0.039 (0) Ca[14C]O3 4.735e-19 4.742e-19 -18.325 -18.324 0.001 (0) [14C]O[18O] 3.539e-19 3.545e-19 -18.451 -18.450 0.001 (0) - [14C]O3-2 2.429e-19 1.701e-19 -18.615 -18.769 -0.155 (0) + [14C]O3-2 2.429e-19 1.702e-19 -18.615 -18.769 -0.155 (0) CaH[14C]O2[18O]+ 1.723e-20 1.581e-20 -19.764 -19.801 -0.037 (0) - CaH[14C]O[18O]O+ 1.723e-20 1.581e-20 -19.764 -19.801 -0.037 (0) CaH[14C][18O]O2+ 1.723e-20 1.581e-20 -19.764 -19.801 -0.037 (0) + CaH[14C]O[18O]O+ 1.723e-20 1.581e-20 -19.764 -19.801 -0.037 (0) Ca[14C]O2[18O] 2.834e-21 2.839e-21 -20.548 -20.547 0.001 (0) - H[14C]O[18O]2- 1.628e-21 1.490e-21 -20.788 -20.827 -0.039 (0) H[14C][18O]2O- 1.628e-21 1.490e-21 -20.788 -20.827 -0.039 (0) H[14C][18O]O[18O]- 1.628e-21 1.490e-21 -20.788 -20.827 -0.039 (0) + H[14C]O[18O]2- 1.628e-21 1.490e-21 -20.788 -20.827 -0.039 (0) [14C]O2[18O]-2 1.454e-21 1.018e-21 -20.837 -20.992 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 9.714e-17 - O[18O] 9.695e-17 9.711e-17 -16.013 -16.013 0.001 (0) - [18O]2 9.671e-20 9.687e-20 -19.015 -19.014 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.819e-15 + O[18O] 1.815e-15 1.818e-15 -14.741 -14.740 0.001 (0) + [18O]2 1.811e-18 1.814e-18 -17.742 -17.741 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.64 -125.50 -2.86 [13C]H4 + [13C]H4(g) -125.19 -128.05 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.97 -21.47 -1.50 [14C][18O]2 - [14C]H4(g) -133.75 -136.61 -2.86 [14C]H4 + [14C]H4(g) -136.30 -139.16 -2.86 [14C]H4 [14C]O2(g) -14.60 -16.07 -1.47 [14C]O2 [14C]O[18O](g) -16.98 -18.77 -1.79 [14C]O[18O] - [18O]2(g) -16.72 -19.01 -2.29 [18O]2 + [18O]2(g) -15.45 -17.74 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -50577,14 +50567,14 @@ O(0) 4.878e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.69 -123.55 -2.86 CH4 + CH4(g) -123.23 -126.09 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.23 -39.38 -3.15 H2 + H2(g) -36.87 -40.02 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.72 -13.61 -2.89 O2 - O[18O](g) -13.42 -16.31 -2.89 O[18O] + O2(g) -9.45 -12.34 -2.89 O2 + O[18O](g) -12.15 -15.04 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -50648,23 +50638,23 @@ Calcite 4.16e-02 R(18O) 1.99521e-03 -4.984 permil R(13C) 1.11476e-02 -2.9195 permil - R(14C) 8.57853e-14 7.2954 pmc + R(14C) 8.57859e-14 7.2954 pmc R(18O) H2O(l) 1.99520e-03 -4.9856 permil R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.022 permil R(18O) O2(aq) 1.99520e-03 -4.9856 permil R(13C) CO2(aq) 1.10678e-02 -10.055 permil - R(14C) CO2(aq) 8.45609e-14 7.1912 pmc + R(14C) CO2(aq) 8.45615e-14 7.1913 pmc R(18O) CO2(aq) 2.07917e-03 36.889 permil R(18O) HCO3- 1.99520e-03 -4.9856 permil R(13C) HCO3- 1.11641e-02 -1.4427 permil - R(14C) HCO3- 8.60387e-14 7.3169 pmc + R(14C) HCO3- 8.60392e-14 7.317 pmc R(18O) CO3-2 1.99520e-03 -4.9856 permil R(13C) CO3-2 1.11480e-02 -2.8758 permil - R(14C) CO3-2 8.57919e-14 7.2959 pmc + R(14C) CO3-2 8.57925e-14 7.296 pmc R(18O) Calcite 2.05264e-03 23.661 permil R(13C) Calcite 1.11862e-02 0.53506 permil - R(14C) Calcite 8.63799e-14 7.3459 pmc + R(14C) Calcite 8.63804e-14 7.346 pmc --------------------------------Isotope Alphas--------------------------------- @@ -50674,12 +50664,12 @@ Calcite 4.16e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2623e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2432e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 0 0 +Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6659e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6761e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -50699,14 +50689,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.095 Adjusted to redox equilibrium + pe = 11.447 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -50721,14 +50711,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.275 -123.275 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.092 -126.091 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -50736,9 +50726,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -50746,81 +50736,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 9.636e-40 - H2 4.818e-40 4.826e-40 -39.317 -39.316 0.001 (0) -O(0) 3.574e-14 - O2 1.780e-14 1.783e-14 -13.750 -13.749 0.001 (0) - O[18O] 7.102e-17 7.114e-17 -16.149 -16.148 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.021 -40.020 0.001 (0) +O(0) 9.146e-13 + O2 4.555e-13 4.562e-13 -12.342 -12.341 0.001 (0) + O[18O] 1.817e-15 1.820e-15 -14.741 -14.740 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.231 -125.231 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.048 -128.047 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.212e-09 2.029e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.348 -136.348 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.164 -139.164 0.001 (0) [14C](4) 5.010e-16 H[14C]O3- 4.047e-16 3.702e-16 -15.393 -15.432 -0.039 (0) [14C]O2 8.421e-17 8.434e-17 -16.075 -16.074 0.001 (0) CaH[14C]O3+ 8.546e-18 7.839e-18 -17.068 -17.106 -0.037 (0) - H[14C]O2[18O]- 8.074e-19 7.387e-19 -18.093 -18.132 -0.039 (0) - H[14C]O[18O]O- 8.074e-19 7.387e-19 -18.093 -18.132 -0.039 (0) H[14C][18O]O2- 8.074e-19 7.387e-19 -18.093 -18.132 -0.039 (0) + H[14C]O[18O]O- 8.074e-19 7.387e-19 -18.093 -18.132 -0.039 (0) + H[14C]O2[18O]- 8.074e-19 7.387e-19 -18.093 -18.132 -0.039 (0) Ca[14C]O3 4.685e-19 4.692e-19 -18.329 -18.329 0.001 (0) [14C]O[18O] 3.502e-19 3.507e-19 -18.456 -18.455 0.001 (0) [14C]O3-2 2.403e-19 1.684e-19 -18.619 -18.774 -0.155 (0) CaH[14C]O2[18O]+ 1.705e-20 1.564e-20 -19.768 -19.806 -0.037 (0) - CaH[14C]O[18O]O+ 1.705e-20 1.564e-20 -19.768 -19.806 -0.037 (0) CaH[14C][18O]O2+ 1.705e-20 1.564e-20 -19.768 -19.806 -0.037 (0) + CaH[14C]O[18O]O+ 1.705e-20 1.564e-20 -19.768 -19.806 -0.037 (0) Ca[14C]O2[18O] 2.804e-21 2.809e-21 -20.552 -20.551 0.001 (0) + H[14C][18O]O[18O]- 1.611e-21 1.474e-21 -20.793 -20.832 -0.039 (0) H[14C]O[18O]2- 1.611e-21 1.474e-21 -20.793 -20.832 -0.039 (0) H[14C][18O]2O- 1.611e-21 1.474e-21 -20.793 -20.832 -0.039 (0) - H[14C][18O]O[18O]- 1.611e-21 1.474e-21 -20.793 -20.832 -0.039 (0) [14C]O2[18O]-2 1.438e-21 1.008e-21 -20.842 -20.997 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 7.116e-17 - O[18O] 7.102e-17 7.114e-17 -16.149 -16.148 0.001 (0) - [18O]2 7.085e-20 7.097e-20 -19.150 -19.149 0.001 (0) +[18O](0) 1.821e-15 + O[18O] 1.817e-15 1.820e-15 -14.741 -14.740 0.001 (0) + [18O]2 1.813e-18 1.816e-18 -17.742 -17.741 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.37 -125.23 -2.86 [13C]H4 + [13C]H4(g) -125.19 -128.05 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.97 -21.47 -1.50 [14C][18O]2 - [14C]H4(g) -133.49 -136.35 -2.86 [14C]H4 + [14C]H4(g) -136.30 -139.16 -2.86 [14C]H4 [14C]O2(g) -14.61 -16.07 -1.47 [14C]O2 [14C]O[18O](g) -16.99 -18.77 -1.79 [14C]O[18O] - [18O]2(g) -16.86 -19.15 -2.29 [18O]2 + [18O]2(g) -15.45 -17.74 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -50834,14 +50824,14 @@ O(0) 3.574e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.41 -123.27 -2.86 CH4 + CH4(g) -123.23 -126.09 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.17 -39.32 -3.15 H2 + H2(g) -36.87 -40.02 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.86 -13.75 -2.89 O2 - O[18O](g) -13.56 -16.45 -2.89 O[18O] + O2(g) -9.45 -12.34 -2.89 O2 + O[18O](g) -12.15 -15.04 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -50905,23 +50895,23 @@ Calcite 4.21e-02 R(18O) 1.99521e-03 -4.9839 permil R(13C) 1.11477e-02 -2.9035 permil - R(14C) 8.48899e-14 7.2192 pmc + R(14C) 8.48905e-14 7.2193 pmc R(18O) H2O(l) 1.99520e-03 -4.9854 permil R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.023 permil R(18O) O2(aq) 1.99520e-03 -4.9854 permil R(13C) CO2(aq) 1.10680e-02 -10.039 permil - R(14C) CO2(aq) 8.36783e-14 7.1162 pmc + R(14C) CO2(aq) 8.36789e-14 7.1162 pmc R(18O) CO2(aq) 2.07917e-03 36.889 permil R(18O) HCO3- 1.99520e-03 -4.9854 permil R(13C) HCO3- 1.11642e-02 -1.4267 permil - R(14C) HCO3- 8.51407e-14 7.2405 pmc + R(14C) HCO3- 8.51412e-14 7.2406 pmc R(18O) CO3-2 1.99520e-03 -4.9854 permil R(13C) CO3-2 1.11482e-02 -2.8598 permil - R(14C) CO3-2 8.48965e-14 7.2198 pmc + R(14C) CO3-2 8.48970e-14 7.2198 pmc R(18O) Calcite 2.05265e-03 23.661 permil R(13C) Calcite 1.11864e-02 0.5511 permil - R(14C) Calcite 8.54783e-14 7.2693 pmc + R(14C) Calcite 8.54788e-14 7.2693 pmc --------------------------------Isotope Alphas--------------------------------- @@ -50931,12 +50921,12 @@ Calcite 4.21e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2546e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2689e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6509e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6604e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -50956,14 +50946,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.029 Adjusted to redox equilibrium + pe = 11.446 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -50978,24 +50968,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.741 -122.740 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.076 -126.075 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -51003,50 +50993,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.311e-39 - H2 6.555e-40 6.565e-40 -39.183 -39.183 0.001 (0) -O(0) 1.931e-14 - O2 9.616e-15 9.632e-15 -14.017 -14.016 0.001 (0) - O[18O] 3.837e-17 3.843e-17 -16.416 -16.415 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.017 -40.017 0.001 (0) +O(0) 8.982e-13 + O2 4.473e-13 4.480e-13 -12.349 -12.349 0.001 (0) + O[18O] 1.785e-15 1.788e-15 -14.748 -14.748 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.697 -124.696 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.032 -128.031 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -135.818 -135.817 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.153 -139.153 0.001 (0) [14C](4) 4.957e-16 H[14C]O3- 4.005e-16 3.664e-16 -15.397 -15.436 -0.039 (0) - [14C]O2 8.333e-17 8.346e-17 -16.079 -16.079 0.001 (0) + [14C]O2 8.333e-17 8.346e-17 -16.079 -16.078 0.001 (0) CaH[14C]O3+ 8.456e-18 7.757e-18 -17.073 -17.110 -0.037 (0) - H[14C]O2[18O]- 7.990e-19 7.310e-19 -18.097 -18.136 -0.039 (0) - H[14C]O[18O]O- 7.990e-19 7.310e-19 -18.097 -18.136 -0.039 (0) H[14C][18O]O2- 7.990e-19 7.310e-19 -18.097 -18.136 -0.039 (0) + H[14C]O[18O]O- 7.990e-19 7.310e-19 -18.097 -18.136 -0.039 (0) + H[14C]O2[18O]- 7.990e-19 7.310e-19 -18.097 -18.136 -0.039 (0) Ca[14C]O3 4.636e-19 4.643e-19 -18.334 -18.333 0.001 (0) [14C]O[18O] 3.465e-19 3.471e-19 -18.460 -18.460 0.001 (0) [14C]O3-2 2.378e-19 1.666e-19 -18.624 -18.778 -0.155 (0) CaH[14C]O2[18O]+ 1.687e-20 1.548e-20 -19.773 -19.810 -0.037 (0) - CaH[14C]O[18O]O+ 1.687e-20 1.548e-20 -19.773 -19.810 -0.037 (0) CaH[14C][18O]O2+ 1.687e-20 1.548e-20 -19.773 -19.810 -0.037 (0) + CaH[14C]O[18O]O+ 1.687e-20 1.548e-20 -19.773 -19.810 -0.037 (0) Ca[14C]O2[18O] 2.775e-21 2.779e-21 -20.557 -20.556 0.001 (0) H[14C]O[18O]2- 1.594e-21 1.458e-21 -20.797 -20.836 -0.039 (0) H[14C][18O]2O- 1.594e-21 1.458e-21 -20.797 -20.836 -0.039 (0) @@ -51055,29 +51045,29 @@ O(0) 1.931e-14 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.845e-17 - O[18O] 3.837e-17 3.843e-17 -16.416 -16.415 0.001 (0) - [18O]2 3.828e-20 3.834e-20 -19.417 -19.416 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.788e-15 + O[18O] 1.785e-15 1.788e-15 -14.748 -14.748 0.001 (0) + [18O]2 1.781e-18 1.784e-18 -17.749 -17.749 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.84 -124.70 -2.86 [13C]H4 + [13C]H4(g) -125.17 -128.03 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.97 -21.48 -1.50 [14C][18O]2 - [14C]H4(g) -132.96 -135.82 -2.86 [14C]H4 + [14C]H4(g) -136.29 -139.15 -2.86 [14C]H4 [14C]O2(g) -14.61 -16.08 -1.47 [14C]O2 [14C]O[18O](g) -16.99 -18.78 -1.79 [14C]O[18O] - [18O]2(g) -17.13 -19.42 -2.29 [18O]2 + [18O]2(g) -15.46 -17.75 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -51091,14 +51081,14 @@ O(0) 1.931e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.88 -122.74 -2.86 CH4 + CH4(g) -123.22 -126.08 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.03 -39.18 -3.15 H2 + H2(g) -36.87 -40.02 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.12 -14.02 -2.89 O2 - O[18O](g) -13.82 -16.72 -2.89 O[18O] + O2(g) -9.46 -12.35 -2.89 O2 + O[18O](g) -12.16 -15.05 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -51162,23 +51152,23 @@ Calcite 4.26e-02 R(18O) 1.99521e-03 -4.9838 permil R(13C) 1.11479e-02 -2.8878 permil - R(14C) 8.40130e-14 7.1446 pmc + R(14C) 8.40136e-14 7.1447 pmc R(18O) H2O(l) 1.99520e-03 -4.9853 permil R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.023 permil R(18O) O2(aq) 1.99520e-03 -4.9853 permil R(13C) CO2(aq) 1.10681e-02 -10.024 permil - R(14C) CO2(aq) 8.28140e-14 7.0427 pmc + R(14C) CO2(aq) 8.28145e-14 7.0427 pmc R(18O) CO2(aq) 2.07917e-03 36.889 permil R(18O) HCO3- 1.99520e-03 -4.9853 permil R(13C) HCO3- 1.11644e-02 -1.4111 permil - R(14C) HCO3- 8.42612e-14 7.1658 pmc + R(14C) HCO3- 8.42617e-14 7.1658 pmc R(18O) CO3-2 1.99520e-03 -4.9853 permil R(13C) CO3-2 1.11484e-02 -2.8441 permil - R(14C) CO3-2 8.40195e-14 7.1452 pmc + R(14C) CO3-2 8.40201e-14 7.1452 pmc R(18O) Calcite 2.05265e-03 23.661 permil R(13C) Calcite 1.11865e-02 0.5668 permil - R(14C) Calcite 8.45953e-14 7.1942 pmc + R(14C) Calcite 8.45958e-14 7.1942 pmc --------------------------------Isotope Alphas--------------------------------- @@ -51188,12 +51178,12 @@ Calcite 4.26e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2206e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2684e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.2164e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6671e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.61e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -51213,14 +51203,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.142 Adjusted to redox equilibrium + pe = 11.449 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -51235,13 +51225,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.649 -123.649 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.103 -126.103 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -51250,9 +51240,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -51260,23 +51250,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.770e-40 - H2 3.885e-40 3.891e-40 -39.411 -39.410 0.001 (0) -O(0) 5.497e-14 - O2 2.738e-14 2.742e-14 -13.563 -13.562 0.001 (0) - O[18O] 1.092e-16 1.094e-16 -15.962 -15.961 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.024 -40.023 0.001 (0) +O(0) 9.269e-13 + O2 4.616e-13 4.624e-13 -12.336 -12.335 0.001 (0) + O[18O] 1.842e-15 1.845e-15 -14.735 -14.734 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.605 -125.605 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.059 -128.059 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.591e-08 -7.339 -7.338 0.001 (0) @@ -51285,56 +51275,56 @@ O(0) 5.497e-14 CaH[13C]O[18O]O+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.731 -136.731 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.185 -139.185 0.001 (0) [14C](4) 4.906e-16 H[14C]O3- 3.963e-16 3.626e-16 -15.402 -15.441 -0.039 (0) [14C]O2 8.247e-17 8.260e-17 -16.084 -16.083 0.001 (0) CaH[14C]O3+ 8.369e-18 7.677e-18 -17.077 -17.115 -0.037 (0) - H[14C]O2[18O]- 7.907e-19 7.234e-19 -18.102 -18.141 -0.039 (0) - H[14C]O[18O]O- 7.907e-19 7.234e-19 -18.102 -18.141 -0.039 (0) H[14C][18O]O2- 7.907e-19 7.234e-19 -18.102 -18.141 -0.039 (0) - Ca[14C]O3 4.588e-19 4.595e-19 -18.338 -18.338 0.001 (0) + H[14C]O[18O]O- 7.907e-19 7.234e-19 -18.102 -18.141 -0.039 (0) + H[14C]O2[18O]- 7.907e-19 7.234e-19 -18.102 -18.141 -0.039 (0) + Ca[14C]O3 4.588e-19 4.596e-19 -18.338 -18.338 0.001 (0) [14C]O[18O] 3.429e-19 3.435e-19 -18.465 -18.464 0.001 (0) [14C]O3-2 2.354e-19 1.649e-19 -18.628 -18.783 -0.155 (0) CaH[14C]O2[18O]+ 1.670e-20 1.532e-20 -19.777 -19.815 -0.037 (0) - CaH[14C]O[18O]O+ 1.670e-20 1.532e-20 -19.777 -19.815 -0.037 (0) CaH[14C][18O]O2+ 1.670e-20 1.532e-20 -19.777 -19.815 -0.037 (0) + CaH[14C]O[18O]O+ 1.670e-20 1.532e-20 -19.777 -19.815 -0.037 (0) Ca[14C]O2[18O] 2.746e-21 2.751e-21 -20.561 -20.561 0.001 (0) - H[14C]O[18O]2- 1.578e-21 1.443e-21 -20.802 -20.841 -0.039 (0) H[14C][18O]2O- 1.578e-21 1.443e-21 -20.802 -20.841 -0.039 (0) H[14C][18O]O[18O]- 1.578e-21 1.443e-21 -20.802 -20.841 -0.039 (0) + H[14C]O[18O]2- 1.578e-21 1.443e-21 -20.802 -20.841 -0.039 (0) [14C]O2[18O]-2 1.409e-21 9.869e-22 -20.851 -21.006 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.095e-16 - O[18O] 1.092e-16 1.094e-16 -15.962 -15.961 0.001 (0) - [18O]2 1.090e-19 1.092e-19 -18.963 -18.962 0.001 (0) +[18O](0) 1.846e-15 + O[18O] 1.842e-15 1.845e-15 -14.735 -14.734 0.001 (0) + [18O]2 1.838e-18 1.841e-18 -17.736 -17.735 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.74 -125.60 -2.86 [13C]H4 + [13C]H4(g) -125.20 -128.06 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.98 -21.48 -1.50 [14C][18O]2 - [14C]H4(g) -133.87 -136.73 -2.86 [14C]H4 + [14C]H4(g) -136.32 -139.18 -2.86 [14C]H4 [14C]O2(g) -14.61 -16.08 -1.47 [14C]O2 [14C]O[18O](g) -17.00 -18.78 -1.79 [14C]O[18O] - [18O]2(g) -16.67 -18.96 -2.29 [18O]2 + [18O]2(g) -15.44 -17.74 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -51348,14 +51338,14 @@ O(0) 5.497e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.79 -123.65 -2.86 CH4 + CH4(g) -123.24 -126.10 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.26 -39.41 -3.15 H2 + H2(g) -36.87 -40.02 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.67 -13.56 -2.89 O2 - O[18O](g) -13.37 -16.26 -2.89 O[18O] + O2(g) -9.44 -12.33 -2.89 O2 + O[18O](g) -12.14 -15.04 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -51419,23 +51409,23 @@ Calcite 4.31e-02 R(18O) 1.99521e-03 -4.9836 permil R(13C) 1.11481e-02 -2.8725 permil - R(14C) 8.31541e-14 7.0716 pmc + R(14C) 8.31546e-14 7.0716 pmc R(18O) H2O(l) 1.99520e-03 -4.9851 permil R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.023 permil R(18O) O2(aq) 1.99520e-03 -4.9851 permil R(13C) CO2(aq) 1.10683e-02 -10.009 permil - R(14C) CO2(aq) 8.19673e-14 6.9707 pmc + R(14C) CO2(aq) 8.19678e-14 6.9707 pmc R(18O) CO2(aq) 2.07917e-03 36.889 permil R(18O) HCO3- 1.99520e-03 -4.9851 permil R(13C) HCO3- 1.11646e-02 -1.3957 permil - R(14C) HCO3- 8.33997e-14 7.0925 pmc + R(14C) HCO3- 8.34002e-14 7.0925 pmc R(18O) CO3-2 1.99520e-03 -4.9851 permil R(13C) CO3-2 1.11486e-02 -2.8288 permil - R(14C) CO3-2 8.31605e-14 7.0721 pmc + R(14C) CO3-2 8.31610e-14 7.0722 pmc R(18O) Calcite 2.05265e-03 23.661 permil R(13C) Calcite 1.11867e-02 0.58218 permil - R(14C) Calcite 8.37304e-14 7.1206 pmc + R(14C) Calcite 8.37309e-14 7.1207 pmc --------------------------------Isotope Alphas--------------------------------- @@ -51445,12 +51435,12 @@ Calcite 4.31e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2582e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2721e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 0 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7061e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6482e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -51470,14 +51460,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.171 Adjusted to redox equilibrium + pe = 11.454 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -51492,24 +51482,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.876 -123.876 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.144 -126.144 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -51517,81 +51507,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.818e-40 - H2 3.409e-40 3.415e-40 -39.467 -39.467 0.001 (0) -O(0) 7.138e-14 - O2 3.555e-14 3.561e-14 -13.449 -13.448 0.001 (0) - O[18O] 1.419e-16 1.421e-16 -15.848 -15.847 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.034 -40.034 0.001 (0) +O(0) 9.718e-13 + O2 4.840e-13 4.848e-13 -12.315 -12.314 0.001 (0) + O[18O] 1.931e-15 1.934e-15 -14.714 -14.713 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.832 -125.832 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.100 -128.100 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.585e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.212e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.963 -136.962 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.231 -139.230 0.001 (0) [14C](4) 4.856e-16 H[14C]O3- 3.923e-16 3.589e-16 -15.406 -15.445 -0.039 (0) [14C]O2 8.162e-17 8.176e-17 -16.088 -16.087 0.001 (0) - CaH[14C]O3+ 8.283e-18 7.599e-18 -17.082 -17.119 -0.037 (0) - H[14C]O2[18O]- 7.827e-19 7.160e-19 -18.106 -18.145 -0.039 (0) - H[14C]O[18O]O- 7.827e-19 7.160e-19 -18.106 -18.145 -0.039 (0) + CaH[14C]O3+ 8.284e-18 7.599e-18 -17.082 -17.119 -0.037 (0) H[14C][18O]O2- 7.827e-19 7.160e-19 -18.106 -18.145 -0.039 (0) - Ca[14C]O3 4.541e-19 4.548e-19 -18.343 -18.342 0.001 (0) + H[14C]O[18O]O- 7.827e-19 7.160e-19 -18.106 -18.145 -0.039 (0) + H[14C]O2[18O]- 7.827e-19 7.160e-19 -18.106 -18.145 -0.039 (0) + Ca[14C]O3 4.541e-19 4.549e-19 -18.343 -18.342 0.001 (0) [14C]O[18O] 3.394e-19 3.400e-19 -18.469 -18.469 0.001 (0) [14C]O3-2 2.329e-19 1.632e-19 -18.633 -18.787 -0.155 (0) CaH[14C]O2[18O]+ 1.653e-20 1.516e-20 -19.782 -19.819 -0.037 (0) - CaH[14C]O[18O]O+ 1.653e-20 1.516e-20 -19.782 -19.819 -0.037 (0) CaH[14C][18O]O2+ 1.653e-20 1.516e-20 -19.782 -19.819 -0.037 (0) + CaH[14C]O[18O]O+ 1.653e-20 1.516e-20 -19.782 -19.819 -0.037 (0) Ca[14C]O2[18O] 2.718e-21 2.723e-21 -20.566 -20.565 0.001 (0) + H[14C][18O]O[18O]- 1.562e-21 1.429e-21 -20.806 -20.845 -0.039 (0) H[14C]O[18O]2- 1.562e-21 1.429e-21 -20.806 -20.845 -0.039 (0) H[14C][18O]2O- 1.562e-21 1.429e-21 -20.806 -20.845 -0.039 (0) - H[14C][18O]O[18O]- 1.562e-21 1.429e-21 -20.806 -20.845 -0.039 (0) [14C]O2[18O]-2 1.394e-21 9.768e-22 -20.856 -21.010 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.421e-16 - O[18O] 1.419e-16 1.421e-16 -15.848 -15.847 0.001 (0) - [18O]2 1.415e-19 1.417e-19 -18.849 -18.848 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.935e-15 + O[18O] 1.931e-15 1.934e-15 -14.714 -14.713 0.001 (0) + [18O]2 1.927e-18 1.930e-18 -17.715 -17.714 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.97 -125.83 -2.86 [13C]H4 + [13C]H4(g) -125.24 -128.10 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.98 -21.49 -1.50 [14C][18O]2 - [14C]H4(g) -134.10 -136.96 -2.86 [14C]H4 + [14C]H4(g) -136.37 -139.23 -2.86 [14C]H4 [14C]O2(g) -14.62 -16.09 -1.47 [14C]O2 [14C]O[18O](g) -17.00 -18.79 -1.79 [14C]O[18O] - [18O]2(g) -16.56 -18.85 -2.29 [18O]2 + [18O]2(g) -15.42 -17.71 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -51605,14 +51595,14 @@ O(0) 7.138e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.02 -123.88 -2.86 CH4 + CH4(g) -123.28 -126.14 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.32 -39.47 -3.15 H2 + H2(g) -36.88 -40.03 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.56 -13.45 -2.89 O2 - O[18O](g) -13.26 -16.15 -2.89 O[18O] + O2(g) -9.42 -12.31 -2.89 O2 + O[18O](g) -12.12 -15.01 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -51667,7 +51657,7 @@ Calcite 4.36e-02 Ca[13C][18O]3(s) 4.14e-12 4.76e-14 9.51e-11 Ca[14C]O3(s) 3.55e-15 4.87e-18 8.15e-14 Ca[14C]O2[18O](s) 2.18e-17 3.00e-20 5.02e-16 - Ca[14C]O[18O]2(s) 4.48e-20 6.16e-23 1.03e-18 + Ca[14C]O[18O]2(s) 4.49e-20 6.16e-23 1.03e-18 Ca[14C][18O]3(s) 3.07e-23 4.21e-26 7.05e-22 --------------------------------Isotope Ratios--------------------------------- @@ -51676,23 +51666,23 @@ Calcite 4.36e-02 R(18O) 1.99521e-03 -4.9835 permil R(13C) 1.11483e-02 -2.8575 permil - R(14C) 8.23125e-14 7 pmc + R(14C) 8.23130e-14 7.0001 pmc R(18O) H2O(l) 1.99520e-03 -4.985 permil R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.023 permil R(18O) O2(aq) 1.99520e-03 -4.985 permil R(13C) CO2(aq) 1.10685e-02 -9.9936 permil - R(14C) CO2(aq) 8.11377e-14 6.9001 pmc + R(14C) CO2(aq) 8.11382e-14 6.9002 pmc R(18O) CO2(aq) 2.07917e-03 36.889 permil R(18O) HCO3- 1.99520e-03 -4.985 permil R(13C) HCO3- 1.11648e-02 -1.3807 permil - R(14C) HCO3- 8.25556e-14 7.0207 pmc + R(14C) HCO3- 8.25562e-14 7.0208 pmc R(18O) CO3-2 1.99520e-03 -4.985 permil R(13C) CO3-2 1.11487e-02 -2.8138 permil - R(14C) CO3-2 8.23189e-14 7.0006 pmc + R(14C) CO3-2 8.23194e-14 7.0006 pmc R(18O) Calcite 2.05265e-03 23.662 permil R(13C) Calcite 1.11869e-02 0.59725 permil - R(14C) Calcite 8.28830e-14 7.0485 pmc + R(14C) Calcite 8.28835e-14 7.0486 pmc --------------------------------Isotope Alphas--------------------------------- @@ -51702,12 +51692,12 @@ Calcite 4.36e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.236e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2206e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5554e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6365e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -51727,14 +51717,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.174 Adjusted to redox equilibrium + pe = 11.454 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -51749,14 +51739,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.907 -123.906 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.147 -126.146 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -51764,9 +51754,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -51774,50 +51764,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.700e-40 - H2 3.350e-40 3.356e-40 -39.475 -39.474 0.001 (0) -O(0) 7.391e-14 - O2 3.681e-14 3.687e-14 -13.434 -13.433 0.001 (0) - O[18O] 1.469e-16 1.471e-16 -15.833 -15.832 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.035 -40.034 0.001 (0) +O(0) 9.745e-13 + O2 4.853e-13 4.861e-13 -12.314 -12.313 0.001 (0) + O[18O] 1.937e-15 1.940e-15 -14.713 -14.712 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.863 -125.862 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.103 -128.102 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.090e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.090e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.090e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.090e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.997 -136.997 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.238 -139.237 0.001 (0) [14C](4) 4.807e-16 H[14C]O3- 3.883e-16 3.552e-16 -15.411 -15.449 -0.039 (0) [14C]O2 8.080e-17 8.093e-17 -16.093 -16.092 0.001 (0) CaH[14C]O3+ 8.200e-18 7.522e-18 -17.086 -17.124 -0.037 (0) - H[14C]O2[18O]- 7.747e-19 7.088e-19 -18.111 -18.149 -0.039 (0) - H[14C]O[18O]O- 7.747e-19 7.088e-19 -18.111 -18.149 -0.039 (0) H[14C][18O]O2- 7.747e-19 7.088e-19 -18.111 -18.149 -0.039 (0) + H[14C]O[18O]O- 7.747e-19 7.088e-19 -18.111 -18.149 -0.039 (0) + H[14C]O2[18O]- 7.747e-19 7.088e-19 -18.111 -18.149 -0.039 (0) Ca[14C]O3 4.495e-19 4.502e-19 -18.347 -18.347 0.001 (0) [14C]O[18O] 3.360e-19 3.365e-19 -18.474 -18.473 0.001 (0) [14C]O3-2 2.306e-19 1.615e-19 -18.637 -18.792 -0.155 (0) CaH[14C]O2[18O]+ 1.636e-20 1.501e-20 -19.786 -19.824 -0.037 (0) - CaH[14C]O[18O]O+ 1.636e-20 1.501e-20 -19.786 -19.824 -0.037 (0) CaH[14C][18O]O2+ 1.636e-20 1.501e-20 -19.786 -19.824 -0.037 (0) + CaH[14C]O[18O]O+ 1.636e-20 1.501e-20 -19.786 -19.824 -0.037 (0) Ca[14C]O2[18O] 2.691e-21 2.695e-21 -20.570 -20.569 0.001 (0) H[14C]O[18O]2- 1.546e-21 1.414e-21 -20.811 -20.849 -0.039 (0) H[14C][18O]2O- 1.546e-21 1.414e-21 -20.811 -20.849 -0.039 (0) @@ -51826,29 +51816,29 @@ O(0) 7.391e-14 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.472e-16 - O[18O] 1.469e-16 1.471e-16 -15.833 -15.832 0.001 (0) - [18O]2 1.465e-19 1.468e-19 -18.834 -18.833 0.001 (0) +[18O](0) 1.940e-15 + O[18O] 1.937e-15 1.940e-15 -14.713 -14.712 0.001 (0) + [18O]2 1.932e-18 1.935e-18 -17.714 -17.713 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.00 -125.86 -2.86 [13C]H4 + [13C]H4(g) -125.24 -128.10 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.99 -21.49 -1.50 [14C][18O]2 - [14C]H4(g) -134.14 -137.00 -2.86 [14C]H4 + [14C]H4(g) -136.38 -139.24 -2.86 [14C]H4 [14C]O2(g) -14.62 -16.09 -1.47 [14C]O2 [14C]O[18O](g) -17.00 -18.79 -1.79 [14C]O[18O] - [18O]2(g) -16.54 -18.83 -2.29 [18O]2 + [18O]2(g) -15.42 -17.71 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -51862,14 +51852,14 @@ O(0) 7.391e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.05 -123.91 -2.86 CH4 + CH4(g) -123.29 -126.15 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.32 -39.47 -3.15 H2 + H2(g) -36.88 -40.03 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.54 -13.43 -2.89 O2 - O[18O](g) -13.24 -16.13 -2.89 O[18O] + O2(g) -9.42 -12.31 -2.89 O2 + O[18O](g) -12.12 -15.01 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -51933,23 +51923,23 @@ Calcite 4.41e-02 R(18O) 1.99521e-03 -4.9833 permil R(13C) 1.11484e-02 -2.8428 permil - R(14C) 8.14878e-14 6.9299 pmc + R(14C) 8.14883e-14 6.9299 pmc R(18O) H2O(l) 1.99520e-03 -4.9849 permil R(18O) OH- 1.92124e-03 -41.872 permil R(18O) H3O+ 2.04134e-03 18.023 permil R(18O) O2(aq) 1.99520e-03 -4.9849 permil R(13C) CO2(aq) 1.10686e-02 -9.979 permil - R(14C) CO2(aq) 8.03248e-14 6.831 pmc + R(14C) CO2(aq) 8.03253e-14 6.831 pmc R(18O) CO2(aq) 2.07917e-03 36.889 permil R(18O) HCO3- 1.99520e-03 -4.9849 permil R(13C) HCO3- 1.11649e-02 -1.3659 permil - R(14C) HCO3- 8.17285e-14 6.9504 pmc + R(14C) HCO3- 8.17290e-14 6.9504 pmc R(18O) CO3-2 1.99520e-03 -4.9849 permil R(13C) CO3-2 1.11489e-02 -2.7991 permil - R(14C) CO3-2 8.14941e-14 6.9304 pmc + R(14C) CO3-2 8.14946e-14 6.9305 pmc R(18O) Calcite 2.05265e-03 23.662 permil R(13C) Calcite 1.11870e-02 0.61202 permil - R(14C) Calcite 8.20526e-14 6.9779 pmc + R(14C) Calcite 8.20531e-14 6.978 pmc --------------------------------Isotope Alphas--------------------------------- @@ -51959,12 +51949,12 @@ Calcite 4.41e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2564e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2405e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.5503e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6205e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.771e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -51984,14 +51974,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.128 Adjusted to redox equilibrium + pe = 11.454 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -52006,24 +51996,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.535 -123.534 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.143 -126.142 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -52031,23 +52021,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 8.298e-40 - H2 4.149e-40 4.156e-40 -39.382 -39.381 0.001 (0) -O(0) 4.819e-14 - O2 2.400e-14 2.404e-14 -13.620 -13.619 0.001 (0) - O[18O] 9.577e-17 9.593e-17 -16.019 -16.018 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.034 -40.033 0.001 (0) +O(0) 9.700e-13 + O2 4.831e-13 4.839e-13 -12.316 -12.315 0.001 (0) + O[18O] 1.928e-15 1.931e-15 -14.715 -14.714 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.491 -125.490 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.099 -128.098 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.591e-08 -7.339 -7.338 0.001 (0) @@ -52056,56 +52046,56 @@ O(0) 4.819e-14 CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.630 -136.630 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.238 -139.237 0.001 (0) [14C](4) 4.759e-16 H[14C]O3- 3.844e-16 3.517e-16 -15.415 -15.454 -0.039 (0) [14C]O2 7.999e-17 8.012e-17 -16.097 -16.096 0.001 (0) - CaH[14C]O3+ 8.117e-18 7.446e-18 -17.091 -17.128 -0.037 (0) - H[14C]O2[18O]- 7.670e-19 7.017e-19 -18.115 -18.154 -0.039 (0) - H[14C]O[18O]O- 7.670e-19 7.017e-19 -18.115 -18.154 -0.039 (0) + CaH[14C]O3+ 8.118e-18 7.446e-18 -17.091 -17.128 -0.037 (0) H[14C][18O]O2- 7.670e-19 7.017e-19 -18.115 -18.154 -0.039 (0) + H[14C]O[18O]O- 7.670e-19 7.017e-19 -18.115 -18.154 -0.039 (0) + H[14C]O2[18O]- 7.670e-19 7.017e-19 -18.115 -18.154 -0.039 (0) Ca[14C]O3 4.450e-19 4.457e-19 -18.352 -18.351 0.001 (0) [14C]O[18O] 3.326e-19 3.332e-19 -18.478 -18.477 0.001 (0) [14C]O3-2 2.283e-19 1.599e-19 -18.642 -18.796 -0.155 (0) CaH[14C]O2[18O]+ 1.620e-20 1.486e-20 -19.791 -19.828 -0.037 (0) - CaH[14C]O[18O]O+ 1.620e-20 1.486e-20 -19.791 -19.828 -0.037 (0) CaH[14C][18O]O2+ 1.620e-20 1.486e-20 -19.791 -19.828 -0.037 (0) + CaH[14C]O[18O]O+ 1.620e-20 1.486e-20 -19.791 -19.828 -0.037 (0) Ca[14C]O2[18O] 2.664e-21 2.668e-21 -20.575 -20.574 0.001 (0) - H[14C]O[18O]2- 1.530e-21 1.400e-21 -20.815 -20.854 -0.039 (0) H[14C][18O]2O- 1.530e-21 1.400e-21 -20.815 -20.854 -0.039 (0) H[14C][18O]O[18O]- 1.530e-21 1.400e-21 -20.815 -20.854 -0.039 (0) + H[14C]O[18O]2- 1.530e-21 1.400e-21 -20.815 -20.854 -0.039 (0) [14C]O2[18O]-2 1.366e-21 9.572e-22 -20.864 -21.019 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 9.596e-17 - O[18O] 9.577e-17 9.593e-17 -16.019 -16.018 0.001 (0) - [18O]2 9.554e-20 9.570e-20 -19.020 -19.019 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.931e-15 + O[18O] 1.928e-15 1.931e-15 -14.715 -14.714 0.001 (0) + [18O]2 1.923e-18 1.926e-18 -17.716 -17.715 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.63 -125.49 -2.86 [13C]H4 + [13C]H4(g) -125.24 -128.10 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.99 -21.50 -1.50 [14C][18O]2 - [14C]H4(g) -133.77 -136.63 -2.86 [14C]H4 + [14C]H4(g) -136.38 -139.24 -2.86 [14C]H4 [14C]O2(g) -14.63 -16.10 -1.47 [14C]O2 [14C]O[18O](g) -17.01 -18.80 -1.79 [14C]O[18O] - [18O]2(g) -16.73 -19.02 -2.29 [18O]2 + [18O]2(g) -15.43 -17.72 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -52119,14 +52109,14 @@ O(0) 4.819e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.67 -123.53 -2.86 CH4 + CH4(g) -123.28 -126.14 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.23 -39.38 -3.15 H2 + H2(g) -36.88 -40.03 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.73 -13.62 -2.89 O2 - O[18O](g) -13.43 -16.32 -2.89 O[18O] + O2(g) -9.42 -12.32 -2.89 O2 + O[18O](g) -12.12 -15.02 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -52190,23 +52180,23 @@ Calcite 4.46e-02 R(18O) 1.99521e-03 -4.9832 permil R(13C) 1.11486e-02 -2.8283 permil - R(14C) 8.06795e-14 6.8612 pmc + R(14C) 8.06800e-14 6.8612 pmc R(18O) H2O(l) 1.99520e-03 -4.9847 permil R(18O) OH- 1.92124e-03 -41.872 permil R(18O) H3O+ 2.04134e-03 18.023 permil R(18O) O2(aq) 1.99520e-03 -4.9847 permil R(13C) CO2(aq) 1.10688e-02 -9.9647 permil - R(14C) CO2(aq) 7.95280e-14 6.7632 pmc + R(14C) CO2(aq) 7.95285e-14 6.7633 pmc R(18O) CO2(aq) 2.07917e-03 36.89 permil R(18O) HCO3- 1.99520e-03 -4.9847 permil R(13C) HCO3- 1.11651e-02 -1.3515 permil - R(14C) HCO3- 8.09178e-14 6.8814 pmc + R(14C) HCO3- 8.09183e-14 6.8815 pmc R(18O) CO3-2 1.99520e-03 -4.9847 permil R(13C) CO3-2 1.11491e-02 -2.7846 permil - R(14C) CO3-2 8.06857e-14 6.8617 pmc + R(14C) CO3-2 8.06862e-14 6.8617 pmc R(18O) Calcite 2.05265e-03 23.662 permil R(13C) Calcite 1.11872e-02 0.6265 permil - R(14C) Calcite 8.12386e-14 6.9087 pmc + R(14C) Calcite 8.12391e-14 6.9088 pmc --------------------------------Isotope Alphas--------------------------------- @@ -52216,12 +52206,12 @@ Calcite 4.46e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2834e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2682e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6822e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.56e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -52241,14 +52231,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.131 Adjusted to redox equilibrium + pe = 11.453 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -52263,14 +52253,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.558 -123.557 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.138 -126.137 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -52278,9 +52268,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -52288,81 +52278,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 8.190e-40 - H2 4.095e-40 4.102e-40 -39.388 -39.387 0.001 (0) -O(0) 4.948e-14 - O2 2.464e-14 2.468e-14 -13.608 -13.608 0.001 (0) - O[18O] 9.832e-17 9.848e-17 -16.007 -16.007 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.033 -40.032 0.001 (0) +O(0) 9.643e-13 + O2 4.802e-13 4.810e-13 -12.319 -12.318 0.001 (0) + O[18O] 1.916e-15 1.919e-15 -14.718 -14.717 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.514 -125.513 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.094 -128.093 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.583e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.657 -136.657 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.237 -139.236 0.001 (0) [14C](4) 4.712e-16 H[14C]O3- 3.806e-16 3.482e-16 -15.420 -15.458 -0.039 (0) [14C]O2 7.919e-17 7.932e-17 -16.101 -16.101 0.001 (0) CaH[14C]O3+ 8.037e-18 7.373e-18 -17.095 -17.132 -0.037 (0) - H[14C]O2[18O]- 7.594e-19 6.947e-19 -18.120 -18.158 -0.039 (0) - H[14C]O[18O]O- 7.594e-19 6.947e-19 -18.120 -18.158 -0.039 (0) H[14C][18O]O2- 7.594e-19 6.947e-19 -18.120 -18.158 -0.039 (0) + H[14C]O[18O]O- 7.594e-19 6.947e-19 -18.120 -18.158 -0.039 (0) + H[14C]O2[18O]- 7.594e-19 6.947e-19 -18.120 -18.158 -0.039 (0) Ca[14C]O3 4.406e-19 4.413e-19 -18.356 -18.355 0.001 (0) [14C]O[18O] 3.293e-19 3.299e-19 -18.482 -18.482 0.001 (0) [14C]O3-2 2.260e-19 1.583e-19 -18.646 -18.800 -0.155 (0) CaH[14C]O2[18O]+ 1.604e-20 1.471e-20 -19.795 -19.832 -0.037 (0) - CaH[14C]O[18O]O+ 1.604e-20 1.471e-20 -19.795 -19.832 -0.037 (0) CaH[14C][18O]O2+ 1.604e-20 1.471e-20 -19.795 -19.832 -0.037 (0) + CaH[14C]O[18O]O+ 1.604e-20 1.471e-20 -19.795 -19.832 -0.037 (0) Ca[14C]O2[18O] 2.637e-21 2.642e-21 -20.579 -20.578 0.001 (0) + H[14C][18O]O[18O]- 1.515e-21 1.386e-21 -20.820 -20.858 -0.039 (0) H[14C]O[18O]2- 1.515e-21 1.386e-21 -20.820 -20.858 -0.039 (0) H[14C][18O]2O- 1.515e-21 1.386e-21 -20.820 -20.858 -0.039 (0) - H[14C][18O]O[18O]- 1.515e-21 1.386e-21 -20.820 -20.858 -0.039 (0) [14C]O2[18O]-2 1.353e-21 9.477e-22 -20.869 -21.023 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 9.852e-17 - O[18O] 9.832e-17 9.848e-17 -16.007 -16.007 0.001 (0) - [18O]2 9.809e-20 9.825e-20 -19.008 -19.008 0.001 (0) +[18O](0) 1.920e-15 + O[18O] 1.916e-15 1.919e-15 -14.718 -14.717 0.001 (0) + [18O]2 1.912e-18 1.915e-18 -17.719 -17.718 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.65 -125.51 -2.86 [13C]H4 + [13C]H4(g) -125.23 -128.09 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.00 -21.50 -1.50 [14C][18O]2 - [14C]H4(g) -133.80 -136.66 -2.86 [14C]H4 + [14C]H4(g) -136.38 -139.24 -2.86 [14C]H4 [14C]O2(g) -14.63 -16.10 -1.47 [14C]O2 [14C]O[18O](g) -17.01 -18.80 -1.79 [14C]O[18O] - [18O]2(g) -16.72 -19.01 -2.29 [18O]2 + [18O]2(g) -15.43 -17.72 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -52376,14 +52366,14 @@ O(0) 4.948e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.70 -123.56 -2.86 CH4 + CH4(g) -123.28 -126.14 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.24 -39.39 -3.15 H2 + H2(g) -36.88 -40.03 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.72 -13.61 -2.89 O2 - O[18O](g) -13.42 -16.31 -2.89 O[18O] + O2(g) -9.43 -12.32 -2.89 O2 + O[18O](g) -12.13 -15.02 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -52447,23 +52437,23 @@ Calcite 4.51e-02 R(18O) 1.99521e-03 -4.9831 permil R(13C) 1.11487e-02 -2.8142 permil - R(14C) 7.98870e-14 6.7938 pmc + R(14C) 7.98875e-14 6.7938 pmc R(18O) H2O(l) 1.99520e-03 -4.9846 permil R(18O) OH- 1.92124e-03 -41.872 permil R(18O) H3O+ 2.04134e-03 18.023 permil R(18O) O2(aq) 1.99520e-03 -4.9846 permil R(13C) CO2(aq) 1.10690e-02 -9.9506 permil - R(14C) CO2(aq) 7.87468e-14 6.6968 pmc + R(14C) CO2(aq) 7.87473e-14 6.6968 pmc R(18O) CO2(aq) 2.07917e-03 36.89 permil R(18O) HCO3- 1.99520e-03 -4.9846 permil R(13C) HCO3- 1.11652e-02 -1.3373 permil - R(14C) HCO3- 8.01230e-14 6.8138 pmc + R(14C) HCO3- 8.01235e-14 6.8139 pmc R(18O) CO3-2 1.99520e-03 -4.9846 permil R(13C) CO3-2 1.11492e-02 -2.7705 permil - R(14C) CO3-2 7.98932e-14 6.7943 pmc + R(14C) CO3-2 7.98937e-14 6.7943 pmc R(18O) Calcite 2.05265e-03 23.662 permil R(13C) Calcite 1.11874e-02 0.64069 permil - R(14C) Calcite 8.04407e-14 6.8408 pmc + R(14C) Calcite 8.04412e-14 6.8409 pmc --------------------------------Isotope Alphas--------------------------------- @@ -52473,12 +52463,12 @@ Calcite 4.51e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2546e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2399e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7424e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7556e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -52498,14 +52488,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.129 Adjusted to redox equilibrium + pe = 11.453 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -52520,24 +52510,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.546 -123.546 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.137 -126.136 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -52545,81 +52535,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 8.245e-40 - H2 4.123e-40 4.129e-40 -39.385 -39.384 0.001 (0) -O(0) 4.881e-14 - O2 2.431e-14 2.435e-14 -13.614 -13.614 0.001 (0) - O[18O] 9.700e-17 9.716e-17 -16.013 -16.013 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.033 -40.032 0.001 (0) +O(0) 9.637e-13 + O2 4.799e-13 4.807e-13 -12.319 -12.318 0.001 (0) + O[18O] 1.915e-15 1.918e-15 -14.718 -14.717 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.502 -125.501 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.093 -128.092 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.252e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.584e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.650 -136.649 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.241 -139.240 0.001 (0) [14C](4) 4.665e-16 H[14C]O3- 3.769e-16 3.448e-16 -15.424 -15.462 -0.039 (0) [14C]O2 7.842e-17 7.855e-17 -16.106 -16.105 0.001 (0) CaH[14C]O3+ 7.958e-18 7.300e-18 -17.099 -17.137 -0.037 (0) - H[14C]O2[18O]- 7.519e-19 6.879e-19 -18.124 -18.162 -0.039 (0) - H[14C]O[18O]O- 7.519e-19 6.879e-19 -18.124 -18.162 -0.039 (0) H[14C][18O]O2- 7.519e-19 6.879e-19 -18.124 -18.162 -0.039 (0) + H[14C]O[18O]O- 7.519e-19 6.879e-19 -18.124 -18.162 -0.039 (0) + H[14C]O2[18O]- 7.519e-19 6.879e-19 -18.124 -18.162 -0.039 (0) Ca[14C]O3 4.363e-19 4.370e-19 -18.360 -18.360 0.001 (0) [14C]O[18O] 3.261e-19 3.266e-19 -18.487 -18.486 0.001 (0) [14C]O3-2 2.238e-19 1.568e-19 -18.650 -18.805 -0.155 (0) CaH[14C]O2[18O]+ 1.588e-20 1.457e-20 -19.799 -19.837 -0.037 (0) - CaH[14C]O[18O]O+ 1.588e-20 1.457e-20 -19.799 -19.837 -0.037 (0) CaH[14C][18O]O2+ 1.588e-20 1.457e-20 -19.799 -19.837 -0.037 (0) + CaH[14C]O[18O]O+ 1.588e-20 1.457e-20 -19.799 -19.837 -0.037 (0) Ca[14C]O2[18O] 2.611e-21 2.616e-21 -20.583 -20.582 0.001 (0) - H[14C]O[18O]2- 1.500e-21 1.372e-21 -20.824 -20.862 -0.039 (0) - H[14C][18O]2O- 1.500e-21 1.372e-21 -20.824 -20.862 -0.039 (0) - H[14C][18O]O[18O]- 1.500e-21 1.372e-21 -20.824 -20.862 -0.039 (0) + H[14C]O[18O]2- 1.500e-21 1.373e-21 -20.824 -20.862 -0.039 (0) + H[14C][18O]2O- 1.500e-21 1.373e-21 -20.824 -20.862 -0.039 (0) + H[14C][18O]O[18O]- 1.500e-21 1.373e-21 -20.824 -20.862 -0.039 (0) [14C]O2[18O]-2 1.340e-21 9.384e-22 -20.873 -21.028 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 9.719e-17 - O[18O] 9.700e-17 9.716e-17 -16.013 -16.013 0.001 (0) - [18O]2 9.676e-20 9.692e-20 -19.014 -19.014 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.919e-15 + O[18O] 1.915e-15 1.918e-15 -14.718 -14.717 0.001 (0) + [18O]2 1.911e-18 1.914e-18 -17.719 -17.718 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.64 -125.50 -2.86 [13C]H4 + [13C]H4(g) -125.23 -128.09 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.00 -21.50 -1.50 [14C][18O]2 - [14C]H4(g) -133.79 -136.65 -2.86 [14C]H4 + [14C]H4(g) -136.38 -139.24 -2.86 [14C]H4 [14C]O2(g) -14.64 -16.10 -1.47 [14C]O2 [14C]O[18O](g) -17.02 -18.80 -1.79 [14C]O[18O] - [18O]2(g) -16.72 -19.01 -2.29 [18O]2 + [18O]2(g) -15.43 -17.72 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -52633,14 +52623,14 @@ O(0) 4.881e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.69 -123.55 -2.86 CH4 + CH4(g) -123.28 -126.14 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.23 -39.38 -3.15 H2 + H2(g) -36.88 -40.03 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.72 -13.61 -2.89 O2 - O[18O](g) -13.42 -16.31 -2.89 O[18O] + O2(g) -9.43 -12.32 -2.89 O2 + O[18O](g) -12.13 -15.02 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -52704,23 +52694,23 @@ Calcite 4.56e-02 R(18O) 1.99521e-03 -4.9829 permil R(13C) 1.11489e-02 -2.8003 permil - R(14C) 7.91100e-14 6.7277 pmc + R(14C) 7.91105e-14 6.7277 pmc R(18O) H2O(l) 1.99521e-03 -4.9844 permil R(18O) OH- 1.92124e-03 -41.872 permil R(18O) H3O+ 2.04134e-03 18.024 permil R(18O) O2(aq) 1.99521e-03 -4.9844 permil R(13C) CO2(aq) 1.10691e-02 -9.9369 permil - R(14C) CO2(aq) 7.79809e-14 6.6317 pmc + R(14C) CO2(aq) 7.79814e-14 6.6317 pmc R(18O) CO2(aq) 2.07917e-03 36.89 permil R(18O) HCO3- 1.99521e-03 -4.9844 permil R(13C) HCO3- 1.11654e-02 -1.3234 permil - R(14C) HCO3- 7.93436e-14 6.7476 pmc + R(14C) HCO3- 7.93441e-14 6.7476 pmc R(18O) CO3-2 1.99521e-03 -4.9844 permil R(13C) CO3-2 1.11494e-02 -2.7566 permil - R(14C) CO3-2 7.91161e-14 6.7282 pmc + R(14C) CO3-2 7.91166e-14 6.7282 pmc R(18O) Calcite 2.05265e-03 23.662 permil R(13C) Calcite 1.11875e-02 0.6546 permil - R(14C) Calcite 7.96582e-14 6.7743 pmc + R(14C) Calcite 7.96587e-14 6.7743 pmc --------------------------------Isotope Alphas--------------------------------- @@ -52730,12 +52720,12 @@ Calcite 4.56e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.236e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2219e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6528e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6663e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -52755,14 +52745,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.164 Adjusted to redox equilibrium + pe = 11.454 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -52777,13 +52767,13 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.821 -123.820 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.147 -126.146 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) @@ -52792,9 +52782,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -52802,23 +52792,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.039e-40 - H2 3.520e-40 3.525e-40 -39.454 -39.453 0.001 (0) -O(0) 6.697e-14 - O2 3.335e-14 3.341e-14 -13.477 -13.476 0.001 (0) - O[18O] 1.331e-16 1.333e-16 -15.876 -15.875 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.035 -40.034 0.001 (0) +O(0) 9.746e-13 + O2 4.854e-13 4.862e-13 -12.314 -12.313 0.001 (0) + O[18O] 1.937e-15 1.940e-15 -14.713 -14.712 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.777 -125.776 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.103 -128.102 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.252e-05 4.805e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.584e-08 4.591e-08 -7.339 -7.338 0.001 (0) @@ -52827,56 +52817,56 @@ O(0) 6.697e-14 CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.929 -136.928 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.255 -139.254 0.001 (0) [14C](4) 4.620e-16 H[14C]O3- 3.732e-16 3.414e-16 -15.428 -15.467 -0.039 (0) [14C]O2 7.765e-17 7.778e-17 -16.110 -16.109 0.001 (0) CaH[14C]O3+ 7.881e-18 7.229e-18 -17.103 -17.141 -0.037 (0) - H[14C]O2[18O]- 7.446e-19 6.812e-19 -18.128 -18.167 -0.039 (0) - H[14C]O[18O]O- 7.446e-19 6.812e-19 -18.128 -18.167 -0.039 (0) H[14C][18O]O2- 7.446e-19 6.812e-19 -18.128 -18.167 -0.039 (0) + H[14C]O[18O]O- 7.446e-19 6.812e-19 -18.128 -18.167 -0.039 (0) + H[14C]O2[18O]- 7.446e-19 6.812e-19 -18.128 -18.167 -0.039 (0) Ca[14C]O3 4.320e-19 4.327e-19 -18.364 -18.364 0.001 (0) [14C]O[18O] 3.229e-19 3.234e-19 -18.491 -18.490 0.001 (0) [14C]O3-2 2.216e-19 1.553e-19 -18.654 -18.809 -0.155 (0) CaH[14C]O2[18O]+ 1.572e-20 1.442e-20 -19.803 -19.841 -0.037 (0) - CaH[14C]O[18O]O+ 1.572e-20 1.442e-20 -19.803 -19.841 -0.037 (0) CaH[14C][18O]O2+ 1.572e-20 1.442e-20 -19.803 -19.841 -0.037 (0) + CaH[14C]O[18O]O+ 1.572e-20 1.442e-20 -19.803 -19.841 -0.037 (0) Ca[14C]O2[18O] 2.586e-21 2.590e-21 -20.587 -20.587 0.001 (0) - H[14C]O[18O]2- 1.486e-21 1.359e-21 -20.828 -20.867 -0.039 (0) H[14C][18O]2O- 1.486e-21 1.359e-21 -20.828 -20.867 -0.039 (0) H[14C][18O]O[18O]- 1.486e-21 1.359e-21 -20.828 -20.867 -0.039 (0) + H[14C]O[18O]2- 1.486e-21 1.359e-21 -20.828 -20.867 -0.039 (0) [14C]O2[18O]-2 1.327e-21 9.293e-22 -20.877 -21.032 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.333e-16 - O[18O] 1.331e-16 1.333e-16 -15.876 -15.875 0.001 (0) - [18O]2 1.328e-19 1.330e-19 -18.877 -18.876 0.001 (0) +[18O](0) 1.941e-15 + O[18O] 1.937e-15 1.940e-15 -14.713 -14.712 0.001 (0) + [18O]2 1.932e-18 1.935e-18 -17.714 -17.713 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.92 -125.78 -2.86 [13C]H4 + [13C]H4(g) -125.24 -128.10 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.01 -21.51 -1.50 [14C][18O]2 - [14C]H4(g) -134.07 -136.93 -2.86 [14C]H4 + [14C]H4(g) -136.39 -139.25 -2.86 [14C]H4 [14C]O2(g) -14.64 -16.11 -1.47 [14C]O2 [14C]O[18O](g) -17.02 -18.81 -1.79 [14C]O[18O] - [18O]2(g) -16.59 -18.88 -2.29 [18O]2 + [18O]2(g) -15.42 -17.71 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -52890,14 +52880,14 @@ O(0) 6.697e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.96 -123.82 -2.86 CH4 + CH4(g) -123.29 -126.15 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.30 -39.45 -3.15 H2 + H2(g) -36.88 -40.03 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.58 -13.48 -2.89 O2 - O[18O](g) -13.28 -16.18 -2.89 O[18O] + O2(g) -9.42 -12.31 -2.89 O2 + O[18O](g) -12.12 -15.01 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -52961,23 +52951,23 @@ Calcite 4.61e-02 R(18O) 1.99521e-03 -4.9828 permil R(13C) 1.11490e-02 -2.7867 permil - R(14C) 7.83479e-14 6.6629 pmc + R(14C) 7.83484e-14 6.6629 pmc R(18O) H2O(l) 1.99521e-03 -4.9843 permil R(18O) OH- 1.92124e-03 -41.872 permil R(18O) H3O+ 2.04134e-03 18.024 permil R(18O) O2(aq) 1.99521e-03 -4.9843 permil R(13C) CO2(aq) 1.10693e-02 -9.9234 permil - R(14C) CO2(aq) 7.72297e-14 6.5678 pmc + R(14C) CO2(aq) 7.72302e-14 6.5678 pmc R(18O) CO2(aq) 2.07917e-03 36.89 permil R(18O) HCO3- 1.99521e-03 -4.9843 permil R(13C) HCO3- 1.11656e-02 -1.3098 permil - R(14C) HCO3- 7.85793e-14 6.6826 pmc + R(14C) HCO3- 7.85798e-14 6.6826 pmc R(18O) CO3-2 1.99521e-03 -4.9843 permil R(13C) CO3-2 1.11495e-02 -2.743 permil - R(14C) CO3-2 7.83539e-14 6.6634 pmc + R(14C) CO3-2 7.83544e-14 6.6634 pmc R(18O) Calcite 2.05265e-03 23.662 permil R(13C) Calcite 1.11877e-02 0.66825 permil - R(14C) Calcite 7.88909e-14 6.709 pmc + R(14C) Calcite 7.88914e-14 6.7091 pmc --------------------------------Isotope Alphas--------------------------------- @@ -52987,12 +52977,12 @@ Calcite 4.61e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.261e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2466e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5463e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.697e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -53012,14 +53002,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.219 Adjusted to redox equilibrium + pe = 11.454 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -53034,24 +53024,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.260 -124.260 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.147 -126.146 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -53059,81 +53049,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.466e-40 - H2 2.733e-40 2.738e-40 -39.563 -39.563 0.001 (0) -O(0) 1.110e-13 - O2 5.530e-14 5.540e-14 -13.257 -13.257 0.001 (0) - O[18O] 2.207e-16 2.210e-16 -15.656 -15.656 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.035 -40.034 0.001 (0) +O(0) 9.749e-13 + O2 4.855e-13 4.863e-13 -12.314 -12.313 0.001 (0) + O[18O] 1.937e-15 1.941e-15 -14.713 -14.712 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.216 -126.215 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.103 -128.102 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.252e-05 4.805e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.584e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.372 -137.372 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.259 -139.259 0.001 (0) [14C](4) 4.575e-16 H[14C]O3- 3.696e-16 3.381e-16 -15.432 -15.471 -0.039 (0) [14C]O2 7.691e-17 7.703e-17 -16.114 -16.113 0.001 (0) - CaH[14C]O3+ 7.805e-18 7.159e-18 -17.108 -17.145 -0.037 (0) - H[14C]O2[18O]- 7.374e-19 6.746e-19 -18.132 -18.171 -0.039 (0) - H[14C]O[18O]O- 7.374e-19 6.746e-19 -18.132 -18.171 -0.039 (0) + CaH[14C]O3+ 7.805e-18 7.160e-18 -17.108 -17.145 -0.037 (0) H[14C][18O]O2- 7.374e-19 6.746e-19 -18.132 -18.171 -0.039 (0) + H[14C]O[18O]O- 7.374e-19 6.746e-19 -18.132 -18.171 -0.039 (0) + H[14C]O2[18O]- 7.374e-19 6.746e-19 -18.132 -18.171 -0.039 (0) Ca[14C]O3 4.279e-19 4.286e-19 -18.369 -18.368 0.001 (0) [14C]O[18O] 3.198e-19 3.203e-19 -18.495 -18.494 0.001 (0) [14C]O3-2 2.195e-19 1.538e-19 -18.659 -18.813 -0.155 (0) CaH[14C]O2[18O]+ 1.557e-20 1.428e-20 -19.808 -19.845 -0.037 (0) - CaH[14C]O[18O]O+ 1.557e-20 1.428e-20 -19.808 -19.845 -0.037 (0) CaH[14C][18O]O2+ 1.557e-20 1.428e-20 -19.808 -19.845 -0.037 (0) + CaH[14C]O[18O]O+ 1.557e-20 1.428e-20 -19.808 -19.845 -0.037 (0) Ca[14C]O2[18O] 2.561e-21 2.565e-21 -20.592 -20.591 0.001 (0) + H[14C][18O]O[18O]- 1.471e-21 1.346e-21 -20.832 -20.871 -0.039 (0) H[14C]O[18O]2- 1.471e-21 1.346e-21 -20.832 -20.871 -0.039 (0) H[14C][18O]2O- 1.471e-21 1.346e-21 -20.832 -20.871 -0.039 (0) - H[14C][18O]O[18O]- 1.471e-21 1.346e-21 -20.832 -20.871 -0.039 (0) [14C]O2[18O]-2 1.314e-21 9.203e-22 -20.881 -21.036 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.211e-16 - O[18O] 2.207e-16 2.210e-16 -15.656 -15.656 0.001 (0) - [18O]2 2.202e-19 2.205e-19 -18.657 -18.657 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.941e-15 + O[18O] 1.937e-15 1.941e-15 -14.713 -14.712 0.001 (0) + [18O]2 1.933e-18 1.936e-18 -17.714 -17.713 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.36 -126.22 -2.86 [13C]H4 + [13C]H4(g) -125.24 -128.10 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.01 -21.51 -1.50 [14C][18O]2 - [14C]H4(g) -134.51 -137.37 -2.86 [14C]H4 + [14C]H4(g) -136.40 -139.26 -2.86 [14C]H4 [14C]O2(g) -14.64 -16.11 -1.47 [14C]O2 [14C]O[18O](g) -17.03 -18.81 -1.79 [14C]O[18O] - [18O]2(g) -16.37 -18.66 -2.29 [18O]2 + [18O]2(g) -15.42 -17.71 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -53147,14 +53137,14 @@ O(0) 1.110e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.40 -124.26 -2.86 CH4 + CH4(g) -123.29 -126.15 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.41 -39.56 -3.15 H2 + H2(g) -36.88 -40.03 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.36 -13.26 -2.89 O2 - O[18O](g) -13.06 -15.96 -2.89 O[18O] + O2(g) -9.42 -12.31 -2.89 O2 + O[18O](g) -12.12 -15.01 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -53218,23 +53208,23 @@ Calcite 4.66e-02 R(18O) 1.99521e-03 -4.9827 permil R(13C) 1.11492e-02 -2.7734 permil - R(14C) 7.76003e-14 6.5993 pmc + R(14C) 7.76008e-14 6.5993 pmc R(18O) H2O(l) 1.99521e-03 -4.9842 permil R(18O) OH- 1.92124e-03 -41.872 permil R(18O) H3O+ 2.04134e-03 18.024 permil R(18O) O2(aq) 1.99521e-03 -4.9842 permil R(13C) CO2(aq) 1.10694e-02 -9.9101 permil - R(14C) CO2(aq) 7.64928e-14 6.5051 pmc + R(14C) CO2(aq) 7.64933e-14 6.5052 pmc R(18O) CO2(aq) 2.07917e-03 36.89 permil R(18O) HCO3- 1.99521e-03 -4.9842 permil R(13C) HCO3- 1.11657e-02 -1.2964 permil - R(14C) HCO3- 7.78295e-14 6.6188 pmc + R(14C) HCO3- 7.78300e-14 6.6188 pmc R(18O) CO3-2 1.99521e-03 -4.9842 permil R(13C) CO3-2 1.11497e-02 -2.7297 permil - R(14C) CO3-2 7.76063e-14 6.5998 pmc + R(14C) CO3-2 7.76068e-14 6.5998 pmc R(18O) Calcite 2.05265e-03 23.662 permil R(13C) Calcite 1.11878e-02 0.68164 permil - R(14C) Calcite 7.81382e-14 6.645 pmc + R(14C) Calcite 7.81387e-14 6.6451 pmc --------------------------------Isotope Alphas--------------------------------- @@ -53244,12 +53234,12 @@ Calcite 4.66e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2632e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2795e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6187e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6317e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -53269,14 +53259,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.245 Adjusted to redox equilibrium + pe = 11.458 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -53291,14 +53281,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.471 -124.470 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.175 -126.174 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -53306,9 +53296,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -53316,50 +53306,50 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.842e-40 - H2 2.421e-40 2.425e-40 -39.616 -39.615 0.001 (0) -O(0) 1.415e-13 - O2 7.049e-14 7.060e-14 -13.152 -13.151 0.001 (0) - O[18O] 2.813e-16 2.817e-16 -15.551 -15.550 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.042 -40.041 0.001 (0) +O(0) 1.006e-12 + O2 5.012e-13 5.020e-13 -12.300 -12.299 0.001 (0) + O[18O] 2.000e-15 2.003e-15 -14.699 -14.698 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.427 -126.426 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.131 -128.130 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.252e-05 4.805e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) [13C]O[18O] 4.584e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) + CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.587 -137.587 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.291 -139.290 0.001 (0) [14C](4) 4.532e-16 H[14C]O3- 3.661e-16 3.349e-16 -15.436 -15.475 -0.039 (0) [14C]O2 7.617e-17 7.630e-17 -16.118 -16.117 0.001 (0) CaH[14C]O3+ 7.730e-18 7.091e-18 -17.112 -17.149 -0.037 (0) - H[14C]O2[18O]- 7.304e-19 6.682e-19 -18.136 -18.175 -0.039 (0) - H[14C]O[18O]O- 7.304e-19 6.682e-19 -18.136 -18.175 -0.039 (0) H[14C][18O]O2- 7.304e-19 6.682e-19 -18.136 -18.175 -0.039 (0) + H[14C]O[18O]O- 7.304e-19 6.682e-19 -18.136 -18.175 -0.039 (0) + H[14C]O2[18O]- 7.304e-19 6.682e-19 -18.136 -18.175 -0.039 (0) Ca[14C]O3 4.238e-19 4.245e-19 -18.373 -18.372 0.001 (0) [14C]O[18O] 3.167e-19 3.173e-19 -18.499 -18.499 0.001 (0) [14C]O3-2 2.174e-19 1.523e-19 -18.663 -18.817 -0.155 (0) CaH[14C]O2[18O]+ 1.542e-20 1.415e-20 -19.812 -19.849 -0.037 (0) - CaH[14C]O[18O]O+ 1.542e-20 1.415e-20 -19.812 -19.849 -0.037 (0) CaH[14C][18O]O2+ 1.542e-20 1.415e-20 -19.812 -19.849 -0.037 (0) + CaH[14C]O[18O]O+ 1.542e-20 1.415e-20 -19.812 -19.849 -0.037 (0) Ca[14C]O2[18O] 2.537e-21 2.541e-21 -20.596 -20.595 0.001 (0) H[14C]O[18O]2- 1.457e-21 1.333e-21 -20.836 -20.875 -0.039 (0) H[14C][18O]2O- 1.457e-21 1.333e-21 -20.836 -20.875 -0.039 (0) @@ -53368,29 +53358,29 @@ O(0) 1.415e-13 [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.818e-16 - O[18O] 2.813e-16 2.817e-16 -15.551 -15.550 0.001 (0) - [18O]2 2.806e-19 2.811e-19 -18.552 -18.551 0.001 (0) +[18O](0) 2.004e-15 + O[18O] 2.000e-15 2.003e-15 -14.699 -14.698 0.001 (0) + [18O]2 1.995e-18 1.998e-18 -17.700 -17.699 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.57 -126.43 -2.86 [13C]H4 + [13C]H4(g) -125.27 -128.13 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.01 -21.52 -1.50 [14C][18O]2 - [14C]H4(g) -134.73 -137.59 -2.86 [14C]H4 + [14C]H4(g) -136.43 -139.29 -2.86 [14C]H4 [14C]O2(g) -14.65 -16.12 -1.47 [14C]O2 [14C]O[18O](g) -17.03 -18.82 -1.79 [14C]O[18O] - [18O]2(g) -16.26 -18.55 -2.29 [18O]2 + [18O]2(g) -15.41 -17.70 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -53404,14 +53394,14 @@ O(0) 1.415e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.61 -124.47 -2.86 CH4 + CH4(g) -123.31 -126.17 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.47 -39.62 -3.15 H2 + H2(g) -36.89 -40.04 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.26 -13.15 -2.89 O2 - O[18O](g) -12.96 -15.85 -2.89 O[18O] + O2(g) -9.41 -12.30 -2.89 O2 + O[18O](g) -12.11 -15.00 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -53475,23 +53465,23 @@ Calcite 4.71e-02 R(18O) 1.99521e-03 -4.9825 permil R(13C) 1.11493e-02 -2.7603 permil - R(14C) 7.68669e-14 6.5369 pmc + R(14C) 7.68674e-14 6.537 pmc R(18O) H2O(l) 1.99521e-03 -4.984 permil R(18O) OH- 1.92124e-03 -41.872 permil R(18O) H3O+ 2.04134e-03 18.024 permil R(18O) O2(aq) 1.99521e-03 -4.984 permil R(13C) CO2(aq) 1.10695e-02 -9.8971 permil - R(14C) CO2(aq) 7.57699e-14 6.4436 pmc + R(14C) CO2(aq) 7.57704e-14 6.4437 pmc R(18O) CO2(aq) 2.07917e-03 36.89 permil R(18O) HCO3- 1.99521e-03 -4.984 permil R(13C) HCO3- 1.11659e-02 -1.2833 permil - R(14C) HCO3- 7.70940e-14 6.5562 pmc + R(14C) HCO3- 7.70945e-14 6.5563 pmc R(18O) CO3-2 1.99521e-03 -4.984 permil R(13C) CO3-2 1.11498e-02 -2.7166 permil - R(14C) CO3-2 7.68729e-14 6.5374 pmc + R(14C) CO3-2 7.68734e-14 6.5375 pmc R(18O) Calcite 2.05265e-03 23.663 permil R(13C) Calcite 1.11880e-02 0.69477 permil - R(14C) Calcite 7.73997e-14 6.5822 pmc + R(14C) Calcite 7.74002e-14 6.5823 pmc --------------------------------Isotope Alphas--------------------------------- @@ -53501,12 +53491,12 @@ Calcite 4.71e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2444e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2297e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8665e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7443e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -53526,14 +53516,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.218 Adjusted to redox equilibrium + pe = 11.453 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -53548,24 +53538,24 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.259 -124.259 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.135 -126.135 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -53573,23 +53563,23 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.469e-40 - H2 2.735e-40 2.739e-40 -39.563 -39.562 0.001 (0) -O(0) 1.109e-13 - O2 5.525e-14 5.534e-14 -13.258 -13.257 0.001 (0) - O[18O] 2.205e-16 2.208e-16 -15.657 -15.656 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.032 -40.031 0.001 (0) +O(0) 9.617e-13 + O2 4.789e-13 4.797e-13 -12.320 -12.319 0.001 (0) + O[18O] 1.911e-15 1.914e-15 -14.719 -14.718 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.215 -126.215 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.091 -128.090 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.252e-05 4.805e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C]O[18O]O- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) + H[13C]O2[18O]- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.586e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.215 -7.215 0.001 (0) [13C]O[18O] 4.584e-08 4.591e-08 -7.339 -7.338 0.001 (0) @@ -53598,56 +53588,56 @@ O(0) 1.109e-13 CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.380 -137.379 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.256 -139.255 0.001 (0) [14C](4) 4.489e-16 H[14C]O3- 3.626e-16 3.317e-16 -15.441 -15.479 -0.039 (0) [14C]O2 7.545e-17 7.558e-17 -16.122 -16.122 0.001 (0) CaH[14C]O3+ 7.657e-18 7.024e-18 -17.116 -17.153 -0.037 (0) - H[14C]O2[18O]- 7.235e-19 6.619e-19 -18.141 -18.179 -0.039 (0) - H[14C]O[18O]O- 7.235e-19 6.619e-19 -18.141 -18.179 -0.039 (0) H[14C][18O]O2- 7.235e-19 6.619e-19 -18.141 -18.179 -0.039 (0) + H[14C]O[18O]O- 7.235e-19 6.619e-19 -18.141 -18.179 -0.039 (0) + H[14C]O2[18O]- 7.235e-19 6.619e-19 -18.141 -18.179 -0.039 (0) Ca[14C]O3 4.198e-19 4.205e-19 -18.377 -18.376 0.001 (0) [14C]O[18O] 3.138e-19 3.143e-19 -18.503 -18.503 0.001 (0) [14C]O3-2 2.153e-19 1.509e-19 -18.667 -18.821 -0.155 (0) CaH[14C]O2[18O]+ 1.528e-20 1.401e-20 -19.816 -19.853 -0.037 (0) - CaH[14C]O[18O]O+ 1.528e-20 1.401e-20 -19.816 -19.853 -0.037 (0) CaH[14C][18O]O2+ 1.528e-20 1.401e-20 -19.816 -19.853 -0.037 (0) + CaH[14C]O[18O]O+ 1.528e-20 1.401e-20 -19.816 -19.853 -0.037 (0) Ca[14C]O2[18O] 2.513e-21 2.517e-21 -20.600 -20.599 0.001 (0) - H[14C]O[18O]2- 1.443e-21 1.321e-21 -20.841 -20.879 -0.039 (0) - H[14C][18O]2O- 1.443e-21 1.321e-21 -20.841 -20.879 -0.039 (0) - H[14C][18O]O[18O]- 1.443e-21 1.321e-21 -20.841 -20.879 -0.039 (0) + H[14C][18O]2O- 1.444e-21 1.321e-21 -20.841 -20.879 -0.039 (0) + H[14C][18O]O[18O]- 1.444e-21 1.321e-21 -20.841 -20.879 -0.039 (0) + H[14C]O[18O]2- 1.444e-21 1.321e-21 -20.841 -20.879 -0.039 (0) [14C]O2[18O]-2 1.289e-21 9.029e-22 -20.890 -21.044 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.209e-16 - O[18O] 2.205e-16 2.208e-16 -15.657 -15.656 0.001 (0) - [18O]2 2.199e-19 2.203e-19 -18.658 -18.657 0.001 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) +[18O](0) 1.915e-15 + O[18O] 1.911e-15 1.914e-15 -14.719 -14.718 0.001 (0) + [18O]2 1.907e-18 1.910e-18 -17.720 -17.719 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.35 -126.21 -2.86 [13C]H4 + [13C]H4(g) -125.23 -128.09 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.02 -21.52 -1.50 [14C][18O]2 - [14C]H4(g) -134.52 -137.38 -2.86 [14C]H4 + [14C]H4(g) -136.40 -139.26 -2.86 [14C]H4 [14C]O2(g) -14.65 -16.12 -1.47 [14C]O2 [14C]O[18O](g) -17.03 -18.82 -1.79 [14C]O[18O] - [18O]2(g) -16.37 -18.66 -2.29 [18O]2 + [18O]2(g) -15.43 -17.72 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -53661,14 +53651,14 @@ O(0) 1.109e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.40 -124.26 -2.86 CH4 + CH4(g) -123.27 -126.13 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.41 -39.56 -3.15 H2 + H2(g) -36.88 -40.03 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.36 -13.26 -2.89 O2 - O[18O](g) -13.06 -15.96 -2.89 O[18O] + O2(g) -9.43 -12.32 -2.89 O2 + O[18O](g) -12.13 -15.02 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -53732,23 +53722,23 @@ Calcite 4.76e-02 R(18O) 1.99521e-03 -4.9824 permil R(13C) 1.11495e-02 -2.7474 permil - R(14C) 7.61473e-14 6.4757 pmc + R(14C) 7.61478e-14 6.4758 pmc R(18O) H2O(l) 1.99521e-03 -4.9839 permil R(18O) OH- 1.92124e-03 -41.871 permil R(18O) H3O+ 2.04134e-03 18.024 permil R(18O) O2(aq) 1.99521e-03 -4.9839 permil R(13C) CO2(aq) 1.10697e-02 -9.8844 permil - R(14C) CO2(aq) 7.50605e-14 6.3833 pmc + R(14C) CO2(aq) 7.50609e-14 6.3833 pmc R(18O) CO2(aq) 2.07917e-03 36.89 permil R(18O) HCO3- 1.99521e-03 -4.9839 permil R(13C) HCO3- 1.11660e-02 -1.2705 permil - R(14C) HCO3- 7.63722e-14 6.4949 pmc + R(14C) HCO3- 7.63727e-14 6.4949 pmc R(18O) CO3-2 1.99521e-03 -4.9839 permil R(13C) CO3-2 1.11500e-02 -2.7037 permil - R(14C) CO3-2 7.61531e-14 6.4762 pmc + R(14C) CO3-2 7.61536e-14 6.4763 pmc R(18O) Calcite 2.05265e-03 23.663 permil R(13C) Calcite 1.11881e-02 0.70766 permil - R(14C) Calcite 7.66750e-14 6.5206 pmc + R(14C) Calcite 7.66755e-14 6.5206 pmc --------------------------------Isotope Alphas--------------------------------- @@ -53758,12 +53748,12 @@ Calcite 4.76e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2703e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2555e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 4.4409e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6696e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6828e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -53783,14 +53773,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.264 Adjusted to redox equilibrium + pe = 11.456 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.821e-13 + Electrical balance (eq) = 3.125e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -53805,14 +53795,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.621 -124.620 0.001 (0) + CH4 0.000e+00 0.000e+00 -126.160 -126.160 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) CaHCO3+ 9.932e-05 9.111e-05 -4.003 -4.040 -0.037 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CO3-2 2.801e-06 1.962e-06 -5.553 -5.707 -0.155 (0) @@ -53820,9 +53810,9 @@ C(4) 5.840e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) + HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HCO[18O]2- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) HC[18O]2O- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) - HC[18O]O[18O]- 1.872e-08 1.713e-08 -7.728 -7.766 -0.039 (0) CO2[18O]-2 1.677e-08 1.175e-08 -7.776 -7.930 -0.155 (0) Ca 2.451e-03 Ca+2 2.345e-03 1.659e-03 -2.630 -2.780 -0.150 (0) @@ -53830,81 +53820,81 @@ Ca 2.451e-03 CaCO3 5.461e-06 5.470e-06 -5.263 -5.262 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) + CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.099e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.442e-40 - H2 2.221e-40 2.225e-40 -39.653 -39.653 0.001 (0) -O(0) 1.682e-13 - O2 8.375e-14 8.388e-14 -13.077 -13.076 0.001 (0) - O[18O] 3.342e-16 3.347e-16 -15.476 -15.475 0.001 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.038 -40.038 0.001 (0) +O(0) 9.897e-13 + O2 4.929e-13 4.937e-13 -12.307 -12.307 0.001 (0) + O[18O] 1.967e-15 1.970e-15 -14.706 -14.706 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.577 -126.576 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -128.116 -128.115 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.252e-05 4.805e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) CaH[13C]O3+ 1.109e-06 1.017e-06 -5.955 -5.993 -0.037 (0) H[13C]O2[18O]- 1.048e-07 9.587e-08 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-07 9.587e-08 -6.980 -7.018 -0.039 (0) H[13C][18O]O2- 1.048e-07 9.587e-08 -6.980 -7.018 -0.039 (0) + H[13C]O[18O]O- 1.048e-07 9.587e-08 -6.980 -7.018 -0.039 (0) Ca[13C]O3 6.088e-08 6.099e-08 -7.215 -7.215 0.001 (0) [13C]O[18O] 4.584e-08 4.591e-08 -7.339 -7.338 0.001 (0) [13C]O3-2 3.123e-08 2.188e-08 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C]O[18O]O+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) CaH[13C][18O]O2+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) + CaH[13C]O2[18O]+ 2.213e-09 2.030e-09 -8.655 -8.693 -0.037 (0) Ca[13C]O2[18O] 3.644e-10 3.650e-10 -9.438 -9.438 0.001 (0) - H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C][18O]O[18O]- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) + H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.745 -137.745 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -139.285 -139.284 0.001 (0) [14C](4) 4.447e-16 H[14C]O3- 3.592e-16 3.286e-16 -15.445 -15.483 -0.039 (0) [14C]O2 7.475e-17 7.487e-17 -16.126 -16.126 0.001 (0) - CaH[14C]O3+ 7.585e-18 6.958e-18 -17.120 -17.157 -0.037 (0) - H[14C]O2[18O]- 7.167e-19 6.557e-19 -18.145 -18.183 -0.039 (0) - H[14C]O[18O]O- 7.167e-19 6.557e-19 -18.145 -18.183 -0.039 (0) + CaH[14C]O3+ 7.586e-18 6.958e-18 -17.120 -17.157 -0.037 (0) H[14C][18O]O2- 7.167e-19 6.557e-19 -18.145 -18.183 -0.039 (0) + H[14C]O[18O]O- 7.167e-19 6.557e-19 -18.145 -18.183 -0.039 (0) + H[14C]O2[18O]- 7.167e-19 6.557e-19 -18.145 -18.183 -0.039 (0) Ca[14C]O3 4.158e-19 4.165e-19 -18.381 -18.380 0.001 (0) [14C]O[18O] 3.108e-19 3.113e-19 -18.507 -18.507 0.001 (0) [14C]O3-2 2.133e-19 1.494e-19 -18.671 -18.826 -0.155 (0) CaH[14C]O2[18O]+ 1.513e-20 1.388e-20 -19.820 -19.858 -0.037 (0) - CaH[14C]O[18O]O+ 1.513e-20 1.388e-20 -19.820 -19.858 -0.037 (0) CaH[14C][18O]O2+ 1.513e-20 1.388e-20 -19.820 -19.858 -0.037 (0) + CaH[14C]O[18O]O+ 1.513e-20 1.388e-20 -19.820 -19.858 -0.037 (0) Ca[14C]O2[18O] 2.489e-21 2.493e-21 -20.604 -20.603 0.001 (0) + H[14C][18O]O[18O]- 1.430e-21 1.308e-21 -20.845 -20.883 -0.039 (0) H[14C]O[18O]2- 1.430e-21 1.308e-21 -20.845 -20.883 -0.039 (0) H[14C][18O]2O- 1.430e-21 1.308e-21 -20.845 -20.883 -0.039 (0) - H[14C][18O]O[18O]- 1.430e-21 1.308e-21 -20.845 -20.883 -0.039 (0) [14C]O2[18O]-2 1.277e-21 8.945e-22 -20.894 -21.048 -0.155 (0) [18O](-2) 1.109e-01 H2[18O] 1.108e-01 1.991e-03 -0.955 -2.701 -1.746 (0) HCO2[18O]- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) HC[18O]O2- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) + HCO[18O]O- 9.384e-06 8.586e-06 -5.028 -5.066 -0.039 (0) CO[18O] 4.141e-06 4.148e-06 -5.383 -5.382 0.001 (0) CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.348e-16 - O[18O] 3.342e-16 3.347e-16 -15.476 -15.475 0.001 (0) - [18O]2 3.334e-19 3.339e-19 -18.477 -18.476 0.001 (0) +[18O](0) 1.971e-15 + O[18O] 1.967e-15 1.970e-15 -14.706 -14.706 0.001 (0) + [18O]2 1.962e-18 1.965e-18 -17.707 -17.707 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.72 -126.58 -2.86 [13C]H4 + [13C]H4(g) -125.26 -128.12 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.02 -21.53 -1.50 [14C][18O]2 - [14C]H4(g) -134.88 -137.74 -2.86 [14C]H4 + [14C]H4(g) -136.42 -139.28 -2.86 [14C]H4 [14C]O2(g) -14.66 -16.13 -1.47 [14C]O2 [14C]O[18O](g) -17.04 -18.83 -1.79 [14C]O[18O] - [18O]2(g) -16.19 -18.48 -2.29 [18O]2 + [18O]2(g) -15.42 -17.71 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -53918,14 +53908,14 @@ O(0) 1.682e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.76 -124.62 -2.86 CH4 + CH4(g) -123.30 -126.16 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.50 -39.65 -3.15 H2 + H2(g) -36.89 -40.04 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.18 -13.08 -2.89 O2 - O[18O](g) -12.88 -15.78 -2.89 O[18O] + O2(g) -9.41 -12.31 -2.89 O2 + O[18O](g) -12.11 -15.01 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. diff --git a/ex21.out b/ex21.out index 44e054a0..c2413c73 100644 --- a/ex21.out +++ b/ex21.out @@ -1,4 +1,4 @@ - Input file: ex21 + Input file: ../examples/ex21 Output file: ex21.out Database file: ../database/phreeqc.dat @@ -20,7 +20,6 @@ Reading data base. Reading input data for simulation 1. ------------------------------------ - DATABASE ../database/phreeqc.dat TITLE Diffusion through Opalinus Clay in a radial diffusion cell, Appelo, Van Loon and Wersin, 2010, GCA 74, 1201 KNOBS tolerance 1e-16 @@ -110,15 +109,15 @@ Initial solution 0. column with only cell 1, two boundary solutions 0 and 2. pH = 7.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 122 - Density (g/cm³) = 0.99708 + Specific Conductance (µS/cm, 25°C) = 122 + Density (g/cm³) = 0.99708 Volume (L) = 1.00298 Viscosity (mPa s) = 0.89026 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.000e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.417e-09 - Temperature (°C) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.417e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 3 @@ -201,7 +200,7 @@ Reading input data for simulation 2. 120 por_clay = 0.159 130 rho_b_eps = 2.7 * (1 - por_clay) / por_clay # clay bulk density / porosity / (kg/L) 140 CEC = 0.09 * rho_b_eps # CEC / (eq/L porewater) - 150 A_por = 37e3 * rho_b_eps # pore surface area / (m/L porewater) + 150 A_por = 37e3 * rho_b_eps # pore surface area / (m²/L porewater) 151 correct_$ = ' false' 160 DIM tracer$(4), exp_time(4), scale_y1$(4), scale_y2$(4), profile_y1$(4), profile_y2$(4) 170 DATA 'Hto', 'Cl_tr', 'Na_tr', 'Cs' @@ -216,7 +215,7 @@ Reading input data for simulation 2. 290 READ profile_y1$(1), profile_y1$(2), profile_y1$(3), profile_y1$(4) 300 DATA '0 1.2e-9', '0 2.5e-5', '0 6e-10', '0 auto' 310 READ profile_y2$(1), profile_y2$(2), profile_y2$(3), profile_y2$(4) - 350 Dw = 2.5e-9 # default tracer diffusion coefficient / (m/s) + 350 Dw = 2.5e-9 # default tracer diffusion coefficient / (m²/s) 360 nfilt1 = 1 # number of cells in filter 1 370 nfilt2 = 1 # number of cells in filter 2 380 nclay = 11 # number of clay cells @@ -437,8 +436,8 @@ WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. pH = 7.600 pe = 13.120 Equilibrium with O2(g) - Specific Conductance (µS/cm, 23°C) = 29068 - Density (g/cm³) = 1.01168 + Specific Conductance (µS/cm, 23°C) = 29068 + Density (g/cm³) = 1.01168 Volume (L) = 0.20146 Viscosity (mPa s) = 0.96933 Activity of water = 0.990 @@ -446,7 +445,7 @@ WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. Mass of water (kg) = 2.000e-01 Total carbon (mol/kg) = 4.808e-04 Total CO2 (mol/kg) = 4.808e-04 - Temperature (°C) = 23.00 + Temperature (°C) = 23.00 Electrical balance (eq) = -1.312e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.10 Iterations = 6 diff --git a/ex22.out b/ex22.out index f5e62278..3ba17252 100644 --- a/ex22.out +++ b/ex22.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + CALCULATE_VALUES RATES END ------------------------------------ @@ -243,11 +244,11 @@ H2O(g) -1.45 3.586e-02 0.878 1.285e-03 1.587e-03 3.014e-04 ----------------------------Description of solution---------------------------- pH = 3.368 Charge balance - pe = 14.674 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 171 + pe = 14.672 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 165 Density (g/cm³) = 1.00156 Volume (L) = 1.01670 - Viscosity (mPa s) = 0.89000 + Viscosity (mPa s) = 0.89006 Activity of water = 0.993 Ionic strength (mol/kgw) = 4.384e-04 Mass of water (kg) = 1.000e+00 @@ -270,22 +271,22 @@ H2O(g) -1.45 3.586e-02 0.878 1.285e-03 1.587e-03 3.014e-04 OH- 2.430e-11 2.372e-11 -10.614 -10.625 -0.010 -4.07 H2O 5.551e+01 9.930e-01 1.744 -0.003 0.000 18.06 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.338 -120.338 0.000 35.47 + CH4 0.000e+00 0.000e+00 -120.321 -120.321 0.000 35.47 C(4) 4.161e-01 CO2 4.095e-01 4.096e-01 -0.388 -0.388 0.000 34.43 (CO2)2 3.079e-03 3.079e-03 -2.512 -2.512 0.000 68.85 - HCO3- 4.384e-04 4.282e-04 -3.358 -3.368 -0.010 24.55 - CO3-2 5.227e-11 4.755e-11 -10.282 -10.323 -0.041 -4.00 -H(0) 1.149e-39 - H2 5.743e-40 5.743e-40 -39.241 -39.241 0.000 28.60 -O(0) 2.429e-14 - O2 1.214e-14 1.214e-14 -13.916 -13.916 0.000 30.38 + HCO3- 4.384e-04 4.282e-04 -3.358 -3.368 -0.010 24.61 + CO3-2 5.227e-11 4.754e-11 -10.282 -10.323 -0.041 -3.86 +H(0) 1.160e-39 + H2 5.798e-40 5.798e-40 -39.237 -39.237 0.000 28.60 +O(0) 2.383e-14 + O2 1.191e-14 1.192e-14 -13.924 -13.924 0.000 30.38 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 13 atm) - CH4(g) -117.53 -120.34 -2.81 CH4 + CH4(g) -117.51 -120.32 -2.81 CH4 CO2(g) 1.09 -0.39 -1.48 CO2 Pressure 13.2 atm, phi 0.928 H2(g) -36.13 -39.24 -3.11 H2 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.878 @@ -337,13 +338,13 @@ H2O(g) -1.38 4.125e-02 0.766 1.587e-03 1.998e-03 4.108e-04 ----------------------------Description of solution---------------------------- pH = 3.241 Charge balance - pe = 14.739 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 231 + pe = 14.793 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 218 Density (g/cm³) = 1.00523 Volume (L) = 1.02762 - Viscosity (mPa s) = 0.88987 + Viscosity (mPa s) = 0.88995 Activity of water = 0.987 - Ionic strength (mol/kgw) = 5.902e-04 + Ionic strength (mol/kgw) = 5.901e-04 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 7.506e-01 @@ -360,30 +361,30 @@ H2O(g) -1.38 4.125e-02 0.766 1.587e-03 1.998e-03 4.108e-04 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 5.902e-04 5.747e-04 -3.229 -3.241 -0.012 0.00 - OH- 1.828e-11 1.779e-11 -10.738 -10.750 -0.012 -4.02 + H+ 5.901e-04 5.746e-04 -3.229 -3.241 -0.012 0.00 + OH- 1.829e-11 1.779e-11 -10.738 -10.750 -0.012 -4.02 H2O 5.551e+01 9.874e-01 1.744 -0.006 0.000 18.05 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.592 -119.592 0.000 35.49 + CH4 0.000e+00 0.000e+00 -120.022 -120.022 0.000 35.49 C(4) 7.506e-01 CO2 7.304e-01 7.304e-01 -0.136 -0.136 0.000 34.42 (CO2)2 9.792e-03 9.794e-03 -2.009 -2.009 0.000 68.84 - HCO3- 5.902e-04 5.742e-04 -3.229 -3.241 -0.012 24.57 - CO3-2 5.381e-11 4.824e-11 -10.269 -10.317 -0.047 -3.87 -H(0) 1.508e-39 - H2 7.538e-40 7.539e-40 -39.123 -39.123 0.000 28.59 -O(0) 1.357e-14 - O2 6.786e-15 6.787e-15 -14.168 -14.168 0.000 30.36 + HCO3- 5.901e-04 5.742e-04 -3.229 -3.241 -0.012 24.66 + CO3-2 5.380e-11 4.823e-11 -10.269 -10.317 -0.047 -3.73 +H(0) 1.177e-39 + H2 5.884e-40 5.885e-40 -39.230 -39.230 0.000 28.59 +O(0) 2.227e-14 + O2 1.114e-14 1.114e-14 -13.953 -13.953 0.000 30.36 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 26 atm) - CH4(g) -116.77 -119.59 -2.82 CH4 + CH4(g) -117.20 -120.02 -2.82 CH4 CO2(g) 1.35 -0.14 -1.48 CO2 Pressure 25.8 atm, phi 0.862 - H2(g) -36.01 -39.12 -3.11 H2 + H2(g) -36.12 -39.23 -3.11 H2 H2O(g) -1.50 -0.01 1.49 H2O Pressure 0.0 atm, phi 0.766 - O2(g) -11.26 -14.17 -2.91 O2 + O2(g) -11.05 -13.95 -2.91 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -431,11 +432,11 @@ H2O(g) -1.32 4.764e-02 0.666 1.998e-03 2.555e-03 5.569e-04 ----------------------------Description of solution---------------------------- pH = 3.178 Charge balance - pe = 2.399 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 267 + pe = 14.865 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 248 Density (g/cm³) = 1.00802 Volume (L) = 1.03574 - Viscosity (mPa s) = 0.88974 + Viscosity (mPa s) = 0.88983 Activity of water = 0.983 Ionic strength (mol/kgw) = 6.833e-04 Mass of water (kg) = 9.999e-01 @@ -445,7 +446,7 @@ H2O(g) -1.32 4.764e-02 0.666 1.998e-03 2.555e-03 5.569e-04 Pressure (atm) = 37.31 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 37 + Iterations = 28 Total H = 1.110073e+02 Total O = 5.750746e+01 @@ -454,30 +455,30 @@ H2O(g) -1.32 4.764e-02 0.666 1.998e-03 2.555e-03 5.569e-04 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 6.833e-04 6.642e-04 -3.165 -3.178 -0.012 0.00 + H+ 6.833e-04 6.641e-04 -3.165 -3.178 -0.012 0.00 OH- 1.595e-11 1.548e-11 -10.797 -10.810 -0.013 -3.98 H2O 5.551e+01 9.832e-01 1.744 -0.007 0.000 18.04 -C(-4) 5.646e-21 - CH4 5.646e-21 5.647e-21 -20.248 -20.248 0.000 35.51 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.972 -119.972 0.000 35.51 C(4) 1.002e+00 CO2 9.669e-01 9.670e-01 -0.015 -0.015 0.000 34.42 (CO2)2 1.716e-02 1.717e-02 -1.765 -1.765 0.000 68.83 - HCO3- 6.833e-04 6.636e-04 -3.165 -3.178 -0.013 24.59 - CO3-2 5.495e-11 4.887e-11 -10.260 -10.311 -0.051 -3.76 -H(0) 9.525e-15 - H2 4.763e-15 4.763e-15 -14.322 -14.322 0.000 28.59 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.784 -63.784 0.000 30.35 + HCO3- 6.833e-04 6.636e-04 -3.165 -3.178 -0.013 24.70 + CO3-2 5.494e-11 4.887e-11 -10.260 -10.311 -0.051 -3.61 +H(0) 1.117e-39 + H2 5.584e-40 5.585e-40 -39.253 -39.253 0.000 28.59 +O(0) 2.393e-14 + O2 1.197e-14 1.197e-14 -13.922 -13.922 0.000 30.35 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 37 atm) - CH4(g) -17.42 -20.25 -2.82 CH4 + CH4(g) -117.15 -119.97 -2.82 CH4 CO2(g) 1.48 -0.01 -1.49 CO2 Pressure 37.3 atm, phi 0.803 - H2(g) -11.20 -14.32 -3.12 H2 + H2(g) -36.13 -39.25 -3.12 H2 H2O(g) -1.50 -0.01 1.49 H2O Pressure 0.0 atm, phi 0.666 - O2(g) -60.87 -63.78 -2.91 O2 + O2(g) -11.01 -13.92 -2.91 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -525,13 +526,13 @@ H2O(g) -1.26 5.498e-02 0.580 2.555e-03 3.300e-03 7.455e-04 ----------------------------Description of solution---------------------------- pH = 3.142 Charge balance - pe = 2.323 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 290 + pe = 14.877 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 267 Density (g/cm³) = 1.01002 Volume (L) = 1.04130 - Viscosity (mPa s) = 0.88964 + Viscosity (mPa s) = 0.88973 Activity of water = 0.980 - Ionic strength (mol/kgw) = 7.423e-04 + Ionic strength (mol/kgw) = 7.422e-04 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.177e+00 @@ -548,30 +549,30 @@ H2O(g) -1.26 5.498e-02 0.580 2.555e-03 3.300e-03 7.455e-04 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.423e-04 7.207e-04 -3.129 -3.142 -0.013 0.00 + H+ 7.422e-04 7.206e-04 -3.129 -3.142 -0.013 0.00 OH- 1.480e-11 1.435e-11 -10.830 -10.843 -0.013 -3.94 H2O 5.551e+01 9.804e-01 1.744 -0.009 0.000 18.03 -C(-4) 5.128e-20 - CH4 5.128e-20 5.129e-20 -19.290 -19.290 0.000 35.52 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.727 -119.727 0.000 35.52 C(4) 1.177e+00 CO2 1.129e+00 1.129e+00 0.053 0.053 0.000 34.41 (CO2)2 2.341e-02 2.341e-02 -1.631 -1.631 0.000 68.82 - HCO3- 7.423e-04 7.201e-04 -3.129 -3.143 -0.013 24.61 - CO3-2 5.582e-11 4.942e-11 -10.253 -10.306 -0.053 -3.66 -H(0) 1.576e-14 - H2 7.881e-15 7.882e-15 -14.103 -14.103 0.000 28.58 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.233 -64.233 0.000 30.33 + HCO3- 7.422e-04 7.200e-04 -3.129 -3.143 -0.013 24.73 + CO3-2 5.582e-11 4.942e-11 -10.253 -10.306 -0.053 -3.52 +H(0) 1.226e-39 + H2 6.128e-40 6.130e-40 -39.213 -39.213 0.000 28.58 +O(0) 1.936e-14 + O2 9.678e-15 9.679e-15 -14.014 -14.014 0.000 30.33 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 47 atm) - CH4(g) -16.46 -19.29 -2.83 CH4 + CH4(g) -116.90 -119.73 -2.83 CH4 CO2(g) 1.55 0.05 -1.50 CO2 Pressure 47.0 atm, phi 0.753 - H2(g) -10.98 -14.10 -3.12 H2 + H2(g) -36.09 -39.21 -3.12 H2 H2O(g) -1.50 -0.01 1.49 H2O Pressure 0.1 atm, phi 0.580 - O2(g) -61.32 -64.23 -2.92 O2 + O2(g) -11.10 -14.01 -2.92 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -619,13 +620,13 @@ H2O(g) -1.20 6.307e-02 0.507 3.300e-03 4.278e-03 9.775e-04 ----------------------------Description of solution---------------------------- pH = 3.122 Charge balance - pe = 2.189 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 304 + pe = 14.890 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 278 Density (g/cm³) = 1.01134 Volume (L) = 1.04476 - Viscosity (mPa s) = 0.88955 + Viscosity (mPa s) = 0.88965 Activity of water = 0.979 - Ionic strength (mol/kgw) = 7.784e-04 + Ionic strength (mol/kgw) = 7.783e-04 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.288e+00 @@ -642,30 +643,30 @@ H2O(g) -1.20 6.307e-02 0.507 3.300e-03 4.278e-03 9.775e-04 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.784e-04 7.553e-04 -3.109 -3.122 -0.013 0.00 - OH- 1.420e-11 1.376e-11 -10.848 -10.861 -0.014 -3.91 + H+ 7.783e-04 7.552e-04 -3.109 -3.122 -0.013 0.00 + OH- 1.421e-11 1.376e-11 -10.848 -10.861 -0.014 -3.91 H2O 5.551e+01 9.786e-01 1.744 -0.009 0.000 18.03 -C(-4) 9.496e-19 - CH4 9.496e-19 9.498e-19 -18.022 -18.022 0.000 35.53 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.630 -119.630 0.000 35.53 C(4) 1.288e+00 CO2 1.232e+00 1.232e+00 0.090 0.091 0.000 34.41 (CO2)2 2.784e-02 2.785e-02 -1.555 -1.555 0.000 68.82 - HCO3- 7.784e-04 7.546e-04 -3.109 -3.122 -0.014 24.62 - CO3-2 5.646e-11 4.985e-11 -10.248 -10.302 -0.054 -3.59 -H(0) 3.177e-14 - H2 1.589e-14 1.589e-14 -13.799 -13.799 0.000 28.58 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.850 -64.850 0.000 30.32 + HCO3- 7.783e-04 7.545e-04 -3.109 -3.122 -0.014 24.76 + CO3-2 5.646e-11 4.985e-11 -10.248 -10.302 -0.054 -3.44 +H(0) 1.260e-39 + H2 6.298e-40 6.299e-40 -39.201 -39.201 0.000 28.58 +O(0) 1.797e-14 + O2 8.983e-15 8.984e-15 -14.047 -14.047 0.000 30.32 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 55 atm) - CH4(g) -15.19 -18.02 -2.84 CH4 + CH4(g) -116.79 -119.63 -2.84 CH4 CO2(g) 1.59 0.09 -1.50 CO2 Pressure 54.7 atm, phi 0.713 - H2(g) -10.67 -13.80 -3.13 H2 + H2(g) -36.07 -39.20 -3.13 H2 H2O(g) -1.50 -0.01 1.49 H2O Pressure 0.1 atm, phi 0.507 - O2(g) -61.93 -64.85 -2.92 O2 + O2(g) -11.13 -14.05 -2.92 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -713,13 +714,13 @@ H2O(g) -1.15 7.157e-02 0.448 4.278e-03 5.528e-03 1.251e-03 ----------------------------Description of solution---------------------------- pH = 3.111 Charge balance - pe = 2.270 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 313 + pe = 14.943 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 284 Density (g/cm³) = 1.01215 Volume (L) = 1.04668 - Viscosity (mPa s) = 0.88949 + Viscosity (mPa s) = 0.88959 Activity of water = 0.978 - Ionic strength (mol/kgw) = 7.990e-04 + Ionic strength (mol/kgw) = 7.989e-04 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.352e+00 @@ -736,30 +737,30 @@ H2O(g) -1.15 7.157e-02 0.448 4.278e-03 5.528e-03 1.251e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.990e-04 7.750e-04 -3.097 -3.111 -0.013 0.00 - OH- 1.390e-11 1.346e-11 -10.857 -10.871 -0.014 -3.89 + H+ 7.989e-04 7.748e-04 -3.098 -3.111 -0.013 0.00 + OH- 1.390e-11 1.347e-11 -10.857 -10.871 -0.014 -3.89 H2O 5.551e+01 9.775e-01 1.744 -0.010 0.000 18.02 -C(-4) 2.711e-19 - CH4 2.711e-19 2.712e-19 -18.567 -18.567 0.000 35.54 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.948 -119.948 0.000 35.54 C(4) 1.352e+00 CO2 1.290e+00 1.290e+00 0.111 0.111 0.000 34.40 (CO2)2 3.055e-02 3.055e-02 -1.515 -1.515 0.000 68.81 - HCO3- 7.990e-04 7.742e-04 -3.097 -3.111 -0.014 24.62 - CO3-2 5.690e-11 5.016e-11 -10.245 -10.300 -0.055 -3.54 -H(0) 2.285e-14 - H2 1.142e-14 1.143e-14 -13.942 -13.942 0.000 28.58 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.570 -64.570 0.000 30.31 + HCO3- 7.989e-04 7.741e-04 -3.098 -3.111 -0.014 24.77 + CO3-2 5.690e-11 5.016e-11 -10.245 -10.300 -0.055 -3.39 +H(0) 1.032e-39 + H2 5.158e-40 5.159e-40 -39.288 -39.287 0.000 28.58 +O(0) 2.643e-14 + O2 1.321e-14 1.322e-14 -13.879 -13.879 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 60 atm) - CH4(g) -15.73 -18.57 -2.84 CH4 + CH4(g) -117.11 -119.95 -2.84 CH4 CO2(g) 1.62 0.11 -1.50 CO2 Pressure 60.2 atm, phi 0.685 - H2(g) -10.81 -13.94 -3.13 H2 + H2(g) -36.16 -39.29 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.448 - O2(g) -61.65 -64.57 -2.92 O2 + O2(g) -10.95 -13.88 -2.92 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -807,13 +808,13 @@ H2O(g) -1.10 8.014e-02 0.401 5.528e-03 7.089e-03 1.561e-03 ----------------------------Description of solution---------------------------- pH = 3.105 Charge balance - pe = 2.328 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 317 + pe = 14.977 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 287 Density (g/cm³) = 1.01257 Volume (L) = 1.04759 - Viscosity (mPa s) = 0.88945 + Viscosity (mPa s) = 0.88955 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.094e-04 + Ionic strength (mol/kgw) = 8.092e-04 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.384e+00 @@ -830,30 +831,30 @@ H2O(g) -1.10 8.014e-02 0.401 5.528e-03 7.089e-03 1.561e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.094e-04 7.849e-04 -3.092 -3.105 -0.013 0.00 + H+ 8.092e-04 7.847e-04 -3.092 -3.105 -0.013 0.00 OH- 1.376e-11 1.333e-11 -10.861 -10.875 -0.014 -3.88 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 18.02 -C(-4) 1.054e-19 - CH4 1.054e-19 1.055e-19 -18.977 -18.977 0.000 35.54 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -120.171 -120.171 0.000 35.54 C(4) 1.384e+00 CO2 1.319e+00 1.319e+00 0.120 0.120 0.000 34.40 (CO2)2 3.193e-02 3.194e-02 -1.496 -1.496 0.000 68.81 - HCO3- 8.094e-04 7.841e-04 -3.092 -3.106 -0.014 24.63 - CO3-2 5.715e-11 5.035e-11 -10.243 -10.298 -0.055 -3.51 -H(0) 1.789e-14 - H2 8.945e-15 8.947e-15 -14.048 -14.048 0.000 28.58 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.361 -64.361 0.000 30.31 + HCO3- 8.092e-04 7.839e-04 -3.092 -3.106 -0.014 24.78 + CO3-2 5.716e-11 5.035e-11 -10.243 -10.298 -0.055 -3.36 +H(0) 8.998e-40 + H2 4.499e-40 4.500e-40 -39.347 -39.347 0.000 28.58 +O(0) 3.445e-14 + O2 1.723e-14 1.723e-14 -13.764 -13.764 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 64 atm) - CH4(g) -16.14 -18.98 -2.84 CH4 + CH4(g) -117.33 -120.17 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 63.5 atm, phi 0.667 - H2(g) -10.92 -14.05 -3.13 H2 + H2(g) -36.21 -39.35 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.401 - O2(g) -61.43 -64.36 -2.93 O2 + O2(g) -10.84 -13.76 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -901,15 +902,15 @@ H2O(g) -1.05 8.845e-02 0.364 7.089e-03 8.995e-03 1.905e-03 ----------------------------Description of solution---------------------------- pH = 3.103 Charge balance - pe = 2.504 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 318 + pe = 14.980 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 289 Density (g/cm³) = 1.01273 Volume (L) = 1.04788 - Viscosity (mPa s) = 0.88943 + Viscosity (mPa s) = 0.88954 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.132e-04 + Ionic strength (mol/kgw) = 8.131e-04 Mass of water (kg) = 9.998e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.395e+00 Temperature (°C) = 25.00 Pressure (atm) = 65.04 @@ -924,30 +925,30 @@ H2O(g) -1.05 8.845e-02 0.364 7.089e-03 8.995e-03 1.905e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.132e-04 7.886e-04 -3.090 -3.103 -0.013 0.00 - OH- 1.371e-11 1.328e-11 -10.863 -10.877 -0.014 -3.87 + H+ 8.131e-04 7.884e-04 -3.090 -3.103 -0.013 0.00 + OH- 1.372e-11 1.328e-11 -10.863 -10.877 -0.014 -3.87 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.02 -C(-4) 4.274e-21 - CH4 4.274e-21 4.275e-21 -20.369 -20.369 0.000 35.54 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -120.173 -120.173 0.000 35.54 C(4) 1.395e+00 CO2 1.329e+00 1.330e+00 0.124 0.124 0.000 34.40 (CO2)2 3.244e-02 3.245e-02 -1.489 -1.489 0.000 68.81 - HCO3- 8.132e-04 7.878e-04 -3.090 -3.104 -0.014 24.63 - CO3-2 5.727e-11 5.043e-11 -10.242 -10.297 -0.055 -3.49 -H(0) 8.001e-15 - H2 4.001e-15 4.001e-15 -14.398 -14.398 0.000 28.58 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.663 -63.663 0.000 30.31 + HCO3- 8.131e-04 7.876e-04 -3.090 -3.104 -0.014 24.79 + CO3-2 5.727e-11 5.043e-11 -10.242 -10.297 -0.055 -3.35 +H(0) 8.956e-40 + H2 4.478e-40 4.479e-40 -39.349 -39.349 0.000 28.58 +O(0) 3.466e-14 + O2 1.733e-14 1.733e-14 -13.761 -13.761 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -17.53 -20.37 -2.84 CH4 + CH4(g) -117.33 -120.17 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.0 atm, phi 0.658 - H2(g) -11.26 -14.40 -3.13 H2 + H2(g) -36.22 -39.35 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.364 - O2(g) -60.74 -63.66 -2.93 O2 + O2(g) -10.83 -13.76 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -995,21 +996,21 @@ H2O(g) -1.02 9.646e-02 0.334 8.995e-03 1.127e-02 2.272e-03 ----------------------------Description of solution---------------------------- pH = 3.103 Charge balance - pe = 2.558 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 318 + pe = 14.928 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 289 Density (g/cm³) = 1.01275 Volume (L) = 1.04787 - Viscosity (mPa s) = 0.88943 + Viscosity (mPa s) = 0.88954 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.136e-04 + Ionic strength (mol/kgw) = 8.134e-04 Mass of water (kg) = 9.998e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.396e+00 Temperature (°C) = 25.00 Pressure (atm) = 65.20 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 39 + Iterations = 44 Total H = 1.109899e+02 Total O = 5.828669e+01 @@ -1018,30 +1019,30 @@ H2O(g) -1.02 9.646e-02 0.334 8.995e-03 1.127e-02 2.272e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.136e-04 7.889e-04 -3.090 -3.103 -0.013 0.00 - OH- 1.371e-11 1.327e-11 -10.863 -10.877 -0.014 -3.87 + H+ 8.134e-04 7.888e-04 -3.090 -3.103 -0.013 0.00 + OH- 1.371e-11 1.328e-11 -10.863 -10.877 -0.014 -3.87 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.02 -C(-4) 1.609e-21 - CH4 1.609e-21 1.610e-21 -20.793 -20.793 0.000 35.54 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.759 -119.759 0.000 35.54 C(4) 1.396e+00 CO2 1.330e+00 1.331e+00 0.124 0.124 0.000 34.40 (CO2)2 3.249e-02 3.250e-02 -1.488 -1.488 0.000 68.81 - HCO3- 8.136e-04 7.881e-04 -3.090 -3.103 -0.014 24.63 - CO3-2 5.728e-11 5.044e-11 -10.242 -10.297 -0.055 -3.49 -H(0) 6.266e-15 - H2 3.133e-15 3.134e-15 -14.504 -14.504 0.000 28.58 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.451 -63.451 0.000 30.31 + HCO3- 8.134e-04 7.880e-04 -3.090 -3.103 -0.014 24.79 + CO3-2 5.728e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 +H(0) 1.136e-39 + H2 5.681e-40 5.682e-40 -39.246 -39.245 0.000 28.58 +O(0) 2.152e-14 + O2 1.076e-14 1.076e-14 -13.968 -13.968 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -17.95 -20.79 -2.84 CH4 + CH4(g) -116.92 -119.76 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.1 atm, phi 0.657 - H2(g) -11.37 -14.50 -3.13 H2 + H2(g) -36.11 -39.25 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.334 - O2(g) -60.52 -63.45 -2.93 O2 + O2(g) -11.04 -13.97 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1089,21 +1090,21 @@ H2O(g) -0.98 1.051e-01 0.306 1.127e-02 1.389e-02 2.628e-03 ----------------------------Description of solution---------------------------- pH = 3.103 Charge balance - pe = 14.740 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 318 + pe = 14.901 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 289 Density (g/cm³) = 1.01275 Volume (L) = 1.04780 - Viscosity (mPa s) = 0.88943 + Viscosity (mPa s) = 0.88954 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.134e-04 + Ionic strength (mol/kgw) = 8.133e-04 Mass of water (kg) = 9.997e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.396e+00 Temperature (°C) = 25.00 Pressure (atm) = 65.19 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 56 + Iterations = 43 Total H = 1.109846e+02 Total O = 5.828280e+01 @@ -1112,30 +1113,30 @@ H2O(g) -0.98 1.051e-01 0.306 1.127e-02 1.389e-02 2.628e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.134e-04 7.888e-04 -3.090 -3.103 -0.013 0.00 + H+ 8.133e-04 7.886e-04 -3.090 -3.103 -0.013 0.00 OH- 1.371e-11 1.328e-11 -10.863 -10.877 -0.014 -3.87 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -118.250 -118.250 0.000 35.54 + CH4 0.000e+00 0.000e+00 -119.538 -119.538 0.000 35.54 C(4) 1.396e+00 CO2 1.330e+00 1.330e+00 0.124 0.124 0.000 34.40 (CO2)2 3.246e-02 3.247e-02 -1.489 -1.489 0.000 68.81 - HCO3- 8.134e-04 7.880e-04 -3.090 -3.103 -0.014 24.63 - CO3-2 5.728e-11 5.044e-11 -10.242 -10.297 -0.055 -3.49 -H(0) 2.709e-39 - H2 1.355e-39 1.355e-39 -38.868 -38.868 0.000 28.58 -O(0) 3.786e-15 - O2 1.893e-15 1.893e-15 -14.723 -14.723 0.000 30.31 + HCO3- 8.133e-04 7.878e-04 -3.090 -3.104 -0.014 24.79 + CO3-2 5.728e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 +H(0) 1.291e-39 + H2 6.453e-40 6.454e-40 -39.190 -39.190 0.000 28.58 +O(0) 1.668e-14 + O2 8.341e-15 8.343e-15 -14.079 -14.079 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -115.41 -118.25 -2.84 CH4 + CH4(g) -116.70 -119.54 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.1 atm, phi 0.657 - H2(g) -35.73 -38.87 -3.13 H2 + H2(g) -36.06 -39.19 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.306 - O2(g) -11.80 -14.72 -2.93 O2 + O2(g) -11.15 -14.08 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1183,21 +1184,21 @@ H2O(g) -0.94 1.145e-01 0.281 1.389e-02 1.691e-02 3.018e-03 ----------------------------Description of solution---------------------------- pH = 3.103 Charge balance - pe = 14.912 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 318 + pe = 14.638 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 289 Density (g/cm³) = 1.01273 Volume (L) = 1.04770 - Viscosity (mPa s) = 0.88943 + Viscosity (mPa s) = 0.88954 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.130e-04 + Ionic strength (mol/kgw) = 8.129e-04 Mass of water (kg) = 9.997e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.394e+00 Temperature (°C) = 25.00 Pressure (atm) = 65.17 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 46 + Iterations = 47 Total H = 1.109786e+02 Total O = 5.827687e+01 @@ -1206,30 +1207,30 @@ H2O(g) -0.94 1.145e-01 0.281 1.389e-02 1.691e-02 3.018e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.130e-04 7.884e-04 -3.090 -3.103 -0.013 0.00 + H+ 8.129e-04 7.882e-04 -3.090 -3.103 -0.013 0.00 OH- 1.372e-11 1.328e-11 -10.863 -10.877 -0.014 -3.87 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.630 -119.630 0.000 35.54 + CH4 0.000e+00 0.000e+00 -117.437 -117.437 0.000 35.54 C(4) 1.394e+00 CO2 1.329e+00 1.329e+00 0.123 0.123 0.000 34.40 (CO2)2 3.240e-02 3.241e-02 -1.489 -1.489 0.000 68.81 - HCO3- 8.130e-04 7.876e-04 -3.090 -3.104 -0.014 24.63 - CO3-2 5.727e-11 5.044e-11 -10.242 -10.297 -0.055 -3.49 -H(0) 1.224e-39 - H2 6.122e-40 6.123e-40 -39.213 -39.213 0.000 28.58 -O(0) 1.854e-14 - O2 9.269e-15 9.271e-15 -14.033 -14.033 0.000 30.31 + HCO3- 8.129e-04 7.875e-04 -3.090 -3.104 -0.014 24.79 + CO3-2 5.727e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 +H(0) 4.327e-39 + H2 2.163e-39 2.164e-39 -38.665 -38.665 0.000 28.58 +O(0) 1.484e-15 + O2 7.422e-16 7.423e-16 -15.129 -15.129 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -116.79 -119.63 -2.84 CH4 + CH4(g) -114.59 -117.44 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.1 atm, phi 0.657 - H2(g) -36.08 -39.21 -3.13 H2 + H2(g) -35.53 -38.66 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.281 - O2(g) -11.11 -14.03 -2.93 O2 + O2(g) -12.20 -15.13 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1277,13 +1278,13 @@ H2O(g) -0.90 1.248e-01 0.258 1.691e-02 2.036e-02 3.449e-03 ----------------------------Description of solution---------------------------- pH = 3.104 Charge balance - pe = 14.963 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 318 + pe = 2.312 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 288 Density (g/cm³) = 1.01271 Volume (L) = 1.04756 - Viscosity (mPa s) = 0.88943 + Viscosity (mPa s) = 0.88954 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.125e-04 + Ionic strength (mol/kgw) = 8.123e-04 Mass of water (kg) = 9.996e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.392e+00 @@ -1291,7 +1292,7 @@ H2O(g) -0.90 1.248e-01 0.258 1.691e-02 2.036e-02 3.449e-03 Pressure (atm) = 65.15 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 46 + Iterations = 58 Total H = 1.109717e+02 Total O = 5.826914e+01 @@ -1300,30 +1301,30 @@ H2O(g) -0.90 1.248e-01 0.258 1.691e-02 2.036e-02 3.449e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.125e-04 7.878e-04 -3.090 -3.104 -0.013 0.00 + H+ 8.123e-04 7.877e-04 -3.090 -3.104 -0.013 0.00 OH- 1.373e-11 1.329e-11 -10.862 -10.876 -0.014 -3.87 H2O 5.551e+01 9.769e-01 1.744 -0.010 0.000 18.02 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.042 -120.042 0.000 35.54 +C(-4) 1.454e-19 + CH4 1.454e-19 1.455e-19 -18.837 -18.837 0.000 35.54 C(4) 1.392e+00 CO2 1.327e+00 1.327e+00 0.123 0.123 0.000 34.40 (CO2)2 3.231e-02 3.232e-02 -1.491 -1.491 0.000 68.81 - HCO3- 8.125e-04 7.871e-04 -3.090 -3.104 -0.014 24.63 - CO3-2 5.727e-11 5.044e-11 -10.242 -10.297 -0.055 -3.49 -H(0) 9.664e-40 - H2 4.832e-40 4.833e-40 -39.316 -39.316 0.000 28.58 -O(0) 2.976e-14 - O2 1.488e-14 1.488e-14 -13.827 -13.827 0.000 30.31 + HCO3- 8.123e-04 7.869e-04 -3.090 -3.104 -0.014 24.79 + CO3-2 5.727e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 +H(0) 1.933e-14 + H2 9.667e-15 9.669e-15 -14.015 -14.015 0.000 28.58 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -64.430 -64.430 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -117.20 -120.04 -2.84 CH4 + CH4(g) -15.99 -18.84 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.0 atm, phi 0.656 - H2(g) -36.18 -39.32 -3.13 H2 + H2(g) -10.88 -14.01 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.258 - O2(g) -10.90 -13.83 -2.93 O2 + O2(g) -61.50 -64.43 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1371,13 +1372,13 @@ H2O(g) -0.87 1.359e-01 0.237 2.036e-02 2.428e-02 3.919e-03 ----------------------------Description of solution---------------------------- pH = 3.104 Charge balance - pe = 14.958 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 318 + pe = 14.806 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 288 Density (g/cm³) = 1.01269 Volume (L) = 1.04741 - Viscosity (mPa s) = 0.88943 + Viscosity (mPa s) = 0.88954 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.118e-04 + Ionic strength (mol/kgw) = 8.116e-04 Mass of water (kg) = 9.995e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.390e+00 @@ -1385,7 +1386,7 @@ H2O(g) -0.87 1.359e-01 0.237 2.036e-02 2.428e-02 3.919e-03 Pressure (atm) = 65.14 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 45 + Iterations = 60 Total H = 1.109639e+02 Total O = 5.826024e+01 @@ -1394,30 +1395,30 @@ H2O(g) -0.87 1.359e-01 0.237 2.036e-02 2.428e-02 3.919e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.118e-04 7.872e-04 -3.091 -3.104 -0.013 0.00 - OH- 1.374e-11 1.330e-11 -10.862 -10.876 -0.014 -3.87 + H+ 8.116e-04 7.870e-04 -3.091 -3.104 -0.013 0.00 + OH- 1.374e-11 1.331e-11 -10.862 -10.876 -0.014 -3.87 H2O 5.551e+01 9.769e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.006 -120.006 0.000 35.54 + CH4 0.000e+00 0.000e+00 -118.793 -118.793 0.000 35.54 C(4) 1.390e+00 CO2 1.325e+00 1.325e+00 0.122 0.122 0.000 34.40 (CO2)2 3.221e-02 3.221e-02 -1.492 -1.492 0.000 68.81 - HCO3- 8.118e-04 7.864e-04 -3.091 -3.104 -0.014 24.63 - CO3-2 5.727e-11 5.044e-11 -10.242 -10.297 -0.055 -3.49 -H(0) 9.870e-40 - H2 4.935e-40 4.936e-40 -39.307 -39.307 0.000 28.58 -O(0) 2.853e-14 - O2 1.427e-14 1.427e-14 -13.846 -13.846 0.000 30.31 + HCO3- 8.116e-04 7.863e-04 -3.091 -3.104 -0.014 24.79 + CO3-2 5.727e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 +H(0) 1.984e-39 + H2 9.922e-40 9.923e-40 -39.003 -39.003 0.000 28.58 +O(0) 7.060e-15 + O2 3.530e-15 3.531e-15 -14.452 -14.452 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -117.16 -120.01 -2.84 CH4 + CH4(g) -115.95 -118.79 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.0 atm, phi 0.655 - H2(g) -36.17 -39.31 -3.13 H2 + H2(g) -35.87 -39.00 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.237 - O2(g) -10.92 -13.85 -2.93 O2 + O2(g) -11.53 -14.45 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1465,13 +1466,13 @@ H2O(g) -0.83 1.479e-01 0.218 2.428e-02 2.871e-02 4.427e-03 ----------------------------Description of solution---------------------------- pH = 3.104 Charge balance - pe = 14.991 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 317 + pe = 14.718 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 288 Density (g/cm³) = 1.01267 Volume (L) = 1.04724 - Viscosity (mPa s) = 0.88943 + Viscosity (mPa s) = 0.88954 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.112e-04 + Ionic strength (mol/kgw) = 8.110e-04 Mass of water (kg) = 9.995e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.387e+00 @@ -1488,30 +1489,30 @@ H2O(g) -0.83 1.479e-01 0.218 2.428e-02 2.871e-02 4.427e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.112e-04 7.866e-04 -3.091 -3.104 -0.013 0.00 - OH- 1.375e-11 1.331e-11 -10.862 -10.876 -0.014 -3.87 + H+ 8.110e-04 7.864e-04 -3.091 -3.104 -0.013 0.00 + OH- 1.375e-11 1.332e-11 -10.862 -10.876 -0.014 -3.87 H2O 5.551e+01 9.769e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.273 -120.273 0.000 35.54 + CH4 0.000e+00 0.000e+00 -118.092 -118.092 0.000 35.54 C(4) 1.387e+00 CO2 1.322e+00 1.323e+00 0.121 0.121 0.000 34.40 (CO2)2 3.210e-02 3.211e-02 -1.493 -1.493 0.000 68.81 - HCO3- 8.112e-04 7.858e-04 -3.091 -3.105 -0.014 24.63 - CO3-2 5.726e-11 5.043e-11 -10.242 -10.297 -0.055 -3.49 -H(0) 8.470e-40 - H2 4.235e-40 4.236e-40 -39.373 -39.373 0.000 28.58 -O(0) 3.876e-14 - O2 1.938e-14 1.938e-14 -13.713 -13.713 0.000 30.31 + HCO3- 8.110e-04 7.856e-04 -3.091 -3.105 -0.014 24.79 + CO3-2 5.726e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 +H(0) 2.972e-39 + H2 1.486e-39 1.486e-39 -38.828 -38.828 0.000 28.58 +O(0) 3.147e-15 + O2 1.573e-15 1.574e-15 -14.803 -14.803 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -117.43 -120.27 -2.84 CH4 + CH4(g) -115.25 -118.09 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.0 atm, phi 0.655 - H2(g) -36.24 -39.37 -3.13 H2 + H2(g) -35.69 -38.83 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.218 - O2(g) -10.79 -13.71 -2.93 O2 + O2(g) -11.88 -14.80 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1559,13 +1560,13 @@ H2O(g) -0.79 1.606e-01 0.200 2.871e-02 3.368e-02 4.970e-03 ----------------------------Description of solution---------------------------- pH = 3.105 Charge balance - pe = 14.960 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 317 + pe = 14.909 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 288 Density (g/cm³) = 1.01265 Volume (L) = 1.04709 - Viscosity (mPa s) = 0.88943 + Viscosity (mPa s) = 0.88954 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.106e-04 + Ionic strength (mol/kgw) = 8.105e-04 Mass of water (kg) = 9.994e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.386e+00 @@ -1582,30 +1583,30 @@ H2O(g) -0.79 1.606e-01 0.200 2.871e-02 3.368e-02 4.970e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.106e-04 7.861e-04 -3.091 -3.105 -0.013 0.00 + H+ 8.105e-04 7.859e-04 -3.091 -3.105 -0.013 0.00 OH- 1.376e-11 1.332e-11 -10.861 -10.875 -0.014 -3.87 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.031 -120.031 0.000 35.54 + CH4 0.000e+00 0.000e+00 -119.621 -119.621 0.000 35.54 C(4) 1.386e+00 CO2 1.321e+00 1.321e+00 0.121 0.121 0.000 34.40 (CO2)2 3.202e-02 3.203e-02 -1.495 -1.494 0.000 68.81 - HCO3- 8.106e-04 7.853e-04 -3.091 -3.105 -0.014 24.63 - CO3-2 5.726e-11 5.043e-11 -10.242 -10.297 -0.055 -3.49 -H(0) 9.736e-40 - H2 4.868e-40 4.869e-40 -39.313 -39.313 0.000 28.58 -O(0) 2.933e-14 - O2 1.466e-14 1.467e-14 -13.834 -13.834 0.000 30.31 + HCO3- 8.105e-04 7.852e-04 -3.091 -3.105 -0.014 24.79 + CO3-2 5.726e-11 5.043e-11 -10.242 -10.297 -0.055 -3.35 +H(0) 1.233e-39 + H2 6.164e-40 6.165e-40 -39.210 -39.210 0.000 28.58 +O(0) 1.829e-14 + O2 9.147e-15 9.149e-15 -14.039 -14.039 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -117.19 -120.03 -2.84 CH4 + CH4(g) -116.78 -119.62 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 64.9 atm, phi 0.654 - H2(g) -36.18 -39.31 -3.13 H2 + H2(g) -36.08 -39.21 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.2 atm, phi 0.200 - O2(g) -10.91 -13.83 -2.93 O2 + O2(g) -11.11 -14.04 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1653,13 +1654,13 @@ H2O(g) -0.76 1.742e-01 0.185 3.368e-02 3.922e-02 5.546e-03 ----------------------------Description of solution---------------------------- pH = 3.105 Charge balance - pe = 14.925 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 317 + pe = 14.952 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 288 Density (g/cm³) = 1.01265 - Volume (L) = 1.04695 - Viscosity (mPa s) = 0.88943 + Volume (L) = 1.04696 + Viscosity (mPa s) = 0.88954 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.104e-04 + Ionic strength (mol/kgw) = 8.102e-04 Mass of water (kg) = 9.993e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.385e+00 @@ -1676,30 +1677,30 @@ H2O(g) -0.76 1.742e-01 0.185 3.368e-02 3.922e-02 5.546e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.104e-04 7.859e-04 -3.091 -3.105 -0.013 0.00 - OH- 1.376e-11 1.333e-11 -10.861 -10.875 -0.014 -3.87 + H+ 8.102e-04 7.857e-04 -3.091 -3.105 -0.013 0.00 + OH- 1.377e-11 1.333e-11 -10.861 -10.875 -0.014 -3.87 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.745 -119.744 0.000 35.54 + CH4 0.000e+00 0.000e+00 -119.965 -119.965 0.000 35.54 C(4) 1.385e+00 CO2 1.320e+00 1.320e+00 0.121 0.121 0.000 34.40 (CO2)2 3.198e-02 3.199e-02 -1.495 -1.495 0.000 68.81 - HCO3- 8.104e-04 7.851e-04 -3.091 -3.105 -0.014 24.63 - CO3-2 5.726e-11 5.043e-11 -10.242 -10.297 -0.055 -3.49 -H(0) 1.148e-39 - H2 5.742e-40 5.744e-40 -39.241 -39.241 0.000 28.58 -O(0) 2.108e-14 - O2 1.054e-14 1.054e-14 -13.977 -13.977 0.000 30.31 + HCO3- 8.102e-04 7.849e-04 -3.091 -3.105 -0.014 24.79 + CO3-2 5.726e-11 5.043e-11 -10.242 -10.297 -0.055 -3.35 +H(0) 1.012e-39 + H2 5.058e-40 5.059e-40 -39.296 -39.296 0.000 28.58 +O(0) 2.717e-14 + O2 1.359e-14 1.359e-14 -13.867 -13.867 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -116.90 -119.74 -2.84 CH4 + CH4(g) -117.12 -119.96 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 64.9 atm, phi 0.654 - H2(g) -36.11 -39.24 -3.13 H2 + H2(g) -36.16 -39.30 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.2 atm, phi 0.185 - O2(g) -11.05 -13.98 -2.93 O2 + O2(g) -10.94 -13.87 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1747,13 +1748,13 @@ H2O(g) -0.69 2.026e-01 0.159 3.922e-02 4.502e-02 5.801e-03 ----------------------------Description of solution---------------------------- pH = 3.102 Charge balance - pe = 14.876 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 319 + pe = 14.961 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 290 Density (g/cm³) = 1.01297 Volume (L) = 1.04694 - Viscosity (mPa s) = 0.88937 + Viscosity (mPa s) = 0.88947 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.156e-04 + Ionic strength (mol/kgw) = 8.154e-04 Mass of water (kg) = 9.992e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.395e+00 @@ -1770,30 +1771,30 @@ H2O(g) -0.69 2.026e-01 0.159 3.922e-02 4.502e-02 5.801e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.156e-04 7.909e-04 -3.089 -3.102 -0.013 0.00 - OH- 1.374e-11 1.330e-11 -10.862 -10.876 -0.014 -3.86 + H+ 8.154e-04 7.907e-04 -3.089 -3.102 -0.013 0.00 + OH- 1.374e-11 1.331e-11 -10.862 -10.876 -0.014 -3.86 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.01 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.338 -119.338 0.000 35.55 + CH4 0.000e+00 0.000e+00 -120.015 -120.014 0.000 35.55 C(4) 1.395e+00 CO2 1.329e+00 1.329e+00 0.124 0.124 0.000 34.40 (CO2)2 3.242e-02 3.243e-02 -1.489 -1.489 0.000 68.80 - HCO3- 8.156e-04 7.901e-04 -3.089 -3.102 -0.014 24.64 - CO3-2 5.762e-11 5.074e-11 -10.239 -10.295 -0.055 -3.45 -H(0) 1.443e-39 - H2 7.215e-40 7.216e-40 -39.142 -39.142 0.000 28.57 -O(0) 1.320e-14 - O2 6.601e-15 6.602e-15 -14.180 -14.180 0.000 30.30 + HCO3- 8.154e-04 7.899e-04 -3.089 -3.102 -0.014 24.81 + CO3-2 5.762e-11 5.074e-11 -10.239 -10.295 -0.055 -3.30 +H(0) 9.773e-40 + H2 4.886e-40 4.887e-40 -39.311 -39.311 0.000 28.57 +O(0) 2.878e-14 + O2 1.439e-14 1.439e-14 -13.842 -13.842 0.000 30.30 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 70 atm) - CH4(g) -116.49 -119.34 -2.85 CH4 + CH4(g) -117.17 -120.01 -2.85 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 70.2 atm, phi 0.613 - H2(g) -36.01 -39.14 -3.14 H2 + H2(g) -36.17 -39.31 -3.14 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.2 atm, phi 0.159 - O2(g) -11.25 -14.18 -2.93 O2 + O2(g) -10.91 -13.84 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1841,13 +1842,13 @@ H2O(g) -0.61 2.464e-01 0.132 4.502e-02 5.114e-02 6.118e-03 ----------------------------Description of solution---------------------------- pH = 3.097 Charge balance - pe = 14.946 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 323 + pe = 14.914 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 293 Density (g/cm³) = 1.01354 Volume (L) = 1.04694 - Viscosity (mPa s) = 0.88926 + Viscosity (mPa s) = 0.88936 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.247e-04 + Ionic strength (mol/kgw) = 8.244e-04 Mass of water (kg) = 9.991e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.411e+00 @@ -1864,30 +1865,30 @@ H2O(g) -0.61 2.464e-01 0.132 4.502e-02 5.114e-02 6.118e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.247e-04 7.995e-04 -3.084 -3.097 -0.013 0.00 + H+ 8.244e-04 7.993e-04 -3.084 -3.097 -0.013 0.00 OH- 1.371e-11 1.327e-11 -10.863 -10.877 -0.014 -3.82 H2O 5.551e+01 9.766e-01 1.744 -0.010 0.000 18.01 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.859 -119.859 0.000 35.56 + CH4 0.000e+00 0.000e+00 -119.602 -119.602 0.000 35.56 C(4) 1.411e+00 CO2 1.344e+00 1.344e+00 0.128 0.128 0.000 34.40 (CO2)2 3.314e-02 3.315e-02 -1.480 -1.480 0.000 68.79 - HCO3- 8.247e-04 7.987e-04 -3.084 -3.098 -0.014 24.65 - CO3-2 5.829e-11 5.130e-11 -10.234 -10.290 -0.056 -3.36 -H(0) 1.058e-39 - H2 5.289e-40 5.290e-40 -39.277 -39.277 0.000 28.57 -O(0) 2.406e-14 - O2 1.203e-14 1.203e-14 -13.920 -13.920 0.000 30.29 + HCO3- 8.244e-04 7.985e-04 -3.084 -3.098 -0.014 24.84 + CO3-2 5.830e-11 5.130e-11 -10.234 -10.290 -0.056 -3.21 +H(0) 1.226e-39 + H2 6.131e-40 6.132e-40 -39.212 -39.212 0.000 28.57 +O(0) 1.790e-14 + O2 8.949e-15 8.951e-15 -14.048 -14.048 0.000 30.29 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 80 atm) - CH4(g) -117.01 -119.86 -2.85 CH4 + CH4(g) -116.75 -119.60 -2.85 CH4 CO2(g) 1.64 0.13 -1.52 CO2 Pressure 79.9 atm, phi 0.552 - H2(g) -36.14 -39.28 -3.14 H2 + H2(g) -36.07 -39.21 -3.14 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.2 atm, phi 0.132 - O2(g) -10.98 -13.92 -2.93 O2 + O2(g) -11.11 -14.05 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1935,13 +1936,13 @@ H2O(g) -0.51 3.084e-01 0.107 5.114e-02 5.758e-02 6.433e-03 ----------------------------Description of solution---------------------------- pH = 3.091 Charge balance - pe = 14.965 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 328 + pe = 14.977 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 297 Density (g/cm³) = 1.01434 Volume (L) = 1.04689 - Viscosity (mPa s) = 0.88911 + Viscosity (mPa s) = 0.88921 Activity of water = 0.976 - Ionic strength (mol/kgw) = 8.371e-04 + Ionic strength (mol/kgw) = 8.368e-04 Mass of water (kg) = 9.989e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.432e+00 @@ -1958,30 +1959,30 @@ H2O(g) -0.51 3.084e-01 0.107 5.114e-02 5.758e-02 6.433e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.371e-04 8.115e-04 -3.077 -3.091 -0.014 0.00 - OH- 1.367e-11 1.323e-11 -10.864 -10.878 -0.014 -3.77 + H+ 8.368e-04 8.111e-04 -3.077 -3.091 -0.014 0.00 + OH- 1.368e-11 1.324e-11 -10.864 -10.878 -0.014 -3.77 H2O 5.551e+01 9.762e-01 1.744 -0.010 0.000 17.99 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.965 -119.965 0.000 35.58 + CH4 0.000e+00 0.000e+00 -120.056 -120.056 0.000 35.58 C(4) 1.432e+00 CO2 1.363e+00 1.363e+00 0.134 0.134 0.000 34.39 (CO2)2 3.408e-02 3.409e-02 -1.467 -1.467 0.000 68.78 - HCO3- 8.371e-04 8.106e-04 -3.077 -3.091 -0.014 24.67 - CO3-2 5.927e-11 5.212e-11 -10.227 -10.283 -0.056 -3.23 -H(0) 9.805e-40 - H2 4.902e-40 4.903e-40 -39.310 -39.310 0.000 28.56 -O(0) 2.715e-14 - O2 1.358e-14 1.358e-14 -13.867 -13.867 0.000 30.26 + HCO3- 8.368e-04 8.103e-04 -3.077 -3.091 -0.014 24.89 + CO3-2 5.929e-11 5.213e-11 -10.227 -10.283 -0.056 -3.08 +H(0) 9.303e-40 + H2 4.651e-40 4.652e-40 -39.332 -39.332 0.000 28.56 +O(0) 3.016e-14 + O2 1.508e-14 1.508e-14 -13.822 -13.821 0.000 30.26 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 94 atm) - CH4(g) -117.10 -119.96 -2.86 CH4 + CH4(g) -117.20 -120.06 -2.86 CH4 CO2(g) 1.66 0.13 -1.53 CO2 Pressure 94.1 atm, phi 0.485 - H2(g) -36.16 -39.31 -3.15 H2 + H2(g) -36.18 -39.33 -3.15 H2 H2O(g) -1.48 -0.01 1.47 H2O Pressure 0.3 atm, phi 0.107 - O2(g) -10.92 -13.87 -2.94 O2 + O2(g) -10.88 -13.82 -2.94 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2028,14 +2029,14 @@ H2O(g) -0.40 3.942e-01 0.085 5.758e-02 6.425e-02 6.677e-03 ----------------------------Description of solution---------------------------- - pH = 3.082 Charge balance - pe = 15.021 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 334 + pH = 3.083 Charge balance + pe = 14.941 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 303 Density (g/cm³) = 1.01543 Volume (L) = 1.04675 - Viscosity (mPa s) = 0.88890 + Viscosity (mPa s) = 0.88900 Activity of water = 0.976 - Ionic strength (mol/kgw) = 8.537e-04 + Ionic strength (mol/kgw) = 8.532e-04 Mass of water (kg) = 9.988e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.457e+00 @@ -2043,7 +2044,7 @@ H2O(g) -0.40 3.942e-01 0.085 5.758e-02 6.425e-02 6.677e-03 Pressure (atm) = 114.16 Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 62 + Iterations = 61 Total H = 1.108839e+02 Total O = 5.835300e+01 @@ -2052,30 +2053,30 @@ H2O(g) -0.40 3.942e-01 0.085 5.758e-02 6.425e-02 6.677e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.537e-04 8.273e-04 -3.069 -3.082 -0.014 0.00 - OH- 1.364e-11 1.320e-11 -10.865 -10.879 -0.014 -3.70 + H+ 8.532e-04 8.268e-04 -3.069 -3.083 -0.014 0.00 + OH- 1.365e-11 1.321e-11 -10.865 -10.879 -0.014 -3.70 H2O 5.551e+01 9.758e-01 1.744 -0.011 0.000 17.98 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.347 -120.347 0.000 35.61 + CH4 0.000e+00 0.000e+00 -119.713 -119.713 0.000 35.61 C(4) 1.457e+00 CO2 1.386e+00 1.386e+00 0.142 0.142 0.000 34.38 (CO2)2 3.526e-02 3.526e-02 -1.453 -1.453 0.000 68.76 - HCO3- 8.537e-04 8.264e-04 -3.069 -3.083 -0.014 24.69 - CO3-2 6.065e-11 5.326e-11 -10.217 -10.274 -0.056 -3.06 -H(0) 7.714e-40 - H2 3.857e-40 3.858e-40 -39.414 -39.414 0.000 28.55 -O(0) 4.206e-14 - O2 2.103e-14 2.103e-14 -13.677 -13.677 0.000 30.24 + HCO3- 8.532e-04 8.259e-04 -3.069 -3.083 -0.014 24.95 + CO3-2 6.067e-11 5.329e-11 -10.217 -10.273 -0.056 -2.90 +H(0) 1.111e-39 + H2 5.555e-40 5.556e-40 -39.255 -39.255 0.000 28.55 +O(0) 2.028e-14 + O2 1.014e-14 1.014e-14 -13.994 -13.994 0.000 30.24 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 114 atm) - CH4(g) -117.47 -120.35 -2.87 CH4 + CH4(g) -116.84 -119.71 -2.87 CH4 CO2(g) 1.68 0.14 -1.54 CO2 Pressure 113.8 atm, phi 0.420 - H2(g) -36.26 -39.41 -3.16 H2 + H2(g) -36.10 -39.26 -3.16 H2 H2O(g) -1.48 -0.01 1.47 H2O Pressure 0.4 atm, phi 0.085 - O2(g) -10.72 -13.68 -2.95 O2 + O2(g) -11.04 -13.99 -2.95 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2123,13 +2124,13 @@ H2O(g) -0.29 5.106e-01 0.066 6.425e-02 7.108e-02 6.829e-03 ----------------------------Description of solution---------------------------- pH = 3.072 Charge balance - pe = 15.060 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 343 + pe = 14.978 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 311 Density (g/cm³) = 1.01684 Volume (L) = 1.04648 - Viscosity (mPa s) = 0.88865 + Viscosity (mPa s) = 0.88875 Activity of water = 0.975 - Ionic strength (mol/kgw) = 8.750e-04 + Ionic strength (mol/kgw) = 8.742e-04 Mass of water (kg) = 9.987e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.488e+00 @@ -2146,30 +2147,30 @@ H2O(g) -0.29 5.106e-01 0.066 6.425e-02 7.108e-02 6.829e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.750e-04 8.477e-04 -3.058 -3.072 -0.014 0.00 - OH- 1.362e-11 1.317e-11 -10.866 -10.880 -0.014 -3.61 + H+ 8.742e-04 8.470e-04 -3.058 -3.072 -0.014 0.00 + OH- 1.363e-11 1.318e-11 -10.866 -10.880 -0.014 -3.61 H2O 5.551e+01 9.753e-01 1.744 -0.011 0.000 17.96 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.580 -120.580 0.000 35.64 + CH4 0.000e+00 0.000e+00 -119.928 -119.928 0.000 35.64 C(4) 1.488e+00 CO2 1.413e+00 1.414e+00 0.150 0.150 0.000 34.37 (CO2)2 3.667e-02 3.668e-02 -1.436 -1.436 0.000 68.73 - HCO3- 8.750e-04 8.468e-04 -3.058 -3.072 -0.014 24.73 - CO3-2 6.251e-11 5.483e-11 -10.204 -10.261 -0.057 -2.83 -H(0) 6.571e-40 - H2 3.285e-40 3.286e-40 -39.483 -39.483 0.000 28.54 -O(0) 5.476e-14 - O2 2.738e-14 2.739e-14 -13.563 -13.562 0.000 30.20 + HCO3- 8.742e-04 8.461e-04 -3.058 -3.073 -0.014 25.03 + CO3-2 6.256e-11 5.487e-11 -10.204 -10.261 -0.057 -2.66 +H(0) 9.564e-40 + H2 4.782e-40 4.783e-40 -39.320 -39.320 0.000 28.54 +O(0) 2.585e-14 + O2 1.292e-14 1.293e-14 -13.889 -13.889 0.000 30.20 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 141 atm) - CH4(g) -117.69 -120.58 -2.89 CH4 + CH4(g) -117.04 -119.93 -2.89 CH4 CO2(g) 1.70 0.15 -1.55 CO2 Pressure 140.2 atm, phi 0.361 - H2(g) -36.31 -39.48 -3.17 H2 + H2(g) -36.15 -39.32 -3.17 H2 H2O(g) -1.47 -0.01 1.46 H2O Pressure 0.5 atm, phi 0.066 - O2(g) -10.60 -13.56 -2.97 O2 + O2(g) -10.92 -13.89 -2.97 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2224,21 +2225,21 @@ H2O(g) -0.18 6.655e-01 0.052 7.108e-02 7.795e-02 6.869e-03 ----------------------------Description of solution---------------------------- pH = 3.059 Charge balance - pe = 16.076 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 353 + pe = 15.552 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 320 Density (g/cm³) = 1.01866 Volume (L) = 1.04600 - Viscosity (mPa s) = 0.88835 + Viscosity (mPa s) = 0.88844 Activity of water = 0.975 - Ionic strength (mol/kgw) = 9.022e-04 + Ionic strength (mol/kgw) = 9.010e-04 Mass of water (kg) = 9.986e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.523e+00 Temperature (°C) = 25.00 Pressure (atm) = 175.50 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 40 (141 overall) + Iterations = 48 (149 overall) Total H = 1.108565e+02 Total O = 5.846928e+01 @@ -2247,30 +2248,30 @@ H2O(g) -0.18 6.655e-01 0.052 7.108e-02 7.795e-02 6.869e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.022e-04 8.736e-04 -3.045 -3.059 -0.014 0.00 - OH- 1.361e-11 1.316e-11 -10.866 -10.881 -0.015 -3.49 + H+ 9.010e-04 8.725e-04 -3.045 -3.059 -0.014 0.00 + OH- 1.363e-11 1.317e-11 -10.866 -10.880 -0.015 -3.49 H2O 5.551e+01 9.748e-01 1.744 -0.011 0.000 17.93 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -128.619 -128.619 0.000 35.68 + CH4 0.000e+00 0.000e+00 -124.435 -124.435 0.000 35.68 C(4) 1.523e+00 CO2 1.445e+00 1.445e+00 0.160 0.160 0.000 34.35 (CO2)2 3.833e-02 3.834e-02 -1.416 -1.416 0.000 68.70 - HCO3- 9.022e-04 8.727e-04 -3.045 -3.059 -0.014 24.77 - CO3-2 6.500e-11 5.692e-11 -10.187 -10.245 -0.058 -2.53 + HCO3- 9.010e-04 8.715e-04 -3.045 -3.060 -0.014 25.14 + CO3-2 6.509e-11 5.700e-11 -10.186 -10.244 -0.058 -2.36 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.508 -41.507 0.000 28.53 -O(0) 5.684e-10 - O2 2.842e-10 2.842e-10 -9.546 -9.546 0.000 30.15 + H2 0.000e+00 0.000e+00 -40.461 -40.461 0.000 28.53 +O(0) 4.595e-12 + O2 2.298e-12 2.298e-12 -11.639 -11.639 0.000 30.15 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 176 atm) - CH4(g) -125.71 -128.62 -2.91 CH4 + CH4(g) -121.52 -124.43 -2.91 CH4 CO2(g) 1.73 0.16 -1.57 CO2 Pressure 174.8 atm, phi 0.310 - H2(g) -38.32 -41.51 -3.19 H2 + H2(g) -37.27 -40.46 -3.19 H2 H2O(g) -1.46 -0.01 1.45 H2O Pressure 0.7 atm, phi 0.052 - O2(g) -6.56 -9.55 -2.99 O2 + O2(g) -8.65 -11.64 -2.99 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2324,54 +2325,54 @@ H2O(g) -0.06 8.678e-01 0.041 7.795e-02 8.472e-02 6.772e-03 ----------------------------Description of solution---------------------------- - pH = 3.043 Charge balance - pe = 16.091 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 367 + pH = 3.044 Charge balance + pe = 16.115 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 333 Density (g/cm³) = 1.02093 Volume (L) = 1.04525 - Viscosity (mPa s) = 0.88802 + Viscosity (mPa s) = 0.88812 Activity of water = 0.974 - Ionic strength (mol/kgw) = 9.364e-04 + Ionic strength (mol/kgw) = 9.345e-04 Mass of water (kg) = 9.985e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.562e+00 Temperature (°C) = 25.00 Pressure (atm) = 220.47 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 35 (136 overall) + Iterations = 38 (139 overall) Total H = 1.108430e+02 - Total O = 5.854161e+01 + Total O = 5.854160e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.364e-04 9.063e-04 -3.029 -3.043 -0.014 0.00 - OH- 1.362e-11 1.316e-11 -10.866 -10.881 -0.015 -3.34 + H+ 9.345e-04 9.045e-04 -3.029 -3.044 -0.014 0.00 + OH- 1.365e-11 1.319e-11 -10.865 -10.880 -0.015 -3.34 H2O 5.551e+01 9.741e-01 1.744 -0.011 0.000 17.89 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -128.630 -128.630 0.000 35.73 + CH4 0.000e+00 0.000e+00 -128.831 -128.831 0.000 35.73 C(4) 1.562e+00 CO2 1.481e+00 1.481e+00 0.171 0.171 0.000 34.33 (CO2)2 4.026e-02 4.027e-02 -1.395 -1.395 0.000 68.66 - HCO3- 9.364e-04 9.053e-04 -3.029 -3.043 -0.015 24.82 - CO3-2 6.829e-11 5.967e-11 -10.166 -10.224 -0.059 -2.16 + HCO3- 9.345e-04 9.035e-04 -3.029 -3.044 -0.015 25.28 + CO3-2 6.845e-11 5.982e-11 -10.165 -10.223 -0.059 -1.98 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.528 -41.528 0.000 28.51 -O(0) 5.685e-10 - O2 2.842e-10 2.843e-10 -9.546 -9.546 0.000 30.09 + H2 0.000e+00 0.000e+00 -41.579 -41.578 0.000 28.51 +O(0) 7.163e-10 + O2 3.582e-10 3.582e-10 -9.446 -9.446 0.000 30.09 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 220 atm) - CH4(g) -125.69 -128.63 -2.94 CH4 + CH4(g) -125.89 -128.83 -2.94 CH4 CO2(g) 1.77 0.17 -1.60 CO2 Pressure 219.6 atm, phi 0.270 - H2(g) -38.32 -41.53 -3.21 H2 + H2(g) -38.37 -41.58 -3.21 H2 H2O(g) -1.44 -0.01 1.43 H2O Pressure 0.9 atm, phi 0.041 - O2(g) -6.54 -9.55 -3.01 O2 + O2(g) -6.44 -9.45 -3.01 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2425,54 +2426,54 @@ H2O(g) 0.05 1.127e+00 0.033 8.472e-02 9.124e-02 6.514e-03 ----------------------------Description of solution---------------------------- - pH = 3.023 Charge balance - pe = 16.109 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 384 + pH = 3.025 Charge balance + pe = 16.133 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 349 Density (g/cm³) = 1.02376 Volume (L) = 1.04415 - Viscosity (mPa s) = 0.88771 + Viscosity (mPa s) = 0.88780 Activity of water = 0.973 - Ionic strength (mol/kgw) = 9.794e-04 + Ionic strength (mol/kgw) = 9.763e-04 Mass of water (kg) = 9.983e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.607e+00 Temperature (°C) = 25.00 Pressure (atm) = 277.89 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.108300e+02 - Total O = 5.862319e+01 + Total O = 5.862318e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.794e-04 9.474e-04 -3.009 -3.023 -0.014 0.00 - OH- 1.366e-11 1.319e-11 -10.865 -10.880 -0.015 -3.15 + H+ 9.763e-04 9.444e-04 -3.010 -3.025 -0.014 0.00 + OH- 1.370e-11 1.323e-11 -10.863 -10.878 -0.015 -3.15 H2O 5.551e+01 9.734e-01 1.744 -0.012 0.000 17.85 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -128.646 -128.646 0.000 35.80 + CH4 0.000e+00 0.000e+00 -128.847 -128.846 0.000 35.80 C(4) 1.607e+00 CO2 1.521e+00 1.521e+00 0.182 0.182 0.000 34.30 (CO2)2 4.246e-02 4.247e-02 -1.372 -1.372 0.000 68.61 - HCO3- 9.794e-04 9.463e-04 -3.009 -3.024 -0.015 24.89 - CO3-2 7.261e-11 6.329e-11 -10.139 -10.199 -0.060 -1.70 + HCO3- 9.763e-04 9.433e-04 -3.010 -3.025 -0.015 25.45 + CO3-2 7.290e-11 6.355e-11 -10.137 -10.197 -0.060 -1.51 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.555 -41.555 0.000 28.48 -O(0) 5.685e-10 - O2 2.843e-10 2.843e-10 -9.546 -9.546 0.000 30.02 + H2 0.000e+00 0.000e+00 -41.605 -41.605 0.000 28.48 +O(0) 7.164e-10 + O2 3.582e-10 3.583e-10 -9.446 -9.446 0.000 30.02 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 278 atm) - CH4(g) -125.67 -128.65 -2.98 CH4 + CH4(g) -125.87 -128.85 -2.98 CH4 CO2(g) 1.82 0.18 -1.64 CO2 Pressure 276.8 atm, phi 0.238 - H2(g) -38.31 -41.55 -3.24 H2 + H2(g) -38.36 -41.60 -3.24 H2 H2O(g) -1.43 -0.01 1.42 H2O Pressure 1.1 atm, phi 0.033 - O2(g) -6.51 -9.55 -3.04 O2 + O2(g) -6.41 -9.45 -3.04 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2526,54 +2527,54 @@ H2O(g) 0.16 1.455e+00 0.027 9.124e-02 9.730e-02 6.064e-03 ----------------------------Description of solution---------------------------- - pH = 3.000 Charge balance - pe = 16.130 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 405 + pH = 3.003 Charge balance + pe = 16.153 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 368 Density (g/cm³) = 1.02723 Volume (L) = 1.04258 - Viscosity (mPa s) = 0.88747 + Viscosity (mPa s) = 0.88755 Activity of water = 0.973 - Ionic strength (mol/kgw) = 1.033e-03 + Ionic strength (mol/kgw) = 1.028e-03 Mass of water (kg) = 9.982e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.655e+00 Temperature (°C) = 25.00 Pressure (atm) = 350.70 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 35 (136 overall) + Iterations = 36 (137 overall) Total H = 1.108178e+02 - Total O = 5.871355e+01 + Total O = 5.871354e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.033e-03 9.990e-04 -2.986 -3.000 -0.015 0.00 - OH- 1.373e-11 1.325e-11 -10.862 -10.878 -0.016 -2.93 + H+ 1.028e-03 9.942e-04 -2.988 -3.003 -0.015 0.00 + OH- 1.380e-11 1.332e-11 -10.860 -10.876 -0.016 -2.93 H2O 5.551e+01 9.726e-01 1.744 -0.012 0.000 17.79 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -128.668 -128.668 0.000 35.87 + CH4 0.000e+00 0.000e+00 -128.869 -128.869 0.000 35.87 C(4) 1.655e+00 CO2 1.564e+00 1.565e+00 0.194 0.194 0.000 34.27 (CO2)2 4.492e-02 4.493e-02 -1.348 -1.347 0.000 68.54 - HCO3- 1.033e-03 9.978e-04 -2.986 -3.001 -0.015 24.98 - CO3-2 7.829e-11 6.803e-11 -10.106 -10.167 -0.061 -1.13 + HCO3- 1.028e-03 9.930e-04 -2.988 -3.003 -0.015 25.66 + CO3-2 7.880e-11 6.850e-11 -10.103 -10.164 -0.061 -0.93 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.588 -41.588 0.000 28.46 -O(0) 5.686e-10 - O2 2.843e-10 2.844e-10 -9.546 -9.546 0.000 29.93 + H2 0.000e+00 0.000e+00 -41.638 -41.638 0.000 28.46 +O(0) 7.165e-10 + O2 3.583e-10 3.583e-10 -9.446 -9.446 0.000 29.93 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 351 atm) - CH4(g) -125.64 -128.67 -3.02 CH4 + CH4(g) -125.84 -128.87 -3.02 CH4 CO2(g) 1.88 0.19 -1.68 CO2 Pressure 349.2 atm, phi 0.215 - H2(g) -38.31 -41.59 -3.28 H2 + H2(g) -38.36 -41.64 -3.28 H2 H2O(g) -1.40 -0.01 1.39 H2O Pressure 1.5 atm, phi 0.027 - O2(g) -6.47 -9.55 -3.08 O2 + O2(g) -6.37 -9.45 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2627,54 +2628,54 @@ H2O(g) 0.27 1.863e+00 0.023 9.730e-02 1.027e-01 5.386e-03 ----------------------------Description of solution---------------------------- - pH = 2.973 Charge balance - pe = 16.156 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 432 + pH = 2.976 Charge balance + pe = 16.178 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 393 Density (g/cm³) = 1.03147 - Volume (L) = 1.04040 - Viscosity (mPa s) = 0.88743 + Volume (L) = 1.04041 + Viscosity (mPa s) = 0.88750 Activity of water = 0.972 - Ionic strength (mol/kgw) = 1.102e-03 + Ionic strength (mol/kgw) = 1.094e-03 Mass of water (kg) = 9.981e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.707e+00 Temperature (°C) = 25.00 Pressure (atm) = 442.66 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.108071e+02 - Total O = 5.881181e+01 + Total O = 5.881180e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.102e-03 1.064e-03 -2.958 -2.973 -0.015 0.00 - OH- 1.385e-11 1.335e-11 -10.858 -10.874 -0.016 -2.66 + H+ 1.094e-03 1.056e-03 -2.961 -2.976 -0.015 0.00 + OH- 1.395e-11 1.345e-11 -10.855 -10.871 -0.016 -2.66 H2O 5.551e+01 9.718e-01 1.744 -0.012 0.000 17.73 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -128.699 -128.699 0.000 35.96 + CH4 0.000e+00 0.000e+00 -128.900 -128.899 0.000 35.96 C(4) 1.707e+00 CO2 1.611e+00 1.611e+00 0.207 0.207 0.000 34.23 (CO2)2 4.764e-02 4.765e-02 -1.322 -1.322 0.000 68.46 - HCO3- 1.102e-03 1.063e-03 -2.958 -2.974 -0.016 25.08 - CO3-2 8.579e-11 7.426e-11 -10.067 -10.129 -0.063 -0.45 + HCO3- 1.094e-03 1.055e-03 -2.961 -2.977 -0.016 25.91 + CO3-2 8.669e-11 7.509e-11 -10.062 -10.124 -0.062 -0.24 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.630 -41.630 0.000 28.42 -O(0) 5.686e-10 - O2 2.843e-10 2.844e-10 -9.546 -9.546 0.000 29.83 + H2 0.000e+00 0.000e+00 -41.680 -41.680 0.000 28.42 +O(0) 7.166e-10 + O2 3.583e-10 3.584e-10 -9.446 -9.446 0.000 29.83 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 443 atm) - CH4(g) -125.61 -128.70 -3.08 CH4 + CH4(g) -125.82 -128.90 -3.08 CH4 CO2(g) 1.94 0.21 -1.74 CO2 Pressure 440.8 atm, phi 0.199 - H2(g) -38.31 -41.63 -3.32 H2 + H2(g) -38.36 -41.68 -3.32 H2 H2O(g) -1.38 -0.01 1.36 H2O Pressure 1.9 atm, phi 0.023 - O2(g) -6.42 -9.55 -3.13 O2 + O2(g) -6.32 -9.45 -3.13 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2711,7 +2712,7 @@ Reaction 1. Total pressure: 558.75 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 3.95e-02 liters/mole - P * Vm / RT: 0.90094 (Compressibility Factor Z) + P * Vm / RT: 0.90095 (Compressibility Factor Z) Moles in gas ---------------------------------- @@ -2728,54 +2729,54 @@ H2O(g) 0.37 2.361e+00 0.019 1.027e-01 1.071e-01 4.442e-03 ----------------------------Description of solution---------------------------- - pH = 2.940 Charge balance - pe = 16.186 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 466 + pH = 2.945 Charge balance + pe = 16.206 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 425 Density (g/cm³) = 1.03663 Volume (L) = 1.03747 - Viscosity (mPa s) = 0.88778 + Viscosity (mPa s) = 0.88783 Activity of water = 0.971 - Ionic strength (mol/kgw) = 1.189e-03 + Ionic strength (mol/kgw) = 1.176e-03 Mass of water (kg) = 9.980e-01 - Total alkalinity (eq/kg) = 1.214e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.762e+00 Temperature (°C) = 25.00 Pressure (atm) = 558.75 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 32 (133 overall) + Iterations = 37 (138 overall) Total H = 1.107982e+02 - Total O = 5.891647e+01 + Total O = 5.891645e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.189e-03 1.147e-03 -2.925 -2.940 -0.016 0.00 - OH- 1.403e-11 1.350e-11 -10.853 -10.870 -0.016 -2.33 + H+ 1.176e-03 1.135e-03 -2.930 -2.945 -0.015 0.00 + OH- 1.418e-11 1.366e-11 -10.848 -10.865 -0.016 -2.33 H2O 5.551e+01 9.709e-01 1.744 -0.013 0.000 17.64 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -128.741 -128.741 0.000 36.07 + CH4 0.000e+00 0.000e+00 -128.942 -128.941 0.000 36.07 C(4) 1.762e+00 CO2 1.660e+00 1.660e+00 0.220 0.220 0.000 34.18 (CO2)2 5.057e-02 5.059e-02 -1.296 -1.296 0.000 68.35 - HCO3- 1.189e-03 1.146e-03 -2.925 -2.941 -0.016 25.21 - CO3-2 9.577e-11 8.253e-11 -10.019 -10.083 -0.065 0.35 + HCO3- 1.176e-03 1.133e-03 -2.930 -2.946 -0.016 26.21 + CO3-2 9.737e-11 8.398e-11 -10.012 -10.076 -0.064 0.59 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.683 -41.683 0.000 28.38 -O(0) 5.687e-10 - O2 2.843e-10 2.844e-10 -9.546 -9.546 0.000 29.70 + H2 0.000e+00 0.000e+00 -41.733 -41.733 0.000 28.38 +O(0) 7.167e-10 + O2 3.583e-10 3.584e-10 -9.446 -9.446 0.000 29.70 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 559 atm) - CH4(g) -125.58 -128.74 -3.16 CH4 + CH4(g) -125.78 -128.94 -3.16 CH4 CO2(g) 2.03 0.22 -1.81 CO2 Pressure 556.4 atm, phi 0.191 - H2(g) -38.30 -41.68 -3.38 H2 + H2(g) -38.35 -41.73 -3.38 H2 H2O(g) -1.34 -0.01 1.33 H2O Pressure 2.4 atm, phi 0.019 - O2(g) -6.36 -9.55 -3.19 O2 + O2(g) -6.26 -9.45 -3.19 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2931,11 +2932,11 @@ H2O(g) -0.85 1.400e-01 0.872 4.591e-03 5.717e-03 1.126e-03 ----------------------------Description of solution---------------------------- pH = 3.402 Charge balance - pe = 12.494 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 207 + pe = 12.495 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 205 Density (g/cm³) = 0.99137 Volume (L) = 1.02222 - Viscosity (mPa s) = 0.54697 + Viscosity (mPa s) = 0.54698 Activity of water = 0.995 Ionic strength (mol/kgw) = 4.059e-04 Mass of water (kg) = 9.999e-01 @@ -2958,16 +2959,16 @@ H2O(g) -0.85 1.400e-01 0.872 4.591e-03 5.717e-03 1.126e-03 OH- 1.426e-10 1.392e-10 -9.846 -9.856 -0.011 -3.83 H2O 5.551e+01 9.948e-01 1.744 -0.002 0.000 18.22 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -106.546 -106.546 0.000 37.34 + CH4 0.000e+00 0.000e+00 -106.551 -106.551 0.000 37.34 C(4) 3.070e-01 CO2 2.998e-01 2.998e-01 -0.523 -0.523 0.000 35.64 (CO2)2 3.375e-03 3.375e-03 -2.472 -2.472 0.000 71.28 - HCO3- 4.059e-04 3.963e-04 -3.392 -3.402 -0.010 25.63 - CO3-2 7.490e-11 6.807e-11 -10.126 -10.167 -0.042 -3.03 -H(0) 1.787e-35 - H2 8.933e-36 8.934e-36 -35.049 -35.049 0.000 28.58 -O(0) 2.783e-15 - O2 1.391e-15 1.391e-15 -14.857 -14.857 0.000 31.89 + HCO3- 4.059e-04 3.963e-04 -3.392 -3.402 -0.010 25.62 + CO3-2 7.490e-11 6.807e-11 -10.126 -10.167 -0.042 -3.09 +H(0) 1.781e-35 + H2 8.907e-36 8.908e-36 -35.050 -35.050 0.000 28.58 +O(0) 2.799e-15 + O2 1.399e-15 1.400e-15 -14.854 -14.854 0.000 31.89 ------------------------------Saturation indices------------------------------- @@ -2977,7 +2978,7 @@ O(0) 2.783e-15 CO2(g) 1.20 -0.52 -1.72 CO2 Pressure 17.0 atm, phi 0.928 H2(g) -31.91 -35.05 -3.14 H2 H2O(g) -0.91 -0.00 0.91 H2O Pressure 0.1 atm, phi 0.872 - O2(g) -11.82 -14.86 -3.04 O2 + O2(g) -11.82 -14.85 -3.04 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3026,11 +3027,11 @@ H2O(g) -0.79 1.615e-01 0.761 5.717e-03 7.178e-03 1.461e-03 ----------------------------Description of solution---------------------------- pH = 3.277 Charge balance - pe = 2.576 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 277 + pe = 2.454 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 270 Density (g/cm³) = 0.99409 Volume (L) = 1.03007 - Viscosity (mPa s) = 0.54733 + Viscosity (mPa s) = 0.54734 Activity of water = 0.991 Ionic strength (mol/kgw) = 5.432e-04 Mass of water (kg) = 9.999e-01 @@ -3040,7 +3041,7 @@ H2O(g) -0.79 1.615e-01 0.761 5.717e-03 7.178e-03 1.461e-03 Pressure (atm) = 32.84 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 38 + Iterations = 35 Total H = 1.109981e+02 Total O = 5.659456e+01 @@ -3052,27 +3053,27 @@ H2O(g) -0.79 1.615e-01 0.761 5.717e-03 7.178e-03 1.461e-03 H+ 5.432e-04 5.288e-04 -3.265 -3.277 -0.012 0.00 OH- 1.083e-10 1.053e-10 -9.965 -9.978 -0.012 -3.84 H2O 5.551e+01 9.909e-01 1.744 -0.004 0.000 18.21 -C(-4) 1.084e-26 - CH4 1.084e-26 1.084e-26 -25.965 -25.965 0.000 37.35 +C(-4) 1.040e-25 + CH4 1.040e-25 1.040e-25 -24.983 -24.983 0.000 37.35 C(4) 5.478e-01 CO2 5.265e-01 5.265e-01 -0.279 -0.279 0.000 35.62 (CO2)2 1.041e-02 1.041e-02 -1.983 -1.983 0.000 71.25 - HCO3- 5.432e-04 5.285e-04 -3.265 -3.277 -0.012 25.66 - CO3-2 7.725e-11 6.921e-11 -10.112 -10.160 -0.048 -2.85 -H(0) 2.140e-15 - H2 1.070e-15 1.070e-15 -14.971 -14.971 0.000 28.57 + HCO3- 5.432e-04 5.284e-04 -3.265 -3.277 -0.012 25.68 + CO3-2 7.726e-11 6.922e-11 -10.112 -10.160 -0.048 -2.93 +H(0) 3.765e-15 + H2 1.883e-15 1.883e-15 -14.725 -14.725 0.000 28.57 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -55.030 -55.030 0.000 31.85 + O2 0.000e+00 0.000e+00 -55.521 -55.521 0.000 31.85 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 33 atm) - CH4(g) -22.99 -25.96 -2.98 CH4 + CH4(g) -22.00 -24.98 -2.98 CH4 CO2(g) 1.45 -0.28 -1.73 CO2 Pressure 32.7 atm, phi 0.864 - H2(g) -11.82 -14.97 -3.15 H2 + H2(g) -11.57 -14.73 -3.15 H2 H2O(g) -0.91 -0.00 0.91 H2O Pressure 0.2 atm, phi 0.761 - O2(g) -51.98 -55.03 -3.05 O2 + O2(g) -52.47 -55.52 -3.05 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3121,11 +3122,11 @@ H2O(g) -0.73 1.861e-01 0.665 7.178e-03 9.044e-03 1.866e-03 ----------------------------Description of solution---------------------------- pH = 3.215 Charge balance - pe = 2.255 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 320 + pe = 2.643 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 308 Density (g/cm³) = 0.99620 Volume (L) = 1.03584 - Viscosity (mPa s) = 0.54764 + Viscosity (mPa s) = 0.54765 Activity of water = 0.988 Ionic strength (mol/kgw) = 6.276e-04 Mass of water (kg) = 9.998e-01 @@ -3145,29 +3146,29 @@ H2O(g) -0.73 1.861e-01 0.665 7.178e-03 9.044e-03 1.866e-03 Species Molality Activity Molality Activity Gamma cm³/mol H+ 6.276e-04 6.099e-04 -3.202 -3.215 -0.012 0.00 - OH- 9.490e-11 9.211e-11 -10.023 -10.036 -0.013 -3.86 + OH- 9.491e-11 9.211e-11 -10.023 -10.036 -0.013 -3.86 H2O 5.551e+01 9.879e-01 1.744 -0.005 0.000 18.20 -C(-4) 1.625e-23 - CH4 1.625e-23 1.625e-23 -22.789 -22.789 0.000 37.36 +C(-4) 1.291e-26 + CH4 1.291e-26 1.291e-26 -25.889 -25.889 0.000 37.36 C(4) 7.286e-01 CO2 6.920e-01 6.921e-01 -0.160 -0.160 0.000 35.61 (CO2)2 1.798e-02 1.798e-02 -1.745 -1.745 0.000 71.22 - HCO3- 6.276e-04 6.094e-04 -3.202 -3.215 -0.013 25.69 - CO3-2 7.902e-11 7.024e-11 -10.102 -10.153 -0.051 -2.70 -H(0) 1.229e-14 - H2 6.145e-15 6.146e-15 -14.211 -14.211 0.000 28.57 + HCO3- 6.276e-04 6.094e-04 -3.202 -3.215 -0.013 25.74 + CO3-2 7.904e-11 7.026e-11 -10.102 -10.153 -0.051 -2.79 +H(0) 2.063e-15 + H2 1.032e-15 1.032e-15 -14.986 -14.986 0.000 28.57 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -56.563 -56.563 0.000 31.82 + O2 0.000e+00 0.000e+00 -55.013 -55.013 0.000 31.82 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 47 atm) - CH4(g) -19.80 -22.79 -2.99 CH4 + CH4(g) -22.90 -25.89 -2.99 CH4 CO2(g) 1.58 -0.16 -1.74 CO2 Pressure 46.7 atm, phi 0.809 - H2(g) -11.05 -14.21 -3.16 H2 + H2(g) -11.83 -14.99 -3.16 H2 H2O(g) -0.91 -0.01 0.90 H2O Pressure 0.2 atm, phi 0.665 - O2(g) -53.51 -56.56 -3.05 O2 + O2(g) -51.96 -55.01 -3.05 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3216,21 +3217,21 @@ H2O(g) -0.67 2.136e-01 0.583 9.044e-03 1.139e-02 2.342e-03 ----------------------------Description of solution---------------------------- pH = 3.178 Charge balance - pe = 2.294 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 348 + pe = 12.681 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 333 Density (g/cm³) = 0.99780 Volume (L) = 1.03988 - Viscosity (mPa s) = 0.54790 + Viscosity (mPa s) = 0.54791 Activity of water = 0.986 Ionic strength (mol/kgw) = 6.831e-04 Mass of water (kg) = 9.998e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 8.589e-01 Temperature (°C) = 50.00 Pressure (atm) = 59.15 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 22 + Iterations = 30 Total H = 1.109897e+02 Total O = 5.721235e+01 @@ -3239,30 +3240,30 @@ H2O(g) -0.67 2.136e-01 0.583 9.044e-03 1.139e-02 2.342e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 6.831e-04 6.631e-04 -3.166 -3.178 -0.013 0.00 - OH- 8.811e-11 8.541e-11 -10.055 -10.069 -0.014 -3.87 + H+ 6.831e-04 6.630e-04 -3.166 -3.178 -0.013 0.00 + OH- 8.811e-11 8.541e-11 -10.055 -10.068 -0.014 -3.87 H2O 5.551e+01 9.858e-01 1.744 -0.006 0.000 18.19 -C(-4) 1.791e-23 - CH4 1.791e-23 1.791e-23 -22.747 -22.747 0.000 37.37 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -105.840 -105.840 0.000 37.37 C(4) 8.589e-01 CO2 8.091e-01 8.092e-01 -0.092 -0.092 0.000 35.60 (CO2)2 2.458e-02 2.458e-02 -1.609 -1.609 0.000 71.19 - HCO3- 6.831e-04 6.625e-04 -3.166 -3.179 -0.013 25.71 - CO3-2 8.042e-11 7.115e-11 -10.095 -10.148 -0.053 -2.57 -H(0) 1.199e-14 - H2 5.996e-15 5.997e-15 -14.222 -14.222 0.000 28.56 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -56.554 -56.554 0.000 31.79 + HCO3- 6.831e-04 6.625e-04 -3.166 -3.179 -0.013 25.79 + CO3-2 8.045e-11 7.117e-11 -10.094 -10.148 -0.053 -2.68 +H(0) 2.022e-35 + H2 1.011e-35 1.011e-35 -34.995 -34.995 0.000 28.56 +O(0) 1.963e-15 + O2 9.815e-16 9.816e-16 -15.008 -15.008 0.000 31.79 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 59 atm) - CH4(g) -19.75 -22.75 -2.99 CH4 + CH4(g) -102.84 -105.84 -2.99 CH4 CO2(g) 1.65 -0.09 -1.74 CO2 Pressure 58.9 atm, phi 0.763 - H2(g) -11.06 -14.22 -3.16 H2 + H2(g) -31.83 -35.00 -3.16 H2 H2O(g) -0.90 -0.01 0.90 H2O Pressure 0.2 atm, phi 0.583 - O2(g) -53.49 -56.55 -3.06 O2 + O2(g) -11.95 -15.01 -3.06 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3311,15 +3312,15 @@ H2O(g) -0.61 2.437e-01 0.514 1.139e-02 1.427e-02 2.881e-03 ----------------------------Description of solution---------------------------- pH = 3.156 Charge balance - pe = 2.084 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 367 + pe = 12.723 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 349 Density (g/cm³) = 0.99898 Volume (L) = 1.04261 - Viscosity (mPa s) = 0.54812 + Viscosity (mPa s) = 0.54813 Activity of water = 0.984 - Ionic strength (mol/kgw) = 7.203e-04 + Ionic strength (mol/kgw) = 7.202e-04 Mass of water (kg) = 9.997e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 9.501e-01 Temperature (°C) = 50.00 Pressure (atm) = 69.44 @@ -3334,30 +3335,30 @@ H2O(g) -0.61 2.437e-01 0.514 1.139e-02 1.427e-02 2.881e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.203e-04 6.987e-04 -3.142 -3.156 -0.013 0.00 - OH- 8.428e-11 8.163e-11 -10.074 -10.088 -0.014 -3.88 + H+ 7.202e-04 6.986e-04 -3.143 -3.156 -0.013 0.00 + OH- 8.429e-11 8.164e-11 -10.074 -10.088 -0.014 -3.88 H2O 5.551e+01 9.843e-01 1.744 -0.007 0.000 18.18 -C(-4) 1.408e-21 - CH4 1.408e-21 1.408e-21 -20.851 -20.851 0.000 37.37 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -105.961 -105.961 0.000 37.37 C(4) 9.501e-01 CO2 8.899e-01 8.900e-01 -0.051 -0.051 0.000 35.58 (CO2)2 2.973e-02 2.974e-02 -1.527 -1.527 0.000 71.17 - HCO3- 7.203e-04 6.980e-04 -3.142 -3.156 -0.014 25.73 - CO3-2 8.154e-11 7.191e-11 -10.089 -10.143 -0.055 -2.47 -H(0) 3.459e-14 - H2 1.729e-14 1.730e-14 -13.762 -13.762 0.000 28.55 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -57.485 -57.485 0.000 31.77 + HCO3- 7.202e-04 6.979e-04 -3.143 -3.156 -0.014 25.83 + CO3-2 8.158e-11 7.195e-11 -10.088 -10.143 -0.055 -2.58 +H(0) 1.826e-35 + H2 9.132e-36 9.134e-36 -35.039 -35.039 0.000 28.55 +O(0) 2.350e-15 + O2 1.175e-15 1.175e-15 -14.930 -14.930 0.000 31.77 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 69 atm) - CH4(g) -17.85 -20.85 -3.00 CH4 + CH4(g) -102.96 -105.96 -3.00 CH4 CO2(g) 1.70 -0.05 -1.75 CO2 Pressure 69.2 atm, phi 0.724 - H2(g) -10.59 -13.76 -3.17 H2 + H2(g) -31.87 -35.04 -3.17 H2 H2O(g) -0.90 -0.01 0.90 H2O Pressure 0.2 atm, phi 0.514 - O2(g) -54.42 -57.48 -3.07 O2 + O2(g) -11.86 -14.93 -3.07 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3406,15 +3407,15 @@ H2O(g) -0.56 2.762e-01 0.456 1.427e-02 1.774e-02 3.477e-03 ----------------------------Description of solution---------------------------- pH = 3.141 Charge balance - pe = 1.995 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 380 + pe = 12.654 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 359 Density (g/cm³) = 0.99985 Volume (L) = 1.04438 - Viscosity (mPa s) = 0.54830 + Viscosity (mPa s) = 0.54831 Activity of water = 0.983 - Ionic strength (mol/kgw) = 7.455e-04 + Ionic strength (mol/kgw) = 7.453e-04 Mass of water (kg) = 9.997e-01 - Total alkalinity (eq/kg) = 1.220e-09 + Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.013e+00 Temperature (°C) = 50.00 Pressure (atm) = 77.91 @@ -3429,30 +3430,30 @@ H2O(g) -0.56 2.762e-01 0.456 1.427e-02 1.774e-02 3.477e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.455e-04 7.228e-04 -3.128 -3.141 -0.013 0.00 - OH- 8.201e-11 7.939e-11 -10.086 -10.100 -0.014 -3.89 + H+ 7.453e-04 7.226e-04 -3.128 -3.141 -0.013 0.00 + OH- 8.202e-11 7.941e-11 -10.086 -10.100 -0.014 -3.89 H2O 5.551e+01 9.833e-01 1.744 -0.007 0.000 18.17 -C(-4) 1.000e-20 - CH4 1.000e-20 1.000e-20 -20.000 -20.000 0.000 37.38 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -105.271 -105.271 0.000 37.38 C(4) 1.013e+00 CO2 9.448e-01 9.449e-01 -0.025 -0.025 0.000 35.58 (CO2)2 3.351e-02 3.352e-02 -1.475 -1.475 0.000 71.15 - HCO3- 7.455e-04 7.221e-04 -3.128 -3.141 -0.014 25.74 - CO3-2 8.242e-11 7.255e-11 -10.084 -10.139 -0.055 -2.38 -H(0) 5.526e-14 - H2 2.763e-14 2.763e-14 -13.559 -13.559 0.000 28.55 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -57.900 -57.900 0.000 31.75 + HCO3- 7.453e-04 7.219e-04 -3.128 -3.142 -0.014 25.86 + CO3-2 8.247e-11 7.259e-11 -10.084 -10.139 -0.055 -2.50 +H(0) 2.659e-35 + H2 1.330e-35 1.330e-35 -34.876 -34.876 0.000 28.55 +O(0) 1.088e-15 + O2 5.440e-16 5.441e-16 -15.264 -15.264 0.000 31.75 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 78 atm) - CH4(g) -16.99 -20.00 -3.01 CH4 + CH4(g) -102.26 -105.27 -3.01 CH4 CO2(g) 1.73 -0.02 -1.76 CO2 Pressure 77.6 atm, phi 0.693 - H2(g) -10.39 -13.56 -3.17 H2 + H2(g) -31.70 -34.88 -3.17 H2 H2O(g) -0.90 -0.01 0.89 H2O Pressure 0.3 atm, phi 0.456 - O2(g) -54.83 -57.90 -3.07 O2 + O2(g) -12.19 -15.26 -3.07 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3501,21 +3502,21 @@ H2O(g) -0.51 3.107e-01 0.407 1.774e-02 2.186e-02 4.119e-03 ----------------------------Description of solution---------------------------- pH = 3.131 Charge balance - pe = 1.992 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 389 + pe = 2.402 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 367 Density (g/cm³) = 1.00049 Volume (L) = 1.04551 - Viscosity (mPa s) = 0.54845 + Viscosity (mPa s) = 0.54846 Activity of water = 0.983 - Ionic strength (mol/kgw) = 7.627e-04 + Ionic strength (mol/kgw) = 7.626e-04 Mass of water (kg) = 9.996e-01 - Total alkalinity (eq/kg) = 1.220e-09 + Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.055e+00 Temperature (°C) = 50.00 Pressure (atm) = 84.81 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 31 + Iterations = 43 Total H = 1.109687e+02 Total O = 5.759384e+01 @@ -3524,30 +3525,30 @@ H2O(g) -0.51 3.107e-01 0.407 1.774e-02 2.186e-02 4.119e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.627e-04 7.393e-04 -3.118 -3.131 -0.014 0.00 - OH- 8.061e-11 7.801e-11 -10.094 -10.108 -0.014 -3.90 + H+ 7.626e-04 7.391e-04 -3.118 -3.131 -0.014 0.00 + OH- 8.063e-11 7.803e-11 -10.094 -10.108 -0.014 -3.90 H2O 5.551e+01 9.827e-01 1.744 -0.008 0.000 18.17 -C(-4) 1.303e-20 - CH4 1.303e-20 1.303e-20 -19.885 -19.885 0.000 37.38 +C(-4) 6.907e-24 + CH4 6.907e-24 6.908e-24 -23.161 -23.161 0.000 37.38 C(4) 1.055e+00 CO2 9.820e-01 9.821e-01 -0.008 -0.008 0.000 35.57 (CO2)2 3.620e-02 3.621e-02 -1.441 -1.441 0.000 71.14 - HCO3- 7.627e-04 7.385e-04 -3.118 -3.132 -0.014 25.76 - CO3-2 8.312e-11 7.306e-11 -10.080 -10.136 -0.056 -2.31 -H(0) 5.816e-14 - H2 2.908e-14 2.909e-14 -13.536 -13.536 0.000 28.55 + HCO3- 7.626e-04 7.384e-04 -3.118 -3.132 -0.014 25.88 + CO3-2 8.319e-11 7.312e-11 -10.080 -10.136 -0.056 -2.44 +H(0) 8.826e-15 + H2 4.413e-15 4.414e-15 -14.355 -14.355 0.000 28.55 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -57.951 -57.951 0.000 31.74 + O2 0.000e+00 0.000e+00 -56.313 -56.313 0.000 31.74 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 85 atm) - CH4(g) -16.87 -19.89 -3.01 CH4 + CH4(g) -20.15 -23.16 -3.01 CH4 CO2(g) 1.75 -0.01 -1.76 CO2 Pressure 84.5 atm, phi 0.668 - H2(g) -10.36 -13.54 -3.18 H2 + H2(g) -11.18 -14.36 -3.18 H2 H2O(g) -0.90 -0.01 0.89 H2O Pressure 0.3 atm, phi 0.407 - O2(g) -54.88 -57.95 -3.07 O2 + O2(g) -53.24 -56.31 -3.07 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3595,22 +3596,22 @@ H2O(g) -0.46 3.475e-01 0.365 2.186e-02 2.666e-02 4.799e-03 ----------------------------Description of solution---------------------------- - pH = 3.124 Charge balance - pe = 2.495 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 395 + pH = 3.125 Charge balance + pe = 12.650 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 372 Density (g/cm³) = 1.00098 Volume (L) = 1.04621 - Viscosity (mPa s) = 0.54857 + Viscosity (mPa s) = 0.54858 Activity of water = 0.982 - Ionic strength (mol/kgw) = 7.749e-04 + Ionic strength (mol/kgw) = 7.747e-04 Mass of water (kg) = 9.995e-01 - Total alkalinity (eq/kg) = 1.220e-09 + Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.085e+00 Temperature (°C) = 50.00 Pressure (atm) = 90.49 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 34 + Iterations = 54 Total H = 1.109591e+02 Total O = 5.764790e+01 @@ -3619,30 +3620,30 @@ H2O(g) -0.46 3.475e-01 0.365 2.186e-02 2.666e-02 4.799e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.749e-04 7.509e-04 -3.111 -3.124 -0.014 0.00 - OH- 7.972e-11 7.713e-11 -10.098 -10.113 -0.014 -3.90 + H+ 7.747e-04 7.507e-04 -3.111 -3.125 -0.014 0.00 + OH- 7.974e-11 7.715e-11 -10.098 -10.113 -0.014 -3.90 H2O 5.551e+01 9.822e-01 1.744 -0.008 0.000 18.16 -C(-4) 1.431e-24 - CH4 1.431e-24 1.431e-24 -23.844 -23.844 0.000 37.38 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -105.082 -105.082 0.000 37.38 C(4) 1.085e+00 CO2 1.008e+00 1.008e+00 0.003 0.003 0.000 35.56 (CO2)2 3.812e-02 3.813e-02 -1.419 -1.419 0.000 71.12 - HCO3- 7.749e-04 7.502e-04 -3.111 -3.125 -0.014 25.77 - CO3-2 8.369e-11 7.349e-11 -10.077 -10.134 -0.056 -2.26 -H(0) 5.891e-15 - H2 2.945e-15 2.946e-15 -14.531 -14.531 0.000 28.54 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -55.967 -55.967 0.000 31.72 + HCO3- 7.747e-04 7.500e-04 -3.111 -3.125 -0.014 25.90 + CO3-2 8.376e-11 7.356e-11 -10.077 -10.133 -0.056 -2.39 +H(0) 2.889e-35 + H2 1.445e-35 1.445e-35 -34.840 -34.840 0.000 28.54 +O(0) 8.968e-16 + O2 4.484e-16 4.485e-16 -15.348 -15.348 0.000 31.72 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 90 atm) - CH4(g) -20.83 -23.84 -3.01 CH4 + CH4(g) -102.07 -105.08 -3.01 CH4 CO2(g) 1.77 0.00 -1.76 CO2 Pressure 90.1 atm, phi 0.648 - H2(g) -11.35 -14.53 -3.18 H2 + H2(g) -31.66 -34.84 -3.18 H2 H2O(g) -0.90 -0.01 0.89 H2O Pressure 0.3 atm, phi 0.365 - O2(g) -52.89 -55.97 -3.08 O2 + O2(g) -12.27 -15.35 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3690,22 +3691,22 @@ H2O(g) -0.41 3.869e-01 0.329 2.666e-02 3.217e-02 5.510e-03 ----------------------------Description of solution---------------------------- - pH = 3.119 Charge balance - pe = 12.633 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 399 + pH = 3.120 Charge balance + pe = 12.901 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 376 Density (g/cm³) = 1.00135 Volume (L) = 1.04665 - Viscosity (mPa s) = 0.54867 + Viscosity (mPa s) = 0.54868 Activity of water = 0.982 - Ionic strength (mol/kgw) = 7.840e-04 + Ionic strength (mol/kgw) = 7.838e-04 Mass of water (kg) = 9.994e-01 - Total alkalinity (eq/kg) = 1.220e-09 + Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.106e+00 Temperature (°C) = 50.00 Pressure (atm) = 95.32 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 45 + Iterations = 34 Total H = 1.109481e+02 Total O = 5.768491e+01 @@ -3714,30 +3715,30 @@ H2O(g) -0.41 3.869e-01 0.329 2.666e-02 3.217e-02 5.510e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.840e-04 7.596e-04 -3.106 -3.119 -0.014 0.00 - OH- 7.912e-11 7.653e-11 -10.102 -10.116 -0.014 -3.91 + H+ 7.838e-04 7.594e-04 -3.106 -3.120 -0.014 0.00 + OH- 7.914e-11 7.655e-11 -10.102 -10.116 -0.014 -3.91 H2O 5.551e+01 9.819e-01 1.744 -0.008 0.000 18.16 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -104.901 -104.901 0.000 37.39 + CH4 0.000e+00 0.000e+00 -107.050 -107.050 0.000 37.39 C(4) 1.106e+00 CO2 1.026e+00 1.026e+00 0.011 0.011 0.000 35.56 (CO2)2 3.954e-02 3.955e-02 -1.403 -1.403 0.000 71.11 - HCO3- 7.840e-04 7.588e-04 -3.106 -3.120 -0.014 25.77 - CO3-2 8.416e-11 7.386e-11 -10.075 -10.132 -0.057 -2.21 -H(0) 3.180e-35 - H2 1.590e-35 1.590e-35 -34.799 -34.799 0.000 28.54 -O(0) 7.327e-16 - O2 3.664e-16 3.664e-16 -15.436 -15.436 0.000 31.71 + HCO3- 7.838e-04 7.586e-04 -3.106 -3.120 -0.014 25.92 + CO3-2 8.424e-11 7.393e-11 -10.074 -10.131 -0.057 -2.34 +H(0) 9.229e-36 + H2 4.615e-36 4.615e-36 -35.336 -35.336 0.000 28.54 +O(0) 8.699e-15 + O2 4.350e-15 4.351e-15 -14.362 -14.361 0.000 31.71 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 95 atm) - CH4(g) -101.88 -104.90 -3.02 CH4 + CH4(g) -104.03 -107.05 -3.02 CH4 CO2(g) 1.78 0.01 -1.77 CO2 Pressure 94.9 atm, phi 0.630 - H2(g) -31.62 -34.80 -3.18 H2 + H2(g) -32.16 -35.34 -3.18 H2 H2O(g) -0.90 -0.01 0.89 H2O Pressure 0.4 atm, phi 0.329 - O2(g) -12.36 -15.44 -3.08 O2 + O2(g) -11.28 -14.36 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3785,22 +3786,22 @@ H2O(g) -0.37 4.298e-01 0.297 3.217e-02 3.841e-02 6.243e-03 ----------------------------Description of solution---------------------------- - pH = 3.115 Charge balance - pe = 12.589 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 403 + pH = 3.116 Charge balance + pe = 12.991 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 379 Density (g/cm³) = 1.00168 Volume (L) = 1.04693 Viscosity (mPa s) = 0.54877 Activity of water = 0.982 - Ionic strength (mol/kgw) = 7.913e-04 + Ionic strength (mol/kgw) = 7.911e-04 Mass of water (kg) = 9.993e-01 - Total alkalinity (eq/kg) = 1.220e-09 + Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.123e+00 Temperature (°C) = 50.00 Pressure (atm) = 99.75 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 38 + Iterations = 34 Total H = 1.109356e+02 Total O = 5.771184e+01 @@ -3809,30 +3810,30 @@ H2O(g) -0.37 4.298e-01 0.297 3.217e-02 3.841e-02 6.243e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.913e-04 7.666e-04 -3.102 -3.115 -0.014 0.00 - OH- 7.867e-11 7.609e-11 -10.104 -10.119 -0.014 -3.91 + H+ 7.911e-04 7.664e-04 -3.102 -3.116 -0.014 0.00 + OH- 7.869e-11 7.611e-11 -10.104 -10.119 -0.014 -3.91 H2O 5.551e+01 9.816e-01 1.744 -0.008 0.000 18.16 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -104.514 -104.514 0.000 37.39 + CH4 0.000e+00 0.000e+00 -107.730 -107.730 0.000 37.39 C(4) 1.123e+00 CO2 1.041e+00 1.041e+00 0.017 0.017 0.000 35.55 (CO2)2 4.066e-02 4.067e-02 -1.391 -1.391 0.000 71.10 - HCO3- 7.913e-04 7.658e-04 -3.102 -3.116 -0.014 25.78 - CO3-2 8.459e-11 7.419e-11 -10.073 -10.130 -0.057 -2.16 -H(0) 3.946e-35 - H2 1.973e-35 1.973e-35 -34.705 -34.705 0.000 28.54 -O(0) 4.714e-16 - O2 2.357e-16 2.358e-16 -15.628 -15.628 0.000 31.70 + HCO3- 7.911e-04 7.656e-04 -3.102 -3.116 -0.014 25.94 + CO3-2 8.468e-11 7.427e-11 -10.072 -10.129 -0.057 -2.30 +H(0) 6.199e-36 + H2 3.100e-36 3.100e-36 -35.509 -35.509 0.000 28.54 +O(0) 1.910e-14 + O2 9.552e-15 9.553e-15 -14.020 -14.020 0.000 31.70 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 100 atm) - CH4(g) -101.49 -104.51 -3.02 CH4 + CH4(g) -104.71 -107.73 -3.02 CH4 CO2(g) 1.79 0.02 -1.77 CO2 Pressure 99.3 atm, phi 0.615 - H2(g) -31.52 -34.70 -3.18 H2 + H2(g) -32.33 -35.51 -3.18 H2 H2O(g) -0.89 -0.01 0.89 H2O Pressure 0.4 atm, phi 0.297 - O2(g) -12.55 -15.63 -3.08 O2 + O2(g) -10.94 -14.02 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3881,13 +3882,13 @@ H2O(g) -0.32 4.775e-01 0.268 3.841e-02 4.540e-02 6.987e-03 ----------------------------Description of solution---------------------------- pH = 3.112 Charge balance - pe = 2.168 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 406 + pe = 12.971 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 382 Density (g/cm³) = 1.00199 Volume (L) = 1.04712 - Viscosity (mPa s) = 0.54886 + Viscosity (mPa s) = 0.54887 Activity of water = 0.981 - Ionic strength (mol/kgw) = 7.979e-04 + Ionic strength (mol/kgw) = 7.977e-04 Mass of water (kg) = 9.992e-01 Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.137e+00 @@ -3895,7 +3896,7 @@ H2O(g) -0.32 4.775e-01 0.268 3.841e-02 4.540e-02 6.987e-03 Pressure (atm) = 104.21 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 42 + Iterations = 34 Total H = 1.109216e+02 Total O = 5.773357e+01 @@ -3904,30 +3905,30 @@ H2O(g) -0.32 4.775e-01 0.268 3.841e-02 4.540e-02 6.987e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.979e-04 7.729e-04 -3.098 -3.112 -0.014 0.00 - OH- 7.831e-11 7.573e-11 -10.106 -10.121 -0.015 -3.92 + H+ 7.977e-04 7.726e-04 -3.098 -3.112 -0.014 0.00 + OH- 7.834e-11 7.576e-11 -10.106 -10.121 -0.015 -3.92 H2O 5.551e+01 9.814e-01 1.744 -0.008 0.000 18.15 -C(-4) 7.726e-22 - CH4 7.726e-22 7.728e-22 -21.112 -21.112 0.000 37.39 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -107.544 -107.544 0.000 37.39 C(4) 1.137e+00 CO2 1.053e+00 1.053e+00 0.023 0.023 0.000 35.55 (CO2)2 4.165e-02 4.166e-02 -1.380 -1.380 0.000 71.09 - HCO3- 7.979e-04 7.721e-04 -3.098 -3.112 -0.014 25.79 - CO3-2 8.501e-11 7.453e-11 -10.071 -10.128 -0.057 -2.12 -H(0) 2.780e-14 - H2 1.390e-14 1.390e-14 -13.857 -13.857 0.000 28.54 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -57.327 -57.327 0.000 31.69 + HCO3- 7.977e-04 7.718e-04 -3.098 -3.112 -0.014 25.96 + CO3-2 8.511e-11 7.462e-11 -10.070 -10.127 -0.057 -2.26 +H(0) 6.854e-36 + H2 3.427e-36 3.428e-36 -35.465 -35.465 0.000 28.54 +O(0) 1.548e-14 + O2 7.742e-15 7.744e-15 -14.111 -14.111 0.000 31.69 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 104 atm) - CH4(g) -18.09 -21.11 -3.02 CH4 + CH4(g) -104.52 -107.54 -3.02 CH4 CO2(g) 1.79 0.02 -1.77 CO2 Pressure 103.7 atm, phi 0.599 - H2(g) -10.67 -13.86 -3.18 H2 + H2(g) -32.28 -35.47 -3.18 H2 H2O(g) -0.89 -0.01 0.89 H2O Pressure 0.5 atm, phi 0.268 - O2(g) -54.24 -57.33 -3.08 O2 + O2(g) -11.03 -14.11 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3975,14 +3976,14 @@ H2O(g) -0.27 5.320e-01 0.241 4.540e-02 5.313e-02 7.732e-03 ----------------------------Description of solution---------------------------- - pH = 3.108 Charge balance - pe = 2.138 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 409 + pH = 3.109 Charge balance + pe = 12.832 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 385 Density (g/cm³) = 1.00231 Volume (L) = 1.04725 Viscosity (mPa s) = 0.54897 Activity of water = 0.981 - Ionic strength (mol/kgw) = 8.045e-04 + Ionic strength (mol/kgw) = 8.043e-04 Mass of water (kg) = 9.990e-01 Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.151e+00 @@ -3990,7 +3991,7 @@ H2O(g) -0.27 5.320e-01 0.241 4.540e-02 5.313e-02 7.732e-03 Pressure (atm) = 109.16 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 33 + Iterations = 37 Total H = 1.109062e+02 Total O = 5.775348e+01 @@ -3999,30 +4000,30 @@ H2O(g) -0.27 5.320e-01 0.241 4.540e-02 5.313e-02 7.732e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.045e-04 7.792e-04 -3.094 -3.108 -0.014 0.00 - OH- 7.799e-11 7.541e-11 -10.108 -10.123 -0.015 -3.92 + H+ 8.043e-04 7.789e-04 -3.095 -3.109 -0.014 0.00 + OH- 7.802e-11 7.544e-11 -10.108 -10.122 -0.015 -3.92 H2O 5.551e+01 9.811e-01 1.744 -0.008 0.000 18.15 -C(-4) 1.432e-21 - CH4 1.432e-21 1.433e-21 -20.844 -20.844 0.000 37.39 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -106.401 -106.401 0.000 37.39 C(4) 1.151e+00 CO2 1.065e+00 1.065e+00 0.027 0.028 0.000 35.54 (CO2)2 4.261e-02 4.262e-02 -1.371 -1.370 0.000 71.08 - HCO3- 8.045e-04 7.784e-04 -3.094 -3.109 -0.014 25.80 - CO3-2 8.549e-11 7.491e-11 -10.068 -10.125 -0.057 -2.07 -H(0) 3.223e-14 - H2 1.611e-14 1.612e-14 -13.793 -13.793 0.000 28.54 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -57.460 -57.460 0.000 31.68 + HCO3- 8.043e-04 7.781e-04 -3.095 -3.109 -0.014 25.97 + CO3-2 8.560e-11 7.500e-11 -10.068 -10.125 -0.057 -2.22 +H(0) 1.315e-35 + H2 6.574e-36 6.575e-36 -35.182 -35.182 0.000 28.54 +O(0) 4.165e-15 + O2 2.083e-15 2.083e-15 -14.681 -14.681 0.000 31.68 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 109 atm) - CH4(g) -17.82 -20.84 -3.03 CH4 + CH4(g) -103.38 -106.40 -3.03 CH4 CO2(g) 1.80 0.03 -1.77 CO2 Pressure 108.6 atm, phi 0.583 - H2(g) -10.61 -13.79 -3.19 H2 + H2(g) -32.00 -35.18 -3.19 H2 H2O(g) -0.89 -0.01 0.88 H2O Pressure 0.5 atm, phi 0.241 - O2(g) -54.37 -57.46 -3.09 O2 + O2(g) -11.60 -14.68 -3.09 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4070,22 +4071,22 @@ H2O(g) -0.22 5.960e-01 0.216 5.313e-02 6.160e-02 8.464e-03 ----------------------------Description of solution---------------------------- - pH = 3.104 Charge balance - pe = 2.119 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 413 + pH = 3.105 Charge balance + pe = 12.852 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 388 Density (g/cm³) = 1.00268 Volume (L) = 1.04734 - Viscosity (mPa s) = 0.54909 + Viscosity (mPa s) = 0.54910 Activity of water = 0.981 - Ionic strength (mol/kgw) = 8.118e-04 + Ionic strength (mol/kgw) = 8.115e-04 Mass of water (kg) = 9.989e-01 - Total alkalinity (eq/kg) = 1.221e-09 + Total alkalinity (eq/kg) = 1.222e-09 Total CO2 (mol/kg) = 1.166e+00 Temperature (°C) = 50.00 Pressure (atm) = 115.10 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 30 + Iterations = 29 Total H = 1.108892e+02 Total O = 5.777398e+01 @@ -4094,30 +4095,30 @@ H2O(g) -0.22 5.960e-01 0.216 5.313e-02 6.160e-02 8.464e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.118e-04 7.861e-04 -3.091 -3.104 -0.014 0.00 - OH- 7.768e-11 7.510e-11 -10.110 -10.124 -0.015 -3.93 + H+ 8.115e-04 7.858e-04 -3.091 -3.105 -0.014 0.00 + OH- 7.771e-11 7.513e-11 -10.110 -10.124 -0.015 -3.93 H2O 5.551e+01 9.809e-01 1.744 -0.008 0.000 18.14 -C(-4) 2.169e-21 - CH4 2.169e-21 2.169e-21 -20.664 -20.664 0.000 37.40 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -106.526 -106.526 0.000 37.40 C(4) 1.166e+00 CO2 1.078e+00 1.078e+00 0.033 0.033 0.000 35.54 (CO2)2 4.362e-02 4.363e-02 -1.360 -1.360 0.000 71.07 - HCO3- 8.118e-04 7.853e-04 -3.091 -3.105 -0.014 25.81 - CO3-2 8.605e-11 7.536e-11 -10.065 -10.123 -0.058 -2.01 -H(0) 3.549e-14 - H2 1.774e-14 1.775e-14 -13.751 -13.751 0.000 28.53 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -57.549 -57.549 0.000 31.67 + HCO3- 8.115e-04 7.850e-04 -3.091 -3.105 -0.014 25.99 + CO3-2 8.617e-11 7.547e-11 -10.065 -10.122 -0.058 -2.16 +H(0) 1.215e-35 + H2 6.074e-36 6.075e-36 -35.217 -35.216 0.000 28.53 +O(0) 4.819e-15 + O2 2.410e-15 2.410e-15 -14.618 -14.618 0.000 31.67 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 115 atm) - CH4(g) -17.63 -20.66 -3.03 CH4 + CH4(g) -103.50 -106.53 -3.03 CH4 CO2(g) 1.81 0.03 -1.78 CO2 Pressure 114.5 atm, phi 0.564 - H2(g) -10.56 -13.75 -3.19 H2 + H2(g) -32.03 -35.22 -3.19 H2 H2O(g) -0.89 -0.01 0.88 H2O Pressure 0.6 atm, phi 0.216 - O2(g) -54.46 -57.55 -3.09 O2 + O2(g) -11.53 -14.62 -3.09 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4166,19 +4167,19 @@ H2O(g) -0.17 6.730e-01 0.192 6.160e-02 7.077e-02 9.169e-03 ----------------------------Description of solution---------------------------- pH = 3.100 Charge balance - pe = 2.015 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 417 + pe = 12.941 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 391 Density (g/cm³) = 1.00313 Volume (L) = 1.04741 - Viscosity (mPa s) = 0.54925 + Viscosity (mPa s) = 0.54926 Activity of water = 0.981 - Ionic strength (mol/kgw) = 8.202e-04 + Ionic strength (mol/kgw) = 8.198e-04 Mass of water (kg) = 9.987e-01 Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.182e+00 Temperature (°C) = 50.00 Pressure (atm) = 122.58 - Electrical balance (eq) = -1.219e-09 + Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 25 Total H = 1.108709e+02 @@ -4189,30 +4190,30 @@ H2O(g) -0.17 6.730e-01 0.192 6.160e-02 7.077e-02 9.169e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.202e-04 7.942e-04 -3.086 -3.100 -0.014 0.00 - OH- 7.736e-11 7.479e-11 -10.111 -10.126 -0.015 -3.93 + H+ 8.198e-04 7.938e-04 -3.086 -3.100 -0.014 0.00 + OH- 7.740e-11 7.482e-11 -10.111 -10.126 -0.015 -3.93 H2O 5.551e+01 9.806e-01 1.744 -0.008 0.000 18.14 -C(-4) 1.613e-20 - CH4 1.613e-20 1.613e-20 -19.792 -19.792 0.000 37.40 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -107.201 -107.201 0.000 37.40 C(4) 1.182e+00 CO2 1.092e+00 1.092e+00 0.038 0.038 0.000 35.53 (CO2)2 4.476e-02 4.477e-02 -1.349 -1.349 0.000 71.05 - HCO3- 8.202e-04 7.933e-04 -3.086 -3.101 -0.014 25.82 - CO3-2 8.675e-11 7.593e-11 -10.062 -10.120 -0.058 -1.94 -H(0) 5.809e-14 - H2 2.905e-14 2.905e-14 -13.537 -13.537 0.000 28.53 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -57.984 -57.984 0.000 31.65 + HCO3- 8.198e-04 7.930e-04 -3.086 -3.101 -0.014 26.02 + CO3-2 8.689e-11 7.606e-11 -10.061 -10.119 -0.058 -2.10 +H(0) 8.166e-36 + H2 4.083e-36 4.084e-36 -35.389 -35.389 0.000 28.53 +O(0) 1.051e-14 + O2 5.253e-15 5.254e-15 -14.280 -14.280 0.000 31.65 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 123 atm) - CH4(g) -16.76 -19.79 -3.03 CH4 + CH4(g) -104.17 -107.20 -3.03 CH4 CO2(g) 1.82 0.04 -1.78 CO2 Pressure 121.9 atm, phi 0.542 - H2(g) -10.34 -13.54 -3.19 H2 + H2(g) -32.20 -35.39 -3.19 H2 H2O(g) -0.89 -0.01 0.88 H2O Pressure 0.7 atm, phi 0.192 - O2(g) -54.89 -57.98 -3.09 O2 + O2(g) -11.19 -14.28 -3.09 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4261,19 +4262,19 @@ H2O(g) -0.12 7.673e-01 0.170 7.077e-02 8.060e-02 9.828e-03 ----------------------------Description of solution---------------------------- pH = 3.095 Charge balance - pe = 1.945 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 422 + pe = 13.004 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 396 Density (g/cm³) = 1.00368 Volume (L) = 1.04745 Viscosity (mPa s) = 0.54946 Activity of water = 0.980 - Ionic strength (mol/kgw) = 8.302e-04 + Ionic strength (mol/kgw) = 8.298e-04 Mass of water (kg) = 9.985e-01 - Total alkalinity (eq/kg) = 1.221e-09 + Total alkalinity (eq/kg) = 1.222e-09 Total CO2 (mol/kg) = 1.201e+00 Temperature (°C) = 50.00 Pressure (atm) = 132.16 - Electrical balance (eq) = -1.219e-09 + Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 22 Total H = 1.108512e+02 @@ -4284,30 +4285,30 @@ H2O(g) -0.12 7.673e-01 0.170 7.077e-02 8.060e-02 9.828e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.302e-04 8.037e-04 -3.081 -3.095 -0.014 0.00 - OH- 7.705e-11 7.447e-11 -10.113 -10.128 -0.015 -3.94 + H+ 8.298e-04 8.033e-04 -3.081 -3.095 -0.014 0.00 + OH- 7.709e-11 7.451e-11 -10.113 -10.128 -0.015 -3.94 H2O 5.551e+01 9.804e-01 1.744 -0.009 0.000 18.13 -C(-4) 6.483e-20 - CH4 6.483e-20 6.484e-20 -19.188 -19.188 0.000 37.41 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -107.663 -107.662 0.000 37.41 C(4) 1.201e+00 CO2 1.108e+00 1.108e+00 0.044 0.044 0.000 35.52 (CO2)2 4.606e-02 4.607e-02 -1.337 -1.337 0.000 71.03 - HCO3- 8.302e-04 8.029e-04 -3.081 -3.095 -0.015 25.84 - CO3-2 8.766e-11 7.667e-11 -10.057 -10.115 -0.058 -1.85 -H(0) 8.139e-14 - H2 4.070e-14 4.070e-14 -13.390 -13.390 0.000 28.53 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -58.285 -58.285 0.000 31.63 + HCO3- 8.298e-04 8.024e-04 -3.081 -3.096 -0.015 26.06 + CO3-2 8.782e-11 7.681e-11 -10.056 -10.115 -0.058 -2.01 +H(0) 6.194e-36 + H2 3.097e-36 3.098e-36 -35.509 -35.509 0.000 28.53 +O(0) 1.790e-14 + O2 8.951e-15 8.953e-15 -14.048 -14.048 0.000 31.63 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 132 atm) - CH4(g) -16.15 -19.19 -3.04 CH4 + CH4(g) -104.62 -107.66 -3.04 CH4 CO2(g) 1.83 0.04 -1.79 CO2 Pressure 131.4 atm, phi 0.516 - H2(g) -10.19 -13.39 -3.20 H2 + H2(g) -32.31 -35.51 -3.20 H2 H2O(g) -0.89 -0.01 0.88 H2O Pressure 0.8 atm, phi 0.170 - O2(g) -55.19 -58.29 -3.10 O2 + O2(g) -10.95 -14.05 -3.10 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4356,19 +4357,19 @@ H2O(g) -0.05 8.845e-01 0.148 8.060e-02 9.102e-02 1.042e-02 ----------------------------Description of solution---------------------------- pH = 3.089 Charge balance - pe = 1.987 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 428 + pe = 13.053 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 401 Density (g/cm³) = 1.00438 - Volume (L) = 1.04744 + Volume (L) = 1.04745 Viscosity (mPa s) = 0.54972 Activity of water = 0.980 - Ionic strength (mol/kgw) = 8.423e-04 + Ionic strength (mol/kgw) = 8.417e-04 Mass of water (kg) = 9.983e-01 - Total alkalinity (eq/kg) = 1.221e-09 + Total alkalinity (eq/kg) = 1.222e-09 Total CO2 (mol/kg) = 1.221e+00 Temperature (°C) = 50.00 Pressure (atm) = 144.52 - Electrical balance (eq) = -1.219e-09 + Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 44 Total H = 1.108304e+02 @@ -4379,30 +4380,30 @@ H2O(g) -0.05 8.845e-01 0.148 8.060e-02 9.102e-02 1.042e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.423e-04 8.152e-04 -3.075 -3.089 -0.014 0.00 - OH- 7.674e-11 7.415e-11 -10.115 -10.130 -0.015 -3.96 + H+ 8.417e-04 8.147e-04 -3.075 -3.089 -0.014 0.00 + OH- 7.679e-11 7.420e-11 -10.115 -10.130 -0.015 -3.96 H2O 5.551e+01 9.800e-01 1.744 -0.009 0.000 18.12 -C(-4) 3.329e-20 - CH4 3.329e-20 3.330e-20 -19.478 -19.478 0.000 37.41 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -108.005 -108.005 0.000 37.41 C(4) 1.221e+00 CO2 1.125e+00 1.126e+00 0.051 0.051 0.000 35.50 (CO2)2 4.756e-02 4.757e-02 -1.323 -1.323 0.000 71.01 - HCO3- 8.423e-04 8.144e-04 -3.075 -3.089 -0.015 25.86 - CO3-2 8.882e-11 7.762e-11 -10.051 -10.110 -0.059 -1.73 -H(0) 6.801e-14 - H2 3.401e-14 3.401e-14 -13.468 -13.468 0.000 28.52 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -58.140 -58.140 0.000 31.61 + HCO3- 8.417e-04 8.138e-04 -3.075 -3.089 -0.015 26.10 + CO3-2 8.902e-11 7.780e-11 -10.051 -10.109 -0.059 -1.91 +H(0) 5.019e-36 + H2 2.510e-36 2.510e-36 -35.600 -35.600 0.000 28.52 +O(0) 2.659e-14 + O2 1.330e-14 1.330e-14 -13.876 -13.876 0.000 31.61 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 145 atm) - CH4(g) -16.43 -19.48 -3.05 CH4 + CH4(g) -104.96 -108.01 -3.05 CH4 CO2(g) 1.85 0.05 -1.79 CO2 Pressure 143.6 atm, phi 0.488 - H2(g) -10.26 -13.47 -3.20 H2 + H2(g) -32.40 -35.60 -3.20 H2 H2O(g) -0.88 -0.01 0.87 H2O Pressure 0.9 atm, phi 0.148 - O2(g) -55.04 -58.14 -3.10 O2 + O2(g) -10.77 -13.88 -3.10 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4450,22 +4451,22 @@ H2O(g) 0.01 1.031e+00 0.129 9.102e-02 1.020e-01 1.094e-02 ----------------------------Description of solution---------------------------- - pH = 3.081 Charge balance - pe = 1.979 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 435 + pH = 3.082 Charge balance + pe = 12.930 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 408 Density (g/cm³) = 1.00524 Volume (L) = 1.04738 Viscosity (mPa s) = 0.55006 Activity of water = 0.980 - Ionic strength (mol/kgw) = 8.568e-04 + Ionic strength (mol/kgw) = 8.561e-04 Mass of water (kg) = 9.981e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.245e+00 Temperature (°C) = 50.00 Pressure (atm) = 160.38 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 42 + Iterations = 43 Total H = 1.108085e+02 Total O = 5.789024e+01 @@ -4474,30 +4475,30 @@ H2O(g) 0.01 1.031e+00 0.129 9.102e-02 1.020e-01 1.094e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.568e-04 8.291e-04 -3.067 -3.081 -0.014 0.00 - OH- 7.645e-11 7.385e-11 -10.117 -10.132 -0.015 -3.97 + H+ 8.561e-04 8.285e-04 -3.067 -3.082 -0.014 0.00 + OH- 7.651e-11 7.391e-11 -10.116 -10.131 -0.015 -3.97 H2O 5.551e+01 9.797e-01 1.744 -0.009 0.000 18.11 -C(-4) 4.372e-20 - CH4 4.372e-20 4.373e-20 -19.359 -19.359 0.000 37.42 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -106.970 -106.970 0.000 37.42 C(4) 1.245e+00 CO2 1.146e+00 1.146e+00 0.059 0.059 0.000 35.49 (CO2)2 4.929e-02 4.930e-02 -1.307 -1.307 0.000 70.97 - HCO3- 8.568e-04 8.282e-04 -3.067 -3.082 -0.015 25.88 - CO3-2 9.032e-11 7.885e-11 -10.044 -10.103 -0.059 -1.58 -H(0) 7.165e-14 - H2 3.582e-14 3.583e-14 -13.446 -13.446 0.000 28.51 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -58.199 -58.199 0.000 31.58 + HCO3- 8.561e-04 8.276e-04 -3.067 -3.082 -0.015 26.16 + CO3-2 9.056e-11 7.907e-11 -10.043 -10.102 -0.059 -1.77 +H(0) 8.964e-36 + H2 4.482e-36 4.483e-36 -35.349 -35.348 0.000 28.51 +O(0) 8.076e-15 + O2 4.038e-15 4.039e-15 -14.394 -14.394 0.000 31.58 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 160 atm) - CH4(g) -16.30 -19.36 -3.06 CH4 + CH4(g) -103.91 -106.97 -3.06 CH4 CO2(g) 1.86 0.06 -1.80 CO2 Pressure 159.3 atm, phi 0.457 - H2(g) -10.23 -13.45 -3.21 H2 + H2(g) -32.14 -35.35 -3.21 H2 H2O(g) -0.88 -0.01 0.87 H2O Pressure 1.0 atm, phi 0.129 - O2(g) -55.09 -58.20 -3.11 O2 + O2(g) -11.28 -14.39 -3.11 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4546,21 +4547,21 @@ H2O(g) 0.08 1.215e+00 0.111 1.020e-01 1.133e-01 1.134e-02 ----------------------------Description of solution---------------------------- pH = 3.073 Charge balance - pe = 1.992 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 444 + pe = 12.959 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 416 Density (g/cm³) = 1.00631 Volume (L) = 1.04724 - Viscosity (mPa s) = 0.55050 + Viscosity (mPa s) = 0.55049 Activity of water = 0.979 - Ionic strength (mol/kgw) = 8.744e-04 + Ionic strength (mol/kgw) = 8.735e-04 Mass of water (kg) = 9.979e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.272e+00 Temperature (°C) = 50.00 Pressure (atm) = 180.60 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 55 + Iterations = 56 Total H = 1.107858e+02 Total O = 5.793238e+01 @@ -4569,30 +4570,30 @@ H2O(g) 0.08 1.215e+00 0.111 1.020e-01 1.133e-01 1.134e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.744e-04 8.460e-04 -3.058 -3.073 -0.014 0.00 - OH- 7.619e-11 7.358e-11 -10.118 -10.133 -0.015 -3.99 + H+ 8.735e-04 8.451e-04 -3.059 -3.073 -0.014 0.00 + OH- 7.627e-11 7.366e-11 -10.118 -10.133 -0.015 -3.99 H2O 5.551e+01 9.792e-01 1.744 -0.009 0.000 18.09 -C(-4) 4.061e-20 - CH4 4.061e-20 4.062e-20 -19.391 -19.391 0.000 37.43 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -107.134 -107.134 0.000 37.43 C(4) 1.272e+00 CO2 1.169e+00 1.169e+00 0.068 0.068 0.000 35.47 (CO2)2 5.130e-02 5.131e-02 -1.290 -1.290 0.000 70.93 - HCO3- 8.744e-04 8.450e-04 -3.058 -3.073 -0.015 25.92 - CO3-2 9.224e-11 8.043e-11 -10.035 -10.095 -0.059 -1.39 -H(0) 6.898e-14 - H2 3.449e-14 3.449e-14 -13.462 -13.462 0.000 28.51 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -58.184 -58.184 0.000 31.53 + HCO3- 8.735e-04 8.441e-04 -3.059 -3.074 -0.015 26.23 + CO3-2 9.255e-11 8.072e-11 -10.034 -10.093 -0.059 -1.59 +H(0) 7.998e-36 + H2 3.999e-36 4.000e-36 -35.398 -35.398 0.000 28.51 +O(0) 9.740e-15 + O2 4.870e-15 4.871e-15 -14.312 -14.312 0.000 31.53 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 181 atm) - CH4(g) -16.32 -19.39 -3.07 CH4 + CH4(g) -104.06 -107.13 -3.07 CH4 CO2(g) 1.88 0.07 -1.82 CO2 Pressure 179.4 atm, phi 0.426 - H2(g) -10.24 -13.46 -3.22 H2 + H2(g) -32.18 -35.40 -3.22 H2 H2O(g) -0.87 -0.01 0.86 H2O Pressure 1.2 atm, phi 0.111 - O2(g) -55.06 -58.18 -3.12 O2 + O2(g) -11.19 -14.31 -3.12 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4640,54 +4641,54 @@ H2O(g) 0.16 1.445e+00 0.095 1.133e-01 1.249e-01 1.161e-02 ----------------------------Description of solution---------------------------- - pH = 3.062 Charge balance - pe = 2.109 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 454 + pH = 3.063 Charge balance + pe = 13.006 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 425 Density (g/cm³) = 1.00763 Volume (L) = 1.04697 - Viscosity (mPa s) = 0.55105 + Viscosity (mPa s) = 0.55104 Activity of water = 0.979 - Ionic strength (mol/kgw) = 8.957e-04 + Ionic strength (mol/kgw) = 8.944e-04 Mass of water (kg) = 9.977e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.303e+00 Temperature (°C) = 50.00 Pressure (atm) = 206.19 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 65 Total H = 1.107626e+02 - Total O = 5.798100e+01 + Total O = 5.798099e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.957e-04 8.662e-04 -3.048 -3.062 -0.015 0.00 - OH- 7.600e-11 7.337e-11 -10.119 -10.134 -0.015 -4.02 + H+ 8.944e-04 8.650e-04 -3.048 -3.063 -0.015 0.00 + OH- 7.611e-11 7.347e-11 -10.119 -10.134 -0.015 -4.02 H2O 5.551e+01 9.787e-01 1.744 -0.009 0.000 18.07 -C(-4) 5.623e-21 - CH4 5.623e-21 5.624e-21 -20.250 -20.250 0.000 37.44 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -107.434 -107.434 0.000 37.44 C(4) 1.303e+00 CO2 1.195e+00 1.195e+00 0.077 0.077 0.000 35.44 (CO2)2 5.359e-02 5.360e-02 -1.271 -1.271 0.000 70.88 - HCO3- 8.957e-04 8.653e-04 -3.048 -3.063 -0.015 25.96 - CO3-2 9.469e-11 8.246e-11 -10.024 -10.084 -0.060 -1.15 -H(0) 4.108e-14 - H2 2.054e-14 2.054e-14 -13.687 -13.687 0.000 28.49 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -57.756 -57.756 0.000 31.48 + HCO3- 8.944e-04 8.641e-04 -3.048 -3.063 -0.015 26.32 + CO3-2 9.511e-11 8.283e-11 -10.022 -10.082 -0.060 -1.38 +H(0) 6.572e-36 + H2 3.286e-36 3.287e-36 -35.483 -35.483 0.000 28.49 +O(0) 1.370e-14 + O2 6.852e-15 6.853e-15 -14.164 -14.164 0.000 31.48 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 206 atm) - CH4(g) -17.16 -20.25 -3.09 CH4 + CH4(g) -104.35 -107.43 -3.09 CH4 CO2(g) 1.91 0.08 -1.83 CO2 Pressure 204.7 atm, phi 0.394 - H2(g) -10.46 -13.69 -3.23 H2 + H2(g) -32.25 -35.48 -3.23 H2 H2O(g) -0.86 -0.01 0.86 H2O Pressure 1.4 atm, phi 0.095 - O2(g) -54.62 -57.76 -3.14 O2 + O2(g) -11.03 -14.16 -3.14 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4735,22 +4736,22 @@ H2O(g) 0.24 1.731e+00 0.081 1.249e-01 1.366e-01 1.171e-02 ----------------------------Description of solution---------------------------- - pH = 3.050 Charge balance - pe = 2.269 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 466 + pH = 3.051 Charge balance + pe = 13.077 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 437 Density (g/cm³) = 1.00924 Volume (L) = 1.04656 - Viscosity (mPa s) = 0.55176 + Viscosity (mPa s) = 0.55174 Activity of water = 0.978 - Ionic strength (mol/kgw) = 9.213e-04 + Ionic strength (mol/kgw) = 9.196e-04 Mass of water (kg) = 9.975e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.337e+00 Temperature (°C) = 50.00 Pressure (atm) = 238.31 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 74 + Iterations = 75 Total H = 1.107392e+02 Total O = 5.803656e+01 @@ -4759,30 +4760,30 @@ H2O(g) 0.24 1.731e+00 0.081 1.249e-01 1.366e-01 1.171e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.213e-04 8.907e-04 -3.036 -3.050 -0.015 0.00 - OH- 7.591e-11 7.326e-11 -10.120 -10.135 -0.015 -4.04 + H+ 9.196e-04 8.890e-04 -3.036 -3.051 -0.015 0.00 + OH- 7.605e-11 7.339e-11 -10.119 -10.134 -0.015 -4.04 H2O 5.551e+01 9.782e-01 1.744 -0.010 0.000 18.05 -C(-4) 3.585e-22 - CH4 3.585e-22 3.586e-22 -21.445 -21.445 0.000 37.46 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -107.915 -107.915 0.000 37.46 C(4) 1.337e+00 CO2 1.223e+00 1.224e+00 0.088 0.088 0.000 35.41 (CO2)2 5.620e-02 5.621e-02 -1.250 -1.250 0.000 70.81 - HCO3- 9.213e-04 8.897e-04 -3.036 -3.051 -0.015 26.01 - CO3-2 9.780e-11 8.502e-11 -10.010 -10.070 -0.061 -0.86 -H(0) 2.005e-14 - H2 1.003e-14 1.003e-14 -13.999 -13.999 0.000 28.48 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -57.161 -57.161 0.000 31.42 + HCO3- 9.196e-04 8.880e-04 -3.036 -3.052 -0.015 26.43 + CO3-2 9.837e-11 8.553e-11 -10.007 -10.068 -0.061 -1.11 +H(0) 4.838e-36 + H2 2.419e-36 2.419e-36 -35.616 -35.616 0.000 28.48 +O(0) 2.372e-14 + O2 1.186e-14 1.186e-14 -13.926 -13.926 0.000 31.42 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 238 atm) - CH4(g) -18.34 -21.45 -3.10 CH4 + CH4(g) -104.81 -107.92 -3.10 CH4 CO2(g) 1.94 0.09 -1.85 CO2 Pressure 236.6 atm, phi 0.365 - H2(g) -10.75 -14.00 -3.25 H2 + H2(g) -32.37 -35.62 -3.25 H2 H2O(g) -0.86 -0.01 0.85 H2O Pressure 1.7 atm, phi 0.081 - O2(g) -54.01 -57.16 -3.15 O2 + O2(g) -10.77 -13.93 -3.15 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4830,20 +4831,20 @@ H2O(g) 0.32 2.086e+00 0.069 1.366e-01 1.482e-01 1.162e-02 ----------------------------Description of solution---------------------------- - pH = 3.036 Charge balance - pe = 2.093 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 481 + pH = 3.037 Charge balance + pe = 13.058 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 451 Density (g/cm³) = 1.01120 Volume (L) = 1.04594 - Viscosity (mPa s) = 0.55265 + Viscosity (mPa s) = 0.55262 Activity of water = 0.978 - Ionic strength (mol/kgw) = 9.522e-04 + Ionic strength (mol/kgw) = 9.498e-04 Mass of water (kg) = 9.973e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.374e+00 Temperature (°C) = 50.00 Pressure (atm) = 278.39 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 86 Total H = 1.107160e+02 @@ -4854,30 +4855,30 @@ H2O(g) 0.32 2.086e+00 0.069 1.366e-01 1.482e-01 1.162e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.522e-04 9.202e-04 -3.021 -3.036 -0.015 0.00 - OH- 7.597e-11 7.328e-11 -10.119 -10.135 -0.016 -4.08 + H+ 9.498e-04 9.178e-04 -3.022 -3.037 -0.015 0.00 + OH- 7.616e-11 7.346e-11 -10.118 -10.134 -0.016 -4.08 H2O 5.551e+01 9.776e-01 1.744 -0.010 0.000 18.02 -C(-4) 1.157e-20 - CH4 1.157e-20 1.158e-20 -19.936 -19.936 0.000 37.48 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -107.667 -107.667 0.000 37.48 C(4) 1.374e+00 CO2 1.255e+00 1.255e+00 0.099 0.099 0.000 35.37 (CO2)2 5.915e-02 5.916e-02 -1.228 -1.228 0.000 70.73 - HCO3- 9.522e-04 9.191e-04 -3.021 -3.037 -0.015 26.08 - CO3-2 1.017e-10 8.828e-11 -9.993 -10.054 -0.062 -0.51 -H(0) 4.614e-14 - H2 2.307e-14 2.308e-14 -13.637 -13.637 0.000 28.46 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -57.919 -57.919 0.000 31.34 + HCO3- 9.498e-04 9.167e-04 -3.022 -3.038 -0.015 26.56 + CO3-2 1.025e-10 8.898e-11 -9.989 -10.051 -0.062 -0.79 +H(0) 5.390e-36 + H2 2.695e-36 2.695e-36 -35.569 -35.569 0.000 28.46 +O(0) 1.765e-14 + O2 8.823e-15 8.825e-15 -14.054 -14.054 0.000 31.34 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 278 atm) - CH4(g) -16.81 -19.94 -3.13 CH4 + CH4(g) -104.54 -107.67 -3.13 CH4 CO2(g) 1.97 0.10 -1.87 CO2 Pressure 276.3 atm, phi 0.338 - H2(g) -10.37 -13.64 -3.27 H2 + H2(g) -32.30 -35.57 -3.27 H2 H2O(g) -0.84 -0.01 0.83 H2O Pressure 2.1 atm, phi 0.069 - O2(g) -54.75 -57.92 -3.17 O2 + O2(g) -10.88 -14.05 -3.17 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4891,18 +4892,6 @@ WARNING: Numerical method failed with this set of convergence parameters. WARNING: Trying smaller step size, pe step size 10, 5 ... -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying increased tolerance 1e-14 ... - Using solution 1. Using gas phase 1. Using temperature 2. @@ -4944,54 +4933,54 @@ H2O(g) 0.40 2.523e+00 0.059 1.482e-01 1.595e-01 1.130e-02 ----------------------------Description of solution---------------------------- - pH = 3.020 Charge balance - pe = 1.050 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 499 + pH = 3.021 Charge balance + pe = 14.519 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 467 Density (g/cm³) = 1.01357 Volume (L) = 1.04507 - Viscosity (mPa s) = 0.55377 + Viscosity (mPa s) = 0.55373 Activity of water = 0.977 - Ionic strength (mol/kgw) = 9.895e-04 + Ionic strength (mol/kgw) = 9.860e-04 Mass of water (kg) = 9.971e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.416e+00 Temperature (°C) = 50.00 Pressure (atm) = 328.12 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 39 (542 overall) + Iterations = 43 (144 overall) Total H = 1.106934e+02 - Total O = 5.816997e+01 + Total O = 5.816996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.895e-04 9.557e-04 -3.005 -3.020 -0.015 0.00 - OH- 7.624e-11 7.349e-11 -10.118 -10.134 -0.016 -4.12 + H+ 9.860e-04 9.524e-04 -3.006 -3.021 -0.015 0.00 + OH- 7.650e-11 7.375e-11 -10.116 -10.132 -0.016 -4.12 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 17.98 -C(-4) 3.320e-12 - CH4 3.320e-12 3.321e-12 -11.479 -11.479 0.000 37.50 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.243 -119.243 0.000 37.50 C(4) 1.416e+00 CO2 1.290e+00 1.290e+00 0.111 0.111 0.000 35.32 (CO2)2 6.246e-02 6.248e-02 -1.204 -1.204 0.000 70.63 - HCO3- 9.895e-04 9.545e-04 -3.005 -3.020 -0.016 26.15 - CO3-2 1.067e-10 9.238e-11 -9.972 -10.034 -0.063 -0.08 -H(0) 5.756e-12 - H2 2.878e-12 2.879e-12 -11.541 -11.541 0.000 28.45 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -62.154 -62.154 0.000 31.25 + HCO3- 9.860e-04 9.512e-04 -3.006 -3.022 -0.016 26.72 + CO3-2 1.078e-10 9.339e-11 -9.967 -10.030 -0.062 -0.39 +H(0) 6.592e-39 + H2 3.296e-39 3.297e-39 -38.482 -38.482 0.000 28.45 +O(0) 1.069e-08 + O2 5.344e-09 5.345e-09 -8.272 -8.272 0.000 31.25 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 328 atm) - CH4(g) -8.32 -11.48 -3.16 CH4 + CH4(g) -116.08 -119.24 -3.16 CH4 CO2(g) 2.01 0.11 -1.90 CO2 Pressure 325.6 atm, phi 0.315 - H2(g) -8.25 -11.54 -3.29 H2 + H2(g) -35.19 -38.48 -3.29 H2 H2O(g) -0.83 -0.01 0.82 H2O Pressure 2.5 atm, phi 0.059 - O2(g) -58.96 -62.15 -3.20 O2 + O2(g) -5.07 -8.27 -3.20 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5046,22 +5035,22 @@ H2O(g) 0.48 3.055e+00 0.050 1.595e-01 1.702e-01 1.071e-02 ----------------------------Description of solution---------------------------- - pH = 3.001 Charge balance - pe = 1.065 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 520 + pH = 3.003 Charge balance + pe = 14.536 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 488 Density (g/cm³) = 1.01643 Volume (L) = 1.04387 - Viscosity (mPa s) = 0.55518 + Viscosity (mPa s) = 0.55513 Activity of water = 0.976 - Ionic strength (mol/kgw) = 1.035e-03 + Ionic strength (mol/kgw) = 1.030e-03 Mass of water (kg) = 9.969e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.461e+00 Temperature (°C) = 50.00 Pressure (atm) = 389.62 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 36 (137 overall) + Iterations = 35 (136 overall) Total H = 1.106719e+02 Total O = 5.824829e+01 @@ -5070,30 +5059,30 @@ H2O(g) 0.48 3.055e+00 0.050 1.595e-01 1.702e-01 1.071e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.035e-03 9.987e-04 -2.985 -3.001 -0.015 0.00 - OH- 7.679e-11 7.398e-11 -10.115 -10.131 -0.016 -4.17 + H+ 1.030e-03 9.938e-04 -2.987 -3.003 -0.015 0.00 + OH- 7.716e-11 7.434e-11 -10.113 -10.129 -0.016 -4.17 H2O 5.551e+01 9.763e-01 1.744 -0.010 0.000 17.94 -C(-4) 3.353e-12 - CH4 3.353e-12 3.354e-12 -11.475 -11.474 0.000 37.52 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.260 -119.260 0.000 37.52 C(4) 1.461e+00 CO2 1.327e+00 1.328e+00 0.123 0.123 0.000 35.26 (CO2)2 6.615e-02 6.616e-02 -1.179 -1.179 0.000 70.51 - HCO3- 1.035e-03 9.974e-04 -2.985 -3.001 -0.016 26.25 - CO3-2 1.130e-10 9.757e-11 -9.947 -10.011 -0.064 0.44 -H(0) 5.483e-12 - H2 2.741e-12 2.742e-12 -11.562 -11.562 0.000 28.42 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -62.165 -62.165 0.000 31.14 + HCO3- 1.030e-03 9.926e-04 -2.987 -3.003 -0.016 26.91 + CO3-2 1.147e-10 9.905e-11 -9.941 -10.004 -0.064 0.08 +H(0) 6.203e-39 + H2 3.102e-39 3.102e-39 -38.508 -38.508 0.000 28.42 +O(0) 1.069e-08 + O2 5.345e-09 5.346e-09 -8.272 -8.272 0.000 31.14 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 390 atm) - CH4(g) -8.28 -11.47 -3.20 CH4 + CH4(g) -116.06 -119.26 -3.20 CH4 CO2(g) 2.06 0.12 -1.94 CO2 Pressure 386.6 atm, phi 0.296 - H2(g) -8.24 -11.56 -3.32 H2 + H2(g) -35.19 -38.51 -3.32 H2 H2O(g) -0.81 -0.01 0.80 H2O Pressure 3.1 atm, phi 0.050 - O2(g) -58.94 -62.16 -3.23 O2 + O2(g) -5.04 -8.27 -3.23 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5148,54 +5137,54 @@ H2O(g) 0.57 3.696e+00 0.044 1.702e-01 1.801e-01 9.820e-03 ----------------------------Description of solution---------------------------- - pH = 2.978 Charge balance - pe = 1.082 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 546 + pH = 2.981 Charge balance + pe = 14.556 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 512 Density (g/cm³) = 1.01986 Volume (L) = 1.04226 - Viscosity (mPa s) = 0.55696 + Viscosity (mPa s) = 0.55689 Activity of water = 0.976 - Ionic strength (mol/kgw) = 1.090e-03 + Ionic strength (mol/kgw) = 1.082e-03 Mass of water (kg) = 9.967e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.509e+00 Temperature (°C) = 50.00 Pressure (atm) = 465.50 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.106523e+02 - Total O = 5.833443e+01 + Total O = 5.833442e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.090e-03 1.051e-03 -2.963 -2.978 -0.016 0.00 - OH- 7.774e-11 7.483e-11 -10.109 -10.126 -0.017 -4.22 + H+ 1.082e-03 1.044e-03 -2.966 -2.981 -0.016 0.00 + OH- 7.827e-11 7.534e-11 -10.106 -10.123 -0.017 -4.22 H2O 5.551e+01 9.755e-01 1.744 -0.011 0.000 17.88 -C(-4) 3.393e-12 - CH4 3.393e-12 3.394e-12 -11.469 -11.469 0.000 37.55 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.283 -119.283 0.000 37.55 C(4) 1.509e+00 CO2 1.368e+00 1.368e+00 0.136 0.136 0.000 35.18 (CO2)2 7.022e-02 7.023e-02 -1.154 -1.153 0.000 70.37 - HCO3- 1.090e-03 1.050e-03 -2.963 -2.979 -0.016 26.36 - CO3-2 1.210e-10 1.041e-10 -9.917 -9.982 -0.065 1.04 -H(0) 5.171e-12 - H2 2.586e-12 2.586e-12 -11.587 -11.587 0.000 28.39 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -62.179 -62.179 0.000 31.01 + HCO3- 1.082e-03 1.042e-03 -2.966 -2.982 -0.016 27.14 + CO3-2 1.235e-10 1.063e-10 -9.909 -9.973 -0.065 0.64 +H(0) 5.756e-39 + H2 2.878e-39 2.879e-39 -38.541 -38.541 0.000 28.39 +O(0) 1.069e-08 + O2 5.346e-09 5.347e-09 -8.272 -8.272 0.000 31.01 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 466 atm) - CH4(g) -8.22 -11.47 -3.25 CH4 + CH4(g) -116.04 -119.28 -3.25 CH4 CO2(g) 2.11 0.14 -1.98 CO2 Pressure 461.8 atm, phi 0.282 - H2(g) -8.23 -11.59 -3.35 H2 + H2(g) -35.19 -38.54 -3.35 H2 H2O(g) -0.79 -0.01 0.78 H2O Pressure 3.7 atm, phi 0.044 - O2(g) -58.91 -62.18 -3.27 O2 + O2(g) -5.01 -8.27 -3.27 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5230,7 +5219,7 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 559.08 atmospheres (Peng-Robinson calculation) +Total pressure: 559.09 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 4.23e-02 liters/mole P * Vm / RT: 0.89211 (Compressibility Factor Z) @@ -5240,7 +5229,7 @@ Total pressure: 559.08 atmospheres (Peng-Robinson calculation) Component log P P phi Initial Final Delta CO2(g) 2.74 5.546e+02 0.274 2.250e+01 2.344e+01 9.489e-01 -H2O(g) 0.65 4.462e+00 0.039 1.801e-01 1.886e-01 8.574e-03 +H2O(g) 0.65 4.463e+00 0.039 1.801e-01 1.886e-01 8.575e-03 -----------------------------Solution composition------------------------------ @@ -5250,54 +5239,54 @@ H2O(g) 0.65 4.462e+00 0.039 1.801e-01 1.886e-01 8.574e-03 ----------------------------Description of solution---------------------------- - pH = 2.953 Charge balance - pe = 1.102 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 578 - Density (g/cm³) = 1.02396 - Volume (L) = 1.04013 - Viscosity (mPa s) = 0.55922 + pH = 2.957 Charge balance + pe = 14.579 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 542 + Density (g/cm³) = 1.02395 + Volume (L) = 1.04014 + Viscosity (mPa s) = 0.55913 Activity of water = 0.975 - Ionic strength (mol/kgw) = 1.157e-03 + Ionic strength (mol/kgw) = 1.146e-03 Mass of water (kg) = 9.966e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.561e+00 Temperature (°C) = 50.00 - Pressure (atm) = 559.08 - Electrical balance (eq) = -1.213e-09 + Pressure (atm) = 559.09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.106352e+02 - Total O = 5.842815e+01 + Total O = 5.842814e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.157e-03 1.115e-03 -2.937 -2.953 -0.016 0.00 - OH- 7.922e-11 7.618e-11 -10.101 -10.118 -0.017 -4.28 + H+ 1.146e-03 1.104e-03 -2.941 -2.957 -0.016 0.00 + OH- 7.998e-11 7.693e-11 -10.097 -10.114 -0.017 -4.28 H2O 5.551e+01 9.747e-01 1.744 -0.011 0.000 17.82 -C(-4) 3.438e-12 - CH4 3.438e-12 3.439e-12 -11.464 -11.464 0.000 37.58 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.314 -119.314 0.000 37.58 C(4) 1.561e+00 CO2 1.410e+00 1.410e+00 0.149 0.149 0.000 35.10 (CO2)2 7.466e-02 7.468e-02 -1.127 -1.127 0.000 70.20 - HCO3- 1.157e-03 1.113e-03 -2.937 -2.953 -0.017 26.49 - CO3-2 1.311e-10 1.125e-10 -9.882 -9.949 -0.067 1.76 -H(0) 4.818e-12 - H2 2.409e-12 2.410e-12 -11.618 -11.618 0.000 28.36 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -62.197 -62.197 0.000 30.85 + HCO3- 1.146e-03 1.103e-03 -2.941 -2.958 -0.017 27.41 + CO3-2 1.349e-10 1.158e-10 -9.870 -9.936 -0.066 1.29 +H(0) 5.251e-39 + H2 2.626e-39 2.626e-39 -38.581 -38.581 0.000 28.36 +O(0) 1.069e-08 + O2 5.347e-09 5.348e-09 -8.272 -8.272 0.000 30.85 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 559 atm) - CH4(g) -8.16 -11.46 -3.30 CH4 + CH4(g) -116.01 -119.31 -3.30 CH4 CO2(g) 2.18 0.15 -2.03 CO2 Pressure 554.6 atm, phi 0.274 - H2(g) -8.22 -11.62 -3.40 H2 + H2(g) -35.19 -38.58 -3.40 H2 H2O(g) -0.76 -0.01 0.75 H2O Pressure 4.5 atm, phi 0.039 - O2(g) -58.88 -62.20 -3.31 O2 + O2(g) -4.96 -8.27 -3.31 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5352,54 +5341,54 @@ H2O(g) 0.73 5.366e+00 0.035 1.886e-01 1.956e-01 6.925e-03 ----------------------------Description of solution---------------------------- - pH = 2.923 Charge balance - pe = 1.124 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 616 + pH = 2.929 Charge balance + pe = 14.605 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 579 Density (g/cm³) = 1.02885 Volume (L) = 1.03737 - Viscosity (mPa s) = 0.56211 + Viscosity (mPa s) = 0.56199 Activity of water = 0.974 - Ionic strength (mol/kgw) = 1.240e-03 + Ionic strength (mol/kgw) = 1.223e-03 Mass of water (kg) = 9.965e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.615e+00 Temperature (°C) = 50.00 Pressure (atm) = 674.65 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.106213e+02 - Total O = 5.852889e+01 + Total O = 5.852887e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.240e-03 1.194e-03 -2.907 -2.923 -0.016 0.00 - OH- 8.146e-11 7.825e-11 -10.089 -10.107 -0.017 -4.35 + H+ 1.223e-03 1.178e-03 -2.913 -2.929 -0.016 0.00 + OH- 8.256e-11 7.933e-11 -10.083 -10.101 -0.017 -4.35 H2O 5.551e+01 9.739e-01 1.744 -0.011 0.000 17.74 -C(-4) 3.488e-12 - CH4 3.488e-12 3.489e-12 -11.457 -11.457 0.000 37.61 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.355 -119.355 0.000 37.61 C(4) 1.615e+00 CO2 1.455e+00 1.455e+00 0.163 0.163 0.000 35.00 (CO2)2 7.945e-02 7.947e-02 -1.100 -1.100 0.000 69.99 - HCO3- 1.240e-03 1.192e-03 -2.907 -2.924 -0.017 26.65 - CO3-2 1.441e-10 1.231e-10 -9.841 -9.910 -0.068 2.59 -H(0) 4.421e-12 - H2 2.211e-12 2.211e-12 -11.655 -11.655 0.000 28.33 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -62.221 -62.220 0.000 30.67 + HCO3- 1.223e-03 1.176e-03 -2.913 -2.930 -0.017 27.73 + CO3-2 1.500e-10 1.283e-10 -9.824 -9.892 -0.068 2.06 +H(0) 4.690e-39 + H2 2.345e-39 2.346e-39 -38.630 -38.630 0.000 28.33 +O(0) 1.069e-08 + O2 5.347e-09 5.349e-09 -8.272 -8.272 0.000 30.67 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 675 atm) - CH4(g) -8.08 -11.46 -3.37 CH4 + CH4(g) -115.98 -119.35 -3.37 CH4 CO2(g) 2.26 0.16 -2.10 CO2 Pressure 669.3 atm, phi 0.272 - H2(g) -8.21 -11.66 -3.45 H2 + H2(g) -35.18 -38.63 -3.45 H2 H2O(g) -0.73 -0.01 0.72 H2O Pressure 5.4 atm, phi 0.035 - O2(g) -58.85 -62.22 -3.37 O2 + O2(g) -4.90 -8.27 -3.37 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5434,7 +5423,7 @@ Reaction 1. -----------------------------------Gas phase----------------------------------- -Total pressure: 817.85 atmospheres (Peng-Robinson calculation) +Total pressure: 817.86 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 3.92e-02 liters/mole P * Vm / RT: 1.20781 (Compressibility Factor Z) @@ -5443,7 +5432,7 @@ Total pressure: 817.85 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CO2(g) 2.91 8.114e+02 0.278 2.439e+01 2.534e+01 9.442e-01 +CO2(g) 2.91 8.114e+02 0.278 2.439e+01 2.534e+01 9.443e-01 H2O(g) 0.81 6.418e+00 0.032 1.956e-01 2.004e-01 4.813e-03 -----------------------------Solution composition------------------------------ @@ -5454,54 +5443,54 @@ H2O(g) 0.81 6.418e+00 0.032 1.956e-01 2.004e-01 4.813e-03 ----------------------------Description of solution---------------------------- - pH = 2.888 Charge balance - pe = 1.148 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 663 - Density (g/cm³) = 1.03469 - Volume (L) = 1.03380 - Viscosity (mPa s) = 0.56583 + pH = 2.897 Charge balance + pe = 14.634 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 623 + Density (g/cm³) = 1.03468 + Volume (L) = 1.03381 + Viscosity (mPa s) = 0.56567 Activity of water = 0.973 - Ionic strength (mol/kgw) = 1.344e-03 + Ionic strength (mol/kgw) = 1.318e-03 Mass of water (kg) = 9.964e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.671e+00 Temperature (°C) = 50.00 - Pressure (atm) = 817.85 - Electrical balance (eq) = -1.213e-09 + Pressure (atm) = 817.86 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.106117e+02 - Total O = 5.863558e+01 + Total O = 5.863555e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.344e-03 1.293e-03 -2.872 -2.888 -0.017 0.00 - OH- 8.475e-11 8.130e-11 -10.072 -10.090 -0.018 -4.42 + H+ 1.318e-03 1.268e-03 -2.880 -2.897 -0.017 0.00 + OH- 8.639e-11 8.290e-11 -10.064 -10.081 -0.018 -4.43 H2O 5.551e+01 9.730e-01 1.744 -0.012 0.000 17.64 -C(-4) 3.540e-12 - CH4 3.540e-12 3.541e-12 -11.451 -11.451 0.000 37.65 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.408 -119.408 0.000 37.65 C(4) 1.671e+00 CO2 1.501e+00 1.501e+00 0.176 0.176 0.000 34.88 (CO2)2 8.454e-02 8.456e-02 -1.073 -1.073 0.000 69.76 - HCO3- 1.344e-03 1.291e-03 -2.872 -2.889 -0.018 26.83 - CO3-2 1.610e-10 1.368e-10 -9.793 -9.864 -0.071 3.56 -H(0) 3.980e-12 - H2 1.990e-12 1.991e-12 -11.701 -11.701 0.000 28.28 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -62.250 -62.250 0.000 30.47 + HCO3- 1.318e-03 1.266e-03 -2.880 -2.898 -0.017 28.09 + CO3-2 1.703e-10 1.450e-10 -9.769 -9.839 -0.070 2.95 +H(0) 4.080e-39 + H2 2.040e-39 2.041e-39 -38.690 -38.690 0.000 28.28 +O(0) 1.070e-08 + O2 5.348e-09 5.349e-09 -8.272 -8.272 0.000 30.47 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 818 atm) - CH4(g) -7.99 -11.45 -3.46 CH4 + CH4(g) -115.94 -119.41 -3.46 CH4 CO2(g) 2.35 0.18 -2.18 CO2 Pressure 811.4 atm, phi 0.278 - H2(g) -8.19 -11.70 -3.51 H2 + H2(g) -35.18 -38.69 -3.51 H2 H2O(g) -0.69 -0.01 0.68 H2O Pressure 6.4 atm, phi 0.032 - O2(g) -58.81 -62.25 -3.44 O2 + O2(g) -4.83 -8.27 -3.44 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5657,11 +5646,11 @@ H2O(g) -0.36 4.356e-01 0.874 1.332e-02 1.642e-02 3.100e-03 ----------------------------Description of solution---------------------------- pH = 3.465 Charge balance - pe = 10.794 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 217 + pe = 10.797 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 215 Density (g/cm³) = 0.97762 Volume (L) = 1.03384 - Viscosity (mPa s) = 0.37807 + Viscosity (mPa s) = 0.37804 Activity of water = 0.996 Ionic strength (mol/kgw) = 3.505e-04 Mass of water (kg) = 9.997e-01 @@ -5680,30 +5669,30 @@ H2O(g) -0.36 4.356e-01 0.874 1.332e-02 1.642e-02 3.100e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 3.505e-04 3.425e-04 -3.455 -3.465 -0.010 0.00 + H+ 3.505e-04 3.426e-04 -3.455 -3.465 -0.010 0.00 OH- 6.206e-10 6.060e-10 -9.207 -9.218 -0.010 -4.53 H2O 5.551e+01 9.958e-01 1.744 -0.002 0.000 18.46 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -96.500 -96.500 0.000 39.08 + CH4 0.000e+00 0.000e+00 -96.527 -96.527 0.000 39.08 C(4) 2.500e-01 CO2 2.422e-01 2.422e-01 -0.616 -0.616 0.000 37.04 (CO2)2 3.732e-03 3.732e-03 -2.428 -2.428 0.000 74.08 - HCO3- 3.505e-04 3.424e-04 -3.455 -3.466 -0.010 25.37 - CO3-2 8.397e-11 7.644e-11 -10.076 -10.117 -0.041 -4.45 -H(0) 2.746e-32 - H2 1.373e-32 1.373e-32 -31.862 -31.862 0.000 28.57 -O(0) 2.786e-15 - O2 1.393e-15 1.393e-15 -14.856 -14.856 0.000 32.93 + HCO3- 3.505e-04 3.424e-04 -3.455 -3.465 -0.010 25.25 + CO3-2 8.398e-11 7.645e-11 -10.076 -10.117 -0.041 -4.80 +H(0) 2.704e-32 + H2 1.352e-32 1.352e-32 -31.869 -31.869 0.000 28.57 +O(0) 2.875e-15 + O2 1.437e-15 1.437e-15 -14.842 -14.842 0.000 32.93 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 20 atm) - CH4(g) -93.48 -96.50 -3.02 CH4 + CH4(g) -93.50 -96.53 -3.02 CH4 CO2(g) 1.27 -0.62 -1.88 CO2 Pressure 19.9 atm, phi 0.933 - H2(g) -28.72 -31.86 -3.14 H2 + H2(g) -28.73 -31.87 -3.14 H2 H2O(g) -0.42 -0.00 0.42 H2O Pressure 0.4 atm, phi 0.874 - O2(g) -11.75 -14.86 -3.11 O2 + O2(g) -11.73 -14.84 -3.11 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5752,21 +5741,21 @@ H2O(g) -0.30 4.993e-01 0.769 1.642e-02 2.026e-02 3.838e-03 ----------------------------Description of solution---------------------------- pH = 3.339 Charge balance - pe = 11.044 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 290 + pe = 2.019 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 285 Density (g/cm³) = 0.97995 Volume (L) = 1.04028 - Viscosity (mPa s) = 0.37860 + Viscosity (mPa s) = 0.37856 Activity of water = 0.993 Ionic strength (mol/kgw) = 4.703e-04 Mass of water (kg) = 9.996e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 4.496e-01 Temperature (°C) = 75.00 Pressure (atm) = 38.71 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 28 + Iterations = 35 Total H = 1.109719e+02 Total O = 5.638485e+01 @@ -5776,29 +5765,29 @@ H2O(g) -0.30 4.993e-01 0.769 1.642e-02 2.026e-02 3.838e-03 Species Molality Activity Molality Activity Gamma cm³/mol H+ 4.703e-04 4.580e-04 -3.328 -3.339 -0.011 0.00 - OH- 4.713e-10 4.585e-10 -9.327 -9.339 -0.012 -4.59 + OH- 4.712e-10 4.585e-10 -9.327 -9.339 -0.012 -4.59 H2O 5.551e+01 9.925e-01 1.744 -0.003 0.000 18.45 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -97.254 -97.254 0.000 39.07 +C(-4) 8.775e-26 + CH4 8.775e-26 8.775e-26 -25.057 -25.057 0.000 39.07 C(4) 4.496e-01 CO2 4.260e-01 4.261e-01 -0.371 -0.371 0.000 37.01 (CO2)2 1.155e-02 1.155e-02 -1.937 -1.937 0.000 74.01 - HCO3- 4.703e-04 4.577e-04 -3.328 -3.339 -0.012 25.42 - CO3-2 8.679e-11 7.788e-11 -10.062 -10.109 -0.047 -4.22 -H(0) 1.524e-32 - H2 7.619e-33 7.619e-33 -32.118 -32.118 0.000 28.56 -O(0) 8.689e-15 - O2 4.345e-15 4.345e-15 -14.362 -14.362 0.000 32.88 + HCO3- 4.703e-04 4.577e-04 -3.328 -3.339 -0.012 25.34 + CO3-2 8.682e-11 7.791e-11 -10.061 -10.108 -0.047 -4.59 +H(0) 1.707e-14 + H2 8.536e-15 8.537e-15 -14.069 -14.069 0.000 28.56 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -50.461 -50.461 0.000 32.88 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 39 atm) - CH4(g) -94.22 -97.25 -3.04 CH4 + CH4(g) -22.02 -25.06 -3.04 CH4 CO2(g) 1.52 -0.37 -1.89 CO2 Pressure 38.2 atm, phi 0.875 - H2(g) -28.97 -32.12 -3.15 H2 + H2(g) -10.92 -14.07 -3.15 H2 H2O(g) -0.42 -0.00 0.41 H2O Pressure 0.5 atm, phi 0.769 - O2(g) -11.25 -14.36 -3.12 O2 + O2(g) -47.34 -50.46 -3.12 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5847,15 +5836,15 @@ H2O(g) -0.24 5.707e-01 0.679 2.026e-02 2.494e-02 4.679e-03 ----------------------------Description of solution---------------------------- pH = 3.275 Charge balance - pe = 11.156 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 337 + pe = 1.995 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 327 Density (g/cm³) = 0.98185 Volume (L) = 1.04514 - Viscosity (mPa s) = 0.37908 + Viscosity (mPa s) = 0.37903 Activity of water = 0.990 - Ionic strength (mol/kgw) = 5.461e-04 + Ionic strength (mol/kgw) = 5.462e-04 Mass of water (kg) = 9.995e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 6.050e-01 Temperature (°C) = 75.00 Pressure (atm) = 55.38 @@ -5873,27 +5862,27 @@ H2O(g) -0.24 5.707e-01 0.679 2.026e-02 2.494e-02 4.679e-03 H+ 5.461e-04 5.309e-04 -3.263 -3.275 -0.012 0.00 OH- 4.119e-10 3.999e-10 -9.385 -9.398 -0.013 -4.64 H2O 5.551e+01 9.901e-01 1.744 -0.004 0.000 18.43 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -97.526 -97.525 0.000 39.07 +C(-4) 5.788e-25 + CH4 5.788e-25 5.789e-25 -24.237 -24.237 0.000 39.07 C(4) 6.050e-01 CO2 5.640e-01 5.640e-01 -0.249 -0.249 0.000 36.98 (CO2)2 2.024e-02 2.024e-02 -1.694 -1.694 0.000 73.95 - HCO3- 5.461e-04 5.305e-04 -3.263 -3.275 -0.013 25.47 - CO3-2 8.897e-11 7.921e-11 -10.051 -10.101 -0.050 -4.01 -H(0) 1.200e-32 - H2 6.002e-33 6.003e-33 -32.222 -32.222 0.000 28.55 -O(0) 1.351e-14 - O2 6.753e-15 6.754e-15 -14.171 -14.170 0.000 32.83 + HCO3- 5.462e-04 5.305e-04 -3.263 -3.275 -0.013 25.42 + CO3-2 8.903e-11 7.926e-11 -10.050 -10.101 -0.050 -4.41 +H(0) 2.520e-14 + H2 1.260e-14 1.260e-14 -13.900 -13.900 0.000 28.55 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -50.815 -50.815 0.000 32.83 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 55 atm) - CH4(g) -94.48 -97.53 -3.05 CH4 + CH4(g) -21.19 -24.24 -3.05 CH4 CO2(g) 1.66 -0.25 -1.90 CO2 Pressure 54.8 atm, phi 0.825 - H2(g) -29.07 -32.22 -3.16 H2 + H2(g) -10.74 -13.90 -3.16 H2 H2O(g) -0.41 -0.00 0.41 H2O Pressure 0.6 atm, phi 0.679 - O2(g) -11.05 -14.17 -3.13 O2 + O2(g) -47.69 -50.81 -3.13 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5942,15 +5931,15 @@ H2O(g) -0.19 6.497e-01 0.601 2.494e-02 3.056e-02 5.615e-03 ----------------------------Description of solution---------------------------- pH = 3.236 Charge balance - pe = 11.195 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 369 + pe = 2.005 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 356 Density (g/cm³) = 0.98339 Volume (L) = 1.04871 - Viscosity (mPa s) = 0.37950 + Viscosity (mPa s) = 0.37944 Activity of water = 0.988 Ionic strength (mol/kgw) = 5.986e-04 Mass of water (kg) = 9.994e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 7.238e-01 Temperature (°C) = 75.00 Pressure (atm) = 70.32 @@ -5968,27 +5957,27 @@ H2O(g) -0.19 6.497e-01 0.601 2.494e-02 3.056e-02 5.615e-03 H+ 5.986e-04 5.812e-04 -3.223 -3.236 -0.013 0.00 OH- 3.806e-10 3.691e-10 -9.419 -9.433 -0.013 -4.69 H2O 5.551e+01 9.882e-01 1.744 -0.005 0.000 18.42 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -97.456 -97.456 0.000 39.07 +C(-4) 1.164e-24 + CH4 1.164e-24 1.164e-24 -23.934 -23.934 0.000 39.07 C(4) 7.238e-01 CO2 6.667e-01 6.667e-01 -0.176 -0.176 0.000 36.95 (CO2)2 2.828e-02 2.829e-02 -1.548 -1.548 0.000 73.90 - HCO3- 5.986e-04 5.807e-04 -3.223 -3.236 -0.013 25.51 - CO3-2 9.078e-11 8.041e-11 -10.042 -10.095 -0.053 -3.83 -H(0) 1.185e-32 - H2 5.925e-33 5.926e-33 -32.227 -32.227 0.000 28.54 -O(0) 1.343e-14 - O2 6.714e-15 6.715e-15 -14.173 -14.173 0.000 32.79 + HCO3- 5.986e-04 5.807e-04 -3.223 -3.236 -0.013 25.49 + CO3-2 9.086e-11 8.049e-11 -10.042 -10.094 -0.053 -4.25 +H(0) 2.847e-14 + H2 1.423e-14 1.424e-14 -13.847 -13.847 0.000 28.54 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -50.934 -50.934 0.000 32.79 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 70 atm) - CH4(g) -94.40 -97.46 -3.05 CH4 + CH4(g) -20.88 -23.93 -3.05 CH4 CO2(g) 1.74 -0.18 -1.91 CO2 Pressure 69.7 atm, phi 0.782 - H2(g) -29.06 -32.23 -3.16 H2 + H2(g) -10.68 -13.85 -3.16 H2 H2O(g) -0.41 -0.01 0.40 H2O Pressure 0.6 atm, phi 0.601 - O2(g) -11.04 -14.17 -3.13 O2 + O2(g) -47.80 -50.93 -3.13 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6037,13 +6026,13 @@ H2O(g) -0.13 7.364e-01 0.534 3.056e-02 3.718e-02 6.627e-03 ----------------------------Description of solution---------------------------- pH = 3.209 Charge balance - pe = 11.161 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 392 + pe = 1.984 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 376 Density (g/cm³) = 0.98464 Volume (L) = 1.05128 - Viscosity (mPa s) = 0.37987 + Viscosity (mPa s) = 0.37980 Activity of water = 0.987 - Ionic strength (mol/kgw) = 6.365e-04 + Ionic strength (mol/kgw) = 6.364e-04 Mass of water (kg) = 9.993e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 8.142e-01 @@ -6051,7 +6040,7 @@ H2O(g) -0.13 7.364e-01 0.534 3.056e-02 3.718e-02 6.627e-03 Pressure (atm) = 83.65 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 21 + Iterations = 20 Total H = 1.109381e+02 Total O = 5.709630e+01 @@ -6060,30 +6049,30 @@ H2O(g) -0.13 7.364e-01 0.534 3.056e-02 3.718e-02 6.627e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 6.365e-04 6.175e-04 -3.196 -3.209 -0.013 0.00 + H+ 6.364e-04 6.174e-04 -3.196 -3.209 -0.013 0.00 OH- 3.620e-10 3.507e-10 -9.441 -9.455 -0.014 -4.73 H2O 5.551e+01 9.867e-01 1.744 -0.006 0.000 18.41 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -96.935 -96.935 0.000 39.07 +C(-4) 3.073e-24 + CH4 3.073e-24 3.073e-24 -23.512 -23.512 0.000 39.07 C(4) 8.142e-01 CO2 7.432e-01 7.433e-01 -0.129 -0.129 0.000 36.92 (CO2)2 3.515e-02 3.516e-02 -1.454 -1.454 0.000 73.85 - HCO3- 6.365e-04 6.169e-04 -3.196 -3.210 -0.014 25.54 - CO3-2 9.231e-11 8.148e-11 -10.035 -10.089 -0.054 -3.68 -H(0) 1.543e-32 - H2 7.713e-33 7.715e-33 -32.113 -32.113 0.000 28.54 -O(0) 7.708e-15 - O2 3.854e-15 3.855e-15 -14.414 -14.414 0.000 32.75 + HCO3- 6.364e-04 6.169e-04 -3.196 -3.210 -0.014 25.55 + CO3-2 9.243e-11 8.159e-11 -10.034 -10.088 -0.054 -4.11 +H(0) 3.498e-14 + H2 1.749e-14 1.749e-14 -13.757 -13.757 0.000 28.54 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -51.125 -51.125 0.000 32.75 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 84 atm) - CH4(g) -93.87 -96.93 -3.06 CH4 + CH4(g) -20.45 -23.51 -3.06 CH4 CO2(g) 1.79 -0.13 -1.92 CO2 Pressure 82.9 atm, phi 0.746 - H2(g) -28.94 -32.11 -3.17 H2 + H2(g) -10.59 -13.76 -3.17 H2 H2O(g) -0.41 -0.01 0.40 H2O Pressure 0.7 atm, phi 0.534 - O2(g) -11.27 -14.41 -3.14 O2 + O2(g) -47.99 -51.13 -3.14 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6132,11 +6121,11 @@ H2O(g) -0.08 8.308e-01 0.476 3.718e-02 4.488e-02 7.699e-03 ----------------------------Description of solution---------------------------- pH = 3.191 Charge balance - pe = 11.265 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 409 + pe = 1.945 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 391 Density (g/cm³) = 0.98568 Volume (L) = 1.05312 - Viscosity (mPa s) = 0.38019 + Viscosity (mPa s) = 0.38013 Activity of water = 0.986 Ionic strength (mol/kgw) = 6.648e-04 Mass of water (kg) = 9.992e-01 @@ -6155,30 +6144,30 @@ H2O(g) -0.08 8.308e-01 0.476 3.718e-02 4.488e-02 7.699e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 6.648e-04 6.446e-04 -3.177 -3.191 -0.013 0.00 + H+ 6.648e-04 6.445e-04 -3.177 -3.191 -0.013 0.00 OH- 3.500e-10 3.389e-10 -9.456 -9.470 -0.014 -4.77 H2O 5.551e+01 9.857e-01 1.744 -0.006 0.000 18.40 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -97.585 -97.585 0.000 39.06 +C(-4) 9.441e-24 + CH4 9.441e-24 9.442e-24 -23.025 -23.025 0.000 39.06 C(4) 8.833e-01 CO2 8.010e-01 8.010e-01 -0.096 -0.096 0.000 36.90 (CO2)2 4.082e-02 4.083e-02 -1.389 -1.389 0.000 73.80 - HCO3- 6.648e-04 6.440e-04 -3.177 -3.191 -0.014 25.57 - CO3-2 9.364e-11 8.245e-11 -10.029 -10.084 -0.055 -3.54 -H(0) 1.032e-32 - H2 5.162e-33 5.163e-33 -32.287 -32.287 0.000 28.53 -O(0) 1.680e-14 - O2 8.400e-15 8.401e-15 -14.076 -14.076 0.000 32.72 + HCO3- 6.648e-04 6.439e-04 -3.177 -3.191 -0.014 25.60 + CO3-2 9.379e-11 8.258e-11 -10.028 -10.083 -0.055 -3.99 +H(0) 4.508e-14 + H2 2.254e-14 2.254e-14 -13.647 -13.647 0.000 28.53 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -51.356 -51.356 0.000 32.72 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 96 atm) - CH4(g) -94.52 -97.59 -3.07 CH4 + CH4(g) -19.96 -23.02 -3.07 CH4 CO2(g) 1.83 -0.10 -1.93 CO2 Pressure 94.7 atm, phi 0.714 - H2(g) -29.11 -32.29 -3.17 H2 + H2(g) -10.47 -13.65 -3.17 H2 H2O(g) -0.40 -0.01 0.40 H2O Pressure 0.8 atm, phi 0.476 - O2(g) -10.93 -14.08 -3.15 O2 + O2(g) -48.21 -51.36 -3.15 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6227,15 +6216,15 @@ H2O(g) -0.03 9.337e-01 0.426 4.488e-02 5.370e-02 8.815e-03 ----------------------------Description of solution---------------------------- pH = 3.177 Charge balance - pe = 11.228 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 422 + pe = 1.879 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 402 Density (g/cm³) = 0.98654 Volume (L) = 1.05442 - Viscosity (mPa s) = 0.38049 + Viscosity (mPa s) = 0.38042 Activity of water = 0.985 - Ionic strength (mol/kgw) = 6.868e-04 + Ionic strength (mol/kgw) = 6.867e-04 Mass of water (kg) = 9.990e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 9.370e-01 Temperature (°C) = 75.00 Pressure (atm) = 106.37 @@ -6250,30 +6239,30 @@ H2O(g) -0.03 9.337e-01 0.426 4.488e-02 5.370e-02 8.815e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 6.868e-04 6.656e-04 -3.163 -3.177 -0.014 0.00 + H+ 6.867e-04 6.655e-04 -3.163 -3.177 -0.014 0.00 OH- 3.419e-10 3.308e-10 -9.466 -9.480 -0.014 -4.81 H2O 5.551e+01 9.848e-01 1.744 -0.007 0.000 18.39 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -97.164 -97.164 0.000 39.06 +C(-4) 4.230e-23 + CH4 4.230e-23 4.231e-23 -22.374 -22.374 0.000 39.06 C(4) 9.370e-01 CO2 8.454e-01 8.455e-01 -0.073 -0.073 0.000 36.88 (CO2)2 4.548e-02 4.549e-02 -1.342 -1.342 0.000 73.77 - HCO3- 6.868e-04 6.650e-04 -3.163 -3.177 -0.014 25.60 - CO3-2 9.483e-11 8.333e-11 -10.023 -10.079 -0.056 -3.41 -H(0) 1.288e-32 - H2 6.442e-33 6.443e-33 -32.191 -32.191 0.000 28.53 -O(0) 1.056e-14 - O2 5.278e-15 5.279e-15 -14.278 -14.277 0.000 32.69 + HCO3- 6.867e-04 6.649e-04 -3.163 -3.177 -0.014 25.65 + CO3-2 9.501e-11 8.349e-11 -10.022 -10.078 -0.056 -3.88 +H(0) 6.421e-14 + H2 3.211e-14 3.211e-14 -13.493 -13.493 0.000 28.53 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -51.673 -51.673 0.000 32.69 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 106 atm) - CH4(g) -94.09 -97.16 -3.08 CH4 + CH4(g) -19.30 -22.37 -3.08 CH4 CO2(g) 1.86 -0.07 -1.93 CO2 Pressure 105.4 atm, phi 0.687 - H2(g) -29.01 -32.19 -3.18 H2 + H2(g) -10.31 -13.49 -3.18 H2 H2O(g) -0.40 -0.01 0.39 H2O Pressure 0.9 atm, phi 0.426 - O2(g) -11.13 -14.28 -3.15 O2 + O2(g) -48.52 -51.67 -3.15 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6322,13 +6311,13 @@ H2O(g) 0.02 1.046e+00 0.383 5.370e-02 6.365e-02 9.958e-03 ----------------------------Description of solution---------------------------- pH = 3.166 Charge balance - pe = 11.077 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 432 + pe = 1.968 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 411 Density (g/cm³) = 0.98730 Volume (L) = 1.05534 - Viscosity (mPa s) = 0.38077 + Viscosity (mPa s) = 0.38069 Activity of water = 0.984 - Ionic strength (mol/kgw) = 7.046e-04 + Ionic strength (mol/kgw) = 7.045e-04 Mass of water (kg) = 9.988e-01 Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 9.802e-01 @@ -6336,7 +6325,7 @@ H2O(g) 0.02 1.046e+00 0.383 5.370e-02 6.365e-02 9.958e-03 Pressure (atm) = 116.43 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 27 + Iterations = 26 Total H = 1.108851e+02 Total O = 5.740062e+01 @@ -6345,30 +6334,30 @@ H2O(g) 0.02 1.046e+00 0.383 5.370e-02 6.365e-02 9.958e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.046e-04 6.826e-04 -3.152 -3.166 -0.014 0.00 - OH- 3.360e-10 3.250e-10 -9.474 -9.488 -0.014 -4.84 + H+ 7.045e-04 6.825e-04 -3.152 -3.166 -0.014 0.00 + OH- 3.360e-10 3.251e-10 -9.474 -9.488 -0.014 -4.84 H2O 5.551e+01 9.842e-01 1.744 -0.007 0.000 18.38 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -95.851 -95.851 0.000 39.06 +C(-4) 1.039e-23 + CH4 1.039e-23 1.039e-23 -22.983 -22.983 0.000 39.06 C(4) 9.802e-01 CO2 8.807e-01 8.808e-01 -0.055 -0.055 0.000 36.87 (CO2)2 4.936e-02 4.937e-02 -1.307 -1.307 0.000 73.73 - HCO3- 7.046e-04 6.820e-04 -3.152 -3.166 -0.014 25.62 - CO3-2 9.591e-11 8.415e-11 -10.018 -10.075 -0.057 -3.30 -H(0) 2.697e-32 - H2 1.348e-32 1.349e-32 -31.870 -31.870 0.000 28.52 -O(0) 2.362e-15 - O2 1.181e-15 1.181e-15 -14.928 -14.928 0.000 32.67 + HCO3- 7.045e-04 6.819e-04 -3.152 -3.166 -0.014 25.70 + CO3-2 9.612e-11 8.434e-11 -10.017 -10.074 -0.057 -3.78 +H(0) 4.444e-14 + H2 2.222e-14 2.222e-14 -13.653 -13.653 0.000 28.52 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -51.362 -51.362 0.000 32.67 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 116 atm) - CH4(g) -92.77 -95.85 -3.08 CH4 + CH4(g) -19.90 -22.98 -3.08 CH4 CO2(g) 1.88 -0.06 -1.94 CO2 Pressure 115.4 atm, phi 0.662 - H2(g) -28.69 -31.87 -3.18 H2 + H2(g) -10.47 -13.65 -3.18 H2 H2O(g) -0.40 -0.01 0.39 H2O Pressure 1.0 atm, phi 0.383 - O2(g) -11.77 -14.93 -3.16 O2 + O2(g) -48.21 -51.36 -3.16 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6417,13 +6406,13 @@ H2O(g) 0.07 1.170e+00 0.344 6.365e-02 7.477e-02 1.111e-02 ----------------------------Description of solution---------------------------- pH = 3.157 Charge balance - pe = 11.159 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 441 + pe = 2.153 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 419 Density (g/cm³) = 0.98799 Volume (L) = 1.05600 - Viscosity (mPa s) = 0.38103 + Viscosity (mPa s) = 0.38095 Activity of water = 0.984 - Ionic strength (mol/kgw) = 7.198e-04 + Ionic strength (mol/kgw) = 7.197e-04 Mass of water (kg) = 9.986e-01 Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.016e+00 @@ -6440,30 +6429,30 @@ H2O(g) 0.07 1.170e+00 0.344 6.365e-02 7.477e-02 1.111e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.198e-04 6.971e-04 -3.143 -3.157 -0.014 0.00 - OH- 3.316e-10 3.206e-10 -9.479 -9.494 -0.015 -4.87 + H+ 7.197e-04 6.970e-04 -3.143 -3.157 -0.014 0.00 + OH- 3.316e-10 3.207e-10 -9.479 -9.494 -0.015 -4.87 H2O 5.551e+01 9.836e-01 1.744 -0.007 0.000 18.38 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -96.431 -96.431 0.000 39.06 +C(-4) 4.141e-25 + CH4 4.141e-25 4.141e-25 -24.383 -24.383 0.000 39.06 C(4) 1.016e+00 CO2 9.101e-01 9.102e-01 -0.041 -0.041 0.000 36.85 (CO2)2 5.270e-02 5.271e-02 -1.278 -1.278 0.000 73.70 - HCO3- 7.198e-04 6.965e-04 -3.143 -3.157 -0.014 25.64 - CO3-2 9.693e-11 8.495e-11 -10.014 -10.071 -0.057 -3.19 -H(0) 1.903e-32 - H2 9.513e-33 9.515e-33 -32.022 -32.022 0.000 28.52 -O(0) 4.655e-15 - O2 2.328e-15 2.328e-15 -14.633 -14.633 0.000 32.64 + HCO3- 7.197e-04 6.963e-04 -3.143 -3.157 -0.014 25.74 + CO3-2 9.718e-11 8.517e-11 -10.012 -10.070 -0.057 -3.68 +H(0) 1.956e-14 + H2 9.781e-15 9.783e-15 -14.010 -14.010 0.000 28.52 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -50.657 -50.657 0.000 32.64 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 126 atm) - CH4(g) -93.34 -96.43 -3.09 CH4 + CH4(g) -21.30 -24.38 -3.09 CH4 CO2(g) 1.90 -0.04 -1.94 CO2 Pressure 124.9 atm, phi 0.640 - H2(g) -28.83 -32.02 -3.19 H2 + H2(g) -10.82 -14.01 -3.19 H2 H2O(g) -0.40 -0.01 0.39 H2O Pressure 1.2 atm, phi 0.344 - O2(g) -11.47 -14.63 -3.16 O2 + O2(g) -47.50 -50.66 -3.16 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6512,13 +6501,13 @@ H2O(g) 0.12 1.308e+00 0.310 7.477e-02 8.703e-02 1.226e-02 ----------------------------Description of solution---------------------------- pH = 3.149 Charge balance - pe = 11.245 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 449 + pe = 2.246 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 426 Density (g/cm³) = 0.98864 Volume (L) = 1.05647 - Viscosity (mPa s) = 0.38130 + Viscosity (mPa s) = 0.38121 Activity of water = 0.983 - Ionic strength (mol/kgw) = 7.335e-04 + Ionic strength (mol/kgw) = 7.333e-04 Mass of water (kg) = 9.984e-01 Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.048e+00 @@ -6535,30 +6524,30 @@ H2O(g) 0.12 1.308e+00 0.310 7.477e-02 8.703e-02 1.226e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.335e-04 7.102e-04 -3.135 -3.149 -0.014 0.00 - OH- 3.280e-10 3.171e-10 -9.484 -9.499 -0.015 -4.90 + H+ 7.333e-04 7.100e-04 -3.135 -3.149 -0.014 0.00 + OH- 3.281e-10 3.172e-10 -9.484 -9.499 -0.015 -4.90 H2O 5.551e+01 9.831e-01 1.744 -0.007 0.000 18.37 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -97.045 -97.045 0.000 39.06 +C(-4) 8.872e-26 + CH4 8.872e-26 8.874e-26 -25.052 -25.052 0.000 39.06 C(4) 1.048e+00 CO2 9.357e-01 9.358e-01 -0.029 -0.029 0.000 36.83 (CO2)2 5.571e-02 5.572e-02 -1.254 -1.254 0.000 73.66 - HCO3- 7.335e-04 7.095e-04 -3.135 -3.149 -0.014 25.67 - CO3-2 9.796e-11 8.575e-11 -10.009 -10.067 -0.058 -3.08 -H(0) 1.318e-32 - H2 6.592e-33 6.593e-33 -32.181 -32.181 0.000 28.51 -O(0) 9.514e-15 - O2 4.757e-15 4.758e-15 -14.323 -14.323 0.000 32.62 + HCO3- 7.333e-04 7.093e-04 -3.135 -3.149 -0.014 25.78 + CO3-2 9.824e-11 8.600e-11 -10.008 -10.065 -0.058 -3.59 +H(0) 1.313e-14 + H2 6.565e-15 6.566e-15 -14.183 -14.183 0.000 28.51 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -50.319 -50.319 0.000 32.62 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 136 atm) - CH4(g) -93.95 -97.04 -3.09 CH4 + CH4(g) -21.96 -25.05 -3.09 CH4 CO2(g) 1.92 -0.03 -1.95 CO2 Pressure 134.5 atm, phi 0.618 - H2(g) -28.99 -32.18 -3.19 H2 + H2(g) -10.99 -14.18 -3.19 H2 H2O(g) -0.39 -0.01 0.39 H2O Pressure 1.3 atm, phi 0.310 - O2(g) -11.16 -14.32 -3.16 O2 + O2(g) -47.15 -50.32 -3.16 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6607,21 +6596,21 @@ H2O(g) 0.17 1.463e+00 0.278 8.703e-02 1.004e-01 1.338e-02 ----------------------------Description of solution---------------------------- pH = 3.141 Charge balance - pe = 2.150 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 457 + pe = 2.060 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 433 Density (g/cm³) = 0.98930 Volume (L) = 1.05681 - Viscosity (mPa s) = 0.38157 + Viscosity (mPa s) = 0.38149 Activity of water = 0.983 - Ionic strength (mol/kgw) = 7.465e-04 + Ionic strength (mol/kgw) = 7.462e-04 Mass of water (kg) = 9.982e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.077e+00 Temperature (°C) = 75.00 Pressure (atm) = 146.06 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 32 + Iterations = 22 Total H = 1.108116e+02 Total O = 5.755578e+01 @@ -6630,30 +6619,30 @@ H2O(g) 0.17 1.463e+00 0.278 8.703e-02 1.004e-01 1.338e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.465e-04 7.226e-04 -3.127 -3.141 -0.014 0.00 - OH- 3.251e-10 3.142e-10 -9.488 -9.503 -0.015 -4.94 + H+ 7.462e-04 7.224e-04 -3.127 -3.141 -0.014 0.00 + OH- 3.252e-10 3.143e-10 -9.488 -9.503 -0.015 -4.94 H2O 5.551e+01 9.827e-01 1.744 -0.008 0.000 18.36 -C(-4) 6.055e-25 - CH4 6.055e-25 6.057e-25 -24.218 -24.218 0.000 39.05 +C(-4) 3.179e-24 + CH4 3.179e-24 3.180e-24 -23.498 -23.498 0.000 39.05 C(4) 1.077e+00 CO2 9.591e-01 9.592e-01 -0.018 -0.018 0.000 36.81 (CO2)2 5.854e-02 5.855e-02 -1.233 -1.232 0.000 73.63 - HCO3- 7.465e-04 7.219e-04 -3.127 -3.142 -0.015 25.69 - CO3-2 9.903e-11 8.660e-11 -10.004 -10.063 -0.058 -2.97 -H(0) 2.095e-14 - H2 1.047e-14 1.048e-14 -13.980 -13.980 0.000 28.51 + HCO3- 7.462e-04 7.216e-04 -3.127 -3.142 -0.015 25.82 + CO3-2 9.935e-11 8.688e-11 -10.003 -10.061 -0.058 -3.49 +H(0) 3.171e-14 + H2 1.585e-14 1.586e-14 -13.800 -13.800 0.000 28.51 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.733 -50.733 0.000 32.59 + O2 0.000e+00 0.000e+00 -51.093 -51.093 0.000 32.59 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 146 atm) - CH4(g) -21.12 -24.22 -3.10 CH4 + CH4(g) -20.40 -23.50 -3.10 CH4 CO2(g) 1.94 -0.02 -1.95 CO2 Pressure 144.6 atm, phi 0.598 - H2(g) -10.78 -13.98 -3.20 H2 + H2(g) -10.60 -13.80 -3.20 H2 H2O(g) -0.39 -0.01 0.38 H2O Pressure 1.5 atm, phi 0.278 - O2(g) -47.56 -50.73 -3.17 O2 + O2(g) -47.92 -51.09 -3.17 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6702,15 +6691,15 @@ H2O(g) 0.21 1.640e+00 0.250 1.004e-01 1.149e-01 1.446e-02 ----------------------------Description of solution---------------------------- pH = 3.134 Charge balance - pe = 2.173 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 465 + pe = 1.950 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 440 Density (g/cm³) = 0.98999 Volume (L) = 1.05704 - Viscosity (mPa s) = 0.38188 + Viscosity (mPa s) = 0.38179 Activity of water = 0.982 - Ionic strength (mol/kgw) = 7.595e-04 + Ionic strength (mol/kgw) = 7.592e-04 Mass of water (kg) = 9.979e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.105e+00 Temperature (°C) = 75.00 Pressure (atm) = 157.24 @@ -6725,30 +6714,30 @@ H2O(g) 0.21 1.640e+00 0.250 1.004e-01 1.149e-01 1.446e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.595e-04 7.350e-04 -3.119 -3.134 -0.014 0.00 - OH- 3.225e-10 3.116e-10 -9.491 -9.506 -0.015 -4.97 + H+ 7.591e-04 7.347e-04 -3.120 -3.134 -0.014 0.00 + OH- 3.226e-10 3.117e-10 -9.491 -9.506 -0.015 -4.97 H2O 5.551e+01 9.822e-01 1.744 -0.008 0.000 18.35 -C(-4) 4.549e-25 - CH4 4.549e-25 4.549e-25 -24.342 -24.342 0.000 39.05 +C(-4) 2.777e-23 + CH4 2.777e-23 2.777e-23 -22.556 -22.556 0.000 39.05 C(4) 1.105e+00 CO2 9.817e-01 9.818e-01 -0.008 -0.008 0.000 36.79 (CO2)2 6.132e-02 6.133e-02 -1.212 -1.212 0.000 73.59 - HCO3- 7.595e-04 7.342e-04 -3.119 -3.134 -0.015 25.72 - CO3-2 1.002e-10 8.752e-11 -9.999 -10.058 -0.059 -2.84 -H(0) 1.924e-14 - H2 9.621e-15 9.623e-15 -14.017 -14.017 0.000 28.50 + HCO3- 7.592e-04 7.339e-04 -3.120 -3.134 -0.015 25.87 + CO3-2 1.006e-10 8.786e-11 -9.998 -10.056 -0.059 -3.38 +H(0) 5.378e-14 + H2 2.689e-14 2.690e-14 -13.570 -13.570 0.000 28.50 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.669 -50.669 0.000 32.56 + O2 0.000e+00 0.000e+00 -51.562 -51.562 0.000 32.56 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 157 atm) - CH4(g) -21.24 -24.34 -3.11 CH4 + CH4(g) -19.45 -22.56 -3.11 CH4 CO2(g) 1.95 -0.01 -1.96 CO2 Pressure 155.6 atm, phi 0.577 - H2(g) -10.82 -14.02 -3.20 H2 + H2(g) -10.37 -13.57 -3.20 H2 H2O(g) -0.39 -0.01 0.38 H2O Pressure 1.6 atm, phi 0.250 - O2(g) -47.49 -50.67 -3.18 O2 + O2(g) -48.39 -51.56 -3.18 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6797,53 +6786,53 @@ H2O(g) 0.27 1.845e+00 0.224 1.149e-01 1.303e-01 1.547e-02 ----------------------------Description of solution---------------------------- pH = 3.126 Charge balance - pe = 2.127 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 472 + pe = 1.990 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 447 Density (g/cm³) = 0.99075 Volume (L) = 1.05719 - Viscosity (mPa s) = 0.38222 + Viscosity (mPa s) = 0.38213 Activity of water = 0.982 - Ionic strength (mol/kgw) = 7.730e-04 + Ionic strength (mol/kgw) = 7.726e-04 Mass of water (kg) = 9.976e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.133e+00 Temperature (°C) = 75.00 Pressure (atm) = 169.89 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 24 Total H = 1.107517e+02 - Total O = 5.763696e+01 + Total O = 5.763695e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.730e-04 7.479e-04 -3.112 -3.126 -0.014 0.00 - OH- 3.202e-10 3.093e-10 -9.495 -9.510 -0.015 -5.01 + H+ 7.726e-04 7.475e-04 -3.112 -3.126 -0.014 0.00 + OH- 3.204e-10 3.095e-10 -9.494 -9.509 -0.015 -5.01 H2O 5.551e+01 9.818e-01 1.744 -0.008 0.000 18.34 -C(-4) 1.231e-24 - CH4 1.231e-24 1.231e-24 -23.910 -23.910 0.000 39.05 +C(-4) 1.540e-23 + CH4 1.540e-23 1.540e-23 -22.812 -22.812 0.000 39.05 C(4) 1.133e+00 CO2 1.004e+00 1.004e+00 0.002 0.002 0.000 36.77 (CO2)2 6.416e-02 6.417e-02 -1.193 -1.193 0.000 73.54 - HCO3- 7.730e-04 7.471e-04 -3.112 -3.127 -0.015 25.75 - CO3-2 1.015e-10 8.858e-11 -9.994 -10.053 -0.059 -2.70 -H(0) 2.433e-14 - H2 1.217e-14 1.217e-14 -13.915 -13.915 0.000 28.50 + HCO3- 7.726e-04 7.468e-04 -3.112 -3.127 -0.015 25.92 + CO3-2 1.019e-10 8.896e-11 -9.992 -10.051 -0.059 -3.26 +H(0) 4.576e-14 + H2 2.288e-14 2.288e-14 -13.641 -13.640 0.000 28.50 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.883 -50.883 0.000 32.53 + O2 0.000e+00 0.000e+00 -51.432 -51.432 0.000 32.53 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 170 atm) - CH4(g) -20.80 -23.91 -3.11 CH4 + CH4(g) -19.70 -22.81 -3.11 CH4 CO2(g) 1.97 0.00 -1.97 CO2 Pressure 168.0 atm, phi 0.555 - H2(g) -10.71 -13.91 -3.21 H2 + H2(g) -10.43 -13.64 -3.21 H2 H2O(g) -0.38 -0.01 0.38 H2O Pressure 1.8 atm, phi 0.224 - O2(g) -47.70 -50.88 -3.18 O2 + O2(g) -48.25 -51.43 -3.18 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6893,12 +6882,12 @@ H2O(g) 0.32 2.085e+00 0.200 1.303e-01 1.467e-01 1.639e-02 pH = 3.118 Charge balance pe = 2.109 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 481 + Specific Conductance (µS/cm, 75°C) = 454 Density (g/cm³) = 0.99159 Volume (L) = 1.05726 - Viscosity (mPa s) = 0.38262 + Viscosity (mPa s) = 0.38252 Activity of water = 0.981 - Ionic strength (mol/kgw) = 7.876e-04 + Ionic strength (mol/kgw) = 7.871e-04 Mass of water (kg) = 9.973e-01 Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.162e+00 @@ -6915,20 +6904,20 @@ H2O(g) 0.32 2.085e+00 0.200 1.303e-01 1.467e-01 1.639e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.876e-04 7.619e-04 -3.104 -3.118 -0.014 0.00 - OH- 3.182e-10 3.072e-10 -9.497 -9.513 -0.015 -5.05 + H+ 7.871e-04 7.614e-04 -3.104 -3.118 -0.014 0.00 + OH- 3.184e-10 3.074e-10 -9.497 -9.512 -0.015 -5.05 H2O 5.551e+01 9.814e-01 1.744 -0.008 0.000 18.33 -C(-4) 1.999e-24 - CH4 1.999e-24 1.999e-24 -23.699 -23.699 0.000 39.05 +C(-4) 1.984e-24 + CH4 1.984e-24 1.984e-24 -23.703 -23.702 0.000 39.05 C(4) 1.162e+00 CO2 1.027e+00 1.027e+00 0.012 0.012 0.000 36.75 (CO2)2 6.714e-02 6.716e-02 -1.173 -1.173 0.000 73.49 - HCO3- 7.876e-04 7.611e-04 -3.104 -3.119 -0.015 25.78 - CO3-2 1.030e-10 8.981e-11 -9.987 -10.047 -0.060 -2.54 -H(0) 2.704e-14 - H2 1.352e-14 1.352e-14 -13.869 -13.869 0.000 28.49 + HCO3- 7.871e-04 7.606e-04 -3.104 -3.119 -0.015 25.99 + CO3-2 1.035e-10 9.026e-11 -9.985 -10.045 -0.060 -3.12 +H(0) 2.699e-14 + H2 1.350e-14 1.350e-14 -13.870 -13.870 0.000 28.49 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.987 -50.987 0.000 32.49 + O2 0.000e+00 0.000e+00 -50.986 -50.986 0.000 32.49 ------------------------------Saturation indices------------------------------- @@ -6986,22 +6975,22 @@ H2O(g) 0.37 2.368e+00 0.178 1.467e-01 1.639e-01 1.719e-02 ----------------------------Description of solution---------------------------- - pH = 3.109 Charge balance - pe = 2.165 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 490 + pH = 3.110 Charge balance + pe = 2.181 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 462 Density (g/cm³) = 0.99256 Volume (L) = 1.05726 - Viscosity (mPa s) = 0.38309 + Viscosity (mPa s) = 0.38298 Activity of water = 0.981 - Ionic strength (mol/kgw) = 8.038e-04 + Ionic strength (mol/kgw) = 8.031e-04 Mass of water (kg) = 9.970e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.193e+00 Temperature (°C) = 75.00 Pressure (atm) = 201.89 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 + Iterations = 30 Total H = 1.106846e+02 Total O = 5.772096e+01 @@ -7010,30 +6999,30 @@ H2O(g) 0.37 2.368e+00 0.178 1.467e-01 1.639e-01 1.719e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.038e-04 7.773e-04 -3.095 -3.109 -0.015 0.00 - OH- 3.163e-10 3.054e-10 -9.500 -9.515 -0.015 -5.11 + H+ 8.031e-04 7.766e-04 -3.095 -3.110 -0.015 0.00 + OH- 3.166e-10 3.056e-10 -9.499 -9.515 -0.015 -5.11 H2O 5.551e+01 9.809e-01 1.744 -0.008 0.000 18.32 -C(-4) 8.347e-25 - CH4 8.347e-25 8.349e-25 -24.078 -24.078 0.000 39.04 +C(-4) 6.179e-25 + CH4 6.179e-25 6.180e-25 -24.209 -24.209 0.000 39.04 C(4) 1.193e+00 CO2 1.051e+00 1.052e+00 0.022 0.022 0.000 36.72 (CO2)2 7.034e-02 7.035e-02 -1.153 -1.153 0.000 73.43 - HCO3- 8.038e-04 7.764e-04 -3.095 -3.110 -0.015 25.82 - CO3-2 1.048e-10 9.127e-11 -9.980 -10.040 -0.060 -2.36 -H(0) 2.137e-14 - H2 1.068e-14 1.069e-14 -13.971 -13.971 0.000 28.49 + HCO3- 8.031e-04 7.758e-04 -3.095 -3.110 -0.015 26.06 + CO3-2 1.054e-10 9.180e-11 -9.977 -10.037 -0.060 -2.95 +H(0) 1.982e-14 + H2 9.909e-15 9.911e-15 -14.004 -14.004 0.000 28.49 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.797 -50.797 0.000 32.45 + O2 0.000e+00 0.000e+00 -50.731 -50.731 0.000 32.45 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 202 atm) - CH4(g) -20.95 -24.08 -3.13 CH4 + CH4(g) -21.08 -24.21 -3.13 CH4 CO2(g) 2.01 0.02 -1.99 CO2 Pressure 199.5 atm, phi 0.510 - H2(g) -10.75 -13.97 -3.22 H2 + H2(g) -10.78 -14.00 -3.22 H2 H2O(g) -0.38 -0.01 0.37 H2O Pressure 2.4 atm, phi 0.178 - O2(g) -47.60 -50.80 -3.20 O2 + O2(g) -47.53 -50.73 -3.20 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7082,19 +7071,19 @@ H2O(g) 0.43 2.704e+00 0.158 1.639e-01 1.818e-01 1.784e-02 ----------------------------Description of solution---------------------------- pH = 3.100 Charge balance - pe = 2.388 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 500 + pe = 2.157 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 472 Density (g/cm³) = 0.99369 Volume (L) = 1.05716 - Viscosity (mPa s) = 0.38364 + Viscosity (mPa s) = 0.38353 Activity of water = 0.980 - Ionic strength (mol/kgw) = 8.219e-04 + Ionic strength (mol/kgw) = 8.210e-04 Mass of water (kg) = 9.967e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.226e+00 Temperature (°C) = 75.00 Pressure (atm) = 222.54 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.212e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 52 Total H = 1.106489e+02 @@ -7105,30 +7094,30 @@ H2O(g) 0.43 2.704e+00 0.158 1.639e-01 1.818e-01 1.784e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.219e-04 7.945e-04 -3.085 -3.100 -0.015 0.00 - OH- 3.148e-10 3.038e-10 -9.502 -9.517 -0.015 -5.17 + H+ 8.210e-04 7.937e-04 -3.086 -3.100 -0.015 0.00 + OH- 3.151e-10 3.041e-10 -9.502 -9.517 -0.015 -5.17 H2O 5.551e+01 9.804e-01 1.744 -0.009 0.000 18.30 -C(-4) 1.620e-26 - CH4 1.620e-26 1.620e-26 -25.791 -25.790 0.000 39.04 +C(-4) 1.149e-24 + CH4 1.149e-24 1.149e-24 -23.940 -23.940 0.000 39.04 C(4) 1.226e+00 CO2 1.077e+00 1.077e+00 0.032 0.032 0.000 36.68 (CO2)2 7.382e-02 7.383e-02 -1.132 -1.132 0.000 73.37 - HCO3- 8.219e-04 7.937e-04 -3.085 -3.100 -0.015 25.87 - CO3-2 1.070e-10 9.302e-11 -9.971 -10.031 -0.061 -2.14 -H(0) 7.819e-15 - H2 3.909e-15 3.910e-15 -14.408 -14.408 0.000 28.48 + HCO3- 8.210e-04 7.928e-04 -3.086 -3.101 -0.015 26.14 + CO3-2 1.077e-10 9.367e-11 -9.968 -10.028 -0.061 -2.76 +H(0) 2.269e-14 + H2 1.134e-14 1.135e-14 -13.945 -13.945 0.000 28.48 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -49.940 -49.940 0.000 32.40 + O2 0.000e+00 0.000e+00 -50.866 -50.866 0.000 32.40 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 223 atm) - CH4(g) -22.65 -25.79 -3.14 CH4 + CH4(g) -20.80 -23.94 -3.14 CH4 CO2(g) 2.03 0.03 -2.00 CO2 Pressure 219.8 atm, phi 0.487 - H2(g) -11.18 -14.41 -3.23 H2 + H2(g) -10.72 -13.95 -3.23 H2 H2O(g) -0.37 -0.01 0.36 H2O Pressure 2.7 atm, phi 0.158 - O2(g) -46.73 -49.94 -3.21 O2 + O2(g) -47.66 -50.87 -3.21 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7176,22 +7165,22 @@ H2O(g) 0.49 3.103e+00 0.140 1.818e-01 2.001e-01 1.830e-02 ----------------------------Description of solution---------------------------- - pH = 3.089 Charge balance - pe = 2.277 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 512 + pH = 3.090 Charge balance + pe = 2.124 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 482 Density (g/cm³) = 0.99500 Volume (L) = 1.05696 - Viscosity (mPa s) = 0.38431 + Viscosity (mPa s) = 0.38420 Activity of water = 0.980 - Ionic strength (mol/kgw) = 8.425e-04 + Ionic strength (mol/kgw) = 8.413e-04 Mass of water (kg) = 9.964e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.261e+00 Temperature (°C) = 75.00 Pressure (atm) = 247.32 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.212e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 59 + Iterations = 60 Total H = 1.106123e+02 Total O = 5.781815e+01 @@ -7200,30 +7189,30 @@ H2O(g) 0.49 3.103e+00 0.140 1.818e-01 2.001e-01 1.830e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.425e-04 8.142e-04 -3.074 -3.089 -0.015 0.00 - OH- 3.136e-10 3.025e-10 -9.504 -9.519 -0.016 -5.24 + H+ 8.413e-04 8.131e-04 -3.075 -3.090 -0.015 0.00 + OH- 3.140e-10 3.030e-10 -9.503 -9.519 -0.016 -5.24 H2O 5.551e+01 9.799e-01 1.744 -0.009 0.000 18.28 -C(-4) 1.512e-25 - CH4 1.512e-25 1.512e-25 -24.820 -24.820 0.000 39.03 +C(-4) 2.508e-24 + CH4 2.508e-24 2.509e-24 -23.601 -23.601 0.000 39.03 C(4) 1.261e+00 CO2 1.104e+00 1.105e+00 0.043 0.043 0.000 36.64 (CO2)2 7.762e-02 7.764e-02 -1.110 -1.110 0.000 73.28 - HCO3- 8.425e-04 8.133e-04 -3.074 -3.090 -0.015 25.93 - CO3-2 1.096e-10 9.514e-11 -9.960 -10.022 -0.061 -1.88 -H(0) 1.336e-14 - H2 6.679e-15 6.681e-15 -14.175 -14.175 0.000 28.47 + HCO3- 8.413e-04 8.122e-04 -3.075 -3.090 -0.015 26.24 + CO3-2 1.105e-10 9.594e-11 -9.957 -10.018 -0.061 -2.53 +H(0) 2.696e-14 + H2 1.348e-14 1.348e-14 -13.870 -13.870 0.000 28.47 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.426 -50.426 0.000 32.34 + O2 0.000e+00 0.000e+00 -51.036 -51.036 0.000 32.34 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 247 atm) - CH4(g) -21.66 -24.82 -3.16 CH4 + CH4(g) -20.44 -23.60 -3.16 CH4 CO2(g) 2.05 0.04 -2.01 CO2 Pressure 244.2 atm, phi 0.464 - H2(g) -10.94 -14.18 -3.24 H2 + H2(g) -10.63 -13.87 -3.24 H2 H2O(g) -0.36 -0.01 0.35 H2O Pressure 3.1 atm, phi 0.140 - O2(g) -47.21 -50.43 -3.22 O2 + O2(g) -47.82 -51.04 -3.22 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7271,20 +7260,20 @@ H2O(g) 0.55 3.579e+00 0.123 2.001e-01 2.186e-01 1.854e-02 ----------------------------Description of solution---------------------------- - pH = 3.077 Charge balance - pe = 2.243 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 525 + pH = 3.078 Charge balance + pe = 2.151 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 495 Density (g/cm³) = 0.99654 Volume (L) = 1.05664 - Viscosity (mPa s) = 0.38512 + Viscosity (mPa s) = 0.38499 Activity of water = 0.979 - Ionic strength (mol/kgw) = 8.662e-04 + Ionic strength (mol/kgw) = 8.646e-04 Mass of water (kg) = 9.960e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.298e+00 Temperature (°C) = 75.00 Pressure (atm) = 277.14 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.212e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 67 Total H = 1.105752e+02 @@ -7295,30 +7284,30 @@ H2O(g) 0.55 3.579e+00 0.123 2.001e-01 2.186e-01 1.854e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.662e-04 8.368e-04 -3.062 -3.077 -0.015 0.00 - OH- 3.129e-10 3.017e-10 -9.505 -9.520 -0.016 -5.33 + H+ 8.646e-04 8.353e-04 -3.063 -3.078 -0.015 0.00 + OH- 3.134e-10 3.023e-10 -9.504 -9.520 -0.016 -5.33 H2O 5.551e+01 9.793e-01 1.744 -0.009 0.000 18.26 -C(-4) 3.510e-25 - CH4 3.510e-25 3.510e-25 -24.455 -24.455 0.000 39.03 +C(-4) 1.866e-24 + CH4 1.866e-24 1.866e-24 -23.729 -23.729 0.000 39.03 C(4) 1.298e+00 CO2 1.134e+00 1.134e+00 0.055 0.055 0.000 36.59 (CO2)2 8.181e-02 8.183e-02 -1.087 -1.087 0.000 73.19 - HCO3- 8.662e-04 8.358e-04 -3.062 -3.078 -0.016 25.99 - CO3-2 1.127e-10 9.771e-11 -9.948 -10.010 -0.062 -1.57 -H(0) 1.606e-14 - H2 8.030e-15 8.032e-15 -14.095 -14.095 0.000 28.45 + HCO3- 8.646e-04 8.343e-04 -3.063 -3.079 -0.015 26.36 + CO3-2 1.139e-10 9.872e-11 -9.944 -10.006 -0.062 -2.26 +H(0) 2.439e-14 + H2 1.219e-14 1.220e-14 -13.914 -13.914 0.000 28.45 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.610 -50.610 0.000 32.27 + O2 0.000e+00 0.000e+00 -50.973 -50.973 0.000 32.27 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 277 atm) - CH4(g) -21.28 -24.45 -3.18 CH4 + CH4(g) -20.55 -23.73 -3.18 CH4 CO2(g) 2.08 0.05 -2.03 CO2 Pressure 273.6 atm, phi 0.441 - H2(g) -10.84 -14.10 -3.25 H2 + H2(g) -10.66 -13.91 -3.25 H2 H2O(g) -0.36 -0.01 0.35 H2O Pressure 3.6 atm, phi 0.123 - O2(g) -47.38 -50.61 -3.23 O2 + O2(g) -47.74 -50.97 -3.23 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7366,22 +7355,22 @@ H2O(g) 0.62 4.146e+00 0.109 2.186e-01 2.371e-01 1.851e-02 ----------------------------Description of solution---------------------------- - pH = 3.064 Charge balance - pe = 2.155 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 541 + pH = 3.065 Charge balance + pe = 2.230 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 509 Density (g/cm³) = 0.99835 Volume (L) = 1.05616 - Viscosity (mPa s) = 0.38609 + Viscosity (mPa s) = 0.38595 Activity of water = 0.979 - Ionic strength (mol/kgw) = 8.935e-04 + Ionic strength (mol/kgw) = 8.914e-04 Mass of water (kg) = 9.957e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.339e+00 Temperature (°C) = 75.00 Pressure (atm) = 313.08 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.212e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 75 + Iterations = 76 Total H = 1.105382e+02 Total O = 5.793600e+01 @@ -7390,30 +7379,30 @@ H2O(g) 0.62 4.146e+00 0.109 2.186e-01 2.371e-01 1.851e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.935e-04 8.628e-04 -3.049 -3.064 -0.015 0.00 - OH- 3.128e-10 3.015e-10 -9.505 -9.521 -0.016 -5.43 + H+ 8.914e-04 8.608e-04 -3.050 -3.065 -0.015 0.00 + OH- 3.135e-10 3.022e-10 -9.504 -9.520 -0.016 -5.43 H2O 5.551e+01 9.787e-01 1.744 -0.009 0.000 18.23 -C(-4) 2.221e-24 - CH4 2.221e-24 2.221e-24 -23.654 -23.653 0.000 39.02 +C(-4) 5.452e-25 + CH4 5.452e-25 5.453e-25 -24.263 -24.263 0.000 39.02 C(4) 1.339e+00 CO2 1.165e+00 1.166e+00 0.066 0.067 0.000 36.53 (CO2)2 8.643e-02 8.645e-02 -1.063 -1.063 0.000 73.07 - HCO3- 8.935e-04 8.618e-04 -3.049 -3.065 -0.016 26.07 - CO3-2 1.165e-10 1.008e-10 -9.934 -9.996 -0.063 -1.21 -H(0) 2.471e-14 - H2 1.235e-14 1.236e-14 -13.908 -13.908 0.000 28.44 + HCO3- 8.914e-04 8.598e-04 -3.050 -3.066 -0.016 26.50 + CO3-2 1.180e-10 1.021e-10 -9.928 -9.991 -0.063 -1.94 +H(0) 1.739e-14 + H2 8.695e-15 8.697e-15 -14.061 -14.061 0.000 28.44 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -51.013 -51.013 0.000 32.18 + O2 0.000e+00 0.000e+00 -50.708 -50.708 0.000 32.18 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 313 atm) - CH4(g) -20.46 -23.65 -3.20 CH4 + CH4(g) -21.07 -24.26 -3.20 CH4 CO2(g) 2.11 0.07 -2.05 CO2 Pressure 308.9 atm, phi 0.420 - H2(g) -10.64 -13.91 -3.27 H2 + H2(g) -10.79 -14.06 -3.27 H2 H2O(g) -0.35 -0.01 0.34 H2O Pressure 4.1 atm, phi 0.109 - O2(g) -47.76 -51.01 -3.25 O2 + O2(g) -47.46 -50.71 -3.25 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7461,60 +7450,67 @@ H2O(g) 0.68 4.819e+00 0.096 2.371e-01 2.553e-01 1.819e-02 ----------------------------Description of solution---------------------------- - pH = 3.049 Charge balance - pe = 2.101 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 558 + pH = 3.050 Charge balance + pe = 2.295 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 525 Density (g/cm³) = 1.00048 Volume (L) = 1.05549 - Viscosity (mPa s) = 0.38726 + Viscosity (mPa s) = 0.38711 Activity of water = 0.978 - Ionic strength (mol/kgw) = 9.254e-04 + Ionic strength (mol/kgw) = 9.224e-04 Mass of water (kg) = 9.954e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.383e+00 Temperature (°C) = 75.00 Pressure (atm) = 356.38 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.212e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 84 + Iterations = 86 Total H = 1.105018e+02 - Total O = 5.800455e+01 + Total O = 5.800454e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.254e-04 8.931e-04 -3.034 -3.049 -0.015 0.00 - OH- 3.135e-10 3.020e-10 -9.504 -9.520 -0.016 -5.54 + H+ 9.224e-04 8.903e-04 -3.035 -3.050 -0.015 0.00 + OH- 3.144e-10 3.029e-10 -9.502 -9.519 -0.016 -5.54 H2O 5.551e+01 9.780e-01 1.744 -0.010 0.000 18.20 -C(-4) 7.616e-24 - CH4 7.616e-24 7.618e-24 -23.118 -23.118 0.000 39.01 +C(-4) 2.089e-25 + CH4 2.089e-25 2.090e-25 -24.680 -24.680 0.000 39.01 C(4) 1.383e+00 CO2 1.199e+00 1.199e+00 0.079 0.079 0.000 36.47 (CO2)2 9.152e-02 9.154e-02 -1.038 -1.038 0.000 72.93 - HCO3- 9.254e-04 8.920e-04 -3.034 -3.050 -0.016 26.16 - CO3-2 1.212e-10 1.047e-10 -9.916 -9.980 -0.064 -0.79 -H(0) 3.244e-14 - H2 1.622e-14 1.622e-14 -13.790 -13.790 0.000 28.42 + HCO3- 9.224e-04 8.892e-04 -3.035 -3.051 -0.016 26.67 + CO3-2 1.231e-10 1.064e-10 -9.910 -9.973 -0.064 -1.57 +H(0) 1.320e-14 + H2 6.602e-15 6.603e-15 -14.180 -14.180 0.000 28.42 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -51.285 -51.285 0.000 32.08 + O2 0.000e+00 0.000e+00 -50.504 -50.504 0.000 32.08 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 356 atm) - CH4(g) -19.89 -23.12 -3.22 CH4 + CH4(g) -21.46 -24.68 -3.22 CH4 CO2(g) 2.15 0.08 -2.07 CO2 Pressure 351.6 atm, phi 0.401 - H2(g) -10.50 -13.79 -3.29 H2 + H2(g) -10.89 -14.18 -3.29 H2 H2O(g) -0.33 -0.01 0.32 H2O Pressure 4.8 atm, phi 0.096 - O2(g) -48.01 -51.28 -3.27 O2 + O2(g) -47.23 -50.50 -3.27 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. Reaction step 22. +WARNING: Numerical method failed, switching to numerical derivatives. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying smaller step size, pe step size 10, 5 ... + Using solution 1. Using gas phase 1. Using temperature 3. @@ -7556,22 +7552,22 @@ H2O(g) 0.75 5.616e+00 0.085 2.553e-01 2.728e-01 1.752e-02 ----------------------------Description of solution---------------------------- - pH = 3.032 Charge balance - pe = 2.336 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 578 + pH = 3.034 Charge balance + pe = 12.341 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 544 Density (g/cm³) = 1.00298 Volume (L) = 1.05459 - Viscosity (mPa s) = 0.38867 + Viscosity (mPa s) = 0.38850 Activity of water = 0.977 - Ionic strength (mol/kgw) = 9.626e-04 + Ionic strength (mol/kgw) = 9.585e-04 Mass of water (kg) = 9.951e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.431e+00 Temperature (°C) = 75.00 Pressure (atm) = 408.56 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 95 + Iterations = 122 (223 overall) Total H = 1.104668e+02 Total O = 5.808036e+01 @@ -7580,30 +7576,30 @@ H2O(g) 0.75 5.616e+00 0.085 2.553e-01 2.728e-01 1.752e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.626e-04 9.286e-04 -3.017 -3.032 -0.016 0.00 - OH- 3.153e-10 3.035e-10 -9.501 -9.518 -0.016 -5.68 + H+ 9.585e-04 9.247e-04 -3.018 -3.034 -0.016 0.00 + OH- 3.166e-10 3.048e-10 -9.500 -9.516 -0.016 -5.68 H2O 5.551e+01 9.773e-01 1.744 -0.010 0.000 18.16 -C(-4) 1.331e-25 - CH4 1.331e-25 1.332e-25 -24.876 -24.876 0.000 39.00 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -104.932 -104.932 0.000 39.00 C(4) 1.431e+00 CO2 1.235e+00 1.236e+00 0.092 0.092 0.000 36.39 (CO2)2 9.711e-02 9.713e-02 -1.013 -1.013 0.000 72.77 - HCO3- 9.626e-04 9.274e-04 -3.017 -3.033 -0.016 26.27 - CO3-2 1.269e-10 1.093e-10 -9.897 -9.961 -0.065 -0.29 -H(0) 1.131e-14 - H2 5.657e-15 5.659e-15 -14.247 -14.247 0.000 28.40 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.412 -50.412 0.000 31.97 + HCO3- 9.585e-04 9.235e-04 -3.018 -3.035 -0.016 26.86 + CO3-2 1.295e-10 1.116e-10 -9.888 -9.952 -0.065 -1.13 +H(0) 1.096e-34 + H2 5.478e-35 5.479e-35 -34.261 -34.261 0.000 28.40 +O(0) 8.268e-11 + O2 4.134e-11 4.135e-11 -10.384 -10.384 0.000 31.97 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 409 atm) - CH4(g) -21.62 -24.88 -3.25 CH4 + CH4(g) -101.68 -104.93 -3.25 CH4 CO2(g) 2.19 0.09 -2.10 CO2 Pressure 402.9 atm, phi 0.385 - H2(g) -10.94 -14.25 -3.31 H2 + H2(g) -30.95 -34.26 -3.31 H2 H2O(g) -0.32 -0.01 0.31 H2O Pressure 5.6 atm, phi 0.085 - O2(g) -47.12 -50.41 -3.30 O2 + O2(g) -7.09 -10.38 -3.30 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7658,54 +7654,54 @@ H2O(g) 0.82 6.552e+00 0.076 2.728e-01 2.893e-01 1.646e-02 ----------------------------Description of solution---------------------------- - pH = 3.013 Charge balance - pe = 2.768 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 602 + pH = 3.016 Charge balance + pe = 12.359 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 567 Density (g/cm³) = 1.00591 Volume (L) = 1.05341 - Viscosity (mPa s) = 0.39037 + Viscosity (mPa s) = 0.39018 Activity of water = 0.977 - Ionic strength (mol/kgw) = 1.006e-03 + Ionic strength (mol/kgw) = 1.001e-03 Mass of water (kg) = 9.948e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.481e+00 Temperature (°C) = 75.00 Pressure (atm) = 471.44 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 146 (247 overall) + Iterations = 35 (136 overall) Total H = 1.104339e+02 - Total O = 5.816399e+01 + Total O = 5.816398e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.006e-03 9.702e-04 -2.997 -3.013 -0.016 0.00 - OH- 3.185e-10 3.065e-10 -9.497 -9.514 -0.017 -5.84 + H+ 1.001e-03 9.647e-04 -3.000 -3.016 -0.016 0.00 + OH- 3.203e-10 3.082e-10 -9.494 -9.511 -0.017 -5.84 H2O 5.551e+01 9.766e-01 1.744 -0.010 0.000 18.11 -C(-4) 6.275e-29 - CH4 6.275e-29 6.276e-29 -28.202 -28.202 0.000 38.98 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -104.948 -104.948 0.000 38.98 C(4) 1.481e+00 CO2 1.274e+00 1.274e+00 0.105 0.105 0.000 36.29 (CO2)2 1.032e-01 1.033e-01 -0.986 -0.986 0.000 72.58 - HCO3- 1.006e-03 9.689e-04 -2.997 -3.014 -0.016 26.40 - CO3-2 1.339e-10 1.150e-10 -9.873 -9.939 -0.066 0.29 -H(0) 1.588e-15 - H2 7.938e-16 7.940e-16 -15.100 -15.100 0.000 28.38 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -48.756 -48.756 0.000 31.83 + HCO3- 1.001e-03 9.634e-04 -3.000 -3.016 -0.016 27.09 + CO3-2 1.374e-10 1.181e-10 -9.862 -9.928 -0.066 -0.62 +H(0) 1.034e-34 + H2 5.169e-35 5.170e-35 -34.287 -34.286 0.000 28.38 +O(0) 8.270e-11 + O2 4.135e-11 4.136e-11 -10.384 -10.383 0.000 31.83 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 471 atm) - CH4(g) -24.91 -28.20 -3.29 CH4 + CH4(g) -101.66 -104.95 -3.29 CH4 CO2(g) 2.24 0.11 -2.13 CO2 Pressure 464.9 atm, phi 0.372 - H2(g) -11.76 -15.10 -3.34 H2 + H2(g) -30.95 -34.29 -3.34 H2 H2O(g) -0.30 -0.01 0.29 H2O Pressure 6.6 atm, phi 0.076 - O2(g) -45.43 -48.76 -3.33 O2 + O2(g) -7.06 -10.38 -3.33 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7760,54 +7756,54 @@ H2O(g) 0.88 7.646e+00 0.068 2.893e-01 3.042e-01 1.496e-02 ----------------------------Description of solution---------------------------- - pH = 2.992 Charge balance - pe = 12.662 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 630 + pH = 2.995 Charge balance + pe = 12.378 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 593 Density (g/cm³) = 1.00936 Volume (L) = 1.05188 - Viscosity (mPa s) = 0.39243 + Viscosity (mPa s) = 0.39221 Activity of water = 0.976 - Ionic strength (mol/kgw) = 1.058e-03 + Ionic strength (mol/kgw) = 1.050e-03 Mass of water (kg) = 9.945e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.535e+00 Temperature (°C) = 75.00 Pressure (atm) = 547.25 - Electrical balance (eq) = -1.209e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 101 (202 overall) + Iterations = 36 (137 overall) Total H = 1.104039e+02 - Total O = 5.825587e+01 + Total O = 5.825586e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.058e-03 1.019e-03 -2.975 -2.992 -0.016 0.00 - OH- 3.238e-10 3.113e-10 -9.490 -9.507 -0.017 -6.01 + H+ 1.050e-03 1.012e-03 -2.979 -2.995 -0.016 0.00 + OH- 3.262e-10 3.137e-10 -9.486 -9.504 -0.017 -6.01 H2O 5.551e+01 9.757e-01 1.744 -0.011 0.000 18.05 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.213 -107.213 0.000 38.96 + CH4 0.000e+00 0.000e+00 -104.969 -104.969 0.000 38.96 C(4) 1.535e+00 CO2 1.314e+00 1.315e+00 0.119 0.119 0.000 36.18 (CO2)2 1.099e-01 1.100e-01 -0.959 -0.959 0.000 72.36 - HCO3- 1.058e-03 1.018e-03 -2.975 -2.992 -0.017 26.54 - CO3-2 1.425e-10 1.221e-10 -9.846 -9.913 -0.067 0.96 -H(0) 2.649e-35 - H2 1.325e-35 1.325e-35 -34.878 -34.878 0.000 28.36 -O(0) 1.096e-09 - O2 5.480e-10 5.482e-10 -9.261 -9.261 0.000 31.68 + HCO3- 1.050e-03 1.010e-03 -2.979 -2.996 -0.017 27.35 + CO3-2 1.474e-10 1.263e-10 -9.832 -9.899 -0.067 -0.02 +H(0) 9.645e-35 + H2 4.822e-35 4.824e-35 -34.317 -34.317 0.000 28.36 +O(0) 8.270e-11 + O2 4.135e-11 4.136e-11 -10.383 -10.383 0.000 31.68 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 547 atm) - CH4(g) -103.88 -107.21 -3.34 CH4 + CH4(g) -101.63 -104.97 -3.34 CH4 CO2(g) 2.29 0.12 -2.17 CO2 Pressure 539.6 atm, phi 0.364 - H2(g) -31.51 -34.88 -3.37 H2 + H2(g) -30.95 -34.32 -3.37 H2 H2O(g) -0.28 -0.01 0.27 H2O Pressure 7.6 atm, phi 0.068 - O2(g) -5.90 -9.26 -3.36 O2 + O2(g) -7.02 -10.38 -3.36 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7862,54 +7858,54 @@ H2O(g) 0.95 8.913e+00 0.062 3.042e-01 3.172e-01 1.297e-02 ----------------------------Description of solution---------------------------- - pH = 2.967 Charge balance - pe = 12.685 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 662 + pH = 2.972 Charge balance + pe = 12.400 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 624 Density (g/cm³) = 1.01339 Volume (L) = 1.04992 - Viscosity (mPa s) = 0.39492 + Viscosity (mPa s) = 0.39467 Activity of water = 0.975 - Ionic strength (mol/kgw) = 1.120e-03 + Ionic strength (mol/kgw) = 1.108e-03 Mass of water (kg) = 9.943e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.593e+00 Temperature (°C) = 75.00 Pressure (atm) = 638.75 - Electrical balance (eq) = -1.209e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.103780e+02 - Total O = 5.835631e+01 + Total O = 5.835630e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.120e-03 1.078e-03 -2.951 -2.967 -0.017 0.00 - OH- 3.317e-10 3.186e-10 -9.479 -9.497 -0.018 -6.22 + H+ 1.108e-03 1.067e-03 -2.955 -2.972 -0.016 0.00 + OH- 3.351e-10 3.220e-10 -9.475 -9.492 -0.017 -6.22 H2O 5.551e+01 9.749e-01 1.744 -0.011 0.000 17.99 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.241 -107.241 0.000 38.94 + CH4 0.000e+00 0.000e+00 -104.996 -104.996 0.000 38.94 C(4) 1.593e+00 CO2 1.357e+00 1.357e+00 0.133 0.133 0.000 36.05 (CO2)2 1.172e-01 1.173e-01 -0.931 -0.931 0.000 72.11 - HCO3- 1.120e-03 1.076e-03 -2.951 -2.968 -0.017 26.72 - CO3-2 1.531e-10 1.307e-10 -9.815 -9.884 -0.069 1.73 -H(0) 2.437e-35 - H2 1.218e-35 1.219e-35 -34.914 -34.914 0.000 28.33 -O(0) 1.096e-09 - O2 5.482e-10 5.483e-10 -9.261 -9.261 0.000 31.50 + HCO3- 1.108e-03 1.065e-03 -2.955 -2.973 -0.017 27.65 + CO3-2 1.600e-10 1.367e-10 -9.796 -9.864 -0.068 0.66 +H(0) 8.872e-35 + H2 4.436e-35 4.437e-35 -34.353 -34.353 0.000 28.33 +O(0) 8.272e-11 + O2 4.136e-11 4.137e-11 -10.383 -10.383 0.000 31.50 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 639 atm) - CH4(g) -103.85 -107.24 -3.39 CH4 + CH4(g) -101.61 -105.00 -3.39 CH4 CO2(g) 2.36 0.13 -2.22 CO2 Pressure 629.8 atm, phi 0.360 - H2(g) -31.51 -34.91 -3.41 H2 + H2(g) -30.95 -34.35 -3.41 H2 H2O(g) -0.26 -0.01 0.25 H2O Pressure 8.9 atm, phi 0.062 - O2(g) -5.86 -9.26 -3.40 O2 + O2(g) -6.98 -10.38 -3.40 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7964,54 +7960,54 @@ H2O(g) 1.02 1.037e+01 0.057 3.172e-01 3.276e-01 1.043e-02 ----------------------------Description of solution---------------------------- - pH = 2.940 Charge balance - pe = 12.710 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 700 + pH = 2.946 Charge balance + pe = 12.424 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 660 Density (g/cm³) = 1.01812 Volume (L) = 1.04745 - Viscosity (mPa s) = 0.39795 + Viscosity (mPa s) = 0.39767 Activity of water = 0.974 - Ionic strength (mol/kgw) = 1.194e-03 + Ionic strength (mol/kgw) = 1.177e-03 Mass of water (kg) = 9.941e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.653e+00 Temperature (°C) = 75.00 Pressure (atm) = 749.41 - Electrical balance (eq) = -1.209e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 36 (137 overall) + Iterations = 33 (134 overall) Total H = 1.103572e+02 - Total O = 5.846545e+01 + Total O = 5.846543e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.194e-03 1.148e-03 -2.923 -2.940 -0.017 0.00 - OH- 3.434e-10 3.295e-10 -9.464 -9.482 -0.018 -6.44 + H+ 1.177e-03 1.132e-03 -2.929 -2.946 -0.017 0.00 + OH- 3.482e-10 3.342e-10 -9.458 -9.476 -0.018 -6.45 H2O 5.551e+01 9.740e-01 1.744 -0.011 0.000 17.91 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.277 -107.277 0.000 38.91 + CH4 0.000e+00 0.000e+00 -105.032 -105.032 0.000 38.91 C(4) 1.653e+00 CO2 1.402e+00 1.402e+00 0.147 0.147 0.000 35.91 (CO2)2 1.251e-01 1.251e-01 -0.903 -0.903 0.000 71.82 - HCO3- 1.194e-03 1.147e-03 -2.923 -2.941 -0.018 26.91 - CO3-2 1.663e-10 1.414e-10 -9.779 -9.849 -0.070 2.61 -H(0) 2.204e-35 - H2 1.102e-35 1.102e-35 -34.958 -34.958 0.000 28.29 -O(0) 1.097e-09 - O2 5.483e-10 5.484e-10 -9.261 -9.261 0.000 31.30 + HCO3- 1.177e-03 1.131e-03 -2.929 -2.947 -0.017 27.99 + CO3-2 1.762e-10 1.500e-10 -9.754 -9.824 -0.070 1.44 +H(0) 8.024e-35 + H2 4.012e-35 4.013e-35 -34.397 -34.397 0.000 28.29 +O(0) 8.272e-11 + O2 4.136e-11 4.137e-11 -10.383 -10.383 0.000 31.30 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 749 atm) - CH4(g) -103.82 -107.28 -3.46 CH4 + CH4(g) -101.58 -105.03 -3.46 CH4 CO2(g) 2.43 0.15 -2.28 CO2 Pressure 739.0 atm, phi 0.363 - H2(g) -31.50 -34.96 -3.45 H2 + H2(g) -30.94 -34.40 -3.45 H2 H2O(g) -0.23 -0.01 0.22 H2O Pressure 10.4 atm, phi 0.057 - O2(g) -5.81 -9.26 -3.45 O2 + O2(g) -6.93 -10.38 -3.45 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8055,7 +8051,7 @@ Total pressure: 883.67 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CO2(g) 2.94 8.716e+02 0.375 2.336e+01 2.429e+01 9.375e-01 +CO2(g) 2.94 8.717e+02 0.375 2.336e+01 2.429e+01 9.375e-01 H2O(g) 1.08 1.202e+01 0.053 3.276e-01 3.349e-01 7.291e-03 -----------------------------Solution composition------------------------------ @@ -8066,54 +8062,54 @@ H2O(g) 1.08 1.202e+01 0.053 3.276e-01 3.349e-01 7.291e-03 ----------------------------Description of solution---------------------------- - pH = 2.909 Charge balance - pe = 12.739 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 746 + pH = 2.917 Charge balance + pe = 12.450 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 704 Density (g/cm³) = 1.02365 Volume (L) = 1.04435 - Viscosity (mPa s) = 0.40166 + Viscosity (mPa s) = 0.40132 Activity of water = 0.973 - Ionic strength (mol/kgw) = 1.284e-03 + Ionic strength (mol/kgw) = 1.259e-03 Mass of water (kg) = 9.939e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.716e+00 Temperature (°C) = 75.00 Pressure (atm) = 883.67 - Electrical balance (eq) = -1.209e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.103426e+02 - Total O = 5.858316e+01 + Total O = 5.858312e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.284e-03 1.234e-03 -2.891 -2.909 -0.017 0.00 - OH- 3.604e-10 3.454e-10 -9.443 -9.462 -0.018 -6.70 + H+ 1.259e-03 1.210e-03 -2.900 -2.917 -0.017 0.00 + OH- 3.673e-10 3.521e-10 -9.435 -9.453 -0.018 -6.70 H2O 5.551e+01 9.731e-01 1.744 -0.012 0.000 17.82 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.322 -107.322 0.000 38.88 + CH4 0.000e+00 0.000e+00 -105.078 -105.077 0.000 38.88 C(4) 1.716e+00 CO2 1.448e+00 1.448e+00 0.161 0.161 0.000 35.74 (CO2)2 1.335e-01 1.335e-01 -0.875 -0.875 0.000 71.48 - HCO3- 1.284e-03 1.232e-03 -2.891 -2.910 -0.018 27.14 - CO3-2 1.828e-10 1.548e-10 -9.738 -9.810 -0.072 3.61 -H(0) 1.952e-35 - H2 9.759e-36 9.762e-36 -35.011 -35.010 0.000 28.26 -O(0) 1.097e-09 - O2 5.483e-10 5.485e-10 -9.261 -9.261 0.000 31.07 + HCO3- 1.259e-03 1.208e-03 -2.900 -2.918 -0.018 28.38 + CO3-2 1.974e-10 1.673e-10 -9.705 -9.776 -0.072 2.33 +H(0) 7.106e-35 + H2 3.553e-35 3.554e-35 -34.449 -34.449 0.000 28.26 +O(0) 8.273e-11 + O2 4.137e-11 4.138e-11 -10.383 -10.383 0.000 31.07 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 884 atm) - CH4(g) -103.79 -107.32 -3.53 CH4 - CO2(g) 2.51 0.16 -2.35 CO2 Pressure 871.6 atm, phi 0.375 - H2(g) -31.50 -35.01 -3.51 H2 + CH4(g) -101.54 -105.08 -3.53 CH4 + CO2(g) 2.51 0.16 -2.35 CO2 Pressure 871.7 atm, phi 0.375 + H2(g) -30.94 -34.45 -3.51 H2 H2O(g) -0.20 -0.01 0.18 H2O Pressure 12.0 atm, phi 0.053 - O2(g) -5.75 -9.26 -3.52 O2 + O2(g) -6.87 -10.38 -3.52 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8168,54 +8164,54 @@ H2O(g) 1.14 1.386e+01 0.051 3.349e-01 3.384e-01 3.493e-03 ----------------------------Description of solution---------------------------- - pH = 2.874 Charge balance - pe = 12.772 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 801 + pH = 2.885 Charge balance + pe = 12.480 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 756 Density (g/cm³) = 1.03011 Volume (L) = 1.04050 - Viscosity (mPa s) = 0.40620 + Viscosity (mPa s) = 0.40581 Activity of water = 0.972 - Ionic strength (mol/kgw) = 1.394e-03 + Ionic strength (mol/kgw) = 1.357e-03 Mass of water (kg) = 9.939e-01 Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.781e+00 Temperature (°C) = 75.00 Pressure (atm) = 1047.32 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 36 (137 overall) + Iterations = 34 (135 overall) Total H = 1.103356e+02 - Total O = 5.870894e+01 + Total O = 5.870889e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.394e-03 1.338e-03 -2.856 -2.874 -0.018 0.00 - OH- 3.850e-10 3.684e-10 -9.415 -9.434 -0.019 -6.98 + H+ 1.357e-03 1.303e-03 -2.867 -2.885 -0.018 0.00 + OH- 3.950e-10 3.783e-10 -9.403 -9.422 -0.019 -6.98 H2O 5.551e+01 9.721e-01 1.744 -0.012 0.000 17.72 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.381 -107.381 0.000 38.84 + CH4 0.000e+00 0.000e+00 -105.136 -105.136 0.000 38.84 C(4) 1.781e+00 CO2 1.495e+00 1.496e+00 0.175 0.175 0.000 35.55 (CO2)2 1.423e-01 1.424e-01 -0.847 -0.847 0.000 71.10 - HCO3- 1.394e-03 1.336e-03 -2.856 -2.874 -0.019 27.39 - CO3-2 2.036e-10 1.715e-10 -9.691 -9.766 -0.075 4.74 -H(0) 1.684e-35 - H2 8.422e-36 8.424e-36 -35.075 -35.074 0.000 28.21 -O(0) 1.097e-09 - O2 5.484e-10 5.486e-10 -9.261 -9.261 0.000 30.82 + HCO3- 1.357e-03 1.301e-03 -2.867 -2.886 -0.018 28.83 + CO3-2 2.254e-10 1.903e-10 -9.647 -9.721 -0.074 3.34 +H(0) 6.132e-35 + H2 3.066e-35 3.067e-35 -34.513 -34.513 0.000 28.21 +O(0) 8.274e-11 + O2 4.137e-11 4.138e-11 -10.383 -10.383 0.000 30.82 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 1047 atm) - CH4(g) -103.75 -107.38 -3.63 CH4 + CH4(g) -101.50 -105.14 -3.63 CH4 CO2(g) 2.61 0.17 -2.44 CO2 Pressure 1033.5 atm, phi 0.398 - H2(g) -31.49 -35.07 -3.58 H2 + H2(g) -30.93 -34.51 -3.58 H2 H2O(g) -0.15 -0.01 0.14 H2O Pressure 13.9 atm, phi 0.051 - O2(g) -5.67 -9.26 -3.59 O2 + O2(g) -6.79 -10.38 -3.59 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8371,11 +8367,11 @@ H2O(g) 0.06 1.139e+00 0.877 3.285e-02 3.984e-02 6.990e-03 ----------------------------Description of solution---------------------------- pH = 3.544 Charge balance - pe = 9.307 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 209 + pe = 9.305 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 206 Density (g/cm³) = 0.96086 Volume (L) = 1.05014 - Viscosity (mPa s) = 0.28235 + Viscosity (mPa s) = 0.28228 Activity of water = 0.996 Ionic strength (mol/kgw) = 2.920e-04 Mass of water (kg) = 9.993e-01 @@ -8398,26 +8394,26 @@ H2O(g) 0.06 1.139e+00 0.877 3.285e-02 3.984e-02 6.990e-03 OH- 2.101e-09 2.053e-09 -8.678 -8.688 -0.010 -6.03 H2O 5.551e+01 9.963e-01 1.744 -0.002 0.000 18.78 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -87.998 -87.998 0.000 41.03 + CH4 0.000e+00 0.000e+00 -87.982 -87.982 0.000 41.03 C(4) 2.218e-01 CO2 2.131e-01 2.131e-01 -0.671 -0.671 0.000 38.83 (CO2)2 4.215e-03 4.215e-03 -2.375 -2.375 0.000 77.65 - HCO3- 2.920e-04 2.854e-04 -3.535 -3.545 -0.010 24.09 - CO3-2 7.842e-11 7.157e-11 -10.106 -10.145 -0.040 -7.90 -H(0) 1.512e-29 - H2 7.558e-30 7.559e-30 -29.122 -29.122 0.000 28.56 -O(0) 3.044e-15 - O2 1.522e-15 1.522e-15 -14.818 -14.818 0.000 33.82 + HCO3- 2.920e-04 2.854e-04 -3.535 -3.545 -0.010 23.81 + CO3-2 7.845e-11 7.159e-11 -10.105 -10.145 -0.040 -8.64 +H(0) 1.525e-29 + H2 7.627e-30 7.628e-30 -29.118 -29.118 0.000 28.56 +O(0) 2.989e-15 + O2 1.494e-15 1.494e-15 -14.826 -14.826 0.000 33.82 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 23 atm) - CH4(g) -84.98 -88.00 -3.02 CH4 + CH4(g) -84.96 -87.98 -3.02 CH4 CO2(g) 1.32 -0.67 -1.99 CO2 Pressure 22.3 atm, phi 0.939 H2(g) -26.01 -29.12 -3.11 H2 H2O(g) -0.00 -0.00 -0.00 H2O Pressure 1.1 atm, phi 0.877 - O2(g) -11.69 -14.82 -3.13 O2 + O2(g) -11.70 -14.83 -3.13 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8466,13 +8462,13 @@ H2O(g) 0.11 1.294e+00 0.779 3.984e-02 4.816e-02 8.320e-03 ----------------------------Description of solution---------------------------- pH = 3.416 Charge balance - pe = 1.885 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 281 + pe = 2.060 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 273 Density (g/cm³) = 0.96303 Volume (L) = 1.05598 - Viscosity (mPa s) = 0.28297 + Viscosity (mPa s) = 0.28288 Activity of water = 0.993 - Ionic strength (mol/kgw) = 3.940e-04 + Ionic strength (mol/kgw) = 3.941e-04 Mass of water (kg) = 9.991e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 4.049e-01 @@ -8480,7 +8476,7 @@ H2O(g) 0.11 1.294e+00 0.779 3.984e-02 4.816e-02 8.320e-03 Pressure (atm) = 44.15 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 34 + Iterations = 33 Total H = 1.109161e+02 Total O = 5.626718e+01 @@ -8489,30 +8485,30 @@ H2O(g) 0.11 1.294e+00 0.779 3.984e-02 4.816e-02 8.320e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 3.940e-04 3.840e-04 -3.404 -3.416 -0.011 0.00 - OH- 1.590e-09 1.548e-09 -8.799 -8.810 -0.012 -6.11 + H+ 3.941e-04 3.841e-04 -3.404 -3.416 -0.011 0.00 + OH- 1.589e-09 1.547e-09 -8.799 -8.810 -0.012 -6.11 H2O 5.551e+01 9.933e-01 1.744 -0.003 0.000 18.76 -C(-4) 4.444e-28 - CH4 4.444e-28 4.444e-28 -27.352 -27.352 0.000 41.01 +C(-4) 1.776e-29 + CH4 1.776e-29 1.776e-29 -28.751 -28.751 0.000 41.01 C(4) 4.049e-01 CO2 3.780e-01 3.780e-01 -0.423 -0.422 0.000 38.77 (CO2)2 1.326e-02 1.326e-02 -1.877 -1.877 0.000 77.53 - HCO3- 3.940e-04 3.838e-04 -3.404 -3.416 -0.011 24.18 - CO3-2 8.124e-11 7.310e-11 -10.090 -10.136 -0.046 -7.58 -H(0) 1.872e-14 - H2 9.362e-15 9.363e-15 -14.029 -14.029 0.000 28.55 + HCO3- 3.941e-04 3.838e-04 -3.404 -3.416 -0.011 23.93 + CO3-2 8.130e-11 7.316e-11 -10.090 -10.136 -0.046 -8.35 +H(0) 8.372e-15 + H2 4.186e-15 4.186e-15 -14.378 -14.378 0.000 28.55 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.022 -45.022 0.000 33.76 + O2 0.000e+00 0.000e+00 -44.323 -44.323 0.000 33.76 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 44 atm) - CH4(g) -24.32 -27.35 -3.03 CH4 + CH4(g) -25.72 -28.75 -3.03 CH4 CO2(g) 1.58 -0.42 -2.00 CO2 Pressure 42.9 atm, phi 0.888 - H2(g) -10.91 -14.03 -3.12 H2 + H2(g) -11.26 -14.38 -3.12 H2 H2O(g) 0.00 -0.00 -0.01 H2O Pressure 1.3 atm, phi 0.779 - O2(g) -41.89 -45.02 -3.14 O2 + O2(g) -41.19 -44.32 -3.14 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8561,21 +8557,21 @@ H2O(g) 0.17 1.465e+00 0.695 4.816e-02 5.795e-02 9.787e-03 ----------------------------Description of solution---------------------------- pH = 3.348 Charge balance - pe = 1.949 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 328 + pe = 9.623 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 316 Density (g/cm³) = 0.96489 Volume (L) = 1.06054 - Viscosity (mPa s) = 0.28353 + Viscosity (mPa s) = 0.28342 Activity of water = 0.991 - Ionic strength (mol/kgw) = 4.609e-04 + Ionic strength (mol/kgw) = 4.610e-04 Mass of water (kg) = 9.989e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 5.538e-01 Temperature (°C) = 100.00 Pressure (atm) = 63.31 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 28 + Iterations = 31 Total H = 1.108965e+02 Total O = 5.655464e+01 @@ -8584,30 +8580,30 @@ H2O(g) 0.17 1.465e+00 0.695 4.816e-02 5.795e-02 9.787e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 4.609e-04 4.483e-04 -3.336 -3.348 -0.012 0.00 - OH- 1.383e-09 1.343e-09 -8.859 -8.872 -0.013 -6.19 + H+ 4.610e-04 4.484e-04 -3.336 -3.348 -0.012 0.00 + OH- 1.382e-09 1.343e-09 -8.859 -8.872 -0.013 -6.19 H2O 5.551e+01 9.910e-01 1.744 -0.004 0.000 18.74 -C(-4) 6.246e-28 - CH4 6.246e-28 6.246e-28 -27.204 -27.204 0.000 40.98 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -88.598 -88.598 0.000 40.98 C(4) 5.538e-01 CO2 5.058e-01 5.059e-01 -0.296 -0.296 0.000 38.71 (CO2)2 2.375e-02 2.375e-02 -1.624 -1.624 0.000 77.42 - HCO3- 4.609e-04 4.480e-04 -3.336 -3.349 -0.012 24.25 - CO3-2 8.350e-11 7.453e-11 -10.078 -10.128 -0.049 -7.29 -H(0) 1.871e-14 - H2 9.357e-15 9.358e-15 -14.029 -14.029 0.000 28.54 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.038 -45.038 0.000 33.69 + HCO3- 4.610e-04 4.481e-04 -3.336 -3.349 -0.012 24.05 + CO3-2 8.360e-11 7.462e-11 -10.078 -10.127 -0.049 -8.10 +H(0) 8.388e-30 + H2 4.194e-30 4.195e-30 -29.377 -29.377 0.000 28.54 +O(0) 9.122e-15 + O2 4.561e-15 4.562e-15 -14.341 -14.341 0.000 33.69 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 63 atm) - CH4(g) -24.16 -27.20 -3.04 CH4 + CH4(g) -85.56 -88.60 -3.04 CH4 CO2(g) 1.72 -0.30 -2.01 CO2 Pressure 61.8 atm, phi 0.844 - H2(g) -10.90 -14.03 -3.13 H2 + H2(g) -26.25 -29.38 -3.13 H2 H2O(g) 0.01 -0.00 -0.01 H2O Pressure 1.5 atm, phi 0.695 - O2(g) -41.89 -45.04 -3.14 O2 + O2(g) -11.20 -14.34 -3.14 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8656,21 +8652,21 @@ H2O(g) 0.22 1.653e+00 0.621 5.795e-02 6.931e-02 1.136e-02 ----------------------------Description of solution---------------------------- pH = 3.306 Charge balance - pe = 2.091 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 362 + pe = 9.528 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 346 Density (g/cm³) = 0.96649 Volume (L) = 1.06404 - Viscosity (mPa s) = 0.28404 + Viscosity (mPa s) = 0.28391 Activity of water = 0.989 - Ionic strength (mol/kgw) = 5.092e-04 + Ionic strength (mol/kgw) = 5.093e-04 Mass of water (kg) = 9.987e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 6.740e-01 Temperature (°C) = 100.00 Pressure (atm) = 81.00 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 + Iterations = 27 Total H = 1.108738e+02 Total O = 5.678324e+01 @@ -8679,30 +8675,30 @@ H2O(g) 0.22 1.653e+00 0.621 5.795e-02 6.931e-02 1.136e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 5.092e-04 4.947e-04 -3.293 -3.306 -0.013 0.00 + H+ 5.093e-04 4.948e-04 -3.293 -3.306 -0.013 0.00 OH- 1.271e-09 1.233e-09 -8.896 -8.909 -0.013 -6.27 H2O 5.551e+01 9.891e-01 1.744 -0.005 0.000 18.72 -C(-4) 1.164e-28 - CH4 1.164e-28 1.164e-28 -27.934 -27.934 0.000 40.96 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -87.422 -87.422 0.000 40.96 C(4) 6.740e-01 CO2 6.055e-01 6.055e-01 -0.218 -0.218 0.000 38.66 (CO2)2 3.402e-02 3.403e-02 -1.468 -1.468 0.000 77.32 - HCO3- 5.092e-04 4.943e-04 -3.293 -3.306 -0.013 24.32 - CO3-2 8.545e-11 7.586e-11 -10.068 -10.120 -0.052 -7.04 -H(0) 1.162e-14 - H2 5.810e-15 5.811e-15 -14.236 -14.236 0.000 28.53 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -44.639 -44.639 0.000 33.64 + HCO3- 5.093e-04 4.944e-04 -3.293 -3.306 -0.013 24.15 + CO3-2 8.560e-11 7.599e-11 -10.068 -10.119 -0.052 -7.87 +H(0) 1.560e-29 + H2 7.802e-30 7.803e-30 -29.108 -29.108 0.000 28.53 +O(0) 2.547e-15 + O2 1.274e-15 1.274e-15 -14.895 -14.895 0.000 33.64 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 81 atm) - CH4(g) -24.88 -27.93 -3.05 CH4 + CH4(g) -84.37 -87.42 -3.05 CH4 CO2(g) 1.81 -0.22 -2.02 CO2 Pressure 79.3 atm, phi 0.805 - H2(g) -11.10 -14.24 -3.13 H2 + H2(g) -25.97 -29.11 -3.13 H2 H2O(g) 0.01 -0.00 -0.02 H2O Pressure 1.7 atm, phi 0.621 - O2(g) -41.49 -44.64 -3.15 O2 + O2(g) -11.74 -14.89 -3.15 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8751,21 +8747,21 @@ H2O(g) 0.27 1.859e+00 0.557 6.931e-02 8.231e-02 1.301e-02 ----------------------------Description of solution---------------------------- pH = 3.276 Charge balance - pe = 2.195 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 387 + pe = 2.016 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 369 Density (g/cm³) = 0.96788 Volume (L) = 1.06668 - Viscosity (mPa s) = 0.28451 + Viscosity (mPa s) = 0.28436 Activity of water = 0.988 - Ionic strength (mol/kgw) = 5.461e-04 + Ionic strength (mol/kgw) = 5.462e-04 Mass of water (kg) = 9.985e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 7.714e-01 Temperature (°C) = 100.00 Pressure (atm) = 97.41 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 + Iterations = 31 Total H = 1.108478e+02 Total O = 5.696443e+01 @@ -8774,30 +8770,30 @@ H2O(g) 0.27 1.859e+00 0.557 6.931e-02 8.231e-02 1.301e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 5.461e-04 5.300e-04 -3.263 -3.276 -0.013 0.00 + H+ 5.462e-04 5.301e-04 -3.263 -3.276 -0.013 0.00 OH- 1.202e-09 1.165e-09 -8.920 -8.934 -0.014 -6.33 H2O 5.551e+01 9.876e-01 1.744 -0.005 0.000 18.71 -C(-4) 3.337e-29 - CH4 3.337e-29 3.338e-29 -28.477 -28.477 0.000 40.94 +C(-4) 8.959e-28 + CH4 8.959e-28 8.960e-28 -27.048 -27.048 0.000 40.94 C(4) 7.714e-01 CO2 6.840e-01 6.841e-01 -0.165 -0.165 0.000 38.62 (CO2)2 4.343e-02 4.343e-02 -1.362 -1.362 0.000 77.23 - HCO3- 5.461e-04 5.295e-04 -3.263 -3.276 -0.013 24.38 - CO3-2 8.718e-11 7.710e-11 -10.060 -10.113 -0.053 -6.80 -H(0) 8.159e-15 - H2 4.079e-15 4.080e-15 -14.389 -14.389 0.000 28.52 + HCO3- 5.462e-04 5.296e-04 -3.263 -3.276 -0.013 24.24 + CO3-2 8.739e-11 7.727e-11 -10.059 -10.112 -0.053 -7.66 +H(0) 1.857e-14 + H2 9.286e-15 9.287e-15 -14.032 -14.032 0.000 28.52 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -44.345 -44.345 0.000 33.58 + O2 0.000e+00 0.000e+00 -45.060 -45.060 0.000 33.58 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 97 atm) - CH4(g) -25.42 -28.48 -3.06 CH4 + CH4(g) -23.99 -27.05 -3.06 CH4 CO2(g) 1.87 -0.16 -2.03 CO2 Pressure 95.5 atm, phi 0.771 - H2(g) -11.25 -14.39 -3.14 H2 + H2(g) -10.89 -14.03 -3.14 H2 H2O(g) 0.02 -0.01 -0.02 H2O Pressure 1.9 atm, phi 0.557 - O2(g) -41.18 -44.35 -3.16 O2 + O2(g) -41.90 -45.06 -3.16 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8846,53 +8842,53 @@ H2O(g) 0.32 2.085e+00 0.501 8.231e-02 9.701e-02 1.470e-02 ----------------------------Description of solution---------------------------- pH = 3.253 Charge balance - pe = 2.035 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 408 + pe = 1.941 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 386 Density (g/cm³) = 0.96910 Volume (L) = 1.06867 - Viscosity (mPa s) = 0.28494 + Viscosity (mPa s) = 0.28479 Activity of water = 0.986 - Ionic strength (mol/kgw) = 5.754e-04 + Ionic strength (mol/kgw) = 5.755e-04 Mass of water (kg) = 9.982e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 8.512e-01 Temperature (°C) = 100.00 Pressure (atm) = 112.79 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 24 Total H = 1.108184e+02 - Total O = 5.710869e+01 + Total O = 5.710870e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 5.754e-04 5.580e-04 -3.240 -3.253 -0.013 0.00 + H+ 5.755e-04 5.581e-04 -3.240 -3.253 -0.013 0.00 OH- 1.155e-09 1.119e-09 -8.937 -8.951 -0.014 -6.40 H2O 5.551e+01 9.864e-01 1.744 -0.006 0.000 18.70 -C(-4) 1.028e-27 - CH4 1.028e-27 1.028e-27 -26.988 -26.988 0.000 40.93 +C(-4) 5.827e-27 + CH4 5.827e-27 5.827e-27 -26.235 -26.235 0.000 40.93 C(4) 8.512e-01 CO2 7.471e-01 7.471e-01 -0.127 -0.127 0.000 38.57 (CO2)2 5.180e-02 5.181e-02 -1.286 -1.286 0.000 77.15 - HCO3- 5.754e-04 5.575e-04 -3.240 -3.254 -0.014 24.43 - CO3-2 8.877e-11 7.826e-11 -10.052 -10.106 -0.055 -6.59 -H(0) 1.862e-14 - H2 9.308e-15 9.309e-15 -14.031 -14.031 0.000 28.52 + HCO3- 5.755e-04 5.576e-04 -3.240 -3.254 -0.014 24.33 + CO3-2 8.902e-11 7.849e-11 -10.050 -10.105 -0.055 -7.47 +H(0) 2.872e-14 + H2 1.436e-14 1.436e-14 -13.843 -13.843 0.000 28.52 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.075 -45.075 0.000 33.54 + O2 0.000e+00 0.000e+00 -45.451 -45.451 0.000 33.54 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 113 atm) - CH4(g) -23.92 -26.99 -3.07 CH4 + CH4(g) -23.17 -26.23 -3.07 CH4 CO2(g) 1.91 -0.13 -2.04 CO2 Pressure 110.7 atm, phi 0.741 - H2(g) -10.89 -14.03 -3.15 H2 + H2(g) -10.70 -13.84 -3.15 H2 H2O(g) 0.02 -0.01 -0.02 H2O Pressure 2.1 atm, phi 0.501 - O2(g) -41.91 -45.07 -3.17 O2 + O2(g) -42.28 -45.45 -3.17 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8941,21 +8937,21 @@ H2O(g) 0.37 2.333e+00 0.451 9.701e-02 1.134e-01 1.641e-02 ----------------------------Description of solution---------------------------- pH = 3.236 Charge balance - pe = 2.091 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 424 + pe = 1.889 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 400 Density (g/cm³) = 0.97021 Volume (L) = 1.07015 - Viscosity (mPa s) = 0.28535 + Viscosity (mPa s) = 0.28519 Activity of water = 0.985 - Ionic strength (mol/kgw) = 5.996e-04 + Ionic strength (mol/kgw) = 5.997e-04 Mass of water (kg) = 9.979e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 9.180e-01 Temperature (°C) = 100.00 Pressure (atm) = 127.46 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 23 + Iterations = 24 Total H = 1.107856e+02 Total O = 5.722497e+01 @@ -8964,30 +8960,30 @@ H2O(g) 0.37 2.333e+00 0.451 9.701e-02 1.134e-01 1.641e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 5.996e-04 5.812e-04 -3.222 -3.236 -0.014 0.00 - OH- 1.123e-09 1.087e-09 -8.950 -8.964 -0.014 -6.46 + H+ 5.997e-04 5.813e-04 -3.222 -3.236 -0.014 0.00 + OH- 1.122e-09 1.086e-09 -8.950 -8.964 -0.014 -6.46 H2O 5.551e+01 9.854e-01 1.744 -0.006 0.000 18.68 -C(-4) 5.296e-28 - CH4 5.296e-28 5.297e-28 -27.276 -27.276 0.000 40.91 +C(-4) 2.189e-26 + CH4 2.189e-26 2.190e-26 -25.660 -25.660 0.000 40.91 C(4) 9.180e-01 CO2 7.989e-01 7.990e-01 -0.098 -0.097 0.000 38.53 (CO2)2 5.924e-02 5.925e-02 -1.227 -1.227 0.000 77.07 - HCO3- 5.996e-04 5.807e-04 -3.222 -3.236 -0.014 24.48 - CO3-2 9.025e-11 7.938e-11 -10.045 -10.100 -0.056 -6.38 -H(0) 1.536e-14 - H2 7.682e-15 7.683e-15 -14.115 -14.114 0.000 28.51 + HCO3- 5.997e-04 5.807e-04 -3.222 -3.236 -0.014 24.41 + CO3-2 9.057e-11 7.966e-11 -10.043 -10.099 -0.056 -7.29 +H(0) 3.896e-14 + H2 1.948e-14 1.948e-14 -13.710 -13.710 0.000 28.51 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -44.920 -44.920 0.000 33.49 + O2 0.000e+00 0.000e+00 -45.728 -45.728 0.000 33.49 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 127 atm) - CH4(g) -24.20 -27.28 -3.08 CH4 + CH4(g) -22.58 -25.66 -3.08 CH4 CO2(g) 1.95 -0.10 -2.05 CO2 Pressure 125.1 atm, phi 0.714 - H2(g) -10.96 -14.11 -3.15 H2 + H2(g) -10.56 -13.71 -3.15 H2 H2O(g) 0.02 -0.01 -0.03 H2O Pressure 2.3 atm, phi 0.451 - O2(g) -41.75 -44.92 -3.17 O2 + O2(g) -42.55 -45.73 -3.17 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9036,21 +9032,21 @@ H2O(g) 0.42 2.605e+00 0.407 1.134e-01 1.315e-01 1.811e-02 ----------------------------Description of solution---------------------------- pH = 3.221 Charge balance - pe = 2.134 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 438 + pe = 1.824 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 413 Density (g/cm³) = 0.97124 Volume (L) = 1.07126 - Viscosity (mPa s) = 0.28575 + Viscosity (mPa s) = 0.28558 Activity of water = 0.985 - Ionic strength (mol/kgw) = 6.204e-04 + Ionic strength (mol/kgw) = 6.205e-04 Mass of water (kg) = 9.976e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 9.752e-01 Temperature (°C) = 100.00 Pressure (atm) = 141.77 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 23 + Iterations = 24 Total H = 1.107494e+02 Total O = 5.732053e+01 @@ -9059,30 +9055,30 @@ H2O(g) 0.42 2.605e+00 0.407 1.134e-01 1.315e-01 1.811e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 6.204e-04 6.011e-04 -3.207 -3.221 -0.014 0.00 + H+ 6.205e-04 6.012e-04 -3.207 -3.221 -0.014 0.00 OH- 1.098e-09 1.062e-09 -8.959 -8.974 -0.014 -6.51 H2O 5.551e+01 9.845e-01 1.744 -0.007 0.000 18.67 -C(-4) 3.275e-28 - CH4 3.275e-28 3.275e-28 -27.485 -27.485 0.000 40.89 +C(-4) 9.904e-26 + CH4 9.904e-26 9.905e-26 -25.004 -25.004 0.000 40.89 C(4) 9.752e-01 CO2 8.428e-01 8.429e-01 -0.074 -0.074 0.000 38.49 (CO2)2 6.592e-02 6.593e-02 -1.181 -1.181 0.000 76.99 - HCO3- 6.204e-04 6.006e-04 -3.207 -3.221 -0.014 24.53 - CO3-2 9.168e-11 8.048e-11 -10.038 -10.094 -0.057 -6.19 -H(0) 1.332e-14 - H2 6.661e-15 6.662e-15 -14.176 -14.176 0.000 28.50 + HCO3- 6.205e-04 6.006e-04 -3.207 -3.221 -0.014 24.49 + CO3-2 9.206e-11 8.081e-11 -10.036 -10.093 -0.057 -7.11 +H(0) 5.556e-14 + H2 2.778e-14 2.778e-14 -13.556 -13.556 0.000 28.50 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -44.807 -44.807 0.000 33.45 + O2 0.000e+00 0.000e+00 -46.048 -46.048 0.000 33.45 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 142 atm) - CH4(g) -24.40 -27.48 -3.09 CH4 + CH4(g) -21.92 -25.00 -3.09 CH4 CO2(g) 1.98 -0.07 -2.06 CO2 Pressure 139.2 atm, phi 0.689 - H2(g) -11.02 -14.18 -3.16 H2 + H2(g) -10.40 -13.56 -3.16 H2 H2O(g) 0.03 -0.01 -0.03 H2O Pressure 2.6 atm, phi 0.407 - O2(g) -41.63 -44.81 -3.18 O2 + O2(g) -42.87 -46.05 -3.18 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9131,19 +9127,19 @@ H2O(g) 0.46 2.906e+00 0.368 1.315e-01 1.513e-01 1.977e-02 ----------------------------Description of solution---------------------------- pH = 3.208 Charge balance - pe = 1.940 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 451 + pe = 1.845 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 423 Density (g/cm³) = 0.97222 Volume (L) = 1.07208 - Viscosity (mPa s) = 0.28615 + Viscosity (mPa s) = 0.28597 Activity of water = 0.984 - Ionic strength (mol/kgw) = 6.391e-04 + Ionic strength (mol/kgw) = 6.392e-04 Mass of water (kg) = 9.973e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.026e+00 Temperature (°C) = 100.00 Pressure (atm) = 156.12 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 24 Total H = 1.107098e+02 @@ -9154,30 +9150,30 @@ H2O(g) 0.46 2.906e+00 0.368 1.315e-01 1.513e-01 1.977e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 6.391e-04 6.190e-04 -3.194 -3.208 -0.014 0.00 + H+ 6.392e-04 6.190e-04 -3.194 -3.208 -0.014 0.00 OH- 1.079e-09 1.043e-09 -8.967 -8.982 -0.015 -6.57 H2O 5.551e+01 9.838e-01 1.744 -0.007 0.000 18.66 -C(-4) 1.514e-26 - CH4 1.514e-26 1.514e-26 -25.820 -25.820 0.000 40.88 +C(-4) 8.725e-26 + CH4 8.725e-26 8.726e-26 -25.059 -25.059 0.000 40.88 C(4) 1.026e+00 CO2 8.812e-01 8.812e-01 -0.055 -0.055 0.000 38.46 (CO2)2 7.207e-02 7.208e-02 -1.142 -1.142 0.000 76.91 - HCO3- 6.391e-04 6.184e-04 -3.194 -3.209 -0.014 24.58 - CO3-2 9.310e-11 8.159e-11 -10.031 -10.088 -0.057 -5.99 -H(0) 3.404e-14 - H2 1.702e-14 1.702e-14 -13.769 -13.769 0.000 28.50 + HCO3- 6.392e-04 6.184e-04 -3.194 -3.209 -0.014 24.57 + CO3-2 9.355e-11 8.197e-11 -10.029 -10.086 -0.057 -6.94 +H(0) 5.275e-14 + H2 2.637e-14 2.638e-14 -13.579 -13.579 0.000 28.50 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.634 -45.634 0.000 33.40 + O2 0.000e+00 0.000e+00 -46.014 -46.014 0.000 33.40 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 156 atm) - CH4(g) -22.73 -25.82 -3.09 CH4 + CH4(g) -21.96 -25.06 -3.09 CH4 CO2(g) 2.01 -0.05 -2.06 CO2 Pressure 153.2 atm, phi 0.666 - H2(g) -10.61 -13.77 -3.16 H2 + H2(g) -10.42 -13.58 -3.16 H2 H2O(g) 0.03 -0.01 -0.04 H2O Pressure 2.9 atm, phi 0.368 - O2(g) -42.45 -45.63 -3.19 O2 + O2(g) -42.83 -46.01 -3.19 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9226,15 +9222,15 @@ H2O(g) 0.51 3.242e+00 0.332 1.513e-01 1.727e-01 2.137e-02 ----------------------------Description of solution---------------------------- pH = 3.197 Charge balance - pe = 1.967 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 462 + pe = 1.796 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 434 Density (g/cm³) = 0.97320 Volume (L) = 1.07268 - Viscosity (mPa s) = 0.28656 + Viscosity (mPa s) = 0.28637 Activity of water = 0.983 Ionic strength (mol/kgw) = 6.566e-04 Mass of water (kg) = 9.969e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.072e+00 Temperature (°C) = 100.00 Pressure (atm) = 170.91 @@ -9252,27 +9248,27 @@ H2O(g) 0.51 3.242e+00 0.332 1.513e-01 1.727e-01 2.137e-02 H+ 6.566e-04 6.356e-04 -3.183 -3.197 -0.014 0.00 OH- 1.063e-09 1.028e-09 -8.973 -8.988 -0.015 -6.63 H2O 5.551e+01 9.831e-01 1.744 -0.007 0.000 18.64 -C(-4) 1.176e-26 - CH4 1.176e-26 1.176e-26 -25.930 -25.930 0.000 40.86 +C(-4) 2.742e-25 + CH4 2.742e-25 2.743e-25 -24.562 -24.562 0.000 40.86 C(4) 1.072e+00 CO2 9.159e-01 9.160e-01 -0.038 -0.038 0.000 38.42 (CO2)2 7.786e-02 7.787e-02 -1.109 -1.109 0.000 76.83 - HCO3- 6.566e-04 6.350e-04 -3.183 -3.197 -0.015 24.63 - CO3-2 9.456e-11 8.273e-11 -10.024 -10.082 -0.058 -5.79 -H(0) 3.136e-14 - H2 1.568e-14 1.568e-14 -13.805 -13.805 0.000 28.49 + HCO3- 6.566e-04 6.350e-04 -3.183 -3.197 -0.015 24.65 + CO3-2 9.508e-11 8.318e-11 -10.022 -10.080 -0.058 -6.76 +H(0) 6.891e-14 + H2 3.446e-14 3.446e-14 -13.463 -13.463 0.000 28.49 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.574 -45.574 0.000 33.36 + O2 0.000e+00 0.000e+00 -46.258 -46.258 0.000 33.36 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 171 atm) - CH4(g) -22.83 -25.93 -3.10 CH4 + CH4(g) -21.46 -24.56 -3.10 CH4 CO2(g) 2.03 -0.04 -2.07 CO2 Pressure 167.7 atm, phi 0.645 - H2(g) -10.64 -13.80 -3.17 H2 + H2(g) -10.29 -13.46 -3.17 H2 H2O(g) 0.03 -0.01 -0.04 H2O Pressure 3.2 atm, phi 0.332 - O2(g) -42.38 -45.57 -3.20 O2 + O2(g) -43.06 -46.26 -3.20 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9321,21 +9317,21 @@ H2O(g) 0.56 3.618e+00 0.300 1.727e-01 1.955e-01 2.287e-02 ----------------------------Description of solution---------------------------- pH = 3.186 Charge balance - pe = 1.927 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 474 + pe = 1.849 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 443 Density (g/cm³) = 0.97420 Volume (L) = 1.07311 - Viscosity (mPa s) = 0.28699 + Viscosity (mPa s) = 0.28679 Activity of water = 0.982 - Ionic strength (mol/kgw) = 6.735e-04 + Ionic strength (mol/kgw) = 6.734e-04 Mass of water (kg) = 9.965e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.116e+00 Temperature (°C) = 100.00 Pressure (atm) = 186.59 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 27 + Iterations = 28 Total H = 1.106214e+02 Total O = 5.753479e+01 @@ -9344,30 +9340,30 @@ H2O(g) 0.56 3.618e+00 0.300 1.727e-01 1.955e-01 2.287e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 6.735e-04 6.518e-04 -3.172 -3.186 -0.014 0.00 + H+ 6.734e-04 6.517e-04 -3.172 -3.186 -0.014 0.00 OH- 1.051e-09 1.015e-09 -8.979 -8.993 -0.015 -6.69 H2O 5.551e+01 9.824e-01 1.744 -0.008 0.000 18.63 -C(-4) 3.048e-26 - CH4 3.048e-26 3.049e-26 -25.516 -25.516 0.000 40.84 +C(-4) 1.283e-25 + CH4 1.283e-25 1.283e-25 -24.892 -24.892 0.000 40.84 C(4) 1.116e+00 CO2 9.484e-01 9.485e-01 -0.023 -0.023 0.000 38.38 (CO2)2 8.348e-02 8.349e-02 -1.078 -1.078 0.000 76.75 - HCO3- 6.735e-04 6.511e-04 -3.172 -3.186 -0.015 24.69 - CO3-2 9.609e-11 8.395e-11 -10.017 -10.076 -0.059 -5.58 -H(0) 3.906e-14 - H2 1.953e-14 1.953e-14 -13.709 -13.709 0.000 28.48 + HCO3- 6.734e-04 6.511e-04 -3.172 -3.186 -0.015 24.73 + CO3-2 9.670e-11 8.448e-11 -10.015 -10.073 -0.059 -6.58 +H(0) 5.594e-14 + H2 2.797e-14 2.798e-14 -13.553 -13.553 0.000 28.48 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.777 -45.777 0.000 33.31 + O2 0.000e+00 0.000e+00 -46.089 -46.089 0.000 33.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 187 atm) - CH4(g) -22.40 -25.52 -3.11 CH4 + CH4(g) -21.78 -24.89 -3.11 CH4 CO2(g) 2.06 -0.02 -2.08 CO2 Pressure 183.0 atm, phi 0.624 - H2(g) -10.53 -13.71 -3.18 H2 + H2(g) -10.38 -13.55 -3.18 H2 H2O(g) 0.04 -0.01 -0.04 H2O Pressure 3.6 atm, phi 0.300 - O2(g) -42.57 -45.78 -3.20 O2 + O2(g) -42.89 -46.09 -3.20 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9416,19 +9412,19 @@ H2O(g) 0.61 4.045e+00 0.271 1.955e-01 2.198e-01 2.424e-02 ----------------------------Description of solution---------------------------- pH = 3.175 Charge balance - pe = 2.045 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 485 + pe = 1.832 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 453 Density (g/cm³) = 0.97525 Volume (L) = 1.07339 - Viscosity (mPa s) = 0.28746 + Viscosity (mPa s) = 0.28725 Activity of water = 0.982 - Ionic strength (mol/kgw) = 6.905e-04 + Ionic strength (mol/kgw) = 6.903e-04 Mass of water (kg) = 9.960e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.158e+00 Temperature (°C) = 100.00 Pressure (atm) = 203.65 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 29 Total H = 1.105729e+02 @@ -9439,30 +9435,30 @@ H2O(g) 0.61 4.045e+00 0.271 1.955e-01 2.198e-01 2.424e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 6.905e-04 6.680e-04 -3.161 -3.175 -0.014 0.00 - OH- 1.040e-09 1.004e-09 -8.983 -8.998 -0.015 -6.75 + H+ 6.903e-04 6.678e-04 -3.161 -3.175 -0.014 0.00 + OH- 1.040e-09 1.005e-09 -8.983 -8.998 -0.015 -6.75 H2O 5.551e+01 9.818e-01 1.744 -0.008 0.000 18.62 -C(-4) 4.229e-27 - CH4 4.229e-27 4.230e-27 -26.374 -26.374 0.000 40.82 +C(-4) 2.155e-25 + CH4 2.155e-25 2.156e-25 -24.666 -24.666 0.000 40.82 C(4) 1.158e+00 CO2 9.797e-01 9.798e-01 -0.009 -0.009 0.000 38.33 (CO2)2 8.908e-02 8.909e-02 -1.050 -1.050 0.000 76.66 - HCO3- 6.905e-04 6.673e-04 -3.161 -3.176 -0.015 24.74 - CO3-2 9.776e-11 8.528e-11 -10.010 -10.069 -0.059 -5.36 -H(0) 2.340e-14 - H2 1.170e-14 1.170e-14 -13.932 -13.932 0.000 28.48 + HCO3- 6.903e-04 6.671e-04 -3.161 -3.176 -0.015 24.82 + CO3-2 9.847e-11 8.590e-11 -10.007 -10.066 -0.059 -6.38 +H(0) 6.252e-14 + H2 3.126e-14 3.126e-14 -13.505 -13.505 0.000 28.48 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.345 -45.345 0.000 33.26 + O2 0.000e+00 0.000e+00 -46.199 -46.199 0.000 33.26 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 204 atm) - CH4(g) -23.25 -26.37 -3.12 CH4 + CH4(g) -21.54 -24.67 -3.12 CH4 CO2(g) 2.08 -0.01 -2.09 CO2 Pressure 199.6 atm, phi 0.603 - H2(g) -10.75 -13.93 -3.18 H2 + H2(g) -10.32 -13.50 -3.18 H2 H2O(g) 0.04 -0.01 -0.05 H2O Pressure 4.0 atm, phi 0.271 - O2(g) -42.13 -45.35 -3.21 O2 + O2(g) -42.99 -46.20 -3.21 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9511,21 +9507,21 @@ H2O(g) 0.66 4.530e+00 0.245 2.198e-01 2.452e-01 2.545e-02 ----------------------------Description of solution---------------------------- pH = 3.165 Charge balance - pe = 9.644 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 496 + pe = 1.850 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 463 Density (g/cm³) = 0.97639 Volume (L) = 1.07355 - Viscosity (mPa s) = 0.28797 + Viscosity (mPa s) = 0.28776 Activity of water = 0.981 - Ionic strength (mol/kgw) = 7.080e-04 + Ionic strength (mol/kgw) = 7.077e-04 Mass of water (kg) = 9.956e-01 - Total alkalinity (eq/kg) = 1.213e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.201e+00 Temperature (°C) = 100.00 Pressure (atm) = 222.60 - Electrical balance (eq) = -1.208e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 35 + Iterations = 30 Total H = 1.105220e+02 Total O = 5.765197e+01 @@ -9534,30 +9530,30 @@ H2O(g) 0.66 4.530e+00 0.245 2.198e-01 2.452e-01 2.545e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.080e-04 6.847e-04 -3.150 -3.165 -0.015 0.00 - OH- 1.031e-09 9.951e-10 -8.987 -9.002 -0.015 -6.83 + H+ 7.077e-04 6.844e-04 -3.150 -3.165 -0.015 0.00 + OH- 1.031e-09 9.955e-10 -8.987 -9.002 -0.015 -6.83 H2O 5.551e+01 9.812e-01 1.744 -0.008 0.000 18.60 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -87.076 -87.076 0.000 40.80 +C(-4) 1.890e-25 + CH4 1.890e-25 1.890e-25 -24.724 -24.724 0.000 40.80 C(4) 1.201e+00 CO2 1.011e+00 1.011e+00 0.005 0.005 0.000 38.28 (CO2)2 9.478e-02 9.480e-02 -1.023 -1.023 0.000 76.56 - HCO3- 7.080e-04 6.840e-04 -3.150 -3.165 -0.015 24.81 - CO3-2 9.961e-11 8.677e-11 -10.002 -10.062 -0.060 -5.12 -H(0) 1.532e-29 - H2 7.659e-30 7.661e-30 -29.116 -29.116 0.000 28.47 -O(0) 2.037e-15 - O2 1.019e-15 1.019e-15 -14.992 -14.992 0.000 33.21 + HCO3- 7.077e-04 6.837e-04 -3.150 -3.165 -0.015 24.92 + CO3-2 1.004e-10 8.750e-11 -9.998 -10.058 -0.060 -6.16 +H(0) 5.932e-14 + H2 2.966e-14 2.967e-14 -13.528 -13.528 0.000 28.47 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -46.168 -46.168 0.000 33.21 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 223 atm) - CH4(g) -83.94 -87.08 -3.13 CH4 + CH4(g) -21.59 -24.72 -3.13 CH4 CO2(g) 2.10 0.00 -2.10 CO2 Pressure 218.1 atm, phi 0.583 - H2(g) -25.93 -29.12 -3.19 H2 + H2(g) -10.34 -13.53 -3.19 H2 H2O(g) 0.05 -0.01 -0.05 H2O Pressure 4.5 atm, phi 0.245 - O2(g) -11.77 -14.99 -3.22 O2 + O2(g) -42.95 -46.17 -3.22 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9605,22 +9601,22 @@ H2O(g) 0.71 5.087e+00 0.221 2.452e-01 2.717e-01 2.646e-02 ----------------------------Description of solution---------------------------- - pH = 3.153 Charge balance - pe = 2.372 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 508 + pH = 3.154 Charge balance + pe = 1.840 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 474 Density (g/cm³) = 0.97763 Volume (L) = 1.07359 - Viscosity (mPa s) = 0.28856 + Viscosity (mPa s) = 0.28833 Activity of water = 0.981 - Ionic strength (mol/kgw) = 7.266e-04 + Ionic strength (mol/kgw) = 7.261e-04 Mass of water (kg) = 9.951e-01 - Total alkalinity (eq/kg) = 1.214e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.244e+00 Temperature (°C) = 100.00 Pressure (atm) = 244.02 - Electrical balance (eq) = -1.208e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 38 + Iterations = 37 Total H = 1.104690e+02 Total O = 5.770992e+01 @@ -9629,30 +9625,30 @@ H2O(g) 0.71 5.087e+00 0.221 2.452e-01 2.717e-01 2.646e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.266e-04 7.024e-04 -3.139 -3.153 -0.015 0.00 - OH- 1.023e-09 9.872e-10 -8.990 -9.006 -0.015 -6.91 + H+ 7.261e-04 7.020e-04 -3.139 -3.154 -0.015 0.00 + OH- 1.024e-09 9.879e-10 -8.990 -9.005 -0.015 -6.91 H2O 5.551e+01 9.806e-01 1.744 -0.009 0.000 18.58 -C(-4) 1.564e-29 - CH4 1.564e-29 1.564e-29 -28.806 -28.806 0.000 40.78 +C(-4) 2.769e-25 + CH4 2.769e-25 2.769e-25 -24.558 -24.558 0.000 40.78 C(4) 1.244e+00 CO2 1.042e+00 1.042e+00 0.018 0.018 0.000 38.23 (CO2)2 1.007e-01 1.007e-01 -0.997 -0.997 0.000 76.46 - HCO3- 7.266e-04 7.016e-04 -3.139 -3.154 -0.015 24.88 - CO3-2 1.017e-10 8.846e-11 -9.993 -10.053 -0.061 -4.84 -H(0) 5.542e-15 - H2 2.771e-15 2.771e-15 -14.557 -14.557 0.000 28.46 + HCO3- 7.261e-04 7.012e-04 -3.139 -3.154 -0.015 25.03 + CO3-2 1.027e-10 8.933e-11 -9.988 -10.049 -0.061 -5.92 +H(0) 6.392e-14 + H2 3.196e-14 3.197e-14 -13.495 -13.495 0.000 28.46 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -44.125 -44.125 0.000 33.15 + O2 0.000e+00 0.000e+00 -46.249 -46.249 0.000 33.15 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 244 atm) - CH4(g) -25.66 -28.81 -3.14 CH4 + CH4(g) -21.41 -24.56 -3.14 CH4 CO2(g) 2.13 0.02 -2.11 CO2 Pressure 238.9 atm, phi 0.563 - H2(g) -11.36 -14.56 -3.20 H2 + H2(g) -10.30 -13.50 -3.20 H2 H2O(g) 0.05 -0.01 -0.06 H2O Pressure 5.1 atm, phi 0.221 - O2(g) -40.90 -44.13 -3.23 O2 + O2(g) -43.02 -46.25 -3.23 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9701,21 +9697,21 @@ H2O(g) 0.76 5.727e+00 0.199 2.717e-01 2.989e-01 2.722e-02 ----------------------------Description of solution---------------------------- pH = 3.142 Charge balance - pe = 10.120 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 521 - Density (g/cm³) = 0.97903 + pe = 1.755 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 485 + Density (g/cm³) = 0.97902 Volume (L) = 1.07352 - Viscosity (mPa s) = 0.28922 + Viscosity (mPa s) = 0.28899 Activity of water = 0.980 - Ionic strength (mol/kgw) = 7.466e-04 + Ionic strength (mol/kgw) = 7.459e-04 Mass of water (kg) = 9.946e-01 - Total alkalinity (eq/kg) = 1.214e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.288e+00 Temperature (°C) = 100.00 Pressure (atm) = 268.56 - Electrical balance (eq) = -1.208e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 46 + Iterations = 43 Total H = 1.104146e+02 Total O = 5.776968e+01 @@ -9724,30 +9720,30 @@ H2O(g) 0.76 5.727e+00 0.199 2.717e-01 2.989e-01 2.722e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.466e-04 7.215e-04 -3.127 -3.142 -0.015 0.00 - OH- 1.017e-09 9.809e-10 -8.993 -9.008 -0.016 -7.00 + H+ 7.459e-04 7.209e-04 -3.127 -3.142 -0.015 0.00 + OH- 1.018e-09 9.817e-10 -8.992 -9.008 -0.016 -7.00 H2O 5.551e+01 9.799e-01 1.744 -0.009 0.000 18.56 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -90.702 -90.702 0.000 40.75 +C(-4) 1.641e-24 + CH4 1.641e-24 1.641e-24 -23.785 -23.785 0.000 40.75 C(4) 1.288e+00 CO2 1.073e+00 1.074e+00 0.031 0.031 0.000 38.17 (CO2)2 1.070e-01 1.070e-01 -0.971 -0.971 0.000 76.33 - HCO3- 7.466e-04 7.207e-04 -3.127 -3.142 -0.015 24.95 - CO3-2 1.041e-10 9.041e-11 -9.983 -10.044 -0.061 -4.53 -H(0) 1.819e-30 - H2 9.095e-31 9.097e-31 -30.041 -30.041 0.000 28.45 -O(0) 1.332e-13 - O2 6.659e-14 6.660e-14 -13.177 -13.177 0.000 33.08 + HCO3- 7.459e-04 7.201e-04 -3.127 -3.143 -0.015 25.15 + CO3-2 1.053e-10 9.145e-11 -9.978 -10.039 -0.061 -5.65 +H(0) 9.751e-14 + H2 4.875e-14 4.876e-14 -13.312 -13.312 0.000 28.45 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -46.635 -46.635 0.000 33.08 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 269 atm) - CH4(g) -87.54 -90.70 -3.16 CH4 + CH4(g) -20.63 -23.78 -3.16 CH4 CO2(g) 2.15 0.03 -2.12 CO2 Pressure 262.8 atm, phi 0.544 - H2(g) -26.83 -30.04 -3.21 H2 + H2(g) -10.10 -13.31 -3.21 H2 H2O(g) 0.06 -0.01 -0.07 H2O Pressure 5.7 atm, phi 0.199 - O2(g) -9.94 -13.18 -3.24 O2 + O2(g) -43.39 -46.63 -3.24 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9795,20 +9791,20 @@ H2O(g) 0.81 6.466e+00 0.179 2.989e-01 3.266e-01 2.770e-02 ----------------------------Description of solution---------------------------- - pH = 3.129 Charge balance - pe = 10.141 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 535 + pH = 3.130 Charge balance + pe = 1.795 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 497 Density (g/cm³) = 0.98059 Volume (L) = 1.07333 - Viscosity (mPa s) = 0.28999 + Viscosity (mPa s) = 0.28974 Activity of water = 0.979 - Ionic strength (mol/kgw) = 7.685e-04 + Ionic strength (mol/kgw) = 7.676e-04 Mass of water (kg) = 9.941e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.334e+00 Temperature (°C) = 100.00 Pressure (atm) = 296.94 - Electrical balance (eq) = -1.208e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 63 Total H = 1.103592e+02 @@ -9819,30 +9815,30 @@ H2O(g) 0.81 6.466e+00 0.179 2.989e-01 3.266e-01 2.770e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.685e-04 7.424e-04 -3.114 -3.129 -0.015 0.00 - OH- 1.012e-09 9.761e-10 -8.995 -9.010 -0.016 -7.10 + H+ 7.676e-04 7.415e-04 -3.115 -3.130 -0.015 0.00 + OH- 1.013e-09 9.773e-10 -8.994 -9.010 -0.016 -7.10 H2O 5.551e+01 9.792e-01 1.744 -0.009 0.000 18.54 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -90.769 -90.769 0.000 40.72 +C(-4) 9.754e-25 + CH4 9.754e-25 9.756e-25 -24.011 -24.011 0.000 40.72 C(4) 1.334e+00 CO2 1.106e+00 1.107e+00 0.044 0.044 0.000 38.10 (CO2)2 1.136e-01 1.136e-01 -0.945 -0.944 0.000 76.19 - HCO3- 7.685e-04 7.416e-04 -3.114 -3.130 -0.016 25.04 - CO3-2 1.069e-10 9.267e-11 -9.971 -10.033 -0.062 -4.18 -H(0) 1.707e-30 - H2 8.536e-31 8.537e-31 -30.069 -30.069 0.000 28.44 -O(0) 1.439e-13 - O2 7.193e-14 7.194e-14 -13.143 -13.143 0.000 33.00 + HCO3- 7.676e-04 7.407e-04 -3.115 -3.130 -0.015 25.29 + CO3-2 1.084e-10 9.394e-11 -9.965 -10.027 -0.062 -5.34 +H(0) 8.350e-14 + H2 4.175e-14 4.176e-14 -13.379 -13.379 0.000 28.44 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -46.522 -46.522 0.000 33.00 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 297 atm) - CH4(g) -87.59 -90.77 -3.18 CH4 + CH4(g) -20.84 -24.01 -3.18 CH4 CO2(g) 2.18 0.04 -2.14 CO2 Pressure 290.5 atm, phi 0.525 - H2(g) -26.85 -30.07 -3.22 H2 + H2(g) -10.16 -13.38 -3.22 H2 H2O(g) 0.06 -0.01 -0.07 H2O Pressure 6.5 atm, phi 0.179 - O2(g) -9.89 -13.14 -3.25 O2 + O2(g) -43.27 -46.52 -3.25 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9890,22 +9886,22 @@ H2O(g) 0.86 7.319e+00 0.161 3.266e-01 3.544e-01 2.783e-02 ----------------------------Description of solution---------------------------- - pH = 3.116 Charge balance - pe = 10.147 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 550 + pH = 3.117 Charge balance + pe = 1.787 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 511 Density (g/cm³) = 0.98238 Volume (L) = 1.07300 - Viscosity (mPa s) = 0.29088 + Viscosity (mPa s) = 0.29062 Activity of water = 0.979 - Ionic strength (mol/kgw) = 7.929e-04 + Ionic strength (mol/kgw) = 7.916e-04 Mass of water (kg) = 9.936e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.383e+00 Temperature (°C) = 100.00 Pressure (atm) = 329.97 - Electrical balance (eq) = -1.207e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 69 + Iterations = 70 Total H = 1.103035e+02 Total O = 5.790005e+01 @@ -9914,30 +9910,30 @@ H2O(g) 0.86 7.319e+00 0.161 3.266e-01 3.544e-01 2.783e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.929e-04 7.657e-04 -3.101 -3.116 -0.015 0.00 - OH- 1.010e-09 9.733e-10 -8.996 -9.012 -0.016 -7.21 + H+ 7.916e-04 7.644e-04 -3.101 -3.117 -0.015 0.00 + OH- 1.011e-09 9.749e-10 -8.995 -9.011 -0.016 -7.21 H2O 5.551e+01 9.785e-01 1.744 -0.009 0.000 18.51 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -90.720 -90.720 0.000 40.69 +C(-4) 1.444e-24 + CH4 1.444e-24 1.444e-24 -23.840 -23.840 0.000 40.69 C(4) 1.383e+00 CO2 1.141e+00 1.141e+00 0.057 0.057 0.000 38.02 (CO2)2 1.208e-01 1.208e-01 -0.918 -0.918 0.000 76.03 - HCO3- 7.929e-04 7.648e-04 -3.101 -3.116 -0.016 25.15 - CO3-2 1.102e-10 9.534e-11 -9.958 -10.021 -0.063 -3.79 -H(0) 1.708e-30 - H2 8.538e-31 8.540e-31 -30.069 -30.069 0.000 28.43 -O(0) 1.357e-13 - O2 6.785e-14 6.786e-14 -13.168 -13.168 0.000 32.91 + HCO3- 7.916e-04 7.635e-04 -3.101 -3.117 -0.016 25.46 + CO3-2 1.120e-10 9.689e-11 -9.951 -10.014 -0.063 -4.98 +H(0) 8.958e-14 + H2 4.479e-14 4.480e-14 -13.349 -13.349 0.000 28.43 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -46.608 -46.608 0.000 32.91 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 330 atm) - CH4(g) -87.53 -90.72 -3.19 CH4 + CH4(g) -20.65 -23.84 -3.19 CH4 CO2(g) 2.21 0.06 -2.16 CO2 Pressure 322.7 atm, phi 0.507 - H2(g) -26.84 -30.07 -3.23 H2 + H2(g) -10.12 -13.35 -3.23 H2 H2O(g) 0.07 -0.01 -0.08 H2O Pressure 7.3 atm, phi 0.161 - O2(g) -9.90 -13.17 -3.27 O2 + O2(g) -43.34 -46.61 -3.27 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9985,22 +9981,22 @@ H2O(g) 0.92 8.305e+00 0.145 3.544e-01 3.820e-01 2.758e-02 ----------------------------Description of solution---------------------------- - pH = 3.101 Charge balance - pe = 10.166 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 567 + pH = 3.102 Charge balance + pe = 1.799 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 526 Density (g/cm³) = 0.98441 Volume (L) = 1.07253 - Viscosity (mPa s) = 0.29192 + Viscosity (mPa s) = 0.29164 Activity of water = 0.978 - Ionic strength (mol/kgw) = 8.203e-04 + Ionic strength (mol/kgw) = 8.184e-04 Mass of water (kg) = 9.931e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.434e+00 Temperature (°C) = 100.00 Pressure (atm) = 368.63 - Electrical balance (eq) = -1.207e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 76 + Iterations = 77 Total H = 1.102484e+02 Total O = 5.797304e+01 @@ -10009,30 +10005,30 @@ H2O(g) 0.92 8.305e+00 0.145 3.544e-01 3.820e-01 2.758e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.203e-04 7.917e-04 -3.086 -3.101 -0.015 0.00 - OH- 1.010e-09 9.727e-10 -8.996 -9.012 -0.016 -7.34 + H+ 8.184e-04 7.899e-04 -3.087 -3.102 -0.015 0.00 + OH- 1.012e-09 9.749e-10 -8.995 -9.011 -0.016 -7.34 H2O 5.551e+01 9.778e-01 1.744 -0.010 0.000 18.48 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -90.756 -90.756 0.000 40.65 +C(-4) 1.481e-24 + CH4 1.481e-24 1.481e-24 -23.830 -23.830 0.000 40.65 C(4) 1.434e+00 CO2 1.177e+00 1.177e+00 0.071 0.071 0.000 37.92 (CO2)2 1.285e-01 1.285e-01 -0.891 -0.891 0.000 75.85 - HCO3- 8.203e-04 7.908e-04 -3.086 -3.102 -0.016 25.26 - CO3-2 1.140e-10 9.848e-11 -9.943 -10.007 -0.064 -3.33 -H(0) 1.620e-30 - H2 8.102e-31 8.104e-31 -30.091 -30.091 0.000 28.41 -O(0) 1.409e-13 - O2 7.044e-14 7.045e-14 -13.152 -13.152 0.000 32.81 + HCO3- 8.184e-04 7.890e-04 -3.087 -3.103 -0.016 25.64 + CO3-2 1.163e-10 1.004e-10 -9.935 -9.998 -0.064 -4.58 +H(0) 8.736e-14 + H2 4.368e-14 4.369e-14 -13.360 -13.360 0.000 28.41 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -46.615 -46.615 0.000 32.81 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 369 atm) - CH4(g) -87.54 -90.76 -3.22 CH4 + CH4(g) -20.61 -23.83 -3.22 CH4 CO2(g) 2.25 0.07 -2.18 CO2 Pressure 360.3 atm, phi 0.491 - H2(g) -26.84 -30.09 -3.25 H2 + H2(g) -10.11 -13.36 -3.25 H2 H2O(g) 0.08 -0.01 -0.09 H2O Pressure 8.3 atm, phi 0.145 - O2(g) -9.87 -13.15 -3.29 O2 + O2(g) -43.33 -46.62 -3.29 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10080,22 +10076,22 @@ H2O(g) 0.98 9.442e+00 0.131 3.820e-01 4.089e-01 2.690e-02 ----------------------------Description of solution---------------------------- - pH = 3.086 Charge balance - pe = 10.175 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 586 + pH = 3.087 Charge balance + pe = 1.822 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 544 Density (g/cm³) = 0.98675 Volume (L) = 1.07187 - Viscosity (mPa s) = 0.29313 + Viscosity (mPa s) = 0.29284 Activity of water = 0.977 - Ionic strength (mol/kgw) = 8.513e-04 + Ionic strength (mol/kgw) = 8.487e-04 Mass of water (kg) = 9.926e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.489e+00 Temperature (°C) = 100.00 Pressure (atm) = 414.00 - Electrical balance (eq) = -1.207e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 84 + Iterations = 85 Total H = 1.101946e+02 Total O = 5.805267e+01 @@ -10104,30 +10100,30 @@ H2O(g) 0.98 9.442e+00 0.131 3.820e-01 4.089e-01 2.690e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.513e-04 8.212e-04 -3.070 -3.086 -0.016 0.00 - OH- 1.013e-09 9.751e-10 -8.994 -9.011 -0.016 -7.50 + H+ 8.487e-04 8.187e-04 -3.071 -3.087 -0.016 0.00 + OH- 1.016e-09 9.781e-10 -8.993 -9.010 -0.016 -7.50 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 18.44 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -90.714 -90.714 0.000 40.60 +C(-4) 1.248e-24 + CH4 1.248e-24 1.248e-24 -23.904 -23.904 0.000 40.60 C(4) 1.489e+00 CO2 1.214e+00 1.214e+00 0.084 0.084 0.000 37.82 (CO2)2 1.368e-01 1.369e-01 -0.864 -0.864 0.000 75.64 - HCO3- 8.513e-04 8.202e-04 -3.070 -3.086 -0.016 25.40 - CO3-2 1.186e-10 1.022e-10 -9.926 -9.991 -0.065 -2.81 -H(0) 1.603e-30 - H2 8.014e-31 8.015e-31 -30.096 -30.096 0.000 28.40 -O(0) 1.331e-13 - O2 6.656e-14 6.658e-14 -13.177 -13.177 0.000 32.69 + HCO3- 8.487e-04 8.177e-04 -3.071 -3.087 -0.016 25.85 + CO3-2 1.214e-10 1.047e-10 -9.916 -9.980 -0.065 -4.12 +H(0) 8.078e-14 + H2 4.039e-14 4.040e-14 -13.394 -13.394 0.000 28.40 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -46.582 -46.582 0.000 32.69 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 414 atm) - CH4(g) -87.47 -90.71 -3.24 CH4 + CH4(g) -20.66 -23.90 -3.24 CH4 CO2(g) 2.29 0.08 -2.20 CO2 Pressure 404.6 atm, phi 0.477 - H2(g) -26.83 -30.10 -3.27 H2 + H2(g) -10.13 -13.39 -3.27 H2 H2O(g) 0.09 -0.01 -0.10 H2O Pressure 9.4 atm, phi 0.131 - O2(g) -9.87 -13.18 -3.31 O2 + O2(g) -43.28 -46.58 -3.31 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10175,22 +10171,22 @@ H2O(g) 1.03 1.075e+01 0.119 4.089e-01 4.347e-01 2.572e-02 ----------------------------Description of solution---------------------------- - pH = 3.068 Charge balance - pe = 10.188 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 607 - Density (g/cm³) = 0.98943 + pH = 3.070 Charge balance + pe = 1.820 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 563 + Density (g/cm³) = 0.98942 Volume (L) = 1.07102 - Viscosity (mPa s) = 0.29456 + Viscosity (mPa s) = 0.29424 Activity of water = 0.976 - Ionic strength (mol/kgw) = 8.866e-04 + Ionic strength (mol/kgw) = 8.829e-04 Mass of water (kg) = 9.922e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.546e+00 Temperature (°C) = 100.00 Pressure (atm) = 467.40 - Electrical balance (eq) = -1.207e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 93 + Iterations = 95 Total H = 1.101431e+02 Total O = 5.813993e+01 @@ -10199,30 +10195,30 @@ H2O(g) 1.03 1.075e+01 0.119 4.089e-01 4.347e-01 2.572e-02 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.866e-04 8.548e-04 -3.052 -3.068 -0.016 0.00 - OH- 1.020e-09 9.812e-10 -8.992 -9.008 -0.017 -7.67 + H+ 8.829e-04 8.513e-04 -3.054 -3.070 -0.016 0.00 + OH- 1.024e-09 9.852e-10 -8.990 -9.006 -0.017 -7.67 H2O 5.551e+01 9.762e-01 1.744 -0.010 0.000 18.40 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -90.699 -90.699 0.000 40.55 +C(-4) 1.728e-24 + CH4 1.728e-24 1.728e-24 -23.762 -23.762 0.000 40.55 C(4) 1.546e+00 CO2 1.254e+00 1.254e+00 0.098 0.098 0.000 37.70 (CO2)2 1.459e-01 1.459e-01 -0.836 -0.836 0.000 75.40 - HCO3- 8.866e-04 8.537e-04 -3.052 -3.069 -0.016 25.55 - CO3-2 1.240e-10 1.066e-10 -9.906 -9.972 -0.066 -2.21 -H(0) 1.552e-30 - H2 7.762e-31 7.763e-31 -30.110 -30.110 0.000 28.38 -O(0) 1.294e-13 - O2 6.471e-14 6.472e-14 -13.189 -13.189 0.000 32.56 + HCO3- 8.829e-04 8.503e-04 -3.054 -3.070 -0.016 26.09 + CO3-2 1.277e-10 1.098e-10 -9.894 -9.959 -0.066 -3.59 +H(0) 8.416e-14 + H2 4.208e-14 4.209e-14 -13.376 -13.376 0.000 28.38 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -46.657 -46.657 0.000 32.56 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 467 atm) - CH4(g) -87.43 -90.70 -3.27 CH4 + CH4(g) -20.49 -23.76 -3.27 CH4 CO2(g) 2.33 0.10 -2.23 CO2 Pressure 456.6 atm, phi 0.465 - H2(g) -26.82 -30.11 -3.29 H2 + H2(g) -10.09 -13.38 -3.29 H2 H2O(g) 0.11 -0.01 -0.12 H2O Pressure 10.7 atm, phi 0.119 - O2(g) -9.86 -13.19 -3.33 O2 + O2(g) -43.33 -46.66 -3.33 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10277,54 +10273,54 @@ H2O(g) 1.09 1.225e+01 0.108 4.347e-01 4.587e-01 2.401e-02 ----------------------------Description of solution---------------------------- - pH = 3.049 Charge balance - pe = 11.402 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 631 - Density (g/cm³) = 0.99251 + pH = 3.051 Charge balance + pe = 1.790 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 586 + Density (g/cm³) = 0.99250 Volume (L) = 1.06991 - Viscosity (mPa s) = 0.29623 + Viscosity (mPa s) = 0.29588 Activity of water = 0.975 - Ionic strength (mol/kgw) = 9.272e-04 + Ionic strength (mol/kgw) = 9.220e-04 Mass of water (kg) = 9.917e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.607e+00 Temperature (°C) = 100.00 Pressure (atm) = 530.35 - Electrical balance (eq) = -1.207e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 41 (142 overall) + Iterations = 38 (139 overall) Total H = 1.100951e+02 - Total O = 5.823577e+01 + Total O = 5.823576e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.272e-04 8.934e-04 -3.033 -3.049 -0.016 0.00 - OH- 1.032e-09 9.921e-10 -8.986 -9.003 -0.017 -7.86 + H+ 9.220e-04 8.885e-04 -3.035 -3.051 -0.016 0.00 + OH- 1.037e-09 9.976e-10 -8.984 -9.001 -0.017 -7.86 H2O 5.551e+01 9.753e-01 1.744 -0.011 0.000 18.35 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -100.276 -100.276 0.000 40.49 +C(-4) 4.003e-24 + CH4 4.003e-24 4.004e-24 -23.398 -23.397 0.000 40.49 C(4) 1.607e+00 CO2 1.295e+00 1.295e+00 0.112 0.112 0.000 37.56 (CO2)2 1.557e-01 1.557e-01 -0.808 -0.808 0.000 75.12 - HCO3- 9.272e-04 8.922e-04 -3.033 -3.050 -0.017 25.73 - CO3-2 1.305e-10 1.119e-10 -9.884 -9.951 -0.067 -1.54 -H(0) 5.978e-33 - H2 2.989e-33 2.990e-33 -32.524 -32.524 0.000 28.35 -O(0) 7.833e-09 - O2 3.916e-09 3.917e-09 -8.407 -8.407 0.000 32.41 + HCO3- 9.220e-04 8.873e-04 -3.035 -3.052 -0.017 26.36 + CO3-2 1.353e-10 1.160e-10 -9.869 -9.935 -0.067 -2.99 +H(0) 9.914e-14 + H2 4.957e-14 4.958e-14 -13.305 -13.305 0.000 28.35 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -46.846 -46.846 0.000 32.41 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 530 atm) - CH4(g) -96.97 -100.28 -3.31 CH4 + CH4(g) -20.09 -23.40 -3.31 CH4 CO2(g) 2.37 0.11 -2.26 CO2 Pressure 518.1 atm, phi 0.456 - H2(g) -29.21 -32.52 -3.31 H2 + H2(g) -9.99 -13.30 -3.31 H2 H2O(g) 0.12 -0.01 -0.13 H2O Pressure 12.2 atm, phi 0.108 - O2(g) -5.05 -8.41 -3.36 O2 + O2(g) -43.49 -46.85 -3.36 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10379,54 +10375,54 @@ H2O(g) 1.14 1.395e+01 0.099 4.587e-01 4.804e-01 2.170e-02 ----------------------------Description of solution---------------------------- - pH = 3.028 Charge balance - pe = 11.422 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 659 + pH = 3.031 Charge balance + pe = 1.764 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 611 Density (g/cm³) = 0.99605 Volume (L) = 1.06852 - Viscosity (mPa s) = 0.29820 + Viscosity (mPa s) = 0.29782 Activity of water = 0.974 - Ionic strength (mol/kgw) = 9.741e-04 + Ionic strength (mol/kgw) = 9.668e-04 Mass of water (kg) = 9.913e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.214e-09 Total CO2 (mol/kg) = 1.672e+00 Temperature (°C) = 100.00 Pressure (atm) = 604.71 - Electrical balance (eq) = -1.207e-09 + Electrical balance (eq) = -1.204e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 35 (136 overall) + Iterations = 139 (240 overall) Total H = 1.100517e+02 - Total O = 5.834106e+01 + Total O = 5.834105e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.741e-04 9.379e-04 -3.011 -3.028 -0.016 0.00 - OH- 1.050e-09 1.009e-09 -8.979 -8.996 -0.017 -8.07 + H+ 9.668e-04 9.310e-04 -3.015 -3.031 -0.016 0.00 + OH- 1.058e-09 1.017e-09 -8.975 -8.993 -0.017 -8.07 H2O 5.551e+01 9.744e-01 1.744 -0.011 0.000 18.29 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -100.295 -100.295 0.000 40.42 +C(-4) 8.886e-24 + CH4 8.886e-24 8.888e-24 -23.051 -23.051 0.000 40.42 C(4) 1.672e+00 CO2 1.339e+00 1.339e+00 0.127 0.127 0.000 37.41 (CO2)2 1.663e-01 1.663e-01 -0.779 -0.779 0.000 74.81 - HCO3- 9.741e-04 9.366e-04 -3.011 -3.028 -0.017 25.93 - CO3-2 1.383e-10 1.182e-10 -9.859 -9.927 -0.068 -0.77 -H(0) 5.609e-33 - H2 2.804e-33 2.805e-33 -32.552 -32.552 0.000 28.33 -O(0) 7.836e-09 - O2 3.918e-09 3.919e-09 -8.407 -8.407 0.000 32.23 + HCO3- 9.668e-04 9.298e-04 -3.015 -3.032 -0.017 26.67 + CO3-2 1.446e-10 1.237e-10 -9.840 -9.908 -0.068 -2.30 +H(0) 1.147e-13 + H2 5.737e-14 5.738e-14 -13.241 -13.241 0.000 28.33 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -47.029 -47.029 0.000 32.23 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 605 atm) - CH4(g) -96.94 -100.29 -3.35 CH4 + CH4(g) -19.70 -23.05 -3.35 CH4 CO2(g) 2.43 0.13 -2.30 CO2 Pressure 590.8 atm, phi 0.452 - H2(g) -29.21 -32.55 -3.34 H2 + H2(g) -9.90 -13.24 -3.34 H2 H2O(g) 0.14 -0.01 -0.15 H2O Pressure 14.0 atm, phi 0.099 - O2(g) -5.02 -8.41 -3.39 O2 + O2(g) -43.64 -47.03 -3.39 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10481,54 +10477,54 @@ H2O(g) 1.20 1.588e+01 0.091 4.804e-01 4.991e-01 1.875e-02 ----------------------------Description of solution---------------------------- - pH = 3.005 Charge balance - pe = 11.444 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 690 + pH = 3.009 Charge balance + pe = 11.341 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 640 Density (g/cm³) = 1.00012 Volume (L) = 1.06679 - Viscosity (mPa s) = 0.30053 + Viscosity (mPa s) = 0.30011 Activity of water = 0.973 - Ionic strength (mol/kgw) = 1.029e-03 + Ionic strength (mol/kgw) = 1.018e-03 Mass of water (kg) = 9.910e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.740e+00 Temperature (°C) = 100.00 Pressure (atm) = 692.70 - Electrical balance (eq) = -1.206e-09 + Electrical balance (eq) = -1.204e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 36 (137 overall) + Iterations = 65 (166 overall) Total H = 1.100142e+02 - Total O = 5.845662e+01 + Total O = 5.845661e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.029e-03 9.897e-04 -2.988 -3.005 -0.017 0.00 - OH- 1.078e-09 1.035e-09 -8.967 -8.985 -0.018 -8.32 + H+ 1.018e-03 9.800e-04 -2.992 -3.009 -0.017 0.00 + OH- 1.089e-09 1.045e-09 -8.963 -8.981 -0.018 -8.32 H2O 5.551e+01 9.734e-01 1.744 -0.012 0.000 18.23 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -100.318 -100.318 0.000 40.34 + CH4 0.000e+00 0.000e+00 -99.529 -99.529 0.000 40.34 C(4) 1.740e+00 CO2 1.384e+00 1.384e+00 0.141 0.141 0.000 37.23 (CO2)2 1.778e-01 1.778e-01 -0.750 -0.750 0.000 74.46 - HCO3- 1.029e-03 9.883e-04 -2.988 -3.005 -0.017 26.15 - CO3-2 1.477e-10 1.258e-10 -9.831 -9.900 -0.069 0.10 -H(0) 5.203e-33 - H2 2.602e-33 2.602e-33 -32.585 -32.585 0.000 28.30 -O(0) 7.839e-09 - O2 3.919e-09 3.920e-09 -8.407 -8.407 0.000 32.04 + HCO3- 1.018e-03 9.786e-04 -2.992 -3.009 -0.017 27.02 + CO3-2 1.561e-10 1.331e-10 -9.807 -9.876 -0.069 -1.53 +H(0) 8.197e-33 + H2 4.099e-33 4.100e-33 -32.387 -32.387 0.000 28.30 +O(0) 3.158e-09 + O2 1.579e-09 1.580e-09 -8.802 -8.801 0.000 32.04 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 693 atm) - CH4(g) -96.92 -100.32 -3.40 CH4 + CH4(g) -96.13 -99.53 -3.40 CH4 CO2(g) 2.49 0.14 -2.34 CO2 Pressure 676.8 atm, phi 0.452 - H2(g) -29.21 -32.58 -3.38 H2 + H2(g) -29.01 -32.39 -3.38 H2 H2O(g) 0.16 -0.01 -0.17 H2O Pressure 15.9 atm, phi 0.091 - O2(g) -4.98 -8.41 -3.43 O2 + O2(g) -5.37 -8.80 -3.43 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10583,54 +10579,54 @@ H2O(g) 1.26 1.804e+01 0.085 4.991e-01 5.142e-01 1.511e-02 ----------------------------Description of solution---------------------------- - pH = 2.979 Charge balance - pe = 11.469 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 727 + pH = 2.984 Charge balance + pe = 11.364 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 674 Density (g/cm³) = 1.00480 Volume (L) = 1.06465 - Viscosity (mPa s) = 0.30328 + Viscosity (mPa s) = 0.30281 Activity of water = 0.972 - Ionic strength (mol/kgw) = 1.092e-03 + Ionic strength (mol/kgw) = 1.078e-03 Mass of water (kg) = 9.907e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.812e+00 Temperature (°C) = 100.00 Pressure (atm) = 797.06 - Electrical balance (eq) = -1.206e-09 + Electrical balance (eq) = -1.204e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 33 (134 overall) + Iterations = 36 (137 overall) Total H = 1.099840e+02 - Total O = 5.858320e+01 + Total O = 5.858319e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.092e-03 1.050e-03 -2.962 -2.979 -0.017 0.00 - OH- 1.118e-09 1.072e-09 -8.952 -8.970 -0.018 -8.59 + H+ 1.078e-03 1.036e-03 -2.967 -2.984 -0.017 0.00 + OH- 1.132e-09 1.086e-09 -8.946 -8.964 -0.018 -8.59 H2O 5.551e+01 9.724e-01 1.744 -0.012 0.000 18.15 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -100.349 -100.348 0.000 40.25 + CH4 0.000e+00 0.000e+00 -99.559 -99.559 0.000 40.25 C(4) 1.812e+00 CO2 1.431e+00 1.431e+00 0.156 0.156 0.000 37.03 (CO2)2 1.901e-01 1.902e-01 -0.721 -0.721 0.000 74.06 - HCO3- 1.092e-03 1.049e-03 -2.962 -2.979 -0.018 26.40 - CO3-2 1.589e-10 1.350e-10 -9.799 -9.870 -0.071 1.07 -H(0) 4.763e-33 - H2 2.381e-33 2.382e-33 -32.623 -32.623 0.000 28.27 -O(0) 7.841e-09 - O2 3.920e-09 3.921e-09 -8.407 -8.407 0.000 31.83 + HCO3- 1.078e-03 1.035e-03 -2.967 -2.985 -0.018 27.42 + CO3-2 1.706e-10 1.450e-10 -9.768 -9.839 -0.071 -0.67 +H(0) 7.503e-33 + H2 3.751e-33 3.752e-33 -32.426 -32.426 0.000 28.27 +O(0) 3.159e-09 + O2 1.580e-09 1.580e-09 -8.801 -8.801 0.000 31.83 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 797 atm) - CH4(g) -96.89 -100.35 -3.46 CH4 + CH4(g) -96.10 -99.56 -3.46 CH4 CO2(g) 2.55 0.16 -2.40 CO2 Pressure 779.0 atm, phi 0.459 - H2(g) -29.20 -32.62 -3.42 H2 + H2(g) -29.01 -32.43 -3.42 H2 H2O(g) 0.19 -0.01 -0.20 H2O Pressure 18.0 atm, phi 0.085 - O2(g) -4.93 -8.41 -3.47 O2 + O2(g) -5.33 -8.80 -3.47 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10685,54 +10681,54 @@ H2O(g) 1.31 2.044e+01 0.081 5.142e-01 5.250e-01 1.075e-02 ----------------------------Description of solution---------------------------- - pH = 2.950 Charge balance - pe = 11.495 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 768 + pH = 2.958 Charge balance + pe = 11.389 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 713 Density (g/cm³) = 1.01017 Volume (L) = 1.06205 - Viscosity (mPa s) = 0.30654 + Viscosity (mPa s) = 0.30601 Activity of water = 0.971 - Ionic strength (mol/kgw) = 1.168e-03 + Ionic strength (mol/kgw) = 1.147e-03 Mass of water (kg) = 9.905e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.888e+00 Temperature (°C) = 100.00 Pressure (atm) = 921.15 - Electrical balance (eq) = -1.206e-09 + Electrical balance (eq) = -1.204e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 35 (136 overall) + Iterations = 44 (145 overall) Total H = 1.099625e+02 - Total O = 5.872143e+01 + Total O = 5.872141e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.168e-03 1.122e-03 -2.933 -2.950 -0.018 0.00 - OH- 1.174e-09 1.124e-09 -8.930 -8.949 -0.019 -8.89 + H+ 1.147e-03 1.102e-03 -2.940 -2.958 -0.017 0.00 + OH- 1.194e-09 1.144e-09 -8.923 -8.941 -0.018 -8.89 H2O 5.551e+01 9.713e-01 1.744 -0.013 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -100.386 -100.386 0.000 40.15 + CH4 0.000e+00 0.000e+00 -99.597 -99.597 0.000 40.15 C(4) 1.888e+00 CO2 1.480e+00 1.480e+00 0.170 0.170 0.000 36.81 (CO2)2 2.033e-01 2.034e-01 -0.692 -0.692 0.000 73.62 - HCO3- 1.168e-03 1.120e-03 -2.933 -2.951 -0.018 26.69 - CO3-2 1.726e-10 1.460e-10 -9.763 -9.836 -0.073 2.15 -H(0) 4.289e-33 - H2 2.145e-33 2.145e-33 -32.669 -32.669 0.000 28.24 -O(0) 7.842e-09 - O2 3.921e-09 3.922e-09 -8.407 -8.406 0.000 31.59 + HCO3- 1.147e-03 1.100e-03 -2.940 -2.958 -0.018 27.86 + CO3-2 1.888e-10 1.599e-10 -9.724 -9.796 -0.072 0.29 +H(0) 6.757e-33 + H2 3.379e-33 3.379e-33 -32.471 -32.471 0.000 28.24 +O(0) 3.160e-09 + O2 1.580e-09 1.580e-09 -8.801 -8.801 0.000 31.59 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 921 atm) - CH4(g) -96.86 -100.39 -3.53 CH4 + CH4(g) -96.07 -99.60 -3.53 CH4 CO2(g) 2.63 0.17 -2.46 CO2 Pressure 900.7 atm, phi 0.474 - H2(g) -29.20 -32.67 -3.47 H2 + H2(g) -29.00 -32.47 -3.47 H2 H2O(g) 0.22 -0.01 -0.23 H2O Pressure 20.4 atm, phi 0.081 - O2(g) -4.88 -8.41 -3.53 O2 + O2(g) -5.27 -8.80 -3.53 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10787,54 +10783,54 @@ H2O(g) 1.36 2.308e+01 0.078 5.250e-01 5.306e-01 5.633e-03 ----------------------------Description of solution---------------------------- - pH = 2.918 Charge balance - pe = 11.525 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 817 + pH = 2.929 Charge balance + pe = 11.416 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 758 Density (g/cm³) = 1.01630 Volume (L) = 1.05892 - Viscosity (mPa s) = 0.31039 + Viscosity (mPa s) = 0.30979 Activity of water = 0.970 - Ionic strength (mol/kgw) = 1.258e-03 + Ionic strength (mol/kgw) = 1.228e-03 Mass of water (kg) = 9.904e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.967e+00 Temperature (°C) = 100.00 Pressure (atm) = 1069.23 - Electrical balance (eq) = -1.206e-09 + Electrical balance (eq) = -1.205e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 37 (138 overall) Total H = 1.099512e+02 - Total O = 5.887177e+01 + Total O = 5.887174e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.257e-03 1.207e-03 -2.900 -2.918 -0.018 0.00 - OH- 1.253e-09 1.199e-09 -8.902 -8.921 -0.019 -9.21 + H+ 1.228e-03 1.179e-03 -2.911 -2.929 -0.018 0.00 + OH- 1.282e-09 1.227e-09 -8.892 -8.911 -0.019 -9.21 H2O 5.551e+01 9.702e-01 1.744 -0.013 0.000 17.97 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -100.434 -100.434 0.000 40.04 + CH4 0.000e+00 0.000e+00 -99.644 -99.644 0.000 40.04 C(4) 1.967e+00 CO2 1.531e+00 1.531e+00 0.185 0.185 0.000 36.56 (CO2)2 2.175e-01 2.175e-01 -0.663 -0.662 0.000 73.13 - HCO3- 1.257e-03 1.205e-03 -2.900 -2.919 -0.019 27.00 - CO3-2 1.893e-10 1.594e-10 -9.723 -9.798 -0.075 3.35 -H(0) 3.788e-33 - H2 1.894e-33 1.894e-33 -32.723 -32.723 0.000 28.20 -O(0) 7.843e-09 - O2 3.922e-09 3.923e-09 -8.407 -8.406 0.000 31.32 + HCO3- 1.228e-03 1.177e-03 -2.911 -2.929 -0.018 28.34 + CO3-2 2.122e-10 1.790e-10 -9.673 -9.747 -0.074 1.36 +H(0) 5.967e-33 + H2 2.984e-33 2.985e-33 -32.525 -32.525 0.000 28.20 +O(0) 3.160e-09 + O2 1.580e-09 1.581e-09 -8.801 -8.801 0.000 31.32 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 1069 atm) - CH4(g) -96.82 -100.43 -3.61 CH4 + CH4(g) -96.03 -99.64 -3.61 CH4 CO2(g) 2.72 0.18 -2.53 CO2 Pressure 1046.2 atm, phi 0.500 - H2(g) -29.19 -32.72 -3.53 H2 + H2(g) -29.00 -32.53 -3.53 H2 H2O(g) 0.25 -0.01 -0.27 H2O Pressure 23.1 atm, phi 0.078 - O2(g) -4.82 -8.41 -3.59 O2 + O2(g) -5.21 -8.80 -3.59 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10872,14 +10868,14 @@ Reaction 1. Total pressure: 1246.74 atmospheres (Peng-Robinson calculation) Gas volume: 1.00e+00 liters Molar volume: 3.92e-02 liters/mole - P * Vm / RT: 1.59662 (Compressibility Factor Z) + P * Vm / RT: 1.59663 (Compressibility Factor Z) Moles in gas ---------------------------------- Component log P P phi Initial Final Delta CO2(g) 3.09 1.221e+03 0.541 2.405e+01 2.497e+01 9.188e-01 -H2O(g) 1.41 2.593e+01 0.076 5.306e-01 5.304e-01 -2.392e-04 +H2O(g) 1.41 2.593e+01 0.076 5.306e-01 5.304e-01 -2.391e-04 -----------------------------Solution composition------------------------------ @@ -10889,54 +10885,54 @@ H2O(g) 1.41 2.593e+01 0.076 5.306e-01 5.304e-01 -2.392e-04 ----------------------------Description of solution---------------------------- - pH = 2.883 Charge balance - pe = 11.557 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 874 + pH = 2.897 Charge balance + pe = 11.445 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 810 Density (g/cm³) = 1.02323 Volume (L) = 1.05524 - Viscosity (mPa s) = 0.31493 + Viscosity (mPa s) = 0.31423 Activity of water = 0.969 - Ionic strength (mol/kgw) = 1.365e-03 + Ionic strength (mol/kgw) = 1.323e-03 Mass of water (kg) = 9.904e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 2.049e+00 Temperature (°C) = 100.00 Pressure (atm) = 1246.74 - Electrical balance (eq) = -1.207e-09 + Electrical balance (eq) = -1.205e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 49 (150 overall) + Iterations = 42 (143 overall) Total H = 1.099517e+02 - Total O = 5.903441e+01 + Total O = 5.903436e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.365e-03 1.308e-03 -2.865 -2.883 -0.018 0.00 - OH- 1.366e-09 1.306e-09 -8.864 -8.884 -0.020 -9.57 + H+ 1.323e-03 1.268e-03 -2.879 -2.897 -0.018 0.00 + OH- 1.409e-09 1.347e-09 -8.851 -8.871 -0.019 -9.57 H2O 5.551e+01 9.691e-01 1.744 -0.014 0.000 17.86 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -100.492 -100.492 0.000 39.91 + CH4 0.000e+00 0.000e+00 -99.703 -99.703 0.000 39.91 C(4) 2.049e+00 CO2 1.583e+00 1.583e+00 0.199 0.199 0.000 36.29 (CO2)2 2.325e-01 2.326e-01 -0.634 -0.633 0.000 72.59 - HCO3- 1.365e-03 1.306e-03 -2.865 -2.884 -0.019 27.35 - CO3-2 2.098e-10 1.757e-10 -9.678 -9.755 -0.077 4.67 -H(0) 3.266e-33 - H2 1.633e-33 1.634e-33 -32.787 -32.787 0.000 28.16 -O(0) 7.843e-09 - O2 3.922e-09 3.923e-09 -8.407 -8.406 0.000 31.03 + HCO3- 1.323e-03 1.266e-03 -2.879 -2.898 -0.019 28.88 + CO3-2 2.428e-10 2.039e-10 -9.615 -9.691 -0.076 2.54 +H(0) 5.145e-33 + H2 2.573e-33 2.573e-33 -32.590 -32.589 0.000 28.16 +O(0) 3.160e-09 + O2 1.580e-09 1.581e-09 -8.801 -8.801 0.000 31.03 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 1247 atm) - CH4(g) -96.78 -100.49 -3.71 CH4 + CH4(g) -95.99 -99.70 -3.71 CH4 CO2(g) 2.82 0.20 -2.62 CO2 Pressure 1220.8 atm, phi 0.541 - H2(g) -29.19 -32.79 -3.60 H2 + H2(g) -28.99 -32.59 -3.60 H2 H2O(g) 0.30 -0.01 -0.31 H2O Pressure 25.9 atm, phi 0.076 - O2(g) -4.74 -8.41 -3.66 O2 + O2(g) -5.14 -8.80 -3.66 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. diff --git a/ex2b.out b/ex2b.out index 404c0e87..9d725358 100644 --- a/ex2b.out +++ b/ex2b.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + CALCULATE_VALUES RATES END ------------------------------------ diff --git a/ex3.out b/ex3.out index 2f170f84..6f94d1e2 100644 --- a/ex3.out +++ b/ex3.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + CALCULATE_VALUES RATES END ------------------------------------ @@ -117,10 +118,10 @@ Calcite 0.00 -8.48 -8.48 1.000e+01 9.998e+00 -1.645e-03 pH = 7.297 Charge balance pe = -1.575 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 304 + Specific Conductance (µS/cm, 25°C) = 308 Density (g/cm³) = 0.99726 Volume (L) = 1.00300 - Viscosity (mPa s) = 0.89187 + Viscosity (mPa s) = 0.89219 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.826e-03 Mass of water (kg) = 1.000e+00 @@ -141,24 +142,24 @@ Calcite 0.00 -8.48 -8.48 1.000e+01 9.998e+00 -1.645e-03 OH- 2.162e-07 2.005e-07 -6.665 -6.698 -0.033 -4.07 H+ 5.402e-08 5.048e-08 -7.267 -7.297 -0.029 0.00 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 -C(-4) 1.404e-25 - CH4 1.404e-25 1.406e-25 -24.853 -24.852 0.000 35.46 +C(-4) 1.399e-25 + CH4 1.399e-25 1.401e-25 -24.854 -24.854 0.000 35.46 C(4) 3.622e-03 - HCO3- 3.223e-03 2.998e-03 -2.492 -2.523 -0.032 24.60 + HCO3- 3.223e-03 2.998e-03 -2.492 -2.523 -0.032 24.62 CO2 3.400e-04 3.403e-04 -3.469 -3.468 0.000 34.43 CaHCO3+ 4.886e-05 4.548e-05 -4.311 -4.342 -0.031 9.70 CaCO3 5.557e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 - CO3-2 3.723e-06 2.785e-06 -5.429 -5.555 -0.126 -3.91 + CO3-2 3.723e-06 2.785e-06 -5.429 -5.555 -0.126 -3.79 (CO2)2 2.123e-09 2.125e-09 -8.673 -8.673 0.000 68.87 Ca 1.645e-03 Ca+2 1.591e-03 1.189e-03 -2.798 -2.925 -0.126 -18.02 CaHCO3+ 4.886e-05 4.548e-05 -4.311 -4.342 -0.031 9.70 CaCO3 5.557e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 CaOH+ 4.212e-09 3.909e-09 -8.376 -8.408 -0.032 (0) -H(0) 5.093e-15 - H2 2.547e-15 2.549e-15 -14.594 -14.594 0.000 28.61 +H(0) 5.089e-15 + H2 2.544e-15 2.547e-15 -14.594 -14.594 0.000 28.61 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.193 -63.193 0.000 30.40 + O2 0.000e+00 0.000e+00 -63.193 -63.192 0.000 30.40 ------------------------------Saturation indices------------------------------- @@ -228,12 +229,12 @@ Initial solution 2. Seawater pH = 8.220 pe = 8.451 - Specific Conductance (µS/cm, 25°C) = 52731 - Density (g/cm³) = 1.02327 - Volume (L) = 1.01279 - Viscosity (mPa s) = 0.95702 + Specific Conductance (µS/cm, 25°C) = 52855 + Density (g/cm³) = 1.02328 + Volume (L) = 1.01278 + Viscosity (mPa s) = 0.96027 Activity of water = 0.981 - Ionic strength (mol/kgw) = 6.741e-01 + Ionic strength (mol/kgw) = 6.704e-01 Mass of water (kg) = 1.000e+00 Total carbon (mol/kg) = 2.240e-03 Total CO2 (mol/kg) = 2.240e-03 @@ -242,97 +243,99 @@ Initial solution 2. Seawater Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.07 Iterations = 8 Total H = 1.110148e+02 - Total O = 5.563026e+01 + Total O = 5.563027e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 2.705e-06 1.647e-06 -5.568 -5.783 -0.215 -2.63 - H+ 7.983e-09 6.026e-09 -8.098 -8.220 -0.122 0.00 - H2O 5.551e+01 9.806e-01 1.744 -0.009 0.000 18.07 + OH- 2.703e-06 1.647e-06 -5.568 -5.783 -0.215 -2.64 + H+ 7.981e-09 6.026e-09 -8.098 -8.220 -0.122 0.00 + H2O 5.551e+01 9.806e-01 1.744 -0.008 0.000 18.07 C(4) 2.240e-03 - HCO3- 1.572e-03 1.062e-03 -2.803 -2.974 -0.170 26.61 - MgHCO3+ 2.743e-04 1.725e-04 -3.562 -3.763 -0.201 5.82 - NaHCO3 1.700e-04 2.430e-04 -3.770 -3.614 0.155 28.00 - MgCO3 9.375e-05 1.095e-04 -4.028 -3.961 0.067 -17.09 - CaHCO3+ 4.751e-05 3.288e-05 -4.323 -4.483 -0.160 9.96 - CO3-2 3.973e-05 8.264e-06 -4.401 -5.083 -0.682 -0.40 - CaCO3 2.885e-05 3.369e-05 -4.540 -4.472 0.067 -14.60 - CO2 1.324e-05 1.467e-05 -4.878 -4.834 0.044 34.43 - (CO2)2 3.382e-12 3.950e-12 -11.471 -11.403 0.067 68.87 + HCO3- 1.520e-03 1.027e-03 -2.818 -2.988 -0.170 25.99 + MgHCO3+ 2.745e-04 1.727e-04 -3.562 -3.763 -0.201 5.82 + NaHCO3 2.221e-04 3.024e-04 -3.653 -3.519 0.134 31.73 + MgCO3 9.395e-05 1.096e-04 -4.027 -3.960 0.067 -17.09 + CaHCO3+ 4.704e-05 3.256e-05 -4.328 -4.487 -0.160 9.96 + CO3-2 3.835e-05 7.993e-06 -4.416 -5.097 -0.681 -0.52 + CaCO3 2.859e-05 3.337e-05 -4.544 -4.477 0.067 -14.60 + CO2 1.281e-05 1.419e-05 -4.892 -4.848 0.044 34.43 + KHCO3 2.929e-06 2.972e-06 -5.533 -5.527 0.006 41.03 + (CO2)2 3.166e-12 3.695e-12 -11.499 -11.432 0.067 68.87 Ca 1.066e-02 - Ca+2 9.706e-03 2.427e-03 -2.013 -2.615 -0.602 -16.70 - CaSO4 8.788e-04 1.026e-03 -3.056 -2.989 0.067 7.50 - CaHCO3+ 4.751e-05 3.288e-05 -4.323 -4.483 -0.160 9.96 - CaCO3 2.885e-05 3.369e-05 -4.540 -4.472 0.067 -14.60 - CaOH+ 8.777e-08 6.554e-08 -7.057 -7.183 -0.127 (0) - CaHSO4+ 5.444e-11 4.065e-11 -10.264 -10.391 -0.127 (0) + Ca+2 9.933e-03 2.485e-03 -2.003 -2.605 -0.602 -16.70 + CaSO4 6.518e-04 7.606e-04 -3.186 -3.119 0.067 7.50 + CaHCO3+ 4.704e-05 3.256e-05 -4.328 -4.487 -0.160 9.96 + CaCO3 2.859e-05 3.337e-05 -4.544 -4.477 0.067 -14.60 + CaOH+ 8.992e-08 6.712e-08 -7.046 -7.173 -0.127 (0) + CaHSO4+ 4.036e-11 3.012e-11 -10.394 -10.521 -0.127 (0) Cl 5.657e-01 - Cl- 5.657e-01 3.568e-01 -0.247 -0.448 -0.200 18.79 - HCl 3.826e-10 7.407e-10 -9.417 -9.130 0.287 (0) -H(0) 5.516e-37 - H2 2.758e-37 3.221e-37 -36.559 -36.492 0.067 28.61 + Cl- 5.657e-01 3.570e-01 -0.247 -0.447 -0.200 18.79 + HCl 3.842e-10 7.411e-10 -9.415 -9.130 0.285 (0) +H(0) 5.521e-37 + H2 2.760e-37 3.221e-37 -36.559 -36.492 0.067 28.61 K 1.058e-02 - K+ 1.043e-02 6.501e-03 -1.982 -2.187 -0.205 9.66 - KSO4- 1.471e-04 5.683e-05 -3.832 -4.245 -0.413 32.21 + K+ 1.039e-02 6.478e-03 -1.983 -2.189 -0.205 9.66 + KSO4- 1.873e-04 1.697e-04 -3.728 -3.770 -0.043 11.35 + KHCO3 2.929e-06 2.972e-06 -5.533 -5.527 0.006 41.03 Mg 5.507e-02 - Mg+2 4.811e-02 1.389e-02 -1.318 -1.857 -0.540 -20.41 - MgSO4 6.339e-03 8.646e-03 -2.198 -2.063 0.135 -0.83 - MgHCO3+ 2.743e-04 1.725e-04 -3.562 -3.763 -0.201 5.82 - Mg(SO4)2-2 2.394e-04 6.773e-05 -3.621 -4.169 -0.548 48.54 - MgCO3 9.375e-05 1.095e-04 -4.028 -3.961 0.067 -17.09 - MgOH+ 1.164e-05 8.204e-06 -4.934 -5.086 -0.152 (0) + Mg+2 4.980e-02 1.437e-02 -1.303 -1.842 -0.540 -20.42 + MgSO4 4.757e-03 6.477e-03 -2.323 -2.189 0.134 -7.92 + MgHCO3+ 2.745e-04 1.727e-04 -3.562 -3.763 -0.201 5.82 + Mg(SO4)2-2 1.297e-04 3.672e-05 -3.887 -4.435 -0.548 32.91 + MgCO3 9.395e-05 1.096e-04 -4.027 -3.960 0.067 -17.09 + MgOH+ 1.205e-05 8.493e-06 -4.919 -5.071 -0.152 (0) Na 4.854e-01 - Na+ 4.769e-01 3.422e-01 -0.322 -0.466 -0.144 -0.50 - NaSO4- 8.339e-03 3.180e-03 -2.079 -2.498 -0.419 20.67 - NaHCO3 1.700e-04 2.430e-04 -3.770 -3.614 0.155 28.00 - NaOH 4.827e-17 5.637e-17 -16.316 -16.249 0.067 (0) -O(0) 6.616e-20 - O2 3.308e-20 3.863e-20 -19.480 -19.413 0.067 30.40 + Na+ 4.712e-01 3.381e-01 -0.327 -0.471 -0.144 -0.51 + NaSO4- 1.396e-02 9.474e-03 -1.855 -2.023 -0.168 8.22 + NaHCO3 2.221e-04 3.024e-04 -3.653 -3.519 0.134 31.73 + NaOH 4.773e-17 5.570e-17 -16.321 -16.254 0.067 (0) +O(0) 6.622e-20 + O2 3.311e-20 3.864e-20 -19.480 -19.413 0.067 30.40 S(6) 2.926e-02 - SO4-2 1.307e-02 2.378e-03 -1.884 -2.624 -0.740 17.77 - NaSO4- 8.339e-03 3.180e-03 -2.079 -2.498 -0.419 20.67 - MgSO4 6.339e-03 8.646e-03 -2.198 -2.063 0.135 -0.83 - CaSO4 8.788e-04 1.026e-03 -3.056 -2.989 0.067 7.50 - Mg(SO4)2-2 2.394e-04 6.773e-05 -3.621 -4.169 -0.548 48.54 - KSO4- 1.471e-04 5.683e-05 -3.832 -4.245 -0.413 32.21 - HSO4- 1.866e-09 1.393e-09 -8.729 -8.856 -0.127 40.96 - CaHSO4+ 5.444e-11 4.065e-11 -10.264 -10.391 -0.127 (0) + NaSO4- 1.396e-02 9.474e-03 -1.855 -2.023 -0.168 8.22 + SO4-2 9.440e-03 1.721e-03 -2.025 -2.764 -0.739 38.41 + MgSO4 4.757e-03 6.477e-03 -2.323 -2.189 0.134 -7.92 + CaSO4 6.518e-04 7.606e-04 -3.186 -3.119 0.067 7.50 + KSO4- 1.873e-04 1.697e-04 -3.728 -3.770 -0.043 11.35 + Mg(SO4)2-2 1.297e-04 3.672e-05 -3.887 -4.435 -0.548 32.91 + HSO4- 1.351e-09 1.008e-09 -8.869 -8.996 -0.127 40.96 + CaHSO4+ 4.036e-11 3.012e-11 -10.394 -10.521 -0.127 (0) Si 7.382e-05 - H4SiO4 7.061e-05 8.247e-05 -4.151 -4.084 0.067 52.08 - H3SiO4- 3.209e-06 2.018e-06 -5.494 -5.695 -0.201 28.72 - H2SiO4-2 1.095e-10 2.278e-11 -9.961 -10.642 -0.682 (0) + H4SiO4 7.062e-05 8.241e-05 -4.151 -4.084 0.067 52.08 + H3SiO4- 3.205e-06 2.016e-06 -5.494 -5.695 -0.201 28.72 + H2SiO4-2 1.092e-10 2.276e-11 -9.962 -10.643 -0.681 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -0.96 -5.24 -4.28 CaSO4 - Aragonite 0.64 -7.70 -8.34 CaCO3 - Arcanite -5.12 -7.00 -1.88 K2SO4 + Anhydrite -1.09 -5.37 -4.28 CaSO4 + Aragonite 0.63 -7.70 -8.34 CaCO3 + Arcanite -5.26 -7.14 -1.88 K2SO4 Calcite 0.78 -7.70 -8.48 CaCO3 Chalcedony -0.52 -4.07 -3.55 SiO2 - Chrysotile 3.37 35.57 32.20 Mg3Si2O5(OH)4 - CO2(g) -3.37 -4.83 -1.47 CO2 - Dolomite 2.45 -14.64 -17.08 CaMg(CO3)2 - Epsomite -2.80 -4.54 -1.74 MgSO4:7H2O - Gypsum -0.67 -5.26 -4.58 CaSO4:2H2O + Chrysotile 3.42 35.62 32.20 Mg3Si2O5(OH)4 + CO2(g) -3.38 -4.85 -1.47 CO2 + Dolomite 2.44 -14.64 -17.08 CaMg(CO3)2 + Epsomite -2.93 -4.67 -1.74 MgSO4:7H2O + Gypsum -0.80 -5.39 -4.58 CaSO4:2H2O H2(g) -33.39 -36.49 -3.10 H2 H2O(g) -1.51 -0.01 1.50 H2O - Halite -2.48 -0.91 1.57 NaCl - Hexahydrite -2.97 -4.53 -1.57 MgSO4:6H2O - Kieserite -3.33 -4.49 -1.16 MgSO4:H2O - Mirabilite -2.40 -3.64 -1.24 Na2SO4:10H2O + Halite -2.49 -0.92 1.57 NaCl + Hexahydrite -3.09 -4.66 -1.57 MgSO4:6H2O + Kieserite -3.45 -4.62 -1.16 MgSO4:H2O + Mirabilite -2.55 -3.79 -1.24 Na2SO4:10H2O O2(g) -16.52 -19.41 -2.89 O2 Quartz -0.09 -4.07 -3.98 SiO2 - Sepiolite 1.16 16.92 15.76 Mg2Si3O7.5OH:3H2O - Sepiolite(d) -1.74 16.92 18.66 Mg2Si3O7.5OH:3H2O - SiO2(a) -1.35 -4.07 -2.71 SiO2 - Sylvite -3.53 -2.63 0.90 KCl - Talc 6.05 27.45 21.40 Mg3Si4O10(OH)2 - Thenardite -3.25 -3.56 -0.30 Na2SO4 + Sepiolite 1.19 16.95 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -1.71 16.95 18.66 Mg2Si3O7.5OH:3H2O + SiO2(a) -1.36 -4.07 -2.71 SiO2 + Sylvite -3.54 -2.64 0.90 KCl + Talc 6.09 27.49 21.40 Mg3Si4O10(OH)2 + Thenardite -3.41 -3.71 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -385,21 +388,21 @@ Mixture 1. ----------------------------Description of solution---------------------------- - pH = 7.332 Charge balance - pe = 10.251 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 18410 - Density (g/cm³) = 1.00526 - Volume (L) = 1.00580 - Viscosity (mPa s) = 0.91134 + pH = 7.326 Charge balance + pe = 10.569 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 18310 + Density (g/cm³) = 1.00527 + Volume (L) = 1.00578 + Viscosity (mPa s) = 0.91372 Activity of water = 0.994 - Ionic strength (mol/kgw) = 2.085e-01 + Ionic strength (mol/kgw) = 2.068e-01 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 3.026e-03 Total CO2 (mol/kg) = 3.207e-03 Temperature (°C) = 25.00 Electrical balance (eq) = 2.390e-04 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.06 - Iterations = 14 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.07 + Iterations = 16 Total H = 1.110131e+02 Total O = 5.554965e+01 @@ -408,100 +411,102 @@ Mixture 1. Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 3.070e-07 2.160e-07 -6.513 -6.666 -0.153 -3.48 - H+ 5.852e-08 4.658e-08 -7.233 -7.332 -0.099 0.00 + OH- 3.025e-07 2.130e-07 -6.519 -6.672 -0.152 -3.48 + H+ 5.933e-08 4.724e-08 -7.227 -7.326 -0.099 0.00 H2O 5.551e+01 9.941e-01 1.744 -0.003 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.973 -119.952 0.021 35.46 + CH4 0.000e+00 0.000e+00 -122.465 -122.445 0.021 35.46 C(4) 3.207e-03 - HCO3- 2.657e-03 1.976e-03 -2.576 -2.704 -0.129 25.45 - CO2 2.017e-04 2.082e-04 -3.695 -3.682 0.014 34.43 - MgHCO3+ 1.592e-04 1.139e-04 -3.798 -3.944 -0.146 5.72 - NaHCO3 1.274e-04 1.422e-04 -3.895 -3.847 0.048 28.00 - CaHCO3+ 4.217e-05 3.180e-05 -4.375 -4.498 -0.123 9.88 - MgCO3 8.913e-06 9.351e-06 -5.050 -5.029 0.021 -17.09 - CO3-2 6.506e-06 1.989e-06 -5.187 -5.701 -0.515 -2.16 - CaCO3 4.019e-06 4.216e-06 -5.396 -5.375 0.021 -14.60 - (CO2)2 7.580e-10 7.953e-10 -9.120 -9.099 0.021 68.87 + HCO3- 2.617e-03 1.947e-03 -2.582 -2.711 -0.128 25.15 + CO2 2.016e-04 2.080e-04 -3.696 -3.682 0.014 34.43 + NaHCO3 1.641e-04 1.805e-04 -3.785 -3.743 0.041 31.73 + MgHCO3+ 1.612e-04 1.154e-04 -3.793 -3.938 -0.145 5.72 + CaHCO3+ 4.236e-05 3.196e-05 -4.373 -4.495 -0.122 9.88 + MgCO3 8.908e-06 9.342e-06 -5.050 -5.030 0.021 -17.09 + CO3-2 6.305e-06 1.933e-06 -5.200 -5.714 -0.514 -2.19 + CaCO3 3.984e-06 4.178e-06 -5.400 -5.379 0.021 -14.60 + KHCO3 1.917e-06 1.926e-06 -5.717 -5.715 0.002 41.03 + (CO2)2 7.575e-10 7.944e-10 -9.121 -9.100 0.021 68.87 Ca 4.350e-03 - Ca+2 3.970e-03 1.262e-03 -2.401 -2.899 -0.498 -17.20 - CaSO4 3.335e-04 3.499e-04 -3.477 -3.456 0.021 7.50 - CaHCO3+ 4.217e-05 3.180e-05 -4.375 -4.498 -0.123 9.88 - CaCO3 4.019e-06 4.216e-06 -5.396 -5.375 0.021 -14.60 - CaOH+ 6.000e-09 4.469e-09 -8.222 -8.350 -0.128 (0) - CaHSO4+ 1.439e-10 1.071e-10 -9.842 -9.970 -0.128 (0) + Ca+2 4.041e-03 1.287e-03 -2.394 -2.891 -0.497 -17.20 + CaSO4 2.631e-04 2.759e-04 -3.580 -3.559 0.021 7.50 + CaHCO3+ 4.236e-05 3.196e-05 -4.373 -4.495 -0.122 9.88 + CaCO3 3.984e-06 4.178e-06 -5.400 -5.379 0.021 -14.60 + CaOH+ 6.031e-09 4.494e-09 -8.220 -8.347 -0.128 (0) + CaHSO4+ 1.150e-10 8.567e-11 -9.939 -10.067 -0.128 (0) Cl 1.697e-01 - Cl- 1.697e-01 1.209e-01 -0.770 -0.917 -0.147 18.47 - HCl 1.582e-09 1.940e-09 -8.801 -8.712 0.089 (0) -H(0) 9.199e-39 - H2 4.600e-39 4.826e-39 -38.337 -38.316 0.021 28.61 + Cl- 1.697e-01 1.210e-01 -0.770 -0.917 -0.147 18.46 + HCl 1.608e-09 1.970e-09 -8.794 -8.706 0.088 (0) +H(0) 2.192e-39 + H2 1.096e-39 1.149e-39 -38.960 -38.940 0.021 28.61 K 3.173e-03 - K+ 3.152e-03 2.233e-03 -2.501 -2.651 -0.150 9.35 - KSO4- 2.180e-05 1.280e-05 -4.662 -4.893 -0.231 28.29 + K+ 3.122e-03 2.214e-03 -2.506 -2.655 -0.149 9.35 + KSO4- 4.986e-05 4.062e-05 -4.302 -4.391 -0.089 14.03 + KHCO3 1.917e-06 1.926e-06 -5.717 -5.715 0.002 41.03 Mg 1.652e-02 - Mg+2 1.450e-02 4.926e-03 -1.839 -2.307 -0.469 -20.91 - MgSO4 1.827e-03 2.012e-03 -2.738 -2.696 0.042 -0.83 - MgHCO3+ 1.592e-04 1.139e-04 -3.798 -3.944 -0.146 5.72 - Mg(SO4)2-2 2.876e-05 1.033e-05 -4.541 -4.986 -0.445 44.98 - MgCO3 8.913e-06 9.351e-06 -5.050 -5.029 0.021 -17.09 - MgOH+ 5.008e-07 3.817e-07 -6.300 -6.418 -0.118 (0) + Mg+2 1.488e-02 5.065e-03 -1.827 -2.295 -0.468 -20.91 + MgSO4 1.454e-03 1.599e-03 -2.838 -2.796 0.041 -7.92 + MgHCO3+ 1.612e-04 1.154e-04 -3.793 -3.938 -0.145 5.72 + Mg(SO4)2-2 1.764e-05 6.350e-06 -4.753 -5.197 -0.444 24.64 + MgCO3 8.908e-06 9.342e-06 -5.050 -5.030 0.021 -17.09 + MgOH+ 5.074e-07 3.870e-07 -6.295 -6.412 -0.118 (0) Na 1.456e-01 - Na+ 1.444e-01 1.077e-01 -0.841 -0.968 -0.127 -0.92 - NaSO4- 1.121e-03 6.560e-04 -2.950 -3.183 -0.233 17.35 - NaHCO3 1.274e-04 1.422e-04 -3.895 -3.847 0.048 28.00 - NaOH 2.217e-18 2.326e-18 -17.654 -17.633 0.021 (0) -O(0) 3.372e-16 - O2 1.686e-16 1.769e-16 -15.773 -15.752 0.021 30.40 + Na+ 1.427e-01 1.065e-01 -0.846 -0.973 -0.127 -0.92 + NaSO4- 2.801e-03 2.089e-03 -2.553 -2.680 -0.127 -0.72 + NaHCO3 1.641e-04 1.805e-04 -3.785 -3.743 0.041 31.73 + NaOH 2.162e-18 2.267e-18 -17.665 -17.645 0.021 (0) +O(0) 5.947e-15 + O2 2.973e-15 3.119e-15 -14.527 -14.506 0.021 30.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -116.991 -117.144 -0.153 21.00 - H2S 0.000e+00 0.000e+00 -117.555 -117.534 0.021 36.27 - S-2 0.000e+00 0.000e+00 -122.198 -122.730 -0.532 (0) - (H2S)2 0.000e+00 0.000e+00 -236.368 -236.347 0.021 30.09 + HS- 0.000e+00 0.000e+00 -119.590 -119.742 -0.152 21.00 + H2S 0.000e+00 0.000e+00 -120.147 -120.126 0.021 36.27 + S-2 0.000e+00 0.000e+00 -124.804 -125.335 -0.531 (0) + (H2S)2 0.000e+00 0.000e+00 -241.552 -241.531 0.021 30.09 S(6) 8.777e-03 - SO4-2 5.416e-03 1.560e-03 -2.266 -2.807 -0.541 16.39 - MgSO4 1.827e-03 2.012e-03 -2.738 -2.696 0.042 -0.83 - NaSO4- 1.121e-03 6.560e-04 -2.950 -3.183 -0.233 17.35 - CaSO4 3.335e-04 3.499e-04 -3.477 -3.456 0.021 7.50 - Mg(SO4)2-2 2.876e-05 1.033e-05 -4.541 -4.986 -0.445 44.98 - KSO4- 2.180e-05 1.280e-05 -4.662 -4.893 -0.231 28.29 - HSO4- 9.484e-09 7.063e-09 -8.023 -8.151 -0.128 40.66 - CaHSO4+ 1.439e-10 1.071e-10 -9.842 -9.970 -0.128 (0) + SO4-2 4.174e-03 1.206e-03 -2.379 -2.919 -0.539 28.42 + NaSO4- 2.801e-03 2.089e-03 -2.553 -2.680 -0.127 -0.72 + MgSO4 1.454e-03 1.599e-03 -2.838 -2.796 0.041 -7.92 + CaSO4 2.631e-04 2.759e-04 -3.580 -3.559 0.021 7.50 + KSO4- 4.986e-05 4.062e-05 -4.302 -4.391 -0.089 14.03 + Mg(SO4)2-2 1.764e-05 6.350e-06 -4.753 -5.197 -0.444 24.64 + HSO4- 7.433e-09 5.538e-09 -8.129 -8.257 -0.128 40.66 + CaHSO4+ 1.150e-10 8.567e-11 -9.939 -10.067 -0.128 (0) Si 2.215e-05 - H4SiO4 2.205e-05 2.313e-05 -4.657 -4.636 0.021 52.08 - H3SiO4- 1.024e-07 7.322e-08 -6.990 -7.135 -0.146 28.37 - H2SiO4-2 3.497e-13 1.069e-13 -12.456 -12.971 -0.515 (0) + H4SiO4 2.205e-05 2.312e-05 -4.657 -4.636 0.021 52.08 + H3SiO4- 1.008e-07 7.217e-08 -6.996 -7.142 -0.145 28.37 + H2SiO4-2 3.390e-13 1.039e-13 -12.470 -12.983 -0.514 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -1.43 -5.71 -4.28 CaSO4 - Aragonite -0.26 -8.60 -8.34 CaCO3 - Arcanite -6.23 -8.11 -1.88 K2SO4 + Anhydrite -1.53 -5.81 -4.28 CaSO4 + Aragonite -0.27 -8.60 -8.34 CaCO3 + Arcanite -6.35 -8.23 -1.88 K2SO4 Calcite -0.12 -8.60 -8.48 CaCO3 - CH4(g) -117.15 -119.95 -2.80 CH4 + CH4(g) -119.64 -122.44 -2.80 CH4 Chalcedony -1.08 -4.63 -3.55 SiO2 Chrysotile -4.41 27.79 32.20 Mg3Si2O5(OH)4 CO2(g) -2.21 -3.68 -1.47 CO2 Dolomite 0.47 -16.61 -17.08 CaMg(CO3)2 - Epsomite -3.39 -5.13 -1.74 MgSO4:7H2O - Gypsum -1.13 -5.71 -4.58 CaSO4:2H2O - H2(g) -35.22 -38.32 -3.10 H2 + Epsomite -3.49 -5.23 -1.74 MgSO4:7H2O + Gypsum -1.23 -5.81 -4.58 CaSO4:2H2O + H2(g) -35.84 -38.94 -3.10 H2 H2O(g) -1.51 -0.00 1.50 H2O - H2S(g) -116.54 -124.48 -7.94 H2S + H2S(g) -119.13 -127.07 -7.94 H2S Halite -3.46 -1.89 1.57 NaCl - Hexahydrite -3.56 -5.13 -1.57 MgSO4:6H2O - Kieserite -3.96 -5.12 -1.16 MgSO4:H2O - Mirabilite -3.53 -4.77 -1.24 Na2SO4:10H2O - O2(g) -12.86 -15.75 -2.89 O2 + Hexahydrite -3.66 -5.23 -1.57 MgSO4:6H2O + Kieserite -4.06 -5.22 -1.16 MgSO4:H2O + Mirabilite -3.65 -4.89 -1.24 Na2SO4:10H2O + O2(g) -11.61 -14.51 -2.89 O2 Quartz -0.65 -4.63 -3.98 SiO2 Sepiolite -4.95 10.81 15.76 Mg2Si3O7.5OH:3H2O Sepiolite(d) -7.85 10.81 18.66 Mg2Si3O7.5OH:3H2O SiO2(a) -1.92 -4.63 -2.71 SiO2 - Sulfur -87.25 -82.37 4.88 S + Sulfur -89.22 -84.34 4.88 S Sylvite -4.47 -3.57 0.90 KCl - Talc -2.86 18.54 21.40 Mg3Si4O10(OH)2 - Thenardite -4.44 -4.74 -0.30 Na2SO4 + Talc -2.86 18.53 21.40 Mg3Si4O10(OH)2 + Thenardite -4.56 -4.86 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -540,39 +545,39 @@ Using pure phase assemblage 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Calcite 0.00 -8.48 -8.48 1.000e+01 9.985e+00 -1.538e-02 -Dolomite 0.00 -17.08 -17.08 1.000e+01 1.001e+01 7.764e-03 +Calcite 0.00 -8.48 -8.48 1.000e+01 9.985e+00 -1.546e-02 +Dolomite -0.00 -17.08 -17.08 1.000e+01 1.001e+01 7.807e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 3.056e-03 3.056e-03 - Ca 1.196e-02 1.196e-02 + C 3.057e-03 3.057e-03 + Ca 1.201e-02 1.201e-02 Cl 1.697e-01 1.697e-01 K 3.173e-03 3.173e-03 - Mg 8.756e-03 8.756e-03 + Mg 8.713e-03 8.713e-03 Na 1.456e-01 1.456e-01 S 8.777e-03 8.777e-03 Si 2.215e-05 2.215e-05 ----------------------------Description of solution---------------------------- - pH = 7.057 Charge balance - pe = 10.649 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 18495 - Density (g/cm³) = 1.00533 - Volume (L) = 1.00583 - Viscosity (mPa s) = 0.91039 + pH = 7.052 Charge balance + pe = -1.301 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 18477 + Density (g/cm³) = 1.00534 + Volume (L) = 1.00582 + Viscosity (mPa s) = 0.91245 Activity of water = 0.994 - Ionic strength (mol/kgw) = 2.089e-01 + Ionic strength (mol/kgw) = 2.070e-01 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 2.723e-03 - Total CO2 (mol/kg) = 3.056e-03 + Total alkalinity (eq/kg) = 2.725e-03 + Total CO2 (mol/kg) = 3.057e-03 Temperature (°C) = 25.00 Electrical balance (eq) = 2.390e-04 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.06 - Iterations = 5 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.07 + Iterations = 16 Total H = 1.110131e+02 Total O = 5.554920e+01 @@ -581,100 +586,102 @@ Dolomite 0.00 -17.08 -17.08 1.000e+01 1.001e+01 7.764e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.631e-07 1.147e-07 -6.788 -6.940 -0.153 -3.48 - H+ 1.102e-07 8.770e-08 -6.958 -7.057 -0.099 0.00 + OH- 1.612e-07 1.135e-07 -6.793 -6.945 -0.152 -3.48 + H+ 1.113e-07 8.865e-08 -6.953 -7.052 -0.099 0.00 H2O 5.551e+01 9.941e-01 1.744 -0.003 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.722 -120.701 0.021 35.46 -C(4) 3.056e-03 - HCO3- 2.405e-03 1.788e-03 -2.619 -2.748 -0.129 25.45 - CO2 3.436e-04 3.547e-04 -3.464 -3.450 0.014 34.43 - NaHCO3 1.152e-04 1.287e-04 -3.938 -3.890 0.048 28.00 - CaHCO3+ 1.048e-04 7.901e-05 -3.980 -4.102 -0.123 9.88 - MgHCO3+ 7.615e-05 5.445e-05 -4.118 -4.264 -0.146 5.72 - CaCO3 5.302e-06 5.563e-06 -5.276 -5.255 0.021 -14.60 - CO3-2 3.130e-06 9.562e-07 -5.505 -6.019 -0.515 -2.15 - MgCO3 2.263e-06 2.375e-06 -5.645 -5.624 0.021 -17.09 - (CO2)2 2.201e-09 2.309e-09 -8.657 -8.637 0.021 68.87 -Ca 1.196e-02 - Ca+2 1.090e-02 3.463e-03 -1.962 -2.461 -0.498 -17.20 - CaSO4 9.480e-04 9.947e-04 -3.023 -3.002 0.021 7.50 - CaHCO3+ 1.048e-04 7.901e-05 -3.980 -4.102 -0.123 9.88 - CaCO3 5.302e-06 5.563e-06 -5.276 -5.255 0.021 -14.60 - CaOH+ 8.748e-09 6.515e-09 -8.058 -8.186 -0.128 (0) - CaHSO4+ 7.700e-10 5.734e-10 -9.113 -9.242 -0.128 (0) +C(-4) 8.153e-26 + CH4 8.153e-26 8.551e-26 -25.089 -25.068 0.021 35.46 +C(4) 3.057e-03 + HCO3- 2.370e-03 1.764e-03 -2.625 -2.754 -0.128 25.15 + CO2 3.427e-04 3.536e-04 -3.465 -3.451 0.014 34.43 + NaHCO3 1.486e-04 1.634e-04 -3.828 -3.787 0.041 31.73 + CaHCO3+ 1.059e-04 7.987e-05 -3.975 -4.098 -0.122 9.88 + MgHCO3+ 7.690e-05 5.504e-05 -4.114 -4.259 -0.145 5.72 + CaCO3 5.304e-06 5.563e-06 -5.275 -5.255 0.021 -14.60 + CO3-2 3.045e-06 9.330e-07 -5.516 -6.030 -0.514 -2.19 + MgCO3 2.264e-06 2.375e-06 -5.645 -5.624 0.021 -17.09 + KHCO3 1.735e-06 1.743e-06 -5.761 -5.759 0.002 41.03 + (CO2)2 2.188e-09 2.295e-09 -8.660 -8.639 0.021 68.87 +Ca 1.201e-02 + Ca+2 1.115e-02 3.550e-03 -1.953 -2.450 -0.497 -17.20 + CaSO4 7.461e-04 7.826e-04 -3.127 -3.106 0.021 7.50 + CaHCO3+ 1.059e-04 7.987e-05 -3.975 -4.098 -0.122 9.88 + CaCO3 5.304e-06 5.563e-06 -5.275 -5.255 0.021 -14.60 + CaOH+ 8.866e-09 6.606e-09 -8.052 -8.180 -0.128 (0) + CaHSO4+ 6.121e-10 4.560e-10 -9.213 -9.341 -0.128 (0) Cl 1.697e-01 - Cl- 1.697e-01 1.209e-01 -0.770 -0.918 -0.147 18.47 - HCl 2.976e-09 3.652e-09 -8.526 -8.437 0.089 (0) -H(0) 5.232e-39 - H2 2.616e-39 2.745e-39 -38.582 -38.561 0.021 28.61 + Cl- 1.697e-01 1.210e-01 -0.770 -0.917 -0.147 18.47 + HCl 3.017e-09 3.696e-09 -8.520 -8.432 0.088 (0) +H(0) 4.240e-15 + H2 2.120e-15 2.223e-15 -14.674 -14.653 0.021 28.61 K 3.173e-03 - K+ 3.151e-03 2.232e-03 -2.502 -2.651 -0.150 9.35 - KSO4- 2.258e-05 1.325e-05 -4.646 -4.878 -0.231 28.30 -Mg 8.756e-03 - Mg+2 7.661e-03 2.602e-03 -2.116 -2.585 -0.469 -20.91 - MgSO4 9.996e-04 1.101e-03 -3.000 -2.958 0.042 -0.83 - MgHCO3+ 7.615e-05 5.445e-05 -4.118 -4.264 -0.146 5.72 - Mg(SO4)2-2 1.631e-05 5.855e-06 -4.788 -5.232 -0.445 44.98 - MgCO3 2.263e-06 2.375e-06 -5.645 -5.624 0.021 -17.09 - MgOH+ 1.405e-07 1.071e-07 -6.852 -6.970 -0.118 (0) + K+ 3.120e-03 2.213e-03 -2.506 -2.655 -0.149 9.35 + KSO4- 5.125e-05 4.174e-05 -4.290 -4.379 -0.089 14.03 + KHCO3 1.735e-06 1.743e-06 -5.761 -5.759 0.002 41.03 +Mg 8.713e-03 + Mg+2 7.837e-03 2.667e-03 -2.106 -2.574 -0.468 -20.91 + MgSO4 7.871e-04 8.658e-04 -3.104 -3.063 0.041 -7.92 + MgHCO3+ 7.690e-05 5.504e-05 -4.114 -4.259 -0.145 5.72 + Mg(SO4)2-2 9.826e-06 3.536e-06 -5.008 -5.452 -0.444 24.65 + MgCO3 2.264e-06 2.375e-06 -5.645 -5.624 0.021 -17.09 + MgOH+ 1.424e-07 1.086e-07 -6.846 -6.964 -0.118 (0) Na 1.456e-01 - Na+ 1.443e-01 1.076e-01 -0.841 -0.968 -0.127 -0.92 - NaSO4- 1.162e-03 6.792e-04 -2.935 -3.168 -0.233 17.35 - NaHCO3 1.152e-04 1.287e-04 -3.938 -3.890 0.048 28.00 - NaOH 1.177e-18 1.235e-18 -17.929 -17.908 0.021 (0) -O(0) 1.042e-15 - O2 5.211e-16 5.468e-16 -15.283 -15.262 0.021 30.40 -S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -117.682 -117.834 -0.153 21.00 - H2S 0.000e+00 0.000e+00 -117.971 -117.950 0.021 36.27 - S-2 0.000e+00 0.000e+00 -123.163 -123.695 -0.533 (0) - (H2S)2 0.000e+00 0.000e+00 -237.199 -237.178 0.021 30.09 + Na+ 1.426e-01 1.064e-01 -0.846 -0.973 -0.127 -0.92 + NaSO4- 2.879e-03 2.147e-03 -2.541 -2.668 -0.127 -0.72 + NaHCO3 1.486e-04 1.634e-04 -3.828 -3.787 0.041 31.73 + NaOH 1.151e-18 1.208e-18 -17.939 -17.918 0.021 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -63.100 -63.079 0.021 30.40 +S(-2) 1.056e-22 + HS- 6.946e-23 4.891e-23 -22.158 -22.311 -0.152 21.00 + H2S 3.615e-23 3.791e-23 -22.442 -22.421 0.021 36.27 + S-2 2.264e-28 6.663e-29 -27.645 -28.176 -0.531 (0) + (H2S)2 0.000e+00 0.000e+00 -46.141 -46.121 0.021 30.09 S(6) 8.777e-03 - SO4-2 5.613e-03 1.615e-03 -2.251 -2.792 -0.541 16.39 - NaSO4- 1.162e-03 6.792e-04 -2.935 -3.168 -0.233 17.35 - MgSO4 9.996e-04 1.101e-03 -3.000 -2.958 0.042 -0.83 - CaSO4 9.480e-04 9.947e-04 -3.023 -3.002 0.021 7.50 - KSO4- 2.258e-05 1.325e-05 -4.646 -4.878 -0.231 28.30 - Mg(SO4)2-2 1.631e-05 5.855e-06 -4.788 -5.232 -0.445 44.98 - HSO4- 1.849e-08 1.377e-08 -7.733 -7.861 -0.128 40.66 - CaHSO4+ 7.700e-10 5.734e-10 -9.113 -9.242 -0.128 (0) + SO4-2 4.294e-03 1.240e-03 -2.367 -2.907 -0.540 28.43 + NaSO4- 2.879e-03 2.147e-03 -2.541 -2.668 -0.127 -0.72 + MgSO4 7.871e-04 8.658e-04 -3.104 -3.063 0.041 -7.92 + CaSO4 7.461e-04 7.826e-04 -3.127 -3.106 0.021 7.50 + KSO4- 5.125e-05 4.174e-05 -4.290 -4.379 -0.089 14.03 + Mg(SO4)2-2 9.826e-06 3.536e-06 -5.008 -5.452 -0.444 24.65 + HSO4- 1.434e-08 1.069e-08 -7.843 -7.971 -0.128 40.66 + CaHSO4+ 6.121e-10 4.560e-10 -9.213 -9.341 -0.128 (0) Si 2.215e-05 - H4SiO4 2.209e-05 2.318e-05 -4.656 -4.635 0.021 52.08 - H3SiO4- 5.450e-08 3.897e-08 -7.264 -7.409 -0.146 28.38 - H2SiO4-2 9.894e-14 3.023e-14 -13.005 -13.520 -0.515 (0) + H4SiO4 2.209e-05 2.317e-05 -4.656 -4.635 0.021 52.08 + H3SiO4- 5.385e-08 3.854e-08 -7.269 -7.414 -0.145 28.37 + H2SiO4-2 9.651e-14 2.957e-14 -13.015 -13.529 -0.514 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -0.97 -5.25 -4.28 CaSO4 + Anhydrite -1.08 -5.36 -4.28 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 - Arcanite -6.21 -8.09 -1.88 K2SO4 + Arcanite -6.34 -8.22 -1.88 K2SO4 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -117.90 -120.70 -2.80 CH4 + CH4(g) -22.27 -25.07 -2.80 CH4 Chalcedony -1.08 -4.63 -3.55 SiO2 - Chrysotile -6.89 25.32 32.20 Mg3Si2O5(OH)4 + Chrysotile -6.88 25.32 32.20 Mg3Si2O5(OH)4 CO2(g) -1.98 -3.45 -1.47 CO2 - Dolomite 0.00 -17.08 -17.08 CaMg(CO3)2 - Epsomite -3.66 -5.39 -1.74 MgSO4:7H2O - Gypsum -0.68 -5.26 -4.58 CaSO4:2H2O - H2(g) -35.46 -38.56 -3.10 H2 + Dolomite -0.00 -17.08 -17.08 CaMg(CO3)2 + Epsomite -3.76 -5.50 -1.74 MgSO4:7H2O + Gypsum -0.78 -5.36 -4.58 CaSO4:2H2O + H2(g) -11.55 -14.65 -3.10 H2 H2O(g) -1.51 -0.00 1.50 H2O - H2S(g) -116.96 -124.89 -7.94 H2S + H2S(g) -21.43 -29.36 -7.94 H2S Halite -3.46 -1.89 1.57 NaCl - Hexahydrite -3.83 -5.39 -1.57 MgSO4:6H2O - Kieserite -4.22 -5.38 -1.16 MgSO4:H2O - Mirabilite -3.51 -4.75 -1.24 Na2SO4:10H2O - O2(g) -12.37 -15.26 -2.89 O2 + Hexahydrite -3.93 -5.50 -1.57 MgSO4:6H2O + Kieserite -4.32 -5.48 -1.16 MgSO4:H2O + Mirabilite -3.64 -4.88 -1.24 Na2SO4:10H2O + O2(g) -60.19 -63.08 -2.89 O2 Quartz -0.65 -4.63 -3.98 SiO2 Sepiolite -6.60 9.16 15.76 Mg2Si3O7.5OH:3H2O Sepiolite(d) -9.50 9.16 18.66 Mg2Si3O7.5OH:3H2O SiO2(a) -1.92 -4.63 -2.71 SiO2 - Sulfur -87.42 -82.54 4.88 S + Sulfur -15.80 -10.92 4.88 S Sylvite -4.47 -3.57 0.90 KCl Talc -5.34 16.06 21.40 Mg3Si4O10(OH)2 - Thenardite -4.43 -4.73 -0.30 Na2SO4 + Thenardite -4.55 -4.85 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -712,14 +719,14 @@ Using pure phase assemblage 2. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Calcite 0.00 -8.48 -8.48 1.000e+01 1.000e+01 -4.542e-05 +Calcite 0.00 -8.48 -8.48 1.000e+01 1.000e+01 -4.676e-05 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 3.252e-03 3.252e-03 - Ca 4.396e-03 4.395e-03 + C 3.254e-03 3.254e-03 + Ca 4.397e-03 4.397e-03 Cl 1.697e-01 1.697e-01 K 3.173e-03 3.173e-03 Mg 1.652e-02 1.652e-02 @@ -729,21 +736,21 @@ Calcite 0.00 -8.48 -8.48 1.000e+01 1.000e+01 -4.542e-05 ----------------------------Description of solution---------------------------- - pH = 7.437 Charge balance - pe = 10.272 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 18414 - Density (g/cm³) = 1.00526 - Volume (L) = 1.00579 - Viscosity (mPa s) = 0.91136 + pH = 7.434 Charge balance + pe = -1.771 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 18314 + Density (g/cm³) = 1.00527 + Volume (L) = 1.00578 + Viscosity (mPa s) = 0.91380 Activity of water = 0.994 - Ionic strength (mol/kgw) = 2.086e-01 + Ionic strength (mol/kgw) = 2.069e-01 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 3.116e-03 - Total CO2 (mol/kg) = 3.252e-03 + Total alkalinity (eq/kg) = 3.119e-03 + Total CO2 (mol/kg) = 3.254e-03 Temperature (°C) = 25.00 Electrical balance (eq) = 2.390e-04 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.06 - Iterations = 3 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.07 + Iterations = 15 Total H = 1.110131e+02 Total O = 5.554979e+01 @@ -752,100 +759,102 @@ Calcite 0.00 -8.48 -8.48 1.000e+01 1.000e+01 -4.542e-05 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 3.910e-07 2.751e-07 -6.408 -6.561 -0.153 -3.48 - H+ 4.596e-08 3.658e-08 -7.338 -7.437 -0.099 0.00 + OH- 3.883e-07 2.734e-07 -6.411 -6.563 -0.152 -3.48 + H+ 4.622e-08 3.680e-08 -7.335 -7.434 -0.099 0.00 H2O 5.551e+01 9.941e-01 1.744 -0.003 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -121.070 -121.050 0.021 35.46 -C(4) 3.252e-03 - HCO3- 2.727e-03 2.027e-03 -2.564 -2.693 -0.129 25.45 - MgHCO3+ 1.633e-04 1.168e-04 -3.787 -3.933 -0.146 5.72 - CO2 1.625e-04 1.677e-04 -3.789 -3.775 0.014 34.43 - NaHCO3 1.307e-04 1.460e-04 -3.884 -3.836 0.048 28.00 - CaHCO3+ 4.370e-05 3.296e-05 -4.359 -4.482 -0.123 9.88 - MgCO3 1.164e-05 1.221e-05 -4.934 -4.913 0.021 -17.09 - CO3-2 8.503e-06 2.599e-06 -5.070 -5.585 -0.515 -2.16 - CaCO3 5.302e-06 5.563e-06 -5.276 -5.255 0.021 -14.60 - (CO2)2 4.923e-10 5.165e-10 -9.308 -9.287 0.021 68.87 -Ca 4.396e-03 - Ca+2 4.010e-03 1.274e-03 -2.397 -2.895 -0.498 -17.20 - CaSO4 3.367e-04 3.532e-04 -3.473 -3.452 0.021 7.50 - CaHCO3+ 4.370e-05 3.296e-05 -4.359 -4.482 -0.123 9.88 - CaCO3 5.302e-06 5.563e-06 -5.276 -5.255 0.021 -14.60 - CaOH+ 7.715e-09 5.746e-09 -8.113 -8.241 -0.128 (0) - CaHSO4+ 1.140e-10 8.493e-11 -9.943 -10.071 -0.128 (0) +C(-4) 1.937e-25 + CH4 1.937e-25 2.032e-25 -24.713 -24.692 0.021 35.46 +C(4) 3.254e-03 + HCO3- 2.687e-03 1.999e-03 -2.571 -2.699 -0.128 25.15 + NaHCO3 1.685e-04 1.854e-04 -3.773 -3.732 0.041 31.73 + MgHCO3+ 1.655e-04 1.184e-04 -3.781 -3.926 -0.145 5.72 + CO2 1.613e-04 1.664e-04 -3.792 -3.779 0.014 34.43 + CaHCO3+ 4.394e-05 3.316e-05 -4.357 -4.479 -0.122 9.88 + MgCO3 1.174e-05 1.231e-05 -4.930 -4.910 0.021 -17.09 + CO3-2 8.314e-06 2.548e-06 -5.080 -5.594 -0.514 -2.19 + CaCO3 5.304e-06 5.563e-06 -5.275 -5.255 0.021 -14.60 + KHCO3 1.968e-06 1.977e-06 -5.706 -5.704 0.002 41.03 + (CO2)2 4.848e-10 5.084e-10 -9.314 -9.294 0.021 68.87 +Ca 4.397e-03 + Ca+2 4.082e-03 1.300e-03 -2.389 -2.886 -0.497 -17.20 + CaSO4 2.656e-04 2.786e-04 -3.576 -3.555 0.021 7.50 + CaHCO3+ 4.394e-05 3.316e-05 -4.357 -4.479 -0.122 9.88 + CaCO3 5.304e-06 5.563e-06 -5.275 -5.255 0.021 -14.60 + CaOH+ 7.820e-09 5.826e-09 -8.107 -8.235 -0.128 (0) + CaHSO4+ 9.045e-11 6.739e-11 -10.044 -10.171 -0.128 (0) Cl 1.697e-01 - Cl- 1.697e-01 1.209e-01 -0.770 -0.918 -0.147 18.47 - HCl 1.242e-09 1.524e-09 -8.906 -8.817 0.089 (0) -H(0) 5.161e-39 - H2 2.581e-39 2.708e-39 -38.588 -38.567 0.021 28.61 + Cl- 1.697e-01 1.210e-01 -0.770 -0.917 -0.147 18.46 + HCl 1.253e-09 1.534e-09 -8.902 -8.814 0.088 (0) +H(0) 6.355e-15 + H2 3.178e-15 3.333e-15 -14.498 -14.477 0.021 28.61 K 3.173e-03 - K+ 3.152e-03 2.233e-03 -2.501 -2.651 -0.150 9.35 - KSO4- 2.179e-05 1.280e-05 -4.662 -4.893 -0.231 28.29 + K+ 3.122e-03 2.214e-03 -2.506 -2.655 -0.149 9.35 + KSO4- 4.984e-05 4.060e-05 -4.302 -4.391 -0.089 14.03 + KHCO3 1.968e-06 1.977e-06 -5.706 -5.704 0.002 41.03 Mg 1.652e-02 - Mg+2 1.449e-02 4.924e-03 -1.839 -2.308 -0.469 -20.91 - MgSO4 1.826e-03 2.010e-03 -2.739 -2.697 0.042 -0.83 - MgHCO3+ 1.633e-04 1.168e-04 -3.787 -3.933 -0.146 5.72 - Mg(SO4)2-2 2.873e-05 1.032e-05 -4.542 -4.986 -0.445 44.98 - MgCO3 1.164e-05 1.221e-05 -4.934 -4.913 0.021 -17.09 - MgOH+ 6.374e-07 4.858e-07 -6.196 -6.314 -0.118 (0) + Mg+2 1.487e-02 5.063e-03 -1.828 -2.296 -0.468 -20.91 + MgSO4 1.452e-03 1.598e-03 -2.838 -2.797 0.041 -7.92 + MgHCO3+ 1.655e-04 1.184e-04 -3.781 -3.926 -0.145 5.72 + Mg(SO4)2-2 1.763e-05 6.343e-06 -4.754 -5.198 -0.444 24.64 + MgCO3 1.174e-05 1.231e-05 -4.930 -4.910 0.021 -17.09 + MgOH+ 6.511e-07 4.965e-07 -6.186 -6.304 -0.118 (0) Na 1.456e-01 - Na+ 1.444e-01 1.077e-01 -0.841 -0.968 -0.127 -0.92 - NaSO4- 1.121e-03 6.558e-04 -2.950 -3.183 -0.233 17.35 - NaHCO3 1.307e-04 1.460e-04 -3.884 -3.836 0.048 28.00 - NaOH 2.823e-18 2.962e-18 -17.549 -17.528 0.021 (0) -O(0) 1.071e-15 - O2 5.356e-16 5.619e-16 -15.271 -15.250 0.021 30.40 -S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -118.101 -118.253 -0.153 21.00 - H2S 0.000e+00 0.000e+00 -118.769 -118.748 0.021 36.27 - S-2 0.000e+00 0.000e+00 -123.202 -123.734 -0.532 (0) - (H2S)2 0.000e+00 0.000e+00 -238.796 -238.775 0.021 30.09 + Na+ 1.427e-01 1.064e-01 -0.846 -0.973 -0.127 -0.92 + NaSO4- 2.800e-03 2.089e-03 -2.553 -2.680 -0.127 -0.72 + NaHCO3 1.685e-04 1.854e-04 -3.773 -3.732 0.041 31.73 + NaOH 2.775e-18 2.910e-18 -17.557 -17.536 0.021 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -63.451 -63.431 0.021 30.40 +S(-2) 1.721e-22 + HS- 1.415e-22 9.965e-23 -21.849 -22.002 -0.152 21.00 + H2S 3.057e-23 3.207e-23 -22.515 -22.494 0.021 36.27 + S-2 1.111e-27 3.270e-28 -26.954 -27.485 -0.531 (0) + (H2S)2 0.000e+00 0.000e+00 -46.287 -46.266 0.021 30.09 S(6) 8.777e-03 - SO4-2 5.415e-03 1.559e-03 -2.266 -2.807 -0.541 16.39 - MgSO4 1.826e-03 2.010e-03 -2.739 -2.697 0.042 -0.83 - NaSO4- 1.121e-03 6.558e-04 -2.950 -3.183 -0.233 17.35 - CaSO4 3.367e-04 3.532e-04 -3.473 -3.452 0.021 7.50 - Mg(SO4)2-2 2.873e-05 1.032e-05 -4.542 -4.986 -0.445 44.98 - KSO4- 2.179e-05 1.280e-05 -4.662 -4.893 -0.231 28.29 - HSO4- 7.445e-09 5.545e-09 -8.128 -8.256 -0.128 40.66 - CaHSO4+ 1.140e-10 8.493e-11 -9.943 -10.071 -0.128 (0) + SO4-2 4.174e-03 1.205e-03 -2.379 -2.919 -0.539 28.43 + NaSO4- 2.800e-03 2.089e-03 -2.553 -2.680 -0.127 -0.72 + MgSO4 1.452e-03 1.598e-03 -2.838 -2.797 0.041 -7.92 + CaSO4 2.656e-04 2.786e-04 -3.576 -3.555 0.021 7.50 + KSO4- 4.984e-05 4.060e-05 -4.302 -4.391 -0.089 14.03 + Mg(SO4)2-2 1.763e-05 6.343e-06 -4.754 -5.198 -0.444 24.64 + HSO4- 5.788e-09 4.313e-09 -8.237 -8.365 -0.128 40.66 + CaHSO4+ 9.045e-11 6.739e-11 -10.044 -10.171 -0.128 (0) Si 2.215e-05 - H4SiO4 2.202e-05 2.310e-05 -4.657 -4.636 0.021 52.08 - H3SiO4- 1.302e-07 9.311e-08 -6.885 -7.031 -0.146 28.37 - H2SiO4-2 5.664e-13 1.732e-13 -12.247 -12.762 -0.515 (0) + H4SiO4 2.202e-05 2.309e-05 -4.657 -4.637 0.021 52.08 + H3SiO4- 1.293e-07 9.252e-08 -6.889 -7.034 -0.145 28.37 + H2SiO4-2 5.580e-13 1.710e-13 -12.253 -12.767 -0.514 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -1.42 -5.70 -4.28 CaSO4 + Anhydrite -1.53 -5.81 -4.28 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 - Arcanite -6.23 -8.11 -1.88 K2SO4 + Arcanite -6.35 -8.23 -1.88 K2SO4 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -118.25 -121.05 -2.80 CH4 + CH4(g) -21.89 -24.69 -2.80 CH4 Chalcedony -1.08 -4.63 -3.55 SiO2 - Chrysotile -3.78 28.42 32.20 Mg3Si2O5(OH)4 + Chrysotile -3.76 28.44 32.20 Mg3Si2O5(OH)4 CO2(g) -2.31 -3.78 -1.47 CO2 Dolomite 0.71 -16.37 -17.08 CaMg(CO3)2 - Epsomite -3.39 -5.13 -1.74 MgSO4:7H2O - Gypsum -1.12 -5.71 -4.58 CaSO4:2H2O - H2(g) -35.47 -38.57 -3.10 H2 + Epsomite -3.49 -5.23 -1.74 MgSO4:7H2O + Gypsum -1.23 -5.81 -4.58 CaSO4:2H2O + H2(g) -11.38 -14.48 -3.10 H2 H2O(g) -1.51 -0.00 1.50 H2O - H2S(g) -117.75 -125.69 -7.94 H2S + H2S(g) -21.50 -29.44 -7.94 H2S Halite -3.46 -1.89 1.57 NaCl - Hexahydrite -3.56 -5.13 -1.57 MgSO4:6H2O - Kieserite -3.96 -5.12 -1.16 MgSO4:H2O - Mirabilite -3.53 -4.77 -1.24 Na2SO4:10H2O - O2(g) -12.36 -15.25 -2.89 O2 + Hexahydrite -3.66 -5.23 -1.57 MgSO4:6H2O + Kieserite -4.06 -5.22 -1.16 MgSO4:H2O + Mirabilite -3.65 -4.89 -1.24 Na2SO4:10H2O + O2(g) -60.54 -63.43 -2.89 O2 Quartz -0.65 -4.63 -3.98 SiO2 - Sepiolite -4.54 11.22 15.76 Mg2Si3O7.5OH:3H2O - Sepiolite(d) -7.44 11.22 18.66 Mg2Si3O7.5OH:3H2O + Sepiolite -4.52 11.24 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -7.42 11.24 18.66 Mg2Si3O7.5OH:3H2O SiO2(a) -1.92 -4.63 -2.71 SiO2 - Sulfur -88.21 -83.33 4.88 S + Sulfur -16.05 -11.17 4.88 S Sylvite -4.47 -3.57 0.90 KCl - Talc -2.24 19.16 21.40 Mg3Si4O10(OH)2 - Thenardite -4.44 -4.74 -0.30 Na2SO4 + Talc -2.22 19.18 21.40 Mg3Si4O10(OH)2 + Thenardite -4.56 -4.86 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. diff --git a/ex4.out b/ex4.out index e14c097e..61165384 100644 --- a/ex4.out +++ b/ex4.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + CALCULATE_VALUES RATES END ------------------------------------ @@ -68,7 +69,7 @@ Initial solution 1. Precipitation from Central Oklahoma pH = 4.500 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 17 + Specific Conductance (µS/cm, 25°C) = 15 Density (g/cm³) = 0.99705 Volume (L) = 1.00297 Viscosity (mPa s) = 0.89009 @@ -100,12 +101,13 @@ Initial solution 1. Precipitation from Central Oklahoma H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 C(4) 1.091e-05 CO2 1.076e-05 1.076e-05 -4.968 -4.968 0.000 34.43 - HCO3- 1.530e-07 1.513e-07 -6.815 -6.820 -0.005 24.52 + HCO3- 1.530e-07 1.513e-07 -6.815 -6.820 -0.005 24.56 CaHCO3+ 1.787e-11 1.767e-11 -10.748 -10.753 -0.005 9.65 MgHCO3+ 3.022e-12 2.989e-12 -11.520 -11.524 -0.005 5.46 (CO2)2 2.125e-12 2.125e-12 -11.673 -11.673 0.000 68.87 - NaHCO3 6.138e-13 6.138e-13 -12.212 -12.212 0.000 28.00 - CO3-2 2.344e-13 2.244e-13 -12.630 -12.649 -0.019 -4.16 + NaHCO3 7.995e-13 7.995e-13 -12.097 -12.097 0.000 31.73 + CO3-2 2.344e-13 2.244e-13 -12.630 -12.649 -0.019 -4.02 + KHCO3 6.155e-14 6.155e-14 -13.211 -13.211 0.000 41.03 CaCO3 3.451e-15 3.451e-15 -14.462 -14.462 0.000 -14.60 MgCO3 3.616e-16 3.616e-16 -15.442 -15.442 0.000 -17.09 Ca 9.581e-06 @@ -121,38 +123,39 @@ Cl 6.657e-06 H(0) 1.416e-20 H2 7.079e-21 7.079e-21 -20.150 -20.150 0.000 28.61 K 9.207e-07 - K+ 9.206e-07 9.106e-07 -6.036 -6.041 -0.005 8.99 - KSO4- 4.362e-11 4.314e-11 -10.360 -10.365 -0.005 15.81 + K+ 9.205e-07 9.105e-07 -6.036 -6.041 -0.005 8.99 + KSO4- 1.805e-10 1.786e-10 -9.744 -9.748 -0.005 14.12 + KHCO3 6.155e-14 6.155e-14 -13.211 -13.211 0.000 41.03 Mg 1.769e-06 Mg+2 1.763e-06 1.688e-06 -5.754 -5.773 -0.019 -21.90 - MgSO4 5.697e-09 5.697e-09 -8.244 -8.244 0.000 -0.83 + MgSO4 5.697e-09 5.697e-09 -8.244 -8.244 0.000 -7.92 MgHCO3+ 3.022e-12 2.989e-12 -11.520 -11.524 -0.005 5.46 - Mg(SO4)2-2 2.526e-13 2.419e-13 -12.598 -12.616 -0.019 31.70 + Mg(SO4)2-2 2.525e-13 2.419e-13 -12.598 -12.616 -0.019 -15.61 MgOH+ 1.959e-13 1.938e-13 -12.708 -12.713 -0.005 (0) MgCO3 3.616e-16 3.616e-16 -15.442 -15.442 0.000 -17.09 N(-3) 1.485e-05 - NH4+ 1.485e-05 1.469e-05 -4.828 -4.833 -0.005 17.94 - NH4SO4- 2.465e-09 2.439e-09 -8.608 -8.613 -0.005 38.17 + NH4+ 1.485e-05 1.469e-05 -4.828 -4.833 -0.005 17.87 + NH4SO4- 2.442e-09 2.416e-09 -8.612 -8.617 -0.005 -13.83 NH3 2.646e-10 2.646e-10 -9.577 -9.577 0.000 24.42 N(5) 1.692e-05 NO3- 1.692e-05 1.674e-05 -4.772 -4.776 -0.005 29.47 Na 6.133e-06 - Na+ 6.133e-06 6.066e-06 -5.212 -5.217 -0.005 -1.51 - NaSO4- 3.089e-10 3.055e-10 -9.510 -9.515 -0.005 14.46 - NaHCO3 6.138e-13 6.138e-13 -12.212 -12.212 0.000 28.00 - NaOH 1.942e-25 1.942e-25 -24.712 -24.712 0.000 (0) + Na+ 6.132e-06 6.065e-06 -5.212 -5.217 -0.005 -1.51 + NaSO4- 1.287e-09 1.273e-09 -8.891 -8.895 -0.005 -24.48 + NaHCO3 7.995e-13 7.995e-13 -12.097 -12.097 0.000 31.73 + NaOH 1.941e-25 1.941e-25 -24.712 -24.712 0.000 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -52.080 -52.080 0.000 30.40 S(6) 1.353e-05 - SO4-2 1.346e-05 1.289e-05 -4.871 -4.890 -0.019 14.70 - HSO4- 4.007e-08 3.963e-08 -7.397 -7.402 -0.005 40.26 + SO4-2 1.346e-05 1.289e-05 -4.871 -4.890 -0.019 14.77 + HSO4- 4.006e-08 3.963e-08 -7.397 -7.402 -0.005 40.26 CaSO4 2.098e-08 2.098e-08 -7.678 -7.678 0.000 7.50 - MgSO4 5.697e-09 5.697e-09 -8.244 -8.244 0.000 -0.83 - NH4SO4- 2.465e-09 2.439e-09 -8.608 -8.613 -0.005 38.17 - NaSO4- 3.089e-10 3.055e-10 -9.510 -9.515 -0.005 14.46 - KSO4- 4.362e-11 4.314e-11 -10.360 -10.365 -0.005 15.81 + MgSO4 5.697e-09 5.697e-09 -8.244 -8.244 0.000 -7.92 + NH4SO4- 2.442e-09 2.416e-09 -8.612 -8.617 -0.005 -13.83 + NaSO4- 1.287e-09 1.273e-09 -8.891 -8.895 -0.005 -24.48 + KSO4- 1.805e-10 1.786e-10 -9.744 -9.748 -0.005 14.12 CaHSO4+ 4.409e-12 4.361e-12 -11.356 -11.360 -0.005 (0) - Mg(SO4)2-2 2.526e-13 2.419e-13 -12.598 -12.616 -0.019 31.70 + Mg(SO4)2-2 2.525e-13 2.419e-13 -12.598 -12.616 -0.019 -15.61 ------------------------------Saturation indices------------------------------- @@ -220,18 +223,18 @@ Reaction 1. pH = 3.148 Charge balance pe = 16.529 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 345 + Specific Conductance (µS/cm, 25°C) = 292 Density (g/cm³) = 0.99709 Volume (L) = 0.05017 Viscosity (mPa s) = 0.89045 Activity of water = 1.000 - Ionic strength (mol/kgw) = 1.530e-03 + Ionic strength (mol/kgw) = 1.529e-03 Mass of water (kg) = 5.002e-02 Total alkalinity (eq/kg) = -7.555e-04 Total CO2 (mol/kg) = 2.182e-04 Temperature (°C) = 25.00 Electrical balance (eq) = 2.581e-05 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 24.28 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 24.29 Iterations = 32 Total H = 5.552525e+00 Total O = 2.776344e+00 @@ -248,18 +251,19 @@ C(-4) 0.000e+00 CH4 0.000e+00 0.000e+00 -136.694 -136.693 0.000 35.46 C(4) 2.182e-04 CO2 2.180e-04 2.181e-04 -3.661 -3.661 0.000 34.43 - HCO3- 1.425e-07 1.365e-07 -6.846 -6.865 -0.019 24.56 + HCO3- 1.425e-07 1.365e-07 -6.846 -6.865 -0.019 24.59 (CO2)2 8.728e-10 8.731e-10 -9.059 -9.059 0.000 68.87 CaHCO3+ 2.842e-10 2.723e-10 -9.546 -9.565 -0.019 9.68 MgHCO3+ 4.754e-11 4.551e-11 -10.323 -10.342 -0.019 5.48 - NaHCO3 1.070e-11 1.071e-11 -10.971 -10.970 0.000 28.00 - CO3-2 1.070e-14 9.007e-15 -13.971 -14.045 -0.075 -4.04 + NaHCO3 1.390e-11 1.391e-11 -10.857 -10.857 0.000 31.73 + KHCO3 1.071e-12 1.071e-12 -11.970 -11.970 0.000 41.03 + CO3-2 1.069e-14 9.006e-15 -13.971 -14.045 -0.075 -3.90 CaCO3 2.365e-15 2.366e-15 -14.626 -14.626 0.000 -14.60 MgCO3 2.448e-16 2.449e-16 -15.611 -15.611 0.000 -17.09 Ca 1.916e-04 Ca+2 1.857e-04 1.564e-04 -3.731 -3.806 -0.075 -18.12 - CaSO4 5.800e-06 5.802e-06 -5.237 -5.236 0.000 7.50 - CaHSO4+ 2.831e-08 2.710e-08 -7.548 -7.567 -0.019 (0) + CaSO4 5.792e-06 5.795e-06 -5.237 -5.237 0.000 7.50 + CaHSO4+ 2.828e-08 2.707e-08 -7.549 -7.568 -0.019 (0) CaHCO3+ 2.842e-10 2.723e-10 -9.546 -9.565 -0.019 9.68 CaOH+ 3.814e-14 3.651e-14 -13.419 -13.438 -0.019 (0) CaCO3 2.365e-15 2.366e-15 -14.626 -14.626 0.000 -14.60 @@ -269,18 +273,19 @@ Cl 1.331e-04 H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.506 -42.506 0.000 28.61 K 1.841e-05 - K+ 1.839e-05 1.760e-05 -4.735 -4.754 -0.019 9.02 - KSO4- 1.413e-08 1.350e-08 -7.850 -7.870 -0.020 18.61 + K+ 1.835e-05 1.756e-05 -4.736 -4.755 -0.019 9.02 + KSO4- 5.808e-08 5.568e-08 -7.236 -7.254 -0.018 14.15 + KHCO3 1.071e-12 1.071e-12 -11.970 -11.970 0.000 41.03 Mg 3.536e-05 - Mg+2 3.380e-05 2.849e-05 -4.471 -4.545 -0.074 -21.80 - MgSO4 1.556e-06 1.557e-06 -5.808 -5.808 0.000 -0.83 - Mg(SO4)2-2 1.266e-09 1.070e-09 -8.898 -8.971 -0.073 35.55 + Mg+2 3.381e-05 2.850e-05 -4.471 -4.545 -0.074 -21.80 + MgSO4 1.554e-06 1.555e-06 -5.809 -5.808 0.000 -7.92 + Mg(SO4)2-2 1.263e-09 1.067e-09 -8.899 -8.972 -0.073 -2.63 MgHCO3+ 4.754e-11 4.551e-11 -10.323 -10.342 -0.019 5.48 MgOH+ 1.519e-13 1.456e-13 -12.819 -12.837 -0.018 (0) MgCO3 2.448e-16 2.449e-16 -15.611 -15.611 0.000 -17.09 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -48.437 -48.457 -0.019 17.97 - NH4SO4- 0.000e+00 0.000e+00 -51.008 -51.027 -0.019 38.20 + NH4+ 0.000e+00 0.000e+00 -48.437 -48.457 -0.019 17.90 + NH4SO4- 0.000e+00 0.000e+00 -51.013 -51.032 -0.019 -9.55 NH3 0.000e+00 0.000e+00 -54.553 -54.553 0.000 24.42 N(0) 4.751e-04 N2 2.375e-04 2.376e-04 -3.624 -3.624 0.000 29.29 @@ -289,27 +294,27 @@ N(3) 2.623e-15 N(5) 1.601e-04 NO3- 1.601e-04 1.532e-04 -3.796 -3.815 -0.019 29.50 Na 1.226e-04 - Na+ 1.225e-04 1.173e-04 -3.912 -3.931 -0.019 -1.47 - NaSO4- 1.001e-07 9.563e-08 -6.999 -7.019 -0.020 14.56 - NaHCO3 1.070e-11 1.071e-11 -10.971 -10.970 0.000 28.00 - NaOH 1.670e-25 1.671e-25 -24.777 -24.777 0.000 (0) + Na+ 1.222e-04 1.170e-04 -3.913 -3.932 -0.019 -1.47 + NaSO4- 4.143e-07 3.969e-07 -6.383 -6.401 -0.019 -20.09 + NaHCO3 1.390e-11 1.391e-11 -10.857 -10.857 0.000 31.73 + NaOH 1.666e-25 1.667e-25 -24.778 -24.778 0.000 (0) O(0) 8.552e-08 - O2 4.276e-08 4.277e-08 -7.369 -7.369 0.000 30.40 + O2 4.276e-08 4.278e-08 -7.369 -7.369 0.000 30.40 S(-2) 0.000e+00 - H2S 0.000e+00 0.000e+00 -126.808 -126.808 0.000 36.27 - HS- 0.000e+00 0.000e+00 -130.582 -130.601 -0.019 20.61 - S-2 0.000e+00 0.000e+00 -140.296 -140.371 -0.075 (0) - (H2S)2 0.000e+00 0.000e+00 -254.894 -254.894 0.000 30.09 + H2S 0.000e+00 0.000e+00 -126.809 -126.808 0.000 36.27 + HS- 0.000e+00 0.000e+00 -130.583 -130.602 -0.019 20.61 + S-2 0.000e+00 0.000e+00 -140.297 -140.372 -0.075 (0) + (H2S)2 0.000e+00 0.000e+00 -254.895 -254.895 0.000 30.09 S(6) 2.706e-04 - SO4-2 2.480e-04 2.086e-04 -3.606 -3.681 -0.075 14.82 - HSO4- 1.506e-05 1.442e-05 -4.822 -4.841 -0.019 40.28 - CaSO4 5.800e-06 5.802e-06 -5.237 -5.236 0.000 7.50 - MgSO4 1.556e-06 1.557e-06 -5.808 -5.808 0.000 -0.83 - NaSO4- 1.001e-07 9.563e-08 -6.999 -7.019 -0.020 14.56 - CaHSO4+ 2.831e-08 2.710e-08 -7.548 -7.567 -0.019 (0) - KSO4- 1.413e-08 1.350e-08 -7.850 -7.870 -0.020 18.61 - Mg(SO4)2-2 1.266e-09 1.070e-09 -8.898 -8.971 -0.073 35.55 - NH4SO4- 0.000e+00 0.000e+00 -51.008 -51.027 -0.019 38.20 + SO4-2 2.477e-04 2.084e-04 -3.606 -3.681 -0.075 15.86 + HSO4- 1.504e-05 1.440e-05 -4.823 -4.842 -0.019 40.28 + CaSO4 5.792e-06 5.795e-06 -5.237 -5.237 0.000 7.50 + MgSO4 1.554e-06 1.555e-06 -5.809 -5.808 0.000 -7.92 + NaSO4- 4.143e-07 3.969e-07 -6.383 -6.401 -0.019 -20.09 + KSO4- 5.808e-08 5.568e-08 -7.236 -7.254 -0.018 14.15 + CaHSO4+ 2.828e-08 2.707e-08 -7.549 -7.568 -0.019 (0) + Mg(SO4)2-2 1.263e-09 1.067e-09 -8.899 -8.972 -0.073 -2.63 + NH4SO4- 0.000e+00 0.000e+00 -51.013 -51.032 -0.019 -9.55 ------------------------------Saturation indices------------------------------- @@ -389,18 +394,18 @@ Mixture 1. pH = 3.148 Charge balance pe = 16.529 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 345 + Specific Conductance (µS/cm, 25°C) = 292 Density (g/cm³) = 0.99709 Volume (L) = 1.00332 Viscosity (mPa s) = 0.89045 Activity of water = 1.000 - Ionic strength (mol/kgw) = 1.530e-03 + Ionic strength (mol/kgw) = 1.529e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = -7.555e-04 Total CO2 (mol/kg) = 2.182e-04 Temperature (°C) = 25.00 Electrical balance (eq) = 5.162e-04 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 24.28 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 24.29 Iterations = 0 Total H = 1.110505e+02 Total O = 5.552687e+01 @@ -417,18 +422,19 @@ C(-4) 0.000e+00 CH4 0.000e+00 0.000e+00 -136.694 -136.693 0.000 35.46 C(4) 2.182e-04 CO2 2.180e-04 2.181e-04 -3.661 -3.661 0.000 34.43 - HCO3- 1.425e-07 1.365e-07 -6.846 -6.865 -0.019 24.56 + HCO3- 1.425e-07 1.365e-07 -6.846 -6.865 -0.019 24.59 (CO2)2 8.728e-10 8.731e-10 -9.059 -9.059 0.000 68.87 CaHCO3+ 2.842e-10 2.723e-10 -9.546 -9.565 -0.019 9.68 MgHCO3+ 4.754e-11 4.551e-11 -10.323 -10.342 -0.019 5.48 - NaHCO3 1.070e-11 1.071e-11 -10.971 -10.970 0.000 28.00 - CO3-2 1.070e-14 9.007e-15 -13.971 -14.045 -0.075 -4.04 + NaHCO3 1.390e-11 1.391e-11 -10.857 -10.857 0.000 31.73 + KHCO3 1.071e-12 1.071e-12 -11.970 -11.970 0.000 41.03 + CO3-2 1.069e-14 9.006e-15 -13.971 -14.045 -0.075 -3.90 CaCO3 2.365e-15 2.366e-15 -14.626 -14.626 0.000 -14.60 MgCO3 2.448e-16 2.449e-16 -15.611 -15.611 0.000 -17.09 Ca 1.916e-04 Ca+2 1.857e-04 1.564e-04 -3.731 -3.806 -0.075 -18.12 - CaSO4 5.800e-06 5.802e-06 -5.237 -5.236 0.000 7.50 - CaHSO4+ 2.831e-08 2.710e-08 -7.548 -7.567 -0.019 (0) + CaSO4 5.792e-06 5.795e-06 -5.237 -5.237 0.000 7.50 + CaHSO4+ 2.828e-08 2.707e-08 -7.549 -7.568 -0.019 (0) CaHCO3+ 2.842e-10 2.723e-10 -9.546 -9.565 -0.019 9.68 CaOH+ 3.814e-14 3.651e-14 -13.419 -13.438 -0.019 (0) CaCO3 2.365e-15 2.366e-15 -14.626 -14.626 0.000 -14.60 @@ -438,18 +444,19 @@ Cl 1.331e-04 H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.506 -42.506 0.000 28.61 K 1.841e-05 - K+ 1.839e-05 1.760e-05 -4.735 -4.754 -0.019 9.02 - KSO4- 1.413e-08 1.350e-08 -7.850 -7.870 -0.020 18.61 + K+ 1.835e-05 1.756e-05 -4.736 -4.755 -0.019 9.02 + KSO4- 5.808e-08 5.568e-08 -7.236 -7.254 -0.018 14.15 + KHCO3 1.071e-12 1.071e-12 -11.970 -11.970 0.000 41.03 Mg 3.536e-05 - Mg+2 3.380e-05 2.849e-05 -4.471 -4.545 -0.074 -21.80 - MgSO4 1.556e-06 1.557e-06 -5.808 -5.808 0.000 -0.83 - Mg(SO4)2-2 1.266e-09 1.070e-09 -8.898 -8.971 -0.073 35.55 + Mg+2 3.381e-05 2.850e-05 -4.471 -4.545 -0.074 -21.80 + MgSO4 1.554e-06 1.555e-06 -5.809 -5.808 0.000 -7.92 + Mg(SO4)2-2 1.263e-09 1.067e-09 -8.899 -8.972 -0.073 -2.63 MgHCO3+ 4.754e-11 4.551e-11 -10.323 -10.342 -0.019 5.48 MgOH+ 1.519e-13 1.456e-13 -12.819 -12.837 -0.018 (0) MgCO3 2.448e-16 2.449e-16 -15.611 -15.611 0.000 -17.09 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -48.437 -48.457 -0.019 17.97 - NH4SO4- 0.000e+00 0.000e+00 -51.008 -51.027 -0.019 38.20 + NH4+ 0.000e+00 0.000e+00 -48.437 -48.457 -0.019 17.90 + NH4SO4- 0.000e+00 0.000e+00 -51.013 -51.032 -0.019 -9.55 NH3 0.000e+00 0.000e+00 -54.553 -54.553 0.000 24.42 N(0) 4.751e-04 N2 2.375e-04 2.376e-04 -3.624 -3.624 0.000 29.29 @@ -458,27 +465,27 @@ N(3) 2.623e-15 N(5) 1.601e-04 NO3- 1.601e-04 1.532e-04 -3.796 -3.815 -0.019 29.50 Na 1.226e-04 - Na+ 1.225e-04 1.173e-04 -3.912 -3.931 -0.019 -1.47 - NaSO4- 1.001e-07 9.563e-08 -6.999 -7.019 -0.020 14.56 - NaHCO3 1.070e-11 1.071e-11 -10.971 -10.970 0.000 28.00 - NaOH 1.670e-25 1.671e-25 -24.777 -24.777 0.000 (0) + Na+ 1.222e-04 1.170e-04 -3.913 -3.932 -0.019 -1.47 + NaSO4- 4.143e-07 3.969e-07 -6.383 -6.401 -0.019 -20.09 + NaHCO3 1.390e-11 1.391e-11 -10.857 -10.857 0.000 31.73 + NaOH 1.666e-25 1.667e-25 -24.778 -24.778 0.000 (0) O(0) 8.552e-08 - O2 4.276e-08 4.277e-08 -7.369 -7.369 0.000 30.40 + O2 4.276e-08 4.278e-08 -7.369 -7.369 0.000 30.40 S(-2) 0.000e+00 - H2S 0.000e+00 0.000e+00 -126.808 -126.808 0.000 36.27 - HS- 0.000e+00 0.000e+00 -130.582 -130.601 -0.019 20.61 - S-2 0.000e+00 0.000e+00 -140.296 -140.371 -0.075 (0) - (H2S)2 0.000e+00 0.000e+00 -254.894 -254.894 0.000 30.09 + H2S 0.000e+00 0.000e+00 -126.809 -126.808 0.000 36.27 + HS- 0.000e+00 0.000e+00 -130.583 -130.602 -0.019 20.61 + S-2 0.000e+00 0.000e+00 -140.297 -140.372 -0.075 (0) + (H2S)2 0.000e+00 0.000e+00 -254.895 -254.895 0.000 30.09 S(6) 2.706e-04 - SO4-2 2.480e-04 2.086e-04 -3.606 -3.681 -0.075 14.82 - HSO4- 1.506e-05 1.442e-05 -4.822 -4.841 -0.019 40.28 - CaSO4 5.800e-06 5.802e-06 -5.237 -5.236 0.000 7.50 - MgSO4 1.556e-06 1.557e-06 -5.808 -5.808 0.000 -0.83 - NaSO4- 1.001e-07 9.563e-08 -6.999 -7.019 -0.020 14.56 - CaHSO4+ 2.831e-08 2.710e-08 -7.548 -7.567 -0.019 (0) - KSO4- 1.413e-08 1.350e-08 -7.850 -7.870 -0.020 18.61 - Mg(SO4)2-2 1.266e-09 1.070e-09 -8.898 -8.971 -0.073 35.55 - NH4SO4- 0.000e+00 0.000e+00 -51.008 -51.027 -0.019 38.20 + SO4-2 2.477e-04 2.084e-04 -3.606 -3.681 -0.075 15.86 + HSO4- 1.504e-05 1.440e-05 -4.823 -4.842 -0.019 40.28 + CaSO4 5.792e-06 5.795e-06 -5.237 -5.237 0.000 7.50 + MgSO4 1.554e-06 1.555e-06 -5.809 -5.808 0.000 -7.92 + NaSO4- 4.143e-07 3.969e-07 -6.383 -6.401 -0.019 -20.09 + KSO4- 5.808e-08 5.568e-08 -7.236 -7.254 -0.018 14.15 + CaHSO4+ 2.828e-08 2.707e-08 -7.549 -7.568 -0.019 (0) + Mg(SO4)2-2 1.263e-09 1.067e-09 -8.899 -8.972 -0.073 -2.63 + NH4SO4- 0.000e+00 0.000e+00 -51.013 -51.032 -0.019 -9.55 ------------------------------Saturation indices------------------------------- diff --git a/ex5.out b/ex5.out index 4bb27369..feb86355 100644 --- a/ex5.out +++ b/ex5.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + CALCULATE_VALUES RATES END ------------------------------------ @@ -161,10 +162,10 @@ Pyrite 0.00 -18.48 -18.48 1.000e+01 1.000e+01 -3.144e-08 pH = 8.279 Charge balance pe = -4.943 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 95 + Specific Conductance (µS/cm, 25°C) = 96 Density (g/cm³) = 0.99711 Volume (L) = 1.00297 - Viscosity (mPa s) = 0.89082 + Viscosity (mPa s) = 0.89093 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.463e-03 Mass of water (kg) = 1.000e+00 @@ -188,9 +189,9 @@ Pyrite 0.00 -18.48 -18.48 1.000e+01 1.000e+01 -3.144e-08 C(-4) 5.384e-08 CH4 5.384e-08 5.386e-08 -7.269 -7.269 0.000 35.46 C(4) 9.801e-04 - HCO3- 9.493e-04 9.102e-04 -3.023 -3.041 -0.018 24.56 + HCO3- 9.493e-04 9.102e-04 -3.023 -3.041 -0.018 24.58 CO2 1.076e-05 1.076e-05 -4.968 -4.968 0.000 34.43 - CO3-2 9.605e-06 8.118e-06 -5.017 -5.091 -0.073 -4.04 + CO3-2 9.605e-06 8.118e-06 -5.017 -5.091 -0.073 -3.91 CaCO3 5.561e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 CaHCO3+ 4.939e-06 4.737e-06 -5.306 -5.324 -0.018 9.68 FeCO3 2.598e-09 2.599e-09 -8.585 -8.585 0.000 (0) @@ -237,7 +238,7 @@ S(-2) 2.505e-09 (H2S)2 5.883e-22 5.885e-22 -21.230 -21.230 0.000 30.09 Fe(HS)3- 1.642e-23 1.573e-23 -22.785 -22.803 -0.019 (0) S(6) 6.037e-08 - SO4-2 5.688e-08 4.803e-08 -7.245 -7.319 -0.073 14.81 + SO4-2 5.688e-08 4.803e-08 -7.245 -7.319 -0.073 15.83 CaSO4 3.483e-09 3.484e-09 -8.458 -8.458 0.000 7.50 FeSO4 1.139e-13 1.140e-13 -12.943 -12.943 0.000 18.97 HSO4- 2.563e-14 2.455e-14 -13.591 -13.610 -0.019 40.28 @@ -305,16 +306,16 @@ CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 1.426e-04 Calcite 0.00 -8.48 -8.48 1.000e+01 9.999e+00 -9.268e-04 Goethite -0.00 -1.00 -1.00 1.000e+01 1.000e+01 2.667e-04 Gypsum -2.01 -6.60 -4.58 0.000e+00 0 0.000e+00 -Pyrite -0.00 -18.48 -18.48 1.000e+01 1.000e+01 -2.667e-04 +Pyrite 0.00 -18.48 -18.48 1.000e+01 1.000e+01 -2.667e-04 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 7.843e-04 7.843e-04 - Ca 9.269e-04 9.268e-04 + C 7.842e-04 7.842e-04 + Ca 9.268e-04 9.268e-04 Cl 5.000e-04 5.000e-04 - Fe 9.963e-09 9.963e-09 + Fe 9.968e-09 9.968e-09 Na 5.000e-04 5.000e-04 S 5.333e-04 5.333e-04 @@ -322,15 +323,15 @@ Pyrite -0.00 -18.48 -18.48 1.000e+01 1.000e+01 -2.667e-04 pH = 8.170 Charge balance pe = -4.286 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 254 + Specific Conductance (µS/cm, 25°C) = 271 Density (g/cm³) = 0.99719 Volume (L) = 1.00298 - Viscosity (mPa s) = 0.89122 + Viscosity (mPa s) = 0.89164 Activity of water = 1.000 - Ionic strength (mol/kgw) = 3.608e-03 + Ionic strength (mol/kgw) = 3.604e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 7.870e-04 - Total CO2 (mol/kg) = 7.843e-04 + Total CO2 (mol/kg) = 7.842e-04 Temperature (°C) = 25.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -344,87 +345,87 @@ Pyrite -0.00 -18.48 -18.48 1.000e+01 1.000e+01 -2.667e-04 Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.600e-06 1.498e-06 -5.796 -5.825 -0.029 -4.08 - H+ 7.174e-09 6.757e-09 -8.144 -8.170 -0.026 0.00 + H+ 7.175e-09 6.758e-09 -8.144 -8.170 -0.026 0.00 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 -C(-4) 2.208e-12 - CH4 2.208e-12 2.210e-12 -11.656 -11.656 0.000 35.46 -C(4) 7.843e-04 - HCO3- 7.549e-04 7.083e-04 -3.122 -3.150 -0.028 24.59 +C(-4) 2.218e-12 + CH4 2.218e-12 2.220e-12 -11.654 -11.654 0.000 35.46 +C(4) 7.842e-04 + HCO3- 7.548e-04 7.082e-04 -3.122 -3.150 -0.028 24.61 CO2 1.075e-05 1.076e-05 -4.968 -4.968 0.000 34.43 - CaHCO3+ 6.484e-06 6.087e-06 -5.188 -5.216 -0.027 9.69 - CO3-2 6.344e-06 4.916e-06 -5.198 -5.308 -0.111 -3.95 + CaHCO3+ 6.484e-06 6.088e-06 -5.188 -5.216 -0.027 9.69 + CO3-2 6.342e-06 4.915e-06 -5.198 -5.308 -0.111 -3.82 CaCO3 5.559e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 - NaHCO3 2.211e-07 2.215e-07 -6.655 -6.655 0.001 28.00 - FeCO3 7.346e-10 7.352e-10 -9.134 -9.134 0.000 (0) - FeHCO3+ 4.714e-10 4.416e-10 -9.327 -9.355 -0.028 (0) + NaHCO3 2.867e-07 2.872e-07 -6.543 -6.542 0.001 31.73 + FeCO3 7.350e-10 7.356e-10 -9.134 -9.133 0.000 (0) + FeHCO3+ 4.717e-10 4.419e-10 -9.326 -9.355 -0.028 (0) (CO2)2 2.124e-12 2.125e-12 -11.673 -11.673 0.000 68.87 -Ca 9.269e-04 - Ca+2 8.697e-04 6.736e-04 -3.061 -3.172 -0.111 -18.05 - CaSO4 4.511e-05 4.515e-05 -4.346 -4.345 0.000 7.50 - CaHCO3+ 6.484e-06 6.087e-06 -5.188 -5.216 -0.027 9.69 +Ca 9.268e-04 + Ca+2 8.698e-04 6.738e-04 -3.061 -3.171 -0.111 -18.05 + CaSO4 4.494e-05 4.498e-05 -4.347 -4.347 0.000 7.50 + CaHCO3+ 6.484e-06 6.088e-06 -5.188 -5.216 -0.027 9.69 CaCO3 5.559e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 - CaOH+ 1.766e-08 1.654e-08 -7.753 -7.781 -0.028 (0) - CaHSO4+ 2.141e-12 2.005e-12 -11.669 -11.698 -0.028 (0) + CaOH+ 1.766e-08 1.655e-08 -7.753 -7.781 -0.028 (0) + CaHSO4+ 2.132e-12 1.998e-12 -11.671 -11.699 -0.028 (0) Cl 5.000e-04 Cl- 5.000e-04 4.682e-04 -3.301 -3.330 -0.029 18.10 - FeCl+ 4.301e-12 4.029e-12 -11.366 -11.395 -0.028 (0) + FeCl+ 4.305e-12 4.033e-12 -11.366 -11.394 -0.028 (0) HCl 1.086e-12 1.090e-12 -11.964 -11.963 0.002 (0) - FeCl+2 5.639e-28 4.362e-28 -27.249 -27.360 -0.112 (0) - FeCl2+ 9.728e-31 9.123e-31 -30.012 -30.040 -0.028 (0) - FeCl3 4.268e-35 4.272e-35 -34.370 -34.369 0.000 (0) -Fe(2) 9.963e-09 - Fe+2 8.024e-09 6.234e-09 -8.096 -8.205 -0.110 -22.04 - FeCO3 7.346e-10 7.352e-10 -9.134 -9.134 0.000 (0) - FeHCO3+ 4.714e-10 4.416e-10 -9.327 -9.355 -0.028 (0) - FeSO4 4.176e-10 4.179e-10 -9.379 -9.379 0.000 18.97 - FeOH+ 3.111e-10 2.918e-10 -9.507 -9.535 -0.028 (0) - FeCl+ 4.301e-12 4.029e-12 -11.366 -11.395 -0.028 (0) - Fe(OH)2 3.672e-13 3.675e-13 -12.435 -12.435 0.000 (0) - Fe(OH)3- 2.155e-15 2.021e-15 -14.667 -14.694 -0.028 (0) - FeHSO4+ 1.981e-17 1.856e-17 -16.703 -16.731 -0.028 (0) - Fe(HS)2 5.026e-18 5.030e-18 -17.299 -17.298 0.000 (0) - Fe(HS)3- 5.563e-25 5.211e-25 -24.255 -24.283 -0.028 (0) + FeCl+2 5.641e-28 4.364e-28 -27.249 -27.360 -0.111 (0) + FeCl2+ 9.733e-31 9.128e-31 -30.012 -30.040 -0.028 (0) + FeCl3 4.270e-35 4.274e-35 -34.370 -34.369 0.000 (0) +Fe(2) 9.968e-09 + Fe+2 8.029e-09 6.240e-09 -8.095 -8.205 -0.110 -22.04 + FeCO3 7.350e-10 7.356e-10 -9.134 -9.133 0.000 (0) + FeHCO3+ 4.717e-10 4.419e-10 -9.326 -9.355 -0.028 (0) + FeSO4 4.161e-10 4.165e-10 -9.381 -9.380 0.000 18.97 + FeOH+ 3.113e-10 2.920e-10 -9.507 -9.535 -0.028 (0) + FeCl+ 4.305e-12 4.033e-12 -11.366 -11.394 -0.028 (0) + Fe(OH)2 3.674e-13 3.677e-13 -12.435 -12.434 0.000 (0) + Fe(OH)3- 2.156e-15 2.022e-15 -14.666 -14.694 -0.028 (0) + FeHSO4+ 1.975e-17 1.850e-17 -16.705 -16.733 -0.028 (0) + Fe(HS)2 5.031e-18 5.035e-18 -17.298 -17.298 0.000 (0) + Fe(HS)3- 5.569e-25 5.218e-25 -24.254 -24.283 -0.028 (0) Fe(3) 3.302e-14 Fe(OH)3 2.752e-14 2.754e-14 -13.560 -13.560 0.000 (0) - Fe(OH)4- 3.962e-15 3.717e-15 -14.402 -14.430 -0.028 (0) + Fe(OH)4- 3.961e-15 3.717e-15 -14.402 -14.430 -0.028 (0) Fe(OH)2+ 1.540e-15 1.445e-15 -14.813 -14.840 -0.028 (0) - FeOH+2 3.811e-20 2.948e-20 -19.419 -19.531 -0.112 (0) - FeSO4+ 1.360e-25 1.275e-25 -24.867 -24.894 -0.028 (0) - Fe+3 5.289e-26 3.085e-26 -25.277 -25.511 -0.234 (0) - Fe(SO4)2- 1.122e-27 1.051e-27 -26.950 -26.978 -0.028 (0) - FeCl+2 5.639e-28 4.362e-28 -27.249 -27.360 -0.112 (0) - FeCl2+ 9.728e-31 9.123e-31 -30.012 -30.040 -0.028 (0) - FeHSO4+2 2.995e-33 2.307e-33 -32.524 -32.637 -0.113 (0) - FeCl3 4.268e-35 4.272e-35 -34.370 -34.369 0.000 (0) - Fe2(OH)2+4 6.646e-38 2.339e-38 -37.177 -37.631 -0.454 (0) - Fe3(OH)4+5 0.000e+00 0.000e+00 -49.443 -50.151 -0.709 (0) -H(0) 2.406e-11 - H2 1.203e-11 1.204e-11 -10.920 -10.919 0.000 28.61 + FeOH+2 3.812e-20 2.949e-20 -19.419 -19.530 -0.111 (0) + FeSO4+ 1.354e-25 1.270e-25 -24.868 -24.896 -0.028 (0) + Fe+3 5.290e-26 3.086e-26 -25.277 -25.511 -0.234 (0) + Fe(SO4)2- 1.113e-27 1.043e-27 -26.953 -26.982 -0.028 (0) + FeCl+2 5.641e-28 4.364e-28 -27.249 -27.360 -0.111 (0) + FeCl2+ 9.733e-31 9.128e-31 -30.012 -30.040 -0.028 (0) + FeHSO4+2 2.984e-33 2.298e-33 -32.525 -32.639 -0.113 (0) + FeCl3 4.270e-35 4.274e-35 -34.370 -34.369 0.000 (0) + Fe2(OH)2+4 6.646e-38 2.340e-38 -37.177 -37.631 -0.453 (0) + Fe3(OH)4+5 0.000e+00 0.000e+00 -49.443 -50.151 -0.708 (0) +H(0) 2.408e-11 + H2 1.204e-11 1.205e-11 -10.919 -10.919 0.000 28.61 Na 5.000e-04 - Na+ 4.990e-04 4.678e-04 -3.302 -3.330 -0.028 -1.44 - NaSO4- 7.392e-07 6.889e-07 -6.131 -6.162 -0.031 14.65 - NaHCO3 2.211e-07 2.215e-07 -6.655 -6.655 0.001 28.00 - NaOH 7.002e-20 7.008e-20 -19.155 -19.154 0.000 (0) + Na+ 4.967e-04 4.656e-04 -3.304 -3.332 -0.028 -1.44 + NaSO4- 3.032e-06 2.845e-06 -5.518 -5.546 -0.028 -18.09 + NaHCO3 2.867e-07 2.872e-07 -6.543 -6.542 0.001 31.73 + NaOH 6.968e-20 6.974e-20 -19.157 -19.157 0.000 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -70.542 -70.541 0.000 30.40 + O2 0.000e+00 0.000e+00 -70.542 -70.542 0.000 30.40 S(-2) 1.073e-09 - HS- 1.016e-09 9.515e-10 -8.993 -9.022 -0.029 20.63 - H2S 5.616e-11 5.621e-11 -10.251 -10.250 0.000 36.27 - S-2 2.199e-14 1.701e-14 -13.658 -13.769 -0.112 (0) - Fe(HS)2 5.026e-18 5.030e-18 -17.299 -17.298 0.000 (0) - (H2S)2 1.663e-22 1.665e-22 -21.779 -21.779 0.000 30.09 - Fe(HS)3- 5.563e-25 5.211e-25 -24.255 -24.283 -0.028 (0) + HS- 1.016e-09 9.516e-10 -8.993 -9.022 -0.029 20.63 + H2S 5.618e-11 5.622e-11 -10.250 -10.250 0.000 36.27 + S-2 2.199e-14 1.701e-14 -13.658 -13.769 -0.111 (0) + Fe(HS)2 5.031e-18 5.035e-18 -17.298 -17.298 0.000 (0) + (H2S)2 1.664e-22 1.666e-22 -21.779 -21.778 0.000 30.09 + Fe(HS)3- 5.569e-25 5.218e-25 -24.254 -24.283 -0.028 (0) S(6) 5.333e-04 - SO4-2 4.875e-04 3.769e-04 -3.312 -3.424 -0.112 14.90 - CaSO4 4.511e-05 4.515e-05 -4.346 -4.345 0.000 7.50 - NaSO4- 7.392e-07 6.889e-07 -6.131 -6.162 -0.031 14.65 - FeSO4 4.176e-10 4.179e-10 -9.379 -9.379 0.000 18.97 - HSO4- 2.643e-10 2.476e-10 -9.578 -9.606 -0.028 40.30 - CaHSO4+ 2.141e-12 2.005e-12 -11.669 -11.698 -0.028 (0) - FeHSO4+ 1.981e-17 1.856e-17 -16.703 -16.731 -0.028 (0) - FeSO4+ 1.360e-25 1.275e-25 -24.867 -24.894 -0.028 (0) - Fe(SO4)2- 1.122e-27 1.051e-27 -26.950 -26.978 -0.028 (0) - FeHSO4+2 2.995e-33 2.307e-33 -32.524 -32.637 -0.113 (0) + SO4-2 4.854e-04 3.754e-04 -3.314 -3.426 -0.112 16.58 + CaSO4 4.494e-05 4.498e-05 -4.347 -4.347 0.000 7.50 + NaSO4- 3.032e-06 2.845e-06 -5.518 -5.546 -0.028 -18.09 + FeSO4 4.161e-10 4.165e-10 -9.381 -9.380 0.000 18.97 + HSO4- 2.632e-10 2.466e-10 -9.580 -9.608 -0.028 40.30 + CaHSO4+ 2.132e-12 1.998e-12 -11.671 -11.699 -0.028 (0) + FeHSO4+ 1.975e-17 1.850e-17 -16.705 -16.733 -0.028 (0) + FeSO4+ 1.354e-25 1.270e-25 -24.868 -24.896 -0.028 (0) + Fe(SO4)2- 1.113e-27 1.043e-27 -26.953 -26.982 -0.028 (0) + FeHSO4+2 2.984e-33 2.298e-33 -32.525 -32.639 -0.113 (0) ------------------------------Saturation indices------------------------------- @@ -433,7 +434,7 @@ S(6) 5.333e-04 Anhydrite -2.32 -6.60 -4.28 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -8.85 -11.66 -2.80 CH4 + CH4(g) -8.85 -11.65 -2.80 CH4 CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 FeS(ppt) -5.14 -9.06 -3.92 FeS @@ -446,12 +447,12 @@ S(6) 5.333e-04 Hematite 2.01 -2.00 -4.01 Fe2O3 Mackinawite -4.41 -9.06 -4.65 FeS Melanterite -9.42 -11.63 -2.21 FeSO4:7H2O - Mirabilite -8.84 -10.08 -1.24 Na2SO4:10H2O + Mirabilite -8.85 -10.09 -1.24 Na2SO4:10H2O O2(g) -67.65 -70.54 -2.89 O2 - Pyrite -0.00 -18.48 -18.48 FeS2 + Pyrite 0.00 -18.48 -18.48 FeS2 Siderite -2.62 -13.51 -10.89 FeCO3 Sulfur -7.36 -2.48 4.88 S - Thenardite -9.78 -10.08 -0.30 Na2SO4 + Thenardite -9.79 -10.09 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -483,136 +484,136 @@ Reaction 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 2.396e-03 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 2.397e-03 Calcite 0.00 -8.48 -8.48 1.000e+01 9.997e+00 -2.936e-03 Goethite 0.00 -1.00 -1.00 1.000e+01 1.000e+01 1.333e-03 -Gypsum -1.05 -5.63 -4.58 0.000e+00 0 0.000e+00 +Gypsum -1.06 -5.64 -4.58 0.000e+00 0 0.000e+00 Pyrite 0.00 -18.48 -18.48 1.000e+01 9.999e+00 -1.333e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 5.395e-04 5.395e-04 + C 5.389e-04 5.389e-04 Ca 2.936e-03 2.936e-03 Cl 2.500e-03 2.500e-03 - Fe 2.149e-08 2.149e-08 + Fe 2.153e-08 2.153e-08 Na 2.500e-03 2.500e-03 S 2.667e-03 2.667e-03 ----------------------------Description of solution---------------------------- - pH = 7.980 Charge balance + pH = 7.979 Charge balance pe = -3.966 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 863 - Density (g/cm³) = 0.99755 + Specific Conductance (µS/cm, 25°C) = 913 + Density (g/cm³) = 0.99754 Volume (L) = 1.00300 - Viscosity (mPa s) = 0.89264 + Viscosity (mPa s) = 0.89302 Activity of water = 1.000 - Ionic strength (mol/kgw) = 1.225e-02 + Ionic strength (mol/kgw) = 1.219e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.386e-04 - Total CO2 (mol/kg) = 5.395e-04 + Total alkalinity (eq/kg) = 5.379e-04 + Total CO2 (mol/kg) = 5.389e-04 Temperature (°C) = 25.00 - Electrical balance (eq) = -1.151e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 24 + Iterations = 25 Total H = 1.110111e+02 - Total O = 5.551757e+01 + Total O = 5.551756e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.083e-06 9.654e-07 -5.965 -6.015 -0.050 -4.02 - H+ 1.156e-08 1.048e-08 -7.937 -7.980 -0.043 0.00 + OH- 1.082e-06 9.640e-07 -5.966 -6.016 -0.050 -4.02 + H+ 1.158e-08 1.050e-08 -7.936 -7.979 -0.042 0.00 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 -C(-4) 2.067e-13 - CH4 2.067e-13 2.073e-13 -12.685 -12.683 0.001 35.46 -C(4) 5.395e-04 - HCO3- 5.089e-04 4.565e-04 -3.293 -3.341 -0.047 24.67 +C(-4) 2.095e-13 + CH4 2.095e-13 2.101e-13 -12.679 -12.678 0.001 35.46 +C(4) 5.389e-04 + HCO3- 5.081e-04 4.558e-04 -3.294 -3.341 -0.047 24.66 CO2 1.074e-05 1.076e-05 -4.969 -4.968 0.001 34.43 - CaHCO3+ 1.051e-05 9.443e-06 -4.979 -5.025 -0.046 9.73 - CaCO3 5.547e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 - CO3-2 3.154e-06 2.042e-06 -5.501 -5.690 -0.189 -3.73 - NaHCO3 6.745e-07 6.789e-07 -6.171 -6.168 0.003 28.00 - FeHCO3+ 5.705e-10 5.097e-10 -9.244 -9.293 -0.049 (0) - FeCO3 5.454e-10 5.470e-10 -9.263 -9.262 0.001 (0) + CaHCO3+ 1.052e-05 9.457e-06 -4.978 -5.024 -0.046 9.73 + CaCO3 5.548e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 + CO3-2 3.142e-06 2.037e-06 -5.503 -5.691 -0.188 -3.63 + NaHCO3 8.635e-07 8.683e-07 -6.064 -6.061 0.002 31.73 + FeHCO3+ 5.721e-10 5.113e-10 -9.243 -9.291 -0.049 (0) + FeCO3 5.464e-10 5.479e-10 -9.263 -9.261 0.001 (0) (CO2)2 2.119e-12 2.125e-12 -11.674 -11.673 0.001 68.87 Ca 2.936e-03 - Ca+2 2.506e-03 1.621e-03 -2.601 -2.790 -0.189 -17.90 - CaSO4 4.140e-04 4.152e-04 -3.383 -3.382 0.001 7.50 - CaHCO3+ 1.051e-05 9.443e-06 -4.979 -5.025 -0.046 9.73 - CaCO3 5.547e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 - CaOH+ 2.873e-08 2.567e-08 -7.542 -7.591 -0.049 (0) - CaHSO4+ 3.202e-11 2.861e-11 -10.495 -10.544 -0.049 (0) + Ca+2 2.511e-03 1.626e-03 -2.600 -2.789 -0.189 -17.90 + CaSO4 4.088e-04 4.100e-04 -3.388 -3.387 0.001 7.50 + CaHCO3+ 1.052e-05 9.457e-06 -4.978 -5.024 -0.046 9.73 + CaCO3 5.548e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 + CaOH+ 2.876e-08 2.570e-08 -7.541 -7.590 -0.049 (0) + CaHSO4+ 3.165e-11 2.829e-11 -10.500 -10.548 -0.049 (0) Cl 2.500e-03 Cl- 2.500e-03 2.230e-03 -2.602 -2.652 -0.050 18.15 - FeCl+ 3.846e-11 3.436e-11 -10.415 -10.464 -0.049 (0) - HCl 7.956e-12 8.052e-12 -11.099 -11.094 0.005 (0) - FeCl+2 1.205e-26 7.758e-27 -25.919 -26.110 -0.191 (0) - FeCl2+ 8.626e-29 7.728e-29 -28.064 -28.112 -0.048 (0) - FeCl3 1.718e-32 1.723e-32 -31.765 -31.764 0.001 (0) -Fe(2) 2.149e-08 - Fe+2 1.711e-08 1.116e-08 -7.767 -7.952 -0.185 -21.90 - FeSO4 2.851e-09 2.859e-09 -8.545 -8.544 0.001 18.97 - FeHCO3+ 5.705e-10 5.097e-10 -9.244 -9.293 -0.049 (0) - FeCO3 5.454e-10 5.470e-10 -9.263 -9.262 0.001 (0) - FeOH+ 3.759e-10 3.367e-10 -9.425 -9.473 -0.048 (0) - FeCl+ 3.846e-11 3.436e-11 -10.415 -10.464 -0.049 (0) - Fe(OH)2 2.726e-13 2.734e-13 -12.564 -12.563 0.001 (0) - Fe(OH)3- 1.082e-15 9.689e-16 -14.966 -15.014 -0.048 (0) - FeHSO4+ 2.205e-16 1.970e-16 -15.657 -15.706 -0.049 (0) - Fe(HS)2 2.775e-18 2.783e-18 -17.557 -17.555 0.001 (0) - Fe(HS)3- 1.794e-25 1.603e-25 -24.746 -24.795 -0.049 (0) + FeCl+ 3.864e-11 3.453e-11 -10.413 -10.462 -0.049 (0) + HCl 7.970e-12 8.066e-12 -11.099 -11.093 0.005 (0) + FeCl+2 1.209e-26 7.794e-27 -25.918 -26.108 -0.191 (0) + FeCl2+ 8.666e-29 7.765e-29 -28.062 -28.110 -0.048 (0) + FeCl3 1.727e-32 1.732e-32 -31.763 -31.761 0.001 (0) +Fe(2) 2.153e-08 + Fe+2 1.717e-08 1.122e-08 -7.765 -7.950 -0.185 -21.90 + FeSO4 2.820e-09 2.828e-09 -8.550 -8.549 0.001 18.97 + FeHCO3+ 5.721e-10 5.113e-10 -9.243 -9.291 -0.049 (0) + FeCO3 5.464e-10 5.479e-10 -9.263 -9.261 0.001 (0) + FeOH+ 3.770e-10 3.378e-10 -9.424 -9.471 -0.048 (0) + FeCl+ 3.864e-11 3.453e-11 -10.413 -10.462 -0.049 (0) + Fe(OH)2 2.731e-13 2.739e-13 -12.564 -12.562 0.001 (0) + Fe(OH)3- 1.082e-15 9.691e-16 -14.966 -15.014 -0.048 (0) + FeHSO4+ 2.183e-16 1.951e-16 -15.661 -15.710 -0.049 (0) + Fe(HS)2 2.785e-18 2.793e-18 -17.555 -17.554 0.001 (0) + Fe(HS)3- 1.799e-25 1.607e-25 -24.745 -24.794 -0.049 (0) Fe(3) 3.263e-14 Fe(OH)3 2.746e-14 2.754e-14 -13.561 -13.560 0.001 (0) - Fe(OH)4- 2.670e-15 2.396e-15 -14.573 -14.621 -0.047 (0) - Fe(OH)2+ 2.498e-15 2.241e-15 -14.602 -14.650 -0.047 (0) - FeOH+2 1.102e-19 7.095e-20 -18.958 -19.149 -0.191 (0) - FeSO4+ 2.031e-24 1.819e-24 -23.692 -23.740 -0.048 (0) - Fe+3 2.782e-25 1.152e-25 -24.556 -24.939 -0.383 (0) - Fe(SO4)2- 6.414e-26 5.731e-26 -25.193 -25.242 -0.049 (0) - FeCl+2 1.205e-26 7.758e-27 -25.919 -26.110 -0.191 (0) - FeCl2+ 8.626e-29 7.728e-29 -28.064 -28.112 -0.048 (0) - FeHSO4+2 8.015e-32 5.106e-32 -31.096 -31.292 -0.196 (0) - FeCl3 1.718e-32 1.723e-32 -31.765 -31.764 0.001 (0) - Fe2(OH)2+4 8.227e-37 1.355e-37 -36.085 -36.868 -0.783 (0) - Fe3(OH)4+5 0.000e+00 0.000e+00 -47.974 -49.198 -1.224 (0) -H(0) 1.329e-11 - H2 6.643e-12 6.661e-12 -11.178 -11.176 0.001 28.61 + Fe(OH)4- 2.666e-15 2.392e-15 -14.574 -14.621 -0.047 (0) + Fe(OH)2+ 2.501e-15 2.244e-15 -14.602 -14.649 -0.047 (0) + FeOH+2 1.104e-19 7.116e-20 -18.957 -19.148 -0.191 (0) + FeSO4+ 2.007e-24 1.799e-24 -23.697 -23.745 -0.048 (0) + Fe+3 2.789e-25 1.157e-25 -24.555 -24.937 -0.382 (0) + Fe(SO4)2- 6.243e-26 5.579e-26 -25.205 -25.253 -0.049 (0) + FeCl+2 1.209e-26 7.794e-27 -25.918 -26.108 -0.191 (0) + FeCl2+ 8.666e-29 7.765e-29 -28.062 -28.110 -0.048 (0) + FeHSO4+2 7.929e-32 5.056e-32 -31.101 -31.296 -0.195 (0) + FeCl3 1.727e-32 1.732e-32 -31.763 -31.761 0.001 (0) + Fe2(OH)2+4 8.242e-37 1.363e-37 -36.084 -36.866 -0.782 (0) + Fe3(OH)4+5 0.000e+00 0.000e+00 -47.973 -49.194 -1.221 (0) +H(0) 1.333e-11 + H2 6.665e-12 6.684e-12 -11.176 -11.175 0.001 28.61 Na 2.500e-03 - Na+ 2.485e-03 2.224e-03 -2.605 -2.653 -0.048 -1.36 - NaSO4- 1.425e-05 1.251e-05 -4.846 -4.903 -0.056 14.91 - NaHCO3 6.745e-07 6.789e-07 -6.171 -6.168 0.003 28.00 - NaOH 2.141e-19 2.147e-19 -18.669 -18.668 0.001 (0) + Na+ 2.443e-03 2.187e-03 -2.612 -2.660 -0.048 -1.36 + NaSO4- 5.624e-05 5.047e-05 -4.250 -4.297 -0.047 -14.46 + NaHCO3 8.635e-07 8.683e-07 -6.064 -6.061 0.002 31.73 + NaOH 2.103e-19 2.108e-19 -18.677 -18.676 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -70.029 -70.027 0.001 30.40 -S(-2) 6.419e-10 - HS- 5.935e-10 5.289e-10 -9.227 -9.277 -0.050 20.68 - H2S 4.834e-11 4.847e-11 -10.316 -10.315 0.001 36.27 - S-2 9.463e-15 6.094e-15 -14.024 -14.215 -0.191 (0) - Fe(HS)2 2.775e-18 2.783e-18 -17.557 -17.555 0.001 (0) - (H2S)2 1.235e-22 1.238e-22 -21.908 -21.907 0.001 30.09 - Fe(HS)3- 1.794e-25 1.603e-25 -24.746 -24.795 -0.049 (0) + O2 0.000e+00 0.000e+00 -70.031 -70.030 0.001 30.40 +S(-2) 6.414e-10 + HS- 5.930e-10 5.286e-10 -9.227 -9.277 -0.050 20.68 + H2S 4.838e-11 4.851e-11 -10.315 -10.314 0.001 36.27 + S-2 9.434e-15 6.082e-15 -14.025 -14.216 -0.191 (0) + Fe(HS)2 2.785e-18 2.793e-18 -17.555 -17.554 0.001 (0) + (H2S)2 1.237e-22 1.240e-22 -21.908 -21.907 0.001 30.09 + Fe(HS)3- 1.799e-25 1.607e-25 -24.745 -24.794 -0.049 (0) S(6) 2.667e-03 - SO4-2 2.238e-03 1.440e-03 -2.650 -2.842 -0.192 15.09 - CaSO4 4.140e-04 4.152e-04 -3.383 -3.382 0.001 7.50 - NaSO4- 1.425e-05 1.251e-05 -4.846 -4.903 -0.056 14.91 - FeSO4 2.851e-09 2.859e-09 -8.545 -8.544 0.001 18.97 - HSO4- 1.643e-09 1.467e-09 -8.784 -8.833 -0.049 40.35 - CaHSO4+ 3.202e-11 2.861e-11 -10.495 -10.544 -0.049 (0) - FeHSO4+ 2.205e-16 1.970e-16 -15.657 -15.706 -0.049 (0) - FeSO4+ 2.031e-24 1.819e-24 -23.692 -23.740 -0.048 (0) - Fe(SO4)2- 6.414e-26 5.731e-26 -25.193 -25.242 -0.049 (0) - FeHSO4+2 8.015e-32 5.106e-32 -31.096 -31.292 -0.196 (0) + SO4-2 2.202e-03 1.418e-03 -2.657 -2.848 -0.191 18.23 + CaSO4 4.088e-04 4.100e-04 -3.388 -3.387 0.001 7.50 + NaSO4- 5.624e-05 5.047e-05 -4.250 -4.297 -0.047 -14.46 + FeSO4 2.820e-09 2.828e-09 -8.550 -8.549 0.001 18.97 + HSO4- 1.619e-09 1.447e-09 -8.791 -8.840 -0.049 40.35 + CaHSO4+ 3.165e-11 2.829e-11 -10.500 -10.548 -0.049 (0) + FeHSO4+ 2.183e-16 1.951e-16 -15.661 -15.710 -0.049 (0) + FeSO4+ 2.007e-24 1.799e-24 -23.697 -23.745 -0.048 (0) + Fe(SO4)2- 6.243e-26 5.579e-26 -25.205 -25.253 -0.049 (0) + FeHSO4+2 7.929e-32 5.056e-32 -31.101 -31.296 -0.195 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -1.35 -5.63 -4.28 CaSO4 + Anhydrite -1.36 -5.64 -4.28 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 Calcite 0.00 -8.48 -8.48 CaCO3 CH4(g) -9.88 -12.68 -2.80 CH4 @@ -620,20 +621,20 @@ S(6) 2.667e-03 Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 FeS(ppt) -5.33 -9.25 -3.92 FeS Goethite 0.00 -1.00 -1.00 FeOOH - Gypsum -1.05 -5.63 -4.58 CaSO4:2H2O - H2(g) -8.08 -11.18 -3.10 H2 + Gypsum -1.06 -5.64 -4.58 CaSO4:2H2O + H2(g) -8.07 -11.17 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O H2S(g) -9.32 -17.26 -7.94 H2S - Halite -6.87 -5.30 1.57 NaCl + Halite -6.88 -5.31 1.57 NaCl Hematite 2.01 -2.00 -4.01 Fe2O3 Mackinawite -4.60 -9.25 -4.65 FeS - Melanterite -8.59 -10.79 -2.21 FeSO4:7H2O - Mirabilite -6.91 -8.15 -1.24 Na2SO4:10H2O - O2(g) -67.13 -70.03 -2.89 O2 + Melanterite -8.59 -10.80 -2.21 FeSO4:7H2O + Mirabilite -6.93 -8.17 -1.24 Na2SO4:10H2O + O2(g) -67.14 -70.03 -2.89 O2 Pyrite 0.00 -18.48 -18.48 FeS2 Siderite -2.75 -13.64 -10.89 FeCO3 Sulfur -7.17 -2.29 4.88 S - Thenardite -7.85 -8.15 -0.30 Na2SO4 + Thenardite -7.87 -8.17 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -666,39 +667,39 @@ Reaction 1. Phase SI log IAP log K(T, P) Initial Final Delta CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.001e+01 5.107e-03 -Calcite 0.00 -8.48 -8.48 1.000e+01 9.994e+00 -5.558e-03 +Calcite 0.00 -8.48 -8.48 1.000e+01 9.994e+00 -5.557e-03 Goethite 0.00 -1.00 -1.00 1.000e+01 1.000e+01 2.667e-03 -Gypsum -0.63 -5.22 -4.58 0.000e+00 0 0.000e+00 -Pyrite 0.00 -18.48 -18.48 1.000e+01 9.997e+00 -2.667e-03 +Gypsum -0.64 -5.22 -4.58 0.000e+00 0 0.000e+00 +Pyrite -0.00 -18.48 -18.48 1.000e+01 9.997e+00 -2.667e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 4.511e-04 4.511e-04 - Ca 5.558e-03 5.558e-03 + C 4.499e-04 4.499e-04 + Ca 5.557e-03 5.557e-03 Cl 5.000e-03 5.000e-03 - Fe 3.488e-08 3.488e-08 + Fe 3.497e-08 3.497e-08 Na 5.000e-03 5.000e-03 S 5.333e-03 5.333e-03 ----------------------------Description of solution---------------------------- - pH = 7.881 Charge balance + pH = 7.879 Charge balance pe = -3.812 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 1564 - Density (g/cm³) = 0.99801 - Volume (L) = 1.00303 - Viscosity (mPa s) = 0.89416 + Specific Conductance (µS/cm, 25°C) = 1657 + Density (g/cm³) = 0.99799 + Volume (L) = 1.00304 + Viscosity (mPa s) = 0.89443 Activity of water = 1.000 - Ionic strength (mol/kgw) = 2.256e-02 + Ionic strength (mol/kgw) = 2.237e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 4.491e-04 - Total CO2 (mol/kg) = 4.511e-04 + Total alkalinity (eq/kg) = 4.479e-04 + Total CO2 (mol/kg) = 4.499e-04 Temperature (°C) = 25.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 + Iterations = 27 Total H = 1.110098e+02 Total O = 5.552734e+01 @@ -707,115 +708,115 @@ Pyrite 0.00 -18.48 -18.48 1.000e+01 9.997e+00 -2.667e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 8.939e-07 7.690e-07 -6.049 -6.114 -0.065 -3.97 - H+ 1.487e-08 1.316e-08 -7.828 -7.881 -0.053 0.00 + OH- 8.906e-07 7.666e-07 -6.050 -6.115 -0.065 -3.97 + H+ 1.491e-08 1.320e-08 -7.827 -7.879 -0.053 0.00 H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.07 -C(-4) 7.410e-14 - CH4 7.410e-14 7.448e-14 -13.130 -13.128 0.002 35.46 -C(4) 4.511e-04 - HCO3- 4.180e-04 3.636e-04 -3.379 -3.439 -0.060 24.74 - CaHCO3+ 1.358e-05 1.185e-05 -4.867 -4.926 -0.059 9.76 +C(-4) 7.563e-14 + CH4 7.563e-14 7.602e-14 -13.121 -13.119 0.002 35.46 +C(4) 4.499e-04 + HCO3- 4.165e-04 3.625e-04 -3.380 -3.441 -0.060 24.70 + CaHCO3+ 1.362e-05 1.189e-05 -4.866 -4.925 -0.059 9.76 CO2 1.072e-05 1.076e-05 -4.970 -4.968 0.001 34.43 - CaCO3 5.534e-06 5.563e-06 -5.257 -5.255 0.002 -14.60 - CO3-2 2.263e-06 1.296e-06 -5.645 -5.887 -0.242 -3.56 - NaHCO3 1.031e-06 1.044e-06 -5.987 -5.981 0.005 28.00 - FeHCO3+ 6.511e-10 5.630e-10 -9.186 -9.250 -0.063 (0) - FeCO3 4.789e-10 4.814e-10 -9.320 -9.318 0.002 (0) + CaCO3 5.535e-06 5.563e-06 -5.257 -5.255 0.002 -14.60 + CO3-2 2.244e-06 1.288e-06 -5.649 -5.890 -0.241 -3.47 + NaHCO3 1.306e-06 1.319e-06 -5.884 -5.880 0.004 31.73 + FeHCO3+ 6.545e-10 5.662e-10 -9.184 -9.247 -0.063 (0) + FeCO3 4.801e-10 4.826e-10 -9.319 -9.316 0.002 (0) (CO2)2 2.114e-12 2.125e-12 -11.675 -11.673 0.002 68.87 -Ca 5.558e-03 - Ca+2 4.461e-03 2.555e-03 -2.351 -2.593 -0.242 -17.79 - CaSO4 1.078e-03 1.083e-03 -2.967 -2.965 0.002 7.50 - CaHCO3+ 1.358e-05 1.185e-05 -4.867 -4.926 -0.059 9.76 - CaCO3 5.534e-06 5.563e-06 -5.257 -5.255 0.002 -14.60 - CaOH+ 3.726e-08 3.222e-08 -7.429 -7.492 -0.063 (0) - CaHSO4+ 1.084e-10 9.369e-11 -9.965 -10.028 -0.063 (0) +Ca 5.557e-03 + Ca+2 4.481e-03 2.571e-03 -2.349 -2.590 -0.241 -17.79 + CaSO4 1.057e-03 1.063e-03 -2.976 -2.974 0.002 7.50 + CaHCO3+ 1.362e-05 1.189e-05 -4.866 -4.925 -0.059 9.76 + CaCO3 5.535e-06 5.563e-06 -5.257 -5.255 0.002 -14.60 + CaOH+ 3.736e-08 3.232e-08 -7.428 -7.491 -0.063 (0) + CaHSO4+ 1.066e-10 9.220e-11 -9.972 -10.035 -0.063 (0) Cl 5.000e-03 - Cl- 5.000e-03 4.309e-03 -2.301 -2.366 -0.065 18.19 - FeCl+ 1.065e-10 9.209e-11 -9.973 -10.036 -0.063 (0) - HCl 1.910e-11 1.953e-11 -10.719 -10.709 0.010 (0) - FeCl+2 5.223e-26 2.966e-26 -25.282 -25.528 -0.246 (0) - FeCl2+ 6.577e-28 5.709e-28 -27.182 -27.243 -0.061 (0) - FeCl3 2.447e-31 2.460e-31 -30.611 -30.609 0.002 (0) -Fe(2) 3.488e-08 - Fe+2 2.668e-08 1.548e-08 -7.574 -7.810 -0.236 -21.80 - FeSO4 6.531e-09 6.565e-09 -8.185 -8.183 0.002 18.97 - FeHCO3+ 6.511e-10 5.630e-10 -9.186 -9.250 -0.063 (0) - FeCO3 4.789e-10 4.814e-10 -9.320 -9.318 0.002 (0) - FeOH+ 4.285e-10 3.720e-10 -9.368 -9.429 -0.061 (0) - FeCl+ 1.065e-10 9.209e-11 -9.973 -10.036 -0.063 (0) - Fe(OH)2 2.393e-13 2.406e-13 -12.621 -12.619 0.002 (0) - Fe(OH)3- 7.823e-16 6.790e-16 -15.107 -15.168 -0.061 (0) - FeHSO4+ 6.566e-16 5.677e-16 -15.183 -15.246 -0.063 (0) - Fe(HS)2 2.144e-18 2.155e-18 -17.669 -17.667 0.002 (0) - Fe(HS)3- 1.072e-25 9.273e-26 -24.970 -25.033 -0.063 (0) + Cl- 5.000e-03 4.311e-03 -2.301 -2.365 -0.064 18.18 + FeCl+ 1.074e-10 9.295e-11 -9.969 -10.032 -0.063 (0) + HCl 1.918e-11 1.960e-11 -10.717 -10.708 0.010 (0) + FeCl+2 5.265e-26 2.995e-26 -25.279 -25.524 -0.245 (0) + FeCl2+ 6.642e-28 5.769e-28 -27.178 -27.239 -0.061 (0) + FeCl3 2.474e-31 2.487e-31 -30.607 -30.604 0.002 (0) +Fe(2) 3.497e-08 + Fe+2 2.687e-08 1.562e-08 -7.571 -7.806 -0.236 -21.80 + FeSO4 6.423e-09 6.456e-09 -8.192 -8.190 0.002 18.97 + FeHCO3+ 6.545e-10 5.662e-10 -9.184 -9.247 -0.063 (0) + FeCO3 4.801e-10 4.826e-10 -9.319 -9.316 0.002 (0) + FeOH+ 4.307e-10 3.741e-10 -9.366 -9.427 -0.061 (0) + FeCl+ 1.074e-10 9.295e-11 -9.969 -10.032 -0.063 (0) + Fe(OH)2 2.399e-13 2.412e-13 -12.620 -12.618 0.002 (0) + Fe(OH)3- 7.814e-16 6.787e-16 -15.107 -15.168 -0.061 (0) + FeHSO4+ 6.475e-16 5.601e-16 -15.189 -15.252 -0.063 (0) + Fe(HS)2 2.155e-18 2.166e-18 -17.667 -17.664 0.002 (0) + Fe(HS)3- 1.075e-25 9.303e-26 -24.968 -25.031 -0.063 (0) Fe(3) 3.282e-14 Fe(OH)3 2.739e-14 2.753e-14 -13.562 -13.560 0.002 (0) - Fe(OH)2+ 3.233e-15 2.813e-15 -14.490 -14.551 -0.060 (0) - Fe(OH)4- 2.193e-15 1.908e-15 -14.659 -14.719 -0.060 (0) - FeOH+2 1.969e-19 1.118e-19 -18.706 -18.952 -0.246 (0) - FeSO4+ 6.864e-24 5.959e-24 -23.163 -23.225 -0.061 (0) - Fe+3 6.842e-25 2.279e-25 -24.165 -24.642 -0.477 (0) - Fe(SO4)2- 3.595e-25 3.109e-25 -24.444 -24.507 -0.063 (0) - FeCl+2 5.223e-26 2.966e-26 -25.282 -25.528 -0.246 (0) - FeCl2+ 6.577e-28 5.709e-28 -27.182 -27.243 -0.061 (0) - FeHSO4+2 3.756e-31 2.099e-31 -30.425 -30.678 -0.253 (0) - FeCl3 2.447e-31 2.460e-31 -30.611 -30.609 0.002 (0) - Fe2(OH)2+4 3.446e-36 3.365e-37 -35.463 -36.473 -1.010 (0) - Fe3(OH)4+5 0.000e+00 0.000e+00 -47.125 -48.704 -1.579 (0) -H(0) 1.026e-11 - H2 5.130e-12 5.157e-12 -11.290 -11.288 0.002 28.61 + Fe(OH)2+ 3.242e-15 2.822e-15 -14.489 -14.549 -0.060 (0) + Fe(OH)4- 2.185e-15 1.902e-15 -14.661 -14.721 -0.060 (0) + FeOH+2 1.978e-19 1.125e-19 -18.704 -18.949 -0.245 (0) + FeSO4+ 6.752e-24 5.864e-24 -23.171 -23.232 -0.061 (0) + Fe+3 6.885e-25 2.301e-25 -24.162 -24.638 -0.476 (0) + Fe(SO4)2- 3.447e-25 2.982e-25 -24.463 -24.525 -0.063 (0) + FeCl+2 5.265e-26 2.995e-26 -25.279 -25.524 -0.245 (0) + FeCl2+ 6.642e-28 5.769e-28 -27.178 -27.239 -0.061 (0) + FeHSO4+2 3.700e-31 2.072e-31 -30.432 -30.684 -0.252 (0) + FeCl3 2.474e-31 2.487e-31 -30.607 -30.604 0.002 (0) + Fe2(OH)2+4 3.462e-36 3.407e-37 -35.461 -36.468 -1.007 (0) + Fe3(OH)4+5 0.000e+00 0.000e+00 -47.124 -48.697 -1.573 (0) +H(0) 1.031e-11 + H2 5.157e-12 5.184e-12 -11.288 -11.285 0.002 28.61 Na 5.000e-03 - Na+ 4.951e-03 4.293e-03 -2.305 -2.367 -0.062 -1.31 - NaSO4- 4.771e-05 3.999e-05 -4.321 -4.398 -0.077 15.13 - NaHCO3 1.031e-06 1.044e-06 -5.987 -5.981 0.005 28.00 - NaOH 3.285e-19 3.302e-19 -18.484 -18.481 0.002 (0) + Na+ 4.817e-03 4.179e-03 -2.317 -2.379 -0.062 -1.31 + NaSO4- 1.816e-04 1.581e-04 -3.741 -3.801 -0.060 -12.22 + NaHCO3 1.306e-06 1.319e-06 -5.884 -5.880 0.004 31.73 + NaOH 3.187e-19 3.204e-19 -18.497 -18.494 0.002 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -69.807 -69.805 0.002 30.40 -S(-2) 5.046e-10 - HS- 4.593e-10 3.952e-10 -9.338 -9.403 -0.065 20.71 - H2S 4.522e-11 4.546e-11 -10.345 -10.342 0.002 36.27 - S-2 6.389e-15 3.628e-15 -14.195 -14.440 -0.246 (0) - Fe(HS)2 2.144e-18 2.155e-18 -17.669 -17.667 0.002 (0) - (H2S)2 1.083e-22 1.089e-22 -21.965 -21.963 0.002 30.09 - Fe(HS)3- 1.072e-25 9.273e-26 -24.970 -25.033 -0.063 (0) + O2 0.000e+00 0.000e+00 -69.812 -69.810 0.002 30.40 +S(-2) 5.035e-10 + HS- 4.582e-10 3.945e-10 -9.339 -9.404 -0.065 20.71 + H2S 4.528e-11 4.552e-11 -10.344 -10.342 0.002 36.27 + S-2 6.345e-15 3.610e-15 -14.198 -14.443 -0.245 (0) + Fe(HS)2 2.155e-18 2.166e-18 -17.667 -17.664 0.002 (0) + (H2S)2 1.086e-22 1.092e-22 -21.964 -21.962 0.002 30.09 + Fe(HS)3- 1.075e-25 9.303e-26 -24.968 -25.031 -0.063 (0) S(6) 5.333e-03 - SO4-2 4.208e-03 2.384e-03 -2.376 -2.623 -0.247 15.24 - CaSO4 1.078e-03 1.083e-03 -2.967 -2.965 0.002 7.50 - NaSO4- 4.771e-05 3.999e-05 -4.321 -4.398 -0.077 15.13 - FeSO4 6.531e-09 6.565e-09 -8.185 -8.183 0.002 18.97 - HSO4- 3.528e-09 3.050e-09 -8.453 -8.516 -0.063 40.39 - CaHSO4+ 1.084e-10 9.369e-11 -9.965 -10.028 -0.063 (0) - FeHSO4+ 6.566e-16 5.677e-16 -15.183 -15.246 -0.063 (0) - FeSO4+ 6.864e-24 5.959e-24 -23.163 -23.225 -0.061 (0) - Fe(SO4)2- 3.595e-25 3.109e-25 -24.444 -24.507 -0.063 (0) - FeHSO4+2 3.756e-31 2.099e-31 -30.425 -30.678 -0.253 (0) + SO4-2 4.095e-03 2.325e-03 -2.388 -2.634 -0.246 19.46 + CaSO4 1.057e-03 1.063e-03 -2.976 -2.974 0.002 7.50 + NaSO4- 1.816e-04 1.581e-04 -3.741 -3.801 -0.060 -12.22 + FeSO4 6.423e-09 6.456e-09 -8.192 -8.190 0.002 18.97 + HSO4- 3.448e-09 2.983e-09 -8.462 -8.525 -0.063 40.39 + CaHSO4+ 1.066e-10 9.220e-11 -9.972 -10.035 -0.063 (0) + FeHSO4+ 6.475e-16 5.601e-16 -15.189 -15.252 -0.063 (0) + FeSO4+ 6.752e-24 5.864e-24 -23.171 -23.232 -0.061 (0) + Fe(SO4)2- 3.447e-25 2.982e-25 -24.463 -24.525 -0.063 (0) + FeHSO4+2 3.700e-31 2.072e-31 -30.432 -30.684 -0.252 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -0.94 -5.22 -4.28 CaSO4 + Anhydrite -0.95 -5.22 -4.28 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -10.33 -13.13 -2.80 CH4 + CH4(g) -10.32 -13.12 -2.80 CH4 CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 FeS(ppt) -5.42 -9.33 -3.92 FeS Goethite 0.00 -1.00 -1.00 FeOOH - Gypsum -0.63 -5.22 -4.58 CaSO4:2H2O - H2(g) -8.19 -11.29 -3.10 H2 + Gypsum -0.64 -5.22 -4.58 CaSO4:2H2O + H2(g) -8.18 -11.29 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O H2S(g) -9.35 -17.28 -7.94 H2S - Halite -6.30 -4.73 1.57 NaCl + Halite -6.31 -4.74 1.57 NaCl Hematite 2.01 -2.00 -4.01 Fe2O3 Mackinawite -4.68 -9.33 -4.65 FeS - Melanterite -8.22 -10.43 -2.21 FeSO4:7H2O - Mirabilite -6.12 -7.36 -1.24 Na2SO4:10H2O - O2(g) -66.91 -69.81 -2.89 O2 - Pyrite 0.00 -18.48 -18.48 FeS2 + Melanterite -8.23 -10.44 -2.21 FeSO4:7H2O + Mirabilite -6.15 -7.39 -1.24 Na2SO4:10H2O + O2(g) -66.92 -69.81 -2.89 O2 + Pyrite -0.00 -18.48 -18.48 FeS2 Siderite -2.81 -13.70 -10.89 FeCO3 - Sulfur -7.09 -2.20 4.88 S - Thenardite -7.06 -7.36 -0.30 Na2SO4 + Sulfur -7.09 -2.21 4.88 S + Thenardite -7.09 -7.39 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -850,37 +851,37 @@ Phase SI log IAP log K(T, P) Initial Final Delta CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.002e+01 1.582e-02 Calcite 0.00 -8.48 -8.48 1.000e+01 9.984e+00 -1.617e-02 Goethite 0.00 -1.00 -1.00 1.000e+01 1.001e+01 8.000e-03 -Gypsum -0.01 -4.59 -4.58 0.000e+00 0 0.000e+00 +Gypsum -0.03 -4.61 -4.58 0.000e+00 0 0.000e+00 Pyrite 0.00 -18.48 -18.48 1.000e+01 9.992e+00 -8.000e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 3.509e-04 3.509e-04 - Ca 1.618e-02 1.617e-02 + C 3.486e-04 3.486e-04 + Ca 1.617e-02 1.617e-02 Cl 1.500e-02 1.500e-02 - Fe 8.187e-08 8.187e-08 + Fe 8.225e-08 8.224e-08 Na 1.500e-02 1.500e-02 S 1.600e-02 1.600e-02 ----------------------------Description of solution---------------------------- - pH = 7.725 Charge balance - pe = -3.573 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 4079 - Density (g/cm³) = 0.99984 - Volume (L) = 1.00316 - Viscosity (mPa s) = 0.89935 + pH = 7.722 Charge balance + pe = -3.572 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 4332 + Density (g/cm³) = 0.99980 + Volume (L) = 1.00321 + Viscosity (mPa s) = 0.89930 Activity of water = 0.999 - Ionic strength (mol/kgw) = 6.093e-02 + Ionic strength (mol/kgw) = 6.003e-02 Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 3.478e-04 - Total CO2 (mol/kg) = 3.509e-04 + Total alkalinity (eq/kg) = 3.455e-04 + Total CO2 (mol/kg) = 3.486e-04 Temperature (°C) = 25.00 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 + Iterations = 26 Total H = 1.110044e+02 Total O = 5.556709e+01 @@ -889,115 +890,115 @@ Pyrite 0.00 -18.48 -18.48 1.000e+01 9.992e+00 -8.000e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 6.733e-07 5.372e-07 -6.172 -6.270 -0.098 -3.84 - H+ 2.226e-08 1.882e-08 -7.653 -7.725 -0.073 0.00 + OH- 6.669e-07 5.328e-07 -6.176 -6.273 -0.097 -3.84 + H+ 2.242e-08 1.898e-08 -7.649 -7.722 -0.072 0.00 H2O 5.551e+01 9.990e-01 1.744 -0.000 0.000 18.07 -C(-4) 1.588e-14 - CH4 1.588e-14 1.611e-14 -13.799 -13.793 0.006 35.46 -C(4) 3.509e-04 - HCO3- 3.108e-04 2.540e-04 -3.508 -3.595 -0.088 24.93 - CaHCO3+ 2.061e-05 1.696e-05 -4.686 -4.771 -0.085 9.81 +C(-4) 1.647e-14 + CH4 1.647e-14 1.670e-14 -13.783 -13.777 0.006 35.46 +C(4) 3.486e-04 + HCO3- 3.079e-04 2.519e-04 -3.512 -3.599 -0.087 24.82 + CaHCO3+ 2.076e-05 1.710e-05 -4.683 -4.767 -0.084 9.80 CO2 1.066e-05 1.076e-05 -4.972 -4.968 0.004 34.43 - CaCO3 5.486e-06 5.563e-06 -5.261 -5.255 0.006 -14.60 - NaHCO3 1.966e-06 2.030e-06 -5.706 -5.692 0.014 28.00 - CO3-2 1.418e-06 6.329e-07 -5.848 -6.199 -0.350 -3.13 - FeHCO3+ 8.217e-10 6.654e-10 -9.085 -9.177 -0.092 (0) - FeCO3 3.922e-10 3.977e-10 -9.407 -9.400 0.006 (0) + CaCO3 5.487e-06 5.563e-06 -5.261 -5.255 0.006 -14.60 + NaHCO3 2.425e-06 2.493e-06 -5.615 -5.603 0.012 31.73 + CO3-2 1.389e-06 6.226e-07 -5.857 -6.206 -0.348 -3.08 + FeHCO3+ 8.313e-10 6.739e-10 -9.080 -9.171 -0.091 (0) + FeCO3 3.940e-10 3.995e-10 -9.405 -9.399 0.006 (0) (CO2)2 2.096e-12 2.125e-12 -11.679 -11.673 0.006 68.87 -Ca 1.618e-02 - Ca+2 1.167e-02 5.232e-03 -1.933 -2.281 -0.348 -17.57 - CaSO4 4.483e-03 4.546e-03 -2.348 -2.342 0.006 7.50 - CaHCO3+ 2.061e-05 1.696e-05 -4.686 -4.771 -0.085 9.81 - CaCO3 5.486e-06 5.563e-06 -5.261 -5.255 0.006 -14.60 - CaOH+ 5.692e-08 4.609e-08 -7.245 -7.336 -0.092 (0) - CaHSO4+ 6.946e-10 5.625e-10 -9.158 -9.250 -0.092 (0) +Ca 1.617e-02 + Ca+2 1.181e-02 5.319e-03 -1.928 -2.274 -0.347 -17.57 + CaSO4 4.335e-03 4.396e-03 -2.363 -2.357 0.006 7.50 + CaHCO3+ 2.076e-05 1.710e-05 -4.683 -4.767 -0.084 9.80 + CaCO3 5.487e-06 5.563e-06 -5.261 -5.255 0.006 -14.60 + CaOH+ 5.733e-08 4.647e-08 -7.242 -7.333 -0.091 (0) + CaHSO4+ 6.764e-10 5.483e-10 -9.170 -9.261 -0.091 (0) Cl 1.500e-02 - Cl- 1.500e-02 1.202e-02 -1.824 -1.920 -0.096 18.27 - FeCl+ 5.367e-10 4.346e-10 -9.270 -9.362 -0.092 (0) - HCl 7.342e-11 7.793e-11 -10.134 -10.108 0.026 (0) - FeCl+2 5.534e-25 2.425e-25 -24.257 -24.615 -0.358 (0) - FeCl2+ 1.600e-26 1.302e-26 -25.796 -25.885 -0.090 (0) - FeCl3 1.543e-29 1.565e-29 -28.812 -28.805 0.006 (0) -Fe(2) 8.187e-08 - Fe+2 5.714e-08 2.619e-08 -7.243 -7.582 -0.339 -21.59 - FeSO4 2.244e-08 2.276e-08 -7.649 -7.643 0.006 18.97 - FeHCO3+ 8.217e-10 6.654e-10 -9.085 -9.177 -0.092 (0) - FeOH+ 5.403e-10 4.396e-10 -9.267 -9.357 -0.090 (0) - FeCl+ 5.367e-10 4.346e-10 -9.270 -9.362 -0.092 (0) - FeCO3 3.922e-10 3.977e-10 -9.407 -9.400 0.006 (0) - Fe(OH)2 1.958e-13 1.986e-13 -12.708 -12.702 0.006 (0) - FeHSO4+ 3.477e-15 2.816e-15 -14.459 -14.550 -0.092 (0) - Fe(OH)3- 4.814e-16 3.917e-16 -15.318 -15.407 -0.090 (0) - Fe(HS)2 1.449e-18 1.469e-18 -17.839 -17.833 0.006 (0) - Fe(HS)3- 4.955e-26 4.013e-26 -25.305 -25.397 -0.092 (0) -Fe(3) 3.368e-14 - Fe(OH)3 2.713e-14 2.752e-14 -13.567 -13.560 0.006 (0) - Fe(OH)2+ 4.923e-15 4.024e-15 -14.308 -14.395 -0.088 (0) - Fe(OH)4- 1.629e-15 1.332e-15 -14.788 -14.876 -0.088 (0) - FeOH+2 5.225e-19 2.290e-19 -18.282 -18.640 -0.358 (0) - FeSO4+ 4.399e-23 3.580e-23 -22.357 -22.446 -0.090 (0) - Fe(SO4)2- 4.726e-24 3.827e-24 -23.326 -23.417 -0.092 (0) - Fe+3 3.019e-24 6.681e-25 -23.520 -24.175 -0.655 (0) - FeCl+2 5.534e-25 2.425e-25 -24.257 -24.615 -0.358 (0) - FeCl2+ 1.600e-26 1.302e-26 -25.796 -25.885 -0.090 (0) - FeCl3 1.543e-29 1.565e-29 -28.812 -28.805 0.006 (0) - FeHSO4+2 4.196e-30 1.804e-30 -29.377 -29.744 -0.367 (0) - Fe2(OH)2+4 4.129e-35 1.411e-36 -34.384 -35.851 -1.466 (0) - Fe3(OH)4+5 0.000e+00 0.000e+00 -45.635 -47.926 -2.291 (0) -H(0) 6.934e-12 - H2 3.467e-12 3.516e-12 -11.460 -11.454 0.006 28.61 + Cl- 1.500e-02 1.203e-02 -1.824 -1.920 -0.096 18.27 + FeCl+ 5.482e-10 4.444e-10 -9.261 -9.352 -0.091 (0) + HCl 7.418e-11 7.868e-11 -10.130 -10.104 0.026 (0) + FeCl+2 5.655e-25 2.489e-25 -24.248 -24.604 -0.356 (0) + FeCl2+ 1.643e-26 1.338e-26 -25.784 -25.874 -0.089 (0) + FeCl3 1.588e-29 1.610e-29 -28.799 -28.793 0.006 (0) +Fe(2) 8.225e-08 + Fe+2 5.812e-08 2.675e-08 -7.236 -7.573 -0.337 -21.59 + FeSO4 2.180e-08 2.210e-08 -7.662 -7.656 0.006 18.97 + FeHCO3+ 8.313e-10 6.739e-10 -9.080 -9.171 -0.091 (0) + FeCl+ 5.482e-10 4.444e-10 -9.261 -9.352 -0.091 (0) + FeOH+ 5.467e-10 4.453e-10 -9.262 -9.351 -0.089 (0) + FeCO3 3.940e-10 3.995e-10 -9.405 -9.399 0.006 (0) + Fe(OH)2 1.968e-13 1.995e-13 -12.706 -12.700 0.006 (0) + FeHSO4+ 3.402e-15 2.757e-15 -14.468 -14.559 -0.091 (0) + Fe(OH)3- 4.791e-16 3.902e-16 -15.320 -15.409 -0.089 (0) + Fe(HS)2 1.462e-18 1.482e-18 -17.835 -17.829 0.006 (0) + Fe(HS)3- 4.965e-26 4.025e-26 -25.304 -25.395 -0.091 (0) +Fe(3) 3.371e-14 + Fe(OH)3 2.714e-14 2.752e-14 -13.566 -13.560 0.006 (0) + Fe(OH)2+ 4.958e-15 4.057e-15 -14.305 -14.392 -0.087 (0) + Fe(OH)4- 1.614e-15 1.321e-15 -14.792 -14.879 -0.087 (0) + FeOH+2 5.288e-19 2.328e-19 -18.277 -18.633 -0.356 (0) + FeSO4+ 4.284e-23 3.489e-23 -22.368 -22.457 -0.089 (0) + Fe(SO4)2- 4.377e-24 3.548e-24 -23.359 -23.450 -0.091 (0) + Fe+3 3.075e-24 6.848e-25 -23.512 -24.164 -0.652 (0) + FeCl+2 5.655e-25 2.489e-25 -24.248 -24.604 -0.356 (0) + FeCl2+ 1.643e-26 1.338e-26 -25.784 -25.874 -0.089 (0) + FeCl3 1.588e-29 1.610e-29 -28.799 -28.793 0.006 (0) + FeHSO4+2 4.107e-30 1.773e-30 -29.386 -29.751 -0.365 (0) + Fe2(OH)2+4 4.195e-35 1.458e-36 -34.377 -35.836 -1.459 (0) + Fe3(OH)4+5 0.000e+00 0.000e+00 -45.628 -47.908 -2.280 (0) +H(0) 6.998e-12 + H2 3.499e-12 3.548e-12 -11.456 -11.450 0.006 28.61 Na 1.500e-02 - Na+ 1.469e-02 1.195e-02 -1.833 -1.922 -0.090 -1.18 - NaSO4- 3.049e-04 2.282e-04 -3.516 -3.642 -0.126 15.75 - NaHCO3 1.966e-06 2.030e-06 -5.706 -5.692 0.014 28.00 - NaOH 6.333e-19 6.423e-19 -18.198 -18.192 0.006 (0) + Na+ 1.395e-02 1.136e-02 -1.855 -1.945 -0.089 -1.18 + NaSO4- 1.049e-03 8.594e-04 -2.979 -3.066 -0.087 -7.84 + NaHCO3 2.425e-06 2.493e-06 -5.615 -5.603 0.012 31.73 + NaOH 5.970e-19 6.053e-19 -18.224 -18.218 0.006 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -69.479 -69.473 0.006 30.40 -S(-2) 3.551e-10 - HS- 3.144e-10 2.509e-10 -9.503 -9.601 -0.098 20.81 - H2S 4.071e-11 4.128e-11 -10.390 -10.384 0.006 36.27 - S-2 3.673e-15 1.610e-15 -14.435 -14.793 -0.358 (0) - Fe(HS)2 1.449e-18 1.469e-18 -17.839 -17.833 0.006 (0) - (H2S)2 8.855e-23 8.980e-23 -22.053 -22.047 0.006 30.09 - Fe(HS)3- 4.955e-26 4.013e-26 -25.305 -25.397 -0.092 (0) + O2 0.000e+00 0.000e+00 -69.487 -69.481 0.006 30.40 +S(-2) 3.529e-10 + HS- 3.121e-10 2.494e-10 -9.506 -9.603 -0.097 20.80 + H2S 4.081e-11 4.138e-11 -10.389 -10.383 0.006 36.27 + S-2 3.606e-15 1.587e-15 -14.443 -14.799 -0.356 (0) + Fe(HS)2 1.462e-18 1.482e-18 -17.835 -17.829 0.006 (0) + (H2S)2 8.897e-23 9.021e-23 -22.051 -22.045 0.006 30.09 + Fe(HS)3- 4.965e-26 4.025e-26 -25.304 -25.395 -0.091 (0) S(6) 1.600e-02 - SO4-2 1.121e-02 4.886e-03 -1.950 -2.311 -0.361 15.60 - CaSO4 4.483e-03 4.546e-03 -2.348 -2.342 0.006 7.50 - NaSO4- 3.049e-04 2.282e-04 -3.516 -3.642 -0.126 15.75 - FeSO4 2.244e-08 2.276e-08 -7.649 -7.643 0.006 18.97 - HSO4- 1.104e-08 8.942e-09 -7.957 -8.049 -0.092 40.47 - CaHSO4+ 6.946e-10 5.625e-10 -9.158 -9.250 -0.092 (0) - FeHSO4+ 3.477e-15 2.816e-15 -14.459 -14.550 -0.092 (0) - FeSO4+ 4.399e-23 3.580e-23 -22.357 -22.446 -0.090 (0) - Fe(SO4)2- 4.726e-24 3.827e-24 -23.326 -23.417 -0.092 (0) - FeHSO4+2 4.196e-30 1.804e-30 -29.377 -29.744 -0.367 (0) + SO4-2 1.062e-02 4.647e-03 -1.974 -2.333 -0.359 22.36 + CaSO4 4.335e-03 4.396e-03 -2.363 -2.357 0.006 7.50 + NaSO4- 1.049e-03 8.594e-04 -2.979 -3.066 -0.087 -7.84 + FeSO4 2.180e-08 2.210e-08 -7.662 -7.656 0.006 18.97 + HSO4- 1.058e-08 8.574e-09 -7.976 -8.067 -0.091 40.47 + CaHSO4+ 6.764e-10 5.483e-10 -9.170 -9.261 -0.091 (0) + FeHSO4+ 3.402e-15 2.757e-15 -14.468 -14.559 -0.091 (0) + FeSO4+ 4.284e-23 3.489e-23 -22.368 -22.457 -0.089 (0) + Fe(SO4)2- 4.377e-24 3.548e-24 -23.359 -23.450 -0.091 (0) + FeHSO4+2 4.107e-30 1.773e-30 -29.386 -29.751 -0.365 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -0.31 -4.59 -4.28 CaSO4 + Anhydrite -0.33 -4.61 -4.28 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -10.99 -13.79 -2.80 CH4 + CH4(g) -10.98 -13.78 -2.80 CH4 CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 - FeS(ppt) -5.54 -9.46 -3.92 FeS + FeS(ppt) -5.54 -9.45 -3.92 FeS Goethite 0.00 -1.00 -1.00 FeOOH - Gypsum -0.01 -4.59 -4.58 CaSO4:2H2O + Gypsum -0.03 -4.61 -4.58 CaSO4:2H2O H2(g) -8.35 -11.45 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -9.39 -17.33 -7.94 H2S - Halite -5.41 -3.84 1.57 NaCl + H2S(g) -9.39 -17.32 -7.94 H2S + Halite -5.43 -3.86 1.57 NaCl Hematite 2.01 -2.00 -4.01 Fe2O3 - Mackinawite -4.81 -9.46 -4.65 FeS - Melanterite -7.69 -9.90 -2.21 FeSO4:7H2O - Mirabilite -4.92 -6.16 -1.24 Na2SO4:10H2O - O2(g) -66.58 -69.47 -2.89 O2 + Mackinawite -4.81 -9.45 -4.65 FeS + Melanterite -7.70 -9.91 -2.21 FeSO4:7H2O + Mirabilite -4.99 -6.23 -1.24 Na2SO4:10H2O + O2(g) -66.59 -69.48 -2.89 O2 Pyrite 0.00 -18.48 -18.48 FeS2 Siderite -2.89 -13.78 -10.89 FeCO3 - Sulfur -6.96 -2.08 4.88 S - Thenardite -5.86 -6.16 -0.30 Na2SO4 + Sulfur -6.97 -2.08 4.88 S + Thenardite -5.92 -6.22 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1030,129 +1031,129 @@ Reaction 1. Phase SI log IAP log K(T, P) Initial Final Delta CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.003e+01 2.649e-02 -Calcite -0.00 -8.48 -8.48 1.000e+01 9.973e+00 -2.684e-02 +Calcite 0.00 -8.48 -8.48 1.000e+01 9.973e+00 -2.684e-02 Goethite -0.00 -1.00 -1.00 1.000e+01 1.001e+01 1.333e-02 -Gypsum 0.00 -4.58 -4.58 0.000e+00 9.631e-03 9.631e-03 +Gypsum 0.00 -4.58 -4.58 0.000e+00 8.971e-03 8.971e-03 Pyrite 0.00 -18.48 -18.48 1.000e+01 9.987e+00 -1.333e-02 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 3.534e-04 3.532e-04 - Ca 1.722e-02 1.721e-02 + C 3.468e-04 3.467e-04 + Ca 1.787e-02 1.787e-02 Cl 2.501e-02 2.500e-02 - Fe 8.704e-08 8.700e-08 + Fe 9.031e-08 9.027e-08 Na 2.501e-02 2.500e-02 - S 1.704e-02 1.704e-02 + S 1.770e-02 1.770e-02 ----------------------------Description of solution---------------------------- - pH = 7.720 Charge balance - pe = -3.567 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 5286 - Density (g/cm³) = 1.00040 - Volume (L) = 1.00294 - Viscosity (mPa s) = 0.90015 + pH = 7.709 Charge balance + pe = -3.556 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 5636 + Density (g/cm³) = 1.00044 + Volume (L) = 1.00301 + Viscosity (mPa s) = 0.90053 Activity of water = 0.999 - Ionic strength (mol/kgw) = 7.428e-02 - Mass of water (kg) = 9.995e-01 - Total alkalinity (eq/kg) = 3.504e-04 - Total CO2 (mol/kg) = 3.534e-04 + Ionic strength (mol/kgw) = 7.443e-02 + Mass of water (kg) = 9.996e-01 + Total alkalinity (eq/kg) = 3.437e-04 + Total CO2 (mol/kg) = 3.468e-04 Temperature (°C) = 25.00 - Electrical balance (eq) = -1.163e-09 + Electrical balance (eq) = -1.188e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 25 - Total H = 1.109606e+02 - Total O = 5.554932e+01 + Total H = 1.109632e+02 + Total O = 5.555325e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 6.774e-07 5.309e-07 -6.169 -6.275 -0.106 -3.80 - H+ 2.273e-08 1.904e-08 -7.643 -7.720 -0.077 0.00 + OH- 6.608e-07 5.178e-07 -6.180 -6.286 -0.106 -3.80 + H+ 2.331e-08 1.952e-08 -7.632 -7.709 -0.077 0.00 H2O 5.551e+01 9.986e-01 1.744 -0.001 0.000 18.07 C(-4) 1.539e-14 CH4 1.539e-14 1.566e-14 -13.813 -13.805 0.007 35.46 -C(4) 3.534e-04 - HCO3- 3.115e-04 2.510e-04 -3.507 -3.600 -0.094 24.99 - CaHCO3+ 2.112e-05 1.715e-05 -4.675 -4.766 -0.090 9.82 +C(4) 3.468e-04 + HCO3- 3.038e-04 2.448e-04 -3.517 -3.611 -0.094 24.86 + CaHCO3+ 2.166e-05 1.759e-05 -4.664 -4.755 -0.090 9.82 CO2 1.064e-05 1.076e-05 -4.973 -4.968 0.005 34.43 CaCO3 5.469e-06 5.563e-06 -5.262 -5.255 0.007 -14.60 - NaHCO3 3.170e-06 3.297e-06 -5.499 -5.482 0.017 28.00 - CO3-2 1.466e-06 6.184e-07 -5.834 -6.209 -0.375 -3.01 - FeHCO3+ 8.404e-10 6.709e-10 -9.075 -9.173 -0.098 (0) + NaHCO3 3.843e-06 3.977e-06 -5.415 -5.400 0.015 31.73 + CO3-2 1.395e-06 5.881e-07 -5.855 -6.231 -0.375 -2.97 + FeHCO3+ 8.619e-10 6.879e-10 -9.065 -9.162 -0.098 (0) FeCO3 3.897e-10 3.964e-10 -9.409 -9.402 0.007 (0) (CO2)2 2.089e-12 2.125e-12 -11.680 -11.673 0.007 68.87 -Ca 1.722e-02 - Ca+2 1.261e-02 5.355e-03 -1.899 -2.271 -0.372 -17.52 +Ca 1.787e-02 + Ca+2 1.326e-02 5.631e-03 -1.877 -2.249 -0.372 -17.52 CaSO4 4.585e-03 4.664e-03 -2.339 -2.331 0.007 7.50 - CaHCO3+ 2.112e-05 1.715e-05 -4.675 -4.766 -0.090 9.82 + CaHCO3+ 2.166e-05 1.759e-05 -4.664 -4.755 -0.090 9.82 CaCO3 5.469e-06 5.563e-06 -5.262 -5.255 0.007 -14.60 - CaOH+ 5.840e-08 4.662e-08 -7.234 -7.331 -0.098 (0) - CaHSO4+ 7.313e-10 5.837e-10 -9.136 -9.234 -0.098 (0) + CaOH+ 5.989e-08 4.780e-08 -7.223 -7.321 -0.098 (0) + CaHSO4+ 7.499e-10 5.985e-10 -9.125 -9.223 -0.098 (0) Cl 2.501e-02 Cl- 2.501e-02 1.970e-02 -1.602 -1.706 -0.104 18.30 - FeCl+ 9.105e-10 7.268e-10 -9.041 -9.139 -0.098 (0) - HCl 1.201e-10 1.292e-10 -9.920 -9.889 0.032 (0) - FeCl+2 9.970e-25 4.117e-25 -24.001 -24.385 -0.384 (0) - FeCl2+ 4.520e-26 3.623e-26 -25.345 -25.441 -0.096 (0) - FeCl3 7.017e-29 7.139e-29 -28.154 -28.146 0.007 (0) -Fe(2) 8.704e-08 - Fe+2 6.146e-08 2.672e-08 -7.211 -7.573 -0.362 -21.54 + FeCl+ 9.572e-10 7.640e-10 -9.019 -9.117 -0.098 (0) + HCl 1.231e-10 1.325e-10 -9.910 -9.878 0.032 (0) + FeCl+2 1.075e-24 4.438e-25 -23.968 -24.353 -0.384 (0) + FeCl2+ 4.871e-26 3.905e-26 -25.312 -25.408 -0.096 (0) + FeCl3 7.560e-29 7.691e-29 -28.121 -28.114 0.007 (0) +Fe(2) 9.031e-08 + Fe+2 6.466e-08 2.810e-08 -7.189 -7.551 -0.362 -21.54 FeSO4 2.288e-08 2.328e-08 -7.641 -7.633 0.007 18.97 - FeCl+ 9.105e-10 7.268e-10 -9.041 -9.139 -0.098 (0) - FeHCO3+ 8.404e-10 6.709e-10 -9.075 -9.173 -0.098 (0) - FeOH+ 5.530e-10 4.433e-10 -9.257 -9.353 -0.096 (0) + FeCl+ 9.572e-10 7.640e-10 -9.019 -9.117 -0.098 (0) + FeHCO3+ 8.619e-10 6.879e-10 -9.065 -9.162 -0.098 (0) + FeOH+ 5.671e-10 4.545e-10 -9.246 -9.342 -0.096 (0) FeCO3 3.897e-10 3.964e-10 -9.409 -9.402 0.007 (0) Fe(OH)2 1.945e-13 1.979e-13 -12.711 -12.704 0.007 (0) - FeHSO4+ 3.649e-15 2.913e-15 -14.438 -14.536 -0.098 (0) - Fe(OH)3- 4.811e-16 3.857e-16 -15.318 -15.414 -0.096 (0) + FeHSO4+ 3.742e-15 2.987e-15 -14.427 -14.525 -0.098 (0) + Fe(OH)3- 4.693e-16 3.761e-16 -15.329 -15.425 -0.096 (0) Fe(HS)2 1.434e-18 1.458e-18 -17.844 -17.836 0.007 (0) - Fe(HS)3- 4.923e-26 3.930e-26 -25.308 -25.406 -0.098 (0) -Fe(3) 3.372e-14 + Fe(HS)3- 4.802e-26 3.832e-26 -25.319 -25.417 -0.098 (0) +Fe(3) 3.381e-14 Fe(OH)3 2.704e-14 2.751e-14 -13.568 -13.561 0.007 (0) - Fe(OH)2+ 5.051e-15 4.070e-15 -14.297 -14.390 -0.094 (0) - Fe(OH)4- 1.633e-15 1.316e-15 -14.787 -14.881 -0.094 (0) - FeOH+2 5.675e-19 2.344e-19 -18.246 -18.630 -0.384 (0) - FeSO4+ 4.636e-23 3.716e-23 -22.334 -22.430 -0.096 (0) - Fe(SO4)2- 4.988e-24 3.982e-24 -23.302 -23.400 -0.098 (0) - Fe+3 3.411e-24 6.920e-25 -23.467 -24.160 -0.693 (0) - FeCl+2 9.970e-25 4.117e-25 -24.001 -24.385 -0.384 (0) - FeCl2+ 4.520e-26 3.623e-26 -25.345 -25.441 -0.096 (0) - FeCl3 7.017e-29 7.139e-29 -28.154 -28.146 0.007 (0) - FeHSO4+2 4.667e-30 1.895e-30 -29.331 -29.722 -0.391 (0) - Fe2(OH)2+4 5.440e-35 1.478e-36 -34.264 -35.830 -1.566 (0) - Fe3(OH)4+5 0.000e+00 0.000e+00 -45.454 -47.901 -2.447 (0) + Fe(OH)2+ 5.180e-15 4.174e-15 -14.286 -14.379 -0.094 (0) + Fe(OH)4- 1.592e-15 1.283e-15 -14.798 -14.892 -0.094 (0) + FeOH+2 5.970e-19 2.464e-19 -18.224 -18.608 -0.384 (0) + FeSO4+ 4.754e-23 3.811e-23 -22.323 -22.419 -0.096 (0) + Fe(SO4)2- 4.866e-24 3.884e-24 -23.313 -23.411 -0.098 (0) + Fe+3 3.681e-24 7.460e-25 -23.434 -24.127 -0.693 (0) + FeCl+2 1.075e-24 4.438e-25 -23.968 -24.353 -0.384 (0) + FeCl2+ 4.871e-26 3.905e-26 -25.312 -25.408 -0.096 (0) + FeCl3 7.560e-29 7.691e-29 -28.121 -28.114 0.007 (0) + FeHSO4+2 4.909e-30 1.992e-30 -29.309 -29.701 -0.392 (0) + Fe2(OH)2+4 6.028e-35 1.634e-36 -34.220 -35.787 -1.567 (0) + Fe3(OH)4+5 0.000e+00 0.000e+00 -45.398 -47.846 -2.448 (0) H(0) 6.862e-12 H2 3.431e-12 3.490e-12 -11.465 -11.457 0.007 28.61 Na 2.501e-02 - Na+ 2.449e-02 1.965e-02 -1.611 -1.707 -0.096 -1.15 - NaSO4- 5.177e-04 3.759e-04 -3.286 -3.425 -0.139 15.93 - NaHCO3 3.170e-06 3.297e-06 -5.499 -5.482 0.017 28.00 - NaOH 1.025e-18 1.043e-18 -17.989 -17.982 0.007 (0) + Na+ 2.325e-02 1.865e-02 -1.633 -1.729 -0.096 -1.15 + NaSO4- 1.753e-03 1.414e-03 -2.756 -2.849 -0.093 -6.75 + NaHCO3 3.843e-06 3.977e-06 -5.415 -5.400 0.015 31.73 + NaOH 9.493e-19 9.657e-19 -18.023 -18.015 0.007 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -69.474 -69.467 0.007 30.40 -S(-2) 3.562e-10 - HS- 3.157e-10 2.474e-10 -9.501 -9.607 -0.106 20.83 +S(-2) 3.485e-10 + HS- 3.080e-10 2.413e-10 -9.511 -9.617 -0.106 20.83 H2S 4.049e-11 4.119e-11 -10.393 -10.385 0.007 36.27 - S-2 3.801e-15 1.570e-15 -14.420 -14.804 -0.384 (0) + S-2 3.618e-15 1.493e-15 -14.442 -14.826 -0.384 (0) Fe(HS)2 1.434e-18 1.458e-18 -17.844 -17.836 0.007 (0) (H2S)2 8.789e-23 8.941e-23 -22.056 -22.049 0.007 30.09 - Fe(HS)3- 4.923e-26 3.930e-26 -25.308 -25.406 -0.098 (0) -S(6) 1.704e-02 - SO4-2 1.194e-02 4.898e-03 -1.923 -2.310 -0.387 15.70 + Fe(HS)3- 4.802e-26 3.832e-26 -25.319 -25.417 -0.098 (0) +S(6) 1.770e-02 + SO4-2 1.136e-02 4.658e-03 -1.944 -2.332 -0.387 23.18 CaSO4 4.585e-03 4.664e-03 -2.339 -2.331 0.007 7.50 - NaSO4- 5.177e-04 3.759e-04 -3.286 -3.425 -0.139 15.93 + NaSO4- 1.753e-03 1.414e-03 -2.756 -2.849 -0.093 -6.75 FeSO4 2.288e-08 2.328e-08 -7.641 -7.633 0.007 18.97 - HSO4- 1.136e-08 9.066e-09 -7.945 -8.043 -0.098 40.50 - CaHSO4+ 7.313e-10 5.837e-10 -9.136 -9.234 -0.098 (0) - FeHSO4+ 3.649e-15 2.913e-15 -14.438 -14.536 -0.098 (0) - FeSO4+ 4.636e-23 3.716e-23 -22.334 -22.430 -0.096 (0) - Fe(SO4)2- 4.988e-24 3.982e-24 -23.302 -23.400 -0.098 (0) - FeHSO4+2 4.667e-30 1.895e-30 -29.331 -29.722 -0.391 (0) + HSO4- 1.108e-08 8.842e-09 -7.956 -8.053 -0.098 40.50 + CaHSO4+ 7.499e-10 5.985e-10 -9.125 -9.223 -0.098 (0) + FeHSO4+ 3.742e-15 2.987e-15 -14.427 -14.525 -0.098 (0) + FeSO4+ 4.754e-23 3.811e-23 -22.323 -22.419 -0.096 (0) + Fe(SO4)2- 4.866e-24 3.884e-24 -23.313 -23.411 -0.098 (0) + FeHSO4+2 4.909e-30 1.992e-30 -29.309 -29.701 -0.392 (0) ------------------------------Saturation indices------------------------------- @@ -1160,7 +1161,7 @@ S(6) 1.704e-02 Anhydrite -0.30 -4.58 -4.28 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 - Calcite -0.00 -8.48 -8.48 CaCO3 + Calcite 0.00 -8.48 -8.48 CaCO3 CH4(g) -11.00 -13.81 -2.80 CH4 CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 @@ -1170,16 +1171,16 @@ S(6) 1.704e-02 H2(g) -8.36 -11.46 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O H2S(g) -9.39 -17.33 -7.94 H2S - Halite -4.98 -3.41 1.57 NaCl + Halite -5.00 -3.43 1.57 NaCl Hematite 2.01 -2.00 -4.01 Fe2O3 Mackinawite -4.81 -9.46 -4.65 FeS Melanterite -7.68 -9.89 -2.21 FeSO4:7H2O - Mirabilite -4.49 -5.73 -1.24 Na2SO4:10H2O + Mirabilite -4.56 -5.80 -1.24 Na2SO4:10H2O O2(g) -66.57 -69.47 -2.89 O2 Pyrite 0.00 -18.48 -18.48 FeS2 Siderite -2.89 -13.78 -10.89 FeCO3 Sulfur -6.96 -2.08 4.88 S - Thenardite -5.42 -5.72 -0.30 Na2SO4 + Thenardite -5.49 -5.79 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. diff --git a/ex5.sel b/ex5.sel index 3dff8160..da7da55d 100644 --- a/ex5.sel +++ b/ex5.sel @@ -1,8 +1,8 @@ sim state soln dist_x time step pH pe Cl pyrite d_pyrite goethite d_goethite calcite d_calcite CO2(g) d_CO2(g) gypsum d_gypsum si_Gypsum 1 i_soln 1 -99 -99 -99 7 4 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -999.9990 1 react 1 -99 0 1 8.27917 -4.94281 0.0000e+00 1.0000e+01 -3.1435e-08 1.0000e+01 1.0959e-08 9.9995e+00 -4.9333e-04 9.9995e+00 -4.8687e-04 0.0000e+00 0.0000e+00 -6.1255 - 1 react 1 -99 0 2 8.17027 -4.28555 5.0000e-04 9.9997e+00 -2.6667e-04 1.0000e+01 2.6666e-04 9.9991e+00 -9.2684e-04 1.0000e+01 1.4257e-04 0.0000e+00 0.0000e+00 -2.0130 - 1 react 1 -99 0 3 7.97956 -3.96634 2.5000e-03 9.9987e+00 -1.3333e-03 1.0001e+01 1.3333e-03 9.9971e+00 -2.9359e-03 1.0002e+01 2.3964e-03 0.0000e+00 0.0000e+00 -1.0495 - 1 react 1 -99 0 4 7.88084 -3.81205 5.0001e-03 9.9973e+00 -2.6667e-03 1.0003e+01 2.6666e-03 9.9944e+00 -5.5578e-03 1.0005e+01 5.1067e-03 0.0000e+00 0.0000e+00 -0.6331 - 1 react 1 -99 0 5 7.72534 -3.57335 1.5001e-02 9.9920e+00 -8.0000e-03 1.0008e+01 7.9999e-03 9.9838e+00 -1.6174e-02 1.0016e+01 1.5823e-02 0.0000e+00 0.0000e+00 -0.0108 - 1 react 1 -99 0 6 7.72035 -3.56679 2.5012e-02 9.9867e+00 -1.3333e-02 1.0013e+01 1.3333e-02 9.9732e+00 -2.6842e-02 1.0026e+01 2.6488e-02 9.6305e-03 9.6305e-03 0.0000 + 1 react 1 -99 0 2 8.1702 -4.28572 5.0000e-04 9.9997e+00 -2.6667e-04 1.0000e+01 2.6666e-04 9.9991e+00 -9.2681e-04 1.0000e+01 1.4260e-04 0.0000e+00 0.0000e+00 -2.0147 + 1 react 1 -99 0 3 7.97893 -3.96644 2.5000e-03 9.9987e+00 -1.3333e-03 1.0001e+01 1.3333e-03 9.9971e+00 -2.9356e-03 1.0002e+01 2.3967e-03 0.0000e+00 0.0000e+00 -1.0550 + 1 react 1 -99 0 4 7.87949 -3.8118 5.0001e-03 9.9973e+00 -2.6667e-03 1.0003e+01 2.6666e-03 9.9944e+00 -5.5572e-03 1.0005e+01 5.1073e-03 0.0000e+00 0.0000e+00 -0.6415 + 1 react 1 -99 0 5 7.72176 -3.57172 1.5001e-02 9.9920e+00 -8.0000e-03 1.0008e+01 7.9999e-03 9.9838e+00 -1.6173e-02 1.0016e+01 1.5824e-02 0.0000e+00 0.0000e+00 -0.0254 + 1 react 1 -99 0 6 7.70948 -3.55591 2.5011e-02 9.9867e+00 -1.3333e-02 1.0013e+01 1.3333e-02 9.9732e+00 -2.6838e-02 1.0026e+01 2.6492e-02 8.9714e-03 8.9714e-03 0.0000 diff --git a/ex6.out b/ex6.out index e0190c4d..e8ce61a7 100644 --- a/ex6.out +++ b/ex6.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + CALCULATE_VALUES RATES END ------------------------------------ @@ -267,10 +268,10 @@ Using pure phase assemblage 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Gibbsite -0.00 8.05 8.05 0.000e+00 1.785e-06 1.785e-06 +Gibbsite 0.00 8.05 8.05 0.000e+00 1.785e-06 1.785e-06 K-feldspar -5.86 -4.99 0.88 0.000e+00 0 0.000e+00 K-mica -1.86 11.11 12.97 0.000e+00 0 0.000e+00 -Kaolinite -0.00 5.71 5.71 +Kaolinite 0.00 5.71 5.71 KAlSi3O8 is reactant 1.000e+01 1.000e+01 -2.178e-06 -----------------------------Solution composition------------------------------ @@ -294,7 +295,7 @@ Kaolinite -0.00 5.71 5.71 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 3.359e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = -3.403e-17 + Electrical balance (eq) = -3.402e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 13 Total H = 1.110124e+02 @@ -331,12 +332,12 @@ Si 6.535e-06 Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 Chalcedony -1.64 -5.20 -3.55 SiO2 - Gibbsite -0.00 8.05 8.05 Al(OH)3 + Gibbsite 0.00 8.05 8.05 Al(OH)3 H2(g) -34.79 -37.89 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -5.86 -4.99 0.88 KAlSi3O8 K-mica -1.86 11.11 12.97 KAl3Si3O10(OH)2 - Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 + Kaolinite 0.00 5.71 5.71 Al2Si2O5(OH)4 O2(g) -13.70 -16.59 -2.89 O2 Quartz -1.21 -5.20 -3.98 SiO2 SiO2(a) -2.48 -5.20 -2.71 SiO2 @@ -386,7 +387,7 @@ Gibbsite -0.73 7.32 8.05 0.000e+00 0 0.000e+00 K-feldspar -2.54 -1.67 0.88 0.000e+00 0 0.000e+00 K-mica 0.00 12.97 12.97 KAlSi3O8 is reactant 1.000e+01 1.000e+01 -2.010e-05 -Kaolinite -0.00 5.71 5.71 0.000e+00 9.760e-06 9.760e-06 +Kaolinite 0.00 5.71 5.71 0.000e+00 9.760e-06 9.760e-06 -----------------------------Solution composition------------------------------ @@ -409,7 +410,7 @@ Kaolinite -0.00 5.71 5.71 0.000e+00 9.760e-06 9.760e-06 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 2.184e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = -3.047e-17 + Electrical balance (eq) = -2.771e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 15 Total H = 1.110124e+02 @@ -429,12 +430,12 @@ Al 5.799e-07 Al(OH)2+ 1.275e-12 1.268e-12 -11.895 -11.897 -0.002 (0) AlOH+2 1.291e-16 1.265e-16 -15.889 -15.898 -0.009 -27.86 Al+3 1.043e-20 9.949e-21 -19.982 -20.002 -0.020 -42.50 -H(0) 2.557e-38 +H(0) 2.558e-38 H2 1.279e-38 1.279e-38 -37.893 -37.893 0.000 28.61 K 2.010e-05 K+ 2.010e-05 2.000e-05 -4.697 -4.699 -0.002 8.98 -O(0) 5.099e-17 - O2 2.550e-17 2.550e-17 -16.594 -16.594 0.000 30.40 +O(0) 5.097e-17 + O2 2.549e-17 2.549e-17 -16.594 -16.594 0.000 30.40 Si 4.078e-05 H4SiO4 3.428e-05 3.428e-05 -4.465 -4.465 0.000 52.08 H3SiO4- 6.501e-06 6.468e-06 -5.187 -5.189 -0.002 27.95 @@ -451,7 +452,7 @@ Si 4.078e-05 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -2.54 -1.67 0.88 KAlSi3O8 K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 - Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 + Kaolinite 0.00 5.71 5.71 Al2Si2O5(OH)4 O2(g) -13.70 -16.59 -2.89 O2 Quartz -0.48 -4.46 -3.98 SiO2 SiO2(a) -1.75 -4.46 -2.71 SiO2 @@ -498,9 +499,9 @@ Using pure phase assemblage 1. Phase SI log IAP log K(T, P) Initial Final Delta Gibbsite -2.00 6.05 8.05 0.000e+00 0 0.000e+00 -K-feldspar 0.00 0.88 0.88 +K-feldspar -0.00 0.87 0.88 KAlSi3O8 is reactant 1.000e+01 1.000e+01 -1.909e-04 -K-mica 0.00 12.97 12.97 0.000e+00 6.362e-05 6.362e-05 +K-mica -0.00 12.97 12.97 0.000e+00 6.362e-05 6.362e-05 Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 -----------------------------Solution composition------------------------------ @@ -514,7 +515,7 @@ Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 ----------------------------Description of solution---------------------------- pH = 9.388 Charge balance - pe = 7.983 Adjusted to redox equilibrium + pe = 7.984 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 14 Density (g/cm³) = 0.99707 Volume (L) = 1.00297 @@ -524,9 +525,9 @@ Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.275e-04 Temperature (°C) = 25.00 - Electrical balance (eq) = -3.135e-17 + Electrical balance (eq) = -3.034e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 + Iterations = 15 Total H = 1.110123e+02 Total O = 5.550698e+01 @@ -544,12 +545,12 @@ Al 5.973e-08 Al(OH)2+ 3.600e-14 3.554e-14 -13.444 -13.449 -0.006 (0) AlOH+2 1.954e-18 1.855e-18 -17.709 -17.732 -0.023 -27.83 Al+3 8.576e-23 7.641e-23 -22.067 -22.117 -0.050 -42.44 -H(0) 2.558e-38 - H2 1.279e-38 1.279e-38 -37.893 -37.893 0.000 28.61 +H(0) 2.557e-38 + H2 1.278e-38 1.278e-38 -37.893 -37.893 0.000 28.61 K 1.273e-04 K+ 1.273e-04 1.256e-04 -3.895 -3.901 -0.006 8.99 -O(0) 5.095e-17 - O2 2.547e-17 2.548e-17 -16.594 -16.594 0.000 30.40 +O(0) 5.102e-17 + O2 2.551e-17 2.551e-17 -16.593 -16.593 0.000 30.40 Si 3.819e-04 H4SiO4 2.797e-04 2.797e-04 -3.553 -3.553 0.000 52.08 H3SiO4- 1.021e-04 1.008e-04 -3.991 -3.996 -0.006 27.95 @@ -564,8 +565,8 @@ Si 3.819e-04 Gibbsite -2.00 6.05 8.05 Al(OH)3 H2(g) -34.79 -37.89 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar 0.00 0.88 0.88 KAlSi3O8 - K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 + K-feldspar -0.00 0.87 0.88 KAlSi3O8 + K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 Kaolinite -0.72 4.99 5.71 Al2Si2O5(OH)4 O2(g) -13.70 -16.59 -2.89 O2 Quartz 0.43 -3.55 -3.98 SiO2 @@ -659,8 +660,8 @@ H(0) 2.557e-38 H2 1.279e-38 1.279e-38 -37.893 -37.893 0.000 28.61 K 3.025e-06 K+ 3.025e-06 3.018e-06 -5.519 -5.520 -0.001 8.98 -O(0) 5.100e-17 - O2 2.550e-17 2.550e-17 -16.593 -16.593 0.000 30.40 +O(0) 5.099e-17 + O2 2.550e-17 2.550e-17 -16.594 -16.594 0.000 30.40 Si 6.594e-06 H4SiO4 6.383e-06 6.383e-06 -5.195 -5.195 0.000 52.08 H3SiO4- 2.114e-07 2.110e-07 -6.675 -6.676 -0.001 27.95 @@ -1062,7 +1063,7 @@ Reaction 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Gibbsite 0.00 8.05 8.05 0.000e+00 1.163e-07 1.163e-07 +Gibbsite -0.00 8.05 8.05 0.000e+00 1.163e-07 1.163e-07 K-feldspar -11.34 -10.47 0.88 0.000e+00 0 0.000e+00 K-mica -7.34 5.63 12.97 0.000e+00 0 0.000e+00 Kaolinite -2.25 3.46 5.71 0.000e+00 0 0.000e+00 @@ -1125,7 +1126,7 @@ Si 4.800e-07 Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 Chalcedony -2.77 -6.32 -3.55 SiO2 - Gibbsite 0.00 8.05 8.05 Al(OH)3 + Gibbsite -0.00 8.05 8.05 Al(OH)3 H2(g) -12.06 -15.16 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -11.34 -10.47 0.88 KAlSi3O8 @@ -1268,7 +1269,7 @@ Reaction 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Gibbsite -0.00 8.05 8.05 0.000e+00 5.140e-07 5.140e-07 +Gibbsite 0.00 8.05 8.05 0.000e+00 5.140e-07 5.140e-07 K-feldspar -8.47 -7.59 0.88 0.000e+00 0 0.000e+00 K-mica -4.47 8.50 12.97 0.000e+00 0 0.000e+00 Kaolinite -1.05 4.66 5.71 0.000e+00 0 0.000e+00 @@ -1294,7 +1295,7 @@ Kaolinite -1.05 4.66 5.71 0.000e+00 0 0.000e+00 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.018e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = -3.816e-15 + Electrical balance (eq) = -3.477e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 10 Total H = 1.110124e+02 @@ -1331,7 +1332,7 @@ Si 1.920e-06 Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 Chalcedony -2.17 -5.72 -3.55 SiO2 - Gibbsite -0.00 8.05 8.05 Al(OH)3 + Gibbsite 0.00 8.05 8.05 Al(OH)3 H2(g) -11.47 -14.57 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -8.47 -7.59 0.88 KAlSi3O8 @@ -1397,7 +1398,7 @@ Kaolinite -0.67 5.04 5.71 0.000e+00 0 0.000e+00 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.571e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = -3.305e-17 + Electrical balance (eq) = -3.344e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 11 Total H = 1.110124e+02 @@ -1603,8 +1604,8 @@ Kaolinite -0.00 5.71 5.71 0.000e+00 1.714e-06 1.714e-06 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 5.714e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = -6.910e-17 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Electrical balance (eq) = 2.000e-16 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 12 Total H = 1.110124e+02 Total O = 5.550623e+01 @@ -1706,9 +1707,9 @@ Kaolinite 0.00 5.71 5.71 0.000e+00 3.697e-06 3.697e-06 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 9.817e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = -7.217e-16 + Electrical balance (eq) = -3.042e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 12 + Iterations = 13 Total H = 1.110124e+02 Total O = 5.550625e+01 @@ -1726,12 +1727,12 @@ Al 6.057e-07 Al(OH)2+ 6.137e-12 6.117e-12 -11.212 -11.213 -0.001 (0) AlOH+2 1.327e-15 1.310e-15 -14.877 -14.883 -0.006 -27.86 Al+3 2.280e-19 2.213e-19 -18.642 -18.655 -0.013 -42.51 -H(0) 4.275e-39 - H2 2.137e-39 2.137e-39 -38.670 -38.670 0.000 28.61 +H(0) 4.273e-39 + H2 2.136e-39 2.136e-39 -38.670 -38.670 0.000 28.61 K 8.000e-06 K+ 8.000e-06 7.974e-06 -5.097 -5.098 -0.001 8.98 -O(0) 1.825e-15 - O2 9.126e-16 9.126e-16 -15.040 -15.040 0.000 30.40 +O(0) 1.827e-15 + O2 9.133e-16 9.133e-16 -15.039 -15.039 0.000 30.40 Si 1.661e-05 H4SiO4 1.526e-05 1.526e-05 -4.816 -4.816 0.000 52.08 H3SiO4- 1.345e-06 1.341e-06 -5.871 -5.873 -0.001 27.95 @@ -1786,7 +1787,7 @@ Phase SI log IAP log K(T, P) Initial Final Delta Gibbsite -0.64 7.41 8.05 0.000e+00 0 0.000e+00 K-feldspar -2.89 -2.01 0.88 0.000e+00 0 0.000e+00 K-mica -0.17 12.80 12.97 0.000e+00 0 0.000e+00 -Kaolinite 0.00 5.71 5.71 0.000e+00 7.703e-06 7.703e-06 +Kaolinite -0.00 5.71 5.71 0.000e+00 7.703e-06 7.703e-06 -----------------------------Solution composition------------------------------ @@ -1809,9 +1810,9 @@ Kaolinite 0.00 5.71 5.71 0.000e+00 7.703e-06 7.703e-06 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.778e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = -1.356e-16 + Electrical balance (eq) = -3.041e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 13 + Iterations = 14 Total H = 1.110124e+02 Total O = 5.550628e+01 @@ -1851,7 +1852,7 @@ Si 3.259e-05 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -2.89 -2.01 0.88 KAlSi3O8 K-mica -0.17 12.80 12.97 KAl3Si3O10(OH)2 - Kaolinite 0.00 5.71 5.71 Al2Si2O5(OH)4 + Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 O2(g) -60.56 -63.45 -2.89 O2 Quartz -0.57 -4.55 -3.98 SiO2 SiO2(a) -1.84 -4.55 -2.71 SiO2 @@ -1888,8 +1889,8 @@ Phase SI log IAP log K(T, P) Initial Final Delta Gibbsite -0.93 7.12 8.05 0.000e+00 0 0.000e+00 K-feldspar -2.14 -1.26 0.88 0.000e+00 0 0.000e+00 -K-mica -0.00 12.97 12.97 0.000e+00 1.014e-05 1.014e-05 -Kaolinite -0.00 5.71 5.71 0.000e+00 6.295e-07 6.295e-07 +K-mica 0.00 12.97 12.97 0.000e+00 1.014e-05 1.014e-05 +Kaolinite 0.00 5.71 5.71 0.000e+00 6.295e-07 6.295e-07 -----------------------------Solution composition------------------------------ @@ -1912,9 +1913,9 @@ Kaolinite -0.00 5.71 5.71 0.000e+00 6.295e-07 6.295e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 2.287e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = 4.982e-14 + Electrical balance (eq) = 4.087e-14 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 14 + Iterations = 13 Total H = 1.110124e+02 Total O = 5.550635e+01 @@ -1933,10 +1934,10 @@ Al 3.338e-07 AlOH+2 9.565e-17 9.359e-17 -16.019 -16.029 -0.009 -27.86 Al+3 8.407e-21 8.007e-21 -20.075 -20.097 -0.021 -42.50 H(0) 1.177e-38 - H2 5.884e-39 5.884e-39 -38.230 -38.230 0.000 28.61 + H2 5.883e-39 5.884e-39 -38.230 -38.230 0.000 28.61 K 2.186e-05 K+ 2.186e-05 2.175e-05 -4.660 -4.663 -0.002 8.98 -O(0) 2.408e-16 +O(0) 2.409e-16 O2 1.204e-16 1.204e-16 -15.919 -15.919 0.000 30.40 Si 6.433e-05 H4SiO4 5.478e-05 5.478e-05 -4.261 -4.261 0.000 52.08 @@ -1953,8 +1954,8 @@ Si 6.433e-05 H2(g) -35.13 -38.23 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -2.14 -1.26 0.88 KAlSi3O8 - K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 - Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 + K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 + Kaolinite 0.00 5.71 5.71 Al2Si2O5(OH)4 O2(g) -13.03 -15.92 -2.89 O2 Quartz -0.28 -4.26 -3.98 SiO2 SiO2(a) -1.55 -4.26 -2.71 SiO2 @@ -1991,7 +1992,7 @@ Phase SI log IAP log K(T, P) Initial Final Delta Gibbsite -1.35 6.70 8.05 0.000e+00 0 0.000e+00 K-feldspar -1.30 -0.42 0.88 0.000e+00 0 0.000e+00 -K-mica 0.00 12.97 12.97 0.000e+00 2.127e-05 2.127e-05 +K-mica -0.00 12.97 12.97 0.000e+00 2.127e-05 2.127e-05 Kaolinite -0.29 5.41 5.71 0.000e+00 0 0.000e+00 -----------------------------Solution composition------------------------------ @@ -2015,9 +2016,9 @@ Kaolinite -0.29 5.41 5.71 0.000e+00 0 0.000e+00 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 4.327e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = -3.049e-17 + Electrical balance (eq) = -1.175e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 15 + Iterations = 13 Total H = 1.110124e+02 Total O = 5.550647e+01 @@ -2035,12 +2036,12 @@ Al 1.804e-07 Al(OH)2+ 2.326e-13 2.308e-13 -12.633 -12.637 -0.003 (0) AlOH+2 1.816e-17 1.762e-17 -16.741 -16.754 -0.013 -27.85 Al+3 1.136e-21 1.062e-21 -20.945 -20.974 -0.029 -42.48 -H(0) 8.193e-39 +H(0) 8.192e-39 H2 4.096e-39 4.096e-39 -38.388 -38.388 0.000 28.61 K 4.273e-05 K+ 4.273e-05 4.240e-05 -4.369 -4.373 -0.003 8.99 -O(0) 4.968e-16 - O2 2.484e-16 2.484e-16 -15.605 -15.605 0.000 30.40 +O(0) 4.970e-16 + O2 2.485e-16 2.485e-16 -15.605 -15.605 0.000 30.40 Si 1.282e-04 H4SiO4 1.027e-04 1.027e-04 -3.989 -3.989 0.000 52.08 H3SiO4- 2.550e-05 2.530e-05 -4.594 -4.597 -0.003 27.95 @@ -2056,7 +2057,7 @@ Si 1.282e-04 H2(g) -35.29 -38.39 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -1.30 -0.42 0.88 KAlSi3O8 - K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 + K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 Kaolinite -0.29 5.41 5.71 Al2Si2O5(OH)4 O2(g) -12.71 -15.60 -2.89 O2 Quartz -0.01 -3.99 -3.98 SiO2 @@ -2094,7 +2095,7 @@ Phase SI log IAP log K(T, P) Initial Final Delta Gibbsite -1.62 6.43 8.05 0.000e+00 0 0.000e+00 K-feldspar -0.76 0.11 0.88 0.000e+00 0 0.000e+00 -K-mica 0.00 12.97 12.97 0.000e+00 3.329e-05 3.329e-05 +K-mica -0.00 12.97 12.97 0.000e+00 3.329e-05 3.329e-05 Kaolinite -0.48 5.23 5.71 0.000e+00 0 0.000e+00 -----------------------------Solution composition------------------------------ @@ -2118,9 +2119,9 @@ Kaolinite -0.48 5.23 5.71 0.000e+00 0 0.000e+00 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 6.706e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = -4.146e-13 + Electrical balance (eq) = -2.874e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 15 + Iterations = 16 Total H = 1.110124e+02 Total O = 5.550662e+01 @@ -2138,7 +2139,7 @@ Al 1.175e-07 Al(OH)2+ 1.049e-13 1.039e-13 -12.979 -12.984 -0.004 (0) AlOH+2 6.853e-18 6.599e-18 -17.164 -17.181 -0.016 -27.84 Al+3 3.599e-22 3.308e-22 -21.444 -21.480 -0.037 -42.47 -H(0) 3.760e-15 +H(0) 3.759e-15 H2 1.880e-15 1.880e-15 -14.726 -14.726 0.000 28.61 K 6.671e-05 K+ 6.671e-05 6.608e-05 -4.176 -4.180 -0.004 8.99 @@ -2159,7 +2160,7 @@ Si 2.001e-04 H2(g) -11.62 -14.73 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -0.76 0.11 0.88 KAlSi3O8 - K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 + K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 Kaolinite -0.48 5.23 5.71 Al2Si2O5(OH)4 O2(g) -60.04 -62.93 -2.89 O2 Quartz 0.17 -3.81 -3.98 SiO2 @@ -2196,8 +2197,8 @@ Reaction 1. Phase SI log IAP log K(T, P) Initial Final Delta Gibbsite -2.00 6.05 8.05 0.000e+00 0 0.000e+00 -K-feldspar 0.00 0.88 0.88 0.000e+00 9.093e-06 9.093e-06 -K-mica 0.00 12.97 12.97 0.000e+00 6.362e-05 6.362e-05 +K-feldspar -0.00 0.87 0.88 0.000e+00 9.093e-06 9.093e-06 +K-mica -0.00 12.97 12.97 0.000e+00 6.362e-05 6.362e-05 Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 -----------------------------Solution composition------------------------------ @@ -2221,9 +2222,9 @@ Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.275e-04 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.541e-16 + Electrical balance (eq) = 1.578e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 15 + Iterations = 17 Total H = 1.110123e+02 Total O = 5.550698e+01 @@ -2241,12 +2242,12 @@ Al 5.973e-08 Al(OH)2+ 3.600e-14 3.554e-14 -13.444 -13.449 -0.006 (0) AlOH+2 1.954e-18 1.855e-18 -17.709 -17.732 -0.023 -27.83 Al+3 8.576e-23 7.641e-23 -22.067 -22.117 -0.050 -42.44 -H(0) 3.149e-39 +H(0) 3.150e-39 H2 1.575e-39 1.575e-39 -38.803 -38.803 0.000 28.61 K 1.273e-04 K+ 1.273e-04 1.256e-04 -3.895 -3.901 -0.006 8.99 -O(0) 3.362e-15 - O2 1.681e-15 1.681e-15 -14.774 -14.774 0.000 30.40 +O(0) 3.361e-15 + O2 1.680e-15 1.680e-15 -14.775 -14.775 0.000 30.40 Si 3.819e-04 H4SiO4 2.797e-04 2.797e-04 -3.553 -3.553 0.000 52.08 H3SiO4- 1.021e-04 1.008e-04 -3.991 -3.996 -0.006 27.95 @@ -2261,8 +2262,8 @@ Si 3.819e-04 Gibbsite -2.00 6.05 8.05 Al(OH)3 H2(g) -35.70 -38.80 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar 0.00 0.88 0.88 KAlSi3O8 - K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 + K-feldspar -0.00 0.87 0.88 KAlSi3O8 + K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 Kaolinite -0.72 4.99 5.71 Al2Si2O5(OH)4 O2(g) -11.88 -14.77 -2.89 O2 Quartz 0.43 -3.55 -3.98 SiO2 @@ -2678,7 +2679,7 @@ A: Gibbsite 1100 1.4048e-01 3.5642e-01 -6.3763e+00 Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Gibbsite -0.00 8.05 8.05 0.000e+00 9.946e-08 9.946e-08 +Gibbsite 0.00 8.05 8.05 0.000e+00 9.946e-08 9.946e-08 K-mica -7.60 5.37 12.97 0.000e+00 0 0.000e+00 Kaolinite -2.36 3.35 5.71 0.000e+00 0 0.000e+00 @@ -2740,7 +2741,7 @@ Si 4.214e-07 Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 Chalcedony -2.82 -6.38 -3.55 SiO2 - Gibbsite -0.00 8.05 8.05 Al(OH)3 + Gibbsite 0.00 8.05 8.05 Al(OH)3 H2(g) -35.96 -39.06 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -11.60 -10.72 0.88 KAlSi3O8 @@ -2898,7 +2899,7 @@ Kaolinite 0.00 5.71 5.71 0.000e+00 6.730e-06 6.730e-06 pH = 8.987 Charge balance pe = -3.532 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 3 + Specific Conductance (µS/cm, 25°C) = 2 Density (g/cm³) = 0.99705 Volume (L) = 1.00297 Viscosity (mPa s) = 0.89003 @@ -2988,7 +2989,7 @@ E: Kaolinite -> K-mica 2.6017e+06 3.2848e+01 4.4087e+00 -4.2499e+00 Phase SI log IAP log K(T, P) Initial Final Delta Gibbsite -1.76 6.29 8.05 0.000e+00 0 0.000e+00 -K-mica -0.00 12.97 12.97 0.000e+00 4.218e-05 4.218e-05 +K-mica 0.00 12.97 12.97 0.000e+00 4.218e-05 4.218e-05 Kaolinite -0.57 5.14 5.71 6.730e-06 0 -6.730e-06 -----------------------------Solution composition------------------------------ @@ -3002,7 +3003,7 @@ Kaolinite -0.57 5.14 5.71 6.730e-06 0 -6.730e-06 ----------------------------Description of solution---------------------------- pH = 9.338 Charge balance - pe = 9.197 Adjusted to redox equilibrium + pe = -4.301 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 10 Density (g/cm³) = 0.99706 Volume (L) = 1.00297 @@ -3014,7 +3015,7 @@ Kaolinite -0.57 5.14 5.71 6.730e-06 0 -6.730e-06 Temperature (°C) = 25.00 Electrical balance (eq) = -1.219e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 3370 + Iterations = 3497 Total H = 1.110123e+02 Total O = 5.550672e+01 @@ -3032,12 +3033,12 @@ Al 9.244e-08 Al(OH)2+ 7.020e-14 6.946e-14 -13.154 -13.158 -0.005 (0) AlOH+2 4.247e-18 4.070e-18 -17.372 -17.390 -0.018 -27.84 Al+3 2.069e-22 1.882e-22 -21.684 -21.725 -0.041 -42.46 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.221 -40.221 0.000 28.61 +H(0) 1.194e-13 + H2 5.971e-14 5.971e-14 -13.224 -13.224 0.000 28.61 K 8.445e-05 K+ 8.445e-05 8.355e-05 -4.073 -4.078 -0.005 8.99 -O(0) 2.302e-12 - O2 1.151e-12 1.151e-12 -11.939 -11.939 0.000 30.40 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.932 -65.932 0.000 30.40 Si 2.534e-04 H4SiO4 1.913e-04 1.913e-04 -3.718 -3.718 0.000 52.08 H3SiO4- 6.207e-05 6.141e-05 -4.207 -4.212 -0.005 27.95 @@ -3050,12 +3051,12 @@ Si 2.534e-04 Al(OH)3(a) -4.51 6.29 10.80 Al(OH)3 Chalcedony -0.17 -3.72 -3.55 SiO2 Gibbsite -1.76 6.29 8.05 Al(OH)3 - H2(g) -37.12 -40.22 -3.10 H2 + H2(g) -10.12 -13.22 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -0.48 0.39 0.88 KAlSi3O8 - K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 + K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 Kaolinite -0.57 5.14 5.71 Al2Si2O5(OH)4 - O2(g) -9.05 -11.94 -2.89 O2 + O2(g) -63.04 -65.93 -2.89 O2 Quartz 0.26 -3.72 -3.98 SiO2 SiO2(a) -1.01 -3.72 -2.71 SiO2 @@ -3094,7 +3095,7 @@ F: K-mica -> K-feldspar 4.7638e+07 1.9074e+02 5.4868e+00 -3.5536e+00 Phase SI log IAP log K(T, P) Initial Final Delta Gibbsite -2.00 6.05 8.05 0.000e+00 0 0.000e+00 -K-mica 0.00 12.97 12.97 4.218e-05 6.362e-05 2.144e-05 +K-mica -0.00 12.97 12.97 4.218e-05 6.362e-05 2.144e-05 Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 -----------------------------Solution composition------------------------------ @@ -3108,7 +3109,7 @@ Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 ----------------------------Description of solution---------------------------- pH = 9.388 Charge balance - pe = 9.153 Adjusted to redox equilibrium + pe = -4.487 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 14 Density (g/cm³) = 0.99707 Volume (L) = 1.00297 @@ -3118,7 +3119,7 @@ Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.275e-04 Temperature (°C) = 25.00 - Electrical balance (eq) = -1.220e-09 + Electrical balance (eq) = -1.219e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 1790 Total H = 1.110123e+02 @@ -3138,12 +3139,12 @@ Al 5.973e-08 Al(OH)2+ 3.600e-14 3.553e-14 -13.444 -13.449 -0.006 (0) AlOH+2 1.954e-18 1.855e-18 -17.709 -17.732 -0.023 -27.83 Al+3 8.576e-23 7.641e-23 -22.067 -22.117 -0.050 -42.44 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.233 -40.233 0.000 28.61 +H(0) 2.228e-13 + H2 1.114e-13 1.114e-13 -12.953 -12.953 0.000 28.61 K 1.273e-04 K+ 1.273e-04 1.256e-04 -3.895 -3.901 -0.006 8.99 -O(0) 2.435e-12 - O2 1.217e-12 1.218e-12 -11.915 -11.915 0.000 30.40 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -66.474 -66.474 0.000 30.40 Si 3.819e-04 H4SiO4 2.797e-04 2.797e-04 -3.553 -3.553 0.000 52.08 H3SiO4- 1.021e-04 1.008e-04 -3.991 -3.996 -0.006 27.95 @@ -3156,12 +3157,12 @@ Si 3.819e-04 Al(OH)3(a) -4.75 6.05 10.80 Al(OH)3 Chalcedony -0.00 -3.55 -3.55 SiO2 Gibbsite -2.00 6.05 8.05 Al(OH)3 - H2(g) -37.13 -40.23 -3.10 H2 + H2(g) -9.85 -12.95 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -0.00 0.87 0.88 KAlSi3O8 - K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 + K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 Kaolinite -0.72 4.99 5.71 Al2Si2O5(OH)4 - O2(g) -9.02 -11.91 -2.89 O2 + O2(g) -63.58 -66.47 -2.89 O2 Quartz 0.43 -3.55 -3.98 SiO2 SiO2(a) -0.84 -3.55 -2.71 SiO2 @@ -3224,7 +3225,7 @@ Initial solution 1. pH = 11.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 289 + Specific Conductance (µS/cm, 25°C) = 288 Density (g/cm³) = 0.99712 Volume (L) = 1.00297 Viscosity (mPa s) = 0.89020 @@ -3298,7 +3299,7 @@ Initial solution 2. pH = 7.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 189 + Specific Conductance (µS/cm, 25°C) = 190 Density (g/cm³) = 0.99712 Volume (L) = 1.00299 Viscosity (mPa s) = 0.89010 @@ -3372,7 +3373,7 @@ Initial solution 3. pH = 7.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 189 + Specific Conductance (µS/cm, 25°C) = 190 Density (g/cm³) = 0.99715 Volume (L) = 1.00302 Viscosity (mPa s) = 0.89005 @@ -3555,7 +3556,7 @@ Initial solution 1. pH = 11.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 280 + Specific Conductance (µS/cm, 25°C) = 279 Density (g/cm³) = 0.99714 Volume (L) = 1.00299 Viscosity (mPa s) = 0.89016 @@ -3629,7 +3630,7 @@ Initial solution 2. pH = 7.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 189 + Specific Conductance (µS/cm, 25°C) = 190 Density (g/cm³) = 0.99715 Volume (L) = 1.00302 Viscosity (mPa s) = 0.89005 @@ -3703,7 +3704,7 @@ Initial solution 3. pH = 7.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 189 + Specific Conductance (µS/cm, 25°C) = 190 Density (g/cm³) = 0.99712 Volume (L) = 1.00299 Viscosity (mPa s) = 0.89010 diff --git a/ex6A-B.sel b/ex6A-B.sel index dbbd6029..81e9f18a 100644 --- a/ex6A-B.sel +++ b/ex6A-B.sel @@ -1,22 +1,22 @@ sim state soln dist_x time step pH pe la_K+ la_H+ la_H4SiO4 Gibbsite d_Gibbsite Kaolinite d_Kaolinite K-mica d_K-mica K-feldspar d_K-feldspar si_Gibbsite si_Kaolinite si_K-mica si_K-feldspar 1 i_soln 1 -99 -99 -99 6.99738 4 -1.0000e+03 -6.9974e+00 -1.0000e+03 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -999.9990 -999.9990 -999.9990 -999.9990 2 react 1 -99 0 1 7.00369 10.3679 -7.5756e+00 -7.0037e+00 -7.0990e+00 1.0000e+01 -2.6579e-08 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.0000 -3.8080 -10.6919 -14.6949 - 3 react 1 -99 0 1 8.20884 9.16278 -5.6626e+00 -8.2088e+00 -5.1950e+00 1.7849e-06 1.7849e-06 1.0000e+01 -2.1784e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.0000 -0.0000 -1.8618 -5.8648 - 4 react 1 -99 0 1 9.10706 8.26456 -4.6991e+00 -9.1071e+00 -4.4650e+00 0.0000e+00 0.0000e+00 9.7604e-06 9.7604e-06 1.0000e+01 -2.0101e-05 0.0000e+00 0.0000e+00 -0.7300 -0.0000 0.0000 -2.5429 - 5 react 1 -99 0 1 9.38811 7.98342 -3.9009e+00 -9.3881e+00 -3.5533e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 6.3616e-05 6.3616e-05 9.9998e+00 -1.9091e-04 -2.0015 -0.7195 0.0000 0.0000 - 6 react 1 -99 0 1 8.35063 9.021 -5.5202e+00 -8.3506e+00 -5.1950e+00 1.0000e+01 -3.0245e-06 1.0000e+00 1.2397e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -0.0000 -1.5776 -5.5806 + 3 react 1 -99 0 1 8.20884 9.16277 -5.6626e+00 -8.2088e+00 -5.1950e+00 1.7849e-06 1.7849e-06 1.0000e+01 -2.1784e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 0.0000 -1.8618 -5.8648 + 4 react 1 -99 0 1 9.10706 8.26452 -4.6991e+00 -9.1071e+00 -4.4650e+00 0.0000e+00 0.0000e+00 9.7604e-06 9.7604e-06 1.0000e+01 -2.0101e-05 0.0000e+00 0.0000e+00 -0.7300 0.0000 0.0000 -2.5429 + 5 react 1 -99 0 1 9.38811 7.98357 -3.9009e+00 -9.3881e+00 -3.5533e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 6.3616e-05 6.3616e-05 9.9998e+00 -1.9091e-04 -2.0015 -0.7195 -0.0000 -0.0000 + 6 react 1 -99 0 1 8.35063 9.02099 -5.5202e+00 -8.3506e+00 -5.1950e+00 1.0000e+01 -3.0245e-06 1.0000e+00 1.2397e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -0.0000 -1.5776 -5.5806 7 react 1 -99 0 1 9.06827 -3.25856 -4.6603e+00 -9.0683e+00 -4.2503e+00 0.0000e+00 0.0000e+00 1.0000e+01 -3.2815e-05 1.0000e+00 1.0830e-05 0.0000e+00 0.0000e+00 -0.9448 0.0000 0.0000 -2.1135 8 react 1 -99 0 1 7.02917 -1.25493 -7.3981e+00 -7.0292e+00 -6.9215e+00 1.1996e-08 1.1996e-08 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -3.4530 -9.9565 -13.9595 8 react 1 -99 0 2 7.10321 11.4626 -7.0971e+00 -7.1032e+00 -6.6206e+00 4.7312e-08 4.7312e-08 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -2.8512 -8.6787 -12.6817 - 8 react 1 -99 0 3 7.2381 -1.23219 -6.7961e+00 -7.2381e+00 -6.3199e+00 1.1631e-07 1.1631e-07 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -2.2497 -7.3406 -11.3436 + 8 react 1 -99 0 3 7.2381 -1.23219 -6.7961e+00 -7.2381e+00 -6.3199e+00 1.1631e-07 1.1631e-07 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.0000 -2.2497 -7.3406 -11.3436 8 react 1 -99 0 4 7.44792 -1.59012 -6.4952e+00 -7.4479e+00 -6.0195e+00 2.5047e-07 2.5047e-07 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -1.6490 -5.9288 -9.9318 - 8 react 1 -99 0 5 7.71092 -2.00241 -6.1942e+00 -7.7109e+00 -5.7200e+00 5.1404e-07 5.1404e-07 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.0000 -1.0500 -4.4663 -8.4693 + 8 react 1 -99 0 5 7.71092 -2.00241 -6.1942e+00 -7.7109e+00 -5.7200e+00 5.1404e-07 5.1404e-07 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -1.0500 -4.4663 -8.4693 8 react 1 -99 0 6 7.89183 9.81356 -6.0005e+00 -7.8918e+00 -5.5278e+00 8.0972e-07 8.0972e-07 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -0.6657 -3.5152 -7.5182 8 react 1 -99 0 7 8.17443 9.60703 -5.6997e+00 -8.1744e+00 -5.2313e+00 1.6364e-06 1.6364e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -0.0727 -2.0422 -6.0452 8 react 1 -99 0 8 8.48037 -2.7668 -5.3990e+00 -8.4804e+00 -5.0859e+00 0.0000e+00 0.0000e+00 1.7143e-06 1.7143e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.1091 -0.0000 -1.3266 -5.1114 - 8 react 1 -99 0 9 8.77515 8.98491 -5.0983e+00 -8.7752e+00 -4.8164e+00 0.0000e+00 0.0000e+00 3.6971e-06 3.6971e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.3786 0.0000 -0.7312 -3.9771 - 8 react 1 -99 0 10 9.03134 -3.37462 -4.7979e+00 -9.0313e+00 -4.5510e+00 0.0000e+00 0.0000e+00 7.7032e-06 7.7032e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.6440 0.0000 -0.1746 -2.8896 - 8 react 1 -99 0 11 9.07064 8.46954 -4.6626e+00 -9.0706e+00 -4.2614e+00 0.0000e+00 0.0000e+00 6.2948e-07 6.2948e-07 1.0136e-05 1.0136e-05 0.0000e+00 0.0000e+00 -0.9336 -0.0000 -0.0000 -2.1358 - 8 react 1 -99 0 12 9.22303 8.39576 -4.3726e+00 -9.2230e+00 -3.9885e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 2.1273e-05 2.1273e-05 0.0000e+00 0.0000e+00 -1.3540 -0.2950 0.0000 -1.2950 - 8 react 1 -99 0 13 9.30283 -3.51489 -4.1800e+00 -9.3028e+00 -3.8123e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 3.3294e-05 3.3294e-05 0.0000e+00 0.0000e+00 -1.6210 -0.4766 0.0000 -0.7610 - 8 react 1 -99 0 14 9.38811 8.43829 -3.9009e+00 -9.3881e+00 -3.5533e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 6.3616e-05 6.3616e-05 9.0932e-06 9.0932e-06 -2.0015 -0.7195 0.0000 0.0000 + 8 react 1 -99 0 9 8.77515 8.985 -5.0983e+00 -8.7752e+00 -4.8164e+00 0.0000e+00 0.0000e+00 3.6971e-06 3.6971e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.3786 0.0000 -0.7312 -3.9771 + 8 react 1 -99 0 10 9.03134 -3.37462 -4.7979e+00 -9.0313e+00 -4.5510e+00 0.0000e+00 0.0000e+00 7.7032e-06 7.7032e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.6440 -0.0000 -0.1746 -2.8896 + 8 react 1 -99 0 11 9.07064 8.46955 -4.6626e+00 -9.0706e+00 -4.2614e+00 0.0000e+00 0.0000e+00 6.2948e-07 6.2948e-07 1.0136e-05 1.0136e-05 0.0000e+00 0.0000e+00 -0.9336 0.0000 0.0000 -2.1358 + 8 react 1 -99 0 12 9.22303 8.3958 -4.3726e+00 -9.2230e+00 -3.9885e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 2.1273e-05 2.1273e-05 0.0000e+00 0.0000e+00 -1.3540 -0.2950 -0.0000 -1.2950 + 8 react 1 -99 0 13 9.30283 -3.51486 -4.1800e+00 -9.3028e+00 -3.8123e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 3.3294e-05 3.3294e-05 0.0000e+00 0.0000e+00 -1.6210 -0.4766 -0.0000 -0.7610 + 8 react 1 -99 0 14 9.38811 8.43824 -3.9009e+00 -9.3881e+00 -3.5533e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 6.3616e-05 6.3616e-05 9.0932e-06 9.0932e-06 -2.0015 -0.7195 -0.0000 -0.0000 diff --git a/ex7.out b/ex7.out index 95b95625..15a365e0 100644 --- a/ex7.out +++ b/ex7.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + CALCULATE_VALUES RATES END ------------------------------------ @@ -141,10 +142,10 @@ Calcite 0.00 -8.48 -8.48 1.000e+01 9.997e+00 -2.502e-03 pH = 6.971 Charge balance pe = -1.249 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 453 + Specific Conductance (µS/cm, 25°C) = 458 Density (g/cm³) = 0.99738 Volume (L) = 1.00304 - Viscosity (mPa s) = 0.89254 + Viscosity (mPa s) = 0.89302 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.282e-03 Mass of water (kg) = 1.000e+00 @@ -172,7 +173,7 @@ C(4) 6.070e-03 CO2 1.075e-03 1.076e-03 -2.969 -2.968 0.000 34.43 CaHCO3+ 1.050e-04 9.632e-05 -3.979 -4.016 -0.037 9.71 CaCO3 5.554e-06 5.563e-06 -5.255 -5.255 0.001 -14.60 - CO3-2 2.780e-06 1.963e-06 -5.556 -5.707 -0.151 -3.84 + CO3-2 2.780e-06 1.963e-06 -5.556 -5.707 -0.151 -3.73 (CO2)2 2.121e-08 2.125e-08 -7.673 -7.673 0.001 68.87 Ca 2.502e-03 Ca+2 2.391e-03 1.687e-03 -2.621 -2.773 -0.151 -17.97 @@ -293,10 +294,10 @@ Reaction 1. pH = 6.832 Charge balance pe = -3.723 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 456 + Specific Conductance (µS/cm, 25°C) = 461 Density (g/cm³) = 0.99738 Volume (L) = 1.00306 - Viscosity (mPa s) = 0.89255 + Viscosity (mPa s) = 0.89305 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.352e-03 Mass of water (kg) = 1.000e+00 @@ -325,7 +326,7 @@ C(4) 6.570e-03 CO2 1.503e-03 1.504e-03 -2.823 -2.823 0.000 34.43 CaHCO3+ 1.064e-04 9.758e-05 -3.973 -4.011 -0.037 9.71 CaCO3 4.082e-06 4.089e-06 -5.389 -5.388 0.001 -14.60 - CO3-2 2.050e-06 1.445e-06 -5.688 -5.840 -0.152 -3.84 + CO3-2 2.050e-06 1.445e-06 -5.688 -5.840 -0.152 -3.72 (CO2)2 4.147e-08 4.154e-08 -7.382 -7.382 0.001 68.87 Ca 2.502e-03 Ca+2 2.391e-03 1.685e-03 -2.621 -2.773 -0.152 -17.97 @@ -399,10 +400,10 @@ Reaction 1. pH = 6.729 Charge balance pe = -3.644 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 459 + Specific Conductance (µS/cm, 25°C) = 464 Density (g/cm³) = 0.99738 Volume (L) = 1.00310 - Viscosity (mPa s) = 0.89257 + Viscosity (mPa s) = 0.89307 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.421e-03 Mass of water (kg) = 1.000e+00 @@ -412,7 +413,7 @@ Reaction 1. Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 15 + Iterations = 16 Total H = 1.110169e+02 Total O = 5.552286e+01 @@ -431,7 +432,7 @@ C(4) 7.070e-03 CO2 1.932e-03 1.934e-03 -2.714 -2.714 0.000 34.43 CaHCO3+ 1.077e-04 9.878e-05 -3.968 -4.005 -0.038 9.71 CaCO3 3.260e-06 3.265e-06 -5.487 -5.486 0.001 -14.60 - CO3-2 1.642e-06 1.156e-06 -5.785 -5.937 -0.152 -3.84 + CO3-2 1.642e-06 1.156e-06 -5.785 -5.937 -0.152 -3.72 (CO2)2 6.852e-08 6.864e-08 -7.164 -7.163 0.001 68.87 Ca 2.502e-03 Ca+2 2.391e-03 1.682e-03 -2.621 -2.774 -0.153 -17.97 @@ -505,10 +506,10 @@ Reaction 1. pH = 6.647 Charge balance pe = -3.574 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 462 + Specific Conductance (µS/cm, 25°C) = 466 Density (g/cm³) = 0.99738 Volume (L) = 1.00313 - Viscosity (mPa s) = 0.89258 + Viscosity (mPa s) = 0.89310 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.490e-03 Mass of water (kg) = 1.000e+00 @@ -518,7 +519,7 @@ Reaction 1. Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 14 + Iterations = 15 Total H = 1.110191e+02 Total O = 5.552386e+01 @@ -537,7 +538,7 @@ C(4) 7.570e-03 CO2 2.361e-03 2.364e-03 -2.627 -2.626 0.000 34.43 CaHCO3+ 1.090e-04 9.995e-05 -3.963 -4.000 -0.038 9.71 CaCO3 2.735e-06 2.740e-06 -5.563 -5.562 0.001 -14.60 - CO3-2 1.382e-06 9.714e-07 -5.860 -6.013 -0.153 -3.84 + CO3-2 1.382e-06 9.714e-07 -5.860 -6.013 -0.153 -3.72 (CO2)2 1.024e-07 1.025e-07 -6.990 -6.989 0.001 68.87 Ca 2.502e-03 Ca+2 2.390e-03 1.679e-03 -2.622 -2.775 -0.153 -17.97 @@ -625,10 +626,10 @@ N2(g) -3.44 3.640e-04 1.000 0.000e+00 1.661e-07 1.661e-07 pH = 6.586 Charge balance pe = -3.506 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 465 + Specific Conductance (µS/cm, 25°C) = 469 Density (g/cm³) = 0.99739 Volume (L) = 1.00315 - Viscosity (mPa s) = 0.89260 + Viscosity (mPa s) = 0.89313 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.558e-03 Mass of water (kg) = 9.999e-01 @@ -657,7 +658,7 @@ C(4) 8.033e-03 CO2 2.753e-03 2.757e-03 -2.560 -2.560 0.000 34.43 CaHCO3+ 1.103e-04 1.011e-04 -3.957 -3.995 -0.038 9.72 CaCO3 2.403e-06 2.408e-06 -5.619 -5.618 0.001 -14.60 - CO3-2 1.218e-06 8.551e-07 -5.914 -6.068 -0.154 -3.83 + CO3-2 1.218e-06 8.551e-07 -5.914 -6.068 -0.154 -3.72 (CO2)2 1.392e-07 1.395e-07 -6.856 -6.855 0.001 68.87 Ca 2.502e-03 Ca+2 2.389e-03 1.676e-03 -2.622 -2.776 -0.154 -17.96 @@ -745,10 +746,10 @@ N2(g) -3.01 9.676e-04 1.000 0.000e+00 2.584e-06 2.584e-06 pH = 6.426 Charge balance pe = -3.321 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 475 + Specific Conductance (µS/cm, 25°C) = 479 Density (g/cm³) = 0.99742 Volume (L) = 1.00319 - Viscosity (mPa s) = 0.89266 + Viscosity (mPa s) = 0.89323 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.824e-03 Mass of water (kg) = 9.999e-01 @@ -773,11 +774,11 @@ N2(g) -3.01 9.676e-04 1.000 0.000e+00 2.584e-06 2.584e-06 C(-4) 1.483e-03 CH4 1.483e-03 1.485e-03 -2.829 -2.828 0.001 35.46 C(4) 9.737e-03 - HCO3- 5.436e-03 4.969e-03 -2.265 -2.304 -0.039 24.63 + HCO3- 5.436e-03 4.969e-03 -2.265 -2.304 -0.039 24.64 CO2 4.182e-03 4.187e-03 -2.379 -2.378 0.001 34.43 CaHCO3+ 1.153e-04 1.055e-04 -3.938 -3.977 -0.038 9.72 CaCO3 1.736e-06 1.739e-06 -5.761 -5.760 0.001 -14.60 - CO3-2 8.908e-07 6.220e-07 -6.050 -6.206 -0.156 -3.83 + CO3-2 8.908e-07 6.220e-07 -6.050 -6.206 -0.156 -3.71 (CO2)2 3.213e-07 3.218e-07 -6.493 -6.492 0.001 68.87 Ca 2.502e-03 Ca+2 2.385e-03 1.664e-03 -2.623 -2.779 -0.156 -17.96 @@ -865,10 +866,10 @@ N2(g) -2.58 2.647e-03 1.000 0.000e+00 2.014e-05 2.014e-05 pH = 6.272 Charge balance pe = -3.139 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 496 + Specific Conductance (µS/cm, 25°C) = 498 Density (g/cm³) = 0.99747 Volume (L) = 1.00327 - Viscosity (mPa s) = 0.89277 + Viscosity (mPa s) = 0.89343 Activity of water = 1.000 Ionic strength (mol/kgw) = 8.329e-03 Mass of water (kg) = 9.999e-01 @@ -878,7 +879,7 @@ N2(g) -2.58 2.647e-03 1.000 0.000e+00 2.014e-05 2.014e-05 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 23 + Iterations = 22 Total H = 1.110207e+02 Total O = 5.553368e+01 @@ -898,7 +899,7 @@ C(4) 1.259e-02 CaHCO3+ 1.245e-04 1.137e-04 -3.905 -3.944 -0.039 9.72 CaCO3 1.312e-06 1.314e-06 -5.882 -5.881 0.001 -14.60 (CO2)2 7.781e-07 7.796e-07 -6.109 -6.108 0.001 68.87 - CO3-2 6.893e-07 4.766e-07 -6.162 -6.322 -0.160 -3.82 + CO3-2 6.893e-07 4.766e-07 -6.162 -6.322 -0.160 -3.70 Ca 2.502e-03 Ca+2 2.376e-03 1.642e-03 -2.624 -2.785 -0.161 -17.95 CaHCO3+ 1.245e-04 1.137e-04 -3.905 -3.944 -0.039 9.72 @@ -985,10 +986,10 @@ N2(g) -2.13 7.474e-03 1.000 0.000e+00 1.432e-04 1.432e-04 pH = 6.161 Charge balance pe = -3.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 531 + Specific Conductance (µS/cm, 25°C) = 530 Density (g/cm³) = 0.99755 Volume (L) = 1.00337 - Viscosity (mPa s) = 0.89296 + Viscosity (mPa s) = 0.89375 Activity of water = 1.000 Ionic strength (mol/kgw) = 9.168e-03 Mass of water (kg) = 9.999e-01 @@ -1018,7 +1019,7 @@ C(4) 1.653e-02 CaHCO3+ 1.393e-04 1.267e-04 -3.856 -3.897 -0.041 9.72 (CO2)2 1.685e-06 1.689e-06 -5.773 -5.772 0.001 68.87 CaCO3 1.131e-06 1.134e-06 -5.946 -5.946 0.001 -14.60 - CO3-2 6.170e-07 4.201e-07 -6.210 -6.377 -0.167 -3.80 + CO3-2 6.170e-07 4.201e-07 -6.210 -6.377 -0.167 -3.68 Ca 2.502e-03 Ca+2 2.361e-03 1.607e-03 -2.627 -2.794 -0.167 -17.94 CaHCO3+ 1.393e-04 1.267e-04 -3.856 -3.897 -0.041 9.72 @@ -1105,10 +1106,10 @@ N2(g) -1.77 1.682e-02 1.000 0.000e+00 7.776e-04 7.776e-04 pH = 6.101 Charge balance pe = -2.919 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 569 + Specific Conductance (µS/cm, 25°C) = 566 Density (g/cm³) = 0.99763 Volume (L) = 1.00348 - Viscosity (mPa s) = 0.89316 + Viscosity (mPa s) = 0.89411 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.009e-02 Mass of water (kg) = 9.999e-01 @@ -1138,7 +1139,7 @@ C(4) 2.039e-02 CaHCO3+ 1.550e-04 1.404e-04 -3.810 -3.853 -0.043 9.72 (CO2)2 2.862e-06 2.869e-06 -5.543 -5.542 0.001 68.87 CaCO3 1.091e-06 1.093e-06 -5.962 -5.961 0.001 -14.60 - CO3-2 6.187e-07 4.145e-07 -6.209 -6.382 -0.174 -3.78 + CO3-2 6.187e-07 4.145e-07 -6.209 -6.382 -0.174 -3.66 Ca 2.502e-03 Ca+2 2.346e-03 1.570e-03 -2.630 -2.804 -0.174 -17.93 CaHCO3+ 1.550e-04 1.404e-04 -3.810 -3.853 -0.043 9.72 @@ -1225,10 +1226,10 @@ N2(g) -1.60 2.536e-02 1.001 0.000e+00 2.607e-03 2.607e-03 pH = 6.071 Charge balance pe = -2.875 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 593 + Specific Conductance (µS/cm, 25°C) = 588 Density (g/cm³) = 0.99768 Volume (L) = 1.00356 - Viscosity (mPa s) = 0.89329 + Viscosity (mPa s) = 0.89434 Activity of water = 0.999 Ionic strength (mol/kgw) = 1.067e-02 Mass of water (kg) = 9.999e-01 @@ -1254,11 +1255,11 @@ C(-4) 9.699e-04 CH4 9.699e-04 9.723e-04 -3.013 -3.012 0.001 35.46 C(4) 2.287e-02 CO2 1.436e-02 1.439e-02 -1.843 -1.842 0.001 34.43 - HCO3- 8.337e-03 7.524e-03 -2.079 -2.124 -0.045 24.66 + HCO3- 8.337e-03 7.524e-03 -2.079 -2.124 -0.045 24.65 CaHCO3+ 1.645e-04 1.487e-04 -3.784 -3.828 -0.044 9.73 (CO2)2 3.789e-06 3.799e-06 -5.421 -5.420 0.001 68.87 CaCO3 1.078e-06 1.080e-06 -5.967 -5.966 0.001 -14.60 - CO3-2 6.257e-07 4.152e-07 -6.204 -6.382 -0.178 -3.76 + CO3-2 6.257e-07 4.152e-07 -6.204 -6.382 -0.178 -3.65 Ca 2.502e-03 Ca+2 2.336e-03 1.549e-03 -2.631 -2.810 -0.178 -17.92 CaHCO3+ 1.645e-04 1.487e-04 -3.784 -3.828 -0.044 9.73 @@ -1345,10 +1346,10 @@ N2(g) -1.51 3.067e-02 1.001 0.000e+00 6.826e-03 6.826e-03 pH = 6.054 Charge balance pe = -2.852 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 605 + Specific Conductance (µS/cm, 25°C) = 599 Density (g/cm³) = 0.99771 Volume (L) = 1.00364 - Viscosity (mPa s) = 0.89335 + Viscosity (mPa s) = 0.89445 Activity of water = 0.999 Ionic strength (mol/kgw) = 1.097e-02 Mass of water (kg) = 9.999e-01 @@ -1374,11 +1375,11 @@ C(-4) 9.119e-04 CH4 9.119e-04 9.142e-04 -3.040 -3.039 0.001 35.46 C(4) 2.425e-02 CO2 1.543e-02 1.546e-02 -1.812 -1.811 0.001 34.43 - HCO3- 8.638e-03 7.787e-03 -2.064 -2.109 -0.045 24.66 + HCO3- 8.638e-03 7.787e-03 -2.064 -2.109 -0.045 24.65 CaHCO3+ 1.693e-04 1.529e-04 -3.771 -3.816 -0.044 9.73 (CO2)2 4.373e-06 4.384e-06 -5.359 -5.358 0.001 68.87 CaCO3 1.067e-06 1.070e-06 -5.972 -5.971 0.001 -14.60 - CO3-2 6.268e-07 4.139e-07 -6.203 -6.383 -0.180 -3.76 + CO3-2 6.268e-07 4.139e-07 -6.203 -6.383 -0.180 -3.65 Ca 2.502e-03 Ca+2 2.331e-03 1.539e-03 -2.632 -2.813 -0.181 -17.91 CaHCO3+ 1.693e-04 1.529e-04 -3.771 -3.816 -0.044 9.73 @@ -1465,10 +1466,10 @@ N2(g) -1.48 3.341e-02 1.001 0.000e+00 1.550e-02 1.550e-02 pH = 6.046 Charge balance pe = -2.840 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 610 + Specific Conductance (µS/cm, 25°C) = 605 Density (g/cm³) = 0.99772 Volume (L) = 1.00376 - Viscosity (mPa s) = 0.89338 + Viscosity (mPa s) = 0.89450 Activity of water = 0.999 Ionic strength (mol/kgw) = 1.111e-02 Mass of water (kg) = 1.000e+00 @@ -1478,7 +1479,7 @@ N2(g) -1.48 3.341e-02 1.001 0.000e+00 1.550e-02 1.550e-02 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 + Iterations = 27 Total H = 1.110450e+02 Total O = 5.556719e+01 @@ -1494,11 +1495,11 @@ C(-4) 8.824e-04 CH4 8.824e-04 8.847e-04 -3.054 -3.053 0.001 35.46 C(4) 2.493e-02 CO2 1.597e-02 1.600e-02 -1.797 -1.796 0.001 34.43 - HCO3- 8.779e-03 7.909e-03 -2.057 -2.102 -0.045 24.66 + HCO3- 8.779e-03 7.909e-03 -2.057 -2.102 -0.045 24.65 CaHCO3+ 1.715e-04 1.548e-04 -3.766 -3.810 -0.045 9.73 (CO2)2 4.685e-06 4.697e-06 -5.329 -5.328 0.001 68.87 CaCO3 1.060e-06 1.063e-06 -5.975 -5.974 0.001 -14.60 - CO3-2 6.261e-07 4.125e-07 -6.203 -6.385 -0.181 -3.75 + CO3-2 6.261e-07 4.125e-07 -6.203 -6.385 -0.181 -3.65 Ca 2.502e-03 Ca+2 2.329e-03 1.534e-03 -2.633 -2.814 -0.181 -17.91 CaHCO3+ 1.715e-04 1.548e-04 -3.766 -3.810 -0.045 9.73 @@ -1585,10 +1586,10 @@ N2(g) -1.46 3.477e-02 1.001 0.000e+00 3.297e-02 3.297e-02 pH = 6.042 Charge balance pe = -2.834 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 613 + Specific Conductance (µS/cm, 25°C) = 607 Density (g/cm³) = 0.99773 Volume (L) = 1.00396 - Viscosity (mPa s) = 0.89339 + Viscosity (mPa s) = 0.89453 Activity of water = 0.999 Ionic strength (mol/kgw) = 1.117e-02 Mass of water (kg) = 1.000e+00 @@ -1614,11 +1615,11 @@ C(-4) 8.677e-04 CH4 8.677e-04 8.699e-04 -3.062 -3.061 0.001 35.46 C(4) 2.527e-02 CO2 1.624e-02 1.627e-02 -1.789 -1.789 0.001 34.43 - HCO3- 8.845e-03 7.967e-03 -2.053 -2.099 -0.045 24.66 + HCO3- 8.845e-03 7.967e-03 -2.053 -2.099 -0.045 24.65 CaHCO3+ 1.725e-04 1.556e-04 -3.763 -3.808 -0.045 9.73 (CO2)2 4.845e-06 4.858e-06 -5.315 -5.314 0.001 68.87 CaCO3 1.056e-06 1.059e-06 -5.976 -5.975 0.001 -14.60 - CO3-2 6.254e-07 4.116e-07 -6.204 -6.385 -0.182 -3.75 + CO3-2 6.254e-07 4.116e-07 -6.204 -6.385 -0.182 -3.64 Ca 2.501e-03 Ca+2 2.328e-03 1.531e-03 -2.633 -2.815 -0.182 -17.91 CaHCO3+ 1.725e-04 1.556e-04 -3.763 -3.808 -0.045 9.73 @@ -1756,7 +1757,7 @@ Component log P P phi Initial Final Delta CH4(g) -3.26 5.527e-04 1.000 2.657e-22 5.242e-04 5.242e-04 CO2(g) -1.49 3.208e-02 1.000 2.997e-02 3.042e-02 4.563e-04 -H2O(g) -1.50 3.144e-02 0.999 2.977e-02 2.982e-02 4.336e-05 +H2O(g) -1.50 3.144e-02 0.999 2.977e-02 2.982e-02 4.337e-05 N2(g) -4.45 3.524e-05 1.000 0.000e+00 3.342e-05 3.342e-05 -----------------------------Solution composition------------------------------ @@ -1771,10 +1772,10 @@ N2(g) -4.45 3.524e-05 1.000 0.000e+00 3.342e-05 3.342e-05 pH = 6.965 Charge balance pe = -3.529 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 453 + Specific Conductance (µS/cm, 25°C) = 458 Density (g/cm³) = 0.99734 Volume (L) = 1.00308 - Viscosity (mPa s) = 0.89255 + Viscosity (mPa s) = 0.89303 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.285e-03 Mass of water (kg) = 1.000e+00 @@ -1782,7 +1783,7 @@ N2(g) -4.45 3.524e-05 1.000 0.000e+00 3.342e-05 3.342e-05 Total CO2 (mol/kg) = 6.089e-03 Temperature (°C) = 25.00 Pressure (atm) = 0.06 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 25 Total H = 1.110125e+02 @@ -1803,7 +1804,7 @@ C(4) 6.089e-03 CO2 1.090e-03 1.091e-03 -2.963 -2.962 0.000 34.43 CaHCO3+ 1.050e-04 9.638e-05 -3.979 -4.016 -0.037 9.71 CaCO3 5.482e-06 5.491e-06 -5.261 -5.260 0.001 -14.61 - CO3-2 2.745e-06 1.938e-06 -5.562 -5.713 -0.151 -3.85 + CO3-2 2.745e-06 1.938e-06 -5.562 -5.713 -0.151 -3.73 (CO2)2 2.182e-08 2.186e-08 -7.661 -7.660 0.001 68.87 Ca 2.502e-03 Ca+2 2.391e-03 1.687e-03 -2.621 -2.773 -0.152 -17.98 @@ -1891,10 +1892,10 @@ N2(g) -4.15 7.072e-05 1.000 0.000e+00 6.707e-05 6.707e-05 pH = 6.959 Charge balance pe = -3.560 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 453 + Specific Conductance (µS/cm, 25°C) = 458 Density (g/cm³) = 0.99734 Volume (L) = 1.00308 - Viscosity (mPa s) = 0.89255 + Viscosity (mPa s) = 0.89304 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.287e-03 Mass of water (kg) = 1.000e+00 @@ -1904,7 +1905,7 @@ N2(g) -4.15 7.072e-05 1.000 0.000e+00 6.707e-05 6.707e-05 Pressure (atm) = 0.07 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 30 + Iterations = 27 Total H = 1.110126e+02 Total O = 5.552099e+01 @@ -1923,7 +1924,7 @@ C(4) 6.108e-03 CO2 1.106e-03 1.108e-03 -2.956 -2.956 0.000 34.43 CaHCO3+ 1.051e-04 9.643e-05 -3.979 -4.016 -0.037 9.71 CaCO3 5.407e-06 5.416e-06 -5.267 -5.266 0.001 -14.61 - CO3-2 2.707e-06 1.911e-06 -5.567 -5.719 -0.151 -3.85 + CO3-2 2.707e-06 1.911e-06 -5.567 -5.719 -0.151 -3.73 (CO2)2 2.248e-08 2.252e-08 -7.648 -7.647 0.001 68.87 Ca 2.502e-03 Ca+2 2.391e-03 1.687e-03 -2.621 -2.773 -0.152 -17.98 @@ -2011,10 +2012,10 @@ N2(g) -3.97 1.063e-04 1.000 0.000e+00 1.008e-04 1.008e-04 pH = 6.953 Charge balance pe = -3.575 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 453 + Specific Conductance (µS/cm, 25°C) = 459 Density (g/cm³) = 0.99734 Volume (L) = 1.00308 - Viscosity (mPa s) = 0.89255 + Viscosity (mPa s) = 0.89304 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.290e-03 Mass of water (kg) = 1.000e+00 @@ -2024,7 +2025,7 @@ N2(g) -3.97 1.063e-04 1.000 0.000e+00 1.008e-04 1.008e-04 Pressure (atm) = 0.07 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 + Iterations = 28 Total H = 1.110127e+02 Total O = 5.552108e+01 @@ -2043,7 +2044,7 @@ C(4) 6.127e-03 CO2 1.123e-03 1.124e-03 -2.950 -2.949 0.000 34.43 CaHCO3+ 1.051e-04 9.647e-05 -3.978 -4.016 -0.037 9.71 CaCO3 5.334e-06 5.342e-06 -5.273 -5.272 0.001 -14.61 - CO3-2 2.671e-06 1.885e-06 -5.573 -5.725 -0.151 -3.85 + CO3-2 2.671e-06 1.885e-06 -5.573 -5.725 -0.151 -3.73 (CO2)2 2.315e-08 2.319e-08 -7.635 -7.635 0.001 68.87 Ca 2.502e-03 Ca+2 2.391e-03 1.687e-03 -2.621 -2.773 -0.152 -17.98 @@ -2131,10 +2132,10 @@ N2(g) -3.85 1.418e-04 1.000 0.000e+00 1.345e-04 1.345e-04 pH = 6.947 Charge balance pe = -3.584 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 453 + Specific Conductance (µS/cm, 25°C) = 459 Density (g/cm³) = 0.99734 Volume (L) = 1.00308 - Viscosity (mPa s) = 0.89255 + Viscosity (mPa s) = 0.89304 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.293e-03 Mass of water (kg) = 1.000e+00 @@ -2144,7 +2145,7 @@ N2(g) -3.85 1.418e-04 1.000 0.000e+00 1.345e-04 1.345e-04 Pressure (atm) = 0.07 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 30 + Iterations = 29 Total H = 1.110128e+02 Total O = 5.552117e+01 @@ -2163,7 +2164,7 @@ C(4) 6.145e-03 CO2 1.139e-03 1.140e-03 -2.943 -2.943 0.000 34.43 CaHCO3+ 1.052e-04 9.652e-05 -3.978 -4.015 -0.037 9.71 CaCO3 5.262e-06 5.271e-06 -5.279 -5.278 0.001 -14.61 - CO3-2 2.636e-06 1.860e-06 -5.579 -5.730 -0.151 -3.85 + CO3-2 2.636e-06 1.860e-06 -5.579 -5.730 -0.151 -3.73 (CO2)2 2.383e-08 2.387e-08 -7.623 -7.622 0.001 68.87 Ca 2.502e-03 Ca+2 2.391e-03 1.687e-03 -2.621 -2.773 -0.152 -17.98 @@ -2251,10 +2252,10 @@ N2(g) -3.55 2.843e-04 1.000 0.000e+00 2.696e-04 2.696e-04 pH = 6.923 Charge balance pe = -3.595 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 454 + Specific Conductance (µS/cm, 25°C) = 459 Density (g/cm³) = 0.99734 Volume (L) = 1.00309 - Viscosity (mPa s) = 0.89255 + Viscosity (mPa s) = 0.89304 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.302e-03 Mass of water (kg) = 1.000e+00 @@ -2283,7 +2284,7 @@ C(4) 6.221e-03 CO2 1.204e-03 1.206e-03 -2.919 -2.919 0.000 34.43 CaHCO3+ 1.054e-04 9.670e-05 -3.977 -4.015 -0.037 9.71 CaCO3 4.996e-06 5.005e-06 -5.301 -5.301 0.001 -14.61 - CO3-2 2.503e-06 1.767e-06 -5.601 -5.753 -0.151 -3.85 + CO3-2 2.503e-06 1.767e-06 -5.601 -5.753 -0.151 -3.73 (CO2)2 2.664e-08 2.668e-08 -7.574 -7.574 0.001 68.87 Ca 2.502e-03 Ca+2 2.391e-03 1.686e-03 -2.621 -2.773 -0.152 -17.98 @@ -2371,10 +2372,10 @@ N2(g) -3.24 5.691e-04 1.000 0.000e+00 5.397e-04 5.397e-04 pH = 6.880 Charge balance pe = -3.584 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 455 + Specific Conductance (µS/cm, 25°C) = 460 Density (g/cm³) = 0.99734 Volume (L) = 1.00310 - Viscosity (mPa s) = 0.89256 + Viscosity (mPa s) = 0.89305 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.322e-03 Mass of water (kg) = 1.000e+00 @@ -2384,7 +2385,7 @@ N2(g) -3.24 5.691e-04 1.000 0.000e+00 5.397e-04 5.397e-04 Pressure (atm) = 0.08 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 + Iterations = 28 Total H = 1.110141e+02 Total O = 5.552222e+01 @@ -2403,7 +2404,7 @@ C(4) 6.371e-03 CO2 1.335e-03 1.336e-03 -2.875 -2.874 0.000 34.43 CaHCO3+ 1.058e-04 9.705e-05 -3.976 -4.013 -0.037 9.71 CaCO3 4.542e-06 4.550e-06 -5.343 -5.342 0.001 -14.61 - CO3-2 2.278e-06 1.607e-06 -5.642 -5.794 -0.152 -3.85 + CO3-2 2.278e-06 1.607e-06 -5.642 -5.794 -0.152 -3.73 (CO2)2 3.273e-08 3.278e-08 -7.485 -7.484 0.001 68.87 Ca 2.502e-03 Ca+2 2.391e-03 1.686e-03 -2.621 -2.773 -0.152 -17.98 @@ -2491,10 +2492,10 @@ N2(g) -2.94 1.137e-03 1.000 0.000e+00 1.079e-03 1.079e-03 pH = 6.806 Charge balance pe = -3.538 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 456 + Specific Conductance (µS/cm, 25°C) = 461 Density (g/cm³) = 0.99735 Volume (L) = 1.00312 - Viscosity (mPa s) = 0.89257 + Viscosity (mPa s) = 0.89306 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.363e-03 Mass of water (kg) = 1.000e+00 @@ -2502,9 +2503,9 @@ N2(g) -2.94 1.137e-03 1.000 0.000e+00 1.079e-03 1.079e-03 Total CO2 (mol/kg) = 6.674e-03 Temperature (°C) = 25.00 Pressure (atm) = 0.10 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 + Iterations = 27 Total H = 1.110159e+02 Total O = 5.552363e+01 @@ -2523,7 +2524,7 @@ C(4) 6.674e-03 CO2 1.596e-03 1.598e-03 -2.797 -2.797 0.000 34.43 CaHCO3+ 1.066e-04 9.777e-05 -3.972 -4.010 -0.037 9.71 CaCO3 3.860e-06 3.866e-06 -5.413 -5.413 0.001 -14.61 - CO3-2 1.939e-06 1.366e-06 -5.712 -5.864 -0.152 -3.85 + CO3-2 1.939e-06 1.366e-06 -5.712 -5.864 -0.152 -3.73 (CO2)2 4.678e-08 4.685e-08 -7.330 -7.329 0.001 68.87 Ca 2.502e-03 Ca+2 2.391e-03 1.684e-03 -2.621 -2.774 -0.152 -17.98 @@ -2611,10 +2612,10 @@ N2(g) -2.64 2.269e-03 1.000 0.000e+00 2.152e-03 2.152e-03 pH = 6.692 Charge balance pe = -3.445 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 460 + Specific Conductance (µS/cm, 25°C) = 465 Density (g/cm³) = 0.99736 Volume (L) = 1.00317 - Viscosity (mPa s) = 0.89259 + Viscosity (mPa s) = 0.89310 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.454e-03 Mass of water (kg) = 1.000e+00 @@ -2643,7 +2644,7 @@ C(4) 7.290e-03 CO2 2.117e-03 2.120e-03 -2.674 -2.674 0.000 34.43 CaHCO3+ 1.083e-04 9.933e-05 -3.965 -4.003 -0.038 9.71 CaCO3 3.009e-06 3.015e-06 -5.522 -5.521 0.001 -14.61 - CO3-2 1.518e-06 1.068e-06 -5.819 -5.971 -0.153 -3.85 + CO3-2 1.518e-06 1.068e-06 -5.819 -5.971 -0.153 -3.73 (CO2)2 8.234e-08 8.249e-08 -7.084 -7.084 0.001 68.87 Ca 2.502e-03 Ca+2 2.390e-03 1.680e-03 -2.622 -2.775 -0.153 -17.97 @@ -2731,10 +2732,10 @@ N2(g) -2.36 4.408e-03 1.000 0.000e+00 4.182e-03 4.182e-03 pH = 6.541 Charge balance pe = -3.311 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 468 + Specific Conductance (µS/cm, 25°C) = 473 Density (g/cm³) = 0.99738 Volume (L) = 1.00326 - Viscosity (mPa s) = 0.89263 + Viscosity (mPa s) = 0.89318 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.655e-03 Mass of water (kg) = 1.000e+00 @@ -2744,7 +2745,7 @@ N2(g) -2.36 4.408e-03 1.000 0.000e+00 4.182e-03 4.182e-03 Pressure (atm) = 0.20 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 28 + Iterations = 31 Total H = 1.110264e+02 Total O = 5.553190e+01 @@ -2763,7 +2764,7 @@ C(4) 8.490e-03 CO2 3.110e-03 3.114e-03 -2.507 -2.507 0.001 34.43 CaHCO3+ 1.121e-04 1.027e-04 -3.950 -3.988 -0.038 9.71 CaCO3 2.202e-06 2.206e-06 -5.657 -5.656 0.001 -14.60 - CO3-2 1.121e-06 7.856e-07 -5.950 -6.105 -0.155 -3.84 + CO3-2 1.121e-06 7.856e-07 -5.950 -6.105 -0.155 -3.72 (CO2)2 1.777e-07 1.780e-07 -6.750 -6.750 0.001 68.87 Ca 2.501e-03 Ca+2 2.387e-03 1.671e-03 -2.622 -2.777 -0.155 -17.97 @@ -2851,10 +2852,10 @@ N2(g) -2.06 8.752e-03 1.000 0.000e+00 8.307e-03 8.307e-03 pH = 6.361 Charge balance pe = -3.140 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 488 + Specific Conductance (µS/cm, 25°C) = 491 Density (g/cm³) = 0.99743 Volume (L) = 1.00344 - Viscosity (mPa s) = 0.89274 + Viscosity (mPa s) = 0.89336 Activity of water = 1.000 Ionic strength (mol/kgw) = 8.132e-03 Mass of water (kg) = 1.000e+00 @@ -2862,9 +2863,9 @@ N2(g) -2.06 8.752e-03 1.000 0.000e+00 8.307e-03 8.307e-03 Total CO2 (mol/kg) = 1.101e-02 Temperature (°C) = 25.00 Pressure (atm) = 0.33 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 + Iterations = 32 Total H = 1.110406e+02 Total O = 5.554310e+01 @@ -2883,7 +2884,7 @@ C(4) 1.101e-02 CO2 5.139e-03 5.146e-03 -2.289 -2.289 0.001 34.43 CaHCO3+ 1.209e-04 1.105e-04 -3.918 -3.957 -0.039 9.72 CaCO3 1.562e-06 1.565e-06 -5.806 -5.805 0.001 -14.60 - CO3-2 8.135e-07 5.646e-07 -6.090 -6.248 -0.159 -3.83 + CO3-2 8.135e-07 5.646e-07 -6.090 -6.248 -0.159 -3.71 (CO2)2 4.851e-07 4.860e-07 -6.314 -6.313 0.001 68.87 Ca 2.501e-03 Ca+2 2.379e-03 1.650e-03 -2.624 -2.783 -0.159 -17.96 @@ -2974,7 +2975,7 @@ N2(g) -1.76 1.738e-02 1.000 0.000e+00 1.651e-02 1.651e-02 Specific Conductance (µS/cm, 25°C) = 531 Density (g/cm³) = 0.99754 Volume (L) = 1.00381 - Viscosity (mPa s) = 0.89296 + Viscosity (mPa s) = 0.89376 Activity of water = 1.000 Ionic strength (mol/kgw) = 9.175e-03 Mass of water (kg) = 1.000e+00 @@ -2984,7 +2985,7 @@ N2(g) -1.76 1.738e-02 1.000 0.000e+00 1.651e-02 1.651e-02 Pressure (atm) = 0.60 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 31 + Iterations = 33 Total H = 1.110692e+02 Total O = 5.556560e+01 @@ -3004,7 +3005,7 @@ C(4) 1.614e-02 CaHCO3+ 1.393e-04 1.268e-04 -3.856 -3.897 -0.041 9.72 (CO2)2 1.548e-06 1.551e-06 -5.810 -5.809 0.001 68.87 CaCO3 1.183e-06 1.185e-06 -5.927 -5.926 0.001 -14.60 - CO3-2 6.455e-07 4.394e-07 -6.190 -6.357 -0.167 -3.80 + CO3-2 6.455e-07 4.394e-07 -6.190 -6.357 -0.167 -3.69 Ca 2.501e-03 Ca+2 2.360e-03 1.605e-03 -2.627 -2.794 -0.167 -17.94 CaHCO3+ 1.393e-04 1.268e-04 -3.856 -3.897 -0.041 9.72 @@ -3091,10 +3092,10 @@ N2(g) -1.46 3.459e-02 1.001 0.000e+00 3.292e-02 3.292e-02 pH = 6.021 Charge balance pe = -2.810 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 616 + Specific Conductance (µS/cm, 25°C) = 610 Density (g/cm³) = 0.99775 Volume (L) = 1.00453 - Viscosity (mPa s) = 0.89341 + Viscosity (mPa s) = 0.89456 Activity of water = 0.999 Ionic strength (mol/kgw) = 1.126e-02 Mass of water (kg) = 1.001e+00 @@ -3102,9 +3103,9 @@ N2(g) -1.46 3.459e-02 1.001 0.000e+00 3.292e-02 3.292e-02 Total CO2 (mol/kg) = 2.632e-02 Temperature (°C) = 25.00 Pressure (atm) = 1.13 - Electrical balance (eq) = -1.204e-09 + Electrical balance (eq) = -1.206e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 32 + Iterations = 35 Total H = 1.111264e+02 Total O = 5.561047e+01 @@ -3120,11 +3121,11 @@ C(-4) 8.642e-04 CH4 8.642e-04 8.664e-04 -3.063 -3.062 0.001 35.46 C(4) 2.632e-02 CO2 1.720e-02 1.723e-02 -1.764 -1.764 0.001 34.43 - HCO3- 8.933e-03 8.044e-03 -2.049 -2.095 -0.046 24.66 + HCO3- 8.933e-03 8.044e-03 -2.049 -2.095 -0.046 24.65 CaHCO3+ 1.738e-04 1.567e-04 -3.760 -3.805 -0.045 9.73 (CO2)2 5.435e-06 5.449e-06 -5.265 -5.264 0.001 68.87 CaCO3 1.014e-06 1.016e-06 -5.994 -5.993 0.001 -14.60 - CO3-2 6.027e-07 3.962e-07 -6.220 -6.402 -0.182 -3.75 + CO3-2 6.027e-07 3.962e-07 -6.220 -6.402 -0.182 -3.64 Ca 2.500e-03 Ca+2 2.325e-03 1.527e-03 -2.634 -2.816 -0.182 -17.91 CaHCO3+ 1.738e-04 1.567e-04 -3.760 -3.805 -0.045 9.73 diff --git a/ex7.sel b/ex7.sel index 3e87649e..bb927faa 100644 --- a/ex7.sel +++ b/ex7.sel @@ -14,13 +14,13 @@ 2 react 5.0000e-01 -0.3277 -0.2513 -1.4759 -7.4210 1.1000e+00 5.1044e-01 1.1308e+01 2.1949e-01 2.6076e-01 1.5502e-02 0.0000e+00 2 react 1.0000e+00 -0.3204 -0.2586 -1.4585 -7.4178 1.1000e+00 1.0429e+00 2.3104e+01 4.5605e-01 5.2387e-01 3.2966e-02 0.0000e+00 3 i_gas -99 -1.5001 -21.5524 -999.9990 -999.9990 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 - 3 react 1.0000e-03 -1.4939 -3.2574 -4.4528 -9.5993 6.4109e-02 6.0800e-02 2.3190e+01 3.0424e-02 5.2421e-04 3.3422e-05 0.0000e+00 - 3 react 2.0000e-03 -1.4874 -2.9563 -4.1503 -9.3376 6.5180e-02 6.1814e-02 2.3190e+01 3.0880e-02 1.0486e-03 6.7072e-05 0.0000e+00 + 3 react 1.0000e-03 -1.4939 -3.2574 -4.4528 -9.5993 6.4110e-02 6.0800e-02 2.3190e+01 3.0424e-02 5.2421e-04 3.3422e-05 0.0000e+00 + 3 react 2.0000e-03 -1.4874 -2.9563 -4.1503 -9.3376 6.5179e-02 6.1814e-02 2.3190e+01 3.0880e-02 1.0486e-03 6.7072e-05 0.0000e+00 3 react 3.0000e-03 -1.4811 -2.7802 -3.9735 -9.1855 6.6249e-02 6.2828e-02 2.3190e+01 3.1336e-02 1.5730e-03 1.0078e-04 0.0000e+00 3 react 4.0000e-03 -1.4748 -2.6552 -3.8480 -9.0783 6.7318e-02 6.3843e-02 2.3190e+01 3.1792e-02 2.0975e-03 1.3452e-04 0.0000e+00 3 react 8.0000e-03 -1.4506 -2.3542 -3.5461 -8.8235 7.1596e-02 6.7900e-02 2.3190e+01 3.3615e-02 4.1954e-03 2.6960e-04 0.0000e+00 3 react 1.6000e-02 -1.4059 -2.0531 -3.2447 -8.5767 8.0152e-02 7.6015e-02 2.3190e+01 3.7262e-02 8.3911e-03 5.3973e-04 0.0000e+00 - 3 react 3.2000e-02 -1.3283 -1.7522 -2.9439 -8.3425 9.7257e-02 9.2242e-02 2.3190e+01 4.4554e-02 1.6782e-02 1.0788e-03 0.0000e+00 + 3 react 3.2000e-02 -1.3283 -1.7522 -2.9439 -8.3425 9.7259e-02 9.2242e-02 2.3190e+01 4.4554e-02 1.6782e-02 1.0788e-03 0.0000e+00 3 react 6.4000e-02 -1.2055 -1.4513 -2.6441 -8.1258 1.3145e-01 1.2468e-01 2.3190e+01 5.9133e-02 3.3559e-02 2.1518e-03 0.0000e+00 3 react 1.2500e-01 -1.0385 -1.1608 -2.3556 -7.9353 1.9656e-01 1.8648e-01 2.3190e+01 8.6909e-02 6.5530e-02 4.1820e-03 0.0000e+00 3 react 2.5000e-01 -0.8204 -0.8602 -2.0577 -7.7555 3.2979e-01 3.1300e-01 2.3190e+01 1.4379e-01 1.3102e-01 8.3071e-03 0.0000e+00 diff --git a/ex8.out b/ex8.out index 35e0b3f0..3ab92227 100644 --- a/ex8.out +++ b/ex8.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + CALCULATE_VALUES RATES END ------------------------------------ @@ -89,7 +90,7 @@ WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. pH = 8.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 9863 + Specific Conductance (µS/cm, 25°C) = 9916 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89481 @@ -98,7 +99,7 @@ WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.326e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = 6.946e-16 + Electrical balance (eq) = 6.944e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 9 Total H = 1.110124e+02 @@ -184,7 +185,7 @@ Initial solution 2. pH = 8.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 9862 + Specific Conductance (µS/cm, 25°C) = 9913 Density (g/cm³) = 1.00266 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -193,7 +194,7 @@ Initial solution 2. Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.447e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = 7.169e-16 + Electrical balance (eq) = 7.200e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 9 Total H = 1.110124e+02 @@ -345,7 +346,7 @@ Hfo_w pH = 5.000 Charge balance pe = 15.095 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9862 + Specific Conductance (µS/cm, 25°C) = 9915 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -356,7 +357,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -1.123e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.06 - Iterations = 17 + Iterations = 16 Total H = 1.110122e+02 Total O = 5.580609e+01 @@ -371,7 +372,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -43.349 -43.339 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -52.670 -52.798 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -52.670 -52.798 -0.128 18.15 NH3 0.000e+00 0.000e+00 -57.052 -57.042 0.010 24.42 N(0) 1.543e-06 N2 7.715e-07 7.895e-07 -6.113 -6.103 0.010 29.29 @@ -483,7 +484,7 @@ Hfo_w pH = 5.250 Charge balance pe = 14.809 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9861 + Specific Conductance (µS/cm, 25°C) = 9914 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -509,7 +510,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -43.278 -43.268 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -52.884 -53.012 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -52.884 -53.012 -0.128 18.15 NH3 0.000e+00 0.000e+00 -57.017 -57.007 0.010 24.42 N(0) 1.111e-06 N2 5.553e-07 5.682e-07 -6.255 -6.246 0.010 29.29 @@ -621,7 +622,7 @@ Hfo_w pH = 5.500 Charge balance pe = 14.523 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9861 + Specific Conductance (µS/cm, 25°C) = 9914 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -632,7 +633,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -8.214e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.04 - Iterations = 14 + Iterations = 15 Total H = 1.110123e+02 Total O = 5.580613e+01 @@ -647,7 +648,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -43.206 -43.196 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.099 -53.227 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -53.099 -53.227 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.981 -56.971 0.010 24.42 N(0) 7.992e-07 N2 3.996e-07 4.089e-07 -6.398 -6.388 0.010 29.29 @@ -759,7 +760,7 @@ Hfo_w pH = 5.750 Charge balance pe = 14.237 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9861 + Specific Conductance (µS/cm, 25°C) = 9914 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -785,7 +786,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -43.135 -43.125 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.313 -53.441 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -53.313 -53.441 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.945 -56.935 0.010 24.42 N(0) 5.752e-07 N2 2.876e-07 2.943e-07 -6.541 -6.531 0.010 29.29 @@ -897,7 +898,7 @@ Hfo_w pH = 6.000 Charge balance pe = 13.952 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9861 + Specific Conductance (µS/cm, 25°C) = 9914 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -908,7 +909,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -5.700e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.03 - Iterations = 14 + Iterations = 15 Total H = 1.110123e+02 Total O = 5.580616e+01 @@ -923,7 +924,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -43.063 -43.053 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.527 -53.655 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -53.527 -53.655 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.909 -56.899 0.010 24.42 N(0) 4.140e-07 N2 2.070e-07 2.118e-07 -6.684 -6.674 0.010 29.29 @@ -1035,7 +1036,7 @@ Hfo_w pH = 6.250 Charge balance pe = 13.666 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9862 + Specific Conductance (µS/cm, 25°C) = 9914 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -1061,7 +1062,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.992 -42.982 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.741 -53.869 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -53.741 -53.869 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.874 -56.864 0.010 24.42 N(0) 2.979e-07 N2 1.490e-07 1.524e-07 -6.827 -6.817 0.010 29.29 @@ -1173,7 +1174,7 @@ Hfo_w pH = 6.500 Charge balance pe = 13.380 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9862 + Specific Conductance (µS/cm, 25°C) = 9914 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -1199,7 +1200,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.921 -42.911 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.956 -54.084 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -53.956 -54.084 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.838 -56.828 0.010 24.42 N(0) 2.144e-07 N2 1.072e-07 1.097e-07 -6.970 -6.960 0.010 29.29 @@ -1311,7 +1312,7 @@ Hfo_w pH = 6.750 Charge balance pe = 13.095 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9862 + Specific Conductance (µS/cm, 25°C) = 9914 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -1337,7 +1338,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.849 -42.839 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -54.170 -54.298 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -54.170 -54.298 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.802 -56.792 0.010 24.42 N(0) 1.543e-07 N2 7.715e-08 7.895e-08 -7.113 -7.103 0.010 29.29 @@ -1449,7 +1450,7 @@ Hfo_w pH = 7.000 Charge balance pe = 12.809 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9862 + Specific Conductance (µS/cm, 25°C) = 9915 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -1475,7 +1476,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.778 -42.768 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -54.384 -54.512 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -54.384 -54.512 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.767 -56.757 0.010 24.42 N(0) 1.111e-07 N2 5.553e-08 5.682e-08 -7.256 -7.246 0.010 29.29 @@ -1587,7 +1588,7 @@ Hfo_w pH = 7.250 Charge balance pe = 12.523 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9863 + Specific Conductance (µS/cm, 25°C) = 9915 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -1613,7 +1614,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.706 -42.696 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -54.599 -54.727 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -54.599 -54.727 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.731 -56.721 0.010 24.42 N(0) 7.992e-08 N2 3.996e-08 4.089e-08 -7.398 -7.388 0.010 29.29 @@ -1725,7 +1726,7 @@ Hfo_w pH = 7.500 Charge balance pe = 12.237 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9863 + Specific Conductance (µS/cm, 25°C) = 9915 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89481 @@ -1751,7 +1752,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.635 -42.625 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -54.813 -54.941 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -54.813 -54.941 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.695 -56.685 0.010 24.42 N(0) 5.752e-08 N2 2.876e-08 2.943e-08 -7.541 -7.531 0.010 29.29 @@ -1863,7 +1864,7 @@ Hfo_w pH = 7.750 Charge balance pe = 11.952 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9863 + Specific Conductance (µS/cm, 25°C) = 9915 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89481 @@ -1889,7 +1890,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.563 -42.553 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -55.027 -55.155 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -55.027 -55.155 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.659 -56.649 0.010 24.42 N(0) 4.139e-08 N2 2.070e-08 2.118e-08 -7.684 -7.674 0.010 29.29 @@ -2001,7 +2002,7 @@ Hfo_w pH = 8.000 Charge balance pe = 11.666 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9863 + Specific Conductance (µS/cm, 25°C) = 9916 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89481 @@ -2012,7 +2013,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -1.787e-08 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 14 + Iterations = 15 Total H = 1.110124e+02 Total O = 5.580622e+01 @@ -2027,7 +2028,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.492 -42.482 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -55.241 -55.369 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -55.241 -55.369 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.624 -56.614 0.010 24.42 N(0) 2.979e-08 N2 1.490e-08 1.524e-08 -7.827 -7.817 0.010 29.29 @@ -2173,7 +2174,7 @@ Hfo_w pH = 5.000 Charge balance pe = 15.095 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9861 + Specific Conductance (µS/cm, 25°C) = 9912 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89479 @@ -2199,10 +2200,10 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -43.349 -43.339 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -52.670 -52.798 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -52.670 -52.798 -0.128 18.15 NH3 0.000e+00 0.000e+00 -57.052 -57.042 0.010 24.42 N(0) 1.543e-06 - N2 7.716e-07 7.896e-07 -6.113 -6.103 0.010 29.29 + N2 7.715e-07 7.895e-07 -6.113 -6.103 0.010 29.29 N(3) 2.412e-13 NO2- 2.412e-13 1.817e-13 -12.618 -12.741 -0.123 25.24 N(5) 1.000e-01 @@ -2311,7 +2312,7 @@ Hfo_w pH = 5.250 Charge balance pe = 14.809 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9860 + Specific Conductance (µS/cm, 25°C) = 9911 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89479 @@ -2322,7 +2323,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -9.689e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.05 - Iterations = 22 + Iterations = 23 Total H = 1.110122e+02 Total O = 5.580611e+01 @@ -2337,7 +2338,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -43.278 -43.268 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -52.884 -53.012 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -52.884 -53.012 -0.128 18.15 NH3 0.000e+00 0.000e+00 -57.017 -57.007 0.010 24.42 N(0) 1.110e-06 N2 5.552e-07 5.682e-07 -6.256 -6.246 0.010 29.29 @@ -2449,7 +2450,7 @@ Hfo_w pH = 5.500 Charge balance pe = 14.523 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9859 + Specific Conductance (µS/cm, 25°C) = 9911 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89479 @@ -2460,7 +2461,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -8.259e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.04 - Iterations = 22 + Iterations = 21 Total H = 1.110123e+02 Total O = 5.580613e+01 @@ -2475,19 +2476,19 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -43.206 -43.196 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.099 -53.227 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -53.098 -53.226 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.981 -56.971 0.010 24.42 -N(0) 7.992e-07 - N2 3.996e-07 4.089e-07 -6.398 -6.388 0.010 29.29 -N(3) 3.351e-13 - NO2- 3.351e-13 2.525e-13 -12.475 -12.598 -0.123 25.24 +N(0) 7.997e-07 + N2 3.998e-07 4.092e-07 -6.398 -6.388 0.010 29.29 +N(3) 3.352e-13 + NO2- 3.352e-13 2.525e-13 -12.475 -12.598 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.972e-02 Na+ 9.972e-02 7.828e-02 -1.001 -1.106 -0.105 -1.09 NaOH 2.440e-20 2.497e-20 -19.613 -19.603 0.010 (0) -O(0) 1.998e-06 - O2 9.990e-07 1.022e-06 -6.000 -5.990 0.010 30.40 +O(0) 1.997e-06 + O2 9.987e-07 1.022e-06 -6.001 -5.991 0.010 30.40 Zn 9.832e-05 Zn+2 9.830e-05 3.697e-05 -4.007 -4.432 -0.425 -24.68 ZnOH+ 1.636e-08 1.278e-08 -7.786 -7.894 -0.107 (0) @@ -2587,7 +2588,7 @@ Hfo_w pH = 5.750 Charge balance pe = 14.237 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9859 + Specific Conductance (µS/cm, 25°C) = 9911 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89479 @@ -2613,7 +2614,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -43.135 -43.125 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.313 -53.441 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -53.313 -53.441 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.945 -56.935 0.010 24.42 N(0) 5.751e-07 N2 2.876e-07 2.943e-07 -6.541 -6.531 0.010 29.29 @@ -2725,7 +2726,7 @@ Hfo_w pH = 6.000 Charge balance pe = 13.952 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9860 + Specific Conductance (µS/cm, 25°C) = 9911 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89479 @@ -2751,7 +2752,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -43.063 -43.053 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.527 -53.655 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -53.527 -53.655 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.909 -56.899 0.010 24.42 N(0) 4.139e-07 N2 2.070e-07 2.118e-07 -6.684 -6.674 0.010 29.29 @@ -2863,7 +2864,7 @@ Hfo_w pH = 6.250 Charge balance pe = 13.666 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9860 + Specific Conductance (µS/cm, 25°C) = 9912 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -2889,7 +2890,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.992 -42.982 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.741 -53.869 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -53.741 -53.869 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.874 -56.864 0.010 24.42 N(0) 2.979e-07 N2 1.490e-07 1.524e-07 -6.827 -6.817 0.010 29.29 @@ -3001,7 +3002,7 @@ Hfo_w pH = 6.500 Charge balance pe = 13.380 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9860 + Specific Conductance (µS/cm, 25°C) = 9912 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -3025,21 +3026,21 @@ Hfo_w OH- 4.189e-08 3.190e-08 -7.378 -7.496 -0.118 -3.73 H2O 5.551e+01 9.966e-01 1.744 -0.001 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.921 -42.910 0.010 28.61 + H2 0.000e+00 0.000e+00 -42.920 -42.910 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.955 -54.084 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -53.955 -54.083 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.838 -56.828 0.010 24.42 -N(0) 2.145e-07 - N2 1.072e-07 1.097e-07 -6.970 -6.960 0.010 29.29 -N(3) 6.471e-13 - NO2- 6.471e-13 4.875e-13 -12.189 -12.312 -0.123 25.24 +N(0) 2.146e-07 + N2 1.073e-07 1.098e-07 -6.969 -6.959 0.010 29.29 +N(3) 6.472e-13 + NO2- 6.472e-13 4.875e-13 -12.189 -12.312 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.978e-02 Na+ 9.978e-02 7.833e-02 -1.001 -1.106 -0.105 -1.09 NaOH 2.442e-19 2.499e-19 -18.612 -18.602 0.010 (0) -O(0) 5.359e-07 - O2 2.679e-07 2.742e-07 -6.572 -6.562 0.010 30.40 +O(0) 5.358e-07 + O2 2.679e-07 2.741e-07 -6.572 -6.562 0.010 30.40 Zn 9.075e-05 Zn+2 9.059e-05 3.407e-05 -4.043 -4.468 -0.425 -24.68 ZnOH+ 1.507e-07 1.177e-07 -6.822 -6.929 -0.107 (0) @@ -3139,7 +3140,7 @@ Hfo_w pH = 6.750 Charge balance pe = 13.094 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9861 + Specific Conductance (µS/cm, 25°C) = 9912 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -3165,18 +3166,18 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.849 -42.839 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -54.169 -54.297 -0.128 18.17 - NH3 0.000e+00 0.000e+00 -56.802 -56.792 0.010 24.42 -N(0) 1.545e-07 - N2 7.727e-08 7.907e-08 -7.112 -7.102 0.010 29.29 + NH4+ 0.000e+00 0.000e+00 -54.169 -54.297 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -56.801 -56.791 0.010 24.42 +N(0) 1.546e-07 + N2 7.731e-08 7.911e-08 -7.112 -7.102 0.010 29.29 N(3) 7.630e-13 - NO2- 7.630e-13 5.748e-13 -12.117 -12.240 -0.123 25.24 + NO2- 7.630e-13 5.749e-13 -12.117 -12.240 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.980e-02 Na+ 9.980e-02 7.835e-02 -1.001 -1.106 -0.105 -1.09 NaOH 4.343e-19 4.444e-19 -18.362 -18.352 0.010 (0) -O(0) 3.855e-07 +O(0) 3.854e-07 O2 1.927e-07 1.972e-07 -6.715 -6.705 0.010 30.40 Zn 8.484e-05 Zn+2 8.458e-05 3.181e-05 -4.073 -4.497 -0.425 -24.68 @@ -3277,7 +3278,7 @@ Hfo_w pH = 7.000 Charge balance pe = 12.809 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9861 + Specific Conductance (µS/cm, 25°C) = 9913 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -3303,7 +3304,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.778 -42.768 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -54.384 -54.512 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -54.384 -54.512 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.767 -56.757 0.010 24.42 N(0) 1.110e-07 N2 5.552e-08 5.682e-08 -7.256 -7.246 0.010 29.29 @@ -3415,7 +3416,7 @@ Hfo_w pH = 7.250 Charge balance pe = 12.523 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9861 + Specific Conductance (µS/cm, 25°C) = 9913 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -3426,7 +3427,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -2.512e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 - Iterations = 23 + Iterations = 25 Total H = 1.110125e+02 Total O = 5.580627e+01 @@ -3441,19 +3442,19 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.706 -42.696 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -54.598 -54.727 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -54.599 -54.727 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.731 -56.721 0.010 24.42 -N(0) 7.993e-08 - N2 3.997e-08 4.090e-08 -7.398 -7.388 0.010 29.29 +N(0) 7.992e-08 + N2 3.996e-08 4.089e-08 -7.398 -7.388 0.010 29.29 N(3) 1.060e-12 - NO2- 1.060e-12 7.985e-13 -11.975 -12.098 -0.123 25.24 + NO2- 1.060e-12 7.984e-13 -11.975 -12.098 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.985e-02 Na+ 9.985e-02 7.839e-02 -1.001 -1.106 -0.105 -1.09 NaOH 1.374e-18 1.406e-18 -17.862 -17.852 0.010 (0) O(0) 1.998e-07 - O2 9.989e-08 1.022e-07 -7.000 -6.990 0.010 30.40 + O2 9.990e-08 1.022e-07 -7.000 -6.990 0.010 30.40 Zn 6.248e-05 Zn+2 6.181e-05 2.325e-05 -4.209 -4.634 -0.425 -24.68 ZnOH+ 5.783e-07 4.517e-07 -6.238 -6.345 -0.107 (0) @@ -3553,7 +3554,7 @@ Hfo_w pH = 7.500 Charge balance pe = 12.237 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9861 + Specific Conductance (µS/cm, 25°C) = 9913 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -3579,10 +3580,10 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.635 -42.625 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -54.812 -54.940 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -54.812 -54.940 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.695 -56.685 0.010 24.42 -N(0) 5.760e-08 - N2 2.880e-08 2.947e-08 -7.541 -7.531 0.010 29.29 +N(0) 5.759e-08 + N2 2.879e-08 2.947e-08 -7.541 -7.531 0.010 29.29 N(3) 1.250e-12 NO2- 1.250e-12 9.414e-13 -11.903 -12.026 -0.123 25.24 N(5) 1.000e-01 @@ -3591,7 +3592,7 @@ Na 9.988e-02 Na+ 9.988e-02 7.841e-02 -1.001 -1.106 -0.105 -1.09 NaOH 2.444e-18 2.501e-18 -17.612 -17.602 0.010 (0) O(0) 1.437e-07 - O2 7.185e-08 7.353e-08 -7.144 -7.134 0.010 30.40 + O2 7.186e-08 7.353e-08 -7.144 -7.134 0.010 30.40 Zn 4.944e-05 Zn+2 4.841e-05 1.821e-05 -4.315 -4.740 -0.425 -24.68 ZnOH+ 8.055e-07 6.292e-07 -6.094 -6.201 -0.107 (0) @@ -3690,8 +3691,8 @@ Hfo_w ----------------------------Description of solution---------------------------- pH = 7.750 Charge balance - pe = 11.951 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9862 + pe = 11.952 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 9914 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -3702,7 +3703,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -2.080e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 - Iterations = 23 + Iterations = 25 Total H = 1.110126e+02 Total O = 5.580632e+01 @@ -3717,19 +3718,19 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.563 -42.553 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -55.025 -55.153 -0.128 18.17 - NH3 0.000e+00 0.000e+00 -56.657 -56.647 0.010 24.42 -N(0) 4.167e-08 - N2 2.083e-08 2.132e-08 -7.681 -7.671 0.010 29.29 -N(3) 1.475e-12 - NO2- 1.475e-12 1.111e-12 -11.831 -11.954 -0.123 25.24 + NH4+ 0.000e+00 0.000e+00 -55.027 -55.155 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -56.659 -56.649 0.010 24.42 +N(0) 4.139e-08 + N2 2.070e-08 2.118e-08 -7.684 -7.674 0.010 29.29 +N(3) 1.473e-12 + NO2- 1.473e-12 1.109e-12 -11.832 -11.955 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.991e-02 Na+ 9.991e-02 7.844e-02 -1.000 -1.105 -0.105 -1.09 NaOH 4.348e-18 4.449e-18 -17.362 -17.352 0.010 (0) -O(0) 1.032e-07 - O2 5.161e-08 5.281e-08 -7.287 -7.277 0.010 30.40 +O(0) 1.035e-07 + O2 5.174e-08 5.295e-08 -7.286 -7.276 0.010 30.40 Zn 3.752e-05 Zn+2 3.594e-05 1.352e-05 -4.444 -4.869 -0.425 -24.68 ZnOH+ 1.063e-06 8.307e-07 -5.973 -6.081 -0.107 (0) @@ -3745,7 +3746,7 @@ Zn 3.752e-05 H2(g) -39.45 -42.55 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O N2(g) -4.50 -7.67 -3.18 N2 - NH3(g) -58.44 -56.65 1.80 NH3 + NH3(g) -58.45 -56.65 1.80 NH3 O2(g) -4.38 -7.28 -2.89 O2 Zn(OH)2(e) -0.87 10.63 11.50 Zn(OH)2 @@ -3829,7 +3830,7 @@ Hfo_w pH = 8.000 Charge balance pe = 11.666 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9862 + Specific Conductance (µS/cm, 25°C) = 9914 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 @@ -3840,7 +3841,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -1.854e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 - Iterations = 25 + Iterations = 24 Total H = 1.110127e+02 Total O = 5.580635e+01 @@ -3855,7 +3856,7 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.492 -42.482 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -55.241 -55.369 -0.128 18.17 + NH4+ 0.000e+00 0.000e+00 -55.241 -55.369 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.624 -56.614 0.010 24.42 N(0) 2.979e-08 N2 1.490e-08 1.524e-08 -7.827 -7.817 0.010 29.29 @@ -3866,8 +3867,8 @@ N(5) 1.000e-01 Na 9.993e-02 Na+ 9.993e-02 7.845e-02 -1.000 -1.105 -0.105 -1.09 NaOH 7.734e-18 7.914e-18 -17.112 -17.102 0.010 (0) -O(0) 7.448e-08 - O2 3.724e-08 3.811e-08 -7.429 -7.419 0.010 30.40 +O(0) 7.447e-08 + O2 3.724e-08 3.810e-08 -7.429 -7.419 0.010 30.40 Zn 2.762e-05 Zn+2 2.514e-05 9.458e-06 -4.600 -5.024 -0.425 -24.68 ZnOH+ 1.323e-06 1.033e-06 -5.878 -5.986 -0.107 (0) diff --git a/ex8.sel b/ex8.sel index 133aaa03..0ddfff4f 100644 --- a/ex8.sel +++ b/ex8.sel @@ -12,16 +12,16 @@ 15 react 1 -99 0 1 7.5 12.2374 -99 25.000 3.80557e-07 0.0999953 1 -1.01328e-05 -0.00506665 1.1918e-09 4.0447e-09 9.4738e-08 16 react 1 -99 0 1 7.75 11.9517 -99 25.000 7.23295e-07 0.0999982 1 -4.96214e-06 -0.00248112 4.2167e-10 4.0771e-09 9.5483e-08 17 react 1 -99 0 1 8 11.666 -99 25.000 1.3124e-06 0.100001 1 -1.7871e-08 -8.9354e-06 1.4817e-10 4.0887e-09 9.5749e-08 - 20 react 2 -99 0 1 5 15.0945 -99 25.000 -1.21096e-05 0.100042 0.999998 -0.000112354 -0.0562096 9.9686e-05 1.3167e-08 2.9577e-07 + 20 react 2 -99 0 1 5 15.0946 -99 25.000 -1.21096e-05 0.100042 0.999998 -0.000112354 -0.0562096 9.9686e-05 1.3167e-08 2.9577e-07 21 react 2 -99 0 1 5.25 14.8088 -99 25.000 -6.80176e-06 0.10005 0.999998 -9.68903e-05 -0.0484692 9.9221e-05 3.6026e-08 7.3398e-07 22 react 2 -99 0 1 5.5 14.5231 -99 25.000 -3.81085e-06 0.100056 0.999998 -8.25933e-05 -0.041314 9.8302e-05 9.7147e-08 1.5849e-06 23 react 2 -99 0 1 5.75 14.2374 -99 25.000 -2.1182e-06 0.100062 0.999999 -6.96993e-05 -0.034862 9.6949e-05 2.5852e-07 2.7639e-06 - 24 react 2 -99 0 1 6 13.9517 -99 25.000 -1.14729e-06 0.100066 0.999999 -5.82071e-05 -0.0291122 9.5439e-05 6.8198e-07 3.8284e-06 + 24 react 2 -99 0 1 6 13.9517 -99 25.000 -1.14729e-06 0.100066 0.999999 -5.82072e-05 -0.0291122 9.5439e-05 6.8198e-07 3.8284e-06 25 react 2 -99 0 1 6.25 13.666 -99 25.000 -5.67452e-07 0.100069 0.999999 -4.8109e-05 -0.0240603 9.3655e-05 1.7788e-06 4.4775e-06 26 react 2 -99 0 1 6.5 13.3802 -99 25.000 -1.82222e-07 0.100071 1 -3.95664e-05 -0.0197871 9.0590e-05 4.4736e-06 4.7812e-06 27 react 2 -99 0 1 6.75 13.0945 -99 25.000 1.33839e-07 0.100068 1 -3.28749e-05 -0.0164401 8.4578e-05 1.0254e-05 4.9050e-06 28 react 2 -99 0 1 7 12.8088 -99 25.000 4.7235e-07 0.10006 1 -2.81879e-05 -0.0140959 7.4599e-05 2.0021e-05 4.9534e-06 29 react 2 -99 0 1 7.25 12.5231 -99 25.000 9.25371e-07 0.100049 1 -2.51184e-05 -0.0125608 6.1808e-05 3.2551e-05 4.9732e-06 30 react 2 -99 0 1 7.5 12.2374 -99 25.000 1.63108e-06 0.100037 1 -2.28778e-05 -0.0114402 4.8410e-05 4.5580e-05 4.9823e-06 - 31 react 2 -99 0 1 7.75 11.9514 -99 25.000 2.83165e-06 0.100026 1 -2.08025e-05 -0.0104023 3.5937e-05 5.7490e-05 4.9870e-06 + 31 react 2 -99 0 1 7.75 11.9517 -99 25.000 2.83165e-06 0.100026 1 -2.08025e-05 -0.0104023 3.5937e-05 5.7490e-05 4.9870e-06 32 react 2 -99 0 1 8 11.666 -99 25.000 4.94809e-06 0.100017 1 -1.85413e-05 -0.00927139 2.5143e-05 6.7388e-05 4.9897e-06 diff --git a/ex9.out b/ex9.out index 23b36fe8..431aa3d0 100644 --- a/ex9.out +++ b/ex9.out @@ -13,6 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + CALCULATE_VALUES RATES END ------------------------------------ @@ -178,7 +179,7 @@ Initial solution 1. pH = 7.000 pe = 13.629 Equilibrium with O2(g) - Specific Conductance (µS/cm, 25°C) = 1192 + Specific Conductance (µS/cm, 25°C) = 1190 Density (g/cm³) = 0.99747 Volume (L) = 1.00315 Viscosity (mPa s) = 0.89124 @@ -187,7 +188,7 @@ Initial solution 1. Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 2.310e-07 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.834e-18 + Electrical balance (eq) = 5.948e-19 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 9 Total H = 1.110124e+02 @@ -270,7 +271,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -2.669e-07 pH = 6.045 Charge balance pe = 14.585 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 1192 + Specific Conductance (µS/cm, 25°C) = 1191 Density (g/cm³) = 0.99747 Volume (L) = 1.00315 Viscosity (mPa s) = 0.89124 @@ -279,7 +280,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -2.669e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.298e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = 8.157e-16 + Electrical balance (eq) = 8.244e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 208 (195 overall) Total H = 1.110124e+02 @@ -371,7 +372,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -1.858e-07 pH = 5.807 Charge balance pe = 14.823 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 1192 + Specific Conductance (µS/cm, 25°C) = 1191 Density (g/cm³) = 0.99747 Volume (L) = 1.00315 Viscosity (mPa s) = 0.89124 @@ -380,7 +381,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -1.858e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 2.041e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = 8.186e-16 + Electrical balance (eq) = 8.307e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 27 Total H = 1.110124e+02 @@ -472,7 +473,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.073e-07 pH = 5.522 Charge balance pe = 15.107 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 1193 + Specific Conductance (µS/cm, 25°C) = 1192 Density (g/cm³) = 0.99747 Volume (L) = 1.00315 Viscosity (mPa s) = 0.89124 @@ -481,7 +482,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.073e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 3.670e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = 9.113e-16 + Electrical balance (eq) = 9.165e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 67 Total H = 1.110124e+02 @@ -573,7 +574,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.928e-07 pH = 5.324 Charge balance pe = 15.305 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 1194 + Specific Conductance (µS/cm, 25°C) = 1192 Density (g/cm³) = 0.99747 Volume (L) = 1.00315 Viscosity (mPa s) = 0.89124 @@ -582,7 +583,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.928e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 5.641e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = 6.893e-15 + Electrical balance (eq) = 6.899e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 26 Total H = 1.110124e+02 @@ -674,7 +675,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.731e-07 pH = 5.195 Charge balance pe = 15.435 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 1194 + Specific Conductance (µS/cm, 25°C) = 1193 Density (g/cm³) = 0.99747 Volume (L) = 1.00315 Viscosity (mPa s) = 0.89124 @@ -775,7 +776,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -6.071e-07 pH = 5.072 Charge balance pe = 15.557 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 1195 + Specific Conductance (µS/cm, 25°C) = 1194 Density (g/cm³) = 0.99747 Volume (L) = 1.00315 Viscosity (mPa s) = 0.89124 @@ -784,7 +785,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -6.071e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 9.960e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = 6.916e-15 + Electrical balance (eq) = 6.927e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 24 Total H = 1.110124e+02 @@ -876,7 +877,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -6.211e-07 pH = 4.976 Charge balance pe = 15.653 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 1196 + Specific Conductance (µS/cm, 25°C) = 1194 Density (g/cm³) = 0.99747 Volume (L) = 1.00314 Viscosity (mPa s) = 0.89124 @@ -885,7 +886,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -6.211e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.244e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = 6.904e-15 + Electrical balance (eq) = 6.924e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 23 Total H = 1.110124e+02 @@ -977,7 +978,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -7.790e-07 pH = 4.882 Charge balance pe = 15.748 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 1197 + Specific Conductance (µS/cm, 25°C) = 1195 Density (g/cm³) = 0.99747 Volume (L) = 1.00314 Viscosity (mPa s) = 0.89124 @@ -986,7 +987,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -7.790e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.556e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = 6.902e-15 + Electrical balance (eq) = 6.927e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 23 Total H = 1.110124e+02 @@ -1078,7 +1079,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -5.440e-07 pH = 4.827 Charge balance pe = 15.803 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 1197 + Specific Conductance (µS/cm, 25°C) = 1196 Density (g/cm³) = 0.99747 Volume (L) = 1.00314 Viscosity (mPa s) = 0.89124 @@ -1087,7 +1088,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -5.440e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.774e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.314e-14 + Electrical balance (eq) = 5.316e-14 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 20 Total H = 1.110124e+02 @@ -1179,7 +1180,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.315e-07 pH = 4.788 Charge balance pe = 15.842 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 1198 + Specific Conductance (µS/cm, 25°C) = 1197 Density (g/cm³) = 0.99747 Volume (L) = 1.00314 Viscosity (mPa s) = 0.89124 @@ -1188,7 +1189,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.315e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.946e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.623e-14 + Electrical balance (eq) = 5.627e-14 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 20 Total H = 1.110124e+02 @@ -1280,7 +1281,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -3.633e-07 pH = 4.758 Charge balance pe = 15.871 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 1198 + Specific Conductance (µS/cm, 25°C) = 1197 Density (g/cm³) = 0.99747 Volume (L) = 1.00314 Viscosity (mPa s) = 0.89124 @@ -1289,7 +1290,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -3.633e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 2.091e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.664e-14 + Electrical balance (eq) = 5.669e-14 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 20 Total H = 1.110124e+02 From f100f492a5750d4998da1daa4a3e9b14b245a0e8 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Thu, 18 Apr 2024 21:17:18 +0000 Subject: [PATCH 143/384] Squashed 'phreeqcpp/' changes from 89d028d..0243c90 0243c90 Updated to build in vs2005 git-subtree-dir: phreeqcpp git-subtree-split: 0243c905af6767a3777640ad6b89de56ec5ab4b7 --- integrate.cpp | 2 +- transport.cpp | 12 ++++++------ 2 files changed, 7 insertions(+), 7 deletions(-) diff --git a/integrate.cpp b/integrate.cpp index f2123696..200909d2 100644 --- a/integrate.cpp +++ b/integrate.cpp @@ -1115,7 +1115,7 @@ calc_psi_avg(cxxSurfaceCharge *charge_ptr, LDBLE surf_chrg_eq, LDBLE nDbl, LDBLE { if (!surf_ptr->Donnan_factors.empty()) { - std::copy(std::begin(surf_ptr->Donnan_factors), std::end(surf_ptr->Donnan_factors), cgc); + std::copy(surf_ptr->Donnan_factors.begin(), surf_ptr->Donnan_factors.end(), cgc); z1 = cgc[0]; z2 = cgc[1]; z_1 = cgc[2]; diff --git a/transport.cpp b/transport.cpp index d6b0535c..109fd662 100644 --- a/transport.cpp +++ b/transport.cpp @@ -6089,8 +6089,8 @@ viscosity(cxxSurface *surf_ptr) s_charge_p = surf_ptr->Get_surface_charges()[i1]; l_water = s_charge_p.Get_mass_water(); z_g_map.insert(s_charge_p.Get_z_gMCD_map().begin(), s_charge_p.Get_z_gMCD_map().end()); - for (auto& x : z_g_map) - x.second *= ratio_surf_aq; + for (std::map::iterator x = z_g_map.begin(); x != z_g_map.end(); ++x) + x->second *= ratio_surf_aq; } else { @@ -6099,11 +6099,11 @@ viscosity(cxxSurface *surf_ptr) for (i = 1; i < i1_last - 1; i++) { s_charge_p = surf_ptr->Get_surface_charges()[i]; - for (auto& x : z_g_map) - x.second += s_charge_p.Get_z_gMCD_map()[x.first]; + for (std::map::iterator x = z_g_map.begin(); x != z_g_map.end(); ++x) + x->second += s_charge_p.Get_z_gMCD_map()[x->first]; } - for (auto& x : z_g_map) - x.second *= ratio_surf_aq; + for (std::map::iterator x = z_g_map.begin(); x != z_g_map.end(); ++x) + x->second *= ratio_surf_aq; l_water = mass_water_surfaces_x; } l_mu_x = eq_plus = eq_min = 0; From 543816f06554e10d30dee0398ca1f66b9fbbcd27 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Fri, 19 Apr 2024 17:52:24 -0600 Subject: [PATCH 144/384] added Kinec.v2.dat and updated RELEASE.TXT --- RELEASE.TXT | 14 ++++++++++++++ 1 file changed, 14 insertions(+) diff --git a/RELEASE.TXT b/RELEASE.TXT index 53a367d7..6f0817d7 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,4 +1,18 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + + + ----------------- + April 19, 2024 + ----------------- + DATABASE: Kinec.v2.dat is a new llnl.dat style database from the + CarbFix2 and GECO projects that is included in new distributions of + PHREEQC. This database contains the parameters for calculating mineral + dissolution rates for primary and secondary silicate minerals using the + equations and parameters reported by Hermanska et al. (2022, 2023) + and dissolution rates for other non-silicate mineral systems using the + equations and parameters reported by Oelkers and Addassi (2024, in + preparation). + ----------------- April 15, 2024 ----------------- From b6ecf248211125f1b216fa1a12412b3b8f04ad1b Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Fri, 19 Apr 2024 17:52:24 -0600 Subject: [PATCH 145/384] added Kinec.v2.dat and updated RELEASE.TXT --- Kinec.v2.dat | 12039 +++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 12039 insertions(+) create mode 100644 Kinec.v2.dat diff --git a/Kinec.v2.dat b/Kinec.v2.dat new file mode 100644 index 00000000..3b7166ba --- /dev/null +++ b/Kinec.v2.dat @@ -0,0 +1,12039 @@ +# KINEC.v2.dat - last edited April 18, 2024 by MA and EHO. +# +# This database contains the parameters for calculating mineral dissolution rates for primary and secondary silicate minerals using the equations and parameters reported by Hermanska et al. (2022, 2023), +# and dissolution rates for other non)-silicate mineral systems using the equations and parameters reported by Oelkers and Addassi (2024, in preparation). +# +# This database contains thermodynamic properties from the Carbfix.dat (Voigt et al., 2018) and the llnl.dat database. +# The thermodynamic data for Gaspite, Variscite were taken from https://thermoddem.brgm.fr/ and Monazite-Ce was extracte from (A.P. Gysi et al. / Geochimica et Cosmochimica Acta 242 (2018)) +# +# Several solid solutions have been added to the kinetics database to allow calculation of the release of metals from solid solutions. The solubilities of these solid solutions are based on the ideal mechanical mixing of the endmembers. These solid solutions are indicated in the kinetic part of the database by the suffix: _ss +# +#----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- +# README for the RATES blocks in the Kinec.v2.dat file + + +# Reference literature for derived kinetic fits can be found in Hermanska et al. (2022, 2003) and Oelkers and Addassi (2024, in preparation), along with pH and temperature conditions. Note the rated of minerals glauconite and struvite were not added to the current database due to lack of thermodynamic data. +# The uncertainties associated with the dissolution rates generated using this database have been described in original manuscripts, and caution should be taken when using rates extrapolated well beyond the limits of the available experimental data. + +# Below is a minimal example for such a KINETICS block, explaining the different parameters specific to KINEC.v2.dat. Other parameters can be specified as explained in the PHREEQC documentation. + +#------------------------------------------------ +##Example data block for mineral end-members: + +#KINETICS +#Albite # Name of the mineral +# -m0 1e-3 # Initial moles of mineral +# -parms 0 100 0 0 # Four parameters as explained below + +##Example data block for selected mineral solid solutions (the identntity of the solid solutions are listed in Appendix in Hermanska et al. (2022)): + +#KINETICS +#Augite_ss # Name of the mineral +# -formula Mg0.45Fe0.275Ca0.275SiO3 1 # Mineral formula ! must be added to run solid solutions. +# -m0 100 # Initial moles of mineral +# -parms 0 0.0088183 0 2 # Four parameters as explained below + +#------------------------------------------------ +#Parameters: +#Four parameters are necessary when using rates from Kenec.dat: + +# - The first parameter specifies if the specific surface area is entered as m2 per g of rock (0) or m2 per kg of water (1) + +# - The second parameter specifies the specific surface area of the mineral (in m2/g or m2/kgw depending on the choice of the first parameter) + +# - The third parameters define how the surface area changes during dissolution and has three possible values. This option is only available when the first parameter is 0. If the first parameter is 1, the surface area is always constant. +# 0: The surface area changes linearly with the moles of the mineral present +# 1: The surface area changes according to the geometry of dissolving cubes or spheres + +#- The fourth parameter specifies the dissolution and precipitation option +# 0: allow dissolution and precipitation +# 1: allow precipitation only +# 2: allow dissolution only +#----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- +# +# References for KINEC.v2.dat database description: +#Hermanska M., Voigt M. J., Marieni C., Declercq J., and Oelkers E. H. (2022) A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology. 597, 120807. https://doi.org/10.1016/j.chemgeo.2022.120807 +# +#Hermanska M., Voigt M. J., Marieni C., Declercq J., and Oelkers E. H. (2023) A comprehensive and internally consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chemical Geology. 636, 121632 https://doi.org/10.1016/j.chemgeo.2023.121632 +# +# and +# +# Oelkers, E.H., Addassi, M. 2024. A comprehensive and internally consistent mineral dissolution rate database: Part III: Non-silicate minerals including carbonate, sulfide, phosphate, halide, and oxy-hydroxide minerals. (in preparation) +# ***the thermodynamic database is described below ******************* + +# +LLNL_AQUEOUS_MODEL_PARAMETERS +-temperatures + 0.01 25 60 100 + 150 200 250 300 +#debye huckel a (adh) +-dh_a + 0.4939 0.5114 0.5465 0.5995 + 0.6855 0.7994 0.9593 1.2180 +#debye huckel b (bdh) +-dh_b + 0.3253 0.3288 0.3346 0.3421 + 0.3525 0.3639 0.3766 0.3925 +-bdot + 0.0374 0.0410 0.0438 0.0460 + 0.0470 0.0470 0.0340 0 +#cco2 (coefficients for the Drummond (1981) polynomial) +-co2_coefs + -1.0312 0.0012806 + 255.9 0.4445 + -0.001606 + +SOLUTION_MASTER_SPECIES + +#element species alk gfw_formula element_gfw + +Al Al+3 0 Al 26.9815 +Alkalinity HCO3- 1 Ca0.5(CO3)0.5 50.05 +B B(OH)3 0 B 10.811 +B(3) B(OH)3 0 B -36.44179 +Ba Ba+2 0 Ba 137.3270 +C(-4) CH4 0 CH4 -33.31051 +C(-3) C2H6 0 C2H6 -30.54674 +C(-2) C2H4 0 C2H4 -28.08539 +C HCO3- 1 HCO3 12.011 +C(+2) CO 0 C -23.87691 +C(+4) HCO3- 1 HCO3 -22.05727 +Ca Ca+2 0 Ca 40.078 +Ce Ce+3 0 Ce 140.115 +Ce(+2) Ce+2 0 Ce +Ce(+3) Ce+3 0 Ce +Ce(+4) Ce+4 0 Ce +Cl Cl- 0 Cl 35.4527 +Cl(-1) Cl- 0 Cl -17.43358 +Cl(1) ClO- 0 Cl -16.11094 +Cl(3) ClO2- 0 Cl -14.87484 +Cl(5) ClO3- 0 Cl -13.71476 +Cl(7) ClO4- 0 Cl +Co Co+2 0 Co 58.9332 +Co(+2) Co+2 0 Co +Co(+3) Co+3 0 Co +Cr CrO4-2 0 CrO4-2 51.9961 +Cr(+2) Cr+2 0 Cr +Cr(+3) Cr+3 0 Cr +Cr(+6) CrO4-2 0 Cr +Cd Cd+2 0 Cd 112.411 +Cu Cu+2 0 Cu 63.546 +Cu(+1) Cu+1 0 Cu +Cu(+2) Cu+2 0 Cu +E e- 0 0 0 +Eu Eu+3 0 Eu 151.965 +Eu(+2) Eu+2 0 Eu +Eu(+3) Eu+3 0 Eu +F F- 0 F 18.9984 +Fe Fe+2 0 Fe 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2 Fe +Gd Gd+3 0 Gd 157.25 +Gd(+3) Gd+3 0 Gd +H H+ -1 H 1.0079 +H(0) H2 0 H +H(+1) H+ -1 0 +K K+ 0 K 39.0983 +Li Li+ 0 Li 6.941 +Mg Mg+2 0 Mg 24.305 +Mn Mn+2 0 Mn 54.938 +Mn(+2) Mn+2 0 Mn +Mn(+3) Mn+3 0 Mn +Mn(+6) MnO4-2 0 Mn +Mn(+7) MnO4- 0 Mn +Mo MoO4-2 0 Mo 95.94 +N NH3 1 N 14.0067 +N(-3) NH3 1 N +N(0) N2 0 N +N(+3) NO2- 0 N +N(+5) NO3- 0 N +Na Na+ 0 Na 22.9898 +Ni Ni+2 0 Ni 58.69 +O H2O 0 O 15.994 +O(-2) H2O 0 0 +O(0) O2 0 O +P HPO4-2 2 P 30.9738 +P(5) HPO4-2 2 P +Pb Pb+2 0 Pb 207.20 +Pb(+2) Pb+2 0 Pb +Pb(+4) Pb+4 0 Pb +S SO4-2 0 SO4 32.066 +S(-2) HS- 1 S +S(+2) S2O3-2 0 S +S(+3) S2O4-2 0 S +S(+4) SO3-2 0 S +S(+5) S2O5-2 0 S +S(+6) SO4-2 0 SO4 +S(+7) S2O8-2 0 S +S(+8) HSO5- 0 S +Sc Sc+3 0 Sc 44.9559 +Si SiO2 0 SiO2 28.0855 +Sm Sm+3 0 Sm 150.36 +Sm(+2) Sm+2 0 Sm +Sm(+3) Sm+3 0 Sm +Sr Sr+2 0.0 Sr 87.62 +Th Th+4 0 Th 232.0381 +Ti Ti(OH)4 0 Ti 47.88 +U UO2+2 0 U 238.0289 +U(+3) U+3 0 U +U(+4) U+4 0 U +U(+5) UO2+ 0 U +U(+6) UO2+2 0 U +Zn Zn+2 0 Zn 65.39 + + + +SOLUTION_SPECIES + +#------------------ +# 31 basis species +#------------------ + +Al+3 = Al+3 + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -128.681 kcal/mol + -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # APP14, BH86 + +B(OH)3 = B(OH)3 + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -256.82 kcal/mol + -Vm 7.0643 8.847 3.5844 -3.1451 -0.2 0 0 0 0 0 # SHS89 + +Ca+2 = Ca+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -129.8 kcal/mol + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # APP14 + +Cd+2 = Cd+2 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cd+2 +# Enthalpy of formation: -18.14 kcal/mol + +Cl- = Cl- + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -39.933 kcal/mol + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 # APP14 + +Co+2 = Co+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -13.9 kcal/mol + -Vm -1.2252 -8.9356 5.3191 -2.4095 1.47690 0 0 0 0 0 # SSW+97 + +CrO4-2 = CrO4-2 + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -210.6 kcal/mol + -Vm 5.4891 5.6223 3.5382 -3.0113 3.00240 0 0 0 0 0 # SSW+97 + +Cu+2 = Cu+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH 15.7 kcal/mol + -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 # APP14 + +e- = e- + +Eu+3 = Eu+3 + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -144.7 kcal/mol + -Vm -3.1037 -15.3599 11.7871 -2.144 2.3161 0 0 0 0 0 # SH88 + +F- = F- + -llnl_gamma 3.5000 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -80.15 kcal/mol + -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 # APP14 + +Fe+2 = Fe+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -22.05 kcal/mol + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 # APP14 + +Gd+3 = Gd+3 + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -164.2 kcal/mol + -Vm -2.9771 -15.0506 11.6656 -2.1568 2.3265 0 0 0 0 0 # SH88 + +H+ = H+ + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -0 kJ/mol + +HCO3- = HCO3- + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -164.898 kcal/mol + -Vm 7.5621 1.1505 1.2346 -2.8266 1.27330 0 0 0 0 0 # SH88 + +HPO4-2 = HPO4-2 + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -308.815 kcal/mol + -Vm 3.6315 1.0857 5.3233 -2.8239 3.33630 0 0 0 0 0 # SH88 + +K+ = K+ + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -60.27 kcal/mol + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 # APP14 + +Li+ = Li+ + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -66.552 kcal/mol + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # APP14, E68 + +Mg+2 = Mg+2 + -llnl_gamma 8 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -111.367 kcal/mol + -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 # APP14 + +Mn+2 = Mn+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -52.724 kcal/mol + -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # APP14 + +MoO4-2 = MoO4-2 + -llnl_gamma 4.5 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -238.5 kcal/mol + -Vm 6.9651 2.7095 18.6617 -2.8909 3.07770 0 0 0 0 0 # SSW+97 + +NH3 = NH3 + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -19.44 kcal/mol + -Vm 5.0911 2.797 8.6248 -2.8946 -7.690e-2 0 0 0 0 0 # SHS89 + +Na+ = Na+ + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -57.433 kcal/mol + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # APP14 + +Ni+2 = Ni+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -12.9 kcal/mol + -Vm -1.6942 -11.9181 10.4344 -2.2863 1.50670 0 0 0 0 0 # SH88 + +H2O = H2O + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -68.317 kcal/mol + +SO4-2 = SO4-2 + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -217.4 kcal/mol + -Vm 8.0 2.3 -46.04 6.245 3.82 0 0 0 0 1 # APP14 + +Sc+3 = Sc+3 + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -146.8 kcal/mol + -Vm -2.1109 -12.9294 10.817 -2.2444 2.5003 0 0 0 0 0 # SSW+97 + +SiO2 = SiO2 + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -209.775 kcal/mol + -Vm 1.9 1.7 20 -2.7 0.12910 0 0 0 0 0 # SHS89 + +Sm+3 = Sm+3 + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -165.2 kcal/mol + -Vm -3.2065 -15.6108 11.8857 -2.1337 2.2955 0 0 0 0 0 # SH88 + +Th+4 = Th+4 + -llnl_gamma 11 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -183.8 kcal/mol + -Vm -4.2886 -18.25 12.9154 -2.0244 3.70930 0 0 0 0 0 # SSW+97 + +Ti(OH)4 = Ti(OH)4 + -llnl_gamma 3 + log_k 0 +# deltafH -0 kcal/mol + -Vm 7.366874 10.21009 1.152964 -3.201004 0.01498566 0 0 0 0 0 # Ste01 + +UO2+2 = UO2+2 + -llnl_gamma 4.5 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -1019 kJ/mol + -Vm 3.0256 -4.1084 15.3326 -2.6091 1.40990 0 0 0 0 0 # SSW+97 + +Zn+2 = Zn+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -36.66 kcal/mol + -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 # APP14 + +Ba+2 = Ba+2 + -llnl_gamma 5.0 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ba+2 +# Enthalpy of formation: -128.5 kcal/mol + +Ce+3 = Ce+3 + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ce+3 +# Enthalpy of formation: -167.4 kcal/mol + +Pb+2 = Pb+2 + -llnl_gamma 4.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pb+2 +# Enthalpy of formation: 0.22 kcal/mol + +Sr+2 = Sr+2 + -llnl_gamma 5.0 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sr+2 +# Enthalpy of formation: -131.67 kcal/mol +#------------------- +# 40 Redox couples +#------------------- + +2H2O = O2 + 4H+ + 4e- + -CO2_llnl_gamma + log_k -85.9951 + -delta_H 559.543 kJ/mol +# deltafH -2.9 kcal/mol + -analytic 38.0229 7.99407e-3 -2.7655e4 -1.4506e1 199838.45 +# Range 0-350 + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 +# Extrapol supcrt92 +# Ref SHS89 + +SO4-2 + H+ = HS- + 2 O2 + -llnl_gamma 3.5 + log_k -138.3169 + -delta_H 869.226 kJ/mol +# deltafH -3.85 kcal/mol + -analytic 2.6251e1 3.9525e-2 -4.5443e4 -1.1107e1 3.1843e5 +# Range 0-350 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.44100 +# Extrapol supcrt92 +# Ref SH88 + +.5 O2 + 2 HS- = S2-2 + H2O + -llnl_gamma 4.0 + log_k 33.2673 +# deltafH -0 kcal/mol + -analytic 0.21730e2 -0.12307e-2 0.10098e5 -0.88813e1 0.15757e3 + -mass_balance S(-2)2 +# Range 0-350 + -Vm 5.5797 5.8426 3.4536 -3.0205 3.10830 +# Extrapol supcrt92 +# Ref SH88 + +2 H+ + 2 SO3-2 = S2O3-2 + O2 + H2O + -llnl_gamma 4.0 + log_k -40.2906 +# deltafH -0 kcal/mol + -analytic 0.77679e2 0.65761e-1 -0.15438e5 -0.34651e2 -0.24092e3 +# Range 0-350 + -Vm 6.6685 12.4951 -7.7281 -3.2955 2.96940 +# Extrapol supcrt92 +# Ref SH88 + +H+ + HCO3- + H2O = CH4 + 2 O2 + -llnl_gamma 3.0 + log_k -144.1412 + -delta_H 863.599 kJ/mol +# deltafH -21.01 kcal/mol + -analytic -0.41698e2 0.36584e-1 -0.40675e5 0.93479e1 -0.63468e3 +# Range 0-350 + -Vm 6.7617 8.7279 2.3212 -3.1397 -0.31790 +# Extrapol supcrt92 +# Ref SH90 + +2 H+ + 2 HCO3- + H2O = C2H6 + 3.5 O2 + -llnl_gamma 3.0 + log_k -228.6072 +# deltafH -0 kcal/mol + #analytic -0.10777e2 0.72105e-1 -0.67489e5 -0.13915e2 -0.10531e4 + -analytic -491.3 1.148 -10004 0 0 -8.06e-4 # !!! Using CHNOSZ, discrepant with above expression unless the first term is -0.10777e2 instead of 0.10777e2 +# Range 0-350 + -Vm 8.75 13.1051 1.6258 -3.3207 -0.06270 +# Extrapol supcrt92 +# Ref SH90 + +2 H+ + 2 HCO3- = C2H4 + 3 O2 + -llnl_gamma 3.0 + log_k -254.5034 + -delta_H 1446.6 kJ/mol +# deltafH 24.65 kcal/mol + #analytic -0.30329e2 0.71187e-1 -0.73140e5 + -analytic 6e-2 3.60e-2 -7.17e4 +# Range 0-350 + -Vm 7.856 12.6391 -1.8737 -3.3014 -0.4 +# Extrapol supcrt92 +# Ref SH90 + +HCO3- + H+ = CO + H2O + 0.5 O2 + -llnl_gamma 3.0 + log_k -41.7002 + -delta_H 277.069 kJ/mol +# deltafH -28.91 kcal/mol + -analytic 1.0028e2 4.6877e-2 -1.8062e4 -4.0263e1 3.8031e5 +# Range 0-350 + -Vm 6.2373 7.4498 2.8184 -3.0869 -0.37150 +# Extrapol supcrt92 +# Ref SM93 + +Cl- + 0.5 O2 = ClO- + -llnl_gamma 4.0 + log_k -15.1014 + -delta_H 66.0361 kJ/mol +# deltafH -25.6 kcal/mol + -analytic 6.1314e1 3.4812e-3 -6.0952e3 -2.3043e1 -9.5128e1 +# Range 0-350 + -Vm 2.3599 -2.0164 6.5356 -2.6955 1.47670 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +O2 + Cl- = ClO2- + -llnl_gamma 4.0 + log_k -23.108 + -delta_H 112.688 kJ/mol +# deltafH -15.9 kcal/mol + -analytic 3.3638e0 -6.1675e-3 -4.9726e3 -2.0467e0 -2.5769e5 +# Range 0-350 + -Vm 5.2163 4.958 3.7949 -2.9839 1.2637 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +1.5 O2 + Cl- = ClO3- + -llnl_gamma 3.5 + log_k -17.2608 + -delta_H 81.3077 kJ/mol +# deltafH -24.85 kcal/mol + -analytic 2.8852e1 -4.8281e-3 -4.6779e3 -1.0772e1 -2.0783e5 +# Range 0-350 + -Vm 7.1665 9.7172 1.9307 -3.1807 1.0418 +# Extrapol supcrt92 +# Ref SH88 + +2 O2 + Cl- = ClO4- + -llnl_gamma 3.5 + log_k -15.7091 + -delta_H 62.0194 kJ/mol +# deltafH -30.91 kcal/mol + -analytic 7.0280e1 -6.8927e-5 -5.5690e3 -2.6446e1 -1.6596e5 +# Range 0-350 + -Vm 8.1411 15.5654 -7.8077 -3.4224 0.9699 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +H+ + Co+2 + 0.25 O2 = Co+3 + 0.5 H2O + -llnl_gamma 5.0 + log_k -11.4845 + -delta_H 10.3198 kJ/mol +# deltafH 22 kcal/mol + -analytic -2.2827e1 -1.2222e-2 -7.2117e2 7.0306 -1.1247e1 +# Range 0-350 + -Vm -2.8678 -14.7777 11.5439 -2.1680 2.6901 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +4 H+ + CrO4-2 = Cr+2 + 2 H2O + O2 + -llnl_gamma 4.5 + log_k -21.6373 + -delta_H 153.829 kJ/mol +# deltafH -34.3 kcal/mol + -analytic 6.9003e1 6.2884e-2 -6.9847e3 -3.4720e1 -1.0901e2 +# Range 0-350 + -Vm -0.8036 -9.74 9.5688 -2.3762 1.4287 # SSW+97 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 76del/hal differ by 2 log K at 0C, 0.7 log K at 300C + +5 H+ + CrO4-2 = Cr+3 + 2.5 H2O + 0.75 O2 + -llnl_gamma 9.0 + log_k 8.3842 + -delta_H -81.0336 kJ/mol +# deltafH -57 kcal/mol + -analytic 5.1963e1 6.0932e-2 5.4256e3 -3.2290e1 8.4645e1 +# Range 0-350 + -Vm -2.7824 -14.5709 11.4661 -2.1765 2.7403 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 76del/hal differ by 1.5 log K at 0C, 0.8 log K at 300C + +Cu+2 + 0.5 H2O = Cu+ + H+ + 0.25 O2 + -llnl_gamma 4.0 + log_k -18.7704 + -delta_H 145.877 kJ/mol +# deltafH 17.132 kcal/mol + -analytic 3.7909e1 1.3731e-2 -8.1506e3 -1.3508e1 -1.2719e2 +# Range 0-350 + -Vm 0.807 -5.804 8.0165 -2.5390 0.40460 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +Eu+3 + 0.5 H2O = Eu+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -27.5115 + -delta_H 217.708 kJ/mol +# deltafH -126.1 kcal/mol + -analytic 3.0300e1 1.4126e-2 -1.2319e4 -9.0585e0 1.5289e5 +# Range 0-350 + -Vm 0.0407 -7.6776 8.7578 -2.4615 1.0929 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +H+ + Fe+2 + 0.25 O2 = Fe+3 + 0.5 H2O + -llnl_gamma 9.0 + log_k 8.4899 + -delta_H -97.209 kJ/mol +# deltafH -11.85 kcal/mol + -analytic -1.7808e1 -1.1753e-2 4.7609e3 5.5866 7.4295e1 +# Range 0-350 + -Vm -2.4256 -13.6961 11.1141 -2.2127 2.58120 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +H2O = H2 + 0.5 O2 + -CO2_llnl_gamma + log_k -46.1066 + -delta_H 275.588 kJ/mol +# deltafH -1 kcal/mol + -analytic 6.6835e1 1.7172e-2 -1.8849e4 -2.4092e1 4.2501e5 +# Range 0-350 + -Vm 5.1427 4.7758 3.8729 -2.9764 -0.209 +# Extrapol supcrt92 +# Ref SHS89 + +SO4-2 + H+ + 0.5 O2 = HSO5- + -llnl_gamma 4.0 + log_k -17.2865 + -delta_H 140.038 kJ/mol +# deltafH -185.38 kcal/mol + -analytic 5.9944e1 3.0904e-2 -7.7494e3 -2.4420e1 -1.2094e2 +# Range 0-350 + -Vm 8.9391 14.043 0.2349 -3.3594 0.86110 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +Mn+2 + H+ + 0.25 O2 = Mn+3 + 0.5 H2O + -llnl_gamma 5.0 + log_k -4.0811 + -delta_H -65.2892 kJ/mol +# deltafH -34.895 kcal/mol + -analytic 3.8873e1 1.7458e-2 2.0757e3 -2.2274e1 3.2378e1 +# Range 0-350 + -Vm -2.932 -14.934 11.6041 -2.1615 2.70250 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 76mac match + +2 H2O + O2 + Mn+2 = MnO4-2 + 4 H+ + -llnl_gamma 4.0 + log_k -32.4146 + -delta_H 151.703 kJ/mol +# deltafH -156 kcal/mol + -analytic -1.0407e1 -4.6464e-2 -1.0515e4 1.0943e1 -1.6408e2 +# Range 0-350 + -Vm 5.6596 6.0368 3.3786 -3.0285 2.98030 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 NH3 + 1.5 O2 = N2 + 3 H2O + -llnl_gamma 3.0 + log_k 116.4609 + -delta_H -687.08 kJ/mol +# deltafH -2.495 kcal/mol + -analytic -8.2621e1 -1.4671e-2 4.0068e4 2.9090e1 -2.5924e5 +# Range 0-350 + -Vm 6.2046 7.3685 2.8539 -3.0836 -0.34680 +# Extrapol supcrt92 +# Ref SHS89 + +1.5 O2 + NH3 = NO2- + H+ + H2O + -llnl_gamma 3.0 + log_k +46.8653 + -delta_H -290.901 kJ/mol +# deltafH -25 kcal/mol + -analytic -1.7011e1 -3.3459e-2 1.3999e4 1.1078e1 -4.8255e4 +# Range 0-350 + -Vm 5.5864 5.859 3.4472 -3.0212 1.18470 +# Extrapol supcrt92 +# Ref SH88 + +2 O2 + NH3 = NO3- + H+ + H2O + -llnl_gamma 3.0 + log_k 62.1001 + -delta_H -387.045 kJ/mol +# deltafH -49.429 kcal/mol + -analytic -3.9468e1 -3.9697e-2 2.0614e4 1.8872e1 -2.1917e5 +# Range 0-350 + -Vm 7.3161 6.7824 -4.6838 -3.0594 1.09770 +# Extrapol supcrt92 +# Ref SH88 + +2 H+ + 2 SO3-2 = S2O4-2 + .5 O2 + H2O + -llnl_gamma 5.0 + log_k -25.2076 +# deltafH -0 kcal/mol + -analytic -2.3172e2 2.0393e-3 -7.1011 8.3239e1 9.4155e-1 +# Range 0-350 + -Vm 6.6784 8.528 2.3917 -3.1314 2.87720 +# Extrapol supcrt92 +# Ref SSW+97 + +2 SO3-2 + .5 O2 + 2 H+ = S2O6-2 + H2O + -llnl_gamma 4.0 + log_k 41.8289 +# deltafH -0 kcal/mol + -analytic 0.14458e3 0.61449e-1 0.71877e4 -0.58657e2 0.11211e3 +# Range 0-350 + -Vm 8.2257 12.3054 0.9087 -3.2876 2.75870 +# Extrapol supcrt92 +# Ref SSW+97 + +2 SO3-2 + 1.5 O2 + 2 H+ = S2O8-2 + H2O + -llnl_gamma 4.0 + log_k 70.7489 +# deltafH -0 kcal/mol + -analytic 0.18394e3 0.60414e-1 0.13864e5 -0.71804e2 0.21628e3 +# Range 0-350 + -Vm 13.3622 24.8454 -4.0153 -3.8061 2.32810 +# Extrapol supcrt92 +# Ref SH88 + +O2 + H+ + 3 HS- = S3-2 + 2 H2O + -llnl_gamma 4.0 + log_k 79.3915 +# deltafH -0 kcal/mol + -analytic -0.51626e2 0.70208e-2 0.31797e5 0.11927e2 -0.64249e6 + -mass_balance S(-2)3 +# Range 0-350 + -Vm 6.7661 8.7396 2.315 -3.1403 2.97490 +# Extrapol supcrt92 +# Ref SH88 + +3 SO3-2 + 4 H+ = S3O6-2 + .5 O2 + 2 H2O + -llnl_gamma 4.0 + log_k -6.2316 +# deltafH -0 kcal/mol + -analytic 0.23664e3 0.12702 -0.10110e5 -0.99715e2 -0.15783e3 +# Range 0-350 + -Vm 8.4155 12.7691 0.7268 -3.3068 2.71310 +# Extrapol supcrt92 +# Ref SSW+97 + +1.5 O2 + 2 H+ + 4 HS- = S4-2 + 3 H2O + -llnl_gamma 4.0 + log_k 125.2958 +# deltafH -0 kcal/mol + -analytic 0.20875e3 0.58133e-1 0.33278e5 -0.85833e2 0.51921e3 + -mass_balance S(-2)4 +# Range 0-350 + -Vm 7.9381 11.6012 1.1902 -3.2586 2.83900 +# Extrapol supcrt92 +# Ref SH88 + +4 SO3-2 + 6 H+ = S4O6-2 + 1.5 O2 + 3 H2O + -llnl_gamma 4.0 + log_k -38.3859 +# deltafH -0 kcal/mol + -analytic 0.32239e3 0.19555 -0.23617e5 -0.13729e3 -0.36862e3 +# Range 0-350 + -Vm 10.2672 17.2902 -1.0502 -3.4937 2.28050 +# Extrapol supcrt92 +# Ref SSW+97 + +2 O2 + 3 H+ + 5 HS- = S5-2 + 4 H2O + -llnl_gamma 4.0 + log_k 170.9802 +# deltafH -0 kcal/mol + -analytic 0.30329e3 0.88033e-1 0.44739e5 -0.12471e3 0.69803e3 + -mass_balance S(-2)5 +# Range 0-350 + -Vm 9.1107 14.4645 0.0649 -3.3770 2.70510 +# Extrapol supcrt92 +# Ref SH88 + +5 SO3-2 + 8 H+ = S5O6-2 + 2.5 O2 + 4 H2O + -llnl_gamma 4.0 + log_k -99.4206 +# deltafH -0 kcal/mol + -analytic 0.42074e3 0.25833 -0.43878e5 -0.18178e3 -0.68480e3 +# Range 0-350 + -Vm 8.8725 13.8806 0.2986 -3.3527 2.60760 +# Extrapol supcrt92 +# Ref SSW+97 + +H+ + HCO3- + HS- + NH3 = SCN- + 3 H2O + -llnl_gamma 3.5 + log_k 3.0070 +# deltafH -0 kcal/mol + -analytic 0.16539e3 0.49623e-1 -0.44624e4 -0.65544e2 -0.69680e2 +# Range 0-350 + -Vm 7.0244 9.3687 2.0708 -3.1662 1.10730 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +SO4-2 = SO3-2 + 0.5 O2 + -llnl_gamma 4.5 + log_k -46.6244 + -delta_H 267.985 kJ/mol +# deltafH -151.9 kcal/mol + -analytic -1.3771e1 6.5102e-4 -1.3330e4 4.7164 -2.0800e2 +# Range 0-350 + -Vm 2.4632 -1.7691 6.4494 -2.7058 3.321 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +Sm+3 + 0.5 H2O = Sm+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -47.9624 + -delta_H 326.911 kJ/mol +# deltafH -120.5 kcal/mol + -analytic -1.0217e1 7.7548e-3 -1.6285e4 5.4711 9.1931e4 +# Range 0-350 + -Vm -0.0353 -7.8592 8.8194 -2.454 1.1512 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +UO2+2 + H+ = U+3 + 0.75 O2 + 0.5 H2O + -llnl_gamma 5.0 + log_k -64.8028 + -delta_H 377.881 kJ/mol +# deltafH -489.1 kJ/mol + -analytic 2.5133e1 6.4088e-3 -2.2542e4 -8.1423 3.4793e5 +# Range 0-350 + -Vm -2.8438 -14.722 11.528 -2.1703 2.27520 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +2 H+ + UO2+2 = U+4 + H2O + 0.5 O2 + -llnl_gamma 5.5 + log_k -33.9491 + -delta_H 135.895 kJ/mol +# deltafH -591.2 kJ/mol + -analytic 4.4837e1 1.0129e-2 -1.1787e4 -1.9194e1 4.6436e5 +# Range 0-350 + -Vm -4.2836 -18.2319 12.8955 -2.0252 3.68350 # SSW+97 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +UO2+2 + 0.5 H2O = UO2+ + H+ + 0.25 O2 + -llnl_gamma 4.0 + log_k -20.0169 + -delta_H 133.759 kJ/mol +# deltafH -1025.13 kJ/mol + -analytic 8.0480 9.5845e-3 -6.5994e3 -3.5515 -1.0298e2 +# Range 0-350 + -Vm 3.3767 0.4614 5.5725 -2.7980 0.63880 # SSW+97 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +#--------------------------- +# 156 other aqueous species +#--------------------------- + +2 CH3COOH + Al+3 = Al(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -5.595 + -delta_H -46.8566 kJ/mol +# deltafH -372.08 kcal/mol + -analytic -4.2528e1 2.1431e-3 3.1658e2 1.1585e1 5.8604e5 +# Range 0-350 + -Vm 8.9971 14.1844 0.1805 -3.3653 1.39180 +# Extrapol supcrt92 +# Ref SK93, differ by 2.2 log K at 0C, 1 log K at 300C + +4 H2O + Al+3 = Al(OH)4- + 4 H+ + -llnl_gamma 4.0 + log_k -22.8833 + -delta_H 180.899 kJ/mol +# deltafH -222.079 kcal/mol + -analytic 1.0803e1 -3.4379e-3 -9.7391e3 0e0 0e0 +# Range 0-350 + -Vm 3.7221 3.9954 -1.5879 -2.9441 1.74180 +# Extrapol supcrt92 +# Ref SSW+97, 95pok/hel match + +H2O + Al+3 = Al(OH)+2 + H+ + -llnl_gamma 4.5 + log_k -4.9571 + -delta_H 49.798 kJ/mol +# deltafH -185.096 kcal/mol + -analytic -2.6224e-1 8.8816e-3 -1.8686e3 -4.3195e-1 -2.9158e1 +# Range 0-350 + -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # APP14, BH86 +# Extrapol supcrt92 +# Ref SSW+97, 95pok/hel match + +B(OH)3 = BO2- + H+ + H2O + -llnl_gamma 4.0 + log_k -9.2449 + -delta_H 16.3302 kJ/mol +# deltafH -184.6 kcal/mol + -analytic -1.0500e2 -3.3447e-2 1.4706e3 4.0724e1 2.2978e1 +# Range 0-350 + -Vm -2.2428 -6.2065 -6.3216 -2.5224 1.75950 +# Extrapol supcrt92 +# Ref SH88 + +HCO3- + H+ = CO2 + H2O + -CO2_llnl_gamma + log_k 6.3447 + -delta_H -9.7027 kJ/mol +# deltafH -98.9 kcal/mol + -analytic -1.0534e1 2.1746e-2 2.5216e3 7.9125e-1 3.9351e1 +# Range 0-350 + -Vm 6.2466 7.4711 2.8136 -3.0879 -0.1934 +# Extrapol supcrt92 +# Ref SSW01, SHS89 + +HCO3- = CO3-2 + H+ + -llnl_gamma 4.5 + log_k -10.3288 + -delta_H 14.6984 kJ/mol +# deltafH -161.385 kcal/mol + -analytic -6.9958e1 -3.3526e-2 -7.0846e1 2.8224e1 -1.0849 +# Range 0-350 + -Vm 2.8524 -3.9844 6.4142 -2.6143 3.39140 +# Extrapol supcrt92 +# Ref SH88 + +NH3 + HCO3- = CN- + 2 H2O + 0.5 O2 + -llnl_gamma 3.0 + log_k -56.0505 + -delta_H 344.151 kJ/mol +# deltafH 36 kcal/mol + -analytic -1.1174e1 3.8167e-3 -1.7063e4 4.5349e0 -2.6625e2 +# Range 0-350 + -Vm 5.4714 5.5813 3.5497 -3.0096 1.29000 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +HCO3- + H+ = HCOOH + 0.5 O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -39.0524 + -analytic -16.6 0.041 -10000 0 0 -1.205e-5 +# Range 0-350 + -Vm 6.3957 7.7713 2.8318 -3.1002 -0.33 +# Extrapol supcrt92 +# Ref Sho95 + +HCOOH = HCOO- + H+ + -llnl_gamma 3.5 # EQ3/6 data0.sup + log_k -3.752994 + -analytic -6.456 0.01694 0 0 0 -2.71e-5 +# Range 0-350 + -Vm 5.7842 4.7242 7.363 -2.9742 1.3003 +# Extrapol supcrt92 +# Ref Sho95 + +2 HCO3- + 2 H+ = CH3COOH + 2 O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -141.99219 + -analytic -6.037 0.0104 -42362 0 0 3.604e-5 +# Range 0-350 + -Vm 11.6198 5.218 2.5088 -2.9946 -0.15 +# Extrapol supcrt92 +# Ref Sho95 + +CH3COOH = CH3COO- + H+ + -llnl_gamma 4.5 + log_k -4.7572 +# deltafH -0 kcal/mol + -analytic -0.96597e2 -0.34535e-1 0.19753e4 0.38593e2 0.30850e2 +# Range 0-350 + -Vm 7.7525 8.6996 7.5825 -3.1385 1.31820 +# Extrapol supcrt92 +# Ref Sho95 + +2 NH3 + HCO3- + H+ = CO(NH2)2 + 2 H2O + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k 6.631821 + -analytic 15.98 -4.41e-2 0 0 0 4.25e-5 +# Range 0-350 + -Vm 7.7158 7.3031 10.9353 -3.0808 -0.3006 +# Extrapol supcrt92 +# Ref SM93 + +3 H+ + 3 HCO3- + H2O = C3H8 + 5 O2 + -llnl_gamma 3.0 # thermo.com.V8.R6+.tdat + log_k -363.088 + -analytic -8.04e2 1.877 0 0 0 -1.33e-3 +# Range 0-350 + -Vm 10.768 17.6785 -0.5878 -3.5097 -0.165 +# Extrapol supcrt92 +# Ref SH90 + +H+ + HCO3- + H2O = CH3OH + 1.5 O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -117.9046 + -analytic -262.5446137 6.159125942e-1 0 0 0 -4.375362728e-4 +# Range 0-350 + -Vm 6.9383 5.5146 11.4018 -3.0069 -0.14760 +# Extrapol supcrt92 +# Ref SH90 + +H2O + 2 HCO3- + 2 H+ = CH3CH2OH + 3 O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -224.1415 + -analytic -423.8 0.989 -10003 0 0 -6.93e-4 +# Range 0-350 + -Vm 9.2333 9.9581 12.1445 -3.1906 -0.2037 +# Extrapol supcrt92 +# Ref SH90 + +HCO3- + H+ = CH2O + O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -86.57248 + -analytic -17.3 0.0404 -24072 0 0 -6.57e-6 +# Range 0-350 + -Vm 5.3113 5.3139 3.3901 -2.9986 -0.3984 +# Extrapol supcrt92 +# Ref SS93 + +2 CH3COOH + Ca+2 = Ca(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.3814 + -delta_H -2.7196 kJ/mol +# deltafH -362.65 kcal/mol + -analytic -1.0320e1 4.0012e-3 -3.6281e3 2.4421 7.0175e5 +# Range 0-350 + -Vm 12.9911 23.9379 -3.6556 -3.7685 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Ca+2 + CH3COOH = CaCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.8263 + -delta_H 1.17152 kJ/mol +# deltafH -245.62 kcal/mol + -analytic -8.8826 3.1672e-3 -1.0764e3 2.0526 2.3599e5 +# Range 0-350 + -Vm 5.9002 6.6232 3.1505 -3.0527 0.36360 +# Extrapol supcrt92 +# Ref SK93 + +HCO3- + Ca+2 = CaCO3 + H+ + -llnl_gamma 3.0 + log_k -7.0017 + -delta_H 30.5767 kJ/mol +# deltafH -287.39 kcal/mol + -analytic 2.3045e2 5.5350e-2 -8.5056e3 -9.1096e1 -1.3279e2 +# Range 0-350 + -Vm -0.3907 -8.7325 9.1753 -2.4179 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +Cl- + Ca+2 = CaCl+ + -llnl_gamma 4.0 + log_k -0.6956 + -delta_H 2.02087 kJ/mol +# deltafH -169.25 kcal/mol + -analytic 8.1498e1 3.8387e-2 -1.3763e3 -3.5968e1 -2.1501e1 +# Range 0-350 + -Vm 2.7148 -1.1497 6.1949 -2.7314 0.48620 +# Extrapol supcrt92 +# Ref SSH97 differ by 0.3 log K at 0C, 1.2 log K at 300C + +2 Cl- + Ca+2 = CaCl2 + -llnl_gamma 3.0 + log_k -0.6436 + -delta_H -5.8325 kJ/mol +# deltafH -211.06 kcal/mol + -analytic 1.8178e2 7.6910e-2 -3.1088e3 -7.8760e1 -4.8563e1 +# Range 0-350 + -Vm 6.2187 7.4058 2.8322 -3.0851 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +SO4-2 + Ca+2 = CaSO4 + -llnl_gamma 3.0 + log_k 2.1111 + -delta_H 5.4392 kJ/mol +# deltafH -345.9 kcal/mol + -analytic 2.8618e2 8.4084e-2 -7.6880e3 -1.1449e2 -1.2005e2 +# Range 0-350 + -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # phreeqc.dat, SSH97 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + Co+2 = Co(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.1468 + -delta_H -22.4262 kJ/mol +# deltafH -251.46 kcal/mol + -analytic -2.0661e1 2.9014e-3 -2.2146e3 5.1702 6.4968e5 +# Range 0-350 + -Vm 11.9141 21.312 -2.6321 -3.6599 3.49629 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Co+2 = Co(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -11.281 + -delta_H -48.2415 kJ/mol +# deltafH -373.73 kcal/mol + -analytic 6.3384e1 -4.0669e-3 -1.4715e4 -1.9518e1 2.1524e6 +# Range 0-350 + -Vm 20.3474 41.8989 -10.7127 -4.5110 1.47140 +# Extrapol supcrt92 +# Ref SK93 + +Co+2 + CH3COOH = CoCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.2985 + -delta_H -8.70272 kJ/mol +# deltafH -132.08 kcal/mol + -analytic -5.4858 1.9147e-3 -1.1292e3 9.0555e-1 2.8223e5 +# Range 0-350 + -Vm 5.0294 4.4992 3.9806 -2.9649 0.64720 +# Extrapol supcrt92 +# Ref SK93 + +Co+2 + Cl- = CoCl+ + -llnl_gamma 4.0 + log_k 0.1547 + -delta_H 1.71962 kJ/mol +# deltafH -53.422 kcal/mol + -analytic 1.5234e2 5.6958e-2 -3.3258e3 -6.3849e1 -5.1942e1 +# Range 0-350 + -Vm 1.8028 -3.3766 7.0702 -2.6394 0.71910 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 74nau/ryz match + +2 H+ + 2 CrO4-2 = Cr2O7-2 + H2O + -llnl_gamma 4.0 + log_k 14.5192 + -delta_H -13.8783 kJ/mol +# deltafH -356.2 kcal/mol + -analytic 1.3749e2 6.5773e-2 -7.9472e2 -5.6525e1 -1.2441e1 +# Range 0-350 + -Vm 12.4303 22.568 -3.1161 -3.7119 2.12160 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 CH3COOH + Cu+2 = Cu(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -5.8824 + -delta_H -25.899 kJ/mol +# deltafH -222.69 kcal/mol + -analytic -2.6689e1 1.8048e-3 -1.8244e3 7.7008 6.5408e5 +# Range 0-350 + -Vm 11.8801 21.2264 -2.5925 -3.6564 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +2 CH3COOH + Cu+ = Cu(CH3COO)2- + 2 H+ + -llnl_gamma 4.0 + log_k -9.2139 + -delta_H -19.5476 kJ/mol +# deltafH -219.74 kcal/mol + -analytic -3.2712e2 -5.9087e-2 1.1386e4 1.2017e2 1.7777e2 +# Range 0-350 + -Vm 15.0715 29.0205 -5.6592 -3.9786 1.06910 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Cu+2 = Cu(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -9.3788 + -delta_H -53.2205 kJ/mol +# deltafH -345.32 kcal/mol + -analytic 3.9475e1 -6.2867e-3 -1.3233e4 -1.0643e1 2.1121e6 +# Range 0-350 + -Vm 20.2654 41.7019 -10.6422 -4.5029 1.3408 +# Extrapol supcrt92 +# Ref SK93 + +Cu+ + CH3COOH = CuCH3COO + H+ + -llnl_gamma 3.0 + log_k -4.4274 + -delta_H -4.19237 kJ/mol +# deltafH -99.97 kcal/mol + -analytic 6.3784 -4.5464e-4 -1.9995e3 -2.8359 2.7224e5 +# Range 0-350 + -Vm 7.3009 10.0483 1.7946 -3.1943 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Cu+2 + CH3COOH = CuCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -2.5252 + -delta_H -11.3805 kJ/mol +# deltafH -103.12 kcal/mol + -analytic -1.4930e1 5.1278e-4 -3.4874e2 4.3605 2.3504e5 +# Range 0-350 + -Vm 4.9722 4.362 4.029 -2.9592 0.56810 +# Extrapol supcrt92 +# Ref SK93 + +2 CH3COOH + Eu+3 = Eu(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -4.6912 + -delta_H -28.3257 kJ/mol +# deltafH -383.67 kcal/mol + -analytic -2.7589e1 1.5772e-3 -1.1008e3 7.9899 5.6652e5 +# Range 0-350 + -Vm 9.3029 14.9307 -0.1123 -3.3961 0.7384 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Eu+3 = Eu(CH3COO)3 + 3 H+ + -llnl_gamma 3.0 + log_k -7.9824 + -delta_H -47.3629 kJ/mol +# deltafH -504.32 kcal/mol + -analytic -3.7470e1 1.9276e-3 -1.0318e3 9.7078 7.4558e5 +# Range 0-350 + -Vm 16.6413 32.8512 -7.1605 -4.137 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Eu+3 + CH3COOH = EuCH3COO+2 + H+ + -llnl_gamma 4.5 + log_k -1.9571 + -delta_H -14.5603 kJ/mol +# deltafH -264.28 kcal/mol + -analytic -1.5090e1 1.0352e-3 -6.4435e2 4.6225 3.1649e5 +# Range 0-350 + -Vm 2.75 -1.0666 6.169 -2.7348 1.5269 +# Extrapol supcrt92 +# Ref SK93 + +HCO3- + Eu+3 = EuCO3+ + H+ + -llnl_gamma 4.0 + log_k -2.4057 + -delta_H 90.7844 kJ/mol +# deltafH -287.9 kcal/mol # OBIGT: -311.27 kcal/mol HSS95 + -analytic 2.3548e2 5.3819e-2 -6.9908e3 -9.3137e1 -1.0915e2 +# Range 0-350 + -Vm -0.9842 -10.1779 9.7343 -2.3581 1.2465 +# Extrapol supcrt92 +# Ref HSS95 + +Eu+2 + Cl- = EuCl+ + -llnl_gamma 4.0 + log_k 0.3819 + -delta_H 8.50607 kJ/mol +# deltafH -164 kcal/mol + -analytic 6.8695e1 3.7619e-2 -1.0809e3 -3.0665e1 -1.6887e1 +# Range 0-350 + -Vm 5.1742 4.8499 3.8487 -2.9794 0.2557 +# Extrapol supcrt92 +# Ref HSS95 + +Eu+3 + Cl- = EuCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 13.9453 kJ/mol +# deltafH -181.3 kcal/mol + -analytic 7.9275e1 3.7878e-2 -1.7895e3 -3.4041e1 -2.7947e1 +# Range 0-350 + -Vm -0.3777 -8.6968 9.1514 -2.4194 1.4671 +# Extrapol supcrt92 +# Ref HSS95 + +2 Cl- + Eu+3 = EuCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 18.6857 kJ/mol +# deltafH -220.1 kcal/mol # OBIGT: -204.6 kcal/mol HSS95 + -analytic 2.1758e2 8.0336e-2 -5.5499e3 -9.0087e1 -8.6665e1 +# Range 0-350 + -Vm 9.1152 14.474 0.0641 -3.3773 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +3 Cl- + Eu+3 = EuCl3 + -llnl_gamma 3.0 + log_k -0.4669 + -delta_H 11.2926 kJ/mol +# deltafH -261.8 kcal/mol + -analytic 4.2075e2 1.2890e-1 -1.1288e4 -1.7043e2 -1.7627e2 +# Range 0-350 + -Vm 6.2132 7.3881 2.8493 -3.0843 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +3 Cl- + Eu+2 = EuCl3- + -llnl_gamma 4.0 + log_k 2.0253 + -delta_H -3.76978 kJ/mol +# deltafH -246.8 kcal/mol + -analytic 1.1546e1 6.4683e-2 3.7299e3 -1.6672e1 5.8196e1 +# Range 0-350 + -Vm 13.946 26.2721 -4.579 -3.865 0.9527 +# Extrapol supcrt92 +# Ref HSS95 + +4 Cl- + Eu+3 = EuCl4- + -llnl_gamma 4.0 + log_k -0.8913 + -delta_H -9.90771 kJ/mol +# deltafH -306.8 kcal/mol + -analytic 4.8122e2 1.3081e-1 -1.2950e4 -1.9302e2 -2.0222e2 +# Range 0-350 + -Vm 10.9946 19.066 -1.7473 -3.5671 1.787 +# Extrapol supcrt92 +# Ref HSS95 + +4 Cl- + Eu+2 = EuCl4-2 + -llnl_gamma 4.0 + log_k 2.8470 + -delta_H -19.9493 kJ/mol +# deltafH -290.6 kcal/mol + -analytic -1.2842e2 5.0789e-2 9.8815e3 3.3565e1 1.5423e2 +# Range 0-350 + -Vm 19.473 39.7656 -9.8784 -4.4228 2.4755 +# Extrapol supcrt92 +# Ref HSS95 + +HPO4-2 + H+ + Eu+3 = EuH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -17.0916 kJ/mol +# deltafH -457.6 kcal/mol + -analytic 1.0873e2 6.3416e-2 2.7202e2 -4.8113e1 4.2122 +# Range 0-350 + -Vm 1.4946 -4.1236 7.3517 -2.6084 1.5372 +# Extrapol supcrt92 +# Ref HSS95 + +HCO3- + Eu+3 = EuHCO3+2 + -llnl_gamma 4.5 + log_k 1.6258 + -delta_H 8.77803 kJ/mol +# deltafH -307.5 kcal/mol + -analytic 3.9266e1 3.1608e-2 -9.8731e1 -1.8875e1 -1.5524 +# Range 0-350 + -Vm 0.4928 -6.572 8.3198 -2.5072 1.286 +# Extrapol supcrt92 +# Ref HSS95 + +NO3- + Eu+3 = EuNO3+2 + -llnl_gamma 4.5 + log_k 0.8745 + -delta_H -32.0955 kJ/mol +# deltafH -201.8 kcal/mol + -analytic 1.7398e1 2.5467e-2 2.2683e3 -1.2810e1 3.5389e1 +# Range 0-350 + -Vm 1.2198 -4.7951 7.6178 -2.5807 1.6556 +# Extrapol supcrt92 +# Ref HSS95 + +H2O + Eu+3 = EuO+ + 2 H+ + -llnl_gamma 4.0 + log_k -16.337 + -delta_H 110.947 kJ/mol +# deltafH -186.5 kcal/mol # OBIGT: -177.81 kcal/mol HSS95 + -analytic 1.8876e2 3.0194e-2 -1.3836e4 -6.7770e1 -2.1595e2 +# Range 0-350 + -Vm 2.7458 -1.0743 6.1663 -2.7345 0.4322 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Eu+3 = EuO2- + 4 H+ + -llnl_gamma 4.0 + log_k -34.5066 + -delta_H 281.307 kJ/mol +# deltafH -214.1 kcal/mol # OBIGT: -219.06 kcal/mol HSS95 + -analytic 7.5244e1 3.7089e-4 -1.3587e4 -2.3859e1 -4.6713e5 +# Range 0-350 + -Vm 4.8468 4.0541 4.1548 -2.9465 1.1424 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Eu+3 = EuO2H + 3 H+ + -llnl_gamma 3.0 + log_k -25.4173 + -delta_H 222.313 kJ/mol +# deltafH -228.2 kcal/mol + -analytic 3.6754e2 5.3868e-2 -2.4034e4 -1.3272e2 -3.7514e2 +# Range 0-350 + -Vm 4.8064 3.954 4.1968 -2.9424 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +H2O + Eu+3 = EuOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.9075 + -delta_H 78.0065 kJ/mol +# deltafH -194.373 kcal/mol + -analytic 6.7691e1 1.2066e-2 -6.1871e3 -2.3617e1 -9.6563e1 +# Range 0-350 + -Vm 2.6569 -1.2969 6.2659 -2.7253 1.1815 +# Extrapol supcrt92 +# Ref HSS95 + +SO4-2 + Eu+3 = EuSO4+ + -llnl_gamma 4.0 + log_k 3.6430 + -delta_H 62.3416 kJ/mol +# deltafH -347.2 kcal/mol # OBIGT: -357.2 kcal/mol HSS95 + -analytic 3.0587e2 8.6208e-2 -9.0387e3 -1.2026e2 -1.4113e2 +# Range 0-350 + -Vm 1.4399 -4.2627 7.4184 -2.6027 0.779 +# Extrapol supcrt92 +# Ref HSS95 + +2 CH3COOH + Fe+2 = Fe(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.0295 + -delta_H -20.2924 kJ/mol +# deltafH -259.1 kcal/mol + -analytic -2.9862e1 1.3901e-3 -1.6908e3 8.6283 6.0125e5 +# Range 0-350 + -Vm 12.1698 21.937 -2.8791 -3.6858 -0.038 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +Fe+2 + CH3COOH = FeCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.4671 + -delta_H -3.80744 kJ/mol +# deltafH -139.06 kcal/mol + -analytic -1.3781e1 9.6253e-4 -7.5310e2 4.0135 2.3416e5 +# Range 0-350 + -Vm 5.2246 4.9785 3.7863 -2.9848 0.57560 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +Fe+2 + Cl- = FeCl+ + -llnl_gamma 4.0 + log_k -0.1605 + -delta_H 3.02503 kJ/mol +# deltafH -61.26 kcal/mol + -analytic 8.2435e1 3.7755e-2 -1.4765e3 -3.5918e1 -2.3064e1 +# Range 0-350 + -Vm 2.1468 -2.5367 6.7401 -2.6741 0.7003 +# Extrapol supcrt92 +# Ref SSH97 + +Fe+3 + Cl- = FeCl+2 + -llnl_gamma 4.5 + log_k -0.8108 + -delta_H 36.6421 kJ/mol +# deltafH -180.018 kJ/mol + -analytic 1.6186e2 5.9436e-2 -5.1913e3 -6.5852e1 -8.1053e1 +# Range 0-350 + -Vm -0.7164 -9.5277 9.4878 -2.3851 0.17013 # SSH97 +# Extrapol supcrt92, 64cri/cob +# Ref SSH97, WEP+82 differ by 2.7 log K at 0C, 1.2 log K at 300C + +2 Cl- + Fe+2 = FeCl2 + -llnl_gamma 3.0 + log_k -2.4541 + -delta_H 6.46846 kJ/mol +# deltafH -100.37 kcal/mol + -analytic 1.9171e2 7.8070e-2 -4.1048e3 -8.2292e1 -6.4108e1 +# Range 0-350 + -Vm 5.5057 5.665 3.5164 -3.0131 -0.038 +# Extrapol supcrt92 +# Ref SSH97 differ by 7.2 log K at 0C, 3.2 log K at 300C !! flag + +H2O + Fe+2 = FeOH+ + H+ + -llnl_gamma 4.0 + log_k -9.5 + -analytic 1.706e-1 0 -2.883e3 +# Range 0-350 + -Vm -0.2561 -8.4039 9.0457 -2.4315 0.7003 +# Extrapol supcrt92 +# Ref SSW+97, Marion+03,08 match + +H2O + Fe+3 = FeOH+2 + H+ + -llnl_gamma 4.5 + log_k -2.19 +# deltafH -0 kcal/mol + -analytic 5.300 0 -2.272e3 +# Range 0-350 + -Vm -1.1562 -10.6009 9.9077 -2.3407 1.43820 +# Extrapol supcrt92 +# Ref SSW+97, Marion+08 match + +2 CH3COOH + Gd+3 = Gd(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -4.9625 + -delta_H -22.3426 kJ/mol +# deltafH -401.74 kcal/mol + -analytic -4.3124e1 1.2995e-4 -4.3494e2 1.3677e1 5.1224e5 +# Range 0-350 + -Vm 9.4165 15.2134 -0.2342 -3.4078 0.6223 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Gd+3 = Gd(CH3COO)3 + 3 H+ + -llnl_gamma 3.0 + log_k -8.3489 + -delta_H -37.9907 kJ/mol +# deltafH -521.58 kcal/mol + -analytic -8.8296e1 -5.0939e-3 1.2268e3 2.8513e1 6.0745e5 +# Range 0-350 + -Vm 16.8116 33.2662 -7.3215 -4.1541 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Gd+3 + CH3COOH = GdCH3COO+2 + H+ + -llnl_gamma 4.5 + log_k -2.1037 + -delta_H -11.7152 kJ/mol +# deltafH -283.1 kcal/mol + -analytic -1.4118e1 1.6660e-3 -7.5206e2 4.2614 3.1187e5 +# Range 0-350 + -Vm 2.8605 -0.7945 6.0567 -2.7461 1.4477 +# Extrapol supcrt92 +# Ref SK93 + +HCO3- + Gd+3 = GdCO3+ + H+ + -llnl_gamma 4.0 + log_k -2.479 + -delta_H 89.9476 kJ/mol +# deltafH -307.6 kcal/mol # OBIGT: -330.22 kcal/mol HSS95 + -analytic 2.3628e2 5.4100e-2 -7.0746e3 -9.3413e1 -1.1046e2 +# Range 0-350 + -Vm -0.953 -10.1036 9.7095 -2.3612 1.1729 +# Extrapol supcrt92 +# Ref HSS95 + +Gd+3 + Cl- = GdCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 14.7821 kJ/mol +# deltafH -200.6 kcal/mol + -analytic 8.0750e1 3.8524e-2 -1.8591e3 -3.4621e1 -2.9034e1 +# Range 0-350 + -Vm -0.263 -8.417 9.0425 -2.4309 1.4006 +# Extrapol supcrt92 +# Ref HSS95 + +2 Cl- + Gd+3 = GdCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 21.1961 kJ/mol +# deltafH -239 kcal/mol + -analytic 2.1754e2 8.0996e-2 -5.6121e3 -9.0067e1 -8.7635e1 +# Range 0-350 + -Vm 2.8492 -0.8272 6.0803 -2.7447 0.6305 +# Extrapol supcrt92 +# Ref HSS95 + +3 Cl- + Gd+3 = GdCl3 + -llnl_gamma 3.0 + log_k -0.4669 + -delta_H 15.895 kJ/mol +# deltafH -280.2 kcal/mol + -analytic 4.1398e2 1.2829e-1 -1.1230e4 -1.6770e2 -1.7535e2 +# Range 0-350 + -Vm 6.3836 7.8028 2.6888 -3.1015 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +4 Cl- + Gd+3 = GdCl4- + -llnl_gamma 4.0 + log_k -0.8913 + -delta_H -1.53971 kJ/mol +# deltafH -324.3 kcal/mol + -analytic 4.7684e2 1.3157e-1 -1.3068e4 -1.9118e2 -2.0405e2 +# Range 0-350 + -Vm 11.1317 19.3995 -1.8761 -3.5809 1.631 +# Extrapol supcrt92 +# Ref HSS95 + +HPO4-2 + H+ + Gd+3 = GdH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -14.9996 kJ/mol +# deltafH -476.6 kcal/mol + -analytic 1.1058e2 6.4124e-2 1.3451e2 -4.8758e1 2.0660 +# Range 0-350 + -Vm 1.6048 -3.8632 7.2686 -2.6192 1.4574 +# Extrapol supcrt92 +# Ref HSS95 + +HCO3- + Gd+3 = GdHCO3+2 + -llnl_gamma 4.5 + log_k 1.6991 + -delta_H 10.0332 kJ/mol +# deltafH -326.7 kcal/mol + -analytic 4.1973e1 3.2521e-2 -2.3475e2 -1.9864e1 -3.6757 +# Range 0-350 + -Vm 0.6026 -6.3043 8.2153 -2.5183 1.2048 +# Extrapol supcrt92 +# Ref HSS95 + +NO3- + Gd+3 = GdNO3+2 + -llnl_gamma 4.5 + log_k 0.4347 + -delta_H -25.8195 kJ/mol +# deltafH -219.8 kcal/mol + -analytic 2.0253e1 2.6372e-2 1.8785e3 -1.3723e1 2.9306e1 +# Range 0-350 + -Vm 1.3205 -4.5535 7.5323 -2.5907 1.5475 +# Extrapol supcrt92 +# Ref HSS95 + +H2O + Gd+3 = GdO+ + 2 H+ + -llnl_gamma 4.0 + log_k -16.337 + -delta_H 113.039 kJ/mol +# deltafH -205.5 kcal/mol # OBIGT: -196.63 kcal/mol HSS95 + -analytic 2.0599e2 3.2521e-2 -1.4547e4 -7.4048e1 -2.2705e2 +# Range 0-350 + -Vm 2.8425 -0.8409 6.0801 -2.7441 0.3539 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Gd+3 = GdO2- + 4 H+ + -llnl_gamma 4.0 + log_k -34.4333 + -delta_H 283.817 kJ/mol +# deltafH -233 kcal/mol # OBIGT: -237.73 kcal/mol HSS95 + -analytic 1.2067e2 6.6276e-3 -1.5531e4 -4.0448e1 -4.3587e5 +# Range 0-350 + -Vm 5.0344 4.5111 3.9769 -2.9654 1.0495 -1 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Gd+3 = GdO2H + 3 H+ + -llnl_gamma 3.0 + log_k -25.2707 + -delta_H 224.405 kJ/mol +# deltafH -247.2 kcal/mol + -analytic 3.6324e2 4.7938e-2 -2.4275e4 -1.2988e2 -3.7889e2 +# Range 0-350 + -Vm 5.0117 4.4582 3.9917 -2.9632 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +H2O + Gd+3 = GdOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.9075 + -delta_H 79.9855 kJ/mol +# deltafH -213.4 kcal/mol # OBIGT: 212.9 kcal/mol HSS95 + -analytic 8.3265e1 1.4153e-2 -6.8229e3 -2.9301e1 -1.0649e2 +# Range 0-350 + -Vm 2.7389 -1.0936 6.1786 -2.7337 1.1 +# Extrapol supcrt92 +# Ref HSS95 + +SO4-2 + Gd+3 = GdSO4+ + -llnl_gamma 4.0 + log_k -3.687 + -delta_H 20.0832 kJ/mol +# deltafH -376.8 kcal/mol + -analytic 3.0783e2 8.6798e-2 -1.1246e4 -1.2109e2 -1.7557e2 + #analytic 3.18e2 7.5e-2 -1.12e4 -1.21e2 -1.76e2 +# Range 0-350 + -Vm 1.4776 -4.1705 7.3822 -2.6065 0.7287 +# Extrapol supcrt92 +# Ref HSS95 differ by 7 log K at 0C, 3.7 log K at 300C !! flag + +2 HPO4-2 + 2 H+ = H2P2O7-2 + H2O + -llnl_gamma 4.0 + log_k 12.0709 + -delta_H 19.7192 kJ/mol +# deltafH -544.6 kcal/mol + -analytic 1.4825e2 6.7021e-2 -2.8329e3 -5.9251e1 -4.4248e1 +# Range 0-350 + -Vm 9.0963 14.4299 0.076 -3.3754 2.62180 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +HPO4-2 + H+ = H2PO4- + -llnl_gamma 4.0 + log_k 7.2054 + -delta_H -4.20492 kJ/mol +# deltafH -309.82 kcal/mol + -analytic 8.2149e1 3.4077e-2 -1.0431e3 -3.2970e1 -1.6301e1 +# Range 0-350 + -Vm 6.4875 8.0594 2.5823 -3.1122 1.3003 +# Extrapol supcrt92 +# Ref SH88 + +3 H+ + 2 HPO4-2 = H3P2O7- + H2O + -llnl_gamma 4.0 + log_k 14.4165 + -delta_H 21.8112 kJ/mol +# deltafH -544.1 kcal/mol + -analytic 2.3157e2 1.0161e-1 -4.3723e3 -9.4050e1 -6.8295e1 +# Range 0-350 + -Vm 9.1292 14.5122 0.0398 -3.3788 0.8568 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 H+ + HPO4-2 = H3PO4 + -llnl_gamma 3.0 + log_k 9.3751 + -delta_H 3.74468 kJ/mol +# deltafH -307.92 kcal/mol + -analytic 1.8380e2 6.7320e-2 -3.7792e3 -7.3463e1 -5.9025e1 +# Range 0-350 + -Vm 8.2727 12.4182 0.8691 -3.2924 -0.22 +# Extrapol supcrt92 +# Ref SHS89 + +4 H+ + 2 HPO4-2 = H4P2O7 + H2O + -llnl_gamma 3.0 + log_k 15.9263 + -delta_H 29.7226 kJ/mol +# deltafH -2268.6 kJ/mol + -analytic 6.9026e2 2.4309e-1 -1.6165e4 -2.7989e2 -2.7475e2 +# Range 0-350 + -Vm 9.2975 14.9199 -0.113 -3.3957 -0.62920 +# Extrapol supcrt92, 69hel +# Ref SSW+97, WEP+82 + +3 H2O + Al+3 = Al(OH)3 + 3 H+ + -llnl_gamma 3.0 + log_k -16.4329 + -delta_H 144.704 kJ/mol +# deltafH -230.73 kcal/mol + -analytic 4.2012e1 1.9980e-2 -7.7847e3 -1.5470e1 -1.2149e2 +# Range 0-350 + -Vm 3.5338 0.8485 5.4132 -2.8140 -0.03 +# Extrapol supcrt92 +# Ref SSW+97, 95pok/hel + +H+ + CN- = HCN + -llnl_gamma 3.0 + log_k 9.2359 + -delta_H -43.5136 kJ/mol +# deltafH 25.6 kcal/mol + -analytic 1.0536e1 2.3105e-2 3.3038e3 -7.7786 5.1550e1 +# Range 0-350 + -Vm 8.0083 11.7705 1.1286 -3.2655 -0.1113 +# Extrapol supcrt92 +# Ref SM93 + +H+ + Cl- = HCl + -llnl_gamma 3.0 + log_k -0.67 +# deltafH -0 kcal/mol + -analytic 4.1893e2 1.1103e-1 -1.1784e4 -1.6697e2 -1.8400e2 +# Range 0-350 + -Vm 1.2547 -4.7177 7.6043 -2.5840 -0.7 +# Extrapol supcrt92, ? +# Ref MS97, 87rua/sew match + +H+ + CrO4-2 = HCrO4- + -llnl_gamma 4.0 + log_k 6.4944 + -delta_H 2.9288 kJ/mol +# deltafH -209.9 kcal/mol + -analytic 4.4944e1 3.2740e-2 1.8400e2 -1.9722e1 2.8578 +# Range 0-350 + -Vm 8.2211 12.2925 0.9174 -3.2871 0.923 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +NO2- + H+ = HNO2 + -llnl_gamma 3.0 + log_k 3.2206 + -delta_H -14.782 kJ/mol +# deltafH -119.382 kJ/mol + -analytic 1.9653 -1.1603e-4 0 0 1.1569e5 +# Range 0-350 + -Vm 5.9151 6.659 3.1378 -3.0542 -0.1507 +# Extrapol supcrt92, 69hel +# Ref SSW+97, WEP+82 match + +NO3- + H+ = HNO3 + -llnl_gamma 3.0 + log_k -1.3025 + -delta_H 16.8155 kJ/mol +# deltafH -45.41 kcal/mol + -analytic 9.9744e1 3.4866e-2 -3.0975e3 -4.0830e1 -4.8363e1 +# Range 0-350 + -Vm 7.1623 9.7063 1.9367 -3.1802 -0.3066 +# Extrapol supcrt92 +# Ref SSW+97, SHS89 + +2 HPO4-2 + H+ = HP2O7-3 + H2O + -llnl_gamma 4.0 + log_k 5.4498 + -delta_H 23.3326 kJ/mol +# deltafH -2274.99 kJ/mol + -analytic 3.9159e2 1.5438e-1 -8.7071e3 -1.6283e2 -1.3598e2 +# Range 0-350 + -Vm 8.3302 12.5558 0.8208 -3.2980 4.647 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, WEP+82 differ by 0 log K at 0C, 4.7 log K at 300C + +SO3-2 + H+ = HSO3- + -llnl_gamma 4.0 + log_k 7.2054 + -delta_H 9.33032 kJ/mol +# deltafH -149.67 kcal/mol + -analytic 5.5899e1 3.3623e-2 -5.0120e2 -2.3040e1 -7.8373 +# Range 0-350 + -Vm 6.7014 8.5816 2.3771 -0.31338 1.1233 +# Extrapol supcrt92 +# Ref SH88 + +SO4-2 + H+ = HSO4- + -llnl_gamma 4.0 + log_k 1.9791 + -delta_H 20.5016 kJ/mol +# deltafH -212.5 kcal/mol + -analytic 4.9619e1 3.0368e-2 -1.1558e3 -2.1335e1 -1.8051e1 +# Range 0-350 + -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 # APP14 +# Extrapol supcrt92 +# Ref SH88 + +SiO2 + H2O = HSiO3- + H+ + -llnl_gamma 4.0 + log_k -9.9525 + -delta_H 25.991 kJ/mol +# deltafH -271.88 kcal/mol + -analytic 6.4211e1 -2.4872e-2 -1.2707e4 -1.4681e1 1.0853e6 +# Range 0-350 + -Vm 2.9735 -0.5158 5.9467 -2.7575 1.5511 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + K+ = K(CH3COO)2- + 2 H+ + -llnl_gamma 4.0 + log_k -10.2914 + -delta_H -1.79912 kJ/mol +# deltafH -292.9 kcal/mol + -analytic -2.3036e2 -4.6369e-2 7.0305e3 8.4997e1 1.0977e2 +# Range 0-350 + -Vm 17.8481 35.7984 -8.3193 -4.2588 0.7097 +# Extrapol supcrt92 +# Ref SK93 + +K+ + CH3COOH = KCH3COO + H+ + -llnl_gamma 3.0 + log_k -5.0211 + -delta_H 4.8116 kJ/mol +# deltafH -175.22 kcal/mol + -analytic -2.6676e-1 -3.2675e-3 -1.7143e3 -7.1907e-3 1.7726e5 +# Range 0-350 + -Vm 17.8481 35.7984 -8.3193 -4.2588 0.7097 +# Extrapol supcrt92 +# Ref SK93 + +K+ + Cl- = KCl + -llnl_gamma 3.0 + log_k -1.4946 + -delta_H 14.1963 kJ/mol +# deltafH -96.81 kcal/mol + -analytic 1.3650e2 3.8405e-2 -4.4014e3 -5.4421e1 -6.8721e1 +# Range 0-350 + -Vm 6.9932 9.297 2.0889 -3.1633 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +SO4-2 + K+ + H+ = KHSO4 + -llnl_gamma 3.0 + log_k 0.8136 + -delta_H 29.8319 kJ/mol +# deltafH -270.54 kcal/mol + -analytic 1.2620e2 5.7349e-2 -3.3670e3 -5.3003e1 -5.2576e1 +# Range 0-350 + -Vm 9.1226 14.4964 0.0453 -3.3782 -0.001 +# Extrapol supcrt92 +# Ref SSH97 + +SO4-2 + K+ = KSO4- + -llnl_gamma 4.0 + log_k 0.8796 + -delta_H 2.88696 kJ/mol +# deltafH -276.98 kcal/mol + -analytic 9.9073e1 3.7817e-2 -2.1628e3 -4.1297e1 -3.3779e1 +# Range 0-350 + -Vm 6.8 7.06 3.0 -2.07 1.1 0 0 0 0 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + Li+ = Li(CH3COO)2- + 2 H+ + -llnl_gamma 4.0 + log_k -9.2674 + -delta_H -24.7609 kJ/mol +# deltafH -304.67 kcal/mol + -analytic -3.3702e2 -6.0849e-2 1.1952e4 1.2359e2 1.8659e2 +# Range 0-350 + -Vm 16.3412 32.1211 -6.8785 -4.1068 1.2422 +# Extrapol supcrt92 +# Ref SK93 + +Li+ + CH3COOH = LiCH3COO + H+ + -llnl_gamma 3.0 + log_k -4.4589 + -delta_H -6.64419 kJ/mol +# deltafH -184.24 kcal/mol + -analytic -3.8391 -7.3938e-4 -1.0829e3 3.4134e-1 2.1318e5 +# Range 0-350 + -Vm 8.388 12.6976 0.7639 -3.3038 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Li+ + Cl- = LiCl + -llnl_gamma 3.0 + log_k -1.5115 + -delta_H 3.36812 kJ/mol +# deltafH -105.68 kcal/mol + -analytic 1.2484e2 4.1941e-2 -3.2439e3 -5.1708e1 -5.0655e1 +# Range 0-350 + -Vm 5.5837 5.8554 3.4416 -3.021 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + Mg+2 = Mg(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.473 + -delta_H -23.8195 kJ/mol +# deltafH -349.26 kcal/mol + -analytic -4.3954e1 -3.1842e-4 -1.2033e3 1.3556e1 6.3058e5 +# Range 0-350 + -Vm 12.3982 22.4898 -3.0853 -3.7086 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Mg+2 + CH3COOH = MgCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.4781 + -delta_H -8.42239 kJ/mol +# deltafH -229.48 kcal/mol + -analytic -2.3548e1 -1.6071e-3 -4.2228e2 7.7009 2.5981e5 +# Range 0-350 + -Vm 5.4981 5.6424 3.5341 -3.0122 0.7483 +# Extrapol supcrt92 +# Ref SK93 + +Mg+2 + Cl- = MgCl+ + -llnl_gamma 4.0 + log_k -0.1349 + -delta_H -0.58576 kJ/mol +# deltafH -151.44 kcal/mol + -analytic 4.3363e1 3.2858e-2 1.1878e2 -2.1688e1 1.8403 +# Range 0-350 + -Vm 2.223 -2.3505 6.6669 -2.6818 0.84490 +# Extrapol supcrt92 +# Ref SSH97 + +SO4-2 + Mg+2 = MgSO4 + -llnl_gamma 3.0 + log_k 2.4117 + -delta_H 19.6051 kJ/mol +# deltafH -1355.96 kJ/mol + -analytic 1.7994e2 6.4715e-2 -4.7314e3 -7.3123e1 -8.0408e1 +# Range 0-350 + -Vm 2.4 -0.97 6.1 -2.74 # APP14 +# Extrapol supcrt92, 69hel +# Ref MS97, 82mar/smi match + +2 CH3COOH + Mn+2 = Mn(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.4547 + -delta_H -11.4893 kJ/mol +# deltafH -287.67 kcal/mol + -analytic -9.0558e-1 5.9656e-3 -4.3531e3 -1.1063 8.0323e5 +# Range 0-350 + -Vm 13.1542 24.3405 -3.8236 -3.7851 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Mn+2 = Mn(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -11.8747 + -delta_H -30.3591 kJ/mol +# deltafH -408.28 kcal/mol + -analytic -3.8531 -9.9140e-3 -1.2065e4 5.1424 2.0175e6 +# Range 0-350 + -Vm 21.6217 45.0124 -11.9409 -4.6397 1.15360 +# Extrapol supcrt92 +# Ref SK93 + +Mn+2 + CH3COOH = MnCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.5404 + -delta_H -3.07942 kJ/mol +# deltafH -169.56 kcal/mol + -analytic -1.4061e1 1.8149e-3 -8.6438e2 4.0354 2.5831e5 +# Range 0-350 + -Vm 6.0776 7.057 2.9786 -3.0706 0.4555 +# Extrapol supcrt92 +# Ref SK93 + +Mn+2 + Cl- = MnCl+ + -llnl_gamma 4.0 + log_k 0.3013 + -delta_H 18.3134 kJ/mol +# deltafH -88.28 kcal/mol + -analytic 8.7072e1 4.0361e-2 -2.1786e3 -3.6966e1 -3.4022e1 +# Range 0-350 + -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +1.5 H2O + 1.25 O2 + Mn+2 = MnO4- + 3 H+ + -llnl_gamma 3.5 + log_k -20.2963 + -delta_H 123.112 kJ/mol +# deltafH -129.4 kcal/mol + -analytic 1.8544e1 -1.7618e-2 -6.7332e3 -3.3193 -2.4924e5 +# Range 0-350 + -Vm 7.8248 11.3277 1.2912 -3.2472 0.9248 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +SO4-2 + Mn+2 = MnSO4 + -llnl_gamma 3.0 + log_k 2.3529 + -delta_H 14.1168 kJ/mol +# deltafH -266.75 kcal/mol + -analytic 2.9448e2 8.5294e-2 -8.1366e3 -1.1729e2 -1.2705e2 +# Range 0-350 + -Vm -1.31 -1.83 62.3 -2.7 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + NH3 = NH4(CH3COO)2- + H+ + -llnl_gamma 4.0 + log_k -0.1928 + -delta_H -56.735 kJ/mol +# deltafH -265.2 kcal/mol + -analytic 3.7137e1 -1.2242e-2 -8.4764e3 -8.4308 1.3883e6 +# Range 0-350 + -Vm 19.3685 39.509 -9.7736 -4.4122 0.6495 +# Extrapol supcrt92 +# Ref SK93 + +NH3 + H+ = NH4+ + -llnl_gamma 2.5 + log_k 9.2410 + -delta_H -51.9234 kJ/mol +# deltafH -31.85 kcal/mol + -analytic -1.4527e1 -5.0518e-3 3.0447e3 6.0865 4.7515e1 +# Range 0-350 + -Vm 3.8763 2.3448 8.5605 -2.8759 0.1502 +# Extrapol supcrt92 +# Ref SH88 + +NH3 + CH3COOH = NH4CH3COO + -llnl_gamma 3.0 + log_k 4.6964 + -delta_H -48.911 kJ/mol +# deltafH -147.23 kcal/mol + -analytic 1.4104e1 -4.3664e-3 -1.0746e3 -3.6999 4.1428e5 +# Range 0-350 + -Vm 11.2849 19.7719 -2.0187 -3.5963 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +2 CH3COOH + Na+ = Na(CH3COO)2- + 2 H+ + -llnl_gamma 4.0 + log_k -9.9989 + -delta_H -11.5771 kJ/mol +# deltafH -292.4 kcal/mol + -analytic -2.9232e2 -5.5708e-2 9.6601e3 1.0772e2 1.5082e2 +# Range 0-350 + -Vm 16.2062 31.7884 -6.7416 -4.0930 0.9633 +# Extrapol supcrt92 +# Ref SK93 + +Na+ + CH3COOH = NaCH3COO + H+ + -llnl_gamma 3.0 + log_k -4.8606 + -delta_H -0.029288 kJ/mol +# deltafH -173.54 kcal/mol + -analytic 6.4833 -1.8739e-3 -2.0902e3 -2.6121 2.3990e5 +# Range 0-350 + -Vm 8.3514 12.6125 0.7884 -3.3003 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Na+ + Cl- = NaCl + -llnl_gamma 3.0 + log_k -0.777 + -delta_H 5.21326 kJ/mol +# deltafH -96.12 kcal/mol + -analytic 1.1398e2 3.6386e-2 -3.0847e3 -4.6571e1 -4.8167e1 +# Range 0-350 + -Vm 5.0364 4.5189 3.9669 -2.9658 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +SiO2 + Na+ + H2O = NaHSiO3 + H+ + -llnl_gamma 3.0 + log_k -8.304 + -delta_H 11.6524 kJ/mol +# deltafH -332.74 kcal/mol + -analytic 3.6045e1 -9.0411e-3 -6.6605e3 -1.0447e1 5.8415e5 +# Range 0-350 + -Vm 3.4928 0.75 5.4483 -2.8100 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +Na+ + H2O = NaOH + H+ + -llnl_gamma 3.0 + log_k -14.7948 + -delta_H 53.6514 kJ/mol +# deltafH -112.927 kcal/mol + -analytic 8.7326e1 2.3555e-2 -5.4770e3 -3.6678e1 -8.5489e1 +# Range 0-350 + -Vm 2.2338 -2.3287 6.6683 -2.6826 -0.03 +# Extrapol supcrt92 +# Ref SSW+97, 95pok/hel match + +2 CH3COOH + Ni+2 = Ni(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.1908 + -delta_H -25.8571 kJ/mol +# deltafH -251.28 kcal/mol + -analytic -2.9660e1 1.0643e-3 -1.0060e3 7.9358 5.2562e5 +# Range 0-350 + -Vm 11.1327 19.4031 -1.8801 -3.5810 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Ni+2 = Ni(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -11.3543 + -delta_H -53.6807 kJ/mol +# deltafH -374.03 kcal/mol + -analytic 5.0850e1 -8.2435e-3 -1.3049e4 -1.5410e1 1.9704e6 +# Range 0-350 + -Vm 19.5212 39.8827 -9.9226 -4.4277 0.1603 +# Extrapol supcrt92 +# Ref SK93 + +Ni+2 + CH3COOH = NiCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.3278 + -delta_H -10.2508 kJ/mol +# deltafH -131.45 kcal/mol + -analytic -3.3110 1.6895e-3 -1.0556e3 2.7168e-2 2.6350e5 +# Range 0-350 + -Vm 4.3556 2.8512 4.6343 -2.8968 0.7287 +# Extrapol supcrt92 +# Ref SK93 + +Ni+2 + Cl- = NiCl+ + -llnl_gamma 4.0 + log_k -0.9962 + -delta_H 5.99567 kJ/mol +# deltafH -51.4 kcal/mol + -analytic 9.5370e1 3.8521e-2 -2.1746e3 -4.0629e1 -3.3961e1 +# Range 0-350 + -Vm 1.1319 -5.0147 7.714 -2.5716 0.8111 +# Extrapol supcrt92 +# Ref SSH97 + +H2O = OH- + H+ + -llnl_gamma 3.5 + log_k -13.9951 + -delta_H 55.8146 kJ/mol +# deltafH -54.977 kcal/mol + -analytic -6.7506e1 -3.0619e-2 -1.9901e3 2.8004e1 -3.1033e1 +# Range 0-350 + -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 # APP14 +# Extrapol supcrt92 +# Ref SH88 + +2 HPO4-2 = P2O7-4 + H2O + -llnl_gamma 4.0 + log_k -3.7463 + -delta_H 27.2256 kJ/mol +# deltafH -2271.1 kJ/mol + -analytic 4.0885e2 1.3243e-1 -1.1373e4 -1.6727e2 -1.7758e2 +# Range 0-350 + -Vm 7.0687 9.4773 2.0273 -3.1707 6.9069 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, WEP+82 differ by 0.1 log K at 0C, 7 log K at 350C !! flag + +HPO4-2 = PO4-3 + H+ + -llnl_gamma 4.0 + log_k -12.3218 + -delta_H 14.7068 kJ/mol +# deltafH -305.3 kcal/mol + -analytic -7.6170e1 -3.3574e-2 1.3405e2 2.9658e1 2.1140 +# Range 0-350 + -Vm -0.5258 -9.0576 9.2927 -2.4045 5.61140 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 H+ + 2 SO3-2 = S2O5-2 + H2O + -llnl_gamma 4.0 + log_k 9.5934 +# deltafH -0 kcal/mol + -analytic 0.12262e3 0.62883e-1 -0.18005e4 -0.50798e2 -0.28132e2 +# Range 0-350 + -Vm 7.3618 10.1945 1.7414 -3.2003 2.8343 # SSW+97 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 H+ + SO3-2 = SO2 + H2O + -llnl_gamma 3.0 + log_k 9.0656 + -delta_H 26.7316 kJ/mol +# deltafH -77.194 kcal/mol + -analytic 9.4048e1 6.2127e-2 -1.1072e3 -4.0310e1 -1.7305e1 +# Range 0-350 + -Vm 6.9502 9.189 2.1383 -3.1589 -0.0559 +# Extrapol supcrt92 +# Ref SHS89 + +2 CH3COOH + Sc+3 = Sc(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -3.7237 + -delta_H -43.1789 kJ/mol +# deltafH -389.32 kcal/mol + -analytic -4.1862e1 -3.9443e-5 2.1444e2 1.2616e1 5.5442e5 +# Range 0-350 + -Vm 9.2794 14.8737 -0.0899 -3.3938 0.9706 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Sc+3 = Sc(CH3COO)3 + 3 H+ + -llnl_gamma 3.0 + log_k -6.6777 + -delta_H -70.0402 kJ/mol +# deltafH -511.84 kcal/mol + -analytic -5.2525e1 1.6181e-3 7.5022e2 1.3988e1 7.3540e5 +# Range 0-350 + -Vm 16.5277 32.5748 -7.0539 -4.1255 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Sc+3 + CH3COOH = ScCH3COO+2 + H+ + -llnl_gamma 4.5 + log_k -1.4294 + -delta_H -21.7568 kJ/mol +# deltafH -268.1 kcal/mol + -analytic -2.3400e1 1.3144e-4 1.1125e2 7.3527 3.0025e5 +# Range 0-350 + -Vm 2.7175 -1.1437 6.1937 -2.7316 1.7013 +# Extrapol supcrt92 +# Ref SK93 + +2 CH3COOH + Sm+3 = Sm(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -4.7132 + -delta_H -25.5224 kJ/mol +# deltafH -403.5 kcal/mol + -analytic -1.4192e1 2.1732e-3 -1.0267e3 2.9516 4.4389e5 +# Range 0-350 + -Vm 9.159 14.5839 0.0138 -3.3818 0.6644 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Sm+3 = Sm(CH3COO)3 + 3 H+ + -llnl_gamma 3.0 + log_k -7.8798 + -delta_H -43.5554 kJ/mol +# deltafH -523.91 kcal/mol + -analytic -2.0765e1 1.1047e-3 -5.1181e2 3.4797 5.0618e5 +# Range 0-350 + -Vm 16.5088 32.5307 -7.0412 -4.1237 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Sm+3 + CH3COOH = SmCH3COO+2 + H+ + -llnl_gamma 4.5 + log_k -1.9205 + -delta_H -13.598 kJ/mol +# deltafH -284.55 kcal/mol + -analytic -1.1734e1 1.0889e-3 -5.1061e2 3.3317 2.6395e5 +# Range 0-350 + -Vm 2.6264 -1.3667 6.2827 -2.7224 1.4769 +# Extrapol supcrt92 +# Ref SK93 + +Sm+3 + HCO3- = SmCO3+ + H+ + -llnl_gamma 4.0 + log_k -2.479 + -delta_H 89.1108 kJ/mol +# deltafH -308.8 kcal/mol # OBIGT: -331.34 kcal/mol HSS95 + -analytic 2.3486e2 5.3703e-2 -7.0193e3 -9.2863e1 -1.0960e2 +# Range 0-350 + -Vm -1.0455 -10.3293 9.798 -2.3519 1.1907 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + Cl- = SmCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 14.3637 kJ/mol +# deltafH -201.7 kcal/mol + -analytic 9.4972e1 3.9428e-2 -2.4198e3 -3.9718e1 -3.7787e1 +# Range 0-350 + -Vm -0.5006 -8.9988 9.2743 -2.4069 1.4192 +# Extrapol supcrt92 +# Ref HSS95 + +2 Cl- + Sm+3 = SmCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 19.9409 kJ/mol +# deltafH -240.3 kcal/mol + -analytic 2.5872e2 8.4154e-2 -7.2061e3 -1.0493e2 -1.1252e2 +# Range 0-350 + -Vm 2.5888 -1.4617 6.3276 -2.7185 0.6644 +# Extrapol supcrt92 +# Ref HSS95 + +3 Cl- + Sm+3 = SmCl3 + -llnl_gamma 3.0 + log_k -0.3936 + -delta_H 13.803 kJ/mol +# deltafH -281.7 kcal/mol + -analytic 4.9535e2 1.3520e-1 -1.4325e4 -1.9720e2 -2.2367e2 +# Range 0-350 + -Vm 6.0808 7.0673 2.9692 -3.0711 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +4 Cl- + Sm+3 = SmCl4- + -llnl_gamma 4.0 + log_k -0.818 + -delta_H -5.30531 kJ/mol +# deltafH -326.2 kcal/mol + -analytic 6.0562e2 1.4212e-1 -1.7982e4 -2.3782e2 -2.8077e2 +# Range 0-350 + -Vm 10.8148 18.6261 -1.5732 -3.5489 1.6917 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + HPO4-2 + H+ = SmH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -15.8364 kJ/mol +# deltafH -477.8 kcal/mol + -analytic 1.2451e2 6.4959e-2 -3.9576e2 -5.3772e1 -6.2124 +# Range 0-350 + -Vm 1.3708 -4.4295 7.4801 -2.5958 1.4867 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + HCO3- = SmHCO3+2 + -llnl_gamma 4.5 + log_k 1.7724 + -delta_H 9.19643 kJ/mol +# deltafH -327.9 kcal/mol + -analytic 5.5520e1 3.3265e-2 -7.3142e2 -2.4727e1 -1.1430e1 +# Range 0-350 + -Vm 0.3694 -6.8727 8.4365 -2.4948 1.2366 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + NO3- = SmNO3+2 + -llnl_gamma 4.5 + log_k 0.8012 + -delta_H -29.1667 kJ/mol +# deltafH -221.6 kcal/mol + -analytic 3.3782e1 2.7125e-2 1.5091e3 -1.8632e1 2.3537e1 +# Range 0-350 + -Vm 1.0908 -5.1124 7.7478 -2.5676 1.5897 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + H2O = SmO+ + 2 H+ + -llnl_gamma 4.0 + log_k -16.4837 + -delta_H 113.039 kJ/mol +# deltafH -206.5 kcal/mol # OBIGT: -197.63 kcal/mol HSS95 + -analytic 1.8554e2 3.0198e-2 -1.3791e4 -6.6588e1 -2.1526e2 +# Range 0-350 + -Vm 2.8115 -0.9157 6.1076 -2.741 0.3837 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Sm+3 = SmO2- + 4 H+ + -llnl_gamma 4.0 + log_k -35.0197 + -delta_H 285.909 kJ/mol +# deltafH -233.5 kcal/mol # OBIGT: -238.22 kcal/mol HSS95 + -analytic 1.3508e1 -8.3384e-3 -1.0325e4 -1.5506 -6.7392e5 +# Range 0-350 + -Vm 4.9642 4.3393 4.0456 -2.9583 1.0848 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Sm+3 = SmO2H + 3 H+ + -llnl_gamma 3.0 + log_k -25.9304 + -delta_H 226.497 kJ/mol +# deltafH -247.7 kcal/mol + -analytic 3.6882e2 5.3761e-2 -2.4317e4 -1.3305e2 -3.7956e2 +# Range 0-350 + -Vm 4.9296 4.2552 4.0768 -2.9548 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + H2O = SmOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.9808 + -delta_H 79.1487 kJ/mol +# deltafH -214.6 kcal/mol # OBIGT: -213.97 kcal/mol HSS95 + -analytic 6.3793e1 1.1977e-2 -6.0852e3 -2.2198e1 -9.4972e1 +# Range 0-350 + -Vm 2.7076 -1.1676 6.2027 -2.7306 1.1289 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + SO4-2 = SmSO4+ + -llnl_gamma 4.0 + log_k 3.6430 + -delta_H 20.0832 kJ/mol +# deltafH -377.8 kcal/mol + -analytic 3.0597e2 8.6258e-2 -9.0231e3 -1.2032e2 -1.4089e2 +# Range 0-350 + -Vm -1.3885 -4.3882 7.4678 -2.5975 0.7483 +# Extrapol supcrt92 +# Ref HSS95 + +UO2+2 + H2O = UO2OH+ + H+ + -llnl_gamma 4.0 + log_k -5.2073 + -delta_H 43.1813 kJ/mol +# deltafH -1261.66 kJ/mol + -analytic 3.4387e1 6.0811e-3 -3.3068e3 -1.2252e1 -5.1609e1 +# Range 0-350 + -Vm 4.764 3.8529 4.2318 -2.9382 0.4925 # SSB97 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +2 CH3COOH + Zn+2 = Zn(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -6.062 + -delta_H -11.0458 kJ/mol +# deltafH -271.5 kcal/mol + -analytic -2.2038e1 2.6133e-3 -2.7652e3 6.8501 6.7086e5 +# Range 0-350 + -Vm 11.7443 20.8978 -2.4707 -3.6429 -0.038 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +3 CH3COOH + Zn+2 = Zn(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -10.0715 + -delta_H 25.355 kJ/mol +# deltafH -378.9 kcal/mol + -analytic 3.5104e1 -6.1568e-3 -1.3379e4 -8.7697 2.0670e6 +# Range 0-350 + -Vm 20.0332 41.1373 -10.4257 -4.4796 1.2513 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +Zn+2 + CH3COOH = ZnCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.1519 + -delta_H -9.87424 kJ/mol +# deltafH -155.12 kcal/mol + -analytic -7.9367 2.8564e-3 -1.4514e3 2.5010 2.3343e5 +# Range 0-350 + -Vm 4.8484 4.06 4.1473 -2.9468 0.41 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +Zn+2 + Cl- = ZnCl+ + -llnl_gamma 4.0 + log_k 0.1986 + -delta_H 43.317 kJ/mol +# deltafH -66.24 kcal/mol + -analytic 1.1235e2 4.4461e-2 -4.1662e3 -4.5023e1 -6.5042e1 +# Range 0-350 + -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +2 Cl- + Zn+2 = ZnCl2 + -llnl_gamma 3.0 + log_k 0.2507 + -delta_H 31.1541 kJ/mol +# deltafH -109.08 kcal/mol + -analytic 1.7824e2 7.5733e-2 -4.6251e3 -7.4770e1 -7.2224e1 +# Range 0-350 + -Vm -10.1 4.57 241 -2.97 -1e-3 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +3 Cl- + Zn+2 = ZnCl3- + -llnl_gamma 4.0 + log_k -0.0198 + -delta_H 22.5894 kJ/mol +# deltafH -151.06 kcal/mol + -analytic 1.3889e2 7.4712e-2 -2.1527e3 -6.2200e1 -3.3633e1 +# Range 0-350 + -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +4 Cl- + Zn+2 = ZnCl4-2 + -llnl_gamma 4.0 + log_k 0.8605 + -delta_H 4.98733 kJ/mol +# deltafH -195.2 kcal/mol + -analytic 8.4294e1 7.0021e-2 3.9150e2 -4.2664e1 6.0834 +# Range 0-300 + -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97? + +Zn+2 + H2O = ZnOH+ + H+ + -llnl_gamma 4.0 + log_k -8.96 +# deltafH -0 kcal/mol + -analytic -7.8600e-1 -2.9499e-4 -2.8673e3 6.1892e-1 -4.2576e1 +# Range 25-300 + -Vm 1.1499 -4.9677 7.6896 -2.5735 0.326 +# Extrapol supcrt92, ? +# Ref SSW+97, 87bou/bar differ by 0.8 log K at 0C, 2.7 log K at 300C + +Zn+2 + SO4-2 = ZnSO4 + -llnl_gamma 3.0 + log_k 2.3062 + -delta_H 15.277 kJ/mol +# deltafH -1047.71 kJ/mol + -analytic 1.3640e2 5.1256e-2 -3.4422e3 -5.5695e1 -5.8501e1 +# Range 0-200 + -Vm 2.51 0 18.8 # APP14 +# Extrapol 69hel +# Ref WEP+82 + +#--------------------------- +# carbfix.dat additions and changes +#--------------------------- + +HS- + H+ = H2S + -llnl_gamma 3.0 + log_k 6.97791 # SS97 + -analytic -782.43945 -0.361261 20565.7315 328.67496 0 1.6722e-4 # SS97 + -Vm 7.81 2.96 -0.46 # phreeqc.dat + +2 H2O + Al+3 = Al(OH)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -10.5945 # llnl.dat + -analytic 4.4036e+001 2.0168e-002 -5.5455e+003 -1.6987e+001 -8.6545e+001 # llnl.dat + -Vm 2.1705 -2.4811 6.7241 -2.6763 0.95700 0 0 0 0 0 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Al+3 + SiO2 + 2 H2O = AlH3SiO4+2 + H+ + -llnl_gamma 4.5 + log_k -2.38 # P+96 + -analytic 5.241793953846094 0.005624769230769303 -2772.442855034987 0 0 0 # P+96 + -Vm 0.16 -7.23 8.61 -2.4800 0.88000 # TS01 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +SO4-2 + Al+3 = AlSO4+ + -llnl_gamma 4.0 + log_k 3.17527 # TS01 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -6034.286233487146 -2.009118445366823 225586.09598339273 2388.3098402377414 -8.473342720127227e6 0.000736431615071334 # TS01 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 1.833 -3.3057 7.0494 -2.6423 2.4143 # TS01 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +4 H2O + Na+ + Al+3 = NaAl(OH)4 + 4 H+ + -llnl_gamma 3.0 + log_k -22.9 # TS01 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -319.6003434647659 -0.1452549158200939 2048.487394301387 134.79387929123214 -579779.0987586592 0.00006885771169878286 # TS01 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 9.1267 14.3411 0.1121 -3.3719 0 # TS01 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Mg+2 + CO3-2 = MgCO3 + -llnl_gamma 3.0 + log_k 3.01 # SBS14 + -analytic 5.5093 -0.00017143 -734.208 0 0 0 # SBS14 + -Vm -0.7355 -9.5745 9.5062 -2.3831 -0.038 # SSH97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Mg+2 + HCO3- = MgHCO3+ + -llnl_gamma 4.0 + log_k 1.10 # SBS14 + -analytic -8.8935 0.01694 1474.786 0 0 0 # SBS14 + -Vm 3.271 0.206 5.669 -2.7880 0.59900 # SK95 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Na+ + CO3-2 = NaCO3- + -llnl_gamma 4.0 + log_k 1.01 # SBS13 + -analytic 4.1659 0 -941.150 0 0 0 # SBS13 + -Vm 7.642732 2.993503 2.328077 -2.902751 1.507948 # DEW17 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Na+ + HCO3- = NaHCO3 + -llnl_gamma 3.0 + log_k -0.18 # SBS13 + -analytic 1.8528 0 -606.240 0 0 0 # SBS13 + -Vm 0.431 # APP14 + +HCO3- + Ca+2 = CaHCO3+ + -llnl_gamma 4.0 + log_k 1.0467 # llnl.dat + -analytic 5.5985e+001 3.4639e-002 -3.6972e+002 -2.5864e+001 -5.7859e+000 # llnl.dat + -Vm 3.706 1.267 5.252 -2.8310 0.30800 # SK95 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Na+ + SO4-2 = NaSO4- + -llnl_gamma 4.0 + log_k 0.702779 # MS97 + CHNOSZ/OBIGT/SUPCRTBL - D08 + -analytic -1515.4130255698833 -0.5496881710640973 53009.74446438346 607.5403646933713 -1.7958467164664706e6 0.00021478523226344507 # MS97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 1e-5 16.4 -0.0678 -1.05 4.14 0 6.86 0 0.0242 0.53 # APP14 + +Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -5.6502 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -311.3248470052558 -0.1252808696431922 9665.364708433648 127.49811415837463 -849396.8730633351 0.00005263379396466626 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm -3.7118 -16.8408 12.3595 -2.0827 0.7191 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ + -llnl_gamma 3.0 + log_k -12.0185 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -741.3725966104283 -0.26505708328056 26205.378230673232 296.5340355414264 -1.972081032472368e6 0.00010032479998977653 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 2.7401 -1.0905 6.1776 -2.7338 -0.03 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ + -llnl_gamma 4.0 + log_k -21.6225 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic 1533.5014901840032 0.45075510400897445 -69859.23735739749 -593.4694075764281 2.3641904800567343e6 -0.00014964010950998835 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 2.3837 -1.9602 6.5182 -2.6979 1.4662 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +2 H2O + Fe+2 = Fe(OH)2 + 2 H+ + -llnl_gamma 3.0 + log_k -20.4049 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -325.1339790725869 -0.1345716716871417 5315.653600095374 132.16984714439332 -459607.68923879805 0.000057906348553908315 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm -0.5029 -9.0053 9.2791 -2.4066 -0.03 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +3 H2O + Fe+2 = Fe(OH)3- + 3 H+ + -llnl_gamma 4.0 + log_k -29.208 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic 1906.044327275795 0.5662477247894362 -88119.68431429783 -741.1535184277503 3.7592690582787376e6 -0.0001898657106678743 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 0.6272 -6.244 8.1905 -2.5208 1.8564 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +H+ + ClO- = HClO + -llnl_gamma 3.0 + log_k 7.55236 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2041.6086043936152 -0.6683042462929405 80422.12116400951 805.7772200117705 -3.2667035060825506e6 0.00024280864184851264 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 5.5927 5.8751 3.4387 -3.0218 -0.1734 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +H+ + ClO2- = HClO2 + -llnl_gamma 3.0 + log_k 1.98189 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2249.8186120868168 -0.7355468012526403 86690.01133768198 887.6588357902062 -3.5397309172713878e6 0.00026672471518723433 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 7.6706 10.9455 1.4527 -3.2314 -0.3415 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +H+ + S2O3-- = HS2O3- + -llnl_gamma 4.0 + log_k 1.68836 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -1611.0948316547294 -0.5495686401519247 59194.43018784251 640.1240524484979 -2.166923306383505e6 0.00020844502892650532 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 6.1964 7.351 2.8549 -3.0828 1.1676 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +K+ + H2O = KOH + H+ + -llnl_gamma 3.0 + log_k -14.4386 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -477.55011247018905 -0.1442523288404146 18222.588641689916 183.69951482387626 -1.2139398662316576e6 0.0000461802984447927 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 3.7938 1.4839 5.1619 -2.8402 -0.03 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + + + +#--------------------------- +# 66 other aqueous species +#--------------------------- +H2O + Ba+2 + B(OH)3 = BaB(OH)4+ + H+ + -llnl_gamma 4.0 + log_k -7.8012 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaB(OH)4+ +# Enthalpy of formation: -0 kcal/mol + + HCO3- + Ba+2 = BaCO3 + H+ + -llnl_gamma 3.0 + log_k -7.6834 + -delta_H 31.5808 kJ/mol # Calculated enthalpy of reaction BaCO3 +# Enthalpy of formation: -285.85 kcal/mol + -analytic 2.1878e+002 5.2368e-002 -8.2472e+003 -8.6644e+001 -1.2875e+002 +# -Range: 0-300 + + Cl- + Ba+2 = BaCl+ + -llnl_gamma 4.0 + log_k -0.4977 + -delta_H 11.142 kJ/mol # Calculated enthalpy of reaction BaCl+ +# Enthalpy of formation: -165.77 kcal/mol + -analytic 1.1016e+002 4.2325e-002 -2.8039e+003 -4.6010e+001 -4.3785e+001 +# -Range: 0-300 + + F- + Ba+2 = BaF+ + -llnl_gamma 4.0 + log_k -0.1833 + -delta_H 8.95376 kJ/mol # Calculated enthalpy of reaction BaF+ +# Enthalpy of formation: -206.51 kcal/mol + -analytic 1.0349e+002 4.0336e-002 -2.5195e+003 -4.3334e+001 -3.9346e+001 +# -Range: 0-300 + + NO3- + Ba+2 = BaNO3+ + -llnl_gamma 4.0 + log_k +0.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaNO3+ +# Enthalpy of formation: -0 kcal/mol + + H2O + Ba+2 = BaOH+ + H+ + -llnl_gamma 4.0 + log_k -13.47 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaOH+ +# Enthalpy of formation: -0 kcal/mol + + +Ce+3 + 0.5 H2O = Ce+2 + H+ +0.25 O2 + -llnl_gamma 4.5 + log_k -83.6754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce+2 +# Enthalpy of formation: -0 kcal/mol + +H+ + Ce+3 + 0.25 O2 = Ce+4 +0.5 H2O + -llnl_gamma 5.5 + log_k -7.9154 + -delta_H 0 # Not possible to ca + +2.0 HCO3- + Ce+3 = Ce(CO3)2- +2.0 H+ + -llnl_gamma 4.0 + log_k -8.1576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0 HPO4-2 + Ce+3 = Ce(HPO4)2- + -llnl_gamma 4.0 + log_k +8.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0 H2O + Ce+4 = Ce(OH)2+2 +2.0 H+ + -llnl_gamma 4.5 + log_k +2.0098 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)2+2 +# Enthalpy of formation: -0 kcal/mol + +2.0 HPO4-2 + Ce+3 = Ce(PO4)2-3 +2.0 H+ + -llnl_gamma 4.0 + log_k -6.1437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0 H2O + 2.0 Ce+4 = Ce2(OH)2+6 +2.0 H+ + -llnl_gamma 6.0 + log_k +3.0098 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2(OH)2+6 +# Enthalpy of formation: -0 kcal/mol + +5.0 H2O + 3.0 Ce+3 = Ce3(OH)5+4 +5.0 H+ + -llnl_gamma 5.5 + log_k -33.4754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce3(OH)5+4 +# Enthalpy of formation: -0 kcal/mol + +HCO3- + Ce+3 = CeCO3+ + H+ + -llnl_gamma 4.0 + log_k -2.9284 + -delta_H 93.345 kJ/mol # Calculated enthalpy of reaction CeCO3+ +# Enthalpy of formation: -309.988 kcal/mol + -analytic 2.3292e+002 5.3153e-002 -7.1180e+003 -9.2061e+001 -1.1114e+002 +# -Range: 0-300 + +Cl- + Ce+3 = CeCl+2 + -llnl_gamma 4.5 + log_k +0.3086 + -delta_H 14.7821 kJ/mol # Calculated enthalpy of reaction CeCl+2 +# Enthalpy of formation: -203.8 kcal/mol + -analytic 8.3534e+001 3.8166e-002 -2.0058e+003 -3.5504e+001 -3.1324e+001 +# -Range: 0-300 + +2.0 Cl- + Ce+3 = CeCl2+ + -llnl_gamma 4.0 + log_k +0.0308 + -delta_H 20.7777 kJ/mol # Calculated enthalpy of reaction CeCl2+ +# Enthalpy of formation: -242.3 kcal/mol + -analytic 2.3011e+002 8.1428e-002 -6.1292e+003 -9.4468e+001 -9.5708e+001 +# -Range: 0-300 + +3.0 Cl- + Ce+3 = CeCl3 + -llnl_gamma 3.0 + log_k -0.3936 + -delta_H 15.4766 kJ/mol # Calculated enthalpy of reaction CeCl3 +# Enthalpy of formation: -283.5 kcal/mol + -analytic 4.4073e+002 1.2994e-001 -1.2308e+004 -1.7722e+002 -1.9218e+002 +# -Range: 0-300 + +4.0 Cl- + Ce+3 = CeCl4- + -llnl_gamma 4.0 + log_k -0.7447 + -delta_H -1.95811 kJ/mol # Calculated enthalpy of reaction CeCl4- +# Enthalpy of formation: -327.6 kcal/mol + -analytic 5.2230e+002 1.3490e-001 -1.4859e+004 -2.0747e+002 -2.3201e+002 +# -Range: 0-300 + +ClO4- + Ce+3 = CeClO4+2 + -llnl_gamma 4.5 + log_k +1.9102 + -delta_H -49.0197 kJ/mol # Calculated enthalpy of reaction CeClO4+2 +# Enthalpy of formation: -210.026 kcal/mol + -analytic -1.3609e+001 1.8115e-002 3.9869e+003 -1.3033e+000 6.2215e+001 +# -Range: 0-300 + +F- + Ce+3 = CeF+2 + -llnl_gamma 4.5 + log_k +4.2221 + -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction CeF+2 +# Enthalpy of formation: -242 kcal/mol + -analytic 1.0303e+002 4.1730e-002 -2.8424e+003 -4.1094e+001 -4.4383e+001 +# -Range: 0-300 + +2.0 F- + Ce+3 = CeF2+ + -llnl_gamma 4.0 + log_k +7.2714 + -delta_H 15.0624 kJ/mol # Calculated enthalpy of reaction CeF2+ +# Enthalpy of formation: -324.1 kcal/mol + -analytic 2.5063e+002 8.5224e-002 -6.2219e+003 -1.0017e+002 -9.7160e+001 +# -Range: 0-300 + +3.0 F- + Ce+3 = CeF3 + -llnl_gamma 3.0 + log_k +9.5144 + -delta_H -6.0668 kJ/mol # Calculated enthalpy of reaction CeF3 +# Enthalpy of formation: -409.3 kcal/mol + -analytic 4.6919e+002 1.3664e-001 -1.1745e+004 -1.8629e+002 -1.8340e+002 +# -Range: 0-300 + +4.0 F- + Ce+3 = CeF4- + -llnl_gamma 4.0 + log_k +11.3909 + -delta_H -45.6056 kJ/mol # Calculated enthalpy of reaction CeF4- +# Enthalpy of formation: -498.9 kcal/mol + -analytic 5.3522e+002 1.3856e-001 -1.2722e+004 -2.1112e+002 -1.9868e+002 +# -Range: 0-300 + +HPO4-2 + H+ + Ce+3 = CeH2PO4+2 + -llnl_gamma 4.5 + log_k +9.6684 + -delta_H -16.2548 kJ/mol # Calculated enthalpy of reaction CeH2PO4+2 +# Enthalpy of formation: -480.1 kcal/mol + -analytic 1.1338e+002 6.3771e-002 5.2908e+001 -4.9649e+001 7.9189e-001 +# -Range: 0-300 + +HCO3- + Ce+3 = CeHCO3+2 + -llnl_gamma 4.5 + log_k +1.9190 + -delta_H 8.77803 kJ/mol # Calculated enthalpy of reaction CeHCO3+2 +# Enthalpy of formation: -330.2 kcal/mol + -analytic 4.4441e+001 3.2077e-002 -3.0714e+002 -2.0622e+001 -4.8060e+000 +# -Range: 0-300 + +HPO4-2 + Ce+3 = CeHPO4+ + -llnl_gamma 4.0 + log_k +5.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction CeHPO4+ +# Enthalpy of formation: -0 kcal/mol + +NO3- + Ce+3 = CeNO3+2 + -llnl_gamma 4.5 + log_k +1.3143 + -delta_H -26.6563 kJ/mol # Calculated enthalpy of reaction CeNO3+2 +# Enthalpy of formation: -223.2 kcal/mol + -analytic 2.2772e+001 2.5931e-002 1.9950e+003 -1.4490e+001 3.1124e+001 +# -Range: 0-300 + +H2O + Ce+3 = CeO+ +2.0 H+ + -llnl_gamma 4.0 + log_k -16.4103 + -delta_H 112.202 kJ/mol # Calculated enthalpy of reaction CeO+ +# Enthalpy of formation: -208.9 kcal/mol + -analytic 1.9881e+002 3.1302e-002 -1.4331e+004 -7.1323e+001 -2.2368e+002 +# -Range: 0-300 + +2.0 H2O + Ce+3 = CeO2- +4.0 H+ + -llnl_gamma 4.0 + log_k -38.758 + -delta_H 308.503 kJ/mol # Calculated enthalpy of reaction CeO2- +# Enthalpy of formation: -230.3 kcal/mol + -analytic 1.0059e+002 3.4824e-003 -1.5873e+004 -3.3056e+001 -4.7656e+005 +# -Range: 0-300 + +2.0 H2O + Ce+3 = CeO2H +3.0 H+ + -llnl_gamma 3.0 + log_k -26.1503 + -delta_H 228.17 kJ/mol # Calculated enthalpy of reaction CeO2H +# Enthalpy of formation: -249.5 kcal/mol + -analytic 3.5650e+002 4.6708e-002 -2.4320e+004 -1.2731e+002 -3.7959e+002 +# -Range: 0-300 + +H2O + Ce+3 = CeOH+2 + H+ + -llnl_gamma 4.5 + log_k -8.4206 + -delta_H 73.2911 kJ/mol # Calculated enthalpy of reaction CeOH+2 +# Enthalpy of formation: -218.2 kcal/mol + -analytic 7.5809e+001 1.2863e-002 -6.7244e+003 -2.6473e+001 -1.0495e+002 +# -Range: 0-300 + +H2O + Ce+4 = CeOH+3 + H+ + -llnl_gamma 5.0 + log_k +3.2049 + -delta_H 0 # Not possible to calculate enthalpy of reaction CeOH+3 +# Enthalpy of formation: -0 kcal/mol + +HPO4-2 + Ce+3 = CePO4 + H+ + -llnl_gamma 3.0 + log_k -0.9718 + -delta_H 0 # Not possible to calculate enthalpy of reaction CePO4 +# Enthalpy of formation: -0 kcal/mol + +SO4-2 + Ce+3 = CeSO4+ + -llnl_gamma 4.0 + log_k -3.687 + -delta_H 19.2464 kJ/mol # Calculated enthalpy of reaction CeSO4+ +# Enthalpy of formation: -380.2 kcal/mol + -analytic 3.0156e+002 8.5149e-002 -1.1025e+004 -1.1866e+002 -1.7213e+002 +# -Range: 0-300 + +2.0 H+ + Pb+2 + 0.5 O2 = Pb+4 + H2O + -llnl_gamma 5.5 + log_k -14.1802 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb+4 +# Enthalpy of formation: -0 kcal/mol + +2.0 HCO3- + Pb+2 = Pb(CO3)2-2 +2.0 H+ + -llnl_gamma 4.0 + log_k -11.2576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(CO3)2-2 +# Enthalpy of formation: -0 kcal/mol + +2.0 ClO3- + Pb+2 = Pb(ClO3)2 + -llnl_gamma 3.0 + log_k -0.5133 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(ClO3)2 +# Enthalpy of formation: -0 kcal/mol + +2.0 H2O + Pb+2 = Pb(OH)2 +2.0 H+ + -llnl_gamma 3.0 + log_k -17.0902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)2 +# Enthalpy of formation: -0 kcal/mol + +3.0 H2O + Pb+2 = Pb(OH)3- +3.0 H+ + -llnl_gamma 4.0 + log_k -28.0852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)3- +# Enthalpy of formation: -0 kcal/mol + +2.0 Pb+2 + H2O = Pb2OH+3 + H+ + -llnl_gamma 5.0 + log_k -6.3951 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2OH+3 +# Enthalpy of formation: -0 kcal/mol + +4.0 H2O + 3.0 Pb+2 = Pb3(OH)4+2 +4.0 H+ + -llnl_gamma 4.5 + log_k -23.8803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb3(OH)4+2 +# Enthalpy of formation: -0 kcal/mol + +4.0 Pb+2 + 4.0 H2O = Pb4(OH)4+4 +4.0 H+ + -llnl_gamma 5.5 + log_k -20.8803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4(OH)4+4 +# Enthalpy of formation: -0 kcal/mol + +8.0 H2O + 6.0 Pb+2 = Pb6(OH)8+4 +8.0 H+ + -llnl_gamma 5.5 + log_k -43.5606 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb6(OH)8+4 +# Enthalpy of formation: -0 kcal/mol + + + Pb+2 + HCO3- = PbCO3 + H+ + -llnl_gamma 3.0 + log_k -3.7488 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbCO3 +# Enthalpy of formation: -0 kcal/mol + + Pb+2 + Cl- = PbCl+ + -llnl_gamma 4.0 + log_k +1.4374 + -delta_H 4.53127 kJ/mol # Calculated enthalpy of reaction PbCl+ +# Enthalpy of formation: -38.63 kcal/mol + -analytic 1.1948e+002 4.3527e-002 -2.7666e+003 -4.9190e+001 -4.3206e+001 +# -Range: 0-300 + +2.0 Cl- + Pb+2 = PbCl2 + -llnl_gamma 3.0 + log_k +2.0026 + -delta_H 8.14206 kJ/mol # Calculated enthalpy of reaction PbCl2 +# Enthalpy of formation: -77.7 kcal/mol + -analytic 2.2537e+002 7.7574e-002 -5.5112e+003 -9.2131e+001 -8.6064e+001 +# -Range: 0-300 + +3.0 Cl- + Pb+2 = PbCl3- + -llnl_gamma 4.0 + log_k +1.6881 + -delta_H 7.86174 kJ/mol # Calculated enthalpy of reaction PbCl3- +# Enthalpy of formation: -117.7 kcal/mol + -analytic 2.5254e+002 8.9159e-002 -6.0116e+003 -1.0395e+002 -9.3880e+001 +# -Range: 0-300 + +4.0 Cl- + Pb+2 = PbCl4-2 + -llnl_gamma 4.0 + log_k +1.4909 + -delta_H -7.18811 kJ/mol # Calculated enthalpy of reaction PbCl4-2 +# Enthalpy of formation: -161.23 kcal/mol + -analytic 1.4048e+002 7.6332e-002 -1.1507e+003 -6.3786e+001 -1.7997e+001 +# -Range: 0-300 + + Pb+2 + ClO3- = PbClO3+ + -llnl_gamma 4.0 + log_k -0.2208 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbClO3+ +# Enthalpy of formation: -0 kcal/mol + + Pb+2 + F- = PbF+ + -llnl_gamma 4.0 + log_k +0.8284 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbF+ +# Enthalpy of formation: -0 kcal/mol + +2.0 F- + Pb+2 = PbF2 + -llnl_gamma 3.0 + log_k +1.6132 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbF2 +# Enthalpy of formation: -0 kcal/mol + + Pb+2 + HPO4-2 + H+ = PbH2PO4+ + -llnl_gamma 4.0 + log_k +1.5 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbH2PO4+ +# Enthalpy of formation: -0 kcal/mol + + Pb+2 + HPO4-2 = PbHPO4 + -llnl_gamma 3.0 + log_k +3.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbHPO4 +# Enthalpy of formation: -0 kcal/mol + + Pb+2 + NO3- = PbNO3+ + -llnl_gamma 4.0 + log_k +1.2271 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbNO3+ +# Enthalpy of formation: -0 kcal/mol + + Pb+2 + H2O = PbOH+ + H+ + -llnl_gamma 4.0 + log_k -7.6951 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbOH+ +# Enthalpy of formation: -0 kcal/mol + +2.0 HPO4-2 + Pb+2 = PbP2O7-2 + H2O + -llnl_gamma 4.0 + log_k +7.4136 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbP2O7-2 +# Enthalpy of formation: -0 kcal/mol + +1.0 Sr+2 + 1.0 HCO3- = SrCO3 +1.0 H+ + -llnl_gamma 3.0 + log_k -7.4635 + -delta_H 33.2544 kJ/mol # Calculated enthalpy of reaction SrCO3 +# Enthalpy of formation: -288.62 kcal/mol + -analytic 2.2303e+002 5.2582e-002 -8.4861e+003 -8.7975e+001 -1.3248e+002 +# -Range: 0-300 + +1.0 Sr+2 + 1.0 Cl- = SrCl+ + -llnl_gamma 4.0 + log_k -0.2485 + -delta_H 7.58559 kJ/mol # Calculated enthalpy of reaction SrCl+ +# Enthalpy of formation: -169.79 kcal/mol + -analytic 9.4568e+001 3.9042e-002 -2.1458e+003 -4.0105e+001 -3.3511e+001 +# -Range: 0-300 + +1.0 Sr+2 + 1.0 F- = SrF+ + -llnl_gamma 4.0 + log_k +0.1393 + -delta_H 4.8116 kJ/mol # Calculated enthalpy of reaction SrF+ +# Enthalpy of formation: -210.67 kcal/mol + -analytic 9.0295e+001 3.7609e-002 -1.9012e+003 -3.8379e+001 -2.9693e+001 +# -Range: 0-300 + +1.0 Sr+2 + 1.0 HPO4-2 + 1.0 H+ = SrH2PO4+ + -llnl_gamma 4.0 + log_k +0.7300 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrH2PO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0 Sr+2 + 1.0 HPO4-2 = SrHPO4 + -llnl_gamma 3.0 + log_k +2.0600 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrHPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0 Sr+2 + 1.0 NO3- = SrNO3+ + -llnl_gamma 4.0 + log_k +0.8000 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrNO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0 Sr+2 + 1.0 H2O = SrOH+ +1.0 H+ + -llnl_gamma 4.0 + log_k -13.29 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrOH+ +# Enthalpy of formation: -0 kcal/mol + +2.0 HPO4-2 + 1.0 Sr+2 = SrP2O7-2 +1.0 H2O + -llnl_gamma 4.0 + log_k +1.6537 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrP2O7-2 +# Enthalpy of formation: -0 kcal/mol + +1.0 Sr+2 + 1.0 SO4-2 = SrSO4 + -llnl_gamma 3.0 + log_k +2.3000 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrSO4 +# Enthalpy of formation: -0 kcal/mol + + + +PHASES + +#------------ +# 375 solids +#------------ + +[(6)(CB)(CB)S] + S + O2 = SO2 + log_k 63.04 + -analytic 137.16 -0.320465 0 0 0 0.000241 +# Range 0-350 + -Vm 16.5 +# Extrapol supcrt92 +# Ref R01, calculations and fit by N17 + +[(aro)-O-(aro)] + O = 0.5 O2 + log_k -20.610681 + -delta_H 30.240 kcal/mol + -analytic -46.6 0.111 0 0 0 -7.99e-5 +# Range 0-350 + -Vm -2.4 +# Extrapol supcrt92 +# Ref RH98 + +Afwillite + Ca3Si2O4(OH)6 + 6 H+ = 2 SiO2 + 3 Ca+2 + 6 H2O + log_k 60.0452 + -delta_H -316.059 kJ/mol +# deltafH -1143.31 kcal/mol + -analytic 1.8353e1 1.9014e-3 1.8478e4 -6.6311 -4.0227e5 +# Range 0-300 + -Vm 129.23 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Akermanite + Ca2MgSi2O7 + 6 H+ = Mg+2 + 2 Ca+2 + 2 SiO2 + 3 H2O + log_k 45.3190 + -delta_H -288.575 kJ/mol +# deltafH -926.497 kcal/mol + -analytic -4.8295e1 -8.5613e-3 2.0880e4 1.3798e1 -7.1975e5 +# Range 0-350 + -Vm 92.81 +# Extrapol supcrt92 +# Ref HDN+78 + +Al + Al + 3 H+ + 0.75 O2 = Al+3 + 1.5 H2O + log_k 149.9292 + -delta_H -958.059 kJ/mol +# deltafH 0 kJ/mol + -analytic -1.8752e2 -4.6187e-2 5.7127e4 6.6270e1 -3.8952e5 +# Range 0-300 + -Vm 9.99 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Al2(SO4)3 + Al2(SO4)3 = 2 Al+3 + 3 SO4-2 + log_k 19.0535 + -delta_H -364.566 kJ/mol +# deltafH -3441.04 kJ/mol + -analytic -6.1001e2 -2.4268e-1 2.9194e4 2.4383e2 4.5573e2 +# Range 0-300 + -Vm 126.25 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Alabandite + MnS + H+ = HS- + Mn+2 + log_k -0.3944 + -delta_H -23.3216 kJ/mol +# deltafH -51 kcal/mol + -analytic -1.5515e2 -4.8820e-2 4.9049e3 6.1765e1 7.6583e1 +# Range 0-350 + -Vm 21.46 +# Extrapol supcrt92 +# Ref HDN+78 + +Albite + NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 + log_k 2.7645 + -delta_H -51.8523 kJ/mol +# deltafH -939.68 kcal/mol + -analytic -1.1694e1 1.4429e-2 1.3784e4 -7.2866 -1.6136e6 +# Range 0-350 + -Vm 100.25 +# Extrapol supcrt92 +# Ref HDN+78 + +Albite_high + NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 + log_k 4.0832 + -delta_H -62.8562 kJ/mol +# deltafH -937.05 kcal/mol + -analytic -1.8957e1 1.3726e-2 1.4801e4 -4.9732 -1.6442e6 +# Range 0-350 + -Vm 100.25 +# Extrapol supcrt92 +# Ref HDN+78 + +Albite_low + NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 + log_k 2.7645 + -delta_H -51.8523 kJ/mol +# deltafH -939.68 kcal/mol + -analytic -1.2860e1 1.4481e-2 1.3913e4 -6.9417 -1.6256e6 +# Range 0-350 + -Vm 100.25 +# Extrapol supcrt92 +# Ref HDN+78 + +Alum-K + KAl(SO4)2:12H2O = Al+3 + K+ + 2 SO4-2 + 12 H2O + log_k -4.8818 + -delta_H 14.4139 kJ/mol +# deltafH -1447 kcal/mol + -analytic -8.8025e2 -2.5706e-1 2.2399e4 3.5434e2 3.4978e2 +# Range 0-300 + -Vm 269.54 # Marion+09 +# Extrapol Cp integration +# Ref 73bar/kna + +Alunite + KAl3(OH)6(SO4)2 + 6 H+ = K+ + 2 SO4-2 + 3 Al+3 + 6 H2O + log_k -0.3479 + -delta_H -231.856 kJ/mol +# deltafH -1235.6 kcal/mol + -analytic -6.8581e2 -2.2455e-1 2.6886e4 2.6758e2 4.1973e2 +# Range 0-350 + -Vm 205.40 # thermo.com.V8.R6+.tdat +# Extrapol supcrt92 +# Ref HDN+78 + +Amesite-14A + Mg4Al4Si2O10(OH)8 + 20 H+ = 2 SiO2 + 4 Al+3 + 4 Mg+2 + 14 H2O + log_k 75.4571 + -delta_H -797.098 kJ/mol +# deltafH -2145.67 kcal/mol + -analytic -5.4326e2 -1.4144e-1 5.4150e4 1.9361e2 8.4512e2 +# Range 0-300 + -Vm 205.4 +# Extrapol Cp integration +# Ref 78wol + +Andalusite + Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O + log_k 15.9445 + -delta_H -235.233 kJ/mol +# deltafH -615.866 kcal/mol + -analytic -7.1115e1 -3.2234e-2 1.2308e4 2.2357e1 1.9208e2 +# Range 0-350 + -Vm 51.53 +# Extrapol supcrt92 +# Ref HDN+78 differ by 1.6 log K at 0C, 0.5 log K at 350C + +Andradite + Ca3Fe2(SiO4)3 + 12 H+ = 2 Fe+3 + 3 Ca+2 + 3 SiO2 + 6 H2O + log_k 33.3352 + -delta_H -301.173 kJ/mol +# deltafH -1380.35 kcal/mol + -analytic 1.3884e1 -2.3886e-2 1.5314e4 -8.1606 -4.2193e5 +# Range 0-350 + -Vm 131.85 +# Extrapol supcrt92 +# Ref HDN+78 + +Anhydrite + CaSO4 = Ca+2 + SO4-2 + log_k -4.3064 + -delta_H -18.577 kJ/mol +# deltafH -342.76 kcal/mol + -analytic -2.0986e2 -7.8823e-2 5.0969e3 8.5642e1 7.9594e1 +# Range 0-350 + -Vm 45.94 # thermo.com.V8.R6+.tdat +# Extrapol supcrt92 +# Ref HDN+78 + +Annite + KFe3AlSi3O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Fe+2 + 3 SiO2 + 6 H2O + log_k 29.4693 + -delta_H -259.964 kJ/mol +# deltafH -1232.19 kcal/mol + -analytic -4.0186e1 -1.4238e-2 1.8929e4 7.9859e0 -8.4343e5 +# Range 0-350 + -Vm 154.32 +# Extrapol supcrt92 +# Ref HDN+78 + +Anorthite + CaAl2(SiO4)2 + 8 H+ = Ca+2 + 2 Al+3 + 2 SiO2 + 4 H2O + log_k 26.5780 + -delta_H -303.039 kJ/mol +# deltafH -1007.55 kcal/mol + -analytic 3.9717e-1 -1.8751e-2 1.4897e4 -6.3078 -2.3885e5 +# Range 0-350 + -Vm 100.79 +# Extrapol supcrt92 +# Ref HDN+78 + +Anthophyllite + Mg7Si8O22(OH)2 + 14 H+ = 7 Mg+2 + 8 H2O + 8 SiO2 + log_k 66.7965 + -delta_H -483.486 kJ/mol +# deltafH -2888.75 kcal/mol + -analytic -1.2865e2 1.9705e-2 5.4853e4 1.9444e1 -3.8080e6 +# Range 0-350 + -Vm 264.4 +# Extrapol supcrt92 +# Ref HDN+78 + +Antigorite + Mg48Si34O85(OH)62 + 96 H+ = 34 SiO2 + 48 Mg+2 + 79 H2O + log_k 477.1943 + -delta_H -3364.43 kJ/mol +# deltafH -17070.9 kcal/mol + -analytic -8.1630e2 -6.7780e-2 2.5998e5 2.2029e2 -9.3275e6 +# Range 0-350 + -Vm 1749.13 +# Extrapol supcrt92 +# Ref HDN+78 + +Aragonite + CaCO3 + H+ = Ca+2 + HCO3- + log_k 1.9931 + -delta_H -25.8027 kJ/mol +# deltafH -288.531 kcal/mol + -analytic -1.4934e2 -4.8043e-2 4.9089e3 6.0284e1 7.6644e1 +# Range 0-325 + -Vm 34.15 # thermo.com.V8.R6+.tdat +# Extrapol supcrt92 +# Ref HDN+78 + +Arcanite + K2SO4 = SO4-2 + 2 K+ + log_k -1.8008 + -delta_H 23.836 kJ/mol +# deltafH -1437.78 kJ/mol + -analytic -1.6428e2 -6.7762e-2 1.9879e3 7.1116e1 3.1067e1 +# Range 0-300 + -Vm 65.50 # Marion+05 +# Extrapol Cp integration +# Ref RHF79 + +Artinite + Mg2CO3(OH)2:3H2O + 3 H+ = HCO3- + 2 Mg+2 + 5 H2O + log_k 19.6560 + -delta_H -130.432 kJ/mol +# deltafH -698.043 kcal/mol + -analytic -2.8614e2 -6.7344e-2 1.5230e4 1.1104e2 2.3773e2 +# Range 0-350 + -Vm 96.9 # 97.85 Webmineral.com +# Extrapol supcrt92 +# Ref HDN+78 + +Atacamite + Cu4Cl2(OH)6 + 6 H+ = 2 Cl- + 4 Cu+2 + 6 H2O + log_k 14.2836 + -delta_H -132.001 kJ/mol +# deltafH -1654.43 kJ/mol + -analytic -2.6623e2 -4.8121e-2 1.5315e4 9.8395e1 2.6016e2 +# Range 0-200 + -Vm 56.80 # Webmineral.com +# Extrapol Constant H approx +# Ref 87woo/gar + +Azurite + Cu3(CO3)2(OH)2 + 4 H+ = 2 H2O + 2 HCO3- + 3 Cu+2 + log_k 9.1607 + -delta_H -122.298 kJ/mol +# deltafH -390.1 kcal/mol + -analytic -4.4042e2 -1.1934e-1 1.8053e4 1.7158e2 2.8182e2 +# Range 0-350 + -Vm 91.01 +# Extrapol supcrt92 +# Ref HDN+78 + +B + B + 1.5 H2O + 0.75 O2 = B(OH)3 + log_k 109.5654 + -delta_H -636.677 kJ/mol +# deltafH 0 kJ/mol + -analytic 8.0471e1 1.2577e-3 2.9653e4 -2.8593e1 4.6268e2 +# Range 0-300 + -Vm 4.386 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +B2O3 + B2O3 + 3 H2O = 2 B(OH)3 + log_k 5.5464 + -delta_H -18.0548 kJ/mol +# deltafH -1273.5 kJ/mol + -analytic 9.0905e1 5.5365e-3 -2.6629e3 -3.1553e1 -4.1578e1 +# Range 0-300 + -Vm 28.30 # gfw/density +# Extrapol Cp integration +# Ref CWM89 + +Bassanite + CaSO4:0.5H2O = 0.5 H2O + Ca+2 + SO4-2 + log_k -3.6615 + -delta_H -18.711 kJ/mol +# deltafH -1576.89 kJ/mol + -analytic -2.2010e2 -8.0230e-2 5.5092e3 8.9651e1 8.6031e1 +# Range 0-300 + -Vm 52.31 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Bassetite + Fe(UO2)2(PO4)2 + 2 H+ = Fe+2 + 2 HPO4-2 + 2 UO2+2 + log_k -17.7240 + -delta_H -114.841 kJ/mol +# deltafH -1099.33 kcal/mol + -analytic -5.7788e1 -4.5400e-2 4.0119e3 1.6216e1 6.8147e1 +# Range 0-200 + -Vm 256.19 # Webmineral.com +# Extrapol Constant H approx +# Ref 78lan + +Beidellite-Ca + Ca.175Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Ca+2 + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 5.5914 + -delta_H -162.403 kJ/mol +# deltafH -1370.66 kcal/mol + -analytic 3.872e1 -1.431e-1 0 0 0 9.036e-5 +# Range 0-300 + -Vm 133.081 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78 wol differ by 1.5 log K at 0C, 1 log K at 300C + +Beidellite-Fe + Fe.175Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Fe+2 + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 4.6335 + -delta_H -154.65 kJ/mol +# deltafH -1351.1 kcal/mol + -analytic 3.641e1 -1.391e-1 0 0 0 8.671e-5 +# Range 0-300 + -Vm 134.293 +# Extrapol supcrt92 +# Ref Catalano13 + +Beidellite-K + K.35Al2.35Si3.65O10(OH)2 +7.4 H+ = 0.35 K+ + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 5.3088 + -delta_H -150.834 kJ/mol +# deltafH -1371.9 kcal/mol + -analytic 3.307e1 -1.254e-1 0 0 0 7.660e-5 +# Range 0-300 + -Vm 137.214 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78 wol differ by 2.9 log K at 0C, 1.7 log K at 300C + +Beidellite-Mg + Mg.175Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Mg+2 + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 5.5537 + -delta_H -165.455 kJ/mol +# deltafH -1366.89 kcal/mol + -analytic 3.750e1 -1.415e-1 0 0 0 8.929e-5 +# Range 0-300 + -Vm 132.116 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78 wol differ by 2.4 log K at 0C, 1.4 log K at 300C + +Beidellite-Na + Na.35Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Na+ + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 5.6473 + -delta_H -155.846 kJ/mol +# deltafH -1369.76 kcal/mol + -analytic 3.613e1 -1.347e-1 0 0 0 8.470e-5 +# Range 0-300 + -Vm 134.522 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, differ from 78 wol and Wilson+06 (which match) by 2.8 log K at 0C, 1.3 log K at 300C + +Berlinite + AlPO4 + H+ = Al+3 + HPO4-2 + log_k -7.2087 + -delta_H -96.6313 kJ/mol +# deltafH -1733.85 kJ/mol + -analytic -2.8134e2 -9.9933e-2 1.0308e4 1.0883e2 1.6094e2 +# Range 0-300 + -Vm 46.19 # Webmineral.com +# Extrapol Cp integration +# Ref WEP+82 + +Bieberite + CoSO4:7H2O = Co+2 + SO4-2 + 7 H2O + log_k -2.5051 + -delta_H 11.3885 kJ/mol +# deltafH -2980.02 kJ/mol + -analytic -2.6405e2 -7.2497e-2 6.6673e3 1.0538e2 1.0411e2 +# Range 0-300 + -Vm 147.95 # Webmineral.com +# Extrapol Cp integration +# Ref WEP+82 + +Bixbyite + Mn2O3 + 6 H+ = 2 Mn+3 + 3 H2O + log_k -0.9655 + -delta_H -190.545 kJ/mol +# deltafH -958.971 kJ/mol + -analytic -1.1600e2 -2.8056e-3 1.3418e4 2.8639e1 2.0941e2 +# Range 0-300 + -Vm 31.89 # Webmineral.com, density 4.95 +# Extrapol Cp integration +# Ref RHF79 + +Boehmite + AlO2H + 3 H+ = Al+3 + 2 H2O + log_k 7.5642 + -delta_H -113.282 kJ/mol +# deltafH -238.24 kcal/mol + -analytic -1.2196e2 -3.1138e-2 8.8643e3 4.4075e1 1.3835e2 +# Range 0-225 + -Vm 19.535 +# Extrapol supcrt92 +# Ref HDN+78, 95pok/hel + +Borax + Na2(B4O5(OH)4):8H2O + 2 H+ = 2 Na+ + 4 B(OH)3 + 5 H2O + log_k 12.0395 + -delta_H 80.5145 kJ/mol +# deltafH -6288.44 kJ/mol + -analytic 7.8374e1 1.9328e-2 -5.3279e3 -2.1914e1 -8.3160e1 +# Range 0-300 + -Vm 222.66 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Boric_acid + B(OH)3 = B(OH)3 + log_k -0.1583 + -delta_H 20.2651 kJ/mol +# deltafH -1094.8 kJ/mol + -analytic 3.9122e1 6.4058e-3 -2.2525e3 -1.3592e1 -3.5160e1 +# Range 0-300 + -Vm 43.09 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Bornite + Cu5FeS4 + 4 H+ = Cu+2 + Fe+2 + 4 Cu+ + 4 HS- + log_k -102.4369 + -delta_H 530.113 kJ/mol +# deltafH -79.922 kcal/mol + -analytic -7.0495e2 -2.0082e-1 -9.1376e3 2.8004e2 -1.4238e2 +# Range 0-350 + -Vm 98.6 +# Extrapol supcrt92 +# Ref HDN+78 + +Brezinaite + Cr3S4 + 4 H+ = Cr+2 + 2 Cr+3 + 4 HS- + log_k 2.7883 + -delta_H -216.731 kJ/mol +# deltafH -111.9 kcal/mol + -analytic -7.0528e1 -3.6568e-2 1.0598e4 1.9665e1 1.8000e2 +# Range 0-200 + -Vm 69.16 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 78vau/cra + +Brochantite + Cu4(SO4)(OH)6 + 6 H+ = SO4-2 + 4 Cu+2 + 6 H2O + log_k 15.4363 + -delta_H -163.158 kJ/mol +# deltafH -2198.72 kJ/mol + -analytic -2.3609e2 -3.9046e-2 1.5970e4 8.4701e1 2.7127e2 +# Range 0-200 + -Vm 113.60 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87woo/gar + +Brucite + Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O + log_k 16.2980 + -delta_H -111.34 kJ/mol +# deltafH -221.39 kcal/mol + -analytic -1.0280e2 -1.9759e-2 9.0180e3 3.8282e1 1.4075e2 +# Range 0-350 + -Vm 24.63 +# Extrapol supcrt92 +# Ref HDN+78 + +Bunsenite + NiO + 2 H+ = H2O + Ni+2 + log_k 12.4719 + -delta_H -100.069 kJ/mol +# deltafH -57.3 kcal/mol + -analytic -8.1664e1 -1.9796e-2 7.4064e3 3.0385e1 1.1559e2 +# Range 0-350 + -Vm 10.97 +# Extrapol supcrt92 +# Ref HDN+78 + +C + C + H2O + O2 = H+ + HCO3- + log_k 64.1735 + -delta_H -391.961 kJ/mol +# deltafH 0 kcal/mol + -analytic -3.5556e1 -3.3691e-2 1.9774e4 1.7548e1 3.0856e2 +# Range 0-350 + -Vm 5.298 +# Extrapol supcrt92 +# Ref HDN+78 + +Ca + Ca +2 H+ + 0.5 O2 = Ca+2 + H2O + log_k 139.8465 + -delta_H -822.855 kJ/mol +# deltafH 0 kJ/mol + -analytic -1.1328e2 -2.6554e-2 4.7638e4 4.1989e1 -2.3545e5 +# Range 0-300 + -Vm 26.19 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Ca-Al_Pyroxene + CaAl2SiO6 + 8 H+ = Ca+2 + SiO2 + 2 Al+3 + 4 H2O + log_k 35.9759 + -delta_H -361.548 kJ/mol +# deltafH -783.793 kcal/mol + -analytic -1.4664e2 -5.0409e-2 2.1045e4 5.1318e1 3.2843e2 +# Range 0-350 + -Vm 63.5 +# Extrapol supcrt92 +# Ref HDN+78 + +Ca3Al2O6 + Ca3Al2O6 + 12 H+ = 2 Al+3 + 3 Ca+2 + 6 H2O + log_k 113.0460 + -delta_H -833.336 kJ/mol +# deltafH -857.492 kcal/mol + -analytic -2.7163e2 -5.2897e-2 5.0815e4 9.2946e1 8.6300e2 +# Range 0-200 + -Vm 88.94 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +Ca4Al2Fe2O10 + Ca4Al2Fe2O10 + 20 H+ = 2 Al+3 + 2 Fe+3 + 4 Ca+2 + 10 H2O + log_k 140.5050 + -delta_H -1139.86 kJ/mol +# deltafH -1211 kcal/mol + -analytic -4.1808e2 -8.2787e-2 7.0288e4 1.4043e2 1.1937e3 +# Range 0-200 + -Vm 130.28 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +CaAl2O4 + CaAl2O4 + 8 H+ = Ca+2 + 2 Al+3 + 4 H2O + log_k 46.9541 + -delta_H -436.952 kJ/mol +# deltafH -555.996 kcal/mol + -analytic -3.0378e2 -7.9356e-2 3.0096e4 1.1049e2 4.6971e2 +# Range 0-300 + -Vm 53.02 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +CaAl4O7 + CaAl4O7 + 14 H+ = Ca+2 + 4 Al+3 + 7 H2O + log_k 68.6138 + -delta_H -718.464 kJ/mol +# deltafH -951.026 kcal/mol + -analytic -3.1044e2 -6.7078e-2 4.4566e4 1.0085e2 7.5689e2 +# Range 0-200 + -Vm 89.35 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +CaUO4 + CaUO4 + 4 H+ = Ca+2 + UO2+2 + 2 H2O + log_k 15.9420 + -delta_H -131.46 kJ/mol +# deltafH -2002.3 kJ/mol + -analytic -8.7902e1 -1.9810e-2 9.2354e3 3.1832e1 1.4414e2 +# Range 0-300 + -Vm 45.92 # M13 +# Extrapol Cp integration +# Ref 92gre/fug + +Calcite + CaCO3 + H+ = Ca+2 + HCO3- + log_k 1.8487 + -delta_H -25.7149 kJ/mol +# deltafH -288.552 kcal/mol + -analytic -1.4978e2 -4.8370e-2 4.8974e3 6.0458e1 7.6464e1 +# Range 0-350 + -Vm 36.934 +# Extrapol supcrt92 +# Ref HDN+78 + +Cattierite + CoS2 = Co+2 + S2-2 + log_k -29.9067 +# deltafH -36.589 kcal/mol + -analytic -2.1970e2 -7.8585e-2 -1.9592e3 8.8809e1 -3.0507e1 +# Range 0-300 + -Vm 25.53 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 78vau/cra + +Celadonite + KMgAlSi4O10(OH)2 + 6 H+ = Al+3 + K+ + Mg+2 + 4 H2O + 4 SiO2 + log_k 7.4575 + -delta_H -74.3957 kJ/mol +# deltafH -1394.9 kcal/mol + -analytic -3.3097e1 1.7989e-2 1.8919e4 -2.1219 -2.0588e6 +# Range 0-300 + -Vm 157.1 +# Extrapol supcrt92, Cp integration +# Ref HDN+78, 78wol match + +Chalcanthite + CuSO4:5H2O = Cu+2 + SO4-2 + 5 H2O + log_k -2.6215 + -delta_H 6.57556 kJ/mol +# deltafH -2279.68 kJ/mol + -analytic -1.1262e2 -1.5544e-2 3.6176e3 4.1420e1 6.1471e1 +# Range 0-200 + -Vm 108.97 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Chalcedony + SiO2 = SiO2 + log_k -3.7281 + -delta_H 31.4093 kJ/mol +# deltafH -217.282 kcal/mol + -analytic -9.0068 9.3241e-3 4.0535e3 -1.0830 -7.5077e5 +# Range 0-350 + -Vm 22.68 +# Extrapol supcrt92 +# Ref HDN+78 + +Chalcocite + Cu2S + H+ = HS- + 2 Cu+ + log_k -34.7342 + -delta_H 206.748 kJ/mol +# deltafH -19 kcal/mol + -analytic -1.3703e2 -4.0727e-2 -7.1694e3 5.5963e1 -1.1183e2 +# Range 0-350 + -Vm 27.48 +# Extrapol supcrt92 +# Ref HDN+78 + +Chalcocyanite + CuSO4 = Cu+2 + SO4-2 + log_k 2.9239 + -delta_H -72.5128 kJ/mol +# deltafH -771.4 kJ/mol + -analytic 5.8173 -1.6933e-2 2.0097e3 -1.8583 3.4126e1 +# Range 0-200 + -Vm 40.88 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref CWM89 + +Chalcopyrite + CuFeS2 + 2 H+ = Cu+2 + Fe+2 + 2 HS- + log_k -32.5638 + -delta_H 127.206 kJ/mol +# deltafH -44.453 kcal/mol + -analytic -3.1575e2 -9.8947e-2 8.3400e2 1.2522e2 1.3106e1 +# Range 0-350 + -Vm 42.83 +# Extrapol supcrt92 +# Ref HDN+78 + +Chloromagnesite + MgCl2 = Mg+2 + 2 Cl- + log_k 21.8604 + -delta_H -158.802 kJ/mol +# deltafH -641.317 kJ/mol + -analytic -2.3640e2 -8.2017e-2 1.3480e4 9.5963e1 2.1042e2 +# Range 0-300 + -Vm 40.95 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Chromite + FeCr2O4 + 8 H+ = Fe+2 + 2 Cr+3 + 4 H2O + log_k 15.1685 + -delta_H -267.755 kJ/mol +# deltafH -1444.83 kJ/mol + -analytic -1.9060e2 -2.5695e-2 1.9465e4 5.9865e1 3.0379e2 +# Range 0-300 + -Vm 44.01 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Chrysotile + Mg3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Mg+2 + 5 H2O + log_k 31.1254 + -delta_H -218.041 kJ/mol +# deltafH -1043.12 kcal/mol + -analytic -9.2462e1 -1.1359e-2 1.8312e4 2.9289e1 -6.2342e5 +# Range 0-350 + -Vm 108.5 +# Extrapol supcrt92 +# Ref HDN+78 + +Clinochlore-14A + Mg5Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Mg+2 + 12 H2O + log_k 67.2391 + -delta_H -612.379 kJ/mol +# deltafH -2116.96 kcal/mol + -analytic -2.0441e2 -6.2268e-2 3.5388e4 6.9239e1 5.5225e2 +# Range 0-350 + -Vm 207.11 +# Extrapol supcrt92 +# Ref HDN+78, Wilson+06 differ by 0.4 log K at 0C, 1.6 log K at 300C + +Clinochlore-7A + Mg5Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Mg+2 + 12 H2O + log_k 70.6124 + -delta_H -628.14 kJ/mol +# deltafH -2113.2 kcal/mol + -analytic -2.1644e2 -6.4187e-2 3.6548e4 7.4123e1 5.7037e2 +# Range 0-350 + -Vm 211.5 +# Extrapol supcrt92 +# Ref HDN+78 + +Clinoptilolite-K + K3.467Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 K+ + 14.533 SiO2 + 17.856 H2O + log_k -10.9485 + -delta_H 67.4862 kJ/mol +# deltafH -4937.77 kcal/mol + -analytic 1.1697e1 6.9480e-2 4.7718e4 -4.7442e1 -7.6907e6 +# Range 0-300 + -Vm 655.93 # Webmineral.com, density 2.15 +# Extrapol Cp integration +# Ref 89db 7 + +Clinozoisite + Ca2Al3Si3O12(OH) + 13 H+ = 2 Ca+2 + 3 Al+3 + 3 SiO2 + 7 H2O + log_k 43.2569 + -delta_H -457.755 kJ/mol +# deltafH -1643.78 kcal/mol + -analytic -2.8690e1 -3.7056e-2 2.2770e4 3.7880 -2.5834e5 +# Range 0-300 + -Vm 136.2 +# Extrapol supcrt92 +# Ref HDN+78, SH88 + +Co + Co + 2 H+ + 0.5 O2 = Co+2 + H2O + log_k 52.5307 + -delta_H -337.929 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.2703e1 -2.0172e-2 1.8888e4 2.3391e1 2.9474e2 +# Range 0-300 + -Vm 6.67 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Co2SiO4 + Co2SiO4 + 4 H+ = SiO2 + 2 Co+2 + 2 H2O + log_k 6.6808 + -delta_H -88.6924 kJ/mol +# deltafH -353.011 kcal/mol + -analytic -3.9978 -3.7985e-3 5.1554e3 -1.5033 -1.6100e5 +# Range 0-300 + -Vm 44.52 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CoCl2 + CoCl2 = Co+2 + 2 Cl- + log_k 8.2641 + -delta_H -79.5949 kJ/mol +# deltafH -312.722 kJ/mol + -analytic -2.2386e2 -8.0936e-2 8.8631e3 9.1528e1 1.3837e2 +# Range 0-300 + -Vm 38.69 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CoCl2:2H2O + CoCl2:2H2O = Co+2 + 2 Cl- + 2 H2O + log_k 4.6661 + -delta_H -40.7876 kJ/mol +# deltafH -923.206 kJ/mol + -analytic -5.6411e1 -2.3390e-2 3.0519e3 2.3361e1 5.1845e1 +# Range 0-200 + -Vm 66.61 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +CoCl2:6H2O + CoCl2:6H2O = Co+2 + 2 Cl- + 6 H2O + log_k 2.6033 + -delta_H 8.32709 kJ/mol +# deltafH -2115.67 kJ/mol + -analytic -1.5066e2 -2.2132e-2 5.0591e3 5.7743e1 8.5962e1 +# Range 0-200 + -Vm 123.66 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +CoFe2O4 + CoFe2O4 + 8 H+ = Co+2 + 2 Fe+3 + 4 H2O + log_k 0.8729 + -delta_H -160.674 kJ/mol +# deltafH -272.466 kcal/mol + -analytic -3.0149e2 -7.9159e-2 1.5683e4 1.1046e2 2.4480e2 +# Range 0-300 + -Vm 44 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +CoO + CoO + 2 H+ = Co+2 + H2O + log_k 13.5553 + -delta_H -106.05 kJ/mol +# deltafH -237.946 kJ/mol + -analytic -8.4424e1 -1.9457e-2 7.8616e3 3.1281e1 1.2270e2 +# Range 0-300 + -Vm 11.64 # gfw/density +# Extrapol Cp integration +# Ref WEP+82 + +CoS + CoS + H+ = Co+2 + HS- + log_k -7.3740 + -delta_H 10.1755 kJ/mol +# deltafH -20.182 kcal/mol + -analytic -1.5128e2 -4.8484e-2 2.9553e3 5.9983e1 4.6158e1 +# Range 0-300 + -Vm 22.91 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +CoSO4 + CoSO4 = Co+2 + SO4-2 + log_k 2.8996 + -delta_H -79.7952 kJ/mol +# deltafH -887.964 kJ/mol + -analytic -1.9907e2 -7.7890e-2 7.7193e3 8.0525e1 1.2051e2 +# Range 0-300 + -Vm 41.78 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CoSO4:6H2O + CoSO4:6H2O = Co+2 + SO4-2 + 6 H2O + log_k -2.3512 + -delta_H 1.08483 kJ/mol +# deltafH -2683.87 kJ/mol + -analytic -2.5469e2 -7.3092e-2 6.6767e3 1.0172e2 1.0426e2 +# Range 0-300 + -Vm 130.30 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CoSO4:H2O + CoSO4:H2O = Co+2 + H2O + SO4-2 + log_k -1.2111 + -delta_H -52.6556 kJ/mol +# deltafH -287.032 kcal/mol + -analytic -1.0570e1 -1.6196e-2 1.7180e3 3.4000 2.9178e1 +# Range 0-200 + -Vm 56.26 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +Coesite + SiO2 = SiO2 + log_k -3.1893 + -delta_H 28.6144 kJ/mol +# deltafH -216.614 kcal/mol + -analytic -9.7312 9.1773e-3 4.2143e3 -7.8065e-1 -7.4905e5 +# Range 0-350 + -Vm 20.641 +# Extrapol supcrt92 +# Ref HDN+78 + +Coffinite + USiO4 + 4 H+ = SiO2 + U+4 + 2 H2O + log_k -8.0530 + -delta_H -49.2493 kJ/mol +# deltafH -1991.33 kJ/mol + -analytic 2.3126e2 6.2389e-2 -4.6189e3 -9.7976e1 -7.8517e1 +# Range 0-200 + -Vm 46.12 # thermo.com.V8.R6+.tdat +# Extrapol Constant H Approx +# Ref 92gre/fug + +Cordierite_anhyd + Mg2Al4Si5O18 + 16 H+ = 2 Mg+2 + 4 Al+3 + 5 SiO2 + 8 H2O + log_k 52.3035 + -delta_H -626.219 kJ/mol +# deltafH -2183.2 kcal/mol + -analytic 2.6562 -2.3801e-2 3.5192e4 -1.9911e1 -1.0894e6 +# Range 0-350 + -Vm 233.22 +# Extrapol supcrt92 +# Ref HDN+78 differ by 3 log K at 0C, 0.8 log K at 350C + +Cordierite_hydr + Mg2Al4Si5O18:H2O + 16 H+ = 2 Mg+2 + 4 Al+3 + 5 SiO2 + 9 H2O + log_k 49.8235 + -delta_H -608.814 kJ/mol +# deltafH -2255.68 kcal/mol + -analytic -1.2985e2 -4.1335e-2 4.1566e4 2.7892e1 -1.4819e6 +# Range 0-350 + -Vm 241.22 +# Extrapol supcrt92 +# Ref HDN+78 differ by 3.4 log K at 0C, 0.8 log K at 350C + +Corundum + Al2O3 + 6 H+ = 2 Al+3 + 3 H2O + log_k 18.3121 + -delta_H -258.626 kJ/mol +# deltafH -400.5 kcal/mol + -analytic -1.4278e2 -7.8519e-2 1.3776e4 5.5881e1 2.1501e2 +# Range 0-350 + -Vm 25.575 +# Extrapol supcrt92 +# Ref HDN+78, 95pok/hel differ by 1 log K at 0C, 7 log K at 300C !! flag + +Covellite + CuS + H+ = Cu+2 + HS- + log_k -22.8310 + -delta_H 101.88 kJ/mol +# deltafH -12.5 kcal/mol + -analytic -1.6068e2 -4.9040e-2 -1.4234e3 6.3536e1 -2.2164e1 +# Range 0-350 + -Vm 20.42 +# Extrapol supcrt92 +# Ref HDN+78 + +Cr + Cr + 3 H+ + 0.75 O2 = Cr+3 + 1.5 H2O + log_k 98.6784 + -delta_H -658.145 kJ/mol +# deltafH 0 kJ/mol + -analytic -2.2488e1 -5.5886e-3 3.4288e4 3.1585 5.3503e2 +# Range 0-300 + -Vm 7.231 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +CrCl3 + CrCl3 = Cr+3 + 3 Cl- + log_k 17.9728 + -delta_H -183.227 kJ/mol +# deltafH -556.5 kJ/mol + -analytic -2.6348e2 -9.5339e-2 1.4785e4 1.0517e2 2.3079e2 +# Range 0-300 + -Vm 57.38 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CrO2 + CrO2 = 0.5 Cr+2 + 0.5 CrO4-2 + log_k -19.1332 + -delta_H 85.9812 kJ/mol +# deltafH -143 kcal/mol + -analytic 2.7763 -7.7698e-3 -5.2893e3 -7.4970e-1 -8.9821e1 +# Range 0-200 + -Vm 16.95 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 76del/hal + +CrO3 + CrO3 + H2O = CrO4-2 + 2 H+ + log_k -3.5221 + -delta_H -5.78647 kJ/mol +# deltafH -140.9 kcal/mol + -analytic -1.3262e2 -6.1411e-2 2.2083e3 5.6564e1 3.4497e1 +# Range 0-300 + -Vm 35.14 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 76del/hal + +CrS + CrS + H+ = Cr+2 + HS- + log_k -0.6304 + -delta_H -26.15 kJ/mol +# deltafH -31.9 kcal/mol + -analytic -1.1134e2 -3.5954e-2 3.8744e3 4.3815e1 6.0490e1 +# Range 0-300 + -Vm 17.33 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 76del/hal + +Cristobalite(alpha) + SiO2 = SiO2 + log_k -3.4488 + -delta_H 29.2043 kJ/mol +# deltafH -216.755 kcal/mol + -analytic -1.1936e1 9.0520e-3 4.3701e3 -1.1464e-1 -7.6568e5 +# Range 0-350 + -Vm 25.74 +# Extrapol supcrt92 +# Ref HDN+78 + +Cristobalite(beta) + SiO2 = SiO2 + log_k -3.0053 + -delta_H 24.6856 kJ/mol +# deltafH -215.675 kcal/mol + -analytic -4.7414 9.7567e-3 3.8831e3 -2.5830 -6.9636e5 +# Range 0-350 + -Vm 27.38 +# Extrapol supcrt92 +# Ref HDN+78 + +Cronstedtite-7A + Fe2Fe2SiO5(OH)4 + 10 H+ = SiO2 + 2 Fe+2 + 2 Fe+3 + 7 H2O + log_k 16.2603 + -delta_H -244.266 kJ/mol +# deltafH -697.413 kcal/mol + -analytic -2.3783e2 -7.1026e-2 1.7752e4 8.7147e1 2.7707e2 +# Range 0-300 + -Vm 110.9 # HDN+78 +# Extrapol Cp integration +# Ref 78wol + +Cu + Cu + 2 H+ + 0.5 O2 = Cu+2 + H2O + log_k 31.5118 + -delta_H -214.083 kJ/mol +# deltafH 0 kcal/mol + -analytic -7.0719e1 -2.0300e-2 1.2802e4 2.6401e1 1.9979e2 +# Range 0-300 + -Vm 7.113 +# Extrapol supcrt92 +# Ref HDN+78 + + +CuCl2 + CuCl2 = Cu+2 + 2 Cl- + log_k 3.7308 + -delta_H -48.5965 kJ/mol +# deltafH -219.874 kJ/mol + -analytic -1.7803e1 -2.4432e-2 1.5729e3 9.5104 2.6716e1 +# Range 0-200 + -Vm 39.71 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +CuCr2O4 + CuCr2O4 + 8 H+ = Cu+2 + 2 Cr+3 + 4 H2O + log_k 16.2174 + -delta_H -268.768 kJ/mol +# deltafH -307.331 kcal/mol + -analytic -1.8199e2 -1.0254e-2 2.0123e4 5.4062e1 3.4178e2 +# Range 0-200 + -Vm 42.74 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 76del/hal + +Cuprite + Cu2O + 2 H+ = H2O + 2 Cu+ + log_k -1.9031 + -delta_H 28.355 kJ/mol +# deltafH -40.83 kcal/mol + -analytic -8.6240e1 -1.1445e-2 1.7851e3 3.3041e1 2.7880e1 +# Range 0-350 + -Vm 23.437 +# Extrapol supcrt92 +# Ref HDN+78 + +Daphnite-14A + Fe5AlAlSi3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Fe+2 + 12 H2O + log_k 52.2821 + -delta_H -517.561 kJ/mol +# deltafH -1693.04 kcal/mol + -analytic -1.5261e2 -6.1392e-2 2.8283e4 5.1788e1 4.4137e2 +# Range 0-350 + -Vm 213.42 +# Extrapol supcrt92 +# Ref HDN+78 + +Daphnite-7A + Fe5AlAlSi3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Fe+2 + 12 H2O + log_k 55.6554 + -delta_H -532.326 kJ/mol +# deltafH -1689.51 kcal/mol + -analytic -1.6430e2 -6.3160e-2 2.9499e4 5.6442e1 4.6035e2 +# Range 0-300 + -Vm 221.2 +# Extrapol supcrt92 +# Ref HDN+78 + +Dawsonite + NaAlCO3(OH)2 + 3 H+ = Al+3 + HCO3- + Na+ + 2 H2O + log_k 4.3464 + -delta_H -76.3549 kJ/mol +# deltafH -1963.96 kJ/mol + -analytic -1.1393e2 -2.3487e-2 7.1758e3 4.0900e1 1.2189e2 +# Range 0-200 + -Vm 59.50 # Webmineral.com +# Extrapol Constant H approx +# Ref RHF79 + +Delafossite + CuFeO2 + 4 H+ = Cu+ + Fe+3 + 2 H2O + log_k -6.4172 + -delta_H -18.6104 kJ/mol +# deltafH -126.904 kcal/mol + -analytic -1.5275e2 -3.5478e-2 5.1404e3 5.6437e1 8.0255e1 +# Range 0-300 + -Vm 27.52 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +Diaspore + AlHO2 + 3 H+ = Al+3 + 2 H2O + log_k 7.1603 + -delta_H -110.42 kJ/mol +# deltafH -238.924 kcal/mol + -analytic -1.2618e2 -3.1671e-2 8.8737e3 4.5669e1 1.3850e2 +# Range 0-225 + -Vm 17.76 +# Extrapol supcrt92 +# Ref HDN+78, 95pok/hel + +Dicalcium_silicate + Ca2SiO4 + 4 H+ = SiO2 + 2 Ca+2 + 2 H2O + log_k 37.1725 + -delta_H -217.642 kJ/mol +# deltafH -2317.9 kJ/mol + -analytic -5.9723e1 -1.3682e-2 1.5461e4 2.1547e1 -3.7732e5 +# Range 0-300 + -Vm 59.11 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Diopside + CaMgSi2O6 + 4 H+ = Ca+2 + Mg+2 + 2 H2O + 2 SiO2 + log_k 20.9643 + -delta_H -133.775 kJ/mol +# deltafH -765.378 kcal/mol + -analytic 7.1240e1 1.5514e-2 8.1437e3 -3.0672e1 -5.6880e5 +# Range 0-350 + -Vm 66.09 +# Extrapol supcrt92 +# Ref HDN+78 + +Dioptase + CuSiO2(OH)2 + 2 H+ = Cu+2 + SiO2 + 2 H2O + log_k 6.0773 + -delta_H -25.2205 kJ/mol +# deltafH -1358.47 kJ/mol + -analytic 2.3913e2 6.2669e-2 -5.4030e3 -9.4420e1 -9.1834e1 +# Range 0-200 + -Vm 48.24 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87woo/gar + +Dolomite-dis + CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- + log_k 4.0579 + -delta_H -72.2117 kJ/mol +# deltafH -553.704 kcal/mol + -analytic -3.1706e2 -9.7886e-2 1.1442e4 1.2604e2 1.7864e2 +# Range 0-350 + -Vm 64.39 +# Extrapol supcrt92 +# Ref HDN+78 + +Dolomite-ord + CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- + log_k 2.5135 + -delta_H -59.9651 kJ/mol +# deltafH -556.631 kcal/mol + -analytic -3.1654e2 -9.7902e-2 1.0805e4 1.2607e2 1.6870e2 +# Range 0-350 + -Vm 64.34 +# Extrapol supcrt92 +# Ref HDN+78 + +Enstatite + MgSiO3 + 2 H+ = H2O + Mg+2 + SiO2 + log_k 11.3269 + -delta_H -82.7302 kJ/mol +# deltafH -369.686 kcal/mol + -analytic -4.9278e1 -3.2832e-3 9.5205e3 1.4437e1 -5.4324e5 +# Range 0-350 + -Vm 31.276 +# Extrapol supcrt92 +# Ref HDN+78 + +Epidote + Ca2FeAl2Si3O12OH + 13 H+ = Fe+3 + 2 Al+3 + 2 Ca+2 + 3 SiO2 + 7 H2O + log_k 32.9296 + -delta_H -386.451 kJ/mol +# deltafH -1543.99 kcal/mol + -analytic -2.6187e1 -3.6436e-2 1.9351e4 3.3671 -3.0319e5 +# Range 0-350 + -Vm 139.2 +# Extrapol supcrt92 +# Ref HDN+78 + +Epidote-ord + FeCa2Al2(OH)(SiO4)3 + 13 H+ = Fe+3 + 2 Al+3 + 2 Ca+2 + 3 SiO2 + 7 H2O + log_k 32.9296 + -delta_H -386.351 kJ/mol +# deltafH -1544.02 kcal/mol + -analytic 1.9379e1 -3.2870e-2 1.5692e4 -1.1901e1 2.4485e2 +# Range 0-350 + -Vm 139.2 +# Extrapol supcrt92 +# Ref HDN+78 + +Eskolaite + Cr2O3 + 2 H2O + 1.5 O2 = 2 CrO4-2 + 4 H+ + log_k -9.1306 + -delta_H -32.6877 kJ/mol +# deltafH -1139.74 kJ/mol + -analytic -2.0411e2 -1.2809e-1 2.2197e3 9.1186e1 3.4697e1 +# Range 0-300 + -Vm 29.09 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Ettringite + Ca6Al2(SO4)3(OH)12:26H2O + 12 H+ = 2 Al+3 + 3 SO4-2 + 6 Ca+2 + 38 H2O + log_k 62.5362 + -delta_H -382.451 kJ/mol +# deltafH -4193 kcal/mol + -analytic -1.0576e3 -1.1585e-1 5.9580e4 3.8585e2 1.0121e3 +# Range 0-200 + -Vm 697.28 # Webmineral.com +# Extrapol Constant H approx +# Ref 82sar/bar + +Eu + Eu + 3 H+ + 0.75 O2 = Eu+3 + 1.5 H2O + log_k 165.1443 + -delta_H -1025.08 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.5749e1 -2.8921e-2 5.4018e4 2.3561e1 8.4292e2 +# Range 0-300 + -Vm 28.97 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 85rar 2 + +Eu(OH)3 + Eu(OH)3 + 3 H+ = Eu+3 + 3 H2O + log_k 15.3482 + -delta_H -126.897 kJ/mol +# deltafH -1336.04 kJ/mol + -analytic -6.3077e1 -6.1421e-3 8.7323e3 2.0595e1 1.4831e+2 +# Range 0-200 + -Vm 38.44 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87rar 2 + +Eu2(SO4)3:8H2O + Eu2(SO4)3:8H2O = 2 Eu+3 + 3 SO4-2 + 8 H2O + log_k -10.8524 + -delta_H -86.59 kJ/mol +# deltafH -6139.77 kJ/mol + -analytic -5.6582e1 -3.8846e-2 3.3821e3 1.8561e1 5.7452e1 +# Range 0-200 + -Vm 245.41 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +Eu2O3(cubic) + Eu2O3 + 6 H+ = 2 Eu+3 + 3 H2O + log_k 51.7818 + -delta_H -406.403 kJ/mol +# deltafH -1661.96 kJ/mol + -analytic -5.3469e1 -1.2554e-2 2.1925e4 1.4324e1 3.7233e2 +# Range 0-200 + -Vm 48.29 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +Eu2O3(monoclinic) + Eu2O3 + 6 H+ = 2 Eu+3 + 3 H2O + log_k 53.3936 + -delta_H -417.481 kJ/mol +# deltafH -1650.88 kJ/mol + -analytic -5.4022e1 -1.2627e-2 2.2508e4 1.4416e1 3.8224e2 +# Range 0-200 + -Vm 44.02 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +Eu3O4 + Eu3O4 + 8 H+ = Eu+2 + 2 Eu+3 + 4 H2O + log_k 87.0369 + -delta_H -611.249 kJ/mol +# deltafH -2270.56 kJ/mol + -analytic -1.1829e2 -2.0354e-2 3.4981e4 3.8007e1 5.9407e2 +# Range 0-200 + -Vm 64.15 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +EuCl2 + EuCl2 = Eu+2 + 2 Cl- + log_k 5.9230 + -delta_H -39.2617 kJ/mol +# deltafH -822.5 kJ/mol + -analytic -2.5741e1 -2.4956e-2 1.5713e3 1.3670e1 2.6691e1 +# Range 0-200 + -Vm 45.49 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87rar 2 + +EuCl3 + EuCl3 = Eu+3 + 3 Cl- + log_k 19.7149 + -delta_H -170.861 kJ/mol +# deltafH -935.803 kJ/mol + -analytic 3.2865e1 -3.1877e-2 4.9792e3 -8.2294 8.4542e1 +# Range 0-200 + -Vm 52.83 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +EuCl3:6H2O + EuCl3:6H2O = Eu+3 + 3 Cl- + 6 H2O + log_k 4.9090 + -delta_H -40.0288 kJ/mol +# deltafH -2781.66 kJ/mol + -analytic -1.0987e2 -2.9851e-2 4.9991e3 4.3198e1 8.4930e1 +# Range 0-200 + -Vm 151.22 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +EuOCl + EuOCl + 2 H+ = Cl- + Eu+3 + H2O + log_k 15.6683 + -delta_H -147.173 kJ/mol +# deltafH -911.17 kJ/mol + -analytic -7.7446 -1.4960e-2 6.6242e3 2.2813 1.1249e2 +# Range 0-200 + -Vm 31.68 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87rar 2 + +EuS + EuS + H+ = Eu+2 + HS- + log_k 14.9068 + -delta_H -96.4088 kJ/mol +# deltafH -447.302 kJ/mol + -analytic -4.1026e1 -1.5582e-2 5.7842e3 1.6639e1 9.8238e1 +# Range 0-200 + -Vm 32.03 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +EuSO4 + EuSO4 = Eu+2 + SO4-2 + log_k -8.8449 + -delta_H 33.873 kJ/mol +# deltafH -1471.08 kJ/mol + -analytic 3.0262e-1 -1.7571e-2 -3.0392e3 2.5356 -5.1610e1 +# Range 0-200 + -Vm 49.71 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +Eucryptite + LiAlSiO4 + 4 H+ = Al+3 + Li+ + SiO2 + 2 H2O + log_k 13.6106 + -delta_H -141.818 kJ/mol +# deltafH -2124.41 kJ/mol + -analytic -2.2213 -8.2498e-3 6.4838e3 -1.4183 1.0117e2 +# Range 0-300 + -Vm 53.63 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Fayalite + Fe2SiO4 + 4 H+ = SiO2 + 2 Fe+2 + 2 H2O + log_k 19.1113 + -delta_H -152.256 kJ/mol +# deltafH -354.119 kcal/mol + -analytic 1.3853e1 -3.5501e-3 7.1496e3 -6.8710e0 -6.3310e4 +# Range 0-350 + -Vm 46.39 +# Extrapol supcrt92 +# Ref HDN+78 + +Fe + Fe + 2 H+ + 0.5 O2 = Fe+2 + H2O + log_k 59.0325 + -delta_H -372.029 kJ/mol +# deltafH 0 kcal/mol + -analytic -6.2882e1 -2.0379e-2 2.0690e4 2.3673e1 3.2287e2 +# Range 0-350 + -Vm 7.092 # thermo.com.V8.R6+.tdat +# Extrapol supcrt92 +# Ref RHF79 + +Fe(OH)2 + Fe(OH)2 + 2 H+ = Fe+2 + 2 H2O + log_k 13.9045 + -delta_H -95.4089 kJ/mol +# deltafH -568.525 kJ/mol + -analytic -8.6666e1 -1.8440e-2 7.5723e3 3.2597e1 1.1818e2 +# Range 0-300 + -Vm 26.43 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Fe(OH)3 + Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O + log_k 5.6556 + -delta_H -84.0824 kJ/mol +# deltafH -823.013 kJ/mol + -analytic -1.3316e2 -3.1284e-2 7.9753e3 4.9052e1 1.2449e2 +# Range 0-300 + -Vm 34.36 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Fe2(SO4)3 + Fe2(SO4)3 = 2 Fe+3 + 3 SO4-2 + log_k 3.2058 + -delta_H -250.806 kJ/mol +# deltafH -2577.16 kJ/mol + -analytic -5.8649e2 -2.3718e-1 2.2736e4 2.3601e2 3.5495e2 +# Range 0-300 + -Vm 130.77 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +FeO + FeO + 2 H+ = Fe+2 + H2O + log_k 13.5318 + -delta_H -106.052 kJ/mol +# deltafH -65.02 kcal/mol + -analytic -7.8750e1 -1.8268e-2 7.6852e3 2.9074e1 1.1994e2 +# Range 0-350 + -Vm 12 +# Extrapol supcrt92 +# Ref HDN+78 + +FeSO4 + FeSO4 = Fe+2 + SO4-2 + log_k 2.6565 + -delta_H -73.0878 kJ/mol +# deltafH -928.771 kJ/mol + -analytic -2.0794e2 -7.6891e-2 7.8705e3 8.3685e1 1.2287e2 +# Range 0-300 + -Vm 41.58 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Ferrite-Ca + CaFe2O4 + 8 H+ = Ca+2 + 2 Fe+3 + 4 H2O + log_k 21.5217 + -delta_H -264.738 kJ/mol +# deltafH -363.494 kcal/mol + -analytic -2.8472e2 -7.5870e-2 2.0688e4 1.0485e2 3.2289e2 +# Range 0-300 + -Vm 44.98 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Ferrite-Cu + CuFe2O4 + 8 H+ = Cu+2 + 2 Fe+3 + 4 H2O + log_k 10.3160 + -delta_H -211.647 kJ/mol +# deltafH -965.178 kJ/mol + -analytic -3.1271e2 -7.9976e-2 1.8818e4 1.1466e2 2.9374e2 +# Range 0-300 + -Vm 44.53 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Ferrite-Dicalcium + Ca2Fe2O5 + 10 H+ = 2 Ca+2 + 2 Fe+3 + 5 H2O + log_k 56.8331 + -delta_H -475.261 kJ/mol +# deltafH -2139.26 kJ/mol + -analytic -3.6277e2 -9.5015e-2 3.3898e4 1.3506e2 5.2906e2 +# Range 0-300 + -Vm 67.18 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Ferrite-Mg + MgFe2O4 + 8 H+ = Mg+2 + 2 Fe+3 + 4 H2O + log_k 21.0551 + -delta_H -280.056 kJ/mol +# deltafH -1428.42 kJ/mol + -analytic -2.8297e2 -7.4820e-2 2.1333e4 1.0295e2 3.3296e2 +# Range 0-300 + -Vm 44.57 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Ferrite-Zn + ZnFe2O4 + 8 H+ = Zn+2 + 2 Fe+3 + 4 H2O + log_k 11.7342 + -delta_H -226.609 kJ/mol +# deltafH -1169.29 kJ/mol + -analytic -2.9809e2 -7.7263e-2 1.9067e4 1.0866e2 2.9761e2 +# Range 0-300 + -Vm 45.23 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Ferrosilite + FeSiO3 + 2 H+ = Fe+2 + H2O + SiO2 + log_k 7.4471 + -delta_H -60.6011 kJ/mol +# deltafH -285.658 kcal/mol + -analytic 9.0041 3.7917e-3 5.1625e3 -6.3009 -3.9565e5 +# Range 0-350 + -Vm 32.952 +# Extrapol supcrt92 +# Ref HDN+78 + +Forsterite + Mg2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Mg+2 + log_k 27.8626 + -delta_H -205.614 kJ/mol +# deltafH -520 kcal/mol + -analytic -7.6195e1 -1.4013e-2 1.4763e4 2.5090e1 -3.0379e5 +# Range 0-350 + -Vm 43.79 +# Extrapol supcrt92 +# Ref HDN+78 + +Foshagite + Ca4Si3O9(OH)2:0.5H2O + 8 H+ = 3 SiO2 + 4 Ca+2 + 5.5 H2O + log_k 65.9210 + -delta_H -359.839 kJ/mol +# deltafH -1438.27 kcal/mol + -analytic 2.9983e1 5.5272e-3 2.3427e4 -1.3879e1 -8.9461e5 +# Range 0-300 + -Vm 154.23 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + + +Gd + Gd + 3 H+ + 0.75 O2 = Gd+3 + 1.5 H2O + log_k 180.7573 + -delta_H -1106.67 kJ/mol +# deltafH 0 kJ/mol + -analytic -3.3949e2 -6.5698e-2 7.4278e4 1.2189e2 -9.7055e5 +# Range 0-300 + -Vm 19.89 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Gehlenite + Ca2Al2SiO7 + 10 H+ = SiO2 + 2 Al+3 + 2 Ca+2 + 5 H2O + log_k 56.2997 + -delta_H -489.934 kJ/mol +# deltafH -951.225 kcal/mol + -analytic -2.1784e2 -6.7200e-2 2.9779e4 7.8488e1 4.6473e2 +# Range 0-350 + -Vm 90.24 +# Extrapol supcrt92 +# Ref HDN+78 + +Gibbsite + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 7.7560 + -delta_H -102.788 kJ/mol +# deltafH -309.065 kcal/mol + -analytic -1.1403e2 -3.6453e-2 7.7236e3 4.3134e1 1.2055e2 +# Range 0-150 + -Vm 31.956 +# Extrapol supcrt92 +# Ref HDN+78, 95pok/hel + +Goethite + FeOOH + 3 H+ = Fe+3 + 2 H2O + log_k 0.5345 + -delta_H -61.9291 kJ/mol +# deltafH -559.328 kJ/mol + -analytic -6.0331e1 -1.0847e-2 4.7759e3 1.9429e1 8.1122e1 +# Range 0-200 + -Vm 20.82 +# Extrapol supcrt92, Constant H approx +# Ref Sho09, MLS+03, RHF79 match + +Greenalite + Fe3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Fe+2 + 5 H2O + log_k 22.6701 + -delta_H -165.297 kJ/mol +# deltafH -787.778 kcal/mol + -analytic -1.4187e1 -3.8377e-3 1.1710e4 1.6442 -4.8290e5 +# Range 0-350 + -Vm 115 +# Extrapol supcrt92 +# Ref HDN+78, 78wol, Wilson+06 match + +Grossular + Ca3Al2(SiO4)3 + 12 H+ = 2 Al+3 + 3 Ca+2 + 3 SiO2 + 6 H2O + log_k 51.9228 + -delta_H -432.006 kJ/mol +# deltafH -1582.74 kcal/mol + -analytic 2.9389e1 -2.2478e-2 2.0323e4 -1.4624e1 -2.5674e5 +# Range 0-350 + -Vm 125.3 +# Extrapol supcrt92 +# Ref HDN+78 + +Gypsum + CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O + log_k -4.4823 + -delta_H -1.66746 kJ/mol +# deltafH -2022.69 kJ/mol + -analytic -2.4417e2 -8.3329e-2 5.5958e3 9.9301e1 8.7389e1 +# Range 0-300 + -Vm 74.69 # Marion+05 +# Extrapol Cp integration +# Ref RHF79 + +Gyrolite + Ca2Si3O7(OH)2:1.5H2O + 4 H+ = 2 Ca+2 + 3 SiO2 + 4.5 H2O + log_k 22.9099 + -delta_H -82.862 kJ/mol +# deltafH -1176.55 kcal/mol + -analytic -2.4416e1 1.4646e-2 1.6181e4 2.3723 -1.5369e6 +# -Range 0-300 + -Vm 136.85 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Halite + NaCl = Cl- + Na+ + log_k 1.5855 + -delta_H 3.7405 kJ/mol +# deltafH -98.26 kcal/mol + -analytic -1.0163e2 -3.4761e-2 2.2796e3 4.2802e1 3.5602e1 +# Range 0-350 + -Vm 27.015 +# Extrapol supcrt92 +# Ref HDN+78 + +Hatrurite + Ca3SiO5 + 6 H+ = SiO2 + 3 Ca+2 + 3 H2O + log_k 73.4056 + -delta_H -434.684 kJ/mol +# deltafH -700.234 kcal/mol + -analytic -4.5448e1 -1.9998e-2 2.3800e4 1.8494e1 -7.3385e4 +# Range 0-300 + -Vm 75.60 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Hausmannite + Mn3O4 + 8 H+ = Mn+2 + 2 Mn+3 + 4 H2O + log_k 10.1598 + -delta_H -268.121 kJ/mol +# deltafH -1387.83 kJ/mol + -analytic -2.0600e2 -2.2214e-2 2.0160e4 6.2700e1 3.1464e2 +# Range 0-300 + -Vm 48.07 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Heazlewoodite + Ni3S2 + 4 H+ + 0.5 O2 = H2O + 2 HS- + 3 Ni+2 + log_k 28.2477 + -delta_H -270.897 kJ/mol +# deltafH -203.012 kJ/mol + -analytic -3.5439e2 -1.1740e-1 2.1811e4 1.3919e2 3.4044e2 +# Range 0-300 + -Vm 40.95 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Hedenbergite + CaFe(SiO3)2 + 4 H+ = Ca+2 + Fe+2 + 2 H2O + 2 SiO2 + log_k 19.6060 + -delta_H -124.507 kJ/mol +# deltafH -678.276 kcal/mol + -analytic -1.9473e1 1.5288e-3 1.2910e4 2.1729 -9.0058e5 +# Range 0-350 + -Vm 68.27 +# Extrapol supcrt92 +# Ref HDN+78 + +Hematite + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k 0.1086 + -delta_H -129.415 kJ/mol +# deltafH -197.72 kcal/mol + -analytic -2.2015e2 -6.0290e-2 1.1812e4 8.0253e1 1.8438e2 +# Range 0-350 + -Vm 30.274 +# Extrapol supcrt92 +# Ref HDN+78 + +Hercynite + FeAl2O4 + 8 H+ = Fe+2 + 2 Al+3 + 4 H2O + log_k 28.8484 + -delta_H -345.961 kJ/mol +# deltafH -1966.45 kJ/mol + -analytic -3.1848e2 -7.9501e-2 2.5892e4 1.1483e2 4.0412e2 +# Range 0-300 + -Vm 40.75 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Hillebrandite + Ca2SiO3(OH)2:0.17H2O + 4 H+ = SiO2 + 2 Ca+2 + 3.17 H2O + log_k 36.8190 + -delta_H -203.074 kJ/mol +# deltafH -637.404 kcal/mol + -analytic -1.9360e1 -7.5176e-3 1.1947e4 8.0558 -1.4504e5 +# Range 0-300 + -Vm 71.79 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Huntite + CaMg3(CO3)4 + 4 H+ = Ca+2 + 3 Mg+2 + 4 HCO3- + log_k 10.3010 + -delta_H -171.096 kJ/mol +# deltafH -1082.6 kcal/mol + -analytic -6.5e2 -1.9671e-1 2.4815e4 2.5688e2 3.8740e2 +# Range 0-350 + -Vm 122.9 +# Extrapol supcrt92 +# Ref HDN+78 + +Hydromagnesite + Mg5(CO3)4(OH)2:4H2O + 6 H+ = 4 HCO3- + 5 Mg+2 + 6 H2O + log_k 30.8539 + -delta_H -289.696 kJ/mol +# deltafH -1557.09 kcal/mol + -analytic -7.9288e2 -2.1448e-1 3.6749e4 3.0888e2 5.7367e2 +# Range 0-350 + -Vm 208.8 +# Extrapol supcrt92 +# Ref HDN+78 + +Hydrophilite + CaCl2 = Ca+2 + 2 Cl- + log_k 11.7916 + -delta_H -81.4545 kJ/mol +# deltafH -795.788 kJ/mol + -analytic -2.2278e2 -8.1414e-2 9.0298e3 9.2349e1 1.4097e2 +# Range 0-300 + -Vm 49.99 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Hydroxyapatite + Ca5(OH)(PO4)3 + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 + log_k -3.0746 + -delta_H -191.982 kJ/mol +# deltafH -6685.52 kJ/mol + -analytic -8.5221e2 -2.9430e-1 2.8125e4 3.4044e2 4.3911e2 +# Range 0-300 + -Vm 128.9 +# Extrapol Cp integration +# Ref RHF79 + +Ice + H2O = H2O + log_k 0.1387 + -delta_H 6.74879 kJ/mol +# deltafH -69.93 kcal/mol + -analytic -2.3260e1 4.7948e-4 7.7351e2 8.3499 1.3143e1 +# Range 0-200 + -Vm 19.635 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87kee/rup + +Ilmenite + FeTiO3 + 2 H+ + H2O = Fe+2 + Ti(OH)4 + log_k 0.9046 +# deltafH -1236.65 kJ/mol + -Vm 32.15 # Webmineral.com +# Ref RHF79 + +Jadeite + NaAl(SiO3)2 + 4 H+ = Al+3 + Na+ + 2 H2O + 2 SiO2 + log_k 8.3888 + -delta_H -84.4415 kJ/mol +# deltafH -722.116 kcal/mol + -analytic 1.5934 5.0757e-3 9.5602e3 -7.0164 -8.4454e5 +# Range 0-350 + -Vm 60.4 +# Extrapol supcrt92 +# Ref HDN+78 + +Jarosite + KFe3(SO4)2(OH)6 + 6 H+ = K+ + 2 SO4-2 + 3 Fe+3 + 6 H2O + log_k -9.3706 + -delta_H -191.343 kJ/mol +# deltafH -894.79 kcal/mol + -analytic -1.0813e2 -5.0381e-2 9.6893e3 3.2832e1 1.6457e2 +# Range 0-200 + -Vm 162.07 # Webmineral.com +# Extrapol Constant H approx +# Ref 75kas/bor + +K + K + H+ + 0.25 O2 = 0.5 H2O + K+ + log_k 70.9861 + -delta_H -392.055 kJ/mol +# deltafH 0 kJ/mol + -analytic -3.1102e1 -1.0003e-2 2.1338e4 1.3534e1 3.3296e2 +# Range 0-300 + -Vm 45.94 # Webelements.com +# Extrapol Cp integration +# Ref CWM89 + + +K-Feldspar + KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 + log_k -0.2753 + -delta_H -23.9408 kJ/mol +# deltafH -949.188 kcal/mol + -analytic -1.0684 1.3111e-2 1.1671e4 -9.9129 -1.5855e6 +# Range 0-350 + -Vm 108.87 +# Extrapol supcrt92 +# Ref HDN+78 + +K2O + K2O + 2 H+ = H2O + 2 K+ + log_k 84.0405 + -delta_H -427.006 kJ/mol +# deltafH -86.8 kcal/mol + -analytic -1.8283e1 -5.2255e-3 2.3184e4 1.0553e1 3.6177e2 +# Range 0-350 + -Vm 40.085 # gfw/density +# Extrapol supcrt92 +# Ref HDN+78 + +KAl(SO4)2 + KAl(SO4)2 = Al+3 + K+ + 2 SO4-2 + log_k 3.3647 + -delta_H -139.485 kJ/mol +# deltafH -2470.29 kJ/mol + -analytic -4.2785e2 -1.6303e-1 1.5311e4 1.7312e2 2.3904e2 +# Range 0-300 + -Vm 146.71 # gfw/density +# Extrapol Cp integration +# Ref RHF79 + +Kalsilite + KAlSiO4 + 4 H+ = Al+3 + K+ + SiO2 + 2 H2O + log_k 10.8987 + -delta_H -108.583 kJ/mol +# deltafH -509.408 kcal/mol + -analytic -6.7595 -7.4301e-3 6.5380e3 1.8999e-1 -2.2880e5 +# Range 0-350 + -Vm 59.89 +# Extrapol supcrt92 +# Ref HDN+78 + +Kaolinite + Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 SiO2 + 5 H2O + log_k 6.8101 + -delta_H -151.779 kJ/mol +# deltafH -982.221 kcal/mol + -analytic 1.6835e1 -7.8939e-3 7.7636e3 -1.2190e1 -3.2354e5 +# Range 0-350 + -Vm 99.52 +# Extrapol supcrt92 +# Ref HDN+78 differ by 1.6 log K at 0C, 0.4 log K at 350C + +KerogenC128 + C128H68O7 + 141.5 O2 = 128 CO2 + 34 H2O + log_k 10740.654 + -delta_H -14623.902 kcal/mol + -analytic 23405.37 -54.726 0 0 0 0.041 +# Range 0-350 + -Vm 1320.7 +# Extrapol supcrt92 +# Ref RH98, Hel+09 + +KerogenC292 + C292H288O12 + 358 O2 = 292 CO2 + 144 H2O + log_k 27153.69 + -delta_H -36994.127 kcal/mol + -analytic 59184.26 -138.37 0 0 0 0.10 +# Range 0-350 + -Vm 3398.2 +# Extrapol supcrt92 +# Ref RH98, Hel+09 + +KerogenC515 + C515H596O72 + 628 O2 = 515 CO2 + 298 H2O + log_k 48112.16 + -delta_H -65346.703 kcal/mol + -analytic 104660.55 -244.27 0 0 0 0.183 +# Range 0-350 + -Vm 6989.3 +# Extrapol supcrt92 +# Ref RH98, Hel+09 + +Kyanite + Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O + log_k 15.6740 + -delta_H -230.919 kJ/mol +# deltafH -616.897 kcal/mol + -analytic -7.3335e1 -3.2853e-2 1.2166e4 2.3412e1 1.8986e2 +# Range 0-175 + -Vm 44.09 +# Extrapol supcrt92 +# Ref HDN+78 + +Larnite + Ca2SiO4 + 4 H+ = SiO2 + 2 Ca+2 + 2 H2O + log_k 38.4665 + -delta_H -227.061 kJ/mol +# deltafH -551.74 kcal/mol + -analytic 2.6900e1 -2.1833e-3 1.0900e4 -9.5257 -7.2537e4 +# Range 0-300 + -Vm 51.6 # HDN+78 +# Extrapol Cp integration +# Ref 82sar/bar + +Lawrencite + FeCl2 = Fe+2 + 2 Cl- + log_k 9.0945 + -delta_H -84.7665 kJ/mol +# deltafH -341.65 kJ/mol + -analytic -2.2798e2 -8.1819e-2 9.2620e3 9.3097e1 1.4459e2 +# Range 0-300 + -Vm 40.31 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Lawsonite + CaAl2Si2O7(OH)2:H2O + 8 H+ = Ca+2 + 2 Al+3 + 2 SiO2 + 6 H2O + log_k 22.2132 + -delta_H -244.806 kJ/mol +# deltafH -1158.1 kcal/mol + -analytic 1.3995e1 -1.7668e-2 1.0119e4 -8.3100 1.5789e2 +# Range 0-350 + -Vm 101.32 +# Extrapol supcrt92 +# Ref HDN+78 + +Li + Li + H+ +0.25 O2 = 0.5 H2O + Li+ + log_k 72.7622 + -delta_H -418.339 kJ/mol +# deltafH 0 kJ/mol + -analytic -1.0227e2 -1.8118e-2 2.6262e4 3.8056e1 -1.6166e5 +# Range 0-300 + -Vm 13.017 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Lime + CaO + 2 H+ = Ca+2 + H2O + log_k 32.5761 + -delta_H -193.832 kJ/mol +# deltafH -151.79 kcal/mol + -analytic -7.2686e1 -1.7654e-2 1.2199e4 2.8128e1 1.9037e2 +# Range 0-350 + -Vm 16.764 +# Extrapol supcrt92 +# Ref HDN+78 + +Linnaeite + Co3S4 + 4 H+ = Co+2 + 2 Co+3 + 4 HS- + log_k -106.9017 + -delta_H 420.534 kJ/mol +# deltafH -85.81 kcal/mol + -analytic -6.0034e2 -2.0179e-1 -9.2145e3 2.3618e2 -1.4361e2 +# Range 0-300 + -Vm 63.55 # Webmineral.com +# Extrapol Cp integration +# Ref 78vau/cra + +Lizardite + Mg3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Mg+2 + 5 H2O + log_k 30.560 + -analytic 7.886e1 -2.108e-1 0 0 0 1.637e-4 +# Range 0-300 + -Vm 107.31 +# Extrapol supcrt92 +# Ref Wilson+06 + +Lopezite + K2Cr2O7 + H2O = 2 CrO4-2 + 2 H+ + 2 K+ + log_k -17.4366 + -delta_H 81.9227 kJ/mol +# deltafH -493.003 kcal/mol + -analytic 7.8359e1 -2.2908e-2 -9.3812e3 -2.3245e1 -1.5933e2 +# Range 0-200 + -Vm 109.93 # thermo.com.V8.R6+.tdat +# Extrapol Constant H Approx +# Ref 76del/hal + +Magnesiochromite + MgCr2O4 + 8 H+ = Mg+2 + 2 Cr+3 + 4 H2O + log_k 21.6927 + -delta_H -302.689 kJ/mol +# deltafH -1783.6 kJ/mol + -analytic -1.7376e2 -8.7429e-3 2.1600e4 5.0762e1 3.6685e2 +# Range 0-200 + -Vm 43.564 # thermo.com.V8.R6+.tdat +# Extrapol Constant H Approx +# Ref WEP+82 + +Magnesite + MgCO3 + H+ = HCO3- + Mg+2 + log_k 2.2936 + -delta_H -44.4968 kJ/mol +# deltafH -265.63 kcal/mol + -analytic -1.6665e2 -4.9469e-2 6.4344e3 6.5506e1 1.0045e2 +# Range 0-350 + -Vm 28.018 +# Extrapol supcrt92 +# Ref HDN+78 + +Magnetite + Fe3O4 + 8 H+ = Fe+2 + 2 Fe+3 + 4 H2O + log_k 10.4724 + -delta_H -216.597 kJ/mol +# deltafH -267.25 kcal/mol + -analytic -3.0510e2 -7.9919e-2 1.8709e4 1.1178e2 2.9203e2 +# Range 0-350 + -Vm 44.524 +# Extrapol supcrt92 +# Ref HDN+78 + +Malachite + Cu2CO3(OH)2 + 3 H+ = HCO3- + 2 Cu+2 + 2 H2O + log_k 5.9399 + -delta_H -76.2827 kJ/mol +# deltafH -251.9 kcal/mol + -analytic -2.7189e2 -6.9454e-2 1.1451e4 1.0511e2 1.7877e2 +# Range 0-350 + -Vm 54.86 +# Extrapol supcrt92 +# Ref HDN+78 + +Manganosite + MnO + 2 H+ = H2O + Mn+2 + log_k 17.9240 + -delta_H -121.215 kJ/mol +# deltafH -92.07 kcal/mol + -analytic -8.4114e1 -1.8490e-2 8.7792e3 3.1561e1 1.3702e2 +# Range 0-350 + -Vm 13.221 +# Extrapol supcrt92 +# Ref HDN+78 + +Margarite + CaAl4Si2O10(OH)2 + 14 H+ = Ca+2 + 2 SiO2 + 4 Al+3 + 8 H2O + log_k 41.0658 + -delta_H -522.192 kJ/mol +# deltafH -1485.8 kcal/mol + -analytic -2.3138e2 -8.2788e-2 3.0154e4 7.9148e1 4.7060e2 +# Range 0-350 + -Vm 129.4 +# Extrapol supcrt92 +# Ref HDN+78 differ by 3.3 log K at 0C, 1.1 log K at 350C + +Maximum_Microcline + KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 + log_k -0.2753 + -delta_H -23.9408 kJ/mol +# deltafH -949.188 kcal/mol + -analytic -9.4387 1.3561e-2 1.2656e4 -7.4925 -1.6795e6 +# Range 0-350 + -Vm 108.741 +# Extrapol supcrt92 +# Ref HDN+78 + +Mayenite + Ca12Al14O33 + 66 H+ = 12 Ca+2 + 14 Al+3 + 33 H2O + log_k 494.2199 + -delta_H -4056.77 kJ/mol +# deltafH -4644 kcal/mol + -analytic -1.4778e3 -2.9898e-1 2.4918e5 4.9518e2 4.2319e3 +# Range 0-200 + -Vm 517.41 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +Melanterite + FeSO4:7H2O = Fe+2 + SO4-2 + 7 H2O + log_k -2.3490 + -delta_H 11.7509 kJ/mol +# deltafH -3014.48 kJ/mol + -analytic -2.6230e2 -7.2469e-2 6.5854e3 1.0484e2 1.0284e2 +# Range 0-300 + -Vm 146.48 # Marion+08 +# Extrapol Cp integration +# Ref RHF79 + +Merwinite + MgCa3(SiO4)2 + 8 H+ = Mg+2 + 2 SiO2 + 3 Ca+2 + 4 H2O + log_k 68.5140 + -delta_H -430.069 kJ/mol +# deltafH -1090.8 kcal/mol + -analytic -2.2524e2 -4.2525e-2 3.5619e4 7.9984e1 -9.8259e5 +# Range 0-350 + -Vm 104.4 +# Extrapol supcrt92 +# Ref HDN+78 + +Mg + Mg + 2 H+ + 0.5 O2 = H2O + Mg+2 + log_k 122.5365 + -delta_H -745.731 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.5988e1 -1.9356e-2 4.0318e4 2.3862e1 6.2914e2 +# Range 0-300 + -Vm 13.996 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +MgOHCl + MgOHCl + H+ = Cl- + H2O + Mg+2 + log_k 15.9138 + -delta_H -118.897 kJ/mol +# deltafH -191.2 kcal/mol + -analytic -1.6614e2 -4.9715e-2 1.0311e4 6.5578e1 1.6093e2 +# Range 0-300 + -Vm 33.23 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 73bar/kna + +MgSO4 + MgSO4 = Mg+2 + SO4-2 + log_k 4.8781 + -delta_H -90.6421 kJ/mol +# deltafH -1284.92 kJ/mol + -analytic -2.2439e2 -7.9688e-2 9.3058e3 8.9622e1 1.4527e2 +# Range 0-300 + -Vm 45.25 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Millerite + NiS + H+ = HS- + Ni+2 + log_k -8.0345 + -delta_H 12.089 kJ/mol +# deltafH -82.171 kJ/mol + -analytic -1.4848e2 -4.8834e-2 2.6981e3 5.8976e1 4.2145e1 +# Range 0-300 + -Vm 16.89 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Minnesotaite + Fe3Si4O10(OH)2 + 6 H+ = 3 Fe+2 + 4 H2O + 4 SiO2 + log_k 13.9805 + -delta_H -105.211 kJ/mol +# deltafH -1153.37 kcal/mol + -analytic -1.8812e1 1.7261e-2 1.9804e4 -6.4410 -2.0433e6 +# Range 0-300 + -Vm 147.86 # HDN+78 +# Extrapol Cp integration +# Ref 78wol, Wilson+06 differ by 2.6 log K at 0C, 1.6 log K at 350C + +Mirabilite + Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O + log_k -1.1398 + -delta_H 79.4128 kJ/mol +# deltafH -4328 kJ/mol + -analytic -2.1877e2 -3.6692e-3 5.9214e3 8.0361e1 1.0063e2 +# Range 0-200 + -Vm 219.80 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref RHF79 + +Mn + Mn + 2 H+ + 0.5 O2 = H2O + Mn+2 + log_k 82.9505 + -delta_H -500.369 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.5558e1 -2.0429e-2 2.7571e4 2.5098e1 4.3024e2 +# Range 0-300 + -Vm 7.354 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Mn(OH)2(am) + Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O + log_k 15.3102 + -delta_H -97.1779 kJ/mol +# deltafH -695.096 kJ/mol + -analytic -7.8518e1 -7.5357e-3 8.0198e3 2.7955e1 1.3621e2 +# Range 0-200 + -Vm 22.36 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +MnCl2:2H2O + MnCl2:2H2O = Mn+2 + 2 Cl- + 2 H2O + log_k 4.0067 + -delta_H -34.4222 kJ/mol +# deltafH -1092.01 kJ/mol + -analytic -6.2823e1 -2.3959e-2 2.9931e3 2.5834e1 5.0850e1 +# Range 0-200 + -Vm 71.12 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +MnCl2:4H2O + MnCl2:4H2O = Mn+2 + 2 Cl- + 4 H2O + log_k 2.7563 + -delta_H -10.7019 kJ/mol +# deltafH -1687.41 kJ/mol + -analytic -1.1049e2 -2.3376e-2 4.0458e3 4.3097e1 6.8742e1 +# Range 0-200 + -Vm 98.46 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +MnCl2:H2O + MnCl2:H2O = H2O + Mn+2 + 2 Cl- + log_k 5.5517 + -delta_H -50.8019 kJ/mol +# deltafH -789.793 kJ/mol + -analytic -4.5051e1 -2.5923e-2 2.8739e3 1.9674e1 4.8818e1 +# Range 0-200 + -Vm 42.27 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +MnSO4 + MnSO4 = Mn+2 + SO4-2 + log_k 2.6561 + -delta_H -64.8718 kJ/mol +# deltafH -1065.33 kJ/mol + -analytic -2.3088e2 -8.2694e-2 8.1653e3 9.3256e1 1.2748e2 +# Range 0-300 + -Vm 46.46 # gfw/density +# Extrapol Cp integration +# Ref RHF79 + +Mo + Mo + 1.5 O2 + H2O = MoO4-2 + 2 H+ + log_k 109.3230 + -delta_H -693.845 kJ/mol +# deltafH 0 kJ/mol + -analytic -2.0021e2 -8.3006e-2 4.1629e4 8.0219e1 -3.4570e5 +# Range 0-300 + -Vm 9.387 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Molysite + FeCl3 = Fe+3 + 3 Cl- + log_k 13.5517 + -delta_H -151.579 kJ/mol +# deltafH -399.24 kJ/mol + -analytic -3.1810e2 -1.2357e-1 1.3860e4 1.3010e2 2.1637e2 +# Range 0-300 + -Vm 55.86 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Monohydrocalcite + CaCO3:H2O + H+ = Ca+2 + H2O + HCO3- + log_k 2.6824 + -delta_H -20.5648 kJ/mol +# deltafH -1498.29 kJ/mol + -analytic -7.2614e1 -1.7217e-2 3.1850e3 2.8185e1 5.4111e1 +# Range 0-200 + -Vm 49.62 # Webmineral.com +# Extrapol Constant H approx +# Ref RHF79 + +Monticellite + CaMgSiO4 + 4 H+ = Ca+2 + Mg+2 + SiO2 + 2 H2O + log_k 29.5852 + -delta_H -195.711 kJ/mol +# deltafH -540.8 kcal/mol + -analytic 1.5730e1 -3.5567e-3 9.0789e3 -6.3007 1.4166e2 +# Range 0-300 + -Vm 51.47 +# Extrapol supcrt92 +# Ref HDN+78 + +Montmor-Ca + Ca.175Mg.35Al1.65Si4O10(OH)2 + 6 H+ = 0.175 Ca+2 + 0.35 Mg+2 + 1.65 Al+3 + 4 H2O + 4 SiO2 + log_k 2.4952 + -delta_H -100.154 kJ/mol +# deltafH -1361.5 kcal/mol + -analytic 2.459e1 -9.080e-2 0 0 0 5.223e-5 +# Range 0-300 + -Vm 136.007 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 88db 3 match + +Montmor-K + K.35Mg.35Al1.65Si4O10(OH)2 + 6 H+ = 0.35 K+ + 0.35 Mg+2 + 1.65 Al+3 + 4 H2O + 4 SiO2 + log_k 2.1423 + -delta_H -88.184 kJ/mol +# deltafH -1362.83 kcal/mol + -analytic 2.022e1 -7.624e-2 0 0 0 4.102e-5 +# Range 0-300 + -Vm 140.140 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 88db 3 match + +Montmor-Mg + Mg.525Al1.65Si4O10(OH)2 + 6 H+ = 0.525 Mg+2 + 1.65 Al+3 + 4 H2O + 4 SiO2 + log_k 2.3879 + -delta_H -102.608 kJ/mol +# deltafH -1357.87 kcal/mol + -analytic 2.381e1 -9.031e-2 0 0 0 5.203e-5 +# Range 0-300 + -Vm 135.042 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 88db 3 match + +Montmor-Na + Na.35Mg.35Al1.65Si4O10(OH)2 + 6 H+ = 0.35 Mg+2 + 0.35 Na+ + 1.65 Al+3 + 4 H2O + 4 SiO2 + log_k 2.4844 + -delta_H -93.2165 kJ/mol +# deltafH -1360.69 kcal/mol + -analytic 2.348e1 -8.604e-2 0 0 0 4.951e-5 +# Range 0-300 + -Vm 137.449 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 88db 3 match, but differ from Wilson+06 by 3.4 log K at 0C, 1.7 log K at 300C + +Morenosite + NiSO4:7H2O = Ni+2 + SO4-2 + 7 H2O + log_k -2.0140 + -delta_H 12.0185 kJ/mol +# deltafH -2976.46 kJ/mol + -analytic -2.6654e2 -7.2132e-2 6.7983e3 1.0636e2 1.0616e2 +# Range 0-300 + -Vm 144.17 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Muscovite + KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 SiO2 + 6 H2O + log_k 13.5858 + -delta_H -243.224 kJ/mol +# deltafH -1427.41 kcal/mol + -analytic 3.3085e1 -1.2425e-2 1.2477e4 -2.0865e1 -5.4692e5 +# Range 0-350 + -Vm 140.71 +# Extrapol supcrt92 +# Ref HDN+78 + +Na + Na + H+ + 0.25 O2 = 0.5 H2O + Na+ + log_k 67.3804 + -delta_H -380.185 kJ/mol +# deltafH 0 kJ/mol + -analytic -4.0458e1 -8.7899e-3 2.1223e4 1.5927e1 -1.2715e4 +# Range 0-300 + -Vm 23.812 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Na2CO3 + Na2CO3 + H+ = HCO3- + 2 Na+ + log_k 11.1822 + -delta_H -39.8526 kJ/mol +# deltafH -1130.68 kJ/mol + -analytic -1.5495e2 -4.3374e-2 6.4821e3 6.3571e1 1.0119e2 +# Range 0-300 + -Vm 41.86 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Na2CO3:7H2O + Na2CO3:7H2O + H+ = HCO3- + 2 Na+ + 7 H2O + log_k 9.9459 + -delta_H 27.7881 kJ/mol +# deltafH -3199.19 kJ/mol + -analytic -2.0593e2 -3.4509e-3 8.1601e3 7.6594e1 1.3864e2 +# Range 0-200 + -Vm 153.71 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Na2Cr2O7 + Na2Cr2O7 + H2O = 2 CrO4-2 + 2 H+ + 2 Na+ + log_k -10.1597 + -delta_H 21.9702 kJ/mol +# deltafH -473 kcal/mol + -analytic 4.4885e1 -2.4919e-2 -5.0321e3 -1.2430e1 -8.5468e1 +# Range 0-200 + -Vm 103.96 # gfw/density +# Extrapol Constant H approx +# Ref 76del/hal + +Na2CrO4 + Na2CrO4 = CrO4-2 + 2 Na+ + log_k 2.9103 + -delta_H -19.5225 kJ/mol +# deltafH -320.8 kcal/mol + -analytic 5.4985 -9.9008e-3 1.0510e2 +# Range 0-200 + -Vm 59.48 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 76del/hal + +Na2O + Na2O + 2 H+ = H2O + 2 Na+ + log_k 67.4269 + -delta_H -351.636 kJ/mol +# deltafH -99.14 kcal/mol + -analytic -6.3585e1 -8.4695e-3 2.0923e4 2.5601e1 3.2651e2 +# Range 0-350 + -Vm 25 +# Extrapol supcrt92 +# Ref HDN+78 + +Na2SiO3 + Na2SiO3 + 2 H+ = H2O + SiO2 + 2 Na+ + log_k 22.2418 + -delta_H -82.7093 kJ/mol +# deltafH -373.19 kcal/mol + -analytic -3.4928e1 5.6905e-3 1.0284e4 1.1197e1 -6.0134e5 +# Range 0-300 + -Vm 50.86 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 73bar/kna + +Na2U2O7 + Na2U2O7 + 6 H+ = 2 Na+ + 2 UO2+2 + 3 H2O + log_k 22.5917 + -delta_H -172.314 kJ/mol +# deltafH -3203.8 kJ/mol + -analytic -8.6640e1 -1.0903e-2 1.1841e4 2.9406e1 1.8479e2 +# Range 0-300 + -Vm 95.34 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 92gre/fug + +NaFeO2 + NaFeO2 + 4 H+ = Fe+3 + Na+ + 2 H2O + log_k 19.8899 + -delta_H -163.339 kJ/mol +# deltafH -698.218 kJ/mol + -analytic -7.0047e1 -9.6226e-3 1.0647e4 2.3071e1 1.8082e2 +# Range 0-200 + -Vm 33.48 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +NaUO3 + NaUO3 + 2 H+ = H2O + Na+ + UO2+ + log_k 8.3371 + -delta_H -56.365 kJ/mol +# deltafH -1494.9 kJ/mol + -analytic -3.6363e1 7.0505e-4 4.5359e3 1.1828e1 7.0790e1 +# Range 0-300 + -Vm 42.56 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +Nahcolite + NaHCO3 = HCO3- + Na+ + log_k -0.1118 + -delta_H 17.0247 kJ/mol +# deltafH -226.4 kcal/mol + -analytic -2.2282e2 -5.9693e-2 5.4887e3 8.9744e1 8.5712e1 +# Range 0-300 + -Vm 38.62 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 73bar/kna + +Nantokite + CuCl = Cl- + Cu+ + log_k -6.7623 + -delta_H 41.9296 kJ/mol +# deltafH -137.329 kJ/mol + -analytic -2.2442e1 -1.1201e-2 -1.8709e3 1.0221e1 -3.1763e1 +# Range 0-200 + -Vm 23.92 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Natron + Na2CO3:10H2O + H+ = HCO3- + 2 Na+ + 10 H2O + log_k 9.6102 + -delta_H 50.4781 kJ/mol +# deltafH -4079.39 kJ/mol + -analytic -1.9981e2 -2.9247e-2 5.2937e3 8.0973e1 8.2662e1 +# Range 0-300 + -Vm 195.99 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Natrosilite + Na2Si2O5 + 2 H+ = H2O + 2 Na+ + 2 SiO2 + log_k 18.1337 + -delta_H -51.7686 kJ/mol +# deltafH -590.36 kcal/mol + -analytic -2.7628e1 1.6865e-2 1.3302e4 4.2356 -1.2828e6 +# Range 0-300 + -Vm 72.57 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 77bar/kna + +Nepheline + NaAlSiO4 + 4 H+ = Al+3 + Na+ + SiO2 + 2 H2O + log_k 13.8006 + -delta_H -135.068 kJ/mol +# deltafH -500.241 kcal/mol + -analytic -2.4856e1 -8.8171e-3 8.5653e3 6.0904 -2.2786e5 +# Range 0-350 + -Vm 54.16 +# Extrapol supcrt92 +# Ref HDN+78 + +Nesquehonite + MgCO3:3H2O + H+ = HCO3- + Mg+2 + 3 H2O + log_k 4.9955 + -delta_H -36.1498 kJ/mol +# deltafH -472.576 kcal/mol + -analytic 1.3771e2 -6.0397e-2 -3.5049e4 -1.8831e1 4.4213e6 +# Range 0-50 + -Vm 74.79 +# Extrapol supcrt92 +# Ref HDN+78 + +NH4Cl + NH4Cl = NH4+ + Cl- + log_k 1.3252 + -analytic -3.078 1.550e-2 0 0 0 -3.451e-6 +# Range 0-30 + -Vm 34.96 +# Extrapol Marion+12 +# Ref Marion+12, WangLi11 match + +NH4-feldspar # Buddingtonite (sometimes with +0.5 H2O, especially at low temp) + NH4AlSi3O8 + 4H+ = NH4+ + Al+3 + 3 SiO2 + 2 H2O + log_k -2.7243 + -analytic -7.434e1 3.080e-1 0 0 0 -2.270e-4 +# Range 25-325 + -Vm 114.78 # Webmineral.com (Hovis04: 109.08-112.23) +# Extrapol N17 +# Ref Wat81 + +NH4HCO3 + NH4HCO3 = NH4+ + HCO3- + log_k -0.0207 + -analytic -1.587e1 9.703e-2 0 0 0 -1.472e-4 +# Range 0-40 + -Vm 50.04 +# Extrapol Marion+12 +# Ref Marion+12 + +NH4-muscovite # Tobelite + NH4Al3Si3O10(OH)2 + 10 H+ = NH4+ + 3 Al+3 + 3 SiO2 + 6 H2O + log_k 6.8109 + -analytical -6.638e1 3.170e-1 0 0 0 -2.386e-4 +# Range 25-325 + -Vm 146.07 # Hovis04 +# Extrapol N17 +# Ref Wat81 + +Ni + Ni + 2 H+ + 0.5 O2 = H2O + Ni+2 + log_k 50.9914 + -delta_H -333.745 kJ/mol +# deltafH 0 kcal/mol + -analytic -5.8308e1 -2.0133e-2 1.8444e4 2.1590e1 2.8781e2 +# Range 0-350 + -Vm 6.588 +# Extrapol supcrt92 +# Ref HDN+78 + +Ni(OH)2 + Ni(OH)2 + 2 H+ = Ni+2 + 2 H2O + log_k 12.7485 + -delta_H -95.6523 kJ/mol +# deltafH -529.998 kJ/mol + -analytic -6.5279e1 -5.9499e-3 7.3471e3 2.2290e1 1.2479e2 +# Range 0-200 + -Vm 22.34 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Ni2SiO4 + Ni2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Ni+2 + log_k 14.3416 + -delta_H -127.629 kJ/mol +# deltafH -341.705 kcal/mol + -analytic -4.0414e1 -1.1194e-2 9.6515e3 1.2026e1 -3.6336e5 +# Range 0-300 + -Vm 42.61 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +NiCl2 + NiCl2 = Ni+2 + 2 Cl- + log_k 8.6113 + -delta_H -82.7969 kJ/mol +# deltafH -305.336 kJ/mol + -analytic -1.2416 -2.3139e-2 2.6529e3 3.1696 4.5052e1 +# Range 0-200 + -Vm 36.70 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +NiCl2:2H2O + NiCl2:2H2O = Ni+2 + 2 Cl- + 2 H2O + log_k 3.9327 + -delta_H -37.6746 kJ/mol +# deltafH -922.135 kJ/mol + -analytic -4.8814e1 -2.2602e-2 2.5951e3 2.0518e1 4.4086e1 +# Range 0-200 + -Vm 64.07 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +NiSO4 + NiSO4 = Ni+2 + SO4-2 + log_k 5.3197 + -delta_H -90.5092 kJ/mol +# deltafH -873.066 kJ/mol + -analytic -1.8878e2 -7.6403e-2 7.9412e3 7.6866e1 1.2397e2 +# Range 0-300 + -Vm 42.05 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +NiSO4:6H2O(alpha) + NiSO4:6H2O = Ni+2 + SO4-2 + 6 H2O + log_k -2.0072 + -delta_H 4.37983 kJ/mol +# deltafH -2682.99 kJ/mol + -analytic -1.1937e2 -1.3785e-2 4.1543e3 4.3454e1 7.0587e1 +# Range 0-200 + -Vm 126.6 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Nickelbischofite + NiCl2:6H2O = Ni+2 + 2 Cl- + 6 H2O + log_k 3.1681 + -delta_H 0.064088 kJ/mol +# deltafH -2103.23 kJ/mol + -analytic -1.4340e2 -2.1257e-2 5.1858e3 5.4759e1 8.8112e1 +# Range 0-200 + -Vm 123.15 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Ningyoite + CaUP2O8:2H2O + 2 H+ = Ca+2 + U+4 + 2 H2O + 2 HPO4-2 + log_k -29.7931 + -delta_H -36.4769 kJ/mol +# deltafH -1016.65 kcal/mol + -analytic -1.0274e2 -4.9041e-2 1.7779e3 3.2973e1 3.0227e1 +# Range 0-200 + -Vm 116.77 # Webmineral.com +# Extrapol Constant H approx +# Ref 78lan + +Niter + KNO3 = K+ + NO3- + log_k -0.2061 + -delta_H 35.4794 kJ/mol +# deltafH -494.46 kJ/mol + -analytic -6.5607e1 -2.8165e-2 -4.0131e2 3.0361e1 -6.2425 +# Range 0-300 + -Vm 48.04 # Marion+05 +# Extrapol Cp integration +# Ref RHF79 + +Nontronite-Ca + Ca.175Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.175 Ca+2 + 0.35 Al+3 + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O + log_k -11.5822 + -delta_H -38.138 kJ/mol +# deltafH -1166.7 kcal/mol + -analytic 3.697 -4.892e-2 0 0 0 1.489e-5 +# Range 0-300 + -Vm 137.780 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 2.6 log K at 0C, 0.2 log K at 300C + +Nontronite-K + K.35Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.35 Al+3 + 0.35 K+ + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O + log_k -11.8648 + -delta_H -26.5822 kJ/mol +# deltafH -1167.93 kcal/mol + -analytic -1.959 -3.115e-2 0 0 0 1.139e-6 +# Range 0-300 + -Vm 141.913 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 1.1 log K at 0C, 0.5 log K at 300C + +Nontronite-Mg + Mg.175Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.175 Mg+2 + 0.35 Al+3 + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O + log_k -11.6200 + -delta_H -41.1779 kJ/mol +# deltafH -1162.93 kcal/mol + -analytic 2.476 -4.730e-2 0 0 0 1.382e-5 +# Range 0-300 + -Vm 136.815 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol + +Nontronite-Na + Na.35Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.35 Al+3 + 0.35 Na+ + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O + log_k -11.5263 + -delta_H -31.5687 kJ/mol +# deltafH -1165.8 kcal/mol + -analytic 1.106 -4.045e-2 0 0 0 9.229e-6 +# Range 0-300 + -Vm 139.221 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 1.7 log K at 0C, 0.2 log K at 300C + +Okenite + CaSi2O4(OH)2:H2O + 2 H+ = Ca+2 + 2 SiO2 + 3 H2O + log_k 10.3816 + -delta_H -19.4974 kJ/mol +# deltafH -749.641 kcal/mol + -analytic -7.7353e1 1.5091e-2 1.3023e4 2.1337e1 -1.1831e6 +# Range 0-300 + -Vm 94.77 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +P + P + 1.5 H2O + 1.25 O2 = HPO4-2 + 2 H+ + log_k 132.1032 + -delta_H -848.157 kJ/mol +# deltafH 0 kJ/mol + -analytic -9.2727e1 -6.8342e-2 4.3465e4 4.0156e1 6.7826e2 +# Range 0-300 + -Vm 17.2 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Paragonite + NaAl3Si3O10(OH)2 + 10 H+ = Na+ + 3 Al+3 + 3 SiO2 + 6 H2O + log_k 17.5220 + -delta_H -275.056 kJ/mol +# deltafH -1416.96 kcal/mol + -analytic 3.5507e1 -1.0720e-2 1.3519e4 -2.2283e1 -4.5657e5 +# Range 0-350 + -Vm 132.53 +# Extrapol supcrt92 +# Ref HDN+78, differ by 2.5 log K at 0C, 0.6 log K at 350C, but match Wilson+06 + +Pargasite + NaCa2Al3Mg4Si6O22(OH)2 + 22 H+ = Na+ + 2 Ca+2 + 3 Al+3 + 4 Mg+2 + 6 SiO2 + 12 H2O + log_k 101.9939 + -delta_H -880.205 kJ/mol +# deltafH -3016.62 kcal/mol + -analytic -6.7889e1 -3.7817e-2 5.0493e4 9.2705 -1.0163e6 +# Range 0-350 + -Vm 273.5 +# Extrapol supcrt92 +# Ref HDN+78 + +Periclase + MgO + 2 H+ = H2O + Mg+2 + log_k 21.3354 + -delta_H -150.139 kJ/mol +# deltafH -143.8 kcal/mol + -analytic -8.8465e1 -1.8390e-2 1.0414e4 3.2469e1 1.6253e2 +# Range 0-350 + -Vm 11.248 +# Extrapol supcrt92 +# Ref HDN+78 + +Petalite + LiAlSi4O10 + 4 H+ = Al+3 + Li+ + 2 H2O + 4 SiO2 + log_k -3.8153 + -delta_H -13.1739 kJ/mol +# deltafH -4886.15 kJ/mol + -analytic -6.6355 2.4316e-2 1.5949e4 -1.3341e1 -2.2265e6 +# Range 0-300 + -Vm 128.4 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Phlogopite + KAlMg3Si3O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Mg+2 + 3 SiO2 + 6 H2O + log_k 37.4400 + -delta_H -310.503 kJ/mol +# deltafH -1488.07 kcal/mol + -analytic -8.7730e1 -1.7253e-2 2.3748e4 2.4465e1 -8.9045e5 +# Range 0-350 + -Vm 149.66 +# Extrapol supcrt92 +# Ref HDN+78 + +Polydymite + Ni3S4 + 2 H+ = S2-2 + 2 HS- + 3 Ni+2 + log_k -48.9062 +# deltafH -78.014 kcal/mol + -analytic -1.8030e1 -4.6945e-2 -1.1557e4 8.8339 -1.9625e2 +# Range 0-200 + -Vm 64.14 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 78vau/cra + +Portlandite + Ca(OH)2 + 2 H+ = Ca+2 + 2 H2O + log_k 22.5552 + -delta_H -128.686 kJ/mol +# deltafH -986.074 kJ/mol + -analytic -8.3848e1 -1.8373e-2 9.3154e3 3.2584e1 1.4538e2 +# Range 0-300 + -Vm 33.056 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Prehnite + Ca2Al2Si3O10(OH)2 + 10 H+ = 2 Al+3 + 2 Ca+2 + 3 SiO2 + 6 H2O + log_k 32.9305 + -delta_H -311.875 kJ/mol +# deltafH -1481.65 kcal/mol + -analytic -3.5763e1 -2.1396e-2 2.0167e4 6.3554 -7.4967e5 +# Range 0-350 + -Vm 140.33 +# Extrapol supcrt92 +# Ref HDN+78 + +Pseudowollastonite + CaSiO3 + 2 H+ = Ca+2 + H2O + SiO2 + log_k 13.9997 + -delta_H -79.4625 kJ/mol +# deltafH -388.9 kcal/mol + -analytic 2.6691e1 6.3323e-3 5.5723e3 -1.1822e1 -3.6038e5 +# Range 0-300 + -Vm 40.08 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 77bar/kna + +Pyridine + C5H5N + 6.25 O2 = 5 CO2 + 2.5 H2O + 0.5 N2 + log_k 490.7474 + -delta_H -669.9574 kcal/mol + -analytic 1071.04 -2.50773 0 0 0 0.00188 +# Range 0-350 + -Vm 64.4 +# Extrapol supcrt92 +# Ref Hel+98 + +Pyrite + FeS2 + H2O = 0.25 H+ + 0.25 SO4-2 + Fe+2 + 1.75 HS- + log_k -24.6534 + -delta_H 109.535 kJ/mol +# deltafH -41 kcal/mol + -analytic -2.4195e2 -8.7948e-2 -6.2911e2 9.9248e1 -9.7454 +# Range 0-350 + -Vm 23.94 +# Extrapol supcrt92 +# Ref HDN+78 + +Pyrolusite + MnO2 = 0.5 Mn+2 + 0.5 MnO4-2 + log_k -17.6439 + -delta_H 83.3804 kJ/mol +# deltafH -520.031 kJ/mol + -analytic -1.1541e2 -4.1665e-2 -1.8960e3 4.7094e1 -2.9551e1 +# Range 0-300 + -Vm 18.38 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Pyrophyllite + Al2Si4O10(OH)2 + 6 H+ = 2 Al+3 + 4 H2O + 4 SiO2 + log_k 0.4397 + -delta_H -102.161 kJ/mol +# deltafH -1345.31 kcal/mol + -analytic 1.1066e1 1.2707e-2 1.6417e4 -1.9596e1 -1.8791e6 +# Range 0-350 + -Vm 126.6 +# Extrapol supcrt92 +# Ref HDN+78, Wilson+06 match + +Pyrrhotite + FeS + H+ = Fe+2 + HS- + log_k -3.7193 + -delta_H -7.9496 kJ/mol +# deltafH -24 kcal/mol + -analytic -1.5785e2 -5.2258e-2 3.9711e3 6.3195e1 6.2012e1 +# Range 0-350 + -Vm 18.2 +# Extrapol supcrt92 +# Ref HDN+78 + +Quartz + SiO2 = SiO2 + log_k -3.9993 + -delta_H 32.949 kJ/mol +# deltafH -217.65 kcal/mol + -analytic 7.7698e-2 1.0612e-2 3.4651e3 -4.3551 -7.2138e5 +# Range 0-350 + -Vm 22.68 +# Extrapol supcrt92 +# Ref HDN+78 + +Rankinite + Ca3Si2O7 + 6 H+ = 2 SiO2 + 3 Ca+2 + 3 H2O + log_k 51.9078 + -delta_H -302.089 kJ/mol +# deltafH -941.7 kcal/mol + -analytic -9.6393e1 -1.6592e-2 2.4832e4 3.2541e1 -9.4630e5 +# Range 0-300 + -Vm 96.13 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 77bar/kna + +Rhodochrosite + MnCO3 + H+ = HCO3- + Mn+2 + log_k -0.1928 + -delta_H -21.3426 kJ/mol +# deltafH -212.521 kcal/mol + -analytic -1.6195e2 -4.9344e-2 5.0937e3 6.4402e1 7.9531e1 +# Range 0-350 + -Vm 31.075 +# Extrapol supcrt92 +# Ref HDN+78 + +Rhodonite + MnSiO3 + 2 H+ = H2O + Mn+2 + SiO2 + log_k 9.7301 + -delta_H -64.7121 kJ/mol +# deltafH -1319.42 kJ/mol + -analytic 2.0585e1 4.9941e-3 4.5816e3 -9.8212 -3.0658e5 +# Range 0-300 + -Vm 35.87 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Ripidolite + Mg3Fe2Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 2 Fe+2 + 3 Mg+2 + 3 SiO2 + 12 H2O + log_k 60.9638 + -delta_H -572.472 kJ/mol +# deltafH -1947.87 kcal/mol + -analytic 2.122e2 -6.025e-1 0 0 0 4.579e-4 +# Range 0-300 + -Vm 208.614 +# Extrapol supcrt92 +# Ref Catalano13 + +Rutherfordine + UO2CO3 + H+ = HCO3- + UO2+2 + log_k -4.1064 + -delta_H -19.4032 kJ/mol +# deltafH -1689.53 kJ/mol + -analytic -8.8224e1 -3.1434e-2 2.6675e3 3.4161e1 4.1650e1 +# Range 0-300 + -Vm 57.90 # Webmineral.com +# Extrapol Cp integration +# Ref 92gre/fug + +Rutile + TiO2 + 2 H2O = Ti(OH)4 + log_k -9.6452 +# deltafH -226.107 kcal/mol + -Vm 18.82 +# Ref RHF79 + +S + S + H2O = 0.5 O2 + H+ + HS- + log_k -45.0980 + -delta_H 263.663 kJ/mol +# deltafH 0 kJ/mol + -analytic -8.8928e1 -2.8454e-2 -1.1516e4 3.6747e1 -1.7966e2 +# Range 0-300 + -Vm 15.511 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Saleeite + Mg(UO2)2(PO4)2 + 2 H+ = Mg+2 + 2 HPO4-2 + 2 UO2+2 + log_k -19.4575 + -delta_H -110.816 kJ/mol +# deltafH -1189.61 kcal/mol + -analytic -6.0028e1 -4.4391e-2 3.9168e3 1.6428e1 6.6533e1 +# Range 0-200 + -Vm 285.77 # Webmineral.com +# Extrapol Constant H approx +# Ref 78lan + +Sanidine_high + KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 + log_k 0.9239 + -delta_H -35.0284 kJ/mol +# deltafH -946.538 kcal/mol + -analytic -3.4889 1.4495e-2 1.2856e4 -9.8978 -1.6572e6 +# Range 0-350 + -Vm 109.008 +# Extrapol supcrt92 +# Ref HDN+78 + +Saponite-Fe-Ca + Ca.175Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Ca+2 + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 20.3624 + -analytic 5.992e1 -1.681e-1 0 0 0 1.174e-4 +# Range 0-300 + -Vm 143.506 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Fe-Fe + Fe3.175Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 3.175 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 18.9359 + -analytic 5.762e1 -1.630e-1 0 0 0 1.099e-4 +# Range 0-300 + -Vm 142.672 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Fe-K + K.35Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 K+ + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 18.7937 + -analytic 5.427e1 -1.504e-1 0 0 0 1.037e-4 +# Range 0-300 + -Vm 147.639 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Fe-Mg + Mg.175Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Mg+2 + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 19.5290 + -analytic 5.870e1 -1.665e-1 0 0 0 1.163e-4 +# Range 0-300 + -Vm 142.541 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Fe-Na + Na.35Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Na+ + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 19.7977 + -analytic 5.733e1 -1.597e-1 0 0 0 1.117e-4 +# Range 0-300 + -Vm 144.947 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Mg-Ca + Ca.175Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Ca+2 + 0.35 Al+3 + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 26.2900 + -delta_H -207.971 kJ/mol +# deltafH -1436.51 kcal/mol + -analytic 8.088e1 -2.233e-1 0 0 0 1.655e-4 +# Range 0-300 + -Vm 141.250 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol match + +Saponite-Mg-Fe + Fe.175Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Fe+2 + 0.35 Al+3 + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 27.6789 + -analytic 7.825e1 -2.180e-1 0 0 0 1.612e-4 +# Range 0-300 + -Vm 140.416 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Mg-K + K.35Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 0.35 K+ + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 26.0075 + -delta_H -196.402 kJ/mol +# deltafH -1437.74 kcal/mol + -analytic 7.522e1 -2.055e-1 0 0 0 1.517e-4 +# Range 0-300 + -Vm 145.383 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 1.7 log K at 0C, 0.7 log K at 300C + +Saponite-Mg-Mg + Mg3.175Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 3.175 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 26.2523 + -delta_H -210.822 kJ/mol +# deltafH -1432.79 kcal/mol + -analytic 7.965e1 -2.217e-1 0 0 0 1.644e-4 +# Range 0-300 + -Vm 140.285 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 2.2 log K at 0C, 0.6 log K at 300C + +Saponite-Mg-Na + Na.35Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 0.35 Na+ + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 26.3459 + -delta_H -201.401 kJ/mol +# deltafH -1435.61 kcal/mol + -analytic 7.829e1 -2.148e-1 0 0 0 1.598e-4 +# Range 0-300 + -Vm 142.691 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 2.4 log K at 0C, 0.7 log K at 300C + +Sc + Sc + 3 H+ + 0.75 O2 = Sc+3 + 1.5 H2O + log_k 167.2700 + -delta_H -1033.87 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.6922e1 -2.9150e-2 5.4559e4 2.4189e1 8.5137e2 +# Range 0-300 + -Vm 15.038 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Scacchite + MnCl2 = Mn+2 + 2 Cl- + log_k 8.7785 + -delta_H -73.4546 kJ/mol +# deltafH -481.302 kJ/mol + -analytic -2.3476e2 -8.2437e-2 9.0088e3 9.6128e1 1.4064e2 +# Range 0-300 + -Vm 42.27 # Webmineral.com +# Extrapol Cp integration +# Ref WEP+82 + +Schoepite + UO3:2H2O + 2 H+ = UO2+2 + 3 H2O + log_k 4.8333 + -delta_H -50.415 kJ/mol +# deltafH -1826.1 kJ/mol + -analytic 1.3645e1 1.0884e-2 2.5412e3 -8.3167e0 3.9649e1 +# Range 0-300 + -Vm 66.08 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 92gre/fug + +Sepiolite + Mg4Si6O15(OH)2:6H2O + 8 H+ = 4 Mg+2 + 6 SiO2 + 11 H2O + log_k 30.4439 + -delta_H -157.339 kJ/mol +# deltafH -2418 kcal/mol + -analytic 1.8690e1 4.7544e-2 2.6765e4 -2.5301e1 -2.6498e6 +# Range 0-350 + -Vm 285.6 +# Extrapol supcrt92 +# Ref HDN+78 + +Si + Si + O2 = SiO2 + log_k 148.9059 + -delta_H -865.565 kJ/mol +# deltafH 0 kJ/mol + -analytic -5.7245e2 -7.6302e-2 8.3516e4 2.0045e2 -2.8494e6 +# Range 0-300 + -Vm 12.056 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Sillimanite + Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O + log_k 16.3080 + -delta_H -238.442 kJ/mol +# deltafH -615.099 kcal/mol + -analytic -7.1610e1 -3.2196e-2 1.2493e4 2.2449e1 1.9496e2 +# Range 0-350 + -Vm 49.9 +# Extrapol supcrt92 +# Ref HDN+78 + +SiO2(am) + SiO2 = SiO2 + log_k -2.7136 + -delta_H 20.0539 kJ/mol +# deltafH -214.568 kcal/mol + -analytic 1.2109 7.0767e-3 2.3634e3 -3.4449 -4.8591e5 +# Range 0-325 + -Vm 29 +# Extrapol supcrt92 +# Ref HDN+78 + +Sm + Sm + 2 H+ + 0.5 O2 = H2O + Sm+2 + log_k 133.1614 + -delta_H -783.944 kJ/mol +# deltafH 0 kJ/mol + -analytic -7.1599e1 -2.0083e-2 4.2693e4 2.7291e1 6.6621e2 +# Range 0-300 + -Vm 19.98 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Smectite-high-Fe-Mg + Ca.025Na.1K.2Fe.5Fe.2Mg1.15Al1.25Si3.5H2O12 + 8 H+ = 0.025 Ca+2 + 0.1 Na+ + 0.2 Fe+3 + 0.2 K+ + 0.5 Fe+2 + 1.15 Mg+2 + 1.25 Al+3 + 3.5 SiO2 + 5 H2O + log_k 17.4200 + -delta_H -199.841 kJ/mol +# deltafH -1351.39 kcal/mol + -analytic -9.6102 1.2551e-3 1.8157e4 -7.9862 -1.3005e6 +# Range 0-300 + -Vm 139.07 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 78wol + +Smectite-low-Fe-Mg + Ca.02Na.15K.2Fe.29Fe.16Mg.9Al1.25Si3.75H2O12 + 7 H+ = 0.02 Ca+2 + 0.15 Na+ + 0.16 Fe+3 + 0.2 K+ + 0.29 Fe+2 + 0.9 Mg+2 + 1.25 Al+3 + 3.75 SiO2 + 4.5 H2O + log_k 11.0405 + -delta_H -144.774 kJ/mol +# deltafH -1352.12 kcal/mol + -analytic -1.7003e1 6.9848e-3 1.8359e4 -6.8896 -1.6637e6 +# Range 0-300 + -Vm 139.39 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 78wol + +Smithsonite + ZnCO3 + H+ = HCO3- + Zn+2 + log_k 0.4633 + -delta_H -30.5348 kJ/mol +# deltafH -194.26 kcal/mol + -analytic -1.6452e2 -5.0231e-2 5.5925e3 6.5139e1 8.7314e1 +# Range 0-350 + -Vm 28.275 +# Extrapol supcrt92 +# Ref HDN+78 + +Sphaerocobaltite + CoCO3 + H+ = Co+2 + HCO3- + log_k -0.2331 + -delta_H -30.7064 kJ/mol +# deltafH -171.459 kcal/mol + -analytic -1.5709e2 -4.8957e-2 5.3158e3 6.2075e1 8.2995e1 +# Range 0-300 + -Vm 28.8 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 84sve + +Sphalerite + ZnS + H+ = HS- + Zn+2 + log_k -11.4400 + -delta_H 35.5222 kJ/mol +# deltafH -49 kcal/mol + -analytic -1.5497e2 -4.8953e-2 1.7850e3 6.1472e1 2.7899e1 +# Range 0-350 + -Vm 23.83 +# Extrapol supcrt92 +# Ref HDN+78 + +Spinel + Al2MgO4 + 8 H+ = Mg+2 + 2 Al+3 + 4 H2O + log_k 37.6295 + -delta_H -398.108 kJ/mol +# deltafH -546.847 kcal/mol + -analytic -3.3895e2 -8.3595e-2 2.9251e4 1.2260e2 4.5654e2 +# Range 0-350 + -Vm 39.71 +# Extrapol supcrt92 +# Ref HDN+78 + +Spinel-Co + Co3O4 + 8 H+ = Co+2 + 2 Co+3 + 4 H2O + log_k -6.4852 + -delta_H -126.415 kJ/mol +# deltafH -891 kJ/mol + -analytic -3.2239e2 -8.0782e-2 1.4635e4 1.1755e2 2.2846e2 +# Range 0-300 + -Vm 39.41 # gfw/density +# Extrapol Cp integration +# Ref WEP+82 + +Spodumene + LiAlSi2O6 + 4 H+ = Al+3 + Li+ + 2 H2O + 2 SiO2 + log_k 6.9972 + -delta_H -89.1817 kJ/mol +# deltafH -3054.75 kJ/mol + -analytic -9.8111 2.1191e-3 9.6920e3 -3.0484 -7.8822e5 +# Range 0-300 + -Vm 58.37 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Stilbite + Ca1.019Na.136K.006Al2.18Si6.82O18:7.33H2O + 8.72 H+ = 0.006 K+ + 0.136 Na+ + 1.019 Ca+2 + 2.18 Al+3 + 6.82 SiO2 + 11.69 H2O + log_k 1.0545 + -delta_H -83.0019 kJ/mol +# deltafH -11005.7 kJ/mol + -analytic -2.4483e1 3.0987e-2 2.8013e4 -1.5802e1 -3.4491e6 +# Range 0-300 + -Vm 333.50 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 90how/joh + +Strengite + FePO4:2H2O + H+ = Fe+3 + HPO4-2 + 2 H2O + log_k -11.3429 + -delta_H -37.107 kJ/mol +# deltafH -1876.23 kJ/mol + -analytic -2.7752e2 -9.4014e-2 7.6862e3 1.0846e2 1.2002e2 +# Range 0-300 + -Vm 65.10 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Sylvite + KCl = Cl- + K+ + log_k 0.8459 + -delta_H 17.4347 kJ/mol +# deltafH -104.37 kcal/mol + -analytic -8.1204e1 -3.3074e-2 8.2819e2 3.6014e1 1.2947e1 +# Range 0-350 + -Vm 37.524 +# Extrapol supcrt92 +# Ref HDN+78 + +Talc + Mg3Si4O10(OH)2 + 6 H+ = 3 Mg+2 + 4 H2O + 4 SiO2 + log_k 21.1383 + -delta_H -148.737 kJ/mol +# deltafH -1410.92 kcal/mol + -analytic 1.1164e1 2.4724e-2 1.9810e4 -1.7568e1 -1.8241e6 +# Range 0-350 + -Vm 136.25 +# Extrapol supcrt92 +# Ref HDN+78, Wilson+06 match + +Tarapacaite + K2CrO4 = CrO4-2 + 2 K+ + log_k -0.4037 + -delta_H 17.8238 kJ/mol +# deltafH -335.4 kcal/mol + -analytic 2.7953e1 -1.0863e-2 -2.7589e3 -6.4154e0 -4.6859e1 +# Range 0-200 + -Vm 70.87 # Webmineral.com +# Extrapol Constant H approx +# Ref 76del/hal + +Tenorite + CuO + 2 H+ = Cu+2 + H2O + log_k 7.6560 + -delta_H -64.5047 kJ/mol +# deltafH -37.2 kcal/mol + -analytic -8.9899e1 -1.8886e-2 6.0346e3 3.3517e1 9.4191e1 +# Range 0-350 + -Vm 12.22 +# Extrapol supcrt92 +# Ref HDN+78 + +Tephroite + Mn2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Mn+2 + log_k 23.0781 + -delta_H -160.1 kJ/mol +# deltafH -1730.47 kJ/mol + -analytic -3.2440e1 -1.1023e-2 8.8910e3 1.1691e1 1.3875e2 +# Range 0-300 + -Vm 47.52 # Webmineral.com +# Extrapol Cp integration +# Ref WEP+82 + +Th + Th + 4 H+ + O2 = Th+4 + 2 H2O + log_k 209.6028 + -delta_H -1328.56 kJ/mol +# deltafH 0 kJ/mol + -analytic -2.8256e1 -1.1963e-2 6.8870e4 4.2068e0 1.0747e3 +# Range 0-300 + -Vm 19.83 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Th(NO3)4:5H2O + Th(NO3)4:5H2O = Th+4 + 4 NO3- + 5 H2O + log_k 1.7789 + -delta_H -18.1066 kJ/mol +# deltafH -3007.35 kJ/mol + -analytic -1.2480e2 -2.0405e-2 5.1601e3 4.6613e1 8.7669e1 +# Range 0-200 + -Vm 203.62 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Th(SO4)2 + Th(SO4)2 = Th+4 + 2 SO4-2 + log_k -20.3006 + -delta_H -46.1064 kJ/mol +# deltafH -2542.12 kJ/mol + -analytic -8.4525 -3.5442e-2 0 0 -1.1540e5 +# Range 0-200 + -Vm 100.39 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Th2S3 + Th2S3 + 5 H+ + 0.5 O2 = H2O + 2 Th+4 + 3 HS- + log_k 95.2290 + -delta_H -783.243 kJ/mol +# deltafH -1082.89 kJ/mol + -analytic -3.2969e2 -1.1090e-1 4.6877e4 1.2152e2 7.3157e2 +# Range 0-300 + -Vm 71.19 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Th7S12 + Th7S12 + 16 H+ + O2 = 2 H2O + 7 Th+4 + 12 HS- + log_k 204.0740 + -delta_H -1999.4 kJ/mol +# deltafH -4136.58 kJ/mol + -analytic -2.1309e2 -1.4149e-1 9.8550e4 5.2042e1 1.6736e3 +# Range 0-200 + -Vm 248.02 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +ThCl4 + ThCl4 = Th+4 + 4 Cl- + log_k 23.8491 + -delta_H -251.094 kJ/mol +# deltafH -283.519 kcal/mol + -analytic -5.9340 -4.1640e-2 9.8623e3 3.6804 1.6748e2 +# Range 0-200 + -Vm 81.45 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 80lan/her + +ThS2 + ThS2 + 2 H+ = Th+4 + 2 HS- + log_k 10.7872 + -delta_H -175.369 kJ/mol +# deltafH -625.867 kJ/mol + -analytic -3.7691e1 -2.3714e-2 8.4673e3 1.0970e1 1.4380e2 +# Range 0-200 + -Vm 40.57 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Thenardite + Na2SO4 = SO4-2 + 2 Na+ + log_k -0.3091 + -delta_H -2.33394 kJ/mol +# deltafH -1387.87 kJ/mol + -analytic -2.1202e2 -7.1613e-2 5.1083e3 8.7244e1 7.9773e1 +# Range 0-300 + -Vm 53.33 # Marion+05 +# Extrapol Cp integration +# Ref RHF79 + +Thermonatrite + Na2CO3:H2O + H+ = H2O + HCO3- + 2 Na+ + log_k 10.9623 + -delta_H -27.5869 kJ/mol +# deltafH -1428.78 kJ/mol + -analytic -1.4030e2 -3.5263e-2 5.7840e3 5.7528e1 9.0295e1 +# Range 0-300 + -Vm 54.92 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Thorianite + ThO2 + 4 H+ = Th+4 + 2 H2O + log_k 1.8624 + -delta_H -114.296 kJ/mol +# deltafH -1226.4 kJ/mol + -analytic -1.4249e1 -2.4645e-3 4.3110e3 -1.6605e-2 2.1598e5 +# Range 0-300 + -Vm 26.373 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Ti + Ti + 2 H2O + O2 = Ti(OH)4 + log_k 149.2978 +# deltafH 0 kJ/mol + -Vm 10.631 # thermo.com.V8.R6+.tdat +# Ref CWM89 + +Ti2O3 + Ti2O3 + 4 H2O + 0.5 O2 = 2 Ti(OH)4 + log_k 42.9866 +# deltafH -1520.78 kJ/mol + -Vm 32.02 # gfw/density +# Ref WEP+82 + +Ti3O5 + Ti3O5 + 6 H2O + 0.5 O2 = 3 Ti(OH)4 + log_k 34.6557 +# deltafH -2459.24 kJ/mol + -Vm 48.93 # gfw/density +# Ref WEP+82 + +TiB2 + TiB2 + 5 H2O + 2.5 O2 = Ti(OH)4 + 2 B(OH)3 + log_k 312.4194 +# deltafH -323.883 kJ/mol + -Vm 15.37 # gfw/density +# Ref WEP+82 + +TiC + TiC + 3 H2O + 2 O2 = H+ + HCO3- + Ti(OH)4 + log_k 181.8139 +# deltafH -184.346 kJ/mol + -Vm 12.15 # gfw/density +# Ref WEP+82 + +TiCl2 + TiCl2 + 3 H2O + 0.5 O2 = Ti(OH)4 + 2 Cl- + 2 H+ + log_k 70.9386 +# deltafH -514.012 kJ/mol + -Vm 37.95 # gfw/density +# Ref WEP+82 + +TiCl3 + TiCl3 + 3.5 H2O + 0.25 O2 = Ti(OH)4 + 3 Cl- + 3 H+ + log_k 39.3099 +# deltafH -720.775 kJ/mol + -Vm 58.42 # gfw/density +# Ref WEP+82 + +TiN + TiN + 3.5 H2O + 0.25 O2 = NH3 + Ti(OH)4 + log_k 35.2344 +# deltafH -338.304 kJ/mol + -Vm 11.46 # gfw/density +# Ref WEP+82 + +Titanite + CaTiSiO5 + 2 H+ + H2O = Ca+2 + SiO2 + Ti(OH)4 + log_k 719.5839 +# deltafH 0 kcal/mol + -Vm 55.65 +# Ref RHF79 + +Tobermorite-11A + Ca5Si6H11O22.5 + 10 H+ = 5 Ca+2 + 6 SiO2 + 10.5 H2O + log_k 65.6121 + -delta_H -286.861 kJ/mol +# deltafH -2556.42 kcal/mol + -analytic 7.9123e1 3.9150e-2 2.9429e4 -3.9191e1 -2.4122e6 +# Range 0-300 + -Vm 286.81 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Tremolite + Ca2Mg5Si8O22(OH)2 + 14 H+ = 2 Ca+2 + 5 Mg+2 + 8 H2O + 8 SiO2 + log_k 61.2367 + -delta_H -406.404 kJ/mol +# deltafH -2944.04 kcal/mol + -analytic 8.5291e1 4.6337e-2 3.9465e4 -5.4414e1 -3.1913e6 +# Range 0-350 + -Vm 272.92 +# Extrapol supcrt92 +# Ref HDN+78 + +Trevorite + NiFe2O4 + 8 H+ = Ni+2 + 2 Fe+3 + 4 H2O + log_k 9.7876 + -delta_H -215.338 kJ/mol +# deltafH -1081.15 kJ/mol + -analytic -1.4322e2 -2.9429e-2 1.4518e4 4.5698e1 2.4658e2 +# Range 0-200 + -Vm 44.89 # Webmineral.com +# Extrapol Constant H approx +# Ref RHF79 + +Tridymite + SiO2 = SiO2 + log_k -3.8278 + -delta_H 31.3664 kJ/mol +# deltafH -909.065 kJ/mol + -analytic 3.1594e2 6.9315e-2 -1.1358e4 -1.2219e2 -1.9299e2 +# Range 0-200 + -Vm 26.12 # Webmineral.com +# Extrapol Constant H approx +# Ref WEP+82 + +Troilite + FeS + H+ = Fe+2 + HS- + log_k -3.8184 + -delta_H -7.3296 kJ/mol +# deltafH -101.036 kJ/mol + -analytic -1.6146e2 -5.3170e-2 4.0461e3 6.4620e1 6.3183e1 +# Range 0-300 + -Vm 19.07 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +U + U + 2 H+ + 1.5 O2 = H2O + UO2+2 + log_k 212.7800 + -delta_H -1286.64 kJ/mol +# deltafH 0 kJ/mol + -analytic -2.4912e2 -4.7104e-2 8.1115e4 8.7008e1 -1.0158e6 +# Range 0-300 + -Vm 12.49 # Webelements.com +# Extrapol Cp integration +# Ref CWM89 + +U2O2Cl5 + U2O2Cl5 = U+4 + UO2+ + 5 Cl- + log_k 19.2752 + -delta_H -254.325 kJ/mol +# deltafH -2197.4 kJ/mol + -analytic -4.3945e2 -1.6239e-1 2.1694e4 1.7551e2 3.3865e2 +# Range 0-300 + -Vm 142.48 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +U3S5 + U3S5 + 5 H+ = U+4 + 2 U+3 + 5 HS- + log_k -0.3680 + -delta_H -218.942 kJ/mol +# deltafH -1431 kJ/mol + -analytic -1.1011e2 -6.7959e-2 1.0369e4 3.8481e1 1.7611e2 +# Range 0-200 + -Vm 106.12 # gfw/density +# Extrapol Constant H approx +# Ref 92gre/fug + +UC + UC + 2 H+ + 1.75 O2 = 0.5 H2O + HCO3- + U+3 + log_k 194.8241 + -delta_H -1202.82 kJ/mol +# deltafH -97.9 kJ/mol + -analytic -4.6329e1 -4.4600e-2 6.1417e4 1.9566e1 9.5836e2 +# Range 0-300 + -Vm 18.34 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UCl3 + UCl3 = U+3 + 3 Cl- + log_k 13.0062 + -delta_H -126.639 kJ/mol +# deltafH -863.7 kJ/mol + -analytic -2.6388e2 -1.0241e-1 1.1629e4 1.0846e2 1.8155e2 +# Range 0-300 + -Vm 62.62 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UCl4 + UCl4 = U+4 + 4 Cl- + log_k 21.9769 + -delta_H -240.719 kJ/mol +# deltafH -1018.8 kJ/mol + -analytic -3.6881e2 -1.3618e-1 1.9685e4 1.4763e2 3.0727e2 +# Range 0-300 + -Vm 78.00 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UCl6 + UCl6 + 2 H2O = UO2+2 + 4 H+ + 6 Cl- + log_k 57.5888 + -delta_H -383.301 kJ/mol +# deltafH -1066.5 kJ/mol + -analytic -4.5589e2 -1.9203e-1 2.8029e4 1.9262e2 4.3750e2 +# Range 0-300 + -Vm 125.21 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UH3(beta) + UH3 + 3 H+ + 1.5 O2 = U+3 + 3 H2O + log_k 199.7683 + -delta_H -1201.43 kJ/mol +# deltafH -126.98 kJ/mol + -analytic 5.2870e1 4.2151e-3 6.0167e4 -2.2701e1 1.0217e3 +# Range 0-200 + -Vm 22.01 # gfw/density +# Extrapol Constant H approx +# Ref 92gre/fug + +UN + UN + 3 H+ = NH3 + U+3 + log_k 41.7130 + -delta_H -280.437 kJ/mol +# deltafH -290 kJ/mol + -analytic -1.6393e2 -1.1679e-3 2.8845e3 6.5637e1 3.0122e6 +# Range 0-300 + -Vm 45.85 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UO2(NO3)2 + UO2(NO3)2 = UO2+2 + 2 NO3- + log_k 11.9598 + -delta_H -81.6219 kJ/mol +# deltafH -1351 kJ/mol + -analytic -1.2216e1 -1.1261e-2 3.9895e3 5.7166 6.7751e1 +# Range 0-200 + -Vm 140.23 # gfw/density +# Extrapol Constant H approx +# Ref 92gre/fug + +UO2(NO3)2:6H2O + UO2(NO3)2:6H2O = UO2+2 + 2 NO3- + 6 H2O + log_k 2.3189 + -delta_H 19.8482 kJ/mol +# deltafH -3167.5 kJ/mol + -analytic -1.4019e2 -4.3682e-2 2.7842e3 5.9070e1 4.3486e1 +# Range 0-300 + -Vm 178.88 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 92gre/fug + +UO2(OH)2(beta) + UO2(OH)2 + 2 H+ = UO2+2 + 2 H2O + log_k 4.9457 + -delta_H -56.8767 kJ/mol +# deltafH -1533.8 kJ/mol + -analytic -1.7478e1 -1.6806e-3 3.4226e3 4.6260 5.3412e1 +# Range 0-300 + -Vm 51.31 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 92gre/fug + +UO2SO4 + UO2SO4 = SO4-2 + UO2+2 + log_k 1.9681 + -delta_H -83.4616 kJ/mol +# deltafH -1845.14 kJ/mol + -analytic -1.5677e2 -6.5310e-2 6.7411e3 6.2867e1 1.0523e2 +# Range 0-300 + -Vm 111.61 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UO2SO4:3H2O + UO2SO4:3H2O = SO4-2 + UO2+2 + 3 H2O + log_k -1.4028 + -delta_H -34.6176 kJ/mol +# deltafH -2751.5 kJ/mol + -analytic -5.0134e1 -1.0321e-2 3.0505e3 1.6799e1 5.1818e1 +# Range 0-200 + -Vm 108.34 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 92gre/fug + +UO3(beta) + UO3 + 2 H+ = H2O + UO2+2 + log_k 8.3095 + -delta_H -84.5383 kJ/mol +# deltafH -1220.3 kJ/mol + -analytic -1.2298e1 -1.7800e-3 4.5621e3 2.3593 7.1191e1 +# Range 0-300 + -Vm 34.46 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 92gre/fug + +Uraninite + UO2 + 4 H+ = U+4 + 2 H2O + log_k -4.8372 + -delta_H -77.8767 kJ/mol +# deltafH -1085 kJ/mol + -analytic -7.5776e1 -1.0558e-2 5.9677e3 2.1853e1 9.3142e1 +# Range 0-325 + -Vm 24.638 +# Extrapol Cp integration +# Ref CWM89, SSB97 match + +Vaesite + NiS2 + H2O = 0.25 H+ + 0.25 SO4-2 + Ni+2 + 1.75 HS- + log_k -26.7622 + -delta_H 110.443 kJ/mol +# deltafH -32.067 kcal/mol + -analytic 1.6172e1 -2.2673e-2 -8.2514e3 -3.4392 -1.4013e2 +# Range 0-200 + -Vm 27.697 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 78vau/cra + +Wollastonite + CaSiO3 + 2 H+ = Ca+2 + H2O + SiO2 + log_k 13.7605 + -delta_H -76.5756 kJ/mol +# deltafH -389.59 kcal/mol + -analytic 3.0931e1 6.7466e-3 5.1749e3 -1.3209e1 -3.4579e5 +# Range 0-350 + -Vm 39.93 +# Extrapol supcrt92 +# Ref HDN+78 + +Wurtzite + ZnS + H+ = HS- + Zn+2 + log_k -9.1406 + -delta_H 22.3426 kJ/mol +# deltafH -45.85 kcal/mol + -analytic -1.5446e2 -4.8874e-2 2.4551e3 6.1278e1 3.8355e1 +# Range 0-350 + -Vm 23.846 +# Extrapol supcrt92 +# Ref HDN+78 + +Wustite + Fe.947O + 2 H+ = 0.106 Fe+3 + 0.841 Fe+2 + H2O + log_k 12.4113 + -delta_H -102.417 kJ/mol +# deltafH -266.265 kJ/mol + -analytic -7.6919e1 -1.8433e-2 7.3823e3 2.8312e1 1.1522e2 +# Range 0-300 + -Vm 12.04 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Xonotlite + Ca6Si6O17(OH)2 + 12 H+ = 6 Ca+2 + 6 SiO2 + 7 H2O + log_k 91.8267 + -delta_H -495.457 kJ/mol +# deltafH -2397.25 kcal/mol + -analytic 1.6080e3 3.7309e-1 -2.2548e4 -6.2716e2 -3.8346e2 +# Range 0-200 + -Vm 264.81 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +Zincite + ZnO + 2 H+ = H2O + Zn+2 + log_k 11.2087 + -delta_H -88.7638 kJ/mol +# deltafH -350.46 kJ/mol + -analytic -8.6681e1 -1.9324e-2 7.1034e3 3.2256e1 1.1087e2 +# Range 0-350 + -Vm 14.338 +# Extrapol supcrt92, Cp integration +# Ref SSW+97, CWM89 match + +Zn + Zn + 2 H+ + 0.5 O2 = H2O + Zn+2 + log_k 68.8035 + -delta_H -433.157 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.4131e1 -2.0009e-2 2.3921e4 2.3702e1 3.7329e2 +# Range 0-300 + -Vm 9.162 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Zn(NO3)2:6H2O + Zn(NO3)2:6H2O = Zn+2 + 2 NO3- + 6 H2O + log_k 3.4102 + -delta_H 24.7577 kJ/mol +# deltafH -2306.8 kJ/mol + -analytic -1.7152e2 -1.6875e-2 5.6291e3 6.5094e1 9.5649e1 +# Range 0-200 + -Vm 144.06 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +Zn(OH)2(beta) + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.9341 + -delta_H -83.2111 kJ/mol +# deltafH -641.851 kJ/mol + -analytic -7.7810e1 -7.8548e-3 7.1994e3 2.7455e1 1.2228e2 +# Range 0-200 + -Vm 32.60 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +Zn(OH)2(epsilon) + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.6625 + -delta_H -81.7811 kJ/mol +# deltafH -643.281 kJ/mol + -analytic -7.7938e1 -7.8767e-3 7.1282e3 2.7496e1 1.2107e2 +# Range 0-200 + -Vm 32.60 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +Zn2SiO4 + Zn2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Zn+2 + log_k 13.8695 + -delta_H -119.399 kJ/mol +# deltafH -1636.75 kJ/mol + -analytic 2.0970e2 5.3663e-2 -1.2724e2 -8.5445e1 -2.2336 +# Range 0-200 + -Vm 55.03 # Webmineral.com +# Extrapol Constant H approx +# Ref WEP+82 + +ZnCl2 + ZnCl2 = Zn+2 + 2 Cl- + log_k 7.0880 + -delta_H -72.4548 kJ/mol +# deltafH -415.09 kJ/mol + -analytic -1.6157e1 -2.5405e-2 2.6505e3 8.8584 4.5015e1 +# Range 0-200 + -Vm 46.84 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +ZnCr2O4 + ZnCr2O4 + 8 H+ = Zn+2 + 2 Cr+3 + 4 H2O + log_k 7.9161 + -delta_H -221.953 kJ/mol +# deltafH -370.88 kcal/mol + -analytic -1.7603e2 -1.0217e-2 1.7414e4 5.1966e1 2.9577e2 +# Range 0-200 + -Vm 44.03 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 76del/hal + +ZnSO4 + ZnSO4 = SO4-2 + Zn+2 + log_k 3.5452 + -delta_H -80.132 kJ/mol +# deltafH -982.855 kJ/mol + -analytic 6.9905 -1.8046e-2 2.2566e3 -2.2819 3.8318e1 +# Range 0-200 + -Vm 45.61 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +ZnSO4:6H2O + ZnSO4:6H2O = SO4-2 + Zn+2 + 6 H2O + log_k -1.6846 + -delta_H -0.412008 kJ/mol +# deltafH -2777.61 kJ/mol + -analytic -1.4506e2 -1.8736e-2 5.2179e3 5.3121e1 8.8657e1 +# Range 0-200 + -Vm 130.08 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +Zoisite + Ca2Al3(SiO4)3OH + 13 H+ = 2 Ca+2 + 3 Al+3 + 3 SiO2 + 7 H2O + log_k 43.3017 + -delta_H -458.131 kJ/mol +# deltafH -1643.69 kcal/mol + -analytic 2.5321 -3.5886e-2 1.9902e4 -6.2443 3.1055e2 +# Range 0-350 + -Vm 135.9 +# Extrapol supcrt92 +# Ref HDN+78 differ by 2.5 log K at 0C, 0.6 log K at 350C + +#--------------------------- +# carbfix.dat additions and changes +#--------------------------- + +Ankerite + CaFe(CO3)2 = Ca+2 + Fe+2 + 2 CO3-2 + log_k -20.8732 # HP11 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic 6743.140988642074 2.3089611210263445 -252723.63251182728 -2681.493160205648 9.661065201605685e6 -0.0008807525923414785 # HP11 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 66.060 # HP11 + +Dolomite + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + log_k -17.5755 # carbfix.dat + -analytic 29.3854 -0.08464 -6474.23 0 0 0 # carbfix.dat + -Vm 64.365 # core10.dat + +Siderite #M 115.856 + FeCO3 = Fe+2 + CO3-2 + log_k -11.0441 # carbfix.dat + -analytic 349.4317054926304 0.03628114046578195 -13573.811090861998 -131.65143185871804 0 0 # carbfix.dat + -Vm 29.378 # core10.dat + +Vaterite + CaCO3 = Ca+2 + CO3-2 + log_k -7.913 # PB82 + -analytic -172.1295 -0.077993 3074.688 71.595 # PB82 + -Vm 37.628 # Webmineral + +Chamosite + Fe5Al2Si3O10(OH)8 + 16 H+ = 3 SiO2 + 2 Al+3 + 5 Fe+2 + 12 H2O + log_k 51.0989 # Wilson+06 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2261.8191086219654 -0.05624157931775312 177907.89284663578 751.8600225754568 -1.0016051707895715e7 -0.00016619114943726155 # Wilson+06 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 213.42 # Wilson+06 + +Ferroactinolite + Ca2Fe5Si8O24H2 + 14 H+ = 8 H2O + 2 Ca++ + 5 Fe++ + 8 SiO2 + log_k 53.8577 # HP11 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -6166.998542330102 -1.037219798091501 365861.8176639852 2233.6116457595454 -2.0884200268246245e7 0.00012380655710718727 # HP11 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 284.20 # HP11 + +Analcime + Na0.96Al0.96Si2.04O6:1H2O + 3.84 H+ = 0.96 Al+3 + 2.04 SiO2 + 0.96 Na+ + 2.92 H2O + log_k 6.46778 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -1607.397164637225 -0.20244882417823173 100724.95781836317 567.7196058320366 -6.033769323248515e6 -5.813879879598253e-6 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 97.43 # Neu00 + +Chabazite-Ca + CaAl2Si4O12:6H2O + 8 H+ = 2 Al+3 + Ca+2 + 4 SiO2 + 10 H2O + log_k 14.7771 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -3008.8025156663593 -0.3755910460310381 188997.49544842725 1062.7947084349842 -1.1188005391588064e7 -0.00002583123991650134 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 247.45 # Neu00 + +Chabazite-Na + Na2Al2Si4O12:6H2O + 8 H+ = 2 Al+3 + 2 Na+ + 4 SiO2 + 10 H2O + log_k 16.9077 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -3186.8278093507747 -0.418380143168157 196138.93487499916 1132.2901846509246 -1.157949755113691e7 -0.000010048464434853268 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 247.45 # Neu00 + +Clinoptilolite-Ca + Ca1.5Al3Si15O36:12H2O + 12 H+ = 3 Al+3 + 1.5 Ca+2 + 15 SiO2 + 18 H2O + log_k -6.46186 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -9671.715446207168 -1.2994995558734899 586051.6056233725 3435.4387233980556 -3.6938991496076465e7 0.000020765835897886403 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 628.14 # Neu00 + +Clinoptilolite-Na + Na3Al3Si15O36:10H2O + 12 H+ = 3 Al+3 + 3 Na+ + 15 SiO2 + 16 H2O + log_k -9.10501 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -9935.986589349232 -1.3651421045919674 595717.5272789554 3537.941435564227 -3.7574827008609205e7 0.00004659640445273473 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 628.14 # Neu00 + +Heulandite-Ca + CaAl2Si7O18:6H2O + 8 H+ = 2 Al+3 + Ca+2 + 7 SiO2 + 10 H2O + log_k 3.436 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -4716.20373811867 -0.6097204104617631 290361.2230601926 1669.4918855360143 -1.8033731828280084e7 -7.066268784616783e-6 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 319.27 # Neu00 + +Heulandite-Na + Na2Al2Si7O18:5H2O + 8 H+ = 2 Al+3 + 2 Na+ + 7 SiO2 + 9 H2O + log_k 6.5703 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -4893.663438946976 -0.6527198597381667 298513.6715970333 1737.9764230580004 -1.846214573574453e7 9.017353510490205e-6 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 314.27 # Neu00 + +Laumontite + CaAl2Si4O12:4.5H2O + 8 H+ = 2 Al+3 + 4 SiO2 + 1 Ca+2 + 8.5 H2O + log_k 14.7774 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2953.1864248185643 -0.3460678860757567 189179.5402824526 1037.3497867115404 -1.133807260140713e7 -0.000030091905800782725 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 209.68 # Neu00 + +Leonhardite + CaAl2Si4O12:3.5H2O + 8 H+ = 2 Al+3 + 4 SiO2 + 1 Ca+2 + 7.5 H2O + log_k 14.8743 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2952.1293972721705 -0.34742048679718 189640.4641323959 1036.5589592559031 -1.1353314773495251e7 -0.00002980389895752243 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 204.6 # Neu00 + +Mesolite + Ca0.667Na0.666Al2Si3O10:2.667H2O + 8 H+ = 2 Al+3 + 0.667 Ca+2 + 3 SiO2 + 0.666Na+ + 6.667 H2O + log_k 17.4218 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2514.705149002807 -0.29384113565312087 161655.70641411358 883.4921843216846 -9.406741691291668e6 -0.00003131384483046101 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 171.60 # Neu00 + +Mordenite-Ca + Ca0.5AlSi5O12:4H2O + 4 H+ = 1 Al+3 + 0.5 Ca+2 + 5 SiO2 + 6 H2O + log_k -7.0717 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -3209.8424385413937 -0.42341047224966527 194516.0226403748 1137.819893904924 -1.2397691837671977e7 6.8216657981027104e-6 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 208.74 # Neu00 + +Mordenite-Na + NaAlSi5O12:3H2O + 4 H+ = 1 Al+3 + 1 Na+ + 5 SiO2 + 5 H2O + log_k -1.64368 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -3304.0194429277494 -0.44813101451196 199814.8259786772 1174.547352199426 -1.2617592209620891e7 0.00001579003538196579 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 208.74 # Neu00 + +Natrolite + Na2Al2Si3O10:2H2O + 8 H+ = 2 Al+3 + 3 SiO2 + 2 Na+ + 6 H2O + log_k 19.1579 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2597.197018319145 -0.31602003400891093 165224.20445157515 915.9259126075954 -9.615658410718244e6 -0.000020437594207700833 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 169.22 # Neu00 + +Scolecite + CaAl2Si3O10:3H2O + 8 H+ = 2 Al+3 + Ca+2 + 3 SiO2 + 7 H2O + log_k 16.5484 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2472.9848254242747 -0.282577973571597 159852.11641836836 867.0866007988283 -9.301702517122421e6 -0.00003682208544087395 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 172.29 # Neu00 + +Stilbite-Ca + CaAl2Si7O18:7H2O + 8 H+ = 2 Al+3 + Ca+2 + 7 SiO2 + 11 H2O + log_k 3.25107 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -4700.580605084462 -0.6041316785312421 289527.09790938033 1663.141867840657 -1.795058537490787e7 -5.933631409739997e-6 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 333.48 # Neu00 + +Thomsonite + Ca2NaAl5Si5O20:6H2O + 20 H+ = 5 Al+3 + 2 Ca+2 + 5 SiO2 + Na+ + 16 H2O + log_k 53.2914 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -4574.622243877597 -0.4696926814639755 308149.84600719286 1591.2127911035302 -1.7223826926743384e7 -0.00010328397531931611 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 338.10 # Neu00 + +Wairakite + CaAl2Si4O12:2H2O + 8 H+ = 2 Al+3 + 4 SiO2 + 1 Ca+2 + 6 H2O + log_k 18.7266 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -3019.9452775460704 -0.35597487369231395 196047.2234609314 1059.0051267650902 -1.159849076955757e7 -0.000030402580312874294 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 190.35 # Neu00 + +Yugawaralite + CaAl2Si6O16:4H2O + 8 H+ = 2 Al+3 + 6 SiO2 + 1 Ca+2 + 8 H2O + log_k 7.98228 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -4107.23434950416 -0.5135363017836825 257073.67049534645 1449.0996243850718 -1.5841096694718203e7 -0.000015762141005939227 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 265.79 # Neu00 + +#---------- +# 15 gases +#---------- + +C2H4(g) + C2H4 = C2H4 + log_k -2.323631 + -delta_H -3.930 kcal/mol + -analytic -14.5616 0.0176 2192.2 0 0 -3.8657e-6 +# Range 0-350 + -T_c 283 # K + -P_c 50.53 + -Omega 0.085 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref Sho93 + +C2H6(g) + C2H6 = C2H6 + log_k -2.93276 + -delta_H -4.509 kcal/mol + -analytic -23.1154 0.0354 3289.1 0 0 -1.5637e-5 +# Range 0-350 + -T_c 305 # K + -P_c 48.16 + -Omega 0.100 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref HOK+98 + +C3H8(g) + C3H8 = C3H8 + log_k -2.876 + -analytic 1.885 -2.55e-2 0 0 0 3.20e-5 # Not the best +# Range 0-350 + -T_c 369.522 # K + -P_c 42.4924 + -Omega 0.152 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref HOK+98 + +CH4(g) + CH4 = CH4 + log_k -2.8502 + -delta_H -13.0959 kJ/mol +# deltafH -17.88 kcal/mol + -analytic -24.027 4.7146e-3 372.27 6.4264 2.3362e5 +# Range 0-350 + -T_c 190.6 # K + -P_c 45.40 + -Omega 0.008 # phreeqc.dat +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +CO(g) + CO = CO + log_k -3.0068 + -delta_H -10.4349 kJ/mol +# deltafH -26.416 kcal/mol + -analytic -8.0849 9.2114e-3 0 0 2.0813e5 +# Range 0-350 + -T_c 133 # K + -P_c 34.54 + -Omega 0.049 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref Sho93 + +CO2(g) + CO2 + H2O = H+ + HCO3- + log_k -7.8136 + -delta_H -10.5855 kJ/mol +# deltafH -94.051 kcal/mol + -analytic -8.5938e1 -3.0431e-2 2.0702e3 3.2427e1 3.2328e1 +# Range 0-350 + -T_c 304.25 # K + -P_c 72.83 # atm, 7.38 MPa, http://webbook.nist.gov/cgi/cbook.cgi?ID=C124389&Units=SI&Mask=4#Thermo-Phase + -Omega 0.225 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +H2(g) + H2 = H2 + log_k -3.1050 + -delta_H -4.184 kJ/mol +# deltafH 0 kcal/mol + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 +# Range 0-350 + -T_c 33.2 # K + -P_c 12.80 + -Omega 0.225 # phreeqc.dat +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +H2O(g) # HP98 + H2O = 1.000 H2O + -log_k 1.5108 + -analytic -1.4782e1 1.0752e-3 2.7519e3 2.7548 4.2945e1 + -T_c 647.3 + -P_c 220.9 + -Omega 0.344 + +H2S(g) + H2S = H+ + HS- + log_k -7.9759 + -delta_H 4.5229 kJ/mol +# deltafH -4.931 kcal/mol + -analytic -97.354 -3.1576e-2 1.8285e3 37.44 28.56 +# Range 0-350 + -T_c 373.2 # K + -P_c 88.20 + -Omega 0.1 +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +N2(g) + N2 = N2 + log_k -3.1864 + -delta_H -10.4391 kJ/mol +# deltafH 0 kcal/mol + -analytic -58.453 1.818e-3 3199 17.909 -27460 # phreeqc.dat +# Range 0-350 + -T_c 126.2 # K + -P_c 33.50 + -Omega 0.039 +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +NH3(g) + NH3 = NH3 + log_k 1.7966 + -delta_H -35.2251 kJ/mol +# deltafH -11.021 kcal/mol + -analytic -18.758 3.3670e-4 2.5113e3 4.8619 39.192 +# Range 0-350 + -T_c 405.6 # K + -P_c 111.3 + -Omega 0.25 +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +NO(g) + NO + 0.5 H2O + 0.25 O2 = H+ + NO2- + log_k 0.7554 + -delta_H -48.8884 kJ/mol +# deltafH 90.241 kJ/mol + -analytic 8.2147 -1.2708e-1 -6.0593e3 2.0504e1 -9.4551e1 +# Range 0-300 + -T_c 180 # K + -P_c 64.64 + -Omega 0.607 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92, Cp integration +# Ref AS01, WEP+82 differ by 0.2 log K at 0C, 17 log K at 350C !! flag + +NO2(g) + NO2 + 0.5 H2O + 0.25 O2 = H+ + NO3- + log_k 8.3673 + -delta_H -94.0124 kJ/mol +# deltafH 33.154 kJ/mol + -analytic 9.4389e1 -2.7511e-1 -1.6783e4 2.1127e1 -2.6191e2 +# Range 0-300 + -T_c 431 # K + -P_c 99.67 + -Omega 0 # Not found +# Extrapol Cp integration +# Ref WEP+82 + +O2(g) + O2 = O2 + log_k -2.8983 + -delta_H -12.1336 kJ/mol +# deltafH 0 kcal/mol + -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 +# Range 0-300 + -T_c 154.6 # K phreeqc.dat + -P_c 49.80 # phreeqc.dat + -Omega 0.021 # phreeqc.dat +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +SO2(g) + SO2 = SO2 + log_k 0.1700 + -delta_H 0 +# deltafH 0 kcal/mol + -analytic -2.0205e1 2.8861e-3 1.4862e3 5.2958 1.2721e5 +# Range 0-300 + -T_c 430 # K + -P_c 77.67 + -Omega 0.251 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +#---------- +# Additional phases added for the purpose of the kinetics +#---------- + +#Basaltic glass leached layer solubility - calculated from a stoichiometric mixture of amorphous SiO2 and Al(OH)3 in this database. +#NOTE: The analytical expression was calculated assuming a constant Cp for Al(OH)3(am), so that significant systematic errors occur at high temperatures! +Glass_Basalt_leached_layer + Si1.00Al0.35O2(OH)1.05 + 0.35 OH- = 0.35 Al(OH)4- + SiO2 + log_k -2.36449 + -analytic 77.82514814711445 0.032450265390183614 -1502.5932036570116 -33.02705435543141 -216815.051931841 -7.454186812457974e-6 + +#Rhyolite glass leached layer solubility - calculated from a stoichiometric mixture of amorphous SiO2 and Al(OH)3 in this database. +#NOTE: The analytical expression was calculated assuming a constant Cp for Al(OH)3(am), so that significant systematic errors occur at high temperatures! +Glass_Rhyolite_leached_layer +Si1.00Al0.23O2(OH)0.69 + 0.23 OH- = 0.23 Al(OH)4- + SiO2 + log_k -2.49416 + -analytic 5.1557406e+01 2.3750757e-02 -1.7710982e+02 -2.2884601e+01 -3.0907618e+05 -4.8984656e-06 + +#---------- +# Additional phases +##Non-silicate minerals including carbonate, sulfide, phosphate, halide, and oxy-hydroxide minerals#### +# 16 added solids +# The thermodynmaic propeties are from the llnl.data database expet for Gaspite +#------------ + + +Anglesite + PbSO4 = + Pb+2 + SO4-2 + log_k -7.8527 + -delta_H 11.255 kJ/mol # Calculated enthalpy of reaction Anglesite +# Enthalpy of formation: -219.87 kcal/mol + -analytic -1.8583e+002 -7.3849e-002 2.8528e+003 7.6936e+001 4.4570e+001 + -Vm 47.950 #https://thermoddem.brgm.fr/ +# -Range: 0-300 + +Barite + BaSO4 = + Ba++ + SO4-2 + log_k -9.9711 + -delta_H 25.9408 kJ/mol # Calculated enthalpy of reaction Barite +# Enthalpy of formation: -352.1 kcal/mol + -analytic -1.8747e+002 -7.5521e-002 2.0790e+003 7.7998e+001 3.2497e+001 + -Vm 52.1 #https://thermoddem.brgm.fr/ +# -Range: 0-300 + +Celestite + SrSO4 = + SO4-2 + Sr+2 + log_k -5.6771 + -delta_H -7.40568 kJ/mol # Calculated enthalpy of reaction Celestite +# Enthalpy of formation: -347.3 kcal/mol + -analytic -1.9063e+002 -7.4552e-002 3.9050e+003 7.8416e+001 6.0991e+001 + -Vm 46.25 #https://thermoddem.brgm.fr/ +# -Range: 0-300 + +Cerussite + PbCO3 + H+ = + HCO3- + Pb+2 + log_k -3.2091 + -delta_H 13.8992 kJ/mol # Calculated enthalpy of reaction Cerussite +# Enthalpy of formation: -168 kcal/mol + -analytic -1.2887e+002 -4.4372e-002 2.2336e+003 5.3091e+001 3.4891e+001 +# -Range: 0-300 + +Fluorapatite + Ca5(PO4)3F +3.0 H+ = + F- + 3.0 HPO4-2 + 5.0 Ca++ + log_k -24.9940 + -delta_H -90.8915 kJ/mol # Calculated enthalpy of reaction Fluorapatite +# Enthalpy of formation: -6836.12 kJ/mol + -analytic -9.3648e+002 -3.2688e-001 2.4398e+004 3.7461e+002 3.8098e+002 + -Vm 157.56 #https://thermoddem.brgm.fr/ +# -Range: 0-300 + +Fluorite + CaF2 = + Ca++ + 2.0 F- + log_k -10.0370 + -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction Fluorite +# Enthalpy of formation: -293 kcal/mol + -analytic -2.5036e+002 -8.4183e-002 4.9525e+003 1.0054e+002 7.7353e+001 + -Vm 24.542 #https://thermoddem.brgm.fr/ +# -Range: 0-300 + +Gaspite # M 118.702 https://thermoddem.brgm.fr/ +NiCO3 + H+ = HCO3- + Ni+2 + log_k -0.74 + -analytic -909.497277 -0.146985 50789.653398 329.221149 -2880194.459776 + -Vm 26.978 #https://thermoddem.brgm.fr/ +# -Range: 0-300 + +Otavite + CdCO3 + H+ = + Cd++ + HCO3- + log_k -1.7712 + -delta_H 0 # Not possible to calculate enthalpy of reaction Otavite +# Enthalpy of formation: 0 kcal/mol + +Pyromorphite + Pb5(PO4)3Cl +3.0 H+ = + Cl- + 3.0 HPO4-2 + 5.0 Pb+2 + log_k -47.8954 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite +# Enthalpy of formation: 0 kcal/mol + +Pyromorphite-OH + Pb5(OH)(PO4)3 +4.0 H+ = + H2O + 3.0 HPO4-2 + 5.0 Pb+2 + log_k -26.2653 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite-OH + -Vm 188.40 #https://thermoddem.brgm.fr/ +# Enthalpy of formation: 0 kcal/mol + +Rhodochrosite + MnCO3 + H+ = + HCO3- + Mn+2 + log_k -0.1928 + -delta_H -21.3426 kJ/mol # Calculated enthalpy of reaction Rhodochrosite +# Enthalpy of formation: -212.521 kcal/mol + -analytic -1.6195e+002 -4.9344e-002 5.0937e+003 6.4402e+001 7.9531e+001 + -Vm 31.075 #https://thermoddem.brgm.fr/ +# -Range: 0-300 + +Smithsonite + ZnCO3 + H+ = + HCO3- + Zn+2 + log_k 0.4633 + -delta_H -30.5348 kJ/mol # Calculated enthalpy of reaction Smithsonite +# Enthalpy of formation: -194.26 kcal/mol + -analytic -1.6452e+002 -5.0231e-002 5.5925e+003 6.5139e+001 8.7314e+001 +# -Range: 0-300 + + +Strontianite + SrCO3 + H+ = + HCO3- + Sr+2 + log_k -0.3137 + -delta_H -8.23411 kJ/mol # Calculated enthalpy of reaction Strontianite +# Enthalpy of formation: -294.6 kcal/mol + -analytic -1.3577e+002 -4.4884e-002 3.5729e+003 5.5296e+001 5.5791e+001 +# -Range: 0-300 + +Witherite + BaCO3 + H+ = + Ba+2 + HCO3- + log_k -2.9965 + -delta_H 17.1628 kJ/mol # Calculated enthalpy of reaction Witherite +# Enthalpy of formation: -297.5 kcal/mol + -analytic -1.2585e+002 -4.4315e-002 2.0227e+003 5.2239e+001 3.1600e+001 +# -Range: 0-300 + +# A.P. Gysi et al. / Geochimica et Cosmochimica Acta 242 (2018) 143–164 +Monazite-Ce # M 235.087 g/mol + CePO4 + H+ = Ce+3 + HPO4-2 + log_k -18.12 + -analytic 0.968 0.0474 4.384E+03 + +Variscite # M 157.983 #https://thermoddem.brgm.fr/ + AlPO4:2H2O + 2H+ = Al+3 + H2PO4- + 2 H2O + log_k -2.16 + -analytic -1069.095997 -0.173224 59751.042067 386.011849 -3287463.862916 + -Vm 61.953 + +## +Illite + K0.6Mg0.25Al1.8Al0.5Si3.5O10(OH)2 +8.0000 H+ = + 0.2500 Mg++ + 0.6000 K+ + 2.3000 Al+++ + 3.5000 SiO2 + 5.0000 H2O + log_k 9.0260 + -delta_H -171.764 kJ/mol # Calculated enthalpy of reaction Illite +# Enthalpy of formation: -1394.71 kcal/mol + -analytic 2.6069e+001 -1.2553e-003 1.3670e+004 -2.0232e+001 -1.1204e+006 +# -Range: 0-300 + + + +#---------- +# List of the RATE blocks (details in Hermanska et al. 2022, 2023) +#---------- + + +RATES + +Albite #NaAlSi3O8; M 262.219 g/mol +-start +1 name$ = "Albite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.7 #mol.m-2.s-1 +1001 An = 2.05e-1 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.3 +1010 nb = -0.3 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Albite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Albite_high #NaAlSi3O8; M 262.219 g/mol +-start +1 name$ = "Albite_high" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.7 #mol.m-2.s-1 +1001 An = 2.05e-1 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.3 +1010 nb = -0.3 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Albite_high")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Albite_low #NaAlSi3O8; M 262.219 g/mol +-start +1 name$ = "Albite_low" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.7 #mol.m-2.s-1 +1001 An = 2.05e-1 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.3 +1010 nb = -0.3 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Albite_low")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Almandine#Fe3Al2(SiO4)3, M 500.4 g/mol +-start +1 name$ = "Almandine" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.0e5#mol/m2/s +1001 An = 2.31e-4#mol/m2/s +1002 Ab = 6.0e-8#mol/m2/s +1003 na = 1 +1004 nb = -0.4 +1005 Ea = 60000 +1006 En = 43200 +1007 Eb = 42300 +1008 R = 8.314 #J.deg-1.mol-1 +1009 ACTI = act("H+") +10010 Sig = 3 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Almandine")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Analcime#Na0.96Al0.96Si2.04O6:1H2O; 219.27 g/mol +-start +1 name$ = "Analcime" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 5.0e7#mol.m-2.s-1 +1001 An = 1.0e-1 #mol.m-2.s-1 +1002 Ab = 7.5e-5 #mol.m-2.s-1 +1003 Ea = 63000 #J.mol-1 +1004 En = 58500 #J.mol-1 +1005 Eb = 58000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 1 +1010 nb = -0.4 +1011 Sig = 2.04 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Analcime")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + + +Andalusite#Al2SiO5, M 162.9 g/mol +-start +1 name$ = "Andalusite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.39#mol/m2/s +1001 An = 8.0e-3#mol/m2/s +1002 Ab = 8.8e-15#mol/m2/s +1003 na = 0.15 +1004 nb = -1.2 +1005 Ea = 58000 +1006 En = 60000 +1007 Eb = 50000 +1008 R = 8.314 #J.deg-1.mol-1 +1009 ACTI = act("H+") +1001 Sig = 1 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusn = An* (exp(-En/ (R * Tk)))* S +2004 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Andalusite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + +Andesine_ss#Ca0.4Na0.6Al1.4Si2.6O8 , M 268.613 g/mol +-start +1 name$ = "Andesine_ss" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 268.613 else S = m0 * ((m/m0)^(2/3)) * 268.613 * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +10 SR_Andesine=(SR ("Albite")*0.6)*(SR ("Anorthite")*0.4) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Andesine < 1) Then GoTo 5000 # warning no dissolution reaction +200 If (SR_Andesine > 1) Then GoTo 5000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 146.75#mol.m-2.s-1 +1001 An = 0.19 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.67 +1010 nb = -0.35 +1011 Sig = 2.6 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR_Andesine^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Andradite#Ca3Fe2(SiO4)3, M 510.9 g/mol +-start +1 name$ = "Andradite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.6e5#mol/m2/s +1001 An = 3.2e-4#mol/m2/s +1003 na = 1 +1005 Ea = 60000 +1006 En = 43200 +1008 R = 8.314 #J.deg-1.mol-1 +1009 ACTI = act("H+") +10010 Sig = 3 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusn = An* (exp(-En/ (R * Tk)))* S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Andradite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + + +Annite #KFe3AlSi3O10(OH)2; M 511.85 g/mol +-start +1 name$ = "Annite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.90e-7 #mol.m-2.s-1 +1001 An = 5e-9 #mol.m-2.s-1 +1002 Ab = 4e-10 #mol.m-2.s-1 +1003 Ea = 18200 #J.mol-1 +1004 En = 22000 #J.mol-1 +1005 Eb = 25500 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.5 +1009 nb = -0.16 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Annite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Anorthite #CaAl2Si2O8; M 278.204 g/mol +-start +1 name$ = "Anorthite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3))* GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 9.82e4 #mol.m-2.s-1 +1001 An = 1.5E-1 #mol.m-2.s-1 +1002 Ab = 1.5E-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 1.22 +1010 nb = -0.35 +1011 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Anorthite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Anthophyllite #Mg7Si8O22(OH)2, M 780.807 g/mol +-start +1 name$ = "Anthophyllite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.7e-4 #mol.m-2.s-1 +1001 An = 5.0e-6 #mol.m-2.s-1 +1002 Ea = 52000 #J.mol-1 +1003 En = 48000 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 n = 0.42 +1006 Sig = 8 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^n )* S +2001 rplusn = An* (exp(-En/ (R * Tk)))* S +2010 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR ("Anthophyllite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Antigorite #Mg3Si2O5(OH4); M 277 g/mol +-start +1 name$ = "Antigorite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +#------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.8e-6 #mol.m-2.s-1 +1001 An = 2.0e-8 #mol.m-2.s-1 +1003 Ea = 27000 #J.mol-1 +1004 En = 27000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.25 +1011 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Antigorite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + +Augite_ss#Mg0.45Fe0.275Ca0.275SiO3;M 113.4 g/mol +-start + 2 if (PARM(1) = 0) then goto 3 else goto 5 + 3 if PARM(3) = 0 then S = PARM(2) * m * 113.4 else S = m0 * ((m/m0)^(2/3)) * 113.4 * PARM(2) + 4 GOTO 1000 + 5 S = PARM(2)*TOT("water") + 10 SR_Augite=(SR ("Wollastonite")*0.45)*(SR ("Ferrosilite")*0.275)*(SR ("Enstatite")*0.275) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Augite < 1) Then GoTo 5000 # warning no dissolution reaction +200 If (SR_Augite > 1) Then GoTo 5000 # warning no precipitation reaction +#------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =1.52e6 +1001 An =350 +1002 Ea =81834 +1003 En =83000 +1004 R = 8.314 +1006 Sig = 1 +1007 na =0.7 +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR_Augite^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Beidellite-Ca#Ca.175Al2.35Si3.65O10(OH)2; M 366.9 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Beidellite-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +#------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Beidellite-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Beidellite-Fe# Fe.175Al2.35Si3.65O10(OH)2 369.7 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Beidellite-Fe" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Beidellite-Fe")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Beidellite-K# K.35Al2.35Si3.65O10(OH)2; M 373.6 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Beidellite-K" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Beidellite-K")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Beidellite-Mg# Mg.175Al2.35Si3.65O10(OH)2; M 364.2 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Beidellite-Mg" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Beidellite-Mg")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Beidellite-Na# Na.35Al2.35Si3.65O10(OH)2 ; M 368.0 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Beidellite-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Beidellite-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + +Biotite_ss #KFe1.5Mg1.5AlSi3O10(OH)2; M 464.564 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 464.564 else S = m0 * ((m/m0)^(2/3)) * 464.564 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 SR_Biotite=(SR ("Annite")*0.5)*(SR ("Phlogopite")*0.5) + +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Biotite < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Biotite > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.90e-7 #mol.m-2.s-1 +1001 An = 5e-9 #mol.m-2.s-1 +1002 Ab = 4e-10 #mol.m-2.s-1 +1003 Ea = 18200 #J.mol-1 +1004 En = 22000 #J.mol-1 +1005 Eb = 25500 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.5 +1009 nb = -0.16 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR_Biotite^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Bronzite_ss#Mg0.77Fe0.23SiO3, M 107.6 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 107.6 else S = m0 * ((m/m0)^(2/3)) * 107.6 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 SR_Bronzite=(SR ("Enstatite")*0.77)*(SR ("Ferrosilite")*0.23) + +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Bronzite < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Bronzite > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 9.5e-4# mol.m-2.s-1 +1001 An = 7.6e-1# mol.m-2.s-1 +1002 Ea = 38548# J/mol +1003 En = 66100# J/mol +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1011 Sig = 1 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR_Bronzite^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Bytownite_ss#Ca0.77Na0.23Al1.77Si2.23O8, M 243.67 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 243.67 else S = m0 * ((m/m0)^(2/3)) * 243.67 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 SR_Bytownite=(SR ("Albite")*0.23)*(SR ("Anorthite")*0.77) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Bytownite < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Bytownite > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 18838.52 #mol.m-2.s-1 +1001 An = 0.17 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 1.105 +1010 nb = -0.35 +1011 Sig = 2.23 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR_Bytownite^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Chabazite-Ca# CaAl2Si4O12:6H2O +-start +1 name$ = "Chabazite-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.221 #mol.m-2.s-1 +1001 An = 1.56e-4 #mol.m-2.s-1 +1002 Ab = 4.94e-5 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Chabazite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Chabazite-Na# Na2Al2Si4O12:6H2O +-start +1 name$ = "Chabazite-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.221 #mol.m-2.s-1 +1001 An = 1.56e-4 #mol.m-2.s-1 +1002 Ab = 4.94e-5 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Chabazite-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Chalcedony# SiO2 M 60.08 g/mol #listed as Amorphous SiO2 in DB part 1 +-start +1 name$ = "Chalcedony" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 4.563e-4#mol/m2/s +1001 Ab = 0.0353#mol/m2/s +1002 na = 0.309 +1003 nb = -0.41 +1004 Ea = 41610 +1005 Eb = 73000 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1009 Sig = 1 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Chalcedony")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Chrysotile # Mg3Si2O5(OH4); M 278.9 g/mol +-start +1 name$ = "Chrysotile" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.8e-6 #mol.m-2.s-1 +1001 An = 2.0e-8 #mol.m-2.s-1 +1003 Ea = 27000 #J.mol-1 +1004 En = 27000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.25 +1011 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Chrysotile")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Chamosite# Fe5Al(AlSi3O10)(OH)8; M 713.44 g/mol +-start +1 name$ = "Chamosite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.5e-4 #mol.m-2.s-1 +1001 An = 4.7e-11 #mol.m-2.s-1 +1002 Ab = 2.0e-12 #mol.m-2.s-1 +1003 Ea = 30000 #J.mol-1 +1004 En = 15000 #J.mol-1 +1005 Eb = 15000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 nA = 0.74 +1009 nb = -0.19 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^nA * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Chamosite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + +Clinochlore-14A#Mg5Al(AlSi3O10)(OH)8; M 555.79 g/mol +-start +1 name$ = "Clinochlore-14A" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.5e-4 #mol.m-2.s-1 +1001 An = 4.7e-11 #mol.m-2.s-1 +1002 Ab = 2.0e-12 #mol.m-2.s-1 +1003 Ea = 30000 #J.mol-1 +1004 En = 15000 #J.mol-1 +1005 Eb = 15000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 nA = 0.74 +1009 nb = -0.19 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^nA * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Clinochlore-14A")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Clinochlore-7A# Mg5Al(AlSi3O10)(OH)8; M 555.79 g/mol +-start +1 name$ = "Clinochlore-7A" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.5e-4 #mol.m-2.s-1 +1001 An = 4.7e-11 #mol.m-2.s-1 +1002 Ab = 2.0e-12 #mol.m-2.s-1 +1003 Ea = 30000 #J.mol-1 +1004 En = 15000 #J.mol-1 +1005 Eb = 15000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 nA = 0.74 +1009 nb = -0.19 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^nA * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Clinochlore-7A")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Clinoptilolite-Ca# Ca1.5Al3Si15O36:12H2O +-start +1 name$ = "Clinoptilolite-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 15 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR ("Clinoptilolite-Ca") +/Sig)) +4000 moles = rate * time +5000 save moles +-end + +Clinoptilolite-Na# Na3Al3Si15O36:10H2O +-start +1 name$ = "Clinoptilolite-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 15 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Clinoptilolite-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Cristobalite(alpha)#SiO2; M 60.08 g/mol +-start +1 name$ = "Cristobalite(alpha)" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 4.03e-4#mol/m2/s +1001 Ab = 0.105#mol/m2/s +1002 na = 0.309 +1003 nb = -0.41 +1004 Ea = 45600 +1005 Eb = 80000 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1009 Sig = 1 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Cristobalite(alpha)")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Cristobalite(beta)#SiO2, M 60.08 g/mol +-start +1 name$ = "Cristobalite(beta)" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 4.03e-4#mol/m2/s +1001 Ab = 0.105#mol/m2/s +1002 na = 0.309 +1003 nb = -0.41 +1004 Ea = 45600 +1005 Eb = 80000 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1009 Sig = 1 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR ("Cristobalite(beta)")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Daphnite-14A#Fe5Al(AlSi3O10)(OH)8;M 713.44 g/mol +-start +1 name$ = "Daphnite-14A" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.5e-4 #mol.m-2.s-1 +1001 An = 4.7e-11 #mol.m-2.s-1 +1002 Ab = 2.0e-12 #mol.m-2.s-1 +1003 Ea = 30000 #J.mol-1 +1004 En = 15000 #J.mol-1 +1005 Eb = 15000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 nA = 0.74 +1009 nb = -0.19 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^nA * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Daphnite-14A")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Daphnite-7A#Fe5Al(AlSi3O10)(OH)8; M 713.44 g/mol +-start +1 name$ = "Daphnite-7A" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.5e-4 #mol.m-2.s-1 +1001 An = 4.7e-11 #mol.m-2.s-1 +1002 Ab = 2.0e-12 #mol.m-2.s-1 +1003 Ea = 30000 #J.mol-1 +1004 En = 15000 #J.mol-1 +1005 Eb = 15000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 nA = 0.74 +1009 nb = -0.19 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^nA * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Daphnite-7A")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Diopside #CaMgSi2O6; M 216.55 g/mol +-start +1 name$ = "Diopside" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 8.55e-5 #mol.m-2.s-1 +1001 An = 4.30e-4 #mol.m-2.s-1 +1003 Ea = 32654 #J.mol-1 +1004 En = 43866 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.25 +1009 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR ("Diopside")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Enstatite#MgSiO3;M 100.387 g/mol +-start +1 name$ = "Enstatite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 0.574 #mol.m-2.s-1 +1001 An = 6252 #mol.m-2.s-1 +1003 Ea = 46080 #J.mol-1 +1004 En = 89538 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.5 +1010 Sig = 1 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR ("Enstatite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Epidote#Ca2FeAl2Si3O12OH;M 483.215 g/mol +-start +1 name$ = "Epidote" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.09 #mol.m-2.s-1 +1001 An = 5.13e-5 #mol.m-2.s-1 +1002 Ab = 1.40e-9 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1004 En = 43200 #J.mol-1 +1005 Eb = 42300 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.30 +1009 nb = -0.4 +1010 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb )* S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Epidote")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Epidote-ord#Ca2FeAl2Si3O12OH;M 483.215 g/mol +-start +1 name$ = "Epidote-ord" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.14e1 #mol.m-2.s-1 +1001 An = 5.13e-5 #mol.m-2.s-1 +1002 Ab = 1.40e-9 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1004 En = 43200 #J.mol-1 +1005 Eb = 42300 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.56 +1009 nb = -0.4 +1010 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb )* S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Epidote-ord")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Fayalite #Fe2SiO4;M 203.771 g/mol +-start +1 name$ = "Fayalite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =1.20e6# mol.m-2.s-1 +1001 Ab =1.91e3# mol.m-2.s-1 +1002 Ea =70400# J/mol +1003 Eb =60900# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =0.44 +1008 nb =0.22 +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb)* S +2002 rplus = rplusa + rplusb +4000 rate = rplus * (1 - SR("Fayalite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Ferroactinolite #Ca2Fe5Si8O22(OH)2, M 970.053 g/mol, kinetic parameters from Tremolite +-start +1 name$ = "Ferroactinolite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +5 S = PARM(2)*TOT("water") +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 3.0e-3 #mol.m-2.s-1 +1001 An = 2.0e-5 #mol.m-2.s-1 +1002 Ea = 50000 #J.mol-1 +1003 En = 48000 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 n = 0.22 +1006 Sig = 8 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^n )* S +2001 rplusn = An* (exp(-En/ (R * Tk)))* S +2010 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Ferroactinolite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + +Forsterite #Mg2SiO4, M 140.692 g/mol +-start +1 name$ = "Forsterite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =14.8e4# mol.m-2.s-1 +1001 Ab =220# mol.m-2.s-1 +1002 Ea =70400# J/mol +1003 Eb =60900# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na = 0.44 +1008 nb = 0.22 + #Rate Equation +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusb +4000 rate = rplus * (1 - SR("Forsterite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Glass_Basalt#SiTi0.02Al0.36Fe0.19Mg0.28Ca0.26Na0.08K0.008O3.364 , M 122.566 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 122.566 else S = m0 * ((m/m0)^(2/3)) * 122.566 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR ("Glass_Basalt_leached_layer") < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR ("Glass_Basalt_leached_layer") > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 if (m0<=0) then go to 5000 +1001 Aa = 1.08e-4 #mol.m-2.s-1 +1003 Ea = 21500 #J.mol-1 +1006 R = 8.3144 #J.deg-1.mol-1 +1007 ACTI = (ACT ("H+")^3)/(ACT("Al+3")) +1008 n = 1/3 +1009 Sig = 1 + #rate equation +2000 rplus = Aa * ACTI^n * exp(-Ea/ (R * Tk)) * S +3000 rate = rplus * (1 - (SR ("Glass_Basalt_leached_layer")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Glass_Rhyolite#SiAl0.23Na0.13Fe0.05K0.05Ca0.03Mg0.007Ti0.004O2.536; M 84.165 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 84.165 else S = m0 * ((m/m0)^(2/3)) * 84.165 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR("Glass_Rhyolite_leached_layer") < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR("Glass_Rhyolite_leached_layer") > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.6e-3 #mol.m-2.s-1 +1002 Ab = 7.0e-8 #mol.m-2.s-1 +1003 Ea = 36000 #J.mol-1 +1005 Eb = 52000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.48 +1010 nb = -0.6 +1011 Sig = 1 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Glass_Rhyolite_leached_layer")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Glaucophane_ss#Na2Mg3Al2Si8O22(OH)2, M 783.531 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 783.531 else S = m0 * ((m/m0)^(2/3)) * 783.531 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 SR_Glaucophane =((SR ("Anthophyllite")*1)*(SR ("Jadeite")*2))*(SR ("Enstatite")*(-4)) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Glaucophane < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Glaucophane > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 220 #mol.m-2.s-1 +1001 Ab = 1.0e-4 #mol.m-2.s-1 +1002 Ea = 50000 #J.mol-1 +1003 Eb = 48000 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 na = 0.7 +1006 nb = -0.12 +1007 Sig = 8 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR_Glaucophane^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Grossular#Ca3Al2(SiO4)3, M 453 g/mol +-start +1 name$ = "Grossular" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.0e5#mol/m2/s +1001 An = 2.31e-4#mol/m2/s +1002 Ab = 6.0e-8#mol/m2/s +1003 na = 1 +1004 nb = -0.4 +1005 Ea = 60000 +1006 En = 43200 +1007 Eb = 42300 +1008 R = 8.314 #J.deg-1.mol-1 +1009 ACTI = act("H+") +10010 Sig = 3 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Grossular")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Heulandite-Ca# CaAl2Si7O18:6H2O +-start +1 name$ = "Heulandite-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 7 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Heulandite-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Heulandite-Na# Na2Al2Si7O18:5H2O +-start +1 name$ = "Heulandite-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 7 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Heulandite-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Hornblende_ss#Ca2(Mg4Al)(Si7Al)O22(OH)2, M 813.927 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 813.927 else S = m0 * ((m/m0)^(2/3)) * 813.927 * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +10 SR_Hornblende =((SR ("Tremolite")*1)*(SR ("Corundum")*1))*(SR ("Enstatite")*(-1)) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Hornblende < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Hornblende > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 5.0e-3 #mol.m-2.s-1 +1001 Ab = 2.1e-5 #mol.m-2.s-1 +1002 Ea = 50000 #J.mol-1 +1003 Eb = 48000 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 na = 0.17 +1006 nb = -0.12 +1007 Sig = 7 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR_Hornblende^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Illite# K0.6Mg0.25Al1.8Al0.5Si3.5O10(OH)2 +-start +1 name$ = "Illite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 7.3e-4 #mol.m-2.s-1 +1001 An = 3.348e-3 #mol.m-2.s-1 +1002 Ab = 6.0e-8 #mol.m-2.s-1 +1003 Ea = 50000 #J.mol-1 +1004 En = 70000 #J.mol-1 +1005 Eb = 74000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1009 nb = -0.6 +1011 Sig = 3.5 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Illite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Jadeite# NaAl(SiO3)2;M 203.9 g/mol +-start +1 name$ = "Jadeite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 25 #mol.m-2.s-1 +1001 An = 2.70e5 #mol.m-2.s-1 +1003 Ea = 46080 #J.mol-1 +1004 En = 89538 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.5 +1010 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Jadeite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Kaolinite # Al2Si2O5(OH)4; M 258.16 g/mol +-start +1 name$ = "Kaolinite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.85 #mol.m-2.s-1 +1001 An = 4.15e-3 #mol.m-2.s-1 +1002 Ab = 2.40e-11 #mol.m-2.s-1 +1003 Ea = 73000 #J.mol-1 +1004 En = 67000 #J.mol-1 +1005 Eb = 61000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.45 +1010 nb = -0.76 +1011 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 -SR("Kaolinite")^(1/Sig)) +4000 moles = rate * time +5000 save moles +-end + +K-Feldspar #KAlSi3O8; M 278.33 g/mol +-start +1 name$ = "K-Feldspar" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.05 # mol.m-2.s-1 +1001 An = 1.08e-2 # mol.m-2.s-1 +1002 Ab = 1.2e-10 # mol.m-2.s-1 +1003 Ea = 51700 # J/mol +1004 En = 60000 # J/mol +1005 Eb = 62195 # J/mol +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") # +1008 Sig = 3 +1009 nA = 0.45 +1010 nb = -0.75 + #Rate Equation +3000 rplusa = Aa * ACTI^nA * exp (-Ea/ (R * Tk)) * S +3001 rplusn = An * exp (-En/ (R * Tk)) * S +3002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* ACTI^(nC) * S +3003 rplus = rplusa + rplusn + rplusb +4000 rate = rplus * (1 - SR("K-Feldspar")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Kyanite# Al2SiO5, M 162.9 g/mol +-start +1 name$ = "Kyanite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.115#mol/m2/s +1001 An = 1e-3#mol/m2/s +1002 Ab = 1.5e-13#mol/m2/s +1003 na = 0.15 +1004 nb = -1 +1005 Ea = 58000 +1006 En = 60000 +1007 Eb = 50000 +1008 R = 8.314 #J.deg-1.mol-1 +1009 ACTI = act("H+") +1001 Sig = 1 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusn = An* (exp(-En/ (R * Tk)))* S +2004 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Kyanite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Larnite #Ca2SiO4;M 172.237 g/mol +-start +1 name$ = "Larnite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 5.25e8# mol.m-2.s-1 +1001 Ab = 8.25e5# mol.m-2.s-1 +1002 Ea = 70400# J/mol +1003 Eb = 60900# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =0.44 +1008 nb =0.22 +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb)* S +2002 rplus = rplusa + rplusb +4000 rate = rplus * (1 - SR ("Larnite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Labradorite_ss# Ca0.68Na0.32Al1.68Si2.32O8, M 245.84 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 245.84 else S = m0 * ((m/m0)^(2/3)) * 245.84 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 SR_Labradorite=(SR ("Albite")*0.32)*(SR ("Anorthite")*0.68) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Labradorite < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Labradorite > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 5886.557 #mol.m-2.s-1 +1001 An = 0.17 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 1.0 +1010 nb = -0.35 +1011 Sig = 2.32 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +2010 SR_Labradorite=(SR ("Albite")*0.32)*(SR ("Anorthite")*0.68) +3000 rate = rplus * (1 - (SR_Labradorite^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Labradorite_ss_an55# Ca0.55Na0.45Al1.68Si2.32O8, M 245.84 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 245.84 else S = m0 * ((m/m0)^(2/3)) * 245.84 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 Labradorite_ss_an55=(SR ("Albite")*0.55)*(SR ("Anorthite")*0.55) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Labradorite_an55 < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Labradorite_an55 > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 5886.557 #mol.m-2.s-1 +1001 An = 0.17 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 1.0 +1010 nb = -0.35 +1011 Sig = 2.32 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (Labradorite_ss_an55^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Laumontite# CaAl2Si4O12:4.5H2O +-start +1 name$ = "Laumontite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.25 #mol.m-2.s-1 +1001 An = 1.39e-3 #mol.m-2.s-1 +1002 Ab = 7.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Laumontite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Lizardite #Mg3Si2O5(OH4); M 277 g/mol +-start +1 name$ = "Lizardite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.8e-6 #mol.m-2.s-1 +1001 An = 2.0e-8 #mol.m-2.s-1 +1003 Ea = 27000 #J.mol-1 +1004 En = 27000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.25 +1011 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Lizardite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Leonhardite# CaAl2Si4O12:3.5H2O +-start +1 name$ = "Leonhardite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.25 #mol.m-2.s-1 +1001 An = 1.39e-3 #mol.m-2.s-1 +1002 Ab = 7.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Leonhardite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Maximum_Microcline #KAlSi3O8; M 278.33 g/mol +-start +1 name$ = "Maximum_Microcline" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.05 # mol.m-2.s-1 +1001 An = 1.08e-2 # mol.m-2.s-1 +1002 Ab = 1.2e-10 # mol.m-2.s-1 +1003 Ea = 51700 # J/mol +1004 En = 60000 # J/mol +1005 Eb = 62195 # J/mol +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") # +1008 Sig = 3 +1009 nA = 0.45 +1010 nb = -0.75 + #Rate Equation +3000 rplusa = Aa * ACTI^nA * exp (-Ea/ (R * Tk)) * S +3001 rplusn = An * exp (-En/ (R * Tk)) * S +3002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* ACTI^(nC) * S +3003 rplus = rplusa + rplusn + rplusb +4000 rate = rplus * (1 - SR("Maximum_Microcline")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Mesolite# Ca0.667Na0.666Al2Si3O10:2.667H2O +-start +1 name$ = "Mesolite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.97 #mol.m-2.s-1 +1001 An = 1.11e-3 #mol.m-2.s-1 +1002 Ab = 5.54e-4 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Mesolite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Montmor-Ca# Ca.175Mg.35Al1.65Si4O10(OH)2 +-start +1 name$ = "Montmor-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Montmor-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + +Montmor-Mg# Mg.525Al1.65Si4O10(OH)2; M 363.6 g/mol +-start +1 name$ = "Montmor-Mg" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Montmor-Mg")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Montmor-K# +-start +1 name$ = "Montmor-K" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Montmor-K")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Mordenite-Ca# Ca0.5AlSi5O12:4H2O +-start +1 name$ = "Mordenite-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000 else goto 1000 # warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 else goto 1000# warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 5 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Mordenite-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Mordenite-Na# NaAlSi5O12:3H2O +-start +1 name$ = "Mordenite-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 5 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Mordenite-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Muscovite #KAl3Si3O10(OH)2, M 398.303 g/mol +-start +1 name$ = "Muscovite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 0.000126#mol.m-2.s-1 +1001 An = 0.00000631#mol.m-2.s-1 +1002 Ab = 0.0000316#mol.m-2.s-1 +1004 Ea = 41311 #J.mol-1 +1005 En = 39301 #J.mol-1 +1006 Eb = 56950 #J.mol-1 +1008 R = 8.314 #J.deg-1.mol-1 +1009 nA = 0.37 +1010 nb = -0.22 +2000 Sig = 3 + #rate equations +2005 rplusa = Aa* (exp(-Ea/ (R * Tk)))*((act("H+"))^nA )* S +2006 rplusn = An* (exp(-En/ (R * Tk)))* S +2007 rplusb = Ab* (exp(-Eb/ (R * Tk)))*((act("H+"))^nb)* S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Muscovite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Natrolite# Na2Al2Si3O10:2H2O +-start +1 name$ = "Natrolite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.97 #mol.m-2.s-1 +1001 An = 1.11e-3 #mol.m-2.s-1 +1002 Ab = 5.54e-4 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Natrolite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Nepheline #NaAlSiO4 +-start +1 name$ = "NaAlSiO4" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 5e7 #mol.m-2.s-1 +1001 An = 0.1 #mol.m-2.s-1 +1002 Ab = 7.5e-5 #mol.m-2.s-1 +1003 Ea = 63000 #J.mol-1 +1004 En = 58500 #J.mol-1 +1005 Eb = 58000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 1.0 +1009 nb = -0.4 +1011 Sig = 1 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("NaAlSiO4")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Nontronite-Ca# Ca.175Fe2Al.35Si3.65H2O12; M 424.7 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Nontronite-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Nontronite-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Nontronite-K# K.35Fe2Al.35Si3.65H2O12; M 431.3 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Nontronite-K" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Nontronite-K")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Nontronite-Mg# Mg.175Fe2Al.35Si3.65H2O12; M 421.9 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Nontronite-Mg" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Nontronite-Mg")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Nontronite-Na# Na.35Fe2Al.35Si3.65H2O12; M 425.7 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Nontronite-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Nontronite-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Oligoclase_ss#Ca0.186Na0.814Al1.186Si2.814O8, M 265.2 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 265.2 else S = m0 * ((m/m0)^(2/3)) * 265.2 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 SR_Oligoclase=(SR ("Albite")*0.814)*(SR ("Anorthite")*0.186) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Oligoclase < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Oligoclase > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 6.8 #mol.m-2.s-1 +1001 An = 0.2 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.38 +1010 nb = -0.35 +1011 Sig = 2.814 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR_Oligoclase^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Olivine_ss#Mg1.8Fe0.2SiO4;M 147.31 g/mol +-start + 2 if (PARM(1) = 0) then goto 3 else goto 5 + 3 if PARM(3) = 0 then S = PARM(2) * m * 147.31 else S = m0 * ((m/m0)^(2/3)) * 113.4 * PARM(2) + 4 GOTO 1000 + 5 S = PARM(2)*TOT("water") +10 SR_Olivine=(SR ("Forsterite")*0.9)*(SR ("Fayalite")*0.1) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Olivine < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Olivine > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =14.8e4# mol.m-2.s-1 # Forsterite rate! +1001 Ab =220# mol.m-2.s-1 # Forsterite rate! +1002 Ea =70400# J/mol +1003 Eb =60900# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na = 0.44 +1008 nb = 0.22 +#Rate Equation +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR_Olivine^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Paragonite # NaAl3Si3O10(OH)2 +-start +1 name$ = "Paragonite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 7.3e-4 #mol.m-2.s-1 +1001 An = 3.48e-3 #mol.m-2.s-1 +1002 Ab = 6.0e-8 #mol.m-2.s-1 +1003 Ea = 50000 #J.mol-1 +1004 En = 70000 #J.mol-1 +1005 Eb = 74000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1009 nb = -0.6 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Paragonite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Pargasite #NaCa2Al3Mg4Si6O22(OH)2, M 835.814 g/mol, kinetic parameters from glaucophane in DB P1 +-start +1 name$ = "Pargasite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 3.327e8 #mol.m-2.s-1 +1001 Ab = 5000 #mol.m-2.s-1 +1002 Ea = 85000 #J.mol-1 +1003 Eb = 94400 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 na = 0.7 +1006 nb = -0.12 +1007 Sig = 6 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2010 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Pargasite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Phlogopite #KAlMg3Si3O10(OH)2; M 417.25 +-start +1 name$ = "Phlogopite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.90e-7 #mol.m-2.s-1 +1001 An = 5e-9 #mol.m-2.s-1 +1002 Ab = 4e-10 #mol.m-2.s-1 +1003 Ea = 18200 #J.mol-1 +1004 En = 22000 #J.mol-1 +1005 Eb = 25500 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.5 +1009 nb = -0.16 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Phlogopite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Prehnite#Ca2Al2Si3O10(OH)2 ;M 415.1 g/mol +-start +1 name$ = "Prehnite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.30e3 #mol.m-2.s-1 +1001 An = 1.0 #mol.m-2.s-1 +1002 Ab = 1.53e1 #mol.m-2.s-1 +1003 Ea = 77000 #J.mol-1 +1004 En = 80000 #J.mol-1 +1005 Eb = 80000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.35 +1009 nb = -0.075 +1010 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb )* S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Prehnite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Pyrophyllite#Al2Si4O10(OH)2, M 363.908 g/mol +-start +1 name$ = "Pyrophyllite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.60e4 #mol.m-2.s-1 +1001 An = 1.5e-1 #mol.m-2.s-1 +1002 Ab = 2.0e-8 #mol.m-2.s-1 +1003 Ea = 73000 #J.mol-1 +1004 En = 67000 #J.mol-1 +1005 Eb = 61000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.7 +1010 nb = -0.7 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Pyrophyllite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Quartz#SiO2; M 60.08 g/mol +-start +1 name$ = "Quartz" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 4.03e-4#mol/m2/s +1001 Ab = 0.105#mol/m2/s +1002 na = 0.309 +1003 nb = -0.41 +1004 Ea = 45600 +1005 Eb = 80000 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1009 Sig = 1 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Quartz")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Riebeckite_ss#Na2Fe5Si8O22(OH)2, M 935.877 g/mol, kinetic parameters from tremolite +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 935.877 else S = m0 * ((m/m0)^(2/3)) * 935.877 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 SR_Riebeckite =((SR ("Wollastonite")*1)*(SR ("Jadeite")*2))*(SR ("Sillimanite")*(-2)) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Riebeckite < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Riebeckite > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 3.0e-3 #mol.m-2.s-1 +1001 An = 2.0e-5 #mol.m-2.s-1 +1002 Ea = 50000 #J.mol-1 +1003 En = 48000 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 n = 0.22 +1006 Sig = 8 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^n )* S +2001 rplusn = An* (exp(-En/ (R * Tk)))* S +2010 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR_Riebeckite^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Sanidine_high #KAlSi3O8; M 278.33 g/mol, kinetic parameters from K-feldspar in DB P1 +-start +1 name$ = "Sanidine_high" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.05 # mol.m-2.s-1 +1001 An = 1.08e-2 # mol.m-2.s-1 +1002 Ab = 1.2e-10 # mol.m-2.s-1 +1003 Ea = 51700 # J/mol +1004 En = 60000 # J/mol +1005 Eb = 62195 # J/mol +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") # +1008 Sig = 3 +1009 nA = 0.45 +1010 nb = -0.75 + #Rate Equation +3000 rplusa = Aa * ACTI^nA * exp (-Ea/ (R * Tk)) * S +3001 rplusn = An * exp (-En/ (R * Tk)) * S +3002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* ACTI^(nC) * S +3003 rplus = rplusa + rplusn + rplusb +4000 rate = rplus * (1 - SR("Sanidine_high")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Saponite-Fe-Ca#Ca.175Fe3Al.35Si3.65O10(OH)2; M 480.5 g/mol +-start +1 name$ = "Saponite-Fe-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Fe-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Fe-Fe#Fe3.175Al.35Si3.65O10(OH)2; M 483.3 g/mol +-start +1 name$ = "Saponite-Fe-Fe" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Fe-Fe")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Fe-K#K.35Fe3Al.35Si3.65O10(OH)2; M 487.2 g/mol +-start +1 name$ = "Saponite-Fe-K" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Fe-K")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Fe-Mg#Mg.175Fe3Al.35Si3.65O10(OH)2 ; M 477.7 g/mol +-start +1 name$ = "Saponite-Fe-Mg" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Fe-Mg")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Fe-Na#Na.35Fe3Al.35Si3.65O10(OH)2; M 481.5 g/mol +-start +1 name$ = "Saponite-Fe-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Fe-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Mg-Ca#Ca.175Mg3Al.35Si3.65O10(OH)2 ; M 385.9 g/mol +-start +1 name$ = "Saponite-Mg-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Mg-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Mg-Fe#Fe.175Mg3Al.35Si3.65O10(OH)2 ; M 388.6 g/mol +-start +1 name$ = "Saponite-Mg-Fe" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Mg-Fe")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Mg-K#K.35Mg3Al.35Si3.65O10(OH)2 ; M 392.6 g/mol +-start +1 name$ = "Saponite-Mg-K" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Mg-K")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Mg-Mg#Mg3.175Al.35Si3.65O10(OH)2 ; M 383.0 g/mol +-start +1 name$ = "Saponite-Mg-Mg" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Mg-Mg")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Mg-Na#Na.35Mg3Al.35Si3.65O10(OH)2; M 386.9 g/mol +-start +1 name$ = "Saponite-Mg-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Mg-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Scolecite# CaAl2Si3O10:3H2O +-start +1 name$ = "Scolecite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.97 #mol.m-2.s-1 +1001 An = 1.11e-3 #mol.m-2.s-1 +1002 Ab = 5.54e-4 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR ("Scolecite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Sepiolite #Mg4Si6O15(OH)2:6H2O,653.22 g/mol +-start +1 name$ = "Sepiolite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.89e-3 #mol.m-2.s-1 +1001 An = 8.0e-7 #mol.m-2.s-1 +1002 Ea = 50200 #J.mol-1 +1003 En = 40700 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 n = 0.248 +1006 Sig = 6 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^n )* S +2001 rplusn = An* (exp(-En/ (R * Tk)))* S +2010 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Sepiolite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +SiO2(am)#M 60.08 g/mol +-start +1 name$ = "SiO2(am)" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 4.563e-4#mol/m2/s +1001 Ab = 0.0353#mol/m2/s +1002 na = 0.309 +1003 nb = -0.41 +1004 Ea = 41610 +1005 Eb = 73000 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1009 Sig = 1 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("SiO2(am)") ^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Smectite-high-Fe-Mg# Ca.025Na.1K.2Fe.5Fe.2Mg1.15Al1.25Si3.5H2O12 +-start +1 name$ = "Smectite-high-Fe-Mg" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.5 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Smectite-high-Fe-Mg")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + +Smectite-low-Fe-Mg# Ca.02Na.15K.2Fe.29Fe.16Mg.9Al1.25Si3.75H2O12; 395.5 g/mol +-start +1 name$ = "Smectite-low-Fe-Mg" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.75 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Smectite-low-Fe-Mg")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Spodumene# LiAlSi2O6;M 187.9 g/mol +-start +1 name$ = "Spodumene" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 490 #mol.m-2.s-1 +1001 An = 5.40e6 #mol.m-2.s-1 +1003 Ea = 46080 #J.mol-1 +1004 En = 89538 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.5 +1010 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Spodumene")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Stilbite# Ca.02Na.15K.2Fe.29Fe.16Mg.9Al1.25Si3.75H2O12 +-start +1 name$ = "Stilbite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 3.75 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Stilbite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Stilbite-Ca# CaAl2Si7O18:7H2O +-start +1 name$ = "Stilbite-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Stilbite-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Talc #Mg3Si4O10(OH)2,379.259 g/mol +-start +1 name$ = "Talc" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 0.004424914 #mol.m-2.s-1 +1001 An = 1.56e-6 #mol.m-2.s-1 +1002 Ea = 50200 #J.mol-1 +1003 En = 40700 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 n = 0.36 +1006 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^n )* S +2001 rplusn = An* (exp(-En/ (R * Tk)))* S +2010 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Talc")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Tremolite #Ca2Mg5Si8O22(OH)2, 812.353 g/mol +-start +1 name$ = "Tremolite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 3.0e-3 #mol.m-2.s-1 +1001 An = 2.0e-5 #mol.m-2.s-1 +1002 Ea = 50000 #J.mol-1 +1003 En = 48000 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 n = 0.22 +1006 Sig = 8 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^n )* S +2001 rplusn = An* (exp(-En/ (R * Tk)))* S +2010 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Tremolite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Thomsonite# Ca2NaAl5Si5O20:6H2O +-start +1 name$ = "Thomsonite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.97 #mol.m-2.s-1 +1001 An = 1.11e-3 #mol.m-2.s-1 +1002 Ab = 5.54e-4 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 5 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Thomsonite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Wollastonite#CaSiO3;M 117.1 g/mol +-start +1 name$ = "Wollastonite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 700 #mol.m-2.s-1 +1001 Ab = 20 #mol.m-2.s-1 +1003 Ea = 56000 #J.mol-1 +1004 Eb = 52000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.4 +1009 nb = 0.15 +1010 Sig = 1 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb )* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Wollastonite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Zoisite#Ca2Al3(SiO4)3OH;M 457.1 g/mol +-start +1 name$ = "Zoisite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.09 #mol.m-2.s-1 +1001 An = 5.13e-5 #mol.m-2.s-1 +1002 Ab = 1.40e-9 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1004 En = 43200 #J.mol-1 +1005 Eb = 42300 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.30 +1009 nb = -0.4 +1010 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb )* S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Zoisite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +#### Non-silicate minerals including carbonate, sulfide, phosphate, halide, and oxy-hydroxide minerals############################### + +Anglesite #PbSO4; M 303.264 g/mol +-start +1 name$ = "Anglesite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.0e-2 #mol.m-2.s-1 +1002 Ab = 2e-14 #mol.m-2.s-1 +1003 Ea = 26000 #J.mol-1 +1005 Eb = 26000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.11 +1009 nb = -1.0 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR ("Anglesite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Anhydrite #CaSO4; M 136.14 g/mol +-start +1 name$ = "Anhydrite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.30e3 #mol.m-2.s-1 +1003 Ea = 37700 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.11 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Anhydrite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Fluorapatite #Ca5(PO4)3F ; M 504.302 g/mol +-start +1 name$ = "Fluorapatite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 80 #mol.m-2.s-1 +1002 Ab = 3e-2 #mol.m-2.s-1 +1003 Ea = 43000 #J.mol-1 +1005 Eb = 43000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.8 +1009 nb = 0.2 +1010 Sig = 5 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR ("Fluorapatite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Hydroxyapatite #Ca5(OH)(PO4)3 ; M 502.31 g/mol +-start +1 name$ = "Hydroxyapatite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 80 #mol.m-2.s-1 +1002 Ab = 3e-2 #mol.m-2.s-1 +1003 Ea = 43000 #J.mol-1 +1005 Eb = 43000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.8 +1009 nb = 0.2 +1010 Sig = 5 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR ("Hydroxyapatite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Barite #BaSO4 ; M 233.404 g/mol +-start +1 name$ = "Barite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 2.5e-3 #mol.m-2.s-1 +1003 Ea = 26000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.11 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Barite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Boehmite #AlO2H : M 59.988 g/mol +-start +1 name$ = "Boehmite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 2.85 #mol.m-2.s-1 +1001 An = 4.2e-3 #mol.m-2.s-1 +1002 Ab = 5.4e-11 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 60000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 1.0 +1009 nb = -1 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Boehmite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Brucite #Mg(OH)2 ; M 58.32 g/mol +-start +1 name$ = "Brucite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.2e4 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.19 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Brucite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Celestite #SrSO4 ; M 183.684 g/mol +-start +1 name$ = "Celestite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 3.8e-2 #mol.m-2.s-1 +1003 Ea = 24000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.11 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Celestite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Diaspore #AlHO2 : M 59.99 g/mol +-start +1 name$ = "Diaspore" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 2.85 #mol.m-2.s-1 +1001 An = 4.2e-3 #mol.m-2.s-1 +1002 Ab = 5.4e-11 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 60000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 1.0 +1009 nb = -1.0 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Diaspore")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Fluorite #CaF2 ; M 78.075 g/mol +-start +1 name$ = "Fluorite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.2e6 #mol.m-2.s-1 +1003 Ea = 75000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.12 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Fluorite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Gibbsite #Al(OH)3 : M 78.00 g/mol +-start +1 name$ = "Gibbsite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 20.0 #mol.m-2.s-1 +1001 An = 3.0e-2 #mol.m-2.s-1 +1002 Ab = 3.0e-10 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 60000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 1.0 +1009 nb = -1.0 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Gibbsite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Gypsum #CaSO4:2H2O : M 172.17 g/mol +-start +1 name$ = "Gypsum" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.8e4 #mol.m-2.s-1 +1003 Ea = 37700 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.11 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Gypsum")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Halite #NaCl : M 58.44 g/mol +-start +1 name$ = "Halite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1001 An = 3.3e-4 #mol.m-2.s-1 +1004 En = -22340 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1010 Sig = 1 + #rate equation +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2003 rplus =rplusn +3000 rate = rplus * (1 - (SR ("Halite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Monazite-Ce #CePO4 : M 235.087 g/mol +-start +1 name$ = "Monazite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.0e-4 #mol.m-2.s-1 +1001 An = 1.0e-7 #mol.m-2.s-1 +1002 Ab = 1.2e-11 #mol.m-2.s-1 +1003 Ea = 43000 #J.mol-1 +1004 En = 43000 #J.mol-1 +1005 Eb = 43000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.7 +1009 nb = -0.5 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Monazite-Ce")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Periclase #MgO : M 40.304 g/mol +-start +1 name$ = "Periclase" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.2e4 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.19 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Periclase")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Pyromorphite #Pb5(PO4)3Cl ; M 1356.365 g/mol +-start +1 name$ = "Pyromorphite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 58 #mol.m-2.s-1 +1003 Ea = 43000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.68 +1010 Sig = 5 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Pyromorphite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Variscite #AlPO4:2H2O ; M 157.983 g/mol +-start +1 name$ = "Variscite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.0e-4 #mol.m-2.s-1 +1002 Ab = 2.4e-7 #mol.m-2.s-1 +1003 Ea = 43000 #J.mol-1 +1005 Eb = 43000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.3 +1009 nb = -0.3 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR ("Variscite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +## carbonates + +Aragonite #CaCO3; M 100.0869 g/mol +-start +1 name$ = "Aragonite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =11.025# mol.m-2.s-1 +1001 Ac = 122.5 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =1 +1008 kc =160 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Aragonite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Calcite #CaCO3; M 100.0869 g/mol +-start +1 name$ = "Calcite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =5.625# mol.m-2.s-1 +1001 Ac = 62.5 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =1 +1008 kc =160 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Calcite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Cerussite #PbCO3; M 267.2089 g/mol +-start +1 name$ = "Cerussite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =2.55# mol.m-2.s-1 +1001 Ac = 45.45 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =1 +1008 kc =160 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Cerussite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Dawsonite # NaAlCO3(OH)2 : M 144.0 g/mol +-start +1 name$ = "Dawsonite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =1.6e5# mol.m-2.s-1 +1001 Ac = 0.3 # mol.m-2.s-1 +1002 Ea =55000# J/mol +1003 Eac =55000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =1 +1008 kc =0 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Dawsonite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Dolomite # CaMg(CO3)2: M 184.40 g/mol !!! +-start +1 name$ = "Dolomite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =1.2e-3# mol.m-2.s-1 +1001 Ac = 650 # mol.m-2.s-1 +1002 Ea =10000# J/mol +1003 Eac =65000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1.9 +1007 na =0.5 +1008 kc =160 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Dolomite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Gaspite # NiCO3: M 118.702 g/mol +-start +1 name$ = "Gaspite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =2.6e-6# mol.m-2.s-1 +1001 Ac = 6.73e-3 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 3.73 +1007 na =0.55 +1008 kc =1000 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Gaspite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Magnesite # MgCO3: M 84.314 g/mol +-start +1 name$ = "Magnesite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =5e-4# mol.m-2.s-1 +1001 Ac = 2.7e-2 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =45000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 3.94 +1007 na =0.66 +1008 kc =380 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Magnesite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Otavite # CdCO3: M 172.419 g/mol +-start +1 name$ = "Otavite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =1.02# mol.m-2.s-1 +1001 Ac = 11.36 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =1 +1008 kc =160 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Otavite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Rhodochrosite #MnCO3 : M 114.95 g/mol +-start +1 name$ = "Rhodochrosite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =2.28e-3# mol.m-2.s-1 +1001 Ac = 0.4 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 4.65 +1007 na =0.5 +1008 kc =1000 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Rhodochrosite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Siderite # FeCO3: M 115.856 g/mol !!! +-start +1 name$ = "Siderite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =2e-3# mol.m-2.s-1 +1001 Ac = 0.2 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 4 +1007 na =0.7 +1008 kc =160 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Siderite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Smithsonite # ZnCO3: M 125.399 g/mol !!! +-start +1 name$ = "Smithsonite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =1.94# mol.m-2.s-1 +1001 Ac = 8.89 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 2 +1007 na =1 +1008 kc =200 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Smithsonite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Strontianite # ZnCO3: M 125.399 g/mol +-start +1 name$ = "Strontianite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =2.2e-3# mol.m-2.s-1 +1001 Ac = 8.89 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =1 +1008 kc =240 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Strontianite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Witherite # BaCO3: M 197.349 g/mol !!! +-start +1 name$ = "Witherite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =35# mol.m-2.s-1 +1001 Ac = 12 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =1 +1008 kc =160 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Witherite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +###! + + + From de06166d146f204f64c7a5dc1b0d538d3d9bc336 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Sun, 21 Apr 2024 20:40:36 -0600 Subject: [PATCH 146/384] added put$ and get$ Basic functions. Added test cases get_put_ to test get$ and put$. Added kinetic_rates_carbfix to use new database kinec.v2.dat. Fixed pad$ to use strexpr. --- RELEASE.TXT | 10 ++++++++++ 1 file changed, 10 insertions(+) diff --git a/RELEASE.TXT b/RELEASE.TXT index 6f0817d7..81c6aec8 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,5 +1,15 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + ----------------- + April 21, 2024 + ----------------- + PHREEQC: Added Basic functions GET$ and PUT$. They are are the same as + GET and PUT, except the first argument is a character string. You may + one or more indices as needed to identify the value that is put or + gotten. + + PUT$("MgCl2", 1, 1, 1) + x$ = GET$(1, 1, 1) ----------------- April 19, 2024 From 93ba7f97c3cae183ab15432a3b2da64241572c90 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Mon, 22 Apr 2024 09:41:41 -0600 Subject: [PATCH 147/384] Tony's latest databases --- Amm.dat | 16 ++++++++-------- phreeqc.dat | 16 ++++++++-------- pitzer.dat | 10 +++++----- 3 files changed, 21 insertions(+), 21 deletions(-) diff --git a/Amm.dat b/Amm.dat index b1d6a9d9..06ac6b41 100644 --- a/Amm.dat +++ b/Amm.dat @@ -63,14 +63,14 @@ SOLUTION_SPECIES H+ = H+ -gamma 9.0 0 -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 - -dw 9.31e-9 838 16.315 0.809 2.376 24.01 0 -# Dw(25 C) dw_T a a2 visc a3 a_v_dif + -dw 9.31e-9 838 16.315 0 2.376 24.01 0 +# Dw(25 C) dw_T a a2 visc a3 a_v_dif # Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc # a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif -# For SC, Dw(TK) *= (viscos_0_tc / viscos)^2.376 -# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Debye-Onsager eqn. -# a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10) (not used in this database.) +# For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 2.376 for H+) +# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Debye-Onsager eqn. (a2 = Vm = 0 for H+, the reference for Vm) +# a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10, not used in this database.) (a3 = 24.01 for H+, a flag.) # -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database) # If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. @@ -363,10 +363,10 @@ Ca+2 + CO3-2 = CaCO3 -dw 4.46e-10 # complexes: calc'd with the Pikal formula -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt Ca+2 + CO3-2 + H+ = CaHCO3+ - -log_k 11.435; -delta_h -0.871 kcal - -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9 + -log_k 10.91; -delta_h 4.38 kcal + -analytic -6.009 3.377e-2 2044 -gamma 6.0 0 - -Vm 3.1911 .0104 5.7459 -2.7794 .3084 5.4 # supcrt + -Vm 30.19 .010 5.75 -2.78 .308 5.4 -dw 5.06e-10 Ca+2 + SO4-2 = CaSO4 -log_k 2.25 diff --git a/phreeqc.dat b/phreeqc.dat index 81550e9e..eb6e2aa1 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -63,14 +63,14 @@ SOLUTION_SPECIES H+ = H+ -gamma 9.0 0 -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 - -dw 9.31e-9 838 16.315 0.809 2.376 24.01 0 -# Dw(25 C) dw_T a a2 visc a3 a_v_dif + -dw 9.31e-9 838 16.315 0 2.376 24.01 0 +# Dw(25 C) dw_T a a2 visc a3 a_v_dif # Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc # a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif -# For SC, Dw(TK) *= (viscos_0_tc / viscos)^2.376 -# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Debye-Onsager eqn. -# a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10) (not used in this database.) +# For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 2.376 for H+) +# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Debye-Onsager eqn. (a2 = Vm = 0 for H+, the reference for Vm) +# a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10, not used in this database.) (a3 = 24.01 for H+, a flag.) # -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database) # If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. @@ -373,10 +373,10 @@ Ca+2 + CO3-2 = CaCO3 -dw 4.46e-10 # complexes: calc'd with the Pikal formula -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt Ca+2 + CO3-2 + H+ = CaHCO3+ - -log_k 11.435; -delta_h -0.871 kcal - -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9 + -log_k 10.91; -delta_h 4.38 kcal + -analytic -6.009 3.377e-2 2044 -gamma 6.0 0 - -Vm 3.1911 .0104 5.7459 -2.7794 .3084 5.4 # supcrt + -Vm 30.19 .010 5.75 -2.78 .308 5.4 -dw 5.06e-10 Ca+2 + SO4-2 = CaSO4 -log_k 2.25 diff --git a/pitzer.dat b/pitzer.dat index 4b40edcb..56a4c755 100644 --- a/pitzer.dat +++ b/pitzer.dat @@ -29,20 +29,20 @@ Sr Sr+2 0 Sr 87.62 # redox-uncoupled gases Hdg Hdg 0 Hdg 2.016 # H2 gas Oxg Oxg 0 Oxg 32 # Oxygen gas -Mtg Mtg 0.0 Mtg 16.032 # CH4 gas -Sg H2Sg 0.0 H2Sg 32.064 # H2S gas +Mtg Mtg 0 Mtg 16.032 # CH4 gas +Sg H2Sg 0 H2Sg 32.064 # H2S gas Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 - -dw 9.31e-9 823 5.314 0 3.0 24.01 0 + -dw 9.31e-9 823 5.55 0 3.07 24.01 0 # Dw(25 C) dw_T a a2 visc a3 a_v_dif # Dw(TK) = 9.31e-9 * exp(823 / TK - 823 / 298.15) * viscos_0_25 / viscos_0_tc # a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif -# For SC, Dw(TK) *= (viscos_0_tc / viscos)^3.0 -# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5 in DHO eqn. +# For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 3.07 for H+) +# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Debye-Onsager eqn. (a2 = Vm = 0 for H+, the reference for Vm) # a3 = -10 ? ka = DH_B * a * mu^a2 in DHO. (Define a3 = -10.) # -5 < a3 < 5 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) From e37ae0af3a852b455aac902837e90f64e319f30b Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Sat, 27 Apr 2024 10:12:15 -0600 Subject: [PATCH 148/384] Word from PDF for documentation --- Phreeqc_3_2013_manual_fromPDF.docx | Bin 0 -> 5887040 bytes 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 Phreeqc_3_2013_manual_fromPDF.docx diff --git a/Phreeqc_3_2013_manual_fromPDF.docx b/Phreeqc_3_2013_manual_fromPDF.docx new file mode 100644 index 0000000000000000000000000000000000000000..8a2686d4faa215cfd8f9ac18a4ea57a931a4e2ad GIT binary patch literal 5887040 zcmeFYb9AK9*DhEwJM6GyCmq|iZQHhO+g8U$$Le%!bZpzsRQK<@v%Z}T&?tIqqTb>H!&;BF2>jqk($`edNxF6nwz#*d>5H}rg} zQKP4gChI4kZEFb@U%PFG3{Uju>iT%g{f>-}lBowTUk=TRDaC|6^I0rI*UzVB?IpKU zgPYaY>$pdWk3Xqd$9rk-h!>MC96C0xP)|>NXMLB}Sz$d5ueV`6Gbt{gBWfq-u3eh* z15eLqHjQt4ZXBF%c*DDFd>_(&9V-ufF??4UOlQ2$Z!id(uTI+ht(vJLV?V!rl(X&1 zO>8u;JGNM3xMf{u4eRlagK?~$o-P!w`T4mu*(}jYZpLM;SH)fO{h6;MyYXWcb87X_ z`FWkS$@}}g0RPJjBK~5@=L5{cu+Q6_3Fa?4c2JzyH}hb({d>KZub&)GMFKUeuI4L! z^)atPeAtD|Qc9uhH%SNbKld^Ok8|BW;PZO=C;hZeN=!ap!T7G2@tOEbfBN|w9$|LPOI)h`T~RuHTPV@5H>hGB{cjzy8g zwf|=loM9^X&qO-if^3`_^`D7RzYric9051KfO$^-B;9`z1i1SC-&YSo73LJx<`gc{ z{3rfKpqfxuVGGR3oMibf{=|g?ut3=r`6AHU-wo6LNK?UK@Fs+5Y4w@EkE6dHUugfp z_@s>^^HXiZd?|?q0A2L(iwPb7*W!r0?C%~h0{Ap1KOe`x7oi`-e=SG;ynY*>tt|alA@dr;**tjr*cw4nLt|Ula z{ym+m3H)auA19__p!HBsaGn1V+Wi&s6Bm*OEQ4*F1oRAh#rFILYMz4BK0G1Z(Xx}@ zxFYIa_HpTUgN?vVMs)53J$7CdVr<;>S@F6r!O?kb%iy=23?u@5Pe!zz6L0@Slme}W z>b!$s^Ci)KHjp5A02~Uhy(I9Ti&=vl3TuBD{%1?OC(-^h@^9R1R0jyDeq8EQa7{#h zh~EZqZK0&wc<53eMiUG+W7`tMb%LNVTFXVTtyHlKn9hsaWAWTkH%i z{z}-kBK6}y4CkX#ZD}OihA3n3O?dvc$;+U!7H!#sj9?CM>?PZtNK%M{mB>A1k>3PS zYM|?x70y6><@V`(Jg!~Zq~I~29EjFZPP%g!18R$4VF*=`9O8322#`p z0i>ut!US?>Asnd2D$%y~PYoEyHz^oS_J7#3OSJ9%$NpV-%_-4-2517LbV>3b@vep$ z{~>!*qCbTE9{>(yw_Fl!&;KE~l;|J&-vxOj+P*-+BG_~fidHWNGDbcyw|}(^NVJEE zG=Vfkw3i*^p@6|C_#c9hM0>1%0(05%wlAc+tY63Ai}C(S{SOAC{}s=R-^uWo4Fy)~ zKcoL_-((*M|0QQSJKf=%BvATa*jfvW*FygTVfY_}{}}ykr_e-)Z~r14`CVoU;7gJ8 zV!^QW|0N&p&Z~vyZ?_ajzN#}G8AX7z6K{)R0^5NskT+G_p9#e__+O_?iswg>wD>nN z+6Is0$C09JWru$=_{Zd?6qpW4Jw&#$1F8d9;21NqXKNoD3V=Tlz%;5 zvQ3*9-60NaB|IRA4spgKq6iw`J1z@q7+@3ACW`w5`yq!p70X-(T!$n9(32OgjdSxHnEL?dlcz|N?KYD@a>5@0hCjR0vt*?OF{ z{~l`sXNbxn8x8){#k>}2^e1o`>`fQ@g6Q9v$X5K*o6>e5j{)i-UYXV8hY_~`o!bum z$3^yEP+I>w`Di=*Zvt8lz*IO$06aKAh^P)gh=0)o+5C@l;IJWzSqJP6rh|OUV?5p% zPY)n70ms?2S3z?eK(6vXmi~PALtWfhclLwu?6T2VTXH@QbaIe9IAK`+s@ebD_U}}x zX2bs!C;IzYgf`p&Q4fXlLlpFH?7zt&9=%4O{loV77Y)Q;#fgYiGD)5~Yk@NmAHI6f zzfdz#X@F?}8x_Kn-4KqMT(jk01H%FVpqtA!{Z*Ze_?tYxQ=thQaKJDmNPq*|)wW9+|T^!jVPPHat_UT zTFmOgUHCrC?5@_=Kp{{+w*g;Mxz+BWz7{AcI5~ZUt7g9ip7nBL_&!K1VJrELlsNh| zjp|6GAJ=e}M@upU@$5$Cw1{+Mc-es9T@ZJ-g4&M$!<3)LprZN*f$aoZ`2o_?*A}}~ zf!nSnt})qI?to4V*U$-~!8Lr7-*e@mhQo>h*DnldsEW`cqF{JznmM+2k4@$pzvGcC z@jW&Ui5bY7xDO*sBk;4>@V{i%-egbQbJ*O`Mznrb9Wvck2Peg8^nm@(#zk*i&_V1H zA3&Ke1cD6Y$j#2tn9kVF$i)VDVd3u;g<_AThF$T*{nyNMzT*ANbGTM)O%u6$OmIRN zBmfLb?-*tidN5?SufWa5cvVft#ffF64rA~z45Az2BWlLyb)J-pZ$@FwROZW4?X+HR ztzIFgd4H9x@4KbWv)=Doy_dd9p<3&cqorD_dB69mp7+bod;HthI+$Nn6=8H-!s~un zt6NL8$Mj8`fPBQ+@|%|)WsPYTA5=s?m`qsn9d?0_;}GH^_HOD?1G?U18)s zbQoHC&U&lajD1y22Ywm_K9NVKEez#No9o@<76|tHVFdsx$f6}l-h?fD-#K0HTjTC~ zy!Aen-&eifho>IV6rP7$)?17G&9O#(pR`xskypFYobV&|O<3}yM%QCy*2^?rdAOAQ z&~5Uh`2v3@9(K996b<4g1A0j@3qR|GFXLp!KJZ@qv({MOfqr1w6n`-t0zQB?9* z1N9@sgWevs19E>}oc=pK!2rH@I52x2AaaVM7h}=Do z{2m{jnKL)oelIU$OvB#qtCJOPWZHQ>=e%LQR$Y@x5BY=0*@x!gPcPW(RN#YYjrfcyxz4#o7e7NSUtQ<%^s?2x$e}q zIF`CZUe2AcMeH>$?43)ZEYSNs*TdkVRWH-gQ=T0^p+h z_+sHZ?69G`T20=#S6DV3?|PdbaRZY%OO~(Sch*<)5IrCFGaTF+7j>IAQ`KCbKz+iY zR!Gji&r)x7_`G0AZ?x`}CCpv4eI%j0M?}6<7}d(Z4`;o1XuW|Coo76cEx%`ZT;_=6 ziAr`)NW9v1%1-O*rroq}Zg^uI`Sfm1^1aeUv|gdOE!?_oK3odUd;RL=g9Th_#pixz znFx5k4Z{UY+31b>sF}(QY#w~L6o34<5ex6-6WlvTdBP>3%Qzg3)BU{6JL)ieCH&=! zRCuuPP^!e&xk$ckHYUZV)u-sk+VRfHeJSw#6KdcT&$-rXtLJeu4`RwCZ-VYtuA+F8 z#Y0wY;;T+p+SV2KFSq)s0RZ1v^8Hi;bhv&G@>}*t^|D>xM*=)(;T}Fx5dn1HX39<; zOyN}H8?pfCJGs`Ub-JI%TVBPr*0rB!XWr1~j~QR|P+fudBy)MzcP1^+OY!FocM-&^ z)u*#8M!4rHYP}rV>pu;zHx;V{zo$3lo{})HcKf-tHpqsF_DGK1Hnr-drQ4(l85Rd6eomg zRy%@^?c=N~Q7{o`cm5dM+4>$E)rW1np6PiRRPH(5dTaSj-n`)n)O7k>EdZz>7?o5`JduXH~UVehR!3A}sVG@lH^-(@^znXJktb={=N!9JdkZ1{d}Mx7;u`_MIY zvuV5y=3Om}8@&0<9on;qB+<={>(}ei9L_bu3^GO0EPRYJu9H#}q0hpx$W-{_bM%7K z6ST6oWZM2Y#8#iJqXj4D!ufPFluZ+;bgc5!^J!M_Dd~@8p)Y!vf^9wh$Dh4lL(@Wj z91~)@Q%4GhX6m>7wHA#QijprzPD zaT{18`k840jOjYI)$W9(7Sh8Z<9jXY{Ziht=(Oqe0ahZFCVM{7p@Pnl^D-HG%yJ!nD_=r30bJ_3aY~a@shv6BhWYurbt5QzjVVnJN%JTUfXH zOT7ioFW%V6d42G7{Vxiv1krDYQ-&P**3cDfC3nYfPf>6-P2*;R^N zTt`**YkgD|OqT1=bnow21Rpy4(rRKA-Nvlz-_ zFCasd09tA51BQX{!rOz50VUtr1 zYRRpr*44b`vXhYoA3ij;1N8k`hJ$QWAo4TrAfivtdqp7(cqo{o!pYxJzZzy7fqpwyXECr| zqVRB4{qab*9<%_>(^oW8UTE7d{`Kf=h6rwFu@O<(bh0Fp8}jH^9Bu~r6p&TsQfqq&c3jExh8|Q>m(+w@A#@&b;oK_c4dwviMSujWM6DN<7 zhO(89v_OdQ$r%+Bxnk7>_s>vy~eqH%$M@XFQGW)7>byt#PmZ&S~EXA zxx}SlT2|xp;!(!kV>A)4_s4}4mvfwUIPkKYk1^q}C8;laCuN-n{Y#7N9fv11CyU79mjPI-gw0B416Dcmne9kRB$NwR~0}lhCwTYvo?|&G8XIZK|kd z#E(-kTZd!ZT8X#Bd%tWa3lkJ173%;be&cAjH8jMOi`fg#JvsY=-0aNaKcGOg!|SN~>r(7g{vy_6F;hKZZ5&3>@og z4=eHPGwq2qJ`In^o^d~GteA=S=EzLz>RXE;r=nq)au5N89FP*Q4-s?&CUj6W$t?h8 zKhTx(k{s=&*Y!7C&hjcFh|e`~(;k?+$X|Kf7}*%$pfLoIOxpznz?Jorm}3*Vaty_9 zK89ygnQoI~e zh5dnv#Ul~oEYj{=(#6bd-nmzT>Ju9q;Xe*%Rw4_}Pm#CUV-0ZT(6#P4n%NnbRn4RC zUQ14`J&HIBUpxkkaFexj z)k*IQ5t3wT3{?B0wJ1W0KUa{NQ{x7u>x4LklUmXPoF^5}{8$X_Ir~n|cNUxi&u8|g(&%XyWnW6pR!tz|7tMj$DksZ2d>PDh4|{%+WG zn21~hgYPD$0Y}5q;NtprVD8u6ub>dA4O&Erm&9I`T-hXzY&8WEOX)k4Nl8EQi+iyQ z({*jObdgg9t{)f|^(F$aGTgs-fmr?g zovrYZFqp1;U~Li<7P!D@fd;mFr1xY9IiHaX`2;Ct!K4T3si`p7**ucFsprq2Z4Jlo z7`+fE_9VTz%}hYKMy6=OtLrJtm7Vi_y%;p|ay#!KqMeA^Lo+=b83vIH4>9V%U#zs? z$W4D!3dsV#iW#wLkU4$oSq1qgaZXl-bheP@&nz4d6SIZVE~CRMS?%0m7e-@b)1MRB z$T{QIRO^*a-Q9r7YEJE)G6SU=0dW!7SAt&fZP%&Ni<&R#;BCR}6iSptYGE*!`$IL~ zQIp!oO384rS?0j3rz}xxFMoQkGzI{mtohBn3H;@4zlrzEbatE7G~-98eE)G|Z}7aj zOU10JT4ft>1jPX3FChb>EONA}`A|8%dg-0MOK$y;Nkmt8YfvDm4)5<(fkv{*13I>Z zIQB)jpLbJ!@amK}?T9{ULPpa7YCNe{IQl0261l8>nC|kf1a>@fLULT#9K{8p-SlEH zx0pef)=6xflFX_yFcREo3YA!z8Fhd7w!~y0B7Zn{Q6QG5B+b2N{E~eQZ^3lRg%Ybh z8&46oP4iapOC6&d=XQKxzG7#1b7)&yW>$9g@3-HB49>O~u8UwBrnS4old+WuG%s-U z6=+?s>230DIiS=F8it+*@-9C`YLjU>?-H|5ca3DsD|sZtm^0-W^%Gqkub)oLOTvHK}B}n zj6hCboB@0Dr@P4!*)T{-f(huq$c1rC#pBp1l(SSGpRaCfVl0u2+w$Ey`%@ilNt%Sd zq@;K@KkcjAfgSS&x^1Cz(RE3Nvl}qX|EChNrv7Nf1EfIc5viJ(WCIILhM|Nk^1Z*M zqGiw@;#IxP?BdE(t)4n6QRYf9K#Y|AOqn=%^D;TfsVc}sqzQ@nM}aNZ!7;+beE9rb z(!MMFqnHp+DOpwtadm2lJrb>xsvSZuyv*;@tB@^F24&-ici1{Z?X>S{q#4d~O(ylm zFZ@`iC)*@ulxp8#WFihBhzBrJJ@Zv$afI_0ZaY$JD#RS>469aov|=~5bwE`inAwMd zX%-j`&V2E6en?KKZ7zU4AP+Xp918B6ce#9<_|6zIJg)1!lm|iHzFEaH2GOD6ctbK= zdRVUEJ+J=dVKJWWP61Xh3Aw9?JDvOssaaHJptCbGq7(lJ{-|);4UJJC3bdh|SDRRO zP!Q8_@rw`L%mGP&lTgB4M|2H#`~JbYwZD>%FerlHAxMYTq03rtPMKvl0M7B)SsmFm zdsxhp(*10QNHC zGYij+R`T^C%)!fC*5t&#^DI>7lEW4=FC%ya`bn>bH2p%G0vEG7QcL2w_b)^H8ZpRx zZTi{lul5re?e)j*aPMKqQ+M?pJpeeu7SAN*aY_k9HR(25&;1S7Q$t?Np03mowS@(h z8i8{Ggg7I9&evT(CsF--P>>V4L@A=&e%ym`zt2^S?^2FtfXEfBxspfeqrgCIb!9bq z_5my<)L2{T7c6?}{Q&T&X}ZT8K_nsbqoF@$>79y~C6YG7Cqa`7QtnI@khaUw*@fKZ zQ!>MKI=GOEEW#pM7?aCX{Uyc-n#{qdjl5*TzQy2W`=_}lXG4_L2=^u!ew!wB3hUOh zMV9t`Ueps_hOBGhNhy)U#bM%j_dDWOmc;mHA!VfLY9mpbGYyr(!V9RDPFm`1t|ab) zg>k*M>XHK<r zFQ+QjRvzfVl#pR-Q$#&-iL4!anuNN|p*x_KWsp^pI#6k*@o{KtZO(CZ3Pf0GoFU1PmZ+!NIU$vAaIrza#32i1)&g` zBEk67IlqXBUO<(Jgh&t&D)1y9IC(e1oum^a#5q{3`%(iq?GWP)6lWe{9x z4YiL_i2*JPJMq>!QhMUve9+jiz6#t(t5hZ6r4Cmmon>{)sFjNb42*8e- z!V6wPwQZdJc*Z1)UV#L3=HgNr4<?lQ)bYU~vLvI=^U_U7^FE&bjjT3?U z7mO(_(nW8jSID2jZ?H?|Xu*eB82WDhb6K^UznoQ0j;*~W4W>mKe+yk9B`_G`PN)_{ zns?}oEUS4ho_#N917UWIdyn*2M~#-nV05V2%fg4%4WIx3psRC=?ITr+{jlVZ%u$&= z)|@6k%o7<7xMADQaB5b_ZZZ{+!<-RnMdQw$Q%VDa-L)|!-B+iH^b-u>betYqArjYG zw;(rjB=~CB-m>j8b?838NT@@F1CIi&vQTwohL+io!O@K<(~^|%f060dZ~9ZYk~WRG zH)mH0*)3qX{Sul~02RTE_zn5mD2F)2-CFCTn5Z`LlWA6{8C$M_&^UPO`!4y}wx!%v zRnO-a*2)fKKrL871Odva8oCI=vSS`vw%N}y^Q~md_A;qtvzwv`vs*RS9 zz}jpn3j-pgChgAKfR| z#vl=YMZ{HXiz_9nm?E9y-i~#RLD{hpbk|G1z~3)HC*SI}Tm?I;v&78Tt0TN094z8P zG;ct|KI=fIk%}L`WZ;M6DvrjirYIEKCr~VkKE}j_v;flqhxrGML8k5U^O|8NGHq3& zIVWn&VK%wCQ;MvSQT1GCJxAe6-=71z1myl@%O05{qfWt9=>4}3&-U|R;PM~#tbqA0 zJw;a>N0@%XiE+tn6%Zz|Y2k!PR4S3mS$%iikzUzRhN0XA)VYIZ&p8stE@Cu=`L@yQ z`l8F#M_H`RwO=cF=T}X51wVM22X);#;N|pNPioFwFTIv?xY44R#UVsp>6X)2LOk6F zxIi&yPGaFdJj&Nu2X*khIsxm9H~OEd3NY<3_UbzID_sK!RecPkF}a9YCM?N63Of#8 zk*wd7txICo*|fOZe*fl&a&yu_XisK&^34<|D1R9~{OmdcC`! z=33??lEB(#9&y%5_#DHmvW;SGj$B1Xcb%3H+;zFsMV}YQujro}oF^wJUk!EGe+pSl zGG6b7U|_TweEpZkU; zb{y&rir($U=xX)%jCvdlK_|ZZwNz`(sMM(OB0+GZ?CCqw7Z7K{lMT#$W}nw~w6@Ts zHj_+5lU!td7noswbl5K{DfdTX0z5VY;PuQ>4Qe2&3hCC~wjFDY9Xf|E!8@6q|G50z zwtc=XqDgUHEfYV&D#qG#Zjh43C+a1C%lv5?!0s1n#CiuSa6bz%=jQNk3W9&i8Sxy=FZx`GIMgr3Jl3fS_i-0zFu^r$9)Yfd6oo83%klh#`fC#@*cFMRKN&Q3nHHT zad)u}e)ilCQs&3^FJ!z!$j9EVy%<{ubqMv9Y0KR)LoB?{N>m7Obe&g}B6b%?W0B|? zt?3(KiQl7P;Nmo)bTGW%8AV)D{aDmDT@;huM(II6a5W!Zy4&RYky45gSz*D}!#(qY73@TrO0#9iS;K z{#8FL#W!?OO%s7dZtj!b0#3nS6;!chVe&w;@|9yNV|rMq*cYNjvXol|8brI!wV#?8 zp}m1ht}-|pGA3=*1b=4^fgfj#V8prz&Ja01D`QU%-W5#+h2xS{_QyoKpWib&EU%=b z8^wJsdiGBlk_D*4YmDtuJ18-nTng5=X2`2T0u2-&c@~fi^l$OZSqnd|VGp-qtL@ll zfLEE>lep48ziyQ<71P=B-wr#HbB4L+_mx|g!Nr8X?#mD%C>$Xz6y|%tdq_2I46aOj zP$1PSfzjaf)ckfPzCIZWY(jz_$57h;Q$QyDsp%cz9EXB;DcL}|lCsxg46>^BU7!Zu zS(DY;+<7r-jE}xJY%%QVTBsu~dwb5sr=jBkE&4Mg}=beY3W8bX4qv0fcjdY7t!tF%m~xm z6;JL?xbk60c}29O-Nw!zRG~kIeMEgX&ikYP;aYbGC*y0FD9-wU$z=*%C-e?qkaS3s z0e~C%SGf6sQ@wDCOCmMNLMv<^+Q(fEkMJ^{MrXJ4m4XYdY*Km}go6OjpeG3xquYVH z=oJ2Rr6F-Ea}&SxfFE1hH z%-C>GO3rAj?w(%R2JG>*6#wr2`_5tS@HrPo)ix1%sVeLVTkBZ!9%60pK;v?H!Me)^srEQOUyR z3#E6>qg02B9QnLe6^Y#@KN1NZFJkNRwhx8SFq}>t>EPP@#}Yw??s< zUD&*Ck-O?_k}t=p@lzCx2^1%yac?(pF7m*yP8Fc&-?4dMzL`DM&ebe|Ed)b}sEy zRVgsZpoU8dr%h`P7I8E~b&`J0I$MocV}3}JWVVt!*DC7BQ$Zui#eKTs_lnJ|F?-m8 z!}g52RYGV@u5SO+rStkoDvE|Xe+k3kcPezurE|()vy?8H&6&07>xXZbA%4FJfx~QL zv=O7lfy0Gs(WP%W2B#8!5Um(23ODcFLr@E(T6#;VH7BT&DaAH5z&Cl;srN)aMjtuP zUe7DFqgSlI<(g3U`-_ak10PjG&*TjmNceDbRM|uimL#Ap4T=5Wsy&Uf?SabBiND%J z3Vxy~$$@QYX0-iI?Z+N_JY5c`b0O2)3#(3)$Cy(Qb{=9pYen1DPxZ2{x?f5@a~H>) zw>dTJj4}qWtNE^(^v}uLTeFc=hX!u8nUa>OG~q69SjjuX0<-PA*04_8i6?j@(M{q* zYv{@Pv{Kv9?B%+PT1WP7=#3lOR*T5@QENv(iLAEDJ^@|v+j;oYYP0M9(nw>6H#iPR zsugUwss(ea*D8w3YYRN-yI!_o1XRl-Uj?8;(M2zKL-{I%_!%7rn_U5D55tIrmgu^4 zM;!vRkYj|f1?2Ld9kXHLarBCysp|qB1Csd9E^?+_y{aU7=PqfIq6>4anQR?^ZZA1N zPlD$J_lS$9>|~rKL|@RMFNY^4Zycg{I!Oonpu<)vF17*hTH=0yI5@&)cd=-`+t6>; z%dzgI%VokjyWl1f1x5Ni*eYt-W|Gc78VDOVkJlE4QcSwf3}cdz$=7ScPe*hZQ5%d! z(*6D`9Cm>S{>N(;*WDlQF6=Yud4+JnvX}Jp^0ApT*GQEkyqR8un}#6d2m06(g%hxd zYmem6FwrNrH3rgsxSYvDVq|IUhzl`2&EWjEC6}u4dDgicdIJj7WYd$**&aGpI;5hl zs#N$U*_WihVQo2xrb(HH^K;G+>pr1TG!YszWQA{9RZQ6K0hqi?Lvg}*`)Zfp5XTpj zX&`Q9151ObR>DW7)fFDCWdb>!do;` zTD{^=a}~*W`&7G`$Y+^W@{$hI4{o3#ffLeAo*A3qE36~S*E&>xJYYh^b!q!v)v4_m zB29Es4~q^g;?oMT<{`-kdAKyp*BCzqq6~Hx3TL?5OO#h2syh{GeEf3LCbX-bUoElYD!2PU*r~+cpK50L)%3U6H%s(C&*by-|rDIHVLie zdKx3q9miYB=2%z6>YPnleLAQ#L!1Ivc2qJy7D@r7q_YiScMR(tf_k6>p1PP&v&|Cu37Vz(1lt^@ zQ31x68{?JSY`BJ6@S}wM!Qlu}ZKbGf%yv4*Tk64!B_FOqwC2rM&;>fB+nPMnDyrzI z8cs7w@v7cx+2C}fy6oY4qnUM;t)TYA;EmbmbW+}~sj8~0hsdZ}d0e6*dB zF+P|{k0arFW)V?k7M18C_+^YA1S9+eIpK04L+%}-(caK*GilrnkFv9wRV*RveXuxu z&strm5GxTb`hx@BJ?~3)J5J90GDD6JZPmNCwkaLWAV%)mZ5kAt^737W6D%?df(`~s zB>X9@`-K4`jyDuI4hd9o@%!DcTs(e$95}?!%`;v^4kX57=hF7qOG|NflPz#Rq`u0< z;43v5Sw*bdjP(XqDAEjjOuL{=-rm}}V>0g3a9d~F&!o*LU5 z84VkClWL%sSjPYL_)dstYBx*# zR?pI|vf0urAGz~olE|F!oLCN9DEB60clFT5Yn+FcDlbDx=IPs?>Bai?@WbO_6fs*n zU-%Z5MGBE+7S^i0%A6=v@TCO@i;$K(V z2_dsIosasTD&Nc&+|W7+D#}jEwTFq$bPVe$t66Yda@Bf_C+H6Q;FJk{Jf4!{y&12B zeC*#!?~RUH&cBx0FXy~1NjGZkqa1sFZCa`rteN;J(B0mK3(m8!W~sq3aukZ#_kNTq zMUNbgI%A0?Gk#S1mGsymkrL_uuM+cOX$HK`QKlS^e&x;_VQW4KKG}>wRyOGWUe7l zn_e9IAB&0B!QNOLbWLg0Qc;h*UFR)ejfb7ODt{JKyNI6HukIkGY3OP=`L1hWHBnkf z7DiDc9(eVXD~Zl}zUf<5>ZcH)dtj48_Dpvx z`tHz3FWac};g0cU0a`dJqt#GUpGfO$;BI8(;U;rd5a&q6c8tbEg>rKSH&IGnrsvP( z?Yo04Q7-SZ>y2wCe3*7vL-F|_VlIIz_d>DM{(jYvzwrlRwv$EQqxnKQt3Uu?h zPNQx8{vmJRZCMSQ=s=X}p`ozhYx{A|OVG%mlBhtKH@{$R);t%>nXc>wec52ziZ`D{L*mQ_e?)2z(Sd>s zD6n;~={R`z%-9sh+OacI3>*}Ie(cf#HndjR2*gOCo zmiQ=k@*AWC3)d!FA# zE!-f}Qij&HO+qeu*L(>xc=zq*ra!yd^?OF*WFb+^I<@DBGEPKzG$YYC=EJKit7K_5 zCmh-hhB8XXH)~0<5@Flau(ZKJ*FrCa%z6WBrKfA$Sx(O;RS z)E9fq<$!r@R_uK-(T*N;PY5c8aJS*;13gp@RHD!Nf)D>igD*(m>YT)~wHss}4u-ts ztyu@@0!%7 zg35I9^HS>b(J4WcGkj>U)Hf1+bo}mO0BI&|*{+IEXMoyR$a201NQSJ=C%QY5-_!(7eRjD`yQiil z<;oGs()1LyD$7%5O03dG-Ki3D)o`U&_jbkzz}%TZCM*ipgc2&4-InKC@A>Bbr4zw1 z#EV>6=M5E&$mEyO&`@l)7>lN=a3W#~>gJ+s9>z5hJpaa2dsAPm8=qthXh}44*vL_j zgFPcg%URUdbxIj!-;%?$j$U*qzl=wN#$eVSxD;jwY#qz-xqvl1Gl9~)jz&96E4Da} zl695=jpq+fy(6qI<2EIlTLIRNY3@t{2jt|gpqP#we632z6+`Ec$+xJG^^A$f*0;phIIl{&93?)44SfSG%}%p(Hz_*bCwofQvzl)r6`o%=7;| zDKo1xYYI;LHdi$j(3?7>`KUi8j`ZnZeMDG$M1`1V_$`dm0zR3NQ4dlkxJWg#1?;%L zAjklmT@_d0&gc*AhMgexpUOQ%{l2@jQ74tm^4Mnt1FM zC@fY<4*li=9bFwslCrb<22ZCLREx-Xqa-fQ8a$DnEdux~RAu)&RcO6|dmO>rE+sZK zek(=W^DLEz-L$kB1!d6e$ie_7n_ZVG+GehACdcxkrux+q5Yj7vmwif43;Atgb2^RR%g$q3S{vIi;Q3sj8w(C)NYsq@O zRkd#K1=`MuCO<2Xxg(O3a~^UK6a2w&xS0A7GShSo&ljDp8`et<5U_9HQ+|*_jN~^c zh?ywIuP*8{9xF0k#e_y;zy7Fe%|Kbrl2sLYlN-1`KDp)}IoRDL9|*tD4hz$cLYPZD zK!Hrx?3ULfd)*3sK{F>C)Rt(SxSXv zWu)YTCI5c5GEBy5;zk)N+)rn}M-_i%rjGPEius5_xak^0%D3`-dcx39h#nmARLfZv zIs$7_N&BACc|z0p2Fb*s@tO z1_w=ItGBxc#|knHvCqDr|f6xJdmZH)O$Cmbh3OQCZu2?SxfR$fl|OrHDW{` zCA!fCqg5jJ`_rGd1jR^>LOel-vu&Uc9NJ|Fq;m2C)h1w zI3n?35NuK(KnOCytAsG*zWYpPCx$qf&Teokf9p0N_QE14R8K#7nmK0E53;tg3nP%| z3Xn7Bj=N&HUW~G!RKGL+_|WZtQegilesms-XC4Gb0ZKd?W8&4m@IbPX3{E}_YtYAU z79M^Jw|zg>vaN%3+l72U?H+QqX${X2zRSg4EuKC@7HaPyh5e9>tgK19$hc&SA~yPF zMq)$Vv-Uu(K7>YFXj)_%^mhZ-Ci2gG{~T!~%vM%+I$Oe6bFU$c=Axc;mNT8EZsX3l z;d9D7OMqut3XKsK-^hzu9h%;eIpUtHkSnyh@R6LuBWM?6YM2-?*j#Y^b$sV0v&Tl` z(K$*d$lY=@!=kz2xAR1o8|Jz~p%*J;Ws~&8dSntid8LI{blq<($IKDhbj0nDm&NEAv=8@t83#WS=QUSO7a!LK=Bm%J2QIo^Rs4LEn!z?A&#MuaOH~O9fSP*phGmj;d z!wWKu8-2cmKA?+mszd=%ochkr%H=8Ull%9<4V6rVb2}Puw1@&Km#())2$N*US4&aV z0q!L?+sV~sLnNA|Xp$y8(_+La95P4Cp5J(m8NOk5ycW}2WaUNCSBNd!1RX^IP z6%Rl0e6iN}7RtdhD%fZqpE6We0%>v~HT10^hYHV8SGQaQs&m(o5<#sR41_Xthncku zMkdO}HL^!r6h;3ied}ZvFCahW__~9-@;s%Ys^EyN(kUA0I-PkbRO{`&Mr#p0rK0E&QGA1T`K2#by8cIRikHm!0fg;PQiKGOkxbjqlalZUC za&1Cv({1YdomG}*oost_sqGiNqNL*Qf)rmduP;Hi8UAjcJ>YrBbWlZ(*&QLN{I z_YVSeJ~@btYgwqY>N2LW3hD0X4e=^Cz$T7-)sZQ5Eb9(Rcf-B+dVbkyUYnNdU#WnT zvCG>7vKoSuG4Ej5=_57<^x@*`6}1cV1Aa}C?NB0Az>gBQ>A~hZ?Yr=ifC~JQr}vHY z4I%)AQp>Y3U0F83@-jx<%2;K7-UBSI$QLWJk?ePOE#g8kz|NayZkIXY0aRGn{2pVL zAi)ej-|cpk>K0NiQ&r_D)T*jJ@mPnVc`4iD8FGWRB0l4~=vE!SYP7tisJq~+xTKeH z>X_k*!jKS}#%}-ukPLHY=HA0U`acpOkrOhIu`>QQ05L$$zga_8-P5a!Tq{yyFn8R| z&9K1h-MIsQAM(jPndpkvJ5doMwXE6?_(cxyi^R*h+MY<($ zcp4`ybtHF^dfvmU6&BwNj@+%bF6T$inZIMeDi(Y!(Sf2fb7ANrR};D0eo>qI-3#Q7 za^ox7DRF~!cajZTk96`4+Gy2Dp@$OEOwexcAx*4SKx}koFb!smNoo6>mLj!dCrIvz z{xVYbWgT=rdF&ae`{*+Hp1As^8r+YX%25a8}T&u-1s zG+To>p7BT%;+uUuj;AiqQgoSsdxu?3K@AA>XRWfL#0w~{l&0wtq?e36glLhE))qtb z)pk4jp}5C0yFCL8dB(+PJ4U;%I1RMp`(?cBgAMzO?x*;EbqL5yLSCvgO;7_sWlGqm z0^Kw;d#D6Cz~m}QfSM(3EUI+CI-yypvGR(ilpep=#{-Kc%Sc&;q8!O}8fQWW_#uBG zlg&}{FHnE&10u|kHt%-K$)*b^ae7&%6XynYY=?x%4S{W#GaAoe#v|S?A=6MtE=;NB z&|a}F3Uu#o>jZH<%QfM$(GZ7nIBwkrjb-C5&pB5+#V6yaqL5iiHXc}|;9l`KOQ2!9 zfc7I9bymHA+jci_mDOxh zEOuzDa9Bb!LPJ@p!>~rwWu)ASdxVT8RVjO5?dRu9JM_EB6~<`BN9PHB%guc=RsaKG-?*LB5U zo;w5;!b;MX_vj46Z>}F%1^^eIB0^XRid{*h@dQ3Fi3WuNEybM{UGhaVB>3=a}<4~2mR4pwlvin&!DvD-DO7O>Q)%zXDeJm{E$r^`s!x~06??@uQz@N!K-m?P391RtfIAxCRF#f ziOT0?3F+2_o(v|*O1osPHzA6sJrPhJ!F`7ookD2su2>IEL4c>RT(=FCU^^6Ao$y>x zDd4`Uds#tOD{fsR%WTxVU-m5%QIL+U^W#P9sWs=QM~ExVNEQM_UVC-faoXJ_663P5 z@W~<*Hyqrat*8s?ix|{Mxk+!+#AiuVat}Rag%e0{2d>l@ZMQ9|Sap9vVsI7huBnV7 z;4Mr=`2gRN4HGm3!GSh=&{wLCokBuv)Aqz-735~iuRo}%m&xr>A~%&1B$NAzE<=JA zGsYRSC>hAThvGnqUOkctyB)igP?MllC$-*8zzIFs2Grn=y26HC9M}MgFPos? zx=wL>Kg_=-blhEKI7Ns!d=SEuo_T$bCz$D=T*UyvIH9wY61lLja?c;BR9=ZJl?f#` z!6QVY7mJPR2;X8F5y)+jdoBY5)}RxT+!|Bk;uNv7YXevnfX3PZVo>c~S$A0igf@OX zlOuaQm0M|lb0GpwmaHAfup8oWm$WyJ&82j2d8keGM~gnIA!cBGYF4m*HNw!us~ZKJ5yJ9^VcvHTb!VBYjw^9B zB3aomFs_XC1@rUlI(k(wa*gWSyniJIjcwbTj4a7sCWO&hhqGj4H4u;H%HEKUa5|(R z0Iver;fF?rDRsQ1Z5&kQ8QQn2@{H#SWC5Bt?uq-AyN=TwBQLj$#on153o{6#M70#5 zD>23ig{g=H;4uPp11m;+ujeh%$3}_ISaic@&COaNh-^#g9U%#wG$2SGMykijhFlqwIH%F} z-nFT|2y6&(+uqKr1jho{lC=Y}+jVMrVp*;o?xj3-YDlRrd&_bVG`q?n_gkFFVQr1G zZh%c-`P@owb&e*Fxr}A>>J_^a1FcrXHs6v4zEwt((*b8k9b#yII_m_I!LFM0+(zU< z3c^elyPtGnT}Gq8Y$#-dZ!kbrtYv)}=6pv}B6qjFQY~5?{NNJHC!>r3UV<2mKd)BG zl~{%Dsv4A`zZ?Lp8JUiiiNtPzW?TtArBo7%T!aN5qHYZFxv}4&L8L9ifF%yF?fN*ClB$FmXheaSIuJvM%TlHbmRO6$BM)4{ReYAOR%27ZDcr3$A)vz;Ap|5~5@6F(DRj!PqUcUYgX67s za*&vw?Cks_+G(a8IZN1i+p+hNF|T)@9K=h0p7Rfw5SrLJg0$m0+{!8hT~|VTNi+)~ zuaI-=YfSf=9bzBCI*w5;0mG?zH`~RHitg>O#dk!_U2zXMtIF|e7pJj4s}^)WAFB-5 zOJ#O&N#52pS)7?WlCOf=?QYb4!H0MOX8Ijmi@?0=%Rmkk3qf2C zpOj`?n;U2&K%UtNXXDx;*5qM1DTN(DSz8#3n3_9ganS9=IFEaG!8XZl2V+pqHAuF- zLsizC1$s4%W-(gDstih$$|)O$nBJH6*PtLbF}2>nIK3P8juRi$$`C3@Xk$R!p$~zj zl62Qi)2?W~+(M!>=!mF$UAAKL+?FmwLEAWeZ)f;LbY+}@PR_7H1)T{9t}eEWd;Z;>Zo0rhg<~qE(va=8tP_oUqHyL(Z+A zTJR%RBtI&u*>Nhv3Iw_Xj#|c~6nHDHQX!Y7Nm=T$P-ue!p2BXX+Yv0MI--YFhdAYs zznV`g>hdAtU|9mWYA0ekv?A4-rWF97C+DH}dtR8^mwqIa;Z#KRSTL#*;nVBavdg3C+}{Zu`)W_{g88wzn9!gV8U= zRqoo@R%qh8NbO+;JszuRYJN3vlkuA*mH|THlxciD1Qs|0C>sIGG45a?zA)Wu3Y*Kw zMN|ZVIxLFkpo@DLq4`hRm1lSAoQdqCQrAamaRJRGpL1v$bDQ%I{r>#;Vq#Qb8ZD~W z(9bC&9|D)&`aDVJXHvO(I?sgD$f^C2oJUaYLthm5ej>`(0(167Jzi_d&$ z6yjyl5*0aL=bW0uyFFK4kB6>$^i(ukqP6-~DigkK&H|1f7EuIFUd&)J4w($T+{ZzTqXQ@FPp_OH$!ES?@o) zYyC_b_4DInvZVffqz--v`+3RD{m<^FIkWapOCIE(o4oiu{VxbU5&(ZQ1u*BKp|>Mu z1r^O@1khj6^v$T=!AA<<1${nJ0I%j0z{s=*5u;cUnA9788k50{fjM4IH?zTUT%>@^FWGW zwiY<{a?GYefFnZ8>2boLDh6g9iuOfDdn>{_Fs^e3<*4(=y2(=MJiL1+QZ4K-Q z$7_A00w@d8Y7-YbQ~@&%)r01ARkTsg*sARqQ#ty_0&N@?*fc%4{NTqx-`2gFby+=*wM~56KeGg_AWt|w~hA>w!8aA*M-!kbrzs= zQ8tpiJzrE4i)h;t3T2(7iD zaxk>p?BMvUo|YA_WQ&_{%R~JQj0Z5)^?VNvsJXSV!m*?~e8T0+@wB_IMo$5WFl>|> zM>k&Ml{HXU=-LTUNla)bYd4D?Qb}H|_e!i+J>zHj=94yM=qpIS(oeaICN*v!Umlp` zk#qCI@yfx_Lc@752A*sTbRZ4$*Vf(9ziis=PMs#x54>Z|rk(BI3S5qGzW6%VwfwHY zTMTJCf36|t&ZlP7`kuhe{C4lD#?%DDBlqa^?BpZq2Le|7hy2MsJo|^InV{j9AJP{C zoXkWVKhDR@1@YsL3xPy6eM9hMHqR(ZRv&KuXtrloit5Lo9=E-moh7_IHv~UC&C~&Y zKK0x$Kl~R6dhX08Q8!iopfw5~F6+TG;#O7O=eL=aWKQS*?8rWNv}SzvYR@jLnH|R` zJ_UyGsldnI#oaZNpLzI}q6)&GdPzqAU_E(mhJT~~#**m|1pS*@{$MXPUMlytqRZE( zIKO7kzB9cxK{Z#n`+25yXcM=7e0~bb?3W*|;Zt(Wf|(C5dn&F&knEEGZJ^v-E;`uFb#@6d&9D^sDC}D|Ei6>;RR~-d zkKR0tf1zaJ>m@&AlF#?Ne$jWH|5BwO@KXuE>xO@*Qa?3AKg^_AKRmg0Fe6_IY0Xvb-j>s zyob5SAD))N{_9gM{vr%}urtie8ULKQ9%kN*XJj_hWxy}U3;Gr4 zMc)R^I`k_2tH9Qk6qi?Cz!n)PYoSZqyxlftE?)0m33)s^%2?AlX<=wuNdUo)z1RNf zdh)P1X{!U&3QDyl{q0chd1fap!N{VO*nXOLZ)%KLiA-H@PJ6Z>ZbuI(Da<{tyYR9( zBS@~%S|4KqW1FI(mkBglCyG@Zo)0@hD0iY?E&^{`PtZ`qvv0V5V)Mp|dPh%(+{U&m zBBku!wgUsv><%Wd)5-Oz%?8(u)!o>pit3$D7dkeh5a^wI{rro}n20E_Bxz>{&By`( zNRECJNBEl2`1JS$$}pY^Q|)Gg znepnAE~S`JMPMCudFK5dM8xF)?Jq=OFrOp;$vfZt86_L`Wl8N6XO1oQtNEXL;q!P5w1Iq*9Z1lNV@Pfa@A>jhIs1}`Lq z{m+xZn9k1dd72n5TKr=4Dq*T+JzaHc|2lOhU0vN|x#J_7@bb*p*@V9$=rP@WktIBi zua_{j-@mwL>a`!|vtO{-zpKm-t@OC`(=z(w783Zb2Pn^Ua#M8N+sWS`V19 zj=C5-z-v&~Y&pLJ1evu|?+-U&zm_j}*{bCZ*OnO(SYt>0T47y7B^)I63@7%7y|mpF zo2004Y8#$6@i^#db=AY;eP!yItsDuu4Q0_iZ}B}Z?FWi3I3Qov1P+N&rw`8G){0Ug~u zlun=BF|N8~n?^E*L#>AVRx}7M<#dyEhn~>Nj3h|nRHxdW3ScW$0!BvL^4J-TO~lg{QXeR3KOSD=s4^y*Q-% z!`{Y^^zO<4ZFE^4gTX#AAL_wLmV68LvilwoZD+ ziaqzVhia+7R>#1Fprddj?Eavst=w#YY4n904n$itN0oXb(qw<#?#87Jf!n4w44yAb z*TvYx8e~ht*RfXU)Q(q1wKJdq;Ivra$_R0Rt$$4gtn4skvXwouJ#p-+t$JAp*6||n zdNNEtOM>*s0p1mZm)xBth3qt>tTRe>uZM_ zCkoKHqF**?D{Scb=ynKu3NtYgO8+oN-}?o%Uas3>IHh8qgBT7^DkL4y%ILQNlH zU7zeQTOvd(Pw(>s8m%7Dp8dCWn2j*O&eoa29Gs($m$P-Q`HWH5)2AhDXEBIQo2!1W zwVQ*mSx2=FRD@x9wSPaaDGYK6*h)qSR_e;Ofj!9%}d;(Ky7JJ{D4-YweOx zK-}9`y-5 z=7d8QJhP|C(FMczUQT5tc~I9I=5858>}5@wp_e&^fMit7Z^_-kL*$W>?yH*;B@|_e zzB?&wgeB(9y0P%-Vm}iXR!7X~WkziGLRHn5F+O3mr?#y+qv99+C5qy zRiC%~ysb@0`}A#-8hSSp^3sk#Ux9|BZidHBP6@t2oEXIwMm(r2i-1mk`R zlYE-EJY%5;Li*&wPj1ruynwU`-OT`Rg6CNs%+vcHAO9Y+`@cg8e}@wO4ki2th7vvu z`hWeV<%;JOj#=n$T&`H^@wo}W1&)U1F#hj10nb++(wF8a^x2ZVG!~Pe$9d}gYQTSN zOY{-xemknaT3_n_vHH?~VSPV0zX<;Q-h}zi&f@i(81r)8+t-+P{Y)e7vDWnXqP4S^ zblWC>uKu$uFVAnOTix`=t(xiHIlePHx1X1V6*ljdkkZFH`G-SV?pvB@8O&Tz`_;9W zqY+=REN`s@^aqSp^RGPo%Zd`SqHX@N(%kI)mzBj2?!4sq+64cZ1x_REFDpygXgsg7 zPuApPCe3_8{?C8^Z~BSN)2TOu>Pe~cOXa3dQ31IfM2m z)=m6&j$!86d#Ky zrTQI$W}RRsP&W3MU{@RP7$oF}t3Ge;2@AR#?+2^nN#(RHN z>1SR3bCrHx%lZJEF!X)k^!cEeOIx-K;Sl*6G=8@+@}Im>3dISO0!irgPATZS?39|P z0PpOSV&*scZabwg9D+#-`d@!wr&Q%W){@^!hG2>y5b|r1Kie)vfGGL0Sq6o0@cV6+ z!rpF{dJ+BiW~u+2%~J1n|Np>Nsd-5LIp+3dW{SKvu)*LiI}v`H_59PKn{U18uZU)W z?|8HS%ieb_yNV=>{>r>_@8I1$+z70M5yFFb1B6EiA*{asBC*ys-P^V~(;cU^LJ>$S zNmXTKrK`;3`OWv!VgBa%FJI1mVYb|tkJ9EVMZiCmKk}BXu_ZOsMb^AD@n>lz7zY2F z{zY2J`b(drmEixzKg}wEw}%O;uL}t1olr>$rrLpo|OM5tK^@ol7F&F{*bH^ z7IbA!sh`Co+_P}@+gT;TLoh~5pLskQ1ODuKMC)p~Yh(elb(u4E9nKuiU9h0uzSPSV z2z=0GAT#;kS|F0_A_~;7r~|M@#|ql;CBy6L7#5Y&RS_Sj^QbfwkfJoaHFz|fi)d$% zVRLsqA8Z;JkO(%jD4raemtl6YIQCNRkb6b7TJ4HMc}^fhDL8k5G7+owK|zR`)5;^U zRp=47+Yk|V^Df;bBxh%O5Kr}S;35JwiD-ZWSvq<5CU)w}+{pvw4uiXzCfCydLbhG#o-^3sZjeH z3HA*j>Ef;-IQF35r6L2Ea%({;k^%~wMSJmwrKJtyj3jvldFdHHWdJ9W$)hC0@KkAB zn!@xM)nIuQwaZwODQrg}IrNKW9WN?ly|vVUgsut$AB9uGgt|Qp^Rj)6h$IQk_AoVm z5O?v#K12jVJX_%9eJcaxY=p`w9J4d3R1Zo_m@Cpw{FYThF^vLJ1;;dxlN@n_pqAMq zGcjK9IdJDMjZOhIL8>!Mg3rVGFJ+TFPx6uUv9)&5wv&AId)Xw@Qz|pd?p0=q7*$j( zd8sL0+aCo?vIOFA+mew^bX!G{y;B?nsiSn?9N8;C>m#{PXfcn$5?+4xheQp(R9itE>WS!?RgebGK!gBLxGDB-s!ezb~64g)O6Ke$1lqnHXnWD=wW`^FrtB4H%eEP`TO95Ad+X&VLAKBT|NQ)d z`0-HN*Ek^jPn;jWa9^AY-?{TcobENe55rj{(o-tE5q-V-4P<{xwV``%sVBB()Qk8X z^-6{}wj@+j%!{CWA*sOGv`w%LF9$LnW4Vt#)5nJDN=V2sAFuM_xZ1EC)W@VacD zQLkSHb>E0cecZd-UZJ+#`yr_N_UW7RfiaAHk^hr9VI+=G(A%7z=K|1n^!pJ-JiHJ1 z<2+WzKfhmv`TJEoH}99vnLnje{gP7sOGhG3X@QTnUkpAF_G!M`w; zxW3+>g8RuRD_MREc`ytm;peg8b44)(!?5oW2!{|FBEN9Mm*?;qIJVyKU1((EKNO|V z@8JGfKnzC7?Wpp5fZrYHJK*#0$55i{BD_q>@BcW2y``mmmF*y6Wu4yuO%mkyX!R*H z34M=XpFuzQ;hWGax4{tlHqRe}#~|{j@RKl%{x=_{x}oB7`&QS-=pMb@D%hN>H9f6^6V1xy=_E4VSXH*MBq1B_Ji;^@{ zg(p|ZM1D_{eMQQ=gZ)a9yxL*e}lY z|DZ$Ur@3s;Uf8v7HuW>|qFvu}Abw?9Z?MmQ{J`<^SB!1?mpLh0(%P4@EZ)BVirM|C zEeXT)#;%{FRiFq-zuDgZ)w~Mie|w4;aqdZcZO*^F zHC+?PWzhZfPW=AK8T2) z6dfpytS;?`SPJwj69L9C8v84l2>3t3<0qB&|AYUQ%#Hktxi>rDH(0*}Lc=)z4dzA( z@`C}4kgF^8-%^dwB8xwjyPxL9SGfDL(v7EVnchn`;5Xr3#_vq_EKPr}eEqwMeEi2% z>T?19++}&;`o^;SeOBTd6#t)UeDP+U{P!K1Z_wgTZ+!8WA;QmlbALn+&Htk2LVu;X zwk9M$uek_lb>g--;1?Aag~ES{dYIqW?Bjo@NB6fh%6`>S9Dap@e~ZUKtcDi6u{Hvc z)JC$u9&7);zA*o=_TPrJe^meqzg2+#9@d6Q5+#w>Y0_VhwSQj=q5qw%{UxX2FVET^ z5-vZm_FK;7PqX&wNK@FGCrwcJFC)x>b{=Z^W{=q zZY$M&&sP4*ljD9*Q7#MLNZ*{X;(aN?h(C#>_VY58tt>w68=t0d)BNQE0+*z0}9vbTXc z5apFO5{bFS=bphJb5>Sd6&gmYrZHGso=^bPt*8l+(@ql(8P@69vx;;pM0Eu$BDoG2 z8dM_7qEy7aI$5HVGN9msKI}#-ITy|g6-%KXdm>pxiT0Qpk1@Wjx-M&-dG8#WQM9)w zr{A;VtV(TkHRs(Vm!fjg{lGZ(Ae$8k@UZB3Up*XskEES(JRrA0741o!3=yvw28U*7 z99e~J?DIw5N^(*!^!6dTmxVa67^>wujp-I}$t687?DZ`0CTjRo__(eLhG&RnI;W@56(7sianR!?ChiIRJ zP$0r92gJ)<>~32nm&!yJ?>=@mcybuyS2oYc*X}(+on=D%_UuCtYS(qw(*U{d#WHH>kDdW=PJ6XORB03=V)1&mzCUL-0x1Rs}l zFnWNDE-(!yk=9rJqX}Vbh=)C6tqlA^h#=9W>xRLyLR+iH#y#Hvyn+)9u&iR~`a9Qq z73NAk$tJa_rxc;e^|cozwD9@`IgWkYpk`mEWOLZI9zg1Nq-sYZiHDTyomFRpFo8$wH??qxih&0X}nDtqdh^z&tiSMud5pg zN4(Rzgo{=>*0neLwn<%b{dBb}3b~*NFwVXP1EC6OcnL^#gTkEOrbu!xgaJ&T1R=M+6IY4t>sau>29C@4y&p}nwiEYWV|jP7 z^3%ZUageh?z-VgOq>q(O>|%7hw=KPR{RaMZg z2USfT8W|8Qt6ZF$rX8!U=oDjanZH`E}4Y0cPu}1L&s;@ zBZ9+JsD4i1B4BVb;b(CxA7V7I8Eb#FZAHBqL2NY-{urKfFE$l%tMtEL#!Qw7X-UMH z;<-xYi&1Rtdv}UgPACAeDb-Sg!u%Rdi!|`m)bcE5?J$7%W%eW+N;r(SF#{HBdz^c$ z**Fk319q}3NFB1(wuzYsiKw@7l+MJy6lW8Yt}cfZ)N zb3s;ovo*1AX58HceI`SA@uD=Gv>+Ao?Z(ok|yUr>@akzw<}8DOi-bOY+V3 z~Qn8r<~gKIhO^G8Mq`}oltd%Hdoqz4lnX}CSmgZD-} zp)JG@P}c%D8OZvs@mAT8dZ2pNW<1#%l@No9?r%G^w#O?X1MN8gLwJOa%^k!aZKEJU zm9D}RG?Q^St7Cdh+wgP+&~l;YyoFlHJ)S|m_nPdDZ6-_;`P@0rRwXQcIP|8S1` zb7=8MF5pBHJsP)dmD00J6f;JU^6Q&T5wqvDM!j$Dp$(dcNF~W`7d`F0At7?qsfB9R2EKuD)9TIih456l zdG3>f%TbAhSH-FzR#8ooi{n&qcWi9NF$v1o12nsWxK%jUju37&m!oIF4XIQjE{cB4 z&fyS{FNF5NVT%}2Q5i%lQPKcstTGR zg}>y?1Y);~U*6K~IkKkC5&2Q*r;G5Q%!#@g(M3)bL7Uojn!a@iq()cRB5ZNPF{gw^ zA36kekb;d(2zJi-p;5MLrTk&>w-JIDJno9It{O8%K4>nKaxz!6{=m}%!!Fhl8f%QbQE$%<8$H2O?N}g8B>@I zS2UdiKgTCAH%>yne%^k7T@ebbVQdIF!x1^t&{ial$Qr-vz3F8gT*)9vOdzm`abTs4 z;RHkA1!E7+43j>I#2U|OKi?nd$uNe*vy8K2r%dLuafRi!1`)3YD#l8S%;47_d370L ze285o_lijng<_qoak3px*h`Jz9IiX_YGkF+?OD-PO^P!fr$*s8q8I2U=z z*6n4$S{Y+UyX8&6-I-7>Tear6Zs2=j9i9-g4ld_w=(UgY-bK!6jwjcZ+^29~NEhXW zuxgJ^9fbZxzJ%A?v1-Gxxha?1y*omE6rzKAA*Q=7%yG0|4vhl!x&xmhAJLi+OVkoS z`WGB1TVmXAmIDRaFg>Oikaio*42Iw6_4fV-%>?5~E@=fi2<+r+uGxAA%QW%p24P)# z$rg4(C7LWE&cY%snUOh0yUXvfAWIL;qFA?xdqEKk1HvqS-bnVOVzsrS(d-j?dmtmHeUlXY~-K+|?+`3Ipm*BQ_ z;JL2OUwccgxA3;yNek|~1RJ7`n>Id=sH*fl<+S0d?_PsxR3 z%w}UV&%K*J`Hle@eYsuN7o)5%hAWC9V}9oI3*m<^X$27V$;|;7sKfRq!ju6rU}mBB z;CdD9*}uh=07H)(DNM65TZ8LJ+T(t^aYQCm6>p@QNqix_UI*lJjahIvtC&q4ks55N zONZ!1<7%F}nt`go*$Y`Hfg7MgTLeNWq!)6m15r9DB*ugMex^HZ(<$kGpWB$PQtnxS zLQ<@g@JQF{?O@iItft0C7owGyo|x{inkEdPaEK-9y+5Y_GZs8XfxSbp7z154iG7d! z`FP2uC6UhjeMh0T&I!xTvWUAXOUo20(u#;@{8>IyiFZ1NjNYJF4Kkw-=BqAK7W7gB zsckp9+#H$CUSyid1>Rznfn!i%T)k!pOF$}I#9?>`-z@UIfEJ(zb_AitJ z2&tgKEosPIQUH5;lQtThh7xsUINu_fi(Bc{a6&6rJ}4Hq;Pjb_Li(0Y7eGTNd(>=T zhn74Rr7Sw}Sk~{Mdm{DPa3u?HGdKsTXhs#VAFi{*8&CE_MaLaZDk!yr#$r!Nx;ReB zJwZY1W+TMORpYCU4^Hah{?bK1uM_$$4p;d=cx3NEAR|asT zYct4BQJAf~KPflqP!~zYkn8&Qz`l1W&9}UvBZ4G!;~}fOP0`a?A|gh$O23JnD7O)d62%bQ*6cP-F)fk4ebz1q*$% z4{cxTce_y0;L^PqS0-)vF3m|d*w0lQ02P*`IL z?3|2zFNDk7cd&lwgYLp&&>&3wP|6I?^GaOmXimU1grbEyYiFXR^ix`x7!Sz1 z9D(-baj7737O7wqGMMc)6>!GX)$C&W`Gh>u0IfZwZcZ0VPVbOWImt-_WX#v+8A`DS zu$M-p>YDkaa|gdT%^s0x5sW}sh|`yGQ=@koV->JoJnB5T0WO{4K~R98-Wvxd-5~=Y z&@rU~CKw&dFmLw_IVu3^brTTu^MH`q0b5pYCD?cN_Kdc2iaNS&VfZEhIZ^W`@7`vE zdb6O)Q+9@SSB~>eJROXIe>7$1!|TF`p^Du@pW@Qu9D)5_!!8#%@3)?5cTDHFL{SUN zgkeoaG+Yg;KJOfFY?Ox?T{)=Q9eO-cA-zN~8Wf`W48RSQq-@dy+Bt;%DXCkGxNlpJ z($OPnRYv%T?BFC?XyiPQ;R?!^ zy3ejs8630gIN#tsc7GuR@05}9qesUjz`1>t?C=1BRA+am_eFYO;RGEJUf#>`cm^Xc z+!>=pEH}})EvhF1OVP}G%1pU+cWn+hka>HMOH-LXq4`ZLd;z`WTN|>#Im{B3*>$di%2I{Jz2i4@+^e7Kn zmb>65*w$SzuCSdaGYq}NF2sR+=OGfiYvv4`7orQVSD@1*MxQ$<)@wwY&&oOCp}@|0 ztl6ztYuc-zUOOkby7f%ksdprXO}BGa-C?8*_kTv2}3S6wUFoSa6t}|E5)Sub?fBB15;O> z!eR&@X{&sODC=Q+V7@3gw1kvLAME02g=g$hpqY>((P{^|F?mp{Y+t})_(F&l zSvmWipFi9yoWr)IB9ToFnuoITwcV95LsN$q@8p#wA&?&`5E*ZldFM{f4zTxohD=NE zv`u+sN> zdVo9JABR<@*_%nc;7)k~_q(cq>V6%RakKaZSv@=M*bs3_v0Y8jNZyNe9%>MOoupvp zAtSj;w?iWK2MNU4z6DXt2e*J^KghS;Za#+Y-L`Lvvf4}@LHK<%u8Ie>F@4@iSqlZS zf;?={ptNg;s$jmN0*NOkjPF23a#Bj_+ZVzHG_+o)m}&2?3cbT4qOsNmN(lhJG{6-& zf{l+_I=}McR8cbFOSwZtVYUZI?$%JV-=qaNF&ugT8PvL&XDo}?*Or! z^BLMhTXfE*(r{GI9>hBuUvX%ETP;G=CvGToiqqWBWBXQ7Nau!b)%Ht|k0}+6Pr*@E zh&(wbxMqjT>J}cCEoACNMB+YlMim(T#g7B6QHrSXP2V6pd=TYFlUw>w9*-z(dn$H> zGPEbuiy2Q-Q=(}P_&#-`m0sQAHtp;a>XcV7&jyk6NcS^*n`@3ssnRYL|Aw|AT_OD= zn|54X-cYH&mUC!n*I-}9k?+*r{%YDGEmNoDg^+2_=6SWn9QzRmb+%_?5Y0(o?C6jp zht3M;CgHFm;R1a$7sWlDfxM%FS=1Z_x>;v(WjTg8%u6Q*FNDDn4td<~6{G|b7*x}x zznPBX-ppjDIgN4XuLut&Cna6vF6Dx>JS4cvIf1K2)ZHVKzP=_JzVl6Qlh`U2z(>(~ zc;#sySUVkO;EO{AHF8+!xh$2#Evj!rsFo=-^l2q)`bnu*&)lMi(^blcsyZoG`eAwS zn?R!VP0X% z}&I~#_9wc`Og5u59-p`yvXni**LrzV5D zxiv7T2DeSTc|nuAn?gIA-d}5opKho&&Apm225ff{64;3}p;6OP9#IOKHt}kB`|?SY zC2Q^MPQcXjQ-w9&^u0fDG(RUJXcSWIuDZ?0GUTUnz)gi<9WAJoQ)A4gd7UCYWtLhj zV2Cxe%ZSH}x>DR+!TAOK4PD(7n%7UbukP)0GZP+Msh3Uu>YC5C;=K{hy9foU3YW42 zk5vm_cu|Ma-NR(}%asb(RgRo9`c7a=At+U_D*9Z5*u@41<2R3saLQ4dzA7x{A}x1)Q#{^_R}D3@>u zF$NidiiU*=X>dcN%~uAD7BxE>cFMF&Z%(_^nt;lHUzAy7^O4DAzVFbS(trLZFN<{f zKWOu`AN-dU%Ne5LZ;a9`k6cGsjf72wd@*+#bhP*NShHOMZ|e6sxO*IFU`PcW)Dd9_ zm-1B8k13?}zXMtUM1udl-myg5!g#TpP2Uk!cQa!2+bZs;gZ##C&L7O2Ocs5N!G!eJ z#y;V);Cq90@7Y;X0gFzl^*PXE8@HMd!cpwk`{?ekgC|Drc0d(@9Lc=<4{FRX2Z(Bg z^qkYQ4m8w%2mI2AJm+`{HXdzO_V#8EM3sQ-0xcL{@w^Fp_wap?Cx4NnHcdOnx}wgp85_J8>dC9qc-KZ9UGgiLr zCl>;k)yR;&pmKXN{AxyQXj-fpC3Xvxj{?#Upl#DN?{;l-0hIk%?i%mdf%Co)pEgG zSwFuzJ`D6_rB6;0fLO`=Fam_)z2s6OdKGr!d@VmCngJ4rwtpze1->M{T& zO|M+dfSS%p9bDD9s{0Y3Px+wnZo(8K92mA`Y$KamLJDY2+awcPHB-}m*!s^8#z>)$ z+zf^NO!pR<0ec&ND@$|a{CB{Y_8A%GrQu*A)Wo|RghqnzADHim;L!#kNG!!$iy4u_ znaq^#ql%Sweq3IbnMY^!U$2h1;W6>yrEMg&u1+4kNr8~R!r;pWyV*T8;k||nOXbJg z;b@1`8=^*+9swWlB=graH)S-By}_SggY>>)g5p~Ks{mpk1l6E_w(y_puUU`%;nir z8JTeh9LK(I!}4e72EKTIAL-wpGF9lpFV?5hb-{CzW#F4Ye&yg*5^OUMk9+lb@AiPO z$5pox!U_2q8q8ORF$hwCRzl8Y%3S>>ev^Apll0mE9{1Nf6$zC;Yc?)+kSs5ZT-*2W*X1;b@_RA{O~Zb9*siXiqzCtz2=IGyovCjrh4li{>NU1jxvmOEy_-UqmQSLxmgg5_P}z)}EwqNdkr z+3UkVA7;H&|1N&d*7`JjyuKwd@m&ALME(i)lr;Knvo;Y}jFOeM@EaKpc@cfo&Y?e1 zHiF4WoVSc}_&ZRhA&pB_@REJl?Sx3>82-YK4w?(nH97F_UXFP|#Uiovud&4D1HDr3 z&SE5XcBs6cFn_sdGUG}J=Tn;E6g8vjnY)OttpjCMQmvbDmg_taiwuIqb-C_ zypQ4wgSG2=v_%n3kDhtrM(>M;qI;$1R@WLf@9(C0&hnY4Vej2-;j|(jydXvb!DyY= zh@`CQj-lRqP}QWe+aJ(<@-yxPWG@2^gb`;nt$**y>zG!(rk!91r=70Nu+|Bay~FdH z4h?H;xP7c5HpXKbvYV6nzYqa|Xj>RWY0Qh@I#5FBJn@E*6l2h?BbUgWqlMk0naY+! z7g*P*wPsEE7 z={lxGv0Cs{?7qjn98TM3Daz$Y^%$%C#%6yuNL zaAVOhN8q>Ibr>(GV+xu$^QelW`fB&?ISH-)c#_`yT3nZLXw{1pds+RR2ir|KS;&_+ z0^GFffDdQ)B=DF3pM$r44amalK=4pbfG&@VcL|tBKujQorqCng75N$sMD?2m4&wtz z2skm69p4yUvna?p+j_YVDC^9Qc?pDW$bCi9J3do5F6nNFfcU%-jWU1paONW zgKac70(u!3-(g-$le2$A-gp=v`_I4XfWUOqyud--+-EItvJJ=Z;NQWKcM04cFu3g@ zgop@`@1F=^aG)Gaf^|vi~QfI{`*i1-!w5qu9Q_l+=Qe|Pny&wZ&`z2YS9A8jdzC_Z15}`IlmL1f} zHh{O{DFRg7ogSpk218(h)+j3Y$G$+U z-Q?BTchj@{2^Ej-SoOL02-#ua>$4O@Nv6 z^-P%Lb2bG~eTiOQlk64x4LYFnyCmV>d%i~s9kozvE$FgTwtChT>g+n}rXt3>oQ^W& zmCN~keCy9iw^8`u=G0>OC~M28;^XsA@1)gVIC7qY_xi|6ck+mC%%6ZUO~xiFiM&M) ze84!0PdjqEQtvq(8(p^*F|{pWHRWT5RxsPER4~5j!(xwVycyN4Tz(+J5mWr-vyka4 zFBR(sA(o9YJ?Dk7HyYggJK)&21e@)?Vw6+UJDV_=x<74-A@ z<=zoexPg!?%C7#4b{{!{v@WlQn-9b~PU$(|@~*7oDt6aqX~qcjAXiF%ZmAHU~&<0f={#H4AD*AXN4y%|c&j=)fWp@qBY zdgUsWJAseA&4r*gtp$#h)nK<)~bVHdu__WbODK~>Rq6^ACvG`2YldwLQ-6( zM;?DCGpCVk52S9;_wqr-&=JNNJ};mq5#OakyYhBDQrvmWSb|n`h8vlHZhr6Q%(Pc4 zvwr%-?8^dKrXG?JUdwrLWKv>pksU;w)C8{%W=gcaPv?7<%+pF0Lv&`$v%8oI>h-X8 zk}u-|FR#jyo2CQEo(wQ8(5Aw(bxz+R+dP?~TT->dWR{2bz!BVPPWI=O4|Bv$q|q17 z`(iiYZ1n;>u*}?;?K&a33mfP-NlW$(qZ7Ro-Ed&MCbd#5VjL(OuyrD6BVqmU&xc+j zeQB;gXxk|nnFd0SqS#8MH?+5|0iULui1TrWumJ;HEGZLT9TiY_Jq;vGgfQ>Y{_9{g z3he=}D{gK9%Ai&9F}O+m{Xm#?gJZ=4B)ZCdM=0PGF^a6CFEi$tFC)n@aMIX}mGsuN z3(t5+$ljfTFIAo_f8ZN8EH)z{ckZd^PVMM^^2l53&(#5MpYc&395zN(br?;8u#RO5 zjqFxG%RBfWDBpL|dTk6dg}`2Ek{l07qE7vDDx*VCZ(eJFiDS7>ExdkPM}WeAZA-RIbp+ zRt~Efu5GL4K@ty0wOKy;PJgvOM7@5|DeKMCLViY)ukcv{zCD+8jx#zkpfQrxC(RT} zry{%JOC8r)S%n4EbV4Wd8t<5365oIrfANJjp_;uW=EncbKL@Z|)H(Zkr;MaVxO|d| zU6~mp`*`ut-J>Yd5rNuajvYzEyZy^~qRA@xYq827 zr?|aP&EDW83DnHrEb=~|+?XszB?EoVb%@e@Y+~olrMzkSu?St(;DWC)|Ajg|^x~;+ zKhci1(Q7lt4~1>}2o|D8#!7_h1Fy{WWg*|e*b1fbrC<&?i`7}gWwmo}m0T$;00I;q8y3qY}XL!g5}3LCD>%GRI&xp4Y^aSM|dmgqsBI` z&!+#-V=sPjjdj`PSUOSJm%jtbeb|RKorjE{=>mUKJ`_J6)aNUm=6^asaR1-b#j0G& zf%8CUKn(5>XkPy65;}Nel=r@e=m~1s??4d3FQYGy0mBSH$c>9z+bcVK#6-ftW4-Cx zOYHsPqJZtLbTaZAagkdk%%}M}b_2?FraPztczeg&C(vKsK6(!`rHrI5Il9v>T(-GFO%OZi94NdwI*ot{+9N{t+Idua3p7LhwxU zJJ!^A5ZMujc(dE9mc!5pMgN#N^pKv9%`8BoQ+G8?1eu?E|%RyC}cw{91wh~lB& zl~LV1!wP&lOiO0Q@}92DH&z6$4A_8F zpP07n(O{vGc|{oQ-b2(k=F7Fop7@J{4lUNRguRsAysnAoBS&XKhA)o1N>Tc;s=vGt z!$eimz?Q2q`oz7rJkX82ifIGGHCxvBpE17Qcl(U1;_MA{{?n>g72OJ|>B!D6K8W;3 z4;0ILRAuX!a{vQeKjYKWj$Lgzoa4D`z>O2d$1fRZL2}2A(Qo#>?!J#DpKI-ptLSw* zDl(B<^5&&|$e@~OPgWA&rG@tvi~DhO82_I3;E%yR|JHg7MdP1S_vSl21D1poB9qnG ze6or`dwW`l+~XRkMK=B`F)qzXax!tVi$Vw&U^hm0P zKCUI6H~&uk<;Qim`c(K%H4IpO{#lCcY&31!&grKHXF3Ngk#^+X7}7vd?Q=?lU^ks3 zxD0qM`)b-tvn$PB?xk=4nDJUhK0x{IojlOU3)>Vb_TwMXFw{$YmIe%l%WLT_T4Ony zc|`WX@693kRgffHPJn2$+OvdGtC#$&co4iiZKyidxkl)`YaU}J?=w^UV6 ze}qNMRWZ0pnbP}EZ$9R$L4%dIxAe0D+9J!uF+AFps3B}!uVy3_^uQjx%=<nldvk9zj zK9(LjTK*9$q95_Z%Hl6-T-=i|3-rW~2)%KZ*djA-*&%wWt_;qJz)MG*f zy*4%}vnK737V;!2>Amu-`K5qpe9vH}$ZV#@G7^cVSVJapc0I9eyEMWVnkc7Ub^P=B zVV!?hAg)ZoofUC<@Ff6lWL1v*ztxBB);Zw5f+^wt6wj{e!$fQrKsB@cQ}KLi5;)@b z{Y)EhRp*d*&ZPqAf(h$mj%IV~^~4Hq4rO`#IAmEj)ia)2<~#kuZ~xlsdsShkzb0`c ziO{rLhNPijVpP_>Br#(+74itVdE39{*rfAF#(C+-zWVi2@rA0|dw|=no0Ra`-l6j? z)+Wp+JDC!V2}x-NFR1Ol)4H2irr_!OKuY{K6P=pZ-?ePmxrU_cFFkl?^4>@Vp~~d( ztMMjMaH==MoZ{*h**i0_36`zv;#}xk^)s$g)xbsDXG=Uj+&++Ly_x)@PtUS467w4c znEB}6{SKc6YX5o7gI&)Ui$f%!grH~Hq#A6sWlGAGfT25!roQssu*6vsK0MupC#)m_-Nhl#X>p3kks$}By+ueU#F z#OSvc8%31z^SE{FybJxHgPerL`~5hc?cfWYq2MVwfG(s##vldOf2m&jlC<|mW8Ys0 zoRrD^xoBQ=x$eN2^tR)Tk9iBr(ec{0OYM^Dt=uyiloRWdla6KmYV20- z8K07?MZlY86hp7>Eor9u?@-%kg4Kk+7EZZTU2*zxvQaLE%*l(jmYTGZWiU^oRAo=M zbH$2cvV6+ENJ=;3t{5A)2iAqy944glQr7-E<@&Q+gylDn3BS5?TkVTfwHnll*50n8 zq2@gQVyPd%`-bz#Y*f90(C_PjHw+pB;&P+ocre{b@Pw2_ROlkV&(Sf_6FT;$Ztw-9 zO^k3Ox}+QWNm#1?6|Q$Y7f4y#rV`rl0ly2jsg-xLKHlBO-XfS zZassiduz~DYQO;G_S4+OEum(VLYsq`p>xp*>Gu-;j(8#aKLnw*ho9St@C?pKHoY8(M}q84K<$1N_PSpPV3{BWTRIb44}6YE$uQLEJgMIq@{muFgQQ*N1mPUXIg#5C zDTmm0r@ZA_<#a7xFJ<)6>1FM^KZm<>ot`pHu*Z7K7 z*UC`+oC%A+hS;i3U3!6b_ffoz4Te^9w9x_P6yzq7nCPynT36Ls z;GCzhgYrLfRIst3I*co_G+4G4%+-|{)(pB&+PE>}Ued>$=Mz-T46UToJq#XO~+qHj)h*FO&RuBwch+^Xx+qTd}tzxVzK5<@3;% z_L?L9N(LGpq%VDr8#jI+9Y>f?DM2egQ4NeOZ7j2+FbVjmx$1J3WWru}?A;&V7-XP1 zV!pOi`oslhJR*C4prdHs-hJ;VuP z^L+6n{0}txX%vU>_Tse~;X0l@nEH#J*w=+8FlhmYd!m0U|&`hBt41lRql9 zqj&s!87EevWfX`v1*DyP)xzPD-{m+8;mGKUAj*z33|-YK-~L1xD5`F}fi`YOo+Ir8 zpvq;zwlYun;cv{}=`kjeAoyMpo9$;x;ON$jF4&x^MooQ)<^2Rii(HZEc|LFFGpO9y z)S=`CrFqp5?#~v-z8Dkh%3!~ws_$CuUtPD4NlpdEu_#=6`?d9~=Feelg_Z8gUfpi; zrZDG-!|b4L=NsZzPTC?Qf&p~P2_JgSJrQ1o-h4m})=V>4z6YM{Q@cJvqRC~U%sq=S+cSLzJ&3g+AAaQ7Q>gMb9*escnlwI?{WC~npbEU0BqX> zM2PqINU{jtx$%!3P(7@9tnl+y6=mWx=GDB`+|2}zb3W&XnSIyjM8Nf7>lSL>KypqR z^Es3GaVQ42Kh1=X%RLU>ij6PF;;}#mvc;#xPbZ zW92!Er-qUcQ))sq@jlE@E)3qIm>nDo7R|j--A3nU6`G@+xSbw!DN9De76IAqP8*M2 zZ;8+XrW1Ya7y9BESM4vjd88XytPh!$?0Xbut8xg;;VPa$6g`yPnc2X{2%D)f23 ze()xhU;FwH!k}{knTO~!=;XAE5EsIAJY;mDc|%|F9mrHXi}`9Zbk22Tu+S+jlnO>r zE`eQ8$n2mLP939Ztz3mwCQL>Hs<{#Ofzpz00!@I zrXATcD0tDEI-;sRE{uB-RbNG_q0J^A`}lNbOou!zNrx})W`dz0c#xRcP#>fV*qYi} zZx)HBcnv%HY!}|MI|YA}16%Gj(PP~PU3HnmlVSqt^PMRLa)Vd$eI6ny*U zCif;j1gc5~6TGD-lnD*<4r%-A3B9|lUFq;(S-QM93 zNMQ3qtLUfsav6V#P;+WbAKiTr!zqTeflc@*T8261z9}!9<5;GyeK;T>Ss9?x=_?tN zdvF+UCOSqUOAT#yDD|GGL*rNaj&P!MyFZD3#*OE*OW^bsZc0}t&t5hZvh(Qc3F9So zt3)f4&xd(HE8#KZ*3<_0#nVcteEL#H+J$O{vf~;?IG)ZtwmcK;OWr@hF=t3tdwsgD z@ibrazL*9D?1LT%)kx}2CTMiT(v|k?X^eZHj;#1*XyuB=)oKE?-K*R?Ix4}p{SrYC z^Mngi2~n!rh5X`rM~dNtquj;TLdQGv!pWO3ta1`2(C6I!Imf4T2wom@2v!`^zTz8gT3gXOxbTjo5+gcbFI6PoQ2mR4mZPnIE#3~HD%kh=K_NEx zeVc&O1Ki4-N6}Q@IIQS6{Ur$8BU$KV8H+Wb2fTa8xyu7`wby+CdVgUv8{%44pPWcD z3ptVFyH#GylXze++RbRpafVLjgXpwb}ex;nJ4>7zG%e@ z@Y(DJi8u4;0$heSCr9IrRC%I6Y=uDp>=BU~Jq>mr+$kMUx_2mZ5SBPnvR9F*ShUyC zb6V)=ItzfcXRCmP&Y8@Fgw#*g;(^9 zkM#eNFDg`C(0e*-=i-zBD;@_O{s-1pd+P>+ID&ObAkyJ{aVmUlVE&*@He zs|UYOO`|$wX!z)D+Vir{(8~(=J#YQ{0YAymD{zP={W(Y%h>q!rS|m*3F9{p)0PoEtKC(;axwewfjnhdL) zkBCWM`Ru|b>{u%k`P}n3w4Ibq7mc8U*K_RrOlos=A@L&L18_^ZfVnx1;y&$0@zyL( zzB4^z9u4w91qG86oRXP1rsVa(g{A~S>^RxBeS5DvAwu8#M{F5Ij%^ybTH(y90Ql$gI$i7*{htth|KDJ*y#CGM8MI<(MGu5tS?(st6hq$x(BASrC$FAP$ zUnh_Df|E};#l3H0l7T4z<{|2MoFlAH%UP^de*6tk?AhG8t^PpdkR3C;FbV2RU(UxL zNmrw*uZf&iU6BF;+1vGs(KocwO(hZGq_<{j%^WBhR}#=9COk~eo9L6v-tQ)3-4wR+ zFgU!1g_9Yp4dgz|ZaD~78NJ&m{1mlan*zV_8q}nW4do1}SK2=ezclLqZCnnN!%_f0 z@$1lkg#Q8!|JPpoKU*GdoCeS~%5*Rl{4rKg{QkS^Kliw@%>c7CptxWwa6ZhfJ3C6C z2)og5_61IqR6JzeOYO5|3pBKeqF8CRPqh_|~hMOp+faD&p?+RCl+VcxkY+ z14%hZ&j9T374yzH{skBJ}WAPNo&@}M06 zuq#r!(ZA<^gioC4cu*htgZC8XbJoO2m>*aVNvm4J13_UI{^o!mTc^bR{@%Cd*z`#Y z$z6JKI>_+I^@Kd^zyOK_o~76Cv5pt~`L21uJtApn**mXcl1q54i5HlJj_jLxK_c4u zeDDy1f%*0sQqDM5*9(SR$w42@FP(SzeMvz=vYBqLW?^Qk4DW>X#DlI!t!4SdBQ`3F z8YlZ^%+Y38Env?d{3+xg(I#h8q0Z>?+kky{hd|6WjFvl?k=L^}BmIgwUGL*;O;T<@ z-zg88c7i3JgVF)AgEDe*Cf(zFj&DX1qIu-W_kF({lENdMKkw(TeX-#lkaPz>H0G>m z-A3RSv>%oHB?N}{zYjumd}~ap=a*~Y_z5s%SA!Br4gxELJ6R`JD@0XfB-A7egEX*# zR3SGdpOE5_kv2DyaE7obg%;9Eg2-yRpMAGiLxn=;RkcP-%_y_YbmRGc8zplQ@C_N! zp=}zrG1KKl)@klg43)52Bxg*aROicnMsxc9oGkOJCzC8kM!;Pjj=7G2l$ETC8O{e+ z%;DNLUO1jYSNl5WKiyj>n=fwhQH~JkH1tYO;yzF}LMD6nn=vJ)k{Kgkt!i@LJ7^B) zj$h&gutYrP@k?eIGAGPUb8^?bZojcVqq&F2-qM!Ld1P90cCD{fjedt{@od%=31Z8D z0}ryIiH=1>LCmQ$?G8}b>(tCpRw*j$`EyI{2sX24rYLM6f@NOVm8ob+o{HXOlr>Tg zMZyBC=OdE#J~%YtI{U=yL+3f38NP{hSvyF{Bs>p7@D4Unlew|5II_tm6?@l21vi#V z?0ivaAatiDASa0xXc;`(v}yBP1tuardpLR`=g#4JLLaFK**xuRUQiY~0Jp)mXtFQ} zA#a49q-?*MP(I}FN`R#r*x&Go1!No=(w*HboYt4UuANnQyIm|`fXVWkJ;nQ%8gJgO z3tf>Q3u{1;(PE)0JP}|L@9;kpWQS8LgQg^X^;4_Y@ zS1ecYd*AUfo(Z;O%3QCEZ3SSyYDZT0?2>rcFW!V}yZpf2a2JBj0&vvF(3h z;eRgppXS(Hto*-JK|KEr;^1^_07U1n0G|({2!CFz0NLi>=CyMK0O?1~DaiR9N|V1! z2d_-~*L^$|&Uuqa^O^ru$5wwsGG5@W$x+ZV7mNk-wph6UXTfM9zNmI|)-{BLorqzH z@NS^9INF+8{yjavW&-_Uzwbt*jyu-@V3s{=W2V!`-{v6sVBtQFsns52L69y+`~y zU#4fkbrXOXx3Q&;Q&@PANF^LZ4Bg-;eSf!huq`I31uvR7WKw<5h;(OHhcOuiC0z#1 z6jG3bDgIoxRrz>j1z^;}tQH|rrw%h#&vDBi!82$Uz34=)iW(n9CN zxA7>wecvZ~d~jJko6^gc05=m{haMWIj&CNL@X|slFPDD#zFrnefKo@tT_0eQ_g;2bk^>P>u<$Vg zRG*NNXf)OuHLWU*0fs4na$Bc8b8D&Tg6)r_e?^Moq^xXJp_#D+GcL<%Hk6n#)|+dT z#v13IQd_$@pd?UeA05rs>u_B*g;4#N;WV(v2p~Ft8|+}e^h53er#>^zlv!9%u7|HG z%r+DKVh?yzOt4Zz!ZVUH?1Os8Y)YARD<4`6Ug|271oKfx@rMB%W}uSm(0@dtXf~AVPPG+V{@SOj zRrWQ>Qd4&H*y(#r>3fZzKFGdyP}6s{G)rSFLN_R-bWLAn?=!uups=-`R?svp%6Wd5 zESn_VMDw`3b8v_)xFE+ECIV1_jxli~#*XNT=KGeok$YQ;pesiu$Z|}}(G$S4C$%U$ zzl+bf(N_=b0t}B)K=7~7yC+#=F)xo>kxu zerofW_#`fN1}tYxhXL$Gtzi~36?O1MB9D(EO1r^~`ofJvz6Q}vs{@9 zXE>C{oJ7Rv2($0HV!|iavg$X71(--axj3l{fig%=tuT<9*JI##il!T9qqzt|jC@H}|_YX*ZC; zMv7HgV^_xJ_Q%J2S(FQv<+|Ak?$)F^4QSP6A|JO-x_rKZ~WUSC10ehTs z5DLnS?4yM8N&DQ>3YqGpl#UVgJh6sXQWDHE*^oHp<+ zuNVibr2-F90}X`#GM;q;<)zXLppoA_YPU zb%fSTgbS1C*Pc}?Mx#a|iKLeTQnX?_(*K1Rflbbp@ZG)-1HVn(`P85GX zv_BX8ox1*q1K0K6QtwUwFVi!+U*~HrV}C64@T&+AFTIijy=5A=c7bF5UT}Hr|Gc2+ z&c~BR3GwZbgumM3iwa;}`pK=xm#8=bYt(_rq53f5b<97Edtnb_jzK@8!rG1y)>j6Iq9)-^tnjJ7j~0!fnSS zf5--U9J-%V^2lGbY)e7ydCObhWso7IIe*04ZB)guG>L{dA;IZ(N6h9?21TCv6hw9% zW%^-U;wt|Rx^nKsMAcI?a|4!gOe70LlZT9r@}l*a=^g}{dCtN}w?|HkrrqihF+3od zD8WNiXmYJ`sZ?gE|M1Fk!d-w0{L|17`rMMAaArs#YTAtV&b(*_B(cE{Ll}P6Fy=yy z4CvQ4KL!adp5K4EGCM41b_?EWHwRgnHo^0wEBz!^n7aL1vOg{W^0LPKn(?LLgl`Jx z{aUz>-zwYNJks7%H2_QCtm`wZ;09ch%GNTHb13j%aH%lxBb4?=^+o>I|9yY`e)*if z!o-b$4cv@(Ay=6wW1n{)f9u)`3od3ny=-&M{{4%8ng zrI5t?Gv-Au(9`Z@S?$xGWoe8lS?_4oX$q!1F#kE4jq74?1C3aa&Z0S{EITdcbmSL; ztxR*lVRT5}*l%b}kJWM=XPGY_5k4CH?M{2Joj-hKTRF^ineP_QVms#s;H5dc0ww@< z`!_HB|HIjrZMmu=+kOxaqHi8;W59qhHa%~&w(0xs>#s<1pW3@>SKU)*jm%slb7W2= zBt^`r2!%}VXyMi8$~$y!kFMl&MaONnKs2bcithY*rcW%G^{1uOR%8w7LS=Vb7qG_m z^$0XP?SUG(O-CSTt*Um@ zm3Y;wd3~d#f%y{o3%$0@MHU`UkiVi+t*}R2uOm9rr&U%qYonVJ|{LOGyA(e&LVlORZ zJtwKxXHc{UC6206jn?j+c;d~=-=Em6lyEAB^1C^!y5rpVP7_W`7$J=u@ zp6BsUQf_p@c}#rr^xI}YBi3mc`aVCCh`lfv%i(|C#Pyg59h%S^5}{{Aj|Z+h)6lnM z(6FYjA1eiNe3f3z$e+^$^&?c%sZJp{N*&W$I*;+T>LP-bfVkuJ%65zan3x8HgDlvv ziK3ZJjvP6}W{=B}VkEiPnG%(5b4ahs%4w@U-GeSotg-x&;L9vOZZ(Q&645Gcx z%2*>`a|Bw~yP-nNCxuW0bzM-h?fhrDcFz<18IY2D&sL?V6sC#N6>ZK~VMWr@!iU#k z927+X8qfUw8QcHW_xv7M{0U0^00u`;>U6U|_V~{lW5Reooo~q($Pz147+C*fQ0fOz z6|3iyaB2tDwy5(RHg6j_8nZ{QCRqvj&*|R~9nsHegNlNPtzjv>e=1-Z|u4JfWQ3T|DPjLW@1u_?WG%ZCR zDfsyK2V99&wNV74j}wKY1A19?RSMT7u6(m|)r~X$C26u^TW87KYPP$zIn!r1s>}a3sha<@eRfiJL%63G9Ra8x zz@-5i2vaV$A)n)lA3krBL{mMQT@u(j^_>zGCrDjLqe%7_;3p4bV(n?xr%_@@WFmRt zfo~adRFCm1TpYEARTkqlC@qM?80FegTEZ*jpElS8KXgW@!puF7&PGO(_=ImlyT4S? z+jtF=M<(*OZ%MSrwDBM7gblun4ef@pS_Q7-sa|GW?C_7^7?HOI2JI#j0qX1pNF%uc zc4RB+n}Ls9r%3AW&m{0?@;;KFkd;S;7id4TJunv+I(Gw`U0I{reBH1TdXc0LAXXu5%Cn@SY-ldWAq6x0k8EkYWZ&J*w}d z-bhPDN3P{(-@^YVykETxTIjLCMpl5_+a~=V!FHS=(SkPBJX)3+5~8KY3(YH4KSxF6N;k&k!jr=PsZ7ROOaI(J1eoAYx@Kc6EU zyu~UOWH!((!WASz<#0Q8*fvr@uDzOYjaH*~LQFTM!P$HV+{m`_9ps`Ap&?z`$Ywta zw+QCUsfVK5G3YoKk5^J6^f*$PvZPMxT_e`)ab~bHoIgy_z@hLx}uTAnj4HmLZ@6%ZAJRkWma{n4~-}vF>?K8vh^2DCxPaC`wq^) zPzOx|DIIG;EqF2T6qtLFU-DqE4ZuV=%CxZO9^TIY!S4{b-$(Pk!qJDijkoJ=&ojIh zJwVC|q=E!~a86egFl2oo%$LI+LZiT*;ZzykP^_#fRGYk#f;U7z8g#lD&IYMX%Iyu> zd(H0IA`@IKR``XW%HEV2%HYd!;DrZHcY`LVzBd3l!#-evvhFVQw`atU_8s<;G@6be ziq5@8d9S49+7JzXsGj~uj}GSWUv}$1_2>ui-*(H|n{nWr9zQsz(;j~NZ4mtj&Iz`q zy=)^o9fK14HT!Y4nXpo)p^@kE5IYafL*DzU*@F-AYAm6+OJAsh=~uMI+WQ#X^RgVu zs^9*4O62JB-yao`{&7@GeQ!sa!dcI(&688DTV* zf7lnz#X%^+Z`CKMB52GQ+xNCgo0W(pJclZhXWPZABH1fXdy*fA z`Px;(N!+7Z>}hwsN{Scc4K77yfd=8i(>$OqT?_s;CDS^&j9*I_E_cquIAjH`t-K&< zH(9bZ;^e>E&-a|kmrSo8Mf!{he&QwZ>~2Go?q#?b6B4Nk)X$DK;+W3iAf7YUR?lRa z9r2Ve0;n3mUp}of8<}r5HVfhdX!ACM9+U83$QYf2rXHXjtpe9bc_h-m;t5l>_7tz04te_U@S(HhgI-%~++Y>cNT(yp6Il47wo!DkQjZVhug_B4I~ z{}l5TV)ud-|p z7UmCOdU=!W;g`8eOR*wDESG(+Sx~*nNjoXWN=b)F z(N{!H>}`hZ;GfR|{A-FH!vDjV>-)LC46<+bv>Wpuz?1T~iF#9Ga@De5UIs2DgE8(9 zAY$&$^f<)9`rd1j;{}m)FRM^B81sh`g2x>Rubr?BCnTVe06{>$ zzdFT}6s~?ChUC66jPsB3w57HVNWibvN*ukL|53RQ{QjDd2}aa-PKIGN+pY#C}+ETZtjUm2B&)v%iHUa zDSEHCe%ATUx!Jwxa&(#~1Ji3ou*UdA9cmO=z{3eiinaW;dd0M$5*}9~{ZwMU-WP;w z5B!_|cHXz%kJ2?=%!VR%sdXYBZHt0WqO>%((ymMo^EDXrE(}w8N zx}RFy@>5;#GUF=50GcyxT-{c~RO`m+ncXKI17b@OUo_PYI|u&({8!7K^dZ^%yfwRq;Mz( zjgw8h3b%hmWcTQqVNgdb^6@(^xtI`Qi;zpFPMmJ{h~#JlkjAF+e)f?eUoMUcjaK`O zoC-5tQhRJBt;vw*Jju_jg=g>kc+4H;&oPQY6Lf(zhHi$~T)SnS(~liW_Vcu7wRM}wdl_Z!?&z9dG0 zm9truYSTyrp1ft_()jST`L8H+r!&{w3H;-y_v@lUk8t97{XP8NulE!4`cJiV|38;s z{5f*}11KQ)NHI|QbuC@yV^{{%HSf`_sPbsY`$d=ce_Hy&QY|R}`+1;H5z2tRDoCLq z&y674vkG`{4UQtRGcKc_8^Shxjk{d5=+^uJNAxaZ%&TOO{uonV&j< z>-V7rD7xaTy6PPEG$MOp^S-Rz5Ux0x5lJgO+~J+=hkh>d!|h9Q_myeH_2 zbo4tmh|k9Urk*|7Pd^00!2!+nL8riFDh)@Q7<+I~=WGY)hde_CDUN&Py=|ipMXz?N z&GGXnMospiE!T_lTjPHP`<3V1Nq0tfWQvXkrFVC~glFm=k8-**NDH5aSD~zk<|Ia0 zKQ+kVMv-K&RE2NKsZCCOo#lvQKW4YO%puLY2#2z)6|f#L870@VH2n#t9|`b zF@;Q&SnAl*hjEVl!zyMF7To$72a?fDw*_ypGrvHhxdsT7Ho_Hi^U>poGbIRU0c}+d ztv>t=pcokuKP_mMQ&whk$RpJ)V!YzcoX7|NPAfMo9Ayh1G|}IudacwBHKv}B@o&ee zliNg8G}jO#*75P)Di?&CP-7(6+(=%GbtK8Z7~9;pSHAmYB)=ttGw`{kNaaFb`%Qt< zF%qz+?@o};6Hp3$Cr)|^n2<~W1^o{6*#P9m?`6c&@PePV4nd|rffzl55R>^4l?j|A zXe|@HEYD=NCK=}~r5Jp$AoAs8QYgnQv2c6+j`C@7463lX?9Avg@zr$R{YN-7{@08VsbwIzm9Md=-o*(6;5ML8XtX$4zN#FtXr zv>H_#&g6UT0lp(+ab#WAO3P_6d@TA>f{$V6+5C1%MYuS;@f+H4<=! zXK1eZ_HkZM%1$0@245X1n@;NL#WwLFX)I=d5)n^VJ-a2_qB&Av6^Ocqg?Z%!0mHcAc z+;w>GlqFroh&E^_qMF@t(11o+N356WEGznun+x!9nJJ5$0?t zzI<6YndN*SZ^P`SH|A`M#`B!#QBHQh6&eu*s&-ZZJ&r(&g^1F-BKJHSu;^hTRq2Zh z*(aiMqHC#>%{{+sgxE1^0fhKIh8`uNimINSD2*mvA;a@Ci-8 z3lr&~N`MU;BzmFih*RUMt&xzUm=JOCtDCCAj2Kt+?g*a)UeRH3sOV;QH1TySAz>-)ODOHVrq^uKAHGS%a@PZ{4NyOJPEsV#W zLsxiYS$GBF$g9a5<%{qs{3;D(vhEbFb6YHs#wq zi>GhpmfaC~OxpKYR`%pzoDd-6oVDD%8IO4DqoPfvAS}H6?Qsd`l4=yb7K^~)Pbb0^ zSbM2cMt=q08aE8wu#ZgL>yUQ}QK0%-@vOeKU}{^cQ14|+I-jqw@Y8mZ z${HORSkNq8fSnQ{JtTe6Gn^2;-ft`?BI!(0T@sy(_3=!eLG9jMi|p9^*gv$kHWAw8 zO9Yz^g$b|TFggrgIc>(5d0Hh;kqGXr0!10gHfEX(9(>PM>GW#VzV?pxrGM^~SkYUyg zFj2SHOjMAAIh?b_ZaqK;6=HisSnWoX61V+wv?JN!F|BQ-mhUD;)6W>H#l~M%1n2;5 ze^T9iYX9#ik?sdjIEfu;Vg&dIKyb2Pqa?gSwhk9rHcNYUTM3?taXx$8{W(gC^f_fI zSDU1eUL~l?!MC!(TkbM?IAT(ehKmi6J;C*yKR46R{H$%#iLu!gwNA+dq>RK9 zDg9>9A)XUyx>WCxWQE{NKKriShR&g}{BWa{tWq4xt&I4b7Y|8Z<6X)mE!q3=-)^!U zfd6Kv?f*K1`i8(A%1r;P$50f7a!OacQ{k7?~RE)}}P>B^p1oo9nV|_oibM7KWo? zCLCVRp}ZAySwh4072NNk`VF-)C>c~SBM(mU0iEUO;=E7gQ2T^X#44 zlzHezRCKdNo~^^g4}weeXsai)?co4TFC^;)E~9IF3$bIyllwXRkWq z%$Mwj=}V2L_4YX_)=U9lJLe?1QB=8vDs?$=#%cS1lzrK@t2nal2k}7PJz`^w0RzT# z=8e|$egE}WELLV^<;l9|)E;B)G28`GgfwG@6d{RFX|H|6=2iH6ob_^96F^{XMkhXu zMP&JXb~>xGYPPa4QbB>y-mEg=7OZ!;=)4d=Z>`3xO167i1#DJ+vJXAWx6Zkx-uACB zk{drDQpZEmNx-IckpxZHX{ZboCGS_4Tx&ogaXtJj+0owaB@m)tQ{9BQW2$eLzs za?X;RTmkB%SB0hzOq%`M#q}qjc-LCr zeYi++73KM3NBd3FncA_u`V^>zq9CW43yhLmcrk5cNmFCX7?gh1yada?p66w5+#3iA z;=W7b#D``C60rKDI}FevtOL+?Pk`qEYPXu;J=ac8(X~=mLkQ1y&fO?S~hX zszo1@a>Qvp8)^I7N8freJ%+jaII}1qq95L?YRdmOfyXVQ$cgRvN!k@-Q5hx5s!}9{ zy!yy|s}eez!&+jt0h`xaApASOswV%6hy?^Yi0Qk;1H{0tTb_h7G^~ENYuOA~2ZPa{ zVD3e}{xcx{f6f#75%|xC3jHiG>%=2rZw&Mh;WT!RY@xQ}^e3wTqrGZBVWR?Oe`ALI z?L1HRm3=qg3vi)sd%U91k)8-A_T|USWcs6f07w57z8P2CQhWat9U?Xf0viZbH=fquDwpZ9R#tnr_gH3=7@jkrdzFQ6Hkn##UJ6b~b zdjDYici#-O_r@mtjS+rxmaNp|dR$YVP!t2sRW?T=aw)eKF*ZeRY8O|d_HfoaWg+#_ zfaT+~@At5Lzws;A(06EWw~HUsWdxlILEgB+_sLzxrRzVl=&jB>^q<0AWrKIcI@501 zGl@|ZERGQ}=;=X)Thw!-nf&yIjuz~!Z0dE-xb^hQ&dlGr%bIm%D}M8Al+|Z(ovTS< zu*jbki`~;*LCscqCHL&@E(0 zN!ncm|FQ+j18dyKJtI07jg-Q~NIk%D-msVWeK`whT$-^-+tBo(vnqTVvi?l!SlI5*?&&#Cjrd|Vs(q<% zbULZ=Dgn3fBm!JKuFs*?U{kIILNB8-pciyswgN;4Zf;(!Sb}&8QmP&eRX_A1yPJHy zl{L63pmbi=6K&+m2o0cZ0c%khxbqw*U8<#H(?gK%qoZ98aPmU*<|p_Xw&Oj&WDl9o zaz#4T(OUR5`5(iU14IkY6r(0YI|vvzbQHtWJ^-L;4j>N7pw9dmzNm?4!KPZG>xWI4 zkgN~4!E;dIURlyi_LCX8b)XL_-NR>`LaD&xK-V73hLkZ7Z;WZ1-P~63UnF#XQ0M1|gx zpJcMF7kgx|Ew<0((wwE4#&+lxdOQ|O-HU$vu<(dAyT=*Ym%?X$Zx_*N2v6Zm!|A}35s>lk^4QBqjg?*00|B_wz73*2%dw?|> za$C5@`}X?$vfZXYrwgD6%7!Y2`%rh+>*;9P$AF9y1R|h2F)zgse05K9kE&}ZEhw3M zf0nW6lBq^?7ob1}aHe0gU=7i8$A_4U`2xXXQ$6J_=Pxg@<8ktyB&|D)Ww_$u&0>NJ z(F%OGP&cvhp_X9xcV10$nGebxrMovh`XLVgUh*~XHq1v0ZqogmSMiilz`#B}%JS+t$C7}qb9 zE;`IzsB;p=p@YJgN-Z z)UdH9AFPhiRL$y_C*gdV%OvK7_3U|Qo+-3n;Rp;Q(}V9Ve|zUDjv@?->u4hRr97sD z?K`^-Zx7W7gpOd1Y~oRw%8(^FyDX7H_EHxU*BjlLm>HOo=r^9I@DGGLXf?x%YCiDe zm|`mFU5X^)(CAYTO_^4^TJ09^vxl>|gZ&2JF1+h2ylRaWv_$4)xu>9W$X<|`{i52Q zPY;n_r{^~xk6Q|a;;z4E0oXL#2u3x>ZyfnkIA6`YhR!W@9iU3>x+X062(-gfpoRN~ z(!WYAcGrZoH=A+AyR8S^J53^WHW9iXQ7R6YT8=>o1hwsFauro^jWeQ${9$Sb=)neK z^aTHqZJnRkr5)n^%pW>RpLTA^uE@G9)EEzyRaz#RaZ@FC%X3 zhO}hl!!(2_ZVb;pZ5DJydFb-fE-gZOkwHu0CE}L|tvVP63{-}FzwNb7phSm`M;aTv z(|?r8avEdN<)xE9T-837*Y`ppn+t~EeJ1?|qTNIyYc@oaxQ!W4>$PzP@!O5#BGVBY zS^=acG-`R`w)#A{Nwn^rxV}&{FipcVCS9Mj=0aYh9nwvPN*GO9{Ja_bnr8UeisObB znLG!vSL;5WP)mBH5OBLYo7owfsc<~G@FI-!u9M5|SkINH)3ghqOOiJ@i=`C5K5FrW zx`o;C7V|D|oNDaTrGV;qCXuCRU#l(|sQr7I76gLHQqFf<6+aBm_`I0a)(lN8Tsn%= z6FuZ?D~$ zdG)>;1S!Zv&k>J@{sL$ZwY0d1!~#8aTAvr=3kg`|LhYG<=%y5mY8X0DcCDt}tt6x- zn22i)v^Qd@Wsd3V@m3d%==Yo*a(BElCOle+px8RkuyaHiAq7V|AO7yAT$*;S7bJUX zcm8?*JT<=79=R0U-xkGdwo2i^IQP@-iB%_N#br6ioP8|jsooZrQ<)MD3AZlnH zAWU}Q>&ChOrV@Ptf}k6DY?owz+bKaFHY?ip1TN$oq00u_v@OCr~mSiSf_~=Wgz$CB60;Dx)BxXXW3NOJZ)Br$r$W z;#zD&%P$|oh5C7S$nZhB}pR)~{lPjF{PIQMyIVRzOVygkx@#mQ# zS;Y=%M&lNGYkfC!w1EfNh4nQ7O<4Z^5EgEFvIkxMx2K3~=gvUlxjJ`T*5|Tg5)B*f?!v$KR?zScw8(G?Iy1h0Gyov@@na3{ z69P#vK{?LmJmgg(d~;+Geu*GrR>Ai+iIpvzLBRt+r+@MA5Xb31;?RV*#~6ByMl~k% zyB=X>=qCoJt3WRtroiyK!O|N$#aKvaPwRg?>;#8@dm`|;x8spm8y`tzIB?)9d@!%G z@qabMpNjZb!%r%5$bug=(*7#q)B$^1YJ9WcXGf;M-^KisK2H~L{ZRw~sQDOEMvJAc z%eLlr=*2PJY7aNa&WI|-$Ss7aI;wLTdxoB7|NY^=H9r4w%z<&T&9@S%DoTxT<0Fwz zQ@gGl6o?#27laUV$)TBr2bwufgLBRnuI(_w;r_6S$@6Zy?S#dB>Uqz!7SvH4)eHc^ z_SVn7zS>XC@6Ed8rth0!+0ecoG;C75Y`p&FM0!S}zT_=bk{H@Y2rbo2HvJWK za|9Szsdq$yP*y`RiaCx6fHqnRc5lGrpd!*k5zmC8qq?T2-;!fQjp#Svdd^};{{jfH@1p*hS#2D+)(V-bjh)(~~8ro@C2yQJrt|p8CyCo)OJ1erp2z0Y7iwPvD5bg(iuWB85c1w|=U0BdkYz5eLuJ z8|PQNuw8H28zEj2tJ$*FJvUo-WRfSvpKo;2BD1%q$s5eq#PuTemUsH4&V6%PXy8&S zVsL}daygG*%amgH7FK4eZ}Gf-^_2Ra&ah%JZh17;!M5oEIRK>y0OKfutr?k$dcCIS zF``2(DT3!eft#B@1^(X3fj{_Xw)15jEA3^$pI3fwO=l|;6Y&A@*Vrkg$;7XHC$99w zG@G%x@leQ@?{@tHi)aS;Pfc_<6YagP2HZYRj~OxLfo}>WU%np8aNrNEEnB-RE-F8p z&ZY-f(C$LF^l7~=PS)Te=N)Hpc{KV(v*G#HjM474PL|EQH2dKduJ;! zBj#Pa2IFMZ_mJ40&=?m6GQT)yXspgkyA#jHK*5?vI&8--rhJs<) zk0}%d4c$?u-L<~Ft1W>Q1uiyhRW~T??88pEQ;*@pBT=W8=;OzY+uqa7)loIff6I*_ zDK31!R{#cJslIW=1#%gO`aqS>I8DERnCK?oP^*+_xBS4?urVeRWu4i6-s!zgI*imw zUrOT2{oQOuD-u1fKbwG8e{$UIE?E2^<8wOqz@@mww<@kqiKcg){~nouHAWJw7RUA7 z=(RM#P6(}`;P>v}vOviJ3lez^%@-Y#8gK;`JupeU=DD)p(iDuU)nM{NX#xa94$zlY}oXuC?vL}p{DMQs@>HRT}|u6%PdWA zBf)E?U4(Xn9(c&>Oe;eARpQ7dgh|z* zEtcpj;Ho&1LrC;=@b5X7l}@t>`03DN8;V;IrRAq4F@Q6G<^1DG6cco>Y3)8Hw|qf` zeyB5Z8Hv}RY-d;zZ^!`2>RWBF4!>R^CYre1!>YIXrfKUEa$~LO&+&s)48q$zeq2R_ zkLqh^@v+bF;(pIcBkQ{)yqz;8Nne2TGTik}8NhY&IFTGQV<;){jEKLpNeca&ylKV`4~*vdbf^JiND5F8&K%*&x; z01`L+8@$ysL(*NzM#m-$y|a_Y1&I{~(xdDMl*V;ufi_n*7}7pZ!8&!l7&6Z=;{hbVYV$B{K8e8URl{d>;RRGT41_WKck zbu)BRksNMfm_JB4fgUxrhJ0i{^U>p|Yz1TJpnv(HBJ$RkzRYRe?*RJ|`16g0{~2YR zbZZWvJY;gRI3FBF@Vm1)6xldBy_R*R;~%K0;}=g&DQ37*(3bf ztZ-95u&ss04+wh>>mbKi09^V_}$ zEQf)?05X*BUQ59%0A_n%iHY_t5=P8#@TuYVpuj&G`4LDRJzMynoL3@OA3p zOJdKNapY$T)8O;%SQFn7=8>pws;}Xfs-h@?X=X3Tiygv#4ZlY*ck5=*1hb$J|Ly}P zm=r_77?gk8i7-Zf>Px=4Nz{BRhOS9IZQ8I^ z%}{^U2+WE9u93fD=8wQXfOEtb;ZTV3WO**B+xMrnkkhCY}RATqI37) zLOj}KK+~m79lE4zG%<2W!db^Yu7nZoWAKq^ioO8iUb{q!>9wOiW%7 zYd5o5^Fo8fvXESIx`rp=>}UqWsR3;+Dq*9pGxPPzBRr9|jX;Z^`0*I8->JA)+gm{M zP*-o+ZakSlB8%9VIy=++bSo*(>irJ<|4EQqGBE8#GL3x8i!?)$Ak z6zI({H;i4+tBU|DrAFop#mlY8?&@={q^JB^`n4xe5XUOS7rwhIO|%Hu_YY)WdjSY#hygpl-hF83iT z*W7Nw@NOP1`3l2=&m|3X;lIt&Jzk$yc98TjPv{gOQK4w}=rT4FGHosdToECv#A52t|)xa9u{arY%n? zcH=SEB|%u%ReenSBU*?H6jA?&e*Xyk-@Y_A37f}Yz&vZ{sm<=3;;-a3u8sb^)2O@v zo)}jzD)m?V6o{i)w#ByGx}i{n9z}fe$%kT@Ju+6pIWq|x5|Mhn4~f7`gM(F&3}5Y) zi1UfP4WAzK@v@kD=kt3Of&7kd&&I*SB)J^!53nwV_g5l>eE@4Ve8GnJlJH3ipiFJc zJ%+^OHmCRHUSUJvM6(`k*hqTD^Ks7Q8{n$wjcTM1hItIi-CP+J2@X#(3%ZEtyz+$0 zJU}BMkrA_)MJL_#9_Sbdfas4mbt$f@6uFAI8E1Gqand8=-dtt80VLD_^APAdr>;ZJ zDW>1>OeZqG5Ab`nKvHtE(@R@ug<~;NR;y#M;7|HadiTQItFs22vps%%3DF+hbowQx zq7{805U@(Up6`nrfgzVdb=v9feD$(?4g$-bmCW5OcPC(V#Io8~O9qoN=PX2}l=OQ6 zF($;-%ZBE}in}SqLNXYxkK_ux!04f!==6a(8u`I+wkhj$p7eK_xnwH#GRElfYViB( zafW8~Lcm_YD6qf-ki~LJU|dDCkfHs2SUq^dSE$EPwDU)v1Z2bs)d|^*bu6!RcPXN; ztwc(P)26;K=Uh&R3c9cknwZJW&E)%zBsP0ttXL*!Z9{51az_P1>d}5i_04Cu>ZKprrw+}R z&vJRojp)apgVpKVU?V@-%eW?GX>sNA#uVJ$OWl}^khfMlZh4(n7*oVq*2jVcW9bfZDMkp8SES?b4^06@bn zWiI&C1NzS!v_-WcHIA3W%35_NriNM8=C}z||=+9D! znV?a9!3tsRwSrOuyhsX%87POSvZ_vVCo)u(OEEs*ITIm|V_H*>QCJ&N+$ymam8T(_C8NUCsYqKwj|;OcPW@7K5L5&!Iz z`lSYAq*m|y|6}h0GnPI9}S!7b^}nQ@=8xqh$&gnhFBdtk1RYV$Q5NC~ve4&{$Nxp!-g0koHxU}OUXp9FP z%fb%(!rjuGFA5td)P^tsWt0mQ*>7{XsdAMxba%Nc>qS^?&n|L7H@G#Qvxiu)H#^L% zPb0^sH~uN71zpBY7(lpHT`O{BMcl##=zYDwi#m1aMdX;5@=BssYhcq2zBP2UATASH zWY=zXoW%4BDy6Ye77n@2E<1+a`DcaRP#uQEecf~TH8xS0lx2CR*b?ZsBuyTIxpb() zJV`gsmEHQGGHGku6Ez(_nP_;Q*VBO`0#t9pMp3o!=q2gf`^)?ym5P(w-DbMb_+oob z;li9O%*i%t_;$-xfQRYS5(@TBPaA$994DMVHp=qUPo}y^>!)ouQ5GAxqN{W|wX4}8 zsR>BmwmLUecbbXYOVp4XRup>r);9!t3!!I7tWj;J7kaCXk#@+`jExG-&NRwV^%mDE z6=Uh157zBmMkRW_;x5kFh#-rndFw>4{XnBv$5a=0N$v;0CshgArk!~a$CyLu0RA&i zEuy3@y^6(~sU(FQ9J<3G`>=FYbN-ZBY{Zq}`W*IsYAp*rgO%4t7Bt{2mM(>wk zP&tFpb=}r2u}8tsfxx_dUt<1r#c8+=jdZSrOTab&a^d)7HcZIaWRf#itzWw`62mo- zhn5u2fI)LX;M%5a@Wr_@s`wYm8AtFj&zQlz@VBdNQCej z5*SEWCg|k6M&15NmaK#-fcD_l zQfMFzALBOgP7g5`CHGQJFU3-8%hlAHZ=fTQoq1K&(rG;nT&6k9P7P(Rdr@hYaM(}e zN#bd`sJA@qH{>KIrNy|l)Z}6r3k#E4*E(s6iqv#h=40Jeu>0k$04-Srm%&%=NrT1Qi!#(WJAj-4p>9 zw2+3Kp*BBEW;I}c2;9M8rBdex!TlJ%($;aucbjpx;#z?*sx?1_n>xarL$?yDU3+FZ zl|!L+1syR!<#(h8^y@<`ccka!nO-fpXxIr_pm?Ms0gU+=_GQ5H;W1_e%F48+sriR#`f=_6jJZCf13?~w#Eb3!Dgjpb$U(VOY2&3e+ zfGn+JXOa`KzN?^tvG-PfaG|D=#luWtf}L=J+ETd@#0 zZpCr|tFquwSAsQV2@zinR|N+?^x^ENOnVJ@2p1)~2GEx{Sv@nYKs6$aT>W$V3 z<@W4c^@WkDD}1-xa#?eoNWrFDN0@7Cz7uL0b#|>b zAGf377RiQmjwYWI7}e04D3Af-2IQtmD?*lz*n+ym@&!Xf+A6Q&Mvk~LhXy#lGyuYMN3#VDvF&Vl zT^~9Ex6P(<;$7k38@+3Ce$H_cgWvt3C?9K>N>>-_SgjQ{XI4x3IL$z<-KnJ47*{qa z&r`|1!U;nwAvC=(Gu}QY2R^>0^7?|{$E?{olj`nm_^ypyHccq_%o=QhVtZ|!#0kF_ zkJ*Bk+f^b>o9U@X71<-iz}!x@LglJ+J<8|Ap|dz*g&}ie@7mZnH%cGp9Jcn12MXYtGht?mdmGyke!3?=p~@!-0E=q1}M4AD)8tJfdK2=+|obX z5*~m1ullJtS(*0`x*s0Z*b2M{>hU3cDzYKrzgrj_|6L$3$~-=lUFLmw{6F`^k|G`- zin5D9T9y`J8K%jTWfy5wmENyS=$5A^oPcrW*OM0pr}7D-5g7ip4vWwZqp<9rZl{s= zYh0x7o7~FY-=sYi*UHMhp%8%&0Kc?8Jig+R=QOWQ^K6>#?@OC9MY@FDz~CJuBwJbU4#?Qh6|2jH-PJ!%Sd#(+D5ZQ zg{w;;)q4g?khW&(UvyQ-?ah@wjy7_9jnHR5 zNR)b-ryd&Y<9`~9_r+j*h~}(J6*0-cXH1;wx(k=I>Ss+55}WI zcOKesz?SFYXI)y#VNI%_;X+zH`v}gznPo?h=85)tW9FbS8X4EifI_*kgnPoMwsT8` zk?Mpn>Lk$QUCVdqS>AMvha_H{E9XqZbvP05jaME+ecde*KCfzSs~?<0hL?LDQp$$D zzlJn|mv*(AOEGzIxRbxf4}ETt=!GZSs~pXCL8;~5*4X+8-}Dv|D}5;zL-N4!Ogf80QVsY~ef5=eQDx+KU^uEc~+^9Jl z66nmu6;H>(kt$ncfg~WwqVyUGF4v3a?+b(s6ZK%&vQV z(`zY59Zu(xIxf@s2!@-;RVkZaIFha%jpdVVi?jFovUjZKwW@ z)R&avBbN-_A7=jEp%^kz*(rh>&=^*<6ei==I$pKYI+*tU;6MKuAYXSJ&&Tf^`A3xe zE`WT+_`gI3a3~G9`8@zR=R@Uy4U$;&mh@sapC4SKK4aO%#@wNsp*O!LeMADbVFgxm zz=?p5@;?QEaB%&Dvwg^)2G5_XE&>lexD3m|!#_g5{TFn{iqAnq2A=yAIuG<~uz|r} z!H6==o)8>=#tNJw@E5G0D2)DYtoXHlUwUo%-b$QPnm+-#j}K0o=57)8Am^K88h&>Z z3gd6c@`fz`$;iUFi)$S;gId3ZEFuJuMIEawX<)z=Kqp~u_16^^4I#nM`ID27%@>?;U5n%9G>lO`b=ata6sT%WbYR zf}kW&nT#*}E=B{4Uioml<7aX)XI8-~KJ}IXXB%156R~u>^)k=r2eoR(aog1>oI`#p z34XfRG1IWO749Gw)M~Q#X|vhwMZ}{NDn3nW10~#w%lwIUfqV*189nW4tz-GKCst76 zkH3Z~4>NqRBc}_PtL#Bvz(7aa{F1?=69w%i!vKbt1_TmEp8axs=C}XQo4g8HoW=01 zed{6I%_C`F2)rE}&3(}$ULC}|ZUL_#i^Ko%AZ9C%&&&a`@Yrz11ULDkpvQ;IDo-CC zW0XM{6h+^mBuT;fdoYxsDHwhiAv6OMLpqEgB%QycfA)Oq#W;>p2ui*KgaF5JAOT~* zDZ;#q2rw#vDR2V^w{iq~_nw4lJbH&=GzK1ghrt*b-EY4Ge}{kMC&@65!609fq(NzJ ze=v%qK7RE%jT*AfffSI4zKcMCaG3gd13XLIQYi$K0b~NI^|3g&8c?93q7y~Lm zWAsf7kdA|bfyxjVjlav^p%_BqbcBQIq8NO?%-4I|``j8iaB1i_Fb4)g%ypx`)y z&?Evsr@liN0;bTHWP+e58Xqb&2)^e;fP!Htc$T6FV#p5zSz#~b8}7b)j|@V_f*?2o z26E4;`20y8ums3wX4y}YE~^#UqC2nWqTeX5qn2S1D=Cymnl!=oKp&Sjtq zd3x~xgYa*pWU!zIE6>v=y?l5q|Coaq0R8Q>ePCYYAjlU(R}@CS!b>90FQ0DaIZ_ma zxl!|O7Ks9C8timB=Nw-*;#da$P3@}|;b*)o`)R6PPrS8*PtMNt*8YJwiJxIvw7VuY-kO5;xK>0nm3=Vm~j4&y@^1~zi z?)DGdYM#p0ZuvARy`&s2vxf%30T|_$3cgKZ6pZo$0FWVdkTRrF_XDIpS6vEhru#kv}B%4;p>27y4@ z_?27&Wh}r$R^f!*Lp+(rnBs3WiD%PLa+y~zq1Gar8{FDc?KU+Pw)_ylbMfH`L~Jdb6XtMQKLa)Sk0w9AgMH+d&)0Duc?I$RK)v|ire53g z(;VoNpvD4+i96^S;Qoh4`k$@e&nf3mGb-d&Muq(dqrw=J!fuRe2s%ColMv$L(ulWU z(i^8@-#FC|&uEeE$|;%^`)y7oGK-gBlBmJjq=k51sf`^w3HR1g&3U%a7Dtj6&h}YG zo7i2&S7`6cu+l722wVD#=!lkW<{s>}$>gS4iH;|aje_qqPIc*d7IO4zaXc)$gXBW9 zX0P-xk)5vYWI504auuG=w{;S`+d7GDJx)_)|dlP+_u6d6pmYT!INnGP{ym8Gub)(XW02@fwCx$6v2D*8+qP}nwr$(CZQHhO+j#T6s`u*N zA4yhL(p{RiZd4#}yyvZGF&uE{0wSI;c@>VMhvtQxqW%~abH|pKOvMcrmcHOoXw8z;s0GT-)z)jWoO8feomN{L-rSnO-yADVXLykQFykC zOs0*aA0om)DTtVKZ`!^?Wu4*Yq#{xI2m1zctW77Dcyp7onW$QdYq=qLE778*0a;yV zVwZ94A|LS{Iixo9wwnA^tE3-Csn32!sm|uC!Js2Inun^CR>%fjP6pZrE*Tgm=_os4 z4h}nO6vv^I$KvJDNt=?yGT?ZbxXh!EJ^0%{T`Dax2s)7=(BH?5!dRgdI^8(DX7h z7Mb6Cel(j2?zds1!89dNZ7@Ftn>3+d2|Nqn5&1P-1llu>H;Z*(e{ph$gxD+U*Gv#sw@xiHX z?f~=*v`w+6OmZ-Ukqpg{yQxi^j|WfP96V*`3y z8YpG3Ysh>br)DQ?pfxy|hHCd=GJP>DeH+}#G^nk>KCtVl>NDbp#k)Bfyz^SK)MTo1 zMh0|Z&u$`@F)DX0Nd9*B23|B3kNartwMtKSRK&l=S^vl8!_D&DsDBur!uuwj&sCD+q%IbIktsBoZRRCg7?wZ6pTx4FX4s9%buz~D8YTzH0 zmry7!&W#>0>q(28?6>)s5L0b=FmdKe5gbT>9(x0_F^e-6pSN>t4yp;p?j3jKVUOIC zS};&!A>5~XFxXBXV*weUj`z>9zEA!W*dWfGZ!&$^_Z%3pJJZ<^Oj9&%sv(<@!s3i4 za|!T)4i;+xI#6zosG9TzDzU0nJOWq-SD=S70teKBEHjZdVyHL8oG@bYfsCd$QIF94 zgmAOWXM(9CAztl@B_+a@13Y-@P$2YUK`r_?Ur9`9*^DDkb_IIkar^kRw`%+Ab*an{ z%%54A=8VBbSR{=%$R&G|L(R--jo>L@GVC4OuECB8H?W~$7F1p3s`9}i;|CI=L zP%3w`DnN^e22CZmtOu*>Ag1S+8Nk<^M21}JZylhxI&m!uo5`QBbAn9*o)53`*S%m} zLFkYc^A6YaFd11=qJ%I*1VTkIX?0!pG>;U=RZUt@r3o863aDvQJDjaQUVbV{1-|Fj ze05neS-CRzkD(`DNd5~HK%1dLlO7(El*^1=?+%%k9z&HEJb6}{9g&zKBJ*jTspol4D z@5vT1G(Ti^lJiVjR&;&D&j~%Vx2|_&+mZ6(i5Q$val6MDWcSLzj^{OaX{$7z!H5 z*Lvh?<;;)CaN}w9^x_YbQ++}>cp~rcHiRDUpqN2ETg5iF$9EmVZj`wJ*F7TLk#Vs*lGuOM~}jNVGhRp z#Rlg>Bs6HR)RRd&o}S_9AY&|Jm=jDE?f$F@c$2P4*A@)`YMBVRBA0dbMyif~8o_yn z1}ThJUsSQOO%5ra-BE|iJC+`LTOiLx8*zwH3$XSM_D2#l@ff61W!ja`3V-=OEkuu< zyx_fUVp#lgT+QRQ@<5#<%Dpa}l%QBTtHqICR*mNz>|2H7*7Q8HbWrfFE*r;S;#jDF zZf1j*<)zX65H2I>2R9YVz@g}zRCI$@jlqsv_?Tjm`W-kF^6b1tlcclu;nznUL4%?d^B2FwH zh;l9$?~Y`*F!%_sW&dFEH8{vy&<@E3X$h-$^5DI1gLh@0%gT&Y$JzVq7rOwho@oH^ zyvH`FUq6$xsV%7$6cUPRm35ILsBE7YSes98!r29w8Q{=tBJI3k6cSe04C?aaAEJ$Y z0+aV}errNGBfVnRD9v{>fO?>oIy7o-Z4)xW9$#Aga=}{kJ@>*zCV4Y`8w<6rHa?4A zdlR3s=^lJMTB!6C@SGR{BZ4BORO7}WO9&;v{Je`8~xFP98-^$Q~Z_X9b z-n1aLTz>|(Tc}u~iPXL!sw{DxtseOOcdI7Vn~}tf%*6kdIh9>!r7#kKh-K!BqJSSC zRsHClKz>M|0Kg%L{qg(j0^7^CuUE`KL5v5ucfEHqXctrG>(cbyv0ifI$>s5S-QxxR zIr%YxMKKZyeSYZ3{gZHNB(+OAYEy5eYiAE$^6vJ%`>rvDI0tEP=f4$rvw8PmdB5Ur z0|_o5>=|H_1N{-jun5}oma==cM~2cuAQLw1%I@>}@3h(WlD%#~dNbBY0leNHC@q|I zpEI^>7h|{~9isY+qM~e9y{i5fhGG4}^@G}9SOoP8#k16;KvYJC%*k2f*niKFTq}$H z4vpM|qw|S*?)iE8d3Sa=`I?7wWJL;W zeeUSx8aTJE9J-~nyA<@CS{!!yJcdLj4GlGgB@t8ZX;H{|n(`jEu*XYxJ-Th$qlz!e2VY|9oFiRX3=Uf}LHq6b{+;YHMN z_8Qa&k_lPA0D40bEPDs$=s<#h;{MP*f@CP_iUcjbb|g(-pzB@tf8_Un zB$(tcDM{NGcz+n+kOmk1Zp4bOEr{UF&lm14i@0B8fu9OT;{^HJ$V~GuiKD6OC^sXg zAua|^JuEcrT1aq+KYc<#`fT1F{>SWXtk?g(-UI^;`~SE5L4mt~V_^-oIX+qyEXDD8 zr^{)lkIT*lAXDswlNYV0%BLzJ{dWPE4m@e&d}_5eNPYc?eqKBz8@W{^sy%0p549@m zf-UnPudPbqnr$->g9Y=emZixWOr{48AG_?$_2c{{LW`r6FETmg4(;~ug-@O^jJ2uS zPoBIS<_~8s^a!?yp4S}ycE-7x&>c7(nrGjdg|U50`mAub2%eSXo^~1?p`AZF+k$dm zu1CMC{}QQ_fF%yzT5b|6m^=|Y;lV&G-RNN^HeUj_*)1XwJ!g!Bk`3y%Ed4D2z&@J5 zQ+@OpAwkg?t#=v+wRp6m1-Q{Fa&gdVe)iW*RMxYtcoi#tvm~J_LF~XCdjG8d_V&J_ zymuyWl%YtX6uux)@;UCf)90BQdvqSWv6!y-e!*i_UT)#sox6QwuU_Zn!bi-4rKlk@ zp59Een5sni3sWk2-eXp4GL74GmRvh_Yftqgna@hBfPWae&P1y?BwJ6t4BWY&+uVOU z)7@oTtn_R}3j5%OTGLBUeQ^8y(7M@~Q2e-LmgS^zb5{@LSi~T@w7*4}yo5X;eLgJM z-`{#)N|#i?dT-W%P%C8cEDy^iq^Gw${%kZpuej5HJG?hM^XTE)&Oh0Dvlte&bD7sem~ zj-XsS55@0{9LbqKBNf6 z!@7}L%;}GW^m-qE65P@EtDacb_}&MUzIq8rOTX6xMJ$c>+Iu8zUC&EL9s{ zf9z@eSw<5s+bic?z zxlxef2uJLz2@f+A9_Ex`I_RsLJ3C@kIp;W6Y!io{ZhAg8W$xh4OD?`nb|mA*zqaMj zQJL9s4CZj`mU^7xoZjHiw4_R{GyUE}qY2!H0ruv6|Q?6Y4jngpTnAzjxUWBP=b(pv1G?IV`cEh$;Yb8i_HB z-ZIscWx2ZTy|YuKu(vLaLW^8|WeD&;Vc!_9s#K5#hgz?qZ3uT|aeq@5r7rmp!nCp| zCT0#X(^4j|ibV}A{;j%J>g*Z0{mlpBPj`aE&Nfn{Od>bR_zltpiSeYvDTu<-#w$6wPugF-jrQ}+wE*#rp6|5j!9mQ z%vMIxE87ONE8B4J6LM_nP6yWTICBlD!~D762JlH64%yY~7pmUthnsMlb?;sq9^B-b zlD*gvV!Ve;(~&;U=6e_M5m;#-Rt0=!jW^IER_&@hZ_2r0Y>Clk)5+>gLbsGo_9*uf zxerhEi=IkOm$%){&I&E^joyD12NbUo3>uY)jPKk2^ny-bb z^v)&k`%J}7-itm2ew6R(uPX{~t@M9yzR#OeOfx%J9`>1yYt(PQes}VpDL$}U)NfYO zL!az=H3Mf@LKeH3(o&6}*(c~?o*d9OMMT*M*OkEDN4>^6QNyiaaO)~Cxkxj)m|(It zi|w|5o=CbrKyOVp)6&|Xoq({*Xt!rKEQ&7NClU`igu(0{ z_Z!m0N+Xb}k`G_8$kEkMj`lj)v3*E9LqThys!VbM%<&=ir6Kkvc{V)m?Yi#I3O?=b zaW+rv_+8Jqisy`^a1WD+|GCdj=?;M<<;N;YfO|M^iC#Z^KoTaZC2$HQSMy0`oeI>=)e9*Dl-ryXlV^1lipaH(a@*AynRiS5 z8TVeiOBs^>Tj?&KwL053mJh*cOjAKX$eK=e)H_i=dTL*;zJ%dgw}KmJ27i}WI&*RN zm+A7gn+;$sHm^n>5x-b zLSak84Y0)5^4Sd5w z64GfxPF8{3ZwJym%G#nKgBIM}MbIi4-RehSMQs|!T6ucqE&VSDZGQEr^|*ecyd%*J zzI|k7C z^^4cf^UF)!)m{N*#nC!80~>LYbkXW{Dl>W-URI%*6)lu=L>y9yHSB_;%*5Y}y~H$z^d&=K z24dloL!30=aD`V5pDgL&z}l1qXdIl~q#aMqX(RX0>!NRG*YWfr_qNoU(tVDCuql&; z0Re)2`p1yAj`FEvZ7If=A2kOP*oUKWGjilaAC~Fd1RJhT+P-3^?%X|>DZfzqcB2h zMsNgtJgsJ2lS4uOz(h&gCQ`=CokHWkQ<#>5?jn~jF81tZC|o+V+Xc&kgr8qpGjVY~ zTtYRHVW~-WNMJ2Y)G=pJd4M$KGJJB{CX}W!Rz8vFb~m@u89v^g5w8WVgfsu2e|H@5MWkyJ=hLyOL)@JjE%DH8}DB zTmi8Up32mRP&}w~w9umwH}0F{Gm0FolK5nXa5_r*)OF}mj@=`u_Q{ktPy&N#)(&L=$!(Ed?aieARy0<^jk*-Vg z5fQ|Z)l&ieUuX{b*%1Uo{@Ec6_TsLX!nH_P)4u}Yx&F2tL@usK|AGI1I&87~?Sm1x zhiFE3ru$yO)7)ovOPOI;#ZV;1=jWnlYNpu7@q#70=hYdyREzv$@XPVt?CjKlu*mJC zg~DtG(;iLzxk;O9^NwiM`>Cy=zUD<`1e2#nr+s>L_Y=M5%k#L~C$+Pcp^ghk9DRb@ z$L3eP_ye$Z7om==3nIBzZ>}eNxC=Q<{q)?aZ-VgTRC#Y@O7@`Kt@NKiuWw+d@y)-i zEtS|gfn|Q?4Gu-!nCqN8@K{{AG~G2cyvkl|c>9~bur~#X>J)H!9Cz4UuO3yzL(hYs{#*f5SqeLZ}x*!k_PWqrcMFez{oU zw7>1i(H7r|4BVMQlSk;TVqdtNU5U;8dC{WrI7kq0?*)al2g^@;s`^*a~mI6Yjx)Rd;51Pn+7hZGd?(J z`&p!sLj#X8Bv_aILdqkuEucyfheF!eu=}|fpZPNqHWtA%IwfPm#oVcB@X-c+DlEMP zMYb|z0RpR{*`XWLTe5W1J`j9X|6m$5XES8r(vI9K2PI%kn*Q5MB00Rz|;o%r;c1;t%MNcC^p5Q9*l2k~lXJmBi+)$36&Ot5YgqP-;1&^eT&Hp}IqJRI zjAm=Gv$7@p#-wkuB$Kk-tBU3lOPPk(ilJP4jJ!td?&hMcfie;%cUT?P!XxXtZfTyq z2+^0`#7QZrwL&=&6S%&&hh1lXu&|V zh#WI!pN@hx9w)J%$~9hUnqt+>J7ED58S&Bejmv+tL&=$PoheHLD{M4*#DXRe9!#;p zw}lNe`c0%e!y55SeZXni6Iu`xH?>QXLhzZ`mqjZ&%Q@YB!0v3;waOlTX)Q7cdQI80HZhoG>H;xTt4y=CGv6VP z)EF~nR-*6=;C1C2-?*_6x&OJCF6f^ubaTl)<~p?4hCg0numM+LvMqV5>zie4z7+jy z88%$Btmui1an3@#>SpWoKgT4_vvQEYCh^1bj+(#pr46x!6tAg3l6Q#gv5 zc)xP*>%>ACG-=%7$V&EZ6@;l&;eg<>6Iz_$8Y7xo*oClG41Jd%!?bXEwlLD7V$aHv z*S)V;5UXJ+jN|O1#M5$-PhXoI!N)$jMWfH;QtO}0W=YcTv|EXTxj;y=TQ)t47a{{| z^C7SUZH||N$sJtd2mVonK3?N`yn-YbHs!bmlNVVCp${UrA>YtZN#xMcU=U(6FvnIa zti_#Wl+%#jXJ7H2tu+nSSCh1if@neiagetDTS;8o87r&w;iO7^+H_W>u=?;A`c(UyAdt%)-D)7>P^cx!YkvH?2 zRCJSMUC?o6nOUYWwmGJ!QY-HU??s2Vi;wrt6!}vm&=f8W?rUm@o!7;2JupKr)oWwN z3Ik*Mlc|LQJ!#`|1<$7eV=G5bd!e?1soFuAo!H4SJvl>QG7OrHn0>IEYnc9g`K$@d z_E-RpK%zkMy%Rg`&)6_oRD|H3FgT#2mE*(LTujiRfpHg3Rem}<17NM7DgJO$qAsM| zoQ~j*%9!))+tJbHM#b@RL$;$bcHRB#_Cv`qakOF`zR}STsrTccO$4SV<0WrD@r8|! zo9JKEiMN%q5B}^P|Gb;nRYymuLb(!bsleob-qt^He;;yf;+faa=nOSSgeh7(czjD=Olfh zjo{osRw<`>|MeQ%++yf~z>+2nX9C!}L7@RfLGD23db8&$`=+l!UruqQwY{2=LJ}HC zj*8qU2pW7kE7M^cTb}iHcRou|i3F{-oIgdmt+|kglh)=*48n_%Mqmy=S?0X%>aWRu zo%yQ!n3KiKEY&ystq&NljqQ|hqsmcdGXJY_D7NhwI*K_KZy1Fq;hD$iAI`ad<*pwm z(SDXn9Mf;ZD~2-^*j$I8QH6?UMeY_!H&LG#9uLrTJSQnTgBt4JxBVPXRK(D6k#7mi zI2PqOO+=(7#M;F*I0^&!;$S{^2GE;aEw&j!l-W))M%x{TxY=D6)BwiI>eN@eNxQem zG!{rloM~xVckHYFU_oYo0^ZR z*y6f_fFIY4VGkH+!-j->bz&(P=-7rswP;04Na~tUueY?8neCt15)*_)La~Z$G0mCO zM!=1iSU)cY!YX%NQ=8Pr^R&SoO)-jEqmYL!0+(in_Ie-CVcu4ea+( zFBr@2AoJz%BIqqtr`S;fFiJp^wl)RQfPfO9o?=Mk$hTe|p=naUm#0|cq^U(RQSD-m zVS?Si2P$xbQ^;mp7$c;~+!`LD0O7#C|LEl~ir1jzci0Izvbc)kW;s&6p45O7;VeNW z`7F){XKr|b3i&X>4^pt*I`y#CD>-!;i>++9+0ytCG#08;Dgyx+ArRgLdX$wagTWo> zgsWH9iTK^_fjmRNP*dm-BS=4s1OaWVt?#ez&;8HG$49OOdst^4+2_Wf0PgCYlNlCia;*l9##h>8Q^b=Rx?7=5iB&vT$!21K7 zzyEMjaqLuP29{OS-vhny4&JW^66CM;<|>gAp2yb=RlPWz3j=j^U;rBz;?lW0Q;ef7 z0130yV=$r09Ci9HZik+@lcGzBFktiTTs`BK6;rL|*!iOxd2Ul8%Qd_33B41Zum9tx zh)yI`drT-tZjnDD#0Lz`=_9SS7!ODC=VzEwa>mHPIc}(eF1N;#OHmlAv~pO5u5C75 zfbmgUE3Q9{n`8=)Zt3y7-r0__?%vdn0X^|p!Z`hlcpOstmvE!E$U<5RbdasTP+$I% zdriE`a(0^(UI;ub6J@VM@ryL6u^*VVwoW0103PGR+Lw^_nQ}7)``w$8mO3s7f_{g` zX+A84ztTiCS+>lQP%Y#r&BBpwC*&wyIX+zjwZ4Dx2z!{f;2ffbSd7VjLIOD~1q=fr z6{B%oUr@`ckM+j9#CVT0PAda=O|NnZm^@JZ9Noz(fKE|Vw@j@>`P_BxudJnslB`Jv zfTEF)a8*4G=Z9H|@#tz-T~_*svhD02EZ_{rrurN@EXx7~FDxv}i}=&FKEB!~*@+rR z*w8FWfD${_RcSEfTjcA-JPOKszxizZV0YZ3rj*0e)~Q;BW(L7Y8%%&S>{7$$NOgJ* z&(L_;SFAik5f;6fi&!{og++4_e%96CHKg=^KZ`xk9j!(i*)Z!Dr}C$FO2H5p)1^U9 zLn1H+1ZlSwv6i-fiQAah1-d9CBD#O*JCCUuP(`U-`T|93A841eCp?8xQa*d4f%tjO@@n1A}b~R z^=#8bQ>23xjR?kN6cb-j_mv};yl90?T6EPER!S?&T0Mcx>hC;($oaVqD(3?5XR3kS z=qJe?Va@IT`p9yvtliF9mYGP-EEO#{D76LLBOXjQL@b0m;tcDLTA~QtJXVC%Ao3X@ zb2aWqnkf4*9=j?7Fdxs4QYA?#`xCtVUf6P|#R4Rhg>zG9p$?tYAl_yu4!oHAwEX~aTmBtj2qmOdq41e4{iEN=m^+y}()!t-m@4J@zsjjfy7By!u?13*I0v+b zyYzKFHc@J~xjy(1s;peP@HcfogVA6Qo6fcc<8%_s>06&^_Jk+69C2@10fR5AJ}Nhf zMfGu6bmWgvC9Q!KDpVH}(ZAofJ^{-X3*H^byjSL;XwGnt;VM`VYyf_RX*TGq*cN+r zJ-E1v>V&y4If$fqhUN!tYcsmrv-?*mPt))iW#q!xHaLb|yy^oXkC!+NlM||D>x&7# zj%rB~5LNkZP}>fC1X2^>J%SJG6Pq8J{gpI=5c$cXTw7!9S&gumjYDsbY zVLz{_rN+nA*u$yiePi53kpRHH0}yr&0?D{)ZA>vxm2x~^1u}P+0h+I#oJYCibGZ(b zZ#EMPAA|ob-}PutAS{Gg^L#90+PT4}| zu4bk?mvYn}Yd>5lcKuV(L5Vs8YT7CJ6{vDx!27wCTcQy0I%!GNrX69$)Nn|Th6zDk z6tn|Au@XOS7h~7$5e(hkp%|tVOR01`S|5vQY}h-Y9JRsR2tmTCPR*A%xzgOA$P$tY zyQZd!biiC6@X_xDrcMHvdx&re*=CG(D-qMOawvSwj4m+BP9TfHpGgInfdvrpTNxlN zIMtl(FV;ZaA`1E+ko=v2-avgco&9 z7p|>~%t#`pp3JUDOvQ0-Lm={!^sh=uGBmD#g^6}=6kWbAP5ish@UA4FS2rh0|6tkC zc*q~s`5H3PS^}iFCHk<@Gz7K32RO+_Q!h%8+)tRNEzeMq7_J(>3C~Mtnn4d~^!P z2QF6>58@vJlCkT$yPaHT;S=s2p?T0Cm*IP zOTuJ>Q}$|B38|S>DIm<(_DFn(6GlyAiszyRZ2uI>!ARi5XM*@PEP;`Sm-u$GvEwq| z3R-KK$G|;@g6Lkl;}flrWPeupu!bXE{;e+FoTLZ(bnJ4a zzASf;$rr$&+1tpZM}q`R$$9kZwo`EHe>VA~ZZW^bU+=qc+Zyi6h7VBF!-J#QUTT6( zYFowtN)Hgb3dEWzc8eT&V2Qh}zTvzy{}HYSG`0dLujFN*C)Tdl@-*~cW>dpD&#Wg@ z$Y&nZG$bhJAmXLP#bmlOc5-s~}`Y9Oj`MnU?E?*FwebMYvI@E!&}~k$%gW zVd|YPiB}{z!c-HBHC~%XKzOf{FYDnNoaF{|ezH&GI*QYf zMez;iTW7FKa77%#dy=%*utX;^t@z#rjU)HINrMCbORZME%%G+|l)>lEoCH(-O}6ev z;7qjT7GC;xjc<-J_<>}3zQ2FJFY$BpQc&@+aeF;Vv+|YkeKNOoS`564v3|wYidz!j zcA2(8=WpRUxSj0?QoVztZ|Vck(LO35EV)zHU`-goox?>Fm%sz_lH!`SwhAktxquepqG@&L2-531W8d; zqgg2>?g_gm3rM}SHczrjDB?;1$k~4@gfg*1BBjoAG7J#GU51O96jvvzZMyT6STinm zRP+Tm%sbs@Z-u|Z6@Iv~^i^Q)`*ME@5$ix(H^x#)I`1$4aAJ6)e?7b#J9>C{JEfI= ziO1|iR6t$@tQAs6hgMn7mVh+2%Y~#=K8mLP%VPnqEk_A>qaV>C5l5t7lI+R-E^mAav+WFH6R2^7S- zEQ;SG5@Q}E&q?Br|t#Z&(m`dA%uCZ17p|=kmKUiC_H1LY1rkJQ0_kK-P zi-TAlAA$MD5XaMc~vMFR``e!mF|75tlnuv);=-~HcvqWOQag_z* zv7&5=`ZrA3`_SNFn8^?7M?1rAnco}t-;Y1eI)up3bzLv%Mxfvw6_F|D~HK>`;0>I1mfdQmJ~=J$a0 z@2pA*dWKZpz!C(Vh}PJwc`j#_Op?&S*LAu5>po$EfjQzCfTBff1FCK5gMjyhjWkVC zSP(9A#qKk{vAxV{7h@TW3pHSIJvyLCAcBpgtshxus{{XuTzke7enNoTpF=J4xtRHO zU>F<`QX;s_nF4?@cbxWBaINo0nUi}2IJfbLSU|^}@B27x)+-db)Zc?_FWI(~IH`?LjVEuk$3IXl78m~4Z z-vc@xDkRJ|%=nxV{l0f=0psbA?Qd9>M#p|^Uyo#Ma}ZYdb9x|Et?s| zc^RKuE{bc@v}(i+7<81!*^^KdA8e2oknMha#dFHA*44*jm& z+etthUT3|x{S2EXBWSqqr-MAki*+Gb*PYmRRgK4+L6G}F`lZD)7Mr-5HgFQG{Tn2= zZcJAiXw&XKu&>z1kQ2bXdkVf$#hmCCpCWBcWDF343Nzi0hjDQuMY?=ORXKfgqLD+xNXX@)HrSJ5&*lJGacBOA| z66Y*1P{1?sd14_6?ar+TI(fHq4RirYU8HD3e^d;uNTXj}Qjrf8qIf zBATzG&1qbYB&jC7pF~a}ca<(fa6`7vptFmn^|8wICIUs-L4PHUniL;SH!}dotDA}co-15iGat%d{a5Nmv<5x3U0bibDh1a**?NTLF0wkkZq!Gce zA{zXs7$AqQka|FlVI&a^s1p9&Iy#$!XVU4Ijq5P*B9{L+_1#L~5)Vx-x{CnhGKZi_hSuniY+Iu>>djfjE z&AP?{q-ym{Me?Xa*5R!s)oiV9>WXywt~QVrn$y4xilKfVkKC*kIR3MSDHu26@q}9Q~uJ)FJ!8p5atK7alg2S*^r1{S-%)B_i@UQg93>N@_X@Mp^ zozcQNQzZ%U-l65I=S&`&<)CN9GZ^$#6qZ`7MsLn$ zLyFTujXV7ex7(wk-RkK)#t=*poJWU)@dywr+L&0>fDBhBd|7{Fe8p#Dw>n$B=txu` zOqZH=I5KN~KBuX z`tG_Pj9(SVzeQP~f|f#(m7hv01R|@t?-5E!j`=QyD7Ab8!-aUh<+5+#G$D1pX8n7j1?XZZ!T~kCkqrH0XP7FPIobpFpktP* z;v#K4+lnnTU8rJb&%^mr)urT#n4a!5osEovOT&8P<{E}o*4Q?JMt z8b%48-xX$Jv{JN9M3G9M+%+l-OO#trnfco2n43!3xR~4ZOmw9TQkSC560J(0#As~7 zC`N1Q~5-YKrq;>UJ;eji-8Q}lVN&aw6E>wQx)KkZ~)ee zqCE1l!-KL^T->J_#+&44SgygFM0)q9AMvWA!v%LUO^bJHq-0MM37U{p=P)=!xTKxp zCtYTJG|Cgg3!Y6;3PJIHLbr$>6(CRt_8&4*cDIjF^E}m4-)RLTv(Yq8i;w+n4lWjE zm!<^f@F(&}oK|x=k#+~mE-fh8AFbc$ZvlNZDt*|*W9bP=y8Cv&5lg{$tS55cX*;7o z&QX)Nlw#e6Y=U%woF7dB^OR}{Fp!Rv<8$QizOi`#?G+Fc+@KGR>D4^H30w7cNpfZv zK4Qmr8TmP6q~W!hE>1K-nn>PQ6}08oSb}Ijy&;(@Z;%a;8I$Un7G!nz*jST7P|2a# zQqffU{rUU2l1H>N47^ELY8NAm9_6q%6=Ne+eV|yuqL*OwSS#HY>Z!UC2lj&|A|AZm zim6#4=aLzge9;5VBFh&ZCadkhHz#U2VboXWo*|z`i8>=F8z?JTm?0?<_iP>XI~yhczIGa6Lb@j2rofLe{P;jO3zBN2)^zgW&$0yLd85C zNHZvv3Wrf;TEVdR8O!Vg(WHhYvb3!O19e7$JnKJ9WbF|ogkxiiPbx@qaSo%+L5OC| zBAwf)t*CjMlj=iB&_hYv3}ecLW3NrB?sUP}WlusD#rwL!?UP=Ga$77NPf=?sfWDu$Dyquy;9GZ@fX%jpb2Vf>*^WuznCNxlhT@A4NH}TfPNs(W%9yzPB$5sk9L$KtZK+?e^m@hJ zEg6-jui3gn&#JQ&F2X^ufIRTf;Nkeas@cXT7dDmxEn{+agruA+9=&wdrs9 zdj=mksS@(s%{?4F9io;z`7DIFYQ(VgeXY6J=%9-T?*f0XxCjVx72V`w0$p+o$nNOv zCzSz>spDX5=9kJOXkh$YPW{}#KnVNg{kQ_jsT^!=gJbK$6jbziB|Fp1_Vx1gtVv*m z-yoC&^*7x~@>pX-4JXI#}m)}+ydqmbahV(sBy>V-X{HT zow>l^ycc>pySm%k0??GYd9l`wt!XRkA6m_@@!@P%DDb+OV263Je&gzSZK|F16}ti6 zb~P>qTnKX(hHWXp1n53n2CK?{93fmw-kry2USw!ma^V)1K)*^k+6_ehFW#rHZuhtRg&Zv? zK{>1{IueY^n7~ze;d5kDw#Qu2KW`5)v@pI7r19@!2Y=nh4suAx~u&Mjo(ao1nH~s71U`D$=Eud{Bk2Jx;pcga@OCmYX zH@uQb7R%EBr)`mxDpn0}jEq=ezh&B*3m%y`R0?pTOPfTkxo~0|i=k@-y`WhgHi!CNjQ(H7o|z3YlDxTITSFkb2{z~a7?7)O|aN+d(u@ZZe+wN zk%?z(t~U7mVOWaDl<#?HlZYh1rQ%Hz)L!+Xe0u;l-z!NeO0HRfO#*{)sW=G+u6j`# zbviKj#GyEbTm682jHRA7xM)J*fQj{qJ=l3h)g3+wc0_byFZG*@A&~G_m1Kaq_i?D+ z;n@bm&Pg(GeRF=vzYj(mdN?pD$DKL(vH>=C$$*jMh?!)dDukeR^{QkkZuQ|E+a?Pk zr2e1bl3-dwVQ`EKG~gyK67#A+W6#9FP+!4{P_$diBp&BlI083r4%J88c&ru)6faq- z)-u^2i8qhcg*s13?o`QlXCTpIpm?kni8`XH@ajD=)o>o~fAcsOvTwXc#M@1V!nVD zgs(Nt^wH~QXGOo^^`I?6kC2jiZbQxwzgnR(e_rbT_8{P6#s*rJ+sDBwGz)_@<3 zMQz4y*rGb=S7rGD|C_UzFA?lpC;hG~??iJKX++-)6xyAc>;ygbE(Fu(o%}X`nLoKR zcfOV#bkol7#(kLo$Z3YEq2|VQ#$u7F_pfFhTA_SKT@O%Bz*gA))k(kO$U8Y-F5Pbk zwN0lkA-?>j{HjOxM`T_p9R#YvJfl|8SKG0sgGlgKWG?To9W6}M$caqA{QicBp!Wpm z$@`heiz-hjZmVdf%ICe4PtNLn0F5P!o8c3%)-M@D&e9+$xsfSXu%M*e8MQRO+7vWh zAr<4`e)8vfC^leP2kj!2%J*U@i`Tewg5_n-(}{q88tm!acgtON!qq(i@+6 zC%;c-uBUYpjbf0meoP*8>2cHx=Z_k1LY?RjC#%(b`b}Diu>V37^MB?pmwFTmYJTTS ztyM$4E5Abx)yR7FYZJ*$6I$DJMqPPQgd?^$ zi3q79CLPF&H|;oL)Y%2@i0Sq1-pSq4nXMM{rKe$XjeVPAdyF#BO{DTbAfq2+vAT(I z4CA0S_(;Qeg$T=?5_qIxV5dwkarF1Vhi~rKo9vxx$ZZ1!2lV_Ci3c7Z*DJlbpJ zUQ-&booQb0x}GoRtBLnBua7wJ!`4e~OQuN{p*T0~oI8h2!c@u)zV7eLcuC|Yj!I%Z z=J;0p`efz`?)~*IH|weYADp!}PYCqAdJyP?4iWxe?Y+3)u1Bv`i}AA4EYI21rtYpv z=A$L&Sus0b?CS@jAWNhGhS-glz`Ph4A9j1xt1+i4)Wr)5`dXN(*7?|jtFyfX? z@SpC|ooR`ratMq&8)4$m5#g~7)({>*sl3&FYo?I=6TRkJkX8)N3T;Ioh%LOA^({Nx zJ(q0M8|Z^cS*7snxkv4lN_$rexrNt^?OpA59cT<|+p4~IHOHUFXMcXny^L_z)}mKY zWN_&-QKl$1mC+MtT@A75-@N?$8 z=qMfORBI+NXsryrCo8k_lcb4CY)x4a7~`Aa0O$@c zgZb=XVx(*WZg0j*+fCYA^doBa7N!>|Rcro!zucqmbqo$D>&X~#Dr=)^asP1W8;Lcc zjq?U|3&m?q=4KGcN($n|5ci-(>WyUyC&#IMoZS7;`yh=Gu)u6%c`v3})%dE`k zhQ|#A$_x~j^a>|`&FhW&1w^RVolfQt?$go^SMjTf4mOk#BqQ#Y7u8hiTJ8o?%YWgWfpYe}VQhM)cYF8S!c5DPS3 z%gqHwb!FX>upANWm@8wvk~#~$Jsx$)csgIt9-L)PT2oaoGDm-PfQ3ney73ZTgMtV> zSCVx#)5i}u+4UQE$m^B))yiB-@2Mhvm0m=_=|A+aR}PBn5TPZG77_y@cC?k zFhWbR&8~B*)k=9{?Bx4wlH6?+Wqsh2NaJOVY=WRA!PTFZd)+?v%}-}JC?JiMiqusj zouBuAbC*wPDnyL6b%DKm26evWQ3|n6EAh9`!krs;<&X=T?+-nc5z$}2J^omEt)G-=6xlGik~$DG9Jfya#Bvz5jy4{bcgs}K-} zlht^=TFH+jRX#{+?9>=tLRf`@r-t!bvQ0g>Iq+mP!{Qa$PlUISh)*O#OEt}E_~5zX zt8A*_Me(}`O%b-T>)2xWZd;NR0l*HbNB2PH$v({U`qRnNEPB^!?aym9UQQO#gkR0| zf6G*q@(IB7%NgHTf?s8tdeR|o-ls|Vpx$-io42#nsh2>R&)L#l&mN|eu~vyjj$P$Z zue$J^{$)MUfhnl>ov-HJv%7p*74|VdCb=z*LrQ{Peht{9alxq#MTx`9Waj_#WL)#} z18+I`8r-o_n?Kf~xKX>Ec16Ax=WGzq#ImnOxO4;1XuZ=cng~=Q(f7HP7yL4>%M@!K2eGT6v5Y$Z!S!={iu_i&UT{OVt;sS#zD8DOLqWqPVa(3b2im;vN(aD~M zX98SqClM28NjJeM=arfLCUW{VVqDlA)l`xWcPdohg`G8k%$y5*q{W3j#RQ&4S{%w{ zdaYJZ5t8!S>gk#CD0ubOyAe#(vu>hDL(R}amM~d8n)_%6uCxnu^_DCVrIkgBShu6(E}pxgIFqL~=dU{&+hMKh0IFsxFdUM7xOm=Czf zn&>O!bmnkjgUZk|MfE@HwN!XNj-gAh|K`~O#jf?g>lx~jwQUTeJX3* zqyQ&VX^+kz=Yw}AD6G4?ohkUT@J}+2p8}kJ;m-$!tFYi1isGlTXs52D%U-zntqKs( z20=5=akmBlgxb=zJ$LD*o~y_N#5v}?aj)}HUOPKXEVrv1%QfEqt)kf}yYXYg%F;yE zot0Wy`pbr7il9Jo>*dz<7@u@P$VdVdKbwA*K*~t)zs*kX&y?9F4#_6!&Bk;|Miw-% za^AS#Wu3hyTnE{?OBj~eA8fs`Rh}gpZ$gJ!1pD#cB`G0j^+pw*AZMxexs$5UmHl0KP zkV#idz0lQ@&F5T8E~ey5burI^P3QJ;hHQE+mjcH3s0eJ2a&NhWQF-^qOU#6r)Jgra z9;BXGo@k8Jm1Buz*#FbYL!@9$y2`baB^I|-PRpt=itFw)Fo0flTDH6Iy%-@?7Hia*>1kcWK0>N=kLlGZ_@V>`>hl*04 z>ZCwn4A#TG%@;Xksj6qf^1VL)KUpY&GJ93076@af2E3HA=5x|hHhWDg3O!}pw9blx zGICd;4NVE;7B@kL+*-<6P>MqSq>e^WI3nsZ-XO)Sq5z7w_KIxFVnyM5)Ocn2I@t`!SxRDi?;Y_j`ggSC2-Q`Bd;3ViP=NoKu zCY&nX*U~}hm{jqK(w=ImUsrcsiy>8m7NLsf%)oCV;s^>L#lVu+f8|$%2C_ zSKcb4cufjwXi>bf2Cw>5-WnUcBh|8UQ5e-2ygMj#c!PJ?7`$6MskFhXPJJ~mr~w(g zLrn&+1O*D;z>Q@C&h(LL;{#E;*RbDhL>Vbt%EomIWplR9x`i@wSD~7tYKrqnOGY_L zw-{;3C~tI&ic_ENdXB?K)JH`|XW>=<{o&Kq*AG)uy(&klEm%Y$W)0kEq(SwOrfl0< zdCW&z48O)>{`wL_d|8>)Ym!(`s}(6H_Y!!_T(XL~L^`3<5* zauqn!^zbtfcIUdq4uaF7L0Ls{I&BI9#A&ordiAuzV17{!TOoYU&UY*w21#^hQ5s`> znc@p%C{GTqDo@O)%BqDuqK#T@Rb}Ai*GyHOR9972&Da*bv}&O$mqe;gyRAbj{Ysydn+Tlz?+-95Y#E(W0MSHe{%afznewN=7_u2C^l zwoXd87(rc4C0rTdjOS*U^u+_6IAX@6R`uL~|3-@PMH|HH=BnihqUHIo;yn_x+YT(a z^0j*mA5p%3<9Qe45dtxar&i(#t@IibPs(V;8CosGQ)#pkJteV1NQfUp&Y`htnS$ul z{;P-p(Z9`%wQ%%7B7QN_4$boSvCV`a3eO+HO| zw9=;jR?I6?INZ9}E2G*HM~sO)G7*E$`NfNvd<`AL3zRRpHaRgGyfXQ-MJp|-t-axtrphsie^co;gf=u43CYq0^g)^u|-wm^5e_Sa#I zsH^*%pX|FwcHCXwb)8=T`}bg+c3@xKf3*3FBY(yI-iuq`2wY~Hi5sWi`cdRB{&+Kv z+Xu(p+J{LVcY^HV!=2Cg3HvaKv-R%Rk@%QEn)x2@7@lC!sGDMYyth}xmlC+ygqQbh zHw;sRvue9JeP_@~X(IV$iq|)h9YpLomn}yq+)I1G_V=fIzh;CIzbSq8O1v?CQhWix ze$Ni0YiG$$+nIl{@12XlvA@U6=qv%Yi^TcIs5_5hpP6;zcIVlr__8TLi~r4|Dm9iR z>rhI*X8$r$9|4RZDgxW%d*Ors$R7B;`~{oMfcQ7#;a?cQ`@mj3#Cuq-7x9y>_rpt{ zOHhD)_kkmU_*+UwFF(kTr5sycWM{WMd6l}^PjrXrk>yL*I9HRgbpG$y!OTBguRZn$ zdmZ_k=$bIVPA3_UXfN;C+x~ddkEf?S{{H`FTPrCqw}<)Jh|$^ff$g@U=>YG(z>zj=#jx)tvn|5+1tpF(Odh0J14^srYFsq zA{P`51kwuBUP3zD;O-AHxfi#od)r-x+gz)aWoqa!BBb1NW_vSty|A|K)?(b>O22t{ zo(KLDLo+M%y*2+jwA`iT{AcZY?rp#yd32)($zEDAp-V7qER}m%MkeoBkuL`m$rt;j zUnQUOWY2{B+8M@_h}0LP&^3%na)TNarI?LG&N~VAA8hbZcc9wRSByeF9(ArbCf7~O zge{chKjf&BDr4P#53P*l`orPM7%Id(W7Zt30U8S2?K2f5xaOB)hY~oT=7&2(pyr3# z*mi8*AfUw7q&h@@CB!h*?(847>)E#;gw&tUv8!;MJw73rG%Ld))rdqX*l%We8 zAyYAmqMW7tN5ThiI`iDwcR4*&W5Dm`(wRaox1|6}Mvxn1$(kl86Rmbupc~X?<}+jU zbN>-}9A>oTp=vhK&}?q@ud6MOB*ym*vnVBKq*Z6QTQ6rozYR)h5Y8|<<$TWtVQ_0? z%JR3HtLuOMx<3B`aZEL)K<1r++=wVp&eO^d2vOfAG6Zto7)N(DUb#abt@1KRce#cU ztvpL^7}Lu0r3XOOIQ#3vpOOm&C>(otZAeu-`HSlb?yUNO=*?AsSVm4Tni4BNe$MG9j(D(PLvR5yLD&M#2c;P z{5t?7ls0t#yb9NloC!iT52to5d1Ta$$SgRQ3>hD7CdjCOMGrP4VuV7E2P$2eSpi9W zoGwC@^TvI@IU-uGyJ*pfhTctN1C5HFFGm1M2crT_IwK+j2D07-JLy_2IE)G+Sk+sy zR7h8ExphO~=+W1+UPLMwWW6gUy>z8!6NP;IA5uM{!C~}zoduIk+*;AJZX#R`^f^h0 zPP)6@9JuNS9BJZhM2upj>2wVuLk=*ZnYtotHu<~ofU&1}4Vm~uXIH5|({wp|Zl)>n z9?bZ@CaQh4hh|$`RM7X8;ErkE*F@5T;j2^xYUB@0C-=SeEwhp%NMcf+)q0p9_aSO?o!6cZ1NBIMgc^4S_NJaDNnQLtj5rzUM>PHFT5f%#H`%d&w)yOZI28`I^!`jTBuAyT5{+ViH`^1Yl)hf8-Q8TbEZT)0E zjlL#rqx`w^IfU|sC$v~|mtW69^c;#F_~$TfG-UaA*59XhjyGq&4Xl%eI}7|7-`iW> zf@rl4*iCc2%(5e^JCG5ct|0AhjCC8;<@?=TpYn00{U)q9sm&6ZL8rI=dO5d)XLdB~ zNO*@(H+u)XgVTu<_ZYE;=Wi`$I$J^F_pnxW^dRqVOtVLu-E|m>Es7AKb?0(KuuejE zvGzoAerOFZ#Nvn3%<7eVZdW9W&Uziy-s&Sh+Ei3vMU-mmEusZ z*P27lWm%Z4wb9ABtU^koa>H1RzexENB=%XCK6@t@kdwrPBmKzssDRyrBGstd;tzxc zoq7+59w<;hnDk%J?F{5-!kr-%AYt;HrZ}?oOv{)om+?+6qiri*R(!n{BbHcivF7W5 z?|kmeUfCYk{HC(52fO-Qnv5q?=rY@ZMQ5K+KIw+E-G$`^l8o)CfN8&Lt4@6w>23-S zcS**o1z&!y;tD1x_gPWP1adq9{~kWJZV|gd2Nw zY)I=h)V7!nddHq51Lqda=Yzadok`O%OfjJWMC>SVZUB-xB3n}xmKZ!iwK0(U4hM+} zkV2se3LXgQQJ4W5)`DUvOf953KB&8zQqMxc+8QrIMrL#@7#18tf$Fp+kbXEpbndzL zFK)ze&E!`&3*1#2%TIxxohthdbq~r@NM}rK;Cwr7V{~07_T%N7al4+yeY5T5+_Yst z=IahckmSw)T?I%<8$L3>j?6hK4H(vPOP%&W`FEDk>#RSW zlkVH!UO)8M2Ob$+y|?Tz$$R_Z%&j{o;P#xw4K3?`#IOF>+DU8PM!FQT7MoVGvG44l zBX?$d9;9Ofs+fjbfbLJaZtBvKf=r&F3W;B{G~lQ89D!ClYG?nG*={^K<0${XR2v43 zYtvt>zn8w9UrJFvO>sZ-x~DoGadcec5%s4jmXj=#wwMj7RkBDLQxhg3e)Q>PPu~UL zqU)OEe2EA`Q2Nf)La*;!n^wO$svaKo7!*UX&W+bhdq3tc#iTPNUy+o_hca~cvdY00$I z3JhvZ8N|Ngn5c>aF{J5LRV*A2PvTzI(w1Ht60Kfoa=iwkmI%&PZ_&SMQ+g^4Uij;! zVlwoBj<{wR@uDHsYSlA4xb>H|)X=I1HkWXPDfhhCc!`-t27Tqw&T-98*5XbR8VJyx zHr5`f8AzM`h3o>z`U}(b`h)oiao(o+58i6vM@8LRxMQTNRDLHw3uqM8!a5DKoYjV-cdPQ#+*Vj))qJ`kG*{1EFopvb;~=5@Q#V@PU`#iMp`mySm{a5RW{r6uN0sgr5-^E#sjn@qAA3)2hR`W z+1`Lf?`G}LD!8fJ3wb7nbX?_TU6+lHE7ft!cD5OdBh#tm4s++kM`t%L!d8NgyJ&-o ziUeS_8W%kVCFr9-&E31Zbx7DA{4VezEq76yoAJ&ZWJuyH=SSG%<-wsFM?x6q|78D* z3e-v9M0POWXIL#`dbEstUR!@yy|_i*)H}6K_~*`Bi}$Lr1BbD7H+o>7mSJQsqn93h zr|d6tkw+}qLQ5uVYcXkAT=XH;<@}ois9B7VZ0}j*wMvj2pmW9DLDUEU4y|6==RkEB z;OMx90Uk>GG>{5EmUR9~JgmY6vC+4a=ftN@rzY!fx4?7XI9UO_M;$Lr@+ws-%`3Kd9LOvPT^-Z4k9Jj$KaREJ1AuP!I`~vpY8k zGnLNh?9>nDpfM{rl|JzyQo*xVtH6J97f?^~c(04qK>Ve69ahdtdP7yQHr73e@3=ZJ zl?@zrx^3-Fl}Y?YO_9Tz7_cg_AYAG*xqIqxp&&UZR19zS;4BI(7`?on_i;VWTe}aq z6<^dNQ0wOAYqIe9PJv^~m<}ytpTz;H-94jvW-OQq;qZ_r6~J4!Ov08{kWhR@0dtpk zp8rS%4OEkhf@CiNkZ|_Ff7b3D<%PMC3#{8l0i5~E$YxO4`)unrVEWr{Rx%P)I8*1o z=P&qt(2Nv>xGdhblFo5f^swVpZ_n;F&gkGGf&cX{`K*!+JUsq zCFa$Ny}vhJVa8uO+MX~9pgi3}FDqc!W)ks>*_yN$+L>OxJ!h*oOe|z&vvk~z9k_X& zf#W735?tE7bDY_s+Sm;R73N$+fdcgzL@DO%6>HGg6I}2ZV&LOCs(_4OT$1NH@*K#< zaII;M(vJX50>P!XfKqo*8~YR)7;e7Hh+5^vqwdLpm9&avK+6A_H=X(-9FK&G=)HHsF2%B}a zQl&cOt|p`)I^LP%dDUkVC2aQ-?z&OK?Ty!%vERr2t!1^!D=0h#rm^4k+wVQe(1@+h zp%7aTWueg-GNB*b(m5x>l{0feCUsrB61T3uutU0?k=fLQmTrZe1$8+>u(JRKjm%k4 zlJo7k6k6ql>*2?*cGK`>g{}X5QCSuezn!|N@jAT~L`&A}tsq);Xbn%oOzZWw=v*TY>c?8BY!M=u}l*HQ980AlJs-*$qjqi$L> z5$`s>p!EN_7o~f6*a6*2o%S%zN6J^C(_)iNEn57LpZu#^N$`YCv=flxmzUC&WgViY z{!+=Sga~E;TeYJgIX`Tsd$Qeu%GVHmZKAUa&z?ah=%V&_<3K{!C|4jfix{;pn8OUU zFZRI9UAYn49t0+8dm*#pLP$S!eC)7L`12H8Zu9J%LaV%>)jh)u=((6AbI17VA&v_s zJCnbbmE!yqaEuqAPHD91jE?_vGePd58KbnHPVjCnbsQIf*?6BBWpkq12y1*qvy)2c zFg+q2W++K*{pi@?IskERl!OocUcjZ`>0@JN-Rc<)zSpXQMDptT=%*Bd4O%O*1Wugm`*P z{1kBF1FkOYsWe~SUteAQ*Hm)V2XmYC+p1F_$4At*KGkF-Pb8Qp#n|3UF zk0VInh~yJ16(tzN##FCGs0`}PAi_=<*Nb5O^7B{y272{qn zU7M`kWJ+^fShAn&*Kf875%H+st&{V&7US6WYD81RZcD&KCQ0Q_oT)>=&7BjGuT z(9`J<>GHN1VDmCQ;*{r%;)s(*o-+}v%H}!e*4*WHvJhQ+9~^7NHev~?hzlxKKPG($HJKyldr|oTSC$1mx$%awqu8(KXbV*ztMAe?k{XNJ2j#_rR}Q4 zjM9dxly*eTu2bnQCyOjcA^+hfqW4mgMIgGwB)GO2qC?DAOgAF6St2-yJcSVg4AlT^ z9fGW7+|FR7AvjoKTEI^ilxu`LN_tG;+{p7BI${8|_(OsM)kk4&uB?iA>&)l7_|z&b zD<---NSlZQC8+^4PKA6XUlx*}0nc7)>h^|kN<&txYZ7-!{~q_1A(w2%snS&qhfQ>M zi>y{+kKy#4Nn4_Je}t7Q_Q?Y%LSwMy7Dv->0LHfO|^|#6^rMg=aA3;)ZTs4o$6q$$? z1v;a)leQ$7wbe;bg2+X91PdDk{+;X5HL(YknB&Ic(KWGWCm1;a*=Rw^L8Y+zA{;6* zx~19|>8QA>;yf~Ner6iSclKUzPNl>Zn>Ft+? zz<0>Hr7W|0UJg0mt=@VI-T&3Yh=LeG_0CwH;8eZ!>hotC#E8Z}Oy#OGh;@y>mFg0S zvY52_Ta6-J(cv`yOXT_W`>JIsVq`~Crjl=-lqmug&Pu4mbEixtF8tEz@Qhukxd~=g zlKB;vz-{JASv-k}o0U?sgrj~oPx)7_?FWg7>$g7f3H8F(%xW3~37?Xlvp2rCzI8n}f;jdN zA{*Ez1O;jOSpw;Y6GZ2pd;h{k!u4%93*1$Dw69tyV7;gUl6xBxPCy+EAtWk5ckAU0 z7)7fI9uwjPe}H!>BEt?@=TWVYx&ug$Ulgc88v+UyO&HPb3Koz-f$Fr|GzXaTMs;Hj zQXjW(i@wV|j?&6ohH<7^**rPI{{NXzC`X3kN6ag4ow!L|rtNVYVnHDeNN(&Sl-V+I@*d!yeGW8mMi~s_~RUwnLt^MviKl%ZLIitYM?VY)| z#$c7D)mzV>eMfe0+T)!&^9ft!S*PyC>_^86O3f3|zzO2^QQ7Y4^@2SD@lDe)0~91N z^q#O9`+=e244AN9k1^mpUbkA4$qOJ`)nC`X$5urx$GgncBG{^O*sr>?3KZC?{*JfZ zc8U`Fj2Bh8)ZeLG>c{=J5R7>cbNccvVXr)A;qX)v9@ux{4;F(g=BI{ys^4pzn&*_y z<9oL_P2Jj|BO`;ISz~7_-nsHWv%KMDyXjQh2rS>m?lM#l=`7x>OV0M}Ubyrl zXyFDlME7ii z<8y$B8#He9B+@%ua3m*A#SYd?J_nKQER-RwK2grb zy*xg?utDaAiMcnH_%JS=I8I2YDA7$Ry|6=fMg?pYh;mgbaD*<5WS9mOxbMuijNBQS zGw9y^;Xsfd=?Tih* zDGP~TM1g-2Q0s$tT>^k*2a8nRz3~zw6;GW(TNUN2J1#`8?WO1%Et7Vqp~X{w9H-Rj zbCmXE!@xGwKVI1+6ecUtWcYk9YxNxPIa+f!4AZe+seHDC;N-5-bbJ`uKrrc^_8I>+ zeQ6bYz=#Wh+{@)n2+OTA*q%RDo~@kgo-9!-mri?}Cgw?8Iy5OQ!;z%3{!L^r=Qb$) z1LeSm8fGX5l8Ehy&<_xeLyxY8u1UsK%odFdxlWgW4)-N>q^ zBkCYRak7m_HMK2cBDJfXW+%!bwYnX~elZ1EOyteA__8t7b7m1}_B_g2<5yU)qc#R7 zbVOL8G)?Pg63T+Tx}9u(F}+(1tZGEQv2BqKKMFt<`Y2#9mpYVN($OwGNvavIey-5RJu z)I4fStx2%mh_d9^_w0g?FPKkUypZ$8j==UU`qj=4l)X#1{y@n$;_b;=8RC8kGJeg! zd=Nx=?c6zm=$62i%$CWBG=Ae7D-bQxf)DewKK0J`qpV*zKb+;}<4ISwyvH*DBnbek z`y1Xt@9__wL7lYgV*ehD`w5R)-G8+CejH2t$t~lZQbtFE%fcmsvd}Rw}UxmE49A8NM)y(&JCVzs5qi%{)@o~R$ z9qC;kQPYxcdy?O@B#ZZV+MQ17g34$9;|y1#0L3rzmH8*25zJqbDpzGyj`kh3Io*U0yymhT1_f^xj&i0bF-F5e}^ z;f;K+uzVkCC+ALEk(@7%sBXO$R(j%ft*I2p)oRiu!|j8zc`{s z0#ZXOej*`nDO>0Xho%Qk0(xW8TaCx(^PpI^b)3mP~PGJE}6>PmjWu&NJ?cX zK`Y2qB!MhYl#AsS((4{~oS?!C6ewt8Mielp&W!>F*SS&P2&d?-0(S}Xyx_1AGyArx zc%M<;+1iqi>67K&s?MjmKiax|w%FdSZ#P%h|9rXr@agML*H?FGy?TkP;q*7_@xh%v zqT<6K22~kO=spnoHK+Q`HNePkz6h4GW3t4kH zd%Jq;)@2ppL#Cyc`}e7yH9sIDnY#zq88~d z*${Q?Cpu%w0{|4tjVW{#Dqt_F5EVd}vWfy#tTt!`r{-Ztfux(GEtRvSh3UJ@mm?yh z%2Vktj;N=Rp&X}ltcdAYYOkhUKY#fgr;&bgR_)=+A0(6c0V@_MB7)E!A+N-s>t9$ zO&dNoS*#9V}lWJ4Ti>8NN zp-3e1A&*3bL?aRWLLZqs8HZbvD`=I-6yIwXuL&1`QbiY6g~3}2VB@4(uKqBOqM!*fWPGrJ0Wb`6mWYSDy(NY_<}uo=|M_tuLg)e%x@UllFr z?&zOpH&XTz99PT38tZxEwxpr&rOnm{>%C5BxD%5ozSrwPNVKO)qD?clLK3CPUmeQ^ zN>Bae%vnYO)J21$(>db{)#M2%P?elPYl0`J=Cn_nj&4;E+p?+D*N#1-WCv^w?(D(! z7fuwAr7aQa3jUKjC*`kn#@;6oBPVc4pDbO5M4lf7E_-ccN6y;{@xP`8-ZuX;&gJ4a zW^%c|!JVX0G|4n9GQSANI>t;LP{x&Tu1guU{qLWz(#; z+YCE^qPJl+tZb^owjq}SJP6S?{Sj%2HXituO|<9aO|*a>aYD+)dG`2xR!EvKicdV+ zK$Dj)9e~&jrAP-DzRO%Kf_aXW&Cu!bF;9LH2ag=~B>poIC4iN>p{QWyFH-%R%&kS3 zg0}FfvI&wI^>;8{i2``<{&1F5mj)`VLv8CXI|v+)=oHJc(OsNvm1m=un%Ss?*Qrlx z6|#+}h)==*%R=He@zI`rca}e08G!@J?K&bxjKU&J?cqshG90~CdHKd$%#Sl*zg26jn&iM2SW{$+U@^WLP->7jcO=VkSBj zv`S|qQv|BD^MgrSksn+hVMC;v@&noI$ws_aS-fuxV;$tITIPMJyW30?EGZybi65{L z;zupS^;5m7m;bV94OAH+-q`3+#IK4FztB$4sz&-H*904SmeMnk&ut))?@GxKC_#9v z$q>n)G_nkZH7qHgE*qjg-D69uN!u-M(#5K?)qZ<>c5kaZTjhyO4O@ME`Qg;0fuuJ= zqb5~ZP0~-!s;y2gIaW60{Q7d!L_3spfB)!v&gre~*{~LxqE0{+$=UbpE-TvnlsK=E zAbrLF>8q9tUp6gNsv^lp8b?AjlAKbKPqdTs_8S4@jO%`qd?VhTtks!CUxJKZ^DiF+ zOMHg1ZNBD7dtuC{9&wxjxCV!{EE5QP#5&;Te| z^&|5e{Q>>d^WNVyxq%zDT)_khKbQgmW+w8kdGp+xKVQ6F#-HNrpIyS1TX=EchtKG00iRo(yqeDC!j0Yc)2q|I z-G8{hyMK3zzD>O!Dg1Uo{()~VlC$4 z2IGzs@|le{_GeEi{B_{DQ!lADH+{G7IrT6s8Hd?Isi7zdF5%eK**gC^!w|QI?;NgBm(SEnYL9_BvH^9sf*Z9%FCunhMDc->YFIC_*bTuPZ29qzOD z_8P_0R!#BLP2E;a@;Hbl&q=F>Tx|~-#yev-py}1ztAPUx4ERMot`#yno`1vZ*FN z&wPO|sT-%@K_86Cfjx)r96Wy)g)bf$L==8|a3{b`NWK9M`*t%P$KH$Yrr<_``^p-6 zhddwL47x$4Y~4}?L3bzK++_?Vx0sB$vHq%MFV`0$l8}VeiV>lcNE4XGyWC#N-|q~i z{Cyiu-@byT%lO+iP*3h-3f*@H3GTKx?hFxMt|frH=a=^av&6(EX(Yd=_rSNm_!KR7 zI54ABIu6JOX=WV!9dz*urW{UJ3Ut@isk=-gJYV4Udo*RQP-B?uN2WjA)e|4ww`d7f z2EO&^|L~@(n|EFid~{J?aN2Wytr|j0uCm+kRkqrK-2y$6&5mIrcDsD^<0SnYy}~67 zB(%GEg>K$O!EzpM+~4{ljDEQV!b^q_M!#oQt1+ym?XR&vg@4Y#CujqY+!`5(PCH+l z{Q@-)v2Pd?l|y1fgXXQvUn;}NEUh#;1|HZoz=zXWw0f2SVJLUxH`oe>hxBGjPY3h%zkZUbBBJqqxq@7cyO*XQA{lJ3V;5P-n;E^z?+Jo7_RI z^Gi3KaF;OPSAXs$C%<{GC!eFa8&-2$CdxByA{yREt_nKax;v8{5})Y+@8Vq=ey4k`#u2a^i2$x=op&s6IorY51v zfom)98?e6GQb9bu>^hOz-hfIcl4>Lr{`1*n{ud4%tk}-83CWEHLSh;mhI&xF+-gir z*p0VwZjbC7&}je0n~ia9+o@fxUbTa#gL?JD$+mANfiH=)>|d`^2*{Zqo>wSV_<^6K z^m!g2XE6Ibj)>1wCq4HXNKc~m{qa_|6;AMl{V-u!|30gq9{lJ_HNolv65&K^^#HkoIC z+`;w-btc~?i|s>qHo2UUpZy?GVwVY6wH?dv=jIHv4m<6pjg0K^EWi7f>2MI3%j$}4 zb9Yv^I#^hhm)`ExH&vL>mul#_zy*DY=>G=cCl5N{3%YfEx2|Ub7Bnd!T3`#hkijl< zndinxn)9+p_R;}?aG-wCo6A%pLvb|XZ7R`8xi@&w07r?|e-J|{bZGt75L$;Vd=9k! zwxKrr#Q54C8Nb*`!f_tAzHs6u`XbqX%LIK2t{S-8><%LR~hRJm+-ScRoL z6;DOWlQ-^>Zr*!i>dTTlzi=~;p(PZXiD~wig6C;XE_6DNQ`}Plor(&TAbCv zu7uplj^*9r8u)=9r1b~6uoepOkN1WSSPRoU$c+*;jvI-0>*ctq%QT-cAx8NX4sah2oVx5SnbB zN9nI$((9hh6UAIe-LvEaR%Nw>TLrATH*^42bqj_r(p&JRU8J|5(>?3rJw|$))QVc5 z={Qy)PJ34&rg1KB39?7l(E%yft!}#2jaDz(t!{K#-5|}-Au?$+d56d>C-ea!GVhI+ zA~KyJNz*MMzb5sQe~0JmRBXGJE0e>)TizQT-jc&s@!>7?uvJX#VQO(e(LvTv4txcn zDefTL*@w0R;mq~{;f^KKu-EcJ$M)dVq|8ioZkB8}%i`IvcO10hLY-w2Q!GC`Zk7%QDs^sF=VoidY_R_2hgrx(Llg9vdi;>cP z_h12491YbfEXAAj*Y6f1P(ATLcWp!B*`aO8+eX%wUy*l3AX-Cc9YCKvMIcPGlKe`F zKvbxyhah@o(2fgcNl%KSiq9o_LB zhxekLzi~AFMt5Qhox=e?@N=}wZl2r$yN?t;>MS#S`2Srq$g}M30RGCXU7k~C1z1RyU&|DFtiMu>K zi7$OH%J}`%Lg3)nOQ_+Be&M}%;pXE6TwnHhK?ej5wwQf^?*bh)i`c*?@ON*BOMt-# zKDzLI(r5vFA_F}_KxO?Qy2AK$SS`iEMiiOKKEA;3OyE*@d{?I0X;s%pxnE03U>z#sP6x&^Yj{tW7+){T^9) zI1fEk?jQ#c8wVfUw`d6iGWgb`|HGTEZr*u80A>na!S~N~wrU8?UD<8S&KqsPZlmZq zV>iQmhbPjHlk{^0hl^(1-Mm6K@8B_=;l}-~FT&`TTQ{7NA%xNI+0|+ct9kot>`&pJ zGw=!8z$3SfA%3~q$heS z*bTN64o@$-h68C}lh2>rwr?#tI>0=RZ)?dI4f`Ygj5QnUh~YQ7y``#Ucsh@g#gi8w z$p%xBy5Us8K^6OZSq^goh%Phc(BlFRwRL-mOhLE3#K*3kvsW_jY>P*-lXiFHe zCx%t&_8>GRs}AT2jy(t)pW0GNY)$qc?!7Sa(>Fzyt~E?1hQm09Er=e^X1HS=;bwSG zhnh44^ir){)v_xwRai=GPSBy40|kXY+VuLUl+B5fx^iurhO_6{MOTL`>r=yhzGf|v z9>uec3Yl!28-2^!EqUGb-b^!8g?{K>Y6rYIq{CXw=Yp%>4NK2YA3f2y-X zeJ%u-eT;U9%wLD~N6pA;5-O-aA~60fUB%PEj*{fAj(qm((MRI+CNWr|G+GJ7UMYws|Bdi~X#FTB`Icax8|*8mR|cILr>WOc3eG8 zy;DyR(1&<8E7~6m~Xuw->w$yBf1_qEJthD1>oQuWAoPYKLjm zR8I}F{)77zd*PGkS4Ff7?FMg;fcqaB<9@fHi7aU`GdwGE`WOYktw=7n+PJ8)NMf)? zVT(jugiVt)7?J{Ye@wDwCSI6&aec;=DiyZ!v34*bd{W%vV zJ_93r?aGm=1r`3{xl=HsSs8q@&bf`|k?9Q5xpnoTG<`Wg$`# zDHqpsRO59^Y05ov0mH*G^60Tu6YT}w94KH(bDZfj)!e}ZfZ6|e$t1UmF+gYVWUy9^ zIZ55rOIWHe?4LIhPtqLY+LX)#etKJYao~sWW=X?fIH3}fKD82co8KKTI6JNo;`|PJ#r+X zIUJB!?s_SNZf(A8HBEEuv93T<#HwHz*NMQAF-)ZZQSaXL>!U>I%%i50?O0U-@#xW|m=C-ML*B z;f$&Zq)6-jC$psgi@)u)dn&F;zAxRlI9ytwQntIjdh+QArrA45Vqd-qA&sol=XJWb_ssTrU6)K4)XFRk7Fb4Qy4s zAMS)SPw!c*nYe^6;FN7ymI~^YiLwZnm)j==y%j$Td75DWId7>%P}j0hU6!lP&10I* zD*GapZql{W^-nBAC++d{Q&i`vL}jS0p2?;%22OS~d)X61+g{aQpmSVN5uIAcwPzX# z!L!yk2rRX7TupmKKr%F*E732+G2M1ncZ(?rN|KnT$|OoC{Yo2IVsr~jroFNL8#X!B zd4>|zaY>82I}?!pv@3Y}MSU(>0A~4Om(wn)v|m|<)jqVJZH=;NE7xt=aXkv%qhji3 zI&DjtF>plArI4)%wbD*N5zvo4qp9lEmUJDcqd%iI1A|ebd%1vVfkcyN9(O1e;=h(b zG#?8{qe9~%A4Vi%Txc!H9h)6dn+(Cmb&hSIy9jq_2xSk z1wJTCaoq>s*`r~7kYf)DTmWtcf!q^j{VmiXo0me_l>#A}9*z*HJzJf1HSJ_?!!AVR zYZXG&0II%J%;>o^zX8DdiXu!}$z)CDq}4LnU|nrTCrvFDs%6yDLY=iaP)RM1tZ%5T zf^RbWrcU;(zEzK5+D_QvQ1G<+aax>LNY6DZMY3*^o-SfZKeB^fy?UKk7WASwyv3rA z(*=dBXGQj_fc^Z}Kkn$ssWvl;aS_~Kp;Z-%SqVA4z?-CT1VQj%F}w`@^dx!|3&1?N z@k}!vVKNJQek)00OGLZ8R_7w)kpKv8{)3z~#CpFDT!#h<-LFNO(7 z;3-^%$9wU@(~}sbiN^1z_-GN(&+H4_3xfrtEK*tK35ww`E7P@@eRN@8X|#aEv^JqD z{UN%-)p+3EBEE}ZE`5A~$8&{C@xTJMtBct(B^RipNff{g5F)yRRXr5^wrjSioPV9b z^Nx+xR<(HG4agn&utu5K)XPWUCh2D{1e5GdKe;pSHul_SJit<2NCXALPf_q!L@7#$ z0pylO-uKFr7z%&?swxbi6V%lKvPr>Jf=pGXPD{w3-}1cba2tVTHek=^89f8(1blRQ z6l$qNDUqt^%J@ehX|zG80M(I6bsA1VEcVqE*2Be&{z}j3T7ldKtMX&|sY?AImw~Uu zjDMhK9UG?me>H_d~h z1vMMbJ%TA{tbSXAW*MhiGW14ilvONn9#pSy=<9f)RlGJ^EmTHZRPWMKNqp&$-)o^? zHw<+`3OTl2zXv9+oQg#d(m_(Rq8i;PV0dO1&0^FlIY%pa%*fz(r5Ki+&8^5-t(rhw zgxc+q6#mYuzzc=|_)sgvj6KL!S?udSvJutsT@Bw!ST*K$TxJZ5#-UC)5y$A&J1^p~ zHAaRLimHJz&zFJA&|L!y$5(Xxk8G}cq>po<5=GkRxnV{1i&dgJbDV2Eb3)0SE7uKa z3gOg(vO^&-;Sn7fnitxz*j7^89dTti7Upq+SC-um!vr;xNjcOBg=AY4bsx&y2IAF= zFLXp?L;I6Kp1}oOoAfiyMzvxABt4(^s=!74#2E%&0CF(8FGI;5kZz6>G zm7XwK72kxFYd-7TY5X9PQe-RViaoQ`u^Q?GVYD5J!lETHJwi9`$k7HpbaaLxQJF$WBb{)0K=dd| zAT%j@;@G_07BE9j&q%8(UVQ7?UZJ` zC`8XB3YO5Vm99tVPtqM}1(|awst5}Mm=qFJLJnL3HR*vtBdy?Q7Ebf8q~@Tgf2h3RE@G&x=RnOSy7TUkcESske%va+I1=*Ll>qTBtx* zv~rtxlPIJ;NA%#d7KfwO{2*C`?x6OOM>+w1ZPO@sV~FF@hpTRi(?C@PFBfhyaRb?v zKc7EsC+bv^Oe-jGUjTDYy;7wmkc22-e#?y^#-|k)*rqA+D4x7qI_G5*yfeQnw!QdS z(dDLs{fG}23>y+U0gizRrr0ei;TrnL@Bwg*f*{2Qwitz0)eUV&<5b3V1|x|yG=jWD zBo%0$Y1LB&*p!NCI)d}AM_Pd^ErZ{VOZTwm{v=khf&cG+G8jyqKxg*Irr1gq-@&h( z_>x&}FpMH#pPO^ja!mrRV{z29LeveLPz!u~cN`@$A@eY-4YdOM^(hXm6wedYop~Bi zS_)PPkndR52{&3*38XQXO{I<__7ta3fo5Q$k6y(BDNaO`PRV%03cJ!9BvqhJ z02!ESh2Q7|WpsKDe~}P|fE8lc#P{Z2$g)`^kQuEZidI<(&VT>&%We_QN)FTtdTI74 zoGH;jJGD*oX0Dn&s*enNR5xO1N^)m|K!veEuJe?pxSNe5m25&Ae8^G$7ds~~*~I#l zJzmg3wq?wAW|J-F%%+irrhVtsrp4^H<@_rcFu0YZZk%QzGdTx3-ROjhv<4JM?-asm zSx(@klhBG&pJYH~^V^pUT2-rJZv9ccBZ^O*6rdS9G)X8(&t}jCx}vofGN4I0LovUg zPolWd3V-5YMO@8uXrC+3bJQnYQd@FA2z+ISBhDF$L*M9xIB{qWuPjpx^k>b|On;dU zZcarAtWznKj)bs#fsgu~A?$vm6RO5>C=xb1?%V20(NTVoix~2LZ?vlGH>80}lvtWh ziLJY8S+EWBEJLVGuM?W6IMVc6cHc~*}f`!V%Vn$yxTCkv`X(n8Rm6)={DI6 z*(5i(d~(AXXd7;hV9sICJCL#n501|wJy~yc;%{pLrG=EN<^)`FkXLtA9$Cl*!?ub$ zs@m=5=%@H4OS8)}+PIDR=4X|H-WsO~nUcShGi=>gCB5h4$RD@*xTsKGw>kmQ9CKLi z)DUGffSZ^UxuzUWc?W%B8-*IDoE7FdjaF$e0r6|J#38E&YsY)hns%!2codv8 zrCcNjt#wo`S^=jAMtu?<);|Xt@DS<>6m&ce{IUP-|B>E?-@45=?!E) zc;x5*0RRC1|Lk4ecH6qKeibaQbK$JUvMu>HyYX6zWjAh}#I>Ehd(KT3L_!iyNP;0j zE9zArqL0(NzDb{?_#q`xKQu=pBeJt|kwhYe4?i=5nZe8;Is4=AjXVoQ!2Y> z^q2Op8}m;ZQ;$b|GJNwugST5d2V1-LMf+Hi?_pqGVsE$NgrzKbU|VNoQH$~{W{E4P zkV$u7QaD2zI9sfq$PzgKptV*Z3>UAeq}}{gaGQz&c0*{V)CZQxcEI~l z@gU6t_PP-@{cd&o_u5~f~s>6CT3#5M1ZXKVVH@8gd7CgR_qkt8Cd?)xo3IZ1dPQ#v@;Mi1!DoC;KPIC-&?A_ll;? zqrADibCVT-Q1$EzKA{LIhQB_No@L3UgU3>|2Ug8Df2|+ zKLOdL^@;A?1`*xC>7k*hN}_A!)HO?VhFljC-DK|mUOd|`h}%5*IjB<6+qaA+kb$Al zJQhg~RRA6CDm9@VW73>nh*zb(DDvi#i?Nonzh?<^8Aa-bcA868aosq8IV;**1!up6 zvs)#U&NoRY9iBc*p>*hulTh*xER>#)LF#N4>*@wIWf=ehp_(hG3ZUO5CP-p-HpzB4 zJT&4^cOGmzESH#i{3U^?ra)FL?aSunE)N1lPYZin+j^MYB+lZvTc7AOEo~6d)i79> zY|{XP_2(wK@QH}7yc1Ls-Q^|`-N|7wMHNJM2VFp!HTPO>4kOH#ws+WR_ia#{w6W?@#^Z!Nv_q^Vd|8#kVO!-c4*Qepla_W z%SSn0~cNfI8~bMZB?oSTmL8?fLj00n&E(FT!wuB&7(ZE z>$dzC8vctrzHeL>E5X2qSm{T38E%L3)+X)St%Jucz|%Z#0HKV7MHWIp{>Z%)5{+Sg zJOo8!lv%ct$__SZqux6ytg8wt%Vms9DtoCLV@V~q<=J{tZwD=UUQ_vAU9qY~Y4HVRMezZw@SM%iYNWve% zd_Vc#g`viExbB|U&IfQSYBt*#<~!PdTyb>b;rX3A(cD?Zch6>E4jf0(vdUhWRvWSqtk-nHp@(R;0%grB%Z<{6m5=2 zXp{1D4i64$9OW(vcgnx6LuxWnMB>cK^m(tBrAuNxo&wMltk>fnXVJn<=_w#NWNILi=0hCHyL#oqY*M04^Jstd=#$!x zfVvAaVszacGb%S&xiGk7gZ#l(`^pk_AobhXY1^mfW%)OIYOTHI<`StpIyq z(H2SGaMi8k%5NEAr*QgrT45Wi)o3;kbX3!uf%^a9$w8s#^*>OJB}J^hZ|#{^@&!CP zF`v3ZN)hVQ(5CsU$wNJ~A8dbAC-sM(5OVyXpUM1#0rEtU61yC#yT{FfKkR5H1W`Hv z>keI>r{rTDUi2p5k*4ZH?U6GdZnHprK{F|)3Ej@b!HGU}8c&*aT8{}VxfGGqBd4jy z`P;2_!f9Y;t{tW0&vxO*y0u-Mf=U4|5_pXKi3xAOLhjLkoYTO| z0wdr62ZOjIqIsLI${1fD{A{c@W;zN{RyE4bx)WZ|;@G+rX2-AsZIl}_;&`+kdY@Bk z=b)a5+~D#)})$4NbldvLuCDTAMzywQVCCG^X=LyYc5W5us~o zF$14(BUPhq$1w}ag%NkF_6%Gm9&BgCZyl9G!R2>hH~E9yTl>U=eA*0*_l){#Sot~m z{2&XRB>!<&h_9g%hIf)CQoW`f*T%SuXsF(9cT;_cnNQiGmrcLz%U_D;xv#nScwv+f z+wzhJIaf|Il_vsa4CkY|yxiNfCsRvUs>DEfr|Yv2E?ohwTprf(Roj`HA-`5>@U_U# zWo-Fmtk!YRIo$6>;yWDrV3!GWSMP)M+{%_t~{*uW7zCroA91 zGXm{^D6Gmrs`WxCnUaE}%JZYh6towh#s_z4;P3_%G?yqWkH)mi11>p8g~x%;1|RKK z`N~|Tf=`AC^p#DAy=q^Xot&~~Y;4Iy)htD>TWQ$j(e5elzQ-Hk030rz** z--1_ZGfhciCToR@7{n$eMZ=~Ol@i1gj4%4w_%x2bkP+nDtn5_ zw9~~9KaFJintW9=DYfq=7!glIG7&+*oN@k2T!^Hc?=W2(g$7c8u~cK|1vHbWvIejX z0tKaCP;B7r>JNuQlPrvtD3cCHX9Y(3i!0J}s7Y+MAU+9XMzD!6bp*HgU1Jm~h}R2$ zw4@tzVGB^j1W`nzZkKw>GJxpu4!V>wP+ffoJpyem4*HWTWq>9yE|I#uf=M3-)6@rf zI$W$9?6xomJsK;k8`dq@F)Tj5^Ks(#JduH_V7L(8m1%ZAphLPqiOrYaFoFWbvpDFF zHZk+UPn*@TE|WtBiZgopPAzWH6m?0L=#1K9$fGIKd}_jJKr%(4iKIM|BNFhC%d}By zXSd2_?6QF2WNIdPO2!+EincVLYD8OppwWm#Y-r;_bU%8`7*Hu0DmEw7_igM-5r2}$ zOOh5znD!ArF#WXnw%H)}14e9wK{?ihY*)|+uR{*8X|>@~xr8MA#aqgf=4h9u>^0GJ zM82}oP$d3ryMvLkC)KQcRg+00Zy=JX0BK$KUVT5{sg8ruxwW&S>Y8OL#X#!_=*!Dl zmb|&T|G$gdS^6BKPYv-E@n}T4jAW@=7oBN5P)oj(QuQ8Jq@J^k-dzb*>(^x?SiMA> zc(@v~gJTg;Sc$g0ouR=FUr|srjsxx)-=s54n4a-`h@`{1BewJY-~aNyGLSWe9ib8l z4QF`w4rla+Mg5&y(dALGWMA{R60r(83VA-_Y!;2ID1qQvSrE>^@<6|rX{O}CX{G31>--F}KyqcH z5hYex?mHBom#JM(noPxDM8=FuBoEbAqgr7Qk2>y>iuvLUleu}+O}E3i7#&7-x{nLcfr#h9ry9rr(G;l1jxdX(ydA==Gto~)w= zb;sp>5)+CU*QeH1G{*F!%ho)4%+lO9KL32O4_c<4=A*|fRh6OdY(%O#y(%J73m^ZK zW@Z>w>tpAgoe!VyuFlE!`G6*UMmk(+qr7YNxeuQeE8ks7W~!1F?djlt&EPu$9VuPb z9>?&qE@yRMefdP`HLF=p9jz5AZ=o$KCDj*MSIxTpmDMkcLD_LIrPYLH7~K)cQoRbg ziH?Y(g_@N-Q+W{%gl6w2w{+Pdij+GTTh4Gc<=9l0${s zlA=Rf!R2vVk+b8DM%)=EYKI8~2Zb);0D(D3NV?=&?V^!e$BShKhf6rwgq(p6=!3fv zI<-&eLdl}6Y8#@Vx2s7OpW42aBGV}SVz){eb9sf)yfU`GSGxDcs$0iLi=$TBfGI~r z4(dSV1m>tjRr&!5SDZ0u<6T@0%%>m^A&w&h;eBHq>LYH;PPbl8`x6@z&} za7E8jp{!?MbaQc6>ecR|u(Kso zGuLAMt1dcEdo5dDKQ;H*EZA%gt1H3Z^N^+FBO8)i5z@%M+a1sH^tkmXZ6lS-d1QuG zv6{8IPm}-tZ_`z$KGwhf4 z_09YC?<=^%3LZWdvFm6BZ`=1*pI-b5BB~%f>A+#t^;a7DYU!!f;pVyX{)Z9o$M%Pd z&X-Cce9_@n8!F^j)k+rZs5iZ*Qzr>@;v`Jlm$zHA5I6>%I^uhkA}WoZ>| zcdlP>HxEs*S*$-Nkbl(e?9FG*RKCWA44Qv?G#t9%7jav zL24nR62eU%>D!PEYvs~8;fW;HzR;_%K#}gvy{9$KH z=B}a&-0nufbs-T=D5N|suHgy~mg%vMHFM_Qf(Z~@p_qi}<7j6iOVuvy^9Sx{u&_6r zkj#&_Aq$8qT&8P@Ll_SQ7G{dxFLkMBwO3gW=jg{yhM<6CT#1&c| z(hgBsad;4o1cd}F)Pcfc)L~Ueuu6i0gB=v%M&?fBi(y1kCZ{i-$T{IPF_~3){X|`c zF}1N|`MmF#@&U{*QtwlnG%*QJRb3pHVa!6(%geIA*euW$)GcH*K`35o#-i)|B8MSg z@xW=qqRT8acl0q*szKOrhUYRpe-bn746<-Ox*Ovp92vw3So3r`H;&Pi2P2{kNuTQI z=XoD%nZ9Jw4lFZ)^RR$K z9!{DwnZ?c)&YjCtpWe6v)9Jl0kSq6o-BaYv616?gIc?@h*@z#F~{1;Ij8W_%t0|UqN;@~_A;oW^iX-ueJ88d|;e@n=_OX@Q^n_{5T0mtwxU_gt~Ir*%{iIwDYsx=t~S_IT^Hp?%1+u)Lgx&luGKtyJOxk55|&hFAPK*1C!B$FEM3e2H}3YTUm zn*hjXxTGYgc7{R&X6QZ-({XAqnQGwd%ZE>$tIM*|G5?D-Q>rpw?5&WlX4#=Hz!^`N z)NZF<0N6H%V|Z6mbMd=L7TH=Tx~9kY>OEU^q|YC8xmj}$sttZ6g(3-3`wm*Bme4x% zzT3|qznouOU)PA0*Q%d6AU82UrCKXCjb5^GT|mGRpwcCwm5JSDKjX4n17|ZhCQ$$& z>d?g9EW&TKM!~^k9102~<8TZ{A3%ycF8O)!*UqLDvH_!bK%Zu~!UA18ghFyQeF=4T z#0xZ4a8x0Z5EROYLYuwqrc&e3C-7_1I69v{+?1eqD-!c6Tb-W}l(QSA=_BTTYHW`- z@a4As+mikk(FZVx94h)77$=0n0?J4n81PWVVX!_5N(cWq1A`UaMM1?BR#6TG28%Gn zO<^RIIRz@Hh{A)0a6BW9hSthMfdONOpCI{u|8#A4yM@%LJWmy$_Dobj+^DbvoDtD8Z>*f(#g=q$|(=}oRN(!J5%r}-NZJsMMU zQx0e8FQ(n%w<+;i%KMQm)K^^J$0K3{lD=`GpU^O`y&W<8+8B}anHXOQF{vrFc!-gL zE+zL*N&U8PLycMZ{_bT+vIGBi-7CcZLTu6mYfPR=HDU zHN^h{00960>^<#r+c=W1g7UAVD*lk{*iLqnDraI}T)VTEb#nVR1(A@1Gf6N2DB1aS z4{=YpPqN)0Da*D*xdj=PLQTy~LJ>p*jRw%)tv~*C{N8>vGA$BrrOM1-_wfh(zs7gv z|Gv6EOwJ>j4cPeoh$kO*b~}eV`(?}Wy=6CP;#!FhJGmA{=#kj@$YynEKSn$Y2CFB6 zfyxtQt%!rc;{!hXh0Kf%Hi}pp%d;pPnw1U)%F0yi1%vjP+nEcx-GhWZ5yv8CRx!?^ zA=j4mwMv=gyB2=Kku!|8wjoXXDP%du)Fhf7m%bJihq+`TStV z{c6RH#a~aVf8f{m+Q|6o!_L9MQRn2-;rZmJ&!W$Z#7@0&y+53IA~TrV;Yk-i#D}XQ zfggBb72*P#ipYM|GXUYsq2RI5SE4VpfPDz9>}?L8i;>87n0_x|u=+ASJSqFi2j6}{ zoAHO8PPco6lX^ddzrQ_&zgG?Z}5xF=or^L{zs3%`hcEXLl5*Z*?#9#S9eA0qnyT0wmvm_zxuXjG%OJ;dNxmvt{^+_ka7pSja zuFlW@`9~;lBLRe{C=30&5JA=%uO7lcm!Qe5{GDm?OKSCO3)sf+P zU~ZEU=GXN?WJWotyg*4yxm^5aWsHg>$_l|IcSjw21ehHkn3qIe&TE2B*a`-W#5j6^ z>UKjx5;q)=fM7_pLmrGeVv(xMSQO6*AibzRRWu!0Fy_E>(Sji`;yLfhL|Pe+CgH-P zOKM*FB)X*L1&$)A`RU0tg;4wy#ExT`tpkL&!DdWiRs7V(q+RF*3f>n9i8J!ky;DxI zfH*u_!Oa>9+;SE-FOUIuyK9iqSm#aI*ReEFVT_3P?!Dh{(odsKf0b4PntuAYp6_Bs zI%=h#Pm%sb@EC^XIF4BZeW3I1DRrH4ef`a%4QK3Z7^es~<0-Vh%&b;%5#c5(dz|&b zySop5)bFbS)Q{&*F< z()n0Fcoas~4-(Dh;CIyogM{k7!isR74!KqX&C_7;Xet^%ST)0y4Z^M8P^2>A6uWH4 zOET7iyGteDW+3rho_;u*X9iW`p&-s~3!5Yo!2cO0GnR2%Xr3_O1ag%muv_6);IL=k z;M;`vl;&3HTPALDp=An8v3Y~7;Vs-Cg|T>XqK?1p6IK5LA8{WtX;_Z~r^!?{bA)py z{fOZZKMR@2o|Z+*98m(;TNX-;d+I3p&qAmokQDpWK^X;$O59Qbh9yC`(zw~Nk+c+3 zV1Uu3!1chcAQ^cB3~K;;Y2C&I^d$p{u4Iy5GgOJ2Xvnhx@UZJOu-QGr%{Y$}QQBE< z!%PC;6}k^CLt%~XoZ!cSM6-X7RFQ>KiPAXPfI3k>MK4ISG9xjto@=R9cANhD|NcM! zvU_zNtDD{Pe@WRz_?h!Z18QJD=Grm5JRLIcHQ|@Z>d{$N_uo3RrCh+$}wH#m_Z_q)GRKRr~xT z6dx=9rI7hNsdTS|!aqpnshotSMDNFqrPl=V(v(P2-WAv>vG}6Ok1$g^$@B{c2@D z4>!3U=|c1ZmBY-;^pK8D=X4oKobM)dV1@1VU%(&1)ir%hb1||`9ZTP94Hz& z`Z=kjD7Ocr5gIxA3Ae!@RkBntc=i3w&|4Ud7I4*>A_c+k71~9duY-tRqs@a?;vO19 zRJ_N|P{f-Ebc`nhrKKIFtTNXL!(s`dh_hQekuaA1et}PaVNOvgpvRHp3$g#WKx>N9 z%Aj-!Ly-J0?lb5OPy(_Ph?CHC(#sn*9tthWNDP360Vrshkt2zHyapwCyLw4F+;(9CVDH{!TVdIWP$Dp9@wV2-f2X#?r%N zG%nJVyn6<78w=ep5*Q;|^Ibbdvf%#+US7Yv#sWgzmfdXGc}cVIY4U~ZsRBLl-@6)z+sNVP_P2VqiAtN%IZ%0@rzWdhmKL6ts#^*qEc2M2>D*sL;QQYGRy? zxR%0VU!y!yr^71n zx4eGP{T$xIw?|F^HCfAt;jrIjDh&IF7_%#t@(f`P&oVRPO?fL$f@Qn+HXAO*)D8B$ zz>oy~lsB?bK=y?_>u6~l5@C}(KYALKO)WspEZ(yjV~(GFa3(h%Fc{z8rURyPS}k-- zPMEVec1Fu^R9a=c-kvdYIFijl%^Y9cEp7mw)LOXo4$c1h?Y_UC5+C1g3^nRbSB#qK zg4=Kor;e5-@Hm)~s9iixg~yigIG?2fsu%^8q&AGpX;urh`znV4L^79lQL>tL-&FZ< zfg4S`i74bnzG0~0(NK!UG6OAObQ>Gv}mtd{+dJDP|a4JZ2 z@978er)NEg7pA!`z39lEcjeS)dDfk?h$oQ?+l?^>I1(9F^Kq^xSfwl})3>}~sY=jE z5#wz!HW!uhqw*1&RUA?sk^6?_U*JE%US(ncossIp`Gq?siWKbVS=1&NC}NnNXZEUW zgh9xdxhojZik`wH%=%3i4>oLMwaQ+TlDc?-G%lYqG3vq(BnJBvvtw>fIwv@3!_kY2 zBI^qsE+9SN##^XwUNJ5etMrtZ-*A$>n`0T!evw6WMu##@-yF(@YxvG9z+JV|ZUVEN zMECCXwco_Q{NcsFJg!J`hrxwRNm(6!1|WP{)}Fr-K#CZg1Ff*U>W7`U1ir(xtLdUI z<9w{j z;rGKbrlE>(I6iexJ!P#*QRwZu=aMBmE+5J{qgc)A@qO5N*L90AD6D&&fci&~eun|W zD}$AC0Mq50NF~TNS2TLkt-~lvY?stf|2dZ`KEEhedxEuNXiROl#NfgJl7t(3h528! zh`;iI_yl|A+V!?fXo*+wCB2Y~7r0I+KzH#8l7e4+Utc1hrle zGZ8GK0X-bZE6QW6B^=ek_BAOtj9*+jNo?@~73>hMXd}fA6P^tUxD%=rXt*O#*8vO| zPZH$Q?&ZC%G#$0p#OXld7#gQMyS?Ac^*6>0Wtp;!kGM=+?2pXq&zB42!OM3&jR5rq zda@DV-9fFCnr{O*Zj}exY%;!7*=}7!W4+X;6A6bCyeKc)MZw*J$_wCkB4IkIe5(TG zORnQ)k*a9511triCAQw?Z?_ASk+$3Iw>27H$Qu#wBE_1bvAV^I$+gsyt=X1pz|(-6 zU8f2Rh@!e)^6zr$JpItYQoP$k=Qj=p9f@dxNq5zoX&tZdCeMPWWae8jjw&s8i+tiP zy4!=Mb@K3kO_{&yZ0c)uW7Y{P_nuD2=+g6Y#up?jww(2)GIbpt)-|H;I~e^p=Jr9o zny!-l8>R&&z8MM3pkHg!sw#8neN-x?S(V}*$BEf*Y9A!jpSjYjr3Vsf=W4$rd40t01TmgKX zwI4q<)~Wqm8wP!gw3nd15wm_V&Js9buxSLNk}+1rEA7>9SYceEAT45b186A#E#a)# z#DxD|uwv1d*`nMMs|6X*{lKkXFlesUS}Hp#Gwhji zlX?*w-GRglTsIUTnuCR3=?nrO&qEJOMUl%YcukJP*?2+vy$Qdw7Yfo@60A%+i8um! zyL(M)$!ZOLM+k{Y^8$s%8bYmF?e3yt;pE|J&#_MF$f5-ny8|H|q~iKj*NM{xeUo{@ zGBLjI1>?SRE;37byIi1CXq&uUDvMD|%m}VZH>&X(T@c$~m1_#^gr2oZlE#GeZ7{aX zI_a8GH;IiPxJx{5QH8BR;f0T!Z>T%ot#khc+))*p+vtI`zPabOTWSScs`Nk_!Io;Q z?78Xzj^#d*-ZQH~ow2h1Q@IQ>qI&*_`vH?IkY&bwG;0nq0HC zY3}CY22Q1(XfkBAn{>9jYW_7{MJR2z);!wTZmW5ysj6s(!_S5VFBoYS=UC zYWJCwYlS}OK^f%@Ls8o+r!=6Z$y1`;m`P=Z2G1>i)_~X9Fw|U^M$d5gS(?{z<};o> zh+x`pQoF5hg`}<8Z3VRZS@!$I0ynG`Q}3p!-2xtb8-|)#ntY)XU%OEhQj*y))O0?F zL(Mvt-XLG<^CFPiuN`ILuCx=w*2Ef{A^2$H8Ov} zC5KHb1fFe6Kh8ytv3!v6Y1NJ&>1ux{Nz2@jXjEBHCrs+WlLL2aXF1o%Jjde1-Oz9~~)R3XGJ zW2G`Kf1$xVjY-UUf>n2jyGyaplv~#lIz=d`E1vF?RW)e{Rs1eqwqDyYy$G>qimge` zkwXUK5?O4j^r3fex+P*W;4b^ZRdqJ3#|^9lyc9P%ut<*C8I*ZU#zWeHP^OMpmd=b! zT{^+WD&3Dj228`_H$6R@f3Y8d-~uKt)rwN|%WujF?1l9+4SZv&9-J1!H@Rwz6k})sJ33hBTh;^N}q0C0V8TQ^mipPp00!7&HMYQ@&4&Sycgi!~eT;%wAUA8@_%o^`+# zIj=W{pMac?hflpT&fVF$$~%LmvFx0>i+D2hhc@doEqPKM31t^|=I47?_!Caz^MmKD zfH-fiBz^4Bsng*SG_VoRP`O>8Miqo^REyVTS!xaTeO|?&61G;P$1=jgMzc7Tx`vbM z4;$6Ronnz0X>UuFJHG782rbcZfuX5b*{NR-!&$ng)$+6Gea_yfHTZk%0`@_}MtQg& z9x5*Gs>YDiy#5{-3kT*fLt)7Sj0ySIk-HTsYOvbf@fin3FK!TEP_XSNB9062d)^Vj zj@jkLsOk)$EMfra`YP=&q1S9sq{3h#5f z!{hHB9EB&t=e4@dQvZ~B@t`P8Wy(wQ;HBz%W&P5XVo-_8`Zm|Kb-7&khGJ0g4wEOO znLFj+`E^o>!3}9Eg@vU_3xow_Qj?jy?oj|AaRA@isxEE6p>6|KFKOF=1y!1XyOy55 zO6knyBLXaI4(qY8l-QYsz-!t;AAny7Z;C zsqUwyr#`&@cy{)WH%h0eyQ&n3Y?U~Wqj_EWD~NJKrE?V(2vs}PH%brw*;KU|;IFP< zYYPv2X>4lyrEM~`=Srp3^mtO0uABHan-9#jg3m{~QiU#St5b#Tt(wy8t1DZN7rt7I zK}a0n7iLh&SeGNC`a0Fn(4P9_Qm-aL!?VIw7Jsf3h)iti>{apIm%6mwqhjg__I9!R zO>XO|x9|n{x4>@{>gxFPIdnpw4_-WY{OIw!w`UJe9{9i3=DNneK8gRqU!Rwi9ejN8 z;Nip5<0r2lolXDr)(mx%*7(V*M^B!;IeFmU9wxT#)qZRNf>^eCQa&xtvZ-4EL*|sSr|~iT&{Ep>tOSpTx)Zn2e^oF25}K*E;SYY0<9ZQmoKay{4h2E zcAOft_Y7#BSC0Jy5xsMrtk`LBr53P`!_P1Vl}qga|Mlw={@_=Ac+gzKI?iDo!-B@~ca)L#yG z10Nr5b1`F~21!ENiM%a5Xy5Gx4R%tl#*;zmMke=auDhQ2 zAMwf=Zk#hE9#!_j_{Y2&uPd*`U+EgI2T^?|^mkd3w94g?U(%ZqVR^yVW?7RZgHihj3U_O}2C6w9Q@S$?Z3bbTJob59yvF(4Kgi z*{!vdxUw`!olbf?)voS0el}TQN;J=QOI1*dhePNMnp3+!_eRz@5y8ZY5_)PA1dV#E z(_*6be%1M(fBbi?-n-!tEqGqq@1tcm8fFWZPI8x_L3oJvUU!EsTR^w>X(-; zZ8DObgat>s4DuEvIvT|KrAhZ`78H8dG6PGpLZLuFJ;|2L0>uYVg_T33Ngy5; ztQ5JkvisSpE=@jyTN0reUt6l+nnn2jv+aAaX^SXZUZ6Q2%^47ix_sF4V%{e#yKBJ*SlAI3w`Wf9Sx}`-VdjugAA39%;u)VIM}hi zG@!F!z}{dGa=uVq!PGd+;Oz#DEw&rAe_R^#CF#K%57etH3qKILg6;oCBQ}xWw*K9e z2+mnNy@f9ytxFZdysJA*6?-a{D)z~hh1X?qq6VgFe~rp;8$F_{X#x~x@}=fFXu#9x zEQRS`mD-C5fVpXESfTsM2b#omD#G0Hya>})EzbCDLdKLjF}yL&{j=F=wF0ZYlFLH# z3y#z^p1-O4&op;7tHW_yiQ&y}U()tqq5ho9_3$o7R1DPb6J_NN0V*R14^40+iQyeA zthc|rtgkP`@Q8i{7S@lTx};)gd&ke7J=~|jvB@TI2Z#X@BdVBuB-fPM02P(A}m>ic+l=H+H?s{_QyK}vQ++=_k{XX30D&-fC93vu8 zKCrNg($&Pp$|DRUEmkIvWl5v%yFasbWoYUOZyc%ID)(j>2joN z$|UuNvI7V|1TA@B%8#h%AXzIsg~66D9t;Bb164k^(BATVaOyR!tLH=K>aK6VS(nd0 z?v?k|k9Pq0`G6jdKK%}lUA=g4d~$N?P1sg4H|Pz#l*L zzx7>Ry9_=(KJmW?bNS=&OXxEUgtwOa_Pu!U?8HyTsHy$0Q>dSs>@zeNKB{V6!b`kU z>FRmn(hC0=mdlfq*3ceCJFJHG|0`DolEdu?H{Fws91bVP&*ldE^ij)RG4EbTbya_a z(;6mx@IjBv>k_mH|0d7I6DSS8cg^JR%~%&%ppOfV1<V_CKk@b6Tz?Yq?qZbll!f%>?ctBVd^)GN8+g{1H&h|dGm~vcFwQey{gT%9 z(>bYb0dEfH*6BXQ@6SS|Qit%&k2Iz>CKi!^glFV|gV)kXe0kP)>vdi-`{aFL4n`(W zDXb_cdIUU{et4cs^-K>2o?(}Any>(A_Z6Oz+Do9nV$Y`9jF=FhSw2`$co&euqRko4 z$L#O3Vrb;lV%}E!D^|3aCzE!Up3mB-PjJJ_RjMZj$*Tjc-FuT}W0%&y$G>}GJ6naT zgxY&=O$Kk${`p_w%JLEaFtGo;I8evWo;}|8canuR9IdoiNJC2r8|6{-ToAT2!jnT9IRk>Z+hDUC?0t*Pz+xM&9tZuPItWE97HyU> zm^ubU+uuP2=}%(mmISntM5k)tnm)+wpmXe5=XB!mS!VOl#2Ut;=(0ZAfQOd#{QD_FjYn^(H@1Cl4P!0X6DVhe4Mxsl3t+ zE!QB)MaDuTMtrfbh!Nc^ELxx!uUj;)9}8=mVKotcXeE>RUzm4fx$8*T{pEDHs_XU3eP0=>))yvM!_s9chE#h2;zN*C z2o3&Qw?lAxu1|?8F zntdiVWwhFg%%zX#h8P;2Phwy{p8xdu>>saAD1eVyTkTbvT3QzN{UH|gLZR{&-G_fu zzw|!!)LDLMOP9w&L?235o4}*~YGm?c;-7uG#Kdy6&hm>k-n+B>9v|~QSBIa+F4GlC?@RQR;Vl(EMH2c;EG}MyG7xF);{~^UGnP`N zEE|@SA(2f26iokXB(wjBS7Dwn6jse8jU0`cL_@j{3pzxZ1va-x^1lhEC@FO6{tV~$ zx)3}_X6LFHvE5sNi`l}nPQz*5v`+*IKl$NI>4?ghgoe6#bd-7UZ)Wmy!3 zg4eiY(Ta+n{HpWHV5PNr!G`6L57&va*u3hi_N@gC_Tz>6%wOGw7o~0Rc*75%=b=g2 zg03^O)_!nRooTgq^6=qz;Z`2%iG~MP>{)|$V^VhHeMvGU9u7B>jV#BLv87Rjg-JDv z+?(m!!YIPRqZmaZ$5Z!F*tlc%oq1l78x!uF%rJ?k4!m-kv%Hu2u^5>^BJyEyjiXO8C&`lv~nCOj~6 zjgM5+j8C5Du(WkeGq$quXob)3ji1slQ8Ba>ZVZj4UE+CR7Nk&P9u_Iqn7bImO-K+> z3`%nK+q`H<<^f&=j+LuVBI#=vowM#||ub9BlaUbX_3c_ z;Ac?`jVMc4STtF}1;{5%HIVjXe*#`fL0ScCYC5kiFN_q3^&u`Df&}>GZH5TArRomfke;WNQHiwlu`2ID6UcN~jpb^5hD1j(xOcAfMct_e3|{n>;DKfbhL--#gY)baK9eLTx?k_j zrpR3`Jg9w}>vE!ex%a>1kf!!aL+cuoGA{K5Kyo`?G7?o^YMY`nzb7`J%W3Ji*}b_i z12N3G)Ht~{LyItA&EH)eX<~5Xqw}7fFJC8VB0Gw*SkS3TY$(#IM!Kk!xwcgusz0@H zuCu6}g$z)?B!blOkB3tl{~+AEdQ5VB^1!h0m0Ztg*^<2TL{8}>a!cI6;f&g*pg5WJfy5RTOCgJOPxhWQ z6{jKTv}y`dR=RGyT^=J+0`XoI5?6AEWu?6g$0qouMq%zSztr2lqRgJXIpnF(PtTYcOGbTh1D{rzs z%>l!L6QqG@MXDI!yabgCAR5t1!17KO)D&oaV-b}CUej6D~SI6fj%9bT2S$R1yYYJsF|9ubcIG8bBT+Z++ z>DFm&i`}0}8t?^g<1@R47^I{>S(4%hK1X*lEu4yX8J|?O$$DaVduMmx%@W)U7PVZA zla*Vaa)w#7USu}6S(B;nZNFbB%nBM!ra8}XHSMeOp}GiZM)M-PoF)}{YR_N}>3(h& zsTs^b8q@>0&t@7Qt!-uw0jVgkZ#o^h5}wI0#5rvnG3V#$?o5U$-1? zS)0%!Gv9&59doqKMDXTLO$0Nmz}6;$U`hFQV%dlHAJ5MILE$N9=l)*8ev`}GmWw!r z3#IW~wzLZ~FUoZ|w237KF|iOc(6yah61-#`a3A)qsiIsm?Vfef%iN_w_Aar`39?UY zaL`)3QZ#KU||u7Lgdy3oBqU+vLEkD z@gxx1CLsla$Pun_YYd@Z7|!9I6eKOElj#z%Sfxw~ZqBGqfRq#1_ocj?{?cF`pEoG~ z6)Vh913`FV&HF*5&`<=BGW+j~1d!F`XmR~~Qp%x~D-9^P(TI07*81>XH?e&tx5u^< zYCNT+5t}xWS(mr$2bY0;TMRHCVB}s@?*vh$p!Qrz;rwUn$-`kIIgYW)6ah}Kj0&q~ zfrV8}uk&QDQecT|id0UNN}3U7F&cltH8~%GBGtVq)z8fRwOV^#^=cpK>{ZjHdIUZ7 z4g-Lu_HleFb#?%Fb*b~JaAkea1_(`qs7DslyR;HN?h?0+U*z8Cq3wtZYT06{s5j)x zX}-~lPk`eoh=NxLzmI!TaPMe-Iu4XSlPt+e$6NeTK!Zlkx(Me7-oq%KY8GB*2DZsS zM$~$g>%3OKyL=`oY@WChn&e|g+LW8HfR$%$o2F0BgvkL&mZEeZZ$Q+IO=%QJzHta4 zHSsaIgG49LgMr|xl)GzML0839E(LX$N{QHYg&2*@fuaQ?v(_V>T=t$=$D&n-mfC+K zs-zTPdxfAyYVgh!u}B78fk?uNGJ`{%g0z~+s#Z|-)OqJuyJ3PHTqLXd`ke=Je~O|L zE25*pF8<2szh~bpeNlGGggx7S7&mPg$yX`Ro&*MIw_220PyfGT^F|X%0u3SwuBW%( zo>sh3lmvlcq8T^@8brHG3p8jOjZ$L6&Gb&nQ6R9=|9upEbLyxL0EvA^xp)e+XA4Wl z?YFA?jnS>YN*Tv=l}t}m=`+d#(@GTLku@bG&7x{oOetr)DWo1Z6)J?6cCdo_1RATc zNN{GZTzTO$XXfnr=DIMY#prO#8NnjWA-bDbSg4$db&Mt{+5M8jg4@Q$68Ft5qP>y= zY7LTyXpocwbpZw;K zqCf*uQ^VL{aBp9lncsOT#*kXV@2ik~I!6QHZ6Wi#5FOrfTfr|et#rjIKzZz60T9QF zC*je$WYV{Hn@oyT61Pew{bu^;hRV>(^Bjk5$CT?WcA7w|bX}XQ*tMG)N#~asr39`< zq~H#LM$x2%#H^7lBog=8cu=Fo{@j6H4-3(8^n|YLjI4TCQWX>K1}EBALsBR^5Wf)qvuIv=%p$c&nyN zZpJ_YkT~z|30Kw7<}|uH{_;>*kE9LwovW*%A_ZAsiv@)Oq*957xO$>eo7uYMdyOn^ z=(_5JSPtG>eAa!r65Vi z0FQA~*R~o`Tx~q@=SYcTyrR=O)v)8F;Ak2(3kuT##IRB-wHgbK=3-_oeRu`l6Qp`p z5sT>XhEXoq!K4&%E7vRDnLpO$$SC>|!mter+S$oR2n%b>nQmB6Gfh?s5fx^!-jVcG7Swk7Dr*l&c~Rv8S+}6*;*Fq`M{|zJs^dc1 zQ|FbdT@ftWhf)5`#kd6e^Qv-*^(n0#ciMOnp28fcelxv|&MfQ$XDXFD{KTgPsE>M* z8ao@zeNKJvaCn7Z)Eja0{bcc;-xTU5t82_x7J_VMG5Vwcuc z$D@&oGQA=NiQ|@M>ZS-F)*XaiR)7UZDi*>*niVOPLL8PxY&D{_o8;yZtnzeE7D!*y z0+U%_q!@DEx~GS3@$5j8tnX4=k;)vg5MKu^ZZK2h4%Ag?LG=2l=V{1rXc>Hnm1UY3 z{SYIXBiC@y>P$5&pf~-?0`}1wIed&l?e668F;fhmK5BUa7VFJ)6%i!NFwd>rISIE4 zNG;OMMGHkRNFC&PENO-MSXfx7QVxt>@RR2v9b1yAk+)I|UP9sKC|QSzWB})3HG*L{ zv?4dGum`NkOp1$Pt&vb4nY2JycpybXA->^6MR!_-QGoH#?kTvHsW)io7?s*bIfA?% zHE?xnBL@bP96m_=ugSF5EJ~UN;}0^ExpIOM0W6?5LY zYy`C}TAg}czqYypupqb4lzCk=s22=FZTPt>c3H*x^|LDS^JVK}hCy_@w6TPsbYNma zR4Rgw0Y4REf7J&)vh-DL{Tm29&Xk~F<9;etM`>@V1_ zMvAtHsAchx%7G~l(VbFY1Q_Y4WRO49FE7mG3c#h{h@smotbU68kV2%@f^^h^MAKLn z4~gt9Y0+i8FlSG&Cx$l3YfW)svPKgwAvQ(Vk=Xp<4QgbN+obhAdW(q~S|mORQQ@IN zgf0il3~cSn-omSn)`bLNP|h6^35KX;MoiG@v+mH`tLOhr+E(=8QW>XUF>;8)2z$&b zQj(i1F|0%vx{s@rY&k=*7-@$o!bn^)h@6n%s{1=h8XFI&{q%bAywhMTX&Xch# zUp)A&@7zVE%ZuY@eqW7k1;@z*WA~O@(f6AyajC-`1>cf~@ZY<4OO1JX{?nTuetCQL ze-_}6=I}{xzUkq<=p5<#rB|w8DncBH*zEgLT?~yzdLmfMi+LEq=d?1E? zGzS$KL$-s64i3P=!9ziKW8+YgCpr%aTGM>2F>;e3@0lwBvT*s-nFv=3{BqRwJp!S3 ztYEaDg!iQ2&gqlKWUZlXI39r#DJn;f8jY6$)RbaaVfRR(d0&L+LKHJYk^&YbN#4ZB zu2?`=s~p+mNqV7NOz^)?#11Hu2EyxXpyx}5fML1B{Hd}!b1aJBCkN@lPLpXI0hw0?cKmLW$SCLY!#)k@5g<=b!7NM)n zAeXE~b3-tLEH!%V4d*o29&X}>^Xcq|vp1j5-v0LUFP}gB@_C^ZN84U>wp|W5?8+-` zapWphHT}wbX-r)EH?$na>9la#Q$+5rVMoZF3 z$glrql6UZ}TjonpPfPA_Ya9czVdrgs6)giPnQm=+KlhJZz-i^71) zlqaUAUZp-lQs-@H&MMUA92qxb1(+4KS9^$It~GjA4^-lOG*)m4B5eTHFAM1|K0N{B zEdw}c6*e)|en?UvECJB|3@9Sz5>%9FF}BybvdJt*a@gdt(iwJo#%`snj&T8X=pL+} z`ejdjj1z+4s~r{LraW7|YuMe9#skT#Zl1IY8dTeCX%8Q*)19$4+D+1C5ebqO^xU-# zMaBB|l>GNbV?c1LgT-gsCGiP~so+uM(ek&A=Q-R`UOe~^GHrhQVV2YxdfNF#UxqGx zak|*N@S8n<<}V2mX4NP0JM$}YVJ*IU*R>X7Ti2ZKD_-*TvCm2Treb|n+h%U8H(%w* z!*zG7{P;;bW#QZ9JBR7uaQ0M*wJ#pLDy>fAbca_UJ)3{^$wGw6MjHiBFZtWB0Lj^I z6LGN=FN*n?)uj;6BbKl;r&LHm#_UHaxLu|F;w{GlOW$hRU6_||B}V248ZyQ3&&xHL z3}7|RDb^;xw57{E9Y{~TcUM@&_W%_8OWc)#O*N`|xd|pZtS7y-mjxhb#CcRbDzZT%rDOk zE*-A|ZQGhPzHxvPBfEtP^_8CYBa#MhzTDBEeuvBbVVuRyG`zN-8|{x*_f4NWJ@t*- zGBWn(+{~SWZ6;^SMd+!d(X*85cg&A2{?6@hf&|^!KN%MGM zpci~C;;*(Vkg#0tz~3mY?x=Wy|7EFk!A%q>IDT^{+8v`n!Rgc1VY^`gf)!q#NQ#LL zskGJd0tH8_g;k!E8W}IKuD8aAQa942t;d=7k)ZE4wf)jInOFa6jY{_(JVa5q{@%Ua zs{L3}ydLYcush1n!gQX8qAOB(k^#9G>?DOnR{!XGFdKZbc=XDi3QqM6S(VSa9>ZP5H$$mtPng*#KO{jd}an32mw&C{x}P2 zU|`c_pkT;#j%H%u5#iCV;4D0U1s5DilJMq{%wEx0W?3C;XeDm$(Pq0esVf8*h}>4g z;Id0QXh?2l9wgiD}yw9EX5*{M2q2(7y@}v z#M$HJUp8e)wCnSxZ3~x_Xc8u~kPfZN2W#VP=au1|W40zS^Gj|6rYx`{n+u9xb6uFy zqRCJY6gOW_42?#a$?w^WDTD&cOR)+R?{YpG>IS?w{%m@fBePJ&*fpu#ywON|_|AIo zxR6^Ya`mPJ2NE6#mH5g@PYm=8Xb{7OBocW0pv}P&Lli7sBppN&tKoS^8{YTeN))T! zh0v`^q0g~RRBzyAAvbES$j!owkJfow-`=XH^;>bKCy!$e$f7T`wUVt1KlRxWA)NHw z<-eW95<%g0o!{`CS_(k*v7DV@rmH`B5 zCA@~=Y1p)3x~iH?Dg>$|U z+`Ro(b-%GyuDf1LOeSP;)S54iP8IFS%fYj?WY;Xb#^kjcmaw5$G{`NHncZTGe)e_A zbec{M@R}q)5K@SKyouLv4qie!i3AC&IY^*v)wW12&Gg0U8_6rkK-aCRMEvR*5sip@s7@4@}ygHB#ru3+bORVS~eh`}2=~Ej(SjSbsOSrJFJg4|pXy<4nq4C8w{1so=zPx*E_cE8x+KGJM zwb6q%P{)owML#Eq{74*1B|wZ z$O5!jxR`SIvCK)Nh)15Gj2wT+%YNF~nuRPZVwj_x$(@B1_m31Dl`5PEMnU4yG&oXZ z01FFKOpxz_mORFSl)Xp9SW(hR%z`_ooFS5Q9xSY(H7Urox*2%ByLmfWh~`41mXT7; zM=S(?hQrA2+MtCuaPE1&V|d*}RY)m~5_w*}hGh3h#)6`BasH0h*n)j3+g*A){2g^0 zZ--}74!(;|jW50Y+Z)`UpsL^ygx7X{({m~>c|D>Bqr0omi3u2j`X8W<#Tp6xJ3- zSsor~{oj`}YYWdHQ>3-Rerm*Pz&DjTnGssbs|rXXo{Y>m?>rT>52baO`1-D(&yNt|)hj9=-d z0sX37ow?&1?~>kb4Km5OAkZG73*z=$v`Rfj??u;Z(P|NW8tbioJL22m)vUR@Opd@W zxa6T&>4yk>f{Qc1i5~)kFV-xcja>u$xW(Xg6 zRfB0xm}TK$m@AZ57F~cLyTM#1rl?zyHSzWbTe;d5=nD)S5*6IURV1QcTo*^{E@Zp{ zo2=prTNP4>N$7L66uyh5g;3q#o23`N^P1r5$2$Q0Okdqmv4&?SelnKIH58+tn(Q+) z7(S}dDgzIOPi~@+gNM93qtug4%ug7l8O=|h+w#)C`8sRxvhe24@6A;_o|>)V&~-lF zRp>a_x;yP$admZk5?4{jC*P`pOt3bsDP8e$I!tR$xs7od^<9Z+qjayg7uSK<4Bh5IF~(f zmE$-QS2>B-b|$+|E{KFgoREYD1SRV{osZZr+%MT~kkpl;1VM(S$Wv2EB$4PwqtQ1s zx~bwKPX1BvzgK7Yr#$;d@yCt+E9p{?#~spt-=pD&y;moD_3XjyXGI>PP(Q>z>~$qe znC!8=Gh#4eb85sh(KdMd&C}!4__SH{p?;5fiuc$npC?@=6Zq#wVOTz*k~B`bLaM{k zv0+}ZzjmN=K#4B$Jq^Rbp(~I+Z@1F~pt=Icok2}KqVEb;oJLG?kA|-3SO{XH-EB3+e!!f;Qtoy@M{*M- zU^OkC5KmB@dRdb37m(O<3}O|Nh^Q$BatC9=(9Z9d<~PRJLKF zFo&ocvPX&|ACjS(fdP~tg=i*PW*!n62_T;UTqO?LN>u?hi9j6^WGmtYEYi3Q5e6V> zteAw4dY-J^1`{N~X^-%)kt;=jsFDFn5fF*_@Gw;wRdCr_<&u7MzF|f2$)FP<$gFIU_{`rJnpeX@eWl?BODBTDQ4$& zsGo21m?yy)DENZOAtai>3MA9>E?q(RzXin20rZ$2-UC3uh*W<8k9vGsd%>SwBt@6> z8z=9(RMIQ|!`|uf>E}kgL( z9^^hggrH*@!3z(?1C2&DX7TwFNHKg||1!R_JrN37Aaw-)ef~Uc_g=x80tZxxhdF~h zh1ak&s2TJ9tEiH2tB@zmaf(t7rcJZY9W!}V4Jb&0bKGiz`KisAvd_hwsvPZdQ|B$r-OtX2U zVe?J^pH7Y&_^HihqOSEYuTPF9H{Eatc%i8e(Rgj6BaM7|9wgaX0JMszl8L&uuFfHw#mP;0?p7p}h7L&tG;0_dZM??BgA>GZ(?@&w|jlR0#Iw2abLljl#gBh zJddZJ4hCH&!FK-zGlI1Zgd7VEH=8=*6@cm&a`0iVu~&xWazWv5e_h_*T|RvM{^|1i z>f4_aXw=8>SQUbq2BwOVRw%q*2Y3=fV?vc;QCHzPf@Bf%2f*_13wRo>kVQ3e2lf_0 zr%E5Qh&H+Ta(j9CUl$~xMp+$JCt=h?z*s>t7H4(`mnP!O3Q}t16mQ95vBx=N)n|LI zuz&|V?(%5eSXSGeLOYw6dGN*x9Ju~o8tP-|#3aCB1+~$-EMplDe$ddkY z#v`|M5Hj8gT+OYG$wHW9Ybd#_fR5`NXA?C#WwP4}iBO_z6vR1oW}8@^ynvC{<%(j) zmn)zVrg_mY(XJZN=Y=HXk;X#AwTYMNRVgQ*o;8=IQ4nEqZVbYI@?5eaGpQ?W06k+26E`ww>>uy;1k($`MQ^2{{6(mXSL=vn%U-WHRrH4zH<{JAXHkfU0`pK}J8 zW!y%Q;j;qgE{|~am5Qa2wK(N51vQh_rdeY7t@!zQw_>&zhv+ZJYl9*FRSeyn(C*9Z z=3`7E`%N?5Fd@5}?Y1npTIUtx?I9G_3e&I?Px4k4LFREcRXW!ejePDi!X7DRMU!!Z zfWR8*$Ma+UBGhJ}ZnB)#RrO6C<}-n3l}vv;sluLeYKA8wR@2J(z}eI|CSCewCuerI zfSgUu=ZTjlPI=NSQPAa4uGO@P2)?t)nbFZ|Zmz{7-WhQQj7lRWv4hp4Jfy9VnS?{P zMV5p-QN=YVH2^0SKTN1!eHX~1@#wbCp}y9GidwN;qw7FtG0rbG=nLtS(Xm=F3cMt_ zyF^5Xd2`y9aRtm_?7|@lbNkL@ms!CxySQ!@kYZ_E`ibfRcD0S6^$+HM~c=`gEs! z2)qeaJedpi+QgIfs_+QL8rB&K8c}Cq2qa;iy1{tYG$8yjVAN;wmbIB=nDqwp0ek7g z9_z7qk4PP$lvn<1ef|j0J9ii)>VMd4G@BG9@=*G}H*$EpHqrEzpUi7bx(SMIq!i1tJ7>1A+AUwk`yaTI{h z8MP$Lo<~DVe$mS?+~_N~m{!WfSsL`v<#Pql%%ZoOn=3$Bdba^I%LtV&qJhF$kwmmr zpGrnp+~ZQj5q#+`&-^1*p2>l|-Etb)A(pX%mZZ{I0`|VUJ@M)K`e2mKi;Odr0Q&gh zCrEG6$IM`#fWS^4YvfN!yMZnwlETM*(xj8rI-*zaN`Xo_ssH)&;=vPXH)MXj8%W0f z_6&$J194KG)F*B;)vH`r^a`Ib3+AXO@448?#zZhT8ELbg^B9hE+}(F0cURlu4~4g! z4OsS$&dQl_k@JdYr7!55nCTbhr>^Cdvu1xe&cie%zi69wlKGa%9$VyoY(TQx5}T-4 zvgy4vpC>WP@EJo?M@4KTd;4i~$Z%F0ALPPFToKW1X7SA>a>z`*XR8u9WHd z_=<+$51KfDRxnqv0j)|ryE}6<4?S9eGrZPo1*^r3Y6M%s!i)?a8r`q5f@kKxT7fcm zU+oUT-DMN#2$U;eL$90^-ZGY5PR4G(>p1Hp^HRlp(v~91(t{$5gQ1eh%JYKQ!vx^A zNF}_{Np(o}J=t#@S1D#0Jq5w1d3J2alIUtD#rh5Ep?D4E5 z^k_Wd?#Mv0zf&%O0=kqjU;!^EO`D=?!6CuA%~-A(2J;wNxFbrG4mt+`9CQc{Xv#45 zm}PJUT>1noE+jM7M9zn=O$=YJvMlhZ$h~DzSW)lroYBV4XuQ*BT}#**=O&zCSF^ZFeqrZ&pHKE#gdPAh$s8rEz9Y{6xzFzSqW(R=VHsnq<~mIl%S?x&;K*?-5DD z@la3q8UT+Bl(8NN-t1xX;zRL&Fbpd*2yEhrRy>jm{46-OjB;lXT=V*4;$fuEsiI0?7l|@J&!~J;?PBPtP zp|a({srCZa(edEo{QBa@_4)nf!(ZpuKQ8Yku&9@HJeWiI!)dBl_iQ*>+YGMmzTbbp zxqLXkzWH+Q4FA_UnRlJ|-=5!JeP0IuvjY;)gkV6f#Y$}%brutjr5iBGVp@>Yt9(wo z+N0KK7TTM1lFn)7<5*T%(H^cVaE?*Bs@EP6aQq_Y)e9Sv?Cl-^Y9&YNDYST0; ztGy1(=*QjV?Zcn9=Qm#_5U3kjb$wX#ph(j}BR#Xbv!ILi0f4kRWmVI?MnLLo`>IHz z7*-Y1^@A|K6;Q^z^JAgtA{*$K?6XHK@QUx@*f-bT?;rmAf2$j@>NDH?+e( zN=AR_v7OrfSuiJjl~*5k1s3I;JG=ZF@N<{?fBfMJpjk^PJ44y*){|ZBKA(2Y5}vIx zddxgGyZlF~gJUMPvK72M80QS0Szy}=RBkQ00#{;`9+Iqxy|#^VBdJD)LSW2Z4X{iR zTD;R{)cXlw^$LBZ74p;Rt7|Y*Zvdcn4l>;nr&0DK4|`$pT&|qqw=2|4`nw`UYxshq ztt9`ucm`D%;swGVGtb@@rBjMWXEo&O{6>DJ0?T+&}DfuPS%%jAViJP^!6k}TSX@MaN+znzytCDMNVV5a`N|X$?$J3yg=gn17 zEdXOEM1yEX$W`toyBen3x0jknx#hego9P@3=)3}cbr$jtY^n+}Rh9$TZPMiNq{_Ph zyG@}{XzhhabBR=K5AQl{s?J_^Trz{pQ00{FIOl|tQU8T|=FvwZPG8LB%r9t&S*2B{7Hj6w{BUzy zL`?Nr#14p<3fg?639l;ryJqTW_*=v|d3J=uy|rchsHRk`vfq_|Q*E{7Uva{)CAy6OK zH(*KSjhWqcKqD+P4fs!H{cYwRe;x{TC3kslwPn=Ve?nVz%Sls}a=+VV*Sp$L)osb$ zW}Es>v&~BW@)P>+m2CXN!_P1J@+{(wqRbSE8lh@}HEKuCv8T)tbtt!&z{bGYd)oGs zFZuP)?d)BM2rKIF%IjBa=FlxW$ai^;zh!AuX^id1T=UPC5veG@_Oij|5D2f!I}9~# zTZ**9D9Z1VsVHKP8JIYB-HbQQ#3^d6EFI6zN>b=IaVd5n=^>3`cl^589N#Euv#`v@ zZinEUCUtHb>(IpEk>{2%&P&GYA`5W0S;ySUku1wk<3{xo(5%@lV`n0svt!22T_B|L zQZ-eb=1Ez1%iOCMjXs|??2%&S4TnVmwoI#EC>j3o`SgW>=IN-^)XYTYh>o+aAt(sRqK%-=67v!N>!$iIL4rP)A< zzueNiY?_T+8UINWTV7UX1Q!L{?E3k9-E&Hl zk=~rHqr;^|!`{^zz*u#q$op-%0%zWs#j59w!^SM;%|f?n-Hu(Ym`9z>sb#XOtswcL zABTeat~wIU8F5Bjx22eDrdzL)*yn4O*t1f(aiUS2>RQ&w`?wUdS{OJTbyXa-sC%m+ zk5gx5ts5xSeP6Hl`~6xl@TKqq7V$*ML5-z#z0|cpMU!P*>SI_fg-AZ^3w~fU&K%HRziFpk3l(rA^#yf*&@FQUleXfFs zJ5Ta1UX6O7+5AgK)4gT0(S{vo8`^dqy>O|;a1MOlFS)Zh&Ob9(SZ6!ZE;g6u3^L1| zSyN9dhF=2VoYZSUxNtL`6ya*ycf+Xrqq3vthEW!G+4hijC=RxVz|{ev4MX-uijJgF zwDA<4qu0mha!un-N;^|xu3n`cKRv4=Z@ekgPxkh7$m?8k8s@4i8)9U`Oay9hj>X?| z=W5preASqhS&!!i2G)um&nL&&sBm$Q=TUdkC{uGJpgl&gWiRnruT(axvru%g1$;mi zq1c;r*u-54Y!RRJHr4ImNkroTNkm)qsbqx3JuXFzH@FkBe-Tg_DiIUd_T&bPiy#Gb z4+)r*je{CFCn1k?v-yN6BHAQkDiD4`I3@|>7+HJNGz^Jk)Wckj$xid|PJtP44S{EZ ze4aIOAHa^vd$JY-r|=EQt6VLQCpYN{M899z3YK zy0WfWdHFJH=j5L|Pw%3u=;WVI?~)S-eDxOHg-ln zR?og?3hDP7y-3G8dej>yicsU;SdAx%)AaOeH7V?@RC~&6OyU3AvG#N;(e2XelM_E| zYfr%^sh7lCDo$Hn<;1EL1}z;Vk(0P#0MDIP;y${GtFerer1ph!gSOkkXJMq;I*3h) zn!4?3b@l1`{QTc%3J9d0j+O89RZ}ZyQyV^0aVv6r3HHfzg8S6DhayR+I&PwRPUQGH z(NX*hKI(a4Qq-0;RCR!0$JJhY3%+lL(3~*pn`R_k9Y#8FTaE{G9(A0!_qG?mnAagR z^ig|ZPX+o(`K6;$KAbpG(8#WnK*cRDZEF>~e$UfbZ!5&Vp4Gh$TV3rN@|*<*-?viF zHoP`c5&YZ3GClQF-+zaLb=iKuao9M#_;|j5v0X;N7;Yy^j#FY?d$g&ySw}K zqYsVq;?YOlabQgG&1vK4_-t>()NUKnyGi=c!K|4d!gl`_s>a3+_o1m_K47d4_pnya z4dCy_;eP((8WzC&4JS=P`ys3ve4{%+bZ>9hw8Xvd!ms^C9e;J)C{BJe)g0{aWx)AK|I1T!IjuhU0AkFtzl8(O!%;RVWq({N1grSAFAa!F|K1E?Z66%+(&quJ%q9L z;Me6b~fIN4gkQtXE9Y~p?AK^Fy;cH%y+C|K0Erb8$msW|K;Pfnz3gK|aF zaFw`7%MAz%PkC-Law6DTgcWr#KhsH0U^=Bp!8E7OQp8~TrAYlZtn%*M!U%-Cpe9A{ zREp4Nw-tqW6sxnZpVgZ)IC#SVWCHcI`3K0u>N84nn}zrgb_x-*Ope%6PhA%!W8{4C z;9!TdpR|qZ`?}sC*%u?_1ah=;=}e3u@nGf=YdL`!Ef+RM)Pb^M6rbFrE4L`c zC;@|_&}y)jKfEn}qocq7`VUR+=QTw?JIG)urz(%&`EyHqa^(KYjZ?=HBlp3H-IiSM zuKJ)A2V(Tf%Z5>D=?M*ZVPpAxdi&eyhuTOLJ5#JH2WYC8-@1~$F}07kaHh>92BGCD zDj|d~yV_~%=vsGlq=OckYm$BsKG%;r*ig|s7aAK~whxYNUA_C8|A8`3?>Fjud;7-z z(uKbd-dbA=7WnKStt9Nh^TzJ5iRSRF`PB@QB=q5J-5PMLHRsU&uivCdH5Y zG|7G#Laoq?l^q9Y?$KUu>#@DHvyuOQ;;f*_Xpyr*vw78zMhsL_TZ-l}dFvd>9=HFt zF*MnGcIv0ub22krVRWBqwbr zahgsnVb}Y*toFB-4=l;%S3}yM>)FJ$$*F3jbe3W5hJNvEJ|+B zODTFJ&x9wq)zTnwDN-_T6vc)RmSL+)a@cUlm6vsb@zPy5j3W>M9)PM7w7Ow5e6ZHd zaocrcbf$u2voYS}W-hdaC>@$+@4|l<7vqxk`InC)ly`v#)wl*wS%~v*iSR<2as|Z`Z52 z?x!$rF=AB96^mHcc_bNY9KtHZ2&O$)lr+0Ei=GGUiNaQS z)JTFL(;jA>4YAx>>2*PT7oYIXV z#7$h9Ux7t04!soFiQwGH^$obQYnY`N$zk?QI-Gb5bWePNs{BA4IkC3Xo5rTfi{z)| zSc&~XiF+sBHe$+nnS)K$bdpwg8x?J%r;Qaj#7Yp}p|=gj89O*u`S7MsCb zc7vyCud6n=Rn*_gZ8i{_Wi)xVm~}D?C#udN4_=i+)^j*s){E#O3=%}cIdRK%-*22o zuv4@BZ>vDio~e3oWUMPO*~6tW*+oLnDg=N2ssqqcJ+BY?t}4Q9oxt(>u^Xd3{n0hy zn_&XaM`M{$_sv}`CJ;H}FrXeAYrR|QV4bj<$CY(74OcNVC3L3U)11Qse2qTht zB`hH*((J1=#-Vb8;+?Tp{9=67Q5Nl-xvr;dotZmiE>jnOOV4cA(BKiO;j{9Y4Wq?~ z2#gd>AQfoPASb|TwTtAll^7?I(((fi(CV#h%ZgX4QQ4VMTdh{z{^Uy4+C>Y^6KD|0 zlP=Jnlos78&>~ti-0~Y#USlCa!Ix!~1Lr6b_Q-Sxog5}FkQ6zwiAqj<*Qg#O-z_tI z1m~6nj^qU-P~14&&<80}PfntvniRE4c9q4h%FM$pMK98Srfwv+!Nb6#K+IUQC;;pE z2u=0(?H{A5W+DE*o3FopyS@DSWrY0B;+%e*VJG~VY(1C^Zx}Ol>G;i70VDlw%@osolvNozLmj8qUb@`<{;xw<|-U7C|t zKx85YC`gF8xSCe0Nk3JAwNnL1Qjx?y(;W~*SF25a>LqTE1UM3~lFf5lovJlh0XWX`s~|N2izVg<`@Sb2?6_(YKf3jr|S!O&3?T2p9OW9U_o z{fdx{f%upUjy00ZcX(uQA5&z$DtJ4a;Yig-DDO-W=oTCW+txme40=9w=5u^GZng2o zP4*$9xA^t^<7KNMF7Tnzb8P8@5$={fhNUJxY|tW6(gPT^6JNAW~iTK^0> zV_-FYFT{-hHhro|vyg}U4AlwBF4|+P!qSE!J&ej6I7KG3u2?E88Cv8bWgp@LJ-MLcw|K z)NXSzdINSs3Z`T(BEh^Uf^$d9_{<_@bdgTqrGyDPfWFL%hoe zA+)GlXTpFQk`ok21b87340m9XBxw{gf=~rI)5;xm*Gvu(uBl5aOjMLFp!Qt07)TQa z7d!;ZMNn{I8ZcJ?VQ7tu^3>R}*qJ6-H7wzYm~@JeW@liH9oN zu(E5>cpvkM9nuNHqE)C}g1w_jH7sH@sfI^NZY?4x2CwRJQ_2N6Jet%y5qKBVh*7cv zqD#{xcogTzbHgGy#4T%LL@(v~mvjYp`H-+@WKRNNUb@A(jy$=PgzJ)LV~*X&qSp>d z;6+{zk#PAbL^4uY3PP!#HRUqd{M^%PH;(hju)Netlr7ELXHNT%G^S;}W%Z1jB%L>m zQk%NGtZTxuhh*u2YiJOwok1(&@rtKdo65FdD$Vrk3#u-)Cd}o#^=zQuNDGvXwPy6;6OTRl+W1sfFXMEQkz6$l>>ceEKHC?Xx{1 zjq|dmZd~8>oCrOI!x$(VIyMynm1i`T0ze&Dw!DyN!Ee_Wr)LYoKh4KtEY8UW0G9fJ zhn&4b$Pas!k89E?4Uh%qW9x~>*_r6MF0N`QcU(_lh2tEL6*P?gaVc7~czND+gn<+# zdSZMQxop`;ksC%xNYNw#^VTI5z#(5LqJBAQo41yQGJ8T^0|FL68%Ih3&{kMWW!`_+etAb6=%0PDFg)H_w;lWc%s1`subJ?wB9MZFPvo($}+PAC35l zrZyDg%U8l}Wq8S`+v-;*-oC;s;i@{WOtZ)RP-8x&kq^v;OXDA8uBH+v)ZxT8MolYy zV@{nZ%kn#kyD#QywVV8s)?%Dj=5YB@oL9@e#%D3ktC66Wy~=_2r&E^HLZ#$;M=YhL zxm8n&7)gs_QKH+@Sma1Cvn)z9b)H3v9KOn;CUqM@7QFiXbxV+G7-ciSt8=6%5^X&! zT4Gne0QbcLK~j^VcPqy|zSlF%clxU9JZhy~ga_cYQn7)i;Fob48Ei@M@GC2@}i0yVDjdixhRi^5R%X z*b81DkXWba@*S^Z6#0%90XI)dlywOO0tQCJ=J3d697Jqi%f)ZeE)!dq^&!ZD2O_Lk zm?WI;_Qrx1aDU8&ljpyIZf~0-VLVw)yWAn2oPb1eI>?_h?Rz-SGbE#O+t6L~NRhHh zFuI(5(j2YeWIOjaImxt@g`X|9JybU?bGBPv+NNbLU=kD~MM?m{qSSGpb$i=N(G;Sr zu+CyXiFMP6GxQt~ESj_&5X>V)aN{9&C1n8=JRNzo=;9NTUM4?@5zI7V3O!c35SqNP zfIKfKaEMV9OnD@k6H7cpk6`|q#Cgzi9TQyrk_%)GHp!zm2b=u4v0s-P8}Y6tM(!dC z<#NIO2zw2~KHEmCwYotLd4x5j%-mWiU8sRwEytt*k zFCVGNCV&FEIX;-vk()M{mxr7?8lkweI>5sCyG9lwPVN(*S7#qeclQZ!@NH_``z9?QOxkEvJ( z!&WPeP^^(6NK%bhlqfcE7NMqg9!M@5Ubg}?~x;gjh($E{tc8*qNqe@UGO9zxHVS5~EBZBVI|=u;D>- zTuEg0o$Nj$^JDBbqSgYg96ID(Mzzo@hmI;=dusbx^+KVhR=w1qqtSk9ax4S@K!L;yApR`4<0fbJ7}PF+uMbicC^B_dJ{&QSn5TJKWp(V zzQYuQmYbQJbWxbX3c_51rQ!B@hQqj~F472*<(Qvv%gA))93_|Z?58H~Kg%&#WFCOe z4GIb8%xSkXGjs%B_~9eTYQHAQPUg8UhDETLHVWc|mt-g+dmDMlam@CS>tCY%o{k)% z6d>J2W?~YOlFjNHaw{oX55W0>t4fh8_@3C>e8PO7QpAc=0hzYRiGl3Bt$T1vnuMh# zS!Iy9hj@5wVW!+@+bDMq9ug=u_?W{B4w$pjv|-5!2v5Bvbv&C(RnKcrV1-xBqiVB; zSuolUj$pZvWEziQk$QzZQgV^x1BieWMOs?kb%`dA`!O8tQqwBGH&gSP~0g8Bv8)V`9^knM~@c(z-X*NM~`-AWp%I6(JCp_UcICB1tc>&Sc{G> zV2>WILq~-`WGm3o1u&zx6*^kpR^nY^Hjx@L&Ec+4YhOPpBdN7Vi#UG8##SnQ4{UErEtYW zQPwRN8+O@5=<66q&2PFgu0qPX*gu}dc$%ii6IRF6UY*>0{q5WB<<~EjHx7A-XpHNi zfys)O+}XREtLyXAkE_z>`rZ=zeE#omm%m+pxW4@M`R?k|>CO4gBDzgd*KDZR9K%Q( z#Rlu{ycwhT``M?{FTb9DuVXh;>0ylBuctS5<$b4vmmNY&V_BCU?{dbq#(TGF<7oaa znHgqY%Q<6)7kN?V3QQp0`8nR1$#Ny{>ThPmQ&pf_-p7&nrt(oUmz~Bnby=?Az7Paa zIUVTAgZonBccc~C*qx<2OkFm^^Y{7k_t|T4qTGYhukSu%XE1^~N6Y>~>&>x&BQByh zAm^P`lW(VX2~l_0r3`b2f18w6%JIV#0|K$Lg@vR*lhL}pcQi|BuiWi_U4A*gy*#Ua zUR14_uN6}*1C66u2E*!$;q#agUAg^80|E&& z2&*B&oEh;sRa-^6gg{`FOg`D4D`{$jj7@c=np9q6f%Pq`dBQg)z8<7Ss%*5MMJg>& zP`n>e5mTRCfq*kP=VH+!=7iAv=wUcF#l z;Y4NBfGNm#UVU^sCa#W@wsQU*l$^wxbgK+2(Jv`5iPftI-G2%rl7)&x?u9L7iL|WQ zL2AlqNh5e2Bc;(}O&2)^pEZVPKq4hd;cYU~o$);0Ve{$0aX`^RSiK|WD`wFG)+jZS zO-)l#Sp6z4CcrF=QawZwf_%driy}!AWl@Su#IxM#X2+2f0Kwv4M6G8kvHu4E0RR8& zec5v3MzZLyAUf_tJFZ$3wYTTAA}EQn8KYKfw0L~(ivlEzBu;|>jYVqBlRx4-&itIe zJLIDzkD8Sjd8B_TkL>uiDGc(V6&vaQ0vNf6-abcU}J_ z>sfFs|AZsE<9L1R<>zPH{qo^c{XOh+x1@nrKJ{xq>l)@-v06VtZiCtUneYy!HgB1F1 zENCMGNXV8$=SLI=bcgiE)YpU85er<$`_9L=z0SZ7zI=FU`~LT#9eh9heEflbKXAgx z4_?1~sDDT!*RF~GcYN0m5(M}7e^*y29MA5*T|YjwzTM1#uT8-Rjhrzn`-oY|ewPD= zOxD5PNm-Niwe`D^^OUHE;ZG2LML`_KA?O@M0fQ+^C{SJ2b3B-?go5|NbtT6m0|(T$ zQLsX1SVZ`tVA>wt(oxQ3&j|?ko8Kb?#ji#KGGO|cB!kB^cY@Qgi(QB=ht=n%$Puw38k(=As7 zQ9v=U@^u)w*Db$i33XWf6<>Dk$hO+9-}xTGl$`zj(v+NkJhrY|=Xb5guTQtXHtw7E zGlG%>LFjbv z1a61*lknBl;&!3faXrSMdu9OuTs5&JIfvi}@cazEO7CkO~|m8~_CfX6#0RieSbi z46N*TozRMWtIaHNEw%#Iw}YArfh^ZsVF(|V zFuR`@BfRurB^&@AZ09OP9XA6_eP%4Na%Vs7TJJzVDYj(U;y-%;t)0vpM_@Qjo#%U* zR@WQ|T(hv4>kJ*wj`(?RTQVBh_99D2G3&(+tw{i@rJcAlLc++yVY}B7q{UuqDT{5# zAC9HJHsU6Zl^tso2kg^mV28}I!;lTzuH9!le33f?+w0GM+2>p#U)>P{INeXlFw<|% z;n}nXR8MZ-h14xr*d+>77zaK6CK z_l@5wvys(Nwu>T}e8m9HpX-Ct+?02ZH%}MM>+2<4POF%3$9wj_gY0cMcs3~f0|yHz z0ZXu3g3hlpHVPemb_7bDLIG1@9dtYyNB)rO3tXLmWl5r-_FxwWob`FcI!0jX%~NbxAXy2=PJT_vORqeYqI@ zIFcX7pl;&f14o!Y3L`s+1S0AY=dnP%g7!De^eq(+fl;!Fut)avSIBu|3;;4PiD@ z6hPRKg#raVvOc3Gl8zy}PEQ&d=pc@K$BXEA1bq5q%Mx1RT(-n{Y1sj@JjVFtK$`Df zgayqO!91dzpNRPsu^OR@=n?OZ{D`lFBdo2K(t@9vB?*v0A>)B}t*gKv%I}KoxwR>k zqUMLL49w7X*{61<1Q(8T4;Ep9M5W7I(5m8cX9;VTC0Q2?=FLRGY>+|HJOt(zBv8&R zWY9pyqP3|?2rIgSD@X{^ThQ!C1}q9}FXZY38GmHIJCUp+aGBdKfp!3f#VNwwiKAIiG;OczTMw1Et$V{^IP-ozWMa^+hy~*b@NMAjEg%d z3PkGQuDawqW$FSb#f_t!h*sj=v!)V|!(HoF|Ajqg4wns@1^ims?Mi`VyJJC@2tQFT zUI5oQhe?iz2=D|k=0SM}>axXPfa8{+GQf%hi#ULirX;B|!(~kKqGjadOji^to`!mQ zAf5KOAf!4~YUk-;2_aK;Ol~JMUGh{#Q6Mqi=5WDsxYBRs#{&uOUuEQyrgL%Nk~rF` z3tak@*xl$sv(c@sssu&Xj6u?A#*oC4rE+#ysE@cH<7mD zQdrOn4kFCLP)c+U8NecebjazX0|kyDLdN4hOGjg#KqyWues0ENlgVZIdLU0eD5Y#ndWRS-d z=T2~*9a!T89AO?vpIMLNG{0hC70^J=WE{^k*9Ar6AkHcMlQ+c}voV7pg_?qwfdgth zgaMXg5(~$c{PwGKQ1k0YuxmXCSGHIn<#doN$ls|aN=q5DENzk;WSD?*JV%GCb@;{H zcD!-nqEPu6_*vpbPVdzL#o(cu8|Z{tDsXiwKyc*~0S?9(yHs-k3FATmO4yhRUa^D^ zT%#CJqy`EUuv;4n7DyaooBDtfLXjP&BGxB7)_{#VQLqN~Gub@086(?a6FCilSV`5M zH3~jM&G<)((jmr1pTXJ&;$|8eOoQ9Bv}JE#OoWvoD`wbrsh){Rx<$+gz!8#S;3CgS&;w#zIL%@<649!Ht)T37s;ZS|dJ=E-Za zzKp+#Kbj^bebI8V=VQlmdVK8V$^k=W4p*RZrq(b7EG`qR7^%3{%Z{r|f$A zcmtenIm1HEWzII1xXLBA&>dlx^eiW`oY0c5d67)%5$A73n4NXwz=7o!^7)=hNg&J;g+=kK&C@E~6 zSY>z=sKmhNc+zbjL(BA{R2yKKUKA{#0|D7Qf$I!(8Y0xAjMTRSU&MFNDfm5?{czfj z>qK;%2@8=$fhrOri@Oj4AfX~1o^#5e1P&uyO2P_HMZ$A&?MezMN*Efm-_?Nyek^*6 ziEdOPvJH{wcT!3s+H71!ZN-Ub;NFF&CA6`u9~w0W?sY`PGtH|vc z&(2h?(~NUO5U$>sp6tB0#f-tc6*?tr&VT@3TLL@B>p89qv$Rm-SityAjUr56r^XI; zt)|8f9PLfMM<6-`HFCE5V!xV<;2P{+a7;Nhf_u9LBR4m0bk6Sz+3>C^mxiw7Q8QUYTFnaqYA9*m3H~o=kFmkY{67ri0#N$tm9MBC*&UQjqhKIcp zV))(hSmbmJp2H$FV{}P2y2B4t+lgM8ida7o?F|f`LdUbjW|r}hJJ!pT#-EC*td=VogS z7Wumo#C~o4ZVa8DMNQC(=)7w-V3o5fCibwd8lYE7?9=UC^Zx$v&X|3BsN23*OZ7wZ z>uvL{@n90+rxnVg`)}8+%cmr(+n93;SsY*?&9HI-1&D>lW*r??xyX-qSB;DE(xA!i zRBpPPY;9irl*k#UFO{6cR*l1{mXEDcC)!kOm7;&PO0taRjckwkFPRN^}pHzR^*RFla|wIHAR1F`%&Z%MKcVg#3+sCSl`hkKK$W< zY%ue4&-WwoSw8H?k^YbzIih!lW{Q*jWbY}0)q*5{a~GyjspdD`9VScjJC^y9v$~zQ zw9RO9nayOR(LyzonKZ+=bi$FS;PT9##%*4n#*I=GsLavil_}Ml=0Hz#Mr#^bm?ray zY|Asdvu7j&pv8-8htVDLx}xsuE#JK70kgl$A5QoGn2qfk9VD?_e<-mp z&noFC)|cnJ{P^_m$N!D|hFAItg5UtPf_-EzJ-O&vyMj z>AERb^?pT`Fkfi;WXGpaLf-sIbaHxalN2 zY4}8ToSs8>*1%j6xCMhYu|YwDsVpc^%n>ze$p|CkMLrV0tZ9AB_pFZ3dOfG($Y8xt zbie6ZJz=$UT`Q^KVo45Wp|EDkILG9(lGwU9ufwmb{>$wCt=Lj8*e6Bh!QBBmjIunzN%SRwPT2qPk<26?M1P0S{?Ge+IZIj z#zQEX%VH=FSIqB+EaC*3#+iQXb?pFR;Ud6lDn8vbE)BpH76{M+MR*Y4({ue7!&VL$ zno>PR*(18l>qmnyyZHjxq=-|Qi`b%ZW)){h2P}-(2m)-z4+I4UEa*#j@5X`BN zmSyV~^+{!u=5aa8aXlwX8CXKgSGlKSrC3-cq821qfsb zMnKX(dDG$e|7O;6f%P~>O~4h^41nu7pkT@33{=2AYF!(2ucTvJL@LiXGJ%dX;4K2j zCHxWrX<~|NWk>~x_NWFKFHn$>Hbz`)Nau%?p`2j|n_q$|kKkbOnH9PX%=V50Nz#p0 z!vgOK95|(70rg?rHiT>i^jxw4+PeaIPTTONF1RkYffI2e?Oig6FhvXp3) znJ^P;Ndk!qWcIs4D(zUh+Ltx1sU-^yP3l9*u!V6MCO{P?-2iwdRcn4JqjhNKk~5dE zY6d4qi;_B*!FHbt+cK;WOIaVv!1i=ukmNGh9#LU?EQ4Q=*nUP}3oT4>`niPp-N)>- z_tfG?#9*y3Ln^UvE>3T{sx+!>Hlq@rH!1N@nT{7+kUX8+QD^Y!PK&fjvLqL83Pk28 z@=#9aOX>=NnLm)NkkUWUL}a8<%Gu6*q7&6Jp6Hs3x$HX0;+tkyF$t+Xvcw1(S_i(K z%M#emu9n$&zlBv!uB6POUS+PNW=>5-rMZ%)qTt?o@0p*CK1gGb8B-2nqgW~<_g`qNulujkI+OJaRr4X5GXs+X0 zV@xeVp+*=v^F!L_VupsLyIPckIj(8NH0FR76{Vn#>_9P%`ttoIO2Hi2PGTDKrJ6^S zgEX!;#5B^fO+X5Ep@EjFK3@v;$Yv35sE4(ND2D`G=Z8!ZKz$y{p#s;&VVVkX(}r>g z!1ZKE5wK(jhFr{v8!XIVUuHXnsewVdn5da#$zn#~uGN~=plb7+F+yo6(-||-FpGCW z&|crvjODe45ag-%re}FxBMDK~GHV)>pQe;#WxSm`Bw($Uzz^h(C=0nNCH;JIA&sLJ zfm!*|!6FGs7SF8iImWMG0ly<5disWHGKx@74mEzj6as4Wid42EM-tlco*F-84+5p7 ztbh%@?Kau!A(bp%V&XKJ!C>_-sIiMfV2u-E1hWSd=55G^I<8mPXz&rx=C?Q)f?1v1 zuC0L`TApvQUXOJmQ4K-5I`SR&p>jEN{NYFx@{lPux-&Oqo$6GLx93b70>ZYP_v(n< zw(~BFTGQHjZ`{UsX)R^)hJLa@13$HeRNTi3~ZZ%f+g=l zRKNzH)CUZx?05Nf4*>s7LZG@T?xuMrUy~5xd!72qb`|jH*0M4w@CDjh_CO`?7icZ3 zdKp&SSN2o{4y`UpbAK;k?ZudidqFi`eUOg1uU1Jf=;47xAgkqMvX^qy^Mq!>4Q~^% zk0lVD|NZUuzn{L1L|c&g>E6duV@_vp>(;%QKad8P^bfSr?``V#ac-yG<5W)h)DxXN zK6AXxxv{|7(@U+Wz%>mdXctynSR@hWkSo?UeTtSPdCQudWtYxRSabyoxGawRlH|XD zuYr^Zg3|b?u~RNc_|=aP#R6U;Y7{|*#Ho=3mEEUb+>tBNBVg4Tsj)0l1bkK7#N@LO z9v4K6VfJ7$_a`-=8IG{6%WCVgBB6GpTvo;e@KjAFF3V^>ok`k?Da0a^ik2f5kY==) z>N8MeU`c{<{v6`6nwFeHP@YrS(@0`~K;~7=Cl{P)wVqSBE@1_$nY(3?OZ(Sq^9;5^ zDy~!8=Coxu@p@?RRYq~laFcPlcMWS?(MmV+?)W2zb*;#^Y%6qRr*MzGSdJI+w}czT z$+W*jX9MwrBpD#P(gKA4Q9d|Woq3$I7}Por1!~Cmk28X`b3*~-3r_|sVK7jXH3}j$ z@rNw<1X=XY=Nqpd`!U^22DaCy<4VH1jm691p}?xs5>~Pi1u&I@T_q^GjZh@11jj9O zH800f8UPU)enkbT@SekoI&cOaayrSP*~p@-3hXyjq$*WQc@Yq3lTjstl&E0YE?=`Q zS!gl)!S7IzGZF<2sNTsKuytS%_(?_Bgc#2s4#>BP?0KxOzD{WQ&n$QeoG4O&(X0psD8vHbK&KPR4yN3vx=dgFq2ygjbc3LUM_fSx8B7`SPw){qE ztaPK)lORS-L$wV<&P(2F6M7If&wUlFjEZKRW}kVcWLThQU87O0m!Q6fN~xGn@S9y- zD{9oOaC(+qy&|!mpJ?SxoHEp0quRypbIgUjPIMg`8%>UHbfg(Q1vD5lC1jVv~ z8{WtAf^4bO$n_kUr-~XsSf`Zj(oQd}9}G>#4`_~|XFZVSLVe~5o1oo>ZC+{|+ppH` zuXoMnKQ63~bB1Ua!|Lg-@y~*oWe+$NbMcet39OR{tVwH!q?N-q!hA`xw-M$g5xb2r zUnQ~I2=fx?+(wuiK{YxiJf&6W{PLwHqfn?g9Nt{F8&>(LI8q!=ZQ%g&wVGIT{CJ^> z1%{QEJfms-ec^Bg)OR?_3!-8wWdnS%z5;AeW<2;C3=CORSfM9Fkk;|>%MZGEOg!F; zQ$pUj-fHt4l@}#DDrvJgghx|RKU)zJYIjWgw*l(}?j?vSFP6kPv70KWgE2W8JNto*c1q!rqC`e)4 z4%r_ugZYb5AQi7}h@^YYNEJ6Fu5A(=QXRDyg1xx-1<=iaBYauu2J8y;|vRsUOJ@-!To9 zhOB-T_bT%WupUW2P*%w5|8x>!MRU}diORbjPj>n=OF{0^sb8k~nc;5d;OXQe#&jhLsw{0wJu_D1yu{)X0HsUew5Snad)h z*{>J)kU%|h)&ogcYV1035WuVn)EL5TRpjSi>`leHnT%+GqPg_v4YX)3HHOfVIy9+Y z>lYyja^9D<$nPWG(!i-(o9IpR=58AcS{AX}SkP@OC?VDFpgwSIp2bugOY0jub3CrV zw@d|8Wa#Pi41*&|VKS*$O|>e+LsP^r8TCm)wFU&ML{`BBn_6G@E%B&gL%@EQs5J#g zFX9Tn6=>{M6jYIGI*K;B3XAaWOodqyY_~)a28)qI&f&Q5H0xUJSBr~4=h^ATwrlY{ zF6-2Wmfy=RPaW=BEzb)5A+tJ8(20k-BJqwD#+`u(;ds;8xi(Kn5K?-TJ=WhU0rjMA z)NIJ?%9}`s5OIevVMS-z)ys1rp@PGPHpF*^A_{bLpdiH|>&1}f=5&$4D7w^qH^U5rTL+>nZfS-by4{4GiNEALHFZYV1KaZrbB$S;{>;9!Mb zP@uxN$JJSftF~}rJ@4}%SyozK5r7&BQ0!CtmEjwVA=UYmRk(mv<*025xduG9o<@DYp zFUTK=*DNmOtk4-I5<%5L8pK{VU|o4*j|P4m+MfC#?&17e9u1h6rl7*`*{RtqHCVPN zM~p*ULyKQFMJ|cQSXWOb6XGC;X}OT#zwqon8;XC53Dt*>r3B<|ny`GeNN6HuhRIJD zd7-WovQBg><}(dQ@&U8?@qNd7EMT&4+0UZ0!j})67rhTwAd@13R`*!Dv3tHBE%Ew^ zj#$Ziy{kx@{)M)~jQaP&^Yp^GZh!w!dB;SU|7jA_KI(t91u>C7;@=;i&iHH8r?wwO z{*XVdD{qcc^NzKzO%lu>9-PP`>k7p$A3pEP#puV8{5Xbo6AvFa&iqj*Qc?I1b&3e* zQjut&x$tB^IZ4!XD|Sf!=CXy*Rx3~8Nh!3MsWnms)+szJ>;%q8?3gFN_jGAT_EXE_ ze6Q%v`uT~R+H_`)=9!Evo7^V}<4hk4Z}M5j8SVN7*AAmQ=56!PAc8FLTJFi zd$N)qC_q9!Qo)ku3(-2)c0{#>0kiaZVtur^NFMoN=(OEe%kFk%MF!io1nd69@7f}X zQ$-t0JruZy$$$b&Spqs>t{tgz55TfOsDKYm3giI60R*N_mq8p|?^UQR6B(-`a()PD zqk{$29qW|wcR12unkur*aqNi$=3TPLDDeA%4eB+43x*BoXmgzq7KDf0Z4gk!0=pI@ zLP#rRzU_SptGlS(H*bZO4&}wn+BUYQWoQMrU z*B;~{08&;^>a!3&LXgagA7HU%32I2JeEnG?-FNc^7deHLaFrbWa+@-Z8;tpa91-=NxB!dSl^N+o00_%h!t?Q&lVOTM~cWlVVO(U?s3ksMN z_hisu_nQiAwA2bkbhb0&K<)ZY_RMg)h0ZmTG^EtF5tG)-iC)IMu8J3*(c5O#id~Bz z*jC6?>~q0PB$NpTez(LW#zXFwC`jhjhTecX&#z9S00* zFhFXy^oCr*t=5f22Rkxwq=tCD-7Lp@_H|7-Z9~u@h?dR>+MW4vZC-|%$TeSG!5CS! z6qRl!GiR4bHxub1Q@Q&x7hMYhi)$yM@Sc$7VnRcaPHl-)X_>|^eIN2iJJxI&njICR z7T8`m@`Gr`M)Na-B~VELAL~Dn!IGUGK_O4bcB#G_lQx~5T5P%n+^1W>E=w#nl(P!E zX;3z@#`RSf5o)1Krg@K3N!T^MKm;z5wlHMFwrlr=G_}|tvEw@Jz=?;dri*R$oFA-f zCFhSUJtCJnXH~c?_;~P>HM6}E;XK7ADi&EsxNlqfsB>affXEZ^~cBBF-=?c8EYC11!azQ693(10 z(yT)TEb=3eQ2+%jQM{<&fow4Avu4UX2yU%g6x_#Sh)~1rvFIl8m);ZQAK`t{9${_wwqHY+aB3%F3}=K6e<@%>Z&l9=nLQq zN_5?9m;JE%%-8l>*BaYOQ$9?cx5EchUi2B~=u`;O?hH1yc`jz*qFrAX^ZuS3;jN4L z<>&wDBuKRVXrMV|*6rN#0L+F;8!ce5#^w5g`ZAyt#bQ2L49Jw9pKJ|baXF=&O;i92 zx6(mTNtck`;Rh}iELhh*WQ_?bNO4G4#R6FR4g<>Zp1GW#2xJiNqhiHir8-ccXfxko zz7J&hqE?v50FD(iGKiFM*Im|)JA|R2v;piLnY&2_kFtPg!B{68vp7B7x`u8uv|04R z7#)qaXX&6y>%|sDMEG6H7J)9(ttFa3Pd`<+H4&vF$~Viec4x+|&AW&-P!};&7o@jW zrI%uzkurK0NpB&zchP>~-bM05(zr-|NVP30r8m)e$+zaoVkI}@Q;qISH%^7@n3;3i zn{W8kZ%(58r zDu*G}AR43KSEgrB&d9;o8$5oaqyC?K((5i!&REyZIX|$tJ}f`@qh#EWbF0h555j+a z`5?7Xy_4mX$x0cjMn=+{PHB8ae=i7_pdvr%U6nOcmnExovs+i{IJX>PKd?uMiv4y2 zOPQ_ob*&{Y@`u#xr%Uhjc51)R=BXz8ed*(K{&3>R)aBxfoz8mr^o34SI|pp(>fU@J ziwirWD9na$xzpq;*~f-F(%#Flp^x2lJ2v)pr{2lczr#dfv(+9Ya2~vh zJ!z25XG1B*`ny;-^W`dZvA;wrW^X^Z@04yu>7T7@^oFNOX8}?$| z`9s^w;n-?-fn~Rt>~;%Yn$cug`^y*ImH03a%Q8Y}|RCibCYd^eEHF zo$q-nM5mOyrqKzC9eh9BJPBOf2yXV~g|e*~Gs6XY5{X)_hI>>*!=2cnk~aVvu0&P6 zm?`N+Q0J;8{jrQJT@y|8SgIxFX`&a6>x;+h#zXVzx5o8j^FGbC&Q-P zpg3MGYA0OLQMdxpb8d%oljUhC?P*iTtP+cq1bG$a)F7*n1mav<`PMC9hhLc_I9Y`x zkjbSBB*C}a|6a}MFPLQ=S!fMT|F8D<($9VwqG#IK-|qg9(&mcI-M@_BB%H2%q@pqh+gT8TnW8!i-8vp z+iBB$4R@=_3(r=AXuzbmnrhRm-=Tf$RNPDrv~OKD9vbJ3`(~P5X>K;SB$2IMYtF(} zp^;*j&FkjFinJFKLhRqEUG|c>EGqq6G%_GWRvhX% zbL$km`%ANoc(T1z;d-3dInN8XRD)!ToulI_ug!VsOQxR~D-%2Qy;aDaCA@)`k6&+B zB6ZG92y&m{p`&p`@gk`s@KGfYl5zkBi=cl7PWckZP~V^^*|;IZc3Id7oYA7HNAHK= z^4+0EdLJrNql{eCY<=myuI=3NpYMmv1#NlX5BGj7-?V3@UAlC>HImHILo~9 zdVWU-5x*w2ZU+Hle{@7GQLfg9vnAAPxSM%iJi8i1qd{p9KF>>%&Ln7iGv_z+`YLYb zi%*8L=FMfARcS8fM&$gwS936DxsF}_71c{`#GD}yF-WJrMq7ppa zXA_U|4Dgv_So~41FRMS~Wkje!G;GR%xbwUe)J%f5`UBS=_T?m-=TUC{w>4w-vrIThOwrCZ(TxOcOz0Dx=kC^%KI}$GiF0Q&`^bF`4?%JA{?xF_KkV&tt zdG#_f3EJjy@oVdW#MZ!T>+cu8Hg0}dO(^vFy5<9JFRQtLS7G@6(HYoY`Bzml%RN?h zGhe5IfO)OnX3i?{N4>wSq|HmsP=n-1+DaYFWw+RR{|4eCQw_vg(ms7{+&?t$p6+j( z7p+xUiPtreZ4Cr(OV_g~`&2YCE9Q5Nor~k4Vcu@l~;oxlc25s&Gm0(Pcc~kUa8`} zuBp5mYw?nod*k%8F!Vdl+xWN==rz*9H?ZBFZf~+76mNTQ?WikC)B=ljc_%aks8XZtLJ|_V}q(da(FrlndFIVm?M{FOIh%<(W36%Dm%^ z;?hqdGdqQqZr3uB%&OW36ejk~*;vDA+TQ;stf9oY!3aei<;~t20IzR7q=9o@PV!wobr?%-fKnuy(K+ zv5(_rwcU-Nw|u31onkRNv8tE#T&jYcmnEVG(XdGskxRUm|Ftg8WzstB_oz3&B;WXsDbPhF$hD;i?v98@ESEnH# zh&UG$HRStm58rNAl&EyEu8D6OTp_?n>Encc?yw(0!NN2Ya zUzU+E#hVh6W4EPYVl&#GC_z(x5}}dA1|s)&BPcbf+e;X6SzrgZC|D!?IVWN{_!J}R45GaG-2 z%gwfx+dI0oR-^D6xuWGO{HE3`+z2|WQTR z(5vAt9C?|DY7h-Nb>TQVs?t_#MEB&iij??lXd{s8>znJR#y=jL-yZK(DVnF-#$DrU z^PzdSqKk+T3Eb1nbtLnnw+7tYgYkG}Vqu}DL%orn zC>6LFuE_GYs+sA{st$oQQ-{n_HM(Zt)^PXpy!1Uah{lG}rP0hQRFg^2)}_Jk=Ld3< z&AXqAB9JR;C(vBi^yZEAY8WYOx=tAS9jB5akVX<*S!$}G`f%yd_@>7B1Vg|3>e<8c zQ>=|tpSpHbx;X7Lu+5&wjTap^DfP;G?yGB3K48;UcLkM@coFJIdpDVvizn*Zf(S3-a660 z*k+i%LwWQ%ollPMeR4d$UzJT_Bi6a1IK;x0?@Q02$V)d>gJ@(ZD`7VC3QT1Zv~@Ue zUHsV4?CRUQ*3CnjS!q;pBU1F=X&FrBvQFvFZ8K{KR$#U?lF+v6cfM~%0>y^(nrd%G zVKrMYwt*gA$Sv81;O6ph0t6h~z(Dp9F?=os~ zi0?8>@akRTVO6nH>snM`8#|Q?com^UcC;CUvOi)OAhsE`kzSl=uo268ZigEZEalo> zKeqet$O#C(cASL~Kdy$1k39pthEovpQiIhX8aAbZc$HVeD3hRV;0ad{Kg(=t^Nihh z&Bnz;>)TD5UrBVtt97lSuxGLFuuRPv0S0jejHCb@m_1h>hB*27mz&?gQl}+z9Yh;CVw(Y1> zy0v1RuC{e3q$H=vf26pLDp+>H& z<8|D)n<_2wUWv8c(o5AENvAxSY%dkJ@m{GdKc{;uR98l2-+5-Gix?BvGaI7QWnLr_ zy;W_~vL|AR8;BPV+o`1b8t%TF7dov5(QrvkjedD(knZk|8DtV`- zaQk^P8pLrZoF6tLM!tM4%}6pUv45L;$=H|_j|%)ZMy_fcZpP8;cpE`x7`H?AN6gA^ zgt1m#9LL7X5*>k8dwKExY7h-Pb+Oq$uFes7wP#x2;`*tCJyA;84=yy+FAcfb92pw) zbKksfUOY4}pT0dl+&-?Pg45NW5t&g%_-PGpIk%!}%KJH$=N-SQcwzY!VvMBrkJ$Di zCvwX7sccI*t&Ysnt?x!gsd4Q;_|%p47~aul1uN>y6~z&M+OGIPrtHMEK-N#>=nAU| z8H;71CM2K4kaeQlEIn5|95B1ff;-k@0rNUSTq~u4Ju~lv75waQa)MU(M6YPi_oHQA z*YlqDdRGxY{R?dg81?T3AumEt)Mm~B|M$_UauSFazS@GA$RF|V52PCWb0E}iz8a_U zQ`?Usf5@K-RZ~ox)Dw=?2SqTS1@S@Q_vORqeL27VIFcX7pl;&f14o!Y3L`tsa&E=Z1vjN}gQ>Pl;X?^MNR4-1>zG?)H?aG;Ic;Wc-6h|er z&EK92hvE3xVRXklz8tK3YxmiC!0hi5wdhRhi-6N07u?%3p)QZ(QqQ6#h>gzbyA{zR zOOVmibItEj?~5Xk-Fgk^`OaQn`~V`|*MKNsjo3AyNEL(K{p-*Ft%k1jd3ScfhjP3) zrT5k5$tql;@mmdN);e(RcV8d)&}sY=Ii@;%+C3?qb;ZTG^Pk=q^VFD3HP)@rc~6T zzZV2dP?4YXuF9Gz6I#I@6v!B<|9|$bt~YHMivATI`%+O@%i5Pos09ga(24oj|v)DDbnIuc=a&m%y1Tv1+kI6Y3wVKbN6&hYskqv)a_NNr7wwWLZ=C_H?S1 zZ8Osj)yjPABCr#(V)lk_y!8FTF`Ks16Qd#RoT<|uh4kWIZ*Bs8$$J#pq_e8e)~gBj z*-t<$?K-`a(Zu*5*|e3(kD~0FJu3gAFx7xiA(z#T-W*Z5^)|Q3=Rt-4>RZ_I zk=KbL*I#Y(`cVB^SdqyZU|~g5RS)%H#V63ll1G%7_t!>1;sA}8*nz~_dtf_2BBY%s zAhAaepdd|l0%|kQ>xvM}RCB_n&(`vRNC+SM^?;L%G{XnUW^NKV4NR2+)CQa$SZx_F za9VyJFKS=h(Ldf~zFhpAJkKa}(W@Z4dMwB8`0v8f&Ui0K^2!y+vjul6P#SKlu}(nF zu7vF*d+lX$HJ^Gq_-23|JR~Zwo31-p1}eaANPT+w+3mA?{`W zN&eJ+s@2ui5EktculPr5YrkIJDkFpOL9!_uy}g1{w1>}I?@`%~uk-2nnLzEaO1=s~ zn(Z#FipLtrLtzC4?4Wf&%2QHckf=8&gHyi~sHiGWje?!^9HrM`xiqx__nA%oMEkrM-7Y6K#xHQ_S zl;nWv!)o4F$kkOtaxh9fo4mYfC?gH>L9&UP1jxgNg^vFN00960?0wyG+sd)-tDwAZ z?7b{fq<-zSttwfTwsqpziX>;9RFYDG;7CLS0$li!taasgIJr4hEAMdb_I)13PjaSb z1{8k)kc|eLAf;7_C5pgw&rDCxH$DCHU-xgLf$g~djdlOFBd&u`ynC^`^+JB~Twng) z-rh_ZD6qHMsW~6$VOf$`sH|W0xt+tb~fdICnx&r$3aqGZM4mwb9ldh8y{SJJwG`- zI=;F%J3cx+zJTvy{e=2=*eTsp^>6H`SIxhsA?FuK<6h3n?xyN#EMI*0qWjG@1k(ox z)_rUH?Z6K0(=N>6?#YLfHoPJK8jEi+{B_U#2knHB+dYR~ZnyT{ZygW+^g&$Pi5J5+ zhg*AZj@oKK%~T97;s;NpoxZd?o;Z^fZ$f*}n;a>EIPJDtcyXF7NNA}jnqN6ivKM31 zT86@eVC~E#Y<=r{>NPofgHS{wyb~`DEHWbnUA3bqa9lff1OG|%Hx#zBh|X@;a&rCd zljvvM6JbB-KKORub)H0zyLN0>-O=4Tc2w>&Phvu&B)pdNs_yI7()x-=Rnb5=u877c zH%IXk{Ls$=kedcM(->(t2P5f54B_yjaBq5X%GlP{8^hV~iEPxiwY9g8Ms3@5Ky3O&(iwYsrlsQ;#}Q2+e!^TpYh^UFzr<$?PkdbJXy z9XMCd1^0m;SaI)O>>Hg>g$8|;C%mTO$Nq{=?XZ)a@V@Z;=^YQX&Qm4)r}Qm$laE5Nnpm1v#+`jzFsWJSp0r9 zMQA0A#ln-j?UUGN>|YZRB$b23dfvqbUh-soM5+hIwewd<8xj*zHp3_fBVle%5L;5V@6C%0{*Hyy! z5WRQTdvIt@>&UTL2L2(8O(nNB>peuYo1QgaTF)bsGct)JzoCy<&)O$%kpB0N@Bim7 zPkVIGhsuM27mOPynxtdgR$kbrZp2XKJjQJS)Lp?q)FmF{w(ES1J3Bx9yc|cTE$|n5 z4ryMsJ#XLh)jA(Fo)wjaCkWa!+w&Tkw%jc!)&313U;U5qFE z@}?Az5G(eC-^z;))QuRblL&EFjhG^4o-0#c(JD+ZrCYH;cbKEHlGTF@QB z5`}a{gT9|EuC1k`&LVMbEjzq8Tw6=Oo$7IIJ-b;wuC1pNq4EtC-HpWn+}b2|sS4o2 zkB$c~WNx8(nOr2*3bxRX!tTmWr6^@;^K5B&Jia|{>yS3+jBYc9SQoJ!0WV=@%?AX3K^`&&^#xvhnSVX@+#Bke&(aaZ=ZE^AiBQELZW7Q4A zU*0!nW;4DqgE1;QV@UAiBt?RwVldME0wK(4Xj<^nu#58YJ_pamw~6)Q6~w95%;p>m zM*E;vLx!%%(F(K>Yx9k2JxeRR54sPRvgtgnprgl!+)t{{!_c)ovxX*gWIGcY7j|{A zLBM%k)#rt+U8RL)ofo$Em9jGdzbzfjeeH%({7E&lGrWcxJqbt*|MC3z_)kaHy&YLy z5xF-K;X)b{;kkX+w_{;NL0?$GwI#uW<${PZ*$7|0`3-?BqtU57%LR(`gW@JALrW_Kd1 zZ$DTaVM#!)*z77k<6*lP`v$u-bQEiWb3TYT_Rd~?L02wqe~uQ+mFUELHJ74!1LAqM#RvAgh)Xp6E-tD#fE zn?;&wu^A+1X{OfpFjaKPYvkRQYGLLzvKhF}ghn?8@=SdYAN=_K&uNc?;)xFepI)A#46U;k)&F~&$U+lgj;Z8wWx$zrn- z&w?e&M-~Z6)MEyev^P}%O<7QKn(koPd3-c3d3;7Wr0GQOkp&4a$2`#V^|%xpBiGsi zPVN2;YqS-3Nr`-XA1K$h=&kj#^$OO+L)v1x43$Hjh=uoH+5T`ySE?Y4+q@BAu?EP;PMN(DF^+&@L@!(uTcUuV_vJ5hfM`ZJl@(E>1Gk0 z%PXBSAD)|z#CRO6nJ_I9PJ9M}!Mv5B$*va&a(_f8WwjFtt|gt4}((Tz(62{zDA8t3PO# zOl0|W5X8d|H%V+hq&OYINsL77>68J@w8MHr(x15#v)Cldvw*gaMoXtqQJsaf+j^8n zkoGjL_UtG=2T=}1_sqT#??YkVs+OdJ8A|?ZtCK)jh7KPA=nC+8bg^g!0YMy+0~J4_ z9#AkE){=Z^s3EP;h8h9@z$M!DGgoEK3f7G{u;PXY+o1KIfnbz!2S8sQUgg)4Yv4r1 zd%GI>r|~Z%kls8sylAmNG~i*3&LgRz)69Wb1f>{f&mqwY1sD%7H_MD$K6%^VqJ=b@ zG7cfhRE0j6(I6U|(1SIBixxU+jVkmAQZ&!-V$;qddKY9KS{Bhcjzv~z;oN>RD|2Qi zMNad@8GiXZM!uP4*PN&2Y6m*|+0?!VczzNH6if^7J(CYFxVgH;Fau1?PZVMUWBV#| zH^?E-ur5cSn#MUJV61?4lFmWos-#X6toU#nfM5h}5f4ZJ9JR z4*(dA3w~o#sPf_YVk=k7yq<5V7;OSR-`0`8Wi8=H##_!3au{_;dwFPfw zocKxpBty1Q0W&0$*qB$EzYNZLLUTHrnMbQydPWE_^wL#S4ih*|5{53y^^VppN<`zzg#>V zq$^c6YNfy+i6RaRuFi4;FleP9%?h+t0*=KSJ$2-CyUHj4e@zdx4ePMmRnNcIX;Pu(Zk6J)ZxoqsUT8D&DG7J3&Z(dyWq?K@0CXvk$jqU0z24$cHkB8M_T z(@wT_9P}B_(U^{rhERecra=2)Y7#DTIM+fFsW^zaLT|PA-3?b%bbKK91U3OFvc@iE zS#yN~s|ao976tZ5^O}oR^Ep#fub5L{G|>uIliPv+(7CAd%3izS@;VPMFIdJ{O9 z%)nJBR6{-v;4)gDC0OY^@#H7hkaN%MT)q4?TIBNWX}ZPUM8{K>1jYw!ckb?%)5@9xsDj zF>`GSb6;N7YbNW4tZD5c`l8NRt>E{M=_q zE>T3|gSUmUM-(y;A03zri8Y)**%CSO`$&1LUMY{&&uDK&njbGxU6W|}0bfkX5Hq8e9WBfXU4D2~9Lvi& zS*%Wcg-$KR7!<(isUM1N@QsaH6w70MgN+<2=Ms(7jqo9LGNV4h;}n{D&O0kFYU8mY z$S1*c#fM#VBvK{ZRY>%rhkhsUFq5~>r<+MVOG}4hmK}*8wkADkARz}eSI00`0GjY? ze9T2oLu$5BL>b&jq<#}2Cc!X?7T*WfAvTn_|dywog&YTt@|MHx~gc4DPs);wF$i_^YMA%%81sKVm_2h3=@ zJF4ang_PW}iD%(UeV#b%o>haS1a?QWCg6s$|KktnEji5jHuI2Pa&9PEz*4BtjM`BT>6# z%&Q1^Zv%DWA(1O_c}$`Q2Oc(JxC0N#;}dDtr{>-qKqW7n?xK?vaA$oAsqAOvxpkNwR@bj7;AbKscXo?z6g0Ya zoTobN*zSObZQs5XktM#xP?!5I`(afsJk3t44G0_NWUniLLZZ6yc%aUMd zrSpm^BkQlNt)sucmOpkr|6N<5|GKq( z@%P3U)6F7-F_>Fd*=$iat;hdCVIxL7Hu zGoyq5_{t>e?5JGSPZ3r3boeshPcZ8vx zsTIQDq9)-GSXUt%zCthR*T-_ofP02GCk;-QPfB29TY!utZh-fPZ;wSoLHTGu7B>^! zX%>N-HVNF!Q%5})v6QN#F7AXsT0~uW!lh-+XFskSiSr-NsM4VhB)ABo?7t*Rk3M4exwzUi4ZeqBB6XN0HUMQeiQv#r`Z>gFz%9drTbT~K4&ZdE(KcUr|MLRw0u1hp+0r*UJdWAZW zJAHdoVTEbS)*O4knW@hBydC`6_5cwUOg+3YEdVV-a^4(PRFrSNY2_Rna!iuZ)LEX5 zAToU~v3K8GTq#c4&g!#~g3K74Q^wabT!@XIkknctBez~wX3(2_%1Xyw1x%#nBs&kfaOB7p+_*W(GI9?A7$ez9 z(x8wi@val7HD$+^QlJq)7x*iLX1I|F>rjB^;^pou1z1$UH1!bFpnSQ|#E%!Rt&bN4 z1coDF+Se7u2~3kn018iIu2o_9;z1=0XU@a&z|h{Y z{{8=sloOwAg+hnBYahn!fmV+$kW)Z~5SN}FTFmL_&$j>L`~QutkHPh|Jmo+$kveMW zOL<@Z&-NZ-WF9i2u`1KW@_knhoDHi!AOM>6^BN<)yC$Z;@iz=9ZPbqNpYt5Rk_qdCLbWtGWeH` z9^h;?2~D$JHQ2iM9+hZ>M9TQGvJECuDrxZ5cX6%=eATX3XAsN4O4@S6<4W@FuXXEs z!9Riomz$786&Zg`qJ>SmNFw&~_J1`c!B-77ieCnxo}olF3M5hQ)Y)iB1jvWSN*sQk zcZ6(exEo{|EnM(Ci4;D1jR<5>S(-_taHB{f1v`#BM+TwGM-#c{5Pb@vSm&+mB6>F< zWtu60iv+Vl|=SEalNV@;TmyCW`=#dm>=polt;&}twAm~bP)3NWusT;Lu2 zVaBr+cb9QZuoa3af%-`FaL|ZE3bm&b*SNkEMphJFjTEEimCnT4+j!gsujbmGpn*ym z8@&u}a1Hy{0ow#)&@ZiGw2KK8B9YP_hHR;7aoUEKl^U}gNtECk8+9v0EM$zk6r!bZ z#l>T+g#Ls)zvBAZbzEeC9JS!}*cZ(r-$C#atkQQdwmXsenf3;J{@~?75WRb`v$b!$ z|3{usfdRuucDLH8du7_%nhvJ(=Hk!()+u_!JTNyzfhy5{} zW9-BPBc`7iouq77X9<);!qn`hso$lqe?p&eALW#~zE$K8} z%0$1kqd+ll;}J!LYipmhwq|G0DU$n{qg5)$&U6->{bA;rWn{roA0~3(RFdchGAmZ8 z7N@3ecOs}gM`eMh^yqw!9)q*B)Z>h|CvAD9%8&5P za`ucmn7wd1N-ZhldO4ghYb30A9|(VJ2o8}h$`_dA(-ZMv12O=Na$cFPMJ+7*!E?d)C_?@SBX zf<_<4ub0UvdiriXHF?=nuMZ1Y$smON6%NDX-F%q?Rhik{rE@wy=glH~@xEewF<+b_ z4mPwlQ+p2%BIL}?ls4olEix}Z_dS6#ywP>zOrDC=$TIlBxvO(9`F zt}sfJgCE?vky5tVyi)3jI8PJRZ`<`>bR}Hi7`PJC`E#2^d+^bsZIT81Y@x{!cGt9< zPTyISEqMyiyR42_$f{9UnQUxS`al3I3-Y_p{uG`x!Rhiqo zka9izers=Uw81TtS$z2Y_O8xm-qcK}Ur^@E4}6v#WyfjlY^Exr;0h-d6v(DEOd^q; zH^NM3YkS*R{2p^hIRY}I>c6I|rhy6jG1;Cc+|@ zm&uO3%5Laqowd-!5<#xLz(k2yFVl_~Vy_z3>9wW!Lza7_IXU=@q)K=y(@2(bRpu;3 zO6pyLtRF}shCAVrNXZAxH7^@UTyzJG6kCnq99^X}-;C$0U;BKLS|)UpL{PSopmMd* z$RUINNVG=szp>H8g)mb{Wk0*%G-Hra3`nRFb}H%aNFYdK?3HE_oIP1CoGp`ccf1~g zI)GN1aqkQ^`-xO+!S$@k)cS6&aE=_hKfeESn)CyZP9qvDC-5PLJ%%c1p`LpY=}gQZ z3%|dUcD#8Rx`PYdx`|WI_E8m!pP>4#n;>Pk z_?W;pt7&ZhRKmTRiq5xDXBm<&8+uuh`i2rt5+#YR+%5()kf`C%0ErYFc={s7h3Jte zB9GQ2aU344QDrho-NPv;^3ulGc}c|9b!FSXCL+kr7r79TG{;glddLV%3a#vC(^z@e zFWP6PTxa|JMmIZMZVsK-h~~3f7(i9cUmc*E-B`|hU|>LWZQ#bgi7>Z!2aT~mHw)}j zJK%z_iuS3J7O8`ypr2cHQWe3(0V`VGqaWXY|BoNv|HVcRD!WQp$(Y%xD?GQ4%%iq4 znQS}a#`S$1GN4h!8Qn>wFzIAycd?FMl5F(qn^&2XYR~lt313#_YuB5&23aJvLys?s z`cO&oDJ=Z<1Ft%16Q;zHt)vWAqmhV7Fpb&r zNVHJb^dw4bT>=HfblJnY!nA%}%Td&oWO49y#S|lEEJ@i`QT~Lqysm1)=Ax!?0fHK_ zE&>*R5EHXwK`e4B(z7r;Mp$L zV#2uR&_pE)k`U(&O;eV9MP%;m&_!NxaDs8-IC7dpBPVn_%nQI8gh9s>eJc`iGH6(* zz6F{_Rf@A*72Befs`7dSKi43X6Yf1&q38#9zzYD=$O5k*s8Fj8X4drX*(|zg07ufA z+%)Vfr&gRNY->lcI(_dj8dKN_;-3DSnXB+50B_R!w|3;X?z3f_SnUqUS-IlR+4MbSs3Vfa5L_Aign5H%vA1 z#~Q^2aBJ=>=tchqt8KueF>-B0j|OyDNGD6 z`b2sFRN1I82BhN3jgd&H#2C1sWm2+x#;8T4IepeQTCeqHOW+F#Hm~fgdH%NEzi!kH!N)- z$KuUIor`QcU%LfW8;0ZAN-s=DZEv0(#pe*VEtmG0eIwq7!oF24A>j*YO9)U$H4-W8 zMouDzyBVeJswE6yG=e?kPDi5V2bkM)zCD%HsRWlniO)Hh=Js5|8J|S(+7(_G6_HO9 z{DiRx9OlSR>J{z)Nh9UPC_@cxYhe?^U@GzK0*T=rWJz)ugqFVIRrv!gz2X{U&o+y& z6GT8Q4?B${R-H2#tE~a%FjCDQ-YfzPP`6`=fMI78G0b`IG=>vj_QZN^TIi$qrv6l##xur9TS z|4nH3t$PK!hJK(p zHS<*x&H<%3FAowa%(;?82zjm~(Lx=INR&{=O4|5oLG&;uW)eYTixXYU{RwT_P&Ojk zyp=HRkqGva2xDto5us$9G4My=qE+Uil9W&pbqBjLGsdX##WzO`*yIBjAx$Bb{p@|u zjcK(RRFjRd7Mev^6Hw*yu;z$|Q>kmZ?JdQGp z--}_C2+{dK>P9yzD%MmfJ-8S9PvpHA%~uyyevZ$nh(syDT}<$WiI6DCRWEUI%r=Uc z0~3i*I7{nPEAe@%Wf8=1`zK@g3uiO|P3mKTsa8T9LOwAx`Sw(5#&nm__8uuSeOqO2 zQ0W+AaU(*LHBxk~t{Vy`_8zRx!`Qp8Es2$!9=w+MtZn&8Uq0zrcTg;E?559>yUzB1 zwi=sq=Ya;GU5Ic3qmnWeL9efaB-HOlP*+PnZNY8@KS%x#dsoBKI0CK-IaAQ!_A(kR zT+|6QDH1B=ghY%pC6cbc_uw*SOzGxC(J`i^;T&Ps9K}%g4$3LwlIvEJ^<$)ggAGsk zH*t}@EBh2f%po$-1hD8cIS<{59+y59E1<=UbJ3h4>5$IgefPR^1qXl31$v1&ksLeoP9aJ0C_-$ zzZ|3A9AN;}bj4$x{Vae#tK$XEt*V_lET*Xxxiu`eDPhR~yo|DnYZeag)*EH_sA71} zj}MP7PrrPwW^^kZ#f+*Tg`?8m)8T#V>x&lrq@W^!^a#zcHZQNV0%U%fwjp?@$J6Xvj#UjT;9pTJ$!xBWk~tvjg1l(B@xrD^QEnK1g>se z1^XV{tfBTJKCncCoTV)H)jR!c3_^*1uV7}27}2{_h3sIB_lxLxB5}YndXBQ(*WN#& z*lw@PgjE2m!w-KxuF$Z&RADZsIo9Tagwqd(q@=Z}eBmpo=-C;S%x5uxyd@;mnxB^; zRKS zdPCZJ=jh*u5#7!yB1_e*srK&LHOBKRJFV*#!wL8C*8<AjoDQIz!ic8JNT#lRHmY|X%r zjq)jZf&;{H?}B1Tg`S~m&@wPpN{2A;mEa;A7&tXlMm%X(!+&9(vQOK z%GpqpkOfKGy7Xx=fJ_JRBDTX=KIQ_SYCwIvFB>@*-2~dbIx-~)u8vI#+vq9|uIwxM zqTjVcO)0ZA)nDD(iosPmhIgHp&R!w7oQAlp$_v5{NN8e^qbL{Ooigt#Fb6e ziz{SiKn9M|qFnV7skA~EX8IV|;>r_0FF*HEJH@E{APf?Pvc)j)gYn;EU`K+H*mV-m z#`wZ7p0Df{!DQ6Pwt5_#!abJ{1vXw=;!cDQk9GZ^b_104yU%`8ORY-kCBnW+18Q4+ z*LV9#--<*Ge;5`ERF+v0{cMRSg7`vB5GoFuZ&d0qVLLrbcmgUpTY*Y2s><0!u^kIV zz)!!{DN7-pSXvQBZ(zr-;g8W{yZ0g#7E}-sUC3cv7RlT4b-5h?q`pTZzU1TQs8?kE$bsU4aD5GNcXk)?VLsr8+=Y8 z<_m$!=0T%26buYSQi2&=Y!of`5UgFcp~Sh*k~*drIvcrE!LbqS1^1w@Q5i}Y6ZX(( z8J*5X4~jn7E^dXd%wVb#S{5#U1}zzvfZY+*LB=BMRMk94P}yT>HQh^`ps4+06ci|0 z$VN<|U^Z%(y#(c_OPn=6kz|~)GC79$5;4-0vZ|!O)-hZ%IvS}c3LF=miH^A8XoSu< zo~Xc25-quXBWTTM5y&C+2ewYBBQ|QjNcl3%NuG_KISsJU!yOoDsi?3AMiMpLfsrO7 zKE@yRSsv>mk2vs8q6Kl}9XsM9_|gwh$d07_|ADL3OY0flJX6I2c!h%GM0J9K2qap@ z*lXRpo@bfUx3XyuZTWGK+R6ta)WI#j?WyWwjj=YHMLriFDt0e<9EF*F6_Ie_GjO4q zBm`gfgxwY4xwsagx-XFZc^Jso#hvh9SfO&+3s1ZIYLM^WUI#%u&*R2tG4JuN?%L=Z z3KPlh-CTfc%l*3-t#*4`*XoeJ@9d{>G=rNz+R&Le7|6eGZH|WD?Cz^iogj{bzWlbO zgLAY?$*%sOJ1j>*d6X#r-o1F!Rx@#v#OmXa)aRssDH)buMc@nh?nT>pJUW2~?m0%v z_S&g8iXLk%3+c~XnSiOT(huiRCQ`SeebbXs*P88p(+9I&a(#``C6)Fi$1xO2iA*_$ z=DUBYTjB8)J;U4SacM(E?{neH`4inU`$oK%r*H4&dq@}9I5Kj}E4oPx7RCx5sQoWS58?Jq=K$1a( za}2_xukx5XICM1qsYavYnIC3!I^Hjqf`SUGY2^3_YvtFcYU7a)Y`;;Q8F2Z{9zOBO zet?kl^s8(4o9GU|JQAKK!6bYFXf#D@*pPykd0)fajkN`2<<6LPdb4$`u_kygp9g?! z6(|KPGyJ5!JPN#|?~i;x_6I-s_+Flj3=4kn=k(K%hvBgOcj$KE*Bkj$wxKz1ZSEK} zIQHlL-Mx_}(l_I*^FoF|?m{89EP>RG7>>e^!i=CAksZwlP)wh2^uOsRGw+J!jCpn5 z2cZOkk@^q}(sm;$t)74vqTi%Us9*F#R;{Q=0v$TGX+}by6w1C29e89#eKM;mYowr! z#d+N;_crUI9eybC#BXT`IO2Pso&{&G{LaMsZ;iR}rR#rg zZEBj!(y94WK(m@;3Dyu!WGGxUeFd_p*2%iaBFy}()C7?{;GRxY~%InE#~~ay1mSX zjO*IlC=Ml$MK^uV^1E8SoLNA7eY%=fXvWxz=j!eB39}C3Tlu8cvYU@J^`3+bztn|` ziVD!LPiJx0BrCjB*Jn1-!<|+TZ;X*{(hMAV8M$;LhVq1gW51PN=$A2YC|31@na4*k zOD+5OxDVElXG27;oaN4VrXgb1jKkcn)Qqo=!QgaJK(3ZngUWXYXEJz8_e^>ov? zfM%YwA;4tm&Pw3th&*X;r@;^v$PNsUX$ITmY>l%q2wgwE0z^;VKC`usB3ZY!SR7`! zZrjSnAn~2vA}6_)ps+BUdVR2OaVYmv`&n4^V@Ij+f~p?~dCV`HUNCTnAO3uNGzGVs z1vT0$;b;}GN{#hnu}r;D9_vdKs>}1k&lhK3&M%*ZYI10vk~LzH%{#Y+InvhW#I#N* zjrn9)Pe7J)1YFzx`s>rp2}WkylBRHJv*@6|*xJ8y9`tK-rCx|}baA&OLY$*7XMdTT zSsJ=2qE=h`Z{Z}pS@z-P!||u%%j4&1DxRj+=F;cs>mSdaXQ|p=E&w-Hg^!Etpl(6< z<}#)6{OjkdqvKDXE~*vDSsbCk#hRR6SLyynU$HkP1%u+to0kMlH)04+`0{S=rioM* z;mb>_1i3_C-Zw^+*2S0iZN8l4&Uh(b-o+NgoNvb8C`7Mke19S{hxleYW*R56Axup8 z9Qh9ll=H}BjAdvi%)4oL_Uuolghy29-lZkitY-d(YgG1SZ+Kf=<+)LQ(>wGdo<&=d z7|htIPuQ7e(XGMeNf;Umcv$a|nWGG6#RIgAP%**)rTK^{r?>SMp&#FWfBWP6zn zXM932@FXV`v-{c$(BcSp)W3rua#dDw!-Pp-H9rnw9E|6cls7h{JDv3&8b*X;(h#o7 z$Uwn>#Ct}7dE?``w-g_?^%kBZ`{K*uC{ON68KN_}EoG0+_9BO8Vg_g5Ivlh=va?fS zC=c4T8niFtfTKw=@2VW1=vE5E*& z$D;iAe9_JovN9HB^~OpG+3IA6_!^1IZ+2^W*;rUowNy82nH{MsuBB8~-PL+VvwEU0 zd`zW{)ty$T8C1E4=Q2?H%$~Zw<0Vff?W>>kMd&(DLWURML-d@WZfU*r+`b!Ej~!|` zqmg(TyG-@TmgxH^Pq9{_ElqyZj)x`$*Z5B8!=?3 z>^uuh$*FvBR?>}ct?WE6mtyA`&!0Rd+POkj%Fa`V0yJxy1@yA|lm@lT{~3yI@U7~e z*0j2W9Y5y)U88PRUxT2Q-CU5_uAW6So<;&iZFH_}gjl70?O@8Pudp(D5|b(aEPUsQ zT$lKc7cAhmub%m0Dqp3woKtyzl3Qs{(s~*j&2`{;!Tka*hn@%^d`kDYs}u8eRcw z-citBgvzXEX_WK^>xpDqc_M{i7I!gO(}aWzLaw!hbmMzW1--1LW|D`m^_fjPXmxLV zxyM#oi*m0_Ey}HZwP7n_=7|b%YaQw(Jm;^G0`_yhoaN4VDco9z#F=Y)3;ij$A*Q8R zo!tTEYkfM3-yR|X>naYyN;inSHUI)FHtc!v(35go<^P%D{0O!obUVCN9ZQ0gNyVX&vF`lbD$jr;-NsdZV8@p*YF3T2nNG@XfPoGpO zm8wdmlH}c<+Soq%=irt6B+bvcNK{4!uV@x=e!Owb`z#|L*nnJ$K27Yq*`NA_8yX*P z>>R?KZTGqUOk2el>56<77zdYYCcNM!;aQCJA2PMmlw=bdOy`7hD zcF#t)-m(tOV+BuM@4h@bZEl#-9mtg$#;mCOHEqT0lSb@Hn)b?+Zn2J#x*dm2C_Cnf z{=2zj8emp8W0N z!`b!4>DANiNh@x%MwtS49(?$*_f#u}Z>rqqhdWDkpT809;k7QhEc6P;`Hn_1k0xB> zFPeLKSR^lDS8xy5$8^JzBgu~+FBZ}~Y!@I@L-NTs{KlcuI#}+@E zqh;TUb;}1Sb~%T5F_X@6JCaHaX9cK`WM6YGYZv_ z@Ks}{l^k}sxj#UKtcI{!b;3=uAu6PqJmT~xm#-_A)2}%bIZ91jeyyrYEOhASQ`ACj z`#a5$+$m$^?VTJZBc>p_ABY{`gvPNL5S~PFp216^LlO!mz5YXg$=muBtpRn-%g%eI zXJo_k*>jRgal_lJ4flscD-VRGDNEqafUBN)JyTLQHzVJ_{k54r`~K~3QzBe-;p$gY z9d=8h(vv;0U8g>RD)xBl5JW^w?yel2@WPDL&`li)ikv*js0{n-5X&f&-ZXoA&n z(gQ`_XSE%FQvlJ7Ulv+*4`Uu*^>@vWoADZx{&<~9Z#kcS{mJ^F=s&|$c}nAmD^@R% z9xSCX@$q(@e1}z+$CK~PJ+tbwaQA>ZxvpKVU!c07PVCGZ3JqrT>L)SG^P#E{)dqYo z6e^U}trbv`%*e9WFHxn7Nl1$kT~-@j z(fD~}ixpbQ;R%gLUyw@js}rHCIQEh$RjZdNr>4SPZ7kR5`YM*_27t0e48LLPQVsfB_3*5I+0{=|n6*V;kCH^)uj!^Gpng@; z@0qT6Cu54V^gtjTX}ix3nU22DZvmw@g?y%;XTyG-8tbNwEPD3 zaZFhD3RW=6IHy+23C-mcJcSg-h%R72Wt-?`_Jk2Vh9`~a$$&wPGMuu~s!z@@LT;Fwm$i7Q+RG5Ni zr$VKnb%P#{>b4Co7LA9S2Fw)L;V2)J z7h?6hT1CZ~LKWyyN7UX6h2OZLJl5qFwez8<$^9*=8jJ zH4S@(y`m(Y7m_w)LqYZFe^D+u&-i&*4>G1@I8uf}!fBri*oVMT3u}Ji?1lRW=PC}k z8Nmw*?{oKypRe*TE)fsE`^S@6;wX=)Vj1a+7-c1S?SN>}m}*4;rH^_6;@lEmP>`hP zhPU%-H_cKYbs3;n1;fh}uuQnl!$=oDs7Ul%+&WVOwhv|D{@|SAwVN>@B~gJReo)M= z!vw>_P3OMSQfn#!Mdc{KxtRK3q&I>w=mn}5y`XU39xteb>A5_k60_3nhlpfRFD$%H z=EtI_02WU@EZj^0Ic9%E61JIQvd>X&0MEwZ)=t(>UkHZwQ(aih6dsO>;TX|H26Uvr zEOmJ$k-!aXFQ_8?Clp?>loF1VwK-)Mie*=CFxu9-aLF9rFE6}n%(U&bsN4>g^hWhK zYRl-l@P>;O4F%_7S_6)0iU`x<8~FF@Xff(tBGgNpzHno}sai7^>au!8R>98oDm!(}WINgL^`^+D~^47ZhX z5yQgd3IVypNI%aML3uj;A{0UaX;p4ZiLHPUNRg2Gl~kDh6v0qiObr-ILczIt3IP{( zh1Amxi4it_4Vy#Gcmbm2jMu6Ve)?UPj>9<-Ji{$mr^6#&{S@cK_FM@tf!7He#6!1# ztUcNt<|YuLC9T=hMcZw&gphU5I*oI5OzDx+y*UHgo&)y_e5w-O)Vdn6F zdg0;B6)&hcT=HIcxFvfpD4YcIf^uvb3hq(3KNK9w?DA_EY+(=9X(&IT9|g5yuIkSy zTc|KECanen(95TM5zM)ZjI!{O#P|h!zhOqgt)s*K_}gG;gp%48Nvo|;4? zVe7n32v8K@wI_G7|9 zSsAP1I() z=3w?&f&3{BDjqSXravbpxungnEFq{hsVvB0&y>F~?McSIMh%TJRXz|3DkK~fm%SZ#{Fw%_tXvnQvvHNjf zx8gsD$*gFy9oj^UcS!*C;|tSpNWEw~z~ySZrK2}~r$dpe(IYrUpgnqc%HsGvHCRBr zdsw4_Ome|#kD)0OWdSUlNl=WRoim%d5poh<3aG8gYX}(#M_16zg zWA!ND708hLgW~>}a(C~IDO-qZmVC!tHyE-u4~r8hMsGy+|KiFqk7;*Rr@0p^M>*t_ zT;3?Z2JiSMjo6hm?M)l&HWjEzV%a9Ea_Y*X!0H#i1@@CmL|flaC8Ko4 zo&q6&?Ws5GIdq!)Mym`rc3w1I%+nY3Fa+LL6>M*Vt_q7Uwc_jq?@Yg{FaX%wV&aKa_ZT zp}NKltWe>3o^^oY^^GGS!CH07NZ)YX@>KMVBQTEEaQOVd`o_pr>KoHL#1W_Ldb;L)mVx7mT#7zT>S z=BUTAU_oJh|Mu58`~L0kP;J|U#)&*w#!Nj9Sfb#3=L{435%qNpoeUvqTKsw=HvD&wgo- zwwN;Wr7i)c!HmRu&I)&UJ@N>h`Jig2>ODjInwffrIa)n%#MhJ}7OL;hUfZ3r2)VC9 zgxn%>#cr6yorCCwr^jrcD&)b`zB^N9nK>7WNh{|)brNnrPM!snBe<+5UQj(2r{UTa za08X@uyEV=c%rQ_{T3<{)!LBKOuNC*+z~-$TUjF%YW2GpN!{#JuE0H27kTnQ5gRc_ z{b#L_WT}v-ym|pDRp@-HRV%G!u2_ZQ0UfRwks_LMMPvRaYI5|*#W6FnQ106R6>5pN z-B_(E{ec{G0jh*DpaSqW^xA4s2$}9O1ZM|I^)@>XMRDFJlT#C>XhQ3M%RFm}O*>#;}In?U6i9!3&hMNh}8XuZU*MIFF3B9`$I_WhN6N zydsPbipH>L62}@UBYirA%uOkr3$7GvKWo4u&V|X%-Qi4{vml_n;vfnA^~ir^4uha+ z8V?Da3rS#Q9o$r;%eD1fyk~Mb*~JEP%+b&tpfJ(Q?HXs{Yrm}+_x+-G{qvv?Fk_MW z1n!wK5IpQL+Gg^Sb(l1{AO8bd>vz0yWMkdBxiXg{s1JGnT31*<%3!tRc%$hW7Ks@A%5DI>9K}vqT3cQyey8%p zayNa){zSX%jTQ-COi9Kir5gcH5R&I-V%qyq zS>D>3!yNMi4Vb^!N_m`H!7FU#wVRBB0otP@%=8qDsyI{G4+|#oU|?ECu@q!Z$g>EH zvJ$kJNGr#ars4Q9&&=8&0?#XtEYjWQg=HOiq0n%d@Q%D>NsL)M^UM1?m#FlDWVaDZ z19hAGq%~QCK9a_4CthgK>jeCE=wMglBWsW|IJb0+F5u)cQOjx|fJpu971`W*W`cyrUNg=r z;~LW{mD!^g56Nbr-h4hS>E)D9KoK+EzGu&gCgEoD8KFc|yT=k2kZl8@DamqkZY?A& zP4a$AH&k>;)T2^2P^$$*iScOdF?!?)|C%$P0Wel^EDl1RR@Z!MN@RgvJxxFy43)p_74Ag1vlTsq*6BA|;)wLGBsPLe8*&Haxo+o*cF=jqsx`;g7 zdC0I77^-Cfd+dfvUM!ztn&$;-{jtH|P=~$wL23Ia;87YZX6D4_aFj%y`0NEm(^QI7 z!j_R>m{y`Rg5h0gy+2&|J#Jr%pH8h!uP;oY+U5ng`R`y*|3Mw_;x`6xOLBfg+l9^q zWXF*4=-S?o+uA(ie|ShDn7zv|GDNylS|<7d83ZKb4NEv`r>|G@oZ>^yg(Oj|t$j6oPQc4Y zGh(=CN=+dfASfw0C@5wHCFYt^lUfY7XWFvcG^UA5ZX-H29@@P4E9r>=?4~X-5zY3B zpu?%oUQmg^@Q+`s?6OxVIMmF#E(zAKc86b{I^05*7Z&WC2!(|XfeOcmUT1{Ap&5@t zH7k{(D``LbbtUQOE2u(2nQUpHz#tw0m7~tDX$fklnHSce$5EbE&peR&J+f(j0!Fyw z)*SqHme3X|8>$~#pQ6qSUzd$6pnHbvv2c5VoGu*<5A755-Ea{Q3h6}lq+^U+9`b_w zLr-ks1{-X1vG$;l71DIe<@XoZC!lJ zIdPTjNE6jKj$=79XV2DFijp9UYl_hDVn_39Ut?cypJZ_%b)_gaLAD`_^CKRK6dFJ` z`fGGI8uq7y54D4%%YPode01;J%YVLn^e?-<>H1{Azw_l2@$ZB`oft3G#>a{2nw`O? zgVXwH`*XWlKM>#gt4zB26`oNmz-F*4zP0YUKJhF#9GNdkHWqGI=;uAn_l0tJ{>e& z%e3ViJ=wzFQOmXS#i8>dMt?UBwV^cBX8r8qx&|MrZ8>b9^;1q=e7Fy6_JtYvRK99C z1O9{z8JWg8=f_9adK|G&wQ7xj8d|RB--u>T8sUWfcR!-rqy8wIim+dyDEv7h&XOEN z|H!xIJrvD+sIQ2U@oQ|0ml)ZJOFZH}lY>hmu0{XS9}z546PG@^<`|3I-Ix1T>-#kp zIm<(%b$lqPgK0j+B#VswZ_sc+i-z&3r0I%uQwN2U*;b)rJ+#j+t1 zsWh%0nlKKiLm=R($S%BbnZDUGJv4e8tg&b@ef0)8W;v4pvY3_Gb%;gmp%nXE1OyFM zTwc}zsuiakh%w_BL z^AhEw1=3j?1=-l}N#MNJ^wY zJ0#Wl6UKxzE{4<{o4&{Y3dOEFN_b-_4B^BWxk^ zaY!Po3uJTP{3PeV`Fzr%Jb>zH6dlhRDnCBn6e^E6HBTK_ViF&@d}E2P8{Xzq2J=dZ z6ph3N0Wy-JcNrX6*j)q~%-G$7$KVk=7i2Ie5xWNu8)GhwOp#{94thQ_Wx=6hWaXl9 z_l6*69QxXTryk(;E_=2DVn0QK!=c6-tOc_P5s0 zug&g5>;7l=u65mMb(i{gl&~8H&+vQL*iVJkUhvp88+5&1Aj9vzG`kuNRc;H58R~uW zL7$PH92Yp!?zfvC51ntfny%uL>IK5sbsO|)fvdRtx87r#c-%L9dHL4SrGKTsVC<9rI zBrG>ajenpN-JKa0FjGKyj5AN+Ujd;3NII10O-3*;uNt*T(V!6|zxpH7c?6A6NmkHD z=mqYOy}7KzCxJ^0!CLQd>1Rhtpv~d=^+3Bi18QjWW<6fRhbjAzG^4j1Dwp={G8V>^ z^s_Y}jE?1x7V~vJ8kOq1B+r7ig6@-%OUPgS!$Evn(?*NZT<#Wwb=P`k9U8iHY{jb>aeoIlCWz0|oQO@vj3yq=0gZ>9($eALMx$3*`8wGe-ewG^FoT(}Cr0y9 zCsrtAKBez%ed*^%@n-tFe*oBZp~S5kC_Pg_GB)Um=6JkGM=bmz?*$J_gjHG(FbhzL znLG&tixwyetpK^%29KAhh9a4Oa*q`S3YO@shF0S-bu388Rf%5wyDk~fUrEBT+K08O zBs{K-Wyq)P(+ISL6c%gR4)q8q;ToYw1Jb9##0DjtER|&`rd!;U)@!2BKqhU6SSt`E zg}^kB(`O%9=2$-4s)AGi0^7VP+kcLc?BVph13@rCk1UYe2!U^K!vSHIb{%pN_y#}n zfiO+Fu?-^D7&?-0Z|sVJdz9p^Jy&wqt{2^#cX6u|)+2rYjyp+K3Gs&`Vh)IVPlm)L z{B%7V&ve3mK9Ix@4ELkO`s;QE=VD%22OhgT^!)PapjxXnL=OIl{r|~%lzl&W{AzM? zKAo`d>oQG0Oxiy^7oU36_vx5Dt=7b6=^;LqA7qzUKZU!PQh)a0G4R6=f>58@ymDa3 z+Ot};50V3x42k}3WDHMhcs)P*nK*5@>?p6z2D0cDw@uH#C(eK$@Vzr1$(2jYC-GbV zvQNho>JZ0=pte#ahDsgc#Zq69aA!B5d#5Th0ntp@c)H#CNkF0ZkTK{ zu>{qcRU&vRiYl0BXUA{M9%Y*->P{hMs}jk|3DPnA4H|B2Im~X&$7)q8fl z_2LkV(&tbXWwK z$*Pj@!i{7#dO#~#jabBUG=faI@@#7~dJQy6l^=)QLo{kF=hpc9My=e#IF##Vd z&pPq2O|%jz>c^fn_AfbFVs)Z=aSoGfC2Ey(q-uy8q}sFmeKhy5=*<=}YY~ek;-0e` zsyDRh1mUR?sm@$kW08Cq5w_Vxq89&drQ3NB=rbT*-?e%SdwNsjH=>spSl;XKN6!7iMuK!KgSU5-sZ<2Dz)R|+Ixfj+ju9-o<*k*#EanvgKvXTUk+P}ymDf+h@Biu!4+N8GD7;63eAhne}lF*ZGMw4xs$``@&QbmhFThQ?Hu zgkTLs-v*Awdc0asB0ZbpX)Yw$Zc^ngF>HQBgj+2DSuUV1bZ%z}j8r-LhsHNi>2B^g z7@LsQtW?-F0AZREsev^V(RfJ0lM+FXfKL7>(E=p}Dp88G3dG1-4e#j9w@3+M(Sz06 zQY}S|EGKA8GsmzKr)tX$jboAYZ{R0dH>4?mL@xeaX?Ae$Vv;?uP51ES#;qC1q2Q}m zjV_gn)rdiFO~Jd!K#dgN0H6`8R6#B#HCzPU zeWa>MVWm?QM~1kfp|?t^QG*pfQ6iP`UP)EX!H!3&-Q@wwhuE3L2D-#jaa{v%u~g(2 ztk8p+B8DBUR|7M&MIHaHL-;*2rps%Va{m-Fzo#=-l)-P;Sks z8S}z4Q7xYNH*2+Ps2f(TVa-W@TaSAW`*y&~u~?2_4hB}_LGwpcB!P&tE*r|QvIZ^b zgIp|W#ztt<$0SR7)dBiDU>*fk?uLH0{OKmGO383&u|YdN>$$w7fe$Nwg2ilj;dBVb zSUl~8lQABxXVCE@wVDfV;D8poYTYfokpYbbC0fx1E@%WrIE%uLgeey1c$=JKFFaeo z%0FrZ*>3#NH7AgY-f9&4u)84@FUEtAQYwNGp$OX8-slPdyDpTdK`)9{qXu*VDbbo4 zRS=4ZzINrUH!O`+iCTsmSa-*vCM)}*k%OtNo$=4$dR$SRpf47z?5^78J9q?!wiG>G zcsk1qCb3LoyB?1W-lp3URg>YO9q_2ZPO)s!_2L*~)0rB5?lzIP%`6>04AYi3xk(`Ag@;fPk(M4HM0vcV6=P=Jy zo7n72?%MHu)Af15-dWXQPh``1+(Q&y!Wq@|o!uow9eZk+tD=&aW7W72!_MXQg7B7& zRfcD~CRb%eMAtIOdEsmpVs3dJwfPybrA#|-u|V;m@u!?{i|5|WCt8+SzLrAIhQpn7 zM*J-b8+t3;n$oYg5JeG-EBeeYUG;-7|Bt6h_7@JXv91UF!J+Y$iK|GRw8^jKBuUY` zS!)0#q*U#|Aum{@qDjD_ClXXW;bevw-D(9t@F-ys8U_wD5nG8KC?cvviCHmXWGhKD z1ya0^C}I(Wxd4?&fjodplmcGph(R8O*q}SIti?@)t_3=JO zBb4xK0Yd$4R75_%v_g9u;$rdb?zedp|L)x8dB<%=VMWgD@rVbZ89xu3nzkX-mnnj@ zoIisB8OS3O%MT(>&5Y66CIG^VYE9|3vqfICzW?albgu3@KfeAcxO_9Q^ruU^Z93lox3G%p#Gp-SD1WUu2DEM z<^7bYnJDRPZT2u>;^LdYVCXkka*n1*;YAT()J?Os4} zu?8AB@>gKlR?oEp5KY8e-V`$*!!XJKPc%h14~-go&fs3um=N_ReAjfmAukSMIX;!e zLIQDpXXLh%P9&b(Kl!p$Ok+8qCS6FJzQ?bg6^Qi`R^2kE zJlwqGk6LLXdB0Q5%>@n2XNyC{a#sl0DtE($9m8EQX(@ZZIR4i5tF04eA)oPsJDqF;>(}4yHB|KL z^Rp~4wo`qU#nAHUvihYwsk)rvD35;goS0XyUw5|`z0t7G+be|vI$bEF0&l{G%tF%M zRmWw)*D@y@XahaH$(d2}bV~w@8aMdPU9bb)!~%nSu{| z`yp5`GwQ{U_@Kfct2M+Y>Ob3w=PIBoKap6j>n3SXru}5H-G${RR#e~3v4!IP7RQy( zm_l1#hcR*el+U0-r-u%M;;vs|-sWTyXe5IYLf)JhCOXbF=F|%L&^eR1;CKm?|5_q< zlw<;Mhj5<0P~iQn@&Sao%Lm5z*rLB;0(y4%C!CO;{ih*Zn8N!eJ)U!C8++UlrU`qY zaUq=Jp;PpiIeX*Aobo_G^k``PB7@n(Yhv49O+kyBH*2(J4GAaSrpKIJOKowolyWD& z81!+qC4Hp)aMeBK9$Dc(*{Ij*R}d-RN{T1L7#h!*JW#6G`W8=PBdjBVMpCBLSsb} z)u=~XmDwA8`ET?o6bCVq7AH9D4(8(LBic(P3%Pt>6C#mQH?jE3^=njQU4#`3@{26#e|18 zD@p!G{@#t%80!kBxk2H`M#9dl?9gkc0{R89NEyq2S5$MsJ9L<8PDCB}!aEo3jYkW{KS>I|bYLFxla( z+CkZ=$wNqcCp!h3gfQ9R7L-mVU46EpNR*xWak6J`o9rxIwVl80L`99F??p%dIH0fTY_muq0qfh4DY~y|f0~rjrk{k&x(` z!4^f_vKVaJ6kM@as-;tKwT1J#DZL~+ZCC|k%ULfhfV!CishPk)hY)!N_UZ}-vL413{$hcF4#DUQyww#96nP5=gKV)qmF(MX5~V{7 zZqK#`E*)DdxBV0d2Ra1G_H1tuS5mPMIM5-GwP$;S1m42oAY0_1$i0CUk%PU0gKKjz zMsyWv5jfZ@IJk~0qE-kTXc0KrD>z8vEf@|yYZo}U)*^7QSFWOK)9&NJ!DlTZ2XDt& z1kZUY4h}wR5jl7}<zL!r>rG*AnEi#Wz!rMyaL zs&xKXPT?*Pp0o&Myq%=i6e{ex(#XQyOaP@tFatmBbw2ZKRh2vV3er(M7LDfGM$c})C~xpKo`I)$AHjb5Ct?5Hu?q#d=hp_INcwKua`YY%Y%> zptIS*N;G2Z)gq9vUmJy7aY3_l2&_kCAmKG}0S_3;c)}|H16sCGwG1ijHZW)xQmB?C zq_7pnt>xn#S!NtAD@f(a;WUR@Z?W*8EFYy4Z^3v_)2w_Hlc@4U!fW9{CI5S zkEvssSlCz|$wHU)%7?tgDn+UX-WI$(2)5IBT-WX(Sgj1(s!3FW^XyE`v1qh`{cbJ2rv0a756qPGDV&2<%?DWACVM zdWeOg>gCBkbfxh-79f@}oMTp5JT7;@Z zxAz8`=m2k{B4%?3`Mbl=beqNO$O26bEn*pP-tKVyktE*2(LlRcMx%^npre8BvW5`> zp$uhUD~+y;1qfv*Lnq$C0U=8$qkb&3OhJH9hBD9rA+U!*7LAb!4azu1uKZ2o>+WKq z!Jfu3it=2gL4({KS0T|g$5l8*Nsg;Vp2(CfrXm(;LCB;iIe|!@NpU4w3;8`_|9^7c z2tj1>_|@d(d^%y@*N??3F2{E^2j}9GTqEo$N1mBjoXQWfOW^_;QtHn>JO+OFK@eh# zhjTbwPiGRuj-mn2B||c413QWh{9Vz(^no?KY4MybSeEtESqfRA&Yg`jq&Q*>bJ?$+ zxU@U{5mzWbdz3znP4}rGF6a64~j*}9K69nF(rjXsz=NxvYf6}=oA`bIv}>e zE@#OXI56r!G>8%@um(}H-ylj@)l$SF<*=qq-v4kc-;+a&eO0)ja`$|OMb9+JMx3Ai)u7Ik*HpZ2}mz% zYH7R5vQ`T#>xbQ6b(c3?%e2FJlTFOr%e7eVd*WD&P2JoyR2h3dI-7xAbgWd&BW@Yc>U$@8)e1jgzYVeO~!=JJy%(wyUbwND!iU!(-SWV z8=b$wzns72a+j*y)A%Eo29G20!b(??{lgc+1D%I|xclwq2lo%Ju7P!*FtB9^3dFz5 z2tX#~M6y56N%`5myKgl=zv|pv4ou%PdN%Dp9U2{niIij7_Vm5M{*^*JmrO2O?5k(u z`dqsBcH1^>%b&)zyaCOtQ5FY+eW^wZW`L>Da)NOWw9Qc?2l9EUkzyhOvd?#BVBE6A zBPIa>jULEAm$|Q5No5EJsg12-Iek0e)+`#y(R8qWMP88vG4-UpfM7ZIvq*XtnmUPp zw{P10z&1Gqa;KZL$s`bR=W(o=c4$0|0`EN!XwLz5ZnRlmBCn;94zwcFe>jL1mj z;Dm&x71kr)^M)@TF12)&WRT~5+Gfs*XoGPowuUehT&5~SnIct@SF~<|&-p*!lB76B zv*~REo!s_~4({@*IxB)UEV-?a1W% zBt(hK>1Py9V|k*Fk~U+TO3JXtbJ~pY1Mw>1keWQ3vQ@(PFy$M`F^BU4wRHE}P3QB^ z$nBoXs)-l#_hMfTk@XW%R53x006MKgF+`Yw~XfCi<*m{8v5G)`o zfh5?rKWvi(Dzmb(va<5|$Jx91@{jzl&+?z-AI|LEvm3nMJ3QXozx?C={Fn4{=B6y} ziLX-igM4rK<*DoW;bT6++y03d!Z@h&+a!?hvG;q^m?bQJW_y>835Ws1`M|2AS&{$U^iRS_m^0kB(ZT;(vbl;p+BJ*YvbI zAfesaNqe;W)78D=yx%GDj?Y_Uy!%f--F*Lr|NYCu&8OQf?A@kFSQj}r1l_bqR`}$& z%@zLT?&H;m`kO<6GL87!KtTOA$to9sR4WXZ(dzlm|DK8;rp~N?{BG*T?#=N1-s#cl z$LoWWk9+dll>L^9Z_o4}u~7UF9^Q!+IPRZ)cXU1f>U%bFvmh0}TpgWVd^nWrI91T6 z_vuT(a@@X)hA$6%XpQrHDg!o(VkTICf8fi*|9f0{(@YrIC8i4~OCxHsUZ3 z`xg=s|8Xon9Y~Uk87lCa0)D*EBA~RjTdnjGq^umC9bopt@@oHhb9?=8^P#>_tJ-A+ zq99m!jTO!0Z$ai9T}ZBKg3fo>S0BXbQB7wqJ9@28TSK}|5*DVu8w4+q0|^C_1ET^3 zx-z36@oNzks7Vws$SoTsmgp$R0ybeV`vGcZe)v1&4GSA3ZZCrrMJyGa`LQhitL;sW z8#6~)x7qNGBOa4G#EC}E(m`H)!yOLU(0RqhcFZQxGaJ5si23{7pDI4~jPhs%lxTBQCiy<~VEIvtO-9+Lly;zPP$}jcHPhm6* z6<(1Tng67I=QDHzKlRl#xkPn@7?+>Jd%Q=wICPn|oJx*1HLJCur$ z*5^+9r{dGdkCXH#In2p%xrX-H;?aZf8Td1O@4dz09I`2$3X|@)0LSm<#gV(eWh;RN_v^V1?Oa0CRw% z4g_oI}l4>kPh173#Y3uTubYX#%9wm zaxSI6Nd0GZ*Q_{SK7QQniYkhw%bW)FIZn)QiyU{Tsjp`ce~iQ~p1pGu&-dT&UBz6& zXws=67H;12<;mCLT48{rHwGfif5*q?<>tTHyT5rk+(DF%S9gkL2H@F^JWhikn)$F` zY@E8lJSk-%08z*IkR@L159nwL)EjW-A2$U>G9xvIX$A@kML~;&!y*Q|;;{Pxbfu!? z6BI12(mclQq(=tu8fJz^Qu1X=M@m@qI|>x-?xx#iQjl;BJdUzQ2$x6=&K4+yk|;pQ zlzINh_o(1$Lm?G7AXB1X4T8vf>QO=aIZ7bMTN8^0*>gDV2W3^FKm~r1f(-H~Xdr_; zj)cK<><(D!doILSgM!If1Z3nz0TVfUbmZi)$hco$I>=USB+N?yXjn~I*s%UU25%hA zL@*O5aR7CNqf>%_nU{o$B(*OQ2XF#AN^!uZEKdE9-xJ9orV$|}hYaK!z}-0b#ttG* zP&!tD-8=FqI?LH9QxGVp2zk?Ke{#mefeRIhXhKow9J~|7Ms=?KBJwvj8w& zd40b;yP-$M<7?KCeUrUgWM4LE+h5G3(x$y`p60J}<>|AacM-T`KIU=_^^T2L%tB8X z)rB$U{T`Pi;hqyqUrBs3%-toUC`#)*E(5eTKR#5`U4BD5B&Lt|!qqSnK8nL*m7K)? ze{!B1;HQs2yJ9kFH09qP9jt`yp36^s>S;9LzxI_?Uzzw%)dw|UP6cV{E5zxpVijb6%&lPRRHJW64Lx>;A+T2I=e!`@=7(NOLG< zc!|7P((wqeitx_xV}5b)WUM+F*l89|qeMjBhrvtF(Pkuv51sKZIRTud8;uO)&k|8t zKsrK~eiO9@qKTivssRX-)~*{wOH7tJAbmR~OZlN-ux!LCDMFvO7ny!|aHf&2##B^! zXgwPu5AQW)LrCsZ=?Yih|K(biXHpX^eOww|i`flw+8bVwE}-HIQfV(uZP3Q|l3xlr z7fZirUS5_!wOvAMmybCS>Whf0t#VyXGChNebclSawV3p~tr+<+$qz>|xu-_$lZP=s z4YbnZ2xY{PN`g2e$<&KuF<%{VUO5k?evM7m*CL0Qt0rH_qH0Z4FnzeYy1oDW>F%M(Ax)Kv zRox71cL>z1f&vEh*yEtV+!V-}!P`LDf&w1xIAE~YQQUGtV@FZY+~H8xUH~2JIFQrv zO9D*CKmyDqEhzXM1v1HCnUuISgm=xc1+`EZ=x8}tOH?US_M10$!$+o65v7&rieduh zs&3L-8FJsGk9<#ISkfkk5`E-2PhK(EoFq0yn~;peDYfrt^OC0HwQ~6Y)(sKkvm1eO zMurgUyv1rAM|xc~`c0arn(n($f_=IEY?{!AD2s)&;g-!7)0%DUHL=(!%REpysHt^@ zFnk&Kt9tAL1M2P9Xh#mz1P|UdIlVTzht*|@vaN2OJKQ`iyJR%EO;UG|=znuO#nuon zPoqS*K`wHeYyRl^&N|WY*Ql-aZBw<)`j>s&UfVpfE4Bb;?--DNE7hsy_h&23iNLE? z1B=U(`r-jsKdvqDpjq>qc<8oxINV9`pd58A$OnC>b${6a@}cRvjo;LVuSh-|?WBB2 z{R#V$q-@%Ph{#PRow-f*n`DWdk$^At`#YZD>YcVF0W~9ilYrf3wBwzWfVxok7a<9o z7lKFCh7N+otCqx<{ey#p`f{S_TEXAs#8)IIPIgjGOk+PxzqDm;(P6?J(v{vGHOUtJ zPB3S~_9R>dnQu~1()(+bf~TF8f`z%%aMftxI1v>kul8o@NI|14=&xaJ!`iRJ2K4s@LcwH0rrGG%sUWuR9HFZ zJG^sSJmHTzcLh3eg~*pMaX5+8p%d(kgOiZMiGQdV#Y>r_Rn(sO%a?@ z1{ESWPqid2eL*H*6kpif`)qT9a2`&$v^b@@`SJo>|27TWaJ_1QaT#zK+UU4R6>Pkb z0TFSNXSjUjbp~5Lcg}Jy(0H3S<$}vr*0bucFa`jwDF`h{&~jnjPWaw-lCbA|sMM3y zMV56SR)j>6IMs8mLr_$*AgH!Ct|B{KvsQSS9$doZ@3P}9Fr*(fEpQhh6tr7NeisT- z#Mg_AH=tRK7+ApKO(+Qk>}iNwu#jq6ofd}(a5Yy&RuWv@@%yIpz3Bw<1%C50{9G%| zCPmF}K~V!xF~5&Asim3FGsd--o}ulikS6Owl|`^zX=+2?)yx52Gud3eerM^kc9Rzg zbluHsChBGUYf%FjzpY|Z-LPNAJSh3qT9;TA3mvI&Hq z2nh+S@PnEcs74YBQU)uL^o{e2posOax~JAAEp6X)d^KJ419*HL>r3y-@ujO}3%r+( zuk=y_2G9s+PXrZEYJ7c*9CO*PzpS#7_%|z98+kFtP^=xWf>kDK>oEvOS#Aca;r1<= zgK;-BU6X;{4z_vKcES*b0tGwS^MYwspujda)Wkry9n`!kH+{47f>01OuZn!iMrS1w z*dZiDO$?+r@5=77(VKBgW@WcT%yGkrYpVJt>*l`c6l=P2NXbc6u8tRK4#L#AYL&!N zBWXi_GNB2t1W&Krfr(g4*@AMqc|1$|u6a=4@m6C*fDKr-Lf@u-SyERMW&^HJFTqA& zTxnmBUZhH-*n$!Y1n8QNg9Z!bK?Nu!QIJ9V%HaY;=|C|TR!18JOn3^&R&D0PfT3mv zE6a}pB?SzuGCyvofhzM;M%tpL74l<%4A|IzgaxG{=Ozys7>^(pZo`o4zHGkzdn*I% zn^b|Oi`IOzr#H2-D0@1t3def(l2zYP_RPZNrlUHI9MGmz=Ygrlq16ENy>HXw>j3&n z>6`%@p`NSGrxtxsPi2qNc_-A1L%Ae{UZ~SYuE0KUl=)AI$fA3{mzT_HqD|^KuEqj3 zwe9dA54otuwCQy05(!iye-6~`YOyo7Ea+*feCWAV~IrT7Q0<~d; z%??BHS{;0CUzDcUIn_*q4^PEUXdDlL5R#cU9 z=pV=$5Ta!eA8k`#+a>m|zh?>#IoZ5cyx@oz95+cK&zBt(Wv3!>mCZZ&J@aS8JxMh0 zD|T8JH4%K6c8m+$A&bO&;%k-qkdRRnxOuBfDuAyFUmII19?JG2jkH$$@#gmW;pW4A zaUVC;SrO$50;VA1BI`uXX!4p094zAz1&YgIh}5Su$|4Td-*qNM`Lhc*r6XF|McO$i zPY#(FT-xF_={Yx}D&?;d&&64`@z(C}dmfk3!#AQudno&~b4p|^SsZP$G@okoE`Cl} zz|m#Hw^5c(v(y>M&U*lg_(32V-5MrW@L+5hW~uBlWI_G|4OyP!UvxWr!(hcaB=;|q zK@`X%;3`ZOUle5f|NYnh0;U6)jaj`;FW)#b&W|92CqDAE)LW&ATk%>6J}B7~GxLMi7mTsX$6$4s(&0rCg1Q==E5-ze9VZ6HuR4&gw&WXZ#n)zv|Apx0)X3$^Gyp~F;C7gFCC3h? zlv1Ntu|u|v9#FTSMh~QDP$QSYY9&xh7FZT0HFj>N`7X%@%G?RjmZ*`mQ8I~_xqPrC zKb4b(sUJ9gs^S>*Y1ng?lHg3B2UW9CNgT#igkq0G=&dC(b#kLjN>I~e__cwBsnQ=U z)+RE#)VjPp2x5Q|(wc5b0F6Soxyt|ovJ7EzVD_sTrjs?tJBfw}Leb}v~Q=yRE!s$nFtRewYHW7^^TMwlE6JP|oX%gTg{92E3 z=Y(eYh$7ajY*1l4;(Gm*#eOt&qLB&+6Hk|iHfudY+yxGt#Cer4FA9gRS2y~;Nx9i_ z2Op8`V_~QjsHps=!@kHSTT^vr@BZfHNDQKMY*v4k`Djz{zf@lGTNZ#JC`~JF*;MeHI_t|xL*B96V#Wz-B0SCW|@WJ!+-8qA*2 zeEc>th0}K0ARjS`!2JAtW-(dN8fBSsr5q4da^Mnel!C&;Q4A8RUcOY|U_N&gDB^Ux z@*lh>NRT>ezA(=tPO9)rd@QoHJU8%im)9HTJ2&w?XOxA?H1kGfcBynI>92C!m^psv z=nb`UF;?I8RsimsuEYdQ?RNe&3LdOvt(6&-i|O(g$8O@V(THQ{L}Bpa`0eM@ZboFlm^ckmaVSWWY7{%JGZh!Q zC`%x>Yx@r2{hW^|v>6$;GTiW zWjOYSWwN3`0TYl>u%6x6cL$*C92`KdXs2-$1hBf3ILWnYlHE6{DouA6EKx@`XdCj| zeEuNqy@m#ArFqJvCqh*oRM1$LN<<@PtPXU1BC|wns{@&*dw=~C*BY+B|MKaVhtIz} z6nV6%vO(0V2vka_(X&%y2obbv#M=gz)p7-Ov865!32&f8PR~~QN%(+i*BGvqb`tgY z$YNkf5bu^-Gp?3ZY$=KtvU^o5uDIgsprPb-so6n%QEqowGO>z>yiENBihRU1TY@nZ z3YH&wK?d|^pa8;*?kG_F0gnOahEH@B;$)d&?d>eMW^Rkr8Y+4dcKe%+ec}M=!m_qv z*V9Q)(hJ1*i7@La1_tT>Cl@IFf0=h5?yhd{KYzMwNY8J8mwQD_HlBe_E6A7`Me$tuni*? zFMXFctE$Pq>8NbFk8%So+H#MZz*`NvJbUO-x%67YD-Q~xMnQsAz{O2U8p>exxlpnd zer({jE8Xb}GXbKA2vuMZ%6x}UUKAww$xEk7qbAnnlNU8H=*ioB7tMA5Fr<#=#g;pz zAKO=^(V@5fi`;hK_CZZqtRC0P30~e3H#cBF8VXj0d9GPtu%JF%iW>0v#6g3epST1h zI_}6|}3|k!{T^GKk(71svy&VANcd#&20@IaC+G*KD1fM6MEH77w9=q zZuS}ldghc|4rUU>QQs~vNip2X%JJ97YxG4tEWCOxU}5L7YaWj>$D963dZ0dw&F_N( zkNSkSW*jJ(UQK*&Mw_h3fI+oglu01+yzcLfSPu zH7(M5WB_5wk~mn<`#FyLM-Fi1P`4DrS=0u&Nd_V%-5nhTX~+V9;uF^5DWvzc2uVH% zVGp{3X*m0yJ0N3vx4hC}8w7+^klc~&CGuzeFr(XEWWCxc`_Lzu=P?xzF7B$Yl0rRP zGiX%W`V|$Rm|v&Ka{ob=bQC0@LLl=?ZDGL`0@T!C0t+=WkibGg%A-A~hzQCeN6n0| zv<6V?MlM)435Wv4ueK8aEKI=({Yuf$HF;Y~S6BsJWTqF3sS15;B0|Np4R0HmvWZ}@ z4bxp+@qLpGUpN@-ZTR{ZIeKw&m6rK3D|^Dc^s{hf6oE?+kM|;#V)lNoe|UJTN~6g- zYq{Ni`uMXeUQVOw`@QpX`GmIhpQ=wBQW{P8OZ`LnS@{J{)rT>2hb-nFPi5t{Q52=( zS>Q**n;9D9b!ca!TX_WZDWOZa*Y|0+Fx(PWDnn{^jmRWESjSAX_ zHxjmm6tILW1UMaoiqPW&_RS~H94~N7WLpBjPF}*a4;-i&SuzX!>WNz~kXS{5N|-pk zU#8P?dzNx5CSyaFVUwm)n>wS|tBDA)a z%LSBF(K|b>7d0~5UIhVZ&Nhw+m;5I5P9YTp+CXklHDn&LJrWUPEc8rURS#A`TNjS# zMjE-A%p@9SK?X=B7vWEB*Vm8{Y(OpjNXBJpE&cddD*B)(E!a+Llv}_IQBrSPB#5g% zdWr0?CzG9>Sf!IWBJ9K&@N1Gv>k+Sr07Kn$K&FluH!hsL)^b10BkEgav*HGhwMD){ zM=-ZAP;MV-xkYvl?OJ=fo2Uch&pLuN+y%6KoHJPdM^{)I6w1*Nq+uB;9YNYEwWTWr zx5$y{3fZkHBz6P&au_N*$OH&FqL0WiGE=`rofwH(uCCjmRHxLi;q5l)@hg%b>TZBt ztAZJK-*mOSYSlILgX-WX5nSGUbI+FgVeM8aztz);KSrUrO}%py&-dT&iHgICbIWGV zT{Lk+_3R*rxZ;x*GuMMa2P_p7E4*tm^;+Ou1Eh)Ho0(L7_G@Q`fO6ayTW&kQYA~7C z<_5SmkB>?XCgn_9w8U<0GW4la z*e{jgkqlfqb_ojtz#`F5u-G#LX3;fYd0^;2`-wl`=g;7!%JZ-UxXv-K(q^IGTX|^T zbilUX#I~eJ?c7VZG~vz4uE1YCx3XRa)wts|z0Y=`rgs*4Lnd|(A_DF|dy_LcxGz1O>il!eEvU4+PbZPi5x zT2GLGMnFRY0g=eiMI$4 zqD$%O?| zDo=n6?r=m&TInm0C0tiv^qhzM*jR=Rkav6#N7Tg>UWa)lN#Qe>PbQ84>kbmx*L&i= zh{xs?@i=B`0_(-yoGV9`Ln{&`A0xNTihA{nlTZC$lnycp;rfMs9B2g|ytaU^?tm&e z1S9-gV5r1L92@bWl@|21<$59$$SagtpTt2V_+Pyo4VmS#7yyfew7?aQI*w#V1VYo$o?H4{46E zFX+)?xLW~|HZK@+>*Qph1wF3B-EF6@pJ(TyYd0=B&By}s>e)!Wjlz8uut88In4n%@ z1QUb(yC_%|o?8?=n2Lk~wb2aS1~8j~7ASx~ww-bm_byw~|_E%<{dJQXkKzSKL!Gab&*qJ+uMdTfhFQF9= zC<`87W>)^J8#6~0CvdFm15^u5+xh@kO}CXVIdV!aQbh~@)@=K2*r846T|jL6)u!uK zZ2L1e7XGJh)CDkM`qx(#o5=k7L!6mdrQzgv%Q=D$f;Nz|_Nshz15oqt8biMRb!EJL zlVHR3+QRGEQb|UYVn@{uFm2+ZTZV-$Ka^zL-Ox|e|7A@YF{fzc=&>ArRZ84Prrb6Q zgQDjKUT#tB0Tvu}uHS@IkdkOZrqFtB!a&himiG>#PLIZ83s5Zn(i97pi$-F@OAZPyuvj&Y^XnDEliv4ebja<#>2j9zL-yLzQ@#Y z?-N?u==!*6Q9w1bTsfkG=YisTaVDbY$R~5pKeCX;E~WK1aN|cZ4UgU!3)0C^(6o%B z0tX7*M~D*rO7V)7n#~8|@n$Ey!M>O}N$SRFHnoo1Fy0l*q1ucO8lK-U0TABK%2@=G zxof;ILp*#wVk3|(^%ImG>OYq=Ji-MYX>Dk*)Y(hq>m2|tVAegsVi)x9Yf0xJBE-| zWh@HBta_4A5X`DJ76oQ9tD$2!dE#=#hCRR-1k#GQ3VJ0zA>-#81NHkUj$vomsezl7 zy{Gv#EUG1!A)wUPRnz^}7TC>C{bQ-3m7n{IS%Ct+G;Ix$AyVH0ua0hALl(>fQVuj3 z$&h2B^Z+~!j}Sx95l9`3W)aypUh(RMqEt)`SOE5OI+IeqnugD85Mxbf4y@ZIvqe2z{3Kt^7L?u1Y3Oa8>E zUaRsqWH39Kyz*w7ss9ZI+qjHcAW57$f;{m4?xLqA97dFXnv=_2`yeedwmHGYBH@Nm|xjQQTr0h^Y3V^UOGz zqfi8}yUv6&fa68{N0vh5B*ru()A({585vAaYY!Z#{`X{{v=Q`~y&d|=RIDujZ_Hfz z9T^sB?1srSim6P*@P5rGU}U}v;q2xQ0Nvd68T!_d0TKfZWhHSf8UL zow&{`etev~20%qvX`vHDffC0Dn?N}e2Qs9B1T#_Dff~PX>C9D;C!tq`-Z+Yv6w{Ln zncz0|lQfE7gon6@gwP6PI)Nw*s1P~ee?ERJDxME_SGV_{Kixg7z~5g&05o*TKEY60 z=p|IED%GDJ4YVavE-%JhO{;jPX}J&t(F}5Cp`eX8Fe+H0{Q?!N-TFRnNI`!MD2j7FJyg$uhRi$@%T#q&Mq!%`xq z!=L2SrMRv=v6orIS4G^_l58~cJztP)e1g^6I9fNB*1FH7aCTPT6GA_ANyk?8XTN)sT!s%u?vJJ-0_9S(ivtnC(F z{N(pol7P}czCL~`A8|=HEE{{{TMJc5>Z$oCqGL%kS4 z8v}}?OoT~nuPpEGc`_)eWpP818eZ&ppXMVDa9(!5=KRTi$?58DN)$y>EEd_4y%}JV zNFuwctE;Q4>uNl`e>Ck6dk63K8W(?RJiYgByo*0Qy$_5ZGyA(!!Re%1u<~7L7HkKx|7``Wb>#Ltm*TddA8+z=L4C}XzF?&_U?zS`+a75-%sAX+vDF)EkAI* z=MQ_$y(AXH2K+g4ZP$x1IpY6){+vMOV$kng-QHaH2P^O!F$7RUS2llz-gox=6yLphrQF|)6dkifiRJV z3x$IsOV2U*_AGRLsscgr_?HVQb|_6^hEoEXj=!<`rt z{)jPRw(T2la@NsGYyt5``YOFOIINjFW;Poe{A@K&j5#NQ@dz-PFM--N5Xk3W0ZIlx zuJ|jD{DolZx#7c9%t&F0!ONdolOO}JM)7gd*;0}zV;A_w$=gHY&as*A8{heY1=h&$ zm?>!Ps~HNS>?8Ke31z=Hm~)Z@iT#+{*2uzW03>*0HnAKFD2sr2s_m#G%`LEIn6r`u z%fhG{BuE}t6Ekq|G;Rskv7faqBueL@?euUqWS%x6YTFA^oFD1}*Rg%~6-wtZ*Lk@< z{0gN?bne*ChCgQ`YhrN~f~#DHIewJdjxjRrQD~du6y7&r{|nth?if%;#Hqf@VvRga zvbkMN^0cfb=~)lc00t1KZq_T)7h=F^m$SNX(b>3|2XMsQ`vIG0G0>Pf0W78mx+EMO za7Y-|Bt@}GYKOU(z}6Yu11h-${?@zd4tkfjNyaI62Q0m{7s~!yp<)WfDB1&oVKdVY zIMYiNU)}^Fz53ATrO`7s%04{Jm2S^Cn$2CGf7dhu*Elua@Pm_o;afwlkj}Vj$ItKaSeP_S+ZdX` zXnL@CH?G5`9JvNR3sX+=#e)k$Xh;cVfD#wD0S5#twJ_Ex^&n|TOsB@^dz>6xDQKM- z&mP8Dmrnc*x?%cD|M$OnN-4%j`1Ww+`$pbPptaqbfB;0f2{bb-%unzCK8mmyy1`U_ zr^pxA@PRt=TSdK(7(snbQhX&LF}HORJe;5=ff~6WDzMf~5=fK~eJON|ybIcRWFC6# zU_QmE4D}h!_?DoaECeM_Lj{ zKlCOh$`bj~W{8U>B7wr&B}m|eX31}3n9XrUA|)z_i8Qyl2THuQmBU$FNT84w7ZNPE zk^CefV(R$bc=Z`|>#DZhQ@U>(=vGlw}4`{F()@FD#@2>YlA_5{rT%o#mn;6GXX zYHV9GD-btYag%-WtRP?xT)*KvHw@-s0HG*MUWkk1yF!+g*BW`(MYwI1zb>j@#OO)B z+jt2~yU#&5&<(gElE4LshueSfpPoMKHCwH=beiygpPWZG#QDQF6J8G7`G>vpbMb__ zSDwmG98%!U_)E=}_$;rWr}D#;nPcYhkEbFsYT~*9e0(P_wGUw+J}Ouvmvf(-FQ3&} zD{@!K8Az%}e`iu3Xj3Kik(c!&Ar(?Nsu21oTeUTS&okn(GcbE>G&QuEBHU83MEkg@ z)@;>Yuyphx z%?*Hw1<|@=rIJ&ax#Q3dGn`e2MrQ2)zM&W|PI?Su=sV7c zQgOK~>5p)-n3DjfVNy^+S__DpUcesoO)Zwkp$p`j6J3zx_D%SIYlQa+dFWAKDcgrG za9a1jE>P&}2kjU~UOz}mv#E%-~I~3f~*a` zRSeFqp)d8=C@_l|zlSE*6(M;Wz8~glyUE#PTm2x|ze=m$axX6|dy!!>ZoE4?RhHLC z1b{7A5VN%s7YMk^C*o_6^)yVnhY2(h&codC5X)EqIox3)UatVV+}+eZA!V)S&-b?b zwR<_}e!9QD8{FL0md!3=(={$5(wZQGlr^F!1j!cotSElC#0uTm4H-&})xEe;<_rQw z-P;3ldUhB+2?@9pV@2_u<-%ff~p(Sb?eM-;dh71EZGswE|FW* z$W!bf7;uYGZYL$;++;js6zA5Cf`3!&V#6ZDKbVJH!Pr*Bt$Rb(oC6<7Fm!)q1Kyj1KcF#!f2I!ez< zu~3ntw2EcgN>br87Fr#N?MZ>3>sB6A`m@U_Uoz4&t7btw01E0L$n#W2q_uN`(h|&4 zS9DtWb9NzvmeFZBsBa2WOJC$=@ET&RX#voSAUSOihp5RB>MN;N*24P)59EjUVK5{` zfb<+~pnk?NR|M>p$1&p!RuyFEXv|W;#mA8{6p-7ER{yNDrbU9A{;W9uMBuM1f}}!a zee0ykg_-(S#k*Y#~{3k0IO}XX(MW3LMC=`BL)-KPPd@&s%f_<-Gr<0s( zB?y{C3XCdJ^)h1XlILI}&wvCTwJjQuj^Z_$$|g!01*)@V?4#s1y7=b$n0-h{T`!7} zu2Mrq@xcj54G38d)K(Q`)piRpTxO95gcf(2-9jr~tq(B{AzQU5X0veDq``2jM7J3nupSc&Uh&%=nT{MMRy-z zR*DLl`7)0~*4p=tqlJciVoc3PWSZ1kFFSYg~Os!hV?gEDuBt!qB8H8^6gV%VVB5|@=K*r5C8yWZE{$A0hb+x^X# z&TY3qUxlArQ0Ep5IF3*0J1EN4TlQ3ePs`eiX>VnmRwU=t$o2RmbJrPLKYgYzrjVcH znnPXSzFObeljZ9y2&xNGiPF5Z`keZ!tKv%Y(t=>4&}8YK~ly-UEGMPeM5^l)3%*MALYUz z!Fr>!dmuWViypTJM_g=xbQAIVE7eM|^k{)bWd7^exQUzGrmfjYJP6YV(FXGEW-;`K@abVtAhfZOBF@hiF*ZS`T`$Wj9oSpQ(2d*FIweO*&jn`R%Ct4#rjE0U@4z#+0FS}`FprDviX$0S%N znN0I{x{eP~=DOgipfeX=_fHQ?k|tLs0g(bQ{aN3dsVp3Pw~p4CY{y%Hv+1|qRd>+4 zED&Rc92vDFu>x^(&waGU;FmOp3>pecN2w+JnGmFI&Dg=C>4}h{NV>>!L6!prX~v;x zt89zpq_TZfA4xu{0$rZ79Zx^IJb%2bnEIuWEI-9=L)_Bv5FNBMlr^{^mB9Y$(qiZS}^M z&qbb(Q+sJ3aXpPmprD(Z$MrtTnb>Y>!ea(l+BNA_nuuk7vo3HQZC6ZWi(e8fy-uwt z-cuL6BVB;>S-ofOBfdLSSz!9)2GZX{g4NW<@1~>8ZBRPSh6Gi&I~R3Q)ApJ51E)fg zphZQbjV2TZF~?&z-ZzwG-&h)tpa6)dGzr#YetDik#mJe-zvBM`GVJ%zvaO+Kg|lUD z+sJj&ZOs`tLXi-6qVV};S(v10ypb1tLlQ?sw5SU2-gg|@0B+@aE z_S%_iGeHkX)=>Euf+j08hsrRraJeMoZ0`EPlqp_??^1F)w7Hzt(?N84yC87|0gj}p zi}le34AsezM8!p!0By_0c|DwuL3Zc@i8Q#-Qq^!*1lr~kR|I2-E4fTMXN&i9Ed@MexcTG^IAMJ4-y-Mc;m`4?tF2$-3Y_=+) zbC>?}R=qf5nYy!(PX;Oj|8xY?cvIX=@B#`K9e zU~>GK1w5I}<_gG0jw7?M3zJwTt$w3fK3UH?f*O*l?7MqE?KqH@{AnF)yS zDwQ$_f2orBmdGOmY{X+}#Q~y4&FHebWZxPqZDfN7213=|$QuY_HWI;Bxx-a(ED(zv z=g+oG+2a>UL|Pfi4MZ$lSn@@Zj#kGqf3}FqmM@WZ#OUVy*`ni}Uli$xL6iBj#e`A5 zEUMAEqvg-GV867@bW5Kou2L$!%1_Qr(FJ~Lo@~2WqYe;F_Wq{dy}iBbS0an6nYE~0 zRr9O|-ETMDerK>t6Q@;R%bz%^CR^PTJ*jbpZ@XW+mxJ!7`|G>G&E3ujE@E-*4Rgkp z+txH^T8E^Kb1v93NzY`7#m6^HwrDwWO>=!$;|3n|J6E?i*ZrN@x~J_L+4%0Z+rO_} z#ljW?Jw2)MD3VjYySn^R#gs9IX;{ZvlO(fEZW|}^pOrCr2}Z$fW=ux5?#-A2PPID; zBF9p$KR_^-^aosazFyva?F_p2f9ZU^>)y(VroSenSJI6joFrLq2#am<4MDMV$Ae(y z^q+Fv6$*v;J}>O*T5~KU2~u1r0LO2S6HgR@)I_RuFl?tO`9?{YQm433J})Y0f#lxT z8X1Bv%1eTUEw@VoCaQ32TQ!Y+>Xro^bU{Ql!XQEVX!@u$5fZS}Sp^rNBZK{Qp@FQd zO6wMhN@1sMcFcw#K?+}Gm>0I)I0abxvo~M*-R_?+4Y4Vqvdn{L&U{Fkf&LqoKex?i z!}49O_VeFYvNKG7(T`6x0ZzcpcVV?F>yOd9y&hcObniP~!R5DtL?h?QS9E+jk+GNK z)=6cBJtErlJA>YJMYLJx%cf5Cga%AC#MTC{C-x4iZUPCO2L-b*=Nb*1>FJvqvL+v$ zjM|`~lrI`6k(BouC#Fw?%q$02w}Ti;uUCNJO3M7?#Vzxq`FDOq<9S3xjg)3dM;9br zjdD1o-$Ukxs9Lrpcn_vNSSV>lg2Y856d6K*BQ$~uF8nzgWwZxLx@~I20u>c(Txm zD6EVCOw&^)9H>U6dB}n%#`H}OxAADO)S-8%4Ir}8?F+L7X@iE^<}^?tvfL{P*xa*b zrf1n0?Oc|qx_=0^$Ng%`d6i*swB8)+%)S!8CWBuy@xF9J z&tjf&#h#YfKV?P%FSkT|sW%Rq7aa{zbvbObdF%wAsa;0SXRK_3NAIhgo=|FZPfsyL z+K$ejd-6yeEJYw1Q}jjiq;{Ic ziL=SIx!d~2hdLRjR?JDVbmL|F9slo;|GxsHks~%gZMh`xD^|eiwiN{O$7Yp^$cd^p zxGmw-s#4O*qj-ChvGU?N&|Gz<6ZJQP>%p77PkXC3A>s_Q?u-AjgI_8=EVR=9s8Ygf zMSbw4d-YIDsk2E0T zWpC}#YueiF*SED-BP(7KYrXKT{iXV?tyfn)9#_A$b>V(e{YKV>dgb<0txWTBuf$3d zYACTO_O5ZvUhW>?_c8;D;u`B5)yTV|RoydYNrXjwoTScAk8?gq%^v6WPmgo4;S)36 z98q<_5RwOZt%lNa?RT*DKgm042 zMsBoZl1mhll?thJAyH?n<0o3FS+Y^}M3&pdl*McwAFWjIZAMQ1lqHWd_eMGuS&MQ# z4i$8LokelkN+eMDdY~k56I3SdOCcgMLxKcL%R9rb7*V5}BrA4nmguMhWrOETJ`l9}BG&=ly6~ZqFVL&=19E_?$Qo+P?+Aae){ecDw zirTaBp)Pp1@-DQCM-Ic+0Z-MZ)&&k#7m;|a(svJL=tOst1bK2pTic4E3fPmT#rPPZ z8OUPk;+kb-)LtJx8=((y!O$XYEN}k($3G!&@!x;^>+PysXyl!>RrhCEKTiwj-NRhf z0`OlyHY?P->rlf==MCyWE}!1;TAmL^y`8|b@}#~`^%e*zVlrLV^S~yWsmTFhR*1Mh zVfBa5+GEfQF`>wH{31$zHKn)q!vmHL1E`a(v;b5#^FQ?^>I>-(Y z@aTzpsS+zT;>Gn`6uq=p(Q4$$C|bpuLQc9gIkaPjt2zuWdFbUP_oga;6(d)`a23vm z%*(x3q}y4xgKjySP>qJRQrbnpX8cGkzI&^#%9Or)Vb|h}NwT?W%<*ch8+qd?KOwz?LIRE7dIY11PN+!9O$x)7V28y+s9|Xp=`J z3ZQGmZgH*LVG5$mBD#@N)>VAZ0*yGj-k5oZJIsYR6QXYN6_RpW#_`{O{1ak@x4g!i z4-obPM)Eh*SnK0bS7 z&Yt0k7*ww}ZXPM?S=RGoIh&PNl&UG)&ldopl;EuA(?BR4fBtX_(|_VBU#lf`zA31T zp#P}{zL`LRz@2~CJ3n913gxGv8wBo*ztogD&{Bgul^^7+`NvZc3M?`Fu=lPdR`?+d z#K#4!t8g~pDD$6$-HI=t;@y#JLrkk;(KDF_(1?~u@>ukDCa=+|+eUHL}AouFSvKFy(|3Qj4R3Le_~V!Llus#HRtnwV)$`THdWN zO><~4pQa4g4)n!v2_GZW2Mxz2NmFMzwJ$b6F(oe}>WL;}P>nBiau0#XQBx0%Q$sbI z*STaAGNwQ4u^{xI2RU>yNr`+qG;SA?(12D8u}&UfnKC_Qn2)Aqn?rt%2UE`tAEvQ! zEQc#n92~@5!Lx8)NGE;*$^4!TXHsd)?%7bFTLYNPBvQR4QY%0G^UWj(E)dZp-Kq;nE``BD9hNPA5*G3!d0SjeZ72^K zlqEdx620RAB)Mt8I*`k!H@t=qAgMSvNTpE&MmPr0ff4TVq5&aPKS_cvTofN{FpdryEwtqw!|Tco zc5TP)o($lM-W1pCRs&MFd!Yt|JobBN^2`Dz$7VrcYy+R%?ptxH*mrjBWJWbafWxiL34H^XQ_I zSB|GCtUJl#I_h$k{)TV`CErl)$&{KqlB?5yQgBc^3J%s)37t#+?H1x`o-4vA^ee2y z)2+G^Pu&i|_PMx5Do=4smT{R_o*#f+BkNk3A%4K3SX|Z&;?6tl{i%;K^Hizb)Ez) zs`;P`-tbu$BvHXa7ckrzS4@IrZ8IqZ(|>eyO?b63NDkCwWM3r1@3U&JW#9pYNA?X7 z-mjSZ13d z?M>pb-M28M8I$IoH8VZSeg?CW1yzhhN~-0%fjftiYNkC3ZBdlmH%y=Nkw5aRq2#2& z)a7$#j?WnkBD!u&@B1|5Um0&&M@OxFqm^j9mrsc{-$27KFh)?{2y$TshJ0aEHK2Lu z&0U`fJf4_s%M@9JL|MPoa)Jy^A0r#-g&1;DyyLj>B{&@ChN-3xL~lv55w(%)1g3>j zb2Zej;5QV^;jIB9PNKkca5eZepoNM*(SQ$Dq11p0eZU1DzLYFvQzIxT(X}m`@7f_c+?O;% zoHv68Yk6v$wvXBiv_;gI`wX@NZNPByq?$uc8$_wGVZagMOEqRk2onqFjN0I7rsNwF znj`pcQRNLt5TB;j2;<$SK|_iY5-j$6h$?_agQhLyU1zcecwkL&?5y{=tQ9H;>U!F? zUHY@;%;f;$x6hSGO~{+)E8)l|CYH3X!*w(PBR5OB)t0p~v$Ld!4fwM_u5|DAdT@Qy zz3+Uz`O;an=rnS2$BT|%0YQ-&%3!bLnU@RU(BG2@-RlSb{ES zP`AQDnSDs$A{QG19>GppLir#;!^LOQKnX2J7c`w6Y_zey8wR+JjHHQ8EIZK~u|{CH zYc*|NC7eb?&QAr!*Hae;Ba{h<1PT?FNP-mNOb0JRoTNXSXsm>+*>o)9a;ng&xGuHc zPdueQPx>_WQD~pGHWd>pjP~7aw}1a@zjO0N7w+w9alh&Jt_B3$(S@93VVLUhzq`6D zKzroaWmWLQBqrH$ZnTcS)O^u)WD(q){#kE3QgU9gD2`ct(^7$jS75PrU3BL@ zLgSx|5!WIExH#t5oGoBdqn%3(dbl!NBk!D{b+V(M zpeqRjxtLbnwX0%%Ow`^;>SJoS^fyHIMDh()4l_-I%Tey4<6JI(pMjqoBk(lD&a0yr zq1;v7rUc8Ht2$DZ${npKM&-&~oxZhF@~fm1t^_1Rh`{DTwZ(Q#o!&YUwUKVUda142 zhu2GOq8+ak4GJ3kv=CY3;MYxLqSdh!4KU`(*Tc?48)W;*iO;ex5+%@@K$}g||-cB{HtD-yIXIirWdUv|QRZc(C%CTZZ#B#f) zUt7f)Bd@KO*Ej#Ics%t{adSxCaD^iw>kToXNDo-nAQ6fG%Al+U_x&`Lj;u@s+*$$HOg&k2+XvG(#KZjG-}(FlYa}5+w9dXUvwp||DVF*o_FMGN z15lCt&|~RO9t3R04@WZy^Yo`2vLy%hUE3NTL}^H?(}}*tH7-<}L6=3^MYT)Oj2vIc z2_I^QF^nzvsvfjkXo^7g9ma1VM-Vvb_QoRfSTti7`k`stn93@;F~paq)r}#ls+?xz z(g(w)o-|vcP&>iql0&}kpYM8KdmsC~yKnbk3C9=?u@lFI<28?E%d&c={kO|6ovUA0 zYr$@FvKyN)5+?g==T@%muFSTzu^}m8w!ihRx`W>3&hYW^5!K(4GudywzwOLC--+8( zJ@f2$JC}pr_0_ISwk=zz)H~Vxn|}B9_O8D(`?lSLXvn%}J?MVB>GnH=iYAV+?5lMC z3N(a#I?6UG_0aM5`fKmgJ^%9#s9A{^+(i<;tMR~$h^L=++V4lW4xUw^m%Fql?K*eI zUH^0EvbbQ`1gb9PFS>xp;(OZhlgS%fkspOoOr&Qv@@&xC?bs!7U$;if39S@Fh9(4P zqL(8vGJjA+gp`GZw?~k`p$x5reky#q+_9)lp=)OPdd28z-IK2@v@6SuTWcWGNIN`m zr#@jJW9Y}Ryzh7Zn!XmA@Ir1KdT{U>1-@N>>V01Inx-vzrHuZ@XZ1_MTuy%{9pX8h zUVz6t^Eq?IR?bWc4Dtj2dL4XGWV$P_H`4d>Tg1AOcnGP`(Pc++#6s1S8+kestxXxTBa~2;UhvPD=J0U2$NAMDtI>i4PlB&zM+CI(jrn4gT;S}LN?@j;}dsZ zBf}SGcUl%VJ&8mGC@J(e1l+7#g;HZEqqzn{Tm7ZzGPM6{h|oM?ybrjLj7P}upL>F( zAa+mAUOqDZVJ@EdYCgLmu(14TV*Oy_#gCWFw!fJI7F=!CU@Zm`kvCaC!?LZ61ztov}i}asLv1THvrC+pnHAhJQZr zzxfyv^V4@KL~P~TlPEiD&DFX#WoY0RR8&UE6ZoI1>F8m7X)QF1CEB zv8xx`V& zhc8C`K$a2j&1#F*;n~b^jqBlgz1!)2?zNh&I{(%uFFyPBSpH-6xSlz@JFhpJhppp} zo!;`RPh@1wEuTHP>>Qt7wd=fgN#x#twFrInyJ4NzAB?_5ZYjmFYs@B$pT(IsGX|zT zrmytL$Z;vF?GskFW!mibL*54V$KBkbUl?=W5d}?q$exf9CEXHV{W%CI4T$X%SA6RV zR{Db6U%@NwLn#pcoQYJtCq6=DmMrpuzwm;|RWU_f{eJuJ94hNH+a0jZ+SSzAaXX}* zT#8X>fV>PQhCL=BEo9MdOLitj<+Yco#mmvg&0OLU_dBUy)D)ytoVHZuv@jPTa+Kb` zTVbZN_3o2HW?o>On+=Ejom)QPwde2L%kHe~+fp{}XUFzE`i|iZOp}r@r^Kt>kVWmz znHqLn*A7XK{SabvW81hcqRRvkiAtmn+%Lo&PyC?aoi^`CoLHcxSes zCayjFifUkNcu%v5;pMfOf<-vQ@dD%dWz&szzFL!>^Gp_=R)w@8MUVF^%wxYk5cES41)CvAiWJ zdt%7Mo4fFAvXfLIS^!X6Q{1mz(G5JP?v)3SD)hmAh}Ya$sjUk=$uA))ku)`Ww76N? zL#o)$u~m?&UDY6nZb&uO1gY9M|NS0P1sc-{sj9k-B|PU9rydBf^2u~YT*HrIt8D7Z zgHS3LZ7BkwsGwm;?rKw63Yt~$rZfGG{Sa@tv0Y)kCnfnKL?x1>Mo(6|a^a9&g;6d6{ zDu7}?`c{&lxM<58vR{ZXq(TYI)cRnhxK^}77VkUG^VD#k?|s8%AkCyaiA_3ZwlSq8 zo`N?{Bu0rZ!Fx=!gtX1U-#u;t0t$(bf+ou8=+>7i+eg zVL+yzx%BC84S~c~5Mi~9V=vWRgB9a>*oN(=SE50(>Fj#W+#Qf7dp_+G7tC{sB960< z>ZS~d=bOS}%Jw|DYxe~msEkaxdv{XJ=ZOSGp~XO_8O+lOz!5!85GwO8Ox1a`g;Me- zU?ZBB)H8WqIPMTYjt_*qbXe7X{`jw= zmUJ|bvKR)>Mn8Z2??cUTYmQB7&ZtJmNUhbZ1r7G-7lvOO7Rr{bCwrD0W6^Z_tLGHmcE1J053oBS%?!Yr5NRJ@59 z&ZDn*3)LsLR=jZ;jz@bZEqt1(;8g}|m3B@ExLqF#YFN@%-_5d@dB4mC7%PD#3LJ1; ziPVZlsFDK}E-gCGYaN$zM`FRSG)V@msp5@QxfSQRP}Mh!_Vg=h=)^;iyo?_iXvNVENB7cYQ*CKROA*0<-ZqgNeX*X6N;j6aGf9#u9(^9p87R zEU#FkZ;SO$@>rHPT?xuZ1IJ=1 z%CaA_eMX{B2^EPh6#Pu=O66{?Ok32ph0HT?TJAZSsVR=&)pxtq4D810`daDQs0F^1 zTHvLa(!N6RsavBDCP9vmTx`@#oBzp|RE^s8D9z=PYQmP}V~u8f8Pijd?MLiflH<<5 z_)s%wlb6mUfH4iWQRJJymp&^1#h}-gk0lY5;uVj~n?|*qb!u%=hBz5el!PNu7d2SQ zEs7K~IRILyVF_7z*$~|`=bx)tz^AJV?hbO^O zMY++BXRbuI?aAFE@g;ajAX-B1Y>C^=7pZLZku0TB<62hw4F#^@&aKo8?wkQE)a-Ke zwB)|X9e(9**DoHK9-i=yvpnyDuS!Oy>-lWIUrJyowO2gA(p5rxd11yu7Ge6zz*nvv zMtJy@%9q0vAx+2DG*4vZ%TT9g>St)^fHtG*5Yfm7#R7G(qzhqZWhhAbg}9k@$Z7bU zfcfG+rIPuwAu9hhAxN zMva~~K-(z4TT7a-3}Bt36-6sgZhZl1OdxM2hM+7`tcx1glZK9Z|8k+kY)9XuMqa4h zfhRxbBp3fKi&g1p7H9hd?rFK)ppm!&OqGHMI| z0lM~<;ezENXuJHL@io5f;EJm{p%Bkd;-Ip|GJ9hal-{-}WY`e4Dn8J5qj>((5~BK9 zB*W5`AVM)iZDx5}fJUn(R^Yxxgk9pp+tx-5<}St20w%QJh~-(kBZ8s%*6#TE3%qvE za{^CZkw9GENa2%(ww?u??QjhP;%Xc**hvT|Qe$GX85%ZRP!xfd4n+%U=?XAB+Q^Bl zX9&4$C@9H}12?SVsEy6ratk<9DTk#8gn& z6oV20C}54E1R0blLOB+^D0;yC@E~F z*ir>WN}m@zr+*tMNKj~|Vx~;&_I17!cj218PwYnM%>&i`lX7n!OyBav(MPT=Pkg&d zbOV#56kmehIuR`)j}wU7*A%I2^^q(kRnU7erZW(vL>vK>P~%z@Y34e8i%bEVtjfLn zZ*!Zhj*>1oE~b-*8x}f5uem%zFtm*ym_CBa%7fqPgU`uZRSiCEsAA@XZyXcl8 zkN$&wLj2?E%jL~)@3sFO zbGKAEqWkUgUi7>7DZBP@8sbLC?jP4Ty@%_ocRFG_&9oIDLUiA*|0qIg@y%S@GrO7fB$$_h)pS`)#3`ia$Eh-`*z#AyL{ND zhKsYf%4zuh?_aM!J<-oc*8D=OU?FWjEpfUGT3cpg4Z4wOJV!nH|(?j=De) z*^NNa7ZCujL@O`aj5`)Tf3*3y8+Y_33pRtIp{U!5;L&E>RaS-%$*#+{j*_(cmNR(P z)v)&&zXn~Ui@Vs5r$WBJtFl;!?;D=B>=9VDHLi1ja$<_VR%iWuiRHP1k;BLiRMsDN z)riKBslLO`19p<&4tH8a;LfQ;C-EiXjypeHkIC#xSxuKxqOtn=s!JS9H7$@%Z^M?sAV)DWCWfaoO~z$=88&6psS) zyQ0g~38wclvkbABJG&}2oUdM5s!zA*eDxSF!IE!z6d-6WK};2~IKE)Zk=xM2Eef2u zLdgTqVGf_pUb~Vz;L_h(a|A18^CGHAgDHHs8$ zgrYrROtImSP$EIl(Hd2gqAq$M^ne>-usaZtN5{Rxu0f&7Gp!6j4&iO4J<)W@faNiL zV8`%51gh^WPgDbE2IyQF6fNNNf}-WJ&0*$uZS+8qVjLxX*AXuV+y4Oo0RR8&UF&k< zI2L{t7r#3RcS!FfRY1rzwMkDVN$*b8)>cYj0p1v!u|+5BuYHJp!hMp}%>*0YP){)LRI{MB<;_WNC{^jEBt8@K}_ve9rxJxiGteN)q^(Qc|Dreow1$&U)M%w$r zqz}QX%F=-@bbi9hwMHHZwur8E!+{fIJL|C9We~I-S(Jb!jnde)%@u;O=q&-7%c5n0 zg|u-kRxXl7Yb-LVPIgKWE!G1qUeAo5&^q_Efd4MZ&87BMYkpk<2aNQqO1sg%9oE{7 z3jG$rcSOGJ@PGK*ua0Zzk5`pywOQ-*8^g_4H*gA8CL(uwjn3tuUZJhC9xR{G+Js*J zzCobl?lws;w>v+EQ`^CVu2-vk0Q~i_ZNDyn^ZJB@0anOnj~Z0GCY)k2 z_1Yz+ZOrE63M(YOni`Ia?r1ZuWcxAUMmlEe-KC4NlpftttgRBxMtz3E2VJgqLC7{DK z7Aq4V!?s+_fivLfCUjlRo@#Vm(sYK%G~1!@0$BPPffr}MnXL%e2yHo{7q~6MG6*fw zKA}!@a|~R9eK4%?wRI5(EeXO`-f^Mb3A!QNp$PLesDro>&hQ;9mO^GfzrhN&xZ~O^ z9eZrTg@AWMn6N+ZrcEv9W&lNcH(iO|&9=+ZX@|KaqHu(|yjksrIEZYhvzF%Qir|uy zi<01y6P&5#A+TB=N>JFS z5XN@ZyrG}*@c&y~7Kh zKYDwG$Mve0luGVtzf`=-T`p=={CKz7rGA*#$0%ou%91%-H^aN(^N_U^{xA*t2R$?H zeucil)G+u4b-u%WxtLpg@`c>;6g-o~+ws*H8`7Jq!CqCd#W}{iU!AY{0fn_SOyw^ zL_@98JE*n>3i{X5`-g0$CkHg4P^psi9y$7 z;ghdx7jc0xQ6_y68+L;_NF@#XkHNRz_g{DX;k^yEL+e`08SJmUCnj4}MqBSBB?fYg z_OGMw!{^aJ89i=PX)vms!QPMlP-dK$H11K(I3I_-!Sm?1@2U*8Su4>ddxL#>cpN@G z{diPn-Zoi%bjhQB9^O9;AA8RQ4Lp!ByNHVol8|3HvB6D@oiQRLq@6ex(sTAiypUL6 zu^b^i{dPCHdBJ~w5K$FkV}&xBg`vH87G9RP8hgx>&O07bm*@zIc#%90Qm$ZI%`)f4 zkH_2IAid2>BDL>OMV3n8qPrKMksJ>RE&IQSv-!8VY<}(yS6(?mV&aNo=KWQFa0 zi)~V*6ik)|(w_b|XfaLTjT)=64bPPF&V}9LD#Nuyyo@$iNwwebTZAmud2i6w+VEq`;-gJ! zX2_)pwy)^Tfo-l9*4BOB7nc34k5_Nr1mPd zRps>@zHb|yE}z)`CcN0UzloMtXSPKek>zt&8+VmC3f;3t_>i1$kc)t_wA=D3TsKcl z*kA98D-IcRn7sINp|gwFx$-RfGZ>rj0aKhgU^$PPW2_>I79iAVdHz=A0(=J(J~_AT zek)gch|#Np8d zjbXXl1;mYE^yK9n5^>-|g&#W)^6g0|h8?U{Lk)i9E8#DGtxRbaHXD+%p_e$A5;Nz6 zvz^B(N)2bH2UPHywHX$FSJ{3T4X;K(Z}1E z>`4+sGXUAH3W4xUbHH1{3x_HVpDM>s4OO7Z&Pfe9p$h#kn)Gc)hmK1x?4?KEGAK}{ z?Qfn)(zATIf!%q#D@cz^12Wk@zKWenE5{8%HL#XE4rJ2$R)xY1Q2_Dt>0 z32wwoN{Ntm7D=grF`Cjah6<5xF+m+`RBr}c7L&~&`YdQjiJ*K2$>$8*hzq73C+>X) zTaqNKM8rOWggbl+79!xBkdl0`r<_o>?QoqIVkm{0$~{Eqgqn&&O)7-a4;VGIq@kvw zPxm>YrqD)HEY7cZ$jF$4<*}0_p9M5U6?dvGcQzsmO#*hnG_LtkCIDQvh_suqU;%8ej4DjH7@wAa$s5{S%O4LeB!E@)hA9BarfE z(c`q=2rcUfv?5q|^X(U0HyxmoH_o4?!I}pnD;!gS&Dh)v@=~+iG$; zfIwZ8s9tg^!yP!@}8p$DcX&44T@xL@>HLRkb< zr$4!vb;U09w9&q5C;ER{r@*yMLw~`4SMsv>eI=s(;tN7~2e_R=z0t~|L}DNVdf+p< za9#QA^#J`S=a)6YNlH9Ex39$hi_`JBDI}#td_Tj{q2aE`o)6F+OGD2G|I-C(ouJ!S zA||iY3A+9TDt>Mp+hPAn+M>j9R#}W@SqSV9k6SMCn3qA8V_sUF@+va>QH2CjRdl-? zj-7Ha;6w?W|*@X+|7Y3eK@cxKx7q^>)pZN8v!=M!6G@jv&8&qeNJII~@{a z>Zi-E-yCZ2dB4fuM*95vjS|)T8I*p{ESC05(l<&(w^hoor#X~<0!=gQw+kb9tVCQo z!z4JqlmCHfW|&x6TodJf?IC3n{NR74Tb8GDjGGjK()DqVe6a7(*o6E9NYHm0ywWv2sp%{GH^$0O{xMGSm0(}yeDc^>SaZ}LU&m2 zyu!8K`(jAD;?an_#mAI5owjv-_`WoO1%%47ZpuAOrf=)(XWVp@ggP{S9jTOoZRg<% z88NV;gQ9-B$SlpK<9rDcGmi;gj}|zfAi)?W+CuT_4?Ze!Gk!C?8$J)yD`C0C=1EFe zYw?Nb6LG5@uoFSfBn&tWE8E#cgsu%g=8RX59Lj*M(cJHXmq_XruHS4&mqiXMz!5T0 z2MEZbH8$$xmy-)&ixY%DKnx*=0wAaL$qiKGl`xkAzeX33&-tmZJH#T}eUybAw} zzld4fhefC5KKl2ufO9k!i_we{Fq!}xJ0$?L*r=fhdMu-J9P-2kb>N>X!!*W@v0A(= z=fH(=kR}E~72I>KDPi*o+9|>@ZlXSgPmZDm9M{tS z{`23F4lQI%4WVVZmMpbmryb_6F##xkpn*>ED222>qB#&*mQ%#pitXQ))|^qT5$G%r zC`juoa9y|bgV7jag;=*_DkR-VNmSq!+* z-dx1R`0KT5o<$&zMZYacEE1UJ`ilVX_k~3=>h3>sku7R{{O4Z;I9vv1itC(ZBasO% zyL*Dmq5STt%)I$}Ifs_Q9TW&{kqy z1XK}$0BeRDyQ;LBUa4>hh9dEXZO+7m5%?eK5Z~d)1eBg8xw5G^y0)jXC|Rq;SjffC zMUAo8uZks-dlp*D4~~zrs4alVf|-kykZYQYl1K(97a-nvJs>Y5dwEsqvQlX8NBG#) z*ha`+knLA>w!pJ0S9URnK!+G%wcB(r^VG&JEWW&~)1l8+h+cA97*&y?B`(j-W>*j! z0pqau8OiB$1$?`20Rr>num60I@3GEHqKF?sf3yBR<; zNX7$$0W1=2OuiFM5*57zD`WxXsKvLzt?l2|x#wD$QjW5V>0aOf+xX7Ww+rsvIH}3& zGx$Cs(WE#w@>V1;Q+kC=xtr#aE5y0beXz1ojfv?IS)`U<_WG8bE3bI13eAvYB`BC_ z%Qd(Z^JRBz{|5j7|Nrb=+j84TlKmBgo@OH~i=^(Fu_9!dwiRu=HIlsB8yg)8kc1?x zNrD4_mNZZO5%W0vbNwY-H&6hGTUHhlAjN)YnIuqIm04Apbuue+=k#wok0<`6fBLt_ zlhAsaj8B4@J#^k}&3q?t{GZO&sl^`&<%9e&`Ru731kPkIw(p%F>jBj!Z_Sa5a6Eo|vyLU3PefwhcZtGz8;A6krKi(4GhR##Szdcm{v2RcOz#Uz^+v;@ox`*#~ z`-`tWICu7Z9P(ezb`Ouwdt0J)*^SwC_&j!^PQLd>&o``T-qrXB2F{)5vypfA_IR^n zcgjBO9xOgw&ByEudmei7O?Nutzc_b{YWHZDclyM4?;qI5gKjiwR1e}j8>CpY?L1{m z^nVH%pKfIMU{CKe=URCB`(FVP+{4VlsTV@#JBn8LV25=0+kYmLnMXxw(CV`BS1y1Tnv2|Td*;Q7x?D{Q6v&bRHylc6{E{HXsO z_TR^kX}#J1?fmoEw@>{9`JEX37{A`8AIjIPXN_uBp(25Lb+02>%CsA6>)qBq`<$y; z-4qkYOc1x;-L21cW9Cj5p8omAzrL`?Ebq>m&L;!Mx8&1rts6EA5?@&p``H>emTd*B zFKpQEG<5FS&rF!Me8w6%cWg)_Yw&E@)98UW>}R>JvwyMC#eaEp!v}93@-MPG$fx9# z^HEGw*027PRQ8sh>3nQtGZ;}(96%HXijqAg0GU8$za!<{QBi^^3KS{1R_LbUbPajP zcPuJez+*6O6_asL;~0#hcL7<--AH+9kkZz1u@_A*!N77Rv+$W|wei?;lwR6?(MwVt zx*P%sEI!}3`plHjPLb8}-mulOY?*WgaFMh<4iAL1(hU4(#JgU?@Z*Ls1HLKf-tGyYbBcXNJC{9S%PAEtiNa}i-Yo32uLC>*QVvfYnW;#M z=YqFX~CDLlBsZA_(;0qG&OOQ;`yKC8GvJ@ldqZHJBwo zOrgu*ElNH3Wn1QHL6Pr9HoJx*6t_`)X+dt8YoJ7 zQ5v|xfhJ@+b`Ca0bj$@5MPQW1sxVT;eE`VmEx6)9lEZyWAW1n(PCuPp-(G$`yRHym zQjyD$FqDtYTK`?F@xOm8CsGR_W)}tuF!a-1^K;a;S z8!3tuJRAgPBTd(khrnxw+n?ub|hgub@cy`mO@G6X;C@JzoKiA`nQ#5mPKDqvt#JFtn#39Xo;69*!8u z+{2O5u=j8T^*jd{nz{Q#b_XG@gTkE#aUsYxaWnJaBpV>$BRRgst>xEq z?~Dtwirn>~EmRPh4zh)eS_1)FxQi;@c+U54s<9O>X``fK%88035JN-WS)pSj7(qkP z(*w{DBy;zn?EZo9vz(m_1f5~#Nehv)-OiCI;2z)a{C6QvUNJ+1bP^ z>NeJ$$7V$p5@J5)Kc7WHtWL(1`)h74J#xQuPbG5V1_!qu)B|5_&VtaJz1uoEO2C2g z)4&TuZ^CW*p7<>7j|2HZj+%Wu5K~O{@ZHvNPYCdS9*U0(THofA8`fp^QxMudYi3We zf=#`Ee=FC`VK1^?q=@7civH$KC5~R2oJue&uGfiDqL%lR_o+d9GiGfbE;51@S)09X zN35b%3%3O9`ErqIZu+pGNE|89EnOTbjeF|Iv5`@Nr!l}vjczio^9+HfGQbZ|0g+@h z#d9G44vyYe&>0a$EBo0vthtIfEjwfzf@ZlDRd=!iWf~^Xq>jYW5}bN`J(;!+A>gdy z6g4;-IRVOBN%eOv5ZY!F()V5tkr10%q&P5w&=v`Qg3CnQ{gKUYKUn1RCGbnAY{pP=DSg31z?RPx3 z42M1vX!D`1~682FC4A=?X4T=atrRmBx7morro1W0Ok5 z5V=h%4I|VxsWdQz0(X;2W0mA(K9xp-&Q6i)ZMH~MMygbyS(h~_vr-Unn@m@sD<3`Z z3{!|YcG3XdDnXHiU2#Hj6cz!38y3j2iEj95QG%Upa2$lkfFS4Nl#CRRjVM~cFc8v& zps2d>AhQNVNhcjBLS{Klrtd7J!$o$AlwiZPQlh*`Oa9PhHK>MXI5-7&O@J(f9vqy4 z8kbEMuaEI0B5MF@y9ISgw)P$b;?`qMi)m$%y;bhy?@aPaQT@RhOS{i&4`(`tgfpq+ z9Y#AhC~Gq2hz;4k==gT16VX&h--#oddL7fn3$hl8*8K(%(bPZ;Q?(gU)K(&l$yx*p zNyqF$UB&2B58o_aOi?NvvZbz>T)yc=uQ^(rZy!IeeqRA5<44)}Ad5N&0#KWp=Y@yz z+U7TYdV}gWP)i*^M=I<#Vqqw7lW^u*CveIO1>mUoZPtXEz{UJe=O!bmRFp zR>P$)IwBl=$+(XW!cnsd?j1d6bVxkO`mk#f~;rqL1; z(u>!>;;Agv9zOF+X%ERU^r{`x3Lzlq7bwnvpg*u+1cDBM3_XJWz#Q@f9fAixP%O9U zMrwr}0>)Yp^a$vSq}UtVC9~`n7q<$tTF!Z=nY^tqPepc%Ab%~c&QOJ72l*ygVX=c& zl?gCV3!oGmY}8P9w*&Fu*AZSYC~NX`JMhNt=(a+^DAiV~ z*P=ngy(ahFH(V%VUokNe{IXkgV&$>`N>M*6h^+FWCsDl|AF|qwE=6F*4jeJTc+P%k zy)|U9=PJoC3#ZhAQ=Ej8V6zyaLnf>=P%Sgrz z0hkF;QHvEZyEbqA%cfhn5KX!3#hM~CVSwIx>h1xzdiw6QnR(J*(Bck)g8HeWb9GX| zP#-|nFcl0r3qeb`j?+-#3emCWsXGZw1w%X!vm4V6*gBHo*0rQax&HOb#fMw=|L;6L z>pIb|ow^gG^g7KJ$LaFmFTLvJYg|tfcQXm1yKvXorc{(PN(JIZMnwo-N)jnCvT4}r z$$`*4I%Oo$!}GyaBvB;AbD*$E6uIjJ+GgpYV5p1cTJbEnOZ1Rk8bt{fgMuOjiY`G> zf*J5AQt*fn+*F*dArFD^87NwtR2U}cfl8tnNV;J-?F4QKCIUT@zMzRhbdF2spn2Y4|kYf`vB^xXG#aFg79Z@SzL)O{bnmR|=lQ6M_# zEGTV6H%NdWafx=dkb1iX^g$6Ys**>NzFR+v3atnQvwjGMQxHSQs!S>PknxsRa2QWL@cA z$8@#0jpr%H^JJ!g^mSx^Yzj!5A+;$WjVHG$AdRF2G~ZVw*+Q!eNF$PSYpa&ni@HWo zE?7#%WacI!v+KTLt`g?%%N%%Nrr+E;;<$ zZ1oTf{2NP7VnM**s5gkt*E@Sg^Qj zSkS9xNMdvY1K$n6kpr0qI8r)s`$)M#qVRE~^kV8)XIg5-yW?&L0;AV)#DKg+(SjEl z)udMlKJM?K0_J0#IlcaV_3`YyLatH}_SkS)mJRj@#2%C8OZEVu*QVFIh#HDiYm2C@ zPWi7*6*VKYpjFgR#GttlaLbvFiNtl(Rz7+ZRjM%+Jt{TVw&}3ZZvEw(WJSVF*l4VK z-Q5*{4TsKnTr}rZ6X{i0LuaW$!>;LaP2`~AL042G&;$*0C9fX=iaLzy#C9T2+92c( zMGIEM5tkyI=bE&qAsHXFPB$oupu-JLZd8PVnKLBiA-E<4idt(U2T-F@hS(d+oeszI z5pUP|$J`ye1K*ubwr3A^knp0sv7DzN->w}$`SraWSmJ5+?;lJFgznH$>pUW8s#lf_z>;TkZ1H##L%;~?2)i#iyOh5Fds6H>MLS}{)lY~+ z3^aTK*)!6xqW~jqcxs(4KKib-S1_QSphKWsEEFBmNZCTdrFi5drJI7HMp8iL27VH#Z zMYUI7%Ljm7SM{~-%2Zzyu6pw7Yu%0vmq^U_$L2zC>WCXD48hrhgy7WCyJCimEvNkL zR6olLAS}fj6i&^CYoG0@DVmtL`v=jOs>HJ7?%IF;@vk#F&vT@q0Q6A)XYx=F&{+d{ zqnb==!g`?MU~2;*DoP6;dy1<^hE>rAkyTo*q3bPf@tN61tZNy2-QH1ZtBWp1U5BD*wv|SM}>`Mzaqi|mtIj_h`#8Hu0%9)e^SMjAXDh{o0ksfD--}O zxh;C82*6^|d;g=yPZ*CUb})3^cUxz^YmXIsV#BO7vl`A$D(rNK=UA1nQI>!ASk!vH zbNwLX_FkUrI6S=}y9b(M2z=;&>E9%;|1G~@wkP4~$PPiiKoqgT*c<*JqsFwb_egg! zTgRSRnTy%5D?GRvsd0q|MG$6VV+XegXe6TvyDzsgcj=ucdoml-(Oc6@83X6uor){S z-klXbxPiqnEH*(!ystA0MP5#!Ki?<=+Iqn-7qDiJJ?4A!`v+@ZMn{P^VgbB>_+8WK zGG7>mvnt{i77T?_nj4DEY{vq!Z)J$JCYY4nK97>Hrd}D$Uf6PV;Jv7kH`dUe^Wkws zd?^e)?@nRp<=!YPUNY3hR$;cKIQ1FsUFi(eH9x6Y>50n$Km|(O$vcnRo-OX6h9}oR z?+P=i9LoEEwNxHG|Ml{}6Mfk!C^uS0C&ip{K-;Y7U_pr_qU&~qa;`^qAHILRtV?#A z%?mxj$a@Eh@oM+Js=!RL-i>WgP|ap_WOWkaMI!E8c4Ky7YpEVrNLdiLllfT4>20Fn zouV_H>D<3WC~`S&oXzv^!CYn+bwg1y!wZvTGuT;2oU02Y!&O&k#{72sn9m^Y!5-*7~ zXYBYEdsAHDl>tq*1QHzf5D$E^{CR5nR9H!R>xLb_vcCrH)vdw%QJet6{kZb%K(rr4 zY+{oYg9l;ZC`xQ;-pwK4G>RI?oq(d`I}^5z&{2asW>5ryDOXXn%2FU1p84UU14^rm zB4>|&N+_C&pa)4Qf?I38Jq>1_A6iVS4kLa1hMNXM_7DE9HDRlSSqr1N&&djn`G#L7 zW+n~Ou|nxq+jJ#6d${rkn2i}zO--@o2oem=YIU#}?> zcTp+mOPKiE`RB85pDJXfH_SS<*VoLtLsaR|;?aIOyO#5AJ*QpoP+ps=g?GPPeCyv_ zoUiGM-R%fVvmVxcz4*-p*RqGXR4%D_oX5hPsb`#5{j>9GwR#Otk*LUAy>nzwr1-6w zcej^U{p;)RSM*yH6%$4Dcg;+^>3_ZKU!C2oF(0Kjq#izA|N7xKim0g_g;S&7f zFV0uKme;E{@uq@LqkEQxaHvp(65Hf>f*f4tqx(XtOE72(>rB2PY?Y-~6b70FkE-Kc z#!vfdreyu3(BSxruN>>Ov>#-_D*2K$ofZQ&=k`@xhU&aY=o6QPLN_u41dB?1HrkW+ zcExO~bfwP?EQNAg@o0#E2Vji2w?&3B3_X68Buqw^CxRf@qqeokb8p?bV@KX|(7N`8 zyIl^7fWy(^>?pv8uwEGGN_$`BG%Rf$T)$;Vj9U9>GLzXh^xHg zRaq7%cOH#vc~d7HBv}$8DNg)Tk8#a^o1nN;1g4lylnD)&jDk{&pul|&pDu%SDMT*$ zih%gjugJ{y*+`wjtFnHI5-CWz^}%U8P`SB*rk+4B^=Rd^xLiYL>6%3048!HS#Nv?0 zQCO>d*(45$OSQMWbkYD~QNPcuv3)G7CgKs!v; z`D1`^9h}tQ;pAC3vqqCy^(_jQ?6kQpN|>?I_1KeUFwFJ1zsOnJYD2>6t18qtp!4VUYHF4KPPtAX-+IB#>?Ei!ogVmQEv{$|7D3#D6y(}^7Qz^XFp$v zwa;Uv89mvHC%)Lv-khI|i9pV=!^NnhCx-I>(I+)=_?WZgrJl=Fm-VL5zOe^m=aNyp_wAXA z7+ltUGHy?)zQqTr`h??Iz9@CyqUy5z@+Bs5=MJ%lG(5Yu}FZK;?%H~M09V{YhOgmM{8fq$c?qMBq-c9j0Oay ztfgcueeKrLK9#j3@&K&cZkOO~qLg~({+G*84J%|9cju$A30|KSvYVL6#VeyNR>;1_ z>MOEB#6QE~d(R&^zC^9PSww#73ir2YfAK`wG{fD%Szflwf{eIy&ez(@SA{Ey|B+m& zYDwgso@FD7#gvu=E>^u2@+U_%bwVOCs6ncy{y9)VPCpq?22cej)FL-87J zi_MdClU188q&Cl<>C{q9**tkCcG-wx@siCG3Cz6BBeIaS>)5g}da@?sb;L6 zBPy$B4~IZECz1Nh9^~bN>_#ideBwT72wlhGsrRaCeKOy~*u?vs^vG44Ewly?&I!{V zgD3B(E*nuSCIopzM#t5{XZ_jrtX7nespKDL<2!%c97`3}hpU zB%yyzh+?(y;@4_@ttzrlZGLrAIq9lNM9codf#B=tU~Ad{yXD$Cn5XiiSDOMlmRS34 zI5cjG6^NGvd@AT0#7Hckbn9g#w$JbMYOTbBJfKB3qDWF&iS6^NY^=m=Nwv=#(o!oi zl`yrMM6|5LHeB1-Sc$x~g_RgOlbPe&A)TS9Hu~3QD4Nxzxf0Pac-AqAP=d4NX*KvC z$w)tQ)XSEMURt5ZjcML8IcU-avav;qWz(da0%(0uCl4YEi8|P156Wk#h9VcGjaOq* zZ!n&+zP&PxN4&8yd4ML5UjCy+rfc&iPy4(M+$!7{K+BS9pLd{4QVoGIsmd1BB%);w zwGZa5CX)37V*+pNj&9li=X8-%2e>;M>un9|SQMsn{k#T?;!rQKP>mo;>k*GgL!CAGYp}LDQGHAo+Tzu@=Zhv$kL@rmohPP2|?y&8Rk! zTM|xFknxHCkx%)Vyj&KAUQ(m_ZoD0?TtNOSwYLsev{V2&ev_&~Sxq21_SPW|!rokY ztJY{W_=XU;Ic&r2hjv|gD-deacHzbcmp_r);Jw*g#uK8*LsMiUie%a@JXjPYH*XiV z&N-1r6E=pSl2q$*Kb1$nuXaE?)l+w$Og*h$j+-{r4j4M)ac(uo{|5j7|Nrbg z+j85ulE1=o?ZZq}Y+15=%WPET*viB;iR1C5X0}eHT$DsxJdsEZNyYI#?MLhv?w2e8 zk`hUQkQxoPC`a?)i6j!;Xfzs)zIOie`EAtih`-lC{QtkK=eN)AcACwj!yWd|=w;%( z+Zp_@cN+Znr@$TDPHd0;^4%W2+iCHy8}s)k)^oG{c47zi<>1}U(ZSJ&ZtLWHM|>MO zKO+9^aq=G@J_y~x&AXlb{dV*C{Xuv3)rIqDPe&2|xmq83S{O{Sc+sVAeFO3;y@t@@B84lu=T|uhyK^P4?tzALO_{(MErO2rU zJj{*9@k~}L{$Ko5AYF%rWjt+_EMq)K0y6mMxKG1qhSJe#$|30!a(+8H75tE6w`F{l zpjjWjYR^8D@KwNR!yZhQ?%(|sSl{s?Cosru;uSS>d}4T(^GE4QowQECEA?UHRw|YN z$4!Gva=3g+nn!OnR^*@^3pB`*oN@we;*uP+5;`VC>nVvUUzy|`xPVs4XZfHjEV?}! zX)LaPAWKu4fsW@21fz9@D{8R4Ea@^2Pt@dgXwre z1`Bp$L6H!4V?lsgk=Z)Wfg44Rx0f5Ep*r+W33TAZCYL+dPueKIyF&B%GT|m>do+4^ z10dxJp7ts>yiIqQ+6H>|iRcqC`XYqI$T0Re>YyAY5U zK?2n}6s+f=Lv?(EH6R?U*Qf!N=r(G2C`IxEAun=~0x=e#CN`di5ZgCuVtwCZvU*Gf z4s=z+5K;cDKXC#(;xNLOFmlEgoBnrhb@IJ%&q_`{%MF*QIvJ#d%D;^Pd~)pUHv zP-Z`cJP7FBPHJ84`y(E~lCbV^jD90sqL_u!|Ch27F4!9zmDAc!L%o(`dQtuLR-$9> z$6EDV@~q3Zlf*BPT@+go-%b_&5-vT}DDK*miQ}oP<;fUpCgs0=QM{;j8S>Zef~ks8 zbp1+ev@6ugz4pN#g@*6lzkbb)*HDSIYO^Ai-n&oW_wH76UpzOEt)d_FgQ$YL@E>B>7&CF|`B7N?Dd$%B+kl z42^S4GmteTfY>>9rEIv|X_6g7p%y^A8r5bpF4L~sJmUbYT=A@>W$IMaS$3z$5>x92 zkxRm=R6L|P#~P4ICS0o1Gu@nNm1i`_MIAPTlJZ7@fqXl7niqF$q-HYyxZw%2edG4+ z2xM+Y0gQ$=#N3XAMaDQl6%z*wrlg=?0ToOXtRC5Fr5X&ObUu&VD|G+SI|DiqyRkIyN)myed`xWFsD8H;mf0KF3pb*u6~dJ{eh zu{dL~q_k58ncGm1M9mhE+{A_2cvO%Gquu%S1rm$-8a5>zhuUE{9Xo?PDtLPFwH2(X z96gA=poA-;PTm!xo*8bxuUT~CX;^+~2AEvVOjjzJlWt~Kkrh%XI_lS)ikYBD=6^ka zxa+GxE)l#ccfIq^)E&9Kz@3gCCPO<^Ufkt^TqN-s#$4NTJaWV6!GC-RZ11Ts7v&DY z)o)rUlI28_tlT_2%5M?a=8!MQDpj~Z>#hMn(@$JUhy)ya4J%e9Nh5H~Vdk((qHf?w zXP9wUFyqF}fN6=&xHqzkGG`N*9cGfN3Be(@y_%rR4J^frL_>8Zl~s#nAPgoCS~{Ud z;@gxI#`HP8yU)5bCl!i{7gtDAQ@jm2wiV-i{S83jDl|M5a-I*0386+0=yIY*ug=69 zzD$OWS7QW0rX}htrRVgWFth_m93MIVL7Y?6$PMBEu&EnDDnSrqDIbhGY24YJ%6bg^ zv2ffZwZe+9*hX^#c9?%-U~I2H^n+|=+7`d?z8x}Z_`wUmy%f=lkD|Um@`Du5efHmn z4@*hW>Hc|t`RVfg&E@^)hwG1Lx82(uYK;tTkfqxzj#92URa<1Znh+!LoL=6v!swCw z5f}1LE?s6KT~f0*9rr*^Nffl0#CcY%5ZoPM(WEudkqX+_h8&nEP@td_Tyi)SppcD3 zm#po2k@G~yh*T~j!u1k+%NjV3?9drly%)>&tc0p>EZd4TaP}{D{$zi7cB7#`jl>sh zc#q>FKo-PZLv`}vD$1i%r?g{xGl^4+$1YQ8^evRg3<537A~xMB)iUWap?Y+gNw!A^ z3#0~ZP6AY{D-bfI_bSQA^>#8~q^VsXEeHil{%m4v=TVCaL<;vP`B3@GRT+bZmNTA2 zFYHtujjRQK*6v)2$LF#uik8eGEy1n<)BQ~rkJ5Hx^Qdz`2X)baHYA`Up%l4W;zyqw z5#aH7RS=UrjAPC1WKNR`F|rU3`EKBAvGV%qr{4=Zwcb+d<@6xWV330anG(EozZiw5 zr_WQK{D^H2JowQ`_+)XpB_l3W2rlzrH&jB)bfXMtnNQ6a0FFyiVXK)I@?TBD$rlt7 z7ORqxAlEjE*@1p)6fB@jM8YDQ7T6t(f<~7%pyQ~;tr=BqMoky$rZD8(!%78_J93F& z$)DABA|J$M5j361nK^X2f1iImyZXJG1K*H2ia~zh_4eFpi=MD#b-WN>VV-&#+w`o& z!D-zwrpSF|jqMjv-Ng!B?hoRA0{NiaonWyQx8paBdLpcDqOV(einJNo0I`eX)M>Kw z17;ORfdU!DH|5-bo5XRf=)FQ30`1|rdgri9FRKEwn z!>P1X6HD$fbSp;2hP7r6q*FxPF)62)TxF?1iswL~$|!K3Pk?t-juCYXYGWhJuX+1^HZY zz!=TRV1X;XY(r0Fpy1Xv96Zh5%LtgI0z!@;sIr+-#DIc0aBUNK6o)8@3V@i#yJ(7) zZFt2tyrNX7XoXj7O0m*c9bQ4Xvy*_0%GXUD0dg!t91vv$3OFtVRQ`T;8`luXq18~8 z5Lhl_Uo_dT{yYpa`E0ss2Hzy1*lRkaZAVAq{~MKE<=UN~;43 z7G2d3xXl3tZoLscD;zkP7Y(l|=r)TYavX|8#j8Bx>B$b`%w!{RPVcL)FW*cY30ckN z_$bjp^E|LF$5AB}pcUvHZ$LNrZ;XVI+lLpGuY#D=exvuMi^>D93Wvf4gt;t$@(<(- zxp4hng(sE{lJh`Wh0az904s3peq?(QksL?K>VoKn^p;(T<``nHP_cN~5cnmRlkMwo zmN4JT1}=F;un13iif!Y(;qc6w%p)l>_E+(ksgj$m<9II_$d>x!@~V4xdA>qfO^CJY zz3F=6KyigOZSXYYm8F$Z(^T+j@jYYZHc>hq=)#SH1TGVaf(9?Qi2?^Jx4Ch2q=E)3 zw@G*L#$B7J0EI5F+$Qdp3of^b6I5i7$kwZZB-cL>8Z0ixO2__9m*}vye-|Ou+Ww6T zCh=Y&4YwJtSV(oYf8zt~4BNkP4yas?Y+_W|6-Scmdu9yBrW-ZP39vzi<0@>kD)deu zhT|#>vAtzOc6P_Ev`Sch00KIa+l<#-KpkN-*3301S?LX`b%_E93_M1`Qg14wpfaZe z6-c1IgMtOpcW{IR>pLiLdMO5o`*W#SkmCo*Feno&@ZN{I)YNHYs0)iYgF)YYA{|l= zUeD8VurH!kO?X;9U;dqg+(0{7OjmBFcCysHBptqP#|AYrAp@mRodG#FGDz^^9oSW) zW5(CaA@Bko_z4E!3LZF^;yIA}69?}z=z>s1-uLPLE?8#lVy638NHl@^+r_G=9ic++bOYMEq~_PhkXtoK+ zWiaBg^N$zMYwmAA z0&>b{4}8RM8o(>qzKTrbH8+SjlTIa_Q3a8yBywg%sb<$uNtNmg#y2&3C^k+u!2466t|C{Ayv;dRfD;YKVd?Ohg2k?hGm?OpTmg1!8g%f{aGg*lE={rbZH28d-$<)OLlb zv4a<2HnqG;k5xN%$skHHE9RW~upX{&y0^FYH-M_lic$B9qm*l$YwpBSqY^d7>dtJ4 zp9Nem1qBUWcLoIxR(EFO=tu<(R(EDY{4J13cod+}1=gKGdKaN}XK;dw3=-LTnXfyO zgVRu*!`sFPM2!*NZ%ku^_nX!jA?=ZuNo-qG#hA{EFn{A5?ONt<#HA;_waR}3#w4Ne z0L3JsAi-jiP@q7%G78eRDAY#La2u0^gd~4P%=3q8 zEM@uqndHmBSy}k0cUF_SRGMbT-E{}MY0ehs8_q1ZQXfiA(V>76-@7hff$Yr>_ta^=RF3!8|=j-mx*&WEs35T~= z9K2kuS#y654j!!W#Oae;cPA9m*4??ebfki|b$4O_h3?kfxk>A_MtA4A=`!U6uB}wj zC~;<$-OVvYw*Z`gs!|3@2{mKB$_#)_2}K|TObJC5Z2_l*qUL3Tyb>r-GV>G_Y(1AQ zvP>c!X+c^7j*w8liRrTX5-FWr_Ui06p^lMmwjh3!D!e+qWkYs$Lx1EB9@yWhR$;wl zfj8S@vgWGP(){4VBbg49SqtDQZj*!MuuwUyg6y35%QlbE8QNj!jC&&+cG*UO+$IL^ z<%Vde#0f$9+V<=s1ilr`Ck{J@;o=xkim;k<5IzMVSfR|L9#XTPxO&jJ><72GRSyiW zvS@heG;r3b*SLPHby^|S0qYGUb!;u$JiI~n4{-+9U^8muqt^s=P?~y8aMsISuM5FJ z!lWKZ%VA_<094SR!{XuzPDB7+HM!BZUp`%4Jg~p_Jbd6bhgYNW%;@tqm&VuhQE*g# zmcCNBD9=2Axo>TwU2~hBC#?UeTOUJ z358aSGpHcKVB3SQ^wy%`)!X*qTY&Vl_TVcq210u9DK|XGJB(UEpidVAOaAQIvH(v- zuDyvKe5rLl2fiWg!6&D|9zfq+gH^gXuky2eJqnu>aV#=-^_bs#IRO}u2Ck&U=~5CU|`&1!4zX>h0&NFN7MtrV=omu}V7M&#(A+P>+S&~OleHZ)uc((?Uf zc5-^oe$vi;ak{21FpwgLo0mqFJQO_5l6MH0<#IxfA;fqm_+D;%kz@GvH|0sYM8kqw z=@0=ut6~HcG>ByL)iDC+ELV#VI2(chC(yNmAO}#pt6s&t1j$e!ST?=vgP(EJ>37Jh z7B8Kqct6?F!CT+yA*FN+9k#K_9LuJ8dw=uc>>OGBF+1R1aj5c3A+EvBX4iUD@Ky1> zZCS`Fp>4}TnxrEYv~5{P44}~6mWAA;^)g=;(z=yc%NnY~+H{Y$If0fQ!9Q0wymMTS zIl^vu7p5EaKud-$C}^S+vG`V^OQlnq?_VtoE-s8!C#VMD@7cDQBW;m}0<~>3hX=I{ zs=-na?utQy0|nI}+*z6PVEMSZZte@yO}T&vVmpZfksXN~@7(G4ieq}HKqW5cOm-d> zN%e{>Q;Iu6*E3owER_e)Ft7{LZEO}ddn=z{ncirQ;ttR9^sm{Bezv^J!wrZJ>pP>7 zYBMK8$e7JwHi*Z&(k8eXIPfa(0S(KRtD_nX*IBX`BjFlI2*p-|wnbt*Zw-2EA z3gcDM?O@4$SYyPmdGVrT6w~cJpm)+-At0SQX{+L5!}5)6xB@YB{j+m`S1-mSAgziO z=*C2W5UAWO1wtBCaY^V@Gko9$m}$7FZX0gP->aboFAhybtN>g?+JKtA6f-dz*@b0Q ztVHu;pv{p2FHpn|0YdT-c`s<$piw7!nK+iH4rT|LvR~K^(hZdgYP#LUoF=nc5;-4Y ztVSLmG3uk9{>yMX8Nrnn1^5hZJyt{+T(JHmPF zN}Naqf1NdRq$QGr$$^OxJ7D_bTX!H@g>%@RJ$5n) z!p$@aO#X_P!NMyEBIy@haZ08zN`Fe~j;S`;g4TcK7o$j&%YZA`ip_j!9tdB>4E^AP zFV5+=cG!2_cROc+YmXB8WagPJn{sBR%feMriZ;%7O7x@lfha2f=mufLHTE(MsYDEL zV=q?nT-<-YE)&RhWLv$F-~YyyD*rjOY^(2&CnG1~qBQIWt`LFzS~l0XBA@G9&w(37 zj>kXQ)}t%z&f>BbNG*I(=hVmFT>|@=3RJRc0B|UU zs}C|XqCkP-YEY2a=Bd5}MgnW#22MX3kwuh&JTa)5U4OjkcKWc*@F0%~O$XZ=xZ_<<>Kj0gO@3GGK_+5^e5J0nMLOj}2WI3+OTtY8m!ES!51oE?0rOyIW=zZeGzb_> zD|E-xkI)4pt_l{d%ZIIzRO#qs>h^?&6cH*_zJMmKea zMBD@Hj>pcxwIgTr!uY`HI|Cl52BX=j@I;xQ*+utL_ipua!c|Z$L!dX-^U&=N#anA497oh-{2@h*4ht+$~~%;P%lz2y!)p!FD)yb1FL;S_D*4WgPD$nuGTBp94* zy^5PR4`_G4Oxjm*pd-yI4Dr?co!5nSP6a6T9b*7*vo2Zc{WXMo^GSfDh}Pk(OHlY4$eJP~Grx-HEmh z4_0n?aACT&M0E`haIG2e4G&gfo~+TQeUfT`c@qy@Rlo)?5&GXp?l%V%MT(57@x90f z*?W*-A&JgV@+%#kT`y)MV6`_COwf^woE{G}7&{L@USt^mir()m1vNo`LJxP(7CBum7O`acdr!r5yVRE3yk1{tJT8~qa z)A-$CCt%`ck%quG6lZOB-OYt`&RUL0uKJd7cZ>Ntf80a62+%Kr*^0`f)3fMe=g9;)@N}(Wu^XK!UIaZnKR-vYj^Z!;s(2$T*Q~W>Z*vHEJ&d zjWf6c{7f|k-R)7(`0d>fOKpmkz$7aN3DX>LM@&f}|4QTs-5~~Je9Wxm&k8kxgAk{V zNa&io&8_UYzGwaNN1VJ|9A6pye0a*sKN*RBzPmZQy1o8#bC-kPpbmiMr;9bTc~u;d z@aD(Ga5(9B=piR2&tDHk8lA>{2WLwRBWFVAdIIW2NZ$-7(!oHQDOcLbAd;3Ln5V!H zfy`{k%mAHTzJnef1LvQq8iE3calodb3#+@miCO3{FOhK$lMkRM ze%7}=?sS>*NXp0;65X-V$b8|8Nwm4pV#k2U6=P@kiR9P2 zSqb%iTb7H5ov(-@{UwY7z7FgN<44!8>1=rMhqwl}6uZ6LkPVf;soLJ%OKU*xi_oT` zODXk9Dhor3IGu$mkAhLlUJ)A4!YhjEkHYXM|0%7S7_Zii!?ZEb?L`!pMD3{JhzoTn zlbSZGm!j7tT>Z_l1Jg= z%QwkFx!(%2KDDRGJ)}<^AV}>yKx*-P^h|&p{k5x?UnZ z+?@SYcWycmaUryX`uqIj+12lL-)N_Y{Fud%W(69+SfpZJI2NtutC{fcXSeaLsLO0m z;|TJKXIrQBZ5?BUqGHB>TwZnWF3$l6L&eJ*Yi-p|woa>iuwNlRf4=;?HuF5KaA9w{ zXXkg9U#{vh+2(%IC$-Yq)`^YVO{{vm%7m|Py0^FYH?=v8*g6w%^=#VpT5yzuYsH!0 zbw6KsZwh!B0&;d&FHWlP94OFJ%)D02bWouRdvkyFaNhm&sWv)J64YPKY;V7Oy1aN` zfA9H%*JjSm{Z@rbT$psNSo^fvd5am>XO-I(ssZV2>$JRw?JD>3{mqB7^GeSsUV#O+ z!g2qvN+)b;fjfJ}QOaEyT#s8*X8zKN{9LK~T`n-!nYy3)4wqxfJwTPacMI9}Qs3*5 zSgP3f+P%7n=O%wr2V9KiRd3 zY{}PTHm-6q_S&^GnQW3d=TvP?r6>xLu%So|N%^u*`4RKD`{(jY4jKR@O5#P$mReLY zc}OCO#Mb~CK;O`vIFBR$WjuC0@oH}ziC9GUV(-%V>*2%8NI{B7{W4NdyFpJspxU4KNvw#GfjX30&Q-4`;d$53yc|0t_enMC`{9E^$O1`U zJadHW4fXevC~zL6?>k-LDE1u50FFBKRWekNxr1WIvAfEsUcddZoM#-{Z*?>{VPF3j zD4buF>hCeUHFh4_CojitEUZ%?}p*$ksE#fkhoEz9+Zlv_SrFD2kuC{@hN?x-F{(O&41-2@0E^b=GiOP zYS?BNg+E#H?a*I8x}&j=IUUdHFQI}KI}0sds>Rjy#b|zImrnc@Y2xiKg%kfe>^*%{ zO&3l4nVme_f#@a-)T(@V>BgRvulBAY>H2m;GCfWCq_ktNH_Fjf9n<`*7)P^@FZ!y{ z^RsjhwJq8?`-l>;&Uud*&GRIlUD)AZGpl%dtyCb-ITF$&M(H=SUIhrGQ<6OC`&^w8 z=slGLm+qF&5PlfiJ~Q&~E)FODwijcoN2y6kjT9`VYyT8m8; zA8T*cd|t=GOWwfYERsYV9$xPTom2)+8uk`6+PcG z6wJM%WtWGS{V+^cg0O;F(err_R$vXcP9HIVydU0aq!13T`7lt4S z$FKG-F7y+T91PWvotaPFFiFCZdI@AlCq2>6%m>qJ_3=z|o1yU4-iwZ&mBA#@AE#Jv zC!>#wWc5=FqUx)?Q%k4fMUZ_g%by!5^)Q_x!x!nlh5Yg3R^_?QQ7WHQQwjuZT;;G_ zla<3xF4CQ*RM|M4X%5%_`1S6myVvjUe*O8=yW6V|*B?x)`7fU3svLHOO)^faq^RX@zm^tvjt&i_#@8xMH0nWH50U{nS|B#L+>*eSYwqP zl6NJ+c&ccOA^K`faG~M6D|~RMZh|zv2Rl$4YAGOLc6=ZZe5XkcSL<;t`|;KODgM zzI3D?{E)_PgzB%z(ffiHWc)-#fokO*f80^zB)+~^6> zQ)28LUwkHX9pkH^1xwaj3bY>L)&gGyo(_N@F9x=*%@!RSq+Z-?XpC&4HY+x)0b^Xb z-F*4*(oLQX5tK(ZFwPKcy`kj)q|aP16IsK;+*5~TPLVc;qtE(KXTvddNgi9bR}CMa z_UA77sG980fQ>hhd&S{lm#DGiP@6MzpmBnetb7YRX~DQI!Y|Z2wIkfF%SCkHc6kuZ~$t#ZR2tpjwzX+t_TljO(&< zuASy9x-M;K#_75BsTYj!n{X0ICF{Qx4_Qu{t@$kTt@twV9ym=)*tnvlWj-ea=i!Mz zDzhhHNxvYRHLF5q7l+;j%fk+8w7xte1j9UjM&<+ec8QmMtn!sMoBV2zXtU`rHL^FG z^hyt4v&ktgW}r4r>-?=x-WXnok3gt4_R)Z?dhON85#`ZG1Qx!dNc6O9< zcJXd^0!B89Hr+mMmxo1fa&vUr-kPP5zsYVlmWkN+4xF_f=g`jIulx`4_?L?{E?iy# zXK}^t676X$*rzb?pR5eqYyMHBgkr^x4I{HstZd*&{_SZTm->xsEa+Wc593)FWp+uF z297miBFDF%Ze*Ebw;9seY4erA+c#y-)<%%nMk%ZyzpPWps}kgnk5^DAt*A#(D5v&j zxQ?o+Fpj}=pkPdFL#V+oXbwhu-KwW`YL!58>7wQR?$G=k#VyxgBX;idR!VtaND5*; zsulIiP!-dA;*QCD;AJRonSjwAQus zO7Ruk^Ww}yQ*UNwb}P@&>&LP0LiplBJXYxpK~%#Q9pgtfexiVbDUR`VXR*pMQTr&3 z;z%b4wTlxrX^uU(jJ#5x@gi|{`K^^WyN8vKi1G^OZ;6{Ayo}_3mb@n`I~+_#-SRw$ zB`^Pmm`}Txt#?@Pr_lTek5ga3*ws}niONS+QO zZ8ey{U-XIO`u-E<>f+V~uX?@BC+gXnsJdzpQSW|ze_egHZG)i5 zaf369+;Sj`fmAwkCbL1yxpE>!oq+t$rWv*j8zUEUCz1r^`Y~H7pe|cNl!2Q2fC~(D z&!2?Em)$7;S;+ZbwmB}Y)6w(Xp-C<=$1rKc9)^M|4NuV+R6M)x^&DW70763AqOF;^ zyNpSe?3u!a2Xzz%>d?Wgl|^&*&ap4b1VBos?28zL0aSh|6VSER@y&(DZIBeIup0&q z3wiODhK0%mMZ?02hr~HU?Rqq}9Nec5apky3 zcyL&$-viYmA7{dIsMK;aJgYxDGIrYYsE1{mIxW9ESyQ*}ra8y!sj0jJWScg#gSL1= zRrqwY#+@425OYB~yp^6l5&?$2iKQ1%881m#X(2Agbe_CT_ zmNcy-z-lhWoT!`T1WZ)Ni`AH_67t%ZfC(E7vsU7&;|HpEyRJ`t6SP8n6`EAbdTet} z3+GrVtyX?Vx5GbGNxAs=r*u;GNuA6j2i%dR0w&LiU#2JUF;N+vDDQeRcgV7L4=@o{ z++$DMsZ7?4Ml6TgE5BRW%U-Ev&%VFqE^d7d)g1=7vVH^BTqH#mOuSN)->Nsjo$RKi1U^ok(W6P6K(S*}E~RI(=`XZi zTAAwL;~?{NhuE#rRfj7imx$Pm*VjkUG1tO*IU0P+gn~Nvtw2QRx9W z6Qz>!1*2TnG$_two8BafaAu*MNo}hhxR>FCFXwEgXgl9{Vshf|P7c^;613RBaK*1_ zSQU1J^@70($p(fBRU&5y_I;=x)KgoR^dL$#O_U$xzLDQLh!&IBR3Tb;?Yom3oPF`= ziE-j60nzc4z;H0X{tnB8*>#uFoN-H~gj!lUxKTxS*HBsaSVw?v@7iSND9z?vP3dM6 zZdWQeX!WLjajbQsbp+cIEUENFjElq+T1mAV@}nCK1m=(+5LmNv0|^mZxPb(QyRbuo z!Uw>l2gCDrCK_;tkpxp!r2veW(aGP1)||arYsN}Aa;wSp|!gUYGMVLj;yN-hBVXA zcoHiX)8Oh=G-DNviEL@>A}-ZLbVlxz6NK84<0gr#Jvp*(ib!iWFL-}uHxR8`BXbc^ zLgnRn((g-8iXdq@nV{37*3mqF9+s)Bv|>H0#He-Z=%vPRVfE4zYkOKxPK?clpKRhb z_&UN*%HCEg@tdI-fl(2$IJS@(qNpRSUqeQ@G~40is`j=Bt^b4l8hS6S!FE8bPXVtFikNH+48Io|`(n zg3L}~syeh9Oyp~HHWEhSdPZqMXOw8{X3b6ANa<`*qZf&diEJ>1s4L6cxyVrOe$ple z@*BCIl$K3FU)1EIF~6}e0*h5z;v$A%BV(-6#wa7ZIg1if%em{5CN-ayj70{5b-)g= z*1pQv5pXqK^h&e3t+;#&L%vHHGc5zf$C)9DDcR`@LVRKZM)D%zdI`o`%1&XOJSvRj z#Yrf=p$tbNiSW5R7zxGs1-El+j$*Uk$bfF{&g4c$xQtMoYn_`rv6fT*<%0@>;NQlz z>9olt_M@;YzuLCx%Wn*XL$;>xXCv+1oGcP&Yk7O^etj%J8QW89Mb*-t zHWJu@CO;oTXE!Lr!8Qm1c8)IwGLa)U5sqiWoTf%ZlgVH7AmC2;0FdgV9@ z2a!8!*#f^FSUOcBrb>XD=x63^8IH~??{uHmrqZYM)*GA4XO6C%j(A&r5K(gF%R!L- z5Kp=$!{cJ>$2F&3Yp&75GPxM!)a~WR zu*po;e-R1#YzSJMw7Ef~cxVZ!g9^wgJO)gP3|!~{DfL^blw$yC>H5$&iD(_f2PTsH z$JDnSXZ4K{f{hs^9}3E$3f-r3X}OydMYq6IjZQY-H`V1YF$Ka4feHjp2XRm9NM z{GjumuHMh8eDdRgrk(tmF0YZ%p2c>Z7C?u9?BO&2tjRd71z!kor!12x2 z7+>~+gqNv$fl^vYpx7*j6s$Jttfeh98%)PFjL0lqoKk6X9gs?vRLa>X4p8IxKULo^C#H&`5AgPEP%8I-muv zU?AN*ksbc(Kvs%kwu$JN&0S69j^%L!%s#z)H&4)~?WOay-vQKC2 zvf2i$gm|d1sSa$Du^%2ZZy2i+-0~34$bD2Y|7amUvvq#}$iTJNK|D8bQbT>qxl171 zGlIiN>B3PaITF%1jAPkFmAxe4p)MnnkkYwh>lsQ%AVERpIMk^@LaVG;y;d}+gd3vl zh$M3qY#l?@S~IzXH%x@ovD7J*|0^nXghYq-h&^*qc0YZWvNppGrHAn_kiek2Ar}^o zRY_24qn;oGjA(O)vqX@vhA!$1B4J@-VQCXKQc3~J`$B`O6M{xU#73Zzz>tBy#7fBc z`T=#Zu(nL%cI9HYV|VIFFGYPIkV!#WCfJAz?GBTjZ~b8&l~QhrwW#(0qwg2iMH0VH z@HwArGb~2OBO(1;L~L05F6t@(ZQ*fs3h9d^VYOX+CV|>4I23GSSR>ziT`25#6qr> z&3a|)ncL^?rWO=$pN$L3soOPNhIMnKi}6z!_@zPe=$6YPl`F}G2%&UO(8R5iwy$6Q z_+<>c3pl)<&9)I@F8Q_Pf6Ax&8F($$MqoXkDYsYBL#cY)4#`F*{fQvDC2DrwpNe(8 zW%BUq4I^bS-xv z(^5e0VVN)vAtv>Oar=vIeX;kI(syNFV&Nt4;Ks}%CGg`=xIGcQ7kv?lzyrN5c^a$s z#k~mjoam)gy@~F6?T#J)qUY^>;<;CBD#v~pCM!YMOtwYO=Rw$#tmDB4=>CJ!KRO+w zfDG0DPp2`Ydcw>V0x`Sp6LvihQe2S zFFJaL2a`m9oMOG5j6N!o)lYHaMyi=pI}~2%$MCIT((_JgNjFnucr5+5kk_u(%xl|=QN{i zSL!cYOcfGtqO5C03YXe_h#j@IbU6N8{u4?EGNELjs$#ry&yZ9<+V1r3+Zq-JCiBhr z;HJoLc3rt~^IJDA@T?=cMY1~Oqr6-2X{~n=Ef+aiGqH*4&GSWp>{;8@KzWzJj^Xqa#CgWp{vf^Tev1uM=3xxAk6jUT&GVYQ}r6 z=FJnIbmX>7n(w0g=YGkH)rZu_Xwr5Jos&{y~DEo z?Z-9mZ`dpd8j0%la#qcP01FbilnZ#_>z6<7dT`ylFO|5gBZntyBPa{%gX;cVIt5?GiLQ-lNpQR{h?B^bK@zu|w@N6qF^{1GnUlIcWT|!f zFd$mrNc2~8Ng34B*+fZL-pY=TZWmn;p0>)XXu_FI83?j7jxj}Y3{%6VO|9zc19J;> zW!Bpdh;|59;a8;$5+F2dtgyFSIM}LTY_1QKhHV9?*hB_;kQeVcHp^y_Q|m_Y=IJW1 z8frUdUb9Lp$9RZIx1hiuwf3$RU?DHGld$+w{92#5D^vG8PH zdRE2nhLfP@Mo(aINH2^%b0#qm0rr3rTDz-|Hg6BX5GrTZ5bYe*Eg9E#T3jcsn4`Aj z;tEQ$i{bRnfN2fYhf-(l0_MzkM5VKAu)!&-{b8m+OKa|-!!pYr80z8$0aj2=}!wCteP@|f{SLgQJ~Ql(7eh8 zh-~Y*Y>gwZ*vx^jqqQMkb#r#KTj9cClm=i=*X#7UL3*1F6Ljk)}*8ug+Ha9h0F{s?ng_ZG;hO238!>! zAPLX*5)!?b_nkyHVUR$QB{%k@e6@EKN!Pc-lj&wUYo#57spB`^qO7$i7n)i6GKv$p zrBW2jjXa`A4&Z-HVpIkM3RZ}^m_zE8Da6NxhLQ@25i00VY+8Ikz=edownf5fqa3WH z`C?mKd^~6cDXxy8?1RM0-E4j0tLl!n4U*7m*#?OfOK|0~NMQT8FaipcA7bn+WK)9@ zyx<0xTG};|Hq`}2*(7ODn2~zKk!YM(Ew4rNZYU&&&?WIAaQ#P_;`fz zkTJGsuu5y241{E7QbH}cfZX&>y6{5vU;DHbj-}j22W!Hb2-y06gtYTnr+FnRwM~5RK zZDjhf`P>JqSj^ZwuP8;E<_8U9m~S>$C|@Lw-N3luFv34=#&Fux?s&;LLmP&u%nmfh z2-uLY`pixQ`=IOKlCX4wLN2hjyHMb9gIITLY{(ckBp%(-*hiJEAmMpK*Y`v(44#~Y z6pN;?t4!eg($cOnzpCr3x8WZD1rM_9L5*O;E<_U1CV=tz{CJy`YTJwnq}F22lvHcmq6 z4P`hINhH18Hw$Q43W-7Sy^hqW*OOK0`79}K2O^PPvpO{8P?U(oKv<2G8VppS5^pfj zGm~eUMOQCG#p*Lqlo1x2MHtTQ$3PHHv0xx5lOYt*OapTaa&Xf$2)|i$p-iotr>8)0 zaql5TOY5bcTGUuOijFyE!S1bXE#=SD}uy{B@|20S}8aStR}0~)r_L6y#-KM zA#OQ$nA|S;grzXWwO}9w27W_&X$aXfz*wvmZ44gi{>#@d|5<$?^NTJ(BmZS17{v4M9c(s8_JtRDP`6eZAb+1{=AoiP;vKysXDXji8n_ZQpD7vLX)znlXQV$_~py9UyLCoj03iov939FeTx0fOK7{3ToP-druL%;#mMG@bo+YDb=rbwRmdb|q;L3=J2Sj=hq6$$}V% z(NyhgX2(cp57ul#0`pLTAtWfId{4rvQFEQvH;nE^V`S7`RannU|k7o@^Ps zABF7z13bP`2WC_L2Is|!!jWNj{7YN0XhaZ6$4I<{8pLP z^TkSGuLV=FWJg5>$9{)3ZE6JCeuq_UMo>cvmq3rJyp@Xzt>oY+OsxQ(QL;g5&7!N@ zuwrRxHG<~VCc+*593`bN<3mpcjPiIq<^_dfj$W;=K&UljI=14W~rsaN_rzRGx5LXM79y=T2Kk&b}WG z9EdKvhl(NU%iF)e-_O-=2M~4b_H>Ea+c*9*XB>t1vIiQ0y>_f`3{3l*Q6obB0>B-)_B7az>;(_IRi`N{p8eSbk@5ym` z4SwFx3tV0@8H=0MYAjK-Mp53zR2!`YRmUGk>YHM0zHtn=kosyLW9t^?7$yOAkr^vU zoQPt2Qnvyja2NJTXeiSGjW4h{^+{+bwVH&acc1gcM)vN60^*?^S`|0lW z`@3I%{$x~1OvjC*9eVa`G2mH;F6&W95-}PlFevFb>2&wDtB8r)nYec3GGn>X6)R<^ zSu~-<3I=+DuwesaWG{(|WBDGh0x5ly@;X{q<+zx3+iDg;s1z0~OxUo?Lzi%#H|=6- z({_9&^<-6gCb8&G8g^2nL|K+o8k@@N8$5!#hpUj4-|n=^dU=)fS@n7Kyh$~f)d)a( zwgu_I-x0%Y4sffe@4H&YcD1&kQz$u|g?sylWwvz)McQWg)HLdzU|e@r$sw3OJs;J0 znp~pbhZ2t-R96;GEEA<PXeLSOx+o=*Kz)1;2N*&xxkJp+Vpwy1`! z{$_rskZPRi#Y~%W_G7W6nUy*;+sE2RvJQvl_5Z!Oy?Xn%>qQP;c4;P;2QBByWa*sF z$t+2y+PNYD|51oNVgBFH$Y~N3x)uuUz9w6YYPuE?c&qKm1$cVNBfv@g3&<@gkMCA=%0k^K3c$kd1B(P~lPPWRHZa+aO12ix$ zAjk&&e97E}t4Khf$TU=)(MXiWrfj(~YEc`w=wuQH-~-ooq`WEIq(-t7!84M^lt`}d z1paUzxK=qzuWBG5Nug}}NS%Y!KZ!a|NKlN7X?$tP6JOu3HF!yAwQBIv1{BJpv5h8M z?qj?$h6IK(#*mPdjDe9%NmyE#I?(bA0+M8?MyAB81y!m-o}6fXY8~Fr4_E)Qx}sRx z>YAmA&*JGJjCw7uNkx?@Wn>?kOGP|zLDdsgXnsY^)=3*jRA??)ibmZg+!bD|B|YyN zOLDr^BLO$u89Bv?-4P?Za3P_hRB7D7*C}HVWn>Pvjv>vS#3g3To-HoGE2PzvkMT)| z8qUB;WPA~DVc9!!TyQAg0xcA+!9obl&|gOgAt8=jObW8aar}P(00960>^<9Z+eWg# zGNmWGN~U;`D9O84m7>TSRT9Oqls!&TDHlkNB%FW%1AvybPp;p8;SE5wP-~wcXsOQSgK1 zB;bE6xf`;;o-Z9Mv^_UqlLr>w@ie%*hXwZ?+x=YtvE1pM=fB!{Kk>ZZ=a&Ebcre-# zpWoR*==l$?b_P3X3@3Z?=hSmNKgO~z{=I%JF)g3K$xm138wl+sFlrbUV6#xm|2u!U z_xxE8w9*I1$1Sh)_1n|St2aNqy?$!zZMiepQXjUw(x+el^Ze}k;)lzpw$f9}nXcH0 zwG6$v_+5PHJV039axt?)u6WU6>GKzhJ1gMK3IaZ#IM%KB6}X}M`=}jFZr#=CKO5pl z^|mKG5sSfGkMWxuJ`LGy>C0^rYbBN_x%|B}mJ9j%g53}HUoI@)x|qG%8IQ)V&qsr= zcGRaK{}{?o5A{E}WPV`J-b$?Z2Zvvc&Q~9O&2Oxw6DGb={H!()@%b zRx2lQ{4`JE;b_ptY8^gN+8VXOw~n6ZYVEf|TgOlIB<{Duw+8(uN?h#-T!Ve`9PrSR3ZCF3dr_&K{v$EXw z{fK4~Ij%2e=51nf%Z39SK_tiORo?!goX|EchKI?WHexDo%5GS$6^oSDF;)^0Z=&agJ78dI%)$(GzA_ zZ@)!Wc=glU*QaOnoNz#5Si{GW8m0>mA#H5&nsNhIMGj`qX$(E%-r}RN4HIrL5W6uY zCyPS|xpgnSjK$nq#tb%TSSY3IfKS6Wa?jGkt3htB}tr-{eJRTp(KW{uQlz$!% z)r4=Cq54z962v8K9GWB!S60_(2J4%|xV}>D-JaoQ*spFtlsL6+K+G{`?;ph!Vzer% z4U0^Ku_h6XmH)W9f-)9G4L z&2k;LN00|`T(RaB4H^>Vj?;T;#N8yOH5#jMZTZLBr6WF&nF)EMu5Qm8+YiF;)QblZ zV_Oq{Dd$h_{`DOwkTMQ~M~EwB7{Oy^36Ppuq17#nCXP4#y;~@Cjgo*-xC9u59^h?t z0kllk{6_GQj;#?WqMraEYwj)GuwyuZ6gvWhrrvzv1-8uU>K0<&P1km=WB9Bx7XR8e z13vj9@{iLy%f01((90bhnx7O|*Xm6~rgez(XE|i>>YaHUOb}V%K*25|9ITj-$N*Zo zvRZgjgBc)+2*eO^uwWHAP@p2o3S@mno_z=?gyB-0i+hL^i<{QH^$@%ygZ6CjoD3HK zxNz*L9Xbzi_e))vlLs1Gn_EH1eJW^*&z{$4-E6;Akr6cdC)qUiP`$d-^@;TGuB9qLX<@5U@6_mxH z;AuR~ae4=+V6)_$V+Ydv?@zC;&)>ekdUJku0f;rL3J5|7`OiX2G7ZM4P=(w@s=PYk zNskF$%iQIBBIFM#(8RPOI6e=U(45$WGj-wY#(()yvH}Y|MQ+k|nNN~#D2KFIRJTfq zHr9r8lc{I5E5)W_An|a&3o;JvX+++Z8}`x@E%v^hQh1NGFLuod)_!j7aD_XTkJM4h zxP7&sGXE8o372`LI49*OmHd+YN(s)ZjfEFlLUCN6XAA`k>ho&8f>cJFImslI6%#nF zgc;1e99ok={~tdfNm>ppBt{uibF5pq`gXVBQ~%Q$2u{x z6`wZrdSv24&#ZTw^`JV4W51Uv!c=@Iw_C1rJC|}aMvfp0-6y$n`h|KV-t;AlF(=i9 znMwX1Ogeu|zrXF=G0iMvzn7^jSA0xybyquiOd~JcU+1*Fb2{zXInAJWX}#B349``F8R;->o=tpTRfSoB#KZI?xA=^hupF@oFX&k@di_SckGwWx> z)z{WMj0nG&i`VC#Z#$0X+F_HNIL>-%G;6IC3As+@NoVrc8UUBRgOoByJ$2Kh`@O;V zAX4>)7#XrVhwak(rSsF!=5f9db&wJE8PM&*+tMKy|jkAtQ z$?V#a`~KFN&+{Xb8)KHF*JJ1}H;;sgO^tAsBC!teRd1OZ4saDFk@040`78gG+~!14 zo27g&cPjBZ`BlslqeVaexNt02HJCC`Qbt-tbYLtR65%XXwV<|_WW8$Mlz%o5N!BA= z9ZGYx#*C5;yZ#WjTYB%Qdy*I(!f=)hN3N9dR&n|2LAJb>zZ%|?0e|MVqj;^Fpns#- z#R~I--{CVJOnrL+ZDuG8YlDVJWGJvp6j$_2~k zE0^w?#jYEz;!GHd6VT!HgY7Q$+5w{^TR{)bdR4q-Z)40o6aQ_xZX>kQK~${^Qch<$ z=qH^t!+uobODLma?2_6#>Dd3`i$6U1{OQkA=;5ii+u=zRQ}hAM?CQcR7kHY4CgcqJ zR%myif_Es0HSUeNplakh#b(4>@M;x*K+O=A3xon?hh!vDGY=01lZv0@KkKVR6z@i- zrvz+nJuu4&JeePIE4YsBBRG+4trr_VUTehF0E znzxi@L$?5%imQ*>gw&bY*4QGD+SY;-Qerw$(&G>6Yfy2Y^rAvtPAKdmAf=9}TtCIY) zx#v6wkbBc*Sn^3)l5*szIjodSqbQzbT{G)-_);{2;S<&fwu5eMjbJN4djVl-?@9t&2=36ZO-$5YZGT=gf!u7j}Zb;-ZOex}|01(Pu$QoiwlE0OdOaR-4A_(~a4kF-;Zl9m&^IJKv{eh$c*DxI|q98n&`$o!WE*!cjJy-FXfmv zU5g7E>{#V=Y?%0ul&dYKjD3|UTsIfPn&1KuVmSn8SpwV_9KSiZL%NKP?sYGfO> z3_xBj9N9x$pExosFlmR}pUax^(q~rGEw;x%#tFQLR;>s|@hwVKkpO6LzyN~Vd{N+H zn=iJ-4`}UkAQu$1%}fQx)rA-7l~l94@<4JA3f2@Bg^RP#LBtT$ zez}~(f_;&8M>gX(wye`gH9LQ{FRcLT7^qW?`UU z5wd@uJF?U*6*xKx(qiDq5>)LSQ0OiWR1G^W3SMl@guKF=-9R9WWpG%5V_7suc@k&tk}6 zhjr8~wh@PQlcB#gcOm~-=@(&TH8DwQ=q_1w@B>k=$)ZtSTo zsF+2u5{i8leEFv}Bs{1(+_`Mo-`JWo@YB@8?f{g5t-wG}{JKcOk)S}v$ym@Zu{g*F-s7|#LB_Crl)O8x6~7(tK_-3D?IeVI@M zXbgI=ZF4?|1Wk-w{$NU~j?#5y0<0I6yOkmYvt@&I&Sd}d=u4r{Gb`)v*p|1$ycLb7 zJ8pHG))u86i~Dao54%VewI-GSih>Hzi^0qEoAk$_urnI?TU(PxEF%R=(qr0UCl7Qv zmMJDxuBC!39W{pUZ49?(ux2Ww;TFpb50bqEYgszSgK_;r!+41W$;;$${DtbPrG9J8=fDQLiw0NHCz`AGRi?WNx_T=;7!K%G?{YV6W zd@c_p^eij!{2Evg236bNo^dy{Z){kN78J;UJA4|_P4WJY%itR_cy+?R|Vt=qh zNcJ}l;MC)B_%7Wx0+T^7u=1Z(>47pF-;)ts{EwyO$lt9$mfTwgEZzl{Tpe~VTZkrtNcECJk-eW@0X0FG?NaCy{M-gAX5SVyV+fom1 zj1fSrJ*A5iirct|ZEUI>dnUF&YF!-G_f&>+t4~XAbcuRC^KMx*Q^}l!Vhg;y2O)B< z2Z=DH_BF=s33~t>skb-b7TEGWm!BQ%(P?G>Q!vUkr?eulXJUd<+-y(w{f1kzuY0U) zWEkXNUr#5~yvFgJ=l%eiN{Xr%$u z3!kaOFF37X-)bOT0j9~H)6A@E%&v&Y8dlRkM_vOHkqBZ-z zT#?7rnteFv$9njtqzw-xL3VWjl@O;(D@Q?6Mr|r!pbC(LH82piq$nCv48uW1vQU(G zhq)ZIJk&lpM8VlDz`08LKyvh4J_tjw z*a8MIph{ch_M8jDq4sqp<+S~yl$aK0{al5XABxB9nKYxS;vh1+D47r$yCw2pQ6V_# zS7J>e{@`4p62mC`O6OqdCBO7w8g%ncr%VUUlR zSyG!B00wZpl=&naKHE4-U6f;&O?;>`ht?W@BTua=PiQ^H~u=Dx4*sCAxvUj`e z=Uw&aFFjq;m<4y<(wV7n%Sdlyp6fh_A5)c%4w)FL6hD;wQNY571&BNddne!)u|`}p zt_g)K&qxLh*r^29VaW?Yc3Rxb;5}UbB1r>DfTg-oUDrFNl^i^_(Dr&FG2=B7Fbt~i|^{bR}bYb88nRsjezR%t<*$txK z8|{i8!|3gP??BcA-em&vg3HJN?mYCEjG5CR3@LFdA#BOqkhp3O|G04MsU1q&Y_Oc( z$@mCc4k4b&)-#Su1+52CkrkFR_he~*?#t5t4n+4y+16c8mQtpI25XRnx|G%hRj5GT z+aZ~HXSrk)LZ=@SS~UXCSt{m2H#bnM7fL(6vp#Tfs6m0hXyaG@H?DMDoq~uJr#)Mt zV85yag=E?)*?wO49XIl**8Y#1TY^q-c@|#Wd%A&7L^~1gj5vyRTKaUq1LJ+8o*PqEC5hk3& z+sxwN!R+WbP_Rn?mkq5fYh>VHHz^8Kw#5b+Xqb#w4^*4AfD_0NR{q7U`JfM~>fd}? z|GjF=0>B}Y>o({E-o~dygiG-D3tD;1l zgII=7{)kywy9vp-o(1UX3C5^I5|~_!0u{m%?Xj?^K!If{I$JYpUQe{lbU;i+Tax-qa|ISHn|y-@bg1k95m6~Z8061D$jjbGE%Lvkgy0+7bM zlhUgk=q^vk@NZoJBf$vjdMCgM9=Ak*6wH!JfKZ(nC<3&=kx~RWJ^LBdCY=BynB#^3 zp?+^>FMfWKJgr-xSYDd`h#kV@PGgFzZh(Xsg?!Xrww3)ECrJZ zJ$rg*dvhN8AV>d~cu|~z5(x+pnlA&82b2IMSUws7LZHwc3WOYPb#2%3M^wx{UsuV0 zL4{4Kyp;LUu~adstbMJ=zFztg85QpHVil+p*z%<)XfzpPnT*QW)$u^`b@_}k1jy*l zGi&wyY&VJp(r?fBf=5-X1PnP859J@aSWdEcV``#iYus3c-85p2dw2HD>E%Dp-(S5s zKf9=6i%YkJYma=wlM9y&lr@`0n@k3gPKkuutZ>j^S0^fJ4;QV1nk6h+rQR%`V6+M@ zhrZ9|)`RA*k{`4CJ0U@`sTFX=la(E0&6zh?xl(DFP$H8odXt&$nL;hU-fF1jP!--l zR7Gev)DmU9|Ah(=NMA=mg2!2+z;(5l8wwOS$db;3gqs%?Al+Dz3S5;2%IWI>M~X1@ z3Il6q2Z85&07+3eA^~|lP@u#EQ+r{DzzW8==}o7eFEt}7fU;E-^TiZpCWm-9kZPZ- zV>M%+KmFTqQVPJlpE}mV=THBUeWNzDPAPPxTbd?w{(#!v@Gz>P+klw&?ZxH!^~G63 z!d=~+81#2#M=e-s7}VZ_B7||EU>*U&n-~WR7_y5426r6dSW#!UtdTlC^}=Iuu;G!f zIC!9-RtzZpN~K_k#IsG)QLV^S+!9lgF4$Z}SjGzjD*st6D=2~D$p{Axi{Daaka3bq zxQe)owC}78J;~^`0Fgj$zqqu+vrFrj=Th+M_e`}Hae+;d{Yd~>H6&e|q1JeA+Mptl zal`p3AG)-dbg9X5TUN-Fqeh}$Bxq#a9eILh1S`*-vFWIYydo=qh^(3sJ4AL%+!%n< zgNlXI@-r2Btld zsvSl9jDD%>Gm@^Lu9WAf zhnwJ(K{&BzvdZy|EyTQlJA4|ooEIeIuW0B6shEUX^}McZfvSEM@K8&*`6mok<^xy2 z3fvG92~RHy8NlS?lK};m^L;d?1aJpd95_hB;e|r2H#0i1nh&>*ic(L+?FWjc$C+5@ zb^z9zmTtF&BvEgxac)cUttMvA`Om5@zCn*&;5&p?5*MW3N8ORq{^KusRH)O`7R3=cK+=q~0cp=9X1+#=nW)yHSvm0j3u`xeAi+M0cB2O}VDM438;!P9@BaQM<`kRp zYPsi3YjT^tgyWXQ@u8Ci7{$SxiwW8b$L2E@+H>7JVcklS#XTPNpb*}Mx~PeB1M75g zMaDqWsSVylmPe+W8Hh|!-3Vgx?~zRo^em!4 z-N?R+Pcze^jN^O4?I+-56O1v(5Md{L+SJVN>@9nGm z(dK=n`xVEV4(`Z@YAOWm$cHHBs5|n}0IPZnr%G2DX<44@?b$U3`>HJC3iSqC8XrjG z1C<>_$Pj`4KYlu zrEBw&-zUjv&0dnESMg;@eA1O{AmWmdvQ&<*-w8mz|FTKc5e3z&f=r%{h>H;`h|5H`MCShqn*GYYL7gy5EnsWJS*nU z=vBxHd#1La+rTg##dk93^*2!5Gf8a+Pe*E7DQwXgX&Fs@2-_#Qa{7gOWZkq-hS1WQ zVgo0GN!QM32E}(KZL|{@_ET+mjb~I=DQWVImY>7;xD=klLBHgQ@n9HR@`_LDSer)> zM^y|fBOeq3!wptg>+lv2*T!*RqB80G+=|M%}wg%DKmjn0;6{=9kMjUc^*NymyBAHf;>)-VEEY zn8e!acF$l1p)zIX-7_(J>7?8SvoC&PJQ`KF4!&^J;;~!@`<=ZG;Bq-iD$j>nL3pbk zxQV|AN!1*g^iiEp9k*)8EDaJF#r{%bkcdPw8}Xr1Qwv@>R?g+jD;kl!ND$3EbG|x` z*`EDS zmB0i&$hKGWSHpWc;MDMTd3{5}%fD@VAKP1(8IQUxmN0qK;;<_j@M;B2M-{Sl5GNb- zHb&hu@w2mr`B{=l9meLLN(&>=gtHG^-raNGBw0tZ3eXh9{pt{rQ9IKyp?P5qG2|dwTxiPv8bagFZQ(|^Ly4zV@DciwuZDVPTDzT|Z)TEq*0I?u?G=j}B zVGODD)yi&^FKS#>wo1by!!XZHwwQAI?bJETyA!K1xAzO~zn8+&29Q0&g*nC*OhU_s zu}7kUY$${QVCxfgQP3Wpn zWCf>dv)7g})+={|$*--7kzIPA6v}Og=e6&S91n=`NHkqlA^%9oqX4N+H#iz8C;4WB z)rOpnjgf?T|s6t~;k3peWjwY?fU z$v!)bp5Wy66xi~VeuMvFFSW6&VaO)GJnFP&Bt|lSutY!G(3368Y*!W9)3z!mqw<-> zZtV};WpMy|vi(?({h%T}EXR2;7I2%C%{H=;H95H^@WIGstzu;^d_j%Xi@Kt#Db%PO zY&$#j+b;9`$Gjf3Y2)O#-o}f2CT$K^R}5?ZQ^mj9Q1s-SBZQKRmUb%_2mdK`>?&rJ zx_PAHqfz@K!H(Cpe<{! za-Xb8-Hqos-hB=2qAtK1(okJc>$X!=5G@zdcoPLmJTT=lgMn^t07xj)v@9}fuKU&K z#GZZr^zV}N$VTDCa^B}p|DggYxLXwO8r8A2Z(R=*r=%``c1?>>O;)q9z36I{sAumK z(?#5IGrKW|jsm$VA{es0K&L_s%KgyS>D;y40aA0Mj`jg{5Nm^OYWq4~%Vq}veAu#fQ8a-&R zLhTI(WIv5@MclG^s-^4jWi^Z&r{nHSMz7E#>iZ7wnwEq>~cxQ{dM zGrx6yV18i$kd(Dhlv1Ezxx4$`Qx-Smf&`G6$V^yA|1mhQ=s(U;_Q!uD>0kOUyXF0J z!~WPkq^L$m8XWYIcDS=w+DUpZdXF7xsB7#ce7MuIu#K%g-Z_%OT6B(((E@-h#GNOQX4C~F}HiJ@yjiNW%es6|*&JlBOw^lgP`sZCZrrbS_7m)yQ0RxRWi6FYa88+(52ldS9wWi$1|^ z0yVdv^@;XD`jpcN&z8~>Sr(;?q@$4}W68ojj2zsO98+rHHhD!N@*yGJbPdOr%(i5b zYfHjIrHhOXw(K90+Lm;J9eEKMl1aW8Ka^BkV*O-5Rt~;-95itFKmkV%7c6AkSeG@_ z!PCOJNtm@E(t8?+#@X?;$=QLAI5zNwLCXk(WZ^egB`*mBcyo4FtKC+G!E;Pupmg*q zaD)qkq##XkHRPzK0fEUiwgvWD3p?1-Vd^|5ab$^9Ok%UxDrG8NCh4tU9h4>}Z>dS& zr5zC7l-DiNK-Dz59`~?CR(_o<$es#7R%^0OBS-1(Sr{qo-HGnBy>;8CpCO@8)zxq; z|2aX8eAoTJjp1#OH>CfxUGf0gQWZT#u&$3Sr>vu?v^*V5qDzd7Z2X<*C1zi35yn#XsjmKms6ZW}5wV|CC$h~J z`7I&BbYF*&RD;~rT*}G+qUw$#4XAk~g-V)pG*oSf-jfri_HaR>>x-t!7GaJkkklX& z1q-Isae=aXSW(+5hS=wME`Yx9ih}n|G{CedK%n8q1UKgD%*QSkCjLkmq`(FNz>CR;CW^vuNSIi9-dcz%`9vlP>Ckm5){yPI!v9=ldVK?JKPob)lb zohWdDcMuX?!?&Meij$Qo=jx>6mHO@I!$6d#9x|UQYQ4C&L*1m5LtP0;1|CQgKCQ$Q z$Yj)BaP@Qdg43n7_JS!YYNt!C(xrWR)mAOrp}WC{JNaC&y+6HIOr6$ahBH5MN9|)n zl1Gf))J08HVw*Zhy=~xWAoYsFME=!iXq_vu<-HD;6?r`p&cyUG>^CTwTT%bD0M%6Ra?6+QM3}PmZLX zOP$1BWMk@iekB}mRD}r`i(!(=Hft}q@k7EY-9-ls7e0+%6d=k6VX(q)(@qeD0!VH9 z8a?RCE&v>t-98=>q5!s3o2(6e(DpbNKyflcUQpDY>X2#47RFDQ8;}c>HyaDp~OT~6V6u7c6V)~r7Oj8wvsR&5ZMpB!oe`LX?HqDf_fMjh-r}1?d zDU*<>+iiC3r;S=zH~XZmZ*9=<-sck&X1PN~HW$1B%;m@h3$na%0Rk#0e6WD32p6#N zx(4yG6gg*pVe$c6Ww<~Q^+yya+-_q<7&MSqj4z-Z66(bT$#!L8!HMG`4JQ%>OQ6jE zWoJd-FCnnY{788Tq&|uaLKm#5@;SVTQYH!(eEUpbmI4nXU|yTJD0eP}5thoy1*#eUKJnM93X%}Lg)3Bd(GG`e73IF#$^W*+l3b}c>C|zb?d9C0+3rLWDv{8tlV4~*H!d= z)|Zt6j?nEU0h= z0mv89-UoTS_<%WG)9rvnMPPj>K3MCOcHx5w3k3Nxtc1oL@hYsv5x#P+?6&=JlBQ`LK#3R~;A-~n}dK473Ks$7tOQPX_Du6Xoz zuAmbI6qU#Y%Am>J!dNPc>pkQ+2pC<=#Yh<|$b~I;T=WT!gVJ44T~)qAW0={>O7YTH z4OTkB>(9xm5nfv1ymg(JYBd>EP2%`-t4U`ZK{neA~!USnLemlmM#>Oc@;o>?cDE-mKZ)p2l*7Pdk=)|Ul&S~8Am zPt~*X)oCqM7Q(6UiUrS=5%C0qnt5J96322C$F-0aE@$CwGa^iSyuy@Fh11m?^{_>{ z?3Hv0GL)`q9q#;=P4iVp)@wG)x|gUnj%kfZcQZ+uWyRn?F*VZ)WF|%aJ2{ydJx4cZ zCQi^>~Lq$vl(423k?X;Q9m>NApw z_6+-o7mB%3c7LCUq>Q_Sz++Qk9HGlNZn1APG%{VMZd9?Rv1ddPGzZsxV%Vad$G#rv zJr6IhSBt4kE=z|YeSljk>sJ4Eo>J617~>@k8I(~V`@Mr;bMI`7?ukW*RS$Kr_c3|n zy4|+1bCk~(GNpW;uy*opaOpKO)#$@qqZaB|sMnosIhWfnlp-5`U|$f)qW&*sNXLCH zn{+$cbmo}Zz4f_Bc?sOfecaTilN*C+M zPMAGxkY{wu1v%u>>Lh(})3szKl`154q#B-hM+4&pG11g9EyV3w>ReO0s#vCNww;7x z>PfRrR#u!Gm{yCllTNW;Jbp9bf2n7u?N+oAlF=?MMuy&6z z$s=<7j`xAhexZY5+tTS@0(3@Z5fy?62}pi?+_P-w6q~w4e;n>uL@XErsDEKQ-mAeY zJ}w@3`pX&0LpmGKzvF3Reo7^yta==`+jMr7O_#=HcDBCm z!e_}@jf4g1EN+Bq8|hSt)^B!#n9Oi>!10wFvQE$? zlT3&H+;)Iu7CegopzGa1>JKVOdx)Mt$5y~UbfQ74#vXf`%VZMS-uNC-kPfo>L^e-u z4b+y?Jt&c1UAE*Lq*LVg`yN?p@bF+So8Ql5@}*Fq6;s^_{he9gk0mUQiK3lXypLhzK|0rO^9^tb3PHVqwA6!}R!d|er9MHvT z`Yn2ZAN8UvXe4<2(FA4rAN@U#^Q^O}?nyhf(;iZz{&45MW*=87x8+KwTrZRV>bKQQ z=Ur_iJLKZJRw4g3>HWvlRbMvlH1fap!o#`FuIQXvvGHOUp&67R8IcKzlP;M zN~srR(5^rJye|}Q%N?!oe4c8gs^-~g<+V9HzxZ`J%r{TF{g?c8<}}r~d%QB=lf`|* zEe(|6>&fNmRj2Ug-o9NF?#isel%0Prs8+u3l(ggY&q3w5KDfU8d4ASA(|T5+blz^A zy^Mwp-BKIv=l9+FhVgjwTr9iot2%0(7cOf*FNdXa?>K25vj(rVre#{)r;K(|Q#D<= z&fK-GoR?~TczjaoRo&+3xl+l?YC*ou*(393wo`h%O^wJ3bMfBEpSP+{+WEyxUwPaw zWm$ub`|G!-f$^R{wmQa{^Rqd;wr|_D^Ln#*tRFY-t7teV-n|+7#r@(hTfe(3;mm`6 zgDY1#_wBjgbRLT@ef6bNx=M~%gFo#jtX#aM-gY043;I4`|8X)oxGc|iRymh!oF&t= zvwq&v&bpxYpRzwS`RuZPVf@rsgYwz+>+9vo+u*%?*>!i1`_DIb?Wa>T7^*K#b@wH8 z+V7p&$Iq&Mi5^qWqfFb%T;^^nmxd+Z%gNhPPD{3v-Agt7cIRREP|w)cPT~G%r?vY_ zJ?^yI7yJ12L_2B7{fCrk=4x`a`+hpiwM(aWEjg1vyR@IXZ(4P5n%At0x00;>dL2Gq zt8dS&!A#~^ZCWVv`h4l8wX}14oJ}R=8$CN1JYS`T>HUtJ%a>cX`TEcwejt{Wu{fHmmkaN+=;$>yN}Xnf49?>Jj2aR&RdY;D@j~%mlb$06(Ppo_{X*3IiQiC;k ze{$ZvA6(W_`)@DxC%x!C>FG25>gB;XK2B9$?~g0z=IP_5wVS_F@6(U3c=z(*qESVI z+UrH(ByJ-*-OABsOS7@=4B z%f09O55v3KTl@G)z3Zf(J+XNy*thrf)>-4N-B9+8%Y5s0w?<^F)jfAd>C^~WMRaSl zUN0KgH+KFhWos?7S5bE>H_z64GNn(5u}$IZqDh zP%o30j|b$}>D@>fm0sm+%T@G;44aW_qniPpk;|jgVoKe=&D_4q>aeR@Z|>F4lwPSS zuXiWP_1V>pCx@tTnQrR($dU)8yxq7?_OrdxZfpO#=v0ie+IhNnO~&zkwbN?m(%QL^ zldlTx`);Lss+w2Nmqz-gdR&&}lj42aWewWSulCzz^Zmv^)yAm%diQ$S&gHv5Pk))% zxP8628C?vEZrS)XI={IewdK*nD3>j#M{f_esv)1%PO|2E&bYpLe>(AcS?TsNPwB>P z<~o_(eY@P(F3{T*F}+{kZXQe7_It6T)rQB$?jTt;-gkSq_Q{RYEZv@7K6dL51-Ev8 zo3@-=xpMo{w7tmzb<*;&dVAL>^lwJpUCPff^Ka`;d4&}*_%G-b|G$cSn<=@i(+9V8 zQo6@a6-`N}Tzs0g$*fW-tEut{>9%s2wpQ+zk6%jlcJh&4u!*H?&o=1&cQGIjPfDX- zkHhziQJ(z`ZSXAR-kt0Bl%jg)lHB?bo9PBS^+0^IOTAQ+Gnb38tnI$tom^mgQN67N z4bp{a`oAKD7$%d1ua(BF5i)g~>I`48GVRB5Fu z3{^>0gBa07hyKC-kJ%Uh7&8!KX3R?RQ98xE1(K&44t@U!ZPvFEyjGaqKn;rzYl2?Q zJD_H~y6Xql@ny(SF9E0ukkDLPzMa%HDuwc;i2{q-^FezS21zv(3j-t9IRQdIamjzr zGU?GfBC|Gy);~b6;=0X`coPOsXq5or$-M&e+t~uFjU*Xq)G-5r`*qToz?;xq;QU?a z1Oy;g(z4Km7-%*H7ckB2{05y6$^{LU2h9hIL+KNk8OE1!&5k;RMbhv941ZT1g}xmi zFg6r2v(qRQzSU6=VizJBTtG_{de#XM6B?g@Y(-TMcN!yIHZ>OHP&Vw38_Pf+{l7o| z&zf9FB~q!VgNOsSdeDNWxJR2{ENVs!+5dO-F7!eR*6G4<`G>9Ie4)jPLaV5Yf*1ZS ztyD$}Xxomev$HAbF}{{6dnciqZ7D73x~U~!I|J#PPG&xpTw$q)>5-LWuvti#2INEQ zyHrK=7_4!jap@U5q-m2LS{XT-XNa7W2QS%!?S288;aHqkMGQ183%~~?y8`fWK_;jO z27&Zf0SGCmhnQr;QfmcZ28zb~i*#LNGL(M`^18`TE0EZ@zNjDnCjZ_y>(>#)^1``V zArEUkP#lWjs&W8~))yd|ET(_U2FsQ$1YUIhcHy*TQbf-@rH6`c6;|ObPM)+L);ROM zsjaalD9P9vVC)^s9^~TsX}Pm`BbYqWF+H<)<_M5vRD?7Qvi-bJ?sPHO_E;Xvo!RhS zT_(rcT9$-eEEOi=v$Gj*htDqxbGVZ)GT9mn!mMdmHC;<3TKyFs_)Ph*zNSo+fG5*p zx3oEL*;&*mm5QjGYao=FF~CmEhy)HFXKVA1wiso{FK>9;sjID!(EIhNjNBmm`sA&a zx%~C%T$1+p^$A>I)9lL=84fKiJxiA}$_NhvGGx&FUY3Wy-deUl@814o`I`43C!@3_ zYH@E=TVk4Hcx2P8y2Nhs@_PpNGlyp;*p7)aUPg%<( zve|~3O%#gP>D0IDv+o&cS4wB3v&^-0DAA|nC3-)%M;_4kq_bQ@z0Q#<^49JY+Q}$o zhPuAvRA!bbESc1PP)#;?bqkG4xDvT6&XeD)T~`%ZVk_rziF`H_=a^c-q!DaB{;O=; zZsfTyU?Pj3L8H2q(x{ExRhyrowDc*Y&IV=9kHNXrnWHKf^$Q058i)v%?!!2#_9_K! zm6tR+diQIL+{iH-tBv(JQE2WtEsJ*%JaS79I$qcQY zw#wlNM`a_TBbJ$jfUaGyBs&*C*x@ojb;RrwoJP8ZH2{al6 z-~(MZ1fV4Bc)(Q=>LUx1TPgq}pn@gk>V*Q#BOLZQ&LzXFw06nrR_2O*q4j>xkvd z#Pj-9ty!2GXRr&AQez{?-In=%{et`sR}BJ}Jz428);jkjq;X9Gj-e zupTLK2FFh4iF}hlgnDF=o9#xO9TgF8OrTKwBg;5! zH|nP*cDh9UigI9Wx!fBuwL|^rUzQ6e)@$f_sLE)i=SvZwA1eV-5Ud%)2O7^myltj<_Hp+ebjo0j~wCY%r@WNscZ=n+7PDHzG96`wBT z|Ky|0=}b}knm{PiU6%LRF$ivKVM59YzP>(-Q%rr+VVhF&_G6^)YxF6buK(h_8Yg{u z-yGTIUX4@P{|ZvP7pMHrom0A8qLNWd>B;8?4zS()kH~>ij*U->{ldrr{-rr!7G=yD z3-N51%)7uiD$q_e6Q4_W)=x-lV6H48`!tyBZ;`MVJ};Ep4&g15WaKDaX&mxJOUTHy zqP(qAoy)@FW{fcKV2VS8$A;-J-V&zMHS zG+8%A2FNQwI46 zqjS9|V8N1-0086~VQfVcMV&aok9Nh!Ecnq*omJ+3Q|7@s5dQ-&DK92X!m z2INFy0r=o{8!He6fActnx7czm`cYWBY$mlaJ61PX7!$KXyLfAf@6cS{WPwa7px^&I z7~2g8Sq^zoZP7hRrm-7H#}lJJ?QK*p`h@LL&3)qUTn0C4Y{x2qvG9?PzR&L35b3=w zJEEBuz>zhqPmlM=j*t5cV%VNyHs|jbPi-O>!mF4z#krk*%Sq^zKo^e5zFeX3g16Sh zh{}>A$ygx)9Z7st8KNLz@U*}ME_A?0!`py`U(C~KBuWKa!M0D&MMBK$Sk4i|O&y%X z9xJ7^YBVpUb74W-NNItd^T$i+bYb#PN~2qgYrI6$y3Z<_aMGHKyH__r>3(6E+jA94 zOWPs8J|LI{x`CmxUs_h?Yi)DzD6_(>xPa2Rwi2^VEmjNp4qNu0u-1Lth=FxOIWYS* zd#BT&QIrG1xlAVK@sb9R?t9T;^o2`AKX%OC;m$sbg9~EH3f`4$I*zH+vuM1CGf$H& zco$t_eqhpJg#w$r+otKz%Tk8X({UYk>BAyjMI-uri70xBn#q6yk8Q!hr7H>f=8nw)MZ;3j zrtSMPSDFdrd^GGw7cb3Q+U!PBL})vF4+)$G@B^r>ZjRXM_099P(CHmTy%{=>YZtZV z>YnZmQ<_d~lGOXlo2?-MggI7HF2N>J^}VwH^2r{g|34`LWDrG;Ydy%DV)^F^ga^AaAX7T19Hw>D!H zy(rvZ&bPRdz9V~9T`l|gSf!J@aPTyn)U3Q|IuIR!are4)Z8cjKnwFr&IH3uK8gr> z2|RBT<7EA4xfM;X#r@4!jFML}_oGV&^0*;Cr#>RcMLC_YpUW~6eT5T-n_W=g2-kie zJUE97TnjmnLuzmULv((lo&B3nm?ybHF~bY+DJ@MnT*m<;;!ci3l_gTb_{yB| zD);Hk#)1r33|O3FhpSXR#eT7~<70$Pb~RURJ!&3Ah|yo5Jmf)~>BZF#bN=eVF-*CJ<0c0m|FXef88MAG2HZqL@fB~J zFE9DDWf;ye@oBo`Y2+9cnF%IpjQUF9KVx)5V^rR@F*-j2IEt`~!VoY>`Qq~bSx5yB zQl4@$@r_bt+eYb}5&55Z*iaq(Uta}Jz=-8b1>tt7q=R)L(xt-EH|P8#Gx-nGpM)mk z=l#5hFu%#dT}#@QH`pioYH3&0hCK}#%mKD~XYggaaC;w8(-BN@dLQ_5H=?}{enS2j zZ;Bk$xv!JDsKg&5kP zDyUy&gAM4#<&bUPKbsIm*_E)}SCjM?L^imX2<$Mf-6sSpA#miP`At6??|oA> zKPm{_Z%P11S4aA5pc~$#A5Q=#VFhK?k5QOvnvN~{G<0_0i^JwtPKzuA78Jvn-p{g+ zrh^!%P>{A4g)mO=H6Ce-M|dW2SrkU(9R2&x|Gt9781bM73^L*a1uLS@1!|o`3Ag~# zI3rLpAD3421OmlH*b@>53zmSy2Wtg4WxN1k=O1u^qLFFBfWf1t_}~HUH$Grsi<=Kz zb6`sJykT*tMZlage6ZG;l(~a-#jz4*>~q5EBUMAPhC!ZIE|A~S-~W-6c%ad^V`0E# z+!1*64n1g77%%rHE*IW68-u9h0tVeb;{ujeK!ze`;;J~|cR?x; zuO}3uiSxlyOkGyJ=sU@5OGxXH#lY3Er799x7s$Y%>KIE^rOBuhw|bguOW$_C|B!Um zpg;G>PfP}`CVe|3KWX6+L;7|=ezvfp>g0aUR1HV^mLRuigC81^^zHZegj6@A4mPlb zG@4&a4;K!_Ih?+U9Zs6lOF2ZHX;ND1qCS>TDE$jqI=2xIw*WbkLsv!0QInZRSj-U2*_=Rnj8Wc#g?e; zLW!=I+lA5e`AVOT4$|x`TTEb9(&iCbpqtSuC}FMA+Dko5%M&?2B-wQ&x7WiKQx4f0 zAh9neluiX1l8n8YEvi9Y91*3`X7yAOQvi}tp-_A!6ITh8%zKp~VbM;0Im(&%rVrkO zA}Ti-V7G~)2g~vGg6X~rwqfykGh->@>wo|G-zQ`?b~Vs0*Cr^9!V(xiAR0Yb__%QN zmdf*|W4MlMSTv6QIQx`Z`m5p?RbC=kzJjkki*K?$FFAX%z3Hsg)$!PFCPhtk|8U7i z4(Rg~jou1@m9cl_EX{uK{2FlLIZ?NbV3@KI2MI-=+2Y`QDcf#h|3Zk6rym_+aEI8)(2waj*U zoUgKpGTUWMle$Q2?^&2wwygFi;itdr;VE5~^zG?~^n|>s)B|N-S3j_+7303 z2bStM*pNUo5MQPyhQ%#&%xxk|;|feb1zQ86EAeu{TfrKRlbPRyXxsvi#ulR-|HaPw z_CbBVPU=;U+O$dv)HpdOMsbG@z;lea<__VFwCP9)F;C&FZdO7ng92{(>>mI07f>*%=yX~xcyQf<%NZoF${KvZ7nx1V zmrQHhrlQUlVT}gKH4?_2Pf?Nrnq1f8=3i}c<&dcr`RY%>vji-*|KdJ(=mWu}R$b)5 z!rsBZcesr$de|O$%ORa`xP$xH*pV!@A7s^A>8xKPdC~hV580_t{0%1WFyR$I_**iI z-VX!e*L&Wo2yhm}IoLuHR=tq%+yR&So)%RXbIyG|p z!BiZ%`$~&h&u^vrhYf^(GI2EX#LO9Sj9Wyda(|mQm^8tDL=N3@)#h&RGw>0TccSi}RcN#1A44vnnDYK?CL3 zWBnc0NdH0BP5xb(r3Qzu#sLhD&pm5tg9gVYk6KEnyrH;sjDARTwDT~_VssIwar)hhI^lSTzNmzhs1o-bDkYPOeFl1(4s{_=yRA`XU4TO`6$?h^w(3#bG=uL49$7+(n@?&3;8)hQqSC7!Cmq_cZU^$cV*pw*Ez|BufXS$mY2x10Hf zyflFi_YrwqXCg)2;U4vVCczMm-?%^{)1@-(J!-2%+!{ZuVoke53>Ni5&A}Qs#N1Mg z9@B1{YKwv;G9M6~O4ry&%$s#*Qf!$=3{76KhgDN^bz|cB)D6QttB|?gN5L>3f~zqO zW44`IYK#8tkiVo25A#CF-<6xXn=krnb)`L%WJEr)!yN0q-hrlRIqpXo2?8ROwMmS9l=Z znL0A&I31yZEM@4vmxME;9MCnd(L>||ms!Xra1)EK!`kXF^WH|lf zaoP%{ah^qs_Ts%p{BE1o4N8I99lvf+*=%g`YJKL}biouiQz&%76vq_Hzp0*3;R_-D zyiP0np%kJNg)|bTDa0N8EUHWL#UQJ9tv-oh{u89i`10|!hVvo%K4KBSr5e>d^kU10-jYVTR(0^GL8Q6 zxV5S}w8-G~8u3{_rw#=}V*~0?+(%ihHH}Xc#mp3DWd9#uiQiM34Gr8xPkoLKlo6)` zZFc`?b6t`y%xnzEkz5V$8vh%(!$dPXzr(grmaatWEbW^;17dSsL_J?Zhs|u2$`$)$ zE3^YXfB)8K2h~MpuGfgqdV$W8>NdE8|8bT8J8iSYzBcGA5xlFCmPIKFRX#`YXF5x! z^@LAymWVC~v$9h!^|D#SDW<#=GV+k`T}!>i2z7Rq)18-C8U&@ ztV$680rv>^2=^~MJOX##_kSY6ofG}FqraZ;{htqidrtg4%>;MBpIC|*vgLrH zqL8$%ncxs7?oS534lZ!MXT{GsF$0ISOwR@PaIT+6EYtX{O&^OI*uL%O%g1eB+H!&yKdG4_ECZCyp-l&OOX0vw zkW5c_3Ppm1Zlh36oU6KLs zBKC$V$v>|WoWFa8MsoQA^a9CL0zJ)VR0&qdmyVReUzO^4)$E@+QP8~|y{sVJQvO=K zLPf7~?NA_}QAK!u-_+CUHt09>H9Gka=z#n=&;f(L3LP9&`3~rS{%F0YaDt3~ql3Ms zm`|svAA=5Zseyxi7yon``LW>OtHK!u_Zm<18g#&ZQXQp^4v25BQ3;MG?lue*z-LrR z4lll;N?y=Y0AMTTU!j#k0ZXhD_{68QWu?8BP7g(6msJA4;`^Mlf_p0WOQV;V$e!sF zKzM+rZx0BW+ajfJ)DR-0@;h8~T~oJ3On-!?_JDA2`qJvLn2;7CWS|m1qe}9{V?dZt zC)Z+iv#&?Ozg3%=t)WMcfy&s9UYU&3~$EJs`Kiq7^@9Ef66@9pAijO-TTY8O7UW3GL zo2dAh$l+8UFB9KuaMx{92%k`T@GBOZbGD98QPw4>9~0T@AjN6z%I6Db|Dq_Xaw#L? z<7(>1pe!OSkX88*GXS4&T3h5cn&iGhNw0xfmA6ip{=6>zHHfHkTcG|IM?{sMF;se0 zdhjb2n{&2~PepVIa>qpWI!H0@RQV8@%)jS#U!bWEkUlcpCpEb8S^*PJbup|3vGpm1@IZO7l#-KmT64FwC9iNKm5{!?D>~)ah$_w^GY}D~PLiYkqU7GIxxSIMw5jrU~l=b<-+rM^% z?jx_f=x`sobg9HPJKQX-CEDz5^Bo@(s~pKZ<%JjQTW^-~i!Z!jf5v!uLV3ckSdh-y zTAvDyKrfBoVj_F3q!`3xKi~c-zbd@GlsoZpHT8pnnCZdm&$^AuFB8Nh(9atB|9OL$ z1bSQS|JM#;66kGV`ClN2NuZaYeoSPqgY<%!1o~MwC5c++uL-ya^ismXM^{?v@k}`- zz(t^+Z!+NhcaljI(A@9U_8|kBg_O&da4VU#iPZQxy5i&4213dB9;SQ{@ zk8GTO1jdb?KC(CQhYOX+x*T|1{AoYdzGh91-jM@MMrCX3oXL5bWuCDi7nJe7x!#l| zh9f}wk}^t>E-to6($To+jYYAaJKy#$RP3#z;YVPqu!p@jIPT~0Yz93BP}dv79^JiZ zY-V4p0?U6ZxjQ)C$x(s_2x?UN+yhFWjK>xW8h2{4q>Ii7& z(1WlZH$?AyQwji5K&`(6%MlZ_v&b&Ju2p&8K@k(MI+*EKvGUa80pUBc5;^ZUU-LSz z8~Ua9o!2d4^)0QMb*!{FSwLS&+Qv;nOsKF^Kbwdb=Ok%|H?h)8+xJpan3)!*WIg#N z39b^G!y9V$!U}wc0RFhgBiG!|TTfoT(8Zi0BJHYUg*ABOhz_Di65+cp#ph#&Z##{K zCBbU%QMl{!hL4f1YYE!Z(ZN|d>6Q3g^S@pZN8*HJW1QP2@otA?QM@c3mFEigQK-{V z`4hwj%MwS~3-NgHq}#kyr*G;!&r1It`6a`QH?fkog36gnYQWL8B|($iZ)w$Ulp-dU zWYEG>@}&2YOpBf2yQu*!J~f@CIAoGFCp`(K+&H|{22DU=naDw8EI9*Dq_xlK8CO%x zZyC_pGu(rF$Q+b8IfwI%%55OOJv%RaDAC^_xN|cY2YwbanE3Z&i-=rv?QgyI_>BABhhjf4+I^4U z-_=Q~Bxv_}M3=m9{IekO>FnlN3MrKJnNt2>HJ?Y}*uHsRD|_?ho%F4DRXx*5uZ2CI zRmJ%ZdV3?g_UwQC`~R%p8{PzsAnn}RWcWMnmq;e-KtE>SecVybKAl22ua%HXg2mD< z9De*7?vK^}{?C8X-#)PHx;6w@oUVue_`yPa-k5&9#hNCm-g_wFMZV(at=w1rl~wz1 zH?h5;!Tj5g?hse&l{n;;zQ&(_Ix)8Xezg@PC-;KJm7M4^-8ebHfBSYs54i@U-*+$k zm*f^?9s=1Xi_$IxvP*Fq8jKA9YJYyo6X#M9_R@fG=%_(lg?AUmF3~XQrsjWIjI#(X zg7B?m1Gtomc3nQFc{7P(PKlu6E%i+Z{BC0fU|edvk`1VCb9-vQ8}#)wTk36jGHYM5{3Jp8+xYFH(n(O@Z4483#hZ8~Y^k5$E2U{u zPbWGu8u;I^bxqJb9nNa#oTqK1jAvyya3)KRWD4izN9txYaU#Y5Ed#UCc+QnFvZhP_ z$helM`9^|TMS;QBR_bpZZua-Im}yD6`AwXBH_;sQO}x0&YL(2C+{Eg>{iY^GGc|>! zD#pY~GdJ;@U14Nft`<$Z?m0c3>%qz|;{Ejk^CY`*+*HfXwJhE@t7i5B_ar-K+*r+P z>indZSphCGweFB4+xsR)$$(e1GVFD%_K)0-yKbtkB_CZ!u7$4NcZY*Zp{xB;$Rb>F z_<{x5rQE?L9Oqe{Zd-U=uQ$QVC>bU#W;lP6Yx9o0s4(ODyyrkqXeLg3crDk2!>+e* z@|hHuIVJNAH!d$pOOR>y0E|ydeqNw~VW8|-Nd|SFt?j47?*heWn(h(BCt(5PnuB`l zSBoZbLarouJ?9K3_@gRuqT~$jBMHHNTLK9ns4p2OS}^X^MJ%^Z4Z3vyKG1OV$bNCU zY+2rmSVZpe^8II6#M3=MD#{Qd?|8F{{hUy=HsaxiHU~xES@xe_N~NRa5Ahjqd7fo} zhcG_{HQc!&T5S=R@Xs%0Jkp@zd(r7Vua0kwK#{>uE?mP8dBi^nmJXLC z?;B$AewA^oqPPtmzAv_=_kGdobMtgKdO()Xm-Kx%W_fl-@hJwwG4wD+dW^y7tFCS% zIUcEN%Kdl`U=3GrG&|z`*eE2~jq$dqWHOI=6RV^y^Co7PkSJ_^n+y}pH{KXT)^#gL zGzD=JKTl0InR*kmgi``H@Y+A}D@_R`16nT&JG~*$`dN+GZ9`unJrSm7Q%v8G98G{3 zpQ-VTRvo3rEz$C-H?U);B%cg2PAw~P4Q{>fyIh`yTjisb$S32G^9fu4kDct7^;kMT zH~^W<$ltVgO)?vQ6RTI)_?!6Q$)ZT7Js=UU#9Ot$mJyxK5$iq)aGobFoja`SgA z^lAC{xO~#zzh(A_4JL+xJC5xMas?emfz0<^CtKdz|D#z?G+vZ&B$mgf^LWhytU-L= zQDeNa!Xe?fF6~9wxsSh^{j0(m#x={cCvj5PcU&-jrLc^|htk*D|NY;>O1d^Kyb$&I zA!X*SMKnKBK|iB#`41)B#2xxO^fnvmFF8tGu*|;%OOj;`xEk{~ev4eQ?YF&-^45_* zo{Ki8PP7MEH1f~9bm=)%*=DD%EYtl0_bFV)cq0&~D7x?oFItfv0Zb_li}mpJh_)&|A~uce1wO=MZ9YynWlWLu#Co z<{;drup}u6w+YZoQ-T^GlWYk6_EQdrAj`YER_NrSHfLv*6jxV6V4s$mOb-@BanZCy__vYcOD-7Hq~=6ZT`{Nc=qkx3|bq zywEA(1J@J3PhZ0~3=Q7WBQs5!?!$%HVq9VK|Ni^`dU=(JD7bW$;46f1qQokHm#mxS@NU%4B?K{0faL- zPojZw0kAl_NUIiH|2lx<44~UTzXY}t$v||t0F)aX+WSytM$}wy1TkQAMBN{??vJ2| zzhqpv?~>Gm0s&`-otJ7-3`U7Ukth=ce323_si4Y?B}Cy~7!#Dl=oy_0E#Iq~H1K@U zZya0$)ZIvq&e?Hn*an)8%N4hPB8n5yY%2Ug61Aua>@OE#jqJPoa%Hv=m+*jR?faHl zyDu*5K&WhUiWEN#?&!+0D|z4Zg#uATOF*=buO3cgGDk!wPlz5~7kxtcD~9KZ9Nb^= zBIQZ+2x#GOTqA6ur702+-U~2dTmnOb*zkaRWEr6GN_?jtRT#E&ppfV<|4{h=l%)fl zaeO9P0vLqAb)pyw`cC}f!&b_QOEZxTA2Dy)GfunxEZwlMB4s?+{T3nghgupiv0y-EP9odd0NUjU0N0N#ZtK0<&G*;jss)0R>dMe}x z4kH1@6+HeOo=11YH*aOffZu@aNwei(Gq}-515yggg6Q z;Na*LA_q@-z5{y{q-Jh7*h@SRupQT{N|up<2cW#56j9UUHZ6Bwp2IEs0>wp$4#7Xz zY}~uRjoO=gB+T+bm~f2ATiXo06!qfhKB(M`x1}st%)|Ao^?Om{dv)C&*ux`l%WoqW z48HH()>HQntUS%U^_uD9ca}tnI{SFaSA4(VJ~>>!?zfZS{8~xE`TWbpP-rn+7^wjUWAA?N0ICDP+>`!*?cxso1GcuW99-cZwUj>$ z&QUb;YxFBY6uzN(`~IS5*>_*d-^$=hpoyM(hvDA{aH2-Y=nf;k<>1}Bub|~g+qC^Op}&HvYdfHBPXBs9B6kt8$p{v3Uaq!- zcIzRD)-nIV>V)3Sc|+drDAr0X4wif_TiS%PCgu&he7!+!r@bEU`t^21aLnkQ+eGr&ENA;& zsco(L-hdGMr7hZ@?Pjw{Y17#$-R*$xP2~D=&r3t0xWE>|c443v2yRx0 z2(B2sKA6lzS{etWJJ<5cPHM3mE8i97_-xIGraM~hFms9c`AyR?w#Gb*m8SBbP7g*Z zV@=hB#$>&osz!f z7W5XY2kj;{vS-KwA2f!<%;~PX3Qu;uh~OgYSR$S0{jk(-vnZF-c$eW8OW)QIueYj_ zB!eJ9n|!J~l0b$v1XI9Cqfddqt%xA}ah7Z7e677{nee;2TD94Aup`^5pJg`l-awvJ zxnQd;M_P7?RyTIdW#*dE=BDU8#AOF>6FsVJI()1Y9_g0}9gz{WtzqjyV^YW6u2&d0 z6fwKd7)6#_C27U#?2z9~P|G4JJgx4kTS6{Z2O^K>Yi)O~u5~(yn@wJKTI({eEmqrU zS6k0{KSXWx*=TQh(=InAV+=7{MCZeu=}lQkL5Ih=_=79&gO^zSiT_DzfrSLReSFh~(sK zVH3~?ImcCg+EZ#XO{h8nIIRajDP$L3U(_1A7CsJnbg-F+d4ivY!bJ3Z9LQQ8WCMA} zlp=z;rL{$ueauitysyq#b&bvaAlqMvt0|{r)sV04%3(+Eh6ZPOn?j}D8>=I$q~d+w z$vKk&>rx|iU0(W<84+}M%FwVqx?or$l3SO$6O&!Zoi$7FqQjz7WY+$M7ZkwPuD z(dKGpyyhF6G#KXU7DhFNCDYY=g>f}MoxAoxP^lm=5YruuxZIqzcwudXj?*Yc1Pz z^I=XVU9DzyEty!WRVKvB%5V}9^xC`DjNykxv@x-ad1YuIo5oNy!g0kYhSec8sBeP; z-yc;g#T>0qwYf4~^%$G&pekaO>3khWJH>{r)uv%Ya8RV?I}K?Pi%Chvn#GQ@o%A=p zDxxH+bv$c=ZX7~ULTlEf$Zpj)njHgg2~vBq?&C@}?Di45ly{`owpNP>j__bZy6X@b z&q-OJ8ckl?`fS0|b4FpPicG1}>$GU3TbSW%Lzw0Hma#(k9Nud66r_m;O|8zL!+NvP z*y<5MzPITtXPQwDyDgF!lFXns5ZaVYgnSldJgw9!afLN&Of<4WZ#*Gyd5!!^Zns84 znKm)XpYP0d*VS^l5*`u6=;bJDd+t*1t%J_M$;lJnR+iHevt4Xlq-afcBYNWbnu^gy zlM)=Gm-F%2xZTFZ!N#_{6;T~k=Gm%5$L6aQF52@>qhX*~uTvPerye`%W4p1Y?#7LY zs^-a=xJB4@8=2;7C?O)NJ}w8KbN3L045_K0nh$a~BT7%g_&#NT8!zy7DXRLLf2WB{MM4#bnv30F=K=Gl|m6{ zc49lL@p5HNDxHO;qTMA*k*s1x1X*fZ?eO;85lOTqQMjKIL}n!q*5rId(Tz~0sL5n9 zqb;|y+DbK*7>voF5*P$N8_cD3#Wq&daM4`X!}c;FI33KzhN9A1)3U%Q-^}*8*3z#` zO*<53RJ}qBgQ-@=mgb0I*qwlP{9@2!OGs~7z}<0u?pf`=Wfi(hW8ub5%JX^+Z9@`_ zM>Qp^*|6Kq60YFOd<|dly@dgM5ETeD4AZ=JHLTf&K`HYpRSXNWCN5U%!ItW@vcpvqk<4@T69<{kjqMW!{eN@<}`;E2BB!?%Scu% zDYP}AXSp(h6eTS7DWjR8@{0*VR%*r00Aok~a1t3KsxcVnE6%E+C_2?5gZ`K#=Oje& zfHXO4^bJ}p!LtSlj1zNj9IAs*2+J!zC;Eah!6Rf}348tVhUrr@TO?Y@d|*=3;%1?( zrwx2D7-DRDz>~9W$HlsaUQI91-m90D_t+GG8proKWU9t5yI*0JATkqe^$s zQ};Rwf#}q7Q1-cS)633*w^;5}-}FXK43-#Q z_B=@rkY25f76zDA>Y>>=J81T804DrxV#bK}Buvk(@ z+6c14jfh|kK}t=NuonYy-WMgbURSYpz2GVSMwgIMqppf81^1M(Lk(23HkajrIdy8| z@gy(onvG$X_U1!Nm&XPd4}4Z_Sx_sgVC+__Wnn6X!n&TdxM{x0ddpqC+{P(lK6e_; ziZ&{YDZ$g19i-S}dW_ex3lxw%o44{zcajs>h#pvUy<9`xJiMpQAu{jll@RmKI^DH-%0 zR|re67r6pF zA<0RJ?`2r;Q-V&<8@UK-te^;bPl&Ut`hAJ3%jFL0_qj~`P&*Q*6kDf2y4`!l-v3ydDQDrZYk zl;|N0eJ)Cbf62sCw*Ruf=oRx<0!J_k6orTnL7*r${160!(cwQfnyc}eu6f~Ibf`-Y zv7U(X-61k}HBQ6ugv_^!uxj;j-15mQjk^~1cW4x+iBW$Pr^&)NO`E9KM_h5ms5Gf{ zs3JM^h}^WRSA-DwWV_=N^)6%ec4frGwwv;%yJ9Uz>oH<5n{bL&$8!*fOe^J zJtjDrO`WAAR?PYu%~>>FTrX?O(6F~T%s0_M8}(ajf*%sD>VR>?!faP3qYclL`$My< zGIevgb3IiAxP-I($RD@4I*R!!R<382R&}zaLws2shGhveCBvyL?H18PO@L(QXH9-Y?;6;IZ!X)jd}}9+HXFHI^JjyIpwg=~I!#gOkMk;(U4%_Mx2x?uwp9p9 zn2_J~?SfJ0l}Bxv%Jsb7l%<8;r0-GX4l%|Z8?SXqg6On&L|8gl=u5FIx+V<4C>5S` zA_EawoH)EP*oZjrjI+5fRWUGd0p79HhzVBevyCbjYKwkL1*+j8^i22pwf%HTI*k#JP9}})Zd&a2nWc}^*r2z<%tEPK=@sn_?rdxAH7^%- zMbn}iSV=_UNYbX0=YnyzGO-H-S{{WE*8yM8kY_#GdBbt|oVZPj@8e}(tWJE9Esv!c zr3)Au2^}bmA~lqJuJNDs!?ghX$nMQ~7-O8X1nc6qL2Mu;G8a90-)xRQ6pX^1L$U0G zO8^6NhHMGofFWY~k6nTW9YM5$>CsNgI5fhZ=0S5G&A{wk$FUE2Jo|Rei{zeo5gf&@ zxRHbNfI<6v=Mly3U+g^o*nEwrFQUm2m^l2~o&0tuzp^`Ff_zU611Q$#+)1U};evV` zQK_`h7GeoO-^g->3X5{v{y-f!DBmD@y)ls^@O;q5R=G7-L^f)rxe;q?} zd11Tb`t8LS?FOY`Zd+d!v!%Q`YSHmX*6x~t={CeVE;e`Egb53Vy0sU0XEB|j1Tu1a zIZdu+H`{EshctG)r7LUMF3VnxSd>L?R%z4MJ8J zJX^!VECEkgh~MGJ>+$EvSSK5KQCykc@=*_=B8wCax}I8ps`SE<*ZCH3#+?WcBd;gp zm@yo!fe#pD1$5++%1T5(CiDfqOHhY-DKa$hjuoZ7$&rVF1{t~u&2%N0m++71zbGx? zcMilm=0My_{;~fKFf>Yz%fudXyUz!VeSDN$5Yvm&4PZXPLlOc!dzx_hl4RM#%O6gY zWuIh8e|_{hs^WF}#r@Vg&(ps`^!%nhmx><0HuZX*@3mzqF}GJx<@o*iJ;e*z%;(=G zcOj?x+Pi69(GAYE((5XGgO?az+gK^dDv47Syz{1TNtUj@OW95|@q%rt3}9R}Th~rr zd5T=iWQR-e-e*q z`Xmn>`-Z_QFUdncprqev=)cp@f2W~;&NOsNR^=(4{%q@inC{!tn_ zYFtZ0Z<(9LipFyzL&G$?6<2vW9ujlM>aTU1-E0e+QGPxU7KOF4TyUky6eYq!VOB#* zLZ`Y|Hl+f#%2BO(MG1|mI2}*1a>%vjC2`$aui_+cY(95zI>dBw$Z!Rpa9cyB&}uf& zvhG%9GRL}$_14B2jPukswytHXvxXs;2fCFnqU%5lx;%psi_Ow2$N3`ixVj7V#)#hW zwAC$>bx!Y>x=I$KW|-a@Ol$S&P|;0K?CL#Z@&DPo*5y>OCHyMZ{F*6e!c7#WYIc<< zDv03ycIwnFKoFFhT$Nw*4(B}1`FGxAp5%aN_Kq+HS?r8Gj60OeFv|{beG$muf<-Od8`ZVi zI-JT&tOFoBky-n;IApfxlhSR*lC!2#atGd^^%_Fmf_Vdx8g zj<98*#hzj4)PCKT_if2J!O#aIL~gq%Tjz(se%PG&{zO;U1lJB~bw4_(QGVb~8%tB^ zGLhw>gr2!(dx9DaiD6?%6RqKtq-qEmdHn^&4EhS#@US%iiVC*n7d%daho;RR2c)32 ziSA_$BX{LNRa^0^W!Lt@0f#P-b<44*fxn@2DrAfvSLYzNK3FgDF4)=h7F~28FAYW( zoxLqH!6OWP?GxlKOkn7ZZ!q-3aAo;DrQB`lEeq&lbJ)>k0~MG~J%*vP&Hk)B^gMb( zHo-d8rRaSEcUyIQW4H;&+hwO!pD=a8R06Ko0L38-R0wciZec7wCB{KOHWUN&#L%XJ zx{9KL*)ga6-g12C%qJ@hfTjr`&jdqTs8LY3bDEPX4nZ|$XAv?}X;^mm1HrPj>3{$@$kBr>+UhI*oK1|w9@Kl>Zj00MtO`-2EjKJ`gqq5r zW|F%gz)Z%gAe*)>+hVgSa`J((`=>XCFT>DDS(>7YzXA-s*)mC(oa}LY#n>7#mO3Mg z*GP1vOhIFSXhCI1tB6Di(e$+-v8&Aqmu_fYg=@N2T}`abc&Bw1!{*4tR7V)D;s+IF zp|O$UonZmZkDV=R$o=k;?(WKb*#hRukpeKQh)B-)K&M(h_lqq?g;vadG<7G zy)!3Q^$rn=K##XaDi?}lr6RRa!>US5j1LEKjz_D!ZkURyGuF6DkR;dNRA8*K+4zat zNCG-z2);>&v(8}GYV?V!Y^{x;ap(%6xQODGh<}zV`!?DKWCZWP9@KUL-eV$q!L}~8 zry4q3LJhW;ylW=}K=wlsWcy>u)nR?oP)Ui7yx#=neBE-#4SpQf_L5MWMtM(hh(#GqPw<(2|$?;WSek=QAqX{2XUk>WuQ5uktkMCDWaa#S1^abL7JGY(ijjL z%f)!q8Xe(UufWh*c^{pr6CiX382X4j!qDe>gROZrb+P*fL#O5=I23BSInWVf%L8$9iIz9sU^+s4NZep$>P*}!@7f{U_-N-eRo0WO0#AlEs>ph;N0FyT_iFxQ&Th*bSDfZ%SiiJx)tsNfM!-F!WE{;3sbIV{n7Q5@n`u z!wmv5k5P%pWTzt6IvB+Qglj3FY7MOx;ZPHjkB;`NzcfgAA4$VPeOqqB?Z5^6itM5w z;=1j5*9hHNuT>pK7H}FQ`NH{}(<%%h`?|P}EcXm-5;o$f|Y@ z^VY#xd-xC&xJfAQ7WSkngw!5zF&(G6lePdrYF(uV9iY~d%N0Ly?2=@3#|K#*$`m~4 z{e5tQS2f^@W6y&dd=Y|P$p%4>-^E?=Ak|L@`ll=TbR{3_N{E^+hf*-8zX^h_KDv?< z1U+yoAhcjj=&)A1!J1KP6A9m};l~g^!7OfS~4QBqb)&LKXhqT%d*fWQNy<$|mjjlP+wG}mQ zO%0I3#lf&#b7rQaL|Z-yr9EdVG?{2Q8)JIfGQkev?1Z*5p3F%UXgRGa1aQ6+%Fz)} zHpbi-1vt{LigRmRX(O^Z9(L=V-<$Y2SWEVDS?bY!x=gpQjTR>|Z>?sEzrHin`Ky^O z228%*T+P(+mH=CexqPflBD)2 zi6hAKgJPs~s^OWQbDFeFJxq?jzuv(FPCn*tU}AXjVDaxy+7-7li9Q|s7R}=DHh~cx zA4oW_#qD;#J#gmy@%IQ)JsW_S$nl#@ZBgoXwx1cBjbNu5j?{J|cj-@XVSC*#uBvBh zf|cM0Z#78SI-wjr&8?(vYT}fO;<;Z_mf6hF@FHXLt$d_R!R6H~lI5Do8yei@6E9oG z#ayx#xdpPfT)gz3ndqHb>OB-ikIJHuxhT0xrv80-4cD;De&RukYs{U^bmXX4yvYLR679Rrfm!rEf7_fpc74iFO?r-C z@6+|ENF9s}lPVTPEH1+_)~-^N*8ixR8o(4K-9I8~SvGVoVwRL8!pSv@ni`$@{+Xr8 zTs~9fIG%n{==+Z3G6mhaC$B~erP!cs*FovH*GthRENxZIT-&@}3ix=N{Pgo{ zDYaJ@wSHZHuKzI~$(xrTk%^!!l|<8sYm_2C%ey7Mv{rq|D7lgz%?BUXgqC8i;zyk5 z!>bdL?uTFRy?2>LOnO{?Kk6+vWxU|wZy@%5o0AyfF7kCx%-LMD%uGrf_em2Ey! z-||wKR_<7yTa0+QNS$*Inbs~B#Y}0be58up0XHOX@)0~`Z?eQ~xn}cb|CDb3Uw^xl z|25K8p5A8v-$1O8Nqm)_kk!e@)y791iq7$+I2P2UD8O+ZN}Lr>0Iz9>RM#%Ng{w8M z>wFf@OgjV3FTY%E5FH)WGK>*(czu+AK0Nt3kQO~R?;JgUQ_pjRTs=j%Pg^KgPyMK$ z$GndsW^0T4Y{x#ktf?sp2kDp2fBz$HrL>;w*WV4Fq`2#iQ?K)!W@XZz`{Vb2_s?4+ zZHTLu{ZA$33%2wbqtInCJi9GDnamq#-Eay{y9mw5uwFn z6+TtfPYLf|zRN^^^n6~>c*DJS=XXaBPlg539L>FNFMaN4VC3Xe{^Fh{iFOM&!f7{O z{(W3cnv}&k{<~TKqM7@&{vT=m-^JG#V*T$89KL4#(eD!RklwlI^^Iz9f9rb!9u%hd*?><)b9c;uMGX9jS=7w+*X^H}KR!#Axp3w( z@OFw8i`yBVkrmBZ^z>y)>le*jwuq$Y)x9CRUNno2>Pk+@6h+TcrB&(2x@Ae4`Ev=v z@e2RbLusr?rNnRja`sy#-CRjpNp(t|BgtOc5huGCk*i3?k0-@Z*Se{$c&&7v$%txn ze3NY5Ilav_-H4&b-$vh?_L?_Tv83~HSwQJWN0Kh*MmboL9TC`mUucW|aLN4Z4*hgH zaS#L#%3)=j@h!!wFmdX74NGTH6E#|6W_1@aloDUyzpGFPT8XC3KP%FlUckX z@#&vqU``n;Rpi}FbuY=K-8ZfNO}_9}Qq31de}P&qh}!wYSrolM)l$v%J!xfv-{o4f z$XREBFXp0E9DGsaHPO?eZB~?Md=@p#N9p6x@ejo;-wPu?E9Rx19zlRKzY^Dcejp$; zzOd!SJk%o~^c38@3J874F&*IxDf4~Z$L9hFW=innp!AZ+FZ<&6lexHJEyFCVyi_$T zuee&);tC=&neC$MA#>5Y0a5o?DJ{Lh1LmTaDb@8?nZ%QR6h*Gs5>~C0tvvlQw8$n} zHZXNAS~p!RkdNd!zxPlW#f!M^{Yaf2xmVZ#<%+Yj6;tHXBEywzX_X0Wor_>(*Nno5 zW%B7cN!@T)L@t82K?L&A%vQjWS5FF~6?Y5#f0#oc?N}V2FyHgqsg$$sHR#>n=c1|8 zYQ@(}C2N`GN+=|rw0kZ~TDIb>gx`|*Pbzud#BYqUDT?23D)v}Ra6dufhWGarUM$a-_*yoh@TbW;Z6x~4m zh8un0yYhI1DWwp<;S$eytjjBXQYAw3-_`PL9WU!0zx?*(>C|m-?{@DlFF2?F&kV+j zoox7Ik1Gc&3c}-`SaEZ72(F#qDxM#HzLy{{wuk2%B#$}tH?)wy2`woc&DilW^2pG5 z`l$!^tLtz=69a zG6PAF1a}hLWwJ8t0EvxQNuJ)=`vjeI(@D}rSD6mF=}+bd<`)zJkjzXbla)whp}OWh zwsj>|cMlH_cMlH_2PbHzk_#ULPXBU;5qHSfe+eJM(}hX}UO>V}XXwBi-d75qdGR%P zCH^PAt9|d~!*^bO_H1rv=#Q?=3DTE4+mT$!38cHPx$k0!uRLqfJyy6NB01m-kS8YD zmaBQ1WnNx)59cf8O9tRK&^Qgt^jz>R=L(wk<&NDOyrtiP3o2#0PZzE+`874KQ2+bi z{`>pecuz!Z`##vz+`K0uknd;_e%Ye?Bv^`>VEIQ|{?V2njD^I01eQd~=ar7duiK3) zI`S1!|NgK4>$AxE2=>4Jw;R~M`##4X&oAHnp(5~x{ka60Ts7aY-2e91|B^sPBN0tS z%2kLrDMTOM5AGd)4)LP~%XKC3vxdYKH{pN3pN~JzNjUpZIC)9o@5#mH2Dmq9(>_R? zn+0)(uX~!UYtjda6tf`G(~OVOmkAR;M%#5@o+{;}t*?Q1B-8tVUc1E&+2I5@x?Vs9 z|Jv}joeMGY(dHbE5x?9OiDH8$iOOAc)suD}yjnW`ppI}{O&ou@Ls1edRSEihsV>PJ zkg8{QBIuVy>zWA~juSY15uS{F9bAxhfW){Z-({gI3Et4TLQ2%yy)B(y6o8)7OyBa| zqn1%v2sDIt7$?z4|L7R%@=!~~K&oTf-@u@D!@E#sR zk~mRvz-h4zPi4#U;AsVqxTg4Cbb3T2SUOa|rVoL^`$vH&#jt=RaQa*mJr%xjd?BWs z#0s!;PA{A&Ki@BwV)qV-kwgbE!{RPK{e83RsZ?E05v58Ef8O=L#c_{+PyGV<244nR zAF{u2@;gqCzLu5<{gbqCzGubl)=crKm&l_vSqovs~l6W?AAMAI5N zmLhj~|D(pr3@l0247h&0-gxEe??beyxh69I(%_&m+GI(Mj z%dP~xp(0TsFbweO`PI{D4CV#U*(;z9r#PIgUP8Xdh%!nPZ$X|#uKeXgp(|EO zVBiU$H5ge!i?QT@XJi=+7CL@Xj~Wc+8gxkXFaOl|5YW=MOesDSEdi(`4R8+wu3^sP z3?QbA0T_{k7vhJ6e$a$1(1eBq9)KdlJw|OhUg?6)bfJMT-AC@ro$7h^BZ9bsDjA&n zVA+xh?#Y&8a2_~y6yzvxhK}GUT0{&^Gh@NMjVvvSXQ1kw$K`xS`v53g6FlF6k^+t% z?K4^6C^a-Q7-|A+GduyT_)h1Xo`UZ{{=EXh>zdurbRD)F9_O4#$>8C@10x9|0aU^D zI4`p4ni*L#?$Pxe$rDs~D1&#$K(Zk4XE!25Pq5*c8>t%ZaVI+l{Aks~oN`sfh+A3gD`r=Oq4Vis$YNC%#k-!-@8 zwYD^bM@k3U*#vB>0i6s+Ty(LfTACo`#?T!C{?V7a&{iUY@`IIYg(&_284m23;fP{NpK3Tl z+kFh(NZ#BR%q*UmIRVu0)-DGxMWZ-+4t8$N+f^+{=IMGeqj*z@lD6#$Jv{Pu{0`b8 z`1fqIUeBa}j<3;hD)*T)sd%mvPdc%9N_3p~+~ddK+-J{m(gpRSj(Hx4xQt826H$2O zIXfek9~ljfcuU;F>AnN)tP5twV7%sZ#*A&bcRFxR2mJYpr`N2=(7@g`EegyUWi9IA zC%DIxNKzyH66wefc|B*}C30gLz(L?SVH0&AP%~fuB>*s>)q+BC%};>CDvwkzi%#vlAzCBZx3g{C-eIVrp%V^d(t0JE*{Z8ptRj{x~7>?X(rFz3ejLJp9g4gY zL2rDyo6>H*S{+eUg<>f1V@9=|Vn}#Rp((1`tAR@sczurc1Ku3#;D346(!_vAo?^ ztc_Y4uX!S04)%)<=CK2wX;*ji;gENIrWXO6)^*SAAccIMv;Be8vo<4dOp2rO4jnBH zi^Z%Q^bg8lH?9q5GP52JL$%5&l(Suoq+V-UY!vss;#e(`+@cr(+|+SqJX?r0X&O@Q zQY$D2soMyw!a!K!i!Hx5-O2iZnQO!^1RclN8OuCYp37sVHlC<;8<}g<^+5NRn|37v zNa|C;?Ai2T-9wvnnPBBZPxTIkk~}_y%SMS^mRD#@ex6ZBBzO5nNaMPryI)a2f>UHN)B*L~3 zOaUkDQ5F2#jR3-%3!<&_tzOVI;ore#(`#(Q1JzUgd_7nW$MT}dg*$CM(ei7w8Q3ki zzSN8!H%FIyTz2ptIjr_fhmSjjM@AJ=M`T3pY1nq$o-w#P@QTy6BIZ|GU6JK(S=u!8 z2FnLC)UrsLuc?RTj+86SvB=|vR?l6kTfG*>VpGta?zX~ftIcjc(6&n)UuqMF!#B&G zkLj2WP~r&OvI}d(ZB+3I+8C9_s5yxM_URe1E?N~?8XX)9 z(*|=2BO6A3ROT?QoUaBxA|hgs$J@(-uMK&%iEKQR6t>MNA~}RD1YzyO=eWtQM@q@| zIvod|G9l;`Y5=dVTJ1v@pYC~d94z+*lArH|ndtdA;I%x?hw`qDMgWPmGeFm)gP~4% zUtKoTEw=Q-{AeX^=A4cid%kt3?ECs)Z*Z0u6lrEq+$?2t(>pX)T$yv##egji7yUXe z#uTy)+9wxNY~|!7N6F7;Esd)58XOtUxso+8^@2}0`BJeN8U?`O2}=tUD|4#?CZY$6 zHum#&p)?yE+GQ>R*g1>@-Cf!Zqi%1vS)rm7~d4J-H2H`tA5L| zC!2$*PE@_`&zjxN)MUm2S#?p*IPlG)z|D!CEo_T>zhK9LZEWSTJT^S!P^!56N+JTY z8jKZrJuIW6Uck;Jr!?3UoNZ7q@CCG{R;u)t9j*r@e9c&Snkw=|(JU;Lc{u_o9MsMX z85T%mr~*;i<1VOA=Y8Bue!hNX77)>2yx$-2x^mF0N2C@&rwH*Q6lil8m9oD=0Qs)>>sSH;G!5GaO<@&~C2Yag4WqYWFPAg#allDyUsU}@7 ziQ!sikV3N?v|IRmz3jVI36B8Qs(dFu+Z2L!J(xD_h3bf%V!e*8)n1>h^Bh)b7g;?t zW;K$sfEPCPs9t`(q{hC#sat(_xK_pzL+sdceHQ_wD^^$G+pfH;R$D|>tC^(hsIt>u z;la?_iBd;f6$J6HX3Cg*(B$q)SjwGpWnVlT$mw!97AeYOs9LQltRjFoQ93Y%lD&7= z8dYm(6gnbX%{rH7Hpsk+?(&UtU!0W>osg>eCb}&X9X3B|?Dr@-9J!*fGlQkbPEa#M zk4^SDCST0&MPV{!D+IRME(fGYcVv+q7WnPb9n1}!YHjK+uN#3QcZETdo0AyINC$D! z6;=awLQcDfoiK_!WnH)Ja&gnQ?eVx1hFG4Odji!gj%)rP=&VbFc423)3*rv*Tf;)D z-wMIN9wG=8R!3~uqiayX#y>Td!&+sg`(>8`4|b^@Fr6cCuet$tA>ik;4L7F)ZjPxd ze7ftJRewe5qsd0-11F~gq12~3Gj2qB

b`TA>293dOD1jT>QHX)G$z)UZq;VI8r$ zxVeFpQF_QW^aIpDI|$4jRdv=KG~qpW7dLrKH>PuDUeW879*xn$j;Ij6I4Ws{`LenR z2BTU-wKhFbQ|Q&W-K%-F3{*NxZA?||7_+_5>?@4OHwv^uM*soIi>645gVBLeXr3N1 za&xzAHc`6TZ*x=6YbCfgfOkPMK=>jj{P!1d8MoXBESM*BVn%k}`?#7jo&(zxFuw9_r)pmgkmihja+8c{e zovM*uS3HW%w%lUJ+lD=N>#8tdOMWSk4RNlhT8(B~SViWY{wna)xivDhO-G$Jr322F zh6lGK*_EcM*cxw?f>w{&kK?gCXN7*^3lwxVqwuKqU~9O(%C^rWA@va zhnq%Mb~lJhm$#ephIA{si_8psC-ryTu&(S}zA19PmLFjKSvWbqWnYg0j!b&jo6t*?9%)LA(n!B6BBdG8Z;i{d=6og0I!blGVB%ud+#OoT z^3YgrTh&l#EGAQ|KQHOR!E6?LD{K$}T!d4q&5Y>oQeG03JVNxlth?Tz{o#nE*(QGw zxvpg^TuUwF1>WAR4Bnswzh0sxiSU3mbo8<^FAEc%Zg5mP z>?%uTRJSBK9x3dO*QO(FQ<~QXLz!=>E)TlI;)ZJuG^5B#`a+&N6)K=usY=(j{1Ezr z6h-Te$%geuMy+;oXCi>l9LUWf$XjIev;tomMtUdmX~uzw7xt^g(wCZ;J7FqSw%n&0 z%p_2PiYhG`!bkPEmpRoxbhx=?@4L&I*X226iPZ!=Ul(<66BJ5Vp(m+3psZbUvBAy8 zsEav(hsG|UNw|v*)*03-L!-K6&Aps&kYfR{=-$`>@b}&}R_pu?$ZlfIz092|3%5 zlLNn+w1aW8vW})-HP9jR-9ZJN!MVMVrWb@N?y84+ac)kh){bWgORC1x3YH>6w%K3p zs#cq239Q5pnYIN6Jkmpu18%esq}(w{do>o9BT+&bM#Xwe(Np|DmymLsQN@jdd&<EvD03hRs~OA_mR@DKCF9vyI4hrtwzBr)CV&{Xn<#@jTTTPYDL9R z7H1ey3f3V`Q1mmt(zWi0njX#Ql7e$ssz!sUUfc8(3kvlF@|=!L=j-2FQ{4z4->7z} z5#vDve{0(H3ToX2*Q>H%%v@n#_Tk?MpnzQicztT|5};K(NybScB7l)toT#L%^Yehp zV7B6e$UUirb#Q6=3TTySJa=2-v3%*fT&4KB;&}0EQSn$llijQkJeZA&8k{BV&OP_M z)3(}j5I9j!sX!T1&CyGkCxDgO=%}W!N;D!~PQk*6;gHwW(K31wP~HR{7VMPp=+1qK zfZf69lB;sI6h)Dq!qnHINaed6%#!(X_fN-*Ua4>+umqz-Q3&}IB#L6kPeCFWJ^mxm zT#eUs&D%dlhr09>3yL5=o+5WQ<2ZGml=*H6HjSCaLQma@Jyr-eN*Tz20lnL*te9x8~5?Se`$*fcCh8`i~eG2;}C z!HEdq+7g8M+Vq>zdJ!ibP{wXV-e292HPA zAj#0yiPne`&_T7r!~kcDxwDo;+GMsUVb$=`cHLU<4SPpmU{(=olTmj|@+|494n@~i zX0JJ$1bn?RV$FeCXH4Lr?0v1en2(0>gxn#=Sa~fgW-Dkrq&e7_PQw5*frILBW3M%r ziO$BB56Hf071(^MM5vpszgNYzLyXG?uCLLG8yq!!ESJ~Re8WMz4IhCg4XEKM7fRy` z#US8^VK{d{XM|01=qV+<8dJC^O#Eq&V^GXju?mw{y3N_Hw#U~^c3+V&Q!<>^+U}A= z)U1=NI{)k>e7;*O2C1{6v5dk1n~ zK8@|SVqJB=)!VirhW8@{@usUXrjfqpGI5jXF4@h81-0Sq?4sN0%sN9x@!NJNE?dpE zzw1u83BMlBN}kJ)WD0Lpkie;Pb*{qpeZ5)&0?N0yHKvAFoLJ#1xKQ@64aHiF>n@tT z9k8KcjjsrzrE(@F9!hL?)n|8OYS0;Pt#RL;7P0EIP_OpnsVn%)AZXEBdco&Y9vxX?SV#t%)aL=2ip~?*Xy&%tI69wA;FwD2QtL~KU)PvqM zsFYjHJl_u@fKr{DbSrhI`ojHqt!(jp3*YCV4zD$!vb|;@kDYQulU%isRjyLo@lj`0 zBW-lHkY|9=uUdX(Ca+t_>%IRPASFDR$yfGf8qKdMXc5C20guXI1V086nF0+O0H|bh z&Lhm{$WP`p3MkFTY)2nkgeY}BbB~ZKARCV$XAhCx25va13L9^cRC-B z=n;1i!(G8NN_4+(54mxNKnP`BBYb{0G$g#(MAwctE|A!|Dz#aPsTJeseP0jle9fG< zu-<5>RUN*%pD1guFz#QK&V^_Hu=s;sv(K)~vU*{V_-F6fQy7wg+D zBXs--;Kp(4^KehBSK)?bEw5>j{XWm5i&?)g(D$z5PlLkVI}ickmGQo>`OJZwW5ucA zkc5^;M$}{*mJqTamf|V%pp_TGV6c*yrZ7xtN?s`G&oCtyS|8qguPM1M0j~ijG$j?~ zxhcuP3>28JB0~l5SWz;Z99bBskfE8-Ojm;W3cpAHMd=Fv$c^}cxe;g1Keyi@hDJ$q zx!6MPj#+}SjgOKJVt7#+0?bo*N=|@huhTHEWpKv3<1cq=y<^MztxY^vx7;7Iu|I$- z`A(e=h(pv{fBT;|fL``?yca$dotM10f5m2)Tc2>#(074;!nVuP)|&6qpHI{JH}}zg z_9*?^|G6?s-`Gl1{bVI)v(PC%QCGFZJ#^MDN#`Zma$x>Uxp3Mw1BOmH+LiS77Mi2# zgj=DWbSFt3b?4KL8s75MBU7I1MDMF-C6I~~JB_`s7VmMInH4s;buIu?l&tW9&dUmw zr{3IO`I)GsouG22k{LeNmIO_5AF{&7WG0WEswLUony%Nt^c$+(1RJLD^hE@csqCk1 zqE{+I{Ezn&e%eWS17ITFW!Fm?4&#iK;q_+)OM+V-G~lWJo{=2gDyQ&M1m=}zk_?q) zYC>k%;Kl`0@zg|R7gAt6zH(6x>>YK-E{V9TtMO;;PA)S{f@Q+IZZEs0Wr!*>Oo|pr zW)f^Es^I|hAQ`sgaB!bfq7j$|>GfwhFw?j}!Eq4YP{iM>{&!`fSh`g2pAeromy1Y_ z><6llbV8EIhe(IZ^bKB0GRaAY&XRww)IXJVadVcOJI#cgoMz^tvMEH10p;Y7o05b`_mXiSK*ZZrbfV{8&DFKX##Oq-G^TUhl$gOY-+-m)qMQh#; zw?H!BGdIbp|Ip}9OX5TzxTn%M$7guU+8CU(VLi_Az@u>O7RMr-@t(_Xrzf!DF|>32 zl_*+t`AX@i_f8k+C~|bd@#d{#>BL*Z?v+Bl%sLS zS;lk8f0qz7eo6>2jv1186bpP7GxWL==N_Ma9yY|Ws3y@VYDmCp2#>PnxL!AcRERC+ zlbjxV8QyhsSPnV{c+TMVIbO;+k}YwbB<46bXG(AvJLl|ko|O|N89WaQFF-x|LUlS) zT;a<7Jr`=8nuCA=T%gnh2@aDR%IH!QqeX`As?|4a4aA!ju3MFWKNV53h-4~Mpc~c9 za3v2(ro#7ukYp-+gX~066M=V=EG(1?-)XpKh0jy3P7cA11QevGD(HQUbzhSCK*|PZ zCOcUVLjzc_M6-|281%WnBwDbFt8rw~cd1a(I}X+_$_gD!_sa?w4{JXqiI=3p7CAy$ zA;Xd|G4ks_iV662Sv3mhGV3fXvqojfKk>K!fUU9;`9P^qIg%_nk||_{P~~*_{sW#+ zy1sKVYo94eqLi7WB%9=oFG_AZr} zBr^-CP$i6grNecyK3O5;bT>(UXewNxrt3MC3$n|K$_i039i2WCFTIY=Zsj%=V}Xv& z3RSX5(65phm^>1c3SGiTP%2!BBSERKC5;57LWc2KVM;dVPlXESGwUoYI}?*3|D@mk zNPsJqhW`(#3&nT=J~MPc7xJ8&S@UEqJ3S8<`9CtzNS878(V0d%tQlte^=}!^%dE!J z4!&nujqgj0&cA{E)<(b2ZRaA3X5PPn{7Z)2xp>G7Sug%{V0NSNJXg(bd>CAk&}BMY ze0H3SlL!)hyD=5M=<7Baaxyzq5ht}od1XH!v-tQGPwDDAZ;(~7@uy^tj8 zki|Is)5-XsO}GlJqM{;#Q3&+m1sLSUu7#+E$j>W$g2M{8=fWpN@;!x5 z@OZDoaR);Mi$2QyjvWkCydfT@cs|?Pb=t~x+R`BHU~jnbo`z?i`L>*#VS$F7KF}Qj zfiaJB+Gvx5@!jDpRLlLvm0nG@)x9k_z`Sgpm)b4gT{iP_ zDgF4V(l87k)V=6f@ROyQ>pA-e$wzFTM>zYN&7t^%EnbyE@9Rrlf;^+-dko2O0^C*y z+Sc~X>(K-6D_;0Lhocw{c*MjTl}`%|?(gvQ68qcU0Nf4u^Sps$(ZEY%f6bVG)Yzt~ z6Y?Z>2{2|?R^an10={xF;V64}zc@kH>?c;$Ly0Hn@<;EGeJ=-VQI)O)eUKs%@4YmA zz|Les70{8I0gEvt0F%Ky3vOHfbFoU5Jjt=*naVFOS{bOZL;;QrxD={dqJ+{6NJ{4B zWvkLbv_!(0U+=p*4ow&Pb>j51_9V)Cvy7S-%gWN!xAMO z^eiuVz;Ne6RWi>#m_UlKRCNlHB{8K!C2+dn>#$NxW+)RnY3Yy|mY!%0H6=G+2vria zsX}bY_Sd9qV*Ej(?9e4n7f3nuOxKgR>;^-!x_YTl9m@_Ute%q&=Oo$sV9LG&1~*Gt z@zi96RZ}99avvxhoi0P`S&``M3h^cz66uO6CstB}e7#?0Sut1kO*CgY~P_z}7h@*|a2G zzj01>g~Y*ZIaZemF#b|Yy4lq-b1hBJEWaSbx-)@7uue%Mz-KVDWRs8# zYj>u~UHHJPE@iI7c~X~zovEyOvIteG=6!G?k_u5^1gNpK>U6|OMR{?2qNGP}uQmYtO}`jkQb#nt-i$gNB=n921MGs(#3-)DXQ zHifv^FEbaD)qP77nmfM2Uoih(;SA$e^Z>r_*#ZyCOujJ`G+9gbiJ^316J58$KkGnG z85}+DR!M*|mBu`!`De$@KdDcW4%KmUxRz{rJYDM&E$^foaf!qu-BQE{mafvRwfuxx zPKI6QyIQis32Aj@Zca_;Q38yqRy*qwznAV?|L^|_8!1WpM!Jt^96!|jkX0*L&Cqnt zNfu5?)kK)jlvV4JifG#9@oZ2XU%A|gr0b^sAl}RexL(^cRd=2?6D5(K^lg9Tw!+4L z`z?{j_l|7-KlVW$nQ>v@*|FSDul_L zj$fwhKH@N@Lij<4F(pHjWss#pmMjx56{-)^NJ}X!$Cat%U&$e%8hBH~d zUm8@`pM{f~8x&l4de>o`+`sSmX%D#xKvs{xCViT2yx1oXEb=)eKiV&T(u28Y`swn^ ztuK%ww}Q1WKKhxT__VzjC3uMsKOyBa|_(fY`;iix9%N>T} zQB|Br6&x4J=P$@BJq`l)EE|A*wnMmBj?Q??^DN`b9Uh;?LEvJ%>sXaIQF6d(F)DW> zTb2h;D|o~c#fQ5aWsmh6S8RxXCle?<3FA;^7Oi`w1tZ@S^*|*>oIOZw;1lvK=b`Ixoka zHpR-C2mMsnGNPh<$5J4i9@RE_ctHVj%fEo0#INmN@On>8fM`n&=lPD56D3G*IYPHll_e9GA9f)q%71YyHb*HR4QyqHp!$yl5CMl z|J+-;z2J^zWX0Np>XtG*#y8%!^*0T{@%*F$nwg7Aj^zZ-jRU|ph`VrXu0y`(MDZJ7 z@wd%e^N@2q<7FiJ`qNepz>5frNItugU}C}LOrST#>mFKy9!^&b<Dyyk%_+&e;%gMM+h2J*R*s0!LlASAX#qTrYPfvaLR5m-8D#ldA z;2PYO7}Jy7oa^D?FC2B)@c4-rQufBvkYmZ#7^2s20!*%2Z&CN;r2J$eV*$QJ>b+@w z6I4mqd>_gMy-{vMhD`lH{$z&KB~Q7`kT~cf|B1;<)#slR#u-hMa`FzLpHWxqas@?+n zTMmeKF5a;k1w-PG;+$(e->f&2l%MCEOt|WL3eWt7edkwnDzBJ%oR;2b-p%joaQ_TE z?LTa!h`{E4vsLG<&+EK{k?;8a&PUmnd-;K$r%&-*qI`RX0LAjhtx&fl4(2SM#_X%v z1E4m(bvZ$ZTYrRk8bqweIUaZncKq=}DKH%OY?xuCBfP7x#QBh~UOD=trwepM$_d9? zx8lsmWB+~Rn~W)H2E76CRiy*lv49iu|JnPxB)M&6&8;x}B*nPvum63*ifGHSt+=+N zk#u|};)KJ&s%Cf5Vv%K%rB3el);vhe+{zqpEhH&7E&=xHt| z#*Te6*g?3@+4u3Z`|N{ve;38OK48dA*TmBmow9zpUgAdo4035PDT*vIg zWorQ#hwI{06oIxrTo(sBTwQrH2FMxS+lkx7ECZJ^)ylFA%%)akV6?|FfV(qfm(U== zxS5&R(>Dgbnr#VQQ_Jm6lB?CK1@QyT-Ip|u{3O~ljyk}iaI>_AI@P}~_Khn){g)Tp zXA0buB*yOC)cgJ9raxyD1v@r5BA)Nm-!{EeE*8AMZ6>lwYR)sI^7O9=!>IO(;!fvO zt9b82CvmZHjqOUZ)ee0$Z2ngG3vR zx9PD6Vj1RcCifpzWnyq+UcyKWZTL=4g<2SP?0)^}>fQSnZ>?T$;cEd6J(MzAaHuQ7 ztDn1zU>lw4@F=Zq)$El#n7Y&@p3;&4s7-U&`KMnI>-MJ>vFLqsjHgw*2W{RxzO%f0 zXbhnfwS{O5p^h>LJ&@0J6**+FIu4;bn+~}5{r%lwI%kMDLN(oZ$<8&=sI!Ehg1gA3 z;nymCMrLZX0T^i1-NoQLu96EdFFTTPhxk%LS)y zic5Yw7TuRTt%?LyB&R23k+gW&JEcLc^+mZr1zxDwAEmQoNe^up#&3(9Zl=+ePN~6>bj^N>BgDN9UDuT%e^}wYX_0P&N{ul+Dl`&<$ z%1O<35qRiA?n4|BG(EMrmA6||9W(}p)=L1j-7lVSk(~?-W%@c^WoBAt#G~raa?D>G zt-Uy90~YDZ7uP0$n8N*HXzw(^R%7lNUoL8^Wnc&ojnBXoVCx~??{@?+1F;-augco` zC>#=&fC}2l(JdN3TyN5m^HM^+FJfOJ>f{Ebi0nuUAd;>Cl9XUP0Epl^nUZj}>r&z; zGEPaKu}`0U3B9d8*z8=PfvHm=L`4J#&eI~Vv2st#ael5S`%vC^;qB2|?eR5zHuu8> zbsVz-X3Ry84-+~`T~zU160s*QUcbX&J&}mr`2ibVGGBf04bF9RF!k#5av%P_;`WnB z#Sn_ds6Xajdgq~P9FoZ8yD=9%MtJg76u7Y?Ju3LnDxMA!OSNrov*vbFVhn}-PAmC| z+YP3)YYP;{8Er80GD(aAgW44ir|Q=&BtwkY$h~AM_=O!sS~XI2MC0q+!|9K$lSutc zqSa$_B@xs=3+L)EO7pX|IG{TIwU?d6;eZ{ucMho79GE3LvFE>ei8!RI)0{lFsqYtV z2yJHXtl;7TV1HfI;T)ny96N{e#%K-A`CLClBj@S>m`65EmmG)}aKuGEl#PJ-4n6N0 zX8Xnw_f^i?jZ?qi)JdT1M#*iHD8EkP$KLhdK*De%EfZ60jP#5D`S+JUzWnCx%fJ65 zM|{VipV@LsJ@;CcRD>}Tmr>QyCfUHNC=rqNr=}y>%oFeTO*X!`!pEfh=9SAw3ulMX zkb8gM_<=uF=|dgPNi?%9>Lz=Vk6<1k)IBvdML@O z5ic35n0Y2eNWFM%f{wCF>q!`eV&d5-N&#adhpQ_{A_WH?HeyKc3yD@gr#y`&(pN#E z1xi%^%RDpYa4u02Be-%F2Q$8Sj~a>G72lFaMa|OIV77CML)wCG-m>Gjup=-8Nj|*X zUP&0QSlB4Zpj>zi>&BzHvoW-2K1%EXiqtct3xPz-`{XB>_-7h5#+#KeO8FL>EZ&DS zBWNQTvXSDvqe?cIvZll#+}jH(5-sIz=A)++KS~=DCr;eXT>D98;C}S3)oqI(g6}|h z4dAMxlq>S!Id+3P_a0pDVd`ebUs>PWT|re*aLZ>K^|I`n$8?JnjRY0i*@!Wgr56t{ zjw8Cj=BTppcj5I-SKRk%TWO%Ebd_vD>JVtzt(yVa=?Wq;3KfkJe8K%er2$#3 z2R3h2)7clMNPc1JZ&vb_I%lQGp}Gi^rpd_p$I=T0H|1cG7q8zzqZ=r4Bl1Bk)QjFm zR5Z+0#*m{`SWOd<51g~~Z{ZRq8<4Dj^JtSg(~0Azt0-A#-$V6l5n7|>D;r&Tzg3#K zhp0c9Q~@1eTDGVLxF!sUWk{%-)93P;6f25V)FeL*A1Fx_ zqGC#DIrkXZpvC>I*Kzd8Utw?5Nkma57>N?@7*0F!#~U`O$Jt#3QXL1XXvmLB?Tk&T zn^vfq3=VacYt?qJC%%GlIXg|bVWMz!4L3}|T&BXWfXcPOH zsr$;iQ(Z^Fr1owOW*s2g4ARryw$7w9lEjNJse_ZREOzfqY*BY#-Q{0QPi^5@qu2uR zHg{Ve>E4gbzEAP===3w30gDQKQDQT|Fap=ZX58a|r4WUe1g-fi;>l zoIk2j@e?IoB>ib#9tWUBl@+!30ym{8*XEX8m_my>OF2|beL1qPDU~KMQ5Ei+UvsBd z_ti_QcG7?KmYxvN!P`epXQ#QjYFgk*w*RUI(xEKv+2hhCE^Y0i?niux(d^Nq>1Z-R zoEB{tF6yPDN>7}e9_Oxtp>2>y6*ahuIzAK?)nRF=o5cgs6Wo%r2p1C2L4hf;-?;)KsjDHCQ{H`U zRaETLsY}p2gDi{MCF}DaPM+MF@=bTaWo;lQn3YPaSjDhXD~^-1i#)dHaj6OdJ6Wpp z{a>oDXZyEQYg}eabuu}go^@ZZ!y;9}Yj43W_I| zt+Vb+l~#F=e`}p?6Lw8Ym3}AjxKxcx^?L7@>Z?6msqvtiM>ih;P= zD(MfKhCb9*%zZ7?R@k6TuL$(6>MIvYP;?=&#pVonk$I2sQ1U5BEh-5vZ z<@Zo!`9h6$gD4XMS%sb$Dv)(Lkv`OiDM4Lb5N;;$&fOmJWnj-3MOtM}?G09$1356W z*d^jqwX);E{HNhPzqOy?W;OSW_%DW+f7$UgYRypcXyF^Z_L4>HuaQc;L&N0(9-B0k z?d%uL!R}0*4@*ky^h^nSy*_!X3_*wLitTe+oT${tc7d?VT#v*%M(*$h=D9hn~38vvXZP z!$8#4FYJQFnQFEW(r17E@$XlNStQ|@$lTSBD0mSHy>`pUCN-!sahsh3ae!SEib(V` z3MnK64M|EQoEWZB4uznPDaf&S|N)d(blgW zgcxJBliN)Dhiuds3uYiyF^N`YXrRD6>1JTnpwN;xM`G4&5`7aWXjwwX(r0%7n#43` zm|-kDYhA10_Eh_FV_J_59VX4Oi<@B*tv<#riJ%{*-fgxqan+OA6CuVy29ihxUcyHV zaNU?>XJ1uvj=`7SMNV#YLH)kOgCjnG*3Iu7*IC}L0nZP>{{RIK)42z&@i$;eR$ zdO-J^j!MMFCf9*&&=cf^u5yudb6yAEGhP$Vr3Tp5 zWw8neV)GOmQ874}GmkgCW;(j4w{^m3ZnP(s#hGm^3#66G#GUH%Q|5T6TG|j|9A_j-OBZ$8qXEcr5fV$0 zi&z?^D5H~BYf7n?zp?cWXLb?+nlZ<;gAhgivw#{u-^}NM_fU%_pV>k+n(W{wO4;P+ zz#Av@WD#2%An%n8t6`u*WKG;N+xRe=y}e=U7T@M`XgSnJ4OT0jhu+K@0$kA;?$g`G z;A9egx@2T-lX%yoJs!N=*@42DA7T*OmrlD~Y+O6sGmi?U+D%aKkmo!^=ZRsiy*X`{ zq#lj_QeN$2(-vnN*hsU*-eR_X0)!5dPiK3hK> z&O1V)<*wI(kGhhh>5om!r#>dIs^~xr1E6Lgoys8AM z;@DihZ(X!jsiCad!cG#ng*`d z$#^-@Xk_7w7T@N*Lzyk@TW`;uSF!qd_xix%Aa}1Hv4U=HZjf77>^5Nc&h?xIQ@9U+ z7*m1X*X@F->fkciV0s~!KCfY{jHY!ZnRKEX5uVl*)%K<1hfd(9UYv{^;L*SK+(7&u zxOa{WH*?;2;qB4eXzqsz3e1X>h4SL{J1$cA;HSQnHVNvkjF!fO30o#PNpjCWMk6t1 zC=oOMu?9Yg+$st@RNyVWuEPLHo1`H?ojORAJa@6=qJ=vEkVpwgm=Ko@$%l$TUHFZA zStUnz;{5155nEfu4L&wmHnw4kA9`=h$=x%5DfdysSUgTEK$e-Cw>A0fs9Sk9)eysY z>Yb+Tlti7m?hAs3;!HR7b;++dmubty_4k{Syfi)hri}4Ld+0Z%^}f^M)h?#KB>Bvk z&p32!#6zv2MLTXx+i>xw$_E+^+R4RPg~xyIue=26JUDNol^e=u=Q+(%RRHLFT?=<; zusE>&YM*MktWKi+!gq+l5sJXHr}Svss`ltNU6=y7ohGTa(oAO;D`QrpX!6tA>61Mf zM|Te6+_eoF&w>?EMmv^;eR?@}Yu2&)XOCRF1!bB0cgqgl|NgJ%&Xa5JHugN{xfdk< zCV48|y9Pch1EHr4r1kr?{&_cuV0Qg9ud{=Ab~>8CMmZ`qIyMhR;Dvv#q%ZF}jDhyZ(raBBtsI-Sf>w z49@0Uw9+Li(uzc@X_*f}Yqd$(VEIs`RY<)OH?Z zd}_7|Y$Hu0tpd|E67Ve>RXz2?^@cAQG~}Wr@E_gOo#XT~ttu5)wK@H>VkV78w>GK2 z@dE^)`Z*1$x?VLr@fPVDSg+N$#WT0>z;eIK|W&c5!bgrx$trtt)Zm2 zctYJWoXJn~C{3eP_R@4FKFgJHCO<4a_u9*p%$cYe{?$zsrSS1`Ci-)`NySG+D^o0R z@1v&Re3oBY$R0ebGUM>k06(ck*JqPFm$02v+qi8=eU{%Vb-rYpUK|s01`fl$FU~-Q zwp#A8Uh>9Dw~wh+%gZ!yLl{JS=R;1ryiag44aYj<8^+Hz4vUKzfR~_9OGwmkKt%K? zn@(5kN~<}!y1`g$y{_B!O{x4b4DoEUq*85;FMtbTXOno>P8w~Y#yoM~qizSCmG-Vx z6kU^X5`H2sgSuZBmD(E{tQlbo?k>o0CQ-Y9L-~4ssC}1a(v&^uXFSc0g-r^Mk;1We zdZE1K`d5UVRC`6az4I?#2s0_C(fE@hq-Nz+gsW>!w}h%KPHUlh)9w>aLusQL+84sk z-f~_I8oP?K^`IuA(8XLnj2*KL8HBaV#ScZp`}|C2XZOo#=_fzwvr_~ilC^?#C6dxM zQLaQ%uVQcQLA6CLdVJPV=q<8c!;Ob`UMhm9fFcql>HlS$vH)|C;{$0VQNo=FNaMFP zYA~WtJXi^{3sv-jG@9Z8)WPu}&>~Q9!kd_OuyU^qXKEPdZ~Hhv@Ly9+$fFO%H$phoJIPDo3IXRRLC8hH464|sU<^Z4z1{T#8OPTc`u z{((sYEvJetL5DF>>@&^WVuVM|^e<-3*^f_o)AH=&GH54-58bs9h_f{;x#&JYUICGa zoj%2^3;TI1Kes&lxGp+$iZ?(_#!#@CFt^zuFXSSI3fHF_OY_QVFc!jK8}YYXgg(pF z$eJS_CaKGZi27tQnq15#=UnuDbpFji>Z2E@SAl;U=ERcC+KZD#?61WYPJ!yPqjC() zmO^G(4@`k;)#{%WNU=`Fw4;D?K6t@LKNR1m_8w(vWyz}DqJLgFv#_s+uiff}aWd2oA!derp`n5|JvKuvQ z-tQY(Csn{QZ4!an^x~7dS_d-2$e9Px;)634GAH6W;Weu8-MOjv`^n8HqtJA4P}xmP zrY`<+iH5lvp_~IGT499QZ0Jz3Yz~4Fjc&xkJQEjDuj2L?tvJIC_OjPkmCuI{)4 zsaA%IRioO-d?Uz+!M2Uy=UQm`XU&Ec-9t~h3Nu~JSS19fmC59Idd5ZYe{d0+jAox< zpUy9y@(@$6RMQLI-LK|RAguMPFnRc*vRwY(|Ng&RV}dKwOd>VrBJ^Z-d4Zrs_p$B& zG-rBhb}>0;l72=FoOSGki&kcojksvN+}9lDLvdWPX5Yr1yFdk&lBjVaPq87OB~h>e z&khqk{jX>r0Rbrt}Z z;WUwJ!Ua=D14&LzrV(y^e_Nv1Toe=jZ$`mnP_ju2BC(rY^hUrd49=8?Z*)t zsh22(I}$0BX-gv&_#Zr6HVlaz*aaA3glbOcWEj$(mTXpRv{0UJ8Y#{p#N&Gr>BZ_Q z#=#Bf!6azm!$QdkVK{r5mZ#`5rkCQbcWJaxI2|=m8x$!BOyCgNG0cZCjJVdD>9NO?Q}3l18iW?!JMzq zCNpE48;usTH~%v|6C*J;SnnRGTdBl|aIb&cBoJ<%-%&x?!XjpC0>RSRLB$XJdF*di z5Ao64OQpM|A4qK2G)jwz7f+Jxc~vtP?_Qvdrv7WiS%PtCllVaS5_35Jp6deT+oNrG zYj5G-_9=-Ek2FBs z7BMz~i2|7C4#7lE(Y1PJviy?55}i%NryD;`Qb3GoD&2!C@kqkX#py;nz`$GtaR`ol z#SodV&JG0S8$bfNXyM^EXa$@0zCIL*9%@%3QTmq`Mee#nOJYic-fLe|ctFtz>J#82j2pR8% zG))T6N|ww96U zlW1n=L^fXnpD#vS9di-OZ>ZUn{leX#fils!bDq<^;2t(Dt74;BPK zM|qzXo`(U@YN=E_Dt$dR`LDo%wD-jsMUk9ZrA1-JHoXExe(J9%MsyVz4Rsq8AvL%P ziwYrMq?RXbgHCFv2L^QB=mvH%UpF9oBH%T z+Qfc#oO|Wn73b|?Js0P?$#a8ogVn)6npcXZ;Vpg^K~MOASl3NjQ-s7PTa(i$*SFR?mI*?57q-jMd=I6 z`(NtL6ZJP|8#X+6Ig?1Z7M)(IPUMejj8|1?ny_JRb>hErHfANr3m6pD5NbvmnuFoC zy|t=AFpwNzd#W-aB4o_{p3*ku=9XQU!d{K4xv%skKP(ygazyEho~kQOsAYNz33 z@%T|Y5w%kR;`~5VREMFQonmyxMr<$P8c-*;vJu67{DY@PTZ+tOe)qq9Vj=&{KPef3?&+pRJ*Qnq zip_zpW!}5ceR3CS8A?lW8}%>0{B4obT8OZ` z(z?W%hdp+|no%ehvKVy3M1jO%C+fRHn<%;Cor~LXOEc2JTs?8i_G-5Y5sMu;BbP85 z2RI|gGc}A>rlf=Y`}~KKC%5GU=&rMJs^4o&vjQ8%0nW>xa&sO|K*x}~Jet^@( zm8&U%Kk~Vb``T60xmh-%h%$O6FKHfr203_iO{$sN2OlzSrgpTmU9;_M``|6^GbQX> z+bhPc?P?!9#(ieR?%vixc|j4}=1GA+@;h~3svYd6t2R4>-I^A7ssy<>j)1i#d#c*h zC;kZ#tXkrqYES=)a5C3k5xeulE5(FB#klULdc=2f+xS;@>F3pH}jx7Mj*P0~c z)m_oN!PIbp>8$MdsKyHr^6IW^`%FvD=n2h_hA~g5I-`exnG}#I>aEJ03I?&t9LRy0 z#qT@hv#C~gJedD9yr&9I8r}{!tGO5VB>l^dr?H1c(qXjljb3}nBKFrvE#9Hw@&J!b zn#%TFf@ag5DA6t{vC}h(68oGMA_@?#ee&%xhePq;=I(=ce;36V_$qD=vnB92yFIx> zB2@HdPoPtbN|eSXl{xH1Uz^!Fn+OOJc~lHgPAuw`M>p#I1n~S26Hlzi z5+taSc(e)zDDYew6g;*-9j#ITA1Th#FG!TLDP18}7oV2AIccW0e)UbDs#Fm=CTi&6 zDl-!13^R;{XRT`$T$LyLa${PL4IL)Uv5T8w60Ll{VI$~=sdt-gOk9QC_C$zrCD2Kv zpaugQF{t&xBs=@6lED%awYu)2t<{w+VJGpx*o9JH^Lxj2miKFbPzKy&NLPY&khK~D zAA(Xca+GNcg*2w460xz#h;9l^<}sqr)NQcNB>`;9Hcd0w;=2)+@oVuj3JsqGD4Lno zD_qeDk_>UyP?EzvM**KRTA8GA#33MCICEE86bI)*ixMXpv6gKIJJ#1L9D3^uwt5jV zm#ckO*C8r!fz3Z+L>}T`&OF}mn(3IL-qs1DxzS#DL07{DdJg2Z5zlq=+Q4v@hQ4u_ z)IVa2dU>5~7*NC!sF7e&c39srP;_u4pkk6G=`z)XT!*5DY98^>Xilyy2DzBH!aU< zhzcCAAJ|#d# z&)_F+<~E6UJ=$aba{n@_>emoVwl5vh%HbYYl>;g7%xrn3 zk4@W~?QGck_BNX+mW>W?bDTDGK|WU+8hZ}!L1MEF>=`k+IhgCPE_ogowx@&z4=7n~xtK{HgQB9z)qkRY$J7M;Fx!6hc7+vhV?m1Mo$3q!H>A^w|B&mCB zSKP{fg$bk~QM+6EsDiO1V(xk!_^1#F5;?RS*VCE3i2N1m2#aZcGB1llXVoQ z&cY2An?NMNCL`zJF!UwD$)l$%7YBydjIr)Svn@kE;%&Bau?@qfgE3`o1A5f==Tot_ z%I*1Ny4|adc#B}@K5Wm^6A9lgz^K7S-R{ua@#td-w`V!FD@nu4+1CFaA4J4xPWRga z7#YNGzl_ZF2oPiBj7 zGG;Z3CYPC=KG~CTbmtI`yl;kuvFwuHQqxzsjLMqPtN!WXNqe+|$Rt0@t1s>_YPM@A zlp~1LumAq9=VhfdV6S@mXL=7Jn{d?X^bSU=p~YHsZ*5w~roF~?Ik&F+$)3eOaRZ{A z>^lCb-E-BJJ<>NOX$W2cnc1YF^}OzAT-~_E;AjAV8ID`@96p2QYnc>dlcE_GE}Uf4 zZu>QFRXJ5lx8EY68?`kQ8rKlE_Nw8>26e;dbR$v1BtagE%T1suhF+MCxF}+>E$QAw zE@FUk#6>Gz;;;7l(rQ}fL(p1n5;l7s1r|W+mADH+<)D+u%`y2r{f2OPzxLw54?kq> zxZz?M#f2Ib$H$`JZ6=~=6yHOxU6l#g^X|S{L_rkij7+lszWc7al@@G+0*}uGGWWX@ zPvZhp;#0F#Fl-g!*18cU*F5ko8&y5^!}SKUA_$qBSQJ*8{_-5aXP)EqGl?cwMr^~g zVkR+%?3&cy_yGb|>ziQGQR2)ZX&~p()?Hj~lWRnft35+K8SZDu%%$A$3MqISGZ}=)Y zU*CXIpH8mVF!q8QM8I%%s3fz2&qo1#Un*6&b!-xhY$!H~ckQInHVwxUfWqo#)LBJ= zmq1MiP@JL!#8#_i&xl8hG3pORBFX|cHW^5?+C}yHaSuY)YV{=EB7FmApDH2I-0eH? zfPx;1R8Z0+jHLW)|SwX%?^7@__Z!GG-)RsU00F49nBGOv0lSMsY&c6JLt zOerDx4GnsjTtZUvzGdBF3CVAEgI9|@?upbsrMXU|rmH9EJ*)>czsPG=l38)WMF>~3 zh(rqI_#{z^y|o9`0J!L(Om;$uC}7zwGLz1Y*(MDIqD#+QU=tBHVDm089v-*GDn=m1 ze%zO$GMrIZUSwa*qmO~6MXE;_1l=ibcp;4(W6$n9ltMX}ez_s4rXdMDw3qfGP8$*k zg+>ioAd*BY*~}B~_f0mMDBVmW>OrL?HfqR{ii|PX7PRDujU3K}Nu!0&Kp?I-@aM5n zL*45T^)eSF{j+7ysPGmS3hLJU&v!n6B6;GK4U}oyB*35q=9UiFYcG2NnoPZ8bSTlb ztsC36ovhflZQHi9V%xTD+qP}nE512iX7U4QcVRNwsOrH_h8jmfnC!lM$y&uqpde%s7>GG& z9c~EY{z1JjGuha})m1CyFARl`B~BC?dzu%o^Z|$7O)kDlAHFuOv;>$z@Bs^bcba16 z)&USc0juScBMgg5FLk$2u6B~_!Au0ebnf2hZ<>ryh;dKpnCS9rxnY;+ak2(b?HG*- z9f8o0P>gKp;62+k7bux*uw7n=(S;a^U~%Ag?G@tlekuCZn1V;L>AHJ8v1WW2AO+7v zuHK5y@a3^Hf3`&L^ofIw50erYC_wsPD3me5 zB+sx1@<|N}2-9RT&YTEdf>~1`!pSkd?D*v7lq1FJYxN8{IGf>Qahu(Y=(o+j>i7A| zO%hS2r9F}?Ks3y5bmpbC@q%uMgB;4JuL>P_I(8Uv-_WCjMU+2V{S>e0J=C4Ta4QV+S{HO6a z1yvg(-_W^}gMc83VYj`4ISE4_#nOyKElJM^cr-1ecc?IQH)-5T4)#|2t9AAw-{r4S z!0fAcYYuD{A2=X*Ls=)Kw=UYP7o(mv~&wmjxR7s!vI-ILN`=)M#D zRk-zSvlJtXQOt-nLW#_< zNT29Rapu#7;3lQ43>J>o!>*wxnf@oM19}8>Boz6K^9}XS5MfbG*(J?XcgW)Onz8zN zjaIBwOm6lO@9${su0H0t_8U6h_DYw%FDP-N-kCu2`+c?Gu?k<6HJxT=4@9(uyND@` znjXjUDHfggF2eI3!Lqx>7R~Z3m1Vjhg!mZ+dT$8Lq9}F-Dej@)kM1EPj+-7~lj4gp zx4%)dJIW>NJ%}~>dv%Vlv^QTYD?^ruo`+k-CB@jw&UAlOt8h|Fs}3SvaFqe7LgrF` zI3z0GW;auQ!EH~+WN%u|$*`q57tDdp&C9FW?O#;-0<^KK4-~mrS-wGz8n{jhNdvqv z>R#^+dQ0w27X~G_oU&ey(7f-xW0xd9w4@7c4CUAr6>r`pl4lEDT<|>MWW?sz2iD^A zmH%QvRMc!8us;3DzL(-Elt{=b`!L@sP7(&%9W9Y`ni?JC6Fonbn!KS6=4M`<<}#H` zz3Z+@3q>q6OWW3WA>S?R3UiM2zC2e5TCq3B%H?@qyX@qo0Y-rhzP6o?CTb?TpF`v2 z&X4@)c&&lJyKph^!y%XYGR&JP5rs!@FzyNcITA63rc1ez>qNd!&0O2{A)(P!PXG>!Y9 z;AU-7i6|>h9vc~V+4+$AWt6i&ynhXMp!78+Q7+|lrORO|Cju~2v`%5Nvi}v0tGbE2 zTU93~XL^H^y;ts7&7FiE|4%cL{;y_?h)@+Sttn%+d=VU8LUCDpa$iV8Tci@2%kMD6 zc65NEPH=EIfDU3}TqQ=!jqilt`O-ltymVo543p~c$=W7z8?!$VSR1@FLd4*qYUW_2 zJlyhiSfU?PcVFpH6(ID3C15LgW)}}# zH)Z!pxn;8k`J#WeZH$I&HcoT)_mG8@)(0$=AckqfmJXzjOO&1r6u`9@XR0v%YShp1 z?@!qg(NcmzkVAsEHufvc+2yKf?9v1NW)@Bm#V(`D8Mq`8P-RY!!ZAT)n@DEDP5z6O zN%Md^m_R|Nt_Ba~EV94=$shS4fw59MJWJ6hVtGA{N~{Zn1Xb+W7+OI3i^~iokRX2I zFd+XP^fq=ex`IqZq}DLG!(!|S6=@kYMLB9z`;S>e1pwu<)( z^P0kdTY=@29J_{A<9OU>=!bDPtl6Hwg-hEeM{_ow&Z(%*Tgua`@OyZRAXh5S`m#xm zVf=KWnRM;p|0-6$%AJ*SLZ`y+goB*T88Z=25IL{C0vYmy_6m4;x-t5!;(R+Cvgg=3 zSzX)w8-xa7PGSfOR(zG=1NpuRdoT9uyQm?a0$9S4=801cQiTZlifjsh3gmQ<>8>MW zfvG=8(>~A|%J0&t=`cog-Mq2b`ojq&b|=r zsr;3!DS-c8p{Mx=$N+2h>%EBhRxHYsZ646*IQphzkMzunY`O&ne4|+EhV( zKJ4y&K;oZq*b${>OPZZ=${=k*KI^mu+01j@;-X8#<8~vk(6n^rT!uc`kUgb`W0VD; zi(W&@0;D2vcO_zUUth4>Z64H7BM);;-i+WiOvGw9!H!;85K|fFO)3k>nSmJietQFB zW(>)`GCLz7)CD+4BN+GYufcbi?}EC;Wg8oExGDYy5=d@ZK%2A%)+y4RB1>meKoEBO zHp2|trhf8AgNd9#ArF^)=^FrU%#I|WnobdxFfn(E_j>p>zWOy{SYOS*-$s2M$BXef z?aMExaw2f_e^{qzjwIzL*Nn$EM}9Mfw+9IuZKL_NoU!|+UA;eehHR?Cd5lQm;7(3# zWLzog@;Bye)_(aVpZjQOnvWE){*K8ZMwbgb|w(pz(4 z>^9r%IUN11X$+B@#i}+qizrgU$*6d3Hxc?9yU-jIfWXs2y$~Q`qZSH;`q-wUk=2Sn znPJfPmy)#qm*dh{OjT@#+Sf1Qobh#$9VN4w_1m$9JKog;2Y1_Ag&gT;$eZlzGu-^6 zqE{OD=QSjOQVBh8M)vi%-U#P<5ju;d>H4(GC0|*l=&zEL--Xp)AuHbnzCl^H39i|JBdQ4WfuR+Gwycz8-K%Zt2909pb7$$kG!370|=~ z70@RyTATE(>e;uUTtaUh=1Ykt7%L62PF3Xu1h)45rKy zAPyeWD3S{qrx&T%`WFmw;`v(?%8#*?N?NyInP)}*EK9W#rAv)gnUZxP=2Ui2?%e zgs@4i>;O^l^P|ri(cjBssU$@TTO)u*EC$!L!I>*@KC<0^sbGeOCT(nOx$fF=<`sBpI(j}Rm?)+3o;?Rp=aE>i(KZci`88_%c0D7!@ z*{OnJZ_$m|kNPUWy#YcL>2$9%M}&*d8Sfr{Pp^L~wXJ4;TehDp$J)-#`C5i2vGlQ?g;N5@B7301!zd zfz&svoneoC0_Tv7qrINV2^~GqFF_OSRJ7P?*7Qav+=Xnx%YPMvC_3obn0Btsh@sbZ4~}TQ{}veT$2}LTbZuo38!>y z%^0g-C)4e9|K^NMz((s_4P-9{4Z5p18LpM-pTURUGp8n zk<1DsVh6p*cKw8u1I}+hyx!vTCkL^qY`eXmo*qma0lrE6ea`0G>!ntv!8t|G);^={ zIK1|>b?Z~<>{;-&)gSGHn1kV+aBIqnE<(;d1VdggB+h@sUc1&q%p!b#^PXd~ga5^U z+5CB1s;5OKeAM|Kg>P|p{}Z}pij40ET3fxlKG=OKC!o!RpR+vEe4G2%%lB*F_a?~$ zUFxGBi>W{8bGNj%`kwPh_%!R_2VT&uerz2+tH~~9X4Zb%EfH7K>D1O1at-h&z$v70 z2Uc(scK35HOUw4UcewitLH&xH{Lh*4g<(mz>l>yx_>3;in0`N;HVQ=#>bU+rst}l! zlMX@+LT*gb3;UiEF)-U>_i>_jLcb6~gGngNPVVWH4K<4&PihYCLk^gge5vRby3}_VvA>%H-Ns{cbT0bCO|;MwW%@FHRrxp zoRoA+98cXpH2j&A%ixsBwIt|DAc0XA!BJgx>djc*Wno}S1c_o|pWk4|njv@U%O19W z!M)~sa=Sh39K3JzSWz8xN3Db(m=Shz%RfPL=ioC>m2uBt-HUFch0|)c>r=XP14DF< zPfrQ^1thtL_v8Fs6yN_kbnob{T+YH(hVV@i?;;T>7yXXx-Pn9j`L>?)miUH$50Vi{)r6jgs0R zCs*vt@zACC=DwXQ->nvUD-9Sn+3kxs88Nfph;`Fu4h$Q(HzO?eVo~yRLFT1V?_%5a zSPa$TZ6dl3fi@ah1r_Vqt^&q zac9Y76GT1c?-s?OHQZ7Rd@?U%4bxGekQacO875`$4$c_I4+#P)g?s3HcW?;=glH0a zn3(~CMtbV!Noc8S>PZMiB2PCYV`l^w>~~eDN-EE`l?qJyvtCtq*0zvB2|F!Vg#zR* zn1f2jX0WF{)Uq@^7#=n?ZOa}qwJPWlKFa}2>W3O^9*m}Wpi9?2mFL8++=q)N2^76xQOw4N^; zTl~e((%Sw7?C73XV$!MHsHjP^JhZ2X2A9Pd25=XG;Z88gWohbb)*}XLHAVKqxy!Qz z!oEft4TP#!qI@^>M*>W$O)ZyT77sUcfbbmZTwLFK5Vn&H)jVf?z)PYbCKAz@xqtu8Dvs4ZwYa&&tVNk&KhoaBLK91mfQ1A~3h<6LdV zjTqXt+{RJAKnSDoE#W9SW3rf=tlnpeRY;N};TAGNf@5TojFlBTF-|}!ah6Wxx*!Q? za{ck%3JCQ^1k;|_Ye!QxR?MP$+yGWqxQtn06tJ_fA;7G`B@Y}*%&FXvUu0!cy!EdP z*aDyikwe~DTgyX0A0{1t1vivF1Y&bsBuI$~!6_(HD8X#J-!6eSH)9wPk;G2FF+wpj z0(;SDF$$4i6mw#4)4oHXKMKJGL~LjKr;^Nl6o-;n`SODn_S=wC#8}-6j&041mC5k4aKChPJ@v}rtN}uimAhId& z7@imhz^%XpI+U_8LS6uv7G7I8;Ik7-ojT90JYbNfihSQ08t>GFpY}h3LSU$sq-h-V zqv_FN&-iMXI+_N$Qt&CQNFY#D_qcpg<48Odl+b`CxU&~D@stX_NJjNo;Fs2Bdlw2J zvR)S;>a35QcUet>g+hyKP;wr`Q-#RxJuT`*d?PKuFseZ(Og=4e7296jzddgco2#2> z3uNRydU7cn)>5grKg=B+-QU+v(B%o@9B?%IP+AYZazVZGnzbcF6jJSo#4;=oJfc`d zQ8c+Yp>wis1d} zm*L{uHR$2EA?ZVxg6y=k0op>UV|a<$?{kTs)o(NsOJcP7kt}$CP=rb(aDB({6E*v> z9;KcQg8`ECg!-9a6kR_Mvn_2M01{<-QegamF_eU?!)i!(O@#yI2>0LFo2Wryi+{qz zupkQ>D&a*mY2~g{Do(c>9Ep=5<73Rb&t9pOI-RRzJI6q4{-(Dmpi_(fyj;H@ zK6lox?(&LYy-)iyl)Z;xj3~!ZM^{p<2rj^IZc1}6g!`+pMEYwe)UwHsoH*-7e=6?d zgfa3tvVQ%EjP2v`6zl|uk-7#rM1n)_LpKJo<=>Xi0~k?vr^TxcsSb1=IV;^XXKrq| zEErE57GNvp;`*nH)hWLU753^?NDXlQx-5r&16dR8{-9jt;d2%jn0{@k)gvRyc}A|S zbp?EVGSkUzwf1;tz-4iPy1Q_z(CWMbrP7g=tD(Xx(4wPy94V7~oc6a&Lw7O#Iss^N zuPS2Ro#G80GrE>f&*$^y@6&E!{R4igqSnYrRoBN`?HJC@6!nB`hEWP$g-gP3?QQb# zSMh_bU2AGNFbyS{?K89k+HnBwNd6B1i$B)%48Hv{os1D6T3nWI{Ze%`%}=7UeAGeZ z*$O}#au_g}{N5Q^OUQ72fxdr2xxUts2DEbjv&Oi}g{54e}z+e?n zVgG{wIABcN7ZbfmSbk8et~;_`B|u;u(~p5a-+e)l&GAqK^%O8nSNZ(iPoHYWix~?F z_MFM(M0p39A5Fqz@Kwr!5>9&$xnFx>6~PUxd1tZ>?dBqc18t6b*4L8<0a(JLDt8gl zAAkP3NtPS@zh$Jfg;GN5qo_=Wo6k&{R#t!16r zZA{e!PwCkgTkb_p8O)mzmE5H2P;sK){Fr|cJT8?}Y?+n67Z+|59j5GQl{H(h}BDX>v_M3j-NW^z~GO_^vp{mDuHz| z=JEtOAhx}Hs)SG??~(m z$^Zmy1`AFf`OBQERYk0;Zg^``TX9Ujl?YgwPJ17AR}rV~^Vfl(Og7KB$(t#i)Gufg ztUSa3Zc3;6iEpy>D)715I)GIK{XWPY*n>R_m^auu6ptd3th|V@S|{z#ppXly*y09H z1{TjIv_9Y-Mci9WSC(~a>R@dDe*F7GcV3ld-$tW>u`lR_Q#Sh#&|@zwUQM?zb>v(F z2Mv`kQ%A!g&N%`0GjEF&pV4BX(k2^-+1n6DOS=Wu??9`g>KdjMUP2=U zX{O@$dU}Y{eTb)k0WW*VO+C zA|2D~Iw^lk6<2qaNB99V)QGKc(Hun67%=@{(JZHxFIP~EG-=v_NzkM(J48urs&N7! z8=aiEOD~Yrm>0V1krJHhqEZVT-4>yTxXxX<60_FcU1BPF7u-8; zTN3}8{tZdu-=eR^i3>?*iGMd1NU-2*Im^i#Krq?W-`#*JgBU6R5bVXQSL@ZdWjKvJ zf0z+SIV^_aESWG}tz35jTaE-o8S0l~z=H*{tAdqa;73kvZP)*@64oJ%2oAj|;xp?T zEu;@gS5`tAw{P|ldl+{^(^iAFjm70sx3^hB`8KO;qQFD#IGJ+*Ze6)|SbMfSE*>P? z_W{2@Jph#ctJ|!itEGWzN9WLqDu^>NIG2vA} zZP(Rpm;S1gIwzQXIAOO$^Q&rL+ENFhQWq1c$USk4wv!f-O`IC|bW=7gKL%Oh)K|(^ zsJsH5Olc22*Z0-X7BD57I0c$#i0Z&H^4?AF2|CdNNbbGsDP!s2h&V@ z!0k-s?mTW2ClUrkq6x{8YhB@2&HXoc@edr8cwGcNg}k=vxqN@Xa-yJrgbAO*vEdZa z+pI%%n|3M{Pe0wI*nG9;;i>^TdXF-ma~0xLZcMG>{Q`xH^;$I-Nm)5(-=J>e{GZ|p zccfV&RLYX=Wkl3V()#pn7skkK#?%MXe4a>6%-|CD#8bWGbCn zO@ydkS@B*nVAp}4Sb5{E2#C!}wAnXnkD4pwfxK!yG2I%cKO~Y%6{`LsWheY@(;eRx zGbf;8b%?3D$@&tmevyTTR!-P%AyNrOk0xN`a?YY3yXyWu!(};0ClRhRfTx-~u-t3{ z0A){b5R?W@^aj5}hw}ZP;ESSKdpab`pi?KC#8bfm^!@T|@$B*Xc=T3JEVW_tBf7)h zaaTrpL~0DVV?{0gjrCE|;j*&rLUBiKIG!dmuXbpKp~jIC23n&-nGfoMb_fuK>R>GU zJvd@}sDx6ikDs>Z0Rs0ejdMcyE>VS47kmSCvW~C`2#hUfe-H4G#J(@jABo*ONSnz% z{1AZFW)yU}ao8UiG<%O9lv-4L^f>}%X$_A2k&U;JoM4-{tgE zzlP=SoD8|h$!Glz2%#1z!C6fdAnz4&4^tkI8cvqJ>m@`y^pY7K=uGRP!8hrg{0_SO z2gBCTQofwn*gr>q{vnaQ_dIG87Oqj)^=x%&0tt9f#}h9pM*V{Y0^k)=Eh2grfcj?S zR}(`&)0>sZfE!+1MleBG7z%yK6{5h?M$|@u>*RPXc$72cSq8ABQ+fJsd})Y!Ug?if z5zWWNs2jyx{|)+m{d+021vO~!DdA@^KomtzT*`J^fmWi^o%fg+r#>doc9Ptim5}Fz zk$$YjdYCqDd4@mEwd+>lB&AcDN01itR=MfY6kQQx z$a=0@&FBjo=;B-kOKNH*gVZ`Iyfm;lz6h#A?W8t9Z$?~+MafQ=>BQOCsA`D?f-}nX zl}$M<1{3@67T6^?-zu9S!-%GSEd~yLhMSuq*_7N?;Sv4GbA2ILPheVzd}?@i$xjCZnpBU#O^Mo4l?w5rRct4-ZkN#PV`DQpwQ1Vhc+1Wx?2g zKdzhBG7-BM07C-k~IhujD3bz z&a=*F3R8Tu;(9>Y7zT*bb)m06tU!3yL3*1Kld&T%!b|}k60bFp5YS{@`J2lMDR|xe z6s-;gnZ7(XYI3D|(N=vWsfDX^q@Op4OV*zxwXm0r^$JUvShNeIT2!z%b8PNM?=RIq zgVi3TI{T$`8BJ_66fu3=?GO@Z?)@wn^>*@#Oqn*shhOPs@%Xs+#0(ckf04B~N@}Tg zxtHzqNpWc~bI}*U?SyRzIhjQvQ;G#_Pu=TzG5p6qWo7_OO_gMbJ|fhP0n%WfO(xDx zo3$u{j}G5(vsnff1^FVzdESZ_c|i2W}8NFQ;c0a5;3RqskewS zOh9h+id!_QTfr347T)b0?pv6v6XHYR`On6ST#T{9k2Q$C7Yp&7KbkxQEwxUv| zu_}2NYde$GX0kJMw7YGajPTM`GeOIaa>h~pAY9okLsxj;Z;sW8I3oja|2p>)tXW$}88C z>)K%?2X7{AO;Fb*ulW^QR}=dR2;YwuV+iN<{?nq!nphxQp!pjX1vVd8bJQp9$Vg0m zj_6@CeD0^JEG?9m;Mpr-q=EG8DPv^n)wriIPbsge&p^DOR7sfdb9HzDOB278@KHgL z*d*appSq(7p|@k*2*V=9<5Qy|)k(<@tXhr+3WWh59SB5m`N z3PxI3a!4ltAhS@f0C0@BLI~^zOBE9c1S;(((x2eQgvs16fDGPBLo9rKX;hng;RgunRl+)&aQwb={V`4nW3lvH3Cx?#$5wuly4c z7%k+Wy35~Rrlo#3|J;%#c0K#B1Fk9$28yVP?0g4dK~D${cw*q|-xss&^|?mMVvAgf|3Q!pQNh&slL8NXM!M`+ zjjXZq-(e25eO>;r!w|~c&@`R+n22I%-r(K*^9sSn`;-LK5Ks%tsdfPJWuBv%ny<=E z*p1=cV8J)HlM~>tn?l)mlPqO#APHv1i-z8DEOnT;v}aLK5mK9^JQ(5n$9&jTqYfGu z{LZ#@YdKM#A-m`@@rd zGTd%h{G0-L00aL-&iaP^1GXdEng!5dWj#?k@Pv&8{Uwja75u#+?It3)(1mC_#@a+q zZ?P4|T0WaUBwL;$hBDS%?Lng;IE9E7u-EhWf^1PX2ZS5Uxnt4=v; z(s|s{-W8$RT#j+s-;x6j4FH8P5?fGUso<=iA}m-0G$PI~2_?wl7(@PTHey`TMeti_ zT;x-Yb_g{7o3KZ{T)0E*ql$UE2AKAFO<@^--9%-t1Prt)PB=`uvx+D2l24P^cDL?o}b zHj0bNz@#3cP2G^ye9bPaoQ5iQ1u04EY|=D);4$3$Dc^Ui=@f)7eTD+5uaGfx40H|m z?+_(DeHWs2v3zyglfZ+=S>I25kDL6uiqew;D0lK2bPnpu>rxMNJSLg8{9q1vKRx6n zI)U2ZHB8H;AdHOAI7A{y<*jlHa|BDluW`&eqoYw?x zpY2NhM51F0P(_ro`ao)^B@8UDO9%&Mhdaaq@K;DABC{egd18wL4-#QIcSSgYM0>o`65e&7}bNwQs5D7r3<)2Yzs~Dpm#F7N2K4(B|&BBc2*!Le>BYfo|G=>p{peV4qTR`)1a`bG(f92u77jpV1><=Zi z6#)ZYUPJ(a&-=ZUjPqVSl`14iSh$`7H0Bp(b)%XDWZh8ptP?-*;`rW8V3y>H0YzvuQ(8w|nPaCrr zl*b<-i7E{SoR!0@ybog9nQUh@3S8F&vIdH^!Iuoa1RH2>ZSCum8eI$q3vnM=94PPaMzksII<2;kfF7(A67+-#LOz z)t-Z}nN6P;v3yms_gPpNg#_7QgDXc5E5vfNnnz2q<1Jp+3~@tZkaLp1c|sPPev{WNnI`gizjX~1dD@MOpaJQ0MrjBc0T^b6Rli;OIilYx*=X# zDG^Lke|+cBa0gK_f_ZypPV&P|Bww%EO06S=RH0h;DP{f2h;N&q9tH)sfhKV*Xru1I0XP6}g7-UzW@R!d!7nBR-xK;Z_ zv9RcC;AwlwGjychXg^W{C?>Ofci~riUXrjV7#&|DTNgnO8D*gP6&Lo2T=g56MM{iw zUWpRrN*@}v;3D@He<*g@04zu)Tst3I;1SL~sFWQtJ%vjv-xU+JP-viqqB0!#e4a3l zs~SIa&-Ju|jd~O;c+!HpXeZ#L5C;-5`Vcn%_8vvlV{Ub|swSms--J16p&tUJ>rFsK zn$FFNil5y!dzI>NRhR=4#CYU7%-+K#^N^WJBgu~j`5Lonm)k(Qi54`kLA{$wLiXJ% z&09kKh%0+~@A^!Cqb}`r?u=u1ke~DFB*P;c0qb3(4`QZuNBWW6Gg{_HXM<(G_gtb^ zkL=X1q0ZUS{`TS$l=d6dI-X!L7Fe}nu@%GXgXz=VH9U2M+KX+oM(ggFoLs;}I8U$2 zYT-&az&YU!ocJQ2hvo`E=@S}YqOT~>k8E8OaLmsPPlBojbG9K=4$LHPvg)JpDk`dh zGGwzJ3{}BB!KplFdur9-!{4S}md<*=HRrGz6_N5b8S$i3cXW1stawoju}1Pq zRF(!t6582`2#NQa)%o>JaKQHSdPn1^7WV&x9#UXWi72wo+Dl8*i)B%jB3GL^&B zQzj>0C}w=@lK=GBNj=;7FYmC9t3JQ=4@S1IX`;{_3^Dj{R!~xJS=u7)vTQe*BRQGg zCw2hk`Y2*GQk`3|l)}jYcIL<^;^V8v*uFgyTAhWbBzGQeH#}0^)F|B$reSuUKfE!< zR=2&$20$6mPUe#JYP6`IC=auWTnQUr#Ih_H2oy#e7atTBqj~!qwNhWi)|t`1E{!o= z*tUx|>YAVoGvJz_4F`(xxAfR~8%QKg0^(|zvm9W|=>%l^Sr=20N*@PJZ)qYout_z& z&k}DvH33wM95a*J9QPeSz2w==yq|x|-sS@Ivf*H=M7w9hcbh*>c9OoBT-PUoP5ay@ zx`$~ffN9xKV$x5tV?n%X^wB*QEpZSm- z!=y;Fz+7bpGuIGxF%JM8$h)Gp?}dWW_O_n)*yG3IwzREFjwK;Zr3r!o1PJ4*l}<)^ zDhaGYL7~?Vhl8p5G#hG6z!=HiFy^emg;4M zTSrNu2@U+`N5cXoS}3(JE2sD|QRdIA4)@)UbQ-DzU&=MFI`#*wo{=PYB&=T?Zo?)D z3jqXo^egRiwEz^U6LZW;& zgo;2hgx*QQo@%C_sXaz? zC_+d~(W~LEhKBV^?Nf=D&8yKBlzfa}OZfb1Nth+GlAQ^z{DC4R{j%e|b0T_7A@hKn z-oBvc>10K;;z5=Hb(}{*bIXQL{3&{tBaDrm0SJRzkwUSC-or);OB2qeJoDp<ijXyglSTOeMY~vT;!L^_OD8I zI4BBSJFm5S9iKxtIcVy@9cDAz&>imb_SGr$_v~pL&c--+vUzJd~9lhZh^3P+qnOZ2+hRa^?PK0%0ICT)z z%9`%lO;CI?7)C82q#K2N-4^eb0qP$Fs}nH|G(~4WF9_*=IsE~As1*#7*L;4C8{>Mg ziA!-m<2=6%G)E6^*Z8YA0nieWLVba1iZ)z;=7ObqNd6WSoIfJRcUmLlr>+~^%Yld&nNOR~ag5Z5zH?*e!%EMf_b+y$20{gEDn$!=xIeUkpi3~#NR7|+ zO0qlP z7TwIl&X-5NU}B}U)Ir`O*v@NPU3=}_b1pjAZ>UHRkv6`Yk`aBnjv|f=OBiwTCzfzsEkzt*1Mql+DbWO|)K~aVd{) z3k4*S2yIQyt3Wv5tYb@B2VboyJS&NeS@dT(@7}KY zt&6un)i8=}^GC3(+h@54S~Z7*-70H0;HHUyvd#*S`2d7j!j>{yI#-sfkXk%oQ1!qq z27p$wCsbri7xTJ-VEaVfJrnBo_1~vS#uQXP4q!kt2mB9*ln<}2*Ij&VO3|qz&aS(* ze7276FnLTKqRGg|%kX2%z5#o|+ca=}{0h+LlyI<&nw&SR2&W=0dPUL6Cz|&hWdTCrrS44x>wiQ~qj;M{C7_ zf5wH4?*s&7` zI2T=)eVD~Xq7Tv(1vonz(2>cR*Qr<{#K^0e?A4Cce9K~ps9YVC$;qY|<2y9X4r?Y* zHjHeNCo*hf2&+ zd2--qWv8uzqqj*Q0yU?x6U#lS=^HYyh#gsO7qa=JzqYA8ZN#DJBjX87G4cz@KR~WX zmCWH=EGiI8oM0@3%zGe(H1p4J;Tf;Vu@s+-rB=F8AeBq@Y)x8s97aim`uK4ZW&XY> z%A1FCmO!o|vm~ z&0}BYOmw6ybuB`cE_Vi6=ds1tAgZt@bw%=*mG`&Hy_POj(@fs0y0O1CqaDb>y+~e? znk`lLHcqAL*J%9O%*~dx4`HI`Q%cSgulb+l37wI}z4mL0GY$hK<^7dxAd*5HEZL~~ zN<1yudBHvObMS!ypx?ocl{p?wXo(2++eA<~ENBWS{ z+Rtr0lwczvi|Eptu(j;Ex)On|5uKn-ZK;=L46;NuuEPGxr@^M#c*enX4_6gSawlt62E;~Z%2DbOLvHK= zgKkqloQ(!kvvf^y|E5Fx)7GgeONVW%-C8Fd#xIW&Ap)+Kt(#M7QW??2Gn+PWj7fzG zBrB~d_#I?@Qb@WvW~Lc3IyF??>J1TbZ8qB_#az_o1bfQ1b7(!oEiEsRoh>(W&V9Xu zXkDdHv-~>6INUb1y6z{l&Un+deC5sdItAZVJM*r=<+z!e(FxsEifL2D=RlVl2aK%i z{}AK!Jxi3Du?k4~ zj^!m0aRj1!P-&maZu1I|B(h~l!h4ugf zO&_7a2S?LPlC&@a%}}mzyvB3n>ovU*9v+aLzJE(#f=!U~C9tceMx{#s`OLZ|8UQh@ zqHM)v#j`MxGBokKXr|=x%4=} z|1!%MYTX8JsOWYq1(78b|CNhcu3@*k01CjUedck?yT@bsuH|kK|C}5!U16*=l?0WuE|8p#O8dmFJ!JGH zk^J}VXv|cEv{wC*bxOA@Xe|kX`VD65^)vb&9>fwmU8RAjWYd%PCFd+sX}qkYCs{rI zZQ6$d3<+x*#Vcl}Owu4&E%?8|5NviGu@LefM-q^gD8Gj^MgJvg!vQpc6)Q_vf%X<` zh#PcLq=YPk7dhZiQRB5>@OiK@R{^ul)y7;DyLo|yiosdJdark zLkTm7?xE&RJasu2a>1!I0?9Pyjy&lMS4h6gel?tkE!armAJ6)&tI^B>EF_^aW0IN;A# zpfZhlM#H!*rk>u6{B_>R_s5iC4jNJ`&pnzIg2Rqc@#E41qfZzIt^_hFdLAd$QAS?C zuh(+P?fXCEH*QMTIec905sE2sIIkz2XZc zJ6Z%rX#0o=955sya99LUeB%q<%`RO9zUKaD+4MhqrsDyFN%jauVmJ1Q*1#JWH8T;9 z3E*DpZg?~?igXs^CcIJWDtBJIuY~5zSNB z2hcl|raEXWJ|uE%5?_4cBJUa@in|ol^BNJNLV+&pTy!=jnBIHVjyC|1ob?hqljS{lC`I z>>fH>nXK*)^9P~EEI%)?D{lh4PUp{MS)MjS-49a4Y9d#A;D?RQaI~ud=&C~^Lk4J~ z+qcmhBQx#v9pa6m6-|E-3Z(Z+)BF_VNExb;f=nhakD?@R_8X)$;in137p7Ubw{eC z(qTsqoU8SGRJ8}tG-XCq=k$aKKgfW zu>XAYTnJ)+&8~_^NY?e9Ola|SXTC~a;!p=FB~2mYgvb`)m22cZ~D7n96~%kB0S$O zBc?B+Ozf1GkErvsvXuXdutr6wJjgoE(~ZPOBpdsX)p)WB^F6;5?C}~ke74$YV5XGj zQBi-}-tD$}K5i#qTM+`aJ~y}2vapZ)#5rkPSkj4T8JL#W@5d)zT*oy z*bVdbLHB|Zs7xbIql0qCH11d@D` zL%YyI>qO(e!hD;7i57NlnP?>C<^B9%g#6F>W8*!Jw6%=%;_9^$Y6mx0OWax zT;Lh^m@w|V{x!k+mND+31pTkQY#2A59Cc?rV?J7p8!x#-m6~p%Mk0(G(1f3Z6==h^ zd>9DEojpas8=*r$SW<>x%GVUQr+yAE$f+&4l%Y-SfT$^}VPrDNG&pm>cRuy1QgXrS zQn#Xdoy6>Hlu>>og(Q!vrLN!MzB*?cYu&+CtAs7wem-?-6!N662ilJ>^*fSu>Q>jG zm*D?ggLv!HKK&cBt{O~d5`L@e(r2)s?~DI|oe|Rzsz32%(~f+s6{Xl5^&Px;Y@qLu z4@!RUrUz>`(v=b;$#!qE8Z%~TfL9|!WdF_mMih^)*ak$Pvg{nQNA5qg7RT42;*YR6 zok8X5k^tB9BrB?sZntvQTI~G0VyzW&7}e7v`??h9Y z-WJwwd3U3EvjR_+?P+QKB>hf*IpnOVP-SdIO*(2TFMfZsAEo3d^w9nL-Rg*89RV4^qw4IerVcYW#4kf>})KTb9*{ zUZ~M74tr}E@W`Ixm54u-WiWFAFr2RuKk(Cx79HFdQdWeB$!2_Pk3kBxHx!m>L?mbt^iP0m)XL`7 zy~T(R>pbz*m3FudA-w@Y0O1ufG5@5%HvF}bqt;&?JE}Z2?CJi}8~c{y2KfwkKX53S znDX*fmEIxsi4WqNIpRxXjSloGrZ(HPQ1dCsgDCc9lU3V67N~}`7++=Hb{_vy5I=_2 ze}VU{5cKzSu39x4jasbKlUEEDlBCvnEi|bMY<+OzJ(Xtm<1ak+pWZxj=x^9ohXK)mI? z>H5@Xrw^Sg4dPcwrMnk=5R;}eJaL*$QE8sJNokMDGi;Zon{7Z#<5FgiD69cTlDc71 zs)`gnZcH(<>-&iY#OEE53bh-^_40qw&q>4|Dprp)1{tpuD+yUv%rpk6)&ZP>^G&~+ zMnm_AhOOT8&_^9e)9kqiVy%C?XD$&YcJAAk@9hy z{MHOTKBpg9tWBt&OS<8a9-_y^vIgCI#5N~C_e4NEx!XK1@c?1n3UmN;w8#tU-E^N_ z-23TH*iP>!-PFL|iDy!?OaHh5E?XkQJsta+4u)0|&eZ!klXeGQKpgT6&p7F(o&%By zX!rGeirxD6naG)^z7xFbT6#gG@-=BLp1*HEo;m(^dq>6P(_o0M@9X~lV)gYh#2FfS zU!;U>eUb%6%Q}0l#`qZHcT1%kw?deq&Spz*qt)AE0@I~2koOV@ihGlLg0XS#gdpsN z=>;hU>eBF2SWOePjfK9G0!-5{V~TfBQ+oo0(1w=SSZZooV(yN?AdrxF5HYb+5t|yg zTNMalV)GOY7T(lFci8)e&*S;tuvetg72?EGjgRuEux0V^f z$08-8;(c{9KB1Y=FEs^`;cJ6ysVQDa##wpMc9<*wViLw4qwQs)uiHb;6euVW0#yAX zX;PfB9Trk}J&EHOHaNNDe-DD7IONM}s^W7X@p`{pJ~!L?T!p95U8<`ya5Q_|Av4u4 z@2#}w4nw0-SWFw_Ksq1x@FUpp))9?#;AK*-3#U+BO!{{I*)cwxVlBtH_F2;NVo@`x zO_#EXCfb#$nd1bu2d%W4Chs@zhXL88?M5f3w6%{HiGzrTLWFM~PS{X70B+X#m$&c> zpm#A@2?Iks6Vsy3-xt63ixR?rLP-9Z$EZ)99)`QZ4MPS= zD4#DOiu#B87dnig)n6Edjs{*7Sw<*w4pW?eR`nmhAxt+Zf9L1k6dDf}He)d|q@=O` zURtCmYbv*OZ?G%_I4R_qz#aZ><+A=M0tCsPTrz$zu!KX z;;|5J

p6%%99(E5A)OP3`xG?lx!8l;1@Uz;304usjX74?x#k#$HgMRVmW^BHlCW za(Emt7#?6pu=EvBoe+EeR9W8bvBQ!QN@&rENwIlq6Vsd+Fmp<1)L<#lYy`Usl3T!8 z%Vh{}x$-llu{k(Qbb`b+<*esTNzbA7=!_p~!?#14T(69H?C@~{nWmEU*yE^0Ere(Io+IjpQr45L@Aa%CnGHDm2-&n+hEL$yFW~6Fv zDu$cAsfs3MH!8sRJ?_9o)v?4{%z%4FT!25IwKPi|8WA+z$Vk~(GuV!oTnvp(65$$+ z#uc!&1M?*X%x=JklHUHDQ!BlLkE~c3>UUW8`anTO5OWe*{;+U(y5h)M75YZn8=%r$ z631goq)}n%$^M5GYEtS`A;K8NadBzMvjwT{!MnX_(12(X#0FHCNX)lu@tzEwRT~Q zLNUD(zFoM;SC-cmPc5&WO|jWCU3bK@0}{W>v$u$H-}kct$){mcL;UP&&bOMvD72#r z5`x{n7r4O$?)ulhPAn#3plGMM?L6rrW&%jdFA@$N-jNfqi&^o#oFF;LKEV*q`$_mV z`#j0sm;vyN9no|-13(_DB4BN4kqzi2Hj#;yx_?hpI#q|ImM9t{a=uv$u9v(GaF+`B7OrQ*>KA`<6Bw7#2yh%L-K8*p|UXI60wOxi6^-$8)8=4=UrU1z2Wpk+xcgc zyBq;wz)Y2my?d~W!=UULo`x}5E<;&*>pPF`HZCz1O@oWVvRdQQ-SsU$SQE0^jKs(Ab_UCFqlmwxl#jybP z1NB^33Bll!8s7+_#cLcjeaWF{Tah;D-X4%q2QTL@TL=KUj1n0?!RPqD>mYG$LnA`l zVVl_^8I3i{8YhD~iunym^wxijw>5c#ll{K)oo%)dYUuo=ahssjMnN&nKmezZa02kr z!5lVpf);_!h6zBH9zxgI!t zGVLx|Vgd{jzrvOoTX$7vwSN7&O>q6Gv_2nSfRN4A6!^M2KRewkSB(gjE<3Ew_oK_Npu|)h}D0;61 z*K=Q39&qJnqWNV@@{S)Tk$%x1CY;Yt8^5FoHJi>A$u10@0jIA}5&Zo?Oy}E5d%5Y( zZi+LfA3`N8ffQm;P@7JEoNJ{(T#=7h#!7r?;cQzNB&xp3ZRe#*=-1+s^gE^6@qJ7b zb7AaeGWhh)IYu7EWmqD5e_ht5mlZVHOaj&~0?PfPqOQKL*}aO(6aZ!q=-tY9EHY2w z)aD+D$W$OIftr50Ufc|+Ct!Y-7JwFm0w-&*ilA7{iA;x)w;pS+NVcDD1pet<1qs)>=McQY@l^<`K4Ml;ow_gc1P~jAvywozadZ8~sIDTrF`6eLac@UdTHa zcG;hrMe2T%QtS=MhRLh(#e&TZN{+_(c?QJXY(q>o4D_Y-Vh+P$bfkm-jn0wk&EL+_ z)+T$XrG8Cea*6Qy&JjS2&Sa2LN1(nEE9Rz_=?4-#kAW-5IF_q+uV6O}up1KJxFWRi zgT3Srp-IdvB$Hk2C6Cc^&)}52UJ&3&TdX&IGkU`R*&Uhnv{ds($^hfw?VKL_B5aaK z1*JGWT~Ei9<@e&Gn(7D3nUk%F1uoddYUG_tE79_AgsXQUIgK^V-WHIxz{m95SPWTBACI??|PqV=YXMryMI%3KA_{wlg^C53@*bH7qMS zT?{j5xQzOEGg?=dpPi`f}0U?uD)>=UW z-o-@@X6C;bF%yMBo<9ODE>X$aNp%>Xt>@}Cgm8xs&FSi${RG7og;7>*?<^PBf{6NgfFAns`1|eo0|?mveZWSJo%ey>IOIo#J(r2Y3Hd*CEL~ zsR-S%e^bY8{3oHU&i29#**$K>^5)@?7syl!iKlM^H?(!%Ci}^0CH)DV|C`g|Oh#;P zb-vy_^<#2;0{!_{+SCQ}MkC~7RQgud_RtHr)bNY0T9!oAUiZW8?-;!#w_<}BpG$? zt9d)cUr%*|hNmtQK}!Q?r)s14Y|qbx)^*hr4fL@87Z@SPi7*pXhR3n~SHpSMSFd8z z#go2a&1?K39mFm++V!}~fGES3Yn8J}Sv&FKL`mEjMey_ToOgSittaim!qXv&L!Arf zlHTnMS^?urKYwO!)5wWkyg~o8E^KP2jln%?Tpm&=7 zmxi+QOQBSnIYSeKChtdUU&}3ca2XWavDP*b4Ga?UIFNroH@(G>-Pt6IJ6=D1(Iz^9 zIlSi_@k~~9ZwY#SC9IR30=BIL?c`TfNg`K7&k z&;Yw3CE-Jty zy{)FZ;zcq-u7;svpIs>i286;L{*jw$4rD4I$}f-NsKF#hv|y?-s@NLhXgq zv|9(ID-Yc+D7{z<)4bX7roBx1vh?o3-x?JeT9OQmsx&bfvSw1>GSR{&$|&G4*paT9&Mk%_Sm!%ExH2Y={D}*Tz>~AY>UaQ3hnrp!}?gG zz_L|hQP=xEBNQaiuG`T{5tpdxG3$4EZ3{g^(%s6T(3rdC0|8F!X!6yOr&`-c*@*1; zJE3tP$QQP_>^aljk>E4D4r=qfOMB`ak|1m=E4#!CUP>Kr)r!SQwcWGK@uDjKc7A6a zNa2QzMt#xZfh6{9N;8X+?Kz{(VsjBLFdpfNE-VE;r|Jx1w`vDN+{rM&xo-@R#5Lat*G-qB83$kN9h}I3uERDyC5Jg!WHt72hvXExN~mhO zqkC9hKT4}CWs9pU#pk(EdQYk#B{m`k@Qc zWA$aCJUJ^uG}?!fD*I?q=F8zqHC>gDixI{J<@ciK);#y3*ikoYz{VtC=y?2{D6jR{ zu&{7>K}6S}utllILxN3I(8m8DSm+eF1-9 z7uSQ2vZ)h|cA5x!Oh+e!-V7(A-ua=l_K(c^kNg_J) z|M8KXcdpTimaevUQbd@CuV_QF8ySD)qM${X3VK_9)kh>@k^6P{LiA@*bCL}fL_6uF zGY*S#t)lq`jYrDpEiue39fLD6hx{E<_~VmaX&jaK-6HtoLODG6pyI0b^$c1!aaWrI z#{p*fu!uGvEfy>$#udZ8MDoVr2fx_nX~T#v*qtH-=ilG#ZI%bSQGFB0$!twbhr<(- zE{g<9u-L`?QJl*;!Kv4y8rX|`ie0^3Wzqcb5028Se;*dk1U{JJT%R&kDyG7zn5)&j zfzVKKrl%dLu75ix7);^HaiNSII|tNK92(xAHmfvZG9k4tLo(`OaCwhwY`;qt)K*U6d!6>#nC)PAUs0H3l4Gh@6@Oy3PP zRL3HL$z;fo3h*Tc0t@hMI6^^Im;n}7GF*WqnKCgE2&jiQPj-8#O6H7mDYur24Hy-j zxtk8CE8%FRX@v?tIDd1r8un^!+AWhuD{uZ@dqk4vic!L7hd^YDbM3NBs{QiM*#c3P zk2WM*z=U7&CS>N)gb&mp`Hc-x$r?1fYAsw~Fnw6?cMepCTsXuJ?j;9FL$9Eh)SO~D z?L0l2yaxVyhQArM9e@m4_psc!6}6~AT-`xP!K!KfuB3LIf0;X=x9xI!wq(|B)>5WSOs=&^2}qQlWLTRU(iEi0 z9m{rBuFd-JDT;lqYZGX1?g%TbXJ1fg>p&~Rj8;>nQPSsd&8-*97eOO>QzhnGWEDMrP7oAIU*7Gm$B3w0E=_K)28$Th<>D+wdty|Lr*);3e z%IuJu@wi6EIfrjKuF~?eDll}44Q1vzwG=Q*T@XPMuvAu|x+01rGB&ysjTr@@U{wp` ziq3thI(2KSmY9c}^akZHrBp;MB~|B>+IE3v#4}*y13uLbwFvFgddfS7lgEQXTyQR!5MIjD}9!()uq+hHy%pN{$Pz(NlqXl zNcczvn7@HWQhTi*?}vc%UtH=&VOOSf$(bV0-|-VGbOiGJ<_``y9-Rm&d`wTtpiG1N zi@1I~RAiq!F`;G+P$CV{rPLiY7!5+A8vua|H0ObDBF6KEo@`W8Vf+HFuq8Ycp)H|` zr0`P#@vp8DM<3ooSEh_oN&IanjE_2}mg4{)+am|Y1yHCj*sYw3TN9gP?X@$&^GiYz z^}j3>dQY^X&$H!RBiLMr8&7ZC&8qO!^)*XjV&zh66y{guq0ZDjw54JS;%c?un~_!i zBWxT*sdx~x!IHE=pQUM_wdEFMciV8RHJOpxf)tmK%v(p}`1hf-EMMFKK!HK=Tj+QK zh{721Rq7Le)aBE9mZUj{+}>;w1RSOHXIn0mwk|7}Nv{$sMWMEGE)9$XjK++dNUE1Z zyLJgUE;VR=QYLvyTwU%&6faaq1{H_6r4T-AoJkU=<{Gy6kYPluzGlfF7cH@o3gS>Y zC{%pfmKL=T=wN*8K^{zzO<*e>!EUMD0WMnF+EPo8-6~S3*2cT{E#J}ip0V?J&rxZ%8}zne zMtoREWCAf9js$!j1JeVBXK*}-xm>H;Fc^eC86m@OHko^Pc@r*b_ObaATouI4p{RR)T$r^jsc(vSs~RiQBx;a;-uI^iFU z1EQ)@H?$%iktqV5u`?%PEw^_cI#2R+v3~KcR-w0|`jg_#Ea74|w8dR$5~ahwk?|8K3{K40y=!UvQ`-r({1TX6{8)1Ha&; zmqO;Rg9$Q~-5L&QvkIYYqj|7sTYd1oHQ{s%^GwfBFKXW=y>4f%mH~&2+O;hZErY@x ztV;hz0|-9}!^@f64kJg^^oiF3<~+$i)+akWfr(5*4Jr?BORP5Bs-5dZgN!yE-U4O& zL!SS72@#UDv_P%oM*717AD<$)baS+V&D|8)__gz6dxm`2Un4mw#Oy{gWSDF28FYu) z$qEV^g!+UeC5f5Y!N{t3Z|7PA<`viE6kBeBfoX{|7KF}_(Bw=U?d+Oizs_6*BmJqkB6$eX(khnX&^+0iq4$4YOY7m|KtXkOx^ z$3)jFZvDSS#7G1#uP=7mZ~v66+V`eycVYf?G%RUq9dr(vU2`(0s0XTCP1t; zq>rd;paX;hFE0>n9%uPXX|sHB`pzMJ6L+Tf+A78<2#OA;X&QUUe<29Z zBTA6<4oBsu&fCJt2U#Oc;fp#(jgJ)$9S>;@lPM=(KXZZKS{p}~vy?`)`=3BX$~L4C zAFMFE{Gsg<>a={2y0OwMEiRH0%DmK9#96lZ(G`Gek=8C061`Ea@L6WeBmj4huvqyD zuyBgm3}}`?GPbrw={|IWhq|noD$YnReWYe`Ep3p@t?1h2Uv@^r?O3)B{lQJpn?I{q zYxt#wFN6)&41tAoTHEl3LmG(tqhzDAVaJ`2{mBjXRNFI9orO= z^>d`cA12)%>2<^kdwe6Uglb6JG*_Nh-XIY!<@}=zX?mGRN%an5{Fm~ihMvcX4|K4O zFO07YJ7X>I(`r1N0bzOWG;`sPQ>&5&S{&zfZ-I~oYN(!ILyZc8@FF;;LlN>;CVmko zA_q_mc|?iVv6h{?hBIvkk8~saWUk0EUBZn!fzctdRiB+OV zrLD1gtB(2%CO)ELm&oK+3~+k`eCHYii0c)sc7-uf)UpAr^+v0$CQNk8HO8xdwV`juu2 zZxQPMiHo7y3l|LNww#Cp7IH#HrTP2?rr`jX7A~=|EvDd9qcmoX8T^lW~{nRI{c9K5c~Y@Cw82k2-fA15!8d` z_sru&Lt%wM>u^mzw;^#oa4EndA8@fk$BM~)37tJgmik3&x3h(7~bj4ll#+g zro%HrG%NH?!PO|~_~A3R%)l;gWTrasyYBIE*f~0$kGF9=ylNlsZm?~-o%N;-Fhx}J zygI60l{lOkJB@yz0Hb;j3C`7DXI2e&%X*Xzzc=X%W+F5UV$j%Zv`}o^c4-VpnDqCZ z_Ms|l2Cj6dV9s0 zgBb*tIO(mfd~T0Qh`nJkKYw&#Ksyg}fG1^Sm5`FnnJLK*7(+x}V_qgO7uHpIzIn?h zFhl15upGeG{ljC0h+;K~kGYLxk_no{k!@*N;RpN!^y2P$86D=`^%)9A*yim0V?w3W zrzF-#RJ3kXT$j|L?;BMOt17-K$pv%Fl;FAmwR@nt$&Piu7Dh~82UFC z>VH70ry#s4gbrM4zI&p@J@Cecz$Bor9VqTCXe(1-9#eaf(BgJ3@{Bunn|c%y6jM#y zlf=sf2`t8gd0L@4W|fbF-D&pTM|#C!>;G=GtgGP$^I&^Ic1S!j$V*{M(h8wWOBr_f zZpVI@y0mZ$JY36@g@8@Wfr|`CwC9J~AQiaZ>0x(fOtvO!E7Wrp0bskB68lLDChm#$ zK?zKV2y2??%N_n&o-{ge{8rF3je)L=9fkkB8hzL>^OsdVFaw0nnQgP>7;!H4Cck#t;5Dt>$C%M3}3#r5;|MDzcE;neUoAMeyu#PIMR zlR+s7c0V+-2sGiJq1i8HxCG*i@swbqM|CXG>BkVPT^V6w-mLDwG5-gIzx^K&UWlI% z^L{UH!@Kxr27Bte^5DUJJVRtH4!reP{!by_Je(wJ{^e%=E}uJQW1QNg-FgnpmR`?@ zG-7kv-65lbXgbTDe`i0&wk1~ZGyDk=H_M|56Cyv3D1|qvE6{O`jD$(d!vL8+#Zpb~ z?%pk=+>5xPTYeyN{5VqG3KL|6<5k5HJQnej&fg|Dnk!H^L-(9xNOPGyTTnBp11!3! z!KMmz)`$(rk6i1A)@FG{!%b2LtW?3R#Z3p_;CUXA#h*h(U(B6ZH$QgDI3pd2jCV zx*ocs0#lNFPQa$@=r9@iH!423JPE#d(*myxfJ+s2%M?=C`xPDW2TlydN)tnLQ9$iX zIuk>104$WLXOaG^O<^4U^R&DS z6az$;LxKbuCv*8pU#moT@}OdA6PW^gbm0Wn^p&!di;0;(yAlPoC%?i2o`wP=%_ETq z9;rZc+C~uO@}pzl(N(A8{#I3mqPR#L)cX?gXU%Ioo9@eV+bI5mt_2XfNm*VJv}U=>T24fLc7*|Zxx_LRWK9dcA*DZaRr5n+(P9bOR?_R zL1g;SjE|R?OK*dzTYHdq!o`Wb7tu{MzJE61n7|NVjW|sIKIWPygHSEZ-iqjG+ZT!f zX>HVFY)#DH1${kG87epWa^eRH@6@_~mjtLr?jz>)r~g;*VR@%#)bH?#u51(V(}kE6 zlVcA`11Ss-4Q1!2u>lb7#}dSF0#w4=Ie8La{T{eUo+LQ}>UtTTU>0b*7(D+`S)C0g zh}BFXECmgw=%QYXR+$ikplrT$B0jZ1`M zr%1t4GitgJ^oK2|Wk%lS47H0&^=jq*kCKmo4I>R>1fznfDWsk*r8{RAB<0$XeM!W^ zC@}4c;T<7jp-Xl0eD3&Hu=yNu>{6b0zVK@D$>QjuBNUkbYHd zt10o5h!N0bPr?18QjqFVlQg=TZ1n2+Wz^YKcNw8jSoUJ4JAxUk4rzI9aGWS?PyanOy_zLtb+5i<|+7wEm*!Cq+F&;W2C*Q zPGd!6`Ar+trz}itT(>p@BjD}v12j|Hq!ek0?+{k-?M|oE_oA%f#p(8b=>XR!-b{x+ z|87BrtGs$5(8AQb@N_PwIRj1X#n0IVaDXb2h5J*)k@Sx)LD+V5i z;HHz;A;yRSqjO9luR7;wThVee2Tf49i>(`?t8}>Q@l4#U{uE2d;vBs!>Aup-gf8@~ zuDCPI@C9oT0xri@0^8jH%b}Mo29(Q4T0s+g^4J8@=g^qzyT_>SAob9_^?3|b*%Swh=fHw~d!s$y(@Q6{6=adibmI+u;o7pkNW z`?(%8`wOuOPtidgn}S!D=%xKqf>2Ccca5>J#r@E*iPj@=wQ>jt+5v$aPP79LZf>9? zmkU`^3JD*=Ty6a#n8!rE*7o=wQiSz^M4ZIgu}C;bvRwT^ZKxk;Vz0)MKn0iYS{cWRB@_T{RWBun@Wqxa zq=RXME2%3RR=9sK*&2Wae0L#qb}JhTfft%e&e|J-D@po#Up>K^gffX?c5*Qdq{i#b=veakTW9V5(pjJ8t|I$C6bN z!YQ?6U;H5i@I;7nPdu?UZ84C3JEBF9f9y>jitpyL$|-=uFXUNTlmK_nA+huijhbvgJcd0lDpYe0vZ+HDDFmnO#_G@ zQ|$pg3b9fMs78;FgP?m!1*R5#ACW#-$tIbXz95}GW@_WzW6y*8Jv zhC~TXWtZbCc|k&!__pkQ#MYBuORbw}$}F3*<3dS~QAyGh$)i;<`uBefY5N@##%#n` z(k#azFAXUFiE$G;-xwM(`=q!sFoj;32J(j>fkrvmpT3blM}tXMwQoE~i-J}9o8=Sj zOC53zQK|hcemtK?D$KVolB&u?pK<&Yip#CENh>n3%2#+arrY1^JvuljnkIcq${ayR z(aXy0=*;rFM{v#UmDbI#)LRznV>#oQ4{5jFEt0u>EzzWXvc_~~cw%o8KI_oiE1vJf z-M$;@;9FFgS>%d%{qUShnjLkt68$K;n71)CI3$aQAJR}~hM@T8M_pmzAef!P{P7C~ zTLrl^@SjDaKxR0D(c;1-hk9ukqe)|OszoNRwL`ITA9c_Y<=8=NZ0LAV(&1SlNk!h+ zZK&E2(+GZJe>pX1pi-kuqK}D6W6pG14&giur)`|C$`E!EXpW14hQ)#K8TADl4g2O| z{9=!Z;&NcpZg9RWyLJH%{4ki2_FQ^R?IH5E@7qs@6ZYEF6UTmMTyq!wMboa}Py%E- zu|&#ag{zF)${h!+tl~ir)kYtJu*H;(WMr^(4~AMn;5KWvfi&+L!&;R*fqWQyyIxpz zYmYF}u=?z-eGjK}(7l&X8oOC$v?NIOU^c|BYT43)z*NGVW^e&KOTp|vKwO=)H_AiS zkcQ=>zb4|K`sJTdr^1ctfy_{+jz1i@u}~ZjpOIs6yYi9utu}qIcZ9KObkPOdwe{v@q9udy+1&kn zX@#4x-bQQng6w`D#arWS;htA!l%%bet{-GUTNJu(q}wticc=0yl99I(U>sX*#&0{zLJ~+XF1U| zE$u)_c#WzH*{PXlBHvC( z*rAbso15l0st;v$SWjCv=ASRD!|;XJLLor|3t=(a%i}I_W02>AXc~HY>_ZA46~UFX z%fY%4EwokGA!lhFy$X~f7dh=s>9WAY>HtqYkGcy|8bCnb4zDXukkrB@Pe)Vl%W}82 zi_Bu>k7Pbp!?JjkV8zEuj<}TEO!_9~pJ^r1uBiLVf`$wErOru^<|N8+M&&gUX3|A= zkah&1hy&1|_9a4UqY4{|v&FRCf91ZcBG?Lax9)c0pMtGs37o7auxrOiMbFMcN3>s;RYKT9(ze zYui3+tqWkDxCF_bZj4Hx3^dnemMM2fe;T3oXL%|RZtjG?OD|zL#NpGoCcij43Ds8d|N=7|U@mv2jQAhBzj?JtB0O!w1-4gV6@Mm`tU_h8%13 zCf*FJv!u3ppHuYyY?_(uXn5**g@4AX4Ki+7C)0mue{;NogKH3k&C_mr9Q^ zEblNpH&uVlpzxi)u&Hx5nX({8b@TBoN9sSRAYBP$h)gA=71R8(P@~BMLVe28obvLsG zWtK_Q+Ji6BN9_`M%A_^6>vSR{zhiMtK=Nt<_i$SsBX2yJV^bZ2@DR&K%s7;iO3H&D z5Hyc0)JhITRA@S^kT?#?MiJ<~%#Th11atNpC!v)aV32)EhKLpTq^7rKZLS9zmk5h= zyesYB)}=de>h*`pE5&WaYmb<|!9gaVe^4hrhg2W`8Qmxv8IzdSD?olASATVkop|BS zRCUbR#f8rY2v~fd6hx1S)vYl#z>?rn`7DaKr(~g{(TF9-;$Eb{HXhQ9h5X#e-&FxK z;hv`Zi82n768@8fh_yV%N9if;d2j0VPe!|+k4pwoRUv3VmT8n8)`k{^rcIND54y;_ z{{>hH>2xGcl4BbBkw5bWUqqHAVj?!ScBPulSOsa+5Ewh4Z2-O#A@fn zs0}MlF>N`Ff0RNeAavUL-M$DrfHmiW0jNMSjM0NTwb}#ztV;KeOC3iJ_olYdxV8zE zr6vKyIf}ImdRZ?th_;s)l|X~xsC_4!>R>IU0`2m9LpoM@hIJ~lFQg7jdc_DCy+-5! zM2U6U`>wS7)*W{p)KQih8@=(XhHOdjL)J7ZPb-^zQ}pK9O`%krcl{d*gwZ}}soA{4 z^c|g7>aio!t&}6nyvz7W&$1Hb3o7URDsGtVo7H#@>v%%~3@~x+RRj!MY`M~=Qc}yL zAGxY&f_^Y9v6B$^gGLi-+DYO|lR;8w3i$xT4tDI2kIX9_cz{^$+NUuKf^8Yf-gU;kW~czLcdPmD^l59 z?q5cpaobXTzYH3Z0yf9+upESfYm4W*@iyH@VY%56`2ohS=ZB&cdKB>2a;6Er4}pnk zc7FG4g!1M#v3F_`RkwX3 z=FDUW8CTmiia7^FE_L@)ws^a&#-8nOTh(~e@H=nvSxMW+kA~}u)^HbZwI&->B5+s4 zju^~Td&Sh$Iu}Modj^Bs0{Xf*MAv?7CY0^WU9ODvt*rAEX>+xYW8vy-(oLe@>?NuF zgQ^|?T|s%V0pt}uEv-(F1Z`0 zN~>=-s}_}rtFbj~FkVxRA^7U%{o2P8wX>iJMVenIshf^lVgq5PP6h)byf$HE3|E%{cH# zS#6k>chKl>#*E3v=r>ixM{S{pq z2}>N^y^@NtvxA>QJhlfZY#~P3G+o`x)BpN2F3=i%UC zM-qiylvPz#X{xF+sJj{?`oH&F_CWy6_o)~{1tblIU+3ggi&%lH8zZ*0d^CQ)w#8ia zW8v*T2tMyCm;Weof85g$JO-;E7!BMrZegto=m$Qzo*NIp0Ms~hE7Y>l1?)yF{vQC1 zKytseAZslbu0Rezzuda^*dCg0=sbuoplCki_Nhu%BVE^5k5p@+-!T|2n2FnC13VC; z`x?MESa)|#!(*^S24|=9)Ui>)*-{1xDn?7|hx*)7qI64%Lt1A>&Xy8&w-#H+2H!Sf zrAy@gzI6H;VUB^_%=rYZ<#nk7IBHMCgUzoGi=)Z;6oNUa=gJZV znR2J|0ojC2_Xv}6*93OOEV*6$_6nXQQlzG{uc7By{#p~(T(+h44=;6uvM(hC+TwXYLZ~lS#|+d$Bl zeibgzvThJ`MiL`-q;sG4ANxE9UyBBVoG6`%3%CWIBd847NGh4?*8Xm}sAQxHIK|E)&CCU?j+Rb#zPthte%1NVwIbO-iYr^dD{1&1%wGD!tcX0+;^m z7a?|hsGk)+7>=My7#NNfK+R3l&C_G0YI-WUmoa;&9-*VGTJQhU^1VcEbT21`I?Cvl2Pt{~=R2>vpzw(P-J)lP{ zNrj5e5w46?3$+o8U|Hj_J+wIsQlT1kksvYFwj?y^CBdDVp`TlDw^nF(HmW->1y=gA z!mLsguo;h%c2x(%H1-|yy0-pRED!GN?fX@EIw=ssVqWZ-I@Nj^~W4r z29scRlts?;ee(gGoz^T)mSbV7cgl)K4KJe=Fqw?yIo;&ldo`(qoWes*Gdns@v{{6N zb;Y`X#Vo~CO|dLKGQO7>U?FvP2m)>gZH+KSSEE*vjgE;K3_!IhAa9jJfHt_ARXj<||1MkYer5gMs- zJpCPeaWo?)k%qg9_Xsp|T zTEN*{ORhE$7qs`dGFB8&$R<)GSlBiLBw)J#GZ#47W}0tq=u3Ci=jAxw9nP69S6?&( z;CG0)a4lQetLU5bDavl;(Zj-Il9i>UiWOGt zd^KVKyw^_xzuYt=`LJAM~ir-d}(IOTJ~_1G%D?UWqSU zIn3%02%3{JJ#alaNT4*u5a4Jj5R#%?lZzG(Q~T?&EZo-KOExm1lr0GqQrVJV%_b(Q z?*b{|x~+*+gac1Fkq+3>?NHYN=zPI+Xq;bjcE$O7yIsVx%8RHKzoqjCl~tv>^ici8 zXf4u1-*khqxx~i>x)2Yx8(`a}&J6 zNJ?K_qLNP5qUXJI%#=P&w0nqx&bp)UN9}LH(~%3Oyjhk7c(a*zA#y*mS1Vu@EFyTFv5;`YFFWT6wK>l35xDWM$flvm9ZtZS5 z#?%TY-bk8OiIf9CIcLF3U6l8&Kjyahl*z!Zpe*z&*L}#qY+FX)ZSkUS2_rz=q&NSV zTi!e{#9Kqb1M01yV|;NlMo%9`xZnb!V?Y-`odFgI!w|Zg8F2l!&k;& z9s*hqU@Ri|ze_sy5#}r#EMT~)pyd!|&IUDFdYlbJgL#9|sP#;b4Pau|V4y~FqnfTu z-Fl6H(%Y5|UR*q&0$Q}(7Sz6{tsNhm2to$-02iVl0Yur(Bv9$k>QICc-g(BBP^?p- z_FqP^imkaTBtxEV9hAXG#p^RvYX(}{rrm%hWwcGcd!Y`Ds{!dI%0%OYfapVBjJ~ARG^t#VIcE+JzbJh?oH(t&321 zP8iU_1$h{5qiTPmT}V|Z%)x+FwRk53V#rD#3>cYVXiaArLx}+?l*K`)@>dogq1l;A zVWRe3yEIGsh>`CGZ>9~7P5>o^6TxC*j64(__0$Uu*VvPm{k%E_7oxe^_U}pn{^Tl~H~5UdyKbuU^*H3LQA=x-*aPiv+$vNYXpWRDhOdbZKiMH!hxoi6UHJL=Kg zmT~}Np3!p3`0`UMl=`Ek<;gG~>iB>JZ@`yPVY(RAN6eYN59cTsh-7B+F+Dy!Moba~ z2b_%=?(y)4FnnT1aqYzWd@F; zB3%RhB}^yq3=^`PZODd>CG~U?gY4uPF?BalMVedq0`y?T7__V?bx>_PcK874NY;0A z=0({_P+di3o=25C;tA(#sZ*+ChpxkMXNGX*8W_Thi}IZG@vS-xuBA{%-hpuZ?Ducy zy-!=W>dG=4at`EcBRdFvTbK}0`IwpS-TLPA?;Qh31L<}~nCcjUH2@a^xHdDsFU9v6&Ci!D7k*SVUEYb|6*G;T(sn|)ccoPJIX`l0veTRPKxse0ix=FK9;3J-kPFK zOJADeg2yPgygDW9*v@c5-=44xy$g}FcPJrCW$+6Rf!#`e86f?NvISuZs&6EaN4F{0oFB$h=b|77t z#F`EyV5p>M5+oEek{}_o$VjkMejG+tk-%}XKDJ;q30PF55v5^h$JEX@(}CJX4;?O$ zCkv2V5cx71%pjOg`Hl%uwKPbOhTisf(`Q>TNUP?8g%Zg$?%=940vBTZ0j^cnW0{%h zazUzK?UUfi(yKNqhDehhC^bp}mHuqptq(1Ks=fM1J1pACtv(mX2WRK<0mbOx@~?I^ zNL(~gDW!k?`TzTRQB_lfbi!ONO8$P7C4Uvbs44A7eR1WlKmQXzU77y3$y~U`a=??> z%yPU}M)&ym7?Bt$J8wU-5P`fygbfj-bHa(^s9Qb;bP|vCt1yDlvxgJgn_8g{<%y?r zLFj>{Dl$Tu;)(CgZzrn@`NNlF^w!E|=8~j)C|9!%lJtK+JwLhprT_K%s(*S>7jaT7 zZQ_Z|Y#t`}XA+xw!NHzDg>p#H_EQ^RHv$S7@gQB`+~*7IBTJZ*rWNTew#ngY{*vZq zLQ`J0i3zp7ZQTzi*vf3ADf(80epy7>#m6eRNDFZv#O$@7jc6ead8{W?zr1P-hMlqz zPR-wQP!mIiCyssVM#u&8K``{~nY4joD8B8bVv~V67$%qI@3J43IwF#{%2!d1tdsPW z${M`jYV#_!*HSm|C&~=@B+<3$c4386TO0_X6b=JI;be}IXoM;krD^otv>iCcZ5O3* zXITsg&D*xyxQn#p}H6` zpmc#@ZWg`UF5#U%qP`!VVaYH1fk=Z{$77@W{4?JZI(!-!t3B8AZ}#sMMX1W$>_1F^ z+)2IAo<8GOt8;Bf9fC}3Q=;4X7$4Mu@lgqk-@be$`5{*Kd!^D76y{O~snCXQU>WLU z1<*TJV(GZaFitme&DB`Un zREK1wsfo(YCqYGBE~9}0!Q)u>9X5a`vzc5&q@?4k3R+9p83T`4OAYVlKceFTMoMb) zf(;(FMF$C(ZU}9BbG$OkOJD)-Y=a3bvb92#z@mCE)Kvuc?K_MfA(h_JCpZ}EfCR7NB^naUD60;$ zZ%F`g1|@B7LY1&Fi@u!31rFKfi3H0V4(C1_gP;^7k%pLUMytam{V6VJjxAI%=1BEX zESP>}kQ^W?A71cA?Q@>ZL&!ToOr2^sGUp|=H?M^_E$Luvvm5?G@yUX^*v5(^ps2E` z)Z9ZhPQzis3KowmJoS*O?2(6-AShaO@DS_WG^Zu2v8PWEet~8 z8wSenGsCFDflO$N1iorxku!l6g_w>)M2He?HtfJ~E%9Vv`VVm8qtfS$t?tYC-46ss zNvo(z&Tv7)c_$=Lvvan}^HJdpHh_Fo#H#`lIK6MVz$x*7fX3-l(ligsbS8ls+2gV0 zGcw88_oiI17~78E6Piij*2)aYkm^?NrEKXG=`%y<)(j3?YTQNPAgDjIdNEPCj~(OV z%BTsAowx-lh8u>yytD|3=d!wD{(Z-eaRH@@rq-ffQSizL=EDi})|$=5D5}#IT%^Rc zjHHPdZ)DHeSampYJl{t3xhBpoBJ~s8j7ye8K%_;dQ3tprP^j};5~N^iqE3-Wz_uJ= zRC56n%G~9G)y)CqzxP1$-u+|-L)(7y;`(7a@En=kcH#!hFOuNj{_lVMcLuE89AGK; zjAlX#r`|N$PUiFFlZR%b{=o(5Z*WX0ZPf7Zn4S;Bh#D89frqL?LY$Qy+NL8FzVLtH zG&a&FQkz58y8(@EUm1322;m5skqN(fF0{X6`nSS$jxr|U>nF5XvM6f(kq8xN^DQyL zPTuJ?lsu?@daZwvqpvbX;hA(GOuH+{t6c>ohr7N0r}*ja&5LfYw=c(-h<_g(siSIm z;G+pIhu-YXizC?yBdW=u`eOVfSUB{i;-zj+;UG`H57mc>WsWRgd_0r~=wr_d;p1^n zPW^Ts%8we>&~t!OH1%KiqSJCU14ZHJZziRoTWy_`M)vAB?rNlqF@>5K{22`qzsPLt zq8x@^_c*rT`+JGWE%xNrzjr%%+j3Qk5tCH;(l@ssr({cBLRbL6s83p&H0J(4tp?!$ zOqwKN6CyIkkx~3210E^+2Q#3QW_CVvN5q(mmcVr)u`lE}14MPVW?fLnr$Pk0aTb)7Yh zs2_`=`lP^dpBR6%j1Io+7+=`-2|RtJiUJJ*mHyc_Sz+$Z&*J%rq?xusSV4tgWv>)Z0OBx)-2q@$2hJvF8BSZ=X^{bLB@)lx3> z`qPImHy58SR~e`UHB^^nEMCbhfP(sLfLI~?ZN2&#S#jwv#Zu*>`nPfy>w|wPP8XNI z_CH_uzkd95*8gyE`Adc*idFRpJ$)7JL1i99a{>;%o7lri3UiOF!1e{wTf*vlWq7kx zEt^FE=yT^hsJam;X&N>ZfKF}}A@r) z2nsviT|En~cWJfd*4OjcR~UL|tS==(!+Y7#S6J>4>g{&nc|lq^yP*$EMY|niv+G`*uu7QghLAchzGqf zhxW{d#PN=yU9~hL4J@q%1h5Eig;VQFBUbk2+)uLWPM#A9*$Qt$IBTIr^e6F^FDJ@XH{v zesT4tpm=V>K0Nv>3_``dTIxaiLP~ddZ6Rfa&-8_qnPMep5T}9W;%bDb zi3Dh*%lQp0M7+@Xz~J2AUWwzJZ+RmSrq>ol081%dt26~dDL|O6S*4(qZ55?pEYgnR zM1b5rIsZj2-HO^MrY34&pyc1K&fewOP8cw&EG}0u7kphzgr4@5h1Y!LCN1}MJ12eC z*rZ#$((mB%m1~FA&p+ORpPt?PfP4GY{Gb2IOd8D2b1d&nX&%cZQ||m>qS0STje(>8XzC1{-wb&* zOeUm+4>K#C!6JUXkY4H?xTul@>XFgCxp?A(`QXhVilu%U+xOOJ@#CrGI3G<33q0L5 zSc`#VW=z)4uy%>D0IcUhT8W(WZnwWosQK){O*i=HnDI~Y$5YRlPui7#C5{GAY$ z8U@$;HTtx`VL`TEe0v1{ycK`N7z*?5fhr@t@^x?TIJ(psdo%P?Icl9D&oUTN4Wcpf z&n-}|6-+BJX@&oz7n?>UWf?FL6UI_mA=7oGyZ*@sB znNg#1X?Ar)LtP!L`aVoxiHiKBcU2mt-jTL$QCgUcd|wHOx4t=>WNqNri%Xhf;ni)+ zqU5lHV@<2#jXqe}?%hQ4bhO>eh}ZaVMM5HNHItF3{p{mdzUlH|jTjEU+kz&ugB_>gBJ*}_ArE%{_g9eE6F zkJXX;i_?_N>PVc((evM^$WcWBP$CBk2jq#I8yosDUs`v@XK!k{Yb=y#bXZR8qz}2m ztojT!25Ges$lLB7Vs~JGE;^S*-^+cHJ#9eZG<(-%@^8Z`7stQvTfo1E5*&(u_YR`d z_6_rI4sT#88IS z;xwp`vvF%`QKsiv8$D~IA6*+|Rm@U@WND)at0uG&t*%>5+9=kW?2&1s&8VGR{j$A* zZNjJ1Xw~s*(rL0U-jma52Tw=PKkGC;otBkUtOm)_X-#@q%@$B7sncR*6rO$*ac{pN zKCTi)yw2wCdUa9VcdVXu(b7nIIs*Dx7v-6&XE)iqRjLR1Tv=U|b!4pu*@P~lC0sp6 z`)Z5!)vuyTMEkC{4%j@SHsl9ANBf?&(X%#+c4XFRuo@&w8#Nj2%gVOolo5|O+V|+S z(I#SpJvI&4itM51*x<7UeAa+!N1kMzK&wHrG+=}N*hy9{C8vz|v0{V0hS<1DXz)Cn zxocHLCv8abc@7OetD?H5DsNTSsTs1)an&H3&loFwg+VxS^S*{u+Lm%x$BCUoyR*W}0PnvDq`NKIu z>lriF#POo!$00S-vUQyHL`@A65P% zm04(oFR5iux<_)ZnFOp*>m+rS&E^^u^<&1g3My<4q$!okMR8WWK~;>W+cSj-c{9e| zhx(O4_Ku6Awmr37dz#z5FnuHjva$7WM3T%m-P=44OCN`hUopYPV{6FNhp#M7Y)u`@ zA{5LlRHFBeoNuiKtj_)j5=aQhj7v(57CxyzL~u-pTVHglb z^kTx7Nu?W5LVcUJD!@KeZV=NOrjL^Gg7R5p`yo?zd9+Zp#LlEdRWIImWIHOZQV6-J+vAi?(Mf`w}u9@Q?Z1PbjMk)R=a){$r^ z+go!%LwPDBNK=#LbW%?NAAb}ctb9dC?g7(|Qa`_gFX@{k&n5sb_(w11N zCN3(Yydx4M)fn5hMqr;KfJSAetL;PtAXV)vS3E~87Om|wrh7JH$61;M zG@n|&Jkh7rQ6PBW8Ke>L*>Ui38aY~MFFJQ?MD+{4!zl%7e}fjwGKNSs!uA{M!W=BQGkPtP#vld6U!V~KE$}> zWy`VW$(Ad}s?EvmJd__btfA*XGJ;;N*NemhH3LQA=x-*aX*Wx$85X_WWQIlDgfE4D zvsVWT6GUQ>$k&V1+}tJyD)mUSL~oHml?XB7)Cr-Oe$1xl0*G@RNT5)fi#RDZP*H4@ z3m#5+kw9UU7rl!_T-?AztMTW8SJzP@9QN_;`i#kk{ygJo2opjlaRAOeAb~214b{4` z>__XIDr9E)V%tplRLGqjPUKn7!WS~6v!@PmEqRJycw=}Zune8p2M4*Kw>TIQD&7{B zmO3s9zS6>C*)KX)kQd&q3-UTLnPl9B9w|tD=A_2pCTr?*cWn?@a zB34lTBzSig>Kud=IhU%JZP~)S=F+u78n98&X5$OSvs0{|CWTL8dKwdcrP8vc>qY`4 zeiu$QTUZoz=uM@evKkNo7d_o7b7lH3c$<=j$(=WMFd~`;4JSD{lR-$Z0&~g-4ClV9 zM%q8OhLe;eP$SE? zzoR^TBJ=wmN>tLeHckzY*zs17(Pf)iVDa%jqu^hh^T=w zKJ~Q>OxBV}WP|pVNc>J-c0jXjoeQ%Ac4HN@E9D1tRR@T|ste)UGcz;|L14=tPUH<3 zkb1_|`R9KB|DD3Y$E6j{%y9Di2V?8XnNO$smYpXAmLI$_y2r;|`QQDYjVsgtHkk{M z@`=-l={q4VAV!mGz1`iTWbNrDp`i}SXrRpRrtLt18a9aG#P{a6m_v0cJg&LvR|YF0 zV%zcDudd?tg4b$aU7VP0VD4hl8=Cv_+5_sKlm_%2%F!T!ng?R6c5`+Hh*!q)Hs#0~ z3nelFbr5NWEiEC^u5V5rW|l7$);BRN(;ZHr>ettS=Y5+B1+lNHicRbw^!x`%g-ho% zSuHH03seky|9(}iUw``W<>unkWdi(841Vz(F_<5yQbu)R{`LB*e|phhYhc&Z4AceY znrHC2e{x2cfPjSJpM7cC)G~*YU;D*~BS)oMy(2Km297uU7Q8furfUp@<>=dCXt{7r z+k_00sTmr+WsbloFa{6C*}LCAyfS1WT&B5Vj0DYmdoagc0wBh1?OdHwFR+EJ+F=6; zgl7YWI;ii`F5Jw06fn}f1e5bIq}WM(0cqIFY`{#EM?$=E!#1n_{gCmzZfxVcEaI&; zTwM6kY%<34vw6U%%}_T3YSLwF5Fv5ZcE1Z(Oy{nOp*x93cXDE8@0xA2(_qZ3I7*gI z#yU#(#9i+~7uhf!$GZy_K3HP0WR|k96n$$b3`59m7PjKjATn-*#cYhlFLU35oMy3a z#&btzD<{UuKtd4P8;ke6(3@F-%9u{P2R}!MP0T8xSB9`v=l

lFskWFC6(duT}?BPwNBZmzhdwPQo`j-|B3d~O#j$K$GWy3n z2x0fJQ4^QJK?0SK>TKMC$;ao*bf9hT>CE$SK^mesVWVRDvoSN}qqHT!3lqA_T!x-O zS1C0oz7`gYb+2fYJg+nzFH%h=SbGk zcG&7lMP36JJjQxHdcSdj!`o($sQQ@81*uXbp9JxOZEoghB((!up)O<)nlZ{qD=@`& zCr##E!{u+b;#tzFSvu!32Cg-J>=52|XY){hEvyTfY#?n6;d0;l=2RXFCU?+Io_&zj zy}McaU>U+&)K(&t#W6~yy+I&iQJ>FHh4bQZ4ld40hEt+-^@c+;fcQze0T8}@Fvg}0 z0WAP9pPB;)6_}>&x}iCT@(8F@TUwHk<7^K-S4mA=w4VfbYKDS8P`)e;Ao9A!Bgwdf z{9D&D`KD(5F~_%)p@BSMgESGM4tE2H1Wr6Kv_TfJK?M2B36D{baqc-NUo*A;iN5De z0vdSEcRuD!fA-Yrraqp5!P;ekJ6sw?qH7~=0%b9Zo!PVuGgRD=1tHu;@*j~zf}4Er zJ4z67kO?IkkDEuRO7(6Aw1Q9{f46M?a9Z?7WGJN@J1ryA7gsnP;T$p`oCnlZEe7Pk zxkVP4pmzf)#0s0z+&X4wz$kr0<+~Jl8gP^*c8W1Ezgx0v-oUcNm-ek|kA*;XL+3$! z1r@E~2+oxOuaOEvK|CZeNXNLj^9%@cO|1~BGs4+nrR#JAnlTyyQH}xM%-A@uno6cY zRDnS@aEy|LcjaK?vjJPk05*t9)-Y?&!HN#pp3c68o@4o@yV5aX{k>WZAoLB^20C^P zEjRG|uhUsNf*mIG!nYTp!PR!SQhg;7JY;Gf2^RL|EOBCNG(^X5X&jPXhc|qSmXIVg z&~ZT$G^84(at`XWkhYo&JC=`>s2n5`EamNSK||%TkRV}lFQ~f=TjiU^`xvi=MnbkZ ztz~7-d{1cDsm}IPZQLWht4{56{m%rHoxJ1=NMvZVbyapo#gEmx>K&w+Y_fG##Gu8P zLaB`A5^~N3>ZL(>n%W46GkcXSAlU7?m@H5z(*db!eHk@&B@ zBB3o`>B}si2u9{ll9r3z+rKyAtPCM6=g!;zGwJ%NX+R62rom|`-02fiNOEcsz=0WwvT)|f+y%ntSQTa8-kKS1wJlkXg zr)-0^Xk?!k+m=wAkH=Sv(8=;|q#wKH-{>ur{)((Dxb}(`QfYpVZhxHiQ)IrYrT%PT zFRl>cCwbB%&VSlwMYu#K8)d`SN!OxIm*`!qT%ueF*gY)L{xJKBO0EC<>G{d!Fa7c* zF>6+FdPg;@MD}PEIP+(Fb$)Wa0m9Yg@a7ZlkW@CdfN-BLE^pZBR;;IMpxgcdsc3Ef zY_Izt`lmPjv#+1N++2NmsuZLZEH0p6=@P~*-Lz$K!x{8E3rnjcoMGk^tT(3QaE0+Z ztAl479;Y>1RE13NgPk&+ZPa4LoH79djeAbom&vX5lIj~B%k@*f(Z%(rn@?B$Yc*E- zX4_*M*g>_dWu zO79^pmaf-{xzk32r^}XdQ4)1Ijx;k}NEb6R5ZfjSHc&{rpHuqNNEns2;hUUL-XYYw zl?^9iJuPH+1b1YAw?}i+fvkRiDqMfpoZ3TG)Y%2g+St08c*2W^3x}@kw6JJ<`^xC; z?)Kz=_g~5q&X`%%-}x~$M6~`&y}00aJP82 zhMo(jDV@ZxJ9%d?&9;^(x~bMX&}VBEju+*@%-Z4K%9XR^EAq%^?G=3$E$!qlJCXBP z&q)&=e}Rn_>BO0844I+p_FOL8(JGcx&osNo`ixkkUvQ{-7f+5z6o83%G@5HTaP%Kd zmx1$}A+saoVR-m3v*IU>;^zy=QsROAeR%+`9vR)6izhyq58fPjSp77%@2%0|$5YF3 zKAI91Y@Rh(i-BayMb^)-Y>BY|tl;@*(!1UMvOxQ150X9P;i(z_B!4{hocYv^{hs*3 z_0Hc3lS8B6dcQ`W7C0=(_KRS_Z zO5C2={i(t-NjZXDr)KZ}*Sb!cI)hy5r7wYgC(Sg-Ux=I>sKQ-y^jaoHuc$W=&(|~4 zjbQ3+`~9Qk-!AATEFCZh%Pe5CH~H}ks4^?lvXwGSm>YX)1;(XyXMFairkl2y34%+- zA}L)~i)H1ZszK7V*j{g;H|y78v>R{rY&vyKq;S!GY%SL8jlTvKO8KSojaDhNE}KH5 zUE^b2vRa6*>U`!?|C~vE$$y5!cb-48{6K#2X3>+bEge+}ckx8gYSQj5mbpR@QSTH~ z((>*?zE%tx8vw zaOYcYugZMCI8} zC|;;moTyar6XYxH@)NpzenKnGS1M?|D1yYbk}jae-g-CWjA|2Y;-QH^{yX8$=BU2fIN#G(gW zHfH}h7QM1u`kfy#7Ttf2MVDLavx*)^6_fcn8r{Myp8j)0`iIEk>DS#!h)X{{XYmxE zTz3}F`zq0SUA|rdi?}tFcdK|#t-tT^d~;l{R4c;ssFiB5?=)odomzkYA!~y@J5L4d zP{nzAPdgge+%9JKo^JTOr}wSD1Cg;PPdAz8ed{kkWGu;ZHc$CAeu^h83EJjV8q)-Y zKk7SOcr2Ar%^q(QmiXJ(S5_1H;9#YRQhL2Ux$)QP^&P44(qDlig7sH43TbuxG*74f zq-zNlZm~H3_wQ$p=|cYuH)SJatWdMnW(up}bsKB(^}g=de?nO9D)F;G9I!*n%mVk! zSScEn&kkC8*BW@xv%<@Ebf>xZ&Bo@7t1{{hmssS3L%qmLM`GZGQX;3XXq-ng$xw#G zeASK#OoA=UO#+4QK|umHMm2q5BqFJi0kU>0XYljQkC8i2C2@puEj;m^Z8Lc2k(*Se&g z5=8akdpshfiR_8SWXNWaEtD2H@Ba1Yzb?%wzAq*xdt+MivSVkuZN{#6+iiY%H!i&% zIRT4g6^oRr)0$yNFr4J}y4yH@6BFMfmXmyU_*Sp26)?=$r4Ke0R`Rl?tT#3+_q*+T zE{G!2F>J^(vw~1|hc&c_GCbdqqQH>*&6v)E&=^?8$QldFdL&+2MRD>lvwUH8LuVz^ z9Zozyc1(G&D-HgM9fY3$AWZfbtFszNLJd7f0M^sn75{txUQ=*|vL$?!>rWrP++2LR z{QB|a`lkQ+>-AOt^kV(UXn}XpVwM2eSsgsvEvh>+dWmi17Nzx{TZ>KQ+k-Fz^<3HQ z(een@N_A&``FT!i`Kk^fQ*^sAM z=%(=i z!_Sw8pU=0%uPJ*?;nySeKmO}UocM#=Pg}dY``x2o_AVzsU9d+t3sQJ;ws&-V-rEwR zO9aMu>07`wdcQ=2w|hRcLVGfsK6{K}PK)mGfqdkL1O9Ws9{I4{gF`W^my_Q;Jy1VN zhiaw@P@Y)*IU0QMlPHbGtcbqp>0f{T`)a_#)PM9@j96xYYQ06}yqK^70+v|ly0FsO z^=}c5NOHH%v&r zk*5#HHnYTEepsn7ine#dYKsX^{1$B(x#gt%fF@!Ejm*b#zj?TSw1Fd9-c=a$pR)&v zalgVgY1GL>bWa1|O)O~&CD$+Hl_ zJ8jI6#x<+PFde!WMcOucL)U0NS}}Hg#@3npq-_9W^stTLTCXnZrfwTK{2kafhA5$K z8M)%Y6iv~0WiuVH=7Uz0FFe{y#qxTh?PE6WaYHx{-^MKFSDEj895?iaQT%D^p&v!x zM{fN6U{_qChJKPp@f*LxY|W$97g%^v5XBmiUH-q%pA~v|D%{vpS}E`bgb$vpMJl9H!*X>5fsi~P1M@?wr{g!)#G5s^EW1Zl+FB#W_E9}>t%ymhiJ zs2Zn9T~JC&%x=IIr}mXSxq&TUOT&(u1m?!*Yf@cMTw5Rc0VXg?+^cJY^Q>*MZ9X-R zZ|ZlL$r;`UtJ&pU!G4}A3usW)a~|A{>AB)MkD@F zw4VG zJL-uqcJvZSUeW)S@(kSPo8%dsa@5<^iurO(!HCeF8ux`S3dc>UWs8{V4X-}dPK`TQ z68;+SQ14hE1Cd5Kw+C>L7_;~j!2%1Ps5}n+!==z2HH^|nisezK%r$4e*(;)P5y0ZJ zI(F%PR9jS`AAgR*6!w6dc)tH>>n!%&K+z{R&r0ldu##JXvZNgySF)tZ^Ftjq`+LHW z_UOk+3Rc94DQ(K7CfRh$To1yT`7JE)vH-N|kdx9+hmMjwiNmk-aOL8}AF+Yce{3i<7IRv@n&ulr$^ zV2lM8P{RA3+r`Hn418ek^}-6JP20f7meI8;LgUyEJ%5ZcE!g1hdVa-rk;3~7+rUief5A|35b4W;stKo!5M!>;_$ap%8lGcY+f339w~ zRX{kNb5qyp2a)%^5=Z2^MvcU6QBSC@lWM zqyLIe45|wcr2~>6;Z#5pD9KGIYaNY2vQZyZEQdBb%%MhOj@b3SGgP=12_90%B*Cho zVhRsoU3mZK?w$YB*5oYGQRh+afqv11OM3{a23LtxJVp#JdPu9 z5dj4!?xb;)_-W!msiMqGo~p9*+CnS{^qLB$C9DI%y%jA4yDmS7f_ z6rGFLAZYRGc(G2J9!{*&K-mI>J3~pJuwtDAYV&4Yw=%P5lK;Ya}u~2#l;p-59bu59TN5?r8PbTM4G~dF^!TSWeFe3 z7BGE3umx{&4Y9>35D%X?(W9e{eB$1bH*E5Y$MkY0??K{~nS0Rmjm`|59g`Ir?9HpR zLW@Iub?FUYnl>ymh>)eLdUbbmfAj6~u8f@~eszAWOuX3d^Tie+owFGfIZLv9s$A;) zUVA04y_eEI=D>&;-XvYC1m@PDJ^9Z#4bEQPHVsrd#Dx#huEIRK22;G?>T~9uh2UMhyvAjf@)F z_QuIt>TYvfRfEnE1>1DtTb(ZmMltwXo4C?Q*TvPvnDisaS@07*3S=utQ;HXb&n%YF zdlOq)jzgWtI2wtkVn1qt69oK_4+4ej#G^?mi*Vu{={PqK4hSE~xIcJr@_`G^|AlV= z!S7*7VZN6Tsv732W~4C_mLc})dJrce5QMA@5lQgoL{JYyn~OTmX9!xTk*!CvVIogX znkP)ggIa?Jbto~#SZUCZM;Qs$B$C-0M4T0jI5~6@9SI&3#c3ayIY+H4Oz4f~s5P3L zwrWM2<~zhH+BW_Do3blI=EhQnSpx~O(%!P!Bjrz-yNNRQ3rZ;?nIG*)Bn8YSH?mic zi7wmLNQrFxxIv_>7l%v>jnT2$)*vGN88mT&k5?f9EPi(q#Uiu$r=$#| zX5-i=iE0I56GpvsuQ|Q+`s~-si-*hq`F4AGcULW34+)|H+D}71a;AvH=T~z7QQqIh zcPeK`9HNi~g4{!*T++{PqdA&WR^md%vZl8}dh@EFEWa zoeFkL*&-mPn(XT_o%Yfc5MxK7wd%#wNW&eV!)7$xIU`}(NW-1k1fl(py3DJw3ya!Y?c3THTpTO`yrPKj#fI`AnP7UD+Rex-cb;!>1fQvy6r|jS7Lmg_1eHK)6g%iFyo~vx z&cNs-Rb$v#=pxZ(Mjy9pzBwbXi)Of|8KtIaG zPt>+7Qn!?zSoBCShvI`Q=UaUeeUE-xWUAvwI!^v0QsenDQZTl0J>vU*WLd#Podjcv<8S4aScgn=j z5c8C;YX^&%MnwhiHKpFP*_*^XU23qbUkH-%oC5&jidy2&N(%#Tto+ner8 zkC5$4C-V2QKX*5#;d|Fg!*^X%z<7@lwXEc&WLCY9(=7f-aOA>GM%?YnJ`v?f7d}ze zyP_LTsf8NAmp)SGS$?0l6}nNrx~uIZzu%fgxx3Ov^40D*Jt=FNs z$g&VZB^+qzoC3O&gj?S$4n%(M#O#s9vHTpeVFM^D{9fk?OaG?x=m)IhoH@U^35=A5 zvdEq;^6iHx2~4|+<@dz-nL)j%JW9>WTh;LqDizoOr-|3P{H0ily0OUB{NN?nNG`Dk zEsii@x+GXN?7?+Gd0C9Cg-I*Phwl?dn;sO+OhnYMEs&^E9JKmwvWJniiDC8{36kt* zVhbAX9!Lab50V?arO?FP62#(n*(>~i=-(kClH5W;4@v^#7-S+XssF}b%jM4?<@aiH zkxIxQQmPUzD_%Ma##YW3x7b#Yq#~J!x`!ZNwT>Ws0H= zZJv8w?;0)32K9<|z`)}u0ol@3$9>rw2fah>aMFV<9w5R&F5O(<6IFjy zZz$9|kQE85t{Q2}&TmksOJL&MV6HwK$@`#K<9@h!xcTy7=S%NqJ22&duLH)#`}Aw{ z^dP*2GgBe#-ZszL1`6ZXI{@>O>a81VE}VjrHSb|Po210T7FbWdUzGS07GDiXc1)6I z#aW|Anp(ztjF2Vsmy!b|9*RFH%ql%FWFO4kit>+i@JVi^mM+BQ>o{-=-0a51_)*g~ zyKSaz9!X_nf;S+C)##Tg?2b{XT@VwB!cFR|YF74CQd&|Kxgq8LBr>XUm{eCKhHC{< zrgj%Ec%FloP^ro~kSrCbY*7*_VPfNjW5E`C=>;UbV&&@(|O&hFYBlT>dy19^&{p%Bcx zhGx!T2mIxGGlZybQZ1xm!|Is{J)EV=g~r9251N;Z=qVI(SF$X37DC4+JJ~Ux!1p; z&LVYa%{-Bf9x1SL$2bNgt*NvY7Z`}d{*u-vS1Z?yNY6U^cXN7>qxJ&nSgM=3O{66@ zb(;oGwcD}=51*JzgJ+SHXf2gi^oJhNKBrU`hINRlgNtDu>XK3XNnusXgYr@=I_$9M zkuq+ZR&BvTe;v(B6XPArZYh^+!k@R%?ei(7t#KHu1Js`ov z6=WfS`o=Y}Va6wjsZ>gW$TiYko51$pb!CI;oBweF5*CF42Bf$B)Y0f zcDBHwYGBrFdOwz!Ic|A!ci1}t55cWANirEd?i#R zUC~m`9A24umybM%_y=y7PQHLb0}JlM_wc%OIj*2RyteDL-)~nhouw9@TqS`-D{J#w z*U)`Z5Ht2%q;UpjQ`0-V&{YuFD7f+%Wh{DL>4(`IHZnqQpMwt%6Oxt|-MG9)*& zngQ}-Z-$O7Xjj(w15_|onkZim{mFl3qNHhBV$Lsv0^J?BA}18Q;%e!R8?$Ly?t!Sc zI$&AKVm})>+ZXRd$sB_B0efX8doZ;?B{+T6BzoA1V*hPJ~Te&dYHdEG4Xk zA9_(dj^c%au{$QuTGPE5ru%ED!_3%?MRrTMh1LKp^uSe@asq$aVti|DIkE7m##e)` z?owCw{y-u-^NI4r$_^|QKqwb++51Hxl#6(+ddiHSuCviSN0~oLz|9S9iyQ1W)1$S+ zp!b{6XZdnW+pWOYygzyWqv%VcIHP;4y$!S8V?RVGg0k6F-4lp$;SuP(*@Pr!`t#Smr%+n+ z!K~1KhEaxSyvbt!+1??CY@tRy=4MWRWoDX@5wb|T)IXhM7-hl0;jHEcrA9VKQOtp< zNRKUKt!cAZF)CoTLrj|#p!R!~SPLk$7j}n}S+oehDEt8H{_Ll3wqTCqXpnj983?)= zxuaN@8VQ&@DQrO#2a+vd7B^ZwBM~WCsl%g=e==T;dk`_lxAwCt6Djtz*q+!a{1%7KT8XJPnq+TGj zi2j@7rwI!lok7IE2qXUU<0C7+@085}bc>um;|%;Hjs3p7%jfDS$*5?51QuTYX!c0k zG5LLIeX*#1Uwk3RdB1P&Ao&Jh+y771yO_w6#IJi46ZElHX1{j<41XXoy>Uv<*Jd*@~7 zdqZ&MXAnv4ht9|i-*m*Bt~Vl-#!2)v*#6$bCrnu0xvq>c^mJ(@(R@^$eHt)`8OcU` zybcB=p&3Pb`l}!MBmZAM%7IM-iDXX_EOd1r8aR|Oiv|jRjibRs-{YuEf-9I$i=D#B z99sQZc|%31T_k{`T05LtN75Rs4CVKu!IDx61CF!@a&pre%o^RQi07C+P{_4wAvbXI zJh#Mj+c@h2j{Y2g#GU#Fks`)H_YEJcqL;)?dFG85vMp!;X% zM_dR1m9hP8fNN z1J+kdLKhY4ppRBt$Yr>`Al7LYt}$}ByGa|^sS24! z=8HN5qgkf7%4REkSR~-g=xe`rXJ*(PlW6#5wK7lZ0n26BxkXj2hCU{O%omg^F}<=+ zgf74Ei4tQ)O4pormw%+Ti{gV@CMvQZn2X>cF|li&IhDLb=wlZv3UuR7Rqj;%2|?+c_YDl2cp8HRf=mJ@%HTg>Sk@|tu92XmZ~^|TT@84S+chl z8Ln&B<*fm%Ge3CwVfwjYDY4|(d@)zkU8_2@P1Ks*1F);CHLF#V<(OLOjXPHmwpg_j zGE=H{vq!6(X7NV?(FJ`_q$ibqB6wio6Lka?>4|d+Y5tKx@l-hEw+HTIsV-~ESNBJ4 zxx2TTmb^ z?5!Bm!bXCH%7Ud;XA0du%0EJymnatCqujP6c&L~#A|FaGpe=Z!$rdUkj5NE@*1Yfq z&}j^UiBF`lKDPR~y#s^>31vK|fGU1h784`c{~%4MgBYNzZ!0xsQ5C1NHN!`Qm9H62 zb>ihLpoPzaw1E{a)~_By_RY2V8QKcVvryR!rPbQt9;EUs19aL&$yTM9s`yO$4XhVh zE^6OfShpI<6BZa;=+h{div^@azSf%Iv~EXJ@rWsO$1WOG-9d4u87XlACwMm|_XAzT zmj(`-%1_H{L6+X#oK?dY%%#DrRSTB}@>Wx$OXmYhG))tbH087o{@^G?!3<*+LJM7r7+K2hO6 zMIO>}m#cKTPu2pTDnY71xCzCpjU2YxPPbj11EbJy((T)HXWSWo?S$)!@jj2T*ylU` zn!QZ1e?g{hEFIJo-~)bR0~;+LdydcA$o?QraQCFi>9r9KUzI6}cC>l!bwfOC77gd( zH&OrU7hvzez~d-^z$3kf%HBBGm;K6NdTOu&8KoGLuscb+u+2T!fZd_qM#xX9OW0?* zaa?_VlQCS7c(>aZ?;gJNZnlGWYliB=0-jz}->mKC&i>r2Kjdb0H(Eu zt+d?c73@}h^ZvP81%#FC*8XP5)|)RM)_$uZ1Z&gT`aieo-(ahHn;}>?VXGpfDlL1O zUOz^Mo0{yOJrS(GV9Zq4_~K6rtIHg!qAx{8&T`XePg~G(i?oziE?>uiThJ@sxEQny zajL2CV|xiAv^;3DrSM1_!WT0)CUXIVvBtq=wm-*cA6wX@it0_8ztpVkS+|Se0vdEbshcm9o71s{^#?(&gYtV8<3ZPzul96*xN(Tr=#1W zTC>@0?S1N;&t9F8u^Czc|K+5!cW~OSiQXdw{HZyN@Eee^>ye{cyTws_KBUfwy|u`g zwcP7BqnH02#*_@)U=qEPq)_qT{~CYL?#`3SiHg39{*usFe9cGW3mce)aY;0tAs!9v zL4=H=N8`n|L^DR@)FVFeo=EN3P{B~3*E-xVa_aHs&4#8m3@tMt5A1`G_z&aI83xpK z*7usgf4@BZ6OhFEP?JS{H*lwmyrEh%-Dc@)rqyrrrhF|Q)jIud{BRpu?1dQy?(&*y z?RO3YJo-3ckKJyMKTS;Mk@bC4>vh*JIoM*$J>YrxCUYRK) zR(SwDlga%mBRDX9GO99yAg#FpDFZR1w4=8TOJwNUQ`e{5KB}}V1Z_{WW9LuFkXBlm zq<6;5F96ONEW+u8Ni@H{&}l>Ei)j_?i<#a9uNH|B{N#>a?^)Lp@fkfc-=>^}1wTxu zxzf|ZNr~Xhj}v#KEU)`i(Uilh(a+Bo`Fs(1VZl8Jc_G2%J_?j#F3SKH!t8d#1 zM;BGG(}Q*R<K)85tomed`N7G*oh!`>XTIVfl;bJ&zpTkA<9Qtwgj_s=~M+=7^yd z>oxgJ>|(hKOfO)cQUBjA9rof0BSeTyfm(_LG3m_rixF4 z+D-8^rk)@0gV5P|(03-4Q+z+65IYp5LB5gKXV=rFu%K=^3@qVd(?yuR8PjQB1Q6E? zZv5=2MQq}LT#ovz3*0Dr#0+%O1~TK3Y%dHaZOm_iHs~nIoDqGZqtLW8(U$%#V^hy& z%7|GUbZ7`yk3+Z;-MOE*Op_4DcOAoITIYrt7n6{^`e-m!(-ePqKh%vA$B4aHhA=5V zs;tt)MmQa*+w?9tI~XG}X3A}31gKwBE#k+oZR)t5#FOy0 zifQW5;0q3)e;+!a>5W%gaJ1+8~WRQ=E_Tk#_V!Wk6j| z8#s`P#etGctPLJatf4>w9quSt;KLgfG?;%GH;B(5vhZ%gMLrRl{o~At13(tum%M<5@P^Qd zf@XSg!GvqNH0h0ztHS$E9n&FAy8}D+|+LQ4&tG*va$SyRI zfj(o`4KjfcVte)XX&_|G%=Gb&N9jH@!Q5_(gy+Kv`~Tj4oJBl+{A%(cU^eAZZGV40 z)}$Xj4cs7bZPut2MWRGuDgEdnqMAMS_eETa!0@Pc&=wQ;7zW~T2J0%c?-|PMC!fbd zu}+&Zn3%~@9@8V)dM^sdZNzgF@lgElN?zhXHy5YW?!@tY>oMh{r7Q4gKANbzABT%Y z?UKP%r*7y`;u%-ud0rUAG%bpfHH|Y!#3WKW%g^OM9jYYq?$MT5cf%%;30FRd@p!cOhVPp}uo}eZNyXtEmn-s!hS4 ztl-au$|J3Mpt-#Re}8d)wYA9q<@)}5tC(iJ3x%0Oi!!vKQaqzHQ1edhhkspv{CjKv`XB#3`=R!6NyjQz=h^!fFB;MA zwy(~M_tjbP)p@~J=LKYS@R+vY7> z(bdSe)+p>3s&@8tGV#0Le}*|ejtg%R${lngO{1#TVz1~b=UeNyPf9T43~ALUzWJnz z^Q#{688~`bz$p26vlZh0Xea+m`ky4S6_j(e*(y@4C=e&_yeKIvx9n6Q6@$2Z<*;SN zpt!>1+A4;@@h$NgqM)=yeI-V4pk$$E3aUJZ0}0GHM!^!P9NM7GQbx2v6wa_Qg;i5P zmTq~2j3S#160-gBj%`?P&L3`1?k}$wqu`etreK6Bn+Q!_*ILdC2Mv~wjDt1xr~}JJ z-lp|oxM462LA9??OgW~o@(s9Rug(aRb&7)qlr|_>JUkqza#8Sp|Lwn*;3}**khdZY z^Y`EWSJws-RyVqU!ZAhb3$4XYP(uyY7r4sVj`gZ(X7gl1;o$uenod9iUPUc%4WX_K zo~k@}HE7@yYix{M_M79f*W)o61|kWW{1Q@&4n$(pi28v?2T_)@JDwF~iz>8HTa=bg z=4dxmyE$B8TdYrkdo-Y1J5g*{ZtYqJ;&#DI#bCA7sSJH>pfnVkFERCX4i|0N?Kqn# z$F2`&sX*$Zp&-TAK~`8EM?6($rk+k_}Flmr-PlQraJN*tdmz3_zs1nsX-kOJb_ zye=vLUJG>@2`@{+la;jr45$sO*ouO7scR(XbiiB($GcLxJgi;zE6j5g^{}dTh%;ec zUn>M{giydhcW`$4(WT7=m)xq9DR*B_gRahZEgg8JFntNK~@h@L&Ca*mZ+f2wN=cW!(Mz_2KU3 z{Pgnt?xXQMp~DHU)e-WlVXPP1bYA0{=yB&!b&uI)P0Zrwg+mP@_S>dqy&7Dh8bkI& zXfxXC##ic4oBqn_lr`5=(N8B;mSeR|xyj~ih4}74+TC8Ao z05u>)9hj?K14`T<50U*EP_kz{UoE`yT!vaMMq$-f9B8joxhd0t(45Yw7GgQdoM{o5 z+sscnMZh1U9w@@Il6AJGp8M#Twhz&7_*m+-XlW}?oE0IT1i<($eCfW3Th^k6b-Cb2 zFC(I3(^4wqvd}A5gzDh_($Oi?fs}#3QvFIg3VFhuPa0ST8Y`dyrDtkEZl2SC(TEH^ z0^5RXz>2((p$IFe7FyiRqUrLKtSD)_g(NFNvwHaR{;K*yj}27_NV!)4&)*|GPt2@l zXq-ZlnjobL*-yV%T4;@>i=}1#*z_jCQeSE!^S071oK{>@Edj}?fnS5Aps_h^{LU155(#V-8NK816R2mtqo&~a=msd zw^I0`VONm#CXib)#boMndJ|E0f2oPI8PZHNg<&TFN#3|6(CZB~So>0k0<1S&334>Q z#$y^aF4B4{x*jvqNYj5DpcZYp4+wI=0^bQ$faF(>cUxSmqIbY!v+?B1&BaM&hFh}n zrWGyhFr_G@)h^~1*N}R7`Pswy-)?Tt@9r+IuS#W;db0D?vJ_Whcv(rTk($ry ztA{FeX-^Rs^Ym~}wlWiw?_sd(z%6-T>@x zrmz<%U$Gqt94VW+-HiE)>Duj{sVYNm01Uo!HN=Tqs-|AiMI87VxKZ-x_|^Ev5DEBo zx-yj37fGpnsBOaJAivViGX`cbob1k`ZTT0`!xPyJJk#-~E?ZX%ClJP0Gnf#YJ+apY zdErR-qJQ3@2;ODeE1q{F9#YVli+z2j!32CKZztk~B9ahpnH^nFh|OHL0Lv?KRYVgW zMLF})#yrL^*k)V>%0R(D7oqyvh8C20 zf`Meau*?$-EYBT;zBYD&?eTC0xJ)0IKZ)Z+qHT>!J*bUCVs)zv;KY1lCKeqLSfvkC zuGf?4y;4{e9uz!b*wnRw`{V}t60jnBL0_I8VM@q`RVF|t)xr+Zam0BZ%pyWTgJrl2 z$GxUO#H9pEs}~l%hJy)IbtqUNC|D3l*L3Q+Q?@6EEjScRzDLmp%nt{gUp&^AD8po% z?9r5|m0~&iVzbHK%t~&u?<~SLxkD1|U3tQ5w6lu4sxJU*sGJt%R&ib%ZZ~sAMXd*M z!-W(WPJsM9)o&)e7)yRL>5)!vBFZ)`HIZeC)0}3B-sXRbiyKEX3JZIYDt=Am)(>e0m3qM=f+Mb{?{%z-cejmLv4N#1zs`uwE)Kw3Vl zzF^Se1opVI6f-;4%XyXbegp(C$)F^H+}-hc6O-9CaT;-T|7NVZz@4V+rwoBIyKL5Y z@mvf=5_lPOsZjq+?%G8Php2wD5@re3ii*Nkz4^8Y{7g>#H$I2Wdb8Pzv_NNT1jqV7 z)#KgNGGA2?83|g}2UH%n$nK(%*H9_uqO(RdDQ3AclA2e%tf;CjQZnpqL@=b;pK7|h zZ_2tTKt{la&_-!ZjiM>T2r|)BBm-thd`;|km7)-r9$ls=T>V9_*_EPj)ffF{Px?z& zez6yY%Blsf$iu*Fg}U81slJ->+339~Va1p`Q5zs1=!#f19pvtzB4jk{{k_W5k-=cD z_bN}t`bCm%BkeZptyXC}C?RS3TO(;Qu=H-=s!B6$-|p#PftrTOWGK4u2<#*jzX^&d z=S0c|@WwG)qgXm^gR^$27IhdkDDqUWfYbYYvTmNFQ_~uP9Q3$q2ry38DVDeq%BqHhfgW*3II`aas+kHVcd`=oc!jLltzyp#gtU0zmOUiRLU zyxb-SXqL&@0taXYGMaV3iA>Rz!K$$-HBjd${bmOgQihU~NvUY`E4t?^#Vc9L8cFWR z(nWuZ*(&=5xwoRA&EcVO?LC?f9X_09UxB!KQX32p!7Z|Gw7NymLmT$ETdi>6#9p&Ww*hY ze9_1IW>TkI$l-i@Qwpj8A@Rp{zH!-9BnK88`&V?eOkH-alm_p@u-d|~|1J!%!f<<{ zjIsnmZ$KLEXP1V!O0#fjs4JXf8)e=90RRC1|LlF+avM3a;IAP3aKet2C{lO3*NTwU za@f(+?q1tF`!L~ffJIQOQC-+|k*s;@INvaj=lsQfQUAdH!Xi;9ikBjaSy@bywmPD1 zldM7}fJ7qiDehn0$>8;~{gY=07ytAARr)Vszd1aHZw~HXCBG-|OD4XB!K-vEJ@xw8 zI8mue?$omj0gq(GgYa1KNAXJXHjc7X4=7X5_g_D|iu1%*iTI%IYoT47y&{dQ@${pc za`;m-{Qax@@{8U{cM}ut*G_xCh2dxCzHjI5f|_P(oUV0Z5}s(CNP69Fi&V0IzHNu# zu-*BcZQJ~gzK8kEAyLmsF9z~q2BQ9R48M%Ueed|ySSIrQKr^kQ)3?`WXWeJ!+f04S z;M+6%pZ@k$lKO*>ub*|h$Gx*RN7s|DepW-72O0cwd35&j>hPHveR332`*(?9poST| zJdV@X&-7R?EyCrak5lZcVVvl-JF-jdM+5yWyszhZXn87?GGICE5N#3K-~34NZZh*p zI)Az@n+`v>wTJbK4cFz@fq&-@NJLdTJ;J4lXG-&Tsgo)7wvs8?Sw1nPEn!M8pO{k9 z;qgo<$)g+f^)}Bkxg$)eSHFK3r>pa%!z~q*fEVeLu4iZ1rupzO5A+u@&*Ey91qk{# zBmL>Ldt{){Ph|TXton2TTNAzRt973;?=Ie%`?vo5RD1G%Pkf{~(*wvl65QvFedsI9XB^$y#VqBdhAS%Dq2Fg#vnGFQmgI2ov9 zM_AA*GSkWG9O!r}Wv0_77UTxW&4P}eSkQV|&{jKO)@(~UX_*I&KV=VrDv^7qhaXLBzM)@j|p?>3Q`NZLw9ku!unAhSfcJ<0H zt__bXVJ!X0zGav9`r9~=k<9!!a?s4e)zKrLvg+GtX6IMm_tTd5y-N8$D%NfKCOJEu zy-9Ev1>qjRYZDDN$bnwh#l+{4vkTWMa`i0um-ip8Kfk~FR6odu*YY2Z_x##vMtRtG zN}R5jzifCH8{Ba#tQLOIfl9r^A0wII3IoqB@PUhk0kc{!3+q*}u-;LZ!o${h4z1+Q zb`E`)(8O{Y9LQxO%yrPzMA#I&TlH|SHQy~>KYaq8cDEsR1L<@FwT50lh`rm+45R}W z$2=!-O#6!&-SV}%rAU>R{hm||4?m8ya-forYN!$wd7v|74`V$+b*G|dA~C{u@_x`e zvnu(r=LZFfGp|^$%`lF$RY06uj=t>q3J~W;pw~-r^9iPZuP=tf!(-z-8i9NC{Me2; zzWG(c5@hlC^|SNy8TV50sUK%q9O{>Ph4ZPnXHJU`#jN$mQ`kL=;p=BF56!mSVq1sl#McN0HKV@PIv#sn@JN)Tao9C)jbwDAM}Gb6q$H<*dL<5; zY(~?|G0S8?w43Hh%f;U8;;%pdeTm>#J);mezV9VB^=Gm6_Tt*n1LHpBnouhS37qz=2Pz}UVB1_8DjlN4TXJrjXn0G%> z7DEze2vmxJMdbO?buKn^DsgO>kt^-W{hHm!!U}vsGa`{HFfn9mAo>qNiqXS(q#|+e zXQMdJ1e|9*S_I$?gtQ~9K|%Pb=yhg*9JovuZ#HVWsEGgRos{waO|1_#{vu<7_|5z* z1H}H41YR!=Llt4P*)mw6DVJb_RV;TOWr8p!e4b-T0)^Mq3E)=ToMr0#f$NxGt>1rn zZ0+DPhq+r=>8lR&WJYc`I!tTv%(obw!R@f=VWKmv;lEYn>cbY`=BXcmVI8X>S(0)F zUdV8E2F}y*^JeY$$KdH8TJX&f?OE^}Q9uiEXA9Ei{65-0%q9L|$&bs<5&=D|<&Ojk z22tovVjcq6y@n70qZL7I1kFplLTjW zB<_~b&)oTOj*-Sl!dU8ud0-Nx*g&E*L82L#jZ%^vrInGUg;dHYplZ~fR$(E9Ske-r zVrOUvY^;I+B`TA^`2)?bd`|`eCK`!$%3?N1_)LPPprT6gR1+y126@UxHPz4h(RZM? zG+li^8t0jKuD*F{oQa_x+S4N9i_Sb&%Z=h->t3(RsG^GBN)Drqxr*u?4~RWl0X=6y zn0e$jlgPUdk%3wQs~@E5ytj;Qy=N=%op&_5XUl=AQ_S2ZMC&P_8e8r>K3Xcbz7>3L zxv6wgycE7hbG}L*MfoM5MR}Mr2gK-F=^Hkux{vbA?G47`e9f%>&q= zVK#e0ONDj2TuUb4AP}JJpai5;$TZDEH4qtu;~PxOAn{O0F&=4&K|m;x(ErlEtEe=b z3oTnooOE?$($w0Ju6}=a`DuM-VN$#h(kx7Zg*FS5py8Z(yAt13e|5DDj&BiB5r8CE zhEX7Z(F_EfafT5WETpo$J5YEJ5fhsO`b7A_% zK5ez|!1MK8tuIjc`MP*kz{OFNSP-%w-(eJWlh?mFNeYT_ljW!ix#{9ve6Q|QvL|d1 z?qrpV2>B?^^fxI8;}9mV1(;Ajm&l-yThcutqX&_y41^gKC6pt9iEVXTTumz7jeO+gU|SO~gY2>VUP%JYXlicip! zcxutgMoFCCjJ69Y%#F@~PL0)J0~n!vSPb|K;=CUyR1g;-AH%-l(4VJqYii%%pmUT| zUKTW2`-%~5CGDghu7Kxic9819%Id~z+}-D3o@UA{TotFoEn}^0>3}ODR6XLM_o9Qb z%#`VA!NZ;lnf@xUE&IZN*TT{2P%ri??-IAYb$*QHEH=CN(wX`Gz$FW}-L48J3s1Fx zS*J~LiZ4yCq2r!fvd@40`R}Wd3c=kD%84Npz4w)7Kw}`3gTZonxg*}g^WOZ3ekwq{ z-4lK$AVxwDq-ST6S>bUx_A~vozWpAM z7c$0&0VA#|I;-NdW%7YHlF5zQ@5?|&-nQw^UL5v)ba{6M&VW)68Sp9XH=XT5>-puD z?OPG`=MGG*CBDtaVTf`O^R*b1g`)xc3cNv6KW0C6mxVfnU-efT;ojk|4!F zMmrm%0rcqNf`*bvNRSd0#&?V}1EmpFKavD(;yxcHacFFR=|h^Su#93b^>t@Va}S-F zkq%ro+qTn$aZ#VmN~Xo5Q}T#hqcr#@j|)$TP@* z5z1P-etfD&oJ7@CjjXphiEk2I9c5Yzg6Eu#O!OEzA2b}3p~3oe`S)u!V920$8Zewy zfL0w?1|C$gz-WAo#ZI=rU(okakczaAw;76n%Ivqk8*2`2}g zcS^(*nIEdud<()s3Xe>#yYgZ)O7i1Fq7R)Aw>E2aNAW4sFYMG?l1SwiBeFQetT zK&Ek!!;1eTq=?i_G2`XoLJ&=aKy5W4X9;RjlpQ~Wkp#q&h&fFO%jjlmPBY}QC+rk|r z;VL(iK$WMLZ6ODKs*l?puKy!xioH&k4VEU8?~zL0s#zIw7S^3gvdh4~iArc`-Y*)O z%uAz(7>r3?S!5|^60B~g+wHMIn@{hRYt92=sm@I@5UpUs}cku!~&FJ0Vc zP2^0$*pFCCzBLfQNFXPIFxPrwWg?PDAcy)5_3D zKgdR(DB}|W(y|qs56+kiSwC>y0N@~QvnPG3yzF-!+?CvtY`BlQpSv-FI?A#OrD816B#ixFpWpSuq>K&TT#jSB#d>AP?P>KF{YMkK1 zIL_eX%R@7tn;a5yG)e_54>E9y)znLWc37@rF@s{+%DE}_7YUxe_hB3*J03pRVV*NHQ zNJ-_K^aX_X+U=>OM)46i6T1A-N+id{M3ps(j4_3hyx?fh#>G-`}3u z_GnB=BdjzsP&bJjnBplAa2NSm65pt3-&T(TIB{|#Bi|FD1XFfLSdjrLQuR9BJ(25| z0*JACu36cE{vT6z7i{M1?T=Hmxt$d}&Q7g8-maOuaRp4Ecy4AJ+Utn3j$)nx$Ai1a!2^zk4%Y$$Emj_l3DDr%giX1 z;d`<$BB%byCHg!w;)hZO*Rgo@z3)s16XzmsQ$NCHSB4pe^UR=K4^P|vJ#70nvq~F~ zgBC6sQN#-{jL6|~W4N)ynd{kQ2(&V~GyHHf+?${|J@G@wV96N+?`Z(o!>H}I`}7Ako# zSbCxc(#Jt9iG!O#;o>QvYA7Bi!PDOcb4q4yXEpSaR;UpFoT%nI zJ@de&_WZnlV?{;DmmfR=@C0M5SceG!NT$YEq3I-a-Qacz24w5)6*ax-muRUQLDebo zu_KD!y$fI;p~~i4vK_d146u$}Gp)>~Mx9i)G`@fJPp`zHA7>-GRx4Omnh|XKk!ek+ zv3)F-(3JhdSa>cS!?lTF?bfsl45$B*Kt*}j$2C%aXJ=p1Gg(vb{?B9&QgOhVD)gB|g{Xe0(J1uxkdl=`E%_cKfxDN;#Y9Az}?tM*;= zDb`YXNm9{Xq6n6*_49hKY`*QV16)Y_ARy zFdw8Y{ZxkX+z~;3f16hQtW1(6ZR{9-!xp%tOCcBeCVRoLp-HY``K`jYO1tcj9Oz7IL0|LhJWlMl`@U^lEPLu1GS=u{rnfKpr z)`hregP%-u!)`_H^pn#aC@hjW6L{V z;p-R7{$ZRupUWpqG#2Q3H`cmlB8~=mqD*z87bbQ~Kt1-Er=WGA`6AH^QbZ)lzNv@B z7s)s9heIt_E}7<9K=xI3uT;baFS|#zUL?U%soqp%bCjJ4#pDcUwdaH{EciQJN7k_5 zNACd!B;iubF2WqA@Dn)~7pUrIO})HKUuQ+=@8pI8IUH_}nF|GCFyWTe?8x^_{4N4g zqHiw`f(Ieg_s;Z9jp?C`j|f+r%M6Cb6oYLcJ;~A;5reVqgE9+L0#nOFQC29;yTu zUPve!B_Te$de%jBb{R`MEg)zhqOZ4A-zpk%e>O1Tz$LnY+_O2+tq41^lG}-ax@rv{ zm{kGNu8yrzqyZq#-mW+!oHFKm0CGVZfR-NO6i=Gt19O3sAnD)rK|zUlq(&%3egoI+ zrWjoC(BXoLFSJD?7B&a5t9L{4Hinz&{*_EU-+%q=(?i&g1EaED>I-M`#hhmP|Nis; zE`il`0IR5?LbZ-m`Su?V!+HHTcH=oTFW5GFf>&hVvy4|_#V zDJxAJb}JL2VA2If^LsSCP{4~!E0t>{|LRIR7$@Xi{SY42OBD1|p7v2QkPK*oMB$ywQGXJQJP_ys{R- zPr^3|-;i`1DK*e<8sl3cqjVf6+04To@#X<7HsNQ@kY5#_i92n((0Ui&D=lMTNSFaDoM)*SLeBIyupEK>+c3Rtg(<%O zaP{%}*Xs|TFaP%SqoBgtX!FC69WiwqRq%l^O`HS@uTqe} zp~SmgSwsE6osVlNObc>hW*}U!aJlBYLLCjPax`j;{i4Dt7#|~b|7dtD!t|%O^ps7q zuvJ=1lmH8nFqRu(EGiK250(yrXBRzEPeHT=f&>j~fgk}p;sl1YK#*Xa;w%s(Sc485 zD0~DL4IZveGmY+1y`^ZdQobFV3b4Y!Y$r%zYJlZZcy{5!Y<`&iC1YUXu$E);g^L?4 z!%W{rU!Bnq^KUd-)OJa1u4UYT%e#EK_E04ol(gU=Hs6->M};cEk}s~=3SRg9%tvej zG1{OpmWJYR8uBU;2c6Z40=9qWLJrJxlaK?5nrN{G>#_(ClagApbi{_yQrU2-76}$I z^o0ZqR|S+WsjU5Lr6_q)jT+{jAgsX>%tAj}k_o+O%tmousdQ}`uR%4{ZW^rzB{#cV z3v$RBA)#C|G)VnE7}iW&727&u?2|M|s5o!pq`{wOa^T}aQ)wHA z;|U~K*mz13Fk_WRRo|vjNp%SFT40&V4qCaJ38>x^rlPGF=26k^Y)?q7jmCL4&TXKy ziKm7(a>WUn>C#nv*O>u$;8MsTfM~r|nj>dM+4h!Avk0=~nw?{E&CDIvGIAj2yHPY5 z2VV#Noj-7`q#bAuWxlS=E7+`-O~iRtpcdIq=gag=rfb7|nVP*{vU`vy1I2A76)A-r z4wYvLxI9)y=|32M?8iL1QTxB-Stdmq2U_^)i1+k5HB*=`W5ubs(N{K7LLk*ug}Og% zz-I4fjwYTAfv6UUy0|vVZZK|=BiXu8B)1;(UcIuhWa6ik ziSs3}waVw#vjtB?$3t|uyY*q!?Zxz#e1&m!Rw$x(#&y!D+v^ozhwi4 zRkumNu$Xg8|NKO@da`G~$~a8zfsqoDJTzNj}Z{r3T$$L*OlxU{_G7m<=R5e*pso zV@(@eyb1}{P%<`e@FPF-(aA2vn*o*dN~KF^M!?C}Oxpv##YFm2$c)X{0{NyFmr0}; zkVLB$A1KoU1J{a%1hAnGhXfNRtb}0P-dH}Uhc(tbS zQT1D1;_FLDW3nguc?LyRL-`;kJ%^yanGA&K)MNtx$___?if*z|S>eEnJ#)RG%I-)r z?FeHLDwP#|mrB?_xhCIIFwKA5WIu^s+3hHY(zAdI6eC(b13kTkhKgxE9QvML-CIyI z&ETPE)da(*`jvE8gb_`xbWxNS7CId(Kt%rx)q3Hrsjy3f%q)XCa7BV$ZZr}MGHc0o zlZ(BcZO+u7%-*iFX0koK*k*>4ZfVVL@PR@kc*y&J1WS&`C|kgebko8qT4d_543)3N zRW?fE{ALvA7<<6Zuo6GC*T$aE>@q^YC5f7-j%XxE4QygGcu12N2^h{IMgo-v@jVwT z=(CBr-e{!AMj9M7cFWzGoa+u3$p4-CC<7mj@Yyy^-`Yt$PJEoDf#62Aue9maCN02! z1Q{kCk^-yx*+Tu2K^p6SXcg>HmwMEiDitxSXBR3rB$|N+UTCZ!_nEFBh?!Ls7&rPZ zVhD;PvMN?+(>DW7SOYl&N{!6u^jPFtys&p4&suF8J>jgP9H(w_;cnaBp)CIl2%&w( z3^*Y@%N+Ei#cfm?0s~GXyh-hcWCqnEP6?7rBrQE!j+qK62WNKFQKFVTBf_59l_YoH`TviSVRG#J#T4XZExL|S>4g@xq z^DSi`LyWZKRDDlil(=0XMwKLSQnU=Uoi>GyE*B>18+@mePM&@$x}6^UP`3J%w(R{> zJg4{&C!q1p#m*hLT%K=8F3%OZ(J%L8{$SncuUcN|^>w5Fd9wvk&~ES^5XIy6SG&RO z8SSrfVy6q@ER`~h%`As7h&+OvCz0euz(HYP3t~8=8q1>Xt`>Rqx6l-KB(ues2x~us zN>4?=$gK6QU=wL3vpf~B9AyXulwe8VF%ygdVGya8C>8AicB+VriSn?|*nR>RUq=)5 znuQONVWN#?B#79|6`BwseU!zNI5U*G+J0H($B?g@mnyKK)qpHxnb_7^@)7J`fBsir z4*vS{zxgJ|*cgV7Xtjn}{WU8?uYOhwr_=Y>qo2v#Z)2Gjch7{*g-nH}i{F0HWYG~* zJxvhDwHlN9yBgEp0z{hi$v*Fj`k`eF!UfsKC`uK=jrrCtL-IC`G7v{)>iPcbXP=G8 z@j=~-k8voY;@N%)amK_4Gq;0a2b?FV1=C|8GdVW10p2Tsbv4vzXJWO6x%Es8(|+S^ z%S2m2n7xW}pJ%7Dl=;Kd^n8h_>A8*qnZOv`DDEea!SMCACWFBa#DKC3+2^FGIxWkN z_fXE8jcno}!_4fJ!#uMihM93wG0Kay#$}&_Wbz%|n4cmLUtzcxGs7J?ZmvtP+icF% zbl5wj8kJZTAC%*l0e#W<6Pk0V+^$WN?(EB2f_YIq_x0$-oXb zmjqj+N_WJixPw5Un)uu#!VBuLdYne+-{JUt`~*up|h;_&qShAXN< zI{R-?lcd2icQs!J1zaFPd9yVDWnY=s&RS68TgbAR$EpQAp13Vs1h-@XTCf@HP9vRh z5^J7Qop@NN>4+U6)ekx8a6!7{0%Qa>E?_8ejb2n>UMz6=z~I?d zaRB>;MDZmOFk}QN5f)Q%2z}x*j7f$B3d>1|w1F%HNrHwI*+>!=zpWkxq5)!(zA-dmB~@=yhv!KBUHXV2~?#TsWI>)RB9^C z!1`^h22k&Y3m`bGxL}!7AueFpBwrFRqy$2Q^mDn$#|oV2ix2w-QJd>50ou$i#%eeW)I=GxdH=8#=SbiNDC zf4HJ~ZJi#+>z@;+Rc%Q-M&>zgJes|F8R{Wjyp=)P?m@hG@nvSb0~cF^iu{`lX(!iD zfG96f8`8e)l399!AussfpC-|CTCdWAdQ!#(8Xv*8ao~Ge397Q@+fEpvedOxzzx{k| ze?;tck7S~Leih@iK^iz@Rx=6KJ53OwOwtj`4^9Hvd-?KoHdSPu&~UD~R%-L3e4UJC z@@cRdbgv}AV_it~hjmhR*g#t5&qtl8xYE|cqN)cN!kvv#eSCVvcX3srfENC3Kk|Zn zpawrxT~zuReV+~5t#N?H6sZ|jo@Sh8xcu73=!77zY)*JOE9!(bk)22hfb#`Gn<)sS zm~&iI9s$&nDK8b;i*z4*f& z=p}5>N_B`2V6%#AEu{MJO%X+yBnJTq3aHBFbiTVLX{>HSbd$~Wc! zD(b+{FqlUuNvW;nN`-P=8q!PM;nwpN>lZU#LX_|-4#np>S)`OEAms~+haQ*_O zAjIgE7c36J<)R5jv^`n7yW`a8g>H9;+d2&sD4v^Mj~1OC_0>c0EY0ck=wX~5=Jl4b zvm%ts>Cu;iucmrhC|!w|)xy|1aBggR&k}!5u5%svOf4@p1sU66^=8_$H6S|m{l)Dsxo-MTI)nvNt{pWh7f-?V5lzbG-U$Wzl#J6 zsH1~{MiNJnxu83vlQk<((1y~2a;DI<7DgSAPeJ0O63blK;Ni=%Gg_L+EV8(;rjtAk)6w=MyuijadEv`;w#+c;5(y&2qb47G=@5t4>Xx?eMXl|J- zgDC;ZmTZZaoq0uPKFPVAYnQ9g=#mi^nh}&{CdAo-wrZ_5miwW)#a)7xaVNUPU0$x; zuTjM(yM^)jk%WJkG>*d^Xg*=$)xOphO|S#aq0F7=P~Uu_KBI%91;zR@a_Z-|+l?sd z=f}~GVtp+{>gRX7qx^DbH}*MXLE&7hhrO1x}4jql5o4}50!ky zja`mP7iC8eW%e&xeQqyn;YLs2afuwqL9-^&PaMW#XS#H3GlIx6O&j1bKFXKIjbQa) z^G^7Vn5rmqg7QH$fIcOkwK}VMuZ4RrOTn=rDb%?;YEEKvX%*udx!R~}q?G(;OnxV) z<&1Ex^%ngmEmY=jClg~4wHC_rw^K5I5w#Wy=M$XiPSh&x8*HnFv_-6I5h@J|Mf&6i ztb#>~dO(RXgj)@-_>iWR<0{IMCWeyvX(1{o`JDu+sVvS%jP#>f$5skSx-&Dvf$Jjv znZ;PQc-zi9*fyLv#4WG)j&>k%sE|V;9>&E4?Lbwe-ZILK^M)3u;5-vR>Z}HAGxQ1u zZ1a+hD>&>{7KW&$zUrgY8a23vXll-WvN_G5*C3OC8%4aueY@>p+}PEgvdte6RCGT( ze%P)P-1wmyRq*ewyxned=O9mfoV}Ahd;leWa-&y0804FHMK)DDEDW$29jGqXBbVm<)^7>hG-rqp> zCPCxMURW|>HMJvX4+?B-E)c%gEtjM=5dKZu{R~{(e)=dJpU<6yejMM1GP(Vf$t2T{ z`5K#}BPh1=Dw3g|)z|Wg!!t9zWv>|A7hW;s`1s1TL8XMT^e6k4rGo2kG8_jO35;|I z1`<{Jfds1`#9n3l5VkY7(4ue7tLUU+TKRhNc{{SI)RMdJGVx_#iEL_)E1l2H)Rwi< zSdnB@XF`Od46q9e;?e23NyAyX8dtGavs41I!1Rtka)N0pS@C6{lN#H6%}9#`Nq3eb zkaxB@!J>Xn=ytg($Z0}`QGR*<;rjFYt54K1H@pw7oS5yVprYi~&Z6&1X4!7cq58hd zD!AR)*A#o$ZsZG_2rz!pldr^;3_O3X@4|uWa&5c1rR#FdWIwfkmk+@82?LMgRA077 zCss^e_QcWYaoIzm9IQeXDaNP}wXq8fD`#J5wmWTK$OHkmEo#0vl7x$TY9LwOpJ)`T zFUdvA6J;5yVJu4MF6#qUf@r=X^LQ>;KhHXfv>f#dF&oO~TX^8r5;cmE@>ndzyb#W>&w+>tJS%37)lSAt~H2_pk2D zFM8z_$UEU$-m?xl&d%Kh73WytIZ3nSMhn$JR6yWl~SAEqTkX~Tw8ELS_P^471N?&;T78*rOG)u zH`?@1_AR^W*Wbp0jL^yC^e&q9iZjB;x7p%yy`s3>($hil@vW~IUE#+&E`s`N+k`-L z3IHe^c_+u`28EV#0SLlt12wAMuuG?RuKL`xj2+OF8^;wKaCVSQucj+Ft-dN)eISzK zAS5LJyebSre<~2qYuPTGYw))Z7Y=w$mX~0^kL z5@ENS1o4q3h795(O${5w*8=ycS*i=nwZV}zUPb>~c1v)V5=P~WZ$`G=cR8Bv>wMQ4 z`Zl@<;{efN@=e>B;_J&?c)BE>E(zXCqV4Ror%Pfb^iD9B#QKV&J1>d4NPy~#VvWj# z1KGe&U77CHH_c{LG-oarJEHi@7Z^yWGL@`;17Gbl6{B#4e-oRJ1+{X59;EmnA z77ez$*BSZ3!FpG?dz+Q>+RWXX#hEi-^2pr=-0>>Lox^Q> zrxi?ghQP2NCcMyvEj6{mkh7b8;JTvLo7BFF_$KguWL7A{2a_%^n%|`9g=)s%+98%1 zJeKgTqR(dylC4Ty$d1M&Sjd*pBv|(&-y5+lBBmV*2~ycnlx@#$_36xfj|*I)qz8Wb z6jSP(xT0K;Qsu?bV6Ilm8sXvk1rrYdj%9H+VJA&2ln(+`I*?R$e&FBv15{CR(n4xx zf?-@FSQrxmX${fUn0BHXd3NE+z{`tL>ueSBZ~Qw{SxOSHzAJveMM(CQ%93K8nipE0 zGLA#j=iHy0GsQO1bk3T=MHy72W;>()wsw@Dz^Z;Wj)Di_N1`t?Z?s#vTt!t))N<)!FY!1t2rr%_p#$ z+`oR-J3Krt>;~X2IxoZZ$2Y%9csYy5ub-V4HNC8z;k5YFkFzWe^-I0OB2&QFBu)%Zmd@im-csc37G%iWw9uT>iaurD-+KsF@yz zMW)9}m~s}7S;Q1PF*q|*@4QGevfF=rX6h?0W_bM5D{;`IF`8bE+0!;JUo5lb8k0}S zQyr&w{_-IC^pGkP309pEyG>Z3GYNDa6roZhvYp{sDmWy=AP<{AFkYvOLsozi3osZ2qrL7}V(P(TN2I8bd zHd3fw-!$z`Ut}oj?M~SS+HsYw0gonb{vELw=qvnAB^jT^m(Sj7ogG}@*$G$^`qH)A=d9FHUdGlr=q%5RHBu+8B5xpcq3Ea6T>{R4o)Gp_8I5dIL`zy zxm3tRf$^^N6HeRSitjoz01sU1ciXiTA6KYUvCHNFGfMPPcd45ExY(%ZM373Czf-KY zV`uH_Rr~84wb{kxMwHmf@vlGstA3(Q*U1h0zY%ALJDN<>pYK5vUhMg1#1YxOk9!Fl z+%W8i=erM0<)%qw$3||NMA_H4*RElp1}j&@%lho+r0zoGJJT*K(Gexw2%@Yzjgdn( z`nqbncI~1B+B=?jb`Wl!!VfqVO>Ca2S!S4N@xcK`50uqE84waXQI0D07sT)CbLPgc3!=HqHT~kXc;3gA&CB_M;UISr_ z0nj{kPaMJ@plE5uL=2$IY8e#K5%1!Ab*GXA@BY&cuVIG=F(|mj{=(*Zai}-f=*C)8 zZWB_dvQa$fi1!PPbDuVL4IAq_JMR{#qX!+zAXTlR2{bneE}w9WNjSY`4Vo1g$^_xv z{E+DJQ!z~9P;^BW7YxPxYr<8`C&OBv=xsOX?IKHZmu6uH*sw&md4=4C-Q*l?F^*5# zElGE@Tycw$L?)B*Tl}_phmrALn;<}Q`))CgS}th#CZ;htH(%;*Gtq9^pyfgigv0Gd z?`db7AqT?#7NZAhh(_^I5t$k1z-6J^a1V*1O9Nn7yk6P+p|IA?_kJkaI4^s}1b;8Q zVoQHi^n@rwyQ_Y(Z@G4Sp~2*bc-|Z7+=fkeZ?HRL(QmPP!&Tee8!#Q(SFSEG6ZL;& zXlLjrX$GZ_mX(*tF5bi$ro2Fp&IG1cA0BGn)qoaAQyq2Q?!29rlcSerXPa71rq{5v zjm#g`#-@>0ml_$3MWHbpj)f7pY2ajns_99BmE+PfX~0mj3=LEm4;048L4)Qe3AjsA zzmKXtNCP@CHFeexayOYy)0OpPBuu(+UkNxMAV3b(5E{m(W931H_CUxm&OsW8heFTW z_eOpksx0w6@whSKtwzh1i766~AAf|jRynv+`qLeXXh>OLsH_nhsLAB^2fki5eL8US zq_LVZXPa%hGZC$9P;s_28myuJ4R=|Ppv@jCHo_^-C)+$x5h@KqeK#^AX{G&CGhAF~ zT8~uE0~Odx1Er}JrE`&h*&7YTqIuRK4ly7F5s`m$KtRg5`#s(H&ag_$InTdr2@-rXJk&aqmIybF+xYE232EEm`a75lIm=A?T124 z%=`NIf>>t>z7X@KNJPNiiDFXvZ7EE}_c<>vIC1rlk6vL<1%dGiFBXkPEM?(5#;p_~ z=!tsi+qITKs#h6h%c0(ti=KH;Ja+CZs&|(n{NvuDG)vMAk>k8Fq-&3D;bBEhZ}N#& zB%@6Dk=C`K^tmttm~Zr{fdjFpH%HnZ?_}}-n0T=o>fQ47gQ+R;4G->5Hc@X@9KmmM zd-z9gJnS9BT+b+TeIIc_Y7z@V0{DFHYo`Kp(whEq`Sahe*XkrLL#G?FGp-FVT=NAR zeW8L=+acvi)kCz`l{r=m>&ol53+B;p8vb5FDK1vWT z=E?#B+b=52JWpQ;sqgL^u-@JK*~t9n*vvM>$XoSrA14DVV1PiV%q<1TXt~3*(KBC` z5q^)ceMW5T%q{3kH!#8(t%Nozc$^06PWqLG0x0B-3WO%^DFPCSssH}&z(G~TIxtgd!qO9<>`yU&@i<;PO_K&_2LzzPHs39se zjzpGG9POu>Kg3u+N#ehzNI%jVD%S)DdTuHKyA;agN;~UThfXmCrfJgm!x$Xi!2=uT z#5O;mv1!zmySwy)07yE7NTWH4X^teH5}NvS^l}@)n8wqWk6t;`Ya!x8%NA+{rz&L_Do@AR9Y1URNOQP zR4P$tm;t7NRNgJ zL!{M!Gx?`Js@o_HA}*MT6qb_ zd>jlHyH49Rt+lZM!_^_6fU16W(lnvS4v|G48A!o^dKJ(e#^hQ|2_0f6eXXiyvA9)g zEL4)jNh+YK3p^T4C0t~2pb{B*%Ek*$58|gH(RYODVPk>@rAR{=1dyR(FfibuMjyPn z7y(g?=vccsLA!ePv(k5+m<&jp0DJk(4|7aCd>W0QJNa?e%%M>~G?3?rkK!Sy8JxE+bd8_y)2HGzhus8xW{4Vye0vcb56cQwJ z<94{9y=R*jk`-@2fTw`OIblc(8O12}NaBt$G=ImnBjvoWNxFimAcKHLHWP6X2(~0P zon3JO<13YxD7a&870Pc#g7~D_?WW*wUjc<_Y5;0f46RZ(x2}n`az5#F)!-O)I<((n zcXT>l&i0*ZkoNlHqmbCtR0e4i1G5Zb<=`YFSPgX&5=`)ivuz;CTS(hBWYY^0Fm%%k z5;R;aFGWbOuPlfyg?YHHcE%E+g*5j@LJMtgZJY<{9^^EF(Ch@?uk50dkWqF)IZH{P z@)T^FMS>ZZ0&ct#6qO1`z zy;n%I2JLDmy?81uY7BetNsEe+M@p*u|H0LCC&e+WW`s)XKs!OA${tBnRwXVq3aN!{ zn)b7Si&&x%6e(o8?mMw*-?x|sQuHAT$X4+VwkPCA9w1ixLe0qB~{W$&faQ)#iM6u)mPMX%jXq7L9 zt1L9r)s-J-{+e04zUfL-Rg7`%CmwzpD=Oh^!&?JphJ}%MC~FiD`@{>J1q|2BZI~;2 zI%sLdjKsn3+I-Gx;|32gYJb~LruDhm(>6rMm$oDRXjn6cr9?tyl_t?_U@D~R1V3Rk zdJ;K&9?4c_Q<`|iz4$os^hwFZ+dH_o>ha=@=Od)$ zxKnCfyy5&Vn%Py$kJsm|mB72d{#xTW-3;Dn7G<3Mj&|pWtl&)>m@O|O9B#iN=eomK z~9UeSM_fZjeVzdKd4kZl4NJ|kyBJ{t1|0ngsK5VCiDTxt`_f`luKD3+O6(iLZ ztB8~Tl_fN;7aV2b;311(@Oz;9xVSr0QbtCU4UI$zn_GjJuG4k3rG6}n9!~!wkwO~? zNz_mVLRvXGsM#%xn7m<0E9Zw-OGxAzSV(AfG^NRgznOyt6G4u&!e+MR8J2JRE=pM@ z(VY8^fpYVpVT>d~`Omrrw_w}CH5u`$Fu1tc63S4O(sz#(-+~&Hip{*3qe3W0iiXg+ z@@ZF8f8Lg*=GQ08LZdtzrU`!9vz2BoB?e!CF=ZXhF)O1ejp~y;QYgP6+MvMMSsJxa zpfSZZiD4eFROF6N!=)LgMRVHgjqS44xTn#v$O1joC{k&p_I-&x!Klq5(KJ z!J!IjiD~Z4Fn;~v+A%a!FeEn8P);mRep zKgMOW%mFO1rB+FMcXkNUJ(KUEPH?o?F$+P7W(G!Yccg*kZe(51D^)2j)r$(1qJ}bY zk)U`&4+>~@RZ%|B^QyRt8Uwv*d!V#iY}9RN2f{PqUMToEtzNmmspIOouDJ`O!YfY7 zFco}pdQ=ud!LJ7Yu|yrWfg;O%nlf6cXfIFo6h8@$-RUOM(oIkr3R=w8xaO(_LiL2b zwMS`U>UcDOHdRj;LYvaJ?R=AL6j?X8EmNV0Fq^GNHBF4NVuu@(4&24$L4dB`eVx{f zEUXv|7Ikc55Qf&Pbu#<-@&we|^ijme% zRnUB}*y#H46)C#De83NP*PrfhKi@sHvM!F(trY9Ouw%BV*dz4c%7M80%)5oDO!tJ* zTi(Nq&jBMwqjP?I5B@)%gnIL4`B8(HJ$v)(50eRdLIj;$@NZAH=h^GvC3VEZSePn) z!N076gQFhs|Kfsy%EGoi_mOFqa#7UnQiJ?c5_*MAQzfBG*l0KzeHxrJA@A#CbP1Pwn4S&1vO|u}lYI( zdA{_5yJ8+!!PDLF6wyjNc{O~8lfCC?mb8-p2O=AT@RONO@ivvlUBDXD(NgO<3*oGKfcvX^P|RS zfju)rD{6>cyA=HlY)iBSWCNKG2Ysqew^q_S8+yxZt6KaU`|)i6v1=>#d*Tn4{r*jG zG7w#`?62Xss1MP!{q7iZ`0q0K4BFs5zqk?$GV#~(rLgNK{(7#SG9gX<`6?>+5F_G& znLjIc8L^!fMM>~RMCYCNx|nP(F&E*jPV~f#{~LZ2A_Ak!2UlGIPmNXabAlgr8m)n5h6j~bGZ{?kak~kmwH@cu9kbOiu3y@U8=n?40Y3P1 zb#buBe#ILRL}lV2&9AT>Ws^}03Ji9 zq)b?*-9ogZksXjYpErG4wucSAXR^Terca~wYsXv37<<#FJ$$cVwa#((yqKx*!5^y& zt3`GN-iV+n5ms-y%_Vn$RRXNu48bBlOjtda2CGA`yuVghh1!0PuJJEfusQ?_e;=?~ z2L(@$iMLVUQNre}KWd%d!a!_GyqGHVlrX!C;@Z_SX)B8~sr> z6834yA2DAwp)fAW`)b7QgaUH#G2zNbnZ){}uIz}cte zoa6`;7Q>RXO}34qMQ3;3h@dJHMT_n{WeCCnILmpn3wG~*uyP^|D|g7gy{GVKfV-?K z>qNObw)9;;QL06UcixDgDiaI)^o~AYVL5MxVEP^=7G6oi!XcQrUpE%6?YW*z^Hz`D zO^|SR{Kj`435!nSyb(cFA`+@Y@L@h&H0JZBPrEnn&O>^-0a;0JCh8D8vtR8^BZI*gI4-?Iq;=Z@}s%m^c92c}-3a69(af=Y-FjURHauyXmbiw7{lpJ0rPO z6UIDQd%9|ZsDF_E3eWbQdL>+nIn@-x8l-tYh1+Nex58mWyqUgiOwD519dlSzzzmx8 zSo~7RjH;Rhsl?9hm0_KX+BUr=HrNaL23w_CC@BMJxiAQMDQOg6{-W`2jj9AZ8MSSn z&5D_N9+ky~8oAMVgYT{RHFAN+K#r@NXCq#PJzFw28n@9v2+9Q~e=h4VsakVtPz|M| zm#BiRvO9;X5>*X??e-2|s95&=1#9TQ-G;qG)-00UJyyWzc);BKya9DaGtKWuh+c}) zI9;G&NnhVh-+cMK**NpNbF45$K>Y>Tum1x80RR8&J?(PaIFhfz@~@;S)|YMBS%I$G~9rG{Q_qLjQD#kA6Pq2FxUq0YrVv$!9LVJ=cH4x0g{&=O3?*Mx)d5`S&O9^RIp&3peq({N?84{JVFPBLzLB zV*QCf`y`|Bdp3W*6QCufPio{eT#6rk8VVLn&QByz`Qc;Yi!aD$*VE6^a4vr$3xQ{R zG8*ZzYAi**%t~A+u(OJr{QCFb{(0m3?5Xl+4d#VZHICzHiPzOLSvh_D+FQBdQa}UX zE6*(mA72qHRDt`M21$U0E=+ zjO8b-s$CtOof>pbsf)MY$4ce=nZ=aTM>NfhhMX+%bS0k#Vt9Y(xc2D4IN(`^iT22d1IBTkSl|}N zk>~ne;;UZ<&VRaoLSknb5mzj2hl``bnT$q`8xbdD+)3g@s-adIJy|S>Cy$N629%-c zD3*urZgqOCI}}gT^QqRL3nyf~b|L9cpWEPuK^OT^oaO*V?m_`IkvF;AGjUpXG-<~k z3m-|eB%w#{IrD`y7XNDoSt9;?2gK{eQneY(V`?6fai?4$SieQZ^nB8vV%oSYtM}Lr z)`%7vU1M~PDa?Rb&Y2!tecqd=FExsA`skho>nAOFXR##u)TI-%bNz7 z9~Os9o`0C13ZFd2UH^~?lmhagCm7_X#+KjJz@+`E zwMu{waNNS}@yYDAGv=U~Qs z?r|F;TgM|od_eAmd0wTc3=Fkh-$?zFM;4mL6<=yj>S9you^TrLK< zvu?ZUctw}1d-2($u^f9h%CG5M>?A5w;m9dTgQ3aE_nnoKPyeEzm-j@YSFdqUG4c4% zQ3WOP#}#qsB>G4eBvN*Y81VC2z$cF+JaVE-Dn=81n2#^C#Hf3Io{nbY6%{^tx?C{E zTcOb6zV7)d6j}zam!IVDpXAn`q>jy%`2U%7a_R^E>`E4Jw!S*LxG1_lr|G8|xthYOqwiE0lEqIdSxNy-fAg3xWr<$B z=aVe_pUzRb$g+QH7u!wGiw%|rF&SmTqnXn0cklZyc)r`EWK6~*l@Xjx|5&BnHtwTr zykaqksf`4d2l1ddJyuLi{r!xwhro>H-&4XZAAPkDKq}gB_rXZ^in>ZdN1ma{mY@-C5x=tD( zK9yON=z!PZL2nXRS_S$Rfuzl#%NNl8MW5Kf^?gvH*g;suY+>a=s|H%>R_n@GS7;<- z!@B^p(~Rg}|MUa>EYn^gee{&E}7+$i6-{=7AVqY>{?vc)Q1h7)Vb2yPcb8+Mc$w(c~8HCp)SC z0E!9L@4x-?t__INF^V4dU%>J@#>nJlX=+JcL{IL5oNAr6l<#m*jo>RW(^l?oL+PXb~q>pRg zeXqpL8duVB_muHn5ZpOsyhEC}T)T)zet6LxJtzo-)s zYk29=h=uJ{oXjGYaCy7I^T)5zCb4*}BE4D~tJ`h9ym9e`L~P*PtzgN07W7mZ9q z{nkqJEMhnwpCQe|D~M;y0#nUNww2DfW^qhs{-%mGG}#8Xd$A34{k#*E^3+&APgw)) z^!+YjMU}$Xbp=pJUay7Oh+4{E9kFHPqE!sRtF7j-U`>6Hv15f#UhBZZkv`ww-%eK7jY>5%1%M$$tX?j?o^A-?3%3J zu!Z_;Z-o8tQK1BBZ%OJFm^~}ULD5f@8h(*e_UsIt8$WwFcCAibsRM90pG)@VDbZ8`bunHjv6wMAz8px`ik$}Zv z0VfPrf#Oo%q$roxbHdB%82hK|?$9_@4N)mDHTEW36vDAubD9Z#ExpppqPe;>+E;#Z zk$K(RvHc|*k0*8hF7|IZ+_UQ8RzEI_cLprxPPX-8M`rh{uWWWqOaom8wA8R+XtK-X zJ>ebaR%uJ}kaMeckqu-b?-Y_-wTr~BSrf?X<8 z<*6443lf&;Vi!4H3nL6xO~wje;9{wsI?oJCTY@UpR*~wY`s+2?SV31o?NAx-y7h`l zX`Xmn0nMK#cil3iJelKdh7LC)x}tK?FvV2nwBhkEYr-(VLRtMR;38uq-uy&`5YT)R zv4B^c+STlA3Lq6>n9qGkd}lvB8w>Y0I;c!m;hi=XSqlxi5lAr%1b~Ck*$wX3Mj#5a z8)I9VI`knz;1pW!QCotvJ#k>GJP;y^u6^pcz)o2Rw1G8$1e!n^(Koovt08LRxVkZq zawWT=}Z=-I+TeF#@FakL({Rn`(B%A&AP*O|6!NOIfJ2ViXbiytJ%tqcdW$-^0|E-Oss*prSB1+csv3rLA!5GSeLQ9 zsRi|?|8#6PzMn{=m8Q|6G=0Ci8?5fpp6X(N+1N&ng6>K)xSiy=w_8aa07G1%eRps~ z2_Gw8Xt(6{Mm@87iJS7XyVW`pGw`I4^y${o5Xm5 zvxv;uXEbcsDHLvm$4Mcly#Gu6xo>Rma!`#?`e=S~V%Pk{IxejcWt9=~JBTeSBV?=hB_VlZi)7=^ z7oa8_uo2oNIM;1C$nLhnG#uN{#7c zyGgFSKDQ;VGvQNiRJLWfZ8wAa{kQ+wz%(=oi{14fN=3kUn%B0j5doPj)t;D_+9>LW z4Y5$3&CMola-0R>V4A~w0XlfFxYgGKI^NF9%}s6~+{Gj))uUSZ;>NrEsN zbN&Q4kJn0t0Y~$#gbyf<*9ubt@f=xUg6X#w0@YkZtJg89Y+W>Dkhp;rrY@c!k+zvZdt7l9BDPkkc?>Nvt&)key|) zvL@+AYa=U6Bry5Ao*ij!iBGC3>tE@dujCv0g_QEs)3NGZs9(q^&wrnuUSwvrM56u! zGTruH;(AMw$ZWHW{(N&(`vmGv9y`GaIk<5Z62yB&XbOoH2SEyn6()#2f^dC55r_L= z1HjO<)$J-){yPiif;diD3=yGf0DbaxXRUuv`>qdGA<(zQ`T5kQF;tHUsJlqKFp)R? z3htlJsk@ZH-22#bjasgTRiYaEO8?(p8D4DeA$AuT3!zmzZm`D)&&}(ZxXwAix2_Kg z%(eje`qvG3Lz8styUGSo4!=Z$WN0XlNtjYX#%YkMYej+P&0AYmAgdb?5WZq_N0v*G zK;+MP+5Um^A$(*H=_@pLTwffWA@qh$n(x+aK?+4&(FZ|?m(pp6O0ye{lPYTh6e_kt z=Y}9l!)}olG0rQKjaAk4~Z|-~&kdQmCRE^coG;lcq z<)m0;Z6LN+;*7)CY9(Qq*nc4h`!DedU)b?d9GiOKpbZYKOBM3K1PEX|R;#Itx!B-H zW2=6ahE|@QnE8p^Rh!+zh9+&e@A_IVG-ev_Y2JiHD!iqjd!52-)g{_wDflD?_cH6* za59kxO%6sTucv~MW+XKwB-@ZT0=)PH?0IB_z3*iM3brE?2P=|{Oq{ZbL6##n_rReT zRB?64b1U202*url>$ZqQ%F4tC&BZQe7cz-jEgc*%iST@2WD08(Qe)@USvLw7(gEBn znQmU|bl?C=$92H8=}hf)5X~j$%uDRpc#IidY;pb5@OInKkO>ChN~da7zQ$Jh_TAQnacZEymN5qBQ5ESIhhD>)YaAS} z9h|VD=ki`EiB$}v5Rb@%7doCHq+6v#uH%oqE}Fz-{??lMdJ$M4-?W*^hlSl;G_(c} zvb}Vt@Q~f@K6nttE-wrmj{GG9-z(G2T%af3ROs` z*xn!yvHh)~k_=SBy5aHO#|`s}+vnkx$E-v=e9%^_7<3KLioey*64`!=%(K2aQZcfx z-&}vv*V-&@94CR;&=6x_W4%_h7gEl-X2sXg{Hp^iI9(|}UF@8@)}5U1+B?>-xkpK3X%pd#{hA1Q;_Yv+%Y!2(D~%HV$M zk9JEL?BH^!IVjrhXO%_xA@uxY4zgXR-Pe^Yd@pDNmNB(LxQ=MZ(S`>r!D+|IbbhhW zH607RA`|w%tSD5`kZ*@bWwUN9Ty!q$tu3f*9KK%ru-Z^om{|x)iL=7>v?3u6u3AxO zrPSC>G1`=h0YaQtcB4X?P^go$8>-dwnndDkeh_fn&|9(S>gayP*hAn(4`(Xb>QYDr z&Z1{|395S4c+3~ZpeAG_{@mV{m6uPye7wDR_kIKWuz(%}xbJhs<&azVR=8$9^Bx9R z*g#%8%e9KP+nI8aU}3`>S4_AA%8Tm%xTte`@@q&bXe%x}%6J>zT0-0*NSdmCr5yb< z*&EenuALo_gr3}{!oorux!6KUv~WTB*H-ArXOG0O7$U6PsJ%Idr|uxybF#cL7A_@a zu#lk%nd)b~l^ZRIx(k^#fzsu8-=@W{)$gz3*Xog{74=r?d&Q%M%!gKK9m^WNtlZcM zne1gBJ`zE~+!6c8(F^>oYHR?RKxV%W$#xJV>k8n4=DgsLKtafyq<2B(uq5PoNI%cOe5>nxptJ^Z| z3p1Ve-GO7%+4&#Dos0dMd6)CunmaqwAB?v_$~O(}XdtHlC-UTcWPz(n2MU0>p;MFq za^xBa6ku7hY~8-e{G^6y?Lc`8#HOfUKSOKj_1MkuAmPaU_Iv2TQ$JPB&bB=D#qy&w z##fq0edR?%DuM7%0#+t{W2fo z-jeIEFX>%ClIxmtjJiodGl|;Bq|(LHCA}D#qqb>vR&RI7$wR;X3$ESLGjU&QPTroI z30ai!>oF(KAO>odLLo)3VCbevZE1bKWEKgVR*WT<-c(;GA+zVgw-Ae8lXoAmIq@s4 zw{oYhhV^e%N)LAF#tIcMes5Wg5E{U@Lx(uBn1Jq@*-aU!go*{KnjPIwu7Dj6AbC4> zn0y%{!y8w?5?Ix;ucbU_H^-4BH)jmw@U#`BcdWY37%3fbESxi^HFOO8!=vbyB$qvXJ>VaDI+Hpfja>Iq)VpJ_k zD2JsV+qId3^$4^YA1p1!4i)DlSi=%itPp~ZKf7jUXiSWm{|MsXSJK1{CK9b!D0Rz# zexaaHh}GcKq(u-%jNL}VLgdpJO;DvZ#hfI32-#B@zj0hgqL=57Do>l8L2uFmDN*D; zJ5rFUf+(`eNhR1C64G5JaD>lJ$ik2;WpNM6pQR^Oe35nvRbO}lCy!iZYiiH-3ytzq zR>0JGBpzpx1Ugqg2y}EV&KCVco_!>3ZZ~=vk$NFNhc+-~2e$aX&|lU>F3XoYU=j-vv4dZc#@3$AuiHc%zPU^8&Fnk|GqHv5TswpTgKq(}MP)!Z(8h(- z0VX8UYS$BcyAfOCqBM5EgLS#PNL$%e_qiL(QYp^f8{PHY*>!h~?)Kc(v=~9k!%3zH zl4^PSGW{p#s!QxQmn-`J00030|LlF+a@)$X*sq|Js+3)}#QRNaTUFFuw(gQ;$)|R? z0B}e`0s$HqQq&va$32uRs4$mwK}963J{zf6Mf@ogMhs+WA}X&n5e# zWW49zH%EHz=+oUf7VRgj6K6*=8k#CQ#Fm^kks3sCTP@9KNt)3#t&Z$yrXlq;U6&L> zpQ*arAPxF~wKiR+>pC&W0V2>@f13{F)5d0DV;*cHFl}l&`2zv0m>gI*ZFicoZj%}9 zQ^jLsdc+Le*%@+xD1al3CJH3*vnW`GiCG|App-b?Oches(hP?*wnV`@X$qSzqEX3a zi2)ZOWS_5jg){Le1Dt=%T_Q7_}ifJAWS+4)otH{Lq#9x#D(L zw&at>r;T!e%cH+dw^RC5Cr$chE}Lg-x4-?U2Fpk>owoNZSnV&tPhR6- z@Gu^)#VC2AS_2_YDIdpBHdL&{_J|iWap={ymyDb*)?!fHWV*?Zj@ck_+joq76iCm1 zc^C7dHgl}E@q2*Z!IF8##O#xcn1FCH)%C+PD1-^cpP#0b1nHf4d=y>SLQ z32@sr8-rWgwU6_(Ff3J}Ti94XZ4}DI;LEkE(+9HanA5^CpUV~)E?TP%U$ZcT?Y3;d zQQ^}@shIWY5h4{QH;q~AID!%Ak@&JZ9c z806U?cF50+zMK(UpW3{(U= zMycD*&PQQ1kcC0gWvhjee4OLzn64p?l}yYzk#jL7GFxy`Q!!EIHqLd~7RM*&r0aUOa#8`nlp$J z478r@CP1tWSj2Tl50E}X5a6cKG!Ts1p_4UUhSAVDoP?( z62?F|E|)Y?HR1!-buARX@&RkhC@VZ4G|D!==*WQeg#n}M)v%kyvQgGiK9D#W%1uj@ z7~zU(`&GpV(MgBk48L6PG~-uf#_+cGfNqB!siPUL7qsaa*&!$sq_@Om&v2LY_ed{f zQ?n(yAsY_ek+-B<`Xe)HnJygSB;BNV!&`{qO==Lxa5s)){JaQJjTv(m5P*?ulcuY0 ztrk+K2s;7z2(zlq&Dd^-SQq>=!H=)s2y zCX^#q09L47lpmj%=$$dFk~rz6dfCh&-WDKF5{+u{JP_XFyM`Bi6s3JpZKDZC^jb}N z9oKs}mj~`nU&nypB5;~Rc+NmlNXs>-$`RUYI3^9rrh291m|kqK*^=N|$Sf`!C49GS z5%N>rqVFQ$Zb^Os7K|bWnlcYLo7kvm*^z8Vwj8&cG#WXAny-Oa7<6!9#zDAOIPYMh zjiY0-5Yfh^+){(@@&KMI_O4LLhsEB7g)sviJS2TO%?e7L$uSU@njWi6uFb>9c=GVx z*Vp8xFuYlBYjU%?NadPb3Dmv?Uz00O zYoDuqO-}T+u3Q!qG`0xre7QFJo*eD2JG-ASF)fgu%eW>t`!ZL$V_aX88|e~rO%6`I zOS~pmW_R4MM|IXN#cOg=%Q%7$5VzzoCvzkglXv96YGxB=w~GNfNrA|lS>ZsvI3Tr6 zI$&Rvf>yq6is^+_1nHTmW)s7^K^exSCh{4FuP;@N| zte8PuBt;SvOu?nO%c%GszVo9uY*FA)_XznQp`4RkpwPA>E@)so+7boqHZ&Z?*%5m@ z$K9yof`{!^BIj1P zZiF*pL?~D&69Fin%hZ_HzO5*bYv0z$`F19@G5X2cx3$=TuYFr-!&>{cQh>MiZA~;! zSG0z=UHi7yzO7kZq~qHvE#9~F=2Ack_ig3gjBhJGKUs`;6iCixxVA)(5uZaKW#rzf zYYR@w%gg{-<2|Y8v+S_X<=To^#m=Y`3o%7}iMf)TdiWrEPB~%VnyAIfnLqM16(Il2 zs=5{!D3gUcL~{8@Nrvmyp5cQz^O@J*zv~Vsuizt{B4ViGk`~yG>CA-t;5`DW1HF-v`pOD5Ke)~ z&xZaltoKR!%slYfM0GB$5J0TE)(xC~`}F*n&lkPOMpjKAaME^LXEMC(nB7ks)hcV@ z9~aBsH^p=uvqN9X<-OoacC;*eU)n@&5Q}~-v-$*0({$i#EzgGDavk>7hozdjEqP<3 zBdFwq)2BBAkHW#%3+6H(Q_t&hA72x~molxzag4)`5_(!fyYqAJdD)&?}2D=xLESxnabuVHO5? ziH;ErpeJCZ#8qv%VB+dObAdvYS>}Q?LolZc%#b^%z{hk_caL;1GpRBvLXfM*C@w&d zk8yDUf_z0$U~T4eDd-Z=0etCA>? zNDCSlERj?t2D&=20JMhXinmq^uXlB0wGeuh#H)oD+ZMP6hEggP zKces+*)@#teUA3Uf!r)==YjXi3&nh7eaf2&lg@NjrsH?tQu->6$KOZdDu&8ox8nU8`TLij{ zD}T&)sn@ecVRjwPo8jUX0NzT^DNRsrG+wjlYl&a56&faF-jJcfhV<8;|HbSPtErp) zzyAEMTTcbe_n+u%NwoJE$(RDb%VZ;On zDE}2@yn~%D=NG#-Guo#;p|XRCRN;c9=%)IFQ6ssa$pROJty-EQZdoXV%7-mc(D3)9 zxxk_Jv-Hn?&Xj|$l&-1W}PFfc8)M=e5Z+`tJ%tm?H9l16X1>tx?Tj%D;0DNcVw4Lj|6D< z;8O3~LmOq9S_IA@ofBc6=sMksP(8`@-xWa}7YMd8^iC3bwIawPgEChHYm_HuRVa-% zL9GblC|lO5;EcD2EFWn&Ibe(oeyxtxP}XK#Zb?j)@FDy$$F3ho=|o3m&rX{*pQOB# zdnvC4B8i)D;pip2tS1^xQ5T3GE+vU@@}U$0@ssOq{adSyV}hCiBH0g}Vr3yH z&fZxP9UR4z6IbPAIizeR+oXkWFe|+~`-yQ@8O4>}n8Q1pJI7FxzN4}ZB}F!2TA~?p zF5zU)kwG)&?Reperp!Fak7mfIrI2BkT|DMhj1TH?p;st&05Q7&K|SsX0eL7FhQps~wd<9pd6!66GKaZZ|M2m_|d zu8p%V@=Y7c%D@H6FpY%8y!fPLw~M>M%PCG!fyP{*CTwh(xUC(uvNyQ32Z2q6piJdN z!uZ^KX(VwDY{rzo1`-R?mpY~nm+dsdvO++zV~d`-G}#%ZZV07o_#Cjz5AX8tC7BAk z&ImvYu7;V-rbH~uv=}G^2TbXrwia}b5d!7pd^9g&P(%!ySU~_C|`>ucs z=Tz>hRKN8zn5-6VtCsY^uZFr}R6=PWqEZ+juW|}ld$^;K0EFHZFxR&PAf%i2ift?? z0U!V$+KtKzmLfX&{Uktmk3-u^SkK^8ciNI+N)~CD&ywOco9qsncd?C`aU^#B3GSsA7dYHWl?#-}s?*rS z#Qgk^%oRNHR=ViWEyO0G2<^Y3OpHBo&VJ6NqtNC4eoN52gG~wNI_3iAOG-f#i%rYI zH#XOH!J{c`Y`9<}E>J|*I+{VZ5tIp@Z*<}a*&r$;Re%l!mI&_1&sxXDECoKXqEiJz z#wCU00%$v=D-4$QBCgC_(=vt4nm~SRh^^+_gS%v?T#j7e1m-}tiE5$_sG)#Cu|phR2IV@0(&ej@h9vD2U)n@&5Q~2G3PLqa(}AzGJR5q;b=X%QmTKw{C*;piB_Bk}cq8yA9Q=)>G|*vr zu}}FdyBRhYrlr;KczP2z!{b@3vM@M*_Vd}m(mC$&^hJl4gkEzbyKTDR3rcT*wVkvh?+qC3hs5az>}?*pdywHnJ|MW=DZ@O%T)M3#wsOC<%~;TRSTDWXDyk$RnpP zaNr?kR6uz-dFwHu#uqrk6RHwJUpY$QGkyaWD4Fk>J%PE_SL3;Aa$<3gnm^wR;)(!jh z!GzZH&;R(p!_m&g=>(J&ow}~IjDSYA+ok6b)zZ4`@HGlyvla>T@ z^JfMnprP7^_|eUeQhUPR@{dgm?kc>rG&S!afnVI3YuHmM`G49%hQEwv!fKq3Yt zoMp*&p;NYBTVMoYpV%`5XH3Vb@w^;hK3*?A6L+32FZJYKnE&7pD2Y1wk00RK;*DG; zd!}n?lmpI5e{?#6F~zU3iI?Y?;+u=pueT=`=Ra;P5B5$D#*+cZ5)f=j%d?#Lxqp^L z*-;W6=PwXqaOM=HP@NZn{D(AA=dZnuz&yK^&5_MFi~grKi#g@@RLMT6%&?gq0{}}D zehQUCkPlas9CBpE_WuSAK=we#UDN)wkuQ{j(F9GWMVFudYb--=J{#OfUWr{nH(NjA z4xRIJi>&zH(`S=ZnQ&5r->Gel>zlDWSYPU1m}g!L+|8*;Kf=6Mq))uExQ5#y7FhWu zdaiDp4XI&L_1G{SI4Q7mp?4D++L{!IX3(ZKaX<$i_1uoQ4&HgWf+T!g1)sGWms5ue zlxyR1A#nj?r#NtizenAYo-cws0%k5RY5aqGFS02rs5!Py7M_BUw4afGsFUchPQ=l#4#95UIm!TySRv( z00OO~4bxS0+~VT9r7tk23A><++poFc^;m$XFmO$r-jn`S8HjiO0fERf-g&z`6fy8F z`LVRIm8&aE+NpnJSrL@{aIa$`_$ouw*?o={PPmthhyp(keV&|cV4{EVp(d+ zs$*Jkn$2amvVTbL3K-oW0?Lqsu()~C!kkayDWe(jlqrhRnwVWJDQlxv5f>!94WLfxyZG|x_@>UujELo2T;S|QhC<6f> zq#4Fd$u715)+u0^D7TZSw%rtWs2RyuvcNZz1$R#t(NVv)qoFz^+kHIGUn zE(ny%o0UK%;WBk2_ZU7{$Re!*y%PerPA>L9DIZ*rL^1}Fg5vmskAhg`gKJ#xsu*Kr zP%j|?s0i82VMO7gvN+M4z!E9Wh{Crfa2GvO*O7z!_j6eGYVRe}&<8BSUDuoeME2N@ zC2J6R#S{?;VQ&m$+r89%O|3V~tW4X}esbCO(rY*e1smBRZ3Xv~O^Fyb=spJNk6%sj znsrT^cGe@%H_B<7Oi>%r$q-Y=vFx!7nZAUfivNt(DGwMWTDTw$Pbi`QqB3{!ag8WI zo~RH74P~F@f|SdGXGQ)s^$_V}!rL;_ati@v#f5Hy87hkGMYt z2hVb+i%L2vB-go@UtxZ3*jwr~(6WC!&>ujW#qai)bZs=39TtTgzmS1T)X2ds&dw7V z^i5G24gFU}CkPsSIltH)zoa_dewlk1mucI@ZC`w5bVC#*f);71B!fY~OQvYG2VG+6 zn(+jZ#ZcR(HL@F2D{vEjyRF%DM;$<>w@D;aQ>S~aj{@CovxkS1ayOqH1DP3tIcINg z(CiRT)|!{m5KY!;?51w~<)<#4MpAobUt5!1MeiuEQKXuc^7l$L$ye=|KhD<* z3SU9sIW^?DiZ3(KQ`S6F23IUIJ?+CIQ?;1zpkGh+#X!t_&QQ(9}Mp) z71&p1!(U-6G4%>lNy1g*n4kPh)L}mb%3l(pFs1s&(r4~PUg4{m%*&+}pIZK?Qq+el z%c&U2Q6#dQW86Q-RcB0bg{N#L$L7H?; zh=S%P91{huV>Srpwm9E0B*~>}E{M1reO&H$fn_#M<-UbXGROx{>k+F%w@vAsxjsVW zq_d+-r?O&NG8{vOiSrnPdCB}ob7EUw8aK$L4gM6@BAX4;B?go$kb3Oer=LuF3|1y? z-{s3?&z*53*mqN|)VxoW0ogqMw|`ZiP%AZk2X|bneHAhO z%?2u=GMD5_B-YKTPf!|N8h4&bh$erpp z5JRt;2At&~w>+aTRPFN18iJJE8hbSpXBptDy~Z7gl@D?e$9kY3Y45ZvXu_#8_KH^? zZR!=@*%RgmVu*zPRQ4T^{siD-uDB{)AypNQYtZv9plMYlmc#gJ=J7hSautUE5d9h6 zEZPNlyjj;n4>Nl;;L%{Lj-va2e7Y$5H;MVm8S6QNE*Z6M(VtHkOMx@p8@<=0@hlHp zoXP{JlM(y`MJpS_ANPo^pUDgs7|Et!4Lf31v#6h8+Q#|v3B<3`1(dY$;_TgSvFHzQxEHXLElLiPR)zWGc7 z;|rS`zg_4`;;WW1OIF`P`SME&v1Q5KcGP+rmYsw|(hT&gEtfpYYDh3*DUhGOe0g19 zW4hk!CJ-l$f~_Q?6A((^r=4FsEw-}9d_*lUCv!km7WnX1sLFUYhR@lG#WMP0i-jzV z(JRbNF{IhlelpL*#LPezlhJnejN&x|e?VdS!3^F>CoE>MwHp?M5 zmK8}qCw=MK?8rtKKaNoq{&?h^Q<-AHpjc(9Fs#hI0A-5r&Ph7LBtKHod$uqcR^RX* zKB@sQxX@0lu?haA)Pcp`q6wR-S(SToxsorSqFNLR!`c|pwS92&AG(?FO|*ZQiks+s z?Cui%q6~69^c}pUhZ0ZmMV`grkuPmQIB){KXD3uF-}A-#FGECmELsTcY^m_*9P?7n zCY={%BEZfI-z9?O%}Xh`_9|*#SOSFDiGe>}<9QW{sPnqli4S=~k$@;}e_m5pB&vMD z`U~KOXzlOKSY@h0C^Q|7?T3D5HH)}d7{EDWdImBk8{bPJVdCUV(($?aueE!d+=?8_H?-5T$#LacM5~{^l zSHYW>NN*FY#1|Hz#77z5yiR<`06z`|{4J?7H-~?G)0>|e>yaQwzD%fgT0*mrWs9@!4XAS#k+JmqngNv%=7A?^>+iKU>Ly%*`d%y53JGQgswu{HsY z&xv@y$JzuK%yW4)On`+_ekDwRh4O?qI98af!o9B*GyztAQxl*vnGMuq9(aHif)+WH=L|0eiPH>?z?)qI89>tufE5Y@Z^H;5|2{2nMB(cmU(IM*Mug1Mu6JWMj zPScNAPm-l=ktV>pc<0owZvw2Zg6m^#0vw+c@qUj)Di~9dhfOF#!?pjGZGhF)umNU^ zl@+)T9D+xzG+Bk)UMpw=to^2mQ7qOAc6nd&vPkUSO~Mwl=|ap1>t4q`CO?#3?9(b8uUndXPZU<>>yC%P)9X zb4uJ?zM4(q6HBC^@cG32Us&(S<)6@mwvpsZq)G7Ik9&jUgFhbK=H2q6tYls%{v-(8 z@^@G6e$LwW7d2JloglxX3|(;ChM@r;9``?{C{VKS^kaOCY%GRQ> zdm@9rX*E_DL%N36vzrh*WT|t}=&`!zTPuvgleX3nMljl# za0-s!?T<%J^f`dYYI}vzGn*@n98QrH&2}R)2qRyFA4HAy3@5~n?JO%yy^AiGLSl)xP14 zX6zOJ%-%FjXD$%Fhaswc7zp3X({0_r@WCIL_q}Ot`nd!r2fx9Y3?y*O?x&4vbOh zsiqE26MvaihK@RKjyxs{{zftzUqB(RBPc%%Yn_d0+KC224wN36W9P-Jw*rO>K#LU? z!9eC049vBYU$$YvAJqh;IZOk(W;;L3=8woNBX&v`n|FLB^S#PJDim2!%$fFsd@jpg znzSE;PdtznMJ@jycILkwX@t>aa*RQev4gYo|NhsWIAA!B0Us=!Qq2i#KD91Ym{_%( z4_e(A2!my~9fgQv6x89L3siX9QQ;t|vLPu%YH3uz`6wx_BlX5idauSj-wxQ2l))?= zdj#E`&8d3O@z~8gT1<96US(!h=Q5SG^8*O)WfKxxMoezUwH+X6KrAYOBrrye+D^w; zQ6_E!i@M5_o=#Hpb>)jv%MQi50ng#~CNap<8+x4#uXj6b7soko;ykKoP4#*Z&Z zxncpW!{G5yS4}uO&o9?r{V518;@}x)2jki20>r#SqJW|HNiImp;0P{Q;8H`tVxlkc zxIE7t0vxmTCLbC`sB=+qpC|*edHiqxsy-223{d}-$s<>NM%$DJKGerV@sK!fMf&Wx zU^$_j8qvqA(_8amYNq|*BR&C){wg;@N1TRgyim0}V&j`-1Ruu_f!*KdvFwjw80tC4 zVHml;V{GkdU)P#eglfKjPP|pI_-3t&usD8r2i^Inas{o}5%U^kd`u*UQ7RsnZjw}C;22)SEZ`Leu7TrBpj@Dk8#tdDoyY>pH9S;E z2j>|<*r1ZpF$MEWn9v^SF~r=Qi4)Fgr+u7P0RQHeGE{Z*U&~S!R^2>;ITxG#@-0}( z!j1H6OIbR=)|N8vaiJ|`0yp@jSjsreEB-5!itp}>wkZ#MZ7E9wR(RV{16bNNF=e4P zF`Ty;(f4M=7Pm?^vB-URYwU3*PM1kL%f__6GM7hsAqK7TTQ+DZXoJ>bGjWSCXoZe? z$k%IwR+__$m<9a4zBXu0!&)1((izmRV$fQAo}sltD+E1Mt?pmQpcPT8JAygW&XgqF zpaof!q{IfTDPsBmL`?Ub_v_&lHMXmBZ^EGSo6c(tuSB6u2BRX_ol7&qUx-Z#3Afqs zff7&0M7Lv;0^_*qnha#bii=!uI~cq;^ol6Feyk{BAfm$Y!q_7shW2+s%s`J*f>ixT zD*oUnVkC!P!iW~1j%j&Tm-ve30#q(8s|%f8tl?!p?bJm}F}y?!e8}Ew+sgtZ6hiG2 zMU1sQW&|Y5B9Ig$N<|hJslNmjnSZ5(it~{kk@lGVv};(+E0;ysVT(FQqK78Xs2l;Rg4YT8Mfl8EelM5nBS9vRBB+t;qo-A~+K!`Zy z`K{1VRvoRUIRgoHg{G!z#Bjjoy>}6VL62BYUDsMhfP?KSwrXizwi%9~vJ+Z0*x7j} z|9mgWU}SH)h6;vDmc(KtE(wx9(8ro8*^WhwmeU@KQbLf2BP)mh%H%Gp(k(Q6VBvkE zf|KHR=oA2Ks^N2jF_a+*fRBGl0mpbv2Vv3MUwpQ)$~?!3MOgG==oz|>Qa($>p*N$F z`UG~fPY{WXjWIaJ=En-RRW8sf8iVK|9?|7c^ysZ1dazPcKMBb{C&mrnc&yh56}AdSt}GH~{P5ZzT3nwfej$ zhgSnZR7KUvT>-ZrEJma)BJK1-WZE3-Vnu`+;jQXa6A==T@uScP@6g(B%K{S4)$b;%bP(*F?D9>tsD01gNbqd^FRFe znM;Q5HX1uk2gIK$Z{;P79_=^wq#wHG3%Kg>^99`jPfU=MFsceLqyGlR4JB*#p7Ipf@B5mfO*t|zXv^ooQPcufBpHN5oF*WZqm)}&;Nm-;Q^Y4TsCuz zJmHwExB++vnNb=X#|c%`Qkn_spMU<(g~HzhJqIY%!j`h3Z4NX;{jnGP`VFa z8be->?XZ3#zbK9!W!edj#z%Qfd4Z10-)llf>Er9ateECgN4B1Bpfn?GrZu3vCJW~_ z@~6O8JTe)xWarK~<#|MuJzr`fUREo| zb6VZfWMA$oSnf(Ytw-FzMqT`sa#(@`sv4r)Zd_KvQ@PJ-q$1#P-8?$gdc^9O;;!bO z%U&p{umQ@7X~~XhVM^t3O`-hLC3Mde1+HT@Q1>gjfW6z7dqhX2i{zuF5n7{S5um=A zbX=(TW-f5KS}p%x6foCD-RR&qolo`{63L(;cDl4v>4c~hwUIkxxtgb+&I$=DmI_S! z^tIevvFPUqh*jF7ob*6}k!{CsZJ3vqX*NgNb=2*;PCGSZhwRZ!mqK6<_u8hW66u<1 zzZ#vSPaFMiiw(MA$$dIn`mwt$8*1CMq=sfYw@gQePrJiUr^8P`(+$biI$fPyf(?y+ zvxrWmcaIzs-yBe`6l>*Tk!tJ;X;aGVn<{8$5?uKr4fc*M4@}oNG4_ZKBi@i?T{rs| zbl1`4E_=}L(y8_E@}|6!%@^5B!VjdOu{rl2AHs;b+e5shX9i^u91Xg|lZPRSh6Uc$rQfK1@zNYiR{#9Pb-lwRXn+EZ| zHB6PB^FSTVmFQaW6x$=qbh{Ef@EWP-y(1WarXE6c7BHB+&4%PZIi+)Hg9I?_ZTZti z+i|+vnT)NrNk_J~%q}tLZ*&oLWQTsWS{a|+I(jCb&6YDAS@X>|@xXXNjC8dRX`@_A zo9e2gsg`M*O=n9rI~fzM-H=S*v>LRZT$X+6TBZs?Oh$`Qip^_lyWaxgL_e?*bZ^)~ z1$gu$Bak=1@!#P)YvDD1Zdx7qOTkWXtqg1s!vpfR+P(;ROKl&-zLyDrGSr5sbTxIm zJ0v*$lz`;)Ex0YT;q_+pE;Tjinv!71cGZCGPC9h?N$?=^+6vwQG^e^ybgg@+={gJ& zK1_yYs<+BbZ&ag$Rl z7JVWYE7`KAn7+Q;wQT2zm>mf|P+Tbnj4kEfsqNzuH1Uz~z_X9^e_$DVyKggIv&RTo z3kV4(7sY&*;1OHFtQ}0OAn@ z&sqB44?CBIIkn-8PX&U%y>82jZR)N={s3KVJNpN4)TRt~CzQ_-yC$TP67VvPn6HJa2CnN>wTq3;91fwz&!O zu?Z>^9SZUK&xZWKn92VoKzfr7U3;O^E$f?sqOr{s7fChg=45Lxpq{d|`q5velpL+* zGh9diwDI-8-rwE5s_(YyCw2PY$<^L-t3&d8t%G`f_iT?ox`pT8vgbX;xYp_a&AVg0 z|NZ{FacZ<3<@3#T|7&IctUfsU_y6v>{zoONRj*1{maL!Wuj-mpcsRN^8Pv1K+U}Ra zzO1S8Nm0KjI5$f7yk$PME7y-o;X}1Ixc`!KZZ4FQ&%4jxE-w|^Jvn0?e%;p{`%9+u z;e*_DFUXnsbmd$Z8&}om?A86t{rz3FcmC44c)s4dylb93USIaxyK<{;{k*>-XUAX5 zhvmUp`MO;$%J*f~;nRNp-K|IYQ2!t!=72XP#^O5Kb3)D-#)(NjK_>y z>V2^~&z*-4x$3v(^~v7#ZF|3)`KEn+ywKf;r_VLkVNw688fV>um&dd0(LuFv(|kE= zJ1?b5^ZKR#a9Fu{sD6K}EBP-^=T-et{=WB|JL#W&$=!DEGvD*qpKpry*2T|@mQufP zScl&~SY~6dq_~6X+1X)ME@+CqFMoe@yIRJ%d^)Pv_cNLPS$%r)>cz~>aVFQIUp`;$ z(tl4`hw$Tl;j^wBpY=`+_ZqyUi;G;fkX#dpr`X1YqbnEnIP0_wTJ%78< zem>;$58ACI=bs+V+?<|suJ#MrjB?p2^!pFz+2>rfr4&o`#ufdkTYAjchr9XP?BP}A zI&0jr4$lwn3Xf&8)+ARimYLHozSVQZ!_J4Rs+^OnA9j0grjco!Df!P2C0Dyt+DDlu z$0({lkG^JzRp_d{{$4<5Z^+Xt<>~wP?t{^%Ur$$fs(!MJq$`k z<=a5LYd9DAZ2hV!XTCObk0sXO@%O>O)!Bh|^)1`o`=bB+DjziM!*Z{3eNS%k&3n6f zSupMlrG9<7`!figkF=G5YrDO^c{?{qE>#w|8*abDy5>?VA2MuRoc`hpl!`Z8ioU4*K7|HZ$LE z^urH_op1Lo<(sv8dT{8T+!r5-p;XKd-Yn;y4h!dZUmo}Oix;_FswMW13QDJ3Iyrhd zbZ*F(a`xccQRYlnz0RGp4sR~9FNRZb z?s_i|_a_$>wW9XTgXW9-{PptK&_7?~8v1Ru*1f;Yk;+r=s#e!-AC7ZRjZ^3G?o!^} zYYf!WV(H?rs(xl29u!*H%a>y1;xS8(cGcX#IxXBdx6MrN$t^XWuFelmm8<*1FW)a) zO8M)d^;oK8^yi}wds^Y-`|*u-|KaZcv-d4at}4xXud?Fz^vIrgWWR}Dz^`CH-D~wleWBH@wf+B#9eb(OEoD_@ zWo2e%<(I`c@Fs>ecHa`j<{K?H6QeI#`-uedp&U8Fb|isoVOfyoj`n$aHyD?J3zadv z4TmPUMpjbhZq)&fNBj^l^O-DZSYKCLf(vozMChEMds`)$FOx~_$A!;bLvDIowVf+@ zv1$oUso{a29+$Dx!w)kpvc+wdt$nnFhNxatUKlDTnQ?}grJ%}YTMoT&s||giA8ZI+ zUj-`eQMC`hpIGc!+Z5P(CeG-&CC!c;Y}9&Ml|jr)U8OiO{VBnfB-!f?7?PtzveblT zUAGU-lIaxbnUgKkEOoN}TuYE^{y3aePDNx(bCN7{BC$;_T29&A8KRLtqm)Sr3d42W zd{Wkp4Qn)7nrh#BG`Xl>7<5BGXPeUemfDTQ38<01lIf8uur4gOwZ-(D;?22K|Ae!R z);W^HnNT8j^QYVhS#37qecLoOBd{0Lbkq`@gW`NBACmaUC&^+CnJKG{*Xl|$7f~Q+ zI4(0&X5A0UYHNoSHXOsw(v{akF1KQRRFtSRWKiKy=D5JL1c!sQVb1(Qr~)OOO@t+G zj+frZUK)FNZ}fqj9Jm|t)Qg~=s{-1jq*URc%2Acay@wbk(;` zv6F81*nDEeez1?~el3eEaVL98@}>|m2c6+0M7v9Qly=(Mw;)4^SYt8)GttLg$&EMU&Zu^Jz({fm z^irJJ^G>Y9x~4E17>*odM7qPNX+_{vm!0W;RXh91S=%gDJ5N|r)u0fwS~zP%n*)av zGG(2pf_Y>}mU}fJiV8WYoU%cNi0}JSNz@a(gk3yO_nE$*m8jJ_p4W0bX`F}(%cFE< zD_X?i`y50RW(^SjVHWH~b+knlZ5rgVkni#7QJ|B(6^#aJUew|sZVY6~l%-URoo!1{ zFyIPbLTnk(5*PPIb8xSR>Jlqv#mq|0lQ~=GA)dv%Y%%9HcFx8uI5iczbm=HcF!zM* z_gQGBkbxB~L8w*SG=9w>5% zyUQh4Yity8)wN7(liDPa=SfiujA5~SEZ&2a$E(Yb=|WokcHf*A9BeOehF z8;g>a%~BcjJiGukf9r(X6FST2K<6B{hR4H6a<(CeN40 zF(r)A(?rJla}LJen`bLkGYUqdbQVX% z-eSI^Wjwc`!(uUj#)4r0;eyWjtPfYac(Q{L`yg+lUg2irp!QWIf;i9eey{@E2|9CB7bJhdbenshkyw4W8?W<=J?rWg>uJ+;hm)Z0@VygE$u%nyhAQNOmj zVM}nu&g4m&FY$%XtZ;z!Kv3%t%X;+ulpvnbyl#@hJx@~vMgbvHFyL;D$qIwIPV% z$~vqjlX-ZO;*duKXe0PDLSLqR?MPIt&Q<4KfTHVavc$(#9AKNo-o|EMl>+dz7;QHG zVH@jXHPN`LZ%T0QFpvfc*pK4TVBpMm!B#@&t8(TaLd|d)UTF!A`lIqUaXB;19**Sz&xV~@N*aLwO~$0M=0 zCrY>U+NUN80xGm^-H@Snw@+z!^z@+`0BAs$zma^!J-OIpn%uPncSx~menV>w9|q5e z8_gFUXq4~DxoWeO+t41rB0WSy$8`-z+*yu!rliKrd7 zV?h+kmWxwgWme^UX03g`54Qw^*crmmZyARN@R0YL^^gD38F> zpK9VBv32CINlBJoM$&LLEo_F+^hnt-d=#7xRqj)BQ&Yi~V2VtjLEx>UQ87-DNZCdy zw;Q9!(OY$zazH1CTfrjoMawz4O8{$E2!BDRV7mD0nItmgIQNf5obT?c2>ZFn*I?W5pP#4Z3L9#jB8)fC7Yzdkn zsMz^T;&#~9p*G$eS)5V}>u+i7xF3eXY@LazYfKFfqAN2RZRUbKrB7pMW($EdN5zvf zEeekq6nDtQ#FW~#~2&S|D) z6d@xYtaLLR>%PbF*{v1!~z?Tg~99s;o&zA)@P&O-M3uiJO!Pcnn zt@g>-$4YY1$4cHfyFwHBaK!o)-c#-UTAxX&$f*Ij1O$iO^k8NYyEA4Y_rO^Y&9+-U zDPuVwS0gdwFvAr`^j2B&$7wV zqDDS)KKj6@Ujaz-hHH!|+p_k@^T-6fs7)?fU&TfR!O54=S z_Jj~>6maHeje>7aTJDU+W2^D-EbWrr=s&X?eX#!?!!hWi-wj6_rGK~K_}AjM^Fc*> z4ANv$|1u@NOvyjADG6r8s(6lQ>?4!hL;va;NCnWe$Kq%zF6I_IPp(A^IFx z^@+3CL=0e+sS4h0Guh6rLN1ylgF+}++1utaz zUUz@j+YtWO(t1CXv0MIw0sGme*;@f~p66)ecT3~Zy&dO)T$rlsZD9s+Kxc3B0PMFkW}iB3Cu_PquZq)vzG212W?Z1a!CiO0F7`bt^Hyzt-SJ%{{n0 zp+nK~@7nJJZN8ys-d+~nyoOhr`Kr2<{+m>vuoJr@`hmv2q>j)tPCYJX*?Y~zeYUsW zy=FDk_$lWByi}|PZjLnG0Z_WHW_6w9y$Vx$cd3r2^9J9Qr+q3kmkW7)e>zCUU55NS zTIee9FLwT1YUkSJ^#Q6cR>gVR^QU0ipHPwX9i6&(W#?-ny1=w&1$O?||LCGtUYgc_K-XU?{sMDfE7H~lGW!)Z%RkWNa^rTtvGkL>{k{^TUl)J)xXpg%c=TQ~ zsGofo3R30kPXm(Idp}xi-l!#O|LOv3oBAT@kzY-}~u^T?~4H*u`3Z z=UT*W|0g1L;RlG_>rky-5W86a8DbYZyYXLw*nK8Iw?piHwSn&=ZN;`!k-Cua! z>+!ne4hU)XU3gs+Qu`-T>jh}i8;q)!;0oN>fqFg0u z-R;vj)A2lL3DVYvC|Ak|_IPiHnx~*=Q-m8(1>+6+npEg!ArdO-K)@VuLI>F_25WjX z<|e6wPqxOK<~EvZFGsZigjf?qC8;v85nldQD z2hw`si-K-ig6WSkQwVu+O>KAp9*}V50h+(ZOkxY0aw?y`v^gxZ$G_F=aaF4S_W5jmDMac%(u=ODh3Yq0btcrfB4vU+=Kl!2t#%QBh`V zhdmSYB#pC1WLXN+BM-Z!vJ;EB1A`{RrX(p~>T-g}+jKyQeQl?qY_wzZ@&q3gO2E?6 zvX}C)H-?mAC0pkd(Va0~cyk}rk`<(3JEhMEQ@i9U8j~x{>wBBs@B|GHGNEwJNCV+v z7REV8^(1(N#arC+hC5m?rv|-M&w}l3*>uj6Ik-pzF^_>@XgLYurS7okQMfpu%a`%G ztC7X>ZjJ;$mZn zSwsmwt_y>`uwmI%=p9sy+VcS)n0=|wn&Yj??0H_&j{ZdG+vyqO$M4Hks3D5jD<^F3 zB~?U%=qZZe8Hyk(J%CY91>mE1+Bh0J^V2zv;>rR~$&z$unK}iDgENv;0qrSgXz0-t zmvbnybMU|eCg36Xx_6SLHD7E7h2NW4>U3sIlASI3yyjbEqH-hgTSX1f*gTZ|B_6@p7ojN66l1<^CG*qBBHUhOBg^Ey!fH zKFkA1!qpij;M@WiOxG(18aox1CmN!Cjz4hwo^+CqgOymUpqZ5}C$Wj=a29E)P$h1y9Bi?NXHG!J`KFhXJYWQ0xNEar%59j->tbxj!T9{mdO4BV0Sh!~|OIr>W zeOakZGd7=|-8rIWt8&V18u1vsHz8SyUGE04D~@MEh*-A27qr~op;_NLxidf?E6$pk zE$1_!mryZmSxl{QYK5O1HQ{UmR%mn}w)TdiL(mKs!LiT!92s*wPp&z6Y7jZ4DfF~f zn+uj6(|p1q)AeSuJw#jZC~=S(L&w3CJ*wVW+Yp|?)AjNV=En>jx`iv8L2tS-QzimR zFZl8E>}_(Cg96jO`2m!p&S=;R`K3}Y;Diz+wc4Gdah#SA0bWgpkh}=2kW*&{om#Xj zXS)Op<5jTSW?+O7F>bZQ9m^`J-gb&x?~ zDT<*DyUzt-G@Eny7AT~A%mR+=kMxM-TY`X5rh8V6B|jugt9HzD1RIOkYCa?&L^O*; ziJ(du_Ct-BWaEh`4>Zrp;7xL{tJ-2OC>IDunX3-m{G3d!E(d)G=rN1Jt-YmT0^nKF z(|8}DrociCYOlnI`$`mxJAGhL#vlQ<)3{7_G>S;$(NJFp>uRT?6qiPWmLQBV$RjxD z6)@YD;62v%GhntY!F#OjXTWUF3ib|b`x!9Xvu|^Uwfzj3?RTs9`1v@@wk3FvwSD@$ z8)i$}n8E8U%(f+XkF|Y9unWv~H0f{X(Rt}Ll+k7jQS<2O(-mfW&%+nA$Kz+TUcU*m zZ3#Y@xwm1q^x;*QZA}PU}j%pJ^q(UhL=V6p{PpRzFF#k1p(! zIWQ2`JL06s&T7%w(+6FmQlD37EovuRK0PrrV#2J zlPqyv7LEd);OOCS9><~poU9qRF=oTLKCu^DhUh!^`h=f*m?k<_);kdy0iC1DX~TVq z%G`7Trj?JRYjmiYV$`cjAkj}s){BtT^tUC&sd)k-Q-M7p?E;-L)u~kcQQ^CQLgl^1IkPeyGOIyw=LiaA+RdnwKVw~}}`w~y-1Jz_gB z5VHx2Kmp~Bb&{vCb0}R7%LJfz{j%D&P+Pf$+Jb|0ye!t`tQHIqO$LX}tby7}gr-d( zdIv^Hg~kUU;Zk3hVJB&!w&$XV`U>923)`M-F?~EXOvZ7C!?3U*PIs9eVV2&0J^*_s z0)`zF^Bhhx4v5tQQ+Yaaall=dfw4h71Y6G zdY%$(y+Y%vJmZ)6^*qn`SqA+7{rCU&ejdJXo9Eljd@fHfWK`ev>{B6E?-#?@pcG#+ zvF{mgrwsDuCdWS)>iFV4fo~(B>Ur*R4c8UO(ibQ`yIc1uRQT0-Xl}^*RDAy5*G07L zg`;=V^Y%rw7}6A}`u>Gy7t!`H_#r{~&Y$@HcL;~?u_7P3sFp>4>Z*e9JMD1+%>QIv zWq)H_yK;XU{qO(jY;Sed;RP41`Os@0{1=`>zC`ht0wg)=(~67wWnIK_nIxoey%OQcTV26 z<*%q<`|=ERK^K1>Hv5A*_%c}hb$VS;=`U{j-frjXv?_FkN$#pvuWRe0di9!CUs9|W zYffZ;TgBPU*zpl5Y}HZq`_>k#0A#m4DW^oqU?>_0dz3&ooB4@tw^h0=?I~ z&Bm|%6$kwM>Y7bEKhcZ7D=_h{h+HSt)1Ga8bj=(R*YQ2yxkA3b&RMvsCD(eg=w5H@ zii$(EPq5G3dfD8nxpvarLnl3V)$pP&7UOdwbq@%9pj6lGwr5wZzHWB^s-|j3snaUI zPOD_88?Cd=?>7~jrxc&Xe5PHFuiUsHJP6y97pJ%9T`^!`~s=aVym-fM0E`N?j;8`IPDYIP~c6M=V`hK?Qa7c8yz26?RaCkZP@vY`gUVk9=zBNIm=C$6q zAKY)>Pxubsth$ePu{5_!u;gAIKBPmeE{B;{wbU_~c2!$R>_;~nm>=D$rEamF>zeu@ z*0*Z1S)ae(sxhw1T~Ajov70f_FWj5S;=$kLO*zdjw{v}(NOr!^;G=Dx)%LAg>vGrB zH8*|SRFnL$aF71pd(BDt>U#!X@jQMVb+%K$HO>A!KM}c0mwV&~o;~01V)!)A<~=t* zJeBO{sX3kO-RIwx^{hjFbJt}O*Q&OYQ~3Gmug`kctR5>3JKQ683x3&dR=SgMV+IIvMU8Ok6jUbOQ!`%muzd$GSSoH<-Mq$D%)-M@{MX4HV@B z&F<15Z<4F}Lfc=S!ur!u=P%{ZcF%0>z2>le-6i(#$v^wS{`Z|qyz%Mo2H~^v3^uik zpVqF;wh`;L;>KV9@`oMA+ntqeQK+phvhfdDoHn<*vYr@nWx_9f@{XqWN z4SVOW+Ct+M-aqlz6@~eAE`0ZebI*yo zyAQtb>|7Yak$czuL+8TWb){pjJ{Ly52V^^)3;&oZ1a423JwH8UVoL@+GwI1P@48pL zDv8;0GQaS%E+Mij7IA}>a+~`%eYex;=T$@ObY^kY;BJhNaIDns6eGK;wUr+qYiH$F z&2=(l*A1+*9lK6QZZ@zk9@SMV>^{xwRs*};itY+1xvH^yK*_Dzv#rDJ#6FIie4-!O zMEG3CeA~vd2Pu>P4L?azlHJoE@SE2 zy+!->z|?$uqD^|Q`5B*G)GV{?!`58}QG#qb=m@Spz68;pK5D_tk$w`;1Qb*r3vMfS)G zqvfXEhx;^x|I3E^`G;Hgg&3d8%(Jta*Fs1y)INNvs_|2g)-xs2QIQV=HfLP^#1_> z0RR8&JzH+$NRn3}{MC(d>1A88-BSkKZh6Ysa#fA(njT=WFj7=X;+kZt_^|B#8thzQ z&oJ2iUo7@Kdx5^f=8Fa|Pf7vINJ2zJ6&&Ym%aCXoYZ;N+=iw_S4O?cPD4Sf17 z@=eQne{lcmOo)9zZ!9ide{-V}q~HGbUu}X~oiB-R1r~9m+ou@}{{D{w3{s80J36V> ztO4dsy2U{n(Rb`0l(p|hNBIc%`TcnNH>GWtwt*({T8WVrSoS~FS$5nO!~B0+vx>ur zV|WMEYgKS72{e-pC7?)^cpcibQSd^BF)`UTHWXa}(;y!AA;w&ha74F)IdLw0c& z+Vlo~L1rMjP|8vto52?^2NmAU*CmcVG^tT;xgiOC(eiSB&l+7(%YHC8?s4;+{{Q6k zSh9UNzeTL!fGlaVyld8cLHjg3|^R( zFrxK2C$_&a7!0`9V{#@N%W(dTlP8z+mOEWj^)%9-lIZ{sE0UCmh|nS5&$y<8N~$OG zT{G_DHiR?YY8va`{{Ei@c$a;?75PGSmTvW32CKG0FWWH4A1ONAz;V3b{zQ6c18@i~ z{s16?0-z$xAm01F<`I}97Jw0W*03p3e@y+JEDtwijj`u38-!lrZy~aOwWh&>eIY*( zm=BImk7FMk4S0w#_QGjj-0BJ_{68Rr=CXBVJLvTz>x1@S$osP~MNk-!tTrA9%0&F= z4->k1o0*zYz)9s&V5E=c&{w9l;2P4{SfBNaddk0-}QAVzc21TfBgDz^ZC=`{g?68&GP8#>^F5k}$yL`+0;MHEc;UB1HOa(QvM%IHc?hcAx$j>8A-v`JG z=!@2rxruzO!bJ{_$-+@jj^X@I*aAxS6NyN4W6ZtG2*%b&k;5s-JbppW(uT}@{ChRF zr&`Pe$d?|O*w{&0HieA8YB;QuWc<%$`uaed-p2T$T*8zcNC$&1JqyVg7aLtsPa`=g z?AR|2OLROGF&fG!PRVfG2z1rK3$vx#ut!U$h>MROKYe_>{PWlG=dbsVx1WC*e|-FM zd3Sj`ei+{+)n#tW8v0PC9swk7!$&DXk1K8feo`svb4efxHoAEm`XJ*}H*Z0a58aG~ zx$bRnwmdk zWQ@U-#h3hqujFJtkz+H@NR$I3?~z=mk+N`yp}sV4x_Oa}3+NMmT@i0u*?v6hu{D|B zq5XKq7pPj7=P3S=>6o-Hi;T{6XCEvF`^G1{GVX|jcxC}@F9H~4HYEt4>}OZPVY^FQ zCXTgz@fx(LfKFw#eb!@3x{W68eb2SybUoUsx*7B$9bAqnThrF1KjLbFWd~H43;DV)`tQTFN0y4+J0-iik z8{SGA6^XV^IRunkqy!6n3o$hlb%FDV9kOgxzoQG{t@T3N(#ARjNik3YHPI#`Oe-45 zCN4fSEY~oJGqGGGl8UWhVW8=hrx+vK@G#4?p!_{Fs0B6+J%$9DK4X5D-3vVA`b$FX z#3+@3i-U1#+hV=j6n6|VGpIF2TlA@2!Qdief&z2#E`kwnzz7y7FqR&fh9>p#q*NRD zTWHzV#Ir(&p>EnCvzKX`Q}Pmjn3TqDk!{rUJ|Ey3X|&%2ZtRbEf^o(kPZ{0GPq>Yh z{v<*n&ls2C&%8&{OOY}KUpQ5$p#ZjxGz8hQ7F40wscn5x^)>oE$ykYglg@_PmV&y@ z2Ac7x#6ZS?VtR^-$(4FJgZ&KpF1 zD5Y%`-RPerBA0D+CMmhxa!ADjYBaZFrWEaz+;4Fzwc5bwEBJ+Q^w(zYn`OXB(H55d zCjPKd)U{H*cyG@B;a<+^i%}=hd{>$R!Nit7^2Le$tHD<&cqC8kj@^X*=;IqcMbj6K zk9lNSyfS@3>o-24R}wPgRXmzmFL=6sc!h2I7I9c?n$N&mH^f7V+a9y7B-&zNsj(aN zztG2hgW>(Z|r&EhD$#DOoc(B;F7;YS8E*BWc!n6P1%3v^!F;- z{Wm<5arVUBvm?1?UE%KOab&W_U<53xp0&!dM%}iA1<{Da-TQzgtvT%mBFfJoMsJwn zZ*(Okgmo^DG4j1!E3@g{j7cl=0ZnZDg+iQrXt_v_jLmW`W3?!}aI)U|SXg+0zZC_! z7;n&3!< zN-}+vw7uJ7h+3NP&KMFcEVejsDwHa^IH|!UriGzgYC7k+buLN$cAQ}of1r6Vb&>@c z5^Q2W;=PLVV1HYtf@nknP0xd;QK+khd9d9Cy=ubIk8S%OoN(CRC&B`z_0`hrcE>dB zGvP$jOvs7x7CEvfQ{k`%n`%sjeYFIH)yZ=Xqmi~sxEe_R5HsgOS$ zT!@O@&)U-a%V*FOG__r7*th1?Fvr^VoYW{sS{Kxe*fv>Np#3IF8p_eSyM>K-2M5># zZQoJqpi~jMdI*}J8!(GYgzuuCBy_h(0dLE>dNT^R#HQt1_%nZuY+dqa632m6WK}fV z3hNp*D(iyW6Oba-XiljgG*ZSHrajq-m4GqUboxZqag>g+6#K=j3)$h;V5CKNS+YJP z($YqmuktuVl=5HRNZuIMj;=8JiZbQ()le(Pw$#kgPTD-xQrw4`C$_C7+U^!88(v+f zZDmssLs{bvQ!_0Nl{VB)%MnIuvi!mi;{Y3$8r3T#@}N69TtQfNO+I)f4~@uy$^_`H zg-R9PJ|A{KW_yfW4Qsk-?BJ6i*y0|vn`v3at2LsGg{nuC^?8B1^96F}w6$%us3c9& zPOva_j9hC${*kkaX*tL?#Ox&MUs%53(2iU3)CgYgkR7Yw5F7J?8W@=i1KXInw5+5C zdniwqfE7McijqYt9dy395=3AiUkR2Jac%Hmhuyy!GWsFp2$#NsHUsK;wQjKysE>wl z+euMCn99)x%?k9v0tedFz(wl6qYa{{xUimg=uCoM*%?H052HX#Fs{+>^pY5Li>B^& zv+v6j-elfjjfA({17rF{XUvFhWj>MEHL&2IC(Xwx-3*~>#=VjiYzi*yh^mTIr@#YM(1Y- zrV*9Y6M5FRM2&37@{(G&AeM(l+pUqw3$#kth@k^omsWy!C~UM(Qk__*7RPz4SfhtYIig~%^^0A zeq{j)8Ae5W_jG|sJM~QBvZCK!wove%(Gj*qO*eMn97^pN^5n&RmPF7#{dUNgH!GDW zpRJZkx5x%oJIq{t$&L4;WMi1@VXxCq9#&IKGbNM3A$Ip^z5;+#vbuhtmP41$v_EzL z5S0SBH8Q2@f-)D#n`?t+ITK_fI+f@G2+x|T3kkSkSqWB+{mS}Qp49eE)L8~nf(Tj$ zdNW&4pb0&VtT$=fHq^@Ue|qhpTQoDPol%nA7VKj)_~PY!%^of=nquz`&#;H7?xb&t z18wj#b`K1XZ-(}6ru{QHUvGPVDlkZVBC~{Mganm9$js7h@8^M#$xh4pJ+qM5;obvz zrp;*5%l8MTr~D1M_jf3+CL{=m!;XsMHQ%E1iNuBIHN7126V3#N z?+-*I@q8Wz{BjNJQ|LTUl<6a%?N4V|Nn_C@HcO(H5;7V@n~VjIgkVI!TLomdN2CmT zQCOiI({@jfE;TY^SzTxA8bXC-g9N){yTbGAQMTs3wl;hNd6@0da`|>_R`Z8!wrTUt zTfz?7e8RSO#Wr6x`Oa@Sm%XwMC%2r(+mRd2Q(Maq zqkZEHh>vCUB42Don_ABn%O+#r^4x;ZiJ>E!*`hdQUV!nLzUD(`PBp0PnOrx*p6 z*w+^C7^B=~M>|06Ds7$7wREAe*e*5OU^yU4uvQ3S*C>HP`U)d&#!W{T%!h@pTIVuM z0P`c1`lj)SkVu8V%uO=xfW{ zz;3WW_R<2eP^p9Pf}nLFc^JGiM5$-6jao`mLsSPz<9P8Q)ko?&S;*88`WQ=0Q;SusKsX6(QBKkE-Y_W+@kK6!O{xZ zJ3J9jc=c=3l)cT|-Fzt_uKgOv8X}z$1?$ZNt~OAVCJrd&O9>imtzHQfyez2_I3dUS zC|SdxRFe}}wu%xg76=2Uou~~seT;L^^t&Q?Q;GywCPZYQ)P?o~$Rt-4Mc@BX8#G`# zo)RpVtc^Eelu(mlZarg{*&)m_V8?4%$YzDzkSC20S>TOY5!mk-_m*SPXZEY802jA# z=>Ov;PTa29*fHF!d`2E$3=jbFas7$67x_oj5)CYwb=OIJ&@Hk$cYDO_DX$6*vpV~1 zLA9Yuzp_F%y`~-VS#>@{4f()ayo-Vbag*=RSS>7b!FV+d`BKrh5R=e1@VC&it%+xa z&Y`j1!B3l=l9%|yPFm^~uS@LF9zW4OAlF9}+)JzVD_sZ74(y~9{)G>)o z*kUNBc#r{8`5{Zv&k=o@T7IlMY*C57#05H@ z_Q^*CmGX6d z-~kO?&{h`6SXWB+a0$fbQ_ELlr;=(*=F*si3N7NIM#V(@NS8?JOO1=%o*%W9`+=G& ziooO|yDor0Wuhh}rWtB0#e*CIn$XpF7I6(j1RVI8#!^FAYd)((crxZGy(l`~W7(_I9{Bk$GzyEqSu1*X%u-zAvf#VEY zt#1nH5;@`C$!_H2VSM{#e0TZqT~snS1M?sD1Z!9zRf~YLt**KS{N~fu-S~F=>EW_~ z9LqB*x)V3-{-b70@&DeDc_6>>dTwlT7OZ2Vw`A|vM+8%g`=N1n3diY>S~ z1{TXm_G1acGQXIZViSnw=!C2;FK5ZWLDcfYB@TJkzT#x(R;qde`BIqSJP zoNdnNB--f~O@qvL+Ff;y%C$L;Sc&5Hrt1$Fv6RNh&XDg!Gub^Wi$Y&zbzF`{d{%Sm z1Q~a@1%tPJ!X1yyC$fM{bYskC{s_j_M|{C)EgJBX85GJ5ZD}#Rwe4c*k%^5{S?`71 zW#-WCq_BUM40okZkG=FP#LtQqwnWs`N^;8rF}lpmxa~L^=Gu1*R)>^tkDcw!qQRuq@%aLPz_Jvs7&tIw(-r0#Q%T z%GPiyJNcOtIR?q23vy|_rKg#;I_ajin+Hrvc4+vV@`{8EL-u(grtKbj3NXM$0mO_o zEo&?0f5KOYGM{X>vQMQ!nDCclnp<>z`$C+9FRD zhoUZ3*$vQ?07z}qt^f@Cd~vEB0r-0Vo&P)J|NjF30RR8&ecNu^%Cg|E5FX$l3oF+B zVtJhyaBL@W;@D2?tgP&f4TGXu5@U)~NXoMFv<@(zuwM=^^DrMU!2H0x%%`j$IKMF6 z&8Ea_lf@=mvbQ&|S1gI_s;;iCs;;ifa^F7q_a*z!CH=?wsVw*JRO8i7tFu!-`1kti z7xzFlN942XeH(jou4=kD@n7FBAh^hHl>C zaa2>ATK21*o1tah&Q$xh*KF_L@29%sTK2=Mo#svyuOY=kvkc4j5ozH6y?K*~-oclv zlMpWT05VW8QR*~GqD~x#C@4BEf1)$}9Z@ZkRu_gF_=S${0ncP)2WjplS)}Oj zbdbpvd2xw3snzNi?Tc z-@}sWJHK)t4CE8{wKaOU#zRNBe2B)Djgf9O`V8r8OkWFOdf4s{j#}xMzQdHqxV1e@ zb#t^@n$DijA?!t8xLmoa?c&FDj7@v5MWCAM4A1KP@Z-tx&B-5^pHHr?PA|@{yg`%S zqXNo%ZzZnO~PSPvh@~>Yxp;Pd2OZ|yWIO!+0k%QYNw*aFMgIhjEll&s!XrnAT zV2X;(#C~I$F4=afqv`sqokLq!4MxMjlyh4MnShpSbjK0|QMBREjum!%xN>;f=4@=7)DI?WYm7!s2w+jAt;h>S?T8ip8`ovTS z=Q`vwx+jXu(Jj+aFtHW%W1$=R(AF0-MZ;gZDj_wtE0nRVYA$|GCI5lyqGC$ZJs4w{ zmhFUJmcXcDq>?g)iS7UTq~! z*5-)wlG+nkKX_INW=Fg^K?G}cdSwyp^y=dJ;_~F?@Qjdds|iQ!wYhEG=_7>y)lHYk z4r?5?%oJuak%tLct%W;ZxXM^JP))gx(>Xe+Ox$Cqh=P;xjZ(J!o9Ac`puNj(pe zSmxF6h=Q9I4AwAABONZCJ(**~o~`o^DCFEx`H|cA7p?Ts$~n+sKNUEQcN34u>?oJ~ z3f?X#>RKm_k#rw!w*gCS6bF^GzpY91=@37!fXAa79`w|BNhmEqwPO{0lAmO|$ zG{MGxiPP&bHeC8&G`m&Y3gl&zq&?23Msb&4hnS@DJ!8HE=rTPau)BnIQI&g!YNjd~ zCWw5q)cwF*)zSS>@pjMBZD-cxMm6SB^`_ZAx;eUNy-}hHZDQ}2vk#Hd64;4>kyN4#s@X@oBD<8Jl>>%hdRw)L zPs^g|J`y^}ETBFfxqh3iC12K1$rn;|$)#|&W zi}o&6s#v*(Ak}$VmE5gAa;-{r&|2XQRsj=ng~wD}f2Hp{6^HIsjp6td4O*Wbd@e23 z2BZhG;GEje+7%D3jz%|zH3>U<3V^DFB5`L#T)>pcBQfeE9SJtiC|;mp5YJ`^L$ck; z_le?_7|D-Myprkh4hzqcvPwy*Zkwo#o7|%E>v4(75Xa^9Wr)$dFVzWEs#q72m&Et5 z!RxdZb0`;mCueVfSYAkXs;ihAD(@?K0P`- z%R2!$q*`dWI`1SPmI$5aB+yCl55$gkBosM)PGkn&b2(R*UHEPKXvby+mKg`<>MSh6 zxoaqvY%LnrMoxP11@89zNhPdYB=9^wUG^XM;IBXbnf7DKI!1lNpcrSEMJ@yiW?q+| zRg%O=a1qw|lmPKjcJ_Q;_R5kUUZ%T0y<{%Tk{?iFO0-e9aaS^s%hu7mIisSI)oF#& zn1l0S=G$}2p~<9S8IaC-WVo;^ABxkUd9CRDhYBqx5^1Y^)AFY}bJa$^a7)F|5 zgix8r2t8>Wnw-Te(IO{B?NsBz)io7T;X?@G+PaqovB2#{VRA~F)8+~W$$|#DaTGcM z)6y(xRFee{RtQN5l%wA(nuW$=UDFW>wjh-u)cM@dy^>YLW1F%g>pUr5c4@Dy@W<}n zfSt2bW5;`YZEC!bIi$uv(vW#3{+oSTdnG%PyxnH8JN^o-HDM@`olq>U0zk?(ni$Vj ze{dqpM}vyJ^Cn2~wKZ00y>;o~EBYl#)5h{tHHXOYeJ znZ)8&5A~{henw+tBU2+bnfov&0Pc{vqu4aq%|0D92Q1z#?fH>6ozN?+V5CI&~(;cM8v><{m1{xkH1$S zp&0sH2^PfYRc^sV^Nc0we1q+g>BD?VHa1i7t-&BY#le?u`O?GsY=Z^#m`|1n+YRYn zr&0s&xW&x$Nf;$|^fHO3-C~DqW?}Gj2+w^RWBp`Jl>-cDkNgVZJ%8znvvbuH&T{ew zpS{j_Hpk|xj@06XBckMsXWZfcao!&$@*gN~&l@5-H@1vfBUeY;a(sGKvT>r%7%Mbu zQZk?>PaBu8Vf^!4aZ+b1z{Iup&IC}_sMOn=mtk_A#qum~*sEIz)9|9#dFI7tY9hg` z2JhrTrs2V$|H(EG_?HP~vb}q-oFY)vWeK`svpXH=DHPMfE}G4et-1>sjm4&CN}Jv- zGVb(9*iDsFJB5^}E`d|CB=&)UoG>%hc_K@!s#P9WO}bd(dSZw)@+YZTq?ql(S~yG- zfczUA??%h}DBR%1T;Rc|UzV*Uab@67=*L1ezUm`)O5R{Ec$l}FU0Udhz2IZM{+(RP zt$%Mb@6qb_PSeY#uX{+)KOk@+MTLSu6N47FkACw_$DPft$1OAVOR^0_wooz_N z1eNx`8U>;XKv`g!(+CDoL8g?QOBDc3;(lxWAh z?#M_UEQTne7x)=%;F*STg!#Au>%M0%cPu0 ztbf^ff?1tq4b(z|)_F&rvWpaElKAOdrLeUu77N-HtDz`b9kSI3U9NL6l~6X&Lo*aI z*kipeBU@tO`oRI)TToPFbJaNFFFxJir7)In14L zh=C=eHM291Wo!yCr&fYD4`WzNl5FgVBY&ImgM~cF#txqbwS}RQ7SY>`ChTM_9XLg;fjv)ddDZL;! zBwIl?1-JPIgC5_v7r*4e3I?!ctdfwwCK=IkP`cSBoOV?%yKvsjiqFdsL!~dyKk^lE z-&R@_&e;=m32{g1=<4C9Ee>HLD&0lH;N@ zp;1?zr!*xrJm{^mkBi@tQiLkJBh6O1X*baMIqI?8lIEM~^95-R?3g!9-|lPDA;cN` ze5n#f?{3@gA7K{szu@XV#ki5>6!Ea!G=9m01p*>yMkw7{BpFm_@v=_1oL6h1_v$=5 zs@i@8nN91PejO6_dUCUQ8mty;HqX{R@s$BJ!(y+n*ubPF^sGio!cPOgRwjoLW0f+_ zEjMym!(9fkg5sjF$9rsn81^MLrtgZCa~3OWmbXxc7jQn-ZO0`625CJlBv!6xuLP-0 znM(LLDu5ICXek7Xo(E+Clh?;AS z09$PrV$%98#-n>YC>Z%Zp|7b%!;74&1F8~V`J7c)h}v~X2?l&dMHuA)0$ z0V~&1R#qr=SKzadey5KXSkHT4QQ|11Z&C^Ut7uCRp!fb-oag}}ke;t7Gm zM#PL%PLl=CMsv%C9kOVQOi_4C-JMEXwjxD2gdi5PwS+*ztSF(iBNgfl^92W7x$TbJ zgNR_{&n@S{F6x`AbEGZ3+1_9^-Aa0MQko6_+!Q(?)s#cSP&|K@cTyxr znP|OUuSxJ6*<^X~FH1d*Kp}t@ZHz+R53@v_r-wJw^d}G&zEZ=j!RkXPcV)>8fQ=O1 zIXa@blgC&U{m9h0!6UDOPqK@-;@=vC)*JtfPqw3lhDiBlv^4FQ7K~S#0w_iP3mvCQU!B&A$uGhLEv#rZuTUkPPalV{5@Juu!fM02 zfmYgmQoEr7f?`WD8CI?QNuB1ej@lFJIx6ZjX))djclz_m7rsLVS=>TbSQE>V*S?KP zLk--vpeQ_fEzZ1ii?n&cJ3kZ!Rp`c82x74tV^MFsEJoSjjg7RPiNI(LL0B4+cCjJR z=yze+Y(lUW&St~$qI)+c-|9T2UUoxip@4*ZHzA2ipUr+4p+)g3{6Zp8e)xgJWRsCJ z<67rdPAFAiNFyJ)+>|vd3yT7292l@XYO-LSnzA6t3~yMf4^J`LplF!5n6x6X-m-ut z#Xhj82KMUcrGoB|spw;Rxt$t-p^?%xXcXQ^b)F(8inQXoJS1oW7(Cdd8RUWBK_w}M zVZ9nDx%Fh`-V>p@GojF6hH#F9pVT1a#w{?hqVr%IHoWP!3&pQGRz%xOLwBlzjW&ts70INR zh#oj1NH+bpyP9_q*NH^*)~CX4t|q^L^$Ugnyu3g4^OYM4Y3qK7b7M4+oe%b1C??Y0tIR>CFq=9$P1l;pJN4h z5df;#{rmJ`j%-6WZ}B*)sZA|ASOBq2eP>hMaV`6Sboq`V;VA~qGO!`S5W%)% zM!kG@cy$u4KUWVx2aQ`QnR6~&%-pQ=3q+IXEMUcgRK+53L2hFqP(*pjg5{|?0JLHWgj`YH>dCs zB7LSFDTxK(daNRK78;F0j8#H0{w z;m#M*_n-MGg}H4F4KxEB0>s)YikhZ9R`!QYpv1m@J+X#`xo*Vc zjNEK^H=XMh%e)W|tuN=o6n11}eIzAEpHiVH)c$YFo6*Zg59-*IjUOo2lZB0LYkF7TmhS~WbCs04;Q^~l+A|)VhE(u(lAV8dx!}p$?6^$5>X`9`B&KV3Aw7ch*sNr zDr~VAFw3b2E@op#+Es^Np}xK7D{Xc%NV2^dn3QL-jI-lShm8#a=XglHU4aY;cR6Qu8NaY zdDcT&*i{^+4Oj4mqeTnAsznD+7iVI%KI3valOg`KZch7RW!J=SPJQDb8`HAu$|M?T zzCWC6kCEh1W?XqPlBw#%hpC2(Sz-|{X!sR6r`RiOUnN;+EEPKGCnm3weqw&z;I=3n z^PQqB(pOU~!B&*-`ix=~*k5HQ3gw&F=JF=4v6fPp{Y`5cu>w4S&PyzLLZywiUMkuY z&1j`58+qk;UeY#N93>o$g#M89Yzlrf@mmR8(_(by$Q&V4L!|i^40JM#59v4T3L^cI zC#plU`Yn@`BO(aRFhy)k15&0&(Nt3zvSbtT4$U8-MT%Z3L)F!$yK7RpwrV=0we3rV zq@0kJXb#$)StDc+R={-C7OcD(ZC#~~Mzr+zOJ$bQL)yR^>&`M3GvxS~u>LI`GM1r_ z97e_|QZ!qKM*9gEa7Ay}g+NLy+fE*Ep61jFl;|luD-G`}8+7w61W#@snQhJR79t_M zMU-GdxwP8glen9-LTKlfJyQ)sW}!}b1xTgmIMAM>re-WgSo^W`%~hdB62VN>ASv&) zQml@r&#jR@#%hs$gUyWSFuFNkxMYlE@R8W)I?u+eHdQw>!o>3<6AZoAlTR`91RFcW zMEuO*SE$z`_6kEJ=?KG#Gx0sF9(CctBz{P*489dAy92$#F5eyRHRTEndC<(y%Vh`2 z0|TNX^%crI35o@!^F8s=x)4#kkF15QBU?E~%Qg1tZm;!T4z6?NpgbQRIZASPD0}QA z+0F$CXJnxXHug)LUXM8>mi`ybZmiRtj0rO~iO@cWOBd?@*=!z!uTuoJl+f0xa-)dL zcL4HDwai^mLIfumWXzNK_F?WU!krPgoLp_VZq%Jq!IFJ zJz{@W6;(`&9bNeI?ryDY;O!Y`FN31;h{bVjk5{s{S8H_|VgI`zllYr*i(Id@#?zkQ zZoAcL*1BabqaQ!GX%91Z+NG{)HoR81*66kRA*gkpZWYUDD%;nWdFE+1{V8+KJb}i? zh0Z+PJwN_5-%9xlKnM-i(ZSWDwrj6MS6d;rBQM68FV5P(^P27Ef>HvyL5%wCTG*-t zq7ZGh(0S9SOs!x7Xr=cE`7uinH{u7clLQa=ts5vNj zeZx!Ed2Ax6+o|>Piy*O__RZanGwuH@oVHsy?L7-8LE&`yl!Q}fP}>V%mvDuXSV4$N zgj28Kmu27xC-I=xXW=A@M2@XBcuKEUE_AB$3XaLabX7cPErx zU)ISdmjHbDmAy|zwAvrDBH4CQbApIkS zAkpRi4FFBx@QrB*vF(KBMW2(_4jE=}mG8fZ>2K9AtR))NLSxitB;$P(s zt-$btW-@VvtfU0lFjFDBPy#}r3fa};lRV;rbP`A!71$NCDRd@$RR?oXs;h>&{q9^*alZDuOL1-!S7B<@q9-g(Ox{{Tl8Z=1EgxoHL1P77VC;H zZWY1;3I?m85vj-jpy1a{S0C%hcJNcQKPl-uM24fx>5b*Mmaa{8YlcXx5Jj`lc&uaN z)pTi}o7K~P!TwmEA`kEoDa~4=7Mg3F=T#9ah8K^QTCYx~tAyLk&TBUJ8I6%mn<3%( zJk0Uy=nk1XicKTf?9)-p%Q;Pde&it=dWABK-@q;h2Qz}BiF8-s@@>?o6+rco|-{B0D)j+qXUw|ZhrN$&QOO+^)Au~%^s$-UR@ zZZZG;zyEVo+hW>X%*o*b+QY31B4!KIT@h&tZc!(FdU$qEcXGR2S03lZzYBpCV3>bw zdP8vMwP}@`W5u)I2HV*O5QlJ%;c_q+e9(+-3?J|xwa|EVjv+lLyRsPcjLxQ$WMmV( zy+MQYh=!sTIra#&`Aoqgxyd&%$EKsns zk;Gdbp`|Kx_b398i6~j%Ks|=Vw|I2Km;z`(T>gWyi;U$J^HKL_no1+cdryRjz)^r( z9#`CfI6gOHjAhsKOE!0^AZ4~c1exwsHRjwSsk|8I#0}4%0MD*098$e7br&p{_(T39 zG+do0Rm!d#mLyfY3ou9scB|Q-&#^l-HpEmlCwS~vJ6-=Cu8>G7V_WgwF6!Wwec0S? z2d^(IwircFhM8>S3dHxbOJ!*&f({|F=?6Nu$fg|7`z#y1V&3N}u*{bAyJEtA``znw zeouFLyWF6}g2r4nSP`a4Cc{5oDwh3dX;GBHAWqP-%SghUpj}o{vbYbFXVOr!@dR%3 z2$gjL888ByxsWv?1aC|In?iGf`8UOac|k`5p;>LYe^Y2~aQ~*z{6PNA@(UovWIN2i zS#9ah>?KbjXVjRQgF4>3^CTb9R@2C5qJ(rF7g<;4KvF%~dkF9Z%`L5n7O zYu0Rr%u%$$Sd~C!=6Xx#6^YWMfICAbV+x%j7o^SuOIQ6}HUIkaKV9XWH6E|BXh|CE z2)W3fk^1oDF&E9SGE&_I)-5A6CrnK;Ej`VX2qgt03_>^bp{*}wiiVY!tC}ukcL;gI zPE9Wj&y>9&lBM zE8wJnZv0|wOG58_Ux+M-@*;X*1vsRoa@J%~`V>NGK`x@T7s2YPC_IS~IqMxOhnL)g zTxXba$*JDTYoapuDi~7l>m5A%q!`!~0bi^tm(cW86XK5(VkFou5dy`$@UnP_IQwP6 z^6wO+ts10vf)J$D4apN^$YQ3HAUO+|QbG{n*N~ z3>*gR267t+8#;O9$f32)JC2pz|9Qq6BYf|=d6^2EJ59SB1#7S;dhr?{G9Wm zSWXDgYs?!8RIzDOUh<6)Ie9ykP0}iSUpYvc{Wf^%55Vodg;x(gXt^aZKnYgWw;<+L zlFDRVg1q-ckSN=D50s4)ya>iqy5r#82|d$}PdncI&@=7$wBy|sRYAK7D|bt$os4^< zr^IXFo1pyk`s>esUg`G$qR9?hxq}8}SFx%*1ie%SP^UiGG=yEBY-U>&tVt=6it09V zA>^=#g>q#kj@ZQ-|#HR!=UUp`3qm zu|tL587$hzHygF^xtqJU4u$qsc8fV4+h-Ds+k|eb+P9U_qHXZHGRGWSi{2_0j4Og@ z#f#ty1*3A3#SUCk7mLw|rq>m-uw&;unn}aoQ_Thk4#!Roj*-8o)?-QdU&nTHg zBu*`Re>`P2*wsKdFefy7|I#qrOi0UiM;%h^DL5Q zb$O2DoS25!yw0;P#M%KD%}Rio4FjJ>PzwQ66-&VX;T|lf2;>_QfmYf^Zwke+!HQG} zfx1P;oepbMQ@%GVrbLedNh$d^oLE=u90zUArsAHX$zJj&t68S2n+t2&PU@v%>xBGqKK=fbmF%SM89I(v_0Iz>< zH+;=Vkf48nj`d}?N6vCzw)z9#AWip8t`fn>oo0k{lC#2^tv#m2zH2LfL8O|B_pQHu zN^n=ExxV6iF zUVo?6yYhGLJ1o0%U*#>K$r|V2h~f?O#Ec-XOoS|Ol%EujpJc&Iug6&dwB%1Zbs|O5x!Yv3O@l&hB|0pYAZL-4VvQt%f-0E}AU@E1my)SQ8-&?}K#@A=q}(V( zTnGVNBI3=0>?NT)$B}-gk3a`qq1g=~Wnv!-k6@MJ=&rPxf#O#s(ook4YPkAvRMQ>j!6MT$S z{N@;CjJhBs*UcqgSzFU4zyZLtRsd6I`c9>R*&_Y*L+PvTU{! z7K<^?<%8|FYlHj?FV?-O;>9Dpqr9N&CTm73?jS592`J&vUjPzF2pG8konUJmNq`zs z;G_u8*nx<4pxTzP^=7j!d3W_x!z_xQ!IY`P^{8uoUXt_aNp;PY)s28 z!UKsu>a_A*cM~Qc%eV!N9)&6s!umW4fdaL86oMqfPLNiLb0lFhfVl|8_CjqdF=!*C zdA60TrGoW|6x+AtTqBJKL9Oh>=EVW@%8`&T0w&N1D zyE^x;rd>q2XG;A%8zou3(`y#lN-FO@!_TP*aHHRQC3TZ1&{AcQ0==G10X$rOBWU$mT7( zKnu{p9#>vKi}$i@i&r!jQx+%^0$;!s6^r_3?4`gu)(e14ewNG~fPkQpS9aZ+BqNV= z^jlABTkNw~=D!sCEK#;a7M^dMU9u4%mKj?ZX{u3mXJOXlqnBNmaMOm5YyyG|AKB!C z7(SKYmLwU03|Z&N%Cc*4B*{u9exAM6EA$4Bz*~JWLla(MVK#&WN@lAXl|;DN+-tCu zEdT1z1+U`4Sk>H!J<8p?V&y!x!Tp`eWB(e*fgEgG?(`^w{c9Zt%C3BpQ^8e!7$_|A zvQ3C8By@soi!3|;C~#PCt4LJp*;ACD*m($!^chJ^vP@D>A-sjQi<0m|i);)*hn7m# zIRYa`z57OZ$?F`c`C6=ck7yY0o}W3E8O8g$>?#mpMBgEGgi-TJ$(|Wn*6mESZ?9a{ zcJZV7h}0OOVLGNd!}#C$Pqf=iHTYkgP!-|7;OPf%b~NDGMP)s89^5UfwV5GYfJb-L zyzS^EGOaVU76wEr3K@s;67VEzOqg?6Y-Xx9l?98IxsnC!#R%-$5mICYS~C>`#a@Z# z;KCc5iWzm%4ls>c0~GKn1Ppex6+AEb@>>?fwVF`2LDL8&khtnC=nO3c3_qZu5i&Ih za|l7S?m*_gc=khX6FBgE$#aICr^L7iw9SP;{jQpS{rR5|H6#S?oi&!0p+nkG02?j~ z%?%>7M#ym0n|H|rL8O#e4wEGd(ukx>&qyG;#JXk0^3Mbd9?p>o6~#}o=Al@{xgQJN z(1*6ZfK*x%0;yT1%$cnx!K=Nb-pkk)*u2NKGqB_b;*zM<;S3acb4kh-E)V=Qgmb&*NlBvzE8SYtYb`eT8tg`;RwG^0s$ z&Kzkva$e#mHDf^nHWZ%Vinh)2JAJKVXPVK<#mP-;-Gf@_>pIUPE>>``j9^`5m6hJh zm6guCGJ~1kH6Yk&K-*K$X1saSN!LEUp2L|xKDfipm)&QT{hG>fCeQas;Im6O!(a8H#eXthpsdh7YqO?X=m)qk37YZwaQlrjW0^$F%c1_T?MWpq+4+x=$y>zB$7y=@9K|s+{CC(&6*<<|AzU0rn>l}J*hKZn;G?1qtUC+RGmpUJ}^-bfuW97S5+3a z9vf<=YqsTBW4ESRv${1Ni?zPoBp3RW*NdP24xnPGK)=_W#|E)t1fxZ|5I76@E~8!tUGjV(I4Fi-u2+Gh8cXS z-)Z#v;YYm(>K>5Q9~5vsJT=24IQ06>KE;6EBD~QJgMP3l!z061sKjj0|FQ8ykIikz zJyxBm_ZRvoIN&?LC%kbY9lPFPEAkDx&9xv|Hp9kjcXiPbRYUK zukXLA_FN%m3sa4Jd2>$) zf8#V8EiCRGautciACqSL>d^B)|29+YiEi!^?YG}*bZV`+>wo83^L_exsgK<0es{0d z?&42Vs!R53P5k%IU93dV{l2ePe!J5heW)9{`>;>{G%y6m+9m6@OL5ru7H|D6QC)aq z$U~u#@B_gk>3iy&O8muh-LaqiIqzcH=|8dhRgJ*(lONdiwZ=ZtLgA-K0~2zooid33 z^LhxvW53<)l7Du+B_v))EI}+Rz#RQ2@d?t+{F2HOyn>VQ{Rp$rtDP?=&hhKlpAKJ7 z4o?s9|4u(0wI)CHtNH|gxHx%@|9efo|Jpde8=9XD{QvRq?~LW&{x~0uV26UxBqs3_}ifIU0aS%zrO#{>wh|&7`<;F8dr@Y>)qSex7YU{&i?lHzI*+4 zdiTA1(R$ms`uz3W`dRPqnTx?vyT5(&@$LDf_ha$t$64?5Asw*cbieggYr7JR5OY>*<*q)g0-1pb_7tW{g z$%oVH{_*Vi>dTROzwCehVea+!`hRm~pFa*z>-X6udVStm{P=cv?SAclztg`@2Iut$ zI^cWf52T&_X#Du~>v3^%*`?db-_r}}1`8((Mn?C!ferQ|E3>L#^bX+bo<75 zb2YsCy?xQk}`te3h{5 zO{VeZMe|Trm1bx_h*3fU33ieYnvjG>kXG4UPtu#VDr@UqTkrar@)cS_5I2Y*1|o>K zfBqd@vm2n{xF7f9$KAg(xZ6&;6eI&(5uXBqJZ9&xi-qLc6w5dSou-$S4v2L9mPlxz zMzp9rYp>d?kq-42XyypI&9%KWK#Yi+wapmb8u^ZXuAL7Ad65!_G?ucv>RQ)g>+w_F}!K0JXJa6`5Zci^vui26Z4fotqY?YRXdf zpnjNX(MX=;dt$RL)8D3v0SH+g@wXE4J=DczLKoA8xJ)}|>Sxd`j9N_jOYPNPbTh{1^i#853m&c<3 zl*?I?#(V_MdV*N`Fx}p-6k!9J_;54?$85{Wi-sWB=ez`U$3e_c>}ssW7P#OO9D_z` z472LoEcC50OwDbU2?4t)hV!)!O~&kUJf54CWKU=8h%Yb!>lh8eBJm_rk^8V$_CZ7q65!fnP!9ny>ybgIBAw$Ph4Ot1}W zSx9H(@sgHKt^H`~!KmiTCcT3s3^pW0Ty;mSaX0L-nLXL-m5!!|^nA3)=PWyIht$$; zBUVD8yG9?%DxFfBE*FS>+MbK*mRMnsGcypZT_*gt%%`e|k0dle3YZgTUW+60aE(m- zetR%6_w9l+mQt52UASSnWyx}%-zJ_@%miOxWO1@C_gK`=tR)56)|f-XH8-IUa5ThQ zW2gsmxq!%|zN@5PXtz5%N|bgZw%h4&2ZEhWt&ci(ha*POx~nPJ7_awqU$8W!nX=VtaW z!1aVobz`~Qx~P-Eo(cE5BUPiubm`O9RO%`FUcAstOr1cTDJM4sl^hcXuI<_!gqmY! zq4K&O$Q`WYK+7{i)YBLV3i$1!07akSs} zI-vYrr`03Z>pkKs1T%zI0T)9n4mFpmzF4=QXolq=K?*?IS~$p3ZWTE_EL*lX+KlEy zUve>KmNbH`=>7S0VNJT|CfX^yl#H}xH{jcCdBdDFJWCJ7&aBf}bm+RFX||JwBgD&* zdfKo%;!%CE^-C8%&ra-JYSsR&jB6gM2zQwBDA=89 z3Yr}*A1?gquHL@<+n@a3HqB<|w`$X{uC^aF)UmD?#c}AFyCXL810*n%@clp4i|)fN zON--h7kc%MtloWtz+umR*R0|8M}(r@4;&Zi4I*?{w%6T-qB!k8ee#YmpD0*() zeWwt>XTC6x(9_Ss*>|V1$tQ#1yf%#~<3C>Q-WLcy?bz$BV@GMZrj#!>6+NlpTTB;^ zY((ePxkU*tS>HaH-Ai)xpKl-0w@wlLbVMVUQq-O7WKZXvH{`y3gI~at+?MCAhc7nC z#}WcRbt-#>$KA`WWVKE@y=YXD2G&P5ShT!pqQ_b)1I6K_mM!|!J-g9q*AYSKZJl%(n zVt0QZgYVtpY8DP(uJMbbYxaI!)CL3|xH~y3J~{~anWzo$(4eQBM&v0h?<`{DvR2>O zX8dAm?nl{8E>jV%@iujmpU$R#)>8j3zujnRIn$W0+O{7){kqBe4Yuhg0Yona1zeo0 z8xrp-?8>N#L+DlGbbn{qT40&Avu}MdHZ|i=_MgAv(Cw=4r}Y8fb;)%o*(o&ng_0k& z*?oA@yISJU1oQ*ACJ^;QX|gI|zoMv*IhMav(qs90OElaS`^4vbf8J2cRXkSmb7Lm| zdWFx`Gh_AEOupn4d^;8&ucls>%#RL&Fxl4A&X5m;G^mGxDYI<_~duoDu@le0Kt>YM=BSiZA6EKXQK-3elpKW??*n}TIwIKAS zT{(IW&vd_wd{-5VF8N6?y~n?;X+C;(wt4UOGAdISeCs7_Dz_V^JP zhwx8|AHkl+k2HaN-|-{AK7Qm}Mf0YTyid>%gnfj^M@2oi{VC4!`yTfQSm-WNgA4Cn6%lJ5wT?+B82N05O1 zfLOmPf&{H}x#W)~BUKDXlZIgEk0VI12|ibP9Z>3E zn3xco8J&%Q4G-(x_7EqtUL)9XH4-;;Hm4M0V9E;*C-of004zWg6y&I(g$$UIgOfl=)_oDES}~ zm=p^g77^2aZ#2{l1;Dd`7SD|c#)M*}jq>qWY$u#OM@n~lAjol%YuS8H7mxucFEmT* z4A>o*QX6%y^~VvyZGE6z&+~EZn=cN>$eMs?9a}@aYC+cP3ed!pb7V@g?WUJqUs`S9 z64-aZ)o5T0AjIAv*6o36T|H%Iuwl8qc)lBVQ@+e; zZd{IWa=wLKvrp^(f;bS&fk~g40F*uwJ$T@n5+5vc2OnpNYcJ#OVjFu_!on!fwRCC9 zWUIEJ?B~61G^>_;JnyzUy;9;hH=3aPCdNfoC`C1<(aP8iVu>O0ViacM>ClnMiDLn? zYD#c@V^ij!g>XzlS(9qKuYt*?-=0j?5XnyLZrLSyQ5c>gNSOX$OL%ml2>#HOMRU#U zxTv2+ODeL1)i~I-1`B!!5NRH^BtoBtM0j2QpkIq1A-aP-(-AA} zMB{skBj|oLi%*nB4&~*l>#>3rx^r8Ge0*goKCsyWDU6UI5(ox9+L!IM3Kee8m`#@@ zfdBzrN?ykrYse}Z3p-+sBDvUWVy!H!r?@;S?#dMg_4QzhsC@-CopHHW!s*BmT?FRx zP~2|z1Gqh{ify6vVv`3@^?2SvR`_65E&>LZ+$JQYKk~h?DC}(#9ks@kOMtUt1~!bq7$RL-fOwPd8;M z6%8yE6i~q_YH;&Xl}@1)PeW811uFn{n_SdaW_6qj{WL@+udhFxjP&04d4elx+3xK} zb)?9mp30a5Cug6m=I*J&eOk*#4lBxpH(WBSTJAdix;BUCo3js<)`c}hr}+v(i>12A zOb$${cI{G4CD@~2iyfjS(DS;@%m4Ook0VK%ZOI>n1P5NuzFdf|G=ugAD;(dJ~+41MB{3+XqvKZP9%hnKF1Wo8x8= zOk&2;ww?K!hZHfgRaPq!J*D#vNwnQ&lPp`|pxCMd%bj!u%9ltihjCO}l>}gDF})Fu zF4dbTt05$=tfW=Cy=kg=Gnp7^`()Qo=4L0wV_upY>!z0#G#_tCL61A5L|E|9v{zvG z7Ob>vU)`*FwgM_s+Tay0_PZ(9*HXAQo_pCG2N^U=S%z89gkd+HPgoQ?5M<)HA}%~~ z9JIQcosGpV-E|fV$ilW!%6g!|C?&Q`Bh}A0vKDoHKxn~7IEiTW<~c;ya8myqPHLBl zGflM7=pIg5WPydPNY=1OikS3svy{%XB*65fnY+n*W?cw zOLk8p6?eNJvvHrByHut4IZm|PIXjrUjIOopc~R|qT9Px+!=b0T$}Z_9d@o?Q)^dcK z0}!{vxrBO6Rs@rmdjmVrdD7uE-B$BuS4v=T74($p-h{`cG#FE1H!YGi2PF<|3|C}A zTa$r>`YoSd^(L&~v&KLJ=1uMk7s#@XqOZd4D3_Ab5$EiJ9Q5U z(!L}CgPB4+!clqB!4{lH1-(hR=6a$-IxUZH(4Tp}SnmDqtW_;kh5|HlWn;A-BfY2} zg<3zdgOuAL;$}jLSU!}oDF%bIx<>jD`BXC<2tLRRA@poif)87G?>;HSrLDWnw<$Rp z?HFFqrQx1g($j3%_3=iqH46yDPT!tb8NTdT!#0kYf0Atn^*cwtPYYEJKD4YpW5 z>H;PuaaOopv;@&FtzlUy11A;p1lR2M4SMnI?g~3_jjjsBj141`v9f8 zbWepfg3>@AH-eTfiogSCsfHtJ^yLU#)S%HN#G(Oc9-$}cUfipN zKnlewJ`ZV!{>$-V3IWgyAk`5UYT%PPrvBh7e2!faNP|tCV^`Qcc7+|jACW5%{ejgF zpTMiX!YBb^B=(J7U4veIgH+!j)i+3Wz0cE*261&$Z@g%hsmDis^AbokOSlP8cEnr~ z_6(}$V-B7s&OFMjzQPa0`GH_OloJYfCh**4d#>P)vtT`fb-9~#)4ehy$go($aPE>T zI5c5)Cv{Mo-c|pVk}cPo%^vF8qvx_h4EM%Dm{18aY@Y5w`wy|79N=e zEh`_7c#6@-W5F84Jyq*=pk(Rx+7bcETa4c-sbx5}sbfN$!u(cm+je+91l9{vq`Edc z>j6xYy0b56KIaVQGoTG^xY)s+J&;b^vaoqpg{HZ?H`?XWVbMgGL!=_nXr*bZ{)W&@ z*Ly24pJr3QHW)RNyaPecaOFYPig&xoX4cBkrPeP@7cQmA80rqt4LZ(7e%OKl3SAZn zBkQzGLQVqA^69!mX7edbPKf?KDR+L8@wIJFW(>;DskO6{A!@ZynQkz3cRfDhFr)2> z>lQi$VKu;Elo21G4!b%%=TEl~S{sfU813N4^1y@R()OAy1aa14M2ha>h2F9WXkiY= zLkY=vh6UYfOgh`1+oa*mhLp^6^T1m{P-{Z2WH>T%x}C3=<9u08_z?hQDN^iIRPJ;L$PQjo?|V2Mtb zP``sOcQcf0snjH1NpcoWixFYZyR<4reVh@a6=!BqgB(swRG|DGT$uB+-JUBsYW9+- z71@Zr_6otl4TvyzvaPL`?U7JM6g&&9%{Y~@V#QI6)8_%kiRsC_=+Fm(>|i})7M6yn z7}=>fCvu{<7ta*!i(W(z9f(eN$oc0=FQSJIL=8dlV_rl?CpAITsHcP@1ho5@7tu)u zYwsg6ha>^)mJVCwQ+%z-eD#g5{hsi(OA_!4;I%sH_H$;9W0W;|NJaWH%G%s(#`$^D z50anVB=PJym0HW!$GUx^Vh`2rIVwh8M8)t=K*ez6;J)<`6oVR^tU<-#ALs*zF8l}a z1QbJ%?*PGXQ0yBN>wJS^pX#}lrb?1GpjhW+P;5iyP|*?BXbZp*3Q=2oMMLMBp+z95 zEsw__$=Vhd4U6M=V286f>*njVwE{hVL;7uvE@6hitHm~G!XAaQa1DwL3PMS1P;6ow z&`>YXbx_*atl3C!x^f717%CO|mNdq)Y9iKMo!xIph5;z=0E%(SC~l!sX9g;s*&5A< zH7Ld#3NXmo9Cy;mMs&k=)@-D+sEjcvWN~^xk3ETKwJB^cHo7nvxd6P13rXCk{Q7(0H|oL1jMxU_hV0-LLSiztAyizce$0Vq~x*G_alH@5Q#k6>c^bIYt)4Nxthw zfxPN&h_G}<;8D}v`c*kmW+{P8GU$qN3b+*2m z6o8LCj!$ zixS?;`hHP5@=%aBb}yUnSsqE3kRN2M+m1K7CD5j!tT+c~K(YP_6hqX(1kP=!<_usGfT3XhxF?UD%B2Y}}72Q;0|X1WN9z2|_YlNLV_{J;TC=bGw7 z@Ph|5F@0OJ#M%w-NbsjG-q}Z}4F+#JpsD`W7LN{p^^ea6#J;ySzY52CCIf#{`%<0VF3Iw$Li zq<==`E{n@s;NdrqCD??28_Nk^Hg4@hb_yz1DY zTdyx(O@c{)uO`84o~UK=*(8`p8fQ5!@ly{xGtl3%dini(hXarDR^G;VMIUcGGF~w? zN4HEj03j&xueUc|fglXMn8x6V?TUoq`|O1nK^_(5O^jFdxPD~3B2F)T8?Syp#;c1W z@C&S0^#<%Sw|EeCf8N1!TfCRoM3+_N`&Xvt=bkmwQ+?(CQ%e^8$dXm-j|-M8;u9=c z81e&udIy%#ej6IP`7E`Zi>J8?wF)S)XdivdF-Y{MxhgHSg|w zLsolM8?tn?05o#GFtlw7YRkdBAq(4GG-Tn?LqpaY4$Y$>>)g9rFHmD06y;OzZps_( z*DAi(8J&gZS}b{T zCCP%OXc?0XdlHPbxk@sfR*@p696-yFmKr~vTVrYB4?7as z3_W1xdg*9Oq-x9A49vKdTE$HDS3%%=hCCX8<**oq<{~Y1vA1ytJI;f=08hJAxNRlt z&MH$wcQ-Q~0%{Ua?#9!$mG?VI#CLk|q94=AsEjSSLtr-B&rP|5V`aN7tyFx8T?p!b zU`S}<@$p^;!Uqpo>rFxZEGy@dP%!DtH6nJTMXt_9Qpom;X=BylEW`*@M^|`Q24PDGy zV`0hji!NQtr8w?!>!Wu!nk0z?umGL*K`Q1GR3Io+{3CgHhr$wOw+B1d)GwR`e69FP#m1v58NItiPkMcNt^Z3cc5at`^xiqg&A~LE($&|J)UOwxqxtz`I^nH0 z?W;wg{gMIW)^o~h1`L!u*;%f#PQb@&uSi|ZYV*Y5KmA}xI-ovAxXJt@w0kpA`Rnzf z^17w-MMd*Qa@7wrPCGShb-IycTQg3K*x4Rt^f!;wcj&aYo3{@q>%QC?=jS`WD9iQg z<(AgfSDWCEV+9Senpl1RfjzYPRUad`QEE7|!GI4hG&P4whBbvxfuiN39-#}kbF8*$CzqCRKyLILec`2KP}w|^Qt *Z0K&; zq<>5m;slPbZN93wtCh%U4*z^5@}ZKh>#+|Nb)6FVP*J}>CGr7wo>3y#JG=h#D3QCl z7Ti@^i91EpHeXh-mZq_099DDd>Tej|{aH)>yHA#-XR25U*o}()>&0F6Gv)qvSFs!> z+j{AJXJoo#+!t4w{z5&kaQb~%<;Skgue6nu+-Y~K zs*V-OFxZ$$a<|TcrYFPoT~*P{Fjse}=~oPBX;!gT*ITPOiz^PB-u`i?IH`Tb5WHL) z;j(mHe)yHG|akGbpes-eyIj0=j_)O}4H`(W2Fkk%R-~Y$8 z8sSBP@7u9FThe3T^bH0X;d)c%b%kAASL>Ho)z=%lU+3^yyVmEYB>eaP^LG8u+;~`D z7^HQq)ctA@Y;@Uct3jANpBg@6kiOZj`vpCA&G7z2FNbI9{+{vuLSZ*)&sXaNKVEA6 z?H_;tkFRWk>owe!h22)gJ*v!6%C6`8dg1#TdAKm_{{FwN7%Y#LwRpWSs>%GJH~j+_)ney%O@lV$eJ{;S6|_sf-i z4&r^L6W`R_Zx|Qd&tJM?_p8;z=KW1F43XzD{Liy=ea{qn)yfrq_kQu+Q|O1*XJ6uA z4;{Jx5(oR+Arg=B-oM=O;AiYvUaB7S0|Ai_Nyj_WAbxQ9GWM|pdLFD`-{2p(T};)@HS$U|Sh`~ewQyV zQ&azXJLYLM@BnLupy$`KH^Q1vGI?s4bG7h$PLTwnI84B`s6NP$1l%M;Qr)i?G9-0t zhHjW4sj57L{p%-WNP-Xys69B|o+1e%Dh`2Tf*c4x@pFp|N#H3%(lI~LU45x}>^no! zdom>5GB47let(b_$;eJQkA9{?syJPpzG?R9o3Rg0U+d&awXkds!jc|@B|Zp?-V|OR z2VOmV`g*s!uSb2!4|7uv4>!|C^=?1By9pjX1rZnuLT8UQ57e2PszUC+913oqv$hH9 zI$$u2A8L?<8)wyZHk-qb*wX1ue0NZ_buJ#@ME~ruIy)4jC3f@N;nsaMj-B)~W7Lf@ z9MxsYdqs=4$Fx=Tj5Q8VvhyT+RrBocFE>&pco@ncNRu1sp_;gm8>yZWpUs1Gp702G zd~^qSIG&?PcmzQY&$ImjK1g?TnpwWH9bJ*_$OtP1mN;d-Y&i_(-wyiZI}6fx7NqYi zNbksk1o_pnjonq(x)xiHkNW1NEJ$+}%%Q5SbFsZx?Rv9O797ZEt}LCXO9ztO8;mR}78Eot3)o-wt++3_MrWyT zDz7a1u{|);NuhPw0&K>z4ogy*t%uvrTva+NiC+!3aj-7*#eTia^IN~+~7*~EMV&U%6<`!Mb9k~kocoJ_qg=38rVjW+3QFwd2gWarDIYgv=c0NjZQ ztE^V|q`$$UVI=g&fImQ00-a(*!w03Vx!)rJzmM|57BJniZ7!hNQ*zHY*=NE+iGbx` z#m&H;Xf67yr7Rl2LYgEfzw<_UIGwfNPHtF9pgA)G(K0$AZF<$V!F-YHK4>nqjfSb} z-e^)&Eul%DngG<27d>#`nhqcIa|a#!1ZA7*q;!G_6;5&|TrDt4YT7_*31;nj@)5eINvbZe}iir$CA-`eF{770=@3wAWV1US~g!pnDwTeXTSlSW7w@i zSQ0be43-wiRS;Y*ny}Jz-QlFl6SIY8(%{Nj^Tn`&iQ1*>6=-Ysm7>t4$^N>~A2!-F zS6el6@~Sb6!`Bop%8s<@=qCYRQ_$d^v?(oLle5r6dM`qu{Nf@be;Z57*Az53d9C6o z9f)?O8gI$*JG+LjDQGYtZ6Zds@ZmSUCO?JwLp@>KtDJYdus>@^+C{M2nqFBjc*7c6<{37MNC+CxWS_;5yshO6LrR7rg~s@WA$?&;Ul>wS45?&M?Qyk|2t#rir!=Qp z)Ua((t*}8uUA1c!+p-mRJlnAJpx)GBB-?HFCf3-d@%I=K2CnF>Y`Qi-mO~7Qoi#ho zw#iJb+>+>pa0Q-kmqCggk37w(_LWt^$>y4s#gN2U$KtU8RWwwpjtefkS`9^1Gwb%C z>$uzk*r23qJ5;k*Gf=L~lhY8PA>o#`V$iY3abyV`nVrf)tO!W9H?CV7!_x`LY%f`^ zIaSs;T(2!l`SN@Yz>R6PED-%^XKkqjr~<~c9wIbi(FCg?=2o|zoWdI8a))zJcG7hg zbH|+VCR?NjHmc^#EU(pO`5J4=C`OJTWP&$IG}mfo5w55YfGIc*xxPECMFX7b)GLr1 zA&u#Rgyf25s9Q!KuPJ@dDRAg(%UW|V=CWYjdA01ph8QjdwYL_v?!;RdmL3T`v^oL8 z+`Y}s?0#2l7F3>VR~z;6knIBmU9ZZo`fIDE%;@4Pkwt1_yEcP`_LOK2A&VJ7trd`m z?Vi2mS2W!<2D6zF!e*G4**7*_r6Ys&UUdtJtj?E;7;F~$*j66!FxO_LB3~*|&9y*g zOM0IjZB}ZHRHtQPTO=?-D0>q&9Cm3cXmAeJXKhZB0jkbwkSG%)aN|yhVRuwfdj!6v z%Z`#?P^C>zo)z<(tdpyOYX)s^bvV~XO4G&=E-`|RaWoZ5s7}|fwV64wTlKj;D70XW zqk#(50;rM!(-mYbH;Ki1EUk0>tl^;9GQFDkihrtjZ3tI*Njy2_bSpqHE*G!u^>Y=f zxT)uXDX!p3V^}IRoqV&and4BgORc80DapiG(=A8rcNdV=wI=KQszeF-$)tnflNxWm z)(L`e^)6Mz!CAFvY8$aH(ee`3aR?w?*>mzez7;gsr>cyksRL~-)wXj7He?(h&l=NZ zqk~%t3p6HORBNIpz#2JW3v@ZyhS?H`5TylI$yrrY95*_hwgxQCu)%DVv?O?K+r5R| zF>QIGn;enb=CN%)zj06%&qG;=9|5F3D9}7GX&1YKtKbv|gRJ81DdHTPLGp5nlu<5d z5Uwy}o8yb4dKsP8srE8Qsinb;#aB3icH?n=KR1TNZ>u5nxGv(i#gI-B3<*w!A;CEG0-cAD(EJPXuJGCs zhU9N8Ul>v{3@NncFAV7mL;Avyl43|jOjju};W;FxDMH5>Qe}@J0W3XeHD^ACG}<0v zNEkC7utX8;7BQ@C<66JGqyVh}k88PRzOc%RA)vCE8Dvc`%Q(`<=j#S+<|ivn1DUC~ zHK{sVlKX_fb>P*a1ePm#hH^-d?+j?Sv?6?fYA~w9OR7K)N+1!c4Fo_sfDPHUIFjU! zqcRErY*$*#W>=)iR2`Jhh_fcFwLV17tf559QSB z=2TW1#F#-yus7mmzDQPG&?#xd0sl&yNPRH}z{!B2C*&M#H)&*oL*+3xfd~-E5gY^6 zXT23tDpYgfDo^KKaRG0EbrBRPQXnBj(U2wCU+S{7gp^jBm9wi?Eyvp4#F7L@bF0as zgzBV{U1D;p)^xdUofzN-U22BtLJ?z4FPhQ|Yq=rY-0QgW>Z-+B7g4%)qnjVj$W_~N zhs*w;Cze}`MEA-7>nbgQvS52_ui2GIkBsKLn+uN(b+`5YhAv8Om7`n(Hm6*7l$Tar zt6>Y8v8werqgiy8{Q?4kvvyCJ=%U{5tOq(}0qd@TxC-u0*KJ5$8exMP=nm&Ze>fX1 zL}S*-lT?8rD~5#jn_UZ`%MD~$z;uO09G5A{`TBTTbfJpVur>^+!1S`W#ru*%^lDqu z4H~o>xZ5L}WC_<)tV=<#-gC2^vdo*L#E(i?XCcs22sd%2*+*7O1Xd^gjayK19s9yL zq-K*4gk}IZT|9?`*IJ=>Dl}GAdiGjJ?9!NrLNLHnLsO(%0wGwPoBOv>@wzNd4O5lB_n4E%?g*bdnmpfn&TCR0h8&f-*&c>o@5V4#k!6cCzU}j zYqr;{I9+kn#-hVjZoiIO=(VQ`jud7+PmCiu z-!qO*Ix@~&;I+#Yw^zaUtL#hQ4D-c_6D&l<2+d_1-U#b059mm)8WY)ASwX!Y%K| z{}6*nP2`oJLGWfyHPVXzJBAgXAriWQK_r-;*i|@@2Qt5WH1OmkrIE2os?GI^0)8Kz ze5BX$i5~9hb&#O$S8Tq6So`bO7P4E+`&DRuBer@MIzixdp%aAfCN#;~K2z)z!|R@N zTR)!a=SZSmV0$ypCT!QB`_=<`hE3>-u5V24blE^7o_**oj5T1^NEI!Q?^we?t z~zzWeZ3-XN3V0UAhHWgl6Zw%d*cLQ%iUw9BlmNS&yNvGr7IYFSrOpJg;L24 z=a3sQa=va|w)V(ykn4Ci3x%D6JcHppfI;{$jEP*LA6fqi47$1O_QD|^sBW}!CoM-7 zkM#QnTkFRrKS~5#$5nZ$nZrmTQXg(z^e4ue|6~M<0S(|z9WE0rLNF4L2<{#@B1lB> z_xy{;{E8S5&CiI3;-C9F21L>`!g+XKmSCu>W z4WtlKbo;h*#AUuGdpy5mA0)`g2ln!(sVtOee~GG<5%J`Ytb6l6pHJjZKg*FG;n79I zU@**%qpUe}f`3^vzjTaaV+L{PY$<{t5FsYlp~EHKGw{dH&u@{S9}$>e!$-)^mGqRzIe}zvGvOb6Dg$(sI+)1-l#~MwsD6@As3%kO3Bdbqt9D@cW?i zL=1`Trz=?$ck6O9@kq8o?A@yg82yk)oc7hb(!n1*vGd*a3tz`Dt%n}CIdC(lj|-ji z0LjISS^7Q2gaoDEAJx^#ir9DT?_K@rmq+#4d)#y`EJIuhKVfO@e+`w4(Pb)E!s~Gg zUq5i+Qk5!?R~0>_ok_O6eAE`@eBY>&CO*>tXL!L;SDqDQj7i4--J9HutEhsK5qLc_ zmNK5YdV92(QT5>O8t?jFo%6OGJZtDL2aV^V0+(CY1B(~9?4$pKBocTFT@NFZnqkFQ zhJ8w#%t~W)lmhJbQaNuTRl%4q3_YF`O4VyTb4}INLg8)cFolZl?c=fVJG#770}HPL zNO8P*s{ZWd{9%j6$8xW!x^noLq(4eMVg*epHpJZ{?_b9S(|TH}IM$J3uFnW{@+{56 zgo+ywr62z#h5G)_fBf6QMeL>@F^<=Kv$uHA22WV(7y?j*Lgi_RqgZU9q}6_v?#K-)sfcOMWG} zmP9@GYiwWiz~zezm)%3Y&!Z$!GR6Yg9=*(SLz8}=SYdkg#B#=pa2_pOg0$n|mZByb z+i6jLOD9WY78@IXnYNwqcI zT0|M~eH8uX*Yf}K)2P#ZCOgWAKgVPz_CrzB3rBYfj*qS!$pO5e$s{?gF281e&3pqh zzo*lh*BBof6EaD+?liQj&o7q%#W>n z{vNgo;h3aHGKz7+W-!(Jr#LS@()Hy1-J9q*seQWs;=LM3*H?n~*y%b<_#*ppClEf1 zR>n(F)Agn5Kj8$<)wL7v?R>iaTvgK^*4g-R;}X@$M6w=f&lAgtI#~SWjj!(TC-=tw znUjTQ<=@PA!mDg$?Glp)f+3z)4^q*a(T5eRkAGPmI zj!Q%P^(Eu4k2hQXd8#|F&6&K(&gh1du_VEmdvh#G;%^ygEl3N;KkX&(w&b4$^EQUS z>Vm^H8Sj}Gw*S%ezZ<$1$2A5wCX%_1YbA1w=aMJZw*LTmd~<#-i6*g*<~=|lRbNS# z{bcJlH$=(vL-NaWiB(<2I)U|&)q5^^93|Gv=?6&U?*wtMlLv_8U%&Ffx+j|{QJSc_ z_l@V0D%iQ7Y^H3*SZYtUu{_(>8wSizCDZ8^cagdH5-0lnke%?FZS3zHyrmGnIfc>Z z-1~>+B>{dNucgNO|Ic_|_QF+#*JbZ{SM`a}{ZAH}mkvAobVHr*qzlsq|IfT0_>Rod z3we*yqR2!745^`Rkw{dBWui#es|VfZP9+fUT7KWa$+u-6$@6ki`S7iYkPq`=LgGbF zmG&oV-W2OCABJ}Kp${|O{X3dnoBNsXI=tn0UsFZ@Ms2VPVNJTXwSnPXd#4`>67Hi% zb_6c_52}GE`##S8X*Z_*O0IdooL~&AN_AbtFU0hyzQ%qj#u%LijMg`GK*t>Shuo5p z3Z9O0_xOr@%y)8o+RdHlAK%^=EtTKBtAB6Xd)<#5*#ih@&l>010hNuV<-2lPa{n5Z zd-etFUq=330WLNg^*+}J$s&~Na@!xY?;ghjQwOHW;GVJ%-@UTg|N*L}T7R+)Z~1lS*YecQ=%KYRP-y!ABUuoo)P5>|Z9}$~XBi z#*5VLTa%)uzgzpW=yv+7Du(dTEp;2+5m7%HN`)SpPfLhg z#gDo}_uMK|CXgFz{6i=Hb7}k)`zTRqedEm-`{=F7vM&)LLeND5R21Lm)yI^HHw-R6 zb*8q%ejc2ueGuXb@_jhn{(ipYtEm=mmwsu6{AUz8bZyV~7}UuGC3-kfC9{$_qUipB z7Z?Bms8A@N7zSVOp&rQ?AW{u>1V*`M=|^lzCrX3D=<3ZhR>z2_wW;qV~ZwM&}Z z_x(Qr00960?0s2sy9L2!bRe5P$%1(^t)$ z;eF2h^jFW{%oXM+?*em$i3k7`7Z89Wz#y5W*VdIH350uic=#3`?&)v;ksckI*XFnX z7#-T*&J|7Oa)aRm;<<&9xp7}556NHm3{$pbb13h9I}lPlmk8z#(+T1sR}=q{ z&E5TZl{?HJ%FGRp{%hc;4Q?dl4h_*1PupMj3faO@qui+Mk#B8zY~yc>?*GuYho+^p zZ@=#Gd`>7b*wC%7dznnhBcS)_2Z2>IQ}jqtz>nh(w*wV@A&*7L9bVDe_$M^t*S(xG5|pHv zRPGD$*MnwDEi#nAN8%_7Zd!(!Uz}7%Oi-%faRQi?mR{L)(`%M6`@4(!-Bs=&lPLO& zLVK;~f8AZmyR4ru^>>)>*UmT*42E?+7HKT*zR zi!ND~wQo!A=q6f^Y~EA9KDt;O*t!E_Q59nXDBT|VB=DKdX=W~$q$Z2SiH-{Vb?tK` z+jb*Mt7$~&2yG4+1I8Id@{d@G4*OB1VYgU`oMCAG`e?q z(9zdDA(P4R7~dZHJ73BX>m5IEA>x5;-9W?6geeLo@~NfUw%$h=IUgN)SI9Uc$zoeJ z(Z@mwf9&YGjX#z%gjC&uO+LDSBwfXGcjZDc<9QFx)ILOC;L02&yfQ&9;j-w@IDxvT z3%V%OgJyPw3A#RK_XMpJnv2I(?lUc2f9;Fr>zyr{HhNS+fO9;FZ)sv5P57txMAl;$ z|5pmWuL$$6G>F3VV66PfjnTO~w=p(UQ4?)N*8*h5l50vpQ>mm-Z+F3Z3tU_r7}y-! zmR+-F1=m(gMN~hu1c+-h33KhNQB^FsJm=yatinFHdTtft8%B!^;1V%WyC(=eKFEAw zft*WkxVF7MsoXX0qVJCET18*j?hp#DMLWxTLYDXT`z%-4-_GR8NH^Pnr76Z=2>TmC z5dex}&Fyb?53(DmK($3%WCg3G>e6cp0BzB!1wp&iS&1*WST2}oLimtswG_=5 z*vuA8V+D!fPJRW8!vvJ3pGKM)@f$vYncwm0AoYXKW|LGu5mn5hd82IByb1T(lQnMy zh{Ey39`3h_zxA7TO9t zmdNh@$Nu)Ozy4XlSpwRiFPn-4-2?HkT#e8=VCfwIBr5$)mirF?G>Q~4L_>&eM>Q|< zoCSd9om#|#1~a(mv+P3kx2UT6NN%U*#z+SVE*yXQRN-#qjF}40KveiTkPBDgb;YuD zbr2Fh^j8bvXG}>c@(3{%Qx>JASp@D0%>A2H=6Iiw%&2UEAnc(6aK;*I> z73M=Q(bja4#sZZ@_9g#10m1@5bg+mTO)&#^%8rUk-%#bgjE}^+?0{Ojts4-*O$SdB zRcWA-BNFQiGpMj210AgP-(km(M2qXnnrw=y@-DYITjz)&^o3J2PHeXoj1Bo#n{eXW zK-LEqXBo1j$krDQ(MM^cpW0kkoPM3+nmUJwhuMFiSUu+{h+#=_j)v?w4H6il0)-|G zGMK4={nnN{NR=_0oC0D(hMPJTsNTeoO=JqZqH#n`>gnd}p>dYvQ1=ke>gEKQ1bd4} zw20Xt>8fsei16rtM@Nemlm98y6gp_!gvksHr&GZq=O00rgcF6 zghYU(il$;uzHkUt=bk;nmXkz{YsuWeLZe`1v`4k)ae91Moq|+dzRV z8Wpq=nwbeUt@nmjH#e;knh84ayBGBN(E_P!TdQYV2%Jl zyFbNj?V2z%j0%?2lluyCAz6{Lqnmx?tumV*Fpxq83ur!5!E${NF6_u_2`bguPJduQ zVxw3Ifx>46T3cW2e6 zP6RWEKwE*1Lu_4SMy^j#@!czz47+LPj=%ud@Y8LCYxw&Mn1-J<$HsI~*0`)5G=sC~8x|i8Zy?9ROF#?d zZ~x6o&u~HS{_C%Qo=!y~U~8@84sQ^iFehvsi5Ky=(IR%_b>>@rexvxlyBMA5>r| z80ODS6E$#Nn^w6IRy_P|u=V;466uOCTmB7x^VxF85Z*}yObrdA9GYSjj zTze(RB8yOT+286}2fpE95qz(){Zk&}@hl{6f(&wh)wf2x{p3yXbY@OeqHpG;%Ov}4 z<`|cGaD_1p&%4ayB=(A07mfXOFYi@{3fVXQLLeDN4tgJ%aln(cbp+OfFhpMuwi-d$ z5ie`(fTzNnIpA3oZ{dS&nyj!4N7mT&kO0P+DGE&T zVUAwAz1{l-lz7YV;>94wQ>>XJ9Ih`;ruQLS*(!6k z(*L+sLGpo|tBZQayJw-OO3PFReNNIf%NA$Shg>)_M^1G944oC|Pm^R&ihJm=7Mzf^ z9CPo{oxM<*=znqxk+XD=my~q1c^@yy5iCni5cxJ_J{Wc92_FJ3NU#WgWXO8L2VBc3 zNQ8X=9~5#DLRaT|Qz=D>x(z|YARqV=RyS%b)?N^bFds8KAuVacZkw@-#vhx;GR9qd z)+oa6=QC$Q2y#j7-{4FB0x9zo_mY3`bT2Cxjrz~V)AeoR?(X#Ja(xv5Si3pUssU?Z zG`K?cDZrc#Qp$8K9@ZVsPAGt#R0JbLeaE>-nlQ(#IacE?0y|j`zroEAyLjy*g zo2;>mbBUKBdPC^34{HRs+aw3B?iz2)1RzO$?BnKMu(L5?5p3orFf@YAoGU>Q><#Rh zC{f$F(bKC{x&Kv#-*Epcmla&hlk0y~;gjxv6>VZ5&n4sZ>LXPraDp6i zU9w&Um-)iFjj@R9r9zm3X&F5FI(W>W1$FjKn22&8i(^xS2?#o%l4yu6qz`O`AyB&q z$~32|btZ#~;?qqGY@X0D%)nG&)sR`16s0Sa>Xmy2_lu;;1&@*F7JG)IwluE2F;n!J z6D?eOP%@R4+~!&nuG!O(u$MJU$2AJu+%>W-dIR(o_gjYN`7a#$Z|?ULcZ7Aq7hFNZ z!lY9=6Q48t8OskaO{$I*o`K1%1qSR61{EmSexL&7F$*hrLlIe03|9@b@90{jumaRq zNC9wW6lBKsT@h3{m#S%|ua#hbW4G~0F(XNVY9T6^G3wP*!5fLp_W4Xz{J96xL7o|1 zQ`u#g^J7M#-dA9=c34C9lGAnFza_gMIIi7Bd$Lz}y8emOJ=vW|NhC}++~3aQm&mSr zu7tVRTm8(6mc*doA(dby{U}%g1NW++n;IyBO$7?ttAYv`C^v;p>w@$v6{t8>7O4Q< zvE@Zj?17Fwyj*T(+z&eZrQFg0NS+dj2g&U$z-nf3T0?wFN9vtM#Umd(jf;{05P#v= zfr4)WI)KwAA}MAdSr+Ekk=dtcu)^I`06)Th?B)p16^RRqWo>?9x-w)GW}vztr=KpE z-xon*k_r}#ggY}WO@|zq(ZTA8Lv{x}EH^WAy=K|a13D^jipD9n#o@G-Ke+3Y+eYK2 z#)-Bq_YL&5t#ch5lECLe_z~}3r>a;sJ{=;dKNdGq>>fF4!hh%kn>;gZxaG_!#o;U# z$h_!|$~0!6>|Ttr2XTSP@GK3=$$^gD>3|`d?s#HYgFd|V9o@+>yY(AbF>cexo)^1K z04%;m2P`9k`Y_UE4uLw+(ZQPX|MoIJWwsLdHXmJT4QOf%iz`wZcED@7bjC5rN!yuZ zp=pO2EVwwKm704j9dwRV*yuSD&N+>Bjx?JB>YO&>Svn{L(Roo)e|zl78epB0PexwC zi1c#pOkj311H8~GC_|+^0EKaqFBiImSG=Sy1_X}E>JSlXWsW*o&%2NBr$nF^Ly{EivG82X=@n*CpLO?X+% z*fbpKumexJ&4ydSqW>ty^ahN3{vfIo|KxA~@kvkG8NK3Pw9@bDv-O2MxBzRNRgY$f z#jeH?RdNmRdM9008Sr)|eHtvg93{k?T}=T+Hs}Dd0tAd=(q*SYgdtU;7t1`@I2HV; zAi`{_-C)DG&Mys6|7RUv*DbS5ionchCr%QHcG9L5mlgb-dkqxfwW>^qMe2082lZZm zc30B{Oc$$)(Aiy|RPGvgkU3(lz!7ncZ>pkscy*y^QJHr9SY;CSM#;u0HeIU$=Av5f5%CVDGo7iRW;L)xKM_*$bDTIM71HF1GUDuNBkqkNuq5{{K z?Vbp4@f8;wEbE;Ll&T=X4S_~i-9ofM?c(XKn6R^yfps+48I{?E?V&+vUOA|@-k5T}E3yKolQ25VFD?oadSTagM@lJN3U z^+|U;-&X`uF=FYJ{QN7kRVm%VvOYg~RY_gS!)pmrln9B+4u+|>RC(bTE07y-4UNs! zwkUcubzV-ga3yAzEiYV&*&f6GsD8mk$YErAN%K{njC7NcC9tC9o#5SE0=rb;cVJCR zS#tk_a;Aw3q;KQ=a_Vm&s*7OXh$f!!4r6BM<6PBDNaKo zCaYc{a&YMtay;Z8zi~UM`Tax!Dbv-sl~vJZbxctFJJpSbb_y;txD!Y+ zv{Pfj=3b-FrHQ#AtGV8Zywh=KXX^E{@5vjDoeqbfHY&9y zA|89%xmNgkX_w1|#W^WxcUO6cu8zatERts(ouC~Yf~GW+c=FRpu@73(ZDWO~$N~Gi zCbbm7r%6JXB}u`l_jl`K)O9SL%cy?(G)ex2kDpp3<7y3#6?2jfc_?51&HA()B}`vv zpB66)6pATHOJWnj@X%QmMI$1{iK1PfHh(m3o$2{MOstNjkel1c*Z&pVk!JaofGn%k z&4h)8Ot0CWT(fI-Tg3Mb9706i*CcqkIljw#!An;tBo}BSA=Yhg{_FS?u3XAFr}dF? zs1%EHW2!SZ;5hUxPRPM!ft_4p&Z)enNC%3p9Vi--T29I(hl$mf(P!uWA&%T%EB3o= za^l-S)&~~X*W0o>uONc;4PAjoU|tw~6}DN1TCs7KUr2h^&?d_iwn&U7%T&-{bxWy0 zVWwv{FO3-};H?TOSl+oEGl2Mf5CV*7$#}rrSCoYvZxDf(YWr8v20DFIv>5dismBZ& z!<`x9-WVNI!7h${ZqI-e0%8?F;L#QQHT5nsNtnUAKDoWYDnG>xVqLaHMcvjaT`b%8 zB-2LT|7UP>`OoUxK16hU0A}!rufcA1G2*4Wuxge*FeOlkkPaTOgd^PrbfBX|Ct{ch z5dUXG3hpe}vHoLx7`Gu71*u%rk~xwyh|B9-tAlkAv0KdB_KI(Aq#N!CpX*AT@Lt_OscfyU$p$+ zsy(`tc(Ro5yqcFc+d;kTv5E6?k`dCR8?G-S?{18_n5T0*GCF*bJQB2!lnI<<4JkGS zNu*18^fA>@glvvko(LT@=%5V8V*~gtd~81!4+IHkda4QXhe=K^sYDVG5-w9Lpc3H} z6nbQmbb}e6eM3$HoU?>XjvNw%o+UU3m);qtP;$?rXtvo7Z!lNyZqEi2lH6b=SB8$f zF9gqQflqjCGd@UQGY1Uc#}v^5-JN(MV<(7fn**8j#`>iYVZjpWgRAFOF}^Fc$N=75(Ihoo>_`I(ICD(E86FaER0y)>#2?}0Bh*SGpOyOR7 zvc&wyZvijjoRi?!n~MuJxYB@A z>yg{mSAr!=q7X+te3-y&g7~J|P_ZH1QmEiby4>j~l7beJ8A%NjU&@0RJyhU8iH%f{ zV1^?VD1BhVY;QWQ1o;$Hpe#vLzq_``x+M=pXzEI=gX|h$DXG{WBGv z=jh6iBoR}evS-9g{-JiL{~iA@XDoE1V}A@HaC9@wZ<$@QmF~!j(SJuaa)m=g9*~y8 zA-ownxz*AX**I-Q5^W^mh<5bXjE4Wajy2}>7w6kPLmaEmNPfOwP2MP2`1V7AX-=)Igm$ch&XsMhYbvRyFW-{x;`Z$ z_uK>NAVZ9tU#wW~s5S*L)0aPZ5ehNfSey55h!Pk>0g*|dz?k;3|;FM`DEg*O3F|^k=-a>p_u10Jgy|%l6z>5bzQ>O-8q~hD7VQw zsyIO&&8b$CRh9gPj7xoVHIz+NG{_et1FfHfm$R-#K9kGis3QJBZYyMA-LLa_M#kY3 zFK$erOz?j(rH$!n%E=VnBNJCRHpH&%yo{c>>U1pG{#MB61fH}jBqBF}phLf)_}*$wAGl}s1& zE?N%q-`2;}M+lQkU6Y+pZC$!HIehIxC?PI&E^uIGZs}tVf8{(TT@H`&3>4`I7emDy zCLWSGx!;_l#k8t4^cjl*=>l6rDqv{JeuYv?z$9r~h;KAPRM%Wr)(o#FXH zx-TlEw+5bk5HMO0GegyJHQ0fvEDhCHBvZHaj-8V9ep<(I204ur?$9^_PyRAYU6L&e zjege?4Toi{!;ytW5c&hn;0|q5&K_6wu~X4qM1p}3$(iKz8RrFy{3RZaJ7ypMi-0aL zt%$i`H4CIa-Zf0iK9==9hyVDxXCl5J@WtV|Wjl|0kGQBf(D7gPxHTr?75zIE8_Pl! z?Xp^9eRumENs0T+%}L6cGp!YR-MLic$v}Tu>8rz*H2M5USkEXgKKcfKGfOH$PM3)2 zuNKk_xG=kkrI__L5KS2gyHm}Pl(zSW>HX1~eq*aOoor*ga++R2N}{8X)%zIN{Xn=b zJ;&CwpPfDBh)#m=RMMxX`hchgq@&fAD3P`Rh9aTa3=b{L-DH{lWG@yQv$BHI5nb_@ zKgYNb_fHEkDq2H(VxZOgH}^|B!y^r7VFijrqbuhQ#g?V316%$BtG`4356o2uqN;Q? zq7eV+izd>82jthhkWcY>WBR478;3a|Rl;A5l(yYFETjbdp+{8Ep}?cR-w%-Lk;jJz z*?dXJ<#_&&p<*d5MOEy{A^B64|L9x#0bZ;Fg5IICVjtgPm51mcJ81AeKVVe+z9%PI zzP~uN_1&L5avUI1EANP@MD>F*D;_xTl+7VlUh_{O1!^nO%0axJKZd|$|6_RIP@k+g zZVP}Hw%ZxweDtq-_YJFFt=?3s-O6bN{qOXqmg&ALcj+$raMh@y|2FaWkNoAZrQNFN z|2q#S>gdPQW&2#~*{$z)w>S62`bD*R^zZ*RuKZEvU!+mz^zr+Bp?Fj2s)gq>{*JHd zC&$&-=J@RV$MHDdJnju&@>iK-{_ghiQh!euOWL43lE$w`7sr>~!rS2H?YwYXAp`PO z{<)x-`Jr7_>%#X@wSGFfy7+!}Vw|XkSty@%+9xlQ@m=3k?mEx!`}cR+QO^c`_fhBwtZ>8)biu{QQ4>snv>^hHQ!PS zt(%-R(Z6TA<;NR-f)vjAdpCd9u05$|=PyI)u~g2I0q^dw-kwI-!B}taJSRQ}(;sI=L90 zYu{BeVC&@S_4VTDZS-Eb=neMk!{_VU&eO3t8Y?eNW&edg9vUZB{aNW>h>!g9B-1f7 z7rE=|g=V(yTj`r}PEB{xy$eNnyLB*pIL%mBcH#bex4r*Esdqb_^OF2}q#oV1h7Y{1 z=NheA@BMh3>y(dg+pSFgJrg+P1&CA9^_NAbgJMzuD zsSAp;%8wNxchuj%DT#tu+OG}=>2|t((aL;(&JUF9R_{3dYHK;^?f5<|n^{8|j%usu zOa?r?sgIv(ou_`KQK{4#b-X|Dk3UYnzn^FBCoTSV_&mwyT8|U!-Z~m&5Uqzd>F4W_ zQaI0^*4nkq#Z}|!37Lk@fX}_*P4VX9{_*+k@=^SLc4nTumkXEo-^cw-rd&C{z1Qw@ z*}?UrUB2q{Dkn<$wk}@XPVVp3UN?7~sTb|z^zePWe|2oGGM*azPWzwJsw?E2U@8v^rXg7JJYI2lb1&RWxrWXXSJbv z+wKfo{mT*Jr|WdOGOFI(jV>BTmCA9Yf;V@iS2=%krhM}-B;V9AA6Bq%sJ=?t#qh^* zIom=TzO7&$9ACVY?7`@za&y~hpQcYQ1hu8t`#HH{XpNgU+juZUy+;OodTJWu#--AD zF4tSNdU-!@3<}rhZzndNf6e4hGR4#LvYpGlzSLT^e)UvsUmc5G6=@LrwNe_L+&;Vs zFKWG3&zjC&{xP_`ee0durqO))aa(>ndhMKk=Z#u}KYNm{3TE{!JGn1Qy|G;E%5Qe< zrv(ODtA+?H=Fx!H)FAVr%C0@|V!Ec&rF!M4dS1CXwJQ-cBN-6?G5^16>n2kkw2vPK?W6L&{8UvX zfgi}nf`z0@wW9Eqxz(+|lutY9$LWA7SzT*s*z*zk{-`|p@i=}zpXABEz5`w#N#D!z zbLD0#zAn)Bx#a=7Xm-c96KPUbFZ$(1D|4|LOT>ei{iaj?;KBL-mAV(+ps%fLdm!~6 zGQ?UybgkYzlV=bC8k-xX{_dW-PX6u#u{0 z$iqff^%wGg#QFI2bYglsQ>vnu1fGNyILBlhyKxjetm{HJqY$S8dmSIH2L7}hsPYRD zwid7q2~ICuHQ+w(0B~+{KBwuLHR<#UTHeNLNyeH{~4VN^Asg{65CaYhy`{+Aoi9|qJLRn;y?<3%d*Z`Z;FR2 zKeiY{P=Tq<#t^x+TqYd= zCcLTC;3)hPV^~OjaMFE>KF|#hg3fn>Ug(6q@zCfBg3&d@p-wt1ke*Gz`?ryj4nJ?) z22T!pd1~PrE{-&ZhNee~s^V5;UPxMQ|3Qs+XY~avDjY4@#(ma>6hC`MEdX0z9ThL_GMxW=j92)3jXWl{EAYh09_Zv8pcaRd$By1u(DaZ0q*7i7)bd@kq+Zo=q@K-(Gc95NW#l5oF(RDi# z2JNBezK*O>&&BSe&9s>Y(kPTA1RR zJ&uClDx?8~@3FN+ zkf5c42Q2wU1xvzr0u{~T*nw1K(P9Qn2id7qpu!Bggx76gs0;m5)(6i2*-PXQ2HIQ; z7%XM>0U3SqbS;Jz7>*HyU7{7xj%oSLqGc%dyKJV~f#mWZi#`)A6uTJmk-<{7bx@H` z1{i7jmT|jlRBjhiq6RUH7$5|d>kLqGr2m$&H|%Z>6Jb8sG7?Fmwsk_lQu-tzV5_k5 z9}$U$AlnPM&$z5G_K2f{E-fY>)7wP}wzlX%Yuv7@w}nGsf8y&V7nW!@%W%HYHrVmh z>L3f`cq-{m)WGl+X;uJ@UXkaf(JS&PM)YcjGqRlItAL>vMGKXiHN-hyjDW468=H;} ztO&|7w!thwG#9pI1=NcUvx0}S^H{-ZF$>ywadk)|3kracZ5yEbdm3c|aRvVr( z5yy-t&2ZboQ=+NhtuS`kv}N&sex_GTOxJmx*{l9I|H*+G>19p3|U(CB~>i;CT*R+U$o;q+{s87NqA zj7}Q6{xw5@%s{b|i`OT&jmAxl6}%PRjfNY5b`(`c-c1L)S(c3cYsxY=qjSG-SSV1t zUI%?VADr6^!O-HIO^Yvox136Y`DB8UoW#sDOdOAiF}r z58IX%#J>0nGA5~jX%MAA1*xrc+}Z@pmQDjeqPXV3lpkmBZ9;NR=qL#}k*AX(u#ghf zs)?k9DYLD{TI@5M7*n~=u{9fG8-$cWTu`o5G%IM;E&v6msk%=X$ccnyNm0!VjICKVTrM2IY-lP_&p{C`Kb zJn8kWbRcSowsQ}Mo*AehEku{nWr5D5KC^?DAt8yvD(jG3>QvdKAUjcE&`~1YqQUJx z+6l%o{OEv=6uZX^7?EM@RxoZiLu!KRAcKhxUQZkuJ%4e1}?6op#mCofip?Vm=4QMgrxadOn>(uCdG`bIH8sqFsRi;$E7jFH|3>4 zu=u8==w?Kl+s^<3o2KqSY>`6+6lg9|!2;eQqk`3!MGcJxto}y@5|-yi1q!$&s9;@_ zI#uizPH)R^QmQ0j*<&Y_NVVuAnB}jJSI?VP;6q^6D zEm;x=D=x9Gz{01B6DyVOzOw$BeDvEV6uTHT`50j3RU6$dtUyT=4DgXvxeqk#Sa6iw zQ8d_90Q$WciWM~A#sH?1!zF;q~g1g9DxVNQ$d=q4v>oU65P)k95|ajODb=WsG4zQ}{yWQJVS zX+=TSaT7w#`S~4_4!Wsb-)tcQXW3&FA|Tx_mZ}Q4Evx)rAveC4UU6Gi`BfVrEad+a zIS!xF9)7WzD)$d~ubB!K^jb4TirgyMuvB9q6P>{^-)^qPg5YtNi+V_rh0$zpnz>nf zyTO~Q-BR6uT$;4hM~-wuBLzB~?r9&D575u2gn7{exg06T;Wk(si_<60#fd(^yT$pb zqm1SD^v9a4suv=Gg}3Pvtm#0cI_IjN@v_a0g~6iT%&D}^b2XXcj z`LU*}gT6NN``j0reo_^+wu^$MKX{*}I84cQY$|R1XBYj8#&9q% zg@SWmb@6K<=lgU;-Y1tUF+u&9!F|qm>mIFDH#NnUDqkarT~jnjl~}(G?DPdB^+7V( zY026Z9oOB$v>rQr)S;C~c`0|!e!b=vB;I0n;Bvz`M-C7Q22dR{ERgD1JmVdqdVB&e zrV@PP=Ue7QBQM$cQ2OHO>=akKT`}EyO+MzTKgsbE5&VSf)8>!HZ4BZU-6oz3>IVzN zI|CWyE<{&+4liW0JEambL$F~OWx24Kxjy>=zFbbHQ@`p)D@=^0(nns(r99$p^}eXh z(tqBla0yOiIiYk^#j&ano-@b_#ZmBl(Bu_I7H`T;Z!v+O?d>rlhJSUCMJ`u(Zbd8pm zHIv8hA0DX71MfAgPCmX`T)R1<5s6Nw7g2rWR%uvgkX7o#i)pMueXO@JM#OD4(;nk* zqCVDJ6E#_~C#XI$%+v>6xzSDVwWB^t(*R%``d*6raR`h9FHi!nx9sWq2%IT;LEAV4 zuBr2SI3j^@91Kd}^`2I&k-!iRUNUp|6kjalV-oHL(wM|ac9F(HZsGXzLkjSva&De}Axl7YW9lHA$_n|C z9OPv!LR>zoi?iPN90R)C+YnZbwcJ@R^C7~XS|)FR`-=Z@o-%!juuQ{M_KP!!3zA_V zkG!#60S^NE7x%<++ZR7wP4)ymu`DZ3EVq4;(lEZ>{y?5z-;L14i($NxH>yIj6-0`gQrZPkc&g(7+y=BF4J;zG=?0CfC9M5%80Fq zrS1fI<9Iart%#Y%An&T#pQSqcP-Qaf!rPT=*{*h2uyGx)9@TQW!CDIhTo3u_{&s zf-dN|F%nZA-{w+a8aO~$n?h-*itAMU1XdE}H^qFV5nxJuhRS*6qFQHlcvSjK zlnfwf4F9M6nJ5`R&=?L&`7=>6*)3oG|LlENlHFf%EWpelA%W?L5t5b%g__izsv;qjFy zc^sja7%a?JrsQ#iUSO~=*Lg;NQG?}}B9DN?RM|CH@cS7o;adBLFYG?Dr@;pfFE&F8rAY{;Py&n5R1d{#*oK#li6F zMMu|NVzOM9k@;n^>>>2466SG)USzU-Rl+=u&`V5~>%5phlgR=;MEw||*z4S5`?_Zz z4bg78ZOwtx@tXd~=+l<(XtD#wA3Y}?811&c`2@sA&9k@qPXuXSwQZ8^HVq^={vmni z5qNuLeP!P_OQgH?eVcXw%BkFpvw)qkxTv=ZTdhPhG8QA_;5$L%;o=KCP!Yh(o@EC{MYKAKEoU;i5-rcO44~@KNDM^*ljveB3zF;v zmtnc9?}}x4;F3YZ@vFWUUdC;WEFBCe<_`+ptpB1B>Fg zZzDS(UylsyzFx=eVeLy6wPtH zrUiN%&JW?^Rrq7t(tX4H@cY&c)5>##DaBndt?uUPtq*T#%Q>0^zN*1z03+%-aOZ`i z*}6+Gv69@nix7CI`*&|6*dZ7wPKLLmUThja*NMpqW2j*^B16(iUrOMy~dZG9f~EF zB+uZNzX0ipHiz9NuRqiwNzwawue>LSZv44<44@2vw=EZNNwiS{^gMp_CKO>dP%m=h z?`)fn{|P!6KlmBM{d}cxr!ak-&fp_@);UOweOg`=%B0^`Ket~6JY9tZ{B487&%6wH zioyno(0+?`z-8w-T(S;$ij?9D@cS*4fNwb4h%Rt-80p}NGg$lE@Y1Rs7pw<a!0lBnckB4TMKURDZbQbm zK=n_oYPqL4vMLeUZ=q_jN2yxwDT)|ef?s5_;6DSwd$s}hw_5&RE;{_>0*%T&Ma6;( zaD1JKoqv>x%{|^1dJ_}-5|TWjjg7!367axB^sIA`8vDe&sLTufhV9!c{--O$8jay+ zSNzZ5mQ05BTPXg^j)=cR@jqR4*E8{ZHyitqXgmpGk9w8PCB(aAMe(y&B6zfo&i(AA z2<~B{r!T1~k5c#B*~2}b-|&~P(VwCeK_ax@LRDXOg4QLf`Z@>VkHhah;^O&-S?y0z zH1z_kUuU&nhTuzdZu;>a)!Ufu7tkb$*}i9Fr)$_PPoa+gxx(rPfpwTfPt?W*AJN0k zL2B+Z!!dI&0us0Uz|ea7DIBA}TxdQ06u#1jht@AUb>xDzMEWU;yFOEB{e)ya3}TOZ zkBiNxk3~h#qu!U@zlYH4oV&lM-G9v9i-5#rd0=cl{S>~;UoJMEeu{bs50A}XR*3x) zUHufgRX#4zu}_iQ`S57{Wg8AI(z%cK(*8BW^*ehM;(yM!+Yb~PIdN`0 z_=ui!4iaLIj{GrGEdmlZ`bd-g`TV56gvtJVj?zb%?3WcHzF--^KSk#0U)p5f^I!_P zJr>+c2zbGYg8$hI#Xj0<=YRG>vG=gr`HQx&-!WRxKZPrDYf<+rsB8W@AL5Td`z_S< zWo0-oQP)qAFM0`nlVsHIF>qE+J<3AokHrd~9m5#CDM50P3*@4Mr7zO2Pq=5DA~py) z*Fry!CIq?hOP@iLn}^o-0iGxY3O=HzoP&her{hKY)!z|)dzJrm9?idA>FrBY{?oZM z&#bGPMCI?{7h!~l>HMciJiP?Le;J+s6gj3BU^tP^-}6(nYWOWvzs{r2MN5Xq`(AIq zWH^(giIxm|Bt>2cf;mLf^H&Xf6OnjD$U|F(GoBf?jYy#nmr{Z~T2#``OokiMHXj{X!f z)P`PvW|p=tn1ZKSW|B#|i3x4Um%P&KW%K?B-S6w2{H$Cj9n&uE`L3gkbu>Yb>G5HR z8#XyPuv=$vZiTqXxDagIZ_v3d58l=sJt8WOJPio9w>Uh_0CB+m1jGxN>_qoYmR^2D z=VE*x61Jy%UN5wVndbSkZQu2;)=5>+VYb~|N$UKU#jrqRCo+pQM z>%A9yT(;Gv#V>ZcNans#($Bbsi5)E4h6}vSL%Y^~Yh{R*9-@mi-S-=ln>7tqwlO9VA&KrIUTecm`vf#^w`oy@=H^m`C1?;{`hTSyWzMcM_2@d3clLk z1#>jEoEJ%Ry*40I_>Ft}R(|^i(E8hps~NT~*MS={xN>A&@U*!c1={}j4JRoAMhS4< zwJ47R4Dr_J4{(46SewdH_>LYP3Q{n^nH}M8g05SO+FW*Y!47XM?0~vazapwrFp3jk zQh^_2Nejsy-wtDb_V>4by)464RvVVHfzMO}o~-;^ce4)QW?N9@=;h#vnxeR}_a}}c zG>rj|@zFM|y2EPTf z#SpyU(ovz9;S3!@VVHyrK?^g(!01mkc5M?MK=HxC{>68+Jy3==axB+Uyw{OsK$fBe zQw9P{y#NjZhu>_+8p*C3KyQr&JK`Dl`@#hhD)TPwJ3x-PGe0o!0&!O`BU$NfzBrpN;@cfhPg~(U29z@` z*7qz$3#s=GH@*nj4%*`DkJr(piiBs_;Wt?iy=jC{Ib;K|D+;4&ND^%njAs7b1?(M? z`H=Jla^s`0c(DS!f}8)g4A>I>Hy43PFwQWz_D}Im4}}9|-~t632*+5`eHTR6(tS_< z9jMRm@b7@Dz6rXfnxR7d-4GmAGrxtuVmS565cb>6V43nAAz$&}&O(#C@plA&MS_cQ zsDr*EaPWQoEzmvk^7}W8pb?Cw>EGv?tBIPfd8_Z?S6%+yaIJ5ER^P(jeUAwCei!Jx z01a}~3;4hfpeKj!hl{6!zeEeE_@@mvz6F@p)&Wlm`a5EdJn(I!ZN3BTwf$6}K|O7B z6v*c1cMt&Uzt6u#$PWn))_{Pns1vdCAG}5TL)>@DnT+}jL z@NXO3@4?l%Xg2lWf2Et(7sGy4Dw|_ZEVi1B4#ihEF8j~_v}Av0;K^vA6ne!DNi|qi zCkG|C1*ffij+?fZrSdShB-*+0d_vUF9NcR5s@58!XwzpFqvbSP$yHTy<~L?#vdM-3 zVV4+?nnTPzM(2^@g5wK|TBTUZ+j-q~NT#Gn`N?Y8G90a?4A!Ym%k0$$6zeP1f*_U1 zN~Ty@GOW!*79Rqv>21ey#(h-JW;ERx)zGF?^(JXz$!8fm?YCD0jw3{k6dSm^vWl3> z^cwIgP&nnaN|dB@UoVv>^HGmxun=IYQ=9b{=9=Ig)y#Xv_Oj+SluW76rg(#Ib<)Ce zK{aP4P0`fQHJTMhM!QB`=Bl_q8_e5YkDAQ2iON)=RS2-?_T^D|2G3GGo;2tH{X7IM zD(pV7SR88QAp{Vs*Z{;TgZq7~sEhf^ylfWr5TKZ^O{bOYY_Vo5V?V{u2lb}X&k2jA zHfd|A37nhTd6yq(Mn&ksgB7YcXa%ox71I$rBGh1T9a5liMMGxIsE6GG>ef86Q&gqY zP~%laDbw;at7lu{ybD_vo)OdIb#93(Os*-3D3PzYgYisHFLH$LlxK{n4X4XqO`8ou zfG9f9+Kzxu2NfUD5wF2xFeKIuY_S+r;Uz+=B2KVUBlyWCCXk!u&^DZHP)*ouS2JB~ zLRyR>H`b1YXc3irEP`i^RD%`}flhIAACe%cBBI3s;cInqoP(yGiH~Nv4kSC6J(@4l z$M75iECl!^hebzUfMXsCJeVKg$6>y>E~A~52sh`06@iPrmD_RA8oXv3bFJ>x5G~aq zM@*-n363|G)FIak0jlM8nWeNE)@f(*eyW0!&H0+qL{A<2TEShftp%j4AsNdMsZ2&L zBblm2P=f!DDB7Bh{+@(Gdv;D@x;|5uE z(V8upNufOJ29vU9xCqr|XN4-3Z?Sz%k#U_wW*I5R;8h_6*p)g|wNXMdqwJtCrzpBQ z>!5gfZt{KGz^c>fQWaLxvegrFu1~FIR7dQ~OlwKfNTmVMe42!)MNyJ1j)0@N?3Y-m z%QWVbQGrY29-mjU>v=zyRZ(}Sn~Wt3Hq2yt<=&#U9C%fx&ZuiinRK94tuRHfNXQVpecxG7SOxti>t))l@G*eWtHZiFuJ!T0+bA;AzScnlrRpt0<7r z=zChZRnMcH07_4TJL*zl=YH2+(|tKjpv0ow4gro>NFVo_MYfI08AnT1$`fs^E^sYV zbd^biASDPJ$`0w3WeBhn6yS}`a%FbW=&)&%#w=A@$`mtDl`1!7YHT6f zUroj^vJ3$#!@jdFt7W}Ek;mQPB3;)jrPMf`<14lz)y7Dl8aK68DlaXklFTiIS#QV` z`aIR*C#B46inOui7$)nf>T(?6kXcDiq3oINtPlA<18Hh~*k!sxr#WABb2dtNL~7B{ zaBiI%)F<5`*0Io%juzKNnP+D$sn}V~d^Sa>RwV>j4^YrrrV(}AnGcKkGPFQTd4S70 z1hEUQ(OP8EV@=@fhGf1D@Xqhv@73-%)i5DBCD_>g8E;>|3bUt%gDLV$a%wR@Dc)tE`^t9xwwp-C;)71Jw#AK zdjc37?^Xu5+V@f&^EiL(<+mMAa{Q0?=YRhFKMGO+MpLvz5yIUK2+6{%a$tl!Ea0Cc z79Y!Xn=kb`EED6}hD zJX3S+WrLmMyIUU_a59<-_-51ZQ7|br)3(UFpL6&^)N_)c!c6q|g-y@je#bF%Lx0dn_$5*B_P!hCK9dqC8fJR# zL~mmP?Z}Cw`9-_ZGto?}Yu@^Ci&$ai%K_UysyV}wWc^W%{mqq=Q0=O=>Vf(&9!NGb zNdnqcO@&#P?!P{!xg!wwcNj4={V%Uu5TH}C=GMDI53D+(4P}vak5M2;;b66ty=0LO zvLD7mr@&Y+1Itnk4EK%D-Js=H$&}kUhWYWG+x5NdcQINQeh%U(I{Vq`^_lv*U1<8y z+q?G5ehwnCDe3bD^^{F@sy9jG-p_=u?HUbV`1%ZA2a9BU;p-^AwohRB!q;c`!oTp9 z1Yd_cO58%_zkKQnIsxK8|NbBB%SV^ei!Er*>lQTV)I#>YRX9G~$^2o73o^XUSmFYU z`elDj3kDhWV3!8>pG!xANJ*y34K}zxW~>MG_)j|4!-cAT&aocUpFinX59+?3bgbJ4 zj=haF&>Lw>1}W*9Y1OP`8XXCvrb%29SGFY^w(JO=pJ?apb!|$rEt`^T zjuJI_75Nf{*RN|TA@#0mE3u3Gy5`q!yF%!kvrP)e=j#&vnD0?{>+SKmDx! z-ueK9U6wh1*2sGWn2?@ZL;9$bH^bPTmb+TJeqstAPM+J1JtUgPf1EEd-YU6W(9o#? z9H^Xi=q$g(bkBn6ap%BER4FlL1N6*;fFkjF4kMhC!$KLdMx;4msujwigXS>~&#gn{zYfgZwO^ET4+e`P{`sCJLgZx^QzbKZ6) z91Gxsk;R+>{`q{7@+|UUPd}Zp;pb#R(?OQFsGa9FRDUFrA0mye!O>sOZH8SDze`S) z11z!Yw!4vKaRYbY=S$dciTqS(TpRJW>*_?_7xDTIL?HGCccvTXp0e$FPQI-fbr0L@ zsAumwC)_Rkg=b8c6K~&Kh$OK2z8#yG*UOMw<)I>bc`|q2Zn7B5$?`z%(ZN__o#{Ug`>T%7VG>u$0epCr;TcpAz6F+pzp`|MBM=mQnolhGm2# zKmLxzg7E!)lsLWN8IKk<(1jbGv$w9g|JmtqD1*n|&0|l1T1WAaj-MaLym|NkIQ#rK z6sIpPgS}zr4NkY`_tO`>#t<04L(yx1_X9<*88D)o6}?7Dgk~skbl3EZp*9^Q@@|xMa^i}fuc}iX%WPu-0@%q;FY<6`%8XYtJSuwcN zg7I8$?Y0jqQdr>5FIvu;-YI7dWW#}S*2wM4S)(xdif&i4rd~-<-#V&hO}--FVpGi; z4IkdFXN^(hS3T>mde&d{tiS46-?N@I@2Q2fWHdmPSWvU|L_KSrnS*-P3an@~WSp{L z!{Iw(M`8;`rdr5^0H^dIrPk(yNvH2tFv*`{1hv*FpP*UM=|OjlS69-!N+OC=X%7vq4Oh%go+}h` zLPZo-?bQ_Rc6wwLp_=ThP*id%H}5#KM)|YGy0h}fsaaIdx{E?iM`X)d(Q42wN}^Nw zkzQXo?GCAka<9!5`4XXvCC%?i!+BqDs=alC=u$;g76i5L*7*|GB*?L2N5!36gDK;i zDRo}06gYn1RqJZW$@hgU8`iUiY*|=#nM^0FXDwF4de)4n@B?hgP6eU9sb?)SZ}qHE zdpVs{v0{a>2LfJO_)@v<(8Gq2E>k6JN!66$)K1eWfilo8Qy%ndCAd69Kz1vU>2icZ?ClpS@=(&RW(oGWdXBG(Yq zlKSS*U{1~TG!X)Hg^UWSDu1je9PwatE}_I~*dO?E4sqKBsN8ldi%h1EwdyOr+L^es zY6WJvyw>G<>1?wQ4VfRfzS-A=W&z6=`l3kJN0kzy)hI8=45_j=%zMj)l*K0Fc4fHC z6zuA3I2l`6Gu3w%%UOmeW)*6Tj#UGSs+PMIWG=2tQqGihR)Z**RsF({nQ=Y1&{)lM z2k~Llg+^+?obUkYace5ywC!e}GDpm$RI_G1*w?DEQ13-kZ@t2LHiQjJo+{1q6MOEF z&LmYFNVy)N$zxCMmS>Pb3H3pyP%CtxT%JODO=Km_oRKkD^yh=(G_T2((L9YurIRaJ zHWMuRGsRwd*&AdlE;NM}(CU(!)(7iZgTG5_T1Nmsi1V$#vuj$vOREUr2a&Z6Fi}lw z0JFIrYrWDR$R6g&cHFp|^KVAvFC;UFDoY zF!bxNwJ+z?mvf5!a!%dTIhCIE(rfoD=hXXQYfIi1=hd7!980K0HtfO2!`2pTiI`NE z!g5Kk@OFUoNg1&bwhx&8Krd7RW-ZJ!3DW2rAUeQTPBW-XVP4^%SFo=>!XFIH~VGZ zMI5hdI74eRW2RKST5UidoKyXG=aeBeFk_lwZMT;*7g=Otdzw1zx#Sw^%2R12w|m*qpr7YV&R+6`wg4H;HEcpDorFrODg`_bN9TIv(;RX$ z8v_&mQ|A=Jwdu-&FZAcF`YON5Oh!F+mX%sw)n1rfx?x5`)*JP_SI-MV0cjh?!hx2= zTD7a*Tu@AE*%Q$Qrj4_~;K%Jzd0c3;N-(BRtZW|Ym)8wDqZMbBKmw0dgN}|ebJNp# zc`=i6SjtFGQxwWhYu1o+xIS75W{582J-DW=X|2*0uqjh(u1T|P+eLG2j(DZuw}xU% z=*($L8cjlg^?84gH-~u}<*Am`TSI-@!Db#alsz)AE**NtcNnQhD~(2TG$5eie3A{g z*fIoj*<2Sno^@K~vS*eSZaoB8YN)7P@(^xT9*>2Qn}!Uip-lM?$mduMX0t4tW7!bd zW40{twPHC1E^r_NxC;1s#5tAq_(15v!yW;{&B6VT;$6&F4+5O&s!J6^4v7w|V*_A(IFhYDAB=8agdOfBmumV|if|I!-fw^X-hi_O{j*Q8GuFcgD@5Ny2p?Gw?;i3P zh~WQuKF{9YtP4*y{Cqvh#KXI;oaj{uPN<7_U&n5?$M9V3yIUOKpj~@}@V7qQagXrP zX0Okej+-J!j~6!Q8l3Uk_5p<=j`V4pC;#vHM84m#da(+}&pStt-Zl?@iOpsRLE#uq z(_860AcyDrbRKZX%z<qIZz6Q zZ<)`7?&tGF3(l{6o@dJEImiM(AfM;niW6bNLq^ZrV1AD6bG`E<(lOx9FPi6*-p%tt z59aw`x6kvzF={u@=Ns`#zvcPhuOHKV;15YY8~yW@%A&A zU8V6ti$YPpnxYw8bWqx?;~L+Tt#LJ9B4(x5V$tEnF#=DN^%9cjUX7;~YKZ*o(dY?SDB9?O|MuQ9Qp z7@#9Kvw73vP<*VGxx7+$76u`RY7LdDDSt3RTdiDkQo_2~flIE1x!}}$OoKqEytRfI zK0syJshfPe!nC5P*VY}^Rp|0+KFX=1v_5X+=8Li^qoopuv{p`?Y0y%@2A0*YT73=G z6kKuYIw=<%r6aU$UK_{*F3Zu)e3VYoMvHTV(`?i5S2ogUcTssfg=>mL4AfLQOUdgs zB?KBUnAtM6TFq;{4DKRpshjOBdk7{sXKffA6#BKEIt>BRPP3$72yPc!6bad#ie4qC zAwk%=DW!>oN7QU7ZbW9~#3ImYs5S*Xrn=CYHboetBhX2g`v%_LtODsHCWvn|NT<1i{A zrK(|%I?8O$sofz9VQHaK>YBMx2v9XxZM7`P)$C$gsCenVNi-m}ka+Xin{bG}zW-gi z`3y+$4ZtflpKVL34ZtfmpK;KHbQ&PNECzUN^I0L$<};|#c*o(r^LxI`nje+-6FGg8 zI(N^4v8jZ4W#DAjPkziFeMWP4uIPH0DLxK2QMS!>r#YWdOzyb<^m13};@2)Shfz_5 zzW9Z`GI1ysWg5o6@0FQDNCYHV9eA>ljGxnur&EEL`` zt??*6d{`_$fBiQSA@8uo77*)zPd*DqbTgkkh9MY(gN)0Y`{dEUIAK6`$a8G6#rB=@ zQU2SPQ~qm{?f&ZZ-hs}qO}0PI`JUNzzGDZS@Aw@mz>)AP1N`eBz3&L~N+;Q8i_#?i z<%9q7!GHPSzkKlb^ucq)gc`NZ^TF@#vo(-$t2^`6Vy{qYM7vm>WBY7V>7382Z5diu znN+=s$&LJ|-7N6af}`V}kRDfHDNVUO$YfAj>U&7B5d!SYvTb(JZm;ahSQaHF)hn!* zuHae)d0bhkgJPClFLeDBjCp7pL$FESe8&G)EWsq5Bm}B4?61jW*c^_#^ z2F*s()AADxn(GZw^;2F)Fdar{wR%OX*sqp{quz>|7X`5`&rqROnoE^6uXO6=@-k>v zlC2sM4Y}i&SW2TUYTZby9k|Skcv>J}wArXRJ!uHd^5(4DZf4Vj$J4z+8)`EHNbciV zj%nJpDbwbbYNnH4vPvUzNDqwEtkNy48MIlSwetRYS}?UW0rduDRZFcsQZAXsu-ur} zO+(U+xh-+DtFM)L8MY-|>HEu!t+dN(vqcCYKyA3}8A7VY6YZ5$?TvcqV76u|>&d$9 z75yC9ol(8os6~5&y1&d8b8V;AW$HB*&ZtX;CEPAfrTVorffnKN#s{A-vGlaGa2Ax! zv%VYj4EW%=MafmnDpBGfXvIhfAu~{;bKD1CDn?c1@Ekt|chZYbeDJha3+8*HsYnH= zP(fO?Wq|5TDc#S_(r)lM%;iFWT*oz~am}IIlZ-f?r%WT0T@h2lH>n*Yn-<+2gvRa?2osrqJn&QG~BW}btDc|Xg#Zq77djy7Axj|1YlP$I| zXxVsmiK&#>au{?v?cw<<;tqx4l5&h8Vf9&x)>@^iw=Ahpb383pQz5{d*~GA7%2lhd ziMWtKk_h80Qiw3L=!K_LJA;X6pnWWzURy<{6ge<&7#RwW`kni zh?EqaF0860ip!46#(G>M3yHs`XO?w0dwajzpQvLgp}`Qt|S1Ln)$P=i(J@-v zF)50S19LGp#T}V*@@U`GlSlJB@GfTJnQC z&o~Q?+b%b9k}2* z_)h!M@cj^Yq-DNB;Lj8SKgckmT7`q z)MT`twXS2iZZ5`!r6N_YCDQX?o@6SE4J!$He=wIa+Ge9HvEBv~sRSELB*Yw%C@6F~ zTd6iv@xIV51#ux51lg!(xD_8Hrz;9ujzTJah zGr3vAn3T=2MucnJEK{J;AQyE{49N^JOLS9gs9^Q5(QS59{j?yZI4#j**%v=#nX1WQv(*SUy0em664f@_X`^*HpsWq9418+ zYNaK(X{Q-gmob`}4yC1;i#k{@l{!pQ%9**SwYr&$n${MpqM3`j{az?7yLrz=O;p-U zg_&q$u|C2hjGa?(uRql9t6kg1u5Iqxwr%a&w)LxR?%K9(+qT`F{@(n zl9^1B$s}3dwLU1ZF`k0I8hvQ7O~^s;EfOQnhX||7rKQZHL+_pH3)qh9U#VFM7zQov zwIfwmS#=3C?JXT;!=E(&O85+FT1ny0M$*ie-z}EL00OA=(t?k(o&t#8Qe(|yUh+jt zZe#FOij#a8A{rOjsh9vH>}$o_4OK=$hYx>gn5rDkkjIM)tlH7!u+LAJ;w&0#7xbgc zR}3eYAiG8lch=DQf7`=v$kFu%zYafMP;jeFf>YwrKzh3SDJ40ZO~!zg!PrPkII752 zNF91G=*A4i?=~Xh3fpnd9cU4oVE^qZr6l8%P?oYdudAPzmKk$zOjU5^nTrl0zh7kO zrU+XwZq5D8k|rLWr5iU%lQE{%jh`hGv2Rg;;jQH)q~47Y9kZg$EwqsQi6)c|S0$XE z3oq55shuzYJx*VKs*p|e&d8LNlS~y1OcYd-4d{i$cs^B{TiYsU9`dHb7Zo;5wr zBmM-{-1Ho3s{qJZ<#*T+CD_pvVlPhB_Ysc~Ov_2fp5&>!2vnwFM}8548(zQK#INLb$0EAEEC3s=>#1z9X|w;d^seCI^a-(MJ&W+rCX%{030_2m8n`l!VXb ztTWH;aO!a#bME{RUO24{TkNwDBy*B*4$Y)G>{A5AKol-qb##Sy z2p=8?l>|0C(eUI)SDU+uIFe;?J0M81B7RWKhoIS$xrAL4zlp&u%AiF(CI;wqrGLxR>=7Qalf+{7NR91va)ssB@n*W)7l zq*lFhfq>mc0I-+_uQe^+QHId=*=#;QRB47nCwCrzR6T7*{93H>$Z| zT1QKwh}Lp+{~9xZYwEysVVYGJ2b8>zPUa^`K1p24WY>V@Q znqiAe#w?KVNGsP^p@C0;n3PN|4;~1j`gPx$*KkTNr1-o1F~lVO)Nmo=ACrgdfHXt& z{|v^zliL2Ip9y#^!7Wjm+MhLQIz;h)NG-Q|Jz*r^Ir^E0F#L9{X!YtDBO8pMP!YiD zj-c1W3Ohf*KT?c<=SkzITrKgxa((HaLC+ffX_pc*DFzV88=i?s_CCxqu;r^UhHVTf zAkE`RqBaiyZF;`8QaU-DW;h)Eno_QA-yXCa%&Rj)#K9A;KBiwy31(n19H?^WgWs6N zRpa7E;(&)q=$(pHMA-uspyI{#mVztANyJSB`wV^ z)l@(Y;`)};qp+(+a;?)Jx!GR3u);m3uI4eo+hAQ`v*E)|7AM;P9rT@j z78@%cB=ju9l5*ejf<=O=pgVdgWRY>}pNwK^b>iX-IHt%_T?(^NVICsm5SI3^C1YoN zG`F&$8|2sI$qv?g%jWE~yF3|=Nto!NVqEK>65~)aa4RjEB_mQxbc{pEC6G^*$ccb( zksA{}g;+c8k;w)dwbJ3&#gtDia14!Fi?uX#JKG$hPMr zb`%4eR+Pm%k6&%W2KPfagXq6CRFqQo?f+>vNAMRCt?@(g|uafAUaeJPPE~8KxpX*BhsD2@*@`a{pD>T*}e;jA)zkSFj>Pr zCNFU29TgcM;fYFvlRcJ_nQtURgI^XczcH>Gs?lv~aa*5Y#^RNfI42}Of<@to(#*Hd_8s7XkefitwJ0q;h1PO}Y#-imKBOzcd%pnm7>8LqDyR ziSro@57C@tVy$?Wbnbs;T%~k0w8e@>jYnzXH1B?TVc{cL8**TtKu39Wpl;Wuf}*Pv z&wz_z{?)aSCgOOC8yzf(oH}vc#}_=kdKK30D@M`xPo8YmoqaLYHNi^9O5_mUe|iu# z535``Mts92n`d($r2G1xjxqgh4Bpd<~~6?a+>v1H9K+AYYBfo zx9P&owU?zq-f_6K$LQPbf7gfX#f|KZlc2BPzubn7Td;Y;%TKTwpva#%)Dnm=XR#He zY^yO|rNew52ZEK3yGht+g;Ih=DQ4{O-a#!E7j|iswGE&|mP&b5eZE;#{F_0qMLj_bFF8;JQaB`{go`NeK)QI1gRciF9igt4d4VI z^IEt&AfUpjDG-p6NyQP6HD6sg5Rjp1->+>pC1s_yDrI3Z^k={K`G*|X@H|~;AU1v4 zOS17S+-g^e1-f$5cS;4|uAf?LKLaq$3N4__#`0)cdjJOR%plF~Sg`}=&J+iw&pR=N zJF;Qog}HKJ=IppL{>$lFEALfzMj@_S>lu7@< z+VKHLTp({*m)!d$_9~UQ(3Np5be`-Cc9$o7m~bWbyo@<;I^m# zEcFbOd%uhNa-ShNGIq>AycGsdS9hmx=0_P4Y|;f!Per&CkaB6RGy|!88r;u=fxHTG z+BmXa8vE2}eBA1(wKOq!1MA3^@c$-tZ+uMml0j>7cJq=^Md(DhuD~V-r2Y=@l8EP+ zHK5@K8#3s{5HH;6!7wizxK&nm_pb5~t)rG5lu*lb;x2$Rf%Z<03k;bgRPcoO<1T`z zuK}{t#>d~cgTEn*?qm6+z~;}kjfY9_THN!3n*tajioG>IEt-wHUFMhpe1fEMzOCd?|}7<^kbVOL>HNU+z*>o>fV*HbSz%YXgIao?a6F1YA6F6 zS!V>j6Y6+J*v<;a09~Ysxug;Q19QaBp%vUU+89%4g3<1x1r!Q_*G@UnAL!HjN_=%N zwSA4avAP@xFOU<oN-4c{*?q z5Cf|IS!s*^hSgVcs7N-fh7YH>oKdz)k6TIjmRmfr4)z-BayRANR}{qmbsQ(a9~rKn zPgy9{68COk`F698+kf%dZ`*Xn+?QM*4kh9@5WJVUzuf1lOpJDUS#_G9?YOK0WCdn< zZPgzOls--p<*NF8oFWLa_Q)vtxDFFyG6}K_&5+u3R>p_U>H}YV?@v%cLj5^63S6f^ zAOO9gCEB}g^eW71=fxWQrxHd=7p%x(hx|dq7dE~d`1XQ?J!3YIoC3rU`zQRyuuLal z(bx-5VWQAX7hutt#v4$`jPKVTTHd?gT(O)+!Fs^Y$64U8WzWs>-^af1fOflIct}EN zOA|5!JLqYE32ydr@IUk!NSe?~yitvnh8<~SEExmBkOH@Z&DhX-tzsJ0h34W564 z_ba&e(zz#7!{n6@qNwl?_H4hzQ5ea`p(|l8)T;Jd@lfSE=aCtt2W5~edCyc{qDP)s z^f3aRUDmWw7%z>RTuEgThT;;hL$XFzu)AkaBV*_vH`WeaOiuiTlexD#k1ndeWcK7RayMcVv3t<{4# zNq)2O3wG9vTTZ8E=8sy8UQg^puHUW->6IM(^Ok6kr;nN>_gmFMsjClEzf@M|a9A#c zh8wwhGq-9^*+#w|_MM_0{k94x_r-EZP{OinrO2^JZl~UlP4g@T!~aQ7qPqjKp}W9m zHEULW(5-m(9egb#rqeU$a0@hZ$H4-`Bl$SKM`&l_^~3%-=gfGAz{uvTT#5d(?DmWC z2))z&$qJlqBhqt4ODC!Lj@k1ro2%3xOs#F+ah1neG*Ds(H3X;Tfid?1gujUoVQnZg zs(u(<;h|u`Rr!PB@pymn#|^Jwfsei1C$SBp@TW+Q%i$-RB@(78Gz%W`GBq#qXBxq} zHUy|re&-ai2kVfetN%>zs&t(-QP#7b_Nmbq3{q?7{n>&D_cHJw{F)iWX{;V&UhkpL zmygr}{3MCkqEmY@-PE zc2!c=vETy<$M{71T>VBd9jagQkE?;zXD+IIR(?gn$j3oLd0 zuJ?;R2;twgA6aQv zt_wPY&6aeZSF_y4sy4vs3vd{R?r9rCMPMzKVGQSi~{jMQUhnj~$&yQC}RLp=@m2XY$BZ z$=^oXSUz91KZ%4|h||~J@tsjs(EiA)rTn~4TwRT!Fm`U=@v05yUZHgFk5~);GcJ6- zj`NNT5n$pq+K@n*mjrHaH0YETK|4a8yWFEB*tpzKB+B@CiN=r`j@_WwMaaz6r%T2U zq>%)=7)mnt?%t3fCMD8#J;2as`_)~8S>=4w_zE*iqpf|BysdWXWE)R z2b*(|&m+I0bLz=ChHA~@p|Wv>Uqke#FO%eHla7;sqSC#@923lNmzJA{&8%ACM|^_0 z>w?W;%ZCFF-J>k06K?QESJi+x}$dt4L4AJ*zQPmff9{9gB;z|uNPrwAGysJz-1#4i(_^u)X-261-DE-Tmu zF3&^`Qt&E%mExa7Vc!jpXkm+u@qkoOK6yy*aol0|M_qnV&>CTmPvJSenp+2s<{@^g zqM75d*it?Mk0#k@MT|z@xDDV>51KiKVOiRd+RUA;|25;An=C_uGtt|BSr*K8l#UWI zxw~WEQQ-AhM)t5g*!bGnsbzcWd2(8iOY{=$I2_vadgp;|zOELZf?$20XB}q9J%8ez zXN{_vv~~?_-Ok-HZJfyS*ETCV1gv?JSbP`yC`Km)k*8~T?Q+4$+-seuVW>0^AZP9? zyifPi1fiDnbZfl~=myw&a;bWIWdLm77b@Of*bu~DUz&b4AKtFXDPu4bm}^hM659?_ zTT$ww`@Pxkj{uT8X1>~hoHogdKhaBEy{FpNPC8~xr1wsz zX`3_7{CeR_)s6N|x|yevBYoci2SWScv2xOoVNZ=esnN)w%?>g5z@pbBJL#xsU}t}^ zl2`$F1|=S25D*m<7k1?^ES~b2!+>~tPIg>?G)Ii+MTquZ_Rs|(ldBZC9ZS0WRl_u~ zWJ}aWn3sRY8U^)7?8oWt^`W4@jN=?H)oK8@q_oOEy~GPC)!dN2fB^(1t4!8W~% z2u0`vuCD&+i6!#d&)^+P%;@ZZ{sPMX&}a6IYk9q5dDssa0-CC{)h^cqaE@@3$zBcB z_cmWw{9Fy-nE*w!a3gKGk_KTrVRxEDgozOWAlBPan&7dW&lJ6ABv-5u%n^R=y^WNAejz2)TITNit&)=L0wp^Pj7+~~y^TCu?g}(n5LGBHH z{~Z_5-Xuostkgn}Jetwx9Y-NZM8`WmBJfi|p`COCBYY=%x9hn&YHBU9p3v@m;AX1a zuAwEb?I9a)1?e@Swo|Q;VejzNk8dLYcX9r5tfc0V8Xg%_=WvismWEL2K74ykH`JdH zA;^X}_Y$xU8i3Sr7~-c-V#yH8!O}zs8W0yIa9MH`yaU1>*QQvcP^I46R&9wDW;z!sQ#y4X5I6_vAyTzXgjzUX5P>Fq*4`Vz;liGsv2p$3VN`eSv#}y8l<}*n4#}q7TltFWFcv`?fdY;ORU3dvbfoTI+f=nX6x>ysS1yks4yZV~L znNy-?Q!Y=OxH0j;U#(%M3B6FGQD>%eZ(@VJ<2SfT=5L9(k8sbyL@*;MB1YC_;nZAy zj1OoGk8iDXT<&PjG$`{$X=}Q;?!`gdliEX8C>NNT8s_>fw7sFM3x;%G@@OHIObSvJ z1rN_{99LbARmA(C<-t^eR&VliEV_qdzK%aN{0C#e>$!L}b$YA!L|kgkhjU zg7!s5Tl|56-7Bm)aj%U`%ghO>6reG_U~U?!$s+wxDX*o@Iy|f)%V#O97Y3QIjD%vp zUjkQ>ChWI;aKUk9^tRs7)YFug{$yozZJ!lxw`VB(bIHASne$kA6|9_F7vZ|0NG?4>i?khy6IwRQ}jjpTiC?R(~oN?+v_U zFzO6-*mS78uc+=0F^TSR1V%?EgchAl4aiGeu%bZ(8y}ZB%`K>({fj7mc*wysiK5&Y zk{w8nSYuryvb$eYR^iGAzt}zV%hBX2=%it-5yqm2g)bZ8hC3<$2O>I2QZ6Gyq#@nq zJM6*FtanRap3Mc`4VN#bIS$HdHv@dJzgt>%N~wSa(G#i1$B){u3hWa%?{r??UTyVm z7za`PkW>S54*c@jWtUmiHpCrCy5R!tTTzi*lA;f&OAe>*s@Dl_rru_xyGdW1LvM8R zsPs%PDL1Ll36y&hF^O=b7T!QH!XDQ#HLOf}y9#deBoQ z9M(S|gJxe&$~KPK5^G;)FJ3c%@aX*BN>^Umvv7Iwt{mQS1#@&1#~!chaTPs^6~_zA z7>op8SjRPOU&N@ud5;v~XFP!B{b)|gOMdCL0E4#z^5$U`z1C|YI3uySSjJv4h#s_W zpXs@7#`f813k%%>x(Cbd6H@TgzE&c!= zIzy;;rC;*%_JV%m7J|)RgxNSk$fb74$yiFb)T5EId@spj`C=fUwf5r^{X(2bqyMN~ zx7O{sa(jZNz~%bT(r z<(uXZbzxgbwZy)KilVS@2IsXk00U#77#IER8Qt*XID^*KI?9hxwaQW|ww8F8z*Hy~jwJ74Z|%eR)I6Qe;^%a4?oGp0Y#J0zDB9Jx2QI zqOKmB^uAOuCv9@P9#?610^B~@hB;o6-bpnEWz~cwTLb-mb@_pXR!$|v`_g&7|FMiq zwaBu%6KbhE!L$_b=%`aL8Q7N2G3!_T(p! zM+Et*g_W*WbAf_pEM^|=+>&JSS^Xqa7aLpVMzLJCixKTBE4#K+I#MzdPQ_AW{gOjn z-oB-8{8D|RiURdBa&?*}2XBnpIipV_teRy7eUg;o9<>2}p$29xxQ~E`zF|TsO z5qX(BMhz2Ad@VlPh}1xZ;bTo4QDgqpLj9-BjZDO|XQ#F>F6p7MiaLv(2o!11ihhD- zu!mLI9GW;+*790l8m?BcxyIzAx_}2xWx9yP5*rT5Xp^#%yTiiNG*sHmxIOf6&|In} z-TE&t5#cw%u%kAUeK{qMFpE(NjsAo~yI(mA(Ba^$#;8r?$?Ro<;!70loWB!sA;yui zcZhpW3}c*YZFC9itv%?Hf&`#(P7~zKlFN+pC1w6Znp|XNPJ%NZawO<>H+W z{J2O1Y)>!9#FmypbTt~5oy5(n8rwwCZ{gH*#YsEG#RdF}#c3CDWs5}qXy8jvf)_mc z(BU7XUJ>dc5ubC9Dx>45B0qfT)0s3(ifR~k!jUB-m+Su~ItmjO$eUl4Y)p%I4tAjo z>;AjY-_7@s)RqfTn~`6Xzzw(6o&T1L?6Nb>co&n`BD) zQ>x{74?}U&Fpc~SL!n<=R{u-Cp*ZSHx9LwjG|h#s8rI5 z6Q$r^oy5xlfeAbDx{0c*=vlb8AW3p1Et0LtUh8(LtGS89RMy3P(harh1iNt(?FvzH z|8keAMG7v2dx)bI?Kd$GoRc(0<|iW}%I=367EefnRnuhTq#7lC3Fo{j3}rf1i${|} zoUALK7k2DgujGxISSXC6Y3tU`>6nBgDULib^=wWRt28AO9*Kxu3dS1d5JWw#AEP5C zh)1KFPT7Y|1M?)`SkbZ6IGwSk{@-E_?X-Oc8sy{nS=?rtWzMR}LBE(mWNjnWW{;Ic zp`8Mn7Y8qk4oQ`zEY?5B|E@ZiZDNngGSyQoAN4zMql^0f5^;p>xD}2zBP(k7{*7@n z*(^2rE%TR0n-)$bEV@t8PNqt8MR1~1v3JR?6D!$V;Bf!m(2J!4yBtD8&W_o==x%hc zZk0H|k`K)iV>sHUMtz!GGJnffT?>eG4#!(Ev{*&=9|F3EwoFH@!QWR&28(EOI!3Z)-Nq%%+CJk- zRg06$@c8mwCDpJ-4MFPvY+nFW&!RMZy(O%C@x%qR>BsWuDM=!>@U`@M)eK92jQsGj zY)ZC*R;Oh6y;BvdR`L%A(c`KWv~7&gO`LN*Wr~E0jtt9*c8MmsrhJFco@2v^nW!Yv zF$sbD|b&-MG5qSXQRw~@kn5ZpB4JY1LWa9l3m&FLHrcK5+BUtK=kE)MwP_QdyuW2o;)>uu~k zoytBD2)hn6@VK_NbrwbL>g8##XPyq7pEKSRE@q#6uZlQ{ zLFO0TMzIb~jjMwvy0bYdDb{l<|KCV8GnLO{zOQ*vwQ097VDyWw7fDl?_V$8yHHNIa zBZD?0+~XlFz^cg6Cf$_>5D}a$%FJ&XRatS7FfAvT@avV#a;2j+D3BDxo%E<%m&k{- zTG#f6gVMb}fNtV|7u8^wc8vPV$gG|7BUi)*-piPRJ zM})?Oj{grs>%7}na6-B;o=t)xj9d^3=kpo85%MNHTjin^iaBhcsHlxX}H zjpfWIl`#2G3)ox(0gE4}40A(bZR`qi4eW&ne4SpC#sO_Gyh;xD%~A6jra?W-MOBGcKz}x!r4T|NLXLX+m~l>PM%+r7jas&+&E*K zz~dDe22oE7)=#*Sg++x;g-xTd(kMyhSG_EbZ*mI0{7WC+%DgHw`d)@*9mG<1zR5=9 zyf>9;M3!TI38{)mVU58FU4O2eM&hM){a~~#n`KtHCQKq;wew!42PT@Q#Gp;VPxe9N zg)T4+yZ<0?X3-Zh|KjTb9Kg9-ji!@|n`4#=QflxU#m(p|o(eLZMv2=rn~avtldCZ4 zMt&?4ep~xQdk2ZPF0iKgSf0)`5>e2CRVi;EvDA`(ue6F`X1uBQ=*e@lb;ED(_pep)7y_l(g)Hnsxw?9%GU~pXz2xT@&O77)hn!~*&=v8u@4hGNp#934&0%-OY%2eZ z&vNt@51KgSYmLdq(*#S?hnQXYYl*3Zp(ZIjR8?58q>Q1u!}vDfl^=q+(P!mrgz+&S z(1N`f_-2fRkixwqAg%hocy6K6zs!!ZP5B3;vbj+Ttxj4!-lsW%!*E6>cy}N~> z{SJ!MJ`klX=UW^pxlmXoJKD7T>#dy}Pr027`MTdXpARR$j7{V;x<)u|#ykXq4BfWR z6nZD&bCr9I?xu^eQv;GKUG3wrnh|;YfSx%?xV=_i<}J+g+tk;hDB%>Zw}C9RXiCY@-Q2-q)aX4MnA>0B^_k>nvPUZ1!oSdezB=FX`OZ$Kv!e(8-c7x(kbv zw%jvTu)6?3N8{9~GEf=$^Ru?ZoYvi|CS?>Yp~#8xby=PA>%!bj@PJ`}7X9c;M1A5OMEGN~xKq)9m|TVhBIo;t+H+@t==O)G(-L zOcQ6%+TW+rJS+8x1E_)5R~WGD$LZV)a5dfgFecrFXPbsj!`ug|BYf`5O5bxS7 zm+~f-FTVg@6vyK8R~uKyIt@rVz4f@m@E}B0qOwRO4&h%bh~3T9p#f{o|0#igj{?#)7Qzttny6m z@#4dof(K0s3*_c%_w4gn{C#9GD#pbsYYR|4k>T=ranL1yzIcUSw&$kY;=LRZY`8mk zv8kJQ@L+VUS*2|XaXsDdd0u+MrL6m>XnY_Dh?~`SZ0^VC{ znQ3d5v_*qb*^M_VOAUAiE zl;q2C+2Ep=s9CbfOFw1{*J!_t%S-0Wqh+hwP9U~#)$Zi9ZdvR&jB(`ntWy~i<4|V* zrE5t=Z@XVYefaq^BPBUWoyJbJK-mSb(DCh_4%&h*UKJbGlqrG_PGlSx|aCnY{t ztOjgUr|-u5#daABSM=wAwB-(6%W-yskZeVYl$^0rtAb`vB~&Ft`(`Fw63y@>5oYhV zOdN{k$t#7u$+^0@_gNu9HYRTijxvu)W?(l5CFbk3%W$r;l<~y`Y+Ztv;gtP(!2Lsi zVOj?subji`(foiH1E4CN;4ou%v(Y(A(IulblKgP@BTvPL31=)$1SlEMV8i)nzoCqX z!E{+*dQNj&_ovGXd((Ib1EEga3(K@&_gswnKBU3s?gtQ>eRyzR6653R?!`>O64GjA zs7}qD?hSHtA>HoY%~=+4H$C5c4=^2iLDZW*->=`aVb{aYQsG+bKYyJydf)Z_@G;wf zTNg8nri<^Z&k!xOj5@zuGGgEK{ktfM0Jh_q*Zm$Vlj6&}vF-GDRTI0`nXs@s(&9VP zoFOOooHW0tA#0sY8CbF;^c{IbNuX@i$S zRY$R@3K+_F)A8|Y!zP)wd7mbjbR4Ky=#1k#<E?(%Fm$EIf@GkW=y*sN6P{Gq(E zs6WfX~?)@ymH^u#|SltLH7d!vh7v*mA#&;=v(5P+6Xr(%yOOn29^pXHR0z}#_ zD)>5CFOGrUS1@D2^U975BTQGPtQ{PBxURgp**>|#I5>n2QpQm%jYW^SyF1;>)A6O0 zzl>XUex&8`v3U%CFr#Bw&L>~{AEu%Q!w~_ z6*EVV(Jxh**WvueUKDwJp0ah{f6gHV^wn{pZhLG-kWipq@6FBagLB-FX+g%+I(KvE zY-f11U}*5LX6*`~!bo9Xo!DP=ueDbm>)>-*i$2qmtjfy71*A7_#L{)@6n)n}-@hKG zrH$d0M2$gdrfjOBU0%|=wqH*Z0Qzxf4WfG8n2bn$-&mX-#<}0Y7%6Z=v6ehGsp9`HC{-y ze^TJPzLh>N9c*Cpso4$%HmCD?;ORM~qk-HUy?yS!9Y|MiXOAVEtxgZDc(n{Ux@U(?|r^XDP@ zg8aeN(*^%hR;68?5thon%f0ZI52%Ra6`H+ZI0kP?Ny9;a$A}HBDK{7?wt|hTr)v>t zfM-1RWXd1@aCAR=r&}TS&;#gXCW1Nt#xESWpzfA5^1hT)6<(^q|eGW+v@(h z_w}0LF#SF@MoW$qvV065L2>}e1Gbk~&;+_dJlIb9W6?8K(;GaA*E6=7kwcVm-AXzL_5=q${kQk6)Gh5~(r`R9AU{_p14T9&-@y_qx_%}BVKu;|!NVIx(y+PJ0Sor~1 z!mSe;0p%lqR!#bs7|%^+_K;1E0R$F==O+7epez2x0$=CdU$)A^b6Zzzbn)-AXrm!E z6|%VQ8N~Ldor@OhQa@L7z8)+$D85Bi6GiJMda$<6^klf@L{bpj2IdTppF}=i@ zI^_m`UIy#is||x(;!H$YGy9Rf+{mvfwECy0hd&s<6}&xi3NetNGvfq>XyfHrV1k`# zU&WoRcx8x24W-y-#4>Mj@EV*q`v{~gm{79(MR?c3VpRvYGe|f?|dy1i?#D{hTS4 z@|wWt)EP_jJJaN}7*CbwwsO%;jE0n*z|F_Iohi!APeQ6>X|Rwh^&Nxw=|EA6(X-qV zmPh!vjLQZ(4!wVPWm5>v|ar`Xt(@5D8pplR~N~t zaYzf6o{*O;1;JRA*|FlsJzGw2)#Q2_=fbkd;96pm|LN4t%)LvD4A3FG`LWFN0C?Qh#Z7IECuf(sSgeDNBd(03d3Es+$u`>7X=W^=# z`T32d*DuWT3JNF&BQ86i+qX!1A^j1q2~r{{QWTr6Jp`qYM2H(%7;R$HN8_6QJ|+8p zJcO8q(-CQiq}E_&U;X_v1{Esw?^-@k=G|sIljREonymHhwO^yCcU_#B%2X0%I-T0F z+TmB1;kk6;bWWEEQ|oUI#n_}0gFPa=s+3EQC@+p8pvxBa8{&#Zpg_(rgJOTn%x+2) zG*#V?bh!|Rl;SVPWZpqf$40^YAEW4cjoeJ$F z4%$VkyN2|+{<`-4aK$22Y1jniyA*h>X?6gWgt{*j&|ngg>`(k%+5}j_QD9oJc~Et z49M`55zjdwahUn=Z6ily>-Y`zud>PUye*7|3ooE@@=9d)Hqorijca}s=2*P8t-~%H zonE?(CVeCJl&~ZTN=0tj2~2d!4Q}dFqoL<}ETuu`5)8+cNlEgWJk&x#lfE8ps0ZZZW9TPo#P2z4y&SP1fZ z7Lc*_JP6VjI&&sV9mpD8Dv7|nyF?bm$S-&V>DER*P{Lia%)NyhF2~0nqhAj!D8-1~ zS5g+7%FJ)-=vrZHe||Ap)0iDw9~M`2KML<(P9ej=@DvkT)>$AI7gc8Za>^OsHJu-M zDUjP`VT{PJtEZv|F(7OynV3BGAqP}cz?ITYVx z6S9X}*ge*UwQt=EhH8P__bnhrr5X;Fx*PcdU~k{t1l7s z92>#}wVmZ}_XU;0s!NiUAiD#WN7$D^VtyP36f$+}5Nmm!3+k}+#%Y*+DEeh|^K0fj zrdiQpYxM+PcI}NlM7^;948d&Dwryo(nKV6ChUNzd?YKeVa?H9)22M0j_0T&+R5JYx zv24p=O--O6n#Q0RWC=3m4@r{13Kll68bNF_W!j?6WH^m_{^%qPP6!RFTO^c+9(jL} zD$KO!H2biB=1hxjSPpUoeYk2dm&~hnSPpt3ash};GGq-u2C7Ke1hEY}@5<)SGzerL zMxiFtbvkc8zR(6168teG`DfgwuBnP7$J0WT7hOpUpUq|mkiQ>2 zjK@w94?J~gIi%6HphKCPYR6Dh#qTt4M^sWDZwFsRKIe@yB2uX0aOko#IN}^xR3If@ zKze-^(N8>(V7%1jD`R!WlOK{7mY<3hE=fC499T8V0 zX%pr}ZqR_H&DxqjJW#!s_DijTFt)ZwSey=l;q2HbqtJ^FU!kXUk-X^@FtP`Rx=Mv~ zA;%`XV^M@t-Uaprac<@$wDQS?HBUEOonw8#|Gd)OrMMpdBik805a69&Dn8X!?Hc4`LFOSQI^mcBn`Xi_-?gj#8PWv=PAz3ny}eZj5z*%=+vdL^t@U9Enzf$h211BCf*HLNS zcw2nNbJB*|-WeC-(E5ptEG=iKz#dO z1zANyE_>6%&;YawM>U_NZKy=*n=@n%kJ#6x$g`Z9Iu8>aPK%7nVch7mU^NPrQ?$3U zwYT0+@#YM?1+G_?BHpPFZf5(aUHI_Xy;(4z)4oRk9K_WQ^K~k#ZmFR^z@>#Qro5TH z-=bQt{{b^W>388iDDpGgyt=)0T3;gM{I0eHx+vcz4kbHHpqMET8ENTFDUSy|Cl(U$ z%nZpPLTdpXmsr1sAx|f4(ku*uJibBV$km!w?E!P1Tdf&QUkPf=*RS9`QajmDl z7cBCNNv=nyK=wZhK}b%GkUQj9B{^8a-~83GJJ=4#Zp;m1=3Wiz<5_PJjy}9*Um?>< z^j=l2#bmtE7`g_;qoWk-`4_oTj>_V(i7>p(I3*TJ2CG1nj-qbKBi1JG)$SdhM#hZG zRSn#ZG7PCn|9;wp)J(5;w`EZ6qNg&W_ZshFY~?F#lHM&Qp_E4?HcEy;8y^v)BTeLe zTJ2&yBPUN;tSc;l#Gx`NqTSOAG2zC>Du?o{hV?R7%~zOFsz5zQwqS}hnMJg zF#d>XI6#`fB6@K8hnxqcc$>r5m{hy*_EAe!eikflw>wzxcaDO1tJC2#WR>9`Jo`J% z6+BCNv0Jjz)){w)$R>f~GyFrH^x0SLllMNjm_RL7vRPv0LF{;*94=?x#h8Nj!wlk6 z%bBieGUeis=ia(Xzj`pumN}=HV9F~?(x+)AyU)-7!$;u;{h(MYu5HQSns zNrc?s<~2z8``oL}1Poz1n)S)C3MTxrrnm0%9l!neGNjQk;`{P{(WJl*H@kWq@sCWWP*&VLca(Q^ShZz=e%|EVBZ!c{*7jXl38S|86} zB#?rONE1lbL^I0cdi)XYw5ch=;%OQ5lOyT6@+`x*vKt}gSgqMNIR-TTFl zpK1GOi`qj3b@W27C^i!4nS3nAyXZ0x3@lek*;ddgcj7IJp7~7-oxDRKJbA+9v1!^W z!S07q6o{^9$r4C^cu>()^~aB@&5~wO=M>q#wy0<}EJF}6(KOJK_loX8-^lUCXyX*ujEvK;I3&efTz?TTp2il=2mzw_j(${;%h^-#m2e}unW z_8Ew%L|Tmkkn#L~|29o+fRyxAHbDj|#i;~a*p$Uq1{gX@uUF7z?oLthtL?OMuQQmk zWyM$1_5WMX~j5VGdrYjM$sb-HQ(eBrfNf4@yS$9h7 ziHiIsjYQ@-H%6JwZ>%s=XRr1Gq^IiPF${EzkzCXA$UEtH@5amS1;;!_r%TUl8e1+ z`!%SDN_q&>$>*7?h+~zPCu=Wcp^p*vHlXwE5t>H+r(-c+)^V2{HW_`gp6Y=BKxm4z*t| zZ8g7i{|{5|6eLR11&fYt+qP$qZQHhO+qP}nw!O!;ZJqu7=f;f_(GMLR)elu`bysFa z)>>GtC>`y;c9(+(qN-=8x&jA^M~&cpQP7vDT>1Rg)!ZsHzDAdWV5so1SZql9Uv~S0 zXdRSm;vg?U?e)e(8ERJ2-jF4Y?x6WcNFoZ~CFz|duN@@@QVHVlU%tH7>(s9N0c+|U zssbrQYWBS<^*7Ox!VLI><>ORqNbI245$(L$X1j9%D$NDf=@0ad@P$mPEOxAb5XGj% z2_*i|{8ua0Y5)QMt^1SFR6;rDZfK<1p7K}V2VEqab8gKdbD-94k)!s|=k8=u3EmaG z!pOw`o%)o+4C1ivkS8d@{}v1uJ7Vy`rr4dM$Pj%ouG07TZ*m3B(%z4oavhj${)|k| zD2ot+*YyP|`+u{>85%wwM@_M7sp9%KelD)k_4x1UzwzTguTe;S1&CUa!!li?EIbHq z*P8cGSpSP-uN5g0>hb2;9aMIt9u8mSM~YTcnWQ%HN7i*wxt5N{3);YnI*Kr|>H$`N zTo2Wg;~nLHkyJTL={Tl>++?_M6dj@4!BY_#uc1^TbxnBPt)fh#)C5M_S@A8{r$%bC z+>?|({A^h5)dd8A8XlcwoYsoaUQMrgaWPZAI=EL@>D}UFQZdBJ`1Li=RZ>g&OaHVB z__t*%*;;z&%R#Mig+MJo^x{CYmckqR+T~Q4)z{&@yi&u~C!^9KX5LSTXETj7Bnw$9 z#wwlf1&VDAv}T`j&5|T?u#NHPI66|Np0DyEMN6sFQhMlTSH24_x|QPI(o;P~=VmX9 zVzpf7LvvgAW0C|Pr^V_h@V((#x1+_l()QLnCepXXSxUKsqi)knkG)9GN}=nu&~7f7m?EHb)Ooq5ZM2v)PIjsM7aM@t*(vS7gcI?uo_m5uoV7& zZ>f=(mD+wCXz^>uS-ARlL1!g?r}M%ynAm;!B1G-bjQ-A-sj95&CO|+9i%u{eXvb+A ze5jgqF;lr#1e8}=+xFyKFv=i#4>=lZq>xJ4elLQn`t?)SXvJBK622ImdM?{W)*Q08 z8ko5OMxXU z$N#cS1VQC_vW8umr*tCFPBUG)loH?)*kUc64EG>+-Ns$yzrV$0wyzBOBb?M~tsZuQ zl{PaygckVU6Xhe|j|K<*j+PKhVcyo?%|G?T3-j~T-P&uSM@k^t+G{CrP$WGbfxiX2 z8Zs+RwL>*Pe5oU7SV_d~QBBz`tCLSGrctx}Ht8}tewPuWn>nOd>P^()^VXs2{F!S) z`o8}$W!GJYSGDo_6Fthc$@%v}S#bw@_n#vgM|`-%64sfzkM_DqEDMaAL3Vh!hLDMC zJ#G%=1+646kc}vz3KB?pZ@5A8vrLmhaA76IWPC0YAw(6gRBhocH{(k<>N)dS5*<3} zO@?vL`!rB5v%3I_XfG-c*cs2=_yjHHWH&faJ{;bo8C=2xIc_? zXOHeRTUSD zo4f$n3L63qIv3reE$%AI>;~!P{73N-T9IsetcYYoEV}7`YLD3OT-(8N&P(G<3GfW5 z{ai=Lzn0;(I&Bs>nN21-*|c{?`CJn?XtCQIwb+bh1|=guR37C2x`G6$mySwMUn|>t z^6VC(Om`cGp>K5B)&vj!J<^@)DyW}{_C1BG^1H$G?G( zQzwyI6Nu;jUS6h^x-Cdkw7AGb?8z#_KPz7t<7Q*9f%3abE|*%xR6jZ-ubmRO#Y>3x zWol^h_cygB7hF`aKHqpy$yaC!9wMf~nC;628gxYnU-6bxdh{WcT+N|#Zb(J5DG~G~ zM2kqb>N=jy+)iHT<=$)5E%LdMC-OVUoZ`p3G5F(aIS1CTpYg@#_tsrbgM0k#eKCmI zzlGt^(GUy|Wk zjm=0a`x8pV`JZsb=jy2JbRa-~6Xq^Z+ZxCtyyy3O*jI&-VhvST2~`Z4oc}tZ!W~$d zp1OtPEYt5*MOh45Wpx%Lt0tZTBBj^5PLslyE$qyWzn!-V3m}<>Mc{Y#IVhopk?wdY z$09vq%*2wCTCE|e1;}9tbMLQm&eZk6e~eP3o>EF?+_uLLKP_>xBd>!LHP!(&bMesF|w2AbCx*|C3Jl!Bmf{oDa{UGS3NVWwoD_xt+aF{y8CCxhC734jzQt@OakN<#THf9h)bapthET{C48{e7J;El2jc<(+ zl<^Gg%satA0)6%zo@pQ%M?y~FC7h?Dzr6@FTTW+)%mKo>+{5!hCw-v$ma#efc4N3m zSema6bM%bgFu!Z0FPohh@DC?gksrwDhKyZ$I?-3BG@W+x-O!?J3Mft8&PF{(TWBNF z0opwjrIJ*VY#Jy+v5<|y{g0H6L^S#e(Vq`3_V-h)aEAOi)L?{yJ8&dt!@-aN82*87 z(rY9NDPWZlQDBS)ARqt4>UfFrxDJ^T-m@x#S;i4}0Rh(1fPrpTJcx#_})%x(w=(Scnpa0kc)?UuT zlCzE6q8AUQGg&x$iu#{I?kIlzbaoHG!4sSc=wOmBkVH4+Gb}<=HpsJs5aKp_KRled zY+hXw?-Bn~y+H;2kHS3v4x3ylvk9M2pf%nAMxWEkq;(fuA|`px3`pcJ95CR{3Rrh2 zeg@bXHcR>WsDiU8qhVvCJuc(+5;T;goTL2^IA`&!!<|uODsd(w?@`nYkqH?=p6Y8G z*?&y@`3R)v1|Qn;(RV_W#xd|EgnY~UsiP|KJEDo+a{sF6cH;kKDNF2;*S)X70v&Zx z9RXVeb_;+R5(Y<|hnd*guQu{gTH5tNyj5>EQl!9f-VR~f1}XG1dW}s&Bi$mkt-ZkpGvcmF;t0K$&ZS{f7D&GNq5xsL&O$u?rc?lz~|IF#H z)ezCw!ptu!v{It6V-k7(GAxeSK(owRq1HU5>0;VJ3U6%O8FK#85Imi_8>tV zMcobW5aF-4KKqJo#)-ODvL8AcLsV=1o4homxkULMn%wzliQN^*VVy|l=fExZ$1>T) zRyHaL1QTjEEU_ri%dV-PAO5)ghcb9yvJ=alK>p@=NwCJ|J%oP>$z1;RMbErf&cra$ z8EJMl3Y2N~=sa_!Ij2%YVJv4h^ay*-3QKxSn!KJE8mYTHe9-x}4Q(Dqv5D^h z$r0U}+=uZfU5jGz$*(50yYSw!Iod-g8q7BDWIJ!jP+5grT6K`uyv& z$y09}y9JNvJCPj*LaW`^D2Qf>8O~op@#0!7bslJzmwu+<(26C%B(((4|1G%o*-uvj zxuFsaEI}g?8h?y5$PITH%#ngX=K-@G6b}jfjJVH_(7g!}R|A->3YmfDPDZNyZx`B_ zKxS{pvzu0nk-PN^+(AQA<+w52r>TCwA)-S)-wY-GcU3KQOFHaBMWGf_qU-7so^(1# znKiEvn8d7&!r!E=^&y-+4%0rfNozFLIy4*MAp)*;48^WOa1fn0Z{q-b=L}^~J-GHc z5gw$`_QZW>W$5-lDg9>$3)7V>u@D0~SUoxqtEFi*2KJdoUM;V=MEg;fOe$~#Lwh$r zOmtpBIa`~DfU+2SE+EclzWTc4SUP5%W2qludf=yAn4+w)7gs=HGW(h#d9Ev3f6R50 z%GSowJcuTBWaM@qI>f!+5MH3R3s`3x&H#d>^sKREVMv?Y59O{O*X9)IeDfAL5znUU zKdw`Xay|~htwu^Y{~@$hD+Y(#W!OJ*A?E3jv{?`BQS}}$q_A!Ty8k>RO4(x`l3vR< z3(bgM*P^6%&hJJCCVS06y-3H8%+~}hb&8ffreqIRVg!}_vz-yRlEW1e|0g7GFxzQt zC|g*~@#$6$jZNaQn@_nWTj?5I#zL zY);u9YxhwD!E+gFq1Dquzv+0w8ALH330LP(+s_SiZjRn2y3C9bTy7xBcuG2OV8DUc zE!6@sCID_Ll4TRLB|{<`($FhU z&DGVZ2olg?i)kEf7GzlH&s$R?Gr6~>K;lwFHR2swK=Id`)?2%EJ7#INi3$L085ApU z-6RKglj(uB&lEKtZk#BrjFvB~$g`eW-fIajI|p1{RTx;-s_!)QSE z(VL)JaH+#-HB~A_8fKW9yeyb8v{A!f?TY`qXfPx2-F#c`?HRpu-kY2fSkxN z6##uES!aSLZy5`goFmi>v4!n%Q}J~L7X=<(CNmps>Shhc&iaCCK`Q~Yu97)mG=4UH zF^|hOV(=fa)m_0G(t4N}hS)w%el-S%U>v2~2e=D^eL-c}XnK4bZIz~!@dGVRQhN7D z8!t|RTrcu^X?W(<5!#G(uOvcfh}2oRlHFa9}qGQw=bboNt4QnAR7 zT>Evn4sHF2VUwB&RQ&<#&NYpMGs6ZZfCbvox%U_d>#+B#6@-7>_g;D2{S-VKYsHur z%D3pm6LR+K&wVlRH`0=R1mI~M38wM?F&hMj9%e2G6dPM#1B-}lG5}h~w6;RR!ZjNN z<1rZymfmm8-z0Gvhu&n@U8rB);ADdbRE-*1$T1lL)m^nd%eSCsvnEiP35CjiE4;td zf4fpUnd#L(F1J1e!?Yrd&bX?$6JSOFs^Ktp3bf#j!RFOD42?Wx6MKk9u)dTCmxjIo zLn9aCaFM-o6gpE$$-Rr(K3r0{jNYcl`Bw$Uc@%n*XXEQtLh;SgqR;xTW5uJ#rk>^Z zPWDX2+tlC#4y-p|E$ydCTOu5>4pc6f`>DI>zCW;zUm%>Kr$4eWVH(~MM8M|F!OjsX z;WLB*LYueQrV`7DqVRK?;YI4s>&!(5J?KtSXN^=k@vN@>W+zDV^}Z0Qft^?TOTe`_ z7YA;`V!}(wVxXCk!<_bQ=W7shyA;RR3QB$mi`a!{Csk!QdVU~OmwU)=C`d!QJF=LF zdIHh(KN-M_$vUNYu)f_V4U(jNDr>Bsb=t>+A9%bQa+vUxA_<(yz5SN{pZ6$TP)QBE zIMt-Gc4P}2VcM%Mz-@d_x`3CXe0D>jgw1iZZ;kQowiD->kF8gr56K!* zGxSX`eVsDEyRURPu9z&u0bK(@sLC}%LE!3sg9Ea1!%#3}>V&BPXx*y80N7K`n*D&2 zqkzJCrJlVvIDl@esjw0qRB?AgjR0EP(65cT2QhLh|A3J1wb~li?$D4YOsiQw1}<{1 zoetF`^fr4fGr3p-0L8kcqKC^Z1d^=Lq7&c~HZpH1g0_4y!K=Sh%&q4Eh7v$v$b!4- zTdmLVaOFRYB)?5^`k?E((!(9)r6Dh1<%Kzlnj&)kbMt56RK@%1fG7V zWGwEDrx$+Law4V+sc4J==I}E45?2RrGL-E1{FEB)O4Y{;d-Exb(c|Vl^sz}KgidTb zGd$8Vj&MpaNXJC-94K9Zlz5dPo3e%}+A9)DUFXI3C%}u+L0blJW81zM4v_x<{rEkI zJ$PR{n|2Jb)IJ5Z^&AzbcZ8yGD$PwoqCOa13#6$fY_D9IlcS3>g^+sNZaW5c_QQ*G`vcY10*4pd=tnqzdTe0vMafSC`AsDC zmo@j;;{pOUhwJMALhNTrW0G~TX0zhy+Ko>5tFh$O?+PXA2$Jh4r7RDDGIeL@Uzwy! z7VgwG5q>l+CZrheTxFy-mtyw$F~!VjH8cH$I5s*GxKe&{5ZJDG*ALPKMETY~|2$7+ z-KH=7mbFU~j%XI7lGIkQRzOul1Bi1dXp!_UW=_=jRj#E&x^ejjclrb0ig&aq8|5KA zJ?iN#=l@8K4cJsL3?8$IRXJEyliB4qSgcv&J~Tp(u@D5!nb{y}eqkOYesyskEGiAv zB-zg%201dPxtq=?=$M^NTLI{q_1TpUlB;BR4INIm2V((ry&L0xkd2Ns7Mv=Ytfwi6 z25`Mycs;i`&b~9VVJTas zi9aka#WtkA5mdd}z8o}g%Aclx+ECk?h7;OWrM0!GZLRiiJvg>FlWBjlbL!f+g|+5X z)Ogfud86z>vBT!sgd-@t7CozDc+Wy9zX&r0rEH5jtRQC~8zfK0@8nk2n=oW6Z*DGr zE;@gzynTJNd$ZE`=7e?Zqc6AlGz&?A&&U9n0d_w(Ms{1ktVuc;;i>f-G^)5YVtdyw z%HAmYTX99;MqHu<4cL>5|Gfj9ll{i)h47p)F+*%N`R1RM6d0T%9*X@7W)-sM#z6DO zs(6Qjzaf6CGX2)LzPZ>O6d@oGOST7nNK;!Bog#K1z94u;l~_F55DQ>VvsA_6K>fa% zN}}}>pSIA{5D}3$228Y21f`8CNCh$w9pX;iC*B?q-jg2?2o40a>y1b|Ge1QKM;s`{ z?>?Q#JVyPEr9;SBaK_d@$nHZLl;rL@+u$J|n-!T#odW}z>dkg87|ypvL0`Jt)x6h> zp1XN67{)lHX@a{QCt9b9?X<=7pA|$45$CJ7q$M`}4F4`ZLlv5$dWJ;t&XM82nA=Vb z_@+75i@ud0lE}8xf6KI7 zZ9aTYtb9yzu=gUgn&ehf6Hc1s;>of(u9n?=ucKQ>fvT0i?G-e_jGY`Wf|L4HUK0(U zzM37T1t81AtwB{`R8z$f4D~W7O`&*xD}b=;@x^~W%6IDkX!jsbeH3}z0>mXI>dOh9 z)r6nj_m&J^AZ`ag6B+U!Gaij{-cFcwLLzEr4u#VCgAWJ8-^?-;0JB{g{QL9_;Is0- z{9bBpJ8XzG`k*G&BvMGDl7*!tG*n`3a@uD%95h^Ws*<6A1R$-D_K@_A^Qx9TLb)eB z3cLGz2MfUgKn3~%c3I{DOm?hOnHaX2&oa(;>j-Uv#i0Hf@N@Y09T9YmR8Z>0Y7Joz2ZU``k1r&d(@r6}A2jfLw`Rn|+nilh&avZg%(6G`U3oz8)F(fq+3mZbSM1^Z~ zlpnYvBx5D`ZV-!!Hm^}z!5VV86Z9Z+On^iQRz4l^LYfvZBKTjHcnoi)xJzDc9Li zW)4hCqI=sNlfBO=78`v}=xEPeTdCa`QNe0j+r)fWXD9|OK>Znp;nK%UtWq9eeTq7b zRM4cM7DJ(4GaER`RNifZz)D?w95}+)ML&ii5{-Nr42WFUcmQIu z%JBcOFUm!Hd=M1B2e_rQrx25gRz!n9O-y(&^AK1&t=DanwnxPUoSYC1DN zU3!ubEND!ls4l@6g@U(Y7SJoyiECzfJeS&Ed4aJ9%x=%JUn)HShX|NkA4~)odKY<& z)>w~(+LFr7tS#CbSKzx)-^}`BX5FqY8Pcy7{VQO_F{IBAdW1(`mAVJz)CW7;HKOKQgE-z`$XqMe(q64BhB$f^QQ z@G6oLwE+B@Ko9eg3*iGg@)vwld#&WXYZCamBs})k-Tx3x-S^3_eq_bz}*@Y=-o@lvUndI`o}Y^B%`M%^S6_lk*epce!&3yUsQb-d8z) z<$I|9!DmY}K1$I!`&b&YJEk8Xui!GiH;YE|QeL|TlNs+zN9N}5hdv=&5H#>rj5DyP z)bim}KJ2_Swb~ZA!=Q!7nm4aq^;jOazfK_wA5PxNvNaXhoYZm|w(AX;q5-E{?gN7{ zs<}ocfq}{ctFpkf7>qO)bN3FaK8MLk!C<@8G5q=`NaO!%JqBGuDOFqEq&Kv;oyhgU zY9%a_JC#slCNEVvZLr!XrP7l(E85wJX@HBpaV+W6Pcs2onGr>EQ3Y-viN z-uwROh-4SnDDkTks*pl`m_7#ONVPIaCJ~>#md8cyel7wCGaXbwm``pc@XNU;c6ly2 zRVY%0sm&d1ZY*OXb(%n9|Ee#ATE=-p+d|q07eD*RMTWMlxap}-I?D7cKs9| z9|pA2KW&B<=kXln-%WV9AS#5}LescMLRUPLYDMty@&ht)L_w^?-`Qql^;uZ`3)4f= zjGc^2LulC4ipOanoZG;bZ1oLhE6esiL9rsJ9Fj7iApFOds#sy|VdOm0xv zh1r&kQV6`a!rCQ4H~dggQ%%5>1Gr9| zZwF@tkoa3O6?FhbmbwMFh^r*cfTP4D{cE6Z6$lqV(FM3QsOqtESf@-sN4Z5aWOTcT zi}mk5!Bi!u5E=P83~e<9lX{(egmF``Q;!NNf`Ul_)7g33+yv-*9o`4Qp5cl7kuYYU!o@0<=O8QuWeHS2|+9egBiteS$ z)VnWq8~#YDgbN0T6se#6^-lt!?L~eOoRjBvSVOv>;JN5%DQSD*RjcU)a05!&6?nG8 z&Mtx|6brhC`F8jaKm;5X6Z>+j`;588w+s9b57y&ZrEzI>et(Es>330L4^H?MEiCD= zX5I^}a+!6J8^Qz!l8PxMg{U_^YCzb7=6e819}HXrg4s{7g``Bcmf5|fsDUJRhtT{p2yra7eZB4!_UTQm%mrhZ35 z9-1gXxOMc4K9YYrG%K4FxAV+c5xa3Dm^`7t&0BBjn1hWt;?I7)G4XW&DtSj7ejQq> zai3>jj}3(-0%_X9B+GCJgFuskU`Y}=_vPqBQDGjJMw6h#)>URR=+f%vxM#pU$T$h- zF6L~x`FGy^t0DW^qPpdzu{eX5TiK-zGB=wr2N#6Y%-P|6DW}+Mfr6t5TGd5bZ~}7? ze?31Vf+fmS0!hbSgFgN~#PW}nZr^8VDKdfxZYqNRw`ORL1mz6w7OLsIS`3R5SdUq- zMzwtaSgIwh(Yo?zxn_fUwJU`fIg~|zGj61B3cc^=*yd{5{jcxO(@Wbc>_;)no8v2d zvl*vNvOl^f%NlYt9P(BeAOR19F}8@Oe*V3h^n15VF}Q9T0?N5SJvn4tszseluKt7% zhmjssT(yCm+yEE}w#RpiYfnb(noub3cEp zJo@~#7M3j^iPRe-y30J8b*I%#;e%x6v@!UKsYY?BE=Emvm8Y0nmN27IqR_<8>IUpz zL*y#HFD=s7Auu_;$OEGEO(*(5A~Bjk5Z~`G3ITk^c&!XAYr@W^40Nej{BH<^H0D`Q z8z(f%ciq`f#bKC7Z0U*p2`JO#MYTxuMg=0EIYjc-=2A+a(kG1jAJx8!3X@?jLM;hV&%!~?^kz|^)r3UeRSJXH>TXn|Mu#jW*K|_SpLmLnZnl@H1IJ=hqOe{^* znW9isZYS{+KCUikvmLHYirkD`P}NQ`xBLrI`YWQOcf#Jd#x0?MzY{@pQ>bz9yt|=q z`Zja(&hfeEPOCf`{JO2IylZZ+#>Z%9L_KW>yz|$ZO>YE3uJSFJB9ja&$s)*&MjFY9 zbDBSPhEmq4u9L_F!ysE|3L&ukXsj%6LqwtAe(Fc9jBi5`|2B?I!KK5u9SS{zam~tZ z52~vYpQy^uWj$fd)KM-*f@0)>GujxGSulnjH&79<3?`u(%-vApYU4t`Fih)`Z{+$_I`t2*Q#{JN<`4k8C1fk6CiD1Y$qDWj9Ip~|w2;X;m|xw3R) z1COJ~$;mGwmLVDcb%;qW)E79PkY9noBQEwc`+&L8lDk=slN|NQtqu=rF{<^!r z{*)7eth8Py6&scPToY&1Wv^ zh7fFlT->UdyZ~fY=T+BA*%MMqav8ct7pq`foo(ZR@GeH$>8!eDmTtJeM7!)6&vBbavv@>MD3LuFF zu|tiaY5!B+GXPQ#~O0`LBE-$m{DP6vwOvXhnwI76b*1Up0Oc2X9J z1aOS|W0A0b1(<}Uk$hJyB1#>$Rgr?7AC{`GzG(Pqktx|1P&WNBuQ;AZCJ{yB7>_qn zND}T|wMYPH7`;7zQo4l%IpfF^a+bo^HN{+mQ<%c7bWCyk2c7!4HSHuL)u7#YPzA9k z|C~hbNKFj=62M7r<#Pk^K1gV6=S?5FpY!S+-Afj=VfSL}+=J(HoTp|k-r6m;YinsM zp8w_?Q3UxD(aH%g8;vrgde1b|{Z~PG#)7is#7FJ5r z7|{uc?>q~>AH1g|?B76zVVaaF$^tOW2apDa=$$N&)^IRM2MoFHOz*M>p_ zX7Y+d@T?#>r@D!C9XgpR=i*RMVM2 zX*U5Ug_UAE;an34BUi4-)Od7SlaoerbhJC32!wUC2$WQXLBb%jWvdYXWL`-WoPNIf z9QGe>jB_!WjKFOoAZ`O%T@Z}Hr9jQQ6LXjVZoBBh_gHk;A>9+d(NO5pWg7314YxU- zJ!zWTMoJ;~n?w*b!-@kL%tWblyGg`M2GX|A>Da0P8(zRr{XC@~6YdfzK^l&Je4@dL zjO+p>dcI&^yX79;UYb5)s+-i4)`Y6MLv@u4N?elALeGCr+5z3a#|<&@+^ux&Qm;vL zFbq2Msn5hu-HATN^%89>8z%L~p~6gS<;k^HPr{K8c0^=UNQ&5u1te^RX`<4yOZn$I zfps6~qZ8x1Tb*vdKaX{4M;kEBxaX01s#uOsuEz;(zWq3VeFA~J7TcSTR-sETw*$!v%|gkMGXFET5lG-SBT1AFFws2_2}1ZiVWb zcW>TU28^zcHhn(c9==Dyc6og-E`Xu%>yCrAS#u#?Yud8dvYh8CcaSBPm-U+I zT*x=@aU1`8JHM%#zf3S5s{YS6W7UGMDU3vRMt9N6m}Q750=($uZmv4vBr}3BT@v4$ zGipSVRv5*c|Kq*sq|FDTn)bXxcf45uT^keh!F<807mWSaHZ>`?3QL9)XQ$3mIV6M3 zhtV+)6(u}U?&CGjPp4hMxVaQ>tF?FjqT#vQ`SZ(NN-KG+$s98Y0VkKg=tX*wt@o%9hy=%Sw< zY;cwTFNArA8IpLQE=2)_wnS!A?L(F^OZ;kgxUT4m^ph3W__RO+LHy>%tvYVk6}vE# zoPs=QKuhpRKRv8Qqx=8yi^)_~9A(HMut^!q!Bd*=iki9yZX6ubSC-YsDIx1iHkjT>c}PM`08V4M!2}?;riH<8FNT1?NJT>I@(o*m zGcg)vIXP@pBGbS~`TOMvs%pR-q1w;Y^JEPBSL9xT_od&q%H8q<(q8d0;(g2)%6(tS zST1Tc+pk)VbSft!&0O164A&5JO$RpBG%3FP(-g-vN!R4TGaA%(1VRpx*CC&R^^)GR zH(!ZaqQ7~p$8k}Hp~wL@!JJAx0x=n6xaCC$lCZkzvrwWaPp&~ETv0K$n7Sz<^L(ZH z6UgcU?W>lESs`-hiZ~jpOZ!b!LQ)9XD1Vrq3tk#c#o;W>Y}b1mnm6|vAHZJ^aHedd z*?a~IE+(Uoh?+;cvrHU?eH@;kB zC8`dJc=?!0r9OUIYo`i!hI$Q20ZU0Knb>Hnii!jyeoI}xXqIHv(*S&h;vqQPIj{Sp zgUth~^eX!aDZcJcApx4-Z@*tXS?l5@lOKDvg{cm=Ycpi%RVg=APHMY~7x~=59SIJ= zBeaxen0I!a81I}8z3UOj8#JPoIp;C_97~pTlOgwy|4A1Z6 zyxWilz-!@~r$)B@;;)aiTFnb!0E_uf>&}kQ1Zs~RdVs}_aYQjOY@EE-$wkT-*36{E!+$NF_Hk`ibO0G|!Jtmm z@(J>qT7g6jD+?IVpDXO8Tv6j0f1hsAMcNh@^0NVS%5c@&vjk)+Tx(gHjv`8_n}Tv} z239(Qa!s&>xz5&8eSSlmjtcUc_p)e4zr#pDZh^}ug)(`juL);#s_6|&aD#d+i!-!3 zel@++!PyMZrof9r7yLkWlI`(;{McTzDF$o^V4tHtui4ZMYHtKGxoIu(l!?~$h>{9} ztV)L^6!W~?D=lp|uQFx^JF?6-Cq<|0#Q~NuQkmEll>{n}YMB(if;i#inxo8wDD&Ku^ad-qQge^uX zxg=lyP0Kuqfnla*H4&N?#K9-jsL**rCSY8AY!^d~wdy_-@BAF7#V!MI`hw#vJ+J1W zGe)1rGsjD(jI@4CWxvHBjg)uR81rl2(}+IW zc3r(e;%AvsHl{km*fE(59E!pAC-L~psW4uLd)KQ_CSnFQMB)hW>s;x!RfU&;1R&Ra z9;cd#+Tr8lWo60I~ZSWS_R~2#rZQOllQf#2Q5yN0pta+Oh%Q zoDf0;twe+-QTL29fDiVyBs{Q1l}7WmadMI3AxTS`&%en}M#2R1SMjN~7cd!R zCkV6TDWy0T7N+S;+Pj^8pa05AF?L9Q-R_u zEfJEfz4+1zRM1M#;%UZhaUCL)pVhH6{0*T=6i$#y@Gf8}sMi{0XG$|+p(0)F=sm^a zXM6}c5v-{Z06LLO5$5(}-#f3x$0_?#?s1eyA!H%Rgr6S*#Yh&f^cdP1+~{PY8U5RQ z?G4%x;*#(v{KP}DSQJrvTA>rW{_YgPt@Id`SqzvoW)>ec_AOtBWXq+fXd0&_>i<-H z1$#@InvICyT4bO678=LGGabG8sJ8nwjJUYOJC=11@{EMm|3}9c=1B-`BA=+MTEl=s zyO%0*Q0yq3?v;2r9BnDHr2$Ba7(B=Ty%)jx{Rb*qI{q)HD1d4-ez-@;i)*4vFb10- zAOF#Mrwo_P$^)v}!N#Zf)gzXr%*!|O!fpL4_OyS?d%rIcXuA@7UAt+$D=;e9;|F0v zA)w!g!m^m7MwEVygWMuz=2>#$jZitk4L6kp265DEL;|gz*?|f5Lp-D3S_L*ulzc)v zqwRz?P&) zF2Jkw#t}S1cd$62x{~Wgwomka%tB#}tT(9ZU`+qj8<6d+SL6|}m*X}; z-1Fn0tghgKi}AGWF)Yb>yF9s@Fz6>b$4veQ?Il!zro57@;%IX57bm%O(YBY#xb=Pk zd#>thN_oY@i?V$XtKXl9nr*ng=5Ad6@Ht2>hOwZxWuM1zCLQ|vOcK1S1eAh~w!3(4 zNscWF0d+<+N{rr65!gtpJA{;rx&Bl>%;fp0O!5U=|CS=u2kyxXp{DoF`v%GL4Yt>Fme5^ ze4yAKSKFz6>JS$qWo`s7(^a~t?Ig@K`T4kb=F0VkS}kE87p9no&zCvhD_Yg){k{f! zSeV+ElF#fVU^I?o!lK3Y>0)B?~X?;nAOo-6Q^?9a$;gsBbFyMgW=ir z9n*JyoS57H>7EPWg-v?#!EApExMWlz={{IW%!J0LX%r_30K;4Sg{i?1qTXrLiy3G< zIDBFRD1Au%peP^66kK;~M-XKQi zzc1Pg@Aec8)g3&q*B|L!tBc(gDjpDWuC@B!;gTmukf`gyA*0Zg0s4tSO@|uHeH{9> zfBwHpsh5tM?TdR=^a*BLhiBQ3~!1CEinfLhXL9 zIey*rsOj%|27w4Dq7FoY0S1$=m!nDV18rHbwqr!yfHix5X{23qe7;sUe&v4WVBhP< zDoe9~O&UM*vAncyC0l9&UyI##6-tSNxItf9N73p7o&j24Qp(A4zH=|i7yVse%eSQh zMfJ|Xu-E!Jc=|4cjb6K0IQtulgqBjl=75M**h>P8fK`qGK|g%*ITk%nGGlGUgHB)q zSk(KI$({6nH4^6?k7XFmC4fm&PK)wZLMu4{ctqGySAxx@X~7ckw@DU&AvqNYJ1xoY z06w@z<)Tw0DmuATX`j2>+EnV6!2pag<|E z(_;DcTwuX>E!41Th91x?wuijDPp4t_l%4@zOmUZ4$gYVdy7J*^mm3tJ+bqw>K6ES8 zzVX{?1L(?YfqT$hn!;}Vd4V)vb{d`r5WXu_?ZI6?J59LIi!(G^#K98{g)1H>Sf0G{ zqw}vR*v;C;#_-`6`lEGD-9Tfafokxu@K_X+3Tj~|NPEB$;GbRe*CQ0t%)Z= zEd$n#1D5m8)#n)iqM(ig*K!#7soo#eM_~+@i#kf9EgR(p=C6`j2Pc5UX_ygliNcZ% zN$K+P8B84FSbRpivrhw1ziAk=k|S&}B+)61)p=HObFmAtU(|y^QH^y0l!9u_Y_96N zH!wS2ZZitI?cfWno){A9BZRMNL4_c(<=;L6DJ#7PM-}oL1QP``eKmuUxAADv)2H^Qr3WjHJYz>?{IFhYt7f zi&64f#HBC7pi!K0n-P*hYwEBUJ;6$`Fr+Rsh6#Z;5G0Mg$aeA5tkj8MBR+-D7&5f$ zm^?z*LymnE>iT<`6ljtCM0iyEO$4Mc0XJ2_`*$F_wZ)lQsIX5zq1QB@Etzv}=`$zE z!_C2jDQFeE{$K+`8w92TcU49VN4K;+yP*$$CRlE-YJyxA*mBKh8hAN)jPqzo1c6!R zDi((Sv zoncjOgpB+fIU64#dJJZuizxhI@9VO~!Pl)NLu~fzW9<5>QCh%FD38sW=qtvb{``UpQqhVbNi( zQ4!Z4yC`s^6j~XBmfx>sY59g}PQ``;c#H&%3BHklJ0nQ8$-D{puaR^XVYd?+mvDG% z0_d#<9gX$yP=7M0jM+NpUf@xtPTTI-4<%aL`w51oy?zC;#-3>H3<}gBuvOv31C4KK zOlM5SqHxDVU?^)N3z1|}|F(V}ltdItH-mep2-J({W3|HM$eDR?Lc7*ti}8+sjKz4G2z3k81{IU1DibtI<@!R4k`Zy*rtvR;~x4j5k`!JGq6whd)o3O zli}2-%BMNxoS^$pdu|HGx=}yM3JEZ|TQ+kr2CyHgelRJ061@nRqRkLsYJ_w+xc+oH zNhVBW18Afa)=+jq@u57Ha~vqG?|v5&ZR>Lb4&sWE#>!cgv7;%uKTI)(4=9uTWS&X= zk>@xdHKWM1WQHw`Z$3JQX=Mg|aG}<)r5!?&6Ut-cd2Hty?3$Wrr@YXY2ug<9S=VUc_>Fpq}P%x`}&x z<20F2YdspTITlWg&e)@=1c;=!$Ajm2rqK3P!k(E0L*Lm#)?o%fQd-Asx%Qi*DkiMo zthUWuaa!6J9WyC<=54xLEC*)Ddj2ucm}R9S;1D7inKOzP1i7$RdFEkd=;Er(Q(7fb z@xvW$<1_YlH0J}8ptD#5fb4H`iXPvu3y93!rt_ymCgVz0{gQD=Z zODd8Tayvl@BO_QQoMCmunHy2z=3oD)wNawVH#=b(ohYFJx&H&4Kx4nNB)Zpdm^}D=szkL0GTlrDu;ndzaejg{U=r(WF~)+)(_637F;20`WBN4=U*2JZ?m(U= zS00zpS5nzG>59ZD+v(x>H9`7ug(95&H#-WAl!+mg7eBLTEMb>Nv^9iXc3q(0x(yEK zDcxC2iM2wKqpi;6Xrp&X>&wHr(tT#573K|2;#&qpnj75xK({7)TcvWj>LmrD@3p3v zy^0^WRPoCW9Pe#4n}M8H?^hQ(4jiGEN}g}dbJW$nA47obNDKX}d-<^tI{0U+Ou9aB z9rBaH(x720Uf)m;8fAa8((8doVgECh(zs!flxB?4FZu|!QC{>% zQ#b5V^BE>TC*mtQ9eNGoWX&8|rrRgeR&WBoJlZZ+dL^M5b1jq=0Pv zT-!wpdluJ^Yz&!JvGU2swC0sA<5;%!WFt4WV9(W9gs^N3^DJ2K7MaR)w1jL78J+Wz z(Ti>j_SfyLx7!SQibeN;0__x%)~ZYBn2jNsfy9|+VoA7 zJ4dw~^q7tit$IEUQyqZ?Bc{@z7H9M;WZ4{gg<|JlI3}q0Fk){}#OVkedvVJQELZ1e zuqZQeku8vr>l$Db)M1I-(0)=MOPz#x%{yS7K-0l~Bh}V)eQ&F6>8e2oWTB@%pCoqd zAX7FEc5IQCOU3zY4c2DpFs%SMn8n$@2eS!eIyQ@6_$>|)ekk^6sfFiPb98n)5F9;T z&k$R?S0)1_&Z@4gB8{tKk-{n&-g@kjxC(BRutPs-6`Z1SUOfP@5K}TQ^Kne>XjMQ* zOGVK=U5|y5ds-tq6r4RRZ$eK=*f(!aE1ST*O%dE%-GDJ|7FQMYOw-faCiIk)3g+!; zYZH3f5Wu}<;j&j^HS7#DceAzTLg$D;{bXd~ULm3=^a`O!v^#+A(L~*%E(tpRx4=*xru9N&{dt*k`uR&l z22TMV$*1GZ26fEP4v6#=oCxOSC~v^yz{EK99yxl0f&!9S+hyR+5}js3y|Er8l2BX> zR$1N9GS0Fc+-&+b6ZBG(bRJN%W?z}o6-4!P^ES(ckx*3BM#fP$QA#bD3hco+YXAv~ zx5!v*r1my#S`xZN}8AW=*~DrjHEjiDJF9xUtC(5=EZ*&~h&f*wvml z;-9V#8RiQ+l%3_q=(I0UC9bBD<7l5cZM#1K8EiWS&eD7N6=CClS#m7 zC$_SfOqZfNiA%jFIq;RSWoCU!(+-yri8r43vhca1*h@>bDWk1(f=}jhHl>9vzioVE&hm2|k z1heIGuSp#`gs!CnOSuA*_-+M9d_@zBV~>|B3B0osnPukUh@4_azL>O^&Wd`S4#UL1 zP^$5tB#>$_!&D48`xspVqEne1wQJK)A4kl*_~kLQ@d9`*_x(pBbOV*|9L%3vw&xE_ zVg?xsrz>&HhJ|)iU%qf-7*aHcs-fviOQb|T=1aoLFCXVzi06Tu%TLYC(ULjD(@7^& zijw{|wuIBq8qpbkt7c89?xiax&l+lU=Rx`(sJ5<&v>kX>1nYtf`5yLzq1o$Fhs+q< zjs=p6T653vOfAF9jm3OVBXreE5Ei77Ct=nLy{lxLqP z!9?42TgytHOBHUH#f?RMa~1llLVPOJg)78Y!l$%hBQ)P8;jf#zqpzqWnC~8t22Dqy zIxtv*Vck|2b)a(7zP;Qoy;1g*cH#5yiZ=RZxo{BxQ%JIPL}&Plv2_+r9kNx*X6n>R zPiyJ~>raRnW|0#hbMMX~MF@MA-)t=YLhT&^hj}xg4yI#h3U*=0?Ll&YR=yeMvT#}S z#r{$`CBANWQ6jRsVe5Zu8d5HI=i6I!!)q%zn+r+mg|C{x8tSE0@%QY*>V-q2R7+() zIQ}U#ipW_Y)tj_b%x04~Ul(fkOQrg@&yfC1k6XivQd$?vz?h z<(*QkR(Fa@LFs%@7|d4DwW36rtzOLdquC0ksz&3AU!zbmlAZfi(frA=3--jKUZ_}^P$~#RCuiO)NfGaBRNii>%8jYRJwTcT*K={sw^ookqkH|L1qdX5aSkrYKkrLmUcLDC|^ykkzAdRV zL^4j=cqvg@3U9pznkpo@uKCJ1=O;9<)@nRyuz8b%Wfq#7Z&8Xhtv5KYt|1e3(WbRj zx(g+{RLn(N)^d^GSj;y!i*zxpza?DqDp-dWajj63d}UCld{z513RxoHUqhC}v0@lx zxNurgFk7k?NGkF9f+UU9&>5Q8DH4CF&cfd|it=HQp*kYl&YOQmr85?i#IookO1Q-G zLQK!A5YCc4_e(q}e+vyg<^T&_m92M7_nITTSzgo>g5bXNTl=uHy><3>>&@HyviIZg zx{QBS=&kZKLz-lh@9>+fq(qJ?+&)t&!IK^tDJ8^K3TVg_6D9CYXw;G1N-NNO0G6}4 zRc=Njm~^sCzL6K33za$QDI~-4XcUsPhv*Z=#AuJXE1f%T{7H0;QWBk;w&Facd{42> zT}N-U`(m>e(TkXiR_9WY7fN=i3?p`(xVc1^iutzCIGfkh!gK-#XLS}Tzme(>Z{`sc zCDAFnqY=bdZ!o6mg+kcab7H7{2Uz$pb#A79Jt=D?YnPv#wWFnU&W_4*x(5BA&vuP3 zsGSL#447q|**IX?q1)$#ZP5cIZ&rDa^rq_ki3@cGU3^BZcdM^YL2rKZ5E#a#N?>8u z55bx@L@dU*+qf%%wlG)-@d?O;1jW)Zd8w~kwsQ+Hw!~Of7k`nPhtP0G=ED8J1rwef zsAi9%V8YM-uQ?8LvYlFb4}Tq?Pt=Bod8vXw^dTs7eeZoavoNiXj+rz1KMiL6u?eHfE0mZoA}pd^V32uw$KtaMoEF8W}I4C%f;jl;quxX+bR zm|*SAN?*~H(PiC-ZXHG{%>(^$)W2tvKX+rRB|3pId%}ybwt@vrQ&N}R z+G>f;XOYI%8*Og2M8~U3W9p3Tt;ksaRg_=D-Xb$(QwYC_23JdTl$vu9K2-LE z7h%-}L-kTpcMYp9502rr*m|?Ax;*%W*JA37th$OUt1b^dZ{r6Z ze|Rrjk)snH+&B-3*9gUA$ttT9NiZA%<}+9%yRBiBwe#TFtuF4RzmOf!w&?7p>cJ_7k_wfr&Wb<-Y2h-XjPcywo!Xy{p*{q3OCln z&Z7#K%2%bMu1Hn5N$z#gs*odD3#r1p^X)A!MQ^E2T{2LPS{7c7a~7@0)k7w&$OVZ} zD{{eN)QbG2M^eZDks9?N&K2o35~oo~S{4B&T%+b84n7z*^g=Xh?)F+_Xw;>eW9g_X zQlsW>qa`KPD_&~m64^;&!iu_ULRB1#dgB80u2kG9wHTmrgylK=LH}Wf-CAArTqrn6 z{YooeX~gkw7uTnyqVOQcgSEEPGhD46Y+eS%^U$pao0nW6K({Ux21`d>fx7izQ*$fC z=~lm;%ylalAj$n=Q9>M5%jcnwzg=8zZ{ce7dF&tuASNwa^~iur_y^i5@Tu5!_C_;R zv3b}VeTfd?gFNhwN_Pm?o?6A`VQ+LDs>i8VQoT@)_+(SCeBS3$@t;)5O7qetRTmZr zD5k~btTt1`B;pg#!x7ZM2(ki~&OTgguQS8+rh{DUbuL=Z zFC@L`AQyX`OoSH_J@nK{I~SXs>ySMIh@&yjS+sdff9p597cqglv=DK7>vx5Hy1{?)fMXbn1@> zcRv&_`?Fm35+a7^d#zceVqiSDR51x0INsZ8HW$y+se8Y=&~f01q>p+D6`pwaet5k` zKfTivJq(dyS0JjDVMWs<~E-CXag!d!W zy1&Dth#tdiSFK`q+ODaN5H0@ppQtoRQeDg|HLvvj@+*{%{)JlYz1{UFu zycQVGn5R?N7R#(a^TQKbT*KB(K(Cl&CCEUI(mQHKBx8Qt?i}BxpB>q5Z>^dgrACDO zD%B!aBMXE{?r$1Ga>e-R(wtS!kY$o^fw~8?3ABRtV20q>veGw&h&|OwIvH3ftgZpI z`yE-(u2_;pxFA6^Ueb6&=76b|G(ObLu^T+)Da!#fWkJfdIP{NOS_526iy`|LyYYfE zzL2EbMHe1@#4lNYFWZiKqS1o8;5`?hg*e-hA|uUqEIqaDm`rc{8eYS#ZXg$^!lZ5E zJR!Owz*jn|QNkp-2VjZ;*i5Ty(Lp)UG6u^QvY%0@&wqIP88Jsqmx|=Mp=u6LYkONY z--EVd{^Gudg;7QmDht7s$%J|uMAw>7PlIaA%n3G=)WENw|GRCB5xcr0VCh;?D^IN5 zv>_4zn!|3QOT^K3ECfEs2s%TR**uqsp56ndqxW_8s2r&@%(DZLG2KTtdXEB&C3a0V zmL^n4TegDM&WdUnZ~}TefyN3+#);^_)v$3=q5CCy_MOX~nB|=K&J$2f+FYk^vzyOk zlQcbZW*gs|#`BIjmeHyvgSzwebPUiuOdtA(m_O&f&S5buID9V7KHiaJQE*(q z*3ee#g6aY^IwqR|#04;MMIjUti?5ao5Q){41#E2L%%xzF@GSXbCJWMJsB1%6z$DHv z)`0a5nOzn@3%eC-SdsA9_5k?=hvMiXpxAC#$5Gs5jU<0!ceF(Vih1V<#EiRf;4UR~mAd1+Ghw(%H2R7$NH{ z{S?VI?ITOu)=&TN&OAwH>0-)8v8X}@Ux}t4{o}d*6x1)>f8IbqU3CB+UsSNaNEx}d zqjZ7dH@~BFh6@j|C?vmh{(7<$2~L38ak1Q#1yna>L82~Lq#>Zy1J(`$+~o~hCb%6Y z`-Q8EHu&!1m}FV-m`oVHo~<(*xP}eSN?E-_GS5=S5F0ECo4M-+v9Al4(V58yjE!0N z`o(VWa`x?k$-Th`OeTk5>slJH1uI?}%z^&Eln~7ajcJL#Ib1?U%~TCTUiW&Sk1RhX zGldJ@gKFtGOH&#^T=s=nf=tncTvgu~RUQ|tuC!jU_!hYUC9Vgu0Ql?YzY;)omsT$; za(?mSLh+-oEH9#xLn?5m{{6cw0#0PkE;fP81qwCcN(07b*Kyd%YcbTqOM?5&lr6F; zoI^a|%5yf=8AEjVfU%_paCXd6O}h`QWFM+nm_3&J&%V)@qxZVbvQN#sK9;6pAqjwZs$!mnaGHD);o#3_HVO;Row(Yn; zF*-8W+w>XE#=tUk^By&%n%WRr3#CxX4X?@$l55bK?QNB|ma*s-@LvrY(DE@UqJJkR zOUUehIKMjXoF9e?In3cRwH(oXu4o#@tZBY+C3)`Bps9wQBf6yMBYyL^HyYs<9ryNFinR+J zTKzI0{a#FlMddkWSgekDW2;w~Z7J5(F=)8%7*`BhxkyU1g>#t06Cs+zF`WZrvP?hv zXZ`#Ou4ooyGDY8D%F5tE0jUfnhA3HpgMCG%L4NEp|6EZ@Yyky4kXU2>dB;x{C@<<# z9;e8H#G1>%#fI{_#k4-*0pxE?DQwvcn-QwOxRJsa7O~zw%JP8L|KLJAuoEgazGE+~GEO#U#3(_9G?d^};K3 z^~GLlyGD)|3DwP}3-jn#$RUrRS15K-^|Y4?cQ4-Z3!Nu$O2{{aRY%l08!=GBVP)+4Mw9&0Y)zJIs%EZzg2bhWmMv904R5`?@Vw)*$H&b9;xi^L4Bj>wgS+StJgz~ z>85gXc6)sM@sNZ%Gl)R06FynJyj;N6+wA89$zs`XL2_*-qlOC>bFdi~G&ZxBn?vvs zw`@E9Tp*bi>=J`lxjJ=^grp;HV*4HfX{RnTS@m39^V5K3!IQ`&QqRd|nr1xRihg$P z!y;a3VB6T4rG#r{>?pnkLEYEnIrQ>Sp>s-^H|1xm>!xP7REJ}8fRrXz&}%q|psU(I z>FWmAQI2sdezW9d+fk8~qZ-fzo;9H(qYh3?#RjN>zT&4^*$RGco^=11HIEG^o90Gg zbHap*zhJ}IxHhIL#wmJGY-D}UfhgD(w=v$hRSM0<&Da2&j1Ex9AKC+ZC(vdg$;1?W z4$>pPtTZDN&(zA*X;dOkoI2t=k%{}nsiH3`+`XC$p_@|aOKv3-aB1JISmk&J~*GpDC3!hu6P$}#c1^shbL|qTSThqd2U%NXz&$20Vej`GKp7-seiJIb;!(1 zS$~LCVw6m zK-QRBJ^{>Dqlnx1z}s$fb&bPzeC77Lf-G0EASNqk^ceY0AKg(d$=jslK6FhSA2f!x z?x2;lG8qDIXV8X*OB&XosR7gRA{_#4sV3gJ)6jPtuxzo_1#hQ3Qr6!xsS}?=cvFO2 zqy&$ROY_GB_rZHKIw+9Dd4+-kX&wHk$UholxX2VKgX1t|J1f@4E1HU6K#t&OcJymW zbDkOZ^?XXv<4CsDLgPpiAfv{S#(k#hz#<8bfUQ~jc!hH?ffiz@z>Ig|;)4NQ{<4&* z&|S3^mOlcowsG@E<>Umb{Lz?tfj0_g8pf04Wyl|6tg6kOKa3M??fjujjp&WSS(voQ z5Z|!Pa@+142aEnNHT7h2V?{-vypVetSSam<6dT$JG+szrSl}hZ(?yhdVODCN1j^9_ zpcF)StgsQV$8ksfPeP5ZK|d&Uy2clU!~>G(A!jxQi{W7C_Bkuvo2v6C zF4P%xu_5f;>g!X`o8LSHhHAwcqJt>6pAkqSJ06 z4sRq8ZtCJMa`O-^NJr+v{lEnio*k%WkD_40&;GAD4s)`dT6zzE9iUIthKG5nT%{I& z;BvEG^S$W{Z#p=GfMdU18*!@v@C)`21ciL@CNd!ziQ4kwwTg71?8S?&`#$c#BP!$9~T z5raH+ch^NCbVOdb-x0+@JSj?;(3>OP-=!HvX8UuQQMg>uX3i+@+GAZM?0y8+(@ryX zEU6fxC`uT*X+TOLVToSY9=POl6oX#!4fP zg8TCv!f4glW?RoPyRprS&`6RFDe^4VVxUlA*br>~^$T-v+4m&`O_nF<^qR9cKLiJEw0C1zH&f>(BB zkXjLW6UwfMmr0&vPK=9wK6)rQKK1$Z(@Y9Je?BJEs!WXM(^IBMtj*x7s3n!NN->@NNUTfil&9I5N698S{TUW(JjeCty$jj@hCeL0v zLDhRO()Q*nV6-v*JtfC`6e)PIQvCJvzv|K!WcZC&$KYl;26L%F955nPdfmjjJVYvpOHosM8Gc{!rhG0(RfAq-p_j2fyDte}v*fd%<(JXV3>-yIH%pn7-u``MCjhm; zXTirsqkB7H=97CTrzKB)vf2lxw@%4dSb=9=hN3rATEj4Ya~V&WE#>LS71Y`xOiD9+tPBjk2f_R|0U}J0x56001f3t zwS|& zSH}8d75E%z77hx*2VkiN&t5MheV!tuii18_A@KwyGg9X%)~FoRK}%PMsRZ}SA`h1z z{dv!;68QD=zbdbs6GI*inn*BnrMEn909Aod8}1KF38|!nfB51-|6Cs6W=J^`8*vxQMGj7uliL4NZQXvR|r7 zb6n)2=)~gS)^K5tRE`Ub51s{kTQ$1)e(I6V*dwtfJ3W_>sn-%(PuETVu-6ySS?n8o z5gm2V3ooLhIzI8^L40aUE=3aSiHVy#tk0<`T0%EF=aC zFT~k8! zMA1zJnm~bl1x;P$K(%#E!Tuz%e%iRQK3*dfw~(Kf5Rd?)PcZmt@%@DZ%_JWFcoJ7E zHv@-1_(s`~u((^`xR%Kwi&w#3;`8tczuBt`4)RFe zBi=CTyaqMJo6h{+@#jsTzRY03O$*x5xt#FNTjt z{(SuF=f8JeX%s`F_UqJ&p$ul7SGI|h&5r5-eDL-w`@~QPd!}C5Cx$qxF;Qm{ms=ag zJKa~KFpf0T(fdlD82aeu>#T|sIsiU0$QiX`E9Q@HW z@Jo@N>A1r~5abk|X?lmW?qL@6Odr7Btb>|f?xydPE_oY4v2<)(x@s&FqfE%-69f0z z|BUTrwzbIOdg=MvD|ND)u*%n7F5#i@Be}~(vhC2^*|WFI#H8%Tdb50GB92g4H-q%t`gu=Q} zt^1*CC9ZKdRfM$1V_-lQQt~lltJQk5qY$O$RfF<05K>1ZoLgB6S}G)IeZC@sc++gFd2o?D7lTE=V9W@?swW{Zd)(3dRc+XNoQ&!R@4trIgSz{<&Xc+zID*Xq*z zX!v8y4vc-Bv^+OU{^-u}-%CH8L>F-k4|0tLgf5P;Pp^nkT^jc;nKC5e2QjrfB8#iI zaap9nJ?j|ONO@7Nky&2p+|5Q^Xe=xg>4hlpes#8a2mbqi{U6pYgxWYu&qn0kFb9`b z7hTcYax^0*c95y@R3T#)HL*n(@Qje&Wy&*a4Rs7Z z;XbW1{dxF|AP{E#5TCCxBhxm0c%7c#Xq!nhvYgS3Oac18fBxS!iInKt{Qi_Z`hV%C zU0j)Ffzz%+&z>LSefU^bRNTYFy#!bi5jN-mL6u zqRR#|n*XAPctkf{=-PDBGP!dSoH=FhC$}%hbWvj@!Gm%Y_UfQt*tKkY(RK{ zF|RG=y!e}%BzyL@CS#j)wP&dl)DQG^ysMhp5L$Ta(CH8k z#@`O+-!A6gFeSGXTgUs5H&_FpUluS_M}Gib3Lv6Dy-_PR8x=&9E*PRtA3+TfX-hGn zb`N^w9YdW#*Eu&2fq`}2mZBO4oLoNu%TUMU!eopF)Wgdg=ti+zt>b-Od;|1!GSc+& z0q)UwcaE1bB~WJm#2L>O@7WyP6AMqtu{r?W%jk*ge%}VpezlBdLjzk^i&y=hUNeD4 zKZhFiQ?-^_t{1DtMk}e|&*TlnY&gMFo8og@N|>WG)R$(pTJxkZdZOP)6Xe)?&LF+T zyo^SJ{OvyWe1Z_Uf+p~O^`M4ipx(nf&}e>`>IktYX6`PWD)^H3n0EDWiaVfdCl-1H zGnl$dxEVl(Ysb#H6vIOE+y!PbUgq}n@h3`}$nO^=c4pr6*DK-q0%6w1Y7 zy)aUBs?d{x@q$=r>PU4|#kKTMQzKoopbh)Zjs`~s*zcnWQ$+xiuHM~J? z4(^8P*y9*`cVc6agub92+@V>jIMV|-#q5j0+G9c_uaom}FIK3v$2_o)8}#l!=Szd6(H6w3nqITspX8H?ta z_{#r}a?}%?rOLdlzb81sRMn`=4X-I8Lqu4Os9-B`wl==9NFPE&N;&kci?jnaD=aLy zY@~rLfaKe`=?O>2|6=)Hy7McJaR|xO#lvO7Hc}LQoebGyyYvU)v_gQD7k_*6$di@? z;kj@x%vAu<1}8|)c2(`3jDxPB-aPEun4`(qMu}T2Di-B~0uf>H#lNRGRrYVYRBYgW z5<~qz=tZZD%{v<_Q6vqiXxl|A1RR(G{=h15xA+HUrFW{K4@{yI{}`#(KsVo!yOm05 zr#_xvLzdNUwXsvHp-U5N;Oth=w;|CuyY-zqzW(DK(lubZ`>s-J78{Lf^^XVL*1Ni) zJF{K#)c}8tZ1@fj)jNXRt~XwfSFw&mQ~(|l#fTdilc?)NlSkh1tUr3oC&oKOX#EFb zDb;wSOUwiBeC@J}wN>ybTtr*fVjJ;qKQ@7h{>Q^RkM?A|vDu1;bEup_3!S-?-%vkHfgYE*S^+utM=fujHA-~ z$-&Y2?x--Ard~LMd{?)nK`%u3;et$V_ zwZ}&Vctje!HaZrxhJTiglVjZ&Y1if3-j(z1ur@t9X^juv&g|>KL9MITyC19e48E@n zT3e^e+;F5BV3YF7()XN3|TtoI-BU|rzre^%Zb-LuPw3-i4}8tk53 z-``)Je4qSiUk=^3M-N|bZu@_ps*|byt)svFRy=(epV>!W_0gsJrTBGL?px){>dnEW zX>~t!3m;omqtGu5FZI&*TMxs}=VklasegJu=)L_*KN|G=7fo<~Vw~J{A3hf$tR8m{ zhd)lI)qd;rw%0A!&Mxh*!|%r7tDvhgHP{O(qOxHad^`F7=+{mV+Xb7CJ~HMCCv zH2-?2m=E7t{mMPkw3EAb?eIelTznb8&ehpRw{c?Cs{fz8FH2Hg$+nzISk_NI((DZ(=kTm*0%bLxoIp;Y;yut z?cMh6+n2U4hvI5`9r~HTM#Jqcx)om5$Gv%TW5iVwsXA>-S@2a)YXj(I!MEop8|njN&ov zq1;N9Dj4;a3wb3W4x%q;L~e`GARKF?zo-_b_;B2Giz3hTt$d`+gAg|0A~8WKwI=6# zYI!U*Fwu8r)3zFu&COVdrG+C`%9}=+2vf(ehz#k@1}Z70)n{h-ygDlNx(3^1GJ$i( zRAg^6*c8W;0lKIyD51NSn?eT;yHK5Hgds(@%dNg+LPp?ANPW|Dhk=f1m@%RBfNb*( zTTEnnT`C2+KuH^-i?~=Kha#!i^NCwuxQ;WI#juWG6=5<^+CwDvti@_hR4VA)rJ{1r z^Jig!!_&aMJ>J=muYY-=ft)y5};(l{gobbJ6v+b}l zkF@>7<@j!D%DX}}6BxBzS*{_X<0OHC(}X1pkw_Jwn6X-h!@3=KFdnqZ>zc$(lv;a* z@-7~fp%@7{6Lu`P)MgijW~tX+j*(2@P%dvuG$El{YpF>qzSWt?-3iopsx2L52(sGK zW>LvZyTGJHtJkTDx+vHkyb8@4e9K|9`P9%YOePo-%>>REtk+;>1<4qjaa2$&)Hjw& z(BYa?eTp=&HYA|@&|Irjz|sv(AZ@-sSamuwUsKAZ84<7RgRUXtTuIKyvdzt-irFj| zre%C&6rr-}8=x&Ah%T~auE}<55qrg~_-q_@7x{-%x+t^MD#N8#W(NA0vsDDnIwtK| zjx}Mn%(4}h1=83VTeO&(0gb?g&6aio!+n|QrI~7$Q%KvD>q=Rgv;j-3kfvjcG-%9S8~&bs`OA}G+BQHB4B%J>UWOzXe*q3G@MVB| zYP#uiI`yZ2WdE|Y#`nVJmW9o8Q>M=#aE2T_! zl=YcV7Q12Lf$6XS$|_xevdYWSrUalYq`KZ1rl@iL$Q+7;p)#GYi%ej*5)f=l3nqvj z3Od=EGZ-z5+Sq)} z@Vs%`8=I(U;6@}_%+bASD;J2?V}vt(*IBN8q$>_leKvhI<{WNolyx7k&QMik5(fD(|ZdMMy1-gGn&pbfppMo7#M>4^*%*H z{-9;I32H(Req~OX3K0>_XjpX`1$17gCj8tIsZNh+Hpg;fAjQ)@+Q6Ygxx@Ns9q02B zwpxtM7W(Dx7+;p4X(4P*r&hSZi}Un}j*6X@WoWzpqMKHiy{jvKXpdyV=bTQS9uhT$4To$3x(D?XCNnbWtsJd4D^cpw|5H})l^ z#Fu0_#HPGBq$QlwGJ&CDHAPJ!E5r~N)JaEWo${t)dD1G`GzNm`ZQ3(ppw2NLqlwaH zuIm20L(CPMia3A1hzgdxyDNEh31D9ZIp=RLEb4-Zw~8ve@>WPZlsHAC^5=K z01-Yneu-~(*#XN+ET1)YiH*D#K92z&RGa~jsFXp9N1?1U)8$c|Y~PCS1ZJju@52M! zhci@X7^-U;fJC8+92K}{sdfT0bG0uJ=bzO_OdGtySf@)_w1^o)VAJO+&!6Gcy^l~U zp3up(T?dssQ7V`%ZooIF+kI)n&xW$Tmp0!})*+OI5EM=kG`@#q0r=|UNEXneBS=;m zROo(47R|r}dKPc`lOS2lA(EBvtNKQ=zLBg$bARu!*Dq=AzeBR#THJjki#dv9p`U4*CYNzJaW7AnO~*`b;2;gVBO5Isibp8OYLobWtC+XT$Cbkj4A-w9`St zl}uG#qp}`R1vjWr{UJ~60a=BD>-E&CS?In7vVw#pdjiJLdK`6LfUM@Cngdzl9*{+r zmxn+WV{>rQFpHBFJgv1mMys#Mc15s?R1P4>_HY=XUfPu%J{t<2`jV%J1R*EU zW>Oct3hk-`+gSzeCA|m{8QH{x&}cjUq6$sb(bUj+XF^W%@E=zZB@d#Ta?IvHmQ?1Z zW8oRd8lnrmGeaU+Z90SEM(GK(fVc@Gw8n9x-Gtfx8z8HB49KEeGitr!=#qdku9bR- zM7`1^>E$ri)mA;31P-|%eKVpKv^B8&5Fc_xgU=Ov-EJ))V?3J=o6BGsiR;0}_Q$a^ zmzAhq-6-o$90;u*9Z6$!U9MMLN3zJV6T^d`XC!twTv1Fz<;1WE=l0MM7Q&!N)P^&0 z3W+2~<718+Yfe&ad8>{D%@czmD0?s-Qz&7nXU2LlH(#Nz>i|u74J2HQ%c?G`>v{)Q z22K-cR{L7r>$-I|kGva;b|Ti7p`}T(AKb%RL#L$PKzyd zmdI*A@e>Fo^=WtH%^MNtF_pxl>v;+JaIE3uMx-$2q)%4SVrh{~*nl6SEr})wxf)x; zvPHrDVr03*x)IfIZMYK1d0;C`-Y;=Bwl?b;*&cei+PJakP6@Y;R-u_TYC>Zo78brW z(Ic_}u~7%MiI~`6BF&qQ-hzr%i1b<9?ug@pRa_+9L4(9bNzGQcMkcV=ZL~~Q?+vti zcRpof9;2wPF>k(V{KKH6rd;gQn+0%z0~^4Bn4%Lv7F&*rsnLTcBLW^HJwmMvH{<>e z%{fHLIs!a{7!a_;4|0Ls^y?NXd-aLI@2}0fQf(gORw7S_fL<@`d-~U z9L$RTNM?F)3+>_uI2EEla!>zJxhX-~40?16@8XB@OBX)il-!5a4;;-Dr|YT*<##-- z>}ppKXq=$>1&^KM&e$!Xp38p)d%`W;ms@e~$mZh>_v33d+d0;tU(;;o2@c+x-ao%$ z@3X(0ZH{N2f=}+D+l={#cz=wgtAeUL%$lD)74WV(MY`kbfgCL#*P4I5og({VQ&l>c za_;I!4eCEK?&_b9%B|);DyMS?J=`@T|AG3r<+A@RN!_Pgl=4HFhU+jLdQTTlnfv^i z#xPg<2j?2$;?wV$an2GG9_7q>)Wq`xoNDk(JI#wzlWp5MnYG~s&&M(Rb&uxyjYP%s z=8hc9`;i=g!_&b_9Ki69e$C$l|F2yNjNUfc?uSxFCbN4WyR~f$$8?wB6Ik;-=ldUk zUt9M5z*}V}M`$;jghIXBN(_;P0?>(X@ z1ik;>Bf!;gBw~XCFUap0u|dHMLX!V^|A-9)K^Xe1;Ddk-oJPs*+j;_~?;5ayz`KBr zZMeh}_$g2J9kB79fQ@^GX&mkNS793Jau`Yst zOk09XTa-L^Uyi_YyRT2lb3ta$gWq;E><8}1=$>g$^lA1SM9dm*q)AgCzSx92aJ4nq4{9(uN^l}+2uE`q7T+rd*dWr7%y z=K=C6*_-I3J4M!j=qGVCk^_GmA_aVlwzo432a!^FT5#iQ#pIv_OCShe&SP?3&jCkb za!~S2{LNmV4TitvKB9lpFU&{T_id03ez0APrbzlb%I1bB8`Vo^r_kI0KNJ}1A6p~+ z9e(p2e)AoE^N#SFhE6118Ssb{v;7b!!*7P=a*VFouHhG82od7Lb|52e+RLFia|X3)XU0!zaNR+My?GQ2 zdwzN5>*mCf_`cQ0M-snu)RB$Nbs`fuG0`=$X~-+1w3g>pw?A!-SIeT|proi+D`?Q2 zE#p*CuJ;6%>6Lk{*%64=FlgB`Kd?4tU0*3BK@G*eT9*t5ElR1Lo3Bz-T_s%8v8LFjFwrGp6LbfC%p54i;&@cj zG0LfxpbZ(YJ=Uqx<#9T$P&sB*nKC$mY!6L}GkMab0xa+4-lju$rHxgn50rU%SQx>s z@A_D;z@P}y5o_a8yiO}Xazbl}awDxl(HhZFtKu*S2dgrHZ;KkF|_3>S&bGt_?F6>*`RYHfUz>d5%&7E27{3;$&;7ANe{e z_zg!G1pZ-zmEsTZUw|VtL;bL`rR|UGryoDS!t@9Duk<`L zO7(0n`28>GSXJi-5mFgIAP0e$cyjGww;-!o}97XrHtKA3u1p6b8fS=f1!B3RL zaRi6I2>3~nDDg?)CvpgW=4ZfsgP&gj{5;n2zXbfu3vvPcq);5+gZ570o`)$v9Vo;R zWQ$GSkn{#z@#=(^p~C0JxiRrYX!CXAi{(AtN8e!OF9a)#3`LM2ta=};L_P#oqA>jv zJqK1&ueJmpK`T*${6;I^iB#BTaqX8=}>=g`Uk-LPF_ z28BXmGEGcc*HNVH7VC0nD(9Wj*z~Lo?u9Ed-o`a@prPnD>Tc@{Lz*@k>LY6O+eV!|~Bjn0f4RToSlp3P9* zRyPf{GV1!pc}bka?N&LMV4^;$OJi?2Lc6x-Y20KwawZ9hP3ntbzQL%fG_aQM*kr%y zCv{O~Ib(!JhLQ~I@l+`+xT;|+Xs^*jd)#0WHW!H-tQJsR4&8Mys*p-N>v3^dE%%X} z9=$9Ou;27;%dcqikmyBS7?T?1btxet)*cU4u52b1(;=nEbDf3Llcwc4Dj*K8P!MVn z2}IO|l^0{WPvziZlMW}Q=tnK2YB7*hBjs4^ELV;C2ChlVYD-$08ZKI^!pdw-A~A_d z8*vSZZN5uL<2k*?jFHhBboI7X$OK}+V#YZmc*MaGwurpSVm%MYQmZ}g4?qNX)UmHLnH(d;&*QYap}XhA1@~&Cz6%kCal_W?hx8Ei|IibJH~$&DW5^ zy3{lRv#{!K`VD$Cwy;9G8CW{b*)Zxv1z{#I?CLcMuiD`l>BfoL8daHoGSRgu8LZ;o2rf#CPK8M9nn78Z zAQVZrYYbYDs2hXo+aZ_Qf^gGUBB&t>$?XiEo{oF$QwKK3sXS2P}mBe3XE%v^^>xjR$RX(kQd!L315ZbfEUt57M>|YUR z>)nkP6cVhDegr@4Evgt~%f=se{wH5xy&#Psg`GdLg&TkTmZ6Wk-?HTS#g|4M-$vn* zSL~1c4P0F*@5C9q+mq? z-Nxu**KsIMNr zA-?>4-49B2sqP0dh>w@;a;a|Fboqf;{Hx3JkH7u>*z@nm>qEzo=LI{oPzUAx=YRe8 z4fVxN7`_i|sW{uRhdCW=K=}=PZV*gu50Aer_?=_sP;`Ds@oU+&Picu8gyx5-e@-jx z&Sbva4D1=k1}}w_lDY`C#=Qe3?6cYQ+dM% zZSs_6UC!oybv)&q0YPWC>7IV>YIp0vsXi>iU(x^AD+F}Ttp*3Ozu&Fi-pQoDE$?Lq z_+qoPE8lWf+XM-^PPSDT$ET=6Q2#!2I zdy$pw4wxtD>?(i7k(MaG%$;-+%_ZrwrUyV5v#J@M7lBJA-;Ot3M%m>yqjY@*;$W$TYuB$!Q=BoW?awP1U}ytdc7ipzIf#N zkim9kKDGA4vcYwE?T6#LZK*G9cA{04OlLE?(p0gQ&Ni~+YTxDx9N`>$!+8xjXU0A> zId0YEt<67RR!Aqu|9yiw$1-bkh1|O>N>6R_e!J5AqjA0718T0%B>zH@>vkCvZxDizb2jhwcI$fVXkAvYZQ(@Wh zsjpm(^h#eWWqSl7O!6q5?162`iF|_EKCmnK%YB5&MC=5oLyL)`0u_?WlkDcy>#MGqdj5;ur5c@~aO1i0i>bcn!D85d(CEZF>~Kiuo{}EywZfN9CnDXL34N ziywNK*-(4ki@zOxkre%LuJzuP&ryIqT_ZcDZJTKeK8$qIe;jGpW7$GgJ)IgI{Wkuo zw?N=0Hsy!1N+&eW)o!9g`%r$RwCjM5e|qQ5Qs*W}=Z|?RCx4awhC?a+eP)J{7p#BJ z4uyFx;sFuwv#3v1v&R|MY;%i~YPGICEKB!^lS5O@2(hA>{$!Xz7(Jz~EGWy9ta!2h z^QpA*ZP`urDxA!EKFlp1Q2>%F26PPk*uUmMO@a-=#Ty344w1xfb;fvFYlS|>)FjqeLgaC z=5F)(NF;07Or4sU7y{c(l6zj@AL32CaCb1OkIHR3h#r;QO?K)-Ii)J{sH|=y4g646 zni*zs|F=zoAIkD3#@dg0F6-d@+U35g_^=jypnhZtT=il3Jx)1t&5v*LIzCpl)q1Kw zOh=5sbDlwlDm58hHWbK3fy8+x?!t+-tWBfw%iY_x-AEv5&)D z?}<@7gNzB6CYPhYSpFLGtmG5J{HD-}6Y$$XCH8|y&vxg%&v3pN5lrmflAlUJ6Zq+u z!aI#d;BA1}Ui|O7!hf%RL-w{i4zOATzM(TuypP=l&YjcIfBfz52>cUa&gAy-SH-V0 z{O8}!y%Ik28tk=@OLX3^(%$0@_rS7dg3Go6|(zIvb?c7327^07nO4&A7WRsEB_ z+s=@%SDx(C`FGn)*5JDb4&H6kOnyuN^v;*p$i1olZ+&?UeA$lxgXoqP`tti&iQEP_SW7be)e46?_MUI7b`D* zX`S}H=zKm0zwDhE`$|dgM}_sZ2(4bGH(-}v8{;E{R#fUZ<(R_%*!~!yFnWgMYRfE@ z6ENB4)Xf}@eWHFE{Rsnlt5@V#zahvo`4x)1rs_wKoC|A@|0?w#zuEe4;lKK(x%#HL z`lh+MndXWg36`{S0Le68D}wO>ZXTn#8ieI#WnJpVL!%+Ai_4ZFq1vP~M39QOD39_^ zSv1fAGi@b2LJekesl_ZPD4w=;6d7(7*n*Qr6Fe653SwZM9w_5dAH!!RX@Ref@#dfw z7>oU`6OQTTW)QpGH7WDuO{>0&l9;Y8C@Q_vz}D?1&ho8xShHA~-Q+C)b)tqz)0rf0 zu*ra2_m+Xsg$MnyMl@NHuM_&lq86%AD)Xa&p<|^!91QH9glWhaX~yXS)7OeCp;w=x zt-KB8sySDC173{_EmE72vhU#4IwbVk4ZJe3qY6Z!^@ZRdtRl1Md?MGAcB-9JMI5@& zNE3|Zc;e!9oVR2*SDS`XD5;*Xp44cgJ+)g+DOq;7PO&oW_EZ6ujm8|>tj9qZkH;}x zIX%|-oEcnA7E>&v7P^k-sZYg{mx>@hrp^S|C-*i!vWzi%yTOv~tcT zr4}m=va(UTkhD7*qi{}HYMFx>PgQDqi*DDERU_OmQk^Ss8=5TZb9F=#RZT7@2-Gf_ z^)5A;l;n;z%8diSmsSu~?`tzgGHf$upumFaU33x1e09~dkfx5M3;#M=?1@6Dkq~rY zF=%suXx{6Rp$+lf=1ed3{b@e*cnLNo(;hWY7V#vAHHi&0Mv63GU56mL$R43$IyEys z6Cmw>IHij+ORX|oYGr1ik2zaK;2qogA&Y&{Vrm97dKPE{CU!PF5ZeT25tNzrWVG5e z*F^UBsKB~ZXj_#DAfn3ka0+ zl>q_0o@=kO80J@jfhPi%PrZ2p<=KUey(v$U+Mg#S&C^xAAR}#ebvbwfaJFqKfw?@l z@#U=|eJDIC?a-r@`i#6D8~F9Oh}cxCY(3JopO4D$IU+wD91rWfhXo`)Fsd`#u<)qN zvV9Sc%Iu+0+K(G*z*0Xdua`Y5kIM13?QD%*kcpv;b^O=tc$sV{8S0hAMW*{lOj z=y}N(`sijIiFKxeb`pIW93=nYf{tY=Z*`216FRdcjz?4r=WbC@5AIU+KJ^?^{ zoXCXd?_BpfEX!o~Ln$lW?twi2YYLG{c+-s{=*Bb3dqLEpcJG2R-l5&Mm!8~Ltq&Ic zeRQG6yD`(UgKpeL>K^OHZB*7(6?okQMLkpl)4#CW=1g1Mrxk84_gN?ChT?vrzP&E) zCHLm*HLxFe(?CAA`uTcgKJRLM!8X1Wu>bWG`MTYCU$3d>=_DPQ>N)rL>lONvYxwm_ ze0Im-*DLPjt-*g{Bll2OtH+9^{`*D!s@6U(6$Dkhvt8a+<6x_a0>W5-?g@v^EqU(E z-+E&l^42B2qT(-c>U#tdpmMvvSqmuk_RqFO6npfPg=}Xb-+5rt%R(!?UCZ2HaDFC} z1x4pcw3YmvqM3yQKi@LUm99PC1Tn%bIm-*I*ADV}7L+aEPTdCmwI>T?oBHXyO2bGg zdnhAf=y@PQJzG1ZXV?fu7g3Jp9C@kkzF8i8;J4t&RhMuA|B?WnZ42RD~>5c{_(fJ<6qCv z-ll3FBVzt_sB`>!1ckcNG#;o8?>Sj)&Ch$<##6*MxsVgKk=k*-y~j3QQmoG< zLcUJ1=xn#|r`oVbDb_Xi2)>swy41H@9sHN;+pl6Y&RK_Yv&y@w`v_*8o2%MJw4`+)tD{hFB3?BAkG)1R0B9?E-Du+P74HNj~V;qUvd{T=H1B}b{U z{_|Axc3?oumqoF9n`pkSr;|Jgg69Ry(*j=zpxz~DzbdGlbR zH(!8wFeC^UF!Al>V+SD&9BW6n^(<2U*~Z%6+Ol};I0MYv%LO7+Tp)sOrE6+znF~k_ zJHiE~m&qbR!96vS+xm>$PItn>OAfa8oiwiu!D0fErJpr8m!&Bci_4On$S7Qv6=GwFB}9tdY>)ezv+boY>e&%0!?%Bz0m?9-g<$$;8Pr6rG5y@V$TdPtY+R>iOTY zVzTxo!n#raTd%&G{cm-@bZ^WrrBDpaeyQ37B6^PQhyUFm7igu7)|Qj$QN0A>krhea zpTB#(2>^tWd?^*xAG{En)a?nX-@I6^s=e3jRSKVqZPO{v{c<}89lN1k2q`PGZ*L;Z z8qLF&b!QqB#33X=2zf9TLQ?1-;%EqYOrLT?8JB-o#9U+3Q)Q8AOKF zvtPc1Zp?Zq$o#)c@!!~yf8?_vA0>?3>D~LIet$GL`|;%Z$a)@(zF*p*eKUQ3G(H*s zeEriar zIqjyOZ8^o*`7sEmER5j8B#7f+kqjMiig*m(iT?HeXe9n2Dc^^GJAoI3FeCV1g2QGs z@k!#aESl_xlF1g*N`Cbdo7pQbhF`8u&MrO-1!a~B$bJ0cu>|)Ad*ZQA9O7eWFXve% zPuMI7`8>{tFt+FV{NKZom=%1uTY3Bodld)rMc1FgFKiYA8O2=NSw$c(Y8a}-3MtS_ z?6BW2m)26bIUk?ymE8QaZ*p@wt|d1of{G!m-S!$8UnIi&fP6ME8=dw)bqmv~KwBB~K@B!*mc}+Fz!7 zIak+z6OwDc1!fjQ4Ee6J6W4ASJcjn7mjZoU;M;{i6AxZ0bXEOKa#g8c#OM;Uw5#gJ zVEXdFht5tjaZ(LV^`6SB(6zlRF@}OX2{B;K$=|YBo`6%YJBM85EH|FGld)I}XKFs+8#-Od$ zgfWPAXl{0%8^y0|9n4>rEaY3rZ?IAN&K$0){y7PP-xhZG+xSe}V9oiogYX45pDY&Q zax1|BF1UXFIcr^T0n|*RWPo-_Ssz)kiyaQSH=FG?HPG=EW48qA-OlAnTnf_UDTXV{ zHdrL0FS_Q?c^$s=toxW7S$2rhEdz>fsS@;dp>2#wV<5419|;(86C%NK7fVmj61Nl4 zVEP96W{{L6>T{1oB{``zf`zwNNZ?FJ$>G>51X9*Vwmo~r2)bR`E1k%b2z=TTdnM(n z>WV{Wb@l{ z_JT!V{Dd&i^w$<#OIZvYS#CTRE+%JghqeQ*r9Z#?@gIMF`FAgiY`NDC{ARoJ+MRak zw&M!R`gC`5`(Qc2qKNz8m*OM4zH-tje{W>D5pZj^@&v!8Y_fWM1jL0SdfQuJ-Nc;7 z{+hjUU_C=PFlK!c%#A{l%+&lTk$~gQLh}t{rxiH+1pO>6@Vl;6ma)ihN z!%B?B&u+_}l|7Ce>#Q6wSKGXS-B7dAc8R!@e*)t&3rNhB8<7c1oPh7-{wi2S^2O!j zJzU3%lpU3nGKbsTb7}6t1HafXa2zaEN`=ZQ7@vzzG8^Ol(NKPr=F@m6M`HGrag%;L zJ{Q(h5XA8DVkl_xxQfL`1&Eu+a9^y1<4k7094Awgq)+~qvH+~M-CcqY`^oKoHKxGI zL%PTwN|q|-k4};UU)mau*zYUmJ1C7L(hZyH2yKo*yP#a3({5o`g!;D&a~2jKDmnp% z*6t)|&Aie?4q`wx+q<+bjT5=RH7<=wq6@2B1$S2u*Y_#d$3^afI>WZTZ%^6G^Nsy*bfpcTLdyK1qMmRX_Y9V z``8X4tJ~!`jZTGi27bS7Rdu24vf@`R3SSXM!RD1~VLv1=N`JbLKPetvf41R{4IvXE z#6#AA!JKGQND@^p7+iH;MR%9l0Kn6NV>Gfm_~J299-n-ZNzzOiwd zch_z>ya_r@X^_p*sFa8DK|m(-7gsqorm)kD*pd|MvHp#{JO>Q|A6mv-nkNnL&s#xt z2HqFyyZC^N-6PHSPyD6!9?;r9K%^OZFWeW*3pY$d02L7Tq4f4zZ1=@6^ZkH!>FJ}6d0U#DHFW|l!+VE>G~iI zqkUO@UWD?U>rl+f=t+Ef&2gDiY!lw%Nwy@I2pZogT&b zzpF6;oh?2O8T;L-LKcq|T+UN4D<1dRj@j>{8KA3OeVQ5bSM7-%u}r4lvCgjrPSD+X zY6lm>V+R<@*9+aQV_{3>+^$NlieC{HdF~Ze{ItLwJI?rhw|`P6G)3h*hK=Sq>qh5p zvtD_$5T06aWxq;K?N!SXz3p*5OT?sNHEsl2drCMZ-HTT2TR;8%`oqJ`ueVu|C_fss zv|;5+d~|WZ8dj!V5NP+8o7?M$n-BFbn%g2>q9|Ln*L21^$_8!=JN=rt5SMHO#^Q~d zhr6rW`%k~#rNcn9495fMWd|=;VL!I4n=2(j8%T!>mOGabamC?s11Rlm?L1zNRu`Kd zFP9hu)tGi$iCLLv$|_1{f+P~6HOxe+lC-k!uCK&)BgZO!Tx6Hzj54KGieC{Ip}AMo z7E@%bWvs&OpETB=!eM*0G|rK_Oh{3G!IxE~HzSazs$5kE#u%+UQ`30QZjzpgH@64A zQ(4OVw%`P2O}xPQP31X>v?UQ4#w<4sA!<8vA>S-1pB!0`XJN&m?ME{f%2G%(m%nH) zf)(%~n2}BfOeSt)T#E+IE2wxY1CcJ;`p!GR2N?lt03)0a&j3R9?<*FpFmi1GsT#eN zc7WA%1<9`ah10~2o%we)s>tsEwSHhkNN9M5H-Bvo;4*|E}SqOEvw;8%w=-Wb2^JNeN@ONm$ zsbZuW@`e{-1or*!Tg3fTX{_hu3su{@%gLlgSM2oFhJCFu^Q=iO+Kq4~9gj#9Dx;WR zO?5Y7`;B`POx=~vZG=X@{jLQX^qo1kSlwx>3dtz_^|z_}jXStJ^u@LI8-G-v@7<$b z$B&|pHoX*-V`bNl!xERY;w&yZ$!;z@_|G@O-rx_6WV%AO+3dvotNjwJ zz~+}f&D_syy8iJ4^Sobd0Sj!F9IW*~;^w#PXP8QAEC9>T2niYbgX>LB<6QuE&f*To z-u@(h{J_bx@V9C#{K&()oE`s=}|GHh!MeX%Y{u!U&dUe}|t*giRkB0#3sHTZHA#N>(M zp2a|+BJQf^3hi!Motk#~3a>j*^SPd8+EKI5wxi7UR9|6%jSOfQD(3yKlYn)gEOMx1 zU*c6A7PhS_vYMbe%qDNQOSK^Aui+U88J1_=R_y7FXJ_ftBaI`~5p9#`1(#_h5ILZKQTCQ_E!7>o;J@@InR!W-JZZ zD({!JpMYEMl{!w*3OQ7HweXyh0d++|DkYX=Mc=n|L|lq-DLTU+N#L+>);XdHX+m2P z=ZW*Q151Jyz244x8>AMTfUQ|@Z`FQiI~>1zPVLBmm>4r4XyL`XV@bOfM2(Q`4+Tz< zntW+uM9{*LcgL4@t%w?Y>G%5mqKm9buE5zF%N1G(_Ny=$THO%3jdeb7dJgc~yxR`A zuhgJzG#2~UOtCEVr~%2^YpG}%t}!HL|2 zCnrgnV^iy7(8!D2z_=C%;IFEy#*usxc$o%HDWgI{i0>@l@ zv|1L$uN0RbS5e(XanqV;>ty{&UR-}(dbW>l*&!^DEuQW+{P>jSIHralpDAi9%v+2; zK5g6mnp*dLxip(De9XB@&wCZ+uNkp{eChUST`(|yk7=B`r$MoC)?OFr>Ja^J&3n~_ z*ZkFDqHk`kdHH`3T&%X9sIHki* z*X1~x=&%mgq1qFStwU5n*iKf1202_o0MppvTRfOnvNKf8iLcz<#txaqwyT zry5dAR*yxZ;)qUQvj7L})3*>jvIzhID|Ck(5-en|2O6wrRO=BEEWCM0sRL&@46ho*K1sO zVSu^DRq-0eko!jSUY&+icBCVH)4RfE2NXT75SM~RRf()IcAzd$c0)(-rmZ}!395Pf zTeM%mAoXcM0wHwK(tBE3UJu(l6Xx{M>Yci1Wwy&Z9dSL==uW56Elx2ngeJ5=#}r!; z#cu^6#_6J2c_rg>Bll)z*$5!bW_QUC7vl2bov4_*41>qeUO+8fa8|Ljpu)|RsF_=} zdt}9ST{)=1>gR`Ml%s=a4MTSfl659fMl21;KT`lPB|_(Uwi8ik=heZ0DFt1@)K zJOR9JL;(d)sY;)@su(=r!O5oSE@6!@1o_5?3N0U4pzZH#_9@9SIh`^gq$k#6=Af6)pt(nX*O9@~uJB zCZZt___6K!=4_ndJ8l-6;~f;hFa~WA;BJ;lz@P@B^$qx(t%3cmh{do}scGvQ*rlw& z@ zkDs)w2gsn>g)_Sv)nJB3bT>4uu?OrEx~iF~Za*$Yx05TT42)gnn1Pzb>^tpx!rLy@ zlGoFe42JB1E*cS)Vrv6Pmxo&Ph++F{2efx0r*MBB?eC;_v4Q-mmgK^_W zGn_;nJ?PB#qT+jqYBVpunaTzC?K?}I)wVla4=he)aGA+#i!HH2=oD$E8?;w&Hyd48 z0Xpnvf#(I!5yqx6PQiHI@J0Ly)g^yg9Q|39Lj2K;$%6NALOk0M_B+&V)*{(VkkKLxQfNc zHLTm!;(?>ge~O@bm<-_(zwuKH6r@tpdbTc;EO{h_Ecsh1Y_u|v)FNAOQj|znW7=(T z#LB=qv?E~v0<#efRp2$5s!}2)3MUT4iAq!{u)TGY^B?3@H**3G2h2gZwvMcR?-VXX zQ%(f!2=Uwvrxp~pg!g_BE!E-sS+EM@x$wY??}aa5J){6QVUMmKsm|?y3`DtQp@;zm zYJu;)i07m$A%$YJWR5#?+0?XyVOvFa=uT+1t&}{g%GtmLiDokbe70v7hpWO3GQO0d zhg(PX$l{x6a-av_Ph>Sdi#D9O(L2m$$GxV|8lBym0&8>-YYMEEuo|3q znu0QZpN`B2KbS==GE}+ta&2uVgMaU;WE{AGhfPg7Wt{bVqf&tTBGj2YwxH4M27 zxZsG}5BS>WW}q;3gt6oonpdz_ay1M4q_Um1MbE;E1f5HmNNXzTFq(?EyJU*5cL)ni z-q%ROY_as$LqcPqf*2KqPE&&7q+|*j%E}>l%NiLuR4W*@b&)2A3gkB^_M}N=kM#(+ zL^IA{pl7DzN|&&>cI+7g_F&NL#_C6+m55c4vE z0Iu4z=xNXt6e_EfR1QpBq+`;lNb_2_p68kci7IA8BcEEB`d+txz{R zBv|r}%oG{9jx{y02Ad>dY9%A)D!AeIm9j?9X7-iAsAywRp(KF!*2c0fK8YX@p=BG^ zEa{%P1u99)+HSiARBj$p1b6(kF-JY}CrljY|&QKjL z*>;mrTr1s7tYdKlT-d*}4RA+t|15dsOhi=XUQv;|MU8RG+v%PqX`NCG@U=*i(A8!N z5?6|Zc1VY8Ju|>cM$GpCPFoIINv3t7q%OIEY>T``y~RerW0U>eVtW#)zsUn&vcka2 zAc9cr3$-B1o;VqwC7M4OY(p;9oxEm_wTy&UkMxCI_>Vn)}9570a9;~&-+`(kFr=hz&-aj^MV}3Q& zUB>MBx-h8pcR>NR}I`#pgq z5~^pZie`jecxzlc*&NB#$enJX{@T9dILx>Nj&(M($xcg+Y-VBAt{)klTvQs(XY1rb zX*9FXe3{5`vsSbC6308Brh1{7(6?ru=@`1WfnL)GP>-Pus zmv7tsl-gLng==#i86w2>b*{vmTV@waQCmL}DdJ*jYaPt{r>(YWA#On1#GZa7UkNf% zEy*0TL4&nM+c6VH2gZO(6%7|jX{kEasA%D1-`&l@u%FK|*#${=c(tW>0u$Wqg7MuH8dU{B&NBvl zNkI^Z4FLes?R`2r7bvt;XjE5+2pJNR+<2I)%!Vp4(FJyD+tJ`y!(UyzcNwQ9tuLQ! zbKVeiy83SgACUs`b?eR zj0qa5g{^7icG1GNiyp!qwXikK4t&(VaXJ!P*pgu5>-C#v;EuZB?nV@9x6n1Q4btjl z=C{G^z3puLM)xjMHy81?aUnd&&Le1KyP$1%daSaOh)y9OB+hhmBOO&Hl~mEXLe=Z$ zmQ)5(jb<)+$Dy7(t@ejGqm`zmr}wDYG*1a`tf*SJm&xK%u7zZaP6U@pxycb92^D2c zg4Q63kpvH2nuHWXj>>u=%}Zq}^-RHgn46oMS)QR1ZAg$B$UX@kbdoX!3srW21PNQT zhJI6-9Wi%dp0O&9b$e*rMbiuRNnM8XW>Tp0Q=NmT-ZC+F0La3qYgYB@GjX@2Q80PV zTh!m4u)a15xC0ObrWH`YY%3&4_R+BZp%$_pxSrG;@$9|}9MjYtlrrUbGL2?-Xm3keAp zt_jJ3l;tp8oqJykX4A^h$b#9aACGlrEUkhSsnwshliyzTz-yz=-PvyIwjlc4opoEd zrTsp4!-0&UPA0cr4eOqBh~-D})!|k;36$)?XABx{*QPo=F}pSiRv%S-pH>qWwP~Ak z@gLOn7HZR`K{B_Li#F{J!M$d!DEf+;5)ou;C!9tk?BuF@IPh{8%6TD7>g^fg`$vn;kCc#2Fu1K(O zHt>N6d;=SpCLEf6pQ0_OXvPWQ?R8p=_EJEOb$$U_8BDTYV4#90Qg@oC<0QBtef0lY z?c7{BYZ9cd)y~@h^|jhLeNtbmo$p_@^D|n3Vsh!_v-)21Zp*@@i}! z1X8y1wMW!=#jgnGd+rsr3m4TS(Nr=~fH1Omc^kx;T0~j~&yR#F zM(0A>L|g%wM`gifCFOl% zxJxZ3@EvYKgwnNROx|&~FF~bY>MQO35_K)x1^F9h^tVs`y4m{eCn1{5O$bESjA>3jbrXhz}-bm-wEHK}?SIsGi*wy9Hg(f#Emlzs1vnPLlzD7w!M-SB7&9a4(;H;t z_BPTR{&I7B{c!VPA2S*tG!#RX6B$I%2378^9c?bTNU8>SD`vhgx&Alp-zOT_zbdAXuS9reL9moR!v|Y06d54uz#^cEH)p z9#W%bUAGL+;L}NK7$pe!sh6dkX~z}Ya?3MlfIHqq+83&e1$d}rM>?&$X@!JG`;qyK zn|*k<-|kUw;@aLl))B7s<=&v()ET#X)SX}<1BRM-(sz%(J&X0t+4dA~NOQ#a{q_X! zVi^72>AQxep{QE$PE-w0r2;H{xF~x5>&lsP`-$;`JM%4Zxza0axAUfs6&d!6Xt|a} zOrmfY)?^Js0PT7;h+`;oZub~Ntg<$ZA66-w$L|bLfBJA4xnqk6g7U8q46v!+pMm}8yCy6slt*dh##z1gZb=TNrntPgutO--Fq`ESthl`(`ykwu&hdQWsH!XxZeEN8Gzw1~B*I%w; z%k@Pd4EWO~s&0Y$O8zb!Z8O(nq8wd5(+eMsMvB6 zC@@(tdYc5y#V9u#BxAf<1`#&ylLQZC_mLpUh#5}fOs7|dk zF`S#5n!&{k511n&D)5-dE@O);dWm9&%9$X6d!BPEfg1#}#3;8g)<#0QCQ{G3E&f3^ z(Q|CR6Xt4UL*b>F?Lx)!7>Y3^${xP|^UELX$zBF<69jGh>`gT$ZvF}736uP&A;c34 z<15d7^b=A6|ADE%fYe?e0vHd**b+@%%)$3IS1N&ZKcV! zfTH}XGR_lAFf;D{MM;-TGIznP#e6hq&Ad;pegFCC?)v`zZ+F*(DR5Z0S%?mutI$beiZ6_xl!19!h#@;w0+rADjG>U$VZ z<$!Qg1i(-eBf)BLqNf2wR@5a@5_907fx^|)rNP481Jhuk4go~bXi~m_HaT;0kGU0~ zKq}eelC7lTmA3UJvH?7e#Mln-M24aQSxB&opN*dbi=X(G5EHk877uG{e^Y~&TTb>@ zYg0?cjkWno`(qUd<3SYBEYW1MvJ{;7(%?m?xqCH(7xQrtqmB&iUz3Avqc6_eDh{u= zDJHgb5$&4USQLlB#egfVa3ErcJbjU14GaM)eio8hV7Ar}9LS>UmAzo^HoY)E2G3AD z=AGq!ZHiez%XXV#id`o0mIX6w<3IzQ1%5MliZ4I-QLqpaf~2cUaIa($c_M+S;Pv79 z^`T;Zmd53wwa~Pp%?2VH!LN*$m7U}Z0Eyuq?;(`SXT!w2lrxYNPX3ls8tAaQRxQJR(tocS(^C?rxUN2VOhrqX1W({%QJWq> zG2f;~lp!s9WnB1*%3djI-=k^zqX4OusZ#t9+X1~wY<9%#T_;pto_K6gzn9QC5NLM- zIu={xdID{>5`rn1N*~xx0yrBN2l?Ylrjlyws`5YxaC_vMGw0VO`2bhA=zMbyT@oaQ zR%*lunF4jy#q_kc?^$11D;nFkhSfVtK|C(JJ4d;4x|ryoD(IocMANB+`#Mpv@6#qa zZhNB5^o@R^m9gG6CVF-V938d5(Lw(JW_mt?#7F8(Tjyy9!h1dz%@c_;y*LD(%5w;9 zro%mvUIhquQ`mv{TvWQOYF`~?yINfi(?N=bv@V%xZmeE*sPZ!lOlXIPvEx)JJJkoadBEWwfyb3TEj zSZsYUyxOT4o}~-Gw&@f2v1PF>IQMV(Qc@IQBhXzs#Rz!CkP(x@FJSU9hly`RrsZNZT`qS;|2wB(^Fj zvK9_Ffi4u^CZUuK=u-owUVU--sbwSija`fbRSx4~{AYuDAzMvs3&*n4tXRbIG@IKG z)G8=?PYOl$6r9uoE`CMqaJg5+)qU~lxcp3go&mJ|lNxY)wYQ*T%J#@o#$N!1c6ba< z$WW~B2*==ywtKhFbV`u(dlT1?5Eb%GFBydLc zrD^?D{DVQQ=Ag>j&|ukK6hJgEs5hu6BGct$+;Fm1W#*j2JP+zMgtq_4Af6b$h%C9j zEPMLI?RfWzeHZfwqGiAhz*H5JZ!++;hs@K~+U{Nb^!Mw0MA>oiE$Fu*YI-x3smsa1 z4VfoqwKA)V*76A-?yhd{KmB_5P-|Lg#c-@M^13abTound95z1Dh{DhLV}^236&)DV zPl`zRz}%93;{O2v0RR8&J=t>VN|L{#a7Rqs8@@I|?7n?YgxG9sgIR6kj*c6W5FlGf zSQ49`?mtXF&b-gO%{R=a^bgE0OjSw3EJBc!5cu@*iDQG7%B8ZhGPAO>1WEpOHZ){Y zHpcSVcjm8=$(8jT|2Dq=)%j(8?+BLQb;qcZKju)76s^ZhuEv7;?d&3T7O@|+Z(GcC zppu7nfhDTC^acQy+#lG67NhJ+li#CDZ=>Hse0|7FqVcPtU7)hokPI`wa7EE|ueva!PaQeN%~Bh^~CLt3|i4;$7@m0jGjdS})|O=AQX z5f|mIZXklAQNoTn>PAu5EE7E-n3AG=JL3&SQ0*tg1sX9$?%$1+#i=OcW2sDzTcpeq zMAP}}lBddD3%@+n&2MKM7meDeZh9gXOLG2C#M3N!0(YMS&VyT?!(2Fi!aKW+Yig~ zxp#9|X73RxKC-{P?Ulii-U<>v0I3LMuYx3xsIIWd!$Z-Z$a;a#HA@ebKdSXYqtU7t z0swakl>5=VtaQI(zxq+v>>F~R1M}o4l&3>gkreBPCen}v$x?Lfhb9t(Fh}UuC4;9E zCQ7GrH$xJzY6^shq~$I8<&r&lG92^9j|?usUM7A7LJ};y(jyT+b2JgKIl63U-^fA- z;qQvky3LqM*tb^ALYpY3O;Ok127>X{umrwNIJ^wRdVSNb*oRI z;C{qGs+a)5aEy}BkhA)bNh565y~(qQZgftVe`t7|F#lk^8#eENixLMx53ZNV^2X&- zn-M?doH?kQvvob;Gaml!ES4lu?`^?xF3K)P#|g51LF=KmznvxGPOyAk>tjZ&D|I}# zE^=_Q-C=$I=b!(m>ZW2TV~FI^_(r?fL4kq;X$(40kl{rK$w1N(UXSTr2q<>}i9$Fa zQ}~)!4T5Lsp@BlCtJ2d13)F9P#PvbO5FIc#=oy++cI2+2DcBRZ3=Jk98l?M|QjJugOc@7` zEIBj*5h3<29T&p_)SnIeAbXc0_ZZnliq+Rge(6zx5{Kt9bYDXah9;BvIrB0sa8BGa zG=_$zMxx6sjQGWi`J={*IghLuzjZ!LiVbIxd8^azmPJw$_I)6?1r^XIRHIkY2LoAy z2pg3piYyffEQ+NKm))Wak#8!1Fk6EP6n+30)jQBK(L#%4DGM;hvmq?ldky5(>?8ji z5lq7R*bXoU$w`X~ZNbqu?KKSKw&&!iis`2&yuHQapz6B_6FQ<^Bh(*%SCcGjN#Ajs zJMvntlNT54h^NGWZZ| z{6(+^zlKE}(8#0oK2?aVOhp%H!HSA1VK`J3Pz;0$9B8$jj)j6H^)GhVZ4|tc^PC$O zTKp~vsx(r`hJ+PoKjJqV=8roY#^=dQ`(`$Atear4I89pL%X)}e0~lveQUnz=*eW+2 zERfcq12r;1I)e@vEJcS3lsQ8BFuWcUIvtX~0*b=Wft(uz%ZlfaARjKzVHvbVD;XHw#l?FjPZZefn1~5X0>*l0_1Kjz@vjGpbtp#FY z2}kHR7Kll(Ztt&`fB9MQoIW%#mVJr_UbFby=-FoMZAF+2tb*BBD@VgQ+- ze9-lJJtkETHTE+{?6}Bn7g5~K)&}gIR=PIFb*+3xG_yuK6rL=A3<5)HSqpPz3Un`~}4v&X$x5s)8+C>=?tik2d z`w_npN>_-Kdc%xs-=53}^_+%Ie}qy&>MF3D6{-=l#|Wh&?#qu*x{A8%p(j(8tg7Mh zHon=Hg^q00<*sbVnuN!(H5($z<*}@tF$Rh78KurVwPVxs9UFtCSDeYXtLxTIARKdK z)AL>+96NK^YhW8@f^-RL1~1HC^|4+_yHTWJuPk5|So-kWSvpOga6(T>`?(!s(xsi6Ub)v63pUoJc!G|lje zs$YY}4mU5u0_Xi~voFt6sTsktQ>=-T0FevDo50@~H;?;M2{7V}L3$kLa}Us!r57W9 z))HMU3lGD8&fKj=kgtz$Qr2}K7BpQ&0cs0+d3Apw{JP|5??g$^d#pdVMUxKPZ0>q0 z!nGhj9(Y?unRg?T^)-dHtg-0owrcND>IW<7tm*9mj6P1Vo}lt=cV!Xuc0!-*bJZE2 zcD*Qkg=Cu(XUQhO=de-E>CQzrE45c{he%Wm2?Zb}FdAs?vpe_f~J@%X<#{|i9grgqoKI|$DJjk*U9Q#I;0E_Y$BpLVB^97u;bV=!3WI&shK4EX1t z{~kcQAxRgAv8hAgns5$~+0IyidfwRT=?&UIq?Jl>y6f?~D9-=(L1OFsJLlCy&|kOD z{MEasep_z@W_Gv>ru$eOeknF9VD`6dKmh@m1`DQE_(^pMWX~6^ton_pRaQp>*f#8w zM)W%Xm9TRd74W)yz{qXScH1v1xxK1eu#8;xUj6yFJ@qVD+@j!=fDnKjkTF)a5*2~GKmHqu9?O*Aal z?h|R}?61^;c5Q?k!}py&#UXd}O@1E<>XXv3`uGj!1siiNk;I7~?h7vF^ZV&o%+2}4 zK*$GB_@1t&2z3r)YO$1BdY)whNGwUt%`K0}x~5kRUGFZ)(?Gi7Rn#~5^tl`o7+JH( z#av%kB$=tBzEIFe`*t=NnuM;7Axsd`=;QE8(4@X@FdfCTnnYsor|kUG{rnSV+Zkix zUF~ue2YAspL&jy1#`2BqWW*#>i71=Gd;CPXk0{LR5=ped+jZm)c}Epy`p7D2IayW7 zJwa9V$-`JSRAFdmnR)w!I)6b-NDcrjA~W#$U%aBhd+ z%+W0xcnA!Io@~F2o_OeXO&PgFiBybBVJm#`s{7S$W~tG~wMGr0X9&aoYReZY3~iw?uO=o|LFfab zpn(P|V@dc*V%6$w!@zA~{!A|uml#>A?AQNJ@f;v>HJ$CO1sf0$^tMw7L@ zZ2A}HqQ$YuqBF74gT%m@oUR1X)YXwC|Bg+TEB1G+2rdM?iGmn0zYheXr)U@CE^6R1 zIh*bP_F_+<=#{kT9TgFL;uh$Yf2vJ#WOj}=o9 z6;-ijSLCBA|2{DF3*2271i>r2&pxkWQw4ECwh>`HZeVP@t`p$0VKEAN|Px>5N`?za+-6`H3{q3w( zF!R}LjnDS@5|4gLwH(*`P#TdQ`tnf7qTfw?{fVuNMXj!)|J}zMb@K9D>D+65OT2B= zYpqnioXr;h?JraQ_YC_gO}eG0+g37F<9lkdeaAM~oPKkieQQqd?q9B_iRN{G{F->+ zuGvQYsiJ>GQfY0JnMl*OV)?q#OTLe4@At_%Pa0&+L_4V%iLsSY^U>Q$HeZ@NlyC2D zhBxZaNM`Q3otxL$v@tN0Mz{TO-fC!1)pm*>bt@&IbC)a^Zp+gQKg>t;JZbPjZ5q1K zf9BL;K~V?N16S`&Bhxg}+_L0aNJ?+N2ZB8G|TDNdlYNqmoe4~{Urju0tT}!9ZsTXrl zFK1-#aZr`BmH6nrJ#Jc0sn@ac+RIcTGt%I#`7BHK@9g{eQ$9IJBlhPbkx7|f?<_tZ zY1~AjxU+6+xU=r@_2<~FD&CaG_u8#W8We9H-rmZ^_sIue?vKv%<94;)eZCeZQ{}a( zoWHWyY1)w`!MvVV)ybBAB`6W=e4vD71HO~@hH-Xbjl)k+fIy>s@T7dyjfaY zdcST(WFt0|#*^G8K9dGZwd@0*7aj(+0?+44c|1Pw&6k_ok9)2)6WRK>Jxj#JrjHj8FK zj1OAr8~wcc@u9tbAZJC671#!!$d#t@$EaQ#2-p1%m+#KbQ&Lr&Cf`Vd`dvNu9@9(1 zVL_`!Zl~uF2sx2(fNKxsNJO-VyxJ; zgx+<1+{uszt(T8#G}Gd_Lc1WgmH4?{3P3F>X@z+A7$Fk?VVOCy-t&hfJU_Phw zAFZ+0en;dLKkkYNOCP6i-apda=kwd=;<`cegFJO4o;&QQo@}yg zn}2r1=It$Q^zQiQ$MjIEkH%uX{9H~|UuL(%SSgmX+EJ<4sY~2jG1XSs{A=o=o~b_c z*urbQJ2A}1L@IMD74J>Mv^!-`HDaxsL`m&8d#T2Cw$pyj=AS#tq*T_g-(RY4vu@@* zm0)9Hip%sRpRt~^hu+P--il4|r8hj_tDiE6`i)D>UY^?{`8sMgOOb5TEKdrB=D1Ov z<*nAM^z>>zDlMhdindD4H>E@xtYjzghjD>3>+j>*`HYLp>FF&R5FedtnTy?}xZCTF z)D^Ga+V!{lHs9~G;$l*HOjq8|jXKAl-&JnkJEdBqYvpYPYZ>pEyT_+~to`_2eaPfL zxYF%;>-P4#aM#Y6iA*J#ee90d!4N5r*!A>LdFV>g2WK>9vsfvUF1i|oTp-$cm6yoybL9_XmM)w{#>-)GJI_m@86``k#XY{Y5Ds5 zb4z1~$x5N0D2()h-Y-5iNP{nFUU_TlEZ=##n`NuLM`(~tXEg8cPtun^}fdh!KRWUH@U8C{RBH`qheUDs#QETfhO znS#ibH)DBQkVgGxcTRE+>p~t+P|H7QB*0FiZ(^)7k_L|)u@(?tv$ZyP1~IU}S20rg zh&`6=cfXM@XG~X7RU8QFVgu9ANl>VJh7DP4&tNlE(M%b;jK7h8XT-Mu>7M>{Pya>S z)A>L^Z$()Wzhi7Gf9ixRal4M+XSYH;LF_7i`iJ=2dQ5nwGs50_4cy>G1IznaQ3fZ2 zIO)lolJIe3u4s5r@K&rgDs2GRjd#Op}|@_yb1u5Vv&EtvzrS3F{Lgu&<&YcJ`2V!zsm^d zMn~={n!U|#1zvxKgi=+sH$0`2DRrTQEtj&_z!lTd4ZPNJwo0@}G^eDiy5SOz!==UI zs-C_pRSL~guCW9@vH*V@@oQTTeKC(^$bxean7f5Lcfj1Y#G2=9w69Ep_A>7W$(O(J zC`nfclD~g63*~B|&No+Uqk8gs7bxqTpgPJ=(S{=n(!*3%1WcJyfx-^})4{0VfpWXP z2opDG?D=tLjxu()KKo#`Uc3wNa2R#IE|)Gxe6o(Rc=|ZrreXVpa*QB;+ZWOBO3%CK zY$_#B_M5Mjl6N-Hc$JcOZutrJntN8!SIfcpa_6{}-J@yed?5$@086`P4_DfK|B6bS zJ-03#A&S0{3X!<7@d4|+d+V^Bjm!0;Bo1j@`ceWgH}_>rsP?EovAbKS`xA?>g3wE8 zAMQqP7#5>@h)0OI<$~t->ap?L!&nR*$8ACUqa)~B=q?oO>|wCeDBIz{3cq$B9@7y< z8)zHRG4MNO^q^I7!$#1%F;|88HtJh0pgjR2GZUzG(AwO)ZV|y z=o+bn>eI3B1&`00x7Sg7S z1KS<3y^ubQ0Bm@fEPgVQpyAakY=1NOEDA;;-G{mXb@2LlIK3r$V9NmI;;awbLt-FX zeZ7Nab0K*Ippw>#b%79pRja1UXmW;OXaK>XJt}A;6SWl@w4)p?L4~mrURRhZ)`OsA zHadVErAv;}0i9$)nLh^${Zp7i@H0B7CG>&5-M0h%xMb`uVY7F(0eBVht8{1X=|Y6K`Ka)gnoKX zuXZK@ba(^V%RV~=tRL3qLf%N(JCWyrX) zoB|7#P{`-L8D9HBlkjn-;T?{+M|RkLpf-$i>>r*j`)8^An+Zm6G2Ql3-c0!aH~G zdnv3wM$)TmmLZs+txJ>)1%)W+%jgFXqM+1&@Q@P~!1d&N?9($KXWJX#dJ;dF(HmMu z{xjYpAgs3kueC_@xp?{;UO9s>kSvJKmsOGVDRerX+b(>1%)4dp792IqY*LRAzxCCi zOV0qe46%D`yRnOOyXTn4NDJ%RZZOq0N)D4inw&0F7#^g~Se9^M#S1iZXy#BiARc2- zyY0gQ`OC^>UyYO?G8}|L;`5J%op+Z13Yonr4gmsA-t@-}t;|XR!~}ym0%;K^KS}hq zC&F7*rCZ|!FFeqI^M3XhG)@G@z#bN!)LesxwtKdptGL+20D$nXzcGRaK@c|SA|9x+ zX)<^<7^guk>0`zfsA&w9u98{oy zD+N@rprwzffPo_16pJkfQ}(CeJkpI9h_a_z?i%f}Yi3_q@Fd@TA?>kmVqZ{1m2TiI zNWoHJ5uSp@Q%pEi1vV6^IQt8HgBA^IAw%QQHd zLI~Lv5E^axP%u>y4RE?P6;werK?}Qdx#5yDGD6I53p0B*yc9ub4h5Zn?BT-E0fcQJ zpx==dyju_eQUNR~(R70MvuKXPrb7S|{pHf-h+ixphtH2!{)=-Bt?kvkFiNLU#f`vR ztK#PD9rdc>=G<~R2VU8k-Va`F(W9ofE~@fM^gZdpeURHHEEOj2v=c^7-fx}= z5kqIv0ALu@;P7?SlXjg|A4h%Xf)LyBT`8m+@vF=TZ~St#@y)XqAMkvz!SZ6Ew&qZJ+OWXyKt; z_1j*{ZG7_tT@2Xr*eVLXt_93}NZUSww*wK4+D^l9J&4?KPf`JR z5V=r}QgK)Be0>5kDs7*@>&O6`SkG58q?gy+3CF(meueB8SbfFrY;O-_rL~1ynayuy z9EH0$NML$pae(h~lEUVmKJKwFiRCDHfZj$f=u=@p#Q~GVih~yiWOmxE((J=(c2R95 zfJgM{-~rQg>3~7=bm^dl*lWOmJRLAtO#=$s(%tM39%b?XSz-dNOBx!?&d5+;yYT6T zz`iB4>A=DZu2F#tRb~FbDhwBo#kp?t3bK~Ym_u1ox-*ivxiDbtjlv|;1z9%s-k|xO z7hA};<#|FgH;=Tfk8CActbn}81uJg9_ z3yyV1h@WGU!G`m?tKeAn-mhSjbo~{_hxhUmd~OlvY0h1Et`Sw$B%p$$N)U(Yx8T=w z>;TlFI(#gcTad#Qgo(oQ|eD*^pWB*kx=#n&ft2jBVY6S?5hn3oKmRG288;@u2Pz}hJgHo8W>pNdIb zvOfYH+z&!WY?Y3PpA{P3ZjnV|=BaL}UDmMdl#VsO&+*{AU%_s}`YR41UjCrZE!PLI z`CC9LS!)LxOk5Gn!V6)wOir>jb~_fr09W|DvM2&Q0tbO)H9 zhJw%)#D$dB$lHji}+z}Jq;bUvxe7Y(^ zmStOBWLuWE>gcGTC`h7Bku(=Aemeg!_p$qZ=54-VKIQzt{K5brDQlr9CP6}S-Ky?; zEQtg%kw_#m6N${Ba%AeFgudePMhw5|wXz2bscN%6ZdyZV8iNcxXd$$_-WraRX(WsLKtQrEvpg+Pbdrn=!H5 zl`UCQMTH+R(NIT*XxaG1LvB!SRDQhK5iMzOU?5QZE^N7-#ZFx@d@v?zg>Su6SBMsh#f8UoAAT$gd^$ zAO7{oFy(IR+g>`I&y6lE5k=!%vIfJJeQ%zug|z3~CIZvCW}y8NCE&C4fg zCSG=*tmWlntvhYwuGjH$#pOpAbK_J~EfYT%O-Yu&?Ntp~R9qgL8=}Yhfdk9Lyhtsv zW4eF6(J82Bk;b}al4V(;^RWJnT(0a%I7O-+tQp~WxBXX zhxoNDnYJTC?ho*{O3nqmhKe=KHe_T7O*D4r;lsl(OQp;*T^HFca(9FUujIh3U~}Jo zVj&PDd_6G@Fntu~@LZ|McX(uJ1rM@Suh!a)o954U{ra}vsG-$qCq|(-)mRsUQ_GyHz_bQ_8s`2(;tMzDAk5Lj9Xi z9df0Kt2+4^YXOfc&Lfw^^@*;CDz&ZyW^u(p@eJ1J(j!)zC%09brxdKMv)DZOm>GK6 zJjoSlUz^O6OfEfdpX7>V%ESXv?c?6Q?G^HiB!Jl?4CaPEW5&GEMYa~WV7F0hLzR8E z!zJ8ZvB8b7{}Iqm-Z*5{9(Irs5%hoVGQ+XarHf3-ko8UCK8QHNJ>G`|(G*-4pg??c z0(F`RnZt!%Q$eDwkhEyal3ig=w4n*st5;=PskkV+f{93ml&A!wDg;M<3e>uJAh(%m ziLJ1)16?!eQOpci*Ae;IafXVpg|RcC^~dJczc%?66|}EOK6kSVz*AN?H|ICcOOUb~ zA$5R%p_7cK?*?oiztE$NT8NZu$$JrS}$q4KF-+%q1 z{prF8fVVtj)F&E^6RhuAj~Aq#Y?wiAwq;;UC%z#(Ua=02EQuiT6C<#Y@>Dw0lI)l};hi!~9eq<7NEbi2^ z6(vm}9zK`7N?A|zIdk+W1p^s`cy+huwalhHDYqHZ>UQ@VpWUWV^b}p6-KMj&ZX>Ah zEFo-b_PkX^d?xGgM)mh!|Fr?h%_AZm{Wn0sWf;s7fy z9c+=r46L)JOX@*dq50uL52+yC;CQ>bLD6+oI@*D&3(iitUnQ?238`4Q^U)bd+!Qwl zPBcN!Brrf*CQs4Cv}~Z(Vf?a5_D75pQsDiY-}cP}DbnuEM8^)~x)7U|2a+=!L_N7f zgNeP+MJhavbe|_v3nG~e!27#)ASW>oWCKp)VCT(FxjkZWZ4k00bGScq zU*z3Ww$Ck|Qp9J6pA+CKi(=(aGn8lAuaoiW8R|;ZZD!fA?7xcy!SXy%5rDBvkj#n* z`4(Py#C^#w;Qo%{GW=kw4~TP;l8aEJ?9pWPzRv6hlS{~j7?DWfZ5_H~sm~KHDtoAU z?}nP_1IJYh;7$JyqVZ)=Xv7j6Coo`39JxxQeE{a{PQI`-Us*T@^j|>F%VDJV(_u$b zs5q~x=I0N-yi;(6<1!j62ITku_t*ad3~yb(tHVo#W`ItMZfFEkr$Gxd3~_^`I|JuH zCM*%!QmGe)0Du4WKV#^Z6L*0KTS@}gb+fffSb%&^h6fT^w1qWW38+&h!MRRs_zBMc z9e~8f_MtB&LC{~lL=i0BedXI~CosLkX&+7P2ns1&0<&iQ#jABdB^bNWzH?Ioxiibk zt3fMjnbgY`b`<3;AZ+qa2r4cwatqp)L5Bt_p}btej#xOi4)9}Vov+MpY}F>6k>~E55{EYahTd&ad6K)Y62~+CW+0NoZiLQ}8=_Dw6*8GD$?DcY13ab^O(LO= z0=Yqaiw%NUm~O<4^UU8Gw1$X zAtTa{W_Sq`3T5i88GU9SoX^lbHOOkz#XfQx<2P=4JriM5t(?x~GdWD!`Cq-SPB#mk zKCX0Xh>YBW;4Y2T!0NO~?@Qxnf~Ykfy|j!LrAZ^!S}#53kL- z^QJ-vOxP1o2>oy8bMRw~OH)&k^R25%SOSs&WfC(jILQ|Xzjm~V;Du4^M^bZiM#dmZ zrv`q7@R)c+N9F!OOL(x3cbfn^EXsayf3O zq_XLBF*Our_uL>D7%Pamu1?5>UfYmYx*E!op_y9GI+V0wO6&FTnn{f{ql^2=r0FN! z&?IDks5?w!9*s>RW$*_)f_uDB1#5DwO$Y}Qu%=Fl_@B^A01?KhZX$OnCPcR`O0C1yfC1e!%-%G zm?K|54zSXICPxRkLOET?l=FX%WK-_Qifm1f=tl+pIW)BcGGPZ4#Up3dK7S?33Z?~e zP)YkdAn5r0PPKO5Cyoa1KJrL%fXOX?V8#-aPwK3B;lNW9j)>Z^_!hYmC`)TQ@g9G6 zK}i4S=)jo)I_t#rAd}ngO-Sa7Z+j1Q^W^yWu6o?BHmdkvQI1&3^IS zzI(qawyLzlv{`s5%0^*iRg{y=#rXK7F}}IJxIEX-72POSE_>bc*XiVbXvp`ymyi92 zd-dt|rBt$EMC_yt|yhMev;BoXoojS+t7@`b5=R6%gRu?$+o&p>$O&xoSatl zn%$nh93K}tacV~u3ve&OHZ+)aP`qITy|^E%H`GTNO~$)a8J^rf)WpfS)OuITrE=+qIc!~5Q1)?ni;kOl`~79qww_9_ zBl)#oX{M&M!wd5nNmuXb_x-1n;;@X#f09a#udAz*Rn4dF&r=yPSr>O?vaZPQ&$$bw zbACO#QZE$RVdwnj?d|&Xef&|q9@zUQqnF!O@A*s|PvqCOy#Ja$8|mlf$%{O^7N62D z(`?VkUgvL*uT`V-&`I4@@=B_g8eGen_m+d{K_^z3yZ$UJAB++Zmjt-YhjQy`Md#kdf1+ z(YUsb&a^|kGS0>8YiW2_uU2b~6S6+Y!yo4tA6MCjX(!zpy-W-F&ePOs+UOYSugX;Y0ac z+rRzzP+vc=xq@=_^nJBZYfR9G-MSl!XM=9`q&M9!Nw=Lz@r`z$*}*LAs%G`U$iy}ax`KDA2PGiGIko)`9k0R~xxKz(&S~Xo&-=})! zuHDU|ftG&iJr-X2`?ZS_Dj7vldU1$E|Xvwtsb;txm*tt5`ehKlYkt!&%FztKz#=E7V%Z zES(Q~H*YV4v-2BEt5@`oli_XWX}|Jnn&YSUcBk<$K^K#E^;Neno~N(UNos6QD;-J9 z_tIJyz0wYQNViaB+8Z^lx)+(wZOO))pIE+8#F5c{5l6*h^WOUCeUt{LFQ$51?C+mG ztCjn~#icYp6s z`0jpOuU*|$AF9=tYK;)NR@bfBoM5^>oH;Myj;kjhA?_+9yGfNN7?wl zd+3*9FzXe6F$J2?PninV00|~ZN;p?4#$21BP-ygop=Kaqsm=^t-~u*}g)ZvJD(VWI z=`ywhZ2TLFtiBOGr+hY-kT+X$PN}dVtQo`wxwlNk4yBo-DVpJtjd&4GPnW0SveB%! z8@2o8H86v}iFAK}Fwa#;p4nJ1_i~Mfz#Mc{jwR!;^&NIUI~u4!3g)Qi67hUq3> z#nurNVVVPnj23wCaKqc=anp|Xs({(~ zTvi36n=TnZ4havYE&Xiq0y|h>euyVyL$E0BWL*CVn>#P ze`jxKNOambB`TXIeU!WapD4bu??>&XSMqNLYqJFu5GJB%+xT!cjkR5ce$sV{%$cqRI;t zD5V|~BrMncA8<>tM>53o8ZGE*G!rB&Z9rx$+pr)y5fda;13-$lw0G|?GNc+1yI?y^ zoYpQhSdLpJP(x%5G>B|rf`+&9xnq9-RHjVypyN2UocECq8<{{tO)w^4wu!sq1#BBd z7MKtQiG8+7SBT1}K$77y!RyLBS{Q~~kulpx$6;FaW7&e_zu)>!HurL@lz=cebT?(P zLqUgTOpq3Hss{sNr}Xl4$KthN8b9&-0Z72K6sUUQxUmapcW3qd z@&aWblAT8exk#8~CDayRJ8!`@d7qyT9l{_97p9TV~E zUcNX$9TQ(-XM#BLB#*x9U+Niv^&81 zt!nC;Va>-q2>-e?4S`a)K#7@59B%dGu^!uP1Am_Tw?72A7sR=);*fOU>&6-wkR=m> z6J*m%O#zS{w3i52Mn&>pLC4X&v4d>Nym2#tz7XE{fwnB($nD0$*jyDyjX1s#RSE-I z4MLuJG~P_ozdLq7IGfQpYe8CQBdt+ z2kkQN!6OeiA}1k5*=3;z_f`I07%q0EJap~#9oDP-JDa;dY?zDpH)ZF+T#`lYpU^t@ z?+u&mHn~B=VN5)*$EK41To9VXD(SE(fD?Q6HH&HLM%R(k=XRLtJK`TO3aLYpFY49D#$DyAlA zl4KjEAX;k#6r(tzl831S=2+Ybfl6rmAi~2EY%%v>~^94Zvc8GvaDU7-!D*0KHTjDj$6`ZlnrEwM%U3& zdZJ_nI^+B?cXPLJ)7r)Rx?PdXiAMJ1cf zJISf>=R(U~9sbJu8NGa=8mve^Z%#HVV?HpBOo+DUUhHRP&xlouM#~i^M zp|ppGCz(XQk{mPwc%>wVn@rfh2@L>VX+kead^VXc)e-QBMs&Lp!TRpjDT9h6HUYHM z<4VyGEJr#D8UpHu)V9i?#pKF{oW#t}^MU21Vp4(Qu#|tit7*7NjiEdrGlql}g7J(c zmkM{s1|)!lxAKbhnr%;eAnnv0Mh->WDL7*2yKV4cz(C(su}q3T1^KQbd94-;wxt5R zRiXV<{M{_uSdM{{RoPf6AT%{Md;h;@!%t#_-Vc{MU$18n^y&b8R<0=Ju6pg?gp{{iZQ_~}e#&~lBX|DYscs=fv_PAiXHzk(>`i*St7wJS<4=iw zyFE56E$YKD>hY(f63_1F@xR6u&FvI~`X?+z#zjl|HS3VYb++*p3w^~!!{1tI49DMo zdv!1wA_UmNfgCP(zJ3cOe$zO0gN>XJ=>3Oz_{)wP-`~fd$vA%f?K=5Sw_Cm&;N(B$ zQoq|(X3X}5WPRu5x&Yp;W`bncDmPH@9AZrH=B|YC0tqWN!vu=kA~$s; z$vv4L^P30~eZ&L`6avTuiQXGM5YB^@sKcy}L@~ zm`Kzt2OI_-9-e>4DrC%}fgBu2)n2WS$i)Id#99#veZy~I1&k2gLsO8np{|*6*^Bpm*Iu;-rMh!tpKOQ8I2K9hu# z)0dOhMO4MeOz~vg55r8m$V>dPP>02c8q_AIWYuAj@{|EUAM8SEBUW?yK{(}#4vCq6 zkMz=lU$3Opz2IwGt?5Zq5ly3l)w=;z+_1)G39>0*CC`*QSZTwWoud~|9Sx6oWeLWX zj8#2PQKVmpdPh5>=7~TqemKhB8`knHS^Cs<|0IpbjSJEY58OtxY`YusWD}9JkvucM zD@ggbNgf!~b?$*sY+NnZ%`3Ci*FTery5?P)g^Fd_Q3-XpJhJspWa2K~-d%^Rb6ghb zgoN(%E5{d02N4TRGL(Z>nz#oPerFeMRJqS1FBHTjJNya+g&L7}I69F*d>5YW*plS4 z9?E1gF59{2$9XElb`>o+NXuOrYw@mWwjm=!Xrl2a_Tvz-T=P@CvD2WVcyg>0z($+< z_T$_@kZ@jR8esY;&fz7I+aoMf_^s&Ru}3(3WxMpZx*9C8W4eDmJjv1^jj?(~Hk7ib zL3*$H>^iPkXIffccu^&BS3UvO|DIu6YwLR!$r4~$I{`=^Y|20xZG9F!9cpJJVNl)2 zuOSGRkq8mqyLw?}z3fZ&8u6lz<0BVo(8WwJ;@&)?KT*NRBnA@~dRq{23(UhH&|(o^ z8!;>dC7uO$zhWg6!>=B;+t_ih9yh`*aP{O|@$q~0B(!?OU0XiRhB1$0DLjM6eJek# zYP|l9d_MnMdHz+D=iJUJ&r4(3tk?!-Lr>1!rGELJ#GxJo_$25VsGXac51B$-SCNxm z1t5vcFEN9!VD(ZZz)vHc__dXz#ijGZ#U{Qv+`OBAen*Z=>D}fZxr=FjGB+CI^@*;C zDvi(xJ41DPgJ*jOcjcs#q}9`LCs$ZS-krXA=E|g<1v5T+l{^}BG;6Rh%3uNZ$(Re1 zAALVw<{MXKiB-@9p%-|<#sfK*-tg@Td_GpEc^vuQ;hS+}(G}neJX!G08diDIpV{Wu z+Il*KA+qOWivWp0cE2!rQA)u^g%qJoUsO==+lfrzU>Bqq!U(w%5g0DR1j{D?D?w;Y zaGBSrkTi0QCL3c| z-$9N4{_7u&E>bOW#TtC0oTHqDnH9Wu0f?%}yS(8BiMnmlff6+EMsDNE+A@BiEHb>2 z>wv8yj>s9ddbq>1yU~eLT~w4Q>ASZ>~bHr03zX!<0=oZzU*4U^e4q!Jj1wbP_m- zY9IGKOA#3UG-5exNhF)pt0fS9g)E~H!QPA?iAc6&{AlY{?lg0&@`1!M6T!gXdMxFgs)e7fM>k|Yws3&oYvb2n8%(H%Fh&Ae z|NYlL+92-^?{h1lLx}sa8pOoqjU3P@=8YcQjOL9YEC`7=b`gT8W5%wtQ94D8MNLAK z2B9fO35nx9-!OkQZ|p!WZtjv$!_%wUAWsbUtwjAS(n8cwh%wEU95+#8dfkx8c$_!F z5(sEU^NuhJOrNtO(l}It8h??T1jd`S+YPAtE8>aFJa~r+j1`I;8E>mHL>~?lE40vE zDoD)4ovC^!?jCPg6pSJB(U{IX^TE9V;4xh^nlHB?3NJFw>aHB}A!g8qFxTVS$n#XtMi6(Bb{}D%cg6aW_tn+Pz0rY` zOINW8*b5o-Bi`yJT-wBp+-7Pf63`uUq;w(y-C?*WLbs5pZl0;ceO9mUb#kz(wj2c< zsH3%E^k&k|Ks(}B$$8R2eOcwHbAp`bUxkXFHOhGnF2YsWsGzu63BaQZCRjiPmkHKD z32`aDc=vGFqsI45UhA zyS1h|rUe=ybx$y8>PDl{&3c6c*1g|#uv%#1Mke$$%?bs=RY=yo?+3zF&h`F1(PGAU z%g<)>P7y}3{g=IqS$h9kBqXpj{o7u-Oy6)LDvHiGOfO3tlDcbI`rXkWiq02j)c9+W z_`O{WzwK4Bbf)^YMZeBqHSJ*=ql_O>^`2-aE~1jAkX(>1!;-HIvoRzWUdw(KSNi8ACX4{<^QhMbE}GzZO1$m z+N(9Y=Mh@krTzP)1YswB zC<49rfVX^MzUurR!m((|lF+kN$^C&8SJ!Myw=G&I9d~UYQjFY%bSStQ5-Hd2{C2p2 zYAQ$}i#vJ!=lsr;E}zODrJ`4f+HJM12o2sB9Rka1@Ia1;_+S(d!W6J@yYXAhF(Vu< zKw}fWzoRtR(F`A@L2K4;)AjFHwIG)U=42r}9)4j&57O|g=SaKlE(d9_Wqjahpl%Qz zv5sqpV>Fn~qxib8K`|OkMBJ7S`;gB7gSLaY9wWtQ(E37Kh|!=DA|VaGZXa)v|YkFjfX2`@{ zH3q)Hkd1}mz&Br9PVBliy80EA>6Ip~GuQi}PK|00#@a_N z`az7aau(IpEEGPCV}`A|3~O|J*^T0Hu{TaN)glr9qAAJpx4o(%i;7F0xnX*<7C5lD z^VfzO7%*8S^`Cg&lpKw~@5zQ~kwC3kp`1@9b*C7n_OKUwnWsH@srAtOS*u@N-EU~K ziVKsA5h(lFJQqav^8yCa=ePx^Fb0ia9b`xr07P|U^J^h%pmBr7F;c~_x!(Ha$0OWt z;sVcJ*j&2i(l(srl!0_dHfHn=UIZX9nF9HMF-=UcItW1+l085XBqEu>0V^jk!Galu zGz>l}C{yH@S;EUiDnSJo6I5`?Bc`eQSKxU#6EJ6J|8~d=9!z;=0ySq|^8yJ|OPD}G z^aM6Ca^yx=APX{N#u#-HPN`4aCY{9&qGo_*8Z*$6V=L_kwB*?8OF~pWCP?VrmT@1Ix?`;{f7GyRcW9Zb6&`z}31_KG znxYvVB5C~Z^mGZC?+^F&1<0v6(4bD^<{bZU4}LVxy9H-rpz(e6F)<>4Ek7K$70S`6 z!_j1i*FcF138u@$k{5NJEI!18}r6igjSZOQQ^wpxKg>MJNUddf8~!+l|`dF-6KximoB~A0W(g6?*Cu2j;DM zwbpLjG&y0Ora@TTkJ z$1v%FohwE%e~K@RWxTLENa$)RqHCSFY3Xu5Tpqysv(vb1`vFs?!2{E?PU1Q5BsK5k zom)9c4H21ceQ(fs23<2vxdSSo?qxfRwsmT*c%Ne7El@EmDm3hZ%pxx=M8UnsLG!Ql z4XE#m2{^1cG7BWzltJfdY%|L_NRf!2jUCJt)mZ1sh?1>=jrmlPBM1VGDO6P(A;Z9< zTsBzeTL67vXgCIp-y2&XrPUaE&d+5 zv+-OWUNl>5dmBqSE;erc+#L_OQM&>0y|%i9kaWQL+?}#>}=Qf(Xf~E>DHAW-HvTQ-UlHZn=6G?`;BOHkhDsI6M6X zVm6po1uSMG0UCdim<^u#DEqxxen|j8W^n@XlhLi>FOmen)r=wP8*3Da$`KYXQ1A?C ztT_PaJ#Jp`$iXuwSpM&J$lY}3&=Pe8a=PQ3q+0l~s0dmwXjQ}VWcnjO!(jk0f~LmF z8lr2a6OQ9ijYbuX=Te+H^&>XYaVSpKiV-LLN1Vt*d+3G)32SWAo*U%jh4wh{1;~je zS_zO!1%()p6Z&MbA3K2q*(?nP`3xMOc7;Q}<;Vg0qhBpRk9Rj_NKVq}wH`j9HP{Un z)EV4D59}`n-Hb7&DtNfzqpael-R4xqap<*dQC;C^2Z;09RR#=;Tm(OT@>9$d@)mN6 zV-JG!A(tzKxlJb2L7xbIOF%*-Fn1#Wm#1O65)&;oPPvYP>0LJYmev8#`OIWDvXaMi5kdEVE)kB#j-2^=NaR zON5lagY5;pQ3R&0;f|lEYS_R5E#d8GcPuyHcoX$AnGb}n+$GOWV+XR>l0a@VOMV?? z!oM?`*9Ji5uxI3l3w@@7ywk^9JtEJ~65K?s8&ah1?uglLU{-ZJ932n;vc)vR+%XK} zhF{NQ0%poXT_G3KxmAAVmcTgTp2h?bbpMA5l7Vz&;jw`V9mEn9!tIn6wAr&QInk0J zDlZeTc_aCd7tn?!h>EF^RAnT@UF{;0Jc(p}vq|2@G06}oszT#-U?B7^2}7-mcNBq0 z2Pf)4=p#)UprMS>7iO$LvNbLW##GSOS!3EdSF4A8l4#?G=yy(QBFVZX{{Lm*6h!}? zC=KIpdzoz3sbfCCp9`d>Ic=@?uSL?>()4e8|I-P+d7i|D=a_d)Fief>tbgnuCitM z#I=c?@#XC7ytpU{lDMHr9g>ReeVYHU`wQonEN+y=JDVUuP*xu7SR&B?x`F=C-RO3H zp@TE+Z%5Ccy)*LDIr|&`;hlMoZn-Pl@#4OAe$Zd;N}m|kTzmffOER}au?N}L zp7ydd=|kwt!OB4{a#9E`?I|*45nJdkfYhl7DP7i>TqKQG_DmL~2{KIxtAvPI>*W|Z zXbPZrB0{e%Yhd2OvDfp39CG{>BiO*172mawfKK&=)}aOAs|cz1XT1f|CJVGQCc3FP zNS}DR<+<9-b~JBcyZB2Y>YDB#&DDRQsiwP{F-4YV%6Ui=W8on5=S0JM^V&ooFrZTJg8%2xwFp5qZK1AUvg83w^%pWMAsnv-{g`j}Ozj?a5E~Q2QO(!P5`f zUFd1Y$ER35k6+0VLwkGibJ_`qjAVO8?jCQRhNExa?g4%LD}=zOENcXt+lUm32z~og z3cZ|X>_fsL=}ZhU>X))4R1Y~ziL8fI;zkdn*G~h7$HX1&RE}w26AAUSO1bT5)6gZT8dIlYJgeZ+6 zYe(V{Rc!j!-f9goHxfFG2#3@;zQ{|Jyik__4@K9|Keislbx zQG?-7AyP0LT8dFd7QMoDF41k$qH1)_47S=B&51jTs@-i6e54asO&GYF{1DPd%)g$)^MUkF0FRHKuoDadq2+i{sJeqf0c?*QQ6l zIX@np4m$_5bvD4&z4wZ-0U!QXq)+i|bi-Ny^h!VW72XB^gAwhDPb2Xw>J{B^YV@K5 zJ!b-5)tsVswsP#TiIzceO_PRBOGp~{H;K}4VNYKlaMMZB(5JyAn*lgiHt`B$)#FYK zamPHG678Ig{z}uP-Ilf_4PA(PKo(!m(NWrza&wb(E zopoA)o*bpX+|0HP!%Zdcew})^bzjwGZ_~#T(MSQvK|2z`48&G>2!&meB_US&8z=Aaehg|^#QL=%SWTxJtZ?z`KiG7kfa^}=$6aSJkicGna0+-tIb_(cwl+YvUp;W6&s!0;i-Ya2-K=(N$^oQKs zQ*4GnJ{Jic+KQ%Bt7D*$O9}l^Y=88l4T{&nbj?AD z5327_e2c4v?xK%L{<%NbhG~o)W4-)D9|VwRHjH8;D#}$cnt0h6(@zCLf0{Q`*!?!K zSzS9b{A3N&DUIaJHck5(w3NDQOAU70@wv?C$B2^K;lp+m*s zoP>^n4o@=h6ZGnYj5)GA2)Hu6d6y+G zowv?2k6nj_jb(c5m=l?M?0Vf3?mbQz@zBPb2;L@c&@-R2%%H$+=_uSB5f|b@Op(0o zwnL)HvX!LLgv-Cs2wVE+QU}Pr@Nx&pbQmb;uo#7gjCRX@`b6!gX$R$^W9O<#8Bva> z*3rls)>`A#JTu~R9#5T!o#y*5DqF*yK*L9ADuC?lm8yUNjlXzP0q8}aa9tPH0rbQD zrk^Z5)ouEdayR{2wu0dDGUNiifNX_jUlEUi^8Qv>5E}P8J^woP zJJ=;_!BVNahsCHqSiH%vRn_{MmGqHkmBfO8X?wU8N4a6cX{1aPS!a zN^DA{UW)&O_c87(e*b!#ZDFoN{12m-m8o0N@*Jtms5!YsWp|2>%T9)|tv?6-p#CJ; zlc7pdKnI2;p{&dLdArw2(_i7v`3tek&Sh`N8QLd)v#p}5>7qei%WOl*#WI}~y(75M8h)O;Kpv6fmVb9RW`S?-ScOGWUj8njfL++# zAR$ulONatO4y~2alt}~zPYBRTXfZx`;xN#{QQCG;c7CAvB~O+*u#$U4u zZf_}_2YHjh;}Go}cdmZa^7uc>QrLqE6n6GlbK5Q(KTKHzWs_0yf+0VW= zmGbtX!jpfyf@Zmtj=n+L1s0m+?^}4S7j;CRA?u;Q>(RuDpBXQBi^xM zJp!cRIu=XAC3mZW#r0sxjrK!vmmZU=v zE1)Bd9=qKLO6ws;kX*`}OPo+p4izy{uwuuMf8M+yr*-t9C}JC)q+_MUC-dtmiaT||!Gy#BYY zEnZio1RO!r_S(~EjuNa0$xvwr-NOKZqqKv(SiWaT_rYT;wDr=8y0HY=kym&};v$oh zi?4LJr7%sjB7VOc+Y4ESQrRGu%vv~HiCb!U@5>BV63gu@Ck1lg)<~yC|B9wSeiPDd zLD-%U!t6rP5On&BZh`u2hL4_-65)DhwgpNzA~ZBz`l}>b@y{BbHnowf zS+=K`R^WsIyD0;^GP2#;lKKrwVr?z=`ue@;@C7K69C^Jo8txN-p zFj3K(?$M(J!a&EKX`$4gTj@Jpdg@r{MDjI6v4pnCjEWZl-oSNpbKC6W<`X}1XnUXE zd>fwGWPDgpi3}h3(yUPeV3AjrCL?6zIa7EPNbKB@NGq0>Ir#OaSocS=y=W6;nl5z* z8`dv;5JUl{9cq_E@c@?EJWU2ZZc>Wz?zn!Mu{XwV@^EZrJ|<()crI$anpmZS|2Xblz*6<_;}xwv5yg#ii1 zo$`bTt2TmcC&0wUEEP{tsst;;%PAJ6_F-)i<1B=pZ;OP{OGooGpuZHvdiQwqG#q{V zmcQ&~YSU%Q6wDGY#M-rsroTZ>izTeyaFY>(@4|jY7^emOFGp$6S1c84)aLuv#Y{w- zTGWyioxDRcScAANaZ_ z^pLpa9oQNvaE}1uU!PQkyVmy6N3pH}1EeJM2o~8Sp+jIqC81B~Wn~%@1D2FtM#o^c zLuB-54Xey0p+~R~HyIMXDRQ7%$Bd?$Uqgqwmr5nBE!VE6jgdx9*&0@w8qy~VjhwfLPhbl$ zlDIcdGpOGaKTpAk_TkN8Aj0MXMN3P#Tbk9YVl^KnbPQIsR6>WCPe`#oZ5&j4smj%{ z!j)Cu^Q3`J88Vm%F63H$r{Y_DW9e^)(zPEZZp;(hznoGij61#^7PcKv`3x&c=4W^C z^DEmTvC-Qa^-#N>X*NqsLmvbTVB3d{bu!b&hNbBh4+-WN7mIW?9i&gCMW0ePJm^A2 zQ)2sUQ&J7eqSbH3qCh3pwIw(0P2{2Jp)7h2z*}k!nMMn8IaQ1j0@+K&)-z;OLLvEN zua`C|i4n-fd=o-6!9fF}lPOD^C7>P$@zeX7oc1wXcr&EoYzP$;MKLSMVMywL)JwGii7W?7u{O110?Ol#2?8L5<@J2}Y)eSx= zx?r|rR%I>HqQO!^L}hO24!gbpASa})^ck#9ybv*ByOc$1OE{&?W&FpW&{v@jz~F!Y zsjXdQtAS$IErmu5&(kbKZUM6F3XuZAaIsZMubBX-3GHt%$G_-u2w&6ykQNGxJYU*t z3$%+1kpqRi3xy5;G%SR*udIRjf#}j^@x76xBeuk{;Y05xi_NDAxjZjID*oBv^)@m0vp)Sr()r?Tp zw@ZSGbqttIs#v5*m8abtW32uLhKz{cVn=8hU6Ue1z{#?J_pl=s;cX^>7A4cRo&x#P$Z7ZQ*t7Q!T4uC0Mm%nV;4{8 z{BM5oAq^`V;)yY=U-nNlC4QN;i&zo{8q5($QxJ63gi z9if4C%N}U41)n}pTHal7po1oGw99IH3JtW~Y6447${1JmFpeX=>=)6EA^=0S_VifZa$1GB%- z$AWdQqq*VVSe#H^@ojBX7%H1go`@45cs64&P>sfnvZ?Krpn2NIqDIk_;g0?>{Ca-# zdw!#6!{)A&g>FUW?(dJ+->xt2t{=ZY{rGx*Kg#bvZP+XhL_N?c!~OmIp3UBlPM%<7 zQ~Gf8$2w)tUHn*K7YoE=6;cKZ4^yamv|=gk(??r0$$iyhW@+Op8uRV9>&qwn^AYRw zl$9(%;zk|mIjwN5@HxCuWw1Sp=&Ks+s2SEY{?aNnx#k1#33`ExNWN#wzZMj(>%UclecliV=&NjN-ovl|$VAiY|@d4p2NaCqnd_w`iCX-#n}n`ZnHwHjYEv}B7=TnBckK0iL6xF0 zCCYPVkP75jPo{Kv8!aVL4PnOQ;025#9Q*k#?dbM1_j0%YE$r57D4zu4MWni|_Pj7ihWQ10rB6LOhUX!R9O&u!JP3HHmEkZz`Y6pfQ*D9a z?2AdE0>SZiK(J2cFj}YxXWHH)2=C2R4y$Bk6Na_9I%R$(E{6P0~*?E2X83a4SIeX)^m=) zyKNE3Y&6Y5M(|OJcxAU8l0O~+D;!=^+5lUh%N!oxcjOL_3q{;YPak_8?}j%v`7i#~ z*!)k8dK0PhkCmo;v%}-Buc?3&cOzRqyn5w}zIo!C{)+Y6=Bt_Uf~K1y#E* zBoSJhhNyi%>1#5SKwE??)&~A$wAv&35_JpQ*`&ABwV-eRMZX+UJI2=cfe$SE>jj3s zybG57hyT~651VQG-7%)*zjOQ>x50W&E>F?X1U^0SFVO}*JwEoM(}GQ~i1ct1eeNR* zd^%`z&rsmgc54v#agXWq$iplqosG^Plt=t)(Ty^)&-Rky_E{r*vYfAoGnYwj-;YP% zJTYNE{lB%au5x32zNwAoScDOO zMP8=Upr){1CA(Ht!_8`M0T$rq=8uHXxG+Y3FqX(A2wA(cm%0_l%D{w^Uu>qG z*fB<@C@H{)HNx2z#xW-wTv$4e>51Kr6I+3tO|%bt=n~~k*%$n(;7vVfr6UWi^u*$K zW%8gpfRbZXzyV4Qt+&AI{%Pf)iQ$F=neuYHJg6cTJuFiYq@$CWZiWhm=3`G0SVI5n zO)jWs#HD}OEB{H$pmtnJck@IRW5t54qo^f1>;4Q53DkJ|D9nezq>*22w(>%Yq=PPN zgipOpXi;ska z8*lWa;SDkS=Wcj7@|Yo9Pxoq$m!PRqn!&5R@`osYF;lrR%Ae*ZR7&})U}N1Y|9IZ0 zU{h67`S+zM|2o5%-@Sc-r^6}4>+&!~lHXW85!ho22&O2zz*t?FBI%6C8sSqf5mOB6 zG|=ubMLKWlG?l82DF(7I#h?ix#k-0rriSb3)}&@T#h^Kn%X>@#z!bE2!!BToq@yQm zgipOpOre4ib{{Jl&l?qtu4=|go=C$KO^7Al)qA3zv8)?UG$&knk0&5_qU^jtHQ|Yq zLg^{0#1kr{rvQZvy;pEir}ec#;g_eIh;aA?-#oR_CNl5FBswPX{gb((bdaTfqa)oFfh zP~1gZS~^U+*c!-@-2)#UTCR|zd+Sh{;Jmyq4}a7dd96(R#m<9~9Z7z1u3GYo(|z&_ zb@9hO`9&h+kd|umbf5jAK9r%GKXp88!+R~n?eaiIlA~KaA=u-Jz!O=F-H`+s=c*;Z zINvA0P!?C5?-O7o;tFXgHP81MFzUkC)ab3HTM>UI9?jIIDfBsFm@eVoQv7{ z)xj33CBitb(+a%D7U{fcPWEBx*g{&y&hsXOL8}nu`K;rmScoa*ssHALMeo&r;E628 z?nvH>3)S*goU34w-A84{^F{?jsiIMt(voYQHz90!S4|6(g^sn!(^xm_PqBH?oEYgn zwg^0t#n>ImM{%KAK8lMvt+M;rOaP?%)T^_(tAx1i%00?4=6h?fV*-t?}q%Pq; z-wvMr586Gxcc&21UX~_p2oG@OAQw5m(7~COMm43!!)EpNL-#j8hxyW}wZmx(zQB$i z8h^fJ-fK~?4cgCD@a^OTJniEX_URkqq2Gus@(^d**@AO+Q-Cw=Ru7JMRB-L&+iBa~ zL5WPrp#}~a;UbBv|PSJvAFxFnWP9u$V&D((%t;QIHIpTJ23gqm2G*%;-b3~!@wkrC33YJ z^sL?4OWlf0uJ4!$a47GDmUbo>HqMFT9}xHkQcUzyWc(_)=cKL~1>oxy`f%JVz>Ry{ zQLxAG-EgQE*bEB*{bA$$cN^5tv1N6rKL?w>&kL}r2A~d>BNpYGHI8}S@!Gn>iAsjq_J_2n>nXcC^`${R81&aTKfA-72IM)Sh9ne;wGN) zt0<=K(^8i()~n!ME5iD6Bb#$9$FD)4nsa~bg8|-Uoms6!IMVJ07h~l*Yp92gJo$Js zXcMCWj3+91;)?NvADLvWlHqL;mb6;~I8RjYycFX}nNdACbjsJ^?Qu|9<>U(BPDU29 zRB*o(0)4Xgv@omETg($!m$D$qFZPrZ%ZMl+ldKP{5l%9E?mMNbniBIxELPwOock{8 z^pI=>i!PJAj=gt!?z>c>zyXX?HJ$sUl_9yT(|aPqlHEJ^p+DD#X^b6Xy?k0Nbhps? zuY1}ecDXEtO(9{HXw>Ob5fP2*JS;=qoERP;0_{_qcconKL`oMgZPQ+Y`sjz3Jo_KW zajE235%+i*n8*o_Ca@C7FZOs&{4!FlZpozz_rCUsC7w6UDVZT1qe!b;a#^Qi=e?s6 zmlQ_RNpaREJWyj&J1S8jBV6q`=5KOIPsH3W$vA^sT^{P;Zj&dHq&_k$j(vr;lC!+kcEOgEYUgU9xv~{i*UF zEy`YnRCYc0EplwmH(3Koepe@=pQjr+7DIGC18af&Vo&CU4N2xM)(9sn6E-w1;oN)0 z5GpvJK#ZyhP)Ms9GHPfg?cFmU{KP}{jLDOO@PKv8s~f$@cXwr>mv*<6j9!$<`Q?viJx4<7zD^CFgSSKd{EYvfF$HZ$nmSEri?M*U~FQWL-Omby@l`lxqBCTMehyl zEvzKl2?1kh$p|vTRLu+qS>0;2TCMI@_kWC!te^jZ{<$Lm*#lY8jE*oq8p-;Py#q15 z7bD-l`Cmy%{7vlr4M&*tb@HD2V{c%owrY*ky`KVZ;Di6!$;3y@h(RY^_!Qu@{dg#Y`b_yeEvsud7K0Yqz+;1Iq;^1#H-k&|U6A!pmRkcpnc}FfA_pp0!p}7D0Pxq+l7{SP8 zQ1?g9>i|)vHIeR4(bYDBmJuVIgw*m$ka9;9bC5`g zB6t!oxxdCFBqWb=9+{ecl8f30fJl16d(gST z!$*rolssB>(dSgw?{m;OmoW((bAUFqENS8G&1v_kX*!PCM=yzzOKZZ7Y4^b$HF`{w ztj+EoEFu3ixH=jem0T^(xKPJ# zJ1j$IS8eF{@J_crVO2$QiALl}hH250%=#dHn3^@c=; zzgtpiR^e>CjDD+3(Q;iaT29qI8v?^Ql{a!u7qZBCW7kt($EMZVVhqu`+08B`b}iYF zw-~*qZYsS)0D{Y9f3yf*m|ILexz*CJ9w_TO4y2}`wav@dLI<2JMsMZ_vQ@|hcjk08 zTfpkpp>R2H*N*=BeFYtKMP(^UTq8kixdumpmuW?X8YSZ$etIt!rqM?o&N8pjXFX?O z=+RLNB?=ya+iq0~0FREmC4;ynN5>Ep589d@MnbO#4!DN%27YY`s$K{DPz7_>Pi!$; zebKHr&S|MxG~tX7|!|m?|=RGNlP^xt*xn$!;bHg zr498C#m;sK()^K4M`TXw)&P z^P8lY^tQt}L-m49@?*G>DZx`mH~@J?Z+GXcZ&In7qG#vlcch1?AD;h`x8e?_;tC!k z$X2&PcmKH#9AP`x3LX9fkSOa7bzZKLQ+druZ1j}Z%#YCskTdvX16Zyh2O%c*pG9Ml zzDLdsWf(^=>{MXIlL;17Z(`c*w_llIq9uian|j)U)RZ;CJAnvoCL+RgYbH>@^9d6H z)rn?1Hbi&&DpXWV192k1RW{aih!c(lR&d*rY+L9LZAU-^K|5(* za7@7*sFv(tbnI8#QTzC}5jH-VhJ7e_o3^0YD`;sm!O=VfPBR+@y_0OmNVqx-ay;tQ{agAW1 zM-#p12kECs2=#m{Beh>;`SK>Gr7KIrVaJ~Sjdwz%kO=-3b%3_0!O#(~{w0hxrz;>b zSh8RY`>LfWvM#(s5Wa~LlzZuT6}wFotq%|Ip#?Y4Q9F=E$T&K}nY_Tk!$fHzC3pdX z%TZcL$-fSHfjS9X#Or|MhtP53c#f_@1)T+u=z<4n(E_9h)TJI9KC)OHe5s5VNRT%) zQXYwg=>t(;&z|4&-RsK!mOpcQG2Ha(-4F_Ai zRDwH;>KbTp@1I>$ks{7|3G<*!Inyh|wuVWA6|LrxwmMc5|r= z-;v`MuID<$c|ikd32d=?Zj2l+a3D+dSBbBjiJAa_WmqbFgJW?F2rpP9)Pxr>z9A*S zZQVGNzXh!g5sK}_BKy1G#qZ37^#r&66zl^t?$ zX%28dVakTr#fB-liTG{axnbdlw}_GZs`1;4YOh2m>WJsTH94e6g7ImSgHuyw+cQ_p zrMJNVJ*z|7%lICdWQ<^ShrNtW>~;J)IG+v2H6w%Wi1Efwdrv^L%{0_C8+KQhI~k2F zMh>eW+dR9;fB);h#L!5d4I>CL=4|G++ak;1=MFYZ$BkeAT29CIGCd*W-NP+rVY;L_ zo8e_TeSgQy0lF3C*w~zX3<}*phXT_vDwvA+Y(+WE!5xMhT$Ug9%Jfnu7$Mhpwbm^J zjMH~vO1Z>lJ)(yQ?rty07B<(qmRkgP6{GO_B=;<;pSp>K9qiZ&hp{@E#UxIAz;rQJ z5yDK`uRUNGWivOIXmOxaCA{y-*{@*G{fz=7^Rut^(GBmxsC z;vED4`yCb~Hx3PMyYq`K?;;YvsK{0xbS1xNc3v;s`9-JEOMZb;7Pi*+ZoDt=hXcl; z289hcM|oEb+c`(4x&$~!Nv4S}m)z=8w6^PTT`lGC?4Ge?8BZm#0?ZJTqOp=(i4>wS z>^D`5lR^hvsZ5Yy$#K{UyR=5C;%FoFprzRZ6)lqyH+9^xWWyeq7B|DjbhZ~>Y!lqp z4Lf}ql1le39}8xigfIrpi11D-;bWOW@~qPv}75n0=gGN^*ByvYn>ghpsBOR0}<(Nv_DYX*&2ZCy}9dh7Ni3 zU@4}KlbLvPpOO3>*ByaNVgLVylxC|VKTm0(<`E~yu$3^4xp(`# z;G2a?i1iJb-@1f5ZP;$%8oVIEoHk4zeW=rh{r3097iDnU-7T|~x^UJ+mFzfr|{@l-%7t{f;44}=LHg$2%HHLEEg{eDEjm&OkjcORoGyG zq&O2ORaPLGT%uY5hrD0{lSH%4ny#B;+?~=zdkf-GaJ^_+(6)mFbO$1!nZUuqz?nb| zZIC&E2^L6PGC}h0Q9zO&GrM7qy0IrXu^068VG1(+I|qk&RHv4xqK`Vd-$ zi3#Ap|MkDMUkIx4?|=QDzc~S2U;uI{EvOR(YqhGNn0>$g!FPe+iGRX)3VvIAXthx{ z0Zs8QpPF`L`(V(O?V!f!H`2B#J4#ou(E1_1qi>p_=))Es_RKg!GhQbXM7yWWcs)e` z$Ury0)Sva+i(kd#T5W|K*XaC1MnkaoMm|z4TXo0iekR|O5DdV?yc5ce-EjLrCzJQ6 z4f3P=gnr}{xG^20F-x7r=RSPGTdy@Mz?emjZsc2kF-2z0qPxQETiiGsj_B-0^EFSl z$*8gx?3R=A08GXe3@A3_c(p=*E8LidcN)$@6dgj0;W!3o&BpN5RMH}#X=uKXY~=E0 z12$Fe6-qY0{?~e09-h;AEi-JX6NwqzW(2h_Am-aFIZ8G?yq%n18+Nd$&rNMZhue(fN5*sjmc;bTT?%}O zTz#-;Qu6xNiPK<8a<5ak&AB(>ajo3*>=|2(98ACDpEeg3aJx%g`ZX7^A508Dk+%^1 zO8G}=lUK53&7`*geU1eTr|3F1>QL#uC0fJ`q!n!CkmKaW90ZXEmO?xPIQQfq94^mW z%BR0VxV#tB0cLjI#N0*9b6}XS8Zn>$!z1QH7BOAWyvUTAa|NLiEkN+)ayD>7SR^PL zFkl2W6D*+jg$WkrC4?_SOK3QIRKz^w2GkRw+~C1n0t}!Q$XP182h)&)+eVQ9%G3i_ z-2#Z9zR7kJJcE$S#K7!S|G;xd!Dw(OT$qkZ(zA452VK>`A*7c2GSqMpRL2zLk*T!= zSx`))t!s+omWsvgd+O`hv|6*+g$L@oHR+=W)V;Z^-8N1xFFt{f1;^!x6&`rjmWn?e@14dr@RKVnY$~$vnz4CFDrSKtarY| zRXg3RFR{eowvp#!+U4FtFJ!)eGqI)Fj%+A!BN=aEZo-+!dyKpETT@*^oQYUqZPuAM zC-uZc9O4fQTZeT1z$`sC@GNS{v7jCO$(pTfCoK096RdCIUjR@X9gj?-dN@!_(`so3 z>;ep1Nk?wwPdO4&QFTb_nHBkC)DlzsBd5>N}!Vy7A_Nd0IOJaqOu}q)jAQ++5s%V8HMW0}2(VFyy zM1=LW!iUgiNgnYD-D$sVScfyhnzzXj6#K&)Ie4;x%~T1eFL}e0m>|`2Gq*yQEx%w& z@@7kTJQYXe;K>GfV+aqk3r8qa)ms}G7&L0g85o}~*L(){G`6jbZQ-p=W+AaHo6*V-9IX%Ehj^z{ z+{LxbAh(XBc3(8EMZ#9MO~$p*cXgNsiCH1Vm=4~HF@1{1A=kcpXlrvc#hwa#d0$^sfjpQe1;Q(& z%{y%cvrWFRhKBGB!E>90kYQ%K3m(XUS8wVU0UJzguO6JHTEbYi1zolsp{2Iba9V$X zg0rLqlfL2oLVBN_>7`19jkcjH92heTh;-Mv!5Y;VJ0d0TMmW|_-fut+I_ENe*)az{ z_OjV&$79-kYMPE?_R&isahH1PO4@zss&Y%U&|?}`WI1Y^rh^}I5*d1D=#WPbmSXCN zWBjSgNWMnnj=-g`|NlZtV>(1hX_#gw#r^2u<(NiYupOv_&a0S`822M9mPg=0#1LBz zTVFr`ATot$(?-Pk>`DbxHb7aF*kJk78T|7B4aFmiapE=0uz)d!;VtNKHUjPExU0=1 zNs5I@j|~?_rwI2&;)S#e4fhS+!rc?=FWXTEAtc5x%@dkmnk6Pko?Zb?FiZ;%76{7m zLIaa}OcOuNmfo+cwYjB|0B1Mhm>`Y`)Q5sWv-d=wRqWFl2A^?=aArSqyh||%GG5G+ zFCehD>Ra+J;UJeIsF7&oPp2+UgStEx0`}>eSJKITI3gy2z#q@wTnM z?rjpEMd^0#?XO$O^!9I9^m2_p9~S3Mm=_0J^l~dh6T@EJcm?RtaRDvE+$-gQ&g8tY zqo{eweS$&$HtyKLtoOXp+ts{`4nbJWOY%B*Dc|N*^KvKVXP9HF#XPX&<%V{l!)?ZK zSMoAymi%2yUh<~ouH+@#0oB-IhMa)3jrKw%S zOP_^EEX=onL$KEDTktUc6u2IDv0lo47^P@LJm|>m)f3JFBrnCw>=>som!q*gXSBVTD}hCwk+Ce z9Ye$`GaOA$!B)JPYsukz)98V0=)94`K5oiaVF6ma2L?JsaYqhx>{^GrK6E`%AJll$ z5gMGued%xip3vqLnzh>$K6A!4Zwj!utW9iLz_2XdDDI-NqGrflRMrOM&Mqoz7QH>tev#=^!IbWlss*C7!F;#)e`M0xnFGOZ-n_(1rTrnTk~JZC1=8hAAlT6Hf%7v|6a)$ZT1X%t6&oae^udO^n1%>CvqqzMOm#qKBW0qm3?c1`=^1?g)~B9hA-huoXVcki zWwg27iTIKh?oP`nLwR_QOqHGKmly@6(F5&ab8iD?R$TjGiY1-X&QVA@+&KzY!0Ed% zP``?!kRZBq6f&Y3hUCss7!@UVjzTtzh_S`U?Hq-Fh&bH&`q)t1`TCZ-Y6-b$)f;a!!;WzP`;c{Ci%|<-KfJdTheu$6deOdHg=Q1bF-s*ueFr zldOxmKpPz%^ps5GaJw%{&qF}|%|*hkD={JE?LH=2z!H`-fm%U^&%zUZ_M!r)8H%O$ zRRiKrVHzRGIm`wLo3Qkw0U)+>^;d$U-$+KpoBrsZQ2M}NxY+5M<~oG&&`E-yZTk4?b`^&B;! zA##mD@-ApQwAGfN8N^92YD3mBXby9?o{P*!qD7w>j$vL+%3K_>sj$^0pwgk;u>b!2)W*kjvrb z4^SPI2+*5VfEM|7fvPfhO9|V#jKWgF2oa>6FoE&{uDHR2DJLAwKy0uW>NheQf*?gc z82J*EYSrHWq7y&u#nKTZf1)>@yqD&C7ZxEAjesEsLxa}fGeE`fg8Lw}hX6(6_oC4R z)3qv*_$BUxM|k)FHM9nz!1W9>9W2^7gK_=`TipP?2d+yPf{T|HBt9XYyPuj^wKNGXZ>w zcu*|L0##tyQry5D_SJ+#AXn0Y{8m(TTN~Pt5RloMhwD2Ub2I>ND8n<;5b%5d#0bH0Ki_y& zO}x#7qu8dp0LWYU1EnC~U)nVwm%(O7cEOIfKX# zz-~ije`LKUqm55OxNQfn>NA=KTDozQlT+G3d4z6F{820rdmC{mBG!0JGvS!Rl$c z*|Fq4H-KXq9l0SPwQS&E*G<_#!A`?Wuo$kJvcL^)i+v*`H586coz4suX<{howZG}S zP$x)6X|gUL5};1}Uj(x)3@pO_Fa*Qyp&owvIu^FamDV4C60}XNEd-V>u20;Iro7tT z719A{jGM77p)r2d!9}K2yYh}Z>DLn3C+mQLZz{5nLM4niuy6hKkntTWEKykk`%*ZS z`yUk8m)&M5u@2<6EU<4KLtHKgIR*CdW-h9eFK;A4UK`%X!Q=XPV+hYz%@a9ziffM8 zF=oZ)h$%F#kNX-1C4BQ#2+lIT%_*>NC*)a$Jnt)~)A_FeX!4HW2I*0}k%Pze?E+as z81i?mg1Xh0MtCC!kL%-p?abI>H-#K5nHX>Ec0ossv->*-9r0f(+fT@4l6X5PxeGdCJ2Mztj2z5L%sX&!7j*PT zEaKqKXv)VfnJ7xy?SgS4AOoLZoMdAC!8ioJ1;IE=MuSmzTdX?vZBNgY{sQT_NcNNE zU2J%>+f_H^FacjR-UizwH<_7>-atBQ62-%u7lC*QuC`|BqH7p9$NAYust7MwCb*;k zEu>{qF;ZZlP#HEz@Y)-+py-2G$VNyD7FcDKX^5~Yt4yHyRap(GpSs3rg9qv`frHl< zqJy+RfVb&QTa+VSaEhEtNCr4aF2#XJPY5E*Pi@oWI~WJg>asJ~bRUa%P{@HQwNcF@ z^R8<|=a~(v$-dmLI!#&nEVz`sO_9=;4$^`FFVuc1QsS^>S*T&s3J1K z0;z~hkf16ezYU8C5@mHeT5urUmkkp93NbCH4eGv-%rR^nxmmHcP=)$E<=O(ZsV%sw zmSzjniA{u)w&3~8nRPj6l3N3$%LVsACKmz}jo*r?+=mtm{nX!5u*Y`Zi&p=wivK(#2#PwvX zMe=VQ-9~Jqhn$qLj9Y&O+&S6z=lUKqU%>aMbY-if{%Xp)Y$)3wCbDxvf@K7qb%jbA zl{f2z#Ob%U{w78;fiDmSr1+*1k5R7huwH0`EgDKTgAF&l})6opxSkXy+_p_0qVI1dFXNGWoj^Mb)NZGVd=Qq;hyv#oK!%w{q8Zex+U0u22eE(T znfTWGWr}ZYBx5yR zW*@yIO61vP_O$!ZMax9B&|{hu9cr7VgCBDe8Bb^EkVg-eV(OUkp6tj-KF7Nw_+a`_ z^05`0o+lqL#4}DzODka-b(z>8A%y1xatf5hIBB=-H}L69B;4<;ZAk^?5ERQi%Q&q= zduuKoBBwG=yp`yk9f27`P^=7ZG`(?XIYQqRj4!dMxbt%%K9k zr?Y%A;>BI8mktNx?zUKU@Y`M-BKrl3Lkv_)L6Y#7YFVL&Z?CHvqsDd5lJfJ`RqM;@L%8XG^o41~x8}PlfkS zwf9e$hI@jo^#{6oW!mJ)Qn4>@q*hfg5GI{TiDEXM-4mK>7g3^QD#Ws?n@Ue@k#}_Y z6`kWwjH0URqo)_-)n`PAv% zT&I@YvE)H_wr4SwOeK?H9p8~R5C^0A6O;+wJ~O%0o}i$yB;tuw!XJ>@Zlm+?vD;85 z!^Lcjri1+3{22NeVRB&_s{7P3l`BioT6nY0?Fok5N1R*1$ZCp!zjB)?7bEY>vW1#p z4wH|_n7nUlXfkaqTMYY1{;}6}oWW5nW-DE_FWZOaKsC^BXw~#(2R&Myn8$B@JtoED z=~!RZh;IlFJ`5Nuh^ekhvLg#aOPlMeuPK&kn{DS%G5ayI-9{@WHa4vm>PL)|PXo(T zRNF?q-*n}H%QE)S*v8TbeLy3)Aw3$Y=^wvY5AYzuK!7y82(2K@eJk`op6goxWyve(sZE@WCy?Je-yBv z%SEL7jtBm+Z;sT4Nt!u$2x+ur$S6c9o5}gOezek!>DKOmKQ;9m1U5{FS&8UJ3mbmG zhqMhsK+#Pbua%ff0eVWTMue5dkMPX6ZnBlev})U^hc3p6*OG8-96LwD36M->r1{pt zI8U`rNN!oWg>9$N05uN4B07?Y88Mk!nIxZDFC|G_lESC_^C(wt9EimnNxTn4Y{Whb zCfn4tR$0?^@?dqEMcopJmJ=s`ysoF35uxeIN&Km4wqCI>-ok2u{W6p-6=@GAhO2rw z{s+td(0u>K(TgV87sxL(caAwY5~V{ig}xeVEvI{Qn8lyFM8P|f5{EhT^mc$$J9Tn&kVs|YNavIO9%;7L z)O5{xJt7}<1jRNF@Z22`JdWH6{P-5Dl-TI$q7e`H0pk+%J&C9Y{Kbu~@P6{geSqkv zy&<(&)~84i+~B}h=8mv(__-BQP#sNK*opu1M;DmS{vI9R{|?+~#DO7bTQ`wXVQX)y zCr7?}G6YRyr#)#QKKikDdu*2qh3kBwlRwF$KPT5ksq?1Y#5(BV^0{jN2#or?=_Mb-tsgAJ5`9 z@uFF+6nc%xS?#GZNi{0n(R1ojs>E;V_ZQ|{ER!{cxv?_omCq{|o%GA_`lXhx=Shcg zJN1~>tklTK=_T=WTqvE4FV9cUs)MRNu+q7+cB}gQI=Sgv+D-fMZU6ShxW9VLa7dsxtN-i%DF*t*m!*`6jDts z-MmiPujXl@le@o;zamYq_SQ+AwTch=S?zhG+-GwM(&5eR<;%m^cuSS6j!|_^8 zx_x|h(#VwhrJLKLJQ-)|FGe<#%{OvICQdW|QmhQEJEoa)W$`KV@`>ZHSF z^|IGHFTaf6^5@;*erfc0Rc}93xIl7CRX7adM?7med z$#$+%Z#AV<_1u2!zUakqC8b-nmt0eO>P_x1wUC7oF=;A|7jA z^%LXq<3)TTW;@MfD&M+BKMhjPF}qxl8u9XVrXDvM7sq#r=d_t?tJiOqDQfO4-{-|- zxxas%l|?zbUlGri5ua6#IQ_1H2t9^GTj-=Q8ZTo3I9!nOI53$#J>gD3z zs0?1jd;NxVDBj(@ygbJn&y@>HD&;#$yEbZNs}<#G=*X6p9^bv4XVnKq*{`aT*8P66 z|6J9Jsj{J-n&nFESk_)%Z71E^ujnG_a9_H=>^0=xTc`7IaXXrH?)9wGe#^?O>Ph$f zUOO&Lo{MIsaj&TtjcU33eEeFxzPK#j-QHYvE7xM}@~L>IH1c;9sYp6(oE}$3WhJYf zUyLiy_2Sdr$?2RgN|{fS^7(nh52iN+&&~cixEIWZH7Oa^((r|E7|;loE2a z(oj##`$W2ykp|}JxzwE?3@%H@YW@20`a1PcQ&ReQ<1zL+PRZ%B{;61tUtLbL(}ySf zwElK36^eb*VN$)lJ=xF8llIlqKy9V#SLL*J^7x!9)L!xr>D#w{yjneOzo`}T^m;T_ zljq94dhr&kUcO$x#9Gy1t7s<_^CeqNx@$S1$;EoiaANI_-5%ys{Y-Wed%hgkV(tAz zuK28!Udq?QyUS*w+g7jIvCGcwLr>JR+UT*kUpu~gH1n-V=IY@sdv;Aaoaja;f3L>& zv#rx(Thg>_zj^x5ujKlTtXe!ht(>c)YI47OT2b?{tfkcpXGy)9c*<9u$9}ERd3tzi zD*g1RcPBU9EueAtARo8va-w|INu?qfG1g{P8WB zn+#r@eX*3#OX_{qDODbl&O@#BdLecPq(eJr#ZHe+t#~h=m7W?;>i%&iAJ?;m=KUmB ze$G6-O8ZSSadIO%YPG4}-!{}jYj}2c>$KC&T2_ARCSIho;zN7vt>yexES4V^u5ZTY z$K`y!lFwran(yZGZ>_s{vyC5$*T?8zEPM++#W){5RdR_Y5~wW=ukp$GbJn>;^3xrjEca+XOb?$1%?L_(_`IdSx zrA|(JD`lj&;`y+gw<{9qP-(s-YDz7W8|trx8#FHiv+^`Cy8ZE`{gS(E^g5PP8p#*A z)aX&u>)Lhv_~hYn@_cfCXI?%(-j@5RUO#hsl^Q49eYtftxR-nT)w@cv(!bHgvvESa z(8TyfwboMFmtz0=t$0yMSSkB5c4gbOtI=7#X*6=#mrngH8|!xy_H|EfCkxrj5$Uk4 zpHyF!rfUr7rVWRPj6&}ycW;< zw09>3Pe4sBU7ptV@dPCC1QgEk$N4{Hr-U|@_|ttV{vg&i>c!#?W3k7x=hQLYH_QU+tVFoz z)1M*ctobcs;<63ydA8Hih4@f+FyG}*F*c<+EK3&N>D^B2qn4C z*VNIe1|LH#lh}USd-!NWj?icyHOFQTo1xIzYAnWyrBZOUHZ+s8;_q~#O^p*I!-rZ?ZS1t+Gsw$q*b%3yj81u;_9mVFfzo<@XUM_8^dm0)Lt$M zTA^aSD9>l=Afcu9A6leCeWF*SK|XyVzTMW&Z%2*GD{G>*uCnpReyt#vlLfs|Jbk;p z?CU+P<2*kVPLBIs**-DM&gq%cJx2%llaAb%yJC-Yh?t`@Qcnxj6S-j)j$eB5!S&$z zE<3u9KV+3!>Me0md3(%e#q79a^lP0bXVM(D+h-&5s%#YNR{g$Sk3YvRvYq5T>9BmG zTT<=+vv;*kiDOOsucY>qQ!~no3OG;gRH34S@>HZJT^9%1^ z^5mQ(kU-u#oiyNjSKYg-!nyjq_vya6`{wu4t$y+I#<){7`L*%-T07BR9&S%+Cw2Yc zeA=H})N1+L?=Sbi?+%a8?vEzj=b`x2yw;v~FMoV5KU`Ms&cu?{<*{^>Gk$a%mxp!b z{-^fzdcHe2DVl?&pX?2umAmi1hj*tx%iU?O@_cbVEZlUTkL2-j`?xDz4Qt0Q<6f?G zE4Ets$sTX;x_DF8^2JuS^41z&SAXq3-Ai|8hi8NQ^{74QPP)Cx>+{jk_t)Rz_m|#t zS()A`&8M6EP5t$%S19UlXMY*Jzb+n5D|KrOm1_R2`nrE}eP&3KxcB|!N3JX$_m18Q z)$7WS%Y19xss7b$oS*Ig)qT6F9CilN!(J{wo^-^0N%?$xRM|CO`jew_p<^xV>%&@Q zI>?RR3Z1uVB{wWz{N6jSRHbsRm{V^%y@%?Llj(5xuZzR|{exVkbSPfGT^{eBNR#iC zVpY4DOv=xtCqq$hbI;boR*tUqgWSR1v~e~xPSno%UoYChk@S3caD7%)o(wtax~KUOFoFyCv3t6vpEz1}-1 z?x|X1JidSE7{5AK2aVp(Mvfa}d4suJ<+yrscwU|S^q4G5zn@-u{9`VY<>}3|Jw147 z?LL_+;I7DTz1sA;dHcC`ad>oUNjPnN?iC*{#)tB5_d@+~F__-I)vsF8_iC=JUFHvu z&Wxi*u{=7@Ns@8iYF@R@t||vD?X>kIPtAR*U7XhM_G|Ua=UeM=P<{=5KJ|?IVx{x5 z*}J~!pNx+imlb{Q@=m(%-`xHv>(l$+leToxs@?v$m`(=0gZpxQcz;uv?rZHycVC~3 zcAL+`VTCvN>*DG3b$D`Bzx%y=p$_Cb^8jgHKmW|@hj-K5{r!Vcujk7R=9b#a$q(bt z7jKHxKfe3?a@)J_=PrNeE8Xjh+~?!HhmJLdV)g3bzFI0?yqI_7Ywi4Ex6wVSzZ~qg zyVYUU*!x{=*Ulc!j?e4*{&nSa|EK37dk<#w-_=5`b;f>7(QNL!20i~feofVEUfFe- z&CMTNW^?wF>jT_u&OhNYo6kP;VK(RgYB8WC_I@EcVkLffNs`7B_ONW8 z;J|rY7qMk!^JIpmtFWW&RxURs zkLi#`1A^l0Nn2`qDU(-NZnW5~LIloa6c!sT*}E-+p)J|@qoRjaga{ne>e>zMej1Yc z4{e~lOG67uFcNmD)R!^Nr$=^msuuWAu?l4MY${WD+#Ab`R;;N)n;3(noXklEeVSm#Tpr5ZiEtL{aDNl&|I;{{DU%QZ`e1#;k_pjeq002aTF zl47~5(NOizUb+A{esd*-17+<-bjhLi9TsbQ5K<5TkFR4pCX5kESp-DGNV+ z^rGB0RKr}D(QPb9n}sqHZ8|V@*FpH5Pgl;!A1QiVzV&6@+k?>U%Q-A-*z-!W$UWc!vq@ngL8~~Vf!Y^Y0xGhu89k7P9)&fL z`&28%|FbRgiqT}lkj!V7%3od!h9?&JFM*ymk@8tL2Sm!~hlC5%yqf$6JL*~BZX@J! zgDCmzR$if2Fw+CTp1^oYft#Dih9s%pw@A@TrscUM3A$OhZgLL0c2E>9(6xg?vIie@ z2c!W=1!p!PfnxV@aJnHH65(LJwb`Dd>z+*6JCLUj*RPS*5eZib8%8QH7|Rs}HR;Li zp1^Nv!K-2lOlJ}1dc%&;nV1^-)WgUPnBoxq0_&>E4itT-fc& zSSTyJJ<&88t0M30Ds@6oyzJ~PW*rlX;-?*<+A$dQdXUiS0+?&_I$rK+)9?0+nF zhdo0lUwNWEr%NpL_sPjZx4t#5&TpIbtINlWYNJ`Zd2C$Qj_S3BN1B{VoTy$dz3M|d zQs8|2R60_-Kl)z1JgueIk!52+_@tCl>r3PI=A?QA?+OqHw0&g7yrMa8K~xqc3D&&W zI$fRS#Yoaf0<)jdBFT%DQ&AF+J>-x?At@?Zr|k2P3J&z-`IxOmDE%#GD(0DB3?1SYT8eBM4H639~kN7V6_Iixo(J26a{K;S2_#FElH@ii=|JO zl@auKrz2aSkRV(Y)Y%T?s-Uo7hJJj^ersVpC1o4pG=0dLK_Mmal%f_X@w;;jwk4zB z;I?GkU@rJARL$$Q*ztTV7j}PDKNPP&>G{^h!UpiIZQ7X}YUuVq1y`dg>O-j=F73PH zTpzAj{Y;c-fqyO`=Q?~*Cg)w_G%zUd8ikgKcl{1^SrpLP@~%-x(I;T4a4;nu1;yDo zRA64Z4_O!AHxt^Su?HR9{xU%kKurTl)dT-|1Cgr3Z!ZY3`e?Nd%H$r(WTqzjXj?YV z%?8h=H8Vn~*17q=?T%>&6HLg-M!J(v>{ z=x|mgAb}1A)&vbFr8a}=)f*Hj!dqYLOXPK^n}^=D<^#l=>o%BOV8W^&6!$EzjQQXD6({%LuzMl0FB|Ic z&p#>^{t4TQQ?h<)sfM8r%r6y+{AcUpEm=SGB=Jeo%pXh4+xoSmss{V_AMS(Zq93d%+2rnY)ujj;3Yz>#JHnC3_WRg}ELx{Q`I?Tq+Y^Xv<3QOu`*Z`YSu z@4t(ZvFjbB$tHpFXoq<0c>C4Rup1CHNpKjYt?A;H4ks!Wn7cJy_9!uJv}CEkY0ySP zj@Q_YIMmblqX0{_g<>5gND&H#3SVz!{>n*{7@I01Hthkon6hN^n;<=EQYeUB5r+gf z!6D}i1Vu>N#B~eKv0eYOW;SDXLOqG`Qk@Icb0N!yzHlKsS8XzWT`BDXEn$Nb{IknLy;L6{-YSc1CaH55U&10%G_VVpK&C{FVgk9S5`x5@ zyY&(WXw3Z=P8eLrKFD4uveXoD1%kTFDVDa{{aD$dN0D_;LOd)4OB={cAdm{zR&MY2O6ar`R|6j+`G=duM|%s8yAmKdI1K2@|r9#DaN+p=OM z#R6#)o3l6)C?z;R!f_-$M&9ZANZ|57;Q`fA92iK`#2p`SVj&JML3Of(Pyx#B2UmcK zEAWo|{0`Fv2KC|RcMbT5pC6C(;pb1KTOWRY_IO@;IlJ8a+Xn{+JM8}+lw6plBm2Ty z1v_GTjlKPx{2AIJU^ZijSKNho`?HYFxd*&k^P8rCe z+tHK(E^KrQ3$k)^e>So%AVpIXU}53hytvsUggs1QF22em7iz%tc}NC=<=3|!A>5VD z4V{+3()_RC$b6w#5H5S@R^gMKI9?p6BgL4prrF20`NvtwOli>Si(QGQ9p5T`5(aAD zY{t+;Mej%&D+LNNq$Ui@+?M|K4j16Nu#t^Z4$~vq(6@1r|G*sZuqE*ApB>>+H6%W) zrgGjRe15|;Iuw+~c7z5~vj|NKxKeFnRi^70=z)Ps;NDi1PG4?=RB@d7Nj5;HP}~B6 z*(Xt0FVb|PY6NQ}+?-QPFJt)6+xmI^@TPuy@p%2c+Q`t(fZHsfssJb~|If1b6+nVz zqR~`QmFWPGP>W~8*=R2_uj87~%bZNn#%J%#vi8}AR4k2rkfn-7mYxw#W5d<76%EJ@ zkGyX|ZY&fQ$cshn#G+F)2{jfJRPyW?xJ?brj)4M$Wye540SVP8EI5g2AryO}vNB~O z+xZ#x@b?wKUs&5l@YS+RmF z3Jqq8MnOSM(I~L_Swn?rA8Eqhs>WG~JWxw0?MtNaemoA&-e?S}+ z4{k2(qRGA>Am@?$+!g${&hVzDCc4Nufa$b&yyOZQNFNJp2-H`5La6&HQ}oS#gODrM z3HuhsunPZnTC3-ul`o$#>0nIq6)k}1Z!ZYS4F?fB2GH*q&Ba)2@J2&7HM}`Unt>Hp z1mzV;amj@3+|z^%5DfJvK#(*kAe2$zv?LH598C2_vJ-*2Hx4b4@{ObeN8gpH;{8oH zdBF4%C@gS#2^1P-dI|d#Mu%s=_Q(J!&lA_{6@W=c!a{j)*11H{ruf}9q(l*_k1!Gz zW$|#t>j+w+2-U3wC5mt*!XcX)HHfgShN}jaq(l({G3HkCFJzPpd;HUx^0LPlXiUpq57i#b2HwG2d?4%__gz*+oP*55ap$ibVy?Bf%6&mPWwjo34|56_5YoPW& zQDhVi6eQDHW4;74Sgz2pETNv?=fZTJla=Z`oPLb-_aW%N9!)o1u`#wn=SOzZdSHNs z72vbVZ{& zMD33Tij}V3X=c8uZ2pdqI%u`bE@Tm;KBI!xVdpdsiY4r)0%IRw)Ov`wW^;PSRVgYk zkPQQc1hZkFpj;c03KEvAdsBAxn4NZHXmo3la0uy^z5i$V9k&x^3|N$5iO78pi$8N7 zyb1acS0Z>U7h+&z3uWI*ATkEQU{P(Wxblb!L~$k%$lRht_e5NYWTo97J((X_FR{pu z&A0+3dd`x}-^av7ZMpRl$a)H{+3FV8Y#D(}r`gNn-=f-LPi*t;?$>g_cUn_nq)U$3 zIz*&a90`099R?_e@{H23x84YHGi4-WfA#xPce2;g{}8aK;^im!L5L6_zBBXv~YXteH?SmlcIXa8EMH zassU;u2WM1Vy# zuHO-ry+r;kI(m>lb1_Jn3ab?6Jg%LV6IWb+@i(po$OJ3q{^Hv*hz4n?p#Ivdzli@p zyB|ky1_d(4TN42`3|K%kKJQR=lNL3m3p~~=2lY}lK<5Ms40tA?uzJ&B52nbX;9!x_ zC@4*O9myJqeukVjkot{+6341c*D*-25DLlvvu#!B^yM}qgBd-3XT3<%iK;DGltbBh zMQ*1}g`M}KepzeQk7DrijBh)O9||@=F$2)*3{ckaB(gsxBiB2JdoZuwe>u3w_V(Qy zXf%pXzXz=FB^44vdszCiUrxU8CJ=n%xIzWSAgoR#7RIn%61hVz0PUpU6^W9JEDuy% zfuJu@0+C?+Kmvg_e$pst6Z7ZmdW{vxtnsfrE!S;?)@{4_x9C=I{2I41HZS?gKw+^z zEDYDzS?%~469Tf+Q1#kC;X5cK*xaL_G!bMsKw&8&h#HP8t_MKE7`utg{pTeYO3vL$->xnrpl1aUFZFyMClWz;N>=nK~sE=>cdb#8v(kfJ+gT97K9! zAMyX2PMAdr9(Ih&VIv#ar?3eRJhqI4Y1~gY)n;~a$GBi}*xiJSBS`2cDCwq3y(tv@yr$r*kEcDN)i_0=Yo;bBeiJFL8irX4lQ(K`=u6 zNMQ#HKT_69wnSm$1aiSL;SvZ04Pwe(B>xtJqIPYsGRyfT3VcPffAST{(t<(LxOyOR zVT#2*O0oE;WEs1XWx15{NM}~blFPKpN|yW&p4a4T)}Px>Gv@5}+&%K{&ep>DV4m;( z+YUm$j#NE?%xhGFOd#~5Lw=KXH=!l_!ce9P?nSuJPxjNMu7MCB&f zucF?T$5Ef)8qVPeYYA3by4kAET(v{iz=23v0Y6|nsejo zyng&>{`0n3zq*X?;z}?yF{IgvzkXN-{1uwS=6Wqta%buI!%Sj)c`;cmHFeKUi<~G( z0GNH>`^ZHl;s+cZxWa=_vOTgECX5-114~GeCoSZN!UBg_6PASCoMn>OG=*H9F+42k zA`%u*rQ8L5IbdGtMiyFd6j`w(o~5c9cpoui*PLN3w5E10d+G%VBoE@i;JmDl-R5o* zsbIIlG-#JFiB;uLfYcWgj1Gp}@L;Yo3J%Cs-n3hg9XdS71b~PLE@OUXf3s*7SUhhn z6&N2$DlnrbLe>b1xZD%RkU>Nhv}s8oLo5mlegz_H^-v+LK1gR{sxP572JqTLZFo2f z8U+VpK_gExvJ={)@w@9_F%P&hofT&ExWetSRbeHt78hr*{ji#{{ct`!GaGZkW=Oh? zfaQ|c#Jpl+ELT`UTLesN4DpH;2r)LAM+ukCI+a3+v9hij>M&G;uv;OJH<}S^iyPg> zT1dJ^jkDjv6Kd1(Mvzd1#vDX?Yuug#mS@JHF<0(Lkzt1z zDr6hxd0YQ<7dDo4HiLpRae(j>3yE*x?ny_B$gzer`%1HZgGvs683F^E`~`6dLUB^$5#nBCY4Y? zm=B3sx&$sY=f# zO-Shq2VUGuZ=YP4ws^8qqZ@l>2>7U4YXH3VID`in<#`5sfKh0a0TRH}V#t6}5mE&M z08&7$zZ>~s1woSm62^9tk}hV!QuMt&-c+0QtJQko{6EVAA_N|(Ah2@Ryp#hQ z>qAkO+rm&&yP7!A-J=N^$r8(EmdZdLRnL!Z&#TSa<6ZUqcGb?z`KamU;_H}0=Uw%X z&4-a=At=J^qWK%qJWdsJXK3nR77}6Y%rT=6%>p6Jk8U4)IXF1jVgFwo&_LafXU+SF zh~VK~ging%0VE(t{ueep+{}0K+BvN2f)8+Qz`U)9ZXQZ^DndOm)u&4}NFab0wBbBiv z1B^U9Qyxv))H-zif`^>oOcG%aKxlS4fj`Iv_D~kyeU>%i1y6ZY(I3R`HV4`J%{E5Y zFY+VtU9QD{g%8I6v+N$TOmDN34QtJO|2DW}H7zQ|mA)x$m$V;Il1Xhfxj2aK*)Si4 z{sRN5RS@G@31aS}vb_MA`-BG?3Tlm+`>1{;VD8ghccjdHRJX{=@~$~^e>1joK#OSR zKF>e;!Q7A3Rx&2;C)RORP2jJrxb`RBL|!UbbDylxL1GsUq8>|tEWyfDs37=5X;F~K znh$^j4&f?F!lqA(1WoC>A>D$yH&9@+r|16w5b+jDs_xB>3NXb!DPjvkN=#+ysPKT6 zJlrV8B!fYH0Uoqm*cF?770keU^WRkkv$8Q&Fe_&b+Nx+!S#V0i z#M{kp01Zl3#*(H>k1VH&xtY7st*v-e|K1AuVl*GAsfFI&bZn$BAy*!f=syh6(Ldi# z#6GAdLX0Lq{o`pb7k0vBTY)k1EZ*nDDd&O=EEDZM9*c!MujXQ3amBoKi^Y0avJDB| z%mJ&xd}UoTvaK$dzcR-|XZgzQ_ISc0)?TXj+p@qy(RUkqSWVsKXbwOCJ#n~bsb$?kHt6AzQK~} zp}I!tj<>cZ8Ju$jkc}lFU5OoOWMGMoPMkG>lsL+6z2A}s;=rJaZ;zC|q=T4dc-!)l zI$}<0H*5{DFQnaZkV_c{#q&0>qK;&UFhU;+3V3R#zj_umHsW;zEjow-gBKk{!P!q9 zx@8O6lj)c}A{#KYQRuT`QLZI_C#XaoCUtLIfpkOEjL{IZjtIm`mNqs8$^4InCHd^v zD!3s;akscb2U7R&^28jlZQmNuar+cS`HRs+e3NBlQy{`1#cl!e3MoXQ%ZeUXA}~vl zLMYfRM<7rF&LhckqNAR(4N1l6h;;6kK zt`&3Bt}y*ofg>d{iANa0jc-w&pvXyP&LGGft6JDpE>fCKf_xzXt$$)w;yRGU!gN>w zz!yOavF*Dp^C5Qr{}E)6jGe$y_y*AjQ6-D*Zd1X5jH}41&r!N-s&EN3E)*WDfDQ^u zQ6bMc6qLQmcBt?`)s}ICD491OD02e>4tOTIKA!s0S#6I4PuT3b4AON`NOpB1DmaiY z2ZQAQSu6XTB7FhOe?Ut>)rKYG()H26JeS-dilCk6KctWtKbSuA4|BZ(TK7E%VFCs# zGYgi4T$oOdE7Xpq4DLFSQqhdTYzsZxfj%~Y$^8V_t2kC*`-@J@O@rAu&5y~ZH2YRb zXGWuUMdj?3xTh}QD;DE)=_@wD%lSo(i{fAe{b?3(F@x%eZCyh$OmxSsNFnX-(DVl zU)+0ZmDqGgs9StDS>db2gieF~wlKZPWcwnR8i8Q0=K+gI;K56w>OtgD2(NoUVV<-) zwq`;Bsb~ZeahB#fPTiWxG#J5>6%mL8%Q8gaxE@OV{@VE|q&Kl`kUOm-#gdhFf5g=0 zHIobIB}C+sjw?}n{Z6R$JIC8SQ41yMtwJbZTE2g!4}2}PC;t}ty}T1(al29^!N1Ug zdDP9`N(@v~SgmqxI)4t?0U7K;r1OFeF{>~LqHjvg|NiIyj2?{Em3%~*5fyZ|V4!$^ z$-op)VH?yCD(2Hu1SM$1z|Be&5cf}z-rCF?E^W8f!BExtd;5z(-TRT&F+b^%feM?I zivai5iHuH!*cJ6{{>X9n7XXf+<9Q0zKoVP^It)D{P+-8aKPW8SkcL!PFor(jLWbpH zL-na88tvY;CV^v}Hf{@0@ok|RE(!{`)o_z0fpV;1Cd>b`TjIO`RBIZh%C;8t>Fwc2 zY4;vk5B!sh`U8G)>ymm;?id1-!O=RC3DIHHO-X6{>QRA$uuy3hM>kY8!>!h`x=+fY z6rqOq^z81{E~p);RT1 z9ykk<%BDv7Znq9Us`vOj^EeqGol(Z7$jM|jPC`;T?UF>Kr^l@o85TT_JH+Qn=OLK! zY*zu8z=;gw-+1TZewotCD(Uid6~Jzb3iEZ1bSqfP8en-W z^{0Y9(ue-vml&szSI%ZcZ|*2#>)k%gLX*2Kc08EZ$>^G^j5p+IUz5;0XBqfd0oNF$ z&uBCTDg$xAU^k)+ z!~uKXtnh^fexDVsDRq_J@_UT|Uq>jrCVzudfzj5jp+e$^9N7@UvW4NRn=Ksl_L&~> zg=InLvTmY=S5n&Q$hzEjs4$zo5r{^RMS5fUIn{gWs1LDRY{+SlB$YCijLL_~DPUiuYv5g()bjt#)o%gMk_AIEl;FQ1*8Dmtt6un=mT^s=_fBhYSsB z_d$WdjAtk)pxp?sJQoJpsDfN5C?xAZ74=og;eaC*Ho5B}Ur!wR=%OgwJONU5H z2FU}XMTL+J4phx>9R36k1{5AJ%nUV6lx`>q3n8zh zFe(`!aQoqGe_$mFiRad$$WV2)FF$QNse|Y`%d*xe=J3LlHVmf!XIaF7&5xVqWmtVC z;E*wi-PHPL6Rx^4Ml;r+%o0o6$%XsoU~G@hi18BzJH4FqtyBni zb3+%j27^o7=ri>uMO@_KCfnGA~s|M;M z3&i_>00030|LlF)j^oOX;IA0fz~El^RB5v$D^FJe^1ko;OF^qGTb5)=UZ3uuKcV{< zW&`GVX1=F?;QqoWLbB7lt(2|Is*_o$Oj`>XK{7}NgTeUz#V{pHG8fX9ACZ4WmM``X z@Z0?Huih{FhsfDnMApr7cg-67V;P*FXv4_zWx=W6zkJ2MAnt?iZ9B4>s_-G{`)zzf z&XTOKkp1lnBK{t@Utx1EKvzUbvlUs9%)kE;R*&qF6tQ)iQzPI}Yi>$^c;BbG8XjR4 zEdpBNP$w*m#>nBs9}!LyA!fJF3tgR0rLdZy%iB&zU~2#i1WA?Yz;n*Q&H7O+pvfEeA9p z&_3OG$x#jtb>eXVRaG?SGeO0+UmA1OxxmeB-F;DU_~YD>WCtmZF|Z}da0I@gDEKBT zre&8P7&3->?C@H2jVCRKY=K9!V(GSS+%cddoT}EOHw7lcBDn0+s53E$cid`ivR)~H-|I# zWN9Z|8aH)C@u(f6wIP`f(h+ z;lcDYcUBCZfosGq{OG_yxOhp@!ou|`*`Z+!t#8ga^?~YbX6x#B$4RKrA2Hzb&FYoD z+zqBxt)+i9*jB#!AeC`SMsG?gN-oHf`x_8HI!jt6S&Y6 z2&Y<#FsQjpoV3I6;|<|=1PKV1j@Jg3jUd>X|A9QEKhUguFnDB^iA+t}U_rY8o? zZhPrZilv<*X5K#DE)3z5u82V<&p&)Q1|jqYdJi9~Nwy!SKMWH2F)ksr$BVLmGVN-6 ze0f+QG-$gR^3`1o`B;sED>EOfN&e;;Av6dY-jCHJUo)2Y^V{>WY}n#qNTMMOcX7WFjnNUN}88A@nn4 z4=98VsIZXvb8!Np0@F8l<`x#lU7RBo0uyYC8eXo)=NfNu21kY#Vd+p4kda z)8x%3Kt_7&(>zrK=&;m9qHi?^V!y5o6z#Z3)gF>LDj z&b(u!c~zPouD@L6F5u()Ng+mViR!*>W^~QAfaAv9oIHI=;89^ED|FOdHVxKM`q3SIn^C#ZQE0$}bu|9yj=oLTUhk;u z?FQ>8^DA&P_JA>pp^xtAGX^OMXCnc7iv0@0doy+Lo}ND3ls-dxDKL!>+Ee0J;OSev zquXQa2Nt_cfIG+O5t)!{GeodM@cnY7uo&dhX*QJGArIzNp2Xd4jRB?a;hx;vVv*N- zNtOU=ZE51E%4a{U zdbXv9TIPK46m0rF4W7azfJ?8yl+WW=Xh@awK~*?{&foGH?+HOe0to+Ha&y%QghhvtnbkdEcGYG4xbSYoSK9hELH0Ro!@*x=Cwp@Ij zhc|-gR>;T zt^qn9BZA3tIqo)kx;IQk%xedR1xEz51Jo1E--Yw0!J#Z?f0U$em3hmyiQP8g4>PGv9LicK%5iZ#+reIoc0-_zLXM$tzxp$+?ss zPZ6EF1(S2n-|}{N?ho#_C#E@6xPR~mtELxtkFG}(ukFV{g8<1oY_QG8Z%uvmHT63# z40v*a2eB+N=h`_3hn)3iB!2R&8k>psszel*)T+-*hik}9^QL}$cbx~3eP1!Ti`K%%v zJpFE8s?QDG)2AQZWxqv%10nNU)-M<~Ut45@p#sCs53)depZ(S74%9E76@deF3rHf* zSz(Ppx4c|P$h=pSqv38T_BZkTNj5&GXMqR-YxahQEyQ8zQ+xyAGEBws>U@=94unr| zTqVZ=2@RjmLkxq7h`;*kK~?v+gFDDIuQI$+F=r=e_`zDorAZ5%t)5I;j`krOz5;_* zC$D%7IX7duQeej0KH<^Ve-)VkH5h&SGa;0pJau}mO4vJ>tMNA@TkeN$&h8G__SNQ9 z?~g|pUhPI;>;}$y?6q+)O>%DMp-6$?j@x_p5pl)so+xo^eGX*Uy(KFvN!;B`N~&7s zATBW5I>EIA1gBq@ZUeR*zyfF;ncsFA#nP{{wuTN`3uk`Z{x^6t2@ccL_U<2C(DYn_ z(?qWcn%>!d+qGdwwydd$;N#Hw>%eeZPHndt9bAo3UZmpSDz+QFhnG>z8}A2~8EiWq z_i)=FGI1)7r_y|BGms0!>yw$2JRZ1$v@0*PdqQx3Z@+nx13G<bql(BzEKr9rm0lgA5NzD5e9l{4jbUp&~#v*pcL*y0i-FhM`G2iFwSNr)H(8P4b> zNWm*q2SVkS>d)PW`~<3dao}xi?GEyugyGPaHxL(&O~2F)wk7o4sOz4)xT6@bC&$*~ zkmR1lxkdQ%@z0x-XNXg6;_AYt!D(A`oe-;Z|WXi1=|#R%e)8Y)ydk- z9f@4$ZN5ivsKz0s@3a|-OY2cCkP9{=zV+muU^AY(@AE#M;ZW&rnFd!fes`l0EQ9Yo z$o>GUfrVx@f~D=fA9){SHcsYgUnRp*)T7$^&$Auyqb($KQ5nV&Z^OMHZA z-e1r%e}r&e_?DRq%`|_6fZm5O&02V-`MDMAK23A5(r~|Lf|*p z;AF7fNbg7BU&IC{KU^^LUcLMb8;stz!QhXZyL6VE&yAwpP6)hbixlZ56&+{y9c@)Q ze8tU5I)3Hy7AChY^!Z!c1)D3pIa!TKuMCybxRb+QBRzo>yogoe;n3E=Z?5p6%HbHp%6!^#n(W+y$?*=*_ybGj zBpty}oDD=@YCZ_@e9jWWrky=HUq9lb zP*0M5d2E=cav$2jH>hI(>!1JizdZryKmO+xpvMJ5lxH;HfBTh}K*R@KI)!_(0Cr73 z`RM5#nEv^X|8;;1x#nd&HzVlwVTLCG(o1VzekaI*YGz!Iy58b|zrcy_ierJ$!GdF9 zA^V#p`C(ZgTv=xt;ZH(>vCUWc)LhT9n<@?iNfg;_*oDiqOqLzhPIO4 zvU$jDWpBQ1=#~PjUmmEb%fkbJL*FQge$?0d@b)?MIy^)DIrMslR(UUa9j3y6%GWJ= z9p-m^((4wzVje^M%fxhiwPwrrd(%3WP^12VI1H>hQ*Xme+t?~N^AD_K|8v2gcm;8Pv6IRFOkd+Y&= zR?atRHs{o?BHAPHhWCQoavCG{U)Z*Mcb}lC?Z#Mu1b* zdoGfC?=jy9BVKZQ7VsG_`CaK1M!W>R{F~4#jCjfKBwt~~OMWMM z9Y#RzrK9INEpOCH%qzR{#``!+W}nU+T7*2wHI!Nln5`i z`mm%Fd9v^S;wDkQC-?=MtggT#mcL+408t2a-(+YTUUE9>QziPJa z#^LBcURSGK(G=%X0RwC|uz!5NUonvZGLElx;52dJD2{TK?~ktXb1J161)+Ij@LGoJ zYGpGFJ3MjYiXhyR4RTmX?kbzUV!@|Q$3p2l;pYM8{`%U$avWCMW(n+i@Xvqy?>ViyZH>Km`+bxxdQa~W$ZMy-pAX%P@fmR+dzFOssH@Pzx!!IaF^_%B-ti? zJQk>@UV^dyUZ{bZx{XCVRK$I~{AgA3f9~)71%d`pBtDHn@WJo|qy6Z@Y7a8naW6+; zujAVeg6??21b*FPvsEobk^C6e?V);u-p;6k0KJe7cfm@XYEM6bwo6bywdWotf7d=v$7Vu(-nJGrJ{AKuk8wX-tu zCOjW|ruv>l4n-XWq0z4wHzNY<;quRwGa_*uw|mgk;sNo%+dk}9Ux6yzD--ij$J$@` zg%92U7sN^D?u_F+Q?~_|}aOU-X>T9c!kWI8IWPkZV(zN0$kHZSU2%TgXuNQmFw)J4 zs91Ij3O4wZ*nKMPJ^}80iCD_iP^B86o%79G3XSK#z=Xt6s-voV%=wLIGgn)x495@&XKN+Sj zfSht|*c@?&D>2r~(gJGE`QY@R>5S5dy-MgSAie;tWk4dio!mX+zF@&m+{;Qfr{J%H z^hjnoAO)920C|1aFfBVP>C*`K@coPF$OXjDElQT{KDvFxYl@2F$;d)=7NFfI@yZ_xCFs@pJ4c=*S zWT)$)+Rr!&mFI*Bq_-kCy;;0iKy)Dw&*@d56ZREBM0dytF8*Ah&d*N^LutzCCk*xe zi+9n+L8RFN37L-C^OV?&V?=dzZcBdxGx&o32}I^Arz%4Y8pc1ToHb72YGn-}UEMmk?c(6+o_IDB^V)v+ql>g6jz#!-Tb#s6F=mclElVy|D| zM^*ZBYUy7AufD?8y|@f}y$Y^NCZAG{UWPAG+1fcq#i?1&6A;W>+3ivvdSDcR`d-* z$F(`L6jqZ=Ia?W0vw3}1q8cm&h+1TyQcQATGinMeEEB2xvRW<_b4E@zOo}PWVs5-% zHK(T1l>3`#yQy_+eVU!il{_aFsdBndUNNkZLi7{_SXEo5ZjO4mnn^3_RH)(&v0{&t z2&#bi${mc|RA8)pazu-UH8dP{9X zrp%$1vkR?N)vC+sV!lPErm1E-$*q=jW2VLFI6bhYjWQ$QooP)1`n87K%W}(=GHxl+F`8W%IV;syre&^+_Sd*<;^kN^QPxbp z%_DUtrXn&jDl6Em;kK}o$E~VOwF^TrI#5zWSuVw;Nk+{y`9%lS^;nuujyBmcx5nIb*sv(4*}wMUul^fKIxa|n2Oo;6oDdqZAvVc{R+Cm z;zK@0vSQu2WsqaU$|Ud>nyJ$bRBKhz9b!!Bj4ahRrj98tm%A($%S@y7IEQiZXksx( zL_{p}c%e_ul^Q?FA`@GS3A1b)kxar67R%%%IzxaCv4zH37)yZ>#{ra z3XL{ZX|qeSwd_w!*~BQO+s8NMgj`>WY(FzxHfAe(T&&G{{Z6815ZWk{j18ypVmiYl z%~c7f%#_{BQ#ne9084X|>b2TQag<49*ClDuvnaJXPx2Jepo9!pc7)38Hs&*K)yF27 zG($SYO2=+nJ&`hI8EIM0n;BxPCnclmwy@d3sREghIH8fut~jp7cDmI$T5K5o4PS~j z;@H@v@ZEM z6;a1SOB@OiU=rP=3hQC5khF^NY__*7naNmwNtdInkTi4TMrsZbB(~^DQg0#0QkTbi z0)+s{Rz)F};L-#P_}Z%sHWngIt_QvTT*_irE6*fau?m~c_ZEc(mD>zPF$=XCR=e9Z z#u=(S&NLywTCEwgGUef*D>Vq7kI^fvCK>B^DatStoS9Z*!%fR12_u^%l{7o72sDZ% z&6t^?7ab)LN3$(7#tu7jv6_PbTfGdUN{jNGop+=PmFZ|~A=+M=R65@;uT=)6avgb| z$rj47DsSegcxsBFlMS_;ckoFr-8RJ1Ow*JRx-Lf{K#>^=;#xBMrMVWL^$=+mN7j?t zpu@B&-IUQ;rDbn;N6C*e%aj&hBGuWZI%-*+lGVyO+)W6Rb!#+MW65+D0$jG)W+4_I za>E`$ts0Ywut0LFIs#~kAn_ENNtD=n-e&Kxj1VCBaQKtp>o_wPvz@t^VcJqJp$ZrZ z8RKv^!73=5Vc9Ip0%+`rO^unnjC6MZRo2lmtaSpmv~;d#nDwB$+LYEL{CgH)VwEeb zrUSOVQ(tB0dh8V7(CJ;)QEY2QEl-&=kC!jEGS^becuC%MISF(j3k=lZPuvk;59ov^ z#JMo-;Luxe=$fea;WG{a(`*eiD&>x4KvC!CJN)t`A}gv2Vg)krE=?WA4dgGtiv|7+ z@KF`bnLRsB^&jvboLGF$V$RKCb|iD&!B7|vh`9dX%8P#hsNVFzg#srGU`FvejR4)&mTTEMZ`(!@v$iw@;!}B#X&IOfw3uqp<)cE2K0p3R18#s`53V&>NGaxMsYu5 zQ=hS^Q?35Il)BH@)H}zffL=X}O;KlKQ}p9wQ&>FyjSdoYho#n%Et2EPid(JX>sZSn z`nZG{3gh&3UMSPGG(p6Wo=BGERXIJZ))l*#Bxl9;rjC}TOD@{2(JMwax#kc8G}1*a zF;u2%TTI2L^d@d~sBs=Aha)PxnI(pkbgGigEC$A^$WM5=FBYQv(L>v0(tw+5<)7!tSY zFzI%wyR5GGN`pP1ZVs`Pxaw0~ zxkav5`E(C&EXKHiYzECVY2m~S?=bmTZ#s$gDvX3-7C)zmJeH>huqYJ5O z5L13FBbw%nzYUIN1))}C^2;8fEQjg#yi#sacybdpF@8uS6DXEV#mM@y&QR`HPPBR* zTC0vzc1z(zkz>2PNjZuR6)IgG)S8tQ#?cLN-l!HVdd-*|Oj z8WowUHS-YQW`*J-hG-P+QM4^V?8rn5wgh`vqLPOcKRxW2oV}|MI zQc~+0M4?*C=-Fhaz(&i$A{leTAmtp(8R#^h)g^Q^@?ulX-zhegDrVIp{@~bDd9qZh zi(fo8_1BxlgdLkY-|YQl!qe?3=s`!0;9Y)?x2FC->z-Ly7~S^Vgzdar5#u2n*aaKh~tF}#Ydkle3IM>!jD(e2feIP`tm8myS^PK zOdkr5{~>%`5br;I8fp^H@3AUsB4xP#X40rA*zh}A=JYM437;xn;n%RRNXZFx%GkfBX z&+Lg2^l@g-SMpnYm)aBiwx8L9?&bAt?ayag&u3cCXIjr^TF*1ndJ?SBYL@Ox>&eX1 zn{<8AtYNwJMxHYGq^Nf~l~Gq^m5iG-Gt9JNY*{o1YoePQ*T#dCh-{d#SYStUC2ui| zzL6I-IZGjnLMmDqP7>>MM~U_9Mt#avM*?2zt)sM1!|>cxwaQF$?2eR)X`wQj zAqQACUrHFdkm>b{M9Y|th81B!r8d3VqCcB*+03R`AZ>jS&&@V*S({gSnXF0;^OIaR z-KfiKiE(MjC_JZc+M85w(8g!^8C|Qdxl*l)S`G!0Ol?3jl}x!gRhR`$a)ee%3SEw# zQ>NMPbqJ|3YoTbL?Nz%&ccjG4Mo}g@G2Lj=v*@5*Rx2bmAW0)Tp_8J7#peS%H!Vi- zNr4z7C*u}f?J&9O0!`6- z;->WwQ7JC976Or*5Rz1EaiyHlE)4LvQ0$L;>AEt(v~E@!c4bDgW^6Q@GA2}Qtfmqv z!gR;7S`m9AAx4Xi?r+hHdU6>XX}FcCFGsD?tg}eaEzV@{^r|#xrW9Hw$`nIq2MnpP z^xCxa=B(Fo3`9~-igCAvCd<%yvb&VI(rhGe5Rr^`YKtOP>x>&&#He!`KgD}=B3T-y z7vv~fsc2$zJec(|Im%r2Gu?WPSx(1Eb+Cc}wR~Zix2&c%ZU}{Bs#I6WXuB5MR{*Cu zEhR2hEtI0*OAP3M1V~A_l-856Q;yO@2VD~FVGUBqb~e2xP!6klbD2(->TH{3`)m?C zn@qFS8ahH4knfUgy8!FXN0_{I@UsBd_tiU}tDFT`FSb#Igc34x0Xo1^uqOvUbI`j} z6?VRrax6MSE3sXd3!pWrlUAlS0NFX2bm*E%xQ%cKSZCwl-CE4ug6qEg{po2vpHrLn zO80RCzkUO}cfr_}zYMr|avUqa6qCLK-IL3>o)?P!?)pixNk97VKp!#Gw}(rYf9=|G z1nrjP^IkZq4TsZif}wZ+q_!MJVdT~KDSEr?_NLl$>0n1Z20ka5*=6!Lou`gg=q|XsrUNmdYz}K44+$T-zxwgI}X6d&j#R`CzO4o&~FTgvF}IVG3Hww zT)VsU8%9u{arn>{#zZj&%P7?2STJ=slU#u4) zz@pKK4y#qnS`ExGsje(zjtrtJD?Mxyjy{R;c?8DcXY`_w!V8PjI6S|O3bIzAMYo1m zJ5wCBm*q4XpQZA>DIqVgSw-Npy>z-($HjU%tqceH+NLwrVyn|_&^p$$^9h|*8LnQ8 zH+dq%i`*#NScvXO5j(vePgxBsZ{_h(YDLM!sy&O97G@`FM3L@fqAFanvuUn7iZZZ- zv!&nYv5}Pw$rT$=`mIJK;*;1oT~Sc9%9>VXV6->Q<#gI(RC1>ECY_dDV#!Q7j-zrk zg*lE`3rRP;(r>9!GOyS4lv@<6DXl7%_FzUjK2EXKOJf~PA5?Oh+HB`#Q2NdCO275x z1#igMxY6WzvQJ>q=t5zL4%x-hO*LMY3R!nIY)2{7W=NwKU5dpyZ_ipvd!u%1#3os( zOwnn~G&(sfw?>B&&9*0;G*A`>hEk(Rw-n3T%Dh%HTEm$*5m0>z0j37gp$zK2m6N$% zy<{f!a*4LqEQuxan_hgHLd=@XO(~?h!FU*!L=bkFs5c!(9)y951vhLS%ce%)N)l|e zWPx%>Oa!gG7-SiOcLuzuz(8tw9Ji~^c&|5PF^}ZSShKp~NHkqc_Oi32<@_CF-8yKA zwxx-qsu^#M)BI==)u!ppnw*extumi?2y0y?DaPVP!`x70#ah4G?JhG&s<9|8rD1I{ zYztaLZ}3aAg;@~bEIK#aBfi+t>D;-^ z$M0Y7{&GSkRljU4+V|(po5_RoWAZTmb6^)QP9`Vg>$L?)JEDF3cshMyHL7$CJ~tZI z^Nr=T5|x=*yStL);ec!6Joe|3RbV$q1Lsd~u&A@bRc}zv8gM18!U5MrR(wDfeh@6w zyL;)}Ui`Be%S#KQW?0OB`kDRYEn`8kKc8Ax8~Bpa_4zhzLKqX&jIVddT%n*Top!Ot?9w}X8pr*)v zv0Noq)qf&aomEp|pmd>3^cagAE%NW;UV=u5AbKu0H@hS3mp7G*dZ8>UjLH|@{aaJA z-TwgHp)pvt3oH*%{sb;tKxhLSj|-qR0wXj>gnof8@T^xbz=(N?EyUu6kRU++L-}m@ zj&}~+AsSKLKTNlSo)$I2oY8$XG< zeHo9W%Fx=_M{)5dT?Q7pJYHVL%?>DFL_F}Od~tF9wgA}B5&@7@rBqF3@9p?LlMa$S$077Lhz;gP?L!ZN zH&>(p9w@hftAOBlpyA9W*aMaFJ1{4fPt9d25gaFQ3-3UsRIa>T5o3s6kd0?lH1rqi z{hFQIM+Nz(Q6fpz$PH7K6I0-tR7JwT6f`_C1*t>7Lt>7OR4$kTb&D|7hznET)O5d= z>VLFcI+l`MV{mF(pgt~!q~XEekR2QCtB&l|^IusyHpUcMe5VyVIe zm5O}Qf~02eXn~4+*{0wzscH(Ak{R-=ESTla0+mys_G+oPNOg($JMJ*KTFDiZ2)vmB z$K!jZfSJ=Nfrm`#l%gv808g&H0N6!|=qf#Su*?F6Gq79$!KaU% z>+8>#fCTRUfaS9U2igP?!Un~FDNMlJwzO#irO9H32sIn0bZTL);97jX$|{6t8_V-C zVU=nBNzx@WkOtVs%v;N8!%Bv3ZW8qQ@Tt}NcHM~qFRnq~cU*nCGhGO{p~M5zDFP+2 z+6tTn!?Ss81*(uF#O5PL-f66g`5+~66G8G65j!(vXMFIZMk?b&Bq3yX;q~IlE_LCm z&&mW5h-ZBg$#a7C*RPPJE+}kqeHTS?#8ghojNrbF9EG$Ly~j#)BMmkA4YUnnL2-S= z`c8@XL^`p&-w%mZ-IpqYPXyx0tIWgCNqiHFxuG>%xt_YKQaa#%$67g#`y6ydo>i`x z%5a>b1*^k8GA(5oDj6iE$){+;m_|?C)n^bnUmEk5bX3{-hoHDzma%U8dd5WpX1+_H z3}Y8(#lH9_@&$`B1*P|Pi?-(F)<|r^(L5N|(Z3t9&-)=2nH9N*smL#HO4)tF^vv$U zaZh!TBn=A+W_=Qg%YrF7tghbFX;8K=);U$EMg>z*?@tHJ_qOJ zNK~gLCgvrzFO#$FSq}0*8_hunJCI+ALkEl?#)|z`J4N$kz7q}`4%j>JqvCmf4~p!7 z#O~tzM(+`ijLbP%>YG}6TRqHS%T91Bm&2sC<7T+s=fs z!eTlAfro8t_?};U#43!S=OL$W!!as=YdDyM-`U^ccLy$*E8NAdHAK(`bIYFqe~wwI z#|*nX*#on?@RlE;y8v$B^bui6AFF0z6_VvzK3ziq9UQnmz%j;LPG|%W!)4i-dExml z3GCH|185I~dG{cNCv^)y*MX3y03n1NX7D2X3d6Fi#sMRKGTpYkMTWFJkHM4wr0yQ>6 zwVN2UCdjU+wXHs}0>{|&nAA50O!3|W9a!0IBM}g)Gj?<8Qmc3XV?dn0zzd>Eb$hX4 z0%PPNRus=9GVm6xV%N6@RELhCOaHYkx`JyO2|(M!Q9xS6uFh1=~ZX#@rZOSI$&*TQ7MHNxomDh@!8U%R$Us~>8Glf_Xw=sil9(emkR8Dk3jWo z%d?}GI3O0arQ2vOHkndbb?@QW>a$Y^DE%SfC7t0nzGuC4P}Wg8^oGol_?cL?N3_UR z20eN}N*pZ!CuSMyQ8T`Eqs)z5Lr7Xvzl2@Vgx#mppN?m?4a(5{Z;os8zAA*&&$Bq; zA)WJKMUxMYu|hhcBC$4+y&@sjd**!5q0v?$r9r7I4KANf!<{UK#FCzRj`qw9=K!wv7gd2s$v=z4c6c#>E}~Y zo$8XHN6Nw+kek06tD_89&iU<~sK)Y=GFVgo0V%uk`h~ur)K)pHzZ$ruMdld!s{K?voj4I?lK2y( zzA3BWe6B^516*vg3jjr;4p?msrRP3p@7S~w`NUw^@yNmZVXl`r?VE+}d)!76=61VwGHe{E#gR9jY;`rzxp`m|`+lG9Ao zF3r}}DCG=xTUT*{bmlnQm(iFrA=tW%p%lDqOR;8d>ek(T%&`MmGAIhla|p87M4UqD zIl)na4U=N)hP8QuxBsqxIZX$Y`jEz)=MG}1#8oj=ljUTgYH=LstTx>3HET!%mF%Dx z8sA1S!h+=;2xh~W4RWzBe(-Bvyr5W^$Z5p3Fy1DkKJe<^6x8nDu+m)=1sbAPMJ4Y| zQ8wPRQ0e6~a>nGC+#YSu(+4yGUKNtMPlXU`)96$g=USzQ_2RtaW3~@42JS~gz#4ni zkYj@HO+z@gt)XCj<_xVQ*%zubc%gRZG3TiUj)-1WletsX#GEO7SgNrQB7Z=5KAM( zooeKJG02v7&LMh6H#CKvfWnzt_Y7++t&?}E^~>U#Gn9f;FQ^Ztcn36=Qm8;maqa|E z%2z;RTa!c40H=C(y<1IbEEvGI6{)LZRym}Qt?C0GcD?Bb%eY@f$7ZlL5l0Do&|~9m zxjgg$Z#3$PZ4qZg~7&aKagC!I{_# zb|~-Qlv;ctg_(xHdzBKlud>)Zd ztDs)cm=C4+K_J-8x!liH%0;6uXD9`GVO$(Y;KRP=Wb+)X>|j3HQ*duPNp-)PX=f-n z0_9GmciP20Qn2f~A-4;*HB!>+G@!3aHh)z#Q&JUHcCnnhO#lm!GHU+n3!kKY6u2CoXag_xJ0{8D^-%E7r->0!M%@7$8xWc1-f@6hsl)%z_( z*8HSKGTSS~uO79*@E3~lm9Pp1UawlYggIjI#N zh!MZPg)M8y==iq$X~hk(qfzR`rT6V>6eCWm^g@nfce%kLEOdKkg!9^s4^#^^c9)&m zG3i%?LuaXqvHl%b75K0p)elzazCMmk{A?l)-w?Cb@%vl;@rMFtJXkpC&jHLB8Wv*4 zZy_AUhW1+$3`wP9eq-)jKqvS|tD0-TVrC=o0kbDN0?yBgW5J@8>yn|`p2 z`&D#omS+=jbPysuB<|1c{)fUt;$Ans3LPHeVZlS1auW@{}S)R_--2&?FU4iERQn?i@=y=LTxjt+et zqT~l1lJ}bJ{u{1fl9#HftD3}ziVw+qb?1KrKBS^_SdnG&US0a3cYDmlZ-)jyJY$A>hLfjaW z4Cd;+LPz=|jui0&3-9#+i_l@AuhYl;z(VR?kCpiSU}1^X2Udy0TD48x?b#J!!$LQ0 z`)EAq3yu5Hu@8(%-CR)MOdVeqW1e$}(~F;MQXdGDy6!0^--9r>>h|otHo?d7<6huc zcD=Tn6WG30DeL}vpw+G&na=B+s*c92K5Ce(4sfkx$wbjWo39Exw%+(>{RA0vcB4Q1 z3c%0%ufVYS=PPO08P+_G-g3l0Y2dy#_4GoMS%n3=g&b(|N0bpP1^QI0J$0S~rrGu~|BF#-)@%6`A@D0w;SDs17*p_joSZ0SbA za<1xL&bSI&LebOlVh`@$tpj3xnTjZ;cVNMdnm;j zw6|4tuN%qz#8?z_lPI!QZM}EByS!H0+wx)aJq2oH8 zssX6xYegMLeCDtJ{qO&YM>N%tOlc-W>?b1@x{(Ifw9uN{TNWlFsU%thz>p9dcKd74(L7heBTy!>lMe>D5|P? z77NGkeC+u{ES$iVHfR7C3xl&xjAdwjrvSur9w@P(3QSe|`4o$70YCc}r<$fZwqC;E zxik()r0pMesjZ(hOvA7x{Q1Pd&A49&QxpE&@G4KoO-p3!mH~nh0BbsEn^$GvN_U!A zbQ8X@b!4}p_2<#H6fBo5Xm|kMEJ{2r>2()TpPUtZofE)7(5X2Aj-hLl@D=r&zt;HO zgMAAyCj^+l6b2Sz^fFilpM(Yg9QQW zIFA-?8oQe1^oagKhzpS>szv0yA z5sG`6OrNf34}JU6s|EJ^FBWwY4!1KJ?O?`6eD|acP=x({?iLxj@syyQ6Bfc3?sSsO z*-icMMB^GUIF~7nds#q!;rV^y((5t~^$AC(hX%Ei4d`%hxVlCi?@!3ha8GqReZ}Qf zYglhtGW_TZqGb)dK-g;(HAo@9*;;vu!-ZXUUT}QavcVqr-HJVg8%~N1O~lI+4(-d}Oy~a_4rw1Et$Qo|y_6tC+ zH88rl2t$|EyPX-UhZp!Au`$R0(;yV_%gUKDy?9|5sKX`wbhu#VD>S=x_*o6Cf>cGAUJ4s7 z_-iMXI<+6+mhi6i4ljV^nGt|SBiKviOIq|PaP~!JXw^JO=$ZCW1)3JEomB*g+em-u zh1v&3^CN>byt-}#o@NoCLVTg1AH0W#7;v?hZy|kj&vTY~Z5tTZHgVnkT(61#{H3h> zn~PvqNKZK8oPxNs?9Fp^HyFuVOeq*IZR#nYACTFJW_9Um^b~gt6CZ_^JP?eNubD`| zd0mLj!&6fXRIKlr9K3|a(aRE`dom#)p(QM4ho3cvk`V!;U}QWs%*c?P2@y^ZK5@FF zMA%(|!=)zZ7D5uv;p{j8#W=jEn8EL>DNcK1lL4V0DQ2^R(O z3wSfwfmrz&_yRHXH16F?EqWdGE)cHTp}3c)CLb9?ZG3uctE_J!yM0OITser z9<5GB7q?GQJ4j+j*hhHrl&pVVc=5XDTAy|>ZPo`~$-xAA!g*cCe?&15jPVmt3^8#y zP*Sug=|*T7*nXf>Acmd*Xdq6Wchm99NKq9Sy!5>9j9-SFq_Db|)i1#l*+XRJHBuVP zkc4GH4nMmNo<^EO!QKr9^hL1hCj6M+VF{t-_fjNP_rTM2WO>=TjJOTRm)?xjqle(j zM$PAs$MCr?<1vggf>Q2}#}^9t1ehKk5#*u)pFp!$ZvmeW=j6e7c@6jkW9HRc8?YL^ z1$=^eY{E;32|o9#eS|Z#llBM?~g|7WEO4`Sx1;Jt8uf-cEMk9-N5Ce4Y}=sit$Z%NM&a|8t@= zw{yxG| zM+VB5t;>iT0=e!<^;Zl_ZC0W09;D$chC3I4JOWpj9RMGJtHaD5fvXF!3O{h=HqU?b zvNL!+0#_I2_y}D6-hr#{J;lH+aOEFVJ%U-+W%USVU4qr`5zM;u2Iu=W;%Y-k8X6?E2gpSK;Jpns3Vu4dA2km-n^NkKNGsfXaxrFTpB zz6Z^|5%G*PK>IwaJwv3?JgWumq3HEGBwwS7r9n8pVQe z6LmrOAt-`A@ZxI^R6x*M#)9eXD4akXy&Z)Us6L$;nwRxJf%tjCivc(tp}2>u9Ao*i zMFVlOmLcq;Pi`FGo{y0GEcwN-)fZdorJ2|+hY&%QAX!rcPaDNvLqaePoklOG34C{L z?rdy$vo$&LS-zWY%04{lAxbwjJcZQ5uRZS$^f1koSG*Lug#IvA=wkZ9WuZ&y4a^1sbmb9U_D2VDOKkDt*cINO`ZapG+t@ zAr{M<(o8a!|M03HiV`nb1$ONLXAgpi3+#;sI|}8Tlf;kW+>-@yJ!<@>4(aAEa1eJi z*ohG#9>g8J^p4ltlIE8stW8G&BUXp%3HKnm&M9RWE zQdh^UVn55RId1uX)-|x*-OeJoYgPBAr9b+TVd@eGeg5b6bRT6oLlifldU=C&uXBP2&I2RLM0ce4kZ~ zuQwvOa#f!y_-?d$*L#Av4U(5W0^q6E;+tGsH-};r9)7pUuElYfUJEz;0>M@g z=Z$R-rG8?%oa;NbRc7_U^h92W%lj{G@9n5D>=P)zWSM`nl&AG@!fSacSKId$&h@;K z3zZH+oe&$CCnxST&Ne=yf4h1gTwXlmKp2;|11Nmwco+9d4cnwRBf||#=zSZz5QW33 z+ZFCGvH$mflP~sedUP;{*J1K7jbh|R*i*U=$OIk<@@yvzjJV;W@7Yq{21|GpY|{M& zEC~yicb?tyD-fucJ!+2zu7V_|1i-=`lT!j^0C-JK3B*iT9KQZYS-Ef_A1Nz=IUS+6 zH>tMm=gSre#La+)aL#~_j1}mL1^hlw5r)s47zja0_bsg3@Z&ds1riDod;H${D`D5B zxBQiBNOxXMhLXP$cIEpxg*HU#rXKTGLa#kf`75EDDbM*UVN2*UeanCUBZvtmD8H{kh^l-GjJYh2tHUp(h!c;`6CS>teSqLA%s%R zk2Hh}RrOWV5H5W#&4Gb1cp3tOK@wil5VrdPsDk~`lG}Ob0CWj44I%6(vA;BgYe;!o z52suv4uu_A!ww^Qaz1@e%ER#()Sb6x?-B5@CG_MS3tKpxiM?Q6qTnG5c$nCm69bQ4 zB?g}ToK3rtKOG5oJLl1UTT=}Q?nu2grXL^A068>}On*hLBh~gvPly}zxbzV%pH0+b zM2Y|hKpfb_{6w<^g|naV)Y`Thme1}Awg83i3yJ{;aSuH=?6qc~w1P4e+zb27_Rp7B z_8O^ku6D$eQ#NerJjPeT7SB{~xR3Cx%ui+3yy2r+4io!gf+C+C9h?p8bSF=nYP(m` z7w`5tX3uL;0!n8Uc^raM`+8>;ITLgeZozqS&;*%pfPppxNxFW1K0yKh@R1l^3w(qIF4jVWjFx}=%A z)ZMVR=b~C*?u+TX(^8+5?Mis+qZQS^T~_yznNDfqTO@tIAEt?S6X0f_ir)hOKY!2W?$ixE&r&pK_CV z&ln?aF!$0Y<9!PJ8J4nT-VHm!i)UFLPyqY6Gxc`3o}mXb7Buw-`jke6(?qs4=VYmb zY_Hv*`%S_W*SX>0G2nE3=bUOdkEs9A%(WAK@8M853f;24e7VlFlyuIM*zxQh?zo_T zoZF@R1Ehe*2>IXq%r8rjv=|z*4MqsBd?B8@Gb$isHN2B>>=jd?u?zE5A)mV``eg@F z%fl<1zbzPjvOD~&lc0R!{M^ePm{c6JCr+=kZg zJ>`c!wD-R2TISsoeNID{fOsvS3&LM-_^!fk(b_Ffpd*F-dj|Y+vmw8c&Z;kcHjqa^PdToL+b}x^-Fm;P+41Sa^xI7yX6Le{yKl2|>63=eG%csR zdFP~vD{56&Rq@MnWBxTRTP<5*O(Cf&rl6ScVsfZTyb!4ilc{7?^3SKaW=W-O3NPFGL6ZId&Y+lZUd!6wQYI}q%bttTp?Xb9#n0*#SW zl(wq&>(%v7o6Hu`_8w849q6n!+@p+PBu%;zZo@aM7HR1(!du0lh$xO(W#O&D#7L5| z(`&3pL{Z?)wEdtAiwl~ir4IO)`z-q0lBBFEg8i$n@>M+|_3g$9&q@9H1cpaWT}0OH zReR;jvn(iq#AkrX1TBnxg=KQC6fI>MpbIO;EBo_lXqwt9f*AZz7_-KUstJm9&*}wZ z*0g@=1H@@>V;R9wlt#v^1lN&(!n-jG%Hj*D6gc;Es!MyM#uBfqhANsbygEiyu&hu( z=BnPe=wK-Prs*n}+FR5cLsqk!jPW`*fOWCHSS4s!-85n@66yl9U%=MTU?tgw+&p8y zV8Cze>q6AW;L~Ed(`Z@H3XV4cy6q`Hv zW-hn|w4K)H#%%1{ORJY9Gne+enk;8HpKIF(EF^eY1GXg^TYC`JPkvfh+x?0WV7t=8 z8)B`;j8D6|HL@PItGgqNea6~xDyJ}v%X=*6{Jw+?+vkDXqaL{ORjW|*j=rsLoCS-) zHuX9%xW;74>VjpL^NMZM&Gi?3{e|0HG3BHREe>d8iW;AqswlyR_DR?I0Xqn?)dRo& zw!6P=<)OfvK?&ImU2qi3SmOi7^6-3QP2#Q6%w7%95n+owG)w>s_tmULRI6ga#eWvy z1m%AWxKt}*E;Xy!{F`&p#8KQD-oWg^vf_?Oezh7O@GJ>`gVySLRaR9KKq&3G2rYj+L+U3k`0qepsWVuz3AJP%#v> zhMvD?lHn}6eT83T;qS4b{s7AQ0mXZ@HTHQGjLud)2(}pLfg3=UL)T$Y;@}Ul0Ry0*gBr^a0Z;SZf4En*(#eApGqNBC=K&E?dXah~Exol$8T)Y+EvkR)3 z9nLvJW#;^1lqqG)19~#8O^S3q4hfrzAPt)5#ArBm%i<5RJmXZvq-DP1Tnn7Ecg)D$FGk(;`z z54*UWNlWsWui*85+5AXSi&TculGEn0mq<{YL~}LLSgHkLz;tTp(i$6!s{!@aPj=V2d#25k+Y_uwq?p#?>DSe>i%tCWfF=}G^E#Hi$#;Hat$u8#6`b3FEW6^hGTrV*K z-X2$lM46mUdb6h4iGIwaj{#FgmXKh<=n8ysf=-@0DS8~Usy~Gw^HO|YS#c6+q9Aj*(yXWyWJr+9RYs#yW-?#JOT+1NYSydP#cr0JFQkvA^!$NlXIjok z^`vo$?V!CSF6wxRtR_l|&b2tC#*i{1BEyn|P3pFU?L2N&OuAJV^q=3Q)Ib!AF=3RE zGYxLmMpczebIIWjEy}fW>ch(^h+FG=uuOt$_=x~$W%yvl5HV^PH6mWo;+61kf7Bw z(Al#zlIQ7oJef{`{sC^j=L)ML-db{Keb!r2B-dFQEhAe&SMl1cQC*}cZdT4>TCd*1 zy0x^PF6ZAM!M3cE@v^YUlCxe9=lH@5i!R1dHm?tc#c5^nj;vzD(40j_7QCX%34R!7 zr|%zSt!c^jJWEo<72>lNy47HgH}AIFnH&A0IEfj9W+KBV9Llt-r6oIj?xvXMDYl%~ zyJgL4p{!0+`m#Vw7impw76)OEadEbXCsNCPuLZNmsB{rCP2~S+cKX^4~zw9rndT4jJFqCNcsp&Mkf``)b=N{}E@8O;X=hI}i zvdRrA^;#LFkir0=m~K>?R*6|OIgiH?B$kS262_<#ZJNhz+9cJn=Rxv#kS$R5e_pPHI?eOFMZZ9zL@CxvzBO5#B-vCQk!c2f ztLLSxUKufJ?|qgkrV5atPREubOheRKvHHvm^2JHEmK|W`N4hk5XNO!r$(4|NDoq&K z>S|PbUZ5O{wwEMPZ7+4XW(#c z6m^WR(l-W+}&Mgo;NP=DwA8K9aQ%HXVmBsqJAp+(1?8`aG1Gz z;1DA>`%(E#GNv(jMpk&+M_h6{&Hw%H|A{-~&hPf&FONU7px-Q}=xGC}@GEhwsmhI4 zq3e|5n`L7aFZ)}BE#0h3g3L99vK5R;o^yUVB4JoiFynu(Zv$=Fe)00(Zs(lpQwj341v040PZE~5itzx zJ#>vcJ#s%!&u)m1JiS}W(>v4xz9CKT(rdUr?cmMEc zHfxJ-)n#g0>dbNzcGNP=@>T~*7F3?BZ>*4rL)iNIQ>R;?c6U~ zql9P>e3nnqwuC~XoQ)SdEfm2s+36@MEzoi~C(Di6d^-9N zauV}Qf20@nUZ0o{awgI0w6Si15-Fsgv1U;DPLbA1*@cp-#cXS%r`}>naXy$TEn!T* zj|+2QwQ4q|3H+U_PoKNlW=kwKGR$cBmKbW|Ig;ykM_johBJU&2q+(Nkq-a&M(i>}# zphy;%)o6Z@B9UmK)axWynboP> zO6}BQA4+qqmfm8=0ZZoug2Q6yC8!&Sk)(vh z$=haEf!6-RJ(t2N*Jf*{uo#xTL^sdm)VBwt?J^*4;SP`lvII* z%dT>QaWky2%x@HXp$G=QLhJ=>QhOlwk^m*TgV+m3p-k*%VlUKw>}5^<5qo*WUUsG^ zm)^5_^zsP3Tr>2Ns4eOD zzOT@WFiYE^mmK%D6?%y~p_j&X=tcSxdcj0O6?CqP$~uvE8MGgs;|KFjn{bZ*#fO@^64p{-FwI$LX+lg?mJ(PT9n6{L@D ze$X!qMM!W=>-1avOXy{|EQ%QdhF*|nd?)lG*Y%9BBu2e;=%rjNEKy}hGPM<9uaYm6 zM^k+EJWw*NdOE#i-@5VSM=|r3nd75(Im)QdEHy&Y-D0O!8S3TobB>cqe6QQ6&r&##Fz-@NHL4uN zEv3Pv_{Qs5avC$IQf$^vTU{O#620b76(B*j{UHmSjLem~^-8pI6^papk2`BWD!3uPBtXGlol0{?B?NXx|Q^sYC|k~ur{LNR!i3J#rIK+iXwz2%$7#Kk3diKke zSK1_#TekFhOi!mMwWMprFg|%k`4SEZ&Z0!2pVfJ}Hi_lZ`HxDz9-9n1Xuh`8&}v{`yD5^5&aeQO(qPA<{z4sOx7KNH-WEj zk31wYXn+^zVEn~N6tEmx->JXWG0PL>CmMHbBq#pZ%2*SW#;*=(^&kzpH+PC+en%f&+HtuS3I^=PYy30Py%CnjT6 zq!Yt7KaIVWyOXqFhkfLfGB)iq2}4!jKxITe(G2tW_bw-uQV^YUfuBUaw9Xx#?<@SELm^E2eYv zy2#=EYPZ?^|LlFqa^hT<;HxP9Res@2Gf#i@ml1%$#x^zv&zlSZ!pPQSNr3U{t9pWt zs9sjBx);^EeujRO?*;l5`ra!EGYG-a5f|*li%esrd(NHCJX93Dp^Xdo_G2ereS0($ z?Np(l*;(x&QG2~>l+5>9t2J;Ac0X|^-R3)5YtXxE<%ji5<1K9%$7-t8>?HE$?b&NX z)!!2F)5OC#|6FRfuJetu9={o7d&TzP{`CIsEPr}#pA)$>%?3O=xQ#tlDy39E-MXuG z9#SVIt@J!T*42}Px~5$Y4+`grgT!+?Mg1bn?s@s>*m`yxQ`C1c?Y3~vUvt<^X2y^A z4+H5qVO`f^rE9A`I;ypYWK~Yar+e@*1 zW)F{2>P0P^Y{XIrF}0Q(q>sDr&6d?1X~x-8Rka%T;)C4lTd8c}Zd5I) z)2Sp+Mc3mRKUb2XI~D=?aPXh z8D!p4*ZH!nO7+|RbD?mfOD(Nr#IE|Ohg#*>I(fe+pLXB0+gioB%hruz#BciPN?99O zgQM7SrZwxgTuj;V<%$#H;C*m@O6{v;VbDFk9dxUO8|l8JbP{p4F=S^;MLAxq7K_Kl zA|0*RFCIM?YQ5MU{h$g_aih&L>)3$hD}qgtxp8NH@&uxFR+! zLl&@7Y>?-QNA%QB*6`0wyUzA%%{E&(R2}Robe<||R8?v1Yo!`M1k;}~H@kHZ`pj+YNi>T5GeF9%ZA`{PLDR(o&5*w5Y>v3Ex7oe_Iy z#6~-Y9-SN|pA~9^+dCtEOJ{^}d(}ytTpsi<&ExBrhql=2_0u=UvU+@-KIx8)%h>5j z|Fmm#D)Cs+NemhfW3{KJvwWk~8kx`Kbh?wSOU1Y9DE6l0jkj1TBMp-Io-|v*t6rHg z1fLXoqo;Q#2ZjFS!w~G7FHwKaS1+BrUZ_dwUX7NPdpu3)wsM+M`{m9{snor^FF8F; z)$I5p@hmIjc6(gVudgpJ%!5K>n9COuFH)-A)ZeAc%IU*-@#gJ1ooV%}gX4EeOFa}D z7o`{DtWZm*M*4e-a3Q7320VXmD5i4#IvyX#&uik<`?y)I=FhG=Qnr1q42^0scU3(u zoLnUI$MmzDysxFk$JT}Y{#Nhbs9A*wM*Wxc#X(MMItgl*#>gHGv*+V}?>%;#i7EA7 z>-OUIE?%{>SLV2P9kaBDO0|)`Y9DE-%uRn>%O<2ueQegHS~s3Q?N_U<>ZAEksyg{( zc7Bk4EmiNt(Q$s<&|)R)W=Pldi#Q`{^-e>)yp7fw;hsVIAI6W(Do zL$-G3jV7#vHE-+&unyL|(F1j`=6(RZX4SikqyJ!A@2$O*q=wxJNPq39vpvxLwHZsB zW?{S9Upt6WeAfQjA(;F2du&JTBLv2|=UhQ^#`=-Td$-c(0In{Pw@t;Fy}W59jR}57 z;Y2G0j|f{A4+RqB?L$s(hrN9$Kq9v(sW87Y3Kn0#^Az=&8ek2Ln+B>DX(X_Rg*9kf z9aA4`4GERoNrvf1>1+eEdyTq+K$c9+cO3(1U=U__2n+|5pmCdVwl zm}BNhfBPJ>UCJ@@KLgye%#LWHTcmW>7TcElzsCqD<)kkgl)6wWxI^Q-CqF2&8^2jt zPKrHFvqWL>r>ygQ$tQjj<^o&(p4fIjM}fn>PTxGEn9YsL`{u@FHqhfLonPp2m1Tc% zQsa`z!yHYBbJODz@!2j{xk4enFV(ltj@xI)?X%-HT&k}=FqEdsvg2yO*>QGakQ^6p zhDPkB8$aq?yg%P1)Z07l*f8xorRAjP+@xL)o{E*L^qYEl+B|v~^z3f7bXk8*q~ggO zfh{$1>0TlyT^)DrV)MKw-<`j8ZXXM}nLT^&*}ZoobI>!ZcapP)#%1iKSk0zlXL2)@ z%nnko?gd63zSTL9P5We2k0bVphF-dhBM;&O355 zevy{5Y`|AFS1F%Y&MS}2W8)%~Q{tBgXT9fR@$~NCI9<Zjw|m)m0fSnZFBFXRXs-HX$*_}II< zSFNs8Qj+nPqnC&G=XO7qzPL?|vW@gj_eJdKmCES$p?O?N7aKQDRk(4}dMl~#sx}xI z7cbAnJoS)^^;ErJ z+}p3Y`*J&>l(M&j_CedOq~%&C_g>7O^%_~FJia-&Y&_O#57o14^ZfYYX4EnrdN{U@ zUK>iXES9eF`AYeYX5C%&Ue2c$e=$AmTs*owJwKoy(v$|2Xm;0eME>}{P8Xm zzfUwXo#Wg0`>M*=deOGuz6nDC5k}kp6v|ythv-di`D zw~?+)t>K>=&XC*dWS?Cpmxqz-Q|ZRWO=h((Oh<+W{=$e_PIbyTmaN$ywODA97{8S+x%e>nDeW$ z#2LRBjk53)uuqi6AwYpgPPkz{tA@sVk=!{11xJBmzc&$(9|Gr5UjoHVE`(}CfHvxK zFR(@sX+rd#3%}+vB#d@f4hpQN->zT{47u19v_nL1>AjK84B$ZefSA+hn1b!5v0L&8wykn z+^C}Ils{OV`ImC1=guXv*s_fnh~|S%gNXKqvyi>acP?4TJnT!3dW}LeAhUMeUGsf8 z`fLT18oDqckco+A+HNn;BA_Bk0so87KP?54KHv_wyJ;y1YgX8_ z6ck8M@H}#I@ZfnAK*+g50Rp9^pdbNlBq&%R3>$b;?k3Yxg3g0K>)YQfe}JI06cnT| zX(_n7YzbmpA4-S9g)YGL0$Q(Qll9yJSbktVH(1TKyi=IXziL||;Z#>cmu+*mgcfUa zHVjf=t&rKO9OhK_oKN?4f+9W+<`QYdo8Rm)-uL|rgoiK;>`U!NvS+_tsa>B+RUl<( z$#8gOI2J@0X~Ehp62`o1Sow66abJXdvoqUM#yw>WT>dDmN3kHvh--zqUiCiL1-i>c za5oVb6og(P@lODDoA4pGR}J~|hbmhgH`nghlW43Sj04)cSRiyYPC>Q-e`2zU1NqfT zj}~~gLiQnSQ&maR*|}~x{%(itv<)GdPk8Zr)5LAxIbq*9VP+xLzYn-pBC9QJ0jK=; z?wpWFvz93C3yYl-av6`NhU%P9z_r9c6FQbk1+Kr$p7Us(GsJu~<~h);ttrJ*~SOQ#Z?Vi)(g7HIfS`?w$b6NGVy4-Zf;ypGInh+T8k%Yv1tai!6 zv1_jy^5+lBkTtz4DxrcsHi7f+66_Ir?RGUVW6O=l(xLjrvgbm2C|6yby?Zi3fP42O z9?)*PCy`U*cJ#e#&kG*RH;DoT^G%{a4Y;+~TJr2RU7*vPV;Q|$-~U;Ry6ExmDp8XP!7BGb zLg9`8+;v%uy2_*zN1w!RWa6yYvkj>v`f5_7~6>{#ZA8{8Ak5xEfR2hXGD($5`6 zaV2Hn_UQvD&AhP-5zN33JO9DFGbz}TYDlJN4@^n;_97`mS^Gl}$%nxJcR+~0hVzaQ zNIQZ^r0b!ZXyqp4;R$juuZA0eWCrm8Z?|}{TW@QVHuUI}xzA9669sR#Bm7WP;}+q^ zFTRgsz+DJ=2Q@WD{0@1|?$cKwD{i^aa@rMu!jtjU_M?c&co}}88LtX^#-@ZaNXH6h zTE)KnEUJ4ecdTv*h^Ko=GW34l7U~Q4xqa;;aYJNaivKY*A?0l&8rE$ z8dF@+$h8d9i$pn>oi!{+)}t{<8`*V7Tly0?+C*in+oo>Fosh1!uaqZ979-?d16Z%u zRwvqXxQde~`V;hZpEX>ki$^>F4yvc+!kmH|u|^E*U;mvWtpCn&4cG4rT8z4E?ILT* zv%x?v&jghyD7e7Nv>!)($+e>scNci->1Ziv&^V6MQ=qOz!86YYdQX@bG=!ue+5*wd zg%5~=W8DPB6aad>udWSIl6ec=6BpDDFW{7OY=^P@aNF%JlKzA7^D@r!{z#{R_A>?_uYfmk ze#S_|A&94Ovo)eu8max#byD#a?dPZG%2k=&`x+yIw9~#u6d;griL$tJ^fi7EYXC%4 zjt1D<_%T;%CuJAX@2%V{XoSF}wKXYKb3C^9dB~Q}>6>QPm zvgtAa?@SO$WL&Q=+?XtQR@xnnX%ikyaZfg^$_E49s0)7ttdpumMO;Gt6d z!NxdbUNALQ@&Xou>7xKLo)2*cVStVL62y`w?3K0F0F{Ou#7l)1(yP_ z{&Qx$SP;{Xx&Sbc>1Ta{0hmX|nb9;)-<9$nQ5Q4yS(S`W$>jMEi7lrc^Uk|TWFXNH zo3JCcR}J~|$912m^j4s)!X0G}-%Yp(R!2dMf+XPZmZKmu!zL1rH?i5F6OPwd(QnS;b<=BiJP@OwU*QD}E?BqnzYzA_>o^Zv4iyy^fahdV}`w$8{32++77oU51=St>-hJBhsU!;#b6;5K z)1J)aJm*BHKJBHbD*^iO+&HVy;Y7Tpo#Gw9h&S#uBWwxH+0i*HLv)AzOK#E{J%YBqN&BG1@aTbp7C9s5 zKiCcx)39B39qIhg;ca$5iU@LS@s=CG?|{0M5Q;e<31Zc&}|J8 z9z|j55YiIh6NQ??h6ZVLSp~`@x^Ahac&^V^Qa|#IgP2hGD`5C^WDk69_GE8Y$zIg;)BH#q^GEJp$4m{SqEG+%3OEeZ8Qr#W!(& z36y97@k`)JOzxszVmA&DkJSkVy-_ ziN0)cdKcg(EnE>*yd~eq+_hao;VX9T3B{(@cTXsGoKWCu7-Op~Cz9Txtd0ab_C4QE!$PiNm8rpzr zxF9}_f~bm+vaUE-ZGPKEcmz2|{5G!5ZxvPUS3t7)okvi)H5@2PY4}Yn0g@6?ppyJR zr9hxi)z4s_1stsOAvaLK00!jA;5IEFUqQj*$X86skVISR3L=PdpaSDGsYBE~(F83h zu45ZW<3oXR7&SL=q5`RroZwiC5;w0&?NENl62_^Kp`qMB$z2IlMjHnWtX*KCG40|I z0uk8&P5T`dl-qiSyXGj6>cFxE5Qjw+TL`1Lp}>vg;IywOVL|l`6tJKOlt=-=#BvlU zkW`N96Ipg+D1fGzPjeKZWD*MuY}CRXNy{3j5Q>HCm2)A0a@&+a2~{|lKw^ml22|v5R<759 zqz^#i9nMkT7cJ?K8@TJf%x`Xt53q4(RqXay9?J=ja0X!>1{hLR>c$@E`EC)gR1DeGN}4rR-#bSTs`LDh*W+#&SR0(m_U zRnoz{2L%gw(@?Nr)Wf28M%s080!7Afzy~Vva6n0w-|T_O%Ne-##_{sxt&30x6!*aaAzp6q zwa<~>l@wmi@->n2A8{lp$`VP_HO9!6@FI;zy4e-J6%9jDbb%a5p`ly0Dt;G|@p$ID zQ0|KcHS;9m--XJXs2Ykyem~6oaX2$}EGRo-%WX}k%FKkym2j)ftdT3h;thn{-+%pk zA}biCJ|vV-5EZh1nrO>If-+GksDX>cTu?NrNlbd9(S}0Ll*sRzWIl}@bDF0+eiz!Z zCYoc{zBY*|5-zDFPS+%6GV7C#7wE(+!Rj*;Tw4-kt)mROQkVR~Ksj((*&xSaM{rP> zQEq17Yw~FL>hIwWJJ5lKf&?@1p+LEJh8MW5Xa^QAh!R#?(K|1^fQ6`?9{O~MFA}$- z*fVvA4;KaN*jFf{iW0Z!eoGVzi9fg<8hBTP@N3I?7317ik+4x-p#J{rKM2<&TuSOt ze);!b|2gwqEJ(`0^-=ZdJwKV)O4;G-^l)-FDqR2i60R{THov#v1$wPSv>bISMo7MH z+S#3z6>!pd?<&m-nY7xJ468MT3c3EK=s{(SqXg!@GGA2UY{j!t&-h3FFr9~xS8T2Y zzxesCuIMV)(<8mnXJFOkkn71WBc~iBY=^1PN;GSKNcEsQ7%8OkWyFx8sNsUzrQeZ& zWzv~{;kLk<&XJ-(gPm}+gc~Fl7Rn78Os0>9=dd6!08~UlOsI(m1&YP6@d8GR{cvmf zz>?n_g3k>m$EGAOz7TzT5I9>vO_v2`@>*MsHC_{g zaMW;n)gK#@N!05XGLEQq`now)9W9lj9lrnBmn~a2$3$HH$2<~kcJn%fX;H%qLnKaq zs?~Y9wsBHyRa!H^V^h#U<3@dYU~T{uET|g*2Mip)i2^6vLRaqfB$K-5bk&Jqw+V|9 z%`W*xmpgq~S0&pV3q+z4CX$ZlZX?^!rqSzvuxNJrC(nmUzY^HeeHUD}A^G0a2Ty$= zk^Rn`f`-k$5)x_Qo2ZO++tdxYBN)1@*?)X@oOu!*)ff3C6Sar{u|`AE`D4A@mPYT> z7QMR()^Q%>-ldi`ii%@NP5Rc4wSU$$=C`Gl&jH7cW3nj*yLS`U)*i5+G7A3f2_&;05x7 zN%4X>-2~&V4^r@PDYU!*wMDzr|6xjE2b!;ox_+GMlM@nVikfBUCdgQb;&C4(On8BW zrG}xdgJe=NEp@q-UI*r3qCiP1nV(1_gn5BATR)$OBQy(zts0P9Pl zElemK)jJ`}mnlTHeAmt5MXPbyyx!`X{j_A2TqpnU*!lWHkS$?gk@IKkf~%D{y80@W zn7%-RlU69!?S8BP6O;y~@Hsee)>-Jn{mAKc2&!Y`X z`cF~ZohPREH>g|Hb%-4Mz!3q5WDWG>F0IAXlVQQnEYd$>ES*ad*sbh|9Kv7D!3;TF z2ut76B&m=(lJv7foh(7mMcew7=TLZp`dxS ztbD&+GLlzz-jW1+qzhA=={u`+_AU8`Q-bTGp$fGx(-42#F-X&Ije#lsVELKCM>{yD zN|qwhDjJNw&N-bfaTRFtK69o_&N2;&QN%VaY$*Kw*MB7b z{_8*4?U;KEaM5`dyhjDYxzpwbk1TJJEbr{G-z31=u5KF&6w%{!Riy_Sv~|e7Ah5av zpQZ^(m=|H%{n0pEx;%nEhDk>Z zhuV~ALEqi5Da9GkHAA)NoE(7ex`eYLp-MFJuM153VFO_CEAW7VMAb~9@xjTD5 z?IJ5IgQP(eEN!5+C6f$y$O~eT7a*tl4ycj}>QF)j3Jfs+XZ1k0jLUjIoDYjF6$0K~ zC|<`BM5o6~%vbCGnOJ`{CN*2(VDRhqZH?5FKURd7u3lYG5yDTox<9|otfK!jzH3X} zq5>J6#+S;PV7*8qias+h0>u+56KtzIZKO3c!pSGNVgdsVn$V1^l%S796Jmux*3p3L z>L`Fo0H7=e5YaTa)mf3b)qsFx^P>PwrMmC}3CpO#Z5X%mAnXCn=64ji-DF_c4hoj0 zbDI`OV?#l*#wsoK1?t_0BOYyiU<(iuf|7hx9n_}=$E8hh*^y6D^(TIq;YK{#p!!0n z!y#*yEs5OZ9G=9ABL(TpJsae*`r@J~>PRLJc}=aRaoaL}6#(5nB0oa3gh0WSoC=tn zh~$zH=MAX~3m*&8&uKrMt?B1Dk3k5FB1)|r0xgOtU=S{!KtOU|*;^z3NkbbCVZF#u zJ`9uD*SKkep!8*KjV4fl!WjxsAYq0A6evPAC9O+_0|3OCtrS%UxhGN3Ks7#5kZ8;+ zFIXWY5EQ&`Kus3~%+qusGz-ZDg{eC(kjuvcK;wt;bTUu#aN>sr+Jy6P=Ji;RyhE$R zZL!36ob_KuxF=Exrvu{Z4$eiQpF!fcP~O(fw?c3Mu~M(RfQ6_ii-HFXYxo>H#yWEU z@Ty{Ro1SG!YFiPXAk+~R;LryZBSnVxfQmTdwvUyev|-uWD2O0G0uBGEA0Z3Y9SJw9z9cwm6HF{d$>E{t7fSS*>Q}~1+yb&6ocIs24u%62TyHteguWMi~J&uN4nWPh69zHCG-iQ0~kom{%hTx$~yAG3^^w z8vrD5hJ*BFM0?aiyJij$pTy<3x5C;4BPeeH7p-tWVFm)!MurvnQ9zj_z-={qx}xYb zn~obqB1M8ql%RmIuwW`HiQS>Z)J3Q6!lbR+RM#*_XYQkovc?l4l#n&>s=N9y@i`Z} zM`ByHNajSiBEcz>W$0+4DoqpNg4>P6{}m<#Exf|y>W^0{jOThVmVV`SJ92lz?amI^ zd3+S%{D=!dgodfN6=|+Ra^S|({oJ1PmSvP>G6A!y(_(sr*IFG}{_`J2Qx+9>L#Afx zos++-yI^o#s^L;H8mN?X2TalksTJ~BiM;f)+s+X3i#)SuhhX*;}jZf3&{W9YJy zEnpa^bmh`4!Y@GSTCNiX%r+69K_V8Qd9AH;@!m05zmce}W8iM(bK!RjyqZ6g>u+L+ z(GTYbUn+YXQM1h!g(^?bTqz_SQJWMWvEM^ynV`=i7LfFEy(ts6=wZoi0cKtyR!XJ)J;-xBK#&Rb_bIrU=8n} zp+LQYT>W{oyaQ=o4W2IC;2PE9xwm4&YljQI3!d#J!||e8okbLaX2d*{zt%A~@7N(& z7dMz_$mNJ49aO>d-L%VUGbhwf0*LD1!pAVK( zNw=#p-E6gFSD|pVg1{OE{wf2L#T=EvGXgqe`9IF8FE3~quCD0+3L|O@uP}|wU-OuA zUrc|s+)a^lmtgv~tWCidGz)Jj*1zz$s*`BV!rcLP0#RxfTP@eI(Oxk>uL-LaTqTlq z*6}*;So3Z7<~rLm4`ZhAfn%18cHVZ;vs89pw?)}66H|?!fh$&Y`!1-W#XyWi*1C_pK%k1OSOy`I zGjumm!Gjs_1RcON@mX$-l(g*gWFYAb6 zOaCYuhN&Aw*|ul;jrPSMO`;_a5uCe1&*7|+)68|rs(@R(9&NVH)XIR>q)+hQnl>n= z>apwCzYyff;})ov^9f9|@pl{ zgSZQ0o=EOSI;Sz`#VAdl=s5p+pWNd|SI%$O-RFGoC@vv!6>GSrJi0+3KAED?Uv^U+ zuMxAyCNq5=8zyh8E!Vqef&OddL<% zV53|n1=^_1=3{PPqZ~fZNP@d(iL@&SY;e=oh)sZC)OB6a)s$+gRUi4j~U$HXG!>-kv3<>T)NulTsLafp})8Z~^<<*eO4W*cG+5 zD-kDnNyL??lM#4r+QddME1-svjNzAxh8Km|py*_}3NC1Md;6C3EIzylU@~(U53yHa zBog+k-6`p2S28X3K{vc7HJRBq8QjSet9Ci+(AmXB_ZF~BrHq;57o}9O%vRzI;x7Gy zRIxcLTLl*ax|b?8BUSu=00030|Li^6Zrezfze0FlWFXPqm!vlV((V`?pgRfT4CY}l z7*G-|aV(JxN!jr}@et$eT`*rkw^VM(8wY^@( z{Fis5vsV|xqqqNk_d56-ia%HJ{nBBN-rCDIM_=v9()r9F&O zIM;sYyg3@2^0Ak$$NoJ$9V8#Vte5Ny=es?P<(sZI<3Bmq47PYGbmt5H@9|JR@Xu)i zcaHaor#*kWhjZ8d80U?9+wLE5W5McN6Q<71Rew0oM581+sD zJ?a4H&=Z7C6s<$Y1W9M3lPx6Oy`G2e>?*Lm4a_RId$*^!8@}q(lGC7XfT_`VB-U1f zsgeBp_D?6AJK~@5^jANeIbkF|_(Afd=Pox`-8@l-<6luYR=+&L@%EM{+jkLV4_^ui zsZHa5@}O71(G&b`f}Z*`ipxGZ)?#}i z<)l4H9^;7M!v}uEa5y>>{Ep9DJ=%;CVuEM`6rXj|x=3cg;x}zR!Mu0!Pg?~ocDk^c z%3^ThTA>+Tax^~$&8Wz1mV>CRC)A8CM|;P*pQ&baIo?wt+d|D~Or;rJax@<_BdBJy zV_(Z9->`$Pr3xW+PYh7i4wZtV^C_qlMHaIhL~Z?+N+HNw085aQiz*Y9V*k9%&sC+^ zSD$hVRf-cbl>+A^ex^a3(3$z)O)ylWR&jCADynh7Po0-3ROtt-fc@cd?^CCLY=HlE zs4BSdMO##rLBGg^m4m3Qr&Lw;&vE@cRh2=X-dX)*Rh3gBRb|k}d2OGms_Tfe1P2wo|GCCJG|m5E}}3fHe-1_yVA9#gIG^@1>!qgXVKvkGd(xlN{5 zv?58|0B0v>=d?JvuuV`>qZ*;u_1_)5_f8TItL2B>O>7J>84w?~U8vN7c#YU>Hz z6NCNp%05#qVz94n*!F1=6DloYuzv~FO=uAn=;*3*Y7&vJQI8nVr&RB-0)|-icy-!M zVK*~i@tb9}FB+J3I&PNxI{2Vk-&afV8r$3;bRs9bb&lRzy2ZhF>*~|kfEHSzs0l^* zDJW`1HoF`|Z9S!;);>q~K~c-c)RX9j(m2klC~8wOMQwkZq136URR|qjfzmOnG`!ih z-bbJJ{(SVlL05NJo|D=)P*PA!TLzTS4z2HL^r{&Q&3e@|sP(n4R}DNT<=H8Kt%yh% zA+2dVRZ;q8WJ+KA68@{^4xyAj&E|jXoTSw;Jvu80HN51kK-(WXqaACJ!za-{r)vHa zwH7(<>dwnSjm%Jk0V%XXjU3{Fk?m0<%^LeOmn$}GMH~v0Bk@di$6+fP`+zXjR_CEZ zrAH2NF^{K`D^`Jy4C}7z)YDo~1{PCo)g!LS^oad!=2NF0QN_f)FhNO;S_FMX#}kPeR$!8+gQglK@1MJ; z!gl?B@o8j04ZQv|OAKYFzV6OLCj5!3M9B#rZ$8KqY_DTKbymYm-;241W=B)kWgy&@ z6ImafJL`+Tvc0_HTW$9S=b{G=U(o%fBInb6zXa!A~$O*O|;ml4aFxX-4u>91C|&}{KfUWcQeb;-^;YeS8(2VsDE5)-oGF3ZYNlgiREcQAK4PR^qpE^F#Vag(?a1CY zG1Er4n9dHBw6U-;YC?1c>-qD2=*AlQpYE3(!{qc()0OmNm*OT`K_rIV}qgH~YWZsfIguPSPmR;`mgF^}FPY!AT?4ESl;57vMxHBZ6#hffKIWWvwJrFu~8i{aQ>&{EvJ) z%stjyR531c2*^RyROl|%9SAeARfg-qSSi3%>mqi0YpjrUSR3zaSG$T92^D&3 zuQAcc1mRS8@!Qv8D&&9Ub73w`Y?D-xt40o@fNrIzHCGla)UExBsXbTIq;)+7_ccXr z&?hrZT30MrIYn)US5v*bv)P$2K#`FV(Yh+Rstm9lmP22c!d;9h6U(7>wQ&`RX*5Ko zf7GP#se0>O>r*##gX2=CQG<(cwzGmMwdF}(YwAp;_L={Y-^G(<;YKwZTl(FxXKYgv z6>DpYh66=3k11(w7u$QGg*_*;3h2{?(t|e`P}# zVdy-~)w0L*UFh1PZ-dkX@(*PG!cOXrm!#CuzGO-bu;VRbKz|6z&5L?X@Qm84pIj5- zf}aEZ6t6!0@t3b3K7A}71T1;#-OIme-g8Tr>8)3jjD}ks^xpwkEZ4RRwxz=Q;EMgs ziKd|&Y%w|P8Zukb)3KJi1AKWZqOx*RT<7Fek^6(XKJjCvAsBI@Cqzvyr0%2u!W_FyuTXP4~gR|qw(x2XRQ)BjYJh|BbewiN2 z`8DU$!WGR<8#uqJad3(LEy*V43*#P4$-%P^n`9^H>axPLI?_jZl z5WoHT<6rLp_)2Op3{F7&Ht-`ic5fjhf`V7B7}W`l=_Br(8C?!U{GcGhxD5(aaXN!@x3(ZHwcrA4njuRWSH}>0g#fcMFhE#o&J@5PX)?eM!q$HpiIP@O~K6> zkAzSf3Ybd<3C6BapqMOP(ZEu#WJT`kW$w1dZ(mSt!QH|MiI_~$9+W&=^MY*;Vz<=4 zTpb-Xv0M;#QJ@U;HY7`mojH>vM6}Y5;|uayprqN-i6F3$Jm1#Q#g3?wkPXAQ(!R*o z_|CVKx@R#)WJL})!eeJL zHUm{K;#N*X;=uw4o4Q*;<&e=?4k4YLDsGonHg}a+KpmwRKoSd#L(&=;ld>V-#?C4z zAAn%0#=&#G0*7gA>x>ntrH8t+`zz8zB3MdKPd+K2(W!ftNvRLs%$)+={?sAyB6RC# zNlp166PS7nMK-hpG3KbZ4-}mtKY@!@W0xCz-4^3EQH7WH5YNSK((VxK6tXz+@=g|4 zfs@v>#+IbnXL4?OIwhgm!m_eNZ(b2Deo8428()Q5QKcmKNdhxB1wOr})w1f#Oq7>8 zbI@SU6+r4TGwWGYC3y4k@U zJLDS(^6Ze$4(Qq;*9xJ&9r6t{bM7>H>{WOYTxd#NV2!2*0fRhFZY1@uhX!#AU^)-Co5KGpr|P80F4(RM4UDhqA!{J>RdCexhnfWu!!J3j`rnrXIyT4}!b8N985 z2)pySsA2%w?J(QcfG=9k=<#lHZkHnJTmgW~zcV{WCBmpyNbr;?Q%G$bf{b#=EYMQX$TTds4`+U#2VxhL!DXA zncKh`bQ~}D)2)T|pim4A)S-p2C=18VrVLwd3~AAV(s!ls? z_8LF}gJ3)oLp(AFg!_;$dYc7i)sA9+iLp_DYJLRbyC_H?eHH~N_NgF&dMlwI*|UGH zqZnlA?8zS5(}nAR1SASvsl&3~17a_2Zwj)mQ1CuL#0jF62AI1&dSP$*N)$L#Zhnvv zA*^XEQVzVZ+}K*#_m=0!*2J+ktF_oPEZe)ce5Qwmma}wtw}JGL?&&0cv)9R%nk_2d z8)3E>dFEvz5Q@CEngSKL-QgCL%#txZEO#!*=*IyA$ygjH10gF8mnl4ukVP&HEM;-< zOn4;{VwHeRt>}Y>RGh3sS$cQDYxVP-DfIY#azrG zBA)g4zbm9IxU56E(m|pQ!xYdvrQ@3!#^{+$=H(hrGK5sdwS{poPmoC|%B5M2HJ^(qm=8t&IgKIuO zk9xjhQm`E#t}UK3YYlnVRqmZoSsyPfM#z@x0cr)m^PkVy&RJK2=0rvyqX^y07RVcn`&ug zF09>gL=>dZu_NE(x6S@Sg)*1yIKnOp!DT79p>y`S83%@l*Bq4QE&> zx~w;?5EsG*uz_chRK*GAqyJT73h5M-wkm>+szTDkDr%(TeU z|8O;GCP|`L%?ISSMUoq+2m*H~L1qPcWg+5RRuym1EYZ3zDIphbh*%1~m=;(9(N+;h zmmTzUMI6%6L#mgzz64@_q+4rCAP&N9a9a0;Lx&OwEhJb8MBSGF5S2jix#V{l&1)$H zZ0~_8Yy;;0pK9sP-39pM)blV0{vfIqQ=`_gCa>Y7VV;!n);S2af39 zq)Hf7z#^$pd=x3|S{HWcSkb~?FK29^$mdO<){!%_T+fo$vKo)qPFUCO_nc}8*(*v_ zLr$Ej%?7ZpL+9I?iK*qi#f`-Tcv7E}=1)DHnuog!M*Sj2&my2ycZ-~9{5i}4B!-(` z@if#srne1;vRUMU{rhBdfqO9j)8;S7e(>h#{5+-k$xn=x#r}%DG#HA{QcFCQ9~O>1 zb3*n}^*T>PYNt$1Quug6V;*>*1i!TUHp}+EIuO<7E0hvbbC? zzr>m8G9b4rY965E!TnHi%V@k-U^x`tAT(f;20DcrWoL2Smuv?i(IMQ)u$R;IlCdu; zfOIw_sICMB>MJbfwI^OFV4xQREC1QV;7l403znHQ92Vc+E!^pX8<^6BbsT27a(i^< zFbinKn*@oLKyDO=?qn_OQvX_fmyBYse6|KRjx4qchugwY%!PT^dQ>a~aRI%|joFo7 zw)}XEVtoT}6SBD3V0UVofCE+1#B<6J9?F17HI*%!EMcZW5Abou>_mzsuTUPp0JQ+j z3=Px(95_LpWYC1J3M*;FH7Cjc8YFdaGk8Y^3978_)iDLhZX771HrTifDoBAB4pe*x z>R*nnr{uz#4sk*$;L3yTZFGmo;Sx7yD#zrWDIq_9{JZz_$A7xkN8b|TMizIW=QjT9 z=>+#~TStq;16c0DiG1#n;NBM0z-$GCo6W3KktwVbDnLzS)#O8hWhIcKO}399s}Ke0mRGV<0c&l$brdAf&95j(#OIVKsoJq#oGH9@dS}wdjmno#D zn`Q;_?W6W^+@*r_l?+??&#ohf>#CYLWGE+pn3vMyR&Y#wM<#Aexr;`6+Jwxr0;g-S z9kAYiw^z)Nvu1W|Ta%?fz2W}6DDlZf{_>XT&i?oN>@}o4op!wA-t&*N(`EEq2a7ciix?QhaeLKevY2?P|RPn|xby#p@lM20WQ#Ore>-5*a6YG0BTVUiQI zD$#({Qly@`>WJ6dXMH| z3IV1UKd3P(h?v|p!hf0AOtm@Y!N;c@Qm2AM$Y&CCJxNYOX*NEJvOm3z6rL2i96!2+ zk?JfeazeI^oeL^RgbM8?U9}1sA#ZgJ=;>SlyS?FTC>jE98TrZj^D_H0TeaOGQhG{` zyVdug`P)T!qV@JdTUO~HS`lbR1f0VP(>sM!Iy5mksoLtMxb|EvhgBmG%(cAIp{fr| z(?+hDIp#=?lKOw3e>$weq~dKYsrB&+!YZGnBvFxJ!Q?+AAyam$Ga@JasdVw&=j}9=$2a0v7mF3<@{}Ud{i__omao3B9QK*bicc`& zvtId2C$d)debPR5cea;G6ArxX>l@2nx=!vW4)0Ftdp zSktK!#Qaj+Tue3s6PEvgT;F68I=8Mk-k?lwLI*Vt7GvTd5rKr}(5)<9`0I#KIz)-U zL1gSP2x7(^AvZ)H(3cA<|5?GpeeVU&hYx}k-)hO@`8EiVHAy`&VNbk};&Q{OlDH#( zAWs~!R|=LdMV6I_ZC63O$}OaRO#W#r-VANse2oBjV2*kRaj+aiYmN8HbeMj zlZ2BqyyTN`h9GYi_4WZBVAOjD^_fv`pP8F&H(@8vXvzoJHL*aH<0d9ozK@13%@X7Q zmR(^uL$_xcs|5;BYe0?OqHMZh5m zE(6omHKwQNGyHj47S% z08j@S!KH3;oeCzH=5=ig3iWy`PAjhhTrag1PC667Y1BP)XX31^S>V31_`h{DFP0Ob*t&|ps4${ zzlZ7SuUo_gD9ev_*)2%byw*5z|8xkQPsexo_Ah`0^9RfQ_hJ8Y}C*^kqjmX=&` zw>IIEkayde+R(6lIly;I%T9$`t$B}&Xuvz&Dc_o0azClT zb;uwUot#F1fdWN1PzEOv1@9K##ux=pwlRi)!$rfA2FYX#gtfayfx26`pcXGUHX@$u zl7Zt6Z0mex&776*Mci4a`u445XF=QIEP($@9bt8ChRF1Fle{>K-vlJfN!Ba=@W;-H ztnB#M8PQc+7*HAR*wa!OtbaW&ZZswX6$FqlGqQw)ZU;YtXcz^GvIxgOaH8OG6^;&R zu;wo0%nB!1Xqgo+HKYQT|LoKc*}ntd6E{VPKzHn{qNL>H+6^Nf^*3v{y|%6$OsfQMQZ ztV<8hp9Q*d59ggu?gVS;rF*Ew5#L=U%OT40v`R;p!{mdw<@fFJk_-`&Ipvia;zchO zZNQT5Cg~^a34h>Nc2$X(Dh#=Q^nADXj~WU3k*Jq65%iT1Wanc?y_D4zG&#!!<3DaD zVcFJn;jGw)CGXS5N77zE4}t#ng~hK_LSr~kbgNo1k|qNtTON{u0|u>7 zupZ7d8AxFDEDl(O+KF1>Nk%{hj*z(55#bq$LD#6`D8To4K`t3Q&bd?#sq4kQXb1YJ zB`NO~v$3SWC9-|CLUF!o+O(~L2{Jo9xo4UZs zmB}r6FY=qPau<`oaCK=`=8b)b8d{gUDeUsbW@Si^)DhmC=-i9j9?vYJH|7r>@J`3yrrntx=aY1SzRYMB3!3*c z{x-fY1}!dRO)MUUWblK&qS7Mh8 z;5#x%P`X5U6?a3IWZ*jU9@G1eAr2#;`p1-?2TMaXy4fiHc}hND>8Lx3;Jq+SAps3m z6fBUvih=|;S5e@Ael|p21U#^nmm?sRX0pfCCzOD0}jxxUsq^qGO0#^-D;G~-o0uFUOAIvtw zVbs7jLIJ#l6`tb~Wj3@z1~Tz1)2$KYZbE@lo^nEXiASCcq}J1K*+CHc-`y3P5;F`> z`rZE6n)jSr*e8(4ur#gI-r?85yURH6xtO5-F{PC|ZkKW`(b8GH% zSMi!8T*p2p{}gz6C<)(I0yMMCpF=V-FFNlQ9I4;9&XJ!H%Pbz>lV$6VH(_(sg3x6% z&A1^Fm=lL%aih^hY6yE8^I#Z{bf`-X`L&Mx#n_MSrDd=DHQyH5OE(#ehch>xh>qv; zTd~;p3%1Zr1tPIl%u8t@wfH!riOi1a49ON1-;r6>4dW5^ZMCZa1)lG{6#Mp4sSIk5Bd#)WEsD3xxpil2 zrZi+UC%)%i@_g6&z)``T+T7a=I4;}ee=7MAdTTBs|EucMW>g7qRVM_i&LF6d47vFO z5?>^f(svEs!IbzmE!{~7v!)3q#;gNx-m)oyk`kWhd6JTEpNpjr2dNEH(t0_fA`i!v zup;hV5a+-&hsuA})~!6(=~VK3t&=X8M`@e*YK>t)S~fJ#3j>QOlCY*>7+?`QsX~{f z0tlsGTsz_irQsJUn6MJrJ=#lnUqB4Fl&=;56ct4Tk~v+(5(NoV&xnF#rlccL7DKLI zB&>c%Ez88sh*+C?r5=%A|2#C2u1t@_22lb@QAPoRvUL=&@=JH>q#%$RwjKhqV2#94 zKw;q{9IRV-cUjzqg1gJ2z`?ExK!LJ7GEfFe6b@-7ZToR*4IQOg$7pV9Se|1Y9bV=ifSE=+4v~4@rV=;P4Pt z@+tL#xaL9K86Eo%-C-=7y_Evp)5QV#Ma_r)(**se&-uXn(SMrn$UgO-9uE3RwO=Y4 z3>0c8zlZ4HL@*G!dih}1_ z!bYZcbgeIJBGry;w}nAdWJ5MpEg{`?guxVi-nwL8ih|XV#cdSbGIbRIEQbN+^fXo1 zoP;QNCoKS^?D~-WSCrWXmLEd;!iI;eJEC?DTg;XYLe{9EwJci{D9eN#Kolq+k9`rf zY`QpfGA&`FQZ#A2^Chw+rQWeb{>tV^vfPelOa6i;q)(TYt4VH0b|szs=SV%v zadgEX*DQ(RcuAJpwkEseC5|d2z3Y=wz-Y=S2B;&OqF|}wK!G?`6r?pc))H!DkTaD| zVL;hh*XonzgiR$#qCtVOAdCU>fC<}*>kwqz4q1bCp+=|+Lm-2Wu69HLQ)NdW!q=pp zZ4oNer6kES9n0v;PqyWg=GUD(8eRaYCj^lH)n zN3QPMj^4cex|2%f(#3;peSE2=wPeq5>77cpSgvMvSnGTUy@op?WYHhsfz=${k*4V| zr$?`7gxr!brgOAaLpRCyY+?N4)-%Wj*>f%aqHZ?n9j!%xX3{D4oUOMz^k*tXe-YZ( zCQX0c$>)M&;CE=kzSoIgF8X}PK}(~>i}{Y2ayPUe?zg}H`Zr7x$MlZuUyE=o zrfbVCktT&f1>tZUC>RpQ!Gh~GaPWYNL>w>>Uxov<24jZYBoJL<8li1iN12$;px_CE zv=$G8gDATm$6OMj7}}7@bd*ZA^}c3GJ-G)|B*C z+{!Df!1Ps_;bSCQR#G%VS7&voZif)cKyf5JniOL6L$)tdvrpjxd|K!UCV4x-naRz~a9I>Zkw%pttL~OZf0W?O= zq2plNoa{oGc2{?G86^FnSk1PlISxcwh6AT~ASn_B3n(Gu?0~u{aM9LQZV0q>ew?*i zL%V^Jlws3|0!7-;V3s=^Jjaz?anPV@A{4Nu-fC&$R<31RU17i?PFqwXK8=zX?MO&I z`$F{!sYEI<(^4{yRjO{7Rhmr76g#xQ@1#>1|7tLoufa6(8^J8nzVjz$WyJlKCygI*|>+wrF;gf39DG(CB7n2ZU;CuUPu z3A+Swjzsa)yh9+*TBMZH?OBcvlu=M1VIm67{v>QraQOrUPTUj<9#|hN4B?D;Kv@WR zwuLR4>1sB}7K+=ACe!Evz@a1|N;MLqfSoMmbvFvGDZ3Dp9?l!U7B(!;0qsVd>c%u6 zRvr{Akckorsjt}}cRv)kuGQ4YIfMA{qTqdUwC$T(AC)D%9a zaYFul8*y^izY_ENGFqmkqUy)?C@$edT99+^`D;&m06i46s=Wf_Jw5a^8!i<857nv2_y zf`bDhxeUJ_dws6v*<<<_iDDf;-qn!^XGTb9ll-EKO5Ke>PfvZ)0<=%$LxMf%s&*(z8t#_cz?Ax%V_*8z zo)x}_sX8969Y=Yctfw7Efdp|)f?aBG0~3~nLGZwQTqX(}Lz%)NLOfGpwHISnM4yY(VaKkDJ+?w2tQ04|jy+9Gm0&}d0WNi?z!k=A3-sFj&HlSEO zx%^(gZPfp~xT@99PcDyUx{(akD2ESX!BgPxXEGi-J1|(#?zR9E^9})cS4{YsQZkjz?F7IX6?=2wIC97m&r?%0Zoju|gOU zW7ZS%YY>ftGh4^OG~Q?d3opc##s{C#AuQtE4Mvyxoe{RV(kV!IsZX#(hnEg$X6xlm zfHx_;v+ITwF1qBz9tNryf6Kr;25BvA{%ZMX=z^`b!fOZJeIO4ifqs$8PSR$f!IXnI ze3(JrV-PI!;e16Fz=vam)5|zPxC~&Y;*-$-07MLtI z{8^fZMbgcl=SnkKmuRvs>PVY)YM$+E4jLazWxVq6su0I-^W^iS-#9{|;+?elIQMRvb-ruc?4H4~R9_ zZcyfJK$xFQCdY+T$_SMLFN9wELZ&afR`2Uhsl=Y}Jr@f6mtwiD)g>>bxsc2GqJl5+ zYI0K}l5nBGqB~la<$jebJ@M=M>1+y+OEHR7WSr{-jE`h0qBSugjE3P#MgqA=T$w2o014$Q z2UD2gvQPVDL=?PF&uw9K!Jc))YTI&m&UiEwD3h{<3+b(%jCxG)s#v9Psmzf9_pF)Md z!fbd8ulTC3;6j}dw*W@uEmjUFeoM^z(|n_ecmawn+TFL?6lI^m@_TO|TBb`mE!k0Z z{p(J})@8$=o~dE3w29uPkP%Ep$63+Y%0(^Rc3i5Xj?&mc!%eqfHOgnHfp)V&T#f77 zdZjkMaW`rrS{La9?L8>U33aJL0Rz!Z6eLg}B@WWWcS{t=uI6?uh=K(LO<=8D=D?wY zQp}*>iDts5f(M;1(x9VJl@mGaO!wp~u&Iv8wgyf@s>^DJe)auY97!H4pQNdlSgCYL zm3y+HGgYd?65$7PDTT|X5n3hQJXeO%T10&s$>vIm<_>77g_wz&CYX`!2iO;)>7oj| zxyRovv4BMSmfyDIM26bip(Z}YYzBe8e4dx{58=y7H?3tixl)zY$YlCf+6Sg^-R@TV z#&yFp=gyH#%awF;uxwYRRhJu+x?I#ROZxk-|E%7tZ*rtk=)X(}4Qs94icsOw=BUFP znMHyhNM8*;iNSbeo-F}8n&<-blM%^&r7{-0AJ(TBc+2FB?eQ5XNU)kdxXh*gLW+Vn z*)O6X!qjglQ0tcBz{RgX^s~6VA_@@W4}Q_)tnV}_vEZyPn>uC@b1dxexdUC?J{3xU z#v~rHiBNLWA*>b-3YIpMyFDYepuuJVPO7m&K%xSBXI&J8fdy8E!i7m&u=HoR!Z?-- zixNdaI}{fI4va~}9dhl{ZsxPFp}}0-P@rH;J95Q1ZWf2W6it;qSTH?KJ*e5XvW$=gOrZ(`>4WSnAT(*>s9t77C^#dwwtT9ykE(aDT->#i0EhI?0)Q;Gbi>Q(kL`TYB@{|Y;vaPdwcHb@6z&RVdj%dn_%O?(?f zK^$mQIur$M?wls$#O*gO0t%P5XWSSI>Dheafq7(B($1$6so5ko@sp3z`LvT!n+}2| zP+edS6{3JKI_~r=vnj0LABeajYsWz_APQ7RHXu?DZURAw9cyL)@?9u!Rk?Z<1FNsu zZpF~sW&q9c6i2o79>Y*mK)+?f+fRrZ$gwrhNNnJ&}OM084=xmhdeIL_h~X)Dw8t`F13@|i!{&;LvmdD zS0Pfn!zFY2^pwjg=eK4LYch@vdfU2j>sTFT_@G>ty|k`7W`#`VT%>$pzVTHj*tK8c zkjea@Su_IExsbk4OwGW%7LC@Yc_K#K*;!V2(7psOJrzWSt;Y+1l0=|DvGfGOpuvo< zC{Ui`(Ub|o;E^q&*}4jaiSqL&Xb9$ifPw}~c8>!EQwN}61xH>Oz%?xAD0rX*%o_>F zh5-C1h>}o(KCq4*3LZFt)(1h%Q4E_y@Mkk2ov=!LJK;2PLt*yRy{O zTP?!C(PBR{$#awu;niq=H^EKtgmF=`##6^e+|+C`9Lm$kuB6J2#u?4fd_WGN8{CG} zv#qA5(wc>VwNX%HU;t3KP-RQl z-UXdV6r@XG(fI<;<1dM1U^^WJD&Vn&onmnmh~eIZpmBvidmy`NXV2DTm50CkX(oBB zy5U%?1OyY`q9xbGT#i$`D`RN;I;}m;7`e0*Ea>dOlQB$NQpkS%mFIEs zjQ_GJ&}sEja4M0#F3{l zl>#Led6=gxrH^IKPd)tQ%Ac6E!rD4>&Tvn5Z#%Fmoj?iVCs` zQIHhs$sh_?;4mS~DTQbK76naU5UV41#lg~PyezBj004Nu)x$H;{j~2RAB{Im~$KTmQ$IzUG6X19f-k0McO@Uqk&}$5;&$X-}D|`+xU%> zeT0d{K#2~=XPTl$B^wY625L}#F$6K2bb>P>){8ATpB8wLTbxmRHV`ox!;h@&p@o!P zZOdzK-!&t4X3Ht2YlYA3V(%7eMQ1WA&-l`|67x+(6E|EjXEfDbx$1NUR|y%$Y_7pk zvJl_}_K>Yi)GJJ;T6l%cNI2Wba7FknpLO-u|CU>D0EeZBCeBMaN}po@aFndSZub&9Ouj^x9dh64WI6ywH=G&8U+;|@lSV5dmErRNL@qx zaN*jA4>ox@cBr;9d5y~V4e7GBI6aGfh#S%>CdLo70rIJBZh)ZP@kOO^SHJzUab2&T z)HiaL!iW9^Hg@jNx#h9Hw?X5|S+6|k)e2m%KW1ndZ={Moe%u>V+J7{JmY5%QG*5@C z!iDlpS~`$_n4=OdLp$D4DG;WX_jJ2SRDGc~(7VLSuWWO1VKjoQ@$rVg%~;e0QI^d^ z)GI6v{lY8E$17aK^=0$0TXSOe^etbUo<8s^GhquN?1}_GdcARJ%Fq(6KTrO6HYm{^ zyiF<(khD9Sydzs?otu_@v%bK;Jig`I9ig+5uh5{0{-~yYD#;(UuTQf4vw$Z>a|fDc zN`6IYiSB$FpVE}%7f+)VA$zt?Ht&dCBj}F2NPfl9t-0Nb^WT;ofiV-Ttd!==QrCER zxLPSN!x#?MT1CrnAjxKNZC!zShvI<3l9r-Ci7cxFJ_)#7CH_$WNzNZ;E}=0?ohB`+!YFxWrAwr;D*&~ zvIHcMgNE?ofzBfeRM%?iEnVe7DZ<7F;zdxP*1%avc%mS|a29e;deJRSm!n(6yU-4Dk;jb|J-25wCkq~ZNnKSTA-|`JP{shBATu}OD zag0|)iwl;cMfNOqhiy911u*2K5Ckakx0e`-2Gf@38MRZeM}x7tis66w^P(6J5;HwB z(~LXnY17sla{GjBDQcVMqvww_hw}J|b9rQWbPw}eEq$mp$2Y5*VO+=z7BvDbz#2Ei ztU^(@>9WnVMZuCi9}GH`uCtezG3nN#y=4X|dHNT-S+xwWYfjytxnNqy2ZRp$T`;Zh z!LM;2#?y9W>rMK#O+HB*yyu0of9htg=8L`!bmnTdl=m^r%;i!c>}n=m4r`-4F0(e( zBbS<17dPqR9*+vE;*IztwU3#0WW2rjSSZBc36=j1e);=}PDR)<`p<uU)jzY`uIZaHGyZ9v*ez*UQq7(@!^=H+ z;!Ldn?Stzq7ojh;NN+a73*V;6F}F}(1F zH!DlWBwbZd2Gb737~*b{%A8Es(`yec7!a^m8RL=ZAgP`5+Ka4}t* zIgV+zC;eqCj0+_GrerfKwcVh$ZLHMWkg~KajF#bo&emBHS5_SVGkA>7GHt$RIh5(m zj**4`=w?=NEE#NM83RQ@+&Ui5tm0gI(eKHM|9b;l>3DaIokYbV=tkOfke{ftoen}! zH?k{MV1@SLHpLpaB9U5Sg_(#8U1FTi{~IoGF;LG5T4J&$snQy&LNyG~MZtOhzu}_f z{E2)gi$Xv6lXmFTEzEp1N(|(U_+Ujc!rQG1{+kir7$aQWZv4P6#0V>*7~$%6tz5q_ zBfP@NI{uXUJhP5-Eec|V7gEk_hZU~k%vrw*E4+%zRv7PEeGk@--@NPGqTnnW?^FLe zzaTTSM?d(q*`Z@xoT4b1i#Ou0fj}m+iqo0@W-`SwnNb$!_q$SW#AK?%m`w4eihq!{ zb=I0V*WLzL%$3ZXIf#01l~IXeT0g37=2vD~#T#edBh$LVnviq1#+t0dvVK@IhiG+c zHj_vdq8EjJ@F(risau%&T9gFG8}Y%4g z+W1u1wz~C~=7nn?)jabH^TIXp_L<+j@RB9jZrIMRpuVj|NpQRoe+?Fx)^VK4#+laI zdk7|&Jx1gDvA>ztnU$iG^s!dzjhI$V6w_K0Z~NE+)4JL!ZkB0XgbPtL-!4EUP$w+1mRHOj&VFHp;TXO*gA8$vPY>&dBjk;8^QXau#pI zUjvaG>$}jnk5euK1V7fDe<<_%E$|Yitb^)*VJ7xn1eL6_CZZi@t8yxl|3psTXY#qm>a4-fvOGK=a&bg^ zBji(wRE%1je()#l(5YLT`6$_rH{yd`NaqvuYx8V!{oMr}%*!^v6}$dQy}M9^r7QJD zym4C;Z(J8|71_LEcg0l{&Kv()^jU zjc-8C{MW;C^0E@X3psgx#v}BVGS415|BAmnVYzzek^)cNDhCL@pStxCLsppmiB=3ucOfB=98rWrM|li)e9y zXQTZ6?1@jtk)KVQPD4mco^ifh2wAbhGowHho?o0k&1B+^Y_>_;gqsZt+WVu{H_I)B zuL@7nOvSn?mlJpmem#vk8a&s z-o9m{CVG|9k1=n@`ByH7{Y9Fdo#jo<9_i9@%@Q1KEbp|xhE^*mY(CQ(Jwx=lP#m&d z+xAix*4H7ez`@2%`ywU{n}<~z3bX;})mqj;iZ9|e__Fu^{_Ecr6VL#HnP0U_%jbN) z3AXy%?G$jH1xyo2FcL6B^6zc5@oglaM=i@RtbwTdcB}SE5mcLT<<0%RriWbCO!b{1 zB*&FqNSE+5a%q=D6;oWbKZI!_D5*o*auPG`B;$Ci?fR%K<*jm49#E^wZlx>}_Q9j&9)>0qf5pq(W^Fj+R^++2{bYy&uo&fDtW?@KK=dI zfByXYum67j!fu(CWO`kN-2Q|8{*;;TP1shU+6mG}Iude(4a*^YA-#28JbFp7W%XHe z2`op`Bra~YKl7fDp2_A&Qmw9{bAt@!)McYbWMZ$Y*}5vJ9kO%Oap%cSo4(XDJkszk z>3&x?>DN8-RU?26>C;#8RkaL|js}5ui9EXh8B)I+1*=KK=&o#t0@t&2QG5rP$Aq|f zgq0OW75$u?J7E*~=jU0Ryv5O-K#my-Qd=`MTQ-Dk5rKu!g);b@b%zwVMgj92(v&D* zl-i1dm1dOB(YrlkTd55N#g&I1h7UA2h?K6Dx z|NiUWhrZpBvJ0X6+5JYii+Mw;PDE~xdU8rS5whvRwY7wF(xR*gWb3TIbHYa*-oUgr zAqsz3nj@K(ON4jRmFbp~`dm3EF?}4}g;QFmFP!JHYyzWanQSIz=Sb2W(nilF0<%5x z?*V282{rx9{S;~eun(AKLA%N)3jwUxX`&MgdHY14x zKYT~)Yvzt*v#<#Jq?ySx0WbRbChzRbD}Inc%d*^+K=_eoQO}2gU~5PwrQM)TI|IUJ zW&8-94)v*{Oqc(_g-oZwwR&H7N~IaMIsQwrT-WN7m(m#?0mRt00{_8BO@0hCsqee4+r6Elk*D!V-%D z2aX7+tcFb(zi0BGY^oj0o(Y6y zZYCYwaV>j9Y2y5}DFI_*Q3i=YN|Aquhdx4l99!%b-)@eIrF>+TK>}$}$?0IvP3cX;{H7u($s|T39A8mS@9`r{ zU1;ly7q}5owcxz6RC`HCcjWq{<%QSe7f-W12)lv$@(9#O8{EB{14>d=dq2N!fAqHjJ;rO{cI3VsQ%>{;ZF00ex8X zxek-tl5u2lyLp0^k;U>#! z#3H99%1KcR8(B$5^2oUatiD5=>sn;)=!@L%39}W1sfSnX5Zn;;-lC@dsgu;_HlkUq z^5(rdd~a(v6_x$II`-~R0mZxTt4G?4r?YMT&W>I*QHp3mK=2z#oiCt2EPt-nOuVa= z3vaQm(=0V{?XKhqv}&e>h}V}VQdru90C*@=vO^@Bo+z>^UnGSvM$9xW>8{r0L0etV z^<={sN!m~~JV);X@{=5HH;dv@mX+llfwHXBHn=8}8j~}EF{ahPV?J1uF>e}(*)zE( z{QVNR(vzhMiEhL5O7ys5M-&T#F|qaKu_;(?oP*&0Jzz=*db4 zMnp%fI0t@Forob3j9-sttN@n@n??{(M1k@nZA5_sThCF@ z;MQ{#I9U82ZXRJSbSPMgHerP3lt2NK)bnUQ8IFj)uy`YcojliiRF#{nPN94C# zOn9}7jU1hOaLr8Fsw7Q12hwf?@;H@2!KwkW>tuywshh_KKv+f z*T=W@`b||7IG}4B3Kn5CJY^sS=hjWY&+s6QdSpA2W=4^&1Og8L0C={K#*b_ z1qos_K>?yHrm*Sj$PhLfxA%EOx3H~YnFd6x!@vrEHlTWxQb*BGpBhIH$a$JbDES=x zZH8w|O~#gjG1gsLu*DP=X#_LAp+HeaOc*dw#&8@cou*id2#weZz%>XT4j@f;D-4)n zfzqdKK5X)A$+MdtaIB(v0TjwBJ(Wl$gaHFu|4^{Bq1^2m8Yt13K>vOmEJh)jFbM%E za8KeW5Nsw5)#i zTy8HTedV8DBtpc|ojHpkVp3y`oEa!Z3j8Q<;3SIz2NacY8Yx)1RSYQ85;m$eD9i8N z7&SPU{SyTX6sU}X1WzG?8`$>u;%}Nfp@1x8)3pL?Qy`-AqA`JXkXnya*S1VrcGIt+ zvQ0`!SSi0ogG4PH%yzG65+k68)aK?(O`M4sOBn%M5os4Yo?U|39tSyzgBf2;L6Tmr z>ck#w0e*9hV@wmtAkOzI+C07Ky1hWVdk!AUO-{Ral$&7ST9}YdOsQ)*E-L`zSJjvZ zXAV`6#|)236iWv)mRBw+jl247AhtxzDRX_C)knPw+q=;}_>8Ln8EEm*YZG(EvcOB2;jA8^yUwk@kQ^;}oouNY((n6j%?Ez>1P zgk7w5EM3*4TOQ!#eBBxJ95&phEf2^z$=9B*7Ll5|N{jkYL?0-kt!p!CVR(_M+6I;m{rZ7x}Y6` zS`2G&)z@r8?(rG#kwxYG;)`8OWpXTVf!@#v!koICr6cO?kNYJJ8I)0QBzj|o)bY5x zhc-QJJ-My%m&p@Xt(K#?--`K6DW4}ZJAE`^fs90@s;O)~C<;LyX|>2{uJZ?}!e~dL`RYwJ|I20v`mfv zYFa8mVl;9iQy^!A$AHk2s8~aZUgD3bm;EC;0$n|{$s=@w$@^?f{*`mGmJX#Wrn4`9 z-RZb)Z$FuIsQa(%B&?ohl6%zAQ+CNuyPfp6Th~aEBU?yzW!>c4JRTSp#8gu?suA;S zeW9tYuG*GkwcLbib(2<$&?PN7uf>-ExxnNtS3-ZwhVUZv%JlrOIrL|ad{YQ5ql|$~F&8hhP7vIQ$+4pw ze6fQs%J_2jG?h430Joh{j-O92^ov ztH>(TLHBf(jHbWu&@Ii@HVofVTrrIxB#TTez4+&lYN`Kp(y3B`jFT0a`5*tHn@N#Z z9ZK>EKJ<~>zN|Qw;knu$ltk{Q{-9fFPo@qejA;JRmF>1}?y2~&Wi4ytVVI*fiog(rs`T4p>sEsz<-^=EUw(_l{nFNL}_7^VT5$x4s`6gP%Vxo9AZ7RZbhXH}}Qb#lgYh z|NEa|<&SdeNgcFK9!~EI#hXgoC_J8}8mX#ve01=9H#|H4c{I%59d-Io`K!!Ps&V^p zX}uH3+&n8>)K4#lt_SngH5yV2vpL0-`d%1zE0S*O`{`QautB1Go=wVgj}R(}|0 z=TCk0p;XSY1{?QRFFyw6YrbZ;&13iUZg}O~wCZOkcg0$_*0`_A!$I-(#Vi#|#h*_1 z_M)t1zIU&+gUg)v^4Py~ABs^{^A-4dDpS~5Afs4Om4 zC6{a*C)0GXPH*U9ozv?-vZsb}e9=EQPYu?fa(wmtd~x_Pc&%J?yxm&=@%py)<47J1 z^`|?1_bGMM?;Sg}N4?n6`4SByY+&BiTxJF7))vE$`v?lZ3ykVce zlokEw^YGzHe|cmLW-^cZoh@gcA1}PLk#=ut*;G=w?q&yr$IH|(U1}@2e5H9qZuRm{ zN$2n&bC){2Dc+{cyUY6b>{G!ix3rsA+e+(vl^-hU++lb3rX;83((XauOE#0u3ng>< znD_K+rE`>gcFmmna&({6>}*f%52{h~%o-$Ge;%K{o@eey zO6s=%ILhaghmmt{99`E(^_$j{mQSV*a{c0&>v}KUOwKK&es)yW;PvVC-Er#RXW{fz zIXb$vn#q2jaMqd2Rh>bBzT=319Ohd<3s)v)d6Ae-FP zu3w9H{VUesMcr(TI)#$b@7$gglS=k{DAx+d57k}0tz^GHA6%UckDt$LUjDXve$#ll zd-6^%22b*R`LNQgo!?%1`TEiB_e$X`_k%U47kaXObEqGUPOPVU-7FVWJv+QDJr-}z zo=S52?q%4&IzBucA}y4)#Q zKhyX1gVW1ywKu3d7G4Pox$1SlH9p3kIeXG~@7$7hW*&Dg@0#cO zOZH{gvd-G0Rxz!fpSFG~=27`*bk;o|TIwiea^!H5%GmvC>AIHhT-loTKp4heSsgq* zHND%6qI8sUzMDQCr8=#jC--ex{^?u~)9L)t>vuDm{(0HdT6gB@Y2mJT*F9wozO+j9 z{Nv^G?QL$icyRIfFzl#mLp{1Y(e%fb^{O=wlEvr#kMcva-)dh}D%Z(mWpHrQ7+lm3 zE0v>4g&yuor&4kGkc;h>Mz2%{WFJ;2ayWQa&5QoeqjFXu2fnG(Jvh90Dji;t^L}%C zRX$1HH0@`lb9WZbFTR4VlWz2PGV{&n&%l3X4hoL6p6+)4}<4;o~s zeCA)ZL{R)eOYMGl)KSS}pXs2%{|^8F|NrcL*>bDOvf!@}z7aR}32#e)(ByrVBQ#pF zCCeH-cHCG2s3c(_zlFCEeMxt}_sKcJtw|K$9@{e`Y7K-P#Tfe>EH>%`d> zP?eRHnU$H9Swl0I@8_yH_^;Z`foAvVW0Wi9a)nayU;ky6`wPBrppPs63S1$V%MV4R zK6&ljOj_63x0*6Ag>t@@YgWx%zPSvv);Z@YiGD6;12ppR{rv{e`)Y9k^g5dmlpDD# zB{|_~)@)B7uB}24aIW})e#M(j2cQl4jOt0U47xwgdS{ej>gv$?ef9Urr3q%Hpw1{s zF@X8wjQ$h<4}O|nnloWmP!$s>CVJGUDZ^cAyv|o)?NlO7vqhRY!*3B3^fqn(gKsZ& zL+Z95M4DsL`9x{)st9`gSVnEpxkNf!U~yyGy^j7E8ZSypAC{FR1^hT;85UJU53R8b zUw|1enrCrTR=2BszycFq{&B`+(TBMGCB6V^{b#)aT;+nHEnvH#Kr&n<(35Gsv*6nhp%0Pr%t#X8@>`j;z9y*2v%yYG3C^R8Q4MW0|L> zKy5dj=X)}wABF&itAX;3{~ z9Z@6RFep={Myd>q7*&S#pfHa#8T?5}J*vx_JO&19=#cpoY6LR{kD#)3z3y3tWn4at;LWih-w z47iIRCFoDe9027DioP*W$8whv00mVulAIJ9qXTWBABVz7L79u%2=hpgfBxft+%*#a z{KtQwApyCJ2a&)V02w?GqdJK3l1WYBIH45PL{$|a0>j|-IRY?-MNvH$EQQ1R4~Jfm zU3cfvfjIVi(_oR*&_FjFW~_l8%%PHkhI|O2T88n**-t@Lha+Aea@i!Z^8={tRDBM0 z!rAsdimD7rVWUOEf93LCopsf2)E+w3#@z}+@g1n7mW`XWucyFVk09GYdEn6Z0(bv$R;4=-UaM;SjHbBHp6s!oF4Y1H_ky74IJ2C8mC$50@d34~8S zGF2EhdSt3FZ0t~Y@Sp$q4-%&_bR3EN?a;9!nu&%leS=7kU6D5;ji02DU>CZVMaJB) z(d$}S>`0?%Cqs-_l(Fm#0NF4J8^H;$OS~WhB2^eRl7G0=3o0r=+?NP13-I7UyVd?1 z&d#ffJVz*u~SqMS0!xhkPeMS7{5-$M~6I)GJYya zHuxCG9Vsnx8dMJr{hbEeL(?KBLDp4Jql74s!3g@9#Moj$A&z{a@KM-mNeAy^Nw-$; z5}?VXLdH|mr4g^sql_Y))4=&nlrc0kAWCF2gwSz>bJ{4Q2Pd;6=!GAqA@hPlN02O* z9yWH!1&=a*(N4OHyevYejA&J1)FbL)>z6$~_{s6}5HUP8ihI57(_=^$1`FQ?lOXrS z)_!~&yuHBs(gY|Jkf5s6QPkdb|B|qmRg3Kr^<2ACYW-~AmkQNVJ4lTGT*vSWZL>L` zv%kaUm$1esPCjkfOA^N$oHsXor^;p4=Z0_l3x;l?p|#Dq3>+l$YIoj&plwPlbc6t) z)`Oi+VJ(3WM73QJMf=8s+?l?LXa(?Hh?+xFyNn}tZIjncSX6=yC$kCEfWnW!vS2bv ztB>2Oa9gX`#?X0DQo2iR?EHjrw57tlDp^~O-9%(<9O+q>L`_!(8H`r# zg)4UvO;0F>_M&LJ1A19iOatj3LzJW+XE|NsWt$;OJ@q8Ei1WueP{BbSYeegGg+vMq z+UMyC{Mb}2#3d|2GU!3LEKB3YkaG#2X#CWZbi=G+FiB_Q_#UP6IZ(W+D6+&0V~>K+ zH0Th_r>aggZ?;EcpeR}fC0IwqhIwiVllhRxAg&vBq(PI=si#C4JNxvDD5JR5Foh(9 zu8wUgo!#Tu9^}$8D>%dt^WCqAqU=Gj)RkQ6z4L&B$d&$8$;BOoT-jfhT$$8S1|#>2 z(ko+mkb%=H`E}{#6*3wg69=qaWXcEVfWqKJ#we(r`d=@i9ux&_ z4Hr>s9u#)&{AKn{Ecfwun;Jt1VF1y*M?_r*kAd{t zsNxi|gk?F){1l2Uv5v;^m0bNUDr>utobVLA@ zgj5Rk`?9C1CVI@WxWoOii68B@Aor0ivPCV;;@5Gf2cO#AmA**OPG?_{8MKhzk7+Jo zgSpiOw0-quW6EV532}A)Fd~*Gw?33CnA@viK5saHwiVf41?z_ODi-&*JBDi>=<+8Q zPt$RImPQSkz9G>ryV;&Useq>JIl&Pez`{}Gc~{4Xa!y5eN61&JP@)H6wZ*@WfjTBpv%Z?Mcj3gsYOkt< zM#yd#-*P}4ZSXIfVYN8oN%o-mb2CURmOt;wy2T@`=Ax@cd}(QWT!+;)bHI}r0e=IV z=vap^ebDe+P(LkgFT2<;MPbo_h8>-q(;bT@uZZAJY6Pd6lBkX}Re=Vd>Po%d*g)!a z=P*_b=p|UWKA`B5I6xbu7uSN|`hb%8IndD|JjPh>L6k_+fW?!{nHSM2XUTKD^N^8Q&vcHxTQ66{0(^W*P7<~$2NDJdX z59bT3Yv@9xu-ZBxt#xQq=m@sZx@G(Lq3J3zI{FgFk=jL87$000nj#_dtpd?mjz=IV z+Ss&i30tWUcXI)dWk20YAlBJ3M4TZ?S?ldK@;3J2HQTG;H2+2wJHxt}v_Wm`{A4#| z^MZT}5>6Ez%6dYJAHq_kO~1fZ?8+xiLoxKx79uf7ERVGi$sQRy@h+%iU4pZLJ23sk ze(GVp(lV>}0(D!8fD&0QVzeLjnw&YBBgoY&zB))>2H3rnt^KCX3nqDtyHmW1$+j`> zPK|@}&`i*mEE7&WcP~uvN;O}D=$J#szp^Jlo(Xa|1h6fa0QEv6alw9B?9aa}=9RCD z`j0P#xd*SUf(F4#3voB49rXDFCNCKFUk68|i&14wHK3YiGq$2$DuJVaiz3OyV$GWa zZHv0MHM=ig>I-{O$2io77zx|gaorx{&zkIp%nSB2F;G-eop{378&mn426UD5@z$^Udq zeSa}+a*>E7Q>%L+qrf2Y=)=`;ePy7lRt)+i9Jg7oSB-gWZRbn39bJ>1KyNMgiSwbQ z0@Fz=Ba>Hnd2UK#0Lo@vFRV{LjvJYv)3Hn@?N7<9_W%d|!|DMYqZ4eB&2X!3m)|~w z%7u$0lVoD)V0#cM7cLT+SeEr`twLwQ4zs-6vt%lfW)d+1r#|Ro1ES;9e+LNmG#L%2 zKKTnd^%s49G;+)0eledu8RKZ0jvRju=m|8u>pgK*i~bJPIHp>3S9;%(j6F?8L+Pb{ zC8ZaDz9Xk#clzt7StiD0fG;wxH_Gf^bFg{L-EM6d^hrEH#5i`BNU&LFI`JI^K@FTD z3X+aO6lBL}3`2V@xAEw9VT`9n0-(q;LYY`6kLO+#i1~YP9-t!LYHl zGX?#1$j_d+-CWF!vqhx(NrdK*|)kR%RqPA z$b6umd2}~_MMp6)I!Id>?kZ0j&ai`Yc*CXr1&Us>ESLGRJ%BE4p!ve^$)8GbK^p0h zdyqh$EV!Uk6jqW9e@Ru?2K9q#R4%A~a`C$DkdiS(9`so8bc8wG(b9m_&k2 z#Dbjla3`LRGBmW;9LELf?}aQ`0F^*$zd@qD5j18PCYwrS*O(r6Gn+x5%^aO|Hs2}d zJxxYrosA!(>ws^sCfZ&N`zv`hUul0a8I=2}7obo1EJptTx@E-TT!Qa`34>d{3h+p^Qr$!~vh~M|Q zPo6NZ6u)OqCy@2xx2%VQ`F;_-s*p^E{T-1S_CAWRCdv*u5$Ws-hY8oOm`i8<1lE=S z9epE3Ad}ZX5Z>x!Pp8pE3_qb({3;PW4|J?S9nZ_!fd5(i8SsqD13lx=*ZM>L zTja#@kkPec>4+)F_8+^XAU{#~Hg&v;(VS~wc?~}NT*Z2Hij*~8s&5tP&iF-%8b4RZ z=)wf+Q%{Z6RH}(bfVGUfaLxGwR9;EYz&34jlr}ObJ)Q7bCY+bU8eF zl=VPT$fF8W@5%h^hK zwT?)P4KZC@h4UN}SB0=)W~v+gOkaC1;Hb@+ADq;GlzyAGkSfY@EtE5K%rC2MKN zg0TY~!O{ZmWxO+!NkAydZ;n*kWJjwZZz>a=eMfa$eZiB%+Yp+TO*z z+}6v_Tg616KzGCzZ3`JPr{WOpx$a6>qaG98jZqxhLPW->pigxUi&5$0Gs??SskJ$m zH$JgRyf%JaaUzA#)_7&noEQEDebnyJ`DZ!uNqW_h7hFlbonLkxa`#}%nlNvS!^)d< zgdO+T&!cgOaTcuyGL{Zo+2)Ze$aa!)CFs-aPBdsTVYt&++5h=%o>7LqgIqvSj z8Yr9)NV?#D|)}vP)X#@-uyP{g^h*!4Bwny?E;-C3j?f(VIhyGY})3^3< zgG7m4Q+Er9&4dj{>WD#~pqFMIq|z6DG*apNc69%)j?{72;T@4v(eR$wwe@e_7!{=V zblmkJ$6#Ot;y#-T4?G&M1MGhy=p=nu911q>N#JBO)7vI5|J)DX{ockb7MI<7#cAK&{Mg{0oB%%-!Cu88TeF_f)%q?WI z9jF&aMONgWVJ4{(LEmB#7Vl4xrE<@Q>}Ja$9*e)!#BbrT?3&72Kx`(2m`+MWFR<;= z@yF==rp`;yhc1Q1vrDHO7uuo|i3G_ZoQg;e^3*H1@GhdS z#lYVz2gyZYbH^bZ3O1_eLG6(&yz{{1Ofr_uCbwPvvzN^W_$i#f99cB|lobN6oN4Yb zeTAUtk3~s+Yp*wnc1Wf(!5lBs$weXkf^$IMna(|&ibAsFAWlUjLdYKCxg^t;TG`{d zET$H24D^>)IRyiM)l8?TvOm3KJIVF?LEDVdi(`y}*YAdFxCmWBIM|gRnDW~N*=PUBf%VRTL%|~ zZ5^xL(zoH-&Z%8%VIt3|uN+dv$N!LWDhg=|GERNr*eN=RiI71_f7yvInETsFy@Yj| zQxGYGWE4^chlqWoHpQSnRw;ce-8RV{wOt*_?_C|cr6W=)_d2YQ{0M6ZQ@g@g77&|TA*Sk*UoWljo4Tc#E?<&U5lPjZdY3Vt zcz?xI#+S_C1!(C~QP>o5`W%!8W?e8`EXihevkU#P%6c`Jhb5wpXE0M=HofuN8O$%6 z-iS!>hC8*v{HjMx{d$Y;74@e$0OF|)vA<->7fey1KNdN?+RI(Datnyfn-K4HOGP5@ zv3#oSciv+Mry`N}ID}IXv6snH+sjDgK!_OltJ=$vDubT_FY}6c$mk8yW=0~`e}GVg zK6!2bL6Xk#5^?&QOFjqvvEJGD@@{3`u2l@)n78TheD-2LGxpFOegUF+zs)Z}9|wT% z0=)%#KnHLTEQA?MfO1CZmlEubUhSflrnt3T<-1mQR;t(;)1IoDUYbbR=3!U)Els5C zM3dHUqwb@mG;7mpfaU}l&W5S=>pUWXscJvYG8tULN$grrf@+%T2v%aOM4ctwDeJ-N zHGITz4jaQCXIXs1++}}k;>Sf>cjHk9q6|M7Ca7i3wo=xSEDAq@9scQ*NV0ZLaeEb%Guo_Tn>Ob~39C-0jh&zDhW4t;Wj$7! zY0!}Irlcxc^w|!IANS^jeX_)Gcq#f$S<2}WFWXcim8GDg!7B-FM_2jqgotJn?xGO( zjdAp<2OU0gHoXsU9vZcWPPK9OvwdGGR7-8|1Le3I8}=$)*0yvju2+I~?8mZvnOC=9 zK2`ND0h92(euuHdyn-kaH06W)=9M`h85h2q>hk95u@y&bOORD@7$a!S2?QO~+MOC! zzf{Pt&}1V_hVeRy9Qxvxq-bL^G=?c*wG`q=9ulj=0LaJK2C<6yi^{M|dE170MX zyBs%h?8PNR;{*q25_rAA))do*$A)mRLJwTRu?(yJn>U`W(|ED`@E|3*mHfwSkj!iJ z*B1Xi2I|-#Y0udseNcOb21E%MvCul$A+o0a+UkNH6mt@D>aRVUn4z^d8XF}3mcPb? z@c2gNarqqFk{%)v!S;C?HfGtWR zUY}DV-Y|gR)HJ}$=DJ(&1J>UM5GOfa-; z%@o?WCv*S9-ZSbxjMlNk)k7cZs{>_g?GsaxCyrZ&X?T(mmcRe|zYDPlqu0=oL&nSU z{Ld3(xnG%H_|c}(?;h;kuiLqc)kBrMckRFUYSxFq{M)IC>e{bUn_LeZ-(Q>9d%bd% zB64sZgo_;Lo?%Q5@ZVx9@ZxTc^se1|5PDQ2=^1<-_va=6Yn>ji^damYXGv?}AL_J) z(K0cSbF?BJ2h5r9dOlxcVI7OD?i}{#YeddyNSGaqI)q-Mua<~hKnAbCIkYM0(1q12 zvYC~yrpTg`zM68PfU8>VXbtWd3hqPkq^jb01ClTy;;Sv9e2A}>=olSVQz4E>J2Xzv z91i>(EE+fhA6DlMNUQp4&-QUbYHoX3$#C`d*V^Ck0-=6DB8dA=~T{(gP8p8kuwdF?@;QS*uJ=iYCO;CfoeIkCa% zW;kB^myzS3#W?0&B#wJRO^`dF?e49I&D}hDJjW`LyZpX3PLn(8hqiQpd+kF-5jw@b zdPd~R`sx!|3NOUHQ6X+H@I}BwQh2`lMjpTS)jx?O$mXkKWVx#&O?;LhUJY;JBUN5y zY~0P59QW$+{l;YJc+kUEoNx)eXyvdKCp#mu*bLbnrEn>V*8w$@Wc5vj$QhIdbP63? z7o#5V=Mg`r1VD+rtm+al{={WJpR8JcQmVcLgn-ljb`)tu(Mq4&_7G7*YptQkByPgj z*#rg@p!dV;8j|tQ8Y5EB{+dz%=!UpQ_K&bf+ONnn-Y~`^(EVF@4JzSD2rmdam{?ma z4SSQP0hVkGFN#1j(K(?pYKsN33_OJnnUh4xr0_0qY1f=$7jCd!3ntpj$;+}Yr{jPO zjdgb6VKnrL7JNM>v#}u{MK+8=Ku8CoIvN25YROo{P$N7{Aq0#fD(OV=i*SUB{1B7h zaqx`|GT$T&8byt1gidz|7(MdJKmYOHiQMH7u&SuNh^c|?5Yd4a_!x<8kkOeQ(4{ef zK9UrG&#N%O2s+igIfmX(7ih>*q0^{8kH?T?NzkS7h!UYkW%7y{qpIjS11sB$y&Few zqv^RgmTl(?`BM-ybb+9^NlhhlfI(W05pg8N-`V3{GBuekk@tP4Rxm3oVNnOHaw~jv zNlervHvw>|80o_<)~;&uAl3mRC+q`xb-_dVotu)lA4&-LdN}`XZ*5IA@H}OK=tin^ zRag-?#urZH%TIqL+O6KE@J%}s+9keecQEa^kZE_C1AdM}JGUh27n8fSmOQMB*-z3P zKo6mGYNfHbn`amFo!^_D9fNO4AkBkW7p&~egW2Aq-Q!(^M?JSnER$O}P+B~>EkOz4 z%4&QZ$rM%4>q(*n(CrmCw5d=ILOh%X%ur>+Im6CncHxFSDVlJmBCCCW+Qx0CDKSDZ zYH2mBKQHx@xIaIM8zioN@%!mI4G9~YC?RvV^%R zBe$iQTjdal=7!*ebd}CAMuZ!J)&eVqZ1RF(|8)>W zb81u>x+y4)kg|KSR05|Q7DZBttaEmq1MQO-i@*?$4cHkDCW8_F%y57iFPc^}%k%m~ zc5wmsx(F~U$K@fCStXWPLXk?x%9-p>O%w~m5y zU&(sE>{yT+YO8?)*RkdAYU#~8*gt!*U+ni1%K)NzuWvyGH`s5Zic?sPWv#T}0RB!c zLa$oC&ZEkvszGVMfnX+Hv~dhj_|U3qc*dsgu#LYpzkwT$Z$W8OrEBbL@%<`x=* z?kZ@jRah2JGS}T!#TygIjk8EL#{omTwBxckU>Sz@D}gdW-wEnsr(|0=2Xk!zl!aMJ zu&i@;5Fn2)$gkv!`sZ1Rx`|kHa%|P;WzZT)=-W^^qgs1mwDS+Z~3vLl7VM7z6E24yY5w9JkB4y zaMvwD?Ge*ep2yw%i=gia^>%IrncJ|K7L$4iBxjoWx(#DG07Nk-AB_bz%zdeDvK@fF zT2ex#>pm)74S_t7){gvf9bx`1_4F_sb{R#klU+1;oPLU`VoJ(b9UHddBAN)hOoOe( zQvPSb$`}H}9ktns=ELv_U+erNbGU$d1h#ui-??Pg zF@*>T{DWxj9rP_!`(lhtl6DZ@9Y9>n&{1}Dv08fj0%@D244biO^ErtZ0ood9y>*68 z071oF0je#V+V?8Fy)c4_32yEHb;WH5)PO>7{w}=mplo)F%t5m8E2*d@#bou6NLl#1 zR$!BJga?SxD?XMhrXd`qx~zokrHQna_gNpKJJLeib&gvSiSTNb{o8PYP0S@pcG?~z zFNbucJBk;5el&8+uiGHjkUh;ZiXsr^;G**X{*MS9y8VzMfiwSAmc2!mxI4TJx4sA~ zP~&cj@w5jDGs$ggGnsOFM7Ae@XkhP!fOeQET}k9kq9tlR4hZv#89HBQBAN4xr7dp+ z@caj#_F{;HY=lnoAYR;eWXcgmJVHRoRHKCt(bbP3;Dfz#veU^z5br9cMHG2EK0eza+M?#Vg>WBl(ONWRrGDJa_y&Cd^Cx->1N%AmMH8mAiSS13+6kU8 zPS)FP1%zH!(N^o}C2xq5^y92O9|@|AXQDa9_w?fLU&QD=i z;7{$6SHyv;Q(eh0J9t)%e&rXxYKvcpU}uyejWikDqv#TR(g8a1X#y(1-YcIa;Ndy3A|%#Z-fQv+%O`nTB({ zEQ(X151=byhT5-_h)3Gx0xxQYTbVnPacvQwsVvYf>u8#<@qJ)bh9w%ko&n6O6vt-R z1d6XLzjYohFe^YGH-PGVU+1;KI%Fo3NOD;>z>l~F6jwM{C~<~;wQL&FLxi1SxO9fK zl0~pguLnf4WR;Y0f058ae&GKKpM9S~RPIy-SWjJ5yw@oS5|2gaA}G*}_;FSpK{`F`v4=TMDO3m1Zv%uNOIlfyWz=)@o6;}ANI>Hb4kR`Op^AnHU2deAB?T)S z{?agYV2T6uvj^+8pkyK7OCNAUpRm!Bfi(?(IqT^o^jGcm)&?GrB-urbz1xh>eWZJpKv)k4r3ZdimKBGfSCZ6}ZrSD<%ldNdBvfZQ58W z@ZnN;Js`|%Okl}YysR0<Vzb3H?Aum?Sv&>DNn zbxO_9TKl7;kAcyJu4iaXhIt154RrMkqD3ygnq#tQF1*VGLcAzpY{0o{NUiNrJ*a~F zia|09?b6JD{`>#*-si;THJv^d5bdJtW;}ia>(y1?aTlAEMW*nyYv-YH-nVuh9mL|r zc%^rmu9d(EBFK{I+P_L}4=a2vCEizga{&g?(og>axbEk#CVN)P9^?gXdcb?g9zev- zC7Bf?K;;ktWlqM& zv74X(MG+__epwi(k_f04I>8+>;m6rj>*G!wE$qi6(@8iBL7}J5s2>XT`H%Xc<;Yv2 zereR9;G%v>I?ZM1zaJs$$FXVGXyTTjA40{BmSo^$&>9lK1pN|DT0?S^w)QWleWYsO58MN-Z3n^n z=qDzS)xp*8=oy!=3VVx~ZIc21QXDk4)Dj0J*LsUc8%Aw`N{Hc1Zatid)uG>TW+J3; zCc|b}n*lpQnsmx?>VgbuPBr6lYG8RYR*0E&h>7AKf;ywnD?EyEImBGboaI%7rt_XG zT?spkhOVxT~nSv8nbX z%;8VC_5+qwtY5H>JSZN&a9yw$Q-%(Lz>7o7K&WP}{yu>)kkvv$vCU6F!{gJgQ7R-T zdi8Tg!+$>whDJLt3=~C#3d1(Pmv9mWr$Hw83(3VL{TGt93tpD`3YL_=M!epalneYd z$*?g_Tf8$>?UIQx@Wm8uH@LLF4zN>n$#Ahm5E9E>kuzoiezYhJ!^oRCZG)KH=dEtesE0A~>YX^&q>i+*p`g{=5-_E0j4 z`Ft~%@8_yH_^;Y5%=#n17W$=JE?+OeR~_{JiN2c%N=t_S?>$!J>Fe`dx26nC;ilc1 zKBSBF-2D1q|7Di@D@{w8X0oaC@*UgENoL~Zx>23y=!%rTO%!=a<+zZZ;gwT=Nk6lK%6jVI5~d2QSPb#>S@TU@u9nbFPX zkLTyd%;fH)-X7 z4SD=ByvbsKoctgvb*=RAR;RB^nMAwyQ6HEe$#k#vF?}hg+b@~dx17M<4(~GZ8~<9E zG1Y1Pmg#8E@mIEW)8?M_#(SeL^Kx9gU5PV&_;AzA!~fPWK=koBaU%}GGJJi%WYxuNUJJW5(lxR}Ubngeo2=B0m%+PSm|9|! zl=a$sR*+tYv!{mi{=%{^Qb*_6;Y)qY$c))6Cg`|uKT1reFL(5e$@B#-nd>&;CoTCF zH_CaoLzkQB7OiwJz`N38;w`0Sd!YHDtBllm$}wDdbl%MH44*mAPsZ_XyjvI8o0sHR zx)%o5@u8`3;`{YO9Owy6oJm>f4M^Gs@Ze|OCYeQjLm3|h4@Q!ks(VD!;$RQPdHYa~Ss z@H&<58+Wazhkmy9lzA#^Erye6R{XdYYU8^GTQ9$Sqz50ybN{?Tw*{_7Pa5&+`Mi5K z@7$y-m|5o0E!@ext0FZt`@E)%kN(<9V7BrH8VS)iqkn zeAJ%qy0TiE4Rd$Hdh$Fw9}7<@lP^8rzSHlSIj{h}7uoVde9|?>=K_0ff==_kJIviD zb!PN2O>$Dl>}c)yz4%CXYZExx?DeZdDW83*v=gt%PC|Jrz9{8$qdc1QF+fGEw0bx6 zP~ygU@sTgqN?`JIpD;h3#aZVC^mAPmNQ06w=w_=$W>CrA&$Dlh!lN)}?^{xDt|Vqv zUdsyN^!3)F;aDrz2Ku0zD!n&5^^zvM-1nvHk8v(Hs?4XYR_jH6ryon@o9AXx0qsZa zqn{t-&J$uaF~2`=N$F`TIeeju!fgWs%=Y_F^NIY}c>Sn$=MofVhM&Ja^nlTu=asyk ze9{KbrIs-tJvVZEA$xny_pf_xGtYfo7sd}2_H~{})apE!1eRcPb3m7;w{oh-_4~zi zf0plvPvxnSVxNG1)0o}#ImU?3>FH$fQs*X*LQN@gm5Iqey&IWyS8Q|DYc==q&@2ut zE~k0|czc#cxAR6V$F+0CR&gL!^BOl7&R;6euyTfBuJ7)OO|hD~=jD$)=zNsUn@_1^ zx>VGM4KrQTrN((Ybvv_$UMF8kRL(p4a~V`#`zhuzF?k)U&5D%hB@?vDWFAvfP0(NZ zpxKy7&rhIrZqAy5rpujXKHgxA(R7$B-w!6w7KV>AdQ@+`53`NlQ;MmU^iJ`C%L97a ze^yKH(`iPnjk(0z^{A)KD^FZEK5VkRDIDDQ@px{UZ?>oPQUNJh_|H+WgIqop&x&d- z2MZRU*2qC+0sk|EwqYVXJr4P&(u99v2CwYHtfu70ubkZM48=R><=i4b#Rs|CDp!{P z!he-%A8D2x|JoiJxW!kgO?OMV`%ErAEymRvs|*olIeFSH%O6M!%@8o7nU~u}<9g~~ z_-@{`O67;A>T_9s%c|F-(#y=uq&tan)#O3h`fxrPGx_3eSsT4ov-gke{OLVW(X?^%>8@gS2h7uZ{PFotGqWx8wo)kF zJTk3OZT4JiV}OF*?cP+_YWglmcUtAL0krwJqYiryv*LC2b#U9_YaO=r$_$6OT)mK~ zbRXaEn*H3k#%6o36T1EZ%)xD1H;lM~0iMseYQC0g7Dgq$Y1Zl1W9i}Tsq}JFeVE=n zLOU$<%ek6#KAEI)Oiu4~`?F4cFl{_?gU8&>9s5vHZfMqgNd15IzHP}>C28+fI<{|S zLbDbEaa`j)5r9BKX9=Ah4hJAk5(30ga5WM03jYKA;R}bu;R|0meBmqmP5c7?E0_YQ zyVb3xTP=03z4x?s?9~WFR#sJ3W>!|!mkYd54(lDUlsn5x%k5!fzuTUmTXz>a-Gt~g zpa`#Q_cE6>WhXT8j$;{cNWnqdk~4MO-H$nopNvORCbKc@;Dv7!$yJ$&l_s2I!*42i zwV^`SdY%++1|4(VO&24*(LgOOv3seKxp5(pRD;2|fk8d05yy?RHKjW&8AXI#cn-vv zWN3ahn;Mw5YFddBwZ?+W3srrL(nMqL&l>}jSg+;!Lbejo#Rfb&3pI$FFOk(2W$88^ zcw=N!w|O)tsP@;@%wWUF%3jt{UGOpm6+=C;wU;{Bgwn?Cso2?9`y)cr2rAPW$xt+< zu|`0UghTU&;fDOsLYo)=TBcu2(vHRUquj z1W%FC2#;3if>?^AQm+rDxHd+IQ%2%;;*@Vq3ym$>fi;M2mJ>O6HJ^?$&td}i#=(?! zrkzb&?@+A3cDgB9u^Yl-*=}pNj3ao1=09|RPdLccNbaVLqMYCg!II^C5vmQ?9}5&Cku91R#*v}n zO>8v9cSP8lZoTekGnVY#XxJHzqO>9|nNBYn)|NfggCce3H5Uu17|Sx%nM#Z|np9T1 zWWO`bVT-YQp@~_YdI}M1Y>03qsq;N|*^04=;&nPrV=sBz7j_@rvHr`V{e!Mt``9 zS;>MTWN@!wAK3<;rZcUbt80U9JKMU4lSOBMSrzEB!Ymwp^5wV{ zjT+QCpHZ<`k`r9c_Nf6n!|%o%H?JA1J(Je)nLU{}ds(PCDieq_8jFqIa?dy|QLMp) zI1pM6Pg_tIf>LDLgdnnQqi#WPv|0>TYE=*nxGUg+9!8c5kuAYkZFD5iCmu60?B+t# zM)u5WP9{@KN!u;4&jt(8v9!rnqBdPkF*u{}54Y)Nv&Ls?qU?l>LLuf zSa_{AXO8g+qXgEv2NBt*ss}w6XP`lo#~iHQpVkyU``LtV>P40724%oi5fOxy8m(ib zMstsBF2{C;^n|7tG?cJ6et>7^0xt+P_M_%4t20hG%%kU{x zMq`HuH3d@%7!0SgsyJ`!oFHg$X1FL`)3c%1j6tV}2N&(v{71ilkdbdlu9}C29%9eu zLPO*)cg3pszdPIvK%n)-Xi*;f0de7D>?aQhKg51ONcgXj>6@}?nL+X+zqHhc7*9_5 z$1xmN8lS1ls3vy^P&HvvNIqR6+|6W|R`d8wv#`G)K2rhlnJy{_V~N<*jm#74F$66J zXl>TFI3#O;Ns(62j#l!9z{A5l?%!#kcisITJrRMJfWsTD4Vqcm#XYOo(w9Z}I| zEfSi<0>|~jnl+NE6vMQq)gG z&}8Pb;hJwBZ41k^t0#?u=1i-#H?EdKNyEX!N|UG=n_ZX~ ztF>1fky|A5ODR7(c>jd}pHuU^SMBg21itV<&C`A^#3zaYNeA)F%Q_=&po2gs5T@X8 zj*Y`fR}!jlXuyxB_B87!2A ziw1KRY6dYG=LBa~wJ(R$F2BV$3S($WHUQ@OqF&aqCajH5`Sn&Etu6VwOIRH<)XUYBTP4({7L4o6}{$ z4%$|d&0P3shI0Da-1o!Pq|kfXwn|L)Okb$@zRYylfY>ZLQ@>|qZVnWgbczfH#)OGY ztidep+EPp`F%=TLvqM@mp{CPCLt8S_wmstuIgII=q3)a2sV=4UjlbmAVrw_pXm-3{ z=1HwZpffufSv}LV*ZXFBu&87nx3;533FlHC6cZ3KHX~<@%0-n2qkdoK_Z84SnW3-K zXD!)zh4J)r=oCgCB2>6)Ov4pVP1HGKDR4D!?5v|0+N{#A3;hYf;?sE@IsDe@@NXOiFlpvDA`3lDd;~o1tu^6 zK*`>DKY;en7ZG!75SRf_^Z9bi!DO7;j>k)F=d1_y%zETo%U?7fN239P^!G+1kJZ1~ zX#6$$R;*RzD^G9&-YW~82&A%pDSW=8TEZ%*)G+B+lRNtF+z<#IG}I>QYo zp=5L2g+j5@kTo~3rqvo0@y<{+FdH*`Yo;SL-k7^llMT>DCd4^GlMC(oN@-L6+$IxW zXks)RI9MwdDQw18wPxDt26B*$-AwawGtTFz(Qwpbt*YlH=)$jfP0wui=HUt}{Bg6> zj$D=4H^K&DExViTWZN;q9;@#Wst1eeYO8vSW=)5>15y?sO@YeL}RyQ@jx@ zBY_rr=$I-NB4nge)qRU(ZOTTC#xU6fnY(Y-=SsR48JQ@D`Ime~3#K2%=R`^8A3mtd z2v%Lru<9HhVM=3~&c*Yy128d|MMHl^1N$S%ReF=_?;t zggP(<1;P4rf=y7nbK;RT0nZfXqfXOZI>^T`n5BWwuLqNI2ey}h%_tgB^q!ONbklN6 z0~9kb7pCp2U^BvB^8fO^2wxi?K5*m1eak<#<1t*#cf{QlmU4gC0$AAkd`Ce+FW+MT zHX%IhJOJOGZ?Qbt$6B6j@@dVk*vxww2JUTkLcg#-_i@iKWta#T!REc?l;kO(MUUmlR8l2r1a6ArY5&cpmkDqiR z={Zi=6>9L(^JZ6J8ee#v^a|+v2Y{=eD@c#fwLVLfE;x2mE5I;*k|T$21FOHDhV~CuVdk?dd>L~7Rb^%V71(PVeA@Ut|63`zlkRjg zQti7(IV->430hf4$!}q!04{q`FWuQrkj+!wFu2Rymy8SFRWq%e*>`}pb-1S(lBcVy z<1_H+t}aF3^5_uUWu(BV>AS$WQzT0Xt!&Da|L|yU?jEW9Q|wx(%$d6`U)k$^e2Itl zg+yI+!L3t{J#@hX+B7KR2q_MK8Y;`N`sD-u*%8!Rp2vT!tfww;X;0lcdCNNvxMSEc z$nkQ@fjo)baUNZJ;}P0}L?8R;#>d^`Bf0w&5BEKAHm%%CO8b*IH_wXxw}1SXx7YDo?TzVTuRkzfBr<$M zjh_02r8o`GN;xkAw=U(YE?;%|;8M^7Ci-nlxo)|mh%LN@rwgMRx7CSfO8@)6mX!YL z`!A;3dACV?*0fJvzg*vzuu}d0c20`Amy#>XV}6xqDCT^12prl6O|v zzq=&g#2dIV-rMpwW#fg0*BpQYRG!oEy;5~69uG0Dcd~ei+ITmM=6i+hGnfN$!3!dO zADthwEaLELll@b#+#?vA(?7iMY~`M;kw+izeJl5$ogfp%$(N&5M`_86e{BW7RznT} zjDw*3juSXgDA>Yq^8^l{bI(AzQJ}+a2IYp}Bvqxze}8)@w{LKbAkk9FuVrvJ;6&XB z%ng5vs&yp(mBHcXXK*;*IoCp-VZVtC4j%z`c6A1a7q#VY2PP9JR|Fgn`2gh#vc;ZJ zuFP$fD?yP}9Q^?0ilGQ~X>yzo#K|O{;$$8(?|k88e&J+(oY5ek8jU=zb*<6BKMyCf zcFu5sv_nV3aUGWAIm7WHPA2snC$k7i{?TwUZ@u053n%jrjFU;9;$#x%j#rwV4p^Hw{5XD#T{EB3kBt-rZE~7E~a7#SYWj*+Q74W0IPW zh(LGhIJ)kNQgtJeUCOUCVE~l5lKe5h3o-%Rr1aPv^|lt=u;e~2itSDtSqOt=0fZ!p zOT&km21l>Pld6OXV%CJU$s|Rj`9uo3o`aYv?=B*BQ;X4BZN3+~p+WJB<)(wLhn(ES z2YV+I{(#@+1joyc$no&L@6&n}zSl+mnvc?>4-;t48Cc z3ma=oMm3!)kmj^a3lpZSIA(m6qB+~x(oIE1T&uPvE9=n&op7lIYaO*$?=IF`f@o>3=zI?at2O}xHDFq+zq;6J}akd+xqPCcF^-zs*y))OQ{G#ZT{s0e=c-7UWv(>WJ<-47oUDZ0P zscmEOZqaQhyIMTh@PTVJ0#BM8sd5}O{uB2Ip7I4w<2y2*3&Le zc@gW@c2Lx>qfspqf)oursS7P8Fw}=6yFNz7DHA_JB8i7Nu4VpVxk5P%TH_kQbnCgf z%zn&+hXsyDu$+zDg-E&bjJKC#E>s$rZBCi~D6X~}dJcQl6DI~Y0a}}VIBTx5G&tVP z^jITy!LOKYt23$&bAU{GP|+hv&22L~XN1`t99Aa)vO<4PH>T|vmBAywYH>Ni;dCUJ zGBTZ4jqzlZHZ@2IVHgf~{90bM1+m65i$%S|Z#bS^224LCXZmnh*+&a~SYJ`0jPU}; ztqnb8jGQ3e8K`tBG}eYCbeH0gV;76bVi&d(SRwohOsuqVtS23NK1ky}WYwCzN<>0Y zr82E`Oxh#`d5%}BEZtiaf(>ak%8REQ)50xjEi~Em5i1 zF0KW$T{@k&-Fde&Sn*!8V21p3+FcK;e7#>7sdVg)X_p8^d?q3@DJ3R~xfwEE-Nb3N zzOM}TEC(n)7MKtxsf)-6{uxSfzU1w|6s38QATC?!9EqGQ=&{)j) zS(+wYlrnmZ2g8&$*AjBV8bU<3x|#XxXqj5k=dJcea5b{S$WCYx^J=di%QJU}>wH92 z<5`Pow~9{5j8;GOiLu$GC2vVjr*pAN^~cJ3w+g8=p~>!I>T3hDFVK^g&*Sqk&gpd> z553(~9Bd%6&nlkfS1hf78|kr{ZQ>D2F*8D;zBvoD=b~fl~ND zBOFv5s$#z*ByHL;jkbhDUa(ub7#_+oIjDE2%(Yl!woh4&kua{uWH%j8-~vT=o+x%} zPfGPQopd9C+)noR8bQ@2lPDWxiV1sK7%}w7a-~_64cHkR$Q{4SjH6u~b@t?VH0H@5 zt6d8&;70m`#1Dyp*sE((i>LI6(O1oRZKu=?WI46^ZPZILTfmt9+?-9fGl1(c!M78P z8ZsQiZCmD&?TFO?!FGii?P=sdZ;`cXpAtIrU?k@-4oqt_!8mWz(se6WQzv*4RJazh z0h@a+0AnJDipVrnPVgDr5SI*wlc+vqSe`&T&|+jWTdKynohCQt92ehhgurQ`TST(O znSt~WG4p!8Xg;9|A6wPah+Lty{oI?`BLh>~RhS)cCha%2{?37WO2tJ&iKC^j+iIdG3oYF>X3~y! zt$xrSY?h7+ov57s*hyXWczH_8q=QOV*|2)4oVDw?(vdi z&hA<|UWtm%0FL<*T)qSYm=io=0V=3C7y?`zhT$o6t_+p9V!1Hi?#_}P-qhuZ-tTh8 zdZr8|cCra5wYpANi5a%EbO4c*YaD=iAl9w4XOsDiYt93f6;@-m?=3nWHjf}y6y{5z z=PmelJXtLFNV8U5!n-}p^Xj~tWHTP!n{m6=9Byr+Wxc3!O&AIDmXEcBie>wD+Z^l~ zRwx?sf=mYEo~||;?L;($O~s<;o#i6cDrua?#8^^wE#2=`sXt7uRgIao3pt!JBebid z+G4fh0+VgdJ(TPP0QIm0wx!cxm&BqCgqj1s_yM-%Xhu&z7s9sm2UP>2fEi{B^fXY) z8Q2!$t*|ZO0&2mMpM7Nu!3Gd4^#X?F@dtl^ZFxMExaac31vz>j$0|R#Ag7;ECXxrD zu(fPhMhCHi#cXADMJ$%LtCw*t&uWj84>JQVyZ|(F-)RR94?TAlLiY5th&M+^>Hro+ zS=}wg$w)URUKpwS2A_aw7Q_{n8wp;g z5sx`H+Cvq&W5b{&=!z_U+!J8SXS3Vb=t<&nECHjt`bF*{`}4#~#3=_CUeynivWq zKOlLig4JP<$qC}?Z7`l`BDbu|{eytMge#3ynn+RspvNp-hWO^=4H6jj6|_} zIUgZRu8}&=2<9J#d?T*(c?mdU)RhNZ>1Qa-M{|&Q1TmWfZ&G?r|B*R33z(U&7+e6D zNu9MI$QNMdmnr!&B|q7er2C4S?uYc{fSHU2)k$Zp;+w?)-i+ql%wpQvOiPXGXj;d| zdo`7}d=-YGARMa3e%rF5ZFjZ{Pz0T*YHtzG*OOtJ%?XChv81%;x(gZP7H!7#)LNsM zJ{fe^b!ly(vl+XsE#Wi_;d)DKbJ}9j#*Mm^SsV?{=B{ga-)VM`F`gV&+S;9DLI`rQ*qG>BTT4`fxvt=VUgR`d(dw z) zI5AVpt&`^DqCx0dIB{I4_e{K5$m>c;BefxQQO$HU>tQvk=}pwL5~ybYh^hFCJE zD&PX#MC^()k}sg6d_+Oj?`5Oy-3@gCD&RNxdYw{s81MTftQhA-%1X`z@*D|Dr!`n~zeEr<;MJG+)K<+<$1djme?Y3=}C;J@F>hn7DIdazJDD4NLPrbmSZ~3UO zXRTFsQvPgV=u4PjuNQVb4BK1!zZ{?73BA{`H9kdVFT<4njW9i<$K3D&lD`rCaKt$M z_6Xzj_g9M}mh1NuvQU}LXFh(qg`Kha+0A!Nw=Pqow>Iw|;SImLD)Mb*Co}JZ%Z=pk zr%67qM{jPPephzrH`1c7+M(Z>!TJ4J7WNY?%fY=ou`Jbs`+MdO1OFoXQq~k5)Bfpx zSqXdiDNs{6bBC6?DRc6x!t`wwzyAIwa9S=I;I);hX`!FV{p(adkKfBj?@KzSbo|zD zJbo`s!h`{&j3dN9$nyI3Bus{6>lrl=uRg9toEhUl&fXxEMc`wVHJz!Ms+S{4242={ z095249gj03e7_r)JoWD+Pc8B+n0B6BVVgCWsW@BLvEMQ0c%MAIO|WlT;4!7dCl-0p zod10#8HuZUnOJTzI>mzPufO~!*>N^o$=hK0TGkK4^aIBO7z6oecq)Q9(pn}{2S&hN zDxQBjfX5@cCl30f@zddZ&%i~bZ`{zACAj&m_vxXedx5ntSva_=$jcn{Y1bNCg*k&=vavg1igZJ?IKt6av3X`!}|6DU!JvnKe-K+IWhc) zN2-X!B>nbFARiLEC=B7pL@(YErZ}bZ$|6QF`!0L`+%UdzU9atypUva@RzW|T%WQ1@ zhPk_JHuu@w9WsGlz~N!<{HJj!{gy=!!G6Qc{h$BAUb4sYL)d###v6jvWghYy$;H>Z z((mUV^1q)Dgi2fv8blp#nIhxDxJmKgnJAs)l>+=9|Groc5Tw6lJ<3^%zcTtB+8w0* z_*j>fDp^}SviNqDbm5}uM{K<;V~@CG(exvjlV4RY-=<{>^6>sAaQeC%FTrKj=e>)V zAHpeeIj29VO>4g!PSM{>@6Rq~wAhyYF^oQKl4m&{-?0Pyr97Z-$kbe#EbUcZPg@o$ zvt+kE{`=gL!N)kui76vavprq3OX$r>$zK;j^Bv0aBeoR1fz#iOvNV5N%JNA`hr>># z6#yAp-Z*~1YUYP};7{56r%s@UB1iyUK%u|B=6rbJSpq#ACyqx<-<3d*2GoDvf;v(w zTJ}9F>hIijb>6K#x9jTu43}SQpbDJ3<0cI?-%6Fov@}z>i-1yA@BXCRYSry*YUgaq zzjdrX-#OZyvdG<|<6Ax|j$3H&{^YA5YgPW}PRd%ct0t=V zmphok(LaB`qy0N|?^;sU?Dw0*j!9N8%9fgYRTnF;@-0n;^p|XDdc$U>UN$sO1CLP2 zMy5A!VR~nM4@`kUnsv@aXQQtw@WNg7SCv(ahfgc+qP;6ucH6~a>}$$10?k;hCnpH^US$yDyPIt?oGbnqKH zt`Ajt)qVMjA{Sk7U83%{9nm>Vte)-D&+ncp$rr*A$ErM$+>-f|r)sLFUbb5ketlkc z+nDp^M)^Zd8JBQ)nH~RZ?wTdoO6$Cud{;R?vx`1k#H$xM4WG@Obcq}F z5zM_C^6I~p5G{1+Gwio#{67!*UhKwVhj92i3cJXyxCEi>DfrwUx>qj3>3dJ%|MvI) ze!&=d2_W&N;!q}#$H@4*+Sxu;rBIpU1RS(mI!=Kk`-i_r4uPvwxQK;UXe6$o+Te~0 zvXjFUaTN9A%g?gc2164WlPAFZ52B!#)oCQ5|Zf!48G*5ykQZrY=>0Ac?pm7D=&Z4@V|=g zGnIBQaZl>`yg8rFn@ceapOtd(oj8aengukutF z#K%mPV+&uz)_Y3-`@fcy{_6WLf_pz<<#Cap>w#Ut^Bf!HXWU9&{rN%h%c~n0 z|3sD5Os_ODS=LU!$G%m)(``CXS>)y8(nAzs5(H#6dqbFnIyT=U#eA$4s6cV|ansn& zz;hh!r1mRM0=s&$OZTwZ=5A&B!8l(#1Xs-cRpy84p>)ct6lBe#;-m#>_2?N1qRSPKDU+yHZ$*3Qxo+Y{Y zjo8hay5Otm0-}nbIj|pipsvik4-U8Mpjq7?_k7*$^HP%IlBIjE>6`cL@*Y?W%`?;- zf6>=8Uk(0-!Brf_LBfc~caL8SGABf*&xm@G?n$okl=3&EiW3MhR4-DV=C5QTrrN=s zvIjvioFcLYQNW%jlpvA9oz8xvX{r)%#V@VA!a&fn4$1$OA1V)$^7I^AExxTBW#HwB z_VSfrTiUAkIa|r&D@reFfEt(z4|cu*k&%AnbvoSXWS!}QL2COyq+fqAg24R&LB3+B zTgm_KxT>8!(;ROr1=&|mhYs?#wIHNg#i6Za9s+gcg}0P#l;@`4^{gKvJWYNQ`~&D(;%j;1{s zc@mK15;2AzUUoe{XsFKi4qRlsW*p?5Cq*6qz{~L`2WE=m^ULi2{1=aU`tkQd%nEIi z>%e>Ecg~PJ*Oq6qQ)M?h|RnT`7Om)O;F4gayqH9re?d*uqu)*0o>-&VQS zY6wc;AD~=ev_@X4T0u(CgG}ZLL2sy9;p6CSfXrui;Ko0pYTcTO=lG5md{>+;ZqOb)C`3M%E`84LIZX&;cig1GzUGRs6J} zZ(%rM*Z&dwxxD!&jafT3=6yrV2#mIyQ7Q~1YBg!!nUvn$zIC17)>2kdMCR+gD#!7glhaJ=x27xMj`z+#=; z(16~x9Xbpg&CGlFf$rf;E~&YG$#vwryq9@OvfM^!vt7jhM0(y9Isu9Jb&jT)E=c)Xo*29(j^at47`(_%oF@jy zKw|J7GNjF*wrKQ)gswJCrd_K`rXmTb)vpDj?DlkLV-TaYT&s{#GH=6y*q4PCv!4wH zvL6cFoZzHx1%4aCDiz5M`)b$O41*E68j}0!aGuWRQ!?tMdVfD+2UAU0j|Q>9NILE9 z=0mmHoZvj3bn%gaqtYDD32y3$Fq+O+tU8Hle_>*Js&@Fu!TQPqneXJp_Q&fKw%1UI zMQv}p-!3XJInzc0I~p5x7n+%qb>9jXn--N5M6HQpcU>-BcdHGKtchCMHG&i)v{4!_ zctTu|%QY<{?M;ug*3y#Q!$RC`!((?2Es;@6MCV?A*VkpbALIm=74QGE_a!@yD@kC# zQs@DU8ECq>lVU%-2XK)@Y9}dby9~IBl(>nDNa-~8e1iYL2gAM_h7Z2^Py7S^1#?lY zTB=l1Rrk!a9$ptkk&&5^k+EfDgs(H0nr!R6UK3OhTa8#{zDxoeh=;4z>7v&Z3P>CP z6}80M!t?scQ>5*vTyN9$iob)^s@GhnJE~_THFh%_isrPXq?x@O*|jCu+5}w0&TO}* zOu*R|Hbc0F4(Xm3s@0^ZfIy-SU;A%3PPK1 zO{go7Qm@gQ1keG!r^4+Sme@npY5}X*L$!5F28<91v`xy~v00-xHiRFYG!OztsPkgZ54CGfLu;u$r98ar4!Y@ZN5)tQl1gB_8afQ+X`U zfuW9SUCGN9hRgJ2rMqn5%>XjOWmZoHSkkfb^(m(o$MZ{AnP|I-uP?yuDBI9Vr#9&? zOMsRz_mp{NQ*$Me79ltA?ZkD3%*8;@o3@(zY}O@U4lz7d8qYG*@jDy`PXke+`{JUh z+RgfOvvX=IQg%v!(sskC41zKIfTYl|Ek}c80}Vd-g-F2I zw2f5f7N8KvbTsdHbvl3BNGLA^x=fB+XtBa+hXb08UPh85g~#nxwU%Yhje@4tg5-8z z?h8gZm~d^cNskyzUkQ`e7>t^j=m%>`CoCzXdyPKNrMNXU1OV*`hBSqcc2kZk0gm9shVF%uCk+@R88({3+~{#ksOOuS2qIB`I;`OWKeGcL+st#t3aBNd zy@htZuFgb}rbvomY(@(v*={cav^t2j#7t;18Kv+VyQJb_V`LH(J{vMXD_L7}XGYP~ zj@a~4PsUazubLX!Wc|ig+zxqN7r`!&O_+)fN5gm%EvJL^4jP5XbedoeGwBU?3NP0P zyszzQoiJ%n)Y&2t2AMr=nG;}w=6r(80-qv19G1|nw(wGP>Xrc4=xWp&B&(gF!EUqL znk2|F^H(E0>%@a$$4+``wq%D;ZL~JvO|2aci)!~zm@eg472)qo!1DslA&xO=EPA=v zZSvE|A^ zw`4l4*(&D5yeHJKP60SW23W7S-_{z|TubvlM#YOngPO}BYeo5WXIm{jS)|8JyP3^} zOriT$vuB!93C9E(vB32t5C^h9*4tno(*_-T79(~}v6QG!nP8l%k`Sl~yC4*ScUF}c z4MeyhfZ>J@Ti~>K5uHuiBgFxmn;tV+5p8yk?6$5XtvBvw4WQ{bsv#TG%K!k_EDWCM zNaJlyUOBE@$rOrbNp=hM5+^Yxg3`OXAO4=a$}uHmj1divscrJ*NOzeUC)9AI$$TNshWm3 zvlywPgwwUIZuDVI^{}ia;51FIJ3fwj9jvvU2PHtp7I2Yk`tEwpuL5C84;q9$!g8=7e zfsM@ z0uT}q$uJf}6V6rK2as83CRN{kY9q|c5(B%H^AL-`hG8zBe{Mj^IV z<+Oa^N?@iArdK%Z*GM}WTd>ZJ!0rU3 zL`s^uSWLuS32b+DV-l!MaXl1S1P4r3yl^EiR(dw0Oms|%^g?ZcQO34g#6SA`vy$4RyQFS+d>|Y<5$SlC43F0pKRKSQ><+^sLOyIvryj zFkOW)xJ`d!D;BJ3Rs!aVZ;h;&Llo(j6*wC^9_J#Slh9_^Ws-K2<~wK7lcG9xb0EAd*;voG+Xtc52L^4xcT>+KU+ZkgI0CI(A2DR5_ zLKr5bU`t0fH}Ny`mg|@jH0(CO5fNG@xOi=4gw!$I8 zi~O`5VQs$Vc#+q!hwGM;NR~RQZ-=A)!f3TRTgl>AHHVsZ=d+zz+oijd7%9fW++~@e z41}GdBlKi1q{g&}_7-{*TpWv0IY>;|J*xeR0CuSWgUjvPlFRa#b zF;p_;<)<05x$yzcCm1+|L`-XqcT=e(_JedO(No?v^JbOQ6 ziOPG}Jb+1!a*{lwlIRCLt^npO^i{OA?iU;*C+Hjqdw>FZTD(vJ7dJYLZRgWjVzi*> z>7?y@xSzR>@3J9YK@|#r!|EkeYL@2rTH;pQl4iLWwxrW@$%YE|O5hbgd_cHdm|?|h z`O>57MNh|zN>wW#{8BiMB1;L3(n0j-fj;ISLciQqhc^DSzZnzQ8J|(<0V=%1_YR=a zE&S*JDjdVVZS2TaZO4wc-^)wKc=Yp>kiXwM<<9zOSQRzZE>WP7mkVxk-bcf2g&kP> zXsUHv`ew9>WgBucST+67 z9cdO~eMwtP+I2uq`9`CkAdaYlBu#h5;5O|q8MkTRNOQ?b zONT{;+>YF!Xc{;OCr}zVph><0IG#?zrJ*-Gehnf%0~6~dx7@lxhCqo2ruInau2EG& zBP*mD%-rj>#-okOl7i$7ESC3{yJ(x(^mHN&D`PuEMX0_s7aq51hp0DLd12FSW7*CM z6*1-}Cem32<__4ld`zlw1Y)h$$=1@BAtKgY*ja*Pv?+*wxM!wRN*~JDW(anh2~d1# z76eTd3OKzd+StL*~Qa3q+vTDz+HSuj(R4I4CCRX$!NQ=5YuEImEkaexdDZu z{oW4U*6+FVNk7)i-B|N1U%ynpWHrO$pJUub&3^ z&9F0m)gAGkMa%T(FG1u%uFkZbjXQL=F$$xyp@&)OyJ#vjD#gffz}yV0O+Z>Th23+7l z&}#3^oGN38Mhu=z;ob_C)~YzupfrX1T}9?{5?pVY6pAyXw{%fVB0a>IyJG^`D!oM@ ztE{<{*@m(h0<~5}homzLrEX6)BcQ==sp)7>q!oQ03Lv<~!P{D4&N9tPWR~o){2YkP zlN_Z zO|o_wxG#=H#^)E-a+wx!lU9^a z0R&OCYfZFz1f_Jub8{YsW>7b6Q$SZ#>qrJk1P$xp5S>dRwIrJKSmsAk;B;|++u_Y* zHbadZ^^-+b;V@oL4oVM3c4099K%J$Ia{S|r<);>Va&Yf9S%9 ztW1uTis;2MgYShNEflt3{z)m8>T3A~i&pTd-z#x)R|J|AVJT+8}>pGTNXBM|g}u zD83y=Ti!fSGb$(Rg99}&1iyWtW?8}GFi?{!Gh*H>P!q*5m>@nR3Lb+%xJYYyL8K-G z!5DlWDFqX`rgy_oP4qC#t2`?5D_HYPu%=Wj^m1yS2hTkZiYvnep9X9`JX5`JQMBA~ zBKQH}a<|Tud?p7=P-a{q!22_=hZ$F@!$VM2@%!lEp(p2rPM>W&E>h0FQwWF4Q#b9i zf?R&c^75=4N0Oo)3}Ev*)YEUDJnH=Z{yazM&lY$1G0}#V!GA2;un>079Ra1|;J^`p zU+4&ULkuE<<5gJUlOV*eMbu&CM5q(r@FyXN;LG?!ltj_DI~6VnR4n@OS^(qoU#irf zr(+u*(ekF?$LCKK$;@r-B#`@`A3+p2zu1Ywz>A$N0fjLzD0lc?jhhsTxJjCBR(?Ei zsih`AY0EevPzwj2bwCMZe6B^WMp>sjZ)Mo1Wo?$&0B(VjIO+R4fT(*3nQGap*=zL| z_&O2RU0kfp8Zg3UxE*4fm~>dEozg6y4tnhl7jRAx;$+9vx#c#K+|ZWH*{&u_-efo< zsKo5^ir&F{jdm|1selFiYGY~Oj6y%Orm)j&*p90WU{UYKO9so>CK)ivXgi~6Oto=U zK%=eSMi%5m0Jpht@9q{@M`xx^r@P!}lR8;>Wh8m9o~GUoW5b2V#qCixhy=6I;YS4P zvXaawSxSg&uTIp7dE|;c(tyYA(4hNhvYu^5@q}1z?B#;&1J(9nJDM6=cMYy<6Bc)i zeWka@Nf!5?Zs3&wuZfd<86sKr@QOIemm!iRz-!_pUxr9lvwTII^Ql)MQ5SqE9IPui1Y1x>tG5XTcos(crS~5xyHJNx<<^fqe}Qf;9Ap_-r{LO?M%hG#JHfarj)onKo@I@>Exw~kVTbTl5BsYcys0g`rYtrZnbMh3%(C0;G*fsLtcjXz_P}k2={A=< zmy#>jWaAlWAZe4s8cs4JT*jmLMVIAq%dD1OALlz0hS;^lVI)tK-Ky<1Af&chh%LJA zsVM0Thmzs;oIvmIw0#Zfwjps=5BBo7FB*g=}1I_t`Pra2f(4V0I-iVn2_>t`*@?vHT}ZXql}3^bf; zL8D!NW5-BDd$UX?D5E{vM)ZhbLtUE;Qr9Gnc+G6HhBfy4oDVm+tiPzpW=kYYFb;ES z%_kVoW|_qBV@;}AOU@e(1u{~CXs9d&)7Jq*lml+KPTGX*Xk9&}dsaVA1DhNPYqC+V zWC}hbISm`68??L5Oajoc`nYFyAWwGdEoisev}*&SW-c1?E<@@wU?a9UIoK+jbgoYr z)*1?#B)H?KA67$dFZk_hqEaoJA5m%=)dnzAx3sexPO;xZSDP|^(t5h#bkz5D*@n|| zE`ATNWaZC3%v(2{o^z^ufF-+n4iJ6Za2mBYVvAg!*%o67hixH?has;Dfm3>*pM8c! z*ywA!SUF&d-4$1WAUxvmqkWIR?8#sDd!_E8yz4?1;uS;l?BzkB2CfoQI*%6PP~E3&`d3S){SCZ6R#{h`)Px_tYX-8lXemPUp1;6gBS7s>jqY&*76qTlM+8~@QT6hU%8>K zdM?5Ei+&>qeu4vlAIN?GnaJ;Jk%s8A+IuL4{%Odxz0Vrkg@v)N7}W`o2P>wGfz*xX zlnb15ZWJk!KhkY=#$)lTwrw>9><{%XRb2A8|LBqMPB7K`@jWaF)=;;`SMLA(Z*65b zmn@E}cy-|&yihg2!D>8igWpH%pA&4Cd*bh*-r5!ap58yl@>$X@DE4E^Hk123if891 z?y+)6y*H^0c&^(qPPkZLzW=STGJ zZ28W!Sbj%^nRD>Iy?xm=Z!FYbov4574JZ^Ri?cWPFC1(@<-NIAGvBoVMHe0Tfg4bG z+0wo?D_$IYd)o%olev1RW%XQJ7+s`5U$p%1(qD#gH3fwjzU35L8hEicEe^GxXSU;; zhEhnwkJZRt*t2J8=rTH~SHy6fQXr_Jjvq`a*B!^dnpB=wSUY8mziA}54(@%)cM9Wp z|K%W#Y^mLMyqxSKI@^APS4DIjhHtzfCgoFNPp*hDxqZ;cje|po1LOD>#Y$hu@B0Ab zSEu~iwi;$rLUWd`{PuxxqD+)$S^Y7I{jKm%}hrIhXUa1#zfgD7$ zqR_Xp9JVe(CK68o~Pr&^d5cU!*wpVIy+E@I|h`r?0(J81u z;~Fnz_FE7D-T>++A>f~fsxCt6zx!hS2m*McH2%S=(-m>CH<0opo&kLd`&=-=TcLg$+j^CH)uY(B$?P2ky$=BR#dBWgIqzUS zA853k5Ng-4o>NeN0%h?88s5x-FNuoz!7AhDi?^!`LcGdC`i42U%pg1k_h+1i5Amd6 zZ4fQCc zeVpp{M)vp-s@wnl`+vUR{p&YC-nu(8xfI4f%ihcn$E@%Qj3>{YOb&J9-TQz1&$nah zgv|T6o#=BB)o(w@Ko{H1ADZ3g%pUUn2!BOiAB(<*akzxPf8ikdx(*ZfocMjw*9G*? zj6Xn;hY+aK@dtaE^EA8wfzjv3UVf%RA%{!;&?x!Ge>=0jUwi!)%$-z6$jv{lF*e>JLfRbL)~gfB)~#8Y`ApIhJF5 zrbwXqv1jFwBV40Mdw*M|@#cV~+pf$LWIXy1GVWYT#uZEdXez$YAh^BOb)aIwaQ&l} z+d*3wt+wmZHNJnf-C9Kdpw)J%9K6CnI`M4nVr%MUu7@{>xML7*FZixm1_y(Bxe7kC zsno8vD&$pX{i@ElxoU}LQ+Q*;GS^2*v>%Db8)yLlLZRy7Yt7qe}k^L+_o_f#> zFE>hm6o)>c|GrMwv>$pOHPxq9z=7NJ|NY~Cy`2O;I_u0i61eqrr~hjHm-1ZVo*ljJ zf5FhQ7V7;A2mTibs`|G79oh5mNB<2>ob}&8BzE2D`5&BK2YPZ+1i`Cmdgb&yRLuY5 zT%*Xn_VoPpd}E)kWT`zuehg?B8kbZM%0o_~}HifxJV1{a{zjK|YZ;VpKhW zP&>LS9*UBS5>8&1sqUOiyJ<@~U0jmX^+u_qp3d+)ycF-9;m*k!{v;F>DN@~hIV$nL zBr&ZFXJcQKB>4J_n=i@f;_cTP6d`%3IZ>gl>~+eQ-OJt&<_Ia?-u3<39_tNPW1+g= zVnKdl9?Pqmdc{<^Xc zy-?a;6yAB0(vIIBqkA+rb7Rdqs>olK2J0GE>gCzjuWGHxh5lJ>6}GivUzDBvHc>lI z0Q^C{^6a}L$MF(zmzCkTZW=$2KHr@`_L@c=+dY~>Bp-R+#%J{+a{S;TX?0a=sby=I zWCFXYv5QohE8-^KDTJ>YoAOBk5#(%Ow0~DX(&`F8!pX zW3EWT@u{U_j%K(2!1mrNjIP4xeJ=CQYVXgHamfT;)7J543!~x1sOFTqRs#aFHVIyJbhQA8w1#f|q^Pe8(?#P0AjF`KQ@@spuaUHGlN|*m%y* zfhWCr4L1ki{_^c5tkVY1t#dX%cJ5U(=Fmh*f90U8riCe*{eiic$-NbMU}=_j_k^~0 zjJ=X|@L|PYW^P`^Tr}S>Ob58UcLc5+ ztI2(WUaw1A`zWH64Tc0x73XK7L3D`b%m#j4J>A+1tgMD?4|L8(fz``J%Hc&R#U<+LC2>#hvmr z3xriAWr{ApDVrt=ovw5KiPcen@{h=Ad8Ru*Hjm?;6TRr) z;VQiD{PF%k;s>|#Yb?LU@@p(_ZUx;7+}pNtLM`75@mJeAC{cHo*Z&~I?K5?J2I3&_ z{g^wK!1bt$OvCFc(!8P02=Su6(J4Fbp0hk(18;L??%(nJVd(qjljmIRJLSYi=qa(mr?fAO7`l^X#FiG8`#ik+W245O8B$e%GyLyH^LlTJC{f>QGdDgRX; z2cPDB>HD5hebaqy7~a`>vEh)z^%OU!)xsyQ`q^D^t9nf9Z(79|Y^_<8Z7XO@`Cg7{ zf2W&IXH=|aFZ!6&p;5z_Bnq|03^vw?pFaNDLp`pb2*Kh&sDb95O7zA;^RqVYp z;(TM*Ht_@$tHjD(650o#Tw4qM$T#C}n(qRB;lek7)DQI>4g{80LFj8n6y?w*O9?8X ziN2>%!Eo}6d<0UyQ19Z5_Ooh_PRUtBiKJ?f56@IDMCFz8Ju^eM_?tKSf^3z749?I1 z@c42NMsdsV-MixA_b*{i7-a{PO*e|GNADlm_oZsSxQa71E17Bj_knX9^3Z&tvEZ#s z(_Ai^&hy2eB*Vf>U(p*651iOjx+ulL%QP|9`=x%ubGF5ur_@?f^q!9ME7jMx#a3=u z$dYKCD4~&y9Nw$sReXOD-e0H>cVdU}OIBJe9?z$e*f;HR0X@Rqe<@c!@Qk%Q{a*34 zN`RFeevr4ogH$dBbTb!ys-l&9?SZZ3quG3q3Jz1Qv||#mVBJso^_`#NvAFrStl0bi zTLgh*z9cKB@1OQJ<09|LT~zGF=7g{pHs2LB@|`3$ek)Xy@8EC6!v3l__QETbmET+? zT-e^%@>c{QzG1<`z1R=Ff31Im^E+vAPVzfi|5h)4w@N+WJA{5iim$t`xe8!p-@hUl zL82%E|F*FsTeTfK-hMAH9pg7Q^1l|-^|kEa_iD}_?-r^@jtQgc2zca&qBqCxmpko8 zf2nre_dneudshV3I*+(H@xa%6q5r*5BA!2$D>AXIodk0K^CO4?@xN`pR`@UH zya*R4rgmXwdQMxve~}vzOVa{HFDRbMKfJ)ei=8b2i~P%=LFfODiu)6=zfnEW$^SRU zoRiL{eZA{hvD%hIK_=K9O*j9;pEBw<5?pGj$xqrcP6*V(!Dk&%0vVrc(W_C`>CRgj zHfmX$B{qOtpd?QE{th7OUP7i?wrciT{RO^Ggmo7esS+RlO=C5oDo!F_IX9`;Jrq>myuM!0zO*;95|!U53MQe zG#j?#Y6Do*`|*;&GPX$uOfuTeXc|*(Tour0>$i~wIT65ZF7~^-1=i7-snh8$H`=65 zA|*gc9;~OSx5L)M3H-Fl9G768&7bvRiR3P>CP6_eE#iplC0_oqnP zQMulx>$RN{pvnzat6p>c|JnPpB*l?s(XC*0&5m^&ohgZ#D(f;6^E?kpUOQH%2@q%i zO$=XW5BIL(+55O_xJx-3cw2aikjP{Zf*?Sd)m_=vStN*X4-XFycMl&{Te?0q!#Qiz z>Wp8C%xW#pdSZA+7Oh1|&y7U6&J4-XCNkC{^;j!YS2VWI676(MBF4nDE>g>mgW;eY z(VIr1UzzaXS1~skk83GmUXTi1)*6ti8q2fU>9)9zjnl;r&qm^Frcx6&7N_~P{m~*mBlJQh z(jyD)WQSCGjr<@wOQ`9w(B5h)B|57-q^Vdz4!2Vb#iYU+%OrS$ud|WLC~k@^c3LFn zh7#kJ#Xccu(FJF%vghaw2Q0TUn^|ugk=uEi&X#jve}E5POO0)}o5?WVsnE%}HfguC@noK&{r(GfA--9nA72v$2+mo>gRxg&598 zVzaU^OO0E}WON;t;~RQwsbc0ewTTNgan>>lFTG)s(!xZuwUsHW2?wm_mGP!sOtF^K zDJKcmDkZ4Wyg6gS(`lmAnP-~Sb+O;7h2x!UdDUIM%*;x5HDky`F_S2EMV8-GYWlK6 zHpmGaFtJ=F^4(UxHt)2Hi{dh!;B%I!#MZJnu%>3NsTHSju5C!2X)W3usSVkBO;*cw zYtY~3#`A1p9%p*7w4gTQ4j<0t)i~Kpx3^2RoXw7mLT-{-OSaTry>|74y?3ovf0M}8 z3bS%)mFmkxDZEM;*0kDN7o{cBsyFhqxSG^+iA>m86lFeJtGPzBQcthj%%Zt6`Ch3L zue9ZQZBdP`W9C?xFY5hqQPzw^_$6AD6E@Pr^w=60lEtwkSGM+}5>LnU$uK@mqL`&-d3w^|k|dSY zVp=0MoNY2Gve+YI^khI(vn4nn|58Xxf>pN}WFRz_g@Hns!~K<($d^a;jg%%6rNP*g zij`KhctkhU8UKLX2T1L59SG&vJp!HJ7El57)@F7dbljZnuB`~#(F%E~5(QviJ zOE1)*l^;fW6RH|*5G}db@6pZiHp4Xv3g4ZLmM^cRx)iHt7d3Lia{0{2aJC*d31`J# zx6xnIluG3JO}6?%Y`DI)0u&_(dX;H+SNUwMP4{VfL}vk!vw7N3>#?~7sGpnCZJN%n zT;TxMbbW;i|Ht9A4I$eWaHYVYrp6`WDiW| zw&0aZ!#;c){_!O=79|NdcE&)#)Kuu?8GiwaEYN3wnkp)~08GF?;D2ABZvV^N{AF%l zV*-9cbMuX{?Qc;e^sj{+t$ppf6v4Qz9p{V!EjwWPz1w@>uT!7x)ywQr@%hr_i!+@w z{_%Tv6i4xo?|9+tO#WgOhhRr?cbimcqsO5POncDQT&0!1mm1f^?t-5ml(uRt||j;hNCL1P;Id59YOS%^AB zM)c&i{7!ft(C;ErC$T2(HupQTRIgEyvcH{D1P@*k@#hg9;!h(y#Gglah`zmqe7^Ya zfBkpElm!iVfUoE2hb)L6n)ch~QEs3=f)7~-KMZZv;S&VgJQ$Nd@@L{^Ly+c98)X+&y*WdquwQj3_y=u2- zcB%3GKX){6s!X1ixBV<6*&&Ls0dPWNcV#zGz+w1mZEZ$C(Y5fVX0PQxk?KNWL9;(! z2povQkT$;u2Nto$7{;+{pcbLTo7hby5T5Ro-Lf~p4Mkz`s0`#a5Zs@aiLfMqQyd5Z z+({CYS79N-?@-5ULV1nfIqv3<`IZ|wr=kGdohJ^+;O8??l_y=?A}w0b)f3+A*6We{ zi}@P;WW?^C;s#)MHsmPM=bN|bV16SW(cw&mh`>!H8BN-{+dZ(&gjSdCA?RJ>$wu7; zAK|wMq=Us3n4ll=AGE5MbB;fJdwiZ%^~+NI@FO{Bub2-izc~Nz#QBeQxPBTf;uCGK z>#6r3t~~;Bg`f6V%OU)Xx_h^mNA%RjVW<|mrxxJi28L0vv4*DOV{qpl9-~R8X6_s2{)#-9fb-k|F?_U;nthC;uI0UTCm-}uUr`tN z&d9MB^|+@x$mG%doTBa^0nqY_cpLOs!AH>bGNSCyf+&ZM=*KKQ|Fclkw*^Yzh#o<@ z!i)R;@Ej)mjurZ2ExXh~<7sflU18Zp;d4_)nb@Pj=H4y=JPscq`}RrWCoW-_?=HJb zw1f~SQv?-YRROO-*vd{JhHV6Q>Riatv*0t}eP(G2s;N7l3wr1`7ieHsU4$e_6sH6h zFm@9Zq<57)D2TgaA3?!GikJ=1ME+%kct9%o0J@udH2mSyB!dFPpadV`d7@M$I3rv) zG(njdD2)t%k_|vU2L#Fc+1{BWcz5jjAa~^Q^&Ve5$36O+CLr)3hT~L?hbn;zPk&cy zIQTB%r-Nm%bg*l>YMoWAes$1tmLU6Z?+WEKXxeXN1_^Rrb-lSG&HuT;_@}4SLpsvL z&)gJ#{*E-cJ9C3iN16qw$Qw_)IXmYb0Hsyj`J8W1<5rmsvH=ZNC6Ci3I>Wk7aeMH7 zFwI`T!3GNcUU_(Y-}*dzq6eP%UQTz~rBI0dXD>JNKHio0Zzx{A^Zfm(e>9)nfHwd_ zVhIG+!w-vpNHelyERVO}V;SL$Hw!~6ydcxS7Z4mSL0>JbrUFVE>Bu9(MuHUIsPsW< zsdzcw<-Ut|LqF*NvAf}xIcOA-T|z-4h~$e18aYuJi;8G`X8Q4>WP;=P+Xv%#`L^e> z26bY2UVvI_O-6g>Nif5iWQnjtM{W30Ot<^k-aTx4&4WIoMm&UC_&w z<|2^<9MJv3Nu{||BDzzuZmT4R*Yq9xif|W!az!4#%MPEv(@s1AS{U5B(+&uX_2{${ z2Q#``ryVMtB4bfd-t+#Qc4AZ{4q~vc@3a%467e+XrvTfm#L_lt-8tQ()lTBH)sE94 z@mH&z&(vz?3=@1nubq1*KVNbjQjuLc!PzI$N!PMH>sut_JIBa*-=YiUj8b(?`!oOV zKo!GBV?nc2eSrMGfBj!S#ps?cX>X6msXli~2*vLP?;;`3n%ma~6rEypg*F=~K3CjD zT)^kEFx=7P@9MO?Hy;vEO9b!yO&dAIjvF~8JR3Qs?%&9XipQVR$DN!g>X~|LM+{ibcoSTt`U|V=HYo zMjgg}I1>$Pr5twSj>{@v_I}mgp~4v^^g*&BObsbf-7rjj64gt& zuApdSuGM#%L(L=IB-09KIO(;}&Se%0ovzgDqvcDl+m`j0RBhY0l=ddUWDDDRWo@ji zRB4$^n)WBrO`{ge_D9SpQ_RFVN*@l`+jOjTCc9FUIz?2drhe#%$ZQR`Z;xZ1en( zOd0vOG7HD0N^!=`^hh)(rMcI}D;FU%@$xpG+p@V?IHJpHQ!vM^j69r1)76-$yutyM zN_7<0(`{=$8^)WZSxqgjr(C|kM=JDuGhr4|xYr?~iluaT!eSGRgLXpoe1WEmGz~U5 zJ#|{%l%}ylkr;z_vY@XR4FrT|-<?`veVco zFP0nG_-nI1kLYW&-ZpK%5@Msl%P1))8u6_dro>LPRE%_tQr4_c8M?aQUnA2Oy`T{6 zB9UnpbBlSRHIs4~IAAWSjUgkS6dFOOtNS5P$a*u zg>!O(Y>w-Rbh7xGj=j*yjo7W$Wtl1uV~%i0mwPQb$(9IizKoQpPI_1kN8@HIA!T1p zBc4xJM!du>iDC4$Ri?{ktP?J_qSSC|OY5Q{*hj0;X?L_zksP^g)GFmU%@y+LMQ&rN zY^PA{yl$F$A>KU@wi#L^>HP(uYfP?LsfEEGF+lrF{d_Mcx?tpN!AHIht+tmw|7*l*2fd$1gw z$-$2aW_K#ays;EY6KCtOX+SHw04Pkd!6GjTn!sA%P-GMhP#H1ihCUvudo&$r}L!%`|c<2rB zU3hGQ6s?5^>W0{>J8b#mAx{d5?BcBs#vpvcI&vVci7GZ?WuSBP6Wh5 zJT%lWZQSz~& zEl}=!B%(L~g4QdLEa;$-yQ%NcE|LDDw2IRs;J6>qg+xqW?XLZ{^WXa-W_ngzhyZ_wk#d) zuuq&fzKr7+{_xZ3kuF}3H_e0X4aA}wA5?!Bd5r_7OY6ruB*(;vWf7{zwAHQ(#5fT)_>R0E{)c3I3&qKhZMOaqvTX`jLw>KmJTEA~)hOs8 znc0L`AtWlCs(}(VA;t*7pk(}0Y@9eejiy=`@a{}bgmP;&H$Sb+^jD~!l5GiTGjEDe#?EnNej9qXN zsT_gNGH+K}Pm`N_(uq*J*xCpf>}SuW$pB)w{l)u}f?3EL6#t32o*c3~YF>S|?tdaC z?=1zje{{5y_#WtkQ$FYMK5Qk2HzMteHHV?aI=tV;E@lvkw@5*2g3x0)za2ry>Az?E z5K0DSLnl5z->U%}vRZS3HOPHLAeq1aTe`{uabtcF26H^hA|Q3O?ItJGdio7lIKFKX zbT3K5FYyYxKjzFXHh6z^;wPRz-0PTR4lT3@f{UdTh^8ZHAqv+H-@0`F_1L-@>$P zD6vuGRa{<Bwg@m@e7H?EA*^W#cgYtd0~!V8whKeB=k*YePY;1P2m>J za$!Gs27fGH5ii77G4~OuxsiW~XHu z?J3dTc@Zg*nP`4a#9^mVAPD-`ZoH`a)u3^8(5xyMDYXLzT!bshXMDYn2YQF}Z1A7C z-h4L!c$*tza3iq_2}|vaw5-X|vpvO8O-MYr(8EEVtM6A9nn);=KI3i~3=0l;Z!(5$ zM&`fZdiZr^(`q1O*Uss6XU8{SU@C$rw2@_-QuGrcZRBFbYxV>r*ZG+FKSUKNT+A;5 zAUl)##&e!feDEhGwcxgm#3t`dsx|(VG$O7>p7cifw<*z{;ElI@;6VJ1e}MQ;I$215 zA2fE)JM1>yCGbKJVK%_uTBIg^@n!BqKI#dj>^z#z(ayNgI`Aios-wuQt9PKyz5j)( zIPi1(z*?8-72sms1Rj*_Kqq1{yqR3~1V`0%r{gb+PsKn25{H#b#ga<}iJtHF-bkGCcI~sl-O_4Eb@sYNJxE&obx(ntGv^5 z>6|7G9IE<=A;)3tl)>5YpjJ`5P1ODC$pULD&vD61>&ZhvA6o+jR}QZt=Gtg*#t#dZasv_sU@}3oMiDT z1~j$^>5bkl+$(Tsjy-xXdDO%f{^%Ly^GOClb>)nic#Z^>W`{BLd8<=1aP~QqHtkTb z3Ypp_5eRoI1`Njh2cYocZ7bnZrYhyeeR5j-1&GBMkxjLbpc*Fld5fS2d~O*_UAg1! z;SM`j!|GbEeO;!sgX;H7bWCT=B$W9zZ-c@zjk9%K6~T2txP=3i@V6*9o%Fo!P*6$4 zTE*2L&RK%sqmt%NMB!(2wx1Bi9<|w@=Pay`lp7w{!|(ueuq4^v2301n~s#(-zOWkDECc z9)u+YUN^39EUB+wy=crk3eXP7J^`=|l4XZl1PC>fWj{vY&R_mF;riur5DK$j+ta*) zn^=npR-a%3yel#sxnhc|U2Zr4M^q!xUI@&DPiT?VdAq^U7V}MoVs5kZKCfXy>U$14 ztf7h|0*hEg1OBgFbA+~ao7)Z?I#vSVj=n-piOFIYYuK$3jy5YtO(2K!hFEA6rLU13 zf|3TybZ~S|ebv=gYaC2o))O{#%EAIj2)K&6z=PC2G}Pjt=S6!54w3cN9@(%Q=8Ylt zHeIvhlZJ7?6vM1SkCY3A%++l(r^pS-xcF;c+sieEqbDF8EWGW_@{e0yep~+NnNj|r z6AvJt64tw%s9G3L&D?O&&8Hu4C}gC_@c56!ts1CzCGQ8WF~Jspj2GyFM*kyA+6_yU zOy`)$p9tf=gS6?d$<%r1_x$W=;+FszKz@TlC;{)yYJ5K)DUho}@452=V%-jsXK9Q; zc`%H8jaq>kKYiA{I=a}rs6Dj^A6PPm|KIKmG}rFYZchA7X^BV;xfSxDA=^u)B_~M^ zwhtT0j%`i+mKOvWAt5jrbP!rh1V^KY|tykaJNVM+CcE8}rG~^(#vx;JZ$9-32`- zVi`W>g@F>?NB3JGmKnPKC)m-^zBlN=LIzG=mVyqh^|LRZn?~{d`IRAL?>A7J7l3Ja-d4q}78L*O@}3fll+Tcc2MW&D z4H5e#)F(&|wD!Sd@LpW+n~kG^VSa!mvUl>>*U?&N7dz(M%pzDD>u0T35nywxmrjlpCn9EF9^PdD~p+M<%f^T`n%eYRx+EgDm_wF z0UH*73n~b>>7^;EnAS)L$A((E!K%6*hjnHYglv--j9mauKGd^q!w*;R#)1WBE&({# zG9c7;@NznNNhJ2!T#!FP`dqpm>3MJ&XZHO`IGV8iZ6>%l zhu!#g4y2uy)y?RjD3keO%Za&_{C5aOs~zulR;MF#@n5O3lUCl4TzDl_LzLD(c;Pqy z7zvE-U(fm9d$PY0+g-}0W(EWQl00)co-M9b_~@^XO2+v7Z6WD0 znXQj&xicReziPD~9Q4xWsV2S}S}9izbhir?%{0uZJ(nfJ-M z|5hi_+Zt#;WDl_&kRUdVgiGx=y13E07t=%y}KlJiI41i zIm{}4BEJZso8EV(ucF};B$o^aH0h~UW59L?-`jhpZ*S!4IB0;!=ffYu>mB0&Uea*z z;g>h1JR#pBkatJQ>+}RVbqLzYxsNz(FrPPZI+%-r8~Y{W+vLa2TRbs4t4eM_Nye04 zDVfL|>ZbElWi$~bgf9zEOART}l2hlxS%AM5ohzq;zKJ?J;m6Tmcu2&%V*AJbFk0U< zFCR4@AMmkPvfnZH!pPc{2tNy8QB0yTl+f3r$m5=*(&Qut!qto|7P%^1o(E9-Md0}U z62|P6R;g*#gi^OGIx@-{ax!zI=6kvd^q0%7x6bNZQsTy}nr62_{V|SN+ifX^;xTm& zo?$CU6XqTr-LIXBZfl*jkKy)0pf4-1=ER%^tp%3xqn(Dn3F{)tzb449zPq{v@{AB5 z@N(fQnNZ@iWD_LHl%t^1WMAWW0}UFq;9ujpeDI-}^XgCj1{Ho<@*;aM*IY{M#%Te( z6oVhYt8MEbKc{l~G@dDwi|+z9#5zGxm!GAfK{dyzwDsz!xl(+6M&5!E444d7 zP2?bcHUtye(}8sz^T8uuZs=LJDPbycK^VS2i`RXD_gK{BIC3RC657i-=LTp@rfZ9u zTYmgfaQ-l_0L;1Wox&V(2e66&+NhktDw-_0G%gCPpy!1W`E8lJ^N{Xm%@*Ro5pqKZ zQ@}Tui;xTdK2%@PEeeoGrX|4Zr3`Z7D7L>e)N$V|FZC_EFfKQF!c*1u0N|6Q<;{MI zv109}HwT>og6bp)o?br=79?CCD8!%SJ5g;aK=@GLI!ldkkc*D!#1^w7@0FnG;Wig! zPC?ac7)V6Ri1xy<_V z|Aw5)CNiRzh(NwKmU?8!*Il3$#oXx33g?rB)e19reI z@aB~8WF-?2f!OtL1{b#;P$*Oo@C2z6Mi%ocNPv~b>b!mr3I2~ z7g4B~DwFk?tJ0&hyd3mudeB$z^qs7y_opS3F5Sc7-DF5rqO5^*W-xh3}t|zkB@Df`0{57yz#icfI zIVRu?d{6ZK7}0p_XWLt0D& zttRi{HKG(}Mmbw+kaBiBQ5tWTF{(AwwDy_O5_^H${w{Bg%B^>~>`Kz&rET`-S5Cd! z*JLivwVSid7ix`7s>T%PisJS!6ThXAliRpz4npK~;3) zW}cZcV^lexT)~>lXN$wdCZcVkiiQo;cJ-QUx8E|�{mLYAV#oxQTRZClB669UBWz z6<9M`CF&NR%BJczPAe#bERB|Q(%$x@6K>{`@$5+r=oO>dS)IiVe(9EfOpuw#%iNN* z-ErX{k0JrA$X^qoh<(u=_=B)ADV@ZnnAf?w;((49idRu2g0k z!|lJ9)2-Bf^XekxoVbEP#feE8{xBuImD?*Ln>D*AB^&BEyS8Anjj^R=*EeuZw_PQm z-(eMDFel+_SyJ%)Ua&cYoYxYTO9*>bSD~8MIwF!AhH-AsGo~a*o6#g6K=I9sQx$ho zv29o+X5vW2Y@>aK7K)+gv`OQWu;46|yHqt$q-M_hb7spA`3(7b+oHO@Li`0U<6b>a zj&Bly(^H2r^-p@+3UOdgh zH3OD=n<;DPVO9b)@G!fRuK6`p1)8wE%nET)l1@LVe{L3JA}|C5PVbuVQhc`&QOE>@ZjI|CMk^DmO>G@IBYej5xYRdPU_85Jd-Awn7flEt%?Pt;^$ z+)rER1jq+{V}n4`O{1dv6rG9yL|Iy-8#J!j+My_z{)<~H;&B_L)M=s&>nSud)J=QJ*7{qi6ctY1WUDq;aaQL42qnPzl1|d9 zx{L5{6b5b0Dv6r3X>GdTLX9kU54Bkg%TCEfLzhJr9R!}3WQDe}-8@>)Oo+ckEGMa* zPuj8)T0Vmh#JdA-e(BV#d0+YTI&Ukub0eznYBl8)-d9#lI_Pp16I@F9cfLtc4qbKN zB=n?{d@MD#=vIHtYg3V>R@zud&~t3omB`ZUFfw!pPgMtH>~y{3=Ju>hIuA{*uGc8J zKvw2NjYZ&(PAwJf*cLnFe(NHX8lv1U=ijhI)rQ_3Zqm$XlDgt~p2&1bBr zs7Q`nc=cE={jm#Xu%1~-QHN$1A38xZLTM$VTh`uej-Ocu7+M~doXc3S5cFZgrvPjz z!qk1O*)hm^X`;Uvmvs+|war+GMoUV$?VeE_`vK*OmJA%`J|gl4nQHuLHB=+q%62uU zJ>X*&Hg=r~izM8z(D{GhTkvyqmka){_;1U8VAkW{4M*+aKyEn)9n23jaCHcNaH^vRF!6)vG;L^8GncU({5k`yQd7K zW~)4eU7Cx<>%#x0V(~;C5gh!dVo}2k0M7nT#gb1=-D+k>vl7t%Q#gM&`B$jH5g=(5 z5J6moNOX7_WwUAnBJL&!X@P1f3uJS!Jp>ex*IC-V6+(eEgM#XqQxSBT-9G1@*B!z9Bo5^rG4zi`rY-kKbmR$&z{KxAR%#*c9cWW57M35iB zNHDk5V|vu3|2EsBUlR5ARUjAFZ?d7_Bdwy(Bp{w=a|xN)kq`>vJ7{#uEFtdc216n- zo4p`qFh{I`!U}3noc=n~6F(s?AD;Fs@QxM-HI{}#{PR8{Js|Z2BZoI6PKZ4VpN+lE z@jKk}AXbcoq3N(P?Olfvf6wVa8I9NK?{Ba%ZzeYs%XRy3im4(aA^It++CLzE3q%wJ zQ@~wS&A9jRrF;@V1b?k6;R|`x{Xq1x328P2i(77-Pcv zExWwKAzi%|%|-fxcq5V6-nNCF>(@JPlzX?&cj}X`HQe>TIACuYr%&Jy$A5reoOU+` zT7Qd-Nc+v&J42ao%9BrpaAOAF!p^_0^)kuVgB#C07=?~x<(}kCgw+=`R0;qJ*Np~H z93&;%J5u@$~1R%i%5x&R88&#q=zMG1;eA&nZRK& zmE&RXNlDERU{RgLx$#ZbB#2dkkbw3nR_h}`4UbWbxp3^M$73Lw>aDfq_dOVCVl4HI zlpKv|dV~gGXm8+fVX-59V6Dv|!?#=%Q*6t{18pJ>X9k1KsFOJ{4AG#LkFgY)Z*Sct zJh<1_#I>rH#!oi2{@{kfW4AWW!|U*E>pfh;Fa)A=_TRg}q6jadq#8Mn04rSA#$PgU zKkIHWo#^JUKbE~-qxs#|hYJA+F#)a4L0L4^twpf;SKrU5Z`)mwgG8f9{^}@zG*Wvh z8fyv>290KK+mDVfcTOHx!8fKqzFw<_tb_ijqGaT``Ofl&4?aN;k(Fg}!Oi45NeIB}_W3IPz zk2|x7)U~%?U_^7tA54@M;R(fN%%#gGh6{9cv)xeJ?c&FIhzAKy0%h zxhNSeEvHXGY0JXa`+kWB6#{&WgG8BsGi@S5K%AxXNYVzf&JLQ1I0qWeC@}_K^kNZa z1U}HTM-5aZ?)EGFM;nlVhJ>$-phBj;G{vL*Whc&ruV=&r)QFwvCUHZgm^@v+yY+&1 z%o9oFy}l*I6JK}#Dlaztu(#?66W-;+sSba!r@>lGBoro@g>3U{`PJCW{kEr-Vt4bl z2tHuF1Nw$-^wbb2=8p)2tn9f3${oSf8oJZ3`bd;L%H&8v$Sv#Ztfh0>{5!dzG zC)*>=15aeuylB=uJK@GK)HVI67!=tx60CmP87Q>r*aG1%FGv{~u_nCXJ%GTpLL-Mi2wPUcQP*>c;yXhEiKrcjWUd31a#y$n^!IJ?M2FkH0- zp%t~v6yL5|>5t~WYVX~qGsS@2xl^XRVf_7t)A#wz=;r#i{>RtMuIA(^q=pyFujdou zNNY?2X@D17nCs2xJ2|4+fQPZXjrC4L#7XZcZau{H5+@U~i=cS3;f5g}q&AQC9(0iJ zASNL82gCSjGU?dgnv~<4IR9H(#3ix0z-!IdeML0k;aSA}Z*6|w$!tOnrB`BO8)!?? zBt(ldmLFP($=79vGGw6jUBikqRvO)yTGRoH-z#H&Dg7u~N$X@Dz@K8T53<6yFw)cl zo8jP1B5u>)6wFuY`@`vS!XUkp?rIcTQeW!WXbPE(N82|5vr9@T=Y(OWno*$eyS)EJ zPOh(G-5vXltLaapP!`1Oz)p>8D z)`{DR%(88H`=Ru5RppR%-A97Svy1By!@hP)_ihlb%*GV;9d_7-8rP2%oBz5L>UYLy z&65Pa#kOspz_p<3l4L~8%V6d=(?gH{cLi{}`^VHxKmlxww(eaF4LMjJvqG+zDeg@w zl6y1w+J=>>^Huf7@Si^oAA32Tdo2?_y1aM3zY~I#1pr=niC-^YXEKFi3jmD6E3CnUNPFNaT#cr34V)4&?}x<_}Nox=Bj?+dINyIRTl zNx#MmCYK@t#}pb0@l2*}|J+Atm`pjRtdFX#I^d@x54%K0bPXyWBfA2pCr|jea%f6} z5i#PHd_R5Hr;;r%<0>Ffyzvy2(-Vj= zfL-LaY*WiTx#E|veH&lQ2)v~b`z6;U@sGnw7ARhec5y6F#F{`7&RPf-yn5_IAE5~M zs&Lhx{5nZ_N9YlM3zY=<7JmEue@8ZTR$LkfNU6~Gn9^NCkza%|Sj8LJA#fbTw3(kP z8Ofc(XF3jhVx}BOBv)`#Teu0N(*^P~K1*!UF=!PM1w)vWODC|KpLC8a^igCmR zT(qmXa??OudDytZ`t=w}a#5!I$aXovfHN)#E2sv9y?JvbY2BNb1-xlcWgBV^1Z6$y zFcyhN1hvu!R%fm_J~!K)<9vX9Yn@A|)tplP>IE{Gn&sG>Gu&};M?MC<(vBKe`6&ol z({~eu0yNu>9a4F9>(<0gI-1nfV_u&WGJJ&9Ee%%~f)z9q%TV&(S5KxNWr9Mb&^Owt z%W6@MZ9<73zFhEa>B?1CpxE~>*TjisdS^O=9GTkS@>A=9gPVo4bBvxbL-Y^6cEMylY z(m!LAoAEI`cW5o#u@U17I&Vy|8=o!3V!UPjlU;Qyd0r`+tj%xwDe(){whPpyyq&#;+1oVudWOd^ z#gXItpVx{i5LvO9GE_QF>tcnAc!;1RKxnXR(~=eJZ-XgX6O~Wo#D{=f3PpKtPbrp< zv*Y$!+_aga?cN;Yh#d@Q_csVo(I(u8R1R;7U@p!xnqcvjuCh#Ps-s8U=zqZ9X3f;$ z4XHO|u)yKX5n`4TFS1_681X1km_mJ#n~}RGIgVgDzWMCDEQ0nsYk0tiZRl*>Ez zgZIZyJ1svp>l25A!!SbnOV_5(!~H16WzAE!ghx|bF<6k|Z9zXkI&V`4c4srA=V=n) zZ3J7R?)zy2`?Vq5cUdz`{=5K?)@yDPeranX27At{G<6VjyqyHRn>lyHO$ zQ>1z}bxZ?b5Z6-khMt{Qk!^>d6*ZQ3(IWqHa&m-#3YBx^uQ+wKSx!OFk=xO=K4c2! z#5k6Yus2D@0_w$*L_D!PGJ#KOwP^r=F zeOIXjLF*#0O}#8;xcLUX=+2hsT*OLC}=B4SqwH*-iFq;q+}xTAPL(l-TF_s6bUop8pY9Z7qpuSnj6Fy3nsII!AT>h)eAwc zlY2GoQ<4ahR@)qVKJCtnQ_dd;fg`CTt_&|`NsL#!N@7M0f56{lbV90B&VWy$o|sFx zfCSou4Soe=QS+zQn7BCBlt+%&g9TpEfl-|Xz(Q*M;#k|3BiaS%&N+NuF+x1a@smA8 z6L&P{0l>jYT?)E46=9`=Cd$Nn6LX+*nry zBo!ijv@>(u(-qA{xQfSeJsu7#q`qA1hUwXt@~>4tCHkH_^Ekk}tVokjXQ7D>djgxB z`Ev7MId^!^N7@2`XY)ewYSZ@YANBclPCs4zeRVUc27GhS$09a$q)$s#s-L!@vdV!w zy=qE(ij~hKn1*V|{H979*RtY7^cYaCH%jv^OPBQR4B4Rk1I!>b4a?`4u6{Qg@Zn%K zd@B-#whK$&-%|g@d$pI}rBPl!aQ9N-*THv)lpio9#kd$(;qyk3v(+Vx`uy5GJn9hu zH^kIU;7y(A#MVtvY(K8inIDvjxY87-_S7^A1Dn?BPW)my6A*9@Q@J|4=Rg+v;dfS< zkLhatU=zi&gwhE}GYII>48MMN|Agpzu&qVBTsVrNKF3kI^!4eU=&!uv5;b{vjMaxX}UixmpTna`yhwPt?Ua zD{y7tOhxLEzCGE7t(BIeCn)GhtuyP&8@ZnWc?`k#WoHg}OV9MqLOFd~@f3f&ICT%n zRU4EKkR378Pp>{T;_9H$Iyw&;b55g=FoTs;?T+#<_ZMyHye8Srjyj9)1{7+Z-k;FG zwEKyv!4~)mOnz=uc4X7%*QKdoxHtk$#;hngsxp@j`F{Odaip-L0v>j-D#7;tctvEod$w78x%ZG! zaT3Q>5~rxJsQ?HXBq(Lxxv>MHFNsJp*0-Pa{g**ATejU@nA60TYgJKI^?K>=>F>{7 zr5vxjf`KR!#0j-CSRKDg4ZGtZ((%BWMrm{}4xWP3p1RF^vo&f^R6rZk2bO+)Ub?GC zEoJhn;*rwcUf=FUNuuAwJZ-(5exbSn& z7{0#Ek|67!Y4MQ(k!aUtCi>fWczR5$>%3$wji+0+Mpyg#Ryk^ut#4Wniw}Y1C8&Ng z{Jws14sykX?Q!S1&4zNKbk`ZsKCIWr00{63EC zj+yuPb3I|5Guh_A!>bg}fxW=ysC=Vgvbx%*`bS#%Q7~rWhBUJ+8>HQQfx*Ss3sfEn zN;-%|^?b6Ptg(8|bIq129{uQUd_c_-;|O|-EFuJ&cy(GQv9IB7^)2L0Bm)W+DU$14 z=G*RiGQevItTrnETVVMU^rXo4XgAj2U~>Cf@RKoGrgWVlLRZP|z_oUp>3Xt?v{Ri- zpCGWSa;Oe>ORc3AFTsq@)Beu5ey{_ixC7>lu-#n$J{}DdgLjRf9_QtjbX!TlaD(^;1 zAo~@x=3`&)EN*i?p|>~bI`O5Oy+ zJ%IjF;f*3-VLu^GW0=52%(dv1#P?@Efik|A_6tgB=fOHb>`LO3=ey*dBs5_3zD~Y{ zK%r|x<7~8UA;F-Opif%B-~3F%8wWcJc@~%f`|@caLC6K@+KLDt-UF^|hkbW6GX&Z90fAD$__-6Wh@3-EF#>CaJkV zmOZ^8|5+~d@!%_7`+Y*?Y&2ejgLV~*4s(G7iaAj?C*n9*kjW)dUOcbU#v{=%*#3Q? z8*M!q0b8zQptPQ-h#uKZQr8;p5_^V9%xR*untFtDca@j6^|^h8kh^k4v~Uc9$SNePwIq?JVr~xi z)+^8fBS(01ZFSv1KIUwikVB8MS$H%)ly8_twLbT8XlTju9qCoSrdst zbt3lct;f)Of!!}gQVh1gG0!<~jWs0t$Rwo4jdFTf?BiSvM!2&$=jhNR?!J^?YYuR% zQtL8J&)S;S{CN0K&aLsK-;oQNvoU7T7pyspGq$|tS2-qg`Lx-cqztr1fnZyLv3aK5 zV&pW&lh)6P4iCL>_H=wg7@$5}^n?ZEi$%v|9}o@kT?m3mcgT7y_06fK32HV$apH>6 zYmRxQBVdUc{;24N5%vkoQgpYXB0zdZxZdbGn=u!l1L6{x*21I6d`%piOC8tgxz5`H z%KrvTprp-?ZU=d)E6sn(j1i;nMOxt6fAQa#)5{ik8+o(tPKntZZiaV-2(`PGKdX8F zv*+kLH1%$BMjxfs?Y}(a=<{2@BG|Dv@l@Vu0?u=ORzD$fwp|~D5$e_r^bt5*&n>H^ zlMlPH=;PxTWR*&Ho}lJDu1BB)1wZV=ueI9eRTk}SrnHFK3Rq(LD7Ecv7BO}?)WBHkrG1Bc36 zvoaRa<7B$q)c=^RZeddFOFZ(nB85ThgX2a*nCTPcQ}PX0@0P^LE8;q$NPG_!>e#9E z<(Wh%OLm`3Xlc&2A{VF`32x;2Ofq-|Pb#e2pDWp4h0q$qY?s0_`5N!?Q^X*j8iatF zUyml}^_Q8Kjodse7e&Uo$Z^4^6rbRw4I+~3JZPvd$R`H4UxZ8Fj0**luOJu?NT5*I z&dDJJNZ)~leW9(&yECX?M^NvUpn-kitScy!U+R%M2T>sSG;r>MFfCmg*_h>*>Q*y( z@}-jsS~BXHprW&p1m5Z?mP2&xip(Zm3p&o%wslu2Dca@y2Y!?%Q%DCcC+?_D6+cBv zUN6CzOev@iQKLaJkKl{7&o~c~D~~ZR1|=U#$+ER9I9M2X+2HHdnI_cBMQVHpR!G~_ znW>GlxXy+l)F$f4o;rK%z=#$H@OI;$?uOHgZBQZG>=jLuv1g6qxh=;KbSbBXutJ{I zWMh{}xKDHV<bbQ*bdAY}Acb!>xxA)mMYUj)UmQyL-YeFa1tK`~Sy_tn}Dm38ib5EKz9W6(?T0UwpVP6B{zIr0qGXTYtzWFA@+RKE13kxORJp~7b z_2)$3`wN_BH+mCdqDM?%)(*5t0%IDyPY!SyeB5AA+8Qg3rH80X(12$7hMVzgbJQy9 z-<2laA-%Hv$ck56J-Q4QK)7+TZ`8;+mENLEp1GSM44JR=$paUBTNTaI&*qoj#VWuR zaF;w2Ja1BQlOg@pnmg>XE2)S7-sk6d(>ZZ|)3=2%<Jt3%zXJYnQ&i(x`G^K4H&pI!@CDdw~Gv zHvk)Jx_@AF!pUWj?cPexcYC4FQ6d}bFPZSy*whn7{wyFXdmlTg>CMPLpB>5SadS@6 z$kC_TT|D6FJ6dB$rC`JyH2`lDdV#X9I?(_;?6!L2%eeOKvh&*T$@_~Zg&GiHjws$@ zA2pq_!+DftLHG;1ZuZDb)kun z{yz0gu;Nna;4Dbjh{)cDOAfd{feV~^In4l0yd4ITd_<8pR2=hoR0BG!Q~hq<-e)_@(F$i-_*p~hE0Q}}l1uC%hBwu*s92JN& zu8FH2;seweI2s8UQyUMRlPZf`H(Bj@$V@F4mb*>n+HT6cyS2oXxG@b%bP0y6#^o92 z=rSq3L-F4r!)S+F`tsYwEVD-(yFX&av&4iYydVoh_fTUEv<$~FR`r6f9a3DLkm{(@ znGkg5zkT@EA}PeC!_auGsRpr2xLo87&vRPD+kAS~-MR6hYi|ySq2sz3hzZF+l{22f z7)8B$YsqMW&dluy?)AE%G?yg4$hSk-kODirn~AIO)?jtwIgpbr%`O1wReLMe6xIl= zYDil9?NPWhrKO#hw5tu#QIGVC1mUtKVw{GPZmcfiDIyu8B2X&F=zB&VL2Cqo*INmu z1=-Ud6CevwzQI!*c$TC!sp+(>QlK>h+E0}qQ##6VYRhzTEpX;(=INlG+t4zhz{^00~9 z;(p5|yrW3s(QVMI(X+a@+2cGV4cEFc*-GCb%?X)GyYhj7cIGeG(cxMt6qT#gMLao` z6yP0sr>FUXAR0)<^YNfSTC-2IO`Z7LyQq4AG>tND) zVn1+m(KY}H1gh=~$b}kf7m)L@;e3r_nT6M9b_WwXXsTVk{eoYrGwx{7t)=(KY)Qw0IDkjqrrGd{>!h!e7487 z;EG+O9@qQ)+P;Z5`6PG~Zd~HW-kt?BgbKOnABSbn5=-cKUMX z?WnLbY7?H@ZQh*|H`w+WvR@>SHhbx({N|7M)=_90aMbnEptWw0R^fFww{XvY@?$D; zH*=VqKe01DdJ`LZu8Bk6MS93L`}2MLqvo;fyKM#wEzDA>jbttn`&n(~1zGd^ldVho zw8;E8;1~mrDWy91wTS^C)_-p1hemB>zZf%M?d~PyYj1XX0Q&Y9bLIG znBUW~(y7K7wzmBDqhF2^bAAtYRaoy7%}ScEgAXCVhfSX%cRYeA_MyFe^r;S)+2pB+ zHp0-e05{tL?AxEt`gtSlz9i3om)kd3({ERqHtm;MgO3fvOuXpPLQiD_Z{9cl2&1k* z{4!`-c^!kB!7PzK>{WWmYiq4zfSp}C5!02kkF|q!kHfA(Zx1yRtZtX|amM9rv!ZSX zfj?RhZ5bg!p@KXlPy*B6*}6ldSAEXQminIqo>Ez#y5XN-qMHCcExy&wj6QX5lpz4( zK0_Z{-{y4Rc5UGt$7SlW&f7;;hx74)jr)GU=jatl01-^@d*P1u_r9-hcgD%OFB?Aj zak6mHO|{~L&j=xmfSu_{ZNtF`5W(X`m(WMp^7|-l&tCdC|_z671?Z6NR5-58yFO7wTH36M_!L_52Qs`b3D3n=j~h|n>2|t-70K7kWI;Kp@JzBoVw^x2NMCXpfQLH;E`OcwYObuOF-d~g1=_iQWfse5a7 z88q~D3)*9J#+>B0iJpg}09tHzB~FhVA=;$plv^Vo#`$AA~5%pDy z_yogHLPo{7OT3}KEbYzsUgxDS`LUa?Q4oUji4n5Dxi@?#1t{^~rHlM&!rmE`BdplI zvoRx3txHY^%El6B-pm5{WeWV?{JwwoqW1STjj8Cz1MfAaadkaqSk|j<_=XK}v!9nz zAt5>q>p=Aot}4+_K~TIT2!5S{445{Yb;Gy^@w2TRxlMd88t$KjA;teP!BGB4D9C_4 z?4TA+nB1*{=yvbb>SIhMjtE>V$+*yX^#r2{5bo}^(dc^5%{6hzr;BNl{~mWB3Hp$d z@K>g8b6RVmFLN#tqkc*7yHY0RP^YuP3BQlMJV|8RDI$nuyY+a~>Sce&^UAA}8-R*R zmm2iXxA(KY&7oRc57x85(J;Jn`8hIz|2b;+-5K`*VAUdU#EO_}p1;13u}D_b) zC{4AP&3$<=-gRsPT>l{R;;52|=CL$gCPoJ7MKO^AQdh<%Mw2>^4$nCFW-Q+A$_k9w zE55^Z!O&s6o$Zb$Y|#msB!@_oly#s+wgyOfR-Kj#P@$zPOMQpI>nr>EPsKqM zO485XxaEZD*o+ff@$BeG2pZGOUULdmW(-Y7{P~c2vJ+LNr_^3^kim5+MOBAF1W>*5 z;kC(-daiG_^;p}H64XZqJ=!9FiRY_b2 z|7fR}oe|k_T~!E(Y?-0Gh!(t3zX_ZuC=xM)Nq+uIx+?}pmVCn?(}s$PUBKEo{Xb!_eO3SkQL#Lnqy#x94rN8)9l#XZ;R z!5EpQf6~;XELILl4~yUG!Q`E~HXfay+}JvLRf7q;kvOI{X1t|YBM|2$Zie8j?6k?D zRDD`4hoC}=r02o^60H20$mGgJBsY5w-SATWdN6G-99}|fSKAcFxE^aO8=#zSD4lYJ zQONORx-uD6dvBNGU+#+);U*LDgvXU5jFg1tF%AL`I)CMHZ-Y2`S`L5r6|`$#x}sBq&ZfRx#-D#l zWfd~?V5ySRx!VX&Xk#THMkXc0=cPdr7q$%xGCkWI6%?BkZo~M009HV$znT7;_w9Dt zSQe!(YLU`q%-(Dvb@53pggUdftU-IBVIo3XGEI!0E_Oh(*8^m%1rq&b+Es_IlF}Q; zB;u2THEBkt1Q}iBNxyBnmu;T{eM(AKWof0zY^=zTIfo~^u2+xds3VM5T0cAFbaFz> z#NkDbe?~C-X(dLkS!iWGS_KD=b87@HSb9j(K*9j)F6^xina55t;+%c1g?2fyK&U&T zV9-oXEeyoA$Z`{zpK=bv@lBYW>?pwL+FZ)ZCU5N}rqiFNEw#hC+gYa(I0iHmtOf5* zgtaDvINNDU5xl5(itKhxv+Blb(42eCwax((el9d+r#ERel9|u4!L~axp&j3YJ-Z!G z@J2Y7N41m)>)CY=0pc1kv;kct4L)oXg5BY_HqFCne^2Ff-hgY-4PLCp<7+ zom1x#>Z+yg%O0w`FG{UecVE<1*PEOdIIqxq+d#k%7>xOyk$K{mG6M|kwTHFWwAcQY zCh{cH*tK`vnq6uNy)Ft|gG?jm>*ZAsFApR%&v&|oMJ3PEgA~!q?&#rsXjHPf&Z5hj zrOdii?HJRgBH_*XL;xKCTE`~1QPn>j6%3H3tWd&_Psavru8^(CVmNSA}ZRLH&P7YFhy*l0w zIvtLr(&U2L;E=}_L@~2<-0<6Imne8f@u!wRa^!-#L^p6 zVuH^W>qWsW)#b&s)KO^)nNba0${}o}=Wo67v}iP|)OaUyb6O-EE-93Y{gFIW9e%}( z<_updvAOlCjtKcoWvR4U7AESAbi0SGmg)XdB*trvA@GcpPkIgJCK--3C+d)J=p;gC z){UI9Tv`px;fHCF*HX)Nbt|a)WG&1Wf>NktQAyrrdy~r zNA;a$k69>$GTCaUpDI|3swAn|dS(qvjQMy5euKF}rcigXmIHA#fPKU6@eE3xt*}im zcw*`b+5q<~{=&B1>#y=`Hdms_Ix_C)SuKq*gQ3+ht6d*uK{rgPMk)k9;yAf9Ay|Ur z%{C%3T(3-a2r*4)we)aJHKuiGhzlKZ(Jx5aPMwwZJ@*zNm)cH-o1I)qXF0pEE)+(DJl$k>d1|Ql`^JW^ z5Qdm_x*2laEj1^;8qFHjZkNF5Zo5)7iWwDYAjl5a$_T>Lbkdx3rek(0qLqq_H7b-N zxhqvfm}*6yE+pKM`c}3h>*eum*75Dbp;hkp2Pt7!t9DyCXWTW^SzqJQi^fcl3$mc? z7K=GG6t}{%k~Fwss#bL7yGpu&XUXx{s@4ihkLqUy2iTEbg9zQuxARWZq_Rl6Tud3M zd}}}mMeyBzu`F%#a$3gFE?%ij#npU`6KC^!4%BgEYcOnEFB&h|l|$ox zgXai6S0PrG%DA<%yjEo>jY{nMR*IuHS%@l=fjut)s|qg4 za&N-zkygHf1Hv%T*U|(Ho^fZ^h@+Y*%l|`HDW@*;`l1j)rX8hgGu3 z4#v!9l3rd_EmChSbgQUUQ$V^}T*oO7XGCpb&UVPQWTd*uGEK;frMs1qQrVZ;D>gP8)LLxnRI|?e)+Ci?J?|ZAYTHfsF&qYjql}lRcyf5 z=8aLRz7u+@)hu0hM?Mgq)Gk+>wW-ARQ*t&r+17AkSKc|rI<;mnA+=*oN~7B8USpOe z+D>~|%n7>z>txeSvX5IPUT$Sbvf0>?+as*ftr%BM?X$Jz22N|!6A+%nxdyY;f!dL& z`VAHxy@6%{{705ZD^Y@mgor!x4H8jFGLD<`_&?LH~4lP-&+TY@1W6Y#E__TYHwofj5zD>249P%4D`R zV~T;$Ud@#ZSlRX7oIrcQzx|?|{Dp+}8m?G-NPA|^07`VP!7I>Svqz!5%t0Zyw4qeb z3-FQG;3W!Iru-G!>m~{p(29+Wzq&{q+yBF`E8bAoBX(?jEn7LM_!GLNxfGd(RQIout~Wnmvilf zQ0%etw7wj!N><${q=il=iP)lH`?mYmqK2+LEz3=3xN|D#Vl!@T$bP9sn5$*o5O|f( zrtDr(rq$$3Ox6XwToX)sJ0T_=O7Am#b}VHiLT)2FKlDIoi=s^|N-KP(6ec;Vx@XdB z9vBqTc(ROdlO%jogo6Fl`MOXk_dKw3&m+sFa~s~tej^Fbmp3ILpf%E&S!vlf+yu<^)y-2`* z-+VC~8iTjEU!KJYndwRvCk;pRx-3qVPEiajv-I*}I4KNlh;V6~;1^gbwNInMX<+HS zFprbI%mMQgioa)aeoMu0ZZN^GkV{v5v91WX;cR;MnE}0nF>G%3#!$sxsso z`n9SIL;E#m4uJ&pqNWUi;oob@e6K0ioW@Oyf>X8N7w=GVDre zZ}KL;!U}q)uEkBN@}uEQ4u3VS)1=HoKV(iI-gvZ>iss-l8Tf{ z`iJp#mNpQw!mauRNhqo6xY(2Qyoht93^tt&%bGnEJD7{w`9;6J<2wl1z(yq1W;$-I zSx=TVwqaKkDJiwptRJ?m;9O-ssP_=AUvleiz1+cDEpAd}mE^WbiFKXkTCCPXMT?q_ zuw8{5$u?o7&E>L2iYC?C*3{l+Qd*21f5;VgIw-Z~^9(g&RvO)^v+g8?2)o6ux0<*m zdf?E*mcTL2xb1FA6>Vp=2I+Q7Li@&MmPy&e42_IhxfEVS{ZLP@(J0r7%z|56Yue0b zl0sclEPGAn*qSYlMyZ;Nj8dXYr4bR4Dz{TGN^@VpmNWaBGF~(_u%=84?02@)N>`9d z3+n2<2I#bI#1Vmncfw2QQb9BX2%QGYP^_Wo3zb! zXja!u6Y-E`}*XvWPv_Pm*(NDZ4rc{6Fs7r976`GF!j0Vo&0vl= zv3Yd~x5w((_^VE$?^gX*;hF2(-YU%`>CV4&T{8Gf(l`~g32>_$RLeuQ{9T;dzr z`~gDGYV)Ti^c`UFwRW%CYaczbJB1`)xjRGE$oQ>@oX~Y#B2nXF(?x(`6haeaMED%g(C?yezR5*5wL<-oOMtlQ{Zw{}2*O3)#nt*1Lo!~4nF>`eRGLa1{ zkAPWEfY*uugJPmCIdV)YIS3*0{hVB&>R&V%YC+!49wR}{#;fxS!#EoR=9Ry^4|b0p z@gUFLjfx&(jw9fXhuyo8NQK_J5ehN;&PEv3A055@eT}XlnEdM&QG6x3V&s`ft0>5v zCB?>}x~uV`71!88xv0OD1>0B03$yd0*IR$T^X?UYxZ-qN7G=4>Mtm=7*nh*jssa#)7LMBS*- z@Q$?}t~7V!Wc;H3!}-bhoyFUSQ{HpVg~{-F{}+}uKc{YKF^@#>MhIma-k@_ik`J4n z5Dg!yB;9NH1>5t2KRTh;@Uo3wKpW9)f*Uh_dFJ)!{~UK84tX%{;eic)rTPg~r#%ZS zbo8tC>>vO4Z!t?P6f$zx?r^uKoVDm-W8MTT{(%#bL#@j}220d%1lj3~^lJ)5yc2+vgh~ zlBB(IC?DP?*$*QoljMC9i#YomtgEbX(MJ1m&VVt^kK_zI?FsL@oWY>`qsj1d8kK=A zw(rGG3uFA;h$3Ay8n;_>c~tV}|NA(bK!$jw`SMum(lHE=?l%cC7j&ZDXrJ+07l|$!evw`X=79I%p};*A?c(VDc+TxTb(fcaXVDxOJ~^!Y12=~E z9lsULp*-bz_?XyB*^^)p75F*z^)~Kv!JuE~4!}XFFsIfgc{`uwRBorpbL0D-J-y$D z&M#}lkwfgz81MT;PXmpMnCji4iHq6{Fo0o&NR+-fntCo#`ZiO+pM?&Uk^9_;fJR@H zwG`a*5P3{7X2{;iW5Uq%Ax3aJkLj^s&bvIO7-Ko144U;}X41D#r!OtHKmV5yJVJb2 zFzABRK796WOs9Q+CcWrY&3*6P_ul>Xdv|cfUep|hMM%&O${havEz<9Yhsgcm;FHZ= zKO4N2zx@a(T#zk$J?ip6tIyhjPmp>z>4|wBg)CIo)1l8#u5hHF^mXQX%(D4EXPrU< ztW_e~&6%iP>{lxkB7{A5Z;QYV{$)73()r~Rh6vh^pB9prvlOs!5Af~(W#4WoQ-1vy`ON5NK`BcFVNC|wP!%t@len3Xx1Kka}Yjxf1e%Qv2i@6_9RU)Eg zT1T}_vGg$y8%pNmc}pWGH1ay+TpOf<=7U~VfUvzMNHsAmFzpgdv z{DKAfK~LDf*DV~JxM9Wt16&lqM24|bBLNthp={Jhq~O@X82yomg*z^bL`nop=2(Uv z7roH%OcAJ^$k3Ap0#i_)#`?M5E%C-IoSXR{INjtMg9fF?{x&5LP))bk*>>Za+E4qf zV>_Iq2ysz$btMeqX(U>q;Kp7c6@H9Mz+V3@gvXqUfa{$tM9VZ?3z!uga6Dd=qIJ^Q zJ1J(c8eayMJUoonc6nQ{6w|Y7PTRS<-EPgrCkY9>k9dVF(6HADUll4h2>{T~vmHNUuw3_}vNOUZ zc%Wh}38{r37AfWF6QC9st#IB%BvK1eT`77feHSB~XEaix1}2ho+#7N-rjFbYGWTOG z@B0wxVB=HmTV3Nw>74Kjwi~Lv&Fh!49eOFFNg~eCLM>(_#tDZbABj|aP`}r|D;S!` zPx}hoF__-x7?kIYew67AxF;Od09Ai|9e;dFw9B1Bfz2fZP8D2WY>W1N!<(}c+_6l6 zS0&&mz{Ny3HjJiy_cA3mdCA3we!dpfFo49rkx?m5Y^37VH_k6p(G>Nms0%T2qaYa8 zREY~o8i@U%GLbK(l(o32DsE$&$@pYeTXA;rISrq%G@TA*g2Y(L=C|UW>;rspkvlhL zIMo0RLzQep{mOYN7lv69@G@2c=A3ws@HYx-;vpyL@K^dY(Y9RMPJF^q6#vnCz&Qz7 zk!0}kK{%dEVM1wEhm5yK=&{7xx7=-y`G!Z^E^n6@9>(~NB! zf)aXH$K6e!1;6F)g|paW?_S$7fD&{R(e~|V&-ezmLe~*F?Z?EYcg@Pc#F8l>u*>TJ-2(n(U-*m-x-Xvp%*wz$rP1WG0NVC%IRXQn@W05K<>sF4L71{~zQ}x*)`#x(voQtU4tO`F=*SNrauN4Fz%LS{pP~V1{~8Vp zMjUiQSp5?UujTpGc79pQiV*5tD+)0s)R|9YCce&>r~Jn~&VA8P&mVy=xye$0)958M zNuNSC<9@M#qu{^W zCKqV8SFj}vOMiUlyc(nW{m#Ld$LgFwJ~^GSZxcuMbe==O!_v`@s4k-4`@Iqg1h z?*%Y^!-Ri;PRvf#wJHk_RML8&nfqrD@Au=4(%i2o*bs2<3&l>LsYB54DaGzhOPsi5bm}0YZz7_5nTi3ag9p$t zI(>oa^BR-j)tmIg%9h^}QtyMUPr-rRYWz@h=vfhXOH15u_G2Kk?m}ao)4KS1giw0m z{NIWoTuBtWT!6<5nUc{kDWiuJjy@kexqhhZ6^?nD<~(co-B!M_3}EaIOfP!bjtn?< z`0JnkTlj78K%HCVRh@r^_+S6{KLW@<(c-h)<*Av|gL1d7Z^IiQ=hu$R`QKRDhhwY}shuLt73m8(B@5;majUHskW>S5)`AcCfO)@ zT$J{p262&#@dCYOs-gy=t)~fon;0lM#JNti4cke4Dq5nL=<7g9TaaU8JHN_kwj)|o zPWvg*6v2MARG^4~3SV1_ux(tFY zR=_X6dN%am-4gGA@*b1Ql!4e@3U5;`2&DD8a~Nax@COXsODT?j+<+hlbx>G;F_Mmi zI?z+waS;rAS2_x2g*$?1U)fX27miLb>44m?Vr#8i`WKE5ebMY#-{3i(dG+ zTEsO=*qrLv2}MtEOII{p+l!k*hyN$&k(r9>`;c``Rd~^I{_USVtf2IdKP7;S{px0V z_j;kug!noiFI^9RDQOVU2OD@fuOhu zhC7FdD7G%*)<{r}!K}t9`QQFkScqZZhN2B}f0H?cNQ-{wFF5JU+dy}JeQ|N zq(Q}~Uxm=<3$b!xq-hMrg)y4Wkp}gwZi`|)2MhKH_x#9Tx!x;ta?6x_U(x(gAX)GZ zX2*f1|8Tq?{#b&jZ?z{JnR60~o!FnQ`f-@g5~pe0z2&$)?ZL$TBtS4pu4pHw;tWQH zeYybz`9~P&^ZtDQmcr8$wxNlMPr9*A7`$z$UZPhFz5I*shw9wcVEsVO4L@5i@Vd+z)aCao>ffIjVoc5Gt9OUjCiSUAf)5-E)fb7B#R6d#+k06N96EKzX0ynPsR zPXPW_goN!_qAocyFkLo+X!@TYlTG2_5j=B-{QxwkhNkG8?x@=Yr!F{EN$hdoCSv4$W3QJAFZ@!&<2?;VRf8BDa%>Ihmso_Xd*WgLQW(@k5*PdO;I=8mqeT@(V zBRMN|n4zi}p|ofuN38h-#(2aTy2()grcySl{y|aJ>DT`CC!HJX0r&#(} zzvc#n%AsmDbHKI>x_BP$%DHZ|EyI|dd`}a;WK_RCgO~#YSrK^BN z`NI!uQ}RYRwYW7H9(ZYf;dDU;N`I=@PS1ljfUmO0SM}p7IEgVg1c;6R(AWju;k@t_&a75;pW4{s`kIMFds9+xL`SP*5MGImzn4Bc~ zKL+1u&1SX;9D@`|rP4H*+S8|pw|+BcjSemvwK&P*O!t~3o@^xsVlp=~7~ zraum^PwSipc(-I3u9<)j{4WX3RS6D25sEOr1sRO{;tgs4qz=~7hC5!jzi@x}VUO}} z3$mzj_M2gfI`|Ci8jW*&$p1aNX(|G|1`5%DN$InBFtMm4PMXTYoG8~)E}GI5!7^-P z=DZ1ph8VLM*f7Z2u%@6L4E0`_mLb6UwYucZl((+Zm$d|?5qRN^!0dV(719GQy$SLM zc>Xzj?|sAn@@8gf@Lxdo9oKS@4FY(8`y$A#E58!tLg4R^15vMQ$F7))@Wnh%IC%BM zl!ITvXv+_NYx=6K2#2P@6dc(uePFwa2DV=UK0v;H3;qUn^P&k}Rm>uAap550>xA`1 z)OaXSELfcaI17U90PzRakD`0xmHPs{8%L1g%Nh7>2kaSt4vrsqgub>7-`U|7hlCMu zZ<0wG^|6PJlgxcFE!!!HhL(UYKwm)*JhtRkb$j2J!&mm5@yUBH!GDlt>@REE<2Cza zA_*Al_9qg$F}$%!z(?K=_Pz%fHsNft2JGhHdC0K^F;LjCeI*ZHIU9cCsd@14QDa@| zb|B#M*sEb@zUuZphzxlT4{fi^KjZt;`trAD=jC&hQioTtVH)xQ;PXyjA?#?*5I(jh_7QWFT@T zWKZAw65iM2Ue}Li2XZt{JUgWbEC8Mpyz(tjjQsNNR-g^2mEgi(GX&rk_^P)O2AEFx z=pQyH`1=PN!%(oMHgx!bK-jC-FC09qa2@ey=+1vZe})|OnS*7yJqQ11jk6?0|LlEA z64V==GLH`(!~B9#Zv=Rei*UNU z*_4chOn2rykz`ieQ4MptExuCCZiekPZ@ZO-*I+-dI(7|7C6k=#w#0_9V4V&*Wtk1i zj&`HbfLS$nQft%6wFk4xywhIGSx(AW%MmL!%6+OxZ5vcarbuo?c?~Y|c%?HKO><&@ zow3JCO4^C_;>t+1gfTu^@>|{R&3BkSN8Hq^W@#I3oWz*ntW(K#dUD=GhDv|lQr+>Q zn)Vtb)xMxN%))NoKuZON=+1Tx+1aJ&S!cH%7wPVpnandhURyL7bt2KK!x2$c`Ep}b*Wtgd#iCJMu6LP+>?ZT8al11cmALgrnfH|B z94)QPvYj6*T7w&+<1Ie3@CMn=Hgt>k7llXIG^rvpL~bb9vQr&YaJ%JD{i-xgPL#Yf zo7EX{QB;dvel+pUMWziNuZ~l$(&pt7vT$@#SeE*TXc4BcTIUY) z><{^Jvhyi@)H31QiUbxV(}K?@d4g!Sg;AGr#q^MM zMp?0B5}l-2@^?yMSxVKouG?5yG&8fLdA2gsa;fo{?p3J5garN{g|sxqrqr?4G*Eez zDd;6-Hl1_xDJ$WcACAJO^E!whnsR;9dQFSax z&9por4Yunwm|x6x3%cD~q>7u7(Xd4-O(HXVMsI4v{Gu>-a%jIsENZJ%LA2YvksL9T zHMe40i(1If*l3VC|Ep3f@(pS>?zQXEaze3i5_H^+>r(!O<{E;DT)2@ps^Xt^m9 z+Cd8lApuwC%qz@m%*EV}*<8)M$-F?n!e}8fGa`t{Ac>5s?vpCB%3$+<^WWWn|NV0Z zFnm%;0&J`;d7l$-Pmo!S2fB_`(xlQyTQe%WG0t(|I-1HTw{jp#!nLH{Em@S#8$%1* z(Ka;#>9uT2f@P0LcO=!L!_=(DvyPxiF+MA435-rfKX(^8z^vUB+zcO|uSpx9EpTsQ zyOuxR6HWKesBT%RN7LJe?@uFZYfu2jyCrBFYJKS;b)?nYFuTgNFSI6yslV(7spLzicCY!(xw-M(HDw`qx z5t6(~Z0`@+2Bs$|r`w4N;9df=XSq;TxI4yX(e^M6ILUP;xIGgfRf6F`IUVU8!D+f1 z=86O4jDAogFF%^R>8X@3C5Z(#C{YJ+g?*Jz9tm1HZ?|{%hzg^vmX0>0FT#Ol6s~z+ z{~`dO#2zKl1WroJ@RF&9)vMH(bRH8pC3o0XLer3>@v7GTHELfoq}T|T3&D9RAST#- zW^GDAZF)k_NgBXeYKu+V_a&E)Y`1RuxL2B&1W(&~!A1M#?=h(9DzoHcskBX|BdAej zJ)C-hl3FHwO4odxCXs4ak&;B>A)1w{JOU#K#`$z(DJO5bvr%#g(s3u?PvSUfDREx(ySUtnq!h7(!UU2&r?)s7(2m=l=|tQ;p{;%TTT2Q{3I zBiPxoyMV(0ref&}k&`(|M7h-~KAmj~jRneQOZP;F^%`5b^x ziNiWS4e{-Agay4C&G1N{Hmt4k3iRDVr+i%dGXfjAR8g83+M3bIPza3IuZVpxl@oz2!eyxI-| z;Yh}H4$5cO6x7ff$PpeQ3NADoW+g*OzGQOGJdywl$_&HzJ0&lLoP_Fw1Q1>-rMB;x z0RjvllO+(j>G7yxp1DWGdoMgYC6la;9pqFpUfC3zd(2MS&X06W8!>41j9pq&gi>OqdB>D~%Mg=+<(lS)OK~&>svssU^|Pu(`SwDeB2R zQJWRw9Xf(;x`aDxo>Ym&Y zewYB0sZ;H34%;I0(s9M;IMTLxH6za*!SNEYH@t)FInV~S$Uc{a^UTvuql}AP8If$2 z-sq`Z9L55Z6_(r_q9|1>(X2Uhs57BBaEG8Q{XhZE$Btm7l+w=i1wWXwbvfSyuz-TF z2aV~=6Vbh9I9@Pb*gtmrM+Sz%2I%&Y)b6HQx` z3u`#8b;~}&0s`95?g$NszBxTLC!Me`_?=`zQd-%ZfQYJSN_(s$D2an4+h^l=z8fV6 zEm~RRX}*v{e>57Ov`E|x655>D);SoQ>vK&k96t=s$D{Aelyl-Cj4?hf85Ny|XfJIn z&*RIO70d!9<+5hJ(!UHHgLE_7jh)?beMC=2tW8+smZ|w#Y)`8lmp?qc8hv<%CD$A} z8XE-zO-RMu(ei9+?Svl{t!_4<((3LnyJj{ABY?8n7kb+OTR$b(KScZCc+47t7P|(firk)46*8TE+Xg%WZl3OZR8ufAQ*c^#1bTf_v2?!>!O@ z)f{x%7kVp0UiZidC*=%w9+_U_b{?5Q>yeqFqPTE~4HvO=EHeb%2uQ@3CA@p8R`6Cn zpyG_n=VuDYpkqZ<&7meQ;yLHl=CV1ei7?U;T<7ixDZKen1#`^}4T%KwTI6~8fF$Y) zq!?zr1W&cRX49dMBf~YPtrHGaFfgl7wB9C2qkmm+#!zBUaA_LF+V}WO+<{2W!o+SZ ztWW9oh(L!7tmB0;*`X^9-A4t@vvxKeEf>{_qZBQhMVy$e&->FMW=unwgT3X4st~yj z!c3^70?lTdtQe*ec05Ogqn3gZAmhz8I0L6qj%fpdK%&j=aEiQjfv98(Cu@+}S1qg0 zfnK=NHPdX8DgQ_S4GVBGJOJ&BVavvJYkD&mb|pJO?!xDJ-O6yf9-;FxBw(iRp@}UH z`qU9Y=nz4aI0z@B<&izX>ydV%d?@qNLRfDn=p4*ARP#$ao~tK0V~az@=yS`pwrFXx zfKb+Cf9Nt2aJD)ur^6KAxJ(q7sC6zJ9Nw__v60T>WmrxMUtj0}#GZ^yh|KY7!JZ{( zxf-vhCN?>{i>eAJ;b8X0Za5btdF+LXjz!GCK8<1IES$^X1g}ZR#m>qWPw_dmmoBIdUQPUti{>ju11!}pjeHL?m^^)RkdG=!`dlX z`ivy|lE#u`(8T1Jcf?vG=?viCNfJW;r_rJx2!h@8mp48K^NZ; zv&nib5gLJ=0cK2CJ~^7q(9|mhUCL5`0S3;Q>iupse!!!WJY&i_KevWn!=OEHJ{REd zK!8sJw0$w`m1Hj?AD&0*=S68UY)nc;Ea}G!=1}Z$)$I_blSq?i1iObJnP)o!x=QdW z2V7B*F59XLH=9=Wh(cD47VzQ+1^J)^8atq7k@hbt?C5``1mafocL^}QDqWAY0=SIJ zR={_cEEi?*SZjQJjdo3MK+p6B48m_w93+f=Rvev&{>_TxuhlR89YuEo($=2%sY-sT zlK;%Agqx1mtg>m^-A{4|&*3Pa|kq9&uK&T8YhxSA})jiYK~1=kS$%Eca%S zr%n|FDLSiBGC+KS*qfSsfM~NYTp8W+w31Mm)w9i7apS`PSsdv|jLQ97nvLf5t~TkT zk8MLc82Ik0Dy>*uu%bSdJ?mIXsh&HCXsHF7EXuR()z~^rz@#I%umWT_L!E&`=qk4Z zGiJM6jS^2sGTX%95o8PJ32-3hK5}wld}8ei)J7)iATzB3wnDKok0x*gSLo%Uj>F7! zd!BFE>3Y~69sq#k=&REHy3qLg`ASeTD+Q(w-e`I7hLrA`OyWY|i|2vsjDJP)3w871 z@N!~4Vcox12~KNgUK4FE=}raE-7(`iL8d)2e&q-G>;h?~fKl3$U-Q&7M^D`54-V?- z(|_w#$)`44qzx_!S^;0=UFcfSX_!_Zw`wBJ_I?{+@L#+Cy7+>h!3=i>Gkl)iuXS_{ zfn5~ar(O#lFL8Ul9`B+AdU{>lKpR-_C7Pgp^*k{0S~TkQVLVHkKtCGAV-j~2mU$ty z!kemW{KsoW@7_4D^D89Y*w?p|nt5FOuIGXmB6?d~?+-0O_DTrv_r&Vf|3t;dE`i)_ z$+3QfHi@|+0vEtu2=SbH%YpY!Y^L$#fd3vagn zdvi7Er%QpnP*(Zbdi?U}xnZ#%(vE$*gE0dl9aLYewE48>&kh}fo43zh zJMxW3A?Ai&y>t|MY6AZDe;yZK{>E5eTH-q_%iHGQ@oD`nB%pUtRo5r?C27#oxheVV zv!b!j=zU0^>*%(c0T*U?*KYsQx;vgWbRqbMX#Dr(-)DmO!|xk> z0K8`SweH;?=|G0aZY5zw{IC{uA#0qu}mH8zJ&F+`WARxF7D0|ABD#7HZ$a z-AT9?-yZ^ZN1nsodlmH026t~2!p|Gx-Ue#l`A-jbr@w}~cZ%#vblPi?Xm5eLqsXt| z6S(^?a1U{RGu|C0$)9-lpLqA5c=vxyygP>-0Rqq8f_L}I8N$&@-~f6+aAY5FR&G{% zu@LjZ(j!rIma|ZpiTJ{pY9?G_GIbyc6gtwA(T<5wWK?3CGe(}LSwexkm?zLx4bFD+ zGkVvFoz%`C$AK}O=M6SP~#7QEJmF0HwaG=Sxu z46&Ro^Lwhu?GTU?JMRe2*psZE&NP@TC3G21ki=L_M$Q?;6{skL`Dr~|X=j4A7>dsAwayFb$#XZX2<uWaxt$oxLw0tdqq)HRMldBL!>7t*J;t+RxHL7|l@I;|Gq*=2O#6u59LS`>;kdD+ zvnft1W(;8fFz|_Jyre)nD#KJv76Tpu>A68K5MXkW(c#LTfzy%XZ>RI4cV0sg&TO_; zA48wIZb;Q5Ad0(mpi$z49QR=bWMU`fV-X1qKy zg%;>Onu6#88&oI`XLF2`%}aptLu_&nPw$?HrcVPE6!s}MK-J-CmD0F(L`BnT)8o7I>Z{MC!#v+lwSHN87OmdVGg- zuQ?!}z}cn?;!SF8n4DXQb8Lz26(-U4vr+q5s!A$9)HN}MlKrq4ZTKGIe=G-i1nJ~< zj3`T+5y{%K^6fg#3ezHTk@q(cx3vr!W5+(RGC@7d^RZ|p5J;<2Vy_V#zfCfm1GBPM zQh6iQawDJTTPq$Q+wpXS=$_`<{)C$bA`ny~Ahc>;4Ocq2SeDRXd2GX4s~r-OK#2~Q z1fwt2B{ff|o)445Qdag6fPr}Ck~PU`5-T$WRZa|uG8`j{(ikW5fF3eSNC`|f-YvBa zNeO!@l$q^uk0>*!@}q>`NgY9TCVEF?1laY~-bR~Q1mg&N2KNbhu>ED8ZpLEH)jZ9) z^ALj@@iLz2S~0W;c0MNu5N4G7P-V4op2xlTl7^##Tdj73d4vuXuEu7IO%WLsVQup5 zQmjYwTIF&VFev^U>Z-b=!^jzD%sPe3WxS{9VO&5<$?)M*53P>(W;{KW+j@Q+#k;Y1 zGPKit?aIdZxRPktYI_u?^pUgUy>U`xsr1-fG#97@q$DMRlZEK7F=TNp-9GkxqKLFF zZ1GV-=wvmUn>z{-8!j#96ATc`ExH*;Bv)IUfFcWfZZRpeU(M>nL_;Wd9l9v!tX-cx zx!NWF2k5V;5n1zu4^&#C5h*jLL}kr_ZZSS>y+Jh?ctd$Bh4mp^6&|q}co;f3rDtPx zUY9{Z815+z#v71F`y>P=&9yjoGhcE!JW%+3e5~k@F~(aHgl#mB*P6FTf`+AO)f!P1 zK?xD+@b$q+9Vtly69EbmNCu;P)z4u&8jkdiIR<-~=EI6Noz1q$Y_bA^0{67tat9e( zT@($6Kvo!qX$&8UGcE-7bSR3UFow&*gliVt^v061S%`Kqt5{7)scHr9;QbI^6|>2S ztO9JA3>N$ZXGv3o(Q@V@>b8>$*HPyk!3O{mHDoOSU_hV0sO;jeuR_lsq0aT{f;yi7 zmYOjJaga7!t~Zuee7?nZ8?nqKG=-f^Ga^_{wZ`x)DpLpGrmJ&`K(|ma-yZpxb539p zORmb!CS!bS7tC@Xl%PJUvt-i|T-#8hXLQ00suQpyXj48&b2xJc(2nOb3mc~~Ng&g$ z=^2W$^1-<&h>Ogs@#z$UhT?oCE>9qtW@CQWnCsiPbOmtaEC>=-n65*QundUDV76y$zFLRu){^K{q{pXN zqL)W*rtIkD#vm()BO~{b#C{Y5{{&xqk=QNBwwKrsrm?+{Ds@DyyG3C8p!!Ip7-v7N zdEP`K@5r1v+{ko2KdwY1_nA_o(H=6Pjb!`C}!oC*Lyjx%&? ztDdEJJ}8P&qek&EJXDDfkdhdAn-DHTyiauG(05Rw0Tq$pH z2AB&&EXTOn5^;ykclDtVp16pLAW(xv(etZy4I?yv6;$_#vGZrHa{H^Gx)%suH`*T)%)fx@zT${}>pdVs9%a9wr`5(|T5F&&^4eMH z65l+2tl?7wp(FUnO1O#z(NT?B zX*5!vk?j+Tu*$a+G_(``fD&nXK57h_Hdz7D{+9lX61j#t?>xR&{4>aRqt4N7uGLTp*c-d3T#bJX|dD7@braGRS>T zAmLMS*2~h`AwdvNMWH#>4HWpSg~1}0P<#oM##Dm%#uV#ic4KcHhH5>p2Gb!s^Hq7_ z7@9lcgz-W;!trpwvJoU10Tix_ykH&2yO>KW=)|ecgIE<>B|H_5D+Qx+aWs><8$gnGBS#6Pf%t^!d-&f>&Y- z{y6mc(*g7WqE`R_Psi1klesN^_**3Jk9U1@=Wl|4T*6J?zx&r&=y{0l)!NMO5d{6x zd_9j%ehRVp?eG8Xf4+SVUjV;-yP5Z$(<@Qfm!7>V*6;0X_`{;x?-}pY@b*^3bhNI8 zgtw8xKQvXs%OTe%hM!G+4%FDp~Fy;S{djTRYto_&s+j4HeSf?`{uRHlLO}Alon{~e(9`}8#T>i%S ztCRnW@PGfeySb@E>K!Vw{Hvh>DDit7GdyV3-@8u==nioO59Sn_pavR?1q+}%Jvspx~VuV_ulr|e`+%cYis>J zeE*r11c4Cxu!i4fCbf(3o~w16D!qWzpP5IGv(LO~Aj5Ya$T#}*&%~EsabrKiTR5nN zB>Z4Qo4R6eUF_`7t8p=2zlpVtnuRHvv)!ioV(;Yo+rRw2%JWU?6dRc8c3Twh%e-ij zQC+{jW{1_oyyfizbuG1bRKwv@4!<0VFK@qM_fIDBdb_UjEO?RRjEeS7fj{n`x_KP0Ke8@jz}0ndN^qdWeBC+OSVe=Ysxt3==6 z+vyzLUpIEMFY7W@-_h2GtbKfo;rM6SXE!Dy{FC(BjhrId;&$pO=`xk_2^UHrT%T;@({<2gkdO3D~30i5EExNMt z%HJA8&HKg8Kkh2Si~CE3TT&w4)nFaPZuC)&eUy~?9_RF3&D~~S-qqAi>9y}`X?O4& z(fCo#-EQsP$BQ2}kGCCC??3#np6Ft2HqjU2O#WS)^Q_1}cD_CT>AQC6W>?rG zKB}=gE~95RNUygCz42b^hQ<9QNwVbk&`HzRX8HQMLU$aBnhoUnjrA17esPn>@UAv* z3MRR$t;^C1-4AQ6O`Mm7W%TQZwYd1ex%{3Y z7V$Oa_bI(scxlZp&1(nSFEjswN30&m#;*)I-$MElWm>`#<`1^X=Uvo)+ zHd=nYfj^&J(f#0F-ljf2dJZ49$_-t7=DGdBUA!s8@1s}uj;O$o+$lE)5`JLkzBBgl z1ADl-#UA_U&fTV+f5hf}qh@LAt-Z#Fe>SD^CtmZLjK3e!xtqoAZMR5mh}#ba#*ml5 zfcLk$eunQQKjzl{JBEIn$MR3o>CW}}>)UtBdlzQ@4(_jih8kZMA2+_6AeeWxb<+X-EP>mwQSwmX@Bls(SnS$5M6&|R%{-}|V>K8`hRiN3f` zBHw&{cHeRxipFU1fBmTTj1QGrH%b5dL`P@&-4by44{0KN*nHmPXuDgp^&;|9_mfXf z;eYy~%s)B%zdZUO@Y>1lzKXQpPCxX@f$f^_;8oYaZO4DIKjU9_06LN~0Pmgr z>Be(4{J0MA7mv+#xbdq)dG7>8j{p)N+8qQx_w=ps=&$$S)i|ve&^1pZ1b=%iYUwq? zFLkjc_DwVA9^B9y+W-5%|BtteEaaKP^Bt;fzYYX?t?xGge%?E~(zSimVKpvUG?8Ag zyqrbza)E$?k9qor)qa7|-+~zWfB*j9zp)@+PxH;tYWOKI?tU-$Gmz2n2W^?>E&csJ z{@2_2?7l=X&-tu$R{P7p4?S!-r~UD^t!PeS$U}to!&jdwU+8T>8RBv7iEm$9eLdrM zRe0Zb1OCAk-icjIQ@7@Qyw&5Zz11pC#U3F7d9lS&qAfeOz|?aXIa-xcJv)-amh*|G`alwy*NQ zA5dreKJ4gQa$&c4$Lm`Bimtpa8o#Mu)LYf-a}tXy3aWkQ&rx{$$CTUdi*K~+e@!a4 z0_AHda;+!_c4JYFHx%K9u}hKduZnQvzY?EIa6{;?(4!LE@Y5394gcbAukmq1t?srf z->TvL_>=ya{Bn8kFEjI|`rnVg)u`4oc3&j&@bMQC?X=%q(}ab?bF2YvC5;*X?V2W% zrYddeaE9qihIG)&}Beobt)f$_@BT!QfIX?pg znH{LwJ#L26ksRW?gR-08YF`)t++!9V7g$wN2?t3v!-@55DvgD$kZcQ_8V8=RJ{`5R zh_%2v4|FXv<`zL80$FstF+Sy`>5-zh9FTJz!CA5>@**ds)*lgl-W9l0U3 zWe;r%M#Q7ZiD zJa+^|g-apVAkwy&A}ez3{%AkEQYw6}CsYNVX(a%Icm_p-EtqEeVwB^GIu*xCU)gp; zTR|`OS}gg^oW z0)Zsfr)!^=`w`cVcKF>6hyTL=aDQNa!744?4H7~{2~GD5yz~r6m6cgpnUz_&usJ@T zuWiOJFWV!-Q#cXMB=~eR1sb+4q*Y6sTX>w3S8Z%e?ddokDH(hytZ-IJPP)rEUaZAQ znFyW*9Y#6H#_J>5?iQUi8&PvzhD6N>nG?SLh?VCAzG-n38KUtuQ!| z)<{{9v)HUzVVaCF!?~>BLoyMcM`oF-faA4Qg=r4#d?(UN|;Md{rJ6@EMnD34^?`Q+9kM)nsLP9OsGt1WP8{bT!tXXOrZS zFj}?6na!|O;;S1Xm5fq^lpOH&R;-&UOZBP9m3#S)tPaR%BC@m8`>7yHGmGGPY;tc)eG`4-R> z!{X_LV_zL-&3K^|PI6c$nGKigY`84b=6gwTMBr9;HG6}(^o%KtvF_`DB9JnA+p5z~ zd8d7!HG6m-jPACM1J;I}{czIw-iLPPOI?^0*%WkAuyYn##gwF7#XKrklIyZ%6~U4hKbL0}Z5 zu0S8&Eyj=peFwJ~U^WN0SQcR9pIZ!Pm^g`B{wg2cVqasL4t5>b<`;|7Bu!X8kr)w) z`so*o+Wlfi0>#5G_L2Nz&OGoF{9=Ar>AH3aK^f%$FF!!XtXK#8C51zLH)&kGyD1&? zdon-niY`_wJP+;o{^QU8aM5vB-)D#B|Igp_>+;lb)XQ%}&c{RX#|U&fTa{M>i^c2RCZO@RPptqJE8jqk&`9@S|$KQ}6t!)Hm?csUMZ3BM(37 z!;kv#qdxqo_w=JCrZc5I_T)!Z$QtmYZiSb9dNte<86umCtXWw~bW*vwu~V95B|fQb z`?GdWsI;n^c`U;8NsKMXlWAFrWh&aXzY}-=ZkTa7!}Up`hiCHR?zCRXtS5Z`P>YGVlA0|pYw4BL z&E%-bYEl_-wc_}tH0d&tISF)qAR`(bV-52SvtBJ~!efbBSWyV~)Qo>B=c;cmI>}4{k z5RJ9GT=1F^I%>7L{A@m|Ovj>-jui50Y`a~pR)>0JNJpqOPG$2WjcMl;!HZP9BahRW zrpPF>RH2uyHx0I7qp5l^&X;OEnd{+$#c&?)MZ?8aZmuC7Cr9#2t;DnH%doK|X2rv@ zK+cyqU+qY8ctobK(U$Ec1T2e*MZ?`h&zJQN?*ON#qL0etc2H zsMt8VpkH{3E1&e}OhR(F|nL-%f$#kYNs5Dg!XUm=OW|}LGcO$CXpd!n(JZNp@ zRHVn&*N16oRqf_BrF^e&j1lH4AE_d(P8fVCDws&G8LV6<7i(I`2}HOl5jCp1%`2Hq zFHsvG({Wm^(AnC)z1i1@-egybshS93g;b+)G#s;&Zc^B`#Yn3{N&KXCIMjMrYSh-7 z#Q!3G)KspvZ-jmJqiQ?|*ze7c`pSc+pAYRveVEJ-llfsX-^pYS+U;&zTU*79e{vz+ z+1nI)M!3h~u<-c><`@o31>G*g12i*F3^*Z+0`cE`2k<%M@1b9ny` zALfuwmmeGzEJr!7FS-cvz;OH3eX(~~Cws^9AAkNQ1Qv#D^)j$u6tly!HF5fC`+Nwx z{;$g{f~22YAu88I;>+({JQ|(P!9&@&r^uI+NnrYs#D416vvvG#6#O>dtEo3vsq$Ml zG9nlwo6dZ}*2pN%#4L?)TO%XCJ1fKG+(s>-b9JILpj7Zhx2&{nPnlz9b+&Lz_PjS8 zL9-zqs^%?vFO>5<#_Pvxn;iAf3)V>Bb(4I~2Q4#|_6Cr*9$I|^C0we008?iHsj*C8 zZFO$1HH8Ees)jWZB=|lA{%=fZy8#Vls3IMog-xN$B_Tmu!L`LhG!qiAr-dY9 z_4Z64GNhw8=fg@Czs~>BZM` zZ?3uUuo7aIp|`50A*1LNKwD5nUQxb;Kxsv*D~nm)KcrD;&L2Qb=Q%Lfdf8C|6f?TH zUiN#ky7tb)Tq<9mug`PndI^mHc67+#vXIfq{T=^ zo)|h3kA{jJ7Yxql?r@i4J2rnMoTtgJg8}4ByywtN(kz{jwy>eCB&zy9Kuo?ixW>9) zoVTU={r~{zE1Xk3$8NF2r+k#>+ny~3S>zHY%G^|CRu*&O#pELPo z%k<~=(0;W{ftjk?pI*#VgTAMR=~Mh0MMPZI?_3)o)om-50@_I0K_(zbP^TrdvjSuf zNOUjgxhOwPGqOMHFbTbH#H|R!ox_koLAGr}f@KA(28Y~DeV5Q+K9#HYXbH^7#ZS$qP8Q+bWW@=|00!3IiL5+zT4s7fBgCHE)v37 zW!g>!9!h_nk70)NpoIxtpO}YGIk(73e~a$AK!Pf-OX>#{*8y*{U{KfNY@U(pb%o*Q zd40{p-YH34DCvxH?)7Ek+K~G3FaLFqJ!b0TTUQny;srvwQPTOC;)Q6Z;k%fda=2e- zNHg#rH&ozNZ9qiKs76ow65wR=+qE_Gxl}fd)*TQ&6@q4PYk^%-9W2g7FIjxOK=uXx zv_%TyFwA|fq2VQuZAcHTAwNPyUetR;9_@EG#H*043N);l~@O3l=1Ba6Kf^U@at$7r}7AactG4c^@DIY8>(_k=J#SGzI|}tSBB# z=Q0;EV^%?k5Ez0NwIhivDXKQm2-Ga(<&gFw`}Vvcp`Sy$sRjZ>J?K!iUsOqhI|W{B zE;N!rS;D;@8wQ4EL!z_`ae^_tHnJus7J{lxR!|S21YQLR4kGUOresasxlY3d$iTd5p^mL+mp5?TunVHqD!Kzk#dsAg) zReKB+;iPdr3f8C%{T2aFnimbuujq5Py<%n~T3=-JsaP;B{$$-~7>tqGv)}{`!H53) z#BDx$jW;zFzc`gJu1k*ADioPFiNU$sFCh!8dAayr<$7XfznfFuFPGSZX#wZi zK#D#z^H72Tci}wcnv7z9)n^I>*O7jsKxwj1(yg6`7L8~gO(&su5ARmnC!?D0iYVJ`k1kAo|=#^I3@nK~@tKlx9YO=^E;{^%J-|M=w0>wl7{>-B~`?5 zs$BO3JD-qRQ|B;LleF*YcX5m}HiEGrfCUg5f>x>^7KL4gShI3H2z3&ctBndmR~D@P z2gw!`lB10&Droq}*Nq)f|+zBewRXb8pp>~#l3DiKt zOwpcTIc3Vj<;5c*xRRxb%r4HX(|clB0306}evrY8=+)WJq=~EkvA^jzvEiarkwB?3 zyHr*Z+?@^L;>r?KX9YC;;KHX-5OaR^RaJZf9pQ|@^PA$(<9(%_0%CeU5n_-dqc8f9 z*Ho-gSHs9qbf?()B%QEykwoVv@D(2aH0cQ72o@MHHn4OskY}MCCE+A45TZd;gPl^I(u2K5P>$=>kqIqZgJrAJOJ5)OpN1hxwh;eyu(R8D&i8 z=*4EDBxNnhygM!KHHC{+NAAD_|8V!!H^k(}SbaB2 zc+m5|7eO=$D2!OuwJDBI6!B2H=|hmj-4FJAv4`=DnHo&+a?Lpd$MXZR{-p^ei;DqI}Jh?%>%dxaMbTCjK(AwCT6WCFWG1?Va6-4f7o zyGcsj$gJN99QQ7e&=QpIB#`1Jhdw0I2a!nBLn7TeJpBG$<$oPn6#HgN?zt?B{H{UZ zk1R5E$U_!=5Lpy?$f8?^zd;s#mUEGp+TgY{)ytv?tv1HJMA5@gy8<#`Q51cMqFaZD zH`HXFllGrP8hJpc_Jn`IYEMYCyg{Io-fPsy{4S&OIFJ2`LXdt4!CQximl~jz^{v-+ z-Vh5^2rd?qh|MQE?=lIkdcZ>_>16-qWm4=RlWrXzeiL*2QV~?QOtQ~rC_?zG{4Nsm zkVn6wJc>W$(XGS7%cC8uy5>84Bx&U3I`5nJ>pZ>6#RrSorDLYs>e3UD2x;XmK73!7 z7{%Q4A4jAyte-N?L!8ZTB*6qlQl(GhdiNm1sEAt~Ulcy{4-G5V#Z44P&t&mO#KUiu z;&@lY6EB@~tV@PgLEy7+p#<3&M{Fp?du%pbgDr(!WP z_2Hr^U?ztG6duumA4&4La^1}-hEDiJO!4q=Z@9|(KQ_w|FRQGu{4}oDUqtT1AF%%) z00960>|I-O+e(t%3PN9UgvF;G9PsVWpG0xT4el|T}(bw9355~$3otVh<#*Ppugzb#My#Qta9_YZ$t+JXIc z_G0gNc>MbHa5UT#-$u^2h<|$`|6||&7KHBX^NYP+@34RJa(J=+>Xmb4ujUc|yb00q!{&&JaUvS-(ukt~cO;phw>&NLk*Kobqr^f#o8Q`V*K^TJup#|<<%H9~T}H0&rMlDA=~;&;Jxl%~T94USUPcdd zCt>oXKYRGXn$GrVt?I--z(-o>YDwpL2a~^IC?<3HM-I(o{&)7`J>!^nB6?Ud()KFy z<5tn$E&pzjtf1KN!pTv*n{(QCYHhxci;rVY~+TKjE;Q4<` zKCO9J58IyucgFvD&Hl1BV$P3-Qp-(!+aDgwjX3l5K>77xFjRbfd@@#id(xA;Qu^6} z>f2FYo_DElhe~RrvAQDzvDo6FNJbzElIfpX5nBst%m-DqpyEd4$Odm5ITM6r2g77O zub-I4|4%;2`OAl1HErZ`$`#JvsPZP2Ug2Nt$=vzGC|(El@+NPciT}M=TOHDDijym?osAju$yWYR7=xatzM8t-DRU$A~f4$Vn^)sGyG9 zCaCyodL);YnMibs_&|5<%HFEvQm#}B%uX1I5a^iBs1jwT%K$!I_{3=Ax<2a5b@#Zk z#V-{u?Bcm#C?|euLFF`RtDK~A);=+DEdnYf{ze<6bRzep_DP9rbx8z zn#DALi|J)MH5rAJD%Uyd64R)!zEJAKbly@i^(44li9kvKD~s#y?e)EZQ24bIDwJ34 z6iNa-Q!NrZG+88L`1M)d@}G_zqowoa{NvE{N;Ck=>NQGMMPMdaR)fR!hgepRn4=t^ zEaLgaT{t1fJFURRLJR_rU(p1^`(HL&;vPNLCrPdk269OH9pv zp9~xuSM5GTwTCnV9D@kH)J*CO$ndr?&Z4J6a#<*>XnoKffr%gc^udu=yO!19jF ztf3}Y-dXF6H#@=d-an+|fjudz1@i8l`Fz*xWx>qi{12y9qJ=N>4#c<-Ns=%C_N)n^ zJ)7&Qe9Xw3r&=|3`-zHqA^{R)J~;XlUk8JA#9TFL5@l z=7U@%0@ZTI(*QJli8DR@+~a8g8oq3rkqEHkHvu&~>5-v^FPmm2DlMuf*l^8UOJT#K z{5j75#NWwejLNxNudSyj`D6yQL8sJ?2Oy`b^_pScIQEQnF4>y4x+>J*$3-*o{o92d z++Id@z%f{t^Vt{c*0UGv`LD?n>s*iOS9q_sUy*QA^2LQ%^$CsKpOT~=nn@}4_RSf1 z@ohP`JsXtr^d-*Df}M5!p_Ee2v^xu2doD)_I?1X|HMXgupB$$%&~xTC*F>C+v+M?) zews^e3uo3(g{>gztrjs`^fr4v5a3z^b8@_k0G(~lFF(Hf>zB75KYYFX^!eiKRrz&N zuid0*oeYu_D3$tW*h|dko6{>g{fqN(?*}u0j8YkdVG@Z>8H)f?2;oPk(G6r-ph(T^ z$flw-nfue*4uDz`PGCgsgHP2jpUI1CZcqx$4j}UoB`w!mu5=mMs}-0>MTu}F--5Tp z3QkYe(X`RxDZdh?SA17@{8ViWRva-sc?C^l`$yvvH&b`F>dzJkQM3A^t$;(poK$}_ zEFMJ8Vp-fmhSxe&H90p_>p|ZI-UBDFqg7_F)vlAOP2Gxh5+mF(zB4=)W{G^SFsZ4H zhQc10fIYD{$c^n?v$omY`%r3kk85ngj?UB)gDo!n1kt_w^F)>M>2vTp29{C*Q7 z=P1=v&A`SEU1`Vm{Q##Zo2x-;hMrlBBR05vIN4+l9xS#ih)-xXi%&S&PG$yfIlR`q zO5#ZcSRz}MWNK#6g{)s{=9r)(hOqdSU+(H)vU;NeN;zPp5i)_Ptug1M zK&1|IF6A^hN#0k+8K=j#oEKt7$XmF+cHJ8AT!N%-#aGj*QtPIk&i&pgKdY;bpxBt-M!v!I2d+ilU zE_9~Rr$Es>|B=H+PVm{eastPjay1}!+IH?7Z_f&ZOJneMHaL+2&3k?pvzU5CTA#0c zKPp3FB;}U(yn@6?Zt2VGOWyrB&@zr$xMBZ38YR}b<@I};4?*NFU+j%Wn<~q3{AuDx zk-uOs^#`$$P@E6P@rStA?Bg-_Oq3kH*c%Uo*sfQR__(I^VYT?eSY|(k+{=`Sq$h`O z>d*NxE2sU*I)_RuqsL=LJA>-24pr#S7WbtLr{`6tyep-T_IvRPSTBGbyEqi@9~JM@ z5Eq9!n41*tm%N?O1P@K_B~`L(?B$^Bg?2quomo(^9*#uh4amh|(C>-3mu;tpg4w2C zI+chYEa8-6g8=RmDjn;K9>Oow;?)$B_D$C*wP43TqqlPRUzF!o?xv-G1E1An__v690>Hj?GH z4hJV4r~4pt+b)OGu!GNfGu^r6-je zTEc-N*2UNAcgNZ=tnX~ERdZeiKNa7@o^vNE6jujJ?c&kAiL{?1#sXsNIV}u zqX4Rq)1za-bzyfn@9`6xoi8?Z;bs%Rz<-i0K#W|}RuDT{q($8<_TV-yY7WymdiA{3 zVt>ofkc$E&bG}6QPs-(8bs`(Z@;;JGHyQS(cJLlHB(Z_^WP4NmeumRJbVD`bUBb?p z;a|H9>MdVhn4P3T99+FrxVTCP7a4MACTF8~7E@BoH|fo>MpCeVHe|1;D49f+nbLxX zh?!Da8N_>;(juJf29a2%q|C#rj47JNNSP9JJt|5t$OAix*pl$9@|)~tzcqI-kV21|f~<)Z2*X4r8S|WLo6DJs z-rR>c37|;%5QPIp38o&RNZC^+Ef*9g+>$}Od6)(Mwc}CI1IFW`Xu)xHT-P9KKuJLG zq|-|eS66ow;F1fMbyeNo?$;=`CZX0ZhHM|U0ojK8V>Jue26%B-ot>Hv*-q*)#(D6{ zB(YO3CN9tt;y1^>V*|F?Q~ga`Kg|&TDYvLELYE@eC+RpjC&W zL^x%jF#{-KjV-H^D!;g^Wq@FUdi$&chs&9tz}%52Vs!IU{j6bhMe)3gPCKcuyE+_a zw{@ZPKKf;mm~waK*Z@Xkqckvpp(gXx_wG2v#3vDeCbiKG)yF5J8?xwAlZ|ezQK9C} zGzwrwH&ow#0;Ag@$mmvosi;H` zJ5Bx7at^QwR$aV`-X_>n+62{WolmxMvom7?TszB(7p!=ct;k>JL1O=$+VkmZZby!_ z6uFz+(BirDwz4I84{B9yYYrgXUcEPv*$uH$XtL;t!8SDV%qBQ0#qhCuevhPqbw4fLlGY)U<~nXB0&&p zsa`rI0HOoP?o*<@61mIZjRN735-mdVoK;=ZhXfN7&n2ZH`aB@ABqo-%#3DdYv;8KA z4+WAb|0l4y&%il?G}Y$ul0yxb^8s?@K=o?{ivK0db%N>@2tY%1DuH~tlWuy0sj+)! zRD_@?HSH2ZQKR#ZS}R0U1Se$PSkb+oKuiFVC@;Dg$pTQL^M=5sXY#0o1_vW?shJ$E zTty9?{y3RYb?L|Ve|LX;|D!|Iu@7YWhj@-GYnQFh@mpob*ag?WXZKyIuE9Ny=#EcB z$K)#$<&`75wZrtjt+&&%>gq0txKfD5iLe{y?L=K{`WWKvR0nf%8tTB6mFGsfwV|HL zbue4(?KJh7;^swxxV{v(M8|W6QVDctd)T$>7gva~0RRuq=_z-TBJv&(h8^K(m7Vp~ zQWZnqAtMJ&xX{)CC8GvSuz-tHrjy+Ym|&qbs~nga07FatY*9VT*jf+l#?TpttHdD?v)G?7WnD;VfVRO*7?OYq@r={1;WIrv%JKVc3a2)G8@K?*wQbU({ z8=Im%%MKjw4#;7Q=a~og`_HVU6IgRMV*lUg_|&@}-~V{_+}a<+zudZW|2nW2>opZW zb$cDg&#}3=KTJQWnP=Jk8s$lGZ$}{27IhBEUf=UxryprY1|%ZnEEv6C5Lk{r&Sl6gO+tDGkH<~Jf9R?riq@X((-bano!F+ z*5AdR!R{L3^K;8#pP3HC^`D#z3@_WU@aIlwE$oNHkMg-?Groj_W#C-7-}tZYeC}HN zi)Z4eg*y!(Ryt>AW2sunA^gP> zgq*Y>LC8!L{Ly)B$wmm+H8w!2I-y+-yDe!p7@BLp^73GT6-E zV!S(K1S!h^6z?k4(tAq59}`Qi#1zX7Me8Yde8mGAE0Sa#1m=!ME;wLr3uG34NZ0|6 z6ezm|jubdD8%GY7-=aPBJm48Fs*me8RoQVp-zPgAG~HIS2EjjZgFvW|5^h733kaI* zqdhkW;3#H`@1hrox&gUaXitTFPpnt+ZT7%Q9jwgOrR96`2ku&y=f|>kR_UZ#=<06h zRo4`L9RKw#oC`p4$rj&g%1BlRUzwFFPl8j3k)piqw?sc%(mRtgRf3*mkRoV5tAn}X zp*#Q&Vi|-F(CwY2O@U$_)h14PRe$Z>!7z5Q5WwZ(;Tpx%0hincz{yG6a@ZH?gRk5m zj5vI+g)Y|vVPZHa4#6scQfb~64xvzyQ%CKAV(6)vOY{uL`9RI%?REEEdJQ&gMe-%4{II#oAy3XFrnmmYrB@X}ar(&$w_0ZXS)EwnQ(V!Y5uQ+zQLvNBqf*|{) z`tUDPW8@w%i*{u!2f}O>o64)Mm<^5pQO%ZNFHy8gq%F#WUxl^cJq(*g#W~WItS8MJ z1cJX%-6G2@Viee~M8H7M;8s&h@w!Hwz|%tT#*LArqX)7$H`P`kRFw(1J!s@+tc zvbxA)*wL#yW`HrrVsq8DXdodCdt*qI&p)KZ>eZ4YZwvK_#(m*Pjh~(r`Cx~pu5#xl<~7Q-87aLzhx3BP<0+URMd? zNs6LJH-^L&qwc^J#c&0xcttTPVsvHan82I>gu~)0rSafzQ14JCBz|mksEEBSR2C~G z2XzoZZI2+^0E*NK=#Yh*jdPH_7`3E5I!bp=04msuBDe5o4qIm+j|~jH{m_B*&CJW} z=3(gstXH?J9ow7U_`!?4uM^+DUD(0xU?6l&wvR=A@W9i1W|^4!b3aH}=&}D^zs{=T zaaOg%6y5Fy;gU^OJh(uo2GsrqhQTo8)Xz$-K73ZKF-SHG;RINO!BvkbqzHrVLIbf- z?6wN}NGwHEghZU<%&Z7Hhg{S{$nJz6a(>L2-Z(X%%(?+H15|Lw1!-_7da$qr6sf$4 zQwJ?zT749)iE~Y7k>Z*4sc4Z^@dd`KpuFh4)nWoNRU+}6xJ(S$TqLV-P6i*TpOwf9 zua+bKd2kn_BL@Puu=sAnF5b3C%F7fl;UE*;1pey!2Bi8P^~AxhQGL0Z0nk>n)A#i9 zz5H}>{`TTB#bj5bCl?avWSh!YZK|%{OQ70ha<3wTKeOu2 z9k<%3mjK7WTLDR%W`6}ct@(kN_GZn;$C#Lf=MeotCU3s>L@1UI%rtrH%) zWLBRg_kx{Mk;{cN7#rL>+2R;s;8{~UnD8nCGiT{|qI9XS2RK#&m~dnTSiZhiJ zPh}^;us9W6#ucrrQ&DzXqI@I>p;VN^Sb&wOC>vfBn%S>*(x@QSVV0d-M-HJe0rMc> z3@fDurdpa%Hx^`+94OcqMGBUofYcyHXr-byQ&nQ8>X1?V0Jc7cN)>6C zq3WCZSy}!_!^9-B^K&4h{Nrk>90-AMxlu8mSNF5$5mURE;(6!HA1r%A%UB-;me`^< zYX+JqVR4BULr`dQ(B6Ld+r{V0i?8oLzPfn#_QRi3Y;;vRSDAx~Fm zl4_0G%O3=oQ8NcKWmYBMI`>k2f8o1pNt&6FqAp(tbcL&Bp=M~5aL5isWPB>SQ@MY1odE|R^?jZmsHCv-2KAM5F{8)FI&#o!8SjrZ5eP7HuO-)`PupImJdkZw#6*Y%u#v^Jj1rjJ~7XX;-Q#)93EV9Y` zK@)jV^9Kv7pyv)8i9yYxQSb&elN%|dcFpFbsL8V1qo#!xbn<}p(y(_WYKdsxMh@-o zt(rgu)wiH*73N2|YOSFV0sd@b?PH6aD5RfYG;;3Se zK47r6#Kck#yhq1LkBGC~C7#U&TNE&=1eJ=yAVkEJlw1gqtsm7jk*dveL77`o9R#Lp zLv;?AMGZkKr$w>YHd>Uq)&RT3F^T_g?w0V_vz*u$4dSk6y1oUeQwMe)Dv>{CBW@A&9t9WRd#S?300J1<$zv{qzehIh&d8!leW8j2X zFGE0}kbt8YD0~Jo0U{FKm1WBZT?Poo31kHL6{q%Ng0P0oa1e4qzz@IZHf)IcKfeFZ zNuyZGQCqlC$6u+H3~*!sN>9CcSl&1uY~RFRx+coqTg~B)S(`cGG;oEJQU&~>^leyd zPW3}kVE4~fiK%la-us~HT*z_1iX5fzYoP{Q{nY3Jjv&xw7l$wWbLHOgyI*9%lAIIz zKHz9wxdCh$pr}D>C!>hDk+UEp22zS~q=4oD9I?^QID)_hX6AgOO*eZu=00har0z}% zx24E;t4k`|q7|>m>{=(eGcro>aD1FbAD`)D^nQH*w}uu#(^pgd@%;~8e{sbV`$WDK zE}f}+^{`IpW5o@I+@&_Ky=%wvueN^_RUDb_Azybzk|2%{^I_oWfNq_Kdq0>Z*?}_r zwR1Nx73gDXq>gpzF5I~t@cQ1i6;EVKPB055_`-V>6EtAX;& zN=gLcQ;j0%%x}vGuBYi8nHkOXuKZxZ)0in&Mm+;+gR^WJcaLnLvDxngAX^fO-1-C| zBB*|L^Yr57Ycglw(}~6xwLH<(zw&eLZ1Zqq+5zlrD+I>45+lpW$VqD1vwzs4%p+53 zxPXKc4Od=l?_q6|mQ1ln;wm(owQB>{f_zGk9^ZH5E0OTQ!Ol+zT0ZvH&krxFdyZ z5aD6a7;+{d&8Yr;1i>{ZQn1_=C{n=CeV7xKR`Ep@e=JM1IB ze@uO*qI&-i00960?0w5}<2bVDuQ0s0VMml@J#0ztIpqjRvPh926Cjh6?OwD?5{XP?0*OREz;KTJjDz6!VTDu?%cW$eLsAJZ{me(tz9P!=GNSfZOe<@r4`;=fAs?Q zzs??ih_B%P(baz?|ND*qS+8sdUVr@IyY0U}I=whL6Ay}?W9!eQ&mVH%AFU#H?MC0- zqbneF#K?*OHP!;Pcv`uU?*-r3ICkJH!sz|c-7E~hE$!&r`Q^nC z`+niA<1l)9e>6DCA~8FI|2v@{MhPN)_TQ&Z8Dy?*fBoyvvWV#ukUc{=M9+V{7jE-qMS?lEB3IW*Myi!qo(-nLK)+ zw@^VNo0gy@6*OQa6)d_#gFiV<{6KTV8wx7PAE0*O&iGtJX#nn|qP# z#QqZ%ysaIB3Lx%YZv+Z<92G3Ojjge(r$&cbK(_cjjNCVaL?#ryIg=pXy+v7>Z3(NL>i=p7p*VfE^fUnuLfIa0b?8tVQfa|4(V*g*kSS#ysaQ?%JJ@a|~ z{%AZJfBH1~_~Q}(Hg^Av;oFJ)4{T-8+M9m?Q`Pxk^5f{^_NyEB-ro4}&M$oQ?A!t8 z_eZ1gIlKrTzHEHM8( zy?XfBhL_`T_5Nr&HG776G5&Fr{E8 z^T=$xf~R3K=os*oBjPP1D)a`UA6mvvO>lV4S-4BjvHkKvGU)P=bkN@c!sR2)q2n4y4ZGPN6}nfXM&(*T1jX z)$=LdzWmN&7b$V(u&G(D&CZ;4=x^YT+Os~fui#RbSis(Ka~OA)u^Y4H{$t}Yda+~D zibJJ4&6>i$;E4>jhv~@C+kC=fW6i*6l4Ey7$OI#|5z;1R=AshDBPwvXD~b^)xg&a1 z@NVU%q=FZ0mNPfPDBDKh!iWk|#3ZguH!sZX@{kyYvzQtRk$ZN8U~XYX;80E%6G-{b z+VZd!H$6BqrQJZK(7|c7gN0lS2&jLt=0ZKP#H#?0UpUw7O#jCQZo=#;`efZl;nEs_ zV{QLyz}2@Sw!7l34k3qQzuB?1u;CW#1^^2Kb z9fqxm7ISy|+n0~mHwgZ6Unq*s=Ukbth0fRi^Rb*h$Wb-*F0iaXXabM}mL7ZcyBBWQ zD)*KfpF4(oSzL>6A)i{kg^V=rAi}(o7*7U?fqnPR5ntW7YbWwnvG<)!#(M#q(~{F4 z0n*43hjV%ufkHVwjOa)lPlP%v%{;VZ%K{sqU<3^gc`8`A+mR6{sj|?3D>y9Yi4@Bh zDe+a0iW3*fqw55Zq9ywXZZ65QGtGo+%83nIQEX7U%y5u0rwYa9 z-iy{TY_$@DYF1WMP^@>}++Rq81eV?@in+B9xI;x36y_K;gXDzEmG8!wBgYKjvo)Fw zWE|3gLLJ_NtYoVO>!qYsn2{P8_L4v#;Y9P@r3(i)sDt9)78hfV zYpr9O=_4X=ed9PxZ-g1Z$td34dgIs&8}{9vO8HJ$5y8i|wa9VfTfwa6>`^fS0O?s@ z7^VVB=xhKr>(m1}L29HKQuXlCAT@^ZA#i9Kt4hwn@U zi)n8PxG*ULc~uo5QNDoc{#6|-QhdZZsl5Kmy#l2}(bi=sMQ4V(H4-4?nY@fyJoOa4 zc-4ys=ZYXe=sUN5b_*wb&}#EY<&OwPjmj@Hm%4b=-8uz_&K10L?#L2tB-%$ z;7><@GYVNkI@8ReBVq55)$byVf?NGWwL0jkJ8p#`)zk+4)4_mhb||rEw!zT)f!V6Z z7_;bNosA%kdzWOB!jyF}i*pXBASEFT2zZxtg4e*>FJGBuG;*ahhKFlKA_*k_OE<}D z1PXPo89~AYCK!RzIoONzDth z8V7*c65ZbFF_#-7kdxk^M+NKSaus7ZY6J|F6Jgu)#u z+gJouyJ9zDW5>d+_fIzpt+ewREJRChy#_?TbE{>~`g{-dys%kkM$^NmXBmNW?0}Jr z3L5GHVz^4S{6>H@Jj>|BJzbHv9-l~VOdI2 zPN2?wVTc5)b49DFh1ORm^ef&XsT@#ajVZAE<~}`!5js$-W(;8|sPQz-olXQ56!G;zMiP?rEIT!jy;tN;LXnf=-c!$7>evX?U{4cm69-N@V{PKKXpj zFEiTiPx39v>MyQu<1T3g0pIe}Mks|)^QOgRC}p6WK%Gh<+#niXwuyk;o0wD@RhndW zvR}QWyS9FDAFVIp(hlUbw_|3~=Lae-q9N^*a_A=ZAF^{K*l3(H4;~9?Oy{tsDiSC&^6Qy#J z5B7TPE@!^|z;h#^!D{Noya#y>!OYzTh`8?@pXf!Fg$H@8+pe$0R3(>|EMU*24bI z{=u{wkC8b!U`55c)bYRn?2M@@fE_zKq3OD8cL@H}ZQn&W$NlipjU4FV?z?bXf+Baa z@hO91Z31?`T02bJ15F}wnNGrPw!D_XGcs&Y`@8M=_RM#Gux@VtY8}tL`+KI$oX*1y z`_l65CpS8Ie&zV)pW$+5f8!JRnT?*i6XUCQ*5LB8fAY@yaC7?e-)=vDu#P`0paq6? z!>;_1Hxt^z&wpc+zWp4#)(2h{^-mrRc7ouYQKY|yOg4gd{FCP{+4RXW$Z+u!Mxg$O zEqQV0=l*muJ1Z=6hi4v&!GaE?C>5Hz)z?%+z1qt*F>Q5 zpM@g;fxw>4Bsm%oW0(iOmtvKy7|d=bK#Mv_tQ4W0`#oY90!I^7-|}WSM}Ux2@w$Z+ zS2VlEI8;q=f;~60eLKMEtFKZt@tX!lhoU=IIz}m!(oV6$J4Ya19@Suoe54=~DsND* z%p^8)1W>bEX~?U9+dj%Vb3j`1ODv(1*lDomrV&s*ozDzpN1G8EPD&JArYmzoSEqw; z4=mky5t5ORu9VP^Ve~Eh?mFDa`geC7Ls_}w!R2&x0-n^_6L;F)gh5~jP^K*kZD-N5 zm{8rCTi=NaY`a1t89buDkycm>1ikJ@oyZ`O z{8w`O_?^qR!Muv>vk(_qc>KBUsqJPW9(2?PbYkDvl@?_<7%~!K86e zYO+kk%k{c8-v0Q(_5Gi1 z4h!_#Jy_d;xWZfXGfX8l7Jy}U(1Zy6!N=z&;a@^X`r*2^z59v(_<>jV*!ey6MG*e< zqaDm83PJck$)_z2TeAIk&!$fyd+K)*K{ z74r%HhzFxwYVI?m$VDawkx;X02ezmdLaun58$F8OSf-mqlwNb@0vtkgf@oXaf zvt(+cO{O=R)t6|EBO^hynpjd&FJJijsh*XWBI_jNS$&D95PxvDU8RgD;k7$FU+lv@Pa%InY zmxR95uZ9iGB1_C9RRQDPG_QR&)g33(9Gl2(bTcYtYtW{p8^?rJ>~b?5K4@rHgEp<# zI6hoV(xG#W?}mOa-SVp<7c}&#L7OIP{gdO>nc)U)+OVtgDY3lCL$~{uH~1sm^0_px z+w@sAthM-w^K()D5D?!BeBDN}a|~q|EY~@<9Mp(|JqIJ-F6&-$9ITY{3Xs%suo)wi z+5BEzAZ+LOIegKp^`p!`ebJLFFM)9Qa}-HmAYHA2p#&<1^1_1*WiX(i;;6Gk#H+oh zyt>@oCh(MHJ$B79%&M zGWe1rH+f?kw9?pMs>-I7M6I*?#Z9fhh*Yjuk{RCA%4Ix19~25KY| zUYo6L*ru5pd61vWaK4vhUKYh)QQ-T9amO$=;(9!I=V0`6iK}8Dso1P~* zB^T5IajG4y@0?8O>w;-oha*|5+Du8)e8$Lk@H^%-#hogHRyaastmEB&r-*9o*U&Xb zT`+QM?Z-M(<|^=J=&D$r9Z(c5SC2T=;INJ+J2JDHci(t5NP@jm9Ir-D4efJeX77Fx z^n^d+J4Hs%sP1gHsu?|iR!P22LOPvN_0x>);Vngnzvj}U=wwot4d*9ochJsnRyxbZ zQgm9GuWF|0d+8x^Q#HE}H+N-?a}R%#<^2*5e~xuma_`&(MI)&fJ;mKLE5lQy7|QEN zvr54^YqV^$raW%=FWr!4J23+@>2f&%c2WHA&;`lcF*Nt@o4xaN2tfyNyd3w^#^DaKdob=@q|0l-&V}D{WofhFT{Xzk zv>asG+csypP)8idQQo9pJuvsB-orsiy*TQc)Z3?IZ&H1))*S^{!+sq1FSpSn#rsjJ zfd>1L`~p_z{^4#Ljk`qsn^-;X@d4Ui*!{tVnZ|bDxOH4E(_}lBOZPGPVsOz)@vvOg zL`|4}@6te7A-ZN)n#UwBMy^0c)*YftWY(%dWqA{krbtu}k&{EQyj0j&s<;_Vs1@uz z=Kc%`x*Jx&tAR592(RC31}GJX!@7gz&Bfux#jt`nltG(?FjrEUrHCg5%o7p> zhVPFqMXcY$CgvZvuzuMrzcQ5BPwUu@*f7IHFLpv7m?#C_WSbT(c=RmOl}pU5WK&su zXxi4ff2Ivb6Y*2Em6<)Qlrw8K%?4@3?GK7gLb4n?Z?sutK6hTeqq;J=$;gNJ2>1G|BW5DaV9kAknoRO+llQUmcgwi z=kLz2W|!mAxz`l9x=V*jVX6kzo_WxjJd* zZC1eD3DezK2(PSpmBt<5yxH7|=9or)3CQHKR^y1)EuafM;B;8h(luaBcMa%5r#BpD zw)X%TjP`a906uo1Kb+P{^(rp{UFaL9bwt&96R5zTey^|B1f<5hK(paV_`AR%^s?Z~ z39HFpjGHs&pLfBSKiG}0DrRF!0jYDt>8t4lMD0W=Tn?^)s6}dBH>g@B#WXHI7oDh2 zi(lvDcb`l_E7dZ;=z^(SXPHyi;2!j;E|lCJc8KDYE4Qojdn6wv>(~;GzpQZ`79Rlp)~S?}j0O_gOhW$=IqLK*lrPC2@f| zTTa6az*8&^QCWL^R)C96I2G`$BKHUm-EGzcD*_x?vLbTV zhlU;Dq6_wN-tZ16+e#BrQz=hoKO>PJ4E4ECGn?90~ePE>KK3)XOQPR&Xg zQ=U~P$H?$JNzPS_jnA%7A*w16**bC`eEX@(_?349XdT6pV*ah;C;EVSVbEnH<3$v1 z9y(3O(i%WC7~(Gox((nUVTJt*rB=K|cVI$Gpjz^GOFj4_$W~El9~T*C#UPRg*)YD# zZN^mcM14wo=bV3UN_zpPI^j`7ajGR(OWR8OxO0w1l90YxDQ9-mbW<$K9VmO&HBrU1 zM%9iSza%*sfuksM)38!fr5>OnG`?_$YG@?mm)@_mi2$W>kv&%oBDq4CYB27E+f}5v zOL&;HQ-*mLu49txXp0Uwz@*^7LCgavQ0+Q?UT7rocBj%Ra*xYI{4}=5b{73 zFw@5QSP1hCn}#_;qKK@Wy~Dn zuT+&OvPg+RBv&X^nM2L?dey4T;U$8#V|f{RZL2c$j_n*(Cf#pnG!o5(0CiQrAvAZl zb+AbF5Kq;hibx0P_q1Z3bWYv6Yka?kQ+HBy^%H|gu4FTuCS2p^z!JXYa#82hZMN97 z#$EIUWH^mG;W^q3hOa6&Uu=fcxDzfS{5mJsQ~s!);WX)lGe={YQxkQfRWhSSD4*uL=8ad{Ve&X zAmYK~(Tx#{NBG+ak;CTEQRAnPM@Nk!Hjj=PzwdVB!6xrAj`$q4Mli%5N`yITlb7hw zO=t;JOa5-D2Y&?FqTD&|k!V_EM;C)g9uVfJO*-Meealg+z^P97gbyJ{t@Ufup=J}l z<*4mq`a%4Ibi!GDJ0d3zU+R>^eN^rT0JydX0Em z73lfi(u?ornY#KNL$cpfN>vi{@H-o=c5oPVTwPC2H9!uhRz8InO1*>YtVJMLUv@T7RFY-pe8<(;Uf= z`w;qm=*?}^4Tu`aPi_=>i>G@|T^#=Q)4Jei*I^pDqur-!tbEx8H@yx^$lb6%-G_IN8eGxo&3oB}gk&AAjL)U+Kqb6} zy>pVnDP>%qaM^}qGQB^zrX%cJiZCj1IPU9I#L(%`d)b8)X&s&n2X*qK!p0l)`Z}@1 zqhZb&wQn;^z$tmv1^<{HuOxl-c%@*c1NeH8!G#73=!d6%j2KV;TmhYcrR~OCn#5rlD&yug2kebm7m;FC_&0+Wgdn2G@Vz+SR9?vf`i&ZV-H{|eV0_Fj=9 zJo(}ym+uLT!k?1knXk>OkAL#aJ8T3+5)Yn;OvBuJhuRKgDtid9Vui^zp zMjL_p<~}`!(VPk#TNN*mh;uu(X<(^D#?FXWGe2~`^-?38siZ`+{=RZ4v6KEW;+^hG zjah@KxY)>e#`ANoh%fBmfsOtC=;9nHVnE36Qn2^{jIaLluYX?~a0j)vR*>cFeaEcj zr1ppwyz+y;PH60e^d8t9N8JglPKY?MU<3+ZCfW#`y z*=Gpr5u+2C!NRMShCIVbJtJ6a7YsD9OSej9sE$i!gd~Hscv>w`>Z}{&EX_CNc@od0EZ1lP_IC3^~o)0q{p`rGu z!wmNKca3ox)FqP!m^h6lkeihaX;#apiMSW-FoGPHjB-oVoq&_KC3GBiqXHLQ$$HD* zJhd$V)e!7J{T$3a2kD@qj+#QAiuCApIphp~6jEcT<=CS}5@kc8MsDujGwFo6Oq1^s zjNOD9Ih6Z}eBlKhMlLymybZ=DM2#h~kRZAI>n?8jgK;OSm6SiUb^{8mNr>pJi;(Y6}F>QqHK>^ zgZx`Lqe`teX9>iVu@+`72f+@Q6~55?6G!`6i-Vs3vy&pMU*dBZUZQ#b=U@Mi z3M7+mV6wLcCzc&CVfPR)aX#;*9zIhYJ9QTVf1X|GS+aJW__rtr5FhU07W6@=F))<5 zFaaqbcvco}5Hu@o5&uakzw%B}0*mF6vx}4-2Nnxe@y~=E>Lh zVHm^5%ORio!zSh*B`hcOK{t?0nQS|uix~(CCw~hmZB`h>G$VPqtxR5yY2Ag!^K|6r z1tLlylqwq+VjRcHxS81xsP(sD4Cq{s~u^B56XyrQW z&g9%NMbW-nxzXK2WG@c|d%#s09p4SPXJ)=t7PFSGcVe?Tp?lAkl2;Ofhehi5TGS3p z9_Uty^ivJ>pMU-P7klYi;k{*V%}cxE_EH0%snqGZTfk(mSi{LSDn{MJ090uHZ3zKj zHsXmK`e)W(g*c+J(_CXn#-6WXj0!jHNCRXp0PEGq*mtXxlytFZCV;!M)`$02!oR^{RuK#j)w6<3(-)ld96p#2LE_bR4a?iw& zc-&9xb7e7$u$seU9&^oCQVp91#zIYng47YNo)Y32->=&j=J!XESpB;x#R!sbTda zvkHv?6&0~J8Y5sU)IHUVUH{nN(%g-p1$GcF-PnyVTAdL@O71wCKAPlI(rJV7U(qp$a#Vpvpu+8!lznO5+ zUiIBrcUyz~9XA|p19#pZoy!QCk{}JXA?pm%(DiAlgreH0d@ILOjga9YwbvPD+F|ri zc4BJeq$3BT7*eB%(j}>p!|W{f!Hwc;-+S2hu~~1}4i&XTvLmNkH&w^z40EF>zw6ga zu4A-XOU_Wxf;&t>+!cfxJ2-1jdL2ek9{C-{&|6#Me&6b%U`aFfOr?#PH5<}3`$_M= zNW!V?{fCJND7&P{8sK=iO&;mEn)I{1#@uDO>s@aNAr%UP#md9?y_eXL!m)j4<6|3o z8G$5Z8oG>zQ6W*#zR`YHU0`GxK*#(f!&t)(szHIqjY$_4l|daVws)Sdb;cF<*i{S$ zlGFfasspv|CU?*H;S7qMwpa8J3`r_Oc3AbS(1*Eh-LuQs^%2O)Zj<%mmM5&#C}ULS zy8FZJ?{F|+?(Ois7}%L|RxpMAeJ?&*v&gaZcO>Jg5e(Pvp3=KKSM>Hc7*8o zXb0Jxyluq8z{kXSbp&fU66*@4yRDx7Wj=@(DzX!5<_8ym+CoJAPDKf0TR;kTt7eY?06rLetq97a!2h9irX z*vL-khf#t^pZ)jgQ~6f@`sMnU+uwfu@-@4cwL0n_Z^kz0gJn&;^8z0!r!HiEdQf;aYNwg|F70Xc%aC7t z!u48LsURmSRQJHPD}CELY4l`o8&vK@Baxq~{f)MvlVgaKK-BnkJL;IX5bQGbx{MsU zQeY$OEk9PuFH-rZ3O%zm4i)MhgKUCLO+)0FM@_x565TCR4{vhl^l?Is+}mmLf)$w+ z(^WfP;9^_qt;0ATLdl#CV+g5~y$<8|wbMaS&LZ?W&E8J$4y-kkd~cvLG03CJLIiTu z@p!h6Nk?o+G1fsb!S)+n_blmSgs2S#sF@!2iCeqYS$OviV7lvwtQXt0 z6@-kuf#YxH?!0FunacjtJ2N|svFkJ+;To{&98#yc&SkTPY>klO_jgtp9V$7@T>ZcI zQZJsV!Yw|v8|lmeVIwj4bK6J^D4CrTiSdV%ATbN$g(Oiy@Wn3iv_p)9C#!T_<}OKO zz>o>3f@zoafGCH7 zh4;Xb$}0*P1CiVq0+?jzbnkroNhxykm7Ia&@YFISO&qH#kvSh(n@F+*5nY12-)T!m{MUQY#*uGBms9p$P; zfHSIEUM94A(ZrwD4&Qzz{u=)H;bDO_Owxvo7_$Ac13KFWW zgL|mv^5~&j{8GnrAR8W2qql~dF}TDuY7{?uY+Iu(Ej1$uN}d``!&?gV=E1qx+M(!8 z7zB2JCS|8fs8J&qxDLA>+EKkV3~H8<9S+FLA8f07ah1dUbLD%E7bm*Msn9)kZYCC2 zW}I*n#BMaReLHZ3+a#md^sKM!J8xT>z%0J1x=cb7z%;g|bZcv1WHTkn1grdUPlNEz zo%_0L+m2joxrsLryTulYlod`bf~ zhCAV%9mW!u*w6%aH40rhR0e7CWCtEv+F_pK%LWo67lde=D&?mBZhO8x^Sdl~kgX)B z(PPIogKk?NZccyx+wJEMTZPT6cH5~lzgx1g9X+)2=Xg?Ipm;ujlw_+_p*D_AR{FaY zFB(QC8>`ot_~Z}Zx6(I9%3t{C+09jIfh?T~SdxB=axmfW9&X{q$M;8r;qY8I+@Lew zG;y}A9)7mrKF?lw{$&i12mdrq~Ao*L!3LsRStiXnf^J{P=OfLvMw5d3Y zk+4iBNT#<$wvDXPlg%BbUp0K)24};Yo39RVTr!fmr!cM8i~t?;1pkw?=xz|+i>=f> z=qn&$Drlch5hxqEUFjB?`;U$76S6|ZiyBE-Fk*6|ZCPpu59>GzmziyLraJ5(|EXbz z?NnYtcF(%WIPHX0YmP7j@mz`?3MCO4L`Z!}y1)bxHeujU)0@kO^0)KWqk7QXOPq3j z!b)s0Ty6>h4Y+WF!E_`#xMc$5@)t3XGDUXPJ@+jRu0~M04g_6zcy9m=5sl7v&C)}< z;GT`{WDxPCvvffv7Bi}4l5Bt;5y1RsZ(Y~ofm7DNVnWvv_QND7Z60oBeiEBj!CzU5 zn#wy_@Jd1_2$;*UYwp(hKv)w?F-;Bv465Z;!5y%0*5t2@G8^CSAga>}W2yr?RI`d` zVmedlq1ir}175K&nJ-L0Jhw}c8ud`>a@J#v9@ zb16hLz4BnVfhLnN)}#jMg@#mtj0J=0P&eIC>`W!9K)r7>g@>E$weBQ|hhUIf_5>!q zFW&Y~jgk$S=@w&cTe9%@t=+fzfe&A157nM^!xR8FVq@q8`WR*DLk~)P%W_?4^cNl~ za9X;$5yYj93EJdoj=G>0Hmc91(Gme&m~RCtfV*3?M+NjNF7Dr~J`Fa6#|YXY)9?69 zb+%kLt_F|6zbTK8bCKCuetbw5baG(G`1TUz117qEo~TZIm#uUMv(5+P(O-d&DoQ|& zA2K?q5&S@7P-9sonn#Y3MVP#65-OvMn%%rrmOJlt8AmCfI!#BMnXeJ_>bO>B-+s(< z3D5E!!m8_K{%wn#OYgh9gp}9w*4H<#zD-xnCMN4Uw`KU-`mT)JMVFELbf%0lsj_Tv zz2*xhKBS)b@jbggp!PO3hAUhyayM$Y^PV}D2wJn6sfC_0gw=_BW5v+(!8JAy;}Cbp z)?Bh?G49Xg&;*ZhoBi0TEjsa@>4!0wpZSIwEVo8~cwVC_o@8W^f#AXRs5SycXhZIw zV$@tCP%GcY$MER_>uPY05h&__61L=*kmSz}8=?sIf)V#3V@uS-yw`IDPdz$f_T^sc zf^r;in;1sjZ-cFyl)2C6GukQ2#S>15` z>EUEwre}lnitbK;`@YOq-L#P5dDQKDCz$X&Nw`{(o0SczU2}}OZ1?}F$`6#ArmNJA z&Nm`cPZV|Vw^N^d?#`avJKqf+;srjWvk9Eb7eG0-`Rs3ES2kz5^1Y=O-_7T$;=lP^ zX=0ugxB~cUQtJ1Ubk+9En{CT0BR+oj)(*tL;yWDC1prq_7rc*bUTqb@r+SO^x7*)v zFx^IHAtHT6sMb!gV@o^IxA<&NXCjJfjS$Ey-hfJdQD{30QBHd1TAQ^yhsu5FI*_{s zAH)0IYSajhZ;cWf3slxy=#hcL)nhY*wNn)n1JgWFeQzCAXz+l!vYC)YXQ`ubGs`x_ zg=sXvDv=&n@Pwlm1~piWUx zBY+UYpU#6n6?yQoPWtg&+%Zm|NBuT+uB^UhYJDiHjN~JGvdzS+H_u&O84#Etv)pfT z4k)bN>`Ozy>n%`d zq{tJNU}>X3A=TVa>W^8GItcY7D}|y_pU{ksm@Q@m>EP-U7L1t9_`F)C*T$JjcDLN) z)7)%$KH_cG^vs54?i~Zoso)?|V8V|fbib_nQPg)YnrZB`v+m47!Ilaz0)^^tX#|OB z0T@%#fmnA$iYwW?=*%G7O>d#}(t&CBc`{fUz8oWXcwdeYxX&oAW#g{e7M~^vVYA|m z$P7{q<$*bv{c!^fB!eav3K=-u3Q5#UEl|&Woylf*ABC8h&VyN#`OkV`;5pVhj`$Kv zT=nbF-|$|zya(g%X_o3Mohsq!t)D{x=GN?qKe>v+`NoOiMa4WbI&(gzQW_Q!(p$kk=ReJG+m1!8>c%?@uu1y1E-* z_|9d7(;rR(l>Z{vQiW@ue(adRg3VtW#c^RGZUuF4H+XI%UeY?^>EyQwq@+F|?vyta zsHhwPBVfWU#(gD(^Rw(FG|xp|ElhwuGLeq%k*x_V|5+ytVjIdKL8a#1BS^LvwgU)7 z znHlds-m~OM!^>@&&YF`CIqQCJsw8*5_}a@<(T{31sP(u*n+hoEMy&3R!A_{Zd1|$Q*pe-5j|Y+lxDuH)#BZ13CUzrPsmZEnQB}9CijT5PM=e}i zJgwY_X~f^yICkJH!sz|c-7E~hE$!&r#ii)i;;rK_dV=DXStNu|aYCQTPl-sM{rBk; zAX8z2U%y=ca{Jq_U%sZ$I@`g^5F)`^POfd))qJM96`A$l)V&pHdA`!MO<`67q?|q? zx+b6ar(96o-C&N+ING=;$_SfENA_0XK!CP+C03!ZY{eL8EbI^Ogt4bznJZMElz1lU zQxz>ByP6Lq2%*zaBSzpzqedbZ{Upn$98-e+tvNb#Uu4xjZ;G}m za!{vbPcaoa+NrK^3M~rm9I*bn(H*Gk<-@g1Rm0*OU)eROe1Mkch>ErAR2Kdx+ecj# zDh!z^y>Oy#NCSG=4E8Q)NbA2Uc~8#@2l^Z{}LAz$9w5}^&&!d_dVbC(5D&f@v23Uo6k zUOvQh(GU!-sPxbR;HsolFhnPPm#jTc?U_oKsk_NBQkT)zWD2SY)vnd-yu81v%}T4_ z;+c$sqrq)M2CV&(F{Rag)LbQuLpK7o!N#E*K|?DbX5i!%fDRt2{*D{x_8EbfEPjzxC0Iu>ZGE$AF8?qv3o{ST61!~5i7W(yamJZ(?jSxeUr05=ipl{p8}ZonQI0K%HuJ_ru;lxgfe4eRAIkk()Bnx%*iag8@(Q^w~2<}|RnxoSFI)XVeZ?GF!=fePXQUyjq1sH-rLx>hNvQCcr9M@{)_9~^)979Z8zJ*$6v1RKkd;-CH zk~=)aC6%n7QtXS7zw-8bjuZqpZKIlIPnHc2@qB8qwYL!i5l}%Q4E<@N^6Xy_(CYVf z>M0zCD@QJPx&>qtrBUm20x$wc8`TAZhzb^}$fOx0DOSngQAJJWKWpzE7u!<=Dn-FB z{7Z-hay-yFQ?6G85aFdw(iWjl77R4o_}_MlZ0Xh9zbYt$geiVs;4&+i%_*6b-Q47;!ZN6(D#x#g47ZR*0abqnvEpU0UT}AEMj`Xo!Kmbd}(; zfGYTPlo?DQu5?DtN8kO&#`C>dU_?f&8WToJ_X`T zb*g?iaN7*3gKE}Jk{k<(2)cM+{EEdrN3Co#mu7N%K{+NNW=fjY}(gSoD-QdNeCboL|Cs4}Eph)ZNjinl5Der0GV_hlMX zw7V{*4Dkv9+LV@jx!{>o2vE`#K!u+tk%)`&PbRf#37(Zk{K&Ha zaSciIUwFs$iUg%t`KHn_A7_zI+d3m#BXxLxASuQ|V1-TlgJ-nZ&NN{8!44*LC7awz zX}fJLUZ^!bMaFgjV?dn0a%1n%Nb&^g%}L7|%h$vqiNA?Fxsx^(%;|^(6f0TLPE(5L zkBWto6TAu^psXiV#j+2+_dM2P9x}NDZRC`(Z@4vz1m#$+>FF557~-h$7u-M@JtB>M zNLbDJkChFj-q$T#hdeVXv%&hzo7?cWK*Nb(NKifI`&JVr82KP+i8+_SJic@y6EqSr zRUu(dqH$>7rNB6&Vzn@bY+(cP`*$L4{~mlq$GJ=mCLX_8;1qVT4N`Wy~U; zK|?8_NSZvn4vGYaH)NsVq2&D}q?YCLMXQesNI^oxo_AF1>WPYT6nja+LU9O0@^@Gt z#T<~}kUo2JxH)iX~QZH;22&<9Td9|F~;t(Q>ZE z>#Qc1C23hd1({B=WvjohEt^PF_inaqU^Y8{bpHP9pGOORTtE!8P@cG)whC3BG%T$3 z5Dg4#JwzKZl=Tn^Y6qaF>lz$!#j8h2)i>N5UMRTQ+iK@7{N*64=QkRH_ zw49)!p-d+z)EIs8(minE_1B&i3g-kcP0zIO!_Eto5ioscMFoofFdPbaeyAhIKb6f> z%6Xw=xJo;5In`5QChu%cq&QeMllMerzHgmg?jG!Jp6y;9-k$7K&$rH}Dw2M^+}*V8 zp`{1vmbRwNjC*BhU}^#fc?=-Ud_C9CfZuDxJb`o48u(h&q`TQM9ctLV{u!c=V8w z8i$f+DHLaspuh@C4b}^XwWuFE{iuJOSh7|YqB6<4n(KSiF;`kSCThf zQ*W7k2QQT%E%!#7u>fu>Inne^7>L^li|?(zCfmkau%3$z=VS|H566EO_H^Twdm3p! zn2CK)o~`K?bkIjiRGuy8g>_^!{Du6y)Z`0hTAVN-^vxF7j*f+A!iw}!eziz!^~AVT zodj$CmkY#Nvf`gp3sy16*)@?=VK%%VJd^@D2BE6aMsK7Q78$;Zgk>-{(A7m*@WVEQ z4>#3yrtUyQb9JFwl!d!d$W*J2ck@R^{ZO6#A&TUwY|tPvfGeYGh*0VIl(s9~7Pf{u z)J21{v?dO@TJ{V4;yuRg;0v*B>ijyB%4V{#n!_^8hNF(@iU=LuQOjd+!}kcW*u(D) zbLDvFbACmi(JQ2rc6-=w-!}5S@IpZD=#u4|*wM9wF!;Ct_)W=pB!odW9}=kK`OjxU zbU$C#4Bfp+yzSQt1|F#jU%7VAcPb|AcS13L|Mkx$?1+`O_DP&~JQ2OcFeO!a30q}_ zwFCYhZR}DMRo5?K zOMl}UqE0)iD~E~&DpZ=UP`S4>drxkzIz#x^>Z_LyBvO&7n$E<7VC6)1_<1M2HCpTT76n$ot->rf#$ zI{b}2VB^*<1+|196)EYC=x=4M>)~9sNLY*L=S{j%A%$R%wWKhH{{_-bp+u1+#L%?@ zzHF(QZVQT>H9Gwc78GgzA4XFJdZc%Zz?GQ@!Bxn?mWS12m9ioS^pfc$pU=fP9(2B0 zoky=D28kA9gV#zGmb&am(awmOuIeH-(875n0QF5TsM=P?jiLOI)0=O2R!>ZiNwUn% zFCON$s-~>?44e;6a@nylq}*l9A@7x^+st}t+8&}Qx3C4LKWNg^?I!802nH+&!Vupt zaTH!wZkEk#ymRf6I~+b+d;aTrEK_o!F1s~b)5~lky+S_hcQouR;PY`mYX~&Y)OVs= zr-ooocSZk`b|G%dGITKS6^5`bgM3Lw;4weYVMzkRU|*Xu7>)wbI=b(#@tFznXTkm! zF8sMEyuow}3Lf@s%di5?&}}2M#RsvSZOdx6dEsleJ~BNG?A91RFT)Fb1>_6bT;2x` zO%7yvx=`mSX|+r@;4CIzV-b)950YiZRgpXFqN+uMc`F8!UPHo4g^f@02Axr7uA8Vp zoxc#$($t{%LRxa8FbI*^ZE5MYhK3#bR$o~IaRfwz>h+X$Omay zjPk%`Cmv(%iEeR>jjGL$ur5F0)_6zqvzvHW>oSY;GiM-;;{^8Y)1c>zmbE;6z^lzK zdy(-CBu)t~UlhnqA)F zIy1z3V4q^P1B#$!f`AUC-nSHJJPGgW0mg zxJHkKX;5!tTrF)VP)6}$-rI=J*gNCeHazeh?{NlCe$3xEZnu4t&!5VAv0N(go}GLe z-^ya93cY$#sHb;4z1N*Bxsc1{GwVqOUx_a`Y4PFH4Bm`lrVM#qj1foyrDHn0&~Eds zZ%e)=_ACtumyd<`fAg{71743K=9==Z#f%eAgM}=gEqoGoTi-ryLscz9gGcf;WKS46D3npF)p!&s3u9ACfLVEHI+ns!KqM_->-{!qD(d7BBJ%S=$oqf-+nGf?K zE!#W35PguI?q!jfs$to-xbZs8n(b+lT@?SKq9lE&9I==zAISmQGJY3+a9NdaLv2g^ z_*kRpM$mG4YO+k;%b6;dW3lCoH;?pqixIm`gD>Pw-4N!JJzuvXr0{9n#6Le40VMXdzXpHSC=rJMcCd8Wp8wm0uD zhWiIUw}-`x?QZ|Bc%0kLoS$7Ev0v%+vKv+g#_+yzxP8<1OQp4}U4)^`WThkN@wy&b#fl`8w~*3R8%cgBn6eR8v24ckY%dTYOQ zxV3jUtWjOkL?SOdEFm5yRl{2j&YnjYaIo5wc@besPt;##pq^pv)Hss&C`NE zVte^c<@z);;=9$suTF8lRr_J@AKdkg>vAP83Ov6&e)utPe--Oq$K46`E{4bcX?tsb z_hP;7)Xy(#`f#v*_TZM+%j-XV=j^az=B}I*bMvSWKHT&#g6s9WzIE5B9HmF1z&-zm zX&gLc9#*gGC8x~0zn)GH4y#WGt6E5(@1(OZSbL{1SO@U@M}E(4?i}_H+&xerc@QLgRf4htunhpyMW zY^F~u1v}kNcMq-X!x^vGs5x3e4qhtP4-i-QOIBSvwn?*7KQk z^Tf#y1~*5UVYb|97K+u@DgUWgyi5Cy&D=$%ak_q%aW9UxuJU&!R%x53zdV+;2h(I3uMQhwj`wx{G<|b2uu2E{n|g2@ z9v&b5IOSZWERb3K(?;F*{O+K6pSe1^+WzIPXWD!B*GGPDkUu!pn}>U8Z+LRC-3-@v zF1&_ueEq9x_p_eu*6#1vwRgnKvwm1MPDFu0anx;;ZqB#a;9>RhzT2;atL=5;XLEn& zI;dXVH+uP0O1K%2DtGS2naiRL)AMRZT1Ginvv~En_aP~W*z)~-NoOSKh z`$4|59|qO^`?Jz2ufgg?^V-Y#cDiYn&cf@T2Y2?coNr`}R&M906@+Iyjltkf4^EB_ zPt)a^wN=V>MS*walD)%Df2<$h=_i?9*86c@y*vr8y0ub0bV{~$mpwhowu{Y5u6*S0 zKjf<6UMH_#*V>i#b=x)i751Z1vhLca2Srg}HRGH$4>oUp?Ky+N#gXGRGC%ySbK~x6 zr;#a*tnItpMdf6-)GufE^n2&$-LJN{zq937?%DZH&`4jN)jaE@u$MNY)y6(QIO}a$ z$9wGhxLq9_mqM#kEDVg+-sr58?(dzR2j$~UlXZVqj}8lY=T~k2{y4n5s#^!Un`!UI zYTLVTypzkSw_TQGb8z-^_rYmzo_lsCIN8>_M^5I)-hOY@*b4K%G6$v2z2Vi_zJ6c5 za`(KFdvnaH&8+djMxEU1!!UcnGIwEV(65-sa)CYHJv=)ZG&W6lx7ux1+|l5q7_N4Y zy-eXKs9oBd!}Jcjx^R!3e)pl+-QK^y3^yt?Xy>cyj5zpL!F)7NlgS7CJhC&eBN`13|(^z(Z7>tIwAe-{_HRV&)} z{!h5|2dDf|;c0@ zz|GSe@gncQt?J1k6a{?^|GtSAK51||`S!^XN18A8moI|j@}gV$XULBgZGHd|o=W^^ zXLDv8xMzjrul`)4Zzd~8$qRYi<`X|*iZu)`M0&09gOkTG@@)aYdAY-{VZ zhA1LdmAql4@GiRP6So!%n|5UB_FL6( zeu=T|$Gn1NY#dZRA(Da2-+%pUr_KKU>)*-{R}zrI7z1SBwqy$?#(QUei4ejrRF|5r zZF(Ng)r)Sc_)N#lO$rr!A6hMxB|bG}A13E^31B^~KhWfsaYK-qD@oZ;u*pqH zU=g>0ac!XiqEZRdnihD>?O@<&IVCL@%*rr$xIa0TlrpRajzOSJGj+6q zj%!AWTZIgPLyM7x34udGDyH)J1gu%FjPsGxWVZ0que$!@gXtQ4|Ih#Zf9JzxGYMdr z5FZ6)WcGW7(jhMdB1nO*bv)f!0|WZd*0q5!iiHpb<%-tPIFApt(i-MhNSf9(HG}cN z_JzLzsCmIx)`G+|Ez_0(Vqv_gyAy<)tO%a?`Eb^)Y`#s{Gd=tEUl(Tb@G zZbfF?hBT+rwNi6+7cx_u-e-BTi~}P-#%A(NU5kRkYT`}tIUHy|%hPQfv`<@shdw3< z_2#=ojz|bH6b1i;O3Mp=>JiP|q|q9r6p_1~ob8<0M3ewBQ$q4xWymluOD7)O<;IpI@Fesgz3=0TcZe4@8+2Z+I@<#9ks$w^SMW&T$J9b*}C4BJXe9MM&nkpOqnptUPG z1N7@+p&3h+8B7$~T9KNC+*heHOcfN85J^}s4J7)iFfdIQG4ZHA zEGS7K4GZV#M8Z<&nFIVeBnnYyF5N_lTR#ka2qsxwFD{Yhl!ON!;p+S@(3-Z7GTqt? zg8%-Rvkj+TCP9U63k(nW_N9&{|NiS=w}1cjZ*_nweOMU8M2XU7ulNf6_0<{8K*UjA zT4?#GmF44DsVQ{D77|xwXsS)rQp(_Pr&MCo@Eik8w}}%$eH?peP_`=rLxuz(VF?*F z291=$%?W*VmdQAaG}=BRgE=U}Q)p1Gayzr!UKj}N69!V@R3j}{D9WcG*`|)0W~7Z8 zm0FhurOc*Jq3Iivg(EG9__z&f`6}v0)X%Ga!JQbkdsb#Y!$SUE@&$bT|X9^JS>$N_3BW&!(ozOD8cdVB_+}j7tV@ z)(xDEHk}AJA0>BwhQgq+@(ndZE@gQNr%zIto_DXDJj~#g01B&!SG_2#T&=!#czM2y z$yK7fj*+@-dX4$b>bQ*hP~|j13h$NAktITWE36*mV#2GD6jqSAzxC+;)>FfjVbiSN zyAPMJyihqo@Pgd`o+8f{)?sGQ1)25Aj%7N2;7RwsE8W%3;6cl}yZ@qPE0xk$?M&~w z5YtQuxHVx!=6}&3C;ewB%p5xmLV?0+NL$%vCJ5WaCvY8j*5_G~_x+3=ztOEu90}yjV8_P zZnk`VkdjA|3WR_HEsi0uvp8v^s z12=S+6C{|Y5V{nrh#~~Ae`$?ce1wbuMg0nDh0=&AsE?}L4HMM-f?6%Bp;3@Gdt$Et zUL(1~24kGYgRwm;x_Y+pQ%8CX&y+Qb8vie)om-A&>z+O0?AzNiZ{r;Gi32kAX*x-u zmVXz4+N;aZ=C9;qhTM`i!Bg>rEniX>A2&{VE7^o$`)yMo%`a%t+VQq&j23|Y$7Go1 ze~hi#Il;C zVqed%8Y&$+sS`FaCoU2aUuYn7Idd`05^aE$4)4tF5pNXFeDTUn#*6$&aInp(!h+pY z71lF4#Th74e!oZF0D(vf7!Q1$Dy*1YL^0bRVbX&%{}wCF|437NsW|_%Nr$oAAtB)e z(jRKna1l&C2LA+c@S(J4wYsmmbm2@bNzD_7oRliGi*ATY0zu>u0*pqNI<0+m6B|x2 zx-A7F!nYOGsdOv3C;a9MERW`MoP@eyQ&f z`OsaHg+5BHM?%$6=MfSV%FvibAt-i*)_;B7vh}9A)GXMrd>>@UVtu`;Zd^$Kda_Y0 z7ECMvO)`dvl?$I!+HU);i-5VR&h%!mu;mlAX>(-p`UbFH$F=m6avA8&m%$MUC(IrDAK1X zrAAbiwvS@!EL(;OL`cHJIcUGWv2Mf@@Lhc>5nrsD<~%4k=Ruf1A6}9_a{jIb8f-@> z8=51*ALtHv=fF!1bLDvFbACnt4BX#LWxD(X;z2?r-YDHQy3G6b>9)z(y`y{g*_=o< z)8(85^G1+(X0}JZ&@c=J4GEW>L!oSdhK0=eMgx=UfHF8-MAVNnWcUdBuP|yU zWq7+NZ-2VbefBVnH(8>!*E7W{F3LXP@x68nN*T(<;!F_3o5bVF#EF%vk*g~$d=&1g585jP?=OFgXqL177dbxkr;-Q zvfe;Ocp_mfvAvP-unA&RCU+n;Ow3MYEmJr*mq=|w!t+dseT_=_OzTTrIx>}MB}iBf zZ12j@a6zL;P><{i>YPoB=O5xyQxd5}hp_NZHE`KX<_l+R5-LLEHWEsHD+h|tDXkuQ z(0NTgFuH5JsfJKf3G)Y`v65l=1wH>aySj*7)j%g{bal65et~`w@_x`aCpo2(TmL&aGAUlMR zGEQ>U$2*9*_QAx^3fqQ~43eNYqvfazr=xJtaMn;XMV2zPfwa6-7yktr@Sc`r4JQtN zg`?9NBxkYB;U7u=D6bQR9I31G|=~-_uFvEJczzOZ1Bvqijyx zOLLf#yy=>H%j7&%sZP3BSRo&VwZ>KYYKIGKNBax%Azcsa#>*&6^(u&A5WqgM{{AIh?t8+#|>OWk`Lo- zi88e(x!DBzJ<1)C)U3A0l1_=QilxxWjBg1JQYS?7)KfNKDn0c^eqcH&Rd5$7ot5B( z6WS;pH`NUh0acij`$y^AD1u~qn%Erc10Q9ib!asaOm{u zv@jxJj1~B%-To{NcW_)Ym>cL(7%={3yKNa3CuZ#-)ZM^}!=gelaSkjibhKUZ z!nWj3Y#11CptfKV8gA<#s9mE^n$ra=pD8M3uyh+0X`TN3Wo)C zv16y3aBS~Dl+T0ZvMeZ!b* zG=eE&NRwuZjapV{7Us&30+Y`j&N(OpMEV4iutd0E3#W6VId(9w2OE$&Lcys@Nmw$1 zs>;?Wlfwny4O>T@dq`j&Gw%Jbe_}TVU4^S8I9H;q5>z_Kkg$$>I$yU!U#oGloJqI$ zSRw6@@q_z?>3J6LFy{j+_+@%FuuCh|UeC0d3|#_Tk^e=@WwM#ikT4p^PiuK2tp(|< zf)Q{$xzxIL-$@?;x23VZ=|Obc9`nEuQM`~zWlPyFa3wukySm*55rl3Srte!2QyEMi zYe_Z$W3$Gnmt>#<-g)3cBcII13HiP@zwwX=F;2lY?G?*wm|uV6Ty)>l9m$sR&N7G6 zPj~9YbP}6beOERyH>uRi39llY8_8J`Oy$DB0pL;ssh3r(~#m= zAsw-4=1=ZRe=sv0dZc8^N^UKBFTb828EO=G;9_!5*UUy zNI)3cAOWG+H=2e;H3_N$L#^?&c+jq@HVIQp1G7!i#tWC-kA%g~*a#?s5qb0pBCY&5 zZ0GnSo}0yAlx}`O^@UY#Vu84Win0Z8uE60ffP_Q^b2K5LrIj{I71%dbK-oengPFY~ zFx2^TZWdP=6gaCwFi?mKs|?f+Jk#wc>`+iO#@V&hY!gD|=(fh(MBDTq zSqT5VkrQ;gRcN|N`n4s)CrY}kJ4rvie z!os`Wk>GIK0WA$QG8&fRwUTD#inB8MFziWWI4Z&`DFk(Wuq#!!)ggIy64tx&>>{Ge z+w<%yrvus>o<^H8-aiJ97JWrw@nocqt+I&~Tp`wgVjE#6J z+dFM4)V6}aLfPehl)!+oKn9~2BmoY(mbz%cx?zA5u)?9k?Oik~K^^F6b|-U@g70YQ zA+5oq9!{!2vjsq9k|#Gz6_z?X8{AY-9AxMao4)AdDP#hz<*{-*9~qB7I{mri0QYVXQU zOvcZDp&9bL*g~MJ;RQo^^EeG@tZoUPL5SpLSe(+L3`pQO4}$@w?&d?N+iS9qTVhDG z72OWHEbQ>l1I^(5+mvG#4anSq#xsb`mr&Ij=O}LL^@By!!!RE4o~>wmrYX!cLjMbFBFHp0vunayu7P<2hTb-?q2sclP(s+O!#4 zI*Dnozc14+7`%vUFA7vV*FKL=ucS&Ja{eTiG`ktl@=2!SlAKOky)%ib733eE3X?lkr5+Jl#bkK46BwQPxD}mi--bhN`gY=*dx-vP&285LvEt<-K9CRnXG}L>^4%A-9EF~ z!N;$=oX&r@t=qm-Z|PuIWblOol2kwH#3DcFNC{}`BShV4<~!>xC*o>O z=v!m$V~+)>2jP8f*W2+LqLP(w5Z>$zA) zBwHZ6IR3k^tHEgRHM<(AzbuQLV@y>O;c4R5h+kgR6kxPpvnkKi>AxJQK%m;!JV(tT z2YJ$wlQj2ua!NcbWitg4m6Wnh#_gY88(ntdG1i`V&oMTtHt$%MZ=f}f!WVtggR%?{%M)oG%yhnWTcR#21{7LC0VW;lN$V z<%^#*1FU2Vm7ENY1@E-me2Q$zH*L{gpk_WE;{VOZwhwq!j+kr8yB0I}%3$%%%V&AH zuI_LGhLy0%h8jGQuNg=EZD@jJG(7$akeI$98WlY`fY9`?)w=$M{_RsY2zndov~P4x zNB2{#XS)11$dsZ7{MPHFBZ716bS{%Ar5)XJC7~ySQ6VOZs_TKSg`V}KD9189=CgK? zGMJNQkhRxLgOzj|LZOSRp2q~6<#x{bfnU;$zcKJ(QQ{Z81?PO8YQb=m4W&J^&X*C< zNwSgScjO1YxY9R#_YU^qNjzWs+# z_e{RZ@49k}2;vJbzG#l01a^&y7IRy)WBQWZ4$`l~iBJ>K0u^GDC0emYAWK=b~P=a)M0A0din^+E?cj zt|hs?u+oWjw&u zdO-MnbC>M(TX@;Srdlo@tj`Y+8^7<7py>OHD>QmPZRzm4w!j&D5Rw7`n-#_*8RxXoir8DDnISu}m zTiNhPvAI>lWq3B-RKQ*-m>2I zVKpt(iuG}P?zHCBcsq>-WUbgRu9&ffolSYx&Zu7I#7exDf2yrg=~*sl)IGuu}?#;9@G>HhwJdj4A-K~ zOiefW9v^I_qH1sylxs?8-gYtUm%~=Wj`yC%V&Fx|jYp$uQkoXjLWf`US;L6t`K-Jt zuA-wg#xfq<g#)>wIg`A61&`oKqWdn)Nd8heD<9yfAPV zWnK>VV&mE}8%p$KE?-N{6T!u}E`>w=%{*ef$XX$~XiCMvpOVSu7nVUz&_ofzhb%)Q4>jJe-LH%yPEYo-~J@qPW%y zgR$JxpNE~7RhFHxwHzy``EX*~=U-YmgSRC#V87Xn^~TFqc$LX;z0SNTN1FlO92evD zen5-X;#M~<%Z*6CShj?h#$-@QO&3FUEf!wt^+qdbm2w?PH`!dXXP^P6;ZB09r_v41 zQp!(bwiig}i^WF2D$mNBK{cSp=Fi>ni)cTkW5rrD932I6eITJ$1NoRWX$6+~aju#z zFPr6391W;Qoq91{9rV~>xKMPa31!9B>m^m~w3g0vB9*LIAU?^j+QMM&%x#CCs9mwz zj*dcNADkx(fu9Oxum_9srt0oxp*ERtR%_a{^loi5=p`5V*ho%3&8o$XAY0*JPOZ(G z8aw8>ba?v0JuT~iI}^ojUk~=h=E!+|(PK~1&VBj<9xjHPaWT93R zi}mzaG58r9Xg>uL)5Y_Pv{;Oy_49i@^MnQ*C)reF3BQ`c4c~m_!S+H7$JQ^;LkBR8 z)h!3BU8}at=bs}Tz=ZYQ#F{@f+0Ibz_FM9xQy#Nuz-o2IPBm4jx8tR7F_MdH8rHBh z4Yebq#)jv*387bLhm%5ODC_x_G7V1##ld(mib;!H#%MJ)*%TXWxey7+G8#}z1*MnV z%#J+uDvQP{S4k-OQN`$s*?evO(g`H&%)A+?Oz24R(*_DrtZ zmltwwwiJ_Sz=W9&B!tvpDaF#O;UXr@lL1Am%j-pXWtgLWhtm^ISdV0~)p4O28wcur zT@)rS^XDg>GdD(q3qEJrVgD&tXrcj!+3Zt{wOZ=1S`fz3^(N2_W=2y)%V02>OBXWL zbgOKq-*Gdd0pTBq|1x|loN~ls-w_L`p7fkig%FDt2CQr*t+44rI$cbs;b>_&otvb} zqu^jSpqd7!Oxijbwz>r07gFn&!D>@o$IyR$2do(m5C&e-t?ltOu7U5Prvr|`?27HR zuuiEpEtTiPwewi!wcMr~8SSQ=g=b+JUQmbsl7NA|L8p8~bOfy*M$!VHYo;|s&j14E z(@ls}E{Fz%6b1i&M;|^hBSlrADP;uZOVdDRmC+|C$3l4qN~wx&Nl@$hivABNUB5KE zUm6~chPPuT@KT6HW+cXylvkeN3=Zq5PVOj3nS$EZtBM6bomwWzSLT?$M;37CUHb1n zvpi!#{y4sOO~#@4dB4s@lQIA1b~vU)Fq#UvAJGT2fcDrpHhNE6wv-pQ!05KGmbTF$kl;=(Gnrl-L zU{0-PFMe|l5L+sj*g+)xHu~c*_zk1)K#Zsp=;gfPV^9PMhUYH0lLPqOxvDW1Itr;e z@ZNVChr@1q!){XK4!jFIeVM)|fu@BEi$ipkojQE*-#?I0#0$Aaj|I13!1o%LpFZukafdQemP|C$sy~{ z13$na`{5FHbk_s=r&E{g0k|JyYtDMXQDhZQveAmmhsuoQjLdkTPuZtN zGHiwd_9~?eD*;)KrP3Nqlr%CL~inyZ2?_T}(wD&|r> z*Iyawr+U$F`nlI_$;KoYnIuCojvo)gHXG1}w$|ws`;$tfUl>~P4YvplI9rp$^Ki~e zv7sCwW!WqQC!JcVlX5Yfnik84)5&RclCLW)+en*M{bknMbe5X-oa)v>6Ej|(4eYU? zXc8Z91~c(_ptK5(#rBI4Sk_vZf}HP_SkK2%UT|7bsfCj4Cah*mCEi)FmNVI?>t4BO zL4Rc`pefTQT`Uaj;Goio&G>a<^lYa_g+ySsZe%O!X2~Vj`JU-6id36t>Roxvv5p25p2Pikd=)CJ&DA39h|x@St@Zhqyvb<2 z#awI07pbKYDgzl)cq#SAjpxByA9V`r06SJg#a?G_)swx-q8-^dXh5s0J6)B}h|{2| z1l72?307KRZO+M&_8>Cr#TPFcH~})*oKjkBa>?kV7BAFRJ!jPjJ&%`_>13i-qs4k7 zUCOvV-%dL(mn%yZRh-z1v>{0 zJ@#b~W1mCqm{9C*o;zq^z{=*c)mFNfP7l*rw37LBqshv_6m;Ze-K_`xj9KKBKKQqQ z-|rvqe5vj`U^T%mD=%YsCAe&p27~3$Ob-4zaCWChm_L?N>1oP|$=#HnAU3%ZEOToJ z%+H4o=vv6QNB{!1(nrul%I|;V3|~J$iR<6bpr6dy<u7_{<0+gvLt?J=EJNssb=0~Nwf-1ev@x4I?YgN zy%}k2h~p~teqA20X{F%Wn8t-}G+h(Tmvv-N(nrPhAQ8~b;-=Hi3HgkeXy)pHkrSx* zmw`zl`7D)l)AFRhsm0XF(5MtbLvc|qrINvCCE%{IQE6xA5u-etyfT&yrJg8MDq?@oP8h4_dbw_-Wx+NI($gfN*aNkdGlEV44d~4DW+HB6 ztTI~;%b8WmQHN^7$@1|?JI*~&>6Aqd^43^I*aE< zrnCuV+=%mvqODp%;aM#S+*rtJTI*#r=KBpTUdegfsR4<38p;#zeW}kx%J~IN+rJl|QGcmb6 zcI|X>Kn^~ot%{IKJh!T5)~HnzRwtba<=O62QtJlIh!D`?qediDMTV6#mc(4Pfd(`) zrfW$YzhOyC78+wV-IAT8HX4rV^=4^Mopj`$)}9sTH9fy>x+nHHDHLXAde(?SOX46R zZZJ(2`hRn=5I&7NeQmi6t>?gvz6w6I)AWI-2S}iFP@XGo@T4-);BRnXTl4tYmfE z?2*!Ju}Kcf{ZcMI8|7X`e6XL8IM>%s7H(Ox(HgC7$ z$-%f>*1K{cUzl$uZc5L%m{uflvYKf_w$sZGoY87zjG*1^AH|XwZ%5b5TU!!q<+xR} zUoDB1pVE@}OKJS2G=8AcNZa)4PtcQS{H{M3!bNtHz58P?Godg)Qd0-;+oa+Ws8zdcM5=9NYEfgE*i+uxd4CZmefvmi0{R8i<3*#oyJJ zFq%XJ+pBr+&i^3M&;Jxy%91I4NaftO6Gcx>u4^mjayZ4I6$@1vJ}gQMF04J_QaVHcy}ZktYe!#e#Q|kb#o4 znPhUdL$58)=gLvX#>=pX)~rj9lDj?;v;bnYT_e5Oc3m&vD~u@3Bwe%^w_~Ts%@vYn)7 zePd*xO(3Y=H@ikEhi?E(zA}#GpdL&Baqk&Fx^)+_NEqIy{(1DB1iPGfq`>2WxIb0JAEG)pU-Gk~BAjcZ||w zO>|uU_2+-~?_~xAVI1v<3>U@1TGOBAkehKPJtBG%hO`o3<4tg%ad3Eh4Zh`UD3ZXN zSkf&Z*1#Klzw6g)gD}7k0{DW5ue+^Oq2yq|FQPF92-Sjgq%{XGS#`5N#H#C=ag#fn z?)%NSkW`4TT)6{YL~2rX*o$N<`4QGM0Wz1PlBQ_?8+t ztXrO-grN5dmHvwUXrY#n{zSkiqew<=_AwNK1;PH&cE2q<^!7gcm`uWIZRdbp>*Dbb zWwF19*bBgJreHoq&Z#&wpq~T&S#Wqoz*yM`$;xVyEt!X503QeqS!QSf!#Zb)Ao&Vp zQ08JTaS}}AO2cfqEfSUkUaT9Y&X!@%zlp`Gq39zjkomK&?3u0b z{R{Iu6MFoaXLg2XQ|C_ZuZ&?bk;f>LllZm7sFFUmW$W?a>EIXQiSmd(q-Vm0M#;-}E*Z5hR}4a$RzJ z-V~7TXgs~8!rEE{9C&8Llgxq~&Vru24P>E%*MpZtASl^l$o>#9?XoU7kVmC`SB@;2BMBO#*%e054=!cyc(7ZO+ShxiBjJF1xZV z+Ub1${;&V*R$#7C_x}Fp|NgPy|Iej`yf(qd@A$qk16;ywtSlt`j`72Z)d_tBa#!ap zT-qxq{D)4M1O7WnjQ#7+fAbBj^`}J~&HO4zDVzZJ8{|t~ySx7OUoh|_$lJ!X?Y(awhc8k2 zLz1M9ND_XZ#qnlR#kDMXW{_V=Z`ys|&WrL+NhN!agLtHZJ= zKMvN32KZroaYFu6f$;=)thSBOa|!%!1G=ri^;yHp({Y0{DGG!r?-mC^kFY;brSiQt zFV7OE!*K`}EB}Fc*HILF=jqg;^F{Udg{$QD0>TrAFms(~Mh+7>jjpH$I^h7;Sf?W!soXkBPlD~!ex-W7T7i8x#VcS`398b)4wFkd|PBk)1= zt+z8y`n4ZuCR>6XZnm3OH1w?)^;Sj0V@d5Ds^29)&efVQPPr@cB4B6Yf=|x7@|$Cv z9GTuudUI^b;@W9+*2P*=RAAv&+uVwr$FzMrocoAp;f6#5`JG%)4*Xd6%|V5qo!E(8 z;pcUKyw6T|=Bzpu+wl|sKSDdXgdvvvOdB~oiJLlhS5+jSjpgU5q%IU4ONpnABVKaE zM_~8%R>r@;P6U8oTlrqG16LrH>Ps6x%QjK$z~dd`*u_jcqKzMr7%;H=2s0-C<{@)! zlrn8v#;{Dnl#yF1{^{@cw9@`VJ{Y>X{zEVv-ImNhP;HVcX<(ao$v=hhFoXABE? zras!}%}ir#a+eCg{BRTnLtjYdSkeV7Gt#fK`VhUXP;t*V-uGdHod-`FL;t~Cxe@39 zs-h{d-X@YqFF@e0LmCbLhbXEy#h!gk-J{I!KW3cyyw${%i`vf*A~7tHcT^oScqwWo zcH^iSyy)%7E-M`)qy|M)jug|ftLVj;8zl*+>Ehr~0xE2RENP0ssYvmf$!iOJ09WEn zGHpdd#m5AdTQjC1OfAN%T)QnT4jz;Q#gbG{!xNR!$g!Z>Cau5#iUzB4yGmWN)XwKy zSu}!Xh?44+(%n7A@atVgTu1~BkWfLr0d(;5-p~jVb`hFg)!FNh9mui!ob-TD{3G`^ zlON+kR>~P`+C(w-Q)#_4Oe_WaI(YIL@B!fLDHzCY&iwnQKX}8KYMeQZrBFL=S+Q)x zT>t(lg!a=ZnFT{N%q=D?_*W<#Z~ksOUGFp-?ZZg0;2r{dvp+l~K9bG@Odly>;snJk z4R@c?t0%uZCa6KANX*xQ;nYA{61)#>aKcjqi5VF}v;6?syr3EL^RD;Hmwl7w*6g`o zoYc)p@mk+VoFKbqQdqSVT)NeT%5*I-@6|78e%*$Wgvx}Sy*_<^Bn9GiK^G5 z+ZbgX8I}!hV1W@02mXqRQGI1JAa@BeQI%f1x}?eD1f8;UGcblYHb$+1nKe|tClBhzuf@cW}-OqeJI8BU27 zED?wnx?`vRO{xn>I73W6CkN6S_5kNeR=jWOm+H6>v2xRj^ z9Yz(bmX1UK>7695-UwAi42Z7(Hk(dywjW{75nX}2VTh41sHY1X)bU+;LxlWG}gw1WYHmt4lsXZw-Gfi5_Lf0ZhC zmjDiY%O$|`+K1V#p!YVWkRm^@IvjR*LD*eVZ}Fp%txMz}w7`E4z9;DB&5isZncCU# zk2CKmI^%h=kKelNcMjdm@7!rrd);!Q{zs>o&zAF@ofII0MTL)JU^JoI)L zCXoF7&uA|Q;}9jJDLhg-y6x|tuZbEwP6gD#(iMonS&|LIU~u5klqiViw&NLUvqQW| z4H}kLk_^;qt1)^C5j8p2|6aJdECU(SVpIzzJ!$YPJOn`rw9dK$?V$3iBEz(^Q~|Rk0-o@R_X$ zDxlNn(#Y6KbRuVSJZDK?9+`nGdEfa`5eBzI`>-eTv97?l1&lnDoVWlwlqdUHa5B`~ z?5Z-Q1`DV88xbJgFg2{)IwELp@E0{`t_PYHIEtQpT7cXd>9n9-Sw!VpaF}Hih+th2 zgnkt`YBA^+X7cVq-XF*Qo{?|8$FKz0+balHCuWe$+W%Qp`Rfwy$0(c_pYe!Ep;o?v z3S$$|)$>mR2#H;QGrXp#|MKqCT&1hhwL;P8YOGFVrYq9TI0X8@-L6R%$B&vTl% z*CCb?Mg$Psi2C!;aw!`sMM~lsI*CBRpgnr?qPNo&o8EG5ONtucyi~TOc~R^ll-M|x z$#51dxZ>z;Lx^lCT`%VUfL57Dri^N<=&*_k(AwD#4(RlsSI|0)wd5seNVwejCT>RYMW6!g?v7 zwT%wHFRU=#I5d_IOLd_^qOA$@zR;2-Zh>P8q=1qp*_?W3htoAyDhg=bTi}&~WqbWm z(H~p+%x_@)Muk6*%Z+|X>?`dMKT8?zu_;0SA4O(4Q$3R2if$y+py!aLmjH_y%}%&2 zC_26cgBzn#@zfyV_IW1@X2Ug>5kcGKW>SMla|hs+ZX>&jq#3OHAc@R1bs7mmkTGQ@ zB1qeoI@D%{vk{0OZTkaZz$2@8X#f_1Mn9a5M+A{pk_@f{NJvJ^OjNQuy*PR$5hVN) zIYit~amB6?*$G+X8i}231K`x-A%X;jS4yz_pM9(F*)awu3iiIw17n;UbXt51vosEi z64WAoFFw+WgC?8%LJCVarGO6#hP^M8D73nH&F?qADdO*+%(56x#y=ecQ-be8Shnri zw_tF&Tt31QE(VhNEZbZ^N={H(0VcG9o-^T5wzWf?A6wN4zsYCVElr78)#(f|;VVptF{QbqfG?3V+iQvq zz3Lh_l^E`|H>aV)Z$%g?ufaFB4NstE=k+`BT^WDiuf>r#zp zC~RN+0A316?b94%oH&IG2dm071yX_Q0I;!!b^KC53rkF=fY0vSxid0hDTg$6-s_2s zF${%`hZV*~0Ux}Tqks_pK~Cei++EIhc8+7lpnN<=XG{R7#J1nCXI_w2K%0P>g-|L} z72Z@F?I<=9g-fEe2Po@&-u)F~QQ650bKu{D^2NHI{;!1GR7k~Q@~$3^3Rp6{Y6#OW zk3{Q?7r9R%uJ5`7mI7i}2khOIFQS0ZcB9-ER+yQf6zcKl#=S-Np-}Jp!U;Rwn@U`! zbZ^z?_7%a$`$7$?z66zvMYm1P!b-uQfEG5R)2JbMSLpbUcx00D8~5sz3- z03ukFqWrH>p2+64Q;TRp{ET1enQ(@*AYsK`5JB>k6I$S)4nzwUQnhFS^X;|p5rD8l zoc@7XgDfzICTsX6P<{w&;Ap!5M}R-8RV_YFp08Q$1hjCL(ZUOjcN6A1cki~0VKsAUK*F`PJYEI3VA7K_oPto%yRX^It`W-fEp|hvGSNJ2T_`$0`{s%0sf$`p@Ll!=JpS%jnGwD7cp1XJ z;t;r(y6}|&91O!*Jyae%M8us64+iEU)neSaff*#iTfy9&flJ}-f6r1ncVkN9*+^2`P4zaS5I%ilj>|4lZ>e_d0yd7| zJ-ctei6#+Sc?%v&ZHw$4T5G)hzEw{c&fYhdJu-D;3B+H`Sh#`i+dVik4Q*eD#W*3r zW*ltexIASRo-s%=g#N$1J$foTgT2pLmLVwc_}YsH^U76TGJwFulD!l2`^y{80!r;{ zf!?W$;#R?mz-@=V2_5Sf-+k|kGnDv>ERfKsIOcq(dk^z5RNem;`Fgk*7oZwky)AG>%NrtiGu6Q|-2OBR zhu^7`3?6oyDN;58ax!k25i*!~^@PYkQR7MfXC)QLwx*}wcwM%3K1IRMctv;91uYpx zzw?qONp1BmHz;0}xCPAKV|>Tk`6fB=yrim+mqdc&NfSnq(+D4R1;G14YEK%yFU0Px zc;IR3{-IwsWzw*9#q7emz1R!46lKFsXD7`_K z!k=*UTruFjaJsh+&-Zpt-rbJF*H}ItDgP1O-jjaA;yOD*M2;0xvN_C%aWa5-ov|po zG0CO{G!g$F@QqePc;M+UWUw?tlyI^VNjcR5x)9byO3~#=2up;)F*aTwB%-}BGmV8J z;_Z7fx9SxxV?v_hmC3zD7z5Vi$l^{YawlG}C?O%Y-gm}}14I5h*iBiGVCExYA?S+d z=8j}I7PBv8Gk_{Eo}Lj*#fGLL7?utPQS^mm*$Q+d9UsQQOPC{~S?7az^D`2U|C`WQNDSSL<31;gh=8YHr3@3Wj$kVbz<99N zn50^ebGB|($U&UoKZF;w2W^mmDR+4kuB+0GyU+m-&s0TF4yug7$B~oQCC`IPp1mB4 zM+W8!z-KJL!26g2CI@ebZey|QDov0DqEXDMp_gn$Q+2@ibr1ogWjlIJRi>DNN-qGD zR{JO@54xqzX>}Td@}Q#IhC|6H^bdN5c)jN7t=d2O;lI5dF+dU}NaCK#WZ9TFr!o;F zpzMi`Ac>E(0AgApt_S74awH2L37v1ecvFP-g-SXk*t>Lb7-}2vNa0K+nw)0fwbmix zTdc#42$IAJIB|MJusl_n7C2OXklvbM8I*}2?OjNWtFFN$Hxot>Z4C{YWXpyKb-RpV zPK|{mpqQ6|WC5u_Wj=>e$;g*o7z_u)?q^6FgbulVeb55{gGizA1H7)o-xXo1OP0la zHqdMSt>647<>nd89NSe(FAxp?G==f5+h}Ega)`Y!I!>qUha|=X8SM)U9g>&@XDWL- z_LgRc3b#jKL<{h!A~2S1O8OXnv>1S%VY;D65~EA@F8CNJ^-)FPB&%a`mGG9|Cc<{I@Mx1v_giniX2H;HSR{b61V#D%Q)jL5hKec;q;>1{i#;Mia(FLa zH_(|y@X3Wf>FoXe?|=JulEwY&&wsn{`a9b!Zmt``XMRZjSnlU~A6GB@u8>T(aN%Y0 z1v^-mfBkd#PopP}a4GpaUwxFP|4l@ZYnE zH+^e40c`y@@}-qd0t?E7PD7wIi3@B%htEz68d{_rggQelu74;KY~8oTR{q5!#%-r_v{B@ag>+Y)kUu`|)WuU&!Q> zncruMsYnW}n)4m~smi~PP5l^h>loqp9kcA?Teuy<`&o=f(&Gn+i`VzaDDwOT8%X3Q zn;yr2*2=pM0|7rsv*m$fdn5V|H#X-}@TMGQF>D#c{`q4FNcZ1o$C&(x<CTT4d{QuzoLY@D7 zZ1iumktJQVTX)@jwO%ft{rkTyO1~GAFTMHT^5LqR%iooTYVPSe*-lpUi}UhpXK{V= z^L&x*oR4NN+1vDavfX-U=Ey-n}lZgQ;>8Zc>QpK^+komoY- zn!1{otC#cJ`qlNtKt$9l-W%#@d5v5{D!0k6zQxp(uHd^>um z=Eem;{%RsIub14+DrFMwi$n@C>*@|N>jr-RczUHu7xmeVcBP^LrHk9w*ZSGp{Jm5k zO^>Rxr)F#LcrMNt%1cK%dP$zoCKqP)Ng3D0hvd^TJuuSsOtW0q45=$6?ur>TF-VN+ zO6skJF}%M_o3~c3do}DI{Zy*M!QiGKzn-aQZE1F&)b&hFs*K*x7nwovyw#V|*^9dQ zG%|-;Z}KjLIbALPfEuS)2~nUX-Z95ch%EmLTZjr=kupVa*-+w zrA)TezXLx_vM&kqteoy7&+hWAq}FNF?oVHGdT}7%y&HN;!CZbQr7~yZqq~Bb5(`J= z*)-8l^y^ak>M1)_n$qYz@oH(A-rIRMAseTY-fUjkMrSnOX+AdS7^Z3 z`qR}3rjBYQxtgt1l09RrPdWg% zqd~=(+&7!=xuV?e;iY%g>gF2V(%k6G#aB(1Qn|##Q~JGrHn^MjOHXIRdFyRqy<9in z9-r>ZkCRhvbXLg>$Gt|qB2Vr!N`Crw_ugGjM@MgHz_1&?#S4ud}LjtxO;KKWC4k(Rg^j%iia&(y}NHAI)aFY71CB4n zX7?<6sg63sL?>77KRuSqkNxqyR_i{^ZeNyNEir8uJ8DiY9^EBNrDh^gnwRg|^Lp*9 zR5~w};NmWgO4a*IG@z2~4B$7FJ0OQ8s2s|#J*__bd0sq~z=H29PzD$Em*iPsgYwT=CsP;>%H`MMdG#{YnZLAhX*A$MPBn~|=8K_r zl%K7lIB!3`)^q7$C4Et!G+T{PO3IH~)7EWunp?_7DO+q^*Nx8D-aO^5AMX>5qeA+!baR`zJ34JNwtP)Se{&|WBpn`Yrnsg&)cnKqA)nCIuvcWq$EoY z2Hc3%+pC)+_#p#nU#`PHv2s9vt^apsRe{n={(Q(LA5*Pt@BIG#v5go5I9sdS+?Bee z(o?B|I9V&*Hj|@7@dO`A>0zMJ}iO3s%R#T z|E6$uZWZQ@WuvRyv>Jugl&>H*RTq}kB?N{CZO!`W?DFU1(^NiBnSicmWsC$M;9aQz z-)&}UYc%}h5A@-SFi=z#IvWPizBF{?co=+vb}Y1Kpp~j<;Peg5>Tl@((6Qv#87S^E z(2CsPom3LJA_QzpE{O95j!F&}cocNpfaj5qLkRrj_HKp7eT(zg<$d-{$_z2EuSYxR zGM~k*9RmKJfB!EZ;2YzelB*@30qJk%yu}HZC8D__!4kH`mkZOB<6M;%I3$sOZT#Rl z557Ese$T>3=Cl2%YayQ^@Ifioc|r)ABP)8W0%5$?xr99J=rG*_hq*Cvr3K$5r8cj2 zfBZoqAMDXCTcp8-74=#qW5j_zdl&-q~Es98V=+eM!EexQ6is%a3JF1hr-wVZw@39eil@g$$|d0ian#$0VpX&E zecfym5^Th}w3TaFyW51|Bc-2y@iu43;VuHmsHS0Tpp}I3dp(5X6oEny(`EZu<9RxDLE&EIg+W)D0ip~iTyW;LwF@G381u-_)I5jbKPz$kqMSmWD^ zKfXLmy8b#Ajn^!g0{DKUm;eTh(EGAU3kl5`80R`XYM^Pu@Tar0P0Ox*d(-V)-Zq}w z&06KM)^?zgSi>WT0ys~Vf}z2=4;&N#u0V-PV}OH_B(Jj!X9rJoc=w}-s__5*CqI;{ z+ff$#FW$dRO;~o;(gjt4Y6`EKb_YNsC9b8xO1D)-&y(n4u8>nrPYvu^W` zKmX%@QLk8cdJes!B93)7XMHeYAug==T@%N3A)H3~(RaYe*G6$(o@9b=!s+o0=J`>0 zN}g^BLU0Yb~VyJZq=S1W!h-YyJca&nLSWs|Bu9&nL><;euNZ&>~oRg-UgE?IHbx9iG zX6UT2ZAh0IKFoWu0>!;pIc9S@aH{{(mtCjXEILh-7hIQJ`O}QOG^1U1Rbtj9ls!1| z9yO2PZ5Eyq+x-=LWJRQ`@n{x9n2WB6CIgpyE=q^xrViSnzmlys9d)ftrkP>q23Hvm z+(W<0Z;6}VP8>rd{8UPHzbd8RxIYis)(6Fy+a+a+NaecQ`mEQO0DHs8LraAvY6bei zCl)G@$M>ou5H-5h#Q`CMx-}gKq^RzPIp8xj!Ox#rkT~=&wHrkp7FLcHRfmPzS{1|t zTYhwv={O+N(+yZ=;-7#22lXDld+fGcJdN#=>RYT4uCd6L=R{4LLBG`OaHi_Nf2GEdUO(lM%(y8|rS1w2-ZF0hGg6D?JvB>=t zOb%6Dw-m4m$_vG$f*o#~jYV-XfudZ3Y`v?DDHSlLiA8JB#|D$?;K!A3Ot2zscuer9 zH#{b2lpEfs;o7SG5;usy#6LdqKj8+BvLzDJ4nV1lnP9;UK$REnXySyQgBtpscN-D7 z)$8nbAkTkA2@7wMrKya&ShWHrhN~YNr*g#=dEH7|iQSt(1PN~}3vUOWW^|WaWOQxwQGG5U8>8L^n~X>u-XLlCn|vLZIGP&!aBK5EI4G()b&C2pK12LY`Fd zrXZNHBPkMsfZ2Mgj8gRg#uDt2Jj4?q(?v~5!Smo{=gcV>><;uu&tifWHP(~upgEZsx=7_YVsqv2a~f%AZs6z+4lT|cwq4Sb>frua z76PCnI8o9RCT0R>S~@>{LV18>2*`!f!E08sVes1l#=tTahca^KP{3rmwT^VkW`Iau zkv1%aV_j31&!i;Hb3iOSeA$f@Ls0{0f)8YaX00%W%J71uBM%=hXcmpR#}?Zm)A-@p zNC+g88v*$(e6rS#Df3R)l#SLiWRdD1#|V!fHKWzsW1JpzR8v6vgz@?`ezs2(uur2X z8L23XRQGM4CljHk(<(1U0pS-k&o!Y#9P{K^G(Gt%fyx8cUp#?|-^%`r$_ET66L~^0cCSHF!*u2y>6rR z;~NflqggXQv?Q|#(G~?6{=zw>=#Ejq+SMsU2|pDMs}$}r!zHsyYYCs@g433Kb6mDr zErIcJ0cASlT=I0T9tKd`h|%jmkAdmwS-+bj9XOT~q)`lPa~f)NZF@MDNn`@WxlH1! z>jf`>I7&oap6~)lcgwm1EuiVoa^H`>@QqkEvxxV-EM)e67Fd^K1(?rU>SArd!z)s8 ztvw5{$j8FK(8t19G|gjd)=>=4V334GSYE(^pmV~+Sr4S+3TaTsN%M!qHjs6qwj{Zt z$95YTSZ5ihad^w$+N4d~G3aAF3i(+F{UHE22L%8hDHD_UoJa>8>~65hjXW22A_l_3 z6lYY?%1oMvGFIl-4&@1MtuoDlT8>Pbnkq;;8jo_P8wrGXmUp7MrSP4Cu-(IH)sM!*lIPc6_cj1iP$zGZqwuEuNu=;0b!ce zKr}6?<2V})HC~Y5ahw~&sB$Qord4TnxlvG|3e94JMdP7mf;6QHSz zOhrv5V5Tz0UVf@X5+;yT=OIQ=+-k(xb-TDtjV?uoO-3j)WZ33K7XZ!#3vJL_&`_wN z`eYu<~5T+c0w#=UQ72i2k1o9(ymciM(W(22$$H#(&YK3 z$57KPd|inHuf6GrD)OQ7eCQc*EDNG301J8!{=s$+E;{Vk@JA}m>qO-@)(a4MPd+Z0yjBibAJldX}VPlxp4kxQY*lW~Yg zx4mEK@P2kBGUX+4A5*WO(`;NMYIPgWmDVoHnF?hX)N?f8Pfbu427?X`nvz4m%wF<0Y zeSm!NINSPD1vih4gDjm^snKrUwmN$yi*2Q1QCnA&9|E>2;ogJwRJCm)CWuI910fy> z=13V>Cz~_deh7z3U{5_8eET!d^eI?pL!MfOZ@}ka;~yMmOpX7}CC3fYT~&Nbqs;`-@|L8M zf5;n>`XC^y7#Xp!iP^eE4Sv2v+7~>K$)MmU{78QxuAaCNmoP}r{%N2r%VKdo?Bk?q`2`tZ*o_!o?UG0zprp5^$qkS3Y#j&IXR+bnc`owiLv$JeLn zBryjaU#C(z+ZbBI$%5w?_Xh3S-_bG1Yk$XskhvNcGT{xPbvnO-Xg|@z|7(9D5(SCj z#Ypm;r@>L$slm~KA(Bly;&XFJ*#;Fp+o8i|8v9N@4x92q>=Aoq-7G=Ev%1E`zkhTP zgcU1fgNQlC%Y2!4DdqgmW8%+q|@R5CV0>7(7j`Y~$FCL3G~Ow;-fe%m*yUAqDfx8uVk@ zZVS@vj%nP@L6Mg|nAvSs*6vucAA`{3W)Py{NuQB1@mho-7?V6nCVAO}nYeGTS?v#e zS?zVnF*^8mo<7sIff{!{1 zXEOF>5HHT0$zN|TemngtI=l3RV@)J;>kz!vkrvH{4^Hx>tv7?nJM?Ul-=>PHNQN>U zKcgxw5x5n}x;q3Pb|h}a>YWRDWO0UfIJg4;!A}~Vq;pX|yX{zl2O(fxceQq0-VTh$ zL-5l&L}Am?|7A3~rD)rY|DiLDyU{4|vKq4o;pUFOlD$}seU4Tm;^k-L40o%sq;j?z zvj^eRjX*IqA>@21CjMCFY&6#2zj#*KR#_U1(xuY=aFpWm|502yXq&AxamNnZ3 z)--V|q;UB*D6`9zJVWjpykCJoQGT4j%`CS}L>36-h(|5=SqUxv1e6votphq@JKa(;rjf9Nhxh6SM^KU-yDS^|}ren#!VwBIz|Lu^a zjEydR+3XogV0(K%;s|Y07K7wx3Lgamgw%;+)P$cti~BZbQ=g^tXsZnNjwCmZb^eP8 z&S{r=%Rb3)6R3?aZGYs5X%Z`P!BQKXyF|v=z&6Q%{!%K-3j^!yD+&$PfcNPYu2#k2^TS zgXB0%b{8a%-%i7cLP4j}2txu* z-_b3q_JpL4$G*iS*m1itCSlpW@un)Ue;`YfR`3pl)CXW8&?9Y)=-Y4|fbzyB^5+z7 z>h`w#N1Lk6*nyCGtgEv5`{$!IY<{Uw>AwRZIP7@2XL3t;NP67SVcUG3YKrAYdGGNL zWs&Y%W+GExluTWnQnhvtG3tq9xP+f&zuRPrz{0UP!VNF0AL5M%T_*=L>euHQ$ybEj zTTC3^M8oG&0~!Bqy8hh^<%L6Cu*3wzh304&vF`0!#jTU9qK8 zb_rE7rx1l7z>qdfM-(ocI~jy-z;%j-wEjY&8NWaisQ34M|LK_ zgvTgBbE4oKdHj{ytmV#7XayfI1?i3;ys?9O&2J|Mj3C+a4;Vwm6mrR=aEOY<$=HOC zHJ00L4Tf!QKavK5GbV%6K&bqHDCX3QbjVDqizc@g(^LipgRlbYKv$JMFJN?TJ|<9W zElYWUwj7o8&qSl`t5u2F%}*fvanzM`Fs#v6tV6@ENp0vF}P6crXPhdQm= zUVA>)8HZeBKP>1VaSV{~+fd`Kp!0zrokQ`U{S_w^3`rfn>B&6IBmsdQ`Mxq3OieoL`aq(QqcQYA=uUTpIuMFmBkF7J{UaU0Z+;-;_O-3T z4L6U^-$ajpf-3U#K!{Es?XZgk$q0z+no1Mrbs$(%#>?))Sd{RP^td07fkmf0R~=&~ z{0zsq>qLGaz00Ga9}NyVEzdHhhkSvx|AYcRJ-7$Ljh0|*QWXt$(iXMeNH^B&C>CK+ zs_!Gkv~*($3ukYlg%@&9S9QZiBnkdII}2XQomQ#QZr-*!n`?Q65-qR|5|LHOjeTo= z^AieA@<#KL+SeX4a=~n!Ly%})u%*kkZ5y|2+pb%-ZQHzM+qP}nwr#)qqq`&CpeH#y zlXG^&$+hy^xom3eMxshb=H15LZiFJ&5vLKm4hg|)W^rwvQND!y34bPp3wzkGolj`+jbL$UB=&-4poAgBgxXmbay1T&|oSfMCT!(gxGzj~3ly=Zu5NnZ%`k{^e`bX*1*^V=IV_pMxxcEsv zU6!_GLoo~~z zEFk+$4gQL5!Vr85%;k`@oQNvAD2nSDmTGPO=6h4Y3!mDDw4bzLB_sBfyih~9u27S# zj#R{_&B&1)2SV@*#me6^sHPd2+aw!aqzzCdh?tU(U}R(*?b8X$X<&>SqLXX;^A={< zRR}qU4kWIFc6rnjT0XL56$mC8S<)@2r9?u-_&gYIpUj&8iO^$9 zf95B`HmitIVoM`Cx~OgKRld4U79_^ULP;&WO8jS7Jr<|^*b@q=S`EVis&47Q=UrzK?UAT3_ z=3%xHs(HlmSXjVRuCfO4ZUX)2c4VrIyfv1}`Q39T&o38;x5Du$F;6RnKhQy;cm->1 z!ttq366w7LfFI9w{K3CM`&ySO`hY1*`xxJQen!R3hWviA&@2To1CTKF?MnT&YC+lX z4m2;(QEtyr+(8?S>D3zAnIAbSsJ|QZaaK5mSJFh3Ud)}W9A8ce-#s4QemtU-KxLQ- znL22zBV;Ukei> z8BrVTb8wbarFa@b7oW%rvVi-q48Q6Fi|GS!56*##D)05Wv=8#%7R?6^Tdt(*-l^G& z!S_2V`jd8nhJ@P4Cr;m8p(~qRt{`@l+-NQ#T@2!@$Qls(zs)1uO+p8h3*{pAz zS}_jSO)MKnAu~^ZpdP+$c!B7WGPdS;e<7zV&PPvn*q=&-J zq}51Pfq9sgE?~F5ZFQ{T9$KERvX_aPoETu=;an5XO8vA<1HnYklZU9&{!iOWp4>Mh zY9=tTYTj?W8JKgUT)`aL0)cAq+uIj7Y<@b&uo4EJNo=hkS7kE|DQ7G<7` z_o=)NYgU;A{=z^*O1P-Nd zpsI4!hf0&n`ab&nt1S)4)>lM(Wsrwi2-q{JP}IYR4zz1y&cA>eLXj84SL_FiWf}-& z986~#3WdcIt5y&#s|7s3pok1)ew&J-a*CwgY%RgwjSsJWqJ)O4HNl)!#nFS|EpB$j zJP|9u=)=&p;m=#^wXGY-HR|BsQ~%=+8Cl^mb{sxC8(mjgK4BXG>Jt4_YN#%p5QG)T zC+{uuS^+{m4U1CS)~ByOfGI$-x4>@ZQTd|Z#gJGI-Ob2LlzgR+V$IYvi$N}EYOM}| zz%$!vwq)Uong<^f6G9}jCoc$p`Ap>2%K?nS?9Div!)W)q@|odx9t#x`C4NBJp?9_a zFE2R{Sa87gr2e%X@xBT^Xs+J&R0%+g6{d*%6uJoB=T*~tWdz9$uUj2_Is9El95r$* z+U6XRFC&n)D~5w=gYI`0v?!W_NVniR5a!&yuVFN5V|;4-VzY>^`4f(UOypGvzhnZH zSJcSI9+cD?jiOt(VXL`sf}YPF{o1;K!J|5?+DZMsDDS6fG5P?1+0wzmtGdcr0Sx~1 zaQ1s2HWmXkwu{iT`8aF=diYOYq3)R8`q@#KPuhlVVSPtw3#O`c=W;6_i+b#R#}uSP zIbdy9#-Z*9U~BnqFY;EYB9AR zD=8CAUz5M^-zMgQ(`P$Cu9vl$MqUCM+br`~p9$2q>K~5@R63=@aY@s7e~e3Dp=zf6 z*%_28tX)s_O+m?boXEZ!;}=4`v#L>s^A>a%sHv&C?LNm#+XK=}_wgE#H+@3Mf!fSr$ghKdu#~n<1C@@HF2JeO@70V_&FrMi#ZvG#F^ca32JJ}~#IOcy!#%F# zEs4MV$W>1w`!<+tQiNXo|;^VoTDRWwh5OR**wWb3~%Btiqzww=Ugdow>LVv zUg-i<0_$MiEq%l(3Yu*fTai-k$q_@o!sxo=`ACeq8eIT}?AiSdPlIyEc5HPUl#{!Y zD9#OG?cXRepm?oW(Sj3PE_}pS*g+Ea&b^_@q|+&UoN|-zJT~9&W_o@K1XlE7C}sW2 zXIU27;)gX&(~-Q*Fp$}aG&W7ZL0*H|DJdFiJ)RddDSZr?xlY!&-F!l zNbb69x>CjczykpM{DQ_C4jZGtpt17lSWL4UvWP@>JkesaSLNxmG3`rQG|yZffQ0-Y z2FNOandaA_Z|Xxm;z{RC_Y~V?$t(CXdb3R~1Of$7JU`N6DgHVUq_T;zv5F2A{ngRL z?!NB9k9XovkfY_Ho2%8^eZ^5W{%=nEI{MGL&KFLdEwdW0Q4anjFjr$>&2t|pa;)%q z-%{9Iu<6ugrS7?(vAZFa{5Q9Q*NnrKXZx6ffTo)v7lfG4Ee85DRxECllQM#~uQ|AK zuc)ecvqd$oNTxz*uLv(<;ic(_%ju@Os*!1TVxTB}@Nh7w+gsr$PDDQP^i@2wz35cG z#i^U&H~)b6k#Jm=h+jOPIU4U=qdo`}dS6iNiUpc#PD)&06hK}${v<&OJFH~1QIQED zsnbOWZ6>H97A3;F1xGcD(^bk;|AoejdjY~Yo-$}p?_4nc6dhCQB-1vsx`aI4`eXfhVVZ>Q(eyee=AT?QKhh8fds1J=WwA5exF z;vgc3Mk)E+>?eXxKOj)P3HjaJ5)`OZJyE7>fGlSU`DQkUuUWDK(Gg<9VLr4VCmgWl z(@5O-waOX6j7glIrMpo*XR){i3tcZEXgUX)o9yUMOf~`9Ju-vuAdPD;3;Q`k@aeGV zVzd)N!lXj^eb$+GHAh#(dQ(0g-#(KV@^9`#-}THP?dQwPAC7x%-s6UpnIv&+#|zJ4 z-;9qK^g7e36Iz!7(&~Rzk+WmXfe&P4PVUQwUQ&#EQ2PkS&1}tG;(%I{CtCXvJqByo zWViSlc<4tsG%3qk+0X`)U-F!jnwL$?X{&(vk>VFKmyeF3=g z6!O&c$U$cc2*J~$qT;boij?@Qvi=`;U-&J2-9N|<4Ee~A1{ z;s5+Pgq#O*C*WDKJ)ZXub4%wHE6;D*8`Cpg|6)Cff zgUUhbfu7WbO6hy+v;G{s)5{&6@HwJ+Ky^oaxE)UtCJl-I zSV(&x8wA5f7ryzTC>p?65zYPUWBo|qX8F+Y`++7yr~hUoxP_b_?MB~-5dLgIiN!ej z*kS(0wvRQiPPr{bA$L?Jo!ygxG2y+J%)6wr3t&LfUyggY=}C2!uHfw&@oT+@TVEq+ z!-}D+?NqL9lD5A_(+#T%qlltv!)W_Hg65y(=EloJ{>c>Juq1?&L8-;x`60|a{qJ-D z)M4MOC=!&Qt?3jP##7vu8QkW!aDNE&6N=)l&Grk#Or@4{1qe%n#n%jb>8oqXtUO(qaH zoSA`_l{-TAcVs(S#4VK*;*0pi^ex*+$Vpn}kjG!Fd>irq2|P$?KT-CYQ(H+N!a%aESd@Ex*PBo%3iAUb-xPC;w?nN8hzxhB<#R>P#DSc9FG; zT0tG*CI(i>pq7SlCO1X+t?24=hvM^1_ zs(k=wHxZ~Mq(God2Hxz`Suggdgdoam&;7F)hKLqK^D-ib%$}b}X`kvlo(I`w+4^t|Y+2l1sgNxjD?f$~G&x1X~rCYArZh|_t@nYU8JoMt4S=+L`6O!E?0tt9~UW>C7| zz+h#CaRDI(n$l)<5nwHDo@UJ;=M9^x1+>|3 z!oDxCDAEL~{W*WWLC}qhtE>)gMb_4q?dF6G{U{OE83&~=$z~D;=IHFLE0e|Y9)mS0tBv(7&|!J zGqr+12p@6R9U@f6r zd62KW(jOjnQ+BA9^_lyh^@9c8+=~I;W(Xt-E5Q!JNLQEqw$VR)&cN-kdkj#LCYcDa zJY9FRx4pXG6VDE(aG0XIHYJ0Fq+uyB< zeA=#qmmOaLt94)a6r4mym{?^51fyCz2 zh+0B}&z#<9S+0G4`n|Y}c7?%r&h;;G$uM=th%zzx-(7DsN;FMxEvY)an9_LbSdGJr zT`!Y570uvsNA16=!C@mNM6#S&bhiN<+oRg0jbD>AiD;hm``cPC-@)T}60#Cq)fRTp zH?metb>RmQNJoarn3Aa4VfldeF0oYdybmM!eJL)yi!{`Sce)?04w}S?dA`I-t$)aDFnF!4~0o22e2tSKzLas&PGN>^B+W6q=WLRy5L8R3|3Z zfji#$9MJ=XZphqR9RWYT;kATzb#_nx1!rkP53aM=&AT!zNu}W}D0dPsAX{a09uAVV z&4q6>{uE(@gDJ_XHAz6Zx{JB^)D}#$7`D!o|H0-XXimUzyAJiz4D8Of*hc=EHrL{( z!J`qfkmM-dZ1Sfe#F5N1i=(;-`yC`zNhHvMlpqDQ%r`EalOR}U2;?)O zbPau8edp_xDb^wT+Yqd}&riOC@W5+V|WtdUlu4JGI=o5k~&UpkL?+N7$` zAc&LS8m01JnvlMF8>i|&U$6Jd8N326@eVTlrp6;NNZkpGt)+z7k6F23$ELiE6EqaB zhHnC_`O~~L4XB=3L>#N_99JKWg&6}UEav{$z=Vf^w+$9m8XO4hUmJ2@10upXgiDS6 z2@Q1Os>A)cDR3(n;!7tZE0DvKhkzjJC!Rv(+W;4`bP2R6RKUCMF zSt1~|ukhp+&nooz*W-6lN0&_!x z+6}yj@TEP=nY@kyvzJeX_9iB_OI5|q5xlrrb0o4;>=fHdHy3f#7c5BaB`o{N^D)53k)rK$*qp6m10KpEMymjRJ%TXvhe= zxxzz(+UMv*obUkSpE>}Rq9Fn3EUp?6Fj%+u1LV|O!-Zhz8W!t-X?y1+nq(grb_0bKgDMY`kv2^L%$`tFkvK z(rj;1BaX+fC=W}yVxM9FN6+{Pm=3=$_;j1FI(c{}gS$zgd9N`hu0qcUkN;SIKfYe# z-5kP2s}}4H_2l&uVI03`BQLSnXh&`WQFnh?*FJjy-tnMdR0BBnfp67E?*V^rOGd4* zQqFgjwQ7lvp}AEEtenMDIcbew3Ir`5>cyAEOC)`&#qoyUmI^U2D}t**BOQ(n@&lRM zmpU|Qkrn`fHbg^QeB~!oZOEt{Y(CpATtTn!2aqa&L$-?kxyz!1!YNfDw&>!F<0-jU z6X(wxEn$fpY1ZT*wmEgpQjJ*rZMs9L)uX0%IHD6knokaPp=SE)r+3SYf#Wl})5wdJ z1{?nMJ+j2D>UUkIAa11nrfv72% zZ|3$i3e7`}qs5{~hj7J`+ynFraTM~;pO(-43_s-s^9wnBktb`({l^U}?*JGfN5?}Y zZjXYA+KFUe)cO`5ZZ^|A;xxi|Iw^=d(rB7|+AA(1RO<>03hQIG*L!xIq9mXW5QEC_)*-m57<^!+)=02d~WRQ|-_J8%s<5KN;tTsSUjM9`RFLaPg4omsL%jfl%!E;){q%TzP#Pw(H$^u*g zRlEOBRE1L1llK$n{D?Y)()fE?Myez^JWZqq?Mu3;rFC&dAjBdmdXaV{+OTr%F7B=T zuHQBV3Qa8=6ew(RYzPo2G~6({!r%^d!Q&26{JOCKV)`uUB`-=Rk_$c*9zzzw5FtSc zzJ+R*DtP{EfeEO}sY0(uoFOJCWby0)nK4zN4kbyPgI@rMGMs!ZEB&cvIQRw`ZSD4b zm9wS)7cocw``598mNAb?D_H$w>452;y(0t1gX z%}ZcFTl+p)AVj4|*e}Ul$N=RPhroZunMxZ8ECOm~{x?pVABCoMQq%z)eccEeZ2nUr zcXx@BakoC_Xe2z0KjMf3nep84`QU?3`1CsV=Etheb+gemh)aMEsXonlCIlX_D{nvq z z2DZcMb|0^LF|DBetV;c0X%IglP}=17G68|i*XrA!gkZkFR6tNj7y2Mz5wu8{PISS( ze=mZ{y?!rpt>I-KC1|LfIeiwGbbdIcc7(2&s3iT@8v6nMFlhEJeJIDe>m{Ur-Q8bN zs?eE!JT1JNk~}3oZ91MQpgtMuiA)ENeMkh)XxQ8l8fE$@TV3i!s9vBTN&ynPFNr$S z^lWLiv((~b5QKQ*)j5RTnrEJ^Y`|3;0qTA`7=4_!ATl$4N2?j@YAbhAEL=nb$P0SG zXk41?R{|MK+(>k%`wdQ*$IiPmU;^z z4q?O;{>zxa>|DBAat_Car)i`aTcc%I+tBTU!zjSnDV~84yi-359=Y+M9+UgHEt09`KL5;(XPJ#@u5uNp`=URAy?y+xPAI{OM}x=kxXK{P_5N z;A8zfL(z4cD&Ai@Yzrv6SB=rd;%%~h*3GM<=pg}*G`I$*yevQHoqtc+iorz|WZIT^ zFvhoQ^+|M1ZFmAt+AZpm4=v^b2H2F*ka!20cp_4rv(a}6_icDPY>-WDw^~VS%j@;2 zWkyR{MJL*`B(mQ=K>k%ciMBMfAAd(@`x0N<*d#*MM0^OUNrn(;f7-|OiMnyD77yPp zAFIG<>nAdtg2H3E)ZT7)dOvw{OO+ubjQO~uzl}c<)HzD|# zCS4O1P)&OUk~WnKWQ0CI1h<_Dw4e-iGrkUDvR+VT(&Y-1&yC;5esMD-d18oGMWi}_ zxz!DAeQe1(!)V?9O5b*?yZLrL-uixmc3yM0I(t=!W&RJv=$72p1$Hs@pAFpKb3>6S zasy+bD`P$s_D+VTvl@fIF%$YabD?g5?BdUJZ_2!Pj4u>}WkIAP)GUQNy40p!y3#qf zA%X$DD_IuwDx$OjoU1mm9w1R0A2!EI=^40%wtHFg4==)$pJK?S3Zx|6SM)q!H6YxY z>p}ZN_2P85YGVl1mlicH92hdfpWg)-xOu71KXB`-fPYN~V$w!H^|~mK|o{+Vv!Y&O-c{4p-Y3ujgAm0yL*-p7^0#t3^3{Ia-=1vy83&B`gsXX zcoOoWI}Tk7tWfcu%yTvAI+fYlmrgKzZ5}G^AbJy&Pfg>np$&I3Q(U{Q>W27OE){jB zIUIb&(s)g9U91^;&3Z_Z;?TOeH%Fl_z?v1MGz~Q*bhi>7Wt6=br+!Bsz!n5rM)>+2r;||?wEGJIm`Nay+K>=Cq)`WN` z`}SakyHv)+7P@rj=Tf)B*Zvbit-8hz92Fw zRU6EjAf^EKR}L!yiVzA>Z4_dJ6@*nEH!$1z&R2ZV#6^WpzX~BeW$(jWkUmotwR|vNEp`du|=eW!onJ<-g zGvthPjTmZ*N32ZOH3x9FT$19bSh0Lo)m$F$6b%ZzQVI<6P`l3`h_hP0b{VH7)VLfw z&yOA#U1zkIrk3l38dpOFK|YO>$C&Vb2c2#&94M-}_iaqiDj*$QYhYe5TnJi93}iw&X8x}qRSK2udTE%XR>_G9Kk1>9kiuUSj1s~Y zib3cI9??Fi%TXW?EPE+2R_0dJ7$ER=*}l3FAcJ82KrGz)>3L{*GIT0(p3HaXl&BMd z;3men-#??Tus?HzGDBWePOTQ&h;aBh?tI8My2gkh>LnrXB^cT7g?(P|P_Gk^^9vp55k+tkTg+at49DJ=XuXh#hR@M=W z7ue*#V6RVi|72oTPWCLdFQT1FW>-rJ{DLN$_`a_0PgP+0{I>89Hn6QVKG%?!v(ZBy z*{Zw7-Xj=iyd9?R9M3YeG?)GqnTFt`baciJZ&#a_bCQ}rq3_41^l4&PrGDv8G(N(H z1Pu3!5aHdvb<)eA!U;`xWf=IzW(|`2(b?&f8a{w^q3nJD&QLOJQ{;kYvNJ7+VNJ9N zrA`Fh_x?r;^vv7sbL|3W^}YBhp0z==#(~V6-LdR~< zB?{k)4$G-lq+Hb}`TJH3oqod0;FyHiL}@3vteh&|&1VB*&4jYYx=LFKVzRJC9QF&K zSjX0qD5wGMj1UZJy}s4#eoe6v_34^oABU^`Iw$K^P@o#VV-e^`_r|#@RTp(D9CWzA04b`YYQM1s_$Ccyk|*<}OdxLeB00Y0eu?n~_SL<~Bn9Uey${ zf6p1Qy0KpbJ8Hc;2E6V6&Zk@RUD2Q0Rt#k=>TDR+>xSUJhe9~otrXTQD#%H_zfSH+ z**UFNysoBmx3?)nP4RoDt}m~`1?dWaFmz?U z`jGHuKOKJFpv8Zd>PLI2NsH4Tk4YvdGRqsq{7ezQPy;4YwH7i6@ldowewEG!35%6( ziA=ye(#k9;MTb;>i`kaveb`1IlI{q?XGT#T$e;h;q zki3Sp{7U$|OS+*m*cuQ8oII+Kn2@asAZg4e9r?E2ixl zY}qRCe;y#|zJ5~X6*<31V8*?S$11?j3AOAks01d9%y>YOTO{yM?ECwdK48Bv;g#3= zX;A!&@4HY#Y?9M*=+QB4Lu!y_*_6izZ7Q7CA6%S!n@&kmXEnXYhCprX{l#4-6!q9!Z_DkY{i zvS>ZpV6H@ord+l#SM%TdpGY9jVHEU49y35^(g%aK)$x=$^>Z1((z{iwknDN$r}}-P zX8a7&$3%~U^oxyxEgvR8m{y8n*j1^7oz`68JXCDF$A2w1>EVNX=Ui9)6GkzjTVpS> zPs?MlyPOe@Vk_Bk*q%?Lck$zfs1MU!t2Yx?s#7t*d84*6FK0R9@8s_&XD$bhBw{Vq z%y53rVjm8+G4v_*6(7`!lNDVozC<2`lNCM8S8P-v1tW^dqn71d4r_P*x-^!Xdt6YdxcXG@_R90<$HvQ zN<)&T=#q79ihD8mx>UB&eOKkvFiU%GtHz2OW z>oCl_eTX>vST$)Nvp-p>j--g(<_AKF=?WgQZ8#xD%s#9~ii}db!1Qyq@ zQ#Vw4Y5Jdl@&no$XMaIS7@{zsG5FhHmt-8N&n|Ndi&VnkcZh` z_bx6|wO^k(_d1(TXytPP0&QI6=>T%bflyeqO8|aS?4OFPKP#VHwPgy;-4#KYu=M3TDi?&S6&?T2f+W@a3Gk@Q z&kdf=S|JJqul)|&p&c?gsuZ&C~P9v=ZO(^+qb+2?6uVG3uxrOg0y2Sc-`~;pi)pVgO0Ex{9Hi+#A;n{y_dufB6+{^X(K6OY zq$HJK@m@oKi@awXs%KINH@*O`2!=Q}!#@S5V60niuAHm)j0A-;dk_kkbk$yAZ}ZV| z_8e?U0GL=BDBR{>mfLsZuCR*(L9*!KOyFtbH);nKAQ&%aNg8Y2 zRdWuM4S&jG=2Eeba{?|_4l>f5%IYpbv|EWa?Ne57mBOT6D9ax;-=CGOvo$vuRle-=RS<^u@Z>dQ|YO$pZz* ztEEHhKS#mW2G`&^G-lS~zD|azbhDjQ4Rhbt%}JQK$<(&~q{2zwQ9$!JN-Jd04`0%HKN0W5=eN(1Z~# z_iDX>;&xy(BFdmpvozqrl$A|L?{1kQ^~Ov77y~Xf4E}*151WMNq}PrXrFD-7v$Q3K z2fCowAQ>DAUI;L0EWzo}OVqu8RT4ck%nqkFV-!o~tB9FtY|BDm{s9V?!!v7omjkm= zMBMc^MLLcTfOgT;i5WOJBcH!a8o!^VAdm&ggAB9v(iAt={!ai`hCP^p*K_4VfU_>d z*`SBCayg=Yi{%~e2Fz#G>JSzqh*XTGeXZcxG}&u&t$OK%GMyKPOLy#Q}{ZMh4VLtmS<8+m`+avwCu~~}h@&d@hA;RS+ zC#z!6EO}xOp>nL%VhtoAI#tK99!65ov!dmU)YkC#oKf~d#NKXra>Gfq0FSBT5V`TI zVh04ahhU&WtP=85nFN{YheCT2@|#toc2B;-$&)kK8lLX)HOJul73%zqG9VPRg7O@k zKv8~s3LqGOhNTo{Adrnjz2G>}BK=}hf)t*@N9R*dlW5`n@2!f4snx!;C>Xy>zkWQ< zW7AMqtqwi=p{ISN8Ra$#-Bq_Xul&WS#gs%9z{_~XZ4K9tORs=jpM(uaVI;o;r@_@F z&kaIV6XJoj(dCK3od|5?iptTt3cwQJ5-<6qaV{B3be6+!+Q0u9&gwx$5FPYOAOd-< zZgHNk8MiC4X2{xftxe$&4q!GghT3Q@3mG(my<>HNU;va&Zfz)0;2uzeS!q>dK7aO2V}EdQvcEA zUe+VG#&J~)v6TAL60za9GSSW9)xMS0y~k~l(fCu|@iuIBvX8!AaB3LG*okv^E!x?7 zSa|XDKAuNo5GH$Ib@{f%CDn=Z_V5t6p!62x!VkY#l7}zyEzKYz_tsd{#wd?p+|1Gp zJeQ_{66M2j_a*MdeK7{PLre6gFo5+|y^7({CaWwc!js@AF><&M1^qE;t|!({17f%w>q?jsLooLp=kz zP?|yfu63Q^|u(E}ALxW(R|<%}}rckLLsKGwoX~?15d{h=y%U z{^Ct?2wd`y;Z5eCu%o~%RM+JuQofRVE+o@eDc8NAX+^}vDM%?Nk`B@}n#i~a27KNx zHX{4D%g;d@d=kXCp9h1gx|acWphN-rg!oW1>TDQkDLQ4(M40Guz%|nZ@aym>IE{_7 z@KVk`Lv_0hR7t6D8g!z0$)pD4FQ1<(H)W+Z{V5)$(^7nQD=%RlQYE8eB+JboPof~~ z93WUrP|>=46VL_iv7yzcfg?zUh>V^ZAS#QMsca0mr}kUGLqyl*_l5+8%zO?D0F(3- z7ND}H)I~#SoQHzKDE%#p;gZy)xT@9jP%)`SS)@!ewOyvecL6Xc6y+$OXVdvy-e(xI zPeS$0INw1sHzWSOrk+eVi$5+iKUSo8HW`aW<$wPQmD|05QGShnn?yf0K!To?8jd25 zyQtX?lciJ###H_&*{$tKq6ysoQAbT^0espA;bby115vtwFauHihPXA?MBr^jLIRBL zWnqP|v(Ws#c;`n-0Iv*8!Vg(Yu4*^d=zPIOBSxv3k}gs-OzKD_Qm-Lwk$xB|!2$$i zPnyK6NX;m`QTP=JF`|tYm=Fn~^1NdDsr(8He^qw7@usxb!mT^}TfxwLI@YbhpLH@3 zRKGV_LCurdtq~)f>jcG;95^&UU02(JDmbk@74+JanTfUNYG?n&*B_-s$y)gb0N5`z z4$R_nsDe;21sKE?A%Kq=Jv zvhPl7R`0C2N3B+YPXBW1EE?v{GI#!E8>cI>)FMrG@0WJqpj5r-z z&&+@;_s^AM#cG}i7$OR8_=Y2mM{Fcz(?{E{zPr}iq$=!dsKpjNTM6eB09Aq&R3&3$ zR$ec(5w=}(5O84#VQd$19?>Z%k04kU#K0GYK^=-16Ldm*SN7(_rT1x=UJ&wGREbZW zO&v^8=x|;45d7r?d@Jw|lAu(wvB@WaXyL$*=L4BF;pXS_+0;=*#m4^`er|1hb$U2^ zJ16iLcZI-0Oq0>di-_k!5nfj!Lg`1s;II#%g2F0a0E1GdgMIJA?JExT1sd%e$YHDY z6ZLEF1F-=>VXP7nb*K*s)C0AH0;`hn_W>=V^CKZTspjzmT63XPmcVLbHquczV4%+;wAXv zUpxcW&-o#Uwq5;Gy@EJY@(?ff4vD%@nVUCFrdFhV&Copq^7zz4YX+E=XG`wYd?-zO z3I!0Sz=n0g_fJnap)cd_TV((Bs^K~7@46m}I5 zbVjJPg;n=H!81Fnompi>lG5JdL!tgBMV=WSuOBY`AWv`r2xsLvUUU1 z6`_r$uGi7qiG;(Afoo65ajOX08a!dMI~mPcPZ>A?x7!QYb;LgGzK-fi?knlRY{&l< zZu0`|7Z%wL>lG#jkGU?+O6x|22(>BtPd>Vqjz>I2Rm;IJO?C_wWJze6ZnIs$<+=No zcUD3!WhN#7q|<`9V{>>YIq>seD>9?aw=5_^AsY8pmG%woa*En}@a5P5Yc1&*rm||(3_eQV_-Ze6>KoDS)^>M5eyKNc%OA60ttbA5^7kv z;jkvlQfE-$23#wkD5%{iyd(JHCIYDJp-?;{$>q1N9F?~bA2l)LfZ&$sERiQdbn)aLxD&;u?*KS;yp%gy}8x+fl$!crt#ymE` zrd-O#_#)V+7)25AdT5JLn-gqMmO|OImk1h{+FxZp8&ds}_N1i6COC(I*Q@J|nL0(~ z{T~mh;jn{^u4DAVGpvbY>w)U{NOsS}h?Lj=!g;@7au*%?R9!iPPxI9k6XQg7*}eKA z#RssGQjH>m_LV1~|B3*OKs2LNqt$g2?xJ_22qjY@C zSyZ-~^RNPvO+6JD@+K#{EV~4i-h^HQG4Il#8LKmO1tABD#epCz%nQ4faCJ*GYImgd+-_3>0$jUT6QRRe9*q-UEQ#r2H6Ar8+ZklpeHmTaiSDSOW z=1PHSO0|(?ao{yLq2w;iUt}^2#+}%zwRk5uQ+&hdz(5FFbgf3*_i32=4IPhs9W(1G z;aFVeNN!i%CV)3#y$q%m8j<%?%pIL5Ao>@PeBz2u0DPS8H*>}>i#RmCkV%&djJ2h= z1wbXoCfAuv;#4ty@t|;h*jw4*)%A6QuU^+cg_Zbp9r?2U=7ND-Izr?)O1~Pffa>6k zTuq+mj$5*k;C(8e7y=g@*1aQrrkz zXDwn`8fq8AEwKXKBGrzJYP(!N{Jx_~`9$8v9yq~}l<=0b{D?gM$eDaU|Hzqn=hDHd zbs#i`zzlR6ZLG9yb_aCB*(O*GP(~aQg=Yjb{g^;8jo$Q_h&<+nH*KSYz$6U;|9qOw zYx;Z+eb9^WgMLo#yj(yo?mWG-=&9tG3nok6mNxf%x}3BrYq?{&!=0FsFfuXW&o6loi;K+D^37k&6~>Q5$m2O;7WNuy`#v?`7nm~;;+L%lC@ z+`!TlOuPfRHRq7t(C#uR%r&@`YE)}WoRNx>?dtjE-XiMd^0j_9fff~^IjV6i0b&U$#_Pm5xHN|-{Tl_eZF*D@!iF7O z5~lS)gaP{AgjxPjSk!&a>e4j1%uKGqK1FkJ+rYNb8f*IAWJaYS9$oM$xLkL=NhhMe zq+9+VD=u7D6OzC>A)t0)d1nX}-Eibr?$kP_@c#h-0RR8&UE6ZoI1>F8mi8sHHIXIi;>(O(l{n5ORg=p) zuGvQyL_roO6rll0%bKTr#60f)T)t#+qbyPs#U?0-Qsf8QyrBVfqj9>?Xk5_G^y=5y zMQA-uyo+Fp9DLcBQXF9Vh#ObduP5x;75^<>lfUFA^eyqjz?xm4z;WHn#x;qki>dVy z&l)H46IJ#V8I><*CTivS5A2OcA!v3d;7K_?uPg&hjr84H^3u8 zSs%4e)gzZRV0Pi*5i7QPCT{X-%Q6Rqe4QZr^-G9o$X;`K^<^D>G-1Wu$8Yq`JF>j& zPtGzwQB{a<+=!~gG}b;klaH2pnHCQ_&B2?esfT9Q@ym*+L(E{Eo)aSd&@%9ZrO^js^YF};9qgW<>PdHQw&}6HfJ3l zh&kgrEer7wSYIMscjQ&Cb+O~hacRh};@$hZ-)=USkTs|(uB(y_Fr_PpOeWY5iw|bI zVv%1Ruy(7zs#4p%esVOx#=*9Dsnn~nLE#2~LD4f@IW~FMxOQLhd`9T7#x-Q(f8=h- z+6_^d2aI=Jy@5xZugw})@Y9rII^=otp8>Vp;c^C; zV2jOyK@=@g0h&N)X?37U{e&O}hCyZ(>_7$bn~9Q7@@DPsj_lc*d3Ti8(HP!rL%ciN zsGK>ENpI)4kV_pChs#E%&&6F_+(sU|fufMC3a8x`!{UOv4`VK?XXpHCjC?k0JX|(< z-BzWb(h>;5VpF>n&$$+x4B3Srx_*Q$;#(+SxBR)qs~+$xA3Hb*5S=&0iUPYwu|+W& zTF8eO`I@u9BQ{3NoN8tQYz%yZ0P(({11KccA|@8mj0vGBLU4DTJ|Z?Yz#zS75<2SP zd}EdwRN}RWZ3U-hlfvd^uDYsSt^RZUX#|N0R2eB?n4Ma>ZaLeF{~2{S)TsxgyYs6k78vW(LBOXWh#^mxhRVJvXei55v%ctACQ zBKqB|W!nOyj30Br$L&k+-@B zV5>r6Ogu~}F*XH8AjA> zD71JSkhOqd)|3P;N19DQuWBI{u?@`>F<{V>9_ll<#Ky$JrP!SBWHxp~V~rEK2{^vn(ZM{u!J8&BZt(kOi$5#v|2d08T0hCODo?F=YnfSFTokXH4kQT%b0w zj@=+6bj}8EBV7rHc!b7PXtAHSZ_`@0ouGKKM6zIEm79Q+L=TWCsV(&Ex!7V_qGvac z)GOOA+~XU|YNm@?Kcie%JXZ$T2|x25NPjIlmjNkEZ}A9I>^pqk30WI28~73X4T}m) zLf;SVc)#_!_lL3uiBA*+8xax~BB3DGy7#k4D2O$E_`)+L%^3e}yDN6^j(PUUGr4z{ zzwiO^E(po=vT-K&hpQdGYPa}+gdv%*kJ`4lma}YMUdUFn%f65{S;Nc5xh=Tz5QXA$ zLF;2Qxnoskj{*)88654X6jDqWIqpz0e`?2DizSbwV8nmd3dozCf+>~gvrtWW1-5Pk z#1lj=s26*@B|^Wuef9Cn=TEnH3h`yWFSd@aAo^6AfaE7U&sO>qe)vG*lVzl@WFqU4 zGHkLQsexEZ#jPOuMPC$GPkQHFXhZpy>NVAb3ZZ;k@0 zZVUpgdVBv$Z1~lp2V6$eBL>|Dr$@~o*MPQ$=ALO#)(1U@tqe0Vw~d+j_~p=@U_THU z&5hB0(S8H*GioxBB0rcCP!xCDT*fFpQUURz5N0&$5u7pkq~^#u+zsvygP(b>N{fNp z&>BW!t(7lxPATE3EpfmXV$txCK~tA!z+|ru-GCWDT&{m+|BptI{8v6wmzL|Zf*A09 z@R1){e-V)!bNC0V8oN|9+Hb6pM`l(q4?;X?TDJ_zAx{*<%u1XXK-P=So1d1-caYE5 zgePQ(Jv_7qbBo<)eUl{Fv_7zj*>%Wd$}ZX6=K?Y(i|~ps4Fs(AL-)}gMvN|#aR<|7 z$^?%_uH*7m616hTwI=(WjehBKJIh*$Qd>G8I=W*f=yJt<9(M6HRCYx8DJV(+QMO zdZH)cL%yC+5lu%uQExqA?~9&@&80j&QGtqpYo}oBj&k=G)=4`RkqCfxs`~t`Qrao; zM(^2r&Q(raDT&}h9t5r~a$^)_%yb;1*t7F3s9mcvt8+;6f9Ou|eGuYlT}N3S5YysA zy0bQe3&UpLJkQ^H0PVAzEpZgG)jgyE#lzI@hc1;-aCIG3@P;w?UTF-Oz)6F z;}e+1l+`(FDQ|9Fr>x!~jj#cU{2`+Adx!W#kus;Y5HW8&dC`*=Q&K(G*^OD0(?Z6c zAms72LInGVB!V9HAHwlIie2}gZ8q()sW(w~u6OwJOhsPxnXFq@kKc=_o2PJ)SVSd#ctVReenWE-@em#PXyiWO;o{*n_Ph^B(Bjko z3av#!0uQWv%$t%Zi<2dU2Y`t_Xti&i&xgMyytV?0pyey^@S1qh#9w-zxZ#s`uaQ4g zRq)C0@ztUZi*EZDb%*@l2lkhhA#2``lVv3Cp4n=SN!;yp(6`j4kg|uXpmPPY3M7|>S!E%rujo6hcq`@gJQmo+8;<-P zUnz;?otY&F>b*=5z1{S7cWB_@&y3;&Mbohwh%3H%nWscT;=UmL42kg*azgo`#KZ~) z$8N(voR}8hmWinv8?rJmx^N6)~j1;OjTfaNYnc!{dGl9&-=| zW$|`1aP0?+3rv5lW~T&0?0#2xB2yLy$Gu;s$dAb_LPhf!rI%J~XN>B0l7VUlIF+Lw z`5*Zn&Fr^T!(yE?To$5;8Z<2I?QW32G75~!PUe#FCYF>jGwiAZ z^G)%Dr`N2GCj~}gtJ&LEL&MgKZ{D;`6OLcgJbqqlP+gN=`M7f@IN<9Z)-9PJKa0V| zdapvOK;)PHp?a17k=;o%+qlw2oia-UozpEM_&O{NoaU*!bhylq3gGLoGyr1Mj_`YG z<5Mw)l)~?ISQ;q7k;8-UuJ48}gYSGhNeSk+&*h;C8>YZGHAJpV)M446giKTm=nKd} zyVWX%=)0{|L|>9s+dY_KpD-Ygfk=1irry(Y)gMyt@mLXP?``*3ii1GPWqjS8&i0V9 zIK5)$j)BFw8%LzPmQl5Ebwe1nBcz<#N?eQ~WstIP(Ci^c4i70$sq2ULt7%t?@xDT! zEV!|UBB2SC^M>QgOMBAii^SgKL0z(cec9 zp9kVajcNtr>)`IrUEMo^c*&?bxVu4&+7XCPr7tPQkWwJN4({#}963}FKce{02>VX* z*nndEuM)`D!Q)**EX)VW?;0u}{oOiH`RMP~fyzgJ_eQ8(H-C4x_OabZs4N*(`_S&1 zK;={(vSJJ=1C_hAkL>P*k^E9X-@*)qSm?a_{J&E(VoTN!5!nqzqK< z9X-@=R11g71xDd8nj{l{7h`&b__%j;O&8-oXH|3LrcOgI$gk>Pa_{I-)_}>qqeoc- zCijjW|a1?I_A*V5J1Rn^s1oBw69VVzr>_#b;DE2=S&CL3c}`}Ah5`KC<2{uO*vYmjfs z(-)l0>iP!x?0DbO|BmQ?9fdyN|JQ$9xy2(*KE0{etMxbdPv>cbKE3HZ%KosygCl8D zZETEWOFrs-def@6_V-)O?KkvW2R%CE+qVBdGLB`dy~|H;DwRgHy4pWNb|}5Mf3o_;BfJ z_zT%}Oz%b2=#gJgAA_#fd^Y+#>oR#t_~$+6{b%l-(Dcw3+0(N&H#tcLt;G-8bM?`W zzJ(rKWGGK5roY-*r>vWs{>jF`QhQe;*_c93A{9F?Qz~jrpV7h61Ia_0g<457QH@F~ ztBKm>nkfGl&WV~%4RfA+o>}{*;n?^Y*;Z5)gHUy3OQ&ceU7EUVM9oq%u6F8_YLN0H zOnK!V;a=NYZ6NOL|JArh{_)smMbfyyqSpEn7I}mCb6_1Jbue@S!t3=w%}k$&p0id5 zEb*;s5fpm^px73D%MA>2-`t=LX(5$opF(o1P4x5zZS zaxbNw+#-B>wUb$Pa+_dOC_A}R1jP;sfc#bMuEx`eQf6yk}@7x5Y=29l2}!{|1kdDJH{@OdC^*; zf3$#xbpokzEO%bbhDKces!W6`@*TLCRS`>i!vj|R4T?2lCymHv=Pb1OV(Kf?V2!%q z!;ea-o?@m_I3R7lIQ`0Iq>5!ys79!iD$NvAlESN@%zuf|k48uABB_=bM}*`b?>Q@y zZwqXv`!dv1s&#VolnQ^KfF5PVnH7Y;s;gA^6NQDDT9L0*6Xq)w{zzfTl!Tq7RBjT> zA5zIm)Z`~*g&dg3k>=;P;hRB|;EQTA-sqGbb&U>$i5^+VM%Ea;*_0TtvoP3`iB^{G znD|4B{N1r7LMq%J!`9cl>k=9<1AivIOkTx+w_^i6e349VWU-tc$#(cnZTFFWQ4 z8_3?4>D&6A-?Y&+9mmx1OVygkK)UK%-iINQd&t5c>E(uvzG*t-W2Z*x8MqGp=)+P> zjd0gD7}}mMQ4S~wGj$33_|7ikq-xvjJze9Wm&sGDI&vavtMjwV z>*Px$-^g;T4zBsSU{3y;EnohgLsNL?qJ}}Vu+1)?<$OrOWE!tdH+jycI-ilp790*S z!H)D0vVgci-J_?8Y4rf$sNJ6y9F~jUkcmCnkwwAkYNm2u5;b3^rYJ~Q10Z3tA#%cG zOPCz0#>kz&T9@a98KTH4v^vbdSP6}|U>p-icz(r~S$lrgN0-m|J@4zj`OmZ~Ri;5h zNbsJU<3)CMrH_m-yE2r5CLTH8RoXrgxMDbDQ?kbY(o5ol2K(HvSvG1rsnFxSXfwZitZR`LCL)_QXF-R)_STvLRcq{ zMZu1K*0E&69+{RS*{bepG)h^L&PL>4S<{|A#O=zl*w7^oLCLfLF!81k&FTLN7-RXi z@<(az`!Z`g&NrPZZaZH0&n)@EQN(na{RY!uh*q1t!gu6iEW zM!V_>&Z{D5U@nJz(?ydUR*@wl&{tnR$*G-ny4=%EH`K`I0tI%~xuAi}A}&a=>o!}u zgmJK^_WQ0KPS3~@Aa?vzvnPy`APe)QEHX|{ng{l(JZW$J<>*Q;QP&VxnxXX}zI491 z?g@P9=iQQClS;f>PH!lAiHV8!&al%Rvvux^i;QtDGQOx>u%14Mfe4nSm|H+b_ zEOCxxjvtC*q3F#mmNDqqp0S!06-%BiN!YHCMy`dlC&~AS#)!p-FqVr1r`f?d409$A zGg<^|)!@csdIV!p1MUC(42z#gQEpvQghWPIlHw#P4wDog!BLH*XbFvdBo}ZQa;PIh z2f$Km1@H)4B|NWt7R|?^&3nO^Os&9Tp;Syg5jj8yx>gbH*^g0O0QCG#Qy6-2>|ZhWWZO0sm3U+YMslJ$!vdp6LjOgc;dB3B9V zi3*G#=_uY;Ix!QC+yHOFMV{X7(~6Pn#toU^&H(G}Qh}L2lOS67S)eH}X#*+6CvPn+X>kd% zF}f=~Q=_@?M{KHb{4{gK52BI!AjKym7j=4gf+>)!XTDms#k@hx6eb#LA_Z<)%nj)V zt~-e=gGC9yu3%@EgVforOySoYpV2u&de!`-)AQ6CbjH*knT@` zg)U~o!6zGBu;LCzvxKF~5I>U(R9DbN0{<0aM9zwnXJka9262P<^+p&oT{T=Mk~yo! zY-qZXo9?Rd>P1WKs?mBv@@m-yG?KU=$%ZgU-L8ek>SD3}JoyL-?(;!{CwQeNiri|l zh21VB8(GK($`RVNsB4q{D3gj zTep_i-UR@TOCALlZUk0U=YmDc;6rXo@Rg+0Af64M{vfR(u_q-dvZnYYGVBl1wrs14 z)OQWV|3b#DpXoXy*YR)N$`&G*ZT+P)m$L1BSDFJ@W_iDSov*lqth7^KD(5$4F$qTA z=91aNKCg7;c6;hr?fF-p84?l#7(L`P-9K6~qF=(|Vsb+c=x2%KIC5z(8BoLWcVi_6!seCXun-O}rcCbIa73|^qBXZ%i-p=`h(H(R_)$uDy*RyzCV*=e z>bX?e7ER6yhR_gctod63Mj$&?06y~AR3S#X0F(?gkb!xx`C}D5A~sz}=X%Rit)=DO zrW6n*&A%e)@{?pLifc(&6B=G6k?CGbYM7X&q{-F*Nfsg+d`v2h(8ti@NK+NnA>|%u zwto-5Bo7SPaA>0iNmm~UMSWRuOw0Z_Gn707Ly=wEGZN;IFSATAzV4a4CYayyW5L8) zG^w1;uOJo4b1&T4JVmZ98xVM01@sh4b;wzuFn}P{#RUlz{^x=;R!w@Zy(9`C{5+Mf zbmVFaHSkoR?(lW81-3Z$S`c5NJ~l_Og2qpIU8>O-8E+(uwvV-rdbN&!H+tFgJr9GK zSLzl23Ypi|I2J^`;va@Cdp-(;pKw>GM$MzasjFXOl<`kC>FA5~bluNU%A$#LXSF?c zYZcmPED@$z_sm_y#+RAdO|jkbCn8v!OS0So3PMYnkrM~JX}(x^j6b5zLazb2X`aV@ zm2TXSn`?c|oc!pi7P;cZ+`|2_LRkAreZpA!mWx^}q7#|jxiF)|<2?8hPhVG7?gbE6 z=-YESay|qp!L{^h9PS4R@&TwwF!p@zX_=+=v+i&mq4ry|rH+%uqpQRkAn=%_j$5g9D`b>9CFh}P^%tn;CoZ4 zl$Sjx{>b2hBGX*SjTadR2jrGwhxi|P7vf6cl+@|965lCl)Jd98#!d;>UM_lRrjIEs zLx*>HBzLNzxMBC~ZS@@=cKdnE;IsylL{zvmU8Uq?mS#8kjUndxLD(N9GkMpj7`aSG z52r@To|RZTzpZi3@HSo%E0|&yIJgl-`-cFATr9=QZvm!2I}q@fhq<>R0b|lroz>(0 ztU^}IbAMsNDd=X)kOV3XK4=1!0w44bh>KSgaf2wOg5dnN4z2@Hl(n&&;{nA>ls*^} z3W9Z-Z0};A9u0%$A=*rfmBkK+q;eCp$uL7!)r>)$ZtQ4$pE&)Qlyq{IBg)H(`h(lS zW6E)E3^9MCkJf?W9wcQc=eP&OkDZ0XE_P1{@SaP`0bnjpF8YUoUK5gwlLvC~0=U*S zU85&kPd~^_G?nIM#}6m~_4vLBebus=-T9(#sN{%j2$H`bSTtyIsCpiA5tAUH$droq z^u8Y;rJ~WG2(7k@08FY`L#4`|$mNuifn-2#fl*905i3Tr5Ap;>V+Xr2p4Jdf%{!uw z3(P$^x~Ne>uv^#&iiI8tB$f({U%Cu~Jg|)4oVrRnB9{g6IgwdX>?;A&A*`;hDAk-9 zhh@CT=hksB6%;>R5my(jt5*riSc0p?@b)*iwU}k_$&J$u!KP*ra3Ryo`4k&jR{c&kp&|KmQ$o zKrVWOsEj-a`(MdtFPlO|v*1~xlbWLc08qqL9pe)KP;eVujF@M(PgTMrmr&5(!Hs^N6HYcovMYTnY0kAj;ILCj#3fDHHcBp2MKgG#4QSGJR&}zrt9GKFN{W^>?Gk1LC~U~eXE;V`F=2Y zSCVE9QsUyKGbmspqKS(Og3gYy+(lf1c9Nv8Spd~&97}Uwmsva3PVP~XnF`B(ZHnhT z2|db+zn#r)O09ask9ql&rtpUd)&9$T0})RC^Kbu`F)Oc5I1ga}C%l=>_PfLkoJA`m z=R5(Vu+Pq1t-D;SHKK;z6ubBZ$}`W*T78A8a+gUZJHq{Zlxi?dQ$wGrM}uH=fb_f^ zlg(sNK)rR(c8L_tv_Y50k_`HfKmUFT2uO-+M#UvpXNHmt!4f;FUCNKrT)IEaw& zS`Mg3?;uGC7(+)b3g-dA-lCukaEL_|@JX~LA?bWI5%+Neti#qKO~jlpI>8byppqbx}dT4F);?!wlvaB{+25_~PS5_pLWv1fXE zgp7bl%o9g7T+_9E4Gr=F89rdm`^fDA8ZH@({O->$aR%`x^x(?ct=e;jV-qeyct z8pBd@t(1BHhmclc2;}dhlx9?sH$fov!Pj9S*_G*;Bj{=)nR%2bOvMp`VF#V|K>-}$ zH?C7$gcRMN;aNi`N3xm+lCK9bJcI!bVt6`hEn(Hl(;+$ft1nrH)$nmu$XzS5bannc zW*W3YXJFFD#T-0U-E8{Nvh*`UsP z$yzg`?6E}=d?ClzTUj?yVY#o4+_n9Gg9nHT^Q>^s@E$&mhNM>;l_w%H>w&8pyd3s1 z+M%4vW$`|SIlE8=W+85tadJB(4p;TlZiFba=O8mdcLW@$>kqVDm*5{4rCOGj{9Esx3m3kwn4My*B- z;BwjsZq`-n7~34()LLFIQ6hK?ds<|($)Jr`+dH)4JzQLpEwSJk#pOoKJiAnxzwCp| ztV^LmWBYWW_;*LDA#V_PcLaFRhvRPL!u6aSA??VnGKAdQ=Yj^0`+0Q&(!xs<#N(ro zp5_36@mri3gb)_asjJ~O+wc&=bbo{c12G(Qp`J^aK$lJUq^PIbBV@tKHuFJLOw{kI zii!+JdaE;_MqJ+_s77AkiauY9#;a_nKWdCDt^zx0TykEL(LrN98o|=s*Jaj5nqT1$ zKUUh9Zk5a^Ky}(GK9IsCXB~tZ?}=H)ECdP`&%NUA`?3$dwqMZ65&%cvY!!y%>KiXI zkb@Q26wNwlflbleBQ+w6->#gqBG3yUF!s7hfyraxw({D%@x15AttbJA6TPzG{gp+_ z#tUww3`?j%~=5{!5yAqO}Id)Dx{RV5XjE)&Z-5 zzgl`Lw)9q0npl{nC%mXF#L`=haJ^c3D^lFAmfkW+DzhxT{43W~TYfrBfg6B{7S)-??o17`?t`jum~0G4H>GA*O%gXTP1;l!iLEX|%VqEVAbRug$AQXlZu#^FCd zXLyCtT7U>)Qn^jpwTt7(6bmLrM-((r*?%rbNLGYVMf?f?EUt4&SgS8CvZnoD*Mj5M zF}Q1GTG);y8}`VwASN9bKwH&ajh2RlEIs~$;gMVY%!r$B^>?MY_scB(m|sz#kzk(A|NX>Qz>1GtUL;*#2Y2?$}}U-c9rC%?MS(5`ZDv}SHpZ(K^*^WuvNAR z*|ri4m!NkPe9(BIgO3SlLA{lAB_OEDIa69SVL1k>jR`J(makXuG2Gdf5WT31!`XAh zaUmU!SY~UqxMN%Pn7%|_C+3($>?DcoXVRAOBpI&WMHcyyF}I0oJ@~jS+1cHZ64U)1Ktj1J6pla^vo0Fn#Rz(O*fO;O++tk}fC61E~dH6@BLSUK0PQJE1&*ybx?`&t=~zcSu-)+JM6k(^p3kjQvUS6l)V9C4~u zEA+Ww_Pr7#0jbjk3^Z?oOZe$*4oC$JE=Z~|av>_03z!Z!0Jz}wWJeYSYodZqqWQ!F zWRh}$vSl5d?2{H2b;Ul4qD(b@!|B?4l=a_qfps-gxrc;1xS%!uty-!G6GdB6NjL{T z=%5~{$lj3XVz5c1A0twd{2fxlk5(nUG&fF}wHxylHBMAfmzoBlQ=E!-ZZ&1dijxp? z>7c?uuMJ5;%p+B<8#mpBbIL``qfc`#xrjL;3YNKP-HHhLD6=$9 z)-}9=_J7+aZB89ETLF1V(j4PgM#^l*D&KDVj20x+#0M01xWd&E1(^28M;9>fkq;Ow zT+IiIGxL#e3e%)M@<3cNy~kx1%Qrt|VR@Fm5_ZFOLP&bPSWfzG$MAOU^K@F{toE+rQ%pe4@*Ys-KLA{Qud z;wTq1P;7(0`x0CsFf|kx=`PcE$#$*het#hvpLdcjKS^CA1^M~X5&v}!4{ZPzsxA3B zlEz^O1s<785lqA=Br%MvadX-2vD&dlAqn?DV2Kv-A6VaQek`(0b zN#LY9zKj7-QXL;GP*xouD8lQKFlgYsI?iAxII*tErC?y0buUUrgaHE?WPG5Y8AqH7 z1fFul7Xb&RMDS5JQ6o9&Y>GQafhD)_!2%{D@d2Y-BqSS&cUjPl*H7S)h!{y;%8S(a zw@Rr>GCvqeBIF5uE={BYN)zF0=al5EqwdGQm}w%}9d!T`MEp8h!a|4ZkOYy{lsa5f zOv^%w^CRY@!yici&ddm6oGZb8{n~O_;=+g#38WDeZ_Z-^QsYjtPc*_s86L zWtMi!x~Ca52%9P?oi@Nr7Iq~|5VUkx7HNc+l1vN9xBOIbQO&L}F21dbg2ZfR8Un;+ z|5VEiNI8|V;NlD{r-#qOrESMWK|@AQ*dhhqn&6u-SS?r{Skcc04fCXFC3(9fT@SIX z?yGCkSxu1*N!3S|IYyFh_K-$!LVb)p>E@-F`m_gI-!gT{6AcMHVok2Mfq$mw#{EjbsBmwI~JB{)E?(kf74OJ=rjYu9v!-gm)b1o?sS=Kb5>&%VzC zxp+oWL!PCNq0UeTvZ@O0KMj_9qT50J6A6SbN zkRnTlzmI~PCeb*;EN|i1VKZ|L-Wypsp4iMUvK$gq6%u`4NsJU~6erORDYg&M`Wd)= zh`vQ&fU75nSFo@)Vxo}*ZBe3;)8!s26&OEIc~0SL1F6mslwr4;n;A|TQ(wHIc>(QF zV@_U*!O4|(m||N>G=FZzQ_aG#(3?q$@+ShZBf%`lC8O08Ye=OI1+SCn!Bkt4ZQIpJ z{w*Nj8^ey2lg)RTjXeio&io<82cKhf`%2glca+a~6%yLs%D-@pe{ncEBZ(26UU4y- zb-^mK1Ibm&1G#vaTQr()$aHAN>BT(77!#>t2G6OK6F#7)ugh&}_(&k7)nNh27*6%|N-xDzM@v&6mg@iRPU#5UBo%=&A5y6aWnA5LsggUfSV< zxH2ntvy*%5ra=euLpROo2af7h{%Lm16cVz%Cz4KhrBr83gtc#y%>2oQY%8kz>CM%X z-ZeFf*p^{Ge-S%9|NPs3rj*EP1@Pho6x&(r0A$d+T`zDc7A~f>S%%k75y&rCr4Z4x z8C)JIGLGr0*ye&}H&&x$8F+pnic5Q=~jF&1F?)eqb6B5%|FLZa>(o&d1W=Vhdme5W&v5 zSbxV)4*=(jz?KDzHwABdRINZ#MOKp#yM|53fgz{J4#`n@uq|GS?vJHK4>L1HQTv<z+T7};9FJK&917k>nvmnGS0Th7Mg6^ zrlQKQTjqQqfrW~NQDnrR{35Pc`Q&C)tBzjW$q6LB8m83n4 zuQc;jP&i#N4TBZ~@Ja}|Bgrx2jM*77cuiNnNeC8^uvz!2D+vR4EpRhg4KIa3``z^s zs30|;)gfL?#BtFQN0@87)*4=x8aYy353U-H1}8Fk*)d0--mI_FC;Yfr%lp(d9mmx1OVt|v?8VSp-iINQ zd&t5cTQm&UH%*6p?9?df1J|J+eOP!aAwgSzw%WBI%;r(xaX9#QDW^%L&@4F(3pds( zK|D4dQ_>W3g@I9UShPxn;(7WTb(+Q)kUCwohvo#0kp;<95g5v4VfZR!T;Oe4;v^aN8jck zmuEnO2F+H2qMv>4F=c-UBE_0!PHah$HO0lo77ZEqC3;)AN6O2Sj3QZ^DJw9tOa<9C zDITyj8X?V;WV~Bc4n%&{8!RuJg{$agwW(@NysAK z%QpxM8T_P%Yj=aRnBi*82x*$b<-ZGRn!}nBTG}c+vEX^-2_?rYXsWlMGtV3@Tihmi zOUkxmS?ZZ(<;td7uCL{UXOJs)c}j3vjp%g(Iu#IJDjMqO3arm07MP33=yyRj1{hhrnX&b<#~O6k~tp3CJ;JacY0%RpVLM0dp6Ho09P0 z^(yvsh-V{wPcJZTG-ILIy-~uIADOYqMyJUWT4rN%b#{DneROs@hftXjab^v+3W;U1 zuIY82%$IdPuFfy_w&qi|L~u~Jm$nKQlD#s#+CDi=@7CA7#B&-4XT|#F`IH899YlDU z9oH^&;TTx5sc7u{6W*0q7-8BCpoW3M(StX(63##fa#=-A@;v!wlbhpNxcK#nm2i2kDdca&~;oMU#+gUTMUa|FWP+X$GI7Sbqn?0m`kgyaa2yQ|L z50%`=7IAD8l8dCic_Y0w4ed#iM4Nv4e>AvtAzuV~zd&nZ&npbffdNRFx_$#&4F1lr%LwH$ruy^EWp1% zqnnc-=Z9NYdslO)mD9P=(QH{rlwy-z_qzAwL-x0w!>!YU%a_jo$ zvM?guSkF;gU7Z~t?fwYDow-Uj$>fF5-E8DZ_s!-0)=qXoKv6cTS9v3h_VTk-qWf2O zlZj3s-zn?dr7fRNX>L65T{s5%e|-0f3}K*FQn#Zd4B9ogxd|VZ&?IXvV5w?}aX|!Lpyi_u z0Env$71(a&zsMIJaiRLiqH$YhsbQjUS6F1CL4C^z?`u&Hr|DP5XVyZNV+Ia)4DOp1 zz_gMR^VLmjtu@;cEp_z}{As4Ba#S^uC3|y%0_}8j-jA!_9-fo%g+-WIjYx;Ct_rHx z!38nJSt1v_E^;Oa831q#cYAYF^jw626+IU;SPl~xDAfVE%^Y`d(#3hW!~Kfsh7{9wW&i{*qS}*&v77t{r&i@n`a}=p;CSU-G7E zOVtn0m8%umMx-c7xT?lb9wQn;uw@<1mm|T`@2JQwNw-^J}z`2_Q=aZvv5YF3<t|!g}Dag2^V^i!Ldd2Qb)K3KuAdmBIz6 z=YozIxL}P;i}ap>6yV|$4%AaYVKlDVC`7l2qD)+cHpN0DJ_F>o99}j z0tS-&fBgCPbHQ5-=op&|67c#ur&T4oj4I>~1s@w9$s;!C5QEQ>6Sl($vl;uAObZr^ zf(JS>OQfP&GU9@55{|@{S=Pxmmvs_R!~d^Un15%r zCz0#E-5V7enMy?XuFt%U6OcI-=@b!fuJdScb2r|^#^j)Qa<=?eV8(P5rTjMbl41Ex zZ|2h2&3I`f6#sNpkGoXsJdNt=4g=@OSQ-qhd?gB_~Op6Hf*BtBgdWv7Cadg!WUkN2x=InMsQJwm07k1F(I<_ zVq$s0baRLu5xl5i^G`Kg)3rTTz+51P161=qa{E7qO9msq`?EkiA^eG6(!W)E&XBy} zzu;lssCcPz{tE%-)8AX`_25i|0HJ??ysG`xdR2i5ndrcoiM z-pc}Br+O5a1zf9m%6OUu{Gt!rRQPF|zv~M;Z6j%II4xvt28+JkTr zWh0_39B~sjvP@_Z$gmcK1#dtRR4&qhjWzf*Ng|&$Tlxe>E@eYhjD5+F3s($6R!5n& zS1>P`tQK>inoTR&Yu*+AUdXcYCXK${&G!xUTt7a}@L(6V~DtFbY6+gExkol}a zuhGkmhOYe8O;j6w2vilGe&V9eC{ER$t$|Imd`S3(XjorP zp4D7QN>C6ijeI_vp9w|>udt#XaKH&!UfD9W`T_NZE)+8^(+;|jtF&-Uuo})X-n{<3 zn4SVLGVi&3o7J( zb@-N9+KR7PO2o0+l!|!$6bRu`O8#0^z;;E}M`s>lrP&({^V~Ac{>*c_vazLMCKTPZlCsh+}k!{DwNMcC%iqk!!eJG{mIunhHJb(@fW^T~03xitnz>-J9 z@W|`+=6aJg?pOK(mK!{MlJZEdoZxrfND65P-N6gb3mf7`=+Vla_n=0pC31;pgZ{Vs zO!)*Oa%vjL`_wZPyv9|`x;h!xkafI*h@f`OM~QspJ*J$F4+sIOvQJWIiGax)lqCO~ zV?38O*{}?IL;mz;=s2T|a@kgfNSE!BIYI{h4I5Cp?BI{qpzMpAu9a(*N~=sxPCYSa z1LFlTGt{o^$dYTR3q$FuVwtwtcS?$>mrZhFgUS=r>fv#!75bN-^Mgmf8pC!yzC^6~3{l?LDOsWuw3>fB?>zI9&%E9xv{s$_*<+%ki``KHao(`r6Pq&QnbYr1= z%s$rMU0I=B3)K68T({Nj-VG;eOO*YoHoy^w)a3QEE3w(=V~H zve7EF@D~$OGzb4(A-@jkPPS2Pma63AuQj}hp~sE2db7RWz-#d1Shdxzs;SP?2K`e* zA9dSYBeS(e@!RmG?D<==d16K&506U34+NK}@2L?L`HN>z`9B5xSi`(le_^STwP)5W zd0;Krwl>H%IR6x>%C9O*2MK-73zC@~^dEazv_8GL*|T@Iw=cG~ z2U|y5_POuW9W20UtM0@ zw0BRoxA*_`UmmwUb}B!WN&o2f^G&OLu{F?IcV8-3l^yf&VEg|1@yqe|gU9Ce!EpSu zc~(29TwUItn!n2Jb;IpUl*jx1lY`Si>%qNvIBs2T(E%%V^RA^@&9T$bcB`K!+q*}T zvy;zX4o8RD$ZB=I^m~UtpB}GtOTFsf{d#|MW!#?MwYS{<>5<&~(mL7ueDc`Y8tsle@6Ip#-wx!-qx$n&egCs^FdiM+yLYO7BHvc-o@#xocG5WCJ~6EBO}Bi} zX=vqsd3d5$A1*x%zaG`>GpBX)dC+_RUELk@`^W3(eqYW;rwOtZ1q-5LHmcx?1L z2baBWt$BE2-whwMoykE{vyLA+UG@9@RjyBE9LIF zUY|_vPAiYq^+C7M-0EH6pGM7}WqW_Sc3s)OXkS*0>(jlj^`9-X(?=J-EVHV5vwXW% zZS3psFV^L%y#9WB?3R1w-buIi`L5}z=iT8!`Q9-a%EQ4;8Cms_GM?-#<1-!b=wi3L ze|Y+!4feLScJ_A3`XE1kKm7dbxOVf@tz3@po|=vB?UQ|D*Ul=xwl2o%`Qz@WJ3c+o zhT7BD2Y2xK_UOySS8u?b%KG4JeE0L_n|*S9>fW~-ox5K>XRkN8*st}}pY3w9Z#}&? z%9FwFp!@ma_NS(3`^R^8Uk-kmUwdELo$~wgu6jKfeW3$>F)kkl2ir2bzPNAy>Yp2} z`eE(!;A>}hyRtpF-Q7O04r(Xn`%!OrvyTjf_HK^Vo$kcE_*VHc-W#_c%(JTU)9gPC zZ|Q)&Z`JP4yY1fP>CSaZayC9sB$DlfC;BOaE#=d})5K>Yd($UG1Lk zYTs<*dvo+~*cmjw-yENxU+i?`ohv%vp5avbmHp=EaqpUJn?cMHOUi2^e>jO{QJlx4gzrOyu zF3UFu?y-A(c=gmeKl}FiLVf>q+Cazkmi*dB-_JF@BR{-<`u6=> zwQXO1`G$?8y&IPfcx&p)*O5NnHQ(P{KhzCvWPFjoS^B-)bw2O^I=rYn9HHC)&)%0U zDUNIj{tA|D){|*egb+JfmT4x|2!ddbfQYthX_62i5R#C@7EiZtf5Oa5e?ZS-^D+-@ zGxI#3(m!y2VcaD_un0*m7an9)W?5yj$Kd-c3mZPWm zLz1UBnc*{~Tsb9HEDUKz=#*ccl8sn&)bEv7?dQa+&ZNpr;%%0d@)X$Q#XPwbsK?rQ zJ}+jZc-P{TB>aS#LS}Ei(_eczh^IEM{g;JMq4n-PRqN`Ht5T_-=rlLQ`qM<8*X#ZG z{B=DaY5Brv)*g?ZYZfo3rnBcoeJ$2wajKXo&c*dzE;=0h= zQW%bUd5dhyPq|6yp;uV* zC>PgYU7sq}kHEl8@eRJBTCMjrG+%s*3`I$TZiykZEj7h-Q4Bvp8y4C!&_Weua8L&( z^>5~X<{9SKf$75!OuPL7Pth^c&k?Z<&$aE>f#cdI5o;9lYyuB2?0S-;EVmVPd@y$@N$w*#1QYT(2X<@rBR}!I_PHG&w*ImBeUqa2P5{ zx%vIWZtZ4(1G4?^7C(5#w{AGBOO5eH9Sbu2M1?+cI+NSVyzRrM7dg9%maZ4gIeX2} z1@w0H;9BiTdhebJ#`kaj2{464?kL^=`fGBcJlU?9kdjfwH#eV&dew|d;in%1&J4m9ma8e75{6e-dJc7-S@BaL;NSGWLG zG#!WME?RIRPYjw_P45d~sR3=jeS$)_6Y(ZZkl%Gx;Kd=q4Mi;;hACaD|L=blT)+hp zFE@@}0zf5hWf8*!M2sEGF2NCf!Rfpvss<8O;>VgFb0PYH53{1!QHNxY31evZGZPNb zJOFFLz>pJp#KLA+0Fe)8B=-{wmaa(R0Etbp{FdN*)hc`6~?9_w*p8ZExCy-_Dl@(-Ji6 z(?dabIbWyW`zD85b zzz}@g+s;(0okmZcxHL{c1UnNuSlTD|(T6TNOU1%Z{-haCh2xB;v}49o`~n$IvGi^H zFySdMkpsp^DK$Wl^6@X2ZKTAs)>R z)k*fANme#bWhK?Gwmb1kVXUXi{muex%5s&SCar|0j;O|1B|qxP(^xg1jo0X?zRrm+ z)e7#f<)P7Q|E#|Gar_EvQEQT1L$UX|&IYKWuPo}PZAo|;X59v2_V6ZS5tKh2_Y zbQN7T$BllfJY`=KkIfPzuEd9KI!{>{RCh*q@>*dRok6BEqSu4+;LM^mYu!da zMm1hL)p>lH$PXTJS^Y7tHaNDF0Y*l9os%A-n$%|>S})B}KmL%VqIV4@6|W{OY14hI zXC8{#X=kOa1}eoY^x88Utu$eY(@lzQHzH7S?LuJpZ}o5xa_VJZv*nVT6i z`E1L=Fk2JgCxsTELk0>5$K;a7Nvzy7`CZ7}Q}@IBPJR8dm`|UcRkcw{-gis$d(9j$ zpG>LAOut>3^Rf6d7i|h$sjG3ctfr~w_($^=4Up&{Cr5oRDd+ znK3)5rnC30hvB4Xaf+&Kq7QO=K~<;oW`h>1Z(^x6Pd?|0mB!+=GtLa|RK3YeN;4zV ze47FRvP!d^*IY_w5}R_b^IET}9cnYCH;++Er{qS$U@FKjO`}Y|EOWzIHaeGSDV>-P zVr3)#)X?IuMlw2j870?=>>Jf6y*1SCBi$TLW*w%IA4nUCdw3qdwq$d_N~V^nccS&t zq@82R(_U7q=A*6s#sA3@o(?2cNC{8OuvA_a5+l!qCny`QG~wyjIq%mw&*7X$EKw`S z{Q9*r%aRr-JV=!;5meAq%^G@u|+=MLL6pqjwkEu6Nm) zLp$MI&J>)OO=<8i?{o=|B|YBHlXbm0_~Wu^oTC=-4+ni{JEh5M=!?+bX?7gScs4VI zniv-ZX~cv+hnR*dOz1<8sW?ZZ=s^`epjlyl*CR|E50&B?x!O+}fP76TE*cVIcZf^nc#CI zSr8;$T%c6)`e_!@%n&BCjy};pnLXvESn>MaJJ?jeGAYb;4ZBenqQR23Ye0n8i3JFF z0Uq4H+>&A~v;;q_TO}~Wf*3Fq_dy7W%ve6sQ>Sg9TjMjs;@>{G@?h8nX+z+_z;&x; zEQ+fPqs<)R{V^6N(6JaPPzFi|Vl1&mrwGnUoCzo%cPwBMtBuGRR>l}9WCCv)$!QvP zz7T-TLk8TL5l=+8bGkX@CR_1h-~PyUV*vMAGMU+b;KY5FPR6%-Fqr!+>>|KunlK*Q z)fxTvDUmY41}^1xwgiDY&11SEfBW|{u-tSaOg3U*Lf3X) z`T`tct+GGI5N^_>mdDL;hJrEdtmrU2rQed82}25yA~iC$THP+t z?&@JWcd-vqxAlz6KG>IT$RP*~6|OcbNt@r?%wq1yT=5I^`;9UFC$k>Zk05oLd;s_h z!bXQ(t^0JN>GWQCr9}GZj{L0oX8vw#YSU(^VkoM?*sxE6ZQ=%^latWr(^wZ@ddS%~ zby__a{{-fZ@t&CYNiepAnH%A|Jp3Pj{V&}>w!$UmioY+%SYD!eh4)^doQFuS<5uMz zO1A65(Uyx>yw6DX8R6w~9xQ$vLv~HMufeYDJ~^GpR~Z>SZKD~(=avbfvw(KzmH#i5Y6E;P{<4rvUL6b@kT`m_y>`tgE)f$3h$Dzrqu>_-9__9svK&(4 zA8{OE9IU3C^m4v3EYZrfT>?AKYsl|6fjkHwAQi89qd$nF#~W49BvGD%ajY7f-#-1| z6lFSNwP`YC)>0dbx}j*WDaa@1t>qO-(YA=dMg--uCwkvIrCO=bEfs$>p1RGa?g3uZ z9%85CzksqOQr%bAx{-yH_}NN+)xSho!wksW9oe@Ln!95jZ2Pr6 zOhxR~iHN%SBYt6hwL}t@7z~f>Ho^lIr1S}9i(m=;oDdWi_yI4FnVqX%vodIcsVd>|ULY`uIfQ{^_sA6DU{XA9SEqHBmNx@PZ_{$xVA80w{aO&Pjlqy$84oR9!u5 z*MunCe`Hi`=Dq}~N0593M#zg9CuoN>Ou5O#u&cA9R{XG6??7OttWP1{r;-rzAPVaS zk3_(z@kz3JhAv0~j~o#h6q=Wa40UQ~h9%a#Q0+?0R8Ac*5OSbn;JJxNM?So?QDP&lvHx(SPP!0 zVt3EjE<$L=|DJCdVbL$r5(8>xcVtaf?S`hyvq;nXm{WwmL&Q~2($$Pd^74GxK`!9z z@Gc#2H~#3#;mUTtt{7K+vu}*iVkv(GZycaE-l$_FL+UaemE73ts)NHcVZIQx>kcbH zi*hH89lKPJYRO;69X}i46?rI$yb)Q6#@M{CoC=$jq79DWxccW4Y1pjcLQxmZ_I=&I zx87}}+v8Er8|9boJK|!6drst6y=`lc@EU}i?h$&0LknqdOz|qNWBVwP4}UbIi1*!3 zCd?s%1zZGj^B;GH2KYSztx#z=2!^y{P|7ALxoA4MYqNk<=LlRN7<3U1C zCkP4(*)xR&4f>oAV4d{Ayrer8Zy9-hfpToe113u-!OM6%hUAUFrFxwlb$AH5P-kXK zvRh)4L(50PgXN()!=?OT1aaT6`mDQXpi6*5>!g4M3hDX?3zBW!Bc0kY&X`a-lA0Qt zn#Ka9FL+)+jqt>R2#xR0$Cb=32oI$aG!`HYu_`kbFr;KRJU+W>xroKlMCD?{iWC-6f#EbmIql4DWCUQpMa(Am2mqYNaYpgXk6|D!ERfYs!k@ILM_@_E2<-ZTvY*bo2{sO{qM4SlQX)1ZMc_nr0lH%hKzQ6H z!bYsi0@L9M&S>WB0X}A4hl!)UpTcnfi*obvgx&q^o%?nkC&+&ejvDjREzh3u8bZ{q zU+gdKF^Btz&!cZVwkpu5s6kmihP?H^bzwIRJKZ`uXIISH-@J^~8SHrV(00&e1rWok zNf)*SEB?XQah^nE$7T-U1(_i8Zraiw>2;;S(BSsBG9h?HsgC(vA!|w6YU+WvT6K zFKuN93W~Kczl4bt)YkB0I0YCSVNot&fCXNZtsxTbYWN8JL?84r8}}E4ox7mLkB+z{ z0Iz_aFH+*}2xITqwBt}}%1vsA-Iwg}{BS3*(0jiXetsqTk>BLF_a&?VqDSh&D$-VF ztl6C#47r7QaIFXDek$~R4d|sczu&kS69I7c0n$yHgfl7staOZsX;3-b2KXZaAogM&BO%h;q}qmv7ycveQ|w_&$bo3Jab38Oq!& zWPbd|FLQGVSI$Ms+d(X)tLnHv&av4R{n{3MF(=8YyxLlXyXLmb@t!QSlF zJ((E|tD6nl%^RPHeH9adhHQibCpha?0X_j^POPVd!Hs3aJ2^B-CM$Rujs7Z1pBqo}! zBY+U9uDd)+&LeKKjGP8O^9ayR(0z1}3->F*&DUZh0VJB>_T8~j6cE<$8Ey!)cY%U0 z&gdaKj)Ea&!0jgmieQBoV@0fP4Z5X`w_h5uMcgH4k^+d-o)T{rNdZDGe~AUnPMjqL zZZAI<0VH1K74vrltIF($NqFVg?!h>pHj9w{nu&$o0q}iocD_6NM)X(q>kd6S{WE00 zns-xwl zV@OFOh!(<2n)pytj!CbchMc8L8bieBbJFM`-476_KIHUi(#vYq z$YuJ4ljs+*6Y$`L+({0cQ3pnh4qg(QrpC&;s%XT{DY`gYNGzh^ ziv#hDk4`}_@0^E#a??udK!D2*4MBs3sfJ=-o=0G7b9$XJB9{3dQMAa3!F(I(!ni~@ z6VXhHov{X5$PQLXO_o>%RHQgPEJ&h^cJ#-qkBfHn$L!sL)XEsIH3zx$!7ABX4yO z^xP;wL2hd>2rNI27~)K@!sl%@Wq*rwr{;;TsnQW}2HMm=NO;n6UU{#}ll?)?oz+k- zKf-RU`%WC5r&!nS#%LXkvsRm8=N`s1ZS^hw&?d&27+z~&a!rggv9KH5T)K&IoHqS7 zyX~jpQU|;p3+|i>CIQc&an6o29Wixw_NPB(le{4NS$tSQqQ`;)yLQ*oPttObVE;=@ z*U|;7ysf_}^6m&auDW$_Q|5y0$tB!a6NEW`J2+<}-5z{Qxv9g;Hw|;TbfaU|4adP0 zS08ulMm%jIi*oCB!R8NMw{CxwtciUWqJQQHyJgrZa|F2*0~VqA5VV5f*_>P^Ejt`IDV)#=ZWKoR)3r{ zdV$KnlSUG~VmxUKuX~dN)uktmWPnokH$gdBa@PlE_TB1pn37Emax6}o+&PM zv(%2;Rvd{GyeN1SpCVoine)fLk_>i`u>7b&thO+k2_5qO1>xCZfD||pg+|iYD*RYf zoF`M`I~6Cj2;_2PXjm3dN?iz;gaAydwF{Y7hdq69O}} zk=^?P8fPQGqH;um)uN%P2E=6eL9Sa_=+82x+%!wr-8>Qdzn@VY=BM^LTx<7tYa?8? z^Ji@V?`aHvbm#X>EbNAhsP@p#1VVO|1#^xCGkHU3;c!x{{Hz1cw81*IRCF0JOeDP* zCR}LeXMYiJh!@^iu*fx2In4h-DRYn00t6U)q?$(UtUZ#9fN1aG0YfqPXgtp?V$2NQ z8Y1?E#e+t!)0-_O_l(qSa+clHPDAmy&b|(Rl19@KUZ=4fYs7Z!3QZub=B(^JkX_ zy+qhL3Mr;5Pa2nOwkzjR*e-F7v-S~avO_LR8fB@<4815^- zSl!Flg^#WvrAZRNh-Y;H>5vkF?DfKluxB2LM{GL3GR%~PM9A~*7bR6w1`Gbmh<(P& zC_$wJFxu)26b>YT7GmD+>Gf%WZ>JnuN*oPTSb;2;p_Lp(XU@vIzSmx?%uj09QGSo4f$20ljida~$#iw$so z&^NTjId#bz){Xx{y*>B=<#yh`e0MsB){W+o-TZXBm!Www_re&EX~%VBbaM#qr#rHK zq^`^3KhF$FOmKULf0ZuAi(u!y{BFHq?Wd0r_2EujA&<8~~XM7Bb5dA@a zZ1>*0BA^4s2d)cF_oDHZxxWyP>=A%#K2 zP^?%Plk&kgn)&vii6|`A59YLhO-7B#N;D4r$dsGm6Lv2t)GDt|cFke1_WmNnsaT)7 zZA0+b4wBAP4Dy5FfCfv{l`6`_=EfrR62yb0FF4(-#z4?d9N?-IGgNPv1x3yuxR4DI zX&dp%|HD&|Ft{Z)J*0yHraN2!0v#j+@Dh{hViZxL=`#U+`sOS~fM zhQ^9O6~P2Ov$Z>*r3gPZb8$FUVrAZJ={|!$GUHq#pPxlp8ENbw!U7}tkcNIK_V8sNifE-2a63OZ5mc&c{~=&d?5xc*wsz=A>%<^isXX$F~rK5Io~*z zsq?-~*dN2~xQudjgtd;JSz>|jCsCpooYrwbALZt$fj*hwo*MfbbM)hxc)DM7fj63( z10Zv_Q3raYR^L9+@p#fIS_EFFvfG}r>gbV$4;za5?Nc^u{$kt3$a=>qhM~;BLv-AH zZ#jC>)|;`w4g?LnO~X#pUx$ifz_+=$IrY)PFyGp+ctwK6a_tSs#J8RyYX;T|Z~r~J z(s&)MPgfevCl-%wY04YZu-glx1}Xa?o`cIbNEGkepG-JsW{JBxRHTZLSjC4(!4hR% zkaZC@8~AdI02IsF(L)n#;oS4>4G{cR55Jg(zTP>4FepC0&WsfqK=y9L5MxZaOIJPKpN0>Gr?dxk2RtA669| z8VRwjrM&&AgKElIhJ>k{_HLOhS-ztxxTxJ+8^$ z*~~aaGHn$Gi1pnEd;0-ba8JeA16lWcD!hI)o73;_TmzsKO>$zExB!0xOo2ae?z57{z6@7TU{=AQ5Zh|Xp3H7Ht<%Qkn%|Qv7Eqd*(jGOcF z*h+K3?8*3ORZ_hK2m0XaBlgPJ*{T76q3afB*51een|}rlyCc&H11G&K4~q#hHerWm zU~ncYZd3pgFw0_QHVQgeP8jU+pZ%|M2&r>{gc6X*fBo+s1iAlfx6@^CmT(NcGrs>P z7htEV=A?AeDIB-c=Nat%42#UsaXZ#52sCnp@wb1!R{HfLrvCoV|8@Y3auZZxH{o(Q zWJ$Ir9&gmKAj410V^=1(^$4Awy0*gZ$Om{%*ab>D^_FO1Y}1)j(n(R`zyI}rT#8bT z&+)({b+qcwo64TpM-lkO-Yl;%(b>rpOZoyL<6r)d|EXi8-us;-ytxmHl6+9Dmn!u! z2#-93ABTpUiVAxX+*tRR{Oyc}4@;{4*+JOT9uWxM;$197D8_JTfR}-JpT_^c5HHz)Pmtz;b zzrdHIE&SglBT!&td*%+ZO;(zkq73&|X2ySIBp^#=)({F{U4dXVKP-$DkryIupr}N^ zxZgglRNb81Kx1K0I(VsmWo3SBb#^nlraFbM^1D~H-7C0upCYbB9VZlqB&sqjZdrr&fy#~q z>tXPV#&D<$;GmhwX3{Bm+}!_k`_>xfV9@82K{XZ}MMXrU6BRr-9X`iMJ9r^ zO8|C^$m|RdDWqpkSx4YU*3bC*vI1uy@?{PD1X39L)tr<4NeyhK4%LFJe`UXY8XJcC zm7;WhEX-K_R#62Rdl1m zk=GPm85*~|GNTljARKM~xheUvxcc9H(y|YGY?v zdB%Xi^ScKa^w9dSG#LD3f91{HvG)YL;()G!=O+ycMI9V9Gy%xYd)X4a#`cA_eZlQM zF{FZGN(D#=vcdo@G!#u@cpuk(V-hiSz$N?dEf%#Tv5D|baZo$;VrrT)kl`H5Pt6?` zc`%#hR~<5oNi|NQ97>^m(GyX?y21~CtO1qBe&{qE2kO-F^8SPUp%IS(&7wn<3?!{B zHot-chndj$JJhdVW4}Wpy$e-A$b|LRn?x#;P0;D=?@Lh^IZ+ag%~$iKB>X`dv14HobNB*c;`F&`COCd$opbH4wySXiR$6=mG{s8q3v=cNH(S;96{^C+ zUjcP&i2T_>wqL&w0ayL^<&CxY=7z%qI^5UMa6JHo_3hJBNiXK}Ehax=?iujszEy~i z-oy?y0&g0nJovi{KkvorOHOV};Q!(CowR!G*9SFuY;e_1yY-YQKIZe~fBc6v^Ls8f z;a9`^UiB%RX)z-y{qhj�tt?B|q)1A8N0ab*ft#FDI!+yb|lQdv)cF%4Fq5ZpE*s z<;O~Wl%6kI^IE#im;=W2)Js~_QcEKz73u0KU%X#69;**`>Yb!&>D)yH*?QHzvPGzV-*T}{!({kT*viPDU3#M^_qF)5_h z#d1z9EV`SQd_KjAX|9#jH%c`z%Jo{Y4NzaTw^8b0Q0Pk!waJq2WpfF0z|K=+-e1XY zsiHQL?~H19-OyXZ(!+f>Q=An$PX%_p%CzTl78o+G`mFt!6XMUarjV~E7xR~8*XU&? zOK~#F)v1j+U{&u6d~F_^M|;KeEDM&uNKvat=5(`|B-Od2Xt-I`7Tl~F{Jfv2O5EM! zvL;t0b3pE{F`Yh^=c_m7alD8YmoLrsuwP+UYjM&Qqmx)=sov?u7jgE;_F^xa_)v>K zCY$+3S>v8Ks+CJh)Q}oKiuAl~VfcI>*BeIqsX7`&U&Z2RIILxbX;~_FxaD(9QIaLD zFn+77lfzu4J>cT0yGQ+HJeLZqN=njd^BgC>PS?GLIDat*jK^QZuExfvFOLgaqK#HD z5u>=~EU{X>)MINpJK~ZlX3zp(si_I2m-F#%tlY}9V{*4%dQMEzN^U5$-ZX_4tzGUh zbh12)wz4eEW~2G#f*MeRM=oA{NiD=CH?B}qLr(JZ$`d7M36)>23g_0@9PqxCe;ZGu zgBep|m_n%t`2&9WdRKj`#h*4@ti62Mq>@~3qd)1DM(mAgEjvx4NsCb~MaR`n{9!gv zjh;7!sX1V|!x+Q+q82aFrA)E(#;MI{vsYin#fRj52b`OV^=LMi5wi?CGO3C+=<@J)Q-!ZJpJ>SJup)sb77+;$`)!ts(&1{pFSJ9>3Sw7Tj zu{-fac*&RZ*|z*>4p@v=mvmlK<=JAR(yi`uTo_Mdjo~2mGKv<;86l%3S)c@qWw6Q7 zXiqK{_#T_-JwNyLXG2JoI#SMP?$2{NTE6w{sfomq;gh7FlW6S4UZ?GJ$0BJQTidp4boz-Kh%rF&(fy~W}nfo_O zI7sZ>5PniKxmv8-vb3 zoz3`ZK0mNHrJsL{r#E$aB1#*M+vL z6x~it_3m>|Dsge6tBB1a)r{w#x-Fg(?~+f^AtSZ^^^w z72B!bOL>|Zsl|Awy~*iKQ92N`c}9#e2OCghi;Ze63g0B*+UFnPOKX?SSNng;MiB_T z*lRBp>(lKNUwMA(cg&3eJ6kH$TFeu}yf6iGCreDD85>i%7x?DM8n6Xku1v6O1F29HURepGTqun7HNNYrz>9*8 zQnUd7rZ|MS-BZ5tm*p&mkv2tebFn}n=AB`|`aDxm+IZmAsd52yOeqc#n#Yv#{U+`V z$BiZe!Ep@XLQAs5;&!k{#3YM~)QSX8h?$NiVv7j-(<1=GVk@*&!~x~}TV3E4dGO_T zA6MP)Q7|W$?*yaJw=3g%1na+f=O` zr#b6YXS^ugUCJPZlbnd8)3A}FbOZOLwF63B21FDCW`VO6I8%t8A=4H)-GQ8MNT2tizwQf&l`Wi4a`SXB_up|a47v71~zCg&43pQ^0D#(1u>=Q!w>x*-%-@Wg607Ll4| zkicoiqMYwZV1#6#lRyai^#l#EWeowmMES}P8fwC|?H#Z{|37=*wxl|;EcPqJIuZ6v zFspS3X^m$^NJ!l8cW^jX=n4WM2}y{{)3G1@e7?XDe(>9Q@E4pd*!i7WhZ=6x#~Qq!;l5Jh~t<)5)NBDd6@v$ z{*||Tq#NZ?xonqo1ods>&SaFi+O%^E%g#fKQ6|C_s7((;x33KKxUQ6~I4+fh5+`=u zr+*Y7a82c>WcW}R&OQv=nH5@=eS=3J+n-Wh?|Tqx@=|{@^~&6Cr+7QSEh0jry-nlgpL3&JlIcEAkQ|PHy3Uw<(X-(l0bjnNx3% zycD0L$ZCDzz#haW#If8xfS_0v)9+7DI7FbHgaO?b(FO_%Z>JOkq%g8Cuatv=#ESP! z-5BBR`;U{DaX(tu6@5T~Z}d_5&<;HK&LPZ5dO-z=TY8dTdwo&-FoqXWdOWv2e@ZeE z%(z>pBx3>Ro~9&Y{SC#QHl)FD!`q;XYMc{bB}X}c~T=JcNl*A++iq| zeaalC4nvS9^d)r|f<1wYv$@0243YWD9rl$w>??QJSMIQT<_@Dr6K$Lga)*_obB8%A zKX;hYQ`F*i3&EML)| zU{<@yG*j3unaP}E>xH~KHa8t%saB;zhB9c0;{?s5txee#`xLU|#svy)AU?q5%E6G< zY}9VG9kn@gv;BHkn5@!HkJqyl-{}m>MtNATj>W+?>y~+;D=$&LQE{c(j#YZKyp|!> zWl1&)MBfM4TUF@nlr*xtR&LURtE_ClSHfoYN+)})a&uWCMXLgNt zy#X(9!5ml`r01Irw>WI+$gI58E9iW=yC?{sy zZK<_ZkQ`lYj+j+r-Gi91OW_nfa>@pkXIm9_vVnzQE^BpZI2DO{qfpnnS+`efSb6U|o~;!ZQl`Alc;bLEbs7?LIycu{XU=9}+3E(P><-}ODpMcY zO)QtO`;@yA6+|Gmk^pzo)e%`K_Omq<8m`L~3Eq)41sa$Qv)fy?v|_!?)pJu^uE7g~ zR_D8bZRqyAWma2ru9mB=o%D)lNpHT>5Ja+co~hEUl0#pxDn1K`!$kmVK$O4mVT2Y+ zt)xPKCFQA}JY+Nxfe*>EPLqz0j-^<(&N7a>-hj*`0w~bdKmXW=K?0J z#6=(VH3hFi)z4nBKI}HOvL}cZj_cMK* z0eVdsPt;M*t6LD29VFt!b|lc`mih|_Kd$o{4elN!U)|%seHx~@g7`QNr36&Jl@pPO z_7=lCN2~2$x#sllyWMk!@>97i!+GEXT$Z^T%h346+X?be;PJG0`%Bt@DES&$oBej0@u_|nTQxra z=Gn@P7t?aGmWCDX1$X|Yep>XcpOy;s(-L>^(-N7$EBne(`<;5qKKp4g^a*|Cr_DSO z;OS#mErR1;uG%kG?U$?e%T;?wezdOmTS3vrPAE8tNOsLb|tir zAO&HWF9d_Kte`z&Qd{ScY;VeQHENlK+(}(Vk^XLpEt%0^jJr*_K!M^(y3pb}7(TTr zJwH(R3aUETZb%ZMqB~o+;RCF3y0V>SNWq=9OIb+3s+%#JDGqXJbs}K>In$_Yit{SF zBHFoXtF!FRR^{4y#`mZ^EwR;hO(wWPx=&{+_|ONaW|o9*a4$`Bg+ilWotmYcu*-BvWLL&(tARZcSwt7Dr))~-n764uuZzEZ6=U~M9m3uLpOC6Pj1Rn2OZcl*;$yPr3`nY&m* z@>qcK)UZ-oFgVgE^MP=f&PBez$O@u+Saojzh~G z(V=m4jYE#d(5!B`*lb%Np>(m<-q|c1)I6#wL#$UMO4_PB#djIT9u1lNP*Pi^no(Ge zoAa$g5m^l$3J^-n#E7}h2K9P$HQNuoZU&g}%@-a#E~(QkK}^@KtvRmic049@dNXn0 zsREteqSQlreZ5S#e1Lp+x|SMcXEf`}Q)=q0DQec$8F42yYbaXEF7Ui07OVW+VDLgK z&+<#GgU~v@%#(u|nG>~4cRr%$d8N__`cN2Z*&aC+(T>xXSskAly^d(jdvMW)2y>ft z=Hd*KDveH#%c8bcDv}u!N0%K0VOETlsTgKUSa#+%RjdXDfRqvBWQH_K>%7uuG0Vy- z3%6?yR?Eyz&1bvw4U0)obCnybgTBtSAJUO$T4d8+y%YQPJttoTc0cQL`N){p}yc3Nge=v zCC-mNIpEu56mikF#VrXOp|*&G0(_QM0l-%x>lh%Od-nEs%Wk_s&CXNFP67M*0N?W9 z(WhBs&x8^NVzPG#fYg_mC-qtB6!c*lv z9YKJiWWfF6;$G(Y^8x^l(FWr5-K4pJ%swQ|C450R<@JdN``P7wDk5I`DV7!%rLGJ- zr7*^TydUKgf6#^ZK>qx`@CHQv6&3rm2l9s8z_)f=a-#^1C3HTfFBM+1Bjwe_y6xjz z7e(6@>DM1f-9A5&` zw--|y6-6A8O6uV~8b5~eW9Yo1^yRf9Z{BPh6xEz|(UW-#z z@zH%}o3g0Nai)e3;(-+Ywokp+Xo@1K*f^%L!o)agW=g*d_b%H zDs0+n^OX7xY6zOVU*l(iGWi`s<>f_TS& zlQleEX^2Fq;_0l(aK$POlL(V*gzCD^&sD4qL^2{``5u#@npi+EJZ>Q4)rm-i3kb8v zwahUlvL_9#Sd}9FVfylca>YMD5o@!Qbl@I@>gx69&X%W`%0F@lpS-5G!=F851;1^# zC0w?{@g{HVUmw*<^DeF2zjE^cs{b9MOZOFVUaSP~ZQUZ1WCpzzGyrEgBJ-E|@`NPGXh z?F3~L;%+-pIEaEhL}L;7J{~JXNPwQ$&-|dz;%vFP*6KZx8?x>sD4FD`)DJE*`?ksX zbHPX6?(pCL`Cm%0H2&n|y%B;xoiig6FY*aFm@TdvB0tnkG!~|z$FvnBLi;RpA2b4S zmFYyNUZQhi6$DMzyjZ-PVC>HDvT}Z^#bV|}o$xo|sz6UTR$X4(3n!{8>p;B#R`L`T zLE&40`E>Lw6t(bz_4J-6T_RS~uM$DQ5ae$>1TjyXWcOZ`5MH{3d<^v3<5jm;R1mO(3ZKNkMb)hh*?)SfdiV|$B)U399xi$yZ(rl2 zP$Knj|C;-KFGn0B73AJX?VbMq25dc5#go0tYZBiq5NCFL()z4m1wN`c!Zp#sllZ{` z$?(OiTbc;fz6S06@!hkk?Q4ddu17z0}p+yBqK?ebyh;s;e;i|Sx4eiT06?)&s8Z2Q>|1Ks0%jfoltKL*i- zo%AzG%?^F}2HN+fv_UZ};TSm7`+@lfg6s-$cURb(-PK_qe8KK&@AnBkn|_8-_8YFl zoBM=2fjLF7WZ8EUv4-wRmDf>Odq<5w|Nr#AMhxmjPQ7Oe&P~P??-ArlZm=sf6z|HC z{kL_;&vTe^LH=*q57yf^Xl17svZSsSsoz$*>S(fU|NfLJd0$mt)3zW3^JSi^b2>yK zdvDycfQgXBI~9=(SIjdGH?X|Mng@}4oZI$9_kq10)#ke(j2U;A2v@AQyF{3PJa`;3 zUVj*_c>BI&&GO@>A16uUS&kCMy2YAciEv$ErAmbFCE6f}?eak{_aAQ?9!YivWV*f$*}V?e{#9tx&ElhI$8Sq} zvt6nmTjk=>4wT4P^bf@W>3V_t z)oirmM4Mcpou7<)6nwCB{nA6DNS#Ay+OwAJDe(OMP==@33$mw8JC-WDuU)Cn?JaQK zxQ%^h9ew+F1l@0k?fiBR?3_MsySG2Hbdh~6z9l1(A@*-;$#}KzyPS={M*SnL2K!*Q zqX0P~b6|iNW`JLsx(K)79vrPP`Zigl#ud90KY8P|`23c~iLyzAO^`JsPNl{~$b2{R zqmW$_K9mTdx8R$xEXs+n#h1g0(8ZF&i7>^H!wC@GRSp9c_On=Tv$3qVXXBV-*m7x0 zoT~D#(1~}2_)fGllsBz+=5oF27<-~Ne$**;GfIIwGv#mNOo&5eXtK1JXYCUS56f8i+jYnCUO1O9 z;iJZI9e)gwcDfA+%;v0lU1egxKkfU(%W@|dHx zM=gJQ0zIUn{7EuPJqA1dk@B-dewtQCyqSFNs6nosAfRI(_wk!y`8Rpduly@$^6xJ; zKaNFE7|zC0+>?c5tR8o|c)>qTK0YwiWU5X;28(zGl()sx?!MtqgwT{N zQ`RLFm~9@`%2>-zGEA|oLy1rcvLwZ`dnFqC>@y0`25tDe&1w%yLvw z`(#rt)`^Tqi0)5C&Y2BVaAGkGuJaR|W8{JT+fQO;t_}w=pN<}fqQa>_TE_bp;tkSA z#moE%0$TyPeNHLFPaYYW`Eh-=k^^Xd@Z8a8+^%NENxtJdm!&|_A0JGe@E*vY-&Nh? zLyh0cR{Zk7r~BtS_h_qIGaQo}dv z7gKgF*Zs8=MaCt+OHMe5InT^ zj1vF4CxGk<>qO`0e|=}@UPFmg`kkNuE%lqnEx^kMo`)b2s(6}lB2;2fkm*tAc-uBa^^wCC zGyPp6T*qacjuBlERB=YWpF#dxtg3d2+8IBE;Xlj}#!rTI-6_k+v_y!XV&*1kiMU~q zMCb@TbS5d$u@?Y}S`dL*>ds!CSF0ZBrZmRbq44K^)648mpExaE};EC#|L*pwI4|rO?CXkYzdGZA4-el zX8Ok5?C^rU|9hYhaH!A3`&u>L1f0q`xZ}0W)9VoIApQ?8pH7KAUxcN8dKs-V8gDqW z>qgTu4CU2x3-Jf7d8(G~Ez&u|Q@V7=znPmFswk)0@^YnmQthvAYt#0dELr^8Bh&k8 z?j>1D@&s4cui^u~G0)$s&)-0geoNWv!qns@Xuo&m7sBJMdpuZx>6e-%NG0#I@x??#Nso#c?*;!GWm%dyzD*EP!w->^bYnQBN-CM$tb{m{|%3y!Fe`u0}35sl-CpyEGIaH?&C(i zNBk1@T<{=RM!uy0Q+vbV|0}#SeeF?FH*`6;k_@qFd0M>3y1*Z=d)vdmzJX1QU~E$0 zR`8fucMG5es+b2mNWfwI55GZSjPUbwt;N&zIZL@c+)iHY#3t`Ed0DD2>eb88u|Q8@Ph4s z<9}=vYXSaxNZ&9m54hkw3qUXLnwISpWMh#6U;g@Ld3@pH=iRF91dkpb*^?4r2j85H zu<<3H_xD+BoJw17ma)jK3x|enm|u&;o16v+m!I)KzggQtwgB%QKnRvGaOZVL`-8C` z0`Hq(NLx^)%>pveUaojc_C#e#59F+K_+lNt2+wyMEob;b0F1kC&@0DKRDbMW;O;Mc zo`sGk#p~-}Mh1e{C-`}tfSy+qe__dcB3s}^UlBD`(QA$S!v=H1XOb|<4TR2XNs}_X zt_3%LZGaN|%SI41SjW*1Me?xo}pZ>jYQZ2bvV(;x7kfG5B6 zAdcQ&U;p&9@rkN`_kTq)*{6*8e9tk=9|-n@65g$~Dml|1#8cM$KJ}Nc9|-c41wZY+ zdn=c``SBeivLuqh&_7+(Rs~g4o$U|*t0w=su#N9vw7&cF{RoEaFF`%M{ZEJf`0n+!y7Rb-*Iv5j%md#KYt;|1_8mV3P9uOL)n|YletrP~ z`u$J$d(i#iU}PuC1|$sr>sybrS%zuR%!Dq{-lx>cp_853fhOKXgJZmZyWsu+ zuDgQX*1Z3feo8eciMxxv4gUtzM|IRW}dGV>XXcJ)mm0FZQ2J2+r%iN zT7>IR8jFuh_e zlUXu5wioRhC8PaCQ)cS;YB_Sd&LBH;)!BrqLt7tU*&fPbbqO!i12(fDz3yirXkDXE z2aCp`P7y-DV3k{7u&Utx5G!j!vF29wvgQL6ijDcamS3)SbZxpyv+k(bR)z(By-{af zH9dn1u35C%k-Dhy19-GW6$`E5O{S(>LQjBN6s|!EG_9$~vK>&^FQInB$@Iz-DLq!% ziK0|Vd7jtu9l`CxhJkZJZn`UMaD^(gB>^RhHG4E&YPofR(5&i`64dd0Gia#Gkq;0> zM{3vN(fO#hLNvr_u^0>q%>}kzkLvISAtwS(&{E6$$s}fwooCQ4oNr~@u->h6eQcI7 zC`E4VECW%4Q6A6;o?oO}B#-c9nsHZ<1W7dkEsuzm+7zY*Xzu8^xGeM_*}_cGUFXjA zvk$P;Vx}z|X=@XXrgIz%<_Gw3TrBUZXm2aPZFjUKaAB~ud(Nr>@937&Q`F*i3&Gj$ zbfp!$d4bNAcsKya%N#qbNvmq1(p(G+0@WbLD|Asst75+j38UJM*zKkZSJ;Y>TB!#2AfZD}QEnLS9sHW{*qR{}m%O_(>B$v~gO@Mq$plJ(JwzvA)qZ##oE$`vBekHofc#bX6@IEwY128F`K| zZIZ{429{ZCbF$m&toXs!Ff~l(5p=of+ive6)VKEU3h(#%c^ zJ!!LK))hX_XlcgjWdy@0_N}r2EsMI*@3!+f!ePllsS9QKj3h zZeFHxkPlF;qUL5ks}IXH${g`{W3rN}%_V8Cy9`U|0#5duwe4V}^fR0W_zkSA%FShH=?2RLn(8GBixvyfP}a(2zKCOeuSSh&kV zi|)>F$+VVnm%BO^HP3Uy4W2c9fY=(`nuE#SeBr;gE1|@8JRGg$0%CVd5Yx45YmV!> zo#vKxdNXm!VVyRU+b%l>SKhX{!UPw6fVwoTTQ$Mrs*aO(F}uMRIkrzN9dgWXO4?JI`>F*|6Fvc87h+2iO;Z6m9m?R;$_^*&0Ew z%C%B!ogeSAg2N2b=0K>|`gRr_S*_hp*O$&%Uo?o~aIUs%8K=&)hRjSi2{<1J*eQjz zON*_?9{2`JLry!3x?QP8=5(vd;wn}rT{PF9wK|Z>;(ZZX&TDqlpOY4~#dm46VX+o~8>l4WQ9enw?Q41sZ@0jphyj?PHkUr@HnePoCP2 z2b*1WOZb070T%M?tX~+=EkJqg01!U~IPqFnXm7i{_^{t`S%U?EY?TTm$i@A;z^VXwmJAYbcE4_c5+v6hXnU zjB7ZK6MM@FMdCNLts$qjwP50Y+15UjZ7qxgKESjF7K8h&8i6AYA>M?ayz<1II3OciPf!4uryXkWK4WVb^K1B3D*6C|ge}t8~4;PS3LBP%g3a(oEQncYJT%>NPD- z^0d8$mReOaLm%M8ELAMom@c@H%+?k~N*V}Ao3U)1ZloQ4GAc7P)usiM@AWbnL&e$) zm#2j`lOy<6h3p7eUhp0(v|TAMYdGUsGn+9Oy9AfeDZ9xijZLL4<}qYBgEx}3?R499 zqC%MM%4Wl%4P>~~GAg=6**OLGS+6TgRvwyp4By!WGi7esa1+iGW28{3GNx(ghocJC zH5b!Ky{qh+RELz*C2ttRx-nEyRlyajnIRP%QF?rL!}Uh;h{-c#YY6)QS+wjf)qJO^ z^yl5oe37+@TpPF3)^@{?+z_R7*3<7dWu7I(swrc`IwQ(M85-6%3n$}Nk&)VKPOWuG zmFqshHbV^Le%2XoC(-~W9gb+ua6&5-X7Wrdz%x&$*SsNxCyGFKCL?*QHcbM~Oy_(R z%GXt=+0?p|r8E~|V;#uD9@T>8;vnB(sj87jrXrV@&?-IJPIyyIcL`{hb@jH?bcIYF z7`mDeM6a1vXIXP!A)&OA`Nf8x26rM zkWno4h<>R%nUMXl~YQ zo$pRuXG~8jCMk|P%XDrhTS%5>3Tk;-&vrAj3A3)-K0tM~vW5kvpl5Ur-e%Cryk?B^ zCX-J$TAlWSXHB?K+mRDn5HN#kw2^F~KX%$WtIJfkT%VW6DC!Mg#*>f%+e}GhDq*dP zqftHAnYk3SoMB}dT~6_?tl5(0$&-aJZkBT8205q{n%Jf=#Vcc8C+8g8aYt2RWTKn? zydne!K(&SKh*7CoZ$VaBoTwT^3i;}hpglDQRe82iuBO2S4*H$})|^mlnD@y$tS9u~ z@qmDbNShD~{oSzR4~#dmT&~)pdo(@r14~xUw|gFaTyX!j zco&NGP=Jdy)`7|sup|TqK-vSw`Yk#7tU&8dMOZkMP+HqH9P+uzWk3ykLM6Ke$il3& zUccsS}kc#>4^y|nTt zT^uBNy$aa_PMk#+5qO_jLe89BM;$Nhuiw6N>r96K$b?==Lqy|$xM%k|8r$;#mP$k z=#$3jL|m4fwhK=NoD!a6q7twtJsS{f*}Q`Kry_BNc?jh4Is;cq>7#@{IDX{ zu_|{Y!?aw<#_C}WvrSo4hGVtyk@Gumni@Bvr*?KuczRT*wSXd!v9@` z%?(}(y!99sCy14k?X=s)~D+m2)= z*wc1IljQv%iw+3eIDziNm~_BT z6}bJuB8~djflizWE~fjFx|s~f{_;aH3#O zNCJxjd=dglAvl7#Yj$h6GSWXueL2*zsHX0mDn>(992tU0T% zbfty~-MpQ5HiI5X8CwOz+!>`{hKzCR4o&1r8+o^Cw-$V1DxvIfn-*ogo|QU2z+S#G z?RQ}gCe>MKxPW8@SvJKkU#%2ach)lsxpu25whNM~=T}R!B#|R)G3VgP$R5BImm5%< zewAM`@DNdafK^%9NmP$Uxe+IfW;oTz_q6gVCuFd8X1qei<*HF2b+Kn?BYY+ld8W%v=EZidu;qD$?hhI(xY9O9|DU~Y*=<}| z68sh7tXy!}ddv2`QwC&PF3WcLDVJR}7#Ng9S+prq=EJhQI=$-;n9Ts)i&-=<%K>IP ztNDQLe>gwTzc3j|QcsFfFr<)Ow+?V`SrVBM85tQF8PB)d({-cpY*wGXSKZT6;c$OD zn{KWjWWH}-R8!?G{qbu3;kbNsTfVw%ma2Zx=F^T|Q?1rb^)2`Frucm9ZCzZZ)zgcU zwAg{iUw1CPZ*8A_{dV1cNWC0BJKqoAuI{$lg}dHX^XHbG|$`uYShjLWAmm}e5Cr6capAUCrQsy8WEh-ta+`H(4R4(^Px)W-ZJ4bTB$9B8wHp*(}t@`u3Th!{6liKNBs+el#4jbl=gY$yZxh-#3 zvNx5|x1FnEO*IbIPg>0_qgJ{!uAeg6!ExoNS1X;p_~L8*xpV0?f80GguZ5#G@AguE zeA<8hdQq=;3kTWEi&?TxFJ3z*ZvMP!RyrNC`s^L&z8~jrw;ry=N;I}R*X!=SovyxR zI>#p$`#0Zz^d4S)X;XTxR?=?iA@{X@tsR=(R5y2WG!l6b}cKqI~4PeaNQWYl>BN>b-4PZKs}z8gNung#$`) zH9BB^zaLRsJ$||Ry7L%=rB#2-KSF+bFyJ6bedNCjD4q}*rYq=r^VNSy3|u;RgTGRj zmjfCuI~?-&J!hq%k?wBYvf&bos)L###5yJGRX~GSw=^&_=wkjD7mu_!CxaQhLdqGR z%$lXs{BsJR!N_xVt@veVo}yy5^a>YiN#xaxzn3#-3CY1CKfLQ*rwm`~}O6kISY5 z7x1(rI@0MEOnmmnMIPca1EXW9m3@a&uo%o}sq!ualAL!Vmu7e&#)V?+LO?b0MY?@s z-MT=?5bwHB0(8@}JjY)OoXa=H;hXh8lKs7=CkB&xa0 zyZc#bTgDm_uun=#SzB=QTeNh{&D7BR&eoqkD>Bsiy`iOiSvW?!;L%5&K?|JtG-cA( zP}(`^Hruhrg0_|kOfDlEG)!&`4bm!^GD!YdHd7v0rilv9UjV0I60a!Wf>#jsmEpz0 zrTWpx!kV=AZ!y4<2k?&BETe`Ur&;p6FBEZ8@0Q&N>xB$Nr?KbnywYL1vymNVI3$5W z8VgHuUSEw+AJI3OjL9XE|%ZUQhTkpRP#Yo z#3mFdtYuQ|PkvX}`LUTRuXtex32K(QBWEe*Xp1@4R0BfF6rtv{m9#Zj4 z<>qH4n@(>9JwL@YxUNBnci`$$hFnmNqKb=J(0$NvB^vbW8^rJxk zM3Tt$`RPrya(;GyeNo=8l&?pyOGS0xO9ohGxhLByQ+D6PRPepWN%+i{*Sp(kiF@O7 zeY2tBGwbO{&O{H_E0zJFY~g+3^Z)*LT!EDF*9jS9^CBdq(fgv1iZWF&Ae1EBfdMVo zdT01d$q$SlW?98aCeW**hgiHbY67XX6Li^`*$9m(xT!c_0#vMDq%Q&A|Fc-!2@mt> z{XaA5p`N%q)5EhyeGs9CDJ19Mem6(B);RHlT+(TS$Q=;dtU2aI)Gc8)B6LQbW3n=P zL64O|F>jk6aK=LIPB>dk6Yuvj+kYr#2Cp>}GY7F13!U+V5p4oRe2eaYYTfV)5W(`B zBGgRxvEM>O9} zaUs5!I-7m6?*tC`Sf2pK8y7?h#f(QkV{%~_*0_Uqg18d_*&DINY{%gQtCa)}daH&j zF^AWA0^02BR)SHJip2z=7FjBId8{2#E1B74IfhU$!GR2o(02kB#$*uu=Rf@~1X0Ft z*qKrrYCIbrIvo9ui~I3KB2yP!_A{p#045<>uCk4@io;8DKD3hHg)iH7@ICRhb3x4Xpfo|Vi%Ftl3}*cj#

_QweA zkCz81bHaw?x)PfQSS+T&?Hs-^nFpBN3CWc#m2bt}CNgq%VZPkh(LOC-&R@%Lt^6S% zPEw5h<&Q$p`Fwa=P1*Ld4f-S7$@b#ZvFPnfDr=3352LH7;}bqq4JUHO?(V0*{`~J1 zj809*t~Q39J7qa=Ru=+Z3F|nJASS8pLYpGS2ta~VSB<)7h$~Oy?+B2j{iS0#m~Ofm z=iuh_{q>uLKOhT7KWkbp#x5`!QQ6-YF{8{G*S9$`L@G`%pfw|)>IKq@fK?0pH2NV$ zVD4H(5l@V6j{A;fPc5J0?uyf}ic4Q1HN1&KW+?!1X+R`Ui3Ac2q|B^ExoSw@R5nOq z8q+)F6ULS=L|9O1gN=wUVAh#+(-<0jOsY>lyJ!RhInPEATrwvGRP?iH()m58Oom=2 z%K5##KIr{3S{gnUdv&J-q0bJ$i#X5k4ZWS%frdWzC%acKz_ApAU;;&f8%5NS!HrxZ zWrQ0^wEDu0U`;cu*x=Ju6R@S%FlTH7ZB{VbJ z%H{LmMt&E~%yN^>%zXFe?`CGdo0*Ll`Ik<_<%Tr;Ze}JOv+uN-S!ukPnGhcl&CGTd z-^?su*x4*j^fD`AdYPqniobiA{qAM<}W%hJ+Y&DYhGPCxa%-v<#E}vCS zc=mct=IOJTCpEmr{4MN&(zy?uI0XLJqewqc(zw>l~nKN z<5{OFa9e-b7faTB$z`_PpX$EfhwI_lE$Ux?Ty^r_dd(NN_o~$@ji2rPt6bW?IohjK zj-D%3wRhb!Z@=H%7Qbb-t`1Hr$9JdKr91sj%iD$Lo6GFCtrz#%r{T}_)bnMnbfzC$ zm)qCo!MdjB_I_@w`ONuUF>O4htIg|k_4eAiyl%W1x7mF5d8gRY3#qH}Wh#BJU)-tZ z%i7CLY1<$03u)AI@~X~2ivz+ zHC5gDk<#w+N5?ytos06$j~|P2z=O=e`qk@?oBUb2^>BB4*uBi;emHxNCwtHB)53+By71N; zXX*8wmmhbswbPVdW@pDQnjG+_J6|ue%bWFs%f0=>tzK=twVnN;ot~X`Z};|E&p%$Z z$I9!?<7-|Hc=xq*(%w3G>wPWMQWu(c{FXV-b(*;sy`9xx&BOMsYMx%7JKtZ+mAv~i z+cv%OW6Cya4;TAd{kHK{PglE-^+NWzcIPv8{_f;F_tMgxg18a6mtDPZw_mx)-Smov z+O79`&pGF6uh)AhWY4y}uXSz5JS(+_QVo(VU{5ddOT{pK3Y1w{`WpuN}T@A9ag6>o=8p@BH8{`+A(NR?;Wg zH}9lWaV{_Re?0hm`DeL({m_26-15Gi^-fPN#ZI%Dzfv!=5lOYEUS{d`PNDswdzt;d z=B&1t*%T7Qx>*K&hwf)L1X`r0CCgpZB2kAWb}Z3dnfNipp*NY+{SIyM>{#}V@%Td5 z3&s+cQZW#Q*j9XFZ*~bi_hPA3kR*vkb+Jo1&2zE}jvEIu6GmjHNGitXQ&{vFkL>2< zm)DC3TJYyJnmmAtOPMn)C6i8XrbkygmR_`8anw#snZD98Gts25+&*nbn%WS!ji3Vw zJbo?bYge^h@hBKXi#sv|#dojtt34Off%J=hMOIXtcqJ&{5q?pYOcTPG`cs&mf?$^2 zGt1RRxhV9;5d2nk&c&+LHn7z~w3%6#lKL z+m3rGhY6yb#>GjrK!9TBYU4$#gH0Gr)o_T3KcND;>2!qBsnpeuDvjq*rQT{P7e`m+ z^5uR|1>F`8HU^!}R8rx!l zb&y?qNx=LRy-hZFr<(cTw)nUN*H(xI3$Ibp;NcuhA4opJkpTVj5C93v7gm(eKlqHN21z$hA|sUejb z5-iYZpyRLS;7jQzCnvrZcv4s|nqk$Em3$ZtG9*ygolS#=>Of2bh1Kdwz+eYpfH7LN zh}S;o^UZqmLz&4xj+w=f#sM~PjAl5_8c(eItf9Z?4IJl_gvc+-`N#_s(V8hPzME{& zDkkTODdkrc>N6;iSE|&Y8pLNsReXmqL<%(_LE2VBGqeU+t(1ZS z*D1xn=g2@NNF;%22HkT_8PNoabwdeMUIlOuu*BfywDhJs1+mop<3y9$CsXv`V$Ow6 zpwMcHEGnk}3&UJtB97h<&JxdM3rf#c)_R(1k6Knzaq)4`dti0(vk}!)AR5l6T10Bh z7$Z*zxp^9HMh(#&4oaSIPfuU{xREC_b|ywfY`frk{k{}hi0JXUQtu-wVW9}gV%WSaC3maEN0)}(n(!_o-qInuL;*2~4w-P53#eP?js&L212+vACdxHVqzl!7Fo{XNI0%D63AvW3=1gJUGyl2d+g%xtlqy z*Nm)$>t*zNPb~@$<~@Zdq3}WWRP?hl$a3lIFi{I=75w1alaj7e1{JVD)3;EUCK@aU z!+tbS$m%U5Sf1(XDEB9kh-g7g1DIxmgo~gcfs&puHfSihO9O><#gl+xltG$AT=P0z zol{gn4RsA=#is$h)p21cBw$U$d)U4 zv5>2EPy&s#q82oo;DQDO?bk0+q=5*vQy4c2NnbwDZN1(yG*r7b?rpNbUBU%+HJgzO z76jx(><}4&qlRTd8=Fe0DgIW#lsoyT7-B#q1+f3DJn5$9>UG7|{LYk)d<+gMD1NU% zCmchs*}5tr4O-v&Av0~u@FRmdp7^!XQXS17zz+jzht>4uGw_}ET8HLxqfC*Cv-E>a zf03252CFjDeD4VIL5GS7KypcX(EPz)TEX$IZhDsI_%C)IuEFKs{qjd9oAn#)wV;}9 zP`3^q_@=_ZuGNt(ExP>%eB1Jq-}vCmA6fsS??EWadb@vXX=+2W#mAy-_t&&67e4M} zB~2bYSAGlt)hz>pSpqKG@~aT0!m0VB5C5II1OR7s#mlnku%6>=Ou@ynLbnjwDU^rC zPec6{LlH6R0#Y4EYu60*LE|eV;COaZJjn)c6?1%GO!Jqrk#YGfLvL&(xz>NURYV$_ zNT+acTC&Yep315j8yh(Rkrdv8%i8%^x%hl6DU>0v(*Qk5Q3ncHU#kk$D6us+M@C4+ z9d6LiZ*_;8AFz<*bPH6QY+8OA4tdB$MIuij^`T`CX|(+^lKw?pH=BkB-TnHJ>21$( zl^WFBl*KGQE0%c9?&^*vU+CD@gRQpx)|g6HT>pgHs%W+?ptKh(tY31p*bA@7v%4%cBG7(g2CShWQc)F4V{mEVO_~Uto$ei zTAC@pftkUt2x>qx1myHLl}d2gXa)$Zt&|?0VF{JNf+A)gxAuO*hH1G29v|ZD7$6g} zj$}lwTOA!${DB58zBTwlK|zULHeg6Y2?gca#y3i&5i?!; zxmyU3e39q0@)TTv5}1cM^Yr=ZDzGgV=^EHljphcDhNMU$aR+h5Db3cGNbREZbXqw8 zT=XnsSmXktBDtVho@;0_a~A=TcD*t+t-;kw8Mn7-kYIDO0mI((S<}#IGeeomND6^! z+qif~A}gXINJ*g9a2;=HMLdKY#xw%`IIY^yqL|oZ%*44SNx+b<$zNA8vf4mN;tDbj z*~o}8f)d4WgR?Of?tI~tRU{(%y@kY65Icb@tMG9=lDI@D#wdPj)i3NhLkp@$22_%O zB}oOOg@z-OD%k?wiOmXmd4#d3Ws(B(G+FsyJ%>*)uT{^hrPKRrK{G*H=1Hc%zQvG|JTaz;syhJ6Mhp$$v(ix{f)x)7aiP%E)trC#?dN7gJ<2}sRW z`oUZ2=DbPTSTQ4%X0QZiLEhIsm()!jk;w+!N+@;%e1S3ZNZL#iusDwk+mUR zO9@`|OK3ir77%NQAhn*DP~Fy42UZ3i3V(dj-JT?$Dkkk0stl;-Tc_bw_@s6O;EoNc zxr*8bqWiNC00R(6`&RTeAn4aim9fy#v#@nXz9CDfsz%TCBYuO5n?b}cMDp4%s?7Y= z46*R0>kR6GnqIr6$@uF4ZAX#Wf}^`G6&F~2u-d@t0$X4;s!SebyZ-g(zcf4*RYs8l zPAH!caNPUr&wu3tDQjS$WGzkO<$@$5=-JjyMO_+5uq;%Z3gfxB2*&4vr$SRFwjNSR zv};IOl17?5o|2QN*{*Qh(+!S$o*fHQ(97y))KsXfK*!bx>A`t>vSItQ^dM5hhfM0Udb}+7Oq1 zRQf#wVv!B(R*sdt$-FO=P~H*-Nr2pP3>YuI^3G0zbfMZ$Ezd@!5Rd@ku1F+MrA|j2!c3}@yPMhB*+DhgCP72C z4kp3E-OA|VqBbV6s#m46>x=WN>Wp_LaiOJ2t1d=8A(2>C6JcXj%Vb*61QF`AiD4`i zBuH(mrgL4WW5U;#04)01DecqTT@Tm2h87UR*0aFYV>-dXB4MQkQ56J|-6=th0y&Ebs>Kb*QnRj3p`_mNq}uK1OU*R2zPj z1j-vs>4hy})JOFke57_~&D;$jjZ z)G&EWV(^O`eVkx3BMlv)##}%S(KsME+{5*o_^JElk4!e3_Y-Nw--T^I@!&I~Wk_M}v z&&yDs?%y8kAxQB049~v5A?sGVrkk=HFGdKEP77Rs6k{=7BCIY-Go#h4MV%5PP!NWW zYY0OECl3O22kei+kG?~d4V+&xov*<+E_yoI)ME3Db7^^)Euwh-x60iJIXxBf%Id0v1ua_iRG42;tH&o;ui2^bDSx72EU@#GTgFC$m zoloaQsBWm@?pa4!SQ*d~be846*jkRxix}=?B?PF?ix5U|GAtZ2b&CO`1bHqDShcl= z?qS?|3^*Y}6&WykXUv@}I+y`5WQQvTj8Jlt0iQ5_dh>muRWaWeKF9{Q914o+pehW~ zL(FTbc@T>pccX6#jsgH0v*JN>an}m$!wOi8`!C750ia{brqx4+;E9H7!w8SnI*Z0E zgmLfNm7~%7qGUdOhOz+Rb_rUPjXa%-vonIFZ$-A}N!wueAIu(Igpy>dwDQUy#?83$ z%OO@3uL9ZSkeLw)63(&Dj|i^sOZfW;mhBISsr5&YB-m1aA0s+DQ5F&{Dq3^98YF>*t)B6n>lY^BpL(i{!gW-ilDnilchj(2gB3 znvbzwO=`ovju_LAR|%h;Al;Pl(2Ja%6e$F&K3>KRBR-GlN+P55I6GjZL@Y`EMhohTppNTf(uY+3W9X^ z1P2$n&@akePSOAZ`f*Jz!G)HlbzrQkBtq6z1L8|@NhLJpt?8otA|zmrS95K(F2pk? z_J{nV0ZT@l8(?=8&|Q1gaj&1lmsbB#U2tsoKc1Z3SY5@ z1P)!XhqiD>SLO2MJ{LI8!B~z-u%e%ZtR@5k6P9A}wa4U&nHMFl@-p+{!&dVmcqQ6A zKN$o#$6*>h6rE;sqFA@IW>c^0@u|SkgE24~DkYk35S@unQ%4;Fgp`Zrus#DqK^u$r zg;YyJ-AfoSN^mn{z{-yqd1qCY+5Fne*>emCVO0bMl!87(?+dB-SA=%Z@@Qm~RGeo4 zdm&)5qoP{z(SWI_EIksa79*@0E-;V=%tO{gqH!WB>z?M^3%x{qlVjXwNxT4y?Ki6CkL=rO~irPqvHgRd6J((SXQ*WR~^N*{S(M^qvVe5p7M z10pY0r(xt1lt~#4UC7B1=IG}4%@UNdntroK6S8f6YRc$@uyxi(zr&-Z^cyuRp~#R; z7TcZ}r=}@kcTE||Aha6IR-Uw8cS`rnDICFBLx8!20Ih;R#DZ|aPST*8mgw&|UK?e( zrp*uMxTV!+2z!%q0YqN=NU;1~s%%rs@G*#Oc@IpLii20?O6ZHr<7=rX2|+sck$N}@ zR!~!qZEBdJ0VGJ`TF(&36kBL0zat|j7g1>F`uy~!S~))(0iTMhHstPNY_3a~b-`De z7CGzt>x-*$>0r^5r*-f|l{;GkbLFKHy$~{&zL#gycAileD!S1cC`~eiy^`~h}k`$*Q)`}T+yjsAVgHP9tlcKx61S~U)UgYTQ`B`jF z()xcqh8_6HX4N^583d!6Eh9%U4mV^E7H;(VO!$s*Ok#`S#t|R7!-yRCuHP|w=(dC0 z2x?~IUGpBQ*$g*!R>yA(wfT;5tYBh=*~K5eQw%qXkQw`Xhb&aF3UZK#l<&IL4r>TF z()kBUWXK#FemfJXO^1%Yu&ar5^o`-RO!H#=TFh^7OiH?m2IR}MD$Y0Ax$TU}=R6s< zuuLo8jA<{@?#Cr0z$U0f8S7GUMv~Hp3qu%nh*$aC#02R02JR^4OHmkevYOmN6vn&# zqte;ec@&t1*f9J$cneXxZmteX`&@`;wiXu1_O*2F>*h?T=eHL}^Yhcn!F^~en&WQq zPK-b!b6A+k2feA|o((b^oX@@$RQlchbk-h-lR)#Gt>>PIQ^keeYer9jQlqwIK!r$K zgSvKLkR9tJ-ERycM+xMc92T=a*)6}^=mOT~q;giSR`wTkaZR{JLpHWe<;-$51!DRY z8!inF+&_ZI^pKj~X#bVAXSjOD(E2uUv8)ky4)N{el|y_fG;~F3&hUU`3@Lh}&xr{? z`O6)wFM{8I6&xK9RZY$E9KkM-Vuej*U(nPA z7YB6Cir;ZT=~eMpSa~&YiG&*vvjn*vX-{3m5?qx_`zW6W-!cqYy~SPqLDkJzNg3D( ze$#O}9p^YrP?Erpcw8j;?yKc*7v-x`_2w#ShG=DXrOPqQ!7;O$xIhq`N$A@%2^Q}5 zOacYxEgLXg>O2XQ)6wcej`2+mXS^lBlBXxG3O8+TT3hUH)%9$gSB?Y}*UFc3?MP`T zQaNGd6t;SZ*z|0#2NrXf%x7P>A7mAT#@)~>@>%Kh zV}3_Mx+3GeBBHzo9+z>43x?~Gv)FK84Fsq)M*TV}6!KGTU?|;$#yQeyH)WvEmDhLd zIW4{EVuUs6CU%1gyC#LSa5b44663?0enYOt{VdZ+a3YVPL$Z(HYIxI2M@^Y|)7G9n z&8){MJ<+o#Eqhl-1^kd;8G2jCm}{tILwJ@|a8TRwP>Fhc8Wu4#_TrJCA@wxse&d^$fA0UC4WKN2 zEpwOHK&p&O_nRvh$d#K)l~IIEX}GgIkijccl#1jR(htN_;&<29Q9a@4oTa1cZV}I5 zRJhfLIquO{9U3^e>-?HaX5k7u&~!Ago$`gTU^~9ktca*uLo`_0i^i$OH}n_X(QD!g zjPuAYyvqKre=xPJhG%$@e1!C)(o7O28z|1Wy7H^q?%<>yr;(8cOgcYNia!aQ_}w!Y zB_1*@nKy`)1TDk2Xjwi`IX+N0FBc6~fp1p0Qc zR&Bak5Ig|!1`pyx$Feo$1?t~w%38sXDR4e1Er^?d*aZlV9;6P}Wue?noyHLL>(&jv}+sb1WymNSR*NI?pK!z)a2mH}I);%J6ehy5%ch4`g0Q4l_`u>#x3D8nxk+6|+< z0+)Wa3`49Z_UYS^L4x&B^c)&6TyzZy7H^3-T*wOv z6fWe2WEaiz%?jx*A;CgL*U)AKkqd0luzfB_z=B8&Hh2*6!3GQ)Su!$8DlS?9l3PDm zw1RwRjz)(izsigzUWSU~rlK}p#F?hQXd4aP>1bjyFVS@mePfO+QPb)<&@Dg~9jUjp zw)`L+_G_|&h_6GU8`mdggyG(?2$&@1LpjZ9=>+|D09+8YXHPfunyq_nbWcp04{E4U z0ULS!%07(L4eATojB|wYMEv|3U6kmPjOqb7)>gx&BaZqaWcC#GVj6fDrf)!QD7D^r zDS9ZO)otl@c?$Fd20~D4((vr~7hE5c7gaY@$ol}<<#;tmT9AiDA6T#5mKaSHUz!i% zQQHFxHb_Yw9<4(;{E@~D!OK2gx>+|oSuu8K__3+R$Ai&&Ru3&DzC-oABV(8(`dMI? z7%l}wX2R=7c}(HXk&X~Pb3p0epa+Yobq5Dp&GO8KY6m?|`X}OGtv8i(Q!pK2t;W$Cp5I2(u)6mR-3~_U z4|P8+sKed;B>SlK@e!IK45ADMkr;~Ow5!^(x@%3XKgqu-n1zE(!D&+|3DtL?jUYIa zRH@Ijgsz;VE)i|RM}9wL3{b;Bx0|2%RP9pSHrmi`Or|V|1yNMc4hPEM{C1bk5m2c( zy%CH+E3{iB(i@{R#WM?vjT=488BFTTjdLQAK+RP_eUSj`mey?Qb-1Up(bLe(2e*Zh zKqPP|V;qf`;ILvNV_!0e`zFppMe9?Ka`TWtIj;I(s;H{6BzSL@$+y${%|F>Tf`906 zLF=Dwp|b@X1aqHjPS74noP}_2RX~lXK?~I20=78vb0&K&nmv6Dcw6@2$3O7uK$Q2r8C?}dPr~cGhY`nt7$6f1loYYz#JtbKmB5A zCYWyqVN#aNhy{a=fTQSBWa|V8{3!uO2;umFN>%H8tp=Ll`Vi8Mt1b~XB7j(KiEqiw zU$$^MGC_v~>*DCDT)y1r%Vu%-s=^PO$rSAwWPPPKt1r{Tck;|?W| zT;t{jXLIC@RGeiAY;CKvEbUNDOOSY?B(Kta8&;4Xh+_wFfJ6_v(H7Lv?+>EaE&3f? z9@OrJv^W`RPqXh2qS@o~P=Iuhpcb+S7_A&dRV1D=lh%anw2p1nH3xG-ga*uHC!om% z32F$b_5(`hkN~dz_2<7dZB6^@&wu^I1rwQvPlDAIJY-`G1RsP^WUUw50t=^J=K|WW zJY38P37V7{T)@`K2d8XoVrxy!w)r+WN;@M#Lf!sob3$FnNT3cZ(?l7@DA1yxmCb78 zx1SU#(!iG!92H8xNPvu4)lJ{YBezfRu+>zYt|n8^l)CsqX$u9!Rt;xUDML>jnJxwZ zgvP5mkUbQP8TP;M8`#8MAU7G^Z!k=!<;FB3^=V^fm7E6{Gb(w z&|QVzX1%}+jL!iXl$vU&rodQt6bLhRRb(|^lKp7yyKY(!w#o(&7X?oO^{u`qXvtO% zBD0gvU^(gAEtO{w1VuW<7%iK$QPMJf>gJJ zTr*u89azcdc_n&7xgZ_t^{2o7{2z{Ds9i_)bb|lcZE^QE)wW(&I+hE!Yt?}C*tQ>< zP*WXora<|XzTv|3<0i&#rA@Y@W z#n9joK0BapKY}JLO+BNQj4l7g!J4Pcb|vzD zV8{py3=f+bPZZjX3=SC?b&Rk4?Ds^#5F9uMLB1#}Aj$Z6AvNO0OV7V)GcwdL5tzji zcYS`G{RHsX;TDVA)ohlHdAo{bc=q`jCW80@!z>iJ*+h)<1aZnD={|f1vIw(XmbhYQ zNV{)I2VL~~CcyphKmIvZ$D97DS_?kU!eU}llUS_njGBW}ahgnNrJk8=QMy?|*NhCw zp2s!g&v-PUwJWqiw%m=6anMIkDLqY>XX_2cn6KfuD%9FzyIPLiNw|RauRdG=`7Y3b zT@wM0u&;;q@6Z5vEr2%Vwc}LVGT5>(A1#kB8M%XU3z0wx8fu@|s2FzzSSX-hQc6GY z^(CxZCY%YbvbMdM%jA_~SWOm>%Iw2tpy$` zS8I#iuezSCDQhPvY?gDon}T+dIYPw|-R&uBo~gTr<~X?N&A#(2dwMXFz!?`2eVB^7 zLF}#c22p_Y%HRT#PbZA+l8=PKW(q}t2L2NP#fI1V5L}nQ35S9<4YdcgoC7JdQ_OD{ zgp~Onv&Ju)?UoGvp})M22c>K3w%(BwpJUJOYR^js0Ch42760R(!@2r#EV82Y!1liO z{ga=x*WVN3X3UA8AgwmWzb?!c+M5o!D!GF_+D+U$~a_-~Z41peu_USiLB8 zcT)>OY+-IZcb6>|5^Hh&B{-W&VxX@1G;N8mL~*DSaxv&og<`HL4sHcplSKATBos%F z+ZGeSJ+aa*^5sPc!BpH$b$_Kd)%=L7YrdOmzv9s7)$_NfW-;(kr6XxJedJL|0+!i~ z)C`sZYSz^VV|bW$CEDbg3@%Ze1S-gyfB9+&a)9q4h|tGMG#Dsq{8Rx(nb)Z+n-K5F4o0NwoO!nRx2G6P?{ z2lU&K7(j)+p~hUrbO0gzqAcNuFZjSGF&N{BiC{7>hMi)Dh`1mJ=uMk5K*3Ay34CW8 ze^~KNFzVD$z>l_KGclbbYK=}QxTf3sW>?b;*mEOCDSi{F)1cP zx#(Bkoh28ywkgRe(Nv#sR_q?5S8i%b$ufl4|7Y(@mlRi)G+(9cv{_q^ajUd%dFNa+ zEeL_w#14PjBq1SzHY6b-e%-PDGk?eW8OChp$2`D1#k@nmK)=E$B*@B4ATvp*tUBky zu~VtlBf`VO!{d{?2X@Y9{O!UnH`ez}`3f$YC6F=3O`HFqKw9A?HGga~pQia}H3Em(K^cuDL3SI3Y$-Kyx`r~Qp_tyCG zSjhX_^3(0r|NEIOyF^_fx8H~8kR9OMx*ZVu(GjtG^y;-L{0jnK5E3hXIxtP`5rFf+ zG5F#Qne!udgC7q`c@s{rxv9j)MmXioiD~HTvcU zhL_(fcVWp-!v(bGnCn0&43iMZd{(ml^}?<#;t451jnyxk(Eb3az}7(|PfjgAdI%n? zl^?xba-WRgqH~j<}hIBVP`pVlj8uaKD6xJKZ^dTn%?5w!fr?yPJl8DATYCyw*-A zPVC1jPU_{@JdnF9&Y!P1Pj}9>iu30!=>Hgs^QCE6V2ht*8ou{~#h=P##7}EJ;>T(} z`sLs%RsLP`{R*1zbm!bP-`!+6#;F;z+=paz*!{4*D2it*uRvv)& zg!5mTN9D*7D=^oh{Tac(T_;3@+sN#FU+5C4Yxmaue%FFyss+jqL|&Q`s(ro z(6_OLu9D*`bI81&DfXsi-8!$`SM*Fb-nyK#St>t=b7v&w?I6KV(W9S~hVddjdX>KU z#3WU&ui4IJNvf_K?XQ&dk)d&N1fH(>898}JDVOQ+8@KS>;D0U0?k&stw9KQ?dZT`t zX_$+?5nq&_|EjiKwiUp2Y&3NLvMgy=vGLPdc820n^hDx2@r#KOdToIOzSP}vd6)A) z&KK~F`%Q}4mcU&hdJ_FzdV{CgHe-rI>)I}@3SJruGd3yCSFQ2hNu7NKl+xH8; z{LENyRA+3@V+*{of1#{7Ndu?F#}^JYf4q;wk2xekA;rN(i$~z{@Dp_%y#ECEp6`|) z*>?1*!T2w)eWtu=NuRb?-|auZ+yJw@iglOnCwkRHa2eEgtw?;@eEONq0+{bb>))$7 z>=RQWN49G_YUo_@CFd$u<|_2Fin`1!xdO5HZrgpD-THaP-K#0SUV=2g$c|;71kzkK zPOlQM|M%a&eO8CpKS{LSsm_juG4z^c2yDQg=XAH1uS3hei`lbWe4qh`zh@f)4D?$z zB4H`Q7TGY(*d372&$=#W!Ji84&V$ zyTM;&P3?@(zXWN%{wv8f5M&u0e>_Vbg)m?*+5fly{I~!4N~KQD$@|h?!#gid<#(=TN^{{h`-18hc}n_Pr6MoOIdT6&S#t~}pT2PPIguigQ(xA(;G7Mr*p$+t_$f+L{fju&Fi>BN<0^)mh z_xlTy0Lp$xwtKit5&mMX**Eb5fbr>ca5E3pXGCx1c>0X!tu~{0UegOUouFIra1Nd>)NS|7JH_=8v#3w8@^mjeC}?suL09<*7WAP z#l9*i*EvmIz6l6J>_y=0wyVTDHm63P?oEvWSHdU4r*2~ZSoVl=KHksd)ZWUoRBw@! z&MB5C;|nR=bM!cQo~u8wPCk=+YHaYiddcnP;v#SPwr+gsDLv#e%N`Q1Of7>no7=Cx6FL zGk+7;J>GDDy#Dq@bsRtKBu40{L2==9S}MS?6KSa!(4yesv0g9I{^Yj~gGPF+t{4J~ zDNq+i`Eve5$221&{#!mF6DSRWxu0G=oR(ys5gi>74b>vq&r8Y_N>TuJJWF>}ykI;@ zuZ0otW1b=sJ!IE^e|oJnuSeVWjPmSBvMoTj%;&UEcJ&2ZDj)lYO1I_Odgw>K8GqA# z7xGOrA1_eqhx42c0vAU?=<7xl<<$F@8k7PPJ){xPV);Sdf_^bb)m$?atSOuJ{k-qf~haig;5EiEpmbeg>un-olEId$S@ZRC@ z3-G!w>H*dxWi`M(*H4UrUpy6q29&w94sC#*KHzvyAAHhM==;4>&lE|y%318(gO8~(OY z||i7Z2JevJW5hl zJ_~MmKAX=(rd{0pUZedvB!ii?1jkwcOwSYw{3* z$`$ka6P3>8622d zb=5GRGrxjq^#Q@DZzK`Khl}~5`GNRGUv=SoV-&m z>-V<~&HkFR&)(%Tyy`sR!089R9_FP7FwZ@IDxYg(0QsFEa=87S1Q4^oCSSpyuVpU+ zL?TyGey$-SduNo|;xBtmk$2+4+|F|;`u(?IH4->ZVYvlcXY*fO;nBs;?n8_Gq*LYc ze+S_D7;Yz;*K_j!&5`7!vq^j2^sHEG^n1#X5?UN5{_{U=*}pRIQcunLxG^Ltg zrlcJbNz6C`(nvX>o_1OdSqda42uVgZ=h8CU_TA9#o6}uo*!RZWDaCHgc3qvzWUJa} zZ5cKYAYUj5cAP=zht>pj#H#JMdI#;z+wqbowt~n6{AQ3%IgZe5Qd96K^BdTL87pv> z&sxphf{^F@#F3lJL?6=(RuJqDJL^g6?Fb=Ucv9RLY&(%+R^|GD5?rA_&jRlT{>sK06}SsJ?<

DFEj?8*|Z zC4m$PQ`>E+V|bdOW{9@%F4yuxZKy#CgFBE3SuGn`_sSZM>S)x7$zfwLugq*=VVX_a zSc#6<*OC$J`*>C3tzB)4n@p`Y*HA)gMN@0-@M(>3!seRM?AdBN?%3;TK@df!_8?Tz z)wH!i93)l*42HC>i>2wb4Q~;8q2UBOSMpl{v4kR#LkF;^P(9ciw5ua*N&1XwD7(-{ z?6Q}~EP{(}MWIzhr7K*rf#%S>rJ;=}v9Y_FRfATshwJOw5Hdn6(36xu$LE4zT@kFN ztPSf*eyusJg7E=v&ZNe!i4HRj?j_TVz_oD}jauRc&3TM zwQEZ3PEB2ev<(dv1SgYPZ4y|0Rp8e+Z-`J$+tGT5j3`G{7AQHY6TPb6CT3}D7$~%B zR@<{RqAdhD&GLDXQ}MAE&SNj=wdMuE*_g@Mz3YyUl@x|bC#cG+7&C?X9I8U%*a^B! zZ=^10I30T0lH4@cBo)ztyG{d>oD!t%9IA>B;lHK~Gt80yV~KP0g9w z3cHP_G8>7*t0Rur z3W!dc_N2jx#M@)O*{N)nwmNC_m>JQ?S6-x9bvpfBFg2UbwArr+Tf(cu$cRw7Oj{YI z%jE*{OM+W@DEAtO?e>!4#`afot=b7RMTe)(ys_=^lexgFSc;FRg}7>t8$Al?@f|&$ zaKkaa@TIgL5wRZbf_kkWI89bE+?neAde|9uR#A71wAwCLXIc{k=`Toj-q^8K!i0MB zh!RJ(D>fQ}x~Qpm*CxBtirq*ZbEqkUiDwoBRSq5cOp<8fXxZC}ZapDtv1_C#+Ypdp zmzg8H;aR&-6$fYa` zLA1b%T$4?eAH7ZjpDLQK8`mrl8mv~%@hkm2m@&^uy8q(HdZExL28>r zLUt{oCe;ITj`kIe$ymheB=NQsn^s;2HFjGasY8(Cq25zhFq&&0xYJ;p88#v+?R;+A zCF4!9rZbTU%`lPYv0^O!h3t)>c(+Rwwx^~`dOuR2btKqBYBVOZWzS$1%ca(+Z?j0k z`ElRi*wTcw{?`GR0mVW0JErwdyUGX*C@(6c<~+2_9mTz@(_ zX;S+iZOo!)_JkmQ^U|t{S{ak0uTU!3+UiWY3XhENC{Xt z?5+6{nkwvjumJdO^@FoxDC!h=_{*bM6b{or0L22nvnNn2?xrXf3d0DDfSA-jHHw8C zqgdtcDR&g>j$&PiVi7+D#VSj^rl_3NNm7|S7uKnO2UEaW;Ai=e&{SD{!ih2BxD zJBoEjvF<3=&p@&Gxj8}jkD^$O(ywr;NM=@-PQpn_CUeUZ zNqcE31EL^UrQKfG>`VvQ+*)KEH$+k`s`hneE{SxdZ<9-Oz(`F-ACC4YR-iT!lf&WN zid22tPbzj@p7sLRgiF9A^<=TWB70gLlPA4lCUU$qO#F`8>USd2x4Ik45;a`snUv3@ zu_RW_k(Sp7NM zSrM#kB+vpz8Qb3uWOv0meIXu-TSl_7#e|=9?XDkqd%z@SDH-lz=$u(^SLtF`ozP1( zji*|@W|3>DVr0wi4kwT{zYwMbf?_%1))}_nhhiy1sN`Xb%|r@b(iUyiCmh%8 zBQ7!@!XDRYR@HIWri7W1%h)OydJ}p>ZyVHdX0D(vmL-^7!9+{f6hqY)lm2i~5X^*; zF{g3A(?lW6Wmv0jb*2@1E}OQ?c9V5w9afbjnMsC~EvvKCW+PE{t);~Jfx>k9TTRH= zoj2ZjWGOZ^X*FNYmF3RbZVbp(8ci2Q1+PG{b{UL#wAqk@rMVO&WQ$%!duw)8vt5Dm{+dWbMve*yZYgr|N6M zq-%)sr$e#43BoA$jZv(V^7rg_YZQxkfnpH_ibdQ}tgBEgh5?>tH%GBRIMN9eOSmbD zg%C7Bp+CYG>njZ-3~>>Rg`g;2xak2zBR?R^Q0W^XS?B@D0?y)^zx@I(m5<$#tdAgB zU*aw2gKjH|y%nZ)MhHHv{a|7@FGmSh7y8HV0 zdxg4o5hIVwxRmr^3*5ITU(Tm9X+F-0#E-}VgPxO%w+s8#+k1m?`FynfupIR#3OgMc zbbd?w)2!Wx7yMG3JqkoWofRHjc{&jllhuBTy4|OMU(7A_(Ygg@*;8BW7|=&B(9R+z z=%4l%V-!YT0r~g1dI>)}_QETIL7rp(DE^Ipf&G6azhRHyKSO@Qzr+71`VD!B{*wf9 zNB=KD|L-XO9p%5H{FkHrm2Ibixd7eaTLKs#;N~fmf9Nm?nz4#WKtl@WaE;iiqj@~j z)%6BZXN`g&GEf6F)fcr|9Zsn#Rb3{gxtJp>*P&c!%?k{)#UVpNOl-wbRjkhvyiC&L ze&)2`Hcvz~%vn}wvstOE%FhOJj}OvmJqU)90yQe8DQ?=jRzuo?0CTIMz{!4X+zKm1 z&mJPfuapq09n9+Qu zJyKh_P=({(X02|g$Og32tYt#UFc}DK8KoJZmQMsQXdAJYA>_84R=weDXuXcZEam2>ou>cSnaT)O5L$p*)opt?B`$WdTAfu(N_-G8+Z|opwPAXv zO_v*OF+x&3UiTN$V#W^J>u}y2@}})iwt6^i5zV0|rxq($V7-QxHEhDcOr|2IzosQ= zCn*b;n6ROr^qAew!8D%`H|o$>lI!ikl&-8KE~+*< z9x1CVFM74ImsusQy0+R)IiC}-YAxY+IJ7lo=~)LHW5luF!dD3n6tV>{;%d5A4&eUF z-`Ob>eEd-AF?&Xnmjs`v^JhPv&aZQ(?v5foqrq2^NJmZ){I0D^f=^V|bAmYkC_;lq z(yKAcS8AEoG;~-H#1(MK2es@T5$)E6Gjf^pbyzDO$_cZ=4jk=yI4myjadLowmvHw> z=o{EGz)H2f$N=EZUyA>JD@^-4kaP!14(}>An9?=`rGGxq&@1S zqg*!s@%Mj!XD7YhZ%=9JU*5_-{^aSiRA1KpD7(t5yQ#c<8@nPI{j1{nzI2)DTZErB z>;v2LepJ&f&twc0Pe}8z8C7Jix%CEeZ<$dvK_A+7Y(^bY(ZFXdr)N38_ql}*GV?tJ z*|S~+&EG4H*Cg!B6i~!vJni1sErZiic8>Uw<#SyUq)Xax+3)?8K+Yt5dRd3-O}ayC z&-FVX^lFmw^Y2}z)n2c{zaYqedH-;{^{zdajIB5M@(-PR7okXyr||H?QSMy^DL4Lw zKA3x#xo)4M%QZ2E!si#Xduc(7CcnM!4h5e}2l??$D~_zR%ahOjAmj7Hv-rF9%3;Hf zqcV^(PVm*L1IM#>s+(JH@$`z!Is0L1Wr1aQk5Y&-kG9=8Da2o zB#Xa(crOD~)y*9vK?k33j1)nOZW!LnP!#>D|KbN7BM}0nN$NGiug3QhXt_iCjl3eU zi_#M1?- z@5ar_csEVrN!=x)roC#!D?gzpqh)12iPIgo30KleDiib7#p#ONV$Ld?M`XP|ligHs ze79Lw1Ke{Ic(FCqE=idoVgv zYW6A;^Oa4cq$Ay9XPs=Ym{W!_%NSW$mu@gvikaddv`{`<5&PI)c}2I=BDS|*Tjis# z3RrbnREVvYoZN5ZfHglBsPC zcz>w0C)2GUk4JvTt4~D_Ukt)I*4?ek8mhgmrVgicAaNcsXf~VciQvT@Nmv*pMJ@@f zlg)D*3h6czWZu^5;m)KsT|}8vi_L6}bO#kpt8Munku1uQl9Ehi=<8(1z-Vs;DQR zbrYP%3njk3Fe}YSc zE`b=|E{KulYdNpM?|ghOSPI?adv66}(Kv?Q9>x*@ihm4aiN)@)w}Y`z6eAGwPY+|^ z$1qm;!RroV-C?XdjCF^xesokDgNXu9p)X-9{5lwmB8uR%kHc6nPTygyJB)RQvFS*z=P+Y#Wc>!ne>n@?dVwKB@c%(~AkWoYa#t=%SUWqqRRlSr=(k?r0> zT80C&hIfTcm5`X(riH*Ty-C{L4P43RJ!GttbpkbaSRbvc9StuCa&#x@u47?0Bq%du z=T>!6x3k_-0pxwykvr(vvYZwc-rk;SYu-n2|2nv(<5AnvrNE*Hj#$r&IBKCL&LsR?xZEu5P5ywgD4&?7R z)~}PK?xYC(gcNmP@ZHiW_N6~7iWZLQr?y(Y!g2MTPSkHlC;c!d>e3S#T=~aL&jhsk z^Ylzbs{W(&Ovn#N&qRW47@i_taJm0NiFi@p(5ILeQEo>1JUdffkvr&h&(3rQx9;H9 zj|8{4nq3ta4p^Y^)z`B#MaZU>Rh7gs*PTq*w8wE%3$hV{)CRIRE<0r{qeF(RraVFo zt$ww|tSK{Dv<(y)QEP0?u~W56;Un% zO=bx*W>i%mT;MY!4q!bQ*6C8P`*(E_chH4PkFz&#k%+snamNH^# zYS6o8YNeOrh>+^DNxmqIq#4F^vL$C01I~rO;2b)-`te{fa3e4<8mz&w7~D2kSH{Wi zivW&W*PQJ{lB{Z2!6U@=JVfv{T^14jabDrqFn8DBoL7(5J}>3N3=^$ry_ zG6@>ij9J`@04(MFO-Ohe2eg7yVf48_0`!tQv}~{=1dE{Ldlc}B8`LNay>+NU2Gp_- zH5M@tX!TJ*OftGU-Ofn>HpHs)NHdlUc*YiQ;P!s%T2dJtK#<~g`<_tlaOOOp+76`8 zpm(>H_;PMZqc;0y&eq>|V{s+AZS|Xpywzz49Fg_+^*A(9TYe?+{h6qSC6Etq8nw07 zJcY2N?WFZMELrM86eOrMvtV-FhfH!Cbre_1ufmvLjlxrs6)&qpF)Tf?|E!>BTLU;)-y&_z+`(82-s7`2 zw+{0*a^Z{k8<7OjFZ&jLb6A9b`JbP26h8d^JNorqvY!PkppM;k$;SEgH&rnh9p*J} z@3YSA;EOBVu4Rs5obF#u;Jie5Jw9Xx(6Pe8Qd)^fm0+rvUUe@8%XAu%JNx@%R7cqDgkG zUVhun|3~irRX6Q{i0!*+86`T-Bph-rQe?~`>W{zuchAjk+sJ*fMq3;3n1S6OE}Q@7 z9KH)A;^=2j{BQr3EFH2X!((ygblr4>Y$R{OF%Gs1kC76z2cxvr?ypKd~_uU65JNh`vfx8C)hZt@`K?dJ{MAi4cuZ5-h_R```w$fV~{9J~m z`L>6Rz2=Z6!s;hd{NMaHns`|616Zo7HTk=nXJb)Hbo_t6vwwP~IQJ9*4Bf#MzZDUp zDn(%${d5}v4^uz?55x!v^jCn-;E4P*UL9N(#v@KPs7bt(ZDkPn<{}2ZIaqFkJ39OY zCm<*fz~$(J<3XP=sAI3B*IU`1ped-x%#|#-7!1M@0qN!w=ZIsEv0|c&V*zGHX(57Fa%|;^mV?=$t+&yyKwTrm6YaY!q6UxC7GYi z4x!20s9IBD34?o;4*o#5ct6rWl-JVw;9G6ESiov)qnZW@ju{%%&OP%lUZFuV_;X?2 zP9wchXjcPhaSY%YTpkq6_Uvi>zMft-(eSSbXk4~FSf5;0{^uceGPg6Jax#_zhJJ~A zc*c6n7$x-XI~~N%yYDljB;cTSlm@GK0g?ca5zs*rz(a=(NJ0V(C@_!&JjRkl98f9+ z4w8Vgah!2$I83Zh%8K=A+*qF&2~Vs~NUTrl0a%~sK|A7i8d70C`^5VEM3gmIoJ?oq z%q`X@Wdo7mAM2B$zTp7M-~#!8{YLsh`aGRmPt1cS(B~5i;faOt5m*RmNo43s4q(f9 z0exn(+t`t-4W~n?ijSiUVqR)VN&a=2t<++ZhTh=3RFmXcJkP%s1eu;4=U9Iz#QV!t znQKVt9ob_s`4Eo}<6?(OtjB$!ku2o<4>%QG2a@Ba9lA^KQDAVYT7Zj&i(<#;87xKN*E03w2 z*=E)dUsB{cJzNxDuo>IMI%ATZGTr83h;dbg)*DpcN?Ecv7pnPey2l*$yGBBK?PT|j z)KYvIcPi!Dq%x*9@fLN6_0*vhAG8j$Ms3r2nQy5Hk!|dHZ@GMnRMIIE=(9{|2lDG| za-jN$LK^^mF2`YyMMcHdgrgqrN> z4Q@v%b+fA-l-;_?Zrbq%lg%Ad(P{aR!s^j<4DVyf-WWd?b40R{I<^n_(P27TFk*3f z9EtH|l%e^<%YL_}30!Zm$dSwAv`#5Xk4e;u?e;vSipwLG-K-iJa+yq0?Kd{}x{YPV zgG$#!m!xo;;}8rTw_=+Yy`G7udC8@vD`5{ zpVoF7*Qks1i`XQ3azkYD+?3l4l9P2MzG+648H-h-l5n%A66vhmSuGu-wY3?>#?@lDOmrvc(d~Qa~*R;U#Vhp3ReSu%S$x)1;hJ#*wS)CKRLt^_PZB}YF z+nyJPM3*FMDy26#D;HzzPTY*>qBO%Q%~iUnF3P1BHM5_o4Y5{glxjUbk5vw1%!#Mw zbe8hS3gSdiaQ>16lTOAJcC!&2J^yY%AM_tOc}weV{c5B z`^9W!R4=Y$^-A?c>PqEFmSDL7u~|iz17e2fu&wY?>Th4>oeIr%R++(SpGmTO32&5N zV$(u--0G~vjox5um8Qi~VmRVPb-CG}@3umxpf00^fu*p6CE*-IlD z=0gXse)2j#s~u}n%{b_H&7AQ`tzj;G1b-R~|3yid!wzy1&ZQ|eGc`jD*@qKQB#?Fq_6IBycrkZZ|DaJ7N%MSyYtMSvX0 zPk&?vyfRWn>ZL-Z82NXz$mM*| z{|0>J{e#yHI7m}PFnw#oFSgnCy4QUgJP2TCv$xwEs17iJE(XV;6{}T2KYx967>}WR z-(ey}c>pYZE-4vgUPh_xLF za1g@07ZN0K3SKzF)SU}c-K*i^xam_*gp({mlr`VxYI;5e@Fon(AO!NJH6-vT=uN96 zNX)npcJkxEH?3GXcYtp?AU?qp{XBGFKLPkA$A)LrX699Ed{~S{`E2H>c)~0Eg|o)R z&CAS@l$o)1qg@W_5`gXU)=*edCj0n{MfvUsiTMD7dR$1%hj6Hnm~k}TB`7Ft8z)c& zA43g{o64dWfpJrz4kKWoV|$!KXItwzQBV+m4(Aa9K$G8Y287jjJ(p0JeCW_n=uk^O zCh8tYKEG`T2U-QasW7+08;$YJ2jGdzxqDI<$B{e{QH(_jnq{XN zgH`s)(}2g!xa|G*=QLx%83?DV!jq@rzN@0;=za1uJb4;)Ll!>cOziZO;g}cU^I}Ng z>@^w`y6N)Hnz&~v?Hz{eCHu5^r3l6d7OxZ?`};HEl|Jk~^;6=NazPWvSlnNK#swz{ z^r({qu(u^i1?j$kh7s-KzVN&*MD9uti4&}z32J`9k{&`+u~Qh)Gd;w1<%5RywX8hh z42}8zfGu)goMO@}v>aDR}Ug3F9`^0vGM1?4iLjP+qR zP{&T$#7$usgp5peAMK)BK4S=%T}7b~LP*6yHW?644W~2>&ql-S|HJr#V6+tG&BEMy z4^Yy_4A&+u1OJ%ezjgRK?W1fQT;l;qT`Dg=t1HS~ z8w3v~2jH^bcewq*#}%EF+{eBL{8~PB9u4Hg2U38u%6cg0pWL~M$FH0#{DkT9{uWHe zPY2|E-W3{1gde_4{35&5Cv;81^eN5tAQMJX>X?^DTHC%{7A{^K;4VW*4l~g#u7UB_0Mg1#RbzR{TKHWU8T!kza+n zilNC;`FVK4LNu1cl_*9Q3f!t8ML>7Fb`uRv8ss^LBnxiYkVIwDrJr=czCiA3Bw=Yq zmZ31!(8Pth&-Bmz@(-cOQ)DPiHMD~*OeGN%8Guo(bOc1GlN8Nzg{Uh7X*d*D+8{%d z7^1BVQ&-kIs4E=0U5kiBMU6;uL>qa;Fmd`3AJJQmND%mVNi=*sKhaoP z4?z2^^*8U@c;b|X`S}s!9O1$&6{&C_0M<0*dx}3SjljP$IgJnTDcG~8*P!`9FWA+( z{O$jRIV)}tl%Z*&|I+&;8uX+epciMe5cK}vJ&|F|RSg<@&uaQl*~(Yt$}tlCDebcp z4wEsKB_2RH3{=C0aF_)n3XE_#POuEc(*O7X!r>T0l5w|&Eri23&Bo}MNj;k&S#zre zLpjWxD2KtrL0{QNz^{ytJt>Fpp&X8^_elk;nl3gd@?m=&xS$^fw6cH}*Ce0?#KL+9 zZkT5c=G+?=-1WY{*A2h+-?QPcT1;)9rHMxqG7+TnIe1|$-EHHoPhd$-t3$gwmL?iD zz61Ep%U zO(o3rR$O{A2Yi#MLK^H3@Q-#>!p#|LPzlF|{D4j~TZtbe*BfauuBe=pt>_Jo(hZU; zCMK0VzdzFJ;~Z=B1+4#;RWp53Z6>r^8HQmAa?rpMHE~y&D%ILy)0SpxA(QUKN(A1I zMyvFmnRSbX9!iTCuOvrpdAfUf#X4DnZFh-dIXkTF23$8g+SQl)^`ux`cDk)(XAzgj z*%UdN3zc$8T(n4u-7IUz=3z6AF7*bN^dj0K39i#@)W*sLtFA~Q(O-?)#5xw8E9?2& zTdp-J##`C0N*(wu-dWD(60s!GDjUPo+Ef-+S#0u_Vc#Z352q_NR*hv7Jv>(^B^Qd2 z?R1Or#$rAmRfH{-K6a|x?sCrOvd7{}LRGd*eo14h94*JQIho>;<$OC+uMN2pt2a1h zr9Q75o5ysu*CdvO1+C2yU#fNz-BC1^q{ZVT!SmheAj8uee!blkUlZ%jo*s4v1FT5D zjt`Z$=)A#6_#vh@n3>EswP|`SA0{&jZyob5^Takw4JE$5DDULXdiX-jTh;RR*stYV zlhPrdBc`(iky2vKU3AC|Hyw4dYl;#>?DYnB=^9hZPsi<6kz;8!gO8iJ9((9o8|b$ zaj|T5cI|#FS}o*vwO+M8I#ilWAtoBEwQ6VG;K?INC7R^CIc%$$St9+qR=D-}SZu@^ z-9bA_Hv7}Yh~B93a`!rHzD=r&Vq(~@H4?d4bHT^!eml`C`pj zloZFm^?J+HGTBtgU41$gwpe~&!@yi(7?b8Mcyql@MuWB1@{{b>2zE2bwKjt++Y~#= znSjUih0#_v$w@IT%W*l51Fdmm&91P8A=W-OIO70?u4-wvw9|f{)%2&mKb8&&{lB&i zCg&>m`q~4m!G`%7m9^g+OuAPM0>a*0{U99JS$WQ8`b62Km#u;nYYfjrP61oUfdlIL zhtU++Y;@X>4*+#Aabo&S*1Gy5(m-~G)bt2L8e@=%rXy{XrmnR?qU(kqBe3T?R`$L}7^5@2TVF_3Aa)zZ(N5Xv-$w4zqKyt(y z%VHL$C2mlGoC?z}tCflKk$6>dX1~vOV{s*Vc{P{2Nb_EP_v1ZS43Cv;>J~i9zK4>1 zKBU8kRXqz*lvk24o`YO~Aup_zm1BD3*T_H|YSXJtrnDYMqyZ?|8A{^HZB9-`$+h3V zf|(i&W>DRiBUAAJ9@uZcHP&|ZO4Ea>HhV_I;J0_C_yi7;cm6V#RBfo>Ra{rU+aCL3 zQh$3bH5-N3%I|O0OsbH1yET~Ses~S#YlN3AqqywSz34qYa`OVyy|hz0v!Q0^3NJ_X z`WE2?L0e93kIxQYBia^^2>eXgfHy^XfKdPi}kL_lG-1pfW1$k6yl?fa^xuzhi+?7rR3r*mK>Xoftvz{)*%KUZND19SHh z?%lEl3LK=4GqKZCgpA;}b=E3py9g|=?} z5a-YcI*2gv7)TO#V==UO)Jzo&76FnhxH^3#QD$T^v=x)qFtL_}Mh)P*QWVrVv` z<09zR>9R@v@y9CR&?W6`S5M9~C`;(`s)+7oEXJCPx)i=?EyDOW9x>osmlb%wOL7RL z*iWn-@_}}d&@K^|CsV{+?#Rtm4s-KP9!*E<;&ePqkc}lk@0W2issVv^JrztQ& zVJ6t&G2AS3eE;lK+8lLP-rU7Dbp8(5Ko7Y~!e<4U37LW2TitAv+jKxA37$Y0T$+RL z+nw0a)`9%-H#fdbC^3H3;A|Q$I$=xOU_YPwxqO$L2T!wQ6Ip2>U=qV@2814t4N!0X z^ADyszD>uEt~Ztp$pG}m`+!JgQr_Rc>8Y9H8K`A+>mvp+i;w7=OC^bW$Kf%WoU$ho z59K@h{wWgwDF2CnDKw@xWL$C<;G&`ae0n17mKk zb{f-Aw zv|9oXS_|)>`XVkL>%zk2FC&fR-7bbDaS@&qEo}Nw97#yR<{})|NO*VD=heqe+{xSH z)rfXC71c<<2@ei#VHh4^JaCWjN<8M0aO$^ZIKvCvwJiWe5rOmeuA1+u#_!2tnxCi4 zbqCKug)ukx4h;*+M+Swn)8?8%0hcAg7^x8Uc@j8oc!VFDD3L(2G9-!m=OE0Pg_8yTW{!k7V~y@w;BWr; z`@eUQ?)P=u(kwi-nbYewG!PZ$cF2N)k;f9E5JqW}>D>_L_>=<~mii`h=?{+DM>J*z^GDin!yu^#6Jd4l|nF7f{M8{Y@tet<8&fsvSbjn zc8@Rz6a-TWYh_B&uW(PMluyN!VygllK$H^nb>;SAh_gEWjTcC;@B4`B;bX8k!k;qW zH-Az>6z-M~g|#I_i3d-Jf|Idt@oPR5g196^(f)G5hZ4JGLm^q3da|KB*-)NrC{H$& zN3x+LU+NguodceNRK}eRMa^z9$4qVeR>kv&&?4W-gJa9z4{ zoGsO=NR_8-oT;`e@#!H&7T#!rNLQi^OZHa;BUec&UF#HT?bS@cv&F7b%pSXgVKL7{ zhw*j7ptYzq=h?<6R%@g-)$yjWPHa{cQ8`rF%}ljM3~J?!H0mjbHJyDeHd^gEt>B$? zA*pcM;h<#2mkBMcUT3w5f^EingY9((9}`N3P8Cy?X`P8;DSq~{N%g6Co$77y-b?gooBGF6t_ZML1))VxQH@&?C4uhCU7wRD(lDz#j?QBz*G zyX;bK4DuYm=;L`}DT?D(B_@>S&GfNfuQJt^%&^sRXIrei#FG1RRV_%PC^w-DJ)|>n zye=)~?ag7q)@m(698Y8I;Xr3Y$c{O1cVi>ne*4}pI%oP(wQJv}y_Uf_-e)G;mk(>&0dE3je@xHd<2NKZ1 zeR;xUUyc3F7Pgtn^d(2C9ihE!E*7sDve3vZ3&xO>WMVHk+AZP5S}KXhXOm^Nvx}ADLPAP%c&>p{wNYo7%O(4IgPm5iwV9-& zwMkoK=}f1SDUM^@GMCeA=V8rNsC>N}t<7HsI{|y$;|a}XE_!l&EKG*QN@jY{4DW0^ zNh_%ylhYfd3p72&Uw2WeK@lB_U5gm5^m`R1k*@LaUX$AP=0t-?Nu^1qx*tc`)^t#m zdrPc4D`$$YsY-@9)W;p6&vr+8gSpJ)n68QIk+Ms-dz}Ne8@AGbVdgyfnN+F9H94-! zrS!?paBHPZPPc$gBs~TkBN?5M#(@pR@wl|5S-H02rv`OXe)W@LG!vg33iFmK92mec zq6)ZOgV&bo)Szyzt{Ws%XZ2~kZ0k98;@r#B>Lu6g#Yg8Mzq9dN{Zs){l&wx`^V-ZA zAJQ7;(ns(otX6xU!$&irJTEz)f$`*aAZEFsTY1O{Cg*B6?yVZZj({td;CtSONZ;{p z4!z5?S&VZVn6(0_yEJOAkWNh-ih9|$TQ=H5I_$7;-fcoPdU~pUz|=Z~)2&l`oyy=b zwGOR*zNs}smyeiQ+^D?_T5XLt6vQ6)ZF}r{hFw}ldWX8jUGaEz3RsqFS@X@;2?U53 zhlRDKMp=#ix2yIrw-+o>2>4K!gw~Pxy|SqB1g$@A-forv{1i*Aba17z!9FH}N&j3K zJI0A}GuhrmT97cg_Z9B^STMQhj?@RiN)PMeB*f%22IAfnn%y{y~Oi8Lo8hUVg-J*>?D>5=SF?SR)+v}oC^T^(r#LiWkR>}vviLc`)D2A>T>S!)C_ObiG-*%{ z1>%y0CP@%yv+#xmR|ELN?66QLaVE+mC|a4#F2KGg=ad9OA1u2Et(B}9-GLr z=F%QCW)QQ5CKVn`8FBeS9Gkl4M=~FxD+25?T!lND{ZiG8Zf#IP^nvSs2x6q_D#+wi~_0#|P0sWs4{RI2ZUWQV10-M2!Y$ehc*E>;^BkP?K z(GMuwcFnHbpqSVTgQ7KpgSxkGW8$<|Afl+C(&e#bOP37AdWN=-swF&bpsQca$L_8- zpxc)k%d^bRV;P*qg0BHCF7F1eH68bUEP_yd^D9tKo1T;M$3OiS|2x;=6&QU?p54S_ zv6%mUn$!LP{fvHs$+T5PpHuR^b!WqFTgQgB7IQOI$)F#6&OP=vPN%hU9L|%J!&s!$ z!_N~_v#$6o7`vw!xMP6x)^NAC{R!*_Nth7xyK|!nE7A@6uD3W@4w+$=5nYp3xUPB7 zOnqMTCJYlly+xls3bU85G{;Qov+Qrz>S*u02Zz~@JMaqFq@>;RI4*=p!5dKFIW;#Sn6!^?@B;PgAP2_F~OPp$QbT8 zfV@o?G-bmhiWF}BCTlOfy)H|prM|tdyd0y8Ec?Dtcelj+E97C*Xo z@XzvL_Yjg6*-F2L-o3u(M)}q2vDIwirn5fkO@f_Fs7JqtR9U+16az09qK82hRl3$Y zkgR^gxEGSxeavsKrDmh>TDj^F=2BeX))>rz@-g12chozu1H}l2|BOe9ePh=+(7S1EV5R9n9Bz6djor|vy99dCUNKdbpGZec8yzN+1=A@_gdsz z1;2mQ6>G6l1{-00Vx`fO0?a?#-BU2PaKgv(J~Ef&G(O8&j1bHP?V~YA*TpNY*9{of z4clvmc8hRZz#BV-#Nq{);~pYm7@{ain98CW8W|c?p4^Wzi{7RrNNKP*(n!L-%%Se- zNV570)Kv#b7W~BzNn8j;%cdmwTf}|H->!Ft1Q{5O$y>9Y#eDw(|x9t&#p%DntD2 zAl_O0OvH5G(MRz!9K8pUlHF0pf+P>RiY3G?ge1zSunJ2WbRpLdV)M+3ehIE<49Wir zjgB!yWz>o2!x9!A4}FL;crI}WOW*~o^v}0&FmJjU#$!xyo3O-f#TBG^L=xwka1o@SIWKQ`7yt~kNK=(xO~)JUMi7?75JS4$Vj<3y z&?0F#%d(+G#-W_=AIc8Dg|*e}KdV??{7&(;w>7_7Ymxzj4aMpgaDx!*0;SM=;XeH$ zqhH2PU(o;QQa2rzR`(v-z`n^}BigN<{^c)MpTyjP6ljFJzDhyQMH!$7@?00{UJ6Q4 z`cj=&$~y(!Hg;xxP;^li=N4=pFMX7{EnH-wB+Od|bw|FurH!?ZQmE@Dj4GP@Hj`Vs zX2#KF=dS%9SA9l<*!Rxmchlf!IiRryk7vbXOzQ|)59qZCw7Zg@0#u)q%-1aoeQbRPGc--P99IylYkiqm}hTtFvY6uU}7|Tw29P5Uo z8v2-QH^%Hx=Edg%q902?OerwqzZ5tfG#7y7>@x~4J@|eqO+od#as*OZxr=YqfLy?6Tfh z?fk)T`}DcW9q_;3l)U@NPbTB1r}3-&68j@UFLm|`E?n**Uza<}#VX*!W2aB6*5|u3 zSly=wsatu|SU_9OWQGezEk$G}u? zafjyVbvH&qj_up?SL4|juvPp>gLdfGZ;=ptwsY$lL>%~X0Dt`Lzd{edPo207p*eu1 z1kwb5_^i8c0@v(|e+X|Goi0W1dlk&m;UB=mk4vX+{Y>{`S-uA)Y;yFC^ zLFM%!N#a(*SQ7vBum34DiN=`^T^)O`I39{L13`1{Le;+wG(*XQEXGF@CJi*xAPprr z6mtZT=2w7&bJ4)}U-eAX-)#--ZPNO~J9oD=^m@j;{Iqw$>Brd~G@XJ3&_ zu0^*u@nD60ad_oE zLg+B^f+DMHUS5Mg2%6c~v(~jM5uo?uR|oT+4zA8xlXye{40=0B6~DqvlXtlDV?z`J z3Cw{YzC-Ejaf`u1k$}xthCf}n0>VJ>8~abiaR`_~}Vyggkpw}>hlQG$0c-6c%=OeQjxAZP%1xS%!>JKcS}dm1zf zI%N3W_=n5rI%%XyojQNs41l55Wux6X14y^O6A^A$^58*{?v-?AIvnZOt^54H{b<+O4UWuqdO55?;e;OmL#~VGtwMN@?sO3Y7C`WNIM_Y zG(%PQAj#^7wp{PlI*_sbe*gdg|NrcL*>2;yvgoe}*}z3Nx)aY+`g8z~i8IG>MqHpF z%e1XTmK+Tp^0e+hoR&9*tzP=k-LtrhklqD9LJ97#$8p<@erxelKRfXg@ZE zabKY?q2HTfi2y)37C=KyvHFM)S-%(|2v?_38O^%a3Jbpz5RPHo66Q|xk_b^-ZjzK zBzJSpfB5d9ZpiJ%@4a|Doye6^)#WG$Nk|)Jfu24?y(bjF~gIjZ=AQ!ii)}AzR z(@rl;5pSW6relJW@ib{xkyU(=$|l{5hNa*eqGf9Km$KR>Pf!O#P3O}N!461=>i9uC zo&a=Pl7;j8K7fWuH;angopOO;4Uld~x;&sAF+Wr(@8%B}h95-7^+}^zy(#koHE4&eeh7pX@ZOloFKc?CHR09YmVul4 zf=nw)rX}*5`hCq(xy^mh9LX|?Ptim=FJQ9z1^G}yit>{euu)HzAWARxHX?mLstEny1)0<#L5bL+E7y(h0dYb-w?@vq9Ui+f{nvEBT`rDHYQ`09HxxHnw zBu&wD7kAuY@mg&efAnUFl;%W!0d{N-_(qZhOpbt;UP43%OKuDltLp+*!sVgd#&TRR z21t^TAz-HKA;5#Ua#dnra$EPcS4|{=IiQ>9;h6 zDhNf@nB7?FHrhUw$E!=!vhnrk|NWo;>%&Bzc21}1b+nMi>gR!ZtD17Lv4cx|T^V9avZ~B&_1dh+LB1j=2;B zoIb?(x}E9c&Sfe@m$iqqm-gU{fT~^Vn%0>cmA-UXR50l(UYW{xh9K3XH_JUumXOfE z`mc;d2(5d9A@>Igy4DPOr6ar= z;tkdbvIjAp&1KTbI97>-7V2S|Dw;%;c0tjkSJbB8V3kC(%(_~}yH5H{R1|G=H6+T) zfZiAlaF^S7*+Y@T>Qt@lJV0%kj)il(LMR#>PVo}P6w1WqgTZvlpG?uM>4e1wVi(yT z<2SB49Rrz1iEJ*NNThMs&fj$}?PeAlypm<>#u4Yiof@Ira3r_ z#SE#3`l4~54UmeTVdn0OCcf0WF^ApyN-Pih`xfD^2xf zN!JXmV;)FaKc;m$c*4X+c(01vNyO=|fv!o&ASTG$o;a{M#yA`qL}=h2n1Wk8O9gXW z(#G}%Rm9Vrc9Kox^d0*HgZ>f^#~r;-{$ij@JS!3|SkD5n*|!7TFprVe7s!v_dphO| z3SS(a8>aoL`-+2#4W0Zl$E`6D2ITKlYOIPuJjp7_OvGXkzMgMSG1yPIE5lkHz+NKA zo%z0^{ps`~{?)=t8(A53BE^h13oE!-*ws~AQkw1$-Tl#;-Z7Q3M&~gZI#nxLrq+?^ z@XgwFE-2f@7WjJp+MZOl=%ffwC4FqV9?+$shJ|iRl&INbAWN8<;h{m;n~t-W>?Lwz zURVek?nrX;&zM+U{uqfw3bU#?8DOdMFXyJ2jN=v5Ai6CUjgFu@6kCR-SSI>Kmb=6F zFTz&)B5@AV1@Kp2)Vs2}PoE}IiG%!LdJiiOhuMRC2HzRUZL@cnwl8{g0Xj^i4^rgv zeIKtqXneSz%H(qCbT<8KC>wH1R%CN>NPjBmSKrX~$!P6U{0{9Qo82XA9_|Qa;}Q3G zK#=jePc<6PC$@IuJaYSEANRHVj=4%yW?i%9g?)FmIV7vs;#-T;-xvs{OBjjf=ku@fT^-sXv_FWpg*hu9AH^ zi{Hk}+R1V0wK+aJe?A^(n#aB2OXezh9KUTmTx##JTwb*bBWe6vyEwk=X5XxvxASbH zNE?hBnWwC*XNG1$sU%KErAmEtb#Z!jGB{BNdbV)ZX`j4I#m0DF+`qEXh(Y`ca%9(McRv476=H#hV z%CzKc>n3eXw9{0#@Ng5K;3en$y_-2}mmih0^OvFYkT0ZYgSU5AZ;vDOJyX%U>WO*U z9A6nXo$6V=nXB|Gw|8Z6JjylR)O;?Vdp7!wivmjC_peduGHty*4V&ge?qw*ybPJcU z32pGyctq0qTm0?ELnYhKR=VqvD=eaf(+K_4H>L+a{n=PsW|miBWly`xoLv{ArTx=*f%p zb?HLYTX(J4O(CtsID#+8}9JMFfAJj<1Cr*oc1uQjE1+Zx`-H7#9j zm3!~U<8-HR+-SFwnUf3SsrROoN5>gOKYuH<o*dpX8=4CSRW}tb~#< zZz`#HtaaT_jYdzG@o^&GZKX5C_6>eC$h^diS}EC#*KTr+xZ1p|-ltx&TA_n(-gPY@ z+oSwYOr&f5A2)e1A?AOShE}W{YhSdIr%xG6zHar7W3Q%~mfnuOuF?jG471xtN45IW_Wu&u4G!n z%j4AZlUQUbwZSd?&y?N_p%OYwvUeDh5>nRe2zzgU@u{CNNHdiCSt{{6Nrj;eR(+1jIA|B-#GnUBTnd3Hz} zREF1?$L3wp?A1!glk=X#3No6LRg zbb`dQUhL`W_`V!_*Ggzmvf1YLF`2Dpib#|i<>QGcc8d28S62M2F?f1^IRBw!-qhyn zebYQIW@_bpGT!-7N!;hJo3Uz6erf#Zo>osDs*RgYv00!Ez82(`sP*oe@2Tgz?Axi8 zyS|Bw=hs(pJOfXU3)lC#{N?e*ZGUi?k_%?)GI5GU?f7Bxcw14I@Qa@g|2s-#Z0CWZ&nKZ=DT*C z|Dj}KZ||46d};k$FSlre<4WN@H6piO$%Mb2@nB=vPG%<0k53jlP8iL4q0~%Y7OVBg z;ps4Y^8VaQ8|mTAUDbT<8!c@jHR`m%JSvU5w~8?_(z2CIjZ^Oy%Bm-mq5hs~wzBQq zZRP6fM18rvIC-ge&q|5&mxsHvPS;2c3aEJA>t>%HD(TG4=%$dh=WRFf92Q_jDfd#&pLMRY zSk&D8NL(dOwDDQ}rFnY%aMw-V*o#zGtEH9Oo37Y>JV(X;WODTwtE2}V(wDJVzEZ4} z&Wks7vlw7yqz#fEi~p5cH_3w4KEAiwwZa{GEGbeVP6q~$Y^f;6i?w3$xL72u6??_X zOQGJ0Jxm)^idf1Njg@B4NBDlNFnN9$zn@Ps^si@w)#qZTefC_unToFqd_TR~U>8$& z+?Ys{f^yL>R9nf5^;n(`tJkUP&XnXbk%dLFKrQ~4#|-Q=`r1mhEvbK>q}l@R*V4@s zeFt}7wRlaCs>Eo6q(||8zv;!E(2*5|SQI)$ztlBqUFhr)J(lP*L`#)byvN3B^-uag zy8ZZPuM>8!GwoLVRU%F;3xcgPjvY%1Y1i3A*saiQ1=)AZHXGz>)l{|K(7MrDTU@~1 zs|i1=tn3%k>h~eQ!IeyGv<`<02?H6NJwIPWH0#*sN7F_#jwLlx)V(<}z)=78VAC~L z+f>9;*u*<3=dX(%*%XqG2gDMZ&m>)6nEUFA(LG5`)|=vZbJVlr!GlwOvX^9NQJXs5 zc}pbv+%c~O=zQACtDV0b27I(n{sW9^W{taLwP6UW1jZK1`%csIZ3K`k0nxMlqzsa1 z4Y<(IBAB!esq6T2ql{eto!APj@tO?5h%JC5lV3&FX<#Im5@L#=0yY4|tJThp-A;hw@_;c&IHCI1*|LiCAU>#!rlV)AYsd z-S)`xes@k4AqPKjKMQ27z*;QU2FU3U@`5?i<~4(!sP{EhmV`dSYc|#lECcHV-wd>( z`T8D=$rtP$7~8>^u}GrkgyiB8@fhG-%ulSifDq5x+Z8s%t2W|`Ozn;K(f37J74zF) z5!62LC`pp+@21-=3U>2$i*AiOvTm5?^uvt3KPGhANI3mKR8_)&^J+33PMa^0+9M$< zZ9&rTAJwF4qbhWDu}vgCWoL<;AVvBN)?n(#3#Uc|pkW^%XM1co@B^Ql$*bpck zClf3aqK`9Eb-)W)ljEk%Kv*n7wopuz+47thG?1Fd#)v(U+hmrxL86%@xb0GS$h5VU;o9e8x;{GrkP;D^kgPbWRu7X z7D$z3OY^U_kwW)32V0(Lvn&dl1JA${Nh^z!VLqsHAUUTuaRUe z*#bH1aA@a#n#JU}hw!{Vp;0L-pE&1_+#6MjiVI`yBR2`4%}P!j4}f!{&jYz~dTgL; zEd}*gf{WGH`+=fyG{-x#D^hMpRN zhx_?=V#2ZK0c8521v^vKp#t*c==Z#!( zFhB}q+sB>vK!$nV*gfDq>ZcyxZ^?K(_Z?hJfg^^7HNZlKNVE=L{CvJ82eBbWJ|`0n*V&eboG0UrAWWKmK=&o$AYt`S|IK3uT8W}U zZnkC6seMkbw^MPt-E%h(DjMxAW3!xnY?T-%%lc?EI_OQ>x<<0CdzTH@5Yjup8^&n$?pe3 zab|gT|VE;Pqg0&t;yY(cf` z);wr6GDWxRL0hWkl2{Cx~vcU-)+`R;4>T{5@H%f`@mXZ6c!vtIt9Gd309h=Zoz6h#b)$aS{4|u3(skRSv{5ZarUOJlY&x;2P<;f%{%KY(uB(k=^R5wz0F8w3 z^cGdU+v5G_AvCka5x%XSW1Y5I`EzyGyuSN1Q`m{S+Y-%J=k>}T{O=v%?MRljNNBc0 zWVc2$rFNUdLPLWX(}ZmxIB4Rq&Gas17K{1qy0=|J+h^Ckk&wSv3GEtN32lzX!dld2 zV?2$8j+-S!X#D<(w;vezd$I|Op&6N;C&6_O@Y@P6d%7giq; zF!mgon<(qW%F;GuIaln_-Rd@S{oqDj-2*_@r_HQr)hg?wB`nnRM_PPtfgquD>rByN6msc;n{$J4%xARG6qPJ zJCL9{Hh5?}P-ICq6@DP0M_L&>lw_t^!>+KfK-P|ydZO9|WyoLxC>jRpw-m7pO60`` zvkOW%&jxGIBRR^1fu*B;`Wph7?I>}$o@IiG*;sDxyJ?obG^rXW*)m(Nf>T4Wr8S*( zCpVBBlhMMKNhVM&ejNzaG`?txUAEy8O{ur9BT=H&1?EzA08rSG+CvcKo(Yg4_nl5W z-~-b6q_x<<%6@$H?Nuzoc@o_oh9xv+t9~SMV^O&3&jjujZ^2C&PeqXG&sa)IHFb>? zaOVZl6*-VakgYh;((P@=4b0&Pj}q{0d9_m*5^#V`9!vv3Egs*03e&}gn9cggB$;VI zgTv^@o*x{r*E(p+;875kyJw$#hSgvcx}VYsrogqOe)3_Hz|GiB^Xo?S_7>tX=h*2c z>SH8Clda#G9MfL>87k0V``t!7n@(lb(36=h%xJ!|AVEdj?i<0>NP=gwMInb*@a?sV z_Q5jJ>pcr><))c~vYo!!>;c(s**38*Wc<8 z6u^!Ui{30*kz2ZK_5V;`hu?lSEbZIK&Jhw9M~e7$iK;D4WM84jma5V3IF>82^Hjlf z!XxZ+R-3~k=nm5j7hd zmJ2D`<-!T|`g<%FpOo0HXxPidS0Nb;Ek$Rp5O05&aB|G+zNsprr#s=$jXsR-zC7NV ztXj!BxqiXlUIt@#!FLvGrtQxTZ+xOU9T*vb@lK=**@x`wHqN{4tYc14_h+NkHDi7e zfD5{vIpA>&LAGPC4;yOfg6&2z?!>w^ItY!-*U)jVUdVE^l zoS8Ymd2pYvf3CzOf}nfTq+0zJ7K`Cf@@`V|ZEj=Vue#qE@%he%PM9+&+lck>!x3~6 zk9VmQ*l94{*uir&@W!wMI<@-G=+0vY3>M{$9*rD5Sok>Rx8k!Up$cMfppnIn!69HC z=!C6GPE)bi2alpz{kOfQ{`;^0yaLs*@Wb@V}gZW7|NPufD(7GC2&9;%)4OwOIUEU2s~j>P<|jLkZ|)&NJ!rAPETwD zuvqcD%nrvNEHo4Ilakxbe!NjihB9R=9GikjNwSvB_t-isHkFZ=kR(G)sSN4pi>hau z%5A^{*(=yGr-BTRY@j9sZm_;&2ip0kWO#AgumIs!eYU)_vZC;U1szS8E+o-F9i$^wBI`VnyTA9)5UG3f zMUow}(7N~AHnIz!I58@Aaf$#SoFho<-uD3EhO2$5avOv0rPXgvXc=LHgz{h=C*uU= zL{N$&Pb<5BTyRbBQXF|&S^EP6wH6ge@9-*GC1@qQYN__c;wMx=UH-%#O7F0%r5r)? zj~wSGNCI7A?h9O#H&3fHd|)hA$|ceMI?7lqwxm8>N@gVOtZt61NvEh4DL~1L5?QbS z%al7OL#@tXvT9P{9u}bJZy%15Hn^#S&i%09S`Zr!6JesFXd~PjH+Z}Ng-D9e1dp4k zh&Z`6xkjR#WuRRx6Qn@Cl_&v%Qqwa*lC(az0pmy2T=WAkki?=cXeuJ^sXkT>1g#_B zZK2T796=@^)s#&c8Ha+X&XNJmm8=lNx$+=O4;Bk*%s&JWXy?odOChKX6ceNnbuQQ_ z`+(krl?~aEfddxQVS+_x$pJTTb(P7hrqoCF{Gb=mHa$bc1@m|z8oSd0{)F)^^DU6hyGgxBm@uvKYihK@2f z1R8t&Odz8$0sID2&|y>0D(SeHb#LJ$zubhYZg`$xWO~EF2ZvT#3@V_?11ro zUs#&3)%Jv#7}-G4r5^;3=a?}K8MT0UKa)WQezp#F^n89jEP@!71s3S6HWO8Ff76!? z;b9uBnF{Zh$thBhVaj>4zzbJ7m`M*?y6wB|Or+?^g($Y2)yMKl@$z^vpF_-R?`a-= zhiLdr(-dZiWddb;D`4H9i_8>qT)h2reNtS?r{UfI-ei5BFUmgWSc!zsl93e~tlr$! z&+DZ|{qDjhI6&=8!g1?8M?mvcKC&rudv#u~{Bey~f$4A(bcH1#la7vnyGE^8W?;Er z!kmY4oe1q~c#7g>33H{ZyG%_!u2C1X5;Gih#ptNqK=nmgHASLk9Pk2J*L5^Rx*@kf zMdz4ch6zhz>{p0)he?|P*1X=4;B~Rx=BWBk{SUk#g5ooF=9maI}bpO`j?QpW}g=D=f2&><-nOc`ed$Zy18mS`qewsy=7oFww= zMvmMFcZ#sVL*o!zLpG35hw_fhfVs7Bu7Obbnb}Bog2xWH^>I<<#ysBdN?N}q+llwd zmNNM0csCayk^06qoIwzL5}4cRe+8OkcN#KkEd=0^(;9a4nDFnv{`)i01(*STsb>CX znQo-WeKM4Yo@}wh7O5>@BpP#Zv{SnP{se#RS_hoIs$o48jYa%6`YFgAK~wP;b8)vs zFBWHB0DUe}S0xW-Mh5aGZP|Hu&LS~|Ja2!eM|bE44lE}$bA~xY`DY9LSGhrQ4jFhJ z4l$1)VP8ymEJmyIf;txz&kH0lmX57cA?qg-q`uhZ1`D*6VS?mJ2Q1RK5eLtC9~M-I z7+FTn2kDMG(~b7>av(H&B$^ZemQ8b0HBej`>pol4btIXf*z}#*{)S$BShvApRv*?4 z94wTZG3BS$wqOT%cgJKRf=^{VD9B{U6ej>H4#NfuIC4y|!ki6ZjhUGXTM`D- zM7ZvLXoZMQ=YUnX ztRQ?waW10wpH2(bY2chP+egZ~#recPUX5e*dK#||03OkK4$wxB1td%fWq}0DTEhYg zI%rHMGl1S!7Emx}D+?q;9Kt-UOl;pVVTX2^fN|?W#O+`r>;Nqj2d>Y013-akzPWy+ zt&{8@`IV+SrAW@X6z>B>dI4MA!rJcXJdgQpG0Pvj#k5m!hmSW)+67TJ$D4U~Hr`Rf zSjrA>izJxv?($E$dVU@tzIuCnwdUQKXMeq8-_Eop`PfYkga;xAK7aqN>4jf@Q<31Y zvCsDXbfavnSz_m!%55r zz#ZdEjDGc%aF@SHlB_630c+5BY9iIOq4M)g$^86oT)j1>_{z_tfnShNn^eBw22vZs zl=yJKb~E{3w0#W{?@Prox5)u@&^Cn4JC9^&rl)XG2s^iAcu>yZU4yXN+`EwvH_S}+ zk7(KP@$QMBDzvOe7?2-*kpf$@C318uJ0MooY`uHlJ3PxoalpKBSQqQO7<5gBfS`gp z9VD3oIVDG8caef@%(Twj?tmmjUNo%5{Okf1CcD7)>X?113Sd$cRlZ0Eeq@!eyo2;+ zOlwS-vf7H^iLlf8<$|+wlVFn9rkc!K!-W;1z0f9`jis6GVgfxH6c;7vi}FF06Xqr7kIsE2S=}Q*PZSR6knz zgu0|=pUjuQbSlewJ)%0uw8yLV;Wq%sF$m^0Ev~rM2D;W#P(OG*PMW9V;}pBBQ`*!a zAi{E-2~ykgBlW-)CQrnZOI+>@8cd~NTHd)9MW0&==6N*CX>GRDY!DTL36cdXm(H~6 z@yoUB9P{M`&Qpf@!wVM&;;TJn^R%$CkMJFXvUvfK^sJs>i*OQ&$7OYUB?)G=T9vp9&fjL zjV+M6rxtW5aodEl6-C=XD6~u(Cz{#fjW^N^i$D%REIG9WA(*jn+y;V!mXg~{FT@5! z=H~~+xo#xn?-dA}AaFi15Z1K=ZN`+W-CMWExh?=d)0?e3*><$M+iK&_aie&BVw33o z0g2sMHM~(P>bg(pq+j`jS}(l~a!X-D^N-et2PGVP;rtvAY*Ah@xXn5vxF}#Ny~1pA zbGpVMAxe|m$E1-1nd6oc$JuVy099m~J$@l5TqAt!lODWa(E}yCfPLDaA-1xBpz=a2 zkR%lk`i#VhkgOu^sl{+CVwc(dg5xF* z1_%!wEU5?+M9_-8E8R$C$N?{QtiV=Jwod$l5`Um*CQpgauQD*ao+1-CdYrB#8lb}3 zw&5o9*y&mqFEt>om<{4pi#!J>#AE{sOOC<@3Yv9?r{-@P07Em2Cc{oOvw;Jq4Q7G` z%NxuVO56t43ub}_vx~41#*Z_Ie!vY{N7q1=iCJxC`o5Fh6UHV?U^}vc_$>n7?_OAn zDGwAR*fuYrFHT5eAGc&C$)KaDNWg#knvUiQZ5l#rB3K4NukW_uLrNfScM5-g?qO`*Hk88n8~@pf-Q1vIpm>>91}Fy zBF8T|KAWEby2!D~67>sqp<&_8#+$`cc!ct6FivZJ5`?bBq&dhKGNl><3S+i3hd|c` zV`gPgFM8{L~`-u$8d4?4lI7sBZTtE1Q2SyV@zRA zjd#4jfwU~PVWV3 z`J@%3fk4(=2;N-xnT*wfXjylV%E4I12PT}N*aFHt3hT@_xx{rx`)y>3lIH@zv%XAq z4GvoY23AwpMw%Z3^OFRjd`6u2jI6>yM`HUIH+UM)f?oEd=UMuVr);%{P5@0jnxG*p zK*NMpn_~i|TPjgjz}YAGj2sgvs9HJ6KtB$HmEQTJ zwb;PA)EKKDMLyPF*Tf0+z3j{u9O`?C!j=m4y|7J3u3 zKUjD_=9kW;9C13A8HKZ4NN&!S;0avpZ=3`!$vC}Y%BQ?A2tLWaLezNjZ4fSD{jh^4 zjp2=+MuxHOFmOB9D5eIXH~P49(IdqG)%~fr`x7K-XT7WEwG--e}2Pw4ucO zGU`S&Zh|OD$S}}Ka$%-va3M~FME<8hne>2ZLH7o*Aw(-I-m)R6nkk4wQC5gQPmoo+ zVzr4Uny9yhwrrTX+_K1#EkWzhhj`CqjfEk?n>YKWBl~{}_&tHxaHB-Ag^?mi{29w-*LlCyuKkSMu-hA=$RPUzR}Ar9YyeiFoqA|osC67nC9 zIc!h;Nsu0ax7wcuarhzRh_PRLD^X75jE!Jm~+X!1|*q81L0UXL8f=yYy%ERro4V8obG zjsoq(Y>7aDM&Ib`@velo9VLSEGGWn=D+`ja%hF6ykFqXEE#g^fiY>$W>yk&D!{pR#S~C$CKa7&RZD^Dmksx!+pU6N?!k}Y3lrK0=rM&fJwxB{^9G2#6JF|X)OC`-@8wqL{7n~rcUz^5?>M$5^PGq zdSGJ9xdt~%K3wh006XD*QXCV1!?Z{^(6>RDujm(+#7E3$i$Im=&$UIs(A)zsYqtnF zT0U^LML=Uwa&}nDdjxuuwO>gWI!#11Oi^zN92*5^5doG{N6B3g6SVyeVj=?Z02fZ; zST_Ecvgx1X?X!xfy|SoCveozVCW86SwY7bo1=2Ur@C(q_mlZ{(gatDSCgYyCWW4glB6id_PHu_0I@n(Wbz;ju!*f#{AEZZ4=17eX32`&(y?N)yF^5+b8yAI zEPlH>`R*6N_sI#k)f5`xYb>s%F=tURTZ;3?`Jkmd;C4rNbs%!noD3EOEq+|5vKGIP zu$LM8mG)SizHu&2G>iDI?MEGXjM~$OWuzzfG~%8>)6v64kbYf~wuSS5q9O-FA#cJNenge{mZ& z=Gj8dre@)8-u2us+)Whh#c}y|)?HN>Zl{v;g#Pl~bczDBadS~Jb^LTy9az;S@@upS zyAg*}{RBBfW2-MYSAUtlA=&@BR}MpwzVI4H=RHsLhNuGDQ*W9iF8&%rq{knYXRE7^ z%$-S2W|qz*uNZiyeqa0Mi{!#0W=Xul+pKLP1GDOcumh~va_m`8JKblXY(9VuRBG1- z%2pP0R2D}xA_1&S=|!zB*mzLE038rQ|1Qp)tRw7ZGlxD{7^aqQKYI_B^UePU00960 z?0xNy+eWhJt272UfPJqmjWpkr;{oj0lNfLu!}gx*U{5e;Q7wrvMJgmUGs>^L!#O{9 zUoKB_yP8dnD3MJTi)=~GEU@uNBD<=(tE;N3>tn_p*B`UH%UkZfICy@1(7pQ4yUXa0 z^qao=rh9i8ehA^0`06=)ij(i)o8&*quY=_6S$5EV`JnvXjcy``dm=Ns{O?TtH+Ix> z`oH=u=l{t8?_M1APJ0&z^3QlN6E6;i_gs&jJ~(4{z2nOn5Bb~Si-Xgn)9dT={>g#* zHWv3We0!$<2jhg1JN)?K;PCLcclPS&&GM_)V#McO48OcQI=lG3f1pO!Kt9C_Poxxn z<^xZBkPycqpG`FV%V`;iQ4mU04`FD}_2r-aljHQm$GIoJ5ck}PlNVio2tSFD1bwC_ zGdtl0GYiv~JlDt~-QU16)mWgT{tyWiUh6B>J1k$S z!#b;Ue59rqwM_8F{%<4Xf*2lZf7`qz89 zKz}#8URzK5zLAmrQjQ>Zq@0w{h!kTZX;syRpl?n<((+u^afcjK{N6rO}(2z*Lw$GN$R4h+a3k(T2Du9VBu`e3)J^H$)8IGi`Cc#Hfq$sii4Ma6r(bJrt} zinm~;cJ9_>M-}hcmKE>u&fRAGZ58j#3*sB8eL*sWO7Y&@Zdvsn@7ztwR#a~lPxF28 zO2I$LQ&kmjk*^^cM1!=ccy}Sk=6ix9Jp?)$YZ%)$ZP=RkWsdD+t@? z10Fk*IxE+pYTVZ=0-|cHpaVN%I?61Laho3NxZu0=i{453`L@|mveCvBv01S6%7r~W zo@@(O+bRbiZE>`iDsu9eDpJfKJ7sa4Jf@0Nvp9N(TQ)gP_Ai5E7fg;Q=3!iC<(e}& zPH2}S`WNELt=4Q=UpPLGgUk|z*MT2L@);gEt}8*fQxUQE;*Na`rrh6{b|o~|S1?bf z!9N49aH5KCitA3)rf|q$Dt{49{2@=v!jBWdha&taMj{lx1M{6QgSZv`0Shl(iDLM6 zc+}H;SoHibK{4}+j%*(VL0k!hRvJam=Yi0>ZZ`e||(+~W_VG814 zCRNC}dLqsJN zCCc(AwKKu~)pc*2zyp@k#@E?$sggBX=c@t^qTMi*ZM9dyaPe6VU9`#iM_C(veII=v z%tKd%u#<{+OaW!>dgQZ|#e5Lyf71tG&0*kK5J@`w=c%MkAAOh%Eo9DNGv^AKjB+?S zRVpQAIOWg2oN#|E2ZK@0HRsfu(X1A!_%i5f`W4@5Waj-u?Xf=F2Y)&PO7BY|Y2#pFcl2_?{m;{XfTtox^i+^sGTro}XJM^K0T@^A|v)6Ra9m^HdPdR{_f?IgCGCz!P93U|e2^6&Z|Y)jZzEiRoE=i3Z6+pyEi#BJz|v!Wcm|&SeFR zZKk`|qZ!P_Ln}M9)}VUv*NCZdw?QE#A8Lgu6#lUKCT=?0{Q=+9<$9v;0ZIFBk9S^A z({Fj}87MqlD@RQvP=}e=rBCk;1C{^y^ycHu4ChNz7yB_7>)n z5HVjMtlG`-_)+ko#6M+$4VlyL>xi}-q4OXt20`$3%EPapAPi1E26205J&0esgk+2t z2RG>xr+uwZ@?TM8t-o@lrGNUx8-+>=qwuG*ON6J0()t6Xu%$N8M@qi*c~a2DW8}qQvu3NvUxV$DA|P%Yl2dL1nsuI_^q@> zG}*r<9b^N!QUP4ec+D5KvK z97v$%^5^F&P14?Uj#LMNz|U^g7D4J=ivXuAk-FeeW(5I~NtLaPc-6~Jbk`&k+pSt! zE)!L0>St~WG+$p4ivI`l zf~Hg9W4M*mspkynRJXC=c60BO%mB=j<9>&=X-zK=vxY!i0r1)jUg%d9M&w?k=mxFfi)oQ1)yD@83!W|c{#wcG(DqYjgLApMPp zf<*#mHx@%SSTMET@_UK86NGZrXTe&;w0Rp4m*i=+Y#)u_PYOol>}`M_zC7tjx4n!RSgW7z7G+hR@euMdM4og#ht9cSX#Xk|;Ec6&vXStzP$Rl}|sgSoPP&dV|9mXj!Lm3M9w!+|JyEH^u}Xp02CQ1*=A&SZI} zQgW@s-ump#J)h3xG{Kz+Q&$YE$DTw&=#8QbAl5tl>(Bq`A3inZrLJ$`jTj!3y!h+S ze_j9e=fADNdobNlz8VtDIIsr_=g1(z8o6PFa*eOvv%&On_=yH_sTH&X~GY6Y2q_ zsNw)=rcU@!3EQtX4CM zs?^Di@;vX9XRyo#SUN%yy$~!57;hq*Wj+`#8*H76S9S(;zDW&O`!zBBJ(!p^-mL0N zt~+p@X*|jR>zV|%%@Tu~!n}8`sjMEw1QG%xSk`>ehGp0=7)V!csm~h$kQ7B#e8Me& zM%WP8@JJG2I4h3?>I>%FL5eB*1p|ph6YhXR0#(ORP2xh#sgyQ}_af@p0ah?#+81Fd z_g1{BnPIvnY2R)e!?HZS-m(5^&C91R`Za0m30=9p5(X*E+)fGEsjM*I>cmzvR4ZZG zpva(44vdMa5M5#HO%mw=iOA)`WCd4Rq>Y_sie+zP&Nd*LE(n^TsW~1;6NkC8Xu8}P zA*$l|7*eiEFD;bu3b-Vf7Dv5{bkkS8r7$c=a!|MxVf@l_$IBxDIGR)x+xk@Jo->mR zj}l1ht4O+=oQ1A$@hVhO7TnnaW-(|(Ma4G=S%^fsfb~E?}JAfyvraYvyrEY(bVT(n3}U~l9+XzEZ4G#8YScl$>}HbWQOdT zv>mOa-)3Qj2No+;VaC2)JJs>3iLO?sv@&eC5*F!xe{c}yo>`3e(uzfqOKx1~)aoWk zX}6S2mXypn^YA1s#!`)ntR(S+4`C3Dk{K#^^X_sO@;f94P024Xd4Kx@+)ldAHC$K1RPjr7U#Y)&C!dZ$ zk@(Rie{nF0 z^%}^Whi;9bX08*@L#ZVHQ~q^1TcRcZB9G?ZesCS289vCVXnZ--aRCa<_y*8{=gzKO z&x5&wzgc)GrUNn5O%#Dc)$KD_3sRZFnEWz|LlHX@_;V!R{V4er24DF>0eTo4K1FJq z^2_^CIE8b*xtZ>Kb=Y%yAiJ;`gQczSd3uyJ0s+Ia!iO%aEuk}wah|W7aQ`Usm^YWaVy@EH? zWx`3`k^)aAaU5Ss-kux7e#=MC^WhnR(p_FC64&x`iR9@ERWf<`rPY*uw^3S6mz2z_ zpQh2NNRnxqlx(XvQ*F&r15|;m{^p3%y62mttE4W_*fpSB59;^&vEBdmLWPx z6xF{>7Q-;OmkZ6Jz?&zrw64#@?{n942hUju4?*xNOE@AHoeb7pgN?2FP;Jq{(yv(4 zG@U@8CH=RMrlv~-u3G={{FK3X%X#=|$U*UlH6kz!=o!muuOp|!8yZD!P&VY%bLEdt zE_urbvM`^u!zVXMFtYuY>#`l|+R~Xz;Un#B$lV991elepAJMpe7mvKfMF%v}YL?g{ ztZa)k3k+Evi2@5%NsJimioM~dv4*uN#NABOI3t+ZqAD0!BMO(IMF5rmY*Nq4sOC$^ ztrci_)@~uZT7j0m<#nwljSx!+v~MahWaM5o1Ep5H8@*!!VRFVe@2>kqynxrN{814Wi4>7sansip62(xz?fcVc=K2IU*_Ge>4?4Ex}U25F7EIRermuZIeZ@< ztslNISE=T+AfYx4$!$~TDwPIsStrgKNSqgp1`8J0MWw6K;303dNU%^fX=tEOMQLcD zY%)iUsx-uTv<3;AWK4th7ISS(1LcXxo~VkYa$zG}2SQq4Ml7cG;%HE1?@6FMH;Tm& zB}FWXVG5|J8%0PBV_BiuHxKrNDThFqJbKs*Pa2?94UINzYs%(BY`8auXzR%o3f_;( z&SRyZA1rnZ5^lu&AZF1_IAF>TpQ#cI(#{@B&SubSjq%}c^C(u|C&R}9<1B=7&AJG( z8_hhvh!~eoFH0fM0@ttK#iB_Xk;qFZ?`^pUatpKSYVx-dV7v7dJONnYAd?XNTML^B{Rr*cc*hxX@W+<$sy*} z4wOjGwms8;&>lN64Xk-??4QYDV@!GMI&gxs1=PhjOzF+ds|tga#~a>RN1fLKP?XMVCPHgvfJdEI zOXtz*?B`S-{#%t3K5M#gGtOk_AExeua!hH3kIBYOj%lNtedTWGl%(tq*tB=*M6+59 zU-@P&9zB>XaHz5cq{DC-OEpTCRM4gZdX2(@`kEMh^=%rB1heDOXlw)M791tzT(K!; zyC&62tI<#Q8)!AU)>|zlYE_RSZPtn#vyRLk){n2$a64EaK1r8syXoO zxL`=KSr3K)M=}#o1__CuV~aWzBywUKO41UbRoraA zVO+&~ClVR4xtcCWowtE>o^)md9VR)n4%kQSzMm3I!x%DVB+f9 zKu+s51B%aG-;G`F-7Jf`mk+n)StS-<_#7IqZ4HM*i!|a(*foq??P}rI+>6lH;^rZr zR?oIS-*WZwlVx&4KOa#V;^^?HeO@urI z+A9TVEM(CnBxknUB#3^hGruGS=o8R_$*piMm#b&iZtH$D0r3IX_L( ztT$Xfwp9{7YYf}e9OREqt&8+LH+iJOiqL8zA&vsZ0!baV1ruGz?e3TB6H#GF6-=%;f*%f->8_-ww>+iTeYVUX!g?P1Gex) z77DSAp6aTJ^3d95MPuv8Z6k-fCAE#6YG&}=4kL)VrECMaLD`VW@v0_y7zJs2>hTKF z`o>2bUboZ!h2o}!vur}}+C?&2^OE8OYN}CMrY=e)l0f+=Pag>sUX#*7w|rZWEaq_M zbl+(a8tQaLV?*I0UFppyQvG zOD|mq+W-UEjTn!j`ETseqCuxP8HitL>?-A!#b zqi9q?IE#k#=^jMUIDzjAC%%c?X$5mMUvmE);%M3kRWTmIFe+{k zj9n42Cr;o6Vf2hei|HWnr6)G567VZ}zauAB+!g zp&D%9vlS`%5JGngWyC53($#=m=qsp8id))VpvItiMpd&|7euL%Bg?KFqg$!we6%_j z1F*M;7= z{Lzz8HIz#e=a781c?{#B&_^^eWOBur;Le2c;m}QF%Zjl7j+M*JRpds+&Pa`jiTT%5 zAfbDMDi5#eML<-MRCOUjrx;t*4c*ZQb*V*ycIU>J76~L+z>BtEJ@9$Q7D&{^CkYb% z;**{LTvb+Ob!Vegz{^!^ioK}*n>OL(9cV|Ob5^;Kuk zFAVApG1q5H?<#^jY)fl=yG4u0)$#hPBfdo(R~_d&Je7LW?=Xh=?vw3E|3+1)^+`m# zAFNMeL&n!mv!`w3aJd+ku`4(OH-6=n4=0z~8l{AMZ#ApA>a=UC1`Q_6ah%pprh%I) z^-KLCns^;ROAgp_W=lR+(n3ZIVtLA*Yrit6jgiW{;#G@YOYG@Qg*? z8iiD{ubKrWt#t_MadBPMXsVsZ_9hcmrj!P1U~kp%#S3WgQ0`{pg5lZ;+O1ze1BdLC zNE9Mrgz?|dpdnMTh|D;GI}r>xT311&IJVf_mjntWgGrDgf#O6GEL5338Yt-dD@VgM zXCzp=Acidp5L`pjy^;A}tU*FI?j)|4=LL5bZGr)+TPM-{uqf^=@;x$cnP}|HLsTUF zqusp;O55EX_R{lMD*sglc{tRlB#D?0*id-x)Kw3@RYl`xK@_TJXy!q5;10j#_a8_eHR$->B|L~kAI_w`afG~1zlPJ`PNn2@c z+$mqkaU_Z(Nagr0$>Yd80|=+mgyrw@qFIx)#cE2H86pX#PcpOew38XLYjU{Iy4-HI zx_{t@QZGs*ocKeS14s=w{sfMtyB7z&e*ZWr%K#3V^E4=FHvWmj%W*J!aga26Tedt& zJ`E%<1yi^`>Z{L*zveXg0L&#q`SBEDO)p155W~ldz9M}*kJU#FOR`7A651pMXZ_T{ zlTeV%aQbiIOw)SfZq78$wbegV;TM%K-EyNrvGB^RB)?tUfIT9=>9BWVjH*~kYPFqE zVhb8ldlQXTRKXe&uvDF^1NJuQrXAaM*-{smH#gR#J|E zwqiE1Us55SwS~T8Q&$>;aw=A2e0uS#UUULqD(-m(%WRGDKU%QQ=lo$aF)t{5P}$5nwkCIcR8F%oItLL)eF2`QEjm{E_@uxd_}c)N zv_L8%)@i*APi{2WavuNs^MBuS$jDQ-&&uBlmbwm}Nsb9|0It=glNgREvoIKke9EFY zm_-bVqQDtKgrVe>sfZ#z#_Ud746n8R2^L#WAaCbs6KE~^*=Ao+Ya~cx7jy2brH}KU z1uNz*2)`=p#SMiM2jK$lexZ0M{1}0`!@)%=Rvu6eQ*HPpzbR8lSvD(15Q4OgV@qm4 zWya{53|F|5YdKw|uk#63t(1N8r52#rhw_bF=e|@(yT)F& zX~Z|_YlpqiklN|+^K11UKNpZZw>|e(|G}eG*S&Rotm23^D`5TRq*x4sc%o;iN_t7WuqhI{Eanm z1MYkshu}c926Bhfa_q`1TJBpYc*oj2uGMevnrsxfzuK?Z=8T2X>-ThphvrR^l@~Tw zh+x+u?+OSN?;+S#rCp$##?^%7O}|s0^bp?E+|wk^`6XM{l2w{F|$Qife_pPu|Q70itK{}1;bS> zpe2v;Tb%f#rH-QZ1vLfN8Z4aMO@oEof_pQCU}akZR>j!^G|*k%MG&ND-z z43*nNp-aCqSTnV1Mv>So-c33Y;1nATR*jgI{W*f89r-k9sM;|R z5!>Sq&vhUj(;AED?$SDf-yh1qf*^wN;p@Nt{MRSBu*{wEF(iU^I-S4%{I?F(?_@^o znnDCltR!bLY8XILcDI@4;-;LHE#xRATw)v;uW}npQc8kr8^*5XBsg^ZMjI=jZ5RWd zv6)*;Mvz5rsnPVrB6c;xM{MT=)`~c3F*neJYGog&X%u{tn8nq=hP>G3mO962i|EzN z;jxHey|f?O^N94b+Mh)zdz|!Z$Dr9p15u-LLhWVS*dh0_ZS>FwL)!?dqtACc&3`B} zvkmM9WkX(#N=#`z!q%q}WoO#Pu7;gy8^v07W*bQEq@8KI2ou)MeAG=D^mbi0Qn^r1e|kz0KF%I5L!np&C(8gJ7T_YtSGL~kG?ZOmG)Oi%mr%;y|k?2;k!)tE6vNSdG+h(5@dS-rQMDDvXT4=3J1HpZX zN$@+}a)KYZCOEWPW2H60%l-1J6Ijm+PYZ!Yxzw8voxd*Pw>sW%I(o1_R?(~H>88av z*t_np5$8z0g7<9#!@wdf+BkIW-BhdgWY(Zz9ex%QO-P{XcnOIBt%0%`>S8xa1MgX* ztr<%H5JX76{=uF=$`2SIfpr;fxokQ{WA)q@Cx3uIOZp&UPJN}Q7alWdK6edgk#U@=(+m~S#hM$g2Wt1;OMafwcfQwS#Zh%3X48HkF}6Upb9B(0~jiQ!eSyBsg9Rw2W<i*Ek9%{t)K8t)3Zw0%>=r)SM1_m4Bar(@cqu+4v_8 zFUP^`#liXcsw?d@`7{XPIGDK@h{oi@u^~Jdf2! z4a*6J8Uxmo^<>HjGE>m`$vxasqr1UiT8jOB|-f3E2~ilGZv zI(*WLbor1ypCk`0R%nug%q4}p>L|2Xi=E^n4??NItxclM+CKSTTlB$#G_eLO+5J(+ z8o*Cm5HJ=~-bZua0ps2tb=aJ33b6cVr2uFAmb)Gwc+l@B4CdpBaJ|Et87`_3egr+}M55PY5T@aySWa(0j}2jK$D*mY7>kW)(N zq5R+V^}4wMDlS3l?E_L7EV?Ublo9@n#X#~#Kl&0nR3ajcjmNm(ARyH+_9hj z5X}dX6S^~XdRv9wYl9?HsEs{N+S3*3@5VMX%+Eg&p;WCPH^`fY3X(!8PwcpDQeeRK z#ZKT^SD}>6G=9Wvt5W+sw|^U=il~bg(?MVge0$sy>yYYhiPEV?51EhquQjy)GnU$dpDv|`n4XVYigov zI@iK+b$iz(XL+}caHdTNs(k&CH&5!a<9*qgZcW}0>w=SEnf?sRc7?%SzfX)cJhfGbc5*>=?y2{5?QS$8VTH;0+BL%cWqw~ zkd!%97m!WXKsd69kmMM1T#60tW)yQ*Nn0)ipfmuf7N8-IF|bHP%>p++w4n`PICXAq zu}FZNx%|}@FjRB{2@+1=64K6#cor^4vU6Y{zrAW5uu+x_b^&NJtsQTRN;##Vn!~wNbJu#>krRr(a z)ll^$*CR^RTl1!p0HIYq37SQJw8a!bjBkhp2&?Kzz)-4wKbRe<>Itwain~06pledL z5R1FT#K812sx&X~C7i_D2~WkQGG%-M`GwOS)~nzSGbK5@x`Skzuvf83urTo^wltK- z@UFB%l9b*gvkERElBPKdF}c+06Kocy_%rITcfwd87dr*qOU%qjL8DBBX^Lx355)X` z6vJoihfoL~Q=m-WsacC~dL^fDm+|{KlpAfQG5m>-g&*@>M)4QbJOYEE?W)bMJnnqO zAgJ8k77_e@!FPKfhr!)WBlymp?({as-2~gl?uU?L`uo{N?+G}EFy}JM2o|V#9tq|~ zY$n2~8^>b!w8Ngf91h*2R!L&aKoK*hn|(q8-%qX+22n7IS?B$m&#ce57X@s}7vLtF zN1*g0u~8@OAvr9(bfqyHz8xO*&JNZ|C^y1cBj$M?@UuvI!-X{3jg^$>U!=V ziYNkSg zu0@dWPbc$o*Q9crZdiV| zAVUUGv8PSLDRQ-C++%h&Q$BIVS;{9Fyl0<&pUZzxrTs~14zFE44SZZL0TRH^p(`2D zvq<9iZs^#A_vL$eI*IJT`{2zjLi-f+&_1`kMtXT@P=9>QqlrCm|78~()Npwp_<}u= zhN9<5oha_P6H9d|PyEtMRsMjtBPCuFYaE;fP-6bUuv`(vsCav#EyfZfDXDy~%nDYf z?=_O0%$Qx1!ryX_qb3wSB77I2+$-j{u8fwS%~}AYMB^*qxoRIuJypjkAGlk#F_bjTUs#l(Em|Ros zlSTm@S^|{+?32iyx*iW9YTSUxniY0s+EA4&Hj|&>g);xw?kTz^lep5$E`&QHESH5?#vo(Xj>&XRY>BWJ^6*7>Tp;Y|{iUkNVc87-u&VoqiZl zq& zyA4qGs)<;fzg_PQPlA`<^}R)a@1;rc4Km4OF`Eb<0ga%BY#t3m@%!90Hy>|y$?O&1 zx((dz9;2X2pFi?kCuVnUoP+{@6^pwd+~{1nirBhhd-MKvK84vm-8GpD?f02H(e)}G zty{Bo+y54=Ta_kf9&{*T?qqM?jU2n(4l?~iWt}1o+#~QSEDhY_+^8Rdftxdh`aiX8 zT$=@X;uQD+U3FYYYC(yy%BEdTiQ=Htx|A76g> zvE-$uDOcs9R28X?wb@37DbgY^ky4um?M~Xcfh|@7r^J-IzCCes>qf3kVS{XW)_h1J z_dGTY=8<5dx$nR(Nou%)hr+;bELoW4OY3gMuIWJ6bgRUNXP^lE?!YB~`50TC%YQyGyjWgD@N;Oa0iPdkWZPMVvx!%gw?BTh<+f{wdF@n=l5YX;O`!&Rs^TtGzNVK@%^0Jg2{{=$CJJ}p zA?at-H7CtX#W{dzIb9g^7r{v z3_G^q;R{pPOWA7vXdjy`7JLY}!=RCMdM-{+nV@C4ja|QHA&Cdv`9%LJnQ3K~1N5)-2 z9d-KL6{L{|*!cc-}{NH33U-|gd!qqw^b4Ov^XmYjInmaN)Z+DFN{BdFIX4!C`! zYj`ns1$CSmwIfLT!i^{RI=5DYlo}T)q`IcFUwaK++jM{!mk)KCX`>06UOIw}p1=6z zDTG^e&e%py__4sHt=Ps8RsY5|ay4#fEMfxW zG0mU!78r(X1Ir2wS(Cs(5$Nzz*)Us{voRl5z}eiVEtam%11@eG2mQyzYW?n<$I)CIsjmD%R= zsU+Yged6>;FHG($NyV9sSM)tu`o$Y{Do9}z{gl+6(M*!$n4@nFX`*6n#Eqi&SH0@| zN9*cC=Rd8TH0t4X;KxwthewXkU+%1$;UfRtU%)!nYR==SAAMIj=OIfluO`kA@i!ES{B=E6_#*CCviVA)W~B4ikG% zgteHVY_J|d{#so!taPG5TRGrZn@rpdKdo|F{@3_=YD8wWw=aT0%w69aID3*BLRwI< zR5ZF!b$EzNh74t(LDRKKToFd9a(B|Qn|qz5>*GNts0Zee7|lJEdY*0R z!AlG`t{xaXI~=M)NoijV028Gn;kE;*JF>PBI=0|pPeZgW=*uZbKveZ?YI7#4j3o(_ z0OO3~y4H{YqKq&SB)M}$=sFx@vXcM?;ZTH_JwSr?sSaC`HUdsyl89T@wz35fS#pxP zz1gx%qLkZVFdru+#uFLu=DwB>0%B?9CumX%!+LI{T8{ebpeGAyKuGoQRg%DcXA*>~ zp&e&Qiy`@P5H6tG%{u+c7)YrfWFUYh|Zp{MbG`+!sii|z^41c2 zA{}StI9DDF!xs6^$~}ji0@Y=eHU;MumJLzD{?&FH&z|BN-mFEM9IH>8ktP)if@4cd zl3b|T46_B!38qt=PO#@7CP5knP$LUv6OrJdF8r(A5*Dc*TO`f6iw?uB3k!7(LxLpk z;gJYwn2RPHfu$>aQ;{ls4unvSron2R0=Slt@vQ&q-54=_}Q!%sG2|9 z0%ot|qP6)`-rbHZXgCXz=18{57*me1Ye=B%6zGSxft3YJMPs&UBs8X&?tTdh`iVV9J1*?%lX9Q6YNP9Rcqn@@zt`UyDi$R?rCOW zvu)(1ZDY5!fJAQcklbz^!~#;#LN|9I!Gd%W?!+Q=qu6!uMT_df#f74hKp|tBNU(HJ zfHio?m;e$iby;r>8Zsb522Uh%KJ}>BEy6v95w)Ah{Udk5?cs;kBhAkRD3==*aF&l? z$J$gNtuGR+8rzQqFHBNKEV7j~P?9o^GrUOPB6n<$Hha4h>jb62!r2V8^%4-{fr}d? z5@&B7RbWHJf{>{T;q2RdAs$NwJ@0Q5EQ`QoE?i+hrCJLRaMv zrTd^1?O@f!jHzc-nl6Jtsi8_v(O(3kWf>Q^=ZmC36TVzb_#twqb8zEB^UUEqgh}Kq zoZ}kKs;b;|S?ojIBKLIx)+kM17gVi+@^yjXlDbHs>=C6;WT=E+n#9BQBqp7baH+l| z!d!?&4d=7n)l@V_5jLerzWlD;vZ?`8p!>`!Dx;$Egvb-me#v&EUy1|^XJe8;g-Q8* zYw+x;lKf|-MIsHSRoi5+V0wqQYEKnxrlKmz1rR!{N%L>>AD znR}_;)OMdX?baQDU6TR-vf&Dk4}4QCIV&#?&d*n^`qSjoKu%RKl`r)Yn?E@KoF*S8f)7O~Kb}Ig{^ckLV)%H` zSEP^UvHGZCIe`adC-ti78lT;if@Fr%e+y^&Rl_rFIx3}`_@NAK#(=4W@Anq*ec+mh zMttgiz8O+pTRf$%9X4@PWF?0mdPIaF|`P676_r{y#Sx*6jxjbNMQ?Wt1wPu&Yz>z`#YUdt7T2@kp_wAIA1yf%P zMdZkruHErG6s-SDm+FXCQp!{T4%qw5@m%MtoD4m-^ZxdSkk2Nra~;ZYVZQj~c;%aS zf%7#2iR?$0{Kdf}j%SzMZsbhFlt-OlCVcsuWXLIx<;QT`)ssE-y8Xk$)9#eJezF>7 zU{nw*L%oKAt5VR{7;5G^v7AIXn*8f>wnR(*MIOz+{op!4GklO!(axHtg99j-_6^7b z&z)UMZ3ztrYib~vF(9Z5O%eabtuAMf7b zp5Y!PPjXlQltc*xwOn!~x%rUTvPk@}3t)G#SnMjGdE4+QRSVYt=JqNX!_WBY%DYvQ z`_4>mAJ&R

*f3Pm(nIUc_S$ev!SEeNdzB-@HmqZ}LY>cXS8TukxRIVquCbe%A9- z%LXMmW+Gz^0|7*0%XN27)Ez!;FYM{dXVq@JJ$3idX#D<@V-*=c6N-*h(Ks1gk#pK5 zn6pzo!5y|?b?ZxJxS`Skir-X{NZji*N#1HTihAVP)4VHR?@F3?!%|x=cTv;*Xs|FS;&E`Fx`elRcHArJ6%IKY*0{ zXBkOn;0oCCDk%pisxFGz2<(}SRne9Q-#YB0-D`Du;`T}RC>H$MY?#PEAKINZk&FXW zGA0^cB2>u{mH&+m6cOWf`91h&%jtqXp1w z2NU0&6QmF&hU@2}$p(pw&LKfn`v#lE!e(qhO-; z#gV#opbt*J_Waa?lko^#B3CBHvr}lU>r&_79@?NfS8;_}ogegOy4|JD`-j@|l?Nm4 z&kVGpGQae1gr~z`pQfEo=kurEpX!Ufz`Q_xk;PzbrSeHt*1}hH14VWR7e4Y};yftV zg9Z@;Pf8vPL8V++e2KEpgHY&^0A4a?IcFQUFZsC%KsVU@+HM_Y?6ab z7*6Hak5jq%9^x!t66h7k#llxzm&yk9x8-p{d;Oj|cY5zf*Yfq!Q>V&M?PWd_Pq?)` zwP+2nVONJQHcTtZtxJM>AAn1V4GvjGok$w41|AJ<5Z?-1ky2W;0_5^zWF|TmiX>GB z{_w+f5>KNMA4fT30(Ic*brOtpY1U5Rv93#lz(#9>n?9u)D4V{cS;5?*Ho1_SIt2eo zd-F??O(!)q$*%ZoCye|=8Iv?eBO6WHcfjaF#U19-<_28p#i@M~-a|jkL=vg`DB&GO zq?2H$_LM(uKwSVwr9^qu@yxIG=RoAB2ed0o=>c8%+xVQ-UXEK@qShtaf$Lw`-?TsUq65P?HBJxeFqLQ_?s&E z<4F}OTZ7NzSn>;Ew9E*SJt9!cHx~}T> zGHT1)hePKNHYfhhsOhV~U3(kSt-l~{%fp18d* zqaT<~BTQyCKxDAfmsMa#8%RBZi=`#OArG|4a}pCzLR@TYNRW|6YK~BR%LWPN+YHvr z1Mo!@`pLBz!BMF)_`*29tgEl}!XNbn19LKw=A@r4N8NW_dVaG>t@o7SMN;&KR!{d@ zivGfnPuC16uxd9Ku}`E>xr%{4z)Kh;vaOSMmiTf>D=uW!*IGNvx6xzpB6sCaxyh7!mbY@tjx#%G?leE;bEo}F zQi=hi#f_ruZ4#6eyv6C>CK$4mB8`VC4v!74#%6-%loS&YVMF3*4CQ0y$M-@Ca=t}? z+?tWFKx%pML?pV(+ebh3d=I1xlQFkdX`|Ed14c(xBlIa5APWqA?M7ZJLCoLSIp*9mMT9s<15yiw(*C zEcgjWS{r!A-qUH4{K-W4NjeWa37RYkejB9k)ZttySG*|BR7%R?sCQjfQM=XfUg&I2 zN}^hKfjUt=^w99aTB}EyPAj!~l#N;TiVAvJc|{r9_VPYzvDv>;Q)tF#e1b&M-V-S^ zjwx8!T#N*;k``BLYcCZFan5C0bux01%2|ad{dPsYtDMGs?mH=?Rg+jV{?|6>TSofD0O%Bw#7}(-qE4EcEwpdO+cXjC_b8z znAi9ySZ;HnvN+*tHwTjt(z7`xb9LLc_2Y!ZuP73MJy*CNnmi+IdC7ydAW+!`$W0}i|)%Hrgt7FNv}^+B;`0h z$lY3v!i%eXG-khxvRN?z3P}dN4Z>V~Kl8nFZ&FlrU5BOltmz_Otyr4N=A(L_$}V7w zX`(6aH*GH(%b0o5FLlCfyIpke?aJ!U9TTqA-@vNJ%N*tH$%4#%(6Fsi=fRmD4uk2q zQH`#%(QK2-bLQ2*2lS1DFbt$#A2(`a>)54jqI2R57rF-n83vh19^3;OmwRDUzl-*N z6ac#}+h?=Yv-XemH-*{&{S%aRlM@bPniuddD+zucPU9pPIZHU<$BPi`f~TPk@yylt zmP9Wr4Xub(uFkh5GTZEbiG5pG*OM1TqPi}D*mNzGbvJ|1!IeXWnVeL)lKd-`d+5Lz z6QmvCz^O!lLugs*)=7WVec}Fn@(QVPrPj5S4MOw7JUj^h;;A%U>ZB{Xn-mViB~_{Dbqu{#=X?I*C-vo798Sm4!uN$gMDdI7{Agsl5XC>|pJsiSvF&?l zg21nkMO3z7cqGMyCa3V{{UfvN3x7T6&2oAzw3j8GO@ysVz_QG5x)IaQi_dkW;Q57Y@=Wvw94dm3u3&1yM-4LQMq%M7kVy&b*4Cd$a^&VpbvS)tv@t2 z?xIjWEXrh@u&uE?zw^^zSQIyUc`E)o1_h=Oc1+sMc;3R8vX1uItRvcOla0yCmW`uJOgYZ{(iNNK;R@!ep$lF; zefZ$TS4+m0o^mCVrs<13T-spo#H?;Z`@qQ?`{Xh2;MwdNHG89L2nw+jk6n-y@I(L2 zoaNXC^Le}RBGq>%bDGTS_KT1z)5OX}NE2&fe?=XzuDoItvF(DS>7(r{GZKdB&u=H8 z4>gi-384rnX3Lr++%tSmI~J$jGklV>)U2?j6HdZ4!{<$(Ev4 ze4Da9+qh=o>Ynog9!KZgf*oF4>-t<>vD_>-|L%A%s3bI+jtA~Ua*mgOMT}!BY{9G9 zHMoUubR^PY5@7QwuF-Ij!CjYFYx;QBBG!&Ag3XoAu5u0mL93Fj)z!%@>riPtax;jl zb2ZYPG4}3*xce9<=mPMJJ*<(LZfi%En|H{RAFXr`FOXI8kWQh^u1hMn8;r3|K0cJh z23l4HGU&xcCY0L@*(p?FMzB2h_173g$o`ZDP>B|Sm!HGe!mGBGnnaUEMQ|;*k*Kt8 zBt)FRAVE##*N>G0hmW0CK@@(h?zCv8Pay_9yiJu2{F<42W74;0-!txp#`rL^d3q8&oy9R(=}O3PXQudkRB; zAi^RI&Lz@r7->8C-1k+{C1V#I9@VYPyD+G0PXuKZy__ecoh0#1Af>aX`R+-wjIbI` zW|EDteM03cCqcfA!r%kj z#56ghy*i%Vx|rBx&LptDD^JL-ijy_$s%FJkGz_OBHuC(43rVi*1aoVG1cp0#+9lP- zg*6G|j8UzjA_I11yfBw)X{-1);M1BvO{`wWl17vRHoW_~YJ0oTn_T81Q0g>q-yxN? zA7jdQ$X%G7cdqanR5wq5Esl5BwM(Ym;aiPWoKL69t*_0Al!{??kyyYL#Puck2h;^7 z6PWy7{(cC@3F__1^$$M0oW+wrKR7ul6i3saBvKZSBZHy?4!1Lo@Q(9^QYfm1-M$#BwdKvmXnY)(HOIxMi|P= zOM=1~fFvkn@m~tmjh_T?y@Lx6Zv>LcmEkS~?8um*GOJLHKsGFtqxXx@Sb-A$5aY(% z5q-kAtnvejml&BrDt?Tw`9^|6x(P{GST`XFta!<)MWBbNU>hy0tDFP|b}>fOlfe4D z&!2wV?>)j;i6p?!pZ@YkN4FXwW) zESy27UKXpsn_pCyy!o?mRxO{OyeN4=ZtUepKe=0ewS%CGq}PzaTJ+r?7upbY)Ifq7 z@L3_?Y(Q<0NN~<<_KhN?(?Kf!ImJb@(h!3&oTLYF#5N@v?fpp-yHnveJ5NlA&k%jf zp0>{b8Hzz8RR9O)r>HeZ0*nMBb+~;g2`Uj2A=iTa zOsN$_&Xs`Oe9+M5fjSsS;+ZY#rbD0Pg;Y18P=iN;LrxSLX@2H|sXGv!aqT|p6rSw5 zj)$7gVmGHPKLRr8WeV}KJsl-Hqj)*?d{!+)eGdfa=L%fh-Pm(y8AXoH4XTz{FL8&42m^Uo-;O9_kE`xc_ET z&ZU&M0k*9d;8?vuG$(8lLxtK74_--&%RUhZQCD&2#cp*SGUL3g76Z3NYx-)vrBs2N znVZ>=>)cUJ=d*n)wVCc#tucFF+b|bu?_6hY-1XPUW^1GO4;FHkBO}CTG2sWgmb!f% z*%P^mk*9{+vvbV+r&GIml9C{QK9rzS|60sn^uUqrji+e_F4(+zeapU{Tb&lgnQ$eB z$xelAWQx2fO+&;TmUABVEax4^*(}Hm0W>D!&geLUM`@ui$P*qCm|o|o3wkub%MFMU zTtGPK6zggl4bgET#HqRF`Q!fq00960>^<9Z+eWg#g5p!Mu|@GN`K(o?*z(3zw(KLx zmAFowazP*{VhsWe0P3<&{)e-VyFceIIdcO=0)qh>Js1*RrBX^r0@Ih7>F(+7>Ato7 zm!0RmUZ;EV*Y4em=wo#9*Si;qb-(am#7o<8Uv`#}8@ti1+c~l5BME!T8Oaqc?O`$hV1mpU`h7;vb4=6noPPipQ`w`E_u%{_3?mvsZpXe>ojY zj$ic|9ZQZO<&qcNkY}&mSr`$9v9Sn()VW1Jn_kfF&J!$ba(;7a_DlxO|nCch}*{E1B_7d>4#&ur(skgg2z zqQ|fS4;-u(*F-od1_lrLw~Nz{zkT@wh3tuYPX~;>Ft9j^^)Nj7{_UUVt3}P1OTey| z8GBvG_ZkeV$^8?uwjt<=1#1jFd!Kp7Hq<^N7$8(3@sS3W>6|unY=8MtNq^Lrd;h8iPgV5DcI{UnG5D@O41~iGh~N@Cv${Q#3xR; zSP;Ey3|=y~6Jx+)H;D~W<{E?bhcQTGjFmaM!kIBpAc2m8G_@0Rz?LC7CK-bURN5_> zFlR-6H3rS#nl~w;oVguk)P0lSPK`lgJIo3L06>Is1zYzhK+t860_H&!GYZnwoe?t* zV&R~`T|XFG7{-<$F-!mNvngOp+l!u=0(LidBgmTXn-jkSQwAam5Y#?I0RssQ6ePIN zK!F1Z4HP7C&NKxMcCABk{kNpAWXi=&Jk>^n`ET z50N^1nW-Z2=5j_!ys^|9xxvB>-=myuH9QVu%rvR-X#yh9<$$A(u0K0*A%bdxA}%yV z8pIAo7}ymRukiH)_A!kWH5-`e4Ue8eGX(=T7Ml5tLUuzO#X4d$PeB$8dQU+X41#rn zEaO%LS(r#ngDgXyzmXA;l*$eHmm0dCYnV5vGafvif;4(Twhf9jU^E45%$p($;@B{H zR7N>AKwf3s5ziDLU>pSn3mQg20fTAfc1#x3nT!GkI!hXqOSmN%c?&x-<{0{H+4o*- zg)^3M$)h*cd!p#QrB59zY(itpu>*^h z_@F798%FoR7B*d#twODmAHoqM)uQYK@y?4OQs>B+hCq1^!T_>qaKTiFBt;Rm2tk1Z z6jeKN&_S#{lO8%0FH;YlG1?#wI%9q_h}@-4t)?AkYhT%u<1909V~(@SC(juG$tTa* zljm$pDpDcUw)Es4GCldSjynxyq{7{4C~!bS1O*G|PD9cKv3F3QAnr62AZo`MqY89b zLP3H^augt-I}HU3>P|yh+%Q$$j>&?$({PJDFa^n+T#`QXk1ma*86tP*tKtxfIIE?4JlCKx(SS~ z_e~bS(~pe^@qL@O{S)Fe5VmJ1Q7^%sp#(~IH-M0Q#C04~Hga;JIl6g@@+XO3*yvfB zOMOOp{||ZHb&`*f1ULh6b4k5vcP~4=ewvR(J@QAXM`?NU-li`n;qqnY=!iWbyijBQ zi9kxi1$n90XP>#pYRo^(U3=3<8k|Ep&1!(z+*!}MrVj_IqNM!|(=b}JAwIFx1JiM{m{1z$sYih@5y!PU-? zrzkjrnaT)WV{{5zUG2iS1|kJ9n3lu7#fSr^$uU`7&|q?>1)r+ z-F_kS6*bUr~%04!`*7Q4LxII*_IOqGv9L(>&{Dff#R>yN9Du14|iddD|EYwZdTo$ zoxhf&vc1#0Dih&Nqb9;{u016TPVKLpiO|ow2+|V1mx&z_KECiMPJMbC@kL-S+|44t zgJV9b{1rw)_LbBPm40!?ERPgM;ZN)${+hW|x)~}`R4^jXBHUaF{i+jwd`Qi!-FdXe zV$uZW(VH+xsF%);9nX8&IgLEq7Zb5TV!A$*gwZ6nT{^%la26iRXBO_y;ed@W^P)JR zXRi{=H@hTq2iaf4WDZ$U2+>y+rH}7ETz&Zi6bdzf6|l&u0gOZ`9!RY#b7+0uH?;P3 z{w_faJuA^0Kx>`M42t_3;1@9NZvZ1$+}{8~s~8saH;`%rvf@o3#B(F|3n}@C;>xUS zTypM%YzAD3DA3Uv1qzt{fPw|}<)DDo@a3T3)vygTzym3L6g-$V*FYLbP2=`J9sP@4 zoVVW8*v2y`Pk`ZN6f7qU94~gQ_#sH_`)8ILFI|TmQ~d{v9Q`(m88E5-%(|O<&OBQW zfq8^%D<)WxM9KDf36@^7`M@q^j6JLc$OP4|d`j2{-) zp-=vY_VuG)(slKq*iC4btnWEqLewi$no?6fIpOzzt&qhwtLN(+AL{PI2h8Y1x`}DP z#H!#XPELNGyMeW$28TtncP*h08Pn5KL~4lesmPlmF>Ru`uH(cTTZ$9UGxmKLP2DK1 z4Yl#wl=i(`u&I4~jEu!?Bl;ChM)v1_|f=C2?dUP#O z7s1Dm%n+0M4snYW<3|A2}xNe21j zS{74tWzLQFmFGN}5ntk!&H14ZeY!lm_`)Pv$xE7LskugHD_HOlM^#`7k_#4VC~#7N zrG{58yr}MMf5cMZaGmXQ$zrn3_RSk-NQDkZ!P6*^8UIyiWpNpCu3ex z9k=?lYyNt9xN1r#I?h|#HGdP79&3;&eeIebk)jI@r0Zwu@nKCPqk_QcSFk;*3a^9g zP{qOv*K7xUeJpi1mb+DTcc&;06r|`Bxb_EZW93}?Y!4T`!VXrsSA^h}xcmpj7aIp6 z>>#H4!u6%aiIWppR2t#;t+>@w?=T=nfUCWaUYsH%BM8tLBfu4bt5jqrZxm!p%#;_G zQ3}KHu4AsO4TMF2gV=PKFp{jH%6^gwZ56 z`qkWA+|_7w8{D@81?$=m9cgWoCV>5zk#f*I2i(GdUW`RSGqwhy_dHR+M53Cp#Q`h% zi6qT~-AP1MNg`V;dJex0gM#_z$_^4Q@eG#!Ggjh?C0nkNBBn4DvgS?&Huo~%<;j~8%4LVESB5!d2wCk#+9gJz`&cD1F>vn^RpnD5BnQ`Pj0Rs{{#O%P0bs1&hJtHQ|k_ zx+r8jT1|VgcdmFl=q~4$*w?Z6Z;B}08}#L67!#}qqZIG-QOW)n+vsU;8DD(x9dOda zZMou+Z90W!x6t#L8YI=X&u*`|@{7W#eS+E#o1Ehv*flP_k+9(I(l2@=eEBv2L77ZK z95EPk5{~-C*?XP1r@l-hxI1BR>t?oKn|QB0lkOkt1rmRgqUCbiA=6a}#AYuJZVSXR zTVpsLrTkOa8p5glBtsk644Is)ecue5sORnIeaF6n7oc+)PQBFvvBWk;W9AtfRh4Q6 zMp{F?NWe6||M2do&bj?d=jXq)mxzA<;CMUF6N^5+=_3IBmT^80Gk+vHJlvLiU6szn z-MPkRDyK1SavA_}j-QP-{1)=xMv3ST54P`WwF&w5vYjec9(Qf8+#eoVOWTWL>!l^E&sQG? z&pSU`zwpoRZ^-A)&s)H{D*M4?X%mV4fHWV5y|gJ1jFprn;)Qzi(DG$8(rP|TT5UcU z#lG{A?%vj-|I;G$yI*hae%5OIn4JNw#*b0dx#VxT=ouec7iaG+meOWLuIlUY{h;+_-wBT?6RW?lSozBN`?WpC)dS*;~!Km>Q6QU=r@_akMX z|0AUgU`UZet-wJ*gYx4Z?lv(tiL`etaj}~~@*5$Zvr9ol zl8xP6RpvUHK(4mTtdpsz`*Jok)k-47dZTehiej|6Yqj4W>zE#GEBe z;{e+`zN=F3xRMW*s;`VBUV?qIBGYq}DJxQ$zMn;|K`XN65nFCBRj@&Unf|zf8GB%U zO0G7DKgr4WZ~uH7Og+a=K$myhA{`4UZ$!V$_LGCC`_IrS04QKJx;-0c4*!Amz_a~r zw7M#pp}TfXRk@JWXr5+`RvO>QGP8+$lxm{rYr$%9?MBK12x5@EK(}m<$#HGMT#!Sm zrc-(SgX(*v*#ZYu^eWvquvU?*OVW$E9o&%7s4rXA;%9@GvPCJXN60xQ{xHRSY7t7j z^m(5EUD-DqZ6GaL#bn*zF&+NEy4va$3D~TdsQno-+L>i(Fe=j+&EpSYhCnAB;x4JhFWKQZ8Z-4^~qeUm6)W_^=IUdILjo`;Dsud+c0HZc?CZeR);DCGtP zDRTc@d1@c0-YGLya@D>KJyT>A7`T=b1~cDtXgSw}pNvGHz0A1Sz~kiX{I#6I?LFO9 z83Ve@^g+wON{rZw8N4(BG@p(u`k+W(;r$hIuPEx$XYzqJeoFf@s1{Bx(nCdH^>#RY zTn)JW&E4&rtmX7b7_jvMYl$GPlJ>d%x!H&zT>yV~Qn=S)GT&afs?Cc?+Qd1eY~K&> zK;9^m-ez=ha&v@16c!E?EB9>-8r1B?K@)bb!3Ak<-WK*(bJOP7zO(Y#^$>H+H0eoa zw?d6Ui(TJ!fDu3xK=M0LaIs~BW)GEO43y0%Snv)UIC!9w5)M?f3Ia0PfiZv=e5n|N z2aBtsK$TfUdZB?;9ST~#qzM#AVA2E%7PV3mkShcSZ|X%vLi-QK0KzPX)<|aFKgJk1 z+NZ`CFng8_$TkVhwVk=OVTT=9@5xcx@&a5m1c2-v`LlbQ2~ad`+nF!fkRz^37NE)9rxA^ zI#$Gdw$a<^peH=KMbA$;0h_PzHn?f;+;R|o;esxDUIs$ApkdvBdt?4cQ|*A4H|MLx z6~USO#4ftL?DWUNU$3K8a35D*5bNLWAEt%V%Q4kmn5cFk#HtAse7e&@h=bHD*z`+3 zy50^H5+`e5AX;`LC%=;u0sy-}M86r#6gc5gF$E5EO2*fQD^edd0tzUy9Xl|^;cLjj z0R_nor~-#L|8PqOaz;V)dq_^=RlIbAsX5YUfZG%-*r^%ceJHyHpRdSEU&{Q{4eUX0 z>IR87^FU`^3`F^};@FybLus)O#$^^eXIBNgU0U|1@c2@7SUgu~Z4HZ8DPeb~AnX~B zn317_JzPJ0I)C-sUh{}LLSk=0PEZkTa17XeY6X~()0unkxJz-bjd3EqD<^+p?XG3V zIHVOo)KBp@>iHcBKL|wM3z;P zN#EK0Nt}_y+`#)Tvs&Qw7Hz?Zx%?htP!p>m6U$ak{BFzhjm2qL5TG-~M|XKX6=9nv zpUGI38P5E3X4cAXO6I_1q0$gBm!FCto8|f#VlnV?E{cCHSgfH4lL{;~ym~nfN+V~& z3O^&gw&N{`UHSbjRe5(k^Qb0tsDaQ-`&bQ>)>}eqN=MAWh@`Z?A9E@I!E&7%*e6Gm zn#(7TT{g^_ZKx^bbpfThu@16B6`KjT+N)^$C)M-i_KfZta>W*UicXPD&GM3SHnq4U zD1U|djB~Gu<~TB2J7d&u{*-2g^QpdYePEdkyyLUf3>O9%zzoOLU_)oxr*{eX%R0?) z-G!ngruO5!l-@FK(i2n+pDqHJZ%8!~MBVU&P~~_U)WU$zXEThuIK4W%G|xEU2WXaY z!x6hf)C}V;&)%KAx;lIP<-@0|kDpq+_NpQWOa(VG!$|jOfv!>Wp@yHe29$&B;Ke!s zR|qYy+)CGiGE)PV<8Z{28k$OR(2~Z0tMq|29!6;xrxek_jtf7qsj7bmZ!}>e>w%&g$n@8jO&(Bv<$Q&!Gg&UACxenr|&X2c@3ax*$(uW$aOu*(GwLIzyT&AHo* zIyHCDK)@8RAJah!%8bV?43^_-3L5l&2-X=3y$Ok%G+3QDByF&}d+2Mx&qXr0DVTq* z>>%+H4^&9V+-(%>6>fQe+d2&%L-&JCp%E>fq9%sf!o8)>AM&nP^4j!HTMYI6fF!fPM%cGg}{F4^5y@t~E{ z_{{USH98juy32SxwOCbygzp0sfyyp`4K#0UfIP7%Wcyi7d$ALzcsts_0#Rojf6 z+rQ|PEvZ?yKLozN`DHtK;fJH}qwPhgwYvW#Ufc&?yugY0S%yiOAF97NtWntjcU=!x zwXM&czmKZRy|*3lEW&I|*+J9I zQNK8QuM>CtH6Z}*P8i&}%9e8b&3mO&YX49#IHqh;v|Mi2tm>*ndgu~}Pe z{N#n*1@6mL;HZjL?Kk$3YnPP`-fsdPV{R?qzLWHtO?|5%gj0n zt+r zFO~U~6rYNpinqZvwKePe%JeC9m?i>E7t#bdzM8n&UCw<~1WvqN!&cKeCnx{Y1deda zsluTDd$2WLS0%4-)nuw3*{PfY^_!$+X2_?x9o&%7)}RVe>t2M>FUo)a#vJxLILzpw-y0Zb#u1_Fl; z4I&6D@ogGAn!KjEeX?u(N_5ulw}!$$ePHW_(04rR>+TXO>rJE;M{9%^N+hFQBb^=!&_2%Aan6;4dCV;`M12Y^%Rqut? zutotBHLMTJz$+NB&@;G=R#zo6bQiml$puN0ZsVcx(i;_7X6`2T7_1i8ZlpYq?Ng|< zY>%}dQo1hMU44)2xZ2T(HTJ;ysfOzdK?QCo*`iFlhD$jn{xHRSY7t7j^m(5EUD-G8 zMtyYFiF~n&6YJWw(&2fR`1L~&t&S9b8GtLBnQ9Iws{fR~}5m0w7imj0I)gRV%RIsKT@X zIuo+4X-{55(_Ta6Rp2agZSfjvzQD`c^|btKlWUKd<>D5{v)mDXYC9MW8qg@~p@8lt zr~()-86FXt<2Bx5auHT{{Med&~Pwl4EJ7vat z{@J&oXNs%>3)gbOVCH)cZ6lcQ!;QFfS7uyn;Bj(x{#s7q_MYyli~(HrwS29JN9L7k zcx5kb-s}3pow<=4IMljGh(Z3cGv&ZLR>Z1mL~o~qzA)r?KkWP~?yVbaJuj@%qUU8G zgbfDk@ZB5pM{2bA?hTIExlY~VdwFxdT3ivN$xkerNKB=%Xosky|MyULy(U<#mq{j$ zEHBZ*_>?QrBG!cb71nz@_lm$nR=Pz|@FmT4R|t@dUEtesazSh}>Ja~E-?+a0%+0R`e*X26nvEWCMTJ!zz zE@rx9Mc$!ZX?c5ETllDig-L%{*k4`Cv3+Odv$V$8qD~jq$#~ty)*_$@KliigFAfsO zIz)l0e}xHGVZ;MuVcQ(j5fLkFY z1(CD@gSrQ>$zt$87Yd@ek}dLQsq#wPz?za%sFU~)sy6GEJ)_|u*LLQcYK^BGY->L+ zrs{FF@~s(-2@oKZ459026p6x^x-mWbTC2b#Uy|p@_cncDVT;TL#|~&>!_p_#Jb5rh z^1wRveJh-?QP$BrGTw}s0Xq&-Z9(oD2=X*f8z}6i9yY(E5ru)1lb?7j53qykfonl< zP%~#?@%Ki!YAW6cx$=SIDM;4iK&7F5QvgB9Q3y!lmCRudQ>YO|Hq<&n0TapBAiA9uoRVg-yBjzGeh)q5<6@=&I*}Jn> zS7)!keE4+r@zd277F~scstN$lC|X<5VpS?FvO0*RNDWzT1RhwwXN*o_E>>UVa(JcQ zAz`n&0TsQV1UB5Y6Hxvp?u4|8m(;6jjyM{-F$T&5Jt z`Cpa?Ioh5i(MrDkmK>0zbQUSoiWxxfd zsB*z#4Fygru$q9UwEZSMrb2Lu1mi7;U3nq_bfRHS``TqM?oO_OQUz+J9@ktx<=gnAUqSj;6bXQrmG z-POa)ryuc-D!WCjbJe80T4=z})Wm4()2I7v-F=oH|1&=6#DCy_MI<9l7@v%Q{QW3_|EpGy z=mT8^qNMa^kG`d>+b^>_sSLRjAD?K~8hK*;xNTLMf3BOgdYjxf*hBj7V5&k*mXs&* zB7NKXXagv*)y7qFUlqp5%!vv#Q0sm_%B6GF>Tx!6MDH4KVvxIe>py(=MAM~ilVF@l z=1bS0aG>>p3v4A@L8vAd#6LuxF*B7+B|tUfS?PtChS2CDk8*h8F*N}AHfk+ zjs)#Q!d=vA-E=C)20`t&2%z!zqhuL!8eZ695Vr zVqDq-_~#VplK7{lV2o7_;(r;^YroCW;bGtYnZ1$A9XoxJT=z-d8rs>7iqc)^pWUOJ z{Z~1P`Z9MdF?Y2}*n62?WuO~Ps9-99-D}W?ry2xLv>D?E9-1XibJg@)jxMb5uP_

>Ri~&sZR4g_G3dY^((sU^ zEm39RpjDA#5J>@aQIftN6*URS7R9c}_4E?@t^^1{Dm(#Vhbq=u6j7o}=ta|%@eN=a zh`lON9%OZ{QX#kd7affGqX!ov|iid9FB6 z?J995vzs%5@k2zzp{c~aMg}l>e4PJhWYD^jZfH`+G+;L}m}AKpL=th)C)z7iW zz*#aMD*^$_QPm_;Uj|Cw#P*p$#DJh10Fx9Xsun4NVq$H9?Kc4{r}ZsDJtkmlZt*)j zXTs1F2l%5WC}4gUutFc2*d7!h(KZoEw)MRZ1r&%3l8)a1U3~zd5gAMo%5rpEfz@BM zED;@*$TAx1(T!x34AAXL(F)HfO$iYx3_T!62J=;>MmLE{bi!FiNR853vg|XYVAa;c z8c@|xUjxG-fiP2oG2ss2g=GgXfCLe*bvjV!!X92Ex4T+_o(3eI~!QbOPnRp?D zhfFYa{DPziy4lg;vx%o{Z5M31OICjRD`bJ}=jd34>IPA(WVeTCW+2Fr?402x*FeJB z)#_dk5s`wycc!>2Q%hwN4B6{s(bu)^>a4fk_{P_mk1U-2?uCSXK_r706)ZAEQNij& zhE-SU(QV|&Q0r-E7!|AtX}=E@EO5N2iwH%xFHqK&QdHo)nrQxr(NsjLBw|rPtP^n` z6)>ofql~DaS&Hkw|NhTk|NZy>(v=}z3kqb5OX<^Abk{ zn#?BXM#g*$R=1){$kZgPbL()--di}tTRKi4$XQJU(Ht4JWWr%C-*0(kvfmz&t^)Kh z{Xw8t+-vN1Wtfx9i%KXX_{XqO$ExN z7M>h2>0d#jm)>hGk;MBY3)%5u9ty%-oH@gHHi{ZPAM$O+AF( zjBrh{90sPyq+3s>&dzq&t{T#GV qR{mG=z?IC%X;u#JbaHL0K@&$=(8%6~SDN#Z4w#DKL6rtj%U}1KR z3@_B%!^wJA6$dmL=`b{7U|+^b_PX0{Fgvj>qJQXD{F zkr_S12^5LzCZT8oXnq>2b;-f42K$&tFrCvAXlgx^2aGSt#yBy92?FF1Jrx!{bxh2` z%T{u*YDP0L*S!@Xn5icIdNX+|4UX-Pw zM265n6gLZF!Ng#N@c?Rc*)gTVJv*9TRTYjrlg^W41Sg*9P@-_bIn83b(sIE)>zVzl zH&#!*$Lg-TO=GFfn#Jq$sQR7>w(lgpQ2FCoC=NmL#J$E#DeL1B%{*8u5VbKw}KC z4Q0tAhe24i@RD@LaMMl_x#!9M%NI1Sp#Z*sdGz1&1#7PRB7=B+yDXx@gyqp~&ljw- zN_2RA(!B*7Yz8cR6PvDX91w9GDeWhu!hLsLtq8n@E%+jXb2Nq{Y(Pf_(3{(|FHl3g z(!oNPxb%AqjMy20K{3Q?Q^e~YOnE?6Wl6LgaX*oj4PIUtnD5|M;rhJTYU4kc?*^tu zP6zNR0%1KtTvtpGMUxuBYwigdgxGX~fm8UjU9 zO_@fxy{_22P|+-aJ_45X18D^@C zysad6hQW2L38NzrYb7a=umvGO_9@f3gwTb34MP27>7%%l?Lkb6Ak%BSqWP{#u~9Ce zE(5-lPAJdXV+np-q#vR=Q0(7d2g1r&<1u4VisdNso3ZFPMdxEBXOY^ko5MElF@8iN zw7wsu@>Y(VK=K(?12#)vNn>Vu=GHm7r?T7ip|xKI+xodVWf^KUE^phlM%_U)_~_DF zq2kol4c6+O{Q_O|;z!c8h@u&(LiY7ua9SheXI(h0fhd_S@OCQeoGFMysx^KzE5(vu z+H`8)DPxUis0M<0y;ZAMK2aL}>^@>BN1W?Ij|AN-8L5lFajP~s z5ovAAL`!-bjm+c^8Jhhal*kNWYZc57cIjN8_-$wQRysk`VK}3Gyo|M@2qmYvp>MG8 zCqkWuZ_hJYsM21e$45$wu&_%7iJf&|zz=r+;9~B8CK^Ebl!U3o^4TbnHRQv!g4AC* zj-9nd9f>tiLCRfbhd|}%ekUE-b0x^#qg7%t1zwPxDCY`*Fb|1a? z?vtkXW#`JeDehz~1zj&|50;(j-QSDZX#1_N0d?@lsY;3uxF0s;HnH1pGbCBq@AXZf zN{ox7buN_H%EBP-q{RG{r}LbMbR*}qe0Ek=kwcZ236z17TRH9Yq4TEUz~y3CJVVnZ z<&*R|$f>Y*;(0#@>W@mj>|PLTvv^}FLu~2yJ$tP3s_VIU?UG}0I2u@-ND585;xI#R zNY7=aOAk%H>6ync4PQzD;FYP-SU*zB7**yYS&}lf(Sa*(^$z!*=a*!3;pu6 zG>D)-Bx5mOJtDaR`RY*zipW#_%P8n*1SFXx3ySg8ubRTyIPujT@9U=sI^{L7P88x> z@|HI#3Tw&Jrd;?PTHhjFD6DOktZrxmR?r11$psC8F3D3;;+Uj_HgN-_Zj1tn(G0X{ zOgM!iz_$g`=92Y{dZesO7pjnCl2e3v9d9f59Gn2JiLYox?q=iVb!vQpB4ZI1Eaw6Y zVL%)LFXoajP@ar^U!@~9DZT6qwVo#n-4|{{$!j@eUzl|zT}QG>SUoBXy(QK3SCd79 zqNGX&O{4iaveG6IRtuU7YELBNx9E)2BXx@Bl@UmB0+vYAQb-Fbr)AYQS*>g0sTe_U z*@Xo+Nqg51$7i;a)FJ83XNA}dBxumkBsd~fVqSNuo=u<_cwSgmP(yfKywZvcrd45P zzG1bZkG~4KDGrG8UOxpxBm-#Ic+`8==B}%4#)obtI!yIf45r?F>U!gxx{3d>lAdYA=F!9w5|q7 z5>fn9wHR5zO2%m8&K}WUr}JNz^IrtXBSDvlk$H`DdZj_KZ$ECV*Y~jSQy9G-^r-$})WhNKVtn2y-|f`R?!ts(7qfzt|k)6RB*1 z#ORX;5DU|V+i5bc>dCxc!h}MZl7GplsV6ET1z(VIKJRW-Bf0Zb(1+|}{6?eK)1mPr znM-8yc@iAAcz1TmnptY}?oFc_piVh&S}vq=Ig+r&F9z-J$b7~DtcDfyF{EG353+}jL?5Ouh@@qXWB?DD&13>GmzcwBJo-iNM^!x z0gt!>hM3N3Lp&k^z0rlbh?}a?6rw`L-RT9Y|H*O98I#K7{!oPgCri`v7k>E@& z@KA&_sk7DzEHdtIKzC$GtxB>?MvVLxv=cb&5RNCAFVmPLMQVx=Wi2UG(t#7*z=~NM zke@yLZ4*;8X?)=U1@ziBxzeeO11FQ7HY9&hueZYTfbftb1I1rIS2f)@gJ>v_AGo); z4|LkW=u)?OGkeAA4(kB@iT_XESfG)`Yet|76*fM*QK57;`+!lEKhh#SBQkEYk=iy5 zIAJvt+WUu@rG@qnv3CkmdBG}*7zmeGIUV)v=tSA1UEB-Y-Z|&pQLJd?yZuAUc^B3T zQkFX90Vz09kw%soKo@{;R;vo1to55N)QESvH~

u~g|2=(9i$C1Xq7h&!3h{>mV| zUy8uNPWCe{8kUmeeSPGwI>=aLE@aL-OQ8SS z6))}s{$$6{8`b*)<~0t~7ci?TxGs3BROgGWJ%--;g5}ZE*&i^vF!fZaZZmMso*ArU zgM(*AXJ)Lw=bvF;kz!q4Wls^_VIZCf7V+z5t-f3_d@bT`+76n~JXS#tW3aO%{w=`4 zzO9#BP}w#HTl8e3`jjBiNk&um7OLt`sWDErY@@=@)6&gf?207I5?wDw1yS|18R^H1 ze*L>L)~s4gD9SqeN@KXF<0)~mXHMOyCrCOnkP3Bj#6^6(M^e`WvM}F~7tv5f3M8jQ z8kC6x`T&9v2@AvDGbjA{D%=CEYeEb?eC@;9aN8em%lyrDG2V$$@Uuj5fnlk5S-QO} zwkv<`ikG*Q)>7x?C`jqERXvn5%h>|rbM*E=eAGd0rV8gA3>KQ+%0r1h$7n8 zcH1A1E8QqWqnG7V1pV1$krhF=HdwOoM&55T%V1l9H;kygs&gi5Juc`X=n)_Rdmb9_ zVfeadT&;tYZ^<-Y-HK{O;K2#j z%Oc>v!&rG8W-czT$JpV^r1dS5+y?6!CFf}Kh<>0oc#3O!Sd08%txww;SYBgZj z)K{!$?x#5`>He~RsdMq6xySKrya)~!wXY4&qVB41!n3R>lXc-)vw(CronS1sNKS2% z<-uX@H;m5nMQACOgCz84+znMtO`+wa;&Irj1HIaT`uu2zbLB%I* zHU^%1{od9Hhh3g0aPd-Co`Ze|7rPQ-hh3XN80Bz8taTr!a zh>L-6nI6UH$krcgggWvsfySE9C04b;(B156-iP_HooP~+{OseuxDD3xR3UAN^dU0yS<;wjR)P}AuJQfKYz zm|A5>KG0tQN!nYo*~AD zfoUh^;btuQ>fJ={)>yf=LgwtAT-qm_vAb&lYBje`jM_sXf|Oa{EuZSm8Jlqkmf%Ln zZmbR0L$sti_h_%*p<$|oaw2_gy;z|lPuLT&Lh@hipjgS!86BTIiZf8enFVUQCTl7a zRR#+6&#vjP0g{OD|WkqGsl~Xv^>ZF-Ru||5RJgGrI2{T zc8FV8?AlWxaMr2=9Yyn!Ka~5B=z(VM0D$@^pF-%-h>f@Cxx?A*m)e8yOvY77kV`gdV>yev^yHJ z7b@frd&{j|VCQNk8rn2Ge@u zO{TT5Ot5hCOK%{z_QwKi(%NY6RKDDZYPYuC%V=o~H=O&@l;KNc$`{xFVG# zLPy$KCv8h+kUy*umljsR&S{G^V)bbCWFqg!YxW&UMKkknedmSNa@tKd9Pj&j#naYm z6Xp0&tDc^^Vd5||EAewz(M|8q0 zmNQVbVCPoA8nICep{^3_!V-Arqa9WYtdxziUG>S^L^p)ybMOuc z*J{yI&=xkY=*r*_FkKH3)AIIQ{^qhOP!(+FL%|x^h6=WGYK~M~9n?l$>Ad;Z_H-~S zZ4kXsiB17?;q#SnyjQ>k5k>^oa5WJ}B&nKnH5E$(Yz5Gj)j^~11j zB*lRJ;8y`$y5}h<@HyquoWaEFB{SLXPN*>m-k)o0T)JM*(F}?a>p2%NV@ojOzDz}$ zVUw?|u%J_9f0&Bz5mc%1;j=d5AX{4A#8N!w!vAtVEyWVjF&04+kA?S6>>Y&Rop5aD zQ^OkBf<8FrAr)p+MdOvb6cAR;eD)CLgCnQ?P_lrc4O@m_~OU~ z%#fCXE+8vgz&5g_;I2B^?tpSH(*lY?6VLlQaoY$OJ_szk_ya}9OIydPm^+5A_XR$w zIZOCDW-p`2ANICeBg)P%i#1|_j&y;)t9ceV-SBmBf>5cK?McdZayL?YTsXGwr`oG1 z-N26;xm?p4gTR&h_VDzs2CSm9K`H?|4;I$QHk1GlX$|+t0p7*Rr_#9mD=IC(h5O%r z?rc^LB!y7$8=G7%eF#Y&1fndN`$3SdF#v%dK5&Vs6u3RgXVx|qn`A0pn+KmUhf931 z{yYeg6v8@#OFUWjyAY)BF0HEcscyhwYzcDQ*Q%;$=k3KBu>h~EstWV!>0zv@>;i$- zBJ{Df=E?4E7F(6QWgs{HK_h$Kv8CdTR*&3y1ZOEHx>-Gv{;)jZ$&6K=hGUv;!h?w` z4nf!RnRyrJl6Vl9&Q8k?0@>iBra8@zeGq7xN>>W)#QTF;w~eeGIJ0u9QiI>-;xlgd zFwhhaMEZ92=ycgh$>_oB7A_G52eJ!&5LoIWkbx#3O;|9Igt24{1fU?iiqnL0?Ml!M zU_kubhzUhil_d-WDe_b>kT5efbb%-+VE{%@=s>8fX>g^fCA{MP_6F@@dsrhDwoz7P zE$(VPh24#_uH0XL#93P$WJ}AN><|`th!NeWC~AQZ2b1^n()qTLHZKqwPF-Vb;6Dn4 z&Y8$ALWMQ5UPYx7bi63A;8he41s)a)?Imei@dd7i6CfIE*m`$$RQ0maXntrZi;05O zQanV9ZbZ(z5a128J`6s_n@=~ZaPr1+xtI?jZyc9+_B9AXD9OR=MzOLtjJjv3fMYr-DXpdu2jY3Xj(y(2+8 zkuXMDt(#6;MnexFW8Eik1eK-tEiSWre;o*mUe$h!pfe^mqqSxn;NRIo#^Eq1I^`wIg0}aX2g%ze}N;}6c7}|I&$OY>lHUd&~l>4SZFXy1@=CF-> zj34O+&~PKEyoH*GWI~P>`{d_NYi!6FDb4=c5|6(?&$q<0Z2z31?zD}YUS*D%<&&n% zbI_wGTdO=9b}MQUkXN~Bj`NZkGeg*78vMuNwT^6=ige@|A-rw^;Kwy;VUeW~n~fz? zlD=^XrpP2qE%vA~c8?jmFSJF#BJ?yvI+3g}%8@kP zXd*(Vl*GW|6@6GjvN=>1o-f@{(D^A)x>gqybT_-2_hCM4XPVR{Kl}JEZiDqaoi147 zZRvI{o20i{6SFT}uXs191Cz?R41=RxUNf)aDbg@Y>huDsvvze%tuiDZ=r1Hu)+@Ks zA;S!a2&>ZnSWArWH~pT9{drgDmBm%-Mv8|p-lX^awG7Mt(g#7GAh4yUr0qd8i&b_;~eY1B)-M@s^>`24Q z$(ZZ083$oo1%WK^6bkn)#3*(GgFw4#<$+wDT&9>PU(?rY_A!V674}3(@lbMT10glD z1s}y3C=s(N)Pj~=Vbft{qRK!4gcR*5k?KwQzFQ@2=l#tZS+Ars%v#vGlJ-WwJVZ&) zmtVV@=+tR%yV3L@ngiNi4tLwZX_qh{5WHaQgzNVMn%8CFy5IBKZXD3WE@yZNY+|{r z9@1)8u7jT1ts!bN?k>*npO!$!oi@*SC_0slD3o(6)Txq6@DS86h=h&x_;_d(-7Q`qa)xk~Lz1edFHcGCRTAb@V%&dTN(1Axcio?0jVp z2O2tSv~Ev>)@i#~!(%0M$Rlf;MdsIJLq2>b#qYNBPE|>PY+0l?`gplrz zOLT(|jpcG(A4dAZjptJ_hn-+6tDoAr@Ulj%?nG)t@lZ5s&yA?ycOkb{W^gBLC?3K- zK5VF6RztztPzR%Jw}+_rJ(3U5E0=qeJ9gt>-}N&e4{u@NFM4Tb z78b&eoDJ4`UwzQtdw@BR13t#a7(gY$(bJs0IYTi0kjFM- z<10JuezTS7FQe^#^OUb6ko_JS5h)@zkrjXS+oBpHVsz-AV@o}a`#a>=B=14Eha5cQ z7l`VRBiQ|ycd5NrZ?yx<=;vhqEmso`7>i~4-=y&se#~z{W-X57N_Si&Z|e9TVDCUT zN{+b6-YgHn`+Ms2(GI@W6_-Ai;s8&u7(y03E}cJSnTrns+2E^x^Xaz~Jg0JrX9xBr zMUjH9K+C0EIuPOwr=t6|qq;*i$aW|dgA}-;;W!mTxN8|dM+mzk4iX1}rF0mwJ%lve zyX0uxL#EP=Edh@E+k&&pQotIq;6}Oy$3yn9UEYH8PF0tc`t~Yqgk!CRRc>RG9VH$z z=0vrlw4IDOH2flZ655L;9G@j$XFF(tm(cuJ(}atrPdyN`7s})hd)K9HQ?ko}!5Xmu zM{3*H<&a&A(1&dkgl*F}`=}yjagZ%7Z(`Pzb~S6#4jh!#fnjPu=0+*Vs1G#B7z_gy z&vxPUtdT8<=MoR)TMte=Clen6IurrDs~K5#KtP`YUvWQcNr%gYSTgY4bIz2IT_`4N zWE)C|eDR@#B2_}|X6@>*l+a(1X`x+B8?p=jbec2_e1mLjsluHw9SPmx*LRrcaq)6icX<`7K7EUf|JW~D>=!-`)gQ^)+rUR~A7e?<^_#e~IIK?zeL zeHNm{CLEEIfi`v! z4?+B!6e-<-Lx+$oAdZzsNcE5p%;w_~-MzB;-0oZrF10 zMqA*A6m1*v(ys{(Q&SFOWuUfsB?^^i$j#W2OydZ?uEbp&dGP){;) z-#FcPs?OlZ`DmbBFQkWV8bh!UggRod2&c0%{8(Yif7py>@;82s?) zwm++ICo~Tw9tz(!4+GOZ+CGYyaQSqtn-D;{g!~5r?8LlkB&)8k5^g(0!-0E;^63kq z90aFIiUIpj3!F{4bo`J4KY8Lf9;qJYNFD~g^bbSS9f(BVr&Yt2+20r(1jUfuf}j!Q zQqU=(x1w!M=nOL(mP}+z={;0D7!lC^YJ? zw_{5P#{C^@Z<78s)O-}>kMyr>Qmtk@H@PA}Tm*Jq7t34ByBBy$7Z*SSH@$bSey|ku z5O7pJxXfMBT~8+`J9Job4Z8c2m%xS7Vn{U}xwPEJQt(R@F8A*!w8L*7SK2|?hlvs*jV+5rDBa>(U&2>)`i zT|8v`!|{%=%V5eH*@oWau3E=#>rEGj*3HV5JxSS4?nY|!kO~KcF}V)2SPVQZvlR4&IpMOT1)D)f?@B>}u}!9oPeD!N4^=g~6K&R1wL@ z5O^pimm5C8J9Kl2W*EmCT+;6R93yCKw|AK5v_G&v0?Azh#(<#g!rWq2dJr_Mn;jiK zn|sBw-q&5kyCk**H|}e_Rk2Hc$r`c1M!Mdz`uTD68X-}&Z<}>{s{kJE?>vjup@vKY6K$aCz%HVnHL?YDP_Zir!n?TGVRg`M)~*gLQ%O`Q zGb+29c4r5)Ut5!gfuHwtsr<$R$vBK4D+=u(Fb%_?Ih6Q7KF|D>z#|0?Bsh@E=?tcv zJU2^@jT4#$Z=OY5Vz6QtHN_gSKt{U8vC9s*7NL(dP5}0P>#V-T6;AX5Gr9%Nu11{h zf@6WySAr&;tyKkx)}-LL_<(-2>GVp2B)WG5 znViG?pUY=6=>!?84jkZtDI*bMbtK40e1cv2jSQy9G-^r-$^_#h0mw2MH%3sCfl6k=07W`Qv;c=hW^U{Qy%usWvB0 zsAx=J)hUQm`a74MVZ;&zRM?v`#h1`Mo)7wO=N0!c?nxafkX>~V<~c#agO@Jkjsyh^ zF(IF6$W#S#gS{lyM`xt}l33O73xvSH3B|~|bBX6tCyPKuKLOv528N-Y#N)a+fJ30i zkO~$2471P>82D1_$1QRj%5jWPEqKr!5;h%JX7=p{s$u)h0 zy*%k@L-H4cU7=b)$iRUHz==3$toceDR2;vH&w$dd&AXyX;)yyRaQth7A;(`CrUs8# zYs%|eO;IKm^3KkLR zG*&Po4b~$&5|U!D(a;SI8sdQb?BQ>lm}l4+%pXuduWgen-P`133yIkvC({`wzF$99 zHQhLaXef{$xUaYelq|vMQn>d&TMu15bbA|63D9i7mcF&5PHJm6*V!T465V<8v)Q z6+#t@+71w(s7A!|_2Yj=xDCSoMA^Pd-25q~{!-!ih)&w8fDjPwAG!5slEDA{(UXZ3 zzN-`6ibvj(V<(`aW6^5Be-44xmy~ZrHJ%*D(plA*-7=7Rl8dGBjj_}<2KZ@)JRMLy zg0INM%Qvh*;N;|6I-Ad@GnvFchdTO3B-%Hkk8pP(YkJ)SjW$H)24No7r5CEu2~T{r z*a0Kc?@hXREWaP!R`l}e=}qypU#u1Jf3=&^q(6kIQom9xo?eyktv0#;D^VYHl%|aT z-@7}P$G`9E-AiR)bS_%W@om0*Rh*vv?f*@R|I8<(!cF!@19CleQZtWTdK%=LkDc_F!f1N`GikIMo!Z6elI%w87i5Z0JAZ z*)Ly!YBt~%db%;1neI(tlDN5lxxc?FjOs7_#-v%gzU$QK$BD|4?ko*Vs6v0=~#e}BFKKaJbo!&4a_g)(ZhAKcYg-P6X~%neR)irjns3!{2&dlz^}x^ zG}Y5mSDEY6D@E(DN$JFIjx%z+7av?n$>-+9T`i?IjNI)-zx(C4RPOhBmj(D#m8-4J z=q`a!rqU@5Ud|?&-tk$p+eu~5uk?q(vs@Z8vdPNY<@0ez`u#Nd)sUVaQmF^2t%20j z!w=npzS<*WPSYdD(Z^y)=BJHCxy{yLMD8x(IR z9(woLL;%o0FTegG-LB?46U?BewOW6oUBhbU=3?Bb=!M+R=5S>G?sk9nX@h#_XCI2i z$7J>CVpQoS(!VFGIxg~Hv>N^$o zVxsC?-al!@j!7FllkU#WM&t5jxp{wz>W$ko9X1+r@&5Kyy%0}xzcRmm>*eQ{JMgR0 zF3bJ;NGV)i==Ic9PQE|WekD`6Rtel5C%!0U*2BhSr`NwW)#FiVe40zY;JJnM8#$Lu z*VBgfXtp!Q*K(_mCRf9oo9smbHlCi#<4SE*oK7a1Y-De0^~U*^_%M4*8@w+!ALPD1 zO5DF3tI7CTs##3j{x(sgboHg>SqxSrz z-#+eqDW)#*C3sFf0_{A0+y9k{5B2k2uEhlG@#!;|>bc9?#KZ4?_esi6jlx56sthjr zw`Sp~f?CRz4nd|nKFc-+#bLX6CG`vaerh1ai|YTe_hrkeBin+%qVPQr-t8(ggQ*i; z5g-*5;aKt==B!1PofQs+*S_(?M%&X@OSz;s!VI@MxhHSE=giqMbW&+DO=$}mPJ`1pgQOF3!&+^%c)QZd)L z&u4ix{1RJ*QWJKjOd_RhxwqoSPpf%Vd0wCaJ3^f?@i`lH-TLSeocT-ouL8yPmdG85i{l~GJc767ZoY1 zzr=-RXTsKil7E1s@7@UyqteJfw+w#%X>OrmmL$Ul#j^fFCXZo(7h84Y-! zndGueq}8kNvKa0@&~lO1v)%mSIg+L66iXK)OqMP^mqoRuWfn|uf($(;uJ9qf~Jc7AH?iq%W(Hc(wNa$S8(@jW3Gv$l!j$ z^NEtaOg`N|*Rsur?Bk+UP`Jk=Pt)UW`K?gZ3*B1l9q8zMMw}$2S~=c$m`f$LTP!~J z<#4ALGE~6bQz6Sg$n>Oe(|ah(?@~7vlhXycSM3ejHQ+TXk(&+^>J1||+T&!(@^xd< zn_=wcU3i!ZrCfh5mz%@poguNg-ec{4T3=<#xnew(f6@1-bg$S>_ujSV?3*|WKa3|8WsrJ*3iTEbH8fyr8j@H=NZr%IO+Ugdo+^u4 zIMfUaT{#WjXH((F)?+bTnDDI@!1wqm8F|vf@oI87Ocl~Cpx^G>?}G(f$v!h^!1r`7 zsXk`pSZ(sa-KU0;=zF9Q8)l>T*-3RaiI-$R+GdhjanFxn5@GNr4|3sh`3}g%SPv-s za=AOoX6SfHxIqIBSIME2o(x`;#>>q-S&D}<&2cUoi-w|lk4{RRc{9N%W45AoqvB0? zKDnFR0TvIJGI1@mh|>A;eN?}R3J>}Br6IoP<*+ll&(N7tL`nCefC#f^rSz=c0j3GH zS87kY$#7K~!1dg%j5V~Q^FpCBY3ogqroU><4^yPv%+4R8H}xpmdMvb48fb?i)!CX2 zqKV~8?^)-H5w%lJWZQSOOrhMFjb`aF_gs$YVX?wIOU6zS3YBhmQBbqPQdCstqC5~| z<-S%6OQG3a6qtjnTyAyGY4>UUebiHi_1trFwY+aG%3YhnV3u0>0StwEYvAmqWB?_5Xx7=giBbDg;GFjyGa-y#$O7E5C(_)zH zS4v&>MSH&)w1gsWSYJ6-%e}QC8naaDH*qy`mrL<_LCPz44SiUfa>IG5QA*#W#PT9B zydOm?$qe1$ilJO76d#R}iE1`B7h%b zyjh_E=c{?D!*HYFYO&y$dUGWVV%evMfH^@@v)uMqzA8abbKg*q1!Cn>h@b(#N|Ifa%RILD2wLF!Z2~ znJI@t44=WET_FbWu5ozqU*?-yDzPW(U_=y**vvYjU_@vBJ>ylr&kMY^`~&@0;66hK zXuLnvcb!qVAA$q9etg)kq#*LjT}aCP!GY4UxeBA;K*_LOVQ}CE1_!F~a=F8#Cb==4 z;cMAcrme+ePjw;BE@%Ddw5G?)^_<*Tr9)C=F-y9Vs!(=*Kg_cD*(Y`6AV&loXz8nwUlvwLdj0$hzv^s;V4vc4G7n>IJ1{)WYaHXJ! z;EMue;|$yh9>HRe!;XXeFtLmQ={S!0F0L`UydnQ}Oyk0a^w&8Sj*T+qwt zTd}=Na}kLXmD1a^5^sd1T)fR`FMOl51ooJs&$8XdGy6P^Ydtzt(&l$_!)6e|^}haC zEr`hpn;j2(@#mGoB%>2Lxd77n;c=u@6t3Ip4kPsPNh*zd5B(0kx{o~eAKt3HL}kTx zX0u_sr1x5Az)_=gUwasgn%%@Wd-Jkl~$-E=XVh{v1(3}VzQC$KwaL@8czk9 zT|G9nY`PZjMwMx_RL{iYwdyLqG%Z7GC7DgGMrC~gc5SAH1dOF&(kh2q%&2Urr$W9n zq(h0Ep1&WqDmCW4A~UU~TqtylwV|37*mPtNtIbt0(&-JA@RTlv*%$q}T8-R9wQ)Jd zNUP~nwJ@KQGluKEn$D;7$HBY-+?V@h_O6+Gd9Jsg3%St4yjSXQiRp+L+^}!4UZ>o8 zZqGZBLN?!h7_@b9HR4yv5u@MBvBBbv?KTY+|5B@jZ!+n*7#3P#Y5CBOK9#cUgHjh2 zxxRcKCYSW`hMCu+QRO))grYY>F_})hYqgNjRwA)zx?62MWTK(+U})^+{$uMdmw%b3 zZ(g`eXA&PxzIb@w<#+U^6kXoL;fsQyBau)+BhLaacmgq{)}$JSKm)W?H%!(9BNcpT{<@gF_+`!g}Z`PA-$ad1v$GIRBR^`T)12BAWL38$)@mX zc@pooneH&s2xfpfaRshmb$`+rZY7d?ebUz5nZm8-E-1IP96uCpEm&2TFa|NFbk%XS zD)hAzpulm(;Ke;=D(CZCoe?D@`L13qM&#e)Ln0egTv)O6y}l0i<3lgCp)$^iZ>_}> z{9`8Qoecaks@wwD7A%E5Yo2(1|m|Wi%Oud58 zX;Ax9VuFv$NN9ow;%T(9ZN1YMDyaV3$45hc!3{n>ghk;1{oyM})o*is41_qs>SJTm zeHjZ*E6bBL(BTN`X#U5LS5&PfLuN#L#C&~)KBQ5NxG$e?ydlY@EF%rfB}nq)`qjr8 zKG0TF_yPRy2>b;`OO1eqfGde?!58TfdNpo-vdg$|xlG@s&JU`T7gSx^OHG(Du*vmPN38 znTVj@mT4MvyOwFHH*CwC9$~l~H8975hp9%XmCrY6stqgPiJWvy^zi$1+g|E-Q)qh` z_N}#}fIh0h&Cl?CKchP{d<8R|b7Oo%BO`%^p4u&)k>;Q-L^_ku1Us@Jo)7dD4P83_ zniphp+wS@Td-qzs|q``M3NSNt57oYOmt=F z!0iDqWnidNj^#P^c4O+0Jv-jf{-rzZc(hdG!JYO?(7)6msyU2ZzB<6>%~T$&S;~^Q zJB{9-i0jdYo}REyg$V=TaKJu2$5HQ(;NrJWzjwSNLG8hEn7k}uw`GWg7B;y8A8}w5 zU%)%XUwDT|I48Uy1DTBdO62)~J>GhoGaA!MkK z0J6f+^_Wv^1;UTS4~c2vd(iXGUw^NyrhoqW&!!O*?6fb48gN5k;RIUD5<$G1LI@Xb z#=!Dcfawa8s*TRE8`+g;UA(Hv$`VX*g&C?o`i-(3)?mPlheF|JWJ9l~Tgi0thU>GL zK^po3m&;4`_9oxG7Sz(gJ>EVblG2Bb=x?`aZYPprb%Vzk#GKdFQ!uYyvGZ=)8J(|G zUTbx0wz4GfNpTFTyYGY(*b66N@XnA8fwhx?hzzScQ@WqX^bcF+m7^5hZ$qJ*g?5Z6 zw8%dCeUhovX=Q5dM!nV97HlWmNC&NG3)w{0bHSfEg)1FyFHa@VmDn?~R3`VBr#t0( z?W`+o$ff;%_PxI}r5Ep~E! zEf%=EuM+n9gbvj!Jtbg*?(hZy6Gs9jRe8Vmkx9+Ao3Q}R90lwfoyOhfyEyl zBJ;MQFQA0V%pW%ub=B69x_1DTB_R+*m*m$1vx;YBaVks4l`8TsWr2w_)SakcOQe2XHZj4|j(zi6k(8K~~KkFjdYUU5NbMngkYsvN;mZLtINvsQ^DdELRZ-bZk#RzQI2bpA z>oNPo8Qu8~rV4f1Wu?PY)_OLYLMsr4mt3jQA;MwADf0QZHaFp@fz740`_z)fL{2NvQorxE2oFYqfA zA&0~VNEKv$px#nt4UPnl_9!0mi1fCeV9sk}YV+vi3pas>zg@I*IDG0HyWkJ3I<{8) zy3U56LANc93yu^Fq5k3EG6-<&ZD2}cCN379@fdRKB#K-%W`+ubgt2=FI)}Aw13|#i zbq_b^IO(^68(XIzm(4c+{PlNfD7)H%)N3+Xawg;?Zfgaw@Db8i12FRU{ zfS{|=$74GT`kn!D&TlSz3^O>g9*@M3#|)n@LBIe<1lY|U(_gkucP<+>ZkE*Z7HW2{ z1s;+)xE?ps$ZT*6jOOn-oLO;-Oo<#L!LtEIqqgiu7_ygS?K9@j4Q@B!2-(Z1v8s%3 z3}V9IW`((kM_ciDJE5jk%)e$cl}zpXNt#pV%2pk|2&c0r3eAlfW#o_B#C=9!B>e67 ze3IiHTqZsnl#Vsf@=}8Em%duJ8`FpESv6KwYK=k6*8}xVwT$`r=-T{==6`13P8`g7l zfB6yCwTa^kVDT4@4EXl|SVexJ=?Ztdv7nGG>oICoIMEoyT+g=k7)M7RXfpE&jMk$^ zi}HK8e`T)pnz807OX{9vHd=N0aFe=5@oq=WM(VT}`e}4OaWX`DuD|4dFa5v&%T72u zm+gOA0s&D98(7-h9RX%OF#~tE$Z573U>u2|-~jbfn8#if(96aROpu@1D`<1s`|2zy zKOVyo_pYP6aW1B}cx;jSF=U~CU6h^X@kf%&^bSr~WcW7W z`ZD)X@^)i2A$wl&DGd%B^@^h&t-S8#GZo+!&#alslDwz5#ZeLpRt9eIC+*MU7Nd1| zM|ldo2(*SYat}csOSx7BdFrBz<1zMeGa=n$s8OdJ%LDHw*jW|`n#qFh=3PYs`RC_U z@YzsgPWdgAvR;!Dp_HJCtwB_Cn4^b0o}qH3*Q_;9SyK0;ND2v6UxP@>C+W`< zN%7c0&F1cK6f;4B!G-ZokYHem8dnnx&T$vX25y1`gC7tSBpCdRqcbEJcx{_WBUMvm zvcd$vN6v$cAVhHLA}=~ba7tZ{gy9XN$;>A(h6t>B@9YF92oYdls9d@ItxUO7Ap(z9 zT{-FMYTq#$?;|F!YED$DAhNi@CAB@<1E$CirZVr7+nhm%&65Eo@+K$#j_|nX>CfKG zKds0MJoU9ZJNCjhMAl?-LR=6j{v}=P+ln|lDl)Kw>QTvPoUl197?0-FKQp<NyLl4kIgLf>(tuM` zR#v!Qx9;J|W7i^Fbwxdfn<1~LE=nJ-U8qq;It)L$haj)rTVtevc`R@#kOKQO-RCVo67c);5_=caAwG5(p4dDc$jugm5hh0}D!Ma|{8Di1?h5m8c0 zfFmoz*;Ze&%f<~lWH$naf4GMvk3}~A`Ri{MwG;p6umAkEMi*tg<)U8mT0F=_iR3ZV zeChf8?*K{GyH4dtA_F&FfFuhfxqjH=G5i=pIzW#FdIlW$p0@mrVr5;B#lA{SIfYW+ zbw=SRRA24i6xfGTl}D;?Dr-Py0cZC&>QNSe@PZ%C8SohTSY%X`35ed=nFshAH5uJ* zfEwC&>&dEzJpjnH#824sWu5n#{3zgf%%vwQ0zlAB3Lio3A8A^^--egSD~fdP_iDFY zrhNgdDd+LuC?@j`wQbYdJFp@f#}_=zNOp4JyhBl-Epfw1WQ7}hCraMoTU&XG-T_kq zUMZ()wr&!5XOr3s3VH`ld$n%8!@Xhb)&h}W+Nsd#9Vi{J6o`Z~>IV_Dd&a52NSyk| zzKORAu-t)vCr*a$?9#}oxcZH{D$3l|uY+eU6kzd}6KDP}%9xhA=H7o%jD|uYD^8Jr zM+kt?60n-n*0M$W1Fr2}gSoUZuW`Gs?pnlP%scOAjlq0e9!D4F4~@aV<(PMGlL_;7 z^&7jMxi4$xd?!i#&;P=) zsU0WKq0ks?cTpfgk$h1A?Y*4fJ#dhQyeNqFS?}J1W^XlI&w;ahmSc>w6V!M#P~(9b zcN3aGjR$JnWpFM}jqeNF1Zw=e;GCq!9diBAW|jt&%8R_fDAW)@^Chc|f}ee4*W7Nb zFJ!AEVGI^4JG#5Bfn7A2`2@a-gfSS72`Uo0**Yg*ul&oJr!1*^N`<}{K1Fmm^W*u_^^{ySRrOk5z($IcW^5aY|6-!U{z$-(>V! zt#{Qu)OhR)?B{)$U~gHV$W}YK%jO>7Lj4~p=rXZK@<;*iSZ%AI;E*M5?A)w45;GnX z##2QGuBa#i5Ile*fssZ!GvaPH)*7-GVM-Y95)@&A7qx;26SfG`0qJDi@`V~}&`gk+!-+|~)rZu$C(W(1bkwo^eI)DG|)fp&02JD>(XxJ49^*D-w3-rXO! zji+Nq^~cpW{JolqY%}hcn~X3RF7SPY*Tvs2jERpoCm2=b#J+$#dSTTc(-_2@+*M1J zga+UKvs7Pm`AR2q275IV*sHe4?Y6y2q(;PVubv|g|FaIj4JDaXW1LX+L_&(+UiC}m z4I;Pa1>36!8KypAW?P-FyaTAh!6ZL_lph)BioFwTUkhV0D<|rTVlR!3Fj$ZG>sa8+ z>F_{PmTotu57~QALV=HcBg%9mwovkC*ti_ z^x8A}e>)F=?Ye8`6r?E314tHi2aVMZe>K1wwqj5G{S$hXs2kNjB$-NE)Ac>@>z}sq4 z?;Sw#AHEaGx3aC05FR3@Kg5s-tUq4>s_K1}Rrsl<-gd?uHPj^*o(NFfyUqwI6`}Yc z#ZWWo$Wg$_p`Zgm8OAZH%N2$XNb>F{ZmCDq)SQBC^2{&s5;YR!J|mzvm=Q=5Tj_NOc0X-uvsVt-7zpF+hwC1(yTVDX%=CBK5 zBHu{%=;L!IF%*87^cC^&WnQ6 zflYd{FhVy=Z#R|`vS$rjl?*cmF;}x?4JQo44^3u1fzcYas;RmYpuif&V-3GHteMJ^ zyeC<~#1$h+|92P};Jyp%{#QS5TaE;!kdJ2dyFlg%v{Rx`eNK|z$qsx@0# z68NMj3TcIM4<)ci4ig#dngh*3nkY5ICvH%Q^iQrUAyF2v+dYKdKGb~TV^8tJNhC!9 z>vEfUDwhf={y?r@+Bgsir(=O!BB8x@&J`navpP{*gh;|RIBE1dZb%PsDq3=%msDB$ zb-OWnXotTF|MUg;wVe)wRj&^)_W=%r`3V}`SlcHsKRW;>IM#rw9IG{UdE4;Ap)3P) zro|08g_Bt5qZpnNH{+x$O8J8a;3(xmEM|5dw0eGEfb;b$anl)@j@oc-bLfDY$NgjQ z|HR$r162mDPm`zM{bcm(S#a_Wz3R)FCX3)x=)*!xAb-bvbj&dWP62?y7sdkr_fnl5(0ior*!#wgHfN|~F2l?BLTChw;{(l8AC8GNz+Ysm@r>ZN|?giY5m zD-V_(F!VOdubsvi3T7}v1hRS0&0-T}6rK^b_s9p#=u6uGn>zsfF?Ud3FuiPqd4mx? z5BR~yW#pW~IEz7z4KEx$QDK&{4&ye)M=0?0@gdC#0$>gJ3KIO=Tpt4=X0iI%*t=iG zg44?KWDRsUk~cVqS5&PfLq0_;#(aH+KBS>XCw=*R;|)nJWf^H;ERx zfGw$_7xHvHt_rwS;NTb36_^G6$JlKMWncr!aI2ypVidLSmO$jYDX_f|`$o@EU>|jK@-uwjFEpPSzJhr?ura=& zMbIWhPg%rkp|qneM50)gb6<-OcO=SJk#bnJrKyJA*!5H_*pi%bUNQ2cegBOO^NXp# zNT^D`H76n^hn_!Bqb95_lo^BU)~KmZ9e!4gdKCXANVq)x;rLus?f+uF6BPbGTjBq+ zML~kX|JLIB8!Eh1_}^Kp1x+D z9XLfH63&?umG%jxDE{1y_COuXV088@Ir)}qJX`;AC?I?$je z=!telI3-y#njYvXH=s1x=ydSWH38m60_HHKavCKMsV|ax-5p_1X9R6bq00W-RsE@t ziucsI8a&nJIOsByj1KCLE)Ekp^kUPlb0oA> zeCM@MZ(T>i*uu^~5!tFj=h=vSIq~6!tjMYZ6_I^Xh%G2da5gAeP7r(n==GRW@L$j; zvo53qG$j&HpgjFSQD`LlVwd_vx3IGGwkuWgQu)`38%;z4>PSB|GHV(6iGS%*rdG^D zhYdHlL>AEIB}xQtAOBHcni}xKp{@dQ-)_tsvKI)ks;6QMVy@=oo)M=6LWnD)dijBn z!qfE?&CvDOX)Pm8iG)~HXC|J?p2(Eb70Dkp-~3WG7Dmc(14?QQG@$qV5%`%St?CQ1 z`lPvwU&N7P6@X8+#Z9?!yRo2l5T~yGL6z}4>v=T zS))nTpuxXo?PGwJ$XY)C>vCv%yl)o|--hqFn6+566i_F*byfvq&nBP_>wyB@I=CLQ z2TF{1akZPlx-gN4m$vzA3@E4o6u_!0jKq%N1-I9}EKfv6nIsL+$2?5lS%Rq$`j1{~ zAN@wR=hlmcH|Pq5pINlq&bMBX_}%8xkA=Iuq%#Pq0i!WgUy#`e%)}aSL%^{p{iVcjqJ$i5IsL6^Bx;lw450waCrlDx2aCfsr^EB?q1^Gi20CvIR8 zs_F3GuCc1UXAEM_yj`WusB(-ZGoQd1IJZ|CI0&5YVIU)L{)~IGkQ+EJ;E$UV2`u)w z`N{Gxl6EhGO+qE&3%#NR!_&BVib#VHe+oU3U|RSDmkKTn(Gw#QodgseL-+zx4SRtK zLT!9_oaBp5>X!f|c6*yhC}-&C(-)vR5LhA7tMJir=2Vb1zx1y5$vKH%)XP-iMMm*Q zF%9ghlt|8H7W_xzP+>c7==n>{r*)1IEXxEx+bYfEzz+D{L+3Pn1xIK{F6n${WsX+& zLcP0=K7TMeBBII6CorBrSapKi2~cqU@RP(iH;)8!KBm5y2)CQb$7AWP*x6hD|8*IugVtl%@_iSwsSg z-S;LF%$Xx`Y$8n;2jbXd($twiHleUO6UinMSp1>vK*^jHP?ck4Y2ZLO+b24eL_M>6 z#;-x{X~{aeO_>6Xk|ndpfyp7@Sz`?A=y%`{+g#G6MxCvS`x}FpOL4QOMAE8T`c8m? zsPj*9@PMduxm~}$`tQhH{eP~o*Ts&U@AULUM6|ARzg|nRx{J|w;@YSj9({-FIjsN* z_+*@sRCl(Rr`G0?*f~e;r48)p5^pP(btHB?CYG=51vM`lIoyH~r-H4%K9?!3rAfO{;kV;%9A6ydSuxPjw2aKmK=XMA8!FNtNo3rXbVGLqUxpg)dO*?rzh`3&@7k}FG zkZCkB)=Xtd-jj}ath$#IPhRrtP|>moRi?`Kd4bokUn}-Whq#|N%o)I(>iGLU5lPQE zqjA_Pbr4BX#?B#!cfe$IMd2juu;MDtig%Yn>FdBwC6j+8?1fiOhEwB2V1zRo!2RvU zqC)npW2^e8#vtaJwyfh=*vZT_;`%^czI9x#U0>0qXx+UuD62+=#1ol(8@VbA_$!|I z#4;wcfV?lDoPe#T*{V=L7_7(3VTEH@jgholYbgx>7*8Ll;8RwmXpBM3sohlYDdOsM z`$56K=JJ(J#$`31vg!vwJgI%E=80?*6R7z>&3h8owLbU7F4e~P!+k^oim2+7=5hnw z=Jgma@vlFQ9~_ESd&$pY8G+RWm^UTeZcHDt=W1EqxitncXLr@rBCaUo#k*P+;A55O zdhB=He0@OHmV17kRmEN6`HFnMt|E^jVcg7|b=Bf8Me#3=_y#R~Te>o`0 z&j*=^CFgC=1g<%=#9aYDyjva-B61H6Tb!mVlF@)x)x~x5Sj0Q<1#0ysac~k|q8Lh* z1%3d3>!{Z(1HgsPf9VLf9%A#!O)Y*35MD4&J3jFwhrFWtBY%xiM!M*L4@o4jygyQ; z@w<>@QqyMPTYq?uk6StUlipi|d9fcoTiiUWL0Bsr0d?-xj& z@ng;%BH9BpjUyJcI}+s+^OwwHK#7ud4cLa%j8S+P`~dE|q%ph%mkwQbNf-N^^4a>Ury3x_q4o9ebS2^GYY&;rBIBbFw1XbW8jQ{Y8=CkKS^g& zjub?qtGEvD<1aV^yv!;1uTT8 zKo0}BR|*HcN>x@g3hgGUzjVPcguX2@C~i0A3fapEw5qOY3}UXp&35D|t0oLP0dghZ z1zs4s=<7KTueD4ypS!-Q$fH+An2wp(+-tq`dx$DU>(|0B_ipZZwxTcj$xaTW=bWQO z^^b7Qd~+VYE>7c<3RC!P9Dfw|BQw~=h(2LkZUHA!d0FxWxDI(;geIB!f}{?FMsQs_ z+uK7g7DdLJ(>?U|U=EqpulZi1m2bDp^%~}Wc|Wbp6Y_%5E~uRC@y=IYklD%YHec9q z>F=y6X&Zx>^Sar^FlE&_W+y;F#SJ_zeWR3V=ix0sf#o&MH5dNQvo-sDT6}{@Cq77( zy(l=jcbymbzQXIGFW_ZmN%c)RcL$1Z_#-ewBsHgFM)k)@co3-w^eHKkiWo9j&lssd z-okmq6J!dBAUuINJYiK3-WbH3*Uj+6omJnvod5;l2|VG6b|X)h^KBorK)Ca4YmJ~B zDLINLC`WoKoMe`ecP=7AXhl+IA|ie%N9vQ_7G##p33^*xDhKhWExhE&I#5ve z&Z^IVF^D;{o4qaWtojP>1SoK2ak#QoKe(`-?U@p|ummYvf4H!sEHFaQ#qU%wgT@PI z1k)i;he%+9E`AqC)WFkm#M7}VLT?OW&g`nEW7Su1CqRLx^Alf1%w_Fktg1CfS^6BhF8c6$kSLONEZwv0i{Ib99uSoNpf2~ZHy`H7)8pdh4!fupMBHXVUw|E?Fm+RAn0ckrhkckiYEakU;32!=}t^uXqkxb*;$ zzQzzX`gEXRwod{*gqFlJJBs-N+Ndv}Wc(50@k@?JpBwR#6K!RE(z4Po1yzXLq#_T# z*yo+Nct<4rj+iO-i%Wzih-$hb`6GlEx!pXFzf_v?zB$}ff~?8QA?WTIC7Jr7d?+B8 zDHyRmDpDFpWiiiL0JdGPlyk4(cejJTQO&-I@rFRHYAqUrm~*<>&oph-j%6o6K?u~o zTtFev==nmRY2xb19v%XP>w#MXyowP*|9ylG0-{cDrXV2d6qrFk^zxt#0-_g1PEPVi zi(2~<_x}R`0RR8&edlf?O_12D5VB$HciPo32Ysgn$YGS2lPDR+VnUM~auO#n;eMQb zuVDlJZ*rjmHC!=HhN8&v~3(8l2Aw-3EySTCa2tUuOIw5%c< zI&6^9IYD^1X$lh1ePuB5)fI`6xAyqk=!2u1UxG78BAk){f5-}=V9cC`mq@zy81<(o z2&)0Z)MVWgL=D{eJwa2U>j^O7+^ac0`x42xg5&Z@Btd1x3)EcQ;|B%ngUZMELkD1a z6#bbBG*OU;sB@X?E84@&A68L@5~B^n@$e12-xqX4(PpsUn}Y_<;=i0CD%t`9Km3=? zZYN)(QY@tZz`w0#p;B&q8a(x3^p5k*Uw6xWsrawKSs&JG2p&xr_&S0p9Ehbt8Hlhz z_+Di+rocbkL_^VRHkpW8cMUK#(A}8*52Mpq^r_{6(CZtEF@^kodr)t0aMs_&)iZo` z@^BN32O@|}21Lfg4L@ZTKeJy{SB(e}cGZYh0%YAvgDzu=26~bV#S(N74_~!AX&5sR zEXLksSP@iVk3Ef1`^$2~g07;$p@u`KZAd=&Js9>cF6yQTZ!o5zSU(hG9z6kF*mWR? zk>U)U5mD`C_HJ_Tx$k$WQv7j~rz@dfPR~e@?VaEJwVs{VGFB|&$MU}yVi36q#XIQ`dCX3i=vR?XeET0R9_AZ=W!hWA@w}>ru7s$=zuh^U4Xc1sbkE>#` zaXocVVRA9%ATO7S56Wkr6K{tBc1?8(-?1@nBqYfDq`LfJna0Gvs*fyX`U@4w47-D3H6%}rHw@jojYjgC$im0Jg>xCo= zryagtu%F=8tefT{R58F#`wO3-$_zXpb_oG4liiUg_ z5W#VL#VUrONbo6IuOm$0<&OQTH758l6h}L$?z@U&plkfFXBzg!LUa&s*^CggR{zuj zNfz-JpKHmD<`yT({dswqQutXDHoeU0i-lnbPi;&WgJqLtjqD^fff1KQ;|*r~qn!Xo zOHudM!|MRHgVjs1>NQJWbSP|pRII|p=IQ7|JF-&M6s5bVO^LftijYt;V*na91Y`r> zr2C2hrKb)?rT{0ShntDo!wBLvW&)vyUsVVmg4)MJCDz2;jJ~Dbz7^lTA^bxmsgOjL zCbUQw^9Lh-bjAxk0K9-{XWz!YLiHYE9S+IIP2qz`Bp8WCZhYJfy%n(p2ENkmLfObz zFCu+&<3m)1l8*nf3(->Vd4+@X3=;nkI>;qM3Aj4-+5+ufems*dqQ6`C0(C?2@ z5+h(GL2c>m*e*Uam4+J4XKKQirX+#W6kX{Wcbp`+A}? z_gufS;zwLRv*~BlqDwrmw}DJl{eGfjaC9`>Hx`M!vxr3ybPF>Heh>ZHzS56{=xt~a z2vaw5K*8UcaZxw$uY3IB8`EEWG!^`sfj~eng+uXoK&X%Ji1NpGKY&ZUKU?)q)Nf&O?Q0*q-RtG$-Z@dx zfprVP{q_apg8GbYT@eL7D~KY#(0VK_YQ8rU*4|QBV$htKtExu@rFYMbLL!=cvbz!J9IG;|R8BO(}uaKUQcgjkm&!_;uuwV-W%iFu? zfvhA=L+J|m;roc}3(Vx0_p$U+pQeY8*Vf!*&F)xLyiNMln`*#XBFl&(%W!z9pb8vB z=@_zo7{6VM>bfkQt$`N>@e;)}% z?h+Bz_`8pzMfZ2;yQC|>R7Dri=F4BO6JZW@7bE`CfXEoa7{IB3(LTR52AUyoAKyXX zK`~U|B&Q2=U`xc$Xb6p~*PWtuz{5=|qo-4;S~As37LxE^p+*OLbD=@?;6){qf`6On z{LcYS^4U6<>4HNHfeK=OPR;gG?7%(l#<2`R>Y>JX#Gx5%w_~p;wr&9Up5AGWSY(Xn%C1Wf>dIj{V%g%R|}TH)l^B=*cMCG5@C_*QvH$; z7}c#2whKYMVnkbyJ^uDpNcXzkVjK*!Vz$AK+kQm}XIQ#F&rQSKM6S-W!AQQOzw}2U zJ;_BxtvE`s!s~GQToFbuxWQoXMQCbFaQIR(17g6ar9*y-txBQEP6onR>9!VU0!;iiH8v@p;!AAs z@g-skRkoj_hK3yGM!6ORw2;b;C-gcz;|3wJHGf;rb3J&kTFN5%Ko4K@kMm-%HDmqt z@yjd{W}j!nb}pa==gAs1h`n^D>F9W%8e)uotw_&)W-7FBgPK8?y6xBD?MvseVg`rP zibRF{QZQex(l3vGYDRZ?;Wi3DsNM<0`HCJc(}8e7y{*cxy+K)gd~6t_+W7V*G`9FK zTrbP>p3$Uxfn2sbeXVq&iSC#(M;eHjN;1bkNwrozJ%}6O=W#U;BBCt4K9!6 zR-b4s*_5@{m)F_z6K+r*J%%cp@lwpbzNQ0xCiNt7N}|fvIJr~mMA}b4qS}#mQ#K{K z6%5~M{XwVG7Uqf9PJx*=f(&?m>C63eRt+e)!F1an?Xya|qa_o@C_(c~Aj4(Tk&pI&c|b>IY`zGIxzuq`Q^5geo^v4OHu~&{;+vlNX)Xg z6|N*kpKtkjmmhQk6T07DyWIAcK zCARqrZcrb~(Q=G0MM{-+iOr}(KHT6ElgE6Or^4w;U@{sN%-T3xojq!^@ME_-dSM0? zp)h$h>%~g0&`N5ZVIYv?%CiV=FvCqk;d!b3BtJ#?P;^kJ6!i4CTS! zP|-tLA~i`SDJq^$W?@H@S}U1+NzzC*=}eL-_-7`spsP%>X3KIK{vesF&$wA)$cA{6 zliES7%`&rU?RiYsQgk*J?%ei+t*0^HE@v}3t4}lasDJnrXcebriOoMg3VfO$25^Hy z_x4r_#73{3K{}U+#U4d}MeV=v1{0lWG!5!BUErd+R_xc~`FR9{hRN_CI-459$rEeV zds5SXt3LLXAXVz%2KkQB6;f%sILu_#E?+K;I>pAks61*f{j?E#HF~d!=dwXVaf)Sf zkx}I(D71spBy6N=FT<)f92bj}q_o)lSjP>vW96{_)^A3rjsYI~6lKDB$kZZCyJyt$ zJ%*~rr-N!Qm1m1dzWCS)3}Y=?FAON@w$d3iiXnfFtM^*7#%(Ks8|+qJiXSG-R8sIK z;iQ;LCXqHu_LD`(iI2rwbP=v)lF3vFef|0`Ygl?2DhdDVbHv{X)FWK3J?}KoWIC-i zCKjHHWex$6)=Z0e=?1M z_}ZX}p!+)IuO8(x?_suEY7qW|##3_9Xno8FBeU1eiwSZ89pW{cvPJ?CSWCuH17)mx z;J=3l+{g{GOLb&E+xF-Ca&DCc8hf)q7slf~!{Vbp;BU(&#fIX-AdQCp9t*miFz6nC z6#=$A(L&%CZtC7z4g5X+g>3m>mSv3miC^u{D6&A|YHYI&nr6dYwirW@7h2nG(EO}6 z_d^>rIm=^=#QZ|Mc3aaJu@o*8noMk%?$b%3oQfqIMmY3b5i{Iu%m&r687@@PN_C!~ zC7*~c_Xl_^2{G`)ndO{&+Y1VVw{Kc$Ep^GdM>7)+-r@Cq?9|LXnX#mZa;+$)a$K6EU>{v!^ubO`>Kk>aT{On=Ixr1N|eK`pr!`%m1H5@}HAfO6I-PMJtfZxvI~QC8`& zliRXHQQ^v~*l0h7sP1bnlUKM`^96zND*0czSyg6qrPyiJo-Ey8DS~K3ET-aJUaKTK z{ba0|n+^)93D;K<@TitbJT&ZLAwDf-TEkl5c3Nw<>70M`TD#TaLNA|?o-6rLman~9 zleqX4Z3U%FC(JPQ@T~FLD3k)zaO>$gpmxN^c(vB-@wtQ~de!CvrS#Z#NcSrr^fc6+{uoI3I3Uk>Q3&VQ9(_Kt0mM z$_D$`7)?_q$`JYEkUz#&LBIcT67bu;5ft0A9$~ME<>JSF6y#`m_pYF;uWtH}(ZDrv z5tPu$&A8u&*vG+Pjx7N}D|og;K+ulkuX}%0K+ulRoGc)SFBZ|j1Ts9n!~@k{*_4`a z#PE@BFdA$m2nmRvIT9;$I-}j!cpwf3+WZoIyV!WJ(;r3&P8KK)p%~G9SI~5$XoZ`@ zIE1_lld(&z7Qh=&4-TnqZVme$gdqPZ6^qP-A}MQ zkmEN_>;?8-=d8BFXNQf+fiG*y99jx|YJa0(Ii1mOg<$z@G<}gBH-v-5GajBh;lyJ~ zb`aA6YHw%e-NMS*qcLwBRVSM9ftN?QhDqfSFuUHp)PjSI4=n7Y;Ee#&Tr zCJI`Yhbkgl*~lhp3O)azcHk9&3taITt&XiQ7XE=X?qJO7+5Q1kUpCvmy%7n;7iWJ^ zH~TBG&@xqtB-WtMewC*ty!cT3XZWRS>cC#J-sOn2%TZA&n=K56?f{kd=Ijkx>lMx@s@3-p25TwwxyL=xYyt((lZ-;I>b< zV-d@Qu$ox>a@X^1$#oe~tVZk+EuU|TV)GL9xOijD`8G7<6?ElNiUy@s#}|saXcukG z5CImjIpm2Cl7>-cuTwsRus=10uWY7Y1t|%szuxv1dLi{oHB+ZE<>sGEy}Bs6;N4%#yODJv zxh}_n)rj5ol2sac^BNvvmExgVFRs-87n@k_a?QtlvXS|dt<+1cV)DmL8rpA?V1NS) zS*$Q6w~>5Z`pUDBJc7N)yV!haJeKPu5VBqDJ5mci=_h6VG^}x8XNdgI!cj-^xAnZl zuII>)-jIOGf{-+7>nk6i`FNtbmgNpSUSD{=r@P(E^uS6?l7= zN=`8yh;?r0!0}+j*$Q-QM|7ev~w zS9Z$2c}hKECNeVb5lEfSV^1hWc^;?K@d#NxW%R?_Ch!QXZm68I0s0*s@FZjN;ymzV zvnJ@?In>PsflWIhk)(mW(L(ZwX7S8|oQFS<_2rBn-xgfO@ra;j`1fp%v(u>ZOPYn@ ziv0Vq@mBJ#?iX1cE=L13X0~)T)B!}FW9#IOVw7=BjLxwiax1vb+cHFg>A3ruNGMTu z3Wjr`jOy9sb?e;Z2}ma{?6V;fP!}vVA_Wyy^YR3s&M!5H1QRfv;{r-1pyIw6WG@$1 z=L2Cxg6Wkx*R5R_L;~y5rVCPGbsEmAadbX7SNDkbn%tcvnsNMriPh`>vmGAUsN@`9 z{}TzO<1-WBo@c`pE& zQ<9-bj;m85A$6XhMDnd0ZXGfKb;qqkro}6JLPWiyM)AVX6Oh_I9mls+63M>akkZvX zqO&!)u7!^WT|oxCkDZ;s^WpklVBe%KaDAVk`xp_5Eej0fk43=Q`seOb_tbGImDW`~ zvl_7nwUkmR5p^*Kc?zY8xMoyxrwB>0()`nTaeB@;Tkf2Vnq4t|+|bNYBK7YI?LRmT z<@tQxdn=^hVgH>!4nn&p081TLXV--UU_0i+`Bb?!5VH+1f@d5oh1r|GeE;AJBp``= zxImTf!Iu(E@YAQyBvx@e)=1>J{RdA#Nedb$I)B=kNLVfA{i6$W$5&RkuW!%6L_!(; z>6`sxrqKL;@CAPQ(3JdVg6gEgYyYQ?DfjZVIbG!Yny+mS4ruAX@iP-1@$oqYW*-WR z2DuHDr)6ZWk7`=}VHIU4G1@R1#1(@2f^I0<4EBLJeebce_^)M;*rP>7Gqc$pIHZxO z|H;*p)%@~=@HTK)hI9!`#WRLCwh^$R!VNtEsiAlROv{bv4T^dt?4by-fvb=n1SXN& zJJI1S<8M!Z+6S8RD`_Gjr5(2zhy;^dd)rYkr5;uE20cBZSv+DabUXp&7$tr4gm|J- zMV0~RxE4J}xxuaQW<3F=^GcLRFx^n1WYW`dB}yciE+|nV;dFd+36W5`qC|;=)P-ZC zM8fHkp@93j&PC^e(+bdgL%%SZH)zUwW#Z-VPMYhCbSRueZW(eX9&w$J&Ph^HF%0K7 zj1VcN8W0&n7z3a4!KQ0&=d%Lp__B@AY`9awD-|2RRpQ@GfXdF#MMTz;LYptWK~YYT zWxzRaCtdTepA$~Y_Pz6lur`24WYs&>FM!Tzf{JRPc>~~U{fol^b?OxTbszl7AzgyH z8-m$H(L7>%<0P)i=cw7~5asiy`s0SK1b_7YTFNK$iMyQDLdmNZI*QJl2nr_* z-SkL+@&{u`jweAPa>KVr%IJ9GuvCw6-2YGJfks7A75Q2%=vxuh8zp6`K<@pjE36>v z&O61=N7wxg#9XrRrg z5@FvZNF?B9=skN~f?%TB&76RyoSGr!S zg&zhbkwGq91)R|JiaH&8COaUQazOQlQyT5g?+R1E{~AN}Dgob{v%tqOB4?sQ{fg}9 zrhR%{1rw_gdt|2!UeedPf)-KjW{&0bT|5V^GX3RbkXvp85=y#VH|_7vKZF*IbQ(-D zZ5ki~&Vc&Bo!$Gy)Q;S)jek3RV1QnCc*tsGwc-oJ!)|K6bv1rTpBgWrqHe4C<5;fU zUUPct=49}FN=$4=q!4fulmF3u0FEY>-Nh2g&Xz-C2a*N9Da`xZ(|32DHPs>PyMM3$ z=~SBzY2uDmA5`@+WS;^eSZg(yF>u^RNu;GacEg`V=0V)=bNJ~52GQy{*ds?~hy=4I zDlFr8DR?rM--ZIUkViZ!ea0gv+q|Jr1s=$TEAcQQ!DSskrs0hv#YE0UIvANi=C1bO zcLLM-q_||l>3A6)BEdvS8J*sRP63LI!gpL47kNecsWEo&eJTx(lVn$OP5-Dn2BF$pZsuk{gwLNQ74K#susQ zjXFjvcwgW7oG3*4idg_;rvW9iNV1`5&g&Q=Y3j!EnMj&uI)z5Fagr6Zn_yh-e#*14 z{~7mF5)8BJ4wB=Wzl8a-+WK6A#Q`{poIWMS@u)wMa5}$=CK60jciz4s5>V%N3OWVm z<~nwGhxZxF*wM)%-6|%VnLq7hv6X3j8a#DuF}s6?bhM7%xpH9 z7dW4)DLsvmbf2O4u>Z!#_{PXRcjs&Nf%Vnrf)z_-p;hOtSR%oE+XdncqI!dO8QB|f zIv>afuDx>_S~4qnH=R#3N~EY_8_5%pLfcq}R=eY2TOxrq zWkYcM5Gk1|bqutLCK!hEacYlPgk&FCoL3I4$wSAFlBIsK#GrDq~3gt|*Ks)S@ zJ$yiC;C`Ml7#}Mt-0&x&r6(lbl|=)Qk+{X8!4trCoj;pOB%CgYDUon$jPu!Ei3Ai( zQAaw;eeDT&8RySd6RBqayl*ltoSg8;t`8!K>Xq47(Rknued-a$o%99H8{5vIhX${G*_lvwxf)1ay2a_HN4_sgLlisEB)xHtP12XpA7 z-A~sX`i@nP*`YE+EmbeCXR5W-Jt*^Zf;8&xo_U%G>TV#T3jt*^cSIOL&3&R5bQvWT$rWgNEGo;r&guq((e zlshF7SY8lKRQmbO6VNvM&e!N5lZU+lrVB+d%{AQ2(P{_$ZA!QU&ofR+Rc zfN_bHkDT#u|MEYNV2$@qcVU`^k8azboEMOdnQO=v3)>}@xt<4zN=iq$>KBZHqP9slh51+!|L|u z;x#lGqvj!Ka9{!d+nyr()vuHNhq)fr{fktDTR@kAi zyaXvHsN!*@ME4x6omqYV(Vko8kHGU$C#SFY-HP9E;4U6M*+4zX!OSt6aJCH7Q<&tW zvybv?L=VTiK8`YU388{-R0hd5FgkyKWUJ?3^ zP}NOLUZo#z?o~7a{B?h_!7h%Sd^0qEMC!g~|6U%JFTMTSzx=P$p&)c-2kXv6!S1?` zX!`Z**9oVRHBA0>RHsuE%Y8GfeSH*rZWV@q`_KR5WO!f1Nwy8jRR{TJ+5Eq!n^^Jk zX*-lI%BE9u`j_PWr=LHrE9O(8l9H6qD`xn2eK>%=Ie#Gcqi;XB(~(R{6Y z1E@(2$8)6-d2Z18oy4cGd-n!YSFEFSM;GqA2%-)J(VYa>=ZFt%h4#4k6k$BPH^P65 zf&sLYlzZ!%-tDB8OsBk_rPdPnAWJ4h8gai*cDIru zI-mc5NCoc^J4OQxhwKh&FYRWN(=Ln4Aaj1{+oX?qLUZ#r3|Tg7BE^QWCGwla-n;-50sW^MZ?K~8qqV7M?{?pBBk zx^s|kdtEk3s}Z~F<jhY8LH=l;6>J$c&Q`nef>Snuzs?KA5R zt67cMoiAzoc+|zSk!cdrS9~LFzXNME3O{aWM&two-2Ankxz>{TAjNh#H6?9u+CCq)_K%Ht^w22jp!V9ne#|HYL~*E!#RikcOGNM z1f=#H&Gr;2mw+&}&*(?3680U^Ikp3B8RP1d9XlYesPu>;X28G4aQ06nI{A{m#LiN- zX-uaq_4Lb1Y4vkb54V(v05$rI;}eosPAC&eP;27##$@Dpex;M-SPcZQVRptGtC@28(}1ZDBX(shm%vSM z{br!UJ%%?@ZCmEHC*}#x)HL9H&aU&3b^m3g{$5&aTmpyPi#BohE>oS-JteyeNcB9{Y>Y6%k z>AWt-meq*e^GTP^Bqa9p*wVRDEdOa&itG7mErkzSI2iY-~n&I+-?U?%M^O=oaY+MAAduW?V2P*ve$u8tj(?FWMa`#kABD78(@H5f#AvKu?F;bl?T z!AAX@Zo(oJy7TVjMjx!WmVn14Td|*fAmBR?+bLp0u^v7ha7J~Niyi|%Q{NZ`a;_oB zref+=%WAKI8lAu0~HLs4x8vXi(( zOMu~lX8)|KCYzs>0+?#*?SFdCpCewlYg*Focjj(CsEl1c6MC}nccwNHnpq++xBuV#WL1T zBb%Mv9}w~Z75h&bAKHIiteNu$vk{JWgupuBD_$J*~1P=J>NUcFV^Kdg! zdl*5y#!Mje@T&^JLs0v8K{uM1#nHFa+qdG|H-vwPBo&g#I{RmlF6IwL{3y(U9spjz zw6kv~P;crz#5x?3kDI~=kw`ESjokRS8G0*Xp%cE+?LrC3STBmWCq&g7pCxweLcr8} zUg6*jA;3;TiRg__W+X_ioTiwn58bd{;>zP3(jWqt)!+*VNz6UgDfXSB!VPt#h-Lkr zdAR8thI&s?I@bphqu(hikl`~Z4-#X*ORY!QD3e4g==Vn{i4pKrPHpMz*e*Uam1Yda zXKKQirmPBHO4qpK6p2#0T}X6lqG&v9C*a55pt;TgU5Bk>OkuM0?k7DYjPMJFKy6^g zME$|97(o_*pP!>^{D$@Nw5v(z6L#yHVp`2?S}}<3>xusV+4~aS#&KoczhdM*T+BJ{ zX)Tt#^t`@+<=vJSdAA=923l=dtF?K#xWN37d;Z+~l1Eaq6Q|>(6DMBM3NX`@L>I}A zRYkH`Eb`yPdHabUiSyEPKf`uKqKfS+va;Q8D;G7#h1K1&NamhJ!VZD25R;&M@Ym6k zduogJRRfLiU9TcrD9s0~>!DxIq+N=i?^5F0+$9|#0g(4~#QPrNeFyQr5SDK99{k-d znOHrj$ULeC{AgH#+_z9R4>kd2qEgxWhF}l#=;p(`51NbJe|suV8qbB>-N&*$EcR8I zAD1rbmMe#^V7vDTgavkpwrlCCR91BzJvcL=pgReqGU3VH$kFg18+PCMFeQL-0!~2y zyL`WMmp<>vcL}{_x}j3qC7fMC*uU}gf`wEUYLx@@>3YOFb^<0re*)fVS-m-L%P7N+ zEnr*rdEp1s%KM(BsOaN;jiLv{$v;Hy8^5a2&u0w=*+7Y@E)$WbM4 z{*5N+uQ}TG{+J_&iEm$F+HkGkcQ(M^K_TiEj9t9`yCXvvh#>CL zleFs4ftS;ZM192+YpZs%-l*DD-FDKsh9XrLn|04{)SfcgCI>xp)R|=RzS64kQX}0g z)tl>F-Y#NR5fN zs+s?>v+@+yt6~J~tU3ofi-qsUsk$yyn*nRqbwp68wl%F;Uaq$J=G;#fgGr~Wj4S+V ztuFd%a)DO@yXqDvs?p>}_+&#W4%wtSOw)9Pfq-#2O2-sz-c*TYH>}~XM!Ib;J*dy5 ztGL7i&rQCnS3 z5J8fhsC|bgwMo+_bi(6`DI60zMryU1wD2{Noe313mpJgrrWcr7X2?EX<}zK}?6*q8 z)FN%=6q(yP7NLf{JjxSP*+_C(p5U`dCh#!{lbQlqpU}SA5#|+4^Gr%yRtA{tq--%* z6^`MI2m;BdkX>^tao}C2S%&ffKTfOlElUnI0^SWK8=4YE8*Nx30uo>yaM(myGx(Us zjb3KLOOxe%JZUnBV0S3bs^jTs+R=&{K57ko7Ee*ho+Eax8CP`_Hg9JsO|8;7N*<4` zR?Bsy0y&x4NoCug_q!T9H5_Nwp=lox?4-8FwyMv2%PO<1)v!iZ4hSDp#>#{ordk$P z7aJ9Bux9<7x9SFgFs1eWf?t-BRMRQ4nv>6GsF6{ZhJ1)&x}c}+OotX&p&`4)UQJu* z)ef1fOxM|}+#2gsHYpPWnx1NYyFE6jb+C}vflMlPk1h@xWTw06m)hCd#A_phUTxCu zO!#zZm|j%{KH$ue*R3*Kvfr$ax#^G?SVKO|EVqUjEInl5yqZA-c_z2o)HBUCUBIfHN-rk}Z5vCk91WXs)KDTz-LhM1X}OMBTNZ7q?wcm> z7$QqZ>{jj5Lo3jG?A%=z`~VSbxu%iMCCO>8rYx*Yz1r>AY|pF$WxvL7r9IiSUDe)X z2Ax&WbtZ1I&8j6*sz{CgY}->u*_t;gxMH7Ov`5M0QB?~^45WzeLM12JwE8UH_$!S7L@2RZAyn&iRYC-dl18XXGHDQ* z<#fC#R&tq4UB}z@d?I;#dgBxda<@>ZiD}ni=iO{|OUo%OPc71$wWqBbg5RAPeLQK` z=T@i>vF2DBdy2{w3#?Wu+lthxEyrwc%UX43GB0|WsW+SEMlG+9o(q{$gJ#>SpppJSN6RtLUA^TV0PRcAcb$*vcj8B-P5 zyu{YWgq9f;+}Z*&lI`)L$ENU#*qsf+L8_M=#&op83hrh5>%3cu+6!>&R<71*rirIwTlb^df4Y_rd2i2l zj|hUlVh4`iA<=Fik@RLdp7?TwZ~?AmCaehnkjrNwfz||$Kj82CcSPt8&P`o7g^uQ+ z_e;8`W}%t=EOa-4{KgB&FI@g3oR^}>;%-u!PW=(6t}3Xy>TSNEq%NcRCtM8tj!1nA zR|J0qzr*?b@8Rqi8Wn$>gQnpu6s*XepNAF&N)gx$YLDuQ#b$tVekHLpB6zRMR{$muNK3#E>g=*9l$!%vfazJOSDpbdtWk@Eh;h66GgC-CO!k-hl zT5`r#hU>zHTvU3SoJ^Rq;ZzqkOLcIwNcCiIs&=}YmRWH8fEjcq;>4!BF&OE+Rd$64 zj)0C8{9&_fq&1P5D`RT1b@()?71HZvMQ;Gb#yaw#KTwFmW@J|9aD7znC_xnwZy4E0nK0~0~f?i z$K+j$t+&BQi3plyPZHDSES;%mObZOaLwzx!wE+g!Sh>M2-iursq?;#ns5dHfRA^{CU-|vjbp7cfk^5qLOJ~{gryTn?)ODL+Y zqwsFu?*yF}H8@~6mL`L7L_vcMva|7yW34O=+T@^3CK`hN>;J9@JhG4ImZ*iFkmV#a z^CMddG`8GZSm4u-ruvt+UCXCMsD63Z?wS3MH*a;ku$}k1EjuFGi+g(4j)133_PaEf z*|sacca-TLx8~5!-0oP${^7aPH<>JqE44!n+E)P-s^fZWv{{QbVBfOA7w)IOd0Xpw za&U{gXUihUp6FD&r4m<2^mc&^(GK@cYF=C5<1P0ey(Au20+B_>)$L!GHN63bNbQ(GmCc@Lz(LUlkboR@<{9mQDt@GxO zXPutyfYX8x{y6x&W<+`1gwNt3V)~F2{Qh9j0Z%CC`Uoyg!<{7bgRtHtO`wa3q93I2 zRK%eB9CRv+F7d{~VqQOlofd@fb)F}$7pvXr+9zE~BA+MlPsHnjJ_=DmxP}6EKS+Yl zH6-j1*s!Axj%lJCEWfdQc)U0Kq^N6I+J7v_x(+x7K0#jip{zY2#74(HLm@n%1&g&T z7-2cwwIoU*Q^7&IYeDu!+{ZtBLLUoAnLPM@@WQmJ3~x$N6-;Zmd)n7w4_n1iC77In ze+zr&%i@s(-NEY&O`tEs-6ncu7{;8H83n}|^lJ!o<{ez)gWivlE z>g08XyuS}n=>8g)Fui}A&Fj3SVy-Ih9%D1U$mX(5y1>_s;8rSGxH7l)-nzt(OY z)EYbUZ8leV{~lPh-Xu?@@z756!A$k~Wm3PJZ}mFuZvPox!=5u4T|@9q;tgTR-m*fu zj+O1hNzm8F-F8CEyYjKKogtB^_(#?lB9+^j9N%J&L3NEf{;4WmMbNwbfyQ6LZZc^8 zS;_Z)yYpnj23#iJz4t_$Kn!z{k>&Mp+{rrHbbMm~z$Yw8FR}bJ1OPl>c^cWYenz3f z`hF}{s9UaQyuGIO^ zxv`-<97xY5@%LZ<``?8x|Bpx&{ssO|75?=<|J??OZ2MpTL;n5O zzY~#YCU{*>fEhwUbuG`bRWT9pj>^NT10sbs`P=LtUlUDV_f$|wB3j>ppLw7>*Rxb{ zu3CodIpCN3;M%++1NzX$?8#C>*d#>DFn9ol>djR%Avgd>_m2c`UIf1*eaX9??5M7G zKDN8Wy`3kp-EaRq+>eN{xyR<5>-rmm=B&$)OZX(6g3Z|{kT(VpTG^k|EOcY|@a8GO z(?7T3iRLO_W9B&m&{>!EH-^o*_myu9o^x&w-k91s^S*M-IG+U?uwsvfEU-S0Q96Q> z8q3x(Xm(DzC*2$LsUdp0F2W|^`i23U1ubEZtXiTa!|?Vhyd}U=P>x7U6CNrazClWV z_j$&<3B_`dX)QFf$^k))Tl7&*tq)HL(5MZc+>g80DHUp^17GgM`5l^1yK(3v`aX7OzGoBPa1-GI3#!Zm z-MLe(s+r)IzHIsKmxR0)=e#+CTO0r@*LM`4z!NTv)rHhA?51s(fZc{Dhpd$e7 zHXCDrjsSE{m%v*yjK|0v)5{0Tn;51eFh$M`mnqzgyXBZ%JMnmVRI+z2H!(s-5IX6q z>CY`#p^H|`IY;36!F6r#FP8Z2pZ|c%)rX7Ea6Jl2;LXi$NgFOmpIG)D*!>f#o4B{* zLf^S}HBIgo%|DnYpIohBr`QA;{8(`EkVu5=Bby-kfuS836cFXA%tF6JXoudPz2ENK zKixm!t*GxF+JU@;&-Yv5IJYH~!B4xz;c_g0EwOT5uw%YA4_#tde6gV)6F=_9YXYvI zsVDg-yiqG$pqZySsoYLW-@ikzl5bD*vc8?}JUzg`?X>m%V_9BhGk+DQicK>-=`ueFpy7W`E%&!M!W2Y^tk6o4$5{Zg_w4~02x6Po!q8#tIq<-(4lHw)x zON`YUbj!c(7n1KDDe-bKc;B#`j+{Zxx12uhUaE^a7QKeu6F1^Y)Oy~F$h90nmJ(KI zosF0!G{m~HXaRtDXXb}l=a#Qa2|<3CH32PFr%2dKO?$-hmxxk&0{W(PMh65``t4wI z)?=?X#y634{qCyg^q;#m;R32B2ImMkznwQ8+Kr*3o^(;oCl{-abm_TmXnYgi4<~{- z=0Cok52PC#*Yh#^96`pBC2Jk?&9ONTyh=Pq=Lk9me@4%&8+4ayU_d2a>Dd)^gkkJJX>}Q)$?TO>p>l{)9m=iZm*SK~! zvWos9t=%2!cHY0eSLs9fA^s58+ES#gei26gfa_tevRh{-oesL4{zOC0DUptEr>XDn zV0e|B`vDGySJ|D8%!^R*ex6Q!{i5o@Ma5qaipNe{upbL16%vU`e|(mW`q0B{xf@-{ zk!WEb#W>1Fefl0U0J}IM^PXaLuugyXISp|!UuE@WVY2*paJ7G?fcHo9VjjXTqX`{4 z{?7-Z`EJr5O z*#IiO90nx&xcdI2sq0VI{y<;LpQwcTp*IJe)xdHx7^j-cJ{KCNn%F)S8c$aVSw+4k z3Q&@-N%yIt`9=c709DJ}8E#_XiiPVK8t|fv>lCo7npHRszX2kDbx5_KcwLze;uGSW zcX-j0odg07UB@0;mO*u)R+4#fet55n2&&1ekpX%i$o7)5+P|2r0~D~cGNBk-JcfAPk!fy>tzoLC*ddYAt#Ny5PQ0xCIp1x_Ld}S&`d2bS?>fOLmt?@ z5+3h!j%1I(hg~Q3MvmMecsBO$pEJtz6^<*|#?OQD;2Labq*L zlP(YY+yJ5bOfQ3 z;`)4U=CSp&TJmlTopa82u5rwIRK=f&Hw4}FLSxR~fBpO0LDjI6A`TJ9?y3)oMCCt< zI7ATHkG$(Is^~>+AwReF|4Dv$wtHd!?f%{O<55806qKWU5}+yVXi?tS`pQ-UwhflM|xg%>^BCDBrB>ZpYdSDjp1|7a|7`i?c>Q=D7Q z_q#s@%hC+q(NZb24?S01&vG`PjJtPkm4N;)TDs-z+JS?=a`|PnJJo!zbQmuWd(fOS zSM;Vw%ctui@gAQLbW7B((4FdnzQs>hNOhqv8k&^-{nx)^2eboOJ#avKymyEk_xATY zK3Z5~r@3oEcdA#rYf&EoEJh8jhJGyH@ucsSz*Ln@iZAIh|5@x4D4l0G6wl|my-(Jz) zAl$Ty_Xgi_ZxG(`8{Y-phN5tf*fA z=z-=?qIkyUK44Pd?)>zD*#|atxVlj(nizm(&e+X-P zD0tXurqE*e_Eo0PbnYWfq4^^%^ z19(wt^h3zLs_9$48&bAsJxFu~NRrWR<{YHyYXutN+ z2KW*EL1m+pt1koc0E*WujR$m0tK(Rf@*GV={Fc{2cbU8=7XTsI^w7(~+)}~3p(`(a z6%0Dx?^gB<0VFy63bY<1ZO}Z}YIq;D*GDW4Q_Mca?o$wd0Fn*5D2${Vc3lQ1X&m}9 zzz?#dqP~k>Gq5!K8$caiU@We|2bw17G<}y4H!v3+iVeu3C_q9=VMZO51bg)^5sIC# z6EORmWQjmSsGyKkE_;V2L*MTzj^*14_#(_Cwt@;AI#jXjfD8~M{u>%hqBpE1YAzg= zP4^rB{ci4g_BRZ3#kp+o0E0k$zwTGdmQC;t$b-Rq;L(|35oCsrkvN{l3@~wSRgcRzQ*|*gU z3L{9M7T7(+n6NyML;!^iJp2xyQI0V4T5$~cFDN##Mt!x3`ih7Be!SE9Z{ocD#E-;z z>A9a_yCPA=_7z##?zfeTn&ZOi?pY*v&mv)mz*mS#P(JwU=*c~`Mf<9OM)uV>OO#m{#sac%CB4v+xI`#R!%5AnW(cwY!hw|Ni#ZkJ4~9#mu=)dPMstU&Ht zD4PeH05egk?0rM9hk11KVcrML#qPg7l_!no&}8apwui;OD)ZygMcs1c@D*(LK7p{n z4$*ckU6snJuA>KMCKPlhfm9|8XpQekKgfpNcRoxBV4Q$c5Wp_q@7$%&JMvvZubFPB zly(Vcmk{=EJiTBc)rDH+0DZb1@s6Ezk@>5EnJi6zdJIt@&+!a+0VU_ETRD=5 zFXZ|FvC9&q*6Y9M#H^>y53{(Ek|5)e$$l(idrPN0CK{~_bXL@?lz6B&|Ah;N|opQC~5| z+N#~GH>!43x1DsZp-9!mX5BL!wWmzB$wAK?btaj-ue55s)JQi=_2xR4w~LrnL$b}&rADovDH_Gzpun$JneNieX0n;7Yjm4A znH(A&nQ2k}auW2tQDzaSi&?IPZ4kk_JC;Rui7%6*V%o?8_=^~}YUY3JtUQJFsu%$~ ztIomBV&VI7s;&#wX26_J3S#cjPbD1t~_FJW4YLT{bip*^ti%`Q} z9_0zDY$UlXPw?3!6Zn{fNlk&QPiSB52=fZ2c_t+;D+5e+QnnbZ3de9p1OeEUbgA2y z;JZ$<4CMoUoL1{wmKR3KDwJ3C*Ng`q{;YE{+-0}~M(Y3*uN>qvzHHYs{;$`b5R zZJ}CNX1&(iEG_qxB|TCz9X;*pQ@WmAW`~=4 zc|{WSK`6@x+23YHn9#IKoo-erEi4n)?f#x|(V>{p&>bn&@_IGZ zy49XeH7QHS3XRb!sFVt;O&bwxY~@~ZL?;*4s4;G*#neWvb!tJ*RNBR{>uG9lI?Wn| zp33*rR#lX8GDX)i_+pywr!qW~YNWQ4GHs3ft!W1ltaziQ!a40?AS??#wmB!$Wx=Fn zyhgMa{IuC$&plfQ+KXuovddAhP)e0;#ZJ21njQ#6t?y--)*?lkStgWaVcK2|tX6-8 z8}p30&@?V6^d+6NTEWKi25G&WT%~l{nO5EITAOFr*2)C>SKm;I!H_OXbG~hFWV+ni z<`BWuOdptSGnfb5l+jC@CSwZIMsZB6i`C(Xlg)89jWJ!z=#92iJ>wG#Tr(zCb~9l& zMJmr!QWHMOI@(tESag) zd+9*8M+G7;Gfo!UR+`CtNpf8VcXegd_qfJN?IeNfm0Pty;il^f)339LAPv+_Zsz`f z_P%X7ZDm{ZS5(rnGe$ei5{c7M~{1t0ar4gZ_Zk`-C3u7aofCaHh(qSXmQ(}rm0<4 zo}Md6fQ_5C&1PqY9<2UHm_v|?anibI-kzJy2$Ih;ApTdo4j;CL(&UFB&FdEaTl5{! zm%IB6Sb?)^JxS{2^WVL1&v&Pd$6zeIwAZxB&O0Fb@3PWy2R&_+`%rKXWF$*o;JV(Q zl9%AX&Er?}uj1|f+aMp1UTPrq+15Yb%sD>|^w8Bn9p&*au@AL=%LM-*Iw@8Z9fh=3 z{>QUy$bDIn&G}#Wp9;XbCo%-S;GzB^*1$iWzaU-y3(<^`LvdCAtRW2)T4Uil=yAU? z>|Y$BWjnuLuY;b=Z(j>g2W`&J@QNH3)3VH^+n7&mZDQJ}(ie@Tf_rWqok-a#zs0 z(&*t^J%2wt?{u!LvU1liG+M3iKMM2N)nj{d0&3-x$K&p!a$LEs7S!iTWj0mHXSYqM zaNTO0lL3GHe9#}kprfAuDU`K#>G01ZRAML7mvYfk3p2TQd-12z?^cYl-t4shRxeL~ z^q%|2joYqzJw85HA772RCAWS)+};%MfO_SwSbrQs{qy;oUQw@~RQ+V~t@`ph*2O#X z>|t2`{xluF=I5tcwfpJpusnYHW6j5dN4 zc-%bE3l}F=9(_2ug%sO_$A9^7m0oXV4?5h8*=gm*937Tg1jC=zo^^jIo)?PNxY#)V zG`cwb@zS1`9#6Y-$dFVp(a#>I7nPfWdR*xO^Kbd)Zhob|XV+zO~QK8^_(&pI)u>-8^gD ziKq9IZ|cv+@Z=Ugc)WQ%?%$l>HLkyXe^rMMN`H3!q!0`{-v$q6ai(9Nm7af2evO8m z78)1=iK&Yw=f&GF28ckvugkG_E)DdJpTJW|57pUF0ZZAnN^z1OU0M6GCcX! zzkaal4Rbo^!DIYbZ?;af-W{_Hw@cU7J}Jl`4*hsYpn{y_2! z57=H6YD4sJ(F*IIUHJ~!QESFb`UO86OXw>+;PL8!XJ~eQ68nf9=2#QTqYKv+?Kqr&#I9JhC$PbgT?xgalZ;)hhUIWn&fc(^`yupl zVWEPG06NQ7#@AGbvTm3cBvM-;;gT59y<%-~v#DcR;lrW$b{9pvMMbzdyX$mr+d|ib zhh_q(vKm(bE=Apot6}$LMA);dsHUyaWZkWwpB=r;&iqa+RYJPBXZ+BEg{}gpe6XAX zgezw!jlgYR=bW1-PnX){EUC9qoEi@E* zz94qsCjc!>;!Bh_Uq=q{};@KUO4u zxOA$V`Pdmx@Q+RFeZ?*(fESG%xHmBgAD`pX4qvD=ur&3Q8^CW|h;z+C1tG|zq5J{{ z?!z`v6i6}X6QYF`SnfcWjDjAcL+BX`fz>qBt(e3tiycB#NNV3{h)O&_74;Z`&olV#B63&)4;0$w}Z^_+`|(9HpT8 zwPX+*qvaCC1)PC{AUbaZ)a5`Z`|PXK(sX!Q4g5iyI^&|;2nFB+_6liY;iTauvkirX z7_w(5{K+PIznKO#YE9;3ZFjv7Ohj4PD7G5a$>g=V`IC{$h#VqUqbspWB-JAFUJCKD zh?f+bbb-Nb+jvot-)Y_$3Z3`9`D)PGaIYz{Z!o$uYqM{76Sy?{2BUkziM2HQ2BX1i zgL6*5;289>17?4^-j+$yCR0rXaQHnX1uW6N)o9?->?>%5oUDyh(8%B-?OTl|!iDx4 zV$jm?uAs3C{WMYWXOD&?ylDdani1;}^4#dhH6l*kIT%Ptfx44Eb!^+HiHb7VSjJ zZCRXj6_>4N%X=}8ami>y%Wb14o*wCKV?@w^gS?1uPs=Q>QAV3u?ltPYTC`(AEo^aI zcZt{9_aKvJa~KB|x+R0yh%7mbOQbj;24=sJpu;!|MUy@L&0vqQ=Pn$%5*wK;LN_06 zsyz(#kV`Zlp=fgVclY4Kr8rW7A)DaC$6)#j-04`J?4XXb8Q*E-$$b)6MbHyamjZvQzrk)_DoZJ7qd(((bad#o5*$XMI?g!aW$Kq2Y8-Iv%v-0X*HYj z+ikcMG#j>x^?S{R`cxnF+QAeRxVLe1nKD|*y)KiAF4F^(DbPjJ(pgMJUlOvbS7b{t zFy*ahY?}1KpbZp5wi3;XDhCzkAcJf`6qJ*$gtQk0>*%WYotG#`x){%16zoO8yA%cA zf$}UbUBY3M1VNQ6$RPfbpju4P-C1TUC$yIY)OPPt@BFgEOBS$|w8==aZn+xX;4Bl8 z0sbIq7PUDaN~lOMArz720{Qk#c1Ts~aeL=E8_Uu->6vcgHsIQsrsAy6(+QBJTL7 z%-_X~4Ul+d!#m+inUpr@+Mfx3^u;j2R1lSsrpx9SUl_!<^sNcd5p@g5_JIc*-_M@_ zbF2+Mqicf(kTi9WY{($!mMs~?#++-&AgB(o?}YY_qID-Bg8#91-8=Yj0uD+ax#h%_ z*{;iPP4Ga7mlPXs|6>BfB%qm0u9kJ6mx%Ik1MHb$b)YdXqE>MH7HD5QHE?Ng6Nv3u z8lcd2s(ELm!?7^dCh{YKmY!p8C)d&KmYz; zui~5PLT#A<<9UsC%Z`}IS8Lv~)tQI}N7C7{Q^iwb-ZHwuESbfnO}RY#a^G7;IrRRm zCs`qJlAH&vJe%h<=vF5g#D>kY1Z6p>D5md(_MX!OC<`i)&5PeW6YVm0Ydlt>UBQ;t zo8EC+zSg!TxMt%s3FHU|c1Y%(lpUL~KrY@?+RMX$brF26kCqiQ? z{^C2|Y-Vce8cPqgEh1y4f;HQ-p?xrtRTZN7E_U^uBx|NXyqVli-BRBN*}jkT_;({* zP)qWi+0lMHxL;&dHf2%yjV+0!S0jS)Di45a%0n6GIS=$alV1ee{Iq_NMlDUhNKoxJ z-wEygBFXqgF0U^-2OruZzm&4fm7Uo)3~>n}ALUx86n~-q*iKUY=eI_v_$z#g z+13F5fwM&5%hDMB7T~wRA4|rnw@G?O<0pbV>5Ga8)$zrj8^VDhP9R)EXo-d_2}4Vj z@P+C2S@Z6+^Sjl&XkN8DA9KQ$W&(V{dg(!_1^kQK48x-z(^t`3%1E3q|LtisZZQ=}Vz;mDg z^c&;#>j&&WwaFZNNhM9ubTlLMpM%5OX!sMs!Oulp396OuyH@*1z&bt^ArkQ8^5Daj z_$j$4zy_%&3&o5Zi#^_>2N-CmM~KJC;?Y%1V2GCP2v6LL_-j=Rjgf)S(0nKLFiqD)LBm9vBu%sg`tkYA&Nz-pq>Rp=!$U674?1yDLYD zr3=<>6HWK};=Xr&ef7J0(`lb~y8AnkK`W&Law}&~N=WN2 z5L14!nL?t=+lvia0?2ceegvTA9T zK}MdAx@gcD9I|A)4ae}`)jGLSj$XJF(ZHrQwcTBAN-6$CJY^7j@{#z4Y9%rf5C;Hx z#?XhMrkUtNqlA}iWSRJ*4Mx%wL@hRr9TLxE-kBKLFXwOI4zV?ZS=}M8C#|Io<~=yH zXG@mpys68gLf+^v>`)~1*}9!<9Q~l?KwE-7TY=b(qt90PbmQm;6%5`I^x0};Y#e>I z@(&wFKd5HPmY~mek!a)Svt5wcH2V0O%od~17JJ?}`fS0^jib-jtaRh(CvDPjMt{5Y z{pxn>`_=8%_p95j?^m~5->+`BzF+03@B8L@r8Tj13&D9O_9!{uO8~Xyj5ev|>C8g? zjw?SyKEU3Xs`~K4ditiSEey@>DD_2nDvoG^P$3B8Rbv|4W85(9Z|u zid|2JIEf>?Z&!K@dVfG>?D>h^9fr>1U91yVw!hQ6h*D^U_+Ibn=*pV(hx&tcQUog0V zOu3~4@d^LXJaVQL{V4PFoUCdQjqv>4B`snx`c(F;N)$q@v3XhO^or%cTDcY}p}A5= z*1U7lO9gU%W!*3@@Gw=k%JQP#VIG~Uf(aE0)JM+^N{)e`15~Y30E8+8rzb4FWFqPS z$0`xS9l*CmQy72=d}5*|qryZpOlKHLoQi!}kxd!k+bcI`cb(2{J16wuLyVnJtUFN1 z$dEeaXE-jZ`-R7NMs-plW+h=Fs+On-eapmeTGIjQQY*}4b4;2Ag4qg0=hx+&aH3f{ ze#e3LStvIAm3AVlvSG>+WaR^(2&g={Ls5vA zx5F@_Nkjis@l{TqGFI-Ax$5NC|hVEA_X1e zFTxqfN=~rlf>0{BLL3SxT%p<&RiIghfc`0eK_sm~U4E#GSQ8+fcKg7b0ifDfRS_&S zioD!JD<7skrF+3}ouY`eo@!EJ^sWCL1b%@s!97t59F}j5LW-OLac;zpsn46kD zho(BF|3xf_RpYS)ksWw)vdnYtyPdn=r+3Ypv*i=(Vn8*v&jK)bxz@B&OK7caP>5={ z0SnD8PZktvCIN*4H+b+l+Z}MSECeKuyw-s=dOxNC8 z?@MG$x{2u2c8XA}BI>8^;@c$-@&P{WL+nuWxWIoG|MTzv{@ukjq>zI8yZxrD5-|QF z;p!(V-tk};_@V9U^?PK`XOTWvyyL4n(RycDz#u-C&M(-K$5@Th5-~Bkc=%Diz=|W^woRetXzFqw zSC2wAoA}4VE&*&b!go+{DImTX|Jcq$*OiDxic6lN-#IVQhz%weRfNl}%K+It!c^Kk zo2QT0oD4vtEAewZvn`+F8Ow2l*yBeV3&9XxTQ}Bb+@{Czl!2EiPnSB!h!Xa9@d8G* zV@!}#KtqRY;VV)Jp3W?1A`d7~RoSAkCRrxv|1Q)L!~ycSni`h#jxIoAA_LOLROrvc zlsI`wHJgrg0RBk1f#@r0%%hy}&n|dI4BJT=K*5>5XrS}}yI#<6>@Y#c#aFJAI% zVaR6iDufjbNpuzL5D_nMbRwJy)cRH=iGs7G&+d_Lz`K@#jaE^e3z~}m3HR1`6Fr77 z(=25mOvESuCWORoX)hZQjWWrNL($4bd)rb~fI^I-KF|HjGgLmzJHd80jMY1V?{>v< zPDFA?00G5ZRn+GZFS(!sfbZ53RrCB3tfPgZO`aE zjcl??=eA`d`5CCZfQ9yBN(NGRhD#lXfkHA|BILH<#GsIQL{4F0zo!)eTW`vA-Y)?M z8pON^pvO<0#mQd0fFZX5H(31m-lA4X0h7UlU>+^#U))HAMq^`|9LjB^nHCeU&2w9< zp1&tV zV@r%X$C0z6%MG+ri)|f|y{Q-EYLl~F8&7c3sZ%TV!EB^`c}NQdv8_m&!o<`c|> zXR@O0s|Pt=+e&8vq;bum(n#!@gVPrvt*zZ2XG~wwq$h6BNL-lTJxDrU#C{J_Gq7i$ z0_K+7(RCbY+}MrXa#A#fXX551>4WxluK@}O3}upGfJ+BBm$Z!eq_2@nnK)UTxTN7{ zbV2UzeP>Wv70~5X6^C>T;h)`u+Q-kr)j<{i|4aEJ2^m};6h8jTJNJB8M24;09dkqm z7a*aG$l%vvq>FNMpG^71ZfVk#m>~7J&B>y>&9*I$uD6tAb;Jv%4hGr_FJLi3lWY+T zexXT@Wa8TAR8+!dSGtMsydXk;E=yF(6{8u;Z7Ip6bZ(vw|95T8Ap{3xB&-FAxku2F zI(m(s6P!{@wih4jA;J`(`);O&?zFpCGZtzeT_1cYeas_WMIcZl&B8w=H3B3}hgeKC zb$|!4Z*&-%f(j^UFY^&l^W^e|^E+~hLq?bSU1+F)o2)4Ay?W<9zNhFDQrvh^hmLxl zQ^j4`T$sE7O_!=>qzLMq#*Sc5GhI3-YXvHLKj9hA0KZ7Rs&NZvx}1_*b{@w(N4wA^ zFK{@kj~6g1Lx7`umQf+0i{x`;mrR>QXY?}7iZjh~HErIs9nbT8m}4dBLi}$NTI()} zRs7elI4@qb8EtW1yXhQjabEl(g@$yv=xvfNueY6X+*(ex;6=Yxi6HAzAVn#4|4a2a z^I`c?ecdh`;CHFs?kKr{FU@_9>Q!Uxl_(H(?>X;oaI$uE5s1BMMg_WF3<$ z%oZv=yKHZXPefh7fPv6T{j)O z&_74;FC4>NBU^Lzd|fP+Y$o9Sx+^ zbl;H3|D8`ZIpCT2Y`4_XbZFWd_=7fe#x)=jD**k#c>VeT8)NpV$190*>_~Q<)2N1c zIpY2vP2dd`{K-CSek;Y+?QUJ>4mRpzP8hdolZYiL~pPw5ad11Eup z7|d}yUb$wt%PPEu3msMwnH}51tz*h7Qoq@&7eWJ5eF6lYhgkFEo-HK|L8W1tccbX!v{JD$s}*&0^&fIA(JqH(k5J*`<*I=Z znP22}$%9=~>{R{?K zvu-Lr{n7gsPEjPATA`}j5^;{uIkq{@+nXa9Xh0x9W5(zh& zDH=TOge-)Bc1S9aIxOLP{GFFn$U?9s#@=qR@2K2puEQAuM_SVS=tJ}*+6ME0EkSOE|g;J72 zB36JQODz8fh@icAC;-jzG)GL{w)M^a=Wz(BLNPLft*_asHK zq9Rt<;gBUuYaOla!wzgz6&7ER6glA!s@U&CQO{MRxyBZ0ns$!y2Bt}GB6j6# zPEg?opqoua9;wa)!|EH7E>AI=UBoJca|O$*IJ(F_w3Vo2ilB>hmwQVH&t?_BvT#gvEo`~r}k7DI!7krS}qyAiwy3uqUrKd591UiLMFmmF?M*1Q>_(V z5+M^|E&9FP=46LPxmr#%*`X2SAtZzN3x!I_sRNdRP{5scHceJIwbLf6hT95(P!)I) zCEJtXaeCA$*pr*A(*vssDG-}aeB1*H5!e?WIt$pdEQG5TI00m5YxZn=oCi(iNmNj~ z_j%$D1m}kTu6qz7B!gtfg>cr+q6;D9B2FOpkE1X)G7%iz9T!3brQ(gj#M$E*ien=v znI^M)yrTi|Vx^d?)su{CG=e;UWDpzhiaLqq5C-OumoKr!QYW(zA0=oSWhahN21f!Kf_{Mn#DYB(6vX0HskRE5XtxknhJ* zB!iN%c=C`P@;pWfeje1krCB5HZX6Xd6WI#%yIa}btGA`YVkueIW03!t3}VCOsw-w8 z#u-yrMEDRZrEDM7txy~j_Csc&^yZE#j#n}&Ru2Y>9j^enb2?<-A##G3a8o|4Z{*V_Vs*TM!S1~JYo%%G?#-PM1o-{?J zHrkqEH4T6ECN;%RK6K{4XU!~R8SHArdNR>e*_!NqjGU)=b;b!58oiB|!>^f%E7QB9 zw?%LXT^)E$b1t-hROY2CHZzfn@XmC_LXst4oAGXBJ7}e#D>gH6Bb&ZA%oeA--|HgM zMtF&#EaV%++2AcMgjSncu5WW+*Ec;GpL~jIWUAu7wEs4;vpZmI?!a$5(Co)CLrG6lM5S~`=Er9%v3!CCrJE?oq! z{r~>2Ut8!jL~?6iLYg;&Hs8(#C)wQEx?0j?lWVoDwMt9XL~lW~VudJc3HEE|*mk_N zuSd;Bt|4@J44|M&qe#f+if4q(_DNPWxXY8oldtR=KG~Wrlqx&4t@MIbkPWE_0$UN$M z?XDCdY0p5{k z=A4v9coCuO8sTMp6=W#uhIxU9sk+G-UK6|r7kWT27jQzfAnJfD=};!?3zvF2oj|P@ z?uu*(Lm5uwAcPwFQ8u5z@}~e9+Ri2duYb%5Jp|LiP!d&y&YOuXP};uOixc~J(;2@^ zup~`IwYlH{kTsRc)?k|=m0ijNDz0J51eDG)WdcQMN-@Er7vb#G>Hj1i%`zIuvNYy4 zb(!A@ak(%*nx(Pu7*8U<(=na)`H=@?X+Y$+W7-f2=bX?2k_Z(dBB`Me7bc=%V2S=& zP&E^Mp+UJ#zMx}GY-_LMV7xG~3=?T=5E1+t%Iyi%D}@=!UV&-` zUXrrBfXXV>F=K)SH(m60{YnuS*6DJ*p!KMTmQB`IF1rUUSyR*JUq2K-EKjSSNB_rpAkNfKF38Er()5nH*BAG_ z^XseMm(6akbN9P@(`lb~x*lxu3+TiJM6-_m?_xinaDdjzW-^BBvT?mie#(G>KKnwl zk&~mKIvwi({E>14(WJo|c|R1mPh_L1HW|BILiRYq?wTmqMp(%qS=~+Z=wnVeA7V;` zGZeAcMh8<(N0{pXuC4qG&{F&8TmFXuYGDI;I0QOWhy=$8M{yFJZon)Omd0pgf+y1m zb2dmcjFSnH3M60{qE6%DU;;>`#xg-7mN3o4nB*%R;WL2}r_e&0>XgCGy?W^njtCH5 z&}4N736eG~gGm8Hv4k82FeWB~A_=@;(PcI=fueGxu?cBSMbS5t#?EnWBXJ=6<(khF zpzNO@<#=I$qtS4-=IunWSd4tpXhKYDOdBBQxS>p-M9H+MTwhGkC}k=WEP9#BMj*5@ zmF)!3uxO@vVL|twfB!c(CPS#?OV+oK2^v*=l?9UjyEqiM7)-EpNKi;*Ij5mk$`yoB zexfO#1!$K~G?e!sPo~No%Q!zL&*Eg3WQ9LI;`$Va&jRMa7@RZ)6Il`!*IGx85cI&c z>`B@LoDJU`WH=9Ftj$!%`9*v?2s_bj5iN-7KyY()oNN*BBEltIQu6X)sW)uZ)a)mC z^yP(En^0o_$-F@>nq@%f;TVVmpx*)PA(2on54ryZo`L#7(EpMlvikX;T(R$o4mHh; z^1f4rE$DsQHRAb+U2keS>Z0pNxV`OZ^pjNv206m@*R%f2)vX$rb- zWmDUs+i``gH=zgTZy;Ty+rVvIO4cE|py^N$Zd1NCC96`$uQ`|9+?#!i30R6~n0G*h ziwp)g;s~^KAU@%d%%dxf$|t}inTE0|DhdtrW&&r9MQ$1eNBJH%oXiAN8&W`G%FMhz zD14+5IZV?U$cCXQ&s51TZ0qm0wy9IK{jP7(~AirFid$u z=RW0k-k2bHE4rl!XgUq;$do9oK9zTo1(g50Nc7;`a1XO~lgh=xqlKe?7SzubK@=2i zBtT6BQM7#~R}IDhK014RxG@@_I!<|dQ9^iM^8qRMY%f`;TWH(*pj4>nN9fTRKDDA@7D2r*Ru z#V>DJQ>hegR$%<-F|HcSNSOSNw<9ES+#sINU2|cpg+NXMzk?vtXjE*VM)RpbcTa-t zY69}?S#(#l*^FJ9lngdSAD;nk^Wtd4i;6^dmnJ!%0XHpt3!EZMaR@3SjR_KGa+ztC zLc>j%=JqV=p;aRjof$vF@Ey1W1;bK?DDZ{pMbN=SgeKNd_ARIcMgEd1lMi#mC*7Ll zZR)PG-Hs`Ez3F&K+!a|a;?{(Ap|ZGWXb$96$DHn>umt=C3ZonnhrTLKz=FYDt78Z0 z+fOeiS5Db4hR+y$}LeGt?@DFeF~lV_z(I34{^%co}N``-sbUuI!^7dGgyw zr(z`yF(Ew8*JQ?ptU@yLr^Xni*Cm56L*5t_!l7nP_7>PSm6E|Z)dRgwFE}bvNC38$ zKC2;mx=^frv?I*CJg@oG*EO#IrI}Un`w#zdX0t@+_GwDLH zL*n+R3do&?vIKD08ikzQPxxV5Q>=-)@Z9r-s-3k&bzq~QYCoJ$E)MRpo$B%c{c{BW z!Z8TuHM=AzdDnR*auxhIz1d17M}JyV1s~()x3Kn$zT}^Uu19W#U6fhi<|dGI1jv;n z`}8boP)qIp-cE;`kFlgTEwYxNw-L+eo%b#}A#BN)(S;64&-%jf>#XI{zT$%;hQ-{M zFU)cT+ zsBLg^L-FM9`ZB}&eRX|z-0jif$a@K!SH~H~?z(r@x$`D-Yyd%eQF2gh95%eE3VAj; z5~oik%9Kt|j__~0W{Q2>as>W$UPD3!4L{Wk$Risy#~tFl>S^IpDA-(e4dtP&B5yE~ z0lvf#kMza9{dpZ4D-9P{(U?xX>MSEE26gb+94Yc|spdn9q@#;Ni=_$?;e2Q@3K5*8 zOo(>WA`FLwyV2^>Z<;{^|y8V^b z*?FvF6|#4J{mjA%A{9RzJ<&yLn?*r%K{v%VM|5m=8n<65j35M2hvbwQU<51@ZsFSw zij-}R6qC;0*g^YbZRasQ!WgCX=dTaGgkeIjW|R`OzhedGQl)SH!MU}nX1Q8&@+Y#P zYPLhGPw=7cO0kqnQtBVa3Mr&XipTsz3hPO+R>>AAUWRtT;zNqXQlprwCrOK$b4wm) z&n;PMl(J=jUuA$R77K^9dZH@mapwGz#~JiX@)gnKreZiHeBV4VmK%*+lHQ=>%sD2H zGw7JioVIw90moz^S12UuBR|fZWAd24V{+>x^rgx`i4GYp(NQQ;PNA)t^F>PeCd|nGZM(MCvN>pHUGUxW~WHB4HXy=^-l573YrpKT+%GHKH zLEE)<%T+t4{ZVp$kBTq=oiCYR9aPgM^9WcJa-~MfSVT|}!&_-^S_)M1J<0Q)IoEn8 z6Rve%;S+M2>vj9M2E9?K@wB`nh>okIvogw=U=#(fYL+|}5mq8xspW&i)mbG;Hj%lo zM<)|u4=mTjf@yj{U^K3jhbC)YmHXF-LkteV5B`?uJne%D*N`c#Y+l0$C zHkz%CVCB_TbE_sZQLT%Ud1l_SA>V>iBT^jgW8 zcRllLf-7s`+;$;*;oNtrA4fprOFdUDCs>Q8joXT5iyE_cy)|>xH~@+%{vI>XBl=;f zk~^%0#?+TEOT{@$@4I`FL~ku3#v_om7;U?-voYGeB@q|5YKC#6vm~$ApNZ%&IGYmx9{>RV|LlF|a^twO@2jYMs&4I;X3R{9-ZN7rD(4)(Y%z+In8cv; z={(52FL$2g0w5(@wj5~L9L@agtsOCTH-PTO4`{HF$GMx-hM@0!W$RbvA2*rk@8;)! zZ|;1zXr=d!l!=R z5FDEg2}QNx?T#?JIWOP6Fuz+l5WipuY4y%TF(&yGW;~``M*mfPI&zZ$>-k{ z#OVA3#Q087w*;Lz5d@YoYU4;lLJd0GdQTglzdCiyeW~MXdLS!?FZ`=rppfuIGIPsh z@t24^k}N9a3$#;P(?G9*=5}1gQ{1(3^D`BL2mN~Kmy%$7qzM$R&IIy_n?R_~E-WI@ zcLu5Z=58S!-jNi`SKLdq{DlVnFHezdOBUSSuU5tvgfs;Y)IbaYxr7Du97WO$mjih5cczo@5ushQJs485Teww!bf*1&%dv z%w)si6nvm5Kz_dMfa?^F9*Kq}Y!;n~w(r{}xJ!`eJcI^pcoND41cfK6ZTrWQdEiGU zh>>I)UMj3DAadqd@UX;TOCEloZ9C$F+wK%O@wU7h0Md~b9@|w^0FVYkM+1zgsoaun z`LIZWC+Yf+o1Ci)#$yEr5{ruE?d$py=<@PZ{rB3Sn5aCVg8SZ!rjm*L?Y`~n)0%HtHy z-amYJ=B*+#`uIhm)6w z9vtx>I_J#Z($p!&KiA8}&|_HPpElq2K0T&?2R;6^>i98p&J=MAdi9rxT<0v%2hTYZ zP_?ei2H+dNV$wNOXpZ@;nVqlM<*(W0tMx0xzu1qQT_!$tb;0}mO7hDKlJP6?W{h8- zOZb{Gz6ROi%@`*=wRr6_#@F1k*K85j9DDkjGJdCQzuXvNcR_EN&W8U20&f8$pSrf} zePHAo7nfbxK>u3iow!?)_{gP>#HX(FdY?KbztHPHb>4}-rN8E#^2EDVAAPP3B)|M9 zq48l%Jp8&g{5t5Av}}LQC@krk16tRPh1joo<<6&6UVK#is6MfaTrm0EqJfY|#4}MB zOkTDI}o=oQQ19#{$~xi#wBFapzb2(5p%L1Q0Dv ze55{JUksQ`J_h`sifC#2mONcm^Ri@rCZeUTF9=5^AB6i_2LWHW=5-MHHuXJD-TlX{ zgoy7)fjWX(J)sG8`T}2aeGydZDk7-pqy1xtO4HOAz&j%bf#2fn=^WFA`gncOOzP|V z>R0vPWAGh*oBicqrTuzzcYPrw>QDW;`cIm!jIy34CL07IvEW_O0>*)NNy`Ql?=Mh) zf0L)5EWIowfylhlDkt=yMO@&Ct}l8>T}AZp3md)(8?v`t<|Ds>qOLEJM}2*g_o^Oz z&^J)GboM0@{~6fu`l2z^uS)m+g$>^>Thj1``oe~nV?*krvEhf#(_CL1?jYzFHoSgp zND{Xc_mS9;zP^|k$`Jg84HLkI-?O)wINHL$HyHp{5-GJ?yQ@AB9+f}D-s`J^!0r>MrOjU3`%}xIF&elxt3MmF*N%P!zAjK=J1cy z?duC8(bpG7x;EYZpqT<9d&|a3rT2!3)!%Zm;9Zd<=C}jUdyD`+z}v2@xJaGCt*{QX z0CGT$zdcYNh63O5_CIdm!1GY0XuliDHf$Fb3H}`|>PYQ1`$|4Yb>GC%Rz2Z{VfS10 z+;2toAtv+&h)`@5UezG@^Zb5q^yf~ozqV%>iFO`|DiqLqu0kI=DiZA~aM*>7M&C|^ z`(-r{8RqENA69ZS7Z8{+j2Jnw_qhfCrygf>iiD*+syR`#ooXDPBCA78kag2>AgHI*C414u_~Gj z_r(3EiiVZ+=GyUp-lq6nN|5DH;Xol$KG3s=`URBgk&Z$){_R;M-{^(`l|0l$IR!8+ zA|QhYBLj(1o#<6Juz>#CP|gFp7+wPH!uDQ=1ZvC_EXDGTI6Ko_#L~AD;}px=Uc|}( z`kfT7SXk{MPKu$JKsUTNi1*SKiv`y%Vg`*pDPEzoNs61N*?|!UKwVb0#99nE$XK}W z%TGOK^^PIYMf_l2dYcrpL1OiI{@D;c06cKS44S>MQUFgY2*&D`uUHX~g)rGL0APlw zVXYvTji9dWrvwDJ4aJ8j10r+hfV>ZcV-)l8AR^pF6+xBLhQZK0;xjXb&#e;%Y!a9; zByhMWF6NA32t4D?7@lw0s-FUb6-$v6&lB9;gOP}ka$Mbn*TU^{k2vw69>5{yFCCtI z*3jaqx}g}zdkq+Y@Hp-QO_#ry8?Q)05X%)_#4bLvzldF|Ih%_(#Q{+lF>)2z-hLM( z=rCjOyhtS@2pk6iU)F4Kh7p$;TXG6wcyX}QCA`i*d){#$_hdikx)njvQa~QXl9ZI^ z3!pE)?|cECqP2mlZToL}K3Z$>-1Bl+ zxRY0+*t#?C!{|C(-#|v;d<`5k*$@!I2buybk8eBRI(vd6*(^E>7d?QxM0huZoYA9U znZZpei!42q@y88^wiURW2R=GIa%%e098_0$m28N3m!TW?zXCH!e7AjkaPUAc5PxCa@ci)6!y}O>A$NG>Z^bS22JrXjHlBJ4qIM$=DMKAuv62;;eQLl5f*)nQa~;7A01ANKk# zbY0#m5L^X#xT+PpNB?l(9uCCg72n9)$aZ0KS#}Np2~|f;c274tL8^wG=<>t!(2zoZ zi3C2nckI{+p#Go)Jgq252nRa41WL2M^Pozjwms)?p|5!8AW}A{Sa|W@EySSzdISM; z9EM=yzoLsiiG#-UVD||8VdUKI1ktmNz*qi(o!=e)4^*Y^0tA<+JNyUWz`1UHM|UYU zbDLqD<3#{L?g-+RhL<+F>}z-QZ5AABsN1u z-vhN0jQhHI=7H~rKIRVgS*K4yjIK-15;@$yCjl$|pY`{!{!yDlhzFZ?u5RIA?#Ior z=oNUro8#xXY7YEWyLocH*ZbHUoV1HP_;&!WkMY)8w0Z{kUmaD9&1}+=8!p=o9X7}20N|eeLQbh%KUP$tv6=nEi))<>jl#$%Xq&x zZrOV*leGeFBW;(ZX1O(IS3!5xV0$@45cilVtGmqF=ZpeT+wg_zrroU7D^A65T$Zb= za%HjG_DxsstJ8gY*tf==X(kt_t*Ri`*=DiU+;TamfY}8^ux$)n+tntdQ7Y<&DYeO- z-0~NBW?Lw6PCgjyraaGxIxBW*Z)ex2IXCX&JJ8QG_H(8#=O;$Ju~{e02#S^Va@j1cHv3#t3(|%4w9`{3Wnr_`7Xv-Lz{_i=;uWU4*%Ze3bVsT#*`zys z({jb3h;=#Iz*J0Y>cpxSN;s;LUfXAfwYi+0>4mwfHnPgHWR&{idW73HT@>@$zPzPX zuH2JFlBqPkskSomn=)g#jTI;Av*mW&)>l(RkR+%2z!k{lv>6Zv;dcuZj)@(U+H9sR zd`o2KBF*IFF1Y0|3(PC=uV{n<8;J8Ye2 z%Y9vxceR$c;_(u`Mg&X7m?+LW#n!UdEjy*Qg)^nKZqZv)AFZ`jq3xE_wAA&Dp4On+ zQ@dsQvkY5pTBG5hpe{R&+77ogmIIAh3)QBzOp|VUZk2|;VsR(bC%OEhQL2|Vk|`n-ep&AW(X(QN`71y~~%h;?!DJI7G19sg(=4io5E|8GSM8 z%iAey28&%^t4=5V-g>c>Fm9$#ZLc-r#!QJHjz?*k*m1yKsf7qG z_I*F=(%DYA$@()!tm!L@*ta{aGE6tyRac^J%i@4>lG_HT#I*5X)AXDX76-M#*fO)A3f5q`p*cRTX`z+IvOLV;Ous;l}b>odebC zU|4R$cl(=Wv6Rb|b2(_-IW5;BW{9AW?w~9AE_gTxodds=tmb-F<|q*uysSeV+%^|@ zsWZoOT}{bCwA(T(`o6y{3HoN+nqs}>bk(B~!E8g{40pUSV=A)0UaTiWjVAjZ=wq47 z&?9@=lN~L`X0md#@5}hC)&pi(q-QxPQ&uL0wm9k!(sqC6;d6SY34Ni(7UqFm4on9T zw9^9J*_uVFuT1tBH5p@sQt?*l)nW?toNen3iOQzwo>o_9ShliRZLy)<)!P1m+{$Jx zH*TdZVVLXD);#P2s`G+dE0OsXU+&j(vl-KAV0?Dif%S@E*+Q_?(XCPFlCH;HoM%J`yybm&tig$Tl|MdWqZ3 z#@l^k$DrS{1na}8z^A9V?$LcU!FBp6!8s^hxwn&coY6G7qDVHMmlEh8RKH`9?{)C> zFFS7@h%QA+4kU9#BD4VNmG4f`GoS*CxegSnfFXjgM#0|?baDe1r5SJ@L4^R*wb7h{ zdINzh#4`}4>J}JS16=(L{fEXJUjv*t1Ds=3f_DfUO(CR0oVbnVOd!>0*LW4WkM$Jk9$WeX?j6DwXA4@jzTsvW0fzl)B< z%A0Uep`tipV%h=2k+(?|ZWv=bL+XO>XQEe*9~vB-`5WAOj3gA%_s;L&@_E7a1P$sU zR$or{w{*I1tg9!QguN71{M?jquPz8=(Q>|63j*nIsX-LTC6C{qzbOWJZIMP6=27|Z zNF!{kGm*v;EYXKW8c7l~7zg|2505lvs8xF8_Hvw&`rtSt7bniBK8Q0m?&FNs^KnM! zah$OtY*=rtwI;j9!#Lw)SqS5dy*P2kNsKt-x|};7XWXhowb3teORdj4j=8}qlgUzS zja6*6BnXCUOH0e?`0Z&FBU9EubkVJGq|4ZlHH}K z?~F1>jaxI^;BOmpXo8;)7@+D0(ytTS1Fi&?TnN|LI`)s52h za&~Fh=2|^Fo!_e!VmeoOe#w=&Dlyp1w=9VWrWK;)7@bAK7|fMkR@n3_%OOk73*%DN zQG0|=h#9jNbkmjD#^%O6ktz3Pes@xE6>d>)+RM?5+VY$LJmek`)UnZ4%~b2M!421y zftuk)6{)YYp0TZPwW(x?E6k*(Vlh{?r0PT)FxaR%R;-;vRh3rJH49iNk55P2VxS;` zh30NxHvLgv6Wp3K&n~g7$TUtI?b9GzLnyRs4OIIyjIZ%9M)q8svE&zk)5B+D2A>c; zMk_}zN zOK-?rT(x2-{_nDaAZE&~i+G_g^FN*0?`^hEYvH0ivA^ik{}&oLiE_VP+Bc>sh%>H9 z(DE-*jVR$kQYDKwV*A5aMO{|BWLHH+InV%3LP@g#qCy!cZ&SJFa%SiNff*ZN=N%DN zly(@dT|nuIt+TA28@I}UpYHEct^zX+*;eYWVVX|;NP&OyAkQBzD9L_9LRjZxnh!R(wYqd4ZHZAm_nqqdV>dkd;L zDTWEo-bjKg+HgWHF@}c`M`D%fCYQcHH0Pw){h_lFaTdYtk4yl;}NU*f)$?OXsUm2mOn&i-T(q8=SvS6_a9Q zDVwBNIhx?big;Ya4NYFbJ(LsU7%N_I5vTb5%0=vA?l1B_UN4TcDGG%~KVll<{C?>l zHTiHsJnJ3FV=rpeftH-YBGXS!U5z+Hfy3^S@8T6JbNprg%uCMTW9?sd5hpNWlmfWw z6cF?T|F8oI=(=?Yj*P8v02*F3ZCL>}IuAjN1a}BX!S9e^Yywu#H#Fk5!97e?-%j&6yQE%&A(m5F7{S5mwBr=n-yJ% z|H6;eK<|?jOVpt%LcGliFKfIwQHINn_c6sMn~A_&$KV0)_Jj!bQn&um31_b3%VGa# z3C@muLx2Z<_KDVj9CwxjI0<#z-_S-chh2EkR&!z2?`R)56h?rXi7E1Jss+mN4Su_O z*cj1EDHZ^3mJbsl$7r_8Hvf!cP8V@eU4qficWk?KS#AOS#qR$#vyR0pUPRy` zR-s`e)o1}sIDVbVcu_3^pZ$!MCTM*B`#=A;m#n$RTzhm8FKFxk`#=BhHYt8!_-VzN zsr^m-=J{vuw`%>CQnqlbVaV^WQUGUREz$i3MZVgq}O>a&#H|76TzBOGr?X0kDvDy(E%WGC|-DW!-`|s-I5J84YZjj>H3eG zoU04Q!|H)$h-x!x%s$-O1H1vh?2iNvlY^WL{1KDGg(8yR@IuJ{EkcA%_^|m0uS^HL zLh7ke6Bl$q@x>>ImmFzQ!k=$RWTH=6GE$dwEg2;sds7J>Rzmx=X}=fhA<5=@DD%rp zD&h!yd0x3U39M`dxSrE($A!?GQI zQQ<`+`iUw-G{z~k>V4UA+vSFzE9XVo9R@p)5HsQ2w0la@VW1gI^dPnqvO zGkNkU^9d}$Q8OGZ=iWTXLt8#VBM*Jcb5BE`QH4nM1;6yz`9yNOK=K`Pk1xmv=Qr+R z$QOn3K32YS4)|rUmF<&ANA!U>$}k0V8$I_{LxLNF#Wp1BXu6+ZNPOakbh71h_OtBa zRq*v#86uQ-wFVK5CqC66qHg^agSfRHRqTaE5nYXC6cl^x`#!-a3cs*-i8_>Uo6FbY z988qq;=|1crqhc#{eA5{%BL83d;@YcS5a2dtt@<`5uq5_bs16VA|rZjgz`3sMm+fX z_XU%RO8=&D%z4WSTkm{Lz+9!*1yrD_ z1q=P=tj=dME)$0vrx}+CG}U{OsF(mZIFo50Qdj?apNKj5JT>c z;KTP0hbcI15(xsYnf6*4*yyhRsAjQ;cMa>|Q;*wvjLbOPH7m-#9HvVq@XRd-QzSBT~_#}$Kw;JoEzs6!B&x%xZ-v|RBQcOAy_t4Yu#qM9yuxJD@Ik;ifUV`O{oR3 zS6Z{-lHZg`BEQn?Y`I%pmFdAU7}c%gd^-Db0k^pnr+h_SK9`|SL$L;Km=_<+Lh<&3eGOZ zOWy5HN_rzmugCq8q^Zudma&+n*&DZa)t)Z)Guf)Tr7$h+8~VOIpP4#Smv&@MS*=QX zm|nM8UaEqJOI6CVDZ0Pv&oct+ZCXK{)~)f-D6z##raZ;hZO6<}&bq5}%%rWD&c<}s zO2gTZ6$U4Z1;!g@5y39uahs*uQi=7lCOEB%feF~a#@c&nHtNvb))FXrTi?!zF21k| zQl&*THGA!7e7)@lhTbukHD)tvGZG#qUY%I`43Q~Uw_~b4ENN=LOmy4othrd@m}JoP z*>W(aI<9Ha<)JXFt$Vwg3lU4 zp|5Cy#<{z_siZx!J6BeuQUQY?VJA%GDc-Lrs~nxr`&?r(7i(?Y>1LO?THne{5W(3( zZKfx!w5qZF^kU<#3Duc%i`BF;nn>A3e{Tp*!=5Bv7NlaSMVJp zPUvm3*|P@hqOcicoWXMHWlYg*r#TKAn#MZK%KN1q?rAx!_3#l_a^|yYyWZMnd-b$p zcs`LWtT0CiFldI)Wn!*WHg(yzQKsADHl8nKV(t#tg)W~jW#|Sr?OD9Zk;|c9o(}p( zsneVABaL6<=?$KjsJ0et!X(OlHO<*uIin2n*)6qJndZ9Yk5}`~qOTN${+{Q1TXswp zjA^AqDQmgP&b!M#Nm`zjGrLt!PX}(L&~bYh8}17_?RjpkKa`q_UU$oB#@JSNHCxu0 zg|BD3Y+Bwfj7;7K;Av-2jS*|<-41D13ZB6)dg(ye1s#&f?XtkV2Z&(CZ%?L^X4Y+D zYLJ~|h~3nflFZuihx=7g8(=xC(8vI>cBQ65aeA5Pxm}*EsXJHcl<@3ab{h5ENM<^# za7*5`I_KY$f%(Z_$q)PG_hw)|mwfq=uj z!{o~kk|+c4l#7vpxrO?k+(ItM{BFKhq;x6q*IXe$qd7mr(cP;cL} z8>jnO}bhg2$^L; z%jfhKpUL%oni{u_qO@C!q|*xMYP(=}_8evr+cmdtFG~P*cM9@mG7{!`l?;L2!j{UE zD|fa%-0n;BaV?7tH`QXX6;MV`#5ta?kMP~5waA+#g{4Z1LVsZt=q`g>Ynt9T236_i zB)rXY)sWz5GIke=T(qhyoU-#|X0-rV)^xTM5m@*}A9NclTI|!F=H`m|nbj5f0okbEfNgc$_GrclL+KqI(ndfq6Hw)q{oDED`qLRgCFRu)c! z?%-B|?koOG@AP&pEAIwte%P5xQ-}5^d931ZvKvHjY~XD%7&S{KyOelMozT<0E3o7; z&u&*`qduDZ4ObZshANTYjjf6{sf&aBzDA71`l2~u8hdH5UaMRsn1tAN-l^1Db$Q+$ zG8&(r?dl}8uk8I&gWY5aiP?7@)?_=}psDgy$M1|wd1*iD`aIX7hotL}m3EG%Tg^Sa z%O0%!S@=#6nWDTwR*ifE+B^H4C+HQqRzKSc2^Jf81M6aqQe#_fv(|8I)~Q~%#}{jT z(_eS#SyNiJ3Z5wY(h{@QRJAjpl~!7$#+pco&Ca6NZ0Xdptgl94qc~2fzTs3&7N_M> zzYaQ@X-&WuMy|2;newaz$b`AV9d7Dxg|ODuQ)w)m^q#^MNygz z(|q4uyYo147UyPOO3=q;>eE>uzIQM^lw?rSwEQ=#(_hJ^PL+U78~K<`#k3~P`)9zW z@NA!j`IYJ+Giv+&`!nvXdidro9XSy_#3cObsL3lw#Hl+f(?&iX5t-6j{JIiXH=?y~ zA?0moZAw1gkEpcwPF#s>i&zx2_O7%x4)h<;S|t9q>}f3oy`#0Mz`UTf1+9H?5%_mn zo6blDtu1KnkD|38gOebQRE}tE93l%^ThQ8q*8Ut?OV>Ge+AC;nL2KX8T9|J!t+2Zu zu4F}6E5S;ZU5s>ywsaWFyS9aymTk<2QD-n6xFLfwGkHi7-Zb)!RRfX6_5?J2C0N*q z)?h?rIy2p|E6^lXSGrMaAHce$p4$=AXrmAGs#66VtTdV|N2T39boK>z8deuWgqKD^ zS=sjSu-%rCprkCS65VA;WlhwCG2B{?dlTMlx3Q(X?f2Fx{+&ZMD)sd?=YXzfiG78e zAmpaq7+Z@nTP<4^aEM}xPOWCjPBd48#>~ScaRBNa9`3N1+rdC{q`S~;)=94+8I;Vi zR;gJF(`5m&Yfuy(bONfw+R+-}q!L%}!6kJ-fjmLFU7YP~<+3f;P#d$ONH8Ic?3GrL ziEFzwnM{HGrm<1>%a)lp=Gwdn$jkkHb5y~Bol^GkIAdDS+Je@;zMj+FXVcortb#6n z7_Eg1T3gWCg4X7k*3wH!^*5XNvVKKt8>ID0YdP7f=s-148xd$@8a@G}!94KjMr+LT z{uIU9dUILFqCo{|Myzh4?d}FLY^GiPLkBAaqL&0539VQL7n!057)Ma%@SUZe! zdURc?*Ox}nP_3$884jRQ*s2<2qheO&yzQ z3LqnTLKki8%*q&&F0It(^EN+Fh-GgWf%*Z+lqpmQU5E_^G`s^+aaBW65v?pHgf+u8&XYJb!v0XVAHq2n4h3 z-22PojtYgPa=?5o$3#lLZLeRl?asE>@4xLnT8-VKqtB=U_(3u5Yr6T=&gOC5eBDm^ z2dRI{r?MQ`Ieel1%}o6pFOfb_|He|pWA!gwMj;XbzpMU*;5Y|$TK*!y40e?RxMQwYoMY`v;=Piy_lxZL2D-)?Pkq4UQ zY$rl_gbc`3!_liZjNaCk71yps<4Id5O-sO`Wer_z+P=tDM2d6m&B#W(%Fdgk)9E@A zxk1patR`S{;w_uAYSR=&dbz774dP9O+XTX--Etw1QbA_lYvrX1fsWE}V1-_7$l=iK z&A26_+UpRYg%SyXmd~i+PHm~K*&o$QAk}B2pr5+U3})b2mEBToi^uEBx!Zv|4p;S; zVPgn6P0<`zR+~BRm;K>*hO1yLFro4s168>+X}A=@?z7PxNN76c7~WB5<#;T03yE#R{FxHO_h<&L8p<* zR!E>^NSoq0I1a&5e&C&u5}05$zZj`w^$h*cBQ0NQ(Kj%BuOuv z4NeLiXG|kKX>e}MR{|z@7SC)68e?3bMrcC2*Fqy~tuI5c!7L4DyY{_)08e>^Y>bhm zYf|gTlolYnolROjfuZSnSW2S}+=X_4x3wJ9oC^WaDnkRj#j3c%BYme$g8`&0r7Z!J zjd@K+)=@ zPAeo`wYmVcl>@`^1geVbBVH%edZ)E(lJZ2YkWhQeDdbMrIYW|2YBg=}(NV3Y0aQo2 zwK>bw(UQ9`gl(yZn@z+5qrMdn!&B;CeHf0^>(swUZRts`>R+#Fdf~#Wc}t^eEW)&x zBdjcLNxVLo5*sXvu+iu0Uuq#Www0m2gXM8|Tvs+$zd!RFsDS`!a0nW3e?Dn+>f+K> zOY5!Qn1AxPwUr0=lk9+v8nnxA%LfQ4^-+%^*^T<<_jxsrAAN z<42|4VWb>QOnfcSF{{3H9|5mxa z-UZH7{|Xw>OdDi4IqLdAl^FY`(c~4;Xa>!8x3~9XK-o`EZ0HP{)j^pL;MM*Ymirru zsLq64eLFO&nkotdWfd;hV`r|W_nJ(pm9K5lzQvYE8B@nj%~D`yY*!Rx8*r{EPUkl4 zVWkEDfRA=+{c5k(Xri+xw?*U<>ITRX# zZx5*2kX0|P*Yqaz9$t@D|LzzC6o@;je-DYL|1tG%`IH1JZR8Pr>XbS$J1SGuYf3Ck z9+3PE`!Xrmbh~;|_r83eKTh@07w`4a*pD{y`$+!7XQjrUToUn!i`0-=KH#!^N|<|I z#QRA^{{Fhqg2-n^v^fPaj5G5cz`0|0p7l zP&CRQG;>Vkv4Y4KM7|*MKdBzq5NvB+LF5Y}|Axq`>w?G^M7|*Me>jo14H{nlFd~l^ zM7|*M1(DA&k*~;G6p+s(@|9O2-;kq;g|nF0$Cp^BRwV_Omg9!GT-p_jg|}5)hB`al zW}sPVRVr6BmQ@w4q?&qrElX36DEAkWLCsx{Ye|D6g@JaOLi+>&Z8t#!!)g%k4V&vO zfhja9u6HD#>_rLsq;z{3c7zmc;T>tULQv6l%V+7y>gW7ungb}IU zAU=W9;_ur}*Gc+6IpuKsFrI+De{?qtU3-5NI{fB@(BSEt)TRUCv0OKNc{5&xhd0R= zjod|iEe>F_{DLIYUz~RFS1^mX?!i-EVZDlLY~_8^hd%lp=v_pmK1Fs158nSdP)~hv zz@Eu9O#Anh748o=5=s_#D4G87BQBbp($==_Dh93TA#1uZjhBP8xmfJGJbo8<`49Pj_`+ej_P(R3uF=RTiuHrT$XNXWThJF)Gf3;PM!ChlJ( zT`1%E&IhyVlRgX6D-FKW(A|^1k_18M%YI<-=!#epsg>W?iBlv!+k zF1VTFfeW2)+jD8d_45ZW%fY)@EA987lw1?PaX}CJfV-KYAPdpWTqATFY@pE!?`b)ng|9b37Gph z_!&Mxe|p3DeIhLi!B01x^>c?5$onIOuU!#G^W}=%r==tA6KElrgr107`eN?Vl4SnU zk}#P*i!e8?$Y&iD&v8Ytj1#wAg61wSN#-ywdEY5IEg|u_C$utl#xtg9ge0GCnGGUy zmzX4Tn3&AnYLUr0F?oh7f=?iL%N#kGyTl}U|HR}UH$!vI6`uI)M(_OSQ=>2_HER9* zK}LF$t7*Y?qk+m@#+1xO#`IlaM!^>yb1sI1G`(Utoa2Y*Y~!EcTkf2w+$Bt@{3T3t z7nkWp#*TQ-&WS`Yhtkq6MDB$zJU>+{bu;r z_|qT#?gt!ZicgxnZKCbQ(E)ra-!ME>atH6I`@_52)l&HW6!KhR;lCUu$u;r6l2D@? zwd32fuk7O7QL##XZzDK;#)VtaV+xGll>+}E>&af}c*FD%Bf#6wSr;Ug5#kAi$-G)} zWgN;K5v}Bph+Y_nj-w1p+*7B2#Q5crc_3B24qPgR zcVa{q!#j6$x{?u{{(k@f0RR8&eRpr$N*3=|3H*SEU1(!=k<5KrfK{SIN~Ea%&w{;( zO>8Qk{;|kToVdq!baN%Z7R&I=nK^alH$&~dlv?ohYO3jhC2OhXq*~%$0ssAfyDzz> zXQ%H^yS7+h+4)s#yv1Lk9*=&oy_d@1!l!{yUXUG{cLWn@2vQEv<)$R6P85_OI^08*bXmKT&-6 zQB6OcKg9+73@*lS2YzQZu&3DoufgBn7cfFxgD`oQlUm-b))?(qTR5%Aq?u<};3Fxvk& zXN#)nuBrpYy0wDmhs64NW$v|`$4&*4`#2&W;OO24wU=1S)`}pn?@$O%GH}EG$qW)T zKLpkd@AujF_jZOgO?y(Z&$F^;$W$GRv#Bs1{ZExSM&Q)9lr3|1vZa5kY=6~c5{}=Y#(H^#!~=t+TJ-?d1;l#}55PQ#f5c zBU4~M+!UTlV-URiXa;hd<$RQH3}WYho7buQd&d4>Q$+?mJ5}T_Uio);<<1%NcFz6Q zhsQ7A?p@;98^zj>?z!2&#{GZ)DJJpJg8l9N_VUQpzuTX{uLUmnHGvBu-!E`6&?Sd@ zN(DY5hk6DZpNVS>A>L9O(X-P=3@vy|6R1`6tVR+Hb{R>$TloK*jwG-%=Iv!8iF2N{`z<30?DGpa{OEN3ViV7= zmSD~fD`qZO@o&jZ z&Up&<(S<<2nYTX&mH24h>Lp%(h(Vk)O!wgian7FPxAXS$5twy%v<>`Pyg$1IG0bH_ z%#$i`E+eq+HHzGg#lNPF?Afh}VLpCM%s+GhhCtU4av6ZJuR_<~(*)R$N7v7C0QPif zz6`+5fw#*5>{kY0FOlri-tn?3>>PNzjKE&W+i!PsKh)9WeUG#JrlUjlRg0_MH5s`q zu6j}h&Si8+Uc=B^!gK7|t#e{Oex1`lb##bcqnFVk!=BxO3HIX`OnlVn@DIv{Kbp5c zXF=UZ_gtlQ;}_-Y=M00rOXvMi$49SOW6y4p5PMl9^rQ-$OHPbkt|InQHRS@=j?f_#y9>Q+*xp|XR-MG_4k#F2QV^~pcrN5%(j|dcg zX{y|P4@G>VoaLio9{6Rs@<(^wOLFCp?z(?fdiQU*-huKm^*d)I?_K2k@{}2V)0~-m z)w+&%b!HxXTL+o>YUk$(cVR-D~hASnZ#gGjnGL>~S9t z?A^(k5$t1gX5^(g^SdbG-!x~&UY0X|G<#>CGb7Ee?Q@p!hwz5IZIXL-@HBUUr=JY0 zXS12P%5qWYE!FW=P%+%(BJZS*e~Z2K--H)t+G|GMlK&$zVidiG z?=I7MoU^}EMqGdC!Gj9;t7D94qheh^(&{eAbC?jf!wuFaaR^;)?8S8=2ILxX5iq=yecf&_hLevg%QOBe9mhJ5=^Y$iV z1wo|{^;s?EpX$0L)Tqcqw_B(19j&_BINsbe8ibnp$}hH;X89zpwX;zy?fbLlCKCrm z7=3sD&V?xM(^_PnScu~J&Dkvvx82rDJ+nS^s_%+M%Q=bRO={bgy(#kS`2Q+o__^`F z;qAVTeJuWeJTm;V5wt#{@y;;VG~vm}4ilF(W@pG7Ge$nYr0@Q5tIS@WQC8|$_39m( zwN9Tb`{WmzqR(|gufpb^J0^aW6FQ6S<#&JbsS6X24T`Hl%0F{Z41w2R_bq?^gMZik z<*!o5^TQ!A?9nNjkJrYx8Rvr6#Bbm2`%a_W7Z||1LZ7cO0RH#xE zvogc(HHp9F-ctTu!Mj(fqi{{?N?uU3Zqg$^d@v&eBU}_$=N& zI=MkEnc=TzhR9oIhHpAa^R62#U*(C;VuR%+GkgvkFm#QOZ<-mt>ki9TspI+Wu>3*|r=?y5dRp`HQR*!BDV0;-PNpn)c1Q^Sdw+fUSJVBM z%XF4%kr#Qn^_F5ixA}b*{FCSR??~=f72@}e;XazT%eyjP$=q4LJoZH|Q$A;N_~?Z~ z=k}J-=e$wrhy7Q;uSKnM!-81w{9ZGPcH2l+bAHbd>*Mp6bJ;nAT%#oTmfCo3P!QX! zQ@v>8M-2EO;=22y_l!PccJyyJ=4ZikgM(P`H@|4~ZO8o2h_T#=eM^BpG->$z1p3yy zuU@kq0Q!DEK)VC!+kSv=TUSo4f8L&%d)1+p-UB`HYx{!UVPnMIet2MC1a@+LFX^0n z_Y>VUl}G4Av7E-S{TR*A_(BD_l}1`_F%=;z%A1Rf8+(TJX<}^)ukyiPuXc&kbeWlI zyQ(Lu!=!3m-RMuIm*vx@N9rT`_DH-vswGnOQBny_iwrkTTVdiLj6t>MtZ!JR*GThp znXGF|zEmQvSo&n_zg{5(1lIF##-S=i60J+9O4zn#^)u*)iuUBox z+P5QB<;}PYlT{N9Vb>)-K#Vu)bi>yb%0a9g#iGAU>68AFKXrRcxAs@ z#doAwE!RF3srM79&@<9Fi|zc{h(jQ@?Mm{%E>6vg4g@wwNg5kgmQ~c7o@!*{eAzj* zjaCOu3lg=_&bq$pu<4+-fp_oM=S_*W@ZL_t`n#(3)4mbcq5col*DB#ZD0%IR;g0Wl z#&Eeuo&s(vY}mSGW0z!Kc3IPytY-FBLEvu+(u$+L)Tl^Pu73J-mOa)U1jU>D?*1l0 zFy8vWZ%-RVmiMf9KjJw+L6V z{Cbsb3oW&-J_SOQHI2=04$_+g{q{;8FmcUB!)9IObidHj8%L*;MgtqgYzzyyW4Yg-w{D~LzKtutb;`i4>u$U_uLXgw z8Ji}^c}69GvZ7JDx;lP-bHxxvVGxH^VyxBvn=||rSG`wX`rp3p|NmtW2v@_stPYn| zNbtzGP zF-KSbr}gy(I4bpM5>$WoydUh=%aJKYZmtj1i88}kiKhAg`+xS-UnJ-oJ6l)`W?fvN zoS?fJf-1aa7lg(bo|vQDXRtlXlL=Ey4=b9+bg!!`Xm*GPh(j(E z@K6N=@#tVflUW8s(Jze!K_U%7bvE8EchM1JQzz=@gXw;pDKWtC$JAAT@ z2%NyzSvZkM3!aCvMUT*8yDF#o0{2VLcgPWNXb29nrDcd)aNAk1-H@odp9O%OMExu* z3I)_Y0M)`8D7CP}`uY+X1bSa8#b^*T1oi%Svyu4i?np^)(P7J#Jh7KOZMXOQsn_wr zUYYbWcIAbVwg6WL*iK;ym1!wT^_dPRBpLuV;7T5}owOXz1vne$-Pyn~J8O@1Y+EF( z4Il8TUe3WdMme2vkG(x=lf8)mYe1C0sl!-b%2w_+V0Jw$NX0Fwd+W`9G4{5rh9C^D zylJYzo0U{R0hB8&0s^`mBD>vc1nwci(NT;tmFiZ4`9Q|g@D$_~d;&((5jRKtZcN&i za!g~$Yo)xPAe0X~3ZX$7(V@!%FacB2;lTpz$TASW80enR*ED>xnmyc=Z0X_ z*<2#&Q^TpQ2`FFNM}2eM9~?z^cF@5|xjJB|zBp{=Qc%E0N+~CHEbkct!o++pq)%1dUZ+cl8`(KY$iUf6@%#UfM~Mp;iry+l?) zKb%eml?7?uy1#IIo=%SJbbc%Z#XH0l)DY~6@B&o5@c`=i!gTBuI<+t%E8nOX3$VK- zA|rxv$c&8|@o;cN6~HZlDXEEpt5WPJ*w4ryqsZAz9}OFVD^ut|LX1tKwNfga5|bU=$3O%fVcCpm2r5uU?l$(w zhRV%gkw}~QQ3LcC9q-A*Rt8;N5DaQ7_oIN{8^YAbA_w++@+Q(oiIf0l9vzQdY#%UZ zS2hGo0P*LNs*XY~-X1!>q&d3P)q8+TK;mI`6nwg{tx{Hoah6OipHmk@Nb_xSw%OWF zh7mv_j7DQYw6NwibIZxLj*9kbvZ95HH!FS?5^ zNvASe2E>#LBWgLx`x6!&484etr<})-`i4lC(jaQpW|~Ps79bBfJ=_5)KTZ;n4E7OscY0 zk_QQwY)#e-@`m81#PG=hfTfZ~{iAIkAZx0TbIM*gL=W^MrZRjmFM7k>*zS-vzJ@4Q z2=Yu`k7;H%U-7zuj2HUC2ljMBaCg8K>Ly0lJDwIYLL`1_L-M5p=FRl$PM~(1zO$i_C{c%XHrmq;}tRx+3J%GqQ-E zKb2y@WYG{bd-KBN$(gmJ0|NpJs|RJ3C#ES6q$+RQqo_uTF2(w!U;~T#B%rwJfA$mE zhM>5sZt~<|z1Sbc1J-=sOOR4GRSJ5jPkpD-9twScVD0)_wF#t<MmYo7A)(Wc^ionWuY!mmj_~hk@0kq4j{^ zb3^t^J1Y3A{9NbspW6(%ex1&Jsc189dps3ob=1~HyzWq8_H-)RKPX4AN=2zdzv&zt z^a!P+q*@@Mf-u$a4eK(LH==P$%~51A4mjgb>TohDP+`o*@{t50XkU`$c*9qTx6GQm z<-0d5mLKQ?+uYRdZw7^{Y}7!bg0Cve=TK!S-5k~BS>gNNP7XF}fUBD~M4e!!v% z21X@{?veoME0h6_X;Nqj&X`-|0a-qmzLoh`r5aHWZ8d?rgG#YQBln)2k{^+J!6$TbI zGTbEg5jgZ>Ozre>#NBL*gKPRJG9f}Z@If*wYv(8ft?Q+Bw4&}L?v85nDJb%-+vSxT z1ElRrb2H;W)Eb-_@KN3^(n=V+9xCS!4%01%OKe)qBuxOJqH<$G#}Rw;J#(m{vU(sb zD6+z|?RX;IQMd1b5;G+#16Ki?6%hTtLq$9gfB_^`V%XxCn% zt7EEl;SJN>Z+pRT?&M->&89OOVh)R_?=FY>lsOKdxjyuzB_%$O6j{RfKi`^Xo8Q4)tx?xu)r;<%0axO1;#yHNEoF+%;3{DfcKc-N0 zBpuNMabx8VrSELn?~CBRJ{i@$PRaGZHlv)BCS3Wf<*IQp6M>{XLTH=J3)9jm30IbS zq9!IhzYThzv0%i$U*!#SdF<$GJ}H*qW|{+0=8NO~J{$yPC@r=UK1XNcYkELF+p6vOE960+$&)o}JN6nIQkLQz20;JA5DJEFK%Et0Q zBv8;B&KFy&=Tu`W+8U>X4S1)#%#?;n#7X#3b{Wa9#u1N2pZguh&F9wjwx2cxJv;i` zqx?S*Y(M?yMxQZZ80EC4L?O+Sw`z0uL+@^*&x3)Y3d$@c8r1=dw)AfT#ix1}>FZVa zpP-#{`j2(>$@YT4sv?A4hlMoWSi8pCf4#bfNCd{hunjNGtxxsj&?$J_%oCOEM3|PQ z@h;xflV`0=Z&FA(FqL5wwC zd=JD(*R{Pj#EAR|F}BMkFA(DeVr&%z{TX6x*DqZl#tX#w=Rk}&&mkyW?+*PQVni+w z;{{^8K#YG9#OMf^G=Ck$I9!g!_1_g@O#VoSaa==;{a=9?*Yd=rMPAFNWye$IB|0-Y z_B6(T4W3$uK|}Bm+3VhnEY=5*$M+oAAA#orF(R$nAi`Q)i;FCa&7m4}ICn9?MYNxV zI>4az$Xp4NrS53i;>hcj#jN9Gyqt6W;V9fh=)r;^b2FKcr6cmAZ9@>~>{bkyZcKFP z5et%|yA%uWy3__Rx+SC1{mlUz+k0;%_;M5s`!fVlqt$u^ZV<^NalDg^hBgUe(cJ7b z1f!uJrCV`Il`~@|`k=>GZa=Y8v_J1m5)-IFnhV5uff&Di8iLP;7#Ygn?B{VthXdt=&rJmcf^r!lTA5>#v+X`ifp@gWFcue z2ZkZi7U>^1A?#z=6z#Ags8Si1D~c768_-XPM39Pv&ply;+NP_c+5?(gGW^oA!Q<-WxIn1sSeUb7IAME$Pv=%w|YpX z=0XxS5z#loKGnml+VNLP+Uh6AhzfNl?8BWteCX7EoZ)K+%QfBGer{dw&F4Xna&Ks( zHImuujg`=iR}z0B*nDV${>dt!`w0H51@{xAjH-3?#)zbH-6Ijb8r_**J>b|^T`=pl zWvU>tV;ZQkqcrr}=Kj+mM(8!KLqUmmM5LgPe;vv_h!ouX7}k@J)Sdm0-Cx@N_}D(j zy%r|H-M8R8j%}Ve`LGu>K-Zr?Q>OU>4nO*hokjgFp&~qE4z=i<`!7o@!_$6v71M8E z@#P?XW@)>M@$~u*S>V^)=0oorXo=kKHs2Mjg*m0QqcP+g%_Z#xVpYUy9_n!|jK`eC$Us|Ay`b%s(qI|32wI z1I@qhv6sU6-Jjw7_9sz)8P5NnyWfiEpBVWCK)<2@)=jw}`hRCcpF?>H1BvMJ~S;_%4l$@_NWEZ z5FBx|N^<)tBn;F6TWmzjF2~?#ou^~Rg_J(J=8n;LITA2)*#Wg+PIk#7ed+g?zqQ2LK;ncDn2Wy=Ywo>PTPAp){slZY)osa6vFxFHo&P zkW5mSCRd3==#1h?jJV|`!=+lBauSlD8MyMbhTv*6@V9g}p+`9bsO#AbEOv;yc7+~1 zg@?m9S;gdvwR}{|3n*j|v0ST3h$OzRxVc86orqppI;lHI-r@r+NzZ+N9UpSSvSxuc z@9L2mY?p(MNm2@E?mT@Z`(oGbO=h?tR+KSCOXZuY>a>)4j(b}1HF zkrcy}slFetB4QuLQXESrun%>MDkdu|c ztNzxrWNA_^UG13LlP;hx(h_~pZY%!?g9z`#N;B78`^RsS<@ezxQ-P#aVnlJmvUEz) z?HN5CnW+O+I)p(D=!exnQ8W`X*>da9WX+^#g#wWH#KS>J9^wAcwuYFs>yAu8S!6^H z+{_p+^$&Tm)OKULAT6|VpT5BRWew;{)LIY7`GPL&+0-T(v?1v03zc(FtQWc--XG^m z6@zv-yOVVurH=&aGsFHO&*;G+Kq4KJHyb<8dP@xK(Q+5nwkV))SaClZ4?(L9qlvjU zj)&|>c5qyV(hVl;^P_$2y1^`AqmJ9*mP?Xx`JqP2I5*n*lB0A)n^#Fu!oqz3QNzMJ zf`es=wSD;KAo@Z?iFT)L6*t=INRd>H$Rmuv6Xv(eJ(z(Z9j->s;{` z&PU!1%x_0b7c_r=LG%CdX#UneSkK%r42-tfw++Jxj~x02r64>A&NwaTakKeO=!mis zS$!;b79l39RZd|ej z(%_U%Ev(nWy7Ezyru||+GrQ472!(h;I&OO4h6$%8K)4=p@{*ewrCy}sYSnHS?t%xc z7Z4MDlVP(k_QX1LBg0G^K+}%zK=XKHEC~xS($O*?Nq^xWWV{ShqdS69vMAOb#pD(T z03*8%T|EWyK}GGXJHlimWKBQ)AsdF7tvtX#a>H;t;q*^~^B;Nza7*NVT^*Z{$8N4x4nb${c^U zgkKJM8(Lr#_3UUIW!HB|*NXlN?&UQ%-uREOcl$%U7ufp(d*7%C@iXk*M(7LdeSy9IDA*h0SQz1JF@6tw;}_Wb z0()Oz?>`9kreiZW(9K5nr(kamDtkVslyiG)<1`_HnWOM-;AyE6b4lBWJugfwe{JEY zz0FN{zq0zaN$4U~1`6BRSn~{kE%tas(s8LH+GrhQe3`C7bZ@c3!XB!Fa+zdD^w_cR z7L|c4qodN2m@3e)7~z;5jnHx&bxAGILM7cI63-5#RfMk!6q*U*22{mEIcM0;Zt4bx z$m~F&pp=8BwAcZ-5aEeu`RJ0-a(aEBq16_zJRPhehl#Pbd2ZY5gG+b5pt>mJ>R!Ji z0LLY{Ar_FzWmS!75G%*MqsA@lJ)2|%IdHeb)xha>eLLwTTgKFN!8vU7$w24D`K&UX z3=2hcn`CoXfW>k>NfvnQPiKBU#L!N}uR1z!I}O1o-}&Zf=9i*<$U)QEN+Av>f*S}Hd_}TMApWQ<^F*1 z6HShoUf|f{Rw%NVP8}|y3eX1>??7&q`Efdjw-}Z$DY!HxQJro}E#j;Rycwy*(O~w` zYQl`2)rg<<(Yz-dv2yBePo{VDtfMs;6VP(rnZx;LzI0*;H#C^n6?s(|@QPb6V+A96 zTw;%wJhpPiGc)02pa414j}Qx>S+|$K1`&&toTt`A?U$piJo3dc2$Dq>!b2f!2r6b@wP%YyHIKV-FJiJp+@;wSX?D^c$BZxzQ_AM8M07DyB7>_4Oyejs`bSBR?(s=j(+565WN0nvUzjEVz+V|<5 z!MhXh+z8>3!3YVNZ-6k8Fv17{aew>+p`Mwx(`vOnyNMmU2O&~PQJIxhD{Cdm!ll!< z0Yy4)d?>a0y1idxaBqqYM8cwj-kSENy@QY(R2b`5NE8*`)8(DON)U&q|K0NCEestIY^W3e34}10p1hy#_=dFa(K`{}i z?GswwOS!l&@N})kNdB}xu@T&7>-JyZX{-Is{=~;%Z}J=V{)WB3VeiijdxHylwLZ4Z z`X|_%qvW5P*tron0%H4k3^0xZXY*tR@eA65vv@oAC|p>D)u=W#Fj=pFqTWdkQjr9r z5iqwT6IFqhM|gD52K0jUyJ8+T9{G_7sL+Nc8>?F?%u*f!!((lmTb@?8QB>{9Dx68N zd7MHt%g=_Eu7sn_rp6ER!$3mTb!5-9rLpeViohOM`*|*m_6t0qSLxORjXc$hWVCUe zB&Uf@FEyLrOGsk6q__hxWJorGLi8%#DPB*1p zi~?cUxmR!Pn;*BEc)>}p7@mHi{x{#d3gqvipJ#*o*`_6MQR6dSc7|}ezR~mwoWPpM z4Qv|0a{Q)c*w}8G;UE9iMptbZ*W44BReZ>$h;f48bgc=k;-gYHY0$!TEosg}i3IRX zhQaMb0vKwaX#cODdfkCEn@cwf2;xt5`7{ojH_?ogVGEyk-%(sQbMpT|peFYGe=Y9z z>$98FPRuQ##vP$;NA9}S9l22R1Qhv{VB>VhZy6DA(~uYf{xKt>#WZiyA-Y_Mn@4X~ zJ>)oYy0hQYBB;A*5jVLL-)Rw_DJ|l`F7W5HhzD=GFfF3J{Z3j0a_(1GrbXP+?jzG8 zZWMWWT0|=WM)B{oi1$y6=mv<>D0ppJ1WpndgVFfyw1`vs!4qi__ZOx^GxavnKigQ~ zU+|Apenj_4yJ8K&&3U(G4H3xwREqka&3NgQ|N19_5jYML@UM02cKB_ybvnu50~byK z$G=*W`n808>fPU26yI4C-&qtdBo7#e)0z7$@&GwMv{@9c3CvuAC6Uch>xWaG3+BGI zns*w?{6MGH0a`Q`WfJ-JNRGNJiZqPb-maHQD1{PD|8y;Km9OJGSa>F!H4gH)w1?(6 z7lXWNjK>`j9j-Y(sAC%DtJs7l!kSELn4Cv7AkQ%;*)@08{_MyK0}@V?u~7-A%!Opi zYg<4vpekX?OlBmH%i>*GawmZsinF5SQSiV>pJ(2BJ`Bl{f`U~~9|0ZW`6&1Ra_mmz^-WNXIZFgO_{lbj2( zS#Ibh-77;y+#0o(W@TnLRjTF4iVOGZ(wLT{GAw)W5TUzW;Dj&WxGy?$AhM*28sKCK zA{>#D2b~<^jIU812ZM${folQM(c@-y*n)E!UN0j~CnjI*2ko>~Bj z2k{2f%iTyREnNw8Ma9G|fcES?7^D0&LLl|H&Dd1!4Sak&9MH5$D$9h+S5lo#eyD`gTD=v1kM6U5Hkf7P72U9Et?Z^@zB)fIBLSktsR(c`f zI*V04CUJG3R`^L^)x)@09D^!4%v2j5Qhq`hHVMx&B~|A9et>5%2B9Fa=FwxYD`<6^ zt4(hf{E0!sgQQek*__G7bclE8_5OxDU`TZ20Yj{iEhfK99xy952}x!X(W=1BB8APV zZ3}s7V$s32;$mBmwjKJGm4c_ps>?cwD8{j)^?}ACGoA%Q$vrB1gseq5x4Gn#w=zdGVF0`OCG=tO;$nFz?j=!pj))2O7W~W z3BuiG>Xo%FhNpYTJeP>dX-m$QbYaF{`X8 z(-R76AtKM&(9pUfc_-9?zynyG{mz2Cw=y%;iLa znGysGJ#lw9sD}v#Em0{@hPf3TeSmd)Q4d^N|J8< zI6=k;I!cuF09!01&B+GEgd8T8>}=MI1IS8A1GZbC~Kx?((o3YFZCemlJiz(H<4~opHP>)T+6} zI(Dc;InE29j^~-#w38MS{90NX5=!l071(0cV(0HB%E;;U=C)_7EWMg;!pVp;d8k=LQ#t4Ip9w{oE@Hj6mmNv@t?_lpu;Y&-Joiz_rQ?~Q<&2r>i+UCX3ASCI1WrSMnOXzW$OCp@&Wq!2SQe{w zpUP?%1z1eovdplyStx;*BjW(Dyci9Pg_ePciMku#S{QJt>|kY#&pKP)k^~(~de4A; zw?VcE-R0> zBtJZYeXa463_&nsbPOH19bB4IGvHNYM)NuC zs4w+q$EJs?@puzZb5k|k!xA5i@byBVAavBYZ6$&#MSz3ZZdRKMgLMUQ9yw@YaU@Y; z^P}x_%#|fz)BwB6YTT76i&j;n2aoj>>ak27RDEW8;9P%8QAX@A(ULf5nK?3c0#@0ncL%OzT|f9b{*V7zQxAT^L*f+EqY3P@kx&$z$|8{5jB>b;NO zZd&K_SI}e}2WA^XehN*T+YNH1)xD&^`kPWF!|z{U{ZCehkmSkg{%BL5z-aoxuIZ}L zb)B`n5&nUKxbsgCY%%3$jvmOl363`(KsS5#-)#f%S?%ZR{Lc=Yep2Y&M!3@E9;*P| z33=G&;Eo6Rjco3^>fG;Sb8l!^&*%e;d8I)?KS2CsQ1F*BsI%IyZBVxx;Yx#gtcXV^ z@;M7}Q(V>1kJh zzYXf?KEOLy8Wi$_fS}f(+HAkCV^C+cU)!K=H^P+$^^(doZ);HRUytQ;8PqdY)Bb08 zr9m~Z6Gnc?kgrwywGHZ3L%x^L>b+5er;zV!8Pr+rPi;`= zPd|}Cy+2>r*E6W-3WK_|7dLShfwaa)eJSHRtNq%>ce@d;Gro3{?=|Q}@)vmh7=;k0F$#Tt_e9SD?uVMx3)IFxTx~8nY=VuIZVurE-k>W` z{eD^=H@W}O>RmpiQsBS5*JQyz5x0LXm-u%FGN0iR^}q0IT_XI0g1=z0%~|aWjOyJN zijhwTWg>rfDDxS8K;K+xP{a>}gj<8czLY_o)qZV*y4?s@8q`am%r{NJM!p1;`Rm1f zQNjUL` zDoM?7M_x@I*!J#k`oM4cz;F7%m(d5Zf#oT<-SS3VN*@SFbGYO(8eG^y|4jTYbF@uy zXE=J+bJ`l@lG0>L%JfEep$uheMvpIm!C}3O| zYoe5{+r(oH-v?5dPo#mW1tS77UA2Nz4n35kbTXzV{c#+Yc8F^8dcQ+An`1EiZ1Fqa~D&Kyc=wTfrkal$Xd zV-7HCZw-J>I#}lQa=45gBNKXH-{AGk=(^1TV$)TyUG;$=glMCh@m6H*Xb76`GQ8eN zh2BS&m0(a%rYV$+GjkQEYEWhb$f!$7VM;&=>wYotqmE5xxEFiFEoPwyaxz*BQ1C!3 zdg};-$3igeanlvOU8>XBxJs05#M+`nhA6q?HqJT@Dez$VDdQ~psk2Zzz8jtbdTYJh z*sF2H%ge>g&u7~$JY51kH5xdKFyYXgAh1w2eZ5AhUbGWn z%*amyt3|bl$N(%t4|N9423&ZKEJsKc4tqI_Zr4M`6eoCYR=Ty0JwtQ`A~fUs=%N@@ z6^%`f!BE`zbmjESlR!dRVlGLjO{?e;>;_b|r#L=arwW!#gRKecsj*)4)wVY%b|WA0^GC^XA~}kmV=TAk`=~o zUK<)w79xEZtY|4gZDGL%OQASY#gy4=YQ@aqZ5H*n(<&o@1HsCwzIDs4?9#EuX8LZl z+`}7>P54pnuK4N1qH1x`=mD**T9n|x!3j~AHNkh{Of7oKaM z%PwW8@A?!H6eDoWl95PNXt-?L^F9Md2}e(RtjdlE+|w#-JV4w4Op3Y23}i1Bu~}kC z8+f*x&ag@sMjiX9V_E>&vrqg<*H8zx$C)PSb*KY>6WATkrVdn$L!a1Jcc}yK3%rCn zP?DV>7M=ElZWZZ2QV64Nd*}110~bv*x5po-1JNs~1KXJK4X6XViPkrDVEIiQ_;;rc zWXrWA%*wXG|41E3(Iz?Q1oG0f&Xj8V~!3T zDdXIM&2-rFA?14kFBycMR+t?-`>`-Q zqNBmo1V>B+)Db@Ra#tqclysB*yr+xniH*Rn(!3(j-0w-d7cIpjq~=`}(B7y=L0%l9 z$H=Z@Z7b31Ka4()(+A#jzt_?So(29If^Lpy(+8?N=&hz=d(zSeo&|QJ#qY<3^nt{q z^nu-4)py0D*F`%B6nz7{b{Frs5&n&Ld^Wt} zUKe;C-f{1?OYsi;KHkwK+P((f@l(5x#yeU?uERS>kod+szBJweVlc*{JbfGQz^=kO z5RiPTVp5BEJY6vfB@p~IAP?#r^7w{4z9Em7K_2}A1lRNnArIX`M?oxkRtz%Tnjsx; zMo}0J=K(WZNe;MoOUlP4yL*s_Sy=o1Xg3@)^ZCXAW!l#zf4VTusPa|9Mi$iSByc83 z>sb{}=W)mto#g8fZW}~ZnVnA!-$l^ik6q^G$@CDEGh!3Ofb33id8@ll{^os@f;jrM?=AE z(C=1bqMCpRK`Q6Sa3*i|J2~;}L$wms9KhJ)qL#LeXIaSVk=ujl)R_wAY{;9wmpbdY zdYos6=`_ZuDC3LnrEIej>8+YMI&J54kJ4p2RlRDZ7S?bn;&o#saJ4Zavrkv3^` zL>-?55O2aehe>#}GC2d?B-pTVkt~OfwLU84k;+qQyodx`M!~8p&I2rDPhvI`q+BFr zP0rM1-yy`TKh23fIXH6emJQM(;*T`rswStRULoAL?K?Vr{w3GVBAdeVk_~^9Y+#fs(@;J`Y7V;1XbW~(g z?bUNspRSqZR1bJ{vY?I4hMHRHbinF_K#Z)eV~Y?`Vq<63v$j!>EP_EH)x`%RW2yC5VN|GMXr&HTf=EmSS(0~zHnBkGHh-yJ}4))N8A(UoQ8=7jq%to^! zNu;IRLl;TqvIp!qXFc281Y*Q)+6vqQDXvV5fq(F>nD*Fk3L{ zg?=h!rRhhG8EO4nZ&y)4AE4T09%k0QUFNiCcz;E!XfOUgELx)cpuiC&i`qhJPMK*7 zDzM#p(LI5O_UZ1s{)e@^+Xvh3cUNF@G(lAV;l<9TU3t3Gq-j8{Po5S?ckLL|9RL0U z?15hodr)r!dr;pMlTHG^VUNEz?9orrF}r#~(XRkIZ3)@citjQmEHn6j7=;WY8i+mR}uWfwq9 z#~eDXsxp(Rp|zQKWQf8O-%l0TfRO2`*Sv0Klr8!B)CmY-Hp(I?Rtj^s^_z~DttgJ4 zp9Cgr%~*J<&8yOO<5~K0jQNtS=$O9?_9U_z@>|M6fY1djizrMHalzx5%&k!G8D{Dx z_{45zQ3l{cK$k%h7}gP<0DTfXqWx%e0tEg;Dkd?7cU07OteDg-SN-QyOk$nPPB;4t zizc17LA~3ir`Y{y@`WW+Kh%zW=`+VO82{MoHyRTff49?$KJRb`+`pS-YiN@u-Zi6C(!K^ zYx&nf2kh|wUZCNbMeE%(gfCzXdH3dvnJ3wXKDgitav`>@yJK+%YzR?itMA;t-R(`M% z{^d0e_Gx zy}3u;(PIRRFMUV19VH#Ft7#+p+~w{qo}ByQx$#pzj`H@A%*@_w{{4@Bx-o;hy%jp$ zbJv;OJma}LHh<22*$U3X$f<$5G2|CPPIFm0Io9@_c29k4m^po8bjp+ddCA?B&id!Y zHhH>v>FrtjD)0T)PeG?{@Yv%={0{F8J*@7PIdXKx4!c1IN?RqgwKu> zTHPLM*r(!z&qqy&;pA!bY&Cy$(Xn$K9sLt{dg?z04G4js1NT>t4~({pT`~dtGsoyF zhX5GI?!KLGip!$^ zKhp$$Ag1@;${o!nW_!MV81%RGKF?sD27gfGtF9)WKmA0$=l%I5e|IG4`IpWlk1kY(HjIop#Pll$a^byVLbBg`u(-LQ(@#u^{{i$@HPDF2Td)X zH?0Ffr`P=NmR#UENBOp?FE4PE*!!ox+?uAL=vz(Grg3ft7xanu261gOwJu5weeZeN zUtt^o7x|t~5G`F2+kJe&0r&@uy+Of&*IbOk-Zs7HB`)iu(u+PQw!74ky|6lAJo>-bu~;kbY_eZ0&fTSiMU!{IK(M z=8H`E-bvfbr+hH><8^0yZ(GarB~Iu4YkA&sIxzTFPKOH|J5M+EMUm2bua;Y8aA9Kh zyQd90$tCl>kDozZ5-GjYwv;EdC4NxI8&pfZU5>gno-3Tz+g3|`iPQQLDM`1|k@2ev zHa_vLRVQudniq7SE<5lY`?!;)aeB$tj(67(0>S_D7h~rC{NH}`zyA%i|LmRq`Fy3% zWRu@X2@iXuAK+{5rocX3J{0!(@}VHA+XK;Re#<3&ROUk7&H*=ZbOA2;Uh%{yw5sRm z@TxZT>GFKA56<&};J3;KzH|Ziy#eM+m=fM;+*Za7r`t#q|-j#2Ae_MOUeqcBP5=3k7ubF3uza)JGCEw8A z@%K+3`Sm_tR{Z@9YK>ZV{eWL%+YVR0?yj8V#;%@bmZk+nA ze)7qxpFGqBo>Beeq1!I4enQ@_e$q{yudaUbyLKO1{p76371d7~31G|Y^0>54Tgt)5u$&=OIsXtYFM`0Mfy7WogyT41He3w4?E`9RCYVT`uZs>OV*~O(# zMu*9$Z}TF*<@;N`qcj%9$rywt446!a0Rs~wpxE(grf{5^XapnGQ5u5wfk1I%(6{M4 z*OJ&&=^Z`v4;(fMbQi<`%dd`L_m-ipV2qQ{&=r3$7Zapcl>7NAUv9;@ztWR_)2#!P zig&rlDkabF9Gy#6o@+AFTnv}yP%%nIOcs4JF1x}a)!ZY+F}|Jelve7z=7sqL` zi7|7S)pC!)H<3OMjEWOe#sXa?36DrzXd#7(!aBszaIc!f{jn!vv!2MVyajnI<<8q^ zo-4alzFRr590jD~oQl1pAtwfr)gRbiHIAaaP_DVjc3*7axmSfcTZ&^K%xkCiBicdv zsiUZ3*KJ?|uqA)l);;lEU4S%au^iVC43IuHTzM03p{5~13bSN6h-R2pqI)AzXn9zg zfUnmWC2S*MUM}*@qV6c(7ib8A#&HP<1TP`N24@FF&^QkQf&`pnA*Vi?Jh+9e37aaO zrsA>E_fl7fP@$UU!z)FU}i4a|t}0`!~`a>Uuf1_ye5aP`R8 zW2Q|-5*p)6y`RS*-`|ss70&xRIxQQ|t@rda%n7;k*at3{SM`7zwslX8t+WPgy^=)C zDUUtmxE3722#=!}%0OcqRD&cnwV{))%5ixF@&Tkw>+M>|oYhRtqm#fIq%|oeQ%ItK zAshF_wGaJ&_P(?^RiNAYuiUzy&QsQ5Xy&KtzEv`bBhJ$|P;f$U#NpS!G?<)|oJ2{K zq%ry>F+it*?!CJAUVH6q;lPs_g^}$2=&+^s>aHS(bx+2}^(@28_IhF4UvWoj)8~pl zNpe)ZlksxVOIeh*MKEd?^`*Gu_c_6Gye-LVOT1ugaaf6{isNr;^XHar5E$A>Fg&WX zeNqz_X9KtF_j3Ye21ar?3F}srr-Zr+ZKRcv@tQT=b=Y7RP51LO*=%eaQ1o}>GIc|*9_TFZO)4qT7{P{Gphx^uIH_5L1#&SI6(=#8|Oqa*7=7(~sO!E2@Hu&xm<4sljw~_BfgW+!yFaA@GfqYXY|4r-u zMuW8UJbao3zn&AO@Apz%I>W`33WwtW_A;z#@UlVpDSNOc%v)nJc&@EnbW+f8RzAYt zNLb$IsgeJEujC2;=7KeT$rHFJd2Md&2N%9vd8vzlhK;#mNN3nYdWRvvE>#9u5ok(UmNu@wtJ+=jeWxX~XwU$Mx zxNd-%oNKGqTlDjl%};oAYi>VXB^Zw$N6^ z9|uEt8-BTUp{u#&Hsry+w=zjSBClj$9Yx;E9*#K4Khci*ax~ znFW+Yy^L{$!GX`mIJmPF-eHvEe1&(4Bf%}g9FGd`k1)q0%<;)Eht$_7JwK?$2y;|6 z+uT&C*#_RSIhpT{dwE5j?CWaVYZY5jA?#_rv8;}_zQ7h(vpZaOs#9*dBDzxEWoJ4k zvzyV;U2prn1MW{3t(myX0a99yJw8`cmN~jP+qMgM(-pQ_DQwUcORKrE?30Q&6QtVO zZ*K&A)mS$h$J}<4J*chhZc-}j&3eJmbM~ZID)NfhIc5P+YIA+=b@IByh+5IiMpdCb za&X9vGTItOI>c42t4>PWjGt?$gR#Bn6*!lf&FdZgkgre72FK^^J%x`m8)tIVNB#MP z$q{`nTWPn8`&QWCyi}`hI)*-Lf|f}X+J)M1GqifSu4>hft72m!WaZ(sY;@hAS0+Ju z{QuDYCsk8W?N*2qoZz{_(7X3=3-79WVWWg z>o*po`LL;G`H9mB#yhc6R~fZbbqQ7<^i9 zndxrjllEdHOqV^a-5v0y#xdACl~xqL(T8%s=ryyx2ei?c&yDNtEKykQgB~@k&T1}! zdD!44qs%)Esw5P1Ey5X&^T9l69I_g-74{izXXkVn=g?N;`mbYvRZva?$jOcuo`n{?nZ|>70l?eT-EwY zX0cl<8FseMm9~t_9Nmp=lcmLq+PZ5YUya;4Qg_%M*0!xmUL5zgRkqS?4puY0yS1oc zwbeaiA4Ro2lc>;pFbmzx&mM%gyavrYE;iPctdckV(KfT2>T<;#mxi94Gh5z*EqcXG zOIwml8`JFYC6cqL zQI4)v4QaY@8w0&vl@2AqtOsj;Q4u^p7g=m$q>jmn?e%)|vCKA!#h{Y2YbBDYI)I;5 z#F1XD9l$CZv`}HlvNxHuMaM5``_0yzW<*8#y?r4Y^!fWr*BjSZuXwR6(JJ6Iy9G(z;Ps4_?&6j@3Na zbaf)`&ehm`do}U;b9yNstg$Okg}jY-;1>s0J`cSBia>S0tuGpkKBc%db_+9mK#%wE z>ud)D2{1tOR)a9K7S-5w%5y<6LHYe&W|elQRO_?46|<*Ldg^eu+;u%*Ig9a%#LHc($L`h1T&dA?v6$C7n+{&ekZfow0 zhTsbWoAQGNjnLd#l`TKYkEneYKf0w=Lkb%Njbo(=?1s{pRuFa01=vAG1BVQ>-;(-P zfc=H}{aAoqGz4jHhBHJAEmFAW`p2FJtJIhQ_P0mCzYS&we**09#=-+|*hyi9cmbl+ zQ$w#p9XvtYPi6PIHT3rIFEMk55Givw2%d~%y-diyG9&3T>X6B1Bz?U)_1JxIPpNgq`_j~%~ zd(LM4QgG!;OY|9q$3%0XVTcJeOGL4!iTbXx5l_5dl=W|0b#r6%@j+Di^_%(+UirnG z74Eq(;cqmcX^f4M6Ti711O_;kz2&_6jEG^f^XltG3@^?r@FZRHsd@FKp#SkPrT_X3 z{)6kk2n6OC2{4*q&k9a|)kNbcO1R}j`;72jvP27p8>Ecuf722EsA$^Go5P>7KAR_KuhL!Vm>$a+)dXV%-+ z>-2Po6qTHrjfgFtFgQ#+TQ-Ju?~vVlrR7nj+HH4HUe~HTuMUs+fyyqlzOvj`#&$-j zGA2%EIug@s?Ua3=54r?u3>8WcC+A6DP zT&_p>`eH737jA7LsKmHAuZxw2#dn)yzIs^TgmKJoq738ll3~aBjDd4zz9BSv`PH1r zQ0@J2&K#FjVr=G%#Av9=leSiethe%>tOIr+g^vOqV(y329j>cAAaWq0pPQmX=1eCW0V2?w%E@ z<+A435$mm?8yueBxogVRcILV@wF-SgZ!Fr3xpTYi6=c1cRl(~v?EXrz)|{yN?HVtR zE#4{7)tT04d6tn?3ML+L%GP6lj>|K=x)TZmhHX=>VWb>_5$ek|QBpa&g!k&MI2XXoG@6R3cnfwp%Wu3AQJH~xqcaATdE*2D_R7~< z0-Kwg7R^)C+HcP~$99d|`vQCxD0r(-hMXgtw8d8ZVw;$CDvPB z5DmT%HK^vBe$B^aezX)=!|bTue4B5NOJYmewQY?)K&rHUG-nlH02Q~@nrDp}ml-c+ zu5Y;NxV`9h+UBmBUqlTm`moa`cOK9LK`stPu3~pO>Uu7=hliQ8vqV=fZ!D6oGj>@$ z6tbY)@w{pyGcnqP)tcp~!3gZj3I_yZ6oD+4-z;+MUZTY2fl^w2Yc2AmjG59a-H(3zbYMSU`-t`Ru3-j$Un= z7l#+n=WXKwKmVBD52Mek32sd4j9RLBifM$_Ffn>^_fm^wHmvW`SPfL^h@)Z;hT#^X;v&tozA39 zRK#&3KW=sn!##|v+<@u|{jkASE zvRbji=9V*02fAC9SIbSlPr8M=H4?Y`S!Kno`lBh^Bb2p8ax;eL{Ymua&5_E3!zt0f zNLY05jYR+cx?FVm{QMwRdex@0FOEG;&(V6F8%_(>vDj!0Otb3rHeTa6+71qjO=KMW z>J$WHzdjMREzcC2uM+*Ye-ix*QKG+Ow2G=R9<8ilr@HH`x6P)<2<}?-qn9#W@2QMA z?;pj%M$8C}inywd4*jZc7JC|d3}y-N`s;zllB>dEN>1uMf%YgbU(|NKRiDkc!&p4j z%1*KBL{fosf!HxT&Sbhyp7r%LuCmS)6y1@~9v*8>Nhi0?)^8pNk}fk$lc>#Pn;hw4 zlh!B3OwCX2$w4<9UJY(PY;Y(t+u5dbXzD@*m-BO&lTx3%pwy<)ulT+IN@xBj2j_vKFVUv&{{+;0rs& zp32V3ch#LJg_6c1zV)pAe7`MZ`W$|ou>`-w?e1u(nr!5NGK#Ydy=31Ec`VO|JUk$& zZs>5%7Gi}wcC8f*dE_{{LEF80bqHW{+5Nc=>})m95~V;1qLqnn<3QK#-S$3s&#;tVGgUsv)LsD8zpk8;A?t-w z27aM$tuU!qi7_rfH;>dhr!eWqRhYC&IFWPn!B?pXg9>uwFZ!p!?H`57zfJ$!y?i|e z;qZIiVDJeRQQ3>Kl?v1~=0gYR3}R6Bk8I_8VGsKHutyTf{?UHx5%$>;nM z{P?hkkM(lcqxvW8QEvLZ-qUWfj6HmPhk(g*jTUd;l!Hu zsz9JX-4@nm%l269K&j*QtkPWdYev=X`sN|a3pO1s`21D3+nFhYJ(U#{n$5b^0QNtr zZ~U(bzEa;fZ14$!{`$n$H|DfSez1mc7U>)RS**PLd{E!mdtcu;a#`I^(!V?jdN?t+ z5YOO&nAxzWOq4H62lng_bPkcU?e)SMOl~Vo0Mk~`N?R0>OIsvK;WRqmI|ER{g~Ub* zM5PDe-N#KBK4ob=K4cW4JbUBqTiTt|UlFo9GIDkY5T|mb?^_j`J5^_Y?+lKnPUGjjGk8h}!NDqH@N3ZhU_?26GAzFziJ~@T=ee`kxSk0~NhxD0gX*Neko!IABSV zJ%0vAT{?qjsrLcn!csPIfQYex)3x7M%prIoz&L`jeiOt?1(~xwdxG+BG|D8#(wuen z=0E;4FFb@BSfq&MbhZ;8xu+Ngj=>lfas$8F&i-aFj;HSK=@J+q83dm02kt7yLjoB4 z@>Sv2AtLw$BEofg)U5;%k%MI52O_?82G23C5fMGu(=u1gId~z52|NW+@1>m6*^VKA zdMri&_V%cE_93LwF7sH#i2rW8%wqr~EfM$~s7HdN_1I$E6@d{ipDlhJOnpY!I9ZrN zPuTb}Ofdv?0b*jn)LWju2xp#75x_q?Hw1AC=vPb=cww-7XGkkU5M=x*i~vvx7*8Ys zRA(Q;*O+t?<7oQ(yYU+uzocqQz4c(hz!DpnUlf?pf1!7ph60hUH zf2-EsRI@h5azOe;BcN6bFu)|>n7ZkH{4@H_$qsJx^qs$PKaSc$C&sAPB%Qj}6HQ`( z;^ChBteX(Ir4El#jBxu2pY$5z>vxR+6JBBT?e8ki%83e=3Q7A0zGY9&A+Qhw9LC>t zA@&)G^klK>>m||=!KyTD%3}=CiUHB;im3uGWHFKr!RoA?Mh>hv48Umb2Taco1uF^z zp;pWHgB3|5QTl>l5x{Oz!04AgApAOXk&r_d1S#W>ozMq{Xn6$D<=Xfpz(|TsAH0wl zMNm8G>{a*|zY1Jn9XZ6n<&m|J?wybn`q{4C2~ikFa_PetfH53+;LGLaXpE*% z*a^`XBitoZlSSaJ1WdSPfodMPgaZDNQ1I?f=-(7O1hMJ@ec@G$aU=$=ajU=!DU1YR zgehIX$6`zp%+LEv%nJY~aX60yd<;guirC-7(NYgfoBE4LY$OqZvrAQ24hPH zzk)5#e{LSgx`urXFC;MlLWbbkq)QaBDFH5f;z>nck4+pVkVz{$#=)jw*PD2%)Ym^< zfDs^R&tr^%`-^y~t$|+$bP{qvhhE;*1L)o!icdfXP-AR>05L+wM%qLrS)P0V-R0(Z zj7369S-?o{{VB*Uc*2IdFSz>(u zBqxJqRRYQGx0KcuK1IAwQvFc)u~kMc3reL!2qSZSP8UnVWmC%PVF8RL6G%QznqmGe z%x)3|>IT4A@*bC9ED|eRlEq#nLF3m!m4qBr{n(NvX-Gegg;fpx+9WRlV^|`M1xrY% zF8l%0^FzUk!q9M91599kNIk3=FPX!bn_>%cY;{5Yso3%mf&U9#9wP96nVyFT{HN|J z4!S%<;1j&78;ihakz>URKel4YL%jCgd2$vW9^$pnHtHc>`>DH%iE0n=+CPuu*5b8U z)Fp|GN4dA=v>SXE9 zU=nyXjZbIX5R<4hV$yf9KK~3LXW|CWm<(yW;g|Z>3I1U1jlpSq^sNk0$zGs;>66D9ifeXD=D|@iIvSbb)2U<27+R~~AQg(n|JU}s4g4;E@bQecoAB%DzYRQR{XfzD z2Y1Om-%4~3(Yty2`R?0zFWcj@Z{sD(ir(}p~-ug4@AUi0+EUf<(s-~~TUBi3|IYmo2(M+*>RyYZrCgTwg{4TBSC z8t#H$u2I4>O2)z4!bMMX$e!%2;qyVsa-86$!*B3a{`0?{8w!WPdxxVb^H*E&-+JEc z>81%%2`{oItM#Vt!4Vh^9^>zC;X%oBwsZHd<1hZ;dYWjs!&4Vrul@Axxew2eEw`Es z;jg3MXV6B}^Kc>eeD2dJu@{-2B7`Tp$V>$x{NH&KnU2uh0V2HXiz~e^XOcS!qg4#h zWH1(rnVsv%XFLWk*IREv;0NXeauV*@2b27-GtyWc#5p_SV{Na(d2^x05OUiq3S(G4 z>FNHlrx~Xc-?5nhNCcXo64X61$pL`?Ifdl0S5Z9tI;4`2L#iK3Bu@iU#h7?yS8}d# z1%B|FFtad)g6kYc@V6&W+@;{Uz@gv_6)^G@&-xyo?pG)r#^SKwb_0eShdnDJ2W#LK zk+1tyTz9Td+ohpmRQePSNrFxvD8&pR5l9GK37GKExq9x#Z5a@Inrw1S)+3?hMAjyx0#|m^9VyASpzYpkO)H^wof3x% z?Uy>JxLzqVSSdUv+$Ehn*!CdsctOySTk6b;$Pvm#898_X5AW+cNb>N$#x^n!@9V?+ z8olLv^u9{S5!A&WOHfat_x1V`O*BT+sl*XdAnq1NC={w0g*d_^kRf%K-d71ZLb>!~ z3FT=FyIob20$xaBv;buiQWtjPU?Oe&KBp_}hD1gx47)v2Qj;?LG;)TY`l*ILg#_?h z6wV_tz`&f;l$riuUCbt6`Vn#22uKvB22d5@;XC@wU41>0Ajbfg9t`mGY$0w@Vu%%> zg6Me@ilFa^OF%&s2^@jun?6MM%g&33>?^4=8yLN^Vgw z6kr?!m2J+udXYmCfDz2?mH!j>cgHf|EXJ@%@c&ti<&%CQkGRIELHs%-K`ysKl959a z^b%7k1QJszj3aNKUO>EDtX(&{W#ky&QYsnW6u7ri6!Ev*S4=c`VX#hu(iN}A_1WGb zQTY!fkad3kA*6Cuz+nsu^u6C4Mhgfm{_fIqD)N@N;@3|#OI(?P) zXpB#wsL}a{kV+ikF*5PWt#NP!YBby>Cy`4U9lsuyXyjmtdcab;xFpxRfdQ zF@}D?QY=_vX%sk)JjN$39rS>uQ-k<*u!I~{UVc#J(*sMoc7yUwG#^U8ops(J2TB0r z*#znUA|WmdAcF^mj!*&eCtc|1JAmX4%Qwl$apmP7%awoB0gO9cA9VmfYhYs8??)ZL zR~`AlTmG>?f*kW+elYLT10*+KOOnAxA4YFd1|%G;-hH<~BA~G&;W6?K9fx?0&gE}M@8HkAR%rMmRGpPX!{*z0xQTRxhRh!3F+CAJZh82?Q^<{Bs^-9|NUC- zF}qQrku&_%Pc{50+(dvVkL23gXaJ+w6snQ}43PJ#Oh;iX8p1{l#xnP(Ob0L`@o>%8 zg9&oUAIc;7BRyaeD$`xd+NCifa!9311(z)5R{T37Qo2D^3aZHWd5fp0QenlWHjtiE@UR7|! zuQTh&(Yh7+N3Sx-%hu@s6~BKR!cFGwtE9e~=+_Nx6*;P@f*#d0#)?HCFL`4~^3sZh zdgF`~u2_oKXH^qnCCl@OhMaGP#b{WB?bfsX{&)UKA8~W8k?Igy*FmCWl<4;#4qR(UkQXl6ZLMqKB6}(>* z^7JT7NIbUxP{choh+l_EG;)|kA%{s{=@y7F0?MQBpW_Uqbs+8*K#uRHqR039Mz_F= zGkAvlX0JdDKq-%IKmglmKOD z6k=6?z+RP}z^{WUxyQn)hJJ1069@IJAXufVSOJew2`IYVp%WXD z1d*V=W5iEMp^fp98H|7VQt<1r1v!Oj6+wF8BRcwliBcYEl1^P;pN*ta>5Zo71VW_u z=#6HPAeK=W&)wrz2%wNH7J$`FeRdLZV3kVpaZ($hH2UlUsJddFzzaEyBB1=wc}@a? z`yeI(Nm3Mu88^12bg&XZA!~~cHXsP-h9km&hIKGrRiD7G0~h2d(5j3axPYI?zlnt- zx^{z7I}EIlkUAU*77Mq>k^5ta&`@qR;k$}sIGMn1-epBmy!&O+?>QwPu z0wvg!_RxO)I)TU7#QnW-R$&50k@x6#W|5%akPIf=6sqXYKvjY&EDAwApeo%I99ME~ zkVndf6r8kad=W`h=es zC}MVmPCRsdpD~WFN0Lub^}(}2O8`ma2a?1`l0O5;nYh6-CIuL?3cu91PVfh7ZwyZE zsc%Ld$)T>-)nus@f)0rhd;*LzL_mk*Q3zoK9TC|3%a}_M=)fPQ1J8fctY61=KOG5M ze|;C1E#Jk5wYCPE>RXT*{=-oNUKrpR3E(Cw_bV*u#c|9h{@S3ML_WB-A126b-8nLExT7rZRI9h)g+l?1B8ywDuUP z75D9*8-S=Nf e{!(D~O!su#b|YFk8Zpx#kX98{nOT{?%(Q>G{^ASUktNk09-3e~ zou{+sHarho-Zh8ta2)&%Xhba!^|ooWyZ>Idb|Yh>D+|-saQvO(bj!B*vi95cWP}Kkv`TLDF9l zKuMa*N$MehZpK^=i-^ZIT`(8{V4W&(TX-7^qY|hgetZxv#lZy(pn!UW4WUs$&p$-T z38DnGS_fJ3CPMu6mx#S;j7wjF=sb&SYq-{vBbBwNj}Ngnu;6icvvE@ zC-u>$A(1TxFz5H}0~FGN0tN#}Xf=SvsKgs``3*8ep(m}qUS3H`BPT`>Oe~I;l2rYE zX8whO%0*%vNT4{;SyiqtfiDwXE9ikQAE}U@C+G`E_C>IkYm_6!dL{3ui7{l=AmsI!XLFO=$LLroygSjEE-ws5|#Q++6mC*x_ zCt8rpT@G#%9(;e*Voot#$aGVoo+ELI>ePcq0!Uz~TcY2%uT%kiHj_W;5 z=rH76g2EE_ZCu>u4QS*f7=@e!yQIzg6hql}1_2{Ajq!8>l_Srpo*{>L1n40iA4cj= ztvw|+oc^$IZp}yyf@UY6h239;KL(?aNMFfdOycP)uVSR85D2292<%le@OYvMIe=yu z!2d@=*dE~g)0gZ6oSz_*d4ThOdoA|}&IicBmjQb4tbbPdm^pas;JU;+3b8>J8@h@2S z^xYqV7hE83$w^Uf7)2+Yp5{7PVGvL(0Ki`5%Ew~~D+)P$G!x|!PKu0 z^X?}msB(65*^wUu7|GwD85m#;!#>QwACsdnmPNx1%m@!N@bgY5YZIG1>D`}USfB2aeOt69KM=H4`2O|NpDZZ z_+@h7gOAcTzwnqx>6J+K;D1GzQUR_=)Ar}}y|FMA)cj8`>&mgG)M$jS5?x^V> z!Tl2h5|C8)=l|d_RzSfD$76irA-4A^sZMAHO<=+~D_POVg-_53hEF`aOP^SH6+1r6 zj>Loz5`H|77jm)+V1PNl$0+e+W|!xt0>&Xx%1Xf4#7kM-j>m{TFNB*;BPUzXi(Uek z$$E2h*15C__dIb+GBB6`LOF69_Ot2{lvvJ;7Iox1Vk^p1?m2$Wsam?3= z4WXF(1Bl<{riA%YU=9^Bt?yVSo&?=G~TwH&~uz0^;TVGV(AO zjfB0J!2%w2ccV*SAaNu33C#dJ#+@@8EQ1^pp2;95t-v`l9^IkASOy=;rB_5RQ~rq% zn466CO(5%e;xSs+i1ihaux674#?ncHbFLxiSU%}qUEG?@B8Ssw5UkLFR#ngTcN&4J zo+QRo37`vKvgMeQ8@Y`B>>mppzBwJP{aum&X5!iw4y)w#ygu4GB;aEdd;a_?#|Pm; z+6f>qjzXe141w|NBQE|cy}G=bL?b6js6SPbpcR60sw9c)1BFG@L-g2f`9LX*CaLoa z5){(c0~%u}Byh+yMx)>`yvrCA7CGQB`v49j!TC>^itSWfwjZo1f-q9Sf5!;DY}u1* zHfgs1B@S^yZ!W|(X%^#9$VvDQ&0`#Qe~v+b5g_SoEteMu$f1APKO6mflD(8cz+MV4 zo+Hoi#yTfLi$xCq%c6(>{UddqQ&yP*;zvk@OXSvazX6P->7-Zo=SK5PJPYQ2V-k1e zp4bqUz02HhcW5k4BPT`>1p1<;Be6*MlxZq~LeOW`k-mfrOfn}4d#AX-JFJ8l=t$qw z3iUU2ZfIcqG9Uni5mvXQd69wUb$;){9hL#%Fo8@u+uXIOI^m z+#|j44GFqH&c#>~@IewIqM9eS1`-C$`SaAHQanpY+}wO>Lr@5>y-REtMkLs zAs#0Ga3!Svx)&ew)ei^DGjzZ9mbeXnaNL9s2C|R@aQhV;PaqrNqpcXcp`yZveP;n7 znjpO8knxn|!!ynCePp4k=Z2aksz3$^-;st*WGgh+>>PtAlk?x|dd?z9sTrPy7b`xgC z{Y||I?%ttyb z#eAg0vfKxE@PhEZ4*Rr%BPJFyUU1-OA1SmHb75P1sOM5)LZ-MDcM@a6WY5QKya-xK z0Fgi*4HOI%AW*6WBot2)6B4g(`>?nl2;%W9C0_}{p!sJxnS>z9TwD>YWFE z9;vuL`T0-1=~s46{;K5)>|vMvGqJyJ*n!p>efuSjZ#y;DaYnz~H`jlNRzTENeIp&{ zjKMF2U#2IHsT6pE&Nfq3QXpP=3K9>G`Pq zd;~}QuWz0?Uj!ou1!8dK8kXvtYa^N&!JJ?@hT$ma!O@IKFf18I4|Ofe(Pu`aXj!5D zSg@gb7hY2>%h@Pv!?jenPY8x@5xn@QUD1T#h+s1f#}!^MhGsY;4qub7M~ffN?fSM2 ze`WWyFIYh7ZThBT%g@ctxp2>+hpJ%ocyNz08hJ*rz=L7^_5A5HBJqM?=M_OXgQNNM ziYCbbLV!TZcL{gGCxW>iyt{Au7HSVX&A~qFK~GqLk9b0G%V-qrXR^_aR@hZI;e%HZ z{;&P)_9kda)v=A}Z0H1w?VA~l8%+n3+E(Ym49>gGYVi$z5#6L$*Lm1}Q_s1<4RCI$ zKf)dzz9|Q<(Sx$s_I{}U{x$La#Sa|!^ocQ7JK_w#Xm<@tHT36Irv+4IAv$HS*1b@FtiZ|$c;H&_yIF<9YZ@WaL6 zhKoUqetn_(@VTeMZ=0VDf#1!Ywb63ItNyEz#ecnO*}vWeDbO_Y;@;>EJo=gEgYc*E zmz}e0*a}u)pp;dAc#dTbbEaj5C+=8FTkf||CJ^E0K>x*Ui(rGBQN2lY-!M3OZbkT_ zpI#0;(wyNAT5?>-W4+}{b&Y@(7wm|S`%ee%(}DK*4%iMlYt8=l@7?D_M(@Ph4#fxH}<;l-aVI-G=)Fr1s=>cU?v-(Sxo-Vq6hPy#;7 zGW=QMg~Bfvh!suMXQAvj_231p0~(OuLABzibfHByEs-GD_rjU~lOuj}g3*It{qGiz z|NnX<0Rpk+K`kO+^#{KFBiIQBV#GK8J6GMYY5xP2fFH!uneQxqkYM5ecViCy$q$kf zFd;abgyQlC#xTLj{+~cj8rvWLPz=WiBtido?m7R!7xfPmyFp8hXR5zl2=$B~a5*^v zzw*p|xbX~T_J3fq59h~tv>gT``0roste26bx+smsf*5=X^)wjo%_cq$PL!+^{NIA# zcZup+vl~|MZ`6^k&7fBumhFkJ6`PHEo6A%rDfj>X-&XvuKuq<`sL(C8S*|XQEw*1G znnc=>^U|!fEtLoPEz`B3Sd7|0qR-HZ0@%BpC=-XMYlCO^0<*L3cvkfsMNO(-2 zHC<-y3s#0KZlp|Mqg09|c_CX1mlaB*p*-Dfn{(G}j{5slyJ>f8eNJ4Bss(jeVk_BV zWh;n_4DMt?f{N909e2_LRxWE=b6o+AVb!0enQbN~EYhpit}jW9X0lqH_I6H@8VlVz zu?qx9c|T@K!*tIom8WaH%L`OUu-R6Yy^XzRGVa)x{bFmYc=b`XRA_OTd8XM;tJ@9N zSlT?ta|3VQs0aq=%xi{JrB}=Ty5)Dd>Dru*g(|)a2^PJcp_iA$GS$tnb3PdU432Lq z;_oj@r17SVlkjB~>+ofj;rBhNXlZg~UABu>NKliN*{qUVZuVkjvPxyv{aRzx%d4BM zIc=G#DUn|Y&HM}m+7Cyo!6_Z>xq84@vz*Bs-T^tWn z12Z!ojmo?+%UQXmw(by)Lua-0WS`&CBO%`yYJia|UVpN*(wjVEx#gvxnSY7d>sMB!Mf&v&Mc`U(PHi^*DzPQ`u|_lEupV4mFjL&iNuWjK>Rf}cTh(lb znzD{CGU|KRA@zE~rcLtr%(rQMnQ!BUOD**E zCjH(xhXjL_p;Jn}rjLW~ij^E(AMoNpF7C^qz0-)sy1!#+t-G6bD%J|@#rnE2a%$T& zPjZE!(WrP5(bMx{HyskJW+h$7Zd+ub*eqsNv$D}!D{S2ZR6Z?Rh2bPSQuJbZNP&o1-y-duDRwU#ZcxpGL*mdftDvh0)D<^2rWu~*AD!Yj>QI_s>;w-5OMVFV#u*md!g}UJt*A2e3)G~%Cq&1@5>?r*#K^C}1 zrzUT>vb^E7N(G;X1k;+k%(fT@_dT;r=BDPV)#Ut94rq4O8L6@-+D&OT7`2>TiJat> zd8)Rp6}e%dmesXkEf?^J#(uWacMCsa4(r+;1arU9Tv@AiYe&%BG~Mh9*=m~NiOiT_(~dHcngx#W zTIOQ3?bWv-!Fj){4a!~5Tl=M^mC8-JMXE?=^?4bW=}}ea7aBcnta{yjRU6v$z*#E2 zPFAi}SMxkg8^IQ4R&Kc?NmsRYND%jD`)sjQ;5IHvZ&M|CCf0^iLM)~P!pPF;8Z+4e zoH6@_Y0b7u@|dF9>;AS+cz9(>`cxX(ADx9s<)qlrf`ewj9go^6jNN~bV}j^FWQqF ziPsAaWA1SNhV69RdcnzxcvYUOh1G1LFZ4wtlXYrJNU(wvqZ-ajzc5WnGzl>W2O7Q+ zQJjcnHKP>EDR@HHv!W~ekqt)AclNy|WT@MEbCXS%>*9+y ztJH`IF7)9^8@|~ze5o%8MxQmj_^U|N>5NqLu^$SQmLnpxTG>C;0sPZ%F7b zsK$Cw+dinPKX+$uDXiQPg%#?i6n)T4L!I$SFD0q}u1(L>%z)$VeuRgX@l*K>DgKD| z5dU5O19t%bMEW%J^!~1jQpA74joxu}G^5cYt<1pzD6~ITN9A38PXy|yxRb+y;Rutj zr|Pb1Rp>&YrE;^(BrTd%i4&VXO?4G3tMAqtSX5VZLCH9^y@1=~b}g)xSc^Mou=nGgQarQOmk{w z=sH8#Ynt9HEK076I-y8HAtKo6b=|2k%-V$|K{;u_EvJD#J6~)ma%B@6vsEuIX{||n z6IaZp2X-ajX|1)4P;c7GBvY`bdvCWgrCzsQBSL~M-5~ktC{RV$MVGdfneFE0MP|F7 zxN5_fyCbSJTa5PjF7GhSl+00+*>bg;45u#D;OD@a5`wpeldOj0(Jb9a!PKr~U##q$ zOO$gf9G>Lh$`-xgpEL?Msi*IF$Wc8V>}#8@8@!B7p04?04oFc8drWK9uBZiqTun%! zkQ$fsoo#vtrupVhFi6{&yYh5VrfY{XG>v!!btM*uj%($Qx?#zqdF+qks?9aUtU8 zxk76#4f%ip|2j%J5%d3@H zjnPNdX|A!a7HeyER9y)~N}dSix;pCYeRaVvhCRGjwir>$yOC~I9_>dXzg?Pml_FjQ z#Rid4M&oQaQKLEfJNpGG8SGLtJjp@!n|+)8MxS@N3e+p=1z&ve;v`i_Z?$lxNNwqf zV7LK$@sXg6e6=#jw+OzR2~PyW>G1NS2fdSKx?Nch@&cs=B5i0sNuYKWj41F&L4?#(1 z_j17S`8T{A)S0~;6w5Fmte1m=uY+Pq1}5S^zpsNKUimr>Sc8YJ12JF6TT|c!U&mXI zebU##kiYpln8<4z+t=}H>#pkSI5Z@NuOpy96V$`kaofI*43U)>nBwvmUk7B7F?=0> z=P-WZzvuDb8BBm)j`v+2JR^YEE)O`tA1;rF%j4nl_?pWjQ)jcCoL>Ke%L6YM4NlZ^ za&DRvr_E?PBg>5nK{nFFvcVP8fGgwcSsSD56BetEr_;PNOXv!Gk9u+m&D&$Nc^iDakk=9YRk-+-PpN(tvIg@)|ElA zvGsXjopaN9J-0VIReDH=1bKrTZFc}=K$^dWZgpp6`aNRew`B`tDvYoWUSV_I&-QbB zmho}PD$UaaN@*eSp2~5%%4}-1`=zEtEb6@LMP8m2kQE!R z?Rh5CW=NY^x1G^8*O!;vO3g9@;LjE$Yjo{egH%e&JUcG4RcTWiNwZ#OTohHl+u66* zvnAsi`;g$AO1IqNz)D$CiB(sdnS!s112MznIz1}WwP`I=+V>?=1!{R~3OQ0<6mz47 zM}s~+nvXeqz-(62u2NxT5OtYhB`4cRb=dI;CnZA6EH~^%qzx6%=-V>A8MHKd$3r3D zrF(4}q({SDf10E8EzfXZU1M#6F=b5UNE=1wo@j=1qiSx^>>Rc9l+cvV}i zo$?WT5!QnL2D2T%)3k!<4_4`>yfg=5 zq3CEDF=qTaWdOFx_#r`~x0YvH#%4SZrdo@ZRZWK+Nt9tT z{qZOxwda+7Lv_u`gzSJ3W2g&R%#6CF$jq2wd*f`aR3tj-9FZP0Q|>mc;`^-Mp708{ zR_2~G?eI&pvQcC}3={{9SHZ5SSR2-S3x=Lot)%>u%v3prtvY2^#(=)fC*9i%Z z`E4_$36e0b95p)mPKBPW;VZ~YelARF_^M>T<5oqQ)z}K3z#ldxxhw%UVGi=5xJjnkA}W zqG(!WV=gVZPT+nS=w!&yJMQIG#4R3vfi=NGp@Lp>N&c#+im^A zuGBLd!R}{Abrxe+0j&&Pr&BY?j9BDrDVV$gv zYr0h{*rum7`<2|Jpc|!;T`g(6!L?iIR8MIDYevo)ib`9`ep8$7b$roU4i_#d7n=6g z#xr;dL|~83RMazuv@cFJ(yF(~9Cfx=*OOoxufmfzob4~!?iZ9G&WH&!s_QufrB*bodqYi@!xs{^@Lg*Ds!d?hZd(ztA-TKTm$~U)&v$sp_`e z9misQnyMe@KTwjvuTKnRB0mm|x=4{y(;k|-;k_UlFIXuI97ilz3Bg?Y^hf!@DB`0# z=#O*55I^Ie-;Ig=ViZ;Q-5KMizA$-f6V)@0t%u75`!x$O+5jK4obe}C^~WuGhjSFf z+HExSYpwjB(svMgHWP1O=|3^Y@e_G~PFM%=1;q(*x~e}vXGkmml|1wmo1~QB(Mv>6 z@lVnC@8(t@s1IZSBM9Lgu=hu0KuF~UljnpBr#=wv$!_SHe$q_+lmPkjE*}CDP)I*; z-cB)CtPBESi)ajdf@d>_RwbRB;`2kBR-4Mpl+JKf#9)w#rfdHigG4W1J0*OWeC8_* z^2%H=7y`#mo(rDDwvfn@_lc!?LZ>*4kIlAtjQT_tdz9JM>xwRL8pmK;i6#gC8rwoI zJNR9)t+Z(RZS2otbHUDHCP9!xm8(bF^9|5^V5Q^5D}OE=S1*7=#07V3k2*NtjoLYxwYVT(wN{zMJ0 zE3v{85CG}(Dq>$r_nR;SynMRf4;kQxHZ)ow!#iN#kYH~a$8zRKn8*ShB>v*1G5$0A zsKWpyy?T#vK$63Vqt)TA)8wyMz$)YKX@&axoP0<43UV)DzJnfe?*!ZZ$Mr5q5-r6m zXFx5U`mQFee4S*sB9qpZPQo_CHZ%qN@iWZkpl6`RYz~v-oSfz>=&xisO;}Fp{x}VC zTfDqu_!A^_AQmIg;4^Vr0Ur#uQN&$XlyZim$me7;U&2sP;fhF#%^--Ox<^Y=ez)*e z^Msf8HGFzuQn35#6obVo%@wwY#+dtok^TTOP+ri5>mmjpL=Th|7UxEc4|0*Y=>0pM z3`+0cfgB%{@6w=7lNfb>wd-gaqhn*dD2zm37d*kFE}zx1g&x35xKDr=a+a+?lHMZ+ zBrzuGs`1y*ZizUZI*iL_*xz+*ZYQz7vnqh-LAwO>pk4RL|5WQ9<0-*CLMjMMI0OGX z>b5|F|D7-tRW)tBpa>U43uUYwtyabOF$64b&pO5*_f+76519?V&qvN4 zOP#nDc6sjs$zoh=B#D55yWq8@oI!nWD)ip~Lf2l#7{CP=gX^LPT@!B-x^{c&T}8FW zDjNGp5YJP1rd0+wjEfsa0GK<;q*Jla3tkhy1YS#)(I5z3yGPJQ#jsSUKi;F^o)j?Z zC@TIYl`lYIOq^bYO#*kKeB}&?VdKv0!W7ZNu!#s_*zVDVS(T}KgmCZ}k3dR`vu~|q zhfR?mWIB7r29bqu1k?5fLAV}b@W1!)5)qNN`5(Jdc_e)pT zQ2qJQvKOD8-xm?Wi;4MyARY?gcjVc7DDi-NLh|fqkDe=_i5+l%e4?OaEnxXwM=t@sZz$DE;4CvC6D z*a*>&s&-sQCHVXcuGrAGcg`>&@jaYWMC2;0>pkG=6Q~PF*5aEEx>CoB#ilvDQ=~hEfw%_re*leRE!@ESanQZ=T zJNDH5lFzfcn(A1U6Ggwirpw4mzAnmHY;QlmI1+#TtIs|kiFbWpdhpRWc)jJ+e_$Yf z+o*p9C(G3`&;74qrp_BWnWEjysy%iBnnK^@ARFe9UA=dZ83B3OpUEv;_q z^;9e-*EDzVl^a#HzVv=BG4D$9yV5-R(|8n;knTwxu?U} ze6`}uB+jWxubh6;v*`qdPs-*DQ!R>o7=WpY?|V+YepHscI5EoRAC-0>&+tmrz3Li z#MNxavg(cX>+7(ti#GsJIiZ(Y)z5k1Wz)GyF;c6ZcFO>G8oD$AU=YNC)QYl)D87EN z@4dtaP@Gj;ubMLY3@VMBGOu#K{@KY>Aou-A_&}GJ?t}w@OQ|Sx$E&IdeHp1mJi(hT zn5X1aSb9(#7X_WKHx-uwdUWvP^Yi{v<59Wy%XI#nF8iuq#5T#uzcczemEVecB!71f)rTDnus&3&gL$a@ue2xLCAD9KW9{`S*e^|c-$D6s^J zU+5GBKb{qN*Se`6O;vBad?{P4T-D3B1NUvo3g4ETK6_g%r^zr+gJhWl^)d&_Wd_)f zs~1*1fA4Ma)$Dwp8ZsYC^VZYz+9;?Sf%&+RkF>hrMLClLix5}zdKSVY(6(*Y36)My*I70cr_QN!JY)W z%a5T|cuR%1GMjt;uI_vy%jwB4`q6UoeT$xU7A0JCbD3ShN7MJi{fF&%SmDK_zcbFj zI}^TGbKXi4+j8Q?u|>`#fOf)|?cMA%KQPH4hB9kz(#To!-&@32`80a-q5taV@&B(1 z0^uoGsb&{BxrWHC!#5B}{7hj*{Y$t6KyQA==AE?4e=6q3zoR_+X}U@@PEN*3ek#4h zs-xDM=BibGT&wlUI&wa&Gxu+rB>7~8s%V@;j#*#-gHv5{saryPNv936V(P$>1 zxAe4aH5LxW=m-SU&VJ2I|MmH}3GP}uJ0#Pee-e`JdfvHm7S^_SJZJ{NDGbB^-~ZFo zzfj=K>HMuJ8aScRL4sc-@CdTGuwi1om*nfF$Mj9u-mpEq0gnfBmyZBJW)0OjeatJH zU4Y*k?Jna7dI1D0?1D!n*49+QL1M>n+itIjl28aqQR0;3yTWbgk7*el{mZyAj+v=m z2)gliTg#PjWi2W_MHd{9a|_@;(aXFH&v3%8qa=0q@WI{HHx}zTo+{WzA1(}o*%5AQ zXf@;_5>TcF4wGAu#{iRD_MAxat#wS2LKeWIvA>_YY{a-S$b?$d`+cSPYiX+!T*@5{ z*6KUraL-7BB(7C@P$&;RrK-p5(B^(=_1YwEZFCE$9WX3_Vs-W$`3~M!CWoiwH2fR@ zbPD~suxJ!G3IH?G=X;nBj=7OwU+Zis=qx<*{! z`!eape8L~?_5|iRy0+PH-1MkVZ4RytV}ep$!h6DY8!Rd1J7q`LxHtFF{jvbU@Fmhq z3yv>J10_(caR><5YKnB-We4^U8Q3UByV`WBz-~arGq4Ww8gT$KeYZX#H$10&PaDe| ziXKunX$a-hl}1{SMXs2(0bIaUY*@TtO{Ci428innb?zGj@Jgg`+K&CwI4^+H%#edM z4LQMdOjP)Je#|GYf;h^sG1%aty$l#?n?rn3k_H}Wtv&d;+Os4CY>zf7C;2w8bCA^* zKqimmEKMadVWsQV0}H>WLhKOlK|<5;J4Y(Pb!_D{wpzO=AymA+C#S<0b;zJUBBHR67Oz|7ocu*o((b-m`sO}X=z zw5tJDT~Pq&m;9w3FVZFVPR?cp(kK2{ogQj)gL(MI2?H%iJA8AG^F6%J6t2A2+bfib z2QOfnKHil?c@1v(1zcAiM8p_)(T#H}fT+!pq#f`iJa`LWE`c6;QPXxnhIMVEw*jdA z0`{|OrAQgMO$TOoQT3#k!d%#I(EYVkLbAOkjI^)oWKc{{#JbZSbHH!`JZB>T5u0sq zB9gI-ig@@D!zRP zY6zt}pqm z{ymAfyuDu}&vv_g-%)i*Dd%j1?@(~a7eL^=3$|=@K>G8&A4x;K&>kUFv|bYhDRyiB z#wBH&@g2kZsd!{7{5Y$I;t zq$hasX6r%KjF!_FmM2gdxEwMjrQq18Hy8bw@ao~roI<7rR~^VY$Uba3_~8Ql6_xic zG3f)@Bdw1qtyr7)K)oG3&N_|^bLeps;gXA>B3|om@j#1@Fq~Bxood@ES~aD>spSE{ zg9Y$%s7mo@ILhsyO=cl6b8irHH^gprL~8iT?QaRe)>H5_B#3;%vq)3nRN$(FxgA!G zH8d)W(E~Y|_htbk>izk0R>)ET{DwRe&~QmEFxD2eG2Yjq4$uH66H~JWUhxnr+CYa= zV{p+QN>AlMGH?r7qE9ZS-j54l>j%sS29u#9ke-ac}9ooX~S-=Qo=-qic?Xvo0`Dt$H#OHv`+`G?B{`0N;RQDFO`vh=4r_7%F0eWa% z7#ptVOXF>zY8qFbd9-92K#eA6fZgJIrtQ~X7m(L;U|P-b^HTu&{(kGZ5R`Zqg1!wN z-&po^SJ2enFLhqLLC{~GV$(TZd>fcT$S-YFMRt@#_3&mXCf*W)&Nl=Z;6S#I6F9*S}{>f16g55U&=?NC%0v=N*_QF;&_Di2OmWu=u? zqM+NYZV@pTvUId#2>Mu~h`CSJ&d}O$v1`!np3Bvd0y3y?sdgXpQ`D_;Zg)OeL9~S* zf!-~5Hc08J{Q=C6PGE{8V07E{de8N%oo(+RlCv;zzfG}hTJ#9iWMCKRntVs?BU*(ey=JeOvN`Fk z%~9Gh+lSmXyN%V*M9kULRB!<-(E~)@{3#4=#S+c-aaQuFi1lMwT8CONeME{2e*}h2 zjvZG5frRnB8AA6~A_p>slN(4??W|-f06a9bVoW@obw_p!pqYSsyE!R*ipLHU`e*bqmKF}j zEZ*NYiF68Tx%3R(@F8|EGa)=nw$6?sbh4$Ja>nG*(c9Ligy#H+Z39&hcaj@u1{N}_ z>mb3%D2z2P;~fb(*r*kFimQ~a_za@fs>!p?c+zTy+Mxzq7O=3VQFNz_=s>=mtSaM)7*k=#81*NX0kXI!{+C%@m|_tKbdlrKTRZlwf2P~=$< z%XLxOEaGPCaz%+9>a-QN(K_SKrgFZZm!Zh((8@|vlo8Ax9x+8K9a~TctaUxW zo>(UoJcUyBbf-uLy2axE`ub;xLSQUSAO2-I^=e)sdh#A`SBu)mf|ym7d6&oY z;@P}D^W>5K|NrYC@M*0i$({IdYFR~jEX^C@;n*! z=RQ8fekuL=&!b@e7z_Rt#&DgvA2Ehsry!Si|Ndy2^DC{({cmX8V~P52e}1Kk(q>-9 z%d?+90{%|*|079Y2>z$4|Ce%Zf1mpQATIVp3i8Krv5)8DKAlnz@qJ+={`z#d7cTaP zaIv%Cp5bDbY4sOyvFN85AdaIzocWlG zMPIns7cTaNi~Uz|v76p;lRw185|ZmNO2vR@XG5Fp0=Qc<4z=!eXe%B?u8CzoYxlSo z!^nmelC2xA{kj1-3Er(dzh0OZGGRMdfc2uK+mW~kQcy=k;`;_ze4Lg zrr4lrPc;RU$4Wnro2I4*-k`fk7JK_3TKkP3NwP$)8FQpzc&(-TG&i^V1Y-orrmY1q zhn!&(tOO9hnK4spXFigfRcju3C-jSpNMu-?9?bo)Jw*1AAh&*x0O6`mqH!Nw(+K0i zD?#s0C#g3cOLVGcSQY4Okt#>f^G!h_c=C z4wKR79Yh;91D>wI9EIjNvm}EC);FXIw0XtNhovSXX^m>??D9aIp*}J#n#as~v{RXIw1w zEEii)%1tl*jdQdgQU>aHT#Nda=t>CfSCSCZs(S-zaYaGi8f8^19AKc2F58=$C9Du2 z$g#cj7eoOR7a<1f=$(MFK=x7lpr18fIQqufr6a>NOSKG zT&11-Vh858sg~9A%$hzX))8FEWm3Q6V%wRE4OZMu9XVU|^zy3HK&$O*zN^Ua0a%^% zXyBI^5I<@Ik$3jET0)?SFHe>f2} ztMD^K6g6M%BO(eW(8;EN-%3P5@VsF8WhM&$l!kAR}LPWg~QGbw#GA>(m>&(Z#Jt@$Xzd0#zdvX4 zHYlD%&8=PUvN`kKVJxL%MA4jkQ>=4lj?5YC@~cCZ*>22(v}irK=wJauk+qD~@#9%> z?Nm`+;O~5>jYX^22?@}6V+HI-=Xz36Z5K~UzQ4)uh$wyVZ^cCyMdF5}1J-Qf?@0!Yk_x%eSv8bYp^cV1w5+W zok3Z)rsQ*Ai+ixp$e0$78R0L0*PE}b&byT#;>XpkD_h7ea_Ux8`=-J2W0IY{Cn5^l zk&2CcIVn(i7zeV+b#p*uO2!Q(j5K0J#xbjo)EJU&uu@2++y#PRU-Q3m9s{`82`}dhTbU%5u`#-^rb|S?xQ~ z)o+&rg~*X|rbc1RM2G^6CT$tq8^M5lFk7MvogpU9@e9X}h7aOtiq%{7ys%K6@xhAJ zCo85K*gkJ$Ygv!!<`vU-OM}m@=O{OjmphQwLT|+a@cPag1d{KXcusbf~!)enoeoAAX+x|V`*?8XiRXuGvECv( zSn_cm)m$Hx)>@G(K-Izb-I3wYhCC7Q#vAg13wc>POsZV<{*#pH57@uY7uTMRB0k?3 zTZ5?wRpxF^jmuMpcV-d?0^c$*pEF$CjoSKvIqxJhL9?ubf4nV#@+@+m8m?wP$^*81 zJ_{%wf?E)F^KLw=6Fo0rJ_k5IgYe)l6D6hAHmrQPmCxwjXMl5I2(;%((P>;6ZRXmh zQJRS;btdw-!%UM++i#Fi#P^Xbe<7j%*OO3p;=14d&V)eKBE<(F zujnmf0~|R;9C&m!OXF~6k1(6Hqpr0AJaD)U?MHhjx08c~+}!1E3bzL?o-L2bF)AGE zl!WJX&;{!S&@r#jV5e+J0;lOVYE6=XC6UeKnlAe!Z#}T@blX~y1z-nGzYYjSGz=m1 zMM%O+mgVe}Dba>??Tz{r*HT$*++379Gx}hz4c*e2xZ1ISZc;pUbh+NUUDQD$O#%>1 zByse8-@+LVUWuE4pYag_aeB2WNC0@mWG!&Dq(0gqE2bC2j%n1a?_5iar7aV#VLO1?BkU;1+AvS} zHmXx^7fYey?lk4%%7dgB<`#KKS?c563V@2!rrvU9(3HyAbG4_Ws2$VZc`4C5EYi#tHL8`b=U5+;r8kHR z;3)Xm<^p9TW^wKiTinKF;+5-}&WJ!MyylYQ*x@^od*o)T#&o!pWaT@RRFyX&IpScUlpC&DV|%h*0&Thr`4>t=Qe1maN}%j#5vv*G2BUp zLGcc6#ydQP&G?uW;0`w7NA@F-P4g7Vubw;#=?X{&GKH)=z1oTBu8@^AF9?P0>`#FM zxHtu}r|oUaC#`zjGc0|zdFo{DQ{TAx6#HP1ZddcT4$$l79^ME}sx>IpyOA3On@0~6 zN!(bOIM$VS7!stkF*T0-y4nbsvDpbYR!WoctT=g+j6|dhAnr8X{(zhl0BJ}cDr0Qh z*Q2lFVPX_)whFzqaHiOBEm@pOD7*X32(*>l@*Wjt)m;hD!x3DY4L~SQGv$er`%=nH zohxYE&Wtq|ewuRg;WkGW55@l7DL2o1y$`pCl-b{#a`U`pe+F>YwWmikbg?~bsM}W( zgFe%}&jFWn)l3EbMjp=uOmpL00)zQUfVX)(U*g%9DDQ=5f8p6*c=mrP&km}0G5l_x zy)dpnl4q~B7`BE^#Z~Mspd&LLRgCeZ92lmr5C$7W8fMKrSJ{<*KY*sO-XIQV_R5-o z9qaL~0*;Wy!X&y)!=`biF|Xw8rHjAcO(ibbfF`DP*;$N(qIpkx!{$J|cn& zmQY62AXAA`@CrO`*!&d?oo=+HulRo<&t7wQG^sZI!n6OWJUjQ#`xQuTUfzF6_?$=L z(*GSq)N^0^Mj{G_ zJ|m*0LyMApFA?=&>;6_E>Zu{$PDK4T00030|LlEfZsW+(;8g?%R!$!LVjFx^M(vd%Wm*KDw3y&u=QW`SoA0X72dq zu2e0S@8GRx8@k-k4Flb{Tah>1Tqqa-H2THxpH*{Q&#wudhU>}T>ai8z&(ZN7JZI#7 z{TI9vZ8;jbxuYvMU+%m^Ah^n1&S+a6YTEJ1qs*$-&Dn zcfNA+2liAG90gSnLeN>79(c{xCGZ?vHUz^E1!)hu|KR8n7=RGKumdM|q?iZ6 zk~G_G%U~4wI#X-#^}C!7?wY6uQvw~g0rlXc-%pVKzk3u(m+o?&9~sJ*yQ41q+5=Ut z-d7#}H%-yEn*VTLEP@-;vp+kwr~A5XeFjMMvu*i;@!3@j!Pi6OLDB^Gd96@!eO0~@F*ZLgS_@Dpd#Qs(#chXU9FFW&6dCYE& z(z;7dN#1TXx&7?a?QNQ;;;gBKyW)^;lGDj@V4sO{#R{rN>9lY3n}coX5R4DK(u73- zNw2sr>25Lft459L9JyNiIP7=2EvIETZmHT;<<>4bO-)yys_S!pKDCykb(sy+L0gc! zrGCBBKUG<$M%Xn3aA?e2+tpUI(WvW&DGlj~Jn(mX@lvxq+eC&g*j5V0TUe7;mlu_ccH%9RtH3c0Cv2UBJ~dBA-}AZ%nBfX zjUbMF_Vr+~3^8pH6dbJ17!FnsK3^3&hS=(dJ*#6NfMRR7-}f7b2YX^frHj9SaJ5)t|vp+3| z`eBU#()3!NxdOdk_XEnH{Bf;765_}#9FOY(d7>&?ktwqB7!*0h9pN=NdPX+J#VeW$x^yEqK=HH{kk!g_~CA+@t4_NKV3aRAj_uv|sd%fIhS1aH86y z6JMdqZCO0kJ&s&SO?Js6fP*?GRqLl2)$U9?wP4>MppGKStuw)? z=T7?EgzekrNiv!7^6cyxT|b7C{>mG3fkt*T=g`^JI?80iAI?n#u+&-hPu@uDb#2OF z*JJ~XTG_Qvq_J#U^pX!w)y>A9@A`+v+C2IMKg!DlskoiBe_nUjwzBY=d6Hc;rrrWi zn}Djh8)LU&3B#ngMKo`Smbm9AYPt7H=Y2bzvW0cjTvRD zb;zHHp?PM*j%Fc%Lf2{KySt*u1eHl|)nUk>yvoZ~k?uE*S-w8oaJ%(rHt$D=;m)c_ zt#)O#C-#H7M@$B;FVDD;SJsW0vKqD#z($qG%hQuCZTeATuwKnIf4*iddzZr8-Lu&nJN*w{&^JxfM;(o@QlNZ1v(>{xd@+7^4{@Jw1;jv55J za%J5dcF&#aOj~!VWGCt`<@4xlsY;$W%%&?s9&So=6#?wl52Zs%lkM)f#_uGR6auTb zYRh527?u<}gv*d1DmAvj_1NQh&a!KkhY$HW+o;?1Mb(CPHFg}Y<=PS4HYbr3Rrg{+ z4kU9yBWYHTM&o%{8*_Z4%=C!$#Ny0qp+5JU>)F(3j3z5?p>ZLZKa#vu7;3?h#v(w? zSM8HrZm#sosThVuDeU;m!*;ZrDm7tx=D5kJv@Fz&b!${mLb+Yqj`vfVwmge9$8Ar~ z2X3o2awkM-ivX@Cp4*wurT%U*K2vUOs6+SS{(%x;QNxPSuLW zBid}$Du-5c=dUS4QvGORFwH_k!lNt?SL;>3;`RwOsI1CVv^LgsF?9U-`B2wp1WVL< zWzejs(N_vpy-7{naa*j1QK+b+`o2%Br_+6X6^O+>0@y1s*Mf;-b&>^4vB|Pf8nGJN z6KcawFAr~+ah+wkKD>PWYxr0$10g|fmPK+!O^Q-;ab8U!Gd+!`$2#8|v(H9#I3hKo zx`sD%II27x(5oK;2>yn!@LC*-t-(!zbj#>&T5WL4&j9CVYp4^i0S2&luUY=>R=%8j zXxhC12+R6Va$}&AP^OE~X0;BKCglOTHaOf8K)^9ufdB?b_JH4)F9^sT)Jr|6KF9he z(sF?YO5M~z%a0o9MR|M>M6f9ceC0Rab{-1MZ&)=&`r<_~r3$}=x~Ge}q5IJTx-=A| zg2Mg4X9V#9Zwh`3KSP!NGggov0L<5FXo37h(Pg9}zoUxQL`D^RWk`Vb{M)K%D;l3k zpo+3l3lXMFf~ArlyMobY+U=Q8-q$pq)dyUeo%&2+IW+206pFMn2$=S;W{=KQ!lF)L zH5~36KDs7jY3Nb&n>-9lUFeV~d<+$#GjE;jH zZ#I-tp|Pt?cSemF7fCB*n4@D9T4Poshg`Ld0WMZccc;j8t9>8~HcyuiJD|&&&Z$5J z7J1ZXr9BJzaS|1nQ>zDQtJZ7FWo>VAGd1!$TA^$TYr#^D z-h!g-2|GFNiVbcm)Q1ja(rYhoH(gyA6-tvs4*_gT2Xo(ZIf0ppQ@b?X@JHX!j;q>0 zm^US76wrB>X-*Z-CI)oADThIMR4av@yt!GO$jDi_a#b0xCkM8G=OH5!^nntOL#_;Z zZZO<%R^g6UVt?HB+3#Q;@OQ;}FF#Hk)73z3E&{nxohvKOkSOxPf?tca7YiT;2v@=L zU+V}~N23~TmZx(sDx$wP0oEDQ8|_-~rocY75bpe*|F~oOw&DUvz>T3i1ivGYHa!Vk z)XEq>8w-jYv?P7GGd~%z;pvldms54aP=JU~pdhx|I6JyRV~m()5P)x73H9X zD3%@C_*FP6=E8YQ^JDCQ0 z4eBVa;wf&Z+aO!IO0T%N+~UCFA8(p>FbFJTu;)1RR!ZrN?VZTod929h8$GA$=ejAXHlt8Cg~y?4_KhcIvTn7aRXv=9>8#dCgr5qMF_UbU<(~VUta}FC{RUJ70IvT zilBehA`O-W9M-!WSXvYf9X%pk<%Meeifn^Lg=_>&iN4EOf~h>Yt1#no9;87STM!y9 zr~s+;=s81AdO(fyAfvRr2e50`eBXH>2v5=!Q}FI>N3lQ|m>H(vgIjk?#I!RFf+ool zVG6p1$KritX;EB(f*!zJ;OehHnY!fKo~`=#l5G;Us)Ercj(`mTI24Jl9M_f<5Aria zDKtK@ixFO+9yn7pLm@tJi3o%{_`Dq6qZ+vKNp+DM7odf{VDiZeEWioy_UH=_k~X~Y zlBCt&dyTlDL=Agv$fNHRUV!F4PLaaX6uDTG3V4#BdhqS|4*Q7T=uv?wSKjFqG6P+= z?zxZq;tU3~l`mHU^oHXepRCKJ3swVM2L@UMK3W7WS^*-){^&)=m(X>7X$X8~+Mxm+ z??UXFzoIO0U5efFmss!2idA|2J~rv%ASmo=f8o zIPi&1Fe$TAqt)0o*xeKx=vu8wpQI){d6<+tJZ<%eaNlsfVZA;&jLUqRmYAsMw_LM0 zGNzLjD~j{(p}9M5*r_dQ!)bADRflRocmW1j4}$g7vF1~KMot!5DFEwASS-b5`$XBx z`C;2+#~YxKcY2fK*_%u@t-aPY*DZRhH%|Lg?KC+C?R9m!t}UJTnF$6B9Ub?9?%&6N)Jvb)E| zc41OI98bp`7wuH7>vU_rdpNT+toED07bm{lgQ zYHQWnN#oF@XD4iVo}UXm2gtk3kB!5gR902DI^0#t*12mFe8by1N8XMqRXg9?^L=$t zS#67}c{EnqB|0xr5vA3JeDT~h$zcTn%#Va{eQNg1;#Bi`r7?ZrqHadO+EcgwrV?0_^Ley(%@a0d7u~Qj>k7S%G~$BOba1kR zZ6p>~jc{0#7lFoBS6;r!$?d91j!S2|UdubRZM$0_eTDP(<*8AN#;nm*{VH~x4l3uO zR4C?KPOmiL17eXkcl6NM$_x2?^n1g_VIPEQL^{>}rn4c(WKTVfhqamA-3s+adl#Cg zVb>rUL{q@dXTGL(1j96|rR6-_+P%D59J0H8q%uUUNQ5lkC8SzIFRaClO*A@ncO%co zQiT?6ai^8VRcY)G{mSOl@n?Cw^k(eX=ip7??1cjI0T<*vdh2%REY8;Hr_G(A^Mn2ri zt74BTRJeEe<9xcEtY~D$MsCv4qxJrln`G9ma?{Fyt+!X6Z=>|iEi+FTQN^T$1DhXon1R#l*Bh;tBTB=? zRwCpQ5RnItpY%jQi6nl*>QS#$@}z#=ZxIJhLjaqRXLKgVXway&=;lJu%577lTjr4N zooa5e(5wUbC9bPGqZceKTJ5leu$D%VEeS(vw_Kd^g-&y|6{W>_fW>H0)}(XfovZos zNex#WeX$eGyh+W5_Ovmo)GGZjJOJT3Kb2LwEiRfqt9etRTP;>9)A6~gb-Lq;QVh*; zhybdPs3U^FF22{^Yv1lO`w%(#HR!#rzwohNeo(W(Lh6=!anm<*Tk2i^@F??eYP@hP zQa1tK6Fcu~lc4R*KjggEMCiOtt=cY}ZF?r@Lb{s%y?iJ9$s4vOJqa)m~M`s(h_c zr!{#zu=J6%2;0tdE>72;aXK!!fhn{q!HA}KyJ+sU!ZISrmb#J&&JIr{AlR* zE-bGyH)};e-!o0aTy|~%pWsGe&+a9gojmGmO=6{{FXTAC}+{6{~kAh7Q0pNe#D-m=N<#aFSxH_Pg zoU_2F-{)q4EWYl82?2^!+c4}SC=(+@FSrumbokG||BF+$x@Ex|Tg~YfQ0N6ChtzpU zVM#EgnA+Zd{{7#da-sqN<&I#309m$zpn*1mN$EiVXn-6=((wRYy$;&o<~&6>0;cTZ z=1Df-43_WWa;U_Ag3q8C8Z_0nbEa(waKG>gq1x(z*W>~?lQ5n@#QnHU8PvP!V@GWB zvRwiFxX%Io{Qcg3LO86z6ahNWGtd^r1Ft;Q26P3*iVIEVMs%wYZv<$R(hRr)_DDun z$b361OqZd~3ZJM*Lf|P`p`)@wwBKfhDN#^c0B%5$zbZ_KWn_g+_Yz=2UgeKs5A#zdhZvwoHT+%)R zjaPa@!FZ0)6oBfh3Dy?03Mk&F!bR_ZH^L!M>;R~Gn&1IVAMCtymJPIIxMeh=9MTOg zZy|9CK?_i+@_;TFfF9oG24K?z>InX;in8v3zJ@^evQN=gfha*O$F=1^0&Ng-hP};! zO$<_+Uf~bs7O)wY!i(QdUPom_W7)evoLfr9pYSF0_!v`k#$tJL1>xvR7<{L*_bFm!Osi6g^+C zB;`{M?3+Anc>|hj7%PZKN&S=qDh8GmLmaWQOh+ zupyXbN>YAEgRMq}Ge$8K$w&6~%utGgff!)LL{i$14CvTJV@ z>k~F}pl7koK@&nHCm6;nTSDx*GHqEg?wEGyGbbxeqPuGw0nVj^eZ~!n z2|I^=u_VKoBJnt}6ikKd$>xz6O2A4difo@ULnzq+(E6c^^=~wD*WHmo$)vf;?fHy!gxXtqm*>;sXO=?t$)Z1brwp#b6gtgy8+VvX@D*UA&D z^!Xcgzuktf3-cKa;yvB8_EU7zSRJL&>21l>(P9w=XC5DR(gllX`}k;@m%1nHtEm8` zD!Yh-MEm(vsBn~9lI?sdbhpFte<-H+(>vl^pC6FkF&*~iv-WWC`*c+2+x6+o)$%&i z!~dE@Jf#zc@y;XxK9pzmQGD?RD68%zTOg@=_T*#8s&kj~m9oN@C?f5zvJJu$5^jQ9 z@1VRS{akQj)6nty$jk3D%;w){#xFP*O80VS#kJx79i=c?2&v#BYXO7;V`X8??^C!4 zjDVG21XFmw{+0t$N^y@mv@^XjKRj6xa)Ouph5YsYS*wWmM0k8`>rXN-6&_{yN9{{- z(&o3rWgEH$GqOJ2$`!*|VUYef>kQ!2rPxN~y?Trzz`+Qb0HG@w9uA2{RvQOK)w(+1 z8wqB7svx_BCfDrNaVk_uYtIUq0A@ynEp5=un;F{dA~7*{$gE>mw#!60kg2eWnPEbS z773803ME7aUrQ0PT;(|>nZGm*xaR+d25bT}{ zQ;JX=G8TB24WwWIgkWHP7L}W96KJ(?_%4Dn$w;RQ^-acFQ>H*jMj$8SuBi|v&r(iF z%y^J9LzpmfHywMm6Ghc!K2uU{ViTEN(xFPI8>S58zvye3p@e$jeP-BL!%MO`PrU-N z8#*XBGDBtx(jM&kj=HbperYJvUlU+X<oJLyh4NG^3!;>!wCGMSTZnI%nv{wtkBV`X-r&xa&;s`FG58gx?Og5iN# z;fjsGiI#P$p@aLs=`WvYu*Gc0$46Y9(}hZN|4Rp(Qm|WwyUgh?rClGaIBCLP314G7nAGgkr5MJ-zVH2(;KCFhMV=fk3Pxjikf!{ytJn^38 zyphUs{_P_m-?4{(=p4sahcY5Z%Q5K*i*fSF2ToYTNh|U3is?mGNubrgzxQ z8{mJKR)3Rhc>ZCsJ-Yi#6~yXp5~gwqKTbjz|0^7dXCv`L2$8~``Tb3YQ|7PJS~$0V z;w1YJu9v93qP6*a-|{Zgf&kIXeuHCSu?~1EpD)0lr-{W|l!3>Gma-8!t`{?Ds zfABzpN3r|TxD7@3B^&~lxhCiVSmVeiF2t3fCHrVU3iTv0HmNLK+sN?}8ADTHOJ+() zi3(=m>dB(-$Pc=!&CfBOUv4mY5`+yq(?#E87-SBGNa zBi)q~cwL8?Eb-~wu^#Z+HAB3oYQYoke_}r6bwcHj*0gwNN^$%E#knOI*$gvc(xEyg zF;u2Pg$@+SEJp=L<7b5}36n{8OpYS#6FH~So%i+rHus0(a+0Yf>H3xMp!1X`@nqJm zgz5W#6(;oor)9eQwxrw9bi5;xl9vkAFSZMV;Nm?g4zHGFm?=N?73VXKg@>vFW-~CB zO;ex^KhEpdZ-b3p0GAUPpdCVq?Rt7(#%E8V@VzU)1dhso>2ioe?_ank9K-feLVsKR zgkt^Upu#Kt=Ti=k8f>!xv>>d`80Z9U>#5JMF_-RN+Up@b$xwX7h+@Slh6M;J>5dN5 zVZGnr2XS;maACl^u3n+LIa6RZa%_M}-U!&|8%?;+u`&v+7eHIAt?}r7fuZxz2n31z zi(`B6qmNO}RD1#2b`0g$XO7FYLXYfh3J8g=#Miz(9!xLIyqee z^ACNFXsbZ`Bo4d9$Mx$M0Qdt{7qE#)$W&2U%a6=g{0>55nmrD?kaJql%36*+uGfnY zJf@4e|M!3SPdPC_9}Vy@i+((9HvXm?dRIdJRzNx1)Ddq?AVX3)tzjTtlATbxsEy3N zQxwxSvz}$BJ|#L7?k{o#0h1M?47IZir$l_}^xtn@BryZ0LbTr!z03?k83w;*$8nM1 z(i0svnwH~c7ytL6lP>-`+ym<&VWuAsfvRFwxDtKwD;1`|OQyS}LN?3rsHH@P<#Y!v zB{vWKbEeEqbP4Ufsc^-6xCH1v#h+6ihp?d}v|7AL{!h7DCuwNTPZa`6&kwItt7K zR*dM^`y?$yA=vnXfAEXLHvA$VC__lm_luF?&(BGM1^3-}Lr=oy+~pB$^XYYG zy_^|%{#9i3#gc)|R-nFX2U`u`PBL)|g&#I?zjv}GgqwcKp!0$8H}m35YWPHi0~DLq zo~&)yT9kx>%#S<2YEox;bbi&W-XGN`>})=%|5SQjlg?0lY#6?_HO1e)R9)MQjZVW{PtKQXF{)t4gUuw@)sO<>rGcsy=~M57~@Uxh@+C*R!)iAI6F&qw;rM!Y_Ba0X4a z@9^tyfO^f)Qyhw)y!90Qo>)uV_Kzj?+#W~7HD8S*N}0Poj&WMTcXi;J2JLTrQtBNl z{FweHZZTw|Kc>McG7u9r_}ycg{(Jx%_Wye9%+c-D_h>Pi@h z|9x`cczsaavyf=mx65DDdC`df#KaJdWe(+fA$&XVE)vd{ffyAiYmJ*W+b)BX!+nvW668`^k7Y{IM+bzPz6>m;|_{JaS z6Gw`|2w>d0f`bm-y|oB%0wMBf)8u2gBzBCWZ<^y5uQjOR^G`}Vt&YbO!WVkeHEVgR zHe?yI_N@0@JAU!*3*LiMq~3*@ocF!gz;9>ey=vmCvo8POCertxKhHiC%^&N^nYC0_ z9GLu=?C|=`>6s`8;}0R>3mlhZ*mv6e6w&hxE`h`pd?Ljx4ORbM{s}W?6Z6l^ zk}^}N{79+m9*4J2T?0|_H-ERULEVMqUB`#1;^}QnX8Y<(4ad;)2IZqA?JxIG>iYvf z6s67m1$fB(LN6(YALZKlJ~_N@-u(NQ!wqC{NCqH=b7e{V0v9-SQBf2=O4adgq9|N9 z6bP^)pp)!|VW$>?58Fp`Q;-NJc(wdWysjF(u z?UAXQI60rL#`;84Hj6=iFE{7z;`+k(#`VuNugA=e4vWI)^R3H<;WGEl-chN}uQDS! zz#MgSma$Wqi&tJ=Qu*%=ArSt_2*L55RVQD~=el|R??$iN>~$~MwRaay7XIzg zp(Djl2*-W0aPt!G@)s(lM))sZeZ52POyRz}5Vdgo5cM}p>PI<4&+1tLy|;+35NCdQ zn5~PMtuM^4{k_?w&M{gC3fsT(;$R)fP4kA^FR-oOaMh{d7dm3k;+!+}@!q1~0($!> z_)UTny-vRUccINT4+6?>L}DX|H=E`hGt0R(Z^y6By_a~-yS!WHDC|iw_$#h+7tq_s z;Ga7oS=x>z8NLoIZQta1+pH*`%3JC%E1~LLN#%dS!+HRpM;*X=>qYOUttP)Yo1epa zH{tO3A$vc#vd;*>KgkxOy=rz|(0=nIrvA1rpDWQx3KO1owAN;O|EtrrHcn-7-qjaQ zRJ%iPgw_c=I_7=j@t)!>&d{6#2@(irKJluVfJ{>pc8CP z-}>>2Zeq=1$=$gIM`+nqA)nK&rnf8GX8sVyk>914mbUDeve(~!H4p8j|dK0PKW_{|wT zYIWVsxl`1MrykeSpHHwZ%c88BzOnFM&(-ct8aulrs^8A$n?k-YACA+$UUDvsU3Ia^ zNp>9j-u;DFbPqSFa{q?eY2sskjuDPqY%u(S1ZtxB=AeKx1@Nk?D^3%@?_FMj6R)HG zM+)HaUHUTyPA=J}Cjs!+?bF*M@E7dU1D%H*vtQxX!I!u-{*Jzz!{aAQ-P|SB;i|ja zPE&{P-QIRRb-<5Nhg;|SOVr_*GlXux8h5AITv5JGkpj4bIfz ztL_mzO^3fZ`QOdmlp|#23npHDlOyj;`M5t!5xYI6co9+fLf_@<{3ZMD{vZLe*0Mc z#kKR1x%e#J9+`_{MYum0BR;+Jwz~QGuI*%DG30#DuI)3Sx8vuLzg^~H0lz=!1;4)p zgg2GLe`)4oA>J-@XQFs}*yA)2I?zjxG{x_F_5Nb>`0Zo!pV>S-o7q^kkKQ1%#G$0C zm$izIG{wg;anXdU0)BsR1%7+D;`dXTN1EcRYR&xtMfh(36g_eh@9Ee3i_hcV8=t@4 zy4*)j;+yT7c;qDhit-cp7w9McDS`gueWt4=AQp)G3knne@}Te|0rACz`~D)$#P=@p zzrCbhCjl{We}P-#_JP~q*=$`q0WtjHBdPE~9lO7nHF5ix^=Z0spr0NYgm1nk_IJ!6 zOx$01ocL`sggr6l=%Ll^~7(R`Rb7q^F(G(h*t$y$cahZAKtKK^!HPi zM^4O(?2UTl#5|F?e|t_$^8WCZIF0_p*c~AemsN>JPR#Szd*s9fI(&a{ANgIWtR6Wr z56?p$IWaH6-6JRFWu)3C+42szCQq-{6{B@JHAUVo)eQi z3Ghv-eXTzIM<)%v0n8zQ8%2qI&U)%;cEaEo~n(hpEEf`0GD^z$w*M`{Dy8Wyf?p zSS9$`3EPg^XQFp|xbnG&H)mtUD8h@gF`o}|y@)_wC^IMg^YJ0h)OC@N&raOM<4nJs z1|{fNNcJ`8>(p`aZ?-2K$H}#m(`KtN8ER+qUN&;@7yEjG@daz}qN$G%{Ka z>h}H@mloG!jLR8yhM1QIoQh-g@T}sbW2WY(m81g)-UB|?4A2p6S%*&e-;(3ZEYX{h zbnMgWh95ZI3b_40-ZCM@y%{_2TSlM*F9>ga(@!?~?$~%y`(yl=vzqxh%X(H(t_dbZ z{~iINjF5tmmzf#?JyoWVQL6PuNfi4CqNj04?MP*a}@BilhNI{=q3+|>2KV{e{b-pl6 zL-LG;l?shOPbFULA1P@Or2K`nnINc2@)T6cRplTRIH{di_$$Rq&QgsF+$%O8G|P)g z+#k=>AYYJA%YiisV5lYK>Y}gydfN^zB)&In@zI)6(9pLCTO1#>z+qBD9T!YHuPjd$2K&NepED=T>;*6l%~5Gr@ob{663$zA5w*7yYx*?hE5w;`U+0 ztAde_T;Jkm*Lo_^hPY-+(KDQdpK@a-2-a7G{-kPZKh?-JMO%dI{d!x#$3EqGtM@lg zV(M>&=~GwH2Of75w%FT(;?4k-SG~5XsUAG>3%r$pu;kA@GpM!bNRQ zn&SlUK7Ke^1e=?!%j2h#wg4<=b{J+-sGNmQ|NIfr%Pi-(HXx@_PYNFt~l{HBTa(!8V0KFj#9-t1}Q+$dc`^`61;6nP) zcG~`v_~#Ej2;3(G@nv1LME{rLsy28A=5&@AfLm{ZY?|CM5im!i5lb}eq_++ic5V?b zNb$hOPAxp+1X8Xc!>Kl)2Ckmm9b4e)Y-;whX~?k7@CG!+HG6hj1S}9X{=4!e({KgD zG-0#BYhVObOH#LXkO6WF=EgxhR)QfF(iETkz*E5}2ro78+cuD5Nc_cvxS(g+@Xn9b zT6~H$&w_s)O-n_wpszN9E<(LIs5Hp)&s{JW7gWbe!3)4G;34jNaar{@+-zUju#+$l zUxI(}8!rUq<$WThiJge;%g%g!VeGr~j)&*5ZyPhgvb)g_uASMf`#8MRBhHSu+uxR@ zHj835rqdG~=v)CG#g`4BF{}rCpm>C0ZGU%v(EdJK?yY;%fl(FkG8FGj77jg6iGaU~ zQN~2KU*uz+w?9ZYJdI81lfmKxM{uiYzur1>`zsaq#M??`H>>IPRce!Y^TbLWTrl}% z%K+Wf_#m+)?x~CZF0=`wm;2o26IgvS0l3E2*$cJYClj?ZDt(RZ%onQk;R)mKS!Wn0 z|JO-(f(!iX`ugDEwGWm4ZR#8zS|#**YIF?o9g3U&p4E1iZ;n3wSIGCjQK!GOV)^$J za!<6u+#jdls(}mzmm>UnRVZ?3?)gyy08rdXao0o9y@S<$Tg_L?PGJ?ce?P3sdHc4H ztIGQ+HnW|3Ubm7T?U(;rCEv#iUe5T*-Bk0FI=tohqp2k zy-|dC649(SJ3gj>|?}hy*-op?FQoGc;DZV@w$_D9l6PhvacgI8@az! zftPL2QB74oC7^Kg{(H%_vk2V9p&d>~@O)ag9nJFLjT`sJuli}W_WR)ZePM6cY5s-3 zR&(T#xj!#&#kphJ#!??Mq$OFWw$+7o+y0F!pKOK%e>ROFnS)e}md5a90}`|V=k9plCcCP~^O0B001UOf2hHCeZ*xrB>@_7{w!tbKSFmBH`&D(1;Ax5dlm%{u(Vf; z0th@q5%BnTh;P!&##4U3B7mVF2nxG8UKD`gnPgo6PHhr4yj~iR-2%u3&sn%B_(k&4 zzY5*A4B2yhM+<(*j)gdy26`WX>(u}q42`c`&yiK%2h`)1iu-5s6i%R?f{VBYZf65n zPvB+TKuHB(KZp168_COGLAUqzzW5~TjXgh-_57iq?GW*pu^l6!>pz8lTpj<_8UyB8 zM3N4HU&TTazXyN4xjTs06J&D2_y?7W1@$F&pdO1Y82^mXgSJ(+SE9bXk|TS22~mBh z2WG4UL97H`tN~I|x+@0ociYQU_{<3W&T^J&*NLA7Z(0_4`P8&uz6B|uuqrR!P2PZu z3P3Tti@0dyb>&POazTR;GG@VdOhehOu<*T!lrz0l;%7YP>v;1TT)4oCzMj0NfU6xB zaYt`E2VP0Q>x1jvKzIK6!=EoiPyLYsj+P(SHrQTx+Y4#;O<)37172>6>_!98b2ker z;D}UrI=bk>bt~`IRV44i2e!k4u~IYQhtC{sZek&fWi!^Ulh$19YLk`bAOT#`2w?+bthIK_SK(3^Jnm(^KKn)1~?Z&k}k4)>8EXLw@-V ztRB!22QHsA*6K!F|A2bwJWaF+?hE+yM=$U59M@vG30q>pr_{>fleN)7Cg7%#=fMA6 z`27H_FD1Kef`3}SXollqU8&l7AeB4qRxiWXI8ONA|0`nu!=O_+)JlVLkIuB%iAj$t zXa~(X#R50$MwRNg5K-NNzMN7GynuGvgSxXuGFf}UgmN?!YK8iQo-bPSD&1ydf~Zf8 zXv3qH0b}x5Ipp|K*r=5&MYm|W9?euVr8r$h9m_L1+Gw5bb?iZNlwlWIy(B6Xx|T23 zB8GK&#NlIt4YTVxo<77)A#a$L+`!vPJ(%XGh!+?)x9F}$97jn8EwxC0<&=pDGiaeJ zFe+5n6RM)*hGwNYUCM(jL&O9-y~cbP+G~pUCU!9>ccX^i((;v3H^WFw>sf z*-SPw_N{h}QSrXjRJl62n2(m-V33(Ejp>A`BdeHT*&nKMb&k%{1D>|Bp!sS>+b&tSbC|NR&;fSX)-@vKbSUijCQ6Fs{z#vjxv)T)UUkk$#&{MD8peDS6U6b6 z(e*@pHmWT!6AM~Afg)1VBEoP~MSd0{`bSo=jVm8e!7l?u=H3=_|sD;s#^a3&qY*L;VdWh-~uDlF$AGLE# zu+-wr$ZAdG7Wl4Q6QF*;hvQ;-UB!DV32iS&D~gl`t69HhF7P$mTDCQ(8RfEArlP1^ z&F9czr@#(!F~NGC>oEDKi*K&{OmwVOB**!+-5AzOlrl`C;@WPN zwE@+P&;ehvy44Ql_1qegS<{+SjS1R(P19?Z5X{CVBAArs4QZrcj~8aAE)Dva=Wu$y z(d=T@Ae-|GW=AcXZrjs2X5>z?Qm$pxa@Dy|lXW(T3AQZ;t?6XLMNO|XR3@%gQWZQ) zmoP*~=Lh<@skdPgD|gyx1fwCTBU26KnQ^t(7biB?ueKP|V3{5|nu;;OQN28!bAFqv z2RWoO?)A_`Na$m|RKUA8#7Gk& zKx2YD!}X^K-&h4%RqdH#pO$RJoDa)sg<)H$5*pH|Ijz!Kq20^08r?;47TGg&5lxnj za(!+Yh&3x=Kn}~jM3;5Ei)H#qG4Bd^Wl+~6v@GgbFDet&EJ7961J<%j3str3EZbkm z<0TatJUT+>4IXQCR;b>I+Ul}39cos+P8%I(4Gbp4Z1%p&Mb8Q1Rrn zS02>+rKMuG(#p75Qw`BA$`(WCa(Z^=ts1jQT6WY9SEIVwn4s$~7wrnSuJh@f#}jp9 zIT9CGy;(Ose!ez!v7>tRg`(CQsNR+QA-i<(;$-6Rqxqa&=P`2Gw1P^0?mEkIOt4xf zXA&_`2xctyqMo|)ag6guU8RIf+XObzIc34yE1=PtIZ`a=xfK&QF2&#zyr_F(l9w2wGS2vfWT z?`qIKHe-U%dfQ$qIJFuNM+>!p`P~x3b+UCfUm7kaOGYoq1&Qc&%AMNEGAk9;u)svI zsfk&Pha?@zto_sGw>xjJirBuUGz>NoO)m%$rfA zC|GN2S~q(xZ>RNiemG=ux=<0BW+q>sPivD_x~d5srdp${$i&#n!dRo_;gU+)Fl1Q- z$?~kgRoPZ4V87r+y#H`g3uhKFL8Z`NC<4<{hny*6Xxt&7M>*C&Szv7oEDNczI?GR) zl73cl*s}ud%C$!E%b)@CY_kTg z_%>)}`1vy?@B{j!K6ITozUT8)YoGU-*?FH^$MH#&;_XN3e}GOu5#)aow>0(@w@xWW z{AX$SMslRuQ+#QvvHJ<<0zYGlPsxPfKg*xco&T9Q$8fXCdlwXE{z$?L2i;I!BEh(p zfsI+}eeQ-9SFJS)+)#E^j2k9{8rfF5<%wpEES0)qX2$C|)~ItCwiA%Vpke0a)l$OU z`hqMqc&E8$5F3k@%(5{PfXChBm2e0~F{6Yh1H;sj3xuaMqc-YvIZ8M= zJTspHKh|<10$bQ4dgxN4AI55$MwCL9ai=N4xt_{i2+7oGfmZPJ2!L0NrLDf@x-JXW! zRs*}J4=YkPw=QFSsWPn%sp?wpE|(fpTnrPxcG4`C>lJ0v>QOqE9U-Q0p#p1YOLQfMG5>PRX3tOU^tLq9Rgkc5$&x1^#g6c0~`v zqd*^x5PscU6|4>;4M?YmNmS?+imm=CSBeStaJjOccH}OzRJl^CxnjrFi0uv^hD=rq2e~%ZdV^O1UAg0(t^URNDgS%k4Z`Fwdi31 zwW^%lDHe@jM7f$W9j%8YX3$5gT{)v@B<0qJY=&A48`Hk15t@XxqP)XPSsg(VuW^Y= zyvVPFHD!`qqigW3LnF_A!?FGB%x>~YhMzBwJbQ%y4Z-A7{OZV4!|2>Zf|OVy{^d?= zUVpf7H}ZTqNPq#EXR9)};K_vkc92NH2-2TFtUt_6!08Y52h2id!reC-91}ceriQV# z|MSN$j3IE!vXZeSew2cdq0Pv#4H7MrIGE^pPUy^F%nXKQHlxvB{|zy86C!~r0g^{? z@FWSz$KezhZ+Q-~z`OTh^_O604ErR1;wb)?5vr5YFn=|b`bh}Y_hw;!gQ|SAN^C!N za%fE%r%nvpHtb2<0NdVs^ZR|M`h}OsoxEK8EpyjcyLgDX&7SZ(=5V`P{kwbkO&MQE z1^#OD{wvZ@&`&onasIty%?m+Y)4ZIQY5Ot&IQA0ly$tI8dSMpqwe8;zTjHY(>(?{1 z57_%^us7TTxd-;9U}-miz2U=Guy=wzK49+$?7b5a>>cc#N!GhQVDAU){aeA_D9+|H zS(JJOdna+d2kiZTy&tgmZvuPsitQojNw7Ck>8M=(0egQt?9I={>lJB}Vc*VML^sk_ zt21G5qu$^fMyoYg@_0qB4mxFYUejtrJrV45t1-?XrS)PwtvAAq>JBETJ?qztw%?yC zYuXn^c+bFaWlf2C4zCM z+tDnkmsSeHuI^=&cHsAvdZKzgrOdQPve22%4YgToFNeCg4zxCnbOzp%{7`Qnu=fM@ z{tEa|$JHg${+(cNIQx3Q-VfOO0ejyq?4850F|R~Wn@@thfp=-FM*V@<6Wjf8u*|Iu zn{28@A759yqov!kFwI`9ON}V9%C=T31^w|Vh}^6=oKAbQQn+zL8^wl232UC#CTqJ? z3|YmTP~!>Otl41ZY-a`qZcdb%gu;UnBHt>dqZTIQioN-`m9AtBqnNS8M$sK&*rb+> z)?JaRvuL^$L<4!g?wJ`dcAKH&SH|_0Vh5<;)MdM&4lCYrNDOJBpkSn}1-%H9yq3mD zQ?!^DCsiaZB$}e)KH9B}%19Y6w^4R6+z4qRpZQ$1#R8)}Vso$ob9oj|7x7gZ+VGsf zg7(eF&6|97W_SDf(4y=e);N*LMN+IKTx^vR&-*38_`_wncUpn%A1B{R!G40Q3~I;C zWV^N;7Z^eUGdsnAlZ^;8L9dX!0|tmN7sKaiI7wkQ)&1AQ-tVHe zCPcnN;jfzo{CWzHkwpBXZ5CUK+N`sf%G<(aV5n8^47>0Qxo+P(3t>%$oi8J-z5x?s zG@T7tv5B82vJvNqrYMHQfka8F4qAqHV1d^Pxsz`&sY zUkG|Uf499&$h;!je?t@saw1l5=wcL(GTB3f`|&Scz|lC4W+?*w6pn^~(iV$Ofaq=2 z;gqxP*lKe35|hT?V$zA>d0^7_g-P!ffzL7Ny+1n^lP2C{(n;2_b1~^x+lK~&44CZ~b&gq?!-W?9aLB(ulWWr{~N$jvtQhJfq z9XM8RInk>UrfSUjDYooO6u*7Ip=rfq# zYA|)W(l1$lMHchrxd-}K7N%*nZm?>1oP_#NVbILxi)$hpQ%2kEmdgshTxA+-3vC45 zbiO-g@mkYejm!=@wRw5kXzHV>TOg;lIG(Ciu_u#NB0rbHOcWE$1`A|5>-luQQV3_X zP-n&dD2vSSW_C(t%vpQVZFmDDo$DEWci37Lv4$}yp%p@33#6yE%HynxbXR;t^_Zl} z%h{rtZkDyW5M^_e;1CnFUbN?Cr=OJ=tU%{ktg((p7&^o0DDSD+wuJTSEIC}3S1XQc zhi0W{=-f(8(=owJX+&w+OmmGkJ9a@c8Qf*^g0FZDYTh-cBHr=(?pW27>1y0lN>z4< zX85p`j(2Xa@)+qaEw@?juM4!5RGG+iz4ExPm`s@#7h$ilUX;r$pG9O+tCG!Wldr5t z946vYb!{-b((H69i|M!=U?EcHaJWaC?vBW{+f5cKGzq@|#E%+^LK?|8+iZHuc@u3y zmC?o;wI>`_U*K4_#y5-OUfK=)Qkpg+p_+DWYCTJ*k$JZ>M3e?a^|Y8^B|oRVv_ZD= zv!YNS(~hY$SLq(DmI)0F`WjTj9hw@pUd6NRAwiQ03h#iRP@Cld{Q5#q@ZprsiyYpJ?x6Kb=;X#7y> zIw+d1i_v5_X-_((#Zc+5B$e|JL<;$uQ>0iY6XD%SOQ!~riq)s4ZI+jGf{Dv*WnS(S z{o1qV<5XqX(4zZ-=sh>6JO;t2?;GY&jtaq3o82@Y#u{D)o9{TInp% z*{Cuxw7^Dc(=;`oje~T77~mbv4u*Li%$kszH1<%X+X-mdqa&}uxnK^SID6GOwpa+& zFs!99a9UBQe8|!$%-S=W02_xrV9a*5)JRk1JK6dOy54ht2cbp1$6g;^|od$Q5`cf3{*ppxG*ppxF z*wgG~gKqgaQOFg|lA`CehFl&IQ*12v)*ZMc26*|n)fakFEO zt9n*#KEm?z8IxoGKYL%=q^P!~{Z~5r)9sh{6!UZ=x+4Ts1VvC8HQX}e(WHSGPYwVu4x3IJS<(g`a>hQ2h}aceq~7W2V)f8`TN=yYN) z%2sADG1+v&8!9*C$Ga%vI#Hu3ke-`cM-HWK3Yo1b)Y;D(xlAi)q4yHNW7k_6w^MaC zSZdS7rT|$PC_u>XGiokQMJosT?E#&(msUK@4g*g3R4jCHI3K~P4fVB-;ufxlbq&cI zRpn5O=oaVB29}ZN6|;h>)N~?C$*MG1WTn^7HVBVHC??^#+H`GIV29q!eaVN*xu9o* zxmH=Aonk}M!C@Iwq&aVGhO=-hhAHoLv99A+yZug931S`rM~J+h_wb!I#2qMXPGS<0 zgvoAC&`?p8qHI2}0%yH5dAR`b{!XoWv%O_8BzZH;@@zab>4=-o)TPHmYDCj)oNNhN z9t`-{KOTe+EfSP=0}~t$1Jud7xn8A%y$RY?;SeZwCGeJrPmb1eVy92(DKeJ5Wr(qC zLHCWo7KTu!Q1g~BPDuMOpgHjefFS{XNR08>W>v!es&r@Rl-CT0>W{1a-l@MrsbVOH z3qd$m>~R}QV^m&=vbIJc0Z<)29(6FfZ~7~Y*MKqZf{)HUp1>WrVy12$7y1Mpco zFEiM&Q6tDLU{3f(53?<8Jeo+Et4h?=wOlgF@<~ zZ%7y-@)+}3$m7@1&V?Y4r)NbcLms0g$^gc5$m8jNXF(oM*I>Q;UO3G<7xI{&2zlV2 zg*>QhRPP=4Ti=k!_8ao}r$Zi0j#PGQbI|JdAP>;D@}JdvcFDL@$amYQ0!uLjixL)0 zm?gn$Ocfwo(zG2|99O(qmYYqxUjcx;{|8(9sM3xm6sg6GD+#SsZ0f}GeE_NEd|Wa> z(&M)+xCp00po4g~Tk!#|FS?0MO_Q}Z4m*6e>!;J+GUTiY6gpbhS0>0-;7P=CHzT&$ zc!-3CAOmd+QK31{cY7sG_sS#cZm4P~xR4{0qf>voL2X0M{g{w!NiM7PVyX4Y6eUQ8 z>82b7Zc-F&a)j6d(@Bs4g%D%bKE}Q2d89JjFXQ#$$qSz6u?arY^XR3L>*S#dTYK<4 zFWB^!f2!xPr5xD|4prGTRPmaVXz{;1&#O*?tE=~lgZ|c)e)Z$QN&F6Z9FD90EXd=n zx}Wj+B~?x5!#n7qnJyl@@S}l0S-A8X2X`~b@yBmkxKw}RwuMW@KB_tXefU^?Y*r7S z)z}q+G)K~}e*%NZ1K)goZO6erTMc!re?lSb$g%ya{^{^m^Ww+KBF|ra?buuFH7g&iwRKc*mW%=(!H zuSezm+ZDXNMr!+YYxQ%~!}nA0iebly;~!M;N&J2#0!m^A7_9-DDvqHka~50XMlWXfP80wd@KW` zHNoc7)rT@bz@Co0p8-Hdhbg^|7n4(wN9E+k&IT{$b!mL9`2(zUy z;{V4KTfUrgcbAp>NUZlPH3C5T>UfSBeX1Elki0pfy?w-TmBH5I3+ zr{!G$YH6Kut~JYM4RgnW*LVRl+U`*BI%i;5pXWq1e^&6y>M}uBki>Rjt=iH=IzLH z(*+H!?Qq3<)6T>*h7HeNhXw(6yp0@lu%0+;Af)_zX;7L+~?iM0YAlS?m zS&JVLg|!>oZW?I3C-AV^d8y#Fsa*V3@G6ZH#Enn3!bXSzB zdU>q5Y&A2>5D@voPO&O|t>D$0wN`-~;Qe0(uQQUGc86jm(35Z~(2%ej=x!xf ziSPX^cr}UN3SO5)=%%8=u`|bqtaXALJ+~a-CE=xIt%k2??($>k-2S6 z+IBn5h~>OjqmK(a9 zu$dz7SRI+=NozLQ9dz+VU3&1p8^6exu!|;Y+EI!9~8HMN^+KJ_r;5fW-EB7OSKj)FW*$8 znED)rJd_L8Y_W&{lW`WARi>M<EDXH_XYigWg{rBO#&x9xr1MjD9i{%+r0TAu7>E=|;OQ26(~U z0l-oc$Kx`9K<+oE(WhmC9q*S>D+YXRNo_29?ajvoA;pm@^6 z;FKFzBM~~nD~4bz0bBtlYetL7c<^VoAnvml)*2@Ggm970SYwgDN)!)er%fDxx@?q{ zlsNNwulvVmS-~5SfU?n%r{0M8j+O}e+AE5oirdHsW7Nnn8)iSamRG)fz}S_7!`!yf z!SiT5s0Bqt@{2r`-WjrbN!5S#6oOG6l4p=R=7>!nW^nhxi4Mr|c*nQ{|5 z;?~Fm)shTf=ytP0SlB@K{SaTm9MS@@362r$QD!qVuS~rmY7d;**ZA2;GG8GSjv)KlX*JfPl$$Vmd2 zty&sZMTK(0S8-s5JQ-JV8}&YUwQ5_f^sf_*K^2eWfYmTKp(jh{DisgJ!Y+~NPI4&24j<~D*G89Wkzmq>RN{#MOCh&tLL)JS$i!wY(h`t_=;lajXOP#$FBlrt#p0 zd4=`-Y|w|dnZ4Vc3r|Y+{_y|zZ!0sY9(UA^$Z807nUbV1Zwn|bU+*sj9r{attM>Er zwF6;*7ZXIbJh5_?slJO}P@-J`<`)mACW_TXSfnhnVQbd2cFQ3*n3h@HU3`wba7ybT4lT{z)LjzmW&D4d zXyum&lSvhH#>;^svpXUG?%ycf+NIn+T8V*IzZdVyfxac^cziwR6^KfgHCsj_k$U!z|CZOf-gt8p^pkd0qRg{?XzI z4y`3?>bMm9Ik$)WC5SRK)ADI{(Z;(|B}w`Gpv_xpdbei#g>_m7q~qB!*S<4c;maa@ z0*?mUcV)sZRN0AM+|(HAZ20wkc}wD1*7$n$B}z*~KBE@y`3GOTDb$qL_|<)*y>hhr z2lMjhdc=&V6taEH#`iHk5jZ0Dk(i4+uguukTC_9&DLDGUzP-={dBJ_>)Ua|pMz?dn9UPgP7MznQZq)>A;$hXW9Awh#56xQCVL`>iYe*rk&w!c8eqGzJ^J7m#k@CqRtNaiiJ!U zF#lSF?YUU6s-}|zl?%HFPhFJ@OU0zP_KR~Nfr2|WUXLfWjDC&102?cOZYsW#LzO=2x7ZZ2V)^-j2SqO9vk+M`%oqi)-g z?C)|3v&vI*SBXJ5!2*L%EOy%j4=O75IQFYkD4S0KoTxWhN(a1D2<@5^fxEmkmQFkZ zEFRj04{d{GvY6N)?J0BSBRPsy1SeH-C(Fz|%_uvb!C@_2C$pz+MR%s?IhnFAy1xAw zbD;^@H5P?7xtEV+gNdzw6DwLOSiMZEz+T-<>>5xms#VU;v)=18EC0ao|J>+SDStlo zR3G~OKv(@hV|{zJPp;xN$#wvn&(!OZ8u9S+hDCy@yQaPhZSmZl0UzPYPM6qZ;V3U+ z4w6Yvi}|#o2s|x<_52X3&X9IGlM_3;y7Mop9)V&fLh2u)hwEygOmmlXIipUne`&># zz2N@CZXM6&`dI}01{^?$(tC7E&JvOIg z$R*2`fuphu%9i0H@v?*^-GrBWU=~1ko>_Pndu&Fq&J?;Ub%H3WXidP|Hy89-rk=X3 zXXcTZ2U$#hi3B2j%F4g+KLs2z@9YJ_GNe=rf5 znx-CF|2+hU=(d+{mUr<0}+F1sFRK{P6o!^F|t(fo|3(+vh70@y@xqf&SqQKsPGiVFeJ) zs{BPwYD0;DoISla${P$+A4?gI8kx_ZcRFQ#4i^l=+bqjDhq@jORMQ8cv~-_iG?7CDHs1Z~rYmUq9jFS~!%oVqRzxaHIcG4&Lh?a;m6-8dYbd6ywH?O~PwqC|e@vn~zS9HvwTu4lgVswxJG%}aK zWCsNf7|3!wJFnar^|0!`3%fejO8j7)=E$kut!Gdejnf~ys=s49)H;tyUahR*pWT3 z9ZJ4LE;6&sKcuH0Wl2pf=J5SWHr|`NWv2(#l4fC6&!pjK#xtMgl;AJh(5OoDx8(`8 zBLpW!olLc!=ppT&*wsuf7LQDTWuCzUfmmGESPH4A;hOqbtXSjWQ&cD18BXK;WHqT1 zo*wJ}T&$;A2nxEX1F$qBL_mmZ!3{>I%xl{IsV0mUF`}@Hj|iaYY7X(z!`o12oERVM z-$M;(bh2X4BA7E^$l$P#J1$TsvjOVZTJ(>Nt3N8l_Aq6_LuR>X# z9Ftf9@>d(|EK1iMX8OdTZ8a4BmF{Tgkw*dJI`#hj_Ava#-N5HU*(>K|PLg%Dlu4}N>U1^j2?qw}1sH6yS5_Z0O&|4A)$lbQw5 zU(6Mrb$T%ahvHv6nuF^cPR%LAX7e&{3=FXc>L%k&CXjs|{*aCQHO6Aj};Ev?xzM_ zvhNM^6k?z3gF|!-YlSkKs(xp&$`6JN<2~FG74qfFl>u1rl%+sQr9d*09=_k zJ1_HC;)}a?D@Q)Zo1ltQRsq2ftkx&?XOzeR4&=8bwl?xMo{qeZP*A3gWlpU&F~I;L z&~5#UAl@WbDMr4a%ZobR!n-^OSpw{B=CW{aSf+>r?u3V>B!fg()0h#nSjUb?=9BF& z=M(I=$?HhgBJKwFn;2UK*vc0#`_|{H?;=Y1KVF#d#O$jxI6VrvIK;(%8PY9OyXW@7 zY~L&Cu-$Poas*T_YJ01B&bkR zzB3-ZlrK@J!L{trt2*k)h%x&1+eKR%w(3%4_Yeh-3|l5b`@J~LXGCq5HwXR~HFHC` zeX#koA)ehl3Y-}(=X8kzb>=<6Jh`xMsa6lp{#K>#EC9a5dLt}xfIt7n4?N?3N1R^t z;(UB9vtHJJg>ZkL)q$rrhG+lauL_d$$3Ue#3J5>TuNlA!OGcyNM?Q9x)b?A&%w~0{ zi4sSfU&8!_>-A^ylO%(l8jRRebLCJjWrfI)(+jU!!FCBOnB`lopAKUweYaUZ%iA}p zhZmcol0vM@CTa$6)a2U8ZQ)G6k?1O(!&UuiRJ{xo2WX7!Ey~m@h7P`Nv;)qsGqD7` zXwl0ym72Q_DbYYeVUrg&qpp6a$QXtLl8OK+=_tZME+Gy83wkscr#F$D1*kXCKe$c6 z07j0E@=|fuTspX#!-ezQ{m3>H*g}8)eF~Zh;NGVA+$-n`itnoVQvVtbCl+qGw)Ik( zd8vH#W$P)SsKqGg8W}pwttxpJ`x&oPk)3}TA%Pxvw0G_vXN{a6A--QHl>_l!&)7X8 zs2L!Ot!TvI0Md#JxgVS7%*U4H^=^pX1g-e_`OQDo)hfDUpQ^7B@O$!KhF&MWnil=5 ztg~{xiJM6c#LRL4TdAf(j+TK_LaDBgEGCTcp;AazN9;&kiAPZLd!Nb zff<1ef>Bhjd^1N&J%-8a&hxT^O(&M^kej1)h%4OLJbNO2mcM&SN5`^DAK`7>}mI*YnEhLA8)zvp6$vii?|;&>~*5G00|cJ z%D?cMTzd{e|J@#p)zZ@uO7rGw=Q`6`foy~H3_Oez4dF9QxUKD|`Tm{Oc{5Cy01Im1 z4X%4G?~Y~@3(k}8_=INZA@Cae=z;Kf^|Xx}(}~>S1_u|0H4%F-I}A{fH%EwY_r&Ubt7*2xc1PetJ5z?qi?8W0R?2)K z_@&QHYtSrbclphi-}YW?bDT?$&i+mg)7=Z?er(9w>nR5Hx-pHj}2jNi3R|{lE1B*T_ zwLkKDP}gtdXd`HDW+RB1d^^_$`MJYMcb(+dV3Tw`=t{Jg?z2OB6?cmS#`I35R2m_6 zBS_wvH1J}!AnuW~kqkomH|l>$cR$A6f4=m!MR?gEy6PHR7yATZ=wMHJ$s-gg@Vtq# z9J`>SSBg-H1!go~mP>_NfYVU0_JFs!Gmp<5(VUrv{!r0BgCyfhKQ7MXfI-gIVPHs| z*0H&$u;veTF_9!e$|Nz6=mmS(fqW&*k6ffYC+*Nz2WY$Cq$9jY;&R48{0V z9oVL(u%7PQs-)IP7P5-voK1sGZTiu{>l()!1AaP1Gh~Iq!eSKEC^}Hq*qVfq{u6oe z;iQ1koP*03?9eQzbCV{AX=heT#)eqKKKV}mXHI1ftq8G9 zrFu@t_?p+Fqwkl0P1)JvAlMg4YG9kP!c$2b_9pX5&#O+$l4g$Dcmp4#L8UM`B8E7y z$09NOE;$;)E|b#MD?rmz(EvJ)sWW<>?c(_z#&A?PiQ{zHx?flOckToF4home~{jpX>s)@!WF0dsmRC<^uovg6zkk>rX~10)Xy+cfAOtliWy zI*c?9y;dotNbMmo;b&!22(anYW);0bmy#MOh1w`lM><8dk)L<;R)Ymhzcp9FxhA~f z&IA;-84n$SOWd$JsUFZ!3>U%~-z0Es^-m~ktT%p)o;&<(%A*7x93+-0TcnOAv02nl z1cV2IQ7%%`W>gybfhyOr+1tu6M%+wvNe0gp7DaHqyCZX&qpYFW4vE~Dz+X=)=XAT% z{2tl(tEp8C*1pxu+99npRK0nb$Ye?dY}!Bxcdo6l#j2^1*cN8jq;|qW z(^6_GiGOf5e!AO2RIuvl;Gj#x7tV0mpiIh_Ok~37G;|}`HxPyQWO}Kdd6}~6@ok^M z1%p4%l1%K;JiClE>u0H>)a<&*V$CJVEBA`WQ1xfNF zn88s1jboR>29)7Bc)a@!R$Sqbjv0|Mr~mzspnij{K(lmyK)LXJ0{__AD41;S54R1a z-MNAX17b}WZc4|qreMi4M7(#?wH$X;TeZ_4A)#y^6({W1yYUQmyh2;jsZq@dp|FaC zR8OX6$gsB}U}h@jkBo~RMj{cncNL*k)t5iO;lr$Os?Ga1 zcd+C`cQvjY!>X@`XWXG-o2Ic5Vdk7hbTB@$$rgaOmoK!;;{C^%z9IOr!m&xQQQkGI z&jmK|Yx!5}#n1K=A!22>GMV~f0MY#Y=Tvo5p` zj`@Bdo8Fz|6&=#GPm_%cuBV5C zg{RVEt>9B(oj;H58PjZp?=WXJrf+^XbsjDvr=Ueu><47qUlIBKWwn6r6nwjH6W;wU zhBv~M3)&xd7kdWoBec`d4DH3=^^w<`80!~YZf34^kFa%R50N_yRZkhWBV9jB-NEUN zAtTbc?ql$UeL`I6PFt+x&F(#$$MSKLooO7zAPRU{ieba=H{w-i*659FUHYsnsLKQS74`vu1)ActNN% z^TMp4uI?^#Sw`*Ii_ubikT-3qpR8EgI#bB`pZg62fBDc@paQfeOCUVjeKL}6y4MTk zM0%s3$U8k)1ImzjR^^;VPNOWNIViRPCR0hU_t1)3!rVr5MPLie-&^{@1Z>?Snzl4z zyqLe8!c7Wb5Q+#zj3kCYYsUnW-)idEEnS+b0U^ph1*3Va!#O+1`W|)QJ7b*SCWS@* zQhyiy__@)egN+!R%##(KF+}k;P?jKOT=vj>>eK*sx4wqkIo9-mrj_g1O8_;mb1;Hf z_q5`+q%Xy)6C?+KRI6Z6Z%)p2((l(MZ}#k7JXKOTWkouC9yNM6VmcmsQZBn2l0dR$ zof#UGF#46C!rnXr+{y(%9ZD=e{^~V*R^AA56?n3hS)=}BX>1%VYdHkAUwVESc90mB zV5NDu^dg2qnS-jJq1;yxr^CI-NIbL!Lr5Y@3~01%KZ9ax`8hz*C>(z=hX9_Q%r@XA zKGZ=J=Qf0^9nk%9dIReN=zo1@9W%$9pLOluRJxpP%}FN{U#4md5P+BnAn_lMP#MK0 z8Q-611G5L~896vPPp}k?D={;M&aam&nYrMlb*!u^T>eNVoe~<^HF51VG8wxlLQq%I zt%-$l8{Yiv_%c7{R_uv~a@l5QA0LCBHaouG@9V5Fj+*&rJ?TL4xFeZY9@xBF)D>*aDo&N~CzQbG@}FUV6~ zVIh>OdQkjL)|5Ga$k24IZkVrD?tUm_O7>ojo*pJ|BGR7SUFc5$^G}q}l@v1% z`3tIKI=+Uy?hp1DUOr*tB)>Vq6mDW(#Rg*_nsdxSd2CSa7|*NK!W>_KqRv-ZfLM6J zjteqg9pE8=d7pBru280Q=3JRuURkHj_VGt_8Ko4v4Ad-j<1fiUr0!o%E*3cqa7ZKP z`GRq-66BD8!n z(vql|y>#h8!{cjn25{H$#YWkFD+IEL;P9-bRr^xy1|R@!#`~I_f6(bFW*UWS-SKPW z+Jlmh3QyX-?u}9l3m&J@q8lGF@_ow2LK}G>j&K5UxiOTMi0;9CjL;gW(C_j$^JI0% z0Haq737aq1`{BL%hGW-w2WflwteXF@eDX~}+kq+yOE!&*iFd9vd`0lqmtxw|=KgV9 z60Hl3|2r$+~K^f9?!DcbE!!Ux#=yziXT zygUwe-&MP|G)T#E?R4^!pFWdxPbB)B{4ndaeCfjZ)7g6_qFL+pbV%=S(tfhFFGO>} zjrV^yge7ux6Nws&l2^6zWs zq0QlGR81czSM3hgV(b?gM%RJ)#hC=rRbdA*yP6OP4i(J z@;`c0QFvcmeSGCMA?GL8;`LFVxj12ioF?82O+V^|N9^m6(qxUye@Eb-YWowMbEIWh z8~2V?2n{i#+1C6);FlIwzJSIx{SIk3Kj3%uMic?_KUvMfPj51B*6U={Rwe)}MlD@X z4hPW$EWa$wS8B%2c}W>qc&Od@%tp_l`_TNDUPxiv%dZz= zgMWY78ZRe~@wb{*emE3qS*uHG2Q}av??G~3%ijgnup^ugZ=0A}bB4ooGzDgF7e>K- z34Y#2E>?vj>hh=&6CoSrnVa8}Dc2vm8{{2^)-^=($I+iH_02 zZScAH-=Z)A1$P({>9v82*(xf}j0?4~U_7=-Kf8J!Cf)vQwszL%RI|3Qm5NH#zd0#t z{zyV-2w~}ELkQ^JCV89`uP|MyVaJ#43LBYSi@VOB8SeO=hIdgU!_j zRY(r>hll$x>YC&33M>h-*bV-?4#c9RO$TGphqSTs?153`R@6_RTJh1r8i#<;*N}Bu z&d_dh7K)jSl|U`JMJVN6D*s^S=z_{46zj3j`0qA^A!R^KEX=lvDzFu{*3grJ1(hQ7 z>?9HY&emEkaJ0H=iJE56S|ZC$SMQxbBE+uSCHHxwh0bg{6+1piD1G^%=Q@aofVxcu zOLLV0<9ya@D%DN;(SODz`=|VBD$7MVvf}egD@N}8r3=hSDkFK^L3aKIkV@_zjLwiU z3VeH)S$XU^?~FF_;Ynw7$Ogk>fqch*$s;85vHGtz28NQz#;o_!RdemqILkztqEO7O zb>rKBt>a;GN$0Xc!psbCqZXs0930aNEI@z~*UUl}jWdEBEqV8Pzt~MCrEOhx!?og%EG^pofURW-PtPQHe{EDzl+Kxd$frr_gG8u$&w7nma- z%f)fWPebwS6HkL*u30__PqFEs2z*ytSYvQOT+nc`cu0)yhHAiVf3BZ@HIV60Lkz7j z;I`B}uD3*Ec-)~MM?A_|JyM38z1&?jA36O$%$SNcsb~^uly```)t$m;I}e`l=$sxH zj!*OI8pLR=SYn_!&nFgL*K~hAZfzMq4_7kZYvu!KeEbH4w{gk8*UyC0&%B8)TzzHu z3Nn2TdBog-^Sjb$p}Nic_1J1-lhd;|)Qxw(ogc8#{Chm2dp<|+r8#|x8f~lheDz~^ z4cDp?6OOu@yj`IK$b{%dAD>G?W^0fcv@hEcMeTA<%)K@@!1sJ;?R&Oj1g>ebAO%%< z$wCs~GrDN?V}5WQEL0nPTqXDZERXe2t{1TeiTJWz{o2cAiF{$qm_J$t4{K*#of^wM zikb!GskzDVw)KqGv=Md zkmAp0`oaqPN=@_}|G+99*3Q~~k3erAzQa-X@WAQdAa~=qe$PkV`r?R#=%6Ba{M>f| z0`~n(`^|QI?@;35fqXal@p)Gd3i6#={s_DNV7@v6e%rp($9wP0zOxUU)w0rkq7HtW zaChsEcD)ld1s$%u?I-C47j%fVg&|GkejIg@loKimz$$wjZ;=ZDK zg`@5$#LI3jbsfB7Z!NvY_ip>??$)m2-l~%Ee?@;syv<~KeI2u|T=vQBc!W(hbkG)2OT(*F|t`u4Ma6SUpF!3oiDSaG&5 zosV8~s{a$94|R5!W~~}QAeuXiVvn^!RbtpzJ1Z1HG`4H3a6M zfpaLLBc3G=N)D>KEBtZx`VG`Ree;oXSm3y#y%g(KT{X{^`pc#+{DV7kwezscHu9eH zYpYuI&lonqVToy|$2W`2Wf|wPx?~xeHjAVGM>8}q02n_Ogfs8okNpWW&og2kq@lB5 zA4QXIWchqs6MG!aAx%a&|5f|;ZSZrp1`c)vwxR?omMgBCB6w=%$5_wbj0(0ZBth7O zExr7&r}o2HK0{Dk+?xl%@OrxgBmJKZ?dKAV_v))3;IHm!0G^$X_w2LkT=ucY5?u~h zx7NeFRZrn_qMpi!d=B^8Yfof;p0rV5P*99$BeIoT@7#$VB|;G5kn(L)3g%l8p5>ZK z(R4IMPMmp(L}ERX>_vJn0_Si)ZP+HJv1?Y+=L=`a3x zA6<0SXC9mw)Z9j@+q*fu_f{oZK+#=M;}N7@xAd3rz4_jQaZveMVKmea{o0))`(4dW zTo6GLM_86o8?ck52Jc?*x7Y|`bsam8>*ymKzfJzg{6bugQdx}pC6}%ZMz8Iyn8Tcn zOunf5{N^D+0#7mYo0mU;m@gJE7SE}htQ9%Ltls}DFKY}{?`puqLxJGEmsdW$*S`7w zENIs`eeUgoM_)4rBEmJZN73xg-F~t0zQ@eL!t;D}xn2XF&V|BXXZglTt-QEBaR+dN z%)|3w0P#oky-kzGMpc5xzGCe_`OdVomn!G4YEqEngelw7S4}($Re*CWXI>M0H$gLa z+>$f^cimEUU{-iMw<;N%2HW~*mDFw%RxIh&_&)l4MKV#My3~HdosMx|oUNFv%-c{> zg0vW+`xKe@nKrlxDJ$3slxzX49Ph#z8R`#fJx_VrXE3k&94nhz!Orwd|;@cDE0CyOxYQ9=}0)@BL)x+l(!i|o;0ror}sEE zUI?uTpNkNl&Z~#FGmoSyny<+@^#jtg-s1*(qnd6b!o8N`1|9$1)~MW{G=LpZgw(v& zjMk?c7=gu@+E5eFl1T1rj)aP=jGUr=MxR7G8CMdwIJCY>a`vbyq#QQ3A^J1lt$y;4 zF+0*T0J<%^|6E$yY9WkBY(FVa$ekoih2=JmIx98`1A0qXj6%EmsLH^l96lXSu{`B7A}T)Z@$JbvXsN) z95ZlfoKY4vR>yXU+x1iAO~}CT6wLtG{8}FKos5LV!4aodKx@QmnAzX5F4&;wyKez| z7%PC$M@|>@x-P2tv42ISV9=3M+K!6>HD~JZG>ekDFsYzz?HFk_;zSs6syLQXaug*Zmrwvg*QJ0_nX8@I!q|doML;kwqyw#DB%~=%`P5{Krc_SK->;EMztEF9 z9h#C?1KLnlUqP~69o4}|yh=gxbdOX0!J-Fs8coAJwTz3Y`w>vFSQKW00jw^Y<8NG6! zqZeJ@X7(MAE@aZ>SOx@vw-SvcF}AaZj5N9ZKzc@;DLkxBvQ>Gdy7eghZ(lbH1J|OTOdFT-oJ48}`Rt4?!xPL`t5h*1;fRi3B@I|FNhn1YW z^I4SF6)UM2*bJhn$i8z(!uVoKHJepEg$rsjmq3 z*&w*GvyTp2GuUvtGqWzL0jG_5YQV!pSfA1kXmR^m0_$=53`g zSN>{0gecc$W>6qmxNnwYXnlPNuH0rtIQA?AJ<`i6lJ!qht zc}a8G7WkoPfvgE@6yi(%dJBWli>o+>0)?MCrA4`n<|I;SUz+RICk03Wx=4p zC1M)^au>q`h{arEcr<;6y{qQun^f)dj65BI`D@8mWm;=C6w`niJXvwMg_$h4G=Nje zn6TyWp~W;ur^N+0`sHOJWXxFe8aH4|UddJ(WfY;Bf)3%`BIyq{7vHYUkz!Uktc&bi zEc&}Br7G24ChIrDTBJ0%Yje;UVW8aMS&rT%GqLM*MBG|nph1FteU~r86M~IHF{3ucc z9n^pnB2zs?PF4Y_d%q|!kn%}Qt`hrlG@_yqu$&!b3R-k5u+j_Hk1-6sg`kelYcQ*- zhSGK}V$%b%cN)*`Ag&=6i$w4P?<)+gbGEIiG3^nf@x+v2!r$-J=pd4w#+4t4s~p`e zs5yW+63&6nrk=ey=C`EI9^;rr(R;|F=&>I&E3lM${rzDA4Olyd5Y;(Fx7X1goC z*i6AyE?$6mm4H zMV-oIS6#{~{D|ZoMdKJ8wp#^Ylt7xS)`Eg$+glI(!B02}7ws)6{r3$n#~0ABFRcGdta!j`XH=-q zCyHOHzaq>d@b2Qy_#cD!(vKe0_&1<`_t|C7XmrBEE?;E#g*W(Af(M0rxxfAS$5!8P zuJUxNvh&eOUPv08A3S#q-%wibS^X|caMFx_@EBt5TVjQJ?EVz;(nb8J+%o|Gz#%-0 z^q$Y~r-@3wFG5Fky`-n`=^!54COpvk)4kY2as|>Uel7Wc_DA_d(8Xe9s0O{E==;zi zUXu5F*?QGNJW%$3-UQJZ;`QJC5#SL?oBN**!f8L*2*(-t?W;f35RCB3x9KWb3m_nR zaE^!6n6_uu86j=cv~ULpN7~J?28WlEpUn0E(dNQ(>EQnWeF<)($)IKQ3CWzfk?AT1 zf`!@?ai%J8-C_7C|;UFgqtl73?Cj@Lt zcm3!j{}P>D%x*tHFwS&|rcJ0VEdvfpnSycCV52CST#Ue#YHqX^XS&7fxF6buB^cA# ziY2tv@I}ss+hvqYjXRPoz?uM@3K`Q&mzPe3UoPUGE&*n+cJS-9#-nhnO5JG;i*-t# zFy|i(`O)PPZg6=;(K(I~C3r`GcX_uOt8iv=U2{7ukN}kF4gq0;c#wy9?hAoK2yV)A zN>2*d1z`Q99IQD5dxWuvYftHY1K01EE*|b|cKp+72HY=YFb6txZb(iZ=88Q9#z@6C z3k55cTSzq=yEk&XXTByScmxUW@4>FL>qP(9Lk&yZ$&-8bn6WEllg zH%5;zV37^Xr6YIS>4*z{K>;4gtORDJEAT>*6|FI*DMMY)^T*@fVnK%nY1_ z)&ZF*l#vCo>(R&002(tgx*uMjs_pHQo_Cfp)STCeDu6ha7ho%y>QFZXnEn{I`@1tE z=zLdkaOQj&`=#bt_&zi7Cs+T|+CwneL*Fm8F&1L06Gpf3u+IyupW{rLcj3z$^j7}g zU*zv5hh%x$sBRp7H2qu%n~bG0dv4KR*tiK*y3u9&F)&J@S2B+Vj`g%-1KapgPXmR;oJbeo@mr|>j9%i%}S zN$h|I-@zHa5_7M!_-qgUArLOZ1?;8afY^7{TvDB;^Kdi% zsKXiXT6={Ajy^I=TyI}IL1I>LKKgM&+$}a$~BHJrqEPftxV+P2<#OJ0N5r-W)2k#aDcGDy!!dAy^Epc+nf9 zh`FSHp)W-GNs?!$68RY~`9kR^pkz&NWivA-g|_ z8rK2Z?&wezIjS{LiUBkT3!v3$2;E;jyH!{niIVuFj2bU>b15^e!RowMB^P#e?eO?cMTzy=rU{9ouCD4|yBb<}JeUmWK5r z*6T*1(}hgqmFVS?sZxJ1l>7`k2hs+qKmAKTy6yW)^^7KuKE33ZohyVXl@)SdcV!HV z^e?IutIbJv#R5_1aa=56$hg}`d5PDLa(E+r`@8Hy{=ympnO&ijKaT;Kx)}Dw0!xN+ zMH4;g%F2!`yTG_%v{}+blJ=mEUQkJ;b`13Ct9_j&wrw&Ahs<4^BAb0|+h*;N1BuRF zT$|->SaZ^lET1{<#v@vc86rxFK0vwIs%(K=WqKlMrN13ubt(vmkMy8vzhbIsl_#wM zQVjQ1o5w+>m~nEzRL0C)zq{Y`j96#j!fedg96u*dY<-Tu&I;YuX;@}qUQlCDe6`yb8PIl zAf)Dtm#r?VZa9n^_?9RZLK8R4tfBNo^AqrVJ{}J-U6Z88=z^sZRK+vThG?SA#7aY+ zMa+f%TT>G!*r?ZsrLdqa2^56l*D+CSz_MY`a5Rf@QR>yH>g8gfHG0^}rDTYylUk{a zQ$*ndk|+eO#y;Q=Jz7&sxhrKulX#>ssq!SkEMt>zQdF>NVpq3%u~yMJrbR|YYRr#i zLBJ6N<}VXXgYmqYvKx>Q);uFebutRDb?rzg!NL@Zc|4BSwC3THT-H@e|EJL`mBM*T zs}NZjNCI66)<%c+ZWKtNh}td4B#f&I;u9u&(7(x?6v{?23|Ixc6gMQ7P;dBS6Rmo$ zp`xD^k;oqWEzSH(`v&0b7n-NEJ#&}b+fb~ zRPZzt-PGAc9~ByO?Nl3~9KrS_k*$VG@Qk~V=LZXEGV=YibIIAoK6A9KgnX788KP4OkNly}T`A$B4;h!E=tVdYb zAUF@&%D|)udzp~QqCn0|0@eab;>A?+$(Yb;FwL4c zMX2xgG!s)^Foi1*5$!nud8Wo)wx6ZCP2MgncV{lLZ2B-5B@&h{WYjqdmxRb^2(P_D zUgNii(@CcQ7P*if0sFncoZPpFEUyM|ydEE#A)xFS%3LJ;NVL zdbmI$50EMN%*?w-Crw$hkaK94JOhsrv))|3A)roI)er2Mm+Q&#o;BvAd87t59t4!G zmlu)v8D)4-);KvAV}2Xh%o&XPHlxL{fhA4)#^|PVKb; zHZG8$BI8!30XNx$#n&Yfctrc*+hr4l`1Dr9vKr}|YH>vq&&|+v8&<{+ttB|SgB;id zB1nnxLG0R^=YSOlDua*?8*sSKOQG-|7GI&>ptZ^Zt@F}#9PL&=`nn9tzt9s)Om@{)dP`dSK{p_S?o(RYZK)}YC)T!cj z!w_CMLYDmuOw+F2$QbvK9e~{e`7p^Tb;@HUdx=ZPWN=w`M--n;Ki!Xl<^4ZS$Q9)xJEdMK#M1TSl0)~VKb*sSr98ZY za_y0Gup$luLw>sal%v39bS!sg}WZw zXVTVB1s9VxWY|`O0F6J#quc#8_)OP<``*-yi^PV(D&*EVo3hGjpl&QZ!e%wCC`_7m zYgk$_$e~U8N&+a==*%#G@8nv#q*pp+!d>ZT@qUuR>ByvK(<%N}cMpR?y=P}mALiRn zklMOhVKFnv?Wt0)<#Y~F1`siVsmUbBl13QbX9W~uo8;sK$5|R@iY%>3iA4gs5vWdg z4oPBW=_!S36<&{ZSo8fKAt17rst;A0P1z5vX`5qn(M{|=qC7IZzyVgiIB_`)=IK~o z0+k+Z?Ly`kpNSYV$suE)^frfT(p)J4XlutKfhf~=Vbscc(M%OBI4X+WNP@7v0(PKC zA5%BQBSmXu;8FgXY77qm5(&`2H6%3|b*)lCz*%Z}ftLNn@sg3c2txSc-bT9R@*q5L zuK`Y=r6`69jYn2teDMrFL%_(CGqc6TSV5eEaM~lx(SdK2doo`E9A^b{(H#&h;z6)c zGYx4wF{Z$dxRE@*f<7x^QU577t5e1D0P}DowYD3&{@LP-2R~soTRtAZrVt!3$$pXW zzyCf_DU!ByvSFJg3mO&B!Q;A6Z9)W-6%AKTUWe<|BUcKm^%O@Da+e~z4zj_yP-jB9 z1{n|KALB;u)8oJe9j)@fTkvA7Vww)_9*c76chU~0rBFfJ>{%)J7G4B!Sf~4MW6dVIyCK$e8@7bh<(34*!d!rfsDz3Uz znjHo^s2iizY{#P~=SsiE7(o!9$K*K2^R#uj?RMN5|L zvW9c)kd&;k$JvLJpR~Y&6VN+6!3tlyK&$Ox1dE689YPM&Au#}v1n70bI5jG@Ttw3U z3xhy>zv$LE52#U2jom;VRR?)2#jQ`)cx@?>%pL(b2u&Qc^O=#YkCjO|Lo*RwB_0Ta z!*qf!Dh4-gS!ZD)IS)AYqC+zACWrLa1ofiY6Mt<$UAgh}Q0l^lHzhRHReeDS)ZidP8 zV2|HwPpoS?^mV(gcAME^H`+Tw6-sfl&;k?NWYDJZkM3rIEC3ZC^+JlrycV3o6WBd$ z+njRjG(1fbk=#c=?J%>4zBe)pzrKMzMrYUq>tK&?A#a9d2nEE@CFYDSSB-8DCgeO? z>eYyf)*Cu-EoI|NsN0(Lf=m%KGvZNb)r%K)J> z5zRmiLCq?r;c8Et`F2GWr$BfInp$5V3kAs;SCWy);#m`l`tJC|?DI##9vnt-%kf9T z9{rZpp9On7M*Y#g0x$7;9`OTo#n&;HIOrwRKl~lLjI$5*J^yIt()pvFnsi|!QPdqa z()pAA%{ONNj`P$nuF#>US#NJk0F1ILgzF2A|A!jULtP8{K^`!o_vFuV5A|nxKO-tn zD}&4P&0*cvb2t39!+#MByV%r2N8kk2lc*j%f<%cYj-V*$tZCi#xd`+r#NO*Q^T}E1 z;qN+be@*^v$j`SH{9=*K%^UE|8Go1qN%Lz6&L7>>MrO1tuI9!0eqYT8q#OOi{O>Eo zd)i<=ge9*1*UL`#Y>{tsp8uA!sEnNS^9311*;f#Q_tVn3B?kDq+55|NLE=8X_s^5F zH$*)#d!sOMiH;vS0z;oV0!NW2jvy(l&rSJDS@Ev8Iv*Y1Tyy7Me$Bww z&2%rRsfr*!7gRS#yx~mOedCMGbf>BA=aKgw@s=}PcYPjMr@|e9{`!`C?>@1Khiy@9 z-r21@YZ`i$LwO@Z{ho&2{iM1tK5q`WEgE(?(@$KJ!#`*WzgFza)b)vC(?2L2_pi}{ zXRM_m2);ESc+XtcJ-KOj{Jpcq>*@yI?GAg5%YE{)6~0$?+0u7J={^j7XXWpwe&Fx@ z%qDC5no`q|FoaPE{FD~ zefkik&Sl_w8BeiAmx|K-Yh9J+mp^}PQfQDtFooOE-T4UR%+UJzQ4qEM>gR_YZR?~G-K*|K-}$Yd1D%!R zp^tmF@XJ`;&*ph@bJ7qjoWB%A`=XrYoqnEG%lY-y`9to^;`-(DTW@5!#5&pPB0`qi zH?Mxm@bj{X`)JkuxjsFg#^@!7Aq+a}Uw`n;G0%?AUsBl_#hw|T_rl$GX&(#FKfbi{ zT|@YZ*PNsC2R-yHtd_K(Y0-L1WcOF8Jy=ntqINt_;!j(e9#d0GSF z?@~AthoIX;%I=N+pl>4Omm*T$rvlF)Qr`Eq>xh&%1piK??A|&n$!m#}ze@M1M9PaG zuOL#MMnEv)n@IUb6DbLV!*Tw!Q2&KUd3KR+SvV5^fpqU&h?FGyMCnL~hLKnEC_DZB z=23q0D8G4>FXK_N`-bN57xnHoOkLlk!ftemc9ZndyPHVI{?Sn>Lcq&xRT^51R_IdB z71PmiUm_+k3S@-m1INMKE|nr&tw#iGs3AE>nRu|WovpmHz)3^*-E{HobkV}5xE(B_ zt-cD06?&kE)nL)eE#%B*8=d3y<#Zx$H3Nz_=5%oH_n>nhXvUe!F#K;Cndc<@vtU;4@lr%ILev-Be zIxQI5vfRn&Jm6v_hp?RE(`>2NdTQJ40fODc^=w#D3u><fLYvy3AaAS?jf{|*6z8UxdAr=%6P^TM^9B1h)*nu;jl%|cJS9orunbR8C zyv7|1sFt`1=?Nbk*D7mbYD6Tg90w7lIw>`9wVvroSO{j=t}@E1e5+0E85bdRtH@cM zk`hk_EVRV%nafn+?6~y(xomC;V>*Z2;iOU}JfGpv%2V=59IL&zp$kA=JFF0-elCHu zPBSb~s1U14o4P^A1~3+_4Y-&y(1fD5Iw7eClibXOB*Qm#t+6mppJcC9!aer>kb&$W z-CC=`A>OXX%47^1nSub`g2N0&T8&lI&vvs_@Q_ElSTBC=A2)gbHS^tP)Vxu_gP z+YJaT9#mxPFSguqkD5#D5T|81S4M;FK59@UY;zJRZEMa@r~|NcD~aTJz$gVyGR_Va zN(Bi9)PZ#rwK0*AdX?(~4dbYBUGG?4N!n}$XvU6SGICOJhk?KuRcjYpJzcg^H1XHH z=|LcfQ|;?Hl-;Ah%WuS?{AB9v_mnMmS!+ZwyhG98KeL6jHO za)J3KsLrrU^DKyX*9D(c=3Z$Iat6_j_g0;(L_; zw*mWy^xUGwawLSP){VrR`))Ho)#mntZGILlez3kU(=a@vbUaKR>&L&TFZ>ICvfrut zE*tr#PzM2ZaPnJ29RzeQ)Iq>+4Rw$Niooa>0Xt6d!MjwA#JfUwx517+SK%A%_-bIs zJu2`Vu;ZSuT?=-gcfpQ6LFM&e$1l=-F4)lv@*1#%!V&1ZOV%F_c8~*_Ls9-V*nzwb z?4XI?t496?chFDOjf61hK3L;QyyK+e-+0G2-tmohys&O$$ZV_1>y{i>*Ns$CUryJm z5l3yb?u+zn87ay)zLSTJC6`I)u2K*^4AR2_GwC6}llk@#?p4b7&4^6dU+|86JerCl zf@qDYwFTXf0L}v*xlJ4IHe?=l_>QWGrT z4I3QK1M(sYbL?rAj3CpLShv&pa7zPqL`p|F4;-mr(gP2KkO@$Z zAv*`9pj1&gx*ct(zFr>{C~l4614T^Duuup+-0_F~AoHptm;@7J9E~}gUZ7xeNDiq? zhzo3MIjzV#w6>@R?qN98VwCWkmDWQ%SrJkx4z|bH(f4YmnmQ9~5SvSy%8hzIsg${~ z-c(SqpB3o_oyqAGjab@db#*`jUVW$Pv96vq5$W$6x&`&L=z#tnyQQtp65 zn3Ti$!jTqea{6V!t-T9H?7ApG*B9d(L*2LKtxzJ%X&2&4%ZOUjz<1&%P9^=EAGVH zYC0(%`wnaFR)f%E<U^n&j4AAeY`~w7DjBKT%UyR?=oIzfHe2!9_b>Ws0Z1xUZm!Zno0g%V1#U} z2I8D-#VI^m#yfn}CbhbrZ^uQpI3y!$z2W(B0%NKs^o>i72{#Laq7-lknL|vSOn%Wqrlj-o5$!rv7j-J_*$cmlpf3U^yM`p zyT@%8{K}e<-OO{3Pk(;R$o%9Mj?}pg;<;wz1CzwHH6y);Yex1PR{uFQBaLqII?ZF< zo6n>~!tcV`yq?VK<(r#X_}0KZC+y7s>7V-JpUYM18f;z5Rl=yBRI2yjDzP8VReGwJ z0QR#K&4YyiI%?zP+#W4x^A`o`dG+gH3hTQsy^QPh0!0&2e{(XfM@v?I41ax`r%o3{ zehEo_tKs=dv%9?eKEnDSqqUd)>2J1BNo@6kzJEK2<_x_R&!Z3=U??imZ ze$NH#i^_cGf_<@Eu=`Zt8M$EheeK#@F#K*V*hK?hn+x`JD-oDV0~D5UAd8fyVIB zpDe9}ZA1j-c41D5y08;5GpXz$Xl8UJDLrl(D*KJFTf#z~(A>JH?UDxfMqwI9u_~Fv zz+#$68Mf|p=%`{4jg%23u(KnBAcDS8H~CCfQ=FAXF4JRfIqV(8H6Rs4JWJTUJ|9F% z1=KTR;Dy0?TA%T0ujyaU4cyWJq#o(CL@N#GQa zC!j`q&|MSG7fwD(GY zmRwaRJ00q1@52l2o&AOOelYzIQb)E>=(%0&YsJ7AOVH zmBuZs*mIBhcmvq2d#vY{o9miQYHU6?>SZaY1;MiQ1MP$N=K+iMZu?+;*1~t%2Nz?v z*2I-C;ZWM**AT(wvye4p5--eX8?=7g^XSzzg&thp`qI@d+cX zLWmgxH0%o)r{UoN0o!OH$6A(h(i%mLY|$>zF*;t+BnfOMqkx9UY-#uTjX4)@_dCU8 zB5P$SF&+&tT3H5rOtJw3UV$Cb`Vj4X4HL8V3hMz>{W-LEtM1wd4@gV_7t@U0&`9Ds zrr-+sme?h7nJdsFK{m!LL?#>KG6e+tTC!+D+_*kQq3Fr>lG)ML$+ni*YPe+O9p;I1 zK3#})L)Rv^)wKgRL*gQ1V)IZ?U`6s1&4_~wXRtZqmXRonEfTHy-9RaW<-nY}^ii6h zRy>tS z^a0x}PVRYIK*~;FO@P;Ug(TMc0Ur<1Acc1IOy`D^buQu7&Xps?N=yqs7^2c=vHFe+ zQh;|(0(qExcz-nU`{M$4Ur9dXV_FWtS@$CC(xc8te=tNCE2?THh&P?RN^;-@bM5ru2pSd98!Nm9v(6e?E}SnnMxE zW6avwjiPiiE24qzjF`|#ZOor+Rv@7+6T~sAGNJ2Gkn0dn>oDC^ep)Fbat3(2Hq-|4 zx{rMLNj8eG(v#zA4&4!#DwdA-scrC+<7(JKoV(rvJt}z8>CjM+KgT zcij2fwRi`47w_nC+PA+lY$yHekH#~;moXHIKEfxV4)5U;{JP>A}S z`~ExP@hI~hqfwH03&?~1hCIF@k8jB1WsnCiM~;$t`t^{)8)Gbc?<>CxCMFm zL9IfQWm$~{&Cv-?20YAYYbi_NdR9QlVc(RdwUl6NtPUn3vTu;3w*rqrBSFoxBfTmO+?L^TnHl9;9Gh4vS<5{%Y@Fo~n>ncnF!eqa2JylXrp$7s z593YG=N;_Es2U~{cB>}kk|B%15Rb`PITq{rc#cm;Y~n}7Xx~VtShx!vYx2aMxMyZJKaJ>v6r;j%Bj+lhw>7oZSlc=cYec@wz-a zaHKJcm1ZTv2G&H&D#m;}*TVETECpoafuiJ#hi13wF%;D>_9RFVX&ymFn<#2)8ft2& z8m`1326$U2#|CDG!dep-{9Xg3b%T2cnGI(Yl2?Or%cMq51Fg#THw6z?NnO+$z6!Q` zRa?&&J26Kx3m*;UiMN~ZhccCEJMw`QKcqL*lu&lb>adj7@+dnPbq?tK@(|(})AY7n z1H?gXrCb^#nk-gYL5%2jL)ry~&OCmRDJq=9zH3Fqf|iLTAvx)t;9)_jOVcb)@q&}K0c+#97b97@6~OsP zAu(*C81T`in<_%oF`!*4FhCB2B}Z^PS_gg<5)2P7=!WC!z0|6Uj9QHM8EQ~$oJvT{ zcpj;s<;=~=5GJq?P15$_^j8&B)`)-lUqN`TQ!sj&y` z_B5Hr3whQ99!%2tNA2fc$9=m7rVO%1F<}JRt=ARM#40~=!{G!PhLe$H(F1QV8!7Ol zpvTEXDcqtglJkJUyq1y{&+tkO$OAAdfJ`vtNuAl2t{h~2$yM15F808Lpta+Hrx>wp z3w&v1Ov+RBf!?{yT&agaDfV?2d3U}R)beOgH~~^u2C&P+HA;s5en_cg#x7L0-Hj~Y zQ-=*iB}o(yw}mpNa!>T(HEiPmIv8ou!W-m$#p!kf#(35`^9CSkNd+TovjxZ!r}dMj zvqxZ|#r6`la>UPaC0&w`k;z!p#<>B(%<#wVFQmK7Hv>Hgd62J%Jm~j< zJm_!M`+2}`$m8z~dGOR}hF-Kf^Q=n05jE@w>?-{>H6i6wpCV@ZK!TJuT+;YYArZ;nJ!$#MN zH_&7=G~w-7^crX+4n62-)C4jhCTq~G-J=8+O-QI)N{c7Fy7%!-or+rkF2^A!0C0e< z`ap$r?HMGa1jRRIoHJf`Js+ES5I{l>K<9Y5!S6HA9rt_P%)>e~*ScpbVb5NvPdfT_ z!1IHB_RMof3+^9~>6q+KO%kWe(s1XB!9X{aF*lRMZMcJi$p0MHJMS0XKH6SMe813} zK8(zi2cIq6^}OJ7Sn#%te7*y4z7|`NN533f5htiihv0{fAfdl{xL!vd#>k$_|D@L5 zPqTVVU$)Zo^$))Y@!tHx7tk&L|I1ALEgAXb4~QUMAx8H_E_C*5|B7pKp|yUt*KwV+ z+sJ-Pr_=d_Yn@KVT6{;RgMT@vLr~PuCe4>aZ}|-Zz1Ys%`;9BK6u&fv|3qH$qyFJH zX)pTz!CvkeRt7^qNDP0ai(yuARh0hf3en(8$LkNfTV;NQbRQiR?)_EXezttqD^Hh8 zlt%78sy4R<24ClK~?0UVE{GQMmg^BlCa`S#xJW)gLlWpi9>yv*(udwo)@=D)31NVsl z{h(T63NJ~>dS_Sq@d;VCTq*Q!sGFIWPI`qlyh}#TBl0mo7UgxvEL#=1r#%FDpLlEQxZ@g*s^%9kY&rMW%$K~g>&gY|Tn^Ujos`Dp! zp6>+PFYI}~UOJBO@##3XJP+}Ht2KYK_4iI$?Y}g(zVg>!SiEcU`~I+?=gYbt1po22 zUgzs&2z5oeKGW+U?-uU}sqdBh$h#`&`Dot4eH^XFCH(NbY=3vn7SUw`QqAK)JldHP3md!KKa^f&l=rGo|^pQ-ZK4Y{hh`rp{#)o+7;UxUYg zpg4`Q6B;9IsEf=RqvNq&)LLqD6)zj3o6>i1?t{hrHrv!SooZ0L>(Jg?c%ov&TnY>2+w zY^dMFe2Zp7Kc)NZW<#AIuWL30VbpiCp+CCW5XNyV12NR?W<%7gnhha8y7objv>JM} z(-1`w*jscOLcco=eRmrA?lknWPD9M1t|Hp&I%{9qX$S^oLnW7M)rg}uTKC<_w~Q3! z8{f%8$CAq=biEWr4}&DLHFB^?n{CLXNp-A)?` zVA;@pC3bu}U9_+{+71>`ZmmLMh3+U~mAW&zh4a~Lr*oXXG$szN=}nxNQ(Q_zCt66e zbv$76BR{o|m8?@nF4^Y+MFlaS`5McF861`dgBL>w9U$m*pN}YaGWIktJ`im)Jk{4aY?+N8F!>t9Ko zSM};vafA0Qx9$foc*9@}#s|XfhO2I-D^BYcjD^&spkwEZl;^oD61MCBkr7g@iRA%V9|7 z%WhH>f}n6{KS1{@e>g0Qn6n~LOoIwQH|mV!M<=gZCMRkL_bs>=hP z^mt_wg1G9eCPO4`0eVh_^j4vRj4+$aaNpu)J#LkxE&3v^ z64f-EYxBv@CHJy~_yT*_u7~r>Wli`$I5@e9d$^(8fSDRRy6;C}5J(s5xrq^Z`c+|3(F7(sEOCs2@>;3pyTkj(Z4X24Hth*Fi#EPV7P>_Kk zrcD5RhtmwW96O9Nk=Qc$M7gJ-G0--Q& z0W#=uMtBjf7~G6rn)bf8H$Y^FaXt}dhz{{3O#=YQ(M?u>QoEOKU<={qw#)M(-X%e9 zv*SFK$bN8|X!C;87?vkc1z1i)CZOPhZRrDh5XJcMAZ3vPjt_7!Gk5SfnB9ngO;U(+ z3Ks&~MM(rn3*%s(4UMP@k;&y1BOOskSaAMQC`zi(*;t#LSQFl-A-&g6DGB5RH=fM) zn@Vm0mS=1}J1EN-_O{%SSF+8D*QYjh78f-h(AqwW670J;Aqw+a`98W+jk3^md_o;d zr4rNN&#(a(+l@2rl5wZ#ZnL8hzfiz6M}{JGLW5<^p5qi$jsr&TaT87<@U3>jMl!PT z!DC@+tUTUEA~rwTk_XQZ`W!pW1f^Rku4Myc&uMdw+ztNYG&@gf6A!POtO|^+!BoB$ zjC{>gb9ce`4g}sNj((gwo7+>;1~8j~Pv0gxxd*Vjl(Memsng1=&dLdE|2_$j@p`xd zotomIZ1VVY>46>tY(zjuKK>}61~xo;9!qKL`jO~11*SoSZWD4pPIYl^sPieBtjCqn znxxw`0J`qyq)8FZE$U%zuA7|M&t)2FwY}G68baPD(@?$9`p7g?ePkN?r)L^s!=9QR zt7cfgpJ|A(ZZi$>l3p+yfFrkcBg6IMC7eq^9BWf%bVPRKN~Yw|B!yRs6A%_quv>Fd z4;NDZGeZj*_|tf!X3J9WqK=3a6dsv-3QAAx8oX?egK-H*w#$6z-7o{9ZpE zx%3d$8qplE5fVCVW)T9L0%ibkhmUcr8o%jo9XG?m|O$ZT=^B)}NhC&RSi^PJQC^i@&0e~C@+o+6KW2zaLLIn6cM zhO%}IM=ktXPTUBJ``Ly-l>D=@4PCvrgKS+uZ|?1A+)7V)JE*tzc2E$8Ls#VQxJyF+ zw*C$XeBkf6iShQ~@3=mH$0HKB%-`|ou^;qzK+q$9$IVIUxA1q|VfVZJ9StI{^LLO< zI@1q-#~Q?`T-$EBqY@NcNGJJsyph;{}%og28X$@}NFk9v?1`50}T! zxjfkEsyuo>)l|Z zI`R_PLuW?}Vwu{?X>1rnloYhVQ9#f2<}aS;AyyDwYS%rZB*Eyoga*e0#ctEWfOM-GtV>(541qdBXgLT4(`Alyefcuz0}t z(*qM~3*J+5yfA07v)ja|Ld3)gp<{71I9B7`rZ<>iHh}g_7F*8CLA4@{(TbqQ1~jZ@ zExul|!!eZ=B&xJblD4JXEMw5hyS6d2SfrETHmKL!!mybz3 z#}2>m<$RBGb+Jo63-Z>49EfM6T4CNa)@6AO7bikJM~-8Kq!gT3u~fZk1!<0`3aGk_ zi)k^D17@gZsZWjrRK`w*iaFq}v&Mu301<*Do5*m^?=~}Gtf`yTXkUPU<730sLEj>i zBnVM{Zq5_YnV;n4etvXCaOP1I>xUIiO-7^8x8WAxRJ90TT#=!JS&hqM$YA5`$tD(l z$gZhc7tpYI3c%djf(~hkSLtCwMqDHf#j#w%+dm%LvwD zDBv6lo;nW&V2}3_>rE$>eyq;qTwKzs&84)S5iu#3gUz1vv4T~$vq8@VqcvBort7op z&2;CCAYp-nIhRKSvwYYZ zoN4(Ymq$5I8kdJaph}TS=k3`NB68Oc#vdd6aHXbeWqG0-@O5S{5Oq!ba|@ zXYa!vS@_8$t_B`wV~{amNpB!%NepH75ZJqgPLf-IW)jC%O+zka4N%C!3QGP&oEAjK zU~?LVP=-q!NY{2_E}R#~qqH3N(8ckz;c~1rxvgV)z8G?zGoHw@6rC)ag@B>RgxPXz z)S5vx+oOTVSS`SbvntTuiZp$4k^}W>Lw)(U$q9EeA4(bR00DSnNy?`n~(ygeaG;mSez;=y{3RZFg)E}Uky+{Xn0a5 z;0~Y~I}tl?X7|?S^w6SJTxxhan9eW?rMk%K4OwxW4e1fU{Hx*VTh{+HmJeyLA-{(J z>#J6x=H*Yfvgzjd(8wVAt2OHxw@0&gd#&4pdLOq(z2Ew9dsH88kAJ+|W3|w- zW7QPC@Ago{4`@F-xtZH=s61{7qe_+SIUTz^ieWc0mW=2iBW#+ zMUkb~nv%CIj3i-GNyP+7+UYI8V_B%YS|KNr+_9=V9j`2N<_KePa2Ap!IhC{6b?53L zsTJ3)!YK2Bm~U2wgs+DVryTQS>2VaiPPS)4Y5}UTidR8S2ap0s!FJ0{mku8eQ%lBl zHzRsNxky3^K>%U9pbCaivuZLTRNQck;j!L91`C`a$2z(O_T4F*MUe7_5Pu`Ku{fjB@9PZEh#_5vg zXr*zTaA*hr);E6NH8ket1m6K%#jti2NT3eDyB*Fdn?)lH^gwTQZrS z2}6lstweY)CUbpRVZTP?ey#;Vk~d#vKG%XEZ$pzk%Z5nsc{cQ8--zFQYV|f;=>qB3 zCLwcBEaid|Ifq%eP`Bxec6KHyZE5bwZM?ufE>^2s2Kbm9hD%y*Mb7kpVU#` zRv28Mn5p86(b+Cwzfd1VAonu}5|?uokzM2QAK1HC7glo|^9RM2~)P5dKIWO!OZ{(0cn`UBZKFJaGJP zH@dZi!?EArt2c}qOms(jRQsiCDU_t@cH7X{Nqr zU)DT`_HmeK1k;N=`RW8yjWz*)2&V6YgZl__4Xm@l;|c_1vv+@QQ^p08O!V9E{BI^l ze&&q!JIj&lJEQ%JU*ECaE7NP#tI%uUKKTwG3_|zaPOqfy>pPs-gzNjzYi?Uyw_c;ZUavtB zs@7{B5cP|QU4>qQVsEe4ygUfMNS%PtK8e0&THg{8?IElHQcOf9ePz@?POjT9p38BY;nOxUSsTGJ9=+l4mIL zMa<9}{qHwwB|nAs?^mWiLlD`Apda`u@fwi69NUY|xi>>VUBO4sf6rhgFxV&F@|!;B zrw#_buXOnn4+au{qA7p&3VOa-6Ccv$*Gd-zevt|N6Qm1r4d)E6WiL(ip|||r2)e!_ zdC;GDB=65VPWSRw;{m)&qCdaZp!y+PekIzUAsFcsFMkO1w-+uj+6U3UUldEQk3jEj z2mj@#^q}iIr3ZbS()$hx%>IR6ftmIX2uA{4-zh!lk36OKUY|z%#;yG&%AAT`n>zQ$ z#y0^8?Bg@?OPK1_#5eg{TAvZ<3d{`<`nKUs;Ga5@_%-&^ZHu=QbAMzc(cc!{P1KPVJR^T+m^2cBZ;@as(c*!QiBZq%n72## zF1cjGOq;`q-&Z(q62g6#9p5hQS4+<(I>l>`?_qtgi5UN<1x-Tx@Own3_&Wwof~ogb zqc2f7i9SO7{nYti5uM@!G*GbrAUOi?I-|+Y90>n`eCt0W(5~=6`0o>F_gawD3-auT zk|qCg3HA|T=_A6@_rZNcSbERV{aZ#@f`8`FIZD2(1pD=e&L3}UnzYEDeo!j3Q5|mW zJya*<%P)K9_RWqPW^U5``W>2SCbetvEwzNvB#ENUH|+xF3+>lHLo0LHs0JTq?T_p( z@*MZm)IH{2&42&XzMKB zk4m+06W?kqX7%vJ^~860-4Xqi!~-TQBf>Siddb7CR9402&VfHWb{^(*u|g27^?yTY46- z(LPbrdOdfaoVp7zOriu*cf_fCf>UJ26Y3_Ljq7BCuA$#{wITR=D%$_;uiY+dOvX{@ zcBOSxFSbu!J#JVNnIW`-nu3KS%HvPX4_zZ?TnG*Rp2H_~gNC-OFKv%*eo^XaOdGi# zreCc8{(N8Sl88SC$O@*m~4R?N(+1d20v~ItY+s4XR z-?Tl5XYCqo-dEqY1Jrf!etlDJTXc=9O%gPJ>(@RYSgWCe=Sjf&;_TEX9&&brmmULd zU)dsdhe#QxU&^%YPTHV*MSG5GCb$lAq_w2Q&+-X2?7^W5$2r`FQj zA=3O7M1`wIZEf~oWPxvM{qWmX4FnX$?zQb&0NrcuZrWD^_dDl@4Hh_sHB#34l19F_ z<~`qU3(3}I{p3?C6TtSmfq$=AoTM3NrMs@(y1u)^qMhj5$!YHFXnksY8cD-r(_?NW zZq16Nu;b&|?M-rfW8eLf`E1lOn%h_Em1!mMr{=aE?0RCy(QIeMZrk8?&YGUzwQVZG zh_2=3#%n9TVsukziLj;3c69;wmhZRaj(2pzp_PDlvJAMBc&+f`Yq4Tm&Y_k4o>Nai zQNw8XU87cfl`bI6;s{LDibX^DUpeBZs2;uMr~j*(@&CURYB&06qeaxL{)TUVske}| z7|GoK1Xi;3!q1Ho@CCdrWl{VEg5&HzrMJ#@Um$|&Q*~+Aipwv3466(0&$XO%t1q7s zjHs6jT0fjdpPPyL+=$&8Q}+()ql#9~_|hz=sODFxcWxAwhO+;SQ%x7Pn`&K;;D7&` z4^oa{G@9Ac5?x=C#=_gPHv_hHK^-vl|9bPg362Xpoci^@jUoEwYB63b;V!e~*;Jbo z+=yZL|NWne{tpH2opK|Y@*F2Ldh6rMAvgosNEDcZUJaF%P+_{TEB2TQ3*c;Oj-xX` zkYP@hPIcf%!gz}xbM2_$Q@RBRrq~kq60FE5pM&I*;iOU>$wM&~{W!s?;btxFPt`0) zyxC@X?#*YRIav~Pz8Oo_dWeq(@~EQdm;)lN1*rOZ5+%C@?DGT94;&SquE*J)#VU@c zVm8-LONPO054SZmJw-CIrA!Sx)dEC0Z?WN;UHC&~UpOX7AuYh!Ts4#bGcSoNs1$1=jYB}do&-o)F2`U6ky{(Z=(Sc?#n>K5c?Q-& zUL&SpsE-E*vd1H8<7($5g1l~)O&UV^pr?@*WRX3l$bmJm9@((G#By(9?*!nGg{X5B z=75_Zu~U@nbK~3slr&CGda>?k^>6ZsZ`Masxf12G0?$u2I4zbZ47JVE!5H~De5SQx zx``$gOG1F0PYK%LMSjoI`&kQ+7RBiZgr+QboDwn%`wCDTWI3%$AD@YHP27i^xkgDR zT-b&zIm~)DJEAj{IgE!pRl*g+bV0dC^iGu0(c!V$4+CR1#6*pU#hBP6=NK}w} ze&QhZRLHkPm4a1CohC{mG6Q)xO`P6fg4zHAz#g>>2kM#8e1eR(BJO$12HH z^p;C?&SA1YHJpqwS1>`Zr;Au&bByJn?HHfz41H~bw4=LexL5a17{r`4#L%87F99)G zZ^IPSTY%YkzTb>FG6M}a%8~da>;F`Qwa7SRwu~d~v)tmThj%Uz) zXkq(}V$M@kLFl7h5>*Qj&2nIWn5VX{3grRkA=)yQByfNya(1I8Lzq;Lx`heb66CT9}k<`@)W#XQn@z;6{iW6I%%IV_BAOk1RBoae>ii0$2T3vg=hWFt*a z#jNL3ys*JUJcM@CZA4T~Ev?-KWZYZ>l3) z>@Yl|0uv3UJpu4V+bb2tq-!@GJXNDL?W%F(?|VD(5$ zEhcyfLg+*{-GkTy^kO9+_9CN^4V>>TU<$3X;k9Mc17QEUrpCpdzQSQ-@V1$!RF_%Iq~bMa`)+2}Cl zQajDkLkketxT<^x$Dc()~6V96eEOr=ta@V~9R!c=>qvJbc9C9`n? zBXv$>-u{K20{Ap{e*z#{_l`L@;iy>YaxoRC{qtBproYDkn`@K~?tlsuV%LIu?KQHb zs>gLMbd74jGL#EjjH-}XZDn`O1z+~HhL+7-e{$*zIdyXLdbs# zFZFEC_p;NM_SSd5DxNLGFWvs(KgH)p`~TeO(#?6N$7(17{=41ey{w9IHoCDDqM2i9 z{(V(cJZWdJRz>Mk$2JJiBekBESpEo=B;6to+>WKaF+WsXnmJojCV_b=4F=;J@uxOOG0e~a zPvv;e2E2p>_TK_p^f;<&GM*&wbE zC=bEX(>3LY+A}oWCG>z@g(Jbx3!9^~S*Y$fDcqmaQ|>VfQ=5P-zyzH_$c!)P=;3P!YtS1u4?r_XcyY)Unrepy7dyqq^{Znp9!)6+O)le}Q&lclqa(QLs2Vpfu6 z$2NRWwR2;{2l&BZcAEvdJSP?oA6UFP3jWa8W=i7D_4x*3Pi83Y7DHQS&oX4#!~JN1 zDQ8D7iVY>^i%z%QPDFV;TyM2Gwqts$(-20^;yL3Lyd)t9J8Ll>;1fz8Z5U*dO-!D3 z&W4sT)EJ$^NnDF(8b!yWGkPL#SNU_|i31kE20S%|amyN80BJy$zxMEyWSUCA+S*E; zlEO=R!4ep!N)j@)M@Pd>p_zZshS9>D;IqY!MB-Im1gkN8$Pc$~0eP`(p+h8KSRtb9ul{ z(mB7{YIrTB!YV)Ew42Kj;l^;9wg7jYXKQ&RBo&_z&;IZb1)wR)&WPXXD{l)BHlA(c zF?QxqI6)nxmqfsx+UOLPt;MtIyBPxaG=C6rHrW9L084=qrbOsb0dKs)idDoLLVZs9 zz&#N@^&08J^506I`>glo`Z4LlSQJ~??Mh+h%q_rsBB;HXi>1#!O1K4hCoR5S&R6O4 zte_atbjc#k9nitQ5fq;qqtk!?3jXci*r@*P{`G0&`F>-9-!yU|i4JagW3=x>6ar&G z(8-s!>QiG(x{)5YcBP^-omoi|mC>Owvo)5S8;R83wdR%1ZP6NB8jH+VGfY!@?523i zA9nQ~4hq8HckpmDUr;~c;o#ob!-3!!2II{Mm}~HJAUK5K*t_^S(1(7G&RzWB=eROI z$5SM5fuG~4$9~k$fj#zf+)&_a{T$z7_gnoOH;BB#&rw4_LFB{F@kjePu$o4(!2rJR z=RjZO=YUC~PsZ7E-VPG$Q;mn?1$PGmldpDnGz9+P?)Y$be7HM)&fP(myPdRlwm;+U zkY-9XNEvY92(;PR{>KBxp$3%>N%BnQ@`JJ|3KiE(6(lqbKXT+~yE+$2aBy;Bd0NQY zlFqVu5?LI3n6h3DLW<9BV60YDIvyr(IVBDd&ILB5_fB8e){ zH>D6Z*}S4wt7yI-9r64ka4akm8}3ZIMao^3tNEJ zFcy2mJ!YdhIaL-i3g*P3w+=CQB=~x7ps$$ya-z>ir=z+LIY%5&LDcip+13}~UImX# zP{K+>#T;iBnVMqZq0|G)T@|O zi;O}Dc{Fh~c}2Sa&)$_KDUKxVt6(!P)kYOsSk+_QW)l0puP1mGzKCN`!lOM7Vo|dwfo`cB%MiWu5&GO7YS@*ihEW zBqA0>iR?|pN@Wq=DaD{cM`l7X$>$m|gWolWf;#Es#6pg0XV^$@UD)loXk#N6bJCRC zi9sGU7|-{k<3zj$q|#i_W0~14nRG@Mv}$zKl4m^K)H=(7IA(NeQ=iWlT&-c$xKyN) zlvbSDYD>xBaGqH9%0p8?4es?yMVD9ISi8Jj@2M3+h|!F1c#*>6C7*v;ZWit@!o#jOs5l4IxR(uw7RPFHbQtA?B;WuO{Xx+ zrn{?%+7~*)BG^+_jSU;N)z^9xlp|bf2b{b5RA80%dX=av>%_Ly$&XWJe81G#J~b|? zvvO+67}?gUqLxgyD^cw-<~CB}$6aPd)wFHD zvm+*xNn|=p^vCPYAlE9;Rc)?iIuSB!G?M$qqEjwV+rnlb4kmggqSvk9YNlT+x7P|$ zANNy7ij!j{l07*bE%B*pp%jE4BJgmOE2Ggk{&_oq$`~nNEXYAOO7^Hmbd>Gvdrjv! z=ln#gS|g_f(}y40aCDPbPPEqW;jvj9<|-E(Ea&^pTrUqkCR@M)uqo7u^9D`WyK~il znalTc5Kh1M4T2xwM6s6-JAqs?oW)5RhCLFno0U1VLEz`N->lQDYhjP5$FK+V8=nyN zu=ZO&!yen8VUPdyut&1AXl7em_~B;QgW;q^-s&<6dl33~Gp!~xUXkLmIvg}I>C~>E zGO=X1K~(f+)a;S-ra>@~{AL=8L1m7 z2T_B&6yG!TPJB`@_}QwU7AJH!$MuWD?6lL)^aYI^a!hX5Rj5U<)><3w)qs?k@m3X7 zjS?AZ9WK`wGmXfFW7bMBD2*GWB#w&88?M@tlJz6ge;!1*s5qRTcPf}0)@jBRvK>>% zFm18N$s>w%)bF`jyD<4L=yaCN!IXduvm11``_e9oeqU@bZwmQA4YtIhPz8IKHm5(_ zCV$y^0V3e)&=!K94Vz+1Bk-S8#A=_ljl@yN!#b||zCs>ucYT_?VQM_IWbn^-US+b+ zxQ9o(a<7K5sAkm+ES?L8K(IdAo%EIKWHzK!7Pm*s)AXmX59=t_` z{`P_QrXHBQwJEQQZtKCH%YMzg2Oi)TWp#qFs&8|2MRVlY+V{ceV_g1T{6eGX=F|Br ze)T9vjEYxxtOM_c;*NW|yrF#PmDWe#$e#?#@Op6M;e>Ou|0*a08NOiyq6~xHfW3FM z0jQM|C7-b3eK)5zoC+VJ(AmXwCuoxKY^8qB{rHbvK4d8T0?;ZS+^I+?>IGv6aTE#B z7&<#@bM#ky~C+)#0>_KH+16Z~i`3#j6_J+Xys+-Xm zMZKEJs=kKK!dM=6s2*6d>xb)`~a@y8`G-MHeN8bZYfc|3%6lHFVR9S_0aNln0owSBNxoAWGVSWA3h8MP-Z}SQ- z@x^z=*)-*`sXbX^-J>}Zac@WG_wexvaO`v_?sZoQlrK&^;B$7B_Y^I@?d!o`*XzcG zpPOiRt5O+FAxhSQ4#y53+!i!VL7p8zaGFF~09ENKp=P27@AG&$8^5=vVgQzcgB<+z z=RZ*@T7cJeQ5nkoMEvW|e+4vg1g{+g4DhOcND>X$DVG5raKS683CpRe zdkI_91A;gPJO~(r?3B)UVA>eJ4|h+eGzDf(149Cfrdby>e*4=WLsgwCyf&v$p}SwF zl5VIPyq1qPWPS@M{Ql4w%+vPuMIkuTTo7o3Wjsy_$OVas; zUzEUX@{1H&G``JM-WW~4X<*S{CSH4@svF|cHTUm39XfRX%11d$rwQjzq+~9j-)kvf z|1{}FGNwTN>q`g-VyHmX+j(t)FQ{nu4UA|&kgm*lFy+^xfJCmSy5W3##LFWncldW5c-}l}XAMj;u;$WIGT<}$iO_7VMN-5vF{d;?FoJ#w8kZ!NvE!s2z^v%p6NxaaORs{6u11y)}f9KI7AjGRC(D^ zewUTxWg~RG6=*!JU9dWq50arRxsL-Jy$3e*Ibfj{v=SWKOZpb-iem+F4!K0Zn64FG z{=5B0gC=Pg7$#`pekK25p(x4HWPxnn39@KB5{f~z&?96~Ivk1}utg)G_z|)wMTX9x zMPmsnc0Z;Q1_mkQ#RZ%6!V@dLZa;Fw@ePPt+Ji~O%SYgvWZb=&4d| zn_3RnR94Zn&Y(eVyBk)@8Wt*2b}?l;``l0}NVBNCRfv|6?X6oGJzW{~(h9SdhVjIB zI8DrJ5vAD>CsL)CjI4^?&4vUWAj`9Lcppoc1JQzGoljy$PD=F~%ZRb-kA)aD9+rgx z%{9of*6wlnd~Q{4@w?`3(QPhsORXZ3lk6mw+b>ydTO%U#EVW7tSte4kU@$vECp+tN zMkAH%O1aUvw~5P|$;Jm{I2M`i2Zj6~Th@ejN7`$(6|*v!9>w;0x;U$~$Qr?JOg)&W zuo_jYR4s(F>26DG)4=_+rEYMKM$TU10bUR-pzN_Y^yN-@5iE%j1$tAbyZCwIMQP%Kt^OH+%H`%FVz zDkG5>mNivL48&JPsIfEbt_6v+Dnww$j{fUY>FNznY>kpMa*m`$)&l|6H~KG?8B`& z6B`%i>tQ_B)96uL;wshfY}y=^f?y4>ls48@+Ogp7+R^8S)OpISb3yPi$`Q230f*WYAl zBfOoVxuO3<7Z&<5&_R_JU`q`=>aXY@+HL&Y+Td($4x$9#p-6Oi5U_m2t$kPmTYUq- zb9NEfuy_6*oboGER86cCOHcGrdX;a~@M5Z-NT~}ME5hlC7zOr#z7ZRWBi{6J(EObK z3a|S(MX+Koo}#z@22{bC_KlVxjx-VI5S)Y}kMj{Lh~$YB8DdcNF@LDdaS#PP>Ja~Q zcX6OjFZ~?a ztHQiGJ+RcI1rLo0o#TLoTpX_Jd!1nF3j6=vKwJM6G|KQ0lxL5~*gkp?=FEkaS0{{P? zCNWaJ2CSS0NmN8&1ed^-favLxB7#}?i{)_$;E81H0$+eP&M<)q_?k-(VHA;tky@vZ zx(QmfWb@unf*CFs`eoA{Ap`u4UqCZFDqJc-j~Lby3R&&3P9>F~e`M4lX; zNCbU4zYTZ{d_PnTtKR9^4MD6en>Twd%cgF?D=xl~gjX7TB<5qsLz`e`qt!sEEq24x< z-~}Bh6s)TXUNz?N<{N|VcXF{)6PF_9l}>LeS~761;dxYFOVhW#&sdUu+QQmjk={9^ z;+7uXc>ROBjODp}$in{tH|`XUGV>HiijpJ_Esw_BH;qDlCEf8%Ka$vx*YuEI#9ICx zioNZ-{h|n-gAJ;03mP6Uz&qvOH%=EFxT}X~V%j=Sw8SmgZApp<^Qirz3A3pEq6KzZ z3a?3f|3(ih%;|{|Cqwiizo_A2J2(rB(@dCi{4eW93m7{|nUqBfQ$cxM})sL}7x zNuEfm#%sP!Ml3%Ip%Xqz3GeL7Q>SqE9bSlCeiv>=U|ih_TfjK*yDz%}h{YHb;&uTL zy8}ARfEbkl>MS4gHeeXxb{2lEoEKomV-o9IfZslwzHm?Z&_6AsLcBR3Jbffdzx|EX zBwjui0qlhJsw35=0oE1x2E0`kPaux1i>W7aM?{=Iq!96>(F3*t|cs-Y$uKLJdQTR>RlZ;mO=i8QgM;O2kILfj&GcZ zU@+{U06&{y*Zhjt6R^8Ud&LRij%@gPGs4|hemx26A`F&)49ic{@Fy%w%I(AT*P9ux z=v}WjF~ltoQA1vy=W}9b2sktsI%%13a~Hi;EVQ4X)-CdwK+4vGJ39TAkb82(3;X8$ zM!mN%qrop*8bi4oKnVEg>Xijg@RpJR9_Nwk0U`3OUcU#(AIc?!Qge7TmbRjBcnG0u z$~>Y49pN)thlWt9$F;|BxK7%FWPxwwbeg2nZ+OuS6>^KRO!(tZ=wVWoO=WTP{NxV{ zHOB#!ZL_dYJI<#A4+pVjHA#T~oq*q<4O>PeX`zZ+FFWttTjL;dt=OE^h)w%_jRV?= z-`%Wn0GYcaTKmmQ3jm?<`&)?Md>I_B1;X6tLo(6X9l_)MmILK(iv+VefD1HxE8i-m zT{P20E9lxJzV>tDFXND%V!zqL4o>^cAYMG%Z|>|6IF29SyFJ5fbbi9Tn^u03)smmPhJpr)TbQt^1IvY9@oUR3a?fppRy*dRR#af*F>{gYPa&$ z3dV%6@L!%h>+Y!pdV0pZJRuI8S6MhlSGukfdJ_Y}eCLHL7<)qBR zFB>YXWfP;1t4+od=#y0u076JuPpxsaUxihlMGcnwu#zaps%pT`42{GyF%9(5rZ!S# zm^xt_?D(N8Rv+GGfi*@~M&om{L2Osu7XE$NASXC>@B8Q>8zjP@go&ToAQt&6*&t!k z$tHUs8zlPVY!JxYCDFPl|LAv`4MJHkg^!v7x5Fo#NS>Y5?b}|Pd1dCX!ah%74*yh) zIu)p;N70(GmmGTS-u3l^O zQ++>MdNlXSX)#}FugqQRmv4f&6c+*>tfSvUe5e#IVPSUoElvFEr#>=w;W)yb!T$mP z0RR8&J=t#R%9g)kP*#u4zw{iyCzT*!)l0{S--4DTspgE<(}J<5R4!XoX0N`r@(Fl2D2B&bw(b} zdYWK>wQk{W75_GP>yOo1gZ*f_&}&|uQB;&pWFv($VnRpLDyy-T-ql$=lAtIm7PGDz zU}~VN3H#^F>cj@Em4PrA8Vl5-4sMGUy!G4p_6VC!uFhyGLd79~v@ug5XL?iCdCqRB zZbK=$1EsALS(oyl&zhov?qni~RF1*;t2U69F%yA*5|ULVUMc94d4ds;C%$41N5kFNo`d=q?*{G8_U3rVMup@js^gpIf?=Z*m~K9614#uMYnU4N6=FOEImF2Iz(50`9%dehx?t*OVV1;} zBAT2a3dZb55Z{TMq=Z}BKuz<}*ln)%xJ!4e|8uQB(%%xC3f~f({Lm#h;TT+dbi?K@7g?Qp?z`UjyIVgw`9 zMXM3u7(LcBlppkt ztdpS;xYi-*PbU|{r;}|&zno5{y;uP8fF}b!U!Km6DyzrE(BQosqy)`BLoxn3%duyF zhZ#v;5fv{-7D3~86=Lygf}WS54H`XtCUJ`RGqwlAi0*}PeW%FB^q0oz(5NBsk z8zXwaLDa=jh430|gaY`KkH|aZBN9KUd@zB_$8s1%K?c?Yu)j1-5ne!MyC11>8PCF9 z-h+Td0@k4aI;wU%@wwaGUgia}-)Ig-&X{A$S@_(}@lWk`_I^$hO|5%TeGX{&d{*(` zeO5;qy8|}KaAj@&DK#_o@)3tH5x%3)#HT(Abz8H4+>SqP#~-(&3w}Rt#~-)j$(XkR zBY3xCB7AP8#20icdAEu;y-hxcIedPH#E;)$DG)z?2Mib5?hz?pG=wE z!uOLYv&4<@R6h3eWy+vGoQNLVI!#XN63QyQSsQk}IYAs}5JO`~)_jTJyqK-?Wz|BC zVw}?&Qd5u&8f%@tpy@^xcN1G|4_4=paa|Q&y_~h-k$&H}8rK$mK|%9WH1K_phES_( zaAaO#Kdj6Tk!JqGDaxzFYOnDWQnu-#pc{%dgKGg6h*c!8E_YBs`n*`&6lnu#R2MpS zbg^Ul_?nOhU`xL_nObn@-H7{=fxp0%l~hmFg?z#DSoRoebzg%bY>WVyt_LN*ZT2+_@kD!RATh}{)xh0Mg$8?opN+m8v$ zEVj2cc-Il3nSI9A!6Q;=bSl+Kwpr=a{?yBvR-tv!*tiJxrn12iOz)gy9@X~yK)DM) zgE#QUVD-Wq+b-1Vg=VI`>5$#QY~AyD?t8iI?KLXz1LeLhFh^50yM0wV*9X_WkId@6 z_fzoqffYw>JE6Ji<_NCMaTMKLZ&vQwYp}`fOW$uV zH2XjFK?JPgd4ZmCn=2N@0btT+MSZJ|Fs?5H;*oLP_NJzM!O{U#)}H3FKXC8aM*9P) z^u2&O!Gu2ECftRPgRLp-aD5*y569O3VZre=ySF%aKfrcdW;!bY>wG}KrVq4*G{qbY zJ)afC>3uSF@FKAp#_cv(hj!{|XnL%{5}c^;uR1m+SI73IvD)94K>_o&#QHoD z7c|dq@Am=={Fpj0SB?G1w$16D=0_&@FIn-jt@AbgM5y0A?X*6*Z#ztel7Bbqkqjl{ z`tP75pr?4Ul0J*)6`5T@!SZ(C=!=8&FDlUG+0#j#FJRsd$o+YdO$|z-Ml4rO9a^0# zV2w8imBd6ahR{T{Unh=CQGDFGOt>X*!tLc6B+|_y-Ibvoj71vt>rPAH&`;Nhuss@o z-&xlIIW?rluix^iOKp7>7--c;lD2Rg0Yrtcr1AmK#rUWJ_v1Cw?{{25*g42B1$51E(3*1^ypFbfW){ugWvI|Um z#J#)&GC=9`IaEPG+N}P1Qlcc{uPY)(Q3N_l`-RU^6BGgYNal}w;RQ`7|S8*n3J zL6|y@03&p`bGB?3Xk}Q7AvA=M={tr-hO)GK*T9o**6nGFob0o1Q4ZE|&RYXtU(iM) zC|IZgI#~})c}<1_9~gC>;v)QQkO9w{+nvWJ;Uapkd|+IZgM##B4SrsmK@ICAZPypL zAsd+Bvq1sUB~}!J6Z$dS&3igG^eOmkV3RCJ-Lbu`Aa8BG1ODcL?4rP9daV=E%@)~J z11=a_#5xt*C_h3m+s%y}+q!q*j;dI@>jit>tVb8A#KeR zGp^kT+8FMbuRsqEuJM?!gZ`jKX*=$5J9qmXU_4QI?tz^?)Wo3^-&I_O_gH-~`j0j&x8Km#(5l$TvW!s_vi(9!}#LaX#5 z37biMMKQKL0>(gIYi}1B+0}j<2)pL4I%uJhK!q(ByN<&UevTy_rKt{TEF#HJRCFD` zxOb70j%!HS)hCIGeW}V_hkREJ#>0l(+e);y-Xx=VhAsu!Q%MY2scVYT z-p(|KzMGOpa8Hy?X%{fw`rh5tx=M|FO7?LWPm7oMvBuFBGFZ6)U!-s5VRP-0o zLM|EXI3(aG2t3eN4pz|F%;G@BhQQyAOQ^z$z!x>xJK`ss#x+muD^(mK2bHR zbfpSB@@c`|;HR{@Kns5I-J3kF3p}D3eSxev<;Xf95J1HIH}E-8P>X^nBDSH=P(=cX z1CEx2DvO7D$iR!JAmfS6Ld~QBgCC-gefVq>N-^qu>GX4@w8^s)4nF5ze>MP zOtGNPY(Zzyym6g0HYFSrGcGXdR?^?0M);btvqG(^V_h6JxTJgsA zqD!Y@_Ja7rJH){ic)d!dR#apIt(L6L3s3=MG=UX2Ew5b*j}su!LJKf#jAmy7@8Qzc z{9Fqmz@0i53K(za0SlwU(Bk&2ZBD3xi*2~S_YLFmBn8)f(HOftDt*T)Z@g6^QrNzG zBN4Xkx_2}9YApJ?H%8H69A8XzElIlH73Pa#u z^`n`(AzHWoqEm^;-)<#)KB@VHPNBb`E?g;$#?73Xp_glLNH-sVzxQ1E^=8l!+fBcZ z2@c7K7U%Cyns&WT>@b?%8;#{D7@VQ8yTNvOL?bv?a)0gn?P66{CSVM-UnrkX5Jgi* z#qpp(yp4l9eZFM>;CxBDIP7X(T&2#UATViB#lK#Ls*Z9NFvp`1ndksX;pF?B*x zL{=lL*h=g-bpROfj|zBHrqECZ04L=NI$;NW5-2_rw_WXEiOwaFkrnie%lzF`621bX zu;msMFi-hDz98*NTRjCVPqF#__&4;F^5d`6l(!IeUv#Zj`V0zYZ#yf!#ew_6z*~t0 z%M|zogXuXR!56fHJbgzNRs(pd>)=nh$iXSi0EJ|cr56;yz5v9a25oy=xW+F$XK%mYILKl?@N?^3=)>>6P)(R9OD{M;vJ~t}g#QZKb z@y6jB>0$=s@P&^v?IUXjtSh3s-W_`wqWkRiGGKcUHHWEgF+dm-JL02Yy#nG-vU#tFa>Xo`2gdd)K@wB5Rg+vAFdm0DIpXw4;+PtJ?cY zhi~T$&Xj$_8GGNijeIAL*cJ`<=c)$KbeY*a47%A@GD# z^BJvCtU*ZZj8J&q)R37zS5Rf>399=Hmmn4=G82+8bxt99R^t>Iy=7#eDW=@R4K~0c zU}K?&Pha6m*GKhDRu?WpWH}(h+bXh=GK(7B_-n!Iku5Yh{2$rcuV6dq$o6ux(QZ3v z*ITL&vxBxIA1;JwuW|FPJjFLjhjx6w#|%O{E$|%~g!qe-K8U|;Bo7`VK@eBLJ)L=4 zg_5}OHf`CItd@c}78jDZxK}}TD8A-sg~bCVjRLtRdh5S5$A;iPSdvr zaoo<}Sj#v;45rC@I5_WH5xGtsWeWW7B8>MR;h#1a&pfLj6%z_qKFS9tuQJXBF1Ws$*WM0Tc_Mn%p6QN;IH zQB)@PW2ih>G$YP-q*$Vj(v}p<2%<<$FYww(B7?V_oa^!e-J*tOmkL>EJq%mi_xn09 zuH#HJMaQXsP{P;ps`J(AX06kQH=R1tywNkm#2F^#*6{;=VkK8JlBAKsMoDkUXf$SJ zl6c7zoj^qH;3{Q(Tg@7cIJt#rbI2)E0$sA2eXG<@xK-2?UFjQ_ydsfGzYix2IZ?D8 z?1!fCCsk8;pzE;r){s>#iP6&&9qCN?0aDO{^OrEDS!HT1sVvkhm`N6qi#FB+UJ@U- zNx-|49+$w;Cu7P@v9^SN7fNH>BEaOCW7jL$T$}00qCT3nHbeV}x6dpbn{c5$*WbXi zU3+d?kZ(gU-n_?Wqs)S}D55K?{J}i5IR`&+N^gb?2MsAMePps4fcmW>TguUJK4{Jd zZgIsBa|)iiXt-o018tGMfQM|^ul)r}+P>seOIu=um&vJ%B>=AmMW|;vmdEB9%0RyU zXPnlNMB}mDrf!j{Sk(`N0vU@g{+S}v@Q+T@ktC!O+e81dFB%L5AJx$+54EAK+R|{n z#cuWAXhls^zmX_iu%a-K@f!OZTBmSny});)Ddv)jsf&xyP)gH@%Ot!q5qicj9f6;Q zc*RM_FXO1?`~t2uV4A*heXgo^$i3%X!AC(`(%2!2bta)E~G0wb5U#%p;Mt#ObG zz(RuBaswfHbqabun{8yWgG?m@e=3a}Gnfl4asa>F7qako z8(n{-?#7(l6yg8=Ls^_WKi&1J^3dRJTFpi$k*{U5#sB!%H1j(}z3`KM23A7G>x@O!|_Y(o+(kS=Hs0*Clg88OilRdYq3_k8^lLuV^obd zGq^)ak9FgM78@HWF;Cx2viZv7zIJn4R?DKQ#Z$NaUioDUZbootFGq?LUWsCiP!;|}k|wx(#qCq^t51X1GenP%_Kc*(`4`C>}VneACOn~iZo zoNGk&nQ{{uq#hg83@$O%`5<=N%RPy=)t522=xHL)V|i^LmyMhD^j>fD z3%8YaA}{4zog6!zB$^{RnMfv{b*WiP0p>xfgX~?@9CgQS<1z6v7G4IaJ936QywRTk zUma1S^T&K#N<#MMNpe!lydA7elx&qr8V%M>0}WOcU4M$)h+MfguF5we?vN|rzrNOr zqscr|8=B|&akt*=Kb6?YRCs9%=Py)gtd{kBSCDG#Bh{TTeT}I_>)D#DaUG6qq@p6( zCx)g*W=ip3T;exMX3THtcSd1)H$r%KHp$HdAt zy*nI`3OaFbty8LbnmDsog8q{ zSfUl~lH0{+++n4WCFR!iTpScKnOr81<_Eg@T)vrC zna+%(n&a*)7UdpidPgtaQ}aw?+^SFWF>ZW!FU@lFQ>T}C)Ek9?hC6&L$-@jiFLMGM zg_t;%$o9Cz8LDueE18vfSss_?fH_Z&RWe!0L`$G+Rt5H`L?Br^&u)G%u!?BnVG}$5$;e*sOOz1lX>d28$)GSFH^Ci*^;C5aMT-%YV}5uh9W;P z#O?qphI{=^8b2h8`C`PBo`++lTomK6NhJl8Y^;Mj>`1rugpgDc^G0sap{jWw=jHCheNm>tW4AgG&gVuF+{)5(wb8E+;|4p6DOG7^YD~&Z8s{%PlAMRQ1))?m_!@EkHsgsd&Ql2E3XsI^` z%|vtZqKS>HG%AXaMmkx{A@Eyt9CpiQ2O+4Fn>82Xbn^=?G)+#B+v`O|Cvarm5{ zmH1nwVGQT_mq_~&=t)73l$23q5Ht0hT;d-`QMuQZhdnbNX$Wn8q$Y$R6~BvVuXEht z{HaLl10hkJsr_>kqBg1}#WMZS>J-PbW_j9sk;l-cD%PUBmM@d>PLsKf7h8z}BiFNo z)-z{xo6VMVx;Ztbvq-m8}5kC_I|NOAidT6d+%-jV^8j8Cb~FVY^H|iJ0l| z@Ctu8LvM)|(dj`S8J3!YPZIiP$bdz*3^Gpz8E&VcJ^c&+!+VXNjg6O$&4QKi8JfZ; z2ZUuKPVJKt)T_N?uzJCJ2(-yq?kv!^w?|RV+4L$QzK+ZgIXUNaeT};J0NLhkaE0x` z|8Oj7S3C&EruS{qMF{A14afaD!)m==)JwwC=N(elSEqj+GMzVY!7aCIM8Ve)V%1ws zfP)Bqo8lG%Lcfpt-4n<3bz~Ri!+9%$^LYo=QJO8^Ufd|`M-VjzB!&-wyAH* zoL?}PzTs|8T_@zmJ36Og`^NZV-tSY}(&ZXh(k)&G1*&|Rc%4Pa((ZU2I%y|OtOxAa zp;C*09jCtgF{TLOzunETxDS!fzj=|u7vA58lGfwz@AoUm43@-+?d&-(yH!b3{IrO!opZNt{3Hl8tZ> z?mJQz_UJa0#Nd}}yCH9|^TUq54#sf*fM287$@0!Z$-Xs3$PxK8{ZBrbbT@6$w?{U4u=!nHtHjWNJ`$9M4BP0TMA>yY|Nk5JDAk zBHJaLXN%wC4C<7&ODGBcNj>?3v?{WA^yt8lx_6FECI%5Y<-07G`aOpAn-~yI@$_R8 z8_rB!^xiIyZy*nTX#XDo0RR8&UFmY-$di8+g*SGiCwdG>;`D5H1eb4ofbWfsf9NPc zwvc2=T>dlwwFmD{1&1dENf4w9!wST*M{fKQyHq zf~062m&75zmMAmosrWVU>%cI91`?#bN}@ z>i2-m*g7KuMgtvH=_sNKQghXTe+^WU!3^2#ks+AEnf&V@&lfV8OsRB$ui9W_qpJny zAG~^GT8iBKb&$zq*+PY{PcGF!Tj;Acx>M#0r7CxTODEMeTJ~54ZeuFCJidcPFLGN1 zZQX<%Wb+Qk6-|bhRnUgTvY81FoI)K&+;xEupBH7x;-Z6z4q{6)`Zf(UE(|rujo4^G z08lk76dTL2HS5R1q6@_2vED+4a>N`Lvfp+oa@ecM@zl{23FFRus87qWl&#d68SI zZNl>B+JxCGDi+ES{^0YIAI-iBF9>~GUp5)DMIKj0>2%>Q4vy{~_MjgZqJllkaod7@{r3Ls@~qN4yKnsK=Cs_Zx3<#( zLIFL+oM|5Xi*r=MLb9lOTsT8QQ^&Cp6Jn!e33lJaQ_I*$!Y&L(u~8ce@fn*PWdP#i zBjxll6fGb~RHj7uuAPdFTm?u%--=IjDO3~jodLh5$JZ{PK|31A@oE1!M>e6S_qF(V zNjKLDtwk7OUCG3Bw2&8*&7?9+PgnnBhFt|dp;!!n#+PO*f~t-gL1X%wsvu{m%vgQH zfY+ezgKt1rQeb>C8uxdRKdlwMyYFJPl^^2%I;(|&e#bClCD zyEnX_eFNj6Zpx`Yu$e)_nrybXHUDS%;d6Q8vVrj)il8>P&Ax<8x-N=Z>m5_*A#=+T z2E^c+*A`PFOVWFWZV@k1+thoGRiz2)(knJF7{Qvps`Yy!Fc}sZfPD)YkbpR*W(+kE zKvM7>LfE3q>lh zJrIhjB&d?p*<-^do%1aeDLVOuA~n^TaZwcF>*8>j@xEcGz@~F1g_Y;3q41x-{|74~ z@b^f##lvD9Woa<^uE(VC)`v04g_Rr=bqxp{tCTu`M1)+MySTEv+fxDTaVrs3E|)gG(pWXbv_(s zi0UJJa|kPo>Tkoz_^cBh-afveQT8kuZ7UQW)!fq@>8LwlV_po39u|kyobx+CQRc! zP%BAJ@0qora*l1|aAanaf-A}eyJ=Rnta=)$jJvbD%Xt^p!n{ zDNO`cSQ%MB@mgWA7*n3xA^hPGcYmb_N#&f$+R(kgx{QlYF$ah?McjWKrufx*c}G#m z4vdy}C94CYC2R3^U|SF^=hJ-*^=4GOp<57~rM&Anavz=F%ACQs*TQZ^ucz*|zm3yi zpch2v_ZI3CB2E?*(Wc5> zwQ1jE{xBUE?P2{EJeeWxEK}929T&;b3Z!1+wHfYYBs3HpOF6t9f5Kg1uejLfRsK)uzkYFiX%C6MDYN^w@csN<71iX69o zqmLrT9jKs+BF9}h$|!Q&)vKfq4{Jeo^u=9Ks!f2ARF2;CwSeHU4F>#TBN+Kcy3rNf* zEfyZN>vRLnTufzi+jJIH66eXU#P7-9Caip9Cj-q=Y?@q;&K|PQwhP%*hU2#hy2N?x zEAe~mlVud{>k^Dg;+*A`_?_izhhjd*x%)4ZF%(yQ^Vr5S6lYm3wN0&9O`M~@8o#4| zJrwiVWI?gvyC)ch~8vP!^P)=kuQ}}+ng;|1Gx~R+zMVzpbL@DlJq$=yf7bM!&dMtI^PoI}sKGlL5n39jXq1tj~%tIwgET_DK7Y=Sm0fhHj+ zIvs*k?|?CJ8XfaY=8KLRYU{e~^$HjOZSHxTRC@LEUL+hfV{}@mIVfudhXxn;y^BJ3 zMKaK!2O0uulC2x?I?v%poZQy=BK{@nwypQzU6$M>7|)X*q}h-c=m)9buY(eYCD!TN z_~(SwRlj!!YYcB$C>0Uxa~Y>;lCGj$B#uj{FyTC5`Lv@DNUZ?Rwoh@Kg2&As;Yx0{ zvvZ`f6O?!-Rza*PYnFe)t=SH^aWRWYr*NJUpvmY!fE%F$Dkc!#hzbmtOlu|4RU_<- zR@hcDo(&ovEZY`E<6N^jhPKVNDp>w3&vtowYU6KFp!`}JHRzK>6eRyvk_8krKUb35 z#HarG`+uTo(c;l{zpJn)Me8q|hLH9fyu!tgmMtH;++a8>w}7(nqU2TUhci;l#8R3+ z1_ia#{lxqTo+peWmc)0SFhbrlPZ*owGdOz&d6+g)Sanqpi4@|{4mvv|mGfe)-}Err zGhqUG&5DIZui0`h3Xoi^l#4qCq59~+xV&v8KF4p@+qNqF9l&i%}8NwRa}k~@+p0ERUCa! z`sfBAX#L11U|%^`V7I#$ytXPZ_jzEft%{^a2ga>{DE7UDwN-(vPn6xN$aB(U=Od)= zjfCGD2|v$3s-_MP8w$-i*l{zkkoorn*REsgeNDz2p^}^wng4ty(pw)qLtShg)?!1&VJ(i^Jr_H`o%ph{LUq&6J6_B1z93 z!1&uBKi3xe#U_1otKA}b5tCZ{5tFT`)z}?iIPRP<*~RZk-@1OHb$~^(&(#k^-wv=C z9bj?0H*2ZG!@6_YkwA4OQ{0T~DI=TiaEQ2hiOvU3aP^#%ixVtjy0d!{;--^zRqsK* zrsj%GhZ|~>7bmRmN}SMdDDzKYzXl3?40wy%ZC6iTP_rI?P;=K-Fn!VFR;GR7k5wja&EdvYDhm3&^2|OnkzCLZXioutgyZ- zu|hvp@+F*L+e|TioV>theb2WD?XMH;IC-xB<1gU)|8_g`{;p+ zZpy&KDvhL_a?7?LH&lS$u|9qspxU_%#hdOWUDZw0B=m36ktU_B>sIjxI;H}4@&%CO zT+@63(|j0PQR7>3exQ%l>D!K@_0g|OVp77eApFeolOMkM7dRGqvq+kbOZ;YTqQO1b zs_8eTuD546*OQLQstrsHP6koh7ogerVzsL)5@4DD&J|&o|8+1lEZj8N6o#0=N0WLnBTQwC{vuWz$Y8-I!<|m5du*a)a)!_W{8UnMZj~H}`JSJTY zPEZ3B>DYviAb<%+xJk~HODIbVjVGFQB>Xz)+O~0&PFqqJ^aLxV8$g5iV0Y*VHvDOJ z(hl5uYMRSr^68$SXawH=#KMx8DXJ#e0@F8@rJ{O@Wa^gQwo{VcOY7}6>@eve)Y-5c zHiN$zrY->sDgRbiFbHC-qoIZJ3c)Y11ufW18GBUGM+m-%tYu&(kw#9QAum|?n{YI0 zn?3Xii7sGPKp~GSK zh_=KPo+$V9WC*~c!7AmpEU15TF4|lMPFgH9XhLo1sJ0_GM?_XF_zMkrN14A6lnw<|>1cQm{HrIJ9Ys6D zce6P*mCYHGi?(hYWwYecP?7EK5f8t0@sM+rPvz0|k3%@vfYH$*4{M$)l(@eJilvB( zs@UTr{8a^i^(_4m$?6c-?uZC%dKC?FkPU#;BI9ub)x_&M&f(>Ghggu#EteaIkkiTs z#FU^;8MESnLw9&NLc`VkQ*g+%6=`K5?(Jz2i0gk14hi$Iz){jwB-c)RBtu~RI=HV} zwMyl-Ts>7G3EBR9E+TwYu zd3#@|H7b?k|M<62`L9yuRT{R>9?$Rdh1+sR%|BmcTA8YTdQy428(mz!oQ!gJC*8qo z?wUKvw3?4s`bWA@)cU2NGFapZ>X}Nb{rvIszNJ0hJQvFS_SKmnU*sG0^Tw!DHfm|Th6}t_ z?@Zn7K5^=CT~T||HP@7{?AK~;R68yi)&AZ1xl+lAN?yFpT4Vj3@01>IGh;Z$Tz+(N z7jpGUy|{cGNRP!5j|*(wU%x*MwU1oQ>}aR<`Q7N+x^34l&h84eUafUs6-L8C^Iae3Fev5>4iLO8K=c;(x7+h-SDlSkwy?%RZ9KR1g%8hRSXKnC&(`-MT z2*Z)`dZ+w+&72I3Q>*r@^cuor=6TGuO|Fr>sWdcGycg5ArL3B6r@IY>eQ%N)KAdsZ zwVl5|@5n!2lv=0VzAS>bWA(Tt4jwYPo~?`3?#Ia}+b*3nWs%FBHmv9FyILKd$t+*WsYwP&5U+;Re#`L^LnWbZa++&Rfv=y%WU?z_w%+WutM=?WzbK{X}KYC=g+ym zawB$6(r>nwmEKS8)4=2nX)vs=;xjJr?6%T;I!|AyoqD-kE!R;0KsR4b&p$4?`>~j5 z4xY!ktoS&#?yZyS%t!fl(7GAba^m3Xx;Iwx?|S~x=vMB}1zccRzN}UX$~FJ+T0ecg zdA;gu?FKL29b5IQ!sC6hq>tM?KX@&*`8PP!4qN41^&$r@A3OTp)#+`&aBSwX>A~sM z*fMZ|7Z=*?`|U|p08h=g%a8WpG|!&)u3p9W>ZyL$&`+w(+eY!_v7~6n#=CJ=Dn6T! zZ{G^bWfrJ#&5R{!;5+&!y5am~T&NJ@XawCXwQnt$h>t|}7uzyjXp zA6TwmFu?2mtMN9h49Yt z%x0SG^SJn05nE!KtLmBi;m>wi>_44rqek((WPfyeT9!!p`XT*NuUAe7&*x^Adelx{ib0BlM@ypY5ADpn( z-C4SFXElbkGjY(mgb=K2(&ObBFwEzS)_Sg=kDK*}VOAmvw)kSce>_|Z;)Ok^@t}I2 z=W_Qy(>Ehf7(MfF%x*m2oM_Kx<^IgL62;D)ex;?K%;%x5H0w8yujjej;jnnZoj(zM zC}*F}O|jJKzR0ygxpjKqP_DYKg_DaHX>8Xr`FiQ)=WYK|&PeI&W~HFr+2+erO_N^l z&YObLmrtHMgVKoz6>>o&HT-#MU0sjU@2C39!2T(|{xqIzPml7&lPPLu^XFrgFPx9c zO*P#)9cH*TD;&QWMWH>ueI5x`_x|nmxRUlqZl(w2G;mNYK*@h9t5;IfulQD7FfuJR^njls*^`Jj1HdiAL##-9s4 zw?K@)xqml^qEqNei5KAjBr8ZKjv!y}Psl^C;BxH)ef!zLB@!MUFl|Luk=LM&3`$eS z9)$J*GF*`fgUnJzgVSheNB@cc!*h)92@TDJX2MGN4x7Oq1BRG}BgaF6N_A!mq!c`N zK$DBQDnYe4iGJ2bFGoSp)4B>RA%P1BE zgKh$u5#Tq+SI%hto(N2aOEI{_D$`R&u)NunG|Z35)9fD%3j9yXp1H;S0YSwGjHK!o zq+yLM8}!g6LVb>>^Dnk-6ANLG_0Msbr2=;F% zDzt#152qhM{*%#ko3RWaDQyMFDW6Jv1^|Or;;u`xd;*8GsY!L=6xf8l9VKQay$4Q` zMO}Y`Q`k2?gB43xL9iVY7twqrM9g&@KyWL9=F-QdSLmcd)+2Iy&V@NIK`b`Xqd(Z*@`G;w1<$h*fe%o?+S);5H*Kw_grr{zK%Kr&fXn~JMxbQV;wrukY>*(^RBWE&RL zQUaj#_DrZyLZvsMLdjGTplL%haD{3dUFQhZuz;B%0=JCDXbVM2jIB+UFrcz}LlL7o zl^|TRVjg>lOCm06d@3$Vbi+X~Qad-H4$4eN?UO}N#Q#MsZshtBG^Veq3ffRDyB;p& z5p#fS5w{ea3=H6n$!vrXJV6Id&>8Ow1En~9g+iY0`pQ79{Sm;v4@FP|RGKUtEuA{K zc~DYTzZVxNssSz(B{r3z(P5!zozcwu!tswvTZSSPdv_iJDnlz2t-`{_iU>*3Wu6K} zYVioN2uUfLWdk9$mQi_DLQz`G8T~bokx5Z)k=_*@HML@Tx(Y1x1$o98pn@J+&kQY^ zX_Sunp=grYml5^uST^+z(4bKyGx}%@zy84t^}Z@IBD9(Ms;w9*v}_o0%s^f7CpM*M zsBx=G<56jdDk>4S58Z?nnwCfkv!?G0vJ79fVRhjvCb6}8f`y*;35sV`U^Gi-)=oA=VD{rrp3=8jqCUv$EZ9!Hp?N|O>Dy!@ck`?%zw*le3Rjae1S z9UNdXN>+adr01L4e}RyDu4)V_G88Gg!7~*5D4`LmSplFCiXKNZ8wCM< zPz{^Y#c?$+wl2LeutdnmVHd;(dpe^h6saH+vv7E%nwN!Y8=dtXg4Bk5S{i`Tes<8R zw0`l}L2M51{B+~2lOMiuR6!$MQ&X5Y3_XoWbkP!efPocbL>(`U zv$1vScq6CYMG@fGktZ5fh?5x3WD^PlHKn1Oq^ucdCbagEjXh(ILl95um10iyA#!v6 z$;f>ZRmkd#7I^O?E8YZd-4vTNi2^^NEJj;+qfWmRlolJC9c(K-s?cC4Vm+NoSB0cS zl@l%8oZ1vLt4$UE3FrLNV6i$D11uZUGR#zX!MvQ7T zQ7}rrfzJZkTI(D5+#uv>qf{V1?bvv^ONdq3o7a}j&%K}aiO+6a@le{q$NY(87@4{b z9e?1&W@9r99;ulQG=L_aLcws~NYSs=i_?i4iWX%G;ZU@y zu|b{+h2d;Snq?=U+C;Uka#wm*+~Fn4G|Ic9cVm>9(G}>HWQSY3qo`_JEt|2kQgP9& zjLD{AR3I|#Fn1YfNrRrK3LVGB`{(cfU3lHsm}9wh6R?eqxiy)W({bB&>_311A6Yc9 z#3>UPDl7z>$cvR+J*fz{$KJVvOJ79C+L?j{Bpc=BS|Wr63!#Vc|CgNVG;~Kax5c-=`f^@NIPf`WTZUPNT3CK6FM^xa1`wc&5|HheBeU#c7 zBFkEjbt5_fx-o6TkblKbBU4vC*e)S&5o1g)i5PRoTg1+?qKz6b%YznBVGr_MDDK0E zIOR86YZI?T^RpKyDji~X7fqf0gA@s5GFW?%4o#)QC*`J~wiFm&*ddhm8zoj98@0Vr zf}Lc@L7AsFa{6V9_#J0xv!>n#+F*#2KFrH3-1_|M8{h%E>_ ziX`w`YI`}F7UR8T$!u{4XaM___fFQ5V2V1*1GRrLpC+67YwyHf*}E1yIm`AA=5Ero z{lj>5?^=wr=vYM-#U;G?IsT7gu)x`8sEQWyW4monpY;d>GP)^?nRSl*WO0ddQ3B! zt@mG6^hHI!e!1rtZFqEsX_8y*te@Y%&h5Xe>x(wp-60Xx=>0A4WHowzE6QFp`P*cP zrqTOqvfxEm-xkZhSS(5QIB4oP#WeiWBZO$Xvo1H0YHfXM>c#Xx6LF)r*GDVFRIk`P}q3e(%!Xtx=kypiFbk}j*qY0!{Li$RETO0n%s6P znyg5Xtt?J*FOO&lOSG&d6YQf#kIG#6woQ}OrF(i`vsYw<58v_xuj`0R+6nfjMQEHR zSkjo7X7At9C6tD3?;5RG`zL5fOi~QR#@jk0nt>%)t!bbWp#w3&a*uQdmgGJj=?rZD zwge@(Z_6Oc30Q&~9@PZw+aym`kH!m0^}Lm zb&1Q0`Pcve8~NzZs-guyQ^4CPeI8o zRoomwRrMi|-IGP5k@Nbcw!f`OcGdr$t3%o^&28;qyE*FV4!+_x%!$6b;iz%$CuW1F zIv);OMD>xux$AL0d6MXUnp_v&KEwHS;RD$cJAFhR36m!-g|Xg8S-HurwlV_p$XuT9bls(%x0Kk-X;0LS%Iv9l?Mbonh>O?IlF=@0I&NgXC^J24d*eeJ+cSO%#%i}L^D=FD9#<(#7e79M6D^|WxA zh;Z>TIyb=Mvb$?&qoQ+emizhY<#F{$1KoDnrYFW1y9k>>rQ@+BZ8 z^*|KeCnWOM{pFw%Gt>ihQbjjqU|RTxZn))Iu>Yt4yv|hWBy=a15<7Q1mMhauOw!rn))}JnRG=8b zgd$cGb}U67y4#xQglqh=pK`-aRO0Z7K5IIW1BTD(MCj@1e(o{-Tqjy&J?x-pxl*$1TgNi+6RmL?K%^_?u7d_J(NU~~795q( z0e~KAot&TPJ{PTKN0>sQWoFyJ|No!%o#ZbFc}AQ&N7!_KqjZ z6whw6etP!%CQ`~I6@osQD3P-_DjmUwhRfYx#zd++b3^ zGms1yk^3}A@|<((;O+pf<{b4B1aTg|g$2OHiJ4W4TQ|eZ9*q6FsS0wtsS3CPW`r|5 zalF$Nw>Ca`8ZRN$#RdUGsyM@@1eanA%OQrj=AsG&3NdWp5!#u4k%S<5fPRt9?A-c? z;5J#bi=5)cTM|O)0r2LY1O1gOGW0YtK zxE+}0F*z!jvYgYUH@6MvP~_>-^~dT)s{lL}qt1~+5G@DMjEUKm#IoVyou397t`u&S zP*jjvR&h&+DWtekur(sd*)_$63%!0GZ19XK+{7d{X!&61a1K9P!0qz7uO*sXDw7EW z+ep2|bg&H++?;Rk)z}=NVqJxZ-lo7Nc)%xQXF6 zPjo}fu6G*823cpW^zAWDmSGicb;YM?l5EB?rS?fpY+&rOsZxm#qA8;F)>2^-+i$yw z$*g}`qW#5WK352U$pr0M<&uyGB8b7oV`+RoBgJ{l(OI4+oj%ESC$ zC*CA1%m^ahZ~vz^zBcev@u_Sv5WGD6pX=b2g!K&p;Pu7*l=(pN_wrM&lYbJ{8w61= zIqct>s27K;Uj+eNipvH;0R1*p?kjG`?K@d12$vbF^$^g*67J%zr68GhCDfE418 zjMbBsgaCLEkDhzu$*KlXPyswy;R3~_o9$S2FcRg8bE|q5k$Tx^*DG_n;0CV!Zf6li=Puz+*pNSj# zAWxc}GFW!>tg@a-Ar9FkM-R@+iHW%=^2Aiaj%COuBIvnaKBRgORg|bRBe0?I?VgHP z%Vi5urGJYPIXk*{`P=gq#`DFO0wH&O2DmtpyQ5pPzny9x&`Q=}oY_Q#qrd%iOW+DN z;wI{dk8HR-;a}br_=%F)(eVAZm(g3J#Oh`IMA+`=(uD7{ZYxcwVvxXevd*8)(ygfY ze*gdg|NrcL+j8T$*50e2IyZL3mUXo3nT)G!w|m-^K5e^a?^NyD)di8T#Fz&SNm=$> zP2SEFX~Kl*aBvgr?a6?*(d%QfK%xuej7(Fy<2=dk`e&kY0m z7zc)BQDDm<0s2JN=*DxfE0F()+BINrABoqG;@0#3WU7oi!|FX8mLsiy3eOJVTgZQF z1ar`r1%(c?|3ia+@ZZ9j&885o2jicXbk?rTU)~&#rv3h4eDQ|;8j{Blew~VcFjqbh z1yI9yFufRE#Xm{V$%SV=eWg_wQOICA-jK-XB>qxHB4bWgzBOOaZ^J$trOZ@^XG@Yk!W1cZx7IH6{1x@g`wpF2Lx@lQ8YY2>xE@3km=FKt`{PM z3Q^c{=?}K&SRs@~82JPnA$G$wZ#ZJ2P=U~M`Mg387g;ibZ+|$>6=ZISO^i@#=QviG z6Z)L?Q-()G?XCrP=X;JWtZ*SCoGC$ht8lrJSx0Jv=*jTDNiC?w6Wu7gZ=yC(-T-J3o8gc|A|ubn`|Qtx@P^T34QwS-Mg$VLmsiSw9BTbppr(p zQuX$ZQm-E+hNyPCm8byw+H?;sRx6dl+j2IBN?u^G7>kei2 zhIlh=-eKj+%{%#HJ9|PPy`pnu1&GRtR18;%S?}_5Nwr%Q4hCB_Znbk*o$jWLlI!8f2}yV8 zaMFpe$q7G5&f<|sBEhaIjJ`(V5;29MI5$z#z9M6u_8HZpuKw##|6hNjG1fKms zU$$H+g>RsyJ$v>F=2?c7t4;g|>z=HwfE;K;WFxH&ZP1%)n?0Z$Z5{LOv_T18tqm_; zd{WCmNu-f9GOG3OLf=SAo4VET0)m;WrjMI2My?Ibk}<}pFFLSnYMZ@+Dzh3~*8X`^ zCi8+Q`;6AT(IDy4JZ{dVxxf!H?2w6>wbzslZLyzp;mxVkB&TjE!BOeU)rEya#|xGV z;#-C;NCW#bDc^(=nrV5DmZ^<2_YOzB@rkyf^c>1wr1+s4Wy;9?S-r7Ukyxo)bj~LG zG8?qol5@4qm(=F0G+)7LN&EnZDi3RM_L-q0_Ll7pd&BX5 z4}J2eMol-g(5H&%9jz0TXoqf5KDGn2CO*|@ZQEN@5W1ytlgdR8fwYP)k#Hi@hoAsE z)+2Nfa5l07dy+K1nE9hbsol3`O!tH)FcSb_mK#wu?NdfaJSyAx-)Y?Vv)gyxhK=V~ zUmOO|g9Mh6nCQwdDJ3KzR9zz&uLoV7lhUS@kmNj{YW4`hNOW~gu&SOeJdJ(`pSj{` zb-MaydlFDvR%>~+@4GawABzUIZeEuXO_Y!hsbtZYk?xekuOuyl%9NU|amzrF8SJAH zIb{No@Xu$Um`+sf6ERt)#hn!uJU0UBL0b5<0+beDxoamaw^{}h|L7+z!CfSD=kgue zBNsdLSKEF%i0ZWd;O_;wVh@Di*e3D}W99$MtFnTFSYVEGsl=M}C&qO!tYE?5S!^2ZsfUE?HYpY#puwbfJm9{cL~Y{TsEMrh zY42n*ic7{=qG+PoJ@i%#PyVQgL9=*7oi}5&PbGGb4;2XCY(==?p^2X&`Th^jrA>Dq zEZ=h-`izbwc_1LCd#gD_=xt^hhG=WjP{3jzxWA0gyp4@}i3O*mI!OsyYD$_lcda|x zX;((IR)S0~2VJQ8^j>o%!|Iiw^ci2|1adW!r1G&YEXMCNQsF(_xI)X&MvM9wNyJih z;ekzuF_4}vM7jz1OeB#J9F-86CF=?WmLsnQ(l}zwmC;v4AhUfxo;t9kThDuR``UhWfN} zzS0)cM^rHKX(gjRQ;Aq$CY%!$Bt0EQu0THIoFt;pLehX()%FyO_q3;!P@*HTG12a0d8FdW&tS8 zSA5n;7ob#{88sxC`BFl%d>>YIV3nU~Z4@&~^`Hw+GNwvx=5ztMWKLyqsZetDNt2WP zmGBIY+}&A*MYPdLepwO5n0cf0l=`zrP=T{_D^Gh{j`cLKcfa z1e*?s%R3(}GTB}ahP(0_RPOcF-+sIPaD8!e{oBWHU*4bJUfniBdkss!g8C#_gOcLM ziCiC=E+p9_a7tj{Ytz;-Nda4JzO;qt$t!(I9n+AINFZU;)YmPk01=G_BefCyeYL}9 z&?H=bS)NEC^bihNinp!Q9XPT7#ZhEb3=m19cn&$(6`4UAaT5Rp{(avP*qMn#jApiH z+=I}xg3J_jl%o&`NU3K~L0N=gdUwdDqt7KRNMNyC`rf1E(C_vW8ukzGJey^c*&qg9^Ee;^aw{BxhYD>toftNT{g>ANDI?`>}5*r$Vts& zI2*`GjRxs_l}8c|tNrL&h5+4pD<26FFZc=V4fdr3-N`9GNYQ|x`}O+khxD~7xm}X1 zR%ZR=mra`Bm^l*;51E7~q!ku8<_nGW94I=2Y`BKKGU=N#VB7)CuOeXd#htA(b22{N zMPrrcUO{AGGXwtKJ76{|F*z<+dMN!bdNki>qbtz-J`^5G|X zb)jk77xK&UOv(^O1gY1810jEi@Bsv@od+Lrr!n`%@?0-_V@cU!yzA1S>axZ8-=A09 zOG$RLJ6x>rnJ+KTGkR2}Bmu*H#-m~UK~@RkW0O{LW;iq!hcyB`6|>vgxtVk+XO+H` zPc3jlSIk5md!-Vd^xd-Rhc9=v|7_T+zJfq$X>tYStdcRa=C*|uSHw)?MUP>+ zQgs0=<#$o1`-3Zn)xN8jQ$ z#KZQhZ<+AtoPN?ec*_U<5#LsM;iyaq8p1ZYY*QO#M#!T!UWvf=-xD!btnb74#^1Pv z!T*oGi5cdN%NtrzGIs%ha@C#|!9;~G6mjn3<)UaA@H9!xQ8Mhuc}KVI{}bI$Bmz#k zuA;S&W+X+WfkABB|1Hd2JyK(RMYjp_N}h%F zU2122A)W=|Gb#oGGE~3x0@~q|X{6ajMUyt7(}`GN^;oDpA*@_0EHzXXzl&$$`>tk) zjDcm%aOOuJnxw^|%YL4b7TdjeP=ywYON=I`k=>+yY83{rGBR1dZ<$mpv|-#UJy)}% z5%A)FDtljg2^Z`aBnVj)UfP+gwychevI_G`3YOIo>-~I2p0joT`Zshs_dV_e`V5-8GFCml&Ol^qHe7kjdrV zxb*ym9)nb`)b&)S4P{;aJlva096Ff@ckep-LBFr-uzG8&4EHEw|5IcQ-Lq65cfwN5 z0*5v$pEBewt^C`);|{F+L9a;#a$3u}+bStezjNzu1qa@zy{7qF+k{<7{_3AJN!hiG z#qCn|cWx}MKm?!mCY>O~(N_8c6;kY;xp=DITwITYN@gkd@NoIuYY9ZGVt8rN_Qqzd zW8~F6Bk+$q8gmPyO<39s&l{Bwz?#B+u5yK{lzk3$zseX%fJ>r+&E3ZDi zZF26qXHuN%Hz_vGxMWX_>E>MWhsJcDmKe`^hllU55lY?vqWd6^REizlLpV$e)!k~G za#7muUrVa%@VgL)hCH;LcOy-_HW&)m|+RanG9Ut>Ayg`Cw?>sMz zzsy&m_`-lFIYT}oLE+Q5*Sx!%Ip1C$6Z+M*9 zbrZTK6-(I*)YgZA?bmn{@B%+*8$*_pOX|8zB{+$UI%+^t*HsqEY(L#@cx|@9P;az@*8cL#0}wUY^f}5N_&W= zA>x-M^mKuJm0{{iNSiC>c&7LoRskh^DPc14l`s^O??85Tv(X&`sP-Ue!lsl^{C{-_6zDp@--|gx1o2LbE3{>@&HBg>150Lv5S=Ky2a=NQN$M zCycLa6;~X>L@%C9-qC$-j(+ zsSN4xz1$-@cgG0EGEBvz2x<*Mw~ByDJNH`J-lb> zPV?p#Vc$uGZYe=UdaEIuqgV}91}O@GkVD#WZSSsY&#GSAThfopret;5qC#s2TSq-} zt`|O&Q4y6WK#pT5LDkUf6}y&y({u}1`DJ}}>MGHJwa$1BMfyB&2=89+~NI6YH2?|!c1eTIDM$*NqcAKy+ zAkcMnVM!SUv&JVmvXC?i>a%sKZ7WHyF&d!zc`sG)sLUAG?y93;P7I7hEW3xzD7pp=x>%*t#;}4Z34zs-SDbK8TKB@ABLoN??{k^{LHj zIt=k08P25yCbh(skYpIY5|Av5R05k}o30pbR9JrbYO`dh&q~0|+ETmq3!!;-1s~;M zZm_g+ZsKbZSs%ONTv|p}Rf5aC*Q-Umy)SeRT&(Ec%-u0`S@^*L8l0XU@AIAN%ln(F ztG`_$$1{lyxK!|5In3{ZLzK9MkyWrw5*fXodv;jaO$FH(0_1v8NsoJy-~oFcux15> zw`0l7102KkLNp`9MGwS>cqx;iIQU6Cp_{Jn(<*!D{0_pc0J>la@s=DUB@J3#Y{xM? zXXypj#?k}!ixtF>2RK|o*pJCAJ#_e&(23AP2DS|=BnQZ(@`S_wg67Simb4qRNdY2{ zP?ne+mN~PiM8HGCOv0RCM3~+{gak>)k1p^;dvW6i`v8{~Is3i-M7$E08zRhxfxo}T zAa+2shKXjmqmoZoPpq-DZ3a}@L)R{v6PM5>!@GeUZ{>!Yj!+ERW=2O0J^40zz`jMh zI3osL(HZ7%zyz|%bAj$Cjr!myG*-2)qF_Pvg0htlM~hHj7pp)f3PuS`j%g@C$uf-> zLK(W5Ml1Qr-U(MxX;vaZY$XQJlc;UjJbT6bO%M& zgKZc?R zJhNjm>m?nj)H6!B_8LF2sCF<`A^dy((qOUai2S~?Y-{FQD+g?5bk-rJo{w)7RnHAi z8=D_?F*kP61qD&rbi_>@Vnk^L&Af0yE21^A8fi0Ki_MA*cTw`?%W)SaDA#jk*t8Os zoR3NgiW?;#q|91s<48#a)^?g7wg@O^wormvYD3Z&E+Z%8DM7_tM;G8iDi%|bedt2s zJ}qs8=)OWiq)ajNt(k1_>~eUYWNk@T-cm(Wxrjcr5chBP8$CLa)yzj(r|lp8`}xe9rAlGe;2 z?@Y`S{C6Itn^^yZ1H-a@d2>$Jn4M%BQD0%?xef6aMvJ}yvwPBKuyl2kjFpjrL_b`y z7DO*_{3?yuO8<7oaygf^GJRRW<4e;-~7QzugS*Oi=4=xNXBTkCQ_tk&YMVa zcWk8&B*!2+ky39Ubk1M0)jqeuH`8c^h!>eQmz!EUILKt@6;3jZR=);70xg>~^lY47 z=|?4d#c9)b(`3bn;W*9)-oWlazc0?+ATu6P>G2z=7{>OW_wzE*TLvXFoo!qy(NL$O zP~@M#yPjX#EzNd?>ph;W(~;M|rRmnv_1he%RUh|Mx%sSNkIjhYG&CwG^JK+Nl6-$GE2gb>x-JY5UF`X?)W7?><&oDp*_q~4xKERL`Tv!IKPnUci|)## z2(@g8auIPuq2ZSfO=+K@bI~Uo0e(Rh{SYHEv;TpZ)sNY$xRr2Y$E1(1nF_K7{eyKo zdo9__{(zq#bS`>yXFU=#et1c2`y*yppvG)r#T7A2V$oxmuT)(C>v<4H$2#2~Tx~-C zZagqz!dG_vQT&ZPyoBtjZsK|B2iJRlfn8HH!S((geT&-=58JO)?t?$)^pn=XTRu9T ziagt?pNIXSxb8On^Dwg4W=fBvaMT1&)!XUVRY0=0(@iFE7o!sSx6`o>=1@WMa=Or4 zM)d}k+|6`aZ?-$te{<>f5+CsKj7$NA7u_W-0fS>fHvip-z`)Hy{Hokymf;zL)B%); zXH?~w^uZ0$iF80+)iz!k(j=z+V;>iGR z(u>?c;}Q4tV0TVyrflVT39^LpqWp}~f=CI$4|Y?0V}n zEqQ?(+3AE$$4ev|$k^HMr*G}3%7t20P~`}x-3wh?Bb?EI1sp~;+Y_NqN;wl=E>D6F zUeeE$u|FA4zVl?d33NI&jJdPW_Qeiz}jduu{P%SQX6H;SG9JIF2H=PgHWmBF?t zPA>FO7Fc=(v>m&ZX^=Q-P&69=Di_kFI6xKJlf84g>fVzh0q?WRjx$C#mk5bg_@ToJo%a1GW`Kmgkc#3V7LqL2VMqlR0;hK+`7-HIcw%5}h1- zanm~(je3LP>4gto($AfPZMm<=f5a;huvt^?X>@$71-b8BEgG>Qxi5LJ^@rS-q_<{) zcZoI6E%#N3w$&>4RcMch`mePI$jg4`U5GDa#}|Lde%fTe^DYGPNliNE(bMURwI=S^ z_)FHbyj*wQg&3|H)B8iN+e~4R*_Kx#V7KgfDlYn6L{${Bual^L$aOKrec~yUQZ&~r zcxDwmhi_hCeE#`qZ?gX{jk2$f@%bV9HY)peAv&nWK6%V~D&*k7KoH)Guz>AW5YGn3 zz0*1bP)82#LWst9CI=t)^~u3q2%7lL;r^g~t1aQ!YsGbyVI$0Bv= zi%=D|^Al~a+{VIscTImMB4oZRMPWRh=u;Fr5exHODGEEL7e07NKX(qcrtqT3=fNux zuvtZ65GA;8K~cCU3dz+;R6i7jnBvaGJp(DCYZm>*i@}GZA98RB%>wB6EeBt8A-d~_ z$vi^?gK=-`F4dMK;fog+FBF9hCkOyyh+hr?w5ABvkd!Z8T;$M;JVB;7xWu+$DTR*Y60I;UX%%;O_BFuaieK&Z zdb%sGZBq&*>3jOBZV@#^#7+c?)mXX5$&^;7FG)nKKmmtMQ(XnI^t4x&wy2os>WHOX z2<53obnLwUYdy{OJXAM2uEpwVNW)!-AF4rh$I};UH|`!q!3Qr`RoE`_HtDLen{K3_=Q$!y9?oHHI^>lwO*^R zJvi+(mvU?u1#}@ar3M9@M0fnY%=sOSYOU}ZLS`3YPioBXA*aJNLh=t|fIGVW^3X@1d#v?8xmn*8-?87PG?m;f9r?NpCc%L(dhG@#>`KF2upqqURs>=7tG+*gI`3PWc%Lx(jhVH3<5L zDZ4>pg%AFlxPmp8QrgWfv+KIq!4x7x1d)t5JKIGh!y%)kDEzNKi1ObhXM1x{4uuOG zBJ2}nk~>DuE92$#5pJ0RCKeR_4@Y3Tl?mh}avV>|)?=e{cvI2y|5VLmBAz&5Z-&e$2 z1!%dz0XabHg=H*|fmZ<~61+RkIoG(FAQK7kH#`eHT}ZPsBYLAq-lJt&f0UjnZ4?i? z+Ms~Q%k#!OA9XOM*?sDuYjkB0vn)`)Q9R0$2%WS1hZIFuJIo44tsAG+9VeF?#rx-{ z5~QUUSd48)P}^7AMBB<{yWPXT@8@G_qn^^M(Hcd9W7N8^tTa&^F)^kRSj2{X!Qc z6&^z0n#t0N!VDJF7&+DAO*(VG-%;6C(r#>X`BpOKT5Lku4L=YZ6l^8{A6(TUB&vN=LU3=m_94C1Vj}R6pMZASN;Z_N9203u8Hz%5}&s8o;Cx!#sVx; z-)5e7?_mFa+Gl&>f`WPe6P26Th$QEX*|MTh0ejZFciCAB!J>o)Tj$th1napl*x?>$dB%&r_Q8hZ46qc3 z*@}QAwSb`jQo@eRwx+aWv&Enbtll1~1c_y25hbJ=Qk@dsu%`=2PTf#~@?85#7uFhU zgOW1oDIw7UbobGwvB3^&6DiwhBOGK`kV~^fS$3Osvvi_wrPVMLs^I09<)T;+Qb{0^ z!>AxY#R2X`5>lXPJy_-n+d^^^#pz}l5YRP3IVo$hQ%a~TW!--M@Eb^3-#(t-e!aT+ zcKhY(^7`sF)tV#CLRWrS5HF+#iK|164pQaODd@w`%$G+VF|eEia4>S&pHe7BE?FaD z69?1IUus?z7*PDfByTq~MWWnJ7t|ibl5v8n_N$EjWPQ6i`FFN_yZ<>KNv2C0`BQY$dwu>C?DsUy zR({!QFilzkGFZq{(s&xn+Hsr|c03TIY@1u^2(xK_Vs@#_k3fWxH9M{oiz>+@6{Bdy z;hGRvyiZ?<-Uq8PZIHKQqyq-88I-d?qyyOvOs~SOi$gr4?auA57$Pe}Ulgck7Daue zr{bv0WucZCLp))%XJ@*KTOuGv_yy#@EEYUm5Ns0vhTMT=+yFNSkA?-U{|)kgvS@q# zYjboe(zPw;x3D1Ba8^gehc4*flasMnugm#I3}B(Rq`!~)NjJ#x3H!!lYUxur?gQ=S zVWdJuU=0!hwRfHu#$V>EP<)A`T8PdRL^_R~_q@A&MxxKcnQ1qB#CzHoI!{p`YCLOE zAZ3&cJn1+Z^D}!<>tVFGT5%g<9}cF$jGXkDW#7dPt>ubqFyAJB{rPX-u6;1r(1yaiBRWvBFbgW#=6Qp9 zOg4XH7#U-YLH zHV-8*iq#(+Ao!SQ3!tZH1D#+aZNsVY*b(hl`q+1iSdM4!|Ey~a<-FXA=Z+x0>OmXc z()X60-&rA8sc$Wci3QD7+Jf~Rqthu4O6|XDaJeL*&s|!JN6hjN!2xcsh(>;`q zs7O(@5|V>0cD6`LLsde|cOoJH5{$^;D@8$q(~#dq2mS11@SFIqSMuIi$o<( zvfALp%8+u&D$VM(tBq1klaYvw7Ni6?-<4DE`IwB_Szf_`brGeMjH*ihhPAXHbQX># zS>U5LJjjp}td>;t;+X@9nO+@7Wm|Q-NpyE6wHd|xvxJ`{yIG?uUX%QR{z93FIKyNG zaoU@;6)v(ZuGlxO^rJGeDqf>$F4w@!EWK0Mp!!WRfqV5vQ1 zNr4a!0^-bUJSW*1l~|?qqIgP&XE59~Je5i0>TkbYf4IK5x&H0rw=eI{Z<~ruZfYEo zG?ZpVZH&4=yO41}C?T1g|7nZiD-|poMRGhDNlpn$UuY+H`)Zr5NEg%w7-^!q@Z^l= zid_T!SQlEPhJzB%3iDGah5HMSpX5?>a<8GvK0Alr@AVN~QQLK-;E&3rv!+wv=SX0E z5o4GW4i}GOVQfw`)X)jB!Q=*YF)42=s7r+C&0n&{?o8Tlyruz>mtdfTBy&s%-(PL7LI}-QDMnAv5K$g1$wc ztn)m!ZR`*?9z^OhTLw;kV-GJqd*!%^=cylD z@BIZ8utXDF@9)vKxDD~J{pwpL{5hwev<}|#L4U;K!Fl1ROx62Z-WFX~z$+2hnfqFX z!$|DfabF8>T;9-%lDP|@3%9DoCq2O66z5^yN^B^)pNLdW*)gNFkY*%BrGY_wz5e>) zs)Pw;InB0PVXIDgPFL2z-KPk0cMFXzob(P4&rNB6lg1W$EKpe5?60wfn}i)*o@q%N zpV->8HBa6Sp?d&pSQ2zMQO@|#O6xKhTNfT|H##y2^-|RyF^LF%sdKa1+oF3bcqIZl zyHm%mkv4YfxBBmf*+DTd#JogR`pWgbloP;KI_#F0K>8kw(zZ`;YUlS2sV!CI?cdfA>W%TgzlyohJwdjoBlX5s)9>98n|?=#Y2yIJZxPlvlX-dRYT zWy_RUp%uePv!qy*1>hM;Q7vUeCj^)su>s{&Fchf~THSst*eEhGjv}EIo&A1BLQ^|= z-v-Yco=o-eyb2N+kF#!>>s8o)`^_@FqHw!sq{ViF^liWWcRlSS#wjPa&Jg40;oiJ7J4gexSfL$dcgofv?NP7fu5NkK z?w+moO24hPDxWPbF*+GVu`%6{3w9o$c^*dGiAE?cneG`(uk;&C>k)FvB<0>HR6g}l zbl|JYe<2aJO3c|l!8!lN7OMc8$MO3+6T@_Og zkL{kGjopn3h=L?+@u4Ou+v;C)h>h4kyQkTk%t*r*Hp!`g9dqxBlBdKV418Q|s(%LVfya@aCx3Id3*wHzO}Cu8gnbcgl>^%^~9vtfwMPrTsGQR}jG5kHywMEl}=%@duA&Uy9|XT9?^ zPjtJjUc^DwW$q5(TYT!x(PdZl!IuLMevevdH`UL?H>WXcqUwKSd^8T@UUe>`85=!e$$z7Fzrv$WU}Kt{W)Ek2sADVN8@H8} z*p?jA`u^tg&Gp00Pv5`&@^JghLzQw=pX$l+Eb8G#`uq)FjrYD8CQ#8dP^t1H^fq(Yt@ zTQmgxp7<PfM>O5#=8DIn*>v*O3gm2 zpJsRV)wr_XrrhRzpHH3dlQ9igkY7X3T4pS5M*k->pNE+cV?m)?rh7Q@SU9eEA1!KI zdR-LZmcbrge`_C)UTvL+`qpt&xphS2RWs|@HEta%H-x|3-`suw`R?8AM;#?o2GH0v zxOt||Bs-)s(nbBr_O{9#(T9ur%>mT*y+jCOMh75l4P0Q{JKXA`0Mi}(Ssw%#_psU+ zKxtfkF@SL?FZ=o}bWk6o+<*FBeGvDqekR)dlBXdPZH=iPeh+!52MyM%Mz!YZ%h|WuRYtU%<|`x2*tfQheG^sH24}+U z=Wh?+|NgI)>T1OnSSOY;-MPhCS+Cydm^ssZJJxdhrl&=4hht5mqNR_-CYWsLjt}1LIS3HxJL^FbxsNxUm$p`65V10mZnED-PyhJXvR$p zxUM=2*Ya%7uW|pjF53kfIZC&`&=GS(nrQU29AK&4p0RdwyL-kq2UyMzfMst1%l(|o zt#dzTV&kGl2M-?irEl#zOV;Kt`~JiS;kd?~+O60+xo_EQ>*8IY zk>`-33b%;1o3+~_+HP)ni|F~~rm&uzuipdyyUy_xb)K}Q&GAK@SE_Vl+dq0Hek-wU ztI)pWuCV=rSOJ5F54`vM0rSP#zn_q z^^98+?=ozu`7O^cQbzD8orQXHH?`pdIt{%t23A{B-`;%vX{`p~OW$6_$5y$mmFk;0 zKCYdv0kgu}G@ZsT@w7bV-?1U{nQNgql)g!lN5sG4&`bZ*pmV8a+0gUCw4bm?<|dw3 zd$3nMpGHD0sZB=rI2@b?Z6)SW@5ef2D1lfdT~ni+0gT`(^%B2CRnE@j7Hi7OQf(Q4;8!5I^xLA zg(xCpbO@(lmhn(8>41YwY0VA$Q#9=Um`V89+!16c9!D!+5gTUMaAqOM`o^aoXsSA1q7MS>qT6pjXd_zOR;feINJYY63dBAKo zXpm3%yjI>v*oLA5Ve(j69Ryd3p7%Th@L-DC@jw6ZKi}H_{Kx<5oE=$;;uE)ZV*gUK z`Z@tiDN5q-FLNx^N{p2om?=U&vuVg5jY-V%*l@@#4(8evNpEP1QY-sfyh;_sHKzAp z>B22B8>DqGQ@drRNMt|A+{7l{kTe@z3CDtvO#=J`aYzh35Vc8wG9aM<8qG%Y1pjHa z2SIUus;eDhw51GmF4Si4N zUWd{X0YL*IB!VfXKEeXLNflt<)Em&kEu>IiWM zCP`i)u7Kb{rZyO{X%LFvpAcXL`M>`rE%_ocDsSMWg&o0ed?Ui)5Sofdz?2ffN! zN+Zl6lnfZtY;@-zlK4V3n!pl`#a?Bmc+YyW(5!+K@BPi^o9l<0pT2+l<>B_1heR(< z4HprmKZ{F0I?U;{MQLjl%vo^}c1`%=Gnw=XJ@SNS#0#woy^z|Vgsue&DDQbfBpEs7 z6P5Ie?tmiVMkRbgUd}GoJLejrjyJ_sJ^U24mq43tFl4@f$rEul{RtVVlW9+gCC{b9 zKm0!8XYM@Zt5=#=o#qa746HPt2|{{H%`H64 zC0c53%c|NT_k-}WXr>$Q*2%H>ESH=yX&az%CaP$UbjA8UC>a<6{<};F>)4KS!PhL? zk;7_)SZ+=hZiC6P8K$i0fCm$s&QjT;ImRI$O@Y(B^m*4HzmA!UrLr=Ef}wEW4REGJ zh6u|)1#*wfK`;Y9i1vpB4z(l8BWzcCx)5d#8a*6X(%8h+yMeN1KJX&4WEwNIi- zDL{;=i=RbXhsg0#MD@DYXmwsS$h#oIK-jPZL5U8WW}*D5FGYA^S%l9RjByz zKdp$leJ@lSClz!34<5#afT076^EXHDd`|6o{^PjhqY=2i#|>`q3*3-*(GvI{tAQ5a zw;&RIa3gvZ{Xo*s(+L@e&#A&&u?I9mnbtIwqHQG#lk~gaZZ@jye6dVfx*&1S>9Qcz z{>(H%3dZFez&sD`na!*)GuNNN2$S-g@3jh3tLb!!45v7LGA4@km(@(Sf!>W6Hs`C$G2XVYdUZij|Hx+c%d@tfmo-}ve7ib7s{cm5qs+4E_ zxy{vTQ^u&GRBeTNT91KcMk~81s~o!_cT@?p3h;JxNSQf+-5k@pS`>{@DdblRL*X8j zZwKu8x*aIHIjXtiNcK((Z@qx;rMr@~hWm#v0H1Sy&ejl-5yz;(xBRhbnof#E2?q)8;@2bJbEFs^`LGjG3@jI)5>e#@g!n}PL-d8rN zFyU0AfgKS1jtMO5#JSxZ(STJ6;Ok`P-Mt&qK0-nX;Hw!{jV$0HAlaROq$1#6D^XPi z-0L%_bUJ|Mi;`LxX^yKCWUc-bLH2(nh@NKEJz#}HmFL`Rp0lXNRh;)Yxad{zL7wRk zFN!aH`&S~)s28Oa@=W`eY76-KlPI`&!p?|cFW%(Pw?EUFH^nk7`PGm=vqAjjHM8w6 zRM5hrjU`%fL!ydf)z>JmL|aJK^Kfg87<99B^Rmt7&ch@3MF9z&eZMbKm$XK8I*o~a9)l1((vQ$KE9&J8*mYu-ym+C?rEfnP=xqbF8eDuP!O zEGrQ9|9(Q9VFF~rm zEVk^W~Zh=`MsO%ZVcYU6_cfBsc4BA7ir$b$D}* zI^V2{FZOwpzkF28qoidp)(vs9H=X8$z1)#?rCu%3ZP zUVyrep}6Fx%g=IWuIxKMm#y_WewI6^MWSauMRsHMrVnN}*kD z(Row29A6|`{nU;ujYBML>4s1pS$-jiMN&+aDOPVRi!>oelQJu}cvelI@iOJ|2O3?K zGOH}kNL3_(b~Ktx2Zm2Ek!B94_)W-6ezv(DOvIjNFOEr;4?0M41iREu^emqV!?L6r zse8Fa$t|e6jDYGE@hla6F01j}(tWqrAaNqs4|Ecyql_%JD$!-ADg(T7RNlv`NZ znu+bSl~JpSiOsQiaJzg`dQO!|%gk(1W$Lg5S3qU3%y!3A=I68%=yN)Nl?bf$xC z>|)^3j_T%LA{X(^u4&S>yc?&GBCV}^F{w!9Rui|VNaqzR(k3EcrAX`J&m0lOb)}K< z%ARFLz{jKH`TIHjZH`helPX__)#U>I_EMx0l=@$&y&$z-XwKu2*HnP4R;ry!4tL6} zXV)h=yb7zzMwE;elfyk>-UP8oim5WqksLNv651)Za#)R#=;f;rOqQUWt5l|rUtG6{ z6D9XGj6-^p>G|1Jl+Y+N8_fdNAxGZTm?l+yuDdBs!Y!r;O{&obyiU2r;w@;BO5e+( zr&2X?+tRCLV7{bRcxhPy#j4RB!cHCbOBZu?bylSeoq3&57&Cf`*QXWG(>m>{?3CMr zyfq65bZcqdmIJh9O$E0J|8ET;uv&yD`0~ zL&-!T*BEVy+6DBU#|~}5V>TPzA|XSL48Jk;t;5FlLcwQCMRc`P-`eTv*<}Get8b*56+arlE;MB@9m zu+S|cas7SqA`!P!690oN0JN%F09dC0=C{RHW#sED^4cZp+ZP4&DK$~QPNB+eINzE@ z+2w@#7Bs3^Y>BeS5e8>S!pttHSuT;c3KbF*I3MGz4wWed@W~-9oG&fBPW*MK_b3wZ9@4iJ+njbI ztC9d;DxLi%^%XY zXj)9AZ|kteeMsLf%KyA^StQ+7Bz;?l)#yX|cEkGAXH; zr?UF%H5w)EoI9j%x9^n-%Dh1Ow!5o!1c&r(6>)W;O+f|Hx80p9Uf9$0ZM)H_tXg=T z%y+I{;gG(qFn!zI(dvRj`nGyB)67V+;ER0FPt}Yi#psj?A8)nNLzTZ<)d(d|7> z-{w)Y>dp&UC-Pb>M;8$JzU6NVX6*Izw?apDO5%Tz{OyII{B5@u%h83be4RyJyZr4% zkxlDG^0(bOoJvr@q8#$Knh|%;RQYYU7Ig$gP|2Ry-wGw!$@S=6%HQTm*&9pXig0=t z*CY2mfqP!$Zp{J-+}_SDNFNfoMH0B(Lg}^w3EbYQeMGfYs6zs`fJR+3n#E!+{RD1r zS2xq|TLQPB%nKxN#rc3c>6Mmmq1x>PZmZX56~yAL?NjtbRiJ70}F;Pp$Mg17V5u^QmHT2x5_Pr>c66YxxXb zrP$lmee?U4s_kyN&QtgLbeTRV40U6w~TdcuK?;RcGfaG1Q8R6v-~CPEpOtaZR5|#o5(* zj=jsGw|k9?st%RdqCV|hvB;h#=s}$}cD%T6W(&XTAlDkeiruam9i|i{;$57lVv7vR}Us&R(R{D5XCRYjDlj`u_5!B zYoVgZnZO>Idqn&z4juPD4LX-<#ceXWM?xYtRk|_8)Y8S7%3DrGUnmj_y$PyCb3Oyr zyAbc>e8RccmdYhms3+gZ4ynmB^t>>BGn$6#jUWUQ4dt%p-nq=1o<_rc(HAMW6(ZW~ zYW;g}FnfTem*-2nd9E0`LXY41oZ5?O8jn$9Ld-Sfdbhsk4Ko{kx*GWO2__5tIe{+Y z#3utDgbzXr_}BaRug~#c$SB~@1b9hZYwY&s;DX8OW3h@gxdQfpG85|= zZ0T9&LL@w_8J4m&yO#<=!&Ac{i1kK3YYSp10nkwKZ$HwC$<@FE^GZ-{yB)A&E_FaV zJ~?#6i1=W@0td~`y5My-&0F7bwBGV^)JPKZTq3;rM!L^kqRIEFW>ee3Jv z&uBck^}&a>k!SQum{ax1XV3Z(kY~qsgDd*xXdH%9+{ark zd?mgCR%}kL5dkEJtY4zuxB27)w{2t^{tcFqIeiuxM^JGq2x$min)uum6P{iLq0d5V zjDHT{w|Ahy*!bKRg3wFb_%0B0nqEB*eFtB?;gCEFC7&rJr#NRaC(P-~&nJEm{>%Wq z;2+Ri=!1|vef%7#-b9b6?#K>^KjDAz#GIPUzn3~HZG^BOvFVt1nJX-B)g?2_Fs2=4 zs22>cicJg}-u@bs8@`oln*bcTtuJ64g~u|8;!KU)=fr0L^B-a6ky4$=7-FwciJ-bt8s~EEu z*|bzAwOK958kje%W=KomeS1SvZe{PrrQBpi1FMk^g5TdeVMRD*?}WuGvVk>{72UfL z^%?!a{Jk3%;&oP$t*8pBY>caKpLjS<5IfC6?p0SiFC%wZwiG2GF;ZB+#E-Zh$wiBA zUGw>sEEc!O4{m!9I634A;zXZ>9(jToYD~Q6*@(G>2ZRm=Y(Th6hWr`+2tqaq8st`h z3=y(M;p>10foDHf<)B+Kce01xtfea6Y5^7@_U03gS%P2>1y>ogs*}t{vq>;@_D@&= zM!UiOjVtu_+HUOM;GV|J-M>*eUeR1$oktapsY^Od;s7@0j%Tv~Q|sTVAp~!jAHK8s z$c?@Trv1S3`9x&X=R1-t`mSPZD|i@VG5~Agm=PK5G{`me`<@Fh%zNeoc0xQro!q4% zN^a;^ zRfYa_np}&i-hB`lVsjcgUN9LmpIZb#b_hQtNHm!GtdSsjngz(qokFl&vzb*8m;%=2 z7wfnYjU7i4y{;V5W_QA`8j%b*I^tx;wE@SOtT>J~I>dF;^C1Jk{;>^#)&NB9GZ~ki zsKPFSaTx!d1t*Eht`i8@us1%lAvSwt_Kbi92EW<2;k)^KY=buzY<&J{wc_JSf9YEhyy=xN0iKsN{w8r9`udiJP)qSTG>MDet_LT~%=O>%k%oh#)!-r<` z!-vJ#Lk%Kh#;#~2WhzHP)|<-doWYHR%bZbF;c3Hkk!g#IxMRYW9Az_brzaQ}Q@3PA=s_n-Q>H&w> zRDe`VQZptmMe8rGVJ7KV`f}usooQfskHAjUE1FrkRxM>P#W4GrzZi&blIDY6Zm|?C zG+YkY3y8w>68oj74sbI+gasM|OF>D^Y^_mPS88C#3m=bX6Xt{A`2o$#LoO1bwJ5EF z=p^*~*_)%*(PG~c5h)%Hv>Z%_csx(W@K!WYDVOv2w!L)JeaxXbF6!9mV&ck_OQ$1B z88hV47aYtn-rJAw?r-kbk2z1f6~nL}Z1&{&gIA`ehMt!wMGE`_f6Uy9S1GwQrG1ss zy7T(n7$5ZzOes<+h<$_901}^HnA3c7Y&1B@3}&7J>X_5{0D%w*Ar2)I-vj6BkS=bp z#6a}+`>zPHx;7F1KDyM7pG2_T=je!33W!d<_U9W@=Uq1C(K>8g^U)?n465g zPMrtnF?=QV%z*%!s-IPyKPU14+gmmer%mdu8nh+ORqQ_Nh-*5QR}G@U$5TJHAbs%t~OvAXhET!DY7tIVWGK*RF0T(JjUo{7Gzh=N1vIK+7q1xR|dysZe(C! z`6C|y3^7O&{2aQfrDg6-Qq@|R*d6)Bb;FbF0*EE5rNFITO4=YVOIb@y@tGpl_onWE z`dqJ2veX1{jj6|8N^HRK=yEM*Y7j-51CiwhB@3MNkYpK(#{qX#NtG#*y?0uRgM~;L zS`Z+)67A_-esv;p9SH|TK&!FL_eBqgsPT808;Z5~IdPHR`;%G^8%KyK9y!QVT}bCl zCO>FEDER>aZHT+ce9vM*kYvks-PzJ0pJbj(1m}cKU>MXIpAgq0KV0w0W`mJ2lj99V zSEvIHHx$Q)#2U#1;xZ$cHp90wEGi#ju0oK) z@lJdW;*`}Uua&dMJz#UtH)a!j;K6TS_~c>5is!PqZeVAF>2Sy`4s%6zc#&Az7@a9d z05lBwj;e;)moebCm^cKa{ygm$<-=WQggqmN1Jwh}0pM6;eU;j;q5BDI(4RqzC}}EA zoO>Pc-*J20e?p(dr}oJ6c{p}X)OmFw{lNkt4g$fG)seR(=56RxH{eoa&@kqZ9AKR# z?26h1hOLT0bB9S`fQAt~2`HBEY_4EPR`iR9VbIjaO<0l^c9=kDDhcvf)7rEu* zdn_>^?`&uWBi2=jNwJ?vZ5uELMiHU_24u{9)=(+qYr>t04LX2(B0ypf2p;8t$0e*eix;r11C!sg<#FC)>fiY^rA`nS~GSl#Z6E&O&D8>+_7FcNGVzc zil$4^i)sZ;(bEgNOOaA*P^QSWF3+2PGDYlH&u0G2mwha8*>SZ&sgvRC>9x|Yi z!At6)k$CnrtNv!Qm-nvU)*lyhZM*>I+H);738#q5PKb)qNDmVjViQJ?fL{0x5YUr1 zwE@Ih*3>6Fk!5*eKEOE}q$F-Epz3T~i2)JR$sCnvj|A`@LD;)szKQ5y4S<>gCP%x% z9001~n24oQB0dRB2Jms}m@I=CYw2^z6>?YaXrEHVU!T^OV3vqx~Byl>EO zbFrQ_6Yh09cf=CrIYi<@CYY2%6|Q`aGlOXPM0i;jyQLQB;>?RUVsYM$$5##^4v3d& zPVh@S*A}xaiIo?c#1nE6l?{SMVnC-^*bIx4H+|1k$~i`DS;-wsCif|vt4`t(2dgZd z#G|Un(@x?Mh&ZV}83&{GlX~>_Va+DOHBBw6YOzy^3iiI;N@_^Sz85=4C|!<1^OoeO zHaeuqQSF(?HGp{@d~zp6crf3@G|PEu9P(TKAf{a19rB_oyV&6pp|VzoGf`#z7_8#G zYWloUgRn?!adCI?9_iC87lNjDd#CmlxM*BnBpnSG#}>Vc!S`+TqL|UQee)dko4Tl6mO zL(I0HeLlcHNAL=5$ey2fJ5e%f?vW6yvX-@FS=laDD4T3Vk@i0_#VRrMb~`$GDt^L} z|3>eWfJNWZ7^@ykReu!u=CWG?XxswDkxwVle#50nFn^V2Gv03|GhASmEH!)P5m+|~ z!1V4E$~q_h;nTzCn+&s*YUnbX)Hi)u{ktzxCaVC5u}=2hHD13KM?TiLlUl1~raPxw zF~5=iEznTDDy!QsOYe7VK;U|`|Wa9a}W^>hb!m^PSW;0H5Z^CS1g59jyG-Cbk zzkUAY;nTOT8d|Z5J3g|ym@IA1>|0l9>{IkXD`K3n-roLlx7M5dKL7v#|Nrb=3v=5z zlKv|y@7+~$GnV+!)3ZsHB+IccPVBMdnc3Ujb5Rmyb3=(*l8T-A^#_2YEb2iLAPF{Q zOx48V3v8kvX!O@;EFLS*XWupR!^vs=r1tTz&u7k`!5KxuXKK%9_N|StxRsZ=dFCv& ziT>eaY3q(|f7eewR`4yZcO$;d`^S3(-)t;i-=W05Hzr{&gqbAMZ{Z zwP8EP^zOrnB-Q0sPaT|8p5^-4QnR(I>4%f1+L9!t-S^JA`iqOtw*3E2yhi-j+LyZV z_~fq1st0tf@0fW121mc6Tc1&D4Yi5dKXZR9QKw8_wBRxS#^pYWdIu=l`$68RbA6_* zOc!72s;y36A>=Rpmkiw>rXJ8f(#EEKi{AKXYs)9E!(DCc_W3sONG*jVn+feiWl5P zaZ|1uesszU6_Od%14722@0*#{`xloSEk~fO-%ORsv2gg;lSgv-O zskj=!zOMQ1=JLH7;$E~&sIfA^;HX4U_!9+fxj0b~v_bB-OPY?0SM+R&`vAD(y5>*E zq7S^;T6n+FPxCI7n^1$bbVC;&T3`)b4G6Ox8-MS5x>Hx1t$_4>)18#V9laA{T8|Ik z*knHOd?x`J?W$DoWGRhpaMFn74%XaTZ2=R;scyR3!&3@z#1Eb-O10HdqFUJ^t;4|} zCz$kqn`ma1I?x5D1D!WEMf|K;rm@I)jtDNM-r*lp=Qc-FhK6#}z%#{qrpjKNXUyAc zZvyT&s+l71j-#0=a__jUxdW`8qv2}&L@8U^X#5iHfs^{sxDj?Pf5tNR+fIb0md=*| z2T^uFK$K$Ao`j4>wI#JPl*TR-N~sWK%1Ijeqm&Gj_E*-S$%ak@65oyw?p7u`p}%Mo z*K7VLCirTjs!B9|Wtk@U_|MopB$3^8D64;ELn3K}CzeN!K5=jNX*<67q-#^%zSC#A ztuH262|QKQzw3*WihX9F&#|wjb%`{J2z(sk7d_)F5Ip9f-%sdwqwS49_=YbUewk}6 z(Ro!Ow-D2fdaF&2#+K_^b97Z!$gwB*P4B=X2vLa-W|rly4<1*pe?VR|u}r7pbrqtw zwf<`Fb6@qtW9I?J9RloG85cGsJ!|@7gqrq+aLv@QKC^5@w6B~#pX>{3;o?uyoQYw4 zIO*DkW^T)`OrF`c0l_!=GK&8A(mghPLrZ$lW39GwE#It-%`0Mh&<*uE7UHlWCU;zG zKdcqD?B1oB@uE-H7yG(tB7Wl|%*CB|ts5c|aOkq9T^nuT*IL%M;G-pZ;E97_JMNu@ zg^$RMws}M@_APTYUu;|tomg0xJ#8`dNmy9F1xITd*4_5WHm3OJBl?Tl@F;J$8)RnU z-5cDJcqC=YBS<=u65954Y{W>~<)25es|212AZAXH$S1^)k^EzZr`ZlVb7P{#4muQ~ zl`GE2BwGA&K2G7s&s|d;8tRQK;Q%Df1hW|{7jGw3MJ_xUIV$7=x#u89AZZdVc+*Ci zM*}&ECfNE)+fju_d91ofkc9L(Omi)rZ<1@)2a|6CBI{!-oLO&+aOOTgL8*3HVP7Go zIOdvw!6c6S6ENOt5>lg6Ra>p7R<=kx&LpI6uGuO~I#6)7N&x|dnQl(egLamD%@sLh z;wyjTkY5-8M*+f6TeMh+r7Ewq(Rl3KGcJxMkA^pGpt*W1X=P#oQfc%7^nyIvz{#6q z?AAMY2Tppq)(2qn=0IfLh&-?)WJuL^tC6KN=33i;MH+kjYa6`5xC!MmA5UeaT5pON zOE1@|5ls40Y}E+f)m?^z>p_1sIDfdgAKl)MvScl|Y>OWMY>PNksB{!!>kgSh?h&_) zGk9i(8D2oR)gqr!UVmwJPkU8I&(w5*L+pC+)@j3&Z*Afl-woH$ofLA3AKaS7q*avy z!#Kb}aRnksv(a7%4S#Z*{Y1vSi+2oBhk{V~CV_6M4Fmfg3}i z@4a%Qkb=4dqMQTV*aHV6_W%|W24~asf3FPF7~95b&L*3}90_v-(Hw!xe&`jO{g7$I zC4qZ0_zw3p|A^iyATA}u8=>`yRh-JUnYV1lq z-M$SGjI(uZ5{WVvthtZ$GZnw9a#e{0jU zKyY|kAK+H0WmLcPf`nEjqE}hxzo@SizbhU7G8`q{r+7|xwl%fj` z$vH20cj6pHck-m!?t^Q%(QALUrI&ZkoK zZ!{cAA5|Jx=7tb`4dduh<485bUr2X)yz?hz|K%q9&66y+wSvCZKAY`zkHOLLAeyu4 zT9@zW#)g8me*gN|rtWqG-q#DZK6G{awQNW0<>-6%_HO<(UuFj%Y4L3IGoRAT6qmWX zVJe!8ex%Fx97_D*ri;s4LQrEzJDe@g^9_ybxNy2MyD4VSwokxXc_FrUFJK}AUE8Ny zXWH_^$$Mg0wdD+x#yV$KdCS{jyN0|-HovO1;w=<#?QirU!IXZm8O_XnRBJ;eP&c2n zttkb#8ENXMfz?g@n|acjYCReW)WV!1P;1VRcL079haE=I8k@$i;6Tihn0F9lTa_9& zt2~E#0Qkbigd-Rv%Lk%r?bV^|VpQH52gEf!M)if+z^24?I4njP#&-zMMi!9Z8O{E@ z)3`vOc2qp?1e|XbBpKrmg4CT6DWk6FmZHS(D{5?rojMqBfNreM3!Gh|#g=kmc(Zny z$uGEGoDi084af?Lw%+g%M`%|dI0fu~D-S9tn+O)jg{(U<Xrl5r{K|7_98}Y?QHCa1V_V)iqtr%$X#@h!bL+QWNH4$rwGIuEOW%`g zgDw`<28GZD%D)4~PH>aAg1QGBa76C0bJGB$u*<26v=0#eHxnydpp0b)xfsY_vR5F? zKQU+#NyXSJ=~k4bn}Dgx=?T%X@Z0y}58`c5J->1&l+5_7W(krH^CiZxI*_0ka;&0t zPHs|}vdKbRR%WW-Od05JA^Ac>Mo=I@5QyA!-~cp&hpMI*i}6TFAi?(|EUbkh$w5Ku z7*(PBD!%E0HtvQz3KGr4lpMA|>EOSL@Lx0Q)NFRA0?d>b`ql9`84%79e)2FYRPj+B{S8c7?cn%w2MM6|KJ+`aSl}OMbR@ zv6rrxg1_OsTWBVGc7M%$Dqa5-jD9(?G|{lhQ+wgR%YA?D?1S&2#SebDkF}0P<(AC< zUl3#EKM>;zcv&;=UM6tE(C9qSb%jjKXxyoiqm9Z#jR){#`^bx}qrATI_s0CgZcYI* z9$$@)L%aL(+=5q7IA1ENe6<9ZB?UuYrf(RjWy_h z!j3IgeMqw+^rgPR>;ewt{ujHs#@~}0OB}Y++pJzcprb7C>jjI0^)uJc zv1{1d`cPB1{^Sm|wmD^cOD#AE$zizhsb6!qcC?+DN%!IO%}|d`h6LdSvfk}j=R7DR z1gGr+GcdC0#*+42>t;4iI_xHM5_aAGnns!yk;eKyMEinxo#X!-bX+$8_VhfS!JA2* zz*6Kl3%Y*gTI&sqz5;(JZ0eBSSb^3~K|_6^oM41}WLhJ}{?#cTCTTFN)U6;H8V?!S z4kaNfoI7Y!j21CB_N5(?2p!p`)U|W;R zntA8=nuZp{@olPpcdh{FhAg^}j5CJh*W69tZ(A%CDbw7)I=@DZb78isn7ct!Z^J~b z-E0dQA&+%LkcUB}#B&g$y;EA!3Pl-q^;<1KeQ=}?T0_oYvu-GN5LjC$-p55`Izijo zX+3uSQ58<`FYa>nh zO;erVjqq{uNlJsU=M_!bqBQFhS(XJm+Ds_WVD>VxF!r!tx|n_xI|z6x7yM1b+IWCp z@Hk0%VYnlP|M~CF{Wc!@;?ip~LVTnys$q464~E#tv&et8hN<$>{#oqV;7|^V@KP zMs;d^z;%N6)SjeeS}>%|Bm@ucUmEWyiu8VR{(mrmuF0qhS%y66s2+!X<4U0h2V8Zr z>pk~?W3b>fU`xt1y;BLRfy8%1mzJ!FcNyL0rG0+X+8?THT*W55vaPt`Ghkw3P_+p2 z-PN>m>;I)b>CT1ri@fi?j$K|(?&Zj@3C&Qqyz z|JdHrMZ!<}wMsWg1pakim%GWFrO5k6w5U$9`2Y)EV0$5c+bTa6-${jX zaCcni!X{Qu!QR4^5Se*p#J82X$rB+-9(ag&NM^J4d9WV0H%mxq#=ok4?q&Qc&`7vH za-Glz*ZL0-oFHhK2oF+!P5Ze+b68j(^H};-o|6D`DNtW&YQ6i>$IzU*)#|J)Z=tLX zOKIrhzvrY-fj8I3{8TgvwbmA z8-80$leG0umy9@e5|mCm2(92fiLov2Epl#O5-CvJOEw1?pEv#*Nx<>toWDonNivlt z6>C!YN43GQclJc8ehPXDf6{<*iPog=pkc87qGJd!sSOsr^{WI%x3aV2ucu(=M}ges zezoum?_~x0aj;n|xuZ1xhaaIaiCI*>>(4&j3&kNnuZ`;W?mk1-!r)xL!r&aW8zKy_ zY8sePi|!bV5!}i!iMWZPA(<*ygOJRv1kKl?9sM>ZdZUyO3pMiqSZq?`?qKthG1 z{5>xKoNilqL4m&kuY+ClpIN9+k@S{~LdsSKmXAlhjQtIXCgMuxK9R#GDC#dJR`@U> zPS5%7Izl++i6}rqzTC#TSDC2p3;O^(5l;-NmGbO0`9wyOss8P6J?4*^pMUz-B0-y5 z^iJ0G12e1EDwbhO{m$~No!92QGV-=ax-x6nn#@U>@xfu-K*#C*G1B0#b+V*W<&JAH zy;V)0u;<^^f@ilUzu4e*w<|UvsZFQTzA$o&nim}^rfIMdFFm}xkJtZiC5tAR%3WU> z@}p$^g1=sfxLCdBML1XLwbsTOJ4|K|sq?;1f;cJl@mQ@7qAV|i8~d8({tqoX;OH5k z(RyFyBqR(Ar}Lz2l27}gIsS&`*+2q6BE;11yuk${MSzI+UnQ$`WYM+Kg2!1~L+7z( zcott%;|&wF#9YyS8E-9pJ1zEr-ngqEd-46YwUabpgp6#FalSHu&$6WgJPn7iUMPNm z42@fYqo&6z9eF*JV8YS3j3B3%Ii?^7Tmm=?^3^(8*n{64A`_>`LNOW>AQ4Acjn2r$ z^LEXgBRFRU_`U`o!9;%uD~c)Ar#uUqYS{ieqWOK$*L~eLNCJJr6|@qGR~4-*#YXl| zD`3U184__a+%x~D2t~5_ktk9#A<}y^CVkup<%E5>%PUTs{Wv;d&OX|AS3YL5tJ1P^ zY-D~}%VcJsdofVDphjhL+8^A=j(Kxqi6mtxe!jW&Wp|-c>Py@;%hL@YyH&SJ;>oG@ zx3z9;PfSl-r)qpZ>(P=W;5&qV&{>yd-9Vu~r=T&Q1qM+1wJU7b1>5acW|lG*l0kk# z!Rr8BP3h?w?Yfrr9kk1)=n^}_y46IJb`1xVjl6khPWdNxs=H+`qAY*p5A<{*Hd2nx z4dRF>%T?wSgzJ;qchFSMj)&D5voZPmqiWV>)$p2J|HZ&1SO$CLa!X`bF1Hq>oh0k# zaN6h8?VfyjSnl6G66U@j(~Dq%H+M}^{(MzI`MX@HCNjVW2|ia`i@-(JjvO!0DIM$Y zv+eZE;i0Ys$+x>D(OPYaQfyZLq)g1wwW0~S4TK6YSw92>C)D8N(HEqPQ&De<>}^sx z4*(^D?HdnS^_7~4xKH*}-Em!%d7%1P zbwa`$G~IHOl2w(p_tjgG_EVQs;|=M$s!k&^4(XSi<4}{sd$In z=rwDOnsIW~a1?M@?I*yodObY=izMD7leCNi_L_)W0L7#d$k6~}>p(FL{Y#`giW2r` z4`Y}?3Uy8%y@eOfFU1#0HdD(;1{l$-6b30ZsItXzI(C@mxL=s&g-WAl8Qi{-VGOW{ z-gct|IZ(Wq0 zhs*V6#j&9ec%<^EA`^SgCL=@9ENYXc&V0wm&+sgDlLQl!2e~rqaCZBZXuiZyxemI5 z*A++s_QOMxm@NwRP6@rF04EVe)eJ}qBFgdN-;z6I9l4gAi5I?7V`pIn6+hC26;)aL z;OQvK$>ZvlCbph<=E{D@6wq85fCkCK+G2@NkY(b6B#$m~ElJa<7(0Z@OYa`wDq*49 z?sYI%MLG)hG=y=}A;L{W*Dv5bh_TFbSK+mAS7nXthoJ(+4j;~glj5vQD3Ye$wI~z$ zbCeeROd$VKIj{#1e@MG&w?cQ1?7Ju4{W-ATg~(0rzB}4R0qq*yQ;WqF7r+_J3d~il z^($Zi?8Mc(52s}mhUICT68lxJJBO7JRF@Fg-U%;OaBJ&RYN2Cj2dT;#n+=Zsqx#d} z`4eqt+^1Dnq%_Lg0$Z6iGV>py#%4c4cm6cIeK0k!qkeBbk>mk~NhOM2|7cb)Jb9)SH+l#gyuKi5n==W_1|pv?Qf%hUw*39; zvDTNySkPjm;M>p+@EmE|Z>I8H*oxEA0YujL+L-aYJ}>FXo%vY0Zngk%RJP;J$*1Dp zlS~0*ieni9xPEGkSYN_I0hud{;v zzsqpc2+|Qv@#5G`f%WdS@f~z&Ue<0l-=rfvfurUQHpv;p-c&b}66SgX5|5~G2Mr55 z3irL)TRd7i+uu0H;>vdra{s!*5S>4=_U1DlYA**U2#9xpydG~Vpfk9UZ`SAitm>A8 z3zp38QO>Nxbc^XG9`Co2tCCpvuu=c?m^Ym4Nbg8bq!~gxujtIMVt!=1I$9Oedi|O! z<=acNyho#B)h~A8I~+WsRjYF2pWKGF7%y0 zyi>aX&yuh+(|4S<{M?2oF(S`rA?p`n3VH}*ek18|c`PhFCn0)MC zt!~O&pdu^<@$&VJj``F|Wl4e<(z-|6vAZW@d@ARO=p!e@f`@RT6(hZyW5VPQ=+=Ag z&kk$LQDmOeT2(Hw1;8icgVcjQLq`Im(#ci_daE(gSgqlQ;r|7TnsWaWEG8zPUSR*2 zXV^vOo<58{`_X^%U1&-WnF0O}Wv3xQL%Ghd!{FexFRKLIc zziA+;0%<|dby30>QN5cPd_CRaB3ls&2oEx4t=6Pvnl?`n=~A}|;`!h|;xUVyfxBtsjAd~J&H>-)O4R6Q7Z9pdbneAhYZ z8Uu}5f*MCslR)c(Vj1Q9?MxSlt5q<=ix1o0ul`>CaTuj$6YTiddDfVc18+@oGN^C= zP=Yb49ZWJsWITMIiyn{@Waee1a-A{gYUQjY_5BjjR6YmIJQjC4b9f)i2O}p2z1`=EZ&ttwi zltpbNmla`D-7DGr`plI3G(RE1Yfljtr_qmc7-)gR&cXSe=<;1NaWw#WphDc9r2 znW;h7`Qs0U105F0RNp0hXi(^;z5_C=|r+s z?U_^z-}N;{{}A}Y8VGpM;oWqyWqQ=v0fVQHVsRbWYai(VN-+6m-f!&AjtsoQiidTP zu9Ujz^F;sX_rx^3)M$m@0NOlHpY6x@0g*N+dHJ|%LL4+wM{JOznGe$@SGL=pBO$uG zYR_t&BfLkW$MAFomnJYiqKcWdKOXk93hdvT1-)}-gg*XZ36W^FJ}j&+1+}G)yZ`w& zpCS3UQj03vp?kOpGe$o@ojO6`h$|<*_zPQggx?+5S>VY?kX*IjXH?09z)P*G&-AFu z3-Z@n*_Z!hX4kinN86zClkv&j;k>qge|T7GFf-0}(GYlsa+vKujBhIRtvSKgDj!s? z|D8$3JD5IV+V4e`#_hiUj@4GFDnz?Hx2kW~^H*mNp1Xck-<@nr*E!hVAn5`G!f&b2 zP(WT|iu&p6bvJIP^`O&s+7t_tIazTPb8^{j{^^yxX8-_GU@WzMD98LJf0gy#QiDe( z_jaIFvZ%?q{~PYTN(%VB$cT{rqMhz`xNB7%qp-c@ts^%TJ_=A}cgd6X8qjBi9|8)b zx2y}mq>b$bT5<~I)1Mq(%m=P;8o8Pp(Iy zcU7;^zVPe)*k~h_35js|kWC^KQ{ol6;u!gS`o%%B9)vSLPN|;^)W!uVN%b_jDR_NL*r4|#eL;fw=d5C64fyZE7GtA13 z1(lruV(I3B6D~K_{$1iZ$5z~|buC_J;d0Ho*XRiMt0RCd)u&G@qGN~d=|@Svkv`Ec z(hS1rN=8lakwWD7jB-h2jCCJ$HFAPk_jPZaH1FThgITg^U|UJLGb_mL8Vq$3xuQUB(GNGknIf(Kmjykb!fs0Gghhx0a0J>uU zw{XR4MA$@x+n&hfIgvHCeSDG{wPMq_a%7X1%cFTqLH?==n!Z(WH(MK%n7$>vlM5-l zOC9$p6um>yj_R8m9WfTQwY{&OChu8zBR-Z@!HfSTS@#DJ{G7O9<{6^Z2E|g)>(3HL zO7Sd-if`!MUXl$7hef+_XV)0E7D5{hA{uZrkKd0{U-Q*14IDYxR>oZ;d@o9h$X$$D0{# z9CZ?JtyGtlN!kYg$>#h4xelDwaD{E5qbY^kAkrH{YpJ=_#K+QY!s`#ta-9zWw%~zr zJgXrH@K_CQOUnwHJ-Vggz%j1b-aieK_p5^iDz4MRbG)^a!RHTQ5Oc7>am9z&cl)yG zn6KFjkd(9aBrAHQtn2Td$J(Gts*`>OT zo^v=<*lB0h2}MDdI5F zf9ob!S-^kC&M%vc3A*@vj#9H3RF|GeG*X9oDEBii5R|qDb1@%WN+xq3C^ZYmM}1gv z>DS~y%_9U~ox^#@ILJL6Te?XNV<8@XvQTgnqkGBQVKHM*3_Mh2MxI1_IDMzeoZlod zh?LH_`agB47$KEKg%DA>aIUNd$6LdmW}@l3-DB916WW>N-f*j2nwHy=?zQIHk|RrQ z%!^Y;a8%dH3K*qaqR2&F-UUtWDmwB@YaNe3Nv!^sZ_Q?I;&Dh0r~%hEw7FNil#!AB zfBc(nlWn_0n4j4PZY6OTRX={6BEM~#c}VxMdCuPSS2YSBr{}8c*2_e7F#HKh>MYk? zneKj+ST5q+OQ>kF?|HW}(V*kKis^$kjiye#Q*>Vv|23T(8yg|L_!VBpPgv=(AwD`a@#-6+k{ zhu4`L+VuhPl1R5&atb=Kc}qHpPX;9i4=CFKy8e_1xq%%k5{#*F4=@~NZZv(%HvE#4 z>&jDRBGD!Fl8|}#7L5}>ha>i?T^k-Du=E#A8(GOq7k44z83~D6Int9apo4g_MvBxF zT*Ek=R+_mu#5t66bo>XROU^aq2|!|l^5z?!F5_iwHvm+N{6-93k}+iyj-l-aIjEJ$ zh-c5K*dm(-1Gv*Yp+*y{@g^+yt0py-JsxYFm-hHLKbZvt2}|<5=~n ziwMW`B?Z&yk+c2-AC}##YSettBB>bNUk$`4c_ulm-emA+)xjp^`+?1 z^B&jD9?RKC9-S8Pou>}CRvwF%yJHXLZGpgHH~VS_UNft5w5%hh`2%tz>2P(5L`CzmB*=$Y zjv!ZTqg+~d1i~4mpd}IN4MQaHJTeKwD8Jo=iP;Xe!=rZGQ?a)%`bFRix7+)Ji3l7W z_&%y=3Dhm!b*8V!W)ORyp@_Rlmx^~O+$P=g^9#x+fU&h^mR5bBf$2`;E7fv979u?+ z@NbdV4`H@>s8M+&o%PUqq+D6p#lIX=HOYdGyB5u&w{v776I)sGFDOE!^_j0 z>xz6cP3&suvPM?(Xhry1CJasz`;G@MFv z_2)J6^_0Er=o5O2{_DJ`>}3?rb@Mk&mE8KuD87Y&siySzsiw3qW^&JJwJz89t)S}} zo6Joqp}*UmlS^A3gj0Zy2)TXi8NwT9Hx@^YK!`D$np7s8VzC*Y)lO^ z6P6ns={;Ch2R@w_-o9xgGt> z%FYLryDNE=h~f$bSx6N%({G2AM66?3S?eJDQ=kysRx~*4sNqi#hxi2^&||8eqm|g+ zJe#0pUz{nb*{qq<+!$g)`Tkl`A7PeO1WOtp7FW!Im)B~*X|XeHR>hnyn65a=$MzeV#1-l}cc0_dZq9%TR`+<(z88rkF&cGZeRaXqsedtbFy`{N0@6VX(qm8kjvJA74o>xHd`OM(lD3LA&FG z?zV=L-3u5f)hK17GWJEyB}zN=f@dqf9rSiwy4dRL-8tey7IS+uRIBC8=WCmX*@oZS z?T=FQ^1AX)iaTUX?#2KDCP9A^TrD*f(+d3!nmUIq_N6t%Hh?YNH z0p<}GVjacg;ehbz%_H+wf}V>V8m-lT&f9gbR0)_2Sk*isdk{2y&cm1E?!m%f3X_B=ITSXq;{d1R{YFE0PrNs>S^3 zZeu%!KvEOa&UfN|8-NV%u^MQn12#A58s4a4fK;%CsnKdjfeL#NEiSlvfel!N)ytWY(av->2jFvJ<$2 z_}f^rUhbQ6=T&T9z5EtT&{Bc21s9|qgF>rxKt8Ns)7}R-)N94QIuELq zv1-yJVaT3Nfd^DTpxq{N@eYB{8Bv5kCZ<-{e!Rih?7te{v@MN!jym2_5V_AD5CKmX#U^#Ycrzc7Ikf&!>* znQOxCe;-E^{3={E;&&p>ERSMco*ko9)8hDSjt7mDAm&V`YQ9wm>IvQ_MTxkTlt0E! zCt8T|FLxt>imHFlb>Y*FWq-(BqaoFxM6OD9JKYcKcJp)hIGNq2FZ_o1|WF~J^X0F0rnl^8~a( zbg2uB-A-9^1y2Qm_}{)iLj&lj%&R>$vKoZ{84}Dmpc)tS1TUym+Ol{v4As%3v}BOL z1Zi8Qr1kT$LS=pr#*F%Qby@XTt?OUBB3$47*@1&;C@!M(T^)bTQ`jo6BfQ?$%9j0q zJZ<1Log;8uTrd9h6mP5B%c7k(z_ZiHTaC5(>FCFy7&VtEuS=`EJpGFs9JN3fwgDBA zQ1Epz!LB(|CM`1b@wk}+F2odO4JlE@imQMvPeh~8Ah;70CS34?&ZW|*?4yzQ6DUXx z!7A4P?g5ijI(@2SSG3~jZ_EdiL=HJXDH^L8ZlqC3QorBg$1I+^jIRwE7z|UBQ$^0L zmd2jC>|KXRP)2y=%*(M3lK1xQQ(l_n9Ee*L;{Q*3i9Bb=w;z;tX6#ip)7Xf~a z;|S&go-E0Xb}#XiEjb8x;7dANW`t^e{9-M7LrYSHzJO)HjbUkb?}Bo1@dMnAZhYCKr2kMd?DIoE23_q>bXb=RiEe$_EQ_Ms7J^?R^nWLR%u>Y% z7DA;|E?fVNuDWDVoNQ5N4c^m( z;W~tIuD>9MCYp3TP5NTXT5m3B@3%)a?Af1JUAJ9g#rsEsChMj5;C_!kD^-6(O;68| z8!Yio=@yAM@n&qmXWZ*vFWX$#dMt{3>wK=M;e9g)HHtafF`eZ4h`oGV&n;i?4`zmb zWq&%G^L}6B>lH7Dle>KI^|$L?YaQ#kcZPqzjY~ZzM?F-J-d~(Of4AB;d0+CTO?G=F z1u1T~eJs4Qy1#mUc4zBi<;%%!e=oKu@JjTzZ+C0@EPZ8nvgs(|9QOs-2A0qp?s@rF z4Ny0g7jyPqym!fY&hDbZ4uP*%bRXdz!5vGA#{Etuk@6#yh!=5o1R6RK=ZubudceVD zs$kqln{!B@Dw6sSJv;;$Z|#- zN|ROhBHlm18n4q)iGQ{7mxw@qG|^V4OIcgc$4ok1-Pep&3R!B&8<1SETFYe1U}ehq zsR*tXRw3`p(Vj0JNXh!U8F`iwri~9VlqT$_da)~&;G0(TKO!_wyR-th?j;M^RN}1*O0E^nVHD0mezFi`!o$v4A zqxuk>*l?oQ^EswUBDlHOSR?s4=FJESG>+J#@RwR|Q7{vM@3}_dza8Rto*ilb_CdT? z#}Agk@>-E<*E-tsC~G_G(x)mSDqqXilp7~3P|g3;P5f?iElz8QEA+%eRkzeY(Njz^ zx5&Cc%1cP!pKzFf)G&%kAzwZWhIejDm-E{JV92Q$Q(Lv#z2bHEOwxv=rRRKeo&=Ke15%r7a5q zO@c-!;dm6QIc?|&mp6?NRyl{adZs^ZG`duv8$rtH4~kmaBBn)UH1-fEc2uoqF&^5Q zQ@bX8<*-r}$7w_BTbw0KT4|6Gi|>AkwmPFF^HtQLJumWX9~nnY{D&~!Ff3Ce>qBnS zNuza+suH53wrms3rHC74lB9Ovd9??XT6D#oMtp`#q6HO;IO}iL-Zsh7hq+K)cd7*s zX|EZLv09r3ZmsG^6(+9cV9BAP{sD$mtr~0lu}RFfbYzI34h8_1VM4l=v_QCXoi^(l zb^B2{Q+c#wyWR*rw)z0`S)Arzm};Etnm?JzqlZ5$n+j*x+C>5xx75JRS=gYWs+Y|E zDfbfLxS>@^2@`Qr#DTo;L%~usoVjjkvU{afLXzVSRoI>SXFZjtN#!^O9}6zN;fwBy}h#}Fm_yb4C5^@MFdrRmY!%m@sLM=7Q}%%f0x zbCOv?`T_PWL)7{cY7jxpVJV~?S-Nb<`E7XD1;zGUnZjUj4)czBvd7}3tSYZ3aXId> zEUOtvu!xm`tr43>2O@EJ!?*_Q;%X3|DK^t0wOVS8lu(YH;zw!oip9|^!6;NU%99P| zVDzb(e)U6*cuje}aA+``9HFLthgA*6pbjgxg|N`&=zSRi)pxBOicy9}Zlv^*vC5q3 z=OwQdOTF^GeKow<&0>if4I4GoqMR1-1}ubOet4&oR#c@H;ga(P3r^Elj#8;aT8&8Y z;G0-8t7a0BCgZByMx-3*_r@LbEsyAS5ZJ)g@QE;;%J=-=#wQ$AK8m? zMUPrN+;{KA3Dx0_o^%D$hO}(6i9?trRb~p^?uxX;K5GpFqi+98^V%V@5M8g&(CKz2EtQx3AYso1-;pC3`3PQ5=y1 zx57AuAMB3&DVqkdd9iVg@2@34SgfA{uDUvx~_ zX&bPoJSt~u5{JXKkSW?5^Nh+Otd_6$x84cg!P7PS?Rp`&>#Zt9-c_akb__;!IMa<2 zTIKZ2)om_nRS9}PB8UI()Ro##ZQp~-WP6e2a9|`b+;JX-b-x&Nw+l;`$cG{tiX~>T zbO3A+`E0cEWL;(&)EK|q=2BpD_Dr(=B_lSrZP#|IeoAVJ{)jFrY<=TvLuG%{@>~*G zf3w#O^w>>X$UQ5Ib5$SY=4Uwrn!`6$1SOZ9?ZP_AMrZOvpO*7=VJG0Uy&U2kfya@) z019p+95)V}?Fw!~Di7D8d7PEU$tHovEuz-}=9c+}cWi4?GH7Wby%O_z`e_J^Fx z?BV985qg-I^51XJj3|P(6V!o8>za0hTjY6gBjD#Xw+rw%61K~&gvM$coIwhYvnU%U zAH_{r!N6wH_jm$KW$-jU7#o4&>6Hy^`1f2v57%FOwaz_ur6c0R(sBAwo;%(8o=dM~!ob6pskOmiq*3SJ_(DbFR;;itu-Z&?ETOovNMv!a19>K!tUy1y~+Khvl=Q|b} z5c7J7jHUUg-E<#7{9YG{G>o`fx9PSvP|G{xSR84}C&W;7y&2$=70NNln%Te_)KvP4 zE8wy@n&d@%@VICBZNtS4xA@>bTKoy89EG0{w9}q?li6!8s3O*O(AE#MT_@$&GmyXU z*n1jBV7GXjYkUkETJ5P`T-4&v<8p{{d`V8*B*<_*M&|kXnORKMKQRUSqQSzoL@e*P zGK_;$aiDSF^zdyB`_F^(y`H8=K<%;s3=(+!&Ey`uxao7>IkXOigdXRlvR)b}9u|=WUhW z$?L|a;hHSBNbDoPLwD-OB&_F^^ju?h7h!*g{FTY08gux2PCd7oP@6noij}dC_ZZ^g zd>nkVb!#9?ZC?awd#wD{?ZKmX(EBq*ztEzfYF`~+-`b@X+u!xJ`YMiTx^KHu&aY?U zRei%c^+jq9WW&SWW$5crCfO>hgNOLst*aQ#rd`hD{lj^=(SbnAJF664RaS`#GJy~; z5Jlr3?7CCLrkV(NJRNf9-9H3|ZwOZh}cil3JE{_akP?+ z1!V-Yryh+aG2%6z@uT0l>9-epD3U>Fq{mtv@A$~wp@Z*qYi+dAPqo}WU&b|e6-vvu zFWU=e;1LLXF1O+rpm%MQsafH}^g7(&RPelOP3~|{E}2LH@x{E_75~7Fww-T7SX=S! zZ$luc6^4&#@%$gqi5HL-K)9cK2x5A?^o1 zuZL>n-*=G`^p3s|rl8#D#1y}Y-`p@dPTkh$Q3M4e^kymh#PM>JnM=|X%igL;kzbn$ z-p1gFcnT}UoRXQnTD?><>o$i5-j;zU#KFaPx*7cJbVBIycoCCI6MAuhxuv@2rLM$| z4-c>wZGOLQuf@x$XmCWxDmb#S(mql~C{~lwdrZh-!s9?a{N#2xyP-U)?v+MZSq*2{ zpM)UUCC+)U5$6O-t#(D>e)4;D=e-(+=(`S@CqP)@wZaa^d9jpj@lJeP&+Y~R0t{`( z_fNAoxU*5{4Hx=kj&^Q_PVk|3t-wsa)DHAYY)U{7p7p|e+E4ATWJRlY_PyoPibrKWrH-3^xl!$*%E%-So=~Zi|Tw?m4}iCw-*NIIr>91f-+%bRkD*n{{l|2 z$hns4Db4iG|8?YB;OC*f7Yzc{)#9Q7u~=8EauBGC!`z#Lt4d-8vf_WkgTj1^IN^sd zIFOZme7_FLhQKR5pSu$j?FiHOBH!i(PN>bhh)Ca3jXLN{5D`WAgCnf~v;jxX^;0m$at;ydzD&j929_7rXl@5nJdBVhmABmGa$ z+#{gjQ+!__l%7t~{zhwlB2yNF|%dh$@alL8d z6Xel*EqqOA$3t+?#nLI(Det{-{ojY=cZ{Gt<~-PZQ?n6d@E`DyLkNKR7(B9M9wn|B zeIapf3h%B(uI=fi7m~;5_29w$2A=cp$UBeYe0crSgM9 zzW5^F8i#+{2m6M=-{juv{|$bgYr%J?N4N#r-eiQO=oIUC3DfGz*fIh^jNcir@~rRo z2;GMcroYlz5@@`zd`!8tgSi#%Dt=zMT%Df8Wy^n#3BnH(`2v5yJM0g5$$6G<=1s6+ zd%&x2#{XJDMx8SF>Jy|Z-dW+ld7MUeZvVA1`}x~AtI=BY%{K!cI_kGDM(=&VX4Km$ z`dIQ{Ylfc@{?*5Kyk9%!gt!j`hnKva)&Br?K#9K~i2mmZyE{^F?89XX_@)%x{Z7~+ zH}D}<&OFez#~G7JlzfT$NiySugJU1|i2jp<^8j_$&gq@b@39Yi6#tnV^%gXcudIES z6MyWZ9{+z5e?Eyn_F+%|KTjw>9#xOZ6x)v~8m z?$|hX3-LtW@r)f82(I@JBjNmPTlpa2xJNw<{yby1fzw&rpqQ`4^5y&kUJ>>m7 z`Ms}KIsQWUiAnUq?{N>y;y;hr`K0%_hh_1f88rPdaNNU^_|FWQ{>U)yQ7Qaq2F(lL zgunPXi0^}G;~qDg{_}|4wJ4)~q09%n$2}~A|J^cZ#*Zr;zPNW;2i3BtRsNXma0~H7 z?j5m1z(m3}z&Z%CL+l>>`px4VMbmN2@up;3`@|Y?l~D-O8j}^)y3*r?5nQ_&K=;}zYwW`h}U^0w7nsf|AkO+Dd4NPnK z`^QA+E2xb5FMA+N6t@&jfSwScc#zuZ5p6zIjU%blAoLZ`j+< z?-byY|8EuWzv|j}rVEZ{8W$LoQ^G#lr`W4QXgSt5gL`5rwqnhdAOD1IRGkxTw-gmv zi$AW}j`_zmSr1eK2Ff3(=E=?PS ztv{~K_9uHN0d9JffBECuTvGZ#+4DbdY>&-9(4aY%VA!AMh6j4qmNf~i^8PrL%bIPQ z`V1QMzy36>AC@~YZ4H{d5Htay?T`pwo&@A{8dR?>Ip(v04-~au8qI@)j zma`$p458IdXku!x!aVpk6*7(YZ5ym6iluAD2sR1rQ~dt%uV|X1v0#lD0x@9&&2~&{ z_4^0@$a| zXt0tkv#%H-P`AHB`S0D>iRlQotrxnB!c=_F&&_#&S(z^pWMh> zpVR|$6XH3+>!w!lga`aFfI1M%(w^UX><%vKh7>}`d4;__DMCdzjN8XOBc2>eoBlax z0KF-0u_&y7O=WY|wSbumaei>rUkautC=y3<+R^t~;9$zy@6x9Us63T^B?h zzy@6x$Q!^0T^CFmzy@6xTo}LxU6&FpfDO7|(BPdK6s*048#L&iI}CSe&~>{B!D|pY zar~_sbkFtB{-ze?h2Gz#sh^v$;#gDNP-K3oi&D|4)qB$-WbtT1r#_(_n`4cTU zdl+nzK>Fy+^Q(IX(eM28a*1O64c?QAq1^NGx3FIIWFZ-EBoqIZn~h4d@p0>Yny~A} z-9(WzRlCfF`5O?PL}wseWLB=S&=(rat7PeB{}NeOsm)aHCJJ<6NRS+Dt{wRvfG1?C zA$Z>o*S;HP@K*>%xx8g>|3*Kt1!rcVXeu}03KRx>vQS?WMO$-}zd|Fy1fvAK&Ho&0 zlHit<|EVgv3>snmjXuM&93Wl~31f2x-8ao}>ogE-&;r|5#-c9t6?FHzP_GLmh8CKx zheY6WS=vD?9}AEHUE!FhRxp14ls(nX(U`J~@;_rQwxS=_-H~V`)lsaFB1nUfBEB2vHr_TX!_+CpH3mSxMNKsWqa!_vx02QzC@>>L2Gb02L zsR3w)3}x}`RPb3A93dp?rZfs^cF0l$IRuJ#dkKyzXusYL6>yV11Cx~@D`1(TIRo^S zCM)0<>JiJN?4H($oLZFKItSaU4ff6$GjN6bX5pnQfl+m5^xc)$ZhXa?Ac~#HIM^8X zj(t@f`wi@ipTJlExGM6$=FB;LaLFs|-DL6^v6ZJPe37eu@5)`~UhJLk_gTA>27`3- zzWOy7r`ubpWlNvt$lhCd&;(tez5ST}8&vO|jQ!C0y;>ui`SM-|#|_)(rUU$FV~ucg z#a^@dgriIis%F_v0Tn}2n{cwX77)fho^ev`An5$*5FQZQ&BpPGqJV2*E-qQ5T_x?+ z)xDR*lgHw3Dhc=+(j^PftArtk=3c^-=?pBdL<_9H?j;g>V)v4@S)koZo_4q41|d06 zVw-6`LG|47SFrEjn8KaSozQ=F_nVX@yj9Tc5cY!o7jE-hpjh^*3EjAx zBrl`U=~LY|6^Z89%N#K`dfu#q=ZH?3`5_W!=zOD2CWLAqe|?}icKp!e+j16hT8)xlKX(hdK? z!R!P%i~quXQ1oNNf!m{sVZ$TYkW$;3^3Vq9cFvOo1CkY{=m=l|Ex&~FTY_UpdgRnT z!gaycUlO%)aGT(;8jkQh0_a?{@>XQn-IHx1041a$#%l#SRx-z18VlU_pT$6v1|iv0 z?2utPAyblOmP-Xd3tRia$#?_Sa_B4MwRd*jRfeJ`1pO?Fp_^0(=8l}O~I z2p73uSIPU&W~1W2_mUX!k#}80p|!ibF+!RHmMc2=_4|}(1WI{Eg(ivx_fxzuzA;>A zZo|pk@Ug>@bUPJ@oLY2#?&G3vw&*;t%zWdqyo7kLu-UT3y?8nKKz)11Ui38;T_@8I0dZxAUKZ7U-SL(Cjdwwol}k9W>!f+RT6fgi{bV6y zem7}%gviXWQRc_H3A7aGW8Bf2T(lQ(TSP`qxktB7ukqTH4_zQzk(>%7@!t!AUk(%j z_$f7*5mzxJ=x=$Co^pl%2wA^0P+u!6QvH=YpQP=seYemUj@TqiMfi^nEJS@g+$OcwYSC){U7As;a6 zesG%&`T_+kq6+^0!MV9w`!ff9+=?pA#tl$o@D&(67AS#Qvz*u6o8j>q%X%;i;O<~D%!*~2std6rzdZPmCU7x6Fg1XL z8r{$3g|T?t>9=PSWlbqE_7@p>E5d&VX*4~ zaM8cw?;kYAxQX2+zhqMagAD?jhMB_*u-N+jBW;Hk{v;h+I;Pzxq?1VSheyhR=4HgNZQ_!-^d-n>+;F?>TRnt(IogVGq2OZJ0IN+ABG0jq(9u!jCn?rsiSa)SCDjNe2jGbh|Z3{TTY6db(0W_xjkvwy=y4Oxj}TFY$paTu)ex#)%k@5N$H~C~L+uY3x4D-O z7y^s|l-&+S(&8A#xkHys^<{aPf0vPW< z{B%E+c|hvNV+jw$UupGkoeKQ>SpD=N=J`>O z9NkBr3j=LLt$vZzgchKOc31g*mb%3zPB5GFih=Hz|8K08AY-CG06<{k#QHyQ5=hs z$mG89kQp4tlz+KJzI8UnZ)A~^4+&y!AH?1^>g6EDqcjUymX*8Y&?KO~B`RMjhrw`jc-#ZdrK z=%7GTOcD%-p#mbcv3E0*0hUykJ{7o}i2I0$71 zCn)aSIxi?*#jT@nzmYxOJ^36k3`e#+cVvf1fBPBTFPNiz_pZ5OIhyqL9@s)K zm`u}>ZEdZ1{Q6&rSckRit4o*(?)Q&o(oV!;RX*0|vpo3AR^!Y5SRvy5B+ti+ad4>t zueY(%Tr_Gr_+M>h^hK{zk_*Pb5p(t0qRAwR{3`uF{=X&vH-l+xm9AQXULvZz=8)ZV zIlJPqj26q22?10yOX+3Osf&|R-y98?+E66J?0nV9<4(OSW^=J+yHXMDS+Y@$V+$|%kAiAZEo?Y;3N0RF$b=MgtXCO18*h)Z|p9y0%PQE4O)^N{z!+R=@=|9GlM~azrkQM6OHE zw2C-LM@Ei8Nz-&QqFCfanlIv;es-I@*VzfJSgj80e3j?R-4?i1hSz(U+`2$CS0YxM zcULqew%5|Qp@y1ulkVQGuO?w44e>eVH0#jao6;5gRdP-i-;_@k-0JlKQkZ zq{BE_&*62Y>&R&eD};;Lc)evLsLpzwSQ+xXWRs=NWQ+=|8Gk55XWL-1W za=z56sc}{pW~osgZ}Ewa*y^RS)@+fPGz#RZNU^Q*G?|@_8fB-e)@QS@A(!WlzUma# zJzSsm^td}xSeqxQD3kBVDlxM(&Xo0Zvt=yj86{!NVyP-QDvYS;n3-w=AwQ@3!Z=N1 z6SLW~tWKg@X!gKRBB+ubo5tOd5_RZiI%|45Al_Lv>6z`Qq}XBCk&doT?QS@hbzChgOSPu2)0&v(stL0+Nb}M_Ypj|J z2J5puB}cLnYb_GRMW;k_vP~NLx@zU--C0A4X34R#5ZFpmtd^_uhC7y9*}Sn%b(hv! zt*beuG?-eIHaSX_;!RvF;+Ck>Qm>ySqj-af6l?1=PKy0@Kb)891-+&KyCe&Q$&WIF znQOkfQooc+u8mP{O{#n;Y*zY4En1g*)tqFp&yOXGaB3osn~Cu#KCCggq)!*N zGZhPyN^v>tG0kRzUUpG|IKEa`W=b&W71LQU#WFUVT3Fq#bA4viW<`85Dfhcp%gz*P zQFBsY>gkr<7E9f%F}3SFpK$=tbFDfn_b^nTb}u!Eq&ThCjD=UV{4|^HFYAp&)>ev3t<u3&-N|r**Bex{CyTN5vLF^! z3n#T68=aCpv(Pm=Zj&=qX4z5os2C>k@p`Y2D0L)MpxM{rxnhD#43&Q0 zO6p8zTE^vhZZ+2F`kXC{^cJfXCoOhas*dV?tt-b`)mSc>=G8K$RjvN0Sf8ZBvni8y zhhB$X&CGP8B=_1OE!j` z6 ztIJG`iYI`@n(>B|6eGFlq930vMZ7jsV?{|&jkLWSv14lCwB0!+Ml(aA+M1B*u3VV` z!^KA$Y1z;s6}v?gbCo4K<+xF?q6txl?SvOmm21z(QHG1k6E?hdaF*YnQ+N|j8|V*s zU#U1>m)HsLzAE_|xYT@|Q*gbP)&~Vbce-s^FV^XWI977aB%MiAO#u}chciEq=jzEC z7@2&01V3ukEDx{8h2k(>g;&zuk&~%`n(!5tk3{3#gf7DCIVm~lNefU%yXw}E=b0qm z1Kl>TK><8pZ`NY1j3zM!oav_Ul+%cW+nrK*#MH5gxSIFl)s`+z8r8xgPmS;?SMN62 zR40~NneNcbYi78hRofOW%{3z$8%N`DCBwFo4r>Yq*4LAQlZ%^`nw%`8;#!3m)s(7k zn|fMaanrS$S(hwsw$79r`UDk-5#0_wDor?g#3_VWVoJt(EVjn$>e|6nY#mXmV|6@j zs79_qtI3iwZ_T^KM7GxJ^u=y^vWiZ#`8Lk=9H)f})HSTpt<4IvIMFCz38!VJM|qN9 zQeaX~x9K@0c4u<})0u`~4|=Q7WECeVgHrf(VX0}Iu|66!2nDZ}ic8mgVe6G(*DCoU zJFn3rmD0LobSkNtNTe|&x}@G%tsOPJ6ZWkZec)AB*O#-6|9X(GQ|PWGE3i=hzV?a*kjBSk~+8!easF z&g?k|3OJ2uj-r{}q3jvI75&zCuLPj3B)YnCb!l8hwH{G{8|*Ecm6}@uq0TyferWp- z#uE_Z3k$NwBHF_-h2>Os9Gwcy`4~h^H#nsqy$&%)!-?Bj1Qf|!zfUOW>dldND@I)wYtlq;LCo-YB3S%O>Owg1t|FQlqX8wZ zC39^sB5r)e_M4Hr_z9Mjes_rwxs@gSg8p_ixGWbp(q0+~0huc4F(&Apn&ykHAhAkF zGmjeWhmSvZa9&ZYX}18tLgpi&Gq_FS;c&TscdP#i+8z#GtF_Osf!e%_sYGk}2r;Un z-}`%;qs=23FbbOMqH_mt22H+rF62qpkuTJ<8q#eH(!ny?sq;TUq=@0x^Gk5G&)kfv+gtv{Ac?6#4=y{QeW{{GKn; zch^?&rvW(h6tU*X2_-1zpgq`$yR>beM*g;#k5yp- zZvV^y#V-?T<<}8>S`CTU4o+FQ@U$<#)XNNdJ8SC%a*g#;ZX(j4;qri_8y3pcWuJnA ztmG(w7Y-1(_$TIa<(-i40l&&Zaj)?NN-*+vv48(y34j8`0?GT=ZUh{JsHtCJp@uOq*O0my3V%gkV{^(?E z`$GOsxWm-0U8&W(xi!Mk)4EN|wU63*$?ezRv@@uG6TVUFruy+=RPnk1%Z5cbUHjr> zsLqmGel68NP7UfIEbKEv36n3JoCAy6AOP+jcuQc&^s`e5DM;SOJaSV9rS{P({KBg7h_L$T4 z6IA@y)iPkvB=RV=j&v>7tj3ldRY|jStlCkwWgMownDK+v*Zb3VNZD(I9k7Uz^&mE; z{eE@ib31+pOEA#7oNKi`-9%XCh>n^tRZ1}Aj&Sj>L9^$f1-b{_dOWez zJZnPsn)nSFyL-!*daNL98PJCWzJG#oBXOzwO=)!0(yTVC6#qgzobO_kMR}D3R##h4 zQB_?;Q#V4w9I$PrU$S@K?KcJ9Yu|$^c$yKq{M-fwGlSSpL`<{pdK?ZFMvnrQVLG}f zNAaf2UD%F32Z4~}<|EbWLnwDe1-@l2RTmU?RA~7Xs}cXXjl2!570=(CU^nXy!9-|u zCK#OgYx;rJoaaj(d&kb@j;oW$3oA=y0|}Mk+_?HcRhkj@PNAQuP5(J|crU`L8$g3k zplnnWGr|uO=Fxs__FGkurF(~#EPBB=Zw8IA^+Ai~st&q3xS=g#x{1##?=&$u|6MZ5 zV*2X_=#E$FFE&XJx}&?NW*)jEEn|ObqH(LZd#AFxb4Z?>*Es@f$UUv15xP7a)0v|| z|IX{g`V$-(XghLq6wF3;9lKIf%)}nF8sCYHk-1#UV3f^?jB+XEsHdw@l56%#Su8h! z^}XxA72Wfe1nd0Ynq{4%+N70Na+{j5CSjUVJ0$EWdwr~~z(q&vC1|!lX{6IPKfME& z! z`rEr!hbp1mm+YT&=(j0-(s0Q1pGw@hM)<8+lo)vsj}|7xO2TfGdH-M=eZF&HIhyNn z!pIMm>6q220g*B>*XxC+3(E8NeL zPnJ2d^ENf43IzdelX6^^r2^8|qz8a{mfPeRS&o6Z4^{lDMvNvV<)3{GoBIMeiafCD z+H-x4TJsfi`}IP;!B;m6P}I}x)fQ4OUNhnzj_@XA8Cu_YS@CYe8p)RH={3KNpWAd$ z$_HbeQf+&-Rt0W=(%|dlx5}Pffv*X$HNZIo#{*i`vtxA3;_Lg7CpI+Jl^S%F(Sz=8 zVBPS44v|3j`(UeysMS5Pt@NJBm3aKRy9@_?r%$O6D64YbPL0@h@1L1bDrBBGj)T&i%a&}D%X9Y-im zsIaGX%i46mibj;blh?Ts`$OUoLfmC+ZY$_k#BnqMX=XdPy@YYv$MN1>`Lr~-)?Lu- zTJg2RwLMDD0eFmVA*vXRt*AKZu~`E+{u3n8b6Mt8lE3#Qre7hD`qu(${{He^a;26B zE}QTs1O?*S*Jk+F`bFh3)I_w{x6%xtxDAEQd`ngV{vx3FzsjmBW2V*-F*;LpP>)?I zmSj1zK8_v}4+Cv;5#!_f@GfT)=~;^;<4qxp4agC~1$X%2VtM%G@=3Fs!S5{oMh|$T z1!WABdcMDm__%YTl^|*L_f6~*;Kgl_8-=!~<(`J`E6P@Nuxk)9<;L?GU-^~C4hyQL z<7Yd)EQ%C#vBSG^GQGZEX*S31@g#ff^VtZJ#$v> zen&5MpB`JHh*HJrm|y9#d1w)@^(;9l8rmd7DiCe9rQ1q%eNqPqPD;{@BNb&AlcaFf zf!x(5kdMB9>pni*PCeB-=*x@U7c%`z&OQIOjaAO7 zr%N90~p%~|z@i4eav$Cy$rJ~FW zb`)5Gv{What^;Gey{_Z*hqTz}BeR2J_{N;YD8Gjy2ggXl=9AVk(>&y18@B&|7lmg4 zZNZEni8>{BSL!Wl>S?2X;4oJ&wc(nAg8BWq#Fyhv8~OCRA35y1IDFM-0E0?*NkShJ z)Jp3cT0^x29UW9NiRQl-Ib?nbW6b&_Hr{?3JS0gt{M$6W8kia%eBM<+rN3 zZy00+26>w2S#q>bJ@M__isMyGJJ6q2ngXffCWTjoMik(bVfj0TbfY9l$b7;X1eh#i zvgJI%-&y{O`nGp`05eg1#~n#w@+T*FxOwpCEVF;(di9eDot3^p}W(p44WQ{0><#U_tvSl}6J?UA5T$rED#I z$~eeN&(D)BoQco*vozqE;L+@#;B#U3<1p_eQqLGu9#>V?+k7=?YMgbtrki8y;zu9= zJ&fRowl3#u?9!M)DVEjsM(C2hNGaGL2N^z-G;1yHkzWi*E+HaX=y!MSe0lF{=9t4Lc1+p7q z)iv4&Jw1s;;k(7MoToJCwyQ6+!Afp79iCmB5(If%;)}X#4cu#>e}XiAK}#JULKqJ- zwgS}JpSSn;U9>OAGq0>;FYKvSe*9E%l<9k{hbUFA@B1Luy_d(E$5N5FaLfAP92a9i zzCL61qWp773b?$u?5b3r{$}*ojS_tqgam5hlP?uHswZG)ySBgaZ`hUrzQ znn_sBkcSBTmwJ6X8=Kx|?mRmQI35&mC>;*KsV_#%fS=0BCzi?NvC@VXALX zK%gko%INK3g27SYGFsyADbHT8Qc!>z>^mrOh|iu!0KH6&Qn4U)9x4$X#RC!GCRRWD z1ls#9u~@r-+aIWTS~xXB%f`md{O$b8qcgdpbd9{u;0)( z3T_B9Mwe{fDd`zH8BK*zEPXG3z3UHumuUpIqN<~Rg2)O0yRJeTymO$BO`c5K8vfAR zuthgeLEI=vMmi4OK$G`G=r9!S^037!KFx6dQS_FO?j$hbb_vDT(bPswK)zTQgrC*E^iltX? zR#rWUERNT6g`c>DD?w`-`ps1H((GfGx9B8`+7+2`vX#pMzERm8(&@62fdnny1XrX1 z{=dDQVZyVmIK+~3DS55+m&GVscCuMQ=HYeD9P`u_Y5eEuzd;KBN&fP~LS zVKF=bq7qb*H?_fp+Z3pyX}UhjqyB57&1(b(rXpLqdSP4!f4&`g4W`f-;i=zTd{&9D zIvOTmgV2$b>k4ki-I?ZG%3CyxniPwOO@zwYgDw+vhk0m`e2-wifZT-b2!ZxhokL#;30L6O@8WITxh0 zwRCkkV*vBiz+;mOVU9BSco>o!{Ab(T!r{QPNJ~0Ke#2Za(k!5Ke16X8|UfsE11pkzn-| z+k&(Bum3Mw{pgy+m^;VQh}zIwawvM|Pg!pJrn>m2IwW#`UaO>kt5}gdl>$ms473LR ze(aiS$f{D-lZ@-AH-By;_Pcg}0c0=yCP&I4zNrf>Oao<(U5SP&wEJF>X5s8uB28(= z!gRa3dgDW!@4XSl`!m?8+hf*Y{DK~oNEt8h&j_LC_a0%t9~V|b+rX+**Ut#kT^|N( zuvE&U14pk^4wVMo!ZjpST9Nv#lu+fn?ZCqQ1oIkh-US_uglsK33zVPWT9+a5$@cW9{_2fyhkOAH)Oy~cq3Ip+r$SEAW_znAT1TcaZ zwPV+vLu>Su&9bn)n*wBu{bUdbTt|_7Vy+~_vTLs}wQ~T#^yhAy&~M#m?u`z1;brOv^?6fBk`YU}=*6_mRC1@%BDfS$uUQECG0hKnhtlurN;*MchomCqvOC zWt3|VMF0}tt(*8LG_=Pzh-|+C-Y4Ho`)W$0uY~65)&$>j0?}#nja9t@63Jqj5dN25bF!18GrjV4*oQZz_vAQI_4WZ0bQuD)gm;y`$*c?!Geyf1M9%{TRZ>j$EF71K1hUhWlKSEX%8)I)&8mrPVS!3cTFNPoN#`bAP(V21kj_W%E z;$J7P_j!3^(o4AdZ*2DBF<6X1PLiMm+93gApWznN zHgiiy;zoLY1&fmZZihshh)U$1MwflMOE4@FOu|0*u=%7*xLeh)nt?^*A~r~#DoA3Q z!dBL2Xna*kWEPIDV>}qR2lpK@cjB9!J-y`Vctch}1GK(kAOTeyUhcE6pWyFh>uv}J zi4y<@i91|w!(LHk9M|Ubbff7ApOPdJ{zM72qX|P|U*QU~&x1Q9p8|+av%hWVAUF`r zyZir3e@rL`69~Y( zoXVBt#7N$&jQpToE%FHlo4im_(?X1d>lpdU$-gNM$XZLPpEMkyAy-^ zytj1ygxKBd6U+Iubh@f7RjeLRP(`XJc&06@@ zRE-u~fCt!mjJC{si35qFo|550pG&d!lJc z;7{=j@|5Gbl>Xv${?pbEq<0{Xc=aTI@FB}s0$$Ue|_L)97iDZPs%MFbX3CcJJ4PQl0& zU{C}J538{i-*CK706n`BNWE9mw!c*slTRqvP9#vgM2;3n0OkALdC;K6uw~J8zlW8y z@WRGN)`p2?dV6mVYP}~?e9?zfyDP(%_g&Y0{#!^A_!Sa2THv;9{~aYSXwa~^;5A?$ zkjxVDWM0-CdgkOT=yM0#vQ8N$#NYCQ*PV)`&jaM*%4x3OcR0Jn%(7}ZvjQ8wyz1{# zko5se?K-D(-<9&YJa2-5VsTb5@Da4*AvVmW%xNkKwz2dm6;7clh0Wcs%BU_1nOl?_hq5VXp%4*X4>_4h3T zOx^5`YR@2vS04>!zB?}1``82SNU)2lDGb*g@~zitNUY!xY3VJB7&LgUs1kyxQG^oR z+p%`y^#jgt?GyLC%x!em9@c*;v>^RW_eQ#^%0ua9TX+Q-9)Jr<(<)fzC78w==oS>V4UcMIK06B8!GAmZ905)lZ0S=3TM0G?? zoF{r@UoCX{5cBvV6Cn)urzP51S*)Wj0M+>?h~GE~=x>Vu0`Lu}tUIqGeKpk@iUX+W z+QkxmSUwTeDlc#XN_Z>L1B@_mepB}bVlR`UAo!>_LHuorsiep=^8?7|1>8p`hWA|A zAJBnfVSV?KLgDxhgmpOW1warIVbY5AiK63UDkl5%5T>p;(=oNZEt&%reW~JqW$HUGFob=5Y#bAyJ&`l8Zs?A_qdO%kjahUr5E> z6KVcteKxPBWd-<*o3JQAT)pjzwym|$o}ukQ;N_ZoAv@l4=?$+7IDt_oXqLc~d|pM{ zBTNqd%;7i#@iEgQF$)<9GoYGE0GPUhJHXi}|FLiu3(x967``ADxGme_?zTgV7q_cF ze20J0Rof8A$n#Dn2qbt~c1IBR-9mJRV3p;4l4(NcIs%CFPzMOdJUIx^%%`4sSm<4H zNuUBYJ#?L`0qDOMhR?l%qSpZ6M4}rRcU;Gpq!;DWj7E^q3{6u9*LMz0!_N5|ZxyhD zoA_uw11=B51oL#Zq6FpN*oJ(C9zBzq+{q3oGHRR@v@TSu0HP7b6)dkV|Ko1#S)TxV_ZP z;lVS8CCKTVAB8lGPFrdGS!MRyyE&^3uBFgCs1!wc`YBv=VHNw#eSuq<-I!vVBxX(~ zLPuxil2$ro(X5Zqsw~X=VrU=lxIKLqWrU!nJDL~A({uQ?&>c4smOnfrQQIbJ+Ll0M zafGu~B)&`5*ibR?-Fk%L^qS|FBi>-L)H7$gx@Z4CpdH_wGJ3WhdCHK8W9zxn&Z+P# zey7S1D3a@skwIMB47Kh!u;X~hlIM=2Q@`y7ddaWOz5joXp83=d8&68*QA@oB(K^ll zMs@s+%|uH+wHCML#b4Yd)q!TN>KqR>=Oj87+lkSOUF776kt7DH7rBDk$>YoYWav6j zMI}1v`V3NraetW<8ro#lH9KmT?a&88E{J(6T6$JP+d%0Vb=o-G*Y+bObKD;vA|V(5 zD^*n`(*|GYN%&G-w5&>20ky504OWp2>j-^%}~FE@$Na2#D^HmC6?T{#G&MKK~_MgmS)TIv&<>bzb5z~K(J9f z5P6EaV1kl4&`TJr|Ek|tzcb*iIVj~N6aW@NeGq8QL2d=06yQ(Q!Mz5@BG;6!2~Wu< zLP0=qp=^zJj3JZDic&R@*qEP;)*>7c&ej{idbx?W)^Rp#e zZ5Bb3og%bPNs!zvUy8x0Zx0nXoUUN)Ia`s&!|v0;tcJYZN8!%r!noZ4X?fC-&FKCqJ;!yDr!pu($N-D;GNh&MZXd(3+!MkIIdmdD$HEGM5 zswGzG;A)vQ$p4`F#KlX-BQNhOB;QyyI=BnX%F>o`pOfY?ndosnX&E(!xH4{^*^bTB z2%-Ar2NU>UZIsOl-@|<))#Rwu)bhE@x6{_Zy5H#$g<<;)kFB8fvL>s5{3I#Hwb{A) z3y6QOiEZB20G|`$^r!>U0SdwFa30iwU1zP@$=>`%OAgN3z607YXeI0VEQ>f_PL|B* z+1JaGs==yUb6=UKO}~^OhPja8yoP=_^J|cB%%U`4UsI0ASttIy%8!ByB3tSe-GK{_ z8w{GsqYV<}DVe_2cfD>7M5uM=BV=?-mYc@pVKl&V!(cCy-3kNA#=?iQO8OPU^5XMi zu$`rHgZ~-fOMkHxh7+j&y48b3@$p#)R1u}?yUe%0KzHRG+tc-5=S!Y4s$+js|2$Zh5(i!UM%!+ufsNpP%cxq z;S`um!ps4pO^v>lYg@~K*XvXbl#P%^TtW*p%Z?Lgf@>?mczddIs}_>M{(9Z>kSvyS zi;Yr(ednzXB-kFD&kcIvL%Qe!+D0f%0%VcXwd}yTpD84kzL*~{7uToA;is24D4_xX zxqzv|+heO87_K1r(2;(0nYku;RfChZ=D*L0$4F2V%1+{k0g^y{BU$#t_ey-d5D>%o z`SInK!WaaIWreOpHU?xLjJA>Z7#S&{HDn*jfgv5L>PRF!JHF6F>M2GIG)?!d?0RWcVR*@?|cY`LW_f<;jS;Bz&O#SY%CiDRCaw5*fi{c_$2k$47`! z*UvZ2%V(% z0zCV{gAWn#u*H~YuP2HKMBd@QWL9-M2VY_H^G!EX)ECs6-=Bmd#48fbk?#?+JJubE zpUTp)pWoOCFL8XS9#?r^b4bWosg4Fvt6%tWKg87gvFC|uAKuRl`k7gQsq9OnJ^Ke1 z>Ac-R1&r>T@Fe=n0MQYD3Ga#Zi+$CRg85Y-NsL)B`}S|pGR|iD(5B-f&eQQtg%GLi zfxc~D|A&1O)W8&g_Qa_8*EoT=BwHFsN7^A`sjFf1yR(7#9SK&0it#1zC=v@G1}3j= z6Fr}McbETBy-w=UoXQHLHf9o)h&lcU_xdVyLmu{Z-GH}HjNVyJ$c}nz?XS_XXU=Z4}$+cU=n2C5wExoftIg! z{)$4=3=dolPz7%vUbmoUx&`NM-Cg_!dP@}Wx^F{laj#HsYFU?cQq|$M(D&nd@TEE@ zWoPXv2ndlGlNRCw(=^&1k2kVbpBTKUW+&~%v!f+D0)lD~6RNlAEf|&U-*=cNP7_I9 z^#liJHC;v3XO~JMANvg$a=l`d8IJb{JUg2`UW=XzF>QtGZ8Yv0E^(iWv~x1)BwqdW zMPh-kA`rvBPn(ub98oo?NsVoK63P03dH2(>b~|0hTPs3did}0xfwxci%5aSQ(71V>zKmHEQ|D&b?*9YUFea5t zL|!#`l>B0Vz^M^CY#?77e%D4P1dM&JI&uYh{E2b_hVcV;*j`ZV3;)3&U@$m*5l!c~ zPj#+PscoXnG6zsqV7M=X;O~J~C6T)4gM#>YYZUCvH=j=_st#0o=q&vHHQBBkup+|% zqB~O-;>>4HaPZX>#MhELP~arPB?t`KD6&*D0LLf{9HsY*A_wA)1v6hP5y&Yx1OPuk zz`tBj+GYAr<5I{XP7RdU2;zr_5BY&pIYmgkY-M9bwZrF zmWY5a6ihPV&JM;@QXh&4!=#`}K>**?%qs{!gX#Hl=LoZ0%rj)rm7mkWpSQ;7zl%C0 zi@YWEYfXA_=R`ixZNm!o=DQ2lW_<))9Ich}Kq5L*-t-%9Yz7>OVzmP3cPv`^=SIThzG1Wd^;>mhsDys67P8i<=W|8u)_CvC{y zV3Uen@>A}cyfe7vBI*AKPz8$RJlOw039^i7ft2)jU#ls!4?Ux zV4hIH<~!Uu&W4fyI|`8lJCOnLJj`+T_c_W=V?tP~|2~cyldSibg_-dA)FEOxmw5m7 zm+;3N@*I*>JmaVx$3EL|Ew#4qa>>5s9P?EW4P)F%gXZ0X)GlOHRGjeTnDADgllNCg z=*D;&Mq{V3drlFm9;it)(`#4jPsG0MBQ2-);@3itqwlpK0@8~~lp=|W-U8^Fu?wH~ z<-+?!7dE8Ux+|j2JcuxQJ+D9+&63aL{kHa}hm+L$_U|hH|A}t#n*ne?``Tq?qwi>I8XMcv z+hd17=UsHt0R~!Vi}TB3Kc)cHzPJgk-0PM|zhcYZZCdQhccBw!fgj}P;Vb4_4hQO2HtSN&<)$FmFlUOb^flxA)N0Ly#FOBjz`&bs0uG1*EI?; z!Y4zBF#9`~aA{i0#CwzaB+j6zuW3ek|5S4bBb?GYDnO6nBi*Q6B?{cy$FpIbjQt2t zI?cUBNy_}P%HxZo{BV+pEQal0pZaW#s*6bWfz}?BjSp+h`!Y#G!o@H=qK5PpVehc+ zA3JoHk?+VKaxHC@EBdraj^-v(+15c6i6D^DKLiz%1|IaJP0BJq*K0C~MKi0JOFwhN ztEGnY`TbO$ngdOO^%dPl%;$w*%_L#N8`AZ?5mA|gV;^kl8i}7Y06A#-)Gj^IhwzSr zq%!TTxy?E#jMs1V5*vDeGrZ&^DIjO){ z-`ZQ0b4P=pJCyWgPa^bm3zmCAYyWI=DI3UKwq}bRWprLkZh)O52!P{829|_dc(*#e zQJ#peWO?~axfveQq0!cnMTy+LnJ$&WkSORn=aWX&ViM2VQxHS_zOC^o?|AQ&nX6vLgo;P7MacC)?Zn-BDd$b zeb9f$9MAscW!Ls;C^|PBokQB6d9;)6KC+*pp_z-#MtcSg^hL~=)hNK{>=^G;Hs zD~wf3VwQbHV7HIIku*%3x(+Z>J%@$})*~+;CV_ysLr{Db#F0_7RrA0LyTG(fak(d7 zaPCB}AR!8#4|wQcXyD2dI~&I9N+<#CLFY#*Pe%|ES?1|xd?X#QlXhN~a>}LrdZL8a zO;_krJh6ixJEs5*cx>|*U0ws+Z28>1C*X(EKtu}DfP%LKdSI+KhtkJP9i&BOCL9%Pdm%8&jf9UUv=WLYvde-tUFNYLv**{Cg zzf)Juxesn;mxJL`A1fTbc zfI$6?+nIlPqzgzd10ZNL=$FsITFAZRE`Wy4m}e^(p$<*9%hxS zmFt$)(+^`WGX4v~4$>{IK?M=Fa29dTLY)*uPTi84z+M*Y3~+2K2L%T}6SGQMT8@@D zLR0KLN5r!63;2qOXNF9C8jX9hB1!=|P7wqxU&PtoNkA^oRk|@~^{AF+G?VRc2gy}4 z!Nk^L_LbcX5RSP>-l9`e5UhK;?s05rHaN74i?tLW8qCA#WOhf=9C5H=>lVvEmUh0Z zURq#KP|8(*p;-_>N-s5Db!#}!M9j6-wSOhk>qQ^0D&MofYvyg95c0 z#C8NV!0PQnWE|e06o(|@M`~lp29VFdJsJOYd_D5%=;;-~MY?MuO*En^O`&=j_$l9t z#D@Z4M)5tdz|gM2B6A$4DhtE!uocPk`CS-4tXz=u%4N?nsZS;TJFEc%7j|`@u2M=? zes{fThgC{dc99O-d>9k#;d|B`DP+FtYWkjhk{~%_ddb$D(JlXdj2LcxVR0z_L>qt= zcZ?;PswkuSA~P2v=-U)BiIMHifKya$ze#_6RnqQ_UixUwC!Xd_HY_Q)jgu9E>_b3= zj^yi82=Y)JhNUd7cu_;H4MhfmV1(z9?QsG*K>Ehx|-i<*V>*>x=I?T&;ExO_h&fyFY!clITruW;R+9n^pI%$t_AisS0ge z$2AtY)k0YZH^Vd4xE6>Lyc6YJ)3A3-5aSk}$D16v<~b+Tjzu)UL=P$Rx53+R9NrXT zDT;rHzK7mRST1}XgKAfQZIb3J%O6yXjY1+VoJyg4ni^5 zmDQ&pnW{OL&f;zuTEUqU@~(p1^Nx%T;wp}e1J}Rr<^yHgd!CkqFmz4k$EmfOa1n1W z^1V~}S#02`GyMcutov1s@ixOdH!*~ZO))oKT>19`k65MyqnZz?EZK!s%fk$c#4CPd zN7}R`VHihiZHhA>_+SI^IEkp}ul@ z;R}gMj2mEo%3q6-L$QcjAB_z9L=^A*vIo6qVx81R4~p!!CaV3Kx!hfa=Zgnl;K+w|ok+9`|f@O6iZQgpO^i^-9Fq(puFzPPnk zBVt)MQeD{)X5tc8ZYTU7Q{S=dD$@k{KrDnu zEb$<`H#?m0R`{nM&d2>{W}yh3&{5IQRau$U)vc)WH zuV*hO`w%kRbD9|~W%-~4Qjdiv=D@Sag`xyLa1ML%Sa*EP zxXG0kX@C)rFgpfb9{{B@qqM}VeKTghsLXh|i{S4y zo>pJI+0{mZXSISzJ$0SfzD^(>{k4ZyN)V4|aGT1G2U8n}%u%Z;P{B{&X8Tj-$TU1h zMub71ToB7WtDipA_#5(-zY0yV*eUV@Z4XW~DpOjH}4sDWcG_`vEZeKdQ|K-{jF^&*`c`BX1gs^54HF*P#}CyNCa1IkANJ)ad;DO) za+>_$*9?1UP0o#tF|u5gDH zJY-ZdG(B$}X-&X?_NCm!6y`OAX#)Ozv=!5r|BkQ#zvPKd(Dtd=Y!TZx^}9*=;BNA6 zU_PefY$My`SS10KjtGV&8KNpaI#ND1N3t$uqnh)&2lLk4L)*b#f&H3QAFmwZD_(%k6T?y|8b5P*JR(%Wf(<6FDUI#-iw=}WOfzYT}3B)^_W z$@;grl0Wu@89B;qQ{l16bTf_1x03GOXm1{;-mDoyWtR6j-PBzj;!QxVaYKn$y;0nt zK5O**V8EjShSORkAayRWCEO#?iTLSN;Y64h0h zUqVKSbt!C;SwnOVL3$0NZbE8>|BL0l3zP4DM{3k8d8pE#su19pj@3EVL&Ao^8%$4R zv#~1rc6#2)$Q8{8Ulu{qodNI17vISaB>1C=|4!h++4hqZ;a{azJUa0>ya(z|My&nFmLV2O%<-OjdKhHTgcT%>~t_{QYH zMJyAEcGVe|Fl^XVkLXj!(ss(^r19O3|LhUB!X#9qZ97X?1WS8IKzRA=Leg##2V8E8 z47n5hmL6Y`Eq=c^)pi!o0tm#Jcvw@s?jX>QBHJ0JqbL}9i!(#m2g1X5ycB}!hj{bM za`uzY70~47BiefsFPWA_H0-%y@&Pqq)K2i0v^TXI%a{UwNVZGJ zU9%**p*r=Vh*+8DK`0enM=ok;gWQgexU8`7ev;^Yuf)RcRFUGyv5B= z+1_7&Sz387TF)nHPf#F@nGTBc$_H)GT^qt#p0q(?R+Y2RlO_k7#Pg^JUxbn~Vay#ahUD@f|*f4|6b+kIb6uyQce3*NpOx zcV9eo91W$p_ATZnD_Q4tvA89*?*^b#oHz&4)>p^P#`@ge#7D}7IoQABzcYd$Wr37h z*rF*+S$L>j_B37{LI}X-zB0i5Az%zwQ|9xEJzn1yzC0M~3-oIvD&Bw#Xz%fOWEmbm z2I~Ww>rDE<7JzMG_obN3{kYg!nZOH+1Y)5`6H)7CFMPSgzOAI^KVlr9j~BIO9$8%^ zFMXseJtRNvF-+bTBJwqW!Y{o~vE!8W4V@`_Q6+%co}`gF{gIV!Y!1U<4H&;(S(`wX zHgle@-N4@6z^QHKjKBWvpz(shVXQLqFUx{z@wjfs`qoDBYJ2t9i+B%%dYv~NGy|(l z`Ym*;_c`wbex>HT2ghkgF7SQw&iL$4(cS&TUsK*$(%B)^Ta9|cJzCNp25buK4i(_! zBVCm*&+?!G6*9W zE!+jlcMO-saXh-2{C2HlLP-o&{JmsYT;6Qmu5VrV$?~B;#k8IA_w*||NHvxDfaH|P z(f_?XmDW&jamndmJUHrtnfDvc`Rz&&k&^Mxs?>>N0|{Z`^6`U*mDe6LQ-xz-(esWz zmuCvt67feeu_Tbxy{8jy~_}|qmRXeKU*GXNu$d+6^^%$JlY^P)5)P?0Z?*WRbPTCgrlsQx&22=i&~n zqRH`luULk5_J5Rw)r0Eue?Mp5=>865IU~9s9YU-p@y}&U4q#c4WW1+sb^iou=nk1` zN&kC5dmWZWYr1LZ=#uS-DwSbnLdyT9fv!xmOt?_LZ`CrRw1xlo#mAr+^T#`sE$SF# z8N3yjbn1A@?FAlc#f5M*Zyj%XaJm|{THMv-0Z@AZ5Svichf11+3{8t5_HHNn&mgjb z0~#psfw>W?PGRh*fXgI(q(E4CYL4R&JG0}lUVhIK%NF3Qj78a z*naWEaigJriCT0)2WezK@f5kMDIg~XQ@YfhggyYU`86JH5$yQujBT5$vHS5w*kC{s z?`dd6SN8PW&gXdeEJqFtJS>S_MA3XBwHPBlZ2JliYKQhvwb=wZO z;=%&gXw&MGPix0o;xiAm@tKN*My4xhnrF3N9@2O>7({H?lY4T{yK3={ZLe*WIMy8M zjOeh7pkMQwbP|VpzjE_@WW`Un$}<756mAe#a+6Ye)r0$)6LdOR*K~e_j>OKL`!I?- z4c({V>y5N=UB(e;ZeJ9v;FR@=Er8=E^m>_fwbYmB(}y|vMle)dhhXj}9?8$s0;W<* z1GY^ZBIoq3lN!VG5*}slH`h?zYAMTq@b$6&Qo?@*g~HsskJ0CC<>{5&4vy`@4%(_> zM41_z8?fW`j@5pSFA51aDDW^LRAD<}P~_v_3yxL+%mx*!UeAugmAgd_i0&6UCtF7Y zFI5GU>niM)&0?oN@(;LAlV{#~teqQO6=ay~Z2ptEb^a~kPJZ)+{hr5xfF8FwXl-^Y zKUT|zp>8%3^hCdl3$g7Y0tN z8g`k>ILjLV6>Q#SV*0oDRsaEz{KYAehT1J6aiivKV);UKkv0Ts@;eT2Nysm*a$|g^ zGS_%qiHlT1GqBxIe>ib7f4eHvZ1%64g%{w9ZjDQ6);4uVdxD`O@{;==k}mq*^29NSpF|uwg`taHJUrJAh;oU@mq%Wa*_0?=87GIw*mCRH7Q} z+cpq(@5m*+-puM$f8y| zen$KMK3hT#&q^468f&A{_<%ND0`>4P4S~W@$LfRkd+m@rv+}M}aUzY`dlAZ;1^>2G zCn4s~7NJtb1iguKj{D3Jp0$9bHlp1&|2*M8UbBUj7acd@36{9MV%og5)&EEL%39}s zd2dD(RdV&OVgC^xW-PU*O-Q1qD+!0%th z)MYrQ{q|y{ysrP&bvdGEP9u_L-KXYka(NcYD<6k?I*YN;L0Z9B195)tQ~P z6BU$G@^kT}jn-qQA-QbVO6|&U6?ikf2tXvFDX3hpJ!PjQ)`rL$3v3+NW`Y@L6hLM??$pVRdi zl(wIkv|Zr8G;h&#-0wH-)kU18Id=KQtv2PgKxNf1z-Mu=Wu`BI{Tm$LE`4b?QNa~f z4$}FRA@;+*q(k#16sd9(FxcL7V_Va*an00Zgi8~S_kHuw>y_8(iQf))dO_yrIX%)* zX(Djh9xaA0LZhXz_uCo7`I-_SA88F`^78wDW+Z8 zmFV@j!<*Dfh@7IY&bPjLE|ka+^IMkSYK~}utzwsMUlb1NB8(sNXhC`6z3 z&E2{ENdaD^kRzhQDuy^b1W?(JzK+hAIw-4d@3Bmm!vvZkgHeuVNnGD3Qs3HOBW6t= z|2X&;$?P}OYx%!E2d*bDzE)HPx`BG*-_#fhn*ENY2H{7huenpu+l4sN-$>xS<)uH- zawm}N6$r@Z|Nce-EW0A)S+E9r<8<6A;eB>8rM`tl1*PBpmzQtdauobWYM5%U80Uu6 zpDZ)B=vN*8SxoSf4oIt2BadMJwAJL_$;p6CH?j#p83k3KQsqFLR7E^?=-wlcRsZ6i z8)pb5x_+A0Kx?-TE4`sWF%)mTe3mG-78Bf)!Zz@EhS#q_wie?5swT5dqAdf)TK`K1 z(^F-0mdxFCr>Gc0&gGkYECNf4$kb zJT2^4cWaxq?cD7Fa>i3T-q(n}~MDv()j{rE0b8bTHEP0!r($yn2s^A^_v? z6eRcP7bt#@IK2&{1om#zfS|(OgDX2ZS+EZM*tkF3HNv^_3rFnM5-uU>#pe zJW)UDW=&7;9G|M>H-{9fRi+5os${lrg@i3h23L+AZZZA((}9plUP-ki`JFze;X*0m z3)b?bj>{J6vrWxzustfkmhYhT|9-U-OZCJOhUr6`^yP_q>ZvevVei2L?2s?wI_v1lB{NPsye)J=&r& zol*P+Z4g4vzAP|{(eUOxh6pm*5`W+HyBk3Ddhig)$xVBs;iy+?gJQtVsl;{{Su{Uk z-TWy(Q}5`I7pYzDC>^cgB~gBb4$EdKH%{Ely1v*sNap*$-%okd@;5H69lRfeGzn(V zNc=1pg*$@7*g6TH2E=d!sD)fRjq!4VUCgg(-=GZi!m?^5Fe4K)6q=7cj!kHk$Gi5# zy?s}%m?Ej!l$ablhyu-cN3dDYPOSecewm`fycCe>HeBg{$d>=F=*LjFDL;N#v9&)J z{o!=q(|R9Lkwl0sSjCZ0WXe+y zoeSHLYqKeCY4iA?#KDZk#4EJSoW;$go7PhqnW+@7@;~xze-|vuDtxUXx6szG0TEQL zFs2~9>f_%oBtk$6%|>5|zhS&;Ulj2PwDfYMZmqed{cpSC^O>2g9jx_ z*QRJGaLss%Y@+2nI;EUwC%Spb4JV_y0g_>VagE`#7j9~Iiv1!^SVl)0pE*L0`_k!` zS_L?{pTsQ1)ZIx9 zjY}=z71!t6kUhxlE}4Ez{ALv1!seeEVa(!btYx%{Zk!>=&l&k(2s&^LCGaq0h#ug* z{DC@<+|9b&tG84F5(qZf9Lx*{HLvw5+08TB#;*}JwWen`+%l4w+~gE$VH5t=3J+Yx zjQ9k7k^qw#V=o-c`>cvvRRYjLbjpj4S*i-Ty4L$u$qp@F1poLJ)IY694O*srIW=px z02NG|@K!xadv@efQC~*iKMev@`Al)*dQS+?1`{>UX4bHwjNZxUP5gQbJN)2SANIAu zEEoLN&tSC1Xj%i2`(-jaNR3t30;ZzVuE3$rmAj0(r2izbT}eJYY^7c`F}ZGHLpbi_ zLqC zFI#e+DSE3DeAknmgJnmEC!=}_LCNPjH-YHjo#J~&S_ZDZ1A?37p>#j!FhW7hB0hxU z{c@qH*jeuH$N7o5&P6hjx&G;{4+RCwSvF6}6d(qu_$x$Is$$^x9WhW=Koz;PIHbMu z5pEIy`{ABRLS$lf^(zP|)4KRDxs)68P(9oCSylDFcz%+UDwdi48?p7A^sWH9dI_pU z$zY((77!0@%(n_E`;IvIB{KLNp^;eL*7;NXon4vqM|;s;hsk7@Pg{awC24P?CGo~$<@FaeSJ=E& z-o5-@N7C)<lPF^!klfXDYcPjBH7&3>ujO0Ky<06 zE%ky&7nb=SS&F4mKq7v6AV@mn5403hF)fG+la}-j*tchH8NW)oecoULP-KyN1#t)w zZ%fDFra4roPI+Iw24uhHg0x(mhYl>%rHt*#)gD=DAPCIJjkc?Huo{e@rG>;!E7Re# zClW&*oIfh`J8*P7bA%as14@(r0~J3^85;Kg&D0b9${y6rMn-m@%UL@@B{}3#(0z$>xV<}#JzvvwR zQx(k2CopFyb0RzorvGXUYTjK;L_A8z@w;E$MntEQmB(fSr8-LLezw5OI<<8>C^_=d zlWK6H;a2sJYct&4TM^@|ZQ2+G#L*Fx1s+My3MmRH^&9<-5Vr&w*qzH=rY+B7qwvMo zV`*E#pS(RsYmg_#xYBY{Tkdg5_};8{WGScp8VIwhA58^=Tey1o&krRRY!jM;@8nZP#4ntY~ zYk2*4L6_ac9GdVK2eLQ&ED$&A&4wKu5y}rbcc_Lai;?`-G77=mG9vilxn^6bITy?R zMZL-Pd!~MD9qAkGd59o!SvnNzCzvjxFqr#yGrhcmMR62PsDzEMYzF2vnW%if~?W8^g)B@ua!`E;#VzFe;fvKbENl ztFPg+yMkV?^mq}JJ0 z|Gxf->-Vf%q-7Ba$qEJZVp^iUbVu{0rY?sXirU(lLoOn?x!{dj2H_bd;_gNE%sfY1 zCKaK}yRX%3ergo%5Sf%8y0sH-01M{rqi1L!_RA0742C2gyzIsW<aJ>I&jlXOo4ff|TH`%%wYU6dkN!>kqSCN4U z?!yS(V1!;_QxY4I3lqD5WUqPRzy1k{mqdj9*ijwJ5^&u9dZSwvB&Xcae)7P`sAji< zZINZboLes%j+(>gx%a9J&y!4Xk4t|Tt-rDEj-mGk?jOF#vLsN^x!!*e5EsZ=guw@b zme9aZs6^Fia1HH zGiW*7+#)iJ760FI)%O%E=2`ZR5e4S|qAWG$j|jIVuFb;n8Z3rGvL_k3G)(!)5A{C! z!(bm4R7>lZ`F@nTxwA*g#vJD&+yq;TnLL1v);BC9AVSlEMpdsDLA>WLGPm2dh1!?5 z^+>h-x)aB&zwg#*5Ren^fnXdv7USi8y(fkMba#?WX-IxP?AB|BEMknpG=(5=uqLpkuM zWr+uM=*TN%`m?kttz;G8yWPJz2mbs~phY%VhwVA2rZJn)7Y=}&Sh{tm9?;%JkjTBJ zvK+4ebd6>4F1^WvaWq+f@niRmYX2u6Xf<$CUz>HjEBlf`HPl+DU-r;vz~I;p7> zy}aBvE}Dq&@;V|OV-?N&qGpt&n0(0sE9Sp43l?LK8)nK89~S>*e3hlmCO#G4`7&%B zXwSpUQ_Ha;V_OPi`%{h3DXw|6ztBOju0rqGGvB3?X#ZrzskZ~H@r^k=6vfN}OA*!D zQUaf0N4K)wX<%t%66LE7s;G~R_+V+i;q7afw5oxb#rjoC=qF$P7A1|wp|ifJjl<1m zT&y!{oqL$PloT^#RR48Z<_K~A27lr(fSNr`SbMv-lhx!#`ro*WblSgOfLG479N=MQ z^K`kKRX}YhJKPk=vz4h%s{Cq#>NEX!UF^OVC%abMdD~;!<<$YT%FJ#v&VSS0;ck8-P)S)X6v%4 zpkb_jdn*{r_1Hx1i?$B6dHp^M-V2(W-8}YkpFBZlOL%;Y$^9#em!%8~XlapdL)DQG z8K0x}8OLYksU_b(7*+o_+mdOT?OW67+slJI+W|#1@9fbd7g?p^|5fQ(-J|YQpKJi#0`bJBc)?RaY1L& zho9LVU+%;IJK}r31vifPUuk+l5q5V{)gQy`3Gd#$!}?l0G~pSe)3h zWj*j@;<*uy(&@L7$YgYdn?I=Xw}1J6Z6csy%jWwg#*yn4hnOF_^Lck+x5|bn{Z(83 zT2Jh&ELGNvN?Kb_B{4!Q5Y#=lQXi1I_fL&}lNZ4@zxYhV4SlDMUw26T=WkP%dX%xz zA5S?B`o9sbqgL}x&0p}p|G z>m0DRd%Y;9<^Bk2*L)dRSy|dyCk7sk7rOo?b)CwyJdTo~P9z@GSgg^>wuV@=6a7C! zQK8Q$=Z9G!_>sL8Z$8Zf=$`g71< zNn+sWUuZq%kjNvw0+nVeQJ+Spv+9rLf0U~k>`ZO>U`&4pd&X9_6o(_|&a*fgSHguf zke@yzT5k!=%KFj<5eDH z8uW#(!@qAxm@dy-CI#M%=oS7W@LBL)X_VYR>Xju@Y|s|Az?Lo^C;p}+*fhW0Z&ADy zvN}~7szUFC*O!qV2D{G0Ci_JE>8aP7sbV;5NF-2nx(pZH8V2tx*vAtH@){^nGx)qf z_r&^dwBux`ZL_mdV@#WW0j5k5qbuGGTod-YtiIm^PZ6rf%}Y_Ud>_Fa=0ZC)T|ATj znU{gjM3cnsM>uWawoL(7ZkqFmI^6UIWjv;anI;Y&D=i@*FVK`fn4DeMZK;%WGN~+X zJTBIMA+c6`H1?a)!pM(`95?E1qHQ9*O^l~S<5Z-f8%K3$Mqr|AeTRn?$I z)ZY93MAGv+EBP|nhGGt&f5%_h`LN1cL&4X8FKueZw-AW#8nJ)h%`VAbMb+nSby7GV zS^t64CnU=Z6F%QLF{mOQ5$&%!PejZO)8TLGekcHNFP3-X_&ayc04UCQuR|1tKn1xe zI{)<^zE(iIjG;|LpLI5IEcik5+L+}QGfHGVIeNHfk^Yrgn)X<=v;ML;dZc(dq_Nj* z{8`NWE2_d-EgnB9;a zf*1xAdoYKPr+kX-PR@A=xDPsn6K=q8aer!hTHbR$SeQXvWW1K#WB42C6u~*spAB8+ z=8C-U5O3#Uq!Xy4fv8kh zI_+A+VvFD_1eg3aqOv&Q3t=GIXDVsF(qP9t!G+P|v7FE{lcATpaRPXRO1&$tG~E0L z7Aigt*DH6^Si&I9=HoUi?tj&}uZrg!x9P0K(r#!P9wjx@2bD-yT2M8c0_jnMqGXV~ zvY$3gI45t5J_04mbnoll=? zt4M7KzJG8SGkZscvFg1WsMfZmXq|>N$kG4jX?3B_zh2nrYJXGj)+`kU^ z;QB1QfJXSd;^&*e;{_k$Lm~QTpD?f*vOmy!*m81;6rxC}@{p=sKC zcvMJ~Kf?K*8H}{3Xc++t?bgydgu$bnG&lJ}JFs$qmd3D{NFKlA`+f8A*H-(tn<;~i zT_Ph#z3RR6AyLQb-!64C*l~=8Px$%c*P8~pV`{lX$&Va6zL(jAki;%+&NkxgE$n_q z7}U-0fid6^Y7$FC&MUHFj-S?_lA>b|!|u~JiFV+1)NR*Mt*qC}kITu|cNMlc*rDtt zmpjZ+b$9u6yBDFhpKexD3X3b))$6c0T4a6<7OU8%eOAGgT2=s?1f~)qL0|I)Y^8r5 zwEDNPCNtlN<}rjG#W%0%7ByNk@nt;k4S~z$14*rOyZMV{7<<8|7<(2E$6ZRWv4dgz zrS~hDmC{#^n&u_yr&alZb*mE#*zODut8S_4!O(BI@3(d#lkGkB(@)+WS~NZP+Skbr zds=E}{crb&yrmYW8%|nJy=1ssy!*Zkm+XgxJ_~L8!@lfmzSJP=9|*`e?FaILUx|PY zm{l<@UBhaLdmcz>Qe}Re*Xu!^+0nWLfb4i|{%LJm%37+E9qNhAyU|1|Q72$X$Bq}D z&lJUPl_S2Yb!RGBTZW;fuojY2lav+dmNC6ZXO1%Z)KTtu*#nmkkFOZxDBVD4&hh}6 zoyJ@jG1q$Vdsz_rZw!NJG-rZ% z#tp1}hP&gHA4G{g3(uFo&Lie#ULh$^`uua!m{b3}$|;VX#h5X>?m0xg$IV-a9*Hu( zeZzC2BSdgf$+@VOs0%)@Od&4J3y}Rfk63;NZ#2%BL*}<>TIu}2NHRad`+6`JrEqRg z-|rM$1GCZ%$tO}kq*ofpkCp)Tt~DhLg(WY7>G!X6-#Mon;6S(>V)R49Q6b zds5*>pa^9Ozo!N+@9s$wRh_oBwKTe)mF~X7X;QG%gPKktzkVH`kEWnUPn-#>x+6*g z{`0dZn?w52p3Vtlz8$5JK7U(~k5;OH%Z<%T$6e&pVBKTO&(S8Fp(#01{|3pXZ{A07 zfuecW`?#q9iaw6FP;nOwu4P7{2Mx=av57nw1yO2B=t33={yO^z`vb6Jd`}J{yFC;9 zAfO@pwoeOd!IgzsLq}x=zn&Tdj-uW zqYtf|0Rw9d4m0A>Cr>JvY^sC!(Ria*=&UE5U$gb~I4S)&=|LxLHxz@&#R9|9b?up9 zm#zc7u)%4V?CVsyyLGwZMTc+2NiLg>H0Gk!qP5Z5UD~$)u`lcF60Ym0dnF9}=-UMe z4r}K%s-N3%x@xPT6%-)G*0`($9o0PK4`FEPu zVwku=+c;*khMU<-kv+Vao2x0B)Je8Le9n{?sG(jAW}i_?7J%C>Sikh`jEmaaXpXK4 zMhV^M_+bh}%tAIggL6fd2;mKX7qCSkpC#7W*GoAajMoQwWITZ&rU$*N917>?pmv?9 zV0hnJb$#u{@NfhAS4?v}oAI^xto7kL;=j)6)D>o4U&YxX7-D%}k@QKXJ5%udHtD7r zP-kEoAQrgmCWu;U7T$=+&XLRhI5y#L@tlTDRjW7 zll@46e2R^A)#k0D^=}0@6Yz!ru-Ns>?7`oGIRH$NA?^dO8jX|jS=BrI+yY5M;-Amy zw7-f+yGW@Ife?U$9d!^dWZ*T^CHhctQ3Vi+9p8PMlj&puYGrF=396n%RP!rN)Ri`0Aa}7(+)u6eIqht$*q3G5Ar= z#D!DOQ-(Wgybxqs32@sn&S$LK`TNABjgQz zbFe4?1MFM98sI?t3xoeI$XP+@O5DjIFQ^Bp(tPgw0V!ezK0AbW#{l;1aP%B{J|PE0 z;d$ee=481Pd-y73c?GZBk%b{zM!y3hUXr%uUINSSiiUsts2^6*V0E4*ymS$~$F-IML!3mv$3%P8zoITv(@vYkl>@LOseII_ z{J4|(h4yg`Hh%~$GC28Y;r30$g3FsHcZ`=*emujVg~ryQi-m4E48afg>y279(A*Pa zVB7s7f;vMhe;K};@CyAj*taL;f zdU&HjaQJU~otu3Z?DM(})-Pv28f?>=|_hFXkl zFaJ+k^PMm`X^9DTf5C!>z!yCl25?S(%a0In@(23CC{_dr+?R@aE>qtWg4>j5d5H@2 z0Mn$6kL3L`oigU<5*hz+W$=yP1^3p6A5KUy+trq#Y1Cnzr`L$1#s?sdt4&ne z6ReHi-S?Bk%APuKa{Ej>zSuXqe4|nfRh-jH=<Ow%5F(6{7fi}@UVc=6dxUPjqRc)3co@S3KC@>ZrpmLQgXZu zZoZ*+**SYIOD!(2RT zmJ4L@kb@tL?&cyPGt8A>oRcQ^iZ?wZN!7R_0On;Z7hvfnCft{wkm@ka^jWySI|JAM zL)LX{IjAhj4`Ly_S>h4G2@gA*@ZO5AA9U&a-prXruhbG%R90j}nyT}20x&?j@Ph>Q zPxf&5TS+PT$VyQdb&ARaBB>ddjmW?wlc@bcYG@=W-{=HL!_un${R*w~;)!cVD9!~< z`WG7?d6elYfTa|9=K?mloBnwka{0UY0+T(dFXbM@{H_(HE$}BS>h`8X&8ovID?Uf- z_0M8(!fyZi&aQ=IhF_msd#ixe|7^PkRzducg4a^0ulM)so#_#+@kKF&r|-rgvn5vh z4>HRt#~X%peMed*RDr1TSWu*bw`_jhdRYeXAs8P9K|Zg=Ldr#@X{v5vkFLj<>-O&T zxs1KgjfB*=s>n+nJ&19~tM+|S+4L+Dc(1o8Ansl*QT z3Xe-f=x8I<=A~8E33JWFJ^2RfYAi54EK6wIx)^)dDP%&vX67DYSv}kwDH;9{UHml# zR1~z6O&{M?8mf@+D(Q)c`nT7Z(vtZ=#*#;C6@-Yi!DCH$ZLz<#T}>kAp*P{2uWb$T zCY;EP@{q^{HFMA$J_4r%5mRd~uOL#bRgv|@|Fa%HK{PNr92}YS{Mg&ni+bWQerPSX zcoh669KQsM&RO4H3JsopG}h0HY)i!j$9=^Pm&>)ookw3hav>23OOm_zt*G|X&gZ=F z`5m<=3fpm;4T-d(07w`#rQLIQqUvWUVIk^2-o-_#i)0RYB75fkh8#5t7h##jMHVhD zGxUAiU;H~h+`lb(yMRhK@&99AvS7ga+3YNlTU`8hzXUk|tz+=z2H8jKVu!?7MKdV7 zNYh)nOdR$yqyb1@w@yJd?JWA9Ln7|UbfJt|)v*p8K~DKDI}by^Q;d#gUjIr>`nxhX zVOCIo_hkCjyz1JUNJ!Ol<@R85Z#}4+EW~5?)qekXdWT^BL($59f}f&d_MNX1`*Xtf z@Zvxr6*Q*_XmX-Idb}neY_oPU+3t{OL-J(Ev30IEFmz4bEA`qoKOr+^{{$u?@p<6t zjx9i_f4TxszDZ{Sy6iJJVZI+IY=K?isp+D;Z}_U^Bu$xE?}Qg}*gLreZEMToKCxj; zL*XtnTR?kYx*w5=I-WCsv(LvCCV}x`J~6aQk~I(8Aug!9+1J<#3LKSKB`I(y9bi%; z`sH8pFCF9kqpaEj1F>y0r)x946hr_6(GOPEJZ)K;0$>n`%x8uuaucF?bY6Fgl z?FGfz8)Hm& zh&Fh9uKwbXZmsppoI|S|^O4}P(ih!tvJ}DUN~Run4x?^dgWX)g-Qoq$mhU4W-|ABI z;!L>OCZ+C=b5H;HVo|>4&Eu|FSLuKspKISk<9$2Hp-aO6CDr;lP~e>-4W@l^%S{!l z9VRoSPz;h*HdV-cUCcP=EG$4wo?etol1&tg((fw7{6&Ev57+Ex61JtY2R4rHQz@CP4Bv-$CHu)pJn z(*i?KF3o7DIl`j?AL6A3T#y<+Ac^ziyKB7jfj_rWZ`l^GjyN;to=?Pis9Kx#5)40E zU(60P@b9f>dTUW8mJj!YA!b{p#ZkJY;^^)0Kwbjdl%>U>4$G4L1wa)92pL>szU0B-WJ*n_zyh2H-qEJoZkHFf17QSr-{uRy&_&*5 zfhqT%h7w2ia3jhV1Rw?PUKDc+0ncqR^}7zDdCE*T6sj{Md;6u9RT7ZY>D45d#oqCJ zahs_6%d^O5u0tPN4Kl@YcDGZ!oTc!ut*OBYE`VF0CRE8D$yJ#n-^4#Q=!pad2m*l8 zY$MfakeA{~4^-5t(yYNj3ZLdO0GC*`lAZvu>~kl%fEqy5{R`*6`23((1$|r|^EG~d z2?xdq11i_Dvi=y%c!4U~agc3H6`9zeDOLx{I~cA?71RqNco&6=$-#O1Fjx_V+K-8& zfRVa@?x{_sd%t{**_ZgDV*I+Tfe(^~U6E*Qq)?bW+ob}rPsae-?}*fYevnY;JS4NT zB|Ri^4y|w1WM(g&!#P>dzC7Z)T*=e))JnF(r0Vsi3=W@9XRAE~TBVq)_- zomyA3G!x!>c~~H|GUW|qT7VZQwFWxvod*WnqT67+ln-G0T39aBL#IY$u3>=je)%Ul z^_!No>z5?Rp}s=xOx)~?O1d%_`jYPt8h&JTY|}<;dv)C}4@!JRGXgybygx4Z532Xr z%f5P0-i4Ef$BAU8e~GcZ;Evnd$Gyrb25HAYsW6%+pG50P4J%i!$ibJa_*w>xZP)`_ z)1+mA>cTdBY9OI=hE9Gd{<)MfaBntXneZd?4k4G1bb}x7EwHU9v?fo6rzPv>>gv6J$~yu zH~QFF+NvxPliU#<>|APV!u9kGbJlOhC8S+{zP;IGH^-xA`-2jKttG`lM zcC4IbOoV$;-rGhZjoYcLb%=%gcH$R#Hh$nFDT)&MQG3qLAx`Ej+2%ujCw|9m#8~gY zuVU=Kg_9gTc1P#RB$b4vQ$W{#&zhDKMZPv~Xtp6UkWUJHC$c`kJy6p$owA<`i7 zi)2vO0a#mi#LA30^oX|PyTmAq5&NaQ7$uc*^a#?*eVMMDqSW@F-GP@cc4ei{mI!%8 zm)8SzH|b@cBk3qmuO#m@o}f zD0=O|g#QVewy<JOCjYn zfP`Z4Gyj58Bzg!d1s6)H@9GvzCNHU-?o!jq8w3rQa58*)oDf7Viva@U5Swr>WA8bU#u8as_YjN zyAAsVq?vf^%|idK9scDpf9WF;3iZJ9kCWqS;_Wut0Q^JSD4V?)%k>a%F+24Qz~Z8+ z8cO1ibcb&E`UTL!#-z=pQHgL@e%WRGP`ZPufz{h^Ao4Dsf%JNQ)}Xz!@5|>uHs%5n z#E6Svb;d39#<)AMzt~sWEjTPWdCBo69^$8eDfQ2_;Xf?c+KVI{_NDudG~mf2{B%Kl z@z)jemG6sSdD*%+PZarz2t0H4kBXRmGXWgn9-k&H=I?5w@;q6aoo3JelZE@oe+td` zMPv~>`*j7F_#C8kidMRGC(@)HCnjA%fwPuF3ut{}F`kB!4vj zG+8S#rTzE>eK7;qpusuxQzWH~__@BrJE*KjBqIvrH?E z6&7ksS)%+f7=5;DpocCKpx$iTAlmxSxcn}1I3lPxORHBZW=-eD=~01|l3==) zadRf`mnP& zATH5mjxNunUt1^Y;p0=HcQk~4Q;{dU$nHWE-4n(M=GwO}^l3n>^7cN5>V1ji;zzmi z!VA9_X)YKEMnNDmb!WeEW2T_Lfj$1<&koAFy05rMwl7Mj?&x6^#%9OxJk77X3#_kV z*n|*?&3KB%;MJJg?=nr^urD{8<(GA^`@rGT`6E_E{)}$n!!BEG#si#Ry4hvd`r}>v zej~EjNkdCR^d6S?_s(lvqOdQ!y->D}_1FY1!L%rYry1{Bs*DXRSp6=aR$iSF=bD>p z=)rBKx4)Clcm@mVm^~)$jt{bSl&DNEEE&wI>!*F8qSp|}?u6Mq`#?lHFjzaV!`x=G zsXmGJt37Lco8yo>g)Hngm&9a!hkB%|{vV?s6hbYomtVesYmv=#SnK3BtGUhqVY8{n z-5Rz6P$0U`&WvM*dpjV;JK8)`GW@KB$y)7#HfX4DkQM8c2zfzDx${2YKVh%bpHxQ! z_*EHQ~Of)znas*!RVlEhaMhVCS&qgRRr1Uo_H&_5X zL^|_|#zOrvwX<~2asBS(0=6oP-3L@FVfYK{IXqn{RqF#!WxdpLz7!Xb!cH-HXGs{~ z&|X}Q!ZGeYMJU1BUFHR>ME%ywV9NaN+pxIkSmx`O%zap>g$U2e0qHmE$|`W#jszZT zCzHd_W(4&nVP^W-9u-+e;BBS0g~kH7ce1shQk}_J+i9q!hon**9`D0PyV)0UB>ii5q{)ydd@1J-{TVHH3dv&T@fSOIz1RZa zj@hR?;3j41+>e@3)tsWkI^X+iiYzB1z{W85RDuy(_E4 z=BAji?|5XNI0r3M{b5T#UU}rptS&bpZH*@LYtOORy2dT5#SBHT~ z@wwYP4=K~4nnzZ}o$UY=en>MQ*DEF%_n~l(-0H{y=GkR6u<%^ZW<&&x&5I{MrC^Rr zkVr_Y%4>{m--}YXpTVmSIckAt#)GR&JXmc=YqDVx(s_fRbB*s4U4-hr7iobqIKl@o zXjIsTcYMb^$x&p5N@Nn_juJc5roCUXp1iWs9(Ek}+Yg`)tP(%iNBNbTW|fPtGg}rW zOLGhJJYdV8hWMsUP@?M;u@CiZL_x{Kn-a(RH(Fm{Z^)=dbM&g`Bw>f@!-DR8`Z zncvayq^pkd(sdyqahA-aks#?K*6jv6owHT6VaSEsjh2o8zP}Dx6bKoXP*>n-ML|** zVu{zKT;p;VviK1^l8}imQ3?0i+pFph23V0U#@Dn2uDevngW~UC+7pLF)S=HD@!*#e zXDj}u*r>q{qWTBUuGQhvRRUt4UlZFp$nyEo#F-8R7Kj6MdyImfZ`dAI(+#kaYa2LA ziQUeJCEm#SgV+_R29$iL6nGGwQ(bj(%t zdr=Z^{JNbVqlE=Db`ZY<<8y7r{}m?CGgD6w)6_E}kwJ6}!Me}9>i6!LVNoxjph~!2 zg1<<6e$20k%}MTD6YD&2CWgf5&C{3c$=b%ed<~DC!^eKCDs_mz*mm$P*nS7xlC;$T`a^Vuu6? z#d>r^OE~fBrG^*I!~5+G-+iO;oT2;sqTzC!l}F+~_9C(#@d35q!a?rV)8Ez{W;HGg zcASg$#~74B^cX;JhG$d3FNGomQ78@W)+vFX9x}5KaV7d0ckva~(1B90Z8Cd+1^=YE zc`!y;>Aiq*kg%~ej3+ooCle*JvUBs>SE=q`tB-%@+YsoChGepMugAw=hLRR4mOVFm zjg!PqITHtnn`?^A5Fy3Rqd_QMkdG_|0MO7sKmHS36iDNihef@8Am}C6Z}Tz z4|kz(R8_gnN1w9g*+#f%WIKo_?Qy=$$X|mWl80(SGuxhoH4_8AKJ;*9+1P!DqINs_ zgRTic=983<;CM+|cz8G0vnNda#%Fjkj`RFqb+ELoz|~i?g?INn(`kuMP@T?Ih=5*| zZmk!|2E#e-vkjBgBKN;3rmCb9#AOUP7}00i`9$_4>EH$M7%UOvgm2r{0||zN?#8q2 z%x37nMWNK3;E%e+RgzcQ5uTkvuo(2c~lN$r>kML3EL*t zJ6>@wFUe~GO)mrvUOW2cMw@YBJM4QonV+N`s^!_t+^!HWtUZh$li2b=n%4|w21q-p z%e~+;;kq96v3CF-^~8MIwATR>00S8BKZ9GoKuwkaw+Z@^_?N_{4Kbk}bJaMG&9)9_gkpT@u#9 zOYOqSHzKTOYfsQZYAxQGs3u7HvA$|KQcC!+owqb4bEl+l_zq%7peUxrMVul1ECVt# z+=@)LYES&koL-G5)sqKaJ`d_#4sMfwY;sEMUIq42{>quI>ESq%ID~L_RaF~0D`|cV zId_%rBtAK51lMpq`bh(1|C$mKanIDp@HHNR4yTkMvwc#U>$PmZusP|6_$^o;ZocLn zx9JckI3F*OeN~Es@MAn;S*;iy-dO2$#_;sc4D)(ey=M>$7y2jnV(WO>6+B#0vo%?v zWBDO;eByPR&GW6igec8z(v#OJ!CQUFFU|L1K>mdwGKg8R;g<){+Ry`Tz`8xW4kJn! z86F4v7GAt!JsskFe;(bvD6{HgXhTd7H~l^^KlywSK>bJGNfRoZzB%ZQ{RHh*+K_iyF4fIsWxx?5iz%CX1FQl%iYn z?RA-&G79+p5%Gg?Ch~x;hY+2UdZLLYe$t>{(mDCCAoM;kEba^@F8R+Hy&zk$I)7N*j0?b>dMA# z20={P1F5 zVjdKB;yu8wFHuw-(qv^~(eeQHp=hS~VjGcoCyjeayMK$z6pznAoW(<#%)Crda4nm# zJD-9$9*mxo0nK#Q&y~pa~Ud>xdP6PQ-%Ss38f$n))0v_am3f|HDq zGk-N8>7?De`}H)_4sm5c6QQ~OiD+@J&^}9Vd;P&`uYjIuGewToZ_U$u*W*`rfok`T ztcKs+uN-t%5f|ft{ zvL|egL9o(l&b?&Rv0-uS1GtNm>zGC^|KzW9KoiX9e~Y9hga8vBq!Nyn8M{cC<>{Le zfBH@_C3LySu$|T=a}kOd7~|3cqanrGzqWTf^#8A`Z0XdANtBIes`#|6LC=@yE~tCt z9;lY%D>mNx_4(yZL6O$-ov$L=aJ-viS3V)j-u^n`!E2UGRo^PD@sWU})$7B5r3)%oAs_fVw0rP>HMq3&QkV{$ zA%*siL)cl+$?ixrU@$@JhGLd_cX~a?dOpK;LjR7lzUbNNk4B-uz>}@FrA^5a?;~7Z z^Y1IDq%dgK*$$m-dxq;=8=E%u4r$T6EUc==MLA9Lo-CWZ@E0YvMDARoLlI_w68Dum zE~)N(b-sF`{kt6c$}7=2hbxIyx-WsL;1u9dZ277-SSe&I>aVPUuG{^%13~}c(yVK? zMdVvmhq1#-eVAITcb=%&XMB`9!9lA~39x<{#cW7Vm@q{4|{e+?|5i&OftpzOEkgCDKB<|xg!_N(!+sLdt;<#h@$5KM0fAahuh*-&E5 z?v8Le&&%KwxX;-TuN9_)zS+7WrWVH_v?%QUlMc+#7_erXJt6!LdtcVF!7RQNV3h&0C{WOnT9*tx%& zH@M#d1y@pSzQQktlkVjO$Jd>*2(JtI6H{cj07uWd0MUg~9-m&SuwT#u+^g2jzIf-|9wjK<_Lfc-h zO070(ZQUKnMN;MEABsNaV0nEjUcvJX&)m5Pm$?0PgC@#V4vF|WJD)JxrsJ0fW2=Wl zsku4poJ3Jdm}7>@JO<{)N;tKYXn*M6x}QBDHcXWnVmJ2=@;U(b(Da$UQhoC~d_~gT z=gefS9{XT&N?S+e?Wu^9LQN!hR~oz#$IJ8_P+_gXHx^xeBAEbP8Q{^jV>cWQQq*Vj z=e3U~>Y*|rZ)z!x5jBN$3ZX2bN?U}yvC{GNkm{`G>?UlENcO!+-Zhmx7|EJv%mXC@ zN5D9eEY2HrG&0Udelk<+wjNpxLadVrF@T!WI7t+t((PHBat5x`tLj-=R~0Rs)M~D? zH9`C@hW5PWqgLb5Q(=l>J4=dA9knrj12yh`GVCq)N=JP8zhP7nJPAEeY! z(87q}{7{^TjL|9G!rXm)JL9Y^bCC~J-MqlaQB(4)2qHX0^y-iR0*gw=Y=j}r_+qh0 z?AnAjVJp+7-B9f?4hhhHus!2q9qLCaa0(S6i1Xp3tmBLx?C&?C(gpw~ys?R%&xBK? z-6>oqyC;qaXV%AN`A3?2Dc0E)5kb)-rP7$u0fE+N{KA(PW|u{tk81z&D)anh(o(& z!>ReCg6CP5ua6jC%zSP@=}oHs_1QE6iYsFnO4=-Cj;i+=k?LBEppe;aaJ-e-PT;!G zX)Rfh75 zcC?~#infSC>M0Q>LXpEM>_`~fwNsQMH+D3m$FzkH|0rsRpz3HoVC8*%ry3igXD#vda0>*(VcZS_@Ff{b z%T+jlH#%Fw@p2%QMp$pQaRX^>6mB;_hF{XVGVQTLEDgynceKSkRcf&7sptoIrtj^b z-s~5VfCO|z5*P8=4MpT?$LR^&Mo{hg=<}AhVr!mI!Q%vt+UE84T$PyE4>ei_VZD#p z3G`ZK`mRq!E`g&|+Neh5ikLg3g?LTJHPu7OK@NUuwQ6L?rC*hL@oD$+jFzr6o+F8! z<(8m&8Nl}p-uFZA06ItW2jdY^T*8*O^dPm%6P9D_156Z|PACr&PdP+T9|K0o_w_YH z**I$jnA4FG8%@$herfS}W1gGj^MqWTT{g1Tz^+@T4UI6~!Y%S0t@s|B2j(<}u+7_L zdMPYdN}6j2sgc!*4$WLk!oxa8Ar;hQegc@CZV8g+P;;24wG9BAJ4pF72<#vYUMT8Q z2Y`a)QwMhxq=Xr~<1<+6ah{g9&&X>INKagrz`C8mP?^E?_&4XYnD2|(fq*yEI(X_YTk+xP!3WaoF$=x(q4x_cS21Y#|K8IBZab>-AXWE}igN zB%)Mk^Z*k^VD5)t4{_~l3^-$)$H@H5y-76hyr-&jZ-$W`=h)jiRQMdV4e#KE5R)jG z0OS0FV;uYWxeJJ4-eLUS^*TCGr+=3NFg(S5O2wXj4Epn(l;K8b3tgG$ccX;Vn%6{DctnuK09R8qqA3lz*Ksqq^f5He1**70b9sn%FaOHh;Pd ze;E{t5ZSb%d-iTM`dy9VrFGdBRjB4AlUhQPZcxIB?ccY{!OpdytQd?|YqlaUKs zGFvY(DhS)Zw0bHEp8I;76+y|a0KP7uz4RKHPlXC;O;8aIRZEZ|pF-DMI-=sb?645J z(XLS8*@%zW~)6g5fcVhk$KZKBJDp-Ve2`E0Lm0*cjQER?Ce`e8EJ z?K#G0Uy>M~q?NkY*iGxPyYJRheH53ivl?rayf|KMBOZnqL=?_4!WPsM`^;I!EaoYi} zxIWZqmy0EkZ)(vDQVi26SDhUvG>ss)>&(^`EfpS~Whfd~)4ob28WR?}1Wi&)m|a`1 zXcp;E%tADX(s$e&n;tHsPTT$Z@q}wFeLHr0c})SwOBe6cDdX+00zN^|dvr{cK1vWd z-gPyb?-X}Ef^FRp9e&_*m>CWk0b@13TY-gn;hIAJ>4#3?;un%tmu0qd!09EKOo&Tu zNVZT@bUD8HpvDoWwr~fqv|1_2wF%5k+~H?dz%$S?JW?EN3?sAC4{LT)-PfRdT}1AR zCgoREBOY+%UJSmS5{0ZiCZX_^X9x1y_G7dO-T1n^Qcy1G8~aiMF5T)WPU!xWx2__D z(x>D5Y70IOjs=u0cgADyUqT@3@~c?7kLn1Vo^$9AzAJNB!{7b>=8oT&t87`dms8QB1*==O z5zzGrxQK!~XUB;udEXCh@?0izdEO}OMICph88{4yoZvKpkW-fCh zydtJyl03UZ@+aC~6n`j{>||f9BpiZwX-qW-LGUPuAUZtph;Aef81D*Pl?6>GvJnfm z;yOW@z0-D#o4N2YB!WOy-tZtzQ4h)HQ!fvEH`yi8Q$22ANEsvpe(TA?K})a)t4@bD zUxz(~(gnKL-(af%1NF2=L$zZ(rYj-jMb{oTn-%NRu_qvO9lft@yJ?dURC>58Si1-J z&bmo+wWmN(&){rt;J&@Q0wYov1V9i62aw7Ryrw~V^GnA~67poQpqg{|8+PhPG$DA^ z#k*pKY|w!(aZJqyrCq-T6Y7chG3t!o;W_l!hV)RTD?5gMzjz6%9m zH>XZ?hs^dJr|G=OVy0xHx}gMf>I zXp(|;OyUmMEB(gs=Gs1n?-AB=O!)zA2Nx%mQG4G^!b+g2pDWOR9(1cu<$6!t*j2PW zRFm!yv}1~6n@NV)JC7qIxz;FN4tiOh)y~9%&RdY`04p6-5oo4x*mzLdNoe*+)}v%y zZ=aOurD(kIbo>$z#VXRI5acATYh~3I8RqUT?B>bo*v8Y;A9b#a6Ig8~f&;l`qiv42 z@P=&L6R4#eZYJu{dXrgWPY#j&nm~Ki-Mejdv?uV)sXnl=Ei2J>N2fz(%BwTl*W>J%W*x*%ew;PL2SrcEk*V_+NzX@Re5IPFr5 zxS_;BK6$&_@N>>ITI&F-e1}$_C1x^FZejM5x`FrJ?e1_y$nRTWbZB#RguQDkdWRen zdYEGviLptj0W}S`t{Fi#0?sZ*+yUm}wu1Zo+)H|Of&4O4WL!(7-Q!5PzJy6_p$3^H z#|i`T9b?Xmc+j)P#$bZYU{ACeLv-!B`De%48@dPDU9`C86Zdvlal4ipSJ978IDGtr5?JmQw~%( zeH3prDF^LX@GjWzAh4$3O-~^QI0!2BLSvA)jV?HW6x@Sge$aRg70(tQBL%umb2U`A zFUY&ktGV(WvgruP<2pYXM<>fzdk6tIo>N#GClqknRaMi0xk;--c{5oERSOQ~!9 z8{uED@74;U4Z54{H%X={0O?thE9yqtW@`+PS?Ft5tU63Wv@d61NdiK&x&3@W8!!VS zGx6k6S+IfLF&8|0rmffdB0-i*que_}LkhXybO&hko&!+R>M*FJJ0KZBdXhk}0-p*B zF3yC56u^c$sJgTv$Bgd>UCj_?kl8=^n3EKUU%?@_8yfE;nk zUJU4)J`ta(=O)FrJM5_h+iI9iSrIk}xALjzUFYfBG)qi?YaZqJkfni$!a#HbVWl?i zHDssr^Kzky$<4(LzE9(2Hf&1Fb6wW$O*sUx_#WDMWVO=|39r1;$}p*Ka(Yq(n2HmzTL;1>tNp z6H(lK_YA2#aIML+h`wm6kC~x5?yt?_d;jKe1^w)@J;fe;Zq#7DlHg9cXieb<9;_&c zRkkvM=@O=3sX-j5ud_XMPSI@VKQ3~3SpDKrJqR}5kZFoBz_tcOxJ0b-<} z)fN?3sK7m$flJ`Mr&EC2{oA~WWm4;aqeo+PaD%+c1DqvD@_?^{?b?)+*X>)a9^FWj z!H$cx7Pk=c%Me!sG-UHU9-(JP*J?GJKv}X6 z@K$QQ81JsT1SCL!;K9_%wg<^uxziY!^r60yXEPj7UU2%j8z@ylEd{#?B+(h&;S@;$ z8pTr|1YqKIV zXxR>APxk2{*j!?_iq9oi8AD-eHz8s~P8R zAr2o#%9xg|88@8suJXfN?t*yGzt0Olk0oPdpS|aM{Mle12MuJX&)Pex@3ViQ&v+Qt zavA417CP&_fW&@zGmk8xM3A~~Sxk0vUOE+WNR!^Hg`g9maq=WzeZ__Uh7Xtp5P}}% zgk90;bZiO2#qg{bv2*o?sk#A2fb+VA}qk&>C zu%i{oYCJ#5UqgRRex-h9Y&isQEb5`~N@t&+czwvHQtA1tZ-z$h8#K45aJD$NYHeLx zT+tG^zvhU|X!|*96^he30o2H;^~jJw?q&@~JTSR$5xdNAdXdPL+57h^DI0~@;(#>; z1KdZpq7vDpUd5}ea`esJ2k@POJ;ff}9t5egmnkE%3bQ;c<`BW$C$%|&>2gn-`{m4t z$B`?K4>LEmXrt4pvWMflyjQdkBKIk|z=Lw+LnwXsGCeY)TXyDQq=|?M(p_(Z*f5Vg zFOm$qz*oLtuO3_rmscq(sXJb&SM{>E54#8Tz)L}J>C(I`ML0XV7{TP@l}pxAbO=WP z_EF5=xrms2fUxEuUM^9b(exz_hS)INa=$m_6}!RNEw^dY?~%t!Z^EJWL(MeL;L!S? z>2C@mYr}WrAo}4uyC-E?KD--K*4u};AX2 zEN7;CEo}He=qbL~)4|29#AV9}hQ1Qq5(bvZA?8;lhA-%A3Ob*SlKGUFvy}af!E@1; z2PX9sk1Ts{Y*RKq5L9%`Ll-;K1t&L#;Usczl10k{gj9!R6XU{xX{Iyaqh2a zeGcz`NXSpIo{;m_W2Ym>kH^nbp0jwJrmkDwg?@{^dqrat*W{KJnn3x?!JoCmKysD7kP z|6|NP+r!Y5)0j8)k0$+b`%{{f@z4hSPd|onD-WA(GvuG2e-6U0Ba=Tb2UcZ2V;F%# zf6k7GmyJK8Btl_-p7S9O^D-Z|pTAbiX6{AuZf_D^5dejd6h=#$SwywWue#^5hM z9cjX|ze;pI#L`e9KS^}8KI#2cQXEK~!`dj1|J0Vs#dp>CD{ZCiu|p((XSTEJ5eeng z197N;3_d8P_f|6qU5m$4%IV; zEp3TP4<>>%mcD+IdDrQSBo^vx2cZpzkX<1aTh*>8Jk`*WKOahmg(fy+JtJ^_eZL%V z5c2fHthJ24)(2_crkr)1hkkPJ9y4I7NME%y%RN?W@46Q&8DICT4~$WAQuOw2(;eI{ z4Q>JwiDvI^I&iY+QG=?GvViDe{ses;JX?a8h5aoqi#?frsp z7qrK_tdh{Xq7GLRL2A~!Cv&sdQX;v;{90EN06K!0`GN?`DMm^ZX`k_Jer|e&Mvr$C zVw?(oPgV){EP@Ogh@__AbN%JpNl*V2IOW0oioPI#glxbEtT^!l$HG_gp385r=HHAc zzY7IyKyz#ORZ7^esPsMY?Ek&66#JV}0sk(x{KgA@-yjole@lP=hWQ>zU|r5*?hLbV z=w}UheAz!A_X|ey4|sfn?T`NF4|4R^7=!3f5FYdK6XO4VkO2SbAHi>&`ZZuZlXVQ6 z^?)q&cOeV?4P+q@^6y|ynWW>-FhY^!pU0;C`OrG(Hx3~ObN>Z~Xd3=cgV3MnKaIyt z{wb)Vtm%I~to{K@f56iJ&#=TqMBK9fNm$bV6_)M?EcM^86!@Shz_AgS+*Qa5UCOBa zNj%qN4=WY!fC-KtNw!vUo!(Uy_mOdJVlP~mHer|dSv83ba=Q=?mxhN2LK616ZEO5q zZs1VxsUBJta_dmv+NWvdZstu$z2??sTwn`rYG0lP53jtWAVsht-*2N)N0Z2cS#amfM=4D=6Q zf5%VD&*K`dTvLxpJ$^RZ9}A5Ae85m}JYGRW4UK>?nD~Q7{J|rbKX}C7C2yaMaE1Rad7Gt#gc}Y8TZkfB2aoVN z&XV~{qVw3!fAa_tg28%pZ_+FBCol91r4Ko1f~CH2?xLhG;#qs_^4U0v=Cb?gd|esf zdYJ~v*SOD&o==-jbLz_}~!_&CaaRuebw);tc)dv!&-hSE5C7y$Tkn&IqLz4d`L z4R)WYW02;dY>5pdu~8RldEHDmOtS}(TH%^Q)qn(n?SX__D(?#ka*eG4V}$}dr<$S< z=BFRd@%1*pJU)>(*??G${NE&Rf8z!JPw|KkJ@}vG5eS0*x9|uA`fueC@RzxN`vM2ibY*sU_3;N!I@g zvgdC!&e@0fFmsg%BnbwV-SK7mLTde5e=4q<7tAsP~*x>TwTa=>c(!a3xWlM@H+hV^$Y)3fu4!TPNk`TS)bOiG}&%B(F zgaCmiG$7#V+Wv(5;2*FZe)faI@BWkf1O5ePrhtMfph!fitLs*sIJ?o5D_7>qTw|^^ z^ZI}|NX8_p(O$ZgrpvNnB)M6e8<3+e*(b&`YF*35-5TqM1}T;D%B;uNSvOCsLZVbP ztNn~5=koIvw=Ao6LXoXuV~~lC4XF`}68xg(DsItX#q)1Dc6YC*XioiUPGEYjO%OvWo|{imB}aXh98fJ* z%J;T|_MT_H790AjrrnPtUuX}C4XDBNk?gSho4|*A|E2HQubpj>$ZmDZ9)gPuiZDhE zW?nZ~fY_ZQ59kQp`9L#}yE|wN8>szfAL#pW_uQA2;DYL&S40u8R{6m^o;%Cqxx2go zEKBXw_ZUl(J0?$o`TEk|zqtGtmk;g-sOq{tx=VjgO`spZlDXw5H)UwRA2$ZT z;RjP;$c@JHNu3johB}-!6M$@%*_u(^sEPilmTSa{jx=f2EvxEB&>60`Ty|W(CC(f+ z=eEsSSz*Lkb4ac%&9=6LR_s|7h9$O1!j0Aj6WgqHMNeO4V~zF{22*yct#UHjs8)PB zj1Q@PHKpki5RB$bN+Mt=&u8%iyrP2h4Sr1hJw<-$@0axV%!7G*{48&e-({Mo6D;NP zc7}{I`%p6~e&pi+QsBQ>`xk4!kF}@fq_a-nrNAE|&jdlG%_XN8)11*x)fmXe38$K~ zYAbRVd6r(3{m3)k>#zE;tkyACg|x#Ilzrq`*3~mTsXVp^I-jDmpk*P?%L}H+^OgFr zFPfV}18K46#cb*!ovs-4|Q`V(Smk-V;fgw(d8~ z8y%UmN9|UxHpup}Mmk@rX0~*6WD=#}YUF4RwImv{TigfMS)w7PWA$BNowq0^eeJzs zdh{S|G28igl|2fqE63E~wqUQSJU-R2Vw9}cz zC(44#yF@?6rTxIVxj!j{Q!KY;iH=)}mRe+{F7Al*GZ^MyQ^ENLKd50IGTtxNewMYT z9?RNU@*Hc2ckgk!lVr@-*b{MvdUm>h@%As?{>9rLz}o>b70ZJIj;pd0DI%SXZ);RB zzoDd2dz7rrsyQJ(<;OaoF!CBZ5k@sDk>H(~U2hZsTtK7065Ca!lyEC~CMMT&g4b7I zsczTLx|I>7@@lz^t!b&*P*PSrMR%q%Vza0xv<$S$J2Y$7?6s3F=k08w)oe}Di>zgG z3}Z)^T~SFl25v2Hl&(5?gQ*po92w`7XrU5yrfwz63NAY_ zJz~QR$=;;j<{K-`a9T=Z))TYEyvC=AsI-pyWHViLxvi1VnOVN+QqU-VpH&|IopR2A zR(WWUKgWu1w#o}~rOolMhrU%F8syJ4h-sCFasd2$f2%z6#oI6O_Vj~!J9U<~Q+M%p zj-hRR z4AF>ZYNKt1tI@r|d==%(vlds-CR$!=lU$#%s%O-r6DyHr znvG4$wANf_+HNs@J`oo)xrS3Px2;JlQO>ptc9&{3XXEsuyILwm!-;Y!OW{h?SlH(L zd~ft<)OHA^DCJg_`KCQ;7u`HVmU9__T$Yu1T%-D4qfntmfgwzaqPL5UJlXVly|?M+ zSM504YGsXdoSzYdfEvtm)U=U`r#RB%lX@izIqKz%YUekO{of15iJ4LD4Dp}i#L2>~ z8P$@4JC0>wOG%_|Cl6$E`j_&G7xR;)n$Tkp{yf0mD<~d;@!Lj}JSg^^%u_?X=!i{R8jW96A=)o0Pf}a??e} z;>Pe;+_1}AjXGFZ#x^dofOHp40Y=qjYF)C}X^yB0w^Z_#hMrAGlXhLSlDmNU*?PHb zN_;Cmci8m0mP^2Z`FV4gO{_A#fx}4rk}j;be4mYuw?v##m7%S#OS0$~>cHd*8F^Jq zmTS*Zb+N=UHEFP!Jd5=AXsi2a?DDUv;CzE0)GiO%@0ad=R(DU{&DlMQ{NeLS)sPmj z+0~D!Ww?F=rXs;FHR(rAP*qWo7XDRIb!1By9QnERBgp6Gk7U@yyUm{{PYer+XfUhn zVLG8Cay*@a>lpq}D*6~c0fGnkhEMPa9+WfS*z!Ax>Jd{e8pc8stVP=qEC;*{MJ1kw zCqI7Zf(H8Z&;1*5Kzyjt{f#W@;n782K}y@8hlGV-UUNR}Z%O85(GJ`oe*=>h6J4M4qng>r9p z`TU5#9OwrOjo^GblxX%bD8<7?X|L$)q46)lQ)rBjF*P1Pc&A3)-(~EsVPww?4|MJG z;pGTGq5X8L*MxiZchPY5v0!aJ-K;4<{IP6Vf-BvA40i0t!R}8W0c+-?sPY3%8<+g+ z)8QllS<8|IM2e3=&bK6fkbOjOW)E6m9|nZYQP0-{AZ9gAK z3o<634ka*epAM%7OD!J=vquUoA4})?bU3N9^DxWw2SRHs+sagbqlc{sv&4CG74h)60BJ0~0D`MVFccwY~??QH9x`Bt(~c!!CU zW`gBBo!TaeYd-a4AfNi~32NQ%g4u>~bo&mbfangx{a(__!QamBRIInK-s1>y+5dYH zr__Vv1Tb-Wjv$C74j0!V2U+Q?IFGHzLf^q>jZT3nl$uKaLBD= zKZOOZc#Xe46p}Mjt}(rb!t!M68ZUYUms9^!rWM^iCwxm77 zRYL;?HmlHJg-9ZTX1Myb5S)iXyQ+2kwnMlJEmT%=Wbe)dQl8*MOv@O%l58WHPZQRP z=4ugJa9j&%l@UNv^7;@C<_OkQcKmw5PbZ*=Yr;qRmkJ*|jFH5bK44G$@I@wuKAI?& z?Nm@REOS;mIX@?DS(PPd!3B2!N;VqJBfn6DOH%*#FaOFV8QVQrw$^^&F}Lj|CB!v>F$^CWfU+Iq3M^Cdw`7JCJv=u zP*A|s9Gk)o+<`$c$iW6?vWw*WMFaCwup_?pAd>tRNqviCz9Cb8?kUm%3-e%Pjrc~% z!;1A~%5M>Grbsh1h$6Uwh7c|2SH6UA=q13AB}kuG!fzrFeptLK5U3p)VSqz%hWCQ= z6leDCs9jwE9F0!dU0DDk+5&G_2G5%M%?sgb+mEIq96citBzbMB0;YBt2q0XI)>Bx} zk~jiau+<26wXlGtaCE3Zkf!G`plR3tBJ%_~ ztSPEssT-V?5QzUl83Sh$0|CP_GzEfmTI&2A0l}%eFtTBF;WYc~I|8~IW&0A6e~2#t zS%!txVLg5?e+P1Qc$D)-fYd{Q?RT%x_7yM8eI-O{xgp;Cu~Z^p=_i3;VM{52pdp?J zTZ2r|UwSV&Vh(Y{BU22ESSpv~B7eSU^tz3KLRO}S7+MjdVFp%Q4 z5W&ZSvQ1f1CL87Ina7tPgJ~DDtH+2R3hN+md{Dwfr`GQUgwMKlt92wEwBPAtFP`JtGYnLe)d6qi-@ihfmYPWR<;bN2TOne4i2hk zJ9k6?DzGN1!c=~WRFsA6DKEX|#5F%v=D~qK&tvzd_X!?%Z9wthB_Q~4CJSTPYRMBI z@B-YyTYfSyc_r(AL@bmG!YYoLeO425+J^B^9uPxlnnA9t8O*iD`)(`vLREmk9K(e7 z$zyL9$D=FJa2!JePbuFQ<~znX|HAJO=q2)t8HRJXn7S~~7G5AgKl_rQDZm2uXyyo%7O?K~5s|$a;jcD}={9Lfgv&K|0#L!U73)$*@3Sy0ikpf_pv& zER-zgURWorB`gGeYi?L5X0M(Ed?;c`8=g+Uld%KgCWJO;aDP;=g4TlVTPOr7f)$$- zXe3Wf5bubYW~dP?XHqcb;V#}5kWxYe#U-z0b$To;yl{msK|<#gmgpY{+L1-fHvpk1WuSdqg8Fpw331JUko&a;1mAuV%zzNNCI0wD%Gx(( zCYS+TfjP`@PGSYL!kVUKV3J<2@Bpke6$sQ=c4P}sHJ+vv&>In2Sk)cw>|pVPc<$^# zutN05g%@#$CM-0(o;?DgfmC$Kk~P4f1r;w0F5nghLjdvCc;E;pbT9zRzY|Ez!VNeI zCa)eW*P%hwjPQ(Edw*DHr#_#3Q-D#*jRyf1fYY42NKU58IVxI zG!ovSJpL{QP&_>~5U7Q2cp(xA- zKZOPi9xMwB*!g$&N6ulud=5V$L8#~MouA*13ltrfF0urD3S+C_K|S(`jA4vG4&}R2lHt026|RCZut{g2>Is z;{&MpxA*o&`oP%<1DPa?I0P5$81+3Q9th&qB>E49^otHOJ%Z{3h*}s_f7`(;jOhw! zFb)lpYD@)7ab}t#g$5Jxhaj6WkhZ&ZkmFV_z72pSN0{G^|Lggi{$ z@F$QWm2m{R?Ei}RrG<{d=l2CO@%GjS3C2&iiN$~Ug0BJuc~PD!I&?I{;{k^gH^*TX z*wM%+TkXB$eYIrROGv1Q+x;^e7Nn!m3=1S?JboZpceyqKnM$xpG7x?_EU`8asDk0i zE7`(PaDuG?ESp-eMF7iuhXqVEq&I6IJQN_7G!Y2Wn-v2d3JoWIEFdLXhC2;y&&q`b z$Wv4`q8koiw2^&Smpp!sT|9&Wm3o#csZj4^A3L3t892zCQ|Ad9*@w$S@$FiCR z&WQbB8o<SJ=fpGl;q#RN30HMtrKw&1iJb)OkKxnHHZDtz z&>Q#bq(<(zn!xR1BkYNPnkPoySWVz(PSH_>`hLI`;B7~dA~0O#JcYm@r(Cp$kxE-7aCUB=gEUW!*lQk z(`kGb0h!8yLH$Yn-~URHSGoXGwg`nCA^_Kf}-0flf10%tc#Y6Oe~1~`AicttdFAUM{Ud5X17==rdq{r^`DJGvYl<8 zbcDDN=7%xUsG#hHx=0*Sv-`^e z1s%Q?L0J}wn1^9d&Y*s}#pp)EGK|U5dz$nkxhtYArwt&&=?=P?o*4=t`>S}Yq*EL03;0a;7b4vHcqhs6$#q0 zXh7$CgyhKtEc2}YqKeRkbPT2g{a1WO-2*+T8M^FWjSUHG$8gJISwNk-paHssOH?%0 z5qQggO{%T(5CcWZ0gYaU6ej#YIPLCKz+~Exlj-&k;U9m@9LM}Y5VkavHNk!|Oj!rd zU?vv90hiX4*wLG&5;RG2geEAuzk03%3ku?>sf^$V5umlbYD!b!sR?7^JV}N|7%;7c zOn8Ph2JKKJ`h`4Bs8&~dCYV0S*grfQZb#q;z@QD5X~bEljJ0oZ6u@qP2FXYA@Q(k1 zjeZF~))PyE{{o;dh*p49aG3;%=Wk7*tL9}xi@+a%l>xdy@P$>ycKlcOuk5~P{gs|)@3hU!IHraSJeIO(b@m7_CLhK9Y;+YXzjx3(v2jL znkEXGvgdYp7l_n|6IwpL_7{@BU!o2lws+#d1Q0*Sft^+qBxJ5O6$xOo`e8$oMss^^ z!-adr@dgnwz`(+r|6D_(`9E!nVu66^i&g(&chjLs8ZZhd3xNG_x4HcQY!WJ0^52l} z{UHB_r1V{YP6xyZ|JDR+s_5U*Q;Lf{(X4s6352a5RO~4RZ+Xhtnf+j%;O`k?J3lBA z{N8>C>_%Sy_#R{93`4Wr-z&vd{KE4;&`(wVTeFStaIU_i-u>_=?D;Nab6^-`zZc}0 z2e2pS?js5C>=R!a+&$Wl#&dKb;G+qLk}RCp>0~_yg!PX-AuN;Q+IX|k9Ef5m2+o^F*kF$EX(Yzq9h1Mm0A z+Dg=0D)|4TS5Uptpf;}PGe<17Tg`4fQ%$9E|M5SplYb}3x#UfX{Zf~UHGqyyW*WH9Ctrxj!zBc8SZgW}TT1nI(X|qF4 zvDlT9P%~7?OJ#~)y;>?4%z|oKT%tS~7v`IFTeFn*WVnrX+j_q-j3?bmttgDkTs2#& zt`kW!Ll_yAW|&H`qQZ$y#@-mE*fh~^ zk{iHeD%&Yr9;XLtxiVi#eLfLG4Ys@W<-pUoY{r`E1*g#=rm1Kx^fuP`Im6~v}D)9awR#L@6byd+zDr!(H)EA3tZs~24)tMX3tcH!&WRMrU zwKDH0(K(r4nFTvDRJ5wlCx;t)V$oHmk*eyJ*cFLpf>DVHF{>)nvgP-%SETK_!*xs3 zadf0)rjtp9mlruT*A`bj(lD5;n4WF(Yi5$jx5gsP7OM7ewp7zzo>i^NG9fCX#kyZt zmP6DaO%IihCD4mu)umL*X=Y+1AvUy_=M8J*n&PJ-!zRZ~@W^E6gq= WvL9w@AHH z%l2Y(&PYt;=GHPO#h>MVl45dNw8;yUz(-RnmlzY{sz{fHtgAG{S)N!pIwLLfT|%~E zrnK_Xm&O@22nM?{lrt-JnoTCt#SB~@@ZqRX+E(c9MkHIS;f7_z{>JXw`8v5xHdpP2 z)1Z{7$Ws0OY?SNtWUsu=v{8d;Gudz0DJq^GDhYk2$I@a#=0`5Al$l~12-cZelut0C zwdS=3qhwmLF{>5I?6TbUylzIEQRI9Q+Y)lasrwBs49+Pmlf#t5I_c)5HXpAjt!~Gg z2A9t*E7L_bP4#Q`s5EX{rLIC!+Dd2^TB!xYHOqXb5XXqnIfx-WyS4}N6x_M>6UCr+}NT=f;=OJ^&C}*&&`x< zmVC0=#Av#~=h%UpY1T7s&qxiJ+odwBrHaKV6^(d8<{P#3;rz+i{LCrK(zG#}dzzR(ss4 z@f&`+paBlEhFI<|q{*mVu*O2X)y|aoOqA{E6EE%+^4msI5ND{ttYkDcqhfkh<8`S( z&!lR9T%IJSX{*7K(N>9wF>Y@xuU3;q?(#ZM*A_}tLJh{?VoxsMVsAXtUu!j{+0AG$ zbmcr{cZx)+W7Lw_qPQwq@yuwk;puMQqtm4dxt=Dp(X8Dl%=`xFwAQq(Mp0B9UgqUa z!IdW!BEc`{gjQ#!+m6M?%z7%C9p=C!ZOvtG;C02AY;`k?QPmBvm0f~|4J}&XP=jSh z9!V`}$%|gYl9O%TRQqJH>y6Y3XD;d%A(dVYQ}UvOQfnfe=RQ*k6os^yp&E?28}pjG^VMe!A~U>G6`lQpG=~` zo+T?nre3N<;RVwK>pxY6KhYm*@NfnHa!v+pc;u+hk^`#6O8MS)(1shsy4m)!=}I%% zO(uuQG<-LmP1YOaj7SXOMK{^pHJJ8JnuLEV`0#jZ7Ynts4W{YBG|mnog(yjH*I))= za`NXw>|SqQ=X*IH6<2zVfmi-ohP}zW>Ls}2ou^4KuDO)o2{3@oBoDuB*jadEH-`WC z2m0|xWTL1lG$2f%WN8`5m@xSRO0ZCtf%2)M1C1I8)Zftmkh1Zm+2Ck4hoJ=DP$aS) zM0^=>y)%};R(C3c-wIM9pqBBhTEMH<)~FN9_K~UU5<177Z=H1hbsII4DM2hdiIo@pgy(#B4E{$J9 zl_F~569|2$%#*mL1wC3%e=Ed;jr05IejVa*P@H&l++?rmqrJirDJyycuF6;vDC*WKfJlN3HfY{65y*46T=)-O)U+co3GD0O!{m$CdW+V!j|F9WJ`W)-*|K5XF4*;np+3R*N*w#0p~p0->LI>pMU#LFaUDIl&y##-5-%;9VX-hOU=J4gAHK( z*WVbk@gi8~I+}it_B+tLfaUS*!mLT~Sb_5mmPHX%R0Hpg+)fXi2JS)+!H8e!z*$c8 zCbSEnepku{qjw(8-{Fkh1;WM;{0MZQJ-lSxA?EtPP9+yCCqQWFQg(??!vcp=rogQ& zEP!Cw!dZL)N=e%=t$E%!?m zw7b%lBb{!ipV8EXwB@&GY?u{t?yGWpHEAgwf2)YIh;X?fX=%Aw%XW(C8&Z|t((-HU z16atMpYVJ!#z+T(CBlp&VFANpqk$l~c4&}E#YsKKgeo3f-#uo&BK zL-lyMWrI-%)~*={6uu-9tkCXrg^H)JP{iXwfj|K!qewHw&}7HjM8Zo=jz=(oK;1zw zLBNHb?GuaL1k!CnoHLk@3FayZYY<`bD6q=I8cD2m76{UF;{T9ri|y0OZY{}y*)FzdA3>TXG6%uY*s&E@BJ5E53swk&id#hR4N6xfFye}x2Bo-v&jSKi ztS_$(Dc+}vx!BG3eQ9)&@#fbV&-_rqQ|lOgK;+cYg|`{+13T~AjFC)y{u!QL706s( z#4*eVtFDff^E?nz_$(n1X0YUYSg7GqXdtvq3veN@(S?PYZ74X(O(0mi>RRE^$kh;( zhoT1fJB;WF3$bTyDl7!C>O==z*r5?W6pO+_3ro2PgcbROb3`b31i@Rw^iw+>Wa66G z60BO&8Cmk4Y7ehUH|&qc|B^Zk=;A#@#9&1@ZaN{s>_+ZwIdD%*SB@=9u83DpXkT*U zN~3p>`;{I7ed{B4Zzf=LZ+AxOp`E+;l+u6tUsoEv5S8>&QTQpo*~W_z*q1eVv+3{# z;y?d44Ep+o^Y!0v?#W=8DpFVOI@!}Uk?;g1Ae&`P3=&Y}T zz#p`XkNa~ibnbjQg~uFDc|8?8s&0ISC%rncel4-wt*yRl^jem*w?Dr2^@}d~xia2v z^xxCI_Y~v8JKc8v{M`-R#5?}>9;^3S?<$WSy$c7~Zs^FbJS%!b_t3e~U%nc!i3Qrj zPZ}hyX=|cjVKR@eg&B*pPyCBonBQamt($6L#^Ma~RSWa0 z7Uowi%&%IQ?^z2oRdu@?S%anAZm)&8&amQ&%4+JUSLlu_eJ`ox9l!QlUY{kYZ9!B@ z%A8f#8qrzh2dhrb&eq~mSC;wFDyFaI+i}cp#lTtt>#^quR(ooQnL;Z=S0sP01cC|vs;G1IFX{c^zoLKd(ZL2A|%urt2oH8t>lG|2Gqy?#)=LW?@ZDjQqd2%|c z*2(%R+e&P#%xaM33TziO$Z;mO+=$7FQXIDVb}YjuN^U#GY*nqZnwy21p{-TPbJW(L z;@Yl7Yb5Uz)XLW4{3MlDq=q|A|&w4^-aIofPm z8w@CwUFw6ySad2$HkamUQd*@ng(#TBwALC~6OZ>Ym2}Z)7!}rEdh({GDMhMH#%MKV zDV(w<$L@T)ofWeUy0z-8B_clBWEsg7X=0hrGQ(|RvZR+l(&JVJU0n7WIcr;Nwq2jF zO=`e#(dyhBugA5h+@4A1Ho<%It>}z0DRSP6_2r=z7n_5zQfbv2Haj3WF4JnybJ2{u z9_TBQ^$K;b?#Vu3ucwLTWTEtP^-Oe8P1a^ou{Y)l$?0ZZRTt4tiHPZLuQgr~B3(n} z0SO}MrJ8N8nmsAUm^S?qs!NTK;hi+B$(V$jLuw)E)zv7Uh>2jqj}=tVusY{+b$`7l zimPmGQOdKTt>lDqme$i!wv-;{dp;fVGRcq4<-AuH0Og4t7&ujjDnlS42NJ^1$)0a(D<#VU z>mW;xeoV+!-eE8HX7_3KP4Xn)^vuXevLvfLWoe_kS9}Mf-5j?OmOpTzowEbn(Xd-u6Bb^n=@9Zr*&p`1JUpJ-U1RvvG0ud&n9? z{(kem_4WS-hO_g|_y4l%Prv;B_r&5)HiHb@%huxvnnAwlLm$Xf-Uo8B7iOp6x;#6+ z=zKa4It5%j8j!N`#J`gR!s3tbjlmzj@q7@{pN*^mlbk9Vkg}`ffUT1;`P{xAUB5m2 zt6-L2@4gO4(2A80_|lIx@$U+FVYqNntl_+SVQw^=s`bL0 z2(3x_QVWfJVtpgabd$(8_GR1kmMCAOAQX^R=!_TCEYU!s)hMjcc>wh$*-p9w>~5Euv7sSqL!k{KL{nJr0wO!po9XEd8tVRH~|j=GAB_8F?ys?$pvDFIjRs- zk$$o&rGSLC6j>BS2o|;!kXRa+74#9X6y{b7p=I@;itfFIVxHpuP$0=TO}{4B-k^xh zF&dUiK3g>1jtnOs^N9eydeI#(TRKNp(Qb`XgG*OwYc{C7&qcA;9+wkJhy;rAYJ#K3 zhbL8_FtIj5rA?GA9u?ePVIp{`Uv*Y+xSS6mP=@ZP0@cMZaUn>aY3N`%K)@3cwNV+- zLXdv`_|H}6`f{uB>gSLDssf4L?$Ry(UPEsM>WxuvkziM(Gf;eBhK0m4$Z1iexx8=8y@& zI^0nONpW!)RHc#18>TrZ-abQnseA*%fd&>G?H>h`08wlz%-4gQRwUVvH*1adv`z~p z;bOoxYKN_DZEDlDQjqfyChOd@459$>CKG(s2ShqbJYO#|3CeB@k248UA1KZs$ULQE zgJ49cN#oy^LhGL@NGip(|NUDPBxMDVaMn{HK#d*DbtUA$QAT}rRe+lN2eraV5K@<~ zj!V5<4*J`v?d~0_T0*jbb#+Wo9b-b2S`k~o$A@}RhHV;_kY7g`34+*#fF)G-A1Lqw zYd7N89DH#=+71ojkm1=m|8R1BdU^WcwsZ02`m}R$d;amm+&n$vWmD3`6L^Is zgtD2p5T7&j&^Ofub?OEta!rV#I;OIy8(_7n&;s_N3Kq(^FNl@yDKn|Aq_56YC3LDR zeywo*$O9wG4V8JQsdxs5d0X>c8l_2vj=;?h00@q3F46J+E=2evQlDqU~z@j@k?_6(vC8qw*hpjrYj5% zWZp9gL(KQ49)#p$)NYBbIaRF4Q{?~c*w;hPeeiUmm)Yb{j}-`?`j>otWWo-yGCH*5 zcfgxBkqJ7ihJ+73AK}af{3r) zYkEBNuAPLyd|rV`c7!%s)jFC#ARM!RB}$bu0@pS@C`y6=C=`5)(5jDK2ibP*;0R?X z6BEQ#0kU=PL6LJiZ@FXkiYc$jrb2}gAL`NrA3VaA)umaIMRZib!niwy0B!Mr0A-7a zQ;x6mNHva;Fu3r6*QFb zRtQpbMX7>ExW2M2b1;&M7~N-otrj%n0NN zT>5)I%M?b1zHTf=fyXTn0C5Xg0@yqE$sB>Xk}_^UEeEj23)tt$lfBU6ZzGm3T_X)m zg4~Ly3M3JlG1s;bEQ83~*?%EBK{nWaRyGyT6I8)M+5?0sh*GaIic()2fzuvR-66c(YiyaJ;E!o7Hnf8xOQB zxA1r|)7@B4Tym|F%l3o$L|t^OC2RcK*j~WW@nP6v->OUA8;0J{^_78BmjH>3P7_;1 zh4D^RO(7NXbz+Oii0u}0>#G8%&W+YH!IITgXW~Z{teK5K3Iibao6w)EC;*~F=tBUZ z1_gMOjvy8|0p(}gOeV|Ka{@F}QGmjm>OOR+Myu>NUESR(3!Zp;sti{4v*1=b{rmaN z?G4SJ2z{1VGSD4s2o57tqrq5~Lj%+-V_SQ$-L7tHaP;&CYW^_Es}CWIU84i=05-Ca zTC{tSk>gp@xp$6wv}hD08wuLo@erRgavIEUI%q`OMdwCH`r=!?b-8U7RbHM6#^lcJ zmupLj**a=I8rtMrx{M=eT?}G6Vu+tV{&V^B$A6;@i*_Jxk>U|rBi*xTY*xWirF#Qg z*)(5^2+q(QFn>ifHx3Katb6d zmO7J-X9ncVk1!XZ2ou1Tl@o%6j5iZ1D%aQ5ts%0Emk@mb12cOyRp8E0o--j((cP?u zLPRd&7{sIVGufk0qS>ebp6qtrQX$n;0bL@U6dmam!gSC~j9xFYyn;bhz2%kLTKC2U zpD;C^XmnR!cOJ-CpwrVArj~#&vAC&aEUJz%Wtd62*cI3Q5mP79;q2!+d;UUKH!@(h zA>@A7eIFvYaOO#&k|SJECE8J>gdiXbglq6uQuedK>Q+4tP zB#c@qxLGKNyy$k-w2!zXK{1PzDnRTotAf@?6_*zRrQQ;t3L3Jrm=G+auSCpViD4ar z_6^HN1;q>5q;Mh6%Mv)mYOnRw@eWjg#L}!{s4iwMbRfW46*P6H8Rh2?Qit7<={C8bzZ6jcCGp)Jc&2h-QpC7P(UlmtgxNLQ6$l~i?E zfH)~`S<>>5q^K~}Rb4`!P{fcQc3IwPx<1z&7xE3x^DM~mk-Cx)X2??}_1df#`ESmI z{5SkBbo4YPQ++g(E*J8;X#`ggqL>CwQF|VaJwssCw4BflefHw;;pRK}+tY7hS54-}erpK>FdsB{YutHE@Sy*qB48eLz2vIRx(Dx4$*nN9HUfrJ$7wi19M+k|*4{u7Px6LEP&{Z-B5?@MPDS5RAki16bUx7w z41SqOOcr3cof4BfWvIymE8ja;F#G0i5l2=u_w0S7L^83Dl$~YoBjw>G5s0tB8ybr~ zoFV}htcAiIjL*C90z4<1qTrJhqm+MZ+9+efXkb_4$IOHf^sVo7aUL=P@PVRi=a4r`m)2YMW*hI z%R1jJ&JafsN`z$4wfPUeAYJ>jMs;ecFM|3VR}aab&ne}S2U>?TgPlFn`=*bdxX_>7 z5cC7~r+e$0*&F}y#I$XqmBT06%{2{cJP=ho^ZpF`l^6@a5>+EYdZ%&96n99kzjnby zKs8=H{)ztagh&SiC-(Qm7moYxnA~c73Xc0n^l3bY@v^=3tRDROKz@=j*vuQv7C!=s zuMgVeuA{Lx1F%(0Qqd$4LWXJ<5wbz}jJ$UyUqQMet!Cs48b4vM|D#WQ-|3Vy_SHCc zy`Jg$^n*K$#`Ot>+9tfc+Q%@mW=$O0MkCfjfZM62nO+)urB8Y{b>5koX6B2bcsO8_P_1G%_RPo5 z5)QO^}eN|2rjJKR8iq41GGA9xMprM}WE%wOa zDe@|#&`N?NDYvK3mc3e_)d%)!*=>(6vxQzQI6{U#7mFt3Htno}qhlt|<2F7zQM zL%Vhdx-&sUiEx*4q?$eCG)X@R2`IF=Q$6O1qZy!%Wu%#1zB`MinF8XtDbCcLi6*&P zT>w^GvOps`y{E!VxbiElTDVTFTs#x1+<#OpR8a=G<=xSl+yJG}os@SffbJG_R$d)U z(fkq2W67M*x|n>K*UXO%!l9<+%W;95S>#JPRrX-!oesVF7Ja8vv*LW^Ky91_uHd$x z1`K^5j#@iEfBb7tngBVCDCXN;dwxW*1cKfJ>^n^rxWxhT0N{Xhj>h~LcC5sRbL0@U48pkDQF_$W4Qds8O4Pky% zu?z|euP(e6*9U8x?5~H-c4M9vK(mr^-kPb~6pVZdt|YEowyAIU(uOZBCGn2Cajysc zN~hgQ%1YB3!L5?{q}%l^`KHcFQg2~RpOv?u_<9h6RXbH&zAj`&p_u~Ja{G!ELD-m4 z)R<8kZE8n3P-RCslwF8nV@Db9<-F`D)x0t1WJjrFl+=9ml}e&2Utg)D3^YGGN+r>q zlO1JEl(R}6)VU~UmE6!r-L)a8T)K8v$$gctoz0Bqd{m{p1UohepOH#c=};`^eG?(8 zMpbI=fU4BoRi-LcA-8%}V`Mij=T()yHmcI>Xs(&dd7V_HN^Y%uRjHC&x>1!@6WdjC zWEG$}R>Lqg%a#}2Znz#?Y2$NVQZ(_ZtKJ2XqLzSM7qg<|Rq9}aaKI|#_7CBWjl;R} zR+K$zMN#K)u0k22jl+5Qb(M|7c{Nd$Z$+sjnj0(1%Hq1QqO2IEzrP+>Mp4tQ)nQ93 z?`_U2bi)SWGg9hp&Z|J0iO@z*k^&5`C+$*i^R7B?b0x}jZS@U5vw~5$aO;k4#`>TlVoNOp-60u)N2E0C% zr`F8gDPK2R+^*sU;<>oEJ9#C2*dQFX(okSN&sBGE7w$J~Dj#P4B!1M`*-@rtEo)`5 zHEj}E&3hnflGIbrhI7!3N|;LJ&3QEh*dRH)d7h@TPF|(Ls-NCv=FQ65By=iK%49Wp z^Qj}9SFMSWq>^YJ>%L{I4yJfzWazo%7!UF}6Z~M$mc8xra=q9f*|*(6lUg7sF#K%? ze~&dv@47+Y4x*ubYmU9rJ9%}iGS_P3gOUOaPvwn08pzw&YfHO>7f5rJ$gz#n+#bbn z`t?p9^WfZ*PkVHio__tyh#-?S(G>Lf!$E=0`VO7b$>nhQQ+xBG5`yWUt0@=&!sD3l|*ws@duSeRlaInNi^r@)2wEr z>Gil#Sy0q^Y-!Nf9odLhGSI>ZJ#P-NGnK@Z2>SBfO_juS1akgb9Mp9Y^Mk&rSx(RV zCL7!RMPX}A#o3zYf=W+tsw~S}3qn0kZo7Gak-LsLiE(g3Z!QURT5c`oK$x$FqMDZRFWSJ-9Yz!D@?{itSYva>#POw z_6SGn$yfR-iEDQ~IB);C=eZB2bo#C8Ib9DSNq2f05tOt@h|t`7&9`jJunh8@RU%;q zespaZEi-Z^uUI*13&G{@mW@z9o> ztuk~+>zbNp2A*Y(%%0YL)^z7tqcM*f5B$@5<~^B0PqUo#*7l!=rbp)Y2s`Q+eF$0l z(skX(f$lx-?n4F3U;CCHxZX3tjV?=^8oCr08tN1+5QICOouzmEx^sJalit}e@M&0X zqo&<%(k+lN?Yo=P>o0GwJ6G>i&Alae?pN36A8rNa4yP40|2=6W!{&eY;biu;uW9Fw z7Ldsh4#RYA*U`4xC$F}(o*w9$?wJ})l${%}yjJ^oAcsY8_nc=FY=lt*c9j-H(PhS- zyfJB*>5MBlHO@Q@j3$)K3M?z8dye3u3#P~cE)^glGgY8~6{v!x7p9g-rVxurYRV8( z1;`Hvgsl{5KvKaK8by|s;-`fY%EhZ(G@neE+0TCNo1Urrn|prp*+@|!l9CrX+5l7t zu-p4uFZ5tnV9g$h4iOM>Aj;?kVTvekI(?GJQRZ-am86524_9(6UB@Omu49;*9?<16 zi4aAW&D4#4VkyU~m^>wQssZQdy7TQYFiqEuWq;1B>5@eG`ZuCozVmf}O<5{{LUj;ydJsQ#4O`v;F#L4PGNf>ItbM%3kqDBfN z`r?$%AbNqpFEa^dl8x{BH1ph)p(eLHs<=2its-XMY$YkA+(7>i00960>^*63+tpI{gB;1_kPKeleJPn1?XNXtxSnAL*Ba(-HEuXxip5tO=59o<69#S=d?|_04D)O8_zP(2m&lOa zdQP&z|1NyvCYA*K;EJAD0tPQjrEr|)`8)J9P*(wbn%e%L@$C7A(*AJ=N)ai6%IzOz zRZR@d0KVa=6qh0I5cCNBBXyFhIUcAmVg@j>k*RH}8u*Y-Q_;h>HV&-9w&>fKBt7Fv zuaj&4)ohpQ-S;sa!ux4rc|{xHMm_&4+6adIrO5RSD>OwoiMtNjHkZo9vT2a>t{v*n3o z4#1a7KrEy`Si1nL7zR!R7Q8MYvlA4cIpVR1vJ&?ts^S{Vt@f`pW2Gwlml@SGYa+r0 zP1hH=_JBNNqMv*Xo9h4;MC&-SU8Qj%hd$B_&kx!TfPrW=#iw`ZWd`(L%YO3y;DPNF z1<_WvB-l=Wcekfu&$fbRDDZLu{sI^girbgmzqF!6FVW&dxMALMZjfLu&q8oJw7qojs*G?WtCJp%tU#N-#083Inkomms307F?h;Vk zK}(?jrN>$?0U>qAR--$`0bMNt!(|K*$wU-gD|k-mCg6jpkX&CBAo+%z2U9>5ikA3* zDztr41+C~q-D~>~;*UE$2;2t@^JQJNME~A#RU5nmJ;xFQaO+L5t)N*ZM&dY&S)yS_ z0)8IZr6`_&%8G%Q2tDHkD9eyN$9J^gUUn?Z(KOIiu%+WE01knpD=-(9Ro@5D5vNeA zP9ByMsL;R#s)5@O2mxw`81rOiDdsHGSywW@i{sm~C$*TyZ;Is&c53=4k@{z3P z&V7dMP$I(ige+bEVdkP4h_Lvhh(rwnA0Z(@<>1%bJO5mbC_04<%@dU($W%1m zJ$^2Seo#;ybS*Bbet^E7D7!0B-(ATodw1!9E&)4(i8@1oI)jHggA`$R#Q=V{yG$$} z34zZnXQ6f-^fq|LS?uXs(|%eCLLlkGvQY^vLbJa>sIkM!nKqSk$A`1ikw(t*%xxlK(ioPC|Q^3`p3e?cM#(`H7u=hag!a?E3oj(snPX!}! z$&QBcV0Yo|E~NdFzywAHyxgJet_Gs#Cg3GtHfY$o)6qp&MFnVefeW;z0XL1D0RHd7=L5XHknFYz{%QT9xf~DcO4Zf_soZI|dZ}zp5c2=|A1nS3 z4xh?Ptu!e2*i?(3nCz&6ckql;EC{pis!|;nR!p~`FQ!a`Ea08?pzdt2RN4-?rM#Nu zYlZrRorkS?m2L9~Anr3G*6^4`z?oU1ycDvfWusQE6y2ifdMsDbl;U)~>R6u9(MFqO zuVW9IqZA)%^^&Mm*jlb!TXDRb#hfex*f6`Exv&!ZgvYlQ=TrE@Wxt&g>Q)Az1*Ep5zTTNA{)8Txy=mvw-bYV;=R>M&O2yiuYL`s}P%1WNvs!+> z-0(F$OlB9OW?LH;#O2DEc8%l|FD%@mpB))iO&s8(HK}=Ijcy7x+mm_{*5YUr(=fee z5c76KVZTKBjezZyCrWZ`WG9+dO{=rKneRx8KJGYlPRi(;!iv_oLR*nYrdabw`rOPc z3ykSi=bU7WXRATOn2!)Zk{lUbPb6ofT1c2g(8^LcCN(W;xg6E;6_K7uG{Y+`@XBST zn4cHOE}n0t+PK}V=lax?bvR9JZ9IoCqE;U81f92%t+Ysp>7=j-F$Gg<5?LNGq0yA| z0yYb5TAmkrnCelkyjW&V@fiUG%w~%DtSGm@vvMsD`v-hEE|xb{vbUD-_F}YVXlbyX z^=oEGZur)stvStACQYO&iYnB60Uyc*evm-`>p4N@a;q*;DtF4+a8}h8iw4^oH1Jfb z#m=+o+GM<0RIQmDrbg>wxi#X0pyxSaHZyByj1VWPW=10!O`Akw?A#^EJm>$rjxjY}^@b7|TVwHuPIUsN-ebotLNCvf6HE=9>Zn z$d(7SmEY9s6^C&75uOLFmhzkxZVpN|Imm=7Zaj8+)7m^gvX%jsX(km6SH1Em*o-P8 zNA3HCB+mEq9lsxmO-N+Du{j;{m}wD0f8EPVwlot6VleaB&8)QO@YHBs=yQbMYH)Qn zGib8h2CrudM1Qm58krT=ur~antlJ2nSaFNV%9N4lFx{>W%QPOQhDpU{$XdbdCUf1f zFda3!z1n)-nA%ynn8Pe1J*($@tX(&$T6sz7i(1BAWbGURXpk7z(8X1ln~gJ}U!Aw` z`HD%EeT^$_W(#4;8}fj|(lv%(cU666OmU|_FJ$U0F~S6K&C~%NQe6%eYk&Z5iW(D2 zma=L44Qk$Z>SZ=RFOrLDW1M0)Y2){J=~0JQ{;@$oz@V*<&0bpT*+;%Ez?VvGYc;qw)j+yN;a3tF1=hDKE-ol zV0CbDv1+&3b-#~S8+9vLq#c#ORln*I(`iGmI~W3}F2zi4VJglrm2Po4fvsgiKAD{@ zTB&A7<%>O%Z7x=m5$)A%qLH82RLd@{##9Y!C|oL)bn9h}!x`Icr=4hk_2%9@PflFE zR;jPB_MFvBStrvQ3v*fH-1wMnP70<=!5e-A$HyiD_}FjT3x#CXm2MC~7 z?)2o`wA}(SVUmtwxQ?v5_QI(3Qpq}_o7KibsoT>^V-OOWR;X6HSv~A$r)@G2fv}TI zW0TINjIijI5Wu0M)zcE6#F87U$R#DcvgQ_Jb5Lb@qpRhxY!Ra;6PBqpD9(_>$zbBI z%O!Wt%(FSI+iupZ)}rN=czd9+2w-lCVSv{>hNZK7Ua0b|Qoz5#l6d(OBm}TUa-mY_ zhf1F7sYAh(2^=*FXjOqXa2|}f1)hh{c%9Eqxsrwr;El=W!2kXM$bBnUm*8cdTaO2; zO?AznzsCX2e1AzI` z45jdIXqtE46wOMsCRJ0AnWf(Arf6~9+Tg$x<<~{Tm=tcLTgjFunl-vq>WZmZR?qN8 zT}bhrfTjiwGbgVX66w}My41)z%?*dy#A?AU8ne9P8O^M+9QMVDQ6eKlZ|cYe%2S%F zHtuxf$)KFZddpHSR}U$(E#aIXRQmXOS)XRCyvkDfX|^*pvviBW?FCIQU6U%dco}a9 zTqy$B9}c{!s^sj_9H*QNnVL_5Eo-?eiU@6dX>?oFIW2W)U-$T2W^C6A{q91_a;=Wt z(6c3by7AYcAq)qtCLRqNbel*|HDHD=${uYuX115N%FJq`dty5%4m7GVbF~e&E;vjl zSxiy-Y#y$4W$IDwv_+azobwk;z~m+tjph7OXmysg+<{oJ0jc%n zbs9>qFO!?*a^Qi+SQhAJFiDX@MB$L>hP|3t!ii8PxKeUbE%aBJH90MG)|^V%s^t}@ zZk2B0c9!m_!PscF*L6GNg$tqA9LXb>4u%=57%bCE1aM&D4Jqu`@)kRj1zj7`qm3uB zwR2cgOqZf6=c{xzxxz99YTE4=@_9Vq1q45rskV5a4Muzhmd)h&!J_34QfM6S^DXdb`5a*M z)8Nae6EUe+KMIg>J&%ylxQ-M>_5{Eptlcru04&H0sOEf@=WBd``mc=O10Atd5((&X z`f+D{Gq)b9Z|Yq_GfWfu-!-TcJZGjZw;ua@f}=>rvLfArUL~L_X{$MQUZq9kI1@e3 zSvoW5WP^U3tu{he$hi{5EReee`ePoQF!1hWjN(|B_49`}Qc&MsJ-k644{uOc4sTEt zLy%z1UZg<7B|R2z6^4pg&UU#Ii6DY zQ-d5^LM{k$00=b2eU>1HzxLtHuQ*5SI0v3elUY2II*4Xh)r@`l?Vfo<}=6`)Efk)KRnp zua5(-G0}-uk#6CP-5AzOEVob`!Wtw8dSFOXb0udtZl_(Jb9GBAXd6n2W`tvRCFC-r zA*s*%X$jA0UX#We7ORLek@UU!uxJ%pt@X^413Et{S7*!i%xybDo*TInCIo-*lGt?C zYl(=w%(dZsI!op!wVWxkRMYnQEk3Mzetj`BRz|u~mK#lH!uPEjO%u9gP-zXb7O66A z&H-RGoQDHF+bjqb-HpVifUnqWwbyG&nYza%bE4(BRb^rfb5p5Y9XaCMG_u^Z&Zt7a zz77`kb&BlG#{oN{@sc!Hs7-e{Xj;qR(2lwuBQRWlLuJ%;fbm$R6I7Vm2Gc;@utu0J zQ3`KJqw1o>HdCc}-N~2j{Hjs5YVNu=8-`VNoTVj&?p8B%E$VuVoADP5${S>=ovPLI zQ+d6_5dlO<294T$(pIHOM*T~Hyk5xy1dzOxa6vl6(Zls zq%lrmrA_F1jm9LUx~jfzlt{7J9L;;4CHVOg*)vFzTk-5#9dS8x&}3>U9IrH&9j(N6 zrp!`ztCU?S&JaL?AjtBvqBz*BJ#G+g-|G&@3c&_;j#`wRu4zjmp-QsBj=B2S-4GLB z(7Jw8D7QdQ90-=+t<+&t>`;e$ay`B8U?xo9{cX|hzBNg{n|2@>n=LY zbvEct<$1ZD!S$-q&-e0n#+eP~oeH^;)UuhMMxzbwDdi@SGWD7~CS^Rm8Eai})aS85 zQtpq1W+~uj8B&p~wMiEi80Yahx>XmaBDrxJLZxU*`BaZ=SVJ)ah>2}IzxIT(GPdUx zzTwE>j4Sl(!h)(PgYLMIvei)`JMI%zs!^;kqS{LvX4&<+NwH$yDHCt&)KY-Q;qS0j$+qwR*EX6gQ+}4q6*QtrY{K zl+$@xEi$5;$utl^t)zEnxn77-Tnjlqn-~`PMqhe#0;fjL7O)AjI`jhNkZbSpci`PQ zX=)q|sT|jUFWp6%wD7_sOB@Awbd)~=kOs9AX0lydjJxGUyTDCPQ+X(Z{L`r0!LLR` z=UfD|z)=!V;EJ(xz4Z!FApn@qZr~M(;xb$6PDVY*3!@&;Zv23#M>Oa974=yCihBIr zqaGQh-`(gd$kx}Q9wkl?)8zdk7ku$h+J zWM)*fu;H{tv*W;)lX!)~gVv;_0I?CPn?-GHD#RE}0Xa);6eq*RY8th2tHlxo-&A>S zh1VQ=8g{!Q+0-4sqEhFZ z@$45f^5LA0d_-=mOClds0(p#Y7x*}}3j}T$>-nk&ADsI1SYm;*5aVy4JG#g1Jk=-{ z$^pn|HyGOa6a9%wzIB&U{yn>tqLu3(wM%JB=nZ!%1;Cuy{@oRW{xS&Og>fs2q>w-Q zbO{=dJl3a6FdVl{{&1>9is1J9&9(%++&)E+TRhPQsokb1di(ToQxtj=J$%=msCNiw zcb`h_oY0>JAWGZ&*JweT6wDe+oj1bjN7W zhqPQakO?pf9CsjtdrdxWAQSML4`fewO_BtYMsRogCZlleHTO-vqw!I?MeUjDy|C%2 z&)4*D>A|n2KWzHnLd!8#|Ej$nCN}+KO;3M1^MxiN(*shzE&Acs!x=f?9}Xnoyj*Q_ zWBqKqyI@EXFl{a|Dd2|$fy2$vZzPP~Cg@%69uN$Id~J4|sW)*?<8)g6j^l70(p%}? z8oED`Zt9+4X)-3=Q3{tEQh6>n$~%OVy{A$vr6%!bLWW&7#=@cNlZ~45o)9GF$2Yi6hGQ|C|JW{A{MaV+JZZreR+}bKR$CiiTqg^L7I1 zt@i$j%|_mnIE(0xqj*09-3*grV$vOD8UMNpjJYQ`2EV!j<367PgVVEL3haz1WPT~I zUkVJuxt0PW?{Q~)2*?)sZ57zHQ>Fjg zDX?rD1$Jw(f777)jK-}q>eK40Thn(ovu%83`ln^c;`>N>GD%}N7LB>=+iCk0x&jB| zCZs!#m+|M*P2baa`pA6cyexci9S17SQrDlPy(eAn2kW@or_23fIxhE1$NkcAd*W`R zcYHqB`#HHjkt4Nt#2>f~)Gd_bj#~nf;=`U5Pk44i*p`PfI2-!iFxQ7J*Bb9%RRKV19_lo#Y45&|O5tQT6%x)^QRHvpc0@ zSM*UhwmIox`r)TJ=^qbJ_?enEA4k)E$XeyEr6uAj)>}vZ-?lLHnKIb6>rYh%DV9P? zEER+9&#;Vz!&7L2Nq#B1nR`0TB7VnFzF&M93w6&h6#F*i3;#sN;2cvynaft-zC7{g zJ%c@Xqsjrypz;DIe5tD02CmmQFXjYJ0m8ioGkd9{Dus}_ORSF!Kfs4XXk*#iI(ZM2HTLZi$ z$VjK6wW(}$6IFX_XhZ}8r3$y2E*~agfNuAw>Y>#I6oXejJk}n}gNdzy2}~4th|*S+ zQ+v)wERSSn_xGffoLV~mHYs_{P}a@Ib#Pp~H{6za+<*S)w;fk?3qb-S7j)gQ@)Po)dwb4m%Q{;~}4a zZXgD5>VKvlCqP`4nQy0-Je+c1PdF4GTCC>g;|y{a9A6szsjggLaH&cho8lsb@y5D~ zP(3l3ZiN!=le!rvw;S?qCM$t+D@>j$o;|Mmt4gG+i~eop1F8C(Nyyp5=dXk56(xmc zVV^`vp%BpfSQ$e}(FfmS@s-q-W#G3c*Y>SMjyk(9{;KN4yH(dcUKZMbhMgc1D3LYP zGzmvbfYA%40}fR`0ba)IEZ4H=5|I6g^&3%- zM`>3P7-qko=Fn@@y}``#tdP<0e1Nk;CZWo{LDV|AYA(~wW&djQy3Jnq%@TJO!IkG} zFuUD{Gkl9nf(I?cKz32Zd@xNgG$WSxcnww~aFDU|tYg5OcxnQWp_+z;9L!4Mw=-lwZSpD)zQd~^ z4kt9x^wr<*6F_0d(ywfkFXkHhwb#kD|7!N?nc@Kf*!5H^3jMuTR%5Exi*UtNtrsDa zMbPEr=+%p`1IoXaYPO!M2-EKbFU3l>(y)CLz-YUvq4pxU33hZkXr>EXKw7o1() z3RkSC;bmTrX9yH@_h3wywgQ6T53nPd( z(f%TAbe%x-eIvAPg)rVKhc6Nv)7OgUOk$Y?UxkVBmM(pjE)7Qen=vpNJ=V9vce}B} zH%vn|P| zmmjF^t#IjL96RSCRFZl-Io!H5V>xm!LKwqi`R8}oz(?60{26Dq^*(~ndNaw?YawY^ znKyYeE2Vm_Tgr3}&|}y0W$t$K-(ncPOzxpC^I3HK<_()7VJg21*BYRWqi5>z=C-?l zpKqs@Jj_;hPV{a;I2e?4XBlU-y-332+1JsLVN}K^AB8U5-lyENx07C$ z3Z!wnlnuIk?-O|_ecuvd;-~=?{25x-dMjrC`se>v{wn_KpZ^DAxQeO)kyR3K@kjzL z4@kJ4voI7D!QRb|6Ua>oF;>ou3A+LgkA=hy>cc z6-J;u)YYw!#d0xSgei_iep!oc`_`@S#arcb5vt?6)PTsuF+5SCk@r#%cZwj)lDJ%w}iN;;Z5*`lRB^GYEky9YT$!R~_y z|67Q7>12J)SM>_0mr_Aou+TR?`6P3HRpQ^b+U|HuBKdjIk|5P>azO9d>D?z}@Y@&geL~`2*;DcfDL!jJf5!fI zHF>@~F-Ht7bz;XtEO4NB=UC{Cg<;3-zi6@?0zZZk(3zpEvq4{i1f={Sh9=Ah% zExOsv&R4u!{SdilXTZ`A3^}0~{?74*T<`nDX!i%0v2$~kQ-?+a(ylaD*(Pd?KNSJ@ zI&b^W+9FmO;VS@!jQq#H{`tTE9sKK`{};POkE41fPuqFXRdbYHspg>74EdE5aTnD5 zBhFR3Qq9l#uKzu29Ej4#)cGTFa9=>q8`AE|Iv6E^b?+T|IM0rxmz~4>GQV!T6c{_- z%InJP(OG$*#&!efu8!MO!r;%ADUvxzpe(p(Z9|kb_tDb?UYF1azl6g(s`c~S`;u7| z*I>4^f2A2KRoTDHsHRyH5iY1DUf|jTLdz;ny@t(o01KjZ92ovbmBxu&lx7#k!`lu_ z>WiFb;?q0yGK2P7K6!uez;=p)Xe(P1Y^T4w+taXTTfs9FcsT)o0gQ<9=!AlO;a!=x z9-ojob!ch?WQ+Ux@d@NEH1iQh1Z7U0jsCU{@DXPmkT|t7iC>;^uw73>>*d_CF`iNKj`7GXCQWDZkIMi2_t~9-uN($&^qcs^KuU^q$7s;c$%)1eBqv)j zizU;i&QUxo(;s^5Rp!)j$)8H5ZzYA_*?SzvNtBKLGYH~$;+|y4=&Zc!O5&;0&VHgK zo;vsR?w5PYp+6cUH%(#FM&bQZ)H_q>}~G$xrSsZhseeD|WWd~ado1gxkWT78MWjDMv%kyJ`LUY) zOL#hevUJkv)F<*3p>q^JLOMU6&ocWZe3m~|I@8dP`HAdKFe~CBKjxLC^Yi&JvtPoG z`IGHV8c%3o-O^JAs+mv8emaroP4 z@pt()KUO+_`8L0rbbizfDEBVkCbM5R`X1?o1q8=aR1dYYnNhuiYw1l&cC>3I6t?zK8aj;D50NqPyMo`vs!Uch}#lJA67zH(q~$f1<_YN2TI2 zcjflYNvSwoH@~gIo0i8PZ_KEIC#rJF8T=7dd2F|RQV1L^=>PCqeyj)Yds^n)7%<=;NgSexKlBrgeliPTLa1)lRF+)w8cRYIF{u1IYBA z^?)-Rdah$G*+3ij)ac8OCENDso8gO>Sne`h@e&GO)@E^Y$X$l*ab&$2N;pQ}3>i=n zH^g`a29kgP zkc|NvLz?H|$Rxn&o|&HRp1z{N8_nobG-$D+p7pHTMOw&0c$I+Op%yb)d4uq&@_56P zq&OhC+v%WHCETOWF{g>A$;u zVO(S{d?gGRW#;tzc4PU*a@gme1Vdy7IB}m5mzzWJK_Db8Gmowt%s)KM0{J0S{n#x~ zZdPx8;}g>r+Y$av-Ij74Ycvmwcdv}Sj< z<(MzbG%1h}*0pyv~i_xhYZ90Y3jpCR5vd=>6kwe}DK){DT{2!Fd=Edn9Y= z`2tGvNW3>$yrOVhDx^sjg)@o`htB6EdWlG$PoEO4nPLJNM3*v1!a2&a@`0+npCcE_yXSv~$E8TGgTv`^Tsxljg9pA&$ z7NtIP=E{RrD7djXp_?9fD~b>n3KOPCD1jQ0DH&Qev_HKPOi%+LB}lSw6xzN)Op!{E zChj=7m*Iw!qxl2gNlA?slfOoz&?iv4WVNGCwPM*phBa_R+tNQ~l)nr;YXB%EVYFN-N9V|$QyETHv;3$&20pS`d?aBq$ILN_% zm7v0CUkMbaeMsPg5;U}ZLtMe(Y&ZnjEYt|n^(JUj!&^k(1!=zY)Ae+CQ% zI=W|)5jV`#3}#C=n5txu>D0DZ&n1^b7La@nimi_27!jR~NJ9o>a#Vh!fO|e-nueLf4T~oUg}wJ}CKPX1X(f z9+J-nph(g&0y?`e6@tZ$8GJ+7#N~)`(ZYUH^oPOg)EZH2SS|}OY%+8`!a_~xqD@WD zny`hFBaUp>r$aC=wQaHmT*AyC_6vDs8*KRjM~C}^7f8IP>l*NVnjObW-pe!Ki~d3t;K?d!wM#mU|IT?CQ37HK+T60n3Ecl5oMat_|Ov+5aczE5d| zTIe(o+Zr6TZ8D!nwQt^6mce`YM7|Jwv5fIbtn7RJxEa zx8T$&A>TY&>JnCREYHBDSDR@tBewm@a&4(D%7XR-p;Qava4nDNrG%cP$x^;~vVy_x zFOokTI?TO{pj7zDmv+Iz!W4uv&`5l5`wz$%HCexM|mlwdn zP|R<5BHlPzeg(%qM2sp1pkhG+Mm($O2JEhk1r4->Z8f3^uZLKhcDaq@0kh>R&1%j9 zu>gV;a3x5B(F33RD97sznB@XPMH{ z%E{9?AehoR^YSaDThc=7)!gE>hK-CZD^u8*&sP+GW9F?TuRha#7a0|y3tYJQ%e2O) z5z=A?vWlTGBKC-ic;SeT4VCSP?iE&3;`7O!a6re&QY-)S@@9)*fb`gmvAGmy0AL6k z5)kBiPsFiCSl}jvl_+Nrg@Nl8&%}A6Loq>?q#p3HB_rYuUFW?)FU6kw zWYT{DhBWLOn>u+(g z_K>nmOr^Rild^=>LuhpzTBz8G)BrBmc^eIL?Ed60u=xLZ#>BE|N2+<;Fc4-bNH?W1 zG!4gP1@6MycRte(*^rAI0*?*G5(8K%Jl1=~n3!XW7qQ}inNCUUiR%Ypk_3e~w)_|l z%f=`F)ep=G%VdzL9&(~QWyWMpNC2C$=vP9a#D14)C+ao|>p2m|6h3@Cxw}8VeYm?h zA6yodwea@js|C=5xNp8#((HAYg`bOD_mUTUL+Vt)ltsmQW?UAafg=GKvJ^W2K*We^ zwK)41h^D9niVnf5zDFL`v$O=YCXefsu}_u#xysl}vW!%+mxVV)ZTZ!e??qwx^!F1$ zv}E1OYKr9_wfKI-%H>a=u4a>aiZOlUv(lZy>=g1n+;*( zTBY>q`UNKF&aZSzg*LSRTL)6}2~j5~VsZy~liQz|RK0b~cYnr$=%6ul%b{mp=;LU~ zNJ&DZL~!EpVL<~aYXuwxENHN9b4sA(b*zR3FT6yCS7ZQOCEL;j)b~KmG&>s2@bU!E zRuIv+{aY8!WdBARr#FT*T7vs}O zi#>S<;lXMFUr;4q3EJ3lf6|kMwoB!DSMhd98VK;#twe`CaNU&nYK|M161@GZ?VvZ9 zGOYqC`CT%ZxQ;~k1)wXA z#xgsg$8|`N$eyV~CIdfc*19PO{DzD5_AbA#q_|A+;MZQ*~_&~^&3;wMx` zP>Ui!bFWL^Fxo1@^aHgpK9Dk=uO@YwrBj!Xf!9dQ9Jy#3A^}>rM4n%d1&o(HfCtv9 zb&n(V3>00X)))`uLQn!Vg_x(5Ano^R4Up|nZC(&Aqc*P&a9*2|`5%}Q%Em~5Sl3{` z)x`q!fB!oGMLH@0gI|i3ND@XQid_bQS2-nU@+ybMMRV%U{UP!y2mh)M*ntVQHbQ_S~AeR=V^Ok;v82zVr!{$ub-6p)nMwfSo}iN z<&)p5tq^s*Q~}B-KSXn`aJyMUnME@#9}=6cSXY(sT+1jDB6*XWse zpgQl0G7W7FshY=bAp9yK)tX34*{M4{m`#m|>C8mc88V%k#PeBKVaMRt+Jlj8jlPFJ zn7H(2!;~3YTx&)%FLB*i0W;Amm}M8Re!gspYmry$S*8GXuP)LQuvpf4|Fs7954?@y z<6p|<_CC2ROM+^_{>ZXE?wzojJIg!5CLvx8)#E#s-%o$R>JjwYJa*6_6Ek*e;y}VL z&N&9*4+Q*mkPwRS5^)^gv%6FVb*&hxQ1XLg-#Uy^h$8O!99zlz$W1J7_EARCChenq zwAKWc*Wl907Qh*+P|Wi-iu?z4zb(ia~D~XA%yLbae zdf<*8=)4A2c0raeEcIBdUV&rYtt*PR(#h!Z;)i;jj8B!G3^g?dzN2dvEmqm$v>t6$ zZE?536o1?;4#?1#f5X?n=?y|tc_A5rt9fy;xLsX9N{nEy9AsBZxyZm})I}6$ zM$8H4^eg0SajHe_SBfM-(%Ab$OAZ3v}BgK2B9`vwNAg}^RmVr=ldvDojfjb}O-@2C^`tcmGDSm7Ph7gi5R5?$&y5@@G_dMIJ{eYWaF1(ckXpn2S}aR1R*N`p_ItHPx9mGAzAdY%otwIe@1|a9 z`JD&%r5?qO$bl>ADCRI_Jdw#HGj$e6G_-2nMx*T5jXYfaWI00Kj)N zxvG-Nj%w$UZQ{FRD~+$aXzxEoL*f*7R6DmOuX0x1j+Uqr>K$%Ux!neS!H+Mf;!((z zmRIUg(86aKyWn?Qy9<8O?Wfl36{guZ!B8)G z3BPED-;~O;@h|5s?X0rRP0l6C*to>b0NLb#lGwRU)S%6kTGA;qmI5S&dG zty1*os%cLDOQrp^7_AaEzV7?wy=jv`=PqRRN;DAQ1%?c(q~T(4_l`%=~C`ca`k7n7$=UO-4$S&_`$<4qUU@k;}otv z=-b05d_haV;M!5HDdj2izutt@)xBI3%2%_0ttpjNu6@Ofa@F+LdXMrH{nvUzdAkB= z%^G^OfBfz5i~|3G-Hu*xZ%`oer1y50H zSEVygfwf4GT@`msB{x&SUO^~RDFr_rm`a)>RSZ%EQ%MVOz+ozdMvANv2zP#UR^)c3 zxhSjK&a~KpP1w$ief!h;2fHJ=?@Rave)Q(uT3*?Td2;Im06A=lc9ye08}=f)k2)g< z?!$+@%@e{Ldhe@VL%3!zxM*GPQ}y6ot>+Gtlum4x4MB%iK8tZ^91U zX+e;~_E@(e$YF;gbaY<1zRoMx%uMTt^TvXSF0*NP#rt{)qB``AZFO}%6s>MU=hf>r zKe%;Vbt(mBS&>Iaf>Xl*457W)vY#1waf^j+lSA$CpQ-Wg20YT&^cz}d}ZB_ zIEK2!I2GAyx2v6Zu)DnppseN>-E2q%40?bL4<&lIkP1Iq?5-h-GJdKm z06A>V9B*!4!P3QGtYHuP)90(9=Y_ZbvF ziQ+F<$5^~bbKEQPglOl&@8Y}gu}%p2Y5C%SXsy5OU4!#M(Qy zSuKavWZ-By8ZY3)vTbYP(z6ofcV!Xce@39xmALAmcF`z@)n@0mIvq(rg>%)tFYePm z1szzi)}dt)N=|xaBe476jw9qnjsz3epFW#(pm#VtAt$1H;vxgtY3#KGZFD&c2-ksa zi^}|%IH;>JYVAU`4yz5-Dqa2cM+9^~#12>Z`M}TwAc$>uf;a@Q7q4lyHO7vWj|QNJ z9TosY52K#u8c}1m`xF_luEvkG3uHX3HeXyjevGZCyh8agHdi_5#^NURLN6ZGsTp=v z;|AAs3k}>p)GkW)aBHJv4@R!zn4{of(F+g4S6Z5Q$sP;tB6_G@ywPE`@kXt_lBo*5 zqpZE17p>c-xTV@fq#RZok)pVzS;9bP>3aD|W8^-c-0km)yy!hh$#3jy*+1FApEX{_ zrg;FOLG0zbzc|0rnF_D(A(1kgT)L^26dACtCN8v#k~yq4N~Sz<(SjUR?D+f1*N5w` z0Q|7i7d~o?+wET*@ z#*k`r5Wn#by$E`&o8rTZH4dINMiL^&uyNCRcm3DN(6t|Y>#sU{kSpKb7>spn+C^R` zdfElQ^(qd2D^1pRAhH%aPysG$u`%Qq9-SH9-Q~hWR(bQA3_M4!o!QfVlUOqL+MU{D z^j+u86;gM%yKBQ(!{zgrf#>>B?_*s}=xP_p*sC^>u{@#Mg$P~ja2fqCxSJt#dF|+( z(B0N+?ky}cYbSDb+glw(u6D7iy=r4s%M-bWJCVEfBA1sX-$~qUmALmNv3DYOCvw$9 zZmw|YHkSw-n0%u^ky~xJba^7Tw_T=X?L{v35;Bo1+AqLlF7`q~WiIwQ>MV0l?HMQu zeJ67jHg{_+%enGHN|m`Aogb31ck!^^Y+}HUAQg5U4lHhxK03eYyf^_4DPLVvc%R}f@n}_ggS3cLdzV5E_IX@oS zMb-DJjjGqH@_AccmtMjznju3$J14Rf`iEMrcH^yX4j!jxO=|Bh&7$xU)qU-vW&71e z%W7Dnx|Ew%4&Gg4iPFAy0b~7&E8lhcWzpTAPU+5nb7X}{6X z!?^LI7i;fp=g#kMZ{yotvGyVm+!brzWMKx^bPFxk-q$WZrN6!1WOMO5Z1wK7rM&`b z9ze7_eDt~+V+U07ens>u*Fm)lLF#XB2-2>BMiL1gX&1qBw9)nM;5%A)1C66x!7*j# zyc}(7HKknxjl9Tx-ZjuDNJHK=&`_YlT?38oQLeD3QpLr#Rsz~J&``i{*FYmLcE5ZB zjU(-1kdC&s@(QSd26`MF3!wwxr*k?Ce#(hO*w? zmMozrDHVKW!?H@zwXLhkU+rSwj<&T53#h3E_7&p?s9w_Ug0a92s=54fSBwnY8ns5h z)rgi3$i@)cN~ZJb-T#Zm$knUH4NN%4&03LBJxAI_F&=Gevvg4Bj9t5`Hxlft=4HIU zTz_sh_UZB5Rq@_Z6UJBaWI6%a6&2m&{f)t>qNwOmu29+*zin|~@{Iz8E`BKOVk21F z+K+opZqnu-Zf7?A!u&}_fp}NLJ{#y|K)?bT`w{{c(AWt6a6vs7bg%V|y?hYPjg8yj zl{h++9#|~v>^Z_-JRyH|-d=F#m(FKbms*|C3aIr2jf?#m+U)H_oklGbT|VKX$0xB` zV_CT;zBvkRlJrIPkX5@hy<79q^h{^O)F`RU3H0_1?}J5WG$mhf5l@;EZq}c zSnT=qlQy$4sq$11DszEdRZMtf5!?$KU>5&Xl-` zX&Kgl4rMtrGpT(*vN$?X%V~P6%S7!nr|$Umo(>(ye=e%npyZJYU|Co%b6LbNbKNJp zr)-|#U%nnfg`Mr|P)k_0rx=z#zT^_~g^5eP0uf6Wf8z^zb!W_UCLTSq z64vvF1JkytqQX8gsrv@jd?2p6q&;R^7a5Czb=~jbq#Mn1p~qOBAKbc3YvKwIS^mTy z4pjoCk+=wCX9z`WULH@GQ7yd1u>uC4MU zE%izaB4OvXRSM*imNvs!d6JfLxZYtmm=q3es+qpT<%&Y z<;QNrY4lTOmIAu6Pgw5+)D z=%Wx)SYz+bug;3xyR=B!3imE8-AA{*%h;qpt$$uS)pyFdo7dC;uo-M0N&5o;Ic)FY znK^PNQ`fgNUqp~XgN_`ySU-AaZCUw{ zV;%4Mm&kZ^H6EN6Jtzi|AaQwcT3*8j@!)TF=YUPePNVfH+t5MR%t8A_CeWOuMVW{} zDxv+f@Zufq7exEKA=QrdPt&}TVvtH`zv#G~3TXfH$=$=v#R=#H>{@#)aN`Y&HO3FD zaAPC*RDDC#7>sqiPS2#!!nUWm9N(ofw^Mw__p;CFsH;?48NQ_l{ObIWa9$L*RzG** zDZV=~AVXjN4PWB{FKqm&>wny9cY0i`Fx2I{)sn+%#+m+WGL)YSK;-S6Uy&a5b6=j~ zyDt;ykrCRQ99#V!CpcZmQIz2-nHtw{$2MYZa};S&KX>dYzB_i~XpxuI+d5j*&$n}m z@7vilTI8kmwvH6_GjX5do47ZP6h$qxVzFtK z;$*Ja+&j?E+tOV`ItIbh9Cr-Zki<1WW$I z@7(MI3BJVkhS2L506T1N<={G6NvfbR>%5w@Tn zgu6}+aSXNZ)NpsXXhgW{)qum3vDfa@CZq4WP7Ry9yD=E+gh5%}C{~!Tt|oQ$3;P)0 zhkf8kT~Oyi?9RXXUvW1>>dMx&JE^;!7u{QPypy?Gbjz(o=IR&THmEkdtvs0v>Pfhh zxp53PLgva==R1+Rog(+%B%rodJDIE7=4v2w&-4rJ9pH!d;>cW3o57uRIgTM%=3*nr zWUfd&*$Lh4wJy)htrEIA_Z!3}JRw~n+lw91ozG>j^B(I`9;+J}udb$4>6gxOR&6@V zu4_SLGxUr5Kf{mv&qoRwo3z>abgR3b0tigMB!shSlMpn^r^D78WIo-8TCH|N2lHnh zD5+T!FaOdkL~3A>M@GMx_Op$SY0n|Ei_XP5(=T-LY+FMocez+d7p7e<)-ra#d@k0R zet~Ld+Zw0_%EiJqx&&_UFa_YZv+6EzySrV)g=>uFZyIkeUqTt=w_C#8ODJPDG{zFL zf|}eL*}{g7xyZYtexu@vv#(vF>9dQEd9%mV7CC(K2Dr>w9pwrsKCYEVF*LU#%=IQoUJP_ zqw@x1FCe5D8}_<^RjJ*^E^vcKB4T6s`aphKkeG*GZhK=euw#JEa|Iy^MUn%PZxpB{ zpYMVY6^=*2L5SzMf)Km>sN|&&_QI*_jZM#IABJuaxRY>fpDu@OvfucB{kX@l3lAK- z?|tBkAe$2VZ%%CU(N>WjethF%hnb%9k>5b&hufJ=zaX=~Es!ABprG@svy~LY{tWHZ zbu2fG@6;W?-qWGuD>yVCUC(4>#feHRXr~ohQ1d4l$)85feUk;95+13w?OB zJU{rt$LY>Z1Iw!%9A7#{@N62sIdbV}zBQTIgf)MDZ@AtQajcOsAwghz#+be_nYzB| z8!uMyY!G8ayrD~f?i!92cgJ?D^1R3!_{DMVx| z0rQCSLN<*Hb~CKJ%bKnd12d?)@+09-Yw;|^)To#4+F?saqQ=HY_o}UcvFR!m6;Ok59 zK_jQBlX+L=yZQP;CFi>u);64A0pgv557=wKAZI10u*TU+px(B-E)m#^m3UBtW3=;2 zqu**~dX5?I7G!maiV^XJGk$G*|5H4PF>{%p98{c2<-gHV}mF#(*e zLp9^b$L?rzJg?sygJ^G%(m+v2MNcZRiw%Qxg*7EYRjjLmr+xt)#u4RxwoU!mLcwVG0 z+!ynQ=|OC4O7Q6Pu|UD3krF7VG-|2<-04yF|o|_mm08t_hPHgLG&iVY= z&>wl$lwWn1Af}2YtQ8|M167HjGG(peij{${5`I4f@`sk||eIstn31^yJvCf%^Kmf}mgTk{x zuUHS?2mIUb-|c$>c)zq5@-njruAUE4PtWavA9v5elgdxZe31K58R~_f#2*KgQ`p%6 z`5A`cK@=rn3oNsBvwiyWdtmk0dTx5g{)#6bczR_IeyZ&3I*4sO3$Op^Amn<~VebI^ z{LJys9V9b}(j@nLY_(r_gFN(IuL!RL4}1dB%p^ALxX3zs^JiW@5eN92w(>{^HG)5- zdZzQ%uOCL(7={UE^r34l>`T$Mj-P)(>r1cp!Qj-V?TDmL&J8G45%AH(EgDRc&(p8+W}xv z6mA<^vU`}%+U%wJHBG+XMRZlMebbb+%b-vvq;QNSpmVd3x*u$Uvg+rd}D@$+6^4(^j58r&!7+u)Af9^BDBcXIqJFIF8GqEE6~rhAIMzh+q9Ex+o;z5wHo z7L2^m{tYJl=jr_uMszFTle^NBFf8+SZqL4Dw3Cl>m-nH%$z9%K0pAwk?oyqerdgt! z-c6djkH^IM?#zAFWgz3ep7^rMFuEb~Ck7%%N&nu?DT(<6KlHv=|M)1KvNvTdccHp% z7~X~I(*=x2VZAMZxeHa7z}!-l+&AzCMrjxz(t|)A<%8O@pWLEyEA};`*|_<+f?s|NB4xHv$O+Xwc)q z1Rj9V(k>6ZOX?TcqW_x7fBY7l?OIm|46vsgd8K>seJ9m{wA!gEfHf&y?}u^zU77q6 z-mFdG6RR|Bt6ep;&!rx=Eg*;Qtj)M~R`p`39|!9nKqL^(`ma$6_7y0fkN~+%R8mN9cH)D1jgk1RQ)o(LAZCVyy`^+XwTZw znv_LnpoU(U-Y>5X)zm}td2zNgpO)n~DF$hn6oqa5FS?ElKHp=vw95H?3OVhwr8!e_!@{TgG%BTi-BEeIG*Lm)&+0+xb5qhVy$yrSC$p zVFQnQTfKD`zDHVIq@QjoKJLS2>Y0(mdhs~^^3*o{2kP#owfVn~nY2|wANp<)Ww#0I zTT!N8%WVEqOqOi|#|wPm$46mgvm|;HE)@P+I`)^MYOByk;ks#3>aNw!ZwSiwaTeEl zX5F-Kd>6jk{K$P{y007_hVG?6c@)CTj`W)%z+Kq-*`G&YGm|(k^qVHS?@RG-T7Q`j1lVM5b>alMQBE8-AGqBp!@MR*cF9Cnw9Nz8FewhmS zY}x~$(qk83bU-M0TRRV;)j%)ao6;+im#yjp{hi(8pOXxTd@~!Ee=-@^()ltt2Jd^) zFG=wG?%*BtBj|Z5vfaP_rYe8ltNi>d^y4>^l&=ZO=Kwx_f(iQC$}II`w_QE&WqZ5y ziood0oYAM7r*2y@7(XsN+%*gH_Wg!O;e7Olhg-t>U5q_YZ;zJY4amAd^{vS4i=P*_ zuy&vI-&PbnaP!h#Y#Fxe$1wo+D1IE7IHEbvSthP%#z5jhh`dk0r?dw~%uNB{)ALaB9 z9p$fEMQ_+Q+I4#~#@`#&pDX4^ENH)2!1pxn-(D7opX<~YoIuVNDAix>^w~Urz|M`A zsfvFNy!NH5pZj(Gme~K+DmY1Wx zqqg{4?C^m@>@HOOK}6k21-Hx{|6SPo0cqG>^xn2C`Cl9Oz6ZUxukPQ6F1vko|1N}m z$@VC0H?QvBx75*Y)BpG=Y*hF#D|w(R`=4(AH`V5UpYZzrnR@O1{yfsdu$yJn|9Je} z*J-+I>&q8U6fDzr7s&gk1`d9Dev$tB&V9cellb{Qi+_9^@crD?@2^ZGapA{hH^q8Q zV(Sgz{bcn$nyeK>FQKX>7}c?-^c=xz!u$OGp#?_=wmUx2=IG~D)b)I+!9 z+=tD79AoYJ+{2K)H4M407zj&Z5$ca8>p74CmrZ~UfH1g#$VCkF|3TO?nO_WKhD4|WHXe7XO7D7v@* zf7Drp6SULEXQvgW?z)WjfMW0{FF^SMgpGFo^)EWfu+{hv+*13j)lat664*0?&qFn1 zllD#O`bp1C-~aUkm4O=W?Pz{s^ivNIC)+GZoHzX<^N9+9bldmaK!Q-%anUu>Ug87O z5Ze<@fhYL&L!G)EPgbVafM9T$K2IhOEI%*yo$A`F>Fd?%^{N%whxRD(G_d z{mkv&N`Nr|!lY?wU|apAeoe}Pk7+v$+nMSCsC1Hg1G1V>Z_N&< zBL#}<$$C*JN_5+H+6T7fcN%?eCR&Elr&qEDmk!JI#nRHJmre5XS8Cgrpn!AKUAzA> z=&^B}+%A4Yh%w+`1SI>m_2sq)^9j(yAAn}Mo9U_dIb;kO6Y$sI9=b08n`#efW(t`o3YuaBH?eAKhQ$cjjwA%Q}he{?1BF;Imr4K#V3I z1~I6fe*M5@38?PchQ5=zuDF&1-()k;p*1l5spILnWd)R(w_zsEpY&fpctw#uK~Qdb zpfJlnCaE2RXYE-bdI4@T7kW0gD1=ZL9zkvS)|>g)k=={p4XBx3=z}uz{{SlT%`C|i zr}zkJA}DbjFkqlM$t(Z|fxD}2wU2F*xWNEIT)W_4enh4aPseJtrn_Q;O$*pYZAb zC3tE4ymB8{K-s_}fAW@0%lr!|En%%J{y?V@`YG#&VJpk_8pKgMGFso&hEl8*Cx}-? zmt6UA7XWk+!7{rrz4p=p-xa~&>;?V$phNUK?Dj5y-wGxOj=ygRz~i-^wN)oJMoE0s zPe1(*AMw0LO)ne7w$kpK;~Zx!AXMxY;2aOZXT%M&qy zyW8d$kh|EIrRNcOG>4^7E4y+I|5X`VGj;^zfILeBr6f zKY)dU5R?0j{p_%R?mTtNv+G7$V@()PIuJQrFaVb@H_hAMm9>j3`I=^8Z_!7KyuiC-b37i%YTdY-i%4$|4u2B2wKvsWDmx!{wlJ4R?C2_tL~n%a z$596`n4!FQI9jwV*Ho_hgxlCFwn~VNsiMcTagFo+sX^isR1(!Pi!PBmL`cOEd0O0i zvlLQ%`Lqd3HCRkKfOsgIv5+#&Nq{+q#3ZK?yrLn-j@Z;HJC;;ZJ5dI@4Ax|L(lz>m z@U^f+_URGQP;nvQ$82-nxCXT;I)K_RODvi&$}1@dEUaU`kW)M^h z)E|{c;gB?k5EtAmc2n?o)d6fD9P zhbNe;(s@2p{YcOiSiPc7h6?z0D#V%5E5(3z6Fh_*$P;|zEG`Z_ns17cyl}0d=FeQm zS&??YhOA^%2RKP^#-P21yWq}*6DM z2C7gZAyVvS7z`QP2&-##4POw_HE@EmcHmJ;oS>YYqI;O#jYT-#cL3MS0XvP7iDU1Y zEJ6H@LLoRC4R@rD=;Ux(m5>Elf`KknqV%_h$3a06Ho8Abw+CA?24v5}1xcp6XwtG9bJJoP0>mrnD~?OBknjFk943R85(~hB=|W zl6!DN)7u!^)vg0r+n+{-(swyel1t$@^ zEnQ7X2i}j?Lm=;L>D3TI`X=>>lckb&Xm>wg+-KX8Ju+GVA|$81I9U1j!H_{F`w-coo>A|g)AgSl)wcYw6{L+B5gaZ_fhY}?b>Ee4T`x4D516_ z1&!!QN(gQH!el(ntO1RA+i%QJnw-tN8~~swNfxJvxo?i=2m!`F+bhL^Fl3HdvAPQk ziXGOGJEzp(Qu3(FN6DOuMao?75*+92fY2CClwfp73p9UqcZ@UV#2}W~WEWoI-eZ?5 zIuh}%#V5&$lR1H7ro7_H%nmS~ZYz6}kFX_0-w1Dd}9MxQ)_S zs8_JEg9Y;Ph-V@ZW4#QoC%g>zr*dVj6Dp5Zr(BY^N~~`q-#(RE$~qW{l#;f94vm64 ziW5yn((rg9FvYT+WPbIAAskLl`>c5OHY%D7bA2RYvqiB}8<{@9SLGPNWnr@6erRqq zY*;c7e#GT#NGo%G)6UrtL!pF39wyf+Fv~+ZXX^E-1Bk&aF`aXp#nc>U$eEaMdzYdLYu)S6U9FGHN;u)a{iy?+*S{h$f{5+Jd%Yr*J`LzSMJP$EP*RgnY z2(HG#sYVG|rgPsv56jIqKS`un*XPLu&)2bI2him-qhXsC0vICEO35nh#2y?7&5+5k zkIVjKM#^k;+3qL4wplt6o>kCH#)V;7I@2Z`OGpf*5JwQEX&0lajxuYia3FH~R3gX} zufVA4QejCvry}g`vJcJ+ak=mn4)>Pq;_8z*v7!*8@n#2|7jS!Q!fHaY&LM+!ezM*s zL9=h>V`?uz!HnK(@(I1B$}`JWP7C|p%%yarSVY?1xm+cT$nuqT(G`T&fubTdD5a&S z2gN3@oJ(w^K~nGPdW1F_e92Ce`FR*bSfAUl`j9ZQST&YB#S<)9j?SXXA7X#xUd7FB z7MgjAN>l>$PN7E}=JS<2TN~+qG{kbuu`vC7kXABzSVesZu*x+(S|mhP=^4K`9!^P| z6>??)Vi??5Nug~A5`#15d3Y(2N~&tc2O(jEEoJ$-(Us$Z_2d{oQ)gQ400z}`$w&c> z3L+z~iIbEvLhLOI*_9}i-kl}jnwZ3+h(eG>o+l)8Wyvw&ayWaf8|6Z48wFV?D|(|% zJAhiM=D^9qQ*ldkjZ=nO8?|K|qT`n6DGv*!W}2i3`EToW`tSayXgLCuN8t zWNeSPseQ22wD*TLJX#ku=&&iqafU&Yn(~z~C)!$)0e{7c6zzuM4&v}=rSNA(ZUPMk zZP?u8nA4O(Dv{ z@c1*MF&37Wa~YZx+I#}zi?rC=As;A1JmjHfvS}uJZHsgOT_VI#UkJ9f?xB3PD1yBY zYr>))5j%sj_ERrJ5h9riD>gJ$nwf-duNcBYHa}$aIUKEXCZIe|%9MaUdmh2rmA19@v5Pv|jy$Zft9)59 zVzIMVF@r|_sL!$O2Fv}$X>nd%jz!G4IN@rw=CcjqX|@ykjhvOPC#PCGqa`m=R8RzD z)14^PzMg2oVY!pJggeRya{nClGIg){M{|jiIHNKkWbUuDC+wBoQW*zpW)jPh;PI5d zq%~jmjqozlFUdw`uOcTTM{L9Jw9d!7Gh?J3z|jV_sp>ihd0II!eRiDEv&JQtr7`yC z-C8U4sopH=x?ogtN>fvIN%8bi3`Q=uOels9x7Qrb4yK+(;|}1as;raF>p<#}CI;3f zApDuMA~k2zAP{s#Ez`2?D+}TEY6T1wI+v#<8An@qQk@M6sUS2ep^?m7GO`26#Ybm* zm@gexW+*>ksgMZ-U(NzM;idCI9v?Sos_^mD$qsv0Twx(`(4dGCCB2p{P=#tShm28j zeUcU(KqU6(kjQa4Vzaw7TFmCcez-qpHoT8T|1v|C(j+kV=yttK$>_X_7R%D~&dG8e zZ7c$|6XO^juIzPj3DoB>YMQYev)gi%D8?!t6{|f|vQjej3} z($JTR_U&9b%;{!vMkLwRjw~O|PY~S!90q69#*WYmQ3nqjCATLM$QGNfqX6hl#A%w3s$N`{GgjxCWI^R95pEv`(N z*(%8FEo^(&=H$!QsWXCx7qU0(i7DDY#Jb?mK0V27bvV%%a>tQGC#HHA9c zL1J2uavy__*TXf;nr2R`fwZKBgcF)WX3!kk0VG2(%JmB&5ip7GPg|p=$_b?z`X~&v zF(f-eI5`F(u~7uY%9$%f@1ZMyfa~LOv^2ILi@;Y(EE8+dne`#SU2{hU1=$Qao$v@t(Pa;>bFtc0a_+I4l9V4tlPbk*gt&PS_=4CN-7$0c@3bP<(ue@>QT~Zt8 zrY7=b@4oP(q=*O9AdcB;Vk|*a-4f}x$xA#0K14wG2|;@2G4Y<_ z46_WI?CP>#n`YQYRa}PSez9uFZ3t` z2`c0Jyf2EoKBmZdCS1UfImK*MMdm>Cru~>#qQt9@25!yH)0rd%>1+!YEqROsN3KYiIewszwN3e+~ z8>zt#b$#$P#P^rQF|Na^U|F@XHsNv-t}Pf*mY%2X3;VRrDXow-+6&jd!%CjFI-IxF zTI;<{m?rRg>Mz+H9R{3Rkdw1i`RXa#^Nk>tVYEQSm<<}v*ib3GIBmJ;dd?zc>uab{ zs|omxrPTEfXx$GzSr0abax%6N5y&eQUX2t1NB85&naP=berS^Y;yhon;Ylhkb?xqB z$y_YX7e{ducDT38Az@nRJ8y&m{m*Pn4Yh>ru?ue50c7dGPo-JOq%4x) zvwgDOm_sHeyp)qDa}m49BFa>Kv^%a&;nG@$;bb0WyorkDY&c(1IJ}*^nzokVMXwaB z@h55(+wgc=C|)q(#_Bdd91ZO-W|kJT(+Uw|66&O+!wgcI(K*&VY#WS7V`F*a>t0F4 zXn)$zqv&~JoPm)`opF&e=K@O;ck#woBi`L-TDVT(6C*6b?3D6>cba68b%e>-_wJTDsWGCiJ>3Ff}ECMV{$Or?8rH1zWyAZdgbr3VvVU(I=i^Ad!z<;K!% z-8KBZrSi_HksAH_Fc{yqeF62O4>hS-$&@5EejAI~4ox&FQM_V#XAE8(*E+HL(#Bs} zy)fbBMYRaDnK8n%a2y1_)jqX2i$SB*Mxfiy(1mWgok1n zTfo>FnP}0`#dIxFx>7BzmnL7hEx$bTkrlQ_4xTk`+WZ#~irs7j0LKjDTSf=}s-CP? z=I>|Sn=;uk48t-$*mQVGMoSE_4{9hv3vy*meylXKu5Fe@;W0k&CBjxqEeDop=R6$q z48mwc_bWFAuDtDKWnz)@3av3l{X(Xy5IkWp{Yi7{TV@zyRENjVU{m$SC5?XpL7{Yi z7(WXExpX3l*MNRChKNzuL0S5fS1`11U%10yy5_h2aj?3N&ML776%mI(qRLzR z=xArTUgaA1C;kh#M#%7yF|X`)cwz(CRnQKQ>#y}Aq{*8t>s6C-AenWzX)&GJf-kzY z#cgBh*{%xX4A6NcE?pZmKew#r!elXu8^O!^b^UaJZC9pd#+N7`g>xP`>qtRa7Qut! zJ5=r>AF5ZZ2CF6)U%pMBZB$1bA$S$Fe*q8XDBXONf~Mhqq#IfEW`$T@4M`r5LtSh$ z%X?RpxLExag^~Ke`Tbj-f2n7^q?yk46%_GTtF7uYh6{Y?N&#rbmA7#?^{KNJ`3}~A zk;2?vT;3h2NvsJ7Zu;we)!KTnE95mw+{AIUWBL&^0?)OUDB@3xKthMzVJ|t*JUd^4 zSB>1hk@e{v0>fw@ravcjQmmO?DHui6khYa*CFCjH_Pm&aDh&YGD*V+Hm&ZwU+-sfp zS}qtEn_3?`1NHJfR7JsT05g&@nk6&dWnCajs*RN^!|~AfgH=0n&2gSL+3?b0rK?Na zbISzz8>3$V?SdT4oC_b4C?7kbzP#2re>>Z?Y@7>4JjflP5TLqts~OM6 z3(2Y1?04U%MQ}9y`Mcx$0#Vz|<)!$wm~J(#bFH4Fno30MN6Dmi?Zgz$K_ookUeFaN zAJ6Am9;Y~!e?@{L1-vBo1Dj-kP#T2|2 z@Oqkcub{F^Vrb_&Y+l^r*a8$l;DDT*7)*?lJt@1XR$x%vMg)FC2|Ayy;%)lTwv{_s zILhABy1V1zAd5&9ewE_@5vTSyAsR^Etz6 zVpv5x$$rr4zZZ~BII_A&kZEC84SUc7KE{;R4jqm14 znN7K#fpwU(Vz(Mt7@G#VSxE`ToIG&9U2-i)v_wvBG#b5HI-s*3juCjdOc%OcOd|ZX z@C!trJye;>(}3fD0n@4FIxh*+*^z%kd#pVscy`oz2%Z7GFrlEKk*$H&&W8G#htL2s zB`Do%)4QQZuj^2#V)XZGqW}NGKI!szLIY=<644*rfva|6;ODw%s>tg%rf3}jr6r9%tCyyaRwi|?P)Hq;V4oRSb zww6TP5zt82#6ie5Hw;XYHGEUfCU+YO(Mb|tuuC3K+u29>%8o$%mNsidf|ZDXv42*f zlkS;&zz7tLTjGM>WsL1Nn={=;x_Uqn7E$!iGe*B^r2F#|<>OTZbRs9Q+nXnN--{aV+r* z?tPGhXTK*w#hXw=iG(z+N3_TNCMdf9u5CN_sN%!B>?#J?@AE5zpR>yEA3d+Do*HC+ z-<5wZIXYo&mUwG#X&jn`82$E#wqPCcfAw{z(m=?qk|ttA9RvTG8l$a96zEw(;3Oo1 z@(N-Cdal9iR=@OkOCcJyGmx|e0Kk;5EOHEQ@~Y}SDR<0gt;PJCd%e#3@ecliDJY1X zn_s&U3BuA*1;#_@PvEXr5Wed5t(fn~SWY+xTM;ZTb&GxgRVEJ}!u5^Dn!X!BS+ow? zvV9EIYm8<2bbRui&SS3Yx*9+W^&6A11)}W7lyCU+-_SA@fyqP{lG7{rxEJZLBnnVhMs~h6B%g&O{N34rKiD z-u_;C2HKTw;O15g&d8%}UOV`Ks~G?W&d4^K;X#mgy)WllTjAv9Z$g)#VmK-`{0s!q z&zole^EWy?FeOYMBI8N^De4Yr{3l>k%)YfVd(w$~uilCDK zW{!afMYp$+{OW9>HWW47O4hPZ+2|VQa<54g~*Tvoq^+xT^={NXV0$GYO&s5_rh#|d}HQHkNQh3|oQnizgliQJKZfv?&2vhrG< zH_*)N$jlq_Y6^-~$uF$CwIy^NvEp`Y_eR!JUS3d(RR3KPQ&!#lMegQ$tek9|&B2^d-3E`a-^tDto$DQjCTBI{t7x9`KHeLQ% zOE|;bbSW%*JLWtYS=j2n-DWj+w3@DBnwpJ!87?V2ccpX?nAb7%3F?=(R(P31y5u0x z#|mZJdnHf1@4aK1_e) z(TQnD8r$lvJYk9g@#C=-S&k8Dx_Sk|NH_YQ(0PqZBIoAII9}Q^BAZEIO3LU!SuEPe7Cs(+gKXGBcW zyhPqp?zANkOk(!Ighh9y&&UzbhCe~@!&@F@m6}`=*)u( zqG-$4ukg-z^K*0U^YlKea)!xve8Uet#j*Q2#XjNUNlV&Kn*Gi+9*Ni2?f}*2Cwwh5 zwJ8-qt*_du8(vyi|9h?9tA$niQC|y>EV_^2jG|(E`%1VM>TYtkP+Uwt9$Q%W7ZCb<#YKhNu(g$@M4Bmx5ymqWrK?+t z7DL6k0Ho-Bcs&7HIbuU2xCF66h^4-=>%e7lsq@?Fv~hi`*?HNY4!~hb83qLy0s4JP z8?aK==?`SR8N@YhPVu6Xbmn#XAP@rCRnnQx7uF^v1G9xzuVckI%Jir&o${QDG%LcX zw@&a+yvJ?kebJeCb?~NL8(?(Vd;_Wq8WCC)>y@el;2sX~;Y59zgJn9f1ZyOcd;<2Y zZs>Yxbr-Uhntk)$YOMN1qSw_ILZgt&$xTtb8J>{lR;KFUi%Y#MS-&;c*D&2(V7arp zt{d;?EsHxr;e2XvKcS~0FJW=4cdya!v;rrN-;0axXp>Dh-xS$EIj2i~Me0}G7>!|$ z?0yX~_hp48rmp8w8t}qsBLN8*|2TX|uPg^cqubLB)QUG{76^e+L5T_^zm+uiy;wDh zrs}Z6IG#h=&6pZttN9ir%(IpNs16Dkd*zpr5hVi#L2xG+-HC)038M4{F0d!rBlN=e zP?Wx~bw9^OZHfR%2Jjku@9A%yf%cAw>48_{JU&kx2*+` z#FV?Vx2K~FA64cPk7EFon*)bQ6xRCDI|&jHaUTSq8NKFGU^bJ%L4uTk;=6x(1c=1l zbt}@Be}i~tNYdz~KDbHoc^kqhQ1AgKvE{gI{2<9>(B>g903|%8{^cBov&8p6JV$kZ)K_Lx8JBNl-{-jey}S@k4rx zVE>A7WVaXYS_m6NTPNlkC%E zQ4iYaWvLYi49cY$St2sG@x+G#<%V)Bt^DT~-Z+kw2f8S;&&=n%BmpuZLXg6F*;I}b zR1`l2H6Ev*`~ipad&?iAGM0 zui7Kw0P;>4QodHWfWn@-z+Pm#e z_?hcnN3w1yp@8=vg4>dT6D%00iv4KKP+F2CC75<8a?D}~#DdMAZp|0b7YSObhYHav z-PsvjI%@;bXUjB%)7b+B%N4DC!Xvb4-E4}w4N#$Q;|Dec6i(-G{rgVZhq8mSk>Y1WrqqQX<(U zWAJtFtmA0R%XRX;O7xl0R`H{$eVV#a@P^eZ9hV`{+%K$!w{v%8Np|I$Nt!4E$4*6z zt?Iz4<5$$w1U-}aNp?N@L$HA}+F!Oc!(d+Mhom}?RH>pj?FHR>u5TiE)Wz8~i=ZDN zleEitcapCy&Lh^V(+qM4<2KrXr~RVD0hv-w6uvdIo{IBXl3$RQ5n9B~OkX6ee#b{% z#1`dOY`d10`1MV^7W@~R5NFw;0nB9+p;hI5wEngt<{&T%JOw#2m91 zpichV#(+3U>FdYrpZkGinhETD#3X8uN6nU0ahF0-Xpo|8I=kw{7oynMr7EHq*LK03!PGbdbxw=G09HV$ zziu=wP}{2I{`UR}DBv^RJ?K)AbO8}SY8Yu@peTw7p6HU`btqwG1PP^QstlvR4$xz> zZCN!Fbh7Ac^vj}M^nK(ho7=P;4h$d$Xv7X30Yvca0CF%^6_=1U0RrIVWZ4KJw_1vB z+)dS{VD2-#X7JFX6k_Im%P0q5&})3okOaYrr0LZ$F*0qh=|<-I!eNXAK$AOiUGA=; zT+%J1>V#CF?Qc_@VI`CMI5cH$R|nFO8#;83JWEjE9beWY1P(G_^`NZ>legeUEq;N( zTm#wJf)rE&Ix^7WFWnX#yy!Lg9ptxINB8x~MVbZ#M_`!r;S}&TW!r7PxE)}#P5z3c zFt%aR-y8yEDNLIHo&C~_21fr~4+K@R)6_@m3tJ=SlKb|E={REzUlT z@f&#panKSCKb3m??7R~d@V2^Tu6;i9(LnB^{N{uLj{a!Kt6RTP_&N7a7&XWQcln=P9nI&MwKxnyl7^mo)7c zH>~Pygs4SAg5y{ICjANcx;g%9S<`pUZBflEylc?LBxPF{=twN61o6z520uIi~q>e9b;r z|2!2!*qBk+)M0aEU>tX7_r-c_obd`KJC|*+<(T%n;(a>kNXeUP=D7dgjefuY$S0Kb_$f@uNujBj>_1XPVy>{@~%GrT+C| z${~QJGEIN){i7YU@ulhOx)5|tE$c36oW>lqIe1S>)EI7qgD}7;Ca-II`ZhUNNr4!X z-7Ys1t`C?4EI`HuG2u5%`T|CbQQV{W_`-XmQO$I?Avyd?V^$|KqWp6JkanX{Q%3Gn z*n77jnyAhU^_qWp0?>i|H$=Gc_M3&oj&)nw*}Qu7pi6HgxoZS~6Kx8D%l80o-=?zV zPX{P_G34hz7f|HZUF3%ZqOYVw6iWzbcv}iRpuuY!ybbucf(+mZjX1o5UPc2$NJa|B z@~$_=Hul_`(N6gG(F=b>`?B!f$1yoeNZvC_TkHXCfi^9OUB0=2D_zb6T%=sTZ*;F> zzoU8|jOiOEDd~;kqG6Qa*e=X zSmFEV6`=V7x86ixIxmPdU>pJ2NwSdL#bc)xtBm@~kTKVKw5 zN^OX>CX6-XDE;?~`|u%O2*NnP8hL{#u_7A!Re0n|B1I&B(R0h1PE%}Pxx;CK?&7WX zj009Y^vHFrV<-ML2{GpBl)^SG##%~jTO6S(#6dmbl`yUGQEq%WqLYvO)M5QQtM<3C zgt9VDMo0<~%t!zOTeTvam%V)Tc4%YWp=dQN8 ztX;0ZZV7MXd%JXLAwCO@xgsm8Wbs-ht8Wz$hnn;qBwKY~H=wquASph-*5z{IbpSI}PKrTBdc0w;n|ItjQTek@Y)MFE0^aB9}Je>ReV-=;O z&NIDy>%NR7r%SrlhSYXutgcKt_+G2l;CjwlsyX4BobuC~nA;l&Rt;KU@U>=7Q7Bq} zbzQ9QsbjU9r2l4k0`EB~WY!SJ_uDoUM0QKb&bgky3>$J@SME9jw@tdM_om#p*|zC2 z2t@m%^$MbYhbq8U?Y;Du=7Aa}#Y8ABQ)eop=7wLixXB#qRXn;>Klc*xW?5qY^%8u1 zD50c)FF=12F=#)eol1$0pl&3(dQ5v=v+Xt7Si$}mr|QhSMwsI Tg->al?VezF1* z$Q-o8p1c{xY;Kz{BdqZ~bM^I~!4LNR{+MWl>YslJMmH0#v(5WF3+2L19R{h>%*o&7 z1CNnJ7>fN;XI+TwfQw3L&=*qJx~26F?Wd&1ZbhK{yn$L0YzkgKLMpYt(7VZq7<%&^O zZf=WqQ#O`63{g8Qk=qR6r2zMzsBMOz1x(d*u_1DYF>23EZS3Lcttf*bY@4-RWD9fw zV~e2;S!e4ue1FsOA&u;XA}6_Aj@GK*7*b*9e!p?qpbiN(bOlwQcNf+ioAm@(+|t5( ztM;wcR%sk5*jisLp6Q`9VgaZrda$&Yd?~G3pP4t@tQ%Adb9L}UnH0oF{`FwA5#K@J z@5#Y7>1|-VAy#@FGvc)s(^&y*wii~OFpLqR$mSEDl6cRnF5stRk~U&ojL65b;nk6f z5v1Uov_d-n=w)RE!OgR*8LjFxyPBJSy=G_DuVIj8r{>2`>-4{RH`Oh<0loJOvI_~a zq{ZvyI=3;-&b-e2#hL!70C&-e{htcZFy1+_FcxIg`%e2vkQ7c9zcvrmtrj#oAIA#N zTUfXqbp4&vaRxxBUa{ULE}5sACvCjbbb ztZsm#yr_9e%xf1JgaMG4a&5X;eZcKXryke8-x3cf*h@F;g{uI7)GapN+QRzvV_!DU zEtexV(tKt&Ot5ojo3FQc9e=F&^{)O>6p*3muMXZ^4x5vYA&6Ee-!X!)T$jQ~DobT( zt4R3{jhXeh9t=R@E|$aV(-9lGVW^;PUF_eZYaD`Yky5)#qhO5pr=T1PE^y)4ZR6*? zzf*ICIHP6i=a!e=3dc_lR>ExoMy5bPaE$#KXm!xW3P8xspo8{To+c@gYC;nWUam#m z)AN|z$W%9j1JoDn!%mVa9|Y2n1A9n2Wf-UXmWdMz10iJJ_ntV-rp78w_S9BRz*30B z<7PZ!WJP#=#+T%46QmCIVF6P=Pjt(c$xRW)>d|`CkpC1kDJAM1gn)irN`7+<8%YAu zySRgucWIESv?GSSM&EoIY!&iNjn;w{n*B~wZ^i(i;g*i-PgmwUnZ<%4;HptuLWOXF ziLn3yqt<{fUWgTPs7z=(JOBW(W{Km7R)30Tu=!A{s_4ihd4lZ*dl7m*K#ztmC+1gF z&Y51;kX3yT7@h8j?Q-=bSV>FO^^nM9m~6TCqZUxQeP18rt^i2_MfAos5TqAGJ!Ad~ z8sUt@bd21T{ToyW6)dVk(@U#+=rjzSczF}v-o!pz++sqH7js~QvUL@G-5$lG2C^pI z<`UtskdN>Y4SE>M@Ezoc>dkkdc-7-whh?|9*)W12@;qhVl&ck1FDqXU zqu7->)x=w>T)Gp{pR>_J;}yqzwE;x!OIs0W*ecz()36?ef5QO9NVH@keqwfBQU1hr zwZ+Z!x|-kXH<}Go<8sRk1DE31lQNB8cDcORcQ8aM9kOmre?M=jQaYg%Y9a&oJplj( zo4y@7T_2;WLV@#1m}Ojf@n6vEWtvG~lV8al9#8385#eeIn#8(?JCVs>t+p7LO!3TI z93M*1mizNe`Fa`E6zE*1UX4F*NFfO3f+OafmuJ8?UQe#i93q5cMW0i&>>Um|AOQv! zY{f7Ixxu({do^al;l=}pf3?h-nxozD@9VD%w({u5b?EqR5+*?1jOrgHbtcADwC0PD zwcj=%R#J&Ih7h-^jwH~x0z&zOwtqIAaLh^BDgdIZxQX#GBzZ!qGuLA-ZbZcZF$7MY~<~#+wNF;?r2m|)~9NZ8088|3VHb+uKXaTOl9Vz_|gBw?WVb8w+Zg_Q# zf%nQU8or~g^pL0q9QW zR5@71y)A#?`MSQt_$BA@opbr|`wV{Q_n%2Q;->Bs^=KcUKLSG#s+7CzXb*syw{Jq& z*8^w$-YhHRKNMybE#W`M9oK!(K-7Tr_a!KA+GBMVE4p(kiS-C^BJeEAz$BY6tdXu! zaE)K7Bkof{)}OBV+WqG{g-cQq)yUEZKXM({>aax-@ZMcSsG{V37r!3MX3NtVJLBRMOO8?6z&Cjz#1Gwh!X`Q zBPH=ory&1kWYfXMClyU^4EReCfP^3}#E~~g(Z0tY>8FV>{X7JuNsQ4fOS(j*X(3^v zs7iUg{SXP|o~DD@>YwM!f+xzA@(S00ctv&a1uwJ^Jn?Yvb%c&mtME1#i%%@MLv7TO zzJ+(;iJ2rUbVz2oO{8CF<4k@`#c$`G=VkR9exo!`PH&*EN|>bPX&MSIjvi?EkWT=; z$v@8-hVv=hH-Bq2tNmS`s%hF1t>XuPW>M0b8{O-dTmK8PWvb3%Kfu$y8#T*+`bJ4L z@V~9S)I{}dnV?b`3RKJvF;|;TB#X4fB z20^3e0TD`5sRNkYup7&jGf7d0T25!P_)sY^j%;Q#K0LSM)XZm zNe4QZ6JF$V1XQ}hCo4RgB_-O^(!dodGsUP~ETp&hq*5Kc49T(sFK?A;na1QC!*J(vh%Yw>0_jRHWcW&N2ID>38#5K9;LGBlLNW#U znzUeuZ;(p_>O;1-c$frDHME7>!HN3`^Nznvl`bG+C-NfFl?yVih&4#_wG&la*bPa0 zOT{ryv|$5*@>n?|68Bip$Q7V-`pC#wcb2Rms|aiZWI(rC+ng;(%UfGEJb`X2XFEUx zjW;ztn%?A1ipCya4kZ&|5Na=@Z$=AC2*mm}Om;dNOQSb{dNx4Q(a7e1I3&37{vG#iEw)fJJG_R zlV<>vOh_UjqZ)Cq(Fm+7$uCqpU<M!rA&atAf=9VH_h6s%@n4?zmPWn5RbtY>S+s z8;3VG=!kvNg|mr{{qp{Pu#ZESLZ|WfbeSPHn==391S1N~DecGk}VnfG9Qy`g}kMi|CoR`ouY!WMlwFd=N8Vkwosa|Ngc|ych^cW2KxI`S9_bZ!~lF%rEPNmAQrN9>IGTF*V z#;d=)kUKtXeqP*?0@ApjCj?Akw7z6){^9*gyn*bG9|93Kys6b%9dt3r8fNrpe=B&* zB7q=hX<4H=9>5g+z1>AuBZZYIfMb=Uj-<9~t6&QVSYsCo&iyCdhaYoLiwx2Lh+Gmi zCzmP|67zTqS@v9pkBPkL9MkOP;m+Q1U5IiG9=OR2+ zn6yru4&sIk!%IG4Jg4Zk+sWFcR{x!W?iDy0M&uh>HNuPrQL>T?B2{Y>mdf51-Au6fAe9ipu!V%=LNbRry=)10>%@?I$D$k`a>+L@m9 zLFA&rHD?d{s}&)kva3ZwbepYaF6^i5J~Zu=m4{*?oxWvwl_6~^TiGT&pF#_{O;eI5 z5FkEo!2^HE0M)}rQoR12+5rURD0eF?f1~9~YQNXna~6HktPz_s74w`Ee&2bkx1dKR z(}kFJAY&tX3;cY{l2^2ugFEyi6UNU0O}IFDnv@AnsEz~b@32b0y7{?0cvNQ!5}6r{ zOp<8U^G6A!HC}1mxbl!I$Pp^21FTVGEjicU3je{BP+^x#@N5}zQJvNBH!KLt0kQJsejK8@eFFI_BFA4yO1RCmI&71m*OK;G_a;?*^tm8=f z?8C`KkWJc7HCX{%(xPR#xt8X>`%aq8q=EEe2DJwCJsAGux>;}|x2DaY(; z7?{D_VNUkPm$Afvr|Y-sbnz?xJ0|m$BitSNGnUv;RV5u;Rcmx{F2C#CJS&S)V))IO z`C(q&Y_r_p=a`L1;Qn-2f11!+yc99Gd_d^Vs1j?H;YRb`8y!Cm%RS( zY&0RhOI`w8V(zRW_SyHde0q+y>^%=c@|BOFVy<+{LV4l9VU#aaq||oVzFl1K+D_HM znGA0b30_al5`tcR!b(A?E^_PzjL;Jr5$3gWVM6StmKjCY;vUv%=QK4sDB30(q0^#P zW0-zzw{GP=+1OpWgg%QBV!pM=A6aqd_U$mW!#F|=9ct}FoIC8MPuE1AM8BN>NTDT5Y^5Pyk<2Ur z>=n%r9Nw^V%mWjtP-zHapl-YTl4g2>W?N%7&+w!$B|OcJ#O&NX;?kBm zg~%Jog(sQjs*CAYZo#u#rf&Xad#p1f*o?&ZdWA2hShCN(&X@`epL1%eYC8|U)w0v&P$QW;}U4u?SRK= zFb-uwOcf^|39qAOay&;a-Z>DZ$>k1FwGL7a|IA6}8b_}DDT~Wapz5b0hzxDeZ0m?s z>+p!6T`9DZ`22Q)Ykzi|FeEg#)5jcc!ZpnkCc4Rp{H89j2H0$IPrQOp)eo{1S>gjy zJ9yeRIu@C##*!|5)~Ow4Lb&Xon;=(5y6&x6)CBsR&aY`#iuW~O>>(zA=EV^E^d!br6d|}~k&xNkEZjA^&&*32JLMNuc$GqofV=DAn{3HgYfD>UCt=M@gBz8_JXs+lJE^Y;-~M00g4!-q1$?i_{Bp4ph7>C}DFc@ohLn?>qLFy&Um*q|dy#@&cTNBje-OA8f)^ zwaS+$JrxC;?A6INdZ|Nyg?+LZ9ZYdgx-lkdem0=Q&jCp$9yfb#T+e7qaRA${yL)yjjHENwC*Ial`>)@PG$K z87uyr-D?Vfc~toeM&?4uJDwgEt~G{NESO7^T;q3?8|G_xjwcH))3|mU^sP)VSM1Ve zMhYKO>XQEq0)81&raVal{ki(4b#0sCwQY&5{l4*4tgHOcaGaRzaPsH9AFluj6$R2} zS(k(!I>&d_EQfzo+4D?{Mu`U+*R)8sFrn+1!GyB{=}vi$K4kT|_cTR|AE>tBDc;1_ zB{!xN@W!E%#t@vx7{SZ#55i^c#j_8?NyCXD0(9`|k(+JEC7pkm`&XbjfDU%3t~>rr zva(teAdRXrBJBID$Rxbzp|<9^t6g|9=?? ziSjrmghU;Pgp0p>VCc?YJDGZ=b2B1}`=suzpYptzOUQRRECp0r()-ts_jmcjBs4<3 z8xXe9C2HS1y_b9Z3{X4B;GGmX{602Heu4wL|9#tSP@CjCbo#YeSkwOo!Tj_s{_v?x3f?T_>fNZU>f`WQc8C#H`>nyx z9Z%ywV{$n7Yd9N8#mH}9PX(jB~`DBmzGqdw5SY(1baQW~vq@RxQT@hKw$Sh@5IpWU0uK=(k{ z{Da!Ug|-p~)_5&ubkzU5i!~<98J%l28;CAjkwG;F664U&b=~dp<%@Cf!my2h&QTYO zw+wOJM!FLqlFG(Mii~oR?tmkN|HsvJY&Q!m=?7v#PD^qQ0ugs)ga{HDo_^4e@7y_a zypydqoxV_2-MBPzg!ri9uRc%-aRJ!NAX$~pQfmcANv+)}q_@9+IJbBTu2KygISntI zKYs5O`TBiz4f<0gA@tZGG{uhyO6LSvyLBQbJd%p~+4`%VH}evNT~qw!m-8{+X?P~P zam3~jS53KWuP3C@)X-aYNU40%0koy|Y&pf(i#tB#?=upO*Bv=ZCRln)+h6AJSAWQT zs!@qko5#0&5?A)x`Xv8ZYqMEX$$x8{+0>F;Z}NkyGPrkKa}D}b&ZRFJeJ4kf&orS7 zF7ea9!y4pebXRRtm4Or4}PSdg3E*(g{1Tz=0g{HCiZY zKXn?J@sNCN-SjJy0=5yNB;nRJRGIkNafWl~rOq@ZXM$i*7#}g%iTQ)>01Y@#AR0wP zYP1M<3};#*?(>*qcvd&;x1Z&MUAqvJ?sd2;9pBW*CLOw*SpJp~uvlJ3Z_g&f2V>-9 ziKg%)aKzx4VVH^$TH)cl0s;Gkg+9lO+Ev)>_265ewppb z6qTo4PVY_eeQLqvGs$yy-^fVLS>oU~#)*)HGk|p=Z9CtEGqKiNeTDBWACt=1-I8YMIUIicarR*?NyZ% z|9;&?@~fuIMZ+X{7QYfQeC3i9T%upopViUM(05*ANS$LHq7ZE+C~Dc@ZM6tI;@|xR z?7A~rkD_d;j`}-@THC%WOVLgsa>muw!%+H)I<+HQ^n(wC!a_Lo;m;^K9{JFtt@AY> z1^n4B=ZwSwFRxfkALMB>>EG>w-}6+5Y6-e0gM7mjX~MA);@S4F)B6xJ@|uk4GupII zT4@7Q|GFzVJ1bFY@cKMnO3l>Cx!KnQ-s>-4@=GT6-$7LD741K47q(rX#e5BI z=W=x5{AuRrK|ka4TwkBi?!*TOa>fV#<6GwWj-BY5{>P&*tv@dR*I>kH40kyaDxe>b zhVg$?*Rj2prA$TUj$*rg%xs(^1ZRHI6lpoXMlG{CY71d1R?CZ}ika-5lt0#j4t1DQ z`W+x)7#RlHJhI=t{J++l2uN9~7Xi7?F|#B7!+nmyux@@1uMC3winzA*zXtz35c6iH z*7nlxC)q+BW3}=Ne(~)B*jqMOm!GP`aF5{UD2dc#k_ztMK>br2xL3rF_5@S)3vGl)^p=OjP!}jL8_y`x}GrcUSJi%)G^e3ozlxY`)Zkjap(A)S7 z?K>5pe}BNS)raCO?_o?7{p1i&k4Q7FuZ7hUzk;BhdI&m8R#Z9EO0+Ek)R`tWO2Srg zF?N^!f{aCi>${9VpD-EhCH2T_!;tq@a&SclSb%=VEt(teCG$@35+UZ>aL*VReFlv% zxY^Hq*yLBW`S=|_#4AAeDuf)BDZ}jO6Y0aMG3?N$z-sM-`yT$a>7lHMVLPY#(HdE1*Uv)X?Z>JjQ%aLK?pVa7CeaLM zz=Gc(04_6<-2~p=20srUa}G?BR%s5^x!mPx}IVjBHt7aERQt;sA1#4y-Ch-m>3eP`>KGIKOiW z{6h;XEoTb_om{&Y4P#l2Lc??&*5GTno=8hp3Mq(Cl~VaYT!fL z)46Qf5YR{np46K7F`2O!_-mZ_5RKSm>pFabU7v-Nf78rZ55iqQkwgn~<6wLF7s&&zXnNrrMkaphq57bT4$* z5@h9|qFx$*uXy=LRW}dq05)U)%G2Ns(X&xxd}`jeB;J9?hNqfTAO zycGHe&tG290>`41#^vRh<^0Ik`f}D+N4OLKDk7Z2;CXC9-|X}qX$Ne)2L(F>J`1qE zW{uDv=iC|p{F-KXQS+|rOr4;wiFl6vd<`^BhZ!9fJxHr)Debt9EWb+P3Ah#PuE~mC zR9bntfE$ImUdf?&_vbJ9j4dW(1d1v{B4Nmk|3_JkWybl`Tu1)|a+n16*ez>L=`va2yM75V zDErVKB?qtdWbl)qM=zzC1%)xd^@gvA+d{tDsD&YNl`QcV9)6c0zn=gKjB7sxq&TFy zvUjf7ml&hGTE#@jZ~7_-`ZDXGA-o@;YV^!oxz{0U@D0g}1wQ6=nSk+&oV?C4wj_+d z3=0lRaO4&=oC6z0{@^2LS7@klAcV!%8hBIqD?$$23vR#6%xPxKNAC>s#Kl!gI&#RI zu8iE)wCfcsVuo$64NsYOBh>c0eB5O zdbYh(5nEa<>Np$mQZ=R#yR7svEXw~E9T5Af;0Lrn;bi9U==!oX$nKC+_+11AQmC#x z@(d~tD{Q2cJn>6uX7;I&{xZaPb&jrFucrEX)YA+7| zdnXro;joz$Jwgtrv+79eEb)RY0uOLm_&i~u$K}Cq{Tq4{a2|wbPU7{ER#+Pa*@k9c0rJ2=cPI?mGYJIM_@>k02c0VN9fF= z*^q7RHOhSCs4YZaWulF0i9YG?ZT(i5DdNEY=83 zBjURyo$*}8g7s1+#66J_n9oBadjH>kzQvNj?m_3sy^_(8Y{%4u0qJg?^Fo*!E$y?E zF%KIwi4Y%BH%Frx;UC$1sgdR5t71S7_@vgjwKLeApA%CCqcxhS zr;pV;oY!Oxc!r(PKmccZcz~B?UOgy%zs#xFF=fe^n|spfFO?}3w&E`h-uKZb%@ZE) zWOVgXV=jpWh}IMaAVp_UKdt9&gki*tu;(ilAYI^{A=~Y#S|j11j8E>yLnGfEYexK~ zlZ*_=_8Rji-uxh9`l4MAA(6}gB`M-M;ILvyX8HPB)^FNi6({J7y^^OGRP0LvX!#8e zn@U_Gx2NA6qc1|+@+uF~>XfKtsEp7{hqHeB=Orqc>8Jq|E2XkE+*{!DmM~$@qYEG~ zv>4!y!Coq#Ig!u;YBX9};eiV32qZ_OXP(M4>WNw3e@oQ8K3R2tqvux?wnL}`%Nw}7 zXkZesx?l*SEca=+JXfizH#`ym67(T9phFIUGe%1#J>p<`#X2f*p8ICRu9JiF^)~^O zJGMA)hm*AA^^9Kjt6Ofd1cV$4e8GVb{Iy1r@1(U_#TcI%lC&_u^S9TIj{7(fQ)jB= zHkWw^dl2!IfpecKGG6cnlP>RZ8}J9?lILgm(2kDwOrerq+EnRp2IZXjYNfzH*pYyx^|S2;)4PKN`(&^UD}BEfm`&`uJ6J zvc49pRc2svoJ$bm5nBA7XnHWU?Wk$shDnmw!p=AW_Wbj>#+%#ewmIkM&(Z7Yvi9%X zC05J(eH+S*3A=tuWeCz!&|J;cy%sm^#ijew0j)s%0&v}f#lImpGH28CfVwznTq zMACC6@gO)ype|7v-oQ78QQ-h7nyv(f9Y1|1Y_5Ov&RebITtHiVAl>(~-Xq zm_qp%Nfw7smdf1A6|KHF4$08VvanAk;_t0zygf(z+NqTU;DIzO;YH|xe8(y#^>!@Q z&=M@C0LM{RUHjj*WPcw%lNGMf?_<|e}lYk#zU*SvHHh9;wsqgvzKq8@8xJ((e4dB{#P+@ zie#8i3Jhv6d<1YWQ65g{bgz8)QKrRbwj%??<07HMg^q;RDjytFu&1+w1llUtV zHbE^?YeIvEGoc5xt}E&vVjzN7H|iO?`*!I$To2XLaTa2N`u31Wwl04SzrFhaVDK*0 ziB%o>WA?*kdFZ+eU(!Hw6@-FfUDJvxZVE0ZO2AYi6vkq_R)zD>EB-^p7pqGNz2LXTw%jwAL+oFx!)(RTe2Jq`coc3j+NKo_4DRj#P#mun7@xw?IaCij> zlFhd(GtSSDC|F>*xk>68qJ)L}(C7lhW=!{U8fh)WwJWV7+EqC~1t$P7IGNaGr#mPZ zrO-}sJOK=VXCC;+sjEi|?;^DPSu^)NpCiwSxR83vhksg~kF_-Dvf~N7ddZgYPwlSt z(bl<^67zev0U|F&jlP5xM64d%%>JVgdLz5LEK8#7z5`8p`g-&91Xp#Od{`N>it z7*Q@9!733?GqJ60(H(AP9_lw-ynU8K6!V6|z*|xDxWDr$V&X*)H>E#FB|obl`nm?w z-m*^Vi@YnR%?1w9e?WrcIO4a~KANaqcul5#Ml$TRJNuR$!t}V)!4qBNY;Kp=N~UAf zI}{=3@@I=JmMjarC)AG=FDsWi+cya+*eCIL<|BxEVP2dErFfB7yd7uriEsD8d?-)o z%=N#$?ZO3RTY)*#E)ycQw7CJ=7K}pyC{MgNbh`ErcV_y-ZF%>bs>4~*@Eci(rB$47 zX0w0kV2rAr7aNHjU^Qm$Oa^B^MS2yCAj=w74vKAXX`i$}DjWs^zAj_183BSqeoK>tM z%3}}b*Z9Kte%@?d&)y`}Vwb<&G^yF;2=fYl=~HZa1{4l+h7w)>CNOSmc8#2U1{Xp? zqqQM;K4}%bLOuL2==OjL;F%R~7Vq+NI<2^R#zc0U4Q&j#HvUp|goS>?oH{zb`l}cp zLBxg0foGOajm=G6UgDqfUgm;^=V{oP%VE_Z$Z!0Mh!a)N86K21jSz+S?oT(v98mrj z5e@YBT}3bnhAA*CxR55qx0i=;Oo@D@1w5e{jCVL}zQgl(?^nu?+E6tUW!Z6!(Jjqf z+z~9uHn0(62gfOq z%lQNc?LNKRF$SiR^VT`Dxt33h0P5DR>faj;>fN_1Ohi{!09@wHG7-xAIC&oA_i=WI z9T)}@5QzW=mpdFH9eD{lBI`~wzMZv+v6$F*e#7aXo4tv?T2DrN^#*DH=CHi%OtF3u zj*B?oY52>+Fmo#q8IPBSRJCQ3!qVOe%^=R<%tDiT8NPs0F?APia3BI9JE+a3i1+1l z8;2h09Bx!96`S$}o`nf_W%ZNb?EZbKhh6x?1^c_7e}wdbBYm^2-@zV9v8aQsxx@G&Fc&FtphKy*3JCR4=EU7 zEV&oO(i-Wy~#IX_!l|q><1F7=ZA> z!^-<)(B^U+K=)&grC)~8StxgrJgU7)oUPx9n^zlRU&IR{%?VO)#+W%set;IFvtm7~ zoiQ)WtZ|h9ZD~ffO#<SgNhwwD#Wr3zaMWDi~OBr zPWR!gbB|*ufNKdyk#;ZdL@!RzoQlUeT$*n>C$rY`j=!%C_|BviC#$T}QeHs?YRjbz zOnK|mnnLL9Y!q8&4v{OnIiU%iB+L@!V8?E^*!lC!Pf;?KBN_g8Yv5k*@pG~gsx8VF2 z?yQJ_Iee;kCEV;6wy^DETmg~H1G9g+{wzEiI@Z%UkmvK4RKyW-D#6?!;{G(<;=AV6 z`EYK4ZB(>LDB2B=M}eM6QP$uPcy(_3L>G#w%d_ceTR4(;X+RC?roFdx>n=c-c8@di z@#^%XyejvIh&wtbt|Umt@c81+yqJs9bh_u`!1|x|v#j?e9W=?{q~yI>lBD%gf9U}3 zQC|qtR<%Vk;K($Zi5Q7--jO9&1?8n>|rU}TX^B%XJ~?W7P3{hTX0;iKxp z;d?8Srm%`dIb<}>6QEU)cdMZ}t)x(wS=WXRgd$0h%IFhVhDlo9eeGOMus!BGD)Ldc zFSODjfzr!|>p@a~cV1rj$Sd&pa{{^!nrGA`cO^QxUVT|$i4=C23@uNL9a9T_w+?6r z576s|uQjAm2P6sr&Cw3*13#Bp+Je4qjZMPUq34^FsjhGY(TVYMta_QM&Tm+2Us~_A zXWd6?DA5<+)Wto^=%;5YKUJdT2&QK>LKDVK!r(sbA;-)ObTo&seSJ}tC+18Wb{<%H zHYo(ixIN1ts97|G7~?7Ce+K{!!WL-t;61O_hBH`;;z+q&Qis=&N3yMeW1*UM$W`i^Mk71lj3 zxUCbT#fl7e`BiUs4%U{0^YZoPj*v@KOdE)IU7Tk3dxv^DV=0`)Gedm6EQx64oZs;9 z2A~@aQPYXUA}&^B2aL8 z8qr6*bL44lgj=6-j(q8aKY;vz2AGMpQl{=s>LNSxQTppMtKXajc)tlcG1v3Ud%ufZ z-=Uv1%XjYG@CovsT|M97{JnDT*R{XV@&zZBVF4#Wc_(kNF8>6|m>@70mMjz)Bs$t_ znS!SxGFYxPD*Eev)iSH+dYZqV3#V`3x#;Kp^)!W}cmmc$Oy7IaKKxOAp16<|W9mw9 z$y;d9b<(;I_$v7}*$}^a^83FFZm9N|J_dSdEJbxQ*TYR=r-W5=Uw`km^z>;ja|<%1 z>VOO~vA$M2{#pnxbn75JpIutXX z*c;F80`e64UCP~6yuGgJwB05nE=ZHk=(C5y=XrC!irA!X@OZHhp_ zCP05cB+OSPQ8#@sUf7aot;J=E6So7AhL?mx9f>~nS_G`#6i1O(0>?wOiM4)uxCZ|eg?llx@uf%c>U6eNB6_kWK8$IrC z!1J>(j=T^me0$dn^-gIf`I`tDEAfgg7%?&uX4Z+D)n;|P%4kAFP%RIiU&Wa1@0XH| zwJsK~kn8}=I=S^JD8s|1yb}kY_J!m7{SyZY%{39iS%LJ!nhr;+Hb_CiZr}=5#(VCU zwIo1hbNI$k+GZ)c60^_dw%++%b}K+d#DJD60;&jqQ>Mc(j6=g<``CzMGI!ebW(gl7 z&<(5PRDi?b!BOp~za=XoelY2jAA3giR*n{<)Gs%VoU;v6bkW5RiKm8#8wm_~3guZ* zqf-r!6J9{!`XCVWf^aB=%I=oCpn*%qTBqyAhzN>r%f9^4SDAwaC_u?uGWqo!eAu0> z*(zt31pDp#@6b+(7lW!1eCqmaXNS%f0y3ACJwem&O^S$n*yuq3KS030@@fvnc!HSw z@)2(J#hU--v2jAOBNgpIZnmdVkEed zPt67Xg7gE?&4jbP0mpvLk7(3JHJvYRYoHw%WVDCH{U7w?MJQC~ymGsq?wE7DQfxkPx6IF05S+HNB2{!6_G3-S~{ zbEd#dH6R9y@dxRRfq8XSJ=T^d(^b9kRU;nFu8HRjE$LitxQmc5@Ku9=~A3EygOW zKv+U1!rNZrB{%wKVnYO0(VWCBHd;6tM=H;U5JAbWv z;`!n#O;%T`V3(w~mR&VkotgE9HgC+{rvrx{{j&lzF=Hb@+P*Nf$Q?YuuZ~MhVu7F< zN-3I){I#k8t)oNc+^<#JknqG_G3h4b_K{{9BVN0he4_&?Fj8W~Rk{b=Bho>;E^Tj^6v!Nrq^PazwlzAMVM3Foam&ON0{zH(k8^-iiR z59hpRyt$-FcWifGKXNGAxi6fqTQ$6W!kx$#iOUzm5jKvYR(8`*zIXN) zWE0f*d0%!0H1`}(^6^NGzX_3*bo^7~ScF@C!+7zfBNKAK3jhq`rO*-T*jvwOps>iF z_zL5o9I)l(A;f}wJ+OpFjga$mTqwe8L9dkOK@P`xR2f{ z0lDHg+7w~OR-XdEMz#B*s|#GH*YpO_qhfp}5OAKRw5UvEv0EsI5=IMz3&#IAGyQkM z3*=%2%eCL5ZItlbq;t{5GN(Lb zJE2@)LjQ$L?f2ao0IR!ImVi)coS2v8j}_Nzw|%R;e7iyVy2}E41!yn>MYxyTJ&Fyn@!K=Ni}^zBUG*t~;1JO0 z2z-8+h$2zQ_zua1qbF+d?i+gK`zK!x8Nc5C*ZxJq zc{=jec_+Wedbs^;WV07`H$3(&KJPx9ue1$8y!1Y$hCB>So}c944b8XgU+>GWO{)A- z9Hap1j*XHJN*q9BKK|m@*X+35z5(reTd84^rouDtZ>gZ1n8|P>3hy0>EDgUkp=br* z*I8;=IKeIVsS7xH$qSxrxU)cII#v4mO+Nx9Xtogt1AL4cxp584F+s zjsQa!GJyL}95C)}tKY8fP)aiKrv$0nL>lq+z3p-t6=qO zj3fLVS|Wg2P8ANX2DEPaVL?oEo2#ad%+Qn4I!nlfy0d}dx+m{@EH8(rpEzlrWF;ej zH0VSKM&)nHG(05v1^v$$d_-xQwZR=1_1Cl$$;% z`MrBdo{EhVFdFbVW^-xdYp&d={NCZKY4Rlv->X(T(W+i9Ns_~2WsHwK=`>|rmGuEC zs{pKkW1PjraEjyseqm*v=zd}(x+=b#y@2oUZ*v3dAqC@T!cV#aPlcaz<)-i9(YU} ziVT*If$OQLkn%9fx*}-t_?(Yvp=M6FL8Z_o(1UoyM+Y}j#TTq+z;ImQFPC)~1q+0A zWX{`8uMPEqHZ?2KK`b_{dkGqFlI_0FnWaztQ9b2?iZi)rwaTf(O~VRwd_bU?FyW^* zcN}>-h3(1y-r`z$uYfF56~3QOyr&?ukoQA= zcN)-uEM_tVC%AC+pEcL_xs2?^}o9DnK=ch0-H&1v|b{?i4=N6YOgLxFkyBr4a>r}Q0UZ*y&5>4##LC3g5) z3%;OVGDA*u6spB3|9@=z+Oy((ninCUmRs82z0bcJV$Hz5!YR!Djdqaam8i^H!laY! zxGiiZfUPNy2}TotZ37NP5S?%JW{Inu_)UbrkSY!(8S;#pxj5gJ!4h^}BC-9}q|DEH z@BN7=Q5;rs%RnvL=LIb_lO1v+!68dip3_7niG2k|Dg(1937Y$r0^!6|nps4e_}2tU zE95urOn*&(&)cDSAy58`Si;Ct(Nli(s(V@J5}9-19%+|zx>DIi)_|H z2U?akN}3g~X5x=v^T5K+W&_wPah}`{`n^`3Pp!q`Hy0>vJ=s@k_$sw|BKl^{Q1+lB zJ6?n04>!9Bg^Q_NmV#pW_p=5ZOK$4&*)&AHCUpvIPED&mwOU$cp_JcbOKYER@M0=> zIalrCo22BOpbx;WEzOX!tBWt{QBj|-U#5Js{1vWVf~92nou=}Qk_)2VTm*~;U%$w* z(Ykvtrw^Av354$RS*L*P^u3zEDG#z<=Q=MVDA;ZMIeIOllh5TX;Z0Wda0%NB+8FV+ zl5Iqss%rg(;y<ibj|y)$2!6Q zYZvA6%mwemBt9PK(y2fkDi3EBWhvHE-lo zzx5iW0(|A5x1_(JZpOcFf*LvF><&};y z?C{=6ec`+*U4PIXH`S(bpS7D{d<7RCiDm{j2f%x``|4K_mQ5i(F}@g2=6os+z7Aj( zDo~*2Y>hT3Px~*eps!&re~lo5k3@_}Y&Qu!x^t;H=y9TvHQY^HUjTKBE|jUmE;ksNyAk(uG4B>1ls-oM*U>;IZ@ zqioBRyi)>7qi&QU=I4Yw>ikfK56QGzCU)Gr+kEst173t!`!Ugc1Z~EMU4w8qS8&Nm z>q6{B|e$s zAd|(=>l!H?`m?tj>n%_yu2`l=Q04<#(@jzu6%7X!UpG5a=cqKhNxwJrf)U-_I14T& zyKg0|-MYHjRNxbdLGaQ2pL{uOs?8IU^m(|Vz(7nA?wS?!-a66wB-bV_$Xd0QFP|4F zDdK+Rd*=~lMTglN;fy1XHud4s4!r>L@X$} z%7GBANi+TQh|or2o83siTwH9r0r;^T&7hP(UcFzDdT)?X8h}->79-Y;gcK{^^n}qu zVO5~9@u~bwYc4yQ8#fnW$aOL;Jz&)?M2iVWdP=O)(q|*i}0@}1C&h(rkxV;q-ink^gS1HB;^W#nk^}Vj6KQM=t^^4;JG9| znYB!cN+Y7iU1cl^`(p+m?4K`jko-e zt+7B}_A)MM(N|@8Xjk;c-LU4@Y&3@De}>144d~yZ|LFt5j5DI&i6lfGHET^dbw@?d znTxZ;Nq?VWoB(ZcC}RbnLvD~WnqT`QI_y;eas(AER^%jQ{H)nZx!n1E{1bJiH*u?^ zRvb(al9g3R&I z<=~GAm|n7{X#f3m7h@>w zH;~ZFTGjC-nF$GnNlN|u3u)&SZ-C+FIgQ5|QLdn62PM3CAcLhIebOTGaiZt?0uF1T z64dp>2fpJQQw`?I=Cea{CJ%8GhxXeEN>H7zpME8~>IdGM=a*ffi*WIq>^E=bUNS8l zW1EMt*9ZC#4^QFW^t)t&#*)mGeKJk*iuI=mg5FS%2rZthIH127V1a5~HAmovChRvcKs*fN}nPa(dMY200b7 za%g>Y>ngM~al^FZf<2nQYxoY&AWy#sXFgOU(1%hIzj^E|9;I-{ zKbi^Hu`?p2l$3ChciwU4-3Q-#r!(&E3#7ViE|^P~U{wYS^B z#b{GEE|^{6vQDs564$_J9!W*^Zg_5CYD$*;O$5C&qX0wWtcj2)C><}Qot5}-?n(MGCYM zk%Y=EA-bD$ybwDW9a|01q-nfDmxeF3@FL$xn|F~bqCqti+a2axU4M@L-|$!F*~vH1yc$nlLQq1Hq9Yje~D;aLu4G$ zQRN!cGwYo5-;TADH8bNk{q3owr1!xQeqAYDQ%6lwq72F&rR10|@3(;ZgiME>i}tw` zk=9jq*)XBO@gC7!rtL0g)zoM^|9t<2>wA2YSWgu96W z9eR(uNtVI_#){wB_O?I0Pgv5`ZCma?2*C2KB`0rR??tbWp2o~^y}fJ~q8(CEm=S=3 zzw~=?>NR?u=5$BL5;xi6sHY2D1pHon8dP zSQ6@$JoYBPZ_+?XId{8QXH(NK$M-k5e>^W7S=+8-BIN*(=5#-^!72crPxhSo*@(Q% z30SktagBJWsP^v6Epv^Y6&Kf$zrd2H~V~R84=I=>nD8N3n1yp zQiOpjtera(|Fhh3-#_Uf={j5hGK1z|MDLuGJ~+%RpRn2k%}5*F&d&#Dxg~Bn+8S5? zHhWo~3|vPmcDJ=hd^tI3kDr+69f#fr7$7(P(RzQZVrO;5W@g+G3c3;Xo$Ye@lIH2i zu%A1-yLI_{@MHN3b zCt}}}l{UVTci8=d{8#7DGyBCp_=ac*GcQukURm!oYWX-4#*_%6Q(xX9S=xf#@BQ{^ zI8bMBb1@pguaz)Nm2YtuE=4jz{tWwRA&IT7uWn=%J!F!r^<;a^adt1xhSaA^2bcl0 zy6cOw1I$rG*iYZw@WvVsRxQP3caE;a?$WX7Z)<4qN}qc^0ORtj_p}GepHFG3!U#IeLrb$4WWK zN_v-FiMGg|mbz#g;ru_Z*||ryq=Rj$7q~1QGtE}0pcOjAGgBFO6VTN!sVil75x#Fk zDn1^6Jo0>YI1g-*ejEcSTdNuINpWU_Q6O*ayi;6*hUX9H zUr6${THai1$$v2%wa#YJ$Bqh+D|G2M8^HP4M>7ZqWk0DtUC0KLmVSoj@jnDlFt zfUPbmz^$KgfivY+E`tRJ5gK#Cj}qsR!51SH@ZmM509367Q^K|lsIc~GY~iDPu1rE* z2*1M6!*n;@Vt@p9_|RT-3iXlh#GgnZP(b`GE)eV`4!8Fluya4TekfTi_*m|vRNc@} zCOlS=K$RS_#MF{2X0klj`vHW@VGlx@60_-fsq&2voV|WY45WCCT+*#iA}$`^E;^78 zbv4SHXLZy#;xcb-f?sVzR0iykwN{#Ao(qqqAkJo&!N7rgVV!A+*gpn4w?WNaI-y$6 z@CNy-1+qer_S6mt?cLzp)=j_y$z65v>(sL_ySJ;f0!oJGEO8j)ib@>?72 z$h?=UCz{^6XJnz5RAs%&77zIzK^Z6NnjMchH&7RU>?fYzUp95YTp;>D2NzAWWus;` zq<=z7^9v5NB;Uk4a!GuM3=7SSnkI#%j|TNXz~UvOoCldbhAvD}I=pxepqWkp${`8w zlw1i^sLj+?>oW-IU-)_iYM~y}{lqKM9O=X!Yvdx>zLCVrl7JLBWKc%Yan${oo5>@s zA61YBa4rytHXq)EPXiL&1zj9i;^PD2>z=^QA?6=ym3K&1>y zG_>y1JGMby3x~U=V1%E@WfAu9kVuCLo0R7uw_IviE6g%RB zF&}k6DWWcrdjDVm8&$U~IXf@C&Ck+1?0&b%PbQE4g=V+A+3-|`xf#)qemnF?JpRfO zZbsl^f|RM0Cjy!4qKDecN1P`t^~a^-=^#_r&s&$OlQZ?itEb7p640r2XnxVTslW@yrG3CbQq) zPt*i4$)?D&hc80;>!DL>m=&uU#G~-^4!-Bt2f7yGw~K795)aw0NG{@3a}&HHvD1>K zWmP$G%S=^^I#0NCj)r_bq&NRIDtUwt>KJdE2c;jWNR8VwRE-I}DQ)MAGS+d&cOPyFK(Dv{PH$0_-K36V8$Zg zOJUsqmW|H7FSRUz(G)%AS9FM%TD^qyyE1w{wDXyZx#NP8X>s$l~+f zbWKAiDXuKE+1>D09#RFiG8F@hw}|X;pEonww_NCcH3mP&-W|o> z%4|&xZbVUHq?FbiJe>7Ri{GAYr(NK}9@{F6@m=^S`n++9QBt0m z$BuC@?2|a-NX(7Zjb#~<6Go9Jk-NHT!Xx|?U6ec?uq!xeq^}~A*vY&1>Not!ko5g4 zkGaqc6oqJSu+=IMU2V_q>O8AXGp0B25a=9Et3I=OZqwhhBN-&GK{j5s$bkVI+{8Rw zKJ&~YZSrR}|E+L;_LSVAHJ)lyLBzC)c&q#4Kav zJXZ6(4s~Y%71|MzMjF-C8-fQ5N)pbN+ZSX2wt>0!aij50yng?MFZ$6l_GZ88`+|=5 zey97naZMpM=O*ed;d05%tJj~QVJ|i;C?8BiqnhbrW5c*7Z@fD?#JZwl^ZpmUjOPyN z?DPjd&L~q`64TUYU&!0n;nPb_sULcUR-?81U>?MIe2uFD8{;tm@NnxqYR_m6oMexG z?2Ew6Pa3YUX_ngS$eV6JBa^h~2bHTAJj*_#4Dar1=`a(nGFX()poZ`~ea1JMCr*m@ zdH*KmY5RAoEFK)3&ADY%v6R8LW1`rdMUDpOhKsZpviXL6C#sgnK?%jhjqkS;_l0;K672 z6?J5t-iZDC>BA+EzGata(Ko&~Lk5q(Z}2{GCfGi%Yq7swe*w=)EboyK=`uudwmEYMnduNnf+u5SaBhn|d=lpaHyf za^2_Yz|1CVmlbEA(&F9bZJqY-1;q$W z!||vW#oD(zGTOp_2c?a>aOSMRvM>M!V+-6ndo<45Q3qnacy(e&+|=bFP_I}4SpE4F zm9Q7Y13X^HlhGbbBfefHVB~)*;Om~*Oa;U2pU-j$6O>G*MZsPs03y0K!k+$}zoQ_% z29-gWh>F&TQ;om~E!H-Gx^tH9UIKf1|B|{G$Y}fwIIh0}p;%36hd*e_PoW22SA~c( z*IaPZrxlu1Y%mvf0 zkbk2aVx{tX^YoqWiu0H02$=Az%XVUxeHX5lVkA+v zpD%Yu)$pF=Nf~9H0YjQjW>fRgn8s|uqdvso48Gj~9ytwx@(^3Y4R47m)6f2~*OFi<2?M@fzwtWm>!T6#n z!WxV8c3X;KLeggjR{IbN~Ng%o478$zazRtT1d;SgbN0)ce zk4(eHq$-Ja$um1xdrFVc(pZ!euY;~4EH!y1iEze6>Ri}7xiM$-I*Nib+LGsjvmAA72N%54y(50> zDdb}!aqS$LZj}|kW)*u3EnQ{o*RI|6NADWxduU?R36$}%qqn6wc4ypr{{k@})>*WV zDWZA{1)AS_N;M#J5xh|dXFPCuf~wyR<2DQ(oh3}Vh2Isj%R4;Ta52j5^0qv~OD(Q` zmTY}HBg3msfiN(YO#CvOrBu1C%q4rem0pbk_g#UY5%b82Y9A_BFn2*g(Pk48L3%=Dt9|SB4{d z=x$t6P+?%{nXHu1KxO;-O_^SexS8w6x^<&`m>s`Pu>h?kojsdV>sLGXZx-PyWy3GemD!Ozdgq{+`EFz^Ir>&r=v#Z61Ec>7$cF58WlgU{)^qgXvPDBg)U>e4l5H<?z+FK#c|K1n$jcdixa+i2(jz1O8s!+r zIJ)MhS!=W8pYQ*EW&_T4NZ^LABETNWCuD9F{d2x7HBrJBq;GcaN2yTtoho8&k>nVV#zjxQqGwROsEFSORQcI;))M(CtGmjjves8kfVJ>~2;{^Hm<-Z+x z=*S2@g6fVfKgDXR0Oj?(zaWnJ*00Za`R>T@CURungvDv#c#}uUw|65b2`Ob>gV##h zos^{o`t|VR4F%Fstzs9Vor)xB1&gO1Yw_O$%yuX3M?<~xaAw+59=EP+;P`CP^#utd zL2p5q@pqy6=Xw`&0^4I#x;jQ`*R(~_UCp`G-xZV*C{Lp5y~jQ9zCp!XQvuaucNHVV z7-EqSqG6-Q#=K$T5B)$lhw~-3{zE+gc!vMao`l~Y7s-78wc}g8e}wmLa0DQ`?J0RN`lQ7AXzBODcIL!O#s-gk~(SKdlp2BRJIIk1GPzb@a^<{tW$T#_K?MQX=)3bO_FzUIUZ zZ5*+zPn_^15L~F1&=gJ8PPFJ~#7u(=Y1$ z*P!3e=?)d2Z~?0FW+$Ocr%%X;cBz$>@2Hrya-=+;e(wL)=%s_iUUP9;VfR^fb!eK;h26o*F1t4H1D-?B8L<*W%;O`Tn9@ZYw}R3s zAiMNL-YY?Dv51$l*=N5oY#&Cqyt^{M!eB|aHU+-LmaimA=^K*};Z|&dt%TtltM7m)#vRG?+ezTaAv`84+qxB`Q=eKBi z$AbuVX;9E?f(+-99T7Tzq;t>fH&aa+OUIuD8-5=e=vfqrcgkG)ngd&>yz>k`C##cd zW%{_SZCabKZqnN+nb+M^bgawcGWSVa5dz-0*_j8IroTPioBT_rjk3bhyS4%Zn9{3> z;(9_rOqRwlUJWFJKshXXVUY{iYud(kzyMxn4v0q>c?$( zHa-yRNOtRjmHG>d4CyhOtrd6YeV5=%T*h0daQs;c6HUTizAk0LK3{&iZ&pap~{^E1{P%%AgU2R)TjCr~rIN!ctLekv0Y-6LkCgKnAnI-fCR%^)L>;cK>wrZDz;o@w(tWnz-@?I z2(B|UKyZhrzx1DTd(QEStL)#2b1{Z7N_I2(SBL-$* zzgSjizm>vlM*Kb5W%G+HL$s*%A@_bPa5Xg2grku4asq4C(dEtzwnXF_3$yUVp`iw{ z!lb83`8$~xN9}a{#b7J*FCB*XS=~?McRSC(q3JvGS?n>~N$-~pd;({NEQA;-DB{0c z)w5-|do)!is{RFys$nN?NBG{aldHYO*d%r%US4Ap+HZ|sw!JL^d+D9GjqDbkcKnFE zU`7A-q-}Ks^O8%;+cJ~nQLtG-GQ7ci3&DS_5Fxm;23UY0c*7tVj52uG*#d7K+mUcw zE6M9l>^xI6eD4DAQ8;J~Q(*FX%&UuJ!fcaJw~t`t_ri~)CR_h_3w&gSaXwHcJo5vr z+Y1I1Of_%&k}7}xVyk8ZtvX)XWyl~-Ia41p9?mUIp(*pVpts?@)L*>~0yHWo`rP8f zTKA~_IBEt7ia`2hf?!hs7(JdKx#KGc;w5@-7fEg%cx;)Y`dfEeN=BQ~rPY6`?8kcQ z=qCCw6M>u)zqIGO$=NtG*>2FO>4l{^7!5a+>ypt9$PX09V~98pLcwpdg~KmRSObh zP|*6wu|w|Ck|`?WqBG}%(XW4A?{6aq`_+LBElq#~)yP#5z>onNn-ly%p2^ zu>P2k%0@2lZ^-izb(cC}p-0@>@B*hD{O|nbZ1=7nn;@!1Xt$d#nLRfH1z!gSJ6~OI z3z9|&423qH!swo`^Hq@^fyw#S&ISBD=rsOWyZn*U)4!eMw^ssL<9(6=-DYmEc@!cd zG_xo-nXPk$VW;WB8bC~|e;Cn-TB9>vQ!~wTBsjF*dr6|AZH=xT{ffkgRe*V z`C?N*tq`<62kw*41@g6gVad+z5D%RaWSs(?x9KChwvzLf^ocP`ly2EbmT=bM<9%FY zG2G6tc`e_U0(8XIMG)nZsiSF&{bh}WY??Lgr9^doV!}~hv!ivB*-Z3)6F2a6MDIIl z6HG`RDPqYiaeeoowCs+a%d+>Lxf;uuj&$jm4<_81BkpIb?hRXM8k@!~IUjtBF_ zap&}Qr`Y}Y6|qfP?J{J{@6gL?Q=Bg(eElg0mr7IQ&4StV#^T8N+Y!&E5$ZZ{4R$Jg*9BDi>=k<0F^;6O&%^>*)PJWw9ZTgQ|M1`etgH8JgwfN zU4n1s)ZVm(Sv_6;?HxkY4*Pou@<*U^m^oT#HAE@?-ZaN`;d$t_;J20;kL~N|a{-W9 z0vb|+n_q&>2Ck+q0t5{p57sQjKD!{e+$bYxyl2l8P3@K6lm(8G*E%TW4##HoFQ{up z0>iQm$*z(KS`TIsCP=(N3V)uH@d9zB06~wYsnK973qI3NU$E+EmB>5bZ~vqGb+w+` zyIGGP>wOIDE^OPfuYcOdLW3&A0? zRh2HI3~6PI!Ce222W5o6&|Z)Uwr~n|;X3a4pRHvMQEdLy1aC1l|Mv@HJqwa^W8(Zz z1TeSZDB2cP{Br#L5B}$usaT!Z>J-)9uFB7UafA=|QoHCl{zVS{Vm1cH|37}nzJJjm zfq7Y`@>k6EXp}3`=<4SJlK;XdjD^)?U2*t-=J4R3k?$QY(#`rOgbwa^x9mq5#eymf z;kN$MFP8pXd_2C$Fv(X*J&>R3ARc!V#VUen$hjT`F98 zRP71l&pgY8BXGCF0l{_y0i*zEa05ti14CHSt(yMDZQhDW^!51I!l0O$pxBUJ z#sx?3UiKR@_Rk9sNM&rG3T;9Bh18?X+Vn{1m9*UJ3|w=16C>*f6Z?--xK>;LCfx<@ z@(mUhcZDM%oVMS&q_P0+wNl|yA!H_O^GpKJ@*$_kLP(CgwfjrFN*pE$;#*u%_p6;F z!ls$Dy)~=*^0|9dxXw9jXU#nGqT^PiVF<;#f9!^!Ngd}%z{!ou$=C?0=DS~)6y zL*5p${Wv8+)5Wl9pY4NHlHL`C`SjnIf!Vm1Vp`zCmeocbnR_II&+vm%!HaYXfauB2 zX5*vaO<@QPgggFIUq=jnJM07vnRCyFOg9q%OC1^=s7mC3_Ew_)Ch#i`4KZ)k*^0BAxacQNwXIB7yhL zvCxJ?y5fH~yoAe;31r9jc~s0cV)xn*`p^eM%}`!e@sFf1Wt20mifCYy0Zqd{JS zU}Pj{EN%&p%=BoZ3OJPjp<-;D*2H^LD+HokVWliTW(h)h^kwh=4!AE*w6FKay%Bb~ zIC49zA1gELQFGC|DD6i9ROf3a-mkWZGe9ML_daT;dcOMp+JSc70ks6d3j~bn7iQV_ zdq_wUM^KVbQLw%b2<&&){hrA)&Wb_ecr{)Msq1kRz5uNS^6lcm0}>aJC-KV%9lit+ z$0)MjLy5Y*#gEl28`SW#FF!kP-+`j>&Me#io(bP=QJ?Vrk2I zxWzGy^~9Z`gr9!_$>eIAE+IvzYqD|e(8_*X|{0<;j>Sjv{1m>vPfI% zX9C%3x0xu|+4^M02Gd~rgo(uYdliiFI~nN6*$8hyc)|8V~RkLrLSNe+8YW!-wokJm_+00cRADvjSLHxc}^BEoxhi?*~fZ_=E@23R7IxG$K8PnJ4qp1HP?y}qq zlz)N0x-WwS>6HYJGovZ2%o_9RUQAY8yYe_X7aWYH$z--K2V7ki(#=tC{7T-Vn%&e+ zKPVVp*xsUX+#Z#476D|Eii_<5x~ISU-)Rp5B?!P^3C?Aic_#p@ zAclazA%c{HKI{K;cfKm{ct3!USWS&$y_5|R0fq6^=;554Lj~bqX-8Xs(bT1r8ArH^ z8ktvzI=O!9312C-qdGb5BSWu-y80mbL^#Ux>}>x)Xf`NfBq(@q4gD>L`=t9tMZ8a@ z16`uEmpJF^w=Q?G2lw6t-?mxq(d+TiLjxWv-2`RCf}~+C8-RlV+GQX`%YFICIdI>B zfuer^OZPbd`h}{=Kp9)T*Y>ZwGRD@|A&TFl`YpVI7-QHqgKk`8^H(+$B*N|$CVU^r z6}j8^j^dD71@*&2+d@eRl~i#Wg$yqv8wP2vOwQ)H7Z8<^*r(MHoLle&XW~3JM(Dx( zKcU2`_9Lz5ulo74?29?9UpL&}TmSuV0+U{M-tCD0s4BXBKJ;HEOR}%*qSrXE$H<|_ zG!XmPRklpR``Tv>`+zj*Z#zSV`O&E3Rl;AR3p4(`rhGZ(zbsGJDCeJ8WY|u9*^tG6 z2mgnHpFJu5iyv|!s|4X+f|2}FpT@~ZKY-N^>`z$!JGkC{X!N9uh|TRdL`m8v2@kJ@ znh`{^j`)djtd_MQUtkU5$R+=3?zyR4P7zEf`PZLfErZ4lTW2(VBE*dF*QXdGYTam- zJRn~?wrtN5(^_Kn;3N3fq6F=RqXc?_usl7`itj~=WIZnZ8n0#qTSq)j_j~H!Zi?0voWF>@A;3-hRyKjCw z z6HV$3qso7^#Dmj_w7FlgGS?&U!9^&fF~eAx3z;vEfEa|B)An|GTaAV#Va9D+@F-;XiC zeC(o&nfKp7oF?)Z-|;i3DK_y_QP=^Uv(*%y_K5v-cRL8FfyD`IcTD6}?r3S@;coW~m z7NMm7Wh*F6y_1;deEHSF5Z5g=Rf(6I2gXjmF1c5_{`I{GeLMPOz6w{cVJ%uxZLAJ+tpPJdyxI_zU-5`k8?6=W-8QA z*hBi1L9(B!u90Il+O`iYq~(=gS%StInyg5&BRbw=Z#oH)6@#igjqmV>mR^lAU1d_y z)5#TFK>_6=7?8UZ&Rp{@)&YQDhL-_mr z_(5^qCv_+K@dkmnm%H?NzcEG&yzlgGs_-$<+Sod<-UdIfr)(J0U1E+@;sU_0w#PgB z0oW1Jp*qTLs>6t{zwdeJZpFK#S`^rDD$Bs#BpR9Qj`vOp%rq0Vjr=q=LgM%H2b)ox ze(07N<*~}a`z=TW(z2U7$kv8q_8ln>k0PDB83A#jFix1_qG86`3pa5rm?oYXeqk1e zq@laHY$qZwvsdVs^S0d2r`$3I%qX`?<@w8f?%b~qRd?TEDDZ(g8c7s3%ra&z^GwqB zC<^3E{FWXKJE79QKvEbzgTf65$?l2oFeOLhtR{Fze8caK*A(aZCh!(7?7(CcAXgUDKpVz~`DJ9tHK*C?I$a;ip#jf7;D}A^-fIP5{n)T3%O=JAaQ)}ZaaZJ~L%7O6@Cj(B;CDRL46S-d0XHxBKpbxj=s@Acdo!rTfM!DG>s|(@veB~mKwBOAlo;`Efr*fty zt+dt6E+(=`*5Gyw|5gOQ5F*uQmyZ%5D%_`%S@Gd=Qqiw6O&)cHu}9(72suZTQxYyD z8#|@sD8W+YJ?*ZT35EM(c$beEn*^r2vSTlXn1-Z%0jZWJY(>3sTls}dAHjdDLc9tB zTW@M-S?q4W15+n#(X*|6Vu!-;Wda|%aMBw`_(Ou=8k7x?8Ri1SA2MW`DG3Z2^s6E$ z0pS!;5c&?w4*2f+5pyrO_pPJ-!YnX&rs)GeOy%RYQMrCJCSU2VqcODw^WIs@!=!mY z($!3m|5%Su-ISKYFSoBbbV6XOKdH|KK!dt|?gpj}*<^6dIgrD|fh7xObzN;%aXuY=1* zrMq5l0_hQ?&%S1yC@st$}gD4 z=0VARpH&p8#k2$t#HeBZ!9>$V&BAhO&`0YWQ0m>|M|WDBO?gr1_*C;kx(=mGKmurF1R!uFYt61f`UbN7J z#O6MUP+J-{+3aH|XrQKoVJ1m`0m+#=i{TyIkP2wf5TeagRi*v-ND<&7I& z@WkO+C}u8&%8L)?AR24Nyj;?i@!1gIAn3yWde6Lku9?kUM%?-zw)t?oqu~qraKFss z%*E@@#Y>^A71YI@10{#a;u`v)fI3G%%3G8QG9^0p3nu)+EN`IWj?eA&@^uW*%M*6U z(xBqZ(w`K;s9_6kz4(y9x7`{xc&KMl(=!82Nv3a@p!ZpQxyQw3d6}td=T@^5y^@bc z`pM^QYG7#)?|Ad7{O40FM)ws)m`5bz0iB?E`nYXF!%$PwwTQ8HI3CRg2q`O1@x1r*@@KbW0!7?aH3Kw5H%&qW<1Ejr|;2SQ%tcSfs zgdaXR2_{my{S&m!J|y4GhodJ9BfTTx>}t>E2u=(TyVa)t?TmNYBRXRHtV_o9iUbn0 zXN#0=%mAre;uKJO<~mtn*#aaQi_3i~Ka>c!mL~*NDR6VZ71<&s@2-u0MWMvyR^2!D zGYGz4iIl*fj(zhE-|5o#&a%`PS>-#|E6@~g4#^XGSukNd_NxJKJ3y>$yiTIjD18O1Fb$`4U-5pNI?KXMAv-yr_3~LTyZ>b#`4wlz3kfZ8$~%H@ZQ#XN?6#GZ z-2*RY#mQ$dpY?!3RNnXNC){Ethy^%}7tp0URl`C&pFZ;k{ox_q5BfP$Wx2i98K#LV z$pG*0j`V?2B`PDsF#4Rn8D0}@pE_gxPC;A=BK<8RZDJ z)2Ybrxx3g!GzF8PHCAo( za}KG3Mfril?CgU0ET5wZ>#j?Kpc43)JIP)|)hO0Cpr}(%kkSe<=%b6HbcYNu-TZe0 z*Nx{(S$^BdyCo!__~}DV!U)}48+kw#1ZeFlyK_f=i{`k;Gnp2t;N-PFzGk@LT@Xa* zAekI#o$)NwKcJQ5G2w|&Z6;l&k7dk zmaDoF{U8Q18HQjoCKv+-X5?UUhOdA0<-8vC>YxQy)efbSB(VyPQ)<1AcKTEl9H^rt zU{@@Yo35Mi+ZWrGq@EF!zXU#?7}-I@D%y)nWf1ahE4*y4Q!-w&bP9?=@-k>r!M5jw zyPB!qrlfC>Qm021VqVHe9NEf}8Di^W3nrmcH!* zi9>pWLoeUv1cPNiWwBy;OpMd;y&YTI> z=SFM=pqB$XJySGm0!ssaLs~bT`2ilv5c`F$(DkFG2(`eLX?avnwd7Cb=~O1d*6fPv zDoG#Qlee|?-gqT{%8t0?+69H=-hOvdBE$W(6i9LiBzyP#XfRL2_{c%R|00oISNn&Y z7ZU3fkJE!A#V`gvu*h)_qZZdo$@J@JgRk@=e|D)e4QqsW;Yl22MuRl074DN1mdTG2m$r@u|ik zeH?TpQ#<9aeFQ$saU_NM6s- zK#*+_`-*APk-qT#5p?!wYYk-;FBI*?ee%wM`MC;Qy!hD~MpnD4#G1;{Vao_?_|Wa3 zcWLaine$oH64Fexf3e)eR&#$MWqbC^%5KrKJ9Og$FVm}3{fiVj{#)|j$NPWD6u)G3 zq;@M-k~2Od9)un27Dpo$Br(sU6>RGb4k2wx2DAt^^mWQeR>sb z^}BbjsU<}T+~;9uz9=@|PoC|#&^-bQvgpS-_|B*#6xkfuS|%Jw@EyUB-&}u{z;DiP zzISx;Ygq4!qkBWNUE6_UoZkquTK(bh!2myrGv0g5y0j7&t{N@t{W`%|FBU-_J|u34 z2y1rIqn?E1XHD0<@q;rqc?k|-NyO^pT zY#*(t?5U_ot3+-8tOg5|5Pg|OSG+fNxtl^6(+jiDK>f~RdY1JUl@~$Z_)fuvQ{|MZ z=EDY6tub`EP6#(_MQ{x^EG>0eK|XpW`LUn3;lg3E-d-=ZD|Zi91J_Hh4T+g5c#NGO zDqe!UoRY9f>-hy27eMw<6^!^aRrb7!VfTF;2O^h9863>^U6V??n@<|$WX*1W`a;?* zAId80{NnmnD+?pq6PcfnRXZB%3m41?ABLqrN``rFO;vAISo*3Pm@7z)0CA2x4&h)| zGLC5?Bby&ioat{mAweMl^3{qkfXUH$A6=mEa|pj3;uDArQ`NyWJ-m`kIx{G6jG?IR z)$YHWhV(0hMrk>4YJW|accs`D4qNF2CoZ?0%-0=*anmJP+(&**dG1@y_{iEa!@6<# zczj>`=ka?#xSY8+yo{I8WE5_~=Dr#@ltKXw9Tv`5KJOgL^MR-BoS^5{TL5%#7(SIg z%QEhgREwmea7jgpv6`aVLBYMZLJ$}N=A5;l!vGow6Y<9OOlcYdSqfy>-Khs`E_jeq zeFVu1x|Cyt{*osxC1+#5SE13ndxbacE6eN#(&ulYCuzK+?U(?-YC4@i6mxn>27r1K{YbVLSc7vWNl<6&)16ChMgbNC z+2I0m{!K24)a|^Wi(xKKh=X6Yt}pV3W3Ozi(5Xr&2=_8DsrS0x>c9sF0-6?_>&e=N zCU;80e02FjS1{V%Xvb_tq9wnlblUoLq8cXZjf-U^OKhqcN~7nvqMyR;?n#khF6^?p zcxPk+4^WouVHN{~q^DH~R;+1ekJC{=N`PLy{T!l%!YIma-M+!z`Chv9wreLG=KJS9 zo~z*nL>IK&v5H9NQX?jW4z9z*zZT$n9I}Dc6`gY3!2Z3^i6P;v$?q$uRL_LaJbh~UWU~KL?3i2Svh{?y(umt=PS5z1aOcy)~!rm zequ#j&#Z+dnbSkLQ&aYOqk%LD+3;)?z4AIt zEEIK1PFiVpl56ypDLC$YK#BpIU-nz~lGP{hp&hT>bpeLIJ<0rK$>kUN2yOQ{U03fM z?-nDSQxEDOcS7Yl9~-@e_`d5BkXq$F*yL0ge{iO6%OJt%kOWTQa7#TbkR2zq^>>|n3LyFf5SnQ|P3$B^PvCkJ*gN|}s$&LiCC|30 z=VTHlcR;B@0Uf;Azm;Xvi-FLQ+1=eo!7ZR)Bz@&$$$tYnS5@`B6#QWjzP~x5iAE#t zP9V+<&l@pwGFy>{NtAT2h*-`VLaRVvB*|-~+kh9>Umn)i8PJiO!vI@|%0XQ{Y_Nv> zI!y0=C6Dk^1Kp6EKFNk8AX-NF)aELy0RSD-wOP#+< zD#V&I_LI|wmloDSK}|z$#&YOWsqg5lta?efWjNFBR9cnW@ltGKr6M$|n`-WB#^z0< z+T~!IU@N}JEE=MzR+vxIc6VmcTR%0zfIQOp9n{3(`WR4q`g~`a*=(W#9uX;oj6rve zMK4W#Irsktoc41S`mXPv=dW)k_yO$)Nn63-c7MM)xeSEu%k_RC>Rf$!>5;YG#nKdCQNK3Xy$D7?A^;*tlg7;yWu*JLGCAh zZy|$|;Ly#{XE3n+GL6B137}!<$~u(mJzM=lMvC`NdUa|)?m=}WC+nZqu$G26-8O&>q6T^Lp1 z@}0?pf4A4Ec=5>6=k*bk;afh`Z7~2e4NZMbApL@wXLcaWR((Q& z5h}GS!lwhc$_v*T&iKlc<9>|KnL#B~6bNMh+`B*IFGrS+i!i1fO)THcr+y;4HB-s! zyMIwWo(IIKd?h&db`jkz;OO}=ZMmu!O7IC({el@SU^W$f-I?OMd>7^~pZF0=!=fvh z>_H~<0cS=J8$1cA%jM_N(zL|!t1;R*5|`BX9Pm@HvABAez<=}EYaH|Xer1l3_Nr{D zRD(DOiIy3<{s~{Pg#uvaYXS~4lRQcAI9P)I=%6%Z#zmbxM0zh6CzeS`#yAp|*ZrH9 zyJgi-+ZwE?3Bimlqg3e*k!Dk4UL4G%DXEHHFyk;n<1md<@TGEbJ#5=X^ccRVn-vb2<5Ds16G60X*U1oGXu^H#E1*nttXgvB zz1hxXU=%Qq# zVwtfO=l-b?ZTLn?=k)QzI-)Si%B`w>KV7SR0eQ{B-F@_EoynE@$ptHoGJGa%0X<=X zp2o6`l4KzRMIVdr`}z{n*A)#$!Set{cl~vRB(|u39^_&`zUZ3F`X^FFBiMLg+ZnJNrDF#TCT6N<1v}+~`dcj8>5rs~)PW z776i*R6@o6kgUwY;POUxPXV508(({CXW!2tvrQDD-?jQce`uP3bms5+A%}(;K-!an z4R17#XbHgeohAm;nG?3QXP*!@odrIrkJfxgk<<3hJo$~zsG0wYGsrMrbaQjc z_x!l-iok1Uwa6qgGVoxXzT#?V=he+t&{Z)eN$q3DVEEyqyrgvaMm;~Q5*dgkZgyA{ z1@`l*yUR2}$;~9v%Y6uEX<*NBTqn8#6plckQlOX$d=~{XheC~XL9OY@p)R5j$-f|y zn%?e8cb7G0%{ij8ZFQUh>}s%6u8yo__1~Y4fxFSB*#>; z^U?#$_w6t{apLf0El6f!O!V{&nBo~ey~Prgc(?`8*oPB zXC~tnX6S0?i*{iWLk92;02v#gr%WnnvvkdXZ0#GC`m2{0IRqn~B*6iRb@za)B&^H} zg0S_P&5PdJoxq`Gb1zj*KF715#tS~x)$~T`%1bEL`$^VegdhVoTGwZhStPkfKhIms zyNh4}paMJE?9xgJP`X@SM+Ja6c?JWKGzp0*1d-XLcLL6La8}FxhqKx;Ud_;p@y1%8r46xOG_{wWL-|0qV8XTIqav&|?rZL;03UOG7_qXefI5 zbonz6w)Q!P{A?hYrTy`Gqeb)z^Ekz}q>Q9dn zN7XvnVVN1G9*JH{bQ;}U zt!q`k0$uN{%!3dvCO&ql2_f!Fur^m0q# z<`iDWYYhoA3-#*ZV&;mbar`jgXUDYd@BC(02r{Re45Sb-mJNr-mW+m}2RnkZ%yYx$ z3vAaPv}xMimSC?a&&HX_dYu1-Aw5EHK$sTC7|+Tj&ogG&C~L7jr)WQUNiWo&uhb=^ zV{fT`Md{aPkVv~C*9qLGt(L1No!gfwE^(4Ba1Cz?Mwyv+A*=sFkw>Azwq&QR$EFbG zlb7@6=>12f3H8jtm7MyyWz35^*nPdhVF{kJv?<1Fj^lvgB&~GZ3HlVJbV)ihufQ+} znjWUPRv`|dFT*$;1mG9o7?InfkM<@ZZUJ?CAqBN@i@$}$?$QdGCjUqAt44c7{i-bNq|?}^Q#iX6u_0R;JF zCRn-Gq>4yRr~WbZ78tL00%B3~j#Dg{`>3ckp{JByO26W^IPER%g*C6X%Oc}bG{C54 z{CFgxIX}b_ciX!#K8@n5h*S~BZ7CgojuKcES=m9*`G@^sx1?#_nzpG_vLZy53=`pY z5Qm*Q{8r%xkf#)UkZ&O&J$_FLUkqG@i8G&cv{4K8gPvq-m7hoxVcO%E+{2ipl(9t1 zfBw$-%{myT{cR3>w{;#n9FAqrIQbz3Hr{n?WKG)IO$XBQN-;5`@O0k!5 zUC4fLDYtnA>r>H(-Sf~*BK?cEBu-D(MnT)i4*xTNsX|RgA)r5KD9-}qP4g$}v z+n$Gt_QNqSyzDyKM_jLmN)ZM_f zd~$WNnMu`m(!ku?$;I9^zjHI&FFm08L+@Ayd9iVbZAH|Sf`u&Z4iOXuqzpCdyXN5J z!uHTw(8frYpTAepXhgssG(N|k^wL)=;E(cTCKl~#>G@pgaS+p)6eSWreZN8zIDQH+ zxCGsJ+lnr!R;VLv7!WAgDPIW4(ie?NLo(A-BcyElwd?n5A{skO-bwpQ$Vz2 z=`-n@k}_%sjt22qM8lb1I% zrEa`H3o|#*^QvmuKyH|PUZTs!*ahaV=UpWxa+)rMgrXoqh*2rK{5MpTsJ=oavwCQ1 zJ3fVHjSoCusG5mSFI3CGxzrG1k9p3Q_yIv1on6FyKcN}_oi(t_uX#R;KrzuLc^c1z zxr9M=sm52PI**>_@_8e_YCvF z!G`WI#<&T5+GIlEgNRDZxzeq^dT4Q7QAXoWqg$_~cv=Q?bbF9aVQfT3#wHn}a`M>E z7Ks9q-UtIe#!L1=Wb_5#5vnqCIoCG3XzT{qJT_M|Frm%7-crtd6&fB=1SzkPetJ=< z=wgV*k~gm@s{Bm5OWNR<)sp8NUOTeTg#U#68+AAd{&hRQdTe)Hbn>zyeW!8pr-b!O zP)jIUXY_`zF&nSqlMXemB7m}RP3Q&86#tfwUu&%56cQSV5I-)c zXdLU@a;AFN;~j@aCDhaM9XM2~@tS2*xKh(>A=-E0Saht9h?OxuSi@M+? zq^2<)Z|#c_80pX7N(1RK-EoLQ-q}`bHuin7W*MZQQIgI4<&u_UzT`vovXuYPbRAo& z>q_*4JaA4!aKy$rd*+;T_SZl6<-E1J2Mx3kqO^llB@Ls-(P@~|-@hJzv`uYJivl{` z$`&;i5S&N~D06-*OVQeWXFiCV#xYT;kXkc zRRn#eMA0SK^q_}iLmnF}Ae_X-y+r9RMY47}eRma%9TTm7;$MjWG_I=+i#l z5&!&>aqNo=3~tb~ggVN<32chM>q}W5R?UyF0{?5Cf3Mp8Pv~ z`bPQ(z%+n3Lx`HeHFE*C%hg8}{k2Bgy^n~i+T8@Hbt{BK5E+wfZ$G9n)Vmc)(|95L zebci2w?P9?6bXKORG-ZoGr7HNv;6}hjnK8~+yj!g0pA@I*G&_>_o(vs-D1G0Vi?y` zcp%0J^A412>WonT*;{|~%iyt_f^3KJOZl`Y%%koF)g@aPG|hrEtXWHtS*8SEd#}XL!6aEfqmv5&uY*OjeZIaZS`>Pc z?Iid}b{g$_;;7L)qp}>tp;XUuFHsk{NLr@O%FeepOKbj<%rIA{;9860vT4CVW+HV$r*bcD_=gT-)HU zho=lF=!S$GYio_IG>q+q=u;cgi?LA=<0gf0c5oax$?(T1`vxEI+e4RVxD=nHO91Kj zyx;ZSHcOle1^y<=R_#g9ONxZ!T=i|aLi`bQRGp)ktF_){*AuM~^>>~_Dzb9_fY#sn z+F%9rz7Rnxh2r{&g81o+@`p{-kCA%T@|u`Qjr11G$F+Q=Tv$!)q{2P|1X?{90*sQ7X7DwI^+_xo`bvtm+Wp&C5h%?(OGC!hBr zI5g@GPkXR?4qH&O=GfQA#Pz&9e=AEzJvH|w2(8xZ(phF4@`g$LC6bo+mkNVc`H-j< zc{lY)fZq_@Ji8_?g2L1~yaN+{XVwNeR<%X{7J|MR9}Puf&s{@1s>W6(uA~fF7U7U3 z3ILbF8g<}CuHVI$tSrumskTZ7dg#$=!D$5^HXWlSplj-1PJ5Sn!{p7QWx-At_Xz8_ zj?ENs09;Nm!k}c78@jE=_Y~wXB9l!-eUmu8I@b+Fn+kFY9t%`$)W3Z_9ZJ5_<2k5P z^_cJDbg6+xDE)(t#g|A%efw6qUMw9~y;WP}hooOlOo>!~SS`o<3J!;DFC`f=}N3&E-%b;Uvg;;Ib?BQebdFbmg%KndK;ku&t!)wuD=Z zpQWVy_W_{GnRn1zSwDXzA;}t&C<>;DI8*5lV8aAzdw)Hyajj2?+3EqWnX?qVfYUkj zCL%ISV==zu_uO{Ipz@DsY5sER`5vX!k}2;hZ8(>Ab>mmo6ui!<5W8b6QiBINBQ3(W zMyT{rd+NzDXxQj_fpt&ZLXFowR(#5o+Uy!&Y8b`U7*$Skvle`EO@81|Cp|iJtxUa< zU^1nPAtmY&t=2^4_S8SjA)K<%%k0L5?__&aKinh_6SoaF-L9N#eG__L%C|QC_>t7S zwcv$3QX%Aapu2(Gw%X$Gb~n`5Jk@95s1--$B2{Dtd_Vh8p=Agm`AwIJmG!#DUAi{z z2!w`yy!>7hHsjHV^;&zn8!Q1NSz`ujLXde;imDf`DPS_h&g{RNpDq3kK*I>3h^isQ zF=%H=Ju*^SiA(=&(9quiCGAJ0hTUoLSX>WDU`CW2Q6b+TkI}H>WAxPR;i97V=OYA0 z?on>)r`BF42xefGlj(NJ?f6f9m0ovL6kfH(h=|1tizkfEzwS*|%In(~>hX|8*z*m5 zDX$0bU8a-BaXP($oA{gUAd@%BbWxxl{&(7{O+jUMt1R-lBD@{U8L-LXkS4Xf!eN^a zX^mgIhd~75=DRlaK4_dupxEL=C8CB%h$L(-O0rze{sbo$gI818=n^*$Ld=qlC1?CQpJ>KT#Y05*pWmxkIyLx2s3a zuM9g8jVr1EKPtu=1dELP>ShLUWy7^qAw9rXimQ%GU0ay^decmMUzuvTZRY7;DMY_Z zIl(4zl#BDH>n9Ne;%fe2v;U3m{T%SexP>kSP2Y}5QJ;X4PmCsW^%Y7ru1$BUZftR_ z@(j0Md7btpP_7ToZdf{@E&1n*RZx-Xhqj;6*jB;fcGh?G*|zl)FZrizuhs3+5kV6& zWO@UtW4xhany8gumTAN8eC<-NdZmh+s%o2Bo>BNiApj;2jc-q>&T&1{I zb~lYtd+cEz7wxxNO$FMnX~>l%7-ZvcfMWs?2lDXM`?#!l?+42hjv_ zLitXTFDg4t4>l90mJ?Qyn%a;!LPq~6>0OOMgftkb_L4ATRV zb)6bB;kCi9MHnk?UA5zJesHEcY{xoFIWzDQjPtyDNtPbrWoqmDc6zVMxA$lMw^Vii zmmFbHgPW%Comy{aHtc3qgIZnzzK~z#%4&Rzl(tqo#?sO6&l-hFrCv`HwFWIY5y|04 zSk0gMLfzQUh2|i}R6D!u9MM@C?cv1E2e-{Nd_gblm9)CIW@w|NNK$4ckf|WQ$}&Se z3bGmM^p?i^>ojuq9j)^bPyUE;62?yK!zm&<_w-QW-v?<;2K1kg_- zGN24x(44j2vVlllGop-DqAefs4lfLHYkY?9%XpB9;fRBXu;9135We%kqhx`d7G_9b z(?l@k2`>*?T}y=R%t*omzr~Qx)F^?FIJ+bD5l8Us`-~cIjmXcjn$y5XbAN&pLWvEr zZJLr~Gxk1s4-0-7j~RrEteOcgv)H_#bLKCDy?iBYVyW~N|ML~RtM@+H!z<6c4HScn z?SEOOUxs$;+q$V)!UGU)aygKv%egrY{=TC!m1q}qW$g|Kj^L`&s2cN8b)#T10P5^$|bo>KfLmTnE*<7A;`&FLLXlY zEfoj^BCU2&2%W}q`mM(5|A%aFDQdl|Jr>j1dt9omypl8$6E*u(2FRVVonD6b`R;2~ z)?ZvHCqct4msFfaE%2OSU%9u%OSC6H_2m&uVvT9y0(77w-(36j5Nl?M)*A)v1h?M7 za{f%>)d6I;x+BAc><&RAa}auMj!qHd(^^>pBZ{CPtJ-YNsip|T9@S2 zzDuVuV5^#=$Bo&3d<1eDl~}%xeQR~t_L)GaxO);mvAs+OP5-wxi^(qH7)=)*p@Qm@En1G6KZ+QWD!>O~qu(%Wn%wg#%8O zF(X3brZ-rHp5NO}v4%H?uZNf&1n5f_{ev)9K%hs58Q&;&KnB#7Ne0FYl>9Zirjjjj+>ksUZ_$ zW!RjjFeb47qTTS4vL zs>tW#ab4`deZnuu97nU;Fy%NQ1C|F{%M42CSkDyKFzSN}c?QK^1|tr>Zx37c?*T$& z2P%U;aG&A*>BI0r6r=u17IN8Qverk#?>BSA$b{C6O#ZcBDMbRKL_ z;esk5`lnpKMsXn=y>c%}ed3LJleJ_l1gm;Z`BPt!ahA^6yz-lvMufldv+Ol<84}ja zqcFNLBTf@G;%I^WoG!COP3~2&F%RLX<9PeZr{>^&1`*@!=jf-1goasx;xg;zw&2&{IGX>Cds3rwxvpG1bpxKQpio&C&uk5854YZ_c`;E zB69IgoT!+>PT|wa^n)~Tq2gL)gFBsr&>zia23~5Sp^4;Wc#kGyy1Wa7t@IKYzLXq% z9@nT#o@{2{twb?-h-I_pZ!4uxt1%ZNgz-g<_@HPY4~y zrA-5DOD?CxC{=0qKLv}^p&~$Grd*_C*`s);ALQtWEb9pxwZArVtE3ryk8xy&3+swW zHXj7HbPNSJAnH0#t&zS#Jd+K7`PjVVZJx^{RC>Ma8V!I8yu6F(@F=Sg?n6u&+@)!S z^Be&#i|Leptof&5y`3nYlNic>mu>n{unHc*FeK^%Y*TN6>8^b9UC5KXph$j|qK271PJ_3`Re+A#&p4i1dDq!W2i)JMiI` z{dQE>gX0H!fy-BsXp8>nfsZ?zDDjj!SE?F zEsU+eRzoJl2m5jIFyuaM!5~JH5@koXrd3pQ(UX+&>QL;Bqu%*Qe?8Mgd8IWE{H=;y zP0M!!DViZ?9q{5OW78N+>+r5KyNv6|wCNd<%fzO4hX(dSU!r)g^Qyu1trQ3O*xtKb zo7ZFbe&2Fr*RiIaQYl6+ZnIU!jXSSlV{@7?lfSf*KFYIbU@5^5Z0YKc0qHhIFlHSt zk38!jEP|1$J}P1O@iOm<_PuD*?C=g9M4W*Yf*}XeX+zYQ;x;WQ1BSCOjsy2s%k3zN zOTL*t21j=GJx#8dYLugFB4GbkmbxAT=9spmX&%xm>YczERYsOCE67dUMm*R^5%W`w zqU5lYn^nU!uwU%Kg}S-l3JoN8QTsVnW$16F>?|WSwJdcQKvN{!$NKy(J1~RzW%8R@ z&U#q@E1yik>s_IQvnb^D{x&USdQ~)dool~UC^n|m^?tlOJLBp`qZNJEE>+CsoXkSM zLx?Wmy|c5L2<))8!j5jVdhDAch)`A)Rp7(wfQ$-?WFCxvz+y9hej5Ajjlo20Rq!&- zcO|QTw~!2W=SQVlH_I@bwlWF)n0%=EO*~4}YCf70houx^a;gsThG8U@88Hb~KTgRI z7axR|mQfLO)#*;C=ym+d6|6PFZul- zX^HOtcFp(}4*0{tJY;$-LNNDvth@6!R(}tY zV%&U}Wz+4F|F0vj?;Ch=QedqAt`uDHZ5ou804I@ad6dLoR&1K2J%=53Qo^;2B`ax3 zt(EyoSPi0HanWWQDXnwtK!`X9MH;b;k9og!o39a`M}`X^Ikc--!;z8&HTs3I70sN8 z&c3Q~$XkI0UgN(67N%o#R7uqD&@szW;;L6@X}Qms+pvR^ZrQh1KG z-+T6Ayi!kfxWNy+$A1_7bds{fNG`%M4q%>Ty#ftow@ZAvAYybY;r{Tj70&kpl*##+ ze0UtRG;=zVG)m~PoaUw#X&&t!Bx`<~>~)Ld0#F)rw$Z3Vz+^j-cd#=Z97ptx{=!DZ zqJfx#D}D2poDUX}?p93|9s+FDH#w(sGh-hMh#1s5AIL+kfc3t*qNZXIS0cdo=Ek>L z^Er?HTmYg=!#>)TEftjc>7D7eLf+&Q4!{#<**{PmY*NRMM_85Xz1D++3-j6sO0iqv?zL=QompQwi#F#PD9|jg{(Lr;H+UiF zSB>(7V*4tl59sLKF)1JCn?CU;IAlv_|BA{TKT?x;tdSss;u$YJBPHPL-i?%X9}nV0 z?e*XxOiL5N2nnjWR@d$bHi72u)7P6I5NnHRa`SBLhuF>rCp(D_jbsdSc_3eHKSEEl z63kAu%)q{e3(Sg0`2JHw!af;Q!eAj%7)eAlVOMfmTaIp`i*bcBn#AX!Z4v zZu-tM8=J-19kPF(|CM#d+|W$eCRQMm0LCXS$;A+vU2wz@)HiJ4lEv^;=Qwv9Ix}5#7TG*^JE_l`-(iTBhSoUYS1)8=haF-3ExoP4U(v|ypqLU^ zaJlg*wnHuS#oGLHrwjWO)Baps??XMYY$n=t|NKj8AQyrUrtxJFixz?KWF3w33Ht_! zGB8^C5mswB8T0pw93BmtJWb5*SrpKbs$Yv~NAbDc1wL4fJzdhm#-oKKO_ohwSH0M9 z-)-JXo}ppQXa>FQ2fd3*h8=`XVb_%+x()gqUbE6G%oEJ#xR6&rf%K^5TMhs!4xat%ms4spdp7g~<)iFkMvLaMrZVm5;RooPSnA_B_1+rhPCc@Cn^ zW4lbp&jpDmdDGOa&BtNyt*{A|q$p~BELa-9(GZA6X%2nz}&D4s5*kU9MMu0|7yr?*UJ-hQN~p`QX`HJBWfz=ZIXP7vtY*c)QjH4Ro^acZ=hvRD?%P{`sh(mQP|HwbulLo~8O$>$K>7W5gVo;wZ9i)!8gBfc=pNGZ z(sqZNu2z)+`W zFD=wT%eh*=LFi0akMd3}{~q#4sTuI4Ia6rjmAUe@zZCBeH+oZj3qAEi1?wEu2p>+U znR)52pkQ%2#-4JZ{r5_$U)vvT1HmZSjH$l$a}CuZA1^f962f>~CECXT!Lw3C06sqcZZ7DhFkm43en z0YDWNc=~$H*RC6Wy;Beoav$u=h}5nB$>t`+HlNL$>4*f}k+rDKL=obxh?X9X;CeF2Q)U%CGMRRCF!bmzaaYPjtfo?wWL| zS4%~;5S%qTkWQ^0=jU6Uj|7=+K)$*?{6OF5l=`KZ0BmfF7A;9R;3JIPV*54v=ZFdH zF3|)Y&P0yq*yzqp-JNHV1e>VOtwgWNMp`?7Z>;qmMc;hV*PHqTZiseuP6(~P=5Q0> z6xob1S5}bq=LQO)es9`$8a6&^<$}3seW#nf94lTK8`*Z-XrC zv|eU`4a}JwHo}Q&jJxSn0A|(ZX|>xT5H)!%KIy_W`oEV%{jmK=7}wd3t`Yf7fI)O> z+X63<;UVn-3FR%lAhS}eLBcGk9U&$LX-fSkMu)fXCflly&R1ld7p5vqHxUw{f&AKj z8N%#dPC64*MUn0KB!@T;#>26|`&DzYC6QnPh!}vQ-ed@;t>ef=!rc-W9B!xe7@H1J zWgwk{BprLyzDDcq4=c=e439nx76$G3`-&qCHD^ozU>&4QKJ{v1CbU8@+X9B#tPd#C z4m25Xf0A&C0NK>V$hWNZ>AM+<*UNTOXAXLgMGQGHIE$RM1OdieNRcYS5gv+w*T?DRnO+U)+hqJGGC zKZjkyD36m<(R^wjpvS;5k5>KbB=&jR$&D8F*jsfDP=gMzaeG5}h?M?|Y?14uEyN~C ztR`{+`gapgL-g}mSqb9(06}@ zly8@2dQ+A9CWcaaXmOgJ;a`k5{f(`RIwZ2P^pDgr?~J#)%+9wgWb=WN8T3=SFD{ec zv-{7#3T6_&Qyh+{y2G<|Msiv9gis+xl*9h5zQ$8BOrB|fY5jH~BT4!M4MRO--~!E2o?YA0jt}6J6d*N#khK&x2k`)`t$>ZZ&1w+WEU zE&FJMbxJE^?BSfC=fKM`5W4tQ41U$K5N*lZj5L3&&Q$t(RR8zjf#^X=eZ~$48J&5# zUNWaH^qE>_jpp>2MpW9~Px@-!TN+ds8d_ORlR3v_u8#BgjRFP#G6mD(#y)i3^67z< zVlhxfM`Ku+FoMMJjpDLeU-l^hj5N{ZuHL1JUoJleo=t?s0=W>zdi@fZih!W-&) zEe_|^tO#-o3an!_G&CtPls*WB_1`~lpXe{FxS;3s$Klm16PqiDGU_TaRhX5*pQG~~ z&PxQRHF$^JHXj_UCg;#hQxwd~8j-K&v+iuJ%a+0D`jVYdO#Zuuj6GLd>G0$y6dBKU z!udk8U^`+_<529I+06|n6@Sla6NSi$uEraht1M8vN;57Ftv8o`gAeL`l?RuDpOxm) zcKD+7cYw1EcQ+bYR8ALBpmuKs)1|^VPQNVC9yvPvy_Sah{xA&Hp`{ zlV3y;oe~-r{p%HhZFf-(1R#{3eENmVKnf4w**VGkXTS&mP;ddam7wDz&~!p;gp(og zKQ~YnTPpm!fPj5vfc`@#5FCZ;o97P2FjddpL6;$$L|IYWpX3?rZTc2Zy#Ck`J4?R_>d+_W?5MM4ph^UHw3o? zuJ`jVc9q$*m19rtgalV9?Pbt%~dV;f1CNRj@A7Wk* zOGmC|MydXS@jr1}mR_Vfip!)8Bc-z|0)x1pHQL;2L|tvWUClpekSKB|bYO zd(QnUqKcy9!QRvG3jFi{pKkzZ!yY^>aNADk#~TJ8%3tU8&kqOTX z^mTOp9cx0hVxTeEHSN~6e-NqsCvfUZ#hZ&X?wnv}$e1nMjn*G-5l2&)d#}B`lWAU|zH6WJcG;`FFr0#U-=>T0RPWo~{{!ia*crSy-wsX>`QnBx7&!u&)Ce z+od>HipcFNID~b<+6TAHr7qS6N(7GyRk^16bGe_Yl5qQ!G>HkM_d}boLXHlY0KaWrT#W zTW7@cH6$wiHbcdla6cY+n@$?CI+|*}+ENmQ;%UO@w(8{Xd`$fH`0|+bx)qH`r)V5S z|2`cMma^(;(Kjo*w*$*n82;_x+zFQnA$TaJw}wMI*>-3V`Fa6&82hr@n)?AO&Z{pc zoS1~W>afF}O8Z~llFvt*WN?#gmwb&C{6_hyDl7Ab*iVQ2*WF=Z$W$xdCqM_fO4NNRRyYLbu!JnP7#f$*+yp1ilxF0lLOkc0^>tyZ@ z+ZZMf%%-4OB6!0Gsq~An5TAaU{#)^McotT1{N9IrvJcZKQKwRt3ad2_i2#>>zNw|6 z%r`{DN_-G6KXL_B=c-1vQ{nF8{%e2ym!2q75Js)0VGze!o|6)b2+J7zuf($aDX}2= z42O}orC`@-tR6U=BX_Gfuw#FW;rq#l$s30|lD%j|@=c{riMJR&-8$)inqY}9AjC~wC1A=1#{|mFXwl1XSyq;uHIejC)JSfwAEA>~Rbh$dP zal7w=%dd3-f-l_8cMK1Hd-Hnjnw>!uY|D@~6vYqi>?{bZ4y^fyiX_5QaJ&W74RY^* ziC%PlnQJNWIEx)dpyS5N{F}|O-Ei^}f>qa#+RmZ1o?-lkET5X$TYnt8niV7X#cx&;h!Tv<#Hw) zn+O;|%ZR1<#QDC1&{#z;J*UgqfXv;xdqU5mB2F0|praXT#QF6z+9!Vq>*WpKt_| zU2>E~DuR=CjS={rX*AqReZug#KoL1|Ziy-frWVii9arC&MY#vMwE7>mR($C(aa5_{BlqbUv) z5x(z5p#EJ`%gFrlt;hu5;3Wvh*HHZVjPeJ~abj%P@%t_-pzKkz7}a`T4TUrt{-9e1 z()h*5Mb&0~@o)0DWB>1f8KN{|pM3D~HZlnK+aj7HAM8DcLfX@bP|6T<+CFZF@kEoA zWY1P7{PSy#I=d3suWb8gU&-T#?8O^cchkTYSJBm$2lYh19|tZB+Ugv zC7RvFRZpp#G#egSGeCr`=~`oeN3G&tNh!7o`lGVC7TBB4cUUO8E+=xwF zkk5rI7OwcFICu5{xj561fy38>QX$ETv27P+0GU8PR39DW!`GoIeXKAKzsylIwfA}1 zqf)=#R;b9Hmp<(e1|yp;`4z)EXSP?DB9{3+!?wo`5~z+Lj}N@0c#*RWm$KAfr<=G? zG^N+nKU@sTv~2)wXO8YR(Gz+SepGR=r$Q#~^^n)nN6wXr(*S~)ZQAZStm)tAz5`c-4vu4t1W@(0#&oNn#n4VAbT^c! zr4{*RI?|?6I%hVe!V!hm&&aHwG@4(dxg_x|b%gzT#G^)~IL^bmr+k0wJ^;ZBbl)sC z#v6i5J&oe$ytH4}vAt(jKq(WWrvReL`OD8yeA(c$v=6?G_^_{6fDIvV%kB4<(mzU4 z2l-TLJ%soNFic}!Nc&trH;QUgix#$F0q^wpyG)xhoPZFM&X!52noC7L3V) zj-v90)=yjhfKynG=KMbvV;nw&r*I?mt}|O5xEIj7W6hDrq!jGf9(zi$VA-J-InI`;QfAhG=rc>^);6wBLm1|>nJ!c+XV-UeHF6 zdDxY{F}8fa1Z=W?(oPHXtR;kS=R0~vtpFXdx&g)l#a|ALC|6Df`$*$MyBJ@2+gu)`FBy=3D1 zcHyX^^QomED9cWW{-wqWIf?tX2rSDAbG6f?2lBXl_mnPyv11+vOY}iMcJM@I{WtLE zEdUb`A-CiubO6Ya#Rlsah#dQjipt4_Kf=N`$d$waFoTRSQ`}nHzn4=*VEh-krn9vgA*yLbnV|B?hkPzW#F(DioFqwK?n+7=n z;`v6T}7;#9Dg0_GEqDk+&SuIDZrfx_a})m}>R{aDfF- zzPjF2OHNrp>|nTuLk3~+vsVP|qBxDAm0@_(s+(U$WJG1Z)dgZr)g`PhCFG)Lok%bc z#QxbCE`)Qw9eW_nx-TQli><5T%<a1U@t*b+?##k!SECtegLoS!21^a*;LF7Fv&*qIY@***7HfJz7OKw~ z@PaeRxcM@}*3Gy8{1}^W$o^^1p_I4oIKx0SDl46uZ|1$`v+&dl8o=w=9U%_LoG1me z;+1bO%?qmm)|9`6P)n>rno#a@dNb?1Ry9_ilc3!A0(>mSwSZG#+7AejC|7G*_33Le zs|;Bm4pgXQgqtZ^U+fi24HuGhe#Jy*OD`&FkJ$jYZS7s#v27$4P{ z<@TCmg!A^@k~rpo8i6|P;1PBpD!@(dkt@kl6@v6*4{4fij&-bh(j>UZt8cg6;*ReRESYW1qByTdj~!gUb$ z%UJ!((y_xE9$>9ur&qwSMVN>`3CTAU?XH{WZ$mh5S+^uj;-5ge++!%%n#+}tddq!O zjd2+?XqG1Jcc*|f0ukb(ut_l~7wpb2Camyhl+!E1UgS+kDHu0~kcZ9IU(nXz7<`tQ zHE9PIyT}2g>Gzk%?@zy$%I!*2OQK=>Y#IoOzZ;@DNcW#&tHvBfz>m<{c};m4;w zIF!cJgDI5|NO`zEAG6oK5TLmREWm^gxd_?6r0)>TP=ldqbmVr(0^esLncA-QIw{Ag z((BP$8(FAkxz|dADvqEyBg*J*bQvv8V4Fh-!H68Cvpy2X#ICa zP{Z*jGQamX+b}@OdE<*jKX^8N?guOq6s3!JBYVq(K+mbhvAsi@)gs%n2SxF~H@_Hf znfoM5wmcl046|<1BM&R>GXFp{&dwZe8>2VNh*%OVL*Zh6K!Y)M5_)3nJageM!qz(s z=G@NWZ`I(kndpJf{G?gn)};W0wLmF|0%=m5>^x6KK|;H-XC6X|R>xfTi&2bJw58b? z!brAo)cbtiLivFcOSMH3vaMM4?@SESn?8tnx_1~xa*oPSoy^Dh!wb#po*JEkc0D0p@35Men3#0_p>u()B)E0(yv6o4X?d>QvRv#EJAaPJ zstfZq0|p9LamgoByp3CU{gOBt8W-3BI;A`Q^0jj1@RfK*dF1H^{ep6oAx`>guB&N> z!}VmBQ95DVjoZ;!>}N(G9)%a#I!r5~U=zNlKv?d#AkbAPF_PDoieWv#~oUEG>_M-lW zL6~m~&XQ3l>cb1Ss1xJ70s8e3IA*N4qrjiN6+*(Qys8!Au~#t&A#|bq*>cgly`$vSXsL7*fL>u_HvKrmca8FkrV7f)H0SUYe$_Lh?}JebeOO@Ys6R zEm_z&2o5SNA=SCG(k^ebL+`wSQ@S)rkELxXgv8WgU+|=$(HG8fG-KfF*P@XPn`NX>! z;q~0c>p--_0f^v1n~9|Tgl$^qmA~Fs6#WWwcXXm{a#Wh)Ri5gy=Oi!qhEq2NL%d(C z=^IT6UwgAz20{t33Wy^rU+_ak7SdAB;dsr+7X=eWdZ40>ucRjXIotULP zhqFOrzM8GVR9TwvC4N#8VLW{t;TOfI#ru6a&9Uex^&IJQb{%($6IO6e9l=HXcNG>q z``X#1R~CofOL3i7VtyCg^ncpnF}p)IQw_eft{TDM1U_FsiZ@gIMNcwq?8FdGr|9qD z{*A<{xM^*tyry52^<%nGC*)!wBB8)|* z{ylN|lVPpU0utpG4|)7XZA!G+O#W_--bL)dUC|VSD0&ddd#Ad<>MJ5EH8MH<-*f@C z(b>i{qG|A~X318Y9OA<5R_b(PPvE(*P7Np*R{KSqeq4Y$lG)kai1Ht2sEKa?)^_dP_WWQBHovm?!6OfyL{^R;MxHr1U-}!ubI0f*zqNT~aBjS?7<5 zP2SpLEJ0I=`-wt+H%Gs0g}g$vKU1G|-d{W&f`@(OGve?WhDX;}A8m-z`q*ZgiE0(`3fmqG^kHJzrRU8fW1JV(GFBP2F)r z{9z^SpHf|ba_TopOfD>RYIJgR;ns_Agb)cuvxfUhv3TREuu4m^*uO>b;9>B~6|#q0 z7*%zrj*+gQ13w>EcQrqQjR>~78Hr*}O$ zhj*&KNgM&TwJhJ!!WToRyd=`B+hd)sp%rh8XGZG%4rXY@UIbMwkpV!fe802yGR2jF zN(1-k45lZ|LRPPJDyHOpKNvE#(h!VHX=H1}D2kb{Uy2F%oAe!z9B(jasl$W@&#PYm zU)4wvq}^}#RrvkA!{p=3ze@OH)PBAQSz5O?NqMi}AY^eRL*66vZ6Iu)a8A-Q5xlq|FM5}ymiMoGdHT>^<`mT)S4xCL1~U-rvKI>#`G z^Z!F^nyGFdj;2J@kOn(0*cw{mtJbr^twCP7blsQ7E3YLCHSpOA?G&Rqm8oSsm<3Np zo9~jWG!F@=@^rbmBSrlM#hqQVG79b|+rD5ha9Wh%=NXyobrbseO-H-|Lec+-Zh?k) zszQHJypMO&C|>eD+~P9Q<9c5B(O1ODBn}XcYB(q~Y!Kp&rnrhVooQsqs*2{Sj{udi ztGS#)bD#%H4X5Yv7L|PPeze9>vGDOx0qtqO$DRnvW)(xUO2!1c#ZNP9hMFiy;lhbw z3*t$woiE3%O{`!9GW%^p*-yw&^)Z9XYwgpQ_hH?}Q$M@&X+D&fqb)jOlIg`GCAzjWKvcth^LAl6^0#*wCdv9CX5Rz-Kk$^l3iMiL?hh?*lmqNN@7->UEHS21Dr>N->$!V zaGnM)m3S>uwQk@S{=1(&U8d%X#@L`Fuc@#Ji7=fKZ`yhAm|*<*FaQn8|2N7`XH&2b z#Br)1e~Jh6iMfDB65e6y^%Ksxkqy*CV13#dn|4HpO46l@Z#&xeFa0#0^~QA0;r%Cx z(Yw>+dL7|595c^A6uzj*AEBv#S^8hD#)auvWfayp{LVd7xVgT6k<*us499_7 z8KfJzN0p!?(ZIP5JT^SuQvANMS`U%i_BS~b&R)mzU*?6#Uv6=s!eD5OJjlt{hAtEm zSopaxksM>2H^n`|Av9Hof05#uHcpc&5Y*QYWl^tR4+RdW{|K+d&+-Rf^dz8df@dXi za8lI?U{}|$aM9r{&PxjPvK9BRa_urGyQXK_80VT$Af9n>n?dlk!b?2dxc8=w3O+Pz zfReW36f5CtFk=Q$8X?y_51A**n}OMzPITpb47EL<>$8)qe5JW1gJu5_4EPizBo)nM z@m}Me4P}JVc_Uo{2CJK)2H~IU5n&3zekPMK6@;C9emU+5vG&vD;$vwzkCjLR^-SAh z?<>X{2!RlMF_tko4-u?Cm~lF_Ku}E=*$VMlZA+oGH!aKYMQ|rqZ#43u{D*zTEp^R= z>L-W~X>yU|#Vr<&-=)Z};oSV)hr3$lVmt(X8!a(o!v^`DQa;nu8qvx#gpO$E)B*mI`9LiR{%I;4zoR+E{U>M35t(MlA+|nG66u#I?5>-{i(U{( zS`b$0Rj>J13rMZz*XGnD{U8hm>5$x;>va-ymbk+>mQDtXq=yDf{(Ujd3`CAgmB8`cgW9PE9DdN_M!uFtG;b%{I1a- zXR>k#UHWN5Ch|bEXfWLF@e~SmbyicLS@lXi^~IE{@q&rU@py`+7=*a-CAVIC znz4&y`yT-AU6e@amO$b9{JO(;0X|wDEy2?3kL%r_sh~Z>MyDt?i9BxXx)gLryc!Ai zf(rU1Ghk&6{IJ|xMg4#+_*;y7dlCUcgm**R#q9>oF^_nR1OZR+C;xbWZ-xT++W78IF^w!sPAafeVU+`J#38sHrQ%#2m{$#wu+MR2oG6)JjaQeaVkA@k%%XKCVv zXrn6VFbZF6TPy;D@cH3We99OMNd5*8niey5`)jDY8~RJVut0JAX_O}Mo=xS6KWHsE z)nClWJ9z0p(B6khNBBu%XgZn<$s2}3Y7$0nd`!~E!6bgD!>>~XReXrf#jyPmRPDz< z**QVJOa$&TwxOkPKdB!bH@5)DMN>#;C$QiIykPBY@Jc)W$UNe-t`-g1g}_}D0+IW% zZ%?7r!TLR6RIquI1-A1|{iK&pmuLbb*41X$CUSrg^$UZ2>mp-Nd-Egbg}Km4=*vB! z(7Ne%tzJJOJgU1g6Vj8Aq)pr8RDu}<`I)IN&Y5u4M_Z;@t33Rmw0fdx^ zUgYQ?uBqj@qA;azl@cPBE({yb&I`noSysjIzYohf^)cNtV`LMVgwEA9WXjJ zZ-%V}7CM>RHfw08p5Q;mDwJJatt_Q+b|5(+>dZld#lSmVonr0U%sJ)769^x(KdVfWt_mV#iUeKWb8I)!% zlf%|DSc-U7QC*=nJ5QOP&k-nB0ZVsd;XMuGZ_~VAb_ooZkx5u}dB8gQbG63z2mROJ zSJ<=h64>*HTd%X!th0#?3>jhu^u64e6Pg*ixIgF}9?wpITuyJOAjKW(oa1)0nJ?43 zTkj0Z`9!_FcKg@)Y88A$A*}hBA5~R6V?Vwrt<%JGdmBxmqYR%{j5` zE3VuUJzh#?hi2xJpO8TfXDeP z5x)B68X28fUxP@CP|NSpNpVDe<{?KYK0Xe|5))25k~+C|&A*7vIT6pgojYhQSEu=+y zvnBgZ+9v$R_g0N?d*Xx8@Am>+#rOA4vjG!ph>yo?6%N8?ZBX(ea;P6Qdbr>Se5Zc8 z&FdH&$-31KM0a{ z)ip#F3hhjD3C#I!WkA9d$I9h{M4oNjdM~J{2!?O^VQD~_+JkYbaOOKeQA1w{QLq(_ zLpNjGC#Iap+BV9KGZG6}!znP`w;+0rAECmW)*AS}Lc^;Yw*9SU;>Sk-!i}B+tQz^C zCf5T?)5cEsDXsa>f<{VI17S>C#{bg);UO~y+p3$1&V~QkidA8rk0O%OKXxrBSq-|- z5@B#sr;%a8%;U;NuDD0+4C5wZg!KHeDd@#kPv{R_;8aM-4+Qt>TtV- zMXaA9Vm+l}iaHb=VAj?n{6Mp*!pq4lIJ%cF?zQ~8iE;qwRbIPe2k`f4@o6Uj8=(qP z_g8oJ4KNKmsqi%d`K5avt%Jy1O$uBG`4N(zQ>GONh#$Af_7Qvb1?VmYhPFhRb;(64 zOq!+S4m(2^cT|o2%384BX(u(J*Xb04uwVBy(!eu#^Awc`b~p?V-P?xl3X+E`RkEld zU=5+BveX!T$k1>OlQF7Uhl9vL4!LgljjI{99J69h}WR$xCFnSY2zmCSwUvzvd%9n=$3}(`RrI6I<9ILH+{V$bmBRuH zf5Z)Cx?~~?swMFaFgitUEYW!4Tiu!`1PCO$0`KdRECzCA@qplx6xzvIqaeEU><(HV zV%%Hx=JE+nW$l>jhY&*;muFlc$Ge~JAkE%r#HPb525K>Xjl-%>{J{Me_&95VKcdB+=yEB>d%L?tHRp_ z`DqOJm&@S=jR*dE(=ZSE85i;;G4|_g(UM&U`f8%vs63{7c$oaGCU&dRNR+TfVlsaB zZ|JG(Efc;eRb+fK{oMhaV>CB6wfCa_-JE2N&gG1Viz(|wlnV@fH?d@35(OOTz!6~8 z1~SQ8iLzE@-#ki6YF8bf4ve;|*qyUMP}sMZtLe`9ITZpp$g8_|$NMpj#Tz@eDZYb4#I5ESxq{zuk%EIkYC zX!wFyfXOV$n4C=7k#n%gT>Zhnzd18iv$cT&)Ga-4OKP^{o#car*aky@TIV=DNS`$o zaJOPL)ike-QPVwLxX0uJk*il2hU8H~o`2{s;1^T)b~rM_uotX*$ARWU1gj-}e!q3M z>94h$gY1eWlIs=sS*%O zv0<#Xm<$&rIvO2$ql>>FEwXcaXWm!8HC>QhZ2fF5O|X!`#^yZ=-Nb15S0OIS3;Rhk z&1(<0wPPAgZhfIa8;S-X3M2;Wr)6|b%;V8WRTz%EOX$1@EFS>p6>fVdCXK_ag*Quq z*VCT*-4B-Lt^7FDLy#d{cB2WE&c%!!zKxC>uY@Zf74t_!##J&oxs)&!nEU@WW z9%oPLJsqPZ+OaBp{Nl0owe*xXXwD>kyCTC^*1H3QmMZ`A9C7$BNw3u7Fug4hmMCtTQYbAmUM6GNh z9pr;%awsYYJz(tbE_qk#Nr0x|!N3@uK6X`Obsx)z=W~cxghp)Mxc~om!B|mN_gXGV zp?k;`(sy_VjBff62Wdc@_=I-G8XgV(XtY>_nUYshX5#QH zK>!e!7T5%(pDt9f`!|uVe}?ErxsY>Vt2dw5TcX&3j_DU#F4JpmpD;rZ6p0D!zRFeN zo2tdimpl zFFl@RRGPOyTc2E@zX!4snA4kaHGCJIeBNUFj~t>|UtD;xGg@T>_s~02l(*tqGY@h~ zVmCq6qlp;9=ybW#X`^xGHMXQ8%*1;!B-kp|TV)}ep;Eun-y-WEV|>4*50}{)9}|E~ z(2K>=c*{IF`n){Jy~B~x)zh)NaZEu z*T-&mvM(JP+9hMM{akcBLv%-~%XDP%?KteCydBOV;5;)0S8RE_u@`OBfqmOhxUq{< z5%HPY`7cO4y6DE<1exC_x+UuE{j0u+xT2aK>0zy<2suS)J5#kA)WM2Yz|JQuo!7iX zTjULPAQD5fA)*;bKLP&kBq_Y8GKFQnVZ;L(d19?&*lNKwRhaIjSRyWWJfSt|^?x|*wJM_~ux^fhMRa#0_>M*Dkc*Sco8wfOYA?ufn5RWY2 ze4KZ*VuSiIl0ZS!8sr#U?>(Y%eYbc7A~^l(U}s{uS@-djE&~*(iNrzhy-BNC(~$SI zpvKT$N2Ra$LI=v{Wyc%X$0G8C|HyAJyP$nA328F5$(LP~lxKd-rHHsj^J|C@=FtvU3l^u30ETTAWn&@^9lLiNIs z9kDGg@*;|H4_@aG@iD3*s7u(Nd+d;&!(*ebKGc$tj!z3n%u5j^={*<}2j)McyawxB z6NEp4hqky|@Gr%-Nz*l3Z3LPhIM?e$%)M>rYt7xz+Kb*aTQ&bTHyWD+o3Pl=W3R3A zIfTK3>*(sE&yuJ_SBSlWZXW)?VJym7sGMruxYeqsPRhW?7fy7|hAEFN$Ljf``X30U zVt@Pl{<1%*M=>2KIbhnSJ9KqxX80pj0jgR}5X-wjx4Kq$Ve|hg`jYaz%(fI0Cfp!^ z{aKlHQn%1+6vT|Gy6?h{I@NP;J%FzA+)gP1zK*#Xm8r?OfZd%QH;P>`6*w<1lXIVB z&X4{XDo^QuXo%k<>e1I~MtOEWd(DQ(BWt5 z!~M9-Y0cB;otIMbcIcF`&n^8q2jc9xn^%bTVZW4ZeZr}_km*y`KV7{|cHRiJ1XXqY z-Q}eX>bHu5hTdNnm5uedyjq;K0N)mD7m9z$R%>sEH*HEtQCLqcs|?LKACM#&kU1=Y z1+9QVWPuxJ{z~Cw!=efooYDIOg&h>jT%++^Z6Rb{#O!Zj9Qi20NClOllr)2K@0Ywf zDT~IlqVMl8aLTF^X^Vba@BFG%TJIqbfPxH1Xs>Db03Yv26Q-q4^X!jp&~X7ZSy4m4 z5SbBYjDe%O9pDSzm!7E5|W{dXn>}?=pDN#f`5o-&*n6Mfz`}CV^eFOYp{wXQ{ zt#w(>joP(CrzurCe+;%NjD7K? zEru@PXP58^5AyPF5hEt5EfF)I$p)ui90%)1x@37mK4mddImb*1P0llQ3;P>Fa`zEj zs_Q7*vgP!R*PG{>B1GRnaU1C01vTcZz2+S0CTs0W^TGEmUPXcEvCV`0RhnfN;+D#Z z_{Dnnn4C{`GJoD($S=hLIZbA7PI*2a2`c_7#x-ww)vn2bR5mwBjr3tuWuNIl2f;TZmi7@oOWA}452Q5$EL^rWu>FvVpz=(a0IkGclO!xEb^Gb%Z?>$w zqH4igE{OHmn&REC$Q8C>Drt4wWR&5Zu9e@?K^F^5Giv=e7Ztz|hGEC{ZAuWS+;^7q zr=-MHxi0b+-A!)ET=_sY!TAmcFUOYeh8hJY4!{m9D(n>P1K6?I2?NUN5zU0fapM!3 zy~$Du5OM#7QSOyHTWVo^q}zQZt|$Td50$@3OQT!4a-hd&vs-vT4+iw*Jf)vdsI(KI zx{@X~_x0|<14H|u!0WG!A17Hw2=HNs%S-RxXAX@~j|`Gc!OaD7x5LP*MXTEWqo{q7 zM@|2@feMR79B)XhjOsjVrOScBBKrv+Z|HFd>-7ux+$X2i?!lwo`xuLb@!a?^QnZ&> zgSy(fpGskQ)rzV&p5#nP(=nSNw-TH5k1B(~_;awF-Z@-i!up%Ug&3NQ5+g3SEgmD( z#P_@C-!n7v0C`2$w12!11I4A$+&*mO*B)(Gzfk6t)S45%2>g``IA|lVJhq0(l|EsyzC=fBzjN08G&1YR z`Kdb4dg$5vx0r@_z8I*r{Icr}3X@E|pf$KDw|TtAo7~L?;5mXcsHw6ZDmNWY@5pXu zvoy`n0t)9FVb^XJo7_(P^2-6%=u=#`p5d_ujVIu<)wLcnRHVYN5<8O8DGp5UPivShS;hAjjdBidzGA&L$ z8Uwm6g$5!3&M1a;?l_j%YsO43=*0~slSu40j_*i;SVA#dwzFztW7LF2q$V{?n+ zCwPl5(4@d|*o?d&pffeH8?njY^F)BGvPOb~XsgH_?WE=9+Sbe*=xX_8yA~5MvO`x0>n>vK`$d$ci=_bpXW;x$qA3 zEV{#2{)CcSs4>l~|6)qzcr(0$7)0GS6Al}NtWaoacd&P4^9rV5sBmCwcnU8a0>did zO){gQW~9d7L(yBDm(6(Etxe^>ws+p_)fgadOBPhIQ8rbj(zm4JT4`c%g3UXX>}suz zbP9-H$y`uKhL%2N%NUuNBS<*G>qI=l&^G=q_+TdeJFe_<-cVZydo`?eFVjG-*8MkE zmET9!JDVZ*XRl~;;OfS=?u)Z!roY6RX~lbFhG`o9n#%W!Gx`?t1ZpKGw(~Xhih4Zf1RX(kHzAt#JBIFg>GuuPB(yp0_K*S@)Zi(Ld3&`AZOs!U=a` zeKJAL%A^ax!S#&QB#u@BxoN?Y%(QYw z=>3fDupA+XKP7_86N;#){3l9-$aqpKtlZWzxn@8*7!`P(TkPZ8-|Sy;^w*3abw zdeKjSbAy2m@m5!#A^qg!@Q+xx#M8?XB5YQN(C&brdw81(_YY?gUWxe`o0WtLbtz0y z;)?PJQgoT?pI(*}aKqB(Kqsy_io$-86)eC;azod$Bh@M0{_NL+=siT%TGbjp6AJF) zG&D8&labzFXV-kIhrj)8zB?+{PkLDp$>p^T)GE7O4ew$DjqHhPS zPODtOV1=up`%Z5vmM19G!uKshj9&>l|IT~*fw%U~4H@xW!XHEf)G-M_C2R}3^%e+nO_Bct~rRGw{<)Gtx!f1DU#Z}y9_W62YYd|>d@j3mb;JgXgs9UeIL;#7!*0Cp zmhyO|{*O@xBuKx%*@kOem^p);-Q=7-D3{nPmuoDW`OQsK+&E$HVz751I^LT zTaw~+eD*8{A^q|=wr+6=YTXrExfomA!366+4i&$VnO4A2w_371(BiMOgSilWF%H** zvSru14Y+4T5STE*acgSJT6})!2f`zvUo!+tgz6JqjS?~R2TBIXCzfV74jK-bl)G={T5yY4eP|MOl*daXHSa=DTC*G)`_MDtyh+a_{9s@wLD zA}JQ&eZ-l@r?{IV%sYG-@R~b6ol@(kfHuR2tYuP@CRhj%ectfaau5YmE40yrY+VOb z(o$s87o|vZi7FnwE$^Y0qf+FUxM!T;P;kFTM%fysKKro0>FPlLDI(}J#qpzbvf_T; zIOWLnxBC9sPQ|+6hH(oW>P2=&=^`EYB)_7(B=vN;e&kU0Yz71U>|^I&{h+rLiE?b1Y#och5Abb=ZVo!(PbGy`d zzMB5|bFg1kDdMG=gr0{ESZAKc{jKKM@9xGJfjOh`GYLJZ?c zT+CuuZLiF`(AvQ&R-B#F_P24<(zg#IC>P?;kv)y!7WDVaeZM@Kc{)!pA)DK5HaYr` zp)FXigd9?&3kAEa^->!KRMyx@Z)k^_>qlQJq`>Q7w5KT@?~n%2#|7};p)fSFxih?N zptm33>zIJmfZ_BhY@%;MW=c39RmJCH%B3zZRs8|~YL>+JQgcKqd69Gqg@B))EkuPi z;_IZ&X$GOYPt;AOn%W_E_iH(~Q8*4fgA|(gmFh@)hGS2YbX7Z@u{uH|`nZ{e%P?M4_Momr zu)IL8I*({5v~EpV#vTaq&>sXSB0RVL9yw{$53U$NFlR^DWi^>$(cAv$#OfGzx?)R) z9YvEj*9&QHH1y_mVp2bP#nzf%?((|YK{YC0?wIt~8dh}ZsI1eDY^@PNQ^X`P!TaFU zdY*`TVXlH}`&9~0G_|S+n5|XdZ~;q~_Z0N!a|45>4akP%^5hrjeW5dTZd_ge4%zv* zz6$j7g~zC}Hy$Rx70#W_JM|su+*+$h%}Xg&F5lTp%{Rn&+FVK=qZ}No{KL6ij9+nK z6qoyWW!qC3&^L*a3pzwzXJ2)ikz!t5MmK4?L~UUH$-sL?g5|?}2uRx|W-=?oW3=E! z`8B*0lho-TGX*{R3*g_ZmqBbIo0;9D zJx`#|(}4SfziQ%z6cVk|GHq{XBSr}L;XboV;Zd$4E;+vKF{*;~__;3$=tul0;v+CR z<<`mxA=XbB_g+rry`gsIpKqxl%uimhquMb01_YpsHZ!EJGg`Ua^t{CfW$_u1h4+f zd4Rc`^GavlVV>kv0idjfq6I;QCC9JmwnP%Ftjt>S%cZga(8TRftowVQe_GohVDy2z zu%$jZtVpfaepX{)4kwLnG?J+)yCo46>i`Jh$<4fAZ<%hmA}&q$m2N{^VEhI^`k`AF z_SB+HhQhwwqPS^$G9Rms%kvJfR6V_ed4z-ag%EE~P>bvimZOpsFTG<>C3L&D(G8q+ zDvmFsMqfry8O09)Rzy*(jFQA2MQH{_kPW)4tc^*vN}ehJ+b?Nm**&6Uqtb5pgJOKP z0%hvMMs;d3%b_!5bxTHjEK0Xm21`jidtAxrh(VozMU`5w)T@guQPmeNy>>eS=XMz! zwMsi@I>4*7Fu4_C*OtK~3x#%Z*y?#o$6&keaRO_pS{|?{PE()c9CuO*++eMCgc|0C z##EB3!$uv}UE&+kpGXv)c@hZsO(2TDFTW1!Hhm1-Q>tBTDU#zII^t(mQ?Ar5FA7eBESZV9;i0Mbz`7g#lCWE8VGD)+hY55r>4{w z?f}6tY^I~20blkf<2K)f5%=WmZE<&CS!6mGEIR{i;#8}>>V#!ES?KS* zqBz~FLs&kl>Jnp7YmA&afFS_zzz6Hq#%{+-eCJe6WgoH8Gv^X*Y|_ubxNEFC-xIT3N?6Gg$P;b@IWGll4ih>Hv=ht+23_lgti z$PA>`%56JyZ?bJ-`-!dxVO^RDv~_B_t;&ql z-DEIkYbGkRi3X-GnWkV88`fe8ax|g(=Akt_mWSM^BiVwwImxHKumhl89&saQAFt(p zSd`6%ad0e_1XA-l9d>qH@29O2sb&KP>!y&E7GCCP9;@9?YW4C{0cp^FnP!LJ(`}MPRAaJmOT;;brRu)S?#zz zqC>7nQq}qj>^wG3^*saC53vkgwC6C(5xZO+*ZN_%E~D@Uw@Nr@4L1A9sZ;jRk=l`m zRhjVDt4dgI3!3P4PyH>btjc7CJ-GdW*A^#Ia@`5T(8`FN>YgBW87+K}+$U8NPGn46ge#q@Hrg7>9f;?Hb$H7P+?%Tt5oTfEJdIE_8g;$$~ zy;ZS2N01d2O8b?~v(xUbqLzyUIU_5J?$$Z#s?6@2lpyZ*b!52OqK)o=CCfOn=yZH3 zHhgdtV>$Ljbq8IeXW3ze*|huJqDHC9BeL;nQn0p1mi1@LS#MvW<~~_Bn@0+r47f>a zfzHXAeB89{#eO=A5$y7~V|R97&sK*n?7JJFP?$xW+h=Lp3TS z>Iu?>2~MGpher-4RAA`tRi9d_homM(`Q%o{4N8`g+6hM&Kn3V4-@p-08l5y8JpiSt zPfsW^IaT;lf4Qw{=%F$syT-c0H;VJ(L^~Zvf;p^@I+9kZJ9pJ zj-iYQQxrg4uPfuBy2IT{$#LtV)ja72W0-VhhR7%u?uacLZgx9-MG#b(qNn36vM0(X zbRWA+x7D6?npsss1`2$>Ig-+DBDQ7{A`9M(Sq;n7c-;*<%R`ZxjHivGVQ8q_n3Ncl zY%@6M!h9VdroqZI6(a|f-uu`}rpMA~cEV4kHjPRsVwZ3fFRK)_lo%Xi%hLsp8ZA}c z`jp9Qm4039Pl{tnuJyYulW7ZsG9HM@g z!g@*O$X#vT6>V&0Em48jiaUMDHfg`T>~|I&#IKy{qm9Lf`x@3%{8F$St;>}%YE$J2 zO5qwB%Wy`KKtbsfSrUztPmXse(xfDV#aXg1qpcm-%_(5E?G=)&oYu6AN<4!Og_CN~ zmGCg8Oq$n-9={b9d>km8X_K)sbcuOu=^-PvU-G+qcBbzttwnV)T}t+rUdaal)Tbk| zIA`f1GL~FZsf$2(Ob^|j7XH-XMPf6-;{A~D+7)UO?wFH8?RjF;=1{Ck5lC|6x!&Y|i&+|He%j^SKTWy>6}O@OW3Zt85%IUctMS_;SUDfJ^!agg1hU)zPpC8}y_ zF&KCD@^-(HS+?Itw_ea+NflbbyEbkJE@fJT=!{uwc4*FehN_PY+iG-0hnHg0OlS`$ zheO8@C#_}CEHW~NQq2R#&q`&MF~`R4pb>hvIMwW8zqm8VHI0%L9zB*Z4n;+zgrZd$ zWsAOyloPYUL6No0HCFhEv^kV6?quYIqEyL1%fMFlo5;{d%Ow;kN(j}GPWY~ikQLkL zX`Z`jErBK5XPAnGZ#qWo`)ZHnKDtmec42HuN=K?|QscVII^SatJ#4vRm%T|Hn=VF2 zW;pC0yTp7TAd501lgB=(sB{anh2Cf;V#hGfkZcmD5G*B17F&%9*!?CQd5KK-p2P*a zm9;r8irpsJ>W?Z+jT$l2?b1JmeH5>s(9+33jmq#uBb5N9=3u*vcWexmk%>_X0Qy}4 zgP~GHX<7$@0@#&CQ37fBD2a;*IdvI^T#VVdyOY=>Q%7{9CU*1#b#Ra#VFL1dI^vUlxSv<%wb^_n>L#`7IEYDstwnN(mA^jD9k8{qxIClLGA@Or zPf!TGz+;TfY)}LZH|lUfE?nG-LhjWj(DD1JH`eR*dDCgsYU65c3-6%g&uI$okqaFuse5cHsYOrn2y~SWkF6$?X zwZ{QpuVKZuNR-FHWKP=ypVzUzaopqBRvIA1PPZS9#CZD}Plj~^^Q}X`x%Adwb?{b6 zFxkacKom{q$IY_L&(zJt?RJ+gHI~~hzH=Ss;P>fuZHdf`9mi6FM~uoyoa$CY=myxC zifXZKA*5TTfr<*y8}GyLs4SXHZ+}wIsWn)r^-)9EtiADu zYoQG!w&>An6NnWoprAIM27_j+T5ZEZZQw_#*2@l6ZM5JED~j~&p_#E4jDf$xyBg07 z{LQTEPuldZZzyp_5MKuavOJ#rZlk6;ouJv_{W|K5))F)-F~_lXrHxZ7xg$JhqS zA4X#@{VcJe&l?jB{4XyUE!eDvA{0K~s`abmj$3`Wg5p>JI%Uuz9Mo=PJi=Oh4}TgC zc)unK`oa-H%8Py%FE$u&U+nzUHpd;fB4H_y(bEP^nD7)$mHSiVu9sEl>yCe-20_a< z>$O(R4VYuKHazD&f6{1GXq_A7my12OZ2H`?sBB8}W8bKGo219F4DV6sjB9>>SmMwP zXp=21E;imgNY6ALpHI0@;gL)(Zc`6_m_1eku{`+>K^!92wx%S^x&EPr$f9eYkDH zxBiYA`1H?z__vP2SyDk2|Nhj`xvf+vlh~(%dFxp4t?x$+{CszcSc&{pa6?P_`_unP z-gL?Grvj(Be}8JJThEpXd-Ofs;1!-Ou4`nWc4VC-z-~l9QX`ph<9)LrsnBV zVaquMOW_=;AbPfHYzv}vubEE;#|64da9Nh zJR$RaGK!teqg4yve|BLq;rN7+jX^a`$^&95HAcoZrwxcsXU38HhElJp!x~wgx&Q@_ zw5AaHe90PmL}%16*%OT##iLLAqkYS?Rki`kzH?i(lQ<1_rqIT1kv&c@b1H0?T?(BC zon~|B;o5}9=vu9}z`|g-tLrVPg12^!=}v19<1%LW1QA#o&Wx)9HmcD{k?_T8Y40Sl zX><-4Zq`fWVaM!3-8$k$&%gq8Htrt?eo8osU2WDk#-P2J`Fw*OPmPh%=oq_`6MAZG zwH&jt>bHqWk=n^ygYmmIVT|^M-O{_|<4Li(iOVcyytlXH6B@S7@)Ti6T-hJIP!V@F zKB4rIw!>)0hZ`cBpze$6s%2ySmWRR@EvT-l4xH={H?`7<4VE?-jG#@h?v^Yi#Z^}2 znKvJB9jxdnMY@A*`|ZWC9+r0PX-G>&L(*+#XY~mdGaAHHayKeF35Q1A_WatMT?=cA za94GdaRVwoR=L!$5f5-fORww&V2Z4W^~vTcrG33}JhZjmV(a#8X+E3F#d^3j7-iMt zXZ2IJxZr!c!K&Op2{Yf9X~tW{Ci#|Sy2GBh9nZ^34cUaf5`JP%ZmVAjsG?9ljjf7a zVd>dGuHmf9E?afsv>3ZJdPvMmwpC(ARe~4}PDDs0Dc{uwiUxz~(+OTTgNYB*d8^f7 z^zR++dJMTHO?t=y`yj@&eQbp&XuZ`xE$j|JG<$wB-nS`k?puPm8}P~+--pXC>D#_B zA1OylCRaMm;FUdp6vu5aLHX99-Z_+Nv7dzBf=BQYV(;tPt{oohSkNY|$rj9OWT_9W zfT|jvRXmyDv^gjC?bV=6A6Cl)!)ODHuFmR3iK#T2{avRN!>8t0=+fnq)S?zssdU`5 zl~aixwN1|oecY+4jDgw)?=KNWL1=ezz`fH>p4D_}*Z1&!OKbZh6dBO8GwQ}pgFUK+ z6PVMtgL1l)XRWGY)dzEP=qq3fd(n#sO2OFg!=GeOz)#C<@TD@gS(dR?aZ(oAi_>cQ zyrNk8V`oW5si+I6D541Tg9hUt8Gd*MZhZs(9$swlFlh1!Ts+kV%$R}&LoPPRK<+M0 z3m}3POhSj>tpfDpMr(H*wGWidJ#C{x9RoMof_)1WjNK6lyaYF3S9Rew|4VfV`pHul&mYR(}6he*ac}FHnAs4rZF_aa{em^6Stn zM|I-{TZ5Uub!kPKcYSZy8u#ed;-Ga*R@RLv%(0}DjdFt@ z3N+1iG{urfi*;a3$8q+&%8ZO&NX+FfDIJZ$m{n``uv6{^Q@XtDA?KeB$svIjbX_HQysU)R@;gT2%(deC%bTZFfnrL8$Q5i5l-Z z#R+!R&MhHKDMX;1RBu65bl=2%tXfjqxiyZiANgpN)S_J}37S6ssljZhm)N;aXTjwL ztHKXE7Z`RAZMu0oeg^3JppL`85NI=36Lz0hfcS4wfI$(vh3WvbBPgbQ1d0aqEqP{Z z1C#{*3T`b`aKRtCaNFWEjpu}Y{Hm(Cl5KFVR5uM*GT<}8tqqz@{$b-^E%2#R2yQt? zP}RRbRc)2iAdLX%Sx$gm3~qf+`}@o9;i=8~F0BVb~Y=fmH~K#I42ITn7lS zf|D3lZni!}@4C{_h3}Hd4|w<1c2sfl_a_V^iewFM-o4e3WX^+1{O*&e^_aRfg*x)w zx0)%2GthM0@t?7F<^gv2{QJ3%x3G`e@#07AcmRk_jgQ)K*q;yC@ehi}E7%9c;}z_K;_(WWCm#P{bMlgG z+Q8l}k-vbYY)HL|lXSiGdX|du2dW{0H(`_%yj3n?uj4a#GjqOn17E(xoUdT-$zlMk zozCBkrI>0iyeAtXBP;L8s>sO7d$Kb!vhtoRkBqFmCtD;VEAPoV$;irkvR5*)@}4Z1 zjI6vTnSO%DiKZHm4+75a=*7f? znMs`InsL7$cowN>72Mh|_Y{1qj1h0eK9H$t?sd-IPhHM-!NV$Gl!EC}!L7mRpike= zPmp-zZ~XC?7vdhhtXurm&IPw_;izkoxL|IsEjg0yOP~Hp61S+E0(|yfI@Dz* zAYypRL?XLOOq|7;2`mg56-`<7M&|6Wg@6 zoS_P@Z23_DBMA(p-UxmHV>;)$lKsk2d&hjK#vjL0z=4svc^kH<_ruobnIiphV+9bE z3m*LA2J5Vx|F{7&#_{QlQ)|Ji~mUrHc=Fh6?t_3T2nk}qeM z8vvPaGZzx$;9aQ0KaV91>_l(FRAN=X2c}$wGyb@dDq?TbCU_y)ZdFsacXoo~S(5Dt zwrWLQllxS^k#8f&Czi->+|ga#bSy;zH2%PuZ=2p$F+KN>V~sP!KWj7zYp&TDw6cM_s==4VQe^YS~riJZfVkY>VNdOG&us3n8;CL)NYRHm)-#k8V%eV>>6lkUZP zWwh*n-5UI9kdV3yuKoQ9uSCJ1pGDdTDhhnbs_nS_=!@le`}?tK6Nz*l%Hg4)AImc` z>t8o?05oaWyk~Dp%K7PZeN%EUVs&v={X&|$DN362H8+Wxwv{J)SJCL(PRqOq$(|wP zDZ;A`&^M(7;F6LTEkTiVRk-Sif1+_Rfc2l*dT&ch(f~BHO~(aW$+gJj8&fqTdmH8_ zP^TbD(8I$^Vu23}t|Ap=TapTKKMJ;_MLVgZsMhU+CeUk2I$PfEQzh+kyp#MsGY)kt z{IX>_z&5~e>MV!zvrm*#6OK?E1gos(aN6PkQxmh7}Wo|lCn2QYJ=m8UL$0-Uk)I3x*uI-=GVh zOU0MF$V%CcPh>us9VI`%%IrJmS60sJ<)O(Jz<5L9r`yL*mqz=tg1`K*>O_jZt@6Bc z*7TpdsBUUszW!{9{j?{iSM)?sID0D<3{U4JyYSgFU`;*8`2uqe;pf2OfdIv^Btey& zuZ312`C<#q5|IlF0)QwkXSjvWbmc2Sl?(NRoB#RG^P`pttKF%bR`|RCAHe)a$K&JZ zmhpjYPgFYiTU+YY70gU@evM7lXIY7e|JoTi0oysnuxu0T<*#+}}j7*uaivlXDq zDI~f8D!mve1*)sWz=+eqKQLv7i&0LpRtwRz2D-YyOF$RzfY2oI<^e7A8r=T9g^>_(B;>*}lVw%$1xhtA3$cU00D5;P;QMigo5IMDAd2AuL=g+out|l+ z$<%pnA3>!7;0plHB28mo3b2ecd@^e9emfBEDiY_11zmz5E3P1I6qHc3O%KqQz&sEN z=1~=;!e>S{0geStL~p}qfTFu8wC=t7TF}(JRM0siESR8AHu!G%Eou(70dN$r!g&&r zi_Z*Mw&})XFG}T^SscT+sDVHNJVTuuwf>;-At6CFx3z6lc1zXot?ct4;LbO4g6#)3X&E4RG_OfAMlgo zo)MvsyolwxL8Z!$$Yd1M8{Y==X{VmXfC>uFwTioO&%v3pf*=C9;Mo#?PmiLdy%h!hyk~lg7 zle#ZNUkYIHK(B(R0;5mmJr`QMJ}@nzp?u~67_XMb8Q^I(ZbLLZ9_T=g3*nQ{sR2}A zwtC8>*$In$h~T)P!xb>5GBb(RxDsO@&TNq9pJyMDY;5yY6DR~ z%6UypUXs#G%}lg7%hJ?TPQFa!QUS+oTP0_tNw&&H3p!c8MUIygB%_3k*OE+@RDQc< zHMc1#{q!Kfo03a~@-k7{s(yY8`)VPNw_VezY>iB$BA@QKo)Ws*R^g@ zGzfy5$SWSDGyq%^-bfy5DFA>Rgd0K8Z=~bH>5JYY`4b|kWd0f03z7q)2wl&R3Z?Sb zLJ2FDzT7;f{=EAlTOrWQ?hBavo5g(*m;Zc;`(h}maZDpl5=w$JFck=>SR2N}0L(nc z%wV=pqzu2tDJBBId$uZj@RKMPNP=R7U^W7z+#SNq4UX%clP0?)6D@`FbFN zl%*HD9*Uv@}l&^i}KJF^SRmRf4M0zW+3^J{k4!_=g7&Uf(5#TIx)`CHH}DT#^-_V z{5q;Edrs2Y1JdX+-XPX?%M)-{X*~Xi84OFx@-%T7>>3Sq6_fXAfKwC553>_|~Iz ztRyWOKydvo+xby8HOxr9%WVgJ0(d|6;+>yM!O2~d1Ew z@@b-DPB~7=bkT!6_sC47QW|e>ykVi&;MiN=a`=OppMtDcmEIL&;t#6tCZ$#5dblsB z)|=EKeeU^7B$8WG(iZrQ!D7||zjOqeAD8&GwnI;!fgXd899Wzc2)mT9_7>%TOWAIX z%!<^>sEBVWq+W_;n24Le&wJlPT%OogHz`(RrmBH#e8My@a_RI#CQ>OOZMLGEIf^if zWv7bRWGl{@DjJoER60eJjZ~1v6Pt|`*aUN%966RYg*Av$!LMv(b|L!8t*CF>WXt?2 z`euX7cjZNMnYBV%ge#ZiMhI?M~ss~hRC zMYhb>^nT(GlKh$yQfK2TH~FRa5oaQo+C`jAj8SQ!yr`u*aQQLv*w2>}Kp)R`@DEcr9A)Ws&6R9*jWf;4cs){6r48}FZWhwPH))Y^*L6J!6@jo_&qc_jY{q*LO zA7^ZXTh0&^)4q4vT{*5>rKpZ;+99ABb?LtJ_=wtr`{FR{-hFXb?h2UBC#`C|`F&8G z&YF|&Q?^;}G^dY6{Op0;SKoy2XuO|ZKmWS4?CXLgqx7m@E6Cp^!3Y<>fdpULw{*du zWR?8l@g*Wp)h`|2HyPKP-#xCE_V4Rme(cjiukE{y--^)To(%WmRNl*Cbo=CU-pgOP zKVRBJUb!2;lul}VQ-~1w-O0pwtnO7?Ry7G$a)OW#*3v$^zTvH{V&Q-P_1}za{_ns3 zZ{hQ$a?8$_Br!QKqngQZFylgGk-s0d0nK&p!H3Y_4#A!oRfUG1M$bWm{+{ps>kryr zlZsVQ-KjWNHoljQGYXz@IqweOb4P&1uAq6&K~I5X3y|LjJpmj5i#&oRUklNlGcnQc z0U(=V5q_Ne`x5?~Jo!t9d^7V0^X%U7@MTJC1?4G8|b21GWjetux zHteQmtud`4P)=YdM#VOG7YQ!thzO0?il|ZoH&olet^q zpjw0qTsJl88_#JR45ObT?#Z1OU}>p-Qm#?r1mzrNf6#Drhr;(D(wvd5_!@%;pth5c z<(HUt934+83MHqU&N2BXh#)#|%ZW=&9(|EYPqAu>k1f-8uLt0r#_1o{`{l z!TpDuBzg_`LO}Z)eba9NdF2QD0SW&=mRH5L2c2rGuf81!ATU{3jO!A_Ys=`*r z3NoookZgC;rA~9pRzoI@+Q?QLC$-kdMD7(%``406t2Htaiw~^lMJ@fg_)O%eH0m&u zX9yNf%a5;=7&qf)1s=$YSbCJ3h1}(5LAxHT`4PFUVU-T(nTA$kocJ!Q0Ch-5OH&2a zg*P!kHv#u=00I}mlX!<}Se_dJkiz47UsokW;*o8AMM5u-jT=?yE^tRw=y0V|(SIIIqH z3zK*rVaSNc`Hg1OgYy?+`Y-9k)1s6!h%B#+^iP_4Iu$ZFhtv1IL_VA$8T%feb|t=Sjpf#6+L;x`SB@oC#h5xerh7F^%}3P7{q_i7parN zAKgt~Z*Nu~9^KAnUt@HyG`N-SwQ2}uNzgt{hbz}sdfTPH%O2Wx`fqx!=kwHB^y(k4 z|Asz1n$H#w$=c_+KP2;$&v9}?Oi1RxWxuU#SasVkkJFp7Zkk!@8SOD?R0e@dswBXiI~ z;cR)w`^WhEAGAq;<<$_SyX+(NA)IFuF(Uu>PY``jep>4+lE8hk)XH{a^qq+T;){C2#4v0 zg4%E>E~>E)X~WiGm!YK{AE0k&<(}=j>f9GIv%VoU)$?**J9?MzXsx4#* zxZJiC!g|NaPZMdtjp&&CqUCxvHU6N2PpykvmZ{bvZiQCpii9pLeNP{B<<@;}Qry}~ z&&z4sW%419dsybd5BbXueDBZ`8uUHdRxxfwgXcsi8=0UF_@&dff9r!j3IGfjrkkyUZypUp?pt~m5;QU$(t1q!;WOO`Lj zneoQYH?PN*cR!r^l!)C$nOFS@o!n2Xp3p{F`x4#{-Ihp^1!w&{Z`nP9f@=n zw7q!Thz@5#OPSH{EFjJEhCLWH^V}6a&pnaYrfoIjMs#4CmW!hg+r6L;+Cudc+Km5? z`a!*aJWrB15eY=v#<4yi((*#&0Z|&Pnm5uu_J_wJhm*E{rf)cDxe}W&oOQ2Yqrqf+ zIvUnFg`$%o1cF$)fWwmseWjzZs`?No_fU0xX}-$LcVajMWxQpCg}dY%yc-iRdC{3^>Ly zfX6s0T|>0M;&9KeJ@!%4jOd6&aQtAPo*&ezmf9cmkH-DutI=e9HW`Z?T5yb8pqFuz z_`=+f1zE%eu|xOU@nz!NUX@OA>;gG(tYDy*6_g0M6cj8+Z~?*GT|6rs``Zz6;Ap`> zFDvon)YQW|_ z&1Vb7W7t%i=XV5~_!m1$L^37PwPcJl-vv0&L;d_!KD< zmU(c>3xtDit9Wop2tD;l2x=IkLzV@*>Qh9S7VJh_inHTXJ736xS3CV*C#Qqc&*!I; zuUBU$pDqe#Uc$1LDU3m0+i^osbl?G(%hQ9G%hQmDDKA!ekeOyCm#do1g}i|Py5m@! zm=xOz_h?h7QyUcM-$RLQ=@-9DU$220 zCJAHJ!O^iT``yo4(Q8$3*}iC1x{V}>zcmX_lew}X9jATaSr-WV!{cos&{ZtjH4y0F z$_09Q%LU}chJYnDsD4u_r}9d&ui#5Nq8D7{K~Hbxfjso~AftEK|27V!Uo$CDYF!UBkx0aQocrJ zsbs_Zm01eGQJSH8N)yxq;=Rf&h2ZGPaFgYd*?o&VnWYdM-4<@GF7XD-EQvhSA>yJ0 z@p-_KAg7lSG%`y?yYB?cEJa+LpiIa`n|$ON`+!Q3S&G0hY|*wB%`wR=sophZlUY)o zJ7i>*_-xCI8JUK ztvWAfzh?hrzU1&Cxh=<%MNy)ZjHjlOwnYG;KwiHQAOHd&03ycA%sO@Fz=UU&xdUD3 ze1ny9<1Yt`Q*zFJI_G~0e%$e2?ssEx`VClTl}4>{AjXI%~t7`r`ij>C52m zs`Jo$h?|LmMfN0^Zokc@iv?h0ifz48V&s03z^#=Qx8B#AKZW4XpL70`nBtds-JugZ zE*jmRRcf_X{ph0Es~C%V>vRqra6LM!95#h$d6A z#I+S5yBuMPpTVcU(xHp9%5m$YP3J!)uXDPJ(F+J(^9Rm1VRRCK(Z&UduP)&jcotz# zI?bb#ZiAyg_klc+R|^KXKZ2nJ?&DyW+md>xe(C*jjaZ=kK#!1zU+=p>ebrY^|CpFFx_HHj_wD}*7cG4E( zJZszFe_JBkaQQ)P!=a3A(0x+6d%Eq)_=TzQThpa#(%Y$(PI~(vRC7H4Mvh!4a#yWG|ILWI`u-gLfdCRx}6{`(C5_E$&#I|(y_DoaoCw;bN*MB+&nBD zH`yESm79sVrn;%KwNhX32wD>O=`d5U> zJE^SrA1>4`f4ItYA6%3!YSbw`8vL}L6F2n-YqpgEw;M~h&>#7OZ5FcW(&{ISj{L*D zXVEX<3ouFPWMyr>==XSqBzy5!J8pu4V@xu>o$lJHI^37QE(t4-wr+d&YiP028#k6( z$j5)eXJ22$_D!&rVlFhv-6o~Q9!?<`LFXQhp#yD`?PXu12=pq3bBgGSoa<3b7@EcD z7-O>O75EL>q4D+j@tZ*S=Y;v>fh~vXxq5>cIQs7?^Wu&J9OjcRfGvsOIsLv_<3k*# zNhwc``KKW!1kdQxdV_!VeN^#5ESu7TeGmwqRZbe5V-t_?k4sRu-t3WLOdq)fICPSx z&{~UA6I(9(T8Q@1lJbJ&KeUYysR-eTieM%ap0`^0hwu#H7&{cPV}B{36t6&bDJ4!H z+k`C!xF$kpm5zge#Yxq%-R0-4nl$k=6uY%u$n8hW&X$}yN);&SC57cRj;eVsF1Ssj zVQs6cy0+&Y$!1;aD+)XV%_|zCtfa6cETTH#LotZjzS%r49u>5v=U!ZZ(uDa;_gh;W5&ABTnsG6&%vT=^`7u;kmHhj%seUX1cB90{9zYc z-ppQk9{R$@R~Nt@`6$@kHNv1#E0mpWQ~}_ zhn@BiEs)zp+PG76RE{#)W=M02e!C@vN6XI!jT#RGq&XV|dm*fAHY$+#1JpzBrq_M! zT@JoJJ>ETqYv{yA<3#m&A|(J(shwB>NE#DMCje0?&HMx)6zDj~E6TpV#r4@}E3-cM z%L^ZTIj*{E6)}oJ7nMgTQ0StPuJ2yxm{`P}Ac~N>1Q#fXPH)Qk; ze)*;SYX8*88H)rIxfNgR_ z;eNR4tpN1obsrCIg*yQqsOh}&rI)%zrI-Bjxq8h%mi)sE-r-O3(uCjzxk3@jSYzEs zCn+CMH*%FPSdMzSHQ^k_l^_*OzGq}%x*KLCCg1`P=*YA{(=LL-EiEw#eTR8Z0!7{K z7P5<`Uka0qEDOPZdWb%UHgPkx&gIL)cRy?%p4(y91jWY(W3YS~Ff=6))a_Td*DiRL z3%lb|VvV2t_m-?$f%B=8o?}^v4E4(_~uNS^?bQKRHJAEJYs##SbsuwGX??64!~I&d9(GB}g`bQAs^f^8 z$jPfULo+hzR?sTttMN2i3zv+CcT>VrD|BWxj%~ZYut;=EywDQ|b4VlfPy;?`? zroWdN#V=oPK2_L7hstM})Iu?MF0VqA0aA@=R?XIQe6a}n&vFKj0vFP{S|6v3PFsE6H zNclqBz4vmNxp4bYzDR0Me%-sx^1-z#50s;567wXGpg>u9}yd_l}!n=kskUH|tC zD!L@FOTx-lmixAR5ucv^h)=p*n6=BUJKP!D?5begcD+CNRw!S*t*1ZUw!7oLg68gy zyDmqefYR@Zx9fM5Ej4%jjyCJX@+DXLMcwY$ z_5R38U+#K;tW$5-`$G-IUGEQN40pXh@;R#H*!!bjzRYz0U1z4Z+TmUA4@Crby+0IU zHAUmL219@EkAC^;Ec(S>A>8%;D1YydaB`+}=!I+fyOf+xNH597Fl^+lV9tPqgv_eqv-!1ROjqk ze<-53YyFX51S!+jA4j#)l@}e=iftadYyA;oM(GmVM>YKk?#wOBdvE=b;a#+&TB?*{ zn;%QliWnPkft?X__;t)7CIrudxm`*T3$l0I?`IVzZ2?i4!*gn43p;E{?7yYFE@#^& zz5272KbUMG8;b4ef4KK7`UUU^&QRxNbb*}x8d{Nb%s0<)fk&^8bn0~q4&fL(jD~fV zdhrR`JZ8@MMuLVcOM}zhuVQUA`AcKuxa5XU(_X60RU$|1>c=TGOgx)o7ZHSQ15iMi zOrc}23r)Zz&_OOirfc9aeP{sJg|ndrCXjvMdd`?m=o-L*#t4one2OO`Q-e;it}v!_ z=Qwn6&lFu?n^PwJgCWMxGvGY8TYQ5|DKPB3(*4G1x+)$+P6)nh0_w7z)9*JF$dXj2Jrt1Q|DbA}D^ z$1{=xW9GTU7``F3PYItRRpZ*`uOfTy5o3%j3Jq9RXgXdoPe)KOppRZTN0E5VvzaVR z;Aqd7JD6Y_5XxpMz_Y5+v8aU5FVHt=z4A3km74U`-um6#?~)vC5CR)=b#p@Te`Vs15Kqs!7@DOXXvy%j~4P=z~QkrP(#WJI-53l(ziU7pnctXb?3rN~sSeP!68B?xrx z;TSs5Hkq#{0_N}=v@3>liYT(q^{CbI`+&?R4=ldRBJ2%6pgg7jZXXLrjSct$7%+n8 z^!p|+76|;i!(;wQgx%@Wx`>PlSMX4L5D57(_c6v~`C;M_{{shPVvBmyflwSRgUw>O zf*rx{NVY_kye4Cdvd3I!Y1n{+hlxDq)-iv_r)XoDiU|A1?f?95Y&qgL=#Y+uCU$_T z>&>C#nhu(CY*)74x%{7~O}lYt*!nCY+GB%tFxj-}7JEh`%f)SM!W4xzM^Jbu2KOAQ z#$VYfE(V!l5_;_O1r9tL5jTQ1BWTk>B4oR&oj7Ia@(epJvLr*2jg11MDDuhurw1Y; z02EJP;~Av8_On6#5f=ESM_a0CMtcUbT|&1yTLTZGR}Gfh*cdDiCn^@$U%r0?=R+9* zX29j4_+XA1YfXTFWqg`akbA~qt!Cs)qw|A_kY9!uVV&EyB2}x_PK?QCv3idgDIP_j z|5#b5L9G*Uz=+2gfVF1~y>OBE7A9fadVQOVz(WEUT_tumuZ2mwyT=Ze?qrb`mYnCN z1ZwW!k!Nn?M;_p$!UIbD(nv#J&UJy4@_m&c(H$+bztm)2CP||NX~b0ejOq?;OOp~s zC8>Ak&_rWo>ROse)#`#K7ZZCgDp>yPtO9QH*g0lFd}`S@IWi&NNBA+oeho4PVJ~;g zkE#Cqe`Y!TH7sK5GLD)&pdM3~k)R@juxcWs@#YUby)DTg=fVjKEtj38SC`7q%GLGB zq7P;HUJ%=MC_7me^+=q__^>2-3+mLlc*J57)YoVEJR?Y^Z79kap)o&~6T`&xaBi~~ z_(&=^-;r$^pJYU%b;1kcGAY^ldh_&n{q=UcfFzlDL;OcY8`QZA-Y{78jxG%}v^E-F zs@|VnsVgl?SS+S!?XTn#-q$jOr~jjR39yTtzlP#gD)-Q*O(2nNd5@%P0UPNR6s4NRM~| zSyi$wc#<_*??t(BZ;(g*bVV#Sk6i{Om(J>*oaSn?vi+9!m0dwig|VEmjO zay*wh>I54TXhZJG1LN-MzSsMu8?M}Dsl~a)W354nwoMNp20Qlf`x-LaQZ1w1(FSSm zLT`lkdFEB>PPY=&-+%kRK6)8k{q*~9|JDXnE|snX%0C`zgC|@2sR{J?ce_(F-3nzcK(Z{4@l8nIhsrneb^; z%P+bp4dK({)eDkoOInN^ioliX{zc6PlB$(fyXEpjICO!O3J^+fi^VkN@3sc`fxC7KvpiY7V z>)YySPqwd>9JZe$=m(S6W0GFlXK90uhY#gRhX8CKW_3f zl7P{O6@ycwj=w>E8ILg!%&=z@o?N{JU#|pRd2-tq0OrR5>b9{qAuHY+FUR8pm#!VM zO=qL>BIh&qw`jyIKt5bJ=$%|x0B@7#u}-T?i;+q&0?|E_8^MdCSb%{Rz@1bSGs)|qTDg(mk3rP zOk5yrshw4CWENrQ{ql5ubA54t{q$v!Z?r+_mc3-KL9Gn~+u?uK1x?N$QUc`y;)&u9 zT@YDKk|}jtQwf}j9Xe!=rRvkvxF=IC`CjB?1YP7v#fO!^&9ADuK*?k-)V3OAhLII! zEiF8^t`Lqy7ah^-XMVM3P$TZSyozgNuyX#uM>{jxVY(c|8Q!R_(rFFvTjR>^Sw-2; zC6$~$=AOwZa7~2HDqZY32s*|sT=-T&sykTf=@$PF00960?0v~@KM8IF8<1t9*{gy$wRO=nL`-r`%*=|MhIVA%q0jXZVG z%z>u`|3Ccn#IhBse|o^O*>s_jsV^SYkj%TP1HY6rg;JF}Agz1AU%M+H*|0Dj(yZTO zMVIhn70LM1Y%%LSj5^kUoZm!TtP}IpD1Eu9;aW0=6(^4QKX7KG6POw4-)m;nd)KXY ztI}^>U;eskmIw7goa4u3{y;9`V&)=;7i|A;&_CcC_}DaT+}UE0^Sc|oy2*G&;O!Gt z(eZUAn+tCGu8JS}St})k%l%Hvec0w?j*_$84;E#~1sd^0!layX48lEP2dxwk^*JONkNi$C$aGoR6~5SlY)kocT%7bFOHLfWrnGbSRpAi zLq$Rw@28(V|DG5Zx`|C=2T6+IhLJInEpZ&F;Wb3_`%OS9+?&P}O^}t?uqLN<#)jpH z$uUuK(~zI=Sf2_iI%bCBu!zSx)LcX@?y5XQA88Pc1XASnq(BLY(Q$-yWbs(!Bn5D) zI5b+1#4Fy-nu&3v#;a;lz$(10h)Dr6En{TyT2kPY#HQF2nokXjhV9?SisQM7EbOE` zfmYQ;tOiaGehG&0r192MK34>HY^>OhVa-nu(g*9E5Quse4b`xMjZ+xeTIvB++cA@y*J(&i{PcITtc%G^CD5XP+y1U&FwPh;vZ5k;>vujV0; z^fdZapaGAmO##&dkfms!sCtG7BF2{xj7N5x;ThYpFm=Dv^nm~O?PK{JlaY5A5u2sF zqT7V1SIvIC-m5bH48{;Kw)jWKaz$bgFxZJ>z`J71=67Z~R`8W#GuRVnggI%V(d{3p zhG8-j-co4jip?Avw6?d6$ye{T{~h|oGcqO{^x8wzLXK-unKZwL`KzPp5k#tzf+vo7 zix(Ya9VZ2`<^t0v162lO zNItEin^dlPBw)aaNx`D@zTO8b)Z|T!nKOpWgsCIbuoV)#@Vl~^*q45r$$z+`bKe%x8wlIzXoN?7f}mSw^RHtj zST1CE2LGAkzEANFjK%HIJ@P8q#uMgQ?E5b&i za|O26Iw1IQjCcuIeIz3b=^_{~4mR9Q4A-4-q9akIT9^;>EhqrJenT($UjICH$-1fPz zuvn`0Nba#j@OLL`KvL%CnWBY7Ch40^QO=`bKyELqbj<4`+%otQCuf(Of-*cM6%-1c{|@f`s^iEtg$Ht;T2gJusA z*l(X_)ujt0S{Nku6R>nTlDxx=FXR ztmK#{(MTr|6N!Nnu(+plu_L0VI8-SS5joOzL_;%?^JhlIr-*-|0TyZ7#HVlyNwb5= z&KTH_BDxq0HU(^jCS&pX2z@6y_*I#H$J*9*0t175iXkZyWDPo=(LrVys{U&As-yJ0+vK5qzG>RkimFJhNkGegP84W1z01@U)B0CQ$Zq+Jr#ym)h*4^&^OVE z7|jL5(~xRjM1dwNs!F#~l$>P|1rl&LqFS_x0u4{4q(H%pO$rvBk&>V$h-wZ6VlF9| zzBC2jCMl4*t060V+hVNnX!UEt>NUD{UGhOeixLI6P5&LQG?EGna=>PjPYiO9LM=%I zIeevnH3g~zM@e@-;S5Pnp-&qJ^DHGI0J}UV_u8=K2mY9IX80DHF z!eSf)yWNpQzESx(Hj-O<6{#xu4O=C~w2O@`m4|gyObZhar`NAwn7LdL7Wm)?gdO>% z#|6O1JX!RMnGq=SVCmFc#MqjP?lvq~lQsDf@;=6IbY<+2x19t=Gy* zn>QP6TKvf3&GCA}Tq#>D=1O5L-;hr*t3e=0oB@W#G^~t@bGXh0_#jzEqEq+YQwg@f z$#^u#zrri#Q{0n|p(F23GQ=y3fmQBY0nZto*D$M{L1z__fk)nJVrSw%Y*_deU@-oK z;N(APL*)XP`nr9>pB{`I$2>`;Y;lY<-aa-=q~qW4fD3unpNc#^z$mkYzk!Qn3F9x07bcm1!9wvTfY@V9c8y z$Ji%R8w3)*z!(h3EakCqAf)k7TlxiVZ2z5^Y-#WpgIeQM9)^DBxTjt}6~{lxgS5b* zLEdrz0Xz!}rR*yfspVHxefiZTTvM;VZF?urmPii9&exWp(!9G4TT~4jCP&J{d2vDL zkXog*ZK#UWz;-^lu|`5wwIE>X1%$myg{hU-2oreY4p#zJB#;4Pft0hKUEV@i7`Ajz zk~+bK6nz$G3_%r+e(;LTT-09+RD!VkJp#@a|$$d9i* z@^1)3r&ean^1U}*J)ulA&q9Z!7Mg}Aody=?0xyz`Yf}+1Atxs`bdD(LSE-&(*UI@y z4J%KONXue~F)-EO;jbAG_LrSzIV}8b(8^fC`qJ`*7s$dj`k`SPLeY;vwVq@-(+M6p zhIztexMO%URU~J8l4Fm#9KIV9b#-zK*DpsT3GU=5gEdz=U&{ZOD7GRfs^ZK~$fb%w z*v1hI+!5)-i8p$$PeDCm%#haycFPaYmu=6939$7SFLTKMDM0!N6Hj@8ZG-9({@Y(T z3N+IRD7w|RV1-x_cQz9I{MrOC*^kK){5kT*5VD@Ih%#WWqVj?QY4M#%3Os}(c?R`# zP7ki@cCAwBl`EritBn6^^{U+HMH!?<_@-O0;D3kk{Fd!Z1ii1~|K*#eI(@k7NNs)W z2(o9x#8J( z@|f##XY8PV+c92Jg`)13rsC|Wae3Am<)7W&b35NJlLlEkcb`|R+{7uVweq{Nyv6`FJ8YQ#p4(IokN={JnLN9C2jq}W?blYR+SZlRkM!5^A zdZ%8rA1C5%v6LYV4z9b;cT@c(SF=WX(>Wi`x^_>lU$lmWnpPWJSNYkr(0|s8g<|2s z*7}zv#NB9DsM5*0&-as|b6a?vD37C3Cp9Mxp4)dwY(KNlhqtx7R>b75rBc(&^5$Tb zv#CKdm4?AO@4;ZT;rU(WTosy^leT`Yk_Lrl_vz`f@jQJgUyj|w+T{MKFW;T<)0y%( zR1P26vx(WXYxjzF$=|Z~b56Fn%j{L7H4;z{Pp=r zI($%SBUx@2(NjZh41~!IYZ%$OP#wRV&9ZXotS<>%u6b$SkDt}*^em@Z?dOu9JUq>A zyUO!DX^`XYm7&FRPxqH@T1`8>T82#tS6XH|z3;HIba5nPb7iTAe=>8ADZ5eOhHRr( z=(GB;Q@_bP=8ck!dM}odR=iQZEvK^$?XXwm(|qx;GI3KeU`6wX<<+il4Pdb(kOU<3scOrOjQ>1-3uApXai|?cBb( zY`7ez^`w`&znUufHk;?uw_K-tdDp|{rPrXLOnSANZQ0|g@WkG9Zo2KK0xO^2Xy>*$ z&Ajw@;qv^@nmx(G=ae%xCAHkWeJQJV#TQMlK0O+@R>yLOa_6Zid!ziQ*4pe;?Nr7$ zMYB_ttvdUU{A$8jsSXa`ecCKX)E#=VWtd5#L zzkinMg$FZtJ+7t7-S*HLoRJ3Gk6aUt`^avmt45HZ0RZ0o86VNuJD}AJsl1&)RNTCveWB4|0o)%L%Y?w?~gf|B@Onb z+Vex}NxPNLjVD(#o-WSnT~p|Z?7b?T&-ztCs#W>SG<)+hYCOH%-epE?E1MbR538fj zxYEB;2E8^{atn_+Z!W7=Yow1+tD{~Tl31*(cQ2-J+s&3AuC5BHc3Cl6s+2LV>`Tp& zvz^Z1`C)WD>ON;5@;$NeGPTMb=}NukdxCsJ8obUs>3Jn12@`kJ9J;N`%H8ZtR=fA@ z`uW&;Zq}S}Rk}0N)`ir+80v?ava5GH9l3UOqi7e-lY7>;pAOH8vQf^G2IZRuH_qf< zQq{cp@E}}1>CUq@lUn*9f03?WCYhGcgxc85cCJvb#GT2QEh)T zhk2#_cqn=*U=Svd_qoAO-9kxx$X1H%S^wsleN?Zi?WQWIQsct7YuiKYJkHKI z zD2np9+~#ZD^Y$U!WP4bWRW9Lj^S_2u!=jsgxXrP5>3&W;yLq`A@d$_qS_wc{djbEqD0|p$H(*w>;MM+zyUn=NYE*E01aUY<7J@Vu zL-)eHjA23WoY3vB=M&{l3U4BGoVO z4@fk0iMQs=J;Tow`#a;UP1&y-KSm-c_mj4WglmoF0 zZ3Xf%(^~BciLeGAL!yz5AU*|s`$me1%yGtDBr9eNbohN;<2S*qh}XFm{hz+_DsiBT53OS zoS%RBEAjp`nqnEsJRxK}zjUS4g zhUYQ~_8lh%Gr{y%Y*|1+Gr{cFRv&`R(oxh-rpY zB>@MCz8dH|hceV=%VlG;*#_7B2KKF2pr^LmZGUF2Hslujt2D_?(BzWrlO*NeYGVUh zq-^a3?L$0fBJAQyus91{rQfI)?P|has`%#4XPLJdD}*spu*}q z13S?fG&5C2R2*y{yt43;-N1MP0#f9#ouKhgxGhrgcVWW>b_Lm!;LMLH@QYMok;+wx z1c^=s{9O-oI}MXND8n!*jgd&uzJ&lzvc*5PIDqx#5 z2Zk4gTmN$UL1p5S#`=Ag+pPnvjC3O(u0c~zLdatFU~->A-RPTUTs zF4>UesM4_9CkPbc$x*GUCC+;`a;2{2HX%cTBl#C;mLzEyuETieE6m{=Ns&oec8B4Eba951AYB}L2&*ZCCX83q|9GX} zsjz5DIZ`xbf6e=l_{m;EzN;wyMumGnSVCE@KI3I^M=e)RZq|y`$5N2K^5Idi%+mQs zTzU}_3yXqfJi7Ws%M|>>2>jusIKV#b?OFFf4G6M20jZCz-;`1-P+-PfHOqtgfa&m^ z?y6BAIu_NK=TKOMmAGgbicl>msPj~ zS%rxCkCD05QuZrxl`rK(xN5s~Rqxco46Jvf1uYJ`?dxHy+lkcv`t0!!zM)3+!?1jN zsdElE>tpSOblw*)F|(yWj51=|Vav(Y{NhM^F^0NhA30mo1nSS7$$!>+@xs_H*&^!@>e zFGW>j^y?zVQOx>+V7dV5S0DUBQ)iWhB66*NN?;f~j(t1NMmyL!veOW(@WsWcp}0mn zRPtYAey%y35t;SNY3W#Pkj+^3Cup%Z$ODQX0+cWOdyed(XY4x6H-|o5hpqGX{$Bi~ zP&Ltx_}ag|5yo24hdp!!1bpJ)LlJ{ebk}fguSvSqj*z7e&by7Y(xJQ15d7}5ju%Qh zLC-F)-a_e7_`?4n=yi!KKlmR6yC?I380#-6>i_(x%&GwYEwQ7wh|&~lE84RB z8|F!FarWfzJ5RQ(RekswEo&w|756V@fk(^j`P%}2-=O|&f&Xr5H}1T!zb)|J)B;cc zZGtBd@1}Ef=KeFH=l)E2-#!6y zc4nM2C2XnP;RW0O8@vFRL&GMVh?y&R>ubP%{;QkLXqqGMtj@E1ur{@WDaw|@tNZ8E z=GmYheb{G?E9F1nuuoXM*mBrs2}UZm!#+!xfwQ1l^U0M;nPREvo%hIP zaj*P+C9xd!Sxg5llo2Y8QmP9&}&u}Z60n|Zs%>WBWTQox@R?U!2 zm$F4R^t9&0R0AgDN2vyGT?%l2tA>Ah)$p~LBC2XAeV%IAHgUhCYS`&)?C`&rz3uYx zinIO3hL>941^+(IUR73m73x4n+eQ`3=H_M87S8^{9bWPGLQ#pfRpLvbl4J(`2cr@# zLHc zD$&-WzZ5D-)(iPqRLHu}AA(A>RU$f6HkW)d;n{<6AsKf;h~)*ULZ0kz8T0xG;|B4$ zm@t~Y)#(#LoAZ)2AUpw&X#LSe>uZjscP3CM)acm^R5+H7W5v&3b&QN(aMs_z;VlQZ zrC|Pp#bkWx1(O!10fJcZdgMQ-6D|ur@VF`(YeCOyO986)QS7sMAq>0FgRLlV^3QDe z3MfGYF{Xivi>YJ4iiAY}JhZ|O3;0bZl^?YJ<7U>rVzR&MaD|@8_?u2FZ<*xJ!|RV6 zELh0;16j~pnTrRpFC+%ZO5>k5TydF#UkN9FE%?tv3>LS4Q>@nDZ*1b)!kMs$zXB~4 z7QOhmI&VQ3CcoH_atdqm!A;mcPzZaFhwmSEK-&K}Is@@gQD1g-QX3!ACd{T+Am4C! z)yu*V4P8XKWAR@3eEiP0@?Yzl58mCG>9%8oOk{08IOwPl`yATA)sR^7t@3GjW|Nv# ziHR!BPy!CjL_ec`yOJF=o>pwKM$o9OaG7K!`MQGUx*1| zZvAmcna!AV)fe)9d@Fq!L>H0RPOO1O@)cyL-r~$MJJOMxYSe5_wbHa;HAPG z<0SLlU-4PwTBZHzMm4@G2Qvb8!QY)&#$D2T70V{#C5)FpJj(%qY|-0DwD@p)>J2$) z%S*kfdq;BqD*f{x|Lxa>q9aEUe|2YyMC^uNhWx9h*tVf!wj$8BCFTU_UQ2`(4b`xM z{x%vc+i0w_jt@D6Rd+P9$*5kun|fMoCk{zv+sI4uaomP}5ObkJ9|-Q#`x8k(+35vi z{61X{T>|@JeGR5sm~H#Ty4*n4p4GUwcQ~kN{-GUig|D)GG4kFjPMA;d1$w)~Y*1u0uZ1XvLfnP;DbE6eM!hA^Oo8aVeM_F%BB_w; z*L&i;@IvYj?*Cg)}82Dtkiw1eAx^~YFnrZ<|w4>nnr6nUKyP;iPkqv#CJhz3{- z4pQd~W+r6uDl_Hh@Y_|hU$6J7j4)?hvPM+lZQLr^*sUQLJb#60jk(8j?2}-GpI~sw zZs;YApD7U3#)|D2)*MK+J|Dc%UzrswyKN5l%frnQr3>KiZI)sJJ3l2TGax{L4R6tI z7satxOUNzojyOIFj#($`r;f#MUu)aZ6Vt#pmB_223#Bgr1|05AJq}!fFlij)aM9}2 zhpp-t8j1!i&I4UHiS>iM(~T|iD}H4q)>{4AAEC7#xee4a?bb&(;Ty7 z-^J{Bbm2Mrvv6ydFV~jkt)5O*X9y@#dok^FV=F%3#@))!Fv#Y3zU@5M~C@{4=S&F;w89TTy z!312Av+$~-D~>|m1bF<2$NFzdz;8@h{H|ybn*u)MfjVoDby0OCWG|9j7~4dmf*+vQ zw|-#ii?CM?9erPZenfKd@iY9fA{_-y;0L5ej<=e9#M?F=85OGU1mA9_3V{S)j(FQ^ zdKuU;Q)a|562o$o<8&hS1V!Toh36oYItulpj4Y0<`3YZ4#Q) z5ic-4ITlg0WO>BG4S{K3YrLvrLk0^^up_WrZ5;(>zGL8DAR+dcX?Yp3izo1@Za9pM zjT2i|kn|mX_ktGz3zF1sFp|iZI}qH}^W{E5fCmc)1)D?a9Gf^ctb#1;zgHA6h{bou zE5K4=k*&DTI;4zjaf@))dt+N^^3i5&YkKl12Hg-0XYBLLO1vuwZBa1adYL*pVG;P0 zNdctSWWmDZyTB2PI5FhHlZ#>nMW@7~VYPP$bFAR@Z7f~~_QrEEwgVG+8di)1N=Oi? zz=ur=B8Yy&r7`y-v50118yxGOJqyaQ!lW`#qfTuGg1rKs2gejZqgf&TVn|}}c-2nM z^`)EUQDOPBFENOIv?(!o?=c!8GRvNVCow~#R(R384L{VE7(B|z4B2h}ZdxW7anhkm zIrd4CV-(wVHR74Ua*U!c$4S34g6m*k3p-2}JjQK-R|k(?#XEdvp}@f-4wQ|+A6kq0b`NeIIAUPgR_ggvz|6T zK@+5}yzgh)?RtM32tNal?%=9)&RZbdes)zl&5`^4hgX$2GDd61SDB-Zs|~$Vwuonq z2O#6;^NKMXZIzAtU}QS~x&V2+0b`Nf`Fq`K&ZD7E?!`EVIn&{b-d^%a9IJW3>BPS- z%Y$LP|7&nnueRdK*@#>0;{l+Nj7i2=Bfe{e#FHvKX6jTtAM7OvYDc(RQ$|8Z1kZ8Cj7Tz@eML@LQ5NebLIC@u9@a%4;_U`cAtBn1q^N(vNx z6z}iw`8p)mPA+in7_S*;Br@PxL_4TWPB8OVa%H9wMv>s~zo465pkunU=^*{KxXvNB zyXy({AhXNd!EIx@S;s3sr^1}yXa{vfb$&B`;mXz0OMw?3y7Q8F${U*t{rJVU&4qr* zz$eure-rb~f{7@YJd%k>m)jEsQYb@4-&?+`GXhn}F$#iRI{bv~*ij)D%(A3Vq)YdV z0%@d7ke=Y+eH-AWk|QLf@D3bT)4~dA#0YUmiyOQ8(xn3X*U3r?sW6$H$NGB-(*Qo7%_W1>64{^a_*;d~CuQ%KoVsKxzNYSN!~frCu!bH3W-h zyy(+nB?g;at$(nO467^wI}J7&W8-{HNef}CwcQFk5BS^)Wz!njtWmKMq+3@4p+g(( zfF}B(O=p7jkzH?OGF)NL8>P}-{#fkv3}ug8CcHexV6F*zQMZe;^4 zj9I89;J3Q_^EV$K8-myt*%~bItn(tV)s}nz|NiTLhID`L_ivsYyLz;7Aj2ks!;0_F zH~0Aj|37b@>$$j3Fr%1s@1I}O_btqBtg`xk1?7@yCY~izasLbni=xlAu@JiOBR$#=8U{7W4o3-|;lMMW<|}5@DtCzqUccy7Rb{4(Z4G#@y{YHGUpZ zEG$N;|Ar0Ww*yK?3WuhTGnwdwNr%}cYyI_7fFkkYdauH^DS0wylXo_~kqyD!ZHBb_ z9`|Nd^oLUEC@6pT4mj^4=w=tz_ksMpdS4S;knsJaQ0h|=)MOdoWw8D!(AAf-0pZ)4H zlt(wmBaWy@4B?MZp7$3v5)lu(yu4lG0}X|SKzD!lW=DFn81F_GzH!{@N_yzLidOD) zzpnq5|AE)*Vu8HjzaMmZ z@pC4fCoZ4=d$2sZ_&r}-$a3fdxuA0EqZI_CTkhSbxiTEPCt{l~m4X%VP1UvV0P~Ba zY0zYA8Pq#x@!BG@Kf|VDl-T}^?HcQ6ST55WHRJ~_FGd1ISw$eyJ{v_(3@z{AE}LRi zF@^%IVXUyCcQ?$K{q9)E*RdK@6b@G|5rc|yHbi33B&)8#_QZ+eB)1WaD#PWsAtO03 zbv9R%!VU8|g-}^H7n77J`&_c*WD1Rwmh)ZbFC|nW3?uDqh&J)yEYzg%BFALX39v}W zQOU1Jn8|y~zQ+h|M~fS-`NjdtsW7J^?$X=)9EW_N6s%Y8ifFyrn=f%eUg&mV^=^0m zEjbyX5$yNpWNhsZeTqovm?v43Y9BvvX)h;jD?cpU#3JdO??~nkC68xd-&&)T&u^NV;#fAH(s;!W#)kuo3Sz0L z8We4JEoGxAO%W}_He}~mG_;f<%Xr45pfWXXC(V*8va8azaqELIZ+a|apG<9#QuqR6 zFu>E4ab^``2K)-AzY48^VU1M4vxL`L6q+Y)@E!#OmhQ`3f z>4Am$g23k|ZQJo)4PNoP;z5TiXC};ue8YbiVq=@!!ECGbjux@-Ra?1{w zJ?o5~PJ$=Pv?BEMsfe!xtUVyQY=IcFpIzQUSlYF8PgFX=g%w-~izkj+HOM@Mq0^1B z>lm^^hVQjq|Aw$#YK5s9UL=(eOhv@lOipZIZ!*r? zgfGaAWnsY>n6U8h*9>YU{Ib(&SS|5Z-2Tmf=x{8Dl?EtTEE|16w4GCQCqbCSW80jV z6Wg|J+qP{xnPg(yw*8MMwrwYy-92Z|KJLrDba$QVs<%3IyX$_x>mJlhwm2fjFR+6u8jos~TB zKd0ZK4)|6Uh$WG+JOsZ-tL;HC8-*1QY~TbwY<|PA;SQwz;KqUW^Roph`!aSqK+c8Z zpwaJZi#xzp8R6t@t66WBDps$FnW$#^s$HsdD#SERz}fv{*B$hYKX9+z!i@aT6ZM^L zpLO=ITSL%rB&3pFJr&k8YaTpfO8`&_w^aeI+k+ zs;Z*uC#bSYre4eBWmJPqyJ9N&fkW5=8?27J)m4^&N7;$)_c)AtVV2JlUP~MO z_N6F&YE*+#jIBsas2a?3@}`&tFh=%W1A*_s!t9-~C&yt&qzM+VjjL7iab`!1*+Y*O zgY>26v_-_~s1f&HMW$-GtjyWH>By`Iiaq+U`6^QIGs$w;a;u@NhZ5UHTmrdbLw-#% z3@C$f4~(`uQkM2>Gb1Sw7ymFqGjuQax)Z25Y9vy;DkV?^HS8^agmjY@h0L_2q!^%v z&@~H{aal9z4yL**<^{cOD!${)RUMp`;&($zetgUr8F?jY8TLhOg#tNM;zt$HrBwuJ zmL%j%q)0(gVhY(m1Es{Ki&Gk5;}!xr6G-_d@JG!;>@q;-f%JyE(_G9@Wr;X;R*pgfnC zi{60g8aQB~XZ!;OvsWA`qSIGP36sBR(>NK$(e|ZB)*naY-+n8bQn;zT6Zm zXr-0U1i`bGc8jtMxM7Noj;#nucQD#69cNN0oG- zlfoC?=@6|geB3wXFgGl5tRROBO|n$Ug-i3g)wYnd-RM%(2wP9B&f2Qow9GCjUv^5%WZXVrLwj|YnC~sw& zqT!|F2YSZ}>*CuN>TtvBn`W|Ep+ zx`SQO9V(4Sb!Ir+Zx<58n?H=fLYX|w6hI6m#gc&s##84i7kufFKR6ZRVmH4d{wyo0 zl4|F?qSfSGmP)YYRb%Wl%T0y=!L8(dOsC(g6Q;QnCE>Y*?pCo&xI{w<4VeyqO!s*w zn~l+?zg5f4zMs~s5@RW(XC~8);13%`mOc=_bt!ln1dFg5#n)(yaM*f(Wj#HG``CrgHb&mGXsFCASSVWv<0)7*jV zi!f}IX=a_#IjeDR?urvN1JkT&Oa3p0_nHECPvY#zD)U`2v<9JV50&6I;B&Z+IR0v# zjJQfmUe-^lPQ?}CrCbi_fo92KntBya_Sh0f&dy5!GczAv;TOz}TnF$=Lf8Ni>)ztT z16eLyqrt#E%0a)UX$GOSK@U4bvx%ctRbus-koC}fdB4LA3)1|mpk-3)E5lH^;b}20 zw0ra}TXLDRSUE52z=TSEM`}^3EUb?I8onruOk=LBY>7?&J*Ctdb1D)}cUlWlSowue z{M0)(KCp}oL9v2nPVdk|re@QNUd5dSZ++~mQ<)1(nAOP8l#DdS@EJ=F(xMURDvj!u zxHOqv$p}gD5=a!$if1<4pfoHn%bKAvM^tIS{u-&c%y?Y`VEC$$E+!Xu^G2G44PSm> zP*iFH4))QM2pL<=$jNlIU4BI`%7q>iRr>k9)F@7WY!=GEZr(3HU8tGfwS=CtSz_v% z`!RNAwqz2%LwJFgE0&8}`i~YFQJw4sn}dmyu>ZK z0OMT2}g z&_`uS@J{PIg>QlH{MgYIy5kMqnGWrK`!S>jDli*g$15yFLKX9O17Sg2n6`b7O|!mA z-QP=L_{a<1SJds-6&nH#p=tXEV!3yO*BqXbFM6EMU8))*uM^6Qs0hAwe~XAlF5 zdI$Pf^sm1Vg&wPp?uTs+^uR>#zy+ulQ1*}xA8ggL2o6l?V@xwV78Dsjg8{QLBpR#g4m0KmKw*C4-{^xDf{{esEDLWf6wvt&tG#L#<4{S(* z4GORTR%s)JTN97rlJ(D!OYN?@q=7~+0;L)!2v}H8L%a^2?iv(wEb(un4AFl z#+`TqFa zmgDl<&+Yw&G?r>xe=yV>)y;Q0OY&r0t#_%tpND(xp-Xvv|LF(E`c3h%OV+2#VJD=X z6EBjaKE@#nSsSxUWmKz>#lfnoV<_Y_*ytF1H-3bvJZg%izFO>vJ%ZkFk2RvJOHy^# zM2Ah@b*R@x%*Lah@>>PQ*dv2|OEWkBaEkdCHk3y3gf5ZxDUROmVAaN1b-}G*3EMKl zRxuJV4CsuZ!*etE1?w^22PoCJ0R`eSjko?b;@Z|0$HJ4i0Z#zN909Q5l}*sHJfX+n zyy(sQ(lk)h;J+nj^A3}&Ae=h5e_SkNiC#Tf^e4wHlwM1_rvXrUz#aUH53)Imm!AZL zP+hg4ETFa}1GfLvyyK`79M_S&L;`sPU0JZ}aN!hgD0hAv8THn@46aHJ2w_+l2hY6& zQ#3)cIN4+}v?vA?EYxURXwV0(i{Ndk>vc5s|8A{$jw7P*?f;8fdH%I7mndYszp62$H524J)Lc|4w5SLBlj=??bbUbE#`6DPmq&T}(wj%ERRSyYacMR1gS z_v{aUA4N{Z-oh3?zIpF))De~1Wk4+|{IUz#Nc3xyK{Qy1Dfuv^bj!`zC5_7WcvH~z z(Sd!`hwQbleG(_=?e+c2*+7#TsyCg~UBzf^4rRNa{AGR59r&k`EvxFnha;zdViQQJ zIAWvv342wY`?rUV2r&|QMw7N}@4#&4Bd%!*yWyuq$`MGfA5=1x3RVa#-57Va_!SEDrIzv~)3#(c5XNm}kH3~m*Z0f@c4<;!f0$`a*sk%n`2 zj`!=c32XzA^`1Cay^YZ?O6#e|E?|lF@>*17ybQ4Of7)1eF=?0Xpnueh?%j@Z+51HKT?kZ}nxIQzN zGi=t>^b70ymE2W%<@`mBRNcR)UbH1zm9%P=e&~^~0HH0uL6EWn9-{MlR>Af!1B-zl z66~Vg*PndQ6&%s;u$g^l^0N+(WBKQv3H8+ZIZ{poNdg~?1-A>>T}>H-8XJ!x({ZC# z)X5Zcz=cqGYr}-c(ugvCcNb!z*OaNjw_H(AfmXO7c8QDgE5M3M{lNrIRj#p-Xc7%6q-Q@CsWu4(5hxY6(E4+v9 zoAs`xEw+v$a;I&-uWuNm@N)@Mcvp9>&sEY<_Yx`>A)KP29Zxezp1m+LW2!$M-_eMf z4rZ{TW+5AvznQt>FKf%g+l+@_G~*Vn8;Gf$UpP(gJF_kzQD)ThFNNMg)0GF@{Yu-O z{YvRiyTakFiyN2ACdr=c})StzF7 zmd~r4*Y=Yd``t&5+nz^`XGzv)8n$(r37N0DKd)So)Y=E+rRmN|yaB2z8teeg(qwUpT{hixzMSoo+vejH+DL#5!gkyedp!no>=tL)rPtGQ9$cAUt(!5n=G zb=wDT`I;mm>Uu6p-;p`hB4fR2B_q_i5)2!_S~FN-E6+t%57pTL?dWd6s;* zKg9oz6t;829g`i}%pc2+C%m%j_QJnw+;-rg*9H67w&Xy3h5DIvh1UKZy|~4{ejrli zyGhY1Qn-mh2)oB{f%v@6*3J-}c;|4SDtg#D#)q%T0O7@7Lc+ z`d?A^;S2s>Q3v8r>O1mtUV(PHEc!b0{%p?&6b2XpdGlY5T@?1# zp1pg1tBirmFu0%|*|Z-%Kr7a3c2{paLVs%IRo_1pxN3yYtmV4qk6MdZOYt(c@A8qa z)EK@w1y1N8$2w(hIA^yLFsGTt-)FxC{R=?BDPqi9vf2+k-e!g5{Y_v$69csmWk)l% zR?1yG!|=npNGD%sqXo8?qaB7nH?fS3F|c*ScaK3>_n?)hq?B)& znsWcn1ZN+jhby(q8+%`$?7ac*hLrEA+46WBzmem3^35I#3AG9T<;_KkiB(4{^a=j8 zkEGx;{%Fgy77S(T-E7=DD-{B`va&1;(-aHxVs;W=DjFSJJW+7+oeSBHy%4zOIU9 z$JEgM7Pt3vTD;x(;@a5nAK34Td8LSX(s5+RvXx(_FnMdVmGx;O+_!p;%jr7KS1tQb zZErH&9+KmrWU0m7vgQ7M_T@1sn_lhlc9}sE+AlWL`zaT zbAB%5vM_EK*Js&cE^sJ1=KcinuK5!|pUS6XpR+lVTYe9d7V%#K=Rhhhpi7T%5<7Ym zP+gT5tP`wy|C8(6aSyt@VE-b))*o-TIg4)kCT5>!=WjoZ88{40HiR+8yYE=Rc95*H ztz20Ytt)d@!qYQ1> zXxGs@^1`g-fzCFxt$s<8?NHoq^5K5K{%INiK|Bp^qf~+tpZqoiad7y7gRWEib!sp9cb$}VV5qcsHxqvYm_O?GcryNUyfg($;(*}qxB=y4^&N!5`5<`(Uu=nG!-!Ajj z76Wu`>271FEGu%$7aiu$J-d%5pgU?bTlKAP+<`@Pm9N2uK`{aTQhB0YiSbo57X>Am z?|#HG;I8|==0qG1UwmkCMR#r6LDPYI=|M1rFMI(QpCQ$71DMosHc92N{htm{-37wH zh$EzdH5$__tl&IkR4%sBof*D{?6?o$U3JhOuIWX9h(}sf-5Nzz+G2Q0hWSS#tumj=W)wqVq&_Yl_PI&n~yst3;`Y0nGtHuB+0m_55V~+Qax=J_^D8OjkXr> z&n33@+TbZjs2e>pKjMa55?_0i*q%=>dMnbvd5#dVbWtpr*cbm)TdYNem*k725MhwAPz-NK6-E>}sQ#35FSAQ?X z3s^8;9tWEUCj|(C)fL+R^*2L=urvwB?*eT5f-G2Vo2*7P* z)lUqyl4(VK?|t^eD$tc;Cb&t<))vmJWCuIe?>dGCYkhB^4gRGh=Q}{1mOo8ay34Vt z<3%wy26D8`va1X1J-J>oIuGX)PA-rKb2|@PN&S=JTDwvpGI8`=ar;S&op$M;A{%Vc z*|D+e-g4V+CKJ7B+}BX@mBE{(iJ7kM?LFzNl*q2>H?iO&ccQ^l9=78Z6iccCE-!p( z12u;OfY{B1X>-VN)Vi_Lb=k8A`vXTPrwt4D2eTnTp1;oYJO4BU&%Cu=9FKRJ)!BoM z>qw(loL7)IWDl`@Z_RHZQ7(*?NH{o?cuMKwM01Yg;H$utS5CWV@hChPg!`qrK*fRG zYV`~6TKfN`r}n3lHtd8*rZ9jw^_C@-D{5bXj%Nsd_}p+cUl7w}@|U_&(E0l#8wc(c zRIbG_|8kg;6G+rn+ON(xh6@+0>~`14iR+XK-#+GE?o*~`PlXrk+7Pm5PK664^1qpk zP<^_S$d-jNXLiq2dlU}}r)SHC2TlLy8?xcV4*WwlT*kE#{iJ^}8^`ePYzPh!x$mxY zz5?irSaL93K=uCRyZ`x7N6Y} z*Ww0_s@GZ=@VIDy0)bt(4b!fHS`|G0zy~;MrHsCRBQ)6nCGu5iA5755WR@l2sFva z>Ip~$UmqMJ4nlUX^#XSCpljvzsMcx+O~$Z`-@*BAPheCV0lmJ983)tQ+!q7ZLlUgT z0VX%F=rW-KwgbA6?gFYYg@u@foB}q6fQUhc0v``3uwY_5n*}Mr$N81uaucN+_URn} zyiXbEZ6%PQkwjC^1;&{?B^bbnK8=M4rn?8S<}-)6XaMByA^~H!Ovl9azx39eau|hh zk@o8JM~Ytj%%`4NV&wtgV!)5?h$gNPuTbsweK=Dd~ehdus28)RxB(gMGce_o}Pz{@nZ%lB_DbeFAnl>PWx`&sPsdHQ#6c z#E7>O|MHX%-bS(?)5}WUcq}p7a9jHD8ZWgFs zR#lDGuPzemYV}t5K(N+?&+FP6J2T8ld+#2_Sm#2c?j+x&BHyYYaAaR{q|aa8+)uoN zj;*n`g-#yJid`i;CZ362VrDcAtv(iTHvwHyeobdT#OV9bfjoSDR%qWeN2#?XzbJ-} z`@5M9U~f^-+e?)-HI~%=(o_FhLPG#Ss1QKl5g>T7=kJ;_)C8#LQ0z;(<2WyH>gXQ4S)JE$#qmalx0~VdzS0^rNg)lYZ)3~YZ<5v=2AxPKS}j_@oG& z(rQ5Q?e>WrWxPA>{NCMt55_iq;}{)Nu_Bv%mt)o-6LN+?>-yPP?Zt47!PFc{jwQL4 zz-H^4+|*xs`mx+Ed?JsHj9d1+Y9e5iK^>MNJ(w5Ksb#2+VK9~26AP}F@}Q~Xb&0=p zbpCoBb>TGp?AOjl!#UH_U|nSahr}o7BQ5UtaE&CoyLSrILY4#?h}p;rG=p##?vDf@ zH09Ygw;+h{C^45ZUg&84{hzM`k@=ckcFUI%luiBMy^AG5aeptXs)iU%_dAa15vg$L z7GbdhTjld#%rq_rpO=*4nSFI^`)*6(f2)|6G1lBX7MJIFg~C~n9@!1uAP{!oGR@Lh z#h85>|gN^~%qjW}DYzy@qoJgx6Pij>YjXk2F5F2}5Eagff!FB_4_fG-FE2 z?T6A@cOeumxo`sp=CKhn4|hSw7Jb+Gkv0Sb@w9nrwI`20+j1Z8PK{{cJ#fH9hLK04 zMSyuRDp%bYFYg5iv2KIAe*XXYDagF3;0lU?1%tLrAqS|ig2Y@|_<<0>xj=%P?RIA% zDn#BCGLVEHe&>jre|OsN&F>1_2v~*(fkwfQ=LOWP^n;%X6&VyN&~fujDtYFa>_1p= z_|%htJc9TtN%X$1ABhAg?m;9$a7eo!;8{#>5$d*;6{-#PS=YHjYlL-U)|-~>3&Nr` zWdgZj^Y`K6f$Bk*tyT0s3Gx!2Y!0&;ADeSwq8el2P#AL2cEMS@VLzN}QgW5JPNUOt zSa%PE9uB&3YG~M8(`9eZAjjrh-h(m}(4LAy|4uD}odn<0dh{9 zU@T4FEC^Gyq#tmXWXyS%gt26u@Dj@8gh6SPh8N!iGT4<1{3}_;sJ& zSkka=2|NDh$?rStZeJCBxXa<|b}ITP;hG8!QO-XB3bRh3u%nWfFmp!=o}rKM;vS(W z){G9Jr@!u6)yEiS4cZ4nPn{ehCmYSWduuxwt}6kx0VFw_j6Kx*Hqd+%WzY@yY`aA1 z9-&rjK*XN=$d3R1qzEjL*?U?+^8QoqLPoI_=85Lk8D6G@TV@;F3<)Eu)ZnK4$$yd? z^-Wo|p@CCY2-3^9Ha@C(q1=QDZoip_X%}KoQt5w?v*sCOyAxCqqhFbJkLLUvX*and zfT!JnfKI^SKF)-VQS1hm`@3OR3Cy2o8Lo{uu~Mx{Z&P<1#R9dfIb}F|Kc%wAQ`Wf+ z*#kuT-K^SqORc%1#&Yk^GujmeZ6ODxa)2pOAVjcT38VooIarokHgui`8=C^CXHF(C zQ~yf+J{iJIl3|N~|3k`+w$*2K*B8Y5HJyQkL*9Aa=Z+Mn$w*2`P>$yPiY_Te{D?91 ziMd%Qu!XbOJ^)+iWCz3J0T(+}m8PQZjK~YZB$}-fn23bAu7UMrn-NRwPtDSe(i|8b z>x;k+8B5R1C7#XP%W+msAD*FRUvFLV==oq(C~G?>zS{UNX5aoVMvp@Bs4#=CAEXkL zf zvS=W4<5M(~6`hG81KtV!``QC`UQtDPkngayjxM4^-gQCbKl~`_7gxw72DLwsJGAet zHC)q!7!o=NVL<{2#(o8CobD3_4DcL=s{0i8=XM5J`?+9-4xqpm5`wlgWjoj#K#b&V zi|-+W_E9nl`3f-#eR9J`_xocT1s!{;t=@C249u&*bKw5}S0`m=U;RVhkD3DsrpOyk?V#b~FJ3^Yb zY64&^fcl%GT+SHSH{%2ow2fv|lJ9Wmg(4w=FI64Zk3Clq|i_-W{A5<_AoZ zVo0&HH)<{PZzZg5`f|h*Ds1xL$lJHS<+1)ri3UtCcGIL=cpoufyU)N{u6{{GH@>ex zYPg19_e6NH;mP$9d$r{z5sE#=b>j2bf9kY1DW8ZPHF{Ht0>d8Q%em|g*DPdN zogg2(c0YP2?f1*}7;?d|N$gO#+N`yLHqt|=If>bhZ$kBM$EEJJY@tcQ0M_$jcEBxg-YwKklkgUTZY{2X(qamO_)darVolvE=d5+j->rMBD) zHX+!$k(Bh$6OvrNG=j-Nsufw%K`4VtLi>54v&r3m?R$fpUmag+t zJ{b0Liy}P8{){PRWK;_BQo0hVB+EtYwtqHX9H`;n$EoWDfTTwn`%)?L$9>sRl~MBE znZXz<0iD63;t^_rgu4c*I1Y6aH($Z5yO;u?oUC$^L4bFh{CU@Z3ZS@NlJzt`CCCKt`#WdrPLKOZW;xNF=HVTaMUQAmTPEy=v0Mf zBV5IN{@=u=Zv`51P=(pq*7Xae2_>QpHePj8vm{1L+XtG|T4h+>{UUO+cZ! zOj+*M^F`r6N-FYJ=WwiNsx(UE(_-X!#Q!=_{!V)>0kUNtR)5Yqad+l8xJYAkqO8K5 zVm+9PS}IpdZx~9*MDyzxS(O^Z+oh8evz@jj7)X=bZ8*i%Z>(BQJXas9<%8D}^qhEBX@sWw7-Vl-P2Mol7?siE(J! zj!_dT*Qn!AmCDe~zY>{b1#wkiLM=8OWqV#4pGt&UxkS;TL@ZHbpK*>Z$q$*tL92ZN8!E7?6 z%mmieTt2rd(UokuC|^l)9YjJs98Q^hZg1kTI4EswpjL>Fr)p>hoR5nILE7Y5&Z=H& z7LYO$pSg09qq)`(HjQGJQ#>fOs}yLK{R1kWPmz%{R;|Y{ZkY2c2tQMKX`ucDdjB}j$*%wLT&Y0OEtl-2E8ypAj#E~25>kIWQYa1F{cFBh{` z8$Yt(l3#FeS^&j?QUFspKLzPZwgciT%6E{6H zq>LI?bKSCzz2o#8Xn|~YaZ|wMBM$hq%R#1u}od zQnY_|p4jud^XY|y4Oxv*=F+Aevt*-!MeU#0AChXZK-U&2;KL<_s!kqnHf}s9<3Hh# ztz_a)Zxk|Om?RD;KQI=g<8w8?R9H=LdF>(MOErJ^^Z)7-W4&g69sR%h#GXKrsnfW4 zs(^Zh!7hdAp9uR*%k*$4fZ5-Ix&TGJWiG;^okm_8A+Kqn)D&*h?!-HQE z?U3)gngiFm#VWqj1ogBU4-Y1e9bRfko@lN&8mq!;It=pVW5X) z3oo<6YnIzdQPa;bn>bGYw9|h7LHr=+LA3fN)YP%q3CMG8CGC65W zxtEZSn^*~t(~hl1En$k&TCz+===BIm=9sxBBEzN{dDBXN-?p;euTUnVM0=71(ozd= zqOO1&7D^RD3gH) z`gH&kW6V+(Djpc!HRXa;QWu1X1p)lv&-abJD;vMiN&Vu_MpIdN+D5hLy1E;+%C%6= zA=5HwLRJE@UG0JebDqj51cJFF=LT8l2a_^h+z6MPbGrsOVzsz&A~O6ElX{ z`6J~AS?7w70Mb24=h3|@`>tB6Ju#(kXIg`QtXv(^bbSZX6lR$VY^#3fomVUqv`|@* z2S8)j0_{MM`jQ4>NZuaM*C@T05q{VwVpCR8MeE_6`eoE&j1Bw!{M_p;AJ^u_VT`Zr zqV3YdyQ2^A-XT+}AugjxZvF@J!j&npYr^-(SHPVJ&4V5N1K2&6 zMjN>Uh*%D}+@_$eHx<*os!~XYBU!@KiB!m}h4v-hwxO#)dPi4vZrC1CgdCJV1XEWX zoPCIOk{c1rX9b3DH3*YO4V=Do7nH^$=rZulKZjT#*N4o3;GeVt5Oz=U&BX2XtHa#3 z_`^?F71%b?%ff`wG*;z(gJE?qZ$=dyDm1&J2d zdBkj=yD!H{gwy<3fyd&+e!A?S8s0GA*;l43f93W!ko=fLk&nl9AF8%BH3%fcN|T6o z6VL6g_XUdGv3CS{K1Mg>68%481e;vaU{dHAySZ(VBNwRbGfi-#fJ^xeAvH|C z`<)v0B&@LaD_R}AeN<(8GmSM0yDbMmn zk#St@Q?uFCvb`EdP2qnJz$bZg?>!F0J2Do73sA}S01BmX3Y-Av7CGzo1jQ zkZDLZ=J&MOudlQzB{5@T3^AuIPEy|UJC1o8*;`1g;@t<;{UF7~gs_zE-%~Y`ny;we zX`B9T!tbBLe4{$*`l-)(E}@GMm7FjFKCu>=byIy~R3DTX?ncmP>q_VaynRZaTf+&m z4QW`GwTdWVY7QHWxWk%(-}(kE%{_!!t8~>JZb~(HmfZ2uKye^5`GjKd4g9Lv^%V$Y zGMk4rqCbS+P~CpZutT9#D6Vw$6R{q_=TNyoq6BwL4G~Naf-!o|AqL+ddQ3{`3m=!@T4^RyF$z|x@#fKg-bL9LfZs< z?ktL#q2BeERU-o7TPx%o>SK7uV^P3}7J6WTdyjiL3 zOk#c2UQ9MU){A%OLHoSqy^*{LuKzAa6GrXIn@)$ULIRq+u=t@*%MXtQk0B$CN}@ zSS$6ccDsBJ)Dc)P&y$KTaQ;YoaO*4$~{BPD{pXxv9Z&HK`D3VMFONCe!sP*@q- z2VS&Diq%4rdnmW}H_L>$stO-r0S|uoo$9r6RcE;o<7#;nkWc{(UIL^syBi6;Fbl!Q z2IYv%IVAaiG{vw!*>TpldmHT40<~d+jO-lgV#R5_<+& zq7I#e&MLiVQXg_^*a61gpRpj)W!0CD%Wp_w2M%I3iO z-8=ia`71Vx=$?7lKCC*UF8JTfbzY+)s&i;I^HuZx{b2$mtEoUw7fR$`Oe>m|v78nz;XROH6@`m0@x1-Z4oJcYVN6hvUl! z0JzzF09o)-6a!wjBOvKt*zw#XU#k%@e2qfyCLdIWqfmQYyid9E{R5#iFvGCfC}M=N zKElF`5A+GZU~b0Whu(B~?O1;z)403^h>jgACZ%vXI_@b>m z3t>>B{zf4mM+(ey9UAo}x(HYLSp+clU}8d$Y3&TZA}!j4G|>_jGAnjD@?(CAMTH>P zw$t~$eFI4pw+5y$+LY2Qdkq6&Tcas(olfpo#!Oo8Z8_HQef@4Ji;aWp3H&@#{OI;%~_7Iw)xL|Sle7GY* zxqJG(94*Y1ft?7Ry9`DOHm^1ypCCE24IBaLP}oo^0-m0Q%sY7yC3u}xU7hK(yMRC8 z<;rrzk=-`7U0*!Z4nYgAH7LJDvQrt_=Mx#I+;JOnu)1)gLl}P(8?JStTrW2(Y!E=J z5|&+u+O2ROwvhZxl_hC#d5!{LB!Ickl6c#(v;7~-VR(_|McsGFK+l>Q$+4>>~+6#Q@x?A;h zCce}salpfI?hC`53Bt&w&%F=r`FtfCD|?`7Yuxs+en8A{9IrUbh1|ui;|q%8A32*4 z(xGaBx@?|wd!kz_1Y3THZL|w!?B(G|?IxzYHbO#cKDZ1uorUl?a34HayQ#l+G3yFa-Ad)k6k=?NGpW#Et>| zpqhwr7!ZK~z;cY|8F=bAzSIbj5=)~(c0+L?zcI7GZXjVfr5!Jrs)|G92QL7KVVhBaux)QeXK6I zV+XYB_Mc|PK*n~qR19u}?oX2}@1z1#SE!S_0+WY|&*Mov)vi92P{#N9T4-wemBF$7 z7~FnqjV%kQ8VjVW4zKp*8l33lIGfk4h1JE6ToLyea0$I18pz~E+5`Vy3j>89SxHxg z26#n)`nkzTGEDpig812JK&YWxwtOB*9IW|MV%i=U(;j2#7a@$Rq4)%!Kp}0shk-x1 z)-OrL9L+RdnIo`si?_S7gMpH@{jF3}(wTqii_pm=p82R_g4hHuq*A-`6QmU6--@5< z^CYgMD}6*RQ{f^<_KV)4s91HY5w+lc<>&Dcx)GNlJ10-jFm&$gol=Esl8bO*qy62W zotu56h{rhArH?a>v1_6o%y^}F8c46C=r=O#V1BU#IY{6&TqP=vmq7G4eeOMb*RPw* zt0m8iqW^fJPyk?4zU_c2Dj>B7twT!y-$T2g!GQREUIrEb%}Klwjo2H^5oXU6eJX<5 z1J@66gMaH%5)l|Bqy?bPZEx6JOjGpl^e+ZpNSgPdw&m=t3yT_)F^1Ve6-)=m0~%;X znDq6uNDxtTbFaZpXFHde#(Gx|+b_uGjR9Car>T8wkZB18;5Z=AQ+$$;?q?9ab-VLL z>+%<^kgJYU6mX56nu{9m$TWUj9uVLp=K<2v13`0hDltR1q!9R2UpKnq80f>mWjq^p zKyRN23O79P0$oVACMI#KH^REdzsmgRlZo@&jO<%Y7~Vj$GE%rPOAMimDQZ zFSuiBiu*ga^b%bt25dmsM}*a)bBPKDfhvt6;pw~b9u6{?Q}9q9JHSE@aJYJ_5~OwV z=b6R*{;{hxEn*Ais4@f?Gb5GC$lhNYO*W;ZI1Ip(5YBTTwgNT-Uas60(^si^oPMAH z`5S(({eV)0THmmzV#Fj_@BD|b&_C_VaHHQWN^XVAI9c1^jhtHJM$t!o3!(dc!zddhv_mApRdI_#4=; zyk!kQ8VWweR4GAMuyvr$#0sEp>@X2?ZUiqj=&`K^lTP76x4xwB7ItmR-IdqLYvH=gs0H{jo>$wjt)me# z7Y|M95v?TX7n4`pnC~e+4!g6d+)TkkAic)mxLNpoWo|!?EzCpAFdjF?>$|#{&%rU; zYMe?!F<={~6E>)iiTL`z-gWZZ?v!9^e4Q?$W8NRI;OuTtJ8^n9N(xnXbr)Wp8?%mY(z`M6KH51L#(eW~4HL zsmYzLG*crL5*Y(w&xN-m-AJp%Xv6tWlOG}Y=PXfLnF=wV;!H6Yn_vU134ohN6a?4I1ponxdg!W;jueg6*w8a1W>VnV-5 zPJv@k7~rm#Ic62n8!Cr!Sd5T&1kSq%%;@3hQNNdrTA4k}03C+gEp?wOCPzROpEC#q z&Oz}NWZ-tfrZ`xy%rzpZJm?e1p?;U{5gPyU-&I+T?|lY@Hxi~^ zQ7dFX&UPRO!xNWrr`% znk=Wl#HPD-?ruA?HA4`?Y=4c03``jXDnN!V>S40BBVknpG1Ly~AR$56-hM8a5vm5m@hVQQrEoFExw7QzHX4`xyVs{z%86v1Mk z!AuS-_y86$UAo|V$AC$SaOayCn_0VbR|tPMWZ_Z3B0YXh9Kq$Co#}Ff0;Q|4`ZE~b z5N9)mSHR3ZNOKiLM}&Ep&@{3PZ4c)nRbHUr5z3M)Nun-`iU#a5SjGiB7R9fyhLN;^ z2fqNd7NE2rV}bS!bBs}nr~vN9!fiZ=BnftkZ|sj8n`>P`dto~ycX=~p;xei~zuE`7 zb?lFx^^@_Pa192&qEK1J*p_)h%;8~uZxVJ3CZGgpi8 zti>6yhzR5>R)8MU%j@Jz00rR95JDybX&ZpiLfbhXV|3)!{oFs551 zgntm34Eg8dz0ie|#1T-v0P)Oi_tF8d*tMna=I1ZpX!}qS1!dm8eJB}ZG>6$f6s)_S ze)~|6Fmn@C=VK3cCU(bVpVqHMHv>*q{Ezoe+GAh%u9y3H2+cKz)k76sCL$h190pZ{ zaGNpi)&tKZ^=Wkj(nQa^r zgGitPY2<3b{;wlG`u27vq9ZN9SF1*y4z)kyuMhP<|M6d$M>0i(=m44p@51&D1>ku~ zoThJt)9Z*};kyFxRcpSyd~FGp#Pu^t6IIyZ2UrusShYOSQdy{qJ-o2%7b-aycKy<@L*~=IStmOX!K2+gF7I1g zw4hpNvXbb34BlwXX0`~HW->{D|Nahl3qIf7UHV{-fDX@qTF{0z=?cZvPv8M2r zVH-2&kvBBVfZ+=fTN#!B;1D?aWm*OdG63j3nKgZmv7c5p6h7bw=s^!m(wMW(8f!m6 zjs@ZZ5y|i5{vH2=FuP_ialpHG%swNBznnF8~4*cSPWd!YF3koiK>9UpxliZy4cRl?-~w^lYdf2LX^9&Ayt8?~0-(j92;?ls@+hwo?sWhD zckjuD9F4~IlDLJU;!r-s3_w_T^T!%yUjDEN0-o6CtB!vQZaO4Rf>i<3^nZDd4psI|pxlX906ukVafb5EH|nI^VD0IT*`Scou4RLgB{_M4LP&O2G!0sbc-8sSSLfN*bI{!3bE|^EgV)zyX7PYRY{0X zmAo{Y)zjjls1|#iH^dEtDsVY@TUt}IOsOkyBwcRU6M3oTRwY`s>dOqLOc(1>OIc13 zK$4s&eTyX*lZH#Egwx3&oR50CHr`>lj`DnzgZY2 z=1C(n6FXbWAQXR;M+`v~wRk7Z5^Or2^;}HAga$`eC$y`yIk|)_9G&8qr2!^d36u9$ zxtHjS09HC#W0@@^RjI%*xk4V!5BP9eu5Rn(V8h{EZ?d5&ZnUuncBzGLnU2?Muk$qL zHCx(7NiL1#$dt2#DvJOzLOqvFDXqkCUMSDo^QNoM8VRmnvya z0xYwu9z*A9v{)ZWM!#9^xT&H=QPPSY<-b)i(D_Jo|j>Idn$R%4tDKnkrd2Cav zEE3*CtYnLFVW8uA%;&>4tCf@n!Q&XIW-TS9ta00&Z#QzKFeba+e9dFqX|F)rt;CWX zH?urBB*cW17!stLGR65|ZZ1{@k9Vpy1duM3hID2uD?-i82&+wFyU6I8wqW~qmDrZ& zuASHH4S{#*$tFGTaybz&D1is!xqcc950{H)|DjL z#u9N%tE612By77qySviOhE&w-_L!Y0GuckiLYpbn2W)X9;ryK9`2tyGeRtG#Cv%muhW~FQ=x?6x}99qWzNk`7t-8S3*#i< z$8NhVY6xIkq}zSF?&gyAIF2R6S+Q5%I2_Tk3kiPO-(Xrw&kg&@5fcRNP!I>h%lo$pPTW0EP zzE!Qq;RV$J^FP~wKhYn5ln?(DojeeD_;f_$W1>s*rQvqmgMwk*>8%R6dWRV>%!J9o zcXI`%)y8EkGl3TarV{|nt&Tv#KOTH|DB8Jl^CCdDCUslp1agSXtO9^})RUt>F6`a8 z_`2N6LRFUufr3|6zssOC`LkAnJFCk)3FunP`i%et>@aEgZQCxu8vzZ!eM3JU;1PBz zbREo~R%sc?jWBzF+AGv$pl+(@z?KHe^cVCWGBkc$HDRopJt@IA1diMWF<(bq2W}Dw zH82-^D9C_-7RIw#0k6*8P?ubNpV@;&B~x@Nok*sSTv)_STv*U&c)^90f<3yK3oAk4 zbRw1h87{08o~9r}g>YdJBn9K8(1SscDPSPp(1}HzJF)zj&~GQ!r*dLly;}5R za_`n6DRdEdwg~*duk|%SrxIy`Ab&fyemk~)JGOp1wtl8#i}$-q)=AMlc5RtR`8t7TI6bd zmXzgGX}hdSi$cCxEP7LO-Qi4rjuV>0cDPH62;kB(y9JUN z7bYu}auO*s$?-*ft6K$iruSOhx+&LaldCD(SfGbPrNZ;$ ztugL3#?8c{)NYG;%jhfgg4z;X&!U>8T6#>ixUAfot+x^|VuTH~LICGo(AsLruJL)H zG6A!~7+9%AExXvv8^C(+8(3=V;cFp*aby$O`WVKnvYp8OCj|*FADr0GVXk&De%_OZ!a%{zwvO-|Jf>@3x zQrS!vSZV3wpWO?2Zg4<<&M+V3nW6?C=8^g}_KpVag<*Y5Zt2fR`Ak11 z5-^MFjmeX{oZ)w1yKTy6n4`MROKwI__`F#<>erxP(A`=Wt{TX_Y4^Nm{S!CxdFy=W zJp(sxmwK)xZ?|4 zp+X)b=m_-vr|1K}-DD;KH=yi3*tPrlIh{lxg69Vt%lzjQnMMtI={bS#D@Vabq937l zpZ)yfQFavyjyISETH%>sdyAg=*>mWVDV+KVIrLBnUI;*DV25rNfJ`Qnc#^uB>i+H= zdWxcna1ls4MbJMh07;(*Aa_anzXOn;Cjfbo1wJ7DcBu`%Z_ z9PrM+X~Z#o8gZmAMI7M@e(Q)MO;V54X~dBr9;toEk$QxWFGU=8OVICt~CWIypeJCN$-IFl6QMpsO&ww&3H zw?|EnRBBYEmm+92ckbHl@tFq9HfSHF{a=tyY6PCnxavEV0GJw$nlYa|(I8+_nfWZHMN$V>KMsVaaorZg&Z+z+S97gv#J9HCp3@kl)KplmF(2g{c@t@ zjhxQhz?>`sXtCDP>Ka*+lBIgKJZoE&Msu9hB86t$HF&buD|P3!#IQKAlbfW+T3$EP zrHNG8*y5QyAZ6WZ>-l~z)AOSqeP9{b?R0(P@g<4RsdA^}t?If+)@oUzx3SupPFmPn ztYM6s##mV^GiqkF)y=Gunhk1wlfhT%Rj!t! z4h0LmF)$P;m`W{P+KMWUUw`)VKE5k~DNwrp1uHJwva!Sg`JC@RK{%X>0qmNZ7Ht>rzj&qrtbxBH@avfd1cCAi zcORT(8e~#_G9dQeOo3Y`rG`_f(|ZH*+e0FCQorx=ppFeaj zYzN02g+Ph&z21xRIVCg%#$V<5v^yRk7@RtEFLVcoF5QbcL!AX52~)UXi-gJ!c?4Zl zWavPwFz%*E2zN)c-HR)?qIJhpEy2ojFJz&3KbmyhX+w8Ict3G`sM|f>3u)!Pf_XQ` z?}aZ!+53nK+}$RduVMaw_O5NYaomXh%9gh(C1)b*E=!xrR>@lJjH`T$C2!^-RVrH2 zc$AezuP(74^AY*Nd`SrKVo@YPHUTu7H1}aWwq@`T=xzYrr@QeE31}wk5l^YH9^`aa zM4Q2-*Txa+k*-4X%OK#PN=^z`&jTs9?AZ?Ot=!gH2CM^}+>vX!`;PUjG-n052SNfW zQcqehjLiyi36^>qWD}K~Ks3*Vb+HGYd*mKxePFu>g|~BZ8?|>Ftf$SF=G$_Pr_rG= zX2HM$ur>a@n6oC(%%8YkydJlcc6Y)b8fU%%YN9ZNKB}4*YTz#|PFURhYTb5Nq{i6J zmdn4L3^tZN9?lhe2m7P0|9H%r2U>r@l1F-N9?r1y&wOD@{t)*EBaXoR1N-?&K-iw* zgJt`95)-_P87e3k5{^kY`exrRAd=YA33cc?vedMYb#!P}A?w(2t8YMriQ%}6;XDXt zL7`GZ5XTTF0DvV9`5?fih<8M9g5%qP12Ah<=;Mb47^IClU<>$FF>3%8iT1Zf6}@ys zl_2(R?pOZyk1OYkGaHYqfBe8>_T0GG^w9SZxAp5wZckWwfHun(cN^-y8Qv$Zc#gUE zt8dG<#oYTPOFX|e__NsV7I>C75D%S4{hBS8Z!Gp$%iy^$U2lwR!oza2-QAmvqQIl} z#^HDTmqSi{J@~!v2W#`og|VJH5Z2~z?spyrZ`wX@mUH&cC+q9bB|cb^;gZb`KC)vG z)S$EkgssUigbABHi1X-;o&N8>defs`d!Lxu|98K07MNoTn^@Z}|SGb7nU+V3A_EQh|y}rsYu6FosOVp>C$(USDu0{g8bZmTrxdMSP z;l@t{a1?8&LpKmagqHcOR>x`LWr!eCIL?AanDjz~-&`^0?;u1&cn)PNl_@}X^b9AP zLkQY+*PZ#st?@0M{e;&ju(kvK@uYhXIA8JL7Tde04v@3;`Sd zh1JSy^?I%w&;6)Ma{=E7R_4?6_jFQfJUZVifKlzAHP6E`n^Q|;RPJ+j(x|$~B=s}K zAT)R{xvWw7H`y(#>K=?_4j8N+eR;r0hpjwdSlEV!+5<*Z#KRsW3*A>8hA$5ohkvW| zfDvq`ASaEjR3Q5g)_8Ft*!9EQN zcFCiMB#4WJmS9RPc;uX+t&ipm9U7Il)A6R#r~>39{#5ky+v)KET2fTVc~@Kb-qqLx zP~GJZMt!2)@6tLVRT(2x$k4_)BZXhs)k8^QV(TjPhMZ@zMbI;uQ@s)1vT^h#GMH8X z)gk9bZQ;97V^!zeRt$maoHvQ74l6V=U7PEu3;d zC9G~3IOANiz$MrMpP$WD?f0iwm1395v8q+P1qcIn-d(kRR&O-B9RNg(yIX=2N<*dJzfI2D*v^<|i_S_I zXrNEG$$1^yMfExkeuHG=Yq22$cxlTo7HsS9kRx&OQc8K%hpdAt9dabjPJvRzlPKqp zDp!-7r>v7LGg8}T*sJ@4hKmYq@0yr9P}NUtM>nYaNxY3z3(mUUSpPxF z!D3Gzs9HHTI5vHdyCF6{XwL|2@dN1w_T-VMr~tnx8uR&4_3xV8zDq7F(8;!lN4`%{ z*t;%Np*_5B1QjgV){vvSm&9_U}u+H z6rfvJW;AjC$#P8?T&M1rdNDc-s!jrnvE40R{2nPuWhEEm>3*^t4ISIULZ^H#X5S&< z9}MwKkm|eJ?Bk`AeX)Dogs#7wQ`Gs*!TLj1H+E&Vi`nijOt<*^TVn41;fxhRSntjK z)*kugY0L(FW!-<6&9?sioyCk`KvLVv!WPfW* zV7FGK-oKRxYt{9ETSGjqk-6FGu#?!BM=V(+4AFI>bDMS0TG zs_6R?c}@2mxQFW2w84675#DQwO~+up6*u8K6!XNxsA{7ZIdo9vY+r~s?K_eUMQm_O4E6d^82Li%t!g18uhdP{pY`WUdh)V zk3C>$@1~*A{fIqEE|?TNM);4Baa{qOqr7k`>_7F68rr%7Hte_d9m4r1%C3N3SHMQS zU6*JJ*o}(O*n>FFPJ4~A!G%q&=pGdn-%X|fa`z~SzJOYbQCP-s`m$NBAvga92D?es z-3lPGQ9&M|$R_nRr4!kx*sDH~&C-APFdp4cRXY*SqXH%wE^AbPvzW_T-Lj70Dwj0M zt)AVIo<{`=ah9~%bFyKTZxKhiqhevuLJJc`koLk7g&CuRbRogURvAynm6OBrq$iNv zYiziXrX(2L#3XzOHo*foQ}^W5KfN_M0~i&CvIoh;07eC0^KJl}5Ce!#N`NFyXbJl( zv(DJ)Al4ZhTjpdA0k+AP(G6jEpKm9(0C*Tz*(9trr6oFejG5T>5Jlz4`}WX+=qh$j z-PP0PI|G~=TgWlDcDyf1DqB=|-X0_qWsBml&T$NSm1*HS884srD}!JfW&&5odjI^m*!-04)p_y< zpMt*tP!XZ9k1wyMH~#wuQyd8!mnv?m*T&(;O>qoX7h4b0@H}k(OIET+4Z7 zqr#my6L^a6zux!;WcrfcwDHslVx|qB91~~STIZecTze-W#chxJubKPjcAp46_O1u9 zcj(1apau^e;K`Nw1i^>xsT(h!o`oG{P$m#=m|m8s=D2|!SiHLZ4B|rRVaW;rRtCdK z<;2>}t^E_i)|u*=$a7F&8;*c2~Eh*z`gSGVGtK)a?7uRC#SWF_fN`rA$LM8-4o$L#OHOq zQJWsqqesc?;Zri{T4PX3O=*pj9_VlxSlL)(W-3Z+oG)ukkG9*(9c@>mH3ns{l>CV! zvwOYVLU{kFcZ&w9akmTcAkO3U<#^a&Hofw8I^I+oRS4L4!}fMMylowA7fe+otQtL{ zZV#WROV_G_QiV#ZmXTF!7T>Bhb7j@&QC)ixtcOprN8?yQIJg(kpJ{Or6#wp(Tj2Pvn@u_ZR-kHFexEn zSm8SrdEQ#FgjyM>Ss!ER^G{ENv5p3$9CGA=yRRQ9e z7@rpUtpFddahkS{C^lF~8BuI(DXWNL%Om7WMT82jtA^+x71yQ3SByW*`GiUvO)sCf z)9LbDREC^xlLzz~qCm5r8lU+78$FyyG5ryM5gk8$7{*Oyu%4a}WZN-=ukH^TF7X=;He}nwo>JhphYip8W4|!>+pH17 zcfFahnk|*KYrmk!cD*Pn+ZEO$p>%uu@kv&e#fF=?*H-b4hYk|5zhPqo?r+%e;QJeq zxPf!4Q@g{_W9(iOm9YzJ;epRgBb|Z{VWwdp4suud_ktcB^`fYBR9LGBe67c+=}=Iu z&sAmI3wm_Ri=xskVJ!*Dxz>s}MdBH)?n7GMWePTNME|cqq?9x$Hj`0tBcmBrJr%{?#4#1^P$7LU;5NboBG| z3*1-el@n%^G7*;X-s}^{1=2^3D_5>5SNdPK6ltsY?ca-oo#;IJ_V0t8_}j3CzQ*Js zdPM$^*S)S&_kvbou=C{jU$?%f=-2T0g*}-muQ2TR_-F3dt#0J@+~~>O`c_D)V{u{M z{;d`NCD1%A=jIKSKh}8gt`91wYuvp3v+J|>Zr)TKdTJft6kVDq5dL=Y-?&cxA-D)i zhXD_ezutnGB2$T@6$-7-{DlB{xxJdNF9jGmhGzb#S-tu#7ty;eIO zHA-Wx8X@ZBFZ*^2(81R&S<)l}D%gpiyD%n=p~HShk==PsvKKUIZjZ>LJ-6xf{TRI| zsiwWF;P!WEC0FsY@3O{UJ2l@uhZxy#+l*21-LMD!kQIxyoI<^z z0dEls#>28nIVnVkrivgk(txZ@(f~KjJ2leZZ$VvvDwUiU=GQ#hcJ=G((^d({APl_N z-J0a185h;=`Yo#RW>KY3ojk=@msnIHlFZ+CQC-DR7{s2l`gKL0uG6~O+pMb;!jp}x z>#7s_iU9SRYrL}ZRuDdY8p>1%+xYpt+a}HqrX}cT<2vgvYX~Uzaq1n z&V%1ijLXA}noc;#a=uE{6t?Vj6GV39jUbXj1hTaPK}2L>=FK%k1d-f1nviCdck4u0 z+S2ASB#Xh8h_=Rw>JWiv;6>W{@gj9?dC_8ou4%?vaVt9ux8fmWjz(NoPBJtC{qSD` zD=Tk7<|Oppo6S z<1B@e<3js{q|Ybk2#wp&lFX+8lukGXhEkfH`PbfXn~DdIkr#8 zXpwjDmZ;Gp@4*u@TI4=@!bXd{$4|&;k@xTgVZ6>m7rb}l-rc0KegVh3n}Fjq8c;F^ z9E&QIGA=2{r7622{z)F+(kkWqz4eRA+}%WFrjdY>IVy9rY_ctzrDBK_Y;Ag@WwW<_ zF+_8`@~;!;dja%KwsA+%m&?8n58R~9&LL8# zr{~t=^LacSy==Qq!;LQ8rW?6I9dSCsZ`~(1*eXOj9&{%8U?DDZc}-3;=DGzeOWzBI!y9(`%` zWBLVGR1f`LfeaP2*BtelboZ4DlIdJ9af?FF_$F?4zj&Rvn%fK`XqZKtJI=^8i!J~< zLs2yhV$>O@SNFWHz%)F^$AeJ{dZX{D9G<%vXx-FGz&l&Q;u0)+k?fRdfoJHRVsF1? z=a^qAhrW&X>M-c`lMFHf{hIC(lk{`$QPW!$6|Tt?0T1|F^#}HyPWNv%N3yj2|NiU$ zc$+R^A!NL=U6g7d=)03v@?z2+l`SY~R=AkdY06>a`5KCzZvSZiLWMd_yz|N&yA~;C zB#g-TH*5q@KiR){JcvvM|IqQN`BeSGJ3bLboPHdVV&U~6-bMkS*+|!$)DAJ?*m(~7 zNZ%x{n%>ZDj9%`#z7O&V`i8dRnYu;=VTonYYczEeWua=r@PTz&k}E`f@uFUQ86sf` z%Q?>YH~exp^!uG)?ES=pAUr5LL4!6S2!F6|qc)6&Z9noF=wl21g)&IXWl5Dr%I7PF zTftux5JU>0buX{rqsGk}+9U;kQP3dYVt5k;U$qx2_-qvsITy?Fii8$4hqh0`T}I1o zh1z~{6w^lApU=jVo1KU5;UDla%0;nbq>u%SlHY-_ z45M5WU;1{8aydRFK8Y)~iBCr?WF&<}fm!cJ3X6g**NqesCh6v?a`|ijvUD!wuc7j4 zZd|dFsvYIiMDaziTF1~LpFb(&UDm*&5YD$-1LLxsO(GxPU}1bg_EMN^kofWP6d zkr#x&l^PWp2JC^XQ%mZ53lYO#S8pRlEb{r2Lf&QBED9+4@XMy&cB1%K?8Rd2I`5_P z>OcIlPn!`7#(X!lHA<3>7-hTHgajTzjAuI>G$JKZpFgLsNSi`h21MG-Kh5L$V@8{MMt#JN5Ca2s8( z?g%a4yv_K-U#OXD+`uooK;!bxuCmVA6W_gU(+UJGQl!nrY`kufL!K1!F1&8lacmo2 zC(_DiQC^p~PQKQ>PTCgXD0$EAKc3qy6$J9O+%Eqhki4vtVGy|W_*c*C^nC|uKO$U3 zc@wrWRS8G3m^kXM(k@?RzFQI6! zyd{%fzq7`z6Uj%NciTP*Mx4EKb44yI$YUQ{;sD<&6Yy8oFGiyBzA+MS#{iSlmI=!@ zt6dj|Re{FkomF0pJ8y0acx{^q$!+ero@kz6lE5`djy#o(qL^)WSiex9%KL@_z2RvH zk)@h@3Xq}5r6YN}kwqAA-ff#B9gE!6_9o30=PJ`1Fe2~e*-CZ&!jY=)8;UH&}%LnN~CeOfuJuXQ8Q;pJb0HE!TKOQy;?&us6xQw#lHJ?}*%;Nl-A zB23l6QMZmucN1 zov+1~K8mm9olQaV`dRVhk7C8+o}$Dl*C|6Eum>AA*>wAa+yS{~5LjzZkC2lr@1YaQ zc(m?5vb+axtrvx;k8E8onqRSxOkO`ni~La>E$=NDt)HJj{>S+VHa;?L+FzvsS6<3L zK%#!%iuV5o{(+5;>?5s#rJNXVy9PeWU9kyMwDFPAxm-WTgq*))V&fy5ZAR`sGI{+h z@ABXE8dzDHn!03K$lK;2TMSyY`HQWeu;93~RVTYC7 zg8}hf^qbzx*Da)>vN1(w{GEE}hY{)$`fs%IN2R6lf&9HVuXBu!@e@Wzzg+fxc;NKo zaD}_hikx-mpPIjD9F@0qsg%RU^EDJbJ%Tm28AfOfu`o>sR5dV>%p1^g9;{gy79l$R zx}}@QPqowZqF#KAi_ysjG#Vzhz0Mi=_}iffU&EYZIX)48i`ycZ0Wwt;z=-En*Xu=fSsxA&&F3^9JSA7F7Zs*pw{MI$L!{k_5 zuB+_R)Z;b?8WHRT4^X@l)Z0i{_*DzThmI3H7}(;y)Ao9C7(Ih{vNhc{#Pz9=!P9xX%L+hI%4bf@GQi2liOK(D8iV!ye8;*evu&`sIG7 zP$Zth^xKH5~^2^WTsb z^Ip)vue@L??r0^|O__6xNdmyzh6ODW0EkIQ!}h6hlTdu@Iz5VBY!y=Qf&ZPh6SSZ> zDn_7Qk|r!gIm=1&$!d(YG8qrln9E;jf}TLxtEOZzX(^NDgr%kJylT7N5YgY3i1Mne z*LCY&(-Y6UvuuTN+Yu3|GS>C>3xrnH41GTwh;7iBD)a(SQ#;uFU2tk3surNP1#G87 zf3X3rP;(1daBv%iIK%)V(-x4hS#X-M8x>rq-Y!J&7yn`|9l%Js-5pZF$mm`O`kk5^ zP1@dzN!$6Nz+=AcoW8-OPmd?hmfdsf@j2oY({-VjZP#hI(WTpTBR8lc5rKLeN&Q=e zXvc#lM~4l~pwX4hFpTH@#C>vu2|V@NFT&5Og61miwyuy14mm*;>ho)(vp5#>Gj&@h z4(d`IcHy~7L=P&67#99UJfrYdrlW&p7K3~t-KK6)(!j4Ui5g;xuayo7Fkyp3wr0s$meLjyk=% z=Y8F}!kM@6IF^Fm>jP57tMe4QoBV=>7Zg77>F!{!*SQ{O51FagN$xeN8WL5v^n zwnGo7=hA)bd%z>UZVkFU-0eo>ApQd%yL6{6G+<-C#p7z|T4ZPf;8yymuHfcC;V+UpBwpK=@cH@@=>oaHdsb$uVda}YZ` zdxD+YL8J+T)P>0bj2gQr6w5$F_*V?dlWn>{!FrWvxOSqcp8_*3?k6f;rikC{T5JASHU*-&lMOe**X{sj;o z%wM4n-B4}AGWD%O9mz|ktkHvYfN3^ixl{-e$ue67MA&0;BVz1tIJ5Fyq?79KGBYO^fjao%Ya2>x0I*(E8I9@;qJ-M>1Rg4w2hpgQF$eSsu z62k5~StkXg~ zEQdoP**d^B@F0;+jxgj0J^abp88)L1`WGslqFM)$K>`gFUw_<s)uT`Gur@^e0R1~+9P@atvR7UdxU($JO^cn>Ut^Iea(WL}j8Rwy z*~8r-NG8j&;bf*O#?PmOHxisXCcS<8&;R(}bA_jcQI;#O|NqXB#n6*+O2E`YX#_si zU|&R1QH0oZ@3HShE^zb1fNTXZ`w+1Ywb7H<-wiRFLWCKFrG6YXJxrXh<7mt&sd(Pzg4p6XFD!&Gkm%vB zA<`9p^<>$A&51~2|Dq3L1!ey0A@KotKV{@QK(I)xcK<>Yy(9gF7R?vO_gVoK7ybf; zxa9?3@LSbTw++2JdI<8_j;w6k@MPdM;`WXzZ!7418}G3@vbv4Fy?lY))gA79QFRl# zU|D}Xc|EV@`Ck0IgFpK2U!7j~1x?o%+`t_&XRlAut_~yNl7>igUZBRzdyeJCxo?OJ zNnf!6`2vIOy#QG`{_EH*0DNKl=?>bTCs80H#9n=2A?)>Q5oqB5dip}fAI~|Gf6>&o znnR?hf8DyN^!Cc-i&D8&IxN9|hZnm_>&3e&w&2TIr3`j z|MRqQ9JJ%w(beU}jk$MHE?58UU&GR0w)DF`Xdd1k-5BOYspT7Y-=!;QH$2!cKU@#L zAK&i}_3Qoi({KGu*_W;^Z%@OQqG<(vdr%)fR8RI#TgGGm;_=wHEa3vBo_=R|k^U6h z{+@g^DDNE(&Q6ZLA9N4=Ze-Zsn~j6t&%>)u4$@Q}L@6&+pXFl*`6x{Cig)?p5vXZvXoEu3Xk@o>9Bdde7mJ z+Olsiq-WStk6&8)_r~r||NHUpr~0jBtGK|co3qECgWyHqi(0`!d~`iL>s>S}-w&_N zz0Tg%&8{;Xn3s=%Wm@KauXA}~yULHwxm!Nf`j2-{*YU0S`^o#=vQLZ8xWJ>{Pq%*j zC_R3@-7`8C4F6uSI5;WIPF6`PUL6!=G+9R%XtIvc^PlRGUpqK?Iu4F}Twv|s?BU_0 z`Z#zgowWO(_nz*~FPlI2ox#xieeHezE$u&b4|;odUgyNQmF}LEW~7{G=jD?is@>Fz z7q;dXo5l8tCqG`27XCO?dS|h5bJS{lzW4T8&E~P?K2-hcRqg4A6oy)*w%dN$A8Ji| z|FTh2^n;V$UHj4B9qj9Vbo^-7y!(gY?V0y@hYM7cJMTJjl!v>MzU<5K#hxk^Yv&zx zFt|IFhO*VFX?m$~0k69H?_#f7R<5P$g?T9j*Qb>q>Te^oo9@L+6v`f%<=c|1RXd+A zEJt>%&*i6nu~BTC)Rdz;z3-jZ+WWJmul0acp(W7pwQf_{Zw`1PB>&8a=rK>#M`(5L}ZfQSnnx9WA zFY>W`h6}vyKM#w8r|+-Nwxj7h?>VtD!;9aM9v;V#0y5{%bNBLB}H}A`d3Dd_Z{y!g0V|9$h+eHh%ubzILB%wp)y(;HR$WaTAeL zv1sj;s^#O-;NqrKx-0FXhr1O*hp^T7_YK4pN=Ky&AlU(Y+P{3RKidyAwb8G4ekhnT zSDw!YH^$yYd3WD@c0Lc3`;({Bj^8QYf4{wt_KlOELfF^&L92edA6%S7XNOT7Tdvf& zRv&B6KVNjc`1GRQ4i4(|gCkqhZjQ_K%iZtS`<;8;DPISFZ zSh`x$o_{}nm*e9wD8_qTTwvwiGHMm$peNrBipKSGziAtfcJcVm_J7J(jwcs?96dJs zrdzYBm7k@v=F6UCL?=e|Y*yH}Uz7C7Qoq`)zjHCdnry(>S|gOjKG>!YX3ef#&~ zR_=a(R(_B@MMZR1dO)o_pDFbGVsBLFzOB|^BWievHx6N3Z}tfY3NG!vpiguRZ}4OM zWeXWzePlCfA^|fBvHhgEg#=k7&mb|?3wkb6ul~gU!`jtGmD{Lt^HjMJ(ZH`{3EPDV zL?RwiOBgDb>PVy%tTiFE>Q$FQ-)2pXlO6xY90Xrb$mP7TS>WR!2W7|lCgkLp=VC~% zj}hfk)j6H8ABcFTGDXG+CCkawuTd;*UR@i7?B+IeC@NThPBK)sp!u`s?k3Fss2o2` z@(yNVA+&a;HM8flxk_dl^`HOozjAIAnd$LXsnelR(5nCW#;r;mlmGVL*Kwl$&qSk& zNzSxIiGrZ`JVK{6>Np$srdg~<Qq}`@sqGUDf2dv$r z_o^{sx~LNTK`4S@QHH9Vm>gYWbS6y`-PpEmKe27wwr$%sH@0otwz09DO*UWN@6Vm- z?wYFVsy=7VOwZh+ua&stVTPW-iq{!Ilp1bfN;3N*po_OdW&3z;r*Jv0npZU zW+5%OIYmdI^y%1bWR=tJgXSf;e^%w43Oy*rp9gSygiT z>B_()Mt6>`ZuN-VTlSP0&Rzdoox-i`}^ z3d=CBoWk?!*`^krARAsXJQ0ric?!Jua>YJPQctBT>&jKvHG*(WT~R?Q7G1jcz9CrGQi#|d>)nd>1}hdm0QpTy4s3dior^?9 z)xOWm#}x%E1pPZlFR(O5prd0Rp-k&8UTTsx&mRVF5Kja@!U~8x*OC}{nJF;;v1sFu~LdL2E=&QSv7V)Y;MD(Z`uSGj)-uM z-gv*r{G&d29gG@!%HkuQ2-&ELGD}a~rG+Q0uW`C@W(=6=S+P$zNOQzEgo(?02OgzR zy}mg44c?A_&I9g+X*h~;jf@inIKAcuw7Eik(fAy96k&&&vS)3LDrX`8UR;TJm5lSh(mZVByNvrsDqgpI}4x0S}AH=hA3D>+s4qkAEMQPWvc z8k4Ijrbgmy2x}^1{nA~ajX!B5Tw{sF2c$+D+7B?#8yshU)LLX%>`I~6Hf-ym*Srg0 za8&KYvd2X&As;Gh&f)fmVfKRVQMEvS*0fW0{UNuWe*I1`<3IEpy8J>VD#$1S2}zV0;@xXF>&d zRoDfMVEVVp`nmVal5DmGcnanbL)ASzF3L=l@@s$Ot^$l@LmF2_uL!6fzdYGr#)k3Y zZj$b;7w`O7(h+OnZG5uH;hhvkfHMY+n#_ua&Dmt_@(y}te`sBx{Z4K-5(v$pP(W&OqlC>mQ^=Wci_O6M3}dXix7 zzCG<8Hfjei*_KOW9+Oo;a8LD zXbANoqDcCCPn2acJWe9H=^+pa&=ra!SOL^p!yDUc7$s@;mm*9#f8c5Ul1FcNLW*TBB)2v$Dx)!9Z z?xyFc>Y46Jl%xQ_O33st|31AF39PB}g3L-(W#OhoalfieyC_f9wuL(N`kJeg)*2p8 zMY~Js`O@4}<=9YndepKu7*z%bpYP0wD2a$-N9&(5nGCrjFhrLmQ8G3~8Hzqf<5hU* zFb}{xUxeY&&aZb2$@VnLq2t(j>bm1+KM=AHW;JzuNp*r=PtX=>1K5CvAp9+CH#@^4 zPa3%=ok!EE#)I_)Uwxstkd-iM!(q8}Egep)RMi`4_yvGRn#)cQxw zFs>I48pPbn-5*+bZtzccltg;dXdSueH%BF&~4I9Sajy0}O(y2;uekDCoXV^od zbaGUe8aUOdR9Xiw(yUTJ0&+?v88g?UQi{h`v-CnlxVhk$7U_c&Y+o8Tv87~Z98q28sTvkL#XRPU zftl4tF-b|Ddq`)_HS*UDs}OyMkk=QlnNte-8Q-1zh`~OQ-HLswc^bdgFE?!gZiYqt z-y4$UM*TV3a*9})^J6;kTxLgtX5P5VL??R(IzV@Pdyv<&2_`d8!bDrph0BegsX6Iy z#sbT1N4zJ3tA*(+(^O}TrQ2c4#MJH>Eml+o1sabtK@+^RG~2pqcUCD4_@(j-P9~hB z89U%s+^|nu00Gj%nc%VTZ^pgEL8k3BtkxUfAM|s@ja%X08cv; zJrS^3xgKA(Q}<^#vXk_ptsKWkv6;+X6E6|UNt%KLOTl=?iWvH=(mnKTmYVa@plr&j zw8CWDKP|zH!14|_a1(h}L@s4>^vQlb#@J#V1ALseFBN>S>*6jntXk-Ndgx4g=tz3# ztV-@{kqfu$V?x=gad|F-6t7&vw})#7p|4yW+2*(h5KR)RU=Q%R5pb$8eEU|>$#{>! zz>^OQmgsiB)SN2wZjTrgt6DF`!MgeL%R!T1`Z&OZ)9r3Kd)NjJ)QimaGx7T(yhYV% zin!{++vJu@+5(GsUsz1q(&luaT6z!-&;|6Gv%94~q`AQ7f!| zUWILj5woLqU`Mf-Qz7H%w^J!8%WSZ*Ma}$3iX^VmiXsmYGl*U^7Fv%RbQO%liPi=Y zUu#B@vL8D=O6;)Ri&&yZ{&{m~9>-3T2|vo_8crv?35R=;p^-q8iV7k4ZtvT?;#*+`CF_TzSZ!w-<;aY2`eRQ5yZj)CI7}Qjq7xSE%9q+`ab} zn+nF+OU51pPQl8RVDA6!e+! z@f=3D7DZ^z%N&(qZk9vHUmVp#G~PlyuDSQ4CL4=l9HHFQe%!IY5uT-$I0N6=6kN#H4cPI!2nz_#{w&!{=mpB8fi#g0Xb6qaL~`Z`Ous*at-LPh2#%=3 z!=oR2R$>H-4K6nh++io>oQ*6Q;D}#uWmOy;AzmiKZqv(lPKdDH%CacP#9050y7}vV zsII9MV=Cev;!Np*3+rJfkbniNl@OYOmh zCaH8D)Qrc#;IlZ`Voxeh5X_Bma@w=MQi|0JzrKK~IM_p4Cb{2sCZB4PV?L^|sNX9l z439CZzUozH$UO3ftriJ^tJTp}8pDl?V-q0mt2v{$72qewHkW(u=ofogOk zxgZM?TGB$8EGHJmW-ArVk>F*NtS45gaMD75^?Al!zHKCcQjrCclgh=25+IE?6bzmj z8w&-osYEG0L~RMJnn?(|z;qyJO?_giu`gxFTUw!1IvNb_Won59wm>*j;y?hChK+*) z&vLb7Bf~NOat0fMi4B!TrD96MahHrygA-#7UD&Xk6$3tyTS6%#T7@iuPv{MZixK%Y!B#QMHp0z> zupN&ffhiQMlPDEb1%iu@mE_V=MIG()oUiAsXKGk*g`co6K(dipT*#^h#L`P5h^d4J#f^#5h@kSWA_5G|_Xu zbA$tcfW0|63c96@ypUzXj6W5;N;YadGC!P=9MeiVn#eidNy{8J9lUBXnh3VAUYiob zhW1}?STSQ9ZN#Wpl}U3Y;NMIzo63LsTEk|GVTvlgXp!KML1m8yLRVc=G$S!=&%s?& zf3ir$fMgqpFQi+=V{u0Mlk;ZF!p~>S*z1r;3vGZUGA}&~<#%0Y#JOCA{HiOib7RMQT3JkLRC1?hQ~sNyi;L58 zF3iIRKP$n;#%}$XFo!x2)doLm_(}JF5fesX_6BG%W5u5c25X3pg@D*fpdU2^S=ijk ziv`0Aizh(XuE&r#=L=dI@}zN~BrR0_ms4yus#R$s7DpA*BHPUW7AROuU>pF zkTHb>09*1Ydj5{+``0YE4|dDp)*h9ga;n)O`vjHV&717;o*6zH7*k^fik(DeBhuK| z#;yq-s5MtgN4P^=)*^ljXpbI!STZPm9LZ@ibEL39`xBy^>Z*lAx@nRzOLRk;)lxk` zb77)kFw|gvSX>N9w?*kQC5^YyS-XPVMOIDoDc@$P$`B(+pHBR|Ak26)?CEWQ$rc@} zerecUp;m%fpqmhD6T_JVap3%4g(Nnod`^9X2CbgV(h@n?h=QUdC2#w*fOIrYb&!|P z(5h1K6fB+^Bm4S1%VhRa@RR{#hT?QWz*SOuBrVhV+Pq4#ZcW24*iIIy*7*LkV)8aD z6{T#crt=2%(gJCf{o`NRSwbZ|sB)=1*rg?vD$R$#K(Y%TWV}L9AMzG|=r;QSHft;j zG^|3CNw&kJoC8rrmfc87X{CY0{V=O!aJDLtIoM++K>F;SLlp+HSd=JKz-6OMnuJ$M zl}A9?S5BQz9OP4B*AXc>@U1_^osM$w$3mi%J%jUXz|yGfaZ&D^n#J#f1j~&R0Tqdo zt@P5AL;!}(l=EhXVeE~tn!>H1pB2KK&AmF_%A$bMvA|~I@Uzt zM-rr33@IK5Op=Vlv7@mGQ%+KNmJNZ_G%b4Ww~o@g$;59blIb#^1?>lCht1%1kw}*s zEr||5tl36$uR>%r&@ZVDL$sN&Rh=s`*V7stcYt{OfVNlg$?gjB9a&F%|sOieW6dy z0#*SjB@{&yM0dD|F0%V4!ZFVs#W(11s4E{vQ?D_hRYHGf(hlEKf(>=AOfd*#ul!Bn zI!Qj{ifSRbKdhe#%l=E~U>GbDwhcB?7hb?8A<}^mHTUChIWq%R?IgOZo#M9+09OQe z)$LG3I&6qk5rX64r}md8l!FEVY#eFua)iEa!Ko?B63YrpyAf3p$i`i;iKr-0&vL#Q z>qV7h7*3QZFZi-%GAz5H;6f{ky)0l`4b`e5+>GeaiWrw1U(=aUN6jWlnF9#k`_~C* zzrdmfHKQ)6IU>isX>q@ym4$JHH!+qSCYS0=xj!)$d?D@1Lq+h zm&}gjK0ziNKt%8Fh6KG!ambz#Nr!3{)J7rNSS~Dz@k32GEbLNH?gk8LilXB^2$2uS z$3tz@I`->{5_97}2$K!~QMhFeS0NIC+H9(~9s5!Aiiw$AbV~b#Sc{`~{f2TCq5+*h z&3wooc^LRXLNu$2Y!Wc|Ac_r}_Wk)^m1gIZ$x53n=bdsZwDj#jjcB$pvAE2Z4m0^| zaP;j^O~cqj565H!s^mA11BUL!;KER%gJu16^Y7yV4+DaWB(@N{HD%Yb{X-^Fw>}Q* zwi?C?%eDaA+`IgzS%~nNlxb>K35p>>@#3jq1b7tzaWOF@KPrcWAgZ3n0au?>>aZe- zI+k|R`4c7xcmlRe!_kH_QS`Y(n_6qv37xgD$RnTVvz_g2@qU8@=9s7bokjwpHey>S zFW$WxjsX~qcl5Eikp+ng(m{L}KCw;p$tVICk3$7%DrZp(c(jfA`e)!GSrY;|v8^;Y z?ZTkW{E~JNfv>U+2!r~iK|Pr*Ghq07c4kxmdKbx3K1S8WB^&%!P@mK=W)1Wnc>|`8 zl?+*VIP!wAnQopmas@QhNhVGq8WTxzF(_d9c%MWv?IDa7A`h?nG}@_r2}KVtmmJva ze9?C%@$w>C>-r-`533mRvsy;{ZKCEz;HF`l+4ICZ0BramF3362=lJ}S7dd1k%!Gr2 zJ(-kYqZLV?1z;O^B`>X3!jd!G1WpY{mSXTgFK|ZAcp_vGkC(6~m`e&;-kqa>$~4lS zLkT2+a$xcOE?+j3?EGL{@z-S93^EO+OPQ3wR;x@2xe2orGusqk(lB@-AFHGQ%{GOT zj2C7igD4xKhKd#eN*o$P;f<9mh{pnvy&^V;qy(;fnw&M!xj+!ew6y%E$Y1{eUDi=J ziFbk>(Cw+53@A>i2!_1ZBuNIAK~#5S`Y$*kDqBe|Y!`^s+UBQWB|sK#T4yu}9StoQ zHP=}>VD~I$S3{~c1&JlWFsC&HqUOv0rMG!Qm2~2vE@dTS27^4>cPh({nN+|=2ss;3 ze{+4fH&V2}&YpCq%)5&DQA$%)SC>tBZnsN5$T^pAaA=6vfge$S{6X)DJ&<1Un8I*Z z`UzRYkM@}1F%g|b))&#Zhuolx&i^T1T;MkUoWP#VUltnz<*iZg-}oQDSUsa+1dIc< z*B7I6&6x3Ps0+MU!5_LNx=o*EP`}K>ru_6@SHb${WcP%E#>W`S&(Pf>Zvyu4`o~z0KM!B>N|Amn$8IlcMx5l14NsK;< zF?~t)4wH?aVx4y6lNQ*8s^rra*e9p>EyecAqrQ)^e1k*wlP#X$(8J|R7ud%s_$tKq z_NU*Dv3nBZx-;s3n-sCvreM@wQEZ*X9-i2CE@)rO!k9lM+drj=J`JvYk|Oz%6r9t% z#co$poSbQU>dDV8v^mY@6&Kkj82K9F`36s4!d#zepHbYN;iQ=AM~L&=9cVw>a56n4tK8 zf0IP|&`9kC^H&P#1@Th~;X@z09gvTj|B**6xDEJ$c(5<;yJX@g);Ac@v!S{-{Lf-Y zUx@zz-!#t?hI#NUTxmJUtZ}4=EgGXURnDRe10x)`VW+RdV&6# zy!rI#e}wKo{+QZ(guA0KJpGA*{^_MUrcc48&yUSLpC8Bi-hZ@~z5nfJ*!#K*HGg;w zy!8g&3*z6v_Q!Z@V7;e%OMbljQSoqRCe+K`q2K=NzrcOrdo%n9d0zSb2!TD}z0p8y z{kR0(`d4nbZJz;G-#&n!s`o~8Z!f6tj^_*iZffn)hv@d5cRk(v^oLs658>rx_8sFR zaxeJHkL-O==^py6IL8Cbr&0D3{pOg3ZYtQyynuTFrR@m;`Pt`1_jIe*4 z8szwJ9l2l6J6~jlbr z`nvBO-y2VA8L_GTw#?yQ#diJ*@=sETGdkg+ESz3_gr?}R+ z^p*MHU;hz$f`6$acWB<+_igQ*>kK2j-q-!F?#REUq|ZI+^Ri^!UKaT?J^9$q zVJ{v`BBHZoWP9z`nYiz5`bC2F$Xk5m1OL0xl{mMbx6!A?hJE9-FQ4eUJ)Hb^N%Am* z>%$Ghrz)2uL(#wThxc^3e^Z%nRjx^&1<9jMtaaGm4%|=aT<_s_I;w4g?~b2s&B?u{ zr2ag@ViVds$NCl&QANXau4n%WU7<_zRM+{Bw{I@kA_!jnm%8=4?#DR3(*@7O>~;8d zzV+2jG17Lft-r!)V(7A*97o2kg&@21I{&#nt@gDQ9gqD!Ih#vogKEw;Gx*_Q?KmZ3 zunxv`1DAJkN(F?cG4vAe&yb^OJsnM((`0jRy^ zeZD`uJ;U@hx9Kw4T~bW+eI<5~+Wiw~esp@P4JNQ#A7codv*!2fMt`z7)ZLViZ(gf= zAUIf3R(rj*cJJxJYnQDjSbNW=S5voLBvXCo`FE$~|4441F7{1N=V3$tsY>@Yq;c%- zI5obKUJu7G1i<;ebHC2G6%*|HT#6l(eZS%VHmcn@JsP9^{EIcxH`1)w$71_x4(cCj zIRuF;me=i#`Y*BT)$~O4-rH(rr&SR1CA#I6z;w$l?X+*Km3MlhC+WM26Gq&z`sEHmv(35Budm3@O`5+JpB+(W`*IOx z>U8ki6Hh&o;NRbGUA_mqJn!1yJ7Y}u>3^}&u~fh3Gr|MPX7`^y;$N|vI!GdLkbGNQ z?yl$kW7zAy__Z*5Q(v2RTyX9Q(2vd6w0VkpVZL+1PjAf6=GaUAPRt~if4;jN&xLwN zCOwq>)x;e54mo;$G*DmRSN0dO7q69^AK^Df{Gj-FVTDho)bj%p`xc?oKmDBqfE@dM zE9wFn_|;)i_1g~QK{=s$$BE(K2zb6Or+u4@clOibS$?XA;t{ZG_iu@8dWRls&=gtp zK)*2TZjtPt`t8_Qy0$U`6IVa$ckWftM`Xn8>sh{h7|#-quFGaYlEaKx0b{2*Kh1h z{w0MA{kcO$0MtXj2&ZEb5uTR%pjj$bQ8h<45;{CniqP9be!}H_IX%FSY=PM~i$c>Pn!Dl{ODKQk zgv8F8he9*+ox0lB=T{DL*yGJ*BXKX`(A^>Gthbi6PpqxM<>{w{y&zNI#CH{Q?tl@G zQ!&xgC*`*C<_zrwiW1FlVVpgCDHR}<5+e*{?$_s3-lN*QqZtW&1}^6>DsaNcMn>_4 zhrcTgOc6r7$2Za!c+$Z*fm-ULXcbF6$pfChzlkfl?u)5)$OndkeAB)4x7G zAFTQc>_8}}k}HG*1Y<07o}3#F|9ftK#KAVxYdR$i^DY14#XNvBoy;g6;}^e{Gep|w z_MpXOb8uq`vIxY0b5GfT6++J3eg}v5JGUe_)dJmokPNh46y342lROM1CJ~$@AtoWV83^d{uRHu3^hXw3-j8XqWHUf12h=<6Uv81=$ zM+ViA=5_GoHp+2#NfwGizr|I42Uxb*MG*(CF*&?Wf;7V7lBYt2^HeZ5lW_7Ed=x}? z$pIc{o+a8Me>EIf)`U-9oNFH+hKuAIo%~ z3hLSj1Ps)ytHz}18DQqAp>pXkt6;vX<{r4u$`KSSY8g#GrQn(8-MAS#f}i#23j!1c z_uD!g_e_}~B@imWhLUh%R<12f0)|oAb|H~h9y%7j>cMfU08t#p#f`Av4e=5)156m- z`V+R0%0havwY_i$@)uhW2HC#Qh>_%o+j&xt>XQKm0tQFRYph%9_ScY67vyBJdf}Fe zc@@k+vTlxcWIbLd$lNT)ohZi<5SrQ_YGr{PXCR@kv|o-L0IG z62Y1~qvf@@rUdAe_4F}g`RnbnVwsXi==sRrfCB)Kgx;GHEM*3fSrPY1 ziR8wa5zNTx&H$h-xH^V(-g{cj%1Cr&!V*!N9*SGwx{{=y&+u}GfnZcBhJq@a!(8X1 z4qJ|d3VGr{8a3l|Gh`W!S!FT#B3nLagT(yes$9lyA7->Rag4qkMD2cA3@Uq>1L?s^ zp3YEnw4ZG#dF{~5h0^7fSZ4V4rLc|)N_jpsR9o=yl#L(cypiZm26LhR3+;l@xlanl zb=4^Z_mVSPcCVD|PuENHS(v1w_-)}yW{MiN>V(pj;{~?C#cyY{9rR=pb<)$JZj={| z`^hwElw3Vk)UL-WFmaGBeq*s)w7C@V1YS}_br3_O8KXWjd=Y83$T zzJX}f$;5+fFeKb@Kc$93UwpU&W(99>RA7hMO%!Tkm~o^cm7mXAE{Gm;gTSpKUg{DO2LfwgYgWyRSxt}5I5w!ef6rns8>?}JpUT;!v*fT| zXuB^HdVCt}^hUAb%fY#_`$dLzS*v!^8TF617kjbxKOWE6tA#UR z1mSz9b{%&Vs%258qae=-c8rcDjc&V$!@=|cGMlW~hg>Xz4nnv>_{x)AR&)Pz@lRrQ zBzZ2wMbeho zQoR)YW?W-LZ3ROdvjLe*W*OArKwSU&zO>n{K?`K5pS}qNYFlnrR44~#E`JRc#HV%JbGE~ zffmiQhH54Prs8n{CjuHF6clOAABsl9SQXIc`%b~iF{0w7Gn932Wc@QGT#h-FcGaS)C3#Iui^)pl2i;ef4x(7x%@pd*K|;_qMK-yBqSkADS0qGtlRi<`M-rZj>G0 zG$KCpCdq*Lt*x7b)=(8p!zMw@->EB@AwGjFoB>fgO;uar+&WT!bT#E3*wvCYed)Wr zn#HY;Qte0*M&_=SWw}eQL$r#kOHC+=9msEcRB40CVyHq8Olb;*#7WY7e8iF1q^3jQ z7_|?=jYBW9o5Ge^%WT|a3CFYduF{9b+lZ}6#*eQis4!l;N*Q;;)M3qDG$eL&Y+IWE z2j>c?VNk``1@lshj4W_hl1K3|6jx%>F)C#t*MmJV>`M31?wf2~&RmoXc&RROR1q3q zCmP6Y*>H6#(NsJU>cK6((#lW(V-@nUBOur9rJKo0o&E#7*3Ay)#-U?4z6Iv=hL;7=#Gp;LKa_aGg+QW& zo*4{}+u#to&z{Xo)*L%04+VUBHi=EKgj8-1P!uS#n43MyWq%ztc&@~Z10adcg$oyG zE&*K;ew)XQnw0K=+VK20G_7Tg4I~|yQV&`yJ(WyjdJA%9+ipJYlJXMGBOkiLd~veAKDeZ{xwKRUQ6pKLB#~-dPGj!h<}E=aJ6n_AE7RRl{`*az4GuFdp!02_r4%V?;VjMOk6174w5|ctB#H?!Ywn9R z01Mj?Y6+tax{%F~=sL4pPcxh~zO#lMcmiNd9C2n8@oCe=AKFxFK1rkvOtGV_0y@sP$eBX(DsqjK zwMHW*j6Y>jmZRy@6*tl7-e@f}Eh2k~cYK|1u$2)Yd{=ou)>%HpsaMTDcv8ii*Iuk3>1!GWMUffOCG%RwrRlL|&_MYOTOVh!Zuqa1(8vzi&@r_YYJM@7?fX)A^0FHN z1mF;qYBX@?nS=7HkTcPQcvtn`h)xz*IK0+|>hLF(xQF==(;4uT1Bw=_)gxW~R=f#n z*qI{+f~P($NvV`K?jy}R0fwOp;p@bgKefY&5@#%ptaVf;N7|GG`zB!CI{7daopoIm zS~*(X0|~PQp+{twp-<)Mv|LWuigcuPTzo@a+i7IK(v-h==PCqKy|s%&<S>xQ(efgS6G{Ju4|!IyDp^zwptm%KxeSoQI7axWx3zkt3N)Dpi3{q6aX&5m`aL~^ zJYP18tC7Z>C%M>B~@m7_=f1=IO3UpGAXw7VHWfmd2{v1xiHsb zYOi*Oelj!45afuHi(gB^fLk2M)(b>43l-~a_uvefC>uhmbTWB&_ofziZ_&!glPv`dSziM?h_;)FEL~- z^NytLOHYB&LcQ!%1`Z~y^5|=kxV06_A^rDDQZaS;x@|R{>Ie`U3gQ;AHVGq|`9)nC z3YWlVT?1+w1%J`7WHQdg(PXoI&wDeRj}NY;d}9KT!}>rd^c~DNp0dnb(_CbC_9Dt< zXTmP4WHsmRna%eG|Msk;<>wO(wQ5t#b2l4@4yQ~!*zFW1L~_UTzy?AF=2)W>gMK+@ zQj0Z~hTUX~aea@Tz8hn4Iwnppj-0aQ`^>3!Rd}>sb|c3Yx;oVu$re50O|2_q|Gvud znqgAi9tLbbDb$HcO=-T-MQ{>cZZ#cg0aHc^{#F^9(rFQ2*W;L4%1pO92aZ}y$5v|x zY@W3O>G&$@NfI*@;SwqELlyla;T|y5Qdam#qWeyc-#%KI_+7+ulY{T@9Y!zI>7QBx z9F1leDAt2W(g3KEd|jQZx7-ct>iqo0l-T*oF~C^+2lvFzo!GEtadWuSA0)}d46D{0 zhKymogArM;Ltx!hl$JtrJA0L$a&|oT&HBL3LB|ib>KmAH9zdh{fSbi;7HeiBEUNdt zVZ%9JZ&-jP8LGHaRT%XjNS@q)onb+`Bf%HeosVjItzKDEvc`>q8jk+%+@->~xQu>D z5)T=H`|8mpDQtqnKQjCMs1ERyohb^E%)V)4(4LN{-Y*ZYk7or(>B&dRtr zjU-dhMLH5v>@fejPq1Z`xCMAixB}#m!Bp$LT^puf2g4{l9L651T#>AVJ__~E<}0=| zx%adX+%tzc&B}dTg~};n1DHhoIZ#~yoePEq{lMVLpNQ5j$5R(?BHX_Iva@A%L1t?M0L-YSb|Za<~W~Gu9Hgc!9rAQXKN8e z5^fy*F?a3O;O5vQ50lOr8uC~*vuQ`PKZF=2!qG?*tt68MRzNwIc3w8zr$ZaPhev=l zdSKvS-dzM9C|s-Ab)bV;QZ~hD)ZUOw(O5n9p^msq*lojrn=~uC39hxSXz!i286*#l zY%f+P2=PU-R>+I5Zd>a{AOqtDIr1Ia-l8lU6SGx%2&W^4Sz%|kx1#pgYN$aLS#uJ) z0~Y;LQnfvPvCMR~DiFm75YkaOlQ0L(DWmSGR`pCsOTm^=GU&U!)Ql?rBU8igr&XO@USQ zb01z%xfV^_k``W5b+G4J8?}fx?9SO=z6$N{HXy?E{DV;%50*(0i;30`!|c^xt(j4+ zC;fl&x7Kj!X<<`Pd-!mzRINW9XgtbLc{7HvDVq(UjtLdZSCAexvwC5cr+b;?G)0MD z2q&!R65NiEsqo@QIYYplq=>LuE>rqGDZI^Bk15lR|JDIk>!y3IfX%82)=AxfgaSN_ zAsTLjec23G9xu1tJg1u-uYWFw|a*fI;Bx*8gw zL(PoedX&z2i9rW>j^hUM;`e+d{*ICU?B}QS>0EE zXswb`SMSOf0DZ-(t8hDj6Z=aRQd{_(P;nD&%IBbC87{P5wjOYF?zWwhwHd(UV`N+c zYyHD`W>d1fQ=wQ<04?~cdd-*I%%}Vw+*w436}HjB+HnmwYq}6=w4IOA_DAcQ_+Pl7 zDcG}{R2z-dd!T$f+R0|TU*Qvm3|4Gz2HghVqD*;1LMKBL5TU574y!Ms7<^%j^a;=g zoAV|x&dw|!{R;{B$}2i6q;%c9LTLVQk51u$BLY-ijtE& zci7t83$EI!V-=>>*j$mNO+4LJXP#&F~)DE&#YB4j@Bjx&m zK~)0L(Ve{5b%Pg&A-c_6c@c>q_HpXx*M1h{af;>3!<=^d=DaF{hqeXoJk*S7sAroq zY{O0+gFw;nHuh+nBoruDHa!8r_yev!kLT}}2l!ueyDm{7Lhw?xd&aHG2H1DxO2HBM zp4mp@@~^UFWKSwXdH$noC}Hs%y7+~DEt@XCGbP-$OlxMd4p!#fh3Jw8qux0X4Y3n0 zV$DJuaHiS%@QmC2_e!+j;OtAl7rJXR@LjW4R(Etmm*#OUyP^ZOxEP9JtK52QluxU8 zeQcFDkd?d=Ym=e5cf`Ymw_Si{w z??9diUZBcYCS}#43mz2>ScJPBwl$3;VX@9A1ktM%W~fox>#15P&RP*L(sIPqm$Wdq z&ryQ_18V86*SUbfL^tz-`P*AAESSi~MTM!?eHr9gZNN*h5ZXCkOGtY zj!R!oTmk6qSW~w-u4qPweON{ZvQ7BNMaz@*x^BHl3@dWHu`uNpYC2wF#Qk+iEMUIY zzBP37d7<4j0`SJQ>7fkMCUh0FhzeLCy}uR@Y@44l;J{V03@GrCLS=BN)1^Ha-|_(W zxz*TBgku8Nx^Fx?GBy9X5fe-7FEWSyHM9B!XF-M<6JnTE@hr?!A%@i)+{xV%qind4 zFwe#H5H6pHb_afnXKNvQ5%#V)*dVmZGj5(y_spj5MeO_(EypuDn2T%~9%*(bm&bAQ z!BT$=TtV}9(Bi~Zr&0aQ%$Y&YeTS%M_s)`b9z?}ES5-_7<$0ls*4Iq z`}#(gfH%IB{b1M0acJAH-Sq7gsKO!T9ZqT-HS>B*qaoK`f7w~om`e|y^K^!?%LrN< z;Mx%56e}0j?G!r7JJW*tNe<~y-B(Y}%<_~N+~cLt7m+Yv{bycKV1m!NujWAA@8wuq zVDe~)6joJ=F>e`EqP5W#*`9e&~ z;z|iGGIyk*2m*13cl~2=DdC?*bQBsY*99R95C%BIDf^Z1n0aK-WhLjIIwU7M2PQ(R zqQY>VV8^?Ocb#DI97dBRx}z=x3zJ`fW<0 z4nqi?IgF6#MmDWJ{iN|=$k@9+-f?mRk{M%|{~je_@BNl>JRJZjwW#N7Yi$d?r)0#p zGE+P)JHlJ^p1W{c39k-xEm=dKk9c|{IRSy(cpa0zwvs>Jxngok1PnvEV@!qpv4-ZK zd7qm`7N9k4-Wtx$084`Cvqih$kyrgmY`B`s6y+$)2dk!n{@bYsZ)}Ulxn7hvXRz1G zNYR-vbdv{@Z4M1Ng64gA(ujqDXYyypNKWw^zxsQs+nY@4AsY`8oe5{05~^-kz|hWI z)Pk8|@fDk3ISX+>m~7_Z<)E=!)y+)V!h^-K876dT_+!WW%P~iMniY~^SqP5m zs_Vlf0A*ZSMYcoyt{n@;qW1-CCUa8&%G z-mh5PRvrap#7vFw*r0ys*8OHIsFP={gs0`efZ-ml{cc`)yiAe5H9%^?D|7X|k* zJL+c}Tc#6T9Q369L=PG~6)C}R_QS}xf{4jJoq;xZ5cc((oe3qJo-!5BM%tI2g3b26 z2Opl`8gFKX`}nDv1(&uPzg?Kt97>{o#g_gM;v=L|^<9kOnZSkdeiAi+3y2ZNYb=gF zm2wDbnUs}!)mQrqQgR7p89pR}tX z<9K4bk!T{!^Nn^pW#x1&h>QhMorc`5Gam`$^5j6`q@}f*rhhh=GdN6?=s5djV7qI* zITo_aRNo+*=@)qM&In0_)NSSJZRAK%`c`Vxvo=~P6c-ZK3TV{kFB)9C5AmzUF$mOA zn!XMEnp(#>l<-Gk^~3!9ecZc8AY(wdjH-J@#ijhZZaRq=R{92v;O@uK=~_4QY9 z<@+)!l}fY`h=>ozGy?Fwv_9s^cph4sjlUp&`EWky+P_W$P3GMnA2bMhDNgy?WA5MH z4*3Fj{s)#oX}_(%&x~t?5Bv0=Kfd^x|My#! z{(jdH{!Nq)qd&>fPcZb~b3WujUgqQaUmrh~hi3dkbN*razm5`t|DONPA%*`C+W*&X z^cTAEcV*^(9&fw(pJn4*fF*%Kysufj|5!FIti}croJy~Uiid!5(g2L!FI7wwEuSd3 zjHPppA?VwPq0Y7B!*vdjR+}*K$~F2%f&2PrrsivLZu(s3qQ$lSG#8O?i^L|ppnasj zOsKhqsUwl#eGz$Ho6yn>Ac|pR8(J6b$yVq1gr1+=?OAe|fkX9-VM|-0f>#vZ5u$qv&$Vh_C_L5Bl3Rw-VZjX>vYzHyuU0R%H3uAJ-0Ew_iS=_E z)+uLP$Iy=jPLG)|`Aqg@`7HHVeJ$$#TuJzA%X;4&1t&q}qD?k%y)^g@5C}9Yx@pa# zXOEiX9&tV)YM9>+QwNXb1HCZDZBhAO%o-&vcfmFHJFLp(qm)lCka2;2@@N5-KhiVSH#iN(& z=I)}{ewvxP{sj@kt@lqz!Jb~-rIhV-RQmXC z-4mEyom$9TIk4DGg6%+lsxGc+e4f^|v`k$nLw`$A_yiMT+rB=`eT}t(i$cj%=(rI)}YDo^6x46cDcsX0We1NV2E| zC>W|q1qnRhg(mc-N8t5B7qGVP*IVnTTGR3L0cVdq-RsMY0THHoIYSzp_qg63ngz;> zGY9dxO&=7%-jPBV&BtxAV20!Ga&)^^TbggD#-F4Hjo@c^|7OtB6bPW7O9hoLsMXrg zxnYpZXbvQ=)k&BrXPF%mtWS|NwPSJ02dd5D2?4JHJb_g3gaqDC6%aTds>T>0AxpbI zz=7b!m34obq{sZ^S;e4#u?j!{0a<~!D`(H|RRI4nyvOkuQvG!NU61lNh&yf?<5TP_ z_&5RP!z&$W&Yv6nI2e-o?x}!3Gx+^1_}m~J?pMbYVXe;Ig+hZ`Dx>^e9Iyv5%l&eE zXXnJiqVJyoVQ9)eg8~w0C&cq67aB}|2I1-v3Qv{0f{!>* zw$jhr(08BDyUHxhvD+KQp1KCrg+ywCG-{SXZd~c;Hk_#`kd=FDH`jk9jzv(Paj0t;Sm-2Y>2MT|_p9TNU{J}rv&*?|}LGTm)N&NH0pD+G=@#kN~A3BZ{k$Am_ z^*5#8()~+8Jm!NrwELZq6T|4BZ0@PD=G&IK5K{lt0l;}NC*iWkH>($M#KY8G2Z*{Y z^ZoWP$TP_mKEJxF@R|fXOq1P#BV1Z>R5rm`(1PmsZ>r) zE-T5@`q-35t`iKv_UNAEkI>)|8RA0)~M@%E`&^( zLNcu26eFP9-{Pm3xaUVk8(?}kW0V?*2DxPT%%D<+F;xQnytBpk8z9=8?NfRB`0$>i z%zOXhIKKDp=aCB#9P%6-a$yq>FZSl%e)8_j z`<4WP_NhUkzO7gCz1zZt?_Yfw{Ma}ASLgT5H_JLce~Hh-zVDF!m;V+-iioyP1V25Q+igZf8~ zdZ6zyiZ&aluaOZz7{faU_qQ=ne-ZyS213z*qJ9wrsqYv_d5C@++R3%kCf+Cv5qKGJ z$?{O=8Gu4oxjZB>aNo^>&kg>2 z#6ZNS{2_m+KR^hW`r^+Qf4=zhJ4z6kQ&YRYoj+;62T@_?baH>@@5XZ9LzB8Cyb`dW z>lPGe_zCLK)WpoIlFGSKoo>MGrb{m6V}a+N<>0Ore%?4BFrr!17dk3a+)E);tvP?L zZw|ubs0dqrLuTif!0H9BnMMYSovX9G(qt#BdX6XEU)Q4$K$ga^O1+tPu>NXGotz_% zz=U#tDWkjY5%amxDqyS<5b#@Vl-iVNJ+#lJ8HzvlfGnaCY3XPD0RT1YDu0OpFQ%=6 zO!+^K1mU|`@bAnY@>Bj$KjIG#BluVR^TnSp{`{Wt&k~tPx%`?O98YO~(ID^&qyR6F zRfMNyo};3>KTOk3c@Dn2r1d}^@Hj}FBaI18gz)o$0UEX8an#>U<#{6`|CMTI>`Pq~&3p%y>!wg>xhpNJodZOTAsf^DGUvWch(mAZI4E;)xyRIeS?4AhdII+FsI#Ybp`x38l7h z4A!@42EE>Sq;&0OF1Xd;lRv6q+Ps^dPLlH;t9%UAZ)DH=_=R`>-?HaBgCEDQk9|I! z0iW>aA7c;o7H$7z==Wm}^%;8z=vQj5G4gxrK-3p?zNkZgQRkl-^(5CI1^(Aj&!fBk z^P--O=dkp$E@83w#AIfpyS0i%zlh<{j$v%%OP19q_98a#=37$D*fnIpp=AP~pqbv$ zh`!{Z$$DH-R*7waE#T7hlxI4e;og{JeW2V9xoobp%_yZo6I9%>1X2ljLEV!+#wRe! zsBg-*?H9^7YN7ssQO|d?;B$ljoT#TfT<^b%Jn#1oe?lJkR|~Jd*z?7nFZTQn>`{;= z0+#oH|B8sm$Fy%E0R?i&3~<=QbZkmB^7>-)X>~VJvQlminp>mUSwl|@{v)AC>MXS6 zdRkWjcBRUlHt{Fa&C?WLooygPezoaijHqy(!u9vI2(+A=g@- zMw$_4=?)1E*q-InlslZ#i(DAfQ}nbN`n4QQYPx$&W-e!~@I4Gp7V|7LE?@M~=~|F0 z<7cC+4gn@}6xaz2o(0NwqS(u>8`MzBl(>qK=>tf*AWBNCxW83# z@IHR&+5eY{gSXh=GgSO)#X(MWLNa{Rbbcrf-eQB#4E}?PgEyz%$9IZ@e>HnPePz=7 zCCk57b^QgOFZg`H=XXfA6=klJzf$t1|26PYt(ghFRh&wiW6E+MimkyuQQj`vc>`Yk zA$gMn9VLjMc$b{!9=fqaz{%Q0&bHCHpGiwR0w2SEJzV$NVpp9SwVVza+C8`~8AOGV)RdVr=1~u3tb*_co&0<;qsYoia!1 zaq$;SIR_rp$xrN>>~T!MgY$?1Hdway-JF4&1BTC$)NeC~|aic;*3e`z3H2<44`c zp3gAKuk4~4&!c(ccI|HAVuJwa*4px{3(I!OqGr<9GT<{BbBs0;`0F--SDa-SguOM* zER&XOzxRB27x5Y_W|H8dn+JfjzP@u2#-V3(J*%PR2VC)Xk(NcCy(o#cTlPS0KX{>+ zupc6C<{|y$)jc)eN?46k2f~^7+LKpsI{*ZZcUc-#b5>7#_`}uKw@La($h>_&3qCja z?~!@?wB-Tu!b;?}i5{I6j4=|6hu{ z*3O&EVu(+~TAQ5?6>(N3QXJ%LYS8 zeUR134}<82_e?yNoIuq}b}=US7q1NdH;;beCH2@pQ1tU@(*xp%O%MJmxc-WMz5w(E zpx+_=24Rmg^_wbA58XjWY34YxtX-A1Xto-|HJ!WP!xfM^!5h~L@tU8r>kH{S{TARE zse9#hpO+Zi%WQ1k4w--`pN60>olwi>8m5@52n<7@sccRZ4+TC|SLflobCnLk4SuKJ zF7Nc)1=vm|WZ%_`>zD*KaTGFqYhBNwa?_f`BD~XY*nnA`%anu0rW--hm%QxZfl<6c8klLCanZJ-n;=;;5>>FR1e%}aVZdUn1eCca0XOYahfk1Q^xdT} z%-eA0U{;CUUe_fl`^)}MUvkS;-P9dG__b|)O1qubH-H%V$d-xfY3%#Vcmv3N;`9L^ zPh~rz5YG^)56cU3gY>C)kpkW5fgcScE~x@~wqz@+Q&Wz)sG(!`*ZrU1rlC2%1E}mM zQzyYtk+J+nmlq*AQ6K* zfIN^sp&tSS^`5-P>a*V0|C950AKwG$2feSqqubv+0N)J0pMqZ=!r$qA{hdK+8l`I> zyg$5CXWtBd-=>;b#LwHO|Exnbz3dQD-XPNAZyt12%P-o48O#6}aWDCzCv zNpTAPB?AmDWe_vD&D*>FLDX;336d1@cT~R}?)P5?pHKT85I^pB@C`mNPC%c)2l;}} z7kub1`1~{Xe?-h*q2B}_7966boR^`>I^J`pyJLEbH)A-UjF7ci(BzlWxf)Rl6VoBe zyqe&Yvrh$~V<&PN$*){jGwx`3-9{>WS)3X}9vJiD^F8!&)LVt!G0rAu?U_DoM573c zGFk1$&{yWxHIHeL<-6t;;e81+_(kT#)xloUhru|%!Y_DY5jdzE%eVIvxw0>NhtFst z<_7c+d0X$Ga7%m&jAm_2bbK259X=@xTzgmF;X{4E$N2`I;SA}bURSQcDu=r_GS!_t~#g631^%|{e}pN zqR1c)zy7WS@YQb5?sxZe?(MBz^|r2rMTV8E=SdcUo2|yDKr5CeMrS(IyjJ;msnyJ5 zgHtSVx@&jFT5{+u($~)pk2S%Y?u@oM(srI+Sr5dxbqN-#+6j)$y=o`>W;1Xq3g1xn zjA}X~TOS|wLBbzPu0E=V>}J#3Z8cZ)Osa6F%G<`JD6*Mxe(NCz31sC989}l3(X@o*r_bzW0y=q;mMhcV0f{<#T>I-!VD|e);`;XIcAk ze5d$d;XA!|@g3(kM;kI?-4L?n-|}C`JR{W`PqD@IqxA% zz0SAros);E+(l>)Yh2I(1Z?mowo6B|Gvwo@Ycz#K6n9c@r8+g{!tlP$R#$aCtd}?P zwASCa!f}_rg?lq=x0&hjTv}7VV|Rvo$v;&V=Egrn%gXVxV7YE}ycw_DdT~AGI(-=k zj|PONIXn7Q$r?HPwl%9J^Lk28q-$3bcx7iSOrS<_x6xS}1ZV zR~#zS3nQ~5eOW!=YiF@6ZHL>=Lebjna?s*8>FedqsU&YDxfu4O@A5n3^ER{p0KfC7 zF#WvS@05)ZldutBHqmrPs%?p<7>!=eiCa6^nr;M$1Pg1=$+ZoIZPtDVQ;f^X2 zzbQHTyyUmiMKLQptbMtx)+>10s5Yy7yh6>@q*o3r%T09|w%Y@kY}w@%*BYg+*7q9? z`5emqj@Rdn{^`n}J9~u*)brfkQiVF-RGjiqQjDQJAIFEtu5sg<-eXV@;Qi%V-XneL zNrvDII7UMU#OljHW_A-Jymagf)35eTX_Khp6{Y8smaJH(ttO?NV`T7rhaTwS_unHG%0}M_onf&b{HJy>#~Rs7k`C+0J4fa?5FXdDLp{jbZha zq*zMBp{MozDAFgV-dkW2QX| z=j<`w&!^}95znoKnefX>JL+wV+gjWR+1fQphu+Ne#z~27uGP|Ux+Qb%Z{mNvB-FOQ zZpBR|Ct4SN-jUYA)8h@)uO4r3=YL)iZZH4y@;|@i0aFz3imh+k@e$>^TI?qmbT9{I z-y9hIY0~i6_C8kh4#UOu?P0ha$;wPPMV)lVC#=vNpC#S#L2jpWe%$eysw$g>S05H6 zyn5KL3bI{W`$j!ztGbjPQbEEdh#y5Tsd9;;0A9iOVYSKG>{ z;+L)D+h1o&KL5A;53`uB%D;~P{B-~G^mGIDtEU^h`JY#i+spmD+|MsreiNqbnt9jT ze4d`}2K2|Q`Gc+DkGBIuZJV*3R0MO*hi203Zv%GfEKY;@*FgRHxdu1a^NMwQxt^En`6clN^C~ZT-_3j`t^cpg$NYQDr~Vr< zpV~lQqTguc?dhoo>Q_%Scym9maJQHHdAXlovha2|S>53`F`rYCo@?N?=8Hph#k!GyV1ii30~2~9_pK~zU^Q$6+@!$#QFuA^dLYqj!~UAu9lkB+AW z=6c+0Q}qWGw;u+zUOc>bmC3wP?@X(Vm9&zpw(Ab5LUFr^)p>mtA9Uocr^8vKAAHNS zmz&8%akQN_Id`0mqDSg}%?S2-Z!u!Hkj+W3KO?2IT=^^RTz8~I6#GoJTfNHt zO#}C%--h`-w}2<^=l=!sd3vUS`qeWH-dxWs;_c;lUXJG%L>$yM#;p0x5pQJ4Eo^z( zw3|k}?c}p8ERP%8G`;IMZujw!i>WV1PE~Nv-Q{X}sjG|__~+i{U|-m2Vk8r9+=_aG<7`vW`{zdX{H8v)YNN;z zz3a|zbykL<;;mE#TMCl(tg%CQVBTpAuG8K++K z%d>e(djzR0YF%XZEa9@7&S#bo_)$xb2jj_=sgG-@)72EkX&=pshJyGo5QXbb-86Sy zd+#Kj)-Z6VYj)!#3#&#I&f_kpANb~gD<>>zuis_E=cxre@jgF-_JGqV!1T+hl2Qmo zPE!Bc2Pwk0`=F<19N@2>aR8-LKO;a$Rh8Te2@-guALNHXuPmVgQAytQ@Nz^iNAwTg z{^142n7;SDazizHt2UuQC5OCO0W$4+#mTNK4u(QYlWY2Pe^9O?d1UtHu~6q@Da2x# zYxPd*Sv_6OhR-D9?YK#tk+d_+^hF46IZg~&(w(}jPIac_`pqbE^iF9n9ZtIg>P)=V z%n^&mH893ORFx*~YBe^uZDrVrO?h z5{x!}$!1s8Z+1psO!NQk_sV@?1}z>D3Zt*NM7MiDvC%@3Oo`d?p}&zK`Ib6Dv_pl^CYD37$$yE&GdSRS9x#+ zpgGe?9!dg|M!skIJXzroD$x665=G<@Ul3)aAR+-yr(l8HgxodDqaslf3z8r!xn`&i zu%9~#EfZFdhzd|LfeTX!&v8hFOI1ath0ikboGdH2KuUaTCZJLZDj*3QT2>IU*r@OY zq+mY3FE2<~R?>sSbCC$z#DXjVB*-rm6&@;n6Xkb>mVw%nHpuRpiLnSxpm01#?kw{} ztav;^lFSuo`{cJmD&o|FA`9H@?lNSO?nS9ig#(CEAWivD0tKoq7gRxbGYDUdp}L3+yhj-Z>n>26yOjwesCh2S?t#H_q5VXOzu7MNOWH4$Wn-ID zRI-Q-275DT(1S^PN}Q0JFUY{0qz74gy#Tr4dScmm8AU@On~`^TuWuywF1;GowW183Noya zwn}ALK2cDK-O&-B=My2FT&v=I=z5ZbIMP397D@Z%GMETKh9zDp2pl=vEzhSQ#EYNHR0R3cNhg=767>3mEG-Y_ zVD?g z+ANi2`H-ZLHWPXIHg;gjQ%RepvMiqrmJRiw(`=p(%$c+o6!JE9kOFRzTuWuywctA` zKO|Feo=+vCIG1JlRAQABP9WiZd^(kXSenr~qr>DYq1E5QwZ*4rI^nOL=|nuKlE%3J za>&>=8B_T74k?&fe-z!OiUoiW058yM;rGS2|JmD))dm;LPW|G$j&~a64?0)d!a^-E zX2a23zZh3n?oq2Yx;4AhX-r*bVJ(iQy@}$vb!6j{HQHR*#8$j+yq-+eKs$%E;-$SU z_9vW_+TpYuNp%m^%je>{v5TYnyj!lFCbRG~7l)S%FSEN!n8Y*pd@cLqzSfM)qgQE; z*Y2ej*~dnQb-biw%zTqcA05E)W^d_9%be6Z2g|5gQm?e}q|RjS;0C1M z)Z_ipiCuWu=v>CfHM6^px{YCZ&$ujWb!9$X5$Hw9RYjg!>W%{K^ldMY%0G8(_WNES zmA^ac3wr$S7f3bwo8e(YN=aWJmA^ac3x$941yX#f|H~IhQ7B(XSrzqLAp%${7Lcp} z4+36<5x{jMiXcY>BB)3rkexzgl^|!x4_r}HIGjVnlrPi2Ijo{ki*RH$1Sl**9`KF? zCdlBzB@VD6$a!7@{wk>SW^Fvt~v9e|dR2Pg{zEJj7f&o?&8PG>HFAXpO9xH?tLPN<}PG~?txEWIv zZ$c3uwVcz!+x38w@QoDSqzb~SkW<23fvWQ4Rw@6>N(yBMekA2=j~9pyfs|Ke`7^!; zEQ(Xey;9IlIToTTEwaZ0V}MpJ2uQ%tCA4EGqLs-S0gy*xyb37{f>s~|5jZlKI2a4S zIY5Vkq(BnEqk!)?xC$$PU!{Ub7y#Hm)LwxkMS=l9fHshflv`z{PU;BEUx12(-Baci z(#51KMF4~YKLGqALPAKP(?)|N7;P}1Bw&6@ZcTLL5Y&o*kw^&IBOeP{3Rn-hhSH8( zip)a_j7#_-5vx!_P@&)g5E0H3fRIDE3qT_jIx@ia3&ivwMTUE#0_iLXr`?s_M#5wO z6`(-?MTa~Xpj?pYZ4mUAL`JMifVx1399W_PDF{d({Gcr0UK!9PGT>o40g#^=1({Z` z1fy8QKqc;T!!*E?;Y|raW-VlDfD~wPQYe@VWb~K<)C^1_B?6BrGGU~Jlny+mfQbWo zN3x8On65cy1%Sdpqom9rlwsUt2?`7~a(@MW;)etKxzSD!p?3&g24q45_)kH0w;%A1Yx4*O$eNiyr&g@ zzTF7eG3`j0lCvHHA<$GsCB2IjB`-V-I8jJjO1RxfB`XJTIS+=LwHOGYn_wCOAP-YV zn)7FEBZ^Ot4aDy~Hc(cCJbwQnn1wKqA05sDJp?}V#cN)?<{ur<64YAWDETa$;rTuy zTPjC+KueW|Q}!oGX*WJkssXQ6tCiDX5^~9P85sH@84g-JyEu(X(zSS9pv~m4>GHPL z4u?_HI(ya5YU5sy$3YrSd2)jE6cuN4d$o$% zO7l=3&imu}vZ9=Pw7Vwj5}Y zpq@A#Mf_3hR>UE*=f~z|U56ikpmz(oK72w*oskw}6h z1w1yOb3oXH6p^iykn$HuA`p)NY5)d8wni9Iuv+*?(IP+!31CLPTnbDKu--?CS9o3o z2&3k!y(#khNbv_?M2P^jY{8js8{TdPsszFa(#3Z~mdQyP78StN0_G4;FtI?Wo=CPL zKN6I!kS#u-FnrEAC|1bs1~3^~Bx5ZP39?MKKvRZ8;X$4NxC1%`$dd@@OoW;gJ_3ak zJ;)9PQwxBqMZ$o9%oRQ&1xO-~M2>Df(mlo$w`C0hjVVd_*5zZ048Y`W>r>4O0R02~ zmF=Ep+sj}B98@sfWPQjCJPA5H-IKkq20$c{Yy;B`-G>Ao0Z+)7Zl)gc$k`Ti))<7V z05#<^ru?8l60k^Cm&qpdLjr>SCQIsIBO$OK5fXs-L4v}mWFJTZei8x&Rv-ba5fW4& zpD5io&u@zX4W?K%XH)=XRcPyHNX_y+Km6App1ZSuD0q8%@+SW3$(wI6V1k&Rdv+fL zCQDfP!9if4Qs!RZ?FHWc+2C!zQAU?D`SFe*FjH;51%a&{xsC=CIXEA|%qF}yX#^Y7 zcJZ-t-c5PEAL_}8k<6{gCS|`}pBW}I8<^o~F?5@ZwYZ#u-S*T^&j7Ftk3S)!EV81E z`a-p$u1rHcZfE6wFJPvd)2Vq~Sd4m@O4HW5x>oA?c-(OMXwsG=*Q_|Zh9Vs|*f6ZL zQwH5_5DWynfiGNVD-1`aL)0xRV?o#UBYVm!yZ(6B;pIgri9MdJ^MY54gHgq8p}w4W z2d2KNSB+Hzv*kE78)Kyj!;2;(Pbzgs6rp@8i2H2G_xnNIXA0BL`$3!yR@5e%ZXoWd z!oLaPr2hcoVCEGh?1>~eE8B@C0aArD3Lx{+bb%P$v;b%&4ZFw^QYc4!CAd-=Uy}LK z6bccoWTB7*!(>;a3vo1N>u&oPXK0Kd0J4?-wmqK70Y)efTmGq>;0`elOGxibaR~{Z zQXWDlQtwVyq{WA@jWj=9gT4z9A-{3r*iMEv$Wk)@5dV`WkjSIQV52me=q@NJFC~rJ!*mH+$yT%S1Qj4%iYT*n zsw{yn_EJEZY4T`%4h{Ab^A#}~awFbHZRL24w9|c%S1zY9W_KZCH?Tzm&E6u)GIU3?)~9mZs-`3)d@=_>nY zB1*XKV;ZwKvIkKbLUtbunMIF1h+r^73*2HTsffmjJ&4jUu~d{5KMVCr<1uqt8ootZ z0^ek5NEVG6y|2C~1Mib40DtJrEIf+NDY=e3#EFEX-sjCjkjTXJCRaSLTakpJ(HPY{ zFI{m@gIP0Cx;&l&_gs_)osjQ05nWEsp4Z5uO}-h%|KQM*r-vKkuO4pv7J4G(C+j~1 zp1^$aqvK9^Ail4#lNZAOXFuj~|!Yk z^Z9YQ-3}HB%h#&CnRM-(lU>IMI*K7}+3sZCpKiweR+%d7wryG3wo7PnT3ojkX+_SM z+@4zX<6s@z7u+6ICh>7R5*K>kEw0ylxmE7?{hbE`uQ}Lr4IK3c3|sH|o%At}p|@-( zi?VKMz4qoZoDcoZy7~n8?`)6Z?q8z1Zom z7U8Kb$~;ww`LMLCv`Q#L_~e=J-vr^8mC-e*|1yNntHeX6fhS}Ek|)R*ll@c#Zh!}L zPxfX3hmyc)MUX)b=t(3{T@t~4bBN5|@P~w^kVhW`LB0j`BI4=E1}k0u1V9eg%LEw% z@(Lx6?0bLYC437tAv*bx;*;zvTP(m`xNbppE&yX4O3Qr0nk>xm$f@Z`O zFaZpog>Kx7Bnk6sDx#Q+ghOzEa{&4gNI|f+O5z@}5C@TB3PNglvPvgoa@ynC=hTW13(u9x_PV0 zWKCJbzj7t;=^4~yxAgCwNB{(p7jGDW1bhFmbwHlB7NJ@s=IMnKUO3?&eH>eTzS?!a z=~SHbI5sfez%vK!L(S+9&!sCLX%^E%@y^g)#&Zo3<8xdRx}8%8tEV02{aUPz&?Rh_ zkLICc+!bS9DD8!Q+RHW|p=+MCJq!r#q|X3ng~b)8(Dc zcCYNv9?!2vlkumfY%smZb{6NdJxEl?376^dqM=ddH(iZyu1}?-!&QEtQ*qA1thxDx z?|~yzufk)mkgfwtKzZL}*_WSnWRCdsq-y-tld1)UQ-$;;2^@C|H3F#f zUZ>`~ywgAY;Ry$3`rfyL@c2CTzI51~!Pi+h7dl$HV zxKplOX+QSr{nC6&+UYl8u}#%QMfR7m*!&UlpBCx*^ss9D)x)aaJP-!=@bW+}5A^at zzknZ2s&2jdUHqtV2!e5Q9(dJ>VO4RU7`5JpSR_>s&}iNq8^H;+*XzhM1i#m{rh!mqg%f63 zR`M!XlsDd0FNeLkHa=j-nX%TnTw;=9H^GNRYS_c_^57KJs>Bqh6><#D@4}DxL1TUH z{KEHS|AhzovFmmtZ~_be3{L6kG1gf9<3oHofJgYBOc)E?S0Bj`uq>sHN)eU(X>$>Y zZ)dxyqWWE~>gAGNF6kfal2)pPD(^kP?ICz?mEg5Ko7zjQ(++0Bu@N`R{-o5Af_i<< zn)7yT;hc|WgA-Xt>-+W^?a|uX9ZUGwDzj6&t1V7?l}{B`wPm*^OB1D&h?l`73*NK0 zQqxjH&Dn5+##J$8i<8HVc(&?eFdMVl_B*bJ`FTm}iQ}c^47*`y&8R~Ecn*WO8Yr9_My(w3S!tZ*zj%msapx;rE^3_J#kU--#0;lQMA~?mn`?`EUjL50Xxw z;`8EM_V=;9kIB!&hZ8S>PYTTjTuq+(7Aj>R7DP(45UG-VK>8_++~oi?auTnU#Oh5{ zu^sd1k$Z7PQNd+_-t5o|$$!zowA}p)@-A%04+)7O7kciVM23)qQ_>%UBk^43G4_d9 z1kLH?p$6rRAdeYYuKTY)ilJ+IX^!X$;>7eoBS$@Hb`g8Kclzh+if%=u+CB! z`Kw+ShX3b!ffyhC`!Lqn+pzpP;Cp&>JjUMw_#|23Q^3b_D#~Bu$csq0AwKd*?hEm~ z5Z?>&ebX}dVBz`a_Z=S3_RQNN1T+s@V#`(0Tm*yT*ckKLyr{1`tt&6}>hq+%D4}2y z(pQ&E8~tT+m7IVzd`7Hp`tzh-KF+S^M*rNLrmNQLb)=oy_7x4%M>V=R+Uxb2+{wQx zHUhKd`n9!I5o)&Y7lrjz9&wX#WU$tiKR0WkXcW(b$|~*U@d`^DrY3A<+}v)1_IjsR z+$$d&vVUC5@g%BvXVuV{Bw`icMIB=(4cV=q3^#o5ta3v@duO&0Im&@IsKRYq(PBsI z^oorOY0KZ`@c8Ez@C5OF*WvL$4eb#u_H)o)3h+chcm#O%*|g}o$KOME0{)>0FZJU8 z`3A(H7r)uBpLp&Qah@MiM|lSSY_9BVv1b+f$5hk7wTOzH^+_{5Z(&;7^jFb~?Qn0# z_SbJsQd0?}fha+~s>}Umz^6eb=%- z4D8_O0+RpNAE!e^%fAfG6Z8OlJ$y>-`NPtU;t^Ey5BjZi`_{gFBh3R-mAgB5cF&LK zuh90)*iGzuwkk>LFwcRrJ=bZn~$Gs{+OQg^;eoF^b#;m=)VuvnY5-N zsZbf~LY}BrR1(^m*2#7p+ls4cR*%-0*eG-e{kwRpJ(;s~e{ZM1mcG>sDL0WtU>|#P zXWws@()kjyS$dKQwGgrp8#6!AYGsl(^k+nv;y(HWEMXnThfgdUS!;V|Mt}MTdk<+a zws&R>Kf@K9S=`QJ1&)*1o$2mVOaJSeeeW&qR8@e_d^m>g7piuy75b6y#D7};j`bY} z#teJ%!zJk9Ir{Ao`j#Cd3WQ#nf>z;Se_q|fx@PhzkQ(%!ag=RP;z&v0feJJ!quYeg&*h~uF+4X`Ysza zh|~tiw*~k_7>i_l{_BsFi^JsD*ryX~oPP=PFN>Qb_R2mT^R!YS%-d(f3=bd3SLjqQ zA>GgI^vyO%U2b_v!rm_)W8ZOU;#-NbAJn+nhtYHYI~}^|BuyRB&7}~ulR6&igWh0J z4vz8_65@*AW_j?s9I#gCn8)~yXD>YB$ScVI<0{F{3|H>{BV8;}l|RKpoQue!$w&21 z5rHUMHWB`m;77J_BFVy^DoMP41m9(!KjrT1{i`WADe;(4J3B20_auRo=9xUCWqFpe z@Z;FuWl4F(KSBe#SMd6#ch?5bGknaQ)hFWo9&>>Mj$P|ND#?@IR1ib^T4)QMItux; z@z)DWWnp!7hx8?6-RjpDmYTysf2>qGrIJPo73Mb9$!QqPv8?oqD^H%axFJ{e>$TE$ zbZ)ihwKE#k*2xBSg&L4qL-((&qVA9QWSzHKr>3vu;Mfn^@*rhsT!dz_8=@q}UWIR- zN|nZ`+iAAyhq`wNW!!R>_08ox+=cGYnO&LjaBuWxO7ZCE4RhI&JJn|AjEjc~>!(Lk zb-hvOhwG`}X;s(TSzTeU)Zy z@Avnq!bQEi-FCF#bS-w)N2Zd@dIM)#Gf!uCGjf>?S4$4{s4{bR9n;`u7r_aIj?^o4 z_Tgf@VEb6|SchGATs}zGftr(s5OrgD+*~c0xm#H|PFuCNn)ko#ed&_wxVq)5RGg0J z=nlHdwrttfu0A({c?L5Ne{SFbFn9n@fS;g$_apX`wB#X^oUk*KUAxY?WJJ{ldm(FB z`t(hbYa=uV?23b6x;{#bUNBC@W2fW}r{2sz zmXGl%8y=P?Q-!K4lkMbO==UoFgJOkxr8&cklj4->%39h}Yc1@Q3Vbc-jW-9i$jcj7 zG$&m!*&9t7)}&CD125hscwSoJ=`bvBm}*VB1dT>02P{tuChtO~UFvKXmr=c?vYuaN zP$)}XU3Hj&%@$W~w=rE6opqT$PkJ-k-^A%M8t;dN`G^lIPLbAIO*p)u_0aAYMzZN# zY=cs@qvG1(d|uI^-)}1_X!KOy9nN8Kp?USWsW;c4GSpo;-k&h!3kS;{%!THz*Wj(y zP;YWa>0BKgywY?$#i9i4mpd7a6-Mr?F727SQI@<2{B>bIb$EsKPfp2q`jRb)QGuMI z51mfe4tyGnlxab zD)Hgwu#MjP{ch4;w$W%*8+9h#sk*x8kh>i9)_GW4tCiY{J#kZhQ=>aG zcD0-IF7noI&c>jtpQYe&_o>V#T?b>nR_p0)yzq@eDdP_S}yT)vB zURMiIfwl=L>ENx&?08DYJq=#?A;nXn=W9`ZYlrwDNqW(Hd91Pcs$QhYB*2TzsK%b= z)IiY7GUHw>m06i5I2^XhB~UgC2iIiU;{~3~Cg6`EtD#QgM9~}+0s{{=>KBT!wCV4~ zQO)X>Dphi3N!8(IEZeWSl`>NwPGs6Lq;jt~mZycOi5G;vgqp`j-&wfEv}hZ}fy^LdlhX_g zoJCpDL%1&1HzvFk=cl7Trq=wnaDDD#>@j`oUVV3=fBW|~6*?;LWs{)B%H>OZr!>);{GU$F>OQ|dEWNS;l zlu2!h&nG&jf1AM|Dl~5LjU;Q_fmK`}DN4fKO#WV_xWyI^c}Z!ciD3iDNiQY;o}bd& zo_x^nWVPLNfhKO!Z@WPM?%pjHFKqYsZWT$ QxHk-4*XizSD!{|xUI!sUX`Ik%7~ zKp1;C$ZOP5;y=BMbBm)>=hjmUK1qpqIJds$-1^Nsmuxa@(PQuC=6at5S8guivmic~ z#JfQpSns(tVzKQ~1RB=Ldks6l$|`+<)y2a=L(nA217G!tKW zoi`Ib_IALjL%!W3wiUVXt}2CM&-8U{?@i9mogNNeKl?i!a;Hot@%13(=@0up&xT3s z@6sRjI}wEaLVs-T_3V3gNcT>a`a*yFk9$qlB+u?s4>#}gaP~D3{sxm(NSgmECM)y$ z*?$9R4)`zhhjAytdC&f+eyvWQYPWW$dGR(E<}c0j72-hkefqt2mpXk#M6U1C8{AiB zfODsjxTiWZyc0XWvSO_6BoSUe`#b&dGM((pb&3oAWPd1kdN%!tV$iFc7$M4nNm63qA3Vu{NpfNk`-ku=GyH{VNpnYc9{;Jyw9lr5cfzQ@@WwFnL8KO2DoP595*sagLLQS{QVz}z?Cq87<)Xk$F^ zpV)>2luzNN$qNo!q8Z&b37p@mrLJpXbO6>wQL*hY@{|Q-|Lt&0{dFTtQA&!sF0?2% zLp|BebX9JdWt+q^W(q~?$QGO{Jjnx&PGx6=iGoEWj8I2ck~M`jHK&lReiu*Z_r4q! z4z9UDbw-N1^@@elK37)J)}t0`-8}0ROL>;*pgwGw3l=_>6y?u*rje`I_XhZC-8A|X97%DBFITd%G{h&|?uNp^JjH_P3K zR+Z_)#FDxHyq?dDh{ip`s;m);eJDmf{OSlr(`8Gj?*|A)U+jrb2u0o?<~vWWJONF* z7cakNPQp8gh2JgK)SLgD|7ZR)^Q(4NUw6B)Jo&^upNkds8lld8M1Nmx4La&%4y;Lk z`~IB#Fx)h~bC)7T^IfgrL?<#aMO!%!|qIqR0Y*kvuq+7CA@R z9GR_u80O3`^`=P~9VqfJ)bDU+Ug;iWQ9qw_nj_i2=tdadWQ%|F1Jw1V7>7GNC#sKd zt34yBjU1Vxf7bRfeD^ox_A#X88W&ai-UAfP+;zhAqjr31er&VK1N$ELxPn0f{UAMe zBPs7?d*4u*&wV|23*JB9=GNb2>zj`y1hfD2xQ6)--k#-{#suzj%Q_#XohV{k|J-7> z!w2GQZ1b)^<2)%bHDuzJN;h43Bem|v;as%g+QzxQC%-nI3$IQmK8(wS2ky zlv-7y_j;`};ws;ibJV`v^CEzDv41B<4(~qrd>?LrW4^PeVHJ+m5x}RPj;eBg6b@M{ zh~|jYZ{4Nh>ijlekg4h7sb#p{zL@YnZkyl|6~aJa=SeJPr?2Q6B^60%vf-fq0gb}4 zmQ!!vKttW~s1RXV_^}|B@DUSzrp7*~v)AE>kSo&XQi2oUfq1hPaIl3$*Tiy%9EX4g z_J7qo42*x#C-Ryc6LOpy7Xxq)`&R}|h#S=fNBGtn6$Sjy9evy(YAk#+Fdj~1J2ZYk zQ)GmGt}E)$uMh8Af0YZ(om3>k79HKx^T?RU2;gw+c=x}yz1`yM>y;5DBKbn=pl2xMoxg& zz_D?ix`45FLdp|^^i1EZuqgpAocN{N+#Ua@?c$xa8JG_Z(?izwpnVly*FF0PA=(KZg30$E zj+`FZ(IRxX+=JPYgN-)mPb014@R+8tdGm(Nz!*3VpWqnVK!#gK{&Z4~KYj=Mz}z@i zzgKN(<%JpNp9?caWM$+o6SnAv`@g-CRz%sK5z+NE-|j3x9NTaAyZeEWx(E9ke$YSd ze$YkkF@!Dd7Gq&Q78!&+f+%5|El+{*yvgylh799xq`C$~Eyf9sOt?{AboZ7~UYIF+ zyr?PdCPeh6`;CmaL0<6pmO);aY2wf4zQJ)r1>x9d{{@#>pa*7}sFcDxILpBZ9rrcpCeUd&f4qb>8nzrwMP6)89Gu75@9l7V%lum@-}MXV0vCK>LXtb?`zmy|MjN z<3|xM5=Q_~OzNzKIehhj?_g>~)KPt0gd#?tXjAh9f-&iMdh|%p@KOto?qowJd0x;c z0C=2k_x{2Vr$rcRdPEH3wnl;YgLL943b1s$W(5H!z>Q3aVg_8-XZ0|+e(qW}K6D|0 zZ5R-FQ5L%kXe4WCQj7Hv?fxT;YGD`t#W#md zn>r|XDJtP}Q$P`XUgcF^0zQ?mi@oICJ0X5=v%!9Vd|iC^R@MxQ4m~q4xU*`&)Mh)mr+}ix@Hl}Q$#}lM z4e2K5jBa271!dZ{_^OZ%VaNdukFHqIR0;G=VCh&8#fBpM?xH%U-Qx$BH=y1{I4U&BM`h*g@VMba2-Ervw8wtEU1@>e@#)AeVxII1P#@@Wb zMIzD>dc`jc>0(QjxTNp>5G1!#vBsfje9DJM2ZBw|raC{(HX-eO;n7o#g#~Ch=m}{x zcI6E&>krZLH_U=g_z0{U=hegN;m2lmpbi%d*eGHwaVS!d_%tu727llh4R zSOl5$C4)%!Suz;gK-C8c>B8I@gzKCpPVM;*6~(9Pu#j#Ve$Zk_=>~}^c|)ahsMuQS z76WB&Kcf=uc|!I6oBB4G57#gY4ArqdqV($febr|)DL+aTz4(};EeUkFhz z#94Rw{K6vu0Bp{#&>Ji9P~9T~ELn{}xT+ih0Lwv30`aUCQ~ z01O$ON)QPnB^bgH+=Z>QS55F`$Uceen@^%C$BZg+hO6x9Ow1wP8iZ|RD1{7a@TqJe zh;_?T8HFXDkYu^JAa(=2#EI=J%iKX5u@jBiamOK9N1=oen(l=`1;}*}8H%(Yq2ouG98($`t&sUuhYFGyA!-%SolneDWZ01^ zKhf=~ZiYk-_MLF+58^_LS+2*+^i!?!Bg-BmM2Jei<$O3dDupVCh1VB4MK3hKtihM zA+aLVBVlsv<|8%k2LOu_SAj&aKGCts0jk=GllSUSvgYHB3<`-B0!Aap)l@-YHDASz z+5D^0Tle5Kxx{+~LuRX>RjQB@!5`ws5wTVsP!OfFgytGRLj5)}97s^H!pX{^Wdos0 zS>SIO#!0ZlOWE77n+NQ|6e5oN4Xx#*0)p#Z@quMxQolj4CYPG7!z5?gf8c2ru*Aqy zpkhiL6b>lwGKvW4xAt3+cLEM-#LsiUV~}SL|FXlvsb@8NK*ivj zZ$0!4o54Z(AGmaB9NvYB5*=bl+IWpBf4caB{rvkv2NJlOq~?WKgMwB``bMGuC?Yw0 z{)jPv29TBc7uz+g7F~d(32!N;E^iq#qT3ID*E|e_267*% zJ}dwGZq)$qq;{w>KQ2G`mf&w99^JBf9gH0kb)B2CSTiH6aT;nsAEZ*$#e0Y6!e10t+L98Mv63o7;h;P)$h{QR|L2(GufnYNHy>M z`wB$N%4}5*;4AI?Bw81TDSJ0SeVYO+6AcgHYrsb^h#3J}?7yw5HrS!=c(y=I2#&XYGPaH<+wgN230>}a);BAu$RZ1kF` zN+r~wi{#(mh8Jlq)CMEdrK~o91Rn&qxIKw}v#HTG68E{Z3v+^KK2vvkeDV4SRVW5w zh7Nd2Df1-YKXihP#&ki_$Dl?-ucxV)W(byv;Rq4K!YY(^W26kM;25-4Rs(;nEKFC` zSIoKH=b+tYf@Yk0kVYB4F54#bkm2kE6>HUCnNYE7rRLW5pl~Gr+{?svnN^_?k0u$1 zYP(svMVK3rQ+_*U$0b2U=fFx$Lg&zPfjBiJoCqMnDG^vU3iv?BhVqP`PQY>-FtJaQ zv2xs75(ThO+CwNEM6v(JQ>IrI3iJ7*^z4YH8?lzX|pFk<>Gh z7uYu0fJhs}BoaGKz$2N7gfAgD92cT4kCYM~6O3mjgLh-u{tHRV9RlsAw+hJ-B!WwH z5_h>}@*g^#8nap$rRQM0^h_=v1-aI-Zx|rwk>cMBSkRXC!9zdR&`HspPLO&a3f0p1td`gBucIPLQzc$1Ti2u zp1F5~7@N{KR_^l{Z?&N;l9;4oy< znyhe)#aOs>38FbjF=}zb71PiT&>iIdnkNYjJLCsH9=WUnpfD;>z(=D7$>!Zj$!d22 z&Fk0{jEgglcTM?&xdF<&gG44$iL&=ah%Jz^&rzX3i&Gv5f0DdYK(T_qul2*#txm=9 zq$x^qq_EGalJ~5U2Z{Na(+J=&ndl+TfTQKqm*B?-o{gRG5oTPzMa`|HC#YHWQHm{) zx9`r%!|kt3(AC#0Bs%s3CSLy`nyH#f`y%9_>MK(-13G#xM3Lzjq-O@0fM@H&Mj-lU$S!1@$e*kPAydmvNI(FAOO^}bg*jE~ z+{+FmS0XfBQ@s9ruoP3)v47aC)e8jN2?eqS@!vyVEyKTh1wfwoiX75)r{u~ULL

  • 05sk=n2!)Qq5AP=(S=v(0HEQ{SMGsVO}U#5$9- zqG~;CQo{Byp|nKlv(@_<3Ef{Fc)_l<{-}$nXRgzepyx|HFcSQ)CILfAqC%^xxe|KW zJ`-_*E&v1=iuBKMej?n$+Jv=6VAz%R%io8f{BjL2^kV6e%M2lI&LGI7kqtr&RyYA+ zbl1W-X&TVqiZpT#8nSvzgx55{bcD19sngL9K}9_wjs_F=`G+3OfIsVS7y>A9Uci8x zXiqGs>Zi4T7IG_HKj9+j)auq*z)2I5LNDy`$Zu^$3+Bpiwi$t(FX z6ZkXhJd>V4)jeE&?1ZY%wyg^nq0lOq)$QUTMk#fc6rjhu9z4g-$Xk4df445<+i7S- z7ne@rqQSf7Py0{LXeNHTy)36lk242QimgFS+dT9A(ZkMYuj=BgOu}frN;}E;h9lX* z(#xkmzCY5?&a|e$Jh#YWS=3E983$W-^fP1K z{i3j|nw44)H@kaK(i>#nAJ=0dDR%Y|*~F^{+rtG(neXFlNfz{^$9M2cqk0%ISl37< zhc2d(&dgeaGc_pL*b)$ezc~f6=IlkvM(~NxNXOkPw{BUwFafS9v#*Mewree1)AwU5 zgSMn0gHrY?(hFKDdHlsur10$$@2OhI3A|oUp$F&Zadg16^TaLhPUQvFsy%!0oWd%6 z#<#I$kEdsCD3rpjENGUeDJbb3hoOg)bF8<)$T&G=4?d?U5)n(Rnz3jtcfzDJBjtM@ zov+Um%1&RoKV%&56JZE8VYH%JQkT_-qDzX{`#;90k4pc_nsyA|9uD+6J4!c}7oXfj z$DbSxy^qe&w|$dT4=K}q&K7%>gJUzqaO448-Ic7)cD$BsO&7y_LPW22&1#N8-0r_z zR#JS58%1Yo&#eUNPk(4lRG2;z*j;%MUa|Q{dXbIdWp|+hq7H;Jq#ZoaHH7fCWj&f_ z8t5iCV~NnG?QK=odnFR=dDRnyIdN)<(_M7-O1v~Ih&ijTiJJ`;d_DmLb{2NhhhGter03%xi=7@#1lDX+K^L!i9VX4y(#^oLl?a zF@1m&_*IK658y%%e&Z+H?A^G9FU|0xg*9vP@BT1pf4DLb^j3CU?2VY+A)UI~2u)fz zkXAq6wB31xfqNN$UYm_fECR#K7DPWIBAdmOQm&vaaB&SIlq`=-e ztnsp3G)9PC=KiE9ZAp|fk)^N%RX({QgPP%AN1#YY74Sw&k`) zD?REeb*ZW*Z50{p7b|+o zdEZj$v^PTo4;8&?USHLoAzYjny%1JQi>gX*f{*y_SkWrC?$NY%o-K1LlXD@asI!g2 z-dLOQm#;hzDSzyjyK?Vj;8L|Xm3tmd6)p!c&Q1l-@~qdq1e*qX9M(F^wgcXS;&h)jV15`J5exDAC2_m;3TcY-AZ90LuHSy8l1VzWP8QMG+7hp}r{^zu5Mla)xUsQdp{ zntYm{coWQ@6CKvh6jh0VcWm0Y5ZR^gkYI68&)z?a3rbt^>664-tEFd^GU=4W(jCc> zCmkmH`wTunM@i4T4RIoPk$^7Mutbej)Ht6wGi3y0X*{KOu~P1W@>-~$9N{_dVTAkwb5yhW65!++(tEdsD4=hBU5n>Y7<*z z=M?Rn64Zi+JH!l($}W0Jz`obSBWSrJ+0<}z<6Hqy=bx0rq}dP6)CA*cz`4}Hr&~Xl zY~p|9&&9#eLb7A(|MK|L3mA?L4VGpHp_N_i*hq&m8abgOFI z5@lI^!KFz6Kb=4@!7wvDuuIPPdMjoy#Q|3JT>~m^y~7_UAR~JG%pck0rXi%g@Th8k zVwlh%p4bZ|nggRi75KwPKt(agdq*^812}a4@&=rJyxeVcGhs z{(DM=R6HT|sKsE>fU))TesWjOX?C? z(5HG9HpPa8940LjCVADZ;|AVK$jHXs=TW@P3RBy9Hi{E-r9AxEk{YttjGB5T-8fL| z?xGheI8U`83>|o}3&uGx@UvZ14h_>yO#93S*m_e@C0G4ozhe*OEX9)sIo;uf5?+`s z!IJ`sK=HmTW^0STQh#nOaNQ|R7-2bHP+@;*OD3}}jD6%J?b+xCrB_fE4HOC}B_?YWc*o?X>mZwp&oj0Gn%VT{rl@2I`K(F=A5}Hjm_` z(KC(fa?+z@pR$+jVUN@dzy-9OUgr$%{_=b2N12e$L(jQ0mNf?)s~7}`Oy;$G=#4Az z8?tf9nuQlrf!B!{#C+RP*HBI()iVi=;1XPwYmR-`gf85l$ z3h_}+@B~k1Cx=Q77Hu(fI&roLZANT_kv=BURkGwuzc|~B`jbUVOPO2^*KAzJ;CY3h z4eeiaeyQS+)e!p3C>+?a&zMmS#%QA7w6X{z`QkQnO6#7FtVCpvfb|6%`V?Qr*Vx^} zZ?8Ng9c_~5HePf5XqH#|!+N1T2n(uPn0BefY;>(q zONQCf!gBJ|T>4SH$gl1e>|o9wue#teO5<_jc23V#eV0_{D zZ*iCfT-$zE(n1Sw_KAyYu}_1WBAelUM0@7H$ZY!Om32I>-+>0aw&@yNfIc=2MrxFeG1=5u^ zqZxxKFV6w;I5XgkV}GPuedLfmW+wWxG~5>S{=8)2T5T~iFJAbRRrl4PmT@cIRMGs! z!hKJ?8c*CjvI`0Drs|n0zQBmopJjmFP1z*e$WUF&s30?}(b4wX);crSeEtQYL<*dE zWn@y4)vN$FQGaL~MZ-CArn&FyH9;ho^+}o!I7Uc^Ze%O*R89_$$BS@vXH;;gO>i2e z!p)>mU63H)w=Pu!cb?{W*}os>@v(c5Dk&Zd-{q z_;5o2uy_>IsCh#yi%wlE7No`YEpNV5u?IZ9Lg|E)d7}6u`fu6|+Nz>n?WzFiWp9kK zu#c+7G_`yL3){7;Y=z>VB(Q57CfdLIAJdzu4(#C=uODTPH)U_yMgY$@fB7f_!~;x5 zfhk6>_sEzAt5nJ@3xa*Y@vV&Kn_ z))Z~=s2H$d)xFe{Q6*CWGY|x2xKSNW7;*|M6BhUC%H4jU@&lUvj@TfF>wGkce#lm3?4c*o6)n5Ey_A6 zTPFjd#g$60VnK{miXe)Lwij00wYfd5NB&53pl>FLbt7Ji-u`J^K|rM!>%oAsZl+z} zBM^#QV03H;t*KV~nrSbhU)caAXw6JGV`qnPA!JW{Epr34p!3}oT!rVUw0gR;F3aVM zugmd2;$Mr3I7V6F$QIq^0^a-TF^k`Fc1c^>r6+AlR!imjv$#P6S=his&FW;!LMXhD zig(E~$f%*B?rD2^mqA`j55mk9B0o!YS?>#NbTX1b3ONHE%Y9Od9mMmgFj-{?vz~&- zY8i0qFxxGASXbs{)Cxr?j=rVA&aqRiI%Us0mMN^QrJK@;3Wp~fCBrbrtk_7nHe zIkn-ju5`C4Xyyh6O+PiH8}ZPtNrUJ*eS9bSUcFN{Kw%%Cqlp4QubU=aMMjkSp>T*r zoW;cfyU8WSZMpBSiskXaKyx(~d|cnCEC|c7iJAdA)y$XY)Yd1lSx^BRha1+5&Pm#K zT`v)X*0o(T_-AxDZR#FECvCH_aSZWW6SI`)dyzJ z{#?Cq8^~bDAua??oXYsTHh();?zW1>noooz!o0BxE)wi5k9YrVp`Ze)oNjsG)$%eH zrRr)ZfxD20-dQefm5&i?XawU6d2 z7_NQH4-sk)E+Tc46idyA^oaLV0`<8#W6@&k}5(}DLe_s!~&V9*S_3+TzEb}rKjfEv9(`Cr0EupSA9Jme5YznK@A}kT3MORW_Gi#M}$w<;? z7@KiM`XUDNcQBo~wgbH&E30OOBb)Fo=4%B~a;$4p>J*k8A&xGM-flaOtE=Z3`xYKi zRZ@*1ss;e7AxZH2nn5 z`L zrC}7MwOS5-oYWx#m&*G#bIDfEB1sI~3K6s9mszH++Qhz{-D%9FImzv!x&fxAC$i50 zk8USXvMW3mVpzk&$)ysttoY+mg6S}ZwTO#*8DDyA#er2scIL1$NAsK%l!yY=46G+e zGygKYpBycduNs=_d!hm;;mXS?CCaO|R9}ScAzauCIW})^@+XNBXx^Y zulo_x^Grg$JcX`@eIRqG@)&D~oufU;a>qAE1}dF=+4Cb8lCS1q5j=gkG>zitTuh{8YLwj&Cy|yOPxoyTxX``4a3QpN2kzVN0Gu$6o{Wl`F#<2zI6w;zM);JP{n1|$~j*)FccWIkX!cr(! z!|M13BDt4GTsvCk4koAcriX)8Vhm;&b`{iBQ=g!#Y~*a(sd5eEF~yR%&t;+Q7o?3A zFz<%LwoAuZ5pBx*ZRhBhwGwMOo1zEU7?*Gmc3GXauK^HG@D<^g;WyCFuEc=MmJ3bJ z*8X%?hXYX{UW&{$eBTD47+9WrI*GUeHLK>8|13*1S@Jm z&Qb8PsTjj9EL;I$n`BhajD}RB!i^O86djvK;Sv(icZv=9LCUF(TT(W@99Ra*7TGUS z3aG6G46TgzxpqAy11l>cp}joANXQTof2_fFzjYRt2*IhDSls)gDUv-k#7ZZC3*q^p#^CytTq}QXKTETh=&SXJ3iKMjGKc z#M#?mA6s;E%F&s64JaM8e3IbatC9ofq@?-}5Zow3R))tkYWj8dFdvvLQq5$c^h0dk zR;HWpmia1B>&1hV5eaDD!By*?Iq0T|^@J!2>)t9Dh@ z$nX>toeu%{PHE}pCYma*mDU-oC~{^>1#Ym-T?6dPo$Oj^ z6KZm+p5$iZHotP+7KYk<5v%jyQttd$MTO?l`8pMS_$fHi}qn5jfAd zJ=g}uY$l9U_(yO?w!XyOex048vB)|F^rLv8Zh%X@79*C=_(q+H=qL&BxsVm8fpQ7`T+$jj~Uwu!L?G--xsfz8lCj~^16zt zR6I_z!DKRi8rf=wE>_1Ph+QZnAYk{ptL)>wNdAFHtl$>tY%sJnQn|dr?Mu~zl~L%7 z*Tkws$4=?og)f3(GcQVO{6xO$oSch_zg5SSD31;VNrI`NLM6$iJ(CvL3_wEg!wo-P zWew^I9(^y4zNJj!MhJUIO{wUn9zJU;!F22C0ldr(ggVI73L?P?cfznV^`-q-IFO#V zY0$EEPZFKblaGGo>+3nXoA)wvFld0 zwBy@j8Xqcmll2gJ7Xv-e`Fiqp?}TNx6TUM(mA-ZS(j6>ad)v+PND zO%Q|jIG$6U!XYs|W|$mq3{YqsCQps{36ZNU~s{&_lXz0}00*n?}#*_(w>kgkJ(nN(=AUJc?c*=GZC9Rz#>!uL!JVHLGg0qG(-$|wM*b_rcX z0i~5IovCfhmrqs8htP5m04K}`y-9NDxjy9|z@_iDeglIeEEll}$NC;Le6fpYh#drb@v9LbSD5}c34Q7MEN?`785!dMNpC>_eOL==%;@DM0r7LOWOVMI(zAk z9`l!&Ll=z`esY88TVk|cYcuWAO+cyrQhmcB+sLS6DSKGUUgdsob&tVrX!+OiHIQ54 zSpW-X#hHyU%tll6nRmpewvH@j>w?4!BK<(IWhYkIs(qd~IT1_&JDV;QvniA407*)W zf=D|jB*8R+`f1(edrxuuuP7e&O+Jt#dmspIuG%1B(5K~Xco3z|D@}u87$g}`0=r5| zq_@Nk20;K?*Z`?7#WDbRY7wQ#7R*)=_vFW=mW6)@<o49;O|I`` zdI*Tp57zyAIl$Vqb+xnP&lnAcyC@~WuA4 zko~lIz7p2_nyh{%)peBn(bfNU2$Wl%exw{FXZ9V z*ZuQjPM~T^HTigRM0Pk}Jp+%JsNXp^Dmhrq6N{(=JwQvh`9U7m|5yo)(GrH#+otj^ z1YBhiyHuD;*_`=pI~fLlVE~34X0alY)hzpKBPzNqhJ;;9DLYuWM9cBc)gnFti1S#M zc{JfZhLU3&LRV2*yiT(|^FanTt)0-6#vb_ay8z}b_o@R3W|jRESROQz?P#$2xX;A{ zCOSGe9tV+LG2)jQKxEBoIXAV(m*n6L=Sqso+cH<=t==Eh4@2AS)G94`CXeclQCz%n z$X@$*Vo$_)e|>24Yj=7>>d<7me+O95-F}9DE6}0(GUQ8Ci_--B^L0zf#fQqf{}a0Z z_2+>H^L&fz?xAq!^Je3Sy|!u3w>z|?O!g~o;a}_Dk>2R^g743#ecWwsiG$9@H%;1w zR-e}wQ%tW?OvvwM8=}7-i>i?b0)0cRu!InA<*lcG5_~ms4j4UDX3c*NRtC=(e;)qv zJ`#V8%J#10ru;mdS-ziVydRLiH{#^EDt`I;^sImP+5j35GDZIVMMcsFB}YW;6AtNG^~=q2Mk_7{5tw2O4u2r_Z+VLdM_WGyf?$|wjtP6- zUEMCtM$I`6e3B2~Hl$j635E#mNYyp(Zzeoq?TPTU(n(!vOab zi{CXsd))EVD&cZ3j;`>bZwlYo87=4L@Tdn1=|Iq~#4W|XKiXhaMCVJ{aomBobwtE! zRh38EPct}%kA?KhKmZg`KX_X6q)duyAwu|G)X9Z}8$&;Th~2!G9|#&PFyHBs$9Wem z@zZ84fk!XBv%To?v%dEJFaer=@Pv}RyE}C&`VKi~y z$LOMywyN0EAqMaYk2HwNVtx$;Z4?ooXjP8O%Eo7d#a8T`3L+yI82TzM6{Q!+b)%A( zA>nZ?V!m&THER~-4(91a>zohy6_>5z$nWNpN|t87q0&mDVir*T)qx)lVO!xR%l&xw z24p3&jP34#p{V+`+EJT+^p$iHai`%7*Jt>F*sU49V%jl6eey#`HmI~?34ps;lUw$<5}3OR zG1AvJ%m>F%|9Xs-^JJ61E^}~#Hk|j3Xxb$R?Mg3#`r~jm!#VVdXv9s9^bu3*Hr8DY= z_nWTwkk|9iUa?+Qt!RCO2o(l3F;rZSwCrC8=6U*Z1odz=G9FvXla|@WHEY5_Kf>)U zhHC1X|Irkk)LX7~;lyZmV{q)iGOyAUSqbASEGsjRf}7S8s-}xfAVqUO7Lsk7{GoTBgqZPQ%}b7q`K`LJoJX{+xCO^wtI3Kq=g@bG#$7o+ECG5pkra zaQOlidw+DD5M52+-H4(dNd7Qx{&Fdvy50qTWBA}<1@t5W_4B?y1oHk0+I_fVdLEd4usv;3jHM{seW$BA!RIjXgZ4u5g* zrSwBCrK}SCZ!~yj3GOv6AZr3R+uU5yWp72i>U;k3I12PP$i}s%cAV}7=G>y2j6N!*=rcUFn=gFe(i%jp*Fs~ z@z?s24}A@0pf~4`$KA^msy!C|D7Ig^9>6_of9v&*;G%UJ?2P;R+@65{PyF%{iu}C? z{fQ=Kd#@#KOXM8^suS8yROM_t$@6cD84i!s@9UJJu}M>hL+M?CyD8BXbEV~%=3e5g zUj~AJecUAGS(-z~_MtE#aLg{quY>5`KBs)H201B{itZIk7ArPTD1}&$Rx8bRg_QA0 z-5rQ@cJAu~vlZ*=&z#t^bNG5Jt843W!syvDDXICaZ+-{Yj&dzw(nqYQO4?djKurOt z1=R0J^@>Y37uf(1z)yE}R@9g3?vy{J=JWCc+tpzS->0-Jldy~7tmth9d%*@vpVa?w9gOE%bDF^lW2%;9 z+-hW}vXNJrvJBfNQh1Hn?c5uNE712=n~mwquCQBjndD_|TRqArblPb(+;yBm=_uH2 zQMfcY8%Z!%m98is_*md$5}yc}a_^y?WQ6B#n{l*(8;tsl$gY91!OA5;mrt*<^wB0m zg<D+_ats&eby|AWoU_SyN_@7oLxID&uwUr2w&C<_R!Dfvxr zE^u?~;gp55hB-lrxBa_(|NibG)r2K|pKs<6pwGcm5c~ZQMT3wa}Vj~3fd5$$7|{Z-^n8YQ=gp}y#MRPnvFJb zxJr8cH~HJAjK@L~`J6Dmw zWMN2)En&yx{2~R7oHXp^bZ4xDGg|pwP)-!j$mbxLSaD0L2fSts7Vbujd#XJ3{l24S z0-}3WbB)-+Wo;#42*O9e&C5Ogqd+WflB}sBARZR_Qq5VBvZH;I6N|VupyvIlV$ciJ z#7M4$Q$G)*xMbv_W<6o_EHFh5hp<^$Uw7IAz5< zQ>PMZ+Jwi`-L5V`FvdELP4T(tw4h@Gx-H5%nJn2zWp^@o7)$)6|Cr~c3-ptSpd6wa zi%lFtR4IhF?oDkAyf78_u)q(&8$D@Kq015XOL!GP3wRF9Mob0LTEIn!qyZe{@4r@A zb|o4;o!`W*ZTc5oj0Et(P3o5t?#oAQ!R$vTqpx`G%S-e32+1Yx=Uad7ufTpyjJkYk z_(u7*^Sj6Lo$$KO^U3!MNWa4zDm78R!!p(EIrG2B*Vlj^oX{7{-VyYJ?G_>i&lo1p ztAQ`|bOQ~=1Wmy*29bMxOPdHmp9h0%bTec|$PpD@Kszh*8pdP<+w7kzH0DCUsBcz* zDllIPM3St0;o7OShLHT5AaFE}qub$26O2c$jIuzK+P$vgo>#{{CKxzBK9ROd>Ny5T z?7XL-yJcxc!bfT>#!hQT(763eZzP$CteoQVBO$s&`x5f(Utv&o&iWi~mt&99>mN`+ z22ple+pC^u+4Q2(y?*_W)7(txVUBDh4Jpf$F1$aZ(BC7M{1<-#RAHNVO@l(YIE^7P z+N8uos`)IGkoWTe+SiBq{y{?T)7|y(qywxAA8bmqs#sQkT75 zIaKZ0)j}9=&5=5&^^u;J z@jhz#w%n+l1$tAy{d~B-S~=p-#uYXG4g?-m-@QlzFoiY!}hxdcm#jeIXQpee-Q+568Eih8MoW}_jltA<^4kn6ZZ$!FD0h^lA!n)&vca* zY}7sB=Lr9cpYkz%t_GWB#=;yr>zm}jNb$p8i$b||gpF6l4qFvXt>Q4Jzhm9^knVpQ!u8UL!G-nk9rAtJmkLM;z!JFA0tCG@iaG7%z z7J)vJ&AN&U*Blt35|8wU0JgG>8M6W zsh9g0PGw=%cST13CSmmKzTz2DAB31MrmSSp#h+5LEaH5 zUg!;{`GVgQFTOHi*6LdJJNvh;xqWr^pIF=jKbqVJjz+JzK0AWva=v~7zGPbGTDkb% zKX%LJEUQl6nR?wjU4kw6yt_YRYfbz3ZBO~!wq3l#^0@+Z0MFsBy5$KswDq8Wusw*JQcAn(=VZFA24dK_cotRJxC0Q%uvo&DDY zemdO*p1QP>Ahg8zN+#Bo2e&&H-A9V!l_5BX?RCBT5F7I)6rZuv%Xp)CL4TuJ*g6Z@ ze_3a?;9*|sG@`##+(L~Ek=+ozm+-WnS>Ul!cJ2vSy`dt)!Cdgw!7dj-k)m>y#KHqz z^>5E^#$69~DA3Hv_@Ky!B3eR!m&(|E+x930-H}%!n7_1>6EuZk!4kVuTU{s_a3Zyy z^^B&)->~+gWsQoH@J%dXRTlY|nHs7~44RJVQ86$o^k7qL~>5EIkS@dy9 z(LTJTgk0$50!BcjwB=IsZM;h_GO~&o#&rAw@T+VG4)$qD9Pp5Q#$fA%$bIMh$YJhp zTM=)<%e1&nZ!e5j%`q3B?FkoKV60d%)I)pV?0+}mW1pu48)oQ*1p6Oc@?o&u=2J?u z+An3)%eEcEL*-yyZL4dXO7*&zO5~-= zLBivDCbQfb9R;pJqT+H53JEe+jQrCs&i&KaREVUjA9z3mR}PW)KTxR6v!=o|uQ}Hz z!{J|$*mmm?MNV*hc2{vMGRX#UCW=5X6Oh;Hvg!N(0fRt%zqDxkfl@c^AlwMULw~c1 zXls>NCKLy!BcrBbhpm)-oZ zW>;$JVQQ6#K9s%fNbB|2_G~Ywf<<;(4rDbnovfYFIv@6HO=!Cd)Ntwl5KpEC;pa z*kH4{yX;4jAgMiho3*s0heL1Q^m2_k5E-iyXTL#`gXaR1&%47te$>roZCzSf zbhb!|^KCVG2@z$@$t+H5-T(0Zg3IUOzJ8132G0b>pLg#sxW4+Y1^(pz0?HBUBIM5@ z&eh}w_|4=7vZzSsl%n@726x=KQWg?D?c^MNP}h0m|R{hS5u~jHusxeii|R=ZsnMD)kx{hd-L*eD+!&# zY9AV#<6JovV#d?ujEC7HU_9F@Fdk(CjHigF&l!&jj7J8>qa54CMcB-pMwk_~9_pxq zKduNXnYAcB9#c%*bH?L^{gHTdk+3*m0*ohb6=s${I5VDAv2$u>cQCiZ{1yeJiUK+b=2v7 z#@*E=VTz~zp9=Q;cKErP*Z{wo*x(Ul}MaM!W;S~c>B1X0| zts~)79M9XU-T*IGo2-4P2jQ;O$*%U{W^=To)9R|{O&a;Oti9Z8K7FB?;T1~TUDP7^`2|6(yF_v7;0Wf;bqc8C)4i=b9E&t8Pbw+pU3ki z2PPPHXT0KUcRK+`;D#K79V~;B&j}1})QUJNG9`-^qR2r_acJDomDh zqff(quBJ7>?@em}f6fVYR1v`FA>^apET<00C4|NBbH|@M{`|A?XP6o(%DFBKJkOIAsead77(1lVcr&N(; z_@Su8M>3Y)*zKp{kHhZOgbw)4gbo0Q^t{_b#b@Z1DOGRJ`ar58@yWQ;zB}yx!*^Tk z&0zlCT;7k*Hx(+Q`1z(%qiCGE+wpPj_6zOyzPNUoQX=DJeOF)8wbC8+j1i;#+)_*t z|Fl01b~}^pDp@j2&9>2^5y(jo3t6j)iqW=NCcDvYI=2cLjPvt#eju#IhN$mzhe%7Q z)w0l*7EWcwUm~sz+KZ6CM0~rfxQmqPEEn>C&63Ap^92Wcy*5B@YpQK(`lRpaetv}p z+OivN>-Nk&;Js0*Dn1^ERWomgY_nSlOQSd``9S+DzmX~E^Oitoi5@Bj>9|_k5Gryt zTh009vyy&_Y<91-;JUzDWwT4m0DJ(LJ`pAQP9RFkzs&StamEq;mE+NeKPthBW( z$I`Z0JKrl?Ldi;@2DG_N)JF4AwIgQC5m&)a@<7z})qgGUMh`^sWDGc+Rv89>;wa_I zm?$j$jUZrIlrTj~V-+YG6l0bqRCIu6DZm+lcwt^D;xwbGLl^;a80T;GRX7=FpF~wv zl+z4Jl8;1yA~AUY3v)^W&HAzg`~=ECpaLWmV~O|}iNGF_q7Vnfh%&HESyCk*`Ul+g z8zz#YsuD(UJZE=4mmYWAp^`+1ltut1)aUJ-iRFqR*eumM=9-rd;WOF^gOSU`fuslQ1JP=pbfbG5CoR zC+A4A2&)yZ0BG2=8ki9-O#(fEb%1#n(~1nLi)93w&OIC|6`2nbiJVrTZK#ofJVQGw zD9cl&!m^^sh*zj^g*>aEFxUL*ki>X2y#1ulibzD>v-mO&j;4>H-TrynO;F4D*5C!WG z8XAk@g^V&WEh!>Md?ugDjKa|{4H#Xfk;qWNWJLHGuolYY3`np+dd=X=_`1woFKN2QIYB=16Pcpw-pyzTBt{TzpTuH zgSle)08g^BvEc7XzqVM?R>NvE8&wZ`ox)D59Yw!XXeUmnT(jO#yy_`y?OS-(XfIl= zO3B{Wy=JalE}Tls16}s&Lq;bCT-U5PuV?H1etBU{P)#vvxqRKPprDuCv1PJVz|EwN zM}4rPS!3>b_11I}Rp!TGdC{)=rcK=xlV{6uttHo&(%Nr$7;oj49*sOf3mODBJdIw*FnN^Os=Tw#)5Hb3Y$y6Tbn6{Gwj@WC>F_`Kh5^h^^j0v{~% z$Is6h4m4o} z>}dj>itB&{d_$^&5a%NzaD_CONSND+vHkQdHlPsZCKosGp^ktZF3XIcrgEl2WDo^r zD42gDx6x%a5vec-tV>x@dCZIVC?O2rVheyD%@D7NE$wGD&~LDBfDO>+r*K;lgvHUR zv-yN%7!TOW3a}mMGPi-#-(ccl7Gz)mV8+NWj|c_>CRh3!n2svcP#^#(wv)uOnFN+N z;j0z%hKDi)CaruX4{_PKBML?`V;8FNv;r(?iCl=uvkFG3dZsoP@e&hZsS|c|DT{5` zGm&~GK;iEJJQJ^Y?3W4^Ow$Xidv*qmS1G1|&&%U5UCb7r31VO>CZ=kdTm2N);K$C> zsq47@Utb-2ZQjyQOQK~j4K?y+;;6^K9sw43C9+4*jU#)&jPCBzyOs9O-cXYP&N_{a zhd14&l=W!ioIgs#ozx-~v~g{jpC6svrtfbvSv1#OkLW^F=vxJuwXtq33901!)O1)K z=}VP$G7V#x&Cen&hw_D)kqHxLm8AdG7E={XU#;Llrov_e8YWZcLo7fe$ za%$h|l|o9&-B~_j`HC=Tv~X&M!cDJ0P^#6dD2v8eRVo4#4ISrkEU?mQIm_%JySEPc z&yz8C-kR;oaR>iQ#@raF2zP#PSR-e6a^8&e{T*0gFzeLy`ZvV?)T=3}$eSstp2Yvq zB_YVO_#Xjd;MVa!kO}7P9nkK8_K$Wu6y4&g|K7wPS5ol~_L?4)clfAP<^wOUA~&)c zOS6xMhNE_Sx*w5fw-B3+Lxa%+C|NW=Eqm*hpULg?Q+D1>1m?Gs%{G;ncB63H*1HX( zoT>CO+nrO&oi@v35ae5n!zNJ5YGqKI*1YzizmwUbx;EO&C0-3Hn=-&)-E9n}al33prVJg1rPV;Rl$4P7i<3x9&72Z8j3RbgaGTq;Qe~sxU5VCF7#BM= zy(>^nP)BC+c-*+Pq6=X+G3UKiYCis@7~nIw_)jMWxvBxL1>PhvNK7qxuqLM3&N&h& z!|h)=2bj*>jLMA1Y-Ca9QLs3^l+?tb2_+2_kZ{5nhr*H?LMY+qB*B=oe;}zz!i5AY zNV)``k{Ss}If#a8QO3R^i5Q)I3bG_CJmvyNp-XTnIfwTX=+Lv^Qc`n{H(~~?n?A20 zK-bmhp{jF@0<52s7BX$*c`ItQp6 zSSarPz>>lqd=ylLN#kX4*!EmTfnkF@3EGp+GvF{0hRuC5sw!XNLkz>3OWa=r4EIt- zu!`Yif|Q3im&0Tv@>Vca(4`foz*542Se6y(;XvpN;|F3HUHlG=i3-g0ITm?7@Um$c zBSpdw?I2JJ#G|x`5FUPtry};^$h=S_Sb8XwsLaE^BJ}pL5Eh^D!Y589D1|b@OA%7e zO9h3DXHZKc=<$>Gp;(SfWsrMu13`}zB?+@W`ftv0URY!N80d}HQ+$Z@@}|U#7cYs~ zA{A=jqT(7S`*20@>qF&lNQXuks9aiB5rG>1pbvMDNz6e^1s$Vl2^0jbU1%3t;@7sr zN6)=+iL)rV+8m6qDxagHqAwAVt2wMakMJVUd>;Jeb0!f+3Doe=J0>FH&cMVsbXFNm z2%;iA`-Lvj2?ecDc+42O2}6UK{YFKZ$8KSsp#rX0UZGNzUtI`2L}+7g5zK;&c{H1c zXZg1Cw5lRl0F^3mJZOXX5S@*^NawKpLzGqITN#r51yB>a`QkFZ)jWxu!ljz*9N=XN zKldCP^%H+!nnwt!BL7+6)72Dy|PoAtP4%-w@rD7{H2q?+e5mF-!+lRV)|oSBYf>?mBe;;K^*EVD z`IN6~{KXkvtqF)eSY{^G<2j9NPMP`sqC?AI9M7Ums!|Gra=ZX2P7wiL-?=J^vq}&PhSa$yMyB;=Hujct9Z|3;}vp}Uu zo5fi$PaS6F?|s_%wJ)hq-D|@g8u*jaYFN*%Qn{_v zDn(~s(y%w{A?{1MB$>r}^%NS5cIoK1a;~0#NHVL8M#WB0OfjK>&-=;s#&Iq6$NA#E zH9a2CNv&bQ>#y2zlG)|l3zh|OH|fUv$@3)2Y*c2F{3XdObV!MYyW9?KQxoPCn%jd^ zA1nez3%jX-Io*t_IlP-=dEFVB{)+k9sZ4wJV5|(x6eGu+*j?3^ajGShTq(=ETyB(? zy}X;7Za&k~#)^sNmBycY+Sp0<8UMEDZq=)){>YoD{vHvC0=d2;&>ey92=oV{8O?P{ z=)L>F+gJQ(?wd2Mu^l?qQDMBB=PI>GEPLvt%BtPgBs`X6TWHO8u9=P2RcF6$47Zv* za<}DDanc^_rNjK3Z)xbE!(^RP1r4)IIcE;Lnll`9r@3i)n;O-}l~NQgr>XwLl6pW# zcF}wwYw9SNw0EcJdR}5Xy$Lgmqh+$n?VdhC8DeI_s85%;HVLcq!?3W3WEVH}fg>*5 zqVLgZeXbhRcLm2pt(hE|OD83C=g3M4{Y|crVwPkidWcWEaGckzLztROGrbj^7e3E} zx39F|y1*Mfc>6a9^xiQ1yK$)pIAFLD;L_C`fCNgzqX(eyf6j#=7T$)^oPBYANH5*O9D6Am%!?%z`vp zi5{x$R9Gn^c@gd=X8iI&`e{(+s=w~4??O_^%p!A<2~$&wd!& z4@msZ0rX1(mJwjIJ~z+qow@Js5=ovt&kW47EN{^gsF9@=}e zeD;MRnPN;OP$$D&!1UzZX?&dHPU9OK|EeF|U0B)VOotEn>le6C+(UD3`i}0!1qTln zDe2b3ZB5Sb+ZwMhXLh`L=VF-;$ou}#tuImB%8~!iC)ax*9OZ}J7JYYpzJM=BG%X8m zw*N+mh=i#yvrkJeKNB&}gbrQ__4PRqIlh$qjc2@3_$B#6$%FV5P)=CCFVl#}1F0&@ zU%yOYGzd|~&MF26S(Z5s3(28QJYue+upsgO#^dPuO-pk(X7X$1PFsFVP!z8B8+~m) z^cnEpK;*14n(>ltvixCy=kRak_f_gxTz>B3y=!M|M3+&~>% z+-p6ApZ;7pYuwrquqZ0RTDLcervH6ozuLqTQF$OWUv|FzO4Qn(`flJ_;lHNtT5v53 zt{LIr`ZJJ&#Q2-%gB2G9Aic}sAYR+x`yt@B8u$Vu=)#5iC5*BzU$(f}z>6m-8RWw; z$q7OHP5&NQ{+j=VMqlWy&h_B$lt6eq+w+64WV-7w{L5coeb9`!2l~Dqgvp_oL(ZK^ z+UMUm^zl2wdkhQtw;2`}Ai(Ea=+hhPrR>+S;oV?+cyte-q~xX3BDqlh7Jci_(D%bY zPst7Y)Vxif62t0ApV%uOPO@shVLp&}9_LLar1Y^){nWtS+YDSeyGwtn?fGrmR+Ssh zdE-Wk@PX<0zc*@HeyM}+X?*>Qy7s@|!dK4@)c;L4Nb-@jxY0GKzPu)XWj+dj;9lh1 zXwJ`={8Me4w`m*W8_s$0M)M(mU_Pwdw0)tSH<^#ljc$-1n2sBTc<4uN2RDl4;alDg zGB>(Ky}VrBGau92v@PG#cFo=BQvJYmgtuv0`p9Kr-==NlW!t~96uld%$4hJC45E*Bpn9GAGqWdj8F5?%A(KHnH|^*v}{&3|BHg!n(n zMh3^8Z(_I6|EzU?Zg0NDwUl`e1$^_wH$?u0WGFlDpOF8h@L%UG6pZ{!gl>XT9=|9|$rY*}$#P4iWDoQ~)ldLIw6EGbV{ zMKI6v%uNNxn8_Hh!391i^ zEy~@_u(7*I2s2BRs*Baka{jM`?jZyk!HOf=7s@L^I!f4`cJ9RQw2iw*>)6hZ>?9+@0P3o2;g)LU4eZQpWxqd8Y&?q%G zn|k4JzNPESQ!3|=TODguoSrYMb#Ikg%SC@*@^a(Vwmu!oW*vl4XI5u zTe75OeWe`2q>sv=ta{C(-mfgo)MS-gSXK?sHwC-UHT;3R+i7_tySx=Innj8o(@Ac-3>K>SkO&DYkNK=YT93tt~j8#|`V zwArQ~?crMT3K_L07uu*JJH1AJ0M`1BSo8MH-6^YZm4|6XD{ND3JXNMRmGMuKDVcRc zt&HJm)iRbvX>)Y6*`e5%<}TRJ{B!oRc@C34+S!}ES28M9O}3?tyPOTf8E~|vz>Np)+w4Rr*Jy#%O)PX+f80xbn$Ulm{-3&4jSa*)2ucxAb)E^`+k`A!#Yj;Y3Y>KJg+y-q8XIQ80OSgy?B)vb+TjiV8pY|?k?TpXaYF1mc!pGA(xHliRWa zx12w>rHM*fh2E{c-St}2xidhsYqJ0keqrnm=C0;16>Fe$@&_w7T7|^k$m7*b_s;$L ztkiY4(!s-a9y*S+w<|?wzMd7;qP6#(ZA&`ta_XgM!*a(vUgk5up4mgcoN`9(X|c2O zakwaIJ&SYAS^h>voKwslT5@Hwr5o?uI_Ax(|f zn;pNmvBsmyq2Iac?sl%^Z}!bEhkN;Y?trPElh4ydXQ;Kz)F^Yw)A=z@Mz_^b(Q!FI z{Soq&mSc8(NAqe|lHQ!OeGQ+bX1Ui~_wr_XH*&AdThQRXg26F6s0=g1RVF{Jl%3O3 zle@!fskP|MfMlr4)K`=LAqnYmN`{N_bX0!)dF>*Lu)*A#lr3q<-m%kB(%{!WHNlH4 z!Uk*2q0=v}8BOYERyQ2b=IaL8RdOMH?E04E4YmH=UPk#=%XF#M%&Ma~`{OL@O**J> z{_00+*As8Y2pXglm`}HYn(H#1YxWZrAtxteaRoHYUij0pchn5v`cR-HJ$*p+(Bqd- zQKK3jQ}X`yqq$t~kn20-8uaNMa(!js?~v=)eR_vne~fGIkn4B*^bWbcFz$EA_3J*p zL#|)<=^b+YDQdn$uJ4fR=U@E}xxPcLab0?cTwnO^|E?j|r-H87GA>@~#aj6dWn6!J zxAN!Pbx9ub|NYPZqkL!7-*X_z1f>7k!Y;%IB*2nShRjA6{r}TZX8t7#yM8-wzIV03 zCo`J;i+RJnAHSJ5xi@b_cmu?F!zSuqzmT->TX@6o#UV;`IwD;G2qG#0K>1DtaN&wBJ(E%N|h! za9qP53VNXeWJQmPIW-NcdNihAQPGQ|iryl-kl+vYMhJS>^L|#(8_ZO&vWqY0MNrSX z2uH9F%XQiJ(U(uPykCFLeh&~KSfrx&GZsw0%$CjX{M~GsPx#AwF>uhmdw0GqQoa*~ zJcttAjvd;6k3wbs+b5OE>^W{h7Zre200V99sbo3GVr6|~&sh4phjcins22HAqD*Jm zj9yKb(W}|TiC(gzX0|QtU|Sr6ZQ%yn!U(^cUA#)c(aS%U(U-G#wmW~`+XbH;AJhBX zxd*~_J|ZJj_!+CGreAS?5qz!m^}uXu#s1sh*khuC4tP6zWfoSp9sJ@hjI8bc5u6V! z$5oEn{|d%xwsTW&8RCME?%fDh`nisqCldc`<}mxt-eov-_q>>#9lecRRQ3L$raZ(7 z<{W=UN2;`aOGmE9iP8~6EW>cA-h_M;@}~)@d?aM(qY@>gf)oX+_|3>SBYzDe)sKt} z4Hr>Hs!)eije0Zk&B$NFNbr%7VW3Zxkw8?$k0bB%1EfFP-AY;HzVJS{1uGUKQb~5wF%2eNKi;es0BWw|8`sy+Bz@bj?5jyE0Obo^;Lehkf!*FrOo^d3zEK>5b!7_MNLgT$EmSJ3hN^K|6H zc>5fGHyuC5Wyp(hnTU==S5SBv#hZ<9HvSkJKgMLpYcZKS8#N3R?JXPMZ2So}evHSE zSK~3!Q4PVHi*GLe1Q$QXW5{dq7%1zS#-3FbX^wJm&i^-JB>e=2J}NO|=FQ08%E*r~ z8S+|8=9!UHdE|=cn~-lp{um)YMrHWL2|q$eraywfFn<&BO~@Z1B%;IrhLG&7A0?y$ z)i)jAbo>cAeu&Gkw_c&+-JH=?T~od}tra9wrILhvR5b+e*Jwwu| znv6qLIEJ4pBr*#mFubg(;l*Zmrhbct3RKv$GT6q{kq(1!!{=y%Xm9x*huSy(_YVda zl?W{VAkgB08s38XDH^GCcs$JjASJx~>~l0ys20Z2iX7ha@hKWpEPMJ#Abu1A;@id$ zXsiaBp%sk7kU&LNc-u0d(;16aXh$&b zI6+X0?};L7M1$dk6IH$Q>N7M^F<*KN<*-EKbF>0<1%(|)SPoqgF=#~SHVx50N#Gz| zKw04hNIH_kMCKSY{bBmQAR4phb_ZyPKzMn>=V+i}!si<*I1F#Zpfx(sa3gCNCF}+T zu%w%C21U^HxYolt(V(UTx?~I*6QYOx)`C@yMQbv_{A{EfR8JVCrV_|=DS-|X_9Yby zP)8vLMbK29D7@I^7R1pml}s26jd#tUO&3jpdyRq6yvf;oecH08QXGlp*3X zD1xRUiqD{`fdpAa_m(E>ye9%^AS-<3Rcc`*tPTXa%I8}IO(zBLV~rkx!Ra1@)>S1E zn;0a>ScMW$R=L>J)zDUtL1QfQ84Ttp0Zov~IVgbEWdIc3Ha&O}){-)i?s{P~?FTa? znfz9gjs_hN%n2(1rkfaqV`Lh00$8UqHte(rm?g~I_e}yAQ$B?Q6ahnB4hNX9CP=38 zFC5*EYVpAovR~g?e4G~lA)ST2CB2}<)3w5y9|Dycx~P^~#Cxuj-ff^w?@dN@XCYDUI)o6Uz3nUOlLPyQSYFo=4>Y{dAv)>Nt@ zhMZ(#Aiil$qpDWev;bJwS>Y)IV+;~>1t?RqFl-qEcC^QW0j64W2$rcW77s>LzX=5? zRkUHevBY#5MtcUPwrPBy+0Apj8vSb)M+-`3|7w zG%GM>V5;yZfT=pmat#<*lht^woz1Np_LrWPYN=qW+f`2CHE&aRFW0~48cggY%{6ej(C4yMdt z-hK+E7FdE-O_vXHrCP&U!g90w5f$!Lz$igDK6$o8z(`SepCM8cyXna&?v}Sq-ZMbk~|QK449`{7)_}B2+=xB@<7lt5k+k$qp2`Oyx+`AkYsH? zyabf0iB>DnG54@B`#E8CkU|u0iLzroVZP~X>xkRWtSj+ox~-I`azjo!o)wJbpqTE; z=or=)e-0)p{r+$Qu^L7nV!%|X;NBr5C&*t_R_QcwX{{#s`BWLHh+iJ2D|cP}6EIae zAlI7&z&Zgcx8oDRsse&bRT!NZ3**5MYh3#P^mRO#G7s zx0~b{%RcxSGx9@TJ9|s|kzgm00SdE_KM8hfR9Aq1nGN|I?BqRRAAjG5qyQ8?g-8+# zcG9zxRn5n7`YG7Sj@mG!{5hH(Rs76U5qDjEie_F=ZesxjkOY;DntGTABmw1r_;`y? z(MTqM2RrGeWQSHPnrgWq+_+Ty)1Jqov8+esv{a0M1jU;!nas5%dUk6GDlZ9RmH`^b z^i+vQQ+FhuY^f|j(7?L(w{?~l;mmx6%`fGeHQsZ5(DoF9UawyL%7Pq z*$Hs0L>!Pzil846TWW7jc`2*0VQcyJjHiK&@8`%M-rGSpMb_xhI4O(0QwQ%)#XIDphie=bGjJ%DH;r! zvoZnwhz5(GAJJguWe~UXgwXeBFg5U#wmsCSAPM^|gvJ_QORD-LM#!NCHLgYrpml0O z@~i>E{GbVFc1{SR5w#q7KvPe0!zxs%Cyz{uWb{3X4FF7zVk<1zAdJ4pyy+R5XyHF% z-a=>{M8`Nvav(oP$VJeP2)U{y`I{-4o@*hiM9@G+oK@7mO^i+hs+jXE4H5J`Sg+tm za^h#`N3>oDO&+)TP%}3H9axsa=tn95^VTHfbUft(h@cTwChrLh2`NiD(lsvF1i+6p z1C|Ax1iq&kh=8dHecv|;J|ikg5GQLg7|B%O{in)yC=~vGH{;<)Gyb)L;OA@y2o$Pa zu|NNQwgaFN`EF1BRrwCgj^`a=pMKwt2P_sP5DVsZIn}!o)Z1W3^Ai9h9p`~y3BXV# zNiscTV{z*zU)qwb6LB&Uc_Q~?$?v|~VV34t4MMs4U5_C8=agh;Bb-#qDF@P#R zRtQY8m{~q%bgE!>#ZfGn=uyI581;?=v&adT`-tGAm@!0LQBe?8o8uRSWy}$s{FJP@N}?5eLg?|Fpexb0jCI)F;R6vqDzEm zQ7*6u7{N$c19X}NqLX}t$yE-lL?BY_R4gZ1XtExep+abC1Moqr8cB{fMns zXmA<{ql1G^6piGdF!W`#K=Dy{Jd1*ZgI^RJs1yM>*$W#aH4208`FtYaKxYcTik4K; zL{#~aahC`VR5u0=kFqJ{As81ROXTM8ODfDH@t~v0zHjC__sC45FMQ5imXJ`2YiR zG#*Uu_43JJLf4QFPyh^dF6%_VRI}&Fw}>Rzpg^X20neuu0N?ZFMZgGi@g)GJiYpgi zuYm)HLOeKdg^7Zx^2KK(8BFCH7hfXaAj9uoD0)8PYv92377Nx@mSFulIPd_*gCWZb7X@RM zBQFRJ{n4Ueja3YYf)OiRU|{ACP1q?|k-0Sz2$--irx;k1RTgg*1w$724Zwk~JRXc$1X>WRC@d5%3f5RmUKEU2a)2QC zQQH+p4&uR&1V{m}&T=b6!GtAw2!a92MSdL|#!+Iy8fLjYuY;-jAHP#H9k5KQ*TF%c zC>D$`~N}DK_IlBUE zytNH6^YaS<|H&%k#gZcag)8Lsk2w*67x{-O=+>O;A(ch=^0~@L(ao9(Nya4!7A~s#ML#_1Tpf->KY10u z$|?B-{qP2H^B@lWN-X+e*8!*}m1;hjG5~_4;>%~XIW)!M(9il@XcESvAI19I z+KfeG6eKkQRsjP)j|*CWS=CJopUgNuVX{1j<+b2qb}Q zqNkF5?wyH6KWg?x(2t^h?o*0IBVET)-fS|OU{={5qFH%T{3cfAKr~&Mla27l_#k%7>J6810C>6WidEaI{13h zV=b|8@NtQQ5S$(;yb6rP@{$sFWD1U`C<4dSF6DjKsANviuN0Zi%`5Qx4HUuckV$D< zR0+GcE&zYrL7{4N+)0|`(enT;%6#FGSE(PV+sj(|webtN`UG zEgDkEkr3UbdJD^rWoRmll6vxV`$d>t9*@@PfymWi0W>|(72bB@wZkgAAP9=1DXF+; zH2KF8F82vD;$zW>T?4?KPgqSjB&aG$1qzpK0%*D)_)(sG zk+6zboedY_0%-QMRet^?UL>p{or+{GWJS=L&eizDn}k(_)#xq?5ilgtwRK512?w?e zS1Con2t=1&Rp@&bjQU1akw|PH4-xyKPKHCycIrqO+aKAZ8K63K4 zXWcz>QjrP9p(^_(=t&TWoX^w} zAz{`3gPj0^;A!E(!^WtwqJ67cuu-u^|Hj$>|Mlv=(}HBZ)J8EGw2ze0r~q|xw$nx*+=$C8X%HY z{}!|!d^_#MbhdI96l=__ojYe!MSrnZ&YW3pa`a2*WYagMbghD!{Njdx?iOf&J&Kun zv(@U~{+4!EQ#(X>H~MzKL4L;p|0C)C-QhpU4c)sKwDxCkntj!NsF2*-I{tfhnr*T- z*anNf=cm4Gzw=hd)y}!UADBU(50ZT~_$56E&BPz-!5^2c9W+N*Ztu>$x$D#2_{T4u zn7CEwy8m>mz{nT;`_*0x_9NegzfLIrjA&Cninec`ohT~WG#x1_kHRVJUcvAwwNEFn zrUi+dfozlMFW;WM|5dV$NwMD}+d^>`xDTGi+59r4LwQ-A@k^=EKF_N zn9erAI<97PTt01McM2I3HgM+*Ow;p_?U-VK(Ai~-J37Jat^c?%wf#RlMP=u@cf7I{ zk0i*KsX;ZP({cU}du|=S$p2uZ`*Uiq7S0#;&Of$Ocd>H*3_ev<_;(2R_cxEb{TD_4 zJ78~}SLSi~MU%nb3Hx<9UoDpOFBI^1On<%oxpK_;7kp~}>CWxxaplkHE?UgLM)`C1xSBm<*zo8M-|bw} zTixc&{s*%1zv$Ly8T-303+rOi75lfp_48gXlWC_ji*z|nf6DEwy11>n(t`fd%xCDo zJ@)=kZuo}NvFU%-pk$vXqlQ^?mPez~?X>$SSI=Y$|MP!b(*GdxdUm$T!%AOA?exOd z$5pv2XLqGyX4AV=Ym?#y_KHh?4V!9F?skTa-AzK+Ig#`1vMJPyjfH+VwGTDDlMWh` zJvi1^F7%JY&MB31CRaW;>y>J0U$XbEPO6q!T3;{St-I=4<6ElVb%w1mN}sGod1_Ym zdcIP>kn}z$?Q%hbO}ppr+~r8M3;C73oi){t**LDV@RBQ#efHG5jx!l(taPKTdDmS9 zEXc4eU$@g$?Y4kbGdr@YwY5JRVgiB&yZz>2barkq=PsPmvC_LVy|$IFmU}3-&2{_P z>E(<%2L~gJCf>GFCv$bMZOt| zB`IfFPPpO5VvY{`6nyhjQ%c|k|reGJkhCh&ZJ1uWym$%|Yvq-UH8Y(Q+z47v3XU|1wyR`!`R+G(T z*jydPL4&F~UiI9mx*69`ime>mIUq|$YYWcjaYMc+cwuNTZMNx0d$^XoLPqV$g*NKQ zPOp(4fVI9O*1UalcgiYUpwqHQfOmo^BdU87FN!z0Hdyd5`C{vUi%Upf!NoDG3@J z4rKqR98;-XD@DK0EJ~7UI$M&`B|}Xq*9JJ@?YapZ%l9un01N2`H23Hipb55kq)VsL zbnlk5bzy^p25TLCo-#AbLk15|c;sm*V>zv^oMp;yOx=?XM#{|}9rR%X%v<)^2ffz0 zQLYfHvpY$+)?L9~nLXoSL{?iS@t%9qtyV=hUz{T>6|mPS_NwnxB+N7GWJAu()i zJ0K=$UmQqKfZ?^_3`>@q(ss4GmOI@qp7WUIEC6qR> zKdf!)`)Oma^{cl&Myc90b!t$(v2lf+3BhyQSD{=*nj#(18Xz57js%Qc-%KxCQYUMX zQ)|=G8d7}{G}vS{|9xVcG*{bZQlq(fW)*>!#tBx0@aJCzK;t zGPYBz;8dq{CO5^-dYKzui8_a=Ve#e{=2S=-xzglng*!!+eY0e4m7IPuEL0`6)Xh;w zH?-DLwcDtinoBpgelBlPUX`xP0+ghyahsz{3XXc!ErhB1#TrS(@di#SoWo|*hihLY z&H2FATZO%e&vUDtsR9X7Eg!6rKS1M_S6SDN6SXI`tCPXWhnhBr8d$WJaAVc0_EtL~ zw-z)w-ApH!hF?i_dvhcoFjiZan}@py-5MCV>0QOy%wfgvTO+>q6U2@VuH7h0=$ny!QqwQz| zj(hjCM)EOrZkMg=Xo77326Ls*S3+V><~^%Mr*1YmxAq;slcHa7H3z^j4^E>y7+?A$ z8{q5snCn@?LU&fdDW|;7w9fg9`5BdF$y!M&{FmjgN&8%Xta}NEmb@tU%*uy4DH4C@O z8f%rod1noa^Vz1q)hek%YJw}IRK0n(^KsZ*SI?fBvnQoStKnOy+w1Mu*XBTKE@rp6 zI&SATZqVTN)&u*RV{PZ-RL*XxQ0wn6mtN+ua%)mHQ|Q+>x7&2yH}a)Q(Xa0}LsH4~ zvA3D@^rk*5Zw^^UhUxSfufsWXEwf9vO8!DcVy~T&FR2`!pL+RBYuDIFIWHxjJE%<7 zcI&n))n$?`Sr#mU?XceMzzN)J<=&)fDTBOIm4XJX*50))R}1FnR>eFH1}S5(ugx6W zKaqXO02frKSbk^X?ZF6kdy|dYm5O+iT5qT-mLnzabn4(bikCZ^3DOHb;+ERI&Q(djOw*R zxKqloN9LVU)w1%#6FSNhy5wNr(5L|HUe{x^vP;$V4H?bDw$?Qkjx3$bZG#HlWp{07 zQf8T)b47E}?@jt4v9}G-UR>5|kS5)nP5O;Y?Q9-A|6oe3U8^|+8Im;@q_^uC^9dCY zsjhx-3-wWYiGZCg%$1V79rrTuSUn$t2CLb<4Q3g%IbNmeVK9eMr{gtxi~UwP6s~8q zo?!G=I#f~8(E*}$ren%n-;$)~7jT#rk;iL)8fW9Qg~+US}- zC$));+_82tAsl(NjE;N8+R=KNQM%d3-Ky4x$8PGdIHy+GhEeFs2cvPU zO9g$h=}YMp=urx4aC%rh8E4FM6*>IZc{HQ&c!M&+AMx%}gbG?m~ zJ2s7V)3_R-T{s}O>P!?g-+-!nlAu*`s@IbeE(*?WUALL4XPVhGUfD~tQ5xAhVm6%7 zX4D)Htp0v#&+`37YquHP4tA|Nn6=i|-qLTJGwwc9Fm}qOtt~eb#R(crOSV*ZT}Q6^ z(^?_B$XnZ!hYnP{T`~~ZPE}d2tIa{5+{FS!a zvS$cQpxSx?t+gVtgVuu3z}Gh-n6IW^zpQ>Wi!QSnODrPD2<9<|yWe}xxwsx#Q^cg+ z!^9x=P%3E$y0Vrc3sKnK0@B^^B8r|+aXMl+dAAgtbPU_3Fm12(vefCquS#5BP7>9esh zY>JzG38M|h4z}Xnso}fMgeKa#hfckE+i@;_yN?6pLA;OhgInFeR`e<7ws4jPJX)7} zJ7syUAD^;;*49t0UQ6w@9X9fqj;MMkdacYWddZXCfGJ!iFw+P({qnOL<~)}iiK!?d za`WD8n(0^?q-aa_(T76x?p03aT}+;F;-Rq+50?}2;!$M5tl@X z&uu|N&a~{Zu^apI4(m6g!#oiFaLRk4a4%?G{mgMq5uT$)HnvH^Rc5J;@w_NlDhbUD zl=q^;l2<0ZGquXQP69a9$5Yxi;x!XR`W}K$#wJJVW|q1V+pn%>S_R%W2$Xs|0NbuM z=|#^FexE1(gj)ke__joZ-K&NK-9o`oc0dV{TLISTBzGSv!c&FQ!r+O}{kRnvH}X(1 zqwnd}l%_wFhE>H4`P%JMaP%aZ1*e6cUw?dFb2qXFVeuY_LZKZJOBTsDU=F3TIP~N` zOyHEW6dGTdQ${LKUpwJ4ue@bgNr;_ZHyNGaaA|2VNYUe>h8BfFl()UGHV^Qi6#EeU zyQt!g2U$JE_Nb~**P+xwg#zlm7v@VYatKGs6W&tKrSyG`n_}~)O4w~yhS~S+IlED` zN2P1%>L-2axsmiI0X)PAyBjpVSXyMjuefrgIZ7UMf|ww?Hw}sC)SHcn$3vosXhus2 z&mecg#7VGaYgmm)e0+#rh@7^?S9fby+E2|8?1Zybp6X_q;803%sqRQ9Jjf{!=Z84@ zMrOJ(@ux_L>Mo8Zaf8++p?CJS}eRk}@`_sJ@;^Ba(slcZtHOr4-7Ne4^LNSk%WEwH%| zOOA4$G;)MV7eT%6@9xR%-jhD6W((NljR~xS;$;bXaN5qmC-lsx7=Z7W_?k-E$Di&k zn3Egb->}5wZzKI!bwZ00TP2*l!@6;5ly~C1gRK~;r9=H0ooPc@YSZ3b`WtY-l_M8H z|FWN)kw}Hym9;h)j!?E_QzDr@dycR)sV}9`LOr&7?mWChoA;4kp4t`~3^63c6Y=C1 z`we(t7uo{U{#v9sQHf>RS70gYFDNZMT$zA(-z7Q^_#P4ZQd}ublCvVLJ>@<`80ix2 z9MBLvr@hz-tzv8RWm#%RsjB>~D@kZAX3p7FSE^55nEVaG z&2tf}eJ|6s%-<{j*s4z~7jwKx+n`zOv&h(!wbUEO8eB}ONN4X(D0+EiP(Ja7m6r1w zz){&^uIEXWUPn%o`sP7wcafrlz536__A}^hT)7(T>A9)grBdRFD6q|q=aQr&hM{+! zooOI%)f|LXfSv$wJM^_k#-@anB5YZeQQ!)q&~HHYq2b3PYWxJM#EP|Iho0uG^XZjUAT zfR$S6P?qF;R+)Kr40m^RcN#F7$IcxH0d#l(8BlBFaXwRRu9PcYV37jEcvo^+LtvG9 zv0nLPEhm<5Ls1u$`8Yne?CI=mfhD@q^?q{xttKeOuSH$8LUi4_;5Htt#8`goLEFHj z!o?Ri+Z}O_j=T7hH-uCHBF!hNmZ{%>4+pJ{(9Y=u4I1ga6@nCIQ`Jc?o)$g#$D5M;dX7Jfk`(NwQF<3QZ;N@~JnkV>C$7h9 z-`;%#i{91d;aDQ(uG!)`&Xj3*gbtZCsNk4~=y6IN-As;HRqPwkUY!Rbfkf<$J->8re47ioq0*+0au$GS6Lk(8A*RDJ$ zwPed&h_eTjegi@*LpL~!9w$__H%0C4bjPWIP)QusuIiwMhDAMYOpyLE0lZfG%YaXa+%#E6Rx&~2-)qN{P(@vx;q zw>VBD4#C@zA!G;1U~q5r2kN*tZ0vBfdmtnPbRVKu)fcKZ?P_w0IY@diNtndV2$X76 zvpisW3vX)Qdkc`OL+L_R=O*&{L}gRZ!c~-H)6%S&@uc2}Ke1fkppHvjuT!ZQtYWCV zSkxnd%K+l?iB+;k2zy#a9)>kN9+X;`Mu-I=_=14IgR}t|0TnASd{py(+;YA139DF5 z^Dxwbbth#-TwKrxfys5!nBwa0VZcT*kCvzXV~6T};d>k1x_BKb>;#;2) z+8M1Z`bNxhe#xBj^(3KP)HHq`Mis|}<;=05IIzZS5=Ob_dCRWGqeom-w)N2saDJ{P zVL8-#B|inpj_X$MTO~}fQgG^=zn~gnyqX+z6ND^}p)K2kv_cXDQ0vZ3MQujK0J@k#~-lGQEnK)WW0Yop}4s-SvaocT5`Q74RKn zAt@wmj-eYJP2C)yOFuT?hJ__V5KVO{>QDO0&-(q&2iv;j2wXhOB{YiKto!#$kB_}) zO<<>9QRS5)uC|blDXmv4!c3TIT{6urMCB*NNAoa<^d~ty4aAMv^%gCoXepeQ*}l4x z2~@CB-`Vc4n>%$pH=VuZ4JxyZeb^+PpjsCCWbAsAmMTuKI&{86A1B3jC)t z5$1OE^NnP*#T=oy=yD5ScnS-UPVj8De-;y;NXDXAbx+FsEuqUOgXb4&v>9!NmvSL* znxK^*^T^R0u~FuRrVlKqo6Ca2fKU5mdgN*rGv_8E3DY7nDDHzK`}PJ=2Lo*&TfbU0 z-hFX<^J_r8Mri+trHp#lH-(hxE{IdV(l3Q&pYW^NaklQH)^@GeO=rZk#|hP;%0M8! z$Ho-M$gIx6avMJs&QK-x##_ZFACef>vKA6Z;ueuv_2Lx1xbC@pzF2F2P<$Or`O+G% zIFeGIQSWzVDCX2&>BC~eZn4SqVRGDdmheY?MHHUa@4^2donHPpTB7 z{XMe)d6&D8VXnQSr!_#&;@y(fp#W-I;Mur=L@w17Wp%#+>r5?i0LuEIwhGOY-?*$u zKs4o{J}|8nfI%R1BE_kK?e$2lFG8AdjvnW*S3m>x0_a>2=6H@x`BTTX2w7wDge}bn zi9hD+6I2lgI%%#aL9G-#jvGIfg_KE<-@&GS0ybE3Zfn+2xLrOADt{Y)U9{1*2DS#aXd^c?2A(@ZOg1 zT&mmnHq*i5dBr?Rse+2+?W>hOG|Hiu1}E#WD`T~r5w(?DtKm%9hWA-3(s2+MHmGI% z6f>1312IImoF5;&IoGuxc%Dy2Qh2b9tH&REdjfD60tm_43hVNhkQVHl4zP0C?u>1R zqslqd$W%E??>`@UtD}ggr{+*Q!%=>EN3iDmx8*^iSV zw30BN2W(TlC|y2$nOB8k%-Mehm_fxItpbs3`^pxFdXF{gOkqVMdeTOV2r=h~X4V8D zkUd|-A6r4c9@-Z9^5x%w)Ls1ywH(>zV?@gd$X?q!7UqbFs;}`mMo=-Oj3Fy3M!8T@ z+%T;eGp3g~E^wUiqa3a|rNoX5S-DB5m&QG6maY1%hEA;Bl*SxcSp#Y3&6IjY-owjM zD(g)O%=Vlt%&S6H-EX1eU-<#~@bV^mwTI)}e$=Jv*|5tqgM_N2@R(bp)rQV}f$pA=hCCjo5ww0%9j5SjcO3u&HY?p61c*V6y5kdU`c;RSzLa{%Q z628X#h+oQ?TlcL@0^mNO?nG(Tc4NV8*TV^~aN;rI2e(&6i6L1J#Ai;OFF%z}yn&mB zb>61OHo&LS9w?v#kfn!*7kzH|$W1%D)ao#zK3((&IJQnXxlv8ADb!b2@`Gc#o$hc@ zZM=80@^TbPI|W>g20m4hQ!k(8;Z9y~oTn%bmMCvLA|566fSsqi$E7lN*v zbdaOXk&-u#y?L+rqd`d<;xj2!u}?mHrcWC$Yly|V5ODM?pF&(~pytV5?CLEyQ(e`g zw16Tux~>o*T@g_wgW6LbR5D44h#;TXEt@i`{)|wzV32$6w8tAbrPVVp;ZEI4q zb}tZ&%zz|M?{tY1gsI67Gi5KYQ4a&`HSVr5cZkHBaa{xc<3{(|d@lGi)V*X&SOb0^ zgl^}=8JplcvEQBVcltzFQyZ6A|9*mzvUvoiw&yOZ6DVhi?nLK3Wyg;A?8Da_yANpz zmS8Riv0U+2?fZOtI+z+%CQb{D44&}RK5wzJh*{F$v3c$2!&X|hw&U3)Y~5Fz|hb1cJmWSS6Pv! z7Wj_pqH;VwQe@o|Z6$iZjvWVCTL%uTUPGE>q?H?Xzg#6Gfcm68Sy(F^-0Bu0yZZ`E zJ6W4ykGNLEXt~R41nuqTF`R@_yc#i>CKQ_yzN6d?0tu`_oA>t{*5e(s9S-4$1Q5Ej z0wZD6VC~dK?|ajx5qLI_@eWnTPHp?=89gBY+Cs#}_|OF&3WrRp)aL_VlQlg2@L17# zzGvJ%HLDRI;4Qm(FH7jw4u(#=-R`&3kKo(2maa#B0PnX9#v6zSmS~I>op++{c1zSX zB!)_A5nuEMxg&h8?`Th!D<{&mlJSu@j=uPoGfwcLEl|y>|t#FgH|bueV|W_Ap#$J!>{5UHlcNV zNXpeF$1DfeoOgAlO>44XPRg4*e0#cZ7r@r2t<&W7JP}kJG_IUlN~9PrxEw&kOU~dl za|Eswp`!bwuT+fXu_*F7xo3gXgIUL95KmNxU9p8{j&EL?TpVTGQ1D)<6eY5qWPAb+ ziaRc82bek!A)Z=1$LbR)bEq1PkM5q&?Qnxl`J12^d1K*|pMBeBfUzKE>eA0I5&y>t`)mzXwFFyQAv3Q`f+eR_j`@zc?TpcEec4U{L~sFRwc{OSeUuX%O(&xgzpAVo6g*IT9dOyu_u|MJ!M zI(?m=`O)9{Id=8^zkU6r!D2=O{*aMTe~U-0{^y_QyG;_IUj%h ze%X9_O22zjzoGy7=^_5N^?!YOWxqRd|9XM`uCMg#=+?h}9p(o9q^*>RkStOjUy~@h zf8JIq9Oel;7?nIej{5588r=I@22` zaqqx=C04!W`mr>aWP5sHeueKR=U08q!((FX7SP*q?o0UH-9(nv7Pzq@fS@SZ1CC9r z=$1<{n5!7OYM4uN0^N!r+t9#*NydOq5#k5Xd-`LQCTu6Z0l253$GZ}$qaAh_TsmMY z9aDKDk&R5nNV0U$sl4Z`(Ul+VPA?d-tIp|IO6uvG#-~s-A{K~OS>6e&G$Nf|cO%zI z=zbPsXw8D3!E!xh=l$S&)V>LqaID|UQ6$v}TX+jK6+leuj{yG!?{}1|EO+HllKkGz z1<8$o!Y$vam^0by>-4pqe;;qqd1cq}T8vBk7<2xBsLu$WsI$0gC<5S8fP{Fsa%WI zF;!$wv;E*KsqDKKxE7o^s^Srv!SDd=Vn5oUya686hms&qJu( z5F|}ba??c%>J}U_1fRk=a|*WMV2qyTfVG%GIBG`0#%%Z;9iN^#Q-p@N&^SPXP9lh= zp2&g!V5Ps?ipvNFJ~R8*glpe{{hcK~-J#Z+KX>?&jgy%W9;G+DNh5+QhLGXw2+#UC^%`F8Wb5m%6S7~2Jbv)b-yxu{lR|$a zpszpm^4}8>j^e;C3i?GszbNRRM?q8tPzt*JBNW8mm2movf;2$6Pufr90TcSPnV7G_8rJg&@(9xXT3e~N`3gktHXYVx(u#O(LMH8MOM2tB}5D-$A0{d-QZp3r&(98X@S|MlD z9a-o$VceFLCU*;B6+A}LYdfF0K)@%xbz59U_Z|A&Kw#mbkg>Q6_o zi0Mj7&m}82s%S8p-qs1L6RDxB1|Y%7p>9OUBkJer(LsmLW#S&WG|San>g62r1?nY_ zdfWB-fvtPZy@~mKI}06H-MWOM;R%oJQbAgi4)?46QJYvRfwax|5}6lLw5haE5uPDLGRIblu+MU>C^T5p8>xw>K`q{{c#uk z9FY9tls~JPT|~CgUp9)oncw(7%4PpF{`o#G{RjSm{)~Sh6hnXFe}3`LFaG((KmTJT zINT{~?;qqJrTnb~$BNEM-!Y*#y;Wa%$`(x5HLU<*HC)slp(9PKdIE)tN5}(?{el5} zFLS-wE5V^KH88}sktdOoCCzWZ0en3>x<-U&M(}3U)sF8sbw{=PF*O6UQgIZnRau}5 zd9pS$y&Bt0!8_-UJs=_4@}k!g(ZD%M$WQ3`eqw|7T#h+Ib}dUAVxHarS?7H4u#1~8 zfc%#E*d0a_X&ROqaEZfd(O65;-5tSYK`{o`9PEClKc}D8B$kI!weAuiSpd0YU&XEe zPx$ALyWsz2{(*nWKk%RN4~&2~@~i&#i+_Ic&p(fUXou_%egB%)e}I2NT>aeg7ylF) z@*nJdTf3q-x9(qA&)%2V50C&!F7}0T@O(ai-hqNAR0I_D*RK)KS#wtVt(x6kRr^`9 z^`g6G0wE-U_kG708Pt-gr*#*;oFO z4erlx_kU=E%Nyi|xbJ?Sw!wkaY;O|o!6|HT#Tfp%!M|vOJN*B$!6{EMNcmw50wOYd zVbBYMUKsQnZE$n#GSWVYLA`Hb2<_3i;)w=5jQmBl?G2jE*wQC`eS^(OGV)w;D(iD3 z7>j-9jKrYTUovCUyH(K)S4}DPchO=7804;YZy1!u@v2XIyFqI+UGB}mwyk7W8MM`I z_p&!`fI$^WIfx|D-!Lc+8dg&~>qEext(RjEd&8i58dcScUIPr$I0l^z3oyuBC0ZDb z#JzFaD4pQ~A7}BtIl0tgc^?Yb)=nfS?u<4;?KWGU%aU*wi&;Jg=xDhaZU@(eK3&K!tc+9V+Bh7>l3lZ=%~o|4jQ1)b=1q_4C&AkYw^m2mZ~YoE5;AAq zz=zOE6gzv>-`P&~^bJD=^uS_^#_w*|9)ZA$?kt1l7?SL^N*yY^*5;k2h1qVb^UJMp#$rhAf24qJ?U~&_tWV?BaAnnw^?16*vT%tD^l8N6{zklQ?J%FM zXZWUj*j~EQq_=mIq#1_hJ?lWc&Q7P51@*BzNC|;H3sfESHMVv3vV6SrYp=bA^`-3wrQYW6{MUYPG+mUaaN5)d0 zpOe{3>qH^^X%#$g@aIG!{A%oZ`kfW!hu>Lw z7lr)-pBMPNz~|SCpGCAH;%f`g=e7XJhv^sG0JFS}SA!=KjyYh+E zCiYf4z03e*DAAXTwPDbVnj}r#L~o6W8~W2CemROc#WcC*10H|$|K&Wye)E^E;nm@IyLkxsKvC`Z@xvmZS>(% zkasjTs)NqS9}9=8qb$q+0f5d^0HD0VUb03x040@9YbF2ynH+#@4nVOxqPrBexra%- zReeRw0ch`UBk|PT3646@_T?htZTWq~TX*V<_lUPMAFD4C@m3G5x+ng&h__!2Ku@zD z@K4BpI_mlbKraA#0no1xxmH6W*8dp*ZKqyj&Yb3KQf>zQ{!w}lK>JROu=fDe@!o}8 zKLH>!4xB^fO#yl9!IH@c0H^{0RA~!`-gyPD!L?ecxDFl-o8eVTu3FVa^*-@0-n95A zRWPfhb;oY?72UJf+WM}5-T=ryt=r2z!XjBOl_>Jz-LPGC0>JrkOg~Lf> zArfg&sfz~Of^lp3%$wU*&|EH>mvyhbG712S7HzqjIkilf-74#bIjf^|DmSu2X0$GT zCEXk*Xd-Hx>rHXD!}44Y2mQ-pIT;_^YyFU}R3l!i4YWuv>*9MT%$yxJY;L9+ZYL-^ zwifQ(TE~gj^4Cea7wv4k-(G0XVf)%5MxN^jw~5>9MWJ;RI@&qdR!r^Gj>YQboHv+G zTM^6p{*2WJ+j>IyIQ<>);lJ+y=%0ZPU;IxH?Jt0jb!Z%Y%v;LAhvUxE2LB@XDE|q3 zir4Qi1D~gP57Zy$Jt)A3X)<|X&kK8A*z?O>KNH2M&OYV(0qpq}cL3Ovor}1Gb#rQ) zzT^%DQ_CZ*<7IK$_^un?#%be_&cw64?X%6MeKUf#oA$iP=2l;^<7Ii;Zp)H2&l~K9 z=r(rBDxve1shevTWs9v+cPfi@(#xiCt2H2WN!ci^)+=4Bf2h}wm!sBiNBxQ2&qnga z+!Mj2m)W}b$XrKmkU)18&$fMdKBL5UrE%4&;fp=F`Qgc$TspyK-%CL_z&3B;w zFyFx)dlZW0C)k5u*z>}k@(X)@rsqeC8-4vB>z=stzg72ah0Er|NGI*})MIMxrR!1- zy3FZa%WD>xlOT4BC&f-`l8_}|QTMctNmy=u8Qt?V&w=`v^Bla8=Y>2k&n)S!)L3P+!qRw#MoR>8mqe-d6u3-{_37cQR$^dFttY355ydd=dfZFeQ9*{WlNSt`rtSfMa2_~2=4yyG;R4o=3l3avKOk{ru9YeM;~8ff&4D~ftRn! zO200{8+)4PK>cB!gKzl5G+BGepBMbR;OCdipK&}o&2!-S;eH?1d2{-hEvY3Q=2;f1 zrgW9o_CZ=7PL<9imX)e{xU_6(*O-S##sqIkjM_y^eGi|#^*T_;Mru<7cls6G8KsM) zz_ZTvbfH^)P~X(6;kg!d^~q+B=kW2y+~FfAaZ`n5X)P|DAU<~!xX#>Cxx;61xCpzkAH{N) z*>$}o(}_suGeKIOx7T7}kLA6zs`huc{N4Ju9X|Z`?dARx96lc#EPkJM_)MA-+29n5_rdv61f}PUqD?*3G#5XiL?DTgTb=6JJDsR@;=u~)V;;GjXMwP|# zuxudP*zZPt+H5ya8%N$0?djeT4~uPNs};T5u#bna5Ve|iXR@Vjh2G?gdQ^n2nawKe zwD`C}R!h1IRZ2oDs;@GW4K$=Fj~%8& z0w}s84^n=f@Zk+(%u2k?0w-Vi^TMBhZNS@l$U5DuU;ewn*06YYVK{fk?x26xoz#)V z?bY|ZirO6Gv33*#z22%#ZC9B3UJGxW^)N))e&uWrS!O1ISK!b5=qx=#XQOS^Tvx9d z9cN9l8Z1x2a(Zi-nV8JH(@9-722HcCm`!c9@%qVe>Eily5G&y*C5=URSt44js08EEA52!1kg8ZAv?R-vQV_42O0@eq3}Ka`k}NTzNHHSN z>b*vmB$dKRjHn8Y6%5Ul{(yEAs9}gg+fB`hl?g%Y?^89Ksiu)?5*GN#dz z!utU=ltF7q)1U_mVk%Kf`8~$`(j_Q^5tE?|s|earVZ?c%rokYW@=nG`#yCHc!EoSG zJ`VT3gm9Ehi3}5kVesAxu_Oa=$WMG+M}^a|#ODypa3JOV<$pj8Q6;3nd?E%-z%>a> zr=-GIs*E7$Ti&apo%_v0@8I@J`Sm_lU`8n^@rlic_^n)nLB{!h<&WhQsnFBB2>wuE z@Jq2w5vBh#=^^Ovlb)w}HMAe*)c_`P|El{t-lM|Z{(Qj=t!j$;Qrs`b^I|;Xwo*+# znb!7Opru)N&dW1fRb3O~!7>X^%VT{t&|J56JS?;-X)Mizv@a*^6rGup>J@m77{Tfq zJ7;@uhNH-_i)+a?227gvs+mZ_S2rQt$s?Q-&QT|^GH(A|*g#VKR(%(XeDplG4K^ zi2zX98%!y1z)u3IykP`L1%##eO7IJ-URd?7#VUQN(CXjcj%GH_9edk~-AmOSOrn-F znOm;VyEz>^54zXJX{U+%bkwXZc~GV|+r(#Y*w*OLLUGqpBePs=3a}^{JJopVO%}Z= z56WDnNv+YXHZyyA%ci|Cy|z!HUOjEDc71Cqv*voWj%%H$e6a=t&$zZ6^Eyg2?`H1u z2DNb-^(DU^{&Tr)h$z%fz;%xyU^q4p@w-QGFRR3O6SgG(53ep1xXqxQGUJ>=Zdow z!iyiPT8UE3m7S_!rSu2Lc^0aeN-8PAe`M&MhIj?YUzYD;0Lb7nT)T_Wm1_j zRVwk@zsuo!xu!znB~_sy;ol$6K;KGS^dl+e3FrBhB_f9mIwVOYP|^x?Q(_=i|6quO zOi`eU+XBd44u>H0Wf=~IfmQCq`)0LJkjBTHTMl@kN;IaFVEhn$I}#d)A>oz+%DYg= zdKggxNAi(}%R?_T^Ri& zYJAc$(t1a|9L%ZLsoo^Juqs`5%dyoT;PG)G2ebX$_cz%5MPILvPlga&<})w8 zZAR-+LY#1Aw^z$;T}f}pyusZzv3hJT%rl}_(6F^o)&Gk) zMjDF_neKm^V+7v11VHre7*S+JRq?|y0%S{(WWaYdx1?i@0qKzux9npXGvE|Zr6FEL z6*VLh068lGq5&7nt2o`jOqN3`X`Flj0AgS?Z&j50MkFW#E`TM#RS*oM z5(T(`jJUf7XrY|@RbW7XumFd|0PC`*X$Ytq<^!TJ1byU;6u1{>nG8L=K7|tr?gEI3 zRARsiq`NcV-VHbj7-Na5z&YPDwufhhB2I?iJ0$Mz6`~>eqo+avCa2~!l;3ON*|}eY z^3mtsAnw`uP{V*rF-|ZaJn!Dv-3y~~y8ZE#yDNrs$&VdV6&Nm=b4L2nx1z#yDVQ_I zH#g6tEsakeXNnKE&f^ry9Z)%2{O%&Kie$!}OW!+iBp}hbgNcv+dxuQn*@008BKhGA z1hY&y`D7n2uEFAg;X*Pe#UCnQQm|T*DVDxnT!VF{<%EutRm{Hg67jERT~!9093;4RN|)oWM1+v2!R)6?!U zn2rs(k=bb7+fez|!OqQ$nu-$$%=?z6u z^SC&9inHz3(`sK#x=!98i&C3feVTQISx_Er>1zIEoK1gT1uT}wp0X`o{`!MAZ&I5s+NcR(pa*dNEpqq^5 zrbBkeO>US1_$7>f4Bz0UDh{NWD0fq1(GIr);SyX{lRl6IO#uc9_|AiH-nYZ;dpI{z z$@e=8ftX3sgL3ABaJRt$-{gL!Jdmh3l-n5P2L*lCDg%lKSA&5hAGr)Sx8X;~(T56+ z(>NIcTmH~L&Mx`DAcYkJ_86GlOj;0=w>c>);7~p^_u!?xpS)cjH6wG{{wU*o7nS%0 ziXkUFphrS{nBL0X8s#=!{D^ycD`cE6J_s`qDIV0LDtu=~t_2=f;tUQ*Jly;v)+Xmq zDmUrAFC!8Vqk9C^qX>pYdtY?FbnfN5^YQzk`P$(t^&U$FMGR(J$t}V1y{K4u-xcLC zWIX5#KZ>CLC@1yrihxw2Qoab@ikPC&_eDkL5Q5uPN}PF<$DzRKVOWZy{4l~Tk3g%q z4tTqVBDn3lBFqD$xNZ8a!$A7s{~wA}1VSLUR=;()5P~0yG$8#&P}$o(5Lg?^cSQt5 z8#iW4Z{4T4Vf0V!% zG`D|0I*mD7Rz4OXZr!~X-Ma!$CCH>aEbeh5@UlXn$37OpK%qQD?s0GM7+{)P%HI{i zTcrr3yU!N1uOR|U0yL1!zLlv2Za;rVJxk|O_EmBB4w#NU=&ls(E6#BC9|9(#YNCQ#?!G|l#iy5McfFVp`^wEepi(4Uf<+W2fLtpD`k z`;*X|yR$*nw4CFG?5e$uFq%!GlY_Ry6f>p1Octxzo)|65UBq*HVuw_noXhg)5q06B z`LVScQ8Mz4W`7xM%h=v*_m%zVnuIHXRa~!%omEY~W#js`HI20O(r8+ZC>UyudMap@ zc&%0BxqGvUtiovE4b$4XHMh>K@vPa7=5|w&nhnF1ThcM0)74~a&q$n5rMq%>f{23J zW+tDA>_*})!0l{4IF`@(zKEiSmqB~GG3kx=H}%FmAEz%8bmSxQ3}7y0xdbN)k9tuNg_95$ z3!pYN?xO>d$=xd|%s|Ln2IBor4?etKkEj){?i3!D0t530Mcn@f&lxv?s0!Q_)L0!|MbfT5m*dh4VQ7}4Mq5Xyr-LkWAE6NdK0q1{2OI>g%r;eLni#T0C}eef}i zVfIbwdi!L}9tLiqgDU9v4xiS*?O5}v!HQqjz@TX4{m)J?F`Wzl`u1w<$W7#<#|pn`F-oU2tHWNnOjc_kP@Ttr}yh z9&Fm;rWbqGTFJ1V8OrhamulF9+=AG;hVdTeGHNa$uOB?)K4d-n&o;yMy((?9_q~@8 zd#4|UVR(1q=HHtsH&iPm;(s0s2_-v&ddyExDH z%^OlDU2_((gXop`mBN!QczA8D_FDX*dOHSl*(Ru&dIR(@tmHWK6}obyb(T?TrHn;q zL=0pcCTUAts#mI5UO?6e}A#^no9mL$D`igEISn+%?@>sp48U62Gs<{6}xE zxBn@Sf_^UIS2h=X7P7I^JaUn!=>qV|F!YmDGH^~v|}YW<@E{gX%eCM z5txhl)SZ9Ic|?$%X5IOf#!8IVB_kF@0PzjbC=Ls8F1ITh?2j*!-@UaBzEUeu@7K6m z7|}$!x|FU^?a@W=ARWw-rw|@O^Hff#eKrF9^(V1nZGJH*Vf~4xc6F&Sn_x+tL+@i8 z+P-Yju6Yei*hN~cac53(QPAXBQ82T)*;=JxroB5Ivd9i^HcG({Pd@GKEc*Ls^wL- zsYwdE>>+Kjps0OHBB6&+240$T)2m6Iw(4wu#@Xf;9yJo_;=V28gZ|9Z>S(82} zffdWJnea0%Uv;(BGpU1bDyIdDs!m+`m(|0lYln8e(Ty%4H-yPr&=%?Itl%E(ruk__ z|EE{TpNtFx8cD0xz;Bj(CPkJ(a=;W9Wpnw3JOp9m~NiEw9Qr zY$u!J%kpzf0aw+kZIe9>hrDt4QOI#bN4+feO3L`OOiY&t2z^sMNNG*)qvv>wSA|dd zQm^smX<(f@w`Xb_F1% zu1tDFcw75U&m}i0nIy`t_1fz$u1}SHQ4{29OQW4&3jko$Dg_;E<@$Ii=nJb#?L^dR zCkafvU+sY@uR~<2tjjpL-F+a4*NeWJ-E%3|$`{3{DV$F$zwEiMdkU;o6)o{K*H2*_ zo`n2*lTf60+lv6o`~Ex4F!}tlU47TL*Zl8ui?+cyjj`V z-UxzS*xs0w7ovI>FZf3c0^)6kFTz$9`SByL`uEhRPG7^lOJv8*VpGMYmK`zA8DGpj zW?;TnyI{LT0eJSID0V)VfMOG(KJ6|)xwXGnNsuiwaeh1b&GgV^Njz-CXIKB4l6IKD z-Nx?4XXiFfeYU!treg5Ht$%IsJCmEkTF#9=SN=^gI>u}cDa}ZO;PG)QdRJDntWH(F zwobmY^%kC5eS@}nwF;r z`JaCfV^g1Z8-50767Bv1d&3VS}Qus9B;}yFmSVq zpoeZ*v)Ej9+MgTQM!Oc*+AJcpe9ilU46O4h=~Fh4b2IHKHG3D77D&DZly`-SnAlP_ zFlaM^Rn+!2p~YiQe}`+1dOZ@eVi8W+>REod{-~eV4vG8ER&^hmTQA83xNp^-c1B^{ zOm~3DW2o0wU?ch(w{iB*9KG6y)x=%Yd0zm-0ds8$9CWdxK2Tkqbs z3NLr9wHXju|4*N3*1yHkb0@Jid#ad$=!f zz8#o1&*|?Fc<((Y#EO+_Y;wFA1c5{PfI<(W7!^G{Fc-)ou2tUiTeROJfA>*)v*5$F zD>gvzymsYzP7U@dqL-hm(ssyQ*8{_ju*D6_Gl-VJUkF*5P_d|xRgNiBVC#+Nn{@4| zI?&)#Qn9y{#b){6z8yTI4yf~{8tC1;wo(FM9b|9IwdMurKs*D0=ltDvAlk`ETm-D#W{JLpYB$nk)*J<7#&WGn$2c?UdVEudJY^j0o4&D2xVNX9NvDW#htUJG#>xzec?zRdNogb?orayxT@N$&>?P z*`IXm*$r!?*PCr>249}t>KR~0mBiLDUI!POe(|f>ZU5E0?iH$R!`xHJxoZ)%}_mhentL-&*6tow4Z0U(^ z7B60@?Z?>IBsb&HGeLVZ`bx4sb-hUELefVwt4&&7N6Q%vY?1qm&d5*^-wdnI@XWJG zisG>j@s=`AN!y8yFU{5TjgM*xN5G(U*F`uBpIuc**n#&~Gz?hIww-`8x4R}pdl^bL z;T=gSghUzlHewm&*jM)71pVu|Qy)e=mmmh?lM@hrwaZZ2m)6DOYNnB5GiQ&ns)5d$ zsj3#=PYdP2dLG19vsw++6@@0_+F>aaUS*7IYpzEhjrha|x28aLIQh+_}+DKUwPQ9~xAI4VeIT?fBG#9UwZSIw~ zM(}vGDf8bITTF^wL`>3;!s}AA@;22+{7e|>U%w1^-sB~_+I-C>={l7)yDy)f<;)w3 z!C$j(cq1roGY;H~L0)?07@n!C0|RzxRkjt~2X&tvrae0NX`eErf+kE~yV%WD?NOiGQY)@Sx2&wv1c&NF4DHiL-Ronn3TTS)fS#lp>#->}!~O{R+GC0SY4mj-SIAvro_tDf}b zN1USqvoF>=&1_4dJgQ@I4T0M>p_jjQPH-Wu7&c}PD>N4&ZLP`}(*is*Z6YNc^0pd1 z-PT&zag?=^*kkM*bS8=j>d@rzNd@^MwyfN7Rult1SK0@=rZ31m)Ha*MBF;UP~l6>J}Mn|VC6oxaQ0p)8iNKq4KbZT z+p6hgMm@i;f^J*2#7&)05IS@@LnaWmF#4d0Q*^ZqjoM$`WI6wii<_Q$s_bc7eGMxl zq)&{@liF9*rhz|j(s*kiehNYMs831~_R{}h^y>^$;t}*izVbPT6U0a*b;(R8i9-{-x3+;28sUpb)@WH;xnOt zcPpF65;*0=vc)#CrYxD^m&-rhH=T=N5Y!vbkFKe;KcD&;wXU3dY(ZSHw|Z4UHGii$ z8P1JrncLfZM!Tkb!|okazdp&8sDBzG%>P&q-%hHC$ZsyOB|_fsS@*}j_UwX52Ms^& zg}ED`>mZ(R=Sig95Nl{`15BsmFW2Ka2$Ini%CSr)PmMRuwo(hJLZ zs`#91r{$Pn0z=M6q`0czj$7FXa#nf?oMQj9melJ_EN{#0tN3xeOU>P`TbY+MOb?$+ zVsCTP9w@ruejU6p`EJ-r$j4RQIw!yKIV)V>mv3D+c-5(Lr0qEqsq)0^KejV=Op$re zw0p`Zdc%AEKBR%w{b^<>h&7ka_sSK(Lw{B+`OVMn%w0*ud7>3!>}H)g-?NzS4tD`> zxM`0Uhu%6UyVTNS=58~tZc!?V-%MFYQqu-*9A!*(X;2xi+dyRh=GtMq;6i!(e!cGI zLV#!ET`1J)*yu?BG2Q)}dV;Pd1bn{OO51AvW|r@e=v8|9AZgPz>n$c1^l;5C&WsmW zLosH*c#4nrrdroIvl-DVzuYB{yF=F!o~KKmY1XrFk+3|M<<*I!NEzO-PoM>o+dG{z z1Qnr&o;S5M^JKVo*+z19_Vi>0qjOrUZP#v&L-6UP=5ERDn6v~8Jja(ORG}la<@QFc zcKfC^ggL#bBzL`Lj2t&?hosZd5*IfF17WbY+eQF?^iW(tqAl{kuuU!Gt9om4{g{W> zGPzl>4 zv)t{dv05!ojuZ~W04aOZN+QSFT8``3<68smtq?;6X0k}>By{F&kBg1+oiiM0v_E^sfG~unbMeU zVfn>5?3MEB5f0sB$EnLMA(!RQZI6?4Bs(>-Tg{qt!`!}(hXCuml&s-kK+BHu$|s%o z2C+(7oo=G0zN;$vqi9j|vUO;M0_k37rY1AXwPJG2bJhNO&8NN+FWa)d+5$uDIF*}g z^dGT{@zIutjB5`a6Yut0>EE8WcgV$|^lPAzz4h{^ zWIDS+_nxH<^@54HdbqC_)oUQP>&M{j+4}+*PLaMm@cfNN!je6}^j3gblCWL&JoMhE z%zl`zQh-;z)ym1!^;Q3cY!`^a?;an~s9k&0d$!2?E$}8xqaqfXq#0|h$AKh>1Jm(k zaa@KIcyh(a(34e$_|)jft)!ktdVQwzLmq`B4+|?71tbTHC>O=u%jr{&4y2DjsFs#B z$l8jFBZ8?5YquS>Gl!vi6I!3WIwpg9$9|Ry*49ptzp2ECYsQTjw%gZ#dQ}ATR%?2J zUau}e*nQk>;fZMB>#tW>W&8vV*C`-V**C!Da;^o>w&3V)aTNJkeG9+i?15Lc!|^aa zz}|MP=QCQT(}X2+*5a*>H@td4WriZ5iDYqR-UWN4OVlS!RI&;Z!HGEZf!xcWGh*zT zHr6HTr$utSiW1RASBx?aLsA6wpi6R#^3IM@(VZ&E#xR63ejg2RKKNfFIm-A#9a&<` z%TzE5^zL{WK=MAF0R#wC zu^>@_H~-ukJt{OB@kX*7(uVa(qE^{rv*^Sv@vtoj)jDMkb#eNHaExb?qS(Z5lHjuA zfF5;k4m>bN6`~HUG2yeO#e$#+xgQp`hVL0-^H4@t8E`nVq97XhNt`i9ySV%UxO&~@ z>eunu!Y}r3cr$)1AzZyLGxh7;tnsJ&1)D!!?v8((e^AqVkWr{nhxFZHr`&4q5za%T z;l}a#Cg11>9&g=T;?wQUv3(kN`?#roC=v+IV~|4$KSBr+>^uKWOo%$VDvy1oGR_c- zGD(f6b#}Ypkv0-1b!Z(1m$podDn&{eC^zj}(JOOES$y9j6FPa4*g?Mx5(ZV+MYm&m zZ`}B{K|E;cJO;&9kA7~U49~%mzx&S&g}SgF`l07pm*h`{Xz$Co!@3U(BN@t#DU0RX~aYXPYHn8iNF3~N>J9B`~b^3lIx7h&*v^(2^?{qKh5hd6|i!}r* z2cdS8;oYGw-tEDgp`*`r<~~cOnSohB_;A8076K*3NaCbvK%WO}fUM-eY+d!|qRE3& z(sB!l{rIU&h0KP_AvtiQrjGC*aT+)uD>Udt!+Bm<$$TV#+DwFFurmY!F<1FOm}ofV zyomfnkX=WJQM6V@XqpH*A1z2^6~lcI&-j}_--NX~K1K;?CVbjoKVrDDsedXI^r#NB~gc)-PZCQRu}Eq(DxJC55B_g=o~!DD@-~UV%Vx zq4cHHN}?(lXy2u@3xGzFLkJZA05*xmNH98o*8@<4;@-r57SJ9HQG-+nWsVDY5T;r2 z&Ll9p2Bjt3bA!+m5^_-eJ`YWlT~KG8ViQS#K^zKuJW%yrLLxCxQ#BGbwmh;Uofn7( z5{ar1Nb0a8I+8!Pc=Vec3X{gYBdDj^5F>^HkW8XK?$3!>V)w3PB2A4ah)+OZ6h_a3 z)t8H2M1fW3hwUT;fU89;VM1#ZlRl@w)5#c3$ReZhEVzOhB$$%uN`OGT$S>h)0@kFZ zAtr5#v7iAc8aG^im?R+1Y)m8$_9mc@Y&pFF;VKN!8i}MS zGC*b)BuhmUCQ4B)6^!=eZ3f6C@nSJ4KqS_Gfv`(2DFekY$Z=5u!Ksxx960k> zwhHMaw3317n4OBn?pFk`r)U!}$bo}=vFwN_Kv4QwMD){R=nV2vf|Grz*V+~maL9#a zWQ!%53b~n0LC2}tP%Csv*yiGp4TXYI7)9=lI~K{>kK- z2(tokq<7%%g{VaBx}sXCS88o-)xnOLs$#@jp)f|jdE3sFN^LM=J9AHv~UxREsdd9 zf+SH{g$7G(z5p`{9S(8pb3$IqZn}K4RG5`4q&Qg2)L+xEPa*45;TRpsx^Ta5pF*I> zg<#>F4TYI;r6NaMOjt6_8HOyyn*n85w+^d5no=x0(DUiB@}iS)Ye`0ICq)tS;qmg~K@1TeyrekytK$|@oqTAdxHya35f&j39LB-o zXdKKqj%(u<@}))dgqs50jNivJL-yYC{#izJ`gilY0EJVX7i?|5{&L9eq3FRY4g1MM+m=DG+62chm zzkzU&&xS09@{+61z}}Ljg2kJE5cdbcXW^IfqCq>cSN+u%qA{pN$ecgkM;uzTTF5Nn2%+n z#j~ARaHbw5dzsIF2BIuKbsPLCbZqr=I6j3q=|~z{47I)yTcIQBJPEx7Z$Nk^xj5-Z zGFr^J@{g4(X+B?)ZWkF|Dq5V4j2Z_uYTQCG;)M)ZRr2RN0+hZKW)>uvthfY?v2~9GTQ+(K0OLH((Q!ns4`(oQK(pO)M<17pzHPF}Y;U1iefC zjx7KWI2@l$?GIyPI}$*~nF7z1uNsG^pMaB3C;v5>4cJ@7Ps~S0wm3@bguz2HgYkFV z>!nf_f|OX*`g^Y+jpol#nuh{jZ}?mw3Y_l*-c8Y)Lj@Eqhv4<$K>9r)8z3XMcig57 z4g_K|&)_O2hvmQHP3@`KQwrzLo;VoS;)CfegA=czX^?0RhhQ;^s+(Gp{F@HVB8DA7 zp{$yn%K|$9`^-lMY_|~;>gkC75AniNgn?pvaAt|MJDz}ayTe|)+yFcDs1OQ+JJ(yh z3wcke1rq&28X0`xv!FCy(4Na8NLT=|L+5f}Pz#dA5!c^=2={)jVwiwMTY9WFG_4;15`kOZWY-pYwS+HfdM{691+6UuRRxQywNoShsuIKGI_*n zB3l4OFmaN%OdC}2Sh9ekIgDueZB?;;8mO2c%fxxAzhFhm?m>#-P{N02g`#Y5AK_XV zy-_j8Xkx%B<7d`N$o)6Gsj8y&O>rgYVhvV9XDZ?(sUe~Ox1oi2D33G^0u%_% zZjf^yWVo>KW=%B8jOdd!$sA-Rb;h}hYAiU1@Mc2bLkyWV5`#yhcQr6sL$qN3`3kxt zSQnZ>Y;a;C7anh%5Of0<8dh9zn4iNX?kt+jX`X(*a>uoYktUBl!7QE3>Cs_@>ABAz zzBan;G$a`Y(mSi6#z`nXil0e#(luCcpg&S$#P={GP1BLzvi0(nzcd?y*+5+ANMis^ z7!qaP*GAAbUJ?9*N0x>c{x3QOy1rN$oJi9n=x`;R^-{}L=@ZG4Adt_0R5v50#!bM{o;|w3o`HK0J zh9SY9Q_F}Wnqf_y{x4`Aj?DLDxO`ky%rOi~LEU&D*gc>DOek>dNCU#)C#0w=onib> zNG!5&u(%R9GqE!9`q4xP*1|>7TjL+9!87X}qF)F?bdF54JnZhospgWwy%aboM><0+ z@IN4DF{6lxACMWzuUHwn&Hq4~6sg%iATvr76X@Xu)TTn^rYxiN=pPUd=`S@kx;*Be z$_Ucs&PxXNnzDf`r)JW7PAX1?o0XtNk^X0mHD#koAY}#qB9UN*)k0f*usp<$sW`*L zj#;0}4%eqi@c;2k%(usmi62mKblhgaSxmArhK?cIvlcM+B5|P0VaCNO|1d%PO_z}X z<})on1r|D!pRCwn%7Wr=9}zuAnZgp-#y4VPfT1x?y=RR<3jCIunhu@)E$gqLWW?cc zA%bWG9SydpE&kttl*s5k{3muGvCCK~+$+5?6Drn6h_d)yDx)MwF9nd_0-jMjaAJXrKU4(*KAJ=XyhvyTzSCkg&_<8JGK=&9nLFw3z&spU+9g$CeJ z|7;k_o`k?4qcF{AKb|fLGLCRq2N=*xLo0NY^#6Ey+GYUG<9wrzD}DwQCg+I#QOBXk z{`TkE4t-fD)y|Wn6A-1I)TUte>l!~v45&~r75`EeXUf${LFhHbHw6K8CL!~ z=qm!KwV;a#{z+w4hwSn(hm7#V#)Z%klia(7^TLaz($ux9$}Y;?@Ti2>MWN zC%|6WrSy&%cVVU{;ri!pJE?9L1zycC6kLWZ_UxoT^aID`{q(1G|Dv%|6MLqDiit(UohS*RNN@MQ&9^qIOxM`0-2@>vskPN4Fx!N1N@&^$7~C5By)L@g z^SB-bT|>|Io4?EU*WnlU-$U(7S3T6oumc|@UY~*jxMAM(iR(L2*qBn9W}e>+iSEh= z$|U1`7*fsm6qr(Cso3dm;BqRz@*9edDH7@6TV?N#uYXe%6kXKGAa$vky4H+qqre!b zQ}D^jOI1Thd(J<#1>EDB2mgy+qWfXr*Oba)xSfrI`S9cy{FXu$YM1pVZr|ME7XT(2DCq8km|4djN#hE?&?3z2*sgZak<1R=BIM!slY4<9}&??R5gBjXkH ziLFAzQTh|MAwq^ilHOD(@W_HETePZ7{Sh%YY#V4&dIFsh@anC2Ef59^wG5!uS4fEt z>1+#JLs#MH{4B!!s__5(*u(w5#s1t1t@0{@FIKJ?(TINUsWTZB6^Or|cCN60>Mk(; z=`GWL^;E)I-*Z;l9V;(SJ0~ic94@otPVB(xm8(}HgzX|;aBYxck$!d!urCOU;WTMgklCR@9zh-DOjLC*40^}aFl)1XNvv< zQlk8KC_dpve@Muw2CJ|PvgrDqTlBnm&3vC&E!u5#nzjSy!_-Y=pCNPV)W19HJI&hG zKbx|zw-hWr_eA~?#r{>p?rgm8HB$5O%D$(N7knk?2pZ9_V@te zEY}OD2PoF|x}n`kZu;%;Ptahbm8P@mX8t`p`&=zj^8QT&**-{ZBiT{ZF4CZy7*xc5 zAAfs((0;`~0bzx?Kc8^40Zo1mjrqNfzNin{_zQRbgPx`E1V4c)EtnqwPm;HuWe&1 zM>w0!HpppL{%y`#@ga0hWKskb(+5Bwc)2pjOZV zE)(E)-cYk~=Wbl?9~f_a9<`cb>%}#kIjT%`h#x%(Dpu$)DgQnQNB`Qx^sFF6l{xy7 zN%#C+Kq-Uw62jcpYN^L2z@657rh==ga-ervqv1b`+q}t0G%>HkYd$PpsBBF;u-n~a zANC_am;4-1VdE!;L#rBELJV10ELg1MwA##Uc@`~cn6tiIbTsfjF<|CD6$drn%8`Em zD*P(GfNxN(ZHtxm(=OaXp{X~9=U>&9)2LG7px3^v_wB*2jv8oCQEVOlx?`h93+|wv z@$UZPbh)L3{d$&ElR5pUWN|hev20N*VoOJhN8`YBaYX@nN|)SSq6~X6XgqpLKM_+_ zpwcK4q^QVGQ2afUK(3kj?$%d=b=9=Z4rA-rmlZl_KvyH;+@rFw1dXooN*TJcHQ%+> zPPV~v_KhNjul2qflyX|}E5>NgVA7Of4BD=a!!ohwI{nyEY2sdklb zEt-7S*KlzqLF|c_#mR~b`_{_eg{5Zgi}c*wwUE))H@kvkkH`7!3+iq$`f}At6E|O- z!BfhWTd;%j-X&+&re+PZy#@VPU=jSoTWGnr=CgGZ61$Evkk8+sQ z)h%jg=T`1m-V?h>7?c0c6;q#!l(kr1xUFTXJjPoKF2TKF%^E+u#-hdSo3Oq)#O(}5uDr5DO{7JVUbjBYh;My1x8N;}1L_~v;n{E*}WkE-d% zrP4e%dTvHbr=nunnhgUNyKAk>vLGD-y5OLAR;$DfKG=eRS#W4{EH$@QGPWAawf&MD zw3Rg-i;(1@2UzKvs%cPl<7kSq3p=~sNjYKdo7_-ynzSS;F*^jZTAn3JXOaDvFld_J z*Kl!KtEI2e=1ZmA=R>zykXBu3CEZwVASh7i7x)Dr%lP-4GrdLp2rDk95whk?FT+*9bG8fTp&ZQ^oj^ zvq2f;!KKNaso*Z9xe;k#2R`+n3v(VmPL2S`M!Lwel-FKgy+K?2j$53KIx*5`6`RKp zmddD%`b))Go#mxo$^*o#GfSqe$;Pic&tvK?Ir}?6TXFr8n3FrN;&)p47fF34iYhNV zx_mLh-=%|B1ak+q+OB-+pczI!%N5lJSij!{d9#$P#m&z<>qnXW*%ILL=Be9%YSVqZ z`xQ#N#x;EP!g5u3R%T(^?q2pQ<{-+oGbfs^#7 zOZ3swC2FUhCo%nX%rP)FnsQKsn>Jn=N0F0rSihs9WuN)$sez5CDi0J zn|Yv|bX=t7rfnL^@jiFiR=HeAmYK%WDixB%b&Y}!yO~RPvH*;nYu#o2?q#EgY{&L?Kx^o9#*{65VZ%awL8t9)i|=$_>4;8 zb`u#VoZsa5#RJTDEafAe7iR^cG zTz$f&jXJHxjTUnNq5VqdC7yPNdsoq(;gxNU$pN!RVuQE!rFoQQ*vJTd%@rkv=7Q&{ zA8?23sVmotq_FdUwY9{%=08>AVH9w2(kk->y3SIes-t!yu@Qz!(V0!aCQc-l^M)jDssIT$vKQT#@L6UYeF@bL`@W;RLd7Lu=% z(oqQ%&`~!{^x(}@*G;pl>Rz0Ot_xNo*gu5z7-Qbn&bkwHYM>@2lT~se7C%g-#p?@{ zh85p{x~R+5+`sc@VGg#2l26Lc5N+qRiN7$RN$QK>R>2E;cIXe=N;Cx#2&IS%o4vIM z(~2c9LWr-nhs+?QPop_j~$Hh(wX-?U&X|^uiz(_nXo;eNM%DS=TSj_hIavDHF?vA z7agT@J8ik(C1wnQp@mkcM4A&_5JpcY99Kopm@y&yl^%Y;?*zct6)=yj&!?_4ftMc; zC#KCoIkP>50m7!+xl(81#?A4@QJ5%>EdjrLvLC5-iCI#gMvC7E~dKx;J(cnT&} z5d+*v6GbKYJp+^P#Su!dW^>}0FnmV;0`6~k1p)jCDbp>S*3CL+8AY3Ilgs!LdhL)w zPC64_HB43BWGC7B3Cgx{mQYZUf%C*1c=TQdJHnGze`=*H3B2XaPM3HYmFJ&_Li&u( z*ZJ#kxqo-2o*g@Km{3Jfc+&$@gV4_PQ2b>U5;$w5$3?jGF_|@WT5K-eI%GJ(utk$Ng8cLPwzK&gj9<&fcfisC7X)i93ngddGhO!P=*v zXm)oVzBDZC;y?q!_7+XgEM)pPTRfl^fz-EAOyH*}%8{$!Xa5fjpXveoDooPb`vmUg#X$acw8zkblO zN5qbEk+E%2v*zIq^HrB-&z=F2gmdhT{XAjzyNp2?uhP*s*1~?`!^-D5t|(gvRTtKk zz;+BugGdf?YV0hq@INx}(bSE+=t^}B|Fv-h4{a)9t~p^8#Jib4AUxc(9Tdjq=_J;@ zAz!SF-O6T3jEo7l0GAvj+iRg6_^Vj*H#yTgqtvnkD^$6giqspOR3`IyLy}oqu_Yms zCmtmK=n~#G))s`N2<=3fK`PTde>w}ni_mDY7!74ccJIciI-RSX!BYN2!d8@ZTGoI| zITUx4%*BWly)WL5lER7p@%Mb;a`^^6afD;GelhTgX)P!RHbeU_v@v?+GIst*ed-PV} zvyfKoWn{m;%csJHk8j{73FEF!V7m-hl>*mS4JcQF_m)oVtw6?=ZIS--5z3~Cn~RoS ziC*_OnOInNCavF+Kqh0}8W_YjcZ{)qK7iLLuSajWzCzgQ$Swww10mR!IZo8y4!akm zrcNg8F||a1vv`AiEQn=XxR8_U#Pfk}Hk*w14^u2Z=rQYubZnH9!MNKkm5In7lH<4D zxs5B@@k5k4&~dXHZ0$1;(rE#`?brj&l;UaDy;?>BCX!#%kW3kfA$heKG^p-`o;J6L zM<7)vzN!-Bop*Hg^-!DEPtur1ST_{*dAQH~F}Dk_>}#HBw#^WulV9@Ed=~aHa1$ez z26KfSy1G}H&>3gG{CxYTl0(j?d5%PV?wf5M*Hgp;R4#ZvISvbtaDi}U?^8j){@rln z%>th}RP{n&U!7a*m}=r*#%`f}*gdMv5K1oV)zlCs&1NRjfZvho+i|ozm)a-a(Hw;m zOMgbpenC3iqf6K}8Z=1oa_UbFZ^oTc;Tdoo*|fW7#v$i3+B)VNhan{^YQ435(jd8* zPF4Y1P`%gGDQO)0Sh}Ep5g}C{(DQbTcWXbfGIRbSh!}LjDnS*1s^_u*-4T0@ znwLqeyyZ6*=9n&*Ku8X_0|L5~QDTH};hVR^$$#SH<7-X=bgq07WgN_@Iz|7Lpy4leC}5$C{t3W8yAET3PE zDe#Obg@L}xK#C*MCiFSOZ|)hoS7Ga%g)j1uU<~E)?H(B&WF>gBebjmd#WF1o36$(I zB_%UmH`;9eN0Vnks7d{Z5VT71spvp>=-?e|OD->}P(@5g=aN40^QgQj49T~epMRTP z0}5&VyXlzIw9oWd=J;JZQ z?Bz2X2+ue5o*UPoY7BpwAnjc7nhw?We~}nePhN7F41xl!P7_`9(vHM$-_0Q>EuH32 zux@Cjks3?g_CuZ3xiL=*YQbkn!^90aP~kpv+BqI6us&JIP@`^!|HUN?sk$O{xcXcP zC+Kg`>=;HZ%`Zo7u1G4%Y@>m`lke!>- zp=>na2F07;Y^aKcs7sV^4;qe))-?)}!SDFkO`5^BA#t8>k^F38TN|6ek77I6pXntv zeZ`^iwG`>-cY;Yv|Fz6icBi6fm6#DD;Ga0|{OSagu-eI`GmA%#L(<>5l~RLJ`)vm3 z9s4@Nki@E;Dd)9kguJ~Q-*?xQ)cUQGLxUwuOE7&a-46%(DqX_|U=N4Hxr`?N9n@k- zRjpBTxNr6=511udxHh~FQb?ix7}YDYzxqbQq2>u|M{bB0P5ls55~Zd=yt(#<;8#0W z`Ax4E_EwU^5KCCu&ceicbRu%zS&UmIUA7q(1z<$+pi4-vw()7cjHcd6=4)V*J=3~j z2$EGdq5a%B)#y1c0$$8G1&Nk*9C8@vj?cZNAF0=cQz9!27SQ=P`LiQ}2UEpuTD3-H z*GH13EM$eCRx!~ZJR7M0Rz`!(vscX_X`8uTotKlH9CudKZOMF4qI2K#vGYsx?9{Kj zMN()QeM<3fmzcvXH%((`zUcGFI@6Yml10fqR{h4tbV#1znq$XMfk@Xh+tC9GJJVIr zq`j#4=3u-G+ha1T0$f)e`z3yXFj2r%13;1*lF)iNyOWI!GSdPy#TNoc16dqyczk;g zMG_QpB9f9mb$l`qQ;Rb2!CKl&hoM(sxbkAMhhq3+f-N+jT513ww9d&%8zxfO^&4ES zO=$7U(4t_SUWG+CW!7PtmiG1fxiVu6Vw;Ab`@AbIhLFaWr+}LH_i;c)C|@*&K0hj% zWtu{JvD=uMi05SlO)jfN)xB3C>pPu3l*ags-T_{kmK&jk&{K-DK?+P}sw!JG!FC(vQ*ZUacLE((M95kP(?k3c}-T2rwz$ zKJ;yB@2PztEI<4s1(8_&@xZd%oC1F@GVJ~|Hi!a9k9O!=iWEuI1V~w@+6IiUnFRMtwbF)BZ08>`oJX0P!?@R_~jbA@@(cQO6}f;J(}@$J$^tdMc*RDhEa8R4%l zz0fUW#F#h3!&m-Z7A#TUeWju=L7>xsR^(V;vNQ%vo?JEk|=R?OXd|i{uJ< zo+50_>A>>L(+2^~hnhhGpMw5KdO#DTNbEmnNI^+a6q#4$*)idyg~4LrT>r9*_Wt_$ zGY&T}E3}+3Bh^OXgw4(zlCqf41e%zW1O4V^oq>BW(Gmz?37C@C+X_hV_=Hr1<&?WI zJZtr9nugn-*A(ZG0vb<;Fbv0D2+hh`Ezgv-qJ}AiT7Cx`p-FszyHwW!(ep1f0LPl} zis8CxA`u3n{gkW!JCBVN+j}N@vxHB_!IJ2{9yZ<|#PEk!bgo~`oRjiudto|AHg3V# zGatc&zk|EUMPwAk+3rd=z86PZ7F1N!4tSocC1Jt`=BZOq7fnCaKP&#O%MKhbn{6jd z8+KSCWedGEmKD0P)W!!qofPvz&#SP?2ehkb2Pu2N1(yDDdUkx|Zl*Zk96)@dUMYm` zOzQJz_0}$`)+so#D}rGzX_$$Ou$A6uM<}3?65Gnt{xWu?3vw;{94FxrzX@$9}K zku00h9MnUy_>rtImpa(~?laQ$eZke14?IzP|L+>hr z$+j83`S-9^O@lGqT$M&@{B5}AEQy9H|F9x(yE%$iC*v9;K@X*--{!?x!uIa2=87c) z@B_^qxc?d;P3^urs;DX0SwKwspoaZ`5)tDVUZx~AoUhQqyNIW^Z0b$gR`&2_44Xv zjbH7I1uHdTcNF3cXu+l=xGsyq$UTp2vDTM~su;kN_;Cqi)9b6PTX@baq^~tLs-Vwh z&)G1QoNWLLCVZ>-KLCb6dA}#RCn4zA{kxg=Ze0TKEdm8^;xhRJ62mKk1KMyC5k&J9 z`*QDbypCr|h_@}GDE)S$HrlYZ=VdY|fuerO3aFgYs;~OG0e=2-h1t04=TBJzT}AD4 zeP41aY#()8{Ji_UKTD8THjpy%1YmA3_uk%XY}*F33zywYhMrLZ<^!0hQv)6bsO`%E zA2vyXn4a`AM%=`vK{f~m@u#MjUiEr+okL}HfDOZCT4tXlEKWpUa(1+q?nE5-?eYL9 z@S}|1m=)r?$oav<)!3z{JEO@@+y>t--2)_ltm2GVCL!3g**M^CavYnBn2;6CIdYSBz3+^_3&8a3_|9rxw) z2>lV@|E`nx0{&C6#BTvn<{u$sKUPy9%Rg@=+q3KKTg`$RKbNMTR_eb4)i?i7;_@0- zNBG`!0aNVx^Xvo2>$`aixUYoCI+zh0ofsqp&w zSpI+h@^Ab8j|E8*jcFWQ7EO%csgN5|A<0cN6Ta zDDxioo3lwAr!GishL>QaWfwd)wPYGT!4bY>t+HlO0|VO?MYq02M1zVzjV7fppzC{M znZ#Tx4It7nFfo*3c{KfwKuZg5g>5JU8d~U-j}*te+o#~#Ysiv@)oM8_wdFY-OF{dd zp?|mGM%0AvWtz3(`WVqxtJ;xo9@u{7V_?prmm+f2r|0buI?Mt@0?DgkIr6w15%b=_ zbqSKw`pW|UE{Q)%v-}7u{Brv_;f%^9&>q zT5^b#fJ_nGojKrAunsbT+N2r9vR6BBNC&e6IE9Sl&+RXWY+)yr`KBkBh$r)D#w}OU^xxE4;e;I@tk=D-|kR^okov0xK7&7lt%Pf_jo2cU1O$6 z6?NdTheeG-QT2JE$NksD_h&_M>})eLvHuLK`ZMa^Eb*<=GS?W!j<^3>5&@b_iPVGp z;|s_??KSst5i?ypIN!m5$#_u|48tOv4(97fw*KRhlLGM=OZArUhNW-!^PcyYMz6I; zo%g<1heiQQUm>_ZTKADeGC8j9z8Bp6e(9e3QlVU@y=UF8x9SQG6z%Td2UqG5{E2oT6#;5JWM1tA$%ywpG>NS|SY$&^}Dw&oN z5319ewR&LQd?mTH;6VP=HHABqXzTs^K8H^BIn;uu~|=Z^phXB(6I>pEehpGzM=_V<9|Pw)OHJgy<&=}*romZF~2 z{8_`@2cM$;{`W6m{KwDtAN>6<%}?^h$ofB%zx+p9)OB+4MEXMxV^<~HC*A-3FaHxp z`=8I?uix*E2*$D7y6We9CVpzIf8m`!BOv?_2?+mJ1a!wR@ZS{lZwmT11^xF?5EZwh z^W1+1{Qs7M=!tc2o{ zfp9s8YR}>C&@Wr5Sy>><@?f@99Pf(3q4sg?b9cyQ`Plr|nYek`HHa?z-dh1JYT{_P z)FXe8?m%|xfpbGdJ5|7rw7WEBI;-8{+qWA320+M|(9qg3w+hKgaJWh@wLSCYM-nmzXD=#HZ^B0)I{Jzvs9AvH*So{8#-XQ{!znjzZw;jru2E*esPsEj4P z_|$(l1rdKpLBzlGKm>S4f6qb4zd7jN9Q1Dv`v1g1^a19K|Nq26zuKSyTR^8;2ca@d zYvNgmQ4)XD^{)+*LmeTAvHq2Va!l*{fc#(Vee1HKNYn1Ebj<#Vvw`9~5%WeUiYLSa zD(F9silQJOpjWVe?@QcQvI`1qSGUt^^>nX(zgeRl(MuD^I%VZUK9v-T%3h+O=(L6i zGWsJniK6Y)QnsnSW18bW7RTm#B%ZiEj8gbXoaKaWZg!KC{Sbo!gh9#a1qM-GXACju zB+LYnR+igLQxAEtTn;dxFT0r;nl6b=2#{T`hLQ;3M6i;vONBGm-JbO0r3p=$Mkylr zLBNfI18*7>!k~p)^wkH!pq{LD2JVN!ApRi+@vmVJU|3RkV$c(Vo*48CEGfhUYvNn+%pOitfjD(mv)Qb*l~TPml4I^_E)r$u_@1d_xHjFM+ZRg! z^761a5v06R<6y9r`lHSDl%a+4@zTyFX97!!CcR@XdA!et$Mb9hXR#o++cP2Vgvr8j zy}T{T`;N4AZL)vTWpO75eLtSJFy_>yM_48rC{6JkOFgmeEPEq8U$%mHJfAK!Wqb(6 zIY?Wv1n?B_lgm1klYw-^jy|qVSbR-Iin^g#>ez4RB<_*e*|m*QVWwp(GFV;d>8{Vr zUp({sT{K+rd5J+kNW&Ej+yhX1I}O()K!>r48X_95VBj7p{7xFq`ft&2!bAKKUc(=X zCYfgp^u(Vh{`|@qC~m3}_Tx)I>(ftM3d-JLDaa)b?ZL{Cnuo-Y2CAJLoZYJDJLZY& zP0heqPo#;n-{I#jgHMtgAFf-#Wo(kNljjpn)*cQb`HKj2c3+3alH_`@s(fzq*m zi9yA?KEI7YG+_A$G0<}@=!rp340^X1=(;2Z&Rb(3Bd#$>A#}X&ZpDOJdUJEt*^-hp z>@3c~cBvj6>Y&ByRmlbi>lks@Sk4@Mn<}oEEmbezjitZUN5$i#bbLLP3irp6#9;XD za*g{8(;=7PdXOzP<0MQ6L>|mdJsF?oDWmtNQ+u;N4dqMPx%l=nY_$|_L|Tq`PIkSZ z338OQewwB6l=DJH91i_tu(=rBZ8nHNOVg+Yh!;I2YBTs|9`Y9Lah$5+QO|Z=?v%{0 zw&Eqz-p0T?3U55#D(27Q@ZtWVxSRei+cQFVxZ!Ui4X9Hd<}mX5 z#z0T}dE(Eni-D{z=1Tdr`KB1i<7*BM#y}#)_W0&3HP|3Jk?QW!4>n@XoqGJ-jHv_2 z9m7}To@R3VOxk7R5k4~4(K?u`d*kGjTg~cjdUOXpL^?ka=dq+@V94Wxi)hV+^-A+r z(wrJ*hn|J4x7!HA#Lgk4CbPbnd8E|hj>J;Mj_R>_Vbc@nZzzXM79I4|!FoUrbZ4~7 zIz+f7dxShCv|ej{iN>2_h^ye7$I=N;PXe_!22L{T9>9D>$=lP;$A`8aC2<^z9V~Ha z7ug}m&&jHtS=l%ljhllDzPZne|JthqtOqVwk(4b;by9Zy`O3S0Us86<5X9UpXGyE{ zN@&xidxhnv_12{9udU#*!e)UfujNleAj`yJEvbo3OZ}+1zYc%OO)S5{AMn;(Z03nP zPvm(b&wC?}7+>_m<&DVG`pmxd=jk*>S#WlDbkh8RKAdS=vBi2)+5?9pambvjxtGWt zK5@?d-o{#=R}gv3U@k5V!_Py_l7eo(LY`t7XuNbXiY2_b0b3(>%XaM(^# znJ`;?G_a_Q+u3b>9PBC9$C)cNqjA3%rM4ir##OC`>nSGFSvSIH$+nk*(e{J_PA*KgPk$o_2 zZ6$UrQj_@PCqsWc^9gqu&svz^8T1H2#if0kpW`*R86;}^Gzru^h{xh}uPGfi#Aj^U z+Diu^Ip9}svd0K|H{}L%T<$I15w|!+y1BHjodILuS@k4yLfJ;9P3cYItgYsJPjB`g z27A7?f`2mhJbcvw|LUs_itOtz1D_}OJi+G)KJP}kjm*x>eq-9fgTQBV5)KP;XLQn2 zHwZjwB(;-{#;4la-3#p)FfDt9U#U9vTH!OkM-Wl#9NH`L*s^jJJzUcl*~E;tDlaeH zxgb=j*UORU6{*)eKOY+_Lr)Kzz_6nt^?FpKUXy}P9K%Z(jLz{EbMnGx-Voo+XyWkolLXn5oS14f%<87Ai5A`U~_PrCpU8SLCTk4LQL^kQdX=b|$^ zR-07doP{SVSs(OuvrIb}_lF-R?O@)`JG%Aj(hlAmfF5pvz`wc$!d>e1lX-gr&=Y{( zKj&cAANRU{KksdNbl7-}CyOZ+ET^5${MuOtCu)rw>uuL`x97~DIX9Jpsk3E{Oxsk3 z4mp;0eyD59Ro2@tQ1s*V#?kOXFWeq^)|0zuf6fqqI>0%StCc~eyPbS$m(Tw6lUecX zPlrgW=TD_a&!1AB3;{@1?U^73)w4g>AYkV_Lp4b;F?GS=u!$9e_R;O1{1@iEy*B_o+ya4rbqj>M-0LR* zJpt$mK<`h#&G{pi|JViy`;{4WX8LfwY!2P&^i(EZ*Bc-ll^!SDZ-AhfJC$UI{$Fi? z(23mTsb#g8^$LKsq+I)%Mstq6-2`W<*>x8^o!&H8Yi9$yl^cXTl~EUKyFD>GO*dWn zXB1LRVh`-)Na_~=G_z;PVESSMgo!@uW+rF4!gXw|&939B>!aCs%`{5a?7|7LNz@J0 zBk{!s2!6a$D**aX8z3l?i_7(X*~6#r4L}b!K;U290O2n2`UyZ!0D1z@`{y3;X%d`% z2!IX&sU5;0>-lPDkv6B`@~zzucD{25K=EaRUdJ5K+c9fWABNM2KrOZ0p;A1~mRT^ufU-#J0dxOuztq=HDw?3%Tu4$SA75Eg8Q=tzGgnknEl#Oo` z5cC9}C;0rU!RMTkTj6clZ@6N_Bh=(hf1YkkwhcPXbFh{oH4ND0z8{FrOyiG}&@_8m z9CgW2I5fsx!Ih?g(B4h1?WJ;_31_*BAE#sA%;LCu!F5Nn#|g+5x`_3dTGOPf_0MR>YE=(*iDh$} zBykuY8dhs<&Ns2rPUo|QqS+}6M43@snZ?(*yu_}e*4M_9xMDw*>A}Gz8CmV5BEF}UfuJc1|Nc_*azSP zp5XHYpXL*MekS;^de;(4hx2OWBPh4j>yAvwcwl9lt-W5bXPVe)Ls?8{jWh(VO9pwQ z5{LD4Z=@8(crDtMuc=@fRAhRyHn-fhOeJguL)w-@^g7-EYw_TS#nZmpk7S9QHv>oN zid=WfX7HEVCCr&Cu>#Eak3)@^B|FC6RKPp{HpEK>U&dgCU)=0sCX zudloW! zrcI_)IL9aRgFfvrUncv~_WsUtPx1M}tN++?PhtFD!bJIb z^K#E%G0je9p{ZQ%DOP$OD*Vpn9{R7Ad)^s)9&U6Xymg}kilv`~+Y@`9*z^8R{P>xF zo&6x;){C~g75zV%a65v52f(qlGJ0cg7Z?HOlCh*;3|tS*w-as{h(9FZ_O%r}R`|~# z+#YUqAiTQO!IzutJdx*#JWu3#zejzByVM{4t*EEv3T>x9)C2#h2T|XcEdt48^;2#q zJD$(Z&?MLU(=JM{4g?+)^+d8$L_KyH^)TD% zG8XeC5F~#FW_h}dds4x;&G0pbO+v>wyI0*9r=c&MlyOcCb8&{H8y7#s=uw}fFH2_A zz}G^5wjacL(N7;F>S>?@qXKjQV;hz5MJHq;0}MD*#=MidE(D6$u>9*dDVa8MsKpg-!X4nm+r-@ zrKNhZex1fgb>nTfb}sfp*OCtL4qg-W*~0+CuxRSFdn?VrR%%v&`1K+N0MR`6KiPhsBP9e*Bfb0ECB&B15< zc_tk^;pYiIzl44>uw|tF{qU!`NJDK6eUO$cjOo`&2g`wtbHwMQgFzYoNGR#Rn|vAm z6iEly)?Ly;khSI9X(hX036?m!yIg5wuR=HI&!)M(SuO(O(hrg?(~dl50PH09=A}ZR zvp($vtCO(QCtKmC|1`sss&KdlH3pZsCMpNE?q2(NB(@ELxdc?VDUdBV>x z$vYquR~Wo8@1XTL@1RpeKbJP>^v~hi-1(kLFBbj&(3xrMd9DI5OxBtbt<|Y-xfnLw z&e&epJhaWpdakdg3O?LgY`)n$^+s>q^KpD#4dt^-F;|p#&@S>0=9UDyo{Q!UwP%aZ{=R7r4bt&QIJ zI9(*9zGTzQC0BJGq?p|fu?U86xyk7}=de8NgfVutrhCJrdpHx73XhyBl2$x)<09!z zq&`yg^R*Q`R`}0|ejaXdAiTcC!DsgEnR@U9pC|adf9%s49%8O^IL`-tzWtyNNI&3% zJ}ohf#-+Yr@}SSV1JA?l4TRUXH{b{!0S`@)b=CpHGfa&=5HGl&g+5R(%@K`4B~va_ zJpt$mK>ym@gO)Jq?%qbeeUWv&Ewio%>295A`@|b`_9xk};NWIhrnM58lunGljZBl| zrRHv5yyQoTg&NMIlwR-#J1 zz>^fbu;`ZREI`lz_R$LwNl*Y@$TA#r6R|WPUWx!J7G^CQE?UrMKIze8Vt>|RDBi?tIytx%JGD~59`nq7qf5(j*1@uACC}Su{sOE8+nVZWUoD26hzB zQ1q=Li~x>ibz(FhGc}l1{sS@)%?5JV}Ruw^2=4b(SmO#@lW)8)ZL@{5B30dpq zX`%@G34-Bo#lxP4RtD{sy-gBIprCC-8Oz?LL}8iG&PYPwZq`l{&_;`EOBt#SO)&7( z21!DjsO-J04o$+T46la5U`U;nx$?QPctM5 zdl>nmx@?9f3x5SY9kk?H#sS#nB*W0`t==pFiav+;yu_{EEJYQ4&cZY6v7uR(Vg)FJ z7u?EV1=vLmvIJ-`^g3%;OKs~%;H=)i~^K%;N|!T0xxi- zQ@@Q5>~(==8pvDToy!o6AW#kDGH>S!1P#jru>0=Y#*l#EVR>-mZvD@|iA=$=N@x0o ztn{X}PUy~frbHCx-WC}+q7*E@^r`jrfCfA)zjUfM88lB=HVdGM)iR2pI9N{UL%)!f zPV~MUilPB5AJ*t*-*D#A94xzZrC-VlKYEi1u$m13-QLY{S2E-_>o&p?pp6wjZZ=!X z;3R(GMHw2J57$7R^L8%JLfb>G^GjLbH>1*J`_LLWXphKC*5_3+nx;SZ1q=hBjZ$!o zVPDkOR)-AMhH`lBu6Yt5?KEsk5ltli7GO8~TT3IJ~3{uFNWQNw{WpbZA~I$ z@wTrR1b1OQYd-)?6yP9ucnXrlL(RYnI;6 zZAy1m`|Fex26U;gCyi;&nQ=!C^Yit3KBY$jH%nDmpUF}eg=0UQZmkKWO{nm2;Vt&u z<(J(E8y~@Wx=;<;pYWDscQecKN`=>ja3r?fDWD1_`lC?ma`Vh|%L@LQJ+z?Pg||us zA~%Y7isMUMZ9v3^clZeBelO!zzho#N0P;LXMdeAq7k4sr8QlU1??t##T~U$`6(NGq zxH?cODI+7gf$o>;10^1p(RKsfK)yIoR-u9Jf}^swznA!rR%Ov0dUXMk7ckr?q6Sa} zrN5W=Bt?`8BY2u8_?PmMmnotkzSdL9%NVm!L|3;al=m@ZMA<+QS|R7E^UIJD-ZBXk zihPAijsi${0NxPP-C7+eBE|*^JzpFs!a)|^sgZmgY1IcxatKAd)q(PUt)hrfz#QF# zFwTH#%E0=C8W?^T^a;A-yjKI`J)+=fiWvUo0Seyu!uwX1tONG?K*>142$-mE6srSe zSl2-G!mUPST-QKU#EY}bK<>r;cYOd+SLkN_{y-VN)pzzU4iqt59R}PVD1*2LVqb1G zLUh)BfKeSlq*fh`)WVY1Ld?(o*(jK6AeQLmfg+l#gP;2Yi2JG{rSd>ce!=@*p@aPzi?d7Gt!7RtAtK&tilr995h^&Fl8d=lfe5&YxVZ_7aPtMjQynN{ z&YBLo2}^eFo;RuwlpI~*Wx#EKDwgh^eX0+XJY7vyRl?Hs)tuJ-*=6)vlVG(Fk$3lO zS$zP}b+8LRTLp5&CFl0iD(*1rm^=#h-c1J0reFb~v#;@sDk(k~ zWkR=un8ll1fOk^_OVvbVRaiykL4=_yD5{yfg5A6oMFD8IC1%(BamC>k1v7su5|L}L8D!nF6^DjIm9mOID>}Vy zc}1VyuQgPR*!?0!MSKILf`(qdmS;bvu>|df_H|1 z{Au(^p_zlD0hJQPE7za=$de!W7iWHi6Z6=5<5RycU+*`K@HW3W39PjWq6KNs3{@QP zJvtQZp5QIa!;vs!KT&X3Juk-F{4hAWqlx01d6EYfr|-7fXqN5!r9wKE!-E$~IjfX~G4WTMsQ}GpBzB3zTE#})`D{n#a!;mId$vZe zgY_lCw^yz%%8oK0O!muV@zgK9GP{0qn(W3ddlB`8Pf&Y`9$j!|y=Qy&WayX?yKs)j z^D^f*%~an`@T*=bqz-{(3Zr~7;yV3HQ@1N4{RnyQUt7Urg+FJ%J?MIidw;*tC>P6U zh+&^))tC3mO{5=f1WOUGZUhShE&-rNf?16EHhsHGbJZIbskK=rYMtL!1NwPWaifzZfDg$CT1)$fm3~qeb1x|Ru+lyhC z_#sXyLkiP8y%mLOPKwHg9H#Tj#LVOAac|~!0*qKuu29s6_#PMy9V00Ek_ZqT-Hq|n6^vv{=!mNw}QjWv%7@weYj`?c@?!8PVm zVZG3N_j&t!ng;$(jthW6Ys{s>dZGF5^POwV!C$R0e+!}h8=T*xU1llb)m>(R!1H7Y zS}em56=(s1VQ<7=u>$e4aH~)ZYgMibKhvU~(Dg45teR3_k#B^qN1M$qotZpJw97eK zm@2`Jv^E(`dO5Zx6>iG_)dy+L#&zSYFRfBxUu12?&%$w! z5q2jSIql~fXm1X!r8SJDY}7liSBB!|N004k#XFvs;%2jpx=Gl)`0eGo-JR$i&rJb! zKpfa;;k&8>a+PYEmw^=@2v6Q7invpOK$5D{<^*l3xua-%!0=Ok)mdhe@kBVGgi*2& zgo$fJ-D<*$`MC5QT-*q z0auA@--StY2moe~Lri+K^DIR`X>ti68vL(Hn1F9mf49Xb`g0^j)69=ieNW_hBG11V zd1hYUpS&4)ZVOHjd8TQ#;A9v+2v4jRY@|SKDRkW1jqqe7MM_FwxkgZUD(;7qlG5Wd zE!C*bVIHPEF`;{2z0p$Vd~8FMv19$nw?GGKHoCl1P=p$RZz6S?}xzK(Nov|-4SxB4K+vsih9 zIsg91^Hqd&LzTiY7hvHXV+V#uM5Fu%4`qKOxtWW>F>#Jb@iY9Cku*f1$mqkXS&Ab- zTWtPTN((K8l&d~a`bQLd_6%wyXp(DDotvobxW?Hp%Bqi)+9y%*C#wEPu-q74VZ@f_ z{rOun@(jN~yzGzo3dO16|M?rqml#-GgjYI>zkgZX)<3Jd;yk0sl1&Ab)aj@-+qsB&z<8d;4!T1iU|( zp;{s=i_kJJLvTpCv+BB+N4~$wKzP*TzimY%@$CW%`)EHflR|RO$KW^Wru<$l17sxe zM?t@TLR5PW=bW)|O8w~{nCP7^OiX7iaywvGcX(1%T z13(q8$}*iT?4EXDmFM|^Rg$H}SK|_#lm1b3{G!3XeS%Xb$i~q7`$kv_vJegus@BZ` zGRJ~Y!>sUz#o#~hDEi4ocNBO_`x$T7$Q-Y&|e%XOFiORK2j)p^YH2yz(*Vdh=vV{N2 zUh{O$a?NlD$v*QSq9_Q6fQoORpddH7%dbD&%p@~Ob~2l+opV-vNSbb_>T7jX@m1rQ z4_|ZQ-9vjJ>+m?!sJf+|VftOus4izwjb>bHBz}CSfB$kylJE`y;{D0=^!Qs4ntoMQ zEp1Ovs>|pIbo0$~0T={vz|(ENo#!tz`@1Y2kfQZO|09j;Ur2fOJ__Q%O1|v_4+t!) zS}{N#M2CtF1U9KK3if6kSJdTtduT>BzRTlU&{T=41#-1a|40fds7I|~8;4CNwT-;L zr+px9QuS!jm*29;F5@|t^`^UcwD{g{TdZ-8ls@5{^-Q=+n68wVUBdRQ!it| z^i-$c=#GE&G!|Ib`ZqE6KHgg8d+HCQ&r1F8uT}WxmH)Y=`tL`qfv3GL546uJWdw(7r9jsX!0%t`zfC+? zZM%H`(n23AvvKaXCTDU>M7M--pOd)bz^#+D2J8o;Gzl!b(Sm=l=`I@e9e89PJiKo1 z>Wt8){`V$x?ciw*>&C{O-g|y-{-7I%v{sj&vSJ@&OP~6xGy>vp#FjQO5a6FJJhb+q zHv03Qo*o@-|7%k^B*XiRCb;h#f>k+Pcpvr+udg~>Dh5~S@@u7uo5kJDrhh$7^**#{F;>u1G90JMRih}(uyI2|<7>boM{*;9*UD&L zlt+v^jJGbgaI*boNVY&4%b*vXTvAXy}Vo2;_ zZ^e@)y!MtRC7|g=%amk8IGODnNddSv1lf3N?iUyEGT6|#_vnz)pAUUS0eJ>M^446(<;vPJdS2L$VhpK}-Xlsg+2Z8{-W|^*%|cWzk15Y#;P^ZY1$RA7or4KVoITza;mCkEi(efeeWEi5 zu#E_T3@%-h>KvY^6GL-Q0zk^}kgFDx3Q97F+1+viP9o1eN0Ujk$JSvA>AoIlDF7;y zB{|B|Y%7kv9eyGjg6>Yy0wkue9mLERR2b~1Ta81M&^sN4wFPbAz%+}s0PYu_N|(lJ zIb5#&A-Uv@j1v~%NY+e^no>h))&kBIn9VNEROZRUS;5bzD8|Mt8V@YU8>4e8CahT; zVxA0Aeu9{YKpLv*UC7M^2$QXKO&7t?QL`}4=V^O-aYC`!cD@;jP9a@WXuZE)c9ldx zN>Gs#7M|dQvxsBbv!E<+>?=cJv(?@$O@6_w3Nqma(R!tZQRMKmr^ zDQF0${E`B5lMY~9AYy{BF)>e(Nr?>z7hbHBSkA7*6*ianRdsS;F(}eJWG!%q?yO1< z&rab5{l>5U(r;VCr$pCdg6NMEj}$grF{JZcEpPI0<*pAH z(oDyou4NP8@aVUU>AyZkNoomFBf6|FsiWFtzZ%xwDW2`So3EA|KIeB?tDipSPoMLr&-nxR zoF5?lUc~ox7{Hp!$Hw=)76uEFXx|})Z^ZWzU4vdR8=h%$-MZWVXIuIAA`w6FeRb+( zd>@Jv*bpSEJ?$aD59$NpN7b)J{W|C zAOg1FE_jFx(RP{i1Mnk$1^Bf>{1f2!kpOjO1ux*Cm@xhV9~u3rPk-nU&(+a)iGk9Q1`>kP1W36jI!-_PEg0np35{J)g*Jw-%+ zC^_F-K=enG^Zx|^0RR8&eOYtj%ChcXA$%fEtbOUW1_lYQ-5nvsJkJJR92!BO2}z7k z=kY$@IKOcJlB+5SY%pL1LRNd(YqhPRl$BMLl~wg+R@U;#`u%TY`DFb5_x4xA`IFOB z%Zx0a7?YEvUk{WaG4cZfUYR<>N$SXcw_xO7519LOvwJ{*CxEC!%8INM8Ga@Fde9BQ z6pV%N@H+yMT#@_fe17Lz6x}J-Ygba4ZLQc9ZSx_h@SSeLC-x`y6|3>@h{#3N z{Plo7M6B(FvAtk-Pb`_%WN`WW-^`P$QFBWZB@1%2qwC%*O~45AG_rFUOI(Jrn78*Z z)f1y~W6fckH<+beHTJc_J<(%L;)LJ-wl8yxEVB$Z1*O#`&MwX3$s9Af5Lsezmq3yK z^^lAaD4s~$TuSy`M_5^`wu%sO;vu5h^$s4stWf*s#l&K${nT3Pw*35;`_RHs{2^jm zYZ(ZYW=fW%sZR`RYVzC?{+0#NdP4uUY_dNY&@NBl$=?cNj3o6Zd>c!~_1zOo)1Rp^hXK##lt+#GvuKwgf$VKvLr6!+D(I)2(!Ep2R} zV&vDFIg#L}A;^p+ErchX86Bho!Yy$piELlLk^t5I_u{8h`>@5I>>`1N9f>R6maJb7 z-K?2Or<+uIL=`Ffr`V+N(MD<`Bm1VFP20aa;Q2FJTd-8gJSi4ot}5rgLFE^$x_YilvjHTC;{&Nnj1sIB&U_1DJ-5- zqD_*)7&4k(%n=^pt1Mm`B<50s9p{m$rN+5gzKaM(Oy?F$`cyqbf_7!s3l@ecRFR@N!rvZ7O(o&7!TvV4aAw&ug=5=IiK&YA)K1RVKkMYWZouo9<%$X4c5oie*S} zT3{1YO<3jQi@^YAxzYk7RtmusjnTNW7{-T-4H+9-3qs-$sa#8Q<1{nxZMt1u8fpF7 zI7S+a%_=1t%<~8m)U#zZJ(3i;&1XoJAV{;POp4gB*-T}I7`1Gd)5@eAGrMuU)*BY) zlb(Q%@*_I8#z(!l(wLXYWRI>-qRAWs31VWOWkwyds1@;6X_cy{McJCCStiy=G7>&4 z6^GANgYWjFjoqY3kDt|<24f8Bn^>pYK&Yi;_M^3|ffZ{`k=x@<6KVEkwL2J@d1bup z@gsw;D@>lk)`-@qb)zY1Hq-|Fs@7L<30c~6l+{{{Pq;4A*BaSnbSafHak`-uAVISu z_VQ(AC=g{8OQ&PQWWLiHred;`i5FFim@jl)mzrn^Q`>Wcm`vv^!>D*nT%bxGBY1Wy zOjA{b%57xL5p1zc(xVzCmRl%m;OHjbsS`M-FuYz{s=caU^s8n@iH)K}mYEI&hF<6i zG(Vm`SK@`5v}!c4%BaMT_~mp731(W+5mL&UWs@eF%Zfp3U6z=x(=9BQ-PA~BgBUR` zsw72$uqsPio*IZU99n}3&y9I& zu}l$?%E_A=GiOp_rZH6Y7@91ilW|oTQe{TxIK3$$>E5D)PnU&tQ_pu6ZMs1+qbLgr z+VZT(33)wS8yM5#ncQ?y9Inb^8ZQ*<4Zfx)V`z25Ym%i3lOB^7igBx#tdgr(g(Zop zJpv_Vjh!^t-8=#b@)a#X6ywhW(W)hwMIy?KkaY~xXNo2#3)rezStANDGzQsRBQ9#y z9I`HEroHLR!dr5lOD)y1(9#8ptTeL@K~v6=V|xhHn$ymJ>et28qT5)e-zb1IC85+_ z15}tyy;O;Un>eWZbQN4W$^l-z{mEGwTj`<0=LFivS_v-S+w|M8VeFR8(v>FFrKkZ# z!y@uoq;DX{-^^|Wa!zRe#N9MMD~Ot5w+5bY*#Fk^_v>u<7u54)f=GR}Qhn?B zZ#{o!JrADj0rtDaf&C4JJ^^qx;vki<9g_y5I@l=|4{hNj}Vn?^VH4W#bmueSkgzU3~h@oQim zI4sO|YZpMLG^tsT4c)QX2NZ=;_Q)2FhVbH zF5hR-9pRl;yFUBV`7o?|{|TkrAM3wb>GtPuU#N8GBZ~czWxGJjqmN&ixHhhupaC^n@bx5i`Yc3xGHmN1)3 z_A30>!%{b4fp@-FJD02o@C52Wr!R1o-d$C8SD-#0BBrG1vd{oC0N^0zdh8USmyLsuJq(XgcZhiC1o_uZs>=ItZ~o~W`83yYi({7Ra%gN5IjWe<*T-=+Y4$L_@{wc zy?)Ho3rvK;3xStld%KTgphWu9j<3iH=CTIALG9{bx&j@I3OjalhNig7>TQa;D4K%3 z0E9q$zgUl_FcKsF4V=|ppKfm*GJ8aO?}!=PV?JuS zpxW>3Ws<^J_N_5OT!B+$1V_;%qA-%`2>SWVZq4EiDd3M7nH$nOQi{YGnyHD_Bc~~d zCW>~KL6(}q+jKA#Ug?I$38raNZv*%Rwyf*$2rldrwC#Qxu~umfG#kv;)L|t#h1{ia zJ}}`G^RyBT1^l%$J&;-k$iX=wKwiJr4b#dCni2sQza9)*G9U-cqGCc<&DSI@Gfw_* zd_*rYKPT_3ZvO=H^Yyr*Zvf)uSsskP?s_f^a5R<4WHbI)Lw>r|8HQpNYky{uyaVjj zdL`T5%gvdofhYe^M|Awq5uH5hh)(+Nh>jES#}sfbf8&deKjLqE(NXNx6CJ}IV~39D zNi-S%c0~VnME`a~|8_*brz3i%t0gD#iyYCdIdnu9yP{NBuaRz299!CqF*K@2=ci6j zDX;BP)faIRl>&5eIY8LZU z0&PUGVH82w)oOq`&Z}~vqot@!+FF#RZ9XwqHwfFQ+-TXF>DHv&nDqzc z?6YDe>q@TMWb5@Q)k?(TQen~4hVg;eS~&#!z1{+&I)hfTHIc*#PDoSTTK2{I^P=60 zipA0-k4_CmHkHzlkI6kej?GiE@q{2Tx`~h(2`doGEV}3xxFjUV^m7!l61zzXrAJ-U zppsQOL9AD;X5D!1@yM*8nmpUe(FrR!)QYfqHu)54Mcyz|6p4Cj5dnQuJXkX_u zIkAtevbx9?m(qCccx7i*Sr`wp(U{yQBmLf{BCEwlqu=P%%A^wSFF4&yZZ-vxU?{>I z&PwT&UXH42lPPxxjS-JmvItVBQwh9;I@+dFtrp4!aw;v2C81}iXty$!467N>WxGRj z9$T}GDAHTc3_V3em*#0l^a5Fg1Y<2$08eNjhvyv8(OhGMQr&T#1PjAj70D^NgwduK zB`rUzs@ZkJk;4(m<@!pllalZ?zG9JuFxLwbw^78Y5+f5zHZL%0g{fv~Qp#4_HMY}> z(IuppB&!p;&h;#Ow(L+NB#}=$j_9!(F)b?#Yuq)HL=07%BZcVD1vI8bhjN+F*KH|g z(zO+7S5wv03ibZ;TD7~jT(Z)YSxu`9V(mhDn5^-ojZ=ptwh}kR;(Sfc`$#7yAXuv~ z)%o7Dnq{NrB)*98i-JkVpH&>&WXO1vN6S>H!*&s_KFN+sWfRTx^4VUq=qQJ1$(&{k zJ^!3fNYiY0j;u&c9A)2B{(CQMORL7Gi#SlmW8i?DbseyeI-;K(E_3M$)ht@n87;mg z2vzys4^7%CJ}q)e&*bc?fPb-L1ot)7mLODD`vl|kPJBA0MJu10oaQo(&^7cqHrf># zy16&r5p5JRCuGvD*KXcPWD}U` zTmwY}JaUqKn@FxPk@#vDIo|Yd3?tlpYxQ_FhS-JWw^z(~d&RBP?Ikdu0C|z2yjW0P z3@9(GlfTYb;JfW*Wch}b@s1PlTG19lM}rA1Pz;a^jbX2aLEfg3)wgNi6d8GacPtIa z5Qk!UGU3~dJtjZofRi;7^b}xJvP-|afHi{b*SV?55}>qVUETv9xSN;82o-KQ8Gv z$quYjKEcJn`qf!IGluS($iQG!)3$>8&Qj*24Ij{qk?Cxl!qX1W{8lHu2bxhlc?MM8 zLyr^WBY7CeB>9RR$I(ap4SI~js3v>pF&-z;Z}iv$ddz9I#x$i3^uC3vc5u$7;3S~A)gt?CO+T_rKSge38~ zDwe8pVjYjNW2xWZ$D7X3=(bi(yv+1^D?=(^V^o{;9N0G5n#`L0NqS;UqFF{aN`rC+ zH_0iVR=a%L>TQbowIT?}P;9j6vL#idcHKC9ile)ZcD9+U(@yM*dagK4 zCQ+j`MFw+vq4e|BzL{-vDpN1ZST4tl!zyZu2_5T4xxQLa+8q(eGl}OZGpu6yDT-7y zB+ccj!(to~Y;-iFSI(7XMQWEgQc=1RmdW+I=3pjNllEvj9rj{Ws%KTp1umWws<|nm z@#Si#SSCh^2GeYIlGE&Pq|%5A399AZRH~b7OE+~{*R|1f7EM(KtC&WWX6@9R+Hhrg znb8|f+Aba`H}VQYO|@EQgvG|fW}-7ysgR&pBw^!GS-( z$0-lc_z8l?74AO4>K(<$=|Xlm#A5L46VP}e4g%QhLF16%IedJ)?7}B5G!B+4 zzaA8KmGeXX@dM7j@RYH8w7pmf@8EN|=3@*)TWV9VJ_K;U=WW;oxu0|&_6w_asD1)g z{cZ#GyYk%$)O}x%49^R^KUnoUVD-~Vbvz$Q^$9_K=kWi&S`|$e%)Q(k1o?!=e*keX zFmh{tvTwlB`mHUBnOmAusJ)$$Sju6+0eFe+c7W^K22_IcF{^1)du2XtTa01ZiNPYD zggalK9BA@on}SHV-E{jP3t8NL;Ba&qTkMDJmXk(vL%2>%TD)V0!wBrJ4gJ?~`jyh)VWX+OL^L zh?bUM4fN$&%IAqjh?>i z=zm4vianx<+k|j(0>9i1ec(%|S;22d6Tt+3W!`+QNH&X(!T9Hh(IbMLKoJyHFwCRh zn-L}=&Q&N>;CpLq=c;IP)q2B>%{9jutOn4u2!w1NBN@gV3w#7D;sIq|;=oJp4uYX< zO~LlJk~OwV0hoMK(1=~o$Gwb^b7;qHuD0*vTfIu)hw#QNHDL;z1-v%iF$rFd1%?-l zmLLj-pmHGCma`jI7m}^G=mJ;LW&o!8zGmF^J68N{q+oBwht0QZJzr`8w%$$SdY8oB(ywyWDvnIII(cYM;y4i+oPUjm{tXnNjSsm>mcB^duM!3J-!ps?MQNkh}sJj z4Y<_X^t|M_4S0A}j>3lnfWIX)C1oz#bKQOW+C6i$0&G9vnhv}zgUj%Bejiw#XV;p4 zZrcf>D9;7;+$_N7&TeRmm&~r4U%8nvf#qb6uyZ9iY2@r-jgizKbtYr4=i!Q9aHj-D zMt5m7lt1F{TNw z><6|MNfp%dR7H6EFaV!UL+~wJsR;ig0Rk=QzN=0g~Xt z{AnzimS(KM#^uA3v2gLY2Ni%FZ115BD$~opKf(rilmE4(Z?8PCUn|0b{o6kx%dy0b zBZ|fgvOV~#@;bus3jvxf94pAxb(wV5(SB5Br$yD;je4u|sg-%8-gax&*II*>#!IHn zm?$7bNdCvmV7_YUw0gmJHJIZ4&$UNrGd znTe7o)a15;c|l8V%1O5SvEXIicw>Wk$mzP7&ROL}I2M>Q%IgBPWijmK29#G4?+bXt zGWc?CW9Z)Z$T96|{oYq(ca(r)VEq+ZEd%RE9%t4!<;4r4SN!7+eJSpYDSk`@+Vx7; zze$zPwT*gNz~3fAVDb@EX2A_H-WGy4jxU}e-JA0Bv<|!}Cr0?mYd7B6OP_m$M8y`nI?~zq}fAVrZr<)*t(7#MCn*OG8d4p<$tHRqXy)Mun zm~<#}(~JJSDK9p#&J1UFo|a^PiYTgc;8+`6(axQ{=JOzCX!DVmsoRZR`Z1`i03hou zH?|(nz{fWtb(|=VS2eqL?qg?Fqi5dt{30*r{dhY<+rF{GK`f09yCJ@Ev1Q?=h^MGc|{=f$DGz8r2kPV13BHUK94Sn))1?;@C_r3B!Ik$gdO|Y{2$E_JwevZJ+ zL(pvJY&Lqe?Afo2P`AK9!LSD0{YWcjm!bj#e(zq1(n{cWFF_RWDg*NZBi*~ac7&kC z@YHM2bbGWwwzl%y78=E}uYTGs4R8yMmCV~a_>zX8$D8+i4^*v?wkLot3#!)J-tBnU zRa@SWcyKwg|JpPh&J!tOiyCyF$k2+0cGhfU}0iE~5I04&m%bb9ViqaL3Pwry6g=3Ar_LYQNvM zckJt#bNeJa#ZF~^PJ8g};R@g$0kh6A`0-Ayql!5|4sBKZ^XDa-sg90%0W#_h;|RJM z9pB>5uD*jjK9=^K*WKeDSp<$x;0X*pZtF6b`a;E-1S-O_;@o+n+(U8Z0#}@Y=)a>j z*Yh&*aU?x|JBA13db?9}xqX0bEAF#<3C++l?q?4Hv&vBQkR+IJ1=~X`hBe*4+hm}- z0P;FG@Fs>jr^o}&-K2Y=5>a%2ucXIr)!johN5UPG94}blt{rBj>aRny2qS~Sl|%(j2?5}xG?waF=tYMf`zJ2 zodp(xQU4hJ2+r^O8LRBsi{ z>weV~adZb7hoYC$XQKcFGjiIJ=%*l_GU9J z25;gCD^mIH(CT+oeYS-B^x|f_olf2xtUSZ88>1w|Rl0Qw^uVI)_!Jn6=e$W4lnxXNS`+j^1QLlFjVvI!Re_>TspiK`4G_moHCpKc)ervlPM=xifIcx@x6 zQ+xx`M|k*}fHaioaP^o!*@SZ@#Wx^*WEuAjNWZcXZa|s{o#hIugn#lZ?}AQV3jrRD z`8&l6oneId#~Vg2IIiw@`SS%4^%ajMLT4Bu{_%#93x>toUx|B<^?{p4h|rlvh(Fmh z;=MVuwTzF=2@jSES95+*pZsi}E>N|+r)^0ei-X^$E)U#YAgc$4vl~Sa7FXx%J^TemQgYnBiaq_KF$cesq`{1T(FSJYw z9TG?ej|ASWIWHJVPoB+jOQVJkRU^ZQs^MgSsM;mAD;Q~TPYw=f27{~lySNPD)LB*<6AfQPW_wS$H#=TkZ|ah|^>can=8aD{tYtm`79A1&CsBJBlh4z5U7g-*Y$M4!}1*Thy2 zbrW41d_B~K!m!8x{Lla1r%Z=M`c2!UBz1mpau9NEpt{ZU@qUKkHS+t%!+OqrLBzRLDWS?HU%$L7&L=FO^dPSUQYG8OH32*C={&OJ(57c z-A?YR2$=FxeRRq!=MXuek1hoxuhK`i9mMjdc_Os4l`P%KW?t&uPNUoLvuRJ+xIV9G zPg$k!*R)4)=1<)A82nb+57vBspw$;0|A1i(zj!o-eJ{h?1e`i$GINN0f`C(}4Bg)X z{wm-fPF{kMNxw%@>XZ@f^Q7^Vk^6qq_@#8GX$kvrhHey)Q#P&76OdDu=x=rPDpQtb zF*jL!!H4IA860pG^ftZo0ara&nZL}P-FzPeZ=M_HFp~0(TH}=c(;@O1TH}P)l-=B=e4Te=2~y9ij(e9de=4UIRy@^-gcW`-pAuEE6eSJ z&>Rrf&aq4~Oqx(blKt0V>wNCzW{*x4w2LEw$&MC+Y~JI`OxTLAxRce0I_T0O)p zMnlZoFkm{O@2D@Q=v1iP{A8l0-C^s$idc&C0U-N?t*O{{&tLquIXu+5j=;-cRh!U z$qZw80n6^gpZBF%TGqJf!yZi_>ep+Sbm**G>ENwf!9oOH{6Rtu(gwY{2sOOz1wjtU z;=)%1IUPE~WcqUrlXp}k%t|tynTi)(68uyJ0EuB{Z~;7a1#^Eq4O=BvC0Ujf&0AZ$ zq8AvKy5QyDvA|tfr;@DM-BkJXhW0+=TQZhl_&VbYor6F+cn5(X6}8DRo|cqBLoKTp zz-EXU{B(nc_o>z4u`M@t+0a?%)1Pad|EG7^^>>%`AGm#t``Kkf=X#O;vaT1ptXVId zrgDO684Nh0_hsRwbKrOB9iG?xzb#4e(^WVfI-iU5AMJDDeeMqSe;NBu=r=ZL=nS~& z&o$tN#Em9sBy<&G-hO%D4Tcm6khd$`dxB=si+fMdyrJIwdxB;!Z2mo$99JvI@{6kN z5k+nrB0}dfkp8MJ0|!yZ&I?1}o|ct*=cVuEG>D)%T>S_!bDetUuLoLw_}BlzP!tU_ zr{-E=4}7)5#h{l7K@eELC1)UNs-G({I&@AJ^jCGVh<)qiudS17%(qVd*2zBT^GuEA zG2}L#96Hw{`m4GgCB5k6pr=obZs#w|i!Ql({{^;hV!Ba$L+6G=|IuzZ2aW7=w6qJn zv;_57$n~qmBXlk@^yj+Bgym%Npw*kllgWc-@9>!KTf33Z-1*$ceLZ!I4xP&s{e?nL z2Y#kG9Xj_0`g7eI!WF^>7Ad^!@#I_zf{f5p>_GoeG0 zGQlHBAIoAg4sr1C$f7K$BWrwbX}o|F^btjIKLzqC>?#J~zdH$J@YvPI0vSg`rX0<& zBw8WRj&{-gl*X%Imb*%0@G#2}X$F9cAybh=GGr4- zR-3ClW2`}h0bT;)ed{qjqCEGofj8lf@1!tiQ?P@ zp)xp45JicT1l7w~zk$TexL_9R@0=kUIutScxhUd&MbOj*o8g76RJ{Z@4DX!5?Sz7gd~QfQj%65b$#X=EJ(`lBhz)+)szlZ0K;%Y#4FS&|&iWT;;|uUlEzl zhR%sE`?*eh_Z+kxF%k`7HWyTGeNL1Pg*1pkI%wCBZ0NkpvY~)IL$3`DNwvPFHVhr? znfCb>}-LiyH;xDj4pr0ul-sF6{m`n#J6-GQ7waTkYq1pgQl{?DE2r`V=eTq3A% zw&$>NIoLm;=SG8Fs+|{do#8ERy{WhG0+(yNSno=BjUN`5K5Nn9YGSuzWih2R+VvOj z-V0Li$LDQjy}zr9*dd?aed5hw)&N=DHD%ww@QC4#bW`~YA2DxIMCa`HrqKVFB7BAQ zNk=@5X%x{JD@B%gmg=`9A7rx`FZhE5_`1=xM33DqBk`D2b-kPo8Ddrx@|yv9dTPuH zmy(eGEXQg);k;z|lM$y3t$smEY!pJq_y4|~rcIkodedj5 z{9x(r%9YJ9RK+42w!NJ6BzV9TvQds3gmZuY@gq;D%IiAT?bTZ+yTjy5#d;Sv2(@y-8Bo_XuGw z41ePGc&o02kZ@|Uih0+iXz^+({km?niA1vS<J!T3dscZztFN9sU}lF)T~p4A zLy|<|dXL?;I!?uBMf06b#Y1Z9(8Wr-R?xe-k0TCKV}R)#jQ!X&*=V*5r%aj6iUN{E zDv{Z&0LxltAw*(T%WV014Ka@%%A=pWCsDcv$~%qJvQO zDU&gdHjZU4I!wz2_&M@s^Unwwcm7lXCiDd_)2;jwz1XNQD#5Y!_)4C}_(FWos@M4* z#^{UAV^4&}X^c-Pwi_CpTGv9Wy%`PsXzz|v)%;WPK_M=`$+4v35*m6FBSrM0n6H-= zcPoj+6~p>^S=j_TTlA9VXLCX$e%Pq%1qDx(nOXvRG0BmS(!^pPIQip;EV z3}yw$zw|MPRA#r(F@g$b=YnHXxiDJ95CLL)^=bHiFuK0c7~(G)V>1mWeKWCM@Gh#B ziX;3KkC0J7Q$#O{*@&$0SxF?W7}Q3ftQ3crZX-5Mj@myOp!aJBA8v-Dzg2D=hMsdj z>bxK@ycxb~^hx8VpOI;rIwK8NvoTdk1%U>r;t@b&8<1tFf9H-u|KG|}adqzDjXLt2 zfm-4zy6}PQ zFh+Odd~Ur2LEY#=Z}KS_U1)H^=>FMIS=obzsO%0v13W8t0GfHK?m#u2tLhFwqpZA# zt9A$UOL{=(n)Kk*bMP}?_^#*R^&GsOgX`bJRU2LXvX&5h*3yB2!dWce$UCf5V$Gq= ztBZ-dBsi+v7v88t^_VilFv=7J{ZfGtd@9gC?z&Xoes>z_XsLLg2s-}lU2oV^!3Q72 zWjS`o>N;IZ#r}ii{FMRi*mk$oZnm@riVWLAHfpwQq&GtuP^XC;%e2~>Gt_J$+jMNJ zTRl#7D`Of>tL=2lJcqo8^vga#=bC-cRxvNo*5&qn@14f*u#yS{N2g@*pw%93YRx-a z1s!yb8g?q@oiYdB;8u#>MIj4e>6aUX&NVlvqqBt=crMw0A7sSr^sa zwDE>bGyjU?{{R30|NrcLS&rk%ve;IHet>VEr&Gm2bDh@>Xr4!EHvAeKMM|8+LDSc@ zy#)W-9|jCB!3(+@cw2C0QbS24sVc=Pwz_T?&@G8fMnpzNL`FtN25m*?eEUL@Q7Vy% zi zrJN|SuIj)$=}01#r4jw+77635RdGjrm*rHk1u#x5)|4SV%O^z_z-?8O00cUc@-A+> zW^eZ0-t`*YA@=aS|E{+NUH+aTQP;hTFCH{mUePDJr(-dXh~@4A6+`f@VhF7?6#)Xg zHZ9Q>t%dmId*~Y0E97q8PVEC7Fm2!Nn6|If9TWF($F!~fxMSjoJEo0kce-Dr7z9QF zCh%V|XrqFbx_@?|Yl*xnI>)*P{x{M8aAJoa9s~=(emModoWY~_=Tt;KsZ&9b7+%Fg zG++U4rSDj~aGZz_v6!cp?{yFF`|)7=R8y!$cc!MX&#I;rj+!O{)`Vh{>18nJ+b&K5 zqmL%BtX$CK{mUKG#B?EU!=na}D&M1RM@ zZzS&C;^1#^_dQ*GPgUJsy(d-8eO6VC;i&4CiomqtcPu=xSa{GYxnCj{jvdYon!?}V zTxeX$`7-?PD6W6&1#dh@4yc2{U4ALDmS9gdL;nzpa_I|xCOh!bA>khRzi za|B}QyUr2!ms=nCthx16;-0qd!kSZhgxjY;8p5B~bAQSI zkx!fapTzNcf?fn1OVxGSekV>GX#0v2Quvey2)oVh*DqQ1%OC$rktF%YztcxZp`Q4# zPxp7~A@XTYJ>VR94*b+Zxqv}j(7scCSZ2D+SBkvnt$=PR-?(EQwtC&KIFnG&^x;Iw zf*#spz6*s9$9WH$eR#SNxB}Oh{JrbOPaj=uA%8LGggLmgntke{@_GTwqI?f|4#qy%xJ_~S${poJJ#*_xZpTfTAZTlf@^O9v-@qJUgF3HHki2;OOgphNtfd_4&Hy^*?G z&LjMsY87|P#CuMF`CNxNf`|aW{V>Pl6>F|UHWQ#l4Ipfli#9x2T2*#_p zQ6=mNPQ{OZx+5L<3d=(7~(xf4}QXP9?Z z)k~?D9+01+s+W%C{Q9bjb+A6@nTz`*sv0zH_gqHno~uFqu0M7oZ7j~g+@N3A@Y73Z zVXscUzwd;4DOcD7vc-8ip?Y%;Lbh%3o)hY&6CY=L^ez+Xl;7R8U_ZT!uSgH%yVv5a zvPP3wl?Q^JP_aXE_q0RSXmyVx#K(GJL`jEmkOo+QPxof-lY+ndqnOa|Vh zEQVOkaCIld0&u*cnTD-6ilK)LDdd2=;)<79eIi;RMGuKAFYj(d$q+B9svT17kRVC` zjS%A2@YdUn!k#KTGb00ivj9tG01m73GSrzLoMFr~)|yeMzUGsx*p6YXftI3?cuoX| z*oSm&M+nrnLgA%fku9Yg#p5bP#54T2LdLMB7ur$}fd2yPupv%0_!%4=I4HKr8()VVzM-Y^&6om{MbJP3Yy|FeP#7H}C`_L4AKfF6$9=)K{@8amUh=K+ zoM{S1Dt68^y(7O9(9nk~poGn60!8+>i z6XD*Mupa|M+QpjT{ozt{2j15K#E%!4>uU-M2HM_dP4RMhf7^26y}A9B6P=}qwV3dS z5YJikhYQ!q_lJ$uaf(v=H9K&{92C0qZ4Z{{j}W^s6u}O$AxjioT>#cTgv>q+$?VFZ z!0%wezmyeTM$3LQJfWSBy${EHg=-fqMUAG=4EY|4$~0@eZn@bwLQe#}_$U8>@hQYX zz>uZlAckR#&6c-^Fqk8=&hwbpR~Q8gQGa-m7IbwVKx6f14@#h4+lZMLtl?qtIUT|> zOwW_>VCb&Kf%Y!~aJ*pwvP>YZcE~Z%&Euws5&)dtg8mZ*_5KVg$Ane!U3l$p_A~>Ew;qoL2XPM{EvBa58{9y`A1YP^&Jy9Qs3$9!=FcVx59Jpi; zjKMkvrT{%2U!8I+RtKim!g6|i>H1-A$6DS6XES{c9UB}gf!TZv3RyWo=?9*|c4EiC zi7E=-iW6@51%(T9w)2HcW^t4(=?4|{h?7p}t5>j^Y+#bHbtf_K?NXp`!e=Xvh%;us zkYQRYUyQ`tsPH9<+dUsF*T5&jpfHJZS5XztQd})4lyET_6t3OUJ}7+DV^EkH23E*7 zNVWFWuTx)@xV9T4uXE#lUFxBY>{_bFyL~E2;P)MRuHWY+`STY9`3Susczyz z)W3wRCj}5|m4#>mu?nD{FfcO<=El+6R4^HQk0rfCAK0MILS&9%g6k3TdDc=qiGFzr zbKowu&4WUFGI8&RN6}IYZRct`4eTRAM`>Ts$J|w2MhRUkj5VG<@GKCC z;$eaz+9BO=LaZbK4sXL-d#D&n=W8xCq@Xa}V32)nR%01tUp-3)=K0_)=lyxBSRwvj zLExn+fg=Y=;Y(ck;msD zN|xv05m)=*G@%i;q4x#6CNZ?|UIXjJG9}emf^U}LPQ2_&q*8x*{+lZ56Gsj#Lj!Mf z&=)G*2rNOvwMF4EC}fx!_r7LJLDU^ZQgHH1trrW@=j1`>>=`xRA50hcjz3;A@}5uk zzLJQSBz-%o>phn&aqfybf6W8>fZp4t$SV?#+x5$2OJVxtzHluStk|6|TwG9Uf4=SZ zX!$Nt+ZI(3rl3Czy*3dxUB>? z><%KH&+1Be(}S|}Ad$jDJq~>ZR6L9AIik7sJ^w)AQrOTj999hpiftR}LWDI~bROuv z<)s2c7u7Zd#nt`{@iOQXFbaPHr`2I?8(l zV0P;36-1{?r&j+w4D8y}w-Spv7y7~l>nH|=3zlmP3YVn1wv6SU`9XKS?S2J)$p3L* zH4hjU^6f;l`WJfsE%fzJQNr6U4247FW9*L*5sH$h52O_!gz=X1-kznk`azNatdA)n{`aRstd zzxe(#T!G*1B~kAVFv3!A=s=_vm%E zlWs7rX6FqXVW8LW+@_a@etsY)husv|*ZsN9=jrM<#Oi;Ys(&|BukeQu=KUX=pbx?J zYZmuA(|sTBpK-pEfekCxaXx>jVEPjj+2E9f!^(HM|5~P>kgf$8#VJ6TPO#H?S}Kl{tyPoNX^AMw(YMT zzlOKX;t!d)GF64gs?_QaArKJWQcx{q9Gt=nvN|^-JGBGs3hCUbInKq?ZtJ z^6analHDxd`;1X^+H^W_`zf2?-}tsXx1*O zhg9oj)DB(TspH|LmPZy1Qtq{Q&ZJANVV7TH?)9f1p7Bt*K4o8l@&|U|l&kPC^z049 z;Vno|Ig$XW!<#39rcO{K$%S#zJ04%&5G4t?E~1Vz{{_uS-)g!Yh#zn4?lo<_V>avpGRu)-NZ6Nwi9`4H+(aJ+nx`U|2DCkKz<64!hnxP|!h zc0H-+ey7vNwx`F2Gu{$3r>_pe1A4&@@BDxc(52|9j9wwk!4sVhI*Meupp&wwhcrVF zRoE-Tb&!vXa=3Qy;_)`ACDmP>^T^S907C|R?phoUmIj3L{4l(FoZb13l~?g|PMzNY zkucHj=aPmUs}K3F9~`Nq_jTkJ9+uQNo+w{6+6! zO@P3#?Q0JNhVl5YWMF6m-0RuaYzU5{yV?+eVLa5J2n=PAD)_vn1_si&ADsBnnp-h# zD})4v4(nu&FBanY#lBEso{#at!0jXF>a;kPex*)JP^`cUUfhQ2^Bkw~bvO|-Nywi) z!psr!r%slE^Xj%=#Y*f?6$FLwru>%pCklvvt zJ}SHQ@^~tm1JC2RUbpY@=po`-P#vD-`Op`;U5=FB^kO%`Lw@vbH}uNA-P_h)e-~VG z`v$g4?a!b{q5#hFC%rx{MWgXJd4ZfcX}DS!Pz-L_4r>7*k?3}Nhku8c%f;YXj9=>I zaKt>kE@0I>4Zc0?tCu7ed@uA^AcE8Z0o& z9{Iw@3W9=l)ZHI8J+OC0VCE+K6UhKyBw`whep)m3BhY;w1L}+2bWr0Oqya^zcA!tG zu`^iUSPbzlc*2JHs*a)qS9V|U<=m^FLjM__Xm{<<*MI!|e}@0@_y2V^%6^F`d#!PX z3O!)ge)i_5XYQ~k;{V0-rww#?-lIil)wQF5mWKnwsNnK8+8E+2k)7?{m4GrF4(F!- z3?VxnI^i>M%_)NJ&wKjIm`NyG-)|=ahYXvejSAR<-RH%gz<9)ax_1uC+1t+@RnRSi z51WP!(30B}<1-D^t=kLqTZYd1_K|2Zh4Rth=xm{%;mN^Iq`Z8agP$m_SbodQBS$f^ zdrSA3OdJ@*dZ}J7(gD6-s{(ow2xFmndW#ZMyYB9>e0#eIi27K$Uhn%hDRBP^=IssY z^j+t#@&p6+izKp_yiu^R(YIs6XQov!;459gTxs))^6d+QtQ?vo)4F}QfW?;=O!$xg z{(o;|`g16vC7pdM-yL=36l?@VDPITs(OPi2Mg08%{$Ybppb7jf;4ydk+b`y==qe>0!|@%R6MP4Xq^!E*Wrk=|O>0O@|o@YRR%SK+2V-|1Q(k~3C$WoPzpA=541zB~^<~!IZVB!{ zkT8tE1HIeNcy~ei?ezYl7T|-O-WU3MK?2{yGra`+-uCZ?_%Ez2;ZXCkTbPiYl!NM{`}3)EE99dt1(8wwcNjyQJ}Ao<_EEX@g`S+Lk8 zAQpTzx0{b>YpRR*4Zmgf-)j4BkR@N>HkGN0Ex4lqepw>ivRa5GahoR+PsEb(7(DR9 zi8APC&fw9m0?aKG1@w%{t_{~I>se8Sw&6>NRaIlzT!@y+LdgMaGr`DsbnQlrj%DDM zD7+yG3L3KQy

    {qYV5zgVAON8NfwKAs_yj^(1kbd%ji{a3FXzuYZ0=D!?$(a@j$+*M*UBSO5 z5#l3{Z>c8%{vR5 zS&%nBs2@V zt37!kOULB~j-~aHzN^eDTVKI@ZNc_>EYshRV|uA@$8&AYcHv0UJex=FOIe9HSSQ6E z2M+Q+9!8Uy#m@3<)8g$~eA3p8h|RpD;>l>p2ifr8+CFqfQo#7wzofX!L@9=n6XZbt z7S~h&33r?4p-;6ddX;cEg?? zN;aWq!?_dA&dl5HjEVI&(XGA zrj3w6ppkf@S#XttRr{#7e5as2cKnUD8 z)|mta?hYInTEW>_tj3RqUNP?!pAmL2fjRMUYu2JO5TRs$5agV{{B#^8hi0qzsI zjNjKGEC$&e{`VK@g48+y4@p`g6?6e3+(p_@>^<8!ZW7Il1u;gt910jgkF<}wNvaMj zV!aLgJpz0SiP>L8Q$3EP4584p!O>F;->*Wz)(_uMz>!dCl_oNeN%yE>lt+rxg)x#h zavUP04AKn9sYq29q!%vtsne{61rxKW{Ym9kp@Sf$o*=9}&>=PhD{@Btn{6lOdzGheGAAi1spe!kuG zi`%VL#YPy=6pqSu3#(d`tMZry;LMxI=n6l9w?Z=)xrb2<;a`BQdf(DA6moJ{M{J6T zap(jg@kya2ktXZBxD7urLvLt`R6`waGyJHlLxoHq0eX;bL6+W$CQNX)PSk=_;!e~? zaT!-?k#ap7OJpKnep5Xq>5}ouWz`;ei&N6HSQUol``@R0uZ~wb7$77K-!r9Ju17Um zs~y{J@>u%J)+8rnEz|26i7Q4zCOYs4iNxroHVDN-iE^MOD#4{-rAq@{Id3?T8E-FOr=w9DmN5MO?YMy#qb4Z8&F|`Z6Oi|VAT)_mk2tk z#RMB0vOvd1rO;QGW|?6;-6cb+Dtyq~NX_0J3(S~Uu`hcR{S(dAJ?rKwklr(D@=DS- zd^a<`CNqnjnP&ONa-ZaLaDjwR3V3XfS4Ap?1lxjS{*xAk)CO6{Zt*nwAU#W62q-UB zQ&3C!Q8%*$G%7yn>62$L#>T%YE{dIEpeaH{bArVPtSbDC=>q^x^$E36I(X(vGKm{9 z_;E5&Rb3MSGEl5=%iWYBk~gT!X82{r(jgT42nvLo5aK*o27#)CmOdvIR+zR`7wu=0 z#P|MWTaMwE!VEdug2IV2Q&!D1AdP2U3?7J6!rY}4#VI)pjPSxo(@pP>(6^oY6llV{ zxn~@p{2?=*8tq(!&6f;bG4~G>rz+jC%zDtx3{J*?+dR0~u?o{hg0Ri!#um^n)~tff z_MFb{KUzAG>N$SMjc|E`Ej8IWe;9Ih>NYLHSxdWJm-(75oon@GwITv+JvQW$w0C$f zZJSB$Ji5NW9MHpBDBzkaV${C*ueh=VhDQ10IESHRmY`ww|K(xfYXbZKkckcXS|7B?3nedK8V zJ&(hi^wakIQYqjw{`tHYvCYt(4@Zec9?k4)IqF7E6zDu02|;$H02EIZCn)j(hejX7 z22dyybQy>Rf$*JFylIUzEf&a-pGQzjtkPE%$i=|}5Ht#;@Gjnz5LdFlIh$J$0c}{< z9we1(2M1GS_^6ds;za3S2B|2XC9+q4phz@gz0fRsSHiq?mRrmmbGV5IGdqjemDR|d z*l4=aZow7y3zD~BZZ)F=ewhJcAE~#&ZsJ@W@Zdeoz}i@yF7Qb3FF(R+OElym;{`jC zMBT4EU{v|NvFnapgnUitZEVMNV~NMkHU7Pw@CVL7tJ%EY)n==&KD^xyE^8+4z28>o5d3-++u*o0+a|ykDe_Cwq#08N*Hh2(*JGUDwqFx4p>jH(<891MEfD=v z2}|3rfG{A7(a??W2}3N3}5PLU3J9D{$i==<6yB}h_()t0(<~?5%V4_CMU(6sOT#z8*T5*}_0SR0 zesU|Un@llAVmyq5z+=l0T|=qs9_yOECK-2@6>`Z0h)x3GV)-qi6^vFKZE(WA@<2C4 z0Ao?WFdRV142)iMXZ@(D__jYKYqV61-Bl6h?3y|!L~SAzfAoZ+$=i==<+}AahNslr zzfNLSEat8`BGo7hi)$^$U4Nwd$XYIsA$L{vbrLAMLo?wQrO3s-F)yVdRmR+vW;jkg z?anjCtMWH;+J!&o@n*uKCuJdtl01Kcvms<6T4<}j8@tAroCGh}>I4Qdgnl>+cWCww zxbAQ=zx||WGr{yn9e1KbeD$NpiCKZbXP8fiF*XVjpZgDrf3wzOdGD?@xw0Y*>I;cT z4nzp)K66Lq>c?7tIx24;LK?#P z^~+#wZrAY|M4!tY9I_i@l9*nMp~-#4{K45&|cHnwi-S>Vz`YAfi<6+vs;=s}Yvy?7~2BKzq#fuivYA>v0db zmF77}!=Dm9m=Xe^uAnK46(RMCf+YNvl>i;TOHzc0H2l*erF|$Dg~jg5b;T_!}Z(z3mL=#+P1fqBy8ug2S&F2ZMTt=b*0%j&5Zsg74n= z*Ryzjk7M@V_461SN9|1l7oloa?s(h2+awbvPzXTMC2%>G+=r(r>G!x<4U`+xA)h{A z-A^PCrpWvgE=fyw8Th>935Y{nnB5pR1hB8BA$=ac@QGY47#D2-5~eA+JBU9p;of^1 zN&hAZ4|tytH~e9YUIQ^y!H&qtI^y)DZ@GN4c}9!fbxi}uLy!H#1kHOtiPC#(DsLBn zaezfgNvhKH*F4XEF@y4IvMmCoQM72mc1fR9LjtHm2`g~vyb|pE{Wzdw)D)i9Oo~Gx zcDe;dq?tFFnIENHP=@|He_e3UsE(0Eo3=|Mu5U}lRpx%JfYB%{*)CWfuMGDf9cl-w zc4{@xn?d%J6yltOYr6e_SOpKm&^NWZOt_v7SZ|1&8wVTkGqhZcjr;eYkiiiG3MW_& z^k*aimXe>6Y7rZlfuJy+@NyCH+2@7G7z1=9xcrsQ7~#GjD}plj2=_03tEYL(1YU-8 z{zB8?gY8sPqWR{+V`O7^NcDAa^+m4VSKP5XAnwom=r0hWy=+Q{%=Z2VtV3JDXe#d3 zWStueTrgdDpd-Gkd0lNlhdxL^f;@R}3?}?!?^nd{oho$DQR2`*Q;%j_Rf!oyiK;zY z+Z6eZj+Nfuy)h@8+X$Ox5O(U}bTnmfQB-Iu1xz%W`UZ`;qLX4Y!NadmR{D{ZXnNg| zC39*@rvggB#6`>Ha6}Tqoi2#Kn^I#=H0JJd4R6i^f#ju(m86|}Cq7z-A_&}-oILzx)la4arzblcL3X^%ML-t?q^ z?WGHrCtxI50S+N#uYRvORENh(KxB#KYgRl*z^+$OjDO$v3UamME+J)z?18zS2ewW^ zDFz{c1oKCyr!od#t^aUgGs1j4FTJtV-klFE%t`eOXnEJ%D^5>M;E_@B^lS5)1rV*U#CNOjVp-m31KsE5EY3`kaD zSehZD5g<|vZ84)v)3pK_CH4&OE9l!NQi06yNw&9$NEI zKK_2?;_h?W=;d}XN5N<>Nu-jxH-eKX zbpJC+>|ST#Bie3s80HdhfEi+0ZR0rZU^*{UUJK}A?G%Lkq!ZAamcpqfwOYfFC$wky zuj%|S=3X7I$)oi-l}G1f^O)>}Y3Zm{naJd}Wl3e~BMi_-+mMSQ+YQmYKIz`I{R!mCb%s2(CGWAToB*#WmDQoM>v_~FQoS!)O-&4(I!TOkT-?K?Z&G#24p~vF z(v!lf-$E{cDv!mU20Exk$sm*{565TCJw2(BLzHUpe zHV5JCVA9GVn8SX|W?;TT-f>9^vuKClS5;OqyndRBSN9w@Yj8rdeg-W4=(>qs!oHZF zPu3}Sr}6C7ITF1GR(5?Y{ol>;Yc(32X|@=}h*l%KcY zJ{}KW`E3lxa5fZ0F{#9K8IGZ6Sql8gYEX1T&8Tc&1(s=|D&7EA34&|}{fRVR`5@92 zN4-eWQ$RzXNJ=I`sGPXBPBTA%7m9>D%k^Gqc{6y2I+<(Jx(Ov;?K;>I*-E4nt;A#IpLNmbv6y1H__RG5a6FzOP# zO%>4K{ZNG2*I8EX1&xJLQx9^grsyO@A&BvKp{~a*FzW zIET+VlW)QSKD`B-T{t`tHGZbu^0>N3O{2I9kqh%`C>ZKBWAZzM_P94CC>ttF_?8KK z3`1XX@Fm1S!*Q^xI{|iJH&`)Rs~OS&NR8-nUyyxt+}G{8|Ce+1q8NW5|G67*GDUVf z_c(xF{rn1`Y(s>qd2M}L#0h(E_`cc{eme#JoE$+&&vltfCrs0W6x7x!O?5F0l5oPR zj}Ro9`!U0!Ma}h;K5_;cdV`hz;{QRhVHl;gF(^b=9><61=3{48N9$n>hv&Q-2o`Q7y`~h&3kg5EMbrz!?2PD$FT^9H@F2FpRf>81UrYUZ#dPeq~uM zE^WxyWRGZV&3{Hal-X1$VF#JtePdnI#qhlVo#Hr)JQD5W@pQ=mo6;lCfKuc}#nGN) znd^=F`g?qYg(;FtEihJ8KJ3X1reoDr&!^v*;ha^W$k}UOjGj`d+p?(U*V+B^@O^Xf zQ3=8-;?ZwD+D;juoqQP`y4kBbA-a6<(v*LF+p;QmA&2;K5My2bz^jPIn}er!@t5a? zNNT%kl#KtJ`=Pli=W9OOHZZ#^yH%6jZioQUeCjckoXS?W^2m0tU2C1KGu+Yyu-NLa zc3cgRYy$vXw^+mJUm`+N6C}Ghgyn{oO9nfw)9UcKh8^=)Pfx{*)vX0`R0T^wa^)VP z2qQO5qXT{ws`f^qz<=+DL1uZJDjg>2d&EMWIklrKvlwbGKGQX1NGa3K%3wV0$dKZ} zrTomQ+B*i{XS*ta6?Aoctcd_Jv%o@C{>&UwCJSP^z(rI+PDPg zU-dL5_|}QZIK!UkeG654g^ETEZ<-6MJ*uyUEq!~1(_Te^4k=(^IK6RV*Kf^OUhzOx zGgFzbf!a1k6NH&JkG&b=P1V;F_bOe<=3w0U&2h$RCtsF__94|Z5&P*|Lgofi7t|SU z+Mgux$OBhP^k0tAI6r;T9vz>q-Nq;ME0*9|CQ6)U0`-uXlCg#jQT>^FVunqbdRb@y z3fpqmnO7&;tlPwj3k&&H79B`QBwe3bY`Da_2eB%F`|rt--kIho?yOtGt^K}04jOld z?E}}l%Dv|v#sXLN@EJEo6$gD08nGkqwGCl08q~zH6ht>hl7DL?|5@AN=ex2(ALZB` z<`@ZpcX*2@|IoQ5#=m#(kX6{(2B zPvBxWEZJ`|9O-UGYlbF$xfhQ3Ov+tcrK4HiJst>rI5;@@T>Xrir2k`ExutR~g!6rk zCaKK3@i4;>#T6@a7!Hw;#kkxUdPE;bjg;kD^TpRg?U$)^^m%Y@7L$XNXI6m(#_^EaClO&%8EzyZUW8#7mstaGAzaCyY@b$ z%;fDdq|My91RJ+w9&K6qu4VQV>w8}WCA}J$+m#;uNrp=r$}5?Wd?(&yE|DT?iMMhF ziSOe=mq|K3at&FA>MNb}cxNv&9{<7aEaG#aMesvJNHfRHzF{k3?8uhemVPgk6Nx*$)=A^%v)(P8L!8MKK>{CYm@VR- zaO3W$ep)ssS+so6D3>+x6(dZZ;6aYqxNbW#4JqA(^sX>LsH+l(G*(P&lS348o1kYF zgw!oErKc=eIm2s1I)nLC@WZriQeP|By@=6DuionR+WOimbBc@(+O+aUV|NnD1Yt-| z-qiK^T1`w*`y`uQ(SfAHsn{4}1#6w0biNs5y+rYMlc~VN>8$oZX_Bk zWd_!I%eV&D=#Wg6vxmj;i$)57OED?Ec?51!QU><6sacfTu#boJ^52ZD8U*nG07r85 z7t>#RJq?i+LUY5kbMQEVRV%&q+Fgl{ttlAbLcssf2QuJSJmCgEzqOUEgH{N|dYrE-qd+CD-t^^WzjgaOfViP!V3AdOIz zy%6{u{vy6r$Y5$-JZ}BTeT6sKyU$MIJDbt2VO{IgQ};do)8FZHOTG;GddRLAI zxJduO0q!xcz;28-YYjb z_8^=tV$}gDz7|WDr=@9~TpB=nuf~u@HQw;B_^^RT8+|c^xeTE(Fosyi_|29wLB+Pd zm)si$>kYv5&SY&SH7=Y@+=&a<&Ba8YVCEst*Q}+(CyY@fU4cX@$kVZC*c4ebC{-aZ zK~8ylc@$b4cqxU2A&>s0l1AK}4<=tT>0qt6p1aMwgoG}-@&sW=-I{UC?9#r$Z_sj1~BCejs_-A0_z9*@)}4H)%s0r<)q`K}E1HjCVg`}jjG|`s7|S&Ph>c4#g(*hlA=FMW+Oeqq!fs;X{g&p`9MRG;Uox|lQmrf zB6S0y1cd4?EHbb90-}VhClg2S#A5%)R5K446IlyVNs4@p>r@nH;N>6Zyp;--NhTO) z%tk6>66|ZJ1M*^W;^-a60hJ;!v8Hcs_lS)dnJ4W+kh&{EF(Z{22#alr-`ALc%>%KL zF;-)YrA`GJHcHlbJm`mMb4BlB1Y^dm<1yCpy)-s1LZWbE!&J!dRv@^kHr(|p^&V}rq4 zVGMt3YlB6P?#^Il5zFDUq$UYuYmZrP5^)ou6~3S5s`D`adCOw(=@Nl?>4h~Qy!+Btyb|$6r{DX z;@JaF%?pdip>p0HJ$K@!KTt2f&bI+y!`ndH5;QXB zTQ`_TXky^XozhOxU{!OtBV;nk1wHilp;((iMF)c&L0tjg8!D|a+Tw!)K@WOuv#jFcqfs!w3Ky zgVywFC@fJpmfz1kzoKp*|L@zbDwMY<0eF%bX8$KsaHH(1$lFh|Acoc8SKsU?e_vp! z-O&V_fYgv7y(639bDaWHyRmE5>c#qZJ%1AQvqTRqNlUVEm7Qm%`zah>> zU*Pljt8o{GR2_yin0XY$GuT|2@XUt-5a^UYC^a8){hp*Io>V-E@@}$zK0djUo*t^i z`E8&o_&K_aoqwa7XpAoAS#62GQ1%b$v!7(ST@_KP&7bn+TlJP&0z~QI9?OUq2+-?F z)N353asNE;mZhwrzKwhfDi@_RVBFO3el*jY#GXu@AMYH+hhyT_L9G$Q3#y7sYrd4_w!>Q zw^D#arNfxD8h3i_cvv)eHJ&y+YjH}$D6YlMt`Sklk#=PTxu5$dzJ4u?|d5tcCk zMJlvIs?nKAsk)++lX@|$b8OHRPd9{K5iJt1H1>{KD>ae(v$BykzClf4s(b&NC?bfU*&v-0yTrl#R!@`d{ekVI?eUbi6aQ~EFA~D6 zn;!*P??;mRLV(MsEo3BMuA?5+g$k$9FZV@63cu?PI^dn*uhFg>a{sw)oFCFR&bqQP z530k}nJS~%OWpS6y#(9n{r0>^)b0Er%@O|TT+a-d8;r#Z1w=-}_f46RSfzo79KauF zBCgCbE+(&9 zzd@id*Dw>sg}j*dWSg$yWF=bHV=YlgRP`9VVkOLE0p1N?jwG7l0ucKXEu#ZIiS~BX z+wwhKLrX)zM0J76-U-0>*T*En!-_UumNuGRUmKDB_1%@lcdb*0!<9GN6CJ4&_|2X% zY&M@`EySv$jqIcBi#$ygkBZvdEz_jWhSgcqACo4NA9DBw%-o&CzJ_Zzai3kXnTMJI zlA%h6m0Ma0&MWl1v<%s#U7aw7ODRK!FeE>RamDmsA$i5$8))`q-yMAV^ko$7$c;DpT@|BRqN0Hs78h!cNiz@5U=mmPiy zanLBltm;pLANW>Pjn?T#)C15cryNMKPfrdnA7aC2rEZ0YrSjj0p+|#|-7Gu~q1U{= z12Y>Fq3GP&-IsF0J(_&3w}#!#g1@B25Hhf5+8DrvryaTp-6ho|O>#B+jODR0N`P$s zPHk!rJJ~fGe%k+plK$ZPMY?Jbq_s57XO_dv)h^RdOh?Eft%D$;^_yRtjExXJh{+Qm#+pwO_sP4-b&&o{8*slcooXi}8e3FPNRAi0gfrw0t zCTJn9_mTtGGi9oLs7?_rvX~ir0O}aNls}6FOB@`bE7s=S1XexN!&FX9A}$S3p?}m% zwRTTXnWOZ!gB^i+)`q{$V0Ww4%EpmO{8bO1!f#%eLF-d5I+6cSbP7HT_zTMVYuQ5Y z+iBYi<@lL@7~ixG@T>PsvRx5h#2+YBj4tU1QoJXy;FQ?YX8UdVQscK6Skf6|TI-_4 zD@$J39LbWc3g8ySqHFisg^RkVHSaQem8B}bTB^F>qDC7{yWrB@Jm;#Q=9Fk_QQ+4k z$IUx!!9|^K6~$7Wn%Gv_phewr!y<2$ciBjF&NWHgE!t7THEFnN!b)zzD>JNDxOw4H zL4N*7CE1a@`N*qGKXibbx=|=qsHpOd{s!8Z?iE++MD$G_(kznVOs_3gLwXqv`z^v5ge$Af% z1ZMkCCU@D*-qD+*^!k?5HuwoW3Vn9>_VVvP+|iE|z$8YTbXjw91H@zW?p^xYh8@v^ zjI8jaG@DL9iaT0N`xGjuls_G<44fA#opwdeo+7~MmQ3A18P!uMRV)>GQ+7YwZ)%uc z8yQ9`R2Aw%Z*;-?*~h z5>QixR1W4YZH%b`12?`Y%I|cRrW#Av+SJ6(aB`Q=cuE^nHofDRS&CHRxVIw;q~v0a zXepDb+|r&Tn(a{4Rv8F2)uxLKG!Ca#{PIKqU9x^TP;ez%@sabqK!_2MXpU50PToB+ zQNV<(EM&S)20N<;A8D$N6B?`gTnjR6y2P9~FniO#ucvT|aS^|{4D5LOlSehZUN5>Q zL(d|>razIMaOAlI%W{*MLw0wzO==V$<&n}DVoUd$-lMevbhxe z7c3gv=8kRK$&PK?wr$(aj&0kvZQIVt_m4a7IWIj{Yd!X?o>jBjF-eI6ph+S*YP4t? zpy}N`0kv7lzett9XkYQ%Os?O6e`IpgOwYeVFcZT-Ts+cqfA%y4+MU@vq&22MD3XBm z^#t!nBMjSTRo>^72G`#f4V>6^GffV0&>X90{BPv6smnd$fN?0**U6;IrN8YADdS-c zG5-gg86G^NM=?^Tko~lT{VRu>A!gEHHYkpWc+)kKXs^8i~fG2 z020K6QveZ5aQ2w|HyM5s%=boIaLbz}G8m}x0|BE{Edr9yo#zY{2&e;uMU?Q7AjS8O z6elyPmgA&H(<2u)RbUol^+JIZ*gX7JD5b~ap`?>$$celjivu~>7T`)yvW#|BAkdTn z{}9881t_JXL^)^k#+JNQh(+V)$Ub$&JX0ACHP&a7f(*l}PdcTLd@Q81n29A)QpFo7 zQZx)#uTcWRSQ|rLKFNVn+bhmI`^40OxKdlZIPB2*>om*`53nw@kw)kg&l?~Gv?=#B z3|mR+leDH(-L1g$PkQ*jU(Zd@#hjq`Tte;JT|P|U+!sKw|Kb_sr~9w&O8?d55&((;_Kb%S!w;C`Cgm)eWQN5DuwsBtegQJ7nBEYo%M~ewU!#0~<`@?mbpbd^qnXUN#i1`~)*l!h>(t_{knhzK3(FMcZh`ccO-5V&teq3COY zxMD|+8Srn*1-SWK3LRR%h^TOLE$E$9NLmo5jKj%{{n@Cn6^R+2lUhyTN_t6)Bj+K^ zgpG*v1LF=XAD6K{B_pTYozShwA5@+evk|9slc{X!V8zd2x)6{r4mwNf=j7rkbOYov zvC*(>v=+675r;vIi_?z#0vxT@PogPYH6XY-;PW$NDRUARL%zdSQC6+e(a&ITK z>00GSn|dlU$a`dyv(7fe6s5PQU_LgG+P-5XL0X;jcB!Wbg@1_9CwP2is~gi@0f>2- z`g;u!;lZ6Ua7qQADm2ucg#X%Lriz(tp+;Xh2R%sou})eIO3u*~4)@C>z|07VxiGm$ zqH!g}5EWir%}}Ksrk}*4?(nKo;ICC79V4Q&2zu8I&$`fH1yb4_xKFvnS+2$HZr1ae zoe9k*IbgaU@s!TBpy^+$)#rMbw&S!l;+yG$TH>_-F1iTdFW?RHP&t!B3|8tm`V>>%w$tHhU%tq zChj+ee*sd9!}#{ChbVIIt34OKr#m_lxzcR|Xk1l{$CGTX*3)yH3MV*KqJQQ=DV12T z$n1lTh$AKnvl6oOh#XS)t28XFQub*+kuoKy6_N^Xs;|4n<{Y(}C6aR@3EkeLNEOSr ziTe!%gzJ_*XW4ntf^C{(OS$Q0Cg7RNe=W8r!cz?NKP?KD>S{l$eLC9SJyefEQYeen zFG9{$Z|fJVtI;~OiUAu!r9npsdG>h6eaOl7%Bii@g`Df`ZvR!QCeh7GrVXTVo(r zxHEAQogZ7?u-$oIf&blP&SH%UTS7t4hIfukcyy;b1ID9FxXigHu$A-fiuEehJpH#b z2=9&aYPVqLaksav5#BCR{Vx5b&QuAh~TP32{kyhXyMxnyr;yD%dVL_9zK7=|Y zq*VvhzGeE$j9A8_8_!3gyS{-fkK3TN=DWW=876O(X@`w(9&K=Ne7HES^~80K$*X%e zY2kx{h}}no5)PT8hcd8GH!Ylq{$ZWl4igkv3`XB5cgW_Km_x zK&xr64d%;ovgOJo*_P-W^iPpEW@0C9s(?^=3)ak@RSV~kUD^csEsc&-Esu^oi~2TBnqY zECo*we_K3Nx_*W#=Vw;ur<1qWZ5XPts6g1TroS1^?!r}#<&Yw{b+~N5v39%u5ovz-_jZ!`-7>s1wkvGbege}qaEp0jaRa(MyZVEDF(N}q^PCWS)fds6kM2Cr@ zuWT(@3k6G0x3{h7vOnt@10KRN8W(6=H@0o;UVa~L)p1I78BsuFw{l-e5xB;`iYv-? zX@h6T(M)j3HYprUMRvJ|`mjep;;XcidK$ zLFm7pTDp3w_?M|_a`XN)XG!rx#ybDY%zSrXi__6OUvo7}-sEmKHTNXlw=3T=V!BOt z)ND&I?+HuOTBJ_SuGugOSv$y&J2BT;k03c9Vh=gBx#1PziH(a|!K#dok9_gnKRC7 z0XXtMG7%{=-SA)O26o0=hz#Jw) z1QU`i>#N{eNRdy!mTnNUO-SUz1eyu1>K)?X=HY^g9(!2U=GF7E zSd9wr1U3mGJ1Rkl7)DtKwN+%ct|L3j4uW6wZ`HE?aLP9iD}DxJmZ<03LwMV;P`UVO zm~_;&!$cTmC7(9%Fiww?3=$k{^?Z3|pssFir>JBjG)A`gP7M@wv7ji@mNe4Ar9PMU z-rJemDnmI-4((bdN4_$+!O}6|(O#h@MTSaxZluO}dYji&XwwS2cC;bbC*|^=;cq7(SG1!EnQD*TpM%FsNu=Tr`=9t9A#(5}{P&I{_7lzd@z%>WYXq{b zn0LDLGI9R;{)kCYNtTQM)wK)oMyS`h5N{KZO{kXzW_)P2o?EeYYkS9*-4j8shRV7= zQE5Y?;o`r$@vo!cY?t_xhOe$*-_c?;Aq|s~eXDb(E5bw5jp(==AJ(UI7kP*8NS>$! zy!x_=8LUg3`ZB7%`#9+?(%?qPzq?3w@JIUuneAw8ZllH9-9eid|7}kYpKi{Sau_X^ zu?lhFz&72OT3fyPZz3Sk)YIeQ`T2d~rK94a25HiIIU!xW-_$}y%)XN@NCzbp4~9;KCf;=yVSpQvoAn#WeRpsAFv}9^CttfQ?iWkOobBMS6WV!l_g{ zDK8X{WR;~)Ti8rzQL0qLZuF|884#Q|^kTUp)Cm4ftI&YuhTiMZ{!< z)@N}b7ViqH0ex1+hh+o3XKC{0l{V%xAPjVHq(^+W!QBJX!C+jHMRlxj9hAxAwJ)m6 zXkO+@N<++Z5_a#jUu7vG;cT!xL8!^G_~kbH%yTTi>jIbS?}bZl-ks;uNT~}!^!A@% zW~jKktE1G3$c~BFmzABHZttE72g@dC+s9_F7YTW#V@M*sxhh@pq>^q#`vA(XrjsHd zoU1oLRp2S>H!!Ja=9YZ%TS|^aheWlU!&Ao!_Z#UlO_H@_DC9+Pmy?aINI&n0I|uch zZr?63uznO*Wv-Hsw?C*g8-Go{+gx&%9KB}BebV1n%hqzMZHa3KWNceV>?(%r69YH6 zqU|L~$4`SbPpz>zoY4=%GftPLb$xuqzDIhRI;;Pc&6_v9YU}vExkk@@{6<(V1Buq* zQ_vhHXzQ6F{<+HfkhwM&`>2O29jH=ihh}49G8cI|^|5f8H4+jsRu9GmiY)63oX6F`Kc2IOs&faZCawyxOSFHyx=U8J zWd8e||4!hcaAMYK=>DAbk1aSlKWsrm%~sdc1J9MvS~6nxDQFR~2pOwSLIE;%*Hpp7 z|5xJ0W9hixTJJkF#DQlrGlc*X#D6`d6fA0@kSwi`KAFSge4!$N0a(qzdLb(Iys~36 zMw)h;Km$!OpmH?`pKnu^du}sEWa#oNob@n&;&Jvm@iRFc(342E1jWmdll|t(+YK3g z67Gm56)rL(shA74=vz=k2gVBNE@U>d({4N2g5b{LrX>%jnD9>f>Tn_VP4s+=Fx<3o@0zU70ip!7lX2f}nY|{bkb~Q`zXxAU|EK$JH*sFd* zqX4qS-?k6|K$eBlXN?`#arX6w@0SCmPj4t_CAg770qJ~2oc|m{BB0geokEGHTgnwT zh6{Vu3ha9)&}szvrk&H?F>k1L?*Nm9C2*>WG}lvn^) zDpVB*_os_I>#u%9lqUPY<~Wwb<|%%w zbON)U6NtWPrHx6@Xu`@quuaYw^jRk}0XmStRQy6@KoDq1)`$(oNOqOOxY=i|biqst zJ4Iu}>3|>=@7?2Mte7jH0uyM{;H^zjIPSceL8zVJ_F+D6)2q$n$bvyzv||;cU)j*blIq~YsPu?`s*ImZ*nbaoVX>Oj3`+jpKtR9FRu*LYUodFp zGPh0jf%PBbbb^S``Z3*49$4egk9}s&SAWBZL)~h1NjEl52XxF!Qj{w_sQo?v~J$Ui6V^UsIbFla0 z#Prsl-Ou`4!W$-gyh!S)LB}u*S%di)Twk))ENd|j7fIw#?`-y-P?5VZ&+%B#lT`F+ zs>dSH^E38qLY|p$Cv{y)4*IVorpSUH81t{V%*NkzEn~?RxkUyZ+*oh3BOfa5s*Co>|e!`(%yabd_y( z^M(fPQ55>kC0e^f73nL|fjnM=R~496B)#@(4gF@C$ZAbPL{_tJydBS%Slt`C>+T|{ zUbMvet*W>S&2++1RHTwszs;+MiLmyB1v3+-B|KG|sQ437b^cSvU~yM%0b}I$uVHab zvZ(-&b0#cXd>8y)_@SVa7TRK7-|PP_PqKm+*)n6LlSE~ z11n95T5a_91wL?s`z6SRZ)WQh%=B5&#pgr=^T~x23Q5l8YCD@>Zm*9`FSlc#(g5O1 z$%a2g3^vE{01lKE>n?XK^Mij=rt?{#rudBJv2dRtA^Ox%>y~?U_gTL@4KCe6izl7UQ=ChlOM?g7|g6o~6lrt1$DL|WtxYUJT1!Uw3 zh?GxYX^u`{iG#TGey*`XH=z8Xf}|8K|G0&`8lrBIGgPi&a#Z38H#EbRTeaBu;yl&v z;@bhTMJUf*l*SE$`9>G_9MvqP3hrs5!}+Dd_!_}P22rSoSy0YWIDT6+jRV(lD`0a3f@#HgJjRD2diZdu3Uf*O*|G3&`EbH1QkpmBZvQqav zuY%VZUt9c7|KvR|^^;KA8-fWfX?4HLu4OSOAAkMTZ&w)lcQ%yXG0IcmT&|~5)3)d2 z61RVn!r(MDYYES2!IYXPMX&S0`&rhdlc<}8)s)Z0(We>Q_Brn=lw zW#=|d=QUX+82d>u9tOk?Pqo(n#*ODS~ZEh@-| zqHY^}wdwKe`F&(y$vQ(JQ@rNT>q{FhP#Ui}HL>e)0`zI|BtUQ;e!oYYNsG?lMUl=A zkWKc$`Jf%G2~Aghe|3L)UN^gJFlcIcY+u8yy-vp93tpVBJGHNj4D_IO;%v=uKeiA| z`EjE0Y0-3DMGS_E=SA5_gT^HG2{A01w+h5$vq+7!i+OA$EcKm)%i}x|_eR?Jrht_T z)bX5_-D;D*3ly9+WaGRfz8BDYEdIUW&_A79zWFvz8&frf^6Gu)o^EO6ekZf>W;gG% zM*ZSbw-1PpL%xm&_^l{oG7=$~pU_B0W#^9N32Bi17r{h%beZM2j4qbu06~xFB_Azxf)@ay}4*F}* zjnzgmw=Ztmn$SeZIpnn;vg{^d)@Qy=hTst-PEmXDVgV3$z5468qQGM+pKZ|%4w#adptI8H_P~a z-Pmu6h=OQcq;w-0zSfg$px~Vd&7_5Ded()(>OAmtL&>g7M^Vi<Rc*H{WNxZnok997Du>o@YV349SZo88 z<{9R6`ZRlkl8S0BU;+C`qQQeOcY(x*yxiIXy~tYiF>>CbV!mnrxmcYqdFG0d$hp{O zPG7O-v^K>fo54dF`SgQ{)-D|m3cn3mV+YUTSJ!wJV{65p z*Or*y_3eM47fjmZt(T9OJS0i~nL-($Pn@0yuHGnDSq@%SIsCJy`C(_6d~diRK|fP#uG<@|CMtNYz9jU2z-EeA zy4zxL-1rM-6HD8Ot*ZuqLBtlf%7cj00UPu~tFjibMX+my8A?RFA$C9i=9X&y zhau!1Yrvv4yc)k}ANsS`M>brSoA7Q4ihPi4OVVSy57gwq${EH+?7Zg>$FZxHI)Ab%cIn9a5QF`-2;gI zW8ZVl;cqOjiwBN}(kZ%h;(hQM*L{m=7{dxtOLdMTQnR+by$8^yi&V;mf3^KInZ6Mo-1R5ZW zLFE8pYrw@Egy0_ev)hBn%V6Td&iY;4ZJM`&hp|0d`(K54oz-$JaG-VYzrex`5@<#+ ziFf+`TtB8?Epz$cNcYKC7Q&Bd*I486|BA%`;q)Kc$xXh3uKzgTXX-1Jq^3?}?0;N6 zDZemqq&-HLFo_aT0RVbp`e4SzVR-+_n!j5Zo=xy8zY(S2q<#sl(|CqQLcHQ^Z@Kx( z5hl2X_VyN|>TqN?usd_c1LK4KTZ%f2bTo)LUk1WP=_s5i6~K+MutLLFw`A1MLE!l2 zD&vTeDV00XH8-*MDEoW$0RS7FxA9*xs~IjT9@Ya2u^)YuZ+P|u0$lVjAJp2z8^)*} z{{A6x3J-EP_lmnbXe8cnB@~uaL%lf4wqAz2++a&;_q76kqneI?3jap!bbjOR!-(a@)2Vq*9cd2tDTR5f?mp~$GJ^=+)$#br z{E{qS;S?(#JC6Qd9HR1v?KNQ-hW2Z<%P0#b3m#gH?J@me>}vx7e%v9r+b~=9g4_}D zOgH{&)q5vKg%&6RARL-Yxi)Dnytg5HW>oIi^`{@&x?u8P7)*fJC?~-oQ0jKk{WaNv zQ%wt>9ElQ{kzTl*-@d5~YQ6V4=gOav0Xsgg5=w>4zETMgWCLv$LA!TmDe;wAtTQuH zsxggfW&o<^m1sX8lbrxV7?h3fp5`6vR6m57RC!GdOhpzeubElTVy+!&mJ0bg?72)| zg>u-*AUS$taL>s4vl|v{ttC5^V;HhublA#D)6fd7+wVjICrB_VP9_gf&2_-Ria)XV z%&l|GTT7L-V%*zkZjAc+z$FyXTL|#mz!^aOZ6Xs0G%yuFEFa29Pj){ppE8WMU2awk zl^ZcN#G94(K}lgpg^ijZFc*4WP)&X9)WneTkn4yLM}GL@p){vFAJSf&R;=HDM{9Nv zxTmc*Uwr7szJMTFh}Av`OiH4j*vQf-C0KKMN}q7dz7uoi4df6KQSzw)fv3NT#gX|t zLd^uDy00g%(zWq9EgfonSUJpgSJZzCToE!%1W@EB5bkpJ;STT?E5i}3*r7z;4940F z5<^WMgAgk0D+%P%qe!vGBn1F^B6FR4Y;-stANoZAf`3h&$M^sVp)Vhi%1NKci5SJm zJgb(vu@T^ED>gHx5WpIa7l@L9HREmK)3bAIfYL>GkQF{sqyyxuLRkJ9!AGcBXF#qQ zI}+z$3-;cIE>R|7N8{yVu&|pkyZ>b)loGpe+muSaa`}TB6IpF z*5)SHVO71ED9Oz49?V0$se;n$F}kpdr4Teo)yG#GP1|v*UhfYDI(3Su0_bI;+^y)E z1u;5)>a>#oxYKZR{m_h;I-UIH%V9>4E(kA6nqyIcRoRIGw3g6*WTD+XfYugTC(Qk! z|4h#7`ZToT9Kt!*E=*tdP!J8&+?7A3K@PlI5E#iW38;K-hq-?Fy%px#6Yo{~)renv zLMcHc0IALucTnq81q)Od*6{=x`=3gR!Gn-Cs+vLIP>z2$<@lh_gDzoVvT;^fQy?;* z$XMwFWe4L{b(dNXtt!x{43n{nnkjT$LZz#nsu6=D{C!T%1TsGYZiq1pa_m1 z;SFlP)^VI}$q4Y;q`{8V284vdo)q;OOsn;GG;4nlMgrK0Ftb>;L0Ao2C4;}HJC|Pc z{%nK9>p}yb#AUQ$EDrIu@S_hBZR7pQ|LP284v+76WC=$#)-eLf{$= zK%b-o+__|0EPR8pgg2DK_O1(3BTI$4BJ*K+#o>LV1W5JG!e^TCAcFFuB8+_l2+&bv zV<+%G+!>#SiiE_l7eXY8hcCdEeqTf{f1ClAD|}_gE0mRtWg`R7wCZU^8EQD+z#q9^ z{xG5aFoKtEdkm+|o{$K259b+-&9rP`A5Qz~Zwh6Vf2^ z#=vveS8!=^rY0{rJePmL>tBm)EbKK4lFgjiv7LS6K7e8h@5Kmw-hafLg2OFF>7}>e zr+W3a^z;eEK!eGx?H-DE=Es$5V6_{551fRVYysNA#$uq7Rr7OK+l&PV=;g^xQ%Q>i7!y>i@B6AJ#`8Gw z4E7YshwYXcK_RKh1UYSn1X=H_0&>@~791E$ZFb1G@{Urpa}Wj<#haA9?KUno@9y7# z!jPq7m1ypMLOurM#qk+c4w|)Qs@hM;rRenP+uU8ErHUwc`wr~%sJl5%$U?)xK`+(< zB;+^*{C1y*g`i;TljsP;jZD^oMbSKa4nk&M|Jx=AHC3ZqdjJIxODr{z zswulZ4o&O$R_2G3sV2Kgr+=B8%rywDfj^3SpwdoVNow=KuGT&axi9D0KOO$B*z#?I zkEdC{TJ7S6QFVlO=Eh++j-Z`w;1|OaXgZ9%mF_!Qy@JKbqZMi~w$Ja0XWKL=4;*fR3Oa^+?cb_0E&Zi6z{HIme^U@dJgL zDeRIZphgZ4WU9uua3yOU%k1S0i*Mj6C*`Brs@a*~&fS99wpvt& zA6c^-%A3zk{ePX7z3t3pPY*woVx4}!Cx2ny;m32Nm6Jtl&N2ks=xR@x} zPW;3V{Qo@Sz11BK+Us{!Fs{R5IQJ+cA9g(}2$?mTjm8qF*WSzUDI^Mp#BrEk{~bL2 zc|V~kV0&Vn)ieVjW>F8+AE(}^p`5N`_Y*TBj31REMxrJ;Oxs_p@tvW~4vF;9`0k$# zTRT!>^~pK9{4S`P`f8Z0@ii@AyhTqYHbL<`8?Dwl`{6#o^e=RP@eIj%-^G4a3j6ji zNv$q<$>f_6OMvwsj)hw1hlBCGnmWrE@UA?*#jD^zu;ZLc*Y=31JYPoWRBH6Uvf!H` z7kB%mxP)n@7z2_@bT<@qRXR`EX!Xp1@l-BXw`Z7QiUv#f?B%!416yhrXP7dM2Rt?r zk~HgSc7SV)WtX0EP1RLXqfb4Rh)DrjwLd27v8%1&m&d1QKdQNbnL$#gi>%6sHb~yv zPg($DOiw9WI?HKm@U5pIWZ7_qEPI~=xm1~qbaO3KGk9_QSsOZg#gPUARU=q|R#B`_ zon|rhSI^Zh{@KE~>x26Yja!EJZ;yrO&zvhxu^55#q;cd$_PY#ei#n2wKHLT`ugLF+ z#DcEkP9N2458?=@_x8kj!4WrKUo<;6S=o#=P34-#a4+`93WUGw?V5kn>7Za_02XTa zV(f%8SuL))%a>5WYp-Eit4<~$5#f}#1o8q*{!{182O`FRvhxF|RRN@BmYpjIS_MtP zf?-~w3o(WbqC1qG#XGI3@An2qh%81U9RkJ0fgec<7oCcu+JT?4FVuEQzMZU%zGP2G4J(RfP!A49UB)#b1Y?bckxuX$PI3l;o_|27EyQ0gryT8;0;&EEDF+Dm;@6eKZfy?&fzAZ2 zMp`kE#%_nQ4`K5|DRXs&L2m|n9*z7<5ptd6G~m}5v=Zc5mJXE!t5^F#4g0$FV2sze zXzvUiuJAVhpgpB3dg}ntZ4GoCnq1Sx@2BECzy&WZ^ya{8C;e&(52o2K5OQ#}t2a@} z>#8+FXW1;?3q7kb3pR*w-*_%k6&@)(1&QrP+xJsCi1kvr6IzKK!A)G6ii8Dq#YZ_$ zA!7uhv(HA%iE=PT!kHE2D&}-nh?E@<^0%<)2aHgguw}Rv#rIwn;Kv@Yv&1nWLh`t# zm79|Gg>w307(`*l*Y4t-S#HAjh%U|}M*U6$wjOCKw_Z7TN(Hyktq{e!K{f9g$5)&v zWxZJ&t{~xyv-GeVj`FQ0P-5>Q4@mP>M2^B6Q%UXqx6|}a7XbC;ET{jw;H(Oulk2zr z^S_q+w>7WU=wzZCOJU(fp)_Bo;#y7sp+KchOlPE9$zMi~QNzNFD(MA87;YXZzKqfA zzI@NCh0~CXM=@%hn9aT8q6P9EFJ1l(H7piyBCEwKEK(e++-4skI+m{xE1bH^-Nq)O zG~56v@8Pqiqgw^;8C*-#K8WF1_5dOo?d&8zX338ruUGnz>~^~K!orK$)QIp+D+JDA z3NKX#53X(L)>>WBdcJ9>aQPuAMlyj*Wf;34YHNXXEAn#*YpDZ~q&7`cn;slv$Ow_~s^`RPjki%%QoxahB3A zEw7KjS|w%k6c)z-Y#+jwz2b0v$O9zaGe?4p{> zgzm~;4uMrp62Q_=)n=!z=l2HL#>^4?g)cz*xfY>Ne}&sV&Owz3u>lOi_|xalHq{FN zf7shHP=KB3A;{K-J*@J8vc8W@gnk$DQ(=0!INQ0d%BWSzgU! zxc@Xf$OE_)`?UH*Rh|V0+cGdSLzw3oO#hKlVM+m$G92Ih4-SQxv;=gag=P+&rjLfu z-PZnCR+;DAR?Y{?^k_g`>iFJq3htDH=Ql91-43CSnCDS@||9 z_PzFL$C=lq|7$C@*?kq>AEdX<W0oB`^KEI`%2Z}JA?irv5#zL(=pmp)@u{P49 z+!FWSN2 zZ_igHJt18%flG_rEL#AooaMFv?Pk8~J;^v{+r;hNlg#`3#L`j*>nCAbHcR@14p*v> zX|asCSJ0(RD=Y~HDj;cS^eZa4-ld2NkJC8FY2-I>|A#Cf5g)UcCSA1>b8XB)(Q2z1 zE6RV_!H*Lo@TBk4UIlw^$2!Neh*P~!w;oJlEe!CCg;%UKN zM(^ouXl`-vF^T2B9F~?LCkzN~4mk1USeh#X1vPV(C?yOCO+ll!dMrU`MpcAQ6DCIh zxCBxbyvvVENu!p?uR5Ye8y?gb&IqULlfpkbYbP5?PzSC>xLKfl(Ae7-d_Xr!klz$Y z(ugF2V@RX$9sQdCmKsLt59fr&7^=?EVSev*F|E(UVy|o(FpBGyvNm_jB3ZTjdC&v| z;(Oh0)sBguvClR)7qY zJ^)xey(MleKy>3RO*y^DBQ}ewhuDAwPDbOh*tWufDvMU(Vg08G=uvL~&f9lsr1FC< z8Wf300JjTm#$7{GK)uo4wgpyg(=Q_UXtPr$cM;j0xyuxq(wI=RE7M-sq&4Vq5rGz- z0;yY9(6qi5iD8~D1LUG1{M4&)P55yIC1NAYn0a+eD=x;rQPcgp4Hpc{-HfCv(m_){}pKtm>E6qI0@V>4!x*QT?C3C z=`Bspx)AWF9BfjV(L06+Y*K#}>9$ul_MF*G%CRa=ux~F>U*#$nIH+SUCN@*#kbySJ zRz*pADM*c&V%9)<4U-DNFu61#TzjiZhy0AWe12q#xxc#XgY@gX(akJL7nXp{2{cPH z*P_n~r3|ZOv{wy7fthCH^Xl;h`aox7_baFITZ2P>{MGDM$d?HN=yeCn+6)!pv&L`+%6$nAySK&I0}G##nPX;m0vrn*dFPD0GV`f z00Ai93^c+S&5<2EK^o~u60K)=)jtJRnmJ#v#r710_~zREW3cxf_)l04k|YW=bb1mF zhFVt_DGv$;nbc{aPJ0psH@vq$3Ex8(dJW29NfRbTmx66vYa*-Fj&95 z4Z43pdMi$Qf2NSgZ42qp1}t)!goiMcesjv^%@^Oaj|pJ^0kD%D33DRvoqFH`c6%%l zq^vMR*J7Rxi{Z>!OC!#tnJXnZaAYc1jYN#5{3a6ae6gYaUpf z?MTqYm95wou@VClwV_aExh?+3NYvS zvA>WVD6$fm@(^q?%QCqp{RRO!_(v?E(7Z-H@d88R4)c@l&z-N&%5DNj>8Yy# z9t;pX#L&+3?u&BA_ZJ%$o2R8P8Fmm$^`aVNlgX1bVw2Ze$k$E5&2s2n$gn2m)w~;# z65MD2PjZ%o*kwNKrr=8gYv^sP8VIuQVz52@HwUF&v&WcuZt)O!*CJj;ncZPdK^>%) z_y|A89q;xjE-LJI(}PnB(Vj1Z7i0Y)JOvDy^;v$_QjOWE>LvHPoXLvn?BVn5*`MFx zH`VLTr<6a<1iD+xAY3Z+!`B28XGvQ<9Zx5anZC0F_jRPPY|#yT{XKRI0agf-$^oO6 znymWAaqIA?pL}ln9{% zrwDX(X;#a+gZHxq|w^2(GnR-gIiUq=wwQH{@(8sa) z8RRsaim(}@nljfA?Euc=md<|$%O}Qh z@w$<|94&ch69p+Ed#55~!Wvh5WI(_I*D45A9<_Q+QJMvv9eAFR#pDl(Y>8(e)|g+ zR+M8*DC&TQ*x#GieFzsd9_GVYeqipj<+FTqjcoe{^K*5Yj1?AB1QmRAjJ zh{dGEvpd9&c!MIIct_QuH zOWdtuqw!PX?v)Y2R@0UH%`(ouPm*kOu+l5vJ=c=etJHa|Q{;%}LZBQ=*b}Pl)W`h8 zEW@n}V{0IBG}7ZTK=%J99x-_Tdld;ur6P~7f-0%+Ie2S`GUcuyMI91az`c_TEE*BbU0m?#PJOj|4W9jKr+PUfvv}iE9q5tfe3!qVF z0(gY<#}CR0J557V1g^2xfE;ST#MTQddlss}RWFWJ{uF?|$S)@ujk%J=UpTJdS_XQP z&4}OZ8a`=-l%`ZIQHxMa2v!^&XGVn3&Fx&9QO+Fj+;Y}u5HTays500myfM!||Jh$u zop3~!dz^M&5cXnmS2(US-2`V1&`0B~r^>?^?rp4|;(ctnOFJs88MaEScKvUYeH??8 zmzqJgUdoo8wWlBD>Pu0Xj!8b*c!D<#{37(!{oKIk=(7Lc`9)HHIJ370t78~MFmKfy ze;t5SI5SG6src{tzmT-M$~NxG+ByP2faC0bA^8iG#WYjN_||*SRW(HWe`6gHG91HE zNOI*)Zb50}=(R)J0h0Vd(BmTkQUtr34AhqSd-0EE!su^8?jNF%`wx%v>~>VJX#o?_ z@O{EscNzEPomYMUG z7A6+F<(eKDahjQtS^OTebsWQGP+w16pi)^m&O04K>q|trxEe@%>CY>AxwVPa>Bu4@ z)5eu)UIU=E2ppRnR{_d-*4~j7#0X3)KL$I^U=YHeR$&k*#7!^w8~O0sTd&=WTXa8? zt{`&b0N7#eQ-c<7_3{U( zIuCK(zWy%a2uG3Ag)AHu?P|R=)i4l=hx3d?w zUy9T~MGwzFWd+d=_#yalPi2BVu7RU9nRLZ0)1s z?j=7TQN1VcRya}df@BD-pXRTJBjp5Icf8HQow)?k%pD4IP|nr0{_>Q}tdq0+FoB*k$Qc1eyCIrcE= z){E03&9O&FO$m}jLILuI@|exREPj|Qlt4=Y9GF-o`D2`iRSeWCh)3xqk|Yz+7rVT~ zOE~?FSsn~TMkM3;Vo&+Cp^jUghOELJ?j4RLc}9xqiCbP|1@3Tr)&(?oKg5X{~`&%8+>10{?wDwY=-1o4F%Unt8bzLB?)*?=$u>O*_pm0c&&F`(IZYqv(S z1C_cLszz8AzOd|U;M)Toy+h>G7#fWNASN=MIXaj|e&_ z*^pEuIXFEYDjSJg&=dUON*NLwM6fJP(o~qZW?xx}VxwsS%tzAUdTE;GnW!*OQNp}P z`wNSZ+fgexU=bZI3`~}Y4#x|NP&W<{q$Ck0GCf$DqbQgT|Fxw_MvD3le90f4c0?A8 zRrBwk=6 z^6&`8Arv^C7MTzQ2CBt}5eCzMC`IFg1>Xrrlzym4iec@n$ijX&Qe0q!aICTd#UJ5% zP@JNLsCI#bBj6yWlqkXUun<#@hq-(Ymj-rNq@W{{=~!t&4BbPZZXn8!lqO-kXH++N z%%1j!!Vwzo<=qpG4~CW)l!F_} zKA>|+T#WI)0m9ILEKDR?0VD9jk+}(|YGOR!fI%*jhp`3|p8%)*s65RbnQ}mRV1Y#K z0TY9C#P-^(pXR|-a#&nKMviAGP7o>bFut4g0hi)o9@^gnr|f2iq+-tFIe}mH!Tw&B zfIbuU8qad<(jmJS37RLvfxxr8#2m(%26H({hP8`8I2@U=XfU#*XqW*d@|ctb#X*^{ z2Y|Sx_#+I#01G)%pMYM^ALR$2YjKf_g_EcwV}38?_x5gdfoChj`0M3V_19K@rL8P( z+scTs657g;H{RJ+W@v$n)egX2631=XlR)S)JQW$s3?nfquBS*ZjpcAT`_;y>z`%Ju zQhRuc+gdJSDTWc**b~4rLTn18ZYswu87&(E-);+E7M>*$S&2wA9g)2(DeyvM=`a*r zojW98LjN05SfJf{s3;%L!>=)v!Bl-jv~f)2(Kv2lu_RPBLzF@OK~j6K~)WnTwp>hRlC$j z?y@Ox=!PwUuV0vtpjf=JoT2{Ra7P38BSC*-{C5=~_pz_}6u zQ3xlt2%vz@60gj0w8(538x#XSNS$&#LK@dJZPrRNb z^6$I7^2asfFEImelu-FH?%_;2`~`* zKq3`x0Xz*-A76j{yvp1%_>cODcpN5EgP>B*@5#L}o&*9feS zr;eR+I%yhsciMUkuzkT6K+ ztuhoFLNa}KKe(fc@OCRsDrjHbu9pJp1$E++A$EwTJ!}XKocCqJP<6uRLU2FIT3(7= zxf7!Pc3wSn@Wbg^fDSK)S*&9|dFg726|H53%kJ|6#Zz6~L2iZ*(r3R84g?zQ@J8nawYJ_GuO8LW0$tR||z`Qu~am^UHPiP+slfOL$nvJDYEBWI{}_ zzDG;MVahi{e9;NtPBV%9)!F}`{&x!H;^peb>E*~9^;CSxlA3Yxx~9!OlFfln%@j@yd(XE!V-+h zdRL7cZg2hAK^Lv#3C|DJyftn)q(zZV33NS^!n6Dx?9{zjxg#S2LC*@^BW5q68(5*-r5A?yju_lN{Vf`Ee(?*Vu5$#6ki+^u@Rdw{7UtcXmFd zyuIO+6j}x$e@daU+#bIYDof#k8+t6kWMq+0;Ym^mwcNE7t3XF4BcURSs|?4VL8d_I z@vbt3*$S6CxlH*3ZtMR=r9M1AhRgb;0{wzE*5s%rzn^p${5jG$&eDr$`N&efT zP@)wN9_94&Y^L}9(IqR17qsL5Yox)j(o34*FE|d|o1Xn6c53_paP((DTiN*GYETuN zYM1bM%FR;H!=|h2Wgvz?Y}vNk_w;8N76Xs-_>KwB>Z?~bW`!RWDSm<~Y)fXYn`@V>PPSg53pIAq z&hf%cu4A#cW0|BU%Co}NZVPkCdQz;yV&dxau~<-xdA0Y%Yt6|6FXsz|yYb_cL=_I6 zayN79Ztys6N=E)c;lyFPu1a^x^K;*+=B%q5rOwRtOktp?EoPE^EVO2wxutu;o#Wo- zbGiInWvS+Qw|gt23Q41C(*C2pxc0LXZp;f;&3aexr-ee{yd%u7>0D6DG57NU+u(Dv zY&Me-3)xbxnw{OLUJcC0A$!FvGFMKn*St3cs(*7+&y{DkI`_1zOmqBzD(p%@ z^SN5C$j+UY3wrW`pLSWZSL;046Z6(LD`TGaopPb-_xj3xR+1X@Gv|x7a-m=A4=UyJ z`rXz2bzhOS#|)}a$ldkFQtrM^_OHq3W~tAfPZ|%*xW@Chk59(%R?GFK<3`!OwMVrc_kuTA-CFPbf_lRH5Sgm7+xr9vkO5vT<8~uCt~oQF*IY3cMkkFO=oH)q18) z`O(&!qigQEN?t#R87Jf9?|av!md*EDkF%m)G_FyFPFLykRFmQ}4-M(u@2J<)hjynF zRP}+^X%DZ(G1Yyx-CNeGE*MgJXz<20S#3K#M-CQa>byQM)myF(`tdnLS>ZF&iD}gr zbeA)O4mB*^)6aue5I8fB7G(Lsn2~h*dfv=YFewEXxARyWuS5ahaMZGv~@P7l?(9{7}pkx~6+hoj>@ugGEN0 z7I{m5p7_T2!K91B!A!m9QH9lZkCm%~`#@;k4!MA@mqwF^Zj+*W?Ptm8bX`4j1FEg4 zdadA;uSV8Wd&*~S%$i&A980TCj9R->4J?OLr>H_RL-FSV9}FhqIpy>Oropv(mPnGd zY3V`fK1xsL7R7qLIH1J`zy44uHfPFnn-BW8_P`g*K8EqBd_hjCuHIuC|siK-hF)||C^{mSC* z+`YXmT{%OhXPNC;+nnmd2NqSBFFXm&=d62gJy~`A$+}afwIS~o&q=z|vy3~XQXNdJ zW=ARWGFvAnnZe>ls@sD*TO1eX+)S;KlgY%_{Z_RQiZ6w3m+mrsksn@B<*p=k=pG|K zKexNnf-7NpdqSa#?Wq_3q3F@{oeImOY1*cnm@m4StS?zmQ+n` zs?9t{793Qee=|`ei_+X-ozJS7VXo7wI_H*OWtpdiQ)3@GK-5$QLtUuUNJDw@A4d;4 z#ujg$uQLyPuTvQHY+B)`^II+yUySS59HrHy{8ID0SXpRRr+CjkWl6UF?C@9K+??3% z{C*tttWM#%MM+nKUPe_0;}PpHJXf2V%&62a_}9h!d5E&|cs?xZBS9+b{oGWQn$?o( zcoyHdrL>-(xfxPMOB(0%_xF?QN0NOiG;XbXlj-01x7IV;Ra?)+ib7kWKe#~^x>c@l z)w&(Xn$?w<_PI8GYS_xTirqkfUq1Vcjk59tFXk2$Qb<+;as~p{U%*fPLo^?x^#)Cxj)e7J1X8PpfY1CEQ zP49f7GqsW`K8<_osMV22T&uolG_8&`=d&|vvVFczKpqIy-e zhI+X@s!%th^G-ikJc<}tr{JK#r8MW?Apgene*I7`K&$X{h zOf4^i|Hidq+vSI%S9w&!p;zjb#^>6d$kk@7)VUhk9cx@EbnmXF1qY}=s=63^`Enzx zly8dN(v^2#f0~uEKoKaE_?j797ujLw_RjC#-8^_m6Bje}4b}S@p7|Re>$d2g-|N9xg#95dlHQJ4TrVWDL+ zQB~b_x+_lo5ymfyi_Dd4eM7?a!)19f19#(xK~}Udrgwcx^hX2g_s+FCE@AYKvDbw2 z4gTw%y}W-fkBS?ZM}2LYKD}4#YyUm1Dt=tK=g2%=-SR5p%5>dVPw+}Cv)lLH$!e#i zyId&j5lZvjGlJto6@LSMq8AqpFGL+#J*RS_dxup>MRZl@{u9ZS&pq?2tr4lETkl%ssb}k%Hzd*dvX?)8n`z|r zV1mu-)jE(~Gt1CmxC}CVdAvP zhe!N3AS!ff)E>11F)dcGv|my-sWry(Wu(nJ%0xmvOxw9#zQlUp<~GHMmXy3p*QSrHqLBc2SJ?L#eKvL( zUv~N?TS|IL<^h_=OMW=nQ}~?V(A^(ciRZrTn3v&UB;Tm@>Vn6&+r$WHo>BRl1Hvj~ z>U*(lp;xtTkYBV$4{MI~y3^$mtKtpm`w)-OM13EHgb6#y&|!z zJEL3k#*a)?ai$^N+?7>Wnv|}IFvmlD(3d&bS)sx9<~Ysc>QGYh_JpG~UCp;P1&o@Q zslxi>t-Loo6Jym6C?hq=&6h!pgE@zm)Y{Qicz5x9<=mH8U%fPy?x*^qYij4KG1FQ} z!(FYKXiBrXXpsHN(%M0GteD(1?5ZKqF<&pfEAy@d7;+NSzzT0;AS?ZYzpk&DI*8 z8tZIEdVM}99uJ65uSRuUmMyoO@KsgFVtT*Vv(rRnbt}RW9=V1Hj|R9>=QE2@(V>`s zg5)Y;-<3rECd}2yD`ye>9&52pW8{uDo6~?VGGUJbI~K{$FY?ux_rzNWZW%aJ3xv&i zOuaeE%FDarmsc*0!DD{ipt|o*p(+zvCX7C<*?X|m&ohTp5GG$ak5HX@-d#!2B%KmmGMZbbpuwZ(7A=SG)g2wP<_8R=|YRbKQu8SmwJBc1YqUFe_h`v%Qmc+j)-R3V)^?UK7ngqw8a!&?;DX>0(Y^= zOCl70l&wKE)Muw;dgE;=zhz2nK)Qa|1Y7-Dv+S<{oA~#z`Ro(P!6lJGseX)ov3CQKWJ52q}r#51eh7XzTyDpBTOSn<<|nF zkV1}Jg7AA6{%&yz!ylXe_wV|+kbeUn#9YwoOB5_;5FUd6=gU|_YeV2&tag<_bW0TE z-QA@>ndI@%wXY##`_n znR@(8x8Gs}#KP9}Ivdh{57nJ(PS!gX11a_}!1*R7R;{MMv!mB?V2WwyHXGy1lmvFq zoH;{f`2Cx&f4u%v$LMKmN`(K6o1RthJ8GGc(@+_OSZv%h2@ITvxnU5?S zE+|C3HCMPCP%gdY+H+YVaTn9ad+IrEZ{(SIr*_$XX#t-(1R(Q;nwXgr{{{rMsQ_K8 zY}b~HD$H_zEI!01>^_hyI~xjyDQFMO*Z864RtMf2Lg#7769a7!zCJwEqsWVYC`FbFq_fA-ceZF5k?T}AACYyuL#(D>Fx@v$u}9LzCl%OOGTaeGO2 zZm9gE^kVJgeqT%Z0>J}&j{}6TOZ$Q6rxrI%kpy0cvK@o6m(8DAe*yG^#=F?QHv3Zo-%ul5eIu3dF=C(~- zXXR|Nb)Pf_zasNz(jTs)(>=Ur1}P^`nfF^Yg+PF|j-+OmPo)A|g8*JXG7 zf2Q%LVZcq>D@ge}#RIjhNbs|l1Ke}3!&ug#-#_-GfceG!a=3Ux z@y0yQ6aL)17evQ#9)kDZJw6fpUkvi^kN*bz`=L*105<_fe@gbwSA#k_rGz|{8uUz` z8VH>>XC40c%J;JWgKxIkwc$xZtye}l`tno`ZS{W*;a7!e zdKh%Qu0eu&CFVQyF|KoZvyNy!8~zoIsr}ogn}x-S2z_DsX&`DxW!mY_Gu&M!Jb=H zO7uGr-qC|x#^DH?C#4r6)Sz%js3wbe|AlF&RmznbsO8o`LA!g2Q)b*2H|a86V~~)Q z-x-E0N^ejT?| zbPZWt9Dn_>bGMy(*A0X*Ec~XEHgJOL{LHgoU2r2yl zDy+Bo2-|X(95(bLvjCXM53gUI+PXhOW=o+IVwX~cl}#Zl{RF0AQy)@3c^OX_iAvC_ zeEA!G+mKUS2dpHB9*znFz~Fy zl`M;iM)jr6uzFH2q}j%RC-YJu(T@U>O2g+crS9}|azA}eCYKt=`W*qD1=JH@_YEgVeA`nh132@Odm;r`>QddJ_cf&H6-%XT5#Oc3 zGCq}X22@MF13RY|2HWgCmCh5p%iS_5C)#8%(Of;+-c|4f=>Ix}znyy++hbxWvoJO} ze8KNURamN8N_%DB615dZDbN1+arz*H!NcM11ir0jKp*tzfH3;TqX zBzHAtSz7iX>SLT+5CY={$qz@ah!S4?f^@gDvPY7BV|rEy_B4-XR1y`c{8;Wv7OS0< z|16Irqbd8N?cNHB$kxH6?*P}_=OD{GNh9SqDEL!Vq7t*k&@bzes?bV&U$ZUtZFwQj zRfcwwj76cxQ&Y^D|5@==HOnpSzY6K|k+YAAHb3br2AB>ljiC0Wuzfc!*@$5y`mt1& zP5*FeM=a+}e=Q=gW|@~bd_^GJekHT#+kw;iSbi7m_bdrz6X710Uhc23_ET_89|Ww` zg6|62)zjbMFL;{6&t{xbgk8!p9^m)G-4l^&xuCeF(o+;aecdCCz>#kgKti8Gn1f)p zVbvQH${Dvs|0qn?HLo(*cfa33jU zUp7wo&??N?t|EO#qrLz&&&2mOMZ=j0;j21F_iOG|TJp-G+<~FL3nII3VDbIilfn!?TQ!z46DzN~C_wo7* zaFVQQ1`vq{-}kn~ZDVQ1jtivg%^inNWaE}%n zmmWmj5yPBiO>-zugvj^H#5~usYSL1j_(`H3Ny)kP4d;SCeBx~^LsqM8F2;Gon(^VL zRB%#YJuw;=LX>wwh`7AC8|dmE_&ThoXArSI?N_4?Zsba%bGzDkH9qsyxZ5VlVMF}5 z_^d-FRQvjZVTdg#qtjI>o0Fs5Z)@32 zY=LYst7+c`7-4fs_Y<*E<=u;NGIzBO+gYKFbjm;WI^E_}jBi*emh27X>TV0jPJe+0 zrM7r~8ST@qbCOG1=B};s(-rzTuP4C56;oq|M4BrY{>vSi|G(qE0skkqFeV$B4skpU zcwO6UTsU6~k{)ajn`yrG^Mpk4`3H^`iy%3MTd%BRv;3~lQ&&yuR_Ia@5N{^d2Tvnq z-0-&TNKbH}+8Tn}haKT-#hZ3vdq39A9KRT_<5tL$@M+oX2NUdu^IWDY2+r!5G7B@L z&@RNLo0#VsaAvpd+|=cWl2bGm;D|*<%5L5(TU;Ed7OnNMub-7M4DOdfG6BntV}YTu zcKPLy#C-P~MRNuM9)-6N<*Mn4*tGgQc#_=K8EM#li@`-3L+0*IcIO__V3j*wF8 zbujuTKk%OJLGxo3(pYz738?8=R_qW~(|+Et2KbM&%o|q8oboNS)bOV83)%=A-`|!T z_n)Ifi92xqO_bk`yE6HtRX;yXA5&s`w$!zJHTpk}0QmXfL`nxuFm(-QZBo}z1OD4J zaa7j#lJKIEA_^~e((_z4!b|uv{Pqq6s1!}1ZPkuMLq3}+P`YmPt5Z3&NV=HUihCse zFuxEDExSgu&qL=9$oi@FGAIPO18j88uw|=3rCs%$xmXxr%OAa6%36uzJVRRIyyF9& zG*Y2r35$uLxC@+jC`nZM2jtOu7P4{Mm%MP0hFP|Eam!U$aSL%{lN}0(ulJ2pw`!w? z8M)fO0W0=v$Amf&PZj~`PmjyFF_B{RiEHq(GVY2b9#;zeH=VW@!+~otCxIDpo=#1; zK3VKGsvY5QA%pwJ%trazpHo`T_Wr;YA$tk7`w>tl*U0^lHZ5Tx+21GN|lO6mj&dgIz zOe*TWZ5OqF0@YwZ>5Z(wF5}v#8Ah<|=>nE@P)meC4yTd%0`SeIY&>)~QL8o=%H`|L zSGe{lE10otj*;vGV^}1Y0Vth`Mkc8ZlM|Z zX1!YOH!dA;t!?>HF`PGeAt@^%l@C%r-!e|j5A(3oGNt$*sdeX_N1hIH!Y~69Ve<=q zh_=+8RR4#3bS*`)XUeeP%~;*W{k}`C6qpli`t1zg$>w#Xnu2 z7V0UMJb-^0KR$jVL|ix62W$S2K_PR_gG7c(j7!)9+iW$g+#mko7ms*^73qX>0?G33 zyl^K$E~Z4wc0JKXBoMLvP?=BMQHz?{0lNr#0i_+YUIqyl?E2tV?&(diK$lFAagnNGY6G=%$8M2E(B) zhZ)l5L@Oa#a%;W#8{0s@`Prw_Kl3>sOMq3yB}+E*5f=m5u!F^2uJG2Zw64|V0YQy!fO-X{`DJXK=Ab{A!ipuS8N321dAKZ3a;8eW`#va|Cy;6K^^ znM<%V6U9!fjFi8bYT-@>j>A`&=lLJ^|NP}Y0t%vU__?>_61H;4;I>?SEZ1<2Nw{8X zI+>OtESCqNzz>P+_ioHQVpf2~i?~9aD3LfY{f9_z=N+GL=kauZa@r>K`vo_4F)c*X zGkg)pO`Y0Jd7}lqK93({E%6CYk_zU= z+elEo8!Q6$C-EOLP|^HbfFK3YBf>zxKi-LkzNsY<$dDrFA0u#y{+=m5LF%l%tM2|?T0=mvyE;}#&{O!T$`mh5b z+);P49zbU1@os>;5obVK?sw#OlPXSrv6EyR@ec3u8{CQUt-Ai2yu5gW~}19*%&$v`GkP^=%2gC*$`f@Q`S zARz^?#Ga5!VD|OZqQ&USE=C4ue(o{AcJ983VTHy)oj0tJm<{6xQY^C9I7$5ZxG7u2 zuN4L0QIG#G(!RA>QDDjT2i1q-Q9$u=`#?lCmV$zO1ECZIL>|TC*H78>oQb&S&b{Z% zM09kt+f7MjWv*N+GqG1q_JT12>n(eJkl1|PQc{@9MfNhXcIh@(;A{X0v$4MOQplcQjS+cVjMisJo!;%61X6822%Wths; z?iw3xpysk+$$H@UDiki@@aY_gT0{xC$=lf1hm2yK*i`8l5CcU84%r-Am$nx*aO!O_ z-c<6g#*4UC#C0Tm1N3jCtm4Uw9VNi-*abJbY23I$PiTG=(L1r+NvXkY>GIqtUz*6i z=#~)1>C_P?3vcf*6u$keQd0_lVXzw&ANStZL;fr%8R0S6iK^!+Vf*{?c4?FnV1|}113fU{ zh9VWN$eBnNx-thv)CSQ+Ex!7iR8~PXXnCiD8cNw;X(lRVPIQr#^0kE9U<}{YlcE>x zDqwalv#FQFd=V|0qwwZI%TCT#J*VOK5K~FmJyoTawX}Rn@-p{zqK_H*-b6lK^GRR6 zHmkZBPK~1LTtA+G&$lwqp)bcD-NP>JGPvFh3Hqka?MV#ADjcFd2i|d9I*(2)ahgVs z{)JjQksi$_8O>YDscZos=3QmUs9wzv8$M5=@w7<;XG`mfTsnPZU1jCw+#G?hL07t6 zz+pI}2{^{gX{Mpy*hSnR${h|D<7fAorin*P`;c#uH&evpP4e=>^^cAK(>|q3Ahn6Q7u$iv)Uq*Lq+_aqwJMtY3w#oITSz2mCE|afJ=BW=?GSxrK=k8N)%Lk`{ zLs++Mp;;t~&hbA^nX}JgEN%?=8P@y;E9|j(Csji;rdN|F?nGDZJS5_)3$BidIp+y? z*U#n`FuJ8$LI>$v?YCjJ`CBp-E&WbU7hLGa*W=|PH(|QlerW1DT&#RFY%^)*xgnGF zYIb23qf9*7gC6ynFUlLTQ=yu)vU?hqravuTP)a(^H;m@Y0Z*?tdfm@$?9EoAq08wg zY`63m_fkj!_}~~=LAHX1Iq>wk<3J0aaI8(P9_hjy=AW`uStHgVj4y(Hp=}$*HG(K% zaLb?3R~UDn&iHApaCx@I7ZKIxW7J$VL5Zx0%srX%sqWm(GlAou+oB zvYaRVhQ#8`tU7v4m%!@rp6bPK1wvexB~0G2F~Ay z*EUXv<}SbU^dG((ZIb-)Rj8@o&HB{u@rjxGHc>J6u(1noFZf{SZ#ZGRm?%+eZR&=s8X3}Nu`ryl<;>=VNUCPq~i7#MF zIrlsTyDYL$HGd9!EL8}t`8nIuyL2q?L{bIxD0z;KvVWy)1>=PD6sHyphIHu7=k-y8w zE{Xw`_30syw|637{oqOpeNuzV2{Q!y6u6apl^l)yd0)vl6)X=?lH5YI;7;Hh5cDy{ z7dzdIoFo3)KlJh~0V-U|S8SiOk_@zfTF2*m$=d6U2Xv*5pWQT}?l2a@8d;QOs!P1VffXju2r zmvSi?n}*@s^ZzVZL6fZ@n`rX>QT>)1W!INce0TlHbpz>b!AX%!ja!P9p9_3yzLRnu z_R|Gd+V+)hw2AZLLL9!>aws1uF@&ZyU&Mxo1)R;G&$>u;*4n(!YxWreJB{Kcuoo{*E6pY(@r($+U0 zA38p*-xtg6>s!}ZJ&knuG}Kmds9ovhx&Z7k&;oPZ;-AP`z3DSYCEVmb-NEPPqGO@2 z{ar;P%^hFomNJLqi~Jqydcz+!RQTrnV1E~n7WSRpqL(fB_@HMT6Hd5d`TooBQGC-E zm+muXhc&u#KC_v}4U#%bd+IA;m+DVurn1!Me)DT}A2?DDrd(DpN{Y*l4cG0yWaxO6 z?63>Il{Vk5?_9_Iyo9nI-7%tx*TIkR@B@YYZmz|*Cb4Hv0~;ha@m{}h96c;(qmAP| zYMMZb=GHkBrHit@43Sd2fTpCJ<~4iq+mWk*#1#bjc?D073h{jPzMzsgu~6;=K~cgG zEodWYS1E@@jb%B)8yI;oQbn0>ar%xrZHBXjRJ@f)wiXM~$Kr0lzc6yV^!I)qMhRD( z>^27xK5gXvSy1#PKxEBH=DT|4zY~2M``tU#N|z^&6;bX7&5wcc(f3@gy`n0i-3(XW zS^&Qxw)y9=kc@%pBo5p#8yQ!Oq)IneUMcdd8P7%*blhYZ3j zLHQ2C!*t^+RT3qbYaHAL8?C;z-X#T$$vx1;k5r|WnR(}!@;_RTsM*{U*Jl=JGDq$e z=HRhvIDm{B9O^4@NEGZ@PMB4_&6ynXu!#fK|QBx+!)Wu_ei4NMWNqo^_#KyD#1lOo>n@Eu0UELi*o9m;}d7$ zFtdkv^R|aN<;UT)Hk^cq>|jp2EA1-hM^FFogk;>)H{EDwW?c0eKH|{`BhI8^$@9CVCq>WH zQ7Xx%y6W1R7@5PF(Px7IIKoHe+vXQ~(SSWQiR7)w98}~5m{h_tX|j*=yPBO-SaBNL zEo1z?dPZC9s8941RhSF1>yT%p^vy(-Ef>7Nftd+7hfN)xhp~|yu%QNM{7TVA&ivg$ z>Gep6HS2F3yS^13Zhv!SE?Gz40omrYdds+r{&Rt=lW(%N*c5&38W(>S1U^Z)BD!!U$+ZOj849XJcob4yit5N$ zeH(@n6dHK?rCfE3$%sR^0gcSGUou=;E%urz0$p;$iysmapT|}kKBb)W0WjlJWO}fb zp>gDJAke|&rfKQ$5^`{9>d9$8-gy58YHx zTdy|5-<}l07jUrUk=o6D_KV!%!c)0wpB9$wXB_#WS~*v3HG?D`E6^fRW~bD zQE8K?uo}YEnW3wiZ)zQywVbJBkkh$d8Z`N6-6P{rR)gD1;`LQp-{y7ogjb774=PpA zfaBo{gdc|?M`#A;9<7~g-&kC}iE$a+fn)`jUujwZHXlQD5kCQZ6jlu~>#b`RXX{o3 zInH%pcJ#NLrZp6){MB13Qnp2&Cl>iV!|ICES98GD9@A%hS{@BcoV*TC`-#95caa#0 z+kbbg);3|oDf>}fn8Ub-`v1Q|{e8X67*70d$~~NZUxmxxN+Y;}oFY?fvGtz?iy2*? zFYl79GtvF}_)g2OQfCyDQ)>nGzw-3`KiG4XDqKQrS|H1S>a`3*5sKdujKC>0PX&eX zvn2XEct+t}x{l!_8I=`HtS>snPLjM$li5BeVAmbQ!`yMm5c;XteEC}l-;kJ}6VyHh zEt)f@ZXYNuu^g8EI@ZkisU=Qp1HV@ds#id}96zb4AH?AdrJ_!%Pf*YVh>|*i0QQ>L zocJmYsk=9nXc9`CEG_lJ8Dus{9>fVR9ZTZfcu-P{bNOLzEnwfBZG1iEq*9p_xwm+ z)V{X9@LTk8sHH@6S}FAuI%!nvr8+wN{A#Yg5$5y0dJ40r5${43$rU;=J3{~tO+Lhb zA1cRF0=euL80EU|Fv9juwHcNQ&`fdM;to8>t{ID+ZXpKy%+uF6Xm^~9@I|Rhi{}H6W~`h*QZrEgI%)gn=Dm& zu5Uo9_M|AvSBIqZ?~pu9W5ZQzlnS%|MuKSbBZsd2?F|G;-}W<1rtT)tXRl*>I9cfa zlBG)^cRZVrg2$$7Dm+$%c=VP^djLB?#J|+tIYE4N`DYt|w$*wPar#e@57EZ`5$xP+ zT=mzie4P=!qSR1cQP*t&f*j?z)H>aiB?RE5rsZ;IL}qzVUIN zPwLHF(G_Ro989+GsoYYd*`XIx_EoAd8&FLb?^DN$^6R_h->*`Mi2cU>S9ktdgR4;f zH~$$|YX9y#e-`|oT=?I;vrv&gZ%^GFpH+(Polr6@pBy;ttNEyPu>Fv-v3pw^d7i!P z3jdxyPdzvD3abUiJqO0jgyZ$cJS}Ood`o31L8<(X{rKj$Tj5Rd7W#eQjrGUO+~b*S zb`=O)_$`KC-*VP{CnR~Y--?mZA?|>~raO|$Vnca$uA;G(Y$t(4p+K$VYxDlzw-Ul1 zRqgJ+KBFhI9KU>mBo2vu?JF4n()3$fa3!5>qVYTo5X(7UtBjf z0aw>>767g!sWGJ)%(uT)V!AEgXEkP27wI^0_3+0NllqO*G7WYhi|9T5wME$1rU_K2 zfor)Mc|ZdzE{|tKGYc``@$^9#fE8_mDEL+O@YvJrj6RQt#GO?%!=Twc;RX&rSFk65 z0J&u=Y~q9eil#{vjS8D^qZb&ofx&~bf(zPE#Zjq_#rF!4nm$#;YHNStJId!vqj16I zJnyjpHMO}53~`CEGDLRW%O%*GS#wTos76uF3NDY9Q}&$|-l??h-kR;kSE5VS0XI0J z9lzL~H50iVx1St0TF$UsSa3MxuU~K%EchtLbiJ?mXhISel8c_4*{`$_(xUNgkN6b*gDczUwyuOYGTd|FTT9b~8V^1e3sm#cC z>D@h&&|9yjq(U~1#wqoj@7niDS7RU~MQrd*OlBg%y>xDJ0?QA4?fX8^Z>jTjxz7pqP>Q>yM z`4W29E~Z-hn`k)Wl;Ntb5XA;R)=W&tPD#dh@O%;$yehz9by&$xI;19C({GVEH5;?taRJXuk#ii3cHG>Ieh~|Q`6Z8THGh;vq050ke(LPS3^26F+$lXmt zg^a&Ao?^l{joIZ3z!pi3-Z=8h%%`9Xws%gmoX*q%`_=FG7V&KY@6vE!&}$0qgVZU` ztA#-Kw)YANLZUl8X?G8}&6hGu_3_`_c>}l|c_J7%pOaCZ3Bc1leB}pHz9GgpP3E2t zR#(AbtZTRyF6E9{RGZF_zP_;~`b1uo)aw=3@i@NASvmY1?>vM3IACw_TqKWs9B2fT ziFV;;`N`8B1XlZvVsM7v!BOv^W~k$Y4^m4>=fw{defsDXKR);SG!yao2@CoODrn&R zZdmD;{GtFd1ZWa%MI-3(?U!=?gGwjnhtopC=uA^@zs6qBhKE(=q-A6x6T7M$Yx=F< z!}Yh^H;#CZ`zzm*;G3UC706`(B>J`E-3h#KMXs_>NNF0=lAI7Ln4|=78BmTJF zz-Sr(1stkB+akX#0)yXsZ4>DU+(nD(1YG7$HP7QPLYfH#f?Z95YP+M{USR|nk%;@I>ED6dJBX7 zu~wjpA?PEqnYO9;pugXx#zuK%1iNI*h41+1-q8#nz^byC!aMACtoGnD0J$%ex?>9( z{p;8x?ZwX#VMF!q)3>E@5H!f-^R&_~AkcCT?yjBHLgZVhxvCwOpn!*oo+Hz_4fyR*pL=Fm#+gPt5x0CsX;cJoU6vZgN3A~msg-GME~?@LtYAX zByt_fZI!>pa42@9MY5PQpt@uDb+IhJEVVDU)3MAE*P}-;UbwOQcP_ATWqz%;Lfid2ah9z>rR<$u{ycQ@EF=*k)U) zjI!)}{B&@{zcm-h56AHD2h*PQ;3iCPb-jz#(KuYL)A?S_?j`v<+M&-^fpDi7Se%{h zYOIlrb6_A%YKjVZoGCNx?)7a8%_=`0CwIhZFx#@COKLxSM>2J;`gIl$ODyl>6mi{u zh1Ns#IRqXund(l;3Q^!jAB@kXQ_Rm5eyTFPSD@}JCyRZ^T$)DR@r0Y|OG!@JK@yji zIuf``SXKUgvS{n{rQRIZy3Cp9urVXV&RhhIh8SNRUHRshlt&=Eb)Ct%{KO!0g0{*` zqJV=GJ8>>0rJR%p56P8b0Y@r-wCI8a znCExYp4W+oET5FimOZ^9LA>K4+F5;}?y%NlMbS!)C0ajI?cAJtvcc>j&8>iaxb;RB z1>KNqtSwZb_0|5(Sy+HHVev!l1WI*`)k-<)lA9j;w{SfAiU2*R#hB?_6(CNglk;>c z%`P0WG*HbNlo7n2C9%RjG4M-c`s7`fngh=%CN`D0;EaHr!QykRmatL z9&vT=;FdkAz;YbHLqlpcy_$jK9cSMU4nGP#LDS6q??~uoLF}5C9884-_Oq{R%!`A@ z9632`#xr&;hx-=|W0xP)e1_xHaq5_J&O>5JmY(~YV%Y(0uYB>U3jUUz(Of^SIuX5q zqrV>0?L0b(6v(@jT$1l&VAP3>F$M?toAX4p=O3SL0D)fg>dA^eCy;Z!2kk0Zm;;lz zJwV|*HYV&{RF?k0C)elO-)wFH)kGfnj4K|SXoTk8Xd6IWndsKj-L8wYdZSwQeUhYl zivJ?^TDeB7bJ@4ln~@7&=-Ik5y~gQL?kjwhP0(I*!=xgw=9~QLlhgkj519^z?Ghmak=ST(mZlt`0_yriMS59b5;PzJa2pFnoG7V z?GgoGam6?hnTHupOSi&1;emE;uo>ZQgJNy3Wr^Hw6w3?{{V@&KCYJoDoi+X}0? z{bdH5g|yQRS8LTEFz3qljVppdeN+|K9ge0%QgR2RdVXw}4|u*-@aeAQP(6V=)&z(W z@T%T)&?`SS&^l3&jQmduzDmh>uKZ||N$=$!s=zL^w;%0m`=5hiCTzv|@ z{MrGlhzGlg3sDf*(8M;~7hT={Cy`A4JWdK3nK6~qUyptVbi~ipq^ZT-(M)Duehv8g zp{}XYr~Y*`%@9m>cJdOxnDpvk3s9vGYlUrAYX&~hl!6#}WhXsTiQrV81Wv>JbT)J> zSk%@hLot|i>Qo08ouXj&z2mb6$f~wU{~+mcmal%}GwTHn|A=13JEu6wO}-hyjihv+ zxuRy21?N3)8d!?iG$Kg*@i(1KJ;&OI#A!Zf7;43k;b6euT>-BB6?v>#rFro#KYbm)U)2OxR71%T+~ zPo;?A?i!;TuV;5XbKA9T=0rEBn9@@Kc8G#?FcTB(0|!=lo9c+ssY_udDMy-%KerDm z_h6HMLJ*FEa)BMAs=J*Ug?i2StMS>>N%K{ymaTnHFV1&Vl_9~47n>|lktepEtVtvw$oU{fKP_EN3$S@ZI$j zf~U)`?;56UsSR*9o}Z?g-lN{AxNKq^@$k&v;_TFyZABu z^2d-F^T^6#~&fgu)`q_7_i>x07XE0LX#?+u9ZVPJhw03Ico zcX-PAeSJdw(=Z1zN?N0WFur=1iVMKt9! zhFF}*R+1D2j|3I%0_Db!Ft*@;0dj4Do+(2fM8Tf#|M+h!%X$k9BV=8()53LzfM>yY`2AfxDZoJ_j@n+qG`A!a-MQ?L8xktjwAw%W_K> zh?@9bPaT*i)^orE$})Mq$c^rFOFY_?|~#_0{7_Qv9Ij?PV6X&fNfn zL1M-p9ULKs^*@sgi`@=XfsKK3HwKy2^YT3L4w)!_&T}+b91xGCsV9ihzwcb=TY$!f z>SA6_w$cIP#Dzy*LdwZQ&=f?)-9%}tXTxdejx)Rj&XFr+gK;nVhoHz{HdyZw=i9Xq zwNYO$l6?dcA?`#Jt>T<7zfS?3N4x?3=F*=YAVP?q>}#qRagVq#Rz{FU?vl5<)KC9(-bZd2R1=*g6i6V*A9x>A-XvF; z4=fhWM32s>#-KC*4QP9JibntBp+X9DWmY&amjyd>Z$BG-U_;&5C(_67t6}&>0_%^O zu&m_kZ2|1MwJ6r=h;Ls}tXJ?pvzCFEk!&mu3m5lJF2Du7(-nUusd1eUS zXy9gk?uNtG~ppW5L-6$giy({wj$XA z)$)D>CK9@js1LWh69f{kVikl+^RXlmCJOJ1alH#Df2BH>oSMtObcjkm!(!Coo%<4G z1L=vKcgoVVsgA-HmWQ7~Gm+HL0t1siWht&ezqyKMO%~;RB};97AR5D^j#*<>LtTH=>mJed3ga$`AW6=bHFnEt9Rr+@Yxwu>`j&A%ikx*1&E z{}Y_tV5nsuWz(L1*>i5waWX*b_3#8OF&W1pjo6EZ%K{3K#>aP$=Z8;2@d41pAE~^1 zoVq0ge_Xwu%4z~hh>xFYEw;u6Z)A)ikY`5ZLe=toHvqu@Wp zdKu@wsrquJA$!UO=4nYKfNJ39Z5PO8!N>O!9R&x@UX9u0z)R`a1|O*ztGS4%=wGpfT0j;E8jaqU4@I~Nq^V7K;nA~ za=Iz((9SS&#PE4Cw=Prhb&G_6;VJ1{(LAhk_%c0`!lyDRFB@Kqe=Z3xFDD`@aJeL& zidihWG(CZi9>{cy?smpIIxkl5!zg@Z6CGMgF2xvl`IrB!X04^tA2rBv+xQ>0e7Nqg1ARhvca!DFo(HaI)>_?^eS<# z&4W5VDB_m`u_FM*@PIe)c=>PZ)xTg&ZXGNv7?ZN$4`b`fOU-?bVdL~IxFWULjW%rH zfTNtf0kALuSfSRILe;yKy}Sw+vMqptKyku2pmfA z7I!xh6H6>cxdH{ihKE6UcW*@zQ)?WDrSWrnmzSf%n{3-Fjcz?|xnBE~K$SHm#D~1} z0Ft_7qsnKztDYc1n93s=@juIbAB(jQfJ51(H?fapf)m@{S6pZ-?3ycr>nyZBN)iZ^ zaqi+tfdRg+glG%%4Y3`aIpdBD^ErQq0MzcL!yT#RSN(vP0kI!fqbOSwK9zr2RqT7| zc1OEp9MXdP#`4@kh^cI|bSYD>m6X&y1a4OG=6#9B?L2ODZ7Ahin5g(;ampj68NRnX zUi~us^6^-BTN7{8h+w_B3g~ng9{hqb8(7*?g?|pBtM+9zsGdzX^sY;M?%=0(QkD-L z^iKLJ4;-wgA_Y5GB(vMuUw$0ZiR0hAth*Jw`j*uPT+DLl-CrhV2syXBI^Nkq;T8f2 zlPiV~o5No-y$}npXwx^KYmoV!g<8ION|C-R^pxJp@af3EQcgU$zu{B9K@{^sX`vm@ zW)$LZsbap!9s%_PZyC7UarG&5za=mqJ`Vb3l-!1G4MjRSq?%ZfSG9Jzp9<8L`{fVA zQ5iN$_WBUy%#Zvf5jP?eTewO~hEJ`pdwJkY`|JAKuZY`^W)FwPs6wXCq^eW#wo@Jj zC|Pteu9yUz?-+*NJ7P~;o z>Xxe}E#{Z6Pns|fyM_37Sd`t3WJsvh$;gpt@6vu8G3gTV-^IgD zuw|V;Hj-P*`EgZWe0)^eQb4J@gfJWX%7-01<)3JlLuURcj zzpFT71`(DJHKy`&`XBk&J(kRm-2sySqGAReG&lXnQ@E`DxFoA-tzw52g|*N{)NCLK|f*qGa%wZ})|e7bJP}Q>1Bz@}Muk6q;)0 zD~KfbEmO{UAe2S~jqba?Rkup7$T11yP(H~O_@*zvv}j%dR;62T6n5F+Pr)K!;h;8$ z$>@K|dpk?Yb6? ziqxqW4q!0RMSY&d9DTi|4yNs|u30$bwtNu_sZ96zgMQ5|9%cCoMmb6~MIY7yx9kpG zBU}_GHVI_MxHBzSj7^(!U;@>I2xgI9om8O)ssM!MV61U_dcY=eO@zR<&0nnRDGd{2 z?drBe^J3#zQ!vp+_wM4f-ET+r9id&KqpxEj>qklxAf)XNPI(troBZp}Gy50HWtNG& zt!-iR#4GC&!Jw2KK-=l~PA>`2vpH5v;r-#tVNwwqT0qThgo*AymU}}6i5cQ0Ewy-5 z5Lk$elV?$yulaXa6UjDpe9dtehu7Q~l$=M$Hj4rEB_y7gtQ8^lLXRg8^du*I;z15( z;3n_}0SE$zPXDtT`8VMIjdl9p{d)z6|ITmyudUWc2cs{_7qk}zA&CI<-S;Y%7u!UEw}>97uFev_gg-8O7>CCAFk(rE5uT1e1E_A z`CbDX$%)GHj=3)?<-@dhU3c36tTMwLzF=Y%MJqd1Q_k3Qlx#N!!nUIv2sPJ`P2Q1$sMsko+*Y1+OiI*w-M>Vi=q!{~%Pb9MyqQ5_Ny zGvG+&_BQfZwnGGWQNjl6UKSnlez#vDxLBPObmGYkk3aH3i#Q%{%}{%zA}nf_sJ+ZZ z#Lf&Px8L2;=%v?%(q8I_OZl1}jqMuP`nYT8xa;voX@hyXeC~OuBNCMO86m}cXJneF z-SqG98HQ0b`G#mlTz^5?^!4V=$~ElzKX3>WbQ*pmAwy@p8OAST-rA$Y%wJX) zny#~CeKNJJ(jIzQ^mqY9Vu%t9$|2jy>F~|U&r_~ZRUFcQs_OU@Dx_B53yViXa6US9lay(lq8HXYhbuwiwTZlZ z=_Ic&Icn#D<5h+T4gFCq<@9M&Nd^_W*?jWBxDDEg<2k;>+F?n7<0`pf_td{`BxXIT zQd@t*K$pa-Mvax}zKg9_I~9bpMMe0IP~z8`zv1hjOnqL?`2RE+qnmGc%mm7T^;Ejn6)oX^k=8M z2jLh0m`bjLcNwzMTs3wQe#GRScjhkNC!;PhilQgBt}AtJ@(*_D!IZR&D(JNPpmSm& zjU9x&oXh}k{*XKvDMbvuo0~*h&u!+Ns_#qX9Vk;4d5^eOK6h7s($9pCyz({$obL2& z%=CBl%iDCv@((_T8Gp!_d!@3)Ersa#nen>3#vyg9CqWD*KMXwmhccFO6z2z6;}t1+naJLbZpZKJ+K$s@AObcPB0bU#O8 zd1@R!+rw-gi>j96{SksX9sberR*1G7sW?qu;ix_~RA7Em4Fl)^4i)OC zpkwhtZ_0%)&wF1P@a#BHLPj%xsSp-_B&CS$u?tzOiU8QNa{l5MUoX}o14=_`BG!E| zg|3>m z@O-^Qc?v^&V$LjPxoP{!tETVrj+>7#;>tJG;NG#Hya zsblH6@ND^(NCHf!7)I`6dTJ|tEZ^zL(3WgXWrIeqU_)=`zdIIy=%NS9=&5t~b=6K{Ad zM=aD)elnh8Xo1Hr=Hn81J(WFr*nvV!#?x9iT8U*Z0mtlAWh#UH@QZ~6^l_8}EQ9E7 zW#Si0`<{u-(A9iBBgtu0&a_DC0KEZzs?}1dX{NisZw+g+f45k7^I!~veB&#nl+p@c zjE^}id0n1aE8=cR3pSq7^6bl(dOR@v?0fF66y0Xg6sJMR5%*V^uTMOykD$+H{_dmZ zLzY%u_r&%KL7Ahm-f3clM{RLcpf`cxKB8t+{GhitG>Wd4J4RPfP( zt(1C=Lp>9Dob{R^x19&FemwO`l=mkJfv#>gJKQSvfcuD|GKqbN0C@Gtgl#o@-JKGK z9E5JIH958t`-sBtjl8a-JtNAYv8TK@fdC>$5YmnI?w&R*zA!;e?_eep= zb`%!#vwsW6*ogT&X4iW?-0m?8syl8*G4xC#9k16s{Qd@UneqH<>rfHUBkU`zb{q9W zBR6yKM(#3g_>e0s^Nz;UgkfWSg)bf3_YR*NLL3Ljt;#w=8M={8gMr-gfrl7NAz+9^ zPpW)@7}+h|IX?g)5QAGoTy7u-bE{-ZwVvD9V!j+qSCt!0UBvbdU6LwpH!3SFvRk7P zRN0-dX5iqykdYK#6!lY=w0rE6p-z|c_;OklgtVqldr2k4{R8JY{Po?+imxxrrqK_c z{9|D)Y3H-COv;vyI%u5BxO3k8ayO+~lfC1Z?GR9D4ccp z9J%d{N5O!xAGyPzCV--63nTVi1NBf~VV<=V8_l8>lejwreENXb}*0CmoH`84v$r7 zy^A49W4;8l->S0bCBvF!iVkEt2mqvX=6R_naXCq4i0w;2AyXe znC`PUm`bq77ClK#iN-f6Y74RcD-FwYfD=K@u^6=Q9JOwGI(K%ki-M0mG{S@OI{~G- zf(3`m96^jip7WAXe9JLki&|oenFMR&&qx71XLY}wZ*nf)EAUKE7{8@a?acWK!}O*Q3Mu^#^^zh-K(OvjP*u!%>=}zKvkvqAf6i^dSu;UfeIZbm&abTF zMAIw}PUrllT;GOQtIJ=ks0zPwO!vA{UHOb@iKz+*9dcXS9h5hq2>bd^s#_8vFb1;d zehsg3MZso>$`$HG*3FIm#h-#WtX4oYlX@k_8qHRG^wrziD|{HT#*Q&ZR`6tXtObyWi0$dv=faA zWD4;!`lR5V!2{DV27^eq?%&r;OzA-hkkx`mOUO}Y>wW6G-DCMuKfgD~%oyXT7DcNNK24&rpz`Sm(@+r=zPhE{wmk zQ>nnwjY;$t7n$Jodj}^xtK@DIpZ;SifCb2!I|q>TFjb?HtzqkbYY2t^V(iPB9OZ#6 ze~=!;YKceh7-NhL2Fx26WOlO~`1Mz6*EbInb0emsJGv^OOrb6FoK)sXx4HwPk9$9| z28yr(lZ30V#&&ot1vp(?uv%JUSI@Zv) z1OwHxH8gQ_pgyB;%64U76&_fR74T0qzD$C*KCHN7q=%0^?sHs-=`UT-xsF&r^J~@R z90|1}a;tBTuaF`tRrmnSJmHHac0+aZOd)o}p_Xbljjz{>K7?{%Sg|?^?U*FepEUhm zXek%gIB`)BkJV5pvGTq8xnOi;R@i_NKhwhihI{wlLji?C{c=(1Cq^efDH+O0Z zt}KtZu%qCk^!mQwlUFs@su%E&3H-$mr7cj01ZcgF9bhie$_rvW%)XeP%o^rx&3~Il z6g>F=BFeT_lu!ct>zEd2#+pQUuwSpHrYz#W+uJ=+>Qz#&;>Zkb0rvweV1%b=mA!h( z4Cn{Hj|*4}?-gt)+%f6F_1tQdFD;#%b}~=xGcZ&Exxs%*q4!TS`r_U|p`a`~fZyev zE+O>8a?C@e-of{WPWZ0++R_cjfhJklXHlnbf9~o>N8!m$EPB`nzbpdSM6&l>9&7S6 z4)GyAL!md<;`a&E>YX_-z0+-FP`Bmv*JOBp!dM8Hi#tE&OBd{92LwajL!l(e&p5Vvl}?{d-6$3yc<=aQI&8pcoP3Ua!-hJP9&xw$tk~QD z$Nt>^(AROPHKk0&L4@o03k|zD22+%?AsmK|pD?SBvLy?Gd$7ZbdCV$@Sj!kSWomkEWyLf$wUk-*o zQ@4)sOOtGTiFLCVx*5Ta`{lG3728fdP-J`fIL+FOf-_EGz=KoVlWnL}_B2XgY>4~U zv0vFwK!U}d+H-0Q9@z5ik^;#UbmKF(0pUo<-96B zHG-t@ulywpFlLErsxDSSI8Q2LX!B3OZ(r zB$xA~%!Tg&^CqIceK2%-HbU|gCjF}Qt#yH-^I4;FI&Q~A{#hHL#j2Us5`fZ;wIFLP z#LHEr`)Xf5KW$ym$ax|vp9_dNgeDNYtH+I8%o66?5jLi+NY3}pMfnZms*aEubG-6qEQSmYqWGEELck! z^I=~h)97oM)MhecBoMd_U}!2j?4}xCsLdlFE=8FP{4d=G3khDTg0<)t? zHI57=@5Mo5m(<;-bc237509}uZ{}n<~?# z8&H)k_JTtTQumlGg3yVh5TQfsMER=_UOK%q?+A9EdF40Bn03Z#&TK7LQFNf_wlc&K+^9+uP8r_ySFk%Q z(hF;znV|b`QNpu9_v+Z_+RN+v&}z6daLLf)x9EVhe`PV*i(mN(_mqXM_uvzIQZx2u z!Jox$If`iB9ECwZY%2df@cPa;aP};Tf_s~6IW?baxTaLa@V?}uqAkqyFSW`$BJnFt zHC3&-bW9)+gvc5I|4xcPN~rVxu7Bi_4q4&}DGotursf2}tV^p5`Wt)zn{ii6o5oCS zTd{0++`EMrf6Q=Ah1#vSr`g`r3#$^|&a4nioD#en1*Ug=@jxN)>_)%Y;>frjzIFOT4n+`K z_Y=G@#goYEheR|`6c{xYYBz9?AM5*3`0zf5+`Bl#%YdNY-ao7k%AqG=;wVDgfkVMt z!e73PbqIC9xg3H;tCS)#snMi1*!aIpkPld-^TKh`5CZW{sT8>|S9trhyMgQvq89pp zDMoixq7o)7rAxpi3haTA}7Ggn%MUg8W- zaQIH}SD23^DBPW^hz~2GRDuV~fX&w;jIx3F!BxgXct@wFB<M>7Nm#mra+ z3->CN5fEt0#}b4rNhyB?KS<2Q(}@-D%j%=}KP6b0^y}aYQgU3RNIVk^t{)9btNvw% z;%-&Q*{Hp&D@$0G1BX|UUC7~IG4GUvVTFrb^CCPJEAlBa?O0TD zS=%+-Y*d+&i3;a*_?D%y5)h`CKu{^PYBJt*aVmZx0?Xx$N~2E_@F<^^oP#&GA8PXA zu3~pGkpeZ$;)9Eu_;4Gq__IwKxARQsu|hA+txi7WUU0o`f3+3V7|^+8ZDpAtL_o|( zoPZE;yiI=;fW^cG6hTSgX!%R<=K#?7%+9>!6TmV-Dp}$ENGy2eoHt z{-<$qmuzsPi>)G}EGk_v8CitXucZ1J2Z9rsNH#Zm5dp-G^u9MZ-PSBN;Z z&c7jp#k+5d9r7pVb-&hl^Bl~zGO8+*y=`4Rh56k;u2_;46Wzf4LJ^~@pFMaVcWM$_ zh#i~R6{hpg1)TWpl6Fs4ZH1 z>%>B5Yso}$UqV*+HxFKx54D-w;M(q^qIJy+FQVyC1 z!4SndxH9?IMj212vc|14Y0&2&5&{X>vJ0F>8eg!aP#Ma0XWX#5ntn`*ntt<8EZPWV zneQl2klJe{D1F^eN-Jm`rX0VLR5pJ@&x-O-RW$nKS=p@O(8Ls7kp1p1jfdfvI57#L z(pkY_ogu!=a^XrhcgGiIUYFI#Z^susX&EQp;FTU(I(I!>0BZ{9s{S-t>0K|S9K;=j z$>X=mBTK!ajy-gBk&gYK#`>aXJr^8VxsTZp?=#xLK2o=#grGsZ!D8c!uy;pofS?@%yg#61kipk_qy zk^Bh=zH%uZeN8SG8HyFuuS5Q`hh5cCimps@2*njf9I)oGO|J*@sHQD3a0x6XqVuII zlXobcc}wC%m{1cDLD|EvJ!=7F`*>P_g1>_G=G~>jyE9LMh-}n1^EGeQc_&(t zFc9h2cWN-tvFcOHZavZOEJrwH^~#5SWGzKaaJYLl{XR%zoepUtFg@djOjS#!)4hxn z&XMVFTc1mcb=FMY#v+l9sr97skxV-FT)_fCvwzX zbd{+8GSKHTCY7rLJ`H@u$g#LQeaaBazdET=Y807+k}DQP^!0Y}6&?&Bw-M9^eKIl$ zCLwiElrw2hc^_X5j-c5hug{w9YN3Sm?}nuWd(xkFAM!!<#}%CfcLQq z%o^ld8|`YPe^S;5*T-0NbpjmAJ5-_QQGXCl3wQv9Tr#K6h*-2IAN*(qL3jB5zQMLi zky33{7w$n5Z_G7J&|Qnp1-`BPu#Mm|vVBL(bBFgy6%wEbbP|_Zea8w|Lu7k@x^rJ5 ziP$FlqlLQgyzr(QIh~{v8>NmfLFFz7x}1e%H2PLCP`dPJCFIHQJTc8wWoN3R4ab~6 z{#RRZi7F+xmR>?SMX}0w_T~`)GH{!vniU)=YS*7K=)ZgYC}dsen1`YKq%ICVDOp{_ z+M6>80duvgenW;wV(V~9qzLTe>Kr>G&8-c&nH^kp!Tc>LUL9@~8$Y^P}*!s$}HJ;nH3z2VNkK8ic7g zQ9^hSC7tf#^`U>=SBFi*xAIxM9EM@u$pwKG6`T;jPPr(I+zUj z@G}k}+*`}LM;m2NfuSD>!>7KEm3@gu)}_<*R(a5V`msG!uiG*qt$u1@h;9|=Gl%~Q zd;{*tR^H+i{v5p!6;g;P#Mopb*^lq5IOJu~Y08;W7Ja21#Wq~LSn6h|-!{s%ryg&&AWyFtmKMRrk!9@XU zx=#aZLFLd3CS`6$03C2OboY8a9?kg|S-Kl(4ZE~)rjJ{C4@~!3tyHFYE+@I_d0#%j zp%cz)Ga2ucYfB~*&cD-b`(0b)aFu%H!g(%C#M=4I;pfAmLvm=}B zv2j(nGshH4DJ74}6p-BnGu;oAC-A~csy*x8btP)M4{k8>o4=GxwTrC&g93_bgh4t0 zv@^qoGR^OvHx*XSAPV7pg59wAvR6R8hXV@M@*W85gJ}LyotJ#uB)ET?v#RKSyF%-!F>vP(jEFw9#?SXg4+CH zY}|ia7EyY8B@d{HrZXwrGoz;y83JbzVsG7qhA8%fiTKN#(``M7=ytTxc}p$jp|nKD zvtbm5w_hGCh`p@()>6u=tZkzw#T~hj=~jIQ?tJuoMG^0WfrQhl)JNM}Blj4>_z3>f+V%j> z^H@2zUYP}?p$i@A+hu@f$dgJ~jU5zU+?o_VKKyrU2Dj4qRsp9rUXr~U!EfmtZP#wRJ-+dM7hVK(tx9Bl9p4$jT+0NyzJ~clCYqDGerz2Zi z@`F2T3p#z&w|L8i!2c*s(I0U|9}LqxRIzQ`HsGaxxs)xnuz;<=Y9hB1Jc_CQ2j{{^ z=(M|UQB%h{&nqXolhv{i@pgFyaAJKn9WYai#CeWPgbE3OThK!hC6SMpp?qhM%(o3u z-0T;`z}t2u_r2QbM-JV{A;MfVG)#VPyqr6iZw~=@J^)5Qxxb$$DMCmP?#Mty zESXiF9SXEK%3IFlPqiaS7jS^niEAe)#l3RxrO=Z?aD}^hY`A?(A+UbWDFd~E;;s0} zGBx#xCg7qP&qO>nWtjxN+Ni>B4h_BgAQ4tFby2bi2@|`|Zfk*wH~%kvg8$bRz`s@g z35vybtW&sWZpL>tO$W*1&jK$iUL@tBP$u4^r@+)yL}itRfx@~^VOI11Pq>*f=@&SG z@mHmOAoD70l&lWN&?`oqeT~7BiI0rq7jxxEF?YsMq-Bom zRb}t^{a_ixFYFBb@!PIAV47c6x^&>-22H-Cvc47Q4Euox3kjJJiH+wfV&xBOeu3W> ztOK~Sr3&cgal0BdLVoB=uH$kQDrKGt;I8Cv%tSW7o2E;uuZcZGrVPK#w~TeYnsyT6 z-JQcEbXmGWa#5D28uY@-?$Y4>OA2MZ1~bVEy_g)4#OS_fW=5-izg*~%R0{%K+IOv` zDGz)IJZ0c_k8pM_z>oUj$g_qI=kZ1M6k z_~+dXv&*YPB?<8vzFVvsSN;rmx<_Nf@bRmb!iqn}3!t!z58{U~{{lhrW<+y^Mn!Ts zi=sXo>>+xNZ_^INiA1rc+*!({TDA+p+D0l00K~G1m-HC#2kCLS=Ynxm z2~(P+2q*uGa0+<{*Vi>nMQOQFTtPQ?dsj{=+sltZHh~vgx~~Oyh;k9HE0kAyt|Eiat%pZG=(28Km9{8=(j*!gA2?w>_sPzNFLmxNAF`+Tr~#DhtliT zQyi?jo`BpFUligbbZ3zd0U_g>hFGeGYIze#2`Q{ z%f>dw7*l`&d&eX*88aJr`d<|N-R0f%>2s=!1`UxBQf4H{+NnlwMif>bJ1WysKr!Ta zW<5V(bbCw*6`sbheR5x+JLxi@l9V7B=ycRI*e}4WdCaM^Tyfq`=HI^!zlP5SJ1iym zXN>_yE1}3&zib9>p!pId{L)U4UJCG6Vo zQr})6rg-(T{ikp(-Z0`^fMxQG*4uHRbxUl+Eg6sGx@D@}`|W$VsD(f^LaOd;dkUuK z6nY$n;u!aBwpM7S`DE3n4;4aVsv|Zzk5q?z*%Jsrg)iKuMu#_05&-PeiAXr0*meqj zZVtPHS%_)eX(^iP6txt8OskJkqhF@=q{Z&9kYyq~@*j7Rd0}nWIc$i16hcw0qjE`n zv*h}AHx|Rwl$zDE)D?1MfgeUqO*&s^Gc%7((KP{ma`~}?2q)6a^dJWhGCo^&i_5n0 z=b|tk+WTyp2<9n@*~@x)SU@g!D*|i2?AL}z*W#}C?Qf1BPEdsLIsRqDiHA3aEdF5x z61TZQvC6{8L?>j6iqs8$htI*xl7==ZWhFXl4koX1uC zVNc|%d|4e6w)4Y_m}M_T?cuR3BN$NyiGTX~Y1dHF-32g*5(ptr-&mCz!TQ}f1*^b% z83=&!UCMpExj2HMuqX0g8!|-cGJSf(T`oU2vL4Z|zw+^9iqXI#@W^VRC^W}KhF_R` zi5zQZ8p~1B&-6_yDff&pE9iPu|2ftw2PndGbCw@056mz9tUqAw+;~S{sN`g!iAG*F z*PB<-UkiN8d-WD8xJaB2$=Xv2z5n_gZ57r81}4^dKUWb$6#Gj#Nq+#d_yXW&jVK;x zmR;L=x*U94l61RCkdrcNgjtY->k&pl2$&td3hh7PlaDpi#lOH3jEuy8)d}|M{JYb% za~9Okz@Zohl2+ymh0hrZ3VSJ;I=PZdQ3;5K+u1homI1wyrM1k#r;6ujq7e3p|L%e| z@khD%<(ZbhGf{4HGXJxXOBb;6B}maHD+|a#&#>5=1qU*otP5-Ccw07}oC}4K);Nkp za$D;fMe(JuZv-yyX4QB*l&AuYT~f>A_dF0bpF;E+R>8?so~}DY&UpSNN9G2wRW{2* zcr%w;(^ro^6O#5VWf*g}+YusIJ>j*E5cm}b$2Ts0J6qCnr!UvUCek#sXjV9LEd69| zVe~2bp_kJ)x%Q*Z4`oE^B&8B*kMVoyr8j|Xh2?mnV|!Mk^}f|;dLay)-D>3aFJ-|w zJmRVS*J%i7bol+EuuK{Ng-gxB*Wd|*rqR7tRjY$-S;_N&u|ZdwWK%(8*7UcV^=sA( zn?tge?SMv{H?4;pkthCIL)0FUOk8a-e|YCCuSNG{ekqIXd`UQauyTT04Q|x}9}*Fy zRYASZZExjb(x=-OugTxKeXOD&)UdG{-UR81zWAh_D;{=nstWE}pf-Gp9xDFJ zUO-~coeE!R&Pl=r^Q*I`;jx$Xvn&5BYybL5ja;1KHNAkiu0%Y;T=Qw>fY1m>sD9_Q zk;nlfEP4Se8f9T-B|N)MqP^ChoU=92Vu|5UwEv2R4)0Ej_!IQtp(s>Y{L-3F5_K(uBETtopv!Ml0h>FJ`<%GLX(0krE%WRy zQ8~qY7lq#mJk}z=qA_85fY)K|5hP1MP+dxJcA*$XmZ%}SL$b$ihiN|a77IpeR`~7? zNwd2}muC*nhM6(;)offrE*x0psy5OMhZHwk*2+)R_rf{6tqv)Ngb^U{=&SrakXKey zCQ6p#Co;hS-`+C`jj({devbj=NP}6erF48S!$XzZBAvY{3N)m3f;vzfT=)t%S8G?ik=?R3Im zkz^nU=EzEv`~a0h)$5U81-PY87x9!NHzr#zqswa7IYQN@@-Mg?M?JB<$mB9<7{^wK zs@a{_+@w6Al$OHGsGW5mtd}}f?cY~x^Y%;l9+Z_!N<|dXMVr*wt=`7&k15c;M zgReKAC&A5e+a?r_{Rct$=@)GGO_jHxu))oDngm||JYQ}oAI$B96SIO)(AY2nRK`!b z-|N*PRSEqf=1m2*_nb;B-`6Q%_}B)wHoFNdB>_xj^FXTagkSrr@b4TPw=k-}uhiE% zWo_(hg)GyNaG5CXvX6gds0d_#*jFem*o>uL!4L7ZwD=~_EV!3b z707h|@7{kMtZGEqi@kAdJ;1DbUtR3E!5UX5^dDBVRD469mMkq;y57JoxJgBu$!m)m zI?lnF>GYfFhdh9RC7FV&j(g#}jp3c_#`R`(=mNSTxg2J`A866{cbSQpj;L(!1y;E0 zdkE5KZGK57f*U1U)4}oYeZ~7UvJ}w!Ao-U{ohSWf+3eai8)G+HAXtN(x|PblKmPc3w5EFhnlgKa zMe9_sP{a}5{Ij%7Ry0Xc_$7jhgE6u%rKhin3!H&2DqhjC<~vn~CtnKX7to+)?P*gt@6J5o@}Azg!A4v5f*3!+;q6%e8! z!Bn2Su`TS;k&M`5M-@vAkKN$=jplv2lShf44&}9n2!Rb!%sfDuwqC>=;%Er{y~edh+xc@31Jvi)d)n zsj8JRrWDbUf3v(umZG3iVcf3a)RN`isaR81u8wa!??sO8uZWTs{FACuBCLm={MrE? ziJeE%;bPmkUt3%zvRS^1PlJX7%(J8Zv&H2UA9A`mjmV5(|4CFCN)v;1e;=-}Bq!v{ z;utD{Igi|8tT#QoXNQgT=Q8KfhyqSyd9~oN_-CvB2*FWh4xi7by^1@Qoc!qxbU(}2 z6hJ-d(;zvK{jFIYjqX(SD@}3Aydx^dL%tV_XI-C)8%yl5<2C_a_-LUl-9d!(DW^^c zY!D^C6V*>kbFa#!&(p|hY5GYRY86ldER1s2y{yTX9IA?q1>Z-`Ca3hYc@c;$+T$ls z<%HqBEU}&|u{mVyvuzG7z&UU~yf^x$YD(^H5G^FEjh1w}&eF6Qrz<;t;nTz1U~}68 zrDI@u{<|LXoVQ6*JP8W$nFjSQ1*&oS1&8&}^y! zgDRrxha1tO0LLob$~-6YLsw1Pj+9LqYuWibQIOI23(q)@DlHb=fcp%uR5oBA<`Vkg z5OxAQjn-PyAhA3Ol1r~qHMVU%uC7Wu;H&H+#f-bCc=fnB1&BB!mzY_KuW(;|zu+ua z$cM;QC-Nbg?~=oNu#9%Om0!UYb@>50;hDm~zIV3c2&w#XaFYiZtp z5A2g0JS6#;cx<_Auc|a(j(3&I>|csPQqLwOxDhTjGrhibT#|w#dDX3%joyI~`7w5> zTz=?Oa6F&eVcP1r5kG~iPK7`H){1JnQ-8(*(9PV!XLuYsqCj`tm*uB=aWZoQjvEhP zAN#pW2|NsOAMt=8$ll;97IVNH8+pwbQh)(79aH*o>lsFI$Uf=dqqX-mbP6E};(XUH z20XC4Pn@>CMEbfmzaM-{^auI*=OM{+eUPIv{I+qTp7pmWSplC(W9hI&LZ z8R5h-q~n>~O9r=zAI?x>e|A_STt~OvbRJD5mLsxryionRloU*{_lN@Bi?00Q8CC?(&8RNS54n%IBDbRzhTk1JP+T=Xr9jcK zon{3-PA~4dk)`jvG)-80#S@mfr-RFo^fVClU-5~qK#Rt#{T>@Lb*2fO7$J5?q8NPi zS?{g-H}dRDd~Ie{fC1UgzWhl7OT8WwlFYPXrNAT@kLx`2n1R-1C+=aiTdkN zPM~8gj`1(t6HBV48^%vBUJey#qFOi9u*Z`1`BF}e7Qkqz#2!=~xg#hBCp7-cb69!V zk7E~X?x0ws{75sbS6qe?#Sj55Gmt&X!76yl5uHeW(!c^KBowUTw{MillroveE|w0% zhKIJtE|&$wdL@)kw=ic{ERhcObk4sHU<9m56N_LtD=Av*pB zDx=Vld+PpW_tDk=lY9a(zOssUXTXl=3~x(u-M+<8YOJX-?<@*Y1nE@!o;hjwoE*l? zz^ZKFpD)ncS~BfWbT)tugZ0z{@T4znqn}xx?&Nm~%-97xHA@z7D*8!9{oC5@^}-H*Sb6px^d z7d);>1kb8Fm~i(SPHJ;{C1-d5CE2NdY}5Dtd*G@69dy$(f}B0=j=6X8AB%M+?*ej- zth|6pUWth&v2GVmmUchY7x(bc4gE}2S`HsxRd5rq;KIP|ez`#o^59;X(hn~k$H~VU z|9<&bm9m3S@`d*HEjSS0I%YYoEg4^KBtJ;Uf$MmzxW&>JTQE*3tDx)lKtFAz)e|Jn z*`r3qNZBaAQch8y*BX~ilH*$W0{6L3_H=*ZyMK4956l`ooGXhfA*-x~g-kF)Wt$X! zvH+)|F#~5lZ@(3~0OiyHV?pLnyvEh%#(woEZY^EM1Ek`+V+FtAa&pqw9?LCC$gXuM z93}tk7mmycFl--ThcAT#TRe0<#B85KFO>TPlAZFk+A&>FLHZvbe8i^~c--1Hbg7H= z5LjmqeSUfiWP9N5etLe_BxIeiH4#m09`P~RwbG=a3a?%ZavQ~RT)rh&RUiALFSrc8x{PwA{ed73bgG^c&N4+;e7tW?`^1+Y!xZoGK zRgyJiG#-A(r`W1$2+l&?`@L~4y3o0A{IDorK`d8qg9Xxklw3%8)wnZPQg>kauW-gm z?|Fs2cpW>+qA}3vl-U66%{&JS1tYQ}UkmKVJl~F;TS_TVyLua+lLX#A<_&blWu6`5 zVoXaP!tvdu6-V`%$$i=o?VwWm@OT{Z!TfFM+H->^kp!&Q1NGlGJ|vr0Vu&9)nbSX zrUtw%o~uQIeYRgcaSAGg?#s8njHvY=K?;`LD%@1bA`@nKi|ph+_<|GsxqEeBZWq?- znFkr~eC@D4f>5H=kJLBNaQC>BJHT?Ndjly-g0YM!Qr;=1y6YJ`Q}#q0YdMW=C^n}A z=UKd+EXl0R5(@b1EhS4igAIThg<_@3pP_XuDcF%-UCfJyS<$IJ-y2&OhU}vvB1v`8hkLsi_7d)8C?JXXKa*Vz-8Yx3F zi?4USbZzp)Otn~RmcI16lRbX;c<(od*NfHT82m$QvN^>%@MX1&`laKfE)G15lgRog z@Q!ai)m7_kgpP;w>G^oF1$hcVvw9XcBXbMgY$;Un*(j z<^D$%ZK?wuyA|P}?>W|9hL+Qz=dojS!3+WT6UKLWY>YOVomPpgWemrzw6x>Do?ILp zRx>Zm!UOsC_&|0Q($_yaO2zI)4>QsXAJG-w%_P2XHwFdqSy6GS?YoDGw4 zwu2xaumcO5L;NXg^d8!`FIifT2VK%-N!7k~#xUpSKY+V1dY zOmo!z!tMps@pP}=$-j2V7Q;_Fp);#qm78bSSRdrw5G9mxiakSNTIAF#XS%|le$wE# z9TD8|8j}*i=$sTeug>+ z^=uG3Dv@72_c0$HHv}Z|XPERKeKu+Wz;DcwHT@A=o|&3*6Uv{_GaOdA$11bkRxsey zzbK)q*Jd^H_u@aoPX{SnGr$~oE!nqUh;^d!>4vcJ>&ZB$njcblH|9i+M4@v zH2N)}5w{@=Af1=N9TQHLLlB4jA)*1Wcp~8#-^|h7MTuryy4cJ|sdDwpekM}6Xi-x* zYZneq3Vnemhb`|5^NsOB1?h7?`w}~cDY?l1cm1IT?}9xsY1OZiE4c*- zvU~F~h~b|#088EucHlngtUyL9w^1&0J*}XoP{#qM5q7h(~F9LYUwEL`C{;gb6+ydAjRr|{xLY= ze`e8dYdy+5m?=S&g}|&rHdvi}oMH$$%8zbTk(X$|lD{ToLpJxm!0jQn!?A2d6`v`i z|CXOh^8dZzFU4egRN@Y1;g|pPZ98NFKQKqx*j;f)xl3>S22m=D6VPI{U~R{_v&5;` zBN@FY{*D!qfy{};mQ_U#T+SK1{2qFr0eg{es)B}(R-)1?u7h#T@s8{$uV~+3Y9+9PX^48#3-Cl-cyd!1 z8dO2TE)(eHx2^H=ssjEFp1ne8`L3c<^R%{H5d(hT!z=fvPaaH9OI+ZBY=5ssYu0`D z1kZ*G*u!70vpNfaeMUCNPZ2l~F0gH5?N{s&b!{MIZh^i^Wo>tcZ)>KJ!y6C`&S0j3 zaxaNG7YngSq5G%?ohM z*Mt8SH}J6#48Bg@*`8bO_JLC;%Gt!+r)X;@Mf**mBrj8lg`&@b;e_SOhq{$r?om4G z1~SlVjBf+08;ri8zrds@2z;u-A|P^x9kVonL9R+sbZXObYi!531Y+?qM%0JAF^KH%)KZ_ z;A+=GI8t3d%UCM4Jg!r5Gim$;#Qtm8xSBgsKYn9oCX80sA$hp&+9KPI_B48KarqkZ zIE(@j7$XXQ0CC)(;qc=RWV5bdhZh2iP}9^u_#*a9r{p&XCzcVY>0hryQ; z`U&es^uz*H>)bzln zpdP}_6#FwPM1#|p{Hp2(!Mp3jpiVA_uQ;a^CG0X{(#^l9D$>%&0TA67GQWiB>-HEG zAMSZDS=l3e*u^E4T4g-Hm!wvG+I;e z3|xQSL>)ll$CV7s2!E_Jpr{x}(PwS4#CMnNcObYF(;+K5t%=9LoUS)g(SP9!@Yhk6 zwb-(NruAFTeqQz6|3sR(#c%!=jkDO|ZP&$=>{P0rvl~dfpkoz2o?KZq3x(1G;m{n> z_b`oh$=XQ(rmm<>sG`(PMcBBZ9xInqqv76MpW9rXXV!A$4i39`^hxghh(47GD{pPS zWPHj_9R3rJ`^W7qsopZe55O_4y5PGpewbLeQw3g>1t~;I(>|VYWg#>W`$}cLRqSO% zX8^bTW!NKMGG6~^hc~Y7Ro9jKx}*dT{3n0LH#-+M2)tj`XbKf~qdJE+Mch_RaG{o1 zmPXc&EA3b^bjQoM+1J`eKYjB8kQ{Q^uGriR(U9-m-QwkHnup6%!ic!8gNL_P&#F=s zRc|YvL*82QWH;gk^1AthpK-WPACv3)=*zxX38cB@{0}=CmQ>e`K}vPM*X(B)#c_Gf z9D8|=mM#l-t-o8ZVKt0YcAz6TAz4)ty2j=fRWX%I z#X`zW>-$98(gt-Ki#BuNkEW_k4qG zieYsfzhtc`AC3LpDIQ*RI&j~&=6N&?yjIVo$w6N-XmH{U{utdg>>{{Yt3aq6V!S(jghax`VWHqFHYUqm5yPVET{njhrt1>092 zx!zNqKVlR(!;k|2$Qb4OY_Xx{t5Vaiqu0QxH>(=SmX2Pi7Fa(MFOl%x$4wJ@tlrl; z!ErR`D}e>Qo+tF8E5nzQSv8+k4f6ubvZFTaoZkmtjZ4A7p3INEmeP`@LLLUA{CLFh zGdPl@m9Gwu^PI^r@t1I)4US_)@%qQn?u}ftQe`{XShrI)d@rm$8q*cNF9AXDVwbg4 z=c>i(@ydy_d^b)Zu7I5PAHctbo(`7u?sc!X%&xQfhk9j2%6NWLDXj0(H=X3Pl{<&a zfz#1(I;tWLdUlVuDu-yxgr!HeSKJ>ltbqjI2g-B4U~_X5-6jsxPvC`N?GKiTjqqD) z&n$fD69i@4Sh9Gdr=*_{c(Y_|?Uf!eFpIr$BB=-#f`=iX4IUSrvl_OnX?t(s8YMI7 zPxJ1t&BSL`snqAIwmw_d0L#x+qJL4R08I^1O=O05LDZCuI~6rWfKnGdS=IOAFtE7V zXpU(zV=B^k`^UamHwNIBKaUPvZIh-emLaIE9y2;;tKB%yA6Wo?W3leurqOh=wY^)~ zE02b@(oX;aHeGUQp;Qw69+|=`;%hFJB41C`aDx$)sUhBrQ|8q8rcHic1w=idEg+C9 zu|jB3tj2;uhYRh2UBo!BHk3a|gY+$ah3u7f!d)2$N|240gc#>fVWmfvNG}94FSjz$ zcHu4@)C<13nkOQd(cF;3$RZWKx1e13&s@)Q_3byRY!7<9-2bps;pq8a_m=s0U#FS2 z$2TIyXyx2qdLu<|+4jtHcI=(+>0Ey<%ShMfoe*v0_8tFU8fty_^1r_Mb76-QzlBEi z`|+>(=zl!4-YvH6UAPZw?rmb%&6j7Vd=YJO+p{KpxlM?F+(B9jZcl~QknD2JRa__k zuvCZ*jebC}07MB791rtZ-@$9=Cy?y3skvRkh2zgtm!HKHZ2ocFH{AWx${B5>4Z!sR zUlk{uAvN>_3JPZ*ka5A!W4CUuEUqI^cebA>GE5U!Uw!qZlAaeFkQ_5f{_;jw3b|TI zT%_U)8I}VMFkT(?bN{$sOEJ+oFORxVekq3ZqVEI!5v38?GF^#x`T^XJ#dP}$&+{cN zz5pA8G&Gm!@=k6+E3&kRDH&xn@!I~kqO?&QLDF|80)mt0<%-X8!N6Q89NjG}O>^yK76%c(O zLnVQ$S^4!Kik^d5d~YkfkJsW=(cG%GqF0Qjqh=4+^9x|1k{oUcuGBfO>~Yy9xhIw0n( z=ZZ+h#uLzRfvrQ#;XW`$xgUyiLvHB9j_>W%ex6Jr@tfAus!o=+U%%Xg-R+CZe!_Mb z;iW2_5sY$_NJk8E#o*P8V?tBqWA#~m!Flu`^PbN#n7>c(q(9`7yhPvSEy$8x&6yy21uAkyn{1`vG2a9-(lHzPv0t%ukRLhvvn&oCmpzoO) zgZ_*%n-qU$W7&xMOHpvuE_noeztwOa(#=5-hVu*NZ9<$0KVm~8)Z!bSzcc8;?S({ zO*K#|MuQD}7^`g|SM7>Rq@ppoSxpgfBfVyp%d_-^Q#I-heygW4!=iUc+DziH@Rr5%JABjvY64t- zPuiWqbZdR`-YOc^eyT(Tlw2MH(?_hsIQ%6*TDLIo_2~0I7OR$Y8^9mjP#_iecX!a5 zl^`x%fv4X?j99^f3M-Z*q&rk zYt2gqVg-&ePE5Vg4$3W!SvvMwf0m$(FQ;hMihF(E9<-ToSbD_7eyyt8^HGUz>w}q* z@1o#Tq$(d*gG97U5mT6-JP2>9C)X$zt|$*#70_&_7N0s&jEh3q*H-~ZztFNw2SWui zFI@}m@QrEj+EvxzWR;gnP~crPXj5ox+;4KQ-&q@76f&UM+T zwHQU=(J&?iLYAH19FUu~we?k_Oh`u46dH>Ds)nDR{bSrFIf2)DynG-3;2UVMG?6a2 z%QzKlbdObL>U^chnioaZmILB^#C@{+%Xti)wAVGN&Xeh@lXq5l)3z|MkTE?zQt~z% zP(k|@Cy+}u$`rw`nU`^E7E2vWO$GQ1iC7m)?yFOV5`0L;+d7Z!_Msnu5qRJx+R2|x zQRTrFb=8o(HBl|e-Hx1$7e`htbS=`*EE{WJ`Hs5?E8XjRxgcnXNFIbvp6AvY6<6Zf z(yIAYKITc{aFKWOr!anc{$8rWD`9`Q=Kkc@`xzVgO{l&XG_O@Tk5giG z7$(9Bo6QXyomx*|Om~{K2hCB!wVl#Fp_3Y-wW2RL?2Fw1yK5ftrwQ-Uu%53uzI|1I zVW?4|(5DW{rIWW5f$=OzQC+f8J6H*9D%IpRA`-=kDnjhz^O1)+B@14ZI^LT-fn_7D ziB65L*VB>Le>n1?tlZI12j%2_zQ_!Wo6evaQ2bnUtI{pVswATX;i4S%V z=11Dh-_VZSjqfWrW$*lGd)k{FMx-ih!)rG@tR^LmL+P_G7zUYFg5@ z>KgiH;@^ya4<#`QsxQD=Zade*>2=y};_uvmc-t5m7`!q;RTCD}GSf`X3Kpv67^$gHOq%ZZY_R@trT1`}ov zEC4T-laKS4+~k#*b-5Q;PI?qki)kGDYWd~ZXnOHJ%pt08Shiu~Z&z9^Dkbc736p9BV3fd%ubabk8wA#6y{e&TWe} z8}2ox%&A}UEverQ0oi<7i7;TIXF`wzOw*pu&gHQnimy;mgapjI47Q*o?o-6 zA0EMZ?p>Fzs2PeCc^;9F|? z0X=A~l7}`RJ&+T;WPt$RRfe?y_Ianc5#FS14?q^_l>vA|1(Xp)@5lPN(1wAmA60Nl zOQ6VZr4p29CzVR~_-yKEhTSE60d}XS+VJ5M@AwgfLf{NM(q3^6y|e6T3I4yvigM%@ zxvx-(M3%LLyu?2E^Z>xII5rTGn+mR(@qF$%3v zABf1ig&Xt5xUC<7l1FmV*O>US!$)cU4BwrsKL+*g8egra=-K$HKdNTMRWi}2&85x+ zhoz;pc23C)Hc&u*IF=hdD%}NtW;!-La80_@<#md?dv0K>)aFR~>g9^1ckP$0(vrhj zJJ7{2E*>53u5nPKHWyhs&mK_zg~XX#Z&M(@&*uJLA7uPK@c-UU{9j-HKJcI4WEa=# z|E87r|KRbz5By(_3FL`TZt)&D^=CfHWb3PcjUzXzE)Mt>^d|3r`mRXBm2eO1lIVKb zlm0B$>aiM)gl-BcnSDV2s(6|Bx#LIXb;uHx;B08S?*3#2{w!8>9z4gZO}zsLirq+?@#HwQ;13L zhV1-sxyM~Aq~~!BT%hQHD25W@+K+FVhVj%{14OYqUkecI+7dX%iIp#Q5`O8;+-5G& z_;-c$j&c8w26BwVE%x$wejoAH#LHUbcVf}gP5urY{6=~bl#j_y!r4TejAqsYb4!cD zu?+dKv?1f9Lf?s50U>EruaMvIz+Lq>;X>deZG^^aN)? zT!6y77nNrI5U2i{jr^&#V}T6a#?p~WkrFkU+2->p!xFNXX%i~w^u$WH`9m&S_b{7v-SpmhHZRyL-3TmAE^sX-$4T7qnD-cr5qj!!m$>OQ0m4@W%T7jrW=PmA9`dupGkQWq#>y zz=0JV9Xi7b6SX3eF%PuXqDrB!b!EQlQsBx`EAV!xFbOXKz9DIN;=0i0OO3y04qoHf z+U|JF10{gbz5)N$;>ZMASPe3*J`{{8OZjAVxMsci(PX^20IDz5UM@8mklHh5hqa#n zs}Xc?2-isD3Rw?<0v%;QmaLV9_8ys>ZZ0=t z3jD^@><8@Om+OagwX@#&#*p=Y_FPEAm-!H#(R%f7s`+*>px|8NX}V&`2*Ny;qxcw2 z2gNewrKQVQl8LUoVbAn>qV)pHB{lN|f5l^mO)y@B@@~1>uJRWZ+E$mh)r?f1vQ*-| ziIgtfvPAM>d9LMoq69C?8Xk$y&M6oAt?sar{`_~9&nsV7%Iu^YT)uNPB*deo5BzUE z5dkRib~ic335c-nYf)Hcb8Dh|yew4w7PYism+Vm*-{K&szd@lv)*-cEmqck1ywb-r zTvfx6yJRBhksX=f7^z32rlk{hY0f%Kl+Q&g=${%0NoUR=ka-Rm>iTQgye-?Y>;7Kz z0twDrAc2SBhod#i-xo@j{coGNdcmKc&6|!O0eErj;NO6`X!WiAa5d_H|CN7Twx0{Z zNr6$HC5O!h02JmkFr7#M&g+DP-2jcJb#pBu1ubfQkJ12;x0MvRo!xF2MHSYcz zw&f&LIf9Qu&GC3{i-!n+)Xlp30i|& z@@MlebAh1cOUo;z&PQ=I3&3(ENh$cHq`9$WCIT<#M|d#)9DnDoEHptbF<;j(^3ZMU z3Gm;+L+AC|FWUI{(%QT+9$$So9R=}L9Odnb%9}pg6&(JU>vf)IuMVt~SKsW$bGj~N z{3$mb+FkVe79MfwtGt}yZ?Whn{1EU*(7osQX1!QLIiSs*wb2@|-fo(E`yPlzSK<`3 z$j=`CCbCogR){lr7L0^yvAI3-S5SYQRPXw#)9Bse&I%gn7#I9WEyf!gaAL=v>+EDC zX>lB_Eh`CFSI98bCzk-SJ7yvds*pp83!UzvIr6Blf)?c%)Zp0cCMrbz+<0IbZ(I!`l5i0>*VUhabXUa`}rk+9Nrr_C=vU zRrp%0Z}hW%iKqv$brspkkxQb(k1Sd_6*^OIy6)69B99+FIh^>x)8lJx5{mz#u=^y(9I~n8c(v& z`!f6sbu(`|_mUC}as=2lYcZ~vesBT3Ma#Q91-U9lo3U()?k z?->`p{3f~lKJfpGU;htC`v?Fhq6;AaI|M@5X9{B$=M)D~BPDR4s zzRx17_T_%~T&O$BX>Kwmg)6zD>k29JE$V>BeR`8U_5_T$)>KadxyB-={ z*S=Yq)$y$d@tg&1SF;cc3tlt|Z%Dkt>fTtVa4;j0i-PqLkEwWJ4%R*vCjp0^;lB0RDlP`?js3*ePrJkmVEP1Rivmd@`q%umvrA~I>f z^3{P#r;Y_Qu=|-86CCUVRdmo#J-Iiwow8~6PF$Lgwv+zI{od42L^$Sd>Z5OA;vf~*b$YAGl^{D)OnL`S`wWg6wB;M=h zqv{ax4jhJ+94)FiEsa{1=N+n*yo8ax`v{E5$7h%zGd#s%1MoNbz|vy-xcYq{!iK2> z8R3Qx%LOhowE&N(){pbQ@%3eG%EH{1KPVSrCR{opA|e6`a>o=E5RoAQzrK^={rc%X z-RIm@l~x$ChqZS0!0l=ZP)lN$4m2vL!=9i0)<`^7yUdO1*#Wjg#4WUC>Qgo0U+A9t zs5%Y1G8IvbN2uQ7J%y)~w`Nd`F*RXE#U^^e)k;i5E}!-eYs+PXFR9Rf&z070?p_MJ z+6McD1#IHrR8kMDwRKBu2U%mBm`18JK+T-t!ZRWeeZt2c!H$9tx)~9=47K|GEv&J} zV$3-!P=mw2lSfWL#M$3_$;dQxb)d7xYI{Q?g}TSa61NK6N`|o8mg;&L3AO8cp~We>r~-dsoR)h1en5k)ygVxvghF`E?WFh!U*5 z+xLQC!A7I+ZNh@s@(iV&*qr4eB`WRF|d>r*&y7e;x4UtxJ@n?e@P-5ukDz~FDfwbK2&fFODM{J8%I~- z{GVvb^Em$H6H>x%iyH7AON%oqwZFIV5=6+wBJ3A^*3mQ z(gZAjIm+Vwzz(Swkjvc$XWqFRJj5*rG+ty^F!#cg)k|#+q>{_}lSi3&%AqE%35HdD zJ0sqAwcT)lXKKN77fJ_M=hW(KW-Uj-l>1s;a*I9mOQ@=4du8UUc~j_Ac9LxPD#wpV zMMdKWJvE2!do%8Yno(%@Q=SnPz6PhCIixAh(^JzN=Nmmv_L|WNm6FmKCYxJulWq zrarTSPx0IJaz}weHPZ#`RAI%Mx%4VZq>gURt+LVRhNPIH#){W;1DpC<$&J=nES@hR zidl>$O$-0T-mwY{p9f2D={osFWg};imXf;&mH4{KOyi?9W(2ZSG^$UH^i*uCk>!v) zjZ~now5qnyxc(aq^Z;7f%Z`ZxFQM4^F7C2BMXoyBWxZT9xhrByB3U-Rb~GRKzGv06 zfPg-tU7{!JP(@euAZLzq~{O8h=QHlusP zYLr04B4pa~;KpTr|9oqh=oOoX$DZC%uN?t+a+XEurT-SB0z5YK%KyIA1=^^mqbfxX zOa84dYx94|m;5ik|1J3c4o^ob{x54spiU2P86>kZ9#za3k2%VHRNR27J{MxkOz zc2^<`3Zj!PY_xAeL7n%2%Wr)sbDtG>$4BI$lhR58*oMz~w51N5jPb}hqe&Si;DcoD zP0nn6)#?-Zo$R`|(r~Yo;&13N|ZHI0GKT0_|C)5k`NADaQ_uKTX%0cE1 zP}*MBit2`y_zS6~yz!GdtbXl<$oZEpIGVpvgXXo3RBAsP7`>f15OeL*Ye zo7wQZO$jX(r#x}2xE%)d`Gzv}j^BP|47{Fi6cdOR+Tk63Ek4C^Rc92Vy;k)u{vySr zw&m6{5$d9BP!qTfuW(&xO(JEuUvF34}HJ19=&3VzLmmd z!^zah_@xxrKPgz?ojn_zR2enALlX_*L|9|;9M@|0W@%4(mYYQ2wH4So>IIJ$TI3M! z@VHK5SIW6J&+(e^EIK(#UT*X0S(nwXHruQsox4eFnv?y0(aktq5bNNyt&7>~4_q=D zt==SyJ>;R&sNy$%b%P3BiN957aEUtOtbIEVHUr-NimW3UE)1zq>IS@(NQ#iBJR2fR zXJ;yl{vL!AI4|UJzOJxq>v;gzs@51%4*QLef49G_M0NVCbS1>2FQD$!?NznS!^0;@ zZdFc;iTYezuAqmI4$CLKCao#p?-yDCB`jJ)uaB8NXqyY84+G zVSvwDj&&WgzAJA;UBKPA8eHF>y}7zK=US}pYWC$;`9wFY!mwXL1aRGY_!Yt5!=9zN z|G?c#42AW_PbL^iEUc9H{{$tg6S!A@VSdTa=3Pr(6h92Eq~+o`5J4}OICd^zmX9pP ztF!WH=f){SNiWd`=x~3G<-PcXqmc#Lv$@H#kCmHq0+X2yVx}pBg(BQ@aP9nbX|5NH zZN;J_zIu(aP`+=U2Q?3Zu}$1k_;{HupL6#zpV5B5|P=;2srw$>QU}I>6WBmQmBe=9_@{? zd}iPbpE3)eh6d~@L)Sm`xCGN!hd$es^NA<8hGO66m>nne>RUqZy;Kf67E~itRBy8X zbP{gBvs0erF+J+R$vJ2%>hgc(HP@Vlr<7RSqZtb90IIkdXtL>2umIsCALX+@7O@wH zW|D_yC#pIcI_G+TolUgvJve{kM4dBfzUSR@yM*qY%9Mu8e=GIf6{|`&(nNhZ>J8$S zwVWNPF%XS9JmFc@UVvpz_D7^r&bz9Gm$zp@qX&jR2+teT)6uJc<1pL<0<8lQsD-pXaFQeH8uRgB)x1%2W8 zxupC$h^BGv13cM(PRk{{u>*g@-_qX z?BxRo0D0f&iW@mwCa)Eupv%UJ?!{gL*|7nR^D-$qY>*+o2_;v*l_&5$C$=etD^><{ ze7>cB=b}npJTSfR`BQMi)O{A!I}g!8b$0-v@;x4v?T>sZ7!g0Hnm?4{&Q$wPY!1y0 zQJGsg=o&kKZ$9}a{=SFM7Pt2q_)c?8@xL^!kjjAQQR=n>x=@XZ`O#{v<#lHWGJ+Hq zp5pl2y0tmyKc>bzgL}C>sg^zlEgYN@WZL3Wrs1URcU!s|^*+tM zf>E1Hs>i<|e?4U>)jBcgg`7g;>~{bVn}M9iEYFL*ly+BFGqt*31K9B2n2G4?QTD6# z+#n8Er&c-pz7okcdRXEFa$H=-ZzmFW{cKXW;{>Qw2`a)7>IKH#N=E96#ye}Wh;yZreGnYtYT5q`oK%=xr`w+Y{)XH=^ z1^>H4-v{U32b1P-o(MRlN?oC1M_6xs)?B4&bt2)Sc=jz;!|zF)+{?(0jrm9$n~Yew zt5njn1Y-PJjz7S+W4_{cp;s7hE0)aH;oUqRB68xw-=_v&NM?R;m67U$W))oiE6~6{ zfqQKoN)B}~rT_2Slo$Uk_&uLR250_?#vdyd|C9^J*Fe1GB6n8#Bce!OHdw)J%3+T~ zMD=YTJ$zYs4@a4dYvfTg>U;lM?P)~TI5>GqWoi=z?Bu#~!O^CSVSOr7yJy8iR#*cy z`mu|C*ieC=$cQq28ROHGD_#S~AFHuk>gYdko3lCe8(SkQlR^-?!o!7ZLH#I;>AhTwF}rlVo8zl z&Dm|})o{m>W%u*9j+9)RW%?Sfj`i?-wX8K^!2B$IR8xMLNCA;Hod+LXr~vu!L|;J?iTl>4ELVl+$_wC6L;*Of&fMp`=lBWB zkX(Gq+_OHB-+|)@8^&V5ryPwx<@T49!t&A`v;V9l>}y+;0qaibux3!8+fjL^NJFsM zG$J-XUGSF?3H@y_ZI6UNli57Fuko7H3Q$yVaG`W;1jOo_Qf!*2Xf(hAK@kfJ;;U_N zn;E7;nrnt|EVIB`d`f6$9+2g9OW)(~%F3xCcU09$qEJyI^YN$MQJQa^4VRY3Ji?+6 ze=h%7f3TBySQ$KrWws%OZuepw230uw(3NeKpEbJZt{7daw)F*XaP@(IDVOGP2-s)3 zbN#@2uq@vJLQF2vT(3CW;sy=Oko0h20 zTMUi|NiyK0=#@#kfUQREAhKJd*iQBf+YrpYyf~>n?mv6kNP`m3B&F=)x1J*n^uDj= z6d3iJJfiNL%-_Gn+BqgCs(MZo6N4Zp+<%plKE+lj3-tY0K|>lQ(qM~6of90@|J1M7 z#PRg+Nw~wpQ+B{QwcN?mH|_3)&Vfq5#m+0OTDI%wSppb7GVH#;i|RQxUB~k%&(p|I zLOE5ptUopjronqFLA1{e%|`(%+;k%9Wcz*N|3!2lPyM6;*ooThgso8cM|?mfoXY@Z zY-niKtm^4l?((UdFF#6C%{K1^SO=`P_-4ACoeJODVydB}?{o)#Zdch^=e;6eU}{UG zy(|%dwZOgYHaA&OOs8dyds)BYwPbMqZ%jjdZU#z^!rRy*L58n#g#GOu>a~26)5K9# z^{Z~kSz8P&KUy&w?6MY(ynDV$A}D!?sI1yYX^>EE8qCFvyU!ywLP{91HVw&OTW>VI zL=-zIZ?dr&Dy!RG+-UC~s6n~>4MRJNx3m8PEKK$3prI3sA|<6!M(G3dM2c7T-uJ}U zw>Bf*r>x*pGdcZ^ru6I0_+OT3VC6HOk31zbv&$DFI9WLxP^D+o4N2XrYERqiU_H&a z9R*xXiPDV9Q>S;H)-TtJeHn_?%7_EBIH}6zP3?myUzZ)jKzh8dz;QQFV$}ieW|#oA zPQlZsn;cEPy(HeF80TZsUh;IZ{70cqZs|4(e`Z^8d20QG;xn&47DTVC-!qaViQGaPG_ z;D;*(Y}8&N)QTgu|EZ(D=zW~81acs%O@uxaabnkE2@-H5-SiE$N~pCDbunE<4Mc)1 zRI9!mgG3I)WPk&=!e*^r;BQGmM@NbswdX92u_IA^*a?}~%;Krxt*e<(6R4bUo(~t8 z*vP0|DA?rr$`1Y9z-R0AF84zGBhcS12$!SG<4bMcPbkMp-s5clQL;EDk*L>LK$#eM zO;`1eq$y{{x*G1y5tpQ=-OKjy5$?>*Ff*e^Rg*07cAd| zD{4PvesThtY(eG4)KMqEn_qxqC%bbpe75zDbNqKljX^E!EOA$sLEUajp33Es7j^-^ z#BCNp9^+1v*<`g%To==vJ}J0qjZsfR_{InxdwURX8pq3{WPnXjfE8wQ5nyM%1K)FW zp6lVifaDIvFuI$9pV)^Qh9RK*T&lnU{}4L4xSMeI3ex-)U?D)11Dvgb+RF@!@cr{_ zbATjyw?Z<8QnobDuYk}?bw{>+l>`)7;f*2%rWM%t9ueVL7RpV#PPvgCtG+$**tgE! zX3UKKLpmk7??bgc5OhA)u=|&F4|_|c?$#S%A|BUZuT$Xa%WU@O z{$vxKZjSZHGiz-dU}UKczkhv+`62CXP0Z*QHZ4E@WaK(e5gjozrS#wWSn3idsF9^u z+a#{OX%5!=fDdP0)NvINXncXPLwas3%~3VFx|;YG`w066Qeo8!wzV3x2c_hTpDsl_ z@N)l_t+@6oTSX$bVpSVQ?mer6dVo(hLU{HIZ~t#zfL=dInAyFY_&-Xj#`(!xzj-T% zB~&(ZkERB0T3Zvkd2}POBdWt_StXnI+~`eU+hZQ{xhsgm0!37F)h75HTlK8FUwHk7 zm+Uko@!U751{DR8Egao^)atg}P+=sXW%)~HxrAaPy!CsFJb zHiq_Z0(lQsHj(zsaV7$FXfC2GUwQ)5cDVh`jCzv`jywm>0#?8CG=BAns9#+1tp21np<9mOUz2(bag%^V}pyV8N%VwMj@GnjzQEfrILt!fxj6bBtn(L}6Ci%-qPY16#=@=1#)ewzSy21{DYIRtf(q0y zr^s4hJ^G!Zv+d5p6bd_opf&r>qnLP6y?Eu!HHzS_p!Qn#e>IrtPhb}ZDmYtysM+sF z-+D9pN}M1*L7*b-L8hD9fXSBfUd}QYpLvh#4@o%>w==kb125tN^w=A! zd_#9*b-+Yr9Wtox>TP~QF;YLrL3+J*H9)_h)r#g;G>>5&E&UuS5^toeY2cx_WvBsY zzQfmN1xaS{H2Sw1?{WWE7~k!LhUE5n#>4x#_!J>}gJh1i zFN|w$dnL~ZU8%$oS5jXRS4ezpMfp~{)FtGu__OeQ1`Dv~+LlxHi1JR+ZJO-^AJKh7z19BBo1w)=$f zl_Qe*nwGG$$;SA`r1yB`7)zDtu-q9Payk{%hx7Js5(PL^3bYokw^A91aC6Dm&Qoo6 zJpa|-NcxO^ffO<%e2m zDbV~r1E$jl%4=?#?72kFM@PgO57p}CQYog?w>7?wa28>&Us03H6OY8{A0!^wJouJh z?Gx>9cVQ#PBAoDYfvDm> z><|BbZZE8e=LiKs^{)izB^483HbxguLr>l=mTuD8G+INbBN*>6_?2lsk!A^uYyB|C z0GRb}?um+Q`e0UAu%1P|N(q3-*9Lh4jWwjgpZx_9K9p;@8qFC8gmSh9QPdX6J2VN) z`Le9R$&qtFHt<;+lG2lxY(`@J#!;BTz7`62W7Ymqs~k#x;$DO@a&m%fY_fB91Y$_%W*+{3@ikmuIP{&!1o^8cLw(1#t5HHvCki z(a7gbnP+2~rhLS>ZpVmkW+!+)rRzLXlz=?A6V9#$*-7H?awuLaWHbEw(!cZNjq~GM z{Hyux&;Aadu*+Xw16y(uC-tioH%G6=R5S#ZCDc7SxSnDzpap zE`kjoc6yb6PSE_-@=vW+6Ui3B-Cz2o1?`_tMPZfYAM*d@qs^ox1iSdOcTx5n0>iKsA~zo5%4`^YL+niLWfO7}aI6lv~sRzaOB zFvm)y&6w_Z2Z!5oQ24({yOM5Yd1d{BG6;P$v`0ilKtX1pM5U8n;Md=Z?C*AibI)3L z^zL`-4kW2mJx`^YST||=lt_d%Zti&-?|tNsH>_SYyfE0{QB>NyA6hWOAgcg7ZGd(= zu!dXa&E9%T-Y9yg=>ez7f7c(X6d{ucPeCVP{6m^<-lg@EplT`o$at!OsZw111?xl^py{fm=$xDN|`VVcl zHYR*YYq{Ih>uM{GdG4aoa>?rQOIJ;c9CYY!z=h@zxphcn^g;!@x#C*U)D`ngvpyyb z$Yb3a$+r(ZF5%QyFyO%OG|{A037OAApoVRb3L#3n*|SvVf`TtWuSUKT2Ws1@Ky~2Q zeOWD#ye!f7>U56@y}fO>RR2X&Obfq1X;SZH;hRSCPEziSdvT63rOiQ?WkFkR#SRH& z7I)kONa0Dn<2W2(N8AgI2jnAoHJXIN9_l=kND%Mj1lu1$RBa?0WWuMv%+}|ET}`Yt zM5S`)-?2b@P+I-qZF?{Qv}$Qp?=o48PJG)Q8bNm5kBUMFZi^e9yF^ z7-<%kk`URvsfAYc$<7)tG(6R0UX}n@TxJ&G4kXer+}p3iuG-VC^e~HEwxwkX@Fwfk zQgP;8-lQQR;f_bP**>) z*5P#e0{Z;J*!RdnOO{5KeH@8~QE6hRtMX*^ERDL)_-(7JxiXDB?g*({Q&YB_a=G8x zU#iMlOL-~7AGVFg`7D>1q`<9R#f$g!m~rr=@>t}4H;GY%P7NLgm; z)XWVG6HniIt(bUCT-EHXHlGds=!9)e!>kUHE59!boBOf$3)wg)Q@y1L!#gw_j00P? z2enIG2hNAN@#yT-?-u>o82xe2&PBjxbtOzUwn2(og6>Fz5q zSH>^&3a3hDv9+_^3#IUsoe?b@Dbqy$t@%d&P=E1u<~yo*-CB|7Bt)E&&lp>eXgs1T zmUSXZ0_Yt4%^ScAh_kjDP$ZE9mO>+~Lcl1y_RTY=5%iZFXnN)1Z(rSu9Gkeqk9t1K zx7#id8)bOj$a}3;&Irh03V}<>)s?~gEpmAD%Zm)jHt}$yFsGMv{j@3O`Cc?->Rx!* zmE@}IOe;L3?&a`{h*G;Xl$qGJrxM>h8FFiDYfOxl4pGg&*h4>Y*+raH}5DAk8vAqkSu1hf2YCm%a`zB*1&_p z-RX2%@vcZ(BC|Z^E2VF75>(qsd53=F%mb=pJDqW|teYmy3bTCl+Ja`gng^!H3VqEV z9HfY!ppYE`*ifY|m8JH6M}vzv|FfO$1F}z`PX&99szNdzS^TOcQNAh#EDI0xaq?iM6!4TrStSkI!Qv_1Vc9zNqK( z%0C`y^fGb2O$s#3tEHw^9$2G&moE|34nWbu>sr{n;}gT~gco1NvWd9st3xxK^Uizp z#+zbLT60fxJ}lYl0;`ebUEFk*`gsr3$#(PaSEZ$WM;8~L0TZ3(Iodrk>qPw$`W@pN z^9S13LuB`Y^$G%lmNW)7@lDy-km)1z!L3Gt#*zrPM=vG#Xmp{vSFB&1NXd$%Y^~{< zcGr8(xhgZGFYxoze*_n&*(1ZkhH4x$q(Nzm?MbM^les4^eyc4C{^F<@4Yil8YB!UW zbn>$GhD2#ju6ae;)m(JQ`oPL<3$^G1t>w9+8UR3Z@{B0xA!9-I$Jd=G+pW6l0prz$ z;7X6X+pD5zfJR>p6%E?IXbMfX{0(U9>WSWDCs^KfQ95Xfbo@>Ap>a!?>L$DrKkFl4 zLb){+TttCY-N8YBzpNEaU}nAWYU-+~b}7g>PNl*Ns$ zcndE<=V$sRQx-PhL}kqvpgR-aU2Xj|n?^UNSG)Z@U~p$r;wVIRG8#;~=)_Ng!*gq) zr+;Uaet?s#>Va5(o|ab0pX0$(2lQCF!k>{nM&&-E-lP$9a!Y;(KIz|8ZyB6 zS!2`n2t|Ao5*h$s%Zb6A4p^i=$v0(*H*bHSG=#pjXt<-#9kY88llEkL=Af@JfMUHN zLH{QegxnJ-(7%8IAa=|=(1@A_GiWd;0Pq`m7;g>rEGPNtx#rY?ii z>cJ1+wofwUh&Q{^<6oTdRkbjD@4eTo4^tk&>E$Z`Qwp}GP;q*eX~{QstQ{`dd?2K-;S zm1zR@1deMz+|VwJgI|=MPvh1@rBE(_c5TPmgNA!YGM|m)%gQ!l3tc3`eFp72H2oHx z`fNC_GdkTmva1vKYOq1$)WC4X0igdco~#L5pF7$kTjW3Z*&2l?MAoPld{D`Wi)WXq za&3*MH)%qhRFDgh<@U~R-g-3Jpmq*4I!y$^!nDQy?U78j1POS-d;L9}wC4@IB+D>< zh*;jw_)sWPgms#FC%CN<3Mprg6ddvTfwk7CK-XZ9af)0qt%2wn@tFML;1WF0Jl`qb z5BEv3Xce>>V++98RLcR0Up~aUh5&e`isSjOZc6x(^g5i;>vN&CdQq7Y&gys#&jD))r(O6k}2kA-5MrBv!F%f3bpIq9*t~Rr~8f zk2>@kz5Gp-HUJE$)$B@0n%+p}lL9})G(4jywH`qIB{uiz<)jZa8CnW9;cPxrpw9;DZIbVO=q{O#&+mdz~`aEdKH$U#xac7B=XkCqD zx(RaO8HtLDsV*DB(+d2h=j(M=0%OnG8|f`n6v&kRE@)ieYLD?4Qtg3&+7#l{zMN;2 zi302aM?*saby-LR#J|$7z$N!}q^kGv*N#l|*Ajqc%#0^)Mz9r+cqzf_^%BeG^*t$D zepmYi^&Fjf02~v}rUZ%jduWnUH!q48zAB~Q*5`=G9__PP=WBeW8Fh1ze0>3Au~m)P$+{J7Fy`xai`T1_pZxk{O%Lhf=o%)`36?Oq4ivd zRL_9(FZmBxvpd+4r0YQB^=RPHXR>g06KJ5yLaSJVe65GXSKGeo-<5*csZ=EHelO(m zz?mA;+tzGTx?5qj&`eyqRyWwxDQgQkZFR4@el)(EsrzT6xibkj@xiouqc z$22Ke7iU>8V9WFGVR;X;y8|{QnRM#U@o2rz-+*^4tnCs%do&t}>|j*zJ}*Y2fcwkB ziMOiJnGp+!-=y7};z0#{2UNamfFJ>k=;0L%GU*IXl3BruzQu0`TyBcOA-YF!xaKYN z;()@rz4Gq0^YY%R=j@#-l9(#0T8!TTI0~h#6|lKcRS0KOm)2j(ws=Sx>w8jLZKvWp zY?{?apdfAGiS}?>+W`mNlLNkd3HlU2@E7)Tp*h~8_!Q5zBN{pG_Nt`!f%sPms-SxA z7Z7b%J>Z+|ItW0UY+9z5-+&31qv5?k<98ua`YYL}gHCu4$8C$3+LZvpD?iG0&;x0{ zU)HqhD$|yGZS9KK2>Py?$d_3-A)K2QukZIaOil+mwT$}+8mnC?aGu=~Y=S&GF72-4 z^`R{@e_5GG&r>9OTD7Zeo4cn#v9G!jOTfb0O@d%`I&}M@ph_D2!mto}k@Zzm;FTHb zD+z?MEw#q6iSXCG4yj(V-(94>nQp8r^iuGl5bPz(Ch3pG=%>YK>*#SqndAo{ACpME z_NJ{ke8Xeob+a3Z)UU9M*ME?BQ3wZ+<4pYIB>@Cj9SDHE2k!m!N#v@=9V>~tUgkN# z-a(0dEC}jjbMPnYRJ?UC4^~|adzSmly|tR%6KQhH#9OSos!9QqQ!4FMwHPu)LP~4A zd>6NH(3eX*30_)cd)T!8R@b_DYgIEzUraouIG(AQ$iPv-aMp479{n8(-HCVQ(Z=^* zQh#wlN5!j?&jsIKst6)!Frx|_a82vp!CB>z-xDB$kTfL) z0U*rEm!rN~3XSqO-D2GWK*@OpdYIZT_fyn#bqGZQ{3^VPJCH%btLj4s{n1}czuSxR z&Ex1e@zN43gS#?WFRY1-Gvwok(w(}Zc)2Gdt=MUzO_HiE_wz~C#4s}7tR8Ua6Y`o` z_Si@s8ZXazQtGY6FS5O3%LIJXo8A!MAL>qQ5kMCZAsQ^k!2DX~quJ{P8v>5dKB$$l z00+H+Z1@%fSmiLYfb|&^lo7e25sh;G*ihZZWHIBxOs2gcT+$?=Z9wp&hDWdNmxiR} z-D9X7*PHrPwRY@}0N^K;@wQt{SlVl}g=0E0??sv=*MTi=f7WQDHm5-t~@&J+K@a zN;3AeVAE66)LTw+5))-p;nlU(;2dt&*W0i45BIpfX-(4=%mn%3UqUoIOSaJW;Y*wN zKsy*4T5qW%Aj;TM3)@@`(Xpl zaiU-B7JP7}AHe7*PZd-mcIq4 zs9(EGzNEmjckTnDP(w2q74>mx@JcTJ&=r7P?rK%Dw!2OjBE^zkRm0rVxA%@X=Tzqf zuW{1U%9+(UpQHvz`Wvvpy#Kw=i@vNUHg-(^!$)Ev7I2z2V2l*N)mlD3prS6UQ;k=C zjvPEJSkL4UfiumLYWWvStN?S0IZ*TKl@}74P_EUV@={$yvZB74(;`4zP6{7?X}ZG- z24<|hqO)qWtDj;)zoOlzN5LGH0NeicujsSwbtH3FAGxyKS0^U}TGrz~NqJ%ARN-}j z&&s?zHQChPtMJ0XhBi&xM@ZA2b8zzDS1UI@s6JvwDcS8>{lSl)CKiBbqE9>Q^AK%l znE9v0<3$#XJ68G=UqIgFHL)HCd;%+Oh@| z(Drzaz|sf8GX=beb|=iW1idp}!>_Y*RRJe1mq_yg0(|hyq!P*h;CKE#wV@xOWzpU0 zQ|#FL6tq><=j8B3QRHjd(ASo1X~RWvXa|LBtPRU`)v{$6ZbM1FkCQi_<=4bpMI5ar zxy9N0w4Sd1!^NyR(dL|D1oX;RX9-0Wrn zD|W{lRoHKkYU;u(wKw?Gm(idh#!$}ql>jyu0_DQxuduE!rz$kHZFR~A=gTQ-N&NM> zA%|cb$N8j;03IvS7G&dtpsfAjsH|;|?F^4sbgpa8zRpM3ib1RnKm>s2+qjl`eL{}) zfcCms*M7$jL?L98d^6#~{^gpz1lfAw%g5SUuk|&kcQUi%vzBWEIcE9M9uIOazB3Q0 zz7<{(>kF^OSXp0Khwh;@7TP$B;V{{Y{p-n9OKQfR0(o`vM}d1HPm?)b?7am0{1GFv zrR7K|idgThsv%;bisDsA;~KG91a{X1V3*jW2*i27%_bkV9}xK^4*TxL&+(x7-z>SN?3w^5va8^e@?FI^!@stCw`_rdL)2WUy9c1>ufz=?xgHLH|b9w{?DCK6q-2$ zN8-B#bN4A}c@W`p%(Q<5&~`-X@%#h_l=K@~V<28d@dUJG_S=+Mf0Ne2OVP@je~I`Q zO?7`E*(L`Fa$*LNgqTXMrsUJ&rs5Gv3~8spmPfr-9Pg@45iwf-%~6<;>)4n53)1 zf^m>K;COgRaKysKCgK78RX$M!lN80~vD;}=vAcxF$WE?#nlVoLfQjDFGXn$_AH4rN zc>XtF`ug_^K>Yg!BL3Sii3un=rZ9t+{1oo{f@hlc{0J)>t;OIb!meKj-d9|f(S`<# zrw!VLgqO9y1V9{wta)jL*2KiOvf)GTnC?z=Q2B-MzMisCo4VVLaG7^R7ZFX0QEpW{ z3QT=hI==a+DLX_l*#2Oq6=UmsX~nC)gugM*364u75y~$Fg4U9E`Z#X9f80B=)h2AL z_0HZ)Y$bG$^YlfV*FsLd!3X6b)@LU5VrgY}9VzKO$H66TXuKdc1X^!jOuL7JTrpZX zuKH^oRi8lyVNy0Ioy>c*w>=zDc@)(5HIwEH8lh<)W^d8>1rQsyvXskF8~0i4o`|9( z?CmUC_t%E8j;(37Dlq>@3c?aI6Q}zI=7t#Ut#%b&b$w3R_CQ6p>_JFqmX;B)h4k8| z*FkMqNkKdr>heMmyWh}@Ij}}GqeGw#`m3NxU#H^kAQX)4NCvj322@&9YnQ> zXz59vpO`ddOcNOELxevGkea78%_iWLi%)w;(Xv?uQF^bWg@z29$ju|%kQY+fP?>E? zuSP&tw^&+Ue%{OH)iW>b=y6Hf$R}O__9$-QoF5kJE0BeLX%=_AYyj2))a?5XHU$o0 z+L>4Ok1ubOk$Dods`CVg))Bs-Cn@McqtCDGwhzi1mfSn?HCiK8#17!Qc8W$?`-O24 z;KV8vOaGbk+$`9-TK7SUA0FGQsKMT^s2Q*8uq?idkFK1ySXbUQI|rr^!Ap|73-+qR zYO(^KVQJMaHjhGxW)}h8r0D|-Rhl|$S=r?@83QjWX>`2}&1N-&0iEBv(q|O-Ee#gS zAh8p|`sE?+a*$ow+>5$g2Y=bY&-EG&BX7x~sGHK2)1LiTGb$eC{xPMMsHj8z8Vjv@ zQ1pCs#}>3K z&~L!-%HoN`&l*tJ=npP{xZZR?v~8>7?ggqo3zjx2d8dsK4I;{hM&kc;F{P_d^h- z7pJzBrdATDb|3~sHLY%rGG#M#uyz?O5uh8|9qnXm+PL^EOCl1Zq2hTj!uR^~dLfq= z3!r`q?#?GhG4Q%~+I^Zhiqhep^zB?ti`OPlMuL#C9ZHf0uh~Jnc|EVoxl7#yU!ajM z>&wx2F(<4hjWp}9_)ran_; zV6b>&Cnat|RrsW-4Tfoh=qXv~my`h7YJq9PcQ#fUNpkUPCv(0Fax)Kz_qeyH z-e7zFvK|QE5@C9(mzH4?`IPdgn7VxYfc2&K9;?%7x0{mI*fQt=D6goQ$;K}nakMDH ztQ=%a!%o#b=tL<2#jrr>CHua~SEuR9oY#ngw6UJ%?WPrZ>`HJHR~^rA?oBC*P9nh9 zX@i-*VduCnZ3W9mbG|oIU6}?*Lr_|$mogDreeo!b#0TcJn;DU5KS(S?=fL@-z*_ z2pQgi>FLZ6%HQ-DpT0A!LOS?`@?bun863Vt5B<2KLh&Xd5;@d^1>2rMl+4BIK~t$q zA26O|Q)uro;f00pnomzV9$U%YwTgO&V02w+^eyB;E#CtQeKM z8Cs;?V?4(A)TyQ-ptCz)#^)FW3+!J*g3!f>&vUUiTQWD_q<@&NQO)48WY`zuTnqAD z3C1l?{H?L7fiXd9ua<+pc)Dzi-Y+{}RE`2vE|DT*)1n|Ip`fh7-SRyYRXcDD&E)iP z|Cu9jg@vW4$dlwLLFYsBC{X2|Gev^*3i-*Kb*~NDy`RaHztX7-%jE;RD~9GbN_=B* z!GX#ybo~6-nzH3&xgG?!vCfb0R=gckWe)mC%PtKcY;=A{v@H24Q37I>>Px1+YwBm`UE3=qTSp*yod%^Xg zCD<3m*wI}7Qy{jAiAFxpp(dQSq3sp&NfTj13hxu5IJPJ2&ZsXq zZxbyPYdc{W|8{j_r$Jcm7E{2+3w-&qB19Jj3slKv2flD+Wl^K#+3dBK50W6*?0I zRSUe4&ba9n7o5pf3nU(Q-L1p=!|p9KK|kJV$$@DvHNX0-i^OHhioVEU^xU`yN2#fN zxrE1#JnWC0Mphhs>IKdyD(z(AQ+7qO!XeI&*VpxhP}9CL<_ZdJf1IwWlI8nz_a#26 z1Jx%xDQ9Q-g-Q>7%o8?cnZ@eP^?=ir;u^h&Ly0sv9&~pDn*m#ImmXlDqhGR7#N}hY z#bU0$Zq&K?DlrbBK1##sQXGUsqN-AGzx&I+*N@xqEvNRoZ@PN29MgjDYq)=TmjE%& z0LZx@M`lYmLdPuPx9%%5Icm3t;ri~26ppQV=$T(N%A)rgRWWzx@|@eU!mw|b*?ewZ ztB51XW#z%xGD^or3SmfM|G#WS!E|O#%FQHOuZ#gA#V)1nvKxsWQ9~M*sec($Pjccj zB1Pp`-tMPJ+qjAv$F9y>GtqT@kOAt%uh_`%I}mI9%(^!TyajLI^>C%PU%D`4IygI( zhwsng1qfzGKOWjmAHHNaduh5dim_@twmU~k@&4})+rh~_LmFe|O@8d)nKKv8Yp%hT z!T+sq^uoD`ZA~5E=B-&4hTFLxfF8Ccvqn3B$!?h17;G4O_+}nI`8wd9EUMsJjj4W> z5%y^o)mmqef!SpCi6Oe##7eEksp zx5&6QVBJXe`&`D8EzTa8zY)&6 ztARV1L%Z2MNpZ?d-=d|>;H@E*)twn0~8ZdfeJtYC6(%GAD zifS3npXx2lWpogS#;C*Gy1~Lhd-gcFrDyYFr1~$e;f)bmf^qT#zSS(*Dqh3U-gvs__2uMrVdchTa1Yw&6Y!>Fby$d7 zjkvUx9$m5%*@6nJ$Z8mrhX6lnYTf1WC4(3Ij?LUP07^i$zoWNUo1bx_&%%@kc?i{t z`KgIP)O&)~GR|RW9K|E{o%AVAO2|-)h_Cm!yqeK&5H|KXkT3ck=-)@~HZZT?$4;cM za7~{%Jy9Z)*$P1&l|&o*lQAXk??Ezl!S8^^JtK0Ad5z3vFbbB9XK;j*^Cr3dxB9#k z1F`h3Yg!dYmT9aI4Cr_B3h9iAD^cHUAT=y9=*Sq!3siGz3WeBm)JC@^Y zL(QR879K2#g1-=f^}_(DzZbex#fr4OCL>b{Sl{L87g#3-jVff%LklJ9vEwXkub;K; zbF!`bE{;z!SjPTvr*pP7oNu@fS#Gw!GfwVU_51lY%gleK%09e(WP^;NN_whW_+bar zx%fwlyf_@2j~0^PSw{`vV9IuZ<3Y6cWLau3yPijfWh;v4E_l2aktdr@^T;$ z*b{->&o-R4@IDFsR3>BvFG`Bv5Nv(4iHZRnbebSpFE;npmj2np4BVOI^7Sv{i-)k8 z?wV(6h9Pw#gd+i&l1r|1GrnBu^k$AfIEQyb^)n4t+)u>)&4HZC!L%ml~SJ}^Uu$Y>wCp+c7o!>>tZjRXlxrAE(82r*YN8C zoFhtzk=zJm|Exm>1DMh=w%*MKbAFqR|b3i+2P{Qahu6ixNE`2ue!4q^p z&mvoYEjHk&-!W(3u+27*c}@F_-zgN0j)3}f4ABw4{$<9Av-`$t-~TPk)3-dd`mgLX zxLk~HE`9u>|7xP&`!}7>p~*4l84JwCzs~gbQ+X04p?_U>SZrgF)cas#BE*u%FBz zQ7h4`7A0GrLYDX%W!=s3mptanBh49@RCpvpVKOZYSD-cWQH23E_s{5JnVXGib)pED zY4}%UMtsKkT16n&)_D$^n(&3i7=L$vY}7+nAq*UgVZ?G1pyxz>Q+4U!em_P{ zcV&{myZJUARr<96MRt7_C3^cfw*=*f-8Ti znIZ6;s4*RX9PjERZ@RuF^+M+C29YzE;ZClyK08x;j2YZm(lb%n%TUy#Y~htr14JFa z00 zxB0%)(C8Zi{%XgJ&Nlk!U9p}a-@VA`e~Pi-F1 zsj5JS`K|GgOPAH~uJ7gQZ8!k($*WAgfU%p}gg(jFr^HXCERn7{Rr<5flk8v@YFVM@ z*>!mRQr7T+2ZFOf7EM5y$nZ%hQ4Z>H(a-vzM|f!}#Qct``QO1!cTMeR8DH@`E8!@3 zx*)JSyCYS6zS%jLpMkd_o}~evQe625NX1f{VmZ}YgLYxD|JS){H6Yl3bEB$Cp3Eom z;rN(uu;7JUVbw^~$4dWHfEqB9zi->Hj1aY%)(;H0l?1IA#$hH~rSY#?GLhTv%kMbr z>pP`)jUD|d>&OIUZ82`6fr0ttV;10*$_-jeDK!j@Q9|ZcezTpP@y%_MX;H~yyhB#B zk71+LU(0s*%q(oyDih8Eq&IdfJjK|~E4*D<316Wis*wdJi)<)5VHEdakcDmd84=bG zgf1k_0mE|P?JI|CeYU3+!?AF4hd1Z!sRzCgY2n4Z9s>mUCXd}ktLnxyx*S~M=f8n~ zqUP*Pl&emZz_NQ1#TNgD4h?QO+Kqox6r0y8U4w+kLI|V&CYDz_n-G?_wnVBZ(c(Ri zo|tk|PU*HnjUnT6BR71Q?-g%J`E5~Lwq#c9ki22$>%RR11>VO} z-ZfcRr7!TrsvYw1C~$39KN%oj^|`)GZJ*Kko8-c+Pm|wY@{t{A@bvk{3~!nlHUm5QID4>G-TJUY`1LQHH|+hci=~WF6z$?VAS;Y;W?CaO*U!vFxi5+DmfL zw^hfi&Eu~!jmD7*<7|-4=b5Qr!5|koJeeQaM`g*$ts7QZooxqmbUbYo>6f-T9@`yAFwc7ajF{7&M=a`t8_ z&Yb(56l-sem#cF|IPhTRen9p&)eX}9J6ph>qyD6yLLTZ zZ`*nT!fK~HD1MuH`JtJNAjAtsmA`-e7a~|sWXlKC(cvoSA2DK&eY`*#cAn2ze{_*h zJ=_A6KB^FH6Egct+9>alFN}ddyDH;tWokqwVKx7av!0M+yRNs;EiRU8%8T&|R|c13 zRU!*)9CkDoBM!Xy9E?qM*JcLV-+Z@E?6y47U?&rwnR)WQmXc*LfIU8mJ zvs&A=RKGPj1)mt}o0X#kqgi_}l6~V*b`kicKl_H>;PA-y@C;IwuEmeeL)ymIe6bHL zCv_7Yk4JH9Hw@!rAMfocnlcL}O-7@cuGC&l#M0%9bcf|?^3~~xaScNTMo^ozUU_H6 zsK1SsfZE5JR~^&qcu)>kc>ubvX=e}o<>*xzSZEtR)hxa3n)ig`4N$aH-_G3 z^=D!T;^X4gwy^lppTj_b9%AFxW@7C!9+DVA=H9yfx-5Vj^wAJ|Uhw65LQ`&ho0(Mm zDVO6Gj;^oB$c^!Zxh}kld8eEN=cq;O1;dXX84t1K%i8$JrS;BkAeDy1?9B)Ho-#gh zQ#HHZ-H?}q_?q@+9+tCL(dotr!Md--u*ogW(n7tPUPQ`UP{~abh)w((V?|Lk;Q$K@ z=zn98*njl}=No&&t4ffekpLJ8mw)Sv2i1-uG~z?;-DH_4osh3hGy`o?PwL$0NFTsm zWSqdjn@0Y=L$R2l4(uSm!~OE1I}^^Q9dEV%HyjDf&Fgw4`V&zGeamI{Z=WEaFc=yq z-WD3vyla|wi-_u1Y=*>#$FgXQ8>}z7dLz5#1N(F`o^Rtiv?_1^G7lr*8*lsFlxb?K z1^bRjF@7@*W>5?ADK0tuIe&QyvZLH268q>RUm3+1MZQ;$`ggM3JsW9eZi%Oe85;YX zED^+#SW|G3gjT#|@Ku_Oz9Z`bKZEyqel7NA^Qjw#2zJx(1e1-LxgSA58NSNKXljRv zigt)~_kk$9!n^2>9y?~7xZ2c$){F9F4*hnoUC7^1$^saE!H~dj4OQ|d1*y3KOLHd9 z2z2~HpC#6e967Ff15A+&_6v+c1vZ{qqXjO*s|Fqat0ExVM&TUAxcop+`n|@!2zL4y zxXiupn3;Eg*sBgyj=$7aei?yUO90I-$b>B7HP@x&9woV;g8t2#?ako?UxMO#afzW& zTu@%%91qK+DzWJO;&M{9h-mlLm^!~sf-B8S{}#JAL)&ZLJ3Af&5tziqe~$jBG4Pv# zpL$U|VC}o?kZw`TUeK6FedlQt0ehi%L~=9A;kL|fzTEZk1r5Zca3hk*Q3?dP%)_*Q?&;TpN z2w$Ra8ZKde{P5aI;GQjx3ExLa8b2_)fgR|{9xF*e^4RUi;M3G1@$_eSea#~f%e)Ev zw!Xp)=!Qg#@&o@K`Lwf#3$iD<3Tm?6O6zbCZL)xn&(m$l)4fnb8yLLPs8U1Cy4y^K zFGp-#&IjfSUM57(!W4@dek1L~r3G>I(s;(7UTMV444q#TMw7CL96m*Z2rjQhrFhG!gL2QP$+=O@0u-x}=l>&`9XS42wMW&tN$S$%fI}Tjm+s*L>|E<3QQbaljgvaBBK( ztt%&y@6kOvIMpKtvwG_FyH<&_v-5;`g{UrO9I|Z0c(S43N+F!B5dR&@>W688y^x*x zY1xPJX7bU#?9UH*To^$li%~trcQ1Toxqd-$t305#;-kW&0||~HnlyqUx-|>)Z+2g3 z{_6+G@(deyvH5(2eYucW9{tP^(ze%UK8V%b@eaRxD$9|C3##-YFYQo1$jSDYy(>*` zoo{K!jhTtd67o%4;l6fft$3fR*v&8K&47gMqa`qzf68r-=4#hGG7;Xj;Xv18JH7|G z{W#0}c_ZmvUjBw`d^Tnmx=^CK8loMK(YzUIp~_v%4e$yM&MZr94zpzV2SU5A z6oLmIss1dY@3Vh{7z5)ym++LtpZUV~pe0X08yP-cKLngyx@SKqP6agfeK=8`w{qxH z0Goa3X&2=L*46VNZQrs~xYFN1MYWdaIEiUv^)`&wyjb}mQL-$riOKOrGw<5V(&QaLQl^AIr?GNHYnkF7RR$#)0; zcC(_BX{F3)jMS067hxYlADgfbgRv5ztJ@zro<3R}Pk_9?cNnP^6gi6jIX*VFKtDLs zhOVmBUTA8mrxd=WwFiac;Q96}3&q*x-J2htgUt z&27eNV6QJ=eSU0iC}5`9L3eM{u^o&2Q93=L^;&&z0pfPf8eQ~dnAwe#=B{!eeIuNkz-DjOj2F)(RAzUx!!mq!IB*i?LKnb$gv)=2r8GRAn40YO4J?$4#eY`T z%7kd5df@%`U!P(|Kc@@{)bE*3qfGP2C)~i%j?Uh#AiC)5iyq#l`Cv?@`373Gi+8G- zgpO*xD>ON9ZZ9#|31j>vKCqOz8lAFhK?sgLK_1Uf*n zSZZol1&;tFCx@!F0OwHRi2d3eHqXY-H_E~k;{y}2 z#l8b;cykV(&W@LcJv060Mj-+;7E?|5a@p^p=mw`PrFXS8G_o5yYGiNd8&o0Qy!-K` zXFi9!`h^mQ8IpU-#NpmzT} zfvU=4k-DUEv#ntmElNc74sRA59kp5hi$h3eXqVT1Rx0tR$#BFc_!XN|1oa_RV=2`W z5WZpduXZuzYt6LCW28v)7dX;k9#fNw_)#R7@zzWp)P3_L*jV7L!@hkERPYU^sn$XE zz?oNmlb!b=3|KEXX8DXjOj~$ESRzYR0VV)xbxJq-)+?GvL?xyu21U+a z^O~p{?+o)56WCD0cZgN zbkXs!`^Ig=_oq3DFEw=^NyEOJFP}69Y3EPozLAYO-q(CyIc2A!3KCwnsiVPBV?f6Q z4=CkUhVPS{@~O+;N(`KkGZW_o1<_7%254YvN1w|U_y+|x(52_bZ!m+ix9f}CivP#j zw{)ut16}^048l8MczhxvMnFMlAVgjwARzGTzvOss_xI=?^jf{{;113aIZ3K&?@HCK zgn~U;(o7z`)~Nh@Tq=n~wFW-GpF$&hz~#!g&UV-g>0arrDrhHfOlyhfwgh7e))Yo0 z^&8KFxf6r^jhOh57^xS*c99;|$&ceh3rlJS-TzSj& z+}I~@Fdi&SBu5oU>}-23i=N2^7sbL9$!w|PGKge+xnWh{ z6Wn(lADKWMKEFAi$=XIb@IzGG;1fy=fG9ZepHGPv((gqjy*pN7pZ_ijiKm~ql*790 zR?WKD2$kF(scLp2i(@``CR=noMwj@6Q-X@}wtX;uJT@Es9xPAtx`=r3p1!vdJbXwJs!*!?YaT>wJ;Mwb8r?!9{c82CG6qth-vlSNjs4f98 z0J_sVqf_ikrr&bG+<&aNj+f%iZu|76*v3T5V~A*p_OeAUWYg)!wycy0rv}jUao3O_ zaf8jcG1R^5e4@QV1G3KOUz%m;iXyM^b2>hj)qP6ro0VTdF8L!-$e}sPzfJ0EF=M`x zu(&BRYOMOB5-?1J_H%EQC~@5dtmN;exRm%bNlZ(=sMd^ZwFr;eZg`%5uJDs%hHEoV zf9DR*8S)v*W3p{iE+4*)MS4@U{`>9;9zdgOd8+>C5l=AzAFmvTFIH4Kd z8}%l^Qu_U2$j(KpJ}HBlIc@@VU%$%JB`S^;|9Bc0R#Q{tV)G4Y$%; zVNO5y!s1S6n6$0E62M*(EKk>mZC;0?2^*+C+k%h58@1j+=3X6c37o4J3~KQ}jFqOj z(eSMmDH9So#+5CqtZ45fV2<&8Psh7jP2nO;Zm`kvLRiWfRBz&o;%@&=A{Ly{;-jhbk3XO%;K)a^)gU7g1WrR&gn(6D$wlu4=Mi zTOnIbU@!udb6`5gL^<%OSS!HA0l)sR4YY+T;w8l!#s=LME&^u5(Bo}~Vypis8>kw* zlln(w$oZZhTTEm_GaN0rB>{^)dn4ktuw6*LAz;tA5_9UG@lNFR)?ph6 z#X@LRzU#{e?{p0>iUKu-tA@VB5M)YJTHvoQz-Zy5*ASH3O#n8Qu&?0a*up}{|IhT6 zLi1JqcY0ehcKiAH8+T$*orYZJ>pZ(9T;|&E1omKde%-^5^-r*l;S;uA|6|P3e`ck> z5B&c{ZT}Nrrbjx;0t@4ObTs*VQqh{pyYVl`esgUH4urz~9gdN7t_m%>F@S?BXe}9+ z+c&}37|e$(;p*~b^cKJU+Lho%r)Fj`M_yk>Rh%OZ?ecnC&rmul{mnF<49!y(mye4} zsii>2-LEeEx{OV=l<$-C`WA&w3^?_?NAn(DUgfX_jaC~AD2yl(VSv4~j6>w0Nubp`*MNf^ozF%v@P19UOfPDdR6v z*RVg)XZ*1O5xljBWu;bJS`s!_)m{qxe3qU0E${|z$7T1D9Bk^H?0Sfcx@ju!Wkm4! zLVW&(X&2-ft()U4^r)v51zed&ySx^!Fm2a|a(Dy5LH}-V)e8r>QH3xqA&NsoPwU7* z>R>Var!rr9CJZV{$CvBJDQ~k%`0b?68~gmEl*(Ma&r_28>owa1CfM;yODd)C)@T0x zS!*vSUwL(I^HFpQyTFQO=&7c?5fIpK2@H;1Jib7#T@*LR&rhD`Pm2CThbqu9lLF1p zfw*klnr$~ZGRYcTK#9)_vKiG_wr}!|%et%d=bK@j<$@?XMK290RT-jUklN&Y=l6j_ zl344K_s6)yfyLenK^0!}LX?Ew$V#vDda&|IpemFr#;89iQ^a8Gj3LFd8!sHf%+N5n zX!p0Nyr$^@U4mTf$%X_t<#j7Q>NA}p@_a%L zRzV}O*HMP=eM$sw<^X``Tf|}EC1=#+03R?G+39UJW8Jg8pe4A)yiCg^`tz}BtmD!0 zt}3JM^3tOO;I={;7Qf_iG!uH&*La=?@Vl9JZC!E~F2FmKO~Y2wp1cdj47-6V5C$){ z-+FDam%K^$`+6Nfa_pa*wNfkD*Yu>-Q(t03yS)sgs-)9JxVdw=;N{FhH0gKs6&}+f zkJ+jx0od8b&;|Gu82US`%}6^{;Ppm~v-p3#6=GP>EE9z1+$m9{k73PRw{|#?BmEee z_;!};fHHg%rp?mP(s$P;N5cMmO`c#OGq_%>ewO&U$}rCF1E0U$m$9ZMo^QqxSI6d) zPowZn$D45vqt-|VA2E^$-`ZAltQKC|uKDPxtACWnjwB4Joq3A#cVW$JVn#7j-c3#g6(Yzv#C6y#(gqxOr8CfPwFxNKboF7BXWx ziL9A$p7Z8Nlm_hKhCEpu=AZ(&vmO1Pfl;;LeOtIj(E20Az3T*zAOFR%GdoTvNPZ&)`{fT{hnCoB339 z5+g)Zd%ytR0B%%MQSdP|jYzsnFJIuN>~*#0!339!eiFUW_$DNS@&mTEQFJ@QV~mM^ z+fatHy&NK7z_`3N3VV3FR{_RchrAod57$8Mi1LbZ zRcM$69KYU1c1+Xk_M+=LM2VIN#030waCKS;&liIq%>SxFQACj5c+nvE?x9}pnVm9=S0m7mW<9EiwZ_3YF(z^#F`C!9k!cpF#xS7f40VL3gt$g zPSTxuB_uyxJ}Fmjsg&9B|8AA-DaM+#gWFBbAWHo@#B;-Y>H{f}BVK{=**6Ib=?WTN zI^($%OgjW=)o)%ul1*~)DDja14^x}S1wk{_p)Ln2uGbEK7Mz5cdQ~w{ zZxnc{+3^JCkoK-kkkzT{48+5)-gxQEf0}942MP?#Fy~~iyh+{3^wZs=ffw9qLyPrA zz}&;izT#7|Bhtu%LQFdaxfG_1=kAIe_DBQrENm8EkA2_*$JdmO?Kqt6bC$7qvFX&} zUWypY1sqW^C4F79Vxpv&;Cvd#9{U`|c zccbR>r*;b9TS?X@f**fyK|$M$CIf<3`hes33bM>~4Y!?f_sRJ;%H%9KfTD_o60~r?q)oZlhE8sTU2ZxSWo z^G5Srf2}?+No+g8AzTh4X(DZ6R=_;@DOd-R=Uq1dbs$1w();p=+1^MAPkxLLdvsSp zGJh?_r^G11H5tj>%IP}XX(|~V?2{FIc&={sbd8H=G0RgVzSW(MUNUwul|z-m<6T$) zgK?Sl)@1(t%jgG~g>#kd&*Wa2mii3H(ikUlF?Wodj**;?7uA3tk-16B4ged`%Y9v-gv+ z6`>7Otevd{ z@$#$U{sgU|zv!?RQUr$&Ikt)T@=D}eLHi1ecvRzCtlt09eV1F!FI2T5;P=dItuDkE z9@U2$_3)9gspVXbTB~p+O+qf$wZIV9@7xsTa#a2+i5&|r`TTWqX{}=5o7OdDeFa_| z6lM8NPzkd_V)V37Rj$UfT*=@BYTErYd+)r*6<)z@25=OrM*Wr_blkk$<3A~tH}e*f zLoL`{#44M|TRl8vN3}0vrhv&m2XX}%SnF{`=Ivbt^HIqAbi4!nHBErdP`9Up>ZJrZs0Bh4hHXQT&k%_Grs)Vj-QFgPqJ@%UHjSU1Y`uY^ zJVUF8Y1fgW@p zywHv`TNny&%b=3>ETME!<>z;oO?5$MyO&|Y!N4}WT){CuVgJN!v;pskdN=hAEp_cp z#|q{`E`nP%7>s>FbPMu)G&q|#7mNq}K5){?n(Ez9yU8XZpP72WT7MU?m;ysmEY(NA zx}7R?`>hj<88whoKOBtu{ox=EIT) zA!XKD{kw)v{Jyh5n8^E%MM@*5N)F5}5@*JyU?%xc^=VA zAEgc^{@~b07_LO{wG?=p1v+BAx>0F}wQ*Cw-(*f0vN+SX3}1Fk6`mHr+hnV61n_Yz z2|PRf%IHyWj(`&Ss7Isy@!f9|Dq zJv7+IwV|%YHFLRJPf0quG9Jemg@N0Gh1An$E^^8AL;0{j2j^O->6Rx#B zn5KOSJh;IWu0_E;su9|l){w__nZvXor7({vm{Mhp!(`9i_S;*5MB7bW1v8hRTb(t& zBI6QgY-fbgg6;l?kSJGXxM4r3MnjZ8WekjNFBqRXlyo)nlUlmJyD^T?H>Mo5@aTL# z5=%EUQqEO{Q)m*wIqsmpbed?jM!r1VWt+1g2Cp6GAq3^ls4tF6ui-6_WbSF z+pK{CcAE~Cu;(2jW1x5Fqld|QkSx09)j5V5m$hDo{(Z^2M6eKV{GmP?1UTYj0K=O= z_w|f}ZxzAD63pTMmKVeV#A}T)1BWcw;b)j1{0hwFLK|f)(3^&Igc{)Td_tXlYnJHe z1+pzKcELjUP2BxImBjo@`2`2~EkT#hsC9;PP}%_7nWP_73eu5bq@p zu0{nmGjzxfUzo_q`DR5jZ>$wpm_GsbtV!+RHXiFq(`(*h z@I*k2Nr@U6dk&4m{s|ToIpv_Z@P@GunCHGId2b?qzP=?!t+c+(cS`JC6L{t#8ux^G zl#Ad0;5GaSf?+ctBlvjO1KXc?3HI`%@^FH{y5Ql(eVSH4vH(Uf(jG|2`J_fN+R+duq z_VymeU(<8n(i~ZK-{$%fCm!tr+7YmZ21$btWuBa{4_kt9WY-n$q)EdX(+Zd85{Wp38*ATIsTf(h42m6GVC=Q*Gc%^m3{;t^@AHfb!eG zHJP^3@O;ru2R~|jud+8^t*^&E4@-TZ^lH+LUcY8n^NhVA*#H}Ct$5VxwjyBu3SQ_I z6v_Td@}PY(;OZISOcXm8v<135?e-OZj}88GRVWi|({+$h25%Pz-qE#@MGj2MJL3^b zoS06-ERiTNlx!Gnvp{HFn51R2Y`1KK`t$Y%9{77<8HG*jqo41)d6=AHd)dpjGA{<|A2;~Dphp0nhgscX%)lkvl%@PiA7FP(@01i%2q_m zz&>;7e%KdoS8n^w&Yg6}ZX>vOPJ*;pto0EKE~1Qot#oA)wke9(i4Li-`mAou8WVg5 zJF@oMVEX_odnpE&*v56x30V8`6d0TsV`z=rP_+%eFuGTdeAE>_<8}fm*bl2n(=qeh zWh<2=^!uh0rB5G%6UhwaBubiKDS~Odo?ly@U`SF~@gA9nwlW$;7C3ey2-L2l9!2LM zWh92KD|A>0&_h{l6MXf(3Eog#xnk~%5t3xo2tU!6FXu=f_}TrTo21iDph|Wfi(-rT z)m=r|>Gq+*9&~efMU`4Ra1*?%PXo+jNw=25A|Tu*sd;xaul*AplAe;Akek)X5q&a_ z0To}~fZ4(<1l#O1Zs@}Zx>#hcUA~}c5-l%2+G7pgPT(u8Y4S@%KHdj>!4j1=D9*ts zV@o+CCls1c9{bRJ%=;h@^q%1au!3vw3eP2jks_FcC!OM}h#Y%g_WD6+E_ATSp8O4g zW#-?292)$7HZ&P;?VwUYrR!?QT(cfM7(Il}nrr0=6GW4!@Yl{6hI-ctGf%?r-Ra62 z9p$@*_~wNol{cyW5Y)Q0g0jEeUo#KfduU@Z&J`BQH+{yOhth>*9XwpQ5^I{ab>qva zcC_Z!n8l)yzvv6oDZ1GV8bznjc(Gs8d-!pfli0lk&uwLHyx7))w$OZu!>UBMp~yp; z19iWd3_h**gBsn$|Jv)U6G^SnQ#RO7tWDKND{okeVj?9BMc`!e#geD({Y44&MT_5b z19NXIv9rR&+!MDe`u;JV>e`$VhCikZ&Ep4rKFLX z;BI%+LFQGYYAIX6N%Z*%r>;%jXes8nm%80K&78kZ|IHhRr zOG0==(HXvPfn-5hXQ0d>qt5W;N{uL3nmmbtP7Ar*+zt52X#UO4!56h6whh*AZyt+x z9*(KLLVPgaBV$W(JPJR_l^Vln-jdCbtJt-M_i_BdN%23KxeC}V#j%YVd;>Db+ETfYJ$9mbSW&AV$ObEvHefq$U$(7|PsR1$nl(_pTlx|G^lN3%(63RyT+ z$r5Hq{~Pskj7A588CEiINen;xp(M(Md10jiEYv-?T1)N|OGr&QNiZYR3`1Tve6mGe z{eX^Z7IML~vis%_dCie-?=5mOBWRk2$%XVi`eBT!Pj=RREQ&-e@`BR$Wd|#+YWc7O z+bTraN6e^gVL*!oTqVK3?hh!>r-e{G{r)*lUQm@%VaV`U@s?v$(BSSL4Do!$C)0B9|!E3GmCfR;WOymhe{B-m(BBxOC(#A1J#S^_(qUx{J>q8cKL~8j(dVcBprf^zp5(vP&y+x*vof25eJ2?oKsjaW?j7ovMvHX^3K#}UFBMv=3Es@zNt)YR2Y*_ ztegGJeEcjVpDochkIe|#Fj?>|@(DBVWH0Ak8_lMjQKC{=4*Ni4q%)KzmybCg3HZ6F zLu-tM0Ib=Hyoeq9r>Cm7;ZI|nxg-6e8z~-0c?h0ss^&ejCg1Tn_~c_OQwW}wyl(l} z7{}tn4AlcW{w^0$)!c!L5D~-ByT5Y5Fak#wmw~EQlOqNl+^l4wU`{n+@AQdwEZ$~m zx;v5Qf3WpsUCQ!6w?8NsVID43R76A?5s*8kG_x{A;Mbp|dERe*=d5$v%SK5mReM*e zc3mg4ecFkw(Rfn;CL@OZh#4S}P-$G%AG{g1UMqhBVw_>ovBd9RD63;o!!OU=8D+VP z4S4L2K!l?w=kE;6?1RTPU!{Fw486$TGFQ0hjPED^QUt5^g+h!+1dgdFyf8WNGI!n! z9+j!byx-3Va8_C< zPSehTd{@Cy`=U7Wp*m&ZKySs4DIr_LCkTO&l9QF*8kG(RtZNTw z71p+fp9bAe?T3INg42n4-2TKO)ayXv!ChcDvJT{Vr|~@;PzIQX$I$7#G{9&4yN3~gf zHX$p|aKZqT-koO%)7j$kht<|GW)HTLnl7xrgG~?4c)PMDnt$p#UVMTeq1t?7yUs^J zt&=vUvqV*{gAgE276c^^3-1PU$iIbRid zRG&5O%h1v<6d;MQXCzsi@Xc(Sr30(rUzO?K{aw&Bw5ma5l6KjouuBqqQXuA)k{>}@ zRj};DPgYCF{2;DY6V-WlCBrn6QHX7n|O6sEPudjZzYc`Hb*Fny~dV~ zeC3o89`8edi&BJ5UV?|IUe_HJ(S5Z!aw({MKcYHCiV`2J7S*9kN1DOP`NdW)I`tK_X9}%r&P3_0;Rx4r-@Sx6p zM9w(977qxk2jd_k@t6^aK^RP+*!&5TZ;R)dCvcGbv!T8VT8xs~d^9+cZmMsB2Bs}V zATTMcm8r19*Sy@7Dv1y;?W}_OMr+2!Rjr<#n{swf|Lo}**8b^li< zakg-ua-%5C*_Po3mV&bC69%lTFJj|DfY5D0Yb4%np?DAgLC5jrd(~-`Ugkc2g^1gg z-7A{d!G~oz#{?FJJYCh;-I8euN+DBb#MjpcW*5S*Fz^E+>@Cy5-qyT%q@#ZIfP36O zy}*I9I;T9Aqo!ViDoIiX=25UdNl>5uHRh|;|E+Jp^&+g8?1IjVfb~Iu7dVKFBGYP^ zj8K{%L-GVR3kt;L8Iq4O1i8n&vQpmSGWvAkIwy*82nnb?He+-szIsOB1?7 z-$o>IwO~R+O9+OnW8Ix|L9RGMUEJA9X@BYJeX|Y?O=hOf28nOYukmgRID2pYs|;^u zN}Vaj^T|%!s3c7D29zX|RUTqbJqD*QvBOs?VmMK){>;$B8On9SNdHNKtL~T=n!b(u zVFhlG?<%dc5QL!D=?Dz`@k_uw-}$4| zwp|t+jXz)`{P+awjvcEdhUx45Nep7Gy@|?i^r5+Us_blaUKF8r8(!O{)Id`Y%!AMcDSoT9)0`YF8Pp@-fWV*2_gfeRPw+(I?c3C?U=lh{1lWCk2+s9~Xz z44pVk;@UFPim)h;yh{b_RK%a5teqyHn()Aso-7L07NktFg(E>yZt9K1R+a{+nn8?3 zrqkR=6!M?a#qBeu$>JFfGI^L%R8TxkHl34e1xpNgi%??sYiE&MAU!4C*b<%SA83zI!Qjg@Wm4s8SM_2SqKw{974 zMJun!RJqa7W1wNZu7!C6obF607}?JsTR^M}7LjkgpP|CFv&0qT5dYiXz}24j6UxbV z6ymu>v1PHEC-fQtSN7sR-Hw;V|0zDvJkjj^JV5d-$jkZE{V0x<3oL8TeXr*GeZ+r! zCN!sD5rUK$K?6dMM|nWreID@HlK29|v!ITfw+RD(c+8SZ4*OO5Mi~J&I0hyfl~wGP zbLN4g&9!O51};9ynfu{z)JMQ_g@nPbYSkc>hUcn2VqzXK+aPA5j!JVIJ zBvEtb-5De;=Q{mDs4>K|a~~5{+2ddRr0DTV4x)>=APxLcQj=)jZ}j%%zlw-z9S|r- zooCvA&>4OU2F`4kq%ff=SI|rqs(|~Ru**FIpbq8BoZdSg@A*=9k)GwVgtsuN@h11| zhXO|O-Dgn=KkcQng0)nhcCji?6V6EaQ5{8#<_}kAx}CoX7JN%y>PL@7;tf&f3eUDy zu;D{)7Uq)er8`xBlF`?FCt1z0VrRiaIY6%Udd`=pJCd2IA*>~sWrF$6wc7FXHCG6Y z{M=i~RGiCYb6@P)SIY`8QA%)nwJgrnt{Z-a{8&c^JAnsS9Q4@{0tWfQ3!1;|fz9#B z1w!BB{)^%7`$UyO>+HVmGMH{Qe6x|tD3)~61YfyF;pa3e%DLqRucfyU!@J?|0fNJC zKt&C!_S40N|nYPtbIn4D#6uz5XTBdihB{@MumZIO)s}R}=+qitpcydfN4I8d9XE=vDo9 zeRz3;uS8*s@&Asv|9jy7{IP`W?|YY4pgy~jr)Y!$6H~HWu(J>_ypcp?ZJd=m*6uy; zl^xlznVCf4{edR`W3)j3uPmWc56TgZ9&tfbd~|2sm6TASJ7a!5#rYeuS*B~q+ifst zz!QgvM{A6z6rVYUn&?X3F>ZKbseccYEkjQ(z3g-M9^LHEQ$_m#YR_hZn)yw`FAXhO zWEovs=t3>cLIwxcFrJUh3w?qF6CbkWs7lz`eqm0VVg*()!42wqt`P{RTPCA>>Yluw z(EU!fmXr&ps6~4$;BAIk-0kdcDR6FnTfncv0!Q;J3*Eml6HzGKMmzrq1%Ac%1IzHf z*Rb5|hvRUp6uUtxiE$JJAoXnvV|K?}YoFV%s$9VlYAZOR!~M+-|E7~jDLXv!OP&AffOI;DI{!!VIpu{N!hrj=3upkA#h*Vn*&p9{0@S z@%(7Qn>})%0^|yU&RCGSO#nQ%9%y*g`usb-q>HxcggBj%;k2; z3Rt-S3u^6G04MI(4~QA%5l`TO4Ub%{bX$sGi0`K8S9R!XhI`3KR$Kak+li51*GFI$XwQoex{?%dh!m!mBl{$}-Zq zGNb>q5C&gNL3*Jw*B4x)MLdNx-F)tv1wHUO0^OFK2px2RLE|nvrF&*_w^w$QhkfMB znqlmpClH{VrwlW+$}J+qK;5C^Ds<>9f5#8Z-LEPj#Q=KxP@-TgRI&Gmfc>iY?UiG^ z<+1Dj;%fuDOLEol#63Bw&k@pUs`R}BJ(iyX<`HOoxGvcP z%QHEOKqfpW{aeoz9NGfWHla-;2x@@Cw$`+f1U~Q_dvSE2I3>l56p;AeIPlG2NDyu|$i&w6Y?{=aqe=RvKglfcg zsi;qW)Wkwou`0)2Z>U#j%jz2mYlOQA!_z?lXMQV>Ss$?*d~lwI1i%%UT-6T%2g&22 zhlLuBFc=Ubwd)CTRtaIQ(E+JVFAzvvoWF_{AOcmvn{A(mZOB|APd#MG)v9}vlen! z*TsU5(U`UTSXxTsRhk}sV{jgOwX|ow8``{`Kf;kM1WQb_oqe=OJoueL8{1*m;dr|N zZ`3!(F}o*mrj~~0y^`2DJ`j8gf6|}7A$}t52|$x|97JUW;z>&V9trJYY zpm02nasz2&A!q}qSp)B6EU;TN0HfD+5l&F!er^m{yk7MwyQy9Yy4Dv z!+heoDAvV_5XKu)(x+UktTsD|gDonM%|BuJX3!5`kneVA0Z#fRNo=C@10PBA4&UCDTWO! zxsGAg`QJ@8@cRYbRlU?)hK^g-wdCP|R8?gpt1t3nIQZMH=K36erWiis68hMn8k2Vr z&Fa6LgK?V0w&EC6leIEVFl8lQ|5j4VrP`c0<@*P)ox`aut!bd+8uxTo9F%2ZQ1aqY z^+Dpwe$ofFw;(l`G(GjAZNpsDpQqsb4%m5^5CDSo6^P#)9?OhlszBBg*ScOo{{?#f zQy@bqk6xs}!JLhSba<;mmwtb@*;r89iKX(NFSlhnuny)21}=cMoto_V+?}r=vk^1!}b&C(nmQE zY}03kS^6fhSF;m039P`a-;C=#tg4a!Ew4`cpN1pRjnda6AJKe(%Fw02lo?TPEX}Gt)zEUGcnO z?CCz(V3Exq!#F;KDbAtLPTS!!ryL7-;(LOhyg*cubEtHOZT7957 z>xVj_0sI?A3{oD17fCY2@U9ala4U^s+-_|6~ zz3sDRULFBkzy$yBBR$N=v z9@HNkmoEiXKZZg*64wc~@SEMt@|$MPM@&aMy~72oFx({0dTCb@1lcF^Vr0?WSyX#Y z$9(Z7#NW#lf|Y+)kL-{c=?~a8fRMur2UE8_ynfmp`6l9pkr8t0`j4l)X$xBNlcfW_ z)S+v_m}nLwf)>HD4uriEI5`Ox4eEcm~UwoRqb^y zVt5Q!hH8hX3JDK;_^q1{&t!`(6Bk2VO4ZSZKzSkoe5{&Pma_n6ok(!E)k(zMp>pB> zmHv|d*cmb%S<*rRlu!5_!;t)2(`CU00-O(a_4w7a>hF5frfP&@udh^g;cSb1Cx%j< zNn?Wk<-Q2vG~N$lrboKdsOXFz?;ZMDrXNwFRX|&7S(ZgD!~d5u%0333Gw(=TP2+*M4PZ? zX*{geB*!k~tybTa7%uWmkOrz9A1(iGD}3tL`%`O}u_FsF(H^=7GX3AveH~R7r(`-7()KQJWRmh@ z=x2py$m`?xu7mTri^g{=2cYEdA7_b{iqAO#BL9e1Ipz6gL$G*+4=WigG_KYws8X&~ z{8e6Pv4wacPigVTmS0WItq{@EOl4I7aXmiTbFDOYhd`cjM93~@Zdnn(Y8LO*-_|Cs zPsy0rLdiT5EGF3`y*iY*@hL@&(@o%vNpQ)`7@-#heKz(PC3YSk$gTG3br*i46|7)) zN7_4fPk&qh?_}|%Q-JsPE6CIr*5Oz_Z7|X6xVM+}b!DSk(#x<_j_5hW`heQbrD`(m z`fmo!63Jqf%~A=N-Ux7#E8^PZeJ#TIBF_w*yjRKQqM2E?T1+v!q=KqpTcxS}Ec4=- z*zjF+?)tR7@=bcV_xGqK3YJyh9?J#Z>!ekOjsQwsIVJECW!$}j<6asZ9yM&vsb7Kz ze8aE@hAJma#5dg&#@r11sgIoq6m~C0J>Lwr;RkwRi*@w>h$+ zJCHT(f7Pf}ORNI&<_AlF$Fv1h*WC6;UHD{MOOE~^-;jll-fKS3i`P|9Rfj+7jYp7{ zHRWp~#?rT5iLI0+O=n)JcD@45Utvo}Dnt^i+Tf**!Lk`P;Hd~aDl|p^8-0A#pmZZ- z8fY)7jcPL;0@cHMxi+H~kWIXYr=MUabXBk9c2^R(`h|omPIqA=kIb|d!*h~9@{*dw zd}x`|#~^&JW25VJck6wm`Av2)QoCW#YcYwIJyqCr#69c`R`8wZ?}IcCxvk;93?)c0 zIQ-gMj+OsYa{0@#8a>suInea0@d-)~Z z-K|?=q~*~6t6Sr%?eF+c@K`yKHT&PmS71QkkX-`!Z$RDk?}4xGe=C@tfB#c>*k$;Et|)tP2{s&F=pow?swcuwedR_xTA z(j$IV1ewUjFxjKm9(n#P*f>jw{a(;c7TnB0dwpKOoi75DPXc z9FCit7y3dgz}{)6iv(;y?q(ObCk#bkdJpIMo5Z8J?6^0du)P4;em-#AolP;Ham2Hm z|9UGFdtp_b>ixs-O^LESJvDbVVC9Fg&pNbVBKQD$dV zp@UQ1`RnjbtwAs&u271@{+O5U7Dj~*(iB%_a|rG2vJ{?3D`%(kL_t$-QrO?$0p?no zn#lV&{_OXRfA^6*RCPj(!AYZ5uwgVQ`+rkq@lF9{GzuX83F8A$&QhJh(1@kkl=1Di zv6r}tQNU?|PD{M)?0}0g=9r*ZzXWhhFvO~3rZd8?Ed;2`54w#}VVA91#dA%sMg<;? z7htBIVslwXV05;OHPb)(IT#nISH{UKZ-I}(&XknoYK6)FKb$uoSRa7*g$fZ=9W zL@3coQb|Zcg>NDL_ST_k0ffCb)DgXIpP%67Pe`+8S7-?2#lp%=4D;|gmj7BX#@uPM zL(2&5^R76As z1a!tNC0CI<{Q6GHdcW?cZ%+?;a0Ycw898BR@3oShwbZl)M{^4_uMy@xI!8A-aw1-~ zBd%c7!~47Rc&TRt@uO%ja3m!$vGP@5z#$o_qeGg5J%M6B`2HX%XNP+8=BI%dNr%`5 zcY-VOR<_>nLkte%?oU0&&}Nk(Ffza-HssU-^O)ryElUw(W|Bdk_<{x(%Ew^@S}j|3 z9!w;4b=Q;%mqdJ7M~%?3PcuAx?*&9V(PIcjHBL;hLfMzbHa{unOU|@6e8qznqFi~d}BFZAij`jy6!-zwonW82I10lo>=;%Ezhl%C*r%&hq-*I6^~ zK@cq1roMu0@D7uR!EIL2J*V{TAVcD#F*B1gXVsY-B``9tP9qMCG7K}y|88`bjpQsVGzC|s4L=` z-of96{=JLK{!4tkQO5&ZbX6ls_WJVj8K}xW8?0+J7#YL>>VXqlpBnBg{xB(hG|w}o zwHG99&M2+Pns-pIf%UHhY&$4ucMLb1A5d{TD5O%X8h4}~^}1DjM8YT!gm;WZrN99M zp5@5+Zd8uI+2Bzlt-|2ty|;ur{HgI%abwGV3&P0){?2CWS$f5RId_D&obae?zDTk< zKRgr#>f)h=2UEW%v(O>J4CJfB5z3V%A@vXW9dMbcl$ju3g#j1zWOv%>;<+eBOATIw zyY|j-5@mMJrLKnL#S5rU@B!!H)if#|cABkW8DY@3-M2%Mst>;4#A}*T^rU9ku&Zw*`N(n`_>LsLgCCO1d3M%99WsA%G*Bnx|4<*EJ}Qg_ zU&*7dD-@r7u%(*!Ds+YZR*d>vuDzCp!y4eV83=J}na4e!pKMdd9L}6&{91Kb`4C;* z)w)ton2_#=2P+9p5F9D9uL&iVtk?mNoP z)e9c~nAB6OMYaSd>i=;Z+VG_-KP-85t2+YUv1gfw+-I#T0w_-_i%wKf3@(E=FU_a;LaNa1hEE5wUKP;8@W*kACbJAz~YS| z=lAjAKsLWe!xjoB@!$f7T@(>LO^-c)O8}Q@ql!vGLNDx$GB1F=D!k~P-!taR@lE0j zM2j`DtJ`YPu1JSlc&su%4s}4Xt=ul&ns#`vPS5XvK1dOnGbe#$Q6QNW$B#Ba23l|r z&?BVEuo{<(=b1d7wX1(*SR6te1u~r7K%-LT*LZDS8+rL_@D8`H61cZS9TVsG;DAh1 zraaIMSXfKnj?Y4!Dgw(u)L zXwstb$?pr$a(QDOfDBUelhZ@~JQxpstvxyIHCQV_4=YL8?_UeA2LFsRwc*iHs(5iv z%I^V+GkW$Q-5R7lL^|4 zJYHz;Oa@BUeZqxz#qUl3mdS&Y{OciCiYok&q!^Tt_6joC6{9H7PeFmk1=o<505e&- zr2>Grf?U5cE4F;AOB$gBGvvN!qY=PLjn{Wg<@^FRpG5({eqAD!1h?v(YVeeE8Ij;m z-pp|I2?qv2=K|=Z0_z4zz&fs*Y?)Dx|1>0ZBXy`@oix@Ldw0=mhVX6gW9J)XgA8z@ z=5m+b=w;;uPc{Ukimbui2X$lUfd!6=#_$5k=>qfJ#K^sqa5~}oDOyx7I{w`#CQ*2f zGKWKFE>2#JhSCp@7pfn!U4uGhtxzdQ5-YsCxnPo$%D%NN`CC&6RIWeTJfW-4S3Z}e z&(>pVwBO@}?yU+|9HiC47X{aZuT+w+_1Y`%B6|9S?o|W=JY}-{dqKnEmprBm3cqfDN4eNm6;3v+gW-PKm!GTprJCum-i;`lo*_nHBB9*e)q4xjq#DzEQuvAVV(^g!Ay1Er#loCIUE9#BF9G8NTBi< zXe)Kd;0L2x^Vh2=3LB1Ot(F_I`h)5nFkkc)n^2gBC-rBoQ}Yg$vMp(2JV7=jspo0r znf3r{>Ut2KB{#5k1Ws~TTo)%|;7{IGP$gLM8QII1_^f!K{+Alm{Kp{|ED4994LG|= z>L+-L`{4BvNaB6!BbHelzNKo+WZ@o^4aR*f`AV&enJ)OH`;Q!rL2!D%Pu$ycIkL13 zi+pha4Z!)Zy4L*j4T~~|ysxd^=k9$@;)4q^^`=j3A7f5zcyu@U(vX8>|*UmK0RVWF|6qe zI4#-$KB@hVJo3g&4j+dHD$E80Rwsuxm&_#4lx|dd=wdD^NGYf?o8vyfiWDI$$E4Af zvU?vR?VD}fA%oz`GRGSB0B*VvKQrTIb&BmCsQ;P!Xp9??$DGgeN|> zo=l}ggKXhh{vM^;+B_annrPpp7Z7Ncp3cINd^o(LRO$&f^>qP*!(kR)NGBQ3E18cp z%I^J941B741_(C570FMLQ`{=9U^ zBfoEbi+jUeTEQI%glyuAC_OODAh7yKkj_U&i{6t3@{L1W@zGd@<4HNf$V0ZoHatNN z+-^d9l@R=K;Om|&I__z8#j$RB$QEM>5jLX!Gv5j2%q&CxfgJ(+-$MUp@YJHG?O>hE z<_g>9;4Q8Y0OM&DRE+&!^Vnjzb3+e4BdGucF>-o3UYINwR?ns@;=^f@rq`ZT51R%8J`>d79ggHV_*7a%$BpYJ`(69a-5Yi7^ zTrYJ63!E*%ycH0=JZTgnstc8EPeL#lSL?1J7IyJr>PETIlSk*w zy|P&-r2@EWKfC42Q$7N_i)P#q^c3*{M@>NpG1$Xkkr;UuGH@`j%#~v^5!s=)ZAu<~ zjKx9j(sVIAQ|kxJy*%-Ei{{&ajcIt8=H{1^oW zpGA6K^VBwzOwS>p3-0%E>;fE80z3aP2Kr|%PVj}>E`XOi37idyrrAtJ4cT~Cj4ziw zMS*T%LWu^0#VZz<-%2{2&%3!gP3p1U5(eHq-kM-L4ppjn9ejVrd z9y=h%Jt0lnY#>*(HUxO-a)|x1f3z>nhCCrd{aC(vNZ{uq`|8fcLd&2*$mhWmK1bsn zkLD3b49jSW-Q0l)60B6XryJoGBr#6_E@A&~*saQFK`It#kUzj5!QuOs-|g_`JqZ#9 zP4^s<7i~rk;N-rQQtaTh1*=6}6EL7Ao%D0ocaS3*0j9E$J6MwU9uQ#uJ0KIYl#bKE z@IQmuXspAr7NWDTGdk@S3l5rHSW z|1uVBl6unOwXksdXDlV6GWK6JEix9MVe_BI5}|C6BoNXi=#Ufv_!6#=3n1+*IC&tm zOwH8j|4llORq=Z?@;l&GPTUJgxN{N-Qc>%iys+kD60Mk? zIt_96+YW!oX@?b+*$O!QAHDwXwfD2tUCD3u&h6j3=l^pz{r~mnZyf#)zhqUb(x`Vm zF@af6Yelt10{BdB98^#nScIG>A%W~@Ty=WBw=n;heC1*sdJ)!K;W<(>hphx3$qll2 zg&Q^UKBM+IG`g0aIfMXCYu5 zcWvvtWz`w{`JoPXk8u73OR9}KRAi*IUCLDQgQ-SmDbhve`r@dM1!0wzKWp!_a{k)* z^=Ov&P!yT<`a}wcr;(LsSJO3BaWTK5xX6cfa<=+ZsG^jcz13| z1TRKXK4kL6SD|QKuBlbE4$}i91>nd2lL0Z)poikP_SAkIRv(HpRX+=k0J1yohs;;% z*deM}vXX@#Hsp&JYs|LxxZ(N69pYN4k;PdhZ+++Rs<2!HVCub5`Mm|y5HGpSNc+-BwYaOcMzP&MjTBZanzXtdD@RM=m zFfKsaU0oNdcU-=!E*SbN`Ot3u$s@=Z(H&Poe6Ila>lmk)?I3{khrQCn%ICKPI5U*A z2s}F=`&LYXIW9*Mw{d)=Hw&G+gG1e_NAsTl@GyP#zuMBf)}WieR-?%>r1+7y^zr>o zu&cZ}1dfluFIOsIATNTnil$29@we7O!XK%nk{*N@krf@@c9 zc_uEtC*XkBk+L~znoixxwBaP%7O3LHCei!$R-HtF6I|p5YGSnvOb6A3Cv>^Ml}^>w z$B*_y0M=-tOZ;~S{C6wuM>Ce-(1ZK+9Td!A^oaT1ufPO&=bphJ}h z8CR~U`}+&5YviW^N28gTyBos&3axWkr(x7FE0)u?9ws55f{%IL$Q$SA{k~_QJ zo-JNrjbw%DWRy}su=7(IQMrBx)EhI0anZi1`{9*Gdui4`J^a+wRf>*OZyWXD?I&iW zMoYt>p)EmTb$aidbsUyGG5cWFHX;?nU56R@- zbkz_sf0k5NzAg-BJylJVS=l?c*V?h@e$-xS7MOpx`y6?^_eRh6Z_(g{KX!?y7+qMrD5z*VNKX0USY0VRA{oM$vo355KohlB=_3DZ2 zLm`}B+yHE)>u!ti}6chF>R(`ii&z?Ogz2J zH}UCrExWo{H34~+zJc}I+|>;|{V9gVN7No=mW+^ET8<`9Pg8WEKzg$`(h!YC9XxrU zz)g`P+cZ5}Ur2l@3IjYLx3=m?X3e^fhI8bLfq^e-&r4NVH=yEBQa?hhZA!4H$;FN)S?HLlsY)EN~ z5{GWS#qibAnSds+;ic8`0{x}0P(MY{G-}PqQn*ka4p7;C9G6X5@!Bay5imMP> z@3aia1<%HV88d*(bJvZod~VZIG>r=P2W&3# zT1^0!y7Fd1%0fPtL|rwTwDxxq!AX-tEwjdI_!*5%fxWtp9i|Oa+_%e=uxn~!!IPO> zELkTnu13p`8WVuY8SvHR4%1l!-Q2QAMNR^4p+XTAP!IJX!u?AMx*{)laA^MYU|mrm zD^BV1PpDph?_~D&Z?VR5ve2mPze-KpONj7{k2C9mje=c_tXLwv=qW zk_GKKK@}C|178FEO{t-n&L7b?9NLL&ut8Lm~K$6i69ZGzwcB)Pj*?7uhpp$ z%E6e8AY|^>H_xEBOFn%nbK2B@H`9K=MVn&Qg0JK0tyoMn^#uJWacUnAy-}9EWq6~~ ziuzfB6ZZ415^m9qbOI`4aPkYd#j}pi0)91LNIW!B9)k-%3cc40!q{EP3cOpI$S*wR zv0#nfC|SZ4g#S_p(B8)BY+^fi*NH*;q@7{vT30<;&^x&N!X3FC**Gq`%OGk z!h{8ahNzz_0(jYR7T70~5ndcEWoRLN)fDXseCZ#|iFYozx zRaQ)AiH*q$3l42+a|Pz`y>)z$m%$?11dgq!$B}Z_wDsB`tZZ25MD6ryf|oIg@h#mS z5f2!7oxU~Y&Gre;?0-Cb@=oG``!q0%qM*=Z%bHZ=a89~;kSO|DK+d$TbpX9oAb*&r zE86e7KqhFB1$MGx{<|vzq`z*fAAG@ki}25FFF)~~gzSgB_8Yp<+xq#AVFNoNlzmBs*rc!M{%kpmoa&E3W4=I{u|irb+(zlC0w2F&SarWYsil`?Sc0_+k=w(ybn+=69%#Qo-dPH@+q~+X5m~4bEl*g&|;El z59SS=2r=G)qdZ)x^OeuNIxZ_loiLqN?CLc-10i9LQeLRFRXcx{F^M6VFcficM>~h- zU!xCIc5ImRBRw1B&c3;7*A z;Qx;i-hGoE@fR#*i22MgRB2aB7aYcI*gT{cLR1(`&RDJp<`X?HG(wUCG|vd-RFiqm zxegXMk1yy_t=Jo!*1q?C2kZrT;GCJ=DuhN_LmS)z@J_eZ<~>-X{I>2L4z_%6$cvZZ zO2 ztwd;eSp(ER?>5zDG^>7BozRjYPon#cyR`GU>`To+2ewgTW;)62z9R!X%KPw*xyMP) zIH0D*E$~DGueKZP%$RN)SbFA-RXBQ2i|_EtuECErC1JYxQ{XAmg8BK=6*aAmmm zLwkA(P+)+i<*E~nLJ?Gzq%{l`Jp053l4eA0ZHv{s}Wx`P&GZJ>3wd(cClG z9c2SuLo1YcLum_)EwS^Jw?~RX5w1v8E-by8zI|AqWXjS@;1T*#!Z`9~G8s(p-FCi$ z(k7GGb?T>_J9LwRNb=6GY*9ANkx8YAORVMs4^HF0o;S#n^tQ@5uL;2^*~5NV3sQUP zRQ;2{l`Hq0C&6H*iKL+eDO17x6arQ>Z$nTsnhj+wdto_m(YTtBUxRlURyJDFvq`wB zOGwD>wxoW|HD7wm*=)V|X(N?7Nt6|q9WOu*;UOtFn|CmUK`b)^d9xaA)W9iiVzSzl z09;JlJ#P59hgsi}rNn*nVMo2U3F!8VdBI_F>)*O1Q0r?S>#arrE9ATj;P|$L zQ4qsPPFKb`yK7rH0?QGQIr4EH(KDB-|F&tt*M{C|3#0mOT@or#NgMv3l1ETzbb^)( zo94FFVYKf_bV!;;#ZM86QcINbyjO1QD3`UUj!^p};GR2L`^!<;`Y* zwiubC4m)P!DR-cOw{x7gf1P5dds(KM6b> z9E@8lXLkZj@q-$6lY!w3g3kF-8%qTxr}X+*q47~eLjzZ*&+q1=H=@5AG^1dF^g^md zU~*|L$teeASw6f;Iq2yf%|~4S0G_IjZ}u#^h^$FUU=HjvvtdaXoHE;SZXDf<_||3U zHi+&dZOPkuovqA{q?h?{Fc&r9RWeOofpMSMf;*a*zOlMv83t4@Z?!}Wx=;O%tAAtd z%9dT#k?aTYAm-uG7;L~8Ftd4Mw9PzEU*BSTpSsl@9bH}B_e9)t4|^LKq|B9TNvTwm ziu3idwqH7DB7TdvK%d#`I+LCJ;F@5s8J+h>$U9rNOrbGZlcHIPF{gnahgs}#Wwf>d z&W0vfFewg=1Vl#t+lL_QpX1M=7EFGa0Y>|Z)gGB1K_!s`wvlMQfbIgQtjYqEU}Tzt zpCcc$4UYH8x^a);TO0h>_3$(ptQl(C`v?$2KdRm48M9gL4vt-D1`p#FF#FVCZh4cZ zKGc-m?v{I1%ki-ni@T43%;*a{oqvxm0(lPdzE!gal`-mM3>gBkxQ9=S9p~TT?+8ba znywjhR6;Qj;O69!_iiyC*7L79QPi6+O11ZU06~Trsvo)aW*U0?;98esSMEqS0o`?6 zk%X)<8>C}n6n5mbaVF*q#u|))Y@?PV*xqtDJ{rfA74myTLIFN7NI^(*G!-S>#3@kX z5tSMZ0;3>CkOUnCRt0tz>0y>7*-^HOFwQ`$Sl!gs0|u3^)Uo9IdukZD9_PD#0;pS~ zaOUtOKN3SSjvi){gL>06xa+{F`CxF9%|NrPYPu(1(=qi^ghz(U5Hh(9-ugG&IhT$k zrmjeunnTj*N!tQuL4{#qX9HNuQ3*88p^!C}Irh*azm(n1Jaj!~>Wezhtx=w2CR$c9 z`{p^Yjz1H|Xb^G%YX1Vnp_Tks7zFiR_LfL@%%gajiV82J3A!*wHAGcAh8rw9Bo70clU7 zVkF*qF&fB}1TS;_nG5>bA&C&g(ZTv?0tjvupkPOiXM%nD;!tG83Z78kmbt`!+?`w7 z*d3KCw;zk+(A=IQlgQwn80zac>;4wn3`Ep64M~mz8)C_TwT=x$DS;y76lev3*H4I( zr}Kc=>rsSmGuw753FG6@C7?JN6o8@o2lid`x4>o2)uV`k9TVk9+G7U6Cu8s^Ldw%6 zB~krm?1nz8;rRfNx>ekiWWDsl$wfX8m_^iyQTUrtf0;v8dPV@whN(u!3K*`%nB>in z&lb5{gT{@HqM|4aLiY-_P3EQUt(2+7cBq#Md&4L1o!WmamSW|+a zM@yuEdGJZNdBZ+77anJ$SX3Yr?1aC-oCS1GzoS`=qa#tq&HyiQTTZ<0I{Vv)P#PdD z%MCM{N&ZeM{+QHa54$i;J80 zUH+&bg2IqVPcOkh1UCJc*;s|X(9~7x3#3@`b`Hn{ z5=9AKicLW8HW}H@W_&>z@Yy`k}P*2xdyL zm0fHyo1xw--;|qo!oWg6P4M2Ap!f!7q{8F0H6##Xn8q?`2Kfns2c7WUUKg=8RQCgb zG=u1l0)Nn47Nj#bAnH0X1^uQkL!WUwr5&fJ%9t@8yO%FApv(i2$h!k zP*8)Hv8t?g#Bbz<{AN3g5;!{{5lzenu_GficJ_{%*N&05eX=V9N^r!fW@8o-en=T? z;~M+rgfy89fUSimquC>K?5Vx@x}I8pymgYfV;qiy`_SF%l9f%4MOrW=PEH)BhSF$E z)!XG*5ALzdS68LaHxa?~YHKJ}-_V@l*53pkgz%&QPg|(I@{~>BElrm0Tc-Gs2g>u2 z=}rUeyp1v>Ns!v6FZ34I9~0b(W6>dJj1sbd@=|wSPhpO&$Oxoyi(ptCa-0Ehu8Isc zJ11TZrlY2;V7W!Yyc15t$RjxnQ9<&VrtB#YdAV^VKNEHcku8FJRGDf>N^ zkwmw($k~ecSpmZ#>hBg~*vyTDoJmp)16;IZi|C^c>SU+|q_{^SCxKADil!v`3*wEF;q$P^(q zhrl6GevX3%z9D`$uQegjvM^Y#bQBmIMj1s4xpXgsOIoE@CZ~W}9LLtykXQ_cYkZ72 z9LWMrDdZ^OTH)?&fWFTW8v9PBxhoUrK*!-4{zk})jAVp zJa^akn%)v=QUeN#pwbR5V9*Z6Nxu^)=s+-1REBqJ2IZphXIoQ9hsyf=NW(@c4Oc=N zLx_RQ?(Ey(T!ihV0!4g}bMje)WJVeljdch%bel|sfqHgEfmn{}IQ_Q|6QzVoGU!$~ zG~jH7nH20MVkXw27d<5K22(V)p-=`f1nl~=uT+!X$DuAdf%&_^X`^IfsXp1inHU0i zBRC3KHNrym>-2QUOW~D(rof$8ZN*vtH9Lkte58$%H67ZU!flqy;B*7t*|Cp?CO8O5 z3m1GjHWa)@aTHo!1TSNHmogM)We7b;bD|o;A}|>7sB_O1j4=@!fS(hw#zaoc&0-Ne zl_MywIu0CF=YJaf0EX&x@~Hj;mQq4$qAbJk%rG)EZH`gAmdeV_Y-$FXs?vJJTqN3W zmdCCo2-J|stsQ!wjZhN%ox1nc-9)jJV5{R0F9Dp+_tIgE2ltpEp~<)v3?>$1kR%(d zh+o!>?mIC)D-yTwMx72Fp`6e*2Kc^w5qsrZI2a;%+{$!ppMl%cWFSj8;@@U=6W#dA)CC@AkSE6J z2BT2e)Soj+%+WVj#9(^pRo3Yyz2-GG;C}=M-bCki@qAtV8KYrHhb1J!9rFPg_HVcTNwB-G2L z=)!u!k8M31{#*G(lR)r9?o*Na17XtIF>H~4@MAB36}+vK%-BiKh_wo1Q2wvVntC@6}B($ zpR?egTX_AYW=|lmgDl2`#RTLxEn&mB7x~>|e2P~#w=zB>5wJj?yXSyO+Hhxb?qC(h zxGQtEDx?FgVbgVQ9_oKu4~xLJKtu^h3_9;lujHeEE|dn6>a7yXgM5v=xEzIEdVPcp zNK&*hG_q)a)+as)2?7*^XQ(FGQ!XsOC2(WhM8eX*356RgZ}qzL?)jW>?sP0@x)adv|5^@T4V+?Q082{5ng@%~Y#VUjHA*#!VW zt5*yGKW77z?!h5_-TN3^1xVJk%o!|&^!Drk@Kiiz-)R>8ul|>OARN;sDRh5G%njo# z?MLAz-D?1HO(7%#zL(yRRE)Li<2LN}E4-VBHozUJ3txT+a_HwPh3Z2pDiWYWb3?s+R};2$!!F91jjjo;|$0DJDCPxhn5?rq#0CT(g(?L zJEY+F#Od^AXOmYy78=z+E@sHo#$0_o|xPBmG^p+((JTz&6&z^g?zE{ z!vGmH+{HyDaQak5ESmrOSY_un~XudrK&|+o@(Kb_MJW{2@#4OvM#w1^Y31 zJFw$3tpPuC&1c0dawb^o=-dinYdrM>A6s{GhtlW{nF$<-mTl=bD+Bzcd0*y0sbO@y za$y0P&H^gbR750J4z-LeGT?8D_?#u|M3g-}{tgIAQ9N^%*p@Bf_+5|IqGBMvX$eWp zUNc(Jiw#UvcGMyQZxP_{45EAoeMEzf-yf|#sD|o|x{?$Lagc=B9{?{HNcK(b$%>By zRDK#fJPI=FI2(pc@(|3jzzoFtT|0f-YBU@YEfJyP`-EV6W*Z~7KIf{8q=|dQaWN}r z3P2g?EZ}$bR$^lVc|m6b3uy8S2)JQcaS#%1O%dwqcqqawEW{B z$FgUXpU(Jc@N1$WW^*O{hA|UlBl*j|b3& zzXr3{Ypr~Jd9T?dsyCn?wyq2agD@pDzW@>=iCGQi$sT$7b2d>Svd6zG$NCd7`ivBS z{JUnAj_a>4|1B^3z5Z$N?|8C5*FO#Z zU9bB;^x^r~5Aefyng((n00KuG1pd^V{``?2XY6!x31NA`D^`YoImgd`8Vn?5S8=Qi zuH{?B%kk+Y<^4k~QI#r=NJ+w@3D3uUCrq(K(>ng89e)XTnLmE6y}289KYsF6^iL=- z&C{`S0rCp^%(c|dFO^t)2k`>$8y@hI5l?~B3-1B`JDn}Z&w&^#a67QxpQMVY?Baj7rbj2y1}gE`MIhzmR}^w=k>As zEbDVENHM@e_gfP~y!vgOPv-KxD4CjB#di|plhJ!Txi{bCAB8BsM0pWT z@@C}Acr}aY%)equMw3IeKX)$x6!$(inQ)nFf|)-{cl-1U3-l;%r|)8`jx_D(BfICq zdyh;?V3~MBKu%_7#NQ~7h&Z6v%IA5$@oiPUhD$-%?+ZQW%o{4rW_F-8&9#?~Y5v^` zK?}5Iwno9cHi{8mPaojXo9{?+Khx;6c6N0KUl29J62onF0;NT@U` z5EH+yLv%^tcyf4u8eY8_GI97#j~P_{EeT71LkCRDpWdvk=lUw5*Oy04QCX&!1+O4n zyB8aMBXt`-8R^xUw>E*~35I9M5UM>G8G?C!(_;e8_OR~B^kXT!7ly+8N1~(;bY#R@#_f1(uuyil5^oQpRseP>ee@x8YeH@tLI3F zY^`h#w(||F~4HHeo z_hM?M??S+EWSKM|3gF{Ha@X8Mr>8O%Uphxl>IZ*`C&^w(_RPw%CCr3c+3yk2?zy~$ zBZf4d`h=rlgM~abm#|N^vv^i-#JI;-$mY>7&^_JjzO!?97LE7{fzvQ);2`wG3_vz! z8W~CHWC$DEHv0MWc?L=du_`#+4N92RcbRM-LqUc;$QK{8rMmZbrah<^gdolRQgvAR zN?Yh!-syD~-%W&+SlQJ_RM4RPh&;#$7X6shy49J9NE>oac~@(Cjr95ICja(f8ay_n zy*#7qKFs?o-d_;+m01hMfj{YyT104%jdcJKtqq;JfW~Pnm!P`ypL2DNs?MymwK$(# zcKXJY%c;Alu#Gy$n6YUCuO$OJxfj%%Or@NlS3^w2gqjeaG;N zsTX>Z`B0rV{R<9FCtpt&$`yd%%+6Gy-UlajL#y_fD7K=#IXFosG?(sN{ni|d(V1l8 z<|X!mDtMvK+q?OYZ$T}np z2OW)Ra-`^^wc-Wy)EyI{q|hg zX)~lHMEbr7N-PanHxiJUATD@4-ul%%tL^PP^c&+oRh3T9`Sn}kY)^Iz9p(IPiz^_) zyYS$fgJx*kvsM6>2gfxQcbH-d#87L~#;&*kDt$@s9iA zJBgu~iqbL&n7L{tyvN2y6FrSVpehkTO_N_LHYy9y$dFyH?YTe8%2IQyb)mUygI3mt zxHk%$P02rfrCF`l1EViDm&=r40FUhYT&}Y6^Ue6!hpkSGj5&umHxR;Uxtl`Gh!2Z@ zR>~)xj1M`JfwTf(ox9(p(4s2QJdA<6b>IQ4cnP((#DTON%$Qe9hZ6fjdA&+rJuQ#h zKbZSjJYDg$+sj6Rp9}frm$YAg=(f4V8#e|}vOg`Zjl4@8*!L;EQuW8>b#p;)*Vm5< zfJX5aorA0k;&Hv6PtW6v_gWOcbnfRlDn&KX#|cVUNZygx9H#cqL-@Sx`3H$-j=S~s zbaihF86A&+6s7oZ&E}POLFBBqyXN0f-VroXSLfz@yc{iklRiE5izpUz`%tVQJ_lWH z3Z(_v`enGiuUB3!vG`#wBL50=C12WMcb?CuDSE%~6%6;dSMKdi41?#ny1J%)JCCxz zk5yd|Cb62qZAuw|T`n|W0S6vEQP+BQUitG&ZfPV_%LT?$0s`bugQ&*i4JXONE%WEQ zL2#L)2yYYyemvTfCx7DM3tn*OzMc(8PlUjGCwi^kH;1l0=FF;}^NZA7QT#3M4`~xb zZ&?$LogeZ?zT`6bFyR$9GG~KhStQaT4{;9~9AK{JPNZ=@<&8Yt8GWCCT~N9)&m^1P zzh)D8*hpqMQSHeL=4veXS8&ZF83LxkLgcwxwh%M*vG=y+WD_D!S=4Xw_VyJvhyTOH zPw*DIlFhO2su?Bb@7K#w!6y<_3_*Yh$|Ui`_DE%7bcZ{mO>?Lqs;&urMDb3l)S6*272 zPlIc7*gkGTq*GVQcCpxhgFBNTzh#jYPqg?(=hIX=zn?aAt`pdFUbhR{7MrSIG{~;D zv1ZpasoL&yWG^R(&bS3<>~uqw3Ezz=dEp=Kx7dqCJ%_6$z}MYK_Uhuv94SpGz9V8r zRP%CfAmW(K&M@Od^mwZ)n%QX<3wfE55eb%9WRM-<7o~1rJ1m+zT|cQ&-IwVwA4pCI zJb-FVv}zQ^AmhZ(o-?Ay(L9U>QHfHOfbV4%@+sLwx60dy*`E?R?7s7dy||rs%Cm}6 zrsbuOWnb#C4mC_mF<-Q&YSy!Adm0;kPc_^@@bGqv$D6VuddvDg4vczF@XZRLRQPF- z;K}DzdnLWB`88G|F+&n z)k4kdS%F%%QM#ste*0o|Nmzrt-IZeZ;nN;A`{gzsG<4$JH1s`xUpwUmRf^*0CY2e~ zzAV=h&^7V(ddE5uj!$G=WirtTy6|4|n?FA+%Pgy|`!xEM|N8Q&P~=MItcmI9Q}^*w zLoGI64s-i?Ifu*oW zw|X{Q;DarFpR+jY#k`P7_b2J&IVn0>!?H%xXnN!cOA+k!BS4`)W}jGqT?4fR3pr|`Vn26eZzbbY$U^U1U1~2QhRdy&j;>_(~2;x_8 zEJ!1En)|)H}_Z-jhl6J`; zN0tTf-DA$ys~+~-x{6noE4=Oo>^^6+u~ZrLsZ*@c+N&nrESvp3URMS&g1j?RqDe{Q zERlQiTqX10DS3@pe^xb-JXX~>7lfsXVS?nvq@i`1_-avGv`I5|KwpyN zq|;wuC+rv8qrVPEOTvi1n8SOad(r?LtvQL?_+%RFU$|UxDrAOA;8Fp^aui7TiqD7{ zSD){PaX%QH{r2c1hp#=p!eMM@O8r1Ts)g(sY|dn+(NNm!KvcUfsXQRP&?j!+JRWQc?>zTkSL6%FxU++DJE3Vwk2`^+NU5O+ZH*z&+#!;< zi(!&4Ual;ylLCT`wSIrc&plqC82Gc9`oK5~7x2%G>gVw-H{Qx^@5XrLQU7&>|2w(j zPFLRJ*9d-ypB7-Lf6)4O!2eCI)_*5g)4Gnj{3BP5dEa0Ef!4nR{vXM;;>164B?be_ za};=S7JkqNp*mRcYu$&FEl;u>-8AdjRPRLL9>q?Kgt9hDh>ZZY}=nc+y z;+iM;EA!8%ECw$%2*)qY0b@e`{Ic?8UnSKd-)+T>B0tYXSWe-@uWc*(bC7lBc3CAl z;;2^CiqkATk5thI&7Q66i+`k6r0~f=Z!P}|?9w#*)9+7EGN~ykhK^?2odB*zPHd;B zls2+n#zWp7sw*E_+g&2IzJap2vzVv(7mr7!3OtRs`hVXW#b*|p!+r9N0Ub9w$4Di? zzMz6j`6ZPmJQEP-T$u#l(CvFC?i}EnT(U6_)9WbSm$Zi$aN~)eH3Pzrv6uXl2yL|Q zHzcH%>u6SEvQFq@AHsmw74`G5MA~%cRiH|EA${l@RKCbtjei;xVYW&nTJ86F(1$(r zG^n95VvF{@VXEY4->ANkT4M`kh_b1((w0uiH7~!d!#xta_)53>9S6SekHa2}bOC=- z-g^D}4B1&_!u*;c#PFk6EsG{#y`w;13U75G3_(eb`+(KO;gN%Cix9Bd9mge`h>(L^ z!ts3GX<_xa_BS5magw0jl_~j-qJ9>5!cBLix)Z|^17JzW5rN9^6M87`#t5c!?qTs- zUW1bHvW0C?nbSh`3~z)${$)y^?Rz#nsUBdTc?++DuPqTgaln&s;xz9@{k)%i<%5Nd zoOPn0PuCPH&^~)w(}S_P;uF-t>z&+xfsOT_q&-%{(v78V4QEw^^w?j?=u!EvI6(G0dKm70n;+XE3G`(#)Ru%` zsb<36nb$3vfE3oOr-FityTY~s*MOenavb9n_0K}40F?TC&;EP7?qq@PZt?7Hc zB^vxNCpcTVg=_<3f|1c0?lfSQK&7!eRV$>za}N9>13xb2j4 zoP+fFYg4s1b{RTi;U915-I*ztfA1hZXuUsoGJE~STN<$6SHc$GGkBbs_uN)nxpjde zJDd$-()*=e9VL&V^6s|;nbd;~m4tF%%I%$nIo`r5%325l7K7rLwe`1(BnhH*E_q4a`@%(-6QUYCa|VRnnph!8>XmTCDw6s6K!FQEE0F>XXjoWq+6 z{5mq_@3ZOVXDmF&Ma8i@%jxosXY1@<0ec0P!||CX@@w{t#e+Ql9BlG2S_YwVb7$0l zuSK%?N^T2huywO5&zmMU3uYSd$A3@|>bE;rR^+334T@v+vKoAQH8-L6Edw{n>V1LpAF;^JW zM=DLQ&sZ-Ke(=9r!Yub{dHrW!FHti^JR*jg_Q(X(!U~@~3m+$xV1sx<+;a&mNQ|x~ z!E|+r!$rDnF7fyCF8PkvDf(6MyH&ZYyjIp%V$tik!F-csUwrZT>GB(=zHhtEzpke6PoxC-$S&XOzj`1-uEV?9RSWkK zp>rxSyC#WYtA9j}%{blgj_aGykWWW^qh+}cU8NjZ$f2vOt^YFR6MyjeBpLa_V!MWR z>otKtcRl$8c%dDLcWdp6yAlKB8=exA`(kxp8wZWB(3gjr?yL(Ia`S%ANvRIrEGmGa z8dU2z`iAx!AfWS}Wy%n$5wVE&=AgR!!feY^1oKeDHiWf@7Wq6C-q1WkNyrpxxC3CdVx<+>wvPZYJ(t?E z#Xzbdd%LQoY#*W%=KayvcB_7?J%G$m`yGe;q-Ngc;M$)UGuu< z!DsLc$O@N^$#wh^ww&L^Dbw!#t1F0=LOj=&yj zd$XpV1vEIL|6uOX4ERSS2H%?4zCm_4!yo{XbJv&e7nTmq`rQZFvky(Fn5yA>-YHrsjVqK4#6m%06e> zW^PDHR2W#`&wnTa3#Z&zuU#Z%M`?XD!0H|;5%vF**k|8ac-85cFm+Itl2`<=3v6Z@ zFn(1a{>LNiD0EY zm?7DHk%cquPEoEaDCASR{$#XLt`A(m2m3`+I0j+-?Zpl_JsD%FC!hcyI^fP%WtDtrITHIFMkIFAa~zcy{n>#^gcqmzzM0-brbol?f^Z@W@7JA^o2W;ZcY54_1T~%{ z>~v;LrAr2&eoIGwO({_MqqS+~#n!`0NA8K-j5~Fkui+QIJIK6mbCUTwzsa=oJ^L3Q zyD5p$`8z{(UC|!g(ff8YpPs-G1_J^*`R4TZj?cV!hlXhypIHt;WxigGctFKEFmTU* zTk3f*`AI<|Z&}`4=(?fxH#CRvOByeR`f@G0HyWw92!w|!5JG=w;%&=9AJ5@yhiyVz z?N%L&g!~TptqP!MRwP^npT%C<=?S!qPkmF9bT*<22wgZyH`g;Kh%6 zzSkQOwbu}jG2d8u7$xt{TLOLmSu>JlVE}~!U?HJsp3?JDKVNaYCN&3l#g`Fqpt9gE z892<)xHe<1ZxYQ-!I?8y5#psR$T0NhZTR(V;I=YY*)sI_zeDBK2}*t5JvB*K!xbNE zVFs?JH0Og{2@-g@=WlR=QzJr>X=^8#vc_QslI}zj^rPK(k zsdSpsYrw3Hh~fkta5vrPj9py#KXUl{$CrNxwqei8drLT17pj+x8 z%27%WJ;4Kuk}R5JAv(z`LKn(M#tzx3pMVa4ox5HOk2aYCHO;?=d58Cv@OZ-uJOE7w zLRrS|S1geMj9WNOfx;P?Fik|1F;Cc68>hI>eCD1GnFXrvXQ3U$y+dp)!xCsJd95g|`0?v%|Pi04E}g07zc>Dq7ddofrDoM(4!c}yjQMc0&&0It6s zB;#DjFlLS@ONzDm{(ILwsKk%I=1vEwxd1$uVa_fE06FK*Yzb)d$s(L2P`oF<3`IsU zNiV{T_5(8KjEoT2OGwx_E@Fy*!zUhVxO3uP4wNbjfn|gI8UwYoGDP9ri(wP024*TB zHVEENe=3dreSjPv@Nh<9c)5O8E-$nGyJXhKrgf$Y_UkGy{BZ+k3sMwK?|la_&P}nn zjyY*7e0ByY=s*3t>mehFFns|$v-)??ET53;Jve^{#9&x#Y~778r3tyRq2C85kft(< zpz5|>Y{Kv#{oiOMFB2AjDSez=J>WXcvGjn8VWepIWUd#s{~b`=^+6Xh++nyS8e$~B z--Cpk+_zWk0maENx=LN^|Hs1YKFM>Irs!*3^Jo`;BBSWWIh) z-6fr<;48^5M@w6tI|b*OQR0YhN0eMQ=FjtU=GCPW37afN)};yc?MB~6E)L2gC5VVm{or38 zHA5$S-pLNH)kl>4#M0U>}YpFIDKX|Wja9NygA%5%Cu+NELh@81T53kX@LD>{*CBqL}B zo0g4mUgOhoFGLplxFhp{(-)j;=-ZY_Kj7Tesrjl6fu%f?8=VC1c07Ino6)SWK5ssV zyXVH3f@!6#cf4o=|9ZbNmYWfdvT&LW?syVY@^1*rvM0>lZ052BL-gvt*VggF+u-m# zZ!Cx)7_u>w7p&=yq&g7yjI|!1Qot)tqx1Qh1%xrRXXNtHzgdws6H9|GSBw=}8T}g! z74+5h(E`A<)F_aAPlFElRVp7`eaGa)72j1m1MOha?I{;$)Qc4DUdw--iVGpakafq=G+>M3d!cbQF6I$fJoif)5$2Yy{Os)Nu&HZsd zN92gJH&nV!)4*8$v$v^Y9olKCic0a!XVnH1CS_m|a_7144Z)cDCVXCZXuMKT1TsNs z;(27SNi!U#5Eg8G-6L@m?DPJ;foBV52lGQHEN+`&SbM}o%)Vi3NW;*RAN!K*v*EV4 z#N0+XL}$H4ry`}mk!r@)M1AL0BEEj?`z8KMy_wb#cwPX<3RO)&jTTDHez&0_8-|#u zTbl==?1$K%wol$9`0eDKnS$46xiJXVAkcVZ(!-3_nfM)$ke;Lr$`^{%vLn~JGHT=> zfMzrh4_->W&H9-lwaF?E#{4gyt^jYX!TvyJ{)IFA4+C}gN3c!Gv89D`WT@Wy)}P() zvxiII$ru?^ycXQdP-)&@^|J|EVZRe!m1Fa72Bh5`(lq8uiBu(#=jXq%1Suz=FAzH0 zKCq|v5Fm;6CB!)8Dk=Wjqs~1L#ay)cL!y({T&W+NMu@g-uCoVn64FzDqI6#WJD^Fl z#VdX~+BkqSH@V6(;LS`uKNCPEtnelyz+jV%@Ysc_YNYLuT7t+F-s*QGa;NI`3H&h{ z7jO7CE;xk1zYh+&)5qmY&TF4YOj^wY(LW;hm-_x_W3K_H2%G!Forva;ko)R20jqVJ zz2*{=duBhrty^-XYrDqO=jgWk8{Os?w>iD}%sahkwyjoj*O8rVQe#v6uxAnLjGPjHbO zK*kMJQ7LWtn|cXXY63;{Utp=_&($&&^u_c(AB2m#(R+hkytc$6bxV zXDz!Tgn0Lx`(9KW^&c+dzMKKs{i@&ZFELu<-H>r{fSv~wIOxQd<+1&8Sy>{z(jZqo ztX}!N6=;67SIgwi$($vj?CR``Mm(3-C_8Sr#|RHS-_8w$5|A*GU?5uqSJgb5R{e<- z0qH|eHW3NJ01dvMKoy(2d7fv2ZHvT-w86fsWquv8?lRK(BAJxtc|sN}G_PW2zS@4@ zP-^Q&{{^;-BX>iBA()q$EL<^Ke;F9bRj<)-qpKmEQV`sIZppjaQ1yDAVlpr1bq%cy zGsm({P|Xu*+(-Dg%8vI@C#>3pWleGHj21(ZBNgRtwZXXVTZ)kEwHf}g6=%Fa=4NZD zw4W=dH@L_Y&QlM8%gv>`QKD>EiH!v>nLSs@Wy_soPYTOPTA7rjV) zHCSj6er69!=j#D}FabRxiES?+ec=)K^xqkZpSzuSnTas!y*UWu-q7EYqP6QbsPJ}^ zfY07aL2n{?d=^6hscko!O3YEo{awP-lluA}!AG-yFE^MWd_<@c*pEXnR*FVIm6xB` zYrIme2pR!u0{_UwiSz15%|X6r)nk@~UAsN9t01Jdm*x`yAH^l0D)a2`fT|M7 znM+`Q4*f}M(1E{Uje*;mf!8`UZ&F7Vz{lhej6}-%Qcg~j_lK0~s)zC?1euT4==ZWQ zq2DEM(8IbPdz9To*ggP$emy{yr&WK^SvFc^V4NFLxG(bYF3j+aaA|CpZ$XLga;W+v zA}vg+xsTl++}|_c#K8c`Fg{_rVunN+*9PW8)JJm$`L#^F8-Jkv)bFi4!WuLJKsx&CiD0y{ACI@`*Vf~w6$(wiNo+*R^+>Tjwev_PU|<*LS7+y+#XAb``U z5T}U=vMBt@9y1w|FdVGU#UJ{6^~s(HtDOQT{CiZ^WkK3$ocRJ_0Hyi^0oYdyFqtL# zgP=ua#DJp{=SceUR-8kfLKW%MuQLpRkhF^xsNWZ8l33xtRpyJz!~o6Lp3YnI?)kn4 zi@Cv+FbvI}PC6Y5>;!;wQWtG6OcA~m)ha?dX1QO=KrHU_wr+V`n!oaOMj0rrrXKOd zOT}sslhI!#vEuD}2bbXkBR{`{HZ8SbMk!WnBm;wS*FB;9p^d1Snj(qu11+nikkHs@eNs0_mpE?aRUES%98)5Qhkc3J@L_AC|q#Rlo~jRMne(p*Y> zsmFih0OYKZ>MHt5v)J4o_f@`sl733=HfIr9xkjjtU!C-8;zx>)YIkH}$A+qH&}BS*D){;Q1<& zZulqk@78-mh<68n$<4d}%2zPX{xuo{18QfZzI@lwCm394kCqT;OsrX};~HIkUAu@2 zyfJ4CWVRhF2%itKe7{JvdWc||U(;`o{*xB?iUdoNS@p|nqndlU(mK!(#_HEENlDeH zaw*6uOEOHlUF~Liyu9H97`V}2b%NvW8@Lke-%BYkAP?9vDY^~gGm!~>KvSvQ-d?A; z-cOcA!LMNJG>uMeU}|{W_HT&L*ds^tG;BWq!`_!IJBn;s{z_Q%BPW`9%B(Ci1_2TR zfsg>{rHoM^0b&x<*O$9EkvHRJ+^SnWJakveBF=yg8^>|qYc2P^x4glxBsv}L%etjL zUJT95#>0`x7ZL&DH#vvu^g_+MjV*?GJmVH?ssI}H?Ms#_gZ6j31w4#LWix)Ffmx9- zK=smD^?l9ZavjKaoMr&_W{EdJy>CLf-#JlH!c{cl;O`48K2-OG-X2@Lun^^P%;@>L zE$Ep}hW!noITSAEb^WkfCfX?I&||x8e~*##mD5aR0|==^Y9{^;DWAtYT~w+ z6EX)LD$*N*y9Y0Z)y~~(U;AHMeI7T2|#1|oJTN9 zP)r?qZxcnWY&t0PW)E!PdRaGDwZf2x4v0R^RW2S!77#k^2F8=>+d+A@`)epP>l*Cw zpzHZI$IeV~R%%zj!bGOixz?q-9l1x>jXF~nmISVI(b?mo?&tTS(e0{JwzGW|SkLeX z6Q|{FU3PxGD~W0c9E^)HFo+&#af}xLF|@4B zO-Ww;7I1#itDenHf>8yS?iBU0FRrQ`xQgq}Gq&=>y}UP;h)DJMQM-{wSc)|F z?e&nrG3eQXmBj-LYmkMNz=jGN>Me-^s(Q`U5aKansItgk-&<^fYThH7-)u{5gNnAZDffW#0A?|xIFWZio?af-P{2s7 zJ0^;jZy(kc-csseEqofkcV+>B$@V5`lX;73vb>;Nb#=~HdAN|T5|E?Llg@H_C&a)l zg0inr6fHPbr)jIYkE=i2In*n>1Ak2dhk0c$9fx}O{jxKYsyp<8$qR{+UC#F+=Tq&W zb|(YyY2dCj7+9*9?;YQ#F5D{CSqnFr`T&TI?&AH`>n;pH#~Q#4G2WhAsd{^$`wI@I zj6R$&+&jsd@szL$?n8e&d26DFXW-W4wBW{*O5?w4bQ&MS;sFDkH} zR8*YnLVg_CgdMHhz67G($`j{sbjM!&!#BdwVExhFF~XG*D8LdtG#x6;;+);(O(-vFWNcZPx=NM?h<`EUd~5(? z7f&KIqdhD=tL&(C4Hj-8%}=dS+}J+r;{BpZHe?z+87g_^qVF{uL_l=$s2_2F`^x^3 zIL6bK!SjQ`kg(F?;A(lKtQ?y%B+(}XH}Qe+p@{7nIT(;b_l|Uk_dAA9YQYllchHDc z$XXj9L(RiY{#OFTH{5J@C^+}SeqAE4_A!!Hl-LM&Bn-g7k{+$wjN9qV5%59zZ8lyU zr907{Tb$d?cx1XZz*0$hnu%hb9`gyw^rNkd#JWU~<%0^O(WbHlQ7|MNFcS9eHT*Er zn6O~kKBr&iUA@4RCreC--88DVS&_A!oWf6~Irg&piW?>lKFbxd1+P0zGj)4$6v0@8 zVbbJdV=ylS%zRck@A7-o#9&g3@3rnJm4~sk=h6qxrzY!8Ca19!#_RU>S?Cy0K_rRg zPR8+!4G6Q})MqA)MwD!sq~vwrYO^IUTxI7xa(tSl+hVYmaSO(3<2W}JxxHR6H1Aoi zCC)sJN>a1}P#QCc8uilCcedU=ZIYp7h>AL$3+sd+eSRr+aYZ9TPIVSsQM$Gp+g9W1 zir>Zbak}{2THgkYdJ={R-Ii-o5>p${!-mEDt3jlP*TL{99k~37onJVgFq*>*dxA&L z7>t)-(EDQq>LA|KLCOugbzm!reqnr+P5K1VD3l% zF8{IPZl{B)L+$qtDgh$|CS`?F|G6r{6UyZ2yUo5oy$3NTbsYzU;z?6=gxF*kpq`@n ziH;s~3mE6I6Gn+eo-i8$Rb`fOo^bn_N%UfM4sfI8l*uW2dXM^r?g%Zvx+fh^Ug-Wn zzubqE)%-$pR6kYZo1$Qc0!!kIo?xsSFSsxy;bYUEh2l8Yoyy& zL@#O8>adtbpQ$nolB`GBi**uada=7EckctX0|P3i()&aa!z#@lNZPYU%pfqH)Sa=@ zwi?^BfVSIccp?xgI%twzZWnKC6s%Pyio2leUR3BD!Mw}a9P0s%LF?n^f~1GJHyR^R zLBs@{6qg9=)fN#%ogh>p9-_@Qf1E_5JeQ9eGHvy4RCkQM4><-?1;armc^(a*#9QZb zAs{4>a|IoU~CO1#r^&?tDe#5_a~3v5aiLrQ1$oL ziC?a3u;iN%Edh*eXrIcHuN%+`XRnbdz*;iAB+M)Z^niz22KyXXWVDe0rW>49AX< z1T;r&*`N0?@2pO<9fQ0?>2?XIAzpKD?Eu>&Vn`!t$>h_eKlJFe-kwijzQIJsGi@5a z;$?tH8O$|m&Iw%k@%#K*h6HNCaCBzGI12Xp>JRrR+}GTX?xPup)bU6XMbo2+L|2ZD z32F*uly`tH=#tAYpnwG`G$1KdNNjeJ{hD@<`NCTo;F7yw?L*)=5A2H>&mxDUrcmA= zeF>v>^UlrlNIVz|D)5Lo6MS{u#S9%0iP{839Rp;>%R3nS%^h_1Kyb)s^_bM~gdJK1 zeKTL9E+cj<<6&cYMo)lV3=3dFlG}JieIZ*`PMk-*H-S@7TZ%C5CUsH8oO>^HG@qX| zq#vf^6AO5_0SIP57w+sAESkf@+)X@ys_X=dM_jw2?B)j$oX<7dxOPDVX3 zPmr{(R73#8J2~rs-jZ`|13(jj2f?l|0fE{f0RDpBL-7omiYN3&rfo>Vu&DQpWED%` zdjBOgP21E+x-y4~Ld43Uk=tD#dkTH!QSrz@|G4>6=Cq1An;DYiJy86W`fyBb$S$tp z`TUuDVBn_e#;tNNM92($S!c?`0WIbQCV?iE<-@e$T`boz1xD|kvjAcNufOp0Fdvm; zJYU`0Y$Q3uh8UzDOaWZ=WIYuikbG|F&RHGX;z+IRz;H|-2h@j^QQii9<#?`l1k6YC&x$)>y<@-qWw3EJK;!Zn1-OwvQeq2nTU~1r7sxcD-dV z#~URSc;0p1V-5~9yHUqJbg=vdc$&wxP&>l}x2#s6{Joxx5J;(=>K{V>HKQJ%rijRN zE2eCo)rL+}GNv}W0NnBnsAH#zSiGHO28>iqLZu&WVs(`4 zZfhZXy>C5i2JUrh9h22L%(FYa+|kKOh2z5ZjSZ(^4q5!A3#mX0uyo3jxK88EGZcXYIUMNPZW~Mw=3wXH3$lHA@=UC8{7_3Zt5lk^lstm#78_6bPkpvVj0Ga z3EUvi7+iUhhA9fz-KF;vl_W_vlsFkZk1TDd)J2H&N~o z^lEXs>3V*-p9NtDRH@(MJ^nm#*Iu%*1J50NnnPl3M4ffmn8r;(DAsYEZN9AoIi=|t z*2ic;C&%LXO)j6j){G}k)?oBU-irLwz6=|{fs`|)3G5Yg(+r?_U3PZe*hlBv(^y`w zb+w(kbAz==l-!GpO5FgZIWSID<3m1%%1A}qeP`iZ&cuKxvC07jt_Jv;O?z6$VK%9f zNZK+P`SLg$k&Lvk?oaVPDQa~G=EKgBa5H+#AnaUxgOuaXU9Io@k-Ne;WbcY-QL}C? z03Y91aitNZdiDKNeGy`5#->fr`1b~ zg56Z+R`bBuX^;DsF;`5nH2IzL1b4}5ZVwk-PFps9_tm5dNCHkz`a7M8SpeyY%78wb zd>|I47d0xIZLN;gsVCW2yOJe+r}MiLg^&;6$HI-yV=9m*rDRDD!LB4RY$PzkZV}fg zFr}hAOSd@L$Yv#1%k`m%w=<1u># zxVd;+u7f*m$}KbrmU}WypC_^m1?|~Q9P81fH8a{Ow^fY{mc!qo%e);l3xA%A=$sueJz;%A+>7u5)j@$CBhvW8`iC$>uS?~z zOTTjLqj-Mo%v;b4im7ZZ@oAAbj&pl3vvX@lp((*84-$XJ1>dtL&h(yTp)@se)sDF~ z5tt~wkM065eujxHc|)7JG5d?%}A@(q+4|ozd6;Kd-_BR`AM%Jz|FSK6$6Y+AztL zgFii@${4OH(EQb|h;y0>y~((9_`2LTE`psM5M_8;7rSIk)|&CiA+(LzBz7b2o~Z+v zbwK3dc`nK=8{!CFpw4U<k{pNKqj)`^iLk-lCC z;;JaiZgd)Uz`6+w!wPsJV#uT{QwRwN|DnW=dO^nzY>W5yG_Pw84+1lhTn_Em(?f9a z72M0+^LfTRO}XfMH9MUvI`O$l>S>lW(-X4y!|H*A3>s&{Fa%R`Iy0(r87O(B#HN*n zs>V*jQa^4<@!T_W+=$-hh%Tud)AQ?^iwCK>SZDnHP#z7+o0SEt^H?Y2|1o zDJN;i5VkRUhx!_B=jTAL{Lo={1A!&iC3}p%EGtW%Z4ay=bthCQhY>wc^BqHNhc`B- zV(yOEPzL@*z3j!aQau;BLV_muCeg3bb<@8fwI@pMpGBoT%O}4zM`ZFJ*Bte`Z31Z7 zxWJk*GK!9daNcyHkYg~3{BMKbgx;4s3-;$sIgaolyvvRL`K9!7NYL2Tqd`|6=}2`K z-+9jr@N_rQ-iAd{FMzKJ@9gyz^(-tydH8^(_f@2K!KOdHL36U~hZaD)A=3qP)V^7CI~yGXnmiQ?Sd| zwD&(6Twlo~*#Ehw0WDYFMS20R6$C(Azyw(hiopyAt|0vO+xx)RfBl!?mo5wHzAPDfBUNBw^y5d zA@GkcaUR^-p#1Vozw}x1rGA3rT^&T=3e}fG9Ta)>>b^)tF#pf5U%GxSfWi9N<$eCF zehI?vS-kq>*CI*#UkIB2wSU&Xuo(C2n8$tg3q$Y}_iL8qw+y_^(KPYvkau~Q7kNMb z^8T?%el5G_x3LZCZ*TLzbj>Sh6L?Fvbc%yM`0eYvR`L&zKn|%i+_SLPwr8j^-=!ox z%pAh%Sb+bjs}wE--)rwlys5Sg zMm{BiZSH_(mGwm8uL>LUlf7@K(4o4l6*khfGF1080Nral)ghC&)qUyaS1$UVZLK?1 zEd{vcJ-t=huxqL6@Tgj)+|kpLwZXC1yp+@*b-JLl`lKC1W6A8%yyh&vx8#v4iQ*)MD#1-I#Q(A1VyioXy@}6+8bhMa)`P4--2j^865sNi?EqEBCN?AR?R&i~i zPoG|ABiLg2E5rFMa@(u!B+bNKb!I-ntE6nTd%dSDtdc1w>94tUoXtvVUxRqIF43i? zdS61de&kj@;T6~+e7S~FGLJ~iQlGjkZNLx@iJ2O;(A`_VZ9L4bQ*?~*IxeTN48tq&eY?ZeFg#rxz0L4F51#7duHVDh+gcPDH)4D8L0?A z7t>RuXmRac;aXzTf;NK)iF1Ce6)}C=pOD0fmmP;gk^<=F&{nHfF~vD zoMd!GXGPH;`W|a1{D3ez0=RG%F*EPFG%Xq}=U{m|R<>o1Lww+mzo~$L9 z;kszCIQ4UnV%Y(x1D;Uny@r#ynWPW)0A)a$ztQliO@%!#9L4sYqWR~?V+0$Q*13Vx zx>B=Mdbk;XV1$2$`1i-PBNY7QO$#=EpbLNUe+H0lMI#rx^XqkGYLM?IxOV-hQsxsG2JwrE}J`N87BCz zG(z76i`gc;rLY0~HD7%Lk!AL+e#ykJaoW3`!5 z1$R;#!eSB!YZs)>A1_)vaTMuPIOe^4au&EgrQ)>Ttm%$gc&`<7PNj1!EH#uG|B);n zGBAu^?_c2f{5wVbqo4mT%3^P@JCA*99atsut%!dH9O*wRiw~3cI7G08GF1Bl%tQT| zLG5p{_{X8~2aO{`BY&el`&t4I%y1m@ffG1SwBL9Zr)lh?ph=o0 zNpP43u9;`r51zm%o+&62`~gpW5EPBk;DnEFpKtu>gl{;FvphzDQ%I5mr>s}_z&FK;#&W2#TkF7nl^m z|D`YgLiN8;{hvW~w?(?`e;L&`TYne_Mgtz4?U-^__HnBy#bqPoR|#jdYdN<|U}K$o zMTg^NbEi0xC5MIX2GP{@YUw>sInTK&9M_$li|?ED1q|l}Np8N7c%FGLkEduhl$krJ z!G&r2!cWgvmO2a3_I0#97dWw|cDlxR-Ev~uYAkVMe@FGUc9@ZP2_<$tP)mLk%kCf_ zJ%U%_V-!)ZT{|DuaMVssCkDwTZvdz+r!pL9W4x6CS~kE1}l zA$ucU9x`>)=c#{;dfHWT()+{yq@DP#V1pZyZA4A79)@zYGjrGYmb2`iNA{B4d)7QW zjWv45DdH`g3Rfx!yx_VsYD3j2Oy9{q;TAy2%8YqSZ)L@|ZD_rm^SzI)f@U0+JT$nG z+=zJ+#6v5k=zT36LzWMvLmy|qO!LiEYJc3?{(pNR^UtH;=LY|`7BaufM~=pM9BLSz zrV5S%dWQRGzrD2cY} z;25B!2%4se_H6?g2Z|G%$8$J=eLqHHBu{+cpcM@BdD()bF{r|Df@Js)a27`ZfS@Rr zTTl81+chO6#{z}OeXuOhI@IsyQg6-odGPyf0Vo3sk>x0i|1?tka5k`pQviuL?1N<} z(De2j(8AQmH+UOh91DrvhAu#N5g5>~3_}w{`)<&? zJva$^9S8Trk`#&k@r@tu0o)Wx@Icao#?lPO)7%etMG*ha-j^;Zt}JQ33RZ14cCJxX z+J%&->zJ`avhT~EYuZ2pZAbzEKgPOyo?vW#^+U|xd7yrQeuaq$337oXQ;1Y$)ycZ| zRG}?A7LV}HJ={Hbl7r&`I)KBUwix^cbXw5sU<`QXF$oGhVG(a+I0AoMt7o(zbqXgk zH2alhGAty3*ybD3mf_nZi<4hjn&m;?0_`8b0PZWtG4ydT5&w}CcmuE!$AeA`*#>a{ zEP`Pf92CzJ)Z-^m6`yIkE?K(e{P-g3g0zgUoO5RZ6>)`fPLUagLl_Hm4}a9oLH`}K zbD;HqYUiJz=@T@)W%svjcTD9?+If+09(R9>b-a#suzJ2u4Hv`v+M=mf1#)TA?#RlK zd_i7rH8;~x*EH1~r#U6B(zDFolMAa!w>=)Mz14Q!vh-{*CkJV~3Bq5It#o>9R6BdE z>4^DVf3CUAs61_3+fHBXr8&Ewq3q6F&E)O}gNix3*K4e$)e53S{AtixhWXqY;jtdRDK`re9sQnO~Ci|$oHVP=o>WiuI3&z z^J0Hi!gdv@I^>H3f*6gA)nM4^@JqvAZ+Tx37~2(>c3cib~G_12?LG?!GalRVE~Fai7Nal**+!P-&L~Zb}m!I{7&|5>XTm$_9B7$G{&;Lnk%P; zp|HbOM5$ODS_6MXZQJFYK?_!Id)dxZ??i}zYw)vAv0X$lx8<))o8hH z2WbGUbRi?`WiGodYOX7m8$E*_(1oG9QFeZ5mnk!tHClESgSl3zbbj(Rlpl zk=)3M9g<(m<>6W`@dIU?(o2m+()j1V#a_}1L{*9s$c~oC_nqmT?sC}(9K8(k_#-r6w5frTZbR< zeQ9`{I4g+gtITychX=xmBlv@GB3SC^OapFnpXRzxdGjf6-m=GeFVWlW8#Sq>c+jMZ z)&8be!7Bn&rsthjWl*X%I(m0l?8`u9%IPB0swz3EG-7J$_F$T4%_835d5iEixn|mK zjRn6@W)|&+UI>Cen~o;*{PuXq&+y8yGniK8=A=;fyIY`1WoF&-+#M^6Oc(3z^q!h; z<+>}Y+qCm6Id?c!HLc#TMJ+L_U0n5oQ5JMrrO135pKJio99ImlmEVp?uZC4Am&GWz zu$AoEu#)q3ytA3r`}}@QU`xVY+$&9$pXaIqQ@}Vu4RgxOhXYbgBTWit=EdJelRD1< zrv=8+q+T@DAt#epO?7>sKZw>A2oe<7aUw{V6G1}4H!n*Pnqq-=gEoG6nhqriM^g{` zJ}i(lakQLI(ef!;{>D2&)$yX?Ulj+Kn+0)zgiNr@oFi+wUa7MxPH3*O5U`0pl6L8Z zYf}8*SPgr@2z#KGUzu!| z+_!YbtEr6G?@X5bral~-erDEp3;Na-N8>%q^MkHJ)^kd&ot~P`lvB1G-s{#nTg;jT zd`PbOvX9rBbX#t;=GEQC|Bd1RPq^TGf$`jDpz$nFPoAqPa8ZV$Lo;2)`|$<;iv9;4 z`FGw{+~zIQQ%nzD+9{u)fokIjRT+lTWpJ`k$)~o4j=qCAs-rb&9BD(=)LH&uTW(JR#6XrKanV`13LQA*MC z32sT++PG`Adeney)>ihW22U<(?)o>gbRKtV3d7tU<7T(kAac06(nS7{xBdYXRS^7HV7qY zfbxty`Fdl00pPQ{Goa-K{>Z%>e~8M=a^S{sSnChM4d1Fq1bdr7K@>hdPrRKa^6$

    +;eBd&*-s7cD*sd~?Pq3jHN5VphWATrc&A+OOKEt8cQ<|0 zFPXkS2&8XqAfUHxQ0v=32ZBi$y1WX@Zq%+1WMD@)(@lxGB`s5)BbcsjIUY>;D3|~W zxi^MoXOlqE+*NjW8V|BW5e&m0UE4^OI3^+{NbVDseZsO&Sazjzb;V=7VoX@3=RRTC zFAd91x!{+AWe{!s%?MyH zvWs4+2y?g*N_w%CXKkr4ViaOY4KgCXQH!;<&uuw>w;#{RO=&T+=k1Y48$GLo3f$fg zDBWl{hm(qfOYYSz!c||N_~Jg`V(eYE3dS2WujOa zdfk&}t#DB8J#&n2x^$l^jCZ!)GZ4bWak5zwJN%eYDg&XZ^OD%2bZoX>v~nZl^IG8b zDa+|JS>NTgLcfS%x!`zNh2#Lwb;^qXVGirRlWWHb7yMEPvvgyG=>Z`W{(F#|P#VFH zft&(}lOU03g+elX_0(1f9dX~_CL3;=e-NPBw9Id=ujo2#i=+#?n*b3y^acJ|;Lg8W zA8vT6CM}=Q7R2!SHl6rFQw+cg00^Z1m|0E=s3?Z5D_@fXdP~6qgQ|JY@Opf-cQ#Wn zgI|UAD1i3@xCiDdemH%GW{zl&;xqA*2Y;fyPqgAeaWYLW=9*A!+q2%#$ESRuEf#mP4ZdFm zhs9P0`nZ=S{9dKd-wj5ix-ib^UNb-6Q(l=}rFTYpVO8>VoW&<{W>%<4qUKcP9cI#s zK3+*%4|lX;c8gUH5l&0Ro7@k0Kb;Oz5y8Vae;0e=2^YKv+6y4wF+tG!n3TasOZks4 z-@$6n5r%OC1X#k~-BXVVWo&@nptu53HZ)qjF0fHI9E3BJhxjQZVq>AY$Q0t)C0{1@ zs=@MkEp7_^-dwL!$aK;>2%4M^e0qTmp&|Nx*$`Fo3N8fKYSwfU0KC~#2yjy2P6Q?qM&<^0@T6}Lwk*^uYr0+Owws>D5w)JsY-6*0nf&JE^p%{XNCCETZW-RE5pwbN#{q+xi$eFQEc=yPek`&3eUY!I{O_ zqJe*&sKq}!fACojIHS17${(Dl(oVjcwiN8a5E)3}ykpQ~1&Vs}9?S<-;|no7qu&fs zLWunQ4*8Pt-Udk#{EuV-iQbzD7)Guc;&-=~M6XnIr`wxU>6*2zP^dqtEEd~v zarX2hhP=vf@%q6L9Q$dv__SMOKkXJ*rBp4aSEbxl?xph$r?zWF3e5Z5dgXPyd4B){ zn4o*C{D0L9Jm$E+j;9k0(?6;lZ+#}kx#9d}o-edPfdR~3vUfNu5 zwnBBpaARrBR)mH(n0E>beI=CZU;)(&#I#Uov>UQCtG70$G(iO}(_2Rvueke+>M&xn zmrt7=Ne8P;ttof-v7T<>xL8lqWOL(e(|X6udZKQd8qW<&EIYe*OXO4c(lkd{yHcmT zAp_e*?l*ETJ>`P)1%6ET(h`jNepfpM!@&FooEU%0i&l(xby4Njju$fcsjB}ZmlBulvy@tY6w%%w^ zWc$l(r$mV3U{LZFZDMSCs^z#&Q=E+QlTsh6`6H8Vlx)=|v2w2B${kHzW}+{={jg;<)Q&FKf~hCw>$D(rm%HAyXElf|J*ka2%c&We%9<$pW6{gV z=^W=3n2qeHn;mEBJeWknW--O6T_NA>RXl8=Q-&36KXUtiYeCL50O9Mu)Ar+e4mbnj zZ?OG%E8GqbD)_j#{Vm4&ct|IP!SMtN1Q|fJ%{%WhzFw1$vdMVTL&wZbH^xb4Pa=ew z$garO#1l+t?qqTNVDF?@?s$R}$MK&q=@TYpKVi~U!Sr6HxlO;#+KDx_qnB2rzsX~C zo9^gJX-PR9Sy&I`$%boX6|7O%Ta+p42BGxSdk<66&1z*XP1h4@U*30(p(E|uX3e$k zalM+IqXPFUa=k9){I)?>#ybd=rjyZbQj!5wGTKslil9<0Cqk%{RaKKM=NneXSn_rA zzH8!D-tBbLSQ|nmRA5h+s{krBrBb^tP463aqgMFYP(IkJ!G46*A&ORn|Jou zka4-$%vRNzzESD}tC{ApMzgAC$JDwM06B$~hW%z^U>XQ2?SCh0=P4JQFYp%ORkwml z5EQ*DRHB}R!`~b#{RFqG|4Af{IzEQW)v2lTq;E{)Y8d1b_+5Z0U`9+>?&fapSnHqw zTa)0IhICgFbX^prWpI_%J;gBvPkAW)5#@7iPvn^QKl6b)st7RI|0_8m0#7iSM{bK@ zf`|+iM$j#!LvM?gr@nRSJd6>E2J>`=h?cc91ZUav1jhp}L!e3EBy@tiGX(=w^Ph)T zI6mC(KinvyY9GG{>h!jXi5IH}S*N7U*ViWE3QK>+wLpI&bwNq)a!`{>Yx zFn0T1U4xg$JXCVz)^S+mBP0@ z=QYVwZ}UT)SD&d{XnC2n$z{S7^|JF+-SY{K&|pMPyOv0CAh97X@CoFblBvF zLha#c*eTgE1kH56-=>Mg$7y2!R%rJFwFwzhzNx~kjz9fCO>;H*_Zu%%IQa0lYnbr+ z4b{yQ$&WNlZpzgRTi0gVt%TSIYTd0A$`90}cBNY^cJjYnyZ&fc^6$xnGsn7-@$&;U zstIknH`4z*gF;ZWFE53+w+D1+v8a_d?$D% z+*M^cbOn0OvkdT*AklTO0m}v#L7PEGz>A=QKfdrJ8r=EXLzhQV&9%`7H3pAdxM}v| z3r&VyAz3;cijbi*$8Hb$JK(Rwzc2FHt&cXfd(e^ZzzR7_-a&`M=QH-OiJgIgKp{s` z9CWLFeG{8Q8^~dIlYu9}p{e2QJw_zCmsZS^1q7`i*R2;oTUtw(>@Bw?CS1~AZcEAl zGv2TqP1h}$L6I67i{3@-dRtPLxBYJ2EDs*t`#ew4dy+)&B}NU* zaw`h47^uMe%T(4LSXZ=tr1r&{fMCIX>iPYi#4hf!pO8Y^W7m?3I0<4k%T(rIHMtmL za9e_sDmZiHd#V~`QHc?e04Q1p;1tb$mR0;6DZaA9aO2hi@MeOkcak>!9f<;sOV(a7 z7T%PgrwUP~dMsM96Ky`kBX-!_NQz)2VIGUp?D9tMO=t%8f5 zJT1cn{}0PJYrq3D0H{Ekt19wWWQRB{A{Anplxr)Jrno6bLHmyARaY>8^y-6O0mGfE zUrM)p#R=XA@%L2&z6?NZ6b0rv( zhk6?I@=I!*uuF+bN(E{&cn1g?6Amd{yi#zA2j6~AjUdN88D%$RZJ+{S!}rmvKo+}j zq|qovnXa+mV!#QBQH!+d#UiB{wjy6N!{4|c6C(wd87aAjc~P{$c$9=?V%(uy<~)+> z9*deScxt36eOR=vllOsmOR90v4NAYtL<=QjQshDboE%fS5Gy#=dakC{rV7L+;2Zh- zlee);^8ePy_(n5w^C-L}rjZ+5%{0gL>Zlkd*ouISevB3lo7E{5fJRBM1r%)$u^oU< zh9xUHK%C|QmAMeM9h}Z=#{!Vd1+XfW1>h2hd;zE#Pw^f!F@*8|5yl?*uU!dy=3_YyA~3#@n{-QYyNeQUcs`(VhFI#Gl zrX|SqkF1K{lcHI&BJHxr9XbTvpBnbsPG_E-*xp;CYpSoJ)(YDL`5 zh_!M5*zQ<`E2-wDl&xUcI#{j+T@Q5>pqT(^3ALESIOm!154)gSvbR1UJc@0Z%p6tA zi|3HNU|jx7kQZw=ni>)#PYf~$Mj-X8s0KioONtYPJ7baqSYmz2!}+G<{;2d@|40lj zHZO_v=ZD0cIolSczJ5gfuk?93i8UyHi7#%}pz}39__Ic*5^cGRWay07o0n{y*YxJM zx7R#$D1PtWjI@mrYc+PYKt)Mv@RTi(;~LbTBAKe=8&O_EEg`&*u%pZpKh>g4vR9jw z-(W<(9Hx7Mv|?ev2cAgI(Kpfzi$^MwO*tMZWZsVi<>Glb`bwlN@_58#%S?_~G)M5{ z3>fh&7=o-tT6W_(_g>@h7t`Zb(e(tQJygq2u5C$h$D=@<3nuY57{h0;rCofX zjMFB@V9mEzm!zJ2kDWK$e@~1FB8ugNSBuzlH>H?@s3+%DU?_qM*bzdHq)0}x>n6VZ z#`Mu}1YK7Wb3sYa*(=hti$zLQWLb-}dmeAhbRiO|`bBs@!2x^ajK7=G`ePW$6($y~ zx|Q6@k)WGg7>l12ITFX|XCeRZNG+Q}2eL$4^JCeMBF2Bkq7~i79*dlo7$r$_qWgly zq8KT}EZ(3+T8ZP?G6Qdpq{u~*X1_`wYNi>UpazdsNNgJ>nv{t*zf2@&k|Ot8 zulfltAcBz?Ekjs9=dp;ce=AT3^nSeN$qAB>kQgxoBp{Sfl_fj@FOyCfOB|G#CJ&w+bc2(aED%zfn2-D1PbEK;Wf1Cd`~qL!SvM^oF<`%B77B1^rPYpqwyWZ)&Wg9CGMazrK=vF!Y|hD z*Axu0_rQO!>0$kzIEA|@QxTlhUU960gZWc3p|_+06Ujo=5djGpjE~+34p>dupt*{h zg1fXSS($0jhaCoig~U^?0X;0A5r%PLfh>K2a)i;01=pi3GO)%9j3-E{3Xx=B zEK1-7NwYOi@FKM?RZBZb|>B6X0W$#o+V)(Me2|1K1U5h`%vVkiL-YCIF5*d-4`cvR<4j9Ev{g74&D zSVHNCV0i+>KColHrVgR&$KdD#T7$p}QZxWa0T1;ZgjOib7$FqcZH9sXoB~r_0-O`k zL`B3BZ&w8d#~~ShB0giVZ(tquw0{;}`Q%Jp;$^Qf6YJ^d!NJ5kLfAYl}$9;d_00zISa;{w8@c*hNj}tdhn)Bt|ueeFk+DkoYInG z%V>K>vAN`Ehfsx0keLOAZa#{C4AQnem?$37z=_t{lm%yZ)YRRh2_#H(pZX(^xBmzQ zE}{~ld9iHDQQVwk5kjfygh=cklio2SP87b3MKgNVta$rO+O&7?@5u& z>QTI{HNEB9~6=>v@QH6$l~Ru1j7o%Q%W;sZKKI+n5aw9 z;qh9Ur=~)~({oZ6%|sNAOtrT#6E&*iCzP?b7>KY-wq z#E*Jd8x>gZ;vUw9E}k9Lc8lZKP+WgfR{zJwdkW`}8Ter~zHpr1p%qVg*|ge@WzB*S ze(@kc*%5reCg7(Hh(qp3$zXo;QGdc;x#O?;@fU0|XsZo+C75J~-XfV2JR}i5P-G2t zS9rSsd%(T}4Tbg-X$xw?6CA;SawISnDGH}?3hmIqw`MaiK*iu)I0wI^U|#}WLw}2h z@wM+{O9Gq=8IUKyIGKV0#<^+;b0vjt$cih0k4h-aHARwNQ-Q_m(LM%TRKn7v=BDfj zwyH@bxPbwCNVuCnx>L8Lr3)7_)4daZd{I5mzQZtAQWZmRzgxCqf@eSm8iEHdojDeE zuc2ckjpn&g3Q1EqmqclNPb;8*O@%uQR9V4L9u z=!#p7;-NTLIPB;XTB5GmB~9017s20P{Zb53370UKI!tn*F9sA+nu(^RaOZlC;z=s} zIRoEz0e8Z}A3Z>X9?FJSE}E3W-FD^}@Ly{-OKlMY??MI^;C#3^8L)@XZO8S>ie;qW z4^UfB2Q<#YrtXHdIlK~9C#V4W3I0QGJYtH+*8xWc^B=7a$7SISk_(2R-*SC?kX(nI zPa-Jo)l*WRteyn%IA1qKQ(>~8aN)b+*wlx0_JAmQ@c2*gGGtu>EOU@xz`akx^iipY z8%0#f;}=1l-d3>yo?JTRHkcw85Z&vgpM!iCiADf{w`d|sJw;U?qav~V z*PK^@r#7tIqa!H791_q^8Et9?=@3#VPXRg@>~gsM+k4`m8-9eIfN}jP7;yjWxcHOU zaqJQgJML?pr znuUy!h|H z_L>yAXgeexxAQZY3s{ zJNw`cDn;^sinrV+cUVJmhx`eSr~#&Qv`CT3u}HeAU?(S}Uoq=Er*$)l@=A~WwTRK( zf89O#7`wExXWxH=fDaecCjkE`zK5N1XaKBka2Ne0BJ~g{nt}7hp|Ot!@xT7<|Gd)U zk9+4*$WJgj&(AD4wQdp5y;lB;V%YEP4AIh&{+c!2ha1m|{O|wuzaum&AC>8t7!&8f zi4XANxjTQfZ~!W_Nn9u}zJ=*Rx4$r{PFW#HI`7}D4>w%!k*=H!-GBVQsKXJH;?v=W zlL!@dZqDc4ea;_DOtGf-#Wp}!hFiAb!s7H2Pd;l&`1XTq$KgFgy34{y6;tq(Jm5&h z^w7<`YH5;^>H^h91N{8si*LKAN{{_M0w0by`+c|?JPxdFxq(ZD0@Gb=l!_8q)Mz%t z;y6UVDN%vvLKiFvx>}`lOIpHhcJPfZ?5wp{HS<6)qGy7xTYhV!IJy9BbYEWZErI=f z#-B7x9XvYld*xW&k^}91wlG(MkHH(Q+00eEzgRp&5j63ya7X;%?%^^h z=1HN$lR_NgxWPDJQre!L@)nk7d z=HO`o^&-*Qrr@pMwZD}kjG;-69Z%0&XpX~CHLdL0vt}9^*@tq&3&fJI`S}FvDyr~(a5Ar?5dFvB(F@j{ZaKrh0Z|J*_s+JCwP#elnk82*>=rbpr= z5Gc@41J=!O6}%Hf6b_^O2}R`{{wL(PZ-TDPO(Z=3Gz4d^ncvV;I>UV@?c+VqvhOnA zDR9HrWKX^0zY`3&P?2!DBk1oGyxe~Sa!J|VeWRER!7v>C=SFk2AWPF7`l%~_8m{#X z4%RnRy}Mw<9_~VU2>L+@s)3(*0PAw@KH7RZ`y|+g3LhQ1;~VH|Z4a{>>JL5h!VBLH zlIRXfwx@4xV8E*MVj+je4@JOk|8w&#=zTQea0?9%?0mMB0cZXAGAO!*T&|PN&9l`k z_*3oV$@yOEVRLZND(1l7eRzL_H#ef$)xm$WVMX_+Q&; zvw!mVLh@(T(fxqUbh2}uoz(Cip0_IH+_Jx|)u-hx(=V%=1=AwSc&|HZT6-+RnQPvc zw#!nZ+?=zkb!Sy)yIE8q?lKcrbC`|C>jmQ8&lReEt8rhe*cIJ&SiUxsD~sK>XE<7K zHrb~KJ#*BaWU}j7vnt3nwo$xqZ27ERz^no)u%-7M%TdRqUMgz3A+^Y^-1HWCW?Lxn zc7EO8O>#L#)L5}YyF2Tin)9O$z5~*zzMnHSIX~8G^~FXSaXf_z>lyTO1dqN9o*05^i(U%XR|t|EK7Q+CvJwgWzj`3ukOoRdd8Q#vPd$O zhC5MLdfqQHx>H~AqBdP_M=fnNK?RcJMC&^OxtuiCgid&!0)=B@+n{`Z(!{p}Hy3Fp zD|f&nn^|CPDM$A4QYX{J&3>~uq!z5j&y>#Iu?Q^~ zB6IX)I4={jwuFiX-!V(5+T@I$hB0Ma?+^RKO3c{H5!3P~;~vo{%B4YJsY#`}Oy=3i zYNSu6DV~Ec$~So#@GcAg@jAD+KXB)&$0!U1)H1I*t7;k4f4FGf^RadkPlfP z9MTiXtog$NgNfmWmvz8{%i0*uH%Bnr(i9rpiR(sD5A>xlE9HE?kVS`u%tVPAY-T7Y zpBoQ*y*5@=DT<#kq*-0~6o&FPDp7i--tbLjf){aa6fTt6FlJpf-SuUd8L8>?gehc8 z2*1#mRLs~*wcEAF%`rdab%}F@MY}(#k?1Ic7HhL6SJx1c(m0Q6)IDOQ*etAeoN!!ej(IvKkxivsjT+QwB&ASnrS38v-yc9lsB3y{pPEmsu`+?swu>o2*)?-) z(WF^5%MGEf)ytTuhLx0T&T6Mqyphi}@KGxlHOQtW^S)KE@)BPyOW{I5G*qeK+k!UD z>M*;r097H|C|6V97aY(&T?0SH!Xf%;`;&LGq0obeJp%3{93d6DLBAa>Ot`YSOtr;! zSa!f>qLs|CjV7!?%mDn-i5qN%KLU2x{rKSfZSgJ^>qi?*FBy>`M&L*o#|?&!Wuuww zd^|9_LlJg-l!YQwue@FQO=i9Vm0g!Jf(m*Azkz7cn~20TPz(h zJicC(=<|<%M8EtAB<`33Yl8}|m$nsI9@Ia9Yb?0WfJ>@whWdAStNu&$U!<74wV)?x zL7x;4-$CHW9`O-hCzopj3}|(&Uc{|L3J1_gzN;bNw?hlp&e-?8&AU_DH%#BlZfT{`@;aU{N9G_202|OzZc*hby)wCKyEYLm~(#Si>I& z;f#wy9$}FkXX8~9$v>NG_xzuK6sFx`)p&kM*oOlB{6O|WPlY7!daJLR%A*UmyMpMf z|J{rVEERZp2E0`W3~x^T&7%OFcTH@8OPNKo@K7LZS@9=h$m4cQyfnV`(!>kl0JH zcbIM;H+q)!E<;?--=PjJJcndAuP6I`$u7>3eNAW(N_~RR-)R~V`*xD9-}&;+cm#*( zhdblrl)DGc_^>xHqlY=;5sXGrlKT7Oo$(}v)8x5!51sKa6HX6~J+a|cfLvoZ9^;KC z554g*fcWi=|5D!g<4o`a-0_db%U`-ZVH?QO$?FwK?O(6%5Uc0Up?v_`8oze#csiHy z^Ef2)a-%1&LU$SK4i8&w--Pk|zy9Mt&s~~MznSp%b_compp0r1T)iIIrT%Uz5F zc@!f-J{}{1!1Om7;2yR>62ulrf+nM1)*uNK{e~Q1Bwz}CV=@845szNG(tGrLNxJ7MZHCrps%~uDVa$#)sVvt80zGWwvbwiYrw$d4A>eCduW&3S*&P4{P*spT{H$e=5^Jd?4Pc~kCc z=xicqnYh6fHB-9n`Y69Fz$K*uWyw@gnl=|U-yv18(c{zQY=xML72WH}L%%QB^Ole1VMuajY2mQ1aP+58?7-CWlAnGX+@B@OkpVqO}5)>cyNWA4T653(TKU(pLBV* z$`bh+jlyawi*)HG59O$kQ{{!!O6Rp)rwA8gz(Bbv7zMqCNHBy>)3#3OOW5(o!F1Ir z`Oa7=I!wyYCuLJE&a*4GS03~YC)KU{{h6Ar(4M=hw^K&I>c|R?8qAFie=%X@qHa!8 zfX(Y1Q4bh&g%A3XkVhx+wWGb79eW+2x}K zM?C}ApmM>PkJut4mFDj;E|aH5-fk(i5=Z zo8NhG*B{N7pfvB)7P%bnx0|c1+ZjvqI^2WDVs75Ha^)2l`=$#cTr&H*$d#~usV|Cj zQ*z3I?h%G*h@v3(Gf<;Z5*rg-B=}OEo!gi@uNM~`k&^6AAt%&y0n_U9RBaIN6ch@` z%D6FOIB8B-SIx1)wli~+gKGnPmai1NN!MIBi)OpLkfDZFBZ_rrmd5Iuu*daIU-8g#oOm02m~K$XkOeiLK50+YuTJzT)L<*Ji;v+o8XM}=q5Qa9-Z)R+ei zk9WGw36HkZWOm>ag440mD=Qr}xRAmhiNUBcf}0HLwUo9P?zAifXbC}dmd&TDY^&t5 zSDcK;F%oQAY@v)N7rLIDXF5thJ(Uo60~9y}U}VQkNrif!4Nd`wfOQU=@)(j>mqP5ebET)R|%2z+9 z{2iyW`=LVyUN<@sG1-%hE*jkyLb|3~016Tk2;d}|U{KkZu>nQH&(kpyZ`Jgzn*RK% z>C1pC4_KJBzhIvf2NVC-znxo~rvFE0Q$F;##9)X0N!{%xIXf%h zHhiVT1LlPD5)Y;~+v}9C6N%g~mz|x+9zh@I?A+(qI1Y82wb-QWdaCIw{DymMe5|wN zt^Q=*(!J(>4KMJsGxeR@X%{K|3uCnq1cVWPz5x7~n-=2-7$!=A`1$v}KhtQO7XrEw zs}-@pOT{{QT4;YlaMpQ+b`ljaYna+CXWr#~yS=TXM+xL>5?&-1$XB#_D7lg$haZD! z{o15HyDJ_Ifj_e=rfV^yt!5g?7`nOLF!*K_PTg)$5QBQn?PeYHzD?K@8|9ibF{$er z>7XF_{ov@!X=nDCc`Zy9pNv6lP>HvX>cNo;|MuVS-%9817JEc|j^cbct$+US`=_-l zAp z``deM3%RAcryXnE+nRX#vG#&AWk;@V2z_||T)hSEPh7T7>SraN+fP|}!{uhZ+E3-(s)cqxCO79l9`A(0sDW$Fk2HzSk_Rs%wVWqd9RxfhJEz2(^ zX0}b3!wtRti0HDt_D;Wd@^Z63hQkEH2SfM`$Nzl&zPc}&+GQKdnN4z$EPp5y%XakI z6($y#h#FkKa9~0~5frFs;;F|BI07Ay!G z#_R%7#Bh&k^-HaSZ43gTvuJgib|`tcAV@*|BH4;#5oV=|tyr3o8z|YDDKb)zLb$Z; z;H^f=6-I+{nq@dvM1@X=BrP4|3}0YHE}bKUR)uaCvAh^QR^WV@iGlgUped48+9|;$ zRLd?Y6|p;Wyz1NC!fXlkCKE#!S6t9W`+3KpR=qjWpSz^4&oDl>z>u^yR6HqN=aFo@ zQ!2W#Y(Y|UT9ky5lrfCfP#uZghCx=+NINi8a!QcX7R1A2qG0!9L9^-CSd$%HG(Xmc3^p|~cu93Ar8t=_4IVBo2?tp! zQl}gY{bDNR)e%Q@NFPT^q~N5hST&|$yTQ$-Dlvy(b|xb#;`G`&?OF^CkHicD%EC$0gK3T!t zf*!~@qY4iTB`22HN_vSdC|C0chiVfoh{Cd&0qxUJ)kslQcUW|nOE)KS3#&&jM!Aj$ z3oR1O*ihA#T399xqjgF{wb2xcgKV4{=2JmMu6sl#J)|&;>(H$+)y>#eOPg|)J|XAF6KSIkl~uiAx*%Z^F+ zv|6E06zh3Pn)34jFS>P|&G25nr|C}0f}0J#+@U&3Js)5uvdj?ambi?i&Bz}0CNoX0 zjQUlCn@vo|gwp;bN>2I*2@uIq99q~45Gjow5Fk=jsqC`&lLv_WdOFOjg9*NTRvMJq zvrIiED-G~|9I;FhU`CJ2N&{nb*ya;VQz%SP#MyK=2c{_up+L5y$S#3W@H#NyF{UZ{ z&@>f8aNnk>uVk7!$^t*YH1)iqUuztF4EMey)~|LAofq_1#E~8IZ2ZFJD}3L4MISX^ z(T_J@(a1M?&wNG3wO(TT6&hK$HufucKfeh^VC36;^)_F<%~x;p)llMe%@h~ex0W+4%tmf$@hheNh z^_yyeg#2!t6W#d`!3fqgoY-e)&43)NlgSz#j9*pxXf%ZD9vWwVhbv#B&a)Y zN@BsTWQrDFvkDomRilSJMmO`b`K-jy1G_h2;nA?xgDZZHW0u{bFy~+uiETNyVv{`I z$;ethU0798YJXW?O|Z1fh!#`p3bl}_>>lUMh2;QbK%2h+F%V@=BSM{bJ5FCFXY*oe zH0buLW|prp?YIy{dty7V3g?L-QYcl^GfT?%2NjH;8QQ2W`D8ZeH~qof5DNLAQYKu> zr;GD|R!y(o&ljfTs5B||a$HMgtFeJ?#OR`61)U(gprgefG z62z=9p)#_xq&>`T*1EKd_q|nqRwx>hO)9ct4fA>`%}3^|4xTXwMJF~=)>zE9)K#mR zFNMDk19a2Bmx$3t8WM+?AwHE4BoF4ycaWumoM(S>*~H`-X8 zn3ipx;YWfji)_2t$?0`%EEY<`&I-xEWDXssT8*lRSx|#3567hxVg*{@g&JZhr}t!X zFoN8IxVGgiMSGE=ta@Pu&HH0l9h36_Evs^&PlPK+2;z(`1B~#-iGzo4Swgpolg_g$2wY45tx3lxIQ=pApS*p6iDvxs8b(>NCamZY7t;qtrWCGQBPaDUgG>wCH7c zHPbKw?j~OY)65(?j^faux8vxIX+Bh{?h6ilW17FRQ;6Jm3Nc5WLd@fxLKuaA!}q*G z(HB=?nxk{(?G$=Dh2Bn~w^QhuPN9sPo-~G6IfYy|!ZfP_)KTFKy+j=<9{@~qV;9rB z`i^Nfw=vBwIr3}SY}V*E8&1^{)i#8tooQNVaC&{FX3{L`W*E2NkC%|Aj^dQ^>2{~v zbGzAE38o9>GDbqG-<>p^fGd$?-ph_AxeU^&JHxWvwkuvmE-196O>?zKf>af#YQFd9Ny2`vi zuU5=qgAe#l0nu=xRl=H`q8v3iC;42~g`rNJn5Ef@IMilzS{{(%z$$d@#sDJw#=P6) z@)^X*Iz66Od1%n=V^FtFbLC=z53(z^xR@v5C!Sph-n@lVw&eExuw_h&scKDZN&9Qv8sD&6M1hRZ1Y4vrZv8YS3vf+gOA# zjmo~C$28;hEljh9JGh@?^>P(nju?X*&7ua21rDhU4O^PbKcE{ zLJuDH2)K`MgjDDT{r1K)a_DhtG+_;50N6JZ*P8%tr_9>zwDs}9_uJxKEY^=UXtst~ zV;H$@VtL4hjb)>m?0h^hyF(Fne3WW67m7CgbIK(!n(V~o@MGWm}ZcG<%ng90W*4>Wr{`-273mknPwQ~ zY#9G5APbHvs42*BU6 zUQtnH#_JHxF!~P2e;cpf#w+%1yn3ebDywVM^#S?Yh~@&C%Aj+AXzsT1?R`WuqBu>3 ztW6kAVoS&`;^xM9 zCHKY%>y%)+H>+X>>0o3~?8&2!oUI`FMLUxw$2ruQI5T82=SU&wyQQ?nt|Zy2E9Ehz z@l^#Nn$g%a)SY&bIV`euy)rwR*D!In4~2Wwt9eE{7D=Ol4>rNtcT0*+61#se)r}jA)(%M6)>{(QQPtK;e?< z)v$cQB-wPW8JVtFKCXIMrgE5IEjvNbA9l!jIYu-WcM#2PzSh=sNUeH|*C^z02MOeE zx3}yeF`{`jC;>$CBx*25G$RqBnS^E$qM2GFnst$w5@lapBbw1QqIpdAdOqB-mMTj* zU4mjNQkr+Na4ZjvlF-})4}CKuj~h~`XOzHrseXtD9?21Ii%6r3$&IUm{SOv{M( za!C4OnZb>&S4Z?Zj6zwgni=2}9ki$px-{zei07R=*)cOzJI9V(ITXkmM;%dXNH zq`<>CJL#&0M!Zw_{*>q_V=0xbca^%G=S{Yxbr&{Ss7calnnlSbKTz_;a#KWAvqaM4 zDFROdGHB$zNzIw81fHMzTGoc;*j`84Ifg0`jfE=kb3>&VS)jX+UkRCwv}Dz>>O6vo zO9oVI9D|CDbD7!LsH;|MS;>!O8>tu2j^2;=a#|Y<+mq^eP@?h%H(WL8>Pq_~ z8Lx0l!H2|yjaR-iZCUbn<5l^mG+w>coL?K&jGk#{kG!AhFfSkwkF}T#)%-e8^L=>H z+c3>9gEZeaxkQNOJGwez!am%mhtED?2>asXAo01NhMRe(0q7ja6PWF9m#s%KpZ~fA z;b{15vT`DdIRE_nK{j$6`K&p6Q#Nw?zT%~KXCvQm;^l!px*q9u1C7smjJ&E`1;|_e zox||mOzWTW=Y_E;34!=`_2szA>}&~#z0Mv}mStOrT`m>2F`|7A;;`uEbytDKBO;t$ z7(H@dS9bW^?&J?Dk7RFb6tSCO79K<2J4e>)e(a`z?I{T*`lVo=V`@e(s*ayzf=|PVDg(2_e`VDi*fvEB*2T$kyrKgTcUmPgzA=hQg*#>zOQ3W z!F*Xy@>l@M>Z|$#>f=utYTza3nW9#Kj1q}08kwo{8`=k2xaHT%(6l6s}CzY zaiec^Gt}wS@aYdr{Q&FiB-qO*`bsh|A=D-A?Qoo=!{0npcc+RIioqmO>xO!yw_ddM zMDtm%>`1W;#kGN#{3BdW*8b15}Okp@MHL+x6BApnfuh=X@B7tb4}CjkLL; zQ0hx*v%xTYh>E*V6!XK-<(Z`e0kbAU%=o_<$>z=e_<3)p=xBni$Y;j0e;(|c!;;-s zyhvocs=IJ%!mIkS&eg7bXipK(CFpFw0`HHwiQO>~wMaxrk1)O)xX zIGU&Bbz?t1*?L->gCA-ks+bk2VZk`cY$f4gxsgJc}vy}40A@nqgy6506KcfGm5U8UHH znMeb?>n<%!N0zO-T9Q;~uS?r_S5KDc3gN0GIa2TH4_Jj>)t4r`jEs&VS*H9~%a#+l zZSUhsN%Cw#N^-E=)!%pZ5(gnw**Zb6~^I3^Gp*D@Zh&avZ;%{SVvkcK+ z;xE^mA%Tl^vx7D?+1+$sKcNFd(oaa}0LmX8N$8LUGkRD;hmg$>1_fv3!&8mo;RXc8 zr0X*}P&5J)Ps-?k9AJ(|&r(25dBJYF_`?7a8 zp#yR>p#$>xgboCOM)@1I(~%-u86C)P$k~(*D1o5wln(Ed4)2r>@01Qt%|}{j4*OjL zL?d5J>3}xifNlADbD5oqK2k8IGr_aS)@(2urh9QphbmuXDZPPp_#7xwSNBY@1_?%W zP!$CoYAn+PL_-KJ1uD_v7H(&h(k7CdFAqBPv}>iPv`^3}Gw={6PApkzm@RTt$cPGG zp4frtn`ltz)!iT`v;1fyLs)s*ov?+SrQkWd$0^y;|92Tq=Z zXBj8Y>J!9Ndddh@8O4`beALQ@dx9yo1a+K^cgoCOr7Dv^N%3(?hdxN@ATO;#p(088 zG}|EAV4!r&a+Pu+Wmy|$P0X43bwg^(m3(7b^NdtG-^#>Ybpj5~V)Jj!C%fcA(+Boo~cN>hiGC z9yX;>VT9P2qpv1SnwnPsNGTn(G1^6jQO4TGrF7s1y-~4Fe@?l2BBjIXOQ&>r>p4gC zoL6UbNEVH-XM;XW%eo(vaMr{Kmgh&s03&M?>uG~yY<JSs%c8NRMto_70Y`qZua8PWDA&gk~mymFet@W%mnY>kJGw1qJ{3B19`jzI=}B}tge4y2E<21&{p;4}Oow9J&|bG2p!hBQ z?sNv7yL$o;=Tnsr3Y5;gh)P6Ygj~Zs*Ryz-N)pB1Zd2!SoaeC?4j1A%F~kSMy$qPW za=1q#53Wt-uRc7&^E1>G0eb62N?DXK$aJQH`!bp)yCK{=Hz^UU_O9M;$%b@Shqq-zx?}fk z3Fxf`zC?dP?Y;oKVXOQ2I62<-f+s@a}xx@a^MYEC} z_MrB0!Z;T^hE=M%?YPzGMPgkwdH?hWQCb@v`U9w~A5!?gsC>wZ9rBa>p_?DTCTR=P zkKZgqcU>?zfb$gq!+}&A+l%d5F&4H-KKYOEO8W-Ra3< zr4Vd4dV4oq3PIw(UXGWFetAZ;)bp?`pCRucWBMjq3Lw2tfEUiiMcrasz6T((S?fK` z?ZEnaO(x6ZO+U(}n}7QHQCrb&NR2IG7^!C`75)AH{quiZFaIBtv+44&a>XJXZQ@36&D9%)0TT3?N6@*g zv00LnGx>=kch8(eQQ475z;B&NA7{&sAb4DRef`2g-4O;SHvYAn>WVNRQuMj^Hb}c-I`1i{!n%t1v)36A70iifv~+umtXd( z#t@N><>XC`!8eE8Z8x?1D!?T_l@SKpTrE$X${6yg`<^|O5hOm~KbhoOeOI)si6PjN zwkz0f_%JXwAut-1+KV%9{I|^`G_w{en=f+F06yP{yFVPmb;{Pkfsq(n8=$IXlb6i6%ztJ=TE3Ji4CXMYdmCGLN$TCsq&J(rV5b?RIxTtg9v71=}RQE3E5U z=DxvfcNKd-k-IO>=?c5cL-oP9jR)TYFU~TN`f&mWe*ZA<6RkH}$R1<~dvpfeixLOM z=#6jUr2hL|;9O%l`M%=UDZpo`dkDwB!nSg>jhnQk5)hml3e zl>hyaUu^C*W4-`~dX>q7OklFOFYD_KXDWqnHs9va-K#jdQO3_}no**O15I-+0gh^# zYd63)b+7ac-mFqS=TN<&)w6f>?cQ&wnedE@!fQOy>sM~bT?^X!*T4U->&3_YUhD&z zcaRBWHwXIJUH|A*!w=HkuLRt@b@#1ipJ|zTvhIE}K;;Xo?rSaYMXLL?w!*}k`-5$T zkIp;v*4*z?t`hG&^!6Lg57yid9N2Ho{mIPr*4z`3^w-kdU!?<633T8`XC`^L4t#kB z{aBs#@^SL>>8xKAJ-vSA7t~pQa1xk}@8X&)FAGrVDFI#Xm($7j#KGF!K8A#8ZSI)u ziDyCZJBZ8sm@4MT)jobR{`{9H>MH@oZivCSA|1jF?&%X6+MejRy6b_w3fGSb+0T^qRC&E~vpKjNUSmaiiHUY?PXB7B z-396;IscBhl^!Fg&yVr)&Fv-YOT5HapGcK|!Z~?P3fv*}k54tROY^R&9=+f1jMChB z8#;IS`msrQknc(N5@h9x9y?WiT3gK&J8WYDq)L?SeGjqD~T)X?P;#Uk9C-?c`lSn^e;4iIm>*$6)73@UmyYH(9 zdyX$2)6)eOkFeUm8jDkxSv;AXzKaQx-Hh++Dp7`%ySmzN#mmaIONsJ--_=#3Bq{ez z$}+_8h$ zFkdyJ%}*17wqBgu($+A~Pg{d9YadOb!2NB;zU+&>NdtXg8)R-AefkX)p>`_7N%QH_t9AZK2MuE1e){zZ z=vy2#Op9|ZOL_6$(QvzIVp+8`Nq*?dPN1bc_~T1tds*u(Tp>!!pI+MA-SCHn=J~^H ztq-o4r>pkU73iEVd5{H}0}Yejxw0;R=pS`C-(n~dB?2xM!Onsxt7+9MmIU_GA9PE~ zLN})mbRn?Cg8;%A^g`Ly1pv02wxpf%NM5cT@1O(>j@`fmd7)*@vrVpm z8rhFe<$8#-T$0^Zh5aOc>QBXGU9bU?#WUW$(Nh#p_J1M-N#Z1#HtoyQ-EB^0kLdV- zs4Fa8!B$^WPM6F@xOA5CIQt|W8z7*C6oWNs5eJSy5;&9~(e!Rxr9A9PHGfmjDhx(Q z+9BC*@wxIKgmc$2<@|18Nu2utoB*j*zC7eUgW$9g1kwgc`D;=)tbsac5(~mh0Ui?` zvs!Ia+G%%sK*pKgqwwR4>ihO11bLDw8-n-EvSl-U210NMetPRJp)JQ5I)uV70fDH# zIj5h`?Ak0|kg5p2@DRA#0VzY1T+6c*|C?kPkOd-&$WUati38-@wlEn#$gjFK%XO^_t%fHgWg) z127Z_Q48(K@|XA7TU(7GEAW$o13jrhnMTB>x`rr7*#Wn$Noj4uM-Pbf zOtc+SIlx@`a)NxY(q;sS|BS)0`aeAc13-lNcJAM{iGJp>>jAT#w1>8{`(vs+T6*Bi z-+?mt2!98X^sAt2OEXgszZ-(P)XcBhQv^f5QMmn-=v(&VSMnR0rbGbP?-4J3gTZq( z)4U#$;x`Q3ZoZ~UmmEKS#qbi6&V%sxQ1diV(=|VN%r15LyWv@1L4SSCO8A&}+H)#U z_R^-1^OC?v9)QvuOV19Pjy}l`owkp5E%G&OZEchCm7qU2&WRVk?$oSDptkM5m8y=u zCY>a*d;ClSwEXw*Yu*7_r-Rcn(6>t^UZl+Rv- zUX@9I4?+3_?uMe-*VF&XxUNU@X?M{!RbOll`uwO==`alYFMo^a?-aa}BBe2Dj))RZ zFLh$pf(LNfs@ItHFmAQywHP1P)NqCO&>B4GPrB9yDv@SDMN+(GJGJhTa01?G6MZ@( z2z&U9&|Ez9DZPR;Bc{@bdYxvgZr63&C8(CNsIQWEV7S^qnQaQAfjQx3B|1>L4PntD zI@M+;rf9nYS(S`nPanFLt4>j!t!la<_0ayJ>#xdqTwy7@91N2g!{DMuhg zLmze)U4#a82mzhdSDbUw#}xV5ftma^}544(T47*L7@`PxV|#22~n)A zhFW0-*FwAQRc4ye5hm~~K@}J66gj42y5dNLc&eyF3Z!;4#OdcH95+y}=M$sma#5IT zm8GJzNqNoc>_801uw@miVp-kP;-W&;`U?@o>m6^VI(j*(;kw&)C{dfQ<4I3*W*I>g zooPc?K-aTQfar+NS1=e7IRlHLSr?8Gaw!&ZdcmiUY%kkE4+mUa!Nss!L)B4r z+#Qp2OKtPzjG&$79Mz{@thG^tF|dJBkiB_;mTN_~9rWTkv>`Fo4@+xN(TFZ1sk9Kx zS6zFUmaPz$L!0He4M9!TK9lp|Y&@a*Os4@CYIqkz@mbid)`E>nmk7jRmg{N-sWRc* z?hjo@YcFa7WifuW+SYB_jhmq~E+7s)uTdC^WCYC)q>Pu{Wi7734Y@rmVBNmB3<~~8 zFhxoj41{LbtasbZNvj#eiCY?pV;LF566R>uyu?JBH!XClF49I?c?s1G5AmFCj%G`* zW*E_Uv2+(bL#WY+2I-2R7EA01>qo(y54(01il~XQfeUd!T5z~z`YOJxj_NV3^tp`S z%qTdGaf6~Jea;z(!Dij8Ya1eLSL;z<5zz%V9j>an#hD4Fw7Wz&ZizqDy7F`q`vYXxpl{8_IbR&1t30d1j>j}Dq#OiD*$n%7= z5xAzVg*H_6wTR>5_R?Og7w|gD;YR6|B^g z60?R3H{Fo*v9)Z@;#8i>O(B`k_KJy(pzY3v9AQpkx-V$FgAglNEUzLXuW}2WV}azr zA=*qAhsvz8beVN|-JH(iN^I&@FX)aYoXa#gw5OQ71FsBp+JKxvPz&(lnr}^&R%11W zg;gc*WpkqU)KYKgaZs7`#)XiQ6kM#qV{tStGzHmiC(01=%vqQ1ki1wiH-yc@Y|kGS zRuw0iu3H0c0yp$FE9SjSZ)goseTG2o@_I9k8i4{e;{gQP6@thL%`$D8Z}{{ZX2zW0 z!4D(yC>1Pf<6yy3BYDc`5&{Qu4e?Ux!q6H_@AYnFMKu&?@p$hM<2ou!ib zB;K?WJo|f;AiKdR2c6OUPJE?uji!r-1ea;;YW+k?D7|A)RT1r+E@jGtfc>7T{LF*< zKjgBrBf1u`MIaetG}9K+c4hck_DRhk2Zsz4b*(4y(jkL>2lgQDp=*h*7?hUr?_ zwwm$mvId@yhuO_5|L)d9Ww?x)5Jit7ye1qpJ%X;j>s! zrySw8BOnA`8F%ylvy^+~bVnCkfIxJwyi#_!S5}d#N#}MU{@Ct%>GyfJOjW^L-U%A) zLX4*?U9fd2&;|b@f8{HJH26RN4lvg4=Ba*({v8We2cZ5s&>Zc|80)QTPyH`1VT@1`m zuksyFyw9tgzI!Z2q_}0eBX8*2s;h~u%I4EIC;^}LDR_q2%nH4AF+ktuV(=QF{cWdj z2LoY;ycq2g@`3eoWTcYmjG)M=p85Qo*857}pWKK(L;k3T=sV_~SM75BWOg7yw*d}c z)g@z;+c{ZcTQ`^w&gHW%pLO}H%V%Bw@Vev?E_FG*f_ zc$}+xXJ_<%Uw!DD3V7?_xQDtKo*@SA!gIYbzvOl>S((mH*L+Sat!H;hLT3pFlhx3B*H7-Vk*S z9suz)&I9rIK?cO5j1;Y&BoIvWSvg^yVA-5BTKqUCSjI}UfUml-5XWRv94aohY9qEr zEwQ-aZ9HjVZoH`*kZZ1Jl=*t2KWVEn!j|V2!ER>0(zatl!hEF3X9PzMJEWuGFmXDn zEG}?pVo|XtcveGJJIQj^Wa&+;i)c%l7|wcy#hNehl>t*p(B(MoVQIWToa($r!Mz-a z#|gqz)g5{btAY00aS6gAs~b&~iNg)MXxMC4YVg`MbkAtcea!H?MmR396&4GOxf)t^ zRwwYN%5fu3a&m|kk*!lvyVWZq^sL)0FA0dAIEyYUF^(RN6+y+HfOxpBzXReSb08j` zX)cLKYgLLgXXU6g-cT9WTE<*1wM>LzusKm1_U8p?2gD#YSy#{0t! zrV2zl1m-;npQPiI;x&#X%adrjF-xOj&77HDUgZuAE0&n>?XpQ1Ft|)a4qGnZo#m`! zZF=+i8s`dRiGru|5{j>+Gh>~}adSAd5@GCKU|=AGM~;eB$Z(UVuoHP zsx-uK(2gtfazB`qoN;9=2t&13uEwo=q_iTrC&)bnPDNC=t4}Z$-z;suL6on8OTU+9I>{m^DQO74lIM>ltLTkgY%Bea5cB^i}bi1%$ zW2HFneLES_xfVTXL0P!$M%n8B#8Hfj9<6H~G!#1E<4^p0i zcz`TC2E+qUe|}FOp3jBO@rBOsflBh`vZL2GoCJ&eAuIBp zKC!=g9URpg3@T3VmhN_rPuAowWO4D*fa2E{7YL4LJ+S@Yz~TZey`*w00960?0wgA&o4S74c-t(u6f2@{qM=8YAEOl=)1qpVyPH<%~l6PcqMQg zx*Cec05%O-~f9J&aRj(O{&WcT=hSB7ou!Bs;ipD0*koUdFOS0hfnW>mL#u5%)L?_k};SM zO1hC&S%PYsgkLYXvC9T1@g@@@zy(ukgsf@?A_4x zPm;E8KY4dAp?>xBX{#&47W3LXm;!MK^&u4mk^@LsXdqCoNedFsZGp5pcRcqwom@nB zN8KldJ-`t4Q9p1O*Y?o8A`w1;`a>pr0)ZmaV*^m)240r`Js6xH8rnVowTp+i+0TEr~wJ+hVMH4Oi?&;yH^@Ucrv zw8e_@>nssXa(p(+pW(YMn7Zh0(*F;;${bbc{5s>f7@y2W3yWKMk1?SqnP@Vd6V7n! z9(1eg&NMK`Eo&;X9&FlY!VARbj=XsMy&q55&5svd@#A^DU-I0oA5=VtvZ-690g38j z!SNW~RKQQBRqhlD?HnU2qUAaaWcAG0)J8fuxoW?@J5L*y%nzR(Frve3RUXH{b~Bnf zSfJvJEMPmbty*}-mKMNzm1+a^Zqw&Tpb`O9jnx4e&S1-spq?Qp(U6Cx{p;+vWSY;q zXg{aY*l#>k9oMvH$OXKLscdSdJ;#!R{}qd?2!fXp_MtGb^y->h0Dm_%fB$4$6Hyky z@(v`1MA;pQ8UeIGDvP&VXhAc#`Nj`AiWAW#l0Sif5xH-JX<$GjA&tY^4r@IYWM*2h z)j?#Y1pR_%i$f{jx1majg zCL{d-M#BbXvn`yn)};`v%hHV2;8I-ZIABC)7B{?W_OW8_+VH;3ys7Z-ya^0kvIK;& z9*($KWMBk*@5}}aeh|>*Q5w}wBA$JUy;S3Q!&7%ZAPHdUf{Y7k%sv?6R(CNf-tMO7VH)lk&Y zG#sJ`bs$Bb$nO~l5>fI=pqT?Qa2(Ml5q?1cu7B4Zif&*DfC9i9dimd)`wy)Vg$oNWVb~lth%o7f3+@qNctQx#ENMjMhTC(o|g~&B_R<)iSP1^9pK z8G`%UuKp9;`f6uBwMZQxyDb#{S_OoAGP4#IFiHYfjgdKWybrBG7a8;uXwC~l%-d%H zf5%gv5sO}^i>P7Ov|zLEqPd9_zLHGWHFan@dzYS3oDjU0fT#f5|EzDC?&4xFa{UVo zL^d^t@j484)42|k@1x_X#4fG_!5bxiJY&)I`&xde26keh zxVQEoAB^!g@h&(QKURF@t| ziW|7_t_ym^=|#)F=2jU(t~nRm`wb)taw4BDBieu&8EfBK-=Yddu+D&~3@k68^cHn; ze!dSuA;ow}Aa3d1DMLRSy#q5w0*nJRs22eRclF&KoDaE5>^5}?=_~ZrB~L*TgcSt| zOhws$cS%E94A`L8nrUe34>65U^K%fky&B8SSZAK#g zOmpH^^MQ#cjzkR$)G?80cYUxiG)Y3Gfk0`ZJpj~*!_Qi#1#TkR1~vLXaXdP(Hnh0v z>w)Wk0OjJCKqexobUGITpLky>V@DqXj}xQkJ{f*KtjqFp$wc%NthwF*)rcQ+p8_;o z2ezm)j%!*D)HGyq2fCd6Z z6aWo2fFns!$EpI92rZCBB113`D5z8FmPW+f1Hkh?kyd!n1zHflKcQ6g(dYb(sPl0^ zQk^BxI1}tp4hCqV5`|C>vovS{Br~;xf%>96nrM$nAV_hJqc(uF01<6v2}tTT01VoV zr7@=A1u^(UB9dgB$kG?=HeC&AWvA2C(tCt^mQ*zq?qPPx8(lxNJ*aD`hBb1TzN(?0 zt7E-&J6)Q?z=Lh4b48^5C6-qLyKXPt&TSHrkplWEq8_Zd4rdO^LB-)QsG{ol0_w96 z6<2+WlgXMmV=Op>42FVVpV+GFH{IDAv!xYXYfrs5%uko1)GHQ*4Wa<9p#4wHxo z5vGV;j9#worf)>c0wV0IYa;KYfd0m?A>c4x$R0UlVgIpb77n&L(%*uO-cYWOCT*ez zU$bL=%zp^HZ+@G*v+f@YH8u4&CPpm03ao7}mw zfM^F(s4w8Er`J6^ zmJwRedh~SXWlsvN4iag$!P3;|c8tua90(K+`B7T{MB4PhmN$dfohNOfTt%GP6Gr&{ zPb~3<08+3gEtiOy8Q7wNk}R;Yl>M2)cQtvL`EQ3b0;n}fP`CcgH0P{Dk0}u6!&cenl&4E`9(yo=|G(`MB6qe zD!q;GM2aa*;T_19fJzs=$}0HWCdM2CTN5pd;@o+TGX^`(sMTCifDBc1FRP9gOlV;P z;_UUH6omFdP^))ADExve?ew52j43&;J(68SGOEp3qT`4I!2FoIU>T?#j=|qv+!;H+ z7~iMjMX-_a2irh!l%H?$%>_{)8x+r$7iPx&V=(Vl#{ieW^~AjwTlf9K(7^OUr~d8} zXnvY~?_;zPNAoRGFXH@urA3xH%5F0{QM$zGjLsM~8EIsA(2QT9Y!ODc|Mma=rbQWKX)S?3<+jn^ z;f8NLPAHVl0K-=0p^mHAzGcs?Dm=(7KR@IF??2vxwzSK5TmW1Dtti_1aasS3uZXRD zu{B3D?$>bHoFj^`-6>PF+pOL6D$U04ZmW>16uL`juv;=lcZEP^f{CukNSY}>dn)t0 zX;gj17dtJW_UhScQ0p~On&EVz=Xyzg+RS6S3#Hf}WzC#0ii$UB!QoqfyyQ5P?(R% zN;(B24#n~14=sqQgSUK;6h=8{G8MZ`y~&=`ohM+|TmW}oJc{}5PU=n5LiM#qBy1=U zW#`bA9$LU8qEv)nshlE72q9Rns4?;ZFn~>1!8cIXM9b1t8SU1i)kVK_1g#E2o=0ym zi6nk7P>y5DDzZjtL9}cYn*J(1(j-)~16E5yrWYk>>))O01B`>WoT3Psroo>PrU6Bl zw{}r%@TN)vY%%CyWEA~g((>u3`Wp$g0`tP(v6?+uBMq2 z&vyM!9=EILvL?W8)5&sybg~^vR&Um{KB`fZ?PaXJYSJBm%CZ_VQv6V1>tAPJ42(0z zzEoic?23{|_+=Npg3~*^k837P2uoq}QEp2$Y@YWVWuKSBPJ3rgtrWzz291&4^Xhiv zFe(Zs?^!I{l{Ej4Pfe0`=k*gK;tk5%yuim5tOTQh;4yOEE6P+{yipTp=Ez+<>Z?m3tei$`31e}y0BFo$^e zeCdW^mb0Rv_$V0W?fhzi!(!M%X~{E93)lh0iRt9@0cx5aPfVt@*-V@Qt~> z<}DwuS}3-*d>L^Bp7YW+3{eLw6*F+- z^BV;Wc=3e?cn9c+GxsXJT45dY-k^x!V<5LSxtoC4&|mEN|IlB5FxU1MhjVxDZ+^Z- zg`m&)wCMx%c~>0Wp>2)^#7DYP#BdL%0_{OWeuxmGN3e5q^?lB*9(#fpH+WC zNNC)>H+ChvjAa3hxK=Surb3jDLmNB4K2?Y@6gZwEcC1sxuawJ#dHBYW5F?k2g?VO) zD)Q47w>(@I7XuY$LU1LzYdPxd~ZbnM9_z#_DnEpAF~3FEExv< z$!~NT(?}z+XOH4aA)g_iRDQ!wEH#WMI{=s3bgG2c$Vs@=aSwkwE|=Q;Ml{Cxn$Wv9 zaFAi~N-Pz_ub=^1!|H?-RscRFbwm+scpb6McvarMIsO2g=}$p|i*Tn$LI@uY0h!OH z%1vG)Ct*Ivt=#_2e0G+1pKU^;q!?i|*6vOCPvk&b&uuvg4gopPrfp4LBPZcN$E_^z z&4G4a`Z+BW90;Sa)uHtt#DSuT(BTk}18vH3^BOq`2RiO%h*NQ(SS%GP>uT$sPfDbm zbAqTgJ8*?%l;S>0llcvP?!Masii&rIj|!1Ax3#n+9d5r4k$@a#uOzj($SLXW~PEynnlJh$m9>(`k<&9JbKLC+@8kV#ArWhvt@Bu=_=T+ulKt zgZ3W{=s)}Qb|KR=bMTuakU={+fZN(ZVlCjX$XyIXT_=gJ&_<94TWyF#VYhvfcA&xw zWjWBZ9Z#M%YY-wrGyzBwEp~|aU8R@WV}r@Yy|OHhDjV~s&9XS282j8!x{u%ZbGXi4H^C9PkE@ zfTzU$eW`zt4ijoSpZ0`@-p-GbpAQ0)`M!HQG1S!8xM&wmp~S50YvjiKM~-r5#D79Tgz5u&6u1 z!tNy|v#_W~07xw?+6ac*OAPgm{%zyQANIqEqC3M2^a#cA;C0caUu-=)*8O!HTvx zBd=ag5y65&bn*_30O&4+gNlPMHHj8Y0R9%f4Kn%gZIC%7e^XTg3JMQT`z}y-Fp-$l(JJ2=JpV7|ec%kyFvxhdNNu*&wH$V{*RWxHd2bE9ZW&!30?N_Fv`c z@4pJO06X<+BKIFaq`$K8%Hz{kLyVwz4s3`Kv^3EWNe+|`yNsn?oS5h+E!x=mN8yGT zL&C$eLQ?O%aGxt@8l~m)FW5lhA0Gr0GVy=flIN##!5-fCS_t0`v%**1VYY)qk_J!N zf+0zWpEhp(=!H3&7m8eg6&Sm0S>=}6LxdfGp@eU{N8zh(_h^VD`9ic8ED3J3T|DHh zm^Lp7b0TL$^u{mD$^W6)8ACh|?8I1a z&BOb!Q+T-eXB*2`$SBOGc+u9*(9nG)HguHnTY*74B30ZcgY?L{V;Bl0u8n=u-lsd? ze0_wCy2bDnNi5RORtu>&JaKlu0|1E#_$B&DUR6`HJ@m<9A(P@t; z*(sVd%)T9@Fg{#!sYy1N=-n&bFpi}Y2IjwUNYNX@`km-s0NA`En&%k|~h$H$t zw#;g`S-a^~nvD>z7Vbg_F?O=4jdUZ#2ohF1q>Y|wXtOX+FVIeY()$+l_%IiGbth(s zv6IY^p@?>viO+$&#Z^rs%*AL)+z7OB6OEIXp(W-IP`h4gj}4+^<+$*r>KDImsy+cB zL}?2O5`&F4ayb$adlckWVC)k6Jz(Boj@v7PTfpv!<1Eu0M?Zu6Z5BMQBA-TiIiH`~ zd(dF;4jj7B$bUNb=#Qjr9Na@EWq$1Xyc;=Z>DKnaFwB;1n*De0>GEYpbAfG$F36dN z3k(o`tzoY-_uO_87SUQab}L(ijjj# zJN)2`5jD-6G{?Z!L<`@TSa8%mwC1xRBzPnw(F35Ucsl&sJnE2jxj>7VVkk58FB)A7 z`NvhHpp_Tc7Hw09Tt^%L?_>Bzv)^}sdlgUcNgi3U?{Cg8y;hdmyxpbEG@nXxscntk z;!hx*!I@)Z*aJS1)<>6K9Jpl_ojxsil`0F1pZfg>-Ge$*@kHV z?@BQt8(~y9ZfOB7SVPp|Qtd&Ak~wA2E$=nCF)pFCuF6FlzJiELyu_>Dzf*$~=^);1 zIG5tDv!Ux+mn`eZL!gUJ#I%3`pY=^!7hQO14_Kenbd41_F2U-eYIr2R9avBh@0!Ys zuE>mR^+Qv-D%+-G_T7kV>a5xC!^Of*Ok08N@ErbS*`^E}2e#fFik3IE&gI0hydSU! zUARIScbYZPtYNT@g$K#&n>%fd4!A5Z>>|Vx zu}RU9RXCR!TNO3$4QZ<|SkFZFZVtHrN6=OFYpp&mw3SYYmWhWG6o~RkcjL;ZekHygwjb8oLpZjT#6EQE`Wb@ z(H^MA1zH%Fu~Wd3-iiSY$ubr;^`UcxS+IUMw- z3M8UmXEy~WpUt*2*+Hg~f&W$7IbrascG&^EXcn^Y-yXVu$2G>1(b3@l`?qCn@_64+ zYR1r&s@+ceCYi5iv&H}ZYnu5d%{|GJe&w!ulSsBR11<4z&2_n)SuSOtd(-RMV`&=i zm4@S|cvC2G-OgRZd}WgFx@?s-%TA=P`%3v~Htp)R+U-BQp5JthyVgT8GwL@gqH>+67pnDXI%DNoGmjf= zYCYSuhxdY3EU20;H-(PUaG!GVX}*}Ya--htA)Ad$YC>wqoS9jT4$^mRZUzN$?R5~p zR&w{+b?s>^-=)$~++g>n`EoxoUgLRtV3gfzZ`yR){laynm(1(=?oCddPLiD$Bb7`g zA053@PXpmrZ-HzhHhOs&_uRYW(^!2Pq#NuEH&}Je!rFi&qb}+mBzQ6X~qgtZunZ7#`@_}N0Eehx$Zm+U$oq$6xZz9OIlJNpQm?C z_2mIKCho5mS8SZQZpbM@M}F(_m*xl|sl5A^V{Tz#zxH#3Rrj2~w4m~=ODZk$q+ zd(E`R-Im+p)pIG{8i@n9(7TnL>uJ7=8_ZdmyOxvXll2ERZ4Dk>&R`9@5S2P*xlrv_ zo7n^l0Nb#eDWerr^X>ae`_9&6zIgp$UKd{T)xojSj-oqLlquqxL^#~kRz2auPI zf9D7;t@OA6P* z4e~d-{bZ27Ke7vvM9`7pEyZEb}f3$fpZBLb? zr9ViC?DP?gdx__v?Zk7{m~-Ce z^<1pdcar_GW5x9@m(|>~^fF2&dhLGeUXYBtWUU;(*HUul`W`BLh1(`>@XmZr+0WHX z`7vh3`{GLzcJIEJ6dz|*OL$J^6iKTMtlO(MlGn{qH{HICxmc%mKHq5LdMPfI*}fXT)n220 z7Li?xWiyj(yE~~DikVC)lNoq)2uW_3X@aZ_S}LNy+yv5N1~G~3vuxDIkEL`}f(u_! z5iL&ZPpM+lTleY8xX^g6mST=1f$5E9d0l>j00wfqRIUxt%SC8o%gME5;$?yxbQ0}bwlpZu&TFY! z9T^-AH(f5RYuK_9Dv8*5}=&)xP+urtqcqfw35&5`v` z@+RfH(#rRx#MmusJo`8(=4Z~m#opD@sbR9N+(zs1NvnVU&@xgl%KdXEsmHS*8%>ob z6Qh4CmIoFuq@Q!Qg}9Kz4K}LW>kG*0y3-!?o-?V~ES4<4RJgl`j3bYAw#^o5@0dY0 zqjH(~B;fI{iTP%=cD`T^u{NB9Y#m*H{IBTdAp_(d@8aA&--*km+t>Rpo*X#4gItmL46#mgBMFGm_=`WG0MY-(uy zd@4^asLva`x5d15vJbs~_anbb_<_v#{0a@s=L`!CN5*j8uf^?*D)eyyOh^Zh3!tdn znz%p|btu$vfixG7;}TQ*g$4KoACGxS00)W-BtOOlJPz_57YJ)y;2ja1ATY2gAigjA z{A`m;{H>b9hdnM~RuK15owlXZ22n{D8yH&UPNC4w9a1MeMm2{(>h~>xL}wa@?Bg*? zcM>D9OX^E>381G2p*!DE8l*BTM`@C4qcm~CD2*Q#@q!1MIxsN%`7C&oBQ|#b*d+XWTw`;HEv?jQR}{uZnS5q zX3^2|VzV>5xzUD$Sovm;qRB4QJT4p-sVrpx2TX7SQt*#e$xJ@g!?rr7iA?tLW za`)<(mB(7N+Dlc1*Q&uspY%z$-)%nL&CE_W{i?s@AMJaPZckGQNq>;evr{pjHcOK6 zQXb(36{V^^v9a+>y&z>X*Z0N2Ln$lA;}0>XbZa-A`xh;qEO)t1dnC2lqElcw_O8`( zQ`sSF7M^;Y_%Jpo+!Us5*$WelV|x1LuK5gJl2t>iHtwrJu{TJR*%GA8;rYx>fmb8? zcsZO;|*jB6E^SkWOb0GJIFV)sHn`>uN;JSH#K6*;r zzLq-RT$goGv6>TGE;gOiluf%iAhh{$HCNYO>Nl0idGxstfe5OWsHIAZnjYf@p>)pP zBrECa<5Qx?=Y?w9si#V%{-mYl;_2#>SQ}lLXyLcsXmQy`-m9?Lo>QOXE7G`Io8}*Lol&hBy?eU77QHT;ui3|TrJ5bi zV&EZqfBV#FiqbVd&PN|}4+){gM$cJe64$i{`Q;uo9^3cRYNndKFWQQHeLrA9bb39w zAGT^WFVw<6Rjl(|!H?Z2bs<*lC!{A{YY&FWeD&t0Jnlc@puPTN$au3t5 zwY-OZkD%Z^5EX`Gil7wzQvCs5I>ndjlfXy*{jdLXoGz^-7Pwc4fvd&{EN{7Hx5dae zmEDFw_DYCY-eQyV^|W~5WG-SabOyv_S=C5@iu9(iYe{m+gy7@f*$SC9Djv)=q_AS z12zgng?IpYa3PS?UZK5G!aTtekj0S`=Gis-As#->oSb^-)+wXgk(N!ko(?wg4O2X3&RpRnIG=9dbSI zQxu$_WY#|GnSN1lIwiBLG66ZzuC17iB*J{+rbVK^P_IiF3-QP`g&%{zLyX@APjuV` z^~rUCZk>Agh=<@x*c9m6OGxZfy!yyOf`0Mp5Y|i@OX$EF3K1(3Hwzm7ZcUrrG8in zMr~k&e zgEE2J&U+)sM-IzQ z_enxNGCQT8gnYC^0e29P-9oL9>lO09n>W4IP4AF%8@_~8{;MXWUVO4on~DLr1wUI< zR8b4{4ms2UiSM0;g1duvtS@RSJAwkP+VEuv@~6!Zq|K3Ux`oc~)=eX~oMawsT7~eX zrSPXsOG(T<69;F;VctRr2T(P_oPqDmbjj4hY)pk9bVtrqEcLKa6d`;`3j+P5h0mfW z3m&uSg=o?{kpy*ZO_=4NqKEu&_?_3pA`)R}|3yHzwDV_wofqeaShtS+t-|dN zV^@9}Pt)Y5w4J98&{f&gwpJoOg<-r4PyOehJaw;PeMc>-gHH1K0zCC?YWvVodL()ccs z3=y4x>jK+3@X8Kfx{5$QT_w2cmWX|-y5SwK$1c}QZVKR&r-O(!?}$nQa;F`-B+=H6 zf*bjA=OSD@sLwde0eKA=19wP(AZ=eMQAuCg$hpHXS3{OHkz~Imbuai#LucroylBrB z6xmbbwgO`p4}iYZ9ve(4312pzKtCJrxJt>~gz?)rr3SLSGX4&d&i<_u6_B89dXOj} zv~f#B;whr7y*q3^4jhdkQC(#G;1iJTw~q3Ln-GtXl^+S4jzZmgF`~3F zmH@^MQ?f>NVT1AF@a5}ALz}OU5Dx*TjRobj?ogGVjo*D09ac?JmW;L&l!WC{FXtA4 zRw2O|NS?4hX;Ma*%UpUTBrjAW#8d7qm=GiAEo?xP!%TakNvt0ld#R~gKjGWI5)JMC z6@+*QByRkm5||5f#;l@W2Us>YPKT#P=Txbb}7|Cyu`z>;9{BIDE8@?S)(LZrV zQ@9+CiJ(H+GVMKV;Qu(c;|h%3PQu_*0Vjt_DmbJ7(^)-iBp|N|Um?(FXm|RAgp(u> z$4N+Z`)^LN11E_ll80QK;j1edrN2$%t7!tMpzF7^haNzC`v}SE4ao@|u?ST)fUMX5 z9{>RV|LlGHa^g&~=c_n86Q_H|$JPZ9;5pq9+`;A!2HUZ*4k09v5fYZf&42Af>=W*j ztV$9FY(rB5N(rrRVj2sH(od<(tjw&;tdTAnqCOEXe_#9$HN7=|qkr|^|Fig~YJV8- z7t`Abul%}X=}XGF#yMmD?upt^G<8|vm2D%8ctKWsi(#%KXqc@7U(AMz{WI~`W18{|GK2nXZ3e(^i^%F%a_k{cj>`$W!H zX;I?Giiyr7LeY4NwegSKn>5V1A}+u;`Hmu1tvmK~e$;o~g2{Ib_j7TXB1$G2exw-| zuyA|<+`Up(yVgl`(XY#hO^rWt2zpV@75nkU?>Oy^KlzUHu)lLJj*4V4_|+x=P%U&6 z?fvN<;Xl8Z&LNEpe6wZXZCSOXKOH$=yYo! z{aPEFfJtar3~0)l3Rp&P41N+u3iIb#<#%yyJZdi!#WFU)nJ8J}CJGsQgTb*kTogXq z8)jb?2I`BT@N*0X{E0G&bNO>nIk{FaVQ~NFWg7 z9=q5D!?p3K{p}&iwn=N$?hI?9KWj0W5U?#=u5A?SKIc z4#yiJ{Zbcm?)t(pEQ~lNvtRVv9U=fdjpJgHCMa+NurpQ$fZ=sT)sRgb0z&qGeGq01 zlYD=jF8p+l9UPFKgC12pWMWd7gXe)ng6s$Pbu(ccr^Wy5hg2qYP=5E%T_K&9LEkVq zX=0>FhvTo1NE_KfRqo_KZ~ncfh#5&5ocK$=9SV--fej#KciP&B~&YIO7HLs}6NL-TaaF z&^y9YqByZ;(nf{lXN$V!XR9VwXE@U4843m9EGLjA<4;2rG_`Bss5$377!qI!9u-^$kG z=!GuFxwE^ZY3451M{N++1N9mR7&3q&F(?0|kCs5(Tog^0t-15prDAcoA@Cz{@v9P# z5S!Y_x;RAJ*XqdbvX@Wn!;WT}+R%Dj=g_f27AKv@vYr(kIGEjo-q>^x>^ljXVq7=` zx1J*UK|6X^)Zl5o=vA6{#_Xh-B!~E3!b5wj6*6}H_W<*(Aq@h zSC8zIDb(FbT{*w@g{tL~)~j?Os9I}r^nu}nY&l)-qCb1qr!|I4BR0m^!s}eTxMpV) zep9KZGl+X{&nCPL?mNjJnvzHm zn8j-N>3^dQ%(XDmdG0YTj6+b+simZ8$I>{S8fnVmzFE@L!+Eo$X%`OO?76<#$T_{) zzfK!tKR;>^zD`kUKTB^@;gK_ldsniS-lh`mZ=dLdEIpi7t6~2OoPaO)eqi*DRhx=Kbj{+-MCc6K)gKGG{}bLN_#$v7+c zq!Ipx>kMR-a%_m*e;qjTw<+b^8N?Tzx2aN$jLtirJ&4tz^W-9b zq^T6TUK^0wPxo!gGj|5@MfYtgN;-AjhtufGq3|jB!aFp^KZ1#B zSM|a6hLevA@{4slq5($e`=&VflLbFJbWIHhFVm7c*Gx;C#!3J-wZ{x2 zke=CoU{I4dIOc{Guj5#rdO*JwaO_P)ypEg?{YcMk7WXl9zC zRNmuFzHtnG3;EyN6*rFMXUk^1NS3cqF@srtLd6VcL2HD4=o}9YUJ5WrJ_UIBM%>OQ z4(dO4Mmd^Z4PiA3a8U$K%_ew(QxiBffm5>q92Yn>r{L6h$yeWf3nfnzHTit?<%?MK zGef=}kWDQ^I5ppaGxSG%tGmCPiZg`2vhOF<6L*FVzPj%v;r+-umVCndR~`H9Hgzx- z{z+$YTeP*N7Yu-;ZKa{s6&1hnd5~#~2Zy35>IYtkjl#?4j*`#kHu;X>el9LULX3tV zX$I0^VY{dVA$Kn&V=-ZE0}dbse2T&Kq&t^E-UHnB(J}DtkVg1B?hOmyaYO=ZnjxNl z*>waS10w0FFlXZ(41lB?ICo`98XK~v0w$uMiIOA>sPjEwlsMaL9|aq}J%M)L{#0>C z?Po~9D~^bgFOC3fNMO~H`M0If51-vIOUX3rhgWL-Gk{LSKN1g z)?oS%rvG62-wf_#r~h^RO6@oO!>i|tlCS3iJN;vofVl$X=kzZqJWiS9-#+{A&s4pZ2GEQo)#S*ZPHFnC2#QSwDmU}rF#Iw}ATtn?!3B2F62-#&%y zAo27K!$iG3uBTay^eUpH^MZ-D92E0m0qFO-C8KVj`W37}q5dPx^wgg&qLAnQyb8HMysIN}YTC##3F z-t=JgkcNn5^^gXa%A^3J!xmxE0I`-9NP`mf zikDy?%+f3161vcr#UD5c6r^9V!cTDunTf|vm>YV#ljAe}rn1@B#=e)J;2Swka>_y1 z$>42z7A0Q;PR3?oF>IEwE3`h^EV&oVrDW222FGS0tzt%+Zj~ zu{sg@pNQu+)5lpOAw3cLo{EPr^?wfaZ~pN~lr>D3(g^VaE2Pm0)C@2> zSEXVg1QPj~$i|pgwsS#>ByIv_=}B?0awZPxshq4`FLy)jaHGqcM23qp@?X9mQ&xdSW&{aSfxHKQHr^kG9@0 z4;IM(>Y4w+fJfS1WyEWo7A(Z^VVe8FB=-p*R6L9X_&#JeAY2I+({X7^*m{8 zI5A7$lXAd!(D=@SMH5;ZkJ`_o@lrb-ir6!`eKYrpLs~TCYp0iQ;RIs7E-+#uV$s&J z>;TI!gl(a=z&o?;G=PMC1#LLe3>oD&9yatFhgaSjKhyHo2u|BT0OhTQrr=ap1cj|j zY$|BVT>-|1Q(Hj12r`cWj&v+Fdc#4c9b}#}1kln7S|lJ>-7;ao;419T9^_?9)cZS7 zDBiFI3dMT}O&pH=hWF_ne|7e@hCKkvn0iGhQ&AYstjru(r`~Q3P?hP4FNW0i97?jx_1cCoV^ta**S4 zDV&{ENP`Q}XA_qruISFkxFk)w#!n6>SAsO{nD7l&XpS`b&d22^gt)b8T!E)Rd@L&&yn1@QR{M zD-*Qm+{pf7Ir_e7HX>LU27bMw*MOGnjjj6HF~4ZkDOO)+)j;= z^M~~W4NF2V%vn-HZ_U1~F|vu|JmkkU&JPUxFaCBW=|l8s-SiW~@`w$#@Bp>^@klq! zoTv>i&>z1pb&D}<0Q{tAn9ik(OI$3@?a^Q6tTVH9rSDX1pdZAfVMqj?nXzRZhg9&k*^_=!f z#y{LIO_sLiOarYiSTEO|6>j;Cp($fi{Lhfrd$M|s1miXwzF{LHbMc+2jc&sncSED^ zrgGQp-!h>a1|9Y7N%=M!xd~ZE@7I=eiL=|q6#buxY{(s1u?)Oh`%lHXkD*^sDSdT0^KaLxaduu%sdWSt}*0q@E*X2XTNGFrEM6#DCB&`1m zwG`WXmm5^iI;dol*1t{keVZ;%I%-|9{x7xi%JliM+%2kovvb#|*B+wjQZkwSuYb%E z|B2JD!c;1>?;f~lEzwiBr+d0Vr?h-7IcU!Ai_f`Pq?zkaULzGYM>p#2vi43zW9m3Q z6=s8MDOc`sZ{ylqk*g={0cj)h#L0SOV#bv;b2m+<3)4#J?mj=tDwMN2 z>T*MRdcS&TsO{=gG%=RS1-^UFl`?mwSv)aHQ(D>{u%a||P47RlN;V@aL!rXfyJhn= z6`7^8@lk5roIfR#k&euDYGGrp-GzGbc8#7}6LImq7rF1I9+msz>qKbB;vsv$#zW=p zajL#Y(t1zLn|IAw#i&V{`$99C9;O=)DSkGM*5A}vG!}g}hV@chWLv|km@J3KZ%>n^ z*^a(WB&>IE=}dlY%2%&+ZZgUn=_h$u;@kAo zoRxI86s{&qs@{3%P_=kip(Ltbl9{)QB-3}YcmyDO4DmDvcS1 zF>C1%O?9fn&~*A#re{p7*9k`w-I{f36nUkLY?5u#*;=$ttIcwz6?)~gxFpuzb&Zjo zx7zmb=bS7$XKp+`Z;P~s$tRBqr%N~2_6^(vF6=0npcHOu1x6^=i#6knL|xpC$_7n5GgA{!qH?~_QaJ~bbD zSN(xtX78RJ%1KkZiY6zKt4g)`7VS3d0UyfueWq5*uraxL_c)A7k|LL49bSJ+rM1q3 zmP^%ZRpB|;mDOxp9?Vs#&1d^bGn_HeomTt!-PXf)`iuQYqWR;z6?wb!S5ul_1a zuai)>qJ)yqu?RQ23q_`{!&tM{sPOHEQEPPHhi}n`&Z8J_%(xg+s!_3Yild^_3_W?s z3!FV5|Cmou{ozA&N~d}cMlr!~Ng>M4>a~jAZaq_PkE+%!*0ZUInU1v!O{y7xicyc@ zO!4ZqQ7+|&c{x$9HM8P-g0cscJ52qFt8=xC$xN`{-jUUK|Z0 z)#78dUcRS?bW@7RoL((;Vx6gEDci?s_4ST_RqjjGvYE5wHC>k{*;uMQ6(0wVq`dcr z;vh~(rp`LKuU1j6n%e+0HBlu~x z_n3bTBf(D?NbsvmUaU{LY-IlY_%s%CjL|GmNsGaz=|X4HD9+N)srtB>V?##kp0@{V zYVXP9Q$CaI&%H0nlXj4UTh2tce6~P$+yk+ zo7S2XWAVqghn|`d-|PX6Vr7t(W?C{fk*U;sUN072J5qhdv6Ey$tj$~HWH`ij8)Lm# zPnw}je58j>T};;mN`EMsZ_~Scy4et$_rNmN>Qd zJkm3TOe9gQl*W}ACzrFsL@{5COz7$?HBBTai-{B2WHC`In28Our1Mf%rpmAXB|9}X zKJMmP<8C(oAU-A)fuZe}W4+yELZ%bhL?V|+*l)A%448h67bL2UzEKhx^p?L2TSS^D z8=pV7XYa*%#Qxko;C+!#wmB(LLq9B8--o{r*t4E4SDy>>xKbL%Gaa_{Ey@KS_7fE` zDTq}W{WyitBoO1S|94d@Ee0KQLfx@2Y_YcGV9_;Md$O-_-g3fv&MHEdC|I;c|NXL0 zTwX}BqM(3_gse(kvx6_vC9+ms)aBT0H8&Go(=k6i8jq8OugW7%>a@>~Q8anzK6J5ozA?Ukl zN2lFb*gdnt!q`Dy>y#*%)$j7|(8<2YcSXG}N}?`W{*!f;n-k}Nu)O43-s;@Y=_uHzzLWKFV!b0RosK%-+ZdX*`*9Br+_z3F)D8urbbpbo`6!f}) zW#UHc?zG;P1sINrgq>pb!>kL0=r8L6p~a7abpe>`0xL}5!@|I!8_bz}$8bLvQzO!t z=*J_ZSR%27mS0?X8U~^l(`j4JoqbGF-nqj3UCq}snOf?QHsLXPjP7NAw?vESK5b>a z=QFzVIpJsg1Y)0lzriXEG8xuZY0%8~%_>b4bCt$j6>%016uGC`>gP|3H&Mo3p80m^ zhGC;O?B}%`%Zv)vZi2O&VC^PYyE*FG&9Gxu#u|#GrW06eH|5H3-e%Gd-9+1{WqP_j zU^}Nir$dSEIGQU|+nrpedrv)I&C2a*Bb0rX?kY)+5=E-4=VEF#ET?Oag<4xz1SWg` zq}^xVpSsfhXm%xqqVq>5B0VbHt97k6%sz=}LG8SY<|Fr>VI#c}mrK8;dxK1>+%6l> z&+$g*{_Vb-yNYSORwhHeHWKPv>#86}-v%Y7q-&Br;M?1ndsH4?pOQk|Oy%WCNUAEK zyJqa3W-2NhQU=pTZ9aZ(&$W6Z{yuEyLhUzm*q8NCvosAciT<-V7Lw(6Ch17Zy*!-N zDWR(51->VwhW*;J)a$e=L+(DwG~V?|ycUbgZ@i{GmbFKjm8GzxS0k)gm{#x0MLN@X z5}%UUWUL-_mRg$Z-Q?{x+bG4mgC;lV>qaDX7dEaWW|#^WBqJ*2jZtLSpp%Lj=eco* zYu2PM%j1_vxjakjoZ0GXqojP5RG%h}=*0@7X{$1?Hrh}9LA(~1 zAByQ}vaiNcTx~2hp14l>X+AI_v&VaZqTV0xwXqzHM$)yFrGshhA(41;_%MZ-E|p14 z#A^BK3dPG4_b4Ero+iGJk!R-BDbmo1c`i!Ju^L+&bmVuF(HLjRZ#dve)AmCuReKV~ z`C*x1p6KRqI5#`fI9nT5%vUN-O(L<%^QfJ_S3D|_(Iw)4}S4=8N(sO>f_nH6tHQ!ap+AnKEiw5>G3%F=9mw+*j9iq<+^u#HcY3c=VIat;Nv?h7Ypkbh(TE>{*}I7%q)M^m60k9&{GP=wu8s8u(x3YzwO|t&l_9w0sRIjs~F%o!r-QTS?B{M zp4o@Yd(OVPzBAu+AMi&KnB%78Cdf06n6KK-Io^N*EBE-vllR&>9JKvCLMHoT3 zZaXr?V(ywQz98R<&=HmwM_=P~5eYUyUt+`StVen_!RcH>nsPs?`9ver@EhT$d+ZXc zJY-whgqMxRkF1}`Z!}IuKXZSHekR>W33AielOZBxRgE{vL8ct!_OYbjYT_ktYUk38 zG7yP#6baJUEP()w4zeF~MydpM3s2CEZApVuwBE}AFurRHY&+yxF$dkzB!QM$fVrNB z&e4P7dPXr^&yZWyeu}Oq19?tl{8^6hLPpX^app(j;P7m1;w*?oJIK~H@fVwTDf2I; zj)gIJyDQ+%Nis;UjezDlTQ0En_klh0`a(a@q6>P)O)1ysqm)S#56_?e#H)#gMnY~F9F7c95aAOUm>32S20h)AyT&!R#^R`?-CLhkEOP+k7IS;Z%vH1=w z&H#F{C2d3Dg&ByG4)jEe?a7k{2-}m7!}H{0XX?qvF+BN*TWEHQo_vtAeu6}VoK<%| z3A&^=?S`GRo-%?w)4yFJf|T_owv>UDCO}%5K%Qq)24tp#j14nCARyfm8}Mv@z}Rp& zj*2x=`|4>Ob9Mhh{#m|Bg1F z`{&Q_zYZxWn|c*GgZLsThu&fkilo>(*X=4PuFmvPQnHo$LAm&_=w!gya9kA9*ciar zniapneY(dky?fRh)l>UvV^6(2kE@Nz_wxMHHVCoUqS^K0%EReze9M(%x2pBczx>#V zU~P7n*Jt;A;rXZ7VAu3PE{7zZBA<8(nzneu=7=tEsRhk@fEf?NT=z~l`jBytq?g{T zp=I~+#T5s%AClyIvo7C_+x|QJ(F@#Z|Gn&0PsZ^J;W&P7$iYX)ubg>oVz54m7|AY% z__{~9ryzN0qIqONBHu)F`4*PDi@AGT!E2izB`hUvT{aBtyw&QyeUR$T+nYMM}a5}yN$j%&%Rjkb=f()fqbfDM9tMx(| z#|(tLcn{g*4$?(VMkD}ZyGA2y+gj3ZfD*45;<MgGH{uzsU7 z_3_!rZ7|n*rChKsu*7yfHc&B@E~~!F?WcR}luGtloT>eS1Mr$KCC{`86Nj_i5P)@r zLKd(PtCFmkILT0u>s&}c}B{a6F(*I3)z195Y$ z`5Endeo#*rUQuE4T#E{E+6@CJD%2rY)j)P6^%uM#8fn_$R5?Sb746HyKz(s$=5@ZL z_S1jxN=1|BS}Kawq|HU)qyC#oI0}%o83Va$X^XVN0!sOf4PO&}6XK=z(}3{GGn3@Y zGl^)xC{|mEpjdu8x}aFz8@8ZW{@^+^<)uXJxH>dNzC`V`O5CH{JC|(!MhpQ)_iw=1`nDPgi0290NYgz8mmpJ+v{D)2m|X$kme_taYW1I> z*$#BNjKo0hDTK2y1|%iGVaHFt0JWbX46iaiMZPi~-w*rZ$aA@u69$lmXKZa)W!&8{6Q8D+AJbV>!~;u5kkxkT=Tu z>vXXPiw{N3-LTa`%|3WFk16sskNcQ?i+*x$<2YY!yfA4Sk8~e1Lko&lFz&Gf&wRF; z_f#jI%Hcw`>>Nv-kS~WjvE`KQjoNn58fTL;P8u6%!r>@05<6Jzz{;PKcae2fMU-23;FgAtAnHes*vUTiu}`PJ?|EA+AY)QhUH+=c|N&KN0>pA zh4h=+KJMq)u|2}0BmyrAt9LNki^s6q6X(=5vkxF4x7X*sn{Q|VxecvRc%xjrP?kt? zdA#Rtd!3R|u(jTi0sXk;V;u6WN%WdQEL#~_MV|m4!{D(!^~2FWvwA~UR`AP}f1bt| zVCa$>=a@|h7zN|mrZR+l0iOi?ceWBh>^Ib>Cf=T7b?$m<|0 zp{=hWa|Al@u<10!5n6&Jg*6ni)|ba#%x%5tnB`ls8MWHC{=Cl{jDMjngP;2Ei_X{} z`^UxDdmcL}H^X)E-*_J8t?lm0b)-&YZwV)fJ`)f!e7@kEK{zhmu}Zz(6c_eW1mG3W z7Me(eAGk)a!nA6n9vu)ZtNgx7o)buFUqE~y0+ z1Ww=>q!9BcDsFr;c{h;Vp9^g~$=(Vfb3YAIcV4Fbh2+7jD*_Gk^L$yk#Zbmf8T63X zNT;zYqB9EJl)4#`^Y+&~|0SMdJ33h$;@u=}G4!QBG9ky>XzzIs0G1tRYa0Hxiz8;l zZTNR6(n#{2n-Y#q0zw?s_ z2X4RXGNt!Sxf^c=v*0|L_1Et)>l~v@mKKpgePNiZFg-HXX_+UJ3Fo1Kb&TOQt94M* z=}Ul!AWoL{+SW@HKe1%*JT8wzbTu{K3;Fu2@8D0C-v6N{M!e}kzZVGH6=I<6n>?cA zqt4NgcbU~Rj6!sMGS^m7(?=}#aMx{lp!DCfG@G}cdB)TUXoMnqJ`T%48Hij-d=Erj zC4$^1;Ndiq_ns8eV^XNz)XXOMFXuW9&K0(4Ih=5L$~NB{b<$mR(9XFHK8?Mq>}Xz@ z25Tk3$fzxjh23Lg%^XqXSDM~kJQQL_4*^VIRPT<1Lb-b=UEh)=boAdz*2E`2L*`-cWK|ElsN(SumSu*$KzVDc||ESQ}f6FCS&MpuX6x zh9_UnVz%x6$^D7WFfj3Xa(I_}9>|1tEHyy71eI?ja0+ED5Y|&6y#8}=NO%!`(%$;Z zg*Qw=veMx?X}>`odHzVAJI9r2{GVG;D?QL0bhpzeq|^AsHrKT}POg^`ORMhFq3P|E zfCn8K=J#)G4i1iU1i?#-B3qgWcPJ+Zxn=RyMVsSwN^WvoGanJ0d@(FqnD>=S&v3@- zx0s=xh?GS+HI`|jZppLKCnQS7igh0%Ut_3wK0*srd4zCQZoF?R->HlL9!3yAMnwmy z^?2dfef^&09KQu-yLRJh{}Gt&+R>EqdWE%gMb93u3g}dTi$^T%Vcz`_I6#b+T0o@T zLKxiP?F4&LEppU_^o3)ClbA4GD-@3{e6C^Zt->V7?+WT1Zjr4C-+0Dzc0_X)KpD0A z*L)X|GmGqvBBA)gr7r$xAi-z*^l1kZF2#%V%TBcJ*yGYsB5|hTP_W_=p z(K{u&;GP6FjWq5Ohl2*iRsUhwRWMCGp%K?3>q!~aTUCcaE}0Q_vkX2*CvJ*J7}frx zIe8O{)b2THT9u`-z#V3vpjcbZ# z=c3?<-=dC`cvWP|tHOla+9j@WGd8U%>)jaZb)zKQs5Z+kv00BPdp;3Zp6aNQ#d=xt z=Va7br2Egwxv4@cHDU}oO5=f*(j@AH#ZT#L8>B8=)5~TeHK>YhF!~Zepbh~4HM2M}6`aky$Cw1r;Q7dBfheqJ=c>F0tuSn@OP5z^a`IxN9K06);+M0`oDNxYIyEK z1+N=0fu#YNc4t%rSQh;JON-jzw)~n_2luiaQrYN z^3jeTAPibC69w}!q7r|+cZUS{;%f^PAW8-9toTK~hdxW$r$TJ4x$6KKG+6EiS+!-f zw6rp{wAuzKuiIoqj5JUsiW!>7&h(a2T=o+9J#pdvKIS&54C}q}Mkgp3$#PKZ6KE^rNCig~qBb^^n40;Bd(F3ir;%W{ZOrhaRFC5__6bHl(L z*Y|7#h>+X}hRB-i6iMYbjAC2KAkUR>!Mno+9H%!kA>7KX?Bm&v9Ba-{K6|wUcjR26 z{wNkgF-AoS@)38_XsYM|!1Sr=(R)bZm0xdbbc9&lhdM;z{P4*A(=-<0k1>1mcC$Dw z8rOb;PEUiMm8e>X#c>jt0BiNdVwuJ9w$#ddc6Gzo#y@ZWJ?`XgptzU8FP_423m>E! zl4fG7>@PEOsQ)h4SPWtC;)J%Jjw(4KP-(%=_7;~D5M*RMV|-YTbvd*eTM zA#a3LlwznXG}FmoUJRy8)PNm^CZ>&ibXR~>5KgCQM|lP00TR0s3pnhR@Yn6BEF&|; z=Q7ygdkAJ!3q9S9OrMB>HC!IvGPS3*S!|i@o-utn=*J9i?`n5a=#63#gAtIy`sT>H zorDLOz1+9otCIZB(no?$I^Wwc?PN?U<(zb<97->v1EybvSA(;r#^HbgO7AL8A`Mu2 zC5&z~#@RhOXb$rWE-e`H|9%>SAf?GzOH_@+JI zQMxm3ZdW5B=W~Pm!1G15z?|HSR0+sxZEq|kg$h>?&cIYfMnGNOcMm=#2SP9{&11co zwEZ)-aDeNV=Lf0P+yuIhM{R`^5Pv#}tQ-XzGeqf)G*)PkYx>dVcc6cc#RVnjPa_2U zX%%*eKcumL&RZ>zg{04%x2w(|Z8zU^43(4UvB zfgC5|ND%^eRA$3i(80{JZvP>#?!6pk$;ZzZgPdoU5Rbi%1tU4&r5LeY+|64 zG6~LlN(|Ll*zO4kxWV7EBe|`@6L*F1f2i9>yQV^IIB~(=jFZ>(NZ2#nS?X%{(Wasn z`k=$1G^Ie4;m6{<7yvlQ4>GQM@~*L{gH0d?d*MCzI)(x*E7X zV)In4qd!Ar%C3Ym0?ebD7as8>dY*GibnlrmhSR{RPk=$@&~rn3{mkf>e~>5M!4^Lr z&5qwt1piQ8f@Jj-`p~bA_utlh*HjJ%xni74a`aj3hAyldcoDh0MA;WXEJPuk~OJq*}$7Ll)6 zp%&n4(}@jtV*!5#0Ooi$6-8R1MIn?-CZh>38X^0<8`*k`@{x;DCepLx-7hPp6S>9P zo(s8-HbIH62^kZD0gTLtmnV9tGxn{*jnBldyuA=t*#4Uu-<$Zc?NsGBu3f(-=A(xe-5FYND&p)E z-ysl_F`sbLVTDn~@yN2wlhrAqBxN}AQ9J!{nUC`)Lh1I4x-?s7sb>J0Jlv4YpRL1h zE0FVRh;u*X=+R3_(;Z3oMZOHmz_E~|urDy_TcVEV72L6fK-KcqI#F18=&e)1?k>~} zG0Hu!#BsZbZHRb#(G>sZxP2*Bu_$QXolmdHK;xfipaHZfQ95luqh^04%GVcHk=(JN z&o*2(A!`Y-lINi+Cys1cRB0gf{_1=oCF|Qp&L6Mesq?IR{<}XENYR(fuNxfH$0r?T zBlU#uf@T?@4dCFoaBwu%J$Bx<8b*{~0UPO>uDkF+)nET7b;0oO!L~ z=>7s_o{p)XFZz(LGr(awz#9C|&DApa`emAflVO`gvSz=ptplzJWY&xxD%5umD)gx0 zTpwag#lw^m2JhVSeDU4^q;eQ^7GSz1(!YT0%Oka8L*+}z4@o_xm}ht3`mThw?vS|T z7X$r_;|d$UtBb5AC>r4RGu2n=hj%B_u?_D_n`vZLr}qoLT^Q*tx!Hy24$^1fGR0BNUTw|Az3a3(+crM|hs@7>7>A$%kyEAk zj7O;IlDpcw=uBO1#iT8~Mm_!A(a>vHFdzR{Q4rth^xcQJ!wOkbU$gY1`si(qB&YGB z;Rv30d`rf>d7EiQ+I-==HIF7{rXrn-y%WpE3`9^8qWab0N0-XXbemMd2Ds1$?__4U zc1~8@k#nUioG!byBhy(`8P9ufRxpm@s#hut-bo)iU zXUOUScxElk)1o!gJYWbgu#Y>;u|az;?`s!WN;%5XwV)ue!2o#^3kEj547o)kYyv!Zm+&uY*J;R6vE2K5}qge z*Ss3hOj$@_5)iu4RNt{#B^R!0#BhwQe;K61&_MQ4FNi$m%(zW?Y1F|w&7c*r(6rU( zLPbh&2&-^7u3oBT@^ z=f*KloBiY{FRM>-t6YO;EK)THL7 zeD>VjIW2}*!zq%MGjKvA?;!rr-aPH$<5RJk`>VmLRCC%ULPQ^6PTS;4>QGWed8u)b zQiPr`Zig6;&9dNZwS&2)-SsOL2M;&yiW}WK#&#Asy69~gi$qbmusoUw*3y-2{pz<# z9SVVkuGWraZ5 zizQ!vJmRsDyUOZmRM(wmvR2xb)m(Ra-n)fdKrBWn+2?tMQ zJps3{kmyB)d9rD*ly9k#bq*2$}Y&Dz#| zuV9e-PCC|CefpjJB*1OK23o4X7p!x_5xccnr_#iRWHwx>aMIjP;2ef$$iW1!!S1Ui zE0$Bp9-#7c5JI2%6&3F=Kg&*7UiIjSBl%`_gJtge9&tHFKb`Qz7r7eh-&kWqucdQ;lZHMQ${2DRQgs#J-USqcI)@(sJ$D;`PS}SfjjRep~9|3d}VFx zoTVNVmc2(Mo99!5+yg(}47OkX1kDFGD*slSM1NFV_fA?V#AaDD#qLxXMMc)iitE%u z?;9+y+Xj1V5J=^LO)C&0MwvYTk95;1c%|EUa&dne`iEgF4{Tb@Ea{0iC?(;;J?Mzx zE#wVsW&~miwk0-C_Y#0;!*C3ug>Cg@)$$a2n_jf+)*JbOi$Bid=G1(HE6@!oD<~mQ z!scu9(H9L*;kN^IJnXGU@!bdgrHb&07Lg= zdF?h96*?SYEhC7_E^i$pQ7@8F7h`V{0$RxeuY*pYF*OBN$7a_;x8T#UUl5RoY!j>3 z&0vQB#kYUB*Conh#w@=l`q>bUk|DtR?pg82j8ZO;gW6_>!w=VHzWPa~ME{o0t-pb7 z0r~8F+XV4Pu1SvtVZt4r6Cok!El&PTM2WHq8;rh`hgHG&jbl2+`vC)Dx?}oLD=n%6 zLB{Y#JaFbOyThGoBj5eOGNRaV&qBhpeIQQi)n>5|$LW?_yT^T@4@Z&pFfG?CfaVVN z*?#gd6jj37rG7t7`UkE6?Ne|WlG-XrQEx_}7(z?xsk`Qr%;kq^qrux5yUjZ^ZBKPf zW_ttbQ%PM?Hq^g7ayLx4&BbTpLN~Mc3JJs~adj_FN}mDaSv}iunwDJ8h)-R0cY66M zm416g^eVHkCk@CJyZDLhl0QjZ;YvB-42&v>T}#JQ6=Z6v^|)-3aa2nt|GEwCZ61UX z8n`wI4m5;H`I2ojlc0Pmt~O+Krn04~YnXlhawSvKUqo1MHJSgS4d+-BM_H4L{&p|L zHV2;5=r#P2bSbf<_vU!hCGenYCRPjyX*u+Uw69IWvsiO41!3IRwXns?s1ev=Uz4l1 zo@~ri#Dx1t^YfZ#_VLnNi=dIyjm=a8e#RpDF(-eHx-z5k)L*{=F})6|*bpj|&Td$B zb2aNcZp_{+tLAu-x}s(=Yf9zS^J}77!6vM0;dguLr{#b>eTNRAJDGS{Nf2&grInse zY=b&w5hi!G*vQ1xaHSwHJM~ZMeQ`I#!7zr23jbvLn-fDvhfz!UVXE%t)J-tgR0#Fj z(jQ?T_A7|!WjHB2!F22d8tb3owGvO7hun*pfaS~Oz8a3bS1s8HG0!s1y%z13+%Z8P zuI)f5FQ*X!J5t8W4xZ7%S3hzEoG^k-ov~r!0zB&B` zLsr-3z%7`C*wlS{@usZi^@IswewhSl+`r~iR>LQzXFOT!)<`q-WyRG;!gZW@wiijf zCqwH0!nP~s^JdsVIU0k%mEnzbNl9E?*_W=sGtJFvcDHcOMVFr{`dBphNLQPZqCK;J z&>nPk<2+nzQA@gT95i5)F=*!pv~q1y5et_p8d(l<-IZK!KDaIu zP7+r%zC5pWSed6o`*j2|Vja(1Y)%HObY;6T2P`Yo=}nf!c*$bkk8;fGFWgq-s}~K0XNn z6b^iRdxSf1KqgFAU zAr@6nPUxP3IMVo&{Zgloo6}4UiM4#S{_~}zClp78!lx2Rp9k_z|0dVqcyx*0d_C@= zEjFbBe*D)%Ki7g!(&hW;oG8_c&l|jLpQ(0AB|rTf6}^J+sdpnFXIZ%v0PNv{PPeaL zQT+)zg>2g2HmIfni2VkpH?|5qb}mYn!RZdhJ>@)B>*p#QUJ?5Hg<+$gN0!TCeG$g} z$n?ylze8?xSZ)+^dX+$SB6GhYP|ykAhj(_MSoSu;xqrPdA>Bj9Tsw?6?ee6Q_m*;? z{|0q;&_SrvdRi3*{?;!SSr5%W{^JRD@d?b+n`ADFf#S+A1`7@L61O~P(3>x*hGIJ8 zGVKPHo=Q<9>M@vPXkDvT&7Z2YaRghia|Ja6J|;#>{$s!VYK|k3kuqMxNn5^vku=Np=l8>1vN0D9glpu3i~=~Xw5d5dF#^zD!^FI_1khu>KENo_7y1uY}r7Y z`E7*Z_jnc8xm+wTEI(#bZIJwe#6K=_2vH3Fq1xt>g$*g;W)+j^$d=O&dafHJbOW}T zS_YupKQK*6a=-{q4D?1*yTZt3kwYhm(>dw3`<|V7 z?lEe`P#j)Q)N+8l_-`l%?QsgDkqjTIf?)&H{(%h<&^8)JW&*f! zW{(F&5L-MG2#VD@k+@#P5pHrBR6@wb@(%K@n6d3g*uiw;D>|S&Y>?Bi0l?4Xz!}^l zGbr?B%VPw!$F#96MowHu^0!?XPug>!Oy{JG2OVKxdg#qO{>1xi2~V1XFu`!|_tUZp zKE2H(%3yhF?W@s z$W}SOPQ9QEl7Bt(aZqD_^v`9=AWB%Eso{v@Yo=N*g?MLCpuUv{$+WJ$;xXhXo{A!x z_G2i}jBSyPDGrochQB_x6bz89D^roY>(|kjKwY0+j_qJsO!?a9JVMhzME&V0fxqkgkt!H<#=z$pGmE8^%LsvrY0Z z3$q`5=!PP&T$VxQiSVvXX6ixiJ1n#DdKr3P%Ew)}pLyWV@)QqjNHhLP{PJM|o}sHY zM^5h8`TV5VH&d9?rW$d_n<=XGnt~w?_L4ZVm-#h}?ZZi_tq{(&IBTQ_ASG|RH+*Lt z_LQOfQVNA51AHOZ$#hDA8s5hIG@Knl*g%Z10)i-J1?P3lNd=e$!)wFT5(>mfYDpeU zM|YBdOj~t2#i05PZG5)%_v2cy`NtpAd5_$81SPU<-hz~mJaYb~&KXUDdqkI~73_xW zWxX9w2_^4<|dWq$C_ub=r z43T*(o2GQ06SYG;X3ndVYTf*6vGCsC99b$32I4eL5`^QGt{izSa+8)p{Bencyhgf3 zfpc@eWx=@QBalC;h5RUP-?lK~na5x3)oD1u{fshPi^ziw9^v;YoZ~TXJCp)Y-Rb-3 zkwJ%)FDWn6DR;MjTsrgHV*#0LRp2v^AjBHPcFXOfryCtE>6rlHg^qg#+hYc4a^h(2 z#i_%LMxiU5C;nm_i4+El?FNR0*#jev=?AfY-TcEei2*{%1tI70E_7OO)Xt%`@+b;3 zl=^9ls9KQ}*@6Y)$lo$``uI9Lhd3NA;bS?f#fs!*2)*INBs!oZN)bISo#xKj==E7$ zOc`w#-!?&emFwYhTF3!NcXlV*t5CTkyz6u5QVIt;v?UF;}4?WALb$L?NLkal-#R@FNUZ?5&}7G zjbS}VuIpY_-VtK=4afkk#J`7i0rLqJg~tR#KGSB1nhb7W_fF%mxVL?vM^5TbWUL4x{P5+$}x5m1Jd<7ce0)e}A6djr*dg|H* zjkkP?jdrBx~_FKd4W3Kcb zH|neEpqNnR<0Lux(|k7~Ed3m#Gx&*-;^W7??tvA^CMgIbwFA!482vm^`wH`dMBT>V z`T@27PrdsSmiABg@q>va5q)AsMk-Aho9%4Z`HN9^nFH%=RCH#Lrso=*Xyx zwIu{(7X9wj1Y{LsuLO=2(6F7(%Wr#CopXfRvQ*kq#pf~Ul7DWTwSFHP$ni-scpWAm z-HKUOi}1Dj>J0w$kz#ozdH#?#x0K*(XS}-~MBP)l94wb$N4)02ZEj3k_o^lT#r!+3 zhEoE;578}0MEZ96PsqJ(SIQ0lqGt#8KHc;lD4T7C(~~T4o=*O_FU{PE8;yN3uEAo- z`9*V|&c6w-mSwtI7yIQ^LuLOWJC4`N)4)3aAK444_LwrpE`g&})lz2f?!{;9eLatn zp((f4HE6p0GE2|^J=5I^ie-QR`wFUq&diPm3Prwp=qn_wVi<=8wE`(Aamj8vfGfd3 z+I)kAbXzxrx%$nS-PUR;oyDjlM=;(s;H^byQ@4zfJcD$T@k8#12lacHCS$TndL$3< zW{Z(-Cmo43!GK$FBMsYup*6Z`?%cSZV9%ER;|Gwy54^3ZHqd~e3C!PX(Q)70fx+m| z-qtKBkU?wkyK3H7E(rJHINCIB@R!|EDR$9S4|WmKu@U~0P4(XpqpxiPCwIjDpCPLP z08M$vQohBaGg_$(r|32w;5_U*6wvw9*Y6*Pe-~#|6v|Z!-yrR6^CP%_g(dun%3Sxh z^-kDr5gcPWtCuKBx!RMv6}K!10o+%}N(L06^D&2fc*C9KJj(T3`B)%-!oen0MmQo! z31?*5NpTNzA0&NB3drH$uD(1^eDE&=5XMt&Jg@LgQJdR41R54vC-m6HEi<8VF1mZ#FF#j&;e{c zItD!OSuq102LvXIueW-af8`GU0em|F9CQl+OC z+&WV%HE^f8ShHqLcwYx+-U-_g|CW)(kKj<>PmZKD2y^F*EBCpu$~L_=Ak7`!nYAoTv~ z_Kv(%bfF|psnMrD-vczZo9n6?wyN^oWJgN;*Bb$x($Th5J>o`NM}N_ z<3LX0M9V>nq75}Km6oC=+8qw&-Q4v=OdDA`s3Ht^2Yiox90%15#|j7~dwJhg(bDAP zP+$6V>%^WVLo}sTW$WD`DCut^dyj8}Z4{s%%f@};;AF0GX}f0KhbprXr0@8D5ngj- z=$%{MYaXOUgoB~G)$XH|=vNz?uL!#=DbPS7g5o9q+BanXjz0K+n;@s7QV||RZ`oLI zl+s?%GOwNBG)7@7N^NAnT4kmOvMnj#l55 zdf5&8xiX^W;=y89Dd&SS`Y6=HF&;xNMD=xSK>S51!H}A(pS>ty+dVQP=e|q?Z8}$> z9=gP2%j!Tw%u+?yEK@3?F)9==?~WweZRpUNi&`^YE$uU1!_noIe0i@FQam%MIbhNZ zY7wpKM;Y0qSElBmy7}kSn{H)x>CBlBiEak_q(Q`-wU%;ID{uScGOL&!s9v!J$F+q4 zD-nxxks&g3i>b0kmyWQY%mP=ufWJ=J)!B| z%UF?|ic|BE0I!OolYeSiu5E3N{j&Wh8N7RC0`8{q7>=p=*HCx7bx|Juf9<^`KmpZ;L_x07hv9aVXfje6KyWZ#K5c}DZ*w{%| zj(J`x#F6N2m?5D>!?{CBJ%fU~>dd~j`|Q9**mYX7Lw_~urAKcGLs&V|HT^O}50`LY z_OdtHjB2^F$r0;#MCKokJ6&QHJM%rE%#Nn;O^+jWuhOXKT!C`5g!36Qvz5I;Zt@E# zu|92e%K$aU^`q8Ktv@)cHrPW}CwIS=W_A2h0n*B1EF%ct*bJ>ramOggir zAs^#YjTQiUmWDq4KRg@@>i6c#l?oXllv|!Dm`}oN*V-(Z82z|*MKG7(YO&wZV|5^9 zN`;nMahq}@W*4p>Ljn)x`j7IyzH{d;uoeTEcosVzl@RuaoGZ7?V0Dv+Bv#kgKG|$o zv%=Yiv2vlL8i$pMyMm#LO5zS}PkxoEuZkDoSzaOS;Z=W==YPY+k$ zrtDJPT4tr@LZ=+1g1fYFJW3&G7HT)@Zr$F=F4%h79)i!Mhn=nse>)y%3{=fJRvqDp z`yjT@@Ycp(X7w>;;K4B0ByYz3A9T0m8;w~6wI9W}c5mgD8G@GoygPWkHD?@9IY0Sn z&b@AlF;2J)V|3EuZY;NjlvU`da^aAL!F`^9tGu`~%LUV4rHzXDp2I#SKRn?t0kBzA zpR^u=l|jSjnJ{}el64jNv;33=Ua5{O(^SX`OJQTtX@}W*>do3Bv&L;b>)@_##^)N^ zzf2Sz@n@xq-mHtT{z1Lms_S1X{Xu;rH_&sc`-iDa&iNsj0-6upZk%?Xx5nS-fgpBU z)|KRPp}q~AJq8(zPTzbbH*bmuIQ`5e>X2ERwL)%nWPGtn)U?qbh(41ktmX^Z(`v$0 zjb~cc^`mU6ZaxFq|Kf3GQVs>}>YhG^AEld62RwMHALG*f3wY}G<#Nl7x>r+fQ`zS7xFgpG zx}4?ExC?9c1Hu+nOJeK#qUxgTnioHqk(m`Z6@CHim=XmOL5Y1`?KcCliu1Lr)hm}a z$Hf>(5V^EM1n5HEcV{5oh0gCDD>&uK5B*8jk0uO$=iC}GYNaawb}j2AEF;b$%c)BH z(pwyF5Z+!ZoL0OLxM@BDIm!Cdbm5VsFCXl_C1g5=D`@j_-STheLsnfC14q}iTn(q) z&NpeM@CnWhw>-OjywoJVEkzCA@}q_yB1Lm5W#{a&=PBT6FRljtn*tKi4spo@8#qi+go&RceyjQomIctz}MH%tM0`+Z;T>sNiWT{h@i;)F_ znJKT*w~w2BUI3cgkm+qTFy~)nid^OBM0cx$VEjm;eI`%u0t=)%P~w3OaR z9J1VZgCv%=GaQb37lXTgsL8|%Vwil01268XW&2aaDjz;~(1=Co1!V~K<9mCJ+MAMq zC)8qwO*;&&q2#rt`c4kmWSGh$(UHI!^!ZJoC+o`-nC(|f_5jnB@ox?+nt z+iIG(>5I7#HDwN*LJ!KElAId9z^)EOXIYN1QK>Q&RgIrBaNx%vG zAo!Plox{f5?HL;G+EbmqE(UoYD__#(nh@pZ<+&gWZ;=1?-_>t} zqS}G1+#3s!0aN!iU(>CmRC#N6xHISAlgvrwH>y4mvKiCG!`Jo9$-F`CWqpfUx6Gj& z;f<`@X~XyU7BX|Fb>EvqIDsAc6KTGBM=7+kq(h^Qix8vAPE(k07{0%j*HHGVz+@}) zSb!TrizG#!FZiZsko_~2C|M@7lLyn7NqU#?oO=1<{fJX*o!2l^iU>!`t->rvx zTU_2Pa2&dry)+><+a5ld`f#}o2G`HS(nbTmRRz>yMOUa>BJW?HWRm*%tyY6M_XeG; z#`@DdvNVrJCfORAky-EQw@NMnKOmn=rra6pQGUEB#neVjW$&8j#=1hV;P(@-v-YS+ zb0M$8!U&*%l58e&A~xTf5=vh+^u!0#y4lv*uJugR(lKj+?+gyrUw&v2Tv`_ z<4q!os4xY@U5ctOZFAH=ru*`FX#gFNj>x>EHc?-a+x-ZXu4a2pYX>7QP>~e0nHawW1*_R+aSFOhtq;t?_Y!?6Wdff!P+;?aRue%CZ z{1uWyh#~A9$lG^%-}ni$;pY;thoc1#qRd<8BwPJeG3%ZsGu7VLWb65cJ4R)7{nmf< z^9LO`x>UVij%7NMwewR{+(FQJ9)|>zFafoW0@16zo4JL%ioux7NycFQ?Cs#9hW|aR zlB!?H{e(KOmgg;+udi00ZivJiz*V-1+iJ9H`3}19=HyW;oa!F{lq6{SDV7#d8l3Wg z{C*-<_iGznXX+aOOiDw7vvq zM=gXe_gz?l=R_Y#6~BsXaxSLoM^{E71@E)4UhY4m`|2hY5^rE);}dXOoYQsabR>q@ zwI=Xnwen6>-@ldY^TV;Ml-G{`?f$Pyo}~Vr3UUDQdI^)#B$f(#M(6x(siE6~XwvaR`rCr5f)qzhL81h}~Ed(#nLn>LXu zfX+@UsSmFOc{z)1U-5^xeB}^IHcx_u9jo(;=5vU#2(EmNpz#NT;L~zTh>&v_m1NWF ziz&J zvTg$CQ%5eEi*J&RuX<(RKB$i{v0!w8S^~ZkqKP-txa;*BUdreZ{|ad|m7#+ubva)S zq7AdCTo~+qC0(wBdaD=f!l--mqMy(I9Z+tM1xYY``cjseBf#vlL+udcSPp}1oG8YE zw$>G5gFBkIbmj;4lSyZp!KD4RVI)l{fh0D@zWRHi0#i0BlaxG|Pjb8%dUFJBflL(Y z)B%J(2EqZ5!-nGQ8jc^5`h;Xi`fe2G>34_CPtyw4biN=$L|5B~;}G4>aXk3xQ>tyY z8}|pkuGAWc8K+dEOEcFdEqHrgiH!fODo%w<+GcNNB_PNP_J;eQg_t&pdlS+K%p^Rf>8$#ext%S$#OYmb8+bO?av%53(U#B8^2?QC7U$bkGUGssGNE^Tl zZXZ)e4zA!nH}Z2z3Fjv~0GkG&jX{g}b#O14$?UVt<{wE$IN9H@>@eFf!+FH;WrYMt zCEpBR(!-}pz2x+HDlrutJ9F;5ZC}v|gEGDSEq$T68Ye=H;NN=trR(MfjihKbCd7fH zUL30&yLcG>e;eSvxD1q8k0(4DCZ;7u$Y2SMG{pf5wp8D#l*8eB%7M7+fd?)tk`y_& zV8ujW{D6O&z6&)LGyF1a%pFtS2WE1Tb5*e0kz2FVl=4(mGMF1lf2kG-u7>h@NdHQ0 z@jS})Evb|d1zZzFj>a^}?j|(xvI&Lq8L(Yx@o^60ZvZ9PuWaL;xPEc+WZC{A$0j!B z1h@B0Crge$AV-kK2Di5rJ=dYK5!eWYSA2oCxAlE7NU>AC5CI!{%`zp9^=a*&0tYOi z0hYMQCO|hY9%}yyau;VFR1o?+(9Ln9VUT^+u8KF3jhXD7EPm&hdAv2Cdr74zza&!` zNe4WE$B5+3BoUqck#|nS7~_HR5&^KLOb^NNx~w^z(_C&=p94u!mBm(`vZSfy^l3`a z{alFXiHVUZ9=FR)XZsgcI0jk9hn!wyHSPFb&Z@P_} zyCriBXkPxt`kvtnilH$X9l&sYvuVIDuc8~VXxsriy9(3%ESMX~I$XNr0iYAp%a}RH z@IEm#_@^zDK4W<_1y|8#S2?npqX@P(_p(#Sfl{CVBMILUctQmrF>Eoxmb_slEG2&t z5;~3hMFq6cM4r^H4?C~EExAH$RS-_m5)B}Le_jyC!NbSACF zS;X)}yO~k@?MCfxpdJ!CyF)%;x+{K zo{L$>xcZowNcj~_ylJin; z(PXgT){ARtUABQ`d0_%+)8}DBhi|L0mwTv=9-cy%0E%EsE&;v8j^DeXF88?0A$muh zb@WBQMb5c&`3_FI`p)cKUjHemu*&5;|c$FV;+E?lJIA z`M{FD&HL|lw{|lb0Lx83@`{~-JTh0ZB8D*lu@wnkPYt@$PHz6s6*$Wzr-i8D4JXR; z_NGIHJ$CfjDtqw$kbW9ek2DQF&X3KKGrf1!}cDuSgb5%j-So;74ykLIj+p^EDkT*j3-m4)-Z|}amOqb@a2u27uA%8>u z4}1R<9(nVH|H83t+qP|El8NnPV%s)4wrzJXaVEBHbK+!@o#*#|-+jK1_de;X5Blov ztG-pMsy_Ex_xdG@?gMmMR#m9B_5l4z%L<^M`YlSAo1ZBc0Ahi1iVR+dAdAUhPQlAw zGAKC*0e!la<{gNItKYJt=60ue&SMx>Db!-$(oz!43i@WK^3zX`P&S-S#2pL*H?Y^) zXzDF7!MWkrE_h|}YVPUwbUzeg-AThVl{@1CE;wSrO}q&$P$Q#w3OA7*T1?Z~A7Q&< zyopvjfJ~KXr2io}hTAe-iB{fR$X3-NI8MTLuz#J6_|g#M7=qA)>f2{#NQ=wapGs-Z zg9*)@>ugWH2?0m=qPuEcF-!o?d*E~9DN7IvUEl%TrH+qpmUnvhRyj2A&wQwm(K=N{ zQ?2s!F5?MjBip$6un4LPlqV!xx}#k++;uM6sSNsfz*IMufBrMWFUKjCvelHgV6ReS z3Pb^L@gioe-T6~Crs~I^;g)MO3)mP_#&=VxS31LDs<{1V)8XOwl@+~Yc)-eu<Z3uBjXX^9O#i_%|AP%(;~C1f(I$&Xki(OzuvZDs^GnWSR8#Yg3VO4gznk;wY&{c zhaAqI@qfV=KB@GS&5DtQMN8=s=tYE9hah5~FM^D9yku|k`R z;?74`oS)zKXEoXPRD46054%9Q_Aa?=ggwH%xpd`k)TiVIks6KL=#M2tDBYV?}CO-ivUq4PudDO&F0~m`d%Yf%&U2SJS4-rr2Y>g z6+pe|=1-VSTzbN4kEyUao|jGDp`)w=Q%!-6j}C}^g)F_9#R^06VfFRsDy@ZI@6~kw z&a>YrFKgxTcUl+BxAiM3LB(W{ke*_oQ6@E??I1rVsNk5NgKCljjCG~XwT;9o{7RyI`xTg<>!CbD@37ml}zxny+bFx>eGiIJsIVA7y zC^AlY2m_!NAhDNh;XdpJ-V$gVPj@0R%^8={H z3}K&s5=?L>48L2|q+M3cEi-NyEqIgWd;e0hm!El+Ey=uzGa&ydG{beCfcY;ZYPi+d zgh6TB`N+2v-;a2CTYk=ao+*)&ytcwbLP|qy%5m6<&V{`$Ev7w8RFn{BZm4#Xwp)oh zuD6imaCvmtPu!>b*Ko3Ur!%>$eescPqkt?0G_KUlDx}6zSs{K8wZW7*W-GJCt9Q9c zPZ@cN0u!qYa`u7-9i}z?oI9hf(xXX5wr5SFS^-0<5HM*&=}oqWu_u0L)RW8%d$ps! zS2(UUL1yIC2C{lJM|~DnygzcZgfe@p@NaI@H99jKyyQC7BQLFD1F31B1`Y z71n|y2GZldxK)kI+=C?l%A(2NT)q#RQmrR|-&^8X=qdSM*O+BkW8fgUYcxXfS3}$g zheg|TsSu^M6xm>}GO6!uk9R)bNjGic8<3&JQ_f9RM8K)*?8fforUmy)c;BVLH%)OhmyWG{70h{!qo>$qL-YBWM>mpk)Jx3-R!@5~N+GAdqVv6DAp?iHAW zP35L^NY~1U_ASv1axC)8ZKuiy&E4|?mo9N@S(4+slg)N^Cn>U(U={1zmR3}nSbKZw zc7qu2L*-a**@Rjulaj0Ev@Oo~4sfl_`7`bvlZZ(HyuTIxE7 z!BnP=RK;@n^RrDoK9j%`&(lu}F{fiCnN`T+Xg3X-&7HXHtIEWsk~Wl-Sm*NLzvTKe zqqVN>kZ)He_fLIWS;zx+?95nMt$T{*0F9IsSbUA^aAa=lji zn%`yl095k$MU_Te=6hnvIQX8YQN&JFKmVNbN2&eduRJfVyb=jJw1l?z+9ydHGBY&q z-r64QaQC2GB~>r;fp3%Twp_Vwp(9|euUxEzjxqa}k@{4*2PYam$Evs8Y8@*t`$WU! z!B#G&@*|Gm`}(&T+@AfD5PxNqX;+_WM}9{@O|R@tV^J9vy|Sdx%B2*%0+FM|jfu^0 zDKg`OFaI^SR-K?PF;d?A-T2_5jWYV6l<*f3F|J&r(_O~7`4w1p&-4BkV@h4={=D7e znaK;D-^-ts(wN>=Y`&0l9GI13_FWP2amvZs<$9!L=2&sLN2og4#p z$|aajr;T^tifP;m!gp4%h3ULa*u+sxo!*pRw=iZFxAUHXU+uP379Kl*44L;yHErUk z-gAy=Hg!JAQ2+yeWj7TG`ZISl=20~wK_Ne1N1S#ha|)koiDTkmQqgCTMv-mi?5#l^ zQLtBN6HY1RF=5f=sx0GNaqtKI!^5pkJ=~S9Jpfj)Tvzoo9#)@aoo8NCcmF*_-K$Pe zF?!78oYvBHXrr8oJdCP+t9)C(63`BRXy5>aeP(Oyts0#^p36o&JvR45U%m|N(JJ!{ zFvJ;~L2g%7LuI@ARAi_zU-u3?nYf)>DmM!o5;6YfHA$~h0WO4sP zQ0|j7`onB!7?+h`fgichmAuAUK^r`mlVhY7hgepYmRuDlfm2FG<3brXsQzaxSvh|S zV0Q5)k6u5HPLe_FU`jRI_XNN+CSzsSVOh%_`*ts^|yOiRhnV`lW3;WuT? zNdq&gPX9DDkU6r!y>H5Iics_ce8^4F=`)!XnejC~e_&nog zmi>w`kUju^xX_r2Y0`|a&6yhZTyI;g!nb4DbiD)<>*@svzUV>_ZXz!fkh{%UFjp-6 zO5i}don3_tA`EKzZ>glM)=w7z0M;lGM7M1ttCZhA~#p_hV!o7htCHYcI~1A_U37Zy!W8C z`E~iXYbUPvF!q;w@T#UAZahz3N(y+k&6g?hHtazzNAK*3c0p3bWr}aMu90xA8+fh% zMI#Il{=sOW;oE#5=ha+8)>ct0Vd2}f&kv25D}-t~u;|^T_%%XgeSBEf0WL+?nBh1B5+MtvEztB(fxO%?L#Wz2<9B)Sb1TP za9>W@{x-ty=K^_0j4YKYj;weY!l|+NLL%+aH<%_ve%9)d=xdWixz>E+YR-1vXf`&J~L% zJ6SH35c1-U0K{fL^x$Nvd!la9QeoOJr+m8)w{CA%@3%047OVYHg%}6gj#4wLBsKwv z2f94b1)9tMV2!g{b)XXz(9pMg8b>V2V@IV&L-_pE%ptZ)sFVAtTw1*qEc7M#?Hjc>Cu&^cwm1?l-0O_@&fVbndJ<8d4W%6m>!>-=q*#0}L^$zrj#lKLZB7&R?)4D!l z@6$(cQs@(@M7FV6a53z;LIQv3Kilh;%t{t=oC)lx z9-e%gf){2a{CdV0#fOgV`NQ~`E^I7@ZVZZ}ieiXt?WF?4U_`pqk)-q%_GRy06qcbs zj*(}(n8UIlVk+X9#{NExDTK{Tc`)FizIa!TaP*dVDhXROo!=gU5SQP(Lz>|{o`_UR z(jnXC_d5pf{brR5s9QBsBPjrq5s^WEB%-aL6x9El{|rp*6b8TX?1ddlQd}#Q^=FF` z0EbTMr<1VblHsj51a0|qy2Zv$jf<)4A)IzCsKo*binKNx zZZw?(dUkbl*D|*_bnfFXCJ3K9dckd4WT-I{?bRsW7p=T2sw3h~DSxk`BU}vsU?}l| z=AQgppe5jB>e6!A*^}~v)sdX%ioFPddzzox^)kySl2@{o!t|Adt_kJSAsJT{vkc&> zyV4j2y0s_mZ+>s;uIrfS0b#~eAT1)ML&7p7D(1`GS8X`~fvgE6C>mcxO%n(I30+O< z@&M+Bx!&K~FvmFx>K07Q%mO`#X*Abk19@0#^k+}Gf7dM{8yFLEoeE#sRT4#_Gu@TJ z5s4EG)t}_Ahv6P*)y(1UNpla)&jawnmn)9FQ- z3YI`Nn3>rxUs4<5Mx<+r9AT83lXPUlmE@quUgH>Iv`y1WlGesGDnIxV;3L$e`>vAi zlP&x=0-BsIP5bTqle~i3T#|3kKvG5tG9T2qi0pxD=*ZTlD$R?WEqq1naigS~8j#$T zF|rq+Im*C$J^^@Ne;T{w!hM%3$80*G>tcJ3^HUlLQY;U1tzpb{Nxz$0O(%gf3;2fJ za9KfFuCheHc#s!aZFREeNONy0I6utBdE%wJ84AhFI`p+}@G_#Boh(UoFT(s!zSU>Lt z#4~3GEg96c)ps3D$e)d65+1Hm;(U=I7L&Ro z((K23v;P{pT%IWk!9gH~i6ma92eA~GT`o7D$%<*qD5PT&ZJ7jfNn(G;N1u-0Ct%CB zKULA7r?0Y1KyfybM!0IAU4xsbVw!Kh1e;opDDoCvO}cL$%YyN?Ngso01i>c{Hl1|xYt*A6nrX+D7?=aV`% zRLVToB&ujQKxz&`E%=1vQKRNahU}<@BuRBJ65cWv+@rHe#Nhoco1wW!MbEGMl1!R=CL-6tE z%P{BQkvDh!p(rO`J$XYpG8)6+Co{#>>pWLw3?7mh?yKB_`wKU89LYbFSKcI91hQ}k ziQATF$w|zH?61VLZ2sHfgd0$6TN6!;|c3fxwU7km+$l7S?)L66XnAVv1epH5O2QSmBI$3;@AU8z54c`q#u^= zmG4*hDQ@n=R9&eCxYJ>Gj*D$ivRx^ZO;?|f>dC$(L%DO?WWNa+15NZ~r_JVPg~O$P zpcdszIPFYRnQD>nAU8I)`cTXN?N`;TC2HZP{_ku;z#Sq9V}+I*{0_AUAks~zeV)L|O}0Zldl8#om`}FTEy*Jy;z|x<{o#pk zKS0WN^BO+d?DM#Nuxvi!4CmBnw8gx?Oz9@zl^O3UKyzqqNI)r=_@MuKc#0qrEz}Ute6E#8O95a}uL&P}}86#^yb|y1MqT z^w58j`2MhWx62wZ_R+BIG}Il`GtDf8Iu5TeMcCg~CP-c4yE?Fs3B*27T`A`>8Mf7QM!gl!(>F?+!QcR*_mb72#gnlg%BJE{3 zCgp|StDpHkB4p0@X;y4-!*deo42z@I<%m?lfhqxC{XzY|JKHhU1)6Ny! z1o~x1{4d)j#4E!vJ^J4S*43JT0KfV=E@>Oho_5CNt&cA2C?!ki@Bzz?#?eO!QV{Twci1wuYD(`Ue-~c=$To!#p8Fnyr$Q`@D!4@T<*4` zE|dgUES|0B?_-(xMF>qSZ_$DxiJk9$o9q0lcU36?H2&86rWc#|)_aNW4g3(ix)vd( zHxXA>y3y#XMytQ7C3(Q==hG0x2k^2+iPS#TlM(bn>Fc#g@?BXWaIlI{%m@}w_r@3= z02P+&sS;Au@^{9wT1rc<*RBzA>=B7uAZrN}`|LFGu|c)e@0~BcE4`hGy7j*(R}c03 z8YB9@DCgs4j1|P_C~pExmkwj~uRBP*=i4nK*qVT^bH~QOg!IAU2PR2ReJ`HyqNf?m zkzxxPz%cF;VXB)~>i1aE-PMgQ=axK}$0%7#Lypx&3TlfKh_B3aA?nLM`1cl=^(G9y0bm2Ax3 zRRULN>TK4w`xKzgypbWQPXmQx`y5q1`CBhs{crU3x6f2(7gPWDBZz^lA8BT4eNSiP zql}}L<0R6r~imR8_Tg&dbi6pt8{*7-IgQNU1hjgEbLV75o}?iFZ{mEFlv0iy?%-R zZ{WOrV$ZMC9m)-yV^%$jWtIC6Ppq!o^h?K<{@J&vwyN8>#F)z^Io$iy zx5tKcq|e3rj26P8gtp>!q$T%T{;|Yd*kq~kODI%}J<^OHC zNif0v?Lm!N^hpm6Rk~a@qzJoGq)k<+@7m~&i1_UO+>UO$4nJ(!yrD#J3)v^&ppwAh zWINz{7L}lgZkl4vEyrZLzuGi=+j{;Gc>);IH6{iDRkb%ffNL@*ta?HH#4&X^N{H!NV=k8sk@^f)ccHO>a1c3oboD?BqA zOo=PQ@o~}NP#VwZt5+J&SAOZgCHzMofX8QFv?xQixB2nC61M)g5&}>>!PM?IWic1%ks;5zb8?Hw? z8E&293%x_*Q|pzs&sHEQGqW>HfPq;(^?Gs*K1fv;Y>2gA48S?a6`8(irJdsDDY+(f zzYJeTPVth9`0yd9<4k%1`fWtY`%Q!hlJJ_aR-`mzaLUVi80BXXJB*Uy?$gB1cF%{w zPse*Sx0ygFrZmz}z;%et`oxPBTn*5h)WPHV- z=8ZneOviq>y(h&UL1_Jmu?YntBpZu+lple#_TwxKs0P*Osp zNJ0Ni%U9OH!`w#{p=)hq=*fiF5HsqaI#3mUwnO5<@{|i!ALsl|;B^A;AeN#k2b~@n%D$VEBC=(YM^dC{%0{n(f zi5BH25*(^%SR!sNb#wuHUy5eppT)Z zjPR;2(RK0lf#h3q-LcD`fW&k(YJyb&&*-y@sAY$Do0nnzWzqrJ;V_r95^o!Brrjq9 zYSYXo1@kgVu<)`GvtRqLV|VqAde-};;Jt4E`RL=nqYiOGcrR$IE~;IA5A#Eq^0Osb2 z(F({36>wsOn)GJqJT+uN$)>}L6LKq(t>8!dbPu&J%DS|Re2GDv<<9zVJ$ ze1}!6d5|-Gusa3WT;fGO{C1LgL8y5y_s_1%#0?SU)qo9y=20V0u^GgZs$%dcr!o*A zNm#~wpL=E}g$-#l}~ zI@}QqpC5)S^$$TML6%MS50LPBc={vet-a&74EW}6!9~0by`4?^)mk)k10=JQsA(R`;RM>L%izr}Y8<=@V;DaXxf>K4GOeYp|TGnY!s zLl8L{Do8bT5ko4(0&*UQ7H%adLwMDl;Wd{DiNJY_l&4R>*9o;OelWjNgKPk^I>v@V z&7O+M)DZBG99LJT0@VMc_E>b1L(!Rm-+^ifG}lwlg+?HXGCgxSxWid~tQLmrfBDn0 zmhCd3JM|V)L@E<8vln{!HsO6D+2q-b?$%L7rU^_#@@FC^egA83OOTQKt+ZP-*OLXO z#nma&z+IBwEm1(4Ulth&E`X-)O{K%CpZq7ZABghXncopVmkl@X=D|KP%ywSaI5M^< z>J#eB{~uu;4Jr1*@g+I|p=M1`o>(uUc#a-x8~^{Wt$QvtQy*Pu9nwM62{HAbCR436 z)4r|9u%@;Z(Jeo$e^v#1EBr%ynkbDsTt6eYVOj(eNuh*>c^?LkJg$BZk2|cUjyJg! z%4+>UQ~CJ{(oInTFY)pgHnE1_i%7k5)J{@PyT2}Gk)Rokqc5iFapro>X@zz<_@B5= z_5WsZodq@h{}b2$pNs3qU(Fu26Hy1_hE7)t3Y7Shgk|R?3Y)$UU>I&n_)TdAkBDmzUNOCpY0!Y*qly<*OF zJ>Jmvx1tnPdleLw(zd#W728-bePccz?w!JzrNa$+ zT{4p`ujW&1-;&vx~ z_G-pv$(at?>DrWQEta8f&jWbuV>8#K%*|Hj>-z+EJCpLcWW#Yud17Taf*bGRiz*>n zg_ss`J2sqb+Rgi$EvB6sM9;tLx*SBYL7V#!@(KxTRALhwO!RIK##gGB&vHGwWZXT~ zPStZ9a7*Jqk=vJO_kV;1BF8-10_%0&axZkv^L|eitmX8m2?S`%y=mNaUXwJE-_pt5GplzDpe0yOD1H30*a0=YsUA$qv2&+|Ys5ZkqziZQErZ{VB16E3XuUCI90g?Pa0XRLxk-rw40OKACfCq+Ql z9Fv1^_lg;KP595cro)lsjrp7wE(>Vjwa2g|FF)l)?6Xy>TJ)Y}M=-_CB1C@cV%1{( zGJBTa`|T{sKlPiof>!1<#`V1reZLmE;^aQs+?@8liQt=dc5Mx@_?`~ysrnYs1faR8 zmGBD#^Y}y_NsepiCBW_x?o3CzZ|O7GJg&1IO8wh#k(Ha#ZDM;6Hb$zrX&TWdUET~Z zYOw6EXYNfQh^NP!nx9A0n=17$jeZ)xGp$L*=4Yqxuc9heH1>~SM-hIG5xXMpx>`Lo zl(eOBPD7vWn@v-*?PuzR^Lb&^iB_}(-nw)-rx>_^<_b-I0qLlQf#0SEN5=+CBygf% z2$3q#WVWwfF0T;h_jVCJwRUaQPuRjsXsM4GY|01bCIHjCh@A-VDkJl+^5NP;DQA&eX^vihNvLZL7c^VJXV3Kg(QF9tNTh#2GU~c|&7l zG^^&@qd7%q4TPAK3GR=KbV3|k+#^i(sHj)Gl2BIq)FZdQnB(P+OMl-W<^gmlgQf<+ zt4s?$>-}4nY5OGswaCEsfm*p?$&hvXx7yTLvk0GnXr9b;IPCl~^!7$yFaqeQwimwJPq1ZPgA1SgvQ$Mh3U9NznHp7p0T4|X%#wtQ5dS*nTaoLKzT z^{>~1E~_jT{f3iHwi0na@|YfRJ4fKbr^$R!gh;c726}{koRsOe0N;6y0DX0F9kZu4 zGxD{R7eLIYEd`k^4u47V>dK6PX*E67Rbb_*b`x-e*tMjAkR+jkaUF?%F~yo0R?9ck zv5}AqhW@0#TDe`R3H`YKe6d%+?VGAa03O=^Ln(#vP=C4|2)dF6(Xlm{!xl95H2@_% z{$ioKe_I8$^)|RmsLBvTAEKEjvwI`Z$*8h_0r)JdmRFgGCP9VRTX2i%X@PjR&k;U# z*~;E_6OI=^u2_R-%=9=AtP;rft9$Mo|4ZN=jfk1(-y2C~N=pK1eJ2+w%eS@-phNA9pIDl72WaBoqupFuN`EI z%x14#=&`hCF#=x{yFw~%16}$pMsHpI0cZdhX(uDjTa8`}f3pHxz}8qRI6kj~q}~QDSMN z6sYpRuTo`Zzn;l6>B9ItqC)kyEKfch`=H3llLBux`S^@LBY1SkNCU8vWhp+!r++L$ zGo122A0c61w~KcXgTI|4xFCq6D~PL>*D=nzCb5(s(msd0ta8*I4y*s@65}VP#mj3#jRdPj>L?=EVRkeP)Ar2_@*dFtI2-$&u_*tbtk2QnS z&p0Rs3L80w@tkW-C#`ljyX$X{NBLv3pFn|PH_4uK2*!Sbi;*W7pyI+L_m7CYA;o4Y zbWCclKW|ZSp1eMQZ!=LQT_qSEl`3#3a-Y3lJT@}1|5T>0F3#*vW~iAQc0QY@1uzTY zq>EyIs*=STcT532bGNmw`(>s$Fzoi>h!yU|0np+KIuN+# z$~G9Na!Qh9hHa~Rn_?~ac?hz%2bQP)7gcGNB4w#K7M8*-f?NrVh~P}oBI|&4me{;N zSSd7OWpn{d8ZzMJVI;YsxnmTR-==?V&1@iVl40hG+<}+tU(o7mMeT9Uf(((64{OL` zJP0|XrXvE25Pd&PttRM*+w|Twhxn7oJVK@|QLtSn+JwSSWL6+8c^qi?9BM6rNJ8>? zFmjd?zI3(BoB<|A#4lKYr=<^=e>FV)#FemE)P0qC)G0A2Z;II$73adFX4mIKV2MQt z)dcA;p0oNAs#QQ7SRX((rBiVBGK)M_7qz>#a!qiIfE|}qa!rmdmXk~0E1#1hG=Xsj-%UEg#4~1o~jP^?DrAj z6^*rqI8*rpY_VJ}AIW;m2wGbe{8wi<$2-zs03LUM{xCA+Y>$iu3HXF7p;W;NYDmow z4Xt!#i$CRc$Ghxhig?zmq37dOpu`6SonuCa1XaCnNA%u8YKEneBBOfdgk*x#Q8WT% z8zs?FoCVuvj*#+>OCF)&(++wRch@{o5355CfQNv9K5~u=QwWbk4Zm2pgFe+v2{gfR zzlxG^&)De!+N>@K{7h`w!q;?Bu_*hs<3+3o2{b>{v$YZ)Szv(_jAtxOom2<-9lqxG zxwcR_a`K}{TC;#7p;{W-d}$wtRagr4agB^Yhk(3+)XM3JlWo?874246)TLM;5r;aT zaRBogC;ipe8NKgn#d;dvj9f~p?VL1I)mE(>b%K^{%m@D-L6f_bwG4)PK1ri!hNh}{ zn_f#35;k5y=(pZF<*xBDyrs4b{6LW_)(c>)!TRX}SM3g0wAbUViaj=Oim{`qth$T%{D{p(p8*cM>w&>BO#4C05A!P=dV3i~@ zaX~c&7HA^@DXc->A$fO43WHxaMKRA~z|0Z;=DD2}sssX5)=%CQ%SSuRz5{yGKg zCp0lx=76;Ck=U|{LI((DCN^7M3Y`T&LwEsL&w2WDZWIZnJE`eHW{%bsxz&szz1(T#@|}w1XFGmLt`sNvm@8hO^tn3 zp@#O6#KL`wVkBCfD%-?EleV8$;1+lHF{@gj6V$iAxpr{&M*)^hA-n;&=&WG)HZZu- zxXLJ-dC`>U)k7Z8q#b;_jhgmdU_6%Jr*w z)KT<${v=2EC=4h4j)bODh1gTVPyiaNH$WQG)Ys71Mzhe22H_(wEII!cO#^@0VsEg$ z8d03~pdg&}ffztEeXLn^;N`T-?f3==wV~^}m7m0qSXiuVEW&kXG&3F3V6;RJTN`ML z&-r^^xA_C!S0Y1t^{YB(?7<@b_BCHOVh!oU8U@}z`sF-v^Mzp(-%O36VmDVGZ!(H3(WH~Y^vOW%>7E&>J#%I<$TAXO8?5F}|x ztk%57g%91HPwpvWpk%a*D0En8BGGc!1x;lsfcRD%cz%LM#9sn}N8E4u@>r25ipox> zs&9Lz!IC*>@pWSl6>!L*Ux~s(Mqh)f#ZWuymi2HCJWtAluup#?ieafq_mB@y4{k@x z>xH{fkDnp>7sP%S2Ue~KDY0Oyt6+u7#KHjkZn@t+Xbj=5_nHZkqp2V4mo9jB|K08X z9cI=r1rP4`1Kag0e;n`BVHdp=6$`1vZK$|GKRlp*g+zjiq)5T|Avz!jg=$T3!3Coa zNkq*PdRLKy%WEQmVB}$Igp31=Xw+(F1gX$L29F#u#2#cJnPEnySpenA6D!tPtPg4? zZrS{&bTxWpw9d1HnAbEBRF!|zs#<&QIFUTU|KT*6!DG^M&r&3-K_#~Vw!+{ou*zd0 zV*h;#Rd}vA6Pz_AvA=Ig?}uM+C%@HX$4)dkV&_gSO`B0XCpjIbZC-hOBlFs9` z*WbUF)yig(~ilmeeju%9xy_?rUvG)e;4kwr$DYO)N)ivy2;6!c@B6mUe+RbEm zUq3 z^$MnO_2}!geEGzL_t%&8l_}4+Powct6E7Mc_BQWeOvaQ@!t@`-Bk{*tZ^l1&PMO|c zLx+_KjUsN-FEno)D2V=OGRA4k-_nETqW`8r|%qMQD!ovfltu~{F4vr6AwmBUzh||J}AJ8tJ!+G;= z$cy;7$5PZ3S-eF2J%{4!cNNI9tE?-hbkIka5O&r9+PyW%7oI%SR_i<66X-37)K=wZ zw-Agdk9EqkX7E^nuI1_FU~`0Q`FtEmn2~GL#n?raNa?P4faDcIepmRGUGr4?^`!6Q z66{EK*y&<)y2GPW#XqT$NAkcW?ZZVF6$VTuo!;~Gus8nn4+D}rE{k6It5z9)LHgjY zL`Z(bBw$Mc?V}$>g2xCn9W;7^HiXC!3_QmGGQ=4IH(Lcsr|^Sr;U{HmH|oG2OErk# zVr9QSrav79RCG+mh~Nd#{vgv$iGWd&4n?S5zAK*+hc-(Zt4%f02cuq1)kWrAMc48P zI9O=Zc#t;lgG@$O6f4+1de?@R<-irKGVuS9P1bpnVXGCjT3T zaT1u_#G#hz$Dn=>L`=GewY`$?)h5#eB8bWGgKRI(So~ z!p`Td1;tCr8z8?pvqkV%#)=R7P)sIV` zH2uA#wj>daV)}M_Z0BY|MBts zt76az^Vy2&5ke8nSw-k-$QC@4Y} zg&9W?{Hp@QQ8&cJCt$Fmn|`cPs(XN4@>RW}H?oo2+;K}`DW~|ZDsA@svpPT4%BVR% z;Zg|PBoI|l!?#&rcTImQkE66_QqeD2na+vB8L+u+53Mb}FA;Aa;?q%CiiBih5*$4R zk5WML(eDX7Sn$*^Ia-aj&V0C@{Q^CnNexez!mAv6zcU8PvuPh=Oxl|C^o1tA<{p5W zp?j8>HVF`xsS+A87TTP`Hx8e)tsM@H0xFaAaf}u1g?e@`D4(=#J2sLeXDcO8MU;|) zVb<&c;|Hy%O1@-2h|8m!UXV&UA;bitR%?prrsBWk855Z(hy4Z+@WXx{1^~awKk#f` z26cuKV@@SPrB^JGPTm8o3Tv(6vK)@Mwh54Nu(=zaz$TF~C2$5uTG*TS$#?B(2<~#= zE!Msie{0r&$#bKvN4w?9jzjO(He-Qd?%)okMHp7261a4GziV6(1pU|NzrR-rh7L3K zy&Zc%uhrC|`aO+`UV2sHJ1^i^@geoA42hlv9zcVi4rTQByG|$LiNO~<(yZnPSj2RJ zcM#pu*6yD@je6`#x?*m!oUT|>x_O`>WMKgr+7RUqb|rclSA3ewogf#Hv}kFG{7%Kv z#czPiUM`<_Ov^EPK5Tj2ELrVaSHO3}f_7;yVaO}N$wy>Vp%0LR1@}FygtM}84o+eg zcww+hD*L;guaDo!(Omu4Q8>ImPohhvMPP|A-G$-bMOOb7Iek3iM35e~Rb=>J!&G*B zmXvQzdI&rekD3m>iIs0Y#13tOnv)SXu@F#tStKPTQr}{ zD(jULkntk9XU2YEQFprl2P%1U*g3 z=OM3P(k3leW;cs$Ou36!&0?Yn}va?K1#gYLb`dt8Bg-5#| zR@rGGE?l0#6!CIu{?4)s=kYO4zbDd*tZkc$(Qp+2*mXN`{CX|LiT5YdzaK0L-bajC zGgG7aW><51qP;2~!kSuZ+*Q7!JzARd(vElZ$e}Up`P<>J-G}E~|sc|DV z-Sy4WrFxb$x_`$p7sJ@?pV;U_4&kb9V$-?D%_cpbhk8R9puMJ3&h}_HGF9PcCXgVK zKsn&c$FnTanI&N8L@vDwz`g!dAaDy(K-@3P~TLtD*2``NM?6m;h0m3%%J!;$fj4+&3cg3-9?Z1Fo2WhGrql_fEoL-#{t@(WQhz=&E1IP7T@jG zG@uHzcj}qBSYVU94tu7^+;b4kYinc z@B@Rv4^{9KifW#UI_J$h2y2XRvoPC8WG|SpbhfmT4fG9t|NUDy5oQRi2Ws3+GF?7S zWmVMffKhEsA!RH+2%?3b6>V%lc-6JYq%WKyr0p@agIl<+Y6Zgy2q&M!MHQJqqt^Yf z!0V+KkdCVm-lh+Q#57zQKELKre3+kIjQS&ZUCqQ^V@K>VBm zH3}0Qd#0uLL2w{H*tvTkm-YGR4p8oDE3Pm+Mx+!Z#O+EVJ+vQ+ilRBwmX)dK7Bb$H zFmD6PU^s>E>30dUuHe({2OA{WqhQHYi5cAG^yi&;gx3pVyNA{m-B0>1_VAjE=hP5G zBhH*HN+P$_4WqgrR$ss$e#qmD zb&P)yIx89KqhW6CAgLj?vI5w!K_Za3WBFHF(AuSI$mxE>;0Y>@ z$7HQGWlD{0{pCT8=a0KQrx3J z4MP^EQjR^qhxU)-SFoqX)c5FGGr#KW56maoSB>0L@V1CQOylaVJ7N$s=tWHKo>Ae zT8YtdZ*AT2csccxH<96s-29oe3A7o=wD|7$c-}!YJ7L0HRL6`x%*PWr@meS0xM>d$ z3tIZT?((bO4W1erUcD(9Dm-PUV7s<<3Z+5q&Sq$GiHhsN3d;i30(#s_t-<@=ol}rZ z#sJi=M2HxkMg106Oq8mrl-i)qrW(aIsijSv>f-xm7>+_r3?$aetZ7ur*ZSde%Iad%{f36rM9;c4%32Qe} zV=T7b_zm^Q*>f^lzVAfQIXG9ct|mMy_jbTmv!N22{MXocy~HQ6ixIh)rD=5)Fa1Wv zOG*jP-WZ)$v=CreWrS)1Qd}6Fzt~P}ZlIGg_N_oAT!iU5y#Lk)kJL;-C9jz!F@dW( z6^rkBtFS~(u_fNDc+kqf?b+f07C6|(LNhJKf!1rOU z#3)6vsk|pB#vxZ|-P9JDh$MufApR(eX){EO{sBCZKdZaBBZi&ljs|j~AO0;t1zE0< z{h|*tLmaIO5Z-7|D32R6OK$pQ+E?A1Ll@^9a#?Zi!+T!Wn8tvrW znho{pwq>wD2{aOp?SR}Zb5(BaHhDS-$%}CfmT6ES3%}hm?0J}foj(hyrZVDWB@!tq zL~S<<59uU&(?x8T?B^%QmSoE z&9JIa%fThJ&Du6~3NRz;eI+d<)&@~|(pcSL;*`Rq&9s$c!)7MRx~UwOCsuLL4H&2e zEJl;pG(!Q&^V|6lc85f4+6G70*zYvfIpwTVQsiE3``;^VGs3|bXzGf4^-LHAJfay&jzij9Lv3y5&|ydJ|0Q@SQgkU^ zj>Zxd=W2%03`{J{=5l726}zXiR014#Lfc-yzW@uUp0M_D1s%&NR^kfz{e|1R*Z&qB zMkE|q0oqQ7OV7(Ymeov8HoFjtyM?vZw$k||dLPFvJ9p*dQiE5jB!n%!By^+FkR^;g z#01An71GGWKg8>$UyR@w+ROUkW}1Z6gGa9AWtrjJF{-OCamXX!O|W8T)NUW;rM zOrvrXC5;#YV^Av$jjbAjPMkHbr@dvlwmO3%Ov%|Ga9O97Z0ac#F>p}_Ko=ILTPnh3 zEGAMg*GxvzZTEi=Y_2H=`xlb%_E#-OjIQL1RJ)dpDZD>{PC zn7-yKZNuhks%txaB6(dx?dj_R{+Z0A=5uK`D6KGeo6nsh7wc@x!DA@g zff$ZC6)Fx0GAxAG9Sait91aL2e8A7I@Crz-1?q#8&v4UAJlqUdkzjCbg>#U+)@PoZf@{6J5*!M zAlGHiu411fS}-;F?+;gQl@AHDCHipfKMqaBp>~CEysLB{#~x}uHqTLf*h*UIRaZAN zR7a&SF|QVdwHmTH!p?KfIDOPVP0}+C$U8@g%v%}p#-4|fOoMZOeLLVdT4?`?%?W=` zUFa9q=fCHn_UPG6W9);UDz6kbXlF0h>x zKLBbp#aLT!=3FjO@HZB}-&^fnCOPX&Q#_AOQ7q2V{o5?BD@3Ij6f;q)H`qme@-k@K zeZO!wC&j^0i;546X|i-FPwb*8c+d%$&LPdoP!VkcLVdTnz(zf819B%{M)7<}P^Y9y z3Ck%9i)AnnCP-pciZx>y`HM_py)^10Ckst|CY8T_C{?yNO?u$;$sjD&`t*RyRq0%V z_L1pf*7dm|-KJTmMy=3=nl1SR3T#E| zTVH$95*K2wq%jP&Mvc9=A$u&r7jV00uSkJn;#mcE)DS9g@p>VU)RpY$I;od)R1cRQ zu$aSha5qGr5`tc(DZW1}cP01~+9_mT6j}bjL)f*q1?;?7GqRIc{v7ZIf9(K zxEZyi!8MTLOsx+@9+-2!94_KJ73(&6Cs2IV|16cnEBNi$6#hUIzQkosf~;L|FFjsL z729fvUrh{knz)y?Pxd*N9#qB1Z@q18Sz;F`_J$1-kXt_~(4})HQ6=2+IF@JYdo1tF z7+ydqeNGfKGq@(-9WvleFWWl(X1xT9jL?!4dwbvcw1jG!6|QPCN|`h@DCPgkMlrdG zE$nbm={{KgSO`1>Kj|gGy+AF}TrwxeF<{781pX2vU_aKg>>>8*-#7H6Q}4UzT5rF6 zMm-PGSel$I|1i_^KN+p_O4nnEIxcc9{kS~0*kE2DSz|X@EuL|vZ3TQ!83;Bo7kS^+ zPrd)ukMlI-LZXk9ApAH_SXQAo#07ja0=nXd+z}0*lql(wf?74{5j-bBR=Cd004q_o zr`q&R_cxuxY7iX@v7pyscYWi)4D<~3TL{1R)EqOS_9XEDHLg!J(tITExzp z;h}m}p20voson0ZsSg25=)g!`PT|Ezh7TI6=E;++$V>eZd)Nx-{MQWES1xuYf$m{(!f>W?hkkHXYa{7!* z!Cpc$%{a2(u3Q-fq(6;#v>xpRcyloLM=Jju_K{%#@HMhXAK&?Mbd+|(G(-B1-$X}z z%p1X4W8bfAmNAWf@2Ur2^&&4C|3I6^#?JsjuJ3%V*=ilzx%w5V&hKut;tr5 z6d-Rhmh?(!I8h(+*|MASsTZ=7!RPJhj|mA4LXz!IsgAW_EA}2cL6IJEY$M*(yxQ7! zhI}Z8x<5kNP#>msBj1i;H6$4Oo{?@FQ}zxuNe>&p4z7fB^$%t}ja+-fRZn{0L14U8A>BUt9Bi)vTKTWd=tT!a4Reu$dX8Wv}KRzdhXe z{-U)lx@*U$=HEVEjd0(i6Y}|7{au%Qug(1KzL3@PKz1xmc)U&DU6Twh_+j?An>+tg zSV)Hz3OpNAk6QFoCR*KiZP%j}NVo9tH##OoQZAzyW!&FTQYwK5EAP@GvKGz;Zstou*k{-&Crq&d~=3-|f zHJMtnUmv!Hg+cL@Re}>4cI)stbDG-Hbm=)XsZX!-gs4i%A?nVfZZUx6YexmXeEy60 zbe)Tgbky7fH58d)dik7GENdn6j~sbKuP{iv;okw{M~B)*R2sadBWvuhOVH44L^;r% zz8md7-es`aXBBjrz&Ltl&0@cfkJh!{JBcY#y)$AjO2vCh=z$s9aG?TxVS``dJG|e0 zHj&Vm8z?*bQ%>Y$%}md&QoePMo^m0eg}(Ni(5!l8B2G62zhD^K8w(416n(P)0~$fa z%|V1-8wkVZUE>UIj>rkg4b6DHS0}{vs2O>XX(L8|IpsZAxJj$nZ2w^K>IGY?YAH|q zSRyzb$T~Hek*j4jY&mOXP75GWhHCP2GVxTTJ?H7FeAmgUOoXu#nqSnXD&;Mdkg7!z zk@?KqZngq4Q-%xPf8{ z&=-`lx-uwlF`kI~`N#x^&1YSuMgA~8zJz=6f0aRTL8k}wp3ATTDE9;%gT%gjLKDneRP zOVnmsW$6@GLlB`n_flJk=?2}e=`NK!Dj4Zfy?1}IoxH9mBVN%9#*gv;~W`O{OD=xi;DMp-K zs_C?PE^*U#6kF>UhcpM5Vuy0=KsKPt0d(%T(krOfs?C{SZ{kOO%M2xN9k5<;*4fz& z>AvLq3#xf>KzQ|WKQNIG71;Sw3H{I6Sl_b@JS(>IwsYZ<`V2ZN5qto(HanV8_samG za+BwYNFM+e$rfKZV&F_NA;E!03d@qXa#x||&k;;GB_W^^Z<4Civ-ACvj5;N(f`6=16BZGh3db&pgmeWiLK3tWN>GxD6TWzsdQ9 zxV7hF1$-r4&ik`&N3*nmOy`1{R5@9IRxND*xfo`Y6WXen=UlfP3m2tj&HG=$E>2JC z%BJi=p<}h267K~I_bmS%A;;8T4aFSR+RF=?9+!mJooWejqaQn5;)-K$Bnb5ZL|G1O zrMzH+6z~da{;?kH$|9pNNSyrpo(djT&-*d$kW?Zyi}mS)O*PB&UR6s#LcMY=ohvWc zfg`87VbG3V>f*05of6-w6+2g}j2x!y$PZ)+@Oo6o-P#g29-lk1>q)|E_vY8u1H9*f z*rBh=nAepE?bfIPkeOL=2Ef9$xQaPVi_0iTNAn`)cUlN>vA!e-;kwFN#5p0hdl{TGKX+w6bacfsbMPaGXiOeT6W_$Sdpk*GeBn9O?- z`~35NOdm_9LoR1^!#C*?vk7DALbuthiUq6jR1@omXY)vCioYjhc8Q6^9+993F*1#{67Le42vo!GN&-L zl;0c^B@g2&H3N7FWoYS|ua-L>!t%2)$dNtx;^QV{DfDI5QR1ouj;%H|-GnXr*hgjd z)20EDT-m?g%GD7MfR*nQfxDP?h()y(sS%M5r2zYJMTvl%>$HY^ANq}wpCtRf!HT#3 zFNKM*h^We^Amy=h(s&Y?fPOe7_r=5Zv8H4wsU44(KE@^iO{wO|69@ALjq6i|UvffG@hZXjYp&?Mh!Cq7u zGY4$t*?%(MCh3)A%(k_@z*!gm4Wrv->8&#G)q5^7M`chl5fWMj+5sSAz;V25h7oT9 zz+~~7Iv7rVkpRSP$?-4&dK{JCLiF#Mizy%9^?eC*{M)fK^7bg28k)1Q;^m z0MTIrFmN5XnN1Xg`5_9PoJ^tXwfO8TaX+fYxkY1WuB zVAAvKbiPb0f6#a=9Ehl1&O4<5oJ1si^9e~U5vRE$@xjaJOTuaT;D>x-{w}x4kNW6O zAi6GbGvjvxhN>p+OFZePx5B|FGvv$Z%v5QVInOIMI^~-zup%Rk7N|d@qDdmUX@a^U z$)=U?On@4;%-lr~^l`b7il3|N>+@O&E_R9mh=Y}R+c_?)Z6zwWne=6cA$zS3&FK9) zTBt?A)5Nm(==Z_6O&q!vT)#RdPdDw5`;C)cp-rOF<*TOgeZy==bGimkd~-;Z^$1Cq z@c|0wdXnsj`^Z?;iK|QD_tVf|_tOgM?(PHe@#GVZg0~V&oQ)LF{n;1+m1ExRa@DUC z9N>kkL7`v>G81RKUp)seorhJjQh;ba+U<()$YCxg-|h015Fm!q5_IlP=i)Mmi2sMwOK&M2g!5Y;FrpPT%HYzOE7B* z!?=6I7hrB#Q>l;-^p%kyG_Z|^UQO9N;`ny}kj6M*O#~Yd)q*W169QC2gjopqo^3_e z@o(`0a{+;(=IAE#8w%zjJrKX&i=ki{j&PutVG6GnA{l5{(q}2lmM+?qi-7=W`3gJI ztQkP}XNW2ov1945Lnt7k&4`dGMxZh#9z!G<5GFxQhzRN+W8w5Td8e7dNG`L5!RDV3 zVgSN}J4Td|Vm&0zwk(ihSr{FBmIwk_Jr8u*-bXyzWv(bA9JrB8(*f|HGg#P}yoDK3p&;U{8^W){<>bJGcZCal1qQb1{q_*!an40d)WU)= zvB?oADsvm=#Q`IkP63A`+5JF7&8S%RdK3;sbAeQa7Y9HR$8eD<2Bd$;vOV6P{g7v9 zAY~yACCtXfqxM2;=0bfRX17t6VPV(#*R~vd!I0SGaR{t|nooAhyN^((??Ay0m|ohGp$E0Q3#9&^eWr0f0%CICB?G^1z24(()-=3L;toMEq9`GMEbj z+OQ9D0?VeBXF5=j82ZzNklO{Q{5(UQ?nQ;r;c&@RxFY`1^P((3a0Qq>h5?NXho)Ly zcEZ#L#W4ShLMsRqM5ZefX5-?IwG*Vc;ErdmafD15qd=h`4fKb{F!t4tt0a<*QJ}DJ z{W?e}@J!2)ppa~W99Zh~zbgbXnJY{a2m=;p-iHN=uzHfr1BC@{C>P-~UaY<*ot?Ho zAqk!sp5qcjYoO085P&et-A>qP1=lsd*9V5d!e&~I+|2*1%u4A5@L-LA+F1!iO%P*3 zVNIiOqYwxx$3KbS1A0(&Uy9YKT`n+4N)$=9S<1XAG!IqC9tcIxY$HQ08D(Ok<5mDk z3KgKWO!~WLv+Ab%Q7qi4Y~k(tkgyqI#4g%aTHIs&BiTJ|P!lH_Q=t;avFx-tm^_)Q z{nQ~tsJ8w`vJo7s9}7qhR0K|90HE3rmchE}m;o*n80F#D&m(<}@SIwj z-$wbe!;0Vx+Q#;Wc_(`K7539n#RO7Syj9c=J)f(UNq|_5@1a+10LOE)>q#+HX4}gf|=pL_(5%iHcm_mV8 zEWIEV6id3>Z$jVML17NUOBwOP9_^WqyRzz0d@RxMVn8jzb z^=T^`f(;nTgAhoWABVQS*UJcHo*8YXJ)|4`RsP3}fU(%xBqT7w#Cya7i5LKR18Pua zRA9JP*&x1JRoa~i*zpgWV5=z0$Fml(OSW@&7Xp;4i3_ld;dS&s_Q%|2mi_S|Bn8&l zc6@Q;$%R=YNM#J*rD|naa4N4;uIafNMk$Z&qA^Iej44tSxJtVpP+(|iqmoK0bH`}g ze&EUlLPvq3jk)EFUJJBNDBY|J9bv%3XnO=oJ}C6p>Ax|9xGl?SdZAvp6HH``ymxB#`=gLV7J zrOdzgZyE_22Kr)P02k^u5ujWJM6$7s*u&e175fg40}QDnBr|ePQrgZntPunc5Zb&q zZB=YPQdOg6&|914SbQb-+Pbx`LS8}RW%y9Hveuf)=KInhGt76zchy?m(I3LvYlWg%OB!&SV z{;3axwmFkse$1+O+S1~*>FuJ%UIxOQeekB(Fb^9V0(4az(iPfFAMpZPqkn%}!H|9j zAMp(rz|wZYs1pxk@Oz7cU?E_7q?ym|v}=f;Be%cu9eX zclp)ISPk}`yI%0oH}hN3Uh5RU##}ZTIFJOT5X!_oHbnss)Sps8#wyJf9*g+lO?dk* znIHi0KS5yR<+|$grBh0xjBKM2#Wrc%q_(CbT>WcrGo!Ux=_*d{|Nhc3{qoL%^1c05 ztlMk5%!p4&BHI(K+6R$@N35Hm?@*71sZMzOb}y{mWF>A= zB_|1(=XS zhR6@?E1)8b3#prnJoasl1N8g=e>yevPxjq2?ccDIv8o0G77>Zxt959b{tuJ#InP2* zZO0w^O~Ei(!k4iTY@|pL`PmG|jtH|Ww9n|pEzKKl(=ucjd6S5spE`#z$TISMDs8E} z^7{d1qu`8FSqP06Q%E5z-(13J4DWMQR8}2wRy@RnEFL~?y40~9JQvQ^JBQiW;*4;O%hCCIGquTM zy9ypER_U|4^_u!3^ELVCxoOp!=x^M;)3)*0Uk_f)FZykkqw_&sahqR((Y~{n&Ox6R zUAonuH~XfA7o&T{bgAjhC_}nk+L)uQFVn`nYKxeM`$Yq{buW%QQ}9#cQ%3LMT=I{e z&DiJcF?5wK4pcMwr)N*|%6!y->2tyKK;fLxg=zI=c^4-Z#A0pUGT)y(Q{r13!H_bIC$Env-N8B7fF|^j7K39MuVu_ZSf<_Z3le zcQt7KK56|ipQ5YgCFl&5G4|Tr+>NL4$Breu%~93U?@sdV9Op$$ADsTf(W8zc_NfbA zm5nXid%qbeu+15rw9U%D@NXh*=?Tb6Mq8m3lC!q^vPrCU)myhlBzXM&7ZQnDptmY% zm%ck4l2%%!BkCiwr%ll+JU0p7A9o_PGP6yM^O-1~ueU5+J%5tCl?Z=j1_J*! z$iLWfla^K6vF6C!u1a}v_1ut{R}6&Dnn)X=_bfEUK{n}`fscE!?@Ct&$z73sr7uPz zo$+C7L3Q@{XiJ%1OgOgnm$VN!t~Vh6CbEZr!@et_tDmntcP15>hE9Ak0K_%WGtG^0 zGsOdDZJAA#xU!VXQYBJNk)z;#Z*%P)b`67^dH*8_7!nJ$)*Y51V*gIdT^s4vR=xw#UmvD3N%wVjK*H5-S#IibCzQ)Jfb>_^! z{o`2&p=D0;U#LFMapCU3Thcr|C{&i_$BeY0LWeifYN&2-O_FE5m~C}pbZZvVoiQz& zCYtkF$5z^(>!mq16rALDr!F$Q@0c*B(qS8a?o=PCxy{DV(}zyd_R#b{!osvJ$Eg}! zG(Pomb4{z^hlD?Wc5MPFyLF1ECYK0l31uzkV+;+IO5r1Z&L za%v0ts39((Q&Q@K_+Il^PY{dGpx$W2=Y_`sE!{w$%6aR!d2@Q#?u4&*t?P78q2X&i z90|y=z#L2N4Nty1Tkjy`wBGxqoJxs41X9mNIz4ElbZs3Abmi_eq=gJQPScIs@SeL( z>~W>^Riov;D;sMqRgr#Fu;TG+^~lt)RY#~_eD1$OX z)#y>>q)B-=q>YqJMu<`+htWdvSGXYJr`9`A@IzW{dUDX0da~?^hI=}!_{pr)iH|F} z!$7UwUQxil!aVdKX3uiHMC>en6{iuRqG>sBWv3m7{ZewW#mg9JPL@`d#>>_LXQ4bb zu5>u5JSJF}dgkkS6zfpF#He0y9PM05IWmJrooej!(;#zI(jA*6si)buRRphLT5zIPqGhGq*<4pv^*@fVnE!8sFnKo_~l}m9_~u$;G#nIOE#qWyL>Fv zRK4R5COyC2nX<;PM|4Lj8rc`7gSNYyYVpECLT5H=hrp&8|Hma=)^Qg+wbdxsj84e-Lus`Bw`g*mlbw1NE7gT#xrIO@RP_Zj*oZ zPJ==*!3PZrEva;-pjA--0EN{bWr#3`>x8%yyhRzJZnd@LkN~kzp_u2}UGebg5SHem z*V^8D;4eY5fCq_g%OkTC2D*SSWgaj{q+frx=id(V@T|h28ZIs11AQsh91LZzXsd(h zcM}5*4<@HhvwI*)>rNT(v)9U%G#S5rw*&51g?{5)F)T*`6Re{EI^BJF7lDb>DBSTx zo$^3TzS`y|%PHb`kyIfJSuIO_Y%1(L`Mk-bukV>JP7FngK^4N10|x^NCC)e=&z>*a zBuj%LK_Y%TP$N31uuts8jv2|9&D2}H*9ZMT;At*c31hwAk7;M&Dw7!QCa+V@lKJys zj}kA0dw5I9sn{rv!zWEh=Mjc^Um)NYk&yj86t4Mqkw3z4C?lHhMCSG>`7W`K>33FI z=EVcLj(vqsKik+5c4=Nx{; zOC`-t@TAQVQ-SU~_@T4BA+T_K?EM2lA&{8{#$qqzfn6yF7~9U{4h@~ye~5F)q+DPk z8*U$f%fpsLtd4j)qO&iKeYp|FhGPy_0Uyd_it8!~t{uDc@Q?6cq;t4Pc+kt#LlbAi z-`B7p-%?5zOu-eIehsW7rz9=I#rcJ5Rb*t$a_eXMZyB+h+jAqT!MjXb#tM=_%}8rs zp-KK38Bk(Oh?RSmCer{IwjB4iT#TjSZPF-A;!QY=sMhprK=bQdQhcbLs@N|o3$a)% z1Ev#=tV)@{B|+yZL3iY`GF zLFMseLq=*({0m4h0Uoi2s83&c9UX25#(`>Ms=a7r9n@n^xq^QjJgOxDs2AZtc^`6z zLbW1?4G^Fa(@FwRsA6|GHZ^Fr&pM#M%CckLWWO)Aa3KqJa_O*q zP67e~QoTCUym;e!8L&k;h+p9NNl8`inceC#-Q-4h@u6K-f6J8>?-4}cQWD*#16fy~ zGG(~bDoAv3Un&;ZH0+K1QnRF_eiLZ)r+!)S=bN0Qr#T&jx0KYiubkvMJBELdvQnjD zo>7ZRTvY}?`bOe(57l3V%DoFl|D2k$5oB7Bn`@tajgAiPF(M9DQeie=o6_aSB2@R^ z6;4ZgnHUB3SYLq+Jg*Q5#CEW7Gje~|3M3@v1&zeu;j&bJ=+&D{*y8i09_4P!#?hKlo zF~ck-(2z;L{^ge1b7A!q2rhcvBkTJ;=kGO6+k&V|=NVXmx8h})bvxM~9Hsr(D_C#3 zoHP-Rc6_z+XvMqV))vZjdC%agz`bN1@d_~S**$W|<~Bn^pxJ0^d3&pi6fmobPJ{?5 zI;Pz?H(hpkemHa$Ml3-zH4z;^0< zC#T%SwLy!;ZY%-N^#oi7Q?JZ{gkdk0L!tYBOx=3%|1yZixe*E0^_N4{rTc5Db-$`s z9Ok+&Y@Rpu47~wl_2#3W7LWeCmWHbCW7k2H^_VT*iitMChL_@pBjL?>lkrKo5)#dhaS_bjh3TB+_^og9cdf{t^8fk`XsZtp@ml#1QEtuZ$cxV*q21^a;5a<{;Z zWF+Z`T);~(c}>1^9LQq93ND-Wv{N1DuPCow@_WlS8T5^74h}%f0R6pNg~!i*RPf}+ zhg9E~5YiW<&FglMKV!|1BH(!YHV}Q>zb_ahSHE4^V;2PJBWTY?$s_lS6;VFwHOGK4 z^Gq}!o=2h_^xw5G7sH1G#(y?Lu$?ByP`Ghn=aZEx0xSID!{oU@>Lh6*@hh30&W+STK_QbrOImKAxp)LJ$j#K$pOZz&#BV0lepsz>{Io zltMr{mlnco3&91$3V*=Fc>5zlT%6w##H)G|p? zO9Z^B^9v@?}tYHbKvv`hn?7LhrG?_jE;s=DW9KFImw$OTi#2Mm`=jBHipJy_3n|D za8WEMwl#@Vo*5`v6p+-XovFEo&^ij-*4f%Q3s%^64`&Kh^v~m2do7)YTb?Jct@Z1f zh_7yQ`CW2JwH7+h{BnD^SX@Zxt~nvS3@`D|(>~#@2MaYgAM~2%>4RL24t)kWc@6H9 z<*!}+Yjf@=IX^FiP?__WXPHW6`cu*U_-m2zj;S#FAN$N>uOic{@_BReBHx|$ zy8doFc$_+7epgTR??xk1d@^TPxe)Y_duz0f*ay!tOpd7>9k_JiPYdnv4?yT^dm=QE zd-T|$4I0&nfZS0qq&?kti9waDm(MKZkbzfpMzG0z!m#w6tU>J+x2CbPlmfkLKjWwE zQDc4PGRffZk8i1V`nBMI&7(qa?(_H?k160h*`dm~2<1JS;(oW6b%S;5c zzgb!a-y*nyu%E71^I~R;NmbaQMR=+|-*t2) z?gQ_8-##TyBVzK}4Tu?oz3ILyFL~}}UMJDqx9ep70>Qljt$5`3pFg4d!EUm$q6MU| zn{iooC|`){l0y_(6OJmhciP0=?e}NB`dt9aXX7%~CFSo$+?;nY!X27^AaUS& ztS9*&V=$h?NU@T(MTi#~(6w}vv@U`Up}{8xz|D9xs#sm9(KrGOJwkGSv-_sm)DPJ1 z43NRkkp6(own!>29@Uw|P(wDLGxYVHA(ZzxluXc*Ybz-Su&)ZM`}OCg=Va$fGFDf* z+4wl*%7>-c9WR}y_iCf@!m5v4ynP~{dN%6=a`^kX{E8)2wwyjZo;)!-O|qaC&$awP;c9$knf8NyI^CR|Q# z@{OK?hzDT*wF46)VlgG;UDZ)iVM6jT8udR2OEcLiBM`{Xa5tsVDweN~^UMP}T$=1I zlOZfIY0@Vo(s+K2FqMR}99;DMoeEmr>_W30g;wlk+V`P z@wyjb3-XH#ss4r7i%K88tCRfn2AC(>fdl!x<@*%;Pm1voLux|I9vd(*B*&!Cdgadz zs}*cniRu>F@y5x_xus;^=8-3MB16~&#|a^vvq$XMeBolQzqM|j5AU1XW_P>v%?UOL zrY3g7?13dKRH*e*keqZ?`W>5e)%&!^>}LGPX}X$G^RiHu|5monu5X8(UJjv!Xj`Ab zd+5|iO(`b3PjI{)3@!BG>|6}4+}3=|HphWkvN4I`9b0FD@W|$w7`#}(TnfXi`B3Ev zMn{kBVJN!Elu`vNt5E{kSoIO^M!u7e)<&(nh4aK+?oH$w9Tfhxo}^<&36ydexew%K zG;Q@C5&xW}GNE-u?QWN&nvUfButNM9a0_G!6mlC_St@=!l+J*2||F)td&?ECP zwR4n?&@5bEc6)xxOK(2C+G~-(*rr~R{4L`aU>=1q;&JEdCX^mxQ8x!_h!AJ97ep>A zxdM~@{3q`A=xDN9hax*UH-wzk7N5Sj;0+tGp7b6vdUZzU0w%0ZiJ6{MFznwOoV{v# zE#u0K1)AwOnZV21mPOpf3B|(LmSYDWtrgQ%9Vw#4FoYjob=g%VZ?N&Y^kHhwWs~Z` zq&9)Dc{aXg7rJ&L7n<^u)Zn_y`)#tNw=)rRSJ8N4oWLz!@>YtQ^6ERxF_|_e*uk#b zmLY-H@j#NPEypRX64|1kNiDkFBL{CC%Qenu_gdbyIw-W#?NwgRy?yE4@`7tju^NL{ ziPw0YGu(0DLa!TFAhh1BPnE8~wmnvp#@#opz{c#J>*w6nF^01Fr(3OlLz71cOX-1)O!swSls8i9~pe6tH$|aCsSKL7f6ZwfE;x z<6|fc^|CGurdWSy!zEwiW?!ti0gYjZ9>%5|Pe(^oIK!^3$dLHj{w&sD^NbUr+BK0x z^$V8ZJ)-L?oqYAPfFZSe0qu%6tnC{FceZ?BM-)-Rj&-MZ?I4^g)wgmkbdf++XqaGb zi}&u`vf$Gia${nqAt}sjdArOf;!Z>uzw{$|Z-pqV`Hw?N5MteFxk{liJ;x zee*%MlJCvIWIh*`7^jT2kq&Mw9-y(nu+l!VNI-` zyZ8Om#Zjl{$0+NGk3~cKMJ=H;yU3E z)I@G%!?*3!aNj{q+~t;1q!i~gDU}_kEa3&wHd|{WPIp$&N$qQ*cER2dj#YfJ!4l02 zE!Tmq44BE^4Sdr6^URWS#< zq8mD5**$-qT=qCS@=yd}k9r%~k(&$a&E8;I{@(3grn_f9FZPVE6P59!Tl8Lk0yESM z_md0h*A8sI7s#pgf!EFC>hf1Q{s6E(W`9&LJwJU_Zh~dSS7*siizrG&;O9#8?kIU# zD}G$5Lt^+qRxQH(tE@c+sXYpTc6$M09a>yiEIHon>s$CRcc;M(T1Jq1k4Ekb-IL;K zB155Nj_Z3W#BYuB*F?jDd*(F9Y>z>mR%{V^^hUpjFBMPBh}{`t2{qlZK3UCXa-cA@Lw4q3>mf|@>j2>)bCUmY_AEtCAsEuuGU^ETw)SLDpLXTx`NZUR zO6L1>)vUC5Dln;E%ZXwX``*(r5ZVJ}TJ%AwHyzC{PQ=`WIxKgX|5$%{Bqr6WM~LR)1?bQ$CgV+SCHF0=sJq?`5Q?iZ72C^&ay zy?O8b$mZfxmn0M(2j1^?(SsiAy&!Vnde2AtoMMe)B~Fr};-m0ovouwos%W0^2ZBgz zRaE|rP7kSU!XH&M_nCC=04vB=9B@pah}x9(Rbz+en(4jzjm=3f2V(TI9XCt8>+gUmk` z8|Jx-9Gjav7C#y7f4I;S;$LL5iwD^T@mJUF>iQu58SFk%Y+^!N$%439+ShMETs!T* z7eioWourmOL!b(7`iTsI=2|PFRr6;FtbSMmw|rx)(-K(CpCz#RVF}c13Dn<fu5SQypKW z2}*rQvVj~G;wYGB_kry0+Ctn9Sa9Dk)$jXG7>Qs60TQ$Oq6jse5D@F>>Fhq7I=x|# zWsq1f#)5l;bQ3LsuC+f)HRB~(8S(P!h)0KEUp!*2aKb7@hfEhBsCcOh7QO}Is*s{S zx{v0npn42L6zaZQd9Q-FcZ4o@`eue9cM_oP(8JoMNSDUDB>4fdlNkvZx-A*)-o;#o zB+BTDp|&-Q_&~Bw7RkE<)d!3O)T-_p)zYp}mw%ZQjif4J{O8}Tg3*lR=kQW}+?OH} z4|WYnzlIWIjgAxgE*pggGs1xoQQvSpJK!wjhUmu6vCv2_L*vnrPjt9?0+5dhreK_j zNB%G$HGsz=!>TGQU_^T;r($$n7De0(4G5xb^XQRt&nOj2b%klEU{;NbqNM(UaSOi@ zUKlYidPYUci!U*e*moS8MLd*{B-GYr#tuC2AZof!&rA0p9JWI{aC{}5PHe^eR@RGl z2o|i(Z84BYxX#~)j+9jUa&As!IH8=#Kuv*nj7S)+dEi0;(db^`V&A;_10B8me^Mz=~QgjYx7R~O?~FvlGubRa9> zN`&fNz@fta1CP~Nsb22a>!w+U(Bd}lOR_i?wu*Lkg?-OE>Nl>6;6C>tz*>FBTvt3^ zO1f|vB$CMm^yN~=c%@rl)l?k__=0yFwFk+^4OmwHV2qdXq@ax8UsyH&z!#wd9Pw<7 z?r8u?X+G=m_{Z{z%WgO1(V zsesD^XUkbsD&^Y#etE~RN1&CJs*U~Fv@f6PcDWs$#Lt3CuwwwB$qiBewx1{eC~>(J ze$(q5DYHQQX-7z<-f-k9Hb9N@*g#U*`9Lm+p+4wvc_csY#0r%G_uPPm>eA@Sy;66D zEdqI>eBpuNN8T&LC%C(89y-H;k(@m*f=wN9Ag^wB7|L0~X_S|pJM8dIA;Ho9_V5Lk z%&|`ci3!jsJ5Y<5d~zYFCxnCVg$L~OPCttLgJLnX`&^<`5I*^sq65gmM!mqb?K=Lcl^472=tBMp;kPu-^b`VAZkL*6Y z?8@I>%QFLmPkf;OJ&z6VLUoCi8eHJ7 zo0axWaN(wQC9^SOw8ms;y=wPMtxq=*3&0o)N5L$q2>*llG)x(&)TrqPCkpBDFJc^5 zL$sZVE{G_vTDHiEt(&mMuXPEm{lZ(A{{oUyM*9~erPQkhB$f2NSaFhBD|wX&^Lwu< zp44>6?a@=#{FNq@W%waXTjfLMbK04Pn)kWWnTjX@23d=xuX=KI3Y?bwP{*=EaU8T@ab?%L`xIsnd55aDgNwQ1-Cx z*t&pypYdpK5LAa_LOV#HelX@v6Jaq+il8MwzO144JeOBRgOw_<@(1osm0wLn$G9Ns z63-`=pheHmtMHn*GH?}M8}Sp=0V$=YUy z3OuFBcN4*&x@Onru6Wc(B-%*C4y4XuGuN0{)X5;#Pi0eCiXbp_OL3pS6sCSq%n}1O zTOQz5F<>Prz{t+4N>=ShYJP*oQL(xZ_xfz->jq-*!dNu9lX3&omjmYs_IcO1I=enO z`MqV>eQw`l&JrnbTrv?bbLj$yJ53}|D+q5ScsRyITtyt?A^}s3Yx>x45ZXCLQlw?z z35=vh0)>*EXvf)cU2RmzLw)nodrdJ<=mZBx3;}Dl{5?*{KpCz`(`sYxDAJ_5VwmYh zUN3QI+bc{WBMFd{QhGd?5?B69Nhm;>aZZ#HXV{Z77(#gUI9tkfjW#!iknO`D(T5vp zrN&g=N%=6OISs=kHES~EYQRQDz#*vrISJ~M2zCu$grU=RM+Vs8o*i+a3uZC-ahuyr zLXIUd1{nqs4A?X(2$H{1lW&-@Z;({!r<?td$c=0zo{i)5NbWr?hqNOkFN?lAINoV{xrTxG9Gf>=b`J2*bX=DTLcD^X}J!@sb8jsFvk{VUfA+s4xXO^AN9Ff1sVh70pa9avPE>Vd-3m zr1cFZ7a~bAK$@}k*JH+7J{h9AMk7~!v)%E|;${$O3iM0Xlw_<-dyvx;oea64j*`ML zuA?;G-teyFM7$FZy5M)J_SlR1ONj|{ZvCZ%l;(by(9GmbFlAppJ)P*LFuqKl5ze?# z7L4=qK8eo;=?YvL*6iJNs1|(b%Sj!8?TJGBX(_E&@9cIw!gKQcR2cd)M{9qxz4sPP zHEo444&BI#*4Uql)<`-xK=gtfOP<6r;ZDj?(P7hdoltm~_(W3f%CCjvf;M1Bfq2w6 zwd2B#zNux`GFdCAZ{k7heF<2H+1jS}Tj5uIYiTwbrZ!+-&%fQC{NA*RSJ#)vC#Oy8 zuRs6Q)CIi91yq<-nI9|+c^D3$)bK!bxT|tKxcA@$!h=ucBjG5F_#l)Re&>NI@LDdE zAObIdbT?zbydiTBj3yL~2zQMyTm(Ib?HVUjqg+d*SYY>!3)U6^1OM=@aoO!Uwn|hO ze+@3zV=4Q&!iQh(8h^+GH8a*#ASEmnw_!AUlIhBk%u>zp3sdtgW?kjmO&KjugyG>X z_Sdg+-Lq1j?5ONZ-WxQyf33ZQp!MgG3Uf z2POqfAQF9zDKwIa&4RY@SfnkqG3~vqtx**!Y>l>Ux&U?M1CkTNc(N2;X<#t*rN z0q|Hc45W%W=C-@WL%}GQb`4JyBn#b@EYz^-jq+cA{?pnoRSQ!Pidp=0ySbMZI8Q$K zDIOf~)3!EfH$q>ObQr>QAM)2QuBKGUdU*vxj5r^>PAKVdUVWlwF6&5){S z;MokV+8jz|C4ssUVKhLgh$L{w4!=h!HY8|Psgzlmd#%8}Bxa&83P#$1_SBv62v^2C zBu-zrab}4wfS)XVljEJjF9*7SU2vzvQC59w^-<%SstDjpatU{hro2FnBj(<7dD$4X zN&{tmq{Ru6wIu*gaVwcBIR6Dxn+z;yi>SXQMi+Z>SKT>0r=!8c)#;?cx)3;@9T8gL z8n=!b&0MsZ{Q$p)#+AI%NRL*@%~sTCO(vRcP7Z~D}@8-4573Ndv=-bmGT%pFAn zB>8mD)mGs>WYBn87c|s`NP=|fGb!;8F&Coh)VeA>+hrq+YDfa6>=q7$w;&+WN-<+3 z9TKFL2nQ?7jzla?JJNR%KNNI9s#mm43T)mLW%D+rIR4k4|1>SLF+I^@mbrkI$G1JJ z_t;#Z3=W#i1*E$JZ!I8!!zsBWP=0D4P-*sY7`rMx_K;%UZN+b}!CaCI5P8QLCP$*YvILO(~|b=OuVI$7<`QH(7!K&xSn0(D~}=C0wMS;RlVmh*W7J&|q!p|NBzQQrj0DQ@ z_H=>LnAI(Y(cUVmBn>D=NhGc$GX3MN>|1PN(Ka*aFQ;!6bwQFxTHe+}UEuhW&jSZE z5R7g_tFs}7frrv}hzHwf38`QW91nWxoQ*m`EU`oKhgmX}3#?X`Vo1GKm>Qy(C4|r_ zBa)+K$71}Zi?BrZ4la+FmMBs9@h%fUI@;njt|W=+^NjyGbRB&OLQ>MTv;k9;kL;aI z%fsl8LMVTNfJbB3X&#NP34W@h96?(1K1eHh`6O@UjyB5t!+TK-ZG+H$lOuJ+Kx&w3 zmWG7>0B-weWL(MLhP#HjYa&xkXmxyZoH2RCTvU9mN$PL(E0SB%pdphVNU*+1N|RTU zKsm{1Add^bX8#Z(lRMp?cl`|xy(C2ns;0SD&1NJv) zld7^Q)Gq_x5l;qpIcT-2^P0z^VZdBNSwzEwxO&?c4r<^6vnW)dyBSJEN5-Yky}eUM zvX^TPWhRV9Nd-$bB;(t!qSzj-Ui?~h#<)Z-4-7S~zTncHsExI-CG{SeZZmURHU&tHVecZL9mrW?QzPBwV>{7N*81W^rIzi$o@=cLcO;;V z!>(~rxGl5_yHMtcd)#aDpto!MS~yWoV^6-maC`^;0--#})xCD)A?`STyO$3X&c^O! zsV9JNH6d!j55Sr1@+WLjDpJgXa^GUE84@&9j4uh2ly98@u8buKUZ1lEjH!>dX&e{P zMgkU!z}HEUC>~3knd62SGbRa|)QCD#!9;lvNB~ihW3-Zzm0C_i$4HbUk)^3)jAr`Y(yUwO!FIoF^vDX#y5tnty9*N*yJaBtg%0+gcxiKgIA-M^do{e8c zUrGUHW52v>+@u}jB_oHRuq)w&QlH#A5^nU50rNcQF&{H`FtLQgpbIt>{$z6~z_06U zq9Si-^(NnC5ocVy*&0gPXanc65vt-It+tcCinaPSOguRqzQR3h6&a=IfJ$C7eZ?1nSC({xSCoi4IYu0qrLTPWrd||~O5))It(9)%wEsIY(kk_Fm%hR$ra)O&aFJl7l3h3RKStKte=Ai8uUK&39|j>RVvz*# zxNxDh6d}q-NL$M+K;t&|<}8fEv+I+S-&^y?JV*ASrd8tW1FN`i>xq9kBe$wVb=k$`;_ z9ZA~SVih3iMjM^zYiFv_&%PQnAc0i8Ko_ut<>&&}ohvd#huVTchWdhB9M6bD<6%Vb zmH2^>GU#9c?_J5hhOEcK1EVDd{!sZ=;33KN!?;9a7sT=OmuK(>%iMI&GSyb}Z8F@gg};v1ZI z>ah(^V$iz*yWZpH9n-QZae}yfUEQxF4R!q9R|fDR;mgmHeI|&%h4nhL;qwhprhr6hIj0907f^byb zArd@n?HUrWrX4vCPK0p^li=Bcce@U#RuRVjLV}6%#giZVB;k6+6G?)JI*}wutL5ep_1jpUMHK;~ z0Q_X3*e`88k%b>gz>Wl}<0%Q&HA8x-NYGAQhPqa0)}(8UWtjx(Du9xex}c#lrb&>j zI)sf^$`~bd%N<-*>K4k}JFV(eO6r{+RflG1!0I|QXvjjHBv>nHJ2a3hs5>-(Qs1fS zgNBN9q8ayA2wx!q#JVhL&~Qds5~z?frRrz{=y^P{VHZ+JGs2$-x;HsU{uCc*D zc&N&GyKI z>W(~&h78hHbOFTPpKm2)eg)P*f`{yiM1lp?r*y&6SD3F-(go>1|85;XB#&eRAcz?} zGFl=WjNdoyh{Y8z8;R4=QXWUEqUvK=6$?@Ovay}MqZ1*#>YGV@&a5FcHql20?-0FH z$2g5mqkD=5>rC#zfCXV+-}IVLk`x1t7zx!t75k&jt@Zu#_(bDUYJ(I;PPbe1Kz5Ta zwC$c;O?^`Yg$AXx>2oR&sS;xXCxS}jQnf+Ets~u|I6LHvY}~k%$&6XKn8k~?+`{-J zD+bf*vaDEN!*8>MxmigiyEIm9MP*}>CY85--)4CqLggx$p!DrF+AOQyX>-Na7w4iC zFz+6-x3t!aQ0Y|{A(@Rj$^=d=gQja<0~YnU{0CQVO<$QV(&Sd@p-q|^($7zt9M;cI znpn$a0rxtnl_bsXDnPoaX%-K2Zl@30#4y>#>+T0R=N?ys5dv!$)aQO)rEzfsYbqTK z<~_kBUU?c8?3g`p7Z*XM{2rO3uE5MQP`oKLaSFX={E+q(&Di}Aa(hw5Xmw+Fi>zO( z8$YwrKnc;h@jLnb>Nd~#p{z)nal^Ko)Qn!&aZxo!G@~a+@B;x298gYB?W>q;?2u(- zv|ldeVlBt`g`yihN_jcID9#^DzQ1QZKG7uE=nb7t+EmtM5$_lsVGmWALe)0q(|72E zE??9OrC$z=3-%bN&0Ro?^nnySjc@8f=F0EdB4Ck#GRJ?kt}ph!Hup@kRI6FW)va-U zzH9755B1&IDfLG_52UDiKaqN8m3C%ln6KaVI~etR35<3PW~+WW9pi@k5g)X9U|1FCvxjMK)YxwC z;4;1d(^BdaOgY9USuVL<4odMQ5LQ=*=8DorQ(@ld4sxu|l)x8k#x@NI{8dlUMvc(^L!44yLxwXVks?h0r_a4U6DWX0-wkedG&}sz z(Fg2*`a^xdTG*spjUH0!%!I~uJTL5h)tFCgl}fl2SemlpX#?d9{6HX!(9j*E+MprB z;xw9(Xt1Eb`q0ICwrMbN<(~-0ZNZSUGRaq=4DAOT~b!waZG~T#33CY=$;p(pPNVIjV-6#INb1fQN$7 z*pKUZS$jzfA=RPREH?^MKPkpi-2Vpv0RR8oU0HG)Ns_%v7{9t~KoAQ75VVoZK#1BY zaR^qa>ob@c0HT=4fFd)=g1+hwT|aY#{u%2tbl;>-GVYN8MNl9_hf5Atb(@ul++M7{ zg)fIwbzR>-oNBLM#ZPwH%}%ZUyjR-^S99}gj#oSL|H0KmpV|2A$xf}dU+)|>k8dtL zGecb@Io|0tJKcU`=jnf6A5Kqw_-ByM5(AH3>Ey}Ik&9>N@adgByq8UNWYZDcyf8!O z&6AyG8^4;^6#j1P?=OCw6$xC>MefQMZ5rbpGX&69s~cKkM`QTaY=xJ`Ivv56pX}_{ zYWT|DO?$$B@~6)}xygmTtl*tI-2Z&nmrs6fU1<7ld;X#M?OgpjNy0Llj`lzcyA*qH215G&7l<9J9DjmcK))WUb}IsKG?*}DyrFS zs%drU4fyXAUs*}_>)WOK$aW;?{tNAaU}cnDU9WRy=Zr|OcxW`r&%-*=(WOa0StHlI z=hbuCU^aN!A{6j8IFVYiuo8V~#MsXK75k76*z}$jAAc-tVlTWcCMt4iWTtth;OSK7h1ZF? z*17R2n`OC~WQVFZF(6{;RQ2auPz_vUO%Ae1FTT?7et0|F&2m3e19%>;rLL-g&VsO_ z8jZ#uzx|`J->5FNXm6d|(%7op(g-q$gxr$oBCDtqR3p`y%d-Fc6aO66P4K%=GVk3 z%e74tlZgrIu%HZufb%p1n?N@+P)SaV&I)fPCe5Y5Nraq*WQIc%<@QQUzr+<5){+!p z!idO%WqsxVHINp>(CA9H>x~=oxUCKK>IZ z9R8(FfY<^r0?K$*RjqcV%5>bxBr(k<{s%RGkGr7wX^D5xp6dcCI_~VfeCmm4&K7DD%C$Z z!3D_4J@YAOKAzJuDY#d!#Ei!ubT)>M<)A%CK?dr1zq+UfvtUsHt#hs+?$_HlTqLme z&OUJVgLZZ4`+MscJMzWHq9vln`rWid zpN*VSn5&=lCMlKsb$Zg>cHFf{KP4R?F*@u#H(-?p~vy@l``{kGi-U-fLTb3~X^kB88W_bl1j)WLahbZbMq$mK>Zvy*b$u0$ly9P1Qta z*>3K2nhlK)$Dk;tDl`#gm38ce=kxPs41DEMSJcndH*-&t6K#M}s9tpd7s4TmI`u9x zCWb-ClpCsiY*Z&7t5@hSk_Ii7v_4rrf3xKHi|#ydMpNZ=5p8rv7S`akxnkn zM291%dZ&d;r_-%2y|%YbD92c~Eehq2_Rxv9%85cb3yda|^VXfwJ{Baq$JN(z<46sp z<4FXYO02x4vbn^{!kr&rtiI{3{^Pgb&&S43fLf$_LW+T7wF`to=Vw8J^d>x=mZx&J zJjGwT0_4R6WynEkT?~GF4fH)jn%l;6{zk1{U4qzKM{|+7J{CjB_jCvMIv-!VF)8$x zdDxGKfTE}UBsqu1>FAr`4nkbUFz5@y~v8g8c@AI&O zh7SEDnbLTWne$VmqkFMg{3(Ww)I7G?jU(_S5Vzb$*`a#p{IyAviaOC5nh4$`#kKLO z7wH(?yVPlMk=P6vQHGHy9a3mAx*YA$WS1EO7qWsja0K%JN1D*3{W@tR} zE_f=RP2qKOWzrqx4=ps-zluAJ5Xp6YICL(5(DUI);Qr_1vU5wXgmVe#;b`y)p1Xds zQ*Si(Ls0b?{%#%Y2R?!ioM`M%?xt|PSqqQMnNOz?eqDeDUk+#av*(0Tnq0|N}`ydFfSF^ER5($PfwiaJeZIxA9lg;u$r=4QIVRF7=|8&7As zw=NGp{GEzA&T>1MdzOHlg~YO$s4^S~uB2$a+ekWO5t3NvnnE)9ZUlGiqU-rDKKzY) zyqHC)5uPs=DL9&@%o9WlJBr=Jq$VPng?Pg`N_A$%;Hbe0JfA{5!y+DH$;rOFW%;oH z+83#i767A;7mnnw{(h)VwYMOSyg%+gQ}2o>F~Av*Q{zW7)f)lFodqql*+9$ReuHux z-`gr@st5DQGV9rIERLy`nafML!$uwA0hjA9zd$Bc5^QPv-z1UG|hiI#j zOH3sg6MdyYb+fsV@@UMT_R_Qs^`o3PmWB5il!>v_lnKUPo+cXfX_~_{ z3vh0A&8pviFz@(f?yX~&M_Xl=fiZrmsIB6b^)7{x@es3pK$x5U zR_CU%v6B5&wfdz=Mkd3oDKA4n;*odP@Z-Gt5`Mh1BX3g+3U(TMb6u*~uU(4HH|HS- zOTF8vRa9RmQBekN1npX9nY!`Xv8fsvw@F4S-pWDmoGhco2(b`tdgYQUngYQ?)E`%0 z4`*;*aP06`6kFz+nI|8@0) zTxjomlU$+;p%mURk$e4FBEWC-Y%xG$##EL-FB$+o`0=!VcHV6eGsQ7uvWNM#_7vLA z!h^>y^+*hkmYR+Q6)nzh;Da>33RZATmcwS(UM#q5;u4Z5$Bq1v4>tngacX>SNme!% zBFWu>H+zdD=Td+poze0K}quG0)`|Zr;vV7PN|kQmH5_%^Y;`45qu^sV;%-tx+nDwp$r> zb7LOy4CXBe7jhEz;4dj(pWEpaJ|?KAh(R@AzsaqRtt20sm|QNu5)hd@RFAWANu)^r z_dFvTNv7thn8oD6h$#-<;`uTveV>ocq_EvkeR$bBDZ{?{y_3_!h5c-ijp^LM3RcJI zmGv&gf>vc*eGA?H8m-c<);z#p%`PFM$d1)fBGJsf&N zN^w(Pd~2gQ4Taq(XskkuZ}lfyY#6U|M}l2@>5>FCh9Drd2m%YO-aQbkNlQFGU}2Tf z805tLtc5w%q&NZ|7_CYG3o0`@ROb`}B%YYFu!z+pSXhyRMNfC%uiGS?@EvWp>}&l-`1s~w32$L=L5|J;^G`7g)d|d&7#Qe}q#zm= z80AEUX<&~@C2M(BH`4hC3+mSSh!mvYG0fO#N^ApjB=KvxSgKRG;|Xc|{lZ07jEZ0- zS}Ckz8iU{_c482l6y$|6P2ZKxB9tCx3bV5;JM1iK^x<>I$ia;9*obGC$0hLj(n+@7 z3E2|rop!Cdgt)hknQyo3E+t*UiA@sYot*0YTry23)wat5qv@8ccySZ5fROY`UW#xr z+M9u1A~uY2-AeQ&Ehz)5U%fI(j8x}B2QI8!hILclazeQKYzk z#_-+q#V_kw1$MsNsJ(T}e9NVFHx5<&`l$d2N3;yMtc7q)teL|CJJr*v7+AkLsM1cX zdFBn5J9kM6Rbt`2##mJ;us0@6O-$k=ESmeKdiK{$zi;C>A>~2i$pF>&qS^Q5_}2i0 zZIk9!&fgTc!MtV-sHZxaWhP`gjXmgUDgv&cGCi3l=m*w^mU&QP-(Mzr>?T_2kA)o? zf2e*0nuI=Mi5r#0=nH_HsrOTp?moA`f6ff1c~)KIhpXGs-0xJ>euI+Q_-MOz`@Um< z=sP{4MTfGe5-6@DkAD`}sdvAaON!x;msoJBVN!}L4-s918D^2q#Io_lq(em3xQ>jw zwpnJNU<$qI%v6H)CZHJt=*&*HMq9+!?+wCDxM{Xfk|!! zGxx5%?=H=UnAes?RwJrOk%Kyag;#I%gGta)q!*Gd27lJvC5cI|jlZm@H@N%fHAm;W zCFF4Ou0Xbc9!?+<-L|KOZ@4Hbd?=Z5sE!;8PV4KD;JH4rp` z`ri1vVG(=lgaBS)GJf82t@!WyOR&Ph1er z_0kQ86HQ7R!vmC@x0f!7VPVPvz962Z@z7p-L9n-aNXst79ZAWBa-#FxjvOt5OkG;0ZrNz>q zugkItT~Ov#>xtW0Kzh+E%hK*7@RY4+DCWimq_|S%K;cR``AUxo~^dzCh6}8CZhkqr-1&lyG zD~I)S;ne|*n#okRS@~R7`vz*@B5Uv+OnK4j{PEjA4k&5IkG5N3v#cu0Nju&NV$oNR z2u`)X92Y*zE9x1_rC2(%RZ%}?XkYr@OpOW~8%#EG`tt1f_<#Bs_I@Bjf>|&H5Oj~?q;P;i;-Kc0VLw%vzMOjcb#lU#65RT3Axqq9O7-F()*07>~ zf)v(gHwXeE&&|Dbw~(5_4`?~wJu{grd<4Yv6|C6|So)k%EL=Uxx{r+x(1ZOZ>1g%O zQvdOu!Tr+Wc|#xxQzYP=8mRT-YEr1WO!xr9JL92ES{#tjHnhN4O8YyU2nLl9ZBYW%k?VqNA zBqGYhU??GX>)xfS6_$wydV3-b{HkLLu2Rw}8^k*cTgiei^G zHz~Nk{e*P`NwMNAyv7g2$^k62h0#(9?>^h;h0de#?!rP^Q7$#RA%heSy-vy+%E3e$ z%-wUN;_d2?xHR&*NWLUyn@k@BfqPx?PkdlL90OQ>^i&C0F|v ztX~H1o-cms=6-yB+B<)_Y#ZEL$40hWN^XT|snuGL{$(ygJR#(r*KKq}$crlv0-e-8 zDI+aE7INi;1alpnn0)MFQvN*FU|u+PDb+Vp_931dz*tM=>dBw>8gd=0*JXNj&lm67 zK<-*%_tsGB{&s8h&~pzVF~^3KO4NSsLHgV}bddX9@!cvJA62FUm?p^Yj^n*?d?{;Jf)aDmNKAZpHU4 z@=uP88_!~2GN51@_^i?2YY14q)JyZgpqNgRnL5=|<5i;>?CgCQnp&M=3g~aAI0h*I zV0pPcv?A0OE9;G2Ih?EKb~?pCPJ9g~??yvYL3L7%TD?|Lr!RYhb2YcTsZdLE*{#k_ z7F8MvVy#?hgw`-za#?%pp?l%8 z$P>n3AtWf|-U?_$;CHImY*lcNkaos)leNf$^cgrHuRE6M9 zAl3(Av!Frz_3Gvm08GLgtbA?$3Wo ztMi$=utCa}8%bKwAM?z-L()BY?gvspskxSd%CFsSbWc%UxT{mKRB{{SL1*ES5{9#o zLLPJ>kIx)fQw)5>({fz?S*Y3V@(v-8EacUB4vLcw6`qoLJ!P!uR8=iJI&be+m%g>P zj+t&bKlE*7;Cph`ki1WfZoa9~3Mq3r0?E0Q1$KTrYnhOzGLdqzLVHbOqTIV=mKzNJ ztS|4R?>n%tBXXkp#DcugnWao2t4gjQ$sC!~c)4L*uyIoKAq#O{3P=jh4b|y*mIWik z4GRifr!y}nSe7tuw6SntqeCc9(BE#x<)xf08`z>+ot5dAuMdBT7EQQt`FJ%;5=~n+ zPe>*Oc2r~+Qn|%2AJ%iZuDvxKN-Q!N7IU@8Pz|4xPtfphhmWx!J`W<5(REf1vk`jY}UKG-v$r+wZW^VLT{wg_k&g z=pDsFod=fX&PHSFCMNfi6&P%`7-BI@QeAas(TBB$`cg8pbx ze-wi>a*MI=vWa;AdQpByKiFHxrzA^PJS1>Mt~7CrR0fgdu>a`F_%^#uOdqmezjMO0 zcByPP!8zBR{$cXXLq~7}^SMA;7^;z7ph+8rGYhnf8uTpCr00ndG`2jnRWFE#00K=C zvl2acF%{`0tzNJ|qXxt}4gyUAjgSIH=zFy00960?0wr(~ zJM(QMo+9|Rk^GXW@Xm(!bLWJ?V>|-<2B`XcRtN4L$vZc;asIuJk+bNOUz$ zt+o$eLO)^<^PlMOmPaDky%M1s2CfLTA29xIzd+K}UEltHB z5TOVj#JfW_tI6o_%zqGJB=2}6m5+k0QedydKm`#7u0ny^+xz>k|EfB*%8s=jR-6(B ztDGHcPLs8%77qu7iC-_=O3kforMBp*KzF#FZY901s^!Uj#fOoay{&){dDqjQswD?L z^|*hh8-~xN_$R-+DG6;A^=59wOK;fkivY7w(jA>?oqQ}@6s&<=2D6Wr=r9s} z*06rMXx&^kZ{GjI7N9=FEkVtGx334+0|*2a)BN{P4;td<8{prsD7q8M?TNm0xtBA_ z0s*@RDL-1Ei+jqy%NtEOqo?bs$DEM_ht)yOX!=~ZF64})Uxf11T@H_f>!EJr8AB97 zxm%Sef`YyIA)DReq;9@YlVp7NS}?9tFb+e7PhG)SysM?=GDcErKVqT10QvAP`%O)Ga*duS-_js}%Yy`y0w^*b6^ z76p%nh|}H^7KuC3lX6@5^&YC&wL1@WK`L^K7 zg%U;uBVi$RD-u>FrHO=y)`m!EQ)&*I(jii9p=$2K>iav)sgzLK!tpjQS@%j=6a;gF zWKBVEtSSg3v|D-SiD!FwH-&SoNK3*)>IWpOZ2AES60IMQ(476o><4=m7f=r+RgIwH;8QB}ljtoQP4S@$)!<6=*jz2Ac(t=ym^yHnNf`!9& z=mv6NnA{lTVR?4zyN|%rS@;aboRIN|)mWrhy~O_azmJ(d<5;Osf^QuChev(3S#l0o zQ?o=ZLHX>17BYP9G1X<)t`xp2cGyFKmB9)*C@`n7uf>eAQ!h-kR9qxpoUB>Ac$w(b z;Am!gQebfEb47xe74v8Ms662p1igvhm{?zP-iBegR7fUaw)(<05vz3t0>4N-lYRz6 zmqi-OC8wNg0xx@k5P!INCNYZ@$0B*RdW)*Z5HDSi_!CkFRh5~PJw@BkTN8LKw zCa;2Wo-#gf>!xlBV>xFr2W??`vCik;z?R>#<7ie}!J+{kAI>Y@^F^OaVaaf~I$fa} zdO0KNz0?A46!4spb@RJcXYw|I*1TL-CFl$HbGF1`HFf0g_c@!n+roQWF1)LfR4$e3 zIV0)J_eHRaXo27}{$}@_8iMsd9P~tB$-Q_*%4WCds{X(ePv&l7u2GDciwhpHs3+K+ z5>Zb^VmCD>F>|}$)eRqvn(y}i|k-~=vVwkhMi8iK@rGc^R@8`trq+e1s;*|tJ-_$i7M2CP8= z!yP^(sB`g*y96VlofOVd{E!6Z?AK9VPb4th^#uv4uRPQhHwo-PAI5!@Pb~=!bx}e> z5}t6QKzYxR2r=#uB+z5ao<~>WK?z`b6R{A?K>6fTwKJ^ zAzF5O4BeQVR*RCK64VwC$%;3mfx|9574qTQ;p1)f53qI(1T;D@qk6A)crQVJnx!;pMRH=@ZZN z(ArAUlDQqIIW1DMM4f;d@g@wx*KSXBrSLiyPxW7I%Bj@`25frLQDDd1bBCVUCbs&A zk{L;z)6x;#6xr$+4+O`^r=-4h1J$?HvA*t?7AO0{kF532o@U_-h^In@6O($zJD~~& zu;Z+8-V37+Y~WCtvi=qq@fXMq@doZ%^#NQjSv!AGHc$(RRjQ>pxn>D5v0%Z>iTyM~ z$^e8wd%uxY?Wfm0iCGo2e53#B3I7k>oIS**=LuYD5fa?{LJJq|MnXH0)}U@wfbtq3 zb_{vDPDA@BP&|YNcD?&Ai(NbQ^kIUE4kV>8J{NzY{9tKl=v6{OL&oWnus*78go`O5 z!Cgn<0k;K6aOF}7r3uo|E(6h#ZUhawywjJ%K6?>Wnf_m>q!+Sb2yfiJZ=SO+X9o=Y z8&vG0Xgu*C3jsLdRZY-fy;RfUL>&`!Z~}ruc5xzkVp^XbrKM6rDBS2Wm;nS2dxCdF za3#9BtG)~JN%TC>Ki5mbe>Wakl$bKQN<}NZZ|p$x-|xhooA`;bX6PQ?T|=g%UY{5h79>Tz<0xX*eZ z;6qH{&+qojW-{)Ek@+}+x)}CvG{yQ+81Xj>iNF8)H!`6FsgD7-nQ=krlU9$a#3eu`buf&?0F}3w)Wg)7-&*%j zev8ChD|MU{N9fm_CQ0`~+bP7ez@KohoN~)7F%nwN0T)62r-B%S?Uqm}kIE6PoHh#v z2`GtWJtr<`lqqf2_2AhBr!aOQ-JbGzxWg`kp$PTgUwNR934h19ptO8nhP%J&_IKC^ zAkOb@_c)a^+KTVf(&$13cPJ~!Qn$9BGk zG4NGN4p{gqrHWISXt=mYn%Yj0f<%6b@B5b4c1(;rtBFVv*P_v*bpN#Gl60ck@j~u5U%`2 z1-fSV)7jY>roe#(SJ~+kpty*EZ6|N`0$--YCbGudR(g`YV5Z1Ih89#3*!4%{zM{tj z?pX7jU6m@7*lmFxx5tA!OHR0}($tY!n2~K00D&=b6MX$vB`wK&lP{ud`E0LBPm&QR zUqs<#NDBmwawQ=eSwE+JMOKEp9t%eT>O#l@J(UtF{LBJH+s=yd`YI=91B7zswm?t4 z{P$n~)u>HURa_+3t~+5n;hJl;To}nU*D~+z*@Ju2Q|A5(0)*KKIMJAkte4^+%oOE- zJFM~!8w-_!q;#4J`5-$(?lBpvNDTxNe+;E3+X1-FxypxN?kHrsZ#1bF((1vz1y*lEw>=Q8`#DEu^t1Af%r_hn0G8G&njwG($ z7zs>oAXN4~5?HpFb`m7YK0-oz5jzoxD<;pIgBVM<2sn~6`r&~QqKZOdh71C;bgW|gL_rNjM|wmlD?e%{nx*ne$FPaKM2$VsvedF zsyZTer?ut;uqt7;Tm@F8C$g1_edYB8H!lfK|1ouo=+XNw%G)5#ZV^nwvl@l`ND)|p zp|Z)NjC!mG9BM3`=K*W}G1U5q8%uXu=nJFZ*@$x0M3Rf0DZ$2o$XwmpZtafjGF%#! zQa8z4mKz%IvKlR73z?hb&6G8NKMbsvh(AYWL#5U<-^W#vrA5?QLmK+B`-~GUX@FR% z(PpJ|5>%WI)EXRKC7{K$wowIBNnJB6&KlYnE47BXiXo;}PuO=U=HK;l1A-yyRYWjE zYrFM2$V_~{HnYkqba|4A8^5+N{TW^);#=!&1BpT%B_b4 zb`Ffr!yVDIkkEnFceqvotkp5Vm4zq9yMi4|Jh|R5v>3O5@h5owtD8h(c7)&jKeB^Bv@JPXB@0E0Wo+e|5 z-SV)fe;Gm4(I+=jZ4t0Cc<^1Q2hoR5&JKe^s4&sZ;vxZMyT!XU7r2#O^q{3wJ}&HJ zVVE>f!wbJ~|0t09Ob3Oo%MhJ^>1^4voRMt^9%9BA>5L^ z$PklC=lkbQ0L>+OWoh52lwis&*Ad6{c57ix#ssZYGilZ18W~bZvk$cV2N@{e#Kzh) zgj@zH5@s1$gKXXj-^Kau5RI(Jvx?gJj zc|1!ZTpFZtC^CWYVtmW8@Hvb`A5P=Xx&fxyKZMhV!$A`9ZhrD00=Q0O)j~;&=ur>k zK(O-#carbC$l9%^fimULuS8-O9GAXZu1dgOo}b7E2`%ri29!V75Ar#vKfXdwWOswO;Xb!j6!xU`bq|&(Qur`_|;j>fvd9`O4Xs2b0afF(6lzA z>fqQQ$rtsb!lhWCffcTBW)TY5wepaa(kN&ju!S&5lEnZ0k7u)U$l_%rj*IhVqCg!5 zywe^AIOUfn03!XuC}7yU7_^8LA5u94YJl_Hr$BaOw~KWKB>|#%IR$CcQn!C^Z z$s8hHdk$#D*7J13YM8Uw(LlNPpsZsQ2@7PoJj_}6Zx{_bm{=SOBq1-KEo7(sG~ikk zL#=TOG54(z~LdwzUtlrO?iIgc&SQ$gK2Y|9S? z^x;{JYH==(MHEX3^*Bj`7NU)3Z^=O< zR&F)lwv@1{9)HX4e62gN+q7ycZXtY8e{kHAVva9B^L_`#*g-!&HN(Es#;5 zzAeN^G0oTl*?aB;`j7@6Condn^98>VTL~tG6V3fRPM}~54sJ9&@nm(@OfZHuGsa7* zNdzM8`pa4z#(3gPTbL$4r!6pBCB~z}T2djbT#X%4s`VPk;nfDlA?27Ph$l}>>(f14 zDqe@ejV^;3K=809ct-?@D&m4rI~E*BO>c14X_QS`A5FpC^`H8^$DiLh z<#H9uW*qdu=Vh;IM0I%KoC98@2KxI-$-I(S#2RJusjZ?&_4QLH{u~Sc^}Vm143Mk5ki}ym;-=$ij(Z%>Ncwl~%xt$zcLN_&Q>($` z^OvDY4RP-5VcE=Ij0~(JVO>el4?FVrdwWB9Yc=t-xr?!ecAQNBr-7OjKph!|%EOiL zTg}~fp0*a;X~o!DBvqe-7-6e(xb04Yg5dJD^kjs&=_4V!$_I}NYYPRV){~I55c*(k z6iv}Pj2i?A&01U^$~Hn<_c@}!REIbS6WdpIJ||lF{o%- z3;Eq|kfjVPkmT$)_H#zkG3Cc;p`E;?_DAV>7U;=v@LQlNTe$%XgtbNVC}z90&1r&C zsCVVX9eUaS96?>r#Cbs$rZ6o*`!n5q*6@K|fZ>LX$$9;<@v|axUXMew> z`S~yiko5sbcP?SXBb=a1fqDG7Za!Z}#Ra5eTgT4r0O68XmHOFbQj{aFI34 zG>bgya3LYOJw7GmZxU?}gG9J`OnxFK8(4f}4KJ^|zvsepds5+~PZHuu;TXr7s7a^U z5frb9q8)Yxf-e)DQ2%!n!k?~alRYT0(Wg~k&dv@d3NISk=cfT+*U$Zd3gxiRt_76i z(;8}gi|m+7WXD0|z(0kU!Z&5Dua+PiVKxulfAvHl+EJ(;P@eTPx#g_z>$mC+sl0ou zLwQlag|a!Mh+=2IUbok`*3&@mX3GWR!kL0}bco9lO``!P@{(q>EqeSx;)ExQeIr3d z0Y^o%(a=O(1r4Pbk){skWk(xHoMJ@68U)G}A!L<7K#~xBt>t&$sVzAlm)y$a3?R`yO*>{o=O}}UvLPr$LeO60mY5W+_ zv!Y;enEs!hmP(`B?erixOgpmRFqzZJ3~7*HM?z3MdHQ6fmF~>30HYp5h=YSM||RB7#9zraIR zN`06Il6%R?8aDwv*EAjT;k5tI$E92hvM_ARs9b5RWK^!knenK*SYSa!=H|OJn$lG9+EbFA0ZuHaNis1`9v9QNs#4|yJFE5B93Vq* z1=ljuyXkR>MWYG95yZyR(`gCuy7jSjeA7Dl`swq{<>#9TDvD!dWCfs)KMW{laO$=A z+In@YjdM+hVM;oWo6SiI4m z;~#U-9iUPIXETpuNX-bOxx(`RWfqOF0QGD`0fsr$A-&varTs8Sgs?At^2$Ey=p}Uv z8GTFxL)LMofgu@Kwkcc8E-G=&vNfEDSD!Dw9=ASzyq>@>W@QvJ`cEiG8y$8QTg28o zv28GDO`iFighQ%SwB48?K9N{P(RYOp2RX7X6!9>{xn7g75@`^XT#bg<4HPCun6~wh z#~cYOX3RS;;(!*R+s|zFp+2W+F)d8Q6`1ra4FeF#wIl)6m8OLOkR<})i%0#+xG>

    Os;v28cn1IFn9Yj~WoB z@wHR~pAf_RI;MSmpCK9|tix4FgYhZkizI#IqBLDgqm(a-;w6n}!A9J;uvGwiRf3Qr zrv-{|2et)*!eO^7pRCzAlb^)$=~Cjpo_{(yJNv`bKKkk7=bN)n7qj+% zF&FkxR}H<+=vr5ct;0bFB*;{UW0SfS7`bK%wv@HVyEw;K3)>YVBv~M5wEFW!7FgX1 zhz2s=_HA^xuF%bmY~rm<80yToKu;jF&Wkc>*w}0ev!t^{EiYNpiTAICB|R-=En3e@ zTg_RT!^fU2`$A?OT87bFTOrb;tms;ZGEUsy&h2oA#Tpsm1a3eh~C7WCY z@bAKOFXrFl!;SqG>nvxw#g7L#0estv)a#u_3ZCk5%;`=lE{LB5T{a3v*cttkLHoL8csq7&OupB`r!kblBk)xmS;ss$(dUSxNe5!C zhVEb@oNQV~SO=w=$8U_)%8=d32jOD_zV@AER@zK*O~l)tU`=O&l;WZbBy8tRgbqZY zYvo6cTw&KgYv*VGT>Hf7@!Sld8`ukN;qqZ9(B}V2Qc`6jVzch+$}1~7j8$owL7wBp z*QUU(WnX$c@Lu~Ttzo5HwVKC9>9}c~U$(BAH=nOsZ|4|YKlQK8OvOdU4aooW)^28i zkR-mco*J$uqABNW{+PKyrVn35%om~~I{$$_3#zfPW-Vc2>Fi%#wXU!A)UW3p$hPa( zWMZhs3E9>g;P2c0@F2;TCsXH|cy=Rl-BONv4@|OM-=mw!TP5B=O)y6q? z%!Bc(S}mERNI{&nCxVQ4CU|1hP)f?w54p(~0@%Y4-ks|FVpC29at^LVjBNe$_m*cF@)CAGy!&G``cO5C9kJhYWzsyXkM(-u$jw{Meee(W)Zi3KsC8vFXv74FN z*(5`HmD<@v%)R_(B7Jj`mwJ3tEy+_lzHe{9?7H9#UY_!F>X0_1X4|-U>YL8w=G_YI zb7s<*U0%(kaoL(Plg2Z9#V(AG!bdr~BGK|;m>vLvLm7tPh3OCTM{c6muZQLh?vHVr zm+08}8|0;_8}di;;#6z-TN9%U%WrCw7yJ6=W0YTmy$bvp%V=GgfG92!YmV0}aN=$b zDn=SH5!Ij^#N285P`uomOhhk1N7KJ%Oxj-ZCmEx*cgu`KYNW(if_)Ky_2V%wg6VM^R&|? zrxlC5;3j&dfLbFP^YKsS;jz{n`~KMTi7$Nh{z$L=galuGNk5Hf7!BJmf$YFP@AO~Y zMof97mX?p1__|(=i-E*Vq`!=2X%@2<>e6`g`cW3n}JP zva4o|)XADPlF6-WqiK&<3X^`ke1lv7J@Qd(t=o`<(`RmZ|G4t|DOtV}n&8uY>H!_E5meQE3?J`Zo z>Mg@hw!eDICc`j}>BW-j+=X=``yyl);*njcKKJLW*a-#WWyLP>rZh*_0uwxfmX(7q zU+;ry<>;{W+vl^7XGd3OpU=NuzHeT)u9utkb8%eb7A$O?H@IM{wZtThStQGsDtg^5 zT0!T=FK1%8WI;eLUAi!X?&{(Q`b_;yu4(es&lkU{?_yd}cIvk~s|)k?d^_F5ga&5n z^=m!LRSBD&zH;yUCp`KYhF1{VuwhB(Gd|UrkI&-ul{JyJ==! z%$1lVbQALF@)=x~abZwPlHFx1^%|(!7pcqqb_v&qLtj4@>@=u$wLD>JLl)H#x1} zizWYi=;dt0JHD`t&xU#*S1*~sEs_K^XI^Aj+(-gz)s{Xl_rlB${Sef&pcbbI$+Mug zEn~XLul~JAX{#=#bsmlzGp6S>FmPiA?_BnG{bEcmeMHwT#^kb>i_5ZoJBxNB-ud~A zX#GAWbVF9|T=w;cmHQ1@xt)0dl5rym4K|f0XI>7TnH~D!h@_RLxY~98l&4?ME?PHd z$D7SZvuruN(YW&O*T|ho^8Eh*00960>|I}T+PV_|DxN%@Gt-8@Nt(<_X3~^SGxwy; zNz!}ned-8X1l<~o%63T3r@vZBCP2U-WD5cA11VV6YNgfcx4Y5`A6$5U)JA8?1$?rL zKeCTo`R6l@lGq!aq1Y$n{NRBMaO{1>Bkzt5P;^j(Lh(Pmz!M734;mlf7pO?So?Ik- zY+U^i`6PPGXuNMOrRqHoLh%|tKNvC`WA=ng<}<)O5|M<^XfN2My}e))70qSKMJ|7m z2q(nfixFiQ`3Z^=XP8BCj0fEiJx=RM{y7w%i7)@iN*J%6#U!{pKd9H+jgyb9&Ve^- zw9kf!q3huM;J9^CZ`K3f_{h+(KRZNS+@p*)^|%Rjhg{sx51Q?I_T?@O`41>fsCQtb_Ve^Z3mVubaYES(uS9UKEvT|B zJ`E|zj%ZGu|NH!TT{*t^*Y(%V!}ZnukGspiXJvNG(ToHyl%?Z#`&3(&j<-{m+DD=< z%aNr*wd55Y3`3k04&9tw{sJ8Pj10@bZcg%BJa%il$YzDzc5Ot;hc4yX@`- zn(|vJOE9K(uM*YJEaQAZ7EL!%$g_PzemJtZa$JC`>8$EXKRe<<-OWx352LzJ0p>{NGiDc%eA0Wi-MY`(iX& zHWzPbKzfC1`$j?9zED=Hc*af+>%PP@3Li};*(8kNC(Kni*U7shzWVE~FqmhjaLo)S zesT^cesp1B7ry#!!HK7?@KLa+1x$BMZj`aha?2 zTc;3$FJ0@epx&oiU7J$vB{XOoT&3k%TW(IE!kzt2vRRU|-$`DJclH-GQ7dQv8<^V! zBTLtaJ31~VDhb`5}`dX1Nk@Qn=3=gv?XQ}Mry;!O-vb1?e` zja+26%Imd5gBjD11n>E0x?A$Azy6kzWUJ}ik?E!rN2a&SZ7qTiTL2k1=CO9-+;nv$ zMqe+UY)nDt;;HIL%nq_yIG}Qp%W?sgn_1LKOG8ziOxYZpCGBH!Qi6*=nNrk{R$GDI zqRq9^3zV6-xamZCf$eg`x2(i{*RrXEHMLRyyAvq}D*yYI`}QjT`%bc3`QLYEFy~Xu ztjA5b!F@Uy()jIcsu^K6vD&-k2d_>OXTuIdD=S-q*<=eH#%vpNfbY{G;#GyINIhBQ zgxY0(D+l-v4d$M?zKdqFx{_eSyjE8dY>_XxwdkyztVFfJrd=W4sP@-DB`~zIvSoG! z>^FANuK0fU`SPl>Nmp=dOHUc^uPfL|oKk`-c+Zk#?#VTM)fLMd<1$WJkJEc!-gcU` z2e%}r@S-BTOi>>L$k*D$x15E1Q38{>eO39J0T&)Qjtfh3H*Zi(xAa75<;mW+ zt=v^o%+0asY*NfZxhx-$IT@x{1ojHxcTary)lCB%=C#_-y>TBt{ON}9`dpZ~D3uCt zLjf@JBMn|2c-6BEj}v~Lh>n&Bvt3`!5IPpcRC>FX%!$_{EKdFu)f|nZ3X`ZYxp>HR zz0D3rBeQPTpFJ@AlY{rhOnFzzieMRzmhjX+DFdBO9;qPnv=7fHltVu0;2mr!e@y4Xu&E!Knq zzAm{DN%}NRY>^v4+?M!a8XVdpst4l)rq(943+hd{A=mBXb+nt&MDcTPJ1>+}S4Vz~ zC}~c8drHlSQjDH-dT>1yoN=W!*^Tr{oS@uTK%vBP-P46q(lP&x2>B@V)6nI$z(6BT zsNkg)fSEtPz4Ob1jqXX?*-QE;@i_SMN=y8^fwgIUiQ@cYk6{!*Kiqz~>vaCQ@;DCW z{e(RnC4~2s-^T-vK|(K{@9N-61beh6UYU?l4Y@HiHAxs+Bc`>snUUhpxs2^5Y`0=V zD_TR!4Iq2c*vERN-Tne-!;a34W)({dKVv^laBx^Y#cE(t7~4}sdS=m@lU32OxOQk7 zM%%M)Fcif-%&ZX<*bxmVukiY|&oKVwdjlGzA&vnu1?gZ2!~pwEOrEk;Df_~7|%HE{tx?!mrxHgMp=C5T}Ce+N$>#LC*D@T+V7+25eM%y zq}5EpXn7`$NX2wezL!wZ(({!YkjchS=T&&|}QZ#0l{LM~RjT#Ur$)C~)f(J3i zkvEi~kl!f#-5Y*URmF!>DZdxz;_0?9?JF{S{FHG03rG$84~T6gM2vrM<+Ajm9Y@8sMF z7D8*(^t{hT_5wIMcs(`+)28nsu!`R)^B5k`Cy9h$_IU%GpwR0vI`Fb=(eJ!bpZI+b zwmEr1u)HCoLFxly!p}qO!%hQ+1NtmL6UR#oBVWW)52py%@(|Oa>zG$VOzMfKeYUHX zqN13ya0?s7W(mQ=K1Km%cesZc29P;Y`JnI0(vJ+@l7VK;!h!q z81#$4gvTFbZGvZ&wMsVd{NS`H2IDbJ#Md#Yuj$}{x0pYQ6T~JHKKV3+ga}F;fv^-- z+22wgvcC)EqTCDIR@g}N1~{J{XS2>Eoq)kH2lYyKx`J$%(2_R_ZHab10W&*KH=Tgl zwoWaFx)CY8P_dzxNc(K9k$mXEETdk0#1Up%dxnfSOJl6#DKes^w^7dG24gd>Ts?Pb zrloY^er5+n7=2_&$7C{KY(b5)8w4%_4s=2|Evy6n%Dq){Y0jax@O?>~*g776$<1on zoDTvnV=qqq{yXorAH?y!5Imyc3x~$>kOO1V<;~;NVS6xPuvhq<0M9hyWkNC_fT`nj zIHW9rO}%`mp9ojmhu(E0wiNeh7}AlRwP3cfe5HJmg_6{A;}}sQ(a@fTwYDUxSBk=k zMq2SFei=~~XvM?K;F~Q%aoUZsHQ}*0C-fZOW|(7n;@v`pQE$BLxuT6v{@9{5KL%7r z|5=m5`O0#B1&a^#Yv&2Fg8l12iY3_(M zTHsliBn+_^t^FEC^DRxhKGNILV@=B%&NveJgs;KYczZovs(UWOj4DbzU&Jt8&oNAH z7J+Jl>t%v-GB=s?TThD^D~YhE=9_xQBobF9xF1s2_>D=pr=W zwRHaae*Ne5$GhwAH$QH_T;6x?mDMS0Ur>RNZCSxMg~Vy&H1{2G(tGxu>}H(ohmPQ8 z+|0$#R1k0OGZhM&R8D$V*Gy=wi-jGuvaS(Ra&r=WEEMsWquKQ5mt1{@sxv28Uu6Qc z%e|*FfAidm?!Ps&1zbGzN$e?Kh+O{!hzA#68uRrhp^%D!^j>88h4Gzva8e(6e0_T& zG>!S1B_8n?U_(Smx{RcQ_d^a&u=jc=#-T_*FMf^1K1aULp&(Fs0f4}-6h#S1UZ8r+ zF|aJ0l~s%4p$F*<_^1!~;;Awk=$biMZ>(?U=uoqWm`y>DwN8wYRssYwVtR*KZ1&-L zv~rUioi>FoC?d(xoK+$JCNm8>MUSzr3NUwdXc;F)LW5Q$5J-}q{jBVoZig0VO6sH=eI`e{@H=RQ-uP1XNO#xx{d z_@dU8bWH`n-ZgeQ^K{NKkSluN;M<@NwXQ~1HNQxgQ_)v|C#Wm#hvt7X_F$^O%R?G- zUQUmcTXRu~c0)QoVQ^GsuU#U2RZTgeG_S{NWD{;dH(t?{aV-hHBQ+A^>j%es-ljTs zTISZS4ulY#XI}j*N2E=vN10e?R|+rYw|pH8xhmP2Su79zD5C*}DXv z>29<55iyRvJTdSCKkGouRX=B4!$)LY{eiH@8JwEZ4ag?+Z{8 z`tunD!4HV8rD2|Ruyso6Dr~N8bZE2-8lL7L)~)CxTqlP%FrGOCl$ zOnr651S)9bibrG&J-?(f8d{ z0H#tC6MP?4R+gc1;_~j}ANW^_LXzZ#QFj>36rGi_2r$!bW?}dxVCMe-00960>>cfH z+qU*q1pm4Nmc(DNlWY!t?_95PQNs$w-Q_B}<}o zNQstP_fINI1 z*ZwMSP+)vO>*%}iPxA7!=}tQRA^qiyHzj|Uyo)-zTVLVppBxX-A8_mEUH5R(%=fU$27Du^%R#Zgy>CVu^1m^D zl!MU5OFx`+2HnABG=QQnM*T7Sf)0Uqww;41n)w0Qb^Tt{$&p93n@5e0JW7#Ak+rj& zrGriU)v>8=bvE^?W;V6_h+kY3qxKG&HbFk7feg3lUGi5s>}Ja>roR7aVFsT*Vl%+x zGlwAB>z-dwj68Ee`gw{!x$F=4isZMs%x%Mwh<~_c$ZVh#zvB!yxt_U%m|UCNFH6_- zOzikx^;LSUv`YL<;VQlI?UzT=bD0Kfk$q`&)UhX&R2lUaL%W&A7Oxz zY8s5ClJA%)tHNs;g~@GzV#e7Z$VZUWQv$`!HV0(*DnOK?BoX^i96m((VK#y+q<|7| zfNWh03$lJ#luH&8`M^RpgkqJz!Bj$(HOv3jCkO<_cHe|4ZpAp5Lz&vC5gSqN%lCl2 zkPmgUKR~Do-Lu&}m_OknSM6>eVtMfUY3lbgfn;S~|9wi<9LY%|6NR#oDjdm~$mkK9 zSs+sJL&3`eB34k~$db$ekeF2>3(3?4NXpid1qQU@m0*!^=>j!H$kPRjt981-Iobx+ zJjKsnmM9=P{U_3o=~;6>NQBD=gFaK~E!ENrk}`=1?1P zFk%G9-K0kb4unfDSm4_$OB;P8e8NBIfmzVwu0!iOMAd@`=QIY^uzEP$#0CI?f{SD# z=HQ%5?|2G8YGku|#eOuQa=lF-wjw-1=CE$$VA7-s1yY1v#ax;_&mqXe*X{+b%SIHs zO?rJLw~2VX*?iv=YG?I1RdlZ;&<~>-z5LF2?lT|~BLO5~R@I7pdH6=WU?;-m5;QD} z_>|B|6_*U$y9og-i6&IlSs_?Dy&$>7c&4>(B_eQ!r7rkd~)iJ9-?Dj;H>S@eAl zh#{|mUp{}N!(UU@%L@eO)F*lo_qlw2Z_+8i{&Lc}OqCFh`|N4zW9%}Q za%5gUSamQf%RdvcqAy3S0OEGopgqAT|Uv?XgwyUN(wq!s%VY2 z0zpVYG^=laHKx6&n6?t86sJ1HZ&Ju!j=1ElB!XgetMepa_)53BJve~yRp^wr-@%lx zsb=LQH1R6PR(j`lQy0R7meH3KIN?^JjHh8uHp=`3c>(*~AxqKcytLn=vFw~`?EhQw z^bkHfPwiXSj#Z_)5+xHJ-fFkQM0Xhp5qHlBoDZcD!Ad)Q-)o#@4egr58OWH>PJ^x9 zAuMPK2}fz)Av>`tF?Rcjt?WZyD=DLqVFcEbt@GSOwKimtSRw zWUup_JZ+`fh(qYKE6^a+rv(kw0u8ce03^OZEv9CzvO!*6-+7mFj@s<1MrCe~yXjgc zbVY56E%*qvWg3aBC@+bY#ZX#?eNQ9IoY6jiFvX{t+1mk9<NF}eW5uFzctXEeOi5(1Lw5#qgW?oJ13Te6g*>42gyk`q<#3@+QNqPE05eGgoz zW06+^IjH%@siU17^6<{pXq79hLLCUaQvlCv?#$vX&*QoBxqjx_Se|G;TAsUnegL`4 zWGyZ9g#K8Wu7gF_R`9;|Jf;6B->ZVw>Dv->Tkl)G?K|U8b{clBcoQRDp}X%=-JOY8 zUEQZo=c{*=#VMqW_ePPUq4AV)xKydm10*_cPqH~2_w^hBk1uLOqk|*ff*e9P(v<$% zkgzVL>m44_P-CSfXeSOkIy~e-=d8B`XHev>k;5$|=Gl`FW-XcT1LP(7FybYURfR3z z3vpmNpqv8T75$)CsBYxiebZkEN;=g&cOXaO9xh2_suDz;XeU0%af`Zf0(SZS*}(03D?h>&Upw7Jez7eE}WK=-gJ0fUgC zQuzy%43&U^$WRGV?hbDPkPI2JDqlH(6^C#=GhIlD>`22sVR`AAyCt$klAGcleUX|4 zft&}XDd|25X#`1AY67`(ZR^B#Lgp5G@;w)>HtQ~B*PW%Ln_}Q9Q_aX7UX~I||7kuU zlX5d)mJ<7Jlchut-A!gG@vS4p6KmYpVCvcC9T_~0hn@ZuT~F-`sH)2eF zFhZ1Zdx1ukk5GE3wfgBC4=kU>%K~%vwj^-gqFZX<$nU?d;ZUfgVGlHX8V=ksEwRyB z;ID>b-3~W49Pie7wUx&~ltf=h0aZP3Z$#8xQ`%^rCO48>W<;3_5b&3ADr9X-`fvQIZ6!CV_MXn4&m9 zJ)^2d{mqOH5@V?Q7Ad{wF&%>p#iPwNdyheeIv^c`47C6|1{sb)28AJjgA8idlc@(8 zj`h*_dJG9XG~q^`mUVf3LOQaXrGp8@%b72_ee=3w4^6BKzz)+-GzS=aP`gP_`q1I6 z@-D^M>fN29ex!<&b>|PmtC4lzy}F-E&Z}YvEqK+9AE-D~_tM7UvKFIQw*U9NIUw~= zx{*upQApj9j?0NFNW$H6q%)B$toyFk99bBJ)KyLk8JxFAaPr>3%ThCU^Z+!Yn{~Ha z@W}tc)FLa~+h%>WBtYep}>GcA{??Mj4NN1%MQ+EQ}4)rx%Tu`VGY zxVo>u2A253RY)8%b`UeTW%Jq~5^;`w!=iPZh}Att_e65p$7&$y^`Ep5l66L2 zIbQVPRwfyDmAWMhfc$T}ek<9>UK$gGINYsKx;|>v< zoz2Ob(fknZYedH}o~FisCercLuA9nguUpb6)#E~B;d|Zt^oOCXuFSr^w?z5+zqRxnMg97r%yqH%r zpD6w0@v_f`{=CBMk;Aflm#Wm9qG|ULy+ zOcYQ9>G=>NQ4JPn5)j)%4d7JYKG#X1T6qfN&Dx*^XklvPD=RNjn*r+OxY?5+%ZiKp z-JJ4bsyd`pg91l1%UH=cqItSZK^vA9mubV3uX7#LJn298UF_M7rvCxC#GC*pwaTq_ zL5~?<`6u+U_5-`RyPSDw_ooJrc$pI)K#kt=aouMoC24lt<(5diE~P1!-^4}oy6-_J zmOO;p)`gyMEie1*y1zZ2BJ=cc^WVzLECCT9a@5YV$TFBxy7;#I7-O}A7u5Y2v9qxp z)4I!MbCr*{WHN(kPK{aBxH)ryL~2C-R^uWnzcn3pRte#Pub>S(NpH8!KonW$N>}c? zod|#G9gpNEw-$^w!5L98g{ajUs?zeXIc22o!jZ;9_q2$_NW1VN4!PYde9a%{pyD&7 z)HAN$>H-I}Rh3{tO;xo7MQtm#4jdx#JZ-ZGahj;5T!MTia-hUULzih7vWjK`nd>*d zzQ0d_KC90tP_O{-wNG$hA+=Lo%X$a#C?3cjbUd;HZIG)%ZEHZH{%YG@TbBAN{0iqU z|JwjDKfdWYe%ff*X;3$j+2o(LV# zdS^%@+Mgd339q zRSe0Dk;6MIXv63y(?;aA-SH5o-f>T`Xn!fDBaio+y*^I+DeE+8noV}E$)sTcfN~=y zf8RHhe@rZ5fxW?#k1euLrbC%7;}|Z&$Z&biu|H#smx}ekGu!X)xFBpwYKvn57FVhGZ;C8)1>zb?;ASf-dvrnDOnv@q;O+KGsDO+$B}kkI$^<#r+c=W1!t$@3xQeaoxn5bv!qFbv5OpMA+tqA~hrx+xu%D zVxMrIu86{7^jKhWNZLtZJ5n4T=6b>N8}bpZ@NUk9lzXntr5 zlIwYX>PMj)*n;S}scQ>Xdhc3WGdD)|*kci_J!Fmft+Au{-Si#_U*{0!D)7$#_RGc3 z7ay)Je))3q_4Dbs^KUm-r@u;A)R_m-;`^ZR0{(YJ-dH&gqr>Bs8@m_Y`@QMGY&agy zKJ3xIrsy#xf1UCF@L!MP#P_b=?+u5CquGap^Ua?=qFWbB74qctV0Lsi-lLnZl30IbQ{HZrsLs|J@P{j|2aUnc-X@+eV?GsNfkxkmu~$1Tk6Is ze$B^-j)v1Cf>G!$@i;fxD@O+hY(Vihv!U=Cj$ihNbBfFcO6{{5N1oIF3I%QoV((dd zrc-3&lke#1A&R|3og>b)ID$W^<%kcF_jHYiuH%ReP1(osrzlJl{M=0zzW;vjH1^$q zuSjmD8Lvnu_R%n_=Xv&M%6TYTmw#jv-Y|0k(TC&vrxl6=Km1N67cTCjILDHs@tELn z?@aLeN3;dl`RQJg^<;{QH<;)Jb%Pne)8RLab;!3_$v#Em1qm=bJSu)Jhy zZV1_a#?X_l<b2Y_;GX_MX3@9E=KC! z7lD|tPgZx|$n+mDhmFUF^q{-P|37(m$k}{#_r)b7NTU@NSnQ41zq`jYosH>l^C(TD zCH`o{erK|6`i>1oXN`ZIz9YXf4Dmo?x@>prl>WMbb-7+%W0diugdD;6Sf6rQU`8hr zo$o3Fnk^MuBSm5UX{V7H86$Zw`dtOpD(XRIicb8Q-SDXPi)ZsR0wb1u>xb0m+AqAK+kWBGGXaT*`Qb^!QXcFa*pf|m2Zy+eb-F#9q+j40H$^swy=Hs%pFWAU#6UgGzA z2h+_jSL*=(!Cj{j`?6q_OsJcL8>9!5k`I^@;}ShM*)qk6vvi-FIdWXjL!RT}(TLOi z_q7|Qe)>fJu!xqcD4~MOiEbU_F7CGjkncrHQ@4x+RDjJ~!TgJ z07ab^B-rVr1q!HBYQchPi(0@ydf;@ahUg{|8~R;fdTM^@R2 z-VhqxP#WBnLYt*;C&ExEkLcBWGZlVAL)bN8Qb|VKtQ5*EJmVqTjD6VT0Q)8jtJ@F> z8XmOt7=%`slaw}9rpVpFXWv12QSaXJMTafgy$j|9OV-I#BtST5@%Ix`GU^p5K)wd|g zaCu={bj&?IuY0tkJ?i#tlUDss8pdc3H|c5b436n|W@RHP$rpRY5b((l>AJ+~rc5CDtcHOo5zfye@7Dshrw%=LWt~ZQ@@P$t?c03f#~o z`MC{&FIsh431XGnGnBp&wus2;VTA##ndF%)V8-#_E18>>ggq-KtA0XE^I;7L679AV z#Jen(DBf^7F(T8QAhyW!ly_R-+3e2aW!l`IH=a-%{+I|iJQ`NOGfvGG7j!yHkRpK;wAm9d^ z*|n2~O>HpNyz#J6iiYxGiU?=kDmcP=$D_iY<%5(BsSXG%hSbbwCs@A#I12PyC27|J zPiaFSSS|33S?;-FV5e#qiFZ6dwU`VH&XGMmEd0^nhW~`r;=GHw7sGBMqh} zc(8(LpjSj|?ieBjRylM4f(5IQ(JeM)CF~ZN$Qme^+GmE4wg8IX%^89Zeh_SX8eoH$ znuUJWa$sBB(R6e-BDj@|5LB^A9;4saevGlhMk{`>KpvuYZG``ctK}!G*GIwfjR#I< zV+K!ev}e+4A`ygwm{?-|k-2%wW5^Gp-v))h?@NyKBhx(vtH<`3D?Al{CH-r*GeEj{ zhuT?l+^qwzVO0$)4$$CaIfqN0E~cq7K^y3mU?{`~iITAnT)=kHYsaXvoro4(*-vEy zm&gm~rZQ;Y+ICJzQ$TGXC#N@+`psX%`4gDfd1SMvrXuHNCxMtJ31tdY6wH|a)878l zsuY|fY)L{4A3eLk79eO*q82bvJ1Q+mz`9N?Sc@o3T|dO**@6hOcC z$sZ^{Bo<_CKZ8u+=fN8_Bi6P^j0c5L_GRan>0X3_Gb(GFUvVPRzh;v&rdZ`{R{$}y zqG!uGO#R_o9Kr^+GCVs+WoK!FEj3KS{o8 zwuEK9((Kv5#{7Hs40MH(?V(Y`Pkt&4w=a`xdOdwi-;>*`8)i-1B73CQkVXF%*{rQY zGp44yQmA1H%Gw?e*|kr6#Ya=xb~u-{os~D&qzp8x3lO2+PW8Z6CAkbVpJvJ0wqstq zM>M~2TfIk`xs!XQ77@C=^%p*gK{{?s>-yG9w_|{-`|Mm{9yfaVsKb;jmUjm)NdJ-j(&FQ z$4N?@g>_Z2DY-WYKuP@zjpr%@s5FhSoA_%rcN!aB(Sx;!0IMKeKnri}Wru62HP$!; zzknY7B=zm(hPQ~A>ha~K4)u*QUxO;twW6mBHwIPUY5@a<;`Bg~TR&kp3~GS`7Q1V~ zazoH9hFY-l0?gjx&C$YLC-(RfdZVGXBfR2_+Sl13MaCqA>Pdf3Bd!FMuA$r($51@Yzg?;qgkhUeLKQ`+S zAue-w8Lh*V+@YBpowOWuQ^!w8uLF|fL+;R|Z*QAxIiI5k^aI6j9G|}FFIQ2Vy7*oC zEqPl)J0*>o7g0)N2kVH)+btvo0?`HuBwHg2-#E#7algfjce%uKCS4uy;?Yuang^^J6}DKFNF#g@j8OU_y9|Q%tlIvd;Jj;=gB0 z!b`s?{B8+O+H?T6gI1a{=t5*INd8@jjZzOHFty-a+(HVdv_QdhBfYe8cI~OPsX_eX zT4mGA$QsXs>_;s~f48C zcyFje$rNLc>gZXQwXM#|O${=~k%O6+sF0WL->IUR`-8JYSSw`u=Q>1>cqS=UQdghp zU$E{JJz{M;^eE~HgM-Pj4$^^hkvdqRjHoFQC5b-|sDZ=PY@)v|?js-Txx@ewBp30F zl)@bMWswcjojk@jid}4D$1?hQj3CIwvW?ugi|Za^C-wYFzGFFufQfaI_FsabRP+u@k~}rt@)8)O zACj_rSU$9Bh@R7goL_kgY2Kux>B;6@XYGXuqA&mjlq~jD(t`yJ>*%$nvKrQ*dOQit z1s2zitMT?o8osinE--dilQnRsu-LQ?Eb+TE97FeF7Ma*alPLc(%QlSCO?z(=R4LwV zh3&?ri$7n7>{D;xkW4!#zw0c;mn5@fsAk6nn=9|f=eS8`bZ2DPenJyWXb6YDPN@<2 z2{ETDZ)b*dks#!~+MOhfeieCeU#4)FZVC*%UsF_XteR^|^^WX*O&W{1A*8&aq`WC5 zgqFUgs!b({lp|B~4b_b*-|)E!6G%(r6`sky-hB$iDkBL2tV0 zsH&i^f8+3g=}lw`wMW5>Q{nY2==WJ5z20%BXF+K$nTaBqi>xnlOQ;GiWR=S&_0PZd z5WuuVnht`;p@tlgKW62_!i8l_^+hCoV?l9aWsG8#)(+SHv zk;CJtwA#ZSjRSJLDB7b?=V`~UjYP{6?N~6KyWRvSFQh7cbDts zHAWdfN=POmmiSXHf=pZsaJu8Jr`f$}YMfa6L7|NeCgkuA=#-Cl4iy*spd1&|Ko*v=&!9rb?IJ zw)pz2*5o^SdWd3=bp9%pj108aoiDLTjQ{=5e|_aw<~gKCA#Y^IubN@iKcbd)_#Ika z^Q1W=ZN?!p$S#hNjZivixRq~o-^#Egy$WGhaoWa^6m9hwJ;o?=_%#?-NeI5^#3FVr z`Zn7}G1tAaFv7k>JNjU{2w!%Yrd*&AG}(Kq6Ylwyn$mn=xKjm=+`RDsd8?9f%ZIT* z&E^wNVH=7sqUwUaVn_;pKia7cg#5db7aJ)}A0O+9l5g@mChHf;2l0%#I1an`8HMAPv3${0z}X zyKc_b`Ur2Wh;*nobs=Ic-ZTzJAJoX_RnE3XS_~uSeKP6?jBZ8kZ|}H&gd49xNtGc8;#dX%h&R)w5_z{!=?+V1jU^)l(0NL~x5!=6D&{hBU3l6R&XVS@Td0Syg69vWdzy&2lcQ}= z;wunWKnQj2!4mYFye4MX(o^26zJy#C8NpJGw^d40Cs=~*p_9=-efOAdxFOm-TsX;O z`_81g?U0zX)ZWICqo8WC-lffBSRiFeG z2U8mGs`heM3 zD3vns0E%rK#e;7+txfNceNAjn(5g|@jZN@vcby1pvb?a=v63#>icyuHky49XbnauQ1eC&~LeCduhR*f>+6xL#~CN!1e-D zk3fG(SmOZb+=0Q*g_}(JzWOg>`tQs1UzqM?y4^I-%74*C5=i6zJ5jN2_$W3ImL4{c zldy}7#b#=D;=O=Odsp5I6&o2oD#UrA*J%`X?~Fjg$TF!3-c=DoQaOnUuk zjU}T0!8$ZaZ(1lLx1%B>z+DF7gSiX5wc94#U>oIzlU6mM?FSitS*U6i)tU)7&zv^~TFepOS|xt3aM-+k%DQBEO5qAuSNkjs-}g zmY$#vYt+((S=EumQ32A4KMg(+P_q;I_3m+odCq%+v|?A?ej*RD%bq2dm=cLn&+X9x zDGk-}+``Eq>!!Z1;nxLY(wVzA*KnrYU}DU=XkJs+tBgh$v}=zzb}d&#ua}LcstNMf z>D@}9>#t)MHgu4OMCQy8$`h^Z>r>KPnBxx`0@m2^ZH}0>kf3GE&tzIH@~GN^YTLHF zEj)P7RxL`d>~VdA>F`Wh5$b=|o0hf3;ywZ=Gr8Y5>(EcJFi8f55B6n;Pj?pwWe3cG z;6~m*Y;O?hb&@uaQ_#CMM{?tZjeM{j(^OWE-&{>zylPhX^^WJa^G4fk$#60>iulP- z>T>PO^pzh~xh9M?b>A{feRs-+fp;zGq{*ZV#n-kaEuB#c=}0B1C*4VU*K*WeTw9Nw z^j_Lt-RNrK*48ts`4^wR9(H=^Gk5t$f2{LBe}fx%Ml1cEs68_>4;mzF+Bl05YH}sgjo=>KCt`={4}w zY3@@ifR)BdFu|xWZz~oa5SO6RXf6McNbsY>w6#G-KQPP5f_fTT!DNK zdhn9_=)vCXFfePdT69cl3(EC8d$6oQ3X#3V%9MF{50uvI0lULf512&(!s~GC(b3{I z3+?e^yS7y{THO{V_0A5gfjb59q!uVpGK(Ilb9R2_?vZvzZyY}*J$C#hiDi=FF|zqd zmKy{uZACJ#Q`HW@JE7OiE;lQW=jyo*mYne&dOLTq9lk)`HcgLSjYux6j>3U+am!x> z%$b@1ZC8ThV+$Ne#A-nbBgny_1uA<1BF-~2wiQ5lK~-Bwu-&Hx3S2X-M?y$APYV(> zU`{RY{!gn#6k7`(wBlNej36+%sWgu>xRfC5!d~015 zz@~s+4+m>~H=w7>Gntk}&e&By5r}4|15Ny{n{ZFG=ggl(Ez|Po%vGRQirhiygq}VE zva8H%zVSUQTK!ue#mT_=g%rZynj%E)U05}rHJ6(;L*BFig8;^4!#3$gnTvS~0VG|K zQW=zZWDpC)WFyA3i-DUGgi7Dad-#p%J%Md2L31-XIse-)7e8NoxVre|%gxu%r{B)M z6%g5PTjSYCExY8dvYV8^;~C8yGeO}0y0|>QzBqgCWF>9hojF2bCP)Y63Dsv^nZA2d zmWa4LOR{vb@lcTXt(c>DME6-Gfv}V$So(%$Y?Z&6$dU(3iI0V69C^M9SKzz}4JU8S zh-E|i%j7NH%(}$W4JE)h0~1J3jvM_I=oJJ16;AoR8d_>QQykU&vRElBI+1=6q1%k77Ligg|TAIM33 z60e{sQw}R^a8{9@t8;k%GOO(}Eu!U;1ce^l#6gc}u}+cq#=#KM$Vr89T;h^QZc)4m zWW05g1TE)*TP&#{PTTZ>_-!w~-p2_2zHpY2hjlkV*P*j+Ti!K0a7EYPDB4yO$%@Ux zt+<+RC}UN=k=a6}D)hp$%-JZ}combUT0bsbAHA+n{jJyjXu2&-7q-qs&|I&sc4-#SbZV= z^gaL9UoeH*A#6+15nR0Q6Z}$uKP0D6h&Ln+t$R;cocas=*M*C}cW&2&S+s&qc?>KS z)v2NeQo1bQ!&k6hNG%AP^b4h!CcXCyCs4YqM$MNhKCZ{A9$ZK%f(1GO{cAR)0IYR` zjkSv{)uO30_aa!sya|2Va#k1#d=-HfLQKtQM5{I|qcWN$i2%LQ^`l<*Jbg=7BZ`=7 zr07jr`m)^?}XNDeSb7E8hys;-_ukjov(puP9JyME3iYm+;nR}y=K!d zH_gdZB2j_MpIMsIGrIMr1t`GTWV$P3BR@zpomeK)6}rU+ez+h)DaB-YzlVOHaL zn#kq)sMr3|VlLN5D=FiUTrRbQ@zF5XarQ5#-&jcn7b9%Yn(u^(<`Y?W+tE;*XwDf% zsG*he!wS#p^S}rs`YbOt+UIkX>7p(HUuxR;N7HHJz>P`8R*NRJiYZ+V&$Y_8yTgAa zac~mgq@G+>l}FkPJ*XR{ob9Muv=UQ&Lw)FztV7Lh{$Rz-6!ID zc0G>-P>CCx4Ey`q4O2gTqSwQ^i~HhN*+(o;;SHRNkPJZ4$eQx4q9pO>7CYWrY*-2I zYM|TF)FLc=m|6n{suzAfG`xe|?4VyNYz-REjIajp)_)XEEgh$qw|-o zF{Q2?6A6P`=NY5~TXlHQ`sCi}nwQN@ z=BH>`Du?M18nDP&3l_g;#uB*3W0ceokfMTQJx@?dyz#k?bnNuNGKicMWY;==Xj7!~ z!hj+l?8~AydaXyalf}k7V%H{2nQJ+b3mwY(T8)OnmJ=*FttM<(Uou5Tqt9A1Y8Fej zAzdsard1DmDeLXHE6bFItKD0gy^vjf%0_Aki$3J@O$v9EW;~nCJDmso2dB|I_|>7Q z8Z@(lrFLw?llbuk%&59Naf1PBZ{=#3!lk9%m!kVEa*<*&NEHf*kDwT83g{qWiC45dcH9f@e##N+g+f-<>Y{rt|De00cVMb09Et_%N0q@K!Gr*#$|Rezo%|4&Oz z-K>)PZGpZjgDRXOmGmgJJx26C;1)aYwy?_R7BeE>G9_3l;9Ah0XxC8M>y;txPP`3^ z`>pc>=hQ2Diq%$xS~k!nF(%k>?))1a78BsR7m&mH?MQyGw_+jPs${P-F4-U)WXXjvX7#QVShnrizh$uu zcOjg2TjQd}2O|(4@WLnNw|hALzeNUYfk-&-Lm~cDPbgeu8$mQVQql z*p?x8-fbOC7Yo(3X`!%@;HHJbxkyuAZ&oc9zKwNZ`Vs(Lb&A!AZkK%z zB}!;P(^a%|L(yuhQLl}C&}}g3IZ>~bF5ibxKpUZBU!Rj0yyORaD;CnNLiSH}CKMZl zgDmTF9fpL?``{`s@IiSWz3Ov(rTXB3Z?#hW(B}@U>2rN>%)=JyrRsBnvH-PpZ=ue8 z(u)xEQz0pkSCaVBM9&rq-X}fh`^%3kg@H zd!2pH2H`+UI^V%KOM5o2^L^@rFZX~7*i84Q+R&@cS6QjL46@#@R6lgSLt8rEr#`sF zVGH$Abv{{at7+*E4%od2rPNuH6Z&oCh8fW8${8s~^uhh!h9kx!lc%l1f(fFih1DWI z*sH1sZkgboheZfh`6XEmPnu* z=qDPD#>IcG-=yw!d?7x6bJlOxZx6=f>G=WsGksdpw+G%MIXLFe?_=NlvLqpU@<0Oi z8vptDx&6{v4<~PyBqmqh+k=zw>0mVY_~AhOn$pLV|9Yza@$Tcq_io-E3HG2J z=BJI%8_eW? z>g^2q$d6tg=xZ`lf?D?w+HWHp9E@_DuhTgu;GBqZI|r#jJ(tgSpy$85`||br)4MO1Uw`@a=c|wZs{`Sife2TN8I5%v>r~qRVGz3T zXyV5HvLswcdi=g)N`O1}6DOTh=No-mN3rKHF&5uFk`iYYMDDjE6yX((4N3g3fBf@0 zO8nG+pt>Fkid5-Z@Kl&Gq93O8UO&biW0*$!JbfMwQ~&O1pXYB5;Xh>qtzmahl0BZg z<(wq@EWIGvIJb*jb!UsnW8#9;%V_(@mGiHnJqZ9as2pf(Sx>7!Su6j?1X+k$~8XLt;6^#sh@S&CSD_FV0+bdexlgEVL%*n z`9|B}^99r%Q)l=FfLtG%Yu0E<4tbogxrZHV*&j6Rnyuxqx%H067eUq^O2Rrtu6i2U zgeC!qx9IN2TzAJhRW|B1qS+KH8=fd-QVK805mhKME=sLLPk3ina$)7em!@WnVCKr0 z!eX=LyCenqC4zm-2L~|}sIfI@)J}&L-B}xzy$OW5T&VdI{?kvk21b20ix7E6jqT2V zq@Jyz@fVU+Y>)9F(})_G#c8bRv9!1J5Cy9R#O)vV@AglWkH2jXM}rA!BUa-mWWkHz z2_n72K71!`*Y(I6`Pf6X6}6vEXdkh(=84qpt5?rrvnPMiZFot$vt^7U%%y12;qL(L z!M99bhNs=UQrw;c__`3~UxVZeVH|5lTe(tWD=xOy&`m_AR@=JUPiz4aUc#X?%(h_e zv!9HkS_pBtP@ur^3sXR^o%L-m0IV^8O^+p~92$zB_V1HdShW^8P&6|Ci)<#i1+beEZ zP|vo&n{BpQL=YCzQw0dDVF%tHv^jHTyXm&45au4)#tt0Nvwe8eETGp1md)DU&~n=r z9C(hA^_lD?sPO<8_O4K0(3tpf{ewTjV$(iho5|760>xroFau-D@ z|9U*yXF^1*YcNX0_Og%c!I_SvR3V5SD@@jw^NZk%YTjIA7Rpurd zQXQALi1bYXfz@GuwXHQZ)v{Px<7hbQ@{R4WHy6#)td-hNBXjXTH?%IuuI)W2kmj?! zn*(v~MPrM&8Jxegh+V6->8_~@nLyj*^+a+C_!zcD4E=DQX$!!utE!aqrzMR8Km5k} zA)z~u;;qXs#$#SD@6Fs#(kOo7CZ&khOkm+gLBzM+1R?|W@8ict^e#kw`!6|kj<@iE zLfSFyfKioRB(ngcMQl@+`!CX<-fOW?3HAj<`)yZ*okF7heIO@gPlw`R({f97kwkC%SWplP@eFwyb5b*8&E>W52_$3-JI$Dwz>$Z_(tn>B^#=WaWHX*e?)Cbf+3} z6p=3$=s`S>y%5rMKDB^9;xyWNnXsYd2?)+YDf(yqX;%~^Xb|Xy3=3j3P=H_>90kfG z1cU+z%&4veIA%~!YFl=PVk)BlX&sDD`p`Vgf(A<(xvc@oU71bHZk?xRX}2JjUQu@ zLDuLfND!$;0ZLd;Am4ZDhS)7;E@obgHh!!BH%T) zsBsw-SwnN9HHajLDe)kLLx~&Qc;bXDv;_%fJYNbwN(;<)gPx6Q?#*M}`m^gY#JVJv z=V5QwpIM@}LH>$3QdiDJQ3nBP+K4TmQX5r(q$)=xyI{BSnL2W(2ysILl7i&MLWQ4i z^l2T%g#rOuj=+`T-Q$cITx~nUBbddb49$lav?p|ir#$bcrxQAx5J{0)x;mtj=>cm8 ztUyVMmT(SiSWsK_HuL7Zt)$CQd%;o*()#8?+ z%pN7&2){j;oOW1BbBHTYi7%zuJ`uR)&;!L^aH0XpzQKum z|1zi`t&&$bf7S2CRP0!i!2dgS5`VD@ga{@MNo6v9Q!?=*2RyxL zO%jJbQg@Y7?r;OXQs2@|$J-P#EjyCeLZDWA$2P1lr$&eioirt}Y&ZwxcvEXnJ+ zW1UOcbp;Y=e7Yi}*LL;9j~RU5_7H5gi3gFupz7641TBI9TviFLEkDiJxYmUc+J($w8n^GaM|Q*Yc{^M}fNj zbaQ$6UmvW&Tl?ueTBZD8aICT~h@j=`#ia4YClKK z|LaJX8NJp5Go!8x%;;{R|DF}2#le8lUszVmbeCB%6$ip})Iv(dTo4T=%IXGOHYH zUllNT?g$PZG?s<}2EHl~1&Osvl1}ivmZIgf3D>KefgkFinE0w!&m=ZVgx_ z(bfRMBpL?`B+@ugl}C>C08#w-E3m8p23YmGeC4{JDUB0ZGz^*^I64(ki!OGNvp7Ny z{ITT}!RmLnvVM5AKZmiu*m%s!zC7N!0b4>$P&-T zJhBE6SQ4`H9K`Al3ZeOKgb8r5fBHXxz3aY4wB8q^9FUPX;6p#gRIHCv#77S4)5 z0=hWvfYt#-HuxQuJ6$><%LOOb((}3JH966=7DFPYLM&Lb&$(k$T>J%y&QbvsX9t# zkPae_h?R3R1S8e9sVpLLs;Sd9(j=vhR1S$E09+&5EbNR3dDrw<%04OUO)cx~xX{i- zWQLJDkqMS%;mDpE5>VFLS#P-@XU4PHxYJpnKGYn|g5MmG_9l{&WaXvjtPuA2O7IuY zi<61fsyNdl*}U;L^2Af}vq$3UfX%}XGzfkn0u~ph60A)}BHN_yF(+ZJFAkOoKsM;X z@KQ7qNh&uH$5te|knL~c;Rk-DLAdoi_d^(cdQU=6p%6y@lYQIZu$i{M#J

    yl0=R z4~hB7xk?Mq{W{HbKtGlg)6Mo&7{hrS!!0N;tcppnN`8F8b0R&3*_^0za^o1 zzU>A z=c_DT%1`1WNH%MvkS-0nvah0NtMsO|qcbC2J1fXl`SyC8Z|H-c_=U@UwF;)+(ic4{ zm~DPmGh>yX58K>SQOU{^l7#MJZ zi8-C@#a70j(45xA9Aqa7WXYUn$)!D*Q$Fqc#R#Hg;dgUdqSXEc{hKJY8*@6fW={7n zxZjQA*9>_&h^?L43p zB(O0vgZ~Bq0RR8&9cypfIP$Lu{{^6caDGFI~lQ8=-2;CzZvjvQXuy)9%A<<#2lTdeGz0#UNMlqfgSQeR1YK`9w#& z4V}$WO#Ep*=Hw;_DXM1-v`^Ur!Xfnjq{)@>E#5YK27~4=WZu0V0MBeymX$LWA7VDP1>ai*#6&5*yaWRd!P>WjD4D zlp^+IJj>8zE?v}e%7}O1TjnG~o+dyWXwJnoqs=N(Aiaw691pZeFaDxQ`d!M8o<1a$ zceZhmA#wOFSjQ24#)(|dqeFNr5?LR~z4bX*IqSj-bLpDrfXsrjAIVBKRem!i<;V3s zA1ozYDH#=%-+0u44Xj`SF}d?>)gXK0=)C$I2u zB;c%vmCs+J^V@_ZBH&KlWJfCmXoXb8JrW>- zESOdZ6JFhNBbZ%ubis?1x;!{a?Z*W_Lo+_`69BO@kHpXPvBYkmpEf~6=V4DKDeB@` zL;GzaymoUI%RI+qjW=B@PCWTz>-g8++6~Ey3X-fdUphuLFo!)+_GYIQx?cL^c`Ect zRV*d}BFKWN&;^qKOl|x8Z+cuhV?Lz8Ag(P`RDc4Ztlo9VJ=*uW38?3zYL@$~0Otn;%*PH;U(o*d? zfRn03H|9n=I)Dub)rHXe0VI>{0h*4&53!dxfNYf+c<%oVW;1RQFw9N*e}yWn_R097 zpCMxopaGAs5fWGx&XWT@9bmG+xdA~2Ij+bMg#AdKYp9H;Rep8?L=0L`#wk`UDB~{F zxo553qc$$5lwha>qST&T#vz(I#*dKK$74rhXnu8n0oeu{td&$Mb6T$#-krC|Zr)Px zNTFV=Eb3G*iSRs~=xJ5tAps)Df~dErdL{Npy^W@~r`-$6cT{hWu=Ms6Kl=WC>Fp+g z;S4RC0Byh`;n#YoNa`BPP3HpVsIGzPx+=Dj01;%tRM%Ch;`SuYQC+L4>n>y`4nkdz z(bP459->}d!^@Z(Zn*EgjCt-XuDSocavtj8<3!!ZeMykFl9!d#xn2h6d8+eSRmdU% zBFKWN&b!da=cvw`Q0nmV8+%gcXkDA#NowXBt!MbEKR8Xni zZZ@xi#p4$Wx{69uu?7{adKr3-FIK6NDJv#sI^>?w$$cS_)RZ#BAd>R{*Hu!8W;;FR znvCEhSF2Pmet!S)?U(njudYA*`sV$+|J1_*n@Di1y;`i-+tpmEO$7)9WEBj8|AG;3 z(k`4tZs=_a;!GRc-!kA%WkSSslBmR%90?VX(Nj#Ts|%R+H;KR*P40NI2ocJrkRTT? zAtDr!q0z?g_U#Bh?=90Ajg_ zW_TARFjIQF6RuY8@x|YN{`Dz{yx6+~GnyLRs5o86?+vF3={@8rO*;vYPwOE!s>$?9z~Yt6)LdqPfU9t19-x z5;ICF=e@B^S2FrFCpuS^?-R??Bca9AibYZJTqh^hN_Y^m;>a!_Fg%tn6=d#4jMlt2dVLXFQOv zrZc3{29Zfc-35TyQ+h*%v72|tq?5|Xvc)OAt{LGH-9XN5c&9ll>o(j z&o2^WGp`8i_a+G9CPO5d`ReCOhM0)TsLkyavx8Vc$3T=rEa~s#S(-%I+wO1Xut`0yN&tBr?Eb6S6?W~ z^iL715IFCR(pI2u;IrhmU^O;$!iWit5*|u_R`OE2b)&VGT0+-Gm{uLVXojh(O$jn0 z2mKM-o4ZD2(P(6V)sDXXQ)!;nWUetVJm{#2%`O`l^ZS`HkRP|mz>V6AdKOLTZPz;ok;QOv@ePa&SC z^-u|>HmJ%@7*~RXD z>AB0}_E2L!Y7KW7J@UX{L@-Me8_6Zefx*UZPDqy*Z$WOTgzj?HBgpsQZyP{v`M4n= zwY$DjIL_K#2I0h|K7c;MepMC<(Ict z8Ej5>&;cx5`9xn>%qFx3FY8Qj1=uHX;LE_)+mI9h3F&$R60+?cS2YzpD>2X&Gq7}t z%9fZL(Qo)>MhoY_e02>eQNsewZQc9SDbl$l}; z2Q(D*81j!Tk1qZbYru#==9W2k3mXb3RI}=EZ@W-Oa+W{Kifnf3UajDU*WKhGNR6NY zzZ^^12-;o#^pI6%_*041(-gA)Lb0H&m7Kyb8aJ)7lqwzvMocT>oS=wlg_Qw`mA2cq zqAmj~{FF>7+_<0ar3QuJQk#R@TW^`>mMp4S-PUarNXxwIys4md_yuk%XblH66&j9} z8U=v;Z@LkDagW<$QQDGEhwv|V_I0(}$!1WL1u`cUSUb+S)Idn0DSEm4^ze}r=8^=( zlU4oeWn5|)QRR~H6&1yRs23^>63!#O~b$3b*X1XIv}SgvuzR04}>>PGvIR^u16e zGGFF=)p7+xK6zqyP3qI=wKlipUFy?)0GjOB%@sj*Mk~nW#%R#VDK+8&+-bToXG89M z=Hav4wbuB^HITxqe*OChm@0Ry1jf%yH#@GR%t{+qwO8S30-=heG0VV3`K->_oB^ zk-{<6-4W($NT0CI^jqICio9rMzu$AVa+WY2kKQY{C?3{T7%4S{jiO(F$X8CxleHQ) zwdaE6Z|ivlfb+zcdfmaB^-g6~h|5wb&A1v{82RNPSNXq-hrsRw4q@B;Vk*fUgXh-O8_V9-QFe`5-^?y zzwv|mRTFPxI2B(@bu7@eCVE)|;Ke_BbyjFOo{+49JG_a38m=SWoT4?9Vh>w&k_l%A zFrWb=pk@k%sSH4k$W3vsS@F^_La1C{yPwTwQ59y* ziM0tLFZS+;B@ZuvFr|!R4MSqPl*rDg=e!mRHrUB|}kSI#cfetE^p)*{QXzNKfAo8d)KjKxQ#CTSS) zYvGw4%37E{bsS~a!Ha@!i&a`fqF4>s2dHob5zOvtIM(o(q%B&d?i+KJwrslMwJ68@=yGBr22_ShE=+WAzsT?aP_dvX`FIj5QK>R;rv(%UUsZys5*Ce7J``u@LASODI@E^Y;xirCF8 znyvqyk%Zk5giT+VRgJxNza|uEf8o%DJgZyVh`8}5<`3k-b0D`@ z?8SR3N(X}x57RE0Se>Qu)y?e(hrJvJ8>-rqCqztkI^dt?K^zAw`jVY|P9*bWmH;Ep zf>1wdGU2xb-vmL-KAsKugm1So|0u?yj!R@EbYP~%AiW7TnL)Cy>Cejb)oWv1TwiFl zH&4Yh!qjw2+g-&t?d!zH4Vqur?U2tP=2shO%6YBOIAK!5zxLK{NLFMW!^4o+i~57) zy?PtUu74YWE>hD6qPJTtG60Ws(Km|t#g7?qr!whfx({(tmJWvSA}4#A=pCV=MnhJK zRgyOR-AxyPs;{Mns5HCXYdnan4RO6258eV7aWCC33AHrAmt`Vi*zLw9vA60ndQnU^ z9Y#;#n${!d3G5UvaYw{3t;Fpxiuaxm?(&X^9;oITy|Ky0_aG56Z2Y`+9CR2x$5Lzi zkBB0?r#B*U+)nHA_Moaa0{895L=fKU-!OLbI*=D9d==|K^<9Z+c>hn!t&EjRcuMV z$@Xkqn!E zi6j!;0Q!#Z#<};`!QEMQF8(Ixe_j81FaMYR+q*lv_2 zz@G0c6PB{%mhGHR{ml0!^Emjt=l#0O!Z`Bh^RLfLFeZZ*NayVLl|R1|A_+IGV$$L{l~vOOVV)q;rY&RcsLrrIJmt3>J^*$t9d4Vxi}b~zTDrDqvz0< zAG5D>w#My6JpKBK4=pgfllv4#*Zju`o5cy=vQvrs-B}n-`L}a6aqIi`?o(X z0EnTMfDf@U@{!Z^o>4(E5t36toGrq@&zMmVxCEFbD^?aBJpzM}A%Z{PWQYO=B104; zEr<63$c79%0-X8tv_f$MgSvV#bgZuGDrx`VsIHU7L#2|+>Y_mhiy7q4l~%~0vHu=M z5CT;gg6$$pGx>ZpJOf~-bh=aQIv8w0yo$2+AqbGw8xxWv%yXzu!N?3F0%kad8E73h zOwS<>Hreztw|qV>SrE=bkR%%uGh24E&7vS$EhY?N*-|42(!YIhe`^$Aix)4=*fM># z#R!Iw-Bq%SS`h(4J!-TH-qNb3TvUiS>|;@lw#Oa-Ick1>vuR<|fgHi)*TGORlK8-6 zv+Vb7vy2YaLYHio@k!Z&hgl|%mV1Vq7UpJ8Nxar((&?>f>V@3uT@J4!PWn^SHtcQv z78K56HcZs*QrFHICAXC~ZOFGTWH0I~hynBNFkXiL-K zcbGKF!_+GxV_-6agyqq1wBl45Zl=>lWkNcOSO8BO`-oc^BYvYtaN5}Zb_LH426~;7 zjKq1gVH^F}!bTsT7Hsr`Bl%XdQu{~-hiqpZMvzIPK*3I1aj>Q=4U$ksvB+S;JU7avwBw7LuS=G2IrEth(^CT{I@snE1O9crr2q`B|8m=_Q_ifZCyMqsQbaPey2)$QwN?*w^IKAis}q=j|`yQaUuq0gW$2V zun`eP;K5%Xvew|dl__9g@_>a0+H-hj`;)=R!!!Gk@Jt`MY}WbJbM6>i#j`75phXbW zCIc-R8Uz%{6&9`ATHJHu_iumvoj(QGZ8}#K=c&TX0~9Q%b$|i}Goq0(nmj(n2PE4z zkiCimCE|SmSdv5SU^R?bt)G&o7{XxLD-AL*$*q&#)uXmPWXtp;b^XTZ0HPl^l%p=B z(p4UPXdg&N?AxN!nmt+3Y3<3SDdtWKVGgP+OxS9w706CgOSV#>cR_&nL`Q^YQ zmM?m@SNf<8=~>&7*Ajq*8XsTZXa4D7sVfcLKlT2)T$L_oj@xqVtXD9c9qqrPm?rIR|fYpVs#jbWu?xqFK9YC5& zvfNCn6ZQ8qIY=ef%Z(pi2y&&$60M$cbcu<)=L@!Az~Tc`=QE392V7e>V6g*T-$NWI zaIF|_6(O-D94JVKK{RPV4){j6MslDu8PvR1DJabIXec9(U=flB9jq`4vyhUXfk|Qr z3-vxcM>RS9v+)dKKiABT`zSQ%6!KO7Nje(SxOxb=vE#?~Gc30rBwy+cV>f9V@_aY> z-2VQC*U{8jx_yR51#Wl`;`MK4@Ae61)<@D<`^*jqW+t;o38@%njQ6+f6-XUIGsghL zI}GZXyQ0`YZvaDtucK|=W`Hxg*)W2$Mjxtqn6(K?qfKg5k; zUqnjl7h1S|PLa~ObYw^Y-7ojk*ZNTT9Z>HrY+YJY7p3IsE`tIZy7*15j#vxR7OmmE z(m(@)uzZQTT1WjNM^|{VAbT&AWA$zM%=Jg%tltTVC`6)ALtt%WEV34j{uPFtE_7gzqRiNV6FZ;+Y8sc#z6PsD#O*mP0~Zm zr_OXHSpy7SQJZ(8<42IHxk}kpa2s3H_)#yX=?Ja;{yS5~rfs~;v7HSOseK@)Uxp6J zcS8W;PILKQZuX7@OmtEmc8tdPd4}~pW`Z}nGqiP+Ae4OqZxVz82g=++L0W+lw{Vl9 zGbh=X(w+0e+ zc73gYv#@gqudh7}Qd~25(1R`=7BAMSv(<(n@^sh>0Ai>mxCLI}L|5-c*02QGBw`u{ zzzQB*es8j3W!cdqFbEl5CsfGhA2o{4(|hy4HIP>Reh2jP#ZRPrQlDbB+ zKFQf|GBS1l*U|V9bpDq%QuD1Z<$)?FZ(ZkqKrV9smtl+!;g$QwktFUXW)%uaXef8-hG517wntqZdZEaUcWO9!wIhdl6G1Do^j=F?LE>Z4s7t zjNYVeNSu97zNDbq5OVBn&d?}jqg8bXIhxxoc5LoIcYxlHTOi_WiMs9}@X8T#3IpFc zLXDw*uzu@m3R=o3*66aD95KtS#?{tfA})~QP1m`-p_Kr-UOzU~l2!8#xT2Y=Vbxs4=u?S-EM+DamHf6Ljm1PR@Fe zo=Qr^$&?x8ooQj)`&;8`Ccu;Gpk~@Jvg}UXBSw~8rF+Ea&@Dz?RBk&`N0wv^s0DF- zy=b?z9_VpUQ4fyt?o|$pKMI0Fx8U|iHwZZkcEV7wELEN@ILemGELl9YKSp;XhJeCl z77^ltFAxa1zw1to?MudbEH+#vfHb2!_%|yN>ohm0R?(cHI6;;$6bYkxd zH3$9J`$A0{6(K{-=BBP57C{?@$tz^uf&FIGYLJx-fW2l6uoduDS_~|ZCrjzbVnA8@ zv1G)EXU#V9&VAjz(g*{ScE;VnTJP)+)6T~yMU`trwBMWeeqsKUqo%BaqOEXvZ~dqj z*FNIM%uh1@SU8pU49NWc$X~F68+kgGEe{&sk=R$?IZ<)k^%s{CnR_VBzo`!PAaZ#Z zS3@JlO~756gQb?SN*__!C$Hlu6PGjiX%L3bcP^69pR4sLOtTAhy~15^K@$HLgeYLI z!~c@t>Zjljgldv8pXvdTBHa|%uW^iZWaH}Xudm*`{@>QfgU8+P_%8Jp@id%?3ON;= z@jX5!`x2&kPx>@vi^<%-X4=N|WzlA)c2r~y)`AlSY7wW9JbDzYAYLrs9iwfbahnEW zKhXu0QIKFZ4GI)6fei&qGAR`>KOrkI2AxLXCN+gv@HkLZfFgEB1q$9P2n9~+6hDH9 zUYsjLMu&s~>OozTLF6_OXem*5v<4!<0x~xgG>aPvte0^SuRyeqf(BB~xOq_lf=eqD zI16coBt=khCkj>wzHiDFl6-(}5kYabMSr$&?WjEwKU%PiCFwf9#1OdPVmp22g;6kHi72CdJh+L&Kt5Wy zIzpw;@Q1}Cbr|(WpLxj4&DS~7-Pi1(vs9P_JGj-CywczAyo)!9V z7Ll-p&qrECxdAaPFWSJQ6kXq3Y&waoE5-exIv=z-q?9EiwF5_Wtk&?3C<(22~_| zWZ$QoGeLB2m=El#2v^t{_wV#1zj)n#|8#uaZCkHCT>MYxt+jvyP%gMjsp_Jnl^9YM zWbeg-R)?2^Tz?cV-tq0&-#^T6n-b}>C+lLv<@H-%yqv{L&e8c3DnntsFF#G!2Xbd~gQ3V^N(JfPk+QpHWGL(!-jSUo zYVRneqBA}Y44G926(gwhn_}@IL&3yQSE18P4Y(GySh_u2n{Dn*4A&h;ddR#IgfC#{ za_!(qzGRu}j)r+PxPyYVSO0kXzOypyIw~wO#evBf z=brZ_6AL54p3#(vb6;=5yj3dx+3+s+?7}F_I6;R0W?mXDR(V1&D32R=J_2frN_gsn zgSCu9(7_pYW9=)Y&p-gkN|aZ)-UR57tMVij_AdRQ&6G>S z{GlUxCZPPG!=dz!+WjG5Nd-nk6s(&fjWxR7_1B!seqbkB6fkHeKh~^^GC!nrun4EN zSk4*jMp+cVd0quY29MA_ptQ6^z#xfy(Cr_OhrQD*Sq0fDfi<;yH14?m**q1+^P{$t z|2=?4(1R+f2@s0+(Y)026IP7pRYv*q#PURTBHtRBg7N;B50{t!^-|^}#;Z)k@sd(C z=$@VPma@`vVA5%A+0hTAzTVN-AVm0PKNyC*F0`TO2%B^aSJ3RwmnT|tjp zIVy00Sa<+1RBkf=og1%IQ=`ks_oq|o>w~lqr4pi42)LC5)rukw2a%%<3gaQ+(QOz} z#-m=-;(RY8TWG)6kHIxKV3}%B3}B1JSGe{oz2p*h4Ks;Mm3qiXH6dwuN82Rj#E>s| zPzhU=epBHowe&woE+MYZ%@zl?aJ^&9xrF02A+Pu4DVOk1ol7|0U@oDicF4557NEN8 zmrGnRHsh{b6bPY|@nw0w!){r$<0VqACvT?XW3>oP&rfp{ORp%x%2NnC zfKW=Y>3JOprHi&IDRO!JZngNtQRY9TLfJmwIUFm+=pteA5?2C9m@s)sQkMZqnCw`U zaZqRj_u=y5<)=5lzEe^pAG6^#eKCiz4(k`4Abla*!Z zF8?-LnXx`Vb#F~wx~|LsvSppvRXN84v8$~U`HlelAip9KYz`=3%G?IPlVoZO4j6D* zi!v)%&@(;M#6Vkyg0zBly+y$S#cNTUCBxB>;z-=QK%pJf#H>=7P?H0lP@?7rVP({m z_yf0Lyh=fJ-1u#yW3({gGh_+0elT^9u7bed(@wz!gY}Z z30V}Vl-uW2us|u&c96`Wnp5eLxH#;-cM>4goW{{L<|(1Mh}u`lg=800urC2yLe2w` ztOz=Ld@O8FP99XiA_g)&aIj)B(wLA@Mi6Un3g?!jNKV`%LPP&7tdqPkl2dIt*Y>ehsj^l-gn(1*6`W-1DOm*-x%J}7mj%KS;H{=c4{U={K5GEO-g9pxud z%}*R1=D7!AbJSoDOOnU!_Va^%;0;fwBXif4m+>m$g3)`&?$l0zu1mHau93n;^`AF9 zGZA_#P(ctDpu5O%2lLin?do7)Kc9DYelZnN9R;N#OM1C;8MTOkKMz7VVLq$3ak&6xU{bHH zyK!|@uL8j)Pxi$RlTGC`$g5sQQh5-KUuH1GY#A|5)h z)2;)_02fN@L)a_fA$RBIew&z--GDYuKR6gF6;^mcnz|2`^zm@*O4WtIeJesma0u2% zv3Q>hjZc8EW8dPO4iL=hgf&}z;g?wRu@^K)>+I?WvDckZaoud_8TI6JO*c=BDgbPR zQT?swROupY8IrYi9PR-a)pd6!lzn{9X)4Y9$r?6;+zxB_@W~oBLG54-%S+C>^K8F0 z)^^I(%+F7n(>YHT=XA7finE5{UOCQeByU{7xT6yh8%NHC)_T%cz3Z#vCw*mt+Cg8j z-&g+pDvW}JEm-tug3Gx_Yn~cFPPy*?;6hG~k2+Y_cy0V7r?5zLkW=F)Ifax{LA;8x ztGab<2cJSjbs&q;u(ODIjq8?y&e+NuG}vWqX)i-MRe`*QceIVdPZfUJtSnPDmx5K? z&(;9Z<(K8$k7U=z?z^<%jug3R+eovBZ>8Y|CLw}rd4jH2 zK9PCAs$Th2_NZyUPheO~eB2-94Qa$I>yoG_R2ylfQ(CwF)lejwv-=y`_^c|W&3kQJ z(~UYt$NM-9MJbBB_UxLQKUuuagU>I9E7oYQJ705(6VK(1CqO8+&}=49`c?i6 z>ST-R2`p}kVxZf`5HbW@P>L(Hkjp&*^=?N_j_j)YGGWrJs7a<4MzrYs@Y;2cr3W0> znQhVnZ_RA0nr>#*ET&W!n+^@QcK_9_0cXrEr9e&@T_%6MEooE@p(Fc#>^8WGQJ;d5 zIX2uD5_A_M3KFQ!8wY7J5pAmKv6&vX4%F)lYZRqqEGGrc9?jGmMy#1bYm0vVwag_0 zlgxKr(W;T_hf0AL<@)~cKDemf1DQVU>f26xx9e25b`VI)^nqOaLYmGkY!~r-<#gJ{ zz>hVKKx3gx#HTDUjC_eJ_wB@&I(w_?mze28&zz6gFEN(2RFUh$)ZY+4+7+X`c3rs* zbr{sl5Dr80#MK|^IJ{uju*)z}kupf10+huB?1_Ma1?`=LGzCGyKine9KCEP+zx&>u z0D!3ACg?gV6r`u9=EDxdqMEKtd^NIGXT%F*!7E)8JsOV74KCbS4o%*Td38s9SP<<> zx>c=|N2(&-hh^c+4e15D_9gAd?twC@dAMHukdCBeF*3v-ab0(;5iwo-kqw`dP$#+= zD|fXTkr27R7~X47HCf*H#&Dhf(4)uW6;mj{+`U_mD)n}Ng!pFGQM8s{&5b^X;q9ML zuuWD2-3GSfnTR_t!`tnkH|vwf(wze(00Wbjaa}a8(=sxx7IgW73|8|`qUS0fP4tI@ z-c8w+#y25T+cU1WMyB?XXy{6&Zbn`pW$O2Df53X+_CYNOI@vUOpz}>?2a z>V2y&Nq2D(`fFSpA#~a4(fUTtc1&G&gaHsuDZ65vZ| zx{Da@pI;q@8%gU+ITb~qfHHxiV*Oy1vd6OX*Z;`VHH@3FfCAd#1 z`gx0Yn0o>nUP4P>W6eF4YnbhpK@Z}|#P5&ptW12@eX;7cqb?n5JSOU`y+t4u8E2pfHwqMN2~nW*dDlGxw99BlP-KHZ zZKEB%X2Mkk6A@683IWfymZc9a4J^KFnI~Kv0?6;R_q*r*?hkR@`MPCgsmxlFJ^Lr? zkz#CVPJvu|fU_kfeVbBvjWNpY%KyyO&^E2BPMDZy;mepcz%6mzCsQwDglu_4=N(r3 zr3$dNpT9PPs5O6W23;K^mB%o>&Hdq5V4tUtiJFjv+4$7hb=ZInV+cBad)nM0cGh*k z)QEPFS{vVK$Qc|t7f&IXyiZG4T)OSWO+Q!~&sX^&SmG_hFWD+#c_yI&i1p!~>eH*V zgwuIE9qaW+)E38j`$N}lxF5I&a;(=hErELeMAt48(vggfnoV>DDB$>`(iYPH=Su?yA0<;r-)aor3WUt)?ZWX;<2v~Xo%R$p$rkZ zioLjHZPPebF8GL=ZSHOuFiVXbMTi|rj$F#2&mqc`9778al75S!na<=Gf^vz;v73gs z;S^M}O22>+$k`>wF9w;!^yqE1h+f2?ruXFdNtN!&d!Wfa2DDPrpJs;y@@fo zchWZF^WAQDHkyXW!yVth{Rf4JxxO5_GT*=b-%~AOf3&S1ta!y$A>9Z?pbdmyv6h`q z!(3R~fu-2*mYmcfQ^)YO69)p4sk7M|Tn_L3I%_9yB(IvQJ9+;K)<{g^>_#n7(XVTd zY!ufN9>OyC9gN0hLzYz6ZGr^43w1 z(&apaY&C9LFdrHPOWJjG6Iq1{eCtLu9;8(XZ}0|sU{ROm})|Sf~h9= zBHAk5)IAy&sif|a*gDN=Vy_-l=agkESpbi%9tZW?MiM+@DU_R9q#k%wuB@8AA-1Cg)296EKFDLPZ^>8!hi z9n>);M{v8(xksQ|wCJ0*ZS^_wEihz2pC+(ziP)Y?8nwT@>1DKXf}WVAvd^o&x6PA7Fk8ISgb0ZDt&+OcoLj_Pk(x6-^V|$_<#N% z#^cEYvQPK=!@Yy(ndqC~4F4V?+aQkV;RSXA-A%?lbDPYe6RUm_Eq?kzp+WA6d)o&Eji|0v6xO$+;`N0y9J!=3SuGL+`e zOYGUi`9_H#$DF&~>E7Mcb-yi;_ib=I+M}P(i66M$^XXo1Pd+x&wduSFE)VIyPoEg4 z#e=@SIR9{a`SnYRp@RfR&C!z2Q+6t<3WbFNWK3<>{I;LveaW6!8jro<$r5?!(mLH6 z4b3T|Hf9UhsUkV24 zXoz!9pPgbVl$b3Jp9bPs^g|oZXv5y*=rH>9KW03hsT<6r&q{{Mh7&zebz;79K|{9v z{H|zfSDf>1-uDJAtY7(_Gu_Y$?)(5R{qlZvuw2Bf>p>>8zm*An51z(yKF>_RxGQw` zYa2XP5~Lda{svGl#|^8OfBJd4dyfW|mi(iq|!-g_;L(c|U{9FQAVRiw$HrWMmz*zzNIw_?WMHZX0e_Z?xfCVcq6}Gqa+S|DB)(5}7YxqZZr+}-D|A1^=s zJ4b!4y(WWt2=1eAEL@Ash>2qF6dANn{6w8iHbrT5yK=axOFJVD*;IDL;@{&2N?p}| z3p!=gXf0en&_>L37YoA~ zk1R{y6l$a7;74sU$dx~GKzdQ5bi5edVH1sK3rznuA|E~|?x;jkpZ<_PYtE5#Uue5! znb`0EV3K!Ke+X3>@~};f!H149c_h z=0dSx<*Eaf*cvGgFocHW$o3 zYuTuJX0cfou?EF36}AjD(jEI*7cFg?035F*YZD?HYLP;RMv-sAC(-_HOL0ynSN>*BerI< z)Zg^68C-c1LhQ>qMi%z2@eF&|F`26yJTGZ;{D7T3!{aDA@6wu#1^zDYc`ITz)kFZF zXRaGmBEcmp|9Ke+?y}NJxxZmx@kfTNX3%Q-`7Qekt0Fk09rgJF-iHDIb4BY*xVWV()31C6Z9Lr@ zPQ=(u*JjW>A^MDTBwf)OMKTospC?N_#?lt?hNF1rmvhPxeA|Gh4p$ii#qiWIBf9}L z6>^)?hI7BsMy#(Cf?5P!6|{tIxn{S#ATvn8vaPD{zTxLb*R!evVtf6q3g|@aLot8` z@vyx?!}6Sz+2gSg9TY{a{t=kgu*52S$%z2$07`~K| z!I0cw;s}zr;d_6>$Pm`9yv>M9P^L|fDui^Sl=V?$wPc7TzZ=CTY+^^j^iWl;lP?Zz z;kPHa@$9rF!&Uu|G2X*LyaEm^Jz2%f<=BluJmw1m~FiySccrbG)Gd{ZK(Z^a%x zLeDox+blw2z)F;0G2nWn3T??AFR@YEmP{~n_VMS>S1Hm5%~|~lHhysCQXY7^+`g`5 z1%dHi$Q~pP-GLS;0-?4wAUHI&?cV+#6qG{$70#dhSr7A2II_tf*zn0BWJwCH;~OZ5 z;`J^SDEgcDGt=|S(^-v99!oIg*gNDK_z9a~fGq~A3tS`ckmJv=XTP9mVPjz3mp`Xfc@FZtae3I(qUA z-Do|9>+@eq6@+2Z#X^J~NA%alQvSS+1I+J}+5Ct?fXoc?9Arlq(0<^BW)M;)qN6NQ z#RWrY^oZByR@O#WDN(I~u2Q1+kIcs}^YkoNvu#E%lxS&x+wjeJ~zLFn7bipdPB1 zDlxQgu)~>JJPSmv8=pR8(}tKGpw#TZ9`!q{XKFR-I~JzcM3hZk4c9`d1xffBi2HIG>?h6 zAE=t}yH$i1pV7rxMerV*W>TpOJxPUR__@ z-28lfQHIeR$?B9-yGa;nIgMl)C$v$fB6`Z$%5<3euBe?zJ4tGf20)t0>8Y#@``gV3 zX%DU0Z#pBSg-blP85r#yT60Biht^c4v_oquklLX&cWBKfDDBXi%9O$#T62fiOfQoR znE5Ubnfab|=Z7Ah(Wt^1U_rzUU|nqIkXHg|6rHj%@3*@G&4N6+{o65+XH^eXR&9X# ziv=YGM#+)_Il4s=liA;H)@WQPL~!4vJJ)oQ=_d2=ms$ry1My`@xUEsvCGTLFw_h!-C-65j=RGg zf?h77o4FdVjMd0pjLPpWi}KFWNd(Cp0#=<)6tD~Mg2zO7n!!I3rPYa}(hyVrQMZQBENh2z8Pbg#T4)-k(efkge=Eu>Z!_3y>i`szge6D0$aQU6R~ z;#AZ>j)@ETcomTRzFKt-<$H$qU}I`UEm}ZKW~&cp2YX8v*f+k=J$daekRyh@(jdvD zUQ4&4eyqepgOJ9`I<&^*RNx1o+SE#iZ0?J;)9lm;pua<9(9lm;puYLfLKyJUA`08AEbpjU=A*=xl zvZ}FE8(|%}tBoS86E^;Km!VmZ^*}9Md7G7V$MT}My^Q~tX(TV35<^0zPGdop-LY`O zldGQ9Sc<6afm)h&cMF^h)Ut~kL+6O7M_WK`nKa~g!h`~b-)`l`JlD_fbP9? zGnY(5=`x#9f=rh=gxq22*T(QV`ufjXhb2lnK+>*u1QoS5EFhs6Ml+Sxf8EaxD*tAp-SVKVUWz4Z<0kL7GIv;+M)I1tJ)sDs7hi&V>371D zh~?{5BsC1ws!??}sbQd26{-cWa`xo}8j>1H^{cL=hB`WU+j$KGwenlQyoSm(@r8zh z)WjExt8z_zQO^xh6JI2Qb-yOQI5C>Y+!(0U;n0}5G0>8I2vLR=a}URf3iUT%f4cm5 zM}PjzRLYI8aMR~?rnS6YVJ~yYXBx@V9eV}E?Z*WL5XS{+lB?2z39VOO*~;gqy1LtL zdgD%ZEXx@W=?jNTc&a@weeW-(+Vf9K;f2Yzz@g1>E# zl}te_x%q*(p-=s}_*Tq!ZDPHrKSTalN~F@#TPmc;_wizCqkEh_h>N?46-9(y)wL$FlwO_SClfCd ziC2lQ*mVlOSK%+ak07kkN)!kX8$>Cua^JA#2n0BX`w~93u^EsDOx*?QS483yjfn(! z;YaLWJRvrk|=jASe%6Yoejn#ikV^ojx@1%)qGnL5$r3sC}SR0SPfuMT59 zT2;@dO<+i&@NK!eOh11AN7TB>uujv}XaY3##sBf}*k)mkm#$AY5_`X5#AN)aWWc$5 zEq4w+xS>at9=q8P)0lH1yxy%zfvMdclOPsdDiFr z8O34@?vypm+5W|2NuO)7ux}%r#0jX|UE2y=ob{?}N3}{t^>s-86NABF$rHmt94pUz zVl<2sc=MhZkA~&CY?ydEP=CU&MatvYsgm$Vt3={%sy?Iliu3^U>WFn0`*sazfHsC# zV_+YUZBl3A?&hXJO%lHx9j?v{HHB6tlKt+9WXI%u6|{IYA}*ISGm`su#cl9L#I0j8 z%ma8Gm0yipBaT`Wndg=7Xe_hmI$*7-*k_}dd(~aU7DaT?M0e}M5WOY? z?X4VK-rTiZbMCo*`^Q%Y1!Q;Byn&;JLs#GEQNz(`(4!_sA$RtuneL97mv_|AZH2w| zPnizN#_p7PnQ}}|nZv{CA!;6k-QMkSZ<2qbwbsNr7s2v3AoRo~QBI?r@|Q(7#06C@ zCt^X8iz;2SvG$^v40hgKeaQ7Eb6Yb_KclN zymAkPsCsAFN0uumE?f zi2r=PdlO%hzv1PdlRsbRN3^kQ*S|M*Z+=?d#o6oe**X3B-^nkd3HgN-Wd&m6aqZD! z=;CY>q6mdQ(b=U@MWej3O9w@E=&n!%Xd|seV;kcK)Z^Agf#*7}@!xIi27ZqlYDE!R zuRQA>4Kg+0zZ>$##@LyYHybOoZk&s=*?2x2jV6;b`fH3HWAf{q|HHq&2_x6Jy*L{V zC+7Tm{C@w_J9KAly_h_?8qb$+M`yJ5{2+L)kGnOR4@p7t<#y}gAJC&^$82O=-yx6C z9jEQf^8vx+lTr=;?HwSLqs;&mry)gtt* zDOBp*&hjD40O@^1_D_M3@fQ|lvly7Sl66aDdJgYXl1W#DI((F zWjxz|Vc^Bu#z9dRkA{;mrRUy1;IHFp7RtatO!tOZH!gJ{`gW?haUuHG)(sIvd1_xC z1wC#YuE9o5pVx2wUR?&bc@VIree&+LbiX|aAQY*)dCb-W8mQY#bW9!?!w%MR6^UE5 z2_l!&J1~CVkWb6=o?a;}mBne614GykJRwkeFMs^cGnOu_Ri^hj{x z;g<1Z?f_}NiYMNUbYBZj3;u^L-9MK+ESbZ3I1XA%1a|;RrV1sPVp1XnT|+AnYsi!R zN*f^Ki|$uQbMAlavHMoHg&INJw_P-@fsV&!a})R&&DB?vZSY9ia|?If(kW2g5ph2% zC&lu>{#!y{*`_2H9)@`RM)`Y0I#%x7)jI$aZFq* zsS*B!*3PGUokT{+j=zM0>S-nSUrE6oRzA3GG<@fQxGEM5bdnc7S)_0rZ1BpDy}^O% zd_=#kf;bM=xRA-dGsQJqu*#6-pb&qZk;UqpyC8_k*X4+I_R;l@@kk(0+DY5&q zy@tm@NXw}gVjKGeAV(3rBsuZBu1{B0RH>4`RNK8Gzp)4YcD=&Oz~BzA#yk`mc)4a1 zBZ8bi8SWi`onrD0R)>BN8&$1zW6~%(=d&~8yvl+T!`$tXkb}>(O`Z=qT*^xCOL4!C zkHGy-rM$ih4ULudycfGrITJn{1k0ua`3m#IB&1opN9Q)$SI}j#N zA_d!cRU*YK0f3rP94u(>TB%=kGrm<~`nm=2maE2@%X!O{x+mo=SE4BAbX6c(qVD7@ zlmd%OdX|U2`IXRlh0&Q34^#IM;zh$UUt|#&410-(wt-20T^R}oudf>iD@+fz>s+0h z2a*U5H6$gX8o@W2u2p48yco8+lBMB*r?S45w^|^EQ1@vAC?x3O%w(?zuU_osoj1Cf z?fO0DG}PIxd+=m~B)XADxP>Z<)h%gzgBk~!>dvc7-sqtFU9$ud)^2xANsL=}E`pE9 za&Xf`#(9==1FVAJ$Jz>ie2uLz#;>^!*}R<77(Bwti?i>^E9Q`GLY5Yy`(edGJmw(z ztO50WIN7! zj)WxJV^(o z(!ey>w9_y^(p#n)+V+g+`o%!UXw zo;E1-T>l5@9G<#Cn3BoKf}N6bqc{kkh^Hvec+z`%+${(bN<;kb!v{XF6+44DzfWE= z_6>uQ%!#7OM?~8mu;qj2UJI?OW$!zziJ2nYu(89c^(2yLz_RxRBo=&w zxL3z-H}{{n>uI@AI+V%ee@Z6G&g~}^(|F9MBETsC7BcoE#>@3 zo2bcta#RB=+C+wt1e%1^TT+xtND*Ff0VpX%PX`wZRpBnKyM@pAWEDQ+voftaV2T&0 zX3M2R?clbm98Z#gXdh&?eV(m@5DGF8j0W3gB>>~O8|-jq{N6(-|=>Rc?mXwtMS;rL?&fDV<@-bczkoTlJcJ1S%O*MEFyx2^nF8lkNU7WN&UL=m(NK^ouHh1aEewm0ox4Lz3ejk%VxbBw zpR9_7&v^5zgg`OQnZ{cEik{F}+h^Q50qHcDzG-Y*E$e~t&j~3B{gE-+we6}~MK-Cl zfAJ==-Y3H+JjvZe} zx#n`UycoBf_+4_=f~0>VBlG3s?fdut_14(A@k6kUiJvaaWWQ$TLohyFTNsN*_$ALF z4n1u7Fi1oscee9{F}`c#Uu_GQH}1AX#)>(#6IwQ{12+ewOL~CBap=m+@|bg#3LN2} z>)YOz_z-y#Hf;iylBGeOf#n!m?NF`y@=ksSXhE7TSgGZ9R&s?(&c5=U2H_Ge7ps$b zmZU6a9Job79Zx*CM;~xAQ#;k%<7H;sm&I4zAan}2(VjY`m+>~{;p1%t=jf`qEI|=q zhSZL!wcL-hh}wtfkPx=YNMl6kF6v{`Q^`Hi0s%1$&r7$qn!i< zi|#7J|49V;l|k;9#tkK3$OAlNAt=R-N@!wy>8@9nXZbb)UD&Kd5@s~jXhBu08a3EL zS&7uclM@E_$p0m|7Cb)Tu0gbh8oe8K=nOzlK}%s{7RBz`%154eNDy}Kml7#2&=fO? zCDM-FpKh$l1na{@1Xo0{F3`-AY3dV3Vo0|ehXm>vWE%v}1eVB?T-#Z&mf|{?4YmBl zjIxV1|GCA(=KRU9JQ@Xxr2~0SuV}tteyr5kPdyT|2I#Sxet}I2MLi9l6-Q(A!1F?l z9DHIZ?plDB6KZ_}trS`qMquJUHHzqQ_=^p4Ny9zb&yBIIfd%LYQGA#E0T_8Vg8&JXLoCXuq&jm6` zHr>WpG08I$VbDlaB?gD7ODyQiG-owy_xneSbR*qKawaSyhg`O+2*m_}y8A1fi45Uk zNz-wCi28o+r|O7Rj8pm)%pfmp<)Kq*Y1-6}F7QBRnOMP8@~U+FUhbqpu8=rw)wm)n z=%VV>I&VH_0T(QQ{!?0R9YgxwO5rt{NM*4uPxu|YDE`w{wR`a?ifnk%tL6$dX! zT&_Ts(Lt|Z6p=$Hqtr449)M9i5i&Qmt#G9Niq^~F8wq|;4FF|Gx0wxfF=SOaqGGo2 zG9p7?&7AsE3ALOu;WMY(#7dnpDoJS6#>8omd;8LqU zd`3ItHdtGJVQ?!PP<7)e1?;-LJ-I`@mR$IxORaGE-i zh}s$Q6B5yfM7li`|LY);kv1gK?Oxk4B9R6&2987;z?(RTE$@3as;432CBR6x+gvXY zjPzk+=iQM%{(C!fvEHgne@SF ze+b(jR1!%^A>;@o;29@98)pllG7aO{aT8CJp3#Ivq@hvynMl42Q$T ztX$s72P+c_2eHV5vV||Jgf~DVGNDNgPsl_pD!oD`G>_y7nbfmnq79iGtKa#^c5fQ+ z++NA>TmqDo?Y=i-`3aO12K4xR_FaIICWwAKm`&$PYzG$0#d3_Q=8?n93t_M`NLQjPEiX6KjD;uMLSmKxo(_d4$R?bzMKuGi8YjPPsZd_wos+T=gM2$uZy*M;A`HIyz@{uQq8uXVc#{#%JUc~@az^zbxd@0+2SO6IHYCwE_jJ># zGfjBX9g=90A@!>apCpjPubvCUOss=0B+)m2c|%QHq|j zb3{@E$?SmKy{AMhpy`3hEtI+_MhJ3gnGz{}`6Yl{UNOLK-;=oBR*4|!PBx{H1Yba@ z(61^jo~rTkr-c<7Hb8(2ovzi~|Eda_dxZ){jcscseIp%6E9BFKIS05fXF24sIPUvQFeUDR+U34<_j+aUy*f^rDO9^g5{&(SY-T&s{gvN{5`cM zlF)}8EeT057hH$x(w4Kqtj&C!*Jb`cRtcx7F+kw@_%iprRBKumThd=nfz9dv0{{U3 z|LlG1Zrez*@T(C1l>ri4)Lq#x0UXEP1enR>B$+c=Lye~ ze0`%NQoL0c)go;VFm^1FUENjHb?d6?ufhBOcmG!W_{x8UYs+@Lg>nD(&T`+Ky&0Tc z@Q?o!f70!U6sw#%KJ~h&)8>(~1) zAAKZqYvV@jo6Fv4a@9TKqe~#)qeqv-EBj$hUGkMeTm;s7Dc8M4$CS+dfKJuyu(4go zqyO#>2Js)?HZJ{uJXm%l-gLYf`-;pX_FPYVC~-C|#3@6dcy6CC@|_fUy5;0~lb}wO zK`YRFO%!O}?esYE5;VVmy9k`w_qFA1p;cjpNlRJ59Cs3|0AqqQrA#?k5ve-)lw!Zc zQ$Z%)4$*#-gLW~91Q~oH&SDvDr!mTA-q`_Ni;eFdu5s8g>P`?Qf6>eZSROiD4lw2M+F(yFG4R_*pWd~J2e zS4NXIQtEihw!%(=E87YJoG#P3b0UX?3M?@mv9LaDlj05nk_na8@KVzL0z4o4>NWEP^Mn$9@U4RaJp`9=#Yu(m-RR_Uf_$+m+b`FB-6f zP)!J_g9vp51z3S1X4g8k25dq|U4c?&ub0$-M>kfkTuq9p2_bbAigd;`5(Me)J= zgvr~YK6|>ggPfdMR*pA)ac|V`R?3Z}3s{YIiB8WjGRGs>>3CY$k`m+L|S{GwK zmHwQaT7R}Q$gV$h`^8eAl#23fYcTyKbh}5z>%0hp7(@a+$fxBfUGm1>{ZiW zTdzia)eR`BzCWCcu< zJ2RHEKjsAYtQ8&SHh#qH^yG-yFHJaO9KIxx9e;Aor?Z8V``si?pDtsIeX3nQtX<2q zBFFbKsFy=0TwJ>>4eo81l(B6J7gl#1IH52_p111$ zh8QcwJTNNV%f`dX<*!j}uLBa2;EtTVH;P~sOfOXiqknRY4N6qg@4x=>&0&tLqX)Psr4nEkRIiz z%m14CQRJ_fq7;7%sXQEu!T74_pF?hMiW$;@x}0o_O~n7)!uqmV{h(8(UxiGgzdP%X z<*u@Qm+2z8c^GIxDnX-)Y6y3pg4M6)ATIMQpXqTsLW#YY55T>+6rd-T<)d`JgNsOQ5@!k(+21PjkduBzJF?D_W=Xse* zsHOm-_y6}l|NGSsoyfU^*ak6b6f{Bf-l0zAqEI2#3NA_(S{`#@GwLrp^G9tfTS90S z?^Y#Hq3>>h+Oi!)%YJs{&nO*1o2%96UkMN10; z3t>*i=$@uZx{3jEJ4AhPkj;hy6>qll#Mc)^3byVe@I!SkjktZ4IT|$4h&0jp1 zKwNzeYaFrB<*=qIO!ZHWSs}$!d=rt?x_pEz=B;_I*{)iJcwuB$-v!6bFDN&NGxi8K zE5(w^?MOv>@n8s=It56VKe!J2P9liRMG1MB%*BDCh$n#+Z31l|Dc3wfM8?YNZvcSY zDOLjrV&Fnqgi_fKWKVFZrwqvhKtio)Miv198CZyg<&1c65OGD^(Ak9Ni7_sUltSI9 zOj&|o2E`g|9F=R@dX1wl#5g*}-hpa&MRAgJj7^E%s4`i1W&KGy7WP?1tl} zkySB~*bWhaxgig@l?CRyoj!kVX?Y7e+PkwspXZchZy83hT8M1cL(^hX$sgRX`oSg& z*ff|47R==+(EPbJP|L?z;4g@$4IoG%<3Pd8I2^3(AVdj7lx1_NeQnwR-aAo|1gd$n zfeZs2te=kSF9K_&Z*lr0$-Nbk;I(1RT7L z?zBNWmK9ldol%BzlqEq8wjz&l0$Mb^KE#SV#^fqkk@mFweGM~JHXzAg8;5>Hywv$+ z(QddoZY|f5!lel_a>(m+mCQ&bn%6_&Duk0ixFvdB{7lYH(ie$9L9&-tu+Wx$W&sH^qTsEUkD+6OPAqCcXlPggF+5@g)bv@CU{38F z`Y*||GvG0?1++{s!X8pu{A3Si6qxXoEK+bI0TEgD!;X)2JGg zd1wA+>S}}LT8|{4j^Ap{i#mKNy`kqg z^R&Wk^XdK`d9=8*)hU10aAe~eL@e4E1C4X>l z?6W9@azI61D7iN!3)sm43R<$~*D;sHYW;Kp1F2t}PP8IzC$>l3A3zh(C<1h}xX#GvdVi7e$)4?&d#- z+Ew<>Y4Guc>;R?BDjc3V$)#v=uL|BPZ;o;;__KVB)GBow=Ab~)F-TC3O1ae=fy(mP zN`cgp*>bU|$U4dP?kD4%6r|cyzHW|tjYiYX>e8oVs)7trJPMRb^_QutN}T#9F>T;JgA#{P zp!DI8pM7bA23Jcsc%Y64I8fo5*etFJk#abQuYj5fi%L*hIgb4eaU>hZ;i>O+%ERAdk zHHA>X;Fb_hZg|^ctk;I)+3qHE?s)Rlq1rq*KGToA>{Btr2@UDa8QcJ&A5h(!r?7Li zHT?&h$(&_oh4gb#i5|cI%JUP?1JH!?9JRUMa61GA4rqtqqBAk00RSSJt3mAm6eyTD zLVJEiE?n$_*`=*Vf-IH*GyU_u5gqi44%Lu(U$>h#~HHG*B^#X9`J`i(R zYbyoB!MV<5!PG7a6kP4%a0pJB(YG*cy9S^=fx;uyp3v9cwjITwIU^plwpFkp>b_Se zOMA(Lr=mORo>{ksQ45M>)}PAX&tk}$XPO}*l0RO|>KC)RQD!x1tXYlY#TT>s#jMU=*^61N zVpi9E`_yjjMORcjbGv%d0=s&(DSuzXOqK2G)cgxKLEZPX9KTMv)^N2dsnLWjpqKp7 z@C$B{X{u1W8kd9%x2yG~O>49=a5VEh$JPZbi~`~0B`7N@sWzvc^8{6zajO=5~PFhYyMz*!=Hu(~`a!BtFR#3PT>b}aRWdUp@aw~Rh zNK?0vX!3`OwQXwDDmYkhdm9H&!Qj?;6RS?Tp_aui5x8?A(0zdVf_u0-!^B04+ExZN z@R1u%pBw?2_*g-r4HVqSZ_mCKW6Jm6m5ARQN71Nm_*SGhDa2sl|}8!z~DXVNch^|P7m*g#=Hb}(Sfw8MW28} zD^%IEEFl$UQ8%F4S-o8nQNlxBfC2J>HSXvdHZ&-3f!oanWnq2bKu$$_SQ1)Yt+8n* z1`-o~+E(RhBNjYBf|MTn;(wu<)=zbAJjcx^bW`HYH!p_;X3bEq9_XE}IhXA;nvR?s|YSSJ7tiNiutFxc(wm>ui>DKM;W8 zhyQ7LGvk#X{E})RnvIpX?dZP@7AvKAacpKE0El9uy5!wEF6aOp1#AkkqH$d@XaC+% zZUPy&xV7n{8RbB2uwbDzjon3Yusm|F4;HlBo=%FPL^`zJ9&TYXDspE}b4TlBec#oF z!t7^Ly7t`oBjm|vBfq$%fe((5-V!KL3$--ZAr&$@20EldEen1pE$%K3O$*Bz@gNN=l`wfxq-}AR zfK>7W`dJzk?$I6dPTpc0M)NJbvN5AJrv#YvD*f|Q`@0zz1Q#+o?hcmIG(AzT#Y`J_ zDt-i}+$CokMJZw;nH^rVh?r&LixyF!bQU)O4{cDeRPqd8Xm$t-Y(*pM-{1)pIDp{l zPZTs*W+MvJ2AJB2TbHMgL*U7c*v(dJKKw2dFk`9v{K=a%7p^|$7gBFUU`3liV~M{9ic_=(m++it6gZ6yAiz1#ZCO}cc&`nhPTr4` zd3oKqEV+@TJG;2mxpBoReVown2$_jWqm|`&5&hrDso(KE+Ye@zXR|`v=$_Tu=F}6Z z;1|`$_?6???uG?8w1Hec&H{e{N@KtQ1o9BBFZ9DBUD_{Ca&17}fP!T&tze-KoU@u* zF595z+CYA$Lct5Ep9jlkL$Zq-G3y2B>FK-Cp*;)=R`J+&^Ra3$Sm`J`Jh@}3i4j*D zVz(GuE;d-jCe>r%#^tps8;?A!i5*dOwf@8h5IQa(>=c+aqDX+fC<=zwefJYA%sb}C zAHdKk4~FK4Ml&-&WVir8VN{jeNEaY@Pyz+c?COF9^Em6MQr87erBz-_8f$F4pPqjY zYJ!P^HwPuEx20>s_M{yE5ZRXxlw6HkoX8u{1x+CkjwRi;E!1=q88hGT{K&B8bE>Yn zmq<1A#&UOg6Sluv`ymgV8`3wWx>a<`pcC2%M^gHiBw(!~b}vV)vD04nC((dv7mTOx zdInRdp)oR~sxZth1-i+u2+murT)_R3Pb{pfXG%S5 zAhC#a>ky8HSiTsxOt?QRq-c+gN|(jtyv zTc+1XxT1??>IKEJ()4i&=vV~>$zGBblScXw3BBhG9bnRT(+G=*P~Ak`TK7>ORE?4{ z*yw{r)gWtROnAmH?CpTk1N&>L-tHEUKK24nw<9g zH<2G%Zcbh7FRzX1BeOwRjNtV_AB_?eq0)bV`SvJSD*5&}fMMuU!UOwT;Vvd}B2c;m z3K+B%zvi-I96VSaJdRIPd&=RUD)e4M0fcpGLUQKQ6k!^#IMazjZgsyP5eEy{EDr@s zm?j|S1=S)KhDQ`ASmQNZ<6qubO&7FZ{RQX_bQCa<_Cz)o|v@Sf} zf%~lB@|}5dk1lBXdf49+P^VrTgFse=WcmmcV8M$;U7P_j2DH^LpzsI1bp-`Xx@G6O z;QbM55>YuLrp=}_16>qlZhSmx=0=qQ%KfEJQ!7O`7geP>?93P!w)S*Eg2yv(LF>($ z1RfPL&38B)e4p`jDfZRSy=k+F~!~Ks0WaI zC2cvOOYAXAht@b^V1Y{w*W%3PBM}+g{gqx8(MKT^GQWKO?SavIGE$ za)V()8U^a}*JVJ+U)n;)6q_5JadDW@fD5B3a3(6|WK+)61xsJZe*^0qhwEYu5yd!2 zx|u_I5}?2?k{dmn0)*#SVxh7JD9}6NKE7tfR{+o^_TFJnCopZWz{PhO{e)UBw$}y_ zW*4=FLE_SY7epdqDVSf_t!tL8A6*(v-FK3O)Dz6^3OmYot7RhdW_}sYMj5 z4X_V;TPoi8{qy=LrVSD>(-+qUXwQ4r$0I7{1ui`zB5MdRTxp3urqo#&te}dm~Q0#{*SIGWY z--0#bRwba+uGZ$SK#B1r|nt~bMk`17o z5`ls`4}4JnqE>BjeQc?bPvA}0^yzI3B+*E~@mPOCBzGs;oTN5xHJ8oS|optd+|X&MVm%tw*TiO5P@wK(s0#;&4+wKGD& zl;^^_z=5oBjgActhcJdj!4l`Lx}aTp`WTU&D)a3Yr$TJclXqQyd5d8wMtLp+dv13g zZ3KkfXk%Oyue~tLC}>Gfa%cp-CCh^LWx%zyhUc*&7x&l33G|Uo z_SDn`&b9*3%`_-rmrt1^0pM^NS{p0EO%ELBJFB%mdl=NTu`QN&+)bC=?k+Fm;qS1^ ze3)Y8?T&W+cUfUyTzCK4*xuJ>Q2UlO{AX>mrmm63{<~{1|KQ`w{zd(&bBEY$E=rgk}3KyTV>F78_o$omhduaQr(L(`L<> zh6N|gK_aeDIMeP)!YH7?30uyN;C+#=asT$;b_|6Qf4RTl?XK4>r$H_v!nv2POp^l? zcl?H&5uoA@nf_$-9@HZbH37KQfdVIGwk~ksE{Zr}g3{kmpr`}v-+}fj3LNl21bKCn zKK7822YuTeR9lMz1q=$eg=El9n%Doj{EjP^nDJg4G2J64yilg1XdoRPgHp z2Ul*mV+5w$bO8f}3!dyr1-@VE(aca>Zw-y22Bs{Yvamt9Pp_bw5VbfS>-h!3kGM?< zIds55;&(>z$9V86WNMz7*01?(m(*7#K^$p%BO*!Gbu;`Fmsq5q->=u{hF%H>6}ix@0LhXYt&Z zctGRuC2q6rUb^N}+``HKPOer`_8Z{^*LoN!XT)@c)BB&~@!k(+fG{M((dmL?LrDv{ zfZ)bwG2r{RR%koUyR*x{v0O=!y_Lq?Qn)bIw6x9*a5(u479Vvai^l|Gp;V5EZKvVxrJonoPse$VVof(?AiGl|$XET1XE$k7c6sdf)%Dsf(TX+nkZDTr`t_XexFMbM9XBD8asVcXs*0U_eqhHx zr{moI@eGE`qcVCehi@`#SxUCv;2?)Nw=p{?zJjX3mL{k!aKNNVTtgFJdu&Vh$2&UKOXGb9Msl0E2nbO*w^faq%ig6smN3(^MG zN2?w9%YHT>Jd@pWo&OLcbXM^-_J$Slw6?WR8A>G1u|HEIKc60R?CKU40=TzAgFFy> z6S2rEg%J4$uZ*0NV87wqUSGs1iS7y6D~ro)jDJyNQGU?jI>BPFRh=i!1BX713^L@r z#52PVUn+{JrUJN$?_yKGU}qipG++F5LQWxtu1@OAjFQ2^I-Qx*Ty>~&%T&4hlD*?u z%g6#5ypOTmG4?&+0{=o*1=*B5EJMSvxTJ7NL=2aTNw#)b62#Pa;90IHCJLiqV@I2S z-PO%Ru{e4LC=Oiv16_c!>xGX7uzmuc7=NO_uQs-THPOR>QfSVE!Xw17RD<+~78g2Z|lJ2Mi1ymJ)9*(3ErK-Uo?QE6Kn(2a07w%jnA5&#X= zEqQ;FYugH-@CpV}_OnuUQ!}4#NF(6aT<|VAvl)*L#0EaM>RE!8C`#O2zfdsy`W=(= z!~+*aZsBq7A})_eC?DstSBGG23)wV=0+&w}nXi&azNC8xJrO>UrKDv~Ig}GiL7wa3DQ-hI} z-_uo4w7febcf>n00xpV!&$H23=E>weKNC|-ydu+QM1EHV5HdQQ_k0!zDb5;|v9?}( z*{puhDbue)rXX1!jnrjzWV3Z~b?X|l*?7pgQQ2%VDSoFXax58!;y9b_k8d}ZSJzUA zNadLQR(9HaKb2yZdMP_?zAraVreTyi7fO7WfBeHh@$dG<1|pv=ftTv?@3blK14)b{ z7(jKWzyr4>7h3AQC1B}ohBSQl+qltBH>`JeHQX`0q-9#8I{whfy{xEL?B>oLE;RYzHIZJjxGVlur zKa^Lfay(#~BMKHY%@GBRJlJHdt*Vg)Z1lluYAf6Ja0j~@OB*a-8*6}K?LhMg{0AvJ((b_1uzKIo7G5L^=)ZfELRm(ESb zyFj1of(ERyLBYCyu$WkHDA7>ts8uqu>^*Hn)5iDVW*QQ0wv4t0-r3JOGwPYLKJI}` zvZUIMxz9{LFc-C8a`l=H!lwnKhj(!`*671n6A_KvtF4u?=$7H&mg7JSoAYK)g)L`{ z+?R4HZ1Wp=uo>ommtSGaK=JP+Vc~)nCH(Yh$D9!lVycJYxR9k!T-KiIzENi^weB+b z$eM=ocf35d1=-7MKYVxA@Acxcq4?2^1+&MkIX~;^7IoaoLCBTA38>^`@l1)+(qrs> z?ol3&u@ejF7I0?y*eTYH1znw|(5MA=-qyIhp_FI$@dxHWl2-46*}lmU8^zf8eiEqp zCqim7$OmP`5~WriGV9zS;uh2fpw;4 zAr(x~^1J5=fEUtUil(moB_Eu+e;PdZg{P{BT$$a8Fa7#6w^3Mf3~z)Kr_(%G+b4dt z9$7U*{MFofAhYe4SHyLHvp6hf=N!P=4#ZEA^S)+FNsPt7QkNiJf5*J$FYyEDZ$6tX zKg727|KeX>`R-=r?R}s4!1F(Su)LX^g6IEt{MU94TeST>aAxeE3;LUmA!a^|yZ$6T zoy4|o;?v$XuP6ENNb1Vu!{#_HIoX39vBS(mllH(OTkY9Dpo zt^bk^U{?nFhft=sQogzV9r6_0%2U=zy{SCX<@se6aDFyNufh2&8ymD_J|Zc%PJx(< zcV}YsE@q?sn?*N91DqJ7bF70&d%W6%vXvqCMlKpLA9zKm4`a?g|2S(!r@)g%TMnCp z>a%@6*&dg~8IgMzn1H9TT1$7q}6OSZ_(r-(mW+jh;paY`v+ey&E3`U!O z-;yY#$$9xUpdKH$V(ImunvyD94q~!K=RZ&27#&J6?$|X%kic6`ucoR*=qgBs+um^Ln?k!A0Jv-lWcW(Z27aR6CMs=a(n+h1Ft+Izf`2EN9P!rcU;m8~@b@ zZ$g4#F8|FLa>K!G8VS70D=#9kStp#F1ICb1oz_(MK@oig;<8HTpAxYw%r^so94LlU zS```35re4G<2)Bu>t+zEMD@o1ABK+-yDhK2d9kOKLb8lUM1THM^saYmmKT#&dcgA4%0(P1NGG7*)eVyDArLa8fTwtrb$BX;S9*9B;HcG8e4 zk%AZgqL?m-cQ2sG+L(hvJ8(5=O-Q0HqT1Avk;G7o{gIhDkgEl%-$SXY4d>fdE!7|n zxP=P18#Idi1tC~SU!Lp*UeQXX4=u5hM}>%iuBkFaS{k-FZk#5ki@31hrgU2PFkmVt z;!{duEJyATk;us348neA2$~+m9#wtlzGZ*_sbmPZo`>ka?R}=IEO2+mJ>%3UK%7vD z8dlO3LBF(Cj3un}`A>k@p;&+<{H8YSW_tAs?>kyYLYuV1TzQkz&M@{QkDJAi&VRjC z)1T}i7F*|^5<&K%w~EGO&vffXw$nTCLKaMDpjV1%&!D9M86Nyt+=*F)z#)zk7Fu+e zRu2XmeE|y*vya6<0g(7)Oz~8`nUIzCP<`5CkrH=~u{qqW?+t|-nlm{gpXWpY zBH~T68d{={FFR(`8B}gYJG40dg$35ymk`rU3#6cy@{~aYBhQ$bJJ8ITj+8 zO)v+;l8Fp6Q9@O{XPRXEI@rw~C67osL0p-z zd?jqYf(IXxb{t1-+G~1Mo}M5~CVKVJKB1*8&&sB#53+fonG%C+%`{Pv#BiWCkD~2r znBAYxS{+aKtmfD0T10Jr0;_J=8?lTm*3Jh{=WSadF|6qix+SYmw*I)`;HF&9kd<0{ z#8X8Q{Bq4H4mE3$kmv9^jk$yFnxGD3B1rP z;VJXHFh!&odn?Ldv9-)e_-PTLD#e1hwUWs~TkTz`9J}GX8ctLf`%Q~aC7f2*bg?z- zB%&0^ThXzlVG=7Fr>MD!P;5%gTF&SGl=7Iov|L_Zs;m_~dP1c7RC_TaN=w)&w_(3T z+;pBP^y{wd+v8H+nR0Rc8k@XaI`gq3$th6Ab~RfH3QMzIcfX4OIUd{zqcW=nhbh== zF)Z%k+r)=bhMHXCgE3Xsn0v+RVDz z)sgkB^`ADojDdCVzLv&L{tA6!A0Xe_dcYoOqJS&?@x5!zh#nKhlE*Wr zOsO0HL88T;SRn-2>&~HAGehK0H1b6Yamvz+^hh+sp^fpbd7MV^PJa0mtECol%(${; zH2qY!>dBYLV8veN4@l**(DlFL{U!$5%dgEDYx3wwx!nED=5xf|Jf>6FNdZ$vELYJb z%eB^Tv;3%vmXv=10pH9o55-^~q&d)xcP?Si+1#+MEbpAfO5~>%v{2HD4{Uuc zN=!6mH)p?(2k696S%n73A!c(S?L(K%!g%Js7WP^nfa4iJ+hJYjN+i+)^g_0?9^iSI zO2@-RkN06rtWbu^Ec5T%Bl%(f+>{|zI;@Yn&Agop8VjB}wMT@!2~JEbfXm_eJKCN1 z^hM;@Z1D;Xtc$^YfuTdhzqKMV%OS8%cfY~x{1^!nosu_+t3y~RUjx$rlx;Ak8w@jX zj{tpVEmFxOO}lL`g~pEcT5|FqdXM_$(WtIsIZaNOZRO>CPl*r88}%^bzHJ}BAj27H zoe7Cv4lftJC)dkY*cZo{!y^qV;*VngFM=p8I0n{17Ha@%PM9VbeK2gz_u4Rm?{xZ? z!{^8rC=^600l!vP;N4<6z%E{CHQ=74p5??zqFuA;kERXnyX5s)IW_8<&Zsf@*V#&L zTbV%yt>E0Yc5s&aN9|e7EmX_!PE8#oN!Hn4k4&{mAAX@ad>8 zM*-gjhQUeo*_0ZxyYjWz7PtL_ZK2WF$C2#qW(ia95(hcXnK`7u(X&!6QP?)k0b@I> zov_?H-E)Dn2{I$+8)}nn_^wTPGbg$Cdc=4i*6^$NndewmJ!LH1Hm_+{nxwf*7dg53 zxhB!)kfnj*)M$tc>f1J#qL`%qVkuyOwNA)VASx?faToRsw0-8xU!?qa$Q!`Nff$ZJ z$z?IIaAz`ohK;bz`JX7#Ce_R4(KC?~GTYvypgwYDwtciilf-Dj^u{?~8A+5AxmL2B z9>WpS8-E|`&ukdQ_cK)MdH?R%;$t|T}4 zf>QZ{=+k-!3sMb#vSYQYZ(P(r5nR5%-C~bwSBc4uX2cowSz3`Q6(qQDq1p1jt7p$2 z$PLpn_4xOj&J1B${xaDsVJS3pobX~zB0>wA`41)QPCCR1mzsMVK6A$$tVAN)U^8`| z+qiHYf!AeRIgjL`w>TG8=^n+4vD!FXzcaNoX3U5{vldeLO#9zWoZC`%(T<~%d2B_2a19nZa*YJ?SB_!L%7qJA7teTs2>S07hu;7fw2@BEiKYo@kPPzx3L4~)9f(I7 z_nBJtsY?LSiSJa}FOL5MP*X$y0@SyzZ0>{>gSdO11!SdRPP2P6LnVuTEnmJJjh&#l zS6gcY)yeXSLT`+O9oO-g@**eJ^2Njhjs2rLKd&y1?!QFv#tlB-&SxQnUm;lUMpX$3 zMb#WlT-?u~)ah4Lkjrire6x!4>kpL&UE6P$Gl1b~krF8URgg#{$*}Cb+YLBVAQZ^= z%VY$N;raXXj3WxNxKFv`@c*NWi9-Z&^FWP9M%l73pF*$a5ON^TfP7AFG;N$+yofc;m&Rj+8ydfssJ7fX+(PPyf}1f#BrC@jkfRt$ z#~$DJIZ`%ioeSyDCfO`q9ME$!hSkw@?|y|HPq-Owh2zVWUeYh~v&ps7ya&t}lZ5^d zf@ik56;R#50SOPOE&bV6XmLf6t=@d$3ZT6Gj=pJ&ZE5b&m+#iBpo<_0$GIL<^H#pq zX|s?8s84!j26%9RN?9SW5w&KW!C*NrVbqrgfs-#R1)JS{5<@{9>wc+WU+Zbb6$40cri zP0`pXFcx=vd@4<-Iodf^m;D1!`_y0k_$wz1nD+-oVmO=KBA$atB4lzp#T+=@)bNGW z;mPjsg{#LzYvBp$tpE7K>VrBml@wFDFTEQS{aPDA0b#a)9GCS^~OWt&SmpgzL7LLI3c<591k{Ohx&B3oF6A$0T$inIoQau9-lvzU7U9}v>ZbB+> zP{;x|dB0OMJ1c4+j&KS;`C9QIx>yL9{*bUQKvO{!dIanO0)c%l3VtdpHN@Rb2SNV9 zPs1&aJJcsxP7@uRRU>MI8B%(sT;g)B;mr1e8aD^>h%8abk?*s31U!Zn^u~XBRmOCM zcCw4wiE&-zt2zj8Yy%Q+Y@3Suw?g019EZM3Nj{3md?>K|S4H^BA!70D-K~Y`InB>& zeS&%Gr4TXx7P*8p5FSZq%Byzx-ZKrI_Y5-8(i53Y0GZ(>(Nm&S6j_ztF11;y>m@Hv z#I_lbX*{bw{RUauC%oMv)}2;jnwka6Zy&)NO{hjf`czuKC11+6BfWT+rJm^pt#sS9 zW$m?e{WXci&SB<&`=V6E^b*l<(G`=7@rWR@%#!xf(d3_t#2I?fqJH^xsM@g$o80ue zF-?T|Id8YD_FUDU!*SH9Ow4p%1?V)lNVBylA+e)cnPnm&oYdjX`tr4|f8KAS!z_cXA;?%vjHPL5bx;YI;bOH0OPZH`*`%j4!b>n} zk)!8=T@oaev6(CaYHkM@4VAs_5p&T|Yv2DP(ST`nFO;;W-X(bjPqoCt z)MfmcEL3S6R6cGHMwkl4xaK7(b`AoFT@AK8se<($HrE2tfTYi>iYTo-7zBP8cje>DIJniSf?8@ zTs*SP@-p-~b^s0e^@8!a-|zK%qBNvj3PZYW+3E8yzBkt7ej8$*^4kV1og_xFj*)Nb zXJqliCVmc`xKOtgE$4_Rc~{@uR2eaE^w|x=&!f=yh_G1WJ(;W50Ne*TAHKKG*J+5% z*m~?6o2n?e=}KUXUyh#c_6QyC*6g#Y1ep~XNbtr3W61)2ffjo>U8i0@@8ek#Ans#` z=vb)(_piU&AT{l|O7)4h6J95%Hpk9sgCjbvSlp+}CzVb!d0?y-kU!95^&SD&7&vnB z=?XzR(6n!w0nN~Dv#64l&dlj|I-0XYGf#E0wJ#hw9XyN^;YLi1D`pGdxwVS{+=6?0 z9~Bu#_veo9x2NPLdqeC3K*NH20iDAB#8ZR}Kr753`a=3&8Y$YlttMH6uozZGEG#ix z=FFkClW&Mqi6-fPF@Li5VPUP&$hV!w-SDBaWp&IzUQd6QcqLM| z*5o=$w>yx^t%XK!4z486zV5XN`vHAUX%Z-{Nn|oHZ-w?;l|r%49T0>o1YuO!8SD%; znT;0M{r&Foaq0-U?NJCdoew2=GNA@uqe^&+R6+~WqG7torIHDn?9)Goh+5@VTBqqM z+h;o`nke6IyO!rQa3kE%4leQ2Rh(S5OvkAsB?M;jzNo(L)2I*yV?`_GRkVgtGAaTo z+g}myl2p+y^50SiYOoDPElUYvVg8U3Eyj<#O{-c6AnZOGaz@t98txh`mH?cT)xKW4 z3e&`f2~@DiiorX-1{b6KTd&H6**LF;cZFSmVC=aTLArPxEhYCIK;3R_cwjiV)j3r; zv@~5!1TbI9O7-JN2?Etu-C1OrtietBlp@4En9pUb^*Qh0PKVC6xzL8xHe-~Al#aj6 z7$3XSH6_cv`4KQ*D`cP_hzjI0P$+{r+Tq98k69A7+jD5*p&GkpIt)v#$aqV!^*CU` zyD7fB_f*;URJ4KnGfRc;RKvQL(vQVX;X74Lpq=cGw4fG`*=qBqnn7#if$ld{bhlz_L!q2o!6ewvZzzZdW;~pi(Z)^mZo}_Z~|?j z)zQykpCbIS5VK-odOLD#-_ut+G!oxOS!)W+?S+b1bG=9H7L!qDk#ODx0wdwmJR&ZS z#tsf-PgeyyvPkucHDX*=SRwYLC=TC|KDnWPv79H?c<{fO5-|h&YRPdBw0yE`7{yZ> zYJy}1aA?yZ#C-@GWM#ni!==q|Xjdh_4msjkM@k{-87!XNCXp>jf?;O)X^yOLBS%!V zc9tW-MHoLUP!q%aF>N561#>mo6Vy4*jmi^PJQAfPs@v-(mF1X(myxZmimS|&6K2XQ zPIduE37=$TS~Cp>z(flNZJQEP`cEJ1#+W+7!U2s4O7G zpa*$RR%&V7t?v2rnXUF$_vUO!;Y`%_6id^uW5tLmR!$Aw6+3`0XZuSKwA$ss{g2Fb zjln&-_x!yl{T;gFR5|f6V*k>P-fSCm*|EylkY`1l8sQ8Ny5>MG^sO<4{%GH`|5)v` zuUYu+L#4)kt(9A=+F9OGM}_H~Gm#X$bR1s;j2J@kkt&GO29GnXKizQhu?Zpl8Ive@ zqQ8=~QPTbxcBeB2$j>l?Gm6gK;T{?CcOq=~zAf;T3!(lG(fdskx_(n zJw2_mOPhs3LT$!?5-EidihvN%u!|?E@}CV?ExQ)Wie7z65JQs-Bg-YDBf&#cTfEtT zT*uh+X93vz?_{J052(LlRIW$XHPil?(Cv%lEwF;+2m)DFx!}O&3`ITe&C z>hRhUI}?iIx~56yi7y;{yiN+aU_mQflVixvV!Ks=kcqjp*rkhXsxjOMgcgE36vkLd zS=J#?YS89Em797^k+F1E9T4tuOxPeu58cy z(gI&Xe1qbIyw%M`-RBiCX4~ffbVM5_t%aSLDor#|J*|F=s);;irDi86@uO5043kb*aY6H&AilN}b>j zyA9wz_dpp_eUeefs|HE`vlauVw6O|BaNRl;K}&pA5t9^B(}OWyGf$ha(0IKpR2g*@ z{;$g3jHMD`yb{qAV^Wrow@DU(-5bc z)KZ$rc}BHD|5)3-Vz}BPCnV3~W$LH`D9%+vja5cT==>}^45VLa!i6n%IESlMBuFNo z6Sczp-soH^5)%Ohzx+2smBai?N-G2c=%yWh{tRr3%f=3+^wVD23%5&`$~ice%?b5{ zx^t5FVSJu$bEoyi_n&v*DIfoX;x={M)KzCAR;oDjR9`RA=54KO2RviFwYJWmYsH%h z3HvN^;DK1U9#KFlS19zTgT=9}aRtX@Njc2SVQ1e+TYu7aQc+#o^!s;~*VC4;RCR=; zL$lw`z2kX^T^|#@kL8|5s$qyCE&E4jB*{Zc$geQ7lj zoNaK95@h|lX%-y)Dh{R($nMf#JOK6*Mnh0mLxCh#N*?;zeo31|x z7AY#ZaGzMrM>YA$PauG^bA#%B`k6pX?wd7>MOd(-5m<06+eCZV`jFHyCOCPI)Vm4# zgA1aGFE{_Ku_T4SwEZx*NW5O=0HiSMn8A3!k3BD{RshOvGGwUZNS_dxbS$H(hKOMu zrClEZnNIH(03(`+Gt9deEgxQ@U>o^6k5`)>GJuuQ-kg>KMc*YKzUTsce@TF>?A}*X zcg@!UNWctm`4e5~Jka7h5?(wkb@=i+yjcagnM=K7$MQWO7pkp2Jc%YWK3@eZz*#P{ zPid%Ri=!{ev+r4$tZ4<6^CfPTb2=}O4(zppWzEo%l0}aX&)Leh&#TTtAy_3e#bb0E z3d|*!!W}P>Bbats^ef7f22Q^7_Jq2ZXqiMwp?jST3SX)GZkxoZ`i;3dohBK?{!Mzgg^438qr}Awq zuvIOqn#U1ZPOz4!VKTWJxBlxUaAe)p#XbY$RqCoUette4c+Jj!4`)#4(Z5rM1M}ta z@SCq5g3iGO`_c^^u>aID{M;_DzFG9>#y$hs^i(J7iH^-0jq8(8h7yBTcCl$zjrehA zxomr+q`ZYyb2XTSbMqib|)LO;-g3qoDLVEP_2X`#fK3f@3 z-i9okF18~deQqjb1RC&8?y&)RxQ6EktcAB;J(B{({4%#59KX{?G~IiX@trSs3Kybh zJUKojUMK8ZJ5RGnd*Vb7#`w9T2iW1zFN=Ndvv3MW#wa;UgQn0txzRXQ7wDtj4%YZ# zyqjZ&3I~rucx@FaQbPh|(P%LR7zZ+c(5D;K;V-w+!9waq3*L*7ikmenZ7dl~M*=Q% z)4TVAn5{O7`Bno(o(d`-79H`$g_O7XA))-uwqRN(vJojTd%j)r0uO;AqfGeDi`hV} zxYV@dQ4zM$l>z{3>0PAt)&Q`#e{RNHL!`4q7y_@jJ4&r{dQDPP*WQeor8+U1oP65; z?}@0otDEk04?5a`TIgOVUh^Q6DX{SGeBAUEa7(jiu12f3-YoXGTpfYd&=faRymWLz+{G&hI*n`mNqC%$4tUz!u6 zU^S}qPrXv7%QiT!zRfg{JMvPSIf%;OiXKTr8B(Q*{y(QrKcb#;kSvj-e@P`tAwUe8 zCVpH)^ERQHGy4Hy5tU)ce4!8N`eGPV+LMYA+@$H%37sd)B~VmG@+uzlng+@xW&_H} z<3$PBK8fUtml!LZCrst|wUY^=dlLi*eUvMh4aBWA*mwdg;Lwt%-MbKpL8|*M##EDu zx?1JBn9Ya0tk|Hv3z5)P>auYQN_`8^hgh|l)Oq8Z9+~}cwto#99A5lmmMcRbAT3vI zs#H5z;-djjZ1{0K^%9TE`%d|#cTSf{VUyP&a#I+sf)IbEJFzrCrvN@?T@-sdyHXbR z>y2rvIX@XC&{yo>J-Q|$Mi}nW6>2i3K8eeQC-nD3kzI@Vly^|4Txt(Wk#{KL{tD*X zIcOwUM10qkDOahOjjq7A-tWhCggjr;TVjMRL&8t3Jp1g4O0B#Xc*}6j4_1Sj<3s@BrW4|}^#1(ADmFE{f{1hm>MgADi=IRum ze*Vw_lAbP1oIE%-F0n$$Z2^%Wpv$sr|DwGOU_wqIk0OXaho}f({Tt51`MEuLV^8HT zooCg!z&qGq>R$Zs3RrJJAS5#9-1eyOsDRqH7Bl4xO_M{=-q+Fb31QyCQkzA{-@C0V z0lZ>y+gm!k#^Q=C8;S37?fL_{Y1(n0hkoa-n(goR98+a<=Lpu&zxFZ&x|8|Z$}3Uj zhGiN}SAf(F8)xPC#GlJ9JQ2^?i$2nzjPeL zD729=o*-IqZj^IOd<=aenG#xnqf4?bnqSaD;L&R)X%$3PJ3mZrSpy1G9M#q^kA&8+UnbDk9}MClmSh zcZPs>%IUzyHej857&3XkB>kz}JUse5`P=~mp}D&{8J$9kaeTc}hzir=xud-~q~w^x z)g}vWs+Ng4F|Zyrwjyy2S9IBoZ&vgDz)SrHG%idv`rA4{vy$Uz1T30X0?s+08v@w- zo*>hkInj}^=D1$!mw7lWo4KagSlp8v$l+9H7V+($h$47i@CLgVI6Xb@ZCu1V2+80- z*Gw@jYz1H5BGWYTJJ(FivssxU9GU@d@tbTqUw-|)b$Ymi;s)7{R^nbjf+6He$?{$y z1d|cVmhG_tC2S(=^T>E%)vO}v>G=5>S2tBuFW!$|2UbEmEH!U~CS#Fv9q3@rmj=A_ zBBLx%Q8wI%BCM6&n>dkfgpZbNTx8Isc&0}WE|Y8=4>!tHChE_Al|IUC{}6?4ge&W_ zdF0fNz697B;MGMG(zjRfJP+J%q>1dvaN)*{#G^mZd!YR#Gq!Wq&z^-Zgo!VCb@c4m zrgMAs@bz^5vT;YALg)`zzq@ZsTHr~k?#Acbp|`l*WDLk9%PT9t;lsa5i@sROiFdWh ztfQE*W&7k7VX{wbHEa;3VtCkRwK#?ONsixBbv?YKw9^tIzM|d*4{UPlZo+W4#?uj) zZL2MEzc52kz!U~)jT?tpw1g|CU*Gnt55QD?ezrD@!lm`84by$wrXRH#47W2dAipP5 zI6eW?TeU23uWrF}Xw>8&9C2`vule*3ShCjDcaSGEq-%2v5vR2Q?!Z;oT)~D(NaJ~b zOc##jK3vp=foSUYFcel35DR|QT9#>NtoFx$38$l-4GOKSr|CC+(>jC|)vIhLXT&P# zlbiHb=elBEVCdn*)O{z!{}bkW1o)!CYfD?%Z?)YahwcB5*85e` zTVGEwbtkydI=Mzb7sT88Z;OzF%BDWt4~#L{#Hu(>2t2)=hq`4Gs5K)wj4k7i(cA9W zEpTujcb3-j^a8mO+*{QjUq~f4cCKW{8j zt)Jz39Qkn1llQ=JN-v(TORLUFuC5gl-s`~_{{VXPUYDPOJ%x!uU*eT zB>B9DWB$g|yMzZui2|9Z5Lr&xySfAT_tQwOs=v);eM|B7in68SvSP;!1(;JOiom&x z1T=|*E9!ZLj)QS(5wo=%zkJ$tQvW01Z_3T%BX-;hE17w>cs7h)Y5Y!(>gtX|h#1d+ z$+yILzxlMj)nI&PyWt)y-|rmy0Grc#qhi&1(0rrX3m*WY-|SDp)xV73mwrN&GI0|d z3$%7g6+-GWpIzqteTEs(4MGktKvuiz^NuBMWq-pyf;?8!I8KW=ZFlmy^ghb&Qopl9 zF)m70J{oX$F(z*lp)TYYO!tVVUoOEnRJh%DhFT^bT zoov?w+3AJ6;Yb5G+Na4_Uqt2X`?msLF4mczevZYyz!CUdn`@gNRij&qQXw>1g!7L* zW;DDG`hXnb8RU37ehNgzdUCqsUX)@R$Y?{>>kp^V7%{%R!F)tw9oi_bO9LeOW5!he z{vfa!XgkAsQ#jO+G_g0t)Uxf>uMf`Y%P(rUZ)zkNPh*!DDtLc*HtVWcoOs z-gT|qB#X|V-+-CZw`jffKf?wZZ*sKqjBFq%TtK)2owrpAM)e@@lTcxRQg+zfqGFoa zo8ly$cO+5lsD`g${kq2!?p5N~lgo&80JVoe3mo?)c=*bJ6-)(laXioE@X6yt-=k3v zG87nS1iJO50*e|}P`wNMnducMXb}FwdKf1YAS&Hbd66%AUQ1H^Da`4B18BMF0uPs0 z@#sf-up|_Omc4PBLj+`0>r{~$4pXBQVZOe@sM6SUBF&HWf*>ca&nLWpLy#g~(;kex^w zRzc(U>3x!NXOc{64wV{#%Ppd5(i3SO6Wgwyi^=PbCcKt|~Q(mRPM1K%XCQC?2jmw#x#*mbR5seY_ z`b>iu3?PGdsyti~Ry_)5nrOeeOBV{d-55V|$O+#^Ed6^aR6wjLv;xBi6#tJyQu4{* zp)f{NA+L8k7SO9!20EVY>EB12A;R|wqM2z0?2tY3(sN}KGLf?JKcvUlsmR#M9B2_> zG)W$X_fkd#fNfF1C+d8xCn z;G^bVR<+<+IS`}{en5zD%K;d3b;{`g z%uj(JAuwH5qjB+#vi@csy%7Xj$(fZH-g0x*AXFM6IaU&Wkv5~~8J{Mo_?>E?Ofb)_ z(TWs%5Lu%aH;%&ZM3{7_5z6Li_Ld2;<>O1Y8_QD|0AX_yOu+Y=@9=2$JeED={L!z~ zef{jZSk_PCGhBD-B3SZ7&Fkky{qp&E7qe_onD_f>Skdvu!mn=R9m&{g-{zDUd&mR00Ms}rEjr;H27|?(}XhkuTEv_(Aj;3#AyjASdZsaB?T`!X*mopG1^Q$60WcW#`%WIY2XkW z^n!X?;m)$PD~yo`Os}xm2t@`4faq%@&B{x`u4onr5$oG$b>hgr^3k{55?FFkY`Uay zR8mIst;yk3?u7yy!R|F+=kYwBAOkhB8Wx&ZZRQUF~wUy-H2rWj>V z@9o6xnQQ0W*8OrlX!-*Prtdo0P1jgqxC|B89H_dke~|;LHn^*nocFi(sD8M+Ay0&; z{Hl=a!8LU+vF|pDNW@|KS9e^+#RPf?buB+J3a5Bi*$|pkF(ctqX4IF zA3}MliZ^M~EodMKwF-E-%6Xei()61KP_v!v6i3gGy@aD6syYpB{#;(j7d|o;~8zuBY3=on|bSRwJ9dtI0WiBba5B_I@Mp`H> zCA=XkOFb&uspgO8m%M;vV{CcIBk@!7bxGWuX{rt> z8FsvZu^7r|NKXS9pfS_aInIt$!+Q?GF~{%hV?qG2CLf^b?d zW+Bx4C?VH$`)TnxYb-%=eKAAqHCy`Z@?Cv(&sHpmazXsJzZq3OK6%4$lmW^#k=so#L>cF??{z6)6R1h zv-62Kv`jD!64-X^e3@K~=M*t6FO9&^a|3(!KLSR9^M1$8L>o~2l^a~g^82?Wf0gYr zX>*3Q)6LUq>PF?95VP`uGTnQfCFxISHa0={l6V@;a^-f883Ti7D6#615|wBm&smDz zVMs>}G!MmunrbAxP|9X*Zg#ppUYc0kW+NG;*qN`Q(B8{dAej?poExDCg67g9>=^O- z+h^4Uze5ZQ8-mPh47~RP!)kk3J-Y}0Q$n>#JBa6iPWG2S z@`_al)#fzsYyGsSzFQm_k^GT1dt*R0Py$2|F5sXY)MDW5yaq^@^N3ey75RF7`<(N zs`|w7%1$w~<^&pL1UvD5GC&Z3KMXy*aVQc}N6%~p70&fcl)zY9T(Q>+JHPtvEw(nc zIbYm3F_~M>Z^CJlv^lUFOEz6=Iy^nE8Tuo2a7ZKzK16)k}{+id!merB^(YwW`rUWv|_>%G;5&a!^V;cRXfQMT;0rJD~Tm; z#a+%k`p_L_UbC&K(mzxI*%*Mq7tR*#i&EQ-5(^;Q<;5+y@WQ|s=u1vdxX`LCHKJlB zm2~k&A5M~DCmqnLm1pIyy_dSh0J=%6Yr9?=#`rsQ5~n>QZ3u(Yd+3gODaYgm*VHN_ z?&+LU3Q{%QE>@t=j3tr@Np!(HuryasR0Ye;q`eb@sAM38nXpT#v|WN$y_a=|LKOPK zv|y0ze&yvNwEv$!00@XaG_SRYkgiA8bQ3V&kk#5qd9?3e+_-4&9_uUcF*o8_$3#{W&S!@?WNf!yn^)U_36QS;HOi}22V4wi zI**XAWA=OuD0`HveUw8r_Y`$N7ZV3<89R)m!+6NA9j4YtXXFh{L0vb|^Il5Lt^JGP z1(y$bUltagj5qWd|>YfKe!=v+M-jh2;4L6O!AdYy!_4^Isy?7#1{xJQzw$4-a< z;ujyBSw*BrkCZ|$-zkc!OE$iWqt-})L{_njkwJ%SEW``r!>mg%9tMC+HeRhslH_cz z9n{9(Xx2(oKo?;|Gle-ohlEycFh}-LFE)&kW;=s~@aqk%>qSUl7-{fY{Qj5U&P>>d z7Ufa=bkx23HJkzL*e`*}^L`M<+Rd?}heO8o<7i^(+Qh+|GxpJ3J%dgY91Fwdc_~%f zU%g8YO3gmi%)fyXTByuV{Xr|Pm7Lq|FTy1)%^<06!k8O;8*nz%-#%KWinvnbp|bkt7yiJGnj|d<nSlw9(jG(ntAxMWbw3;2$eZO-wZkCqsK@yhsvO3=*IKDBR$ZbRAad>K8s?Q`9o66$JOK^$g#S=BWBRsGc=S9hAS!l#3rW-JU0URkNEUd5m zXkY~eoHYN{rT!0Ah1#*V7G?^u@}Uqq&40$QW}QAujSXlm{Spc;89~ z2^tS#gCY-jA2iEwro?|n(?X`3G@@4I6tWaah%#OzDh6>-C$KAE7su6blwr zJ$(d-vy+CQQ-WL>^oFRQTQQ=6&Vd(jvOjfO#|?>{_JsHSHXm9&jr@$_D+ARWe<$Lz z!$x(TFY5K-98Om6|Dr#Y_iDp8JaeiQ+9})6;yiG@UhY`gm}#>>M|n03o?z;(MH;0} z8$tuEMPbUsd8;=RX`F7VDDf*%Fj&>r=NoR$E~hM_ea4?aIu9cbIKO;05)#>zo=N3o z9PaH}C;)1L+>9iDuV;Oh!IXcWgxV%!JeVWtgzYF35x5>?t%e#7YQhaRR2(4_+sj7f zawrXY)_-^|sg;zttl9K3$ESAbJ)uW0BF;AGu8CZI%{24E96%pnDnO^rAcK4yR5M9Q zBV~Y6LopGLcdR;x=E1~P0*_ZtBNbl8Dx@=I;tg>x#f~>nrw2wyO_J6-rIMV?NHe8~ zAk)T0tEIw%6iH!9EHKyv+(lu1trC2@XBjTo{b*c6udP$4jJYZK3n7Wit}GDj!nyN4 z&muxHMkA`221Cl~r9n~Meo&5^bv1I$H!)-Lc7N{(;-Y&{f5$e;mXJt?VN43_)i2gd zVI!98-A6$H-qzL{6uplYCf|4H1fmR@h|IY~;q8w>O}dAzKowiavCi|>?9R3=5{is0 z1+hF^P++gCM@8`wU{EW`P*hA1NK_goEC42)f}9xuBf-Son$dqpQ8#$CvAxOO$S$n3 z8o^+PkK!YG37m>@t0y{Cm2qrN8K*Mq=|^KtP5%wx@$>m z6qKOlsmL$uA1#PN6*49M_4&l?gmj;s*SYrm6Q zP`eOrm9B#-qo~cObi};0sy~*>#BdC<;!zNQewLpORazeNp_bD6W|xwT>fPqSoKwJ{ zdN}T-h(H}aWi=p04@TPrqRWQg`WVX+ayW5~QJKi`8=`O2_Ha~>QEz2h=-MrpJvn`! z=aSrB4nA}pQa!?<1c+~~;ccxD+-$&f3oGwJdwEb2>3Bdyz^Vqz015&I%8>lRx`-<2 z_>FLOv!^qls{R$CQIDo0upd1Lo6;Z#{1YU-gz11b6>g~QUGa_x$PSlsRMvGFUd4Mg zF}ZE(z`_SkMGI`Oo;|JHm1d+o&5m0|*g@Z6FcA#(mSc{+cydy@70eDn z82#izYwuP{s3UnDcQKC`iQ{SxgCZ$kn3zQe$MS`Pp8Qil2M4lb(p|6@2_jI8E*Ysl zcSp@gjgGR-g}b+jF2#rk?8<5Zb(1;BvRu-ukEFVUvX%C>slp80%R}{=ArQ?MIQ$+; zM_^KB<>GCp~9hwZJp%tlWvG^F^N}lX`J=>L zzhOntB^d-SSEYaarFU%m{!xN1zlI0C$#~E~srhoA;!0pw(NE(T$}bFqBJ==#GlZ2iEIG z^u{DK^mjlcq@MH!(oKM3^5-AfcUD3m^smfPH*i=i#6S(A+d2Ceac!EtEg}tAL?ZJm zO(rIeJL3Wh;tyU*bTz2W$=;#8#Wy8q_oiI+VV(_VtFl7(vJyJxydifW?1xym43Rom2_2C$hxuP`s0tYn8S3;*wo zo&tiCojtQ;D_O}`0niPUR^C*EiH1L91l3+gE4O;)UnaeWpOVwlC41yY>qu*>g;ye! zPl(F!X*~5p!QFi`1wHBfK0u10N;9b3!qGv)cm!#yI9xASpW%^N;wzAKR5k}| zsFqThhq2R5m8Sja*vc9D%o(J}5*bN*P=91~lk#p5xY7MGQB}yG20d}0J02)LMx4m z+^}mYW_StTDnO!30;2-0pd95jfWXax*ZlYQUkR9$jDZQPEad_ClClgz99F<>AoY#UP$|WfOLh8lR zc>$nM!S!L9WV-c&8M#eCFM#ENThE9MYE6zjG%8bn$YXUQ2-ps9e{PcCUA#DjQ;Mn zBe5k}J9{8?@`2g63m`k(v8plw^QI-F_KxDp{%OdM|F-tWk?qLEo+)o68}Q{(rw51* zvy=y|onj8aHUg_wcpI=82|2D0pKMSd7F10-e!qRPXYsSr#ty7U_Vswa=<(kg)`HwX z)1Dd!J1H1v7ErFax~z1N6M4UsciDNF(ya88=o%EO+=zndE$817F_dJHhM_W(i3V`g zeS0W3+Dp@Vu?HI{lmJ`*CKRJ3CDj`oO-;BcO!7e{F@m#p&?XC0L>&CBeP>wJAO#nw zeh`_kXnLK!bI!;5h56#?dIugF)#ZO0R(bPwiWH|}@HB6c zfQ6O|Ly$g;@f-Nnz#lRhO!X891;sCt)oXidMLW6Ye}8@C{Ntm(N_B>N0K`bZy}t^H z4qwfJB7i&iPGl9U!n9Qu6w&17%T*X`+m0+51Vr{P7mbJ6s{cy#ldZ%i55`d3iGx<-#lZ#$HkjJ^XsJSogXsDyYQl zc9NhuDaG$7-Ggu-#{efp;|#LhD&}9Gk36i%5Rcs-s4>UvzTAj54#*1i-YvXMsnh3F zHTVNqF>IFd<0LmMrzbRt^1n}`Je67=BL^5O?BGml%!1R_lBg->3dX+%99@tbrUP|FJ}3| z#~!yv5s9Gx2MA74Lf-Uo?C!E-_Pr=^4m<0&{5^?06aWlin2@gE>uLS#c8{x5Ylt*^8VbyXM_MapfzBFu zP7dfF4Ylb`pwBcaOW`0%2%6fhw@3mq@-C>Mg34P^RPcc&BB{M@ZIbd#nuYS#a?(Ns zZh_E?tomudF&Gl)$xUd-|D_lJN|hmNsJcrN9h7SEypnR|CK6PWV&xAJa=IbZfLe30 z(a=f}r3)43dSdCY3i74Z^{;4XaHBoR)lkes(ojM30_*!eTeffXY|xuI)a&W-d7mktDgbk#sBg%0k0#bNsKD_=(1$=WDVcCBxcs0m z?R=h!knZhy*pw`g_(<)^1BaTQyZ?YdF#T^xgvkg5(>&o{l=|7dE_cQDZ>J9qs*Mgu zu8D%XZ-a!scSGt?&||@O#Qx$;@)F>!v!`VkXcHjsXvTW_Kp?vTe`dNTfJQY+Nmzp; zMfVCfTb2vz*tqEE(ahLW`XllMa6qLwV6KBkIqJRs)ba9vh;Q_U>h1C!YGJdI4@S}5 z0qE@TU7S++@CR=*d_n)?<@@pQ$uY;Ho_?$0UuA($$dD{M_wE3Qj_ z7yb*97x8vz=5UY$e1E9zwna~b8B*Njq_2>ySz~sipTyYlvM$ry=FM9VhVPw6;Jgeg zH?Zs-^>lyi`+lXlO_Eyrt^V1V6uvC8ppaYvO!J2X>{CgyKC$f#ak@{)$aUSqF$%g4g2V7zY*TtP8rE z0|bJyw_-)PH=qCjY4ZeM_yQp9oS~t-au%`&74U@y^@!#3hl+HHop~diCUJYz;PF7g z6F8>}9#BEMN7D`}=PP6L0qrPA;x0O56@sNwx&$iXem_9R^j2~Qh@TLMU8Fy(-_x#y3!@PP=1|Me(QzW&`+&B`up4H*aLTp@M{wSQoM#1_u zW3)5UjJj12_^iP)W3eqze@#Vrzp>uRGq}~Z*p0UKvIaNpcWv-($vs`g`OQZh(mjxl zw8yv4OY7Zr6pf1LeskZSqcjP7Xm}0B#}4#?22_M~%|mO8nMDJU&wFhfw%_TbwP|lz zA%J_VQMbZvw3CzO0gQAWZtDvL-gAoP@027`m-KRVf;9VrseFJ}{h)h7+4#qrL_#qx zWZHZxHV-~q*bw190rBUNUKp3f|HfpN)`Au+d}zGty$h63)agZD!H3`3jsEx3m*9f` zQIRbuJ(*d8$23aU6A(fJ(d@vXj%Nazl0asOaO3FKQ0&wAD?sh@31o>uYV)>N7M^bt zbp*95w+F8*xe4}E3pV+1gYAQ_qBmaX49veN1B{#n```$kn*ntZDJ%-Q=O?%9F9q(c zvmObEC@hpzh>fzWeQ^ZsS6uPe_KJIVd@Qhi@8f|1xgX-lWn7Yt8dXCnz<7ZUTSTif zgA~|~4t9{s8UxigX6M+UqBu;#G`kP_CQjz zdz?+c@)@YJ&MjvXod^5Z=s#F)z}<~7g^=rKIso68n5X8XT?990yz>mVT=fQ6hQGra z&DJ5Sgqr!Q)_p~O;WA?tn#Y|4Ut1#rFgW{t2+LgC9x7_h}0MBw>;b8{V{1Ul9$ zRTtyMib_p0wI<0_H&Z>VT7iWW% zm})8vnxGGe&OcDW9bkc{Lq5y1C8Kp#(vLbTm*N0_6#FcOT;s9q1)5~g&#ZCp z#mHMO7o7Dg^h{-&BxRU(Wnlyn&h@3zIR`g^lfl})E0xC`Slm_fxPHcXpC!{3xFyVF zpF4pJG{MWsO%SM!9B2n7RS%F|lYsd}nfu&tvR|vDM0emL!%I}HDb>P2g7_y;^!uP5 z<{|K!6ZnpYJ8Dma38V%XM}88@U2ModA$q?M-xJ5tq*#}rIYEd{pT%$cx%Srd1MoVf zhs&R1RA>n#+)o+4%!mvIk4Xp5+!j3Gbr31iYXaw)r0(R$xH_u1;TfbUzJ&-rCqDq3 zf>GpbjO}j%?CPg2O*J_#EW@K{HeV zy5bw}PEruW{ZYb31n0xwMMjFC<0`0R{2|L{DBKCk=Fx?iJ{F&Lb)ggQ#RwkG$wu3S0Ci zdn<$lPj(T+bgk!~q+yk^E!I9zIy68jp=2;P@XQ9M3bBHD2WU_AUV;`$JL>{BnS+-< zYz9Nc11S1Jb+NKZ@^tHR3N?jTw^X}cw^~89iO$eX7mVmtlch>?L@wcPv`a8nBrfbY z^7CPaXF0zI73?=v8z|TeUku8Z4{l&d=Fv1z`{t1;a7wrlO2B8ACmRlMt#Fc70ApUl zioEQ#Tgz3{nZNC)O0O{iZI(#im^m)!$txM{4lg8NeFj7W1BAuTuN`zjmk}#7I~`hE z6xN%da6j(U$`GOHN$78fHrh2kODMiznH3Rr;?Vq{GiOwgS0*K)$5{22`Um6p++LEx(FbFm)I zrTy!GbyA)~?qho!<_Qsk*RqXs1z{OL*N`lIDSm=-3GNflT@^9=LWp)CRo_6uIY8#z zwjvh@E9Ca^cdTiTRIad0G)wuFrx@KDJZ$(N+mV<_8Z%`igmVP(Zq=CMEYycRiqh2h z?9)htwrf-){axCs>!IbIce41%IroIbk{FHxd?17ey!_{6yHyL#%5_Wq|0uJ%V7jDLM9OmTG=rbc#V| z7X1ffk9iGe<1IE_MJMlpm-`1_@DBQYP2Czt;|UoK+lo@yD4NJe98RZ+e{A?`rV42B z>%uub?D(T!?xJzX?ESTWLsCkYV=9X4Ams^N_r#eM$&6a_CrFaB5a~j zXHeuKJTMD`H8cYle;UP-xA9@AZv-UCE*p-ueY^-l!4`iRmxX~lRh z4QZ?dt>X&}nu(|XTSZwdQOxh&)DZ7*kcqOYPLsOklcs~10IDqXl%lYh6I3*UtFeW& zisqn9l%A@rB345Ykx~h{qmvQ^a< zlg^l--_+oo>!}4EVtq111MV0a(Zy*~LQN=IC_u z8}9R;LRiYYeA3OZ2EG?K$*e_neUusx0U8n6zYs7g*U|w&4F-F#$XDt6F4ucIbRh*PVO_3lInc%o;_~BZr$cMPcnAe=y3R-(J)Fb8a2ppL-pB68&GdXKr!`OjFO0 zi9^A4Hh77mgfLcuImks^c3A3>*r9OIquAq9$U&2w9%=Gm@g`)+!8n;sGy<-)xT8Kt z0x)*Kdd3ERJ96p#V+bh1rTX*d2oD2>ju&AKp3}^MGO0Paf96CsD5GLLUF9o)`xGQ)gjHrdOX#lH~$d$YMxHBPXbj#8ZRF0Exq{n1Nz)6E zdgl7uHE9BlN$pd0(YCASFlJ<5hwU7H%AtYp`VIhV#5_?suq5{b9cR@q0f`&( zyqi}RwPuqUaoPQzNo6Pr!m?Wo;iR6h(l>><(*xB#{?h$qtw=aoUc9ZT*l!8;{?MX1 z)KeSr?TYHDj`7vO`)=p@a&h_ab+|o0dpU0B>NfKRf)uXMi)T5rs@i*dPd>Nu@Co)? zu9(1XY;O#1Y2W*##^~<)il57QVMsg~|L;Ja{};guyR6s4;edXUg#RxDGdD3X{ttq& z{1<|$YuN3#C;TDM{|elNorsjz%xHSucnC(ne(&zYHE%MO&ac$@dK6Y_PRuNPFP_Ip zO;JP&r%fP;R2iy~_`cT*zFuUaiO@mfSuV3P?lJ|3VA$Mw(blWsk{9Yir_j{5#D}Up z_Ouv!^!53^{(dvta-1lI5QlW2L5x0bPb4*nBs3hT^QQYc>JS4n)Th{n+d=JZ))^pn zL`nmbRU-WrjLcBU5u!|`8E4_}31J4v5oRW#3k^ipPh`NQld9YU4}3F0N=Aa-B}R&4>Z_JDykd4>-DfjlMQh=}zvobSCwt<0{!j1w&{WT>SB0Nrg!|x?xVjPwCA-#ds3FM7@qf@$7=m-(lXz zfMlOr02*!gbMW`$&#EjxF7Gi7JaRJ76f-p2cEN9$&$hjfy^@aj#S2H}-BAU3 z#Jt6VTb#C7Zw4`W6c35M3)Mxu}&+9CdJ-pQNP=2@1km%L>P zqON`Mgv^&*5ZKTR8*yH&poY{(2iEU7gQO$(2uB0gG^8SwAXGET+XFJc zUh8i!v^5sI7QomQ-3UWQA4o>WL}qP~pCYXxDbU7;jx z`bhhHBB0F5nQc}|4y)W`%W13MzX1%dP~*|dp+%0rZ$T!J_$OCAJ9M388uS&Aoy|)( z2y*Z*Ll+T)8pOw{RtDq!hTL=}qJK%aM$_MnY8D5J(>j>YRq^Ybci~b5=%`15TXRu= z#mI8KF3H=BD%*(4e090st4YWsu{k;S%#Z9x~qKy7TK6bvDVh}k33xODMga#gf zm9)GaE3p!GgtK}!Tpt6Vqj~-!#S{<|bzM?QPim0)W`FVJUB8{RhxQj{tTS1x=jTV8 zn}|fPJaV8MNUb(Vt1%hCBw#x*KTO1?)HEudV<`|Ntyxh^Lg2Go=nJb3Kh!rJ;OCBo zC+0BMS+5%9DybAgsp31a8y4_IE%EY^)T@jUWefDIaiMDfm;s0<`0luMLF7W( z1A6&xh@s@2z6f*|F;(!o&XjX)piAV4?VBwrb|4s~rfPd&6N&E>mxO>=TLtEWO-H0a z+=FFiXd$3LS{>r%TIhl*pDd|jT?{t$oXD4M7Xu8X^!3jwa=&g(lh~84qPFKAFx@Q- zKcVe9#M#}2h_)>gw%yreuIj;p=t91hf)X}ZQA@~}wj~y>cAVGqQ|$odx;Z<|brDOb z1N9)%bCdkc?AqTduPyAbL9c&q7h6y&M7KXLVsrb8eb*w4RrV{X9W{_ zJCqll^q__W63v-`@?`8peQ7 z%tDS2c~4dtXv^nWZ||+bM-{E1_uF;rEWUe4w{Calr0dZEdJrcLk#JvJq|{u zK(J|WqmC>hXp{ExwW&<$b8S8@TF8E2bsCLc4|E`s%98>@1C{Gi0V6gO_sVKMe;xj- zo0@n~SR1^CEKH`8x>p**PU!{xLJI^Z_lIqh;_gMq+@ zSopa@kBzniHH(Wvc-Hl4^rz~I!(cDXwrJGV$$s6+D;?iTn=v2Bb!1-KsRIY3Q>(1h zNZHt0XtN8Y6w#vHV)>EzAT7ig)BT-t@pXLYrM7*SWY1Hgo4lEkmkV7NjD)h+n<|B~$DbTUJk)6waFQp?Ib-*qL9~>+rR*AG znFGafyvPpX#cIZ8Q}m_(QUbk=`(Q+e;J^iD(3@v zGuoLqPf?CZ&9PIi(rbyyS?aZ4gO`@%UsZ!oJfEe7wJ_i%q`;wA+t^=EF$P@HLT)-a*|QqE}pxP6in zg0@Y;2?MW1`Kiz15`wxjf@w%-}>#XukPi zG@&(hxV>h?e)hIY(UAA5jsl85@U&<53T*xKPXIP#gG=qU4CJgR2LZ-r4AP0L0dodj z%hw9*Q1psEPKUb---(kuiKg4;YuY7X@j61WnXGmGX^P!LKK&_tjpR{ zlPE{m)5BnQy5zO$CQCq(P?^t4Az1i>hiy0VAQ-ug@dL_UyXA zm?o!iG`bP}64w9|27)L0&ycjN7S}*L#fdAJ>FzV_1Slbeq8OfpyI0MGr-Xn#84ERs zm2N-?lf~XAeczNNg7l`S#os**vx$Wpb{5kkSI%)7Q``FkNshY=K4xdNe{D4*DfgnP zQOpq9qxx$&4DU&TOX>zd&ia*9@e z(KUZIcS2Ki7?qUlO7o=i8i{n^uCPK4*K^Z!%Q#zlo-%ps z*=jCJqQ^OU(XI@-ySfZ7kH2wgu)as%D?&udk|aY;H8wKn$Et-@Y;-o0iKS&zt%7P9 zEGgp5-6q{0e~P?`m=5}t-aN%Wa?%x>x+SLLIoMnpPv?#wpe=nJcMq)b6=E#ZFT6?=ze>B8*Oht*iW3ie}nu_+EJuUGM@YYAGomoH@Ga@ z?n|Ki=;?n8&H%mdIWSX9wnD=F%NIGkVbTXs#nVO@-iAvRPx<0pW!d{HeF=*T_ z$hz1jeSK6weTbQkghTe1kl%vav0co7C1YIWq>qap$J?axnZP9NmF!6+?DgAsFOEJWY-T{AxG4t= z^)@Dg{USRzD5jXC$<*+Mn~ZqGl@s%0F>UwETpMDBxSc12BiH}XBD_NtP!LXVhZX%~ z0Ynm&Z2`^ZfCMOY2^#W+KEya)9LJ5eNNgO(m9|KH9LH@1Dc`X53L1yj&I3E-megWj z*9pYN9-knChWBQ%c~c^D-`_e2Id%*o&<(6F`yM#97t*K4$Z+rBMuK}CxPBI*>;=B-J{>~FH|oC) za}PpTr!@Xa1-LU+gPUAb-ds%d$|VtbKMpdyvNyTu7n}WBW)otEI6lFed}nR^VkSE} z(Y`}fUxt5lOr+=`pV(L=8U5?OdUh?0bRL387O-9bOwy_70n}xXn=7x<7+H?@+V0O$ z{ECKOO1vW0Ld?7L&VZ>AF(9dX#!{i08mYAKPlsS-Eg+Q5>SI|7mE^Z84C$eIiht7vmo@Sn?K)RP21F1bcubXsEwiMywf!Fvq<#H1bH%Zci6U z1AMZ!tpI5ZSFIJI>(3z5;vtebBhXZ&!;E2m&YDAMNi$qOz|m!qvIA(XgRw#0jJ`R~ zEjN;yta=bCQc)UF7Gn^8TzU?Cp-CgD(96P^o(QK;xe`OaoK&?TX8^`j!r$w+)1GlVYWi3;@L$>|FEQV$W30 zsdoG9^Rz5X1i{^+mM3~mv6;lNOU%b`TJ6JbYIonxm6~6-AX5I;TO1=jqe-m1Kjcy^ zo!<_`nmWL{CIJgg*rGB{u4q!IIrg6FDWsJ2pt?H<{MIkp6RwUo)E657XjvToWs0VE_n&n|YqXzMeA^NB$mvc$J9{fyWD%s7L5U zKY$ZSZcf})#YX6J&|F2a_+%5SQva)=6TE6y%JJQja7s0X@O}xST^w8 z(0w?3-98gJb!#rISvxg1AQgT5V{-G4N=>ad0hk#Yj-t^eCw=U+a)g28?X$Lc{XsR% z4t#$r;f<;E7OjUIxCmG8jiN5cD&kquOy59(c_J7gxKQK zjChhSkXwx=4f!z%P>X~t``zph{|282BfKr=#%v>bJ0c{Z} zH%37BBiZ7TKDfXVRdgvFR;!V{OHWlAd*>+#-2gVwSQqSS8apGLjXsiXNqhNAo(OK* zJD&T+0e5ui``z}6o>tO=3;Cn;EY@SZG%i{okHLOuEmAFXAWN9)T|E6dMi^D%5eDw* zM5Fvn^liGCS}L=lvhO{IKiw^)U0?B-d#2mZ|dEmC0Mx21=Y#2Tj zG=(W55xMhFv?U8?OV_)cH_q1e#f&2q*{y;ub zu*P|aq3AM=DAl}ZI#pb89PFmgiuzb892X#aK3%UKmnW$5LA+@SYmj zRxX}t+7wj5mnNg+%DJM2$SuFhJr&jxi`T=`tJV$3PelkTHXzXcO?;_uw z>4wFRp9MCsju-hj$ZbO-kg(wysZJ5A^(gZq!lgoq%iQSq@BR{#9_o+XOq98-f!ZK$ zZ6QfKY$x-fse3DCi`s%ecz}^SJtJY~+PGDGE_dI+-(~15-?(~aQ-fs7xIj9mCzgRr z!x5IkNoBY2RYtTljbFagQ)v3W)Td~$f5@fn9R3%HqXza1?RqktP35?8 zn)B3VJ@2IIlmbmsLpxt+F`qWF$TWw`(g@5A3u(%P?xab8R=cMbnjCKO zH`U5)nyDMKGN`My^_o+JD=N`NC7zFjCzT7Md!MsV@;`F4+%<%(ITH^Ory@QwYj#`% zN>4jFes`}xO}wJ9+7mqSe`#rB1*ad49GQ@oe`ZpI#2f$4TH`WgT@6SXhdva8Jgi7O zKjGDAJ@px!219N=umumHF6&m%*?WT@*6`2Gcc#u_CwvlL5aJ zla`%xlFoG%soSkaU-_WGO~!+-or^RmfEKYzm3|Q3v@(&}$D$xU8|T;-ZbSg^SWiqCa?t%dUksXe83>Tn;IZR_HjvfB$OckM}C>HJ55hL8zp=bdcAHV@9 zVK8=5Kbw+j0K`C;WKHUes!nYDYU(sSVhbez3zsoe&XGxOa9_e-D|yPzRQ0>Oif8kJ zomPJihqrGIDdS`r0CuXIL%A~;t-8-n!VLUnJGDzC=QvMgb+Q$3UCC$@FU_-+RpsY- z!|L%H_{ngfM1JC-bJbQZZGr}z6MLm$T)@ssi`fh;VL?@+_Dsk~Bd=3^vg0YiElk1` zR_egr#e+85{E`oj+XeTD(>)=9!&0HR+E2Lx6`iTQe^}Yksh-5fQu!?bF>eBnMzSL^ z|8NLm{yA~e)HVMNxVwPja{S16@*_fPpck z_`Va~E&SylFqOiokr;`PYy9Q zGS8i>A<8u{UxNz#OF+FY=$r!gsd(SU~4iE(xNAb-@=hP zf*l|xy&}dQVK}hn%O)-OVE&?q0a9u>zbcN(=d3xhuM4*2ah>BtMmEZ$5dOm{F$Fg> zRt4)z*Nb{Ct8d?vSH7MN9q$mtNbZkLG6j6@=*!#T)r)tUJ`R_qf)(6o?asX0jS82S zKdI8AyPCJl|Fg%<4VfJru#!aVsDj)mAuaw` z+`fJ+ZeUp2Q9v1~rv40UcNB1Y9fIaj11rk{2atZbL8Q0X5pTAX5W?DBAeMiipd24z z!oM)*aQYbugo*V?n)pIQy2K3mLmvKRZ7d^PL54s=%JMr4!gcHdI|;f=1wcaK`mLzi zjKsi(g)_5b>U)(S+JmWWB5O;1+XkT@y|wQuyulCoR#N0GcUSwi)`(ZOR6H&(`vmWH z+G(}og<^SJh}_!Pyx?!DjEm|?YY#+9R~h8(3h=(^8n5>8afW6>9)igV0McmtwpuBKbh7(@VYz_2}^V(&$&IIPLeZ^U3Q>D0@ z-LwJ6)c|2mx|`Lv8q})6$#`-7NGyMj>)LmJs|s>FB^rji4foQgc|ahY*4g@Czy?Fats8~1T-7){E*=C zn3;aVQfL698;8L-DMpo6og*r(*P72`#Jb?xp;RF(b|s1ofQ6$LAZJ@TfN11R58O3H z!9w26%K=B7;OWr=pmauN)B!;75ulKGI8U;}sHU^of+$^~+x#3bo)&9tAfowM{ z4_LIJkFxK^4|C)kxwDT3jXg@h9h0 z?p%;F){$ko5Z!7AfnAE*8C19tsu92amsL2`X#^-K5T?VVnht32%6 z6OY^soDm1DOYDNnhbSk4GtR8PTT$U88F6)LEWpni?K8Wjj8cp9hBhtBmH$O}1J?4r z%jF%-h@gsZoC?lPyV($}DEXXlRel7a;OekU)yI2mVwL$ui?z^mTCMY7dl*Oh89tr@ ziJ64is;D;s^j}VTr=8nd7ve4M5M=%4y3+jwQAsN9LQ(;BzhKHC{^~_$V zh@)kNE4kS>0Es!1$mEGH9eMX?3Ey9%`f|bQ#d9#l6$}pR5wb)L(V;wkvl+n2f4Abg zh5m9Y)Lh(QAAFCXlji>Nj^CfY@5^6L3ML5fr8*G4FA(}tVXCgcY0aTBO2YWI#p=-y zXocvv8!oHjoZBp_$MrmGcvS&GbV`-kzGNunm!P9bcx1Pv$J%$A6d@8e+tkCg(97F$tfftDh4% zY`3N0Jwq8jWKpEV^RN`cPirL4m&sC`U}ys*>9HDK+TJ*+F&fBHL0~h)l0NN0KK2pw zGXFIjvVq0$ExjgwDLdRTrQ+bz!(a98MJ6{)p9+1gEa+_+ma2w!^WQj|0?D?d;l3M2 z5Q8{x?#EhjD`7XXA-{P`=@CUpNaMtkQH5+=l|1d4risHgd8s_unJ&J54BOoksOY>k z>eZ{4rTDT{yX&g+4qyDY-^W?rL7@)kGAf#nynquH8p#U|Xjop$iNV;o7D+k5NVgYW zyW|%TZ-2MIH{=vEStsxAuIj%QMYL~6^bf9Zo68EqmR)+nImq9PyuV{sLx_oR@F#F} z=y{gZHYF~cjk}$8LU}&mP5gPZFUVZ|vNT#ib71oAZY;_@VIjZRmq97k?Mm7YH0roC ze;ueuXF79r`F_(J`ySsEB&Q8bnh!M^f9)`IFm?}u`_5cv{`IE4eCMossCtl?9_8!S zwl4kxx2n_aH_`laCi^xI>Lhp2Fi87?f)sm#XB6s;?Gz&sRUgAKVVXGWjs%xUXxv&? zh8QE-?JVqNarG;Dac+IWjgF78L^wA#P122JjFS(EQI8hbEC%H*uZb*6ciC0jM(o#v zg*V_t`@+FLj&i8_$7P?Pcxd|jh2*T)#<+b<1=s z7=0j+JxpARFVeVy8=snP7A=Ja_&~$T;b{eZeNFtzupjGSEej{hf|>JLiEOJerp$-O zUb&JISbTPArjYrMt+mLoN#2_%+&KA%mC>!NHD@oBab8Kx z-;amwVQMuvM_p1_#_c}1?J|(IB{pJ{WABp%Q)F+-l|n!88fFe|Owws9%{{MOi80NJ zD>YmLHG_km8ev(ODSc?d(s>5QON%G9co4fJdtR&j6#MzpR1K|Cn%^#6+c&R*ls8p` z`}_h*Bga+fbfWC(>#v>ZlZP5e!oifPkU+L;Vvv29Iyx1u^6{@ElMbqE)C)nIxz1k$ zd47C`iZ#O2?((*D_VQ`2%M0de_X-6ko`r{@NWiN(eX;$^)?5$_0pu2@IiVWKNXxqyCF@R>%dM)EevQef`a+Qv z*+SIC%@jD)YM^oBayBvS;mewW{UC&CI)49@8WnT_rK%mfENa0hdtzHthtKp`tPPT# zcF&n|sqHt8ZYFAh)DWDWg_HQWs;FVFu(6S2<25I-PPZS)-CgO!L`AE3xPwpsLF zKEfzKql_iD>oiIjrI1F&Ki%~w98j+#U9NatJYF6=_|^WL8HT6bC~<{7^|Z3W(*RM1 z4!DIC+6@-RhGFu=(ocOC0NSeL5fuw>7`BhaU^+Pau9#EbZ)pL#6hJdGCZhUswls#5 zGxBJXb0hsy|FuhtPNh8BE-o`}G1{DVoAFYC9IJd2xba(tWC#G#7tUv8lql~VXfGPe+x#192N+O{#JV;U=!K*ra`AkyM)2f}Vv9_=fvnYx`Ccow)G(T*hu6-=lBj^ok-uB% zt%c0T~a#*y=q(sc&& zBXNe;5OJZ5-~9DP&|wgI-(2M~j^SH+6rQnKSnDwb$nJ&@;ZS0!2zLA4i0LuM$k=wb zd+|8wD@O3Y%Y1F9#AMn*K*k47dPwqa+a~W#csDRLN;grE1FthEtA$Z{IejUhY zS63t?);MvVshG7T;nIm9OaD?#@O<5$F|~UoTd)$}N^;5t>G<$g;$*vkRaicGR!2Ew zop;4`HnPgML|JS%!BHtGEf!>@s`Q3;?zz``tJPz zc`$o;{}f-FauvPy*T-x9Wm|{KeA#L@95i!}$iQlk>?>D=>&I=To}GcHf$4AX|4Hs4 zE;Fr){Skt2VE-SCvi+GBa{3QORVJ@HW-uUyTyxL6>9@9kb2LL6anDPx$=PN+0RxC| zWM>RWS6A$|(T)~&j2V7mfT&)SHnHM|8mqPK$RM#GcUAiPz^f=}8iLi^o|F5#c= z+za>V*lG_KD?STBGcB!K?8)rW@KU#@#KqK=e8L4MT5}Zk97`yNlmSz5`c?19oIX

    ( z=&NBQvvs!5`fR!C6=e0<|pwJSdyBE^le&cczotEV+5-r;TMKNX$Cbrj%G!e~n?QkQ{a zWGAGw1iyE@Q(D{17=D?K6Grq5h!1P*7MNtYXy8quecjIKS@A=4PbNRdDjIp_YjsZB zm<`W1;iMPMng&bZM3v)OrD2evQqiKm*Z(XZP9gBFK^=`x|h{HZao+twMN5^WGR%`p_KXw<$uQ~Q9eCBIW=>8xrmh$XvUIH zdTHDBe7;@PNM(wZI88wXBr*W$zZ8!$YN+qUfr zs$$!AC8^j(#i`h~b5_3Y-e>>M-{)@SdaaAh`HnHia{blFckuLkML0tHsVU3APimmZM`Pco=C=Zj@EM@AQ($bC%O0bRqIT-T;9jszJn2?1-o z+3F2uD2ErY%jE%S7~Y5@(&kH;2i1uaoK~cPdZ1bMV?Vj6q>OA8CtdZUaOkg$Lj1>K z@wK7XZ#$!3Iuj4{tu+s9e#RcI0m`m4X|84qbw*qRN>Z6l8?KN{KOkbX;8*ludgS-+ z{lenCQ&ugi&yPLf=<2?|ot%mKtNN#7h4IPHli+;kNBP)jR3|11S&M@VJ0JxdA2?6} z-9a!E*P2cho77Z=lU+M`z}sxBvYxtD<&9_!it~Qx`ED!^#O`M0j!ssy8{Ng=L`u>k z<*H!16qUi=7Qz{oxanJsa{6p zHll+NoyQ9@a+SvmEFfI)B*SI)I(IS6eZ>b+y;@t5C%G;J+RH2l=QKvd`22<^w(p1I z>wxn60d8o;lwc@^5V5SOk7wNLwDZMF`zx+`|+Ij8ztYT_J`rmiubB$*y-7+^AmuG3H1N>H2?0ckt_ed zJWZB=c39dP4!d8TX3qzt5a>E)+@x%Dh8qKxDD~l6gCRK?Ig`q7|4K=zmf?$T`$xkI zz(tmfs;5OMx05XEcK{-M$j(d>o!t{)ZT#J`(dbD#kEi>7LASOj!o3lhBD$8wehZ*& z%|&K@zTABOe74wRN-hI7e|4fjY%VRyCN+W-GM;4TCG)?-ql4M$ktJyE5doQZWd$7# zk(6*m6RA|j0?$AmHlz}|W+AiJ-)`D5vGgw50~7^G|Hsk1gvdw2u=)+&Cjbn_IZ)rK zIN%{N3srOikMvAMB)Eu6dg3B^$tV$k038rB;ENFD8ME+#H;3zTvx(!0gu{Qt8Zx4S zqWIq&O}~FRn$iDqH2=o+5b5XP(&ztG3@$atdCoq4i+J^w^e)W_cwYxNn!^A`v;IGh zCSjr;pB~&lj%L!AqnYq8N3-jH98Cx4e><9Auk8n`1KRM@frQ^aD*%or)h9b~xW8cL zm!nBS+Npml9t9AKytWmh4#FJk5xH}5fj%Gt|HL8^U~t4fpo7llcyJ6j@wZjmb2h6J z#oy9uo`vvVO%HSeMc#|H{)PqrJ^CL<)BelRP4-BjZwK^hSCMr#cMIy&YxrtF{z6di_0M^311li;+I8(xqlR+tM45#3FDOX@b zU7p!P5O1gnTsv!_bgxBT4108J3UhVjo0m!hv>|F}fJcpE2}{$VGMI{s6yJxiw;HmZS_xS7BAP29r7;WvM>*LWi*_er32#yKXlTR*;{$ndU<`4& z5rbMnmX#UroL~ttol$n1Ln?`Q?3jXk+NqO$=;Lh2D2fwByLHa6nG5MIo)nU?c!!&; z2&$4!GJ;JtcsAzawCtX4odJPZvabvBV0*I-tBn!Ky>uJ4*)Nv1*(WFn-JMYzEdr@| z6`$4!=WleoV|Az;U#(6E$M;QT*N7`sEBA4rIWI$pEC(GLT*}v=fp5LRqK}tRgdnTT z$Hwi!_9oCyB?&e$=r}Cm9H1W^facMnL5KLmx~j+llY_Y~1t#(cCH7F%PliKq_F6)S zmDBKqTj6NWRY!E7H_k`~F;}#{On4GdZG-LMy2&9nX)OdIWS9ksy+lLWB5POUpusPz zBF>Yi!yT-|lZzQbH8B*MbXj5ps|~eso}dmpx;?4=c|9NWca6eSBz8QEV|@{_(0Zky zB;7jOsiOx%NHI)iPYOnavFvhO;j9W(W$_|ZQHZQenxmQ+2{EWU%9T|Qa=)S@5zMiO zP|6w+-(oY|F2@EQFQZg!P|8{maS*8)SUBxhRxSg-gShhXz`cA?kV5+~{(L?oQ3It! z@s{d*i0ZKtbg)Vroy6bdGav<~Hkqj$$N>E@Di*)kmO*SOn{7mV)2P-@&f6_yb~RFMqZip9EKn#`##O zg$EKW*4aDF{S^w^9hL$s?5!O!9U9$`rhg3joW6;I$0{Hl`b$x;2Rn-N310#X^4+4Q zm#1p8wy%wP;TMEwUQsX@I#@a5H=rb*QfV+0yVlDkEnPrft2Nl$K}z?VqY<+BPye2v z^+nf;ksIts?Q&z|J++zl2K~5>5;yeTM_M#MBv5UYIw(|8tqJvq;E`ouW)*7xG7s>& zhS8Bv`!`wJ552stXAh8Ib0ikXE!*$eut-?(vy?AiZ~q{95!5YUCcDKp`EV1NzASSJ4dJO*pbKL@0g;{>fv2e$K#B zA3cN#H>jBjq$LP{zeYn}OS*A05??SBlu15Bn1ccgc>@G`j4-AA-7{@{HHqkq5$st~ zC6CVIZs1}|_B9cl?U(c(57u>L@6bMy#^(1d^4Bjni(a?WnkH#EIqPx^xcSb6wpXg8WO-9BUd6d4y?k zn3XDdfyI1d;o##CI3s@5KS#Z zx-}=7FY%ntxDXUy4plRrE}?%JXjWG#7ULRHf0 z>mX(y@v6^N7!EOFIBPc&Z4^0nuOZIhymj)ssc>~!n#5vpscbJ|*D5@KPx@vz#_c964avGyeyasADGP9yrhcVHgGu3odyS{Zab z)7K>8MLXKlYo-&$;+5?$vbdKX!SVBzy4E)E@ zlrm*!F`XaK;I8R7sj2xv0=%RyE-dlVhBR8fYk>l&j@XPuv{(A3_{FxJ)PVs-}FP{#TnRsGWndik=sHecr^&`btnJE zwMn|YTwURAN`*F{`YMnuDml_J!5*9qXYg~TnrBDXjr8ilS;4MLZsN7di`+}Z3NaME z@gGSO^GnifOkVuv#P4pUPA(p@-&vHpP8MUAG+Dn%45Rni105y6nWO5xPLT}HXSeoi zwnDCI3AF2|7EY?HORlChJ+jc7jOI|qOLdhz#+Gsb|70A#MSVt2S^Bt#fPs-0Glt5z zdGEXeeF9cX_R7tW@#eET@c2) zR6#hD2aXLFg3+BftFu9ezZ<=ulaLWR`X3p|*=FU^FCE#;w6;VMVLH*H-u^TIUU<9 zZ2*bI>^^Ox{^Sf>Pz`@QL1t>xgzp$}&7wy93nWeEey_B& zqJD)De<|!!#H23`MZ8lDd#H@DCMc0AG63E)`_<=usYH0J=C=AX?E$zuiA zG^x9Nf&V&zIik(oIRa?s*#D+!vi}#_xxk4froen1R2puK>o;7QRFtXG#N3jDno`on z`GtO~PmrG$4mnLuhg*NU+RJS%^Oa3IIt2k#?&$(WgMOnhXqx^J@6r;@ez{sLSvf{V z2BPq3yMKMsi$U(^^LK%m7Mme9P9E7+F;m{94c53-utcmHbj#7w9v0&SAf9*Az(Amu zb8HNyz-3a)Bw{D3=pZ99Xx)m+u=bP%2S@Q|epZ%0Fr3)H4WZlCPS!seuoe_T976@0 zHbG_yfr5F8%3BpD6hzpdNf&X69z+BcD>x+AhZDN%+Yg2ljsTqVa6($EWcBxNT~4K2 z)gd7xFh-^DJAyJsZ0?bQF$!9DU_m5w_pZ~AbFc%XnE*!gfR5IT!c0gvX*QG?tcO7}XyfWF7tm z5-8NA7=kk-Uo?344v&O4378SkPyU+7GLP`p$1=H!i7ODm7w*sk`zC!uNTR&=1rQLh zY?Ab)+H8_R=Ry9aefzf9sZ4(_|K(^p0A+;VPnkLmTW&By?UHpM$3ITh0US*LK(HBO zT<+n#wba)MA~~_(8UPd4efm?-rCHUbd2jm&YW9UIzYTJo%(J*~R>xto;l-c#O(UfE7FaVIk$BHKM<|`yauYXb~R&8pL0q&s_Yw)NGO+N zW|N*dujwlqOp6 z#gR4;nHmqG3{m`n>IhF-jjjr3D03#Dhe{_!lY(4rr?O&o%uuR5>-A+f;4gk4n}wm} ziyycmxBr5jbztE!2iWFi=Frz|@Kd?}aWuIBjwVB-uMGssm!oNaPdn|DU$IO+%>pOU zhku%K8b&^WuLulysf|rG+u`bV2i96e{FQRK%Rl)j#1vL)VG!d8%DgXE69N5;?)r~W zIzh{Jb$f_AS~H>ZqIBmNcvoUlp*t7~;{NYV5nVC}#!s;f6Sd^+$Z|Uh^_TR*Cvpj) z$!_~j4VoVej2xFerc}{|?Sw}5S8zvyGtO+T_LyMN=55}Sfopjgyi(4sU79U+*yXx$ zch~ZX5yCQCtsf1i#D5B)J8f0jP_Y`@!k4v>i0sS2XOI)ePx7krORUqFM%6f{@8QV8 zMG{=B><-n&p;npN2@CiWLYxlzYhHH;{oSH86jAnWv@t%3Rn+%Fe}JXaM^%8V_X3i) zbaXsP|d*2&+Q7DK^Oo7}C2{~?`kG~nBN5q$$a)A0tSDzu5p^7~x)!sCO$ zXKs{|)I}~u>>E_a3zfA`$c#bm{1k^c+Eo&ZKAAnbuL|vjc!3b_j?Sd}3dGBOUVXkb3G;%Oe*+d`0zIyrloskJMQR z3c;(67VWuYXo{nAZUm)0W{eQj5H@<%RhUZ0=+`}Z?2opb_xaY1c_$%r;sIO&V)}*@ z$=J0_;2wy%t^@8ve=TO&S)<{k#l(Q|lt>vV!QGoK7L)}LG@*4CS+?wN+=GcpyF@8v z0y4Xi-{16-uAX_qAnA`*frd19^zvb6RFg>qhA+M01@BET15LK@kqGvJ|GrnS)Ihu} zmWqCZPL(%tY_OKt3WFXSckG0`{l=`gDGm@ch2}%7hlN2rePm~;A)rLC*d&j1-iWHZ zR>w>XG#{3Hqs)Ap^FyucN93_iS{dBEP>Ru!;(du3-3}FphDycZ_zNI)q-b8=-eehek zuN9JaJy)L83GK=_plZd?};hyUB*94+)S97xpmMUXG(`+WB@~xV!o-JfD>S7 zO2ylK*Zw1Q{j)g7K@vz)>#{?m+0;%*FO7TherR-)?{!0X|IO1C!}ZdUx>e<}b2yN- z>ruU4JojNY_NLsGo{2Pn8l;5s0kxq>JATT!fGa`|*@G0NSfp0c3?OJavL$j%)I);- z1Wgk`ub)3#i3h2LOg85zs~3;PF znxd+Mn|jMnr700_I?mk!nQI%3rmZaqn9OO~pAFcCgD>)cm!M3j z{D$V{Z|B7mY7S0SjD~Aneyo(e4{*wUU(0tKd)ymTMMxfXC2%0)$fzzW!OdAxD>?#YIcLvO)M7Aw zE`awie&kdRmln!J07THjhq5KTI98`h?RnE#&4WeKTMUunoArQv1hPEPG&UnB%99*( z5LKnl1`mrzeTFCJXdfquc=S{31Agn!J4dlYZEu|mu`{RZY2j3#0Zp;g?5p6KS0WcT zw|jz?<}(>9bGZvmlZ({w8kikd z$P7aygBes}jC-2d^n zqS6pVv2n+}s1kmlD$l)mjk_tk7`oO?>)89lPsiIe3sX35>&h<+!pz8=oQ)MSPX*i%gy7r$g9(7bwU@d5TV*_(*R3jL?IL1P#au1QjEr~E3+9Ed_oZ3 zv1*gOcRjZuaRt(jEolzUnLEqxFtN~8iBW0EEMN&UYr_dPcPR4g?7@n;RL~aTEk2eq zh!(q|GDR%xKG;q;7`E5M8*2+kyRfl%nR{fvs&tA-ewXZFD?oC!rd zf1`7NPv&i9F16fV9pGOjQRQ)R-#Tp)wjW@t)0Qo$Np_{;XpreE>T&N(#oW*X1N;Xk z5y0J=pq12M3N(BfnVd(PLN~coM2K&%ox~;lSk?m4cFK0)8a?0Z0vZ8EX4WTOBC&v> z9N4wyH8Mu`#_g085Z{yAu0r`ioO3xMc`gsoJ3=5!6(U9q4@5veQS8!@IOis0|4F=x z4#3E)jV|U-1O1$uzztjgD|wZnywj@%)2;-bT%3z2BoRGbN;4*ORJ#(FsK50IVw5bP z^%uMKN3^@kK!J6oe+IA85$uA$xqD30YS)HiF*9@(m&YQ@xDbgq^kmJ8;HU$i!R3Z| z*(y;p=5BBU-A_Bv@XU+;7I!?LT@aVY;#|!xb=#$ms$xV361m#Vm#`WX!LH(Gl|(Ai z{HyvSgjA~~%JEAmdg-h0KGQIllBh(8OWwd`Hc&rqB?ZzU+hnxTOl zTp>RW)zc)eDDY}fxzMmSGV$eD9&O7ur8&kfw5t3nx%Cr%?Rg2L#I_h8u<@;qW@d!(0SqZjlaGbQ2ny5P z7$yM7Ij%MW+Q;{j-SBHjiKG1%wKEk`D<0)hK7&iebuplHlK;ZtTSr5IToq7%pm}f1 zX=1-t4&L1m+{0AOu6nL>(xuby3)=AxL@A;~JNW_U5~CrA7+hkL7s4af$O_+;ZzL#0 zStFNpCWkZLLI-+xTF#$>{!G~f?tfbAj2VS7z2#PTk)BvDi9;zMf}9zr2%ASkT)J4; z5F~leYLbGu#l6I`2PQ9cQS6q*@q?<#)LTH@uK;FuH6r`*F!TKa!y%6}Z4y`OCbPXk zUO`fdajDp8BM_y^FqU0#B`#s*s>Leyrz-4onhJxYlg#N4ca%Ja^*aZG%5MTs>8MD6 zeF`Z!C=Cow+4Y=ko`oSolW#___le(FT)KC_0!XobfoWj(_p0lSJ1QAUnh%QkL!0OY zI!nnPq{rN3eOW7h&U>;ypy#SM{Yas#k?<<+XS-46Nk7F z0;}NGH$1Q)+*PDA*@{Qqtn)G@WOc+Z zg>~|+Tbq&>@b5yv{tSJ`Kq~^VqMD|*h_5{~7u6wMsZZp*n-8bURksZ0PfGNW5=y=I zV&UmJOR+5MRThF)H}cU1V5&?Ni+>e%D8b*=0HX?Qj|t}81=Nt%iC#YDzi-JjA`8J9 zG6cG8$srLO1`E7-GnP}l+?R?PLAOFkxwhbxj=-v@W^elLvwt)9;|$EZ*ZCc zeWx|MVbde~JhGV|!u3pTs6uES+IN@`$}rPl_7Ypa9qV>?yw~!z@6S$I;BYI?cw047 zO0nagSsv%sCfh?Y`PV7pauN;rOys$nUAmN&q5zYMwfM*-9FcjqgaRYOU))&|psoFK zf)1GvIKIAL!k`R2qkfh8wO>95F_o&h zK*;m8{4o7?VRm{lbKcM~d@Ms=UEnm1>@L#~%;xUxwj8yx_L_W5#o^vL(-&Ad`PRVD zM?*s<&k45c#-)(z9>A>KS}dq-=dG>Pv?w#u`uxBIuPRn|WLH<$!9xBE?}lx;S)tv- zITTyTsK=?JHTF2HllPpIek=clESM7Qx~pC^ToWD|2HU1nbSQ)PrJL>HK0isJzy3S$ z{q~!$`kssvIy#3>(oMf`^CM_AW!Lrcj64(@t1 zEWn(iaa|Up?b3!ndyMCpS#QFR&o^3sPUVnoW}tukoDxf1Qv0}mnrCWjl$XIhiSYAo zOaD!u$?)CO8`<^JlitJS(zz#))$i(0lz1+pwD>ccrZipB45m;eB?3!Bk*9=(=B#dC zei|Qg`FinEQKxOCXHYc(n+bW3w5Ir9FZ`eqaw38aFIej)2ed8S3ER9dwBcSPF* zI#&p+H7vPvm#Trn4Ah2dexh!I0tYC+=d7pYj#Y`Nr6O z8pWBejHNVA=?-?2!!MUiob9mF}YUgjy2Kdp>Kcr=j z?7GWI_q8=${D+txG#jWbM9BtS$1Re7khBUvrpCkXCy+W5#Cu13D`VMFs0LMWUy%PLRCit>F|nW9hoDj5sJv$FD%*>7WhC;5 zVpI6Z*N!7r8i$#)rPriZ@s?jL{{XiLKRG`)LjFrlwPzsDHu!;^?Y%e8tsQTp6Kl*u zU56zY-ECzRaazczwYBfYJ4(E36L=(Pp3X0=IcAr7-|&ncqcZwbZhziV^C~kCiyvJ# zS!)2)v-9(;LN+;17KX-yQB8|j?qdY~GtIz$YyzmaFsxYy6I zh(C{=(kDw@ytZsrO(sttNSnh-{gU>LPAT{~wcXv|D77~8)rgcsLHw^zLagoQY~9ug znQa7%PmyQ!N~LEnYi}0|l6stmZQ)F~qLX{g(C>$Tt_}x+MlcD_XOl(e+?4|H!n1JO z$Hi5)OM-g4PNoHUo!2NgUv(K$=^q=x&FvN}pMfC%@URZ;mQ7RL@(s?58Vr^CuR(NkHuG)VC=fdh!mmp0{b=8?pJ5qTLVb^q zI>SZ_c8dk z6!AUw-L&hUUiEscW?g75DCr#nO_YLM5BTyxi*d_-DnWOnK>1~>`%e^SO|@N*`bVz2 zAf=WG`n_Jw1UckcbeWlp*A-t|0iQJg;@#p>4DxddN=t%*i)4k##ay>yx1D~RMWkfs zmMULm*x58_kVp-;cvQX!TEoQng6D{LeL67dV%>ca5cqs|2sp5# ziLy3qCTzV`45(U@LTO>5{bM(;va66&C?SNWIZDBIRoByiw=r--#0;!-jUhp$G@@ z6(4v*`X@f{&IE`Lm;jv2ZgFcrxG3+q0e`sv#0TUE;k1SJ%At?MAtzJ{{}msQ!<+mk zKEUY`qJ;l>2OQs10f-M^|BajJ>+E6F8*9r4`+m=Qv$k}P_;{ai@810J(oxH}@n{Fz zvdh>gxz5>M9k*Hd%eo!usNCWOdJYF8{eQ&=lvo)p0r3Hcf8qn3yri363*8v2p<{3g z|A`N90>HMQ-(T^8?j1hb&h^`&C`jHXt6jwMgLLO84+sF*_6!pU$eobK;6nHe_S}`u z!#ibp5LDvIo1sVU@=~RETEM*}rCR{iCt^K#Il(pde#m6Vk_&bc|7eUiy z!3~2b;EpsvDcMiKdN@22uJDa1!fn*UP!Dn8R^%%_K%)Z>h!5O7Tx~%nROEE5*AX%S&lj_AS0t_VxEZPk)cO^88}w9^X+T!j$J ztoNfX3S{$5TL)!bviXwM8DNVOWgsyO97HG)pv!JxzZ^99Dq09>3yA7+CP8s_HwI#T*_eI> zqwL^d39;B#cH2WLO*-y~LNxqQs&sLXyPzv0Q5@vf zKgx(967QmJHa+NZMPOG{OSWn*BbN(y)?l$4<`BF9f+<^C7ZgZ`(B7>uOCT5dZPP)I zqoT(#a+v4szKDdJM^)>)A-8OnZ?+X^#W@nL;Y=uv)^h2)2-743ovS!%!~W$WgWP;wSx0uBF9bt|Vc~8>yKXRscJ0jO*E63|BU5*em zQN|J=Jz!#no&!h^Q~?fP0@4FPEZQ>B@<5Z}EpZ}6Mbaa$S=K_a+Sb47h!MMcOAI`# zVBWWMO;TRUA}mCRAVh)s-#5;UKR3zT-HAPj}CJ zj&9#liCU90lENjKqN4~+1oqA~^+=c8?CEU9yabM8#a7f`0GZq*7IrMcRl{`tMVAnO zgX~_>D}?R-k~4L~1tBJR|08E!?~(>fpyxmr@ziNS5qDq%;sZ9Y`e%z%y8a2U*ruXh_)fWnK{7~7-!5X)E*`NQfsg=2ah9- zW<6&c(bjPHQc`;k!DdKVcK@D`=s(VieO`TC?ur!y`g=Qveype3XWzmvo2lGu4V9SI zAk7L&PADktj*bK~s_^@NWCixeG|cOulT>+psBLXM)`I!&2C3o%77_4Z8qy{iI=*?_ zRV{(!-GQB;Pe3n%`SN)G{D z1;n*VyNZY=*9az&9AGN%+f`yySOWVH6#{vrff$+WzOSpG`osr3VWu9t4Yq zZO{H3EactUmW7MT+O45hrSqS|4&a}V5rp^aIQ9}YC1lr-sY*jnFqaUZ^)5*<*QN{@ zO|+{ki8;x{-P-mRy#O)Oe{A2|=|o|0C5WqZ&a02s3oLTDsgDymn=Fe4sj!m-?)KT0 zl^_(9BNofv7CXd5tEzKEOKYsSUjKP5Y;H%zhFvv|iRC=51bjFG1Op1n@nTE~X@zI* z{1FfrINX~{BO9jIgYu(4D{(G&e+hiL8Db!f%b{?b2N+++2 zgCm7lQg58QVNXA2&&uVJ(I|kv*6yN?L?lHWk5|4Ym0l7mLz*PGoz`+y#;alODO3kp zEp;0X7B2h}Irxr1wd+^jJmBZ`XH8Lpe2Z44LlhWrv0(E?wDFRSRGmzx41kX(QTwmzL|tXNV(Gg*aR zd~S`b&%Q%Izm6n(G+b(1x8kZJh^DZr9+%EdZ6CoYX5|>#oUV=>l^PR_a$5X{|B<;) zMKk>&E!#I7r(S5Gze&y_P}2Okl*89O&3`O@QN*z$%iVJ)Wo5NS^z*ucCNkqk;N-yd z;t}^unzt%}Xw{SX@a~ZtO+EE%bvF($HLoVHSh*@W1?;r(Iq(z5$OK#_tlIx>K)pGG zuNEKPWN6`J*~s>CF=(Hp#b&)3_xz>n0l3C?h#!MF3>{y~W5KbaX)VdJBd;%g{E;w~ zMUdj6Bg0?+&{7XKiAn*>EWj%p`fXQpaW<2w|2XBh zAH3IYz9g}qj4aJRtt50d?;5LzOb-+BOO;Ha293G66I5`3D|jwV>6eHz-6CS^O`B#2 zpBw)O=fpV$1jx2v@0u~CbF@5%t|I=C5K38h%>kaTbQ0-|)vVkrS+|^RW(6z5L`~m^ z+yy@6iWwEd)$7>vc6OzIU_Js|ZIdk;vkW?>pO3bz83f7QWr{_A^0(+aoXa>w?}mM^ zTB`)8nb#`jn;}J148W1W?4XCluwrSi;qtDzUw{C-|;v7gUp{E)}r{A08# z3r$<(aq4+pJ2j44<=)la(v3Ep7SH6FRqs^1=X=^Zg~XI;Gx+Y!n%hsSDMF+>IkNQ**vu{r+G=; zsGB$Y4i1+c6ps4A9>^-~>hl{9u^{Ku%hD`qk_^04GLE0U-351z{8l*?3R5H_{$}qp zKO_FM2oW+OKk8ywB#;IXC9N1oq>0d9BLH>dQ+OL}vVWFG)S^IxAor}gIe zkOSGk;y+eZE4y7|PXG4SY}~AdW$IqCQ!Bd0fYyGwnTG#%Go=frKOz2`9^^knSsw?G z+iYNffRO$pxBctH%|8*hB7m8>M)WT;bH*_@FT{i=gEPIvil_aQ^cWN=l#ZMTOOXHW z_}9^qs-1X>-#11}0soW@bPf+6s$e>nluF~Uf^j79syyo5LGv*GF5lmp1wGu#rlMuR z)iXg_t{$(?^ON*?Jg9+gM)TPvG(UJsRbuHT(@7tcovnYU*?36(9Qem<%Vx%o@29Nt zUZotX3M=kTGM1sWc61epPr+^gH9^cW%0S&+?zRx65UIIh(?<}x217byj1Mo{GhM** zQ3IW^MS)U3R zve|i}!Cc1=#GcZD+a6p46Ej>yHciTw)if+;CQqs=E<>l5OJsk*%-_A9 z>Z^g3Pucf;$oRy+S=ngKH{YX_ICoh23L3FUw%;?VQJ|668F)w8B&OoTF>*1G5P@9A z#QkZthZ>9wS1no(uM({moljJ*@iuwbakM}`FlvbW0vNc07D*SJlGbhqcn?KIihr>Bt)q=4XaGkO z@qt8M<#7Xlh6-NGEt|mxvelg`eR;ovXKXBCfOcZ_0H!fzCKV~U2bEB;xd9P z%tba#N5+TBajU3w=?RA%eB*B&#j{~2mY~cf3eQ)_|Mt@b?RR*V{ePKl|GFZp z4ai?`ewl4=kp1xMsjdZs+O&^F5DjMI?ww=53?Q`22LG6!-_#N&HDs$&sBuWKy&%Bs z3(G8gd%m{i<&DS=_^1S|0U!#Nq2GqN?*;$Z^eln)Usn&mSg-tY_+#T#@DhFk!S7j> zN>uZCIxg^WnCmqzTY!^wK3vVaKzQn&6iOEy>4xiR{kFyBjW!UJ&U+Lj0akK+6gUzx zLiB}K(!_$`4>0Lg6uzY6EHOBG0}_NJ$}RxBk~tKx1ptY*fII0YqWy+6xg>Z;0l3e^ zdXH0aZA2L_2)NH=%nuIM?j1JZk8ljX-8TJgw)X4Il1-n4O&|hrpQ&>RfgrReBHJ9v z%Nj(0B<5=2C@uUEiBlC-!bO*Y>Kpl}o{{RXfPXLv=V|yBTPz~URVXG_j~$lAkFEL~ zasN~1&kuIO`pt?11N~O)9>2d0j$A=NVmm{lZuWP8`%Lr2f(m?F6q+`oV7g_)J>Tsp zI>jI_8!hYRyMs;tst6vmFFAQhcDYpg(KJc@#LfZ!+y61>o}=UR;U^mH8^MM=U^nEW z`Q$xGLqTx2br>d4oPjx3yov2w19V3NBo7HF5Y_H0btTbPfpFnJ z1wz~?qX4L|?h^oBxhUGa_;hdth3p$k^#Gya&ESfrEzp9z2Ur4Fd@TVWroS;sc#T5V z(c_-%lYbA0O%JOMXH@p~wlRDbDzc{EgR=jQ1E>bJ0C@{b2r;aKftQfzEGfp82LwT@ zL0QStsFJt=WhdGI@XE6~H`y=?rQou+eaLdUv?lB^lWbD#Xa|lCjwCQyHaFA-5_Zpg zk*@;AZw#qpVSnv(7!q$D#xb(c8q_id1U393a>;o(*lLE?&oH9N zWg%^MNUi%{=b1vZ(7+C2zVOP-z!4498R$2#A#2&QWdL3&2VA-k1=NJVij1*?f@Q>F zTmJ7AfGM#*(y3JqtL65-G9sWhP5MP)^3k`TC;PjimrO8nIpiWny{$BRZ1S(Rc<&JAL znk#BDZ(_2DYQ{)>*N=OLvxfqpoPd1mAZunkCbmf|QUe@bk{J+Cwbvx?_bS6~5WU}^ zs+KdsJ;{GT^>(Rd!t&0oDP0`u;9{kOyGlf)DB~%l9*7YbjfnDw;+2r)y?O-M2X)CVho$uxW904o4@MWRcw@u6?(%4BVxV{3VR0P07PT?#e+{s|@`Dh73r#{mT>iW2}VB2Xo0Y`Lcn8D#+b1q zdE@a0SPoc1X6f`Xl}ACB{jPXSeo_;OfAk}rlVNW^8c_OqyOAhMGGswlp+(*we*VBr zsc|!vS={N7L%oV96=w`wFBI(%gFOSqC)dzM38m}q<#nVj`q~fBWjOFdU5yWg`NmlD zDwf^)BF;N0HeKM-t`%X0zmd4?jQ{k7<2IFQ29rW}$}Fip_#B~5VP60(`sIhWLarNBK44HU|0ehuMCo+r5Ul&_6D)C~ zaObGoc@hH+T5FaW*7fI;rh%JD`9@BRoeW;&6-Szf<>?tM6s*7OFS{pQ;+OC&(~R1- zD*=}ckK1>5<5*vw*>G61?ww+%UmLH0_~12S5bqHnJ_x6QCxA(py2h6X+kkqv|KOy> z8~5PcOK--*Q>UU$jyYzIk_Fv;Tq<0HIlQTvqq$C%ohzP240uX4_sBx6*CK91VVhW+ zBLYOz6yEDD!;vX?)5Sj(F<=>-F%B+#TeY7uSK={MT$mN(DD2nq<6(v1$cVq7Pd#xV zQwOWoB{yA#+_`8bDFpnM1aIMGsnq?N4Rf}L`2$&9i2iUg+XGW*o5$G|_olQAmewf8!mZ!&$8{|@IcV*qtMnCI~s z&CS#6kmG(Na6!tXA(27g4e8{4m)|?KCvnn8tuP>t^rh`)PZ>dq;TQU50)IH7Nh11} zJ-p@*p#@36k+ER403X3{mx@2eu)8;f*{^hCdownMtp2%no&;w=e$eXB)5J~WLV7j! zh>6AK`@5u$)qt*{ZXfAcy-4Ge__)_Rr9POcv%|zOHJhtBY!v_rQ7V?n5V{80Z zTFh9gk?8zc+W@@Fv*fi=vp;d-6hbZ!!^SLb@;q>o^E?*V<#$dT@>HqP2g)I&P3cP` zw;Q3fWhKQ-RhAP*8Y2XeZA&GorVdjyMZdFLm*PM%p~%y63j>|0X&gkOkG(u@OQg#u zf4QfiKp4fcdAFIUSd^?VJIVTr3yji$h{h>S-%PdM#RBIyoSRCKbuXh2PU#B2g1TM2 z_TNV8|HLUb{gq_aB!^wQqfec>;nl*PYhL^#p2JDxZ>df6iB0Kd3G>+Ts1EcW&P&Dh zG4)?2+XJZSY{0C|2MTe$n-AWy?4ZnM>>x;1YZnE*fWsA!>?JRvJW{(=Y+B)IN*;0; zpa;doylf4;a=+d~wARxPRx{7g+y>l=XjdpV02xVIn?9A0Qqg0u`5(MF+3t0wu3S*1 z{R5ZcO(yq;{78&jC9S%(Rlf3==Pe!DS?2EizvhW$4#;gBu||f>DfeP4`SADTxZQu2 zL5>YMwdUp+D@;KQh&S}FB<2M za5h48Ukgi;YLbWYvA`@MISP?tm_>-#FZ#`4q3?au#sV6?|3h_X?KZ17(4O-rI{W$s zhVpI?_q-%Hu7m()XbvIbt7<;mWDcu}J`Q=JtWKk%I-O1X{3OqbB>eQkgKWda{~_$0 zpDX|OEgiFC+qP|VY&#t%9j9a4wrv|7n;qM>&Ds6E=iZr`bEf7$*gt$~SFP82ujd&h zL_Z;{#P!gp|E8i>Cmx{;{y4S@%FJB zk|hk0ffT^rIg%?Y;PEIz#$w*QZtFtjlYqQz4ZasMZvPZH+r`C4*~Oeq zTk=Iulv9)HL|w0=aAI?Rm!+qP`@X@~F^(%5M>{~qUE1~8d+iL)X9-8L(8(6n08zU1 z=ovCB2zjaI%QAqa@`5`@z*MKlg10306*45sMKnI!?QW&ri+E7|^g^WVMz5B)lP(Vc ziHHA|6F@y!ud_kwfQSQ74;rt)80BV2`Zu4J2^Et+;AHA~!cT@S;L;8G(h0lFW2O({ zKs*2>9=%9ePlERtzOjJdg5pvYK(0AhL^6obF)wuLS*Aj(>Wa46~vwAGK$;qX7T*B{v~a-RFWwm3eLZ1Q78{Ar$-K=(Yp%{Jck8tY8l9N&a} zB5We}yqPO6Ig?Zwqu+`(P7}DUYbJPsNg-G>bAQht5ly7@uc9x22FeeKq7_`{ zV?&mtV7ECOP~WLCOciJAs;oGN=f4CY%MoX^HWZ>3m>he>I)sZUDMOW~*@GwRTnVy$MH@6xx`v=w@tQ1i@0+O^R%27M8U zd$8U6IE^MYv9r9<_;AF@8nUc>!E}YZpAk@arbXjmmO2xH&s*V7|0!0izL|%W*x@`* z%T|vr%Z9uq8Kd^R;L#g0tNxPo_NQe=bKmpvQP0l7jCblF-rl z5=U@`WDQU#GPl%FiA`4DSfp{v{y`|R*x*X3;}OLq_*>e#yrMp3pUDZ0*VAyu z$0@qJ0Z5`k4n8F*w zN8EdRnNNy_BkkaM8Doh|k`ro@{6s&;B8y%RX3zajSKn5d>C*ILdS-Hhj&k+M>GI!i z$`LS;L)g`7B)5M zNS57k*J1*ts*ws}r@exSwyW*HQ}AQ1U=8G$lkWuq5dH$@IGxuv+|wcz;L#{OZ}yw& zPqmX4<7Y*>(C@NT% zY8K`prYERu9sgeCxnu>TnR^ey3aJY=V=?tLSpl(UnXe8QKPQ`8VFom4@&I#4*x8HU z>8haCMb*8wBGvIvN12+p&!h^%zqCr1 z)fK*;<;HNNpCY$Zo4{PDSbe^?=&r%()sDMp?{g$W?_@y;EnClSX@$mjKsdGQ9N`2E zXVtGemmPAzxYRIE{+!5v^Ov#>**~7TO3PTM2Ph9t^1P6*{Xb5N_6xPSmT=J2U5)7* zegwW706E?v@zJ}zn2UlU=65KwIi+v|RKqjNI|s()z% zUXAJ#)?;K2=ur=!6UWuUSy%KxelEQ>=Y;wb-uO?(xZOt<;alr(uo)Ii)idNi0Z{h) z#B(4kB43L(`v=4QeW~E^08@(QYW=PbA_U;ksQ*_MiM+c_)Kh|WMw08A6^*ik>|>8P zWhTd{y^y6(})#hPkq$Qkck9cH{_@kb^0+~aS7Gz?sVa4tew+i4d*ef`<`I^Pm}4={e$hL%YlRGnst%5N){ zo4UvuTljCvnP79zXDsWO%_Oo97Ltw$*6xeU$jd(H?4EOk=1dNB7DbTjnm>BUCf$AR z2^gN)=Pqc$h)QHR=xc2JAX_0<;r@MJG|^Bz9+5irB>6k6m?s?DV#Yupi!6OsJNoK~ zFMNah>@zb$gQfw4T=qhvg$vD9Ot+5CDupAHJ+Pg(VSOiQ(d9e*25O0{Rh%vY#!&dA z98JypG+}W;s|3!+=V(6e`05I*0cFFZ%1C7AyzQWuvQ%>A5`l;zHhoIfT~kXahai^U zp3^Sduy2L=_K>-xxf zj}tqrN>K&Ei~It&tMOCWah z@{S>i^vR4K{Vab*hJ7-71OXKv9N;Vk$uvj?UOaeRZ*5#g-kaciO^>_N#= zzmw(0gOJ|5GzwIIr(i$9h-SvKOM&*;9Ci4zl=Y0*TaM-Zxoq11saW}hu1af`xHbU% zXN_}P-Ikxy3}R9z8j_4HM5P|fv9Gvk8*)#UeRL%0kET~neorojjtUXCZ1_tV7;WOh z2v=-?b#V_Exre{?5Jnr?M4E4!;14&az@De@pRM?*x9uGG%|sPkAL0XPv>@H>H)>hX z71^$Ep1PKliV;8kznhMc`CjqnBMCb6{#XA0V<=_NExZ=Xwg%m`@;9I8-( zi}NqxS#H}bBK3zWIpLrfw(bY|3Trq=B%xUlpn)zP1#2> z484z3J-=pA)sZuWTesN3C7iHtkb*Zkd%+S!BICPlH5&mXV|lf6;j6TFpe+2gc{NGu zJ$?tX)$i!x<=sY%=dWyMrVT7rn${gK$@sz5X;m;7;%f?q7sO?Rz@_dBB|}U0aw%Eo zbfvsJtdspnThg;Avd?rV?m1lKI+)?LpCC~Kn)d^QN@17B^`d;iXLjezYNc$6cIoc= ziUOTqa@WyjWr#xAGrRXl(dm@!=GR%vZOw1%kFSNxuY1dD7xeWqbArZE(&`vd>- zH^Fni^_l&qN7iJp@4ww9M-M8u1=#^30{2Y*W+HDT~+$}RO9nG zw^bjE*AJ79CmKb|nq47>8v^Ga`fd2O={VvF8&R|;x*M~H!q>VZSj-qG{clQ9gdt+A zq!gA02+}PTA7IS(0mHVu51L~5x4HN|6`jChfePI6%+bkrMZSzudf_I^5 z|H3zv1ttE%HvnQm#po|wJupuM{rFZ-1_G^6sl(Fx8!aCl(*)y zaeiQl_9w3zf6Nbh-q~v@2D_d z4K#j7mUV~bGknub`45i5_AadrUj_wsUsgDIa6-skxozFSi(YvH-;T%x{-O_KGI(Fv z3=gBxiHq-}#9au0N>A|Pp{!$I!mp)vfZxUa{C&dnlQ1rpm(V7d7HTN-U=(rIpx8=( zDKg$h3eNJ9s7I(dp%1pIw(^%Y`Ngw4KI)K3CLXB`E4w&7A%6EgD`ynZ=flp zl|j90%mIiT5$Mejw?1`$5dB-@vXUSoNi{t-8YH2Iy6Ga7eO}P-038)ddoppAZ#Y^8 zoIq+a9N`!eOO}f9S4F*@f!2Zb|LD;{^7Ga3>B<)B);j}a25&)Vl)gpH>TWo!_lTN7 zG7C2C0`Hlp4dTl41dv`rgdezx*pZM4#CGBD{-s9qW_g4&kv zdd6UBrU3i>xLI*g#z4jZe2yiG7T25~MijT6dxWO62-i4rmOcHTRU9@SiL<$J=rhm6 zcO7%Xp;R8Xcd%Do^fCtHZGj9wS4H$73G9@@pxl4TKlrqn_$U)vc%pzUN8YHQ|hUZ^|W7>n>L!sm8PY`dw$)(1{SzeeUZ3`i_CB~p0 zEaP^F^`)j4emex}#b3(XA9n|Lz-k)s>yo{1QXgYqrNOkHt6UZha*39oEPkTjr~`lM z7uf|+2D@tS!Kui6XATT~qf5=du97KqZcuvJ>Q+P4v=9RS^IQJKW%L-Er21?(`K$3(&7kWzN~GDfdo^nizUxw3Wma*_uM{$Yw|;|ahEOW&w~a#f_)Qg% zE%?VKvIh($JiH7#aI6CRj}CCd-`jdL;B!bdrT2Aux2|pq7$94BFuU1as9_SYcsK2) zxOL#dOMSRz`ogpXU%zG}X<>GbqHl&j>= zk4q~=`%#qQVTfU`GDkyCs|cZGM9fFnm^J35$SjCSA4B^|D&_`=LC-w9huc7j#W5WD zZ|Wsn;RQbO8^^CvMT)3=jY?qIb_RTC^{ivZ?iPcigtsZG;lf>Weg|$fccH$vmAoem7rApqll8%J%I zgqif1Z)B_;yX zTb*r2RzFwH+jQ32nzS_+!eT-dA=zVTMVgoQ@;RKNB8)0XDfsrXwjfXz+(lD*^%0Jd zyJ_@pK;MC-^tU8q`^_=tl8)c}CIu|VOdj@pWPd1$aC9DZwp7^leC#Bme(4&+^t?ED zt{V3SDev$f4|Iz0M;ALcZ0SOk*G#2^C!6)1qs|Al*G9arC^Q}?3DoT)Wn?y=5bME) z%=4WOBH7aedCUwkLr~nRXjlB!|9+?rO^hRDn?+VP@LNP-S+kSMc@e0^HZ{A%CHRE! z*bO{)6N@0Gf03#~LWH8M?8KS5fy0_^e51dw3U9<2+nM;+*{g`Ptj(WBxDz6txDep^ z6mBLo&A+boW2F*Js-1G_?|Z5GkB_F-N97)C`14gp<5rUoPGTTE>;Tt#qvIm_8jEsC z+Z5v}H--G@Y9=Hkg`$hguqU6h{2EAXamyu$<-I+R3}sAs3AG6F>wsDPPaa~&@~$OK zIp&g5ntgcD`S=s?m2?;uW{t>nn!_H@ndV{)D9V=mTdn-%Wc`dqHmQoGeO4lwKHO6$ z+i|i>QJ2*LCU}j#c|BxwV_}lX#H*DypmVtcZyC3;6gDzRi*i?=?J3<77p&>=2Dz!( zi!`H$2QDq~3nsU?;uFvKip=cjA@6wHg(9k|0t-h3*q&cJcBH4XGrIfWQ{!Gg;+h{g zovfsIu((2C?YC!xeo2btZze52x~+h$7jtCHSr3LiFPdf(mK4$=jFn@sKj^|ozb`zYUt3lT=ZfJRSU9vW03`X z9bSt%j6JjoP2zZMnytBaAI$@ahk3M4Jgzh&_C+7SVDa)P?!<}tGrB^I7m!<(N+dgq zl`3AJg;_ls@EYr1omdsx4L~58KHyyVix3KzB%KgQkMZU&(D z7jk{bZ>Qu@BKna> zygUc2B8UPr+@MlWxF?3kunI;(T9LM5G#e2wi7Yg)T1JLY__IB+u&QtyQ#n1p&SV8d zp}{VKHNKcqX9lc{j|a!>rj*6>$1_d4!NH+hd{X5)>WGLJLuI>+PxrA)(_w3qP2Gl@ zBR_769Po>V-6YzY<`dR05t-JHOlTQX^7|hyl%x&@#?s5I?(euGJf%vFTW}g)D$*Ro zrf2iY+bS6o`JbXQMYTYG;DLNp+<`BF=Q@Mz_c0RXgeW(Q}&IOfZ5u)Acvt_s5QOtE3o1#NsT5_-CjGH11U$ zN9U8&7qL<_#BllEQyOj~9{q#$#WHefg@4$164l^!Tntt4f$Ln%tDl(fd5sy=Rz}zj z16Zy25PfOe3InlM;{#Vz9SZ%5qdfw!t80}9fNyKmX;civvQ3Uddx4kkG;7+vk!Js(QizmasFWzBT>I+|ZPP4#^DR|X+w zY?|I*NHDnAR9b#h+Ql5$aZ!FDgV5)*jK-i5GAomGJlZhL(6FW!cD5cZLLBi`E{i^r zTRsec%gKq5YWmTU9U{=Q!kIDVPza<%JOYMMx=#pWk7MRAI9SOjWKfr6T6*o0YgcAO{FT z-^eart1l{-sG#hc7`YxMmJTO4?)AUaUiC;g_6Fbrj>vDIZP_OT5#Ts#b24y>z6RKE zB+DU!PlNnk)+;9pUt0e7y!Y!zL?;cwG4e=oixmoRWU)qZVIBZ`2Lmf~4-obFc0x1u*JZdxTt^^c*)6uqAAC=q z`Q8GIFK!CNUB&pgfU07IbGPuEDJBoZsiX|3Y&fcb$fwo~RX8|(1c@2X{I*-72*eGT z1XyKitk)I$j!e-Zv)0~AhCM0&qToIFOj9@C04VsIRLx?&_|2oCt2zJ*9_C?!BLGzs zEv>}H~~o3-x1V!N~Yw;v$0kl(h!H ze0YHG0^$(a=BQsc+98_YkHX+P5z76IYRt@v;_?FW7{QRx!x(5Wfo~}E(gtRG$?<_(&;NpDDWC@8&)tx(KYrG5?+kLFfPZM}ZS;UBmdCgS`e zUSK~PH5lltM`rn$*hL*g24lQ9Tl8oOegScMgIDO1z2%MYL2!yF_C*Bgvg(=0`nksn z5Aq!{9PwMk-n}f&T)hn6#R3UmAx)&>HthYp-aY*fw)B8Aaa|T+FDwp1fdE1)uyO=q zq@hamDnT4P%_c*oJ>ybhlguwHj>4gu|Z?PG)54W|6$y(59KwSihH>#KCJGvtQ=&$+{ zcV)*ZK@|4}XJOs~UqQJS-1Gy2%gx;ZX&@o$zjI^>syH@81d0w4-daZ2x=5l%=!`wD zfmbKprSU?}pPcQHg*uVfr*um=&c<+3p@Z(EW%GGhz+@anAsvR7RnA%d%QiHeH(Z;i z2!^l@vMQ7d*#_+24s!=8MHEZoInVvR%M0)~?0?v~-h(#nY>2jt};% z2kd-Yk+4BV_alSw>2gbOU;etsqnxAxRK;Jfu?kraE+->Hk2ox!Hnf=$xyP2&Me^;m znh8e*oezl@ZMm!es13c6_xjH&eCKX!4$fSUWYdj1nXQHedH9FGR~f4J!A*jmM!|+_ ze{H>i$AqDO&5aEwZm3yNrc6vgyc&d@cRt2GkbaHx-F0}KPV7yPUiMo<@46{{nr9j_ z4KVO7w3oqp>Xh9Qojx>4+b}IT}OPDoIuX&P$6stE-g(8@D|$X>0^# zLxE`zLk;m5#L%#0V6E4QoRL|4Cl4OgM`y4OCKGeYDfC7B1ix5{xI>An+9Ju7CDEeS z*t-*MU849WDhY}+k0 zYb&IC>To?|-WMV{MytA62f31T;oIUbmz6KGe|kr&LfK`W%X+!@GE`*^JmWHU2O18_ zxSrAa^(~4-`c7ewPirbKciG19S#yq;^e&6|uG-o2|9MT>rJl&FBs&N>7+Xb{&v%j! zU*p~h;Ke4N?R_vig%?mML`z_?q?+>ASTj$ZP{ubkoSGn`uh8nd2$eynYQS0(KRcFc zHj(AJTYq}BqTAXvlz3>YcEn3e97IqH7N70cbg-k>Yr&k> zm8y(C>Zc{)B~B`0kG7ER)Vbe>^D3Z^Dhg6yy=ITx6uZVW|6&qD8!Y?o>TR(W9I28qE>B6Pq(6rok zWXy^vvCb^)Z*|Zgst^waEQjtlu^dosN?qaTxo~T!3jg8Oen5tF6@nv~87Si8Ja(Lf zQ?od1g*e%fDC>|AH6U%jf-o^I)mt&q%MNwz5XLObkEix{y01ln3%hTwcV0C}um4AT z(cJTN=VriNe^vBaq378fu=T#Y)2=}o+x{KcRBB3(^Lb-y-m~?l3?u{ zc~@C|f&tCc(|6O{5!UV}oiOYRWp;gTMU~M8B9V->iY7djqm?e=TlPF_w6oF+^>;=s z>hEha7GR~-Nz^F9GpilVGjMJ(G{4CDYs^fNqG_BbDp}D2KYMvq?n?hOlvHu&v6tZ) z%&jzCPddVuz?uwljnAL~lgH84rt)t-ahY!6Lo6wip$c`d;X&wDh{;1+@hq$+-e2%- z;yr5b$JN`~Q$pdcACIRjYac*Jst9_?jf;r~HPsai{zM(f;P zH8U;QNtAjmv5Qz^^I{sJG;$253k$*`vxd)jB|m&A<1_N2HHL&gIVul zJxFEs23gjM2wI}h0mDv-nKYJQ9syK!CD8F9O=L)JlUUn8m?GbWc}{Jg%| zrHZNguZ+I3o)R9mic=}XyT>JKMpRjdv-YmELn90W99MYWeF3@nJGH3q8_H7WbZ}f2 zR-O-BEqgb|IdHc`m@7^+f_=N1c>%=)Nq!cHwTa_997hIsZa$CEcVaWl%ntXJih5@2>Bu>iu;Dlr3k2HZwUR-S{rflk6 z0=7mBivYAkz^v`xeOPLio`U~2cr!OKG&XVg*Whi`X6>)c4g3|}{}Q^1vzcT7I<}q8 zfhPVQ7&E*%)DBeA?PSiSbfIchFxd;yLh0`2$j)@2BP3wEHyV39Q77o;7b=7bauQ3M zZjgX}w=P|O4>zsjL{eeJwS@Jv-Pg<920x7hif>cnie7@M24@LNAT3pC&!ZOOk3>}* z7uiHX%Lc>1{7z;rseI0Iz~D`|3NUyxXzOSHX}8Z9os9Dv5-@lpQZm>(&NCY@6S0}5 z(}EWo{X2LI3n{(-Igji1KZ7@p{~o+y{T;lW{A=)r2^hSo^zDmd`Qg2@X_MBvF+8C8 zvN@ke*&jytL>|&Xu)OdKA!+;qi#s$!L6<1ayk)hevP4T3H;wvGHM=S@Yx0_NLQjm* zMo;b#yWej8RaJ$x*RkqZB|%l{l(ZC^hx=YyNSAt99*`;(Fq$89&hOA8cm3Ge8U4L@ z^-F54oj(|#Q{3Cp*?(zFfP82sbnZTM>PKXtz|zkosL*Zi9m#4gdmG;R=SE*+pi~s@ zTca7~WH`_`{tmv7D4B|6<(%-N+ReI~5$xxdR21JyUA;^(Nv&>T+Xy`R+6#~kloPjn z8}4<*%x4K(2I;^n@uc>Wx^Z)PFUj>ck5Q~j@;teObv^RKq8@DOBEpq9HR^yZPD=lK zD8jygQ?PdwkUS#>g#zt=Q1->wHjIZEIiWV{Z89KV{-|wB+6row`3U= zKaMFTqnPE`q+5`~utl#%>5yHT301X>jh80k(vl;vao#}Of}}x{asj7X(C3k0cy8WH zYM&CXT#>c;EL~2vm;qPv?W$?g9-G4c!L+h?f=lBRR*`2{A)p|{zHvRC4-;}5cg|nq z4?G_U7mhgg0B->)P2k(U2)tjkp)*2D^9%H zoJ4?Kd_T}qFcs#yIZaqdw{rwpoo!JYP%Tk*w?pp-QtD0qAY%0 zx7m;67SvAhB2`TzpBaE*MALeUH47YNFFEL-nu*7C$J5Gc__>cB5Q{Lph=MRmMON_kJ?W&*&ctCmt+auYLy{}$hh@D$IY zAuF6k-u9N7dgPB;niy{yqg_PjhL#I8OX3d|Q;q^950yBrQgg2G5YiAW93|9Zm&ZKK z@#h=hOzv;bq&;-<;}K1@^P289&t>I3mm@%0`?FEpo>xBkXU~r~?8~s? zaD@Q;c+?q;`n7W^hQU{yGm=Y$@+Tw&ID#Cw?&O;?RhBN0BJbsxY3e~bYRPsjg$c={Kv$s%U=Zw*iN1&nm!4OKD>+g!(W67~(E zA)vRiU1@&`-kpwq#Roty6@fy>%0>{l==kwt@S)r1^DgHzx#a?Ear&Im<|yt)$0dQ( z5=Hc9t6J`04#*#0LI~&EQ6OO8pKC0%#E{c}H5lVcV19;!Oj-a9MjHAOK!X9;X`)zi zrAGo|_1UqdY7D~ueJ%{xX})U{z5*6Vf#qicp?vj zN)RLhP5BW0ivbo4I%1&W1CB`^KoeiW_;c$}fbY;~W^Lhp?To4acB_R}OOCLT_-1dP zAERs7`L6}T!XQY}f(=BAzn%oj=)Wx(zW^4D^Y0KNAYc6SF{Oah(-q+K)b_8_6UKAW zzJPe)2;lT2@;|31_lz*#RsVe@{`s8C;R)It6%AWtsre$O=$Jv#~n5N1=h0jH;Ppd8c0rnI+ znLJ%Ya}Q3dU$MVS;d08h04=#=~ z(dXE#KpVqI&2TY*k<~)f+K&~iv>W;lANfL zd?=~n=8vEqDElb#glMsfv_zGgf*1i?rDmU)cA{GX|5L_OT9y`J8&5D}O*-%uAk0AF zYHO{zEien&L|$>tLq>1kZqtxF4M%*OBG=@SiXJqf0?K%`|0?67%K>G45W6`Y6?bk= zTtrG#!K_45{9h49E3L&vUofzDfmk=p|1RTuIpgRM=k0dd;1x9zLCjZ30XxknA`Z>+ z1A8i}dk_?0Zvo7`jQJH3CX!Emr6X9rQ}kOBa*6hQkpYZUN;;g${c^^x1pIRnDx>*| z!Qc>2D&c=z7-H=LgLz-rmqf;4FDlmESJnR2H(e`YDOsxpg?hw=={8(Xq218eU(`Vu zL(l_j*tWS2-0?)h>$bh$f^4mc#yYhwe7>|qjEjQUc<-1Fw#fEeXwkGeFOko-%qsUC zCRU zdSfIGLllQ2hEihGb;i@{+1Vz=AB8f6-v8?SadVnV5AJP@HbC-3ITy>%z5Q#F(-2lP z+plqSmFaK}%tGH`yk*MWQ{|(8aOR2tdTa^_31ncT&P5EOfGV2QhbHF%ThLpgwrVC7 zN>?uDtk>3i0lLD^`+=I#ub>D8N>1$p%5GoZP8i*l(yb4FWEC?v7?qXJ_)$s1&b^w# z6%90yXjg;wKFYdoL9gs~x+3voVMi`5Ha-aNbd7FEY*Crp zz|p$N`W#nwsY`3<(A6sPyRd%iHZyXY3~~YJ*282s%?wNLe7lF&K*~kxRe9Ou?;$1$ zpL}<_YZ%GSn)fqOOs;)?4=Q7`)%j;dXeIt5`f6k_FH!Kce_B=zsm5E}onlFk<8^;+ z{PGbd+R>eXn0{9`eSY*U@jzc3f?iH3Q23GN3h3i6H}r*!<(~n^C*p=EKp*dP4zl$v z=j=?6_7`{fvi(3_sJBRwG>^Ki7-uQ-)vsyg!3%ANr z$J)tcd9psg-ir`@Fh&aE*7`5ZC!0`bZrVOlb>egxV|gf=Fy-MLddurG@K(6!5-JXy zA*w|q5R{2H!j*lf|KMI`QXfILph^QqmQR_GE3`-eUhM&%Me3iDf*V5YXQchWI&1jo zlpkny7%lf4;;B`Z0@x76 z&%P}8c{feTR;<|@-kn8~;h(s?0AMY&ZPu%|Pmvi8GEi}e%SMF`V>2OxY?dkHoaG{sEP?#Q31T#E&zn7k949;F6Qy)DV>u# zxt!z(rkR_pMlBW=0K$}=CEb%ZJBry<1olH7wSy1(3Sr$1GqM`R-D_slq`A8`va568 zOe1>^LvfV7*)$=Zs9`X@0Di5u+rozPRtF@%(lZme@YvPMtyqVmWF^jeziLw|;GSGt zzwm^(^zPQ<5hJ;TJQJ%q@#N}?gQ`6y!#<-q7(u8^AnWWS)V}r?(!Y?a!jNt4#n|@hKTrP_xfUHvXNe2f3mBGx)N4Z zBF6t{h9KJxQ`26}pJ96!(U0RsVjP%pY8SYgPeKOc88b0#b%Zx%M%HW_pN`y!WykTh zx4zego6-!QRdrN6JakAXzJJC;4{a|=oSU1Kj z$_iF7C#=lF@soUejft4%o(ls|xeU$dT?-+^ADfD5FO5qWVw$Kohv>SBAZpN@QP3DI z5-{N+NC_fG#({I^gs`%B)~<8?Od2vVo<7l!9rc;8B0o4w)EZ!q*(n>z#S>i7@S03gs%dYdW)}>+Ti*!aQ zmlv>SyBNY|(bPQJ5TZ;ibrx4ld2iD+n^kd_DCD!I*^5A4?YvdgQO<}TO`I7S4E9lj z;N>CJ>i2z30*eF?V;Vl(k?3nw4ZaT%Gm?GBc;Li&10#z~W;Dd+=LJPJezag!jk_$T zr!STfIjC6*n!`HJYfT$msxx#n=rTCWC>V%QD+#YVp?6p}J)Lk~s*`_xVPu2S(m;0Y z7Qmf8lS8$q3-_ptfZMzXgHB~GiR@i;5fel8c!|Qb`&#P0!cY5{5>*Kfd&VQL0n(p& z!RV%sS>*vpHGb^%l^kUJpHhwDHz=ZCiF77A&!ALoz4rB#z*yiMaT;TTIMag)uW~xX z9n}Yxh#=xZ0n!{e)#HctN;NClS9=K7>{Dd+`P#|$mf?3;nX&neOMU8hTVvg~rk}%R zz5@K9?>AW6-8(EjMmQw6;k4a1i{(60_HWOg6?!%c>MrvzjlX^Oa9+ooaF;eeA^X$; zg6H>l`TrQ%We^2JrUAL<@ZWRKe-UalEn*5ru>R(r-dm{`L|cRw;HyVbgUBn;pDhSt z;hb=XtchIjXUgEs9UktcvvUa|af?-c+&S(w?x%EzPu*yKTO*aEzY4DFBt82w;AmKh z=im@xCLg4{x6`9g&GX7$6wUeArD?1IhP<4wdymaJp;_OC{>FsiA)`59!b<}UOHQ@i zq8yMViG0@jUJ4SJ+L316{=QpECMINx>vB|zIKv{UzxKbhWcHeWVh_uV0{~Amo4R8T zT?@d|?1l(oMh>^O2<}7r<_44ApohO2ma+#Ix`T@PKtV}8K!m+u&Z;L``Fsll1Riey zq&8x}>tC^lH@phbc~ueF97rtz6x}?`C7OWHt`bR^=88r* zA=RL$D-6R9M0msvPg`%Y@cd))d*zNG;=TR=X>M-~9WdQYRXx&KCRlRtf&vP}iYt)r zV_O;9`{Edg>=#}JwT4EAsY zffl4!NvG(Xne`kI9Dd~=(YNsgJ?%E7DH*&UT!4NVU8MM1cdZqIvwpSr`~jmDsiJW=CL|sCbB~lToW=$v zSZqZFpmG=T0H`&boKaxiA=^upcBLX~FXf2WW?A=e{K{Mh(M zt)bTRYCc-&cYu#;PTf8^%iFJfUAjm&3@7XAEC|Yq<8ADktT}np#LOLFxZLE~eLCkU zFm}WU2tKWrg4Msrez_1Wo$2w=&Q*E3S|`Vf+aJ-Z7nG_|&7ffYeKf%l875k@izb{J%5rKNG_G5O5Cx$|8 zf=~%GZ{VELX{!6V#w=Kaf1=)=j~Ucen*G|a>6Smp;<{04Wok?t53y?&|C3#q&NnXf zhgwWH#LqHFtcFSiGp=eP3Og_u`YK1)8D>9k8C%JD$f@nq{R-iyw}_8(WQJVQk%K75 z+XNZS1Qcdu<960+ScL$x^*lI*P(?ps47!Y=q&Q2mE2C3r3)NZfpe(RsIE)WsJvLOZ ztuUZ-H;2r^Tw5_AP&E7u=x-5HKy(>}x%lol4oO9N_(_6!7@^S9Z*o}r2UGa;9~o_T zX#~GuUy+!M@qF+kFhi;6aHf7P8G0IZiUunc*Q!gyVZ16y=uFmpKW01oL=5}1YVC+c zI~3{s=xT%cJ^W^hvFVKcG+Q2-XW9O%RqS2$pUyqiAI#dS(XaeOAs92hJIR>Q69+bL z>u=}21VKte_cJ%`>0h1uys$lF4b$~We8``}G>~)9YFH6E=C=%d9;%4o-L6*xVr5W7E@bCJI zR>(CmCsNxUYJMAzG1PEzJHRzo!6CGW9T4;6XN941!1G=C$u(II$Az!o{ra~AfF`Dh z5X56+m7hT1#F4FWzna|Haggpo1)GD7ez-YPgz`;ekzd25K~gKFqZ z_+Bq!!@;uIdUzo(Vuh^(VB|_wCw$6a68qp{pYiqkSHB`ozR?{a+>AU5WcvdFy15ZMMvfcOWQretz-hVWG$ay`NE1T?DjwVlNEcsC~A)-mDHDtyooSmBhI3 zk2aAEH#V%t5u4?h@{b?>nh#m$BNL7D)4Z)%tPkz*Te_2b4!@p->3N>}KF zy3vE4$jQq^0{Q5)x*gYY5S{9y5^H=tOe(HGP)04ZJC!<*y`AtR5R0};OR=f)l2{`y z=l{jtJ4JWC_uHCb#ZD?l#kNyn#a6|(U9nxUZQHi3ij9hG>-yype`fiNHC`eU}?&hZZ1aERZ8!pk?vLxUDHOuR`g6OwdrQ&?vgC zEL`<)SFFw>of}^g#5-Ei&#^vK5TE*|O~cq?kv^#nqGsGNVA~ha+RB?lWd<5>LY&?n z=rr6_I8>cN8N1Zb(cPXvMH03YI;Bf=W?6Prrf?3!7937+Jg&7(J`C^l9iOdJvD)9) zl>&*`?N=a&-#E@NZK3c*ljF>w1IO>TVrn6-@)u%uE9xkZ;Z!Sr9!8_3DhmlJRXzX7 z*+8`35GR3*WOce54iKeI$+L$~H625F~>}cc1=KLINM+7rc^+$Ud?VZBFdqjIDHeNZg1tNR~ubNQTru& z2PJ%E1X~@uaWziwM?`fmR5fuAG(AQoqc9?kcRa+T1#pProrq-?t$M@^UQq@+KKkpe z-n8EA8NGH!!{BvMDtDt0up_=yU6NcpwE7j=!S=$5f#{|vGkzG`{ z)-~Lyd_R?ksQT+yJE^2aQ|yep0&=Hhz8tnkXs#2tqHv&fWnF;A_+Z*QX<{9?vAvo={ zxz%u)G}a_vxpF&>%=D0o=@F?Rtmp5;nlJMN2yL-ER8Rc`Uz9_*F+gnVR>2G=rhI!xOgjo)O-4Qqe{NA*X(C(A80lY-9I8ajYRw58pHB*O-QWY z-CN?J*ztGKOCuZD67GzsAvy}6_p3CLfiYE;1HqJr3V=(v6ez>YJ z$}WpuY8=O>INBmBE)w>HpDqei1uNm%%VZ=tY8C@&mtvd=0u|P`{oDnDqlU75{$}OO zyUr;Ey(GNqXG9$!s2TDTQ-j@vB%?7K{i_CcT}9WN-|jSYrjT-K#@yC^61Lfa1Q*mL z{tAx5HF($ZB!QTH-#t$iA-$?#1nXf-YWw8QzhCL83EvRPdgEXghjZm@hNundZd8hO z0dCm-DKFbG$Jl?yq7%!|ER)w$edH{H_~a?8@K-hwfvFC)=c9U7e?^u@#`G4yK}#?; zjLE`}PCPIl@Izm5W$cR5y^?8*#ftOXa|>2+61fcZcsZkxE6ljap0Wi2^lR-XnP z7!Hdl_cyYCeEp=b^9TN$!17Ps`2TfasWbJzGq9XvQc~E%p}q|$!nG~x{?*H_W;Ki# z25J*w%3o$2lo6c<*W9z<%mS8=!dKPHjG1F(oco!*2+MmfmM_bUuO&tJX>jjfDSHZ> zSgC0qKl`w*w|OtBq*YyfU$1s+f6QXzv3;-q%-<{RXg^DjL}Wor~vpYI}3wJ#Pu z$P(#H45R8HTDj9DW!0SrCw@0&4b~|WzCUe8d+ZjHaNBG;>g)C0l~Z|5)Wi$icUdfw zfq2b!p{-hu2nwflYD~Vg-s4oo=6L*nDzMaaEE?!l70DjRQg4#Q#7H#`RJnreZc3ur zc3_Z^Wr5xx#1~E+M-XOes@s(@M;*L2aN&JkhU2b+qX^(lEk3RmABbloKew7QW4VF`Hz4j z0>&nue{;Hj0?YqC-Tyw_kF5Rw_H^a`kDTsw>2}S(nY^?9A#;6J+D*$J00A|UBUDALy*Vx{Aupb5w3KOW=L!X<#V(-Cc#=q2->v)K|8#Zj!X8lhBnQLj9z;}o~y|r59I0o(~|U&*ZWiA`-A!~hv}wI#zA7W z!DIVRJW{!&{KR|f@HaaWo5>8K-m#tx{Cq%zmy)UEd=^N|V$n^g{atmjV6^#1x)o%% zRB5W7u;U@OAkxC#)VgQ4?DeC{ut$ab>;i;+05BJTh#Uw2bA>#bl4tPAw}a~Of`jF| z2K9Ns1CsX3OhD331eN(sZ=L98<~LV#>F#GBh-lm%X^1|bj2^QSWFI{I+5;#M5!WNk z3_z_ZSnP@oV+|%UGYWE|g$OL{b_Nmz325{V^EePB<5(4kwemXi>^k~j-0TfN9PGX0 zZJ^eWCOl!hjlE%Idka1-ImDu`?SfaZU?FVqFcCo{b)##k{cyQ1Hh22$@G|n@Jv7=1 z33}L+dPFYQjlflU<0HKvwRTk!zcUaDd3L2j{^r>xB5c#VCKUrBdib#=lf2j6Gz&4j z|B0^?bW`ftFQ^~xTbmx@-tpOo%e8S1uJ8)F=TZw!!XpawoqPwa(+l!y?A`q7~}^K=%>hyMA{38gR`AI{*=C!7EIIn?GS#^ z#$Yjfss$11TdHw6N?T7|^Q4l?Wsmmh#H!-5N%QSuwYc2Z3bRB^zIoGVPs{_np*JVr zTvD3hF*SkbU7)g$!Hy&d*ZhyVq&L0^2iR$jUc(mW8B-Jq51^^oH3R=5J|d{#?(=9q z`X2v{J{;HvZ-75^*wbt11!Z>%Z zc|u~IM3FgeVw{_)Gu;>LZt8g$!i@}HumwQS-q_l(f0kXWqNPLPgLdFLUUjc!(p?LR zm8Es<<5EZSb#P&lK*BBC?3w3m#seP}C5ijl)gL>Gs?u&vle{6yST+ctm=9XmW1S{9 zTi-2-caCRrB_a|Tha|@1d~b2GU19Lv*UoEoWWkI`Vwct{)CQN=GsRN7tG-k!mtEJX z;Ps|ps3V2~1nmpX&|w4zEm-2Kn1Qk660G zl?VKKg^hVkubx zga^f7#+fovScrpH$hUWvRZY>bM~CkfNUK;+>GUQIa`N=E7)?cDbqX-HcKJSfqh z(G*vLxZ4oaK>EPeA`SNXUxv7q>l6^J%O2{t|GqrR8u)wjzA2ao7wPWeNWq1HikQ4bE!Xp< z_ooi^@3^9=S@xrJYOgv$7^M0P*u4Aefg!a(5xw4qe|&FB=2u`t-ZUyYK_hG4JOpgEiIXaVh<*uB#}(C#&OAAk3Bj@RQ`qg zKIWJ$ft2>iCLio;c9&~U4Rh&%tEJE|!A+v(PXW(d(BbRyJB-n*ay-yHiZ&xS%Mq4+muV{2*1`GR6pmzKvSu1i8qjvP}hjFVlwUY>|{%294k4CVx z{se)^ib=cG+(%)WZ*k+&-#lsc`53nx+tBS@C?B!r=upd*C52!4*^Zv%#w0)okMJgT z34_}MYFn9=LT#AVpzQX-+*(*RMatib;&w!dyaR#B-WWe!dP+Q>ChSA(`Ddta-(=b4 z&nFPFsAo8Z^kCvyk1g)NK7~A^ob!>CDSJO zbtqT*TD<2+q%G^hP&R`VJ8(y2^` zngcs8UIuZm8%ILwPp4&FK+5his!|x)DkuD?$T@=%Ltg-_fZEESDxYIsm1Z%nquhrZ zoL4?2QNxY0XV8SxI6vkC5u-mz%aGMJGK!t7x5BSadK5>?8uyimx(5r>!E4ZPeRk0) zSRboqueg@*BUSK5WyWzgu#P0~~^@&-JLc${sFJcw6A|uxlc% zgaaMx8sc>@q8sB1N9D5j%H2LpOYRv;N4uuM6a~j9s9gZ?>m9OeO+nrak4jjxJGOnR z-xTFwOhNRBZ9WC))Kb{*Pi*%}vwJ3N!ho^hTxdq~7YG+~qWI$q&y-krmR|3$`n-nG zc(cZ*{xM=DJC-f01}lE3UM8v3?lS&LqjL4v&*4>iN|9-)Rj_W=$Mx_~ZnrUg_6njJy$)T?%h>)Sp zVn6u;3d_3h7kBzIL`-L`A)n)U7BLkTj6Q7=20DfoHtRL_dFQO+lIzh&ZHN9spDkng z>WuC*VK!JU?vTcGfE+Oib18%@h(i^$Sk4!f(@5VMNB!oB0 zgi!%b{bSGgni>~wU}Q{3N?*w;y-=usgvRG?n!C|?W+l-N0=)4}Y96bR! znXhsA(wR}0iMrlMGYn~6QuCBddvp{?A@HtW%)_uB?-tE6pUl3_ z6kZ$9e~07f@$RiDf(35WVk`9CPpg8WPp&FtYQ{cc*ZEl%8zxD zIY)sMe`i`1!@lR--I8o+nE(rF2eO!jXXlyF*ds{M*Kg+Al-1|o+^Ub1Y#||bgr0qX zP?v}d7pJ15l?`0z5Pn!rJr1Qhe3NIpIASU8vI+pNH6KS*JH0ST7EvafZzzD+c zTFBMSZb^D>uMNkoqD;eoFKG{J1K0^VJnUxQM9+ntUZlDj^015ya)@-bfd%N{%&+!_ zqa4pE0Gp2-48f1hJIkkyuWCO(m-6j53)$}{p3>HGDT16XD^Y&Q0yeG*-jiOM|Jc0S z=4;u1-4MxK#)*^25kyavGyC`m71dL>Ae?x;ae?2F`u_N3a}ojA%M{qY() z|6db$w!dCO08uR9HH2UM4w{qif?<__-lk(^To21?1X1fJY~}(*hp2S{-`PQALBM3K z^xfES{Kh2jSTR{e#$7$_q30IRJjN?CBnVmS^7`{2f_o6wY3X>?&<2n#%Ux-tnKx#2 zHvRUW!21BrM;W|)3hBkCMcu-mI*)+gZ}X#QV}3fJNG$|0r~=G zdc>`GU6{=dB5?~J{D_JebA*fh%#mkJKIj4e(=)Qq3%>XfulSZD&uMF?9pQoijOVD% zcW4G#G2EhOCI=vj{jw=5p|KWVWyhaH>=g7%RLYio+vv&$IJh5l&HE*JH$$hX@P`Kv}>1)cqtN+_fUinK9|*l z&W9qVXr|fE0PrB%>wa$fn#a>L*CAplzZ;0&6&dVxoen|u9}qC-F#rV2`eXH;{Wk>6 zP~*t&PxTns=FfM600PyGYW~~A&qm(2i zw?C3^FnIG%^%(s;K3w1#P(4NlH+}Hkd&64Z3_!L|OMC&FxBS+=zH?a#RqIfP$dGSb z2ho5pm;xUyXyP_2>%Sn5u*n9E`l9feU#>x4dx0MCAjR`;)D|zuu}t`D8>ff!QIJ`|B20zqqjKk-V2qJayT#yeW*q! zkuGBTLavLQO+9}r0J+Eir+W_1Fw^U@E)B7+1&^%U9$*p>gDpiUr)wsaM=CBCjKly!K z`Ht9#4i2Dzv0y94{t8Yu>?e2}fpV|yha9S_R6n1C-h(^X1I-eM{S21zf^<-j<|_dC zSP{r{Px@OprF;Q453>J~czC@IH~~CNutK;;UKuBM2z^)G>lasKolQsu_V;nvFc-z% z7s*`b8x{m1!U$FFznaIAOyJ{o8oB7%NbF5@4X-7JVJ{dPu|+az-Mhoefq!AZwD`q> zN6k%dLM2tBQCN}nTG-2=Mg2&Yv+MH?z`)@(+bnPrgiGQ8qj%CiLosu7rJXJ9x&!>* z-+TEl{2&RmNQ30k$O$gYnl3aVW&c!<+5cHjO0oiao9kGJo7gbSwSLhiny!CnPKQOHQsutzuhBa-LuLu?)!O$dZoCvt zhm~S(@luIk#Tg%u$cI#*_fq*L&ose595Cq*4%iEST=qrzxR6lA+}m@fS#TM1XP_}p z!Aq;bOGLh&_ckr?JC8nzcIem-+ury3vo1F6*#RW=jtz?mJJ5{=8p=cRUA{3t4!q>E zG&3ae^v$lyiQOHo;4|>oUol+(CKz@S)eE2CQt)nq`^V}%PEe#x7qEH{87TE@L4Al; zMvOekl@xS62wq^>_NPH?`7}*xKA0qnlII~tyTN&Ssd^g;;2rZK$7K?c!XlCko}poe z6|n!sI|jb`=4%-~;C}#k6Wx3IeK%Hw^PiLP!Nj3S7wm?bjR1y!g^?cqik>gC2&#$= zIveF%5IUv>jhU8l45if%>5d;w{rO3_anY<&(dFR#$lH+vjgWi3jN}(3K`YAWwyDzbH%DHfr~Dk(4A_S-9LfaTz8;$Oc^I zu{lQqC+_!?#ov5_lYFPscXOJ^tR-VR@UE3M&k1QpEuG#6ne~UgFIA~2`Ws?5TXxwM zE~e9mH*eRK0S~Qwc;Ty97D46_%0k$7&q&S0t^C@DX-fSj?y}I1`Rq&4>A#?xH7p9d z<2ThkDR+czkEG&?$I}&VzwUk3gAyG$$*?D4l>j4`>un=~yIL|}KML}|5Kg178GE~w zr*0q8RC_kpZ@+20=B6u{cgRX6vLZwv3m^zYMiM32gssRSuybTS8K%7n!)&K79IhVy zEH4AudU#ZG?x3=^>k$8wuDi+Q*uP|bN%My27WxzDAe;>%ogy~leu;AFYH*BuxhJkE z&b!wcBJ48xD_aBdetpy`uO+@ zv7;n%(osUOfpTV$th$<{hWk-1C9qieC?MP=xHf$8^Nzl)u>TG{fE*W4JY(U7e4fs9 zvIh;5d#O6L)?2(dv3lJBmUr0R8p8Zkmzjr}hy2|v#-Hat#ib)N27IpOM693 z5+41ucoyIsBNGFcdpAc~U>1JzrX zeFi;b4km~-(KHrF(d1c2?%-n@kls&lgu)mh>eO$=(@2pY-FMN0Zr}FiEGi+uC1=o% z;9R$z4O@_8U&DDiv;`GauWt3AM9tMp!o>FB9EA`fFjj_ zQmMQu`+0r$4|`3dWi_$E!=}zQo9jo>2K3MJ1|7|WM6gPDC}bKfTjTlj#`O#qCx99| z=x+-=8LK91ilx3{Vw~#NH{lYE{);2-fWJ+5?u3@hz{~3LoFzu!w z8EZX|R#mlQ>^dagFym{3g=ednTL^y1tRjbB?bo)V<3naT;N&H_`F7xXn6h@OvGRu_ zryl z$dr~m`5R{0PwH;{mi?w#tSZ+np$;A{`3EO;hA$L`_z8qeYxK4AfHEYUDf6-$j$*lJ zJ6{AjaIEdrfwsRTkMRJlq2|wUix!(Bjfh-b2|{d5feEyp+4~wsQ_}++h^!>j@?iUR4D<}si0(%~J3w6>@uN()10?`Z0??cV@{;8>|EX zw%69(xGg_M3V`jE+U;-KYm~bTb&2f_dsqUN9nc@!E7JC2wZ0(wx4nnYl}}mDV33X& zA|A6hdb1#I-?^tOP$3m>MXzo1yezC3B2e$eMs4#<`;3Hu`G1Hzq9>?AGHmB*6BHyu;j{RMjV+FDW?_m@{8Q?;^jlQFo{1D!;TK zW!~LaWvJV%J{BRZvap!)rK5C=E#z~|Zp952tE4yncPplfl_P?|X&pv$g6Bw_s>B?Z z^Q>H-j|p)@aYQyKe6)6EI%@nM+v_I4_F9iYxHZXwO@d6=r0yJNK9PnEN6iCAa0dK2 z4(>&T8GzjCsvEVM+yb2`*-|Y0&CzCW!Cdv}jb;y4MCsm2&3K#-@Tw? za*<0Y*Dw?Q;o6U%7i&cVPRyRTr^Qr1A-w3Cy}y&qy2Pv;_q7@PvAw!1?~X*V{mb_H z^)K7&lHs7;-?rDFKepGLpI>AU!$J=k!_aFvC`JC*UTfaEO+XSGZd}4YY_Ir*+AG;` zD=`91waGDWy>a8ATu@W7Cji^4NPLDC@PDxIuKrCR|0mT1T&~sXhp3q97MFU%xVn8%Wl2zcMya_Jz-@puS|CpY zb4KuZg6FY1X01tYr>A!2@eE96U~?kt_5)=}plF8MR{eu*U})Y5_0udsia6G&*G34yR~aYKvEk8w1HLh z2emMb&tS()=5**||5QmN5U(wmb;JEf$TN-Mge-e|hUywR%}(2I>S`)e=Y6kqKdL0b z890p<)hyrKm6LhN+om-C|SKZkoKi~9`% zhp>}}tD6e2ecv|eGIbR+XAlHz-&w`M1Z^4t+jk9iHarz~EWT;bGDzHqY7>mq6d%#V zwT#|R1>bv%rTgtw_7|OXKDO`RT}HH{B62YUl|w6fLG~6Ohs!BFThpK39}s!-rvLZh z-Z3oeDe~l{NI}5e;saq;a`U<=?sHT38x>b zsPBjW1w;AzM_k$Gi_?qT3mQ952hDdK<^T!xyE?dB6Qs)XeZb{HwDf{Ip)--Z22rFM zJMCqWaqAQv+*5LO0&xm@PMAsRaM2GZJ5e5#Jj(=ZAk(ImtTUsHy_xa-#22{*D^b3- zeDp8VrP)DpAE;;u47_zAkBT3%x>5 z4g-n-~uh;PR)?RcTmGP;zzXQ7!u%CS!)Qz%&0D<&@L~&O%pdR~`rqKiP`oG65AY%(0K5np zp=Y8Q@>`ZI7L1yt2moF@rApHRMDl-u7m0KJfESrQ-OUi-`U@pB@;#7wdk3=LeGYjr zC5QF_jNb_Xkvw4hKKqC>?G%^G6Xf41l*1b&*e0aM6Z8+@#ml*eIHAb@1YQ(h(*b}N zJp=&Y#fVLm0U4sHV0^3s5e&Ati{kWt{(H{%OCJ1?b<4ev6-dE-wPCj%wO>VqRnO zrHI9XB>Fe*>v4ke^1!|Vh!c!YKevUQ94~l7KXImGi@p(o?sPa|D+?|{G%mZ%lCoMk ze|iaiP~LddB6^HOVz>ca_eZ?P#7Ek?O<@yrN9>-2@fu;K3k&s#a<>9{zy=a$<8=nC zK$56F}c=MC`PI0@-$HY?#YvqNwQHhD{v zP3O|s?W~eBcwZKd`b{62@oQE4&k6+iIwte)704qCUFsVlNUi)h682*9z^?x-0LmYZ~BT6G6iDAXAoLcO=mz zpg;Hu_XTo6nk#mNK7E(3WwsC=fcwbgx5!WUD!7L{n)iOi`PtwFW#8)IRAKDr8{rfc zQ~2{kH?>%yrXeo2*3(ZWW2bg;bqUoYE9-&v7nOc$K^dUwm6}GIs@F_>a5J@|=GF#Yw6-1yYDcm8yXq_RUpe!eyiHS^|chvU17xWDIxx173s&?Y?Pi z`2a5_`2fI+xh=pge@OI__??bPf$Gl}%aVNIIcJ&`N~)Fe-DJ#mv*A5`0s9-9v{tQ~AlMa=!48?FD5DlnR44~2sO>ac9QeB~g2{v0kORn02 z^onK$!ryd}V+nC78%mBc-qtOI-I#sX4F*x3l{r;CB~;3#XtHExA)4K{g_&l8&*72v zKn$ig0DKyYY*%YRaxI1x-CNGO+swfYLL&)Vta7 z+?h9F>^dvCDIyx>{4L0vjzBKubCMW~t~*hC6GEOOUnRhnbwPsOTCxx}g*E+30sp#S z-V%#gUdb-jOs`TA-e7wt932VUo)xDnO_|$E! zE-TN+9rOa;z*(oszF>gB`YMp$p1iP8z@5tEK4BK6=V{hk63HJ&REWCKDAah>JimZr z2Q9LrjE#6bZMweeJ`be15bww5X^8#Sf+I2$pP@M)Ru?uOhZK-gbF;^FIRu#!uQ>9D zS0eCXj?HdFM7!Tw-rY7~0>3tnj9bw_c=M*_btJ*g3S=zb*(wjiQhl_pDZhC6<of07x4ZpJ7wduWd5ahMuF=u@?uDUfc7weycht;<;|9~)5`0E z>2Ad6eSNG-qTjB>hf4(;>#|DC#10ILA6qL2yhZW8usL$2(@BzvTU(l9{4n)>5$JB{ zVUaHkWze>fwLK~;3q{hVUvzQ-12a!p6Uph-VHTb7oLt*^^2k?5=dO}P=ILp2EfYFq z1?)heQTR7$Yoozlr6ExF-A-+3M(RS`S-_-yjKl+Pxo?+tHOC-n<9Z;pYPm z7mno!$^qy_%_#MIHpEAwuV;9vT_+&%StypJ{`WnFcP)v*Un_0e#^E?Fuqi>Tv{y;= z{6@+K{q~_7tbdtSfWsiX)UtwBvY!+T5ZlOG)@hKNtHrr=yz_cdG;gTh6rs=CaH%QO z^(^7lKoVJHt;#DClh ztqx>(aYxT-Ah7CsAXdM^8Z)8j&lf0Vu*3+Am2Lvu@)6Y>mG(;;q0o*d4Hz@ksZjf_ zDOeBDmw>U9hk?x0m$g>#UFY7pR4!_#lZW)ldAzr__>z)$Vldo-$c(CWl zN97QcRh|i1h#+GEnSeIS4Av38;FySlwPKvp#Pl+(^ zx+VQd8=`x^O^GV&B6APbCof6Lz5hn44FhgZF^0*+J@Y8Ks`Q8$8v1kOQmh9nG}N2$YSTShx;A$(gpd;^(6^0!B(KGgsZzt1Wmp^V(&0X>R6#)3OPH3a2iksPdNR|dPI9<7Qd-0!cM z6+d)wN_vI!qsf*cDX%w(w|4EEd|t3@G^zz@CeK}l<|0Bp)WKZ} z+$c@94A+SBrRI!UX}r91as=YlPK{Vy_~v+odaT##``UHkPRV=Z0;!su7UMM`>o z0!-hNs=pbq_kJB$4Wrj$XE0-Kh}U8MK80mNu#8$OFL5{)awBMOlEXVA@~D@ASUbUt zUtKE>xwMp!sEp#{l<+(;zd`KYb*AV)sc1xOabWnP?h#qSj4yG#EYX+KMu0hs}l zHa8enRms>kcbb)b%{Yh_*^;M2BzQ1k<|*g5MHH}6S{Il#}$7QFLp z5VFy1TKn)e5@RwGr}eZzW1uYrvg5AVvaYiqq%}ZVEAovHf%f`fs5LE{DpHTdTMe5t zAb0_Kzj%KaE6qTFJJ?u<2f9WJMQhBf^!>;UK$-`Bdw{$EEI{6UBZ2NUVQuK^-nv%I zD#&+lN3ZMEG)w8Mir`EahJvbv#sLb{96LpU3xv;mlCIB=~`}(x{g=ER|&Z=!470j6#V0YbX;II#R zUg$*2P#+y5cLaH_mUizxW|>(4?Y%r5d@?KkYICcWR@9N*;$zJ-KWU`#zOumkwpHme zDxQNicDJpBcNBT+5#vt-8+zM*SbT{-`74(IzHBEH&sjxBHNr~I1rZYfns-)(&gEm< z#z=@!GzN<;xG8|++q2{nWv+dY&2b!^&JER?&ZfXLC@~QuB9nn zug#P6YmqcCADnq&tF+ZUVf<=M7ESn@S*F*#I;_vhw2KTE+wCX-?bb6jmcyAf!O}f! zl*^f=1|ITT4Dt)YPNuFs}zWBNV`>SXb^zm+EF`rDP+g3|xMeO%(zXchL#jp_vgy9R~*b z2?_5C{USQ}@3^x*(hK~;;DG0jONgTU3~`aLFq(>cGjKHfQC9``;-3ogs}2^p58%0@ zB58xdbT!u(2f_9|AtNK>l))22t z^twSULDr}Y!f4uK^%<6Psxj7@bKc=e3NcXk*M5b-GT&Rjgk$IG0=iAXJ`kB9-)}nN z5RJ{CORiAAE3UxaK^e->WTF1Mf;>bq6jId7oHiY_V1#9g+Hht!7h?CPf*e#%AB^kp z_T&6Fr5w<{cG0pC3#PCnH5F@YC3VC#?6{AqcEfrJ+8EW;Ed<{q>F_o68~4-?4sZcT zcja%%T*Fg}C^u95NWQ?;2c@h9hRLqe6~Zm~739L*fWX~to-1vX;IPMhrg>Ry+6S$0`hi5Kac=gHCA{DqVMACgNi7>Yw{YPsjjBz z{y^sC{y^sUhjmfOaG5U5iY`wEtMVlk9z~ z|5&`QZfkz?U6DT3Qp@-zE5&rG-lq-z5GlU(V2hj$=pf5-;2J>syo{6kU6e}&NVh6I zKWm%uDV1n{V>(xOQ)l$-m9PH!o0j3-Z9u%^v$W6AyZM~dhVwiYxW%JqJ=^H3+giQs zGypRHn;#V+fh*q(EID@Nx>TQ|87)VhzqOIL0u=!I%7NxZB*3gri=oZ1tptF+s+0wv zYP71Ie@G{SY|KEPWVpw<1cQ*Z6e_)PucPc1_u;*sKej!|FdI{77c8wnD$j}Mi% z&*u+JZ+D{6r9<4k`9QbZss+=909C^h2DRn*q;l_RTRKsMb)duxPH3aT`O`O7l?#mg zYLcAj8fPdY3ZmvSNRf|kAgB>t0Bl6$Em(ODL15ZCK+--y zL6L%2sTX*fp(3e7Uc2&5DCze}CEcsczygl_N?>R4i}^C3uyV&d8euD!H-r?JVC>hnWkgswq(GJWWRJ7~$RZ)$7O<=fzGu9;uPeW_FEQ%zT z3EL6@d-q7D@yynXNj0an7gH|Qz&D;>Poa+%{Ubzjif=E40uS+n2(DJQfC6&w1lWq9 zBdEKN1b-tDUShw_!z{&tp>Zbe0n}1A`t>+_lMeNMp?d|oh~X^e${0m@df=D_Iq+rD zI)k*JG1U2pATRo^77ykv#9GyHAW|;^b*>vbIt-oN=lQc~6`GfEhe7CKmb2mkZ_N7V zTwinnOqd;Ho8Pp#1k2W9%BEZug)&3U4ASt(nnTd|;)hplC_-xX7?#5Q`&k=xkK?es z-#A&@7H_(u8qRc_hi>2o*(AF9&Fq%<-U1ScR?bOZ4H=X|+hUSp2q!W8oPFKw5dWvD|J!@v^WoZrkd3V)kA|U(Bn5 z1kki#_@vEceldoVdu~{Asy`#ge)4DpoBe1Y=cNG#@5_a794k`$^9{Ls0ro1K;h^io zJyz7`IM#Vq7i-CNgm!{b{n7ZQRB)-6aiOYg z4P@~qLB`lr_5!JPqm1(bXMURo;a|QCeiczXI@N?R5*o?X_N&?vE6002P|l-inmOJ! zlyuf$zVdAYVG2<3=E15Vm`M!NLvIn%>BSA_I)i!M6)u$@-h1=DBA5$EOi zRZimq5Y^*wVp;`s>Dog-J62N|6sM4@pXyCWBY2E4V$U!bO|(4Ot;a^T59K3&Uyii- zrne2ZcTJpc&0?gR=&kFv8QQSj4D)TzJ)wV~!s!4>rWTWq7fGN4BY0hRDok0CU5od} zOz(2vX#@?0@wAr0Iy0`#m|6-BR#;Agw|~7Zr(@8MPd!cTzsg5#zaf1?x_7z*pn;}R9JHhvKOS)hbP++o(Ko&A29;eivLWav%+cvqkK?ha?eZx%Wm5a zngYpnri)`-=dLPK(`EZz{wu<~!)G0hdxtH_&My^cbh`Zl82#LXR*RT43EmdiWP4gW zkEVDLxB1l!_advz;csK6X@g;yk71likK47?hKmN=VPCm$v5W?E_?HP%1};qS9&JTr zX{}_z8(6Z4)xVT=<17#&cakR#2h8HmK@K)|iZ$TEY-;=>aMMMw*3d9_ff~@Wt{aC) z0lBZ}S5m1$rn*a)?ho>xQXy|eW9h!XbIjcV`E@e*+mHahor3#FPe~kGKd0Ncl?Iv& zcH4j-DM$dYJ?N2+lFgm{EGm*o zm)ehzHeTU2?$b_uy5?)QZ*H57zpqD60o>~0dj)AM85Jd*w!48|#jtXsM&EE`eDV*AqAdaGuuEiu`Bd)4ZG zT7O+%Wd!H2&8O6_Ss41XiehTVdG%Pjj_g(EcJ^g4%`sVyuRKF~IzykdATGh%V$##b-@R!E&zY^p|1%U(`dvH+V)r z#f!*zw1LI3qSs&;2&SSX@0nu%)HI&Z#W`=P98yBX(U9%x@%6?~T7>!bJ>w<_PBGi4 z3-ospA;j#(o*Xh}FoM_e)I&nj45vlHDF~7vgZhr8DLaami!)>YJw|6MusGF@E|kl| zZEW^kB5LK2!E+GGF~_FE<2h-hs0Sd@#FREy`MfoCEH~{D>%py35!xv|w1clqqE9b% zYxzb&!QB-hDp0_m(x5avNmPoc=5_`LYqGU!aTbKMSE%D;ats=&b8k?0naL>vW)}n( zuC)R9FUPm%LhlV;@Rv7=&G#*ZE)Q%_c%Q@#7xOvp{3cKD4y8%J0N%|ETurOz7tQOV z*~b7LeT&UbMeOF^__h+CM*IFvX!)mn{9oht%>QR%_kR!I|9>}t?-ZURcMo;P&}8Ms z7~h;u;4PQKnT*|iJuzpy>0-@8eKRP?d9V6@eG&rknLm-7v`ZsY zDQEh9eo@=uj^9;jg-y!1yRQk*6fqxz*J9sTUS{Yh9Y1HGAyMeK!fF6CMe6Oq*))Gd zDVWl$)S$ye9#VYPHf^np%!Y`F-bhPFt-osgDfaa@GiXjN1`(hsqW;ko z(RPk8mrhF!qvoL@zy6WOud@nZ3=)g0beKDFU`>mx*pH zH$7j;zKARX{kw$^LC`Uys1)8Qj*N$K<({O+sZ?TS=Hb}{0pLjp`VUV+yUdsZKdhp- zSZz@GbV3`XEZ89uzrV;Fls_4mxJd~um*VzTS+1=96pcm^Y}h!{H)%911pVCWkG9VjF~BJX5vXFz9UZS4S1e9-^B z`G{TS{Op-o@`!*6@HDJOu(jD1G8xi8o6%2QFz({|v01omFGLc9uBA&ercbmxX$ep^ zI1qbqrcQ7uy&rD`oX;^*Nw3m7m;J?>51VoT-LLLYazhYkPXMB!XQ6{F8+0`#x%KjT zd)|19Z?r&M*gPUI-HpCf;RQmhha_ZxPpBlxbYBSWC9VTd7jJ$}0jP_FSM;nIYraKg0LThRyg7in7;;~A;W~*; z#&ff|AI_VXf3&n0;l?WkM8^PyLx?tS) z%9VG!n4aK8GT%+q^x@egof?cD<)kK>6%+Q&F;yv zevu>@J){vkYgPA;QN(bHDG)~jlJga{?_~tRQCtXT*f%+YWXPJ1IiTg}P#}ZWvZwgM zC4Xb{cD6z%g6KvhRRO3R`N>!~VN6wNc3`ShHU!Pf5A(b0!aRX$6(_W+Qw1#h&aPESj;ym_EePP1K^c zq5)qiu^v}3v_i>p%?;4(*WmUr_xA}>KZ^h@alJ`IeK3BQ^r}!e_ee9`^gt&ZMU==L zsUIEEe`eqP?bzq~>OK>NG<7SyX`S=U=i$DtmUx<5(rx2KPBds%L#8A1qdrv-VzEn> zQv4|{Y7hX0k3QUCKtu9PAWMLotew~_v=h^~_o8c8*V2UD6_|8rZF};d04{a;W^f_| zsUDgdB2^Du)+8R)G6@UbI!8p!4;qpS=Q2oGJFCjxSfAU_pT1kwc-Mg!0FbM8o=Eh` zX5p?-yzh57&yf3qqZF_uMe9YnX{GlP^ooa&aFB;S-*F8Pv-I%0-iJ3~+4upS_5l<1 zw*FWWR5fgn&v;Pwtl1)Ec0x1xIg!P?^f)Gp4k4o?ZAk|kU}md9PUH@%G6>k|29bKd z%gqnfa^7=WUb?o{RNIJAL(cd%s@7d9XGm(nyo5q14FaxMH}H}0$jS3UOc)x2Bf!S zfc3WmKD-scCQu|Q???gRl)&L>BQI3}1FxO0yTTT;5;_!b8hgJ6h$H_)xT0 z#3ZCM-Brx3?(z1OPzB7X=3Tm(phD=6m7f7A7un|fWLzLV4cas|`dLjY9e(fmalY8U z{uQdfiUdA4+R0W8%X1wzD_ApUoxVVp-y;Kckr^MS#?|p&_#Sv6n*Bez$O~&2Z}Esn zFFiSeB*kg0vk3=y9;HftJ3aEvlM5T6C^%yzx1;UPAQP>M*G0XhHW`x+xTYuq#=?8s zk~9;$Wdb>PrAX7yiOid;DmzSH_@?x$Pdq!Bi&ORy@Of=X9{NiX%J!<(%w1DvlFXGu zNe5Az;k0`5{G1#YYnME(fw11(7Barazx?j?H4z$HJvP%2MBJJgSXbvIENedDCmal_?|Xxm8Bm0K z({!*W&yuNw2MQ13Q4edPi~1RhXMIUE2f})ze?s*g&c5+QVGSe}Z3EN3$2LG+M6KD8 z>_v-BayRotp^+XyYsFhs{9DWmuOFz3VALL=ayX{80!#Idz*7A$e20^G6OQ|;)5Uwy z8hQTe=IMGw+|b`u>)g7}Vl!ATGAhMOJ#0$^qgG@wdwj()Sp?Qc%YgZAP)WRLjXu5h5d% z741nS<`ec*f#O!e`I&{mQmHDLglCJhdWT_O9KnQUxE>aQFMK&LH@ zJUldh@QC1MBD1v+MKhp#>K*U0tR&g0Y$X5UIhyztRbW~!MpEy|apEhk^ipwTM-Kqa`a8l-kQ=JP~zG&;4#I9`oSq3b>Wd0#4Ej;MSLI z)xNkEKq#(VzYCpyUdb?O+$YhH>j>>=@p~Z?()nCV-zykY&urXGSAy8NnAcgVjwBO( z24SI2{ZXgQ(QslN9iZyZaMi&I%kQ5|-NdXCVRTrQe8`r0-qfaQJAg$KKX4=eNuL8d zX>$I}<%c{}`41hsK|Kqri6M~xb1b6@Ke(xUoOR#~N1#%mPGVjKRbmKnSsTh06KcmOWxjeC204<#U{rRknvJIu z!V3q<@)CBKs+Y0#`SWq2$Y=76SO_Lho1W6us}e{D-AQLc?fFg(%f`=;#y1Zm0MLbC z>Sk>e3Usw(rsa=`jf-iIMB&>Ue-dEcuAWu zqLVyp@~a9aEpTX4@&_M{Z?YJcI>saF3buwBGQsPOm~%RoLKPBr>pXa@!w5D`7zR&a zU7%(F=4_8|o3gq*LwB_x(S>&EJ~s4=s%&4eqGvH?_X-Hg`&_eOOZTbuRC!kKaV80; z6=tPxX9kTg%nW7evzkt%=3UIbb6WN&yXlA+NBDTVBuAqml@45eQ}6dJg{fuNcgH^I zu@Y-$-kfHVR$JPy;JuE0DgiW_8B>Yg(}Gip5O^DxnP1rvg5cv7O zw%RV`M;*5>pcCP4)>#?t;nm@--Zh9W1vjk2OfK&t5C0PuQ7@Pu%e60FAop`FLlaM!t+o_=T z9%NSLw8J?nCHTtn6HJLOcY6sS<%k7|m&<)vt-x8bb9!oLZlMBzQvvt!e&)ZMv48pQ zhXow)I_0_&eAF%OjJr!GNbkNDegJf8-)CvxX@lKOPWzxNPu$gK&VD@IRr@_jth*WN ziq!WNWJ>Hi`yd<5QiS)ft^{Ox!}760!8&YWqeDPA;7>F};P+z*C17YJ=i#Kf{m3cg z@k~9EdV{mTA`+=L=9frdHcVi8@I*M<#teEkLrF#npZ6kuM*q9ug*@=ef+1m8x(>=N z00~_13hVbpI^rF1{M!`+*2REbu}0t#Gebt;11QpGUeQdXaBzaWf4X8bhp?a$JhuoF z51Y6~KUNXNA9{Bv$%O0AVL(mZSilq@y6b!fTXX$^7Jb;+$!qb8_g{*Zy?i>*A%d1KarO^{)R~Qk_KAW-4!!RdK{#4 zCNWE)VfPL4?+r7gFZt61D)lw^djCH+%xAzGW-yGN>OVKk$b*GnB!MOSX95t5WgFlVw3zpF8hyl^;vbfYw zcE73w(}ZpEA}{+NUxBZn!@Wd9v3XoVzC?{qfMxlRDe%sq=F4>RFrxmk=%osN0xkL@ zuf-C{DjSb1ViD016K+sh)WDdqZV+z|CRAO}YHb*YCUyhyH=?t(C= z8YwZE{DMHHf2MLgz;TV_q*U6Ugrmf4eUb}+cKm&f)*{+EKl;OkG3J8YmNap|Q)qXE zH7>F7*z(tD=NZ7uw2Wei6Ec8IsnurDi?LyHDF8vS`l*|5S)Kb&S1cr`#^eP!;Pvul zxEMI#b@z9`3)rzYDqm=ITTIq?zFej=jLEy#tI}4gavHR^-7O&q=%LI!+LAGZFNMem+vRZFH*ohFG2 ze5z8dYN#a`;xKB)J4$KY#u4kJ+88Wf_o$FScUdd3#$vK?M7&{*p~F1}jTFVNhx*5& zmuG?e4GfDhijz7x9DN0b#iCzRSAYB;i+%$8WsRIL$FzU1k?mcssA3rQ6D%|Ep$f8~ z2kdMTkB&@nb8=vmLdmK?`qxXUwXkyXt=m>V=zE@6SA+%ubdSPk|8JT21F)*LfA_lx z^J}OeC+i)-%Ku(41NXaNvBU$?K>RKeuk_AOmB;+jcysN@7A|5QyjKFgIR$%!e8xSN z4r54y&<5~lC48RGRrxVJxM$Pn_(=Txc!z0t&e%9?2mobJUiAo20n0OB9>M-f0JR1 zvJNbPgI-jy-TJ?l|15Jg@cmil@~;|0sRky)L{$SqI)6Yl{Y{2RFAN&Z}7chNmd%d7vy#u zaS3BE2Vb7u=Y0hHmgFlOTfzn%m>1OBE2Nb#F8pZw1t6~t_s0!cbsgI&TE8@ZiifWQ ze~xs~#mc{mQm&CP%O+T)uKW`W17m>LfCH{_MVTn5Q82hmH_oK~j3OsatKl7wT0(&9 zltpxwBHUGRO;SJ~f%RppUkd1Dia> z%X|}~PLItQqYpBFv94RmewDAP@#Xsh8~Wfx$Dwl3KnrT+c|dQH`Q>~z@tV5i7lIT{ zz5lP9wP3oEWE(cEscA)xe!}nq$|;$;;wxtsUHMj<{cg~n+C~`!s_N@&@q+Y@oZLni zX?ykpI&!*RWkk;w6BT>&Q_O9cz9J80^5acVuObmeu(u$y=V|9Xod_mK_tMwC|XIw6=_ zBMs==I+|i0UC$B9#A2rn>Ae-JVp zyydhN9xUZDMU0N-jTV^%V9ifz74YA)-K5d8*2;A>LZ142DHSra>Z_s^-Q*R=C{&)a zMtgJTzTp# z7+3fBT2l}0(xpc4s@!iaOoSGuv!+iU)?DmjiLoOPWu!_RVIO-3p+8T0`;K9bCw?}! z;G0Kx$*?nN4QzL2Hf&LOv37P=F2EKBkCGRZNHjM9&WuvS(aTe;dN3sVPd^sI z_9jsuAGz6xifFKC30vahcTu|!zY48j5!SChu za=3qe4odMAG(p23+2wuzs6nx9mso*v9}vQyl{)(XVz5*O=ABc~>@Qc4>B1($?xlrP z5BQAlOIO%_%xO_`&GN-Xlnya+z&;yS{}iqaCOQD=^Jw3yCUIL;B5*g0z;roiF zPf{AdPj2KFf}_wNs@_PY*-uXq1`PIGqJ zAhegcZPhNGSON;9ta8%6Q?od53Vy9Z(U2gXdP};ForgJ!@La&Jm6uG*8muOngWIxI zJk6P>XK^|j)|m2hvA9;FD|#7(`pQ>%+%HrK+g#DTb;U7xW7@zy?RYO^rI`F7qlVcy za2&5qgqdiZp;!XaRveb0=5KS*1Ejz_J=bx55q3V-V)=1^dA?vynMC^czlhVZphZDD zmQ?PgV2(?fF+)_KJINf4qIm>nd$W4UNNCI}*B+!IVsyhPs|}s0Pb`Q8;7ybZQ=uK0 zT7-?BtXYzHWwoq0i-##r(fB53b5Tf{=TB-N#G zp~mRX6#Q?eHFap_WT*r!@Fl-p|BlVyUeE-HvW*`}O>(XX1Pt7RwwptFMitgjMS5;t@?V%L@#I};vJ%{5 zW1!}{y9P2qZI7o7TR(Ik>EnA#kL6T)POG6XUL185 zHa*!llK;^8kAF+&ze#gg#Qv+}@P82JKOKjE5a++g^Z(g`|IZfue{aFR|1Vqc^-Q(r zo`#>4;rv*Xr~DSnJnkhxJ?jVpB7LiGcHnbRkxa%>fFE9=o*)$=jhpv>PD?zCDvi!H z;H5F`Kaws65@BTM@p5-4tZld|#l2PwgRU z1Lk`>Oc$P+qp`6{9n4~|>G<12Tb_d)V5L5a zsl-(N$20M>uGyEVxkz-a?)&_=gJY*${)jngxR_xMFcj|Wa%{@V_qS1l_XB&6nGh++ z%GhahLY?e#!eGaQJmpbmVbV8@XLT^;&0Ym880yW|&OJqLN!!Rm-1LTR2u=C)yh;qx zk?01`p!&#%+@*;4`~jRAd9AE?!QyX&hQ4^g#bnani2c4GFjB)T)wwO%p=eZNbF?|n zVg4u@)p3vCNqi)@woD{XZ3+g5;#w9Yw};~N0VKE z&h9j~ATCz0zEUd5g9c%&FHl@e=>c>h=eb=zOE!p;%lqHL=vtr5gtOX@KO`+6BZgYBGeakn(dSMtjt=;LEJzmbLGIo1zr@H z9nfPAVg4psA~RmF83>Sv0loreZhv_++({)t2&D=N(E)JDjU?b#{7XboMUbp$a0{gP zZ1hiYQxD?OMPE2<$$1*9M#9Ri{1DgRGEISKa0@u)X<8MTeHQ}13lg=t5GaKiZvrV> zo-CpzDtBT?Ra(%R*jTxFh(X8gA0AZc@!H^_$!ng z?eRLAc`Z+y<;rn-437~>_?#wj&s-m_M5orUf=`Sb_woRo->EHj$K8ys5eJrdR`=vr z>-0*Uy}BLXD%+Y;)~_foV#&nF!bRnqy_uy^wn2O4nDDT@Fo*@SKiOhWc(80!RKP#e z-Yc2HU$bTJjiZwi=1;`bS%BN5t2%h^$3>Eoie`oT%tMGlDve0ZbDiX zTAmvyh7QLbb%Z|)B2lD$Z#ng# zt6Q9OrHENcnR?em9zaY^pRd&-6~19PWB)qWt$#_1os*?8Bn8Kd1Vh_$1xP3EBF4vA zVhY)teM$Vpy7%4!318ox3(`fzywlcG{~P9Ge-jpwwWH%AfYCuW9D9hX#sP8r`|Qow zL7X+u@GVzKof(W6GZeH&1AeWJ=R3b51>O%@v3zmsr{Pzp?N377eRSY=3Il6?h!2K8 z48JgQx~(rm`Mf|k1$M^Ke4pP&BVCfU@Dm{CM0&5ceN=)&$A`ZxB|Sk!XCA?k|3Q*n zExRY*7I+{)@xGwxB_dK9q=&)tAx56ND#&;Jq3uFhC%|yGGL5^3@MyN2*|^ereUYg4 zoYLykcjX%qL8R%Vwm$pzk#YsDKjza&g5+ve;FAU|S=C|&Gs~jn5mkp@ML9Xen;8R< zbR@(`VdrKeUiA ziGkXaT~$6k)U|(lurs9KS30%)Itl^NkD*Qtt?kxBBFGru5C20Q6mmWPX}@EG_*zZz zoFjqZdTmh2Ba{=&-w}x6oy>g#flf@+lu&!+-E&~ecodt5sz@M1X)WY3s1u=5HW79g#+$tKe^Z0f@w|AB7!bCCdO5w_j-hGR>U8oLj zcXX*1{zOoU9N{oc=W~)4DZm@onDGPknHM}Y z_hJgYcl1GA7K8-GUc~)ZcAUtg#_qfLr7-M9_N7bp!i%cK0bZ=S8a=hg2S%lYF4Yr+$dMb$@+=Hm4r zZ|)jv#2a4+@0qT1ma->q%|r+qwU@^2wU*aZ$B^@2m zH>N0v1Iza3P>!D^!57X683y=dUjc0$^T{`s{A(P$^}Oe}_kuV;u|)WXNfHRbp74;}ipPt#1Bgk7oN5lLPeA#Q*0>3~_k{lBb zA&U*YG(KnsBW1B1p`Hi(l7!x(0Y-wV`%2JyUT)~IcPWn8dTQq9S`rR7E3QvcNNsS% z@;15x*-cAeRiDDf1WpT?T}k}kTy`}3(0$4()krYnpVcBqB(7~tez{t&7vk7fbjHT8 z_unEeAddmX67e^Gko2`*S6tKbPill72kGfwi&@=gn6G;U=w6ot&P^RT)tY^|Smtl< zds|_7%M^6-shCqJ3T5v6ov7`1S&OxPZIulbp;OVlc(pa%%ypa~i5-+cF0YQMvw_?- zm3~{0S8^{LALG#KMH`A2xl_c|TQC2@j{wDV9sOcYuWS@Sp9}~V=d<)L zbznpoB#py76wz<#d|250L#V$QCJdsq7duX?U%nc+wRZ`xbH$H@4$Kv# zKrl^W`Nz*;W!(4Z?#;-3#tjp1!q z=U2AYtMzgZ5%L^3XL*sJsVTp#+(Zoa?S9S-u3y6OjBYcwI7=vZdz-HPJ~rP4XVrPC zHTAk%MUNW$Xsf<55LCmQtrhYOhw!-V+DSoz?Uat{p^Ua{d9M1w{P zT{P3<3-01v%l@O5bF`oYXRQRMi83^v2kfqUSQ1jlG-&{RWq~hf7E`IT;7Y1L0LSwjM?Kck}=$MW87bE{c{r;IyX_g2c zf|gGD%IH11pNwr+=@XBv9hY8}HgcI|l?3eIHsq%KRTm{+{mI&)NYy5v)&YE;<|mW2 z6$SiyRyWY=UCbahFX6%K{;B1~mO^?%-ap46?5+xLKe2Rihu zX4aLt6%RSD;$)1V2EjMgzLDXF^b2qrrLL$GyT84WFS&tPO-AAQ1%KDQE#W9%juXkS zW`HgEtSBB@cWbN^_rB9JoXfJx#-&Wbf?07!u)mp0&R!T&O0X=?T;vHfXy>e}BYDKA z?(|>?b(Mt!cVwhKv;o+g(7W0%?BNUe;tg#1F2)RB1Fj@i;GefnhtJrbniB)&nb@9Y z)Cyk-8SMO2+gur&8P<2*K$Qc3loNVm-+F@vdsTlhJtGn^$acQ|+m8Kh>1^EtkiPGb z{ZIP-cTDkAYw5?bbdygP>H`rB&vvK72wq(9rVBs>9EQrg|8Y833rx;3wE7|wO>t4} zo<4=Q)c^@ehP!H2rD}EL`9%P3qS8zpgE!zqm$Gy7E`7@;;QVpk*@yfgYY|wn$1u=X z?dHrnu^_Gb*g5%lpV+vGO%r8LJsZm8o6S0L`w>il5XHW7nfMrWV5x)xZGJ5V&qv23 zC&6077w!_>58F-`qLhQ{h#&(SnN98Z23L$pBr-!v9`*|+u9rm!LEO4h>=QoP6V{)8Jy5E@|8J@OancGZ zzL-oghHgwH4=B}xI+T#b9{-nAPxaqY{hfihrICKlCp(p{T!@J~wrk#nCxwS6$y<5$ zkLT72rqw@EeIs+e#HtSX#%TkL+DJyn57Tp??&7r3MlIoW^<4!H0hWQ>i z7?2~7?HY-cerf`?FfU2B4SWs&NxK3PWS7X_(1lhlyhVe78GEU1A&4#ppj6L?lk!OX zv$SE9GxW6C)VigrFT^ztT&_oU+I;Bc1L^n7Tj>fGUO$b@ z1xV*DN_!&%Z<=4z6>ka7Px%+A8hq_ZC6(ert1ZVbauM~ZnI$}aF&gS|&h7x6dWF=& z%HZzAta)5bUli&xc(k7T5}`j8`y5ILIL{=pe5#fBYMXGAV*`?0xZIfIVCez`Vw^N{ zcuHJ6G?rO7V8vcrXMw1}jo4}iSh2@14#(O!UH>WCr>e{;#IIXFhcyi6gOyZm=Hw=n zC0_)Re-q%F4B8r-+sUQMrU=cW2aSul+X{@>D@#fJD`LL~CAwV#-ga;JuvaDljM!^o zKN?dj%pD~m z%n?X8e)|?1X);hQJ`K9vq0@0Re7ow@$I;89{8g zkAYjQX4%`VLSI5om(+UeKmmUXVzvq`ZaA$ffAIU~nBMV!@VmHz>23`=RBh0B*Sp@T zK1TNwHchgUTqvr_OmxgHtwCNe)RwT%0sIX!Kw3T{k&V-bkF#voCK0vLY~V(}KjmV;m`;D?Ylr z{LiXaU<(zwVx3Zk>Yr7wUe%L)W#tmcZLr(Ugu%AcCGtZ*RxgT3JcA9+eP={gp#+hB zI?)8PD$#GBo~6smKszNGq}9pb=z~F-SbhWX3_1W}W5v~om*EN2H zj!E?X`mWyp)~3qo{ibHqa8nlZF)Tywu7?XRO|z@h-FoN^KANda9@sub@TjKzV-;?y zGG|=}O#^0x6@99J$RRE=OUxp0c-W+ar?-r*5aTgR)#zcie5}_qZlfg9 zO%w};0I}g04>OM}+GOYM+=DWKi~L8uzb@Q|1sD;f0}SvOX)bbn)kO8R77|9!vyirbx42A`__NV`-wm1 zJ!B{H0X*8X=QMFSe~HsVdEy&MJ(ZaEBqfw*7x{$5HeQOz|lX>uI_kMd19{ ze*Xe|k-V0R5ioKu9B`*PGF_T?(uir+yUCc32I*G}9&w}Zr8;u0{~eD^YE!Sxu2n!t zk_&qgB=W^D^bf{&nnaQo=pumhaNV{PfB?AqLC5pw_Pv)zjv9w^I+i zJ|3C_U+QCs8dmXbLurfH59m^sIyPl=VV=?a5~EV4^l2=$>gvJy$;rI|i?V_6^Tuxt znKlEpz%?^0XX%4t)cQ?nLB1mQX!I$qX*V(B)SGSM?AS2Ix0;Jk)EQsqyZ0?!VB=mZ z9eA|dc*|L@7bWxim*A8^s-rs>!?G@waeyY6ydF2)XD^x7j;bBci zP!680;z4m!KCCfDW6dx7>pW5UHD*MlarL3jyA`O`8ysO(%S0BWeuv5a)_$IRv0lZm zy)kDEB<5{Py{ppF`drXUR`?Fo@GrG3&h52zJ?<9M(ZkH_J43z&RjRf?uVJkJv{obo z>krDuRX{gqZ@3*?N2Q;^uN|yCxKFlj8VvG3E(`RDha0h#f!8BHdgoeSqSP2BUyczk zZaO~wK45;F;YLm@b&k)iJiKFhQTY#*&x+8^q z@mmLeHHC7`^`;x*>rAS_KjJ-C;IT&xcRBFY^JYE946{$gk3ND-9@e?!8k236WhreV z@mYjMI&5Fl12hyjDDy(&nZ{Op%4o4aQ}dky?a{+?S_9Zi=dvot`}ozmR`dMs2m3ua z%o)Wj-Z;Mp3nY|bS=VG~7_0AD0pD-DLWyj@+M^w6Cig6Gax;re;7hg_G#!rFT%><% ztKC7sy|@n?bTd@ggB7q(6;7etOJB9bmB0w=w{Dp*aH>a3qm&l2 z;BXZ0M@j%MbbjxD;dI8!7cG1(}8Y3*LNkW(uoVU0si zTIAOa@ge8W)71NIC_mi(?eIBE$Mm1P^ce6>5D=+^5ZnvB4L-MM-}8rC9b6X4O;K-< z@>LSPqR6^g%WDg)9Dw;~!+O9<{#HT{;dnV^f5%FbpFVhVOTj}!9R-h0*>PMy8(DI4 z!%CPF;=S52Y_#OD@g;SM3LqViv4W*41^`27!K^(}vSf31ZN#p+fD+Zjh8BKq$6}9- zC47Y^r<9YI;oM*6kWnymctcS=+NjuL{rg%T3o_9_yRAYVVi2b4)Ph$X{_&iRV0?dI zYx5;QNM7A^Lr-zWWTPE_fe}710zU}HHl&Ece5l?#PVa)MNigt?tbCXxligA%wm#g# zc#$F{Nj{@M*xhL5R~to)z${dd}~_> zfiI`GpNdS%DO)lsxOi>8f>6``unCgo?0|$v7AtZ(va~9RTHL3U-|&vl)^DdzsjGmEb z@~rcDHSN(8~oeUGJQc3a4qYfzWx8rMgQI?|Npt@e**Xa3EcmW!2JzO z(m$DSEnp@*Kt|`eUEGK(D*5|N_1R?TS1FR!C0VHtqmliAOo&6NdkC86d})PhfAPf$ zEjcP%XbQ*&c}P9i55T3)=Ma^-pGAR728dMmJ1tq=ch;Ts*$!&$A3*l`@c|B^C<6|G z0RjaA1N`yKi4S#xkmYaT%!=?J7IK+jelo2A&RDOu#(AMphB>i zx^{eSBv`JYr*7f>Nqrw566S@w95&>vn{1*32=v$d7+#Yl zw^Z+nN)7Kdz$4$dswf>g((OlqK>y<31APrf#c1gN1?aQ=mvFz`is=h9L%_w#u6xg} zMvTwTq;P){fSZS7uO$UnA{P44Et0k zYAc-vZUV-<^G3;Onf#BSUJkCEfDbB(GR(7JDmQ|L{3#Ray6-~=UGIC}E3EoTg4LlN zS>a<2>cEW_3rZFp=nSF+o~lp-a278UK)vA>n`|^yp*|-VTZK|oGJ%C+4q4Jl!7I}< z7;Htq`dFG5m{~GI?NawmeYV_V#2G^lQl$>CZig}!00|~DOT9Up?pBD$>{90Wo@ogPYGVT1&qavOVLZ>ZT{5+3DVj@A~h-7bBV9Fb9zek1l zGbPR{Cn>Pazkzxqzi6yH>GwQ6pyECg%md{R%nPHfQGWZ3$KfCYj`uig!o<;b*2h(l zMGX-4K2M9f79+MQoWv_9AkKdQ;`~19ia^Iz?7ukQfb|9h<>#b}FHA_sQBtoBdkMF; zx4TR9AK`wEcXi2cQmN$w5HuMhh}M|{5D1(1gN?wglJNyO@ysDa_IPz38zZ0>ji2UB zfAazPEcbvSariAUE-WP+@)DgJ4ro^d)JXj_prj>~e=xmFp~VBwyw=d%?o#K2eyNE9O{aq=MetZQ(qy#`;T8%Pl< z$bBD>=1&EwV^~i95Cr){^M8R#ZWN}uO0NzJ&kIp}7S;tPwGNe|XTnEGlI0AAC$mXw z(0-UdT<_%(2Kx44S?rL^N0_DLjh@ME?r~+0+8vR)U7;g-Yfh`(q5yE}9NlYw#|GKD z!I^R5fH%Q9zVFdiSfWkf49{kuGFB4=eX7IDS zkcKJjHL+`LIoB6=?FBA{XaJ%B~nE!zICasSJ^ z|6j&E2zkDyzI0x8bfTC;ue5MH15y;!55rh_OW1vS{}}P67?HdJ;o+AIVZPsQ| zqOPeTgQxP)j!iEH!Hx=~d>l9W%@l_n06qzj=UX08g$~TFB+{}D0C~PM{}7PpUoh|d z1oC{g_uWlccK*(Pg!^#pFd)x&-Tx!p8wi)#k<9Gmj9`&q4B+7FPC514Z9O#$;=0D^ zGULq|_lfOelWN>V;(DT%_)(p|d$sT;K-@$C>Tc#a4p%l<$!|kcTbr>CP<|EZysS_I zoG!D?`VftAwlw_}2(-SZ!YB>a3|xrwtwR0& zY7k`yxj$6stHV>73M!!BRqv*g^e(Fv;#a=HiGNX?`WQ>DF(9}0(G^W}X?z}q=vYGg z`OJin7_gmAq9`M=M?d1!k|ii{k!XoZGt=R#IO~5oA8v>ECLfRmAsG`mqYNUd`n1d- zCCAvZfFxBmi>>uit6;7d1?2f1p@rvvcs_4Q#w`0zcp;)5xKsj%Nk%&f&lj@qKIL`& zu2TZecyI5pQ_aNEtssRTiyg!!wX!iqexwslu*8KT6&h@mv&7GXw|+N~Jte7!nAP|i z@Rl|>0r_e?Ao#o!Ew2xHs%0kS1#$?A!eHqP%DhHs_}QZ<7smd?f=~FYKEF>jZIJU; z_dd4^s5%7?KzkU6+RVnK!Ax&-qFj$mRlp7 zuf^J!Q!ER?@(D)P*~cv>arXWceLltx57)uU^+}xBE!II>kfCqjUY@}! zG)HztM7=Ruz_s)E@+Uu z`8giU61q~HVR+vpPIH{Yqc71K^8ZE zSO_w!tcvuiZX%d=)&}daJ82mX%h%(qW@wf7ERkPi;Lolc+7zDqB=p%--1n4f?W)sF zdUmFS109x_K%<$Rv#dz*($qYzao3ka393(j@us(g0^w`DJJ*4;fYZVKy|UJL(4C78 zHoDj9!kCeq6>_33ibxt53uwl-C>YW4&^w;53pX*aysSf)#A?m}(qQE}E_Z ze3E=)5i^T?T-N-o@Y@R`D283JwpKi~a|4QW)(E%wMr`F8z zQ#p-Mr-vE`TIklFp&gp*t(|$5M`vk`r0QG6^yJ~Uh4Q6f7fKv^R1D7PnD|xCwtNAN zdxrMvZdL8gXG(oMZtdf`3L0!6-a086GMoorb9q@^o0e6!E1jQ3kNMDe^KCiWpICPYw z*8qXFU=95p8t5Q>MLQO5=Z?l~=%8hcG_4#}0t;p)fo*vN?_4H>YcQyNMyt$7WXq%^ z>k&Oax?sWSID#^Pfo)V?!SJK^W{;k|18(hTz5K-V8DQk(#JN5AS8!)|Sx3X#`jhNb zqX%UsZ?UO>=0n(V8AxKBYJ!WGrk$}FvwSQDqb(za?MYgFgnJmg>n6B|t=v)jG!{L8 zMydhziCC9-ou&yRTL&d(phkeV!!fqI|cg^4ynt zGiOFas4Lju27Q6H%EDI3)))0wKK5(OW-!*89o4eUOP8{u;`X0_B_SIHFA@XZK*y%q zh2o>UzM`Oj)xz)b7mfM)IvevEZRq894VJtBhp4?oG*-@a)xk4VR(#~Bgde)*iLFL({#K1ZnZ7OcEI8(1#9P4s&gD2bmp9)6w7uX?@gTV>;ZU1&ZhF|l zd41OE#uCZ%vx)#(w?oYl=eVE|#Tuv&9F9C80|k%G%Q9VtX^(iV#FUXkx-eC`&Caxa zO`1fS7Tfu467k6iAycUs4Q}f+4u-#!&Sk-fcSY4>FxLG~SISZM+bWXZVe)vkWtoIY zt%1L0X@$jrvq_1d7dFeN-dRP7l~Y~ zVR7w)!$g~1Tb()tug|w?Z_#x@!@AQ0PT@|c6uI+n>tbti*j}ZLR{ovb6#j#udUJRd z`lVIhuqx(5zm+f)V3dr%v#dJ68&=W0I(ZeKjj!Hucm?r$bnn~TLbywt>p+mVWI`1^(=Beh$L)#g`(SGHYIT+P%sVbTa)^B;6FZ`^qHy@iG(70QV z#96b;A&92WCstKD=PL}N*5P`HCqA21#p67IlTo-8nipf19)S#H3G6(JVl73Yskh8x zktjZzjF_D9=Fvo+o#NqNJ}z`|s+bqEqs@K6*a+W++!W#Z*rsGh=`j2BPQx)C6WpF= z54N7K2KtCn*9oy(*alAzbyPu%zrJ6Gsf2DM3gUs8z%sUXi+R|<*tL}+Sv_jU3=0}{ z4cT19ql?CJlql15;_;}wFqlNf;4JkCyQn3rXOD`;linNl_S2IFg#mFFLx!&&*ITQ@ zv+I`X*rV&#?MZKhuC1;Lly=|bu7XD4wij2|`~Sz@JH=S6Ip!FD#nWXz{WiCRV{i#zsY;Iv z-N_N~PiGx(y$9-Ei;Pb%4F7mn6~qb6@%$f%{+}_%6HRr;72eiP0hWCM^Lmzjv7BDw zIO+{<9@-yj7$!*>cxp(<5(;0?d|yEdNqK4#wmEs)IC7YY6bahl5%qd}-^KTSN*Qi{ zB7CnI_BJR(Tj7WUf9W-HuDHe5nv=pj>?{)AS&5m8#8Z2}y!CzGKereRw+kM<>y^V! zjZx)@2teo!Dz@_Uc<2Wu7b9}WXCS}A+~Mr5PeV0`+|-PwlL8hi#tSi~61_*^E7#i` zJuxyzpI2s117XLUnX@-GW58Tx2!xW!u;>8a5&#xq-Dzo3xYZ9q#-g6X$sH*13j<{G zgFZ6(nGal~Z*)r6juN*`5*2`7pefF6{0h47BufITOT-H!5Ti=Am2r7L{T7Vz111ck z2TMS+W#qn)&xs8iZ6$GYK2AYOj|!#5nXkZs@hBfyJlEM5Slw5i;@N#UKIZQYA<#~y zT`)bN4KQ%Zh!ikvb7+kiU95ZkUX2}SBXJV;G70`O3$J}5KThr*BK~C*C>+vud)n{$ zx7ssOLunC?9*_X>+ng&tE!jI4@t{w42I?07HVLs;+ny|PjL5}EPY&}K&9(ypX$}t1 zJA@$XDIz{PN7Ou8Ad|ieM?WyZsv1Y;Gz}_bJ7)4TA*2t(D2?A_1nqr_!b65G7Poqg zlRDzLzZ}x3K8jRxuWq|KI}8FqsDHxj{|Srzz*oNsOIFOv@CaUh9OBV2)C&;mcaMM# zq$W<_5czvrfx|_NJyj%v)L{@ODWFlGs3Tm|>Xr4?DF;=$;)AFOZNACn8hJ|uD3)_* z>Y-xKPUc_vu$c)*b?lgwq<1T#$SH@j8j!;)S( zA!jkRMwLg3<(9#n!h)`m9>vN*eOKgabyL(EP$A=sR^UQT`C{M$x}~}NQ^zy)* zjMHJ2bNQqj(%YWl%VEYf-LScQ;s%N|G0A=Si@$#(E3@?#3*yqm7A#lm{?^_(A%ys@ zM#wDRs5N4gPHFj*)m@KbPRdff^AyGs3H^pF_J3uu5+`hrEX~xsT}A zcm&P-QEcOFMR3;yqf?ZRs`G*ltw2j!B10`)@k&slTBJVeh ze&upV<*N?Gd0OLf`(R|JtSU9HHIh7uz7F zz1rxv;ljC8U6M&;Jc=YpKVSoE1z9!X=(NI_u@p435U-)&%UZ$u;+Ny*F zdVWR7N`VA-n%q}0yl%5Oac?>1ZXEXNjy-SpXKBUCfqd1>sg$z~iq}Kd%e{wGM$VOW`B_)m|ny zH^kB?om@*vB>8#1d5_;ACC()HVx1@jgDK5{4evfnIC+$dIiaCE@^k5bpIk@?(K<~6 z42Qui>6@SjhgID`Lw6+96^Q&d)&KkkH4yh&QexCYh?uy`^R4kB7$x9f9y2d@rktZQ ztey^BZO0|Og26_~KC-^PcW&hJ5tNJOr2JX|Lo0LgH;ykkVY?oqa|AIdP4Iy~#Jn(( zbV*cYids4}itkbp zBdFBBsXp&y?^|BfD1u_R$K`M1o8E_-*0Ycwv<#$=gz#inIP|D*v4Loggh`s};UIu_6otK*bO z5JVxp)KhZF#KckI(gCDXVYY8`v>y0jqv}-}ae~wJI%o+pDiNCD8rvwz;Q(+T5anjPLC|V^tTE#5G9k$ z+^cBz4SiPAXt}c@CYLFd)W{bMR?vu%CyTtpF0XYI6PUiep=w8#qufvPK@x4${Jlf93A zt`AFOYX)KK3fo`%%-b!$7MWc1d_g{2Wl@>#1iE}!W$%7Vv@!kNP6Oob1Ib!`U9v{H zM~Fc;%RPeWSe0GeMwMY-5jgdU)JmuoWb;=LU)sXrdVY(sx6QJ5C4uOy%ZX?-5~LJ^ zEotS{wPj@T_+dqQW?xjl21+2oX%OZpeA7fGahE~%v(>=BZMTfluDA<5Pi=SS9UjS1G@PVW?Kc%00ZRrF?Y z!3V9#xtLv$<;lUnq-Iy}E4WPB$ZAV6kKG0xkJ$Uz_4^VIAMMidD1ieQ@ES^-7pqQ4C7F;7 zhk8?>6w249v_fXz^>;=JDM+biurmkY2dk*O*aHBMYdzOBY1tI+^4j4*0@wCoS| ze(~Vel3wA=wojmK zwyRBpRM+In!nZE%Gh8;w(CRgxG_@_BIp(n&8`EVLu2m+N?_scM5scOG3LTr^@s8jW zWx)HlR-1w6qL-{Y^6qvg?qVfzw4O#aY4CAib6QGy`oNeS0$I!LJ2gmG@IioVjA4yp zg-SN#@*f{5WwtsZXT+N+(lI8)BTXV-?AB&jMSRj*@M5 zOzC>H2Ygl>=x#NgPNg-b>$LguJsh&ZR})Tt*#y{C`s+@M2QX*0&}CvYBV4{1ze;26 zjLWBlJ3TJJWFVTjkWNxXmn0pF^0KUNkd5l(Zky+jMAW+#aFQ}O{+?b z&l8U>qC-U5<g=%9TKA#w+`uiZB``s%mo(Nf9=zF@K&CN`oU)#7*L}LCu@*QPQtoHNu(abifrG zf#dh9fgJxdRAYa$$g~wnaC0>&e=#c%1sWa;1j1K*q-2JDAN;Unj?0DBXr zxYSeOF6VT;yw*38+aAdqP#p_u1BbGxZiKgVJmkf8j39SaaR0Z)1mZt6CJO$!G2!;nn22JaK_MMow@u{O20sW+yl>DS|w$!p*gD!t9pHFs3LX1iCWk4-4MQzY!! zxT(|=qB1+fS)Y)6>!89EfvSrKxKr3m=3HvG%a?eTbCpTe`yALVG96CU4h!nk*Ev6A zf#@S>m8!j!D`@rp=YP(l+)CK5WB&)N&;B>ok13Eq_R+U^58O?<>sKB#FzRNRqhain z_iEDjtUM|`T0c5k(yW;M%C>{1KahkZG;jMp>|GV_&k0x*tQq#o zFGKr;nRf_rXXM;*#1Azm1=7$x+s+6SGY3LC=j#m!>HF|B(PFB9a*nMZ2ZZ#U38S=7 zlQ0o38g>%SvF%fX&|i#$_|deIt$>bj2gv)U;bgTGaj^*{C)I4|e$^Lx1hZV-=cU!S zi1lGs3t>g03&#o=F>b*3C=!$X8`i%)53y8AEmIf#h6qelsYhfFfcV1Adw;P0%V6wL zRa{UEQHKM?dqZF-64YcN+Q0|aZ=}+XjIp@!^CN+8Z9Q(O7EE=zhA3$H39$5ue((h7 zb9CYOm%L1Z>8-Wr1;xy$}4I26Xi6vn2d+J)qmC1^`rFvNA~Q zC=dv_LXqhr7QdI!e)Rw!?7SwgH`UMK08o8B$`p6Aix%MODxh=-w-2fhr4Bdj#=nL+=)GUlx|yi|XUaSD!hrFdp$WG5p!$G}eiT$^4AmKe`U8U#>XLxVClC8nu?h3Dm^}Dw;VrBM zvJL;gGx|oOw0Lx%0aRZLln2V_FRHH+8>;> z~M7;+4D78^q8sG~@;hiJaZ>-M_7xMr~zk9VERJpt^|CcX{ldwcAB+-nj z-R3weSh87*Wxrqmqil9@OBri-tsgMYu2Rge2yfJ-0Nz`(mWdj4*{OZ8B^F^Le06|} zNwO$-9Y(`{!=cSkQksMBYCuc&wu0Zred?v@#R=nd4lZwA zF~!0?-GzI1Kq_aCf6+M00;8MuBd(IOpG-_3wRVUCs*#qk)>3Gy~z}57OTNAbn)a z?GL1%CoUsGY2?Q#4EUOn?vMko>SA~q(RhvsLH5%{4d_ykyr=^x`o47BP@^%@ug-_{ z4&X1m=M3C<4Xj{>TF`L#1!czbX2rP_xtjt>_nNMGZUI zeoAB`Y-iij7Ve4>tip@O1}`ZhOjOvlY9VFg+t%YDEmhJtK27niJ<>u&4moF|b*^%f zoLUjxEv&>6r?uI^mPjv8`n>}`bxGuYQZbCYAlkLh`t*vR$@?XU@|EHY94pc!o%I#g zU5$oFiM!83)QT8B-&W=wqbf6MBv|ip*uKH9F~r^tEJ--b$jpDlcSE#@8!*b<1B6DJ zdq~`XLf*S=gtny{#R#RqKPaQm!ZW`Nt9a&sw66a_^f9hTWpqD%5PgAv5&b-C91kk6 zt|zT1rAbh^vWiyBpDRFc1?c*=UX~8#CnxEX7EChNC^2maj}Ycew;zf=zJeu$`*Gel zbSmiP!l-OzlRMq?%_P6%gWuYbzuh#o_pv*wuM44-Kfuuc20c2dz0I__TY<$F#CTJs z%rQg|E8L8+^Ok=98QPY?ty%SjPUpn81;)EiaN&Xam(3I6rzKGO3Vf+9YofSncpI9* zrcW_*&J>Eqnn}jm*b)aE3M=K__9=$vT1lbi%Qb)X?brpmTx+)XTDlSgF+tl z?ta$29u`S%dw&t9f2E#=+_r{q>~&61CtI;P6TgZ78v2^;rL$Xbsm!pi#z(Xy zfU#oXmghz!(O(xw(3Y@1`!!qXmh~$=DToBcYUkmA4uq(@L5P_qR;F3P=68bI4$7|) zBqJvT5ng|7+*=--RA-&LQ#BNWj^VOVWNngS6iMWL4h9-;SH&F|kG^fi0|0%jHpY^R z$vuZ68nII+)f1DnnYH3d_IP64c^mt(Y49H}gBTe&X{T8n*aXZ*G-1vl%{miuZH{)E ziHitNcFn_P;g-%~foN3^!wzfnS1ete;2;ba^5I>nVSZ~5j)d|!hZZ>%zmo-w&wiqp zs0aat4k2J}0|b4Wq+$lbTN+g7Y>BFGWNhC}aty0$La5p2F=Nh;gyqlWYwa0t06aej zFDBva&?}ByPD{D=W8~grnadTCrpYDO6VQ@O>^PRMr|V$QpfRQR*1`*I=v|@wWATDA z(t(`bQ7aMmD}*(3;MnaXyOn&Uq4vB6&|u|)?$J^RLa&&(El-NxdUfA=&#Y#pfaKly zkX4RnCPs{W{uw{s_30?zDKz28*_vv3&EPAk2`|JCsjT9g7JY%7du47jFl}4A_|p8+ zFdhX-byIaG^<507>U0N2HJuer z4HO8hW5PbAeeWLj+3-9R*^U>~W$^j7+7-%muasV4iL>kACLPFQP4$;V1l)eFU8&s= zJ$eJ^#*jGMpoP?aoHgWeZ*x=4e923FR7%<$jx*j)aDkAz^`JWkBL@Nwo~$S>u>4CY zdX=-q34*Yy21F>i-SO4uN$gSUg~E=4YNeFYMqTnFWWDx^30t|nA$xaACPgYO3l7nO zDW=+6K~ALZxb@RWE{%*wN&cAn%9A-`KvTwGaU;qMx}P%TiITe|`X~37RU9Qby1W2` zZ6Hy$biDo~hd7AM#nV~qNT5CCuN}7ZUi_CopEx-JUQOrWF{{^NY?@sBK`_DJW;9Oy zxeEmo(?>K@0_};i(@V!=@CKHvBgco7p1vL~ikqJ6r4PCDF$U}oEn|aZ+AZbZp?>r7 zX<>Buc_xQJ45x0fiTDiM7M*c807tS^Ih5j^ufSH22PW^&lJ%+kdI`$4pZKep12)v@ z9+ypwX-dnto;?+FrQX=BK0IHk3J({H9J26yFwvu7qr>t_G7E-=nwSQjcro2t=H*## zH*@0BU%E*Cv)ZU)MEJL@Y1nTeWQr}yqjS!(in}f;3^(Z{)t-#mQCPl|o+aK02!USS zzi`0pI2sDJ-JGaAGUdj`mVWp!7lS8hN)NZ*+#kh`fM>hxSpSv)HQ_)hIVxoz24*<3 zv7#pEPh&mM3O=2bkprqI(e=Vw!LW6m%p99(;kzgQ1-Zg!f~>hWYT(jdXQ$4#ZX8V> z%dl+mOo{*+tWT|}(Htpj>YPY{{phP8W=)^`P|-0nC~7>X^h1wl48CgII$u;C_eb}P z_wYVOo&Q=62YF8+P8gq=z;r|BCL6hQNlnJY{Jwi3uC5%ppQPsy^wHydZMS=J-@Li*Db=~W?m65K zMrm1WE`}5NL;91h{wDo&mAdUiw;+XJWa@km^aqb1Q1^Q81~-Ua8jNo*w*N@_?Q3y< zJpBjK|7QmhK>8DwWdNjKbzeZidafnSwj2oN;?zyrKU1hLgHF^O)uI99<>@rp?`L++ zgj;)q=k;do?ByZH?M#)&+gr@)J#{I((I*H7)je3is)Rq57U5!-N{ZIAX1SVSA!PDd zu>Y$P--`V$f&Tlw?^`w-9vF?A%O{SyUtXp7pCZyx(J~-c7PcAq84WN)5uOY~_|do# z7;UIw^F(V{g)xetLW=PQ-KaznmG~+Fp#KE``e#{q(}3owu5*Qr_p2~R83OH80+BaB zYI1;juxm%Pzb`WgU!ukx!7IEf3u*w={nbC}{yQ%6GrHshuF@%8`~z1Z$L3BK`~_nz z=;~q6?=`c<^}*!+5jIL5alNRoj+^4v>T>GBESIN1Xlezyrv^MB zLS8_Ca{kLi{^ocu;Bj;sFyL|Yw-MsKKjr-5~ z0s0tki5B=#BVMt9HL?>Np!IqIH;q-sJ{kxUKsi4El)t&+D`$~96oMNY?X?iXi(V?E z-{R-_%@l>j3|%T_b@3;m7y#)11OWXJZM|8qkT{~x8!J$FnB-G5AE1AohRl@oZ_vNG zb9oM3$9aHcDz#yKcP9kp+}n%1d8+smNso$GFq>21R~hB9`;?rQE)lNsYXr&lA9)1uUV;hBMh8rw8Go5-}<$*f84p z@&=b$xpkqt7RB7APF(fl*ddilg$&V7C}n{>e1cICyRFIl(2A1s3L4QtWEx%{pHYXo zm3*__Emw-kfp##xlkS+IbmZ>8Lj0qx$>2Wi0YE=j(BgVhi?45LeOdckf%`tREF>D9>?)VLBTm>g!KdN53M4#5_DYlVN2E%P`lFUTo&_t}42j{gL zf*v89Zh0O|Zf%f-d}Aho4<5vGw( z9{tz0FYYB$ivtn;&FV3-eye>JMTciglU+d z0k2Pz*Sb1yViqQc!Y2HEN)R2{&SNkfd8L1DcqMsC@`x|0hjeuPvG)nXkVtpL%nMUv zg2OJb%zII7w}w@Y>Zy(Yw)bW4aBJTK#XkRw^SgZMu#|NHaDD>!(%+RdMw{{e*L0(; zJ6^rXJY?K`?gb05!-ZgLFc)f!XLP@md$vYNS+RnU<@#|I6n1IO8kAyrZ^x*vH2$0O z&;H^3?Bf8=?-UMB{Ke2_+EfMsC8&YH?Y2WDG;`*C)Z*otqKAOu;S#O)>x!UIw0O!9*h4RhlQh60X`>xt$;Cr^CLd>rLJFwD-pk*;*eD# zuhr(0lfO?&$G(0hI(HZk1We7;hqB}4)#FoN8Bjl6z35!l(oH!PZ`CJBnZliynP zz#a#>Ygz{#J1>YdI9Eny9FWROv;l8(?B$yvUcS!}?7~wil`7ByQDj31yDe7hwSn_) zWL7&`MMcA;l%0wdk}kW`jAR148L7og7<4t-mYdyR?dSK7WaDTI58%MXl(wMbG=SLE zWM;B!+HI;dBes68+D&lVtB2r|Rq%GMQMuto*((u56*0hgzEU!8G?@?3`-H7e=Yn3P|i%u5`gI?Jni+ zAKs15eY@q-^T@I|UQOo`r^wm+!N*#kP>D4UK^Nj)OG$RqEG^4@9*X1n{YDGLze4fQ z+MHy$I#k%6x|DgBwHDi0)Ro$)u-~{#Ji~EqEz6Z?qtiOhG5m_cibN-Xx!S<$(=X58 zj?&sitplP_>Mu2eC#H2Fts|b|O(oGhr?Y!kqX!kUS_rXR${5U?2a#y|bx%Ee1@m$i zvx7y-=s5SBu87I(u>&37O(9n#bd>N|=ZRr<+b+km5Pniiip{t3>ogecfw{guN`+}C z?<0QAbb)lhU{;d7-<}?!p5SUHo=)Ro0fZ%_0vBuZi+)VJ`p;;D!2{h2HRGRV8Fey> zh%30?l_tsmG{l?hkIJS}IMlT?P^YyqXDG&F{E;>?Qbd>IC3MJAbHKo7l0ioA1Q>pL zFymN>LbD~oUnskD>%bS_Ymwu@Z@`IW(sIpdtZ}g4l%ZW3_$8-gqdQ^sXkp1&perr0 zvX3{|+VgAK($Gn1elsm^-~IeEf#Wt5m5Ut|dFV_+Idv&F9}nP3oeTy!ZPxTYqTK8f zVxQdL5FF?C`_Be_BdEYm6!8QxFWzSpyc zE!SV`WKR%KtoWqnw-o0sEe;Jm)TXY?vv(AmGZ(t0^k^#DA!pP0sDK(suhoZAfsN9O zROZdu9OmVqH!aGmLesUF4SxGcof%g-!BlM$?BELdd*sn{4HF?>2nJnf}a@(aa6Xy0}TvvN*lf?DV^P zXBmt}z!)c8FL@fjeFS=m!k$s26oYgmm$L(`aXLy4xwMl#eb4$zbepn0sT}I*A)}T1 zOu@kU+_?L^W5f06%6M9*?<8#ZX5aQ&IbsLY9N=F8&nt&f|KF0tdR=iLnURcrNr6DdtGG@Jk%cFOctFErq8a)X2YKhp2syD4Zv9O{r zwnj=iUFHyUZZUqi7OYQCt(K#j%EGtMwSdP5qdJ=wn7~Hz1N6iF0sYcpe}R6KwS+Cn zU8`;Z>=DY$1popG_hTkf^Swoe0N}Wp)Aa1Xu3__73kPbYT9%Mq6w(l-CS-1!R{{i$9ni5$3C(!@rN%X(dQjl{5GIxwE zFo`wv7BtBxAUIKNkv{N$EAn6dSCQZLT%H&aVN|1X2SSvC2qv|Vde@;#NI<_+R*kYc z`d8wPR4qI=OXS%(zi%ra`QJr;%T}TPD)QTceH8f}IaHv_U3dURe(L{GQIc8b9zeUPgb}wYHYHz7rzoXm! zqWKs27wu8-?qd3}%KW}>`ZY~t(Z+p^{%7GQ+=|!euIL#2)6X%0(eVP9wW)_e^B4dv zeexVa1JF|XgjFAzQAaUW6)B;F!48#>_Pt!FX%asu#9@>Rc_`G4L|qr^!B zW(5n(46=00E2y8%sr0>WO#1)RfoA{XKpT8G(6x9}4z5gp75QEEac@W=LC{`>iuN%C zNly05$x$0Y6S)4;_e=k?zW@A>`u-s+0oZ>6{eNKT|NchhoN#E+e9Jh!^>n8)p%78< zQ)8;%7of+iC_?*iK zRWGE85^kuX#$CN)q9&}gH`!yhhRXJVJtiI74$uHTXD=(sK#kF07=6g-C7a%@&?VHT z6UOML?}z>0!S8-} zadxXo0po;!&Mqv*YL*`s{l^=X<3DG2hqWX1f0QTw?d%#Z)>f~wnTk`CTUn2N+ECrY z5rrLc_&B@d-7(ZnA7?lAue1B=iLfX=)$Teu)vfZZZ?U2>I0+p3t7<|nLhA9kj}q4| z9e+v-F7Co*Oe{PI>I@x!Hyxl+fJVxLhI#sdn}7wjs5ymIP#F#O`WZ2VJ;DXs8-WN}~MHEA6t}lwQLJg@icNch_N3dB;M(xQO zOT5V`w$5Ia^vgDu&&}T`ySafg4|>g<3+i$CqGb06^b-I;ztZ2Jf6dQOAo>_u=Wo!z zBJhv*Qwh}TF{FS~-SiJZe$IdS`zy^zAO3!zly(xvX=)RtC5v2KtF7YTft%zdIaz$J zL|CYgH;}^gsGGGJ@4BoWZHgrBH$?Bew(!UOuB+~oCC{#82B$9dDj}c zRjr8MEXn+}%q{t$Dh4eL$o}H|Z)t2cnCg>9j25OJoS!Hv9l-f3(aeWRx>*ckfpC17 z1qFdu?%*Pa1+A56#{dkzzq>jf%w}%7M@9OFIwy%QK{}QdmR1z7`>a<21zd1GNxnT3v?rCIg3MaUWX!y zPy-e3I_|-P^QukQFSb|uHdhUnbBx?BEO-a+c71Su5lyZe6gO?0E^*i0D|W_lf3(l} zY}Acjh2o#cD>2pzgfA3XSr69*r_ZSf;a_lc(V5P9EjM6nPN(4}{LT&DE!(;oxZe4R zg}ZvwF}FIm_-NbLuLmUkcpu!i5li=i9nxGO04mBeMDACOa~Xh&GJqDyoGs5Wa0!_C z1Kd!lGDhE*YwTq)T}Yei0g;lkt`U4Tu=Oaq(1N$DOkTyqBheBVNVE&33Bcfv$jsq^ z>cGq_Fk?O6pM;noV(N7sLj0nOI6ESo{esIPtsbdR2p6^24J}lD$iD@J7Xx#30aF9y zLoEK2VY=RdIod||CsXkg7McnY_I5@bx)tb7l(SsnQfsct5aqDwrKOi(Bu~;Oa7=XPm^jiaB$N(Vkw@S?PsA7*a z(t)~2Ddqe(=daU_8uiEujr^atBk13-U)7eZ-k@CWE8 z8cL@e`29N~nZ!kUq6>VuIdVs8vOF1(8}GvPOxIUBFv)$(YkuC?Jd;5l4ZZ5~am2Ve zJkOxJ@mFbSQWFglnW5Wvk*I`wDbjH>05QUazDOe(K|(|t#!$;7j;R{m)hh`&JP&%O z8Sl)?>Fareu6WOi_-zIedcOCr?LfmSK!4LzG$RG`;J&W!#BF&zf!c7X@B9qk^h`zG zX*5)Fm3%glsQA?N>j4~Plim%sn6K-$25@&nn@MGalLd#>I!$snAk)Fv(iuY${Iw{oE4vdc1dTOkJzvAA~)Kadwh-p4I&o;gG|{3$m<5}#1c1ETtw zozvg4c+1fI5)o?jkYo#mZoIKx&QcQWB@a>n7C#KY;twoP}rs{E$TA65Pji@)pp)}Jarrd*FHu|!t~@`uC^Vv{ce z`@&NH233!_n**7tl#z)FK>lEg$~zD8&cNSHvZ2?=duwwzXB{OUH$I~L+3mc!<<`4n zkaFgX)&=A5aUMgr#8r~%{LAFPh>K4VS4GR}ENr zf=~g+v$7YEJBaJx?p=FblRp=r@xS)_pe#IAl}_Hn-b4W;{^Bk_2?9ISTZPsSiC^|$ zk*m|st-O*)Qd?0)(|*T4$_KQepBuwglIuImG37x^&o+)n`q5^O`1@%|XU=JpvLkM* z0s%e7k(RYQYSDAdhQlLbI6r0@-y+~q z`p6vCQPj~kJ3nH_vJrl@l#RgZsFLFplAse`zz)6)X17;m_^C~M{@jIEfYJ1%C$mRb z`qzpsm1UNCznmi2TG=sm4(gX*T+?Djuqrn(4AG3t+SMD}2IE!kO(nr=wT zH7IwRc1aV+b7xTyG&OkjDaXmlW?NgR?0q54@&WxKwTmTRzEUZ_c`X;wG$SFFy4n>| zsebA(4amb1L1g3C45j`k*pQyVN z?pfI|v*u-B>#3FO8JeWdGugp8k2XZdxw8Zy`7nE+u<}18*m(t^b1CfVZ?1HmVnsm7GYFOhd`SI}57gSXje%4kEJ6 z^spL^X!#{kH{Wz412i@C9ZfOxzAl=!iQMJ``F~U=mz?uvBAwKs+B>P@ou@OVFf?UT zuG{GjsAjG)$Y=C3uE-U6+jHZ{@jS=IN~MtnFI@5yUg@I|oo8Fe|)j9@Q7nD6DvTBgU-r@eVp#pCxXpuQ~B zphOU09JX#_@@8>f#NOT0T0H*OopZ>+1~SpDJ-m#E5;#td1?7mE6cKU3D!4bhOHDI(oSXKW-Gs zowJy*40vfN8-2sL!z$0IyBhqYXn3l)MgR+Loea1+AaM_ktF;qyPW=N z@S5;5vwrvGYM!h8*Ad0(W0;1#DXao>7q}hdSf24<|MRNMnmKhbujRA3M@jZN^cguZ z=v>86R18fjSkcIyGZDpajjO5y4#kxw?i5WIU&=_1LEXsx%*p~o$!jB4*@P?B^BG|d zzdPp9H!V!e>Yb&k_#7VNI)Xx_7jb|!crt4EvJ~{WQ(@2Pw>e;n{Sa3@Mf=uv| z0ALmYT)7{!G_zvX-{!L(TYYtEVSsfo#cGr|(tg9g3bXHUxMX0n5$?kcE1peDE8 z{XzSs`h61g2Z9CH^}%r?3$}+>3>m0;F(RyLN4vnCAON(V!haS(``Kzj}Sl?B)>ny!<;^S|`$fx7V!>ahps#dGk64?5XydnK^>fI(g zpI7bW25p@WxqnR@TI#F&1>5BH8sb^UtLFg*K<r83X;~St&_gx4*H9h{dcnFEpMAO zt@9p;6_#XCP8-v}H>ZP^Uqk17y>1r+iVB4qe7-jSkoz5F z!GsS)^koj1Chc`*OqIfDL(I66lR>~_dEhRUBF-p0G&*|HmIfzj3rpOXfvp+$6vgAR zI=@{q8b{d|+j{xcYhzBt-{v9{Y zNZ_|Dh<(l_5>lt`HF?}d?r%#Xt8n(6Vl$5H=5fk}g_3TvwtIIznGa9_gYpnyVhHuY0 zBpdMfAdn8@j>Z~$QVtwN^vftAHL~UMjl@#&lB_UWhhsY#CuPeK&cNuIsFRPi^aex# za{m`DGqf34+EXA9DW_(w^n=cU+=IfZVTdh_STDvnZ+p zko&hjM zM!o#4oxu|b)_#`Yg4fpCP6(5ZnBv0vHNd&v+(3+3n=n!o7R7j zjdJ8p5CGXMJi4?Ey}{k2$^9e>@>VAT$o+<5Ka50W%KwMlpF12+*gu{tzb$%+diWF7 z*EW$2Hr-K$2uyb{EwRdz6IF5&o3ZS7vO_GF?33I46q_eh4B=FfD?*jlz+&7cUF1_A zkxUFfcAJ3yiED}*c#$Dj!N_i5mhoK(AcS2OesN^CnX59q6Q}A5I~S&t4317??~I_ z{b^c2Pnd#)AMz=Se|4^1KyMT{IiTy2`aV7x5O4Se!g0ZUR`O-z<}2 z(Cd9kEwkrpzaE~u-y4HJXPmVBdPBs9CXneuvwx?bv)S;NN5iKQptgy$MF9VZfEH#3^(={>*QQ~_^dzO{;ycy<*_HP7O(BI#%He*n{pai{e zgTMO24>%H!yb0yZ!Sn$}%0mai9#&pzj$VO>da>Cv#e5SITkhXP100A(mzCTxMd%| zk}B--F4$4c*H)YTxq~Q#yX5P^-2-&>SE8VHxt%KL4AAtBD^UemNt5H-GG%V^!KoXv1FQS!o3+eM)EzP)X zOn_DR%E;qFI{cBSeovy7Ygu&rMTH+MM{T*)aF&A=#r8u;(TAFOqw&` z&WOr}_z46iVJ*Nl|2xr)2C;?4Onr8q#+PM-t!Oa~!TDG+(@8v`oDQ5CR27C36g%Lc zc~_|F7-S;zQrZeT3zbOO^Hear!HZ%fU^8MMA8F4{MWCJomVL10pqUd&KDicLep}h_ ztJWzuIKb>ru{pvBh(P#9v!CJrF#9`CKFogka8K^~5*ayQ@y&VmL5w@4mGAirJ$vd{ zmnP~ZJDm01T02(!(*Zve$p<(cXN)~Z#krxP;FkvBAUfD)?1g*DcGMwr^}krX5$LSimV}r z5Lkw;;o*q(-ot%_zn<1-`Cp8^b93K)-)|keVPo62oyKWw+qT`lZa?WupcBCDHyEpS z4AdrT(=x-z;L!?vZ_jW=pBO>IP_ZF7g&HSsA7Ur6Z%j+p(YZKS@k@Hh z(xbcaItR`3jql-Mq%_X$OgqbZ(IvjJb`7t>I&>(FEeW0Vo8VQtgluG1e*!c(+-$_W zYZ5L;V^JkZ8k$G%-Ci>X&VbJr-HULktu$PR@>f$Id-(GZh7p*poWnma$+qVmM$khHu`j6WW;`#r%{mh_4E&Cb( zw?F!bNR|`9Y_=m0Qnmex{0rSq$j;(dz6=Dn5$*rD{rP@ROk>G9 zTTfREso8Q1Gkn>T?y!|?OrC5r_iPf&tkn@UC(s8{v{2bRe3(JvOW$mG_?C+Ubt7jm z$)qd)P*#1q{pA0+{eGWrzYxIf?}+$gM1gHNJJmMsxJefbwL38T8sYVyuMw&b$Ln| z{XP=J!v2_dNO2;ojwkjg6RQpW9GDge)0u63EvX4Xy zKF8UaQa0wV+MfYpQ-2q1C<1QgQ)ij>{d{73+AA(gwiChHr*$7vZ#gv!Qr6zbN5g^0 z!TMjd-|?&f_@aWX7HrjAAzqlL8af<}OdL(PT_*h3fcA6RUQs%Vj>$=hUHCrm>3`Jz zv*yEqCkYe;3w~X=NsUgRHd6NMXfAM^Nk2E)Z%|JtGi=-q=SV&%D z#>Z|qERroE`%d{PKmRYm{yq*IDf$QMy$5xd&tQMLZaLWHvxH8-%-@5*!~Z?_%LaA6 z!~VDExe2W?+W&Sn{YyswzXyLdQuioCa)IN<;Y#rtNIi-bA|g5hN_y{S_+PEc*u&un zL^2k9?>G~YZl1o#?sj^E4y5c9=^+$)@nwmlZxC-@Pi*S>-CRV9@zf)1hhsFYT`#Xk z_o+su(A^p? zxZdx`kA^5(`H);~UKklCF{i&%g3I7NC}3Wv2NH?L01@#}$aV7*e)m#zSuVwSFvWeu z3OwHwD%7{iHZvF|2HSCHgxT3Mi1;o4h{nm^TIS1;-d#xRy^_n2`K>&3dC|pe)TLl} zZQ!3?|8kb&R00l^(k*0Cwk}XqO-_CK_a%7g{Xg8OPV;ZYy|!UrWtDByVN85kbC+Uv zJU|x9pBlY-m9Ng(|LYUKNNvt(2JplOC;lIcd}hY_M#c_||6Wba6Y|8d-aCR?e?-#F`0RNyW#)1(wugVYz8)g zlxX^KJ5-cVB#+*QyvFFw`n22TfkXB)$!A6wAC`7>UZw)d5R}*+zw*oKg z@O*)L@a*WrPs~~kzY)ZmsH14CVw0yx!B+;TDEq&Qd_ag(u_Wt4^89e~J-L7<{t7+_ z2;hmI#~*Twy2phtOteA7h%cPCPE-rQ~fV(0J{AYwR)-c%e!AZAF#$13`U$)0#wn>HZ$!1b}khabLPd7!KN zfLZj=Y24$0W0G8&Qqa_LH-(oZ=cW24XB=jW&x__AKAbT z0I;8$Xgf>uOmmKG!Nv{3E9Oyk<4K1WP(6o!#a#~qfc+OpTX*T~5?+Wsld!(SEcB65 z?Fj&|e;3;?+NSg7-$_2-^)*C*9}Sq~o73?J_|f`dt`3_iz3o8ak#lx{>UsMzYM|r1 zlJndy-XY@jE91{YZmqqp8hN9SKVlgD`e?lQfa*D$M^Qh>J}JMS^V)ZMcK2(?UK(6h z5b2|nwK&|M+A?WRH7`_G`2+OZ9o5kq9rP0(Vwo87GvEVQgQ3QK*8aErv2x9*WTqYc-7 zJZoCuk#s>~zd)vB;ORBqj4YGa;(s3N8-Br9x-Yw7a zDgO%6I5ij-g(f&9rOU8^U+q{ePB{r{Tn+WJnc3O=UHu|rkyQ=A21?2yT2ThS^vTSi zPW=j#?CoG_Ny&{8Ks$MkGo9!In?KGcWe+W~;629jNy|htX4uaSuIVtt%0De@#8b|Hkc&Ab$zr7crNGB9h zHm<$n?L&+M0fX@@`nhvU)NqUgvpVHMN+fW6(@kQe9i5x?;hhsM>qP{w5|BGnKO<7f zr);*KVWiqouge9`W94m5lpl)jlwlx*#(2EQ~8ATK9 z3fdU7{NT;DuSV_nT%tDcRMV&w4lAf64sG!bz-}ulhoJNvg9D0Tpafd=r+nX8q+-9yyr;K~+<8i& zqw?0sBJ*|EcnHKhoh*6S1cwn`Cac2+_!feO-~77A7`gt1M=Pypw^!9>lg{twXGc%) zs(cZQ)XBHGm7L(L&vozdRh(H-^@D7<@&)$CD{!_Cg0q&3zvNVCqjIn3wxQ#ioQU9e zx1RlPJdaU{c;>o)NKFENSJ3+%z%<%knOA|sBD~hK30HHR77dcvDOk5_QCNy4f(t%B zbVT zJ>27Wd*;qFnfG{(XxzYlkl%Lh3_4{yWQ#|_3gVzLyT7tThUk2CZ6+VZz$;xaoifU9b{yA*I-so%=Um+Cc355m=gw=Zn6HR3W}})W3`6?xB9nwp4waS zbU2c?eam^NaSzP|@Mz5#;T1ZQX*{;C4a}^I%lbjN(WmX;%FrHADlt+(hO+p6s5> ze)a=YEXl(;mCDGh&IDA9IBHxkqxHF>Xl>3mY0rvA27pR(61_!|BJtPSitnYl)MGuf zEiokDrBQ6@C)`@lS-%$1yw-#%N2XduzJ_CF5MCI*%AWYsvJY3Ih}Cd+qZgINhxEL27PMR)fl+{SX1N}W6qz%fd8)=u0=j`e#F zt%?^vIz-RbH&tfUEf>hc5Gf|7{B%4YJ@@a&XfOU2NWstil|F(=3cN)e(rG~Vx}F+m zDV&Y`+&){fZ9bXs8Z81m<+KhOG54e4x4903Vg*+g99=QSzMU5qT~V@v->TKXK_734 z=fd;pZPFE4QE6vx#mvn@qp3V1{C?4iLVf~aIx$#kmfNTnBy_RbsP((s@tX$$Da7S-_Fqp;Y~8GxMeJD z;_+La8AiABtR1{BpSB6zmnxkxSdZ~n0p5-c-6hDp6_`K(jh^Wa zVb{V4EcEIxBKGZy{cuTGamwsIH92MHpPS606}G)AI{bABU9B- zW|K2%c}$!Wjn-O;yKrf?IIUE51}!$Z1ABbP(P}|~!Aup-P*ew*ter{n$u%<)3K31` z15AdnWemfLNqBol(rZq=U|WUSCs( z3^i(97qWpd(B+}sA)mh6l4rvQ)(rFvB0{p7L+-w%Q|$LfGIBowTvyxgNyf+Lp_S_| zw*~TIMK9RM#<1O00d?OD{eWLyabQRdpb#~_zT(LjF4t&H2Ij2Mq)PO%peN}Yz}#S_ zMh6ru20h&BPT{u}eZ0wRUf6>8wrIb#`ZC8PksRZx5vA;YUXd;|Bj6^G5iM`T>$(?L$Y8epc+!k|;pSz)BC-?f3*2f8E9R@n-umhJ_X>^@B?s zOWlYk1s5tGLXjGVsQrl+>%$0kX{x7S!w! zOyUK1^ku6IU)VsGc%Cn$zeB9d7w#yD`>7h2CsM!+6EOADkphQD*<1yO%8b|RVAE(lMk?OCvBqOKS- zg*zbi=l?oEh+_LbZ8DKP$}-N(nr68c`c==I9AO(XtUOGnQ6OhW6kv+uupG6hmHw!<^mOSZGAGACquv3bY5C))h9&oX5%aiH`-);kkRz&Z z%0n%bh0GnX-ycGd8IB-)-l*m%2r&AD$&vjBgW!Y!1&OfAABiEgs)ajZ1nIt@+wi&g06IHs$kOoY1uzXgutu#J{~ZXj-?-wyd-3R4kb1~i za@?WhOR(wPH^Z6x?)q$k|4$uitz8yqmXxg>o*GbxvOg$KOwgWq3`@dc&10~)e?M7Y zwjLtihFHj$n|^`iSLr^;8$4RCEF6xcELm9BLj*23FPF&lniAF}x5j4)uki4&42i-odmMEea5ang+z7uu|;2_NVLq zZyc(BLp;)cMNlc)vca$cgga%S245^>IC`Y=$Fl%DSz1i<`2+jQGA&;2*RP{e#gF8~ z#z>hp@!t!i^78yiQu9$X0$Okk{$)lHuRDtfKAF*7mD3#nGfMp*W)%IHLRJql$OoD| zdzA4Sw%0!y9z~6&gSLf9@ia!0VbKu>=JExPc^xjBc7GB+`}=Id$qU*ekDj13&Q^Et z;<6=1d!-k2DVIRekYEzc2-aU@bQq~E7<&W6_>Y(ashNrt9D15=xb`@;%Ax50Kt_wV z|3yaAWB|zM=iC!iSP|&UzsP8_;J?V|?vGHYJy^uz;Tg9!OAJXzCAIeP|c5OKZ+uX@os7+43MUmSd zqJ!0`dR09ao^_78RzLc*kc{yifksdkPyIBwsI28f`hJ0Nxeq0v`Bm#z?{0gJA zK8K%>Gn+q$pF%s7mABImH#nnwK0*$;5lR0b7QXlY9ezqG@+F^ipcIh|RjW4pi;Nz9 zoTDb#*G^IEa8`YtT3~=j$ZbHd-{skv*>IIli>{1kV-SFbHft3>3mUn+)CzG!Cx!z_ z9A%tctcd<~Pw-otuJ=V4^_!YkEV({MobV?z>P@(tl&=ZCB9O**D~tHLWy$!PUyh@Y zje{|u2^d2x3Tw!>491McQRa{ZBl)fWXSVR~4+y~U)8+0Sw6Sq4dp5_<2?iX^4`Szp z6H%Q&!0?j{GM|362T>#o%%TV8fG*CkTJC0`k0F2=U2v0jbGH;jAcTASWJbw%5zarE zQQpJNGjO>kgD(G*S9;Z-7wCsr8(=LmzTk0uTV=2&W4qm{Y!%xVf$;uLq zh1o$qyuU_P&|PJhOPI|^4qLi+EIl%hd&Y!6DwP*UT{3Dp;c!YG4w#+Q6~*fQybsy7 z+=hx@M2#I+zKmMPBw1Cr;!ZiXV!Ci&>&GF4w8_%ZaLKl!lUapkPcH0S3e6w)NQ_0k zPT@HZy4<-b#Pl6Y6Ztt2S(V$+6nww^T9h*)NuLq<9B4Clm)A@MPgCE<57>QjIav75 z?o)#7LUVCi;PI#HocEPdsRXe*tm#MJ(lWqx-t*{W)HmJ7IL{EOY8WVS*T`(DqdBxu zR(;yVx#!f>D!;`PLvp(V)boXPt#kqA02uS5q9{I7WBasF5+6eq zL!hIda0g9AM+$D^p4vj&u)#xARt~_75@(&+1}6Z9pWvPSfNgQOrC|ECj0)6mG(E`t zc$IY~`@Hs+X(cS8|7N28ah=tRO^@zrE}x$>X;55*bV*p9i(8P7C}*!s&a{l#EU0aw zJV8O+4$r~N;T&={Y?~@PnY~_XCNZ{ zDbIVI%lnq&cnitREooKq@0}P+Tn3)vfbisg89Saj?M@WvrhWfye(qSOj?Plsg>>A= zuQ7H&ZtcD9fd{FA?Oi?JY-rkg1>PmRJm`@C;;v?xuDFQ@rB~%*X|7y#(lWQ&&}Xg9 zg{7Pwf@{k!J0spwK_=*C!lJ^5pdy5&a2Fl&N>w5*y&B3&nxb*CApMJpx<10pacU3} z5&8`Xeo!UD=0aF76QVD%v#ZKWmIj@p~qKDtzAt#z~% z-G~=55_;20De9YHA$R_cAKT2jL0!3K1zQY(cS--sY3jp+QoBmO(f&mI@tz(n-BvR% zhIL)odL#K)<_6+f#*9!YBS&A$4f{N3euO^delCn~dRkJm^1Xb7VP+ip{ zuP<*Bh^cDM!h`8WgaEY^9W7ym6AAP;)seW6bfzN&>gK+33W#CiKQsZL=DhDK-vtE$ z!ZSEPcm~S{2+#W*9J|LnmaL&=pThH8zhwrkIa49754vn+MC8>LG0uaR?B)YG%YORZer`B|LcsyAGCv?|Pj`{7|$WcbNFQhX7<2h9T zMyZgiDC@cs5|@uZLAJ%HB|G%OkycB5n<}NjUOW5*Q!6Sj9ewj9XJe#`=?Un`dGQuN zh%Rc+K450Q}X=E2F|3?uz@piIdN_F%EAP`mBG65ZCJtyV}^mn-YR9!u0`!}jj zOyY;%k3@8v81%^6mb9?3=pMi2Ez)Zkh*e{)J#ZiIvfly^(vy)M9%NxeQJU6^&-2U2 znTiAa?`e=el+Ff+{+EVnFWt#fvSz@mun+j7qoNNIR4D{ZLaUd8hh8+gIBM?)#efA} zeDyw2d+14ced36Um_1M-`9S?#XFCv3A1EGb2*l>YKyVO<<|Yd_q=4S4vB zMBxG!bb)5NyJAL(&Z7Xgq^e5ok}b?j+T9Jn$8_+$jc>b4>}Cl9JSOeIL6eK^ipYAf zK01%udG3T-=TQ>}@ZDV?h_nY$J=@WQYYZ4C?ye{}7g4Ln(TZlln{JZ}=~P3;SYz!OHv6Wa^KJ}9=JD)OHiIMc-X^Vsbl~C-F~?sx8+z)c#>925 zLDibR+&LulQ~%Ze&H^Pdx>}? zT4>u`fj_ep<#4t>re=#-=*6sq-5dM=9ECdyjMLY5u`9kn`f1Q=v!^bk#)J$O9%l~> zQSC~QO^Q2K8R|}>+8*uzRm2E%9$~L$5FV4s!4f+QLfG4x&ejMIG}^}EI1z@5Bt8gQa#VaWS$VA-*47(Nq&1fKLC=_3~y?~-65iD3% z5WqB#I>GCh?JW6&f2Vuu=Hg__+QCMT%@tg7@XEQz>_n)8p2+ql&if()n1{flN>tCo zoY`8!o8PKzk>Uu)LTHub)ZP_iCCyDY4t zyN(C#Y;?i%m){ed(;dY3mfxceS#NlU;j%qsLC&gxbOO1gK~!p`Ghq_f=z`5DN7ad1 zi6Yz`WqrSREz{wumkCcqlv(5?w&*y-0t+1yq;}G1;S^L2C2~HipiVFC0D)!Z{bfa< zsk0$ZfLhA*QkNN~zG$x}+Fdk(v@rg!wF~TO+)~$VpPLJ8r`cKWwpd9`kbJEPHg#coOvmHC?RTJVi$g@BVN@ z>(nS;$Jz2etXE{kt?=AddFl-_pcnoFfJPs35L7W;84VF1u%@nS-jkM?Uk!rPn~(9Y z+b=@;th_W(n?Pfkl%3u<-i4u@;>fSi>^eJWmc^W~(A0tq{ZNXRen|0)_PeHnomU&l zJ?7LrfFrR}zu+y-zE{jnYkm;^#4_rq*Dw4*u%SMBcZSASn}Sz3K-wG6n)SA3{=r^y zDfGhtIj!^OTItNmcT|3ecffyGxZCt`HybEO&;9mYGs7FBEhsCK(kR91kEbbw!68|i zH9e###lJc9;^)9%&oeO?WuM*z)pipOb$(oc-%JO*qU9dJhuIN+w?jMgVEN6vvrfgr z$DBh7M1SHmN83{X#(%B9AICZi)*7LxI9nqt0upDcZ!-fy;ttgNXEyfn7fn)u+Q)D8 z*H_prN7CpGAXDV2HUs~w%;7rUDc2UT8a%V9UPB_#ts9HWP+h0N0fDZ^U6QMAseFvg z%o!xazOLAOk84`N_>VjWao zh!UFn%ZF2&Wv`IXi}1JN{^j@_Gw$BK_Uj|qa`Wl^_VL~CX&#p@oJ+Z)`1IgCD76*j zlG6DM)dwmL;XN>pFd9qMPKX|z3wVkeoePE_K>~Ist;`=m*1c`pxO$KDyO(#sat}Ac zfjGE)_`#DR!}Xoe4j1nrMBYSUD~kH*U&fH-ch<*83I~U->p)k>i>g>2ehc(W3fNw~ zl(U=OH!~fvTzLwvES_?(_NB#qtSN6y0^U`;FbKm+2h85;wwB{24;Q|pN&Lq5X2$1w zm2?BGRj1ze+(rjhu(zJ$vqbpOE*!TN z2XP#V6a=uAn$r=Ml<{wD#U|tT1Q}+>HTZXL6li-tEgxc1yzu(h|E%dykGeN!+nh*l zM?;42e*G0)wpWMz3v;T-55*TL@Udp=&1UEZ)UtQ-l##2^!o7|9TcwfxGFt}gEQ*Y_ zA9}9J!?lJf{UZ)z>$#k2;ZPzCL>3q6KeqflLN#bQph_!~CuT<5n`kD(486S}Y8gRzIOvX&i<*U&(r zBf7>J(u&$ul8G2@`1+8HOS$A1el*yYmD%3^a{5}v2hQ@6Fe`DAU0sy92+>TDfrl)7^5 zH_0H^uM3*}5WXuG&_&RLbJaZ)Lr#*pB8 zx{fJizDHv+Z*@5UOtRs!<^{`z%nJ+emCbYu?Zo36kd+AOasR@^JCY$|SQ>E-QbBFf zei62#OuA%2l=<-5SI~O=CHGeb&Z6)W82CMr>-d!$lc8Q0uWN6rwOk50jNA5sv!RB$ z#(PzHQwCDaSLNBpgK>i@$exfJ%Y$)~uKKvLIgj*iSeF%^oV3?Kt~HQ3Q&!V4R#7INw5RZNSxo_#k?#>~_WsnxA!9dWac ziQSSL_0c8u-$`xquwY>hb8rj?T<`0YmhmRN4!`{*Yf+XtyDTz=Oii=2b!U8L@ zIlY+GSA=b`=%pUH!MPrBSVH$2jh8+jGW}`t_(KIXIsWd9YpPHnL*v_g+4S7m_oHJ! z1VkmSX3i@m2VX^&y9&3*#U$z;yAh^9L#Be*(n1y;yWh! z+LkT7_9e+A#V%;>>3($2y1a~ID249mvtJIVbutaX(7udG$t(slztyxM>!dn zQfL;6f~_A@K$-PYqW-u=2(O~ZI^D++|45l+7dC0)RJa9J=-e8C?M6R;tuH3sx-YT> zr#90r2=ZyE2IliD2e}L$ea882#w%_1v#37X>y<4@=J0%w8iwMqK!QL?R@Yw^^2~OL zH2I`X6|T2i@fmKJdWm#|WW>olZMTRdhY*u;!V}k_@D}oodNyI| z;-q|IQMD_4U<3+H;0RDTl^ElkSVn{Ai^lknJKRI7J5s z5xdmnqC~;{Gx;k0p`HBe(SP49`30E<^1nf)f8D!+;eg??-0fK%vwZ$7fIm_+J(HXG9-3LQCeVjvo*75&o@r3`=;t42=L$NkEH7YX`d>D_|S?vm^CI{w6{m`o0VzcYp-31S__x__HHr zghh!LpFAsmLuk$##R5gn2?uEL0RN8`Pvso*-;UJZ77rP1$mO;PUp6FDRSe zl$SD3si@KOod0R@l#NEu|J&k${A}?=C;?hLgcu1=OpysBLh}?}5t;bfZ2TB9TQkYL zmGT&Ld3$}Ymh27snhG$kY>Lyqsb%gi_{B{sVv%k2dDZAT}p>09f-yL`llmWME+AZoj3T>Pa{Og?MA`y3B(3@FOOM zleFyf?AfSk-4B&V9b!=V)85UW65d1^Ul3EL90K2j9Xk{*226-$Z@XuBG5kVJpttuo z_&%QGe8)ATQCX)>32gR$K215rlUN~%SaEeP?#OjoiZO(^T#p3t0b8%K0>||Y6Pd*m zl`CKfqVzLrNKOYz$7G;$)VtxQqaJalM*^$&I^9wL4=_XA^%39@B5i9D05CJNP?kHi z@F#tW>~4h)U<1HWwZJ2=-y80TI%9`FM5Id;8E{l>7exk8rh{3pP4Mu-h`F-ZVx8H! z77gTHyj(?Fyddy*{j6G(GLk_O*Qyw6U!w72p~hPYA0zMjpg^{SVcjB~Mg0-RSzt6$ zo*tT>)NWOHKdxKHf!1G=MMovTD3Ix8s~qzm4y&@){Y{Po2}&EpM7o7Nf&lvcR@C3g z9oYkzcyBqt8h4=|vFRVAR8_)j_Y)}PYaa0=fmXqQNfU&{W~B0t8bh|2?XzX0Ci5RaI#2WZ_>GQqh5Glhh^?P*-8)w5iGwD7DJ>aN1>hIw`ypw}sa&$;& z0BA+uJpe~K^$8>Y+?f`@TQ8yU%NdrxET;;{vlwc$(Tg_s5rbC#v9hF6^34OElXwz} zWc8 zF_*zDTf=YE02}0HdU$6PYe;7gIu)w;69t_DHz~kh7#>DSfddEBh%(#o+cUy{lFRX( zIsNLPgkA94vLUS?P8?|UIrPVjEZ4x*V44CwUl%MhaQ7$X%>KsB=C=cZ77nw z6W5e+X6y8_96`cdwwK90@TAJg-=7}o&-=-^$DNo6g%Q!?b~{jG>!ee*=hrwVl*=oX zCw|^k8-+01INtAUw#$%2uIT3;a3JQd-fFjW>)rS26)G2bqwr&M9$W61Tf2Zx zw&Qg0arL?G+cBaqkgYK|NNp9s5fB!okZB3h!u2?dO2jN6FUjjGfKLE~%!7+K$DoAG zFkVRqKEAa%+S}ktkn--tQ9kh$mNvbTLL%s)&cJ7SVen?elq)se*%2vGeUcJ)WVVLK z(DuqRn!&hFk5OoEz1q&F;2Vy>+wLwH17Q%k8{NU7CPA-x@dA@#_6i6c@GVe^)iF{M z`d?F_FJHtyc~ZJ4g!Qg??wqG-pyAkIq{4J~Bwf8cFc$~oUhE@LDr6?H4iBr=;be#1 zV;$b!5{ZYwpKx!JoVPi>X;Z=lZh}h6$ZvGJ?@`XNRQ%Py5&N49xzF}2*w(e^D zr~=G;)=@OmXgw5N~;`4MRfV+ z&x~*FS5vIhHgzhIf%XBzjp0(dQeW+}ZyrES9xtGu8-xYF=Go!3nHtHZZ%bT194}i5 z6ueWdU}}uapX}_-WX>HU}EY)55R=mv}Gp-lUS{E>#CAubBR0;1&|Y)lPcufY-co zomb_Mp9IL8)S~mr1Kvf*C<%JdZPK=R?2 zVdGSC4bp>)zbz_W`iadS^QHp_Px=Sr+mlID4_}v*emv!(H8zhbyO-olBe9yxDPPao zo9p7CFjkn%eheD)n_p9yO{>ScKGeJXB-eWTF23AqH@#Zxp07553@P}1!@a#S+&4Lm zo=O(LnvS9daZ1D)ST?jEoB}0#L_XI7ndf`rgdDLCp{k$J*qIyqcAdyI*BpVZ>+_Qn z55|3OHo90lOGD-QPnu+(UAnWiCz}qq#`-LR;`@SXO<|uuxRJ0D@Z4ahN`8vAs6E5( z1-!pbJUTfG(HBTKDYT~L3jw<@dsS=ua4GEjR$9Hl^(l>xbt0v&hwTR;$=8QpzJ-qc z2}f20aHg}fhIpARvJD6xBYMixJ1uLt_o_le7c`6EI=j8wUw;Hp@C>{g&;WbvObU4R z78PqZN;dWqIwE+Q3nij%68M1aABtq3H{!0N$31g{#l`G34aTb*EE7{$RrKIsTL!J- zr}>-S4lYw*xS{4wXW+#c-X-Sj)h4Vv*R5IU^ILf6G>0a6x)S`NIUUH#I*GZXZJ{>j z&Ko+d;DskLv_^CcyMxNG8>DmAm_xRCcH)tFywkH?<88_6u#OS218h{A8(||0HCj?k zs8g$H&Y&d=I(FE%JIZFqTV|q1$;NN-;YOUz@t#o$q_4M>ixMDb{UVL^3 zinexm(bNJ_?(I}uW=7ah^DY~HQjBwyuC7oN^K~Te+E;z= zU72n(JR(6{_5m@o=*z))+KM#?qynGnlwj~660g`qAQEE^#kj%clJ(n$tMVV@Oh#o8^=Q`~~ zO&d&Dibr`}8mPpHap~G46qkHAt@%X^nq*l12$#LC6!*=Ye|Xi#NJdFrE^7Spl>>I4 zw3_ z3wyk~aX0YRShjRqd1F%y`5@l3>*`kOAF!$hXT_LnhpV`{+_q6K@@k-O;hdbADe69n zf)}~!t7_7%S~aaZ?fz(Kq0J;&H|`EtPYukTSm*cMZcL`64(fN(;9z$J=fL)tkT@NP z$Fwi`3Ekz}^85%6)A2^WJS!>c8n?#29U77K3OQ>7@%`A-S$YbXE|dX?+;uB>BTrtm zqulB}QIbvf!oJEy%&-X{T&Iq^b(~b@5i>M}`8{f-N4AIIX>EHn)oCr%v5@xkR?lNo zX%wyNS!J3@XY_5X1b>{-3PoL?;E)!H=ArQHZb)}D$AnTz&c|d|frl4kEY)SMo4psF z2laW<_ANC*rq$&8!XVTMYz->+`vM7z^A&I)WmVTRK062Ao5L-K2e~hS8iY56U&FFJh!>ro4ARBuj+W~+e3HYP`Q2j?Ozmlo<=y7c=X4s^4>(M-Im#+OW01+f;a#f8F zZAE_MH_1 zWCGp>C;X62#||KgH(lNL_a%P|bHDX|=B zjPFy8yeQu>BWc46FKoxuF?Stg#Ew_OJHhp6d z%7DoQ_nK(U>z=$*#BrfNxv)8bK3TJP+jG_geg&YWO(+zx#QcJbzpgx;RB2Owy2A+k zko+7Xt;N$%ZPsy$fbaP>eVOYCF40x&$8uSHQ}@IDK;DzOVI&DN`x7-CaPil*{}(ld z?zbNBRC8-NNJ;?myqx_+O_}$YF5vi7f$mWSM!^7mQq{-_@Ia;)sCnR_60fayPd(m;&tJo3*zshAug zBk|upDg4~czkSjey8^he^I>TH3T(c8DEt_#`%4XT;OqWqAsu6sUDB+jRxtzVH(0t7 zBI%vBIJ^_$(@5GXnfgjJRr*p6bV4C(U7ysI0nv9?QpT8poBQPC?~rfIcZhsKj!)f)q?hx1&}CRp-3TOr;8B zN*jb-$5d|%D0QyR%};kAm6pLpST~{k?;xGJ(MO#K^_W%J-n>-M{fX$EHe_Eh?wNpS zsvEX~$B@GE&ZDX|bj}rG$>km9qV%@oUfJ7gS7Qh#eB;jjEEuyH>(9V)>D#Av&9E%* zIj>eKzw7APtou{iRS-0E!M0MS=ppnLmB;mFnX_>w_c)}gAr{RS9qo%^0bWHSlC1Oe z#-x1V*7AH&{w)gd#Jc04{G}T$#IgyFVc0`iBadcs25XpLBa%Nxl zc*P@CY%)X&3t`Tn!Lk!5gqZ* zE`u&B(ka$TExjkFO~mGe2H*9Lz}$e#hLMt8&%xx0vmr@&V7+|m7BjLJ0fF7nr`Nya zx}hw<0?Nn+n|F|07+?$mQ*Fno*K~hp{XXbTqZ;t-uK%{?X<%vg%_2k|{1`vH?F09G z&?wAZHEW68wI}DjlXMHAV5Jf;MM{$noOwdn!f=`5uoVm)El$UdC6 zlMNkGGHR?#=2h4JKEwxE;1$ImP$->3520VX`k>*2s*HhsYjpBp1@%rtKo8H8@GUCI z`Y2mv|8riP`WQ{hK2N)rLz#c+8+S!bmMV4ml70Fo;)_ITdEV&_&iDN=DVJ_q(3D1w zzBmn#oc0}w82hmEnBKB?;YBeoYYcXnYf`lZauU+u@BPZvXG!Kq&<`_|C{%YuhWr;P z^>pC+BbSvvg*M7I>X-NSl;(%~{^Ho~WXWV_WF+>)US7X(?kmgU=ROOiuP^Mq8~z+y zLYaUt{bHn7|f@CKfW`*;brN3Cy0=qMqC6MI2NQYz#co@Bpes^T9^m9<8;nca~? zP&AgLNoQ>7gWBz!Dh1j&W`#b2y7B$-c3vI7DOjYS5IK<&U^uVhe3Z`jH;mQCt{SV| zql9|esK2{no}&muOuBMV2ex|-v2r&|p)K(%(6?yqI*%5`G)ZjYUX``Q$Jy*@{2#i` zF*?tGTeNW+vteV~wr$(CZM(5;qp@w|hanyG7!pbh}v$`GfWCG25Yi!`}P2jILMS%{YHQ26tH1?~u5BOlbUm z1@}10#9#SYi$Bk$sIsMEyEa6Kgu>}6ON-CDvLZ?Nzg5>rph$?8MLjYEHQ;88=jVI^IiS-=YPM+`57d%^>o3 z*^G`9bT%d8-;7Mto_FM#GQ&>;<|kqfQmrl3Kf6a$1ukeVx7zA;LlN$Ew7Az6;%&ED zNXOk1U<`?s<~DuW2mKcPd{Oy-&VqLjl61u^ZIfY=^5*VdkBHFsUikQ=y6${K28-{C!my zduX<6>3bSjR0Pnf3_WBQg&*hD{8vx&YbCquFG>~Uz$0U5X=m}gthfiNvwdf&6qK3a zfHLXbqN6y&pt?~Eh7`#!8n(xnpTsHy^?D#!18YC&Pw{^IV0Vy%Xchc;<`=SFW9qZGEBs@tR9J7a{pyK z(!2!E{_Fi?UYw0NxYJPl%H#WeGrhVx#Kt#SfTZ+SvGwdPqX%+~?R^5jG>;J-sL=*4 zyRYXL25cM*yg|(Ag%n1(_8QHZ^BfBfu-z1zSh$fHUX-U#t6#TP)?qlcWs>1q>;(EC z);U6>)ij<3jDP#i&T?`Vx?y$w64pp!VOYJb@wht*<;sI6KbYFrmkCIVnq*Ggo_B%@ zmkZ^A9x%YCEFhOLcH|x1-M9BvU2`#*1xQMnJ@)g(m&f!)b46%$rk&a>iY9w^Y}xMC zk@1ja9QKgq&qq4h!Jqx*l5wok_LD4*1+?&nVk>h@pNU+q>}e&##I`OM_-!PiZH9rP zmD@_E6frX=WjR98mpfj^5uU_ez-Y{R!G~H`^i@Q~9sTTnwNSwwc62Aw#I@Dom5;#j zCLsv)&jfC3GRZQDU9ezo@6W?IKZ{{su#xQEV&r1j^k}h1b(vkCPM4_v=*$ScW4&uV z{W)tN-9MhXZF*e}*=yfxb2)=FL4rv$8e^Sj>126it=Wy7;$N{Gipn>yB;qg`aDDaC zfHLmC1WBmGyz6brTIKWh#ccy>^N*ucmD>%QbtcWq2PRB%d9>3j{d&rE0GVDxW5mag zC0Fa?>`Ra<;i%C^eaiz+I$lVbk7OY^C0b&LpXA15VMTkN1bAQ<(sH#xrH9~<^V%0} zwfOfk$BSnlF~^cXAHI^9wBnhdrK+in09%m-YKVnPRIlT@Je+ZPS4bRgwEHp%gvah0 z#rN{mspGaY;pM&p1dXo<0s~DWK?mDOa5PFn5xE$bMTjHOg1Jkwb)|;W5CTyk-xQfH zv`^rL2b=DN+`bD(I7;*> zc!p3Du&KHC>7?a|Ar83&GJq2!kHHa zmlUKU(LWtN8MJ4JKqDP@Ah}+5UALbl17VGRrQmcqzQ_hLmbwHCOv}{i0{s%|$4`yl z^b_cg4xY*^Pt=e<-v((lEy#i<%Z$`F12j7F`S74$ELrOt*0l3e(`C`$aV=%~T9G|= z^tCIiX-d26WbyW$XLzwLNi+c`iA~r&!EK{9?kTu&vfU6&WI3hrUYcY=7MP3yfC!IwN)Gp!Pv&T%B$9clT?%~b$? z(4Y%)H$N4ky6?<@_-N;}CdJ*nL=Ef_^PRE(@a^k~H*wF;RQ1|(0Tw9GsJrw=T2AfM zg9fGAwVdn3SM5yHgraepjUrl-2iS5^hbfrR_nGU%9?xgsyMO3XfQ$5+>Cg8-!AHB* zOQrE!utKB3KJrXg_-UDBuMmo`*G8y2~n^b(kGPtEVyEY zPoH-R@hIfeb+*-V*2F#sqI9nhgnLF3e*XFPveNTLWTz#eEL0fOnjJPQv?Y;HC!qXni}eFdAY(oA51?#>^KcOwSBtWjW4@hcACuD;sJ!Wdk37X zo^e+dKcSfw@xY+wu)YE#oFYNg?}xUW?E0a>v2dz=zYv2S^}b%GLr8a{ZMqI&EoK~G z+VxuPS)G2Ooc4m~1mi^!(IHsj|{arNV>CipioF=JpXoTbE+17oy{Nqc! z!igHWEk_5e20?zud;|9rM?wt-R2~KxN-`gPH&Y75}04fiq z_FCU80hI@qKf9$MGO|OFNRjz@FjbyHXlh=)0Cg-j`BbzsR-K26ao{WwL`}LEf*1*1 zkOF=wen<$Y$fe*_2mE%ed7@0>cj-^|Grz2 zs9x7(y!oQNAyBawOezN>jbgLJX}{Sk>;o9uP+m9!AqZV|5#?O!p zxQf2Ak;MkX@7{-qpPjw`@t( zE*U5YB~>Icj43mZJH+S)d+J}$uRp?!f5BwzHdV-74IWz-^L`phe7``Y1DxzlT3P%` z%x{R4RhJ-N95PVhN2Z=bt|keAg}LZ(UuP$ltO)LWD2Es+`Z1H~A{t}NtA-bFgfkw*HUZA+AdxKto=a2gB3MNbF?Qu> zh#Nl^_gt7~#Ocg7KJ)V6u6_i5WEJ75v>c}6h(%epAje7~xZtd=&^-3^glCDFjeOSo8v47nfW18_CwZG-eWG)Nf*t*sJ;6zMss!^VhDu!oN_KXx6F7yF zC63>dEl0}-%~(OGxZrC;E3gviQ9!N*m2ix_j|Y-GnKWu6Ci58XQWj?w>5^R0U6!bw zaPX)1=IWAfVS?wl`ZX&c2&g(N^PgaeXH?s)*IT0A8hqmHsTC)`1O2=x+OF z+~x@2wD7Hr{IQT{o#WS`5^n&1x^Ac;04I8*1|@V9ILqrW3bu|&+j>Pe!9(bGgVI96 z5}F~uTGRw}+1qjX)-!O0=wy1YyV3G*9O9VjTnop1@}KG3kWnz2GvThH{4Lt7NM*4} zHp?!)@9Sk+cpKO+JmVHSJ>~v4#DeMlg^ui~Cy`+{@p8RY7GzHi{*}1j$hkJHzTQz#8onTW=mtV?vUH7=AqsUqz-NEQtOYb8k z$H=4ZezLO8?fJZ5YZwbcHU~K|>#*h#O2a7e)8bjy1ht^(Fix+xx8Uw?6+r`pff4P9o@&ZXNqH$UgEt$7U0 z5im8=)C&Nmo}XHzLYnDDT}+EPuQsiGMtzN{|FRmx z2YMGQCHHEbY@Hc4$+Nl_ObNA%zYT2UTp;JBC32%B{thj2Xmna#PaLbss|d@wtREZ0 z(*H}xX!kU3-x?K`8>Ea+Hg3e>Iw`jpuzsRg^KGtktw=$?GC17EF=v6nGcvh;F|v`m zmRgQnWnfDj5h$v4v7~jxHBp#eHIa>q9FWP4DUGPZT|L@LtXxfDu?#SpIj4EB77`kD zd5CpVg_%ZP3Mv2bw$HxJMOK?w*$G%b6=vXDNb`<`S_;wgi&2PIt@%{gvWGd61inzVXk4iqkdjvuxt+*rXXHpKaC< zc|oOzGilAps5-QYvd@6*ShmE*f%s|ebu24Z;S1K@+&I51>f*z)*PhtGQUU>ImQf_y z07C|sDdKxOzLy%Mk29F z!p&aFH;V=fz7)2RY3Qg0 zzIbwNhVn@Hj!U!FCmS_0gUmL`eY=pu05QK4N^Fp znMhCH@aAJ<%GTXj=J5R0X#dq&MYrx-{fb8V1dB^r>V1w%wFzHtNxwVNjCaeSO_?+^ zwXR(an;bUF>HLC+BSfVD@`VX)o}<(n#ojsvEwm-&ZqHn_2na)4`6vx!?m z9QC=x-f&5^?cz$bp==!vfEe78LQxJ^0|pFE(?5Gl|17YJxhIqk zb%i*>3&x!2bWy}2setWqsAf90XNKfX;KG+JKG)~wVWD9}ZMJZmUTI*bj#!J|Gx^wS z9+IMtYKmS7TIJb*yb&klyFJsPEaqw_oQK zw<{|9wUxts#ehyJ79Y_G;9E~E=F_eg%dQQi-@yEC z!1KqqW5 zrDX`ndHAGwKCxCI(T|hAq^VDa87YvJ#X?t!RT5XJQZ&s}I{u@ky=9ULwwp|HujP-Q zNk6+7F=GeFt321q$E!k$yAj)n&{)_#F~lZd*MjOHrx~Uq94=;=3Vsm4cn7Ho$#VmP zaYYvrSh})O_USGGG3SDTsDREJVx8h;N|nU#5m<1gEE{F%&BM$(nWk{rLk`sjo z^_WJ1Gh7#UgVd46_S^<`5YZ154I$F*kdcE_#^RfFB%Ig+ABRVj6a9dM+#|)}L3=9SHrpD@I~7?V^S=sEj3jL}UCE z59(TAzO!-u4{6G?JTeP9GHN$1i`sM-7ootu$IMgk1B2-242u>C2w|(9dxDj07Iq9Z zFAY8}5c0UFFSX`yg@OLMSI;z^Smj9j>yvh<8i2JT0Xru@Z-15-felD8Jm&kFY^?EiFeN^za-8Vdph zWCi_S-UI$cn*Lp@{#W&G;1xW{T09PctpB1-yjFY>La%(INHDhexKwVpP_^w6M8jT? zcw$BzUl7U$a^N*WsUyl#>~Eum%rrRnGU*0Eem zSk4XVCy1y!4^uL>aLmnle*@Z$&M5qo847KLA$&{AFk z4{V%&lw^g_i06*&GV34D1L zd>y$z^4(KrMMh$p()c5xc}pw{L|H?OT}dS<03{9P3MiI-?>+iUNnfl|?N0)VrNuN5 zOwX(WNa`+N3^R13)ba8hhxeVuWiIMi=`4>wrnjYLEMH4bsmbwLsHxq8PUal`{ktm~ zuPA>?SxX?q@moPci+)Q5k|7x)Q3PhK=h(k%_tFazCr-NQGr3vD2bRY^`t9fftTq|o z-YrBbJw?hM!hrItS))Wk?0fG|)OI@BbT_`W03HMSj?8&yG{>k42O7`Y!4noEU74bk z8+lx}U4J`@^}8jF$$v^mR~zszdk>*q6b^0OCCC=asYyW%*QP|)v-madU-zzyoDsmi z`$%%Tdrg8~ml4b<_t(7(z6@~hj^Vl~V!n+FAQg!LA>k^M?dBqqcbB*SQjdB40q-3H zb^X`98*gEKLj-2TsV6Ft(cdx<*WWVwJZEwrGzUv-^Srj~@}{+6|r*6XUDzyv6kF8#`t>><(SROzv>OnYAnMCOal zfLg3N+Bkz!8|wJai2urtxcUE5EM;W=HxsZS3Q$i~ydzMTSn8o-vH{b_D*;_+?#gr( z*~5x|Z~X#G`|*;E`8~;aES8$AgRW$vSNmN?Z($4L{X^`kEg4m~9_2TJ$`OiAHP8+$ z^~es7a%$9LmvZ%>{1eRB*fiQxVV5a0Yz2 zbT6Jje7}DEZfxN^V@c1yJb=Vs9^g8(LLu!R9sm)*0|dtrbP;G@8i`+65#Jh#Zvu{` zjl^p=$Gk3g1-^JQTR_H_3N6OCCY6ef5O<38=ELI*IN+$`OSij*%;9|g298Bsg6rF_ zx)w#GpsVwr&`?X-&Cd|_eHZleD;%j>k$Rap7X{w@W1dO`n5Wo6)z(h{=BcsFfOPlX zFo1aqOuJ~LH||N+JqmtXY;N}813JN13b_1Ocg2L@9so%<%`Q_<-GKeZeWYu?-%Pl- zBVzo;RTV*Ci+XMF^DswEmiwSj4jTYT&m;lfsD5h$uc`sDpmZ{6XfqVSK$!4m+eYtq z0vfRnl9l@3jwR|Rxr}yGC%HkxY0NKsU_!dilKUGu7oR-6ot&e;bjMNrgiv#zaYnuJ zy})-az=z76&B7Bp=Ls2vT_M>CaN&@jLGXApnw)&{3@0o$TlV7O3wIt6`J2+Y&m=7M<%C6L!;HY6ObR zqhKUa6(axhkR>Odih0(o^Gv?sOCJ;1>)Q6Jpa_pV(6dZiiUvjwAd zOOe2jv3B{J0jToTtpOfjX!#BggyQ-$c0em6PVMIqYhWrfHMj|YUg@8gta0f}Mqui& z)f+}?!-)Qum|96$SBe`HDvqi!fs5U@m9F}YSdgSoK_5s-!$w2H4F>;Q4~<=OEQ`nI z-6pMq&R*>kmV`1e=obDqpeW7b#kBu2 zPhrV9n#JSB0?bouKR}$YQ~>6w5X+$zo`Z;0vl#r^8#Q~UELX&(ZH5gb&46sF+UuMc z*m#_ME2M{jZ_X0hLia0Qd-_>%y=Qt4#b%D|N! zw2xZ$*GRxK)jLYy-(G2n=;j|9;N}kv;BxxQ5&Vt&a$1w7`qnLy^1ax$XU~;yaFC6< zjneM)Ll*P!Gb&n-zE3-Fr^WbK_m6xE(pxhmYU|UKomvznsr?dQ_cSsqj>9?1v`Q_j!V4DovC#L?1oR zp7ujyWm@M6wOA_fMwaM6qOxxwe|x1~@PB)yoPTzn~$nUB5K}5GE;U9!9Vh;PQ<(Zxh9b6LTT()D6k$6&)~Zm9@%miS@@qW zKoABxfM6*LAXpj;{^SyB!sk%dLU!nv{gao${mwhCfpPTwDGPrtK|Rq|D*Lx%yc(Gd zx(y2C(`w}v6ww19SStD_Sc*peoVSzK`_{>Vi=?}q!2t3F^qSG->l^NKkdx?kZO4rB z&12xJRlVK_00vMwc?IV@QWL0I(Bm(9YOQFe+iHjv?kC+``x7iJqt$XyQehF)a2e92rjg$g1*(%*a}EC_AVGWLt9X>EeE@FNe~b&I}Y40PiRH`4n`WO{Qu=Q_p7 zk7p}V(lE}eouw>B^Id_K${-Os1I&Jpwg7+KPQ7KzQF|t!rZ0gk|~`LHgYIFNe(nxOP<7BFDu61E5&y+X;MhBbHnLylGd?|Tp1aAi zaOrGn$LX2E6&B*;md9nW8k4Ctf_-Y`sa5AX82h`N^Nz^KLOx@%BT42`4Bjat`Hy{y zJD|zL&uoi_b1K^gfyCarY$Ux%`~MCdP|{mD|b_L8EMnpJpu0c zHm#Oy+CmCQ!}Xk+Fq_9#3~HZI-pY~LM4E?oqS=VktSGw=CbBrcT%KLtLCXZ)SqsIi zu?M3?bu%Arly!Dmp_jclc?Ei)rHe~u9#f}XX(70Q+{(D_z4|-5lF?3n?CkNBl9@z6 zILs8YmAA|cSY2uPs69{LlxE~S2FvYpZ(`imhsP)_Oi)hohTv|D3liP_bTBWKCTH%E zOrLmqESJ?W){i+&1*=VL#9pHn#3Y7Mo{ze%hR`)ROok`nF7(UC0pkQdMYD*F0cB_D zam?rqmQs<-c=X_bl8Ttb8lGHvB~l}MQ}Q;YlvA9*Zy2;XTLc<=WI2|y`dj7#ajqpb zo!0bnM5e$tMXRN92Psatug>CKx~y<%Bw{AcI^4HLPY*}$iA{#0m&{XRMu%Ci%vD`h zRZE^ZE9RJ}#-y)N+`SXSU^*F8_x%)?>#eBea2slcAkCZ);_g#tgZC-#E@YU+RHE6 zrh^QmF~U5h3t3bWmgHtmWk#DnC%^%a*fc{YeZfGac_CqrJWGMXpHvNU$#pWW~th_K2!8e z<&?mV-H@vlCt_^f9FC0hy{z{|PMOnw9rwX^(5R(O(3FI!U?SdQR9(%8ZPbL zn-OD4pdpvcAj`NddcdarswB=98gkP4hc3L*wnclvm?Zy3jf_YhZsCCKu!TTeIxak! z%oS<|YCvBDi;ioYlPZZn(*iZxIwwk2x7X;)+q$hH4@ILM2LHLhAx?Tc(BAMwuBCZZ zmU^~|VbdYWYFW+LEYt}-LnLj*-mD~cx~u|yMuS=gWSg1NId)#9KGjIAei-{pgBejeV-kd~XS|NeNU#0NN3qRX($WAbf8hgI{^0|(64%+${*F|rN=07b2y ze$2y-*-3S(U1P9SVpz2(rAqJNyluFC#BX!HaKe5-UnIqqYV)zKLk*z@m#FfN!u;_8 zb5&X#fsY9LqmlS8tD@zR?^u6nYtKX3J}XGb_^Glfutww(%4XMlxOzpoU%XNbK}&nmG5h7UtuTw zHX7_XV(Z2i<>ogwf77&AmPGZAf>24Lzc0j=ZyfY$n@UZ7(D(3<P1FACU zx&;(X8f!6vZ#z4XVxNX>Tn5Uk0_{7^h7|3h1N@AS!1)bJN?vJEUrN+Krj`_^mH<*; zBH?o%X$H4eryD`B_J%vBVH@g6fATji%6+9@s0HSEgE$`|Mi7?xYoq;k$^8-I|xY!=tv`E z)&=B&B;J(YLBI5xpjfcG=29e7c)kHunP?ySkJQ&3*#&V0cduLfp=_NXZ3JkQZdf4Z z*4J_=O%uhv3$`+1##v#8V!#avUYnJ1TWy`T^HrNbO82|}@?whB($JS;G zq`(i<9KN>7-TTN->OWpsA(7%M={~n-elPqEr4VM~xf-g*7)Bh)>DFyYqI(#fBR-}; z1`-iA-P4!7&LRlicdNA{=8$8<<&J&RpEjF9$lBBOU_j{6eHH)Mub!^t>;1 z*MJjLJirNR(w86)nkYYdWz{(-3aHR_;tDMJK$6XZrbbl$2yb+nOks72A9MY!JDi^+7ikT$_tYLaP>27J|4VZ@#4r+gE)B>ABW+nGB#HX~&J?yIWoJCg# z_&!i7WPC}LHL`ECg!KRR84caj8zh3&z`rd3#6q5TD$ry^+IL%?Q=kHi7)l>6B(0~! zS=5AHuzA?u*(3gwA&Txmq6}h0fXSdpuN(1he6ITK#M~3)jk?JfrV%4FPAn=y7* z`%KpeuujFbXx0XechZUVy|6q)+W{)3pFr_^1w}9Qj+5}HP?&S|QqI5+%6bpT3W%t> z_P+@b{Dg|7xX|q+*l&!MQFfI?e!+1}J=p&o=y~+qMSs0q%nG)xh)aPnSwc1uIQiU9 zP56uve5VP+GMg3(a5XqA|FB;^UMbQY&0+ zyO%W&@@v<$Yicy2mDX)pwmeGIedmbMg>;fiWBsu}tF|C>{@n{QEECxbmR+(rg@Gf! zG%RKm!lukO9v?d0&xX2Nf*KMmB$`F>dp&7*w@tLS5B_nY{ecm`4?P#|;YWGvO+zM6 z__J+yT}y&$(zd_@E__jvSdj3hM?jU$=vI2Ok*4i5I7jqDvMjmw0-1GxGS69K8M`*Z zsc}j}WxNsZ19PY_GeHkip-#2ZN{E zAL_QI+ZJKK7M{oD^`dxgj-t=X72$9Rv&RC3>G--40)a7d)e4%g0;5d*#L^n2VqB#6N9|NdBh1!VWELXo z4n&N11+O$bM!orj^Fa&xcsD#b*W-licx6s}7&@fC&Z-ilyxmMQUXHS=kS#=Y-AVMO zrQ+xA%TeVqH^47Q9YdDH2mCuZPN8Y+meuh*g9hH{rv$ZZPb~RPWn4m3Ha3JZ(^wyV z=i^Lg=9F27jgvmYRq$;GID9rRUEcazp?J8%GUU|(qO@Twba7+Ns4`f~SlKgUFftb5D%`T$;OrX3Xa z7HMBy896WOf+=S#&!?dj&dqf=19UbZTw%Z!?b|)D{p78S>DA*&$ zijp6DMOdBK4`kxr^(pc;zB0A$Bo9SnBM)FUW#tH5U$kviJD-s%F5ZVOjN4>PQeV$W zq?1UBvZ-I~VNFFiDQMjt8o*3DvAC^8?A^Q0><4tON3$vHpgp!pl*YPGriz+BWGSJ* zmZCy1H~)H()_r9BVLR_p=YZbNp^Ned06y+viw4g`J*iEm7V8rM*^O3iAZMt) zarmOMq+Jsp;yS^Z>1aT(7<(xrYz4(BGwL=3I9 z8M!&m6E~_PO6P4c%we>F#|8Uc>=g;Z+dkMhKIX!GMlov@r8#|_Gy`3Z+}*sVdGsj+ zsuou11CGq7DOK+sOeeo>GHE$|?O1hL)gL=`k~%_C-x?hCAUuEgD*5ck2FT&y$_fGez=C z;K0}I4K1ZogY8HL;%&Q>3t>dJ`ig0pHcHWIe+-e2)JVTef(!epg;{s ztsh|Yp(Oa9d)9xrYxOn9LUA;o-0)|}5KcqgO5+k)y(&t+j?3<|VPy}Ru80kZZHEY!@PzgFG!qjDn-;OP7 zf-;QE6lDIxY*kg!^Xp2_=Vh+Q2+KZ177l4PAtP>vZH6dLpg8ObbmM{4E+&Jxf3`0J zKR?jMBWx5ozcn(mM0_jiP;XrV7%ho~K@G_iOqPN#>{N6Uh^(kTtU;@0mgeDKp$|0y z;$;i}FEanUP=L^<;$cAkTR@Q~=%6?B7fAqg{r+v9Yuq7Ms9=ZiHdn~9OT^L-{#1q? z+z#}cu<92s8$?J==*oH_Fir2t0HpV6Ax|6r?cJDe; zNdOYPx$nCMaf(Oy(xUu!$^0rpjus5k8#y(lAp9OvU zT}@91gv`XUg$F3exsuFk(=2Jzw1IO9Hu_4FKSHR1(^;c(@U1!Q-JMMEF9C#hj7N=zuq$3}r(S~D}q!wY9S)ru1x6B`?3bF=jRG|xZHvvJ_Ed6_+D#wU58)KCbigB5E z5JbtrnFX2(MTjmm+2iO|4WPyeP5AdbW$zm* z3VN1wXJGRuCcS^&F&4R9sYX7@jr9)$ex5uIij+2TqqSy}qAt&}I292BXq|wammljQ zRU%A)tcDdSJ(>gP924k$nLLa>e!=%8fi-`c2YjOxD*Kdk%y*1f{`z8b@BBlJNfD>n?t3xGzL!Wafm;h*>$i2O(BBWY2d8V)u4 zB#L?MXclMsIrS$H*$$2qfzc4V22Tt-n3R&OTYfX_>3}Dh-m42}aGgjqJTmv-=C4$} zN*7%Akk0i4Gx;NE+y<^*CmQ#B(sbzSuoVgZN-`Xopm*UA`f7uw~2Cqo5r}H2(ua^<)`mI48mLA;u3;q@F=A92o!+C zH6q+XKZ+<~iT#GIO+oqZ_u;@tda+rgqk{C_+nH)0Umi+@VIlucLRgTyAyDIvyY2|4 z=%WH2kig7&fhCYru_0hLwEs*(--Eu-qO%IBdgYJH&{4leEkH*77R(Jc{JzUFPY0+% ziaYagaAo8G@kv$hfY7*h-r&ZIh2h^mC%qjf!?=64>};>9SV+fn z=IOg%RfE%x;l@p`Y1@t?UEABoY@Y}oZKA&ys>+l4cUc_GnQC%{!084{j!`$x@7&i- zBkCznp3dJ(ZlE>YbiVe4-R@=^{IdFh!S3YS{m3YEmiN5#L^Up1WcoloSbv8T_KlMb zdgY|%k|#M39HE`-I?ZppBynu%Km~*oP=7LMOEx+^E(e2B-Rq)vvz7VCO*`^vKi}+Z z!@cdDI+)4|vMq_7FF8(3EZDYu#_37kvITHsgz#*}HGk_t#mQ9~Imk%rFUkmP49ot+#t^H@2Vyd(%>1lW_)?zU~ZjOWD zZkk5=T~97P9<-n7$wp+~iV9^o;69t*9J?j61J=U6cR)6)bmRmowr zq~!923;m3;tFct*kca&-iP^4FqqbZxvag`?jb}E7F}xKE(Rby}6fNR{dSKNB@@B>o zO*q*GB2G{pgpd5h@3dV6uTs7up_v+XE1dTHb=8L)5J_rY9(0P*e63o|ERt3`F89&& zP)-#KM9EW~Ay<@x3~-qHMb=PMwj!ds;(n%p$xwUTw9|gI_cWq_IeG4bKU*$n&O^|S zDqH)|a)|MzTe4Y#PpM*?ac6B`gv3lqtC&rpxv(t2_w3rLG;6p|)xIP|*g;F}TqXoX z?qGVdpd81~5-xW$Z{`3-D*pnl&hWjy#g?Il3`{hW$W2gf;uOt^_WD8{aT;TmCv=l` z1!p0RHi;Ycs=>X41NUn#F^Ak!WsWC?dMwj^`A>Eo3H_Y-ksmAI*u(Pt%y`8HbR|4y zb+9z~DfTtFPsiP5PbFRE#lmj+tER{4MNEe|OtF+KuoNCPresFNjN1$NYqvxbGCsE2 z7VE$G%bX6$SF!Wd6`qh+d1cn4CoPv&6%HOuS2xNA98I*+8!DYD^$?vQVv|-TaCyF$zs&c zy?5n8x6a+37_6FqRhh_6U#)MZ$1$~7&AR^Hs$+3AvvRCp z`fxmMU0{J&)TYOaCMU&TVX8P=U?ylGP3XJPfLbMzf$SjU!{a{uHkHivNY2smRZeL< zV9xZ?JJqE)y&>z=Se&K^69Sculj_2?k5%e!t8)T=ypv12df8veba?sxu+P^K;=B}? ziiwl}r{qFEp8MfcV*V*=ha12%Fp$O6$u|zIqgOu-(?F;J^t2jHn@5-TrV!W3c zck!C_p$%MoHAn(U6E1U!q*AxZZpSe5Bw!EFB3P87kKTCis3wKR$R_Qr(T++<3whC~M_p*`9UqaOH%kwnPY0hn ziJxp&V=eSy3lzwolB;F+zwhqu4~sQ*D(Gk(SjfBc3#cycyS^@Me}KKme5=9qdq)TQ zPhhD-Dhl2I2A2M1^Zo}E9s380&M3J&s7WkB;74pu3m*Ww%a_{`5i7N1YPf(25O}@) zaZ%ISwh=|R%4pP?J z-_&?2yYO{9dx2s&(`b|N=7;a1Y0PD+q^E(80gVYa|h$7JLmXQZj#SxfnNQ8o+RvwPj zSXNwwP8KbRc^5IeE-r2IS#UQbek+=#PGvsy9w@{f~Y({2%@9 zBN3#v$Xs{J!rZ9xtDc2dSzJD3Z2V4EHo4^?9!jD8poOQf8G~s5>;HqIWB-3By5WC= zqQU+^(TV>b6fLu;62=uygm*gS5pgq6ruf9{i~C2v%jHMM5dhHdIwWk|4{{$13l*a> z`)rDvj9LLl;`4xn-{f%ue+Kj4$}E|@T5jgL>{`LLhrlF<)_YV$5X2!yk69xPOWc90 z6yDG{`Z~|O=`)8&X+1Uy8nDNqJ^irTng!KLY_Jz&`ubj4o?+%j&M((aB0qPn;_42} z-0wSWDQLh&uVMdx!BWM4fu&o4hJ3M^P@De(OE>ub<1eq)LY{IFU|Qe8|DV(PKU+|B zjl_acET0~vCq4|>K_7<-4Pkk+3Npk&pFSNu(p3p?WMJU;2R0^!iK~jM@|v7h2fX3P zKy5i+t(>=nozGF9+9XW{Sp6GqQ{K75gs&L0U;+2qy0l4vrYS0!roJUEY}N7ITI7VE z_s3I@?@UGwX7V5Xu4(?Qwre7>wW6|hYf9}FSrdh23m68=-;L(MRcCQ z5J0~>AE+EPp~g<+hnInAfeFy>a*W$Ik=Ng$!yW-LJjy{8JrIU`K*7w$=_~R}c%gd~ z)Js(OS3>;a6>8#50J1dy+b09@BTK>!10cgw^nd7j$KXoXE^RxuI=0!dZQHgw?%1}~ zv2EM7lMXw!*|ERfecxZrJ2TJx+qHl0TD7azwT|;RUq<5ef)hTudJWCNOXox4YsgBm zITLF{LzSO`{Df(Nxvm8q#8O#&1Lp+np8Q12m+<;(()ptZ75G?aYb-YvwjG~Q!KcpN zN?yHaJQ`Acy*JD>{`z-WDXHZq+2@FoIlNuK6QE zxHfPkUU)$ZyIpZof+x9KR$EGC>DI47p73vKx^KILeqa4TOFP4fE}1t;`ctenNpBRv zdT8E==6Ntv+$o;dfdFV}r(xGE-~hT%gPC|!-@%CBcGTRygR0lZu{~5f$<29fWrz=C z#LNiT)(vf4imr8N=X7YhA-Ti=+j{9L-sL&}3Z;|JcM>OJHyHid-kH36Jxay__c25R zUG{}N@>pNF)V7M?Fe>kYUydM{7VV*=LTd#<#GN8MemRs1*O91InT^K!DGVct`~^W@ zMQn7K7l^Au1LA97SSD_(m@Gui6a%z_&k&o~6o39xYRV{7vD(c(mRyz93HBJKnnzRz zDB&Tlad&u#>A(lriwT zd>2Wyno#~-^n&JRKV!QMDk}>1d}+{0ny?~)IUkG&ZavqebZHT$Nz^<-`T>Y=_$(Bz zw${A6ITkVda0@`dE6%|AB(eXGfEQRwOhu1NlwUFtoZXOwC_i!_-;X7=0A5S#H~OF) z$;2=bqf*{J;Al=nPF9t+79YE1K3CJPI-q#ng_NuJEmSeniRL)PZl?`5uaywl{DeU+ zBCmx=-7wY!iSYjtQHAe|-gXkHY-g zU%;UGtwB#&$x#s2`$&@1PSCjzr#5?1Y&GmZ$j=bRX2Cpc@*`6?bEeaK)-d~nxn%BY z2CS$!42&?p08=N9T{EQQ5B#YUF#2TDkjr@79Hpf9sa|s&72&UUGtTIlSCjySU-=V1 zfN&TK4jWP7&~GDwjZpxa${fVRg_u<25s;=Z>LnC-3kdFJf^S|8{OZ~jc8*8^`{hP3 zCw0f%X&6JI$187NHGi#aW#JCfqh#=9YMB@kOgpUoS+~AKn~LCMuHk zK9P@By;6tWL8H7Ye@T)pM1IIMK6;Y61C)*$w=F6SC6hde+?|ynpXu~wIw+X_{GN9N z(o%C`Uk=HP_`X(AopQlu?1UxjFmRN zNE3^N8`J!Zmcu`#qbv9QVYYDA|CEk`IC^@P(H!-8w4)6s@LpOR`Vlm}7IYGYFoBzb zaNMAOiCTw0qq5n49uCS%+cTkGbkMX2`e|Xm*{sEicilcdWVTYn72PD2qlnMc$ZWA3K zp?{jVy3I3Qy#B=?ra`D*H8z?8y62qxn<*qf0Tt?emg_dIBd^X9q@$g(4(J>`7c={I zYF))0(Q-MLP%k$X88Q-r;1cS^3p_##Z1Rg%L*(DiQPOgqA}a4w^#*J1V#ngkV;xx* z)djSr2bIdk74WLk{wM_Wy@&GlBg28_1!*uW1vhtErp#USh4x|ddnsyOML?R_skx^r zt5?O9dw~d=V{b)MNlgVlnkAvz6!4=cYvb79v~{ndi&~KGz58>!ZhV-I(#>%3O1B(g zm(%Ib-NPw#idegWflF6hB%dAxBYNAoVVJwP{gMyDt=+ zWqlZo-`d~1T~@nJ_gTZGszcy3uSJ-JFMvA@t<$r9PZg_>b1Pm74Me=VJ!j&t0a_Uvj@N=uRjrR=H^#^B zKr`!Dg;TcZ+1u~~^5_^sU%k2RD0I*wgQiMU4>S|aTu>PF3xtH%O7!Z zTFRDxA9z`f*by<~MBi9$MT~J($;XfI>fEPm2|A9$jm0{No@R?@#6{|tR;E<$4Rp3B z!V=s%)jARLljCv76x`gqr9KrpN}$Mb9>FR5c~dV1wnW6TN_hxJFUV~`Uf;+rIo_Ei@d1x4bD#T(hI=Pw8kT&Es&LEa>9R?*f!2(nb1*`pEq9t?joW)^EM3->BNS z5}Pv_%J5vN*|cLhTU(ztXfi3STT!zH_sL}_wqvCB2K|y*E@_54-3-pB3s@t)` zF8?wBQ*DK#-cPrS`nb~#;0x? z8cTF38%9@82G5O%_(i>f+QR>{V-v3jy4C0%xP^Ng>KBF|lni;g*A2Jfg`V=tnv$BE z2a|Mb$2cfW^qZ8_a{z`XHF>;lk{S^hQ|{NLn{}#XpW2;U=CVX-wrifZ;IUzMQaJ}n ztdb&*oW3ziDR){gviGF7c$^ddm>|*>M{#>^I zKP$KUuRj;H#Zu2kaM{3OdWITCN^gqs-~UDE%O=BDRLl)(wgZG=oDGxxXVbn ze{8uAy8qVp@w>eW=yIfaXe}IdG!7^4Z1tL?ojRo@?~7-zc<@pwQmaPnY^*g!t0?4E zgSp#mcL3=X72(bLStpADpWDJFjLpSQIC(z;!%rjb8Cp(Xg7`ds16dGz?VB&?dYA48 zg9G?)jW;DKw=!*$kbyI3e%{~;?7ff)Ludu|eYsI3^RjlCi1-!Mau#R-dpuOh&jxUB z$!TUl@!>MB|7f4;)r8ZlMA^kD!nQ|J%QvTF^q}^(p{Je!&7#T@GLpJ~ zE|8%2Z*k)MBa`b(Ah=Y#1)M9d3=2*ejzO{F;GS+pwLtDh;zTw1(Deaw*1AND#V=?W zD!|1zQv$F}z%IjF6tmV{bn38Qr$xgQf+rA_Gg{4=%@9@753%xwoWB>c)i$n(nuzRz zDSiW_X_3my9E)z)&dFie;q=pp^K_xQ}Ak%OG zv`^`93Mqh==|5>XzRVCLt(il^Xh}Mdyc!}xVS*hET_jT+qd#FeRBocb^4y?5@?5y| zblVk%%2c@^bd4p;Im->L0`16SDD}D+j8+4ff_(MjWUxE`hL*bWr*?$`(d3bXY6R;M zcKgd-m{K(zb6kJTO8X|YUgt>0DQ82jzQu+LaB%Z%-+c0NRHPpan)%7avS)y5AGu_iUYN)}kg6c!a=YlIvXiBZjP1qw$8VI1U{R`mf)w+ei$>4AcR3+`fm4o7S zv=JpAq^{VO{sH{#_t1yI6y5jfWpt zra>2&x{;;w``g5~Xw|PD-}pO*m`mAW4w5+D#w0W$DDp{hPx5oE4WJL7g47h20tU^8 zniUl&%TRx_mFOU$(N?8t=812*&D*}IlIUG$!z##E1TqNm0(HSy@Tdr%V}L_yF-0hF z-g6!NNy}N}$;?Pl5(3h4Pv5W4Ye{83()v&=Je=J1L33bfM9?8gYp>xSkRfWAbA-wf zYEL8;Xp0MFag8PHh9($0ijMR_O;?5-MBP*(;UF{gVeqDC&5liTKk`~%w|2hEpr<|_ zgnK(;yq#R7Gkpk@uWLo}^yZ%!`0|osKzu0C;qnU+g@f%+qD?R&0#9QQ%G8di7c12$ z6W!XPe5z-5<>f#jeTr=RmJr`1S)g7%`6lB&9UcYyXmeF%`ghB{Hpq!5eaa|KO#a@y zv~AsxXS|6aQ$P4?&wT>eb8-IIb3NrXEM!HO0icPbJnY;^U~8l;lfirJRK#jVq-{*~PhO5%!;4&g@H*%h@<|JZ z5WoYamMfcSk%vQa9a<91@wuLmxVk?GqzerNA?v@_vtX5)%tcd%L{z*RI zZ8*C9jBjQd$9mPK6^O18^G;%)KOw5uVBYSQ0kw%z(@u|Rkz9Q*LZ*+qqLI5F_%RK% zbL4qfyM5qE!X*Obk&;)j{kTGq$^76mOj*e3G?LlGfgh7kFVyfqvY|H&iIh9c^6Gb(wY-WhAzKxgoIZ_H?3(vTn=Of zrFZt`*)(&T>?AS=^i)bafpEoe45H-jPQGtcd%{9|~InBd9rS#5HXznTXl%D4dC7NS9mc3#qD*6bIha1xtSF~0OKqJ*_S!ZJrA#qp7 z_1>4Jon#N+il>)e_ROtvbT}^-*X^8;oy}Y)mr#xxY5&IMgra%Bk1*~rN!U2D6v^|_ z$+o~`F-CVyFOw<{2@75bh;E>Fu@_LiIt+v~p?V?7qbTSg-JyH$1?5^McF z6ySlHboNNLzQwMoxi!bSC%@BFN_b|mTD}uGX=6_LMI&p0SC-|i0aU&bmx3C1|76l( z>TI0KAan@5O1QpO;P&I9)G@F@@uzEZ;%#XoTu0GR#jOJthi9vzb@dnW^|sA0P(lp9 zk@vB4&fhL**Lz-8c|4#mZgsa>upa01uT_1yCDG2b`upN8O*+eHVyTiPeRj<0(l}D*~A#CY2}e zlDa#>-*jm??uU4Lv|~!gd{kYziwF=@ftBnM=`-ubW6;0Sk5KKk!J3jBM-M(+NshxMpua2BIy#Xy789;J_l0W&l~K*!3S~dx0@T;}#Qeg>qUm}25^70a zN#aoL`XW8PuQLwEYe7HBeJJC%XSuLHIDXxW$c;d5I)x#A+Y>I}?mN=Wk{twQO=WN- z3$^t4y)S!3DxQ_ssqq!uAhJgG2Lg_%ec>?82q>fO-79&848^7gO}#c2reu%fK061g zYhpsrY>MMVcx%Th*M*s7uJuEGr$w*-7^?&^UJr`- z`F?Jg*E_qcg}}A@NFB_NOu>RW?Z-6PElk-K818xR zN@MD%iZ4WnyAva&2hIt;#o%xAKcSttR*R1Z^xaH(Azo8yCHc(=ElCULb+^qLrA~V6 z?%2?2#}6!7ffLpsD@nCxc7tRgtlB=2Edd%u<@$S-US+f}@aSM2=E~G)Mx4jIt3_cX zl@8Etlu~|pgs2p>9)jSFi^BQ( z{~U(C+1fgpIxw;SyG7aVaV7f@7<>foKpYOS7Y+Tees(D*(r)g&veLuWqKs@N9bdiB z-y${TE|VgYD7w5ez&;R?Tp)VBvF167dw%72n4v8qj3WF^FtLu&tOL>=PIG)kFi~N8 zl&420T6d}49_e+h!53Ki7F+ZAuJ1d8?Sh+pZOw0K;{UASvddx4AY;PSJ6}ML&mxRU z#QkAJ94puiFWYNE*@&5aps@-gWD-ExFWm&NjuiYxo1Wwk`4;RELV+US&xpqxCHN85 z_s$YFIx6$diu4IhNJBK!6;l4ek~oM|tp^O91JbY4C4|f$dI!2wI74((6K|O#T;45K z4nR4RxZP{;aKU>=ve;mFd53d$vTyFLQ^621IcAN`1u%xqqQ<1yG4WnTZbK21 zgP=Y#O~XOGLmnbN`@P%vc%3u(J90-5Ke|i&794H&>iu4~)c`FdWx-eglC%F~(Is2k z?t_nb#HTkMY?p73gvP7mFd7BX^AE|XGzEL$KmfYHIC+uWJngvA4Y z)n9|s3j48*1^p*`_OIg$Z`9L}NX~x1ZHTv1 zgjOJXMR7EeO;GM+aET1rcwFCJ5X~Tc7V1vn%FryaoHaRxv`Gd~LNXMj)$zg57(PU(5_g${@uZjkZJ;L`^2|UG+ZN#GnC<;KCrEH7xTIp zrYJhR9UcOJ4ife5OY+1z%LoJmLCXQ^G!kU+Xm0(Y%xVX6`TYIdFS$@Z0M3zyHRvzX zzW&{iLnb@`=g60^o`?WKbY7%_1WAcmzM|H+E98Nvst3Tm*HP&AhnX$vE|j{uLAK(E?bFRpgL@019Vm)---%A!`vpj(h11ZNZ=q$GpeTP68V)D)jdbRU{y z{R1TiE$lIwD{n)oHaX`y28c z={jIT-&LP-X9N`g`$z!;@Rtu+B|~_GySA@>+CstQ5RqD0;>iw^Nw9 zsahL<)gxK)Y@5<0CN9`gj=>=H@vR94l*M)D%kV;y_$z9UcGDPo zP#6!FN}9B9Q%>s2$e!!-RsJlNkK%2WU|$1OU^whkh+wj4uUuAV?h?wHaeR4y&y!6BBll})I^v}(x8txfiXS++iQ z*!!l*=cjGp-zBpyDq~b6XPY%WkJT)nHkFKK#G3ThbWxed1n)OWr`!~~NbDHW$EGoZ zpNnf7AjqGW)hm+K#4Oe@$*?Ku;Yfc;6;0U*t9xNKswB#@t?*txj`^9llfrEY@S4a4}{(I`tGrLbD3#0J-TE z$s+GD;ci&XyieJCX!nSVvkv@4CW1>-*{R5px2O8eIcxqb>03Gjx^XmIcMl2*2P z8$E%&in1YOx=Nr{-4_LSoB8#xwI;#~r(NO=3JL?9P$7Z|`u!Fa9eZwKt$meh5Za^? zC+wE%%+iX^xn2R{k-Y%}k5zyq#zx^jOHO*l^RRUTq)*GQX`iK|aynd@Q?d8H-LhuK zZEK9R88SpV6lW&-y$rd=i9hjv$Y@^t{laZ!3+~0s2Z7#dP_|X{yQ(~XeNk}(Tf&P$ zBQKSKEbs;+k4n80!xs)ycKntH*z;3 zeAv`q&}G*&$pS%D&1Dr+K*XdytKd5+6mXt&8Z^CsG#+zcO&gFq^Q?x9@yN2A$);TbEd`P^oHR;>iF>niQFJt$F(@FrLDuYi%#g=_Ip(Y#q?_>SwHat zjTz!zZ%vzLEP22uZKkpDhpYQ&^Wbm`9C07Am%K$yp3`bHL|06 z4+ow5Xn4Sq4lHVK3ytHNGmY8G6$GS14vE+iIf$JHb+zi`oe$6D0_LAtlC`XhhRoAS zpqg}*uhS;gTFN^eroA5$ukq9~Mm=o|gT^KJ8{HE?t{p@d%y#v(=N`jaV0((X#1`GMg_ z-~Y_sqlP!1(Ht&okbMU2?Z^+}6{7~e9T|5|n>*XyFzf2c zP!E$D)e)=_)k3JX0p(E`9RO`EKs_qt?_4+%fMFC|4Ks_oH!CP0_HwRFUejEL(9<`8* zG6tweb>Z5E+1*&dhW@BWIk5kzN0HC}hkA63MTzJCRgXFV)T0d`5G~^pyW2It3?(PE z%glh525;2qTDgIlWwhXShStDD4Hm!b^K_)v4l0?-Og1FvFO{;0uCB~*dD8P%U1StD z7#OYB*RI2V6Q`)OvYEo%T0F!Nl^%mpcZbIz?~N_5Or$YW)SxQ+roJ&Kl!5dz22v zd1FWJ_oTSTW8J^n+)vCugeasheVZSE5Ox2t78~w99UdY@W%1HVok&yzf-2|%hO{H- z4Dtc(zngKIgjeC?yX0TPc#J@&g8hPCMjpZ=#6W&)ib*l1u5$lJJ-P`{k8YyU+5DQv z4&EWw;+uRQY_}R{E=0YwF8u4wJ(mNyEA#|Gdlxh-s-de zJ-jD?;Z1-Q?)`Uo*Ds2on*R(hS_GZ&Kf{}W_Hqw+>jU7;{|s*)Xv6X4!&yp(?!Uv! zEvx=t!&~%cc$Y4J0EX9NifVxSpW(f4R7})_mG&kXO4eA|KK8+-Wj28v#^)Gep%||7 zo(Yo+(b=);#0}VmCR{PZg;#7yP=tOchsb>N`E? zd1$S%%bN8KwwfBYSxr93X)Ld%Gj>-@5unnNQR^JATBic>m-ip)xGoCH74?~H3N`0& z8c>VAZpw+1C|~#%UF7kF;B$!iIJzh;jPp~7?S#$Wg-shp1;tu5OOcA$^<0xK<8rcN zYkFx3@Bon}M!#t^Mwt%uHqLyX*&&%PKUgT)s`ilg2ng>Z+xqQBAiW#nedA^Dq;W2|G=9&|HYfH{^HF_tp#Zj zAM+|xk=#(T3E!br?mUz5^njyla~jeWRuE)h{ImeQ^j>RbWdnnbYS_%T3-;-B8x` zHoKHoR*XAKF`ICdEB<_Oz4T040I9=)m{C1N(X7(&|C0W_*0-8&aZ|ZMD?AT9H5~(D z$?@KLXwlafAb9#nYO;a)YVLy6(lF{)&4nap6A%VJ^1JCN;R>5DN*Kq7Nhk-(W{s7G z7}j5MmQ)nI2r4K9ZNwZPcq-J=>FURNew~%cH8p2~Fo7DF18M}|&8MM)8UZ9)HU7tl zKtu=@r>rXPp?TO~#iwXUw?u>@i`1k5wUaHw@)IWVJ9gPKW8uqR&68eQ!slx5z$lDD z2_A@kU@6Q)P>sJaGB44#L}2x$2OSTIOuc>J-1_ztaKvmScYr>-FJ_+PQ=Wyp^KA$+ zpE?RsW6f>OolcSoYTmpgI<&D95Hfji6U+YOm(H$oboxcpNA)v^d*vH+-n(g&07nuqj} zodgxI7Mg!1LVY1u2bo#SJv6`Bm}ShrHx{XLZEg4@EHM9c#K}YKC-o3?^hL0F+C^s0 zOnC!Zau(+O{`=`DOp`+^h^NT5G4z!XEd7!wV)mhw5Vi&tyVur)@<|!Bs?&U=z1o04 z`8^7`9IA=&LIQLZ3Cp-(lk`Lkh0LTCZHPEbJ7XELsre7!oKrzMrZ6R^+sO`{Tt$XI z$m`WL=6r(e4G}Q|lFch3&%GEYeid}6DLShP@;DU#jnGA*LX!3rD*r03K8y0ajO&7?MGDIEi% z3qmwB867;5uVOZ|44FtOGVCE=cbl{lxgLKw(Hmmr(JbAQ%%lg~D^d$fTf)=0UJ)uX zMw3g&J0(=BIZfDuq6{IB`dJRaMi-c(0|;kaayv{X+8OE>mKoTFzco-_v1`8qT4_~B z=kA&Ym^Oq$mk+rPDJ{27%J+x9n!ODR#jGk~c5r;aU+zB$gzf4VUQ{^%5a*_gm4F8NJ_fk6ql$IOBOIUhJ<32COxE{2gCI? z6MjaV3)F5yY!Ob1o%a~s%(Mxvc_*pQZ6X*YU(J*E zuzCH&4EBDmzJ{VhpD=clDH4SBiSAR&JibQ0pCcnGfc!p40(&bgp~*r)NB-?(uY!&Q z3EL=4&2SZ@VKG#1uL4zO@|&+X6A6Q?Dr>EGM8EM^{h{2D`Y9V4iN1jZX`mbJ1x?4T z8pH$x99-+`P%W+pjssb-4nc}R_0bC2_SJ@2=LwH!`fEZK#lqdwOBW~KOg&LHuHi_3 z<8cK}XSA1nS$nWbY?dV>sTB!9U>0?H%qZ>D(;=lG;tg7X9xaPx_;V?cU`~;;618`@-@WE2zHI4@xzxmAjjgod(D^iNX@_}^TgJ%Wao=7+wsva z1G)&Q$C*U!v!1V~IBajqB3_{*s_qAmX1_<@$#{H3!JO|4xAwX|h5}a1lIdOLtoJvLJxJBGW&h_Hz&C3OU^q^f?l8Fd~YE+xc6bd?N-22{+%PAn-jmyW(BQ&yr z?aYh$24J%2l0F2CUO(vsyP=T)nxQZa@@uF-l2<{gUAtjc z36%N+1|fZnB8cV`i$z{WFl6+o+KU=&P@9G6{g`YIfz}%>9`jj`&)(a+7Z7H*NZ^AT3=7%PS4^UXE z%7YVK{A|?Iy14Y(&%Hsr;q90~-qhvW5BqgirSIiI7?Tb#cQOdjlb zwb;^OdLFUY7~2Rtc5=5k%bzt??;X`HxKI4EetJ7F>dW`T&RK&)r(iwTQ9M$-4pS-0 zDH%^=_?b+8$DuP&9(4y{9p~z2$QUoUA;fn3Vs2-=hKoD>+z)x#zo}Vc|qJUdBc=don^<-FN$Y5WBj}Y&K0hL-1Ne2)n|=d5yZE8wDGf?ph6( zCLXJ4dBKWbmX}7pbdKmpXw<$L@LY#=@o0?_;#ZYe` zf+kF#TADn^`rohI+n+qutbUBHw?h}#EXBhN!4*(pRf?*#GSF0(Vcv7 zDd=nkS)U^osIk)CU0F4Dk=6`M%iIuy3*=pf0yE+kB+F4RopneSTtS2OofD;y5=$J0bVP;#-$>5qo*mpb2?EJoD#!HyRv9W=7d%wVI11pfe z+5UC*cu!4^GBzMWfdbn5a2dc+6FHVQEn_9Kqb;D-K@wj&nttCqS&kQvj|N$ zC&EHewJiKjFG5?A(H7&boOX8MFF%z0i+F}!yNZ1LExwH@!vLV$J&5I zxC0Ynt)|x^dA5?kJNfO7zB9B--2JXhxOMXUhUM)YlfuYLM&J3Py+J4JF7ebeV@gUR z{f$d)ke3oDNpBF~Qomv@Yb|m%Mpc+vx3v_mbuCOaG-;#_o7y41WnsSv7SEf@$r&p; zqBQZnK)UPeUPvECl_`x^x=frmU{zLm=lRiB zVPWiSji3UKK;fs37HBc**u@vKoM{i01kpkVq@Ll-73=PC%%Q|*{tM&BH?mg--K*lJ zGV|H$%~bvNyK*zqXh)L8JA=L{$NI8)?W#jNZ9`;)pDI|6=@saHU0t%Pg&buaoj)X` z$X&C}12RWNPA$1Td9P6%xk`|k&|{?S=8nKfl!1jOwIWS;;?4V1_uY;!tvuJxQ2nNe z%HZ3kM6)cUY2%4482IH&q}oThs|rLMa5BhKo@Wtp?xTN&@uupY>RA?1yqLgHSI8Y2 znVd--J}}h-p(6UEE{cC~P z=w$7+6Q#o`kQN9FoZZx|VMg!VHanfgbJM0de6hsHS;A>SV_HN}7Nem7CY#-8*eQvGjB=?FNJWqjxE>%f?_VWk9ptIWfV@X`4^2C{6(l@(Heap4ONz-AC6x^a z1|=7%kKnF4(9mTZoj}>U>|J-$v0zI#CQTU|PtWuSbt`N1>mdvk8x~6;=h5tp`#T)-G4GtR-Fc-IHpCBn+r>D3*U+qnRLhDfv!^=VU@VQB zjA(tw36$Pr+9gw$94s?Oh8q-+*`TqSw;+vsk>C&}S3;GmJN((K4pH{Tl`$y@^f1%Z?uNIX4f6;2bzi9O!004mB37R3QtBD_+AzIWUSp+}=<5_RZ2na&d zy;*F2-67W$JPO?q^7c<*{=)EW?PqP2BdLvcfA*<6=$Pw2`xLV;wqT)`ftKD>XP#e) zC0yXJ^T(bypJA8cbWissGtHIp#O?v<_;?&f-kQ$SmyM)(G=srzv|J%8)JC34aU_u# zoXvv3PfeEflXZa~kEn4^n>ISwOa$we{4h3B79nQ6v9-QUSyxG!J+Y&+1hwS;tus$h zuv^vcdxInRZ=Kfwv|8vdS`80Cs|hie0BALQfzMEG)X|2l-TGf7;162ONBtMA&IUB< z0?=vz60nk?N5!NroL(U63P7uuW*CRIb{sx~WBLbbY=Y>(?4P0z0Z70nCu#BjKmyE( zViLROjtM}3ST_c6cP_luq znDvd0zly%(D=^n`w9Y$*D>3RXKk$$fTQGtgNN5Czrr;n+Cm@`z3U8!P6PR)XDMR_a z8{saco)f`BVApFA3UH`l3?_rtc2hf^;dadSFZGds4Qhn|pw&291{^?YGVDUqG*(UK ztXEZYU7}7w6&lNkyjC#zyA?9D;foFHfq|++(8M#dMtIVd+A%n(9Igi7D%AK4a><&L zH;uT1r38&Me^)8c6EO9eY;<%mqj73|R}?9lIpULAnU>m}q)C+U{^6_|DYeQU2^5MB zD^P;_04SiNVa*@ts7HZYIfl{gT9EQAJ*(@G}~a6>LT337=|Yp8KcU-YhI&T?qKGykJF=IDr*n{r;l(U zun=?*+iT&Opvh1{0^BE&W}MY?{%&A5bXE3lf>?&aVl7`!Q6yU>yo0a0dsb@bZa}2^ z`Z|#Z^x=|BortCS^XOnEAd(IITg<^tWd)+tXmEmqe@GEs8IMCN&i%wrgZKVD9O-jZ zi+vODsN?66jn@z5OuMZvu~!CDr;mzjK1L~YFuN8<&3y1u7|g^=Qs>usCAc?r{Oj96 z4~GY_Y;5(F_WmsmPW%{AI1LRw^s;~(&I_)JGwfP+kZLnrKF4_6b;Qxu?h&s_KLR>U zf0vd?>&gd{6Kf4_UP|6e3Gr3QPA#TB8Z}cc&W|a*QPqc!H)K~{)H9xl<;>f?q%pa# z#fDkI9Pk&NPbpvWunG^PMW{HQuI@p>Er?FP>WuIQ%9MCrGFH-sZj&1e!h-dU>rG<7=zlpYuata z_NQhS3**2*fm2oWOPsjK_F>b+Sm^SLF)M!`)jt&HQLLne{zEY-M*~jxc~hmuvng zG@AIyxzZ;%UrE)+h9<25oi~DL7<)3TPAsUq3ZAE{guK9D8_mzd)`6=m%h4lVmBL5i z$A;5)+YYVtwvnP&yTT61mB_@bvx?P_&4WsK&7=&rMW9pataQmt@n4Ar?UU|$4y~6B zb70UFeSKal9pin?;?8FaH(ap1n)5(*HeClg?O0~g8*OC`Uh>f{)4!~WbT$zQ_SsxmejfahAWy9p0y*+A?O<$E=Lec%h7{86-EKOG*2DksRfAl%uPt zW-U6l3LugS6`C2VvIh<~Ea&dYjx#g6_2A3wf-XBE{w5g=T&8 z%)Czc2p4wdF03;s`$}zMhhm62XxY zlLDLjteFAV&(pQ(;iVA7?{&dL&%%HxX=ztY*gSKTEc z4h;1-o6Bg6Bg2aO_b&w4RVqi(_=VjMb!XY-a6HKv}FEyIiI zI@xkoq492UKpnhNvR`*xPsO5AwaOoYNuCDs3suM^q+EMX|dX26Bbo_=D^F z@xVlMKvB{eu@phLd*~@YgXw-J8yI)FrIVv#8B#3F+5`-2WI0{WstA{UT&srJTjk58 zm5%{Y>&*D{ki^2)%ckL~CBlIoYe%#vU(x&LkaNbwn|t`R3*7b%PL~VkE5Ij$$06t0 z2FwVenEqH*iI`AJcZ$smlP^!wKsB5aCoyBP$<745$2F=sIZa&JmQwc+K$_tfS&b zvBc$+vYear3UU}X7}TkpvP(0esupqZ(?s1{as<~-8%SD^HEC1M;PncAcqbU0T7D;U zOo>;i$Xb7pEhnGPfG>f&Xc~9Kp>&*MRae=^qq_?(#die61Ns2Xq$328pbpVi!j%@G z*>RchZ9f(O@qnU_cmNxAzPUvK23ILgzIuC-8my2R7aK47_e6x*07kq$3iVO1#1 zHDVNC(}yN!*O=7bXV5Vazt}RP3$%zdY0$R$1~uj}Z49MhkBat1O)|FOHlx}L++z}w1Z`}B#g-yBDOI4z{&cRF-8HJSKmWC&Vn%M|+nHmqqtg4TO5 zcJ0SRB{PQgmc$+Rc(n=nzV`O@IW`2Jn6h*`%?cwI7w%)ryP4MWqg7^bS<^0bL zYbF;b_Q!^m2Z)Xe_p#0ryCUR^RnFR%KFMOW(K1DH2ak(IQ&adCoiXU%Jpsmv{K6^& z$6E4iw0_qw1YxIqN*eg*REj>P&4jW+7wRd+C08-i1kdrUi1+cVn(`u96m8F`sRv)N zN)zMFV|0q>J<)TaW=Ow6#gwB$DMBSqsp`3v4)$qD<_+fRw0^?I%CHF0yoUPTno7Up zQYWXx4zoc*D3LObD8bs=xTk1?Hgsd^Dfqk$&tD5q9W0nub}0CHj_Jkxyzc##nvCu*w}ed8Qzb$Cn9Kb~D= zYu3^Kc6R^F1pf2vUgQRv@TPO6Nw2v%ElAHm5<%(62{HZS*}aHS2J<$j(-^=J*C2+` z6jmFISi^bsdF0T^>*Y~46)XK(HT_M?#sB_s_Kf&LKXWyj4g8;#&}6@5oB);3I_~00 z{nj0OiCcmHSqU9$tVn0=aLW~)jO_$uf|zNNj=Hm0XCa0uT73nt4=;QLhIGml9a6e$ z{0qce4Rp!}1xgiOYGGFDeR0+JBOZ`ED>V|^m@a`6lz<1(I#U@iQpFO_^u&BuFwmINgr~#ZTpp^_85v~gn@#tP8Azf8la!yBo#~HK5PA3Ka=~r68bR6 zwW->Pi>Ah?59~n+o#UXr0>Oy}p5g|h-hUFkfd?ne`kmG`;|a@a z6YFt&Nm_~4KL;zARAH8sCxRK}O}9afg!t=oFlF2RSljgQ_AJOYu%YnMaE$nMbngT?dJ}Zp8KR- z&zdAYoaMjxqx>U(FQ)Vd_N3_c0xF^TM$U%*($5kB`WgDqSdITfKO6d&eirz@=w}h8 z*n<&fU(1yqFt`QVKl?GI|0tsO)-GVmlpGD+wc%_u(ou$S=TMpUPc8R!qXhPv;r|l; zmRmmyn~VJ0SsfK-<%{(9E)`*oS$~?>WT_+7*Wxmx-x{#tuUvK%4h`w{6_mQ@7k;4s z^u4Q5VHS-3&r$#@)8F$f=l@j-XtlZsXq)9Xt6eh2XaK(kPyzbA&5`t-mw!_Miafp- zW3sbz%`RlVJQ)+*>Ti!Ve3v%VVW@~9IVWS3?fRg3(DaNh0t*WjZ+d_Vs8|B+c0|$3 zHvNFYw;D$O_Z7j0=%{TReE?TZ$0E3(7nF}6PF@TP!vBcoVGf6CS)fP(M`gK^4P6R1 zh%qn&r`Md1l};pmsm{+YcUS25h4tn>Ppd9_YXB^^L{1|Hc{qnDl@J1%D$e>Z|BU>@ zKU+lhj zQ^$(e53dq!f6p~_pm*Pu?K3f$-C@NkSKAkYHMLPQ%WM#&d}SL|IG;*MEQ)H(wS3V_ zB{sf8ec>5^6#)No(n)8$?)hN_IGKe|_TJa}*XeC)WPVry8%BSu0D?bO09o&c6%hKz z3gG?A3YcR1&ii2n_+B!-9M}VGr&NLpE}vo0`4UpU-lA`qElzJ4xfo7_l!Gu+stIFOJiQgVlcz%-5RMF8JA4JDi_s%ZVNXH`46Fu6?He1X7A+nS zbujgvKu?p`0^sJ8PPc&y&rG{)Y4Y#R_ zI1>D&ClQuW?voq|Ft_ub)0k+`4S1N!=~Yu3+b3(&H{0#^@CMG?1fcC4sFw@Xpzhkw zN73&VBf^%xx`!=AvlZBfqdu*l(5mh&!k6D_+I{=Z{KCIoXgaB^&Ag_ugui2A_ZWX| z1M9gMndn-K4QiwLDKH6amfdO!xys^T6~T&EMt(WMn|+Iwa`;A7c`WE++rJRvSU}VR zIrL)$yx&Q+?{2CvU73pOE zOkq|KnO#tfVp?Cfnp%AN;Rbh<|GUHkFA}A0n2P^)R$ZNDvGi_01|Q`N z@>@5Y-+jgR*7QS-noLy~4;!>T(9$#FZ<*lKub_x2NBuNbp+LWC1Cm4M^jV-0b4~zM zzz?SW|DXb{Kd1mL02T1#a(B5>z+AP3|>6`9_KZ(M^dB0;oB(> zauKGnmK5niv*48<&xr7u?$ed9ze&L54ZWA{^>r08C<$2L=#<(e?It(keI>z)!vM&w24^i<4tv4_1*pKlx^0775xa5m|J zBi!#ucBwBRU2C^jNW3D$ERrhD)diV&QG+vaAARy2xB+z@WT*uE5(?5ik5Ia3q;XrT zHuR7e-AMq6=9cuCIt0OdJzhdSuUen)(YP;roWf{BacIlNZ_)C=*j*D4pLBVMNe>uXNJF2|jG(!N)pj6y@^lYP%Mj<;8=M4#BY=XWvxTz7Drq0^uocS@trmGCmCo;mf@?%T{m;saae z{S>UfbYt)Wj4umIGwhfK2E15FMc<&GI>%VLc9V@YQ z4vD@o-9&ew#G1LU)66gR**O{eKv=OzstodN)_>+KaxOl@>Lk*_AqWrRPrB_m4L`T3 z0>`f|{u#2unP&-lh9^2$QTal|>?3GtX`3~@5@qL=Pxmt&>(qlXv$Jgrp%fIx^M*@P zg=n9Ib==GTs12bK_Hv}!jMIh9wtPWlzVV5E~0q70tD+5oz;<3 z_9&n=5!An9ZP-TEONwpao2*b3;mr)%E~tQ-TcuI7N^ue-y)PPXwO9IH%&)fbHY$7q z*A_)kwL|JgY)B^My=o3wv(GHNdszCq7w5EstAt0WjhVohXghX+YS_#puU*p{)oh6u zPYTU^``dnn1e_0_1i+vLVcTuSxyJFzXqh^Pif|9FV>lM=WqNm*1(=upS{yLEC)a1s zNH8tlgPWCIVL=k`-I_KK}Zw`TT%<-i+D`uNm{R(&L=tb2jtB69z(3Wt`_d z%SP5&2)SW>ef0C2wLr_u95O_eSmMx&iTjB+iy(~BNuq?3Djfyvdt!5{q?&7B0*sh9 zX>~?mv4hBf%Mz5XM%-(u)9Isc$AO&qv!5I;vuqAzg;oSR=vsKO7F@9v;p13sF8Lo35WbGMdvgq`evh9s96#pGaB6~+!misa0> z)s`4fKnN#*;3>17DmsV9*H<@>QOFp?L&S?AwCu_Rid0QF;k5^mpb92RIUEv5TOwv!^qUS^+nmV%;_enlLI2cFlQdgSdGbCDVM4&p|os zcj7~8m~*hKn|-A7NDVu!2DIFk;yutKjQqUCs*b#y`HfOd%xBuC8&RxNvar&;HEb*+ zRBOgD~tJ)a?7l6e_AlDosZu4(4}s&3l)%2+}D>&D8rgD=c!+J z_`L2ia5LWL6Nk5dpLyVJR!mD(3g$Auvb8I8pRhFHz1rlROK7gj+_TZm6fmR0ZbdK6 zTPBINu0jSz`9i$+?YEwE0vUM+7$nQv-Nks~(nWbZhsX?WTqlSR#)QF(m#y5zvU#oa zSiUdK#uz8C{d76tANBem*IgN~Rf9*yMCTj(^%)+YRj7bHqheWp?7g5L`jGW}JZ(7< zW`_oqy-sUn;L%Oltyig8%DzZ=*3CeRFZ@ZrQpiAl2UjNHI1W4fI(f0z|vRBt-g;p%yzKbxUv(5oNWJ1+pCxAz=opPF4m zJnDM$KGg78qsgCms z{!;_n18?vH`wv38@(&^1_d!T=UBy8P(!UVT@u@J}Ol&%X8X5roa=FPG0c5OOjXyoj z{ySq`3&>dKppAC2Liml3u?8##gxu&+oyymsWmkyIDeZI=n26mxr*2<3SiGl2i#!i; zh){w^KLqW+VQF6g?oh1^j|d-5K=;TFA;1YJB@R#QUO!y|4pSW$#mhTW5+Tqh!RS@o zrFsxgH&-}ZoF~UK`I)06j81~H05>OfMr={3cEYApabqST-UelC{rV*Oi-Kl3^3f!% zn7f!kEs0l}gP#40=p4DiHE#gpa5k(HvD?1`7 z{Gq-102)JDo`_090$kIl4Y-c&Jhz(vmv7s)QX?o+6i{t;lqe1=zoo<%m~jj!qVTz( zMJJ#ccPqPW6i${n*Vu1iA5K8JkqW#Eq!@W$)E3H!HU<6BI?lR|retZj>+2M22@!>X zxV7|n_0ckdGI}W6I1@ZhQb+nx>z6N1kjelk0Ql7s$27VmTNuP!c=VQUro@Y2n4;9{ z_pex_TIw2~HF>JqD4S5L*8UKU`T%m64EJssZmqq@9L*6URB6WIwvo7L z!|#%dQ9~T`EF3>62Jt`*X01apQqEQmAPiKQw-0wkh>;VaDgbHIuk5TZ_ zk|iUwzG&zd6g$3T(p}6TP)SuZ& ztp+O(J@2W5%CTFKH>Nd5`GZyoFPH-{Y0l__h_13y0(EE6qG5MwJR?x|;Yx zrE1cxHfClFz6ay>GyQ10$8F9E#}CGO5V-WO%vtQm22S_S3g5J7ezItPkR;~>-I2Du zg^Q@X<+F2Is=bF@4K#SC+$w-Ch^*Z>kNC2uDMXzk`V@8bxl@H%0O5sS|4@!z4P8=|! z2K_yOIS;W>T~HqRkUrbc%+z$bJJdiyM#R!c=9_)dB>SmDw1Kze_N%+|2I+JHZAu8l z#VP_Q%JCm9*`*J$A(dtrkyAA;hIaY|l0hj8UTi?bmo<8vBZRS{t(d!S<@a*XHHaRq z_%Z1Zrnh@kF1vx%Z}PD^_Zmn?pw*&;Fg>41;%eb-X@}f7V)l|yM&sE~$#qV@9WG=v zX+Cc=P~rN@p+WPfqyiEFWf)`pw;S5-U7vgKar=6|Xn!yP$JbKv%kNL*nEt4Tf!SJJ z^8RWSlVU3sXAmEW06R$@hMVsW8zYZqL(+&ZL1$ADkLGX;s$IxrBE<(oze`!0Z9bTQ z`F#@LLK8m?XHtRSuavB>a`E0vroRYX`l>M{*o_Ra*ZQ~(9^yJ`-BNy9BY!ULXiwGL z$+m{GCM^>D3C^5IO@s=F1Vjq$e%7j~YR#@uTx??w3B|}6wI%*cK6;}N?=fCw#mXQM z=r@PK!TJ;#E!`I}ju<&Vj|*S|x~-tpK>jcRbgh?8rjUAz2Kxyf=G1}f^$gF~#&gOy z0M!>f%B!F|=JipEX{kw&y@)v_)9nbw?l|-p|Kg8S9@JjHPWHR4Zvtu@PUH4OccW-Y zQT-`{DBRZ5MOdFJ-{5d|RlH*SI zwJx-f?Fk`kn(J+EQfpHktTy7OVHq+7L^J9*?5JEZ^;8zSEG3@bx7vpWQ8jh$Yzyk$ z%~t9|;BOXxFT>L70WtyM^G*y|nGHb`t5cfYyy5N>BQ|FE>k%Q8!p`?YKCF(4ydWQ$ z0PM0;M@|{6m@lktGAhfzYRs4Hze^%zPSQn5KL7ROVlrnkd6>uy`pUsPA+Pqb<5KmKL|212AN6(Kc zRQQ?0Mh@~#4tZc+YVaA<{k-FKG*&N*-7EWig0IAO;)=$O@~3!OQG^x4jdpvAD;JwO zr6BK@G~*iB-nVvRMGCphivrM#J;&5f&oTtGzw^Vlp*2#XRb{lYP?LU}HRli%HPpMc z(PvKjxNaYwe&W?|Va3vj0teP@f}EhirFPjNyKfdSD;l$^w8^Thbw3jVS)stSg+A{fEU za=#&bW*+&vY_v94&XS#72X0<|v(X8aw7IfTzdT)^lJYAr*Ukm25RHmE8PyZssa3lN zJ1)I*Tj>Mn-1fz6735(D9d4W~xd19Ed=%ot=P&JecWF>ZFHSs{mL3&^69@e>v$}fY9h+ zsprlGwft`HBo3%PF0l^-JNVHRd-8ZMtvy^muBd_Pxsjme|zNB;t_*&r_4!d4P``5NKM0Pj|<< z=vku{`CJ@%J0CgN*%l^5tXK-hO8z3UIG&NXBwqP-p1Hi_Gw!|7u0dlWYHPHi1ef*Y?)u`~;L7Ox;f?=4UaGR4rI-H8QuVLJRAKUn-3k*@$OZTl!q;;S za?dCvN}=QC;VP*aNJFY+k{|G7dqs*HdFn0JpjubLh0@~yFCY!s{zCC9B&0Q+iWBPK zEEQZS8I6fk543-`Pex^5FAp8-SW;oerJSwDpPef6-;GjA3G%7DB`QI5BW1mAG+4|( z%d;|2$YYn!u<{N| zXp~A~YEzLg1T;z!K!09`;RmiAjP7EYSjA4AuK#XGu^~YPQjtt#zBCtvjzUx5lgy6R z1Px0%yX-f!?0sZqX24kmzSox=yl02R&uyn?ViWRE&9XtG3`L`N#BNFjDM(}GT)c8j zG&p0(Vowx$kLQ5Y>3LDQ^W`HC&|DRr2Z|79kdw8UbbbHLk!_QWKfei!WNVTgmmGwo zRmUUIh9MIdkxl@f=mujmyLMsJvp%Ir+X+(a za}VLr6cHWm=+guma8rG~g(CV9cn$V~3NpZHmXiI`@edcUg|A!67CEjG1@9MRs5_yq zRImHJr7z~g3z$}W4V?bt1yDrhdvA!KfM3|b`hoWe~DfE+Y9)A3A^~07eG9a{ow^T0=$4-ph1Gx-VZOpWHO8) zM0W?b6X)Mvz)ggb?Ej8kj9L|XNXZn(?TgM><5(dn{Doam{1@y(w;Ah4L<@9yZ#n6( zryDcz_y333McTixi*EO+zv|Fdehp254h`E+D1>W2KKE1MIi?d#YemLg9;8>HKqId* z@{O=tOhidwNDXc7Neht?tY%QcjDgq84U?a%4`@B#p* zx0{UMrE3>NJ>k>AU#FK6aC!@mcB(&xbi#ZBJ35R(PHzH}J_U5S#FozPi{;F}>d+*NTEpT)9~bN_|FSNM|IxZQ_+wop{IM>I z-&LRJ<7Ud9$Sx2C^Pfz%Z+W^8fGxSXurx%-a5Ym<5Jf$0*li-#ezN zxQOLUxX;0eDq#BgGMJw5@$zrIPHwjf)~BHZ|M!#oO0(~!U)7%-Xp>ik zY=om944^Yw)CLoN3ljF_gp#}zyCFw<1tuaRmhTEO?#3-wFs#-Gsv`su(d`o276`cw zceslop8hk%GS(+y7Yw=mk=2=kKoHa`8K{ori6gdVspz5YBKHFl49|KBP#y5aB1n4P zo+*8YP_P$S+g0)s>!t%4CkQjO*K7<|=2BChq{mh7-N7J6%RcF(rsf%Dv)f*$5nnL? zubsKGDr&u;!>J7o>l>txre#!EK*TN9L)}>rV3y^J1`ogd*DNdBJ0m6d7jMjRi%5oQ z`oCsbZRCJimh$eOSr+X&V3y?#m}SL63flfP%ewoRW#s~9S@4$=rjC7p_9&>GBNr3A zgRG(B5EX6k9WKT2qIGQ09`k+d4=>=20qv<+1Egjy*WBi6ZJL?nL7=#mcXi3TxWM7v z1Tqg7{9~5&f~Ecb?^)JI9^hk^Wn=@GWo1tvU%V2{xL`U4MN5Kvesl-;kw|_AbO&62 zjkeYM4(JZRMpq@yudDhL(J0_F$TLfHB{1!hAq`z=~VItzKH7 z%C;Dg7Gzo}(l!p366vT4~V|__Q315V9n}s4i}etxi!@i8LH?% zwr9ka1fKvgW&Hq5v%<(>blkgXJnKfW1?%Gb)Uo;zCj7g2JDkvRUofq`KQTzK7AK>F zKBVn&hmggY=b+lJq3pqq-SIMchU`BMX5^k2Lthh_w!<*2Qb(Iu!i*RZ372{WlC@Q^ z_0|Uf^X{p(#G*e_)r(*K%GsSDq0h{njHAA4zhy`CB>AnyKTI2@tiVEH zg;`aPFB&}scdDyx^B&0};udKy{tME{A?^`o!PmQiaBUkqG051H{F@(>a`Ja*T4?ch zE;?MPui!j+=&2FF9NKlZco;G?!JU)TnEm3iHhb#3Tb#?cwElCon4Nnd{jztdY+_vGZuoR51}*|i4-$8}&cxKH z(5s%~ea+T6pgaI^@7wD>!{O`(`^q6`nUg*JBr%FS_;Yi>WC4X%@TdHLBshR z#}P`43T80OxO8Q66WnDQp^^^mHW*I?J#55ULi|dETJX{CpcSP3h;qvpoWdJ#gS^ks zppza*Oaw158>+#L0Iys8$j{a6lrDdkCjJ6o0Y&impwbD=#+j|eJObhf-c{xO?9(~i z-~9YVZt=rV>;jbiPjzGKEXx(*doU)g$%SM>HES#tN`-F$JSQ}awP z(Ya1g4!e9iGaJsI(xR*4o0){bp)Gl&&cGACU)8}}F-UAaQ>B;`*J$DYHOhin&rx#( zkC@#3Mx88{BS1dGXz<6p{L=iX7=9J(>joda$m0QU$uEq)&`XH`;YDkv(-NLg%QO>_ z4)N(*N{GAD{19{KreV)P+x!_1D%D}YuYAVE}w!zb?P>LxW1({ zOx?q}L;|dU5P%gx=%9A@sof0rTabKfi<1xVl_nrDB8`SFyb9|J{Q4x5v2KtFUMC4C zq!ODXFSZ|+E`N5$d~KQM=UlO++#hbq6VMz>QWM3A$bZQ(aN6R`=EF*x+kjKQ3n4jO zYv&=uH03>X9oS(ZjCNbg)Nwnz?Ug@bXiK%H_#SM@_8K%9`9c-bk>LB9NL8Zb%YX*3 z0?J$|x0Q!GP}qmX%5vm~0*x3?+l*8XLX($xGjD=1xnX6yeyPLyv#Q{V7|TDUa|7A~ z0v#t{^TfcEfw^2$l#rHmmXmm+Pq0=ZWh#`ogKLeES+)y3mxv)Zd`ueh<8y!{Gd zEmUt~7`*K)n_JEuT%@Ap6D(kQ2dur8&EJ9(^1C(y1I+}Y&?{I^8FAw&>D6uNCvk2P zHa@fAb}VMZcnZ~YVIxs~c2b@tUu8omb6&hb-PQ#{*rsQapuARHk#ep1_KOi&i~~a- zN7nG0cua0>9Rv)=Jk)H|6MD#)h``IwC2pU)&PbHsZDABTAp(ARC5M0w!@T#9(_=4}|4DILLq8nQ( zl~D1_H1rRT(&0dw3tG-(IW6eBc{yFvPohlb1lrCjN86?k`%fm$Q|*f-#854!4QE7{DyklT{;5`)Z zL=|mM(odDAbBVk;Xuf!I9Bs-AJqZfBxegW zi{3JlNXsVBIf#6%C-4lUUas>ap5@ux>KmCmYIKxq&XUp#^A2vw@mCaADJ7=zN_wwk z_A&*TPq*PKF%2AZnoAKAsepO?F&zwWwYA852S&ENMVuPt6U6n!NkIo+ehJ z%U{OC?VW%=pL`yt0-9T^-DjXqu3Mg2tzj+mH*OyyPV`hVwN~ok&n7fK&bP_t_iSj< zcvIIqz2?B44>j)UaB#Wd%j~C&OB`tgN?c=SA8YKc=6RO(wwyS<8IDgoHFQ(xS3XS7 z0M4na7T|N?99hhgWZ`0!bmin9(C0i;ln7)!TA{1aP4zqCNH7t3Zt7yJ`GoB;AEJ}z zi!~z3T@b_D@;y{&C)(74cbQ6sH(kz})lX3i!=7ov;a3U0nu^%cd1;qP3?opI%T!X3 zzKeD${6VdLYMb_be4nS${oI*xwoIe&C9fpEcPO&Or->P@(W&b^J;WwGzJ#`_`Fn}g z5lag{V5%~C7Hfo{khL*y8!p`O65eDfw+PSPTU^xCX|Tns8;a9=%c7MFuWWMm7Fxkl zD`urx$T}CR>g(^PaE)rfsfx+TB6wNjcFQ^(+X{9SdTD})LFi|epdHPboK!hdn8kZ1 zu5VQh41?ggq6^&W-wWXgAC?jjCsY#lCpxOqiAuhu_=@Nb?o`fd6~pcZIk++@WL+_> zc05`UezV<^N+O{(Y>&K_W}7dVfcl}$$j;+Aks7*3?t;iVi|XT_co0~o%S)4A7)&Pb z>cf$aG{S?CQL*JTo-d^cx6%bNwc7ro-4M0Qq7^tIEznO}gzX7iZ*QvWVbx0-7Ix)O zpX!R8kWu-}YnO(av9mYDS|}=T)UU_YjE;}jyr-pK3#Qr+FQoFgj)r3|r<)l^h`3;k0_O&rbWqZt#j>&S_B zM%v~|$9|QgcWHr=B|#oaG}?g+m>mu+*w9jU~452cV+B#7wW-yFCUN`o_sFOxtABb z$XGYuJ@B0k6@T^IxK$i^P+a3&n+4YvjTdb{zi1m;KHu-y;7rIPe0qCu-}2{a3js5m!Qf3sMsj#3(2ydOB_ zRi0f{`1E&+Kn6!7t)*Kk+s&{?Ily3(50`-(f@$29-Na#*3V`pyBFYW0?FbRyBjTV= zHn&s`H#XFi{+euUWmHTKxKb(kz>P;X;mHpM;F)o0!&PnnMF#w>^Dx?6?dV=K3XS-1Ckc;aicJvC6d|>D7s}`ibM<) z*Gz6jM>p&wR6_NJAsgqdfG~2pt0a{5z9K1}0p=Udq6&m$P7nO+#;I2?2xfp}6V)S;;Jb>as)oMRU|q9t#T zVUTwYhL}`DyCwj^rd+;-eMt%+*f1Z+_dXh?Asav90RkdFT5Q&-pku)W8DFTUJCPV} zgaHJbp#ktO_>;g7f(;N47`*w22SEOdV9Nm?^_hb7Qv}oq^amB+r~u*t)qr?_@c49m zN1ln;$w3$(9&oT39GU-N2H3&P9Ab~ZvNygp$c{PcU!!U+z~4C~Q1(cS{g@`%r3Nin z5)2}mcOg^?YL*1o@(8vB>WRzSM5NXRxB8o43;!V49LJ?1ngmz|z2tM3+KJSqX~V^l zT3`SI8^<4kt(xLKqf-@IXyQ|3meqz4=4N5|9zO~nR^$ljdX{%Snp9Jd_f-q-0}Y5z-4&%p zV7F`%f{Lr5h@yui^3>R$r*<`gwSp`QV{&wjEX87PnsN}*WnKegK(0|!j=w0H?g}ys zs@LQU^RaEu3sz`C8DZ605;LT0XE1Gi!{^dnk-?MXQR<;-1y;w=;`kO8D?{;N20&9=jsJ)SeG!lFv#7;s{(3L> zVFnC9pK248ZvIeVmv9rNnyOa<8U3i3HvW0%2#w+O#TWQ(J!=rL%OYby;i~2~`_pW~ z$^HJL&uEB;QxHGwXvAFwX(zm|TX}o1OUxRL4v*5VS*^GDjs4rrIn54&F`aOiwsEV} zyYi{EAGZjj-kqZ7x?&$OM>mbSalc&FXo;xf9U|AIw7P&F`NclyO#4=EyLh z>Y2p6)h{T>7njhd@0P!7Ss&jgH{Hc_-DkXg?)#{M-(^MSF2j0);#eZP8j{a4=p`d) z?`N*@h}(|mw=k05@KsxlKuqwwH>S?yj+?)I{ZIq;5;VC;gibanNgk30v=$A_w{!MZ zVa6?rr+H}#W=3J=pPR4hd<`F8+p0Em;=VeYQZ0vw_&krRBs{Jfk) zF(~pq+2K1C;*j*NAS@35d(h!-Bnw)AQ&E2x(U*@_ws)cnYj7g|*xJZJF&r_<>rKR- z)5y^;evi}+*1^dk%$Jovkq!FtVi`ZC z=>;|@*)wne!UlE5IHNDJ4eN&zQZQ{)C-$_$`3GS;l}`jb=?k9E`GP@ue-)+@OEDB~ zkP5ZFOca(b67{Tnprmu2K4ry%$H2SW|I5_c086)vFQ09YCOw9|TX^AEcV}`;zS=!U zUio&K2il|G{7#C>D!KV?H5}1ON=IE9>NOBSZaik$L}WC^%LRxSs#=e8f-p|F71Q)B z{apk~kl@mTmw^3h7;d+`8 z$TG&flA7klz5%^Ykg93TX1Ds=zv1~uZXM1G{Jqz1ZeHDtqeUQ(0|#{Vpnqy6f2aW> zPb!5m5_SMJKuzycQJ}#F{1NyXNLTeKeZ-dK2K|HC!btQ>;@J!!BLKpXI0dD`%n4J& zdai(Qr&69Ran~jWbQH8Px0X7Ydq_J*l#=8pfR7l`ReB)lsE4;~e&NA@A$-bky0&N3 z1jX5qMO5^=uqLhVsg)lKGaro_?Gx1IFM~lMx8}+Xs}4Uyxg`L?HiTh7h0knV1jq;^ zd#+WT(4=I3&virMr16y)DxBWyMI4`>Cyb6xtFsDY|Hud^uJCnU%J@KeJJiw@f3yBz z19HJW*nn`|)SMq7Q%Jw1nFu2=IuOj0`L&)77iy-B^FYer2iBZYTj%l9b_IzxanRnm(nk(`yNuiA7K!sy3Qg5G)ky`hD$rR?~ zf4TwiqbCnp!P!+-K&{Q|P7G^b8wSo-e`$4dD!5II*zf7B$4F8tx!>#8rL~vf1L~}^ zIwINUSE5t~Epp3$S<2*qH}P%AAAYsMbBRuoLw6N_iId@B=_uqaXDaF2E9|PqKM`uA zze52Xq;Kks!>UH*D}|4m#zAySRtD5rySmlxr~nu?y`O=^7Mbm|Kf`U};`XXqcIAMc z%eUQmAbDb!i8LLxuW}l%~>_C>> zDeKidiMmPwg-$o{h7*!*L7$E{&}3pd`knIwiW<;rR zp0oda^NoQw`7FdK1Lt!3MF^-vQr}M#?l-MMdeNiPtdhH>x7T&O0Fba^=52k{D-l8} zBx{5XcYO)AxO7`3Lo5kz{I4Xk&Ngz%bW4qfB^m@fC4^zXwj0lM5^89vn|9u%aZ4U^ z#gJKmgGZ%tWA0J)ROOX==VXGf+@50HQ9zGzS=WD>c6>0ECO6g8mVTn-Tbf%#$oGR4 z1uTf?+BoKH^kaOloft9$!X{ITx*g8%JaMAa0%wKm{nz<wb1C33ae57bTIM6=Gm`RL~1E z?RQ4@&A5}P#VwR+el*tpzVAfPC+( ztOj|e;|P)^1}R6_2T_qn1HT92_S zsGSi2Jp#X?xd5wGBRu*RQ^Y}FuAxSv`3BKRsfj-nJI>dc4~jhNRiF1Tip^KEZ0_k{2;T+oxQRXgFZ<7%W1?RHN_EycBvGl2p6$8-cumeV2 z2Y)d0PD|#XiiN*ct6F{>M&F7i(o*;6#cPzT)aDlf6uYpO`u|F?Bj|H&EH8gh>=*3x z3)I5%_Mh1eXLf6gCysmgDAmdECH)k)t#-%f=?z>^tz>Rk>jkQbe;i* zx?{`65Gs%M0N_dkAdk0Gkc8A%vQq(Uaa^mks75gKE;D;k_ zU^Gt_S%f*jQ4XojA%84(f=rn9^fwdiW-*zX6HZ%r=N|1(ID?L?Uoz%IbojT*J)Uv@ z>9MsBumIP8JG*}-0snk{k6byRWA~qG22W3GSAGHTEi^U z@shqmqrRf>I9h-NA|GGeaU9%P+Z}L91Hvee9QSt3M=5Ic30xRv#YyV;|Fel4e_I`4+@&0?V)Ama%gvPTpFXCNEJG{^$MVMHN zyrR5-XEXt%wBZ*;uTA7HX58)4yTYH5*relH(FecSQ9!TCsJ_a{A8T-Rc@U-}S8(e_ z0%?h~%weStutMDR5#fDDty&Peg$&3IV!Oi$e>5tE_|giPVfjHpIRR!^&sZ~@K{h^c z-~6I}y=vH5aYg4dOREJnoyl?)!R`2_Xm!QhQM;(rqP=n+uD ze}4gv-Yn<+I)nva0?0ahne+x*^S~7E*nY1p+{N7Ah26O|y*;(pFs^?(XjH?h-<9cXt8=cXxM(;2PW= zg1b8e>qYiH=ib|W&g<$|)m86R_dkl?t7@(J%`wM_p%54vn^70Rq~hz~3?U8KbNuz!g8-> z819c~STQI%jgZr63Ckj#xfHbEPu?r63rb=YVm-fjMp%U<52CKPz-{AvUOC(m>;zV> zIRvYxf`GhMt}OEfLH6LQh+6G;atS6lSh5A#)hqZEo*a;4Hjb&uBLBq}3#J;ad};H>oF+C}-=O*Hd52<1=T2p|D|K=K5dn8d^2sUQjTibu2nK(AFgXp8 zV4eYcI5{CMCrYUKuW_WViGvNaDv;|IWf7)g{4m!3*(>#H?iC>{j{s3Xq+s$6cK9SN zZGqQ(U{;uyI&3(0folA%)9fSjYqqmn(svr+}Gx0Gf7p58i>EEINV6q-f zeVLu?$OJVzVd;QadgyY91Vd3@PW;#lSFDPxkpNh11i_-kxY~=y?Zh1BR97G%;!R_ z$ed;5ZJ^@}{ZYs2EDh9(?}}@$7j~}XO#3E(OaVT>e}q5@#8^Bml)>eGO>=L@i=zSc zrNW5H_QMndaoWFh_$dN)6O3gxwPRT~b+It@^4$N9W@dXx!4&HYa^qV}e3@!v==vfc zWAl4(DA-4byD<%ze>706xjf9bsHF0}Y?Wi}yg21Cii~5PZatfdnudE0!sU?RvGc7M-uMJ5O;myGIfPXyZ8ShYHKkP;zac*rt57OafyW1zD<$WBB@ zF5};6^Ra)dm#{Z)dEtGuoiP--nyNyol3m_JyNUTa;42}i>~<=KZ(F5IV*=5Xg-uxe zU>qP&y)N-a0&JX;qj;c8*5O40Of_aZ*IjZ<*_5nq?m=41v@6kYi^N#r<}a~a!*|5h z-_z;W$f5CLHTaChR}wAxRHiW?S(5Hf43h7N?}wwRl~89hai0ekB+ z@0}ZHtKim-_H3EeAHN_;*{nWM&kx zQ&g{_Uso>i%uqxYzjfRO+wc$1rZL=?w^3U3_g`bkZXho~Vp9G_&VM0dSUe62ICeiP#sL1jCGqrlF?!v6h!8OAETc#I402}{YiTd9ua zPD)f9QKxjPG3Pf~z|Z1dOA~0?T3jSl<^@Ti!8F3(QCO`jhG}vyu@S(HJuhBa_jxbG zvS+tKBlp+6D|hqlcJed_TcY>%b}^EkL+NEY4hA#ovI<(QEO#c>m7icH+k(WFR6@hi z(L&RSGRK5W__(nVAtkuA7Yavl^ma52Cl6`u#y?l+nvT~%5d-6C8v`@BP zk#4gc*wHsRQmmK&8Uj4!nuU|k=F+XGiU2Htb=lu^D9Gz8$i#P}$-nH@+}P2vg-d{#ol>EZYx-4FAbv zC11G|CX{0>`p!Z#I8Ie=Dl@w{3MX)(4CzC!oSr^Ir_`wvWfF|#&RtDw9rBZc>r@16-%dGM%q?akQ?_z<@RnrR zpWA!DimIvB$@*5HFCLnbxQp<*bzSIwt;t#43k~@__dWLLDbbpID-PZ;l#Ni>dlk-P z6{P}Q6?65)P8r&%kb)mFB!aj};5EpQuOVJUF8!g`=B{fFDF(x8Xxu%_87UslJ$FB0 zPaXx&MLVRfFrgsMQK#;)u@v=~;oNvt+9g*!C!AhN=BQ7wue5zvPgI+Ds;IB@eTQDT zEFK_3CA{g?mCM*Vl&m5Mvgs1okUh0?o2LJ68qpTHWZoth)i%e}xRAlE9AY(D>A;CK zv*1(VGLUf0^KZn&FqK;HLX-47IoHUm^R z&$WA|au{=3^VyZEt>jDLWgu7GYhy-k8I?{WcAp%i8L+iz5KD|?SW;LTo4hsfFOMzw z*{)mH$dX&7lR6N-j*TgiT_5?^eJ`rZXno=4>0kcF|8<;9Qz?OloghSF;`5i~&9#fC z-nBfnq%-VY&5TOTCi^6eVJ&=?sMXjKghg=7%a&j8MP_x$V-FKX8_45X*(im)zxH}z zL7fJ^5m$g4F@#BO8EXLbB=DKh&UDgI2271t_W*zQef4B9z2`;|!UEa)E~yXP33Xub z(vM!?O1r*F>ai?+mHr!j)3Kop$RMbK0a)wmT)14R>F}nwx%HG3VSSU4u$)jiswKg| ze?;U6zAMN>@1a}@Ni&AN#Cd)TJKnxnzaDo{?4cE%np7z<+F>+-Te~?>T$p zs*C##=*fBU_Ag(+1J=jiMoPZxY_Dp}Z)&b`4^F^~illE5YL&my>8pHYez=TUVpuzL zJeLSw(IK`$cyvAsbu9WKzJ?>h_GiEUOWzvx{^;Jna|N*db&NW4+~!1o?^JshP?Vkb z87}blga1O_VQMmAmx|LV`_vDz%G~7DZO|15N4hRmJae?Xyi!_JZv7*3iqxF?PK`*EmqOZTm^4a5M81f64$zhHH`7PEVXLmy?oH%-4J+6$75ttlL)RnRv zpX6PO*I&N1*sQH#u$qySDtsay-`>qm98p8kqBrEQcOaysm;-%bwN4!A&rli+eq{t8 zy#T-(`43>dJrwhpEZG=Mq^3_i{|B&sNk%{r;pxsqi1fnSn*2KS=;0*U>j{T@429VZ zdKko{bp?|jxcT8*tH22`sO`kb9ekXs>j-xi^GDnxg~3jKdT4$Mx)W!5ziu0^>3E=v zNRG$kk|pK!qEeKv8Jw((Mt^m$xD^w`L}Pa7T{a^q4-#?kHxG3@U0Df z_}1()Dq%-a` z+Skl|%(k(ZPR=gkASLSklbI}XQBppk8cZxS!>cEl{`!Kz)?3Ery>N+XgiX?b zDR*`ROWFGvJaF#1bVfiyKm~AS)!Zm7^_CUEUay-y_ znk&mE0QwkQZuRDC_PIMF&d%}jtcWyWQTwGcORlOB16~t&2|UB+C`nXy8?Qu%wvlfD z-CCbGl!@TA!NZ^pPXOn8@b3wF@|{m6L*J}#wMx{P3jEZbGdx~t4LgDKIzd&-F5^^9 zHbC@dsFs3j&ZG+*4vy924QmO>lY&qzX=!x(Yw?EImC7-XmHzYtri!mf-O!J=pt3o_ z8DP`mOGH5${9gH|yiddX&EZp$84EE#N6jE)?Sa(eZGGzhaXWa91<)O18I+eGk{YG` zF1hIJSc;~Rd!arA2jD=-& zJV;!Lv)ixo47e)f+c)Vj470w3Dn)X$-^vtRDMr;80NP(pNcqNx&Od`wjlE}tTVvxj z1%EZ?Tv^;&O#}R8;sD>;)t>ivudFjdW-ij$U<}eLWTy}G(#V#Hg>}Nss z4my`wY%675kTXM^(YIL*C8+LqW)PXKLNcbFbRr}IhTpsV44CYfrEG`SVSB+|0r`OV zPrl)VVo_cubVK!NRrrZEl}}Xt9&D%UY;><^x_*S>pN2a&YR*K@8%q3bLEnddf3uGJ z6!W@R3gx|T>01=xtLng0lNB^LS@TnRGM-$nBH1Zi2ZA4NGtLjyK+}FmH2N}k@C00J zAhPQF;R>S->Mk1*-Jv7`Vou~FG(wL13-rUa5Dn6P1oFWX2c9!kE>&N1cy?=IRbZt|a(4UXz{ z1C|h2>2{cMqb~omDL`3!t569H(Zw9`+fMdRqhZKLLlN2-b|^t;*ss79E+eG8ya}JQ z27-kAA_#hK3*m^hJ;_Jp=trLG>yqmpWwTPs9Uh^S|Cj;*#vo^+U4OczUi#1$YTfF@+l1y!Rw6DV;UJ85v~F7YD$LcJ4_^^LxZ-exDAs~ zAhXlAwm+tTmM*}cv-@ER@Y)sWej)$a_)HUan>CmF5NyC+BiSFqLqXxnj<_dAqmCvP zpP0E8e^p(~_Oy;QmV)<&*^K&XuTY%v?$Xz6`L6EF<1;)62G;Acs?OY8ZeGLt zoecdud95dlqeuChaE1Bx1PVv=X{2?pjRe=&%}`HMJnT(W`gt(ZhLPFqJXBVyHlJj{ z*cjrOky!&u^fwpWFqKr0y4spgLZk(f*Q!<7R2B?4h|kgMH7CKblziOkuD&B?K44!a z_Pv@@z{`h=$SEdDiglv5Yvu{|<8aI1RH-(X(j^!j7TXtXfG0VIUgofKy;XkBH=(k} zKLJ9~0l=an<%1MU)u#oCgISkM=61iJqtzYH_z><(Tgzn7U^sOmqfcl#VJ#Y9+e!o` zhidm5@I7zRj?3%CR3__JZZYR9?^f9Fi$#X_li&K)#pichqz=BStri=0#fy)91G(R6 zv_^|#yQHT|L&LNa)4*{=yIY@qQwYZ|X8Fy}%^FrSAXH{{I3 zB`MU#p|~i0cuvdpmKO4vt7Wx5ll64)7~)aHd%#A%9p$R;SQHB)ww4i7uFNB{uSKLA zuNXXZ6rUhEw&n1m;s>3gYZOb#YG~797S>T*aLo#H+Iefd23{#kBb@#r!p?Wk+cYhS z%e)>X=I;BL>cP#HTtD6};2X&U#B`%xcifpdm{ClWt~k^5Pw9?#nM!D%W%~4TYs|Kr zdMB5g)YI#Fyympk?}-y|b$BFVK!X!Cm^G}QUA6TNZhvRSkw*?_iUeNR27$@KHTU5v zDzZgqf}2PrPRZ8qH{Z$vd!``=JGh=%(rMWssMQHb9yF~AAU+NZ8x|k!ld687r_#^) zJeFlTuEm+-$<0(z0&i9Iqh?pFqS56O_}t1T2FHUc;2JbAhKE%56(&WfbJT?N5^WU( zdBs$xDA^T_Cm#<*`AV{qs%h1myIRX@&>bhUm7WsgamvlS*F*X`qlij^`Clt$83{a5 zvibEkjpW$2=6&c()?3i?D?39^4s4Y|Hs3v967*1dn${)Q{06g{LS?s=yLU0g_z`s) z_e~s~QWh>ixcI>>!KEM)LNfUK<*GvG{ zcTdQLw4x{|-_NCE)z{REc%C%ddXpP5g| zoZA_99XX>YmS$BU@wpAX&vP@~1$wqsb>rM6AP2vg=<-;+{ww5Mk%`486U=O0%o$!Gj37hiM-X+6nn@JV)U zil3eGalM#Sco+$kx&U(+K*ye&VtQuEAoRw7 zr0t*+eTU{ahNYip(K==8>i4jw0Y||Uj6Yc>>)yU_VS3u~M;;-Abi;3jaFt|}lGa-x zAD}8Vmy`;JHAr7edzF4qJW@LROA#QTGy$*#2-qI_{F>?*9{@-Ly5`~6>AH+@qY8a7 z>CiBsp7s=)k|$^P;(_#SB4HFg{=@@p0P%oPKs;a|G%#=S{a+H+n@8NTQ6NA-mN5V6 z&FWWEqtB)eEPw8%{+I7ne|G=xj0fC(sVExb(maM$;@MUV%n!A1Sc~JsgxtiP4bYrK z;3MI}aR{!yvVfAN@G}fGXBHiw5T~khD^LwlR+mH1>!*~fyaA-DU*rH;Kop_b({d1561SOg zQZs6Yc%hn>iSP6>B7=I*vIzi+Y zJM&TBivJM`@NNE|K>_)2I>d#Gcj-+btp;?I@H;K3-QyOym05Ob?XQ5V|98Nor6>am zh6)4$1O47|oB?XCV4>51DNCL+ zt7tXSMdS*9RB4mF`h?*8gz045`1Q`&Ab0g*6}@Q(icicX%*HYhFlA}ddsyrq(vLKX zgSEkX+^$VEym&g<0hoZmeRxtI8Q@xzjeRoyyNUe!$|-X6FK!@Sh|e0UTrNFNt6`{5 z2$sfS&*2X>mwQQr|KBnwHFF4*ACqr`4YQ_^$?H&>^~5?=z9Q#^XdtfQX-FH1s) z5c<0Uxmp4t3%)SlpsQp$K~Fq#vIwp(hf=gs>JVdRl+s@VPr&PpK_%>Xr8l<<*FYYj zqXG=vRTLb#o1CGCQm)M?OT2Q_(mQc~dfN?Rt56(igTgS&2I~efHu}5*H$sc0v-{G< ze@-lem3@{+b{2`U3X*UunrJ)(@kZYT#4xQki?K$Lrok0PlYsQdFEtNGslz}6n}QQz zy!2LYpdv^me$sq_0M~SD1)e6wC#)jr_x=IUUh3JRyJcNj;eU;6j>T_bp3%vQAXGo- zPdf7NlyQ8;)$&JJ07lvSKmu4_i%!dmFcMg4L}g+cGn#`uEuCzQ@PyDTxjHK++Ziv= zO34;H+ngDN)aJD_3(I8TNA$!v=rjV?fMF<;trYlK{x$`e9G>`9X|=*ve}<6R<+$)lobgJA1DFC{i!OrE|Cj%v7%p{8 zdfrPttIPvD);&SSfjCJ?Qe)yqlgA$ucr%v#<9s#!^$>kBM>K4&kn*udQVWctf;7x2 z*MLhi-%Y){zWN_}2j{Y;QXmhYE?^B@X-Rh=J)TxNR%YRl^FR@Z3CK zaS%@Q9?%Q%fnbyb5p~h8BHdJ~`ysjnYAOWqNAGB?YKTep!06ppDW8r&s1-gk7$K!l%Yy(PG1=qcHVw9E8g zD8+K#s#>1kx6WnvQxFF}L;;saww82{g4F9eqhpZMsIPWBq#6)!%Jj4xqQFsLk7IkI z{*VOM!T9}~SA|#`*2$Lu9-u3t9>4?4)%p^@UZ{NfEz9BH`VvaEsCTv_?5o4wn&Qtt z>2c$tWAU1rhn~7ux!$$qBGBKDlcbB$?BrV%xh6ooqamxfxcQLu0R(I_YKSf$a1l_9l+!M z2MCyaeyXq(N@4M;Hu&b5n2ynoM@fdJ#b;#hEdy@8{Ur>ABVZ@~pk}d5S{LOtHtzBn zw8xc@R2Na%_p4sFCaW6Bu)&R4>#qOIrv;j^D^swI9u|!G9<-%!85M-Uq`i(m-J-^Z84)vvx^l`jrXz%KXkb+Cd*nf z2F$L5RMC)4O9g-L!4g&Du2WBuf7YIiig`;XfsFCRx0AMJ&WN@F+kG16R(Vx5@lVpk zW==LQEfan0Q1Ss(a@gDrK1ibXL`8|x@v*5M!Z*8fca@c3S@6kT`2qpcNi&?$Y zK)M30D#M3qwhEA33W6jVz(9)LQ{zDe7upU6-8k46#< zKVX01Sm5JXwxwA4$rj73Iaa8qhYKrwAkbCtVvFmpijv=jRbk=$O<<{UJw`W%u6hwo ze$+nQe!Jr|`$Fac8OxS=V2#a%=?$DGe|a@uU|V%lISzKwK0Flm^RvR)azwNM@ktigf!ZFGRkxP!hlv7 z11`R2z65cUSd6H0g0kRqo7`;SSrJJ_y^J zahbS_oHMUL9ojpSN3IKMQ3ds@S@#l-)rw^vfQO#&>$I3Gnt!G!240J zxXpItKHoIM%&^{IVYl8|G-YLrdp=gbF5Omv7deq(e5P>p#Uj&{i%{;O!jy2fc%3uP z3Py@p1bJl4DDE={kxH4pVi|3<6yt8a1o0`(#TlDpg?mP>OmcUAMehhs zR+&pi_*@KCtI{VxdKSvMVk!_1M~h|P6q#aIeI8K3JOth;x1af)l;tR>=n{?T`Xg#? z|7k(9{{R&6+%s@AOy3lSE7}!HM~z*p1%^k7!&2sI1#^O#3ENiD);+6=s;n4}C%u>Q zfT&~p(S9cHn8tA$-|>L^69GB5T;&P+>;~*aC-&qmy(wcBKIQ6tKxrD$feU*GZvkDu zZUV%7SoB(kgQK7sXY>PdaUc$!yfzsEedAQafZ!56nbQ?B|M_XZ_T*aC#Fqm`&1c%# zb7>i;U$_V=8~1I_>)bZakk)z84&6^4`Kl z_v22j6-dyPHi{pX^B70QA~Z;v6vSlW$1H?fR$)L&)UYEv&fRS@Bm;MjXVn}v8#KyKMB8USW5cim&Pk+=H}B}ldyDAe!4D=Z z!>z=XLwPi78Y3T2i`*aqrRGt)BCjIOL(kCZonek}(U#AOC(DxQ1j)QdV2PRWc=nw2QwU!ra2CyhN%d!V@cayQ|Ackg3Ss* zb09?X`h9C9HFzPWT_0t<=T4R;5aTi|Xl62xZ2e?lN2P!HrTU5Nu#p5+7RaxkBhJz< z*r!K!%^hd4sHLa}jcTrgyA$*`+q=eufUwUmj@NeE-vB)T zI|;xSz)yP&a0hfr4|W}Q9%a!R!i(+uHd3Q)^c~$@m@nG6oNdchJrIC@^_dN<4#+z9 zwY%8c5bfIT6YM$o*E?1}tX(Gs;5bD<{hxNMFSfQ$fE|nDAIGWx>Rv;%3QR5i#fUlP z9q6A7oxNnJGnj<xMgaSo{onRA016Op2S~Cl{RId7IadMfYaeicFpXd) zdzcq|-sD$>r+?bl=Jh6n0roXm4$N`*D1uF>@ivl2HGqB1A^}l$v^))<3ec3#%K?0~ z+hqgnYp6E>`x@M+=f)pZfWzScKo#H-eI93zXY51Z<0(`Xya-pbgAvgx_hwKDMlGqEB5`OsApMP$vaJv5kMvE6=~1kp$P zQKZbhNOwQ8=K!L+69@_JDaIIQeHup!YS}8jS4! zp(OD2qa-kWcm|4O-WJL!yqX`x+b&A$m;F=eGJ>@-W2&}NhI24MAU}Xwl(p)UMeKse z1f{AaE6rRgb8en47*nImE0F~#Kvw)xD?5v;VyV9B8fUevy)CpxqGo9vK{r+W$(?R< zS>%OP8D8v`oN-bHOs~k!0M`Nn8PeH4+mfR?8b(UWHDZC&=PW*ACvIv2vW5h*Dl;sGK zA+=0xNPAeg{ME}XtX6Rnn#Bgr^hB*JW8qBadO@gWFZ|uC#RJdzC}{_Rd<0MOgARzy zH;v=Ua)E$81*aRmk<8wACrr-)&;i22-9_!!&K$X#1KRy~Nk_;y`op|QlvZm`)O#PQ z0AsSy?@0ah6Ta&_KQf{I$k)nK0IC2ho~BJRfGU8xk7S;|_!mEH3WMO{1rS^V=VApqld94PP>Mj!8xW@Bxu3;NuRu`6#)cmVPu0zG0b$!C`HbeeeNs zzr+5?2Z;ZZ4+u&O68_)=NP9r6r;*3ffpEUl;)IGy1;;!v4Fsh$G>F?s@cZP8bvbCl zd-mwi3-XO4F zfb_${H7;?-F~GN!^ak+X5r%x4_y7b{l~?+^AN=1_AEC8XU07|Lr@)5HKzfQOJ0z!N~y#&*jC?m;IA!=2Fw zN|@^ya2Ch=7UcO#hz4~h_U+~+J+dunDrn1dKw*6nd^c=LXrQ?YOQOPmiY*2J2n;47 zh|a`+00L1F06+ly_013937|&xvnX8ZAPlaJ6rAmfGiwEl!IRV$HxY)4UYimXp?X$PPuF(8UXcRV#=5mV)(E%c4B!xs@;`FJeUhNsxQL zIRNL13Y9PQ$V{#^Sx)>_h~w15h%^jz^%Q^NsW*BpxT8Z=Jwh`Bf*tEi;ibqNlxVCbXfzFU`SA(QN86+DGRCpVYj%*xMOR zWC^-9)WGla*?_|plefy5r-y3-LSUx^(B1j28?LkbvKTg(l$d<;Y-@*71Fb8fOtV8y zB7hILUbvG;leV3#z^f&(S-}O5?VKr1{pp?{$3>FNH4clg$j6=~Xf(f(o|s8=Pov_-fSo0}zK-YUyq(nq7Gv6c&OEcU zK+(Qzy=<9A!MS1o!I3^*5e*ykPELKNk6s@VY#UuLW8sIv(VHlFOA& z6Lc?HI&s=0SQm(Etta;kA}-DgNA7KWHyKq~J8BiOhY_qY7_++jcTT*}+I>(HN4n#r z8vbC4${-TP^m^-J>YE*F#Yv@keN$+$6`@(C^LOTz>f^yVF26{$4eD?w{W7;)<~0xu zK^5jb)~oR4WpRZOrgMT`l3680<6vIb}eb zaA%~b*9>97eC>EgT4n6f*aXI+h-_HC9!P;F+5_DSVpq$T_RV&p?5&nAxV8*TE0ilo z~^rasrODpq9zgx1z-QNu@T zF)%?9THQavE2f_c>Bf?{XHo}EQ!Ee6yqr>#tDtVMexH|Yi&Me(S&0aOoZ zW96hy8c1((v;~XY-mOm|+siI1jn?; zx1xm8lbn_;$EjHmF<}{+APE{e(2k-yV7$Ddl9{2AqSpQs7 z{ksd+|NH7Xf2ORWw(IaT@b>@oSJ%=?Y%m+d1mel#h~g|Q4SNcfs6#iO-36Xk;Q4Cc zse%PkOAiIC=6Rp@VK7J>iz*}cdKG~r3(OqE)9aafd^fh2^| zkrib0^E#Y$ot~~-iL7`OHk|s4Y`KV52J`$vt1*Brra=UwDWo>1HV2E*BCHn7Mt0g%Cnq#I8qy_a^dNKn&p6-(^5__3F;708Sg z)kj(3u|hdg5nR|AW2``HVRy?Jm4xL0WP+Gsl7_OgRBI-RAyRb(uMaPD1%`CW7!^{o zYdi7t2z zqkfF#$7cVM2zxHy4TnJ&a=C3CKwNVS#XL+;PFt&rg(9_}JcpfFB#HB^Wp+_m+~_^) zgf1JYgP!!G=kzehxv~;#=f{dy{#PokE$V8cKCnk6H1>nGas&rzc=8+cI^RiPPe4!? zfg3y3;+@7i{Wqq^Cg#)lvXl~yZ#HHyiTo@HcLWpin{K@tF;T#CFh%SBSnKr9?OBj* zU_+thpV4BYnrv{g&!_je{LGcw^4`>0eV#+&B$k^S#uGs7j#@sS$ZTH2JLv35DVkuN z6h0?^Ydg22aNj5Cc-AEL;wYQr`|cZgzm(h`*p;l?ZGn8uJA5|O&wC&$QkcN%y@oat zqX8UF$OjU3nZphI9wc}rH*Y#*v6k(;X$jXB2%8vE>t6PaC>kj;;xpD@gjztE(jz*T zK%12hV_I(^ou_s_V}`_N=&mJ4gOQFhj4Qj!v~Nn8y9))d#|)o;_*+ihEC6h|cT`6K zfGtuz9RRRp)|dJ z`mb<6v*1`0hm&3Qc1SXOrescp@{ylGmm2ca()xYVD$9=#IH2lbUuppXnqUTRehU zt{-w!1xJyXAU;F)O#?MtW56AU3ULY(VpsbgA_5UXn;)~G-t;N*`nUe&3$Xvo7l6}y z^??SE{6Pc6KhS_go~LR&-pC3dxfP;Iwy-usg-2{o@@W*1DAvQ{s)JsZUeYI=$o)S_ z%#w2`ev>yw;mk{s*=x+35M+K06eQN_TLo8-F^~F!uFiARq=!!HX%`Tqy{U+;@96Ck zu4Jvq*xziyYo@S)X%UZ@;EVyv%Rf6-8bEn@^ne=k``ih%EwQp0;|;1sYCaz{?9 zKG`RGo0Jt(VBi8Jgbevs4 zD(cCM2j@T~k`k4t#hn@eC5eOMX zRkiclpRN_Ro~DJSPwj`5ARp8TMNcfu7l5>u+0t zpRyutH7Ow9VTzSe6Q@`ZkzeOenv##A?ca)OoR79TsFYiv{PQ_2j*wnko2A)5dgJSC z^^01c{v{sZ?rYHDv(_aa7bw!A9CJUYC)6<0#ZX%pYz^C6Wp3q zBl63~iuEM6X`$aL%m8|aII#YX;A&Ra?M1C{%Hb-M{gy?Qk619$(a0$w$-2I>fiRrt z-<1H%5k}M<3zXd&fP00M>t*DR>h5Jq?V^p={?>WvJFv`gi=wk6kbBpq^66!4^K$*g zSH=c>e<=8^$w|8v#3#$etTKuEJvER0t=#5=3>fHlrER6QJ$jSH3Vx4>G++|a3j~12 zj}h?pDKz<~CJ2<*{cJorNm0@|30rn_{_?-5rh%xZJMch)JrYaIw^%f)Eco%0(ZABd7^>^s8Nu8aX z&Am!2z97ciY88&2>=*$+4f8eaAt$gIgLggrmAvYvOEa5T!%&zR}em<|53wKG4=4ZKj_DICZ~hu!*KJGi&EiBaX;+pIQCe! zVPOyT2fcgqDxyCb`KVz&(qX(K{S1s z0p-Z$+4X9|4+X#hP{>3q*Cw8GSQk$!d08PZva~?MDXZ7?o63}KF!Ph7g?~+0#~z6TirJ5+~YQDu;G^`LSndD3v3N!0m78XE3AZokP@p`wS z&)v`s*~!&)Y!T(50Z6UmP)tra)H`zAd9&dY~J`&xURpMN-|7xbICNDMa?fBxM9tr zToad-@{A`+Dh%Om#4g7}2-}mnM(s(ZMqDMR5qqRJpCtbhi{|c6uu*C&SgQ2e2X|K` zX=9DOWoXowY?`dR|F#-w=IBev1F_yX32mexG;v>NYQA?*T%alzqB5KfD~zp6|09rp z1R|;a;K9lO8L>R@m)5GxyO%?tRvLoGSt_d$TO-L>PoZ_XW$_MJ5pjhAIH9Bk#pj`1 zUWEA&trP4y&e#)PHXbZ0w7X{=-wQ0#TL*8z1PT@9UIV)vFQ_kWB4pif?n(%MlE6E^ zW&)fNq30+BH<*!|`t6DOG-KQ3HG+$4t=yxR5ZP-d2G7tUl0Q}k%> zR*48`0ue8I@( z%>)(V{wuq|QbJ9+A*`TOy*q#@w!*ly7ME6?HvGC@P(0}_2*j?COWXmgy5g$TJ1p4( z^wF`-?6a;@X^0Pafmft~0ry^E*~unLtxJACWfWL#-Mup-nruPd1vr)rU^u5l}wo2HXmq_1WT$A zxlS;@kNLY$22cA1O@jZb1m9y*@7(r6%694ucyOK)pYJ{ zc=_|ArW-?tIvU5`HO@IwqT6oO0^0?eXx3&Pauj20c8>wN>Mj!hMZ{bq#uix=69-^q zBe4~AD9e-tNj(W9gp|AmDNQ91W;T@X8HI`?b;cPe*Wfdf=ZEk61~TgoFX9UVB_*L$ zlb@CwvI{-1NKN>lBoOyYO=A5p&W8~9lau6yRq++T7qcpwI*ik8P5fN#?H_^DFGU;T zlh`ryBJ@IP*KmgPCywLF*yFSSXO#Sa0nO@p2NSnng6}np$`vz5@i9-sH_}$vI5${W`>aemeeE`77mieU*IMcH}^khB!BCkPKh7;N{^YsDr0lJ*m z`H)}wfPctqz1vRUd3wNCZO^^N4ueP93{daxZp65UfomrbN?PDM9MciSe3+o!W(VK` zhD9OoN)&f0HDDRAiu!^32S-q|Z=5A9INE=^XB3>D8l&?D4A6NCIlDvHJP^XcE2Mou zPV4h^ZEyCM(=^ry1LEhF+Y5z}h6HX2#qB*=@_|f} zpH3mY;hSb@GUW5|0g%|8uDLP})CP&X9x^aq1SmHzBqiF7i$x6+3G&EXEk4$={^&D| zNMc!F%NfGEW#?f?S) zMP7r3`y#Jpz|$}2%=b9)$Omh1!Mv0l?(l898!(10{)Qy_A@DCTpvRdGuVhCbM|T7y zf#PKI$uj9@G7N8gLZK}x8N!%vKTf+NZr>Y*f1rk32=PHma@w(4j0t$iZl0x{VofgV z1bZGLz#f39iL|=!nTPlj#`(K>J4D5LIfAqU393kFg1lEINoyoWiAlN#S6Qfsy83?6 z4CYfgFRbnWVMgz**t<#43z2Oe(4;UPWKU>ySe7d6I7HDx;GITwk497BI3uoq2dpz9 zJ%y6_$iAkiHxcySLa6uS`=F0YIEFkj+(9(W$Dq81IC&8X=1D@CtpN0reI(mlJqA(X zj!7aEbvgPCTS-pbHu_PD>RBPX_8oU9_z3K#6Y#FPD=K-pVTcbX>qREx9qa_~NU5YI zVkbf?gHlbbrbT%&1$y2it@#^+2LdK)&&SwNItXoRM@{@Ra}}ygjJ$C^r++tC-|5U@ zUPb!M14ZSW3sSHGM6epiCpN!bK2u7*J|Mn^UkJQL)`50-1gVCeGs1AKwI zjdtr3HxoTkMKoTziiZbehyVbB7_;WGIPM@fGKfEN=n;+sP9_RbtkZl<0e zRI4hL#jK1eb4~IL>BENey#Z8q-2Mlc;!mQ-&#RNE7W|{d8subE`(qXao!<^{@q21V zwfo#x`hhfYZr=nzVaz$?&(lU{I_*l#(RkrN)ZYk8=uMF3R$&!v9St`1k~-4{F>Xju zY1;DA8RoXSzTNcAHX2{{jgj2dFTBk|GQttKm4O}CH(Uir%u&O_dz;N+&Yq22}y_YjzMk!tKrT!6aqp|Tr6t;)YfURV zO9U=4S&5AhI1}3Xh{Q6|^PkN2vB1AeFRR>eA0bU)weer+QtS+aUQ`bk(s5yVbHm_2 zD}DjkR^RbNd_qrV+E?k@0RXoCK$QaS%+~|gIEl_p#WTEtcqrdOlU%;6Y*q(9f?GjE zKK8IKVzXBCN}i`J4@{52`MrrW2-k|}Ho$}pD9**9;_i+^4{ zy$5M0zT21Gt;=wx^HGvEE1bQJOj-nM*SP+^`q98GNQUZhJXXQPeN}4ho^eC{4Kx9| z`7k?eT&Xv)%waZB46q=O3z?mXG}KK4bnfcOR{X9@OCRg2)qxv^Tj8HYLG^a zr~?v2LeQX7oieyX55(uApu@NKoSjUj$92=m2{a<_)__8uSJvsL%_x})hbcmzt)%Kz z8VfH$OZcqs9of85^(7ZbAn@|q^Kl*2R2C{hfC1NL(yg%tJXxWP)=lw!6XIAwCl`3O zYw3H^6SWG%F{H1-gQ>Oa>S3nyGT*_}HQ_`U3}{TExKeJ;h>{igwGU*49#NPOnjVg{ zark{)UR>Rfv~eY60Y8(G98SeE3#KQgJkFGkTC&`rhVpqO>EGAEF%M+{1+L-fd9DO0 ze0UU#%O|Qo@vjk0hMFcAysTl3Rbn*YOT;vNs(2?26`Wp}v!gtJoA&}|JsgVyO=P%B zs6B5q#|cIlj3G6*_^3&(pvT5$%x%laJYV~CWmM90BeCW%dCnuF_wmEKit;c4)DHGm+-NolsZB8@=l$D|WkW5=i*eAw{430h=Db2*WN;AG8UJrKI2kRu z!D=SLqCbv>C^+U!uC=4=SvsZC-|E@1QgJp)aLTL(>r8^`^-V8Ds)&tFfBoJc#F1-=XC*F-l(6!I)*)vC;l06`gbjE2){oD)c-6FBoIUvGID&wQDAg6 zDmUb{aa49qAFJABEIT^C8RaSNN{BU`cMyeOqo!e>D09tBm!5Y&MH*RK)Rzw!l|LgW zy%C`^XXk3v(z41|^YW!45brP8dr2WV3lUWZlPay_S3IvZr+;56<`d@rfh?7q7nIyA;nmDIAN|=>_YyQ z@sGa1G;1#?F9)Wv6@4})rXfgjBc=i?YY9xFp6Cib+5H&UFbm)u$9UD!(88pwe*gC5N_Sm<(eWb9H%_G0K1GZ{ zaKSK9yH>gdf0~F0ih@bn)m^v+TW0qpYms<_8AMT3T#st}vgbr12JH2#kU+0mN1RUeC@$*AL-2Sg_Luj8NvX&2R=?n+W0A5=MOsg`qo+TNcYbsFJGD z3+KB#26WB<-4imzqBx@E!~Gd%a5t67pjOKZ*@YSHq2aPdPMHV3OELE?SJ=j;`tKYs zbqlc!M5F6`b{eG!3huW@%Gst~xz_j4#aE(DotJgM3hHx(B-ZDaKXRBfACg+_<(D)8 zR#%QZ7q}J!@(rDpfW{5la@3hR;HMOPmJKZKKAoX{<{ z&{GRIDCl~D?|nZ3{I#*p@)q3UU7Yw12(NEb-Ou;jaht!L%|SX(jGtuQp{_VJ7yamk zmYV&nKM#a59l8{Q_SUqexQDM{;6~`ag^Oy_>H5=&&Efb!-?yop2qLK`O_jOK?w}`L zi~ly@%n7aTp;eYFV8UotFo-z8QjX~>SQcS7_1*TB@q&Bt=6-y2y`WFJeLP?P*ClZ2 zbPf21|HSnoMejR;=q`T*+sSy~&CTKJxS7kdh+pbj0XFJZWd1+?fV=w_yNj)BgW~ID z-~ZUCn(Dgg{=XX4e_E-clu_F?2BeTn@E3%D3pP^sXe4rhlctd>i8)ApidCXMcoG0! zXDeT|*%A~087-2W9M0`e|7Le77XS%qNu%V5GBi&CS4Ki*5syKoIo)0X+=c|HI*Nf_c3d2i_)l%140(9DqmWK)~9L-6*1~ zg2+Mu4x++4XNY@Dkf{|zOzJ&niEFV$UNs!=u|x6#T+Ncq(5fV+59vFJ4{f~(!wXzH z6w}ExwT_iGTi>fswj~BY1*8y~t}F(jAyXB4rLdwlLch+%L=a{L3G@ z=bEZw@<9>e^>VYflW!iw9ay$mcncaai2(Wl98wUX7OkI2R&-f7h%|iggvY=sK?rZ^ zEKx3#0!8Dt(*~gP6+6nMyPTCy);zTkAG8M``pl_+)f5tjYDU%!L!GSG1Rg~^vdcsx zxg%i-j^F<=vj<<8p8?G5)g<`uo%=AV+48CXn%Rc|W_H5kJzc6mJx+>%J1D}wz#FhP z6p%r7lhm9s2j3^>J_rO_HI-8YwvZw<0 z4v#c%o6sibP}mDPQ>hn3CAR5{2|+oJ9{E`UWmg|y=dib|#k3w*{RHMq4C+^|~$IC4YVw+apL`^*z)`(Ai7x6X8ZNO0tp>*d@Dk*bQC3eSpP32_aN(WFYx~X~q|2h#=zyXGlbM zRWX4#qKsNp)Zm#|tGBlAcAd<{iVo}~HD#4gXvR5S(rM zqQN6@xy7BCL5z4^^3fxf%ayFgmQ|^>?tou0?{0Y=dM5Alix-W^{X`MuQS}lFYWCbD zy*2>rwtgd>?_i?4m%M2Oow)?!*myIpYcXoD#SHpL*nk>-H`d&6psFFneH^S^Am_ZQ z>FWRqiypA|fe!9kOBS$N6meO2`u6n_z?z?d*fQs9QaJO`DH2B%7ea4-ahV^jOTj39 zn4s6wM!IlH66-6MmRuMTN9oR>wo|Okaz7j9uzSB>ShXo`zLbc6(kCxg= zsAk}K`#MCs4Wc=UGoJklw4bTSyz%kw;kV@31OsmFWFgPU8`i`<{ur ztz_V|uWh#<8u=Z)>pmcf#bsn0Z&(NDHGaTgylTRSt~sTY2$uQ6tQ0ZiqX#k=^YuS? zkJXrYD=8!7kD%WcbQ`9KS+jb_#qLdjyuU3XaXUG8qL=YS38U6wQ&`rPW)w{`L03C! zdn5H?Q8X;XyjPgPbYgDB%IlT&v|Q};yg!?Ew+~X6;Tzv*V!xBgsV)RXfw|Km{DN4} z2fzKDf=Waozg=LnhlEqEc*9t#iL{rpN?AD~Zr5_GSD+#)c$El6sEZz|kR?HOWmR^q z9jmXd54>QFO}@DBnv_Yi_)wONs_Fj|sFNV*`n%IZ`hjmcr`{h0=6r&0{HoW>{?7hC z=Nb~YzwvRuM;d&gK`gGA8UmC^0^s7|OS(xJI36hn%Y3Wyv7nrkdMF*{RK3tctN#w-?B z3@H=vomdZZ|ImrMdb|Y7Y1G#SP1CRQ4E_-Jm;Lb1y~p-z8vY1%+P+83*?Hsduwmwt4&1>(W{!ae2K)n1YS6mJ zE$Wuv%)pL+L{Qg-)!c_Iyg7x8O8E~aIzzH_h%hhj76Fm&KXxa|JeKk86Y94olWan*> zfyr`WV z`q?+%ndd4`>&*?D^9@<;^ZSVR6Ft%j3QAuh!)y((L)~@4WUIk^aS#&Xw zx9B7~8@&xQgZ@}|y`X8j|OzmCxNTsIJ^9-+gO+I83YQ6gS$UQJ5Q&3f1%Qk~L{)q?CrEwR?Bn*~|V z^1D^KLc3&L5db@1=drh4m`G?^E*xt8gY(zPod+vKm_DlIVSp*5v|jx=zP%n{dB_y) z3>{KeqH0Bgl`LzWU|duS$`kC!pr^GtMqvNU!fwWmS1)&7+9)NfZL)yfJaofZ2VbPF zyfv$&)&Y7bYGaeq7+U)D&XS#6%44w#`ARH@CQEb++TGZiYduOkIQ(u9fT33Eq|SFWR|72mAeTa0iPk z@06Y3?IRRXYVhL}vbrHF3B`V8T|gGA=)0%snT0TCCWH|psAd22GYul$vr1fc!|XUh zWN~BaLWjMaRkH(8F%9leXW;4hNeoX?1KKQ8JJMgmIX3M4294NSC~?>F@%jXN?t(q{ zKAWMYS&lZ|wfYj;Tb?TjYTC5~pjz*$Q|;n_#?`sGnWF>w7{sZ;(*wo%$dc5i1N`Yh z+Y4O;%(xQ73ogauTR~aMSg9m@VdT|5vzs>t0PWnw%3A4*cFraz!h>|o$|?UuidAX$ zPV2NQu*Q^Z1xC?)b0eGg$A3#+ld8B0+b{(g!e9iOmybosEuRzF0pP{xmcZ$YN|T?y zxd1R4fyE;@^85GJFZ3mFQ4B=F#^%q_1(z7E{+Saz@V5C6%-`O~`f)+>Cz*Q#R5clc|eZuZc zpWm%bh?*lfvo=FHL;PhlODb$jXgBgtbp1uir;hF*MVv?ad|Ukt{$u0MS9J~%;otS~pl-*8%cQENn4g73WvG!e8Q--6+LG<65C|vU4GhEUf zw?@k(O2_dU5c>^f8g(}M%y*U(tloj(!4Svpq?*ZEZ$slsY0(PqsE@KMc~ye~H{u}K zY@uB_?ty$Zxy#ThF&3nPJ!pYRQ}U~+3xx6eO3(W6fLE&)WT!NjY18dNOtYFv_kMqJ z>O|YO)-F{roSd{LWAu*vB)-TqEKp68xENMJu1bj-*6dZ0%|FJiS7T4_7s}t*0_^=<#fC0m zq2pGZhKQJ4!9%s;YmD-OmlL;pGw%7U9DLGc@0a}$=_uy@4pCE)CpU@Jnc?V5HO!;h&09T{5wd1HDUb;0-dA+mP;ph7ELRLj&&*<|Vi8RdFDmwLseBwjO^% zZMH_T3af?&3S;VbVnL4tzRq{akJ}oeE2~yCa(t-V(*^Q+-QPl>X}U)|%j^+vfKZa4 z3@bAUnSZZMUsd$6eCYeJH!Z!!x`(ZeM|Li4%(J|~61@rrP>Z6OkCyf@8^!@~zZ?7c z0X3atp*sNAN&XW`P(k~pkO83t)`_-!YddP!+uXELXWJ0$4+)%Fq|&dSy?H*^L8M>> z_vm3CKuAe|P$I<04?p-V>=(PhBqFe2^(J8*f$&R+{rYg+QM1I`a9momL{;qfPKVO% zs=&Yzn4LWMT>)tWcGob0NI8u=Fn?m&d*|uLxqm~+ZQmCJ3J^+wjXqdF5T(;t+e{2v0u+=ATp&&H@?%3h9mb)lXUh`pJZpVn8ZU(;xkxsYGoN zp_d4v$A=Zs^2ePLHA3UUNdQA|D>h0yo!?7!Ri)FxAbJA=%Qy7h6ifqVORM~yfEH5^ z$qE6D)0Rc|2C`W6xoW~`tC8XDvSF+Q+C0yE3}%m=~)cU{b0(L zz4WtaP-?Clk&TZT&NRDXhgr5DQ#pBfUp0fEN0QjP@X1iqE^K<3c&+w*cBZYVgz>cU)X=vQV#f0@3hEAJP~pgvV~hk1uL znnT#(s7!+m5mo2kO)%bTmVwWFiyuG9D-)Dr9Zmb|-7y|{%KfH>4>6;{KHvNnKcj03Nx><;m8lfoo z4WORP$DsI@cS&sI#q9EcdC{H4r8ie-E67~{CaHFebO4(~LCf7~)+as}X)!O!r$g9oasZ%G9j6ZU&X;~%Y7OPT|(Wzvx7U8A8R;vEE^V=5AOJKr_j^A&fdM_vubxmtTtxxdBrCwWU zuWuMNuPXAY8W_xP6vzXGN!t}f{a#g8L(rKE%y}&C+=4stDc>q)wq!RbZr=d0N!*g zgCHx`)T2JF$kON!1^llf@UPUwF10%{ zOdCH7irC9J>~}ldjd?Gvd6aFl@_WdRJucm+Ag|8Jgg)}`QkM;=A~qo(3qeVdW+k?n z#MiZvR@RvS>=MnHZmxcdy69`TfxDo-#!KwFv~BZWHrp5bOfa7BH6DFY4b;mX`33a| z(IzThaa))I6JC+{M!H?B1%WKV7$ufRbWbREke4u>dbfJV+iNH}7vPQ2mdB~Tx4(bC zkGc$45A6;Z$(6tHs93Lu7ZoCNJ_E_V$vw@~C34}CuGImDlImK$nPIPQwt3pq z9B{<#m~y%^7W(<%x~+%sn$8Kmp-fPvHV#iO!;SZ>*NwJI0OHO<_h8SyYX7F_>?Mnr zXjKmj@jfLXuG)RS$ z-t<=aiqz8iSfYR23!oV)@Fy6|VrZJ|t)p2IJgc&~U;R_rzajK@a3Tku)oDV;v(Vyu zSiA@jpak?Lg{W&U^=>_U_Gc_rJD}lpT@gwMF3Y4WUOldD8$KR4RSfvH2h~oh(KpA{ z%60bV?Be};KMkinrANQ#-qdGPuaBB~P?keNT#8XH#np~S`6p%EQf9TP_R}J#^)>BB z9N4dN{n<5r0~gcDv&sXhw!PR^H|L;#B}~mxqv<^CuE-b-UlOL4AA`+9$e9Bk0`ep3 zg``YNV6%?^$S&l(7jldjTp8j)>AW(ZUiI$6B(`ETo$5nZjSkFZ+0SU=mFYr3qHlmvGfOodR^CLReDJ#RDQ?rM#l5v2^G6K zSB`wP2V78D&wQOWZRzQasW^Kb{JEE&N+C%WUy=|Lpz&a^YDY8zd($CNG z6v@Y^9(oSVJwWePuzrH}DY(HTPsKt`Vd?kiR~=DvAE$m;P-DL<)#8Sv#$aSJYb-E% zb9dQd?9}f!RC{H|MBF7bLzv}E_b(YMOo_>qXH6ySC|HLNGeab;d@tmxuFy{J5204m z=ul6{yx%k?CtAjNT!b9=3C%;ns4@0h}PF=$5{17@eh$^7d)ZJk-KbXfq=WdM&V%sJm0)twABaoAA&OKQE8KGs<$-Xc3C-_O4LrrVgjh z#vI>Ds2Bj^bG;k*YrSaYrdEylh$WnfgiDI4^Ug!6D?~QUHfCm}eA2S&Zpvx~C;6AI z32O67)*&yKM)s{qVNqs^JVjI)o*UK5wu{l6nH*$O5||C?(9{jGOy)~QX?s&=p4Kjt z#(mjGyh&=R$uGUZ`VLdmbuw<*pue+BGP-;g`fI@1lU{8Wqcr6BBhSyPj^d|t1~>^%@NS zRTdMzcTeodm9F1#6m|UtQMYXaBTg!&gPs-S;JB`WrDZi)ALt>mFKo7ZPJj60yY-Y! zn6v^(SPIElc6bYJ$u2h)F@#7oeQr!wQSii>9kUWT+fvsa4r(|&DDB!eUd1HQI{FAG z8E4UB3OF0XN1(ew{Q4`LKcnDt`JcG1gD#5oPp>jPvi6d)cfgX$#q?${$CJ%|2uao5 zRMCo8rT#PX$H$MYxIrj2lq-nw?O{0IIL}k%V7ac~?~0gBO~JIVbJ6p3xuwyj{bA0+ zVF!{#^aY9(o_O|TJ54>iVtrWZW(AS69UXA8rDxqCvc-1NmxY!qx2_4gOx{1G9{Jnm zcq>7c6-hpxi&gPBBiE*dnr+=ryV~rO^PZT3ZMEptXcjzQ*EZF>T1?-b|8srfvQ?h* z9k8WrC;uPy$-j7|{|YJ^8j1fWUdgU!LRsz)rV}+ReDqKa7MSASB(xS?vKk1mHf;1EgWfSfQOO>xqm zpMkl10*>_lop59kmgK-lq6TUiV6S~f2H0y!PDmABjU?#TM}3dC4U7T(35<~*cr6YA zgI@Foi-%uNJiuXljcXs0_VX5^kjww|Ux%$6)>iaP-`flW?^sKIQ0zSm0@w0A;+Ml# z_Fso>=a<9Qi19a&?*De!26>!h0#h`G43#1!gP(nQ*7MI&E zy3%Zyq5jMK|LL$rmG1b*VaxoF!&Zl4U#150e>iMk(+n@{%|6p(3i@O5f_!jGW>GS3 zjm-N?qTAiXFjtKV6#_K^T1@Vp)lh&&*biF3YxN-C5M94TjX{@-AoziEcBrTNks(GP_&8 znN5N?2nu2A zewC)eNX9JxEa`LH90jtOn9+al(wOy*+wANf3bl9wk@ab6imwsH#;7>HllDrail~4} z)drC_K)~>ch*3Ao6e#|e#kR=0Ji9N#`z{2KR%)nj0-CjfJT>tK0T$bQJ>lqKfW@|8 zUtp39y6hinZTW*Zt-Lun4EWK%)LQ)DzWpsM9{&o`FKVrO3HZz|6gYaDjBfw7&4H4{ z;tz8VRON9>cgP`3RP7zd5!=7d%>r1F^3`B56@WG6ty5j0$0A%6%)%C$+b8zLlyUg8 zeD)u^3lRQy-a^2uh1Hagd4$l+)I_C4Z<(r z11mm2o5j4W%-vwF+6**u^O8`5a4S7%OMghqwJgh~%h%B}J>2?mo@yece0globpNJ+ z*Fb%FY;{O%_K)NE;(P$J#bcmJw(FHp0Y@A#f2xKWQ z(C=?apANS%%q7r%WPsG89h25&>QdBbRWsAib7svD!zWK((rW%6sC6j9C@$KFj|F2wS~oa-H>iX+k=`7glux{X7m>W) zanOk|(^>btH1zRZmJh81lI6$_*_FF(HpwTyj+1=jBBjVofN4BfU`D0Db{qd%BrdmCJMl-P|jC>Id$!sZU4rHy_}bkAKOvE1(q>_*Bhj z0`YOsh^qc{g!rewbcwDyCaxiEM|!v9FA_o{e-9wkGM`>wl@q=|7v=6 zNbnsLw)IBin7Gq}bFtaQjqNO|?oxmmWy;+^ z&ffD&ls2Z4{TWj*VZ8#o$`p5w8B1yTsIw!2_=5k&$P*U&d*Zl17S2W$dk!wM_q=I2 zvVChtc9XlkLC_NtT#p2$X}I{SQ=j9aN@PbP2l%;ad!yW2@Ic1?YHsFRlB`_& z58%utMyD7^*NALsfX9~geiWLYl}%{gPWT=c6L7F4ZREhxgsTq*@Ysrdd2Ca#-B$(1 z$a+Vp0Up~47t-q_J&sXX9HFL6`brzUN!Y_Oj%eb|=>kEbGh97I_NR*8ml=romrGr&8DILxC;xN*ExFg$a8wQ zXk!S)`rmT8?3c{CJe+kIzuh7yCpgcg1QOOcr79CHWTl{Ef$9Zz(%2r$dA4M(1I!6n zGIrpw5JV@wNsHtt+bh`8UJ0Z>EG^Vw)u&ME?Z(+tQQL6@pudN#t3o$!Z2v}OW)Pkm znT?UmZZ&;m!~kpXIjLb_E+OI_Z{M18f`*bCa&HT7>RR7xsV2$0^@n&2oHY@up2F@L zaWxBBVmmZW4zu`NPyF5Jl93y%yh`Hlm{A37n3p{uW0Eu>qw3nzqc9pFM zX`3m2vbPJUf8Fg)==Oa`rXW~|O=TnLyv%G?Vi+P{;WbnJn`_AzeuPv&dR9?N_IeaU zrL1A-h^ZWfV9{YVgE_x@ttqNMJHmu+RI{N4gX;ZcusnP%UKqgsWnG=Scp<`r0Lgj! z@+U8z{dXm!63ndhgOdf@Csd8{F!v3`Hz*V zbd$E=hGohoJ^@Ru zBo^$1467%Ssv~7R4ULSkx{Hw=tnI&lj0-E9Zli-`HsH4`quhLI34RQdZqvatVmW0` z`mk{{CFmMlz7TohJ5bLlh`S1FG=u?-r-Y!H%RE&5o+3|H7$FlL4@)Wp<@dem6*Y~U zaPQtIp0PkS3A>ge`rDb4K%0*eu&BU)U*zC?6*2$)puJu?$uGcqDyb!HC;|PE42T6H zeUlnyjDsq5gnJ4;7dAjrA0rP6c`Sa0w$Qx_ z#!OL=>gXWmJYo$~lix6UiP;qBsk2GTV7^Co2ip3VYqt;AXWj-tIZpPn`z?IK`B394 z>mq2Tg_58y=BSWA%V7}0u6D^mfFbz2x(%*q>-6tFUg~uUfD}f?J0N2Tn|E9AmPMV~ zd2QK-ZK5_dfZC}MG+Q&f{U(v#-NTk4=GA}`_g)%IwLgY-;sf=CC`U26Q6(RlqB^IF z*}yEI(=vEP5|G&YVCjNkR{`3kAP=k4f&9XF+ zWZM<7M#>5cc~O{CU6c*rcg>GqsRZ8vh}wUNwH}%AxsNgg==X=-^ZcZH{4QJ0av1jT z{;9r=6)Ic(gI~B>z-^i+;5Ln)YUZW{QU{!O<1=q_ygM9ln+Co+{R#e`>>vD2WbQcs z`8JJ(@qgc@aUlEX>3;_906z>SE*VHR@g(XVU3qT}j|-HNY9X7PH2A(J08Z1mvk9|v zvIh|~1xa!UP7PJ!KmPUD!iv#B;g3&{w`tddfTr2j`qI#2RE2u9q7G{6TjE1i4&SUq zjD3E*P5Zv(u%2P2%$yNg8s}fDyY6yW%PSjmq|}J!dM*1Ag1Eko0`Y-cud&ilfzA}E zXXHy#2KCeyK+zVP3s#8!rOt})Mw|@#U#MF6q5nUscHqBJwH5!OYLz<$b^)kb_=BL> z?{)O?00l@zmq>*#K>oq`Ob?G6r0U0I1LRFBrqWXC1&^P21q>Xjc?KYS4E;B%Ht#>8 zYV~JYrhHqbhl|)Fo|mV+L;iN!X*6U>Xt z?pF5D2~=MX2rA@$O5dTsOplRb&%(_J_c43zBt*#^e6K|=z-03nw43YzOTc*OUsP>1 zYR<30j6zX2;o-2Q$8UpMJ5wLbSi!FVk*y6>!WH!7J7dE|qV$BlE7>@iQu>NPtAwq#h?NOeMMf!< zEt#v9Nt?_?7%D_*SuI00vdPbxPT`NUOfs^zu6D4Or&N*ZMtK%l$|(N<@dg<+!_Vav zkt1G=6HoPb*Cjk+3Vtn+XGY>Kn|G>{|E9BiL(@xRAqf`|UkemT$4;0sgtyQb+D5O| z5#b0#h6MDw!a>3~8cB<3URMlIk9K9SP$3B1&`nk0EiD_TXbRGJ{mT~BDkBST+Hb_ z^q3js&F84x`>@Qm0W-*BoBZW8Q4*~KhyzDTv;vryJLnns_MCVr?`8}(&~ zU%roE+@dCnQu&2NMahs~^*3PB~@bmn@bNEksllFbYWELLyR{ z#LfA!-R843aH{>PS1Hi)a=(Q!2W?=VNVR{`2peMrfzaZKI56I^?MwZrvk)>mbqN1T>3P=#Io{me&6KDHCtiK!8M%jyD6}D32M%llT~SsyQtGLfhCXVfOD-e z|CsdM)FHM0K18(eOEe_%jvip`iumTSQ_($s>w}3{? z;8*+QTN3V@Y;mfR9neR(6;B$f01g1M!!h4Gyqa9 z61xR)U%G5m3%TH@mOFoVsm;I00v?10Skcgp znAs!mdYuI*=%AguiF*q$w0Oey4N{PP@SjnL(p`}VZ0evEprA=efhCaxvSDDu!;VpE zi~>k``;aK!GJ&-VIdzVQkux7O=cFWjd*p^3Vj`AA65U?C`^g1bW19l$&{qk6UM80b z9SIOQz%A@6pTeQ{w6x&*#Hz-;k$*0vw3?o=U?QaAIT~6rEXu)E>*C8}8~u$ArP4z= z<#$6|lb&Qjc8EV)@M5u_zGSw}`;j_(DsftmYDmYRQ^Eu=?bd`TwFr-{F_+f( zikPkBVwSa&8s1uaVrP4`ocYV@I7m=T;s`C%qHGpAQv#0N3OQE|_fP$^IjP>$xNG_eru6$^oR>f zk0;RTe=w)dN;tM4oFD;_5Pws(|DHQkP|DQ#L$!V7=buxzz8DN4!Lv2fL;I;iKIg-S z2StskzxYn5ieM^mWe|=BbR+?@evhh>)90bI?DWE?ysOq#WMNW` ztmgWO)9O6A)+0EN#m<(TIWy-U*xC$=Vy2-9y!~s*>h0YW10EP}EYL~z^)-iec6}s^ zb3#OhEjfVnvGfn=W6a;S)PP*Extf1r>F!}-H4e`a#T`??yIe^r{+1%sF@(-30}Zvh z&6*`9*u>6G)wQ~<`CM>=tEpp2TTYDyNLxuQOPc%8x{jCGCFK&X5J37!s+{z+w?}sQ zB7GP=Hjw(!w7X!)8^x{}^!@z7qw$2t&aH=hewve3Oh8L|FJDn!eRm2mtb}FV$5c}h1bWe{q`GW97ngOZ4lL_k@oE1f7 z�_Pv=#n_l_PaT@y&{4+#iuS4>~3;C6BaIzsS5*uaagBXq=()?72wWkR}Uk7fkS2 zF`^tc39zcDoVaFGP;w6Ec`ojs?U$x+$+%6~$fw;_P=1LKO-dZQuIo}RfHzdh(@mIm z83u>vEyb?qb2?gh(Da%&z^10UAH3pR_v8jlIy8nsB5z?YX{<__^p;wFZ&WkmmLDxB z=aO&J2Z2BX;rM+sYu?IzZ9scM&o+5N1=OxUeswTzi;Y()JD}$E_y=}E7DTv^YZZ&7 z-)d2l6wO1{+Gfd%Jc~xtb7dPkk8LYU3A*gM#F1q!9h11!Sz;jX5OUStN zHk9{Tv*^1FtbtRfhpnfAK72y%J=U+b10zc^;q zWKDpIVd_4}E8Py5&;1w3Rr>e~a-7lyS;JBB@1~zWv!z_l+jPZ%S}ARJ8Ilt*@)E0G zB6Nsa>DC4b!Dz}cwA;q)B{L+8wd-}J`_;DDrbrwzq{lcI2cO|&#TDkPc5r^{jq0W2 z2KsDHy?124qCCI3b3fj?UL2mUuPMI)zR}v4+SsG+Gcdm?G%s)A8L8o4*8O#8g$Al? z7YQTpNdN!Qbq?%xu5G)G-Pmqp&e*oq*tTuEvF$ciW7~Eb+qSc3*ZRKAcmIhwkMp_i zF-9n0GRJnz{(Rr=LT|=k=<3$*KY~4N-og$3z$bKZ|KSPUze`G8!>Ldz#Wy$n841p% zzx}9HomAkcu{=mrVmQyI55T@GXo!|6(B;d7CfQi6vp}yVK0da^u=lb*Qs+(a{qs!? z1FCXXj+sA(aJ8Skef>8HbK~2vkG0+6tZ>)*s3Y(1JK~tLAy*r-b3dQY%g>iXk1Y)g z`0<$EJ)De0tGYQ9;0R+fQ;7FxT1S}{Sp#w(6H&snuK1hvwN6=@*b!(P)MOUcD;iKK zsCOmvbq^Sm6?|c)KVNWULj8Hi@9tQd%CQi3QUxia23{@$h5;Y}1PT3KB^LnU8SJDJ z0)&yZtc&#c0L(IYE{uhWR;! zKlVUDC_FFle76o+yZevvqAtXT01^nOcd_hT>!n1d+<&XsslZ_D(v=JtQfA4sA^ zEVtFUuL#^vYrpk5G3&~ChHqBa?wDJxe*LJ`2zE^(sWd1h0O1`}Ja`_-Cg`m$2#~vk zQu>eqHNjpR%tqTu%zq%UM8jil2k{kqD?jhei+?)|hxmZC5(v^Ogb}{mMVazM3jLvzrUsIp zthE8ik7MsJw6DrJ&B<9OAo#Y@MUL(gR^F$^CAGE*AFPOrH3FaU>1BQcPnNUYvWHbu z1$xglT(^m4x_=C-KRS&+Y>QspiUJZL;9l<^))WW1g~tK+mRF#Y?`nRExtI3fW}hb| zpk)_#R7wwSR@8ZRg_3*-htihzNONb4R~powugm8=!E5u6L0h#F(qg$@AUOx7{HYihjWZ<30K z9MOk(wi2|SYNad78F^@d&s{wT8touxTO6OWDulo9U#?iVH6XBA`O}B`Z60b7lw2sY z8I^>R9GsV_gTqF{H>J8qceSK{Q+l)m!UaOE);A5}foD>oQj+c`Z==r=c-hGeg6N$W z%W|!Om#=Za8Yud-Eo7}nJsk_h^l9_(zC=wB$o;V(a<19d9sUulrT?$?Q5W{Ft0dI~ zjr$~cx|wbE;v-x1YUM)Z^H*Pzvk($EZVf*0HV2YtvG=+}+|Eszuo<1Q#wWYJLkNF| zm_9ol)M^m)2x@tUFpVXqOn3p(Jrf{^5VT8yhpq*y#gbW;O)@n|fu{Bfwrob+F*XN% zrsn>Qa60H|U>(t^Ho4z<(*swj^2&PnHEAWwbqoQ`6^U3@1)eSfrf`-*bVr_xJQ3C8lQvxRO@Xn(q` zrzQ6XL9GT2l1m#WGGN1wC8ol$0g@7jI2Ob&F#dIUQZ6JX&>MSLQMmEBGHwHIu!9UK z7`qnK*`M-2Akx8m4+7A<1m~!CChOf^#oqI$27vmMLtEn|CHO}atlj4507YYwy~lP` z5UP)~8ZE7q|Cjx+fS(G7`^RWcK76wq0vO#bp!Ff98+g#c_nu}5=|ca%=k9-$y6eMz=JkW5xVXKcz+p^@2LS>2D65LThhPWYwy z+cq+xOR)Vzem{Y}EP$h$Omi$r)5u(PYrB%beh5ON9~M5KkK8E6q8xHIbFu0)Rq}(x zUIDs4@3)dM`3SG<$11_oR5xS5hCchwOxIp!`LiZm(GBD9z&TeRxM4kza$0=O@N=99xeStpRdR3cC_ zVFp?k-E)|{SJdx*bLBYexHffL#Th66kml9s<#Sg;{Mm9^rvuTvGA{S(A3gYN ztTXXDgxNb`DGEEXJUUO!%+w?DMJCr{viIlc${t(R>RY{9R=s2PWt#9Yk+y5(0*rma zxy^UZ?czzfqCP%_u5bghWG_3~s<6sIY|v;{4FMyn8lTN)#061ca)Qw{#C(T`sw|N zR@#~j(ma~-VXGGbF&aa<+Oug_cr=$B1r#CKqIwi}zF`3P@m|^mVhUW9C#OCdm|a~ON5q)l zdg(?N+EJ+rvtoq!e#m>`I%yd=TYobdFp-m&k*G{a`{B))z{o}s7Toh=^2)>KD-zmx zE%z;zDPZuxlj?^!=NHcwdUtADSeeGYZz*T#UO&=kk+%*=D_d?obtuZr@MwR897-o2 zYtXLdXtu40?9i*|$H^bi^AI4dk51i(H1E8Rs%O1O7t*9JQsDqb8TfKAQIB7nx%@tb<$m?*Z z(f-=4ON%MxLs`6r)}?DaH=A8F^P;hH^p+mZRck}BdTd`9{M0_%!O2a5Xg%b>PR1L5 zEuH^|32=Sl8ufz!2Q9h1(9}VWZm#)})Hr5uC~(nFPXe;{NNqSqVY<=hP2rxt3ZVTWQ-u z8AJKioE)}wY=c`fIbZ**1zZFh_{1l=hj0Vf@QWS5tkFa9_jg2h!#t1%_?kd2JfVKh z{AROyFn6x(MQ9>5+&AFmXRqKfz7pOvX>@!X(SxVp^iKJuWgs!q+02kBfg-OW@$|hQ zMFJJAEmHq6Et`E*;w++;g2d_FdxX3LlF&NXi8zq9q1NjqiMk>Xt!T#4ONj()*NMJj zZqVk)n@l6Z2{n4Sc1lUWzP4!e2VrfJxY+2_)A=MPWuGluPIYWswuX@iwF0@*e5nhQ zqS>}B6Tce8{jvpi<|6h%_!O&Ic}-~GALHZcObe97F)E)KbIvXfxLwJ<*One@8B~Ka*IN64y{uOe)%L``%2}TF zTH-&wxHj<8hU^bHNHSo6Gn9Bx(``~14p$KSI*BXKfh_x%Iw2lFYSg>?) z!_z|@7ez}rAAX3eO0b@zv;44O|H&%Ng=_BY&{4HT;`*|6A>X44FD$P&7>esH0rS)iVVi^2)%sETB?1g*r0;`5jRXrUpTm|RCK((q= zFU*RL&-_a}M|ahi_y6qBsGdYT`a4&W{=-~h`j`08_`jrt1Ddp(a;(NaJV(E9n;LjVCZ z66)*oElD$1eV(5BeJ=6eHX4br)^mlgdX(@lWs}0LqGO!K90xu9xI96L%1`#5$(I)# zb96}@H8577otQ4d5K~~^#kN_16olG&`63743pEuX7XQIWEPjj_j#}qFpzn(lTufR9 z)DXNwASc9`YzVXZ;Yj5%s9pLu%Y%Nc+W2~%EBq2;-+LIh{3x+=7?*JwubC_Cc_{bc z1s#@;lP3r-#wVe`{+o(Oe?YV8OHIZ4&OMTv6emNdnT>bTFpPwy81UgP{C}!uemyrtXk$Ft6;Z&$`3dh8!bmK&6*&-y?OLCqxy#QK~5zZ!z14_sjO{as%js39oV z$A46*9fx+>+D!KVN5+fTenW-xTA~SA3WVSw_T}IbWATfo`T$jXv2#XW>B52ug88*g zlkw_hUbvK$w(B$k&|e2Tv56b%8X6x3{W_Y|xk2~`G|KXd|cR4IOG)`C)`Ke zFAZd1_5I6X+KZZV9vn)vRTwcC$zGJu_acq_g-SH)GEvxHkxkHwt4GtOw7I9iyN_Y< zAFnv{Ik3{yEtD22DV;{4T=Bg+poQRiZW3hlh`>C_3PPv&N*y1JAR-8g7mEht`mcq6 z7F7aGeIkmw=E)P<(1J%`U94otb)no6+MZC*ydxcGcK3?Ffh1;ZV~|j&BJZyPkMFdS zzD;P2kEjTe5eaT46PpJnr>6<97ZBLx79|$BEL;dHj|)Rwg5_$fh&&JQ2aD8_Q^xT# zs?LFl!oXo>I!TeAn#=_33<~E0K;DO^Bv&@5;#vT9&KTWUc8bKP`&R!WP;QD41{O5) zW^k!57&Q#|D8vDz zU}TP{b&}P{rihpMNO!o=q}d5H5rOPuhkkM%q*MqH2Fs}RLA(9>gQ|(2AS@op5GXPC zCX4%zg+S#y@3+5Vclet{-Tg@tgCzG!s$Op=eBFMqE5MEJH?X`+$Y_uOv+qgAJ2jTX zu&R_oR+2LT%jU+b9HdfZ!QSJgnEgeNDhz5DD$4N~lErHj2%m zlA-E26%t#Ib&rzDhznVJ@y%#79=_c&RQ2b&-e|!mArSZJ`HTA$>co+Ex$axIF()r| zbT!^M&uMK7q8_=MjYE0(6#_44nRE)$!XXgPXfbPtp5Bsz!EgoaaAnq+Yj`sq`Mi`7 zOCh9q`p__WQI=8rs1)u49WLRoN}K&dtG*anDlcRR{AG~$B~(T2cZxfU{=VcXE-s|9 zi!lyqq$c6g_m55-lLCGiES?`y)1~k&>>>e}ZEAZ^v?SAaM0+~bg2rGwQ09oOFa>j2 zpJ8fW#1=%VU(h+|XBH(PrcBQv)`B`K2D))57p0g1)U0kH;X@ z&I#;R6ef|IF2JB|#CIE+%q_a#g1P=KM3gs7d6jMMt@oC}+emJl zaI@OpN4HmD@TI(aYw99fRoUjG&`?PK0&u4g0e8wnaN_d!{Zt!L)W&=pjHmWb?ae#G zpK}_+1X_e6M>uq?6+SL%Nzq(@4n)stMj!DhCOUP`qsj<@DqoVjkv`fJOU?bT&fohfI@=)6nCJIfI9tbF*h?CC-om8LBwAn!E6*Y>=wsH=F6Rs z9xk`&l@`#cF1la#wxP}>UKt9k0IY~p*ZC`|n7Stjvcx!U(ueNBC%E|*(T z_}%AiaSlxkSesk1$vP6mL^RspdZAvP2}@}Brn-MXz#3j3Ek;K=Sx7sosB`eUf@3Xa z`H2jL&1lseUuU4P!eWf)vExH(tdS*HTmF=5Nw7y_R^P&$mS1@{$mzQE+5fTNSaf!6 zw`IAbITak#_)kz<42TzB3Dqv+h>*o>65C^@hi}>ptgi!@nSMROwZdIJ%Cs`0#zBtyD z%$A{^DQphnA??s8~JI38Zr7Tus^~6Py(uFfsGk zFxPD`gd7$GTTIgOU5_s(A+DGV*xM@)bi~#;@`|Of;z!TYN0_{7b8R|$p7xHY-PTs3 z6NxBAAP>;zBSIS74g^?}KolJvW zTPQmp&MHAojG2P3ee^Q)I!xoygTX*Ec;iqA0t|KVP-G%NexYse(Asc2Kn>X|kLz}!vMzNN8q zwYr@FlH{-lZ`4(gQr|rru7dop-RJ9L#h6l_14e7J78Dw_$~bNA26l!$ zctaT3hPHpluV?~wQ4Y$=IIwzI!zD^&1wHd{Dl6~v@d&1~GW9ySiz^0XW0~kzr@UlA z%|j?DwZ!g>ub5T##2R%tk@;5&tJxl;K{#|z>G{~FT-&ox_WCxzd{XL|si zr`Mw!f0TNw+cws&e{`ny z2>0k!-)ZA%v-}LcvoC<~=9Cm`ucbTa^*FJxpx}A6@^KtCZ)TN;m}conr%G03(8Obg zB5q=n{}R{bo`+M3G#9mwND)0)WpWU3s(^?P4H*9Y9%sswZywN7~qSdyRPHJ#vec5xqme%Y()C1od>? zB8$@cCJ-s}zgyA3AI2~0&fyu7p+X1k#}%DoKAyKqIrVrtM1#*Iy=F|UzwSZLHM?>^ zC-9W@UVjOCi(dsA3eG?5s$G$GiD5#?`G@Aq63rZ5vyT?(?AF;IW8jjs%dRR<@5@5G zF8$74@rYtjeBSl`<8?&>3`Xhy$Nl^}SN>n_2aoxChk?5BOx4{_n+e@-_ zURhh2ReAZLy9L)uiqdRxds4dU`^RSQqh&e<1u#Xm7$NW8Vft^1s93?gCAZMhF= zXe1IE{~%ZFS6u&f_tOFkjMmugzT_Y)eBSE%+{cwORd3yxGQN}F&3rL44#JS9U6 z68P+`;?SRk=JwMq0mgPz#J3%*?L6N$JmxzwR*FUu~hH3e_Lot zBpq8+LIQfzcAnTY^5u7LSfS03ZstZ=uxAFQc>u)D1j0s=MK}uh97in@rE%3(UMb(= z>(PT3#+$*UfiKli#le?dAlmHIc*|Uo<#rkBb0>mu(RlO+0-!2fu|crQr43hM^E<7W zPm@|}AuGXUmEjz|0L5tyz^7`x&8Dre>Oe(-iFA9D*dtI;PyrOD-BehlC3R3Y7^_Y> zJ|Ze(OgJL+%*m=>ocztIj}s_>-e+LpijUDQxvy}_2=be2<*3D2)`&^p>E+-4#a+dS@qg(vkbHU9s5zc z?B1hFIBa1TRNF^A5}bBsRc=N@5RQjP>hljorVZO2|2IbETvn<}MRTKQ{^O>UedYZ<2`%QUEg1vIA#$800)X=_@2Mll7t%Gip| zLp$21KT9q7c-0ZD@8Bds7$+Kv5ghd9e$tEShde62$D$~Gk z86X5upcMF?{ z*>f5<-Mne#MVU~l{Z$v(=Rb!mF95fUE+jCk-u6lKe?mWXU;aWri#zy&GtO3i+@xwy zA4+(Us*w2O}MNc~9e7?Kl>w7W%UY_)-l>{on$rpXC3O`k@3;Kj8n9 z`g#0I{m{mIYVw^nAX5_%cl2_`Lv20&1V+{WN)xI*F-nyDwSqW!G#iBfi~528hx!Tm zOa07+{H1hB55?d$>oKnNsSwYUiRU?R^zWz zPh*bP=cj_5vg`dY`0x;*Y7o6fX+{yiZs3Ug=x2&cX(PASgpl+t(4V3j`@|IV`8K_^ z4{B;sZqBQKFjU7Q|B=!%0xVLgumN>$sC>lLo|HHiDpmI)qI&q#>Z$|KAEO{Uhpe93 zH#aNcgkZ=oOZk~wNYg}X@OQowUcZ8tD0tQ)-!aQ>yRsm=^!)!RQoUh_JouNDg^ki_ zDUcfX0*w~%;X^OK6D0~t;C6J6;IEd{R`))3CTn@mWVpV0(qSh_~7H(6-9C z>XRE|(6yDrPBeZ-M^){34Mt%(+mqpd4khIZmA*@w(Fo#Vbdor6qqu}ve0 z)kR!O7%%_eB-s}6AN9eb;9Oj*i2F>1chu1R$g5d(u;>Xd?0_g%h4@;r@XmawoQ?0l z6&bFi1UlF`2{E3N^dJT#@st{~C(mTn#^4`o?D3%6GetW@R$4m?DzDGe>y4E1iwjWu zUzCQFa~>G*oX}G_Ca4kBe3;TfTsfCBqqAwwZM^2|V}4Ui-CKu*eO;efo&2da&9<4H z&NXtEWPF;{?z&;p?(Vz;e5FRa__s#|D(QGiZy3#Eo1An7lP859bNoGb^!6MZ5PqOr zjMJmMtx7*@b3iKvX%4(-}5m}GbghOvV)QK8Y;g?VkuyCjNrL;>;9I6EpY~WJ*$!B zb?WCETE&Z*CaY|+Wnb%%tBlz(R=ahDQ@X zFq?@wZ6aS$A;-PDD|0S(QzU-tc;M)~-Bvy>`BQSuW;ztEJ)OCLoLZT8`M9D0qI_TI zckJBERunYiL^+nFddtL9S_1UC`p(fzmcsJr2;l=FJ=aBEJnTS^_Vb+Y-B3oJPF9@5KTf95>vyyF+JPNmM07vgB znsAp0&ByyfC|X{&tWABTmHcWbfQG4itaiq;c1>o9t&yurw2E=37(Dn~&g7rNZlN8_0h&V-H0Vx`~0X zc&5)#!Hx3J(#N}{WppA#6c%91>xU;b#AFqx4dLVl78Eih7M8K#5gb@# zO(01Wiv<%lt3sHVgMf0`mOl)@mnlwvtIy2}Y7?1x@TiJDlM@a(glmfX3IXASt8+NynB_Yu<$Jt#pZ+Mn#%GNZIswH7Mr8zUB33{;tCGq4FsE z=nT4q?Eb7)u6fU^t^JwfdY)6QQ$KS5Q3yt7=Q*u1J@<}u((#sgq~^U${PD*BANN$W znb<5PkozH`{(n6R%>R@7`Cm;cGWMVUo_|QCHy+o0EzBE?r3+{kf4rY&7FkoMNJ5s* zXA{a4YEwpVk@Dw6AL29leTt(zC6C9TAqC5;9Kh>TF6YD20@nCdQhzKOb!bZF5o)#~ z3B8tjHYT3%cYZwjz4O{}FjVFJF_;}Dxh*{r!e*tUX4K)HP6Py)4HAPQz8MDkgT?Ho zvn2;D7yM;^Xd(kFC}1_qO2g7~l&kGcuNhfr7M)mdz#Ws0PZ;Zem?0b#3%W}coKy!a z%LD7a8V9V(=f(LDa8CDd;jie(J0}>ZpPWVP!DxJ8{heZ{{9(#o(aN9rvovmSy4)P$ zXUHyG#E8z}e7n3DN7szegedk!!c$k?NI59vbZh#~03P2!5|+~#eqPh*rLp{AmoW{>ulNm=;6Rc_ZEgRc6l=b8}75!fU1VRO@)Qvtx z;>hGxSnGwtR~jty#~T8_fq7rZ4;yVlMxr%KemEOTi%_%fSYX~)XDcJtm zs9j!~lxKZ}x14k=kO)Y+$6|%$OkFA-wXoK53ODhg@P{eJzwA#BJb~z|-YU#FcF_!T z#-o+_`e9t!ZtEUJO%>kBKDoSabb3pE*mb3MeL(y z`apGWh^GOa9u5N>R3$j9chk;-+O_Qv^l=p`vq~40JsrRsP?)57C~HGViOW2+VSl zTIU6MQu9kgUn7rUAB{#Ys%SK@?HgF(I4EDSSAr7I-}hYYWY&ZMp7i<6$1XK-CcJi+ zl2_RG-;c%D*pGHJXolC$V9Vl1J?@~zSAQYVDid-HFS*n&kC zAJj4D9F4FIjwSNJ19Fj3f;oeATOJkSB+eU@U9|dgJ8+28fy$M^p8nb>+?Ak_a0N+0 zHIfQNGFc7G*BhU%hgKo_LNXzqE;(^bOECFt;9g&D(K!8#HeLF*yqC3BWn^?7bS` z?ifr0KPKJFio6lZ2d&a4);MI4Ocz8M$;8oK@Z9v|ft2h351W#w%ge}X?8o`w+=XwD zl>buv?Xq|~4qH!!o6!i+o0&bV^6>G7>c$)ALO5VG`FuUMY z?Q$44>(l(&p5gfuu;nHLM1Q;--TEj)KBc7=uEV=T;+Vuc>r!^LWYuD6{%*3b9k>r4 zDJdTW+U^EmMp<5d`l}IZi{Sy6;GePgiOU=$0QOAjG)tgVgNiUK>zdP4_@)5nJi|!=X;!#I3+4Zapc7xMQFNf2H{x5Qbf--<&-|fg;toPMorr}>)UP=3NUDU1q`Rz%<7>V=$^~3n=afm)DPovV(|EPe6zaLH7(Zg! z$(_#(sehk#3OELmKRDat;-A?nLsM><@vJa9=668yM@cy>a`q*+3*#mi)rY~Uxb1=t z(t-NY=P&u=jOM&D>Y#WB-R9Z@Sh0288nVvJnOY>V&+qq4lWNhx|Cjuk{Y(BBgGo@l zsa_fK1tnB7b!aQLJ^v+t3Sx)`0_WW-CbzZ6gO)S7SI7Ds39Bfy6y>rN)tX*<6;8jv zOU5X}l|a~^0SuAb@D}YXa){E5Tur05@<*^Nr6V(rciL6ZH?AOzM#;>k%g=w_C-D^; z&2IfZd{uSYeS{7h*IxRG3z`KODwZYGb!XiOBUsi#-!(olf4>k?26ySSJ`ts#lrzw& z_|Zn1_Ju4{2NF#S$Klu_lWt3s$9Tg45M9CydPat~il22f*QbdQ$feXJrTDDiYeSn} zct8-@Gk79fTML!eS$gkX$UF{ZFh$`nX6DU>#bk1|9>{}hxZn=Hm3CGZ@#P<3oR`8|RSH@30ix$JSW;Q;0G zx_qPMM4~kVVxKYN3^)&TDtZ`aQtxDzX}lP*JFwY^g{By}avd_{eUQ@v8~&|jhjM!6 zz%7H58}PkB?E4^T$^Nse2$qbGoqfBttfE>!QAyFy8u(UL3^V6uY>V<0L68I^c>tq+ zJ23K_zOC8QS6{{K`7Su3G+I!R-}BJueIkp{Buij0oL>Bp@OxL&*wo`z+>_jYy_Bhv z6OBL3^7k5knY-WCq)xFLPR&@I;MDK)^uwroP7U%(yueY^V_qS*AJE_(MKrT39wDxdTt&;DYo^5dstRnk&3|7G zWk+u${4qWZQ#L-Gk(x~ja^a(onvuwm@EUO}B6A^hi>(~vzKw{$ib;;Oo-vk{9<@pGhRS? z`HLJhSSohYzoD0~=$T{j+@*#WE6IaX*R&?JF(etFV7A?Tdegs>dAe;(SvkYk@N1(; z#jfi1oP4jqn~ihzB>}`1^=$86ciHxlZ3@cCJEmd0w|@>(oEmSFOLdO_2Ve|4Ex*P-OwX7ixxavACwx^xjt` z4S4&>ZEN{6`B-5czAr?vUfzZE0^3%`Wze*I`P#dt5Nfsxtu|yK^1#E+XYz5?gh5xd z^Xp|vH1hDM3EKVPAMch5x3FC%NK!lt=0p0nhWb6Gq6xz#o+h>1;-;VP;`bS-3%iJ8vi&b^z>RuR~-RguJRbm3-%54;)VDw8IrMlfzxy`c{ z$LiUfjbn?8YFM8JK_bs)9HmoMe@Bs2oQ;C(5IjO5iM(yHL9gf;6sNSa!oZH=u-nsJZRXjmw%DRQq)UJuHxxCQIXKF->TK%{OUru7Bjme z-*QxLyJ{!>hV~XO;RN#~rCgpUd!9BnW~T0Dh_| zEXVmtTpBc}VQ4C1v;;9#NRs*1shufYjn7$`YYW%KTymdM42|1`!MV)Gb2ZNuO)0@& zk#_kwd#h%xFq*oqyL(kt%6hS9LxKQry)#kpgHuCI;z?KM=hWs$I;#%NKbva&+ilC= zO-1$Zrn395O=bGun=0VnO-1!zo9bs+X^yg;z3B%ha8oe@H`UEQo9Y$|;UHBIqD*jM z6TDUrM2Oos{ZU~JARK|7azcRoNk&Y%z)iYsB|&5@_lAr5N+|h)i~2}d`oUV{c7fjR zW{>>m>xr`f{t>duE;w*g9i#Go-I55)*?uOZMJA`)FaT~UAHi=drvb?JivSV{Wf0oc z!wPOV_bT0;8jsA+yR=wQyOdkI+#!V3&$Zv?El?(hz)j_2`-TJDRIAH2S@n=6ywM&Swz-{<$chrfuB-vQN%$!hXF# z!5-r-^S5@LTY5=JQ_c@^qm+ZoGPFwRwePaMC7vzCzU6K1qB-C&bv>#xMkZ6N?Gt zFET$YB3Nw=o`H0!krGH+2e3tJHQU>8xx$!9SBqqDsrd zw?}IhfSg3Ki%Q$F5ulFirqD!qQmg$;J@z$i0EDA@@N4u4U;VB^m@9lRvIDDybqmOG z8&lI17N9ZSB`#u^+_pbFQt>;IELK0pnDiFvIWQ+QTFBy?R1-5zwFv)hGbbQ;esn%z z#b=efSwf|q5|);Z!Mee4xe7~@(v28WnTC%+zESkx$rF^`9=XwalftLmM@cxdfcm2Pks`T%u zqGw2;WRR$<#=BfV-T!j%f|kb92UBsyJkFXPfDfZl6*zUSt+VBkugN&WhOJm&vE7KZ z>R^rLIvUUShw4GW81{xu*EM^3G^^h?GP?;wZtRU0qJ?Z zMwOYX5eryb$_7unB@PJ<`6J0Z78ApWSHFW_=kg`}HC$PATDxO}Um}IHWv`SF4{%a} zp6dtf)PXrc?kzi9|CSU8jdyk9GjeTE8 zfe*3VEpB`ZO$;M4KNLp<(!pDh5f=|F9XpR0NBuvDX^$~B;IBLMc{KAj!Gb|*W`v0g zi+0@muK>+WaM$W5vJ&l8sn_Z^bSO{pgeBsrU!RM9q^(R(pw<2|D_Ad@fDnhG{g#!< zPi`Z_^*IUj7T^^aVLDp)8`4}?4d2m{%>I2#R|!(&YUs%Vwf;7JP50m1#n%x((%b?& zC{c$K3?O6ACbr9)1X*h^OAb|%_eGOXi5mqqkDH{wJdGGZv0gvl&LODb!ICD{2j!36 z3@OU>f-h>QnW7^g{^P?mkv-x9VRJqj;t9+AGs3nB8sOb)yRmm{mw?>kg$JRSXw-FG zLUs!rE}SoTVXry~x|s-%(LD>NXmA+Zc6<(j^T@b{?^E;Awpjb*R4?Y)5IhD=p5GE! zq&Gb+25<;8#^@pQ`H#A1z2^zhH26*!L4uE}lwH@|K7#Rk+rB+6y{kz*xp&X;rn5N^ z0z_SmAfDXiMLZQ)TPPtowozcfmiLToxo(A`3=F1qp|baLnl*?C&w> zK~;VM1(vDJKEm=!Bw4RVn;MVr)?L}^yVD_q_KZuaN?IyO7yKVNV}5K$h3T9@6ZT|M z8Qxa|>*2c7bkmnq#U^~XmtHM3XD!EyX}@_r88>CRlM_z1f5xXjmzF<}LtlH(Od2`R zqX}@KxE5f+Q&~URn5I#k3$m$%75dIU7OGoE;g|c--iRW5!JD~NR$^|OHYV={3}2@^b>jw3m+!8&vRk!ed*`+!mO3c|a*7arXkVh`;TZN1 zqoc*JC@W*Cp$&{18b8dvWhP`hdQiFtEIl_&w^huC!fKGh#=JAk<;+;rrOxv@)En-2 z5)Te*=ofzappGwuPE-Y@SIRt%d8E>Bi*fzhxSmc^fCR-S*ILETJ$AC0!wlk5^2;n> zQt`E;O)tju0ZtcO%Vl+=wa)#}&Kb2i2aY?~yqVk_Im^c^9g~HQ`ITc^Hn&Dz-m#9| z*>ZwoUEKS`he>#4AK^>5#R!e$Tq;X!Jer_c+;(}+q;k)34_&Ed!kQ8E$nx!;vh$9I z9*04f*ZKQ4coLmCkSl`1eO)ikOBPS3G5wIvjI*`6%~8)lqS&b~eXF@Q6Z71cFvMdQ z?Ism<#o3+)-cXh{F~6cTx=sGr3LVP4>t6+0Ta?hC#wgFKER(G-6mb&JQ)IKcp$qoa zHdrBGSJ&T&nLgPn%$;x*E?G%==F^TUeQ|9@qu&^}_nLo^ZY4wPX57MRzWdaj{rYjmWvUh;I5ns9^=j~!glb&2Yvd#~FPDcNx8vfUaJu1= z@56zFQ(s`W-ukUy+O?-EC+j!qUlu)brM%r*Q7E)8$i3OliL9)<@+ZB20 zi*xA(8RlcyZ=w|%JuWjJ7<%h~n~u^t{@{l0M!|5i(LEt?@w!;H0y~m#H=>gk|DFQ` z;3Q9pm2M8KWzD~Hz8;UxkO-bsHG8=Ju{!QQSI{up)qeJ*Uj)szoZA*0Z&%DzGtH9+ zN&H!N5gph;7cC^F*xa$KHTf7l{kZZ*9IV9UR5(0mE{tlm3S~BQ`12qN%Ox}2W~w2p z4q=5yqpx#Zf&vVt;JiDlTGO!1S;UGSSCKea*n%xL>d3wcm{L0C`R&57G5I>~pdL)} zfbN)jfzLP^X`@JPD9M@M`h}k#xtkDur9srK3yiKRg^pdvCbsvsh*Bo36Y;bsZl_3^ zqe*ELrWNO=7)Nv@y?~CXVJ>+;hjw=>MW==0Oq#F0n$6b2fIo?mlahj2dCsRASfksb zLweP(B0Ro06Bwg$(?p`IG-bFCsnw}pRJf0Msj5j0s&LM9owPge@$AK&?7o`w48kyV zbyj)&zHYzLm|y9nFQj1Zz$k>@C)msiz3Po-=2BRAQwzEjre8G=*WmWmKXYV(2$Jef z4Xbu@O6VL}VoWvnK)~iQwx~qiU3*9N=0!k%0phNBRTf1PcNZz2>CUTsK;x&5uMJW5 zPe~B9Eb36Er2+x23ngtMyhT+`<~1g1@a#uS0xxZ5Jm+_Y?=34FV;q*m@`sr~(ZuT@ z!yLCX#cDR(_O1;>cqri#>ZjH-@L)=Pk6v+CRbhx9>1;YxG`ZW6Emut`|{i}Xp{ z0iJp;fntKcn`Djl63U6Yyl-&%jCX`h>v(EB;>lahApMyRxB&oIa@@nEn7mfbGjbASk2`mO7$J_wuiQ&pi42q_8Vx zM!_xd^LF;C&x|bGY;g71z)7-?<8YExjXe$sf=Lo-*Z{B11rb91J?=$$k(w_8Jo6xi zfBrr55F}i27G1(n_##I5#LmCr|D7cFoc}dRusOftIve0)Q=JS#Q#0&*#{^E2VTk}( z?>OCmCJ6#^4qp$7=Dh$6$7?D|hBAoF(BT<3oOhL(!*XY(pJ&BTMN|2G)09!juAjA5 zeYOav$qB`=j}7q5qcWyqZW4g@OT`5Y)L52sJ_xIm356jWI;7u+SG1A*>`!_>A zY)gJA8%vW=wZCVcI-M=GtWW&-e13gdglqL{6wJ=`+sVI^#AR2$^dQ@b8{`#H zpgs!;^9Q%sX{ew^^-Q!wH}v00q5-+3{}<^Ki5zVwE@pif&m5_pXetUzFwB6lP=NkD^S@9ZKn@V~VU`U! z<&!Ae#ZAxMK}olgA^@U31ABEc0N|M?8;`P(X1cQi**Uw{NYYqc0-xmwyh6Eusj_3Z zMnWv5*V0rwfNY5yc;*2;VH4tQEZ0@x4z9x%dYs?^o_XZ6Iarj6!TZqnErrh9k&oLN z?I&@<35*GhzkTbcV=OS8XA>F=a+rXUY!&*wC@JkxFBXfrh{81xNPLrxBO_5wP1iE# z)ZHUowlnann~CKIDH{P&Fx&s2>z$)A;rqVbY}>Y*%*nQG+va53wq28LH`%tEtZAQf zUH9|6d+&9>|Fl~D->TpF`5wnni7x>-n?tNgGEQRaaSYU4N92jUNn##+He?npGv5h^ z`XAJ1ryZV?od`hssM0Ae{w00J88AOaq+-{RWq@k^yCFNZ;1oZjqJxy_#aK#fvpCPx z8_1o6qW%x*qt6dC!4lmE^L@~Vm^L1gcwyY7duopsi*sAd1YBjZmE;yrFageZ zc%m=z^$^A;W}$dyS)`O=qV^eb_U~D{vActi60PV;9q!Gbs@e=r2}aRHQH3Y#M*+8> zr$^T?njPMtKvq;DKQxwWAtI(P((P~z=(SkrZL12**`*{9=w^uBCtJeDT68#QCm?Ml zg2Q^HlB}wDrsmMAymF+apGKhs`S3M~zA2qy7!UuNUVP0YkcC`Brj+<86-K4MD{|I$ z#)rzEs8>zQfXZq`h9U4X+1TJ^39d=1qc>R?kQ@z?{P8-pqx6pGCYbrLo-yN=E+B+^ z6WU5~W8W-8=eY3QDx=(m2y>wSO-Ftv1Gxz0^m&k`xAa-e$37iV>fD`35@_|5I9XBE z5t#Xd_PR!xH}#EzZ2PIoqZ)<5@I{fZTpXPkTvWJXowXXZfucSh5ccU$NYEqE$?nZ- zah!j3mn=Hjq2@LxP79^_iQ*tyYL1;y`bBi(1y9m~x=_S*dLA}o-%serhNX`Bd9J*# zAfjEy%*)k63TF6Yk~tGm0edKPeB&?T(+sS{V~A2HZ5-*|V1QL<(J!;J4`F>3Lxl)f zRP5);4DVuip$D6&#Au6q{YejFio8SZam_$J>0JMatZaZn<<)1kg6IAjfK~LOEM>BC zzQiO@gfS@7%PQ)1@Yo~;|2gfTkG0v&U!dVQ@q|jrN*;(g^xZjrvv$IE{^6Gxw9kOw zqlkv3`pl!$FdKfxWCdqIFH1oCD*+!xmyi8Wuw|s3^wON}1LYy|Zsf<#?T*FXJD}{d z)EonQ*4i`&O$@$_D0n^SA2^ohaO_oy*Ayc%AjS*G_wIjRS=ka%O>VEoJM4+h{nIr_ zP-`HGuVB8eI_Dj7hU=A>wKpLCbuB&1__Pth2h+WXM~8Xus*Fz?`4rci_IFWfhH34^ zt{y(t;eXk;lVChUxICM%R7DW??nYDVNFxlPu3DHJHUp_sX+k$sGEAYgt(HgF=gP_x z-xs0?a3Q%AL4x(9d8J{YLTk~N84WUIJbzWBlM-IJ#%DbG7T!O2xgj z7RrYJNBZy2g^n~eQRqX$=YvKDpreJ4t~mvt*PV`8Zc& z_!JOpd91i7r&m(V{s;+=xlhNsFG+8wJcQUb3fX60b~Wu#yY$D2n~#INE4OF-xQ_*D zyhNxr3gWvO!9HL)(>b!3$OhL@yrgg$Z$_YC9DBlp7ad5DVhz##wcgd9Ke$x$pR=5As7xccp%WbrRnWT5v8P%7SCEY0ZK<%4y^6I2k`6ENVwBPi- zQGf2JG(IpFML-jgFQffQCZL+=#Z;iiX-kH5?(|giYyF^Nd&v-&o`d`6+qXLXWgN7h zLBoklJbENn8>XSriI|16h_v6qkZlEy>Y?Qy1S}g!OB0e&R?pyPQICwu@dh3pi+kHH zoIUkMCO4PDGQ+y+c?gI(nVg22GVR`t3JR4)Ki;ZT`hJqdmL z-nJ5BW66;QS=v0A)8>dd;78yhHchPlJEQZvD1OvA^Vn21JbR`??&~H$YHNQeH-{4; z+%Y^~8f`0fxJ>IwkqR{|OD}Ed4}(j_7zGVi4AfMF7tZye_ZF^*RJiVVx3uM7ENQfn z7Xn_o;kB1$8@?K`+Mv|kC;~1FCrcxxtv9)73>~iQVxBydcF<`8`TbL_U;))EaR2()Kw-rE}gW8p_pvCgb7V7 z7sHuXbs4Vyt^g4%ry`7Bru&+S?Ds;`@Tt)-F$|8 zkQ&LfA!&SeuGPf-_&ym|Sr0pHHz@F?MD{_Pfnd&?Oghhz9$d%0^RuXGOT|8CE<=Ul zw~M-E=H?1Z$vUrYx{a_YgI>#AwVFN4sxVSxJ|3v)A3)rxnWk3K3R7g?-&IH)J)OJb zXD(f-`x3IUDQP2EAZ6D!(hN3eel|_Rn7;O}>4q7X%ZGN_I4PDo>Q4%Rl=rOWaB5sM z{LEmC%4eGrmTFnyS|%55QPETu``wi{L0BHGO4sX+<~$>nQPXSklcFZ4W?vgl7A}ac zYAhg?O>@~4yJ$SOnxLdd+Lj=oXLA_C50ZxlNjHh%UDgv{7wq>Z!!FZ?+18O>?#{xB zVf5*TcOPh?oW4$V)L|TGg>~Zrq4QeSufd#ievxYfI}@G!9$&4oK>K{kq$U@^r11EStJM@mwzS?6x@4VqlUti*Hpg9{v9EJqz!!gt_?s z{};aJ$l)sq6L62#`d_*}|2|SQHJ$e*Q2chnKM}!D8yKUtTZ7Xb<)NS*VafUe^eJ3O z0vU?ufqVU`$okwmw+`H9FMC+==~YcteN)s;ODB526e0XbTay-}2Hq*|pzYZ&=b{1U zXj>fW(yz5!HpK#n^jmR4?>(N43&(_cU!Qe5QL&(j5IXp!IV9{iSqwmqkb_DKEueg# zXdY%LB?+MX8Hxd-f6vj>L?S{GI0MydI3r|uWcSnx368ziyZSPY-sh@C7y%7Z3FFc# z%07lXrtljGLnZ?2UI>!!Kw#u#5i1Id?!pa#un+pbVISJRVIO_u*iS&%2Pfhk3*`}~ z;*+^p9Wb4^-BSG&<~$XV%m-bSb<@bF45RA_>T5vY9lYmr_>s=(9rCOD_V#bs2Ukcy zb0?BhvLx00Q+6A(e)3;zR1W$}VVLvkO|0nEY zN4q^ZFv(Y!4K^2)$NneYDwjIV!~C`#B)$$vW5Lh7vCXKN5i9-Gr2{$kdB)gvxS|Ho zAf+5exrq+c|8@^Y)Dm#yhY91kL>sz%F5v$7aC{2&>kofvI_@U5M`@AAvoT~ro`~j0 z@bM?s`YkmXMmfVPLiJ>zm*3a|p|RQCIdgP!;2QSz0M##eLMN~|aZoRhqDCMuA#uUF zO3O5KK!h~VNamh}uG~nXh^HaXp~6|zkKBiNVdF?fNwBi68g>tYqu)i~Pm}C%W-m#k}=gWCZB?=*Q6lx;`Ow zS0d^^<||Qq(HRHD z>@PC+a3Kc@O|uazb}_#}?)UK1c}0KoKFiL9SwTM#S#&_qY(j??NPtWj3JF4`4muu_ z#QeQT^LkY2O+pLQ%d}r_KLneXd?t1Tw}HYSCiPE6xP(VI#`kAK{7+{*(0? zF$wWh&s*hi56t`1Lq335JW|ubJFLJuxUGvg9unxE49h4Z_=5zP+j+@pOc?GyB(yV{E^K);#7~>MI~SOL7E-IOEYiQM z{Hk~H3fJygSjJ~C5%H0JYloWj%Rk``mLgpG_C57-@gKma=r7=N6d?@&d_eyf@G&l> z1OPr^hPq#Y)}-z1(YW9*Mk-5`ROBHEKvjC9RrB+x*Cop2Dwm=oe%p0sx-bKgd)l9o zTa}xYyD5g$mZ!(SlDOU!$rLxmRF0q?K9zV+EtM!sBL1nIAD_^>?nE+e$TFW5?x7m)P`06W_`#lP?q=E<{24-yBu6< z1bCPh#QY#GcR=_8Ur!K977>O=ccp+7H}|OCP$vbn_B8vhkjP#me(<%@eDQ!iMhFC* z@T8|)H9CtkUS{sHKsKEvKlaR}B9>I)pYmsfUFZ8d@d zx~Q96u;ea)7BdF1kLwDov#6N)5iH7*RHq?xzjQdQ~eA@Dv zof_lsnOl}}8EJD%zYEbMIJDGXYZ#T`lhcqb2f9mMYt$P!40t9tQgJCUWX_5m3G&z- zg`SMVx32%55=C@}G4r&kML+Q9GYOqh1m|i!B?suDj>9$tizx8csGc>_ir z7NsV%ddv)^#8-`})H2)FNh|{Eau=^ivBg;ZsuyTL)#pAITYG| zHj9LpMX3=M(x92nyyE;}WRRQ^eBOxs+_c|vw0^p!eUx>sv`dyB%(=5_Zp|@^u|IR; zWZQ3)cC`WouLO4^8}H88n!Z60w^Dzg-iW4)JypOs3RsNDI7Y>!8oJQFJi#8W^pyjqxmZ6auSx*zpp6#8oSW@I<0x|nQf9N zqn~xFLtLNkEjmvowrh`%VB&F#$Bq_|_3@e%p+wxU6ng}IhL zt5@MfWAUa-={!V9QiEc)zVsjkwlA22^;PGvwfBOnTNFHgZB6tQ8#|JNZ2Gz;+n*;q$ zF4nq6-n{C1-k!POH0HgMQFQj{d!|n1kk}PDpDAZ85F%(0GFs>5f~UPS&M_5b+qc~Z z!$xPywQ8TC8QTePF85|#>{iO?)xl}9@coEIRr7W*+2i07waKUXx6>F_p)$25qh2~f z#CGGCGWK@US%FQ;Uzsx^syVzi-PI1~jSSeA$NZ zS`$&=vvu(AJKCy&j&g!{Jmd>_1*a*jn9;ZP;ex`yAwPt@k zoDilW*L|gAkqI-($SgP3=5Uy~Z6rkT*CE*m$js>FCZ!~~wF42?StXOY9lR1N}L$ z2b>pjkNLd;{!DiijzH;tai)^vj;*iELKT!BR+ACf^6pq@QnB{&^>ahVO*zga114S# zxk5l^Mn7;SY#!GS`my7DC5fn>C`a+4a8OmWmU|k2I`MbRx+)My0RAqVTy|%oqRPzh?ZL@uLS-*L%JlKi>zW3Ew%yXChN{;?o)Lo$0?PCMe`y8%R^at3} zdrNdX%A_%Eo!Z~a1*^0PT;LyEo`byVz6jpH2@xdtzcBw>%|{|Y9vScdQuAT^FI3Mk zfa*!KeRZoOmQL-uvDU-UDj!Z2(d_&W)l&iX->9BF?-V$Z2H2oc8i3bLO~6240seCI z+^dAQxiW?G7l`t`0T4lzIgs{me62^sxZbDLKPOJrO@MnY=QI97ZSoOl$9 z0npAwLi($+2&B1?S)4mjGV3x_`ZHdjELc0v%#zi5uz?GV_Ehd&R7L z5zbP0UhDAjLWu-&Frt0v1@jVQU$tCh1|h-ltRkv9bF;FMDYn}BE$kdV0Ajag{QkPE z?=f@5J{BN#cH0WO#%utwo9mxJUw(ktZKk*9nkC@*FVzDA9yt`1w6S?g+Cf`3IVa(Z zL0EyH!(&j0Z~Wq=0jl*n!0Z zF3`e}R{Fv-4Ygt6AjQxZVv^7kTcosdyscgA4e<+TmLG)?rwn9z02gS11P->46_M7g zo~b2VD%a3@ShhM5nb&>jS53%rQO$|?X!g2aEQ9yE`)bzqsa z)mtgEdJ)6-8TAsPs_Z*dS}vO~CO5}F7h7wpB;mjH%h&R=qs3(CX(7hda}R>K2T7ND zinsZt0bVx_LLl_>Y9iLNX8{fq7$;(rPMF%w42;oRR+J%uM5Y)D*?V=z08?Pnvs7U| z5;`{}6S&`tdEm38^x66MVy~t`#u%y&0d~t(DFXKiv_@r1hKhp8PVvm+Dy)-^@Z>_I z_3oCo@8G7vaM(MQ{PiErUIJ-w@S40j+>V*Oo-V!c>2lc#{WM@Sbh_3zwc`%6m6 zg@_$TlN})%+K?4qPFA<)_ z8kO8cK`XJk*~FtGE%gJ)D9A?-WDKF$EJIl9wmvo=s%%`{jrQSvK+5hoaV#AjBWrEo zE&Bsk`8m)UL73`KxI(Il-P_3Ho&6I&6)_kTI-6U;DdY zI>leE=k|ZOo}-M!BGD9YYgdE>Jy(OB`T5=;SdQ={sFQ6D8y?gp2Ijv>p9Vjp02U#T zKfW|lJx){lXZv|6cwom(bEnv;nrEi-WD$>0Kc`PJ!3 z+N2!-Q3ClLnFI`X_8=%#q4STUMBYEq-k(J1P>-?^_rJ5EJ5uL@_q>PyP5R{L?`y9_ zlP(LK;z(px;~z*-3eG1Le-&}#VJ3XhSv{6tH?X`%-_{d1??uAK$_(01j=@A#oKf z>ETmN;eiec0sP;&p1-0wLuHcBE8M@L1gR(XN}2pLid}jAChCbzCVR>C=cogl#ip9vDHp+8l3d9p^&J8&m+W^^uBjr2u& z|L7Q9MRgY2JTPCm%{hmhX?rD}^$!St)yU3H=DDFdqj5&?YcL#Nl=5D?B!9hX6aS%} zgCuQz+vxB3l^ykSWfk#^oW4JIovSu-?^KfhCFR@%(r=>j!Kopq4|d50ydoZVSP{Dl zwbN1Rq)gG67)5~l_!*vKze(iQ#4O(Z(2pMBt%gdOUvxWfg#oJkfG+Y2h&h#^6XB4;JPRtO>Ma=-owaQ6?w1>M|GIS&q`nfow9!2u2f8s1g^~ZFlaj zYrwA!X5L=D9qa~|uh?kuuVH}2r};j#NZ8CqTPO#JVP#=~0g<5#Z%vR9yE@X6x3vQ> zL{Y#0cA~cw-PXzeq1LqI6Ztu;0dzT%7dR6vE&pzlVv`j%#kV>T%#GS7*abRrDgsam zx9_#aznMl(jP6?-N8q(wD#EcZ8^p%24Ls=j?w)l!vco_S055tk95_~I|Bm8xo6pR? zGKaM;v+~>{P_w%dsM1`GI_kcNYoYJ{-lR4Z+pcMjC-SCMb_{Z&h;bCHd)!RLwfV5- zk;%FYx>3#7-e{{?guzLZ+ql>S4^Ot8D(d&AH7(DL~@~}1Qu`ld`&aIdf=D+jUZ|2h+FoIr8oEF9a@)(Ui-x3S9Vct{C9*mjFz2ZX?k(nz;Ixk%g?OcYpeFcIvNhO^XHlM2vV(=z@_jYMV9c&XC+q1k@ z)M;FKkXYuDJg{_Q&J)wVkKlg%;nJi^xwhF&O&xXqb3c`8l-EX!x@WK1I+>-3C#jo2};HsI4`qO)#lpuJD#LR0WlLx=z z4f%9^UaCFj{OvsCLT;vpnXQ~>fsC!g^rdiUW~~9DhtHVvZx5*r)J(LtjQO}F+xjjdz>BPyZ8WEWP7{4vui z(^?RDH_1TM3>KzS$Y32p_T34mXQUMebk85lJ3~1F^>W?~9KfRvRB#won=@H9mS|DT z;$abGEVSxCv9);OpJmemhtzI%0ihJap?Z2oouI)7`@G1d#`OT=l_?Iv(AE{_`g4SN zitHpk&KhhEP3J%X3lc2>%`b1MS~-f_d*RlFUls>NH;IbvS+utO#sN4*`!@nty)(gF zS+XjxE6wV;Qru93+i4>NaQ51m%khZ${H^60Yh)@b4AruRdHc%%kgg>w=1O53CV90( z1uccc6g~@r^$zk$;p%igV2Mb(d|=O(;i%@qiwpShIDN>F!Msku-1il}SHw%V>IhKt zDTJrrc5S0D`K?%^QG2pS>j0~s*fvFOtCPO(1(8-%ehU6Fa*6o6PAXQg*Z#zBXXZ1+ z=}%A2yD!i4yW6!d!{48X18P3^|I~cMe@S_ID(HOacz^Qhe`nr({8fU7wz!vB{b!NSzg#MFuP-=`EH=d(Y7?kBJM2Xwe* z0(PZHS7`G>QW6R*UH0#R^z5t$xNFeZx%>Qkb5;zeBA>9U&#aG4s@dkp$x83n)ohnBt|I95)4m+R zX`C#N<23Xctkl#px76b=Y<+Ei!9+1y(tUCS8_;9 zoy2b&#(v_VykbPWlI zl!Romy9dhqczl15v|WVmDvijKI;3CVmI`C5qkT1Gi0Pd)e(n7vOxUh?*5_}MWj6v8g;lU zRn#T5gRBBlk^7TyBRhwZcOkL2%s=2(r4$ehs$~ga+^pY9~ zCZ!H9bC25(i6uMV(|{$)eH_P^KsC=)i90@5 zu5=)r;Z3al$DAzO^l)IMu-k4iXuJZkZrT%xC|!l+{t9go4jupBB}&#H4g1nf=d*Gn z_j{brj#mSMl#Bxk%kRaZ%Qrm`V^_A-7GJ8HkpVbmqznZf1yOX=v_7aTLGeeIjW`^L z@FeuZ7R{C+ZEGKEV(fkzjJ81Ina{TKr3!KuND9tX1;C?&nQXk?L5jt87n{jl0GJgw zwk}VmX#JqPB#%P4&YD|}t&BT1Z`R=PvRsfYK*h7*qEslCm=U!UmUuKm{% zRi(1jgP0HkcOW4E-+|z8dQU*S*Uu-I@?z0pZmM3D>G=jW`VB1kaWnNC^W>rtv~A5D{LQRH#?TIVDI zM`q8o=o-6+KMseA+j$O$Zz;qroKEdN3IeYJ^K3x|Fx}@rleU3mq^@&yVPOl?kF21a zqhhyBc&F_Bd8yau+XqhuBlRSW@ne=-E`WxH9%<(+$Bhpnf0z|h3ik_y!^FphOo_Lm zu(v*kcU)592|;f^g+=@v(NZ-5`(6)p*~1mSFT(EI8i*4&4V5V>8ju-tP^{;r>r_y} zPtcMmM5}-&u%q4Q!Qu2|aTxbCKIR!0n+g3GzE7$tE{w&Xkj+|ihy!KM%y=$LW6W7K z!X40oMv~9{2vZZ={vBQDi*GY#4Ca1MXb%9pCw|Zr=pC)375$k!fu=)?<+eMtPs z523*XJgkT2mRa&NzY8B2^D$jCj9NXonK-;nfck8>)|`izaffHjwd zMJ3AEYu>3UiSrw$G7&ywch1f;`;(&?)N;93xOD_bH!l1l1Ix;ne`|P~v4@>DE9I6-7cEPzab+I7#Pc|dweqCIzY?YFPa=zv~8huD@0`2qXImWt$HZ_6zlTFx7+p>t%J32xM~VhF$=lnqIwN5ya82FyXd@; zp7+_KcLhiI_yG7mG4~VRn7E7{+rRsd&g_8hbq+Q)w?~jkGmTk;(PM5Xt(;TIQAZU9 zS1VLE`^s^yu{-mgtkc1atfN%f9=|rZ_H}yTL13PdDL7}OdnrG{U42W6Ml1Xr z@-~fhe!~$EX?&v?jM6ez%uRVh5j@4(DlQj#K6`qOT#{dUUPwgF&tjYJ`Wif%)36RY zfy>BgO$JEP-n(*(^gWD{v?P=dI@ulxKbM(8%J8QKE}@AAL}mBPBu1Kob>k4kF0dsa zCvjS*m3PhXh?`~VIZzzZ_pU^9F ziSq+n(c6RnxbCDcsX?*oBsZfrGZ+ye75An9cb-mdP~QLLMODYlQV7B~*}0SC3=YK? zMC5I7Ny8_2ia>ryXz|;Vi92rGwPG*IM*my$Px=GbP5Gn7G80_d>@+3rwbE@GpLL`m z0oeBqE$Y2^9hL#I8daN4Rh|StZ#;jJ=m6=+lhr&>CbQ4 z(!L~uLOCt$_SYjrKW=FRo-GsjXuF`NPaVE#Vbi&?O5)pe(mTwRPfKR=p$9E!NM(q+ zSJMqHG2_erF6uab|3MssnMA*kri~luTj-8XWFY*rY|49KK_~&VJ$apb6gBZ0{U zHSm)=oy-V4J*~-7!zBg7uCM&Ai)MqijBRX7xms2lTgvArKAw2L6b0hFz&63dl3uIU zPy|*E^tq2&c1@t`f}ud{gk4RtC#ybUdO=dHO^3;_M=$Dd4si0`P}<k zNJ34~A5i_Y5%l~fRp65R0#K)y*DVOl48dDQz!Q*K&u#)62o+lnWr77+52rpdv%eE`EN56&TFe&&-I6EA4S{+)0YE24ZN#R!Nldsflp=&Q4hH9kw_rPJM?Q^kX@%8V< zuYFyr=tZdSI?{$bU2%p(byCzk<~t=G&_a3=!h~+yKt=Hv%KL^xJ%*A0;mwuV1{T)g z>EDyZ@V>915E^kCMCAuwE%aJdwh@YhNx!u<KKYFM9*x(b}s%>qD|7V46E`fbtC}G73ETLaP>2&_Iy82&0tB9a}BN zY!DrEhEI(FCDw6<*<8miO$K0phrz+q`PM_e5k|B-*H-HDa>rJyl5wmsp z=%iMDwFQfAzLqUT#N30G=iO{{`k@{}<+2 zv)`8>@YA>af*g`~A1L-Uo|5r0F*d#)-0X_>+1Q2Mxm~eW#fCa7_Fgzkc{0TxuD!3? zc~wRC|D*b*N6&FE1P@5|+=15tl0As<9QAn@Ri@7ss&(WQI9QdK5Xa7+HWZJ&J%8>A z{V{Au!>tY6;+vx+{A+nEaax$^e&H{uCo%R^jT)k8oni7lG|V;XYz;*+u`{7iI;ceM zD{v%%(Jd(k>Bs^c*xesknaEY(>2Sc7GVY66D+7n*p@b@zGK z_XVd{R(~Fy^9;QRwK3>M4b3vVB)zh5{fFF^T$mSGcHopu*yz~#4E~j1H~k%V<^bc) zZ$fOM=kAR*5)%G&tDPeD2B$&TUGbsbx0z>}asOzEUBX+6V1TkM9I9@mOL9L5%1`q} zxzv-1;ZE>(J8--`P-e$#|MWlOj=`I>n=syUkfrNjMHh(UCgvat;bEVBh$oOl^rC|w zOi0%ndXV#yitFMb!70+O53YiAo=pI2x3)bLXv@;DS{&F2@?d^BT?N3MVdvd7t~qD8=vd<2hxDpy6`9& zw;=v#kZj;wJ3QsK0{2#g(O$a%)!G2qTd8JU@yejp@{7HbEVQhSOX|bQG-`#_PMffN zG0xUNe>Xd$Gj$;0oRA098rL&MsNk1_a`R#0qy$72H6{wCEYiVOB{+ho>eva8A@I~& zBf9C=dZ``}We*!#@I`}S9CR;6gR-&l7{-ItipAhlf<4tzA5%LUqk2HLK~X!Biz!5} zTjlc@>ac8*>4NB9l#^{r7kNXkLuLPUU{7hL=WDgJ9GcC#*g~d9+BL#S?$K%1S(Y9^ zK&+h)0Oc> zjaGjbh^{|SG6htqiC=KL7>fWH@XFF|e-3dLYyYA(_gs)gBj=1x3N!uWqH+b!8L_Hi zIEZ?F>r!66duh$cMsn-K%BX!;i0 z@6FKxxJet>=cw9D>n{q2e>@uWb@zd#z*O`m_w~spBD3-nfPRrHssiEA3H(@|SAvqp zYIj&86B4UT?ux6RAS*BaDNXydhe`J)+g8a0<%a~kI(bMXr?dw5i9^S`VvK|#0mMc~ zZprq*en=zT!b?|Dq9#NVu)|~AC7pvJ`zNj9K7@b`^#vJ)O!F7Ra7y>C16+QhyjTZ?1)GrOuBg&y(;1`M#C8>CfVLP2dQ%=nhlbMZrYb;$L@E3jiRuh`wE4}N>$_1Dg! z{(E;AIW3}c;dtE$Z{Qiq2#VOR*zHFxD7d(6#F2nWLeBozUT;-%9r%YzdFUi$x}1@{ zU)A_R91^>sa3h@tq`|f08%X&OXskL0Ze%7qKH92hp=dGnOt*Lh?Sd% z$WiVD^Mdmw5!#@MKcA%jW<_J|tF%zOG_C#sGqeGEJ^cdqEM(6iMuiW{>7j~QB)xO_ zB@Qu*mJ36eI8QtlQMRaym>_D5@e<9CZ;(eci z30I{w5olX_wWpu59fOMCrFEIFZq=T0gvvq5wqD_wRt*nU=vluv<%1BiDdp^U{#SHsr&hTwPO*QR1!9 z5d+F_qR5EsUi)2*x83=VsvmvUcaR z1}OsfgXr6E7X~HH(rKScDmT!tKgJF=PeOw%g}>)CIHg}MFVNOY43XPpKI6vt=zIJ*|nRLdx9WKYJjUwyqovEHt2;b&10Evdzg_0-ZrB|Phxprspq*MEgSE8g4a+^UzQQPV?Ph@yvX~fe0s>QbK zmvfmP9hq2)*Ne>Q!ij=WY2ptK&>tv}M=p|DwUx;WlM;hl#XO3#D46N}*qDf!r|cS@ zoiJwF*6jBy-j!@6i2V#uWvT`oD0X)ETktGb_+|w<+#SvAW5D)#wrt$&si4t?jWtGx z>Bmvv;bqvNcOgvrXvP(j_upm*50CNvMvR~wy3RH0OOyjR4~e;;#QCsJyfcbe<8MP@ zjqC9UwYI3op4-12y=nMM(NUZzXw%}iGi$iIf0i6RQ9>!?XHajf*;`mGl%;A}n~_cC znlvP79w!|%He8%m7h*Yk>pr;uD7^|!yu@2gH%M{?$)+N7pgt-JT~?M)Wr zp!+(ukC{Db;j+Q7oNC%cotDs)*)OSaJgawG3?9maGNO87J9LrLc-x>eVD$I3Q$@Dr zxnGG@$A3QRO{jvEyL*kM)ZI09$APgnvra2M2sQnEk74+k2 zi8Oc52)#TJm&|z^09a9@Lf2cXmj?quWZ%=H-8MfM44#;)RIJdg-0#{`VDL%}I5W@; zCQ>GU8ZR*Xe$5T_?~~?Er5Q{IyZ)2UgawyTC0^_8~#l| z`$9$|JbM;!6YJz;vbxP}C_Urtg?M7%b@4)m+{t!ET72X`7J^de*rl%zb?ldxO*th- z7{ZH1%0|5=VV1@&hc69%`lB$n?o<$f8tpsG)#%%r+{M@1$8+yz(d3*qgJ1pT78&ngDSs?!fe2ljg3P-&FfX~HS*!y3=N6X)LOZ`89Pw-#B zr}ZDehyF&)3}cnJPmA<_0Uz)G06w@9fB60aK3VERi~j&VHQE__*tdL_`nH%a=qEek z#bfRosDhj7U11@N&s~lv0*HRwFT#IM)6R1Mr)dJcAQqWVJb#7LzQaUQCkrtSUG4+` z;j}4w@L%DympR-=CO|k{0Z#WErf{022i>d&*-=&IE-oJa6vsTg^^b6R_&tvYN(#mF z4j`O%wg@_j*U0ZUgsiWHJU=3q_m9m8sTySh2&c{K5sO4Pe8!M@3D{2e*ld6wf@6Q^ zwOOX6$J*!$Gnf9s#!z7{ZphJ)e*ktFp;#a}qnKS{Mn5JAD6hFdRN|?(XgZE_O*E-U z9ecPguDv?VK%5KjYxan!oim5_qwiY_`*3l>7jt25oRNmorJU2ixu8IUM0g`mqB*=+ z&o!4I;{#P>W2xwy2b`u+`~q^sC%)cLjjO~LYa)xx#=OrT0V7P%@026^Pz(g=i->u9o8L;iJQ1_uKu6N6aNtCNTDhY$e17lTw zry-xOZ-DUNll{Z$+;$=*!^(dVq(re$Az=GC{cd`9%{b#bmj}p}1mH4l_udvVf0!AD z&L*oTw0{GzdRnc{Jy4bJQ;YsD-gETY`v1p!mf(tD7QdspfAMVQNJhUZ!SoYU!DOGf^KmBk<5{jbO-j)$c6vG0MOy~@Z_ zu&i#QUrmQ@7QQ;CttAUp*t_@D-)|mS&j9_NPkq<-(2Y+t)SZSyWmoBE^NF!9eUpz! z=yRNp9!j43;ZUk6RmCS$gg(#xOnigMfD-yChw{__%A4dfXu4mYf*MQyyUP-G@CS0h zJ!pGxU?s&&C`0ULeiz#It)s5hK1%66fyN|jK&iZcria96>=#yBRck+AHUZX z?ewd|X8=Mc&-S*`nUhS$=RWn*I|%o!Wc2ElGSV|>X(=9M(;0tEH1wlX2rU8LX_?jv zs<0%|V=upVmk;UR*RUpnhiaztkgFD)pS76eTlICMM9`IFLI za=`13+>;*}qR}?oLZ4z?0km6J3vLXoT55!Oj7sl{nR&UT3BddhR>| zQz!jcUO8o)$8Ef6k&PX#4nO05qa@w7ZTG9DnM&}w0K=EEZS8S4e=R*@Nv8K)~`<rQSD&SNTdsk~RA+6gsZ*@MSQ+dPsjxugx(`!^@*$H;K@Z%A|>nE!xsJe(!rBZ zCf2DHlZoKH6LhXjz~UgXir!x`a)a`mz;G6kJ9wtMh|bigzMLrFh>tsGg?)LOZwhSY z_P6I27ZxZT<>*uSVAxO)9Gj)gSjH0(zfEp8Byj zE>tRuHcZ2SO&Oejjml=8nB6IU8BAvdg1M9F$Cy!lu4R2AI!eqRi^jKE< z-?O!eIhG^!qO*|Pmq9TtWf6{uBUHNL0HFq@i`=4{BD9!GGFC~R25zJ3?|!&xQx*YE z$-@Zn6-_!SZ2N*P=SM^@vwV@><6(re zzaU~c`NkVz2RI>bTrVqoCmd_2NEodm`wMHY;7+;I^T}f3M{qz#KT=Q5jXOqcDk*BX z&*Re5-F~P;Y{c!luAAmEtH^_Xtl=`vS~5d-SI*-UZ_k=7J46ya42>SN zuvfrWX-fU&j|~r5TMsKh%yXBm#UY?2xG_HESr=YNU1$3eO>>nV&7;IzJVWih^WwjX^1!RWK!kj+?z(L7gi2U;t3KOmIJ3GrWUv-UUVFJ(Da0`znPU%vVwf! z5iVU$$)-#IbS}l7O_l4---0~7f?ael!*{$~DAMj>Mo*s!Z~rq zs$df#Jmo^X%;bw^rePsdRX3Wk_(vIk)x1fBpXJIJmh4!WMqWjQ5dumCPpMbyhGUpj zYb|cs(~5?cgRk9dBtkS0b-LfpW|gDz)1{g=tX2~(IH-efE$S)!(IJk+^d(iGdzGT2 zdkZpw2orb?r~!bF2>|e^`~rO5zW|>dm1zimXQEhTZ@S)RbiNY!<6M0R=@J(!<0nZE zSimYx@oSZqNp;HEbpns@UH-0`6!XMT)b@16 z4)fbEaW+L-cHEnyk1Yt4#IgxttHrd!_i&{mx)bJkuUVVdU7R04&kl=srHjrxs~f_FNxjeRlrgd))uc_n`j6_dx!q zE9$6yI1TTA;d|Kr&G$sDwxW8{O@HblYwCiGFit&9obSe&vJNEHfYo)x_XdN|Cm20099_wbJ2JS}fZT zEK>{lPD9Uv2(eY;3Sn~(uq3=Bbsbt#g;1I}A~oGkJC}2cAvaP`vf^x+Uz2UJ5Ml^Y zJsa?6`6ljTd5`KE$Wc#B=c9^D1KETp#?}+e0=x&4H z^ia~!3a2bcufPPvKgQYvOF!uq{CYJyKz4Y+`~gf*Kj37-?qva-Pn{xWo^T}}SS9yg zmV~`7M{5jUAO|)2n+7ls5!QY4zYOsBNY=$9l^3p7wj#;)yAXLTJ=dT(IjT-zT~;6T zKjUt4pxawr1bw3BnPFBIpAjFQlkXilK3`g=fHqzeg~y;#$dT!!tnBh0k1Eq?1&Qtj zqLC_Ozg{Pb> zU?mjn>H`R-0VN@7_m+c*@AxiPx4rms6R`V?mvFpnKo6+=eL$DL(b&QlQ2iJ)o!AC# zHd`vJ*b5ZtBVWr^4l)?7%#E~w`i=BB`TTn~?!>oS)N(o0+@0*hp*+JWJ`kK9w2#Q^ zy{w4Hzy0nrW_~=JhM4-nFyt_TsH4d?HztYqiNhoz3M-p`7xB=Ipp$=$_y3OefPv@e zt1DZFmw1YRD+ZfraLo}~dZ*XO{+Y25II&3xjgxEsL z@i*)U>_Yu!9Gab^mxS;EulA5c(Go?!<-=JwMJ)(J;J>qO(~9RXxmEYyMLa?u48Y zXpff543rD^Y_ngK>?|l{@~#~g8;IRvo7{$ga@jZ`I(JEv5)8jMPL-?c~C9U zSUeI<@uFg$L&$aB$3sHm6B>|Fl_E@c>(XBZ=;A`YqCH~(z5gT>^wU%c`SbYv=Wq1S z;ynWTtN@Xz>Tz+pI8w3lMf*@SPENS&SRi!mUp7SwVbeK-*kFbO>1$YjD{?j|LdXQ< zrnhnM_`hX*r%u|tHeNf0Ea5Mv6HiatG?;7fCxzRj@;vdRB@p$;qwI8;VAq59uk^_u zSz)NONB)ZTY?k)fe0!eq73uOKJ=zPWL}z8BEa72f>U#FcuvH z?=dac_ZM}Nsd#E+frx-=4;0z?e^qm9l4HLdhcj>M(%XBb3PXeFZZR}LO2l8h45*=By&n!85^6P zRQ-HlFFJb*I$RoTsdj%KuwK7)Mj2VwP$#_Myu-7wUfaR{eYO`m-~-Le;IM* zLyw}qQ!BwNyK78@)5hwIS!4U(SlSkz2I5?Qn0XBb8%gG%w`_TM&H*LVu^8ODxb4#9 zLAx?8tn$=aI=aPJrM-y(3KJIfiJ~R#Vh|m+4>)^L4c8UpGJ{oagNq(C(zz5Mgk4PY+DDgl z_%FD}@b8jIiIPBms(n1by3_aRAr`lOH=ytd#*3#?t_lfxEVzy>UYJD~n zV42&{6vlE}E2G$D7}2Pljpw~Rb?MBS2A{2Uh(w>@IDvTvMSbKv3%!^~gXL6_Y)yN~ z0S1R1r~78GHZ!Uov+e3>xiN!Lp?GRQVJKHvTGz*u)ylLkTda?4Jt(FsPf!{pk|?n` z3vgeL?;DbyLv${o3X3KD1NXdd8;<`ExQFWhgnQm)Z|AH9*=o2>b3}lI?V=yd_4@AS z!A&w08*8#@eVLXIZe4TA)j_z`?_C{{!k53{qTUt^OAz6OH?e9+zTDO?hdINXA$am2 zKyR6#j7!@I&vaYaoM}I(cJ^Ptc5fX}DEu1u_zPYBJAzvS;mDPrVaMX2_W)lmY7nlhAw4m{ogNPASBs zI;NwGC1FQ$xRaauGp#p4%|n4be0fQ8L)R6!o;ZdGEEdPDku`Yow)^^e7mQ3JF~U^!T}G3d7SR+J=41Fd0%Zrp)H%vHI894< zXq{w7L+Mf)vRnA1Y2S|3hnt-c5h_|yDYUaEt*lXv9)nbt99HeHoqq#9W=&+Fq5lSa zuoILv{s-VQcP94jgmdMpFwCP`2C-rT<^1tkj}or9C;r;r_#10u+^#OeI(6Hc&ayT# zzdmK3UaUg{dDfs&sR51Olv4-6RhF;PAdW!x<52}08jlCHL;8N^=1W@hcc=wZx(Bi? zj7a}&y@XYlI1=xGf#lu3{@IiSDj?BI+#$cB37P*y_)sooCi5nX230q5Mm%`#Vi?8R zjn88NGlMVkCvs;8&+R^{PH;99*RjD%AI|3g_{$O^XRE!J`ig)q(?W7-pnIMkbVp(6 zmdS`}VOS!XTZ-FSE&ycQn2SFVF_phPTWg9!V~QhFUNdQX9RS=q<4j8!b|wr>rEwAp zt=jneCKJH())IWqz(!U5FdUf*N z?N^Oa^~HNzkl_i2kUot`EuTq<8>ctqV~2`(Kcs4MZR^w0K9(PGQDy_SJc!yp>dmqJ zhP0-;y(o)J%{aosblq%5U2%X`58R6b*W;<?Mw;`v(DYKwN0-5i=C|{5xbp8-Pm?g9)q~!LZamdw_|@uJ>)PoP&z<@N`A^3bTtiZn4PZ*=@gJsi z|2n2rRO3oVQvt1>55z#WTy5@#6k+bB2Y93&XjEhOmLBR+VrZz3mr1aOwW5==O3gN+ zmx2=VVVixn{TIgf!>-WoKYNZK?d0y3$eUM2eFzi7H$NX6TC~LIGK@g;T}_TXQC6xZ zW*{cKJU*vBpAHM$s$(J2aeXgHShdrFm?PRSAjbW0kG9meQpCUr$=;1bfYCT2jaQaP z#Hqvkq1!3H9;AS}3tU~3PqSV8n8K!VR6{&{;=U0?q(JhBo$tW=JsBcF>{d^@5!}G? z%Lv9gBMQGWDqsuBb%5q}fq@mc2KBqcAA|0%XbTc<64hu6=57!e{2<-v>;pVVz4!`QFM$5YF4q>(sUfJf$f~^{ z|7*@9(R*R}F{aOp+@U_z<$=d!@o6{KyU#vOD~F%|*fL^lp)8F~1TfCgSCj{mG$Nj3 z1Z-^$AUZ;IhC*;5Iz_)3Lkxp{@?Ic+&ssC{61CJj4`l0}3ii6y+**tUsIj~Gwk5%? zldmzqd1?S^JwQZHmfLhG2P4h>WFvN%FfQ7dn@9WOqz+35b6tKxW7BiHL^Q*+K9|z5Ifj<&b;c&`&Ehr2~nKB0u3?;jQ6pOnyS;qo-Z0CA~DB*(lND~6NrQwhfBz!67 zdd-=9bY-El55Gq*2wnf!c(#qZx>WK>e4~9JdsoC~ zQB1?G2tupc;9F|B8JGaAHt1dh_JguqTqI>Tb_KD^=7Tf$mAnkt)1t?tDcKC8gyFYB zB*H619V*lK40J0~UayBID%_@6N%A9e7ADo5I&vVl?SxlJC#hoLsGa-HsCc0y zj9&?wi;kj1mq5JE*|?!5D;2a+Yc6nw$QjLy-$0f?jen0Jo7%f7x9+g`1`grx6tG?O zDlGz#A&l{4ILeZ~+n{j&$j^LkB6z&$;@_hSZq+(zKKq#vji_0~FZ#B4(26J|Amh@r zAH?k*XclE(wSjD>Yq)^E9j3=jGuTgBSqyQ%HQsss6 zmWAWVOgCxGrPidH;Pl?eI+)~4hc(=5su)h@)}o_y^Mj9(Np3JH?3}q(&w^~cIZQR3 zSU9uw+^#T_>>OMhc*pzi3PA8iaTwNrL>SyR_8T(-^13@Jj+M=^yr+gbQDBD#_k2Z- zuJ2q!|9LzG!NGh@>4m6Z>q(`bum&Xkxr|sGfomq|20DK&59a3uMSD$xB7}%O{BTE5#>}3}x=&JDK=4}Gpicn0Mj1T8# zy#aoWN;g*x748&eNFbmMTugkGlOOmL>`}c zaNSd@=pbv2WIA3V8%atO>FfdM-LO0Q6lqO@;?NTX7(u~Jg6cNgh5>rF$@J}W=>f-s zj0Tu!VwOJ%M|)!OjJ;%Xiuu;#$&hpVxsunuN6iouSBWrfdI!P4Vg$;~`L(dz8j`Qr zCrgp+LrPU*Le33IP22(!0utv({u`#yE`h4a1sHq3^cnwH;TW972iChJE+%Kl)TC&; zdKn+WSQm$WYmnRLKfiVVL!SHY!};j<*WqWS1gQ3&+Q{@^BbYgXq3yErZ3I(hl3t;O zfL?|%wr})(U42D{Enb}Yq#`YkuO|LoXK#iowNnwRn8gwk3tIho=Hy}Hc*-r{`KO^P z{|I#Jr|IdD{)|M)X{Ef*1NVSM9mw3nZeo|O|Jhw+Si8rFBQOhlgnY<%u+juLx6vK; z#l%`gh?xbR^1h75HFO?stEhm+_B-ZE9LXNlZW8V)AQCT$yLA^YSG8hW>Lg|7=loD% zQGN7XTuG?ygQMiS>qc(kIJjtN4%#;j&;pY4qS<8-P*5AwAn3_Ma~a^wVbroIb>HJl z5=E39j4LAHzmskAa`3&;S1ATfwvS4jJD4q^arFtX##Jl?^t|9h!ehAi`<7nYD{tP# zK(85bImHr4Ow<_auRj`~i9EPd#;rFSL~M;ab-Dbx@7tXjDbCo(>H=yvAZS((Sq;nb z8ACGfX-H658Xd)%QHhndr^B5A8FmQy=# zm6WQ!;C=pN;lRXD06TWvnFw}<0vt{N480V0IkBVq4g0FbvhQ1awWEK zy1{<3%luxvRkhn{*;;-Ax!i8=zh$gvV!ZarI@+;dHqC*FVCR>SsUZz2y?gsr0wspH z`3KWolo~^RL&Hfz2qB=g{m$)sg7$6u;N$d?R#w);HRzyeacw2AqDp(a--PTdQwO%+ zagg^pMI`JswD7NqAa1blRFa;~jQQ(sFs~}3{tnCEMfnu)2u=H)G;EHbNEQ%zR^Obg;MBaa* zw|<7fuJ@5x6Z$B3wKJdG8ri%GA1TrNnJ-!ufmhQknASW!_YE++^qPMS!-1rF{@DDF zs1F*32AA{yg8H!k3-u9;+hIrRll0&De+6|Lvp{6oKwYpXMVGV64WIT; zw@1lPQBr9^XxuP8rtyy0!}T@p=@!uK!462s*FxcC3z2rN(+v*66!jk%^?Ah8jMI`h)YGx@cznQHDr4O1w;kmm$pg2B?i2mM;URXXo zzQgtIqwRS@Qxn|KZcX>nQTNgJS{)w`F6Gs4kCw2F`V3{`Z_I5~k{fw#t}RHIE;<32 zGgyf#ywmz9g_Y=hfOL;6GyTzqKqx*%HWVP;Bk{YPX|6MA#eW4*6TQ^^s)<%{d@>OF z03Lggc4~IM9(xWm;((m5#s&e8JyiS1m%n+PfNtRVhpIPJsV^|ru_27wh1mM9H!zi) z(pM;vhTLSSuP1SySeUASOzCE zMc%)LO?@;s=}U@t_W6hR0iQc1koJm5Nhlj2kcSZYbL20Zd(6892EB2oXtdJth?%OD8+knR_F1G%5V!2^&PBF@VAzTNks zRj@w!9Y11~#>7`loNe;J^Ej3lLV+wrrDyLftsI~5Nl~K)2!MznvY^HY$fi5{QlJ2& z)9Tz1L3rkdy40AIMa8uPG=?3g+lpvOzwJe_sm~-vDCXS^ZyMv!SP9uIWj?AGZqH2U ztnJ&hlfG$&9bJvLgLgfp3GF;vusqlP^Qi&l8Pim<9%k*dJol%3#n^ClO z0N$qo<6AbxA9tSL!!z%z-iEHjfo!!vB%yAIomeC*1-^fZ_nOf~OCV1-w|Xk$g|a^e zQuXJQi||6%m3`O1cyG+qdqrm?h`SA8L>lIe{lEeme2*RTeU?EGHk!~MZx&+oIp`hApcru zHA;`>;Q{?6eM_;6BlXfn`j-^!W)TDSt=64+>@C%6}d_0;Pe? z)ExFL;72g}@Ewh9_JUT(O*HKF2c;|_n)XN>vSlcU(a(S0Rsj8;$V*dKtY;UacL4Ge ziOwq^dij_5H6(ZUOlmy0Su`eV#oP9JeEhs2MB0-5A{Tj;s8|~8Oe>4OUd8Y-Bo{L= zoAU`jAZdekjA!nyN5u3F?EM6~W~MCTGytZIlRin&&euyH$o7`T)fW)O4aPIXY^IwR zbo!g+E$Xbi^_lu94!fCoWnWdqqaxmw4n7H$Vhng(;eA6Dx(2gbls`}AAwXu%)la&L z{#;uNF6q978RA-t1_dYx;wIGRT(v#aeZoV-AYlvI5Sq zN{m@}y9d2^GE>T_^hplo$+*c_L2qaAOD?US=$NOl{YSm9ePiyNScp45_++?_7HNL^ zij}_o>dUX@=5;Xh1DV^lZme_THpY~Zg(PDGAZXA~))!TA%bF+~@zl!CHnu~7YVfC1OiXawsQMs^{U%21No(@g>rz?aQf-UhusLstY}V-aQ&@8AQINm(5MF`iu%vr3O+LcLm0xO%T2AJ= z55BEEu;wD3by-*r$EkC;0vl>11N@uyJR?rm=#0`J+;OS3Uu#)+GczaVN-z0%v3#j* zup&)rtn`RbB$wfK$OBLibTmmZ-_&Ov_)8mv@^2@1LKTl0^7TpNo*r4IGNIC=%!*Pc zINL@@z|{5k-Tz*b83aP`Wi7OM;TZPftj`xq3NJT!_U(nbq4@#*n zu}(7i8pH{Bco<;Xlg92Y50!|bN%;gLGB;BA0ADpl@j%t*) z)XE^uo^t!OZN`cErIJ_M4<^{RHEJy*#L^@FI7yy0(p2)C<3@Ji5|F*4FyGUuSP?+D zW6VWB&&C_(up@EYXLp2DGyjlTakrl=PL@iPi=LZS7DoQKO5D)YdE+pF*9+$=95NgW z5mrS_iX5nb23xw!yep{{*H0B2I?(-P+4l=un$&L1X*_04(;|iT#}qeR=5O(6{Bu+5 z;9A+Fc}`=#TUf!Nh#$cM%NYK+jBJxms8O=^RSG!ZEQq6+ba#a270PcX?1gfMVX+; zFN#QCcQ7)?GXJrjDuUV~%Xj0U5?t$T zoXs;O@6(JatBSmB7^Vct#5f;TOOGB~sA@V6-}m*io3BL+~@1Pt#pdW2#X z-qHgk^SwqAA~cT3s#l!nw;7g|O?STyp1wy=_`z1L^s8_W%x`qF!L)2YhA~;W#Z)kjUHW6^&H_Z}(c(6*is*e>tEpr?N)o+m6>A?8svz(spu#?|7DD1Z? z$GyY`i-ZHE9<#%n6vH92!x7rmkYcYD#FoeR<|X?H+vSs?0i>x{=BK7bh8oei35MfT zpreD!zMt8dPLbWT3Bt+G>7t5>dMXX7G&gem*rGwdWY1KMPx$zQ4aa_kE{oQB3;Rf{ zXnYN-k(iSPsN-f7Zvq$wr3KtTyc>yNj@&s@wrIJUXEUfPW$B6>da9)uUb^s#8+0mf zYtFn!ec|#5QM2~LEALf%?Ff$)7#14m{cfgsDsBIqEJwYm)j?a6%}mBV$v3GY2^;OK z<6ZNTidTc_`R&htJX0uOZl5XsmvYa)&J;koXLb17KcciS^#t_F@HC+282K%axGl+! zd~0L^U^pl^+K-oUxL@Lp2BL{hap<##I+Y)VRmWE0fV}A1BV`Hd04)?=**ICNS`7$j zvX!-Sd8P6?WQkfx4q9?5B*aZhr(dz&DNHuj`kq*H`0C z^Rd?^0;Z?aCk=5$p|e`4D+@?og%)6@*7rhTDBLCT`c8lvDl#rQlG!G|D!aGCP2-l6CXq{S2OV01JGy${>+4sShS&r*lD z6O})gg|Zf4n@0M#ZCaL@86YH>xuhVt?^tc6HrQ~P>qK2y`5$vM51~NMAQp!HjDKAy z|C*zHT`2#@9BsXNBZb-uW9Dm)CjB)>b1DD7=V+wN8TdbS|F{;=S3t1*%QjtsuP@%* zhx%ok4gw%O9ZZkbl;Z_hH8;xabWd6AZ80vax^qazmw5`ocPiAh9P3*kb%bDx{sMw@w(WwH))# zuq_ca7~l=H5XgL~TT{&skiTn@efX_2o(B^-g{+2V!h0ihR>wI^H51XFT*xD|-z>uR zld9UzG@>sohM`v9ohp|%+E46&sPgrF!qYJfUB(h+j7sb-E~XYvN=1x(WA}xx>cGqK}~FsnW1&7mkaGJQYN$VuC7TeM1Z@qs==OWz^)R-7c~9Z|5asqK*H)1Y zH2Q~;mhCa9~@@@q-Rm+bJFzgl}%{VhkP3({zd=MH++E6A@w7J zyA0Jk9-&6-Z>o&n(d*3TIu%)-ZH{uMtp-JQg)W$s(ms^+9<}xHWn1y@AtfneE)!HTu_*KP1->I#SfU z1DO?DTImcoIVku$gjpDm#u|wOe}-yNNG26`XF*X39yRyf=EhyenJF8~kPqnnwrx)3 zz(fA>*~e~^#@`$ZT+a|ZjlykxvP{bijhSWV2LJg zog+l?Yj1p58nAP8EzbIW&s|A}0$8H;c3z15gfXm|fU7fdi=H6uljS>e(^W_kZCvI< zd!C6}E9mH&TNu;f+6)udlZH&?D3#{y6QiZlO#`t6VZT-S7MzZI>cCZbh|T1vE45ui zvUgsI(-^B*^M@6Dz2cM-A6;h{cdtSmz4!=U8=-gD;=KLuQ!=>?KGM7_Q zMPiTXn(-lVb1TQ5oz+e}G-K<#qZPQvT38Re4;%MnfGHY!Id08&&y94jn9c75R{ z2Q^jctK4hVh4mu&&Wx5r9$BBFtqUJ z_OF3;(ze{T(&lWx`TDx;NC$$|MAs0Y-9)7gO1RB?^U{2VR0Z=wXhXRJA>$yoA2x@r zvw2eVTM>4DBvrqmW0@|zBxXWy@mt<(V^L}?$i^?^M@&Ixx}N~39!JfiJHmBzkg7jn z&hRPzH1Q5ta^`VX*t22SnNs7dM**B`t`ZaJb#8lN^&3Wb|^FzSA*EBZMI;42^N*>IPL#U>hKruUuW z)jv-5V8ZX!oYU7OWM-JhO)Q^EtmryS&Z>5Cd9E)MvHnHR`5&;A9rG~!GjekO!74qDPUSL$WNKYJY$b{&To_q2Ts z@WO#5-L2FpOk3$$-YD1AIBi>CI4f^OX2Lep2RTYV`};g2hr5#QZ~G}{uhhAm^e$iC zm+SPm;KGr;hC&j4XI3b~?F;}ciGUa>{ZuUzIJ1`P746{#5<6aMP*L)mwV@h+8R9tF zkNmrwd?q8HYbU-qyS-95qHomcM@UAVk}DHGr_?%86I)^~yi7%Nre6`6i>UJx=zE!8 z5NT-W8tOOl4q;uC8?nRj{wp@>kkJgi%mmpMq8ZU+0xO8MVbi9`*PI+5*}}{~`Gkw_ z-Mb~U74;HTnN33LjzX0j48N_UCGLyf1Kc>_0)8?kQVk(+g^p&*mTSP7=Y`R@w(2>l zlMTv22)41auZa+NKN!I}?mpEnCd7!+c%T$gwi(pK!gBnwWeStjzB z(=7jH-?o$5E|}L_3s>@UhysQ45NQ%-!%k1v-w+Sj^$N4H-8 z@vgdvd7>lwUsxZG|E1-lM!hM;VlWoV=Ay0F#ayqx@bmwp<@2RX2>p)kALVcYt6HU+ z1N@uK9`E!t;cdEfF;)Rqaso2vUWHFx>>XeG^R??ktNxt1vS(R$hL&)*#`D)~u_RK6 zO*IJ3Gjg*C9I{T4HXIUCccW$>Aq-O5KgtAQ2KsVh9|?yB`o&m)GJ%{g&}dK%n2d-& zkRCxTU2UHU;(nHZ`Ug_QBL5wkceX$CJyz-StPGA%vnzPNI}DWVJxs_u&J3deE^m-f zm&guZ(42e3m++0s2?jtc2bUu`t`H#9qj(M?d^4#@5=KN~pOI5`@?hf;{2ki{i1{3O z_!6<7Mj|m!WQlBr03|1GGXEjps>vMCedYYz=Ebkss65cte#A`ttTEiS1<_3?$;xkP zxfZoomQ3=F0ar@atN2#4FUaFd&(ZvshZ8JI*e@dppiIaFx#{kTpdvi+Q$MemCRH?Y zhIoT|RbB=69C&^WMtKG{Ck%cKkE*^pPi2z=IqI2$^%7^Hi zqgPXg>vi5(hZ=g{YHZzBP!eFjsM9M!9PGYKaRH7_E^&FHKzS)t2AP$3IQff7g8C05u<%X+jJN&^#XNpGfAdh#bDFc@RA9 zfi&Kk)3VdBY!%3}F%{Qh^72 zGCITJVV+wX(J_(5#^huo!l|nFY(aCy<^(j{f?sXt^UQ*D&_H#%Fd$h-UrJDe)XW?N zl6zGmLe@dOUn*(JJgZ~q3vK{=rWm^=hy(*OxVZSg9DTaN{1U*o9e$rt3w_9 zhMSBCdbAbIMk+e@IU$QF19w$Z^DxM3tZ>(+{aZjOv$bx0wpB?pcg>BX3;e3hpLs84 z-SJW6Rd`<2{Go^Al{+s;QP^)*bW>;>w-bK<2+4iOs8S12=EwsSQRgE0cXHnryXvTh zfDXET*_E3y;xIIv_ltMc!Vxi3pp`z5+&`%HxP!Jn0~Jr_gZq$eg062-Ob2A2n-$v@ zslg4z${>M?|Fq#2t5vq4UTqAoSBAf@sU8-~VYrg_LTe9hFaepuo=<`fSJe;%ZUuM1 zF$1<2-mB*%H;k|`ky~6{OBniv&#fM*$&3^i-tF_hd0*a`)n;hkV z?OR{U1Y=Q~SV}agFJ(eh4nUbu@1CAN{}1pp|5BU)_&-Ju*cAZ$Am$lInZ6JFWtzX+ zd+8MB-K>>o=J**CU<7^v@K6h8`ITA;tmajVD+{2AV4`Skzp1~q2aT!(`jS*DOTeM8 zXoqV~REZoZ7JrlsznZd>4=Rs{hc87;8x7eicJOueYa%*lKz^j!ZD?Vh6LZ6#Q2Uy8 zhuR$tHE8SY;Bxr9Q$kmy#)`3$2Sf0i6cDS0fmUb{c_--*#ip-S#AYs3y?UHN$xPP`0MV(4Z$>YsPu=--gZNgy2viR$HD>)gzu-y; z?`>N-!-i$LN{fWDVr#|}j=RheZ1{TWs2ZjDO2>~ny6GD~Jd8=J%z3id7S94;H3!^_ zgvJ+qY>w$)|L`-uO(Xdc-H^`cI)EE`fLYaqH2kjVkAJ(ZJ=OARH6yTRqM8?k8eHEH zD5by(9F2QU?wyE)z}!LFIC^A2eJ{(bV49xHtGD!T%hKn7pIJ$eDuXJ9uQ?+(Aj=lE zUI$jT9j_Ln~}bvopUT3U;q&vWDH+6=UvXt7%K|&@^p=az45Jz z_9Jr1Y)TleC{FMdTe6es;SMb{q~~up+$W76FNx`Zb?Mc%m)q=P*!yfhPEe4-7xKeG zSCSF=#^*&f0Pu;MpgaJOAGo8X>q}q-T+K`mEC6+PQ(kqF5;M4(unQ9(oXf<7XrMOrq&4*rf#oBFMnRaP0TW48e%f^>mLKeDsBPz3KTwwCduu zNDg)LE{n(2tz*Y_q#S;_v)>x+Zs4NCcEkE2$1mdeu<-5lSCLaOtXncOGefU>#cRGl z%x;&aliIbhVU;^mL?@nBDxtmYpfo-%%JBtRuhF2}K9fi?3$92tm9MbFcDK@?YwN zdBKI~n{^9aJ_Se`|qZQ5T%VIPR1*drU@wybMy;~oDAp~S=AwaCvru? z1KURYWV7+=h`4n%P9#H(Lo{P?9xf$^*vLSIMNWw51qK!Zs>z%a5Az02?9b~zb>E%c zk?ox>6IM&yR&@DOH(JV6@;Wk7WqA`O3rNL|>atZ)+5qYV8c}1Fzv+FI!92(zYdOmK z+=u7}&8c^+6GV_;tEt+0{4EIyO@sr(0{R;>^?=^o)`hN{SBW}E||@n{R% z6x)M|V2|Y z@f_5y_2@kEy+b~qyC5<$jJBF_2D=Tnns5=>^ob|ciB0RZZu4bG>dsh}qi6ow<&+ zmcPh!y5#Of&JZL@FtD}-ySz~1PcgqF&eXv+($XT&P2Gv`F;0#504v)n)fZ#lSzPQ( zx8m3&-pupy_!d@U#@7OPkkH5oYh?ZI>nh=a%G{yX%DgUdlihj8Nu*`37D&hF>=b~z z5d(T&6=%Y+#5Ak$60VKkm7ZR@7q;cmSDdD5 zy{uDmz90clt$p@TlHc(yysxd8d-XJmgGEv!rE%o)5NwGNS9fC}?qM*cvagc%9o zeU#b2WevJ#ipH+(c24I;&@23D-FJJun9$VyvT!kq#eImAlm8y8`8Bc029%mx$trE8 z4Gxynazr`-9}2rZZlRllf~NUd;7RU6eUBTvxC!z!M>g@s$($&LUL?iU7We@YyX}lm zMgjwfnFZW$bCJkm)4Yx-*(MYcgqJy;P0!1uvWH!yru&TKy~nYRs5s-H)YneH0(c*{ z^=mDy@Ew^m;y`D2eHf*IQS5?ue>Tj19Xoi0lF!%8^dE{B5&h3Z=$j#X=v(2oALG@l zes@t;e5hE5DnXlb(LmYx%HU7LhMurPj+eCcfZ>ZUTjzLT{cr8AZl5u{SggPMXXr&OGqS~Sm2h3Oa*iS<48GQ#JPslf|Y~`Y;_O9yi%Bs$Wx^mN0 z^4)P~aI|~y&*nS*Z%_i{CiQUX~ySCG+7t|uL-Xyasw0V$X{2{p|0`!3SB&%%952RHTu{w=f0SQ! zh!~61!ulPOUBlb_9OHuw!d;piAJ=d@VaBz~g9tkD?e?(#s`@NGem<}A-c}h1!8db+ zw7Hh>vSyM%w_#zNMje-5vu@6RM*^jKE&?S4P1-*pOY$G;7R%@^SHS{ak1%LfmW5|z zvEJCa+i@@zDLAlY04ZQtm(Tx8twSH83!z7kaM}(@+yw+iN)q}gH%BMf!0>mTljuc~ zFQ(jCY-}-x2dV0vh2(}C<&}lxgj?azLhN#F*!yyeh#8d4)OSb~bt%$vOf}yDhlhVl zPFf3K&n^f^ad}0^Z|!-8#p_W<1j}ah!uIX=_?1Fnv?kx}z!d3sVf8+1z^&h*Sq;E_ zsH83(R(sFc#;5`6gbR!O$)hSAS`hC0aiY?CK-CBG9?EaYu20nIsw)fvGLuv6feGBO z(>Xgi_%FHOxoD|$#rPG-6ZV5m<84RUZT5GRC-RC=A_6L&zTQ>t%Z#Tff8C!SappQd zlAjE3T0mnifmT|dhxP3SkJjkv-$`4Mqh5z=T6gEZj;V0{P}zg-F2-A!udL5ADcVhy zDqJNX>m$D#oDazQET-ra*cN_Dh~~b#`_hN-;dJJ-bOrx(6AxwQNPYuZpvlpJbbWIl ztH5IkNS#@1`_2gzTjm<`9g6_|XghKQ#7{PKzqT>xhteqIcp z-^5apTBeabS6yC@Mgl3ZgFEJn_Az)~`w#6y6k1eRq~j;z61MMV7}*(8Hc9z|dq|d5 zQBMTZN51NtBdVZ*UCD_Y9@|liSZPePrh6)J>>M-j{a6V^c=Z?U1G;1d=57g~eVl+W zkbxG;UF8hglT+k#$cz!epvUIXYY%}+E(d1X3#<(VPWe!k1=di$TLx*fOyMK3z_H3K z$SoMpqYzXc=Lb51$$mXn9f15*uBN3)WoOo2^)1U=r50>lg`=KNJ8t#`wt!Ruz&^n5 zmN@e`vNZf@5q??6uJb7;u0+{=vvtKm=)kEr1B-nDTIucZDM6acS0Y6*LVAxqs`({O zKc;biu%87HImy4{@+>711D)!YtQdD-O{8e5SdwjG`&lu8&7E27bZF+c_pEt=#Q&qt z4r-}X;e+%`vdD4Z?6+g?VaDY^^Ea(yn^-gaQfJ3|anF{M2ou22$agegmfniNn*dm! zN4OliJcyAA{E|Vw`&>fe=y|?rp9Hr!o>2(f#N87GFcYFhg|-K(5i|{kP5|p8=Ud*Y z%6>7)`npb|!yif?&pLC&dTW@O78Ca?E4;52m{hIj$&w@x2xhO@bd{|lK?(LbMUgI~ zJZXidVn|fC`B=AISy<)@6|q|fBUnBIPHKx)Znp)Szo`UEuFfoDPVrLFx_xdnUq!(b zd<699RSb*Jc!FpAJ(=lH(rHf0R5XFm;`6lE(f6jnjPz0HX~;DetR-T*1m~2to|Leq zOm%YVB;!@`#~p7UcS;3)_K~LXXAiAh{APb-J6`~0{j{~|>B+muXduTsFZak`hn z)~T4e#p~_fqEFT>fl3}m?rag-pL=%GKZ8{fMec>FKhP-9wim>~CX9E%)`&#ru_m1L z(1n7ATLG{SII~vCLzp_Vbb9Nub-Q08_f*>>R;n)uWHHM+s;`S(jGKS=zFE8$BqNQQ z+tua@LdRQkHuh|{c>T3`sim4c2G}v7H{BC2`&+@`f+_1py?S6%$Ag|<^%VgYLcncn zid3|}pE_d3+265Y;7*MTZ%uHneN{jt%FV6@Z#Eer0+4c12BvW zXw#2#OS3`tKj8;-z)Ro{59_G4Z>Z=v%_PSV!V4P+OI)|J7OYPL5dYX>g+neT&*OVh z0AfByZr_IZ3#^!>woMW1=tZ4EN57VI#JjFD8xdCdza52F{}kchQoGJbj5e|XIqIIW zFY@ziuKhAIC1Fa~^>?^-d-l1`I}V&(+ih7IUmwi{Eb08)qLgktVibG7qX-w+N@+eR zWf2;?@H<*Y8oLPk3Vw6w)fXpPY%ZvgXd!x{vEj=5{C<6 zaPddW4;GJ9e2Jh1C!_YzLPxoWL`w^4jKY+WHs-15<0PV>)A0K8Nc+?n+=--Hf*xzU z208~!jM1}Hag^0^N#FckNykQd$N*trrkRI#bYV^gOfgQ$%ou9{?FIxv2iUxMJ<9HO zEqheT(b;-lE_LD2KaC$}HA=&jdg#--U5;#jA}VXN;FGlTQpMA7vEHi1+uNk81HuOUJM; zFN-;iE`;jTEqay%^z1l{)7waE5Kx6)spo8tfsj&+GUU)bY`d9)?tw*dVwDQePjJCRA z=;Q8Bck!6%X>~?>Kg^9DIa|^N&v0Soh*o};Oz57X$f{(3OJTTm?ml#oQ&~MJ>5TsXPc8F@jB@Q zFj?#e<0>q*2S(tz0rqS)S-G_0)DzrOQvQOnnAlezV%11D15&V1kR-BcraWE-EGg0LemOVvz|8f zqBa?JTTE?8^WE=fiVDy9b|qDkVjf8&o^Xok3H?n-pE?_wTN(AMHI2Oqt zBHOoGztiAH@44>WLjz^vj#4xmrhCvbO{VP72;8I{`(N^3%B|Hty)$3Cx+b{cK$4MN z?#m_fd8{y+bp5T@Zx%d%FP89^hoiNcb!b(~UB1(~d2jbInf(#1uFF5pga z`#=tPT(ho0B=4b8bKHa-4I4>8fco&un@PSM0lhMAER<_^3=4=aC z)Zu(B>KIN$L`N3$98h?^ZOMgeuivjV^QAC*2T!kUy+KD!l|lOHvU+3l=Xm_m&{=QK z_c=620k2$rDIRnib1T>Ke&te8+Zb#VUJXr193+Uiw8)P>s?wqb{eE3ZM5d8XJSyl0 z2JEW zl&8M!!F!?sKtDOy=@WFhHO?IhE|nM-Q4oYtQOK3L24U{q=pR)0frFc{V5A`8Pksj< z1S?ylq{dJGNC|x0@b|7BQ`9*$LKq8e>LCV!gwig)Maj7+#RRK{fM4OV!+gXPC8BaP z{suoxIZ<`YfkCdEhG`JPB{JDN1sT85FP11N!RSw+Tq6*&$`u4W`Bcp~`XjI0U-*+~ zHYT|+5X7GNE$K<#xeD=&HeVs}Rw@Z%cfgP72j-Nc5%}jC6WLAW9O@Sm1DGFSKjE1; ztOTZf6gZtrKI%xwl2xetr7DlabD**BKxeAAF#{xYjd^_Gl?YJ!3FXkWyFdk(BfYI8 z)`s6siBOThS%)IC^d(_nA%svC!S15RHArZji(0&y>fz@qR-6WBu|US$jm*Spc#d*& zh$+MCY^nKfPurKX$oP(eW5u!j*`If&szTLEtK9(3l5T{?I{qHI&<}F#S-@`^ z-r|w4DZ~R!HH#o!rek7 zLqu3in}?DV_RMwI1?l21==P^R;U0g*{o-MAhmFu<&_~W+9mp6kpGX2AXl3+O(jf1ij^81J z3N`{ezq=v^8Mje_2=9H}l#mtV+$fY!)9lC=9N|f%SNzx*cZmN2US8F4$uqt8ncY6n z^Bpkk&3yD>TU8C+lD5rW5O1nffD||xxYPWrypG-uKDQJ7<=LmHc-awz>wn|<)+w_C zv-&jS`Y+L&!TxWV8rabc)~+@j5*URB{cKZnkA^$xh#+n6YdN#Hng=POAv^WO8bU<59tEErR$(Wq4$xTYdzcyc5%9?ZVLFDQzW6^ zT5y-IShnqs8|C|-K%w5BTr2E6+q|la+7wNzWpg|dpwQf)4SfXF7jYbU6BVl>m*_<{ z$7W@afMD%vdS^1elcED2TP=?k?OX$q?8^DZ=4XaD^8vUrhufQ%5Zy7t z5!LxEC1E6@#6%?;Ikz2?N-n@hfTr~$7n?-ic<*pSD3#z@GEZmV4Umvx-g{`rwKJo3 zV`LgzxgkoI4$Ajhdh89s{F<+!|7X6o@Xve=R^gxd+79{pHVI~-T#=6ykjVxmNNk-! zhtA@?hrs~tn3>0kZOa;JpUfZ1hx4DsZS7S*e*p*G=Qk@KgCx#h-w#EOO-$fM%9hp& zM~Qy<2#k`!Rb`^0_<0GcZm^ZkFHCDt40Uy?I5o1M!zF!2Qf+-c^ocdj2C_BJ&Azvs z%__H}%apovgng~o1e@z3t^+&g8W}HHV_%HIM#yH|4aDKimy5A1D{{jkSqAR3J&%sx z#W@gy2!Q8a>uz0V+6-0Ac1T#**C#O_WTyYDaaXRbgsRNcAObvUvh_3_bZVUXbv=07Iu&=?Xv4ub1Uzsi-RC&~&+s$%3wr?oNvN8ijR&Cf-No>>z z8|j@;FJ^alI9zk2_PS0#5uaRaXV{or7|8;uJ6%>0M{-}1L+>)wQZAZFWWV13GhQW@xyJz>ps8$6Oc9x^E|rd)PHS*VlOr>d zadc`vL~*X-1nigngY4uN642)bzmIe9&M*NB#o8@JR8&SW)XF`N7NGw7@}9Z;Ydc*mF^P0T%(ye`8@mqyl%b+AY4$->z~A3~Y*!X2zdV zV<>Bi7%&w(Ls-E^aEo*l@$DJRP0aTe{^ zh8{;|DcaenBvpv1YbOs%H&Yv0eJRB_^ASRjsGD|tYZ&8dM5e9nyaP{t{gsrn^KK=F zL*8-yPt52Dt8j}GmnB-D#A#92HEhG%o)mJQsD=#68JD)AAC1K%COzZF$Mu)sk}Q%F zonRd2lvAM;d7MV#TebSA=?#k{qKy;9cw#W=PeoJtG*K|BO>>Qp+-Li-|h z2S+WF5BkTv-UHP@FdSu^pcMmcoivfFiMMLKXg`M26wV={%_`4dMB3NOr_Y}#NsP$+duTy`UtY;xF zA4+{~(ZC@`JL|Dnoka5Oe` z9F6S%bB%oQJ!~jmn`Q5al+yE^rg%EUKgJ#tdEVtip4^c#jaw!-a!gTIBR$9 zGE&!*DbP_&fe2p&oKZjCqkA9CQ_;z-vA7lh9)b>Ia1qnio{!p2Eega+HyU7#U*B`7%z=6Yr@K8V8T5j(~`-{65VkbWc*y>gk$30{uoM;@me7w2R~rHxe##Z6qFF5P@qbhclg3UoE;fA2%o(Yr|46|i z94GBUkd5KX0pF)#;)sq?FS@L-OYzeo(M(beGEc(ZLRSDT63YLK(DtwnIDVyCoAptp z3Zn?0bLuwat?fr-i4Dth!k}XAcU@#^lOpJSgx7Z{(*!Y*HD;=9ImGAxzza_ElxhD> zl|VPI7$fDGY$}AlVmeA+phXfbCd#8*8a1ekF%_~(Wpg&X8 z3qQ|g?@buc;Pg#KmYD<%FjwV1t@(XmneyBT?bW%d%@Gx*8AjA0Xze!#q4Z%7wbVa+ zU>iZ5r>upQAnt83-X>PPJ{a@1_A^mH58Pa1pS`K@u>m zw_hcpOjLq)%~qrl8%bKAJzEmBX+Bo{DEmg|G74T(JTIT&6NUc5GUrk;I7KG`uuiA= z{7<(hP$%c#Zjbp@LVE8e9+z(sIlwvn1^GVaYoajC6Qi?wJIHdz5cJD#EDLJ;-DQm`gF36+`bvF$HwkTa|OHQp^PDz!z*fG5X$a zeH6^ocZhAj`_P-$Dczz93Tj-Wb(^7*Jcs&m7gK+(g58Jm`6olBBv$6V^G#cp&-Y$$ zGP1Vl>@|!QK{ko^LhdOel72rQX~-%$3J1j*Eqm(L#pZi!7m1eC(ZQV-1QPh!9cJq3m?OZF~t20%7X)Hnr8T zFqVko^SN-#d-uvecD3WT_iznm*JH{#Q1-6=(mB+iFay>F2YAO3+p=#~488}CW^^Cy zK%-y6Xyi^w1jjD7gT(x7OzJf$QPz~^K;$u;ZI;lT1OLf>yu9~RWUCGu(^~h>wqOT_ zM+0YT8@kASE;ZRE>g<)>EMtU}*fm0QJVJ3bibNk&8|2{Hx^LXVPTZR*F-#6{2*lcA zFqomoJMHLT8qV0-R%C}Yvga)gVcCFiPy5-i?+@$to~sz_Qw-5WpWFSt`eA=qn*P@u z*q3nqxROS$BO0~g*j9*#Vu=82AN5pslEc6q!m{}b*-2fD)2f6GR zXFVpOY{tb!RKMF!RwF5qxb?blMeN`?1t}Lu2}+>B%Utn|2j>86Uc+KKvrU;TMINGB z9@HL)s*+O>WO!|R9)i@+GGH4k*jriAeh^x;!#bBFVhZS>7N&%ze$PC!IiAZrk%8p& z%Q4H~kQ@su9U8K~)^wu<&i&KDbtk2p=&FM!e&mtUquu0<9XDDRHTmZ})%xVr;g3{8 zy+hKxr4eG0$q)QW#SyMTD!-#6awBc*eP*KMJ1;=vxXtn4CWNzAt&vcZq_#Dq#FqT2 z&G=^nM}~NyN>2GrhB*f`CWVD2ZVYV>ZMsU|A5cacEYd9}R#O*PtZ1uidRQ#V^{36J7PoOrx6R3Fp8N(J{VX91g0ilkax+D7N5}5`6uds5f4e z(a}r|s6XOqWvEhdnPE4zjbtdLcVzO-O1jh81d3=*gnp*Akxx_WH|nZjOt>EvOmK?yI8)kK`_nYf2KH{IKv3eh+p~IH+Lz#CIdvxK#LYe+J0(zYs9R$6a$}p!+;C#bHVW?TZq97uehvO+ zWh_CI4WaQf>X>mTQ>56frNjzR2yb`8kS3|(Gl%QO=^FUN z>UZ>du@Uy_I))BM0l!@7Wo}H7&O3JMqrv65Q4)vBSk(Xavk@HEa)ISckHfW4P~6ru z3vK9`zjy#XwDWl7aYU74>Y>P?*-ZxwsI^H2EZEg5(&%RlKx;KY(r}|S&7xv;2B<7N z6cC0LtolFjF0tA1wbg9v^(~pPCX4Y$3I@wJqIA%fUR>B6;g97a_6tBoqRKRbrGFJGwy zm5t9%T(AnpEoKdN9xvjxoAVpxuT88w*0y}x-K%av`qG5GaNV#1ckBV3LxoG{yWy++*OLP>!R5e3r8y@sXU1$%ls9z zdFB%0z~9w@7d~DzpYx;9G1-sOyqD=-8>}7ULzAyXh~Y1{oyXa6*V(N$t;Mj-LEWQW z8uMkB+dD6h^%jpF=XugqkA&!^uCxACepwgZa+mv?LICeH#P#8S_fC%kD>pOzcd&1E`)xk`a`KrLIo#5hrB@akSMf3xl#<}23;!vvDxI@} zm*~mQcU|vET!aWJQ>PT>n<0-X0-^{Uw8Ruh&Z&4n2z7u67~##(&j%!GH}z+t|5D!9 z1J92zUo&!Ojk40<)GQ?%TjOgUW~v1TW^B-#1lK78Q%pLnFwax26bbB&-_fk=O2^d402-j*=p zC6Wgk{BME_qUC6?81N5IEdqwiHSsChGhx*BA8!_}C(KgkYBbyWG6(YxaBgz_DNigj~TV0f6GJVM3F9aBrd8aB_#VMrR zfjM~C$-jp05&q6J`?uc9MemQOsw4C;Lv*{cAc#v{=i&!*)Ta{#45`Ks8~_u!svbPB z-|OR=L6(Nl+c`v(V6ogyarrdsyFzOb>y#H1@JRHDLXScj)#@NUKcJBms01aAU94oe z^W}X>6C@(WRH%YHuLNNG5lDQ@`ymg88;9_8yL`|ddW+6q3uGTXV`SwX&Q6idy35+9 z@8xo}lCAL@_mS~8(u~IB=Uk?ge+*G#z6}UO;UJ4~;eECu+OIP3UDM5Iw`D|#Na2y! zZkzZX8bu+;nCdodl#`BO=A1hFjNnm?62E_+VoCLrf;z79V{#VR!S)r2NC`px$C_X; z=!CZ#P-$Nxo6;{5mcYL;0K4m2A!^{bL1BSGUu*}?X)0c#BEZd86cV`rBrM$OpT1k+ zZ;a1Xho6tU)Or{6T4of2mbz9~f(WLE@)C0X;Zm!s4UoD8Ww???dQU4SZ9v09x3rQ_ z!iM;RujHYtl>kviQl|?EiIK)f11dfN33npfe}O;pgu58k@HKm)rF`5{@%y3AmWWEW zdL39qocJlG>hwTHa{=}k{gHb+XbcfwPv8%pi~-gTlW?1l{teU<5&PE-?ra-QB-yAM z6Fu-2FNc7~TsoQgn%Ik4O(RM2uy#17YSWK(Zyqh9HIWF?5>;6##ADr1?sYm*titk- zACs?oY<~w##%0Eq!mo_UJrcj59zg`dO!8|Cht4j>4RJ%9IQ4*DAAFOcD5@@@zlcv@ z6W+}3OQ~<4CRbF%)||(p9*?~gfuE8B^VcC=0kMn`@4sjUo6;b;tGFaaB?I=%moB)e z-#JUJdcg+R9=t@G6bomGVZ7kpc#~xHcSC^Ay|Y8MOmse|q~G#0R&(!rncYNZjju{{g;aTdEpAh3ARQ8O94(EWY%yEgUpLX8PP7`#HFILg>^A&KhR z+Mpx>&FvJk(^(uY(S(tP@-lpz+tuQWg0f2Rz-@KyMG4_TwTov#$vEcw%MJaqInrl` z@>TJf_$qw(gbQkE^L32!P-4mk*5o)J@D1bnMohR-g+yYQQ%MFZ$^wW+=&XbSlJ7 zsPpO>9f2JxFO;A|!vZqDyC%Anc6mqHWn2m-U@w?+UQlk4i(TkqBKWLCUIyg$CVnIq zp{P$KOgYU9^{c60E?PV>sEYpEJPgflo&shO+RRyO{0Sr~aUWytdrptbM8brX@jm31 zDzX7_B4(O&l}|B2^+w47Q=3QKa~|c~Wc429gFr}rTMNGr-=MJroP`gnU#kNE5g*yd zU3t*|M0}>0x?t@uKVXR6dtHwd&645&qAcW|qCHIg%`3aXxVhDlo$7Re z@8^va6y`mmG}#>483#BJzH^>dWnVTKSYQ$4OzV!BP|4$#n!kE~s8D#1+)a;VZWMKu zg){ZvpSA&aYl zUdZ7wzZVUx5W)dx24TBS1|U6}3pPz$y!7N}YdC!diWK#Ycr3H~M#W`*+w+mw*;;(r z4*TN~ojC?GS0^x_Zp8=NInY5(yA_tSz>DyjT z+K!dj3qyIatUJeG%o#GRUh{#0#al?&bJitUJ<+i=RcHJNzx}y4}N_o{i z?UYS$n5W_Wp?7G38OUSQl%Oip&v|cRjZrO^Q^E;g!ye=GBSf71^JT*}-pOo>;H!B;I7QlYx-DyO74Y;Cr@I zX90&*J$ECb_v9p(F3yoJ$-*M}Bm9pD#Ofw=DJu&C{t1}i2A8u+0=`3R>i+oUa4Hb7 zUK_2!-Ftf>#dvJcBjm-J^XuZbwpOe=u2pTYjU}x(<(bqeRih-DqChgNWfv5N_0u~HbDsc$R;N3s@XSU>yN@JK|Q+QAh zw!41&&76|`PSjUQ3-}HTen3?#{(Y2$4W`E)XI7viPARu@%p6*hsS|1zKh0e)2()sR zvfz?V$F;!5Fdme0@T8ztoCw2oxUNk^`3fOHQnLD7I<#0S1vSsL+*nLftHIZ8S*Z&w zfPH%Or_~7|*IL<^3cfc2;>8@fq84q|fthG>=@-+gQTFTWBIWkQXEOFU3u~5KC#5S0 zQN&uWyOWChhER{8Cr_0kQ+Ch1w&cF5lxRou64D64qvRm)pPF4F)Ju}m;&1eJ75dgLtVgub}F z0up<&Fn3BjU6M9zvCYF3Aqqx6DP7YswrjjFmRweRH$pfAd?ur_ue zX23S2E>;?HE~<(=q`Z1Be&r_YKX_GyX8d+QV`hld==1TXw#IrW1<`*GM%6-mF)Q}oTr>l~|z)0!5 zda;V8&a&n_D>g?1r<7lNc$rK6j7Zs+HUSUqoZ=DB{1)gAy<&e4{tU@IyU}CWChYWz zIOdWSI9=K*6HL>RwD48HOIrS^$;bNATHu2sMiYYbg(uO#lYYs((4m_qExhzE@X4rX zT4bkHvRKuLr6}M+AnpnXof+wfAPvhhQ7Bcxn|!=RZ}w*r&p3!7XxLbJ| zI77TqCH)`Hhv$Dd9|KA+0P`cdKEb_1)vITElW$ts&P8F(ySP!7tceb~VI3|ZXHOSI zH=$!aYI}ZebD=xE-Tidi^W0XZm7T!E&Ec;%_JA6InBicT7b8E-t5Rmx$w{ay4ke8J`%RNq>M`%9@{`VYru-%F z9*g*=AXZ%C9MC@av&92rnhwXbNH%#;!F#@6oj)a+tUpcxpIC$cQa)^)UzAVR&;JL? zN8w+}N9q4Z`7nYM(EmgEYD zt{{We?gk0B7eD966 z*dV>u1M8xBBc0{KPJSYJUIQL-28yuuvaf44aJ0rs`AGUwCKzh0+nHAr;XRJm{3U0< zs_x|i{wt!-))gSIaUPc2VxGrg{s!e3VEU0JcL!Q^mu-o*(v=Kl4>ofJKmN{Lzl}?J z@Nd&6z)j}n=`lc^-5lx*@)7(8@{uD>A%MpMKt7;H@Sp(5Cr@4Jd}tB=@4t{w@6R&a zvRICQo}qg6ug5C&hTaYe{>rm+-%4#4Q>LV9X}n@671KvT={&R2(&QY1&T)J0KO(Am zCv_4Mh$FM(N<&8=^dl?**7_xM2+H_npq$*8*ytm_spu37;?l@+2(agWUEd=J?UaDF z-T#W-KT*|2@Ie9o#U1I7vD@)C0)&OZok)xbko4h(DJOtJhH~Oh~y#M}y%(x1$wgTA03C+F1?ToEj58 zEB)36F#MFI3m9#=BwheyKwhB)> z3#?dv&1(!mjZ&U)6d8f%B#6{z`iaZ+7XbM@cF8r2y8)C5O%+R0owH!0Q(*OH4!a#1 z`ENcg?_gxYNX+7&a1NT|KEPnyi+qPpaTbE-Y4G@E{PfgOv#i=uqm1_jy3u!((((ZU zvPw4R(x+Ssec0`mb1a}o5_5cKYrcaeeD`{Ic_Ckr4gA-%T zNeK;3pzV|u+5*v^k68<`<1U#OI-`0lle`WtJAqJa>NgdJ-K(rRQi50w98mA4!_e@9>W*r63ru-@a#^ z{^nS4)P#Op!mk-5P_QCLA^C^!VbaDo2M|69SOCJO^4VZQB;)oHBzUq5)n&vF8UB}f z{{^~R76}&KXTBRNE|5mY4Hq6Lo!8YJU_CdVDbGDs&I>*w)a;1jTer*x%o;Ln3^&+j ziz?*x58;E(tOdyVhyhhcKx=#vKJnnto|3qR4dluMZpwdnYYj0kNfofM)JXa+B6Qmstp){SW(y!j)L zjESDhla7jVp1bD=`$O)GC*RBVpXp}`?G=#9qhR4L;lL!{z-hYa@)FIZwcJSeM~Rni|`rhb=8g_ z7j4N|{1cyf^d-yQw}z;~T7_1iT@0^dPBi)HAdZ;~UAITY$5n(Ffjh0<>q^Wp0&bTw zS)6}Ogy*97*VbSZD`P}|U-V*xLrXJVxkeFzI$NVI*E}NC%$u2pjR%c^NX5s&2H$sR zIX-L7nOiqIUeX{b!_D!Vgw~Se;yyo;>9|onIC}E0xyF`t5W4Lmj+T|XrK9tX>%D~I zHiX5hFIl!xHl(UX#M!Tyh=qPG9kuss+wri@=9RlSVw2?L9Kh!v*6ZjGlQ>OXhCu8@ z9fW0$<=Wyg?&UQ&K+Q+Ko%MbgysO@cc-Q%><}+ISRr5h>#QCcEnEGb0@Sndv49!B! zTB1a>!^q)|O&*py4p+a;iEHXR$t5l5sND8)SFSHWC)e2`0SKS$GQfYB<5YxXeh8;P z#5PXXfQ!1O1hOk8H&a_cHwiLkk&hW0;#THUtt7D=rNVgV$@I-$f{98@8Kk4oS`5t)O|F1>I0dihFgF^H9g!!ky8xY(EJbLBgJCxn4_pV zjfc%i4qT|a2X8ELE;o6zvAGODd0%p_J5 zugQ`WTF&VHRI;c@Fl1iD`RZvkf_<~VG*ji=XCz^*=N@+lYqL{%|KY4xJC>D7QfsvS zAk20arBsx{s8{ccZT9+6Ce8j2J=1B9zry?|wJ}50-DkIUvj8^V=(fZ7Yen7G zZ1m8M*v@atTDWh+(NzI~YMH{*%!D)jm$w>zH~|5pfp4tpg)h}$-4pQ^N|v%uT+??F zo#V-g(LlVB!lmhTPd!J3Gy4j;KqO1qBp$*`3G%dpTEg>zHFnOe!f*H{b+11+#G?=#AKM6>p{` z4U-n4hb71-K{(I0cf=Jl7WV#ZoF!%k{y3x=x8L>0#eXeFzGz+-T4r??6I+IWPFr(Gq>kxVvZ*c$C9ZQYDJ^*Qk+^j3E^cV z_NaA_zESs_30X^n9e2KGLQ>i$q1+Ffnm=vGtNBmOS-L8P>l2NE?dp*x&GDB9#qTth zw&7EcnSWTt|AY>rsH$z!++Kf_m|s*h5Hylyuz+SnUb|S}66TFzKr94oPE4F)PwaHK zibSf0@3S}Fz{I5aTWSu#iW9yR-*!J%g5Xl(Uk?L{K0E&@`qcKxD%tU*)yoA6;1Nm5 z|EK5^3Ml&UUYL5wQk!XS=sZ#hA@u7fKDx()cWpm|ZVDQ>dwNxEAq?Ql87YF&{$lWk zOwWBVaa)9_Lj)eA2|^MzLHou+c!MNW!Th`}9_w`Z0a~?b zZL~hhiZY7%w;W(h56E$VizpsmSGQcEPOl{^*o&riiXSD@zMPRGIqw#ZBeIvNI+Rw; zTgiL={p6F*;qx%LC75@M8l>9G-fS*-eCI)Ns#0U4OqMkgr@mDr*L`7iA7*~zGvg7H z9q;?g|E1`2o^BZ84Y*8_|I1~<_%GPA8lT63;|-Y75mL*}ce=PWQ&41`FN5&6Q-v)i zD{A@W@F5ZBc)ye7H~|K!%UM~KE6IiB-=5>%Zq~d0dVf$MzDdCB{Po{we7}s(x|c1*tTsuX>8kS+}O5l z+qP{R4c^(c_Va$)`|JD#_c^a)jPdsN-2K61+3uplYBcui-bQ4`A6RXGEyNbHU@lY!?~&7R1Zg*r~oS({R6I=}H5APdLP8 z0Qrmd%mdIK`O4kFU$xe^E+F6z2jnMRte?NG#ts=9rhuUo za#?;r@GcR0YJ1k(%<2 z9GStdA@g^uc!7f5zH&b%>A`!iyDe6}mu#JYjGxB!^9JqF+6f%oi=J&WkYAE=LdCfb zG;kiKtQ55Cz!+r2pYZoJKKjOQNWA_*iS|^b7GA;fdl!4Oe-@hPg`=nia)Z>ZFyHLU z(m!YD2B$N}y*p&dS0W6HBl#WdUjf0Lj5Sf^VCzRQIkES-QSk>MGY@JP~F0|Wb;oNMGl zLjc?Jn)>T!1~Rqj5UILDCul7*R*ntvf>HaON|O+K1fi4eWIr~lH`v|`Kj1qc$kAEg zq6O)^oe{FQ9s|@0*D6o&mzLqcWQlc966}8XC8_vuooYnVgIN?FO&+mV_+!8bBvT4n zXI(=<4rE7Xgv#PhIu2D09PJ{RUFXbDBPdml=54Msm`m*t8|_Wxn*rpD4}-}I??lnd z!^L+60fM5A+eiA`9#b;RpH-O0&7lx9PC7=nk{Km zY1Y;dz-fvO=# z$!0Oo?M-lqW06ql7<;U+i8MtzW?cKDmVn%3_8;hmr5Hp29c!iPuvjT0F9FWZJkUZw?J`ZIKx3eu_4msY5@3kPv&c{8satp zzZK}Qjx!v!00dK6e7_ajsGEYFeoi4^tn`_Z&1CFD0`|~ERuTA>*I}rARLT5z#>=*J z79I2)*vfAbkve0+0j$6R$({Jk}yi&k(&S`tgQ8N*ezd2&n0^ zZE$>SF)Bu@!<#N*-sU>GalSat!(fdCLL%hJJyAu&pV>I+E*$D1Y*Jei078M~ zro=;}v)7@;5 zz@90ngoDfvmaa2b7#V0y_stbt27$q}2^Xk$XAepsyfGEu-jnwo(_ZW#g=+5U)DrK^ z3Cwq6Tw8z}5~D@?9q*JA@J@qw|2fpxmVFqPlO;m6jWTotO9XxB3raBM-tIS!O`)_# z^@Bm5d8%21B_r$-CaQ}7??)O&FnB{35w@%rb{|o>`TSvtPTdtpZh#H1-6L7B-GzKN zG|RK!4A12MiRI6CaY$s|1x)Aw@fo;onGo| zApZOov=4D`Sc?#$q6*pd1!SO@%1Sm8I} zx)r6l2ybLQ@5=tG>aBpa{VCHXb`A)k2K>M=;$|6Dn@l)I|JtBj>tfInzt#y<9{|u zPTZJJd0F^_9rR8YTf1>|0V`VU>z3B7P|Nk!O59xWT?UA+wTzg@0hps`39vn-)x-2I zY!%xo+OdDiQh?3p z*t45Tqn9Ry&Tyalg4)ph0)K*5%!ctUE-~Ua)chrVhW50K!r(1t^Dzx80B^u7L=Q6F zJL#SFoG_3+z-CWH!}~3sV^w=AJj(}8TC3Ed&z;FI_vItTlS(fb{B7(!KqbdP~XE>?W--e z?7*CD(y5oflWRR6xH2Z*@6SrmcWyH1$#u>*0sUO9EFOmN+=!lzoFJ=18) zoZ*;XONW+wvLvpF5RSC?h` z^PDSbaA>TA=(`b@W^bjes!Z$7=`7a<q<1-IkOZzBG;1aoz z$DfFbja%Bo>(whlaJb5 z><=?*6dTCs+S*ssj>yxMt~;nUMMWiP%4zJ?ou7vHRW$GR+>Aw$o|2Y#Qw`}2G!aTVk{0@O%0VsfM-&hsH8B4CiKV{FQVQ7$x_(~HBd9p8|7o68H7p=!fLSvW z0$E)|jF-`u#WkxU-&~nsfJ%=~w`^s7$yHvPo-w(SbidlsZaS_WJ4!tn4^@xAMBH9zRIdPbfD z)DR!VcGo-gRHK{MMyYSmH7SY+;vf8q}&|Mj_f+wTmjqA!TcZnXsGYLue zLV&zP&#P4gF-8%%rByTxp?8tZ_=ltzRhg?!NTW0FX%!akMeyp}vEtR3u9l$~UwHzx zoW*_DVbttVg`DiN45RvR|L6((@3EP{(H_MD=4&{*ob1xdacX|evIkvCJro|zi}1W3 z;lXt}_CH7FdrL$);p0FH7|fGKbIm$^+Qf$>Vzw$dJo+a%q;z!HVB>HctYaxNW65Ym z?5SKvHlm4SO&g@3wdORE{IG3IZ1t4{eKWTvw+?iAyvPQVH)GvKa=`}l9SBF+rc=eA zS%W*L4<*M%LuTB5ag%I}*tR58|Ez!ZLOE}wN|e?Iw=j&T$Ye=SkLyG{Y<+G$WAJKoeZKwou+RIZ%qu2fr`G&mz@LAw6%CE}^_G9a zK7o>eu+L>mvADu_E|J?AiOpxJf4QGu!|!iEIR#jr-0`<=Z0@z%Wd0C0xpYo!3}5eR z$S;i(vWj#te9NVBKRZoAO@6xX?mBumD&uQDYQj9s%zaQa@GVPmReqh1Z+|^acU<}v zK&XY9bHz+fJ7f5@$RL%TuK8yH0;EiU04Z?x1O)-n@U3+ENd5qkSsal)l`PS`tWry2 z0br=MRQ>NzZPu{`6Sywu^bEQtf*kHFR3I&gzd;vd79S`8Wo|)=;wUti9mM_-T~?7bL8_&i;qWV zJ%c~j>*zM*NG`zdXd6pp*Rwi}+R+nI`k_FUQQ}tkXACe(%MsVJgfA4>I8L?%t6DH4 zAYZI>F{Q3}jmv`R+NrzHH#`@5))+6}j%|q*54Zrrv@5Eu{=Q|;Eq3S}NIvU#!bNT+ z+Q+FKN6;KSAiJWEsh{@!W;zT|_oq(8IMe;e}gRpxwqtSo{{i;~#|o z*rzKO{jbhWH)oOaK8&PUuI-F(q{VJ`j}Zjf!f0<%)1Dp8K8k;*Zf6n%oDD>D?-UaHGI@H&Y` z?@FYhmU0&LX@empc7GBy!bbpxYOMh6^q?!|p=_MBSoaH1)Gs(Xai?HjnHx)BN&LI{ zDJRTXu2>aXLZ?iABlC*%zrr-nzrr+2PagrIQw$^(rg#`??+)Nu5^RDh;sNjWGlj-} zvozt@dn>$!loL=cXlH#X1t|TBA>q-eoGwepKVG*e-!&oApkM)YpBk*@#~G*m0uy&i zbwQ2umc`a)(P#8I~rV`*a`ovC`EahPMKClrOO!29C{cun3+F# zOkLl(zo~x22a?Z3J-l^+^KQEUY2xJf^fjGWVs=b=!IXx;%ftly$ck$=h!p7kMjLve zn&k_d5C(H7xm%KzhR58U;?|}&NnghQA!PsD-M^VSkb<}v=IxB}a(bmptS_g<*&W&neN20fG74*-7{CNNy${(?V)Rf_)se>(HB7eqgyFTOIvdy>f_ z{sDh*H38s{^XY>H#0%r)|3Bo9gC(Xb%uONGGC2ila4b~0?r^{P zDfIJNFLdI|4C7Jdx{rQX z=4w@s!XkP&GwLpbkgu7*1JlnZ&_{=!#G+vQXxgDR0et+vH+Z?v=buctUcP<(l`FRS zoL}b}H-Et0j>-v|cWnvkAeB{klxfGC*|ry{f7cl&_pj437z(L|)FPN#1Tw zXnuiSNGBk8(IR^bMKcj+{JH6_zj}T3;c61ig^lbr`AY&3vDfYPeQ-?Jj(r#m=6dFt0tlbuc|gnW?FLEagX zo{CIOPa8zo-u_`uu?&!@4lLcos!zVB)e3<3o#@yXz(gg5z$wsL$H^RZG$M8sfGyJ_ z`=yPlhb{FpOe7}fcP#|d&kE!`+f;wshXyM&1TQ$V2eRV$qO5x{1xGq~j&+&isiyMd zU{`IADB{)0J>4JI9sKib2UP``K}##smnqb~xEKW=Bxkgp8vWfif62;Do16<AdI|{p?Z!))-%ufC6LcLhEvTy}=#9qy1P(p`0 zFA^-V!SNRN^mE^6g6Ycw>0@QsvEj3NkqS4)Ic1-2d9Q;{*)oSx&Yd^Fme89!8a}m| zZ5-p@#Mw}3*`#?279QHD>37D+GDr-x_qh7~Bh`R^aa(@Ope$1EUV}}QoRG346{AjM zr;_QJS}x8ekj1noyPepiE@B9H=H&5S;_-L<;UC%gS4Z3bNJeBFU8OAzywUNA&vx*8Wd$=5o__d%G+Uf;HHBBrT^Y z6d=w995N*`8Zjb)ptW}fo;X5?g^Wih7K^9S@i~^~AaTq5Kv(GqagNHLmT`%14F-zv zw9w#PDg}A$q)-gk6X>l)C3!2~M4Vbg)Gm?|5u!+(kVQm&DDrk@I8t+yF55wjdO&U6 zM<8J@R}{%_I;M|MbLAe$7YwyU>)&z2*RM1r6a5>sqZsrrZZ-P^_5!w~Pf3B@NZukz8ioI%?On zsrh-Q5jP*PB2F1_{hoe{^?BKXG+CD|pXE3!mWeP2&W)ozCQynwGqNgSdvZzf-8iBE zaU(gbh=%KMCI#g?OFRDk?N42qR0~s*sW*Nv(l|B0>AqJrzEbd0++nz-QjI3s7a4EF z8%j+TziGjxWxon1*W5#bbl2ehb8Q#Jn4>hz-o-nLTdqdQjvdmPT1;$eM`{vhs^w;7oteU-Ll za;&JzA#V((~92;;zDmbt|qf;Y%H>(f{TX%_b?p9p2V9oeTqZz^8-KlT7?mboE8pH zNyTW>1onrfVO!x*RU5wwRIel{#ZzyC1iew`@dq$J)&DR*=`Pr6GZzHrN4c-+&U4IG zipqwZJ zU*G4TOP89%CohqZZ%-QL9_v0awO9L5A}YT7&3Iq7;$)^nDk4NS70@3Te)?X>_`z>N z9s2S|<5xrMSCGw%--;VxhV1pw#=Ynve5NOG`3(z`?v*GmRI1Uk%8T3b$=Sq)f9)Kn z?Ah9pf60pNUM;f*0EXm$rEb`oU!){QEwr!D72_do+Xti74EY=$zlaKLS^u;H4YlnO zM$bHz5Fl0~!S0YdpuH2x$Rqugx(x%QZp!k(zlKwnt-QPqWl;Wp)6vh zkp8+72%}-P_v};0x1&9#0JggrIV#TPCU8Kr2=7y%Bq=L5LMHXR8u$Hj#osEjFJXx|tU@U*>|c*I7cNG> z?(|Bo`8lwnQr28R=Bl}eC7eUV$~ud6`J_^8`Iqs563;4vUVIUqWQqtd1e?lt#xjvP zLW*Mv$l`*Kv6(0J27sI3CmNIx9)H!WNW?OX%)23T$2{5vOnpC02A|Z>?giFNC`;sj zj-@gzX3f3wtAN#Z@)B>Fz zhHWFC4ghw7qmM%9QBGt_uAh*h>jwdY5!*m|=7`GE=Q|1;&u?cu?BtC5r!hD3SaWex zLP=19so(f&K4D?52SHE14Q}iy?_U@i6f_}w3#sg&_E8biyA^#Y(`}UOF z`eI57>HkQ?>=9zD+9sDqQmZ>hX@PY@?SF0VMaptsWAhHtz=GD;e~SNTindaEA}a$Cs@tJA$73sM_d z9GN9q%bY~)1Ig)E3Bs_*0Us>($7gC@JX4uGL0KZob0pdjBZ$nGK-MCRunU1XRuuFj zTIR?HUq>AiEu_a`c~9XtP0pxYVC5$yu1{$EBrgnHs~Ye+GKdlaU>c0lOnPX*(QCy+j(GCb>W2N+li?`Q%))ZV7<-sQ{N0J;8U3_-uoV? zL<-DLNFU7QQYGgiMAAASIPWvr2dXo^J~r z(7vQD8r`^p`!gQ0N3~W~iQ#U93~nf7#ZCTcNDb_AIn8g`hnsKRB+VA(eRSnI7sQF& zBX9>cp&%^Q7)A6#q}VN}@T%@(O`V$GfH$ab1b?)mPAu(PhRB`IHYM8IL+mGN>%kt` zuHch2JXKrtbA7eXNAa=4?pdn2sd$n4f^=-@ariA{D@&crWO$>31;NnBSl%)0o+900 zh!&Mb5^zwlrWW;C)YMx{SJl;D#zGR<=hvKh@ykW5q}uOJ){Drs_@KUk1@)+MC*SSWPOZja-)& ztQ#gfxo)Y?^g7IGEI)%JSkdzh|F)N+vi%uy{?^!9!qld2X)HFDS5e!G(DXi=i4`r0 zJLktl>@4Enf|sVTR>P;}AtW~H)k-{mSsMVLe!Q;Wr-)sg8Bau-cy2RlIY`Te zGv`d*v&`!SccZKrA4Bt1n(7W@7_To3L0S|*#Z0Dn`bAWCI{S)~QY{K{wJghrKU*<= zb~5Q(8lo#2>K!f2m%+Xk_X-*LBVXkt}O++<_WxD0Y!o1`EErh(EIokI9gnz!@7{WL;!IYm%&WtP_x(*7_muQavz zjaeT;bJRFu&&3Uki z4@uTUs43*P;#(6jKzey9&~6xYUEl|6Y#5pdb-_O_w~rK8TdI;#`E8;laE=_FV4RlJ zwr->fmJ>A*1bgZnhAJZv)PkgW%f78Ya(jW>>`S5~w-!XfDrryeIG}y&1lmsd5cpIX zWjJ}h+_+wE?UtYVx8?)DdOD{E0l$2ethZ|Uh_J)Sd{Ssq(jkVAXIs)`7mt%ebZnp} z<{aq4>1A|oB<)r&`#OF_BXUJ`fBsiDb|T9LT@YYG7yn--bpKvc>Z=ZW;^^LhYYH+T zIt62`5S)atO$T=kiR%|`x06{i|M$3=r^onI5UXSz7TRUuiSZEw%H??1aYv@t`|7@D z>{P73E;`mQI=6ZQ2oJLs|Bsc8ia&^(Cd3kpJ@TFO^!Vw8smy=@-L&s}>N5_pjo+%k z+&J+^?P-DeLVu00tF)d>*Gm;%sDxRe-ownW;JAY`>UjUk--eF@Ww_9$G)hfE4n%4i zbG4nvEdw*Lsv|uXhzo%3*9Tr@2#NtFV>#^5jg(hZ$n*a0Txz9UD(;Qv!FoH z3k!?d(=t+iVe@R5i}149zo8}oGCJ%1Vr0w-MEH5j?`#P-weDeoTh5>T-n?j?YSZ05 zS4`5^M&kj8>J!v}L&_F#NUc<5(T2PYvIU|6@E#e&6$Utz;i#*N9ba^KCr-BC7h(`2 zUe~O&F~1OP8m|@7)!TQmZix5vypKH_5BNk$ZV=s21vgB+goBnXw@7XU!1(CiDd#)r zX>SGYT7iGt0-0^T>({jyI8_7io{o0H=s&&I&i$pGAod%k{V4bcJ+{GsA}VI-?mHTc zdp#AzaarkE$tceZVcx5wpn_}5oUcLt$Y)~|!SF7rhp3}3y!DH87zg*?4V|-4=LX=C zg06R1fTAy~ehzU#8Y(*i4(oX`^MkS_K6S-!^AG(cu8gf-bxW%Iq?Ww$zuoLdtzj8u94ujldk^qJs5PsJlg37;B}&U11I&8 zQivn-ldMKrw@{mp*w9G$#pKI#s=188A!k@?5!zU@T5uk+Pt~5fn z(*Y_z4oI|n^bNX^py>M@3z48KEWz~Rz-sxTz0m%h-=*%o?2S;}AX}g)?MX%DBRwo~ zxC}PvH%N3qb<#@)wx!}dq1T`?40ZVKCPY$lG&40B9rfFqK&2ORvC5*D&{nO?iuNHO zMsRz8CPOgJ$mjVTxf|i=PU(@Pr-i)Bj)PxuGO~DB1mR~A)mpD;e_{cesMxf3yN#{z zEa4umt=Qn2g+aDv2PGK6VX*hxJG3@@2m+rG%Ig*6fyj>Ik`oV9BJ|86K;vCj9V(Uy zYANf8`YuobM5Xu!HnVU@{5_8FZZ_ncXfpNu@VEdw9bB}Mn(<%4N4YH2LtF(jujkuI zB~N+gumv+{b5xs2&>N8rzeh-o|5+e^5Mg<+NMNVTtZ6Eo2}jjdOfM9smc_KsEF-Xu zw2f(rT!DVVi~PaA?ga1zsFDu*FyB}TOPc^u5aDEDXJE4$knat#=w48nAxSbsKMOQR z|D<>b21r^|*BIja^yX~`mBZxkh!OhnOh@mLBu>uQ_VgJsLD>6~$k$86EeY8QRrM{L z_bY0ef&T<~=~NnO-=I{m6Z>Rqy-&qwL1jl_B+METV^icy2eBck*=y6VxVt8g z^x$Lcc#vGq#xDVy3MP!U(H=8-;H6;n8@ba!e%{)HYM?p5#a4ocP}mDdhyaS?_fKk! z;9jPy#sCmZ&qg8LrSnUTdpeYtEZQ1RMS<5s#1t*1N7TE@a!~6!T@W@&O;LKaZn?eR zfuFQ?H}9DNMi@{xNLGylmHY(1!J_uN^IhwaLCACXfsA@&kZ_LQw>#UIsvtcci~YDz zsWXRmN3C##*u?c+Aog{Bf6Gm;!viw|0*A*)!G*>O;Q9%pHrr1CS3LVv>Ig-v%A?iV`XNpp22Y+w!{k6blc$S>_JICDs zhb)4|6{rm_IZ{pB^k|vTKz+(WCLDD>VUFJE#-JBbws0-#uubCg^S6A1@?G>a2zrL( z-iWhAJX&1N?{Oz|e!LFYXzTVL!6S&`S+HLPR8jHQRDluSV@lcDvE-f5PP*Z_q#W_qF7@xhwvdNCA^Ai&B*`?*FBfb^UeT9PlS_Fvi0M z-ZdY7k|N`BHk6^OFW8RYzSx-|i+dEjF)8yxd{P2SkH)pWrZ2_D&cLyg{jvCNqG%f9 zkUKXS2V?;CjK7^Bv9N+1B|ifr^woK{Ly=P) zBTl2WOYsirNL~C`(NIXu^H97|(RG{Eci<}4`+Hu*ACi%m`oE(Au#W<@Ikz@b9$gh{ zfabx(9gb5f?R~<_IHhHrmaoBG{nVk?$kJ&vhso8fiK%)Rkl5(f0=elsz;)fQ4Ss~d zK%MPin>pxQvj{|-Q!fhm#sF)&UMH6OE?qA{e}|OAnvyL$|H)C^QtD_PwrWt@@Kl$E zabU2sQrt(&~Vna69X-Ket zXrJWSz9w%;GWbq2KJZc-uxR&A9)WnmM15P7z z_@Zn)Y8<5tZ#~a<(_!P9L*-sOg&d7eV$#)+^DN{Y^>f6Pz75R5)ahZ1>}O4{w%kT~ z94qpBFyetSp6IEn{P<{&Sh19O$r}9yj;uDqEXt#iB1czhmmm>#e!tPRwK1cw(=aSZ zuxYw1Gxts}3js9rh~`A3zYZ=5&S*$|$JRRI4nxmn-PSb~qu< zB309JE!wMg8~&*Jkk1!t>RmeMDK7-)?FmX3Mhh<(7}-D`b1VNKQo2Ze-EX zwCXdn&aN!irw;RkP43?Ajd*2O5@iuiMoi(})*W4|TLs4kqlC&Syt(8hh1><)$! z8A=Z|_wk-KeoNFo0rs)oUM#NW3W6%PY#T6HHA63x|HQoMc(IOxj3kWrHaObB>|pFO zyNoD*Sj73sf-r=%i|Yz~j#VA=KqT1oE4(*?N@$ zvO8uvn2aI`VAp7-4%AcnlV*fjzPlG|aCl}yeSB9RYy@dYAp*7BtvAO9JBSo4?-Bji zCm518p-gA6#V0eG7(wM05JNUdfM%zFAz$dj)LzRp;jC@!%QPX&Hc=yQ=mS~CdowVe zs4CF+OZulqFjb?_o5q(6Q8^^`ITSTl9yUrsve8WgW;S+TL1OkZ{~fl;Y|$NPK4zL~ z^DTwGV-IY|%k`JyVYdR0c5Hx?KopSlDGHv44pJe(6TdS0d$eG0K}Rh#2Y_is{h~o! zV}R?Kjl%oqXko>>1}NX)e!p&Y>ftHi1C($1O|pjo^2Z>%DH3@zXk1g zVJ5v1Kz^#EssZ&#PwdO(&bYRtm{la1iNSM&;1X)`6{G#}qxw)|4bRY9hx%Zb&c|SW zUY-e|OGwFg9F^1GWL-FyLGY1DJyeJwPg<_t5+py-bL|l{=ozJU88hDZol#j*L#A zw)NoABEJ*+O(D>@Z6%bAAwm_c5#M7GhFdCZYh(oA(DskG+uq5wq5JF5W*#ns=*MGP zhfuvsJOmFnpfp=sp7U%Bc!hAf2bK>3NDe=ck04_Fkim4+gdkl@z_trkJtqBNbJ?>< zR@W`4*P9{>w45JrG!-HR^>&&+>#n$$@+doOlv$XVkL=-Z>w#o&%y=V((f&%ba|+IW zO4sw^I6Fn@!g=QG%&kpPje@-)Zy+jUkMy$N@6LSO{_N%)q$)u;_$$#SQc^t#iUdnV z5LN-M(ua06qoFK7;((WfC9*28h>hW01oD&8Y_BoG_ueh=4O4>`>5UQebHl{jIEXtz$E$e4nqVcmkdW^5AVZ)PAsPeEP-c-i1_PBOpc;UO*)n z6zN|wR~OHP!D~i$B|rmgwdl7iXc}Hy?yiE^nYWp3I16a{$fFqXZZf}bQP0HbwV!#g zV@XErYQ8%1A|-EmJjP@mE#_WTm`d~QXcEk*B7IDrogw~hBC z?80~mCAmF7x(9~wCqOeus@1`PplfM{LD1hz$GvOQwVn?5tL=;N65y_bk)`Jm-)u9< zsI}Drts=7oZBU3~6dZl?Mi;|*Fcs)Ko(9Wm*Y^vxD+hjt0rf9pk9)`M2Dqy^fgwRI zK&u08xR1ZCRHEz`XUloP*HZ1yND!t~FVWh7`A@N)Tn#jZZN}E1av(6w+GZ})N0D@i zP?;l;A%Hiy#82001ywy86NcMruBz2h%U>*b{0uQ$jHm$EkH&#aKG%LT3vQ5Zn!0b# zdDT9I9L32x+_=c7PF#>eyM(Vn4vFjJ!AcRu5$tr|8FKMD>*Bj$?%5;s)%S8UJ^=GG zC>Z}9+q&aoZ?m5VSq!|38eT?TA>IyCi9tDbGozte2>B`ts(8%f9_j2}ErJ*iwv|~{ z^rtUdpSwj3^CRtf4C30=t?hV;RkD2hDd0GGfCYg4*aEPhry%udUuu2b9(xCoW z(OLUrY19eVbk9Rq^yE~MY9xCaogj#mkAUn#zcZmVXyCOmt6P2U(Z!IDam36qYBhTb z9h*@#)(MavkDvYk9kW|-3aXS$q92v5Lf~RO%w)^TU^H4sNyD^j&C+pkw=?FdMTLu- zElUAjyowH`>e_crveck*@Ue&1^ormE^38=p@4P)uVm6)|=hY(B`b=mg7fV3_%-8%g zjiqT13TrRzd|=bMg^*f_x}1|nkj8-p2u-7u4=SMJuG5I+@F`YFFx@fb@h7HC3tdO6 z^BknVXIk;;t+aO~VO*IXvdaGCi-5?fcl8!okNXqXWTa_u6o)eKrb({se+!k){)5(8 zLmAs9ggJ$D!{Z<&DsbK2%5$!6il@4Hp&lM9L|QF5X4$8AMbOvajG0Tm=hN->pkvzO z_JHW*YFFC|(D#V}Hut!$GK}KAPE5Ef5x!)W5X}BF$-ON%8eqY}*&kj6lTP#`?3X26 zJ(4v>H=@sSX_H1yi)JO&IYfA~v`S`6?E+gKL zf%b#NU~m#3u734&8S)cqoL|!cU3YEEqoBfV;FI4spl_2saW0LIu+poG?4s$#ewg!F zRjH5S$x6;tUM=c9jkBRBtJd>aAEQhr>_o>QO{VnmUT6!q+YOsY)nsnmrJKAVc!eZO z*YfU72?dC&H;v;tKnPE)t*xcoCGOiSS==nMm^I-bCdPy5ZA{$Lo*>BE*|7%}vad1L zg5tR}>U5l*i~SGTm9ns- z{Ls*iDvanhDhBP7{cch%0d?vVDi}_niCar9GoY;#v8S65D}SYG-=c6IMn*5rjIM%N z$3gvwQK$f8+G$=C(w)n|FU6qYG`v*E^+N@24ay<*!A0mu(Ld;HH8ZvjA^bLvz>1R-bQ(&Kcl{R)<15m4y+op@I}M=xkOrB2 zC+^-YvXcXM&Fglj)!^kjI$9HoNvYJNmgrF3$-_LPoCS7%C>CX`xbaXHyeHl+8W8yq zFsWj9xs&J=1}|LLD%O)%RAwGvp`~hi!|=Pr3MZp^&RFODniA?RDky>#c=e&Q4;k`62 zgab^~&(3G4fWsvhSenl1>b%_exk{y)R327l5;E6WkFKKNbNJZz>-@RGy1ykvHB^Et zBJxigtib}=uK~MCekoq?EaX72m792A5RjE7Q*~ho!}uJDaB3|DI5;Ya8Pz!SB2C5a z9<0|tfA5wVL%0!?kn+Kqv26O1YlvMaf3r@AJU*Zxl7iA@`3YAc7U+pZDuO2={$J&4 z;v2)iyNI*_6wreu$)}O{gk{0f@NeB#rJJ>0fuF%NL^FH+lx;#iu@F3) z_dMzZ(sk~^vmG}#zN?Wi79V0xNthH8qPE}!uJC*zMzYaWwMoyzVG8!GBA z@AbS(u)eX}?4I+r7oN8Ar12hha8)R&O61x@Vx9nc`_2<|+<+KBiS!vJ&PNK^d`Iut z82NE3|4G#>o{EVZxGVG{;u55L?|uCj+A9K}M7kdSTyx_vO+^lTw^JO&SCD2p20(kf zs(>D-{E7@ZnKZN+G%?`%+&DJ@e(K}ewmoIlUiPhc!&29w9=cR_h~FtQPTjDKfj2bxGhHdEepYKP&r_H5@o39PFI##aE#8f6$HK!Vy{Oxr~^`@ zR*c*dY$8>!I6^J5wZ9>0^q)g9qYrnK08 zD&OCy2lp`~6F-L{C7AMk!)@Qh%6-K&k5-`*V<`sg{#>!p*uhDDndGO?ZATx2ow(;= z1P{Rgd(X%{b%4Gh`rd{^zd;pkWCk;8KqOR3E+4-k`giw-dQrJM5&aM4&wsl=hIHw< zpSwRGMi|R>UKmFnbPFJRVJoK2vCBw+-5;4b0?mC7F%B`7T1Rv1Lu})qvsCSf|L*>r zPx?4Tm?|)b?>8#F2F3yYv8zi`&XFlD3Zl@?Kv(s4fY#2AStpb#e^(9`?W^S{T@8 z+i*xNu%wU4*YPSSJzINgx#v)eeISAaPklx8IA&n}@9xjY9cQU3{kj+v1f*I6UY(Zv zJDb9g4yjszSmVG|?DOEt{HsNXF8Il1c)KsWtI^MajtaT6jP_i4-|fU1$ZzLMni$9^ zvdx*N#I1~1F%G|ip(E`{drYgfquqWebk**nxqDfYKP2L0`(`|K@1DWGkzzc^o4s8s zg9$iJ&f$Md$7|(1+vja3%T<{4OxM3_D=HsfqBY*9w0ZZR`}_#ARd>+YoO{b+hWWt6 z?$!@z1M9XOo$6RY3T>qxsO_rmCxhE!CdIdz;MF$7 znG%`LxdfnchzyrZ80b|{+sodW%H?n8AbCUP2f-?w$akM#A#BW%pwB(*jK#73HXOx&0v6VUIC zzYEw#4WUdiDrV5Yw>(dy#9Zf|L#~YY|9*p_ha}VvhY}g%j`kGQd^9Xwv$sttTuP0dO+EU(DvGFrXq>tR`3{OvR zV_8k=iz|2eiv5894CdCP_s9qE((zW1G{>rNCYTp3%WI`0Xw<0BHjC~n8>7GLRS zym`lcIulmf9gP~HIO_2kvd=~ZSqRgOj5(*knc|^|Qv8&Bu>)5&=X}(zUwcyL934R( zQBuZrh~wqP4VRDY+Ljko*r|GA?SrDEFiMXIv+yr^6Pw=q&2n%ul6w*XhU&YP$vzf} zVY!vieq(-FWi59sT6eBkOd82?79SrtEw2b)8GtjP_Q;vBo*VVSX`@KG<=10bvuhBv zVxnLFcT4O75_c=BJ(HQQCn?Zha3gA>$bJsw%PXv?3!~#&1|4ge9G$)aoC%>m(4~(h zq5UnM6H@?Z0^6PwN5=YkcJls~&oSG>cZR5!u#Ve+x+Y>*aO>f_)GX&AgUTAGujuMI zwa~6-io@=MzdQsflvcFi@$0XTMx(7`Gy#TjS4@vKa$tRQ9f#@8%*NoYjRo^+0Xdh8 z*_59IhrVU!nI{hwAG#E#|rN3;~_)HvZS zd~r@ZckyTCubFTusK%3L8G^NR_jsUV6_p*xR86?7fY~4ODlrN^WO9ROXOEWOa$7R4 zo&&%kmG);LsX@{4lGXpYTpReXJ|M!M%W6TjlF z4~Of4=k!)Wm2+MGsv^$V`iK#EsBr%*EQ_AoX(tD_I+{`Im;u*^b0Ma4$lGvLar=VS9V^S7{+ zq$Y50GRyBH%8)U66Nj1xnZWy9g|`8xn(vGZF{H9$l`?Uq zZi*t9vk>iu*8<%0i-{GD843odIQC5mw$Kj^ah>l*MKs}jiUXlqPJ_BkuLZK+?3 z1kmj5j_@MwGWj3C#Ka-D?rISaetTE&h#u->$p-^7rGAT$1YS79l33qTluFEN(3X|z zK^T`+3YNQ3%Fi|nX$-Pjz0A1#&JNFR1Ym!X;~tVg+eL{r((w9=x-?gG`&e6Km!=oZ zemawyuY-UlPy<)dHS)W_`p8si;8+zuYtzfckSy|z3vu$y-kPk90kN4KlRM_B+8j;4 z1T)J`4?us;pZU9{8|{h1KEK{izX6WbEYKD^FuFdT8(-BJ z1O$Dy*xouUU)-1Pti=GYz10_TTxCBJBR>{&=IL~D+0ZoJ2g_BxVGmQfi*(usiy}B$ zH@uZ|_vsM3AUxXs^mZ=$BEAJ6;tu6}{IADqY4YaR)PMj*Nd5nxPG$QK`eXYW(ERA> ze+2#lejrO&GQdwZor4{{!PdL6?uK*HY#>uiF71E6mzHWuxF`&C@^Hc6G2_t858oSZ zQ&;)!^Wl2onY0jX2oxAfeH&J-de#$!0p)_YIN0H>SEFiJ2$_7*+v8K3eb(}FIsNfE ze5uhdqzFEZuq%d&DP23%66;b>9g+JlITGsFyPKHBj`gLiFH zi@l=*FYI!~PYIsjX<*m6ZD&EzUwe#So@vSGpFb$BPY5)leNo&Lbkf1tGlD;@P z7q)wNIXVTH`4TF1;O2Ux3-PvW-vrzjUh z($T+X@<5>QHkc zegj-EfNPd;g;aklWI%96jR@r76HE+$ZfhukMwXOEq7@e-Q}^lusbf9PrRQ6)ZoN@# z0_6-Na>|bC$4TJ(F76+FMh=G*y$D`+{I&9OY=NJg=x3dCZ5RwOfcxR-4Q&?G-T$)7s>VRpp|yc6_36pFzi%Iu+p9gV_J z60a@FZdxH7NZ&jMmPK51W>@`6T&}FC~0Z00Qrma0z;%;Eq^qqB{V%Yk^L(9}B zppq>T-ock$ohvc)0ENO}Z%4d{02cN5kw{{Yunt}_JZ&$W?JUd~xjs726Q{*ItLBolS0Zm4!D)iMQLA}&`L z_?|Z`PL0?!hCIkh4mMw$%|OZ{+l_lu;K*LA2u5;BkTg*Tf;UWgNR+jF-zWNmXDs11 z_z(RlV8@^x>h!PzvGU~tX;X`498-AHiF@p~Q;(c3$In298Z}|qqxS6f4a*=1cfJ^u zo_c;5`%ZyAUpw_R6XJ|=&`0~3n0zZ1mD|_yT7vNzfd0^YqCa%4otxJ_9jS*iv*>pdTJK86|J!M=Yu zQ}-36KAE;XiIX*ho=Td%!i`tn@tR|V-N(z>kN1QEYoo;O!qQx%9wGBDxOL`Mrp`7Z z>);MW1$23;+%1eGl?{rldwXi9k7gc4a#G_7xLuo7(5Zg`N^H_M`nd z_CtgNxgp}MR@lvz+tMJDwNy+skVvzh)%UAyv)$m?ynn+`?^!G+LRT`xA zJc)5PnNkw3FORPtPEt0Ra3#uHpl%ajEtGssGumf1Sq5)NkKXOBLty{B;CYd^x_;p9b}a zY~+1%nFNpjLK1pzNBtNTHJ=8)x0ZORMII!^9J@AlU7vH#B?7SZQ|4_ra`;S;!sN2m zQgi)<{txLxGul8(`?T2X-4!=e2ZfEZp4}X!_i30Eg87Q3%P7>F6y&c1HV@^i8_gJC z3@9Dtkze7RV`+nK$KPk1CWKsPBXKJp@Q9U2OCwzCpE9GsLp|q2Ds}*t7=9H4LeBXzs+8taT-s^HdnVx0UyUgi zaCfA>`9_uVjGW4qal2`VQAv)gD3_@y-%Jo}P$4iu#-&VEis5HuOVB%_Q?J_&&by6Q zuVfkYAj_||{%u9(pd>2)3IYi(Dnh3V}+lqMFMq6$SHUn$9Po( z-Y^e5<|0`zJw6>xlf7~LTUE-vHAeRpXi4zpd}bGb4Mk;KY)~eHxv;uP*@U>e-eMvZ=la zHgJw~ssL{cALM|Oj!XMt#Vs;O)Yo*=+P}>)Q)rXFq4QxvB84?bd)%z;P!50?n_6Jg zZsQN(J|3~vBV39G7JTqLYQYs^ zcsx0z{i~1spmlK8ytQoRT(8%H=F$U5BAynHcr0*Hk{WY=;~P&^HH*iaoFpoM`pN5k z;P3(=4_VJcpxl`-G8I}?q+^}0e5T{W^iyBW@aJ{)sv;Yo%#(V6Jl=5ma|qndiG9bq zndvsAp0x`uHFT%3lo<@#R)Q)DyVhgU1}m*QsA-9b?x)FPXne522Gj&{xzEog&jSI| zn-$=IYM<|57qC|7SUA@;_AnplU_l4mET%NMJX}4B5ILV^4q1@SMgxR-F76r!ujTYs z`mn^mUpQg^9Vg4Vf^Ak^8n>y(23B6eDu(cId{H@Q0_Pr$vYkA@x;;k3Zz#JdRCyP} zZiyzz)ToNKNB$9tX4!x>))IM+Uz@EmU_SzO{7Lep`#urbLh^S;)9ny+VV`dz5-05vd%#{-nN(qE*hh^Q3OB{X}>E z%#zX^ryw$vi>a6F<^8Zm7PbCS1{*#s-ikmrXl^A%khPl8 z#*&d*k?ltfMf0k<8^E2H-)_rBz?8Y`GkcHJpWk7WP8H8ZdfI$7K1udz#WQhaV;&DTDBlB z;%A(Djo-c}<4COAj2x))WE#IMQmtEKyt`q0gme@w1u)PYIzMqrn?{Isa^R&<5$Q^w zV!Lit7lNl4S|6+*l+|aN8;Nr}wTE@1imB3Ic;0YtHcfQ0Y`b=nq%R@FWbWXB?K~!2 z&5rE2sEeIR?pOurdT+KX)t7bRDEP<9o&0(&9UkuN6i(1dAAZ|(n;3J+DR*TdFG%J? zRgXb-XrA|OQ$*;BEyGWZf$0(4N6WdSZyw>S#*nl=8u2SB%;kIP0}6*TYo!~<*C0n$ zb=mi?j{Xza{`C(j0%bolCsJR89&Q=u)$BUDd`%jatxNLZeI(cq?F{3p1HlB$pB-@- z->vG&VkjDEus=eeNis~()ThLo|6o9y6aM-U=TBV9xl+ePwhH#K5mpyi{YTWG1`GV zh3TY4HnZe|RAuH8lHss=85`+uny(cY;(0k7P6D<^?;>2jTQhGRd4Jr6AK5WK-%;go zYJLs3$7*}(2Q2&ujxhNC?DWc}&jGt~Fj5Y{a5dVyIXfPT^y++V|D)!`N%`_h_`f<8 zaQbwQ{Q)O+-v0{)^e#m(mpVmPHcA^QJ zkC(WhbJ8p)d2T+HTjoNL&tmFK{3gdY$zN~0it}3VNx7se_C6gQr|0hLVOf_ZbU6+^>pnI zkO6X`1hlY!z0{7XHQhvGp-(W&SWI48oode@RILzJHAac*bEME4VD1k}`|8{{sN|y}z{9)V{`8!#1NrRmi-Nc2-3Rs=kmvyZ7W1UPS~{-ccXWc%FA|mwU+9)zX0W+JD9q*dPE%nl z6~jwk@BJ4rcpK7gOSmQ3DRm9GUE{4*H4jS6M83P_$*LXIWBFnnuZF%hIKZ1YL8l&) z1y!S((T1^thJ!+SBT}K?I9pG%kj5t$<)&k+>5uM1h$NW#wL~L5o|mgFBJ|Qi^!P9# zTFBff(I7M~SOhW#x8k6#)BC+tPgW@%3}Q4Oup(pZrehhfSeXCor6k*eelFQdxBb)7 z@&2cm+R;_fbf_?OkA?+kwB3>ou)?dCoyPCKqAvZ_(m@W*GGF89@dVPIhgy#Vv~&l5 za#Q=}>uW^+tEI!N0Zl&sw9=u(Q(A03mnXTUuy~M=iB|!7sq#-NofMq@+vhDEMnAUF zx?JTQjr291w9sT1=~f&17|p~zBqJ``;M`dZ zvQMSjl#(gaUt8Lei-D5FY;eyd=tTs4$QhC6B8KD7BAu?_C}YC%&nL{=?@8&g@%q`) z`Q^Z5>OD`DMMYpzdo5<`qrVB0{lM$oNij-&P40(520;NH(B2;`v*aMeT?qB3(CsuC`18}+m_bD6kc z3z`WQ`%9Rpug}nP5S4F+!OpQrnUwh)JQv~VpYk*}qNPS~9wz!qzwBOub z6_}{FN3?>skAQu_z^$uf-{B=1L1V5KD3)HBtN%d>RWzyZ@TCX5;G)rOKiAa*WQ<+! z<$r1*rF^>}tr8|q%|=kb`l`xz&h5Y?By0*>Vm}3aH~M4= zFB1I3_f%t26IA!Lrj?Z!^BOC|kpYzKz@+CL*6q#K4}>|it(5Y-jJ=o{;tp6R-$~!R zphpVcEf@>f#kuAB9c<$JNC5Q{0-$~f6>mH$Uw?v&er0z$L&3kvIjNBQA{|dH6}^J_ zYhG==!SNa+2$W|&8f;ryWIHxN8}X3;wRxGZd&QRGfYM3HyEe6gMwdW3{-$PI>Kf6X z7b|#k8%`Au&;m`LhwKGd1?sAC(~ti$+ooFu7~l}k5-;K-o=rgL!M5R8@)*Yom@nk; zE)vU1kU21!h|+3#rXp5((Y?}e(Bd~3ihuXkV&1<}9t7oCKOh`BAP;QyZRrrGM%b~e zUmKdpzoc{R4Q2JVpbbcn`$YnmyfZ`8wHJ98{eJdmDmpwMlDE3`0`O*Yu*>@Qes(|&bbYWifDT9+a@--k)Wvi~?*`z_ zR<*98eR`&{x{>wC0lTf!pFPz#kxUSCS=%3X>L+x#+<`*fjRb}qU1AoaxVfv1Yt4mT zWIz>R!q~=l3>s4vjeJDP24g# z=EEDYA-G3zKLj_j7QUEjz@Ps;B!d%L*EI*NV)hgy+hP>MJ^9xFmsY%Cv6G7EDeq$C zxzG?DUPF85B?~fhbY%TFM~B-qla;|e`7ks(#rJ%kKmKxkM0&LKu5MGjWgZGRp*y5A zisHW*!roUZqh=w^n+7SSbV2=Dm>#{QFRBzQjOMEC=P0EsA!d)yih->M%H+r%o?ZPF@2!}mV$yHRH2^HIY_B}hBNnbC? zq(aCD^9R17)uS;Qp_$z_uD00SNoB&Vm#Ycx%Ry#k{6%8N4~wqUB<704gfic;Co8N> zPDRB{C{QUH(*;i?E*7lmssnc!N5|bSEeW!D%=>P}Iyj~o1~-BFlhIdRinJn4eBY~P zhk(Z=74r|v7>fwe(h<(GXdib7fHv+R=x@o!*o z#_hPwsf;hn&#Ir2jr^<%hU z^-^VOj-?;u16O0MD^RTA9}``;5-{~rbpnz~ie?J|v!{lO8JTM!eDbcMx4Wkiu=0(6 zCaswk$ku<}E8wBV?<6BYoE2BT)+#*E%$N{_?~5ruGV;d6PrwTj!6q>39aJ*rLfsbH z!XC-91R%jm>Ie!`e+uBxHu7oYOi#z^K-WbQ*>8lA$smu-f_{5#qhsMibQ}{C(hfs@ zOXDgmZBu0-T7cB47fXmceTr6>a~XJT;hDt6s^#MT5#I6mXf-W!D?D}P?y!r@Wyu(s zqPWF-260D@*Jzq0$ol~IGNOwR)G!S`b%{7e#{zd~RI|+cKmoWq<^HjR>a$%e6F;gn zo&@34baHv)Z%0rq`Cdx7dST@WA0~O{&&|TTlw)^nMyVCr@v$>mlpwH)!BbwJX&@N4 z{Q&j*=!&G;polNS_8Xs)fxbtP3E353iZ39f#4VsMo8rY$89|?isKTwaT9!!Jd&)2a$#KQgVHsq%5^rLP1Z@AQxXPq zefyM*sJe#MCDpQO$k`iPby;xTd{?kYB}1hPMw={9g!Ae*jzkCju1kzvLD6e+ZD4<8B+k0SCw{XeAc9E9Tp^QL7Z*V=Jlc zz1kpq`-zwAE6LaRK5r7tNFEgJ6j|Bj?${-U($aG!&U&8+5IRIupWHV>k!jfz+*PZU zIA~e{hn$Rz#+wCm_BojtT0Wq-w+-HP^IN^`k6VFv4HrHd^PWY;H9Di))?;Ih4YD5# zcV`On-N9XHerTMl9H>EHc6i$jVJM^+e5w8LRR8-Gr*FirnMO@BBd0=fSsS7y6oo=!lzYi!}tw&vB!en zn4AF>7f{4TZ_FU_K|Mb~huZS|4o$K}Hcwwl{&);{H0%1lZK$pE9ySH9LkH;?3#D%^ zk>||nbZSGG5UeSNG>VbB0Nq37FWmn2bb;y)hk)$FmAGaBM>DX?P#apH5I(;IM3#(S z@K-FKkp+V7P(ZwJME+l72?-{A?661qis-ZcBwg+fh%BRjBMUG8+(M~9k(-0%>x;mW0Th(xdpo94xg6+h9hmX8MNEe+aoR&?4`3lju%#V zh+S$*&Zh3s`v0o5UsRe&Y9)Z|2o8jz!h}pH;<8s!elVw2Fe%;uEw~z)=Qs$|vn4i$X?1#9de{=<_bOEq4*7QiQC%z+71f3|U3w^}SVx;; zw+Z(V_dmRj1T=zD=dMEexi`>tkk3pLO^d~ShXf{=4+Khdbn`&C!$OUvs`1*CrM#MR z?rHL}>Zj2VLmAxU(Tjq)bP%&G+-t!NToAvvbu(3y1gi9{yI8w7syFz`MHx*Y`9K|c&IwR) zo~8j~ptn-8g8Sgw8m5F1R9rPFKGN#b$3sX>gE$RKAm)*LNnsOQ^h@-JFT((B8M~Dw z^Jj^*J=S^jXAU-zu{AAaNYvMUsy%%7s^8w+1(pga>xiT1PNO{C2ucJ))xlYYr|gA+ zFe9n($o-lf(IjhBS*SVkC(}bHT+5@`As)&5SFx|X8a`LAJg=Xd79NE;d#%ulVAP=r z$R-F&F6KOIMafpNwtHE#cvU4cbt2TvV>T1NOqTaR|A)nimvl@B{P_=u1fkMWPfcyhWw?&?YogJ;W1iu`DNFs?hgoJ6Ce1gZZTX?sagB8&6*fcv0sW zaS^;NGw}vKpO0K~tEdWi{c*p2&^Bb4l|vJcv3s!OUVXGhF7|e|c&+{xrJsTzoX|x5 z;(|d*gV%M}+jcehXN?1h2G=V!MnC1+Qh#|y5nUvKVWNWGrF&*=@camiN=f^l`DuekI7KmmS#$l85f`J=z^-;v^K@j8L>Uc{=9gE5 zG(C~_=`j!9h*bx1pSc_^J%UwKnDGe-NCph%rTmiEBu6c^zLz$ z8x%vqy9r}~xj08?+AI9^Aj22d0T;miTnEK3E1jq4P@??IJ5@eP{MgvIQ)*qFAIPSO z7I}(f4RZmELf9FYZe8|1;>#Y&0XOHw(tHEy7rJbzCZAsx8mxxYwbwtq^V6nlrfxy^sTCy$V`iiGyeZ9`9!fCah1(56C68v~&8$#KeWEe-HMdrs zb*VcX+)xy6WBXcKhBgg|EMEOD{>E&xu^> zz#FTGDpVuu<`u>7>hCW85}_m96)Kh>uD5bZOBGS`Mt6(B$7?^4xa@f@>gZ5*l!?Eoc`x)P9?d0(M)%DY5IqV zqI%pT<9)&(Y^kGphbRv$?* z%f^pBJWe9cCKpMd{bkjyaAhrMElu%~JGlzAy&zF_mOz5b)eSwYEk8~Z#dThI_Mj}r zI*r7+ZGgA>t8t8%J6@=v9$Hac<>lWE?C8!P!GFM z0Lz8c_abOZ`DS|c3Sqj#q#&|NuhQf`7*LzUux2V#@1Ks`k(ssDJPYOqIH1K0^sH-h zCf?iL;D?cF2MPD%E~B6pDN!DRcN1`w4^KURMtNrt{6_fTQgiZ2ON4S#$m2b<)247b z0KdsL$B|aS1+>~#5DcNvxA|vE7x|bAs?%R%_-7rcV-w+2xTMf_YZHSO+oBVV;^Ps@ zYHJqsSbWmp{eu5& zBi&)wi15rWO!vmQv45yO!y3`lNz&>}>vGvt$Ygt)(o}sJQ@)1=v1zaS%Bnj2fYAn` zl4^e{3iubHLR5Nd`4S&E@5W?6RwcfkpeEIwIVw#=OaE(Vxn7;lwH+{fFa)vXir|4> zI~&9=CR0soAhtS#GCRrud!3Z@Jl$TqDU{D$8M$_<4!F#o=BY3QRo*bgw6u&$?#?W z9xTQkI>KjtHXf%$u1HsFE=;ijGr6h-mK`-+y{xL;unN)NUB$~^JWV4m=6#Y%H04;V zGq%N>T>Z)UasPbZ;_qTUR#?FN)|L5VesGJw)Mg_dg<@4K9J;xy^VKzw!HI@3?VuUx3SNL97(0niZUJWxTh?_7RNoFYi^=eO|?Gdn3O7EWc8!l){ zXOC)E%xAdBODtnCcf2ou_4d>zXC0I}*h9sG4OPKEeWe#+`$FL8>KWTL9ex-Q4QV9tzB{FTlheC7wZYCsq>r4(Hfs# zJK|#$4w_!^jP>bxc(BK%@7f<&!t5lkkNQ&P zo@U0S840Y>XV(a(ImiNW-%o@`j5N6{cn9eh8^n5#6aH*a3gO@C0Y2aZ1!aE^6ZQvd zjw8s@3ogtjYQPsR%sp!16>E;h6-JlG4NZ#}r=fs!hUkPG0oiPnDT)x;u2M+;(F-vf znS8aS*G$*#6-eA{5uaEeaR0p%M#Kz2fNUvemH1@)mYm;ydjk+4m8$Npi~k}()VYW| z*48%!n=0e`BNCuAK}AbH25#aA3XocKy}=re{`W-}e?9wmZ;^1XP&TFk??F%XCx>a=PXy@j69K~fivZbtB0wRZ2+#&&x*7lh z;{Oi<1gKg72oRuZ`FFqu3?yULCJ^*>`%Y@75obXgeghw$L{nf0%{7zK@jl=YxyK71?-J63ifZoUFT86~EW%zh0(T%DIcnJKU+ z8DI3oKHr)EK!Cmx?jpzi0uQU6F_nDQ?5PJJK*j(B=zN5i0of_5$B1YNjuZjsj;~UA zV7ZY`zD`0Droh7Fo4@}!{15VLAbWh`i*=Qla(uCR((p6P+t?uyLQTn1A?fh1KMb8E z6E~oa+u57t%2L!vxJN{akd}LXq}xlw!gEMj6hrQyjA}AyoqJk(*&5*IQ7^$7Zl{ap zo~e|P)xRVkwn(U01s-B08z_`7(JjNuCi29BoUjQnM<;7kUpG1?_6bpHbm>K#cMDOn5CAB3)Kgb|7&tnpS689seUv?+5hph77A3sl8MOF*!2kvLY|_>W)?{lf zh%;rSw{NOv1tS>yO1{ZF@(peQ{2b-k*x2=jA;0VWHu(QRK=-Ak#8Padso(h;#_l6+ z0!;J|=QO8a$FNqBH$EqTc9?IIs{g!A`nW`3{)K>8pGPG$z$q$8(T)YR*AQ`*8t$6=unE_I+#?QdejvD- z{v7bC{Qp2eTbkKMr0F(X&B6}GI}H1Mu)s2Q{{sOjcGbqi{e^(I*?2$ruYCtsabJM{ z3juN1J=wfDVl6~k!~}Gs^H2u z?wW?Y)bi?2_Spm`?k=O6=xPdA?gZ-cnV%*%wY6eMeTofHfSvPx%@T5*x-hGmIN=>R77ALH&!XF4e9kjr}-`x=MwfaVA(NgbAG z^|ck2SXK?#odNjSYbwW;=5i@*)VFq`*~{&}6cBFS0%8a3Cj}&N^9Z1TL?w=qPSGdB z*nV^|1a7}sFqV&(4~hsTH$@cwXSJCaM2Q94sQyK!4FRrK9OAA;u%~3qc{1!RAcxa8!u}`Ju?`Bw*5HyJ zu|l*Z?c9y2kpgrQk1cUZfeMT%IZT57vjGZ2ah3kF8GQ&jl$f1?>K5Db^#Z0Yk$$?} zC1bubr26L$9z3@AO6eXp`rGe_{wNvq)0m;qi4|7xVleH>;u32DT~03hK7Ks<2r7m1 zDYM$WeL>wy(yEc?e+>{~K{XLayf@qq;PY z5*=uXc^=y|vpf5e!bEu?6%&cCIp8wcm*n4t*zmLVMU+H^nOunkn`IeBtH-8C?YNFB z(}YP-015?CfF3Bk52Grbq8}?-!^P2?rLBy7s9yEPYsVgH6 z$8>xteiEzR%o@S|E6Adfai0*-pZ6=~Vl~sOOw)Fj;gbv&b$^>R9@hmc>lhPLE*17# zU(O=S@DuZri(=+6bCDV_@lmpHy;eof zoT%A2kvrPq#Z>McZs%r_)!*l?cvvrK?>ni*xf`Tx;5|pH30XIf z*~m{riN4|Jui9-=)nCB-)yX5?m0s23b7pM5eP_->&1GPyWF#K60+;F`>D+5v6<)u3 z)KRe+WH$sFFX6;Xj=Y7JfAH zr8);!u|s{QXD{TX1>V<5kVzM=yR3I_ku&-I>?DtJ?878Z{)>XKq;ijucajLLDp>J{ zEVn824?InT1Z>bLqd20k#y-H1KS7kw?ycAkAe7sjqWFmC##XKoa({3SCt1nWv&@AG z@v+7$>|}r=4FVt_cP*VgsgnOfKwIwGS^K0;Ork?Rl)F1K{5W~>=bj)11)#PbE0D1J zGiP$M?rMih27++K3x*ES3$JJZ2uKnn>mLNfJ}z6203VK4N;O%V9Lw;>J0W|bxK|AM zDC;}6Mz`blW=c|5@)EnU8jL2$R7jhIM_9IOD}2c{_5yzm?7_8fr%I0#Gz;lP1(OY_ zA|D=G<>;8uV(hIs}@cD*1yWWIc>2GgS44{C>clZDl5X0A{lz#(2j2VwX z{p;FI{^A_vX8q-f>zs z8Juw14?~rTuHcB%?YZjB+eQEdwDn&KsOvuzP>kdCmvu|E5v!7+zc>0%R!M|AhkL z_zwjXvn!SCLumdEnqTDp%fy`{bzOtbC~y@n6<=3#%lazB_30iT86v*CQpVVL^LVx) z{M+g;RAjwOx+yN?=SSbfF17JVPW%3yRynWUQ#O_v;ePnD!xxKHPm4uM$#RI0lVJa6 zZGjBQH$uISKi%)T4OOhw{s3(?{g=1a3xKwI=>O1G)Aaq*R@3}fTiu$z0MJ%He`>2? z0ov-h)QeJki)03@0r@~itk6bX(6}5R5R~`vp+fWCoov53Z{z-eGBC(u)FItbzHFusO3WJI=H846Nct zogdyPGr2az9yh8!yn!IODao7&HGP5HJ>hgLRMJTEVMha7ubY1HC{rWv1* z9b4PHB5$h94=PN1u}H)%)vnz65%dH0e~t(~_kaB54k6;ZOZ+w-ZGMOUc>25l6PEOE z|7Q`f|6>o>|M3Ux{~+!1|J(nGLM3$jxBnC95C+))!3BDT@mrikB#*!qI}P_gW@yLV zZ6VxH<;WbPMjG~3q`mINdg5b21PY78nUc?o<>)lDt4=SEP6yq+m)qC3ZC~B*5PwW#Yx`!tE6iJY%ygT`70~uA>5beO4#NplC z;5C5w{R?_9Ez-&Ig|(LTBg=fj!BxP_oOl4%YM{)xqIAyD8!voCA$lp|M)x;h3tTko zq1V>v->kD|3Y$EVtaNO*-&XpSWaWrx?ldBGBksbeu$8LV7=IfmB} zgZ!vMimr8)LuVbhJb#s3Sdk7zqB1QS7mLUh2zNIRbP```0R)YqAF(v|6ZLCBo^b*cRT;_+e{p(jZt@y^)k>&s?U5@&#a9NmY4F;V zRmIH0cx3x2sdizDliq%;ff6)EYepgN$gOQGMPv-JS8$g`T*wDMv+ zAW1#*&P)B;gA&7tFT+Fe#0E?Nv7xRIgsA+4$tN1?xq>;^-aX_~9^xZX2k}@GarJ+D zUQy|^2vQ9`$qDbs2>~_qLZ1|g*@UujAyr%ab1S`Z@3-V`q3bxcPSc+iR1BOYN(7&3 zkMP>^AT85DVrup#9swCR`r!-QZM55#u$AD6B%<-sU8sy6{Ui-m=CH?OsgX_0X`$WT zoO}p%q{4EprTOA&_X|Q2r+?#5h_z|Qf+$26;;X=tykTEtZ2AX3y8pMxKQub8_3;`0 z*I!uO#8gy0WYQ_?bmyr67b%QDQXuMHz=K)LY!IP1wn)l=1t80T<`9>X!fd4c0EB}p zqPk_Pb{~ZXx*u>LkzDzR)N*yJq_IYg3K@0@wY@Ac8=}7S_hCz`G~Y& zZhw?L_6Hf&X0|;LI`g@PiYX z7eDZ7`L7S;A77G~#{nIEj^`97-tE?ad-!i7jry0qpNnl*=x-POSdemM@R;@{3up&& z#ZLm>v@ZhOe{(Pw^;xxRWdob}oj7|jTaX?LCv7#N2Hi`Ilj7nDQ>dwT0DU?X-5OKc z;TB=WXnu{f<#TFfIU}b@Qb9fgrwUwF*HKpzW;&kToRrZ%MS)Xy#c?~*v17u?gWl+k zz{Ykq)o^{*HTIYBG&mKb{?UzGZ95M#!`u*{;!PF=BQt5Y&Z@JQ*Mtn*_<@NuMgE%6uNjPqrdXqyv(;_~a-fn!OoyxX5 zCX~NIUaUBpo8mMRE)7mN5Lyz%-@mW7c2!tiZ=^ODDixXGbB8o022tZ(7+@R@GuWo7 z;Z;Ezv&gP2OmpD4t2NO7T4#v{80n^O*$ILi)KD|RRc0|LC*UKEU+wDb<+2ncA~2)n zGY&7K4@^(9oSNr8tSPPh&nhUy-7{1Qa$#g8hfZGSdQPs{S5M5IcvfJohfgI*(c^mA@XtnAeyVIdrg+#mOZ~CJ)6F zhaRtK4|71+?vY?wkaLU-X)|2^lpfHjU%nzE5PMnTtnlVgcZ(~O|C6khb%SMBae>Np z@nEADpMC`)2&nzt!F5^MqKPRDHk~TcZpf;FyI#%1U>#49JX7P%i0nLl4B!f2|4b>h zpw+WpN@$cXVqPPH%#yg$0xXjG+*lY?NseFuc871jgX^LVSBQ@EF%;6Xao#nVdSGRl znvde*zO(#{4GhK>vy}u6pu|pB0`Y;g8`(x=jJLKC!PfjL(pu4uQ43 zpyB5(z%<&&x8_uHLm5G<&MtvR?E~yw-5*!p)g5bp@;<#e zT{0%z{W}E&*a5n-zX3cEICZ+r(gQ~D%@+t;EF1H`eLY$|J9>GA2Ci-vMW<@R^v5(~ zY&N+*d)Qk4v)3mDu+oA2r*rDO*qX#1(51`z4_&%{&nb0Dd%yxvmwf-)KxX?=KN2-2-yFSqntWBXHoM!TyIR5M(N zJSvp+z7i>TeYe~@b-ii`#Ebudf1>{v{NwNi|Ew6yQj_e}e!)M)|Nroh^gmL%Z6%%m z7ycQ6s*(KP@Xz)4w}0TD7LhbJ*nz)aGVRh$Aa((8utGQge!y^Q=7epwNZvmh?fwo? z3&6N)Brmu%KHhg#DBj;lkeV>%wIX1e9^-kCP7-TpUZVN+*viF^YXK6>(8WZf zH(BV?o-v?*&=0`{4U3B2l&S7ztHILB3)9NUoyEmN7N?*GHg_g_VDUvKtHFDjAT;hH z4&QOo{>uEn@J}zD4!xfYHWvO0v{1##w*)|w4&KcL{=b@Z44ULt;!Xdf(r#ks1v22tfj_WY?ieZ{sOOQ=Y+qo0ke2bEGl8xVsysb|)nv!0qPmxnFwhI4sY2TlV zxbn0@VC#S#x`OAPft^Z|O!%z%W_AT9z#OzCVPda-(LXr%;}9h9m4KVFQu?(0`fBrZ9Js+g zH{5(k)YC}QxSwSF5B;;RNjGQ7xnrx=tj)+~aOne6vgDzUM~^yn)5tok#C@*W75&Dx z1vvnhmE}p_3qPCy*#Du}U%PMYW8t^#`^D<-gywi@w;6+KB7G0YReHc4mL{#a3hU4@PrnDnSW2lt(VUcbW(h9bIOMq|D$kn0LQ5G8&A zK%sTJ6a{1w4w5S9+XzWag1^kEL5$ftEKv-|f24Ormr{_m6gd9F|1i8pwp$FtdhLVs z-<<>apIiX{L&LXdbd0GELZ3}$&VJ9aPb1U#jRwH~kWdJ2@tSmuWqKxkGTI-p3Y=oF zkr_&~?TScXg;3M;b}H^Q%4df0FOK)Girku<))VfXLvz{wVQrOfHbs6!bZOY`}nD8}W0S zXu{3qF$SX_6*UWc&>lY}&0m4Yzzib_6LrfNxi4d8*;b>U5A>HaxoT7!Hjo(5UGtkE zJ&pUtj|0s%f3ZONQ$Fn@ywG7u_jtJh@89A{NnYE@cJ7>ErgW#rfFqjw+Xbz2{)YvU z*0=UC+IB?BI`P|jFJrBOcwH#|z5|^sXJpf00l6IrEj44)0jW${_hVBCh`mK<&fj84 z7{n!3W`+g=N(4(#;`kR8ab@T7sHdL#Bj$Xls7GyffJL3cG7NwPO7D&C*iL3O=l(ksNmBiQ&3x98ynua&w3&x`z1S zxY6_h#NXR4___2KQ`5z}yN`arNx{jJA0`V&Y3i9_xbh7*ky++H8nDc|^@_$pH&QC(tB& zV#AOubWVTqURbLewD!_PZv3dSIL=&rFD^9#s~8Q$565+<#vHPNe}VX#MTo`fW*|2w zl1%Ro`t8)T{7x55V`I;uF*Tzn#P+#TD$AfMQyb68(#iS5#cnwAce)wVwjDq3Mc8%k zqakI&>`Yk(dD#ZxSh*_WG5wNGC7out^0HN`ss=_feD;Wk1wBg?iUSoz>cub6kSlz`~>pl(`NlW)G(V7E`@dWD^ua6NPan> z+-2TeQL-iW#5l?BEY^r4t0T*3ExySS@7cdF%US{`&9n1NH^^k}Fc?<3SVL0s@p9w} zLu4_Ul2Z36E9$`MF!K>Brs!#tX7PAWcZ4ciYJmV?gyYi>GZY|~F1t9ERb~3Ij9v># zf*o=nhF4Mvj$Kvs4sX8=WUX~d4w0Y+ctus15Smt4!zpaUH3XDDzQUl@`c%%P4PslF zz9L(kD(EjG9An$o94kb^kC|~&3aEfCB8NnRFvR&6vPcG0H_ycp(Jp~{Sx?yZi+lA&hJD> zz>&O0sk^3KA@Ol8>8V%9AJ=zK9J=Jb34?LVw!Pm))8w8soY19~bdzww*fq_wJ(vi5N9TEt z=+tkd*#q#D*)(;_YsGV|tWkxT97xCeBZ$!Y=I23I)s$<7s=ZcTle~Z9H&{dN6uz;% zY{m`vuIU9EN0&sfEcxXYD?mt2cVW5HSChp9PP2A9Z*j(35p$&EVv|plmY1T;Myg0{ zNFh^&M~cirvnb$-aenIEfK)nK=z4Hog$L#KKVekVqadVADFJH3F6M3ZDr5I9UTJSR zV{_qldJT*TT^$W2RqLDRtU3<#Z%AP<%)9xsJwAP)v}{TF#g59xI0F{E3fcND1Ow=t zAin+bg@C2dXJpZo)Gpc_feC0~s_%{(RPVk-aNxk;&D$`09>Ku&_Exz`47Vb{vHmV> z!sOmKw-E@SoA)t@Nu$1aJnI_3CC79vX(BM!UeT`f=zEW8n;AG!TLvgX@G#?~G; zgY+9o=h$mJ*pI`8y|Y0G*`qMH4Mw-yQj>!k4~zBGjki!Y)SN3SneLNz8R0{X^C}p4 zk-*Z@2pkpih?6(-n%A1O8H9<4a*k?-HIwqb!Y37fB#H(vOSzP^ZhFCS$C90uEFYXa z?TNEf;+uCRFKW_^x@~aBan2nCrRVbuqCzq_Emh;==3dwi+Q?{&Cn63;5;@Po#gb1X zF)wqPAf?(yF+7-1ewuKby~1ipbbh^5%$2kZm_I~b4*hsNprX6gxUJ-&e`+#s@cv{xnKV}$$# zLW+qY+Z0w5fFCf70ZbO&2m1i2S;wSA6MKqqJsL^uYmr?VNz7{%JPyTdw#0uf_Vf+I zbm!nxbS3#(+4XzSb05v10!1~9FX&87FaV*NT`{HMW(ag6t3L={Q{NRMbB!a)j^&T@ zNGKlQmyJu;zpd^AwAsl|!lX}?L?W7fC}W^* zaQ^eQ`QlF30$~sknY&e>{W{k$R_*LW8R!p6JBZ*tWg0jRl~w{K zN-+meuEu@!Snptn*jeXZsL^h#)ZnTXSSDs>gY!kcpB<$b64+pVCPwA$RfGFw1i0S& z9e&`fUXzn2U2ET>syF+%;qRYRGuPWSKp9JI9m7QnrTlDze| zQw=cr z=a=9gTeM^JCj}X}(Ww*5raZ16WgyrtR{lwpAD-)~2<(9BZ)9G8Er`c-+^SIOQ?2Em zDiYhk2YZ$(37@2UB}j$H)}>!iXXzj56lppC11WFBHF5Omp#a zT{zQmOWwx1DY%hZv;~MVPuWiAUnz`&oL4}F(0;_JfD>gJW?QJ+0p7)i(j}?@iYOQu zj949EC^h}7G$%%}pv+H3d#|Vud%vi+574H{s4*eB=*~N;Yn-y^EGfURHoqCQ&rn-4AkJ5DdjR1KOYV4(-C>sWR+P!*6#YVvGJIC# zs1dgnax6k*X{o|CGuB@MnnlY*6O(od)t~rqVhJuizJh_A+QR1Y0%k-M>L|QKcLDuM zS$N$zafxfdZXuW;*P(i9CqFmJA>-Zh)Vyi1vh>gBpr=&#(AtDx%Gpw`{7#{M|8O7@ z1cmz9CU_Atg0xP~+VZve14T4^PoI#ps2h440|;4ooJk1upc7EoM1XmTOSZaVZU<-i z@0{8A;XC>2KY*4t^KtovmaeA3?m|uT&gI5?OGIL`e+p9Tu-fy0^?Bq8P6-7zizsA6 zalOBS?GBak$fNZ&Li_c9Qmx-R1zzS9L2^j-Q68(yha}2f=rF3NpZRuHq@n)B1&v9! zo_*VW`bJ{4!fI=_#5;u)?L+kLpBCB*oI_S=Cs1nv`z^yE{ zC&YH07jQ7t#LcBsmYCf_>+b!#Qmx0S>nLD73xVB!oMu*{)P?xezyJ|=l8+r4)lA&Y zbL7FpNQ_~^-076%NA;BWhIZ$>O&azyUxGCUH*>tg^iTIsf zjI?dRAMR{oW8yZ#jAcyPm{tg@g@gE`>gY-JtV%U;odsc4JDs=SLurTJZf}a-R_f@c zOQD|LnPz=1Hro&rj7!Qni8=J9rSYQH3%BG?ut6b72YZsBQ8}=fpiv~ov^uK9mg3j! z&j4Wd2kPJ1AHrlcA=_Kk>gB2AN4dq(QT|e^vw$&CHVJq4B|v!6^(V$jnC4zv#qYb` z*|J|T|M(!@0Qs)T#Ez*%QGJ9?bd>4Y_G45Nzq!^?*OK1J00g3l=4|`qkE);P$;m}> zfWNg3-r6O4lR;?;=IZuf`^L=H8v@|C{mmb!k$hK)8P_3}Gx;_$*>5Tum&Gok4FDek z)FB9*=s2|W8%gQzJ9u+Hs3Xnq5>(vVrp6Wu;+;j+O&G9^C#~=%v7Z-7>ia37sbO+a zk205&j^cxp8iKgB9fK7CVG()fUh-2=HZ8}{u#Q?Uu#!k^Qiy|)czkeTOVF)d$Io@k zdRUrUy0ea}QwQMFF`~Q7VBG!VxhtNY1}j>$=i!j6x1H$1_QPh zvHgcQ$~!{$hz`un#=S+tv@_1LVR@Meh_6~&xbaqEIu9Jy%fMPqa9}M05n5SN(+L|F z^q?5DekpNNdlggRBnwhOIwr1ZS88>xH*ahC^$1RH3%RGe$h;UDt_P=wCVa9+$X9#d zAm{G5hT0Y)o>v6L8@1fd%b^>^qw&-OO%}t4PW{OZ#nJM&9BLgVv&{_iuHGpFrHq&& z?rZjWtx`2|NY!T&GvcNc%~3+$oe2fu9GlP^a|HsI$@?$cwjRdjo7l-t@fU`NWOL@f zCJCW84%HHP)8TGfS@2=3Tvb$5Ef>U~Cn+h>8^R*zLYMQP0B;Cnu6x;DE>t2kxd8gIA z)agYmhGpyHn5i{%*4ikpk78+AQq>IOE88|FnmL-dtwpQYH{W^;nDCdxMno(PvNtXa zIJj&}Rk+<-r}V^n(;OOO=aiE1ko5;f8$dG;ywT1!utCO$0>3B5p!ND>|9Rf7W0E|y zTfVU0W-I0C|IYqHN>V8t-KO`vrf|uk2};Na?bKk5YvBm%XAyRbsx-3hl-dYvvA^dKD^LD5O&iqcF07XU6>dP$keVVR41xHL+u6VG^$_{@+@af zJj%51CtlNnqn*L@Q@T$Mk-Xyz5#8kp>~jLqv^8+FAdjmnGebx5b4Nk^=u<0Rox{57 zMey(j={^e2MY24um8yT1h))^=*y?(o9YIo=6ck;-hAMF6!E3QAuAibILKJe9( z{0-De8I<*% zqEC)*1)Bo%_r*i&`?Eap2s(X4^!#Ol5)Vzd#tC@`LOP5w(G^+n#tJKj`cdtJLkQBV z(kZ|AORbOSUodzje1a7-b`I&5RQP}lki9T#K8V-@QCDpz%+C|4t%C;&bLgn`e)H1AQcFkIZ`)?d# zU7H0Ox=LlDv{9lV4II^oR=;-&Cej2{&D(kapBmh(l`O^OJ-)jYxG4jihOcmF+2A~H zDOsvzM$ru7i>{%$-U7oUcc0?ugUi16SYo_?kD?!%w@%+qoMo`7I@T^K$al0D7=>VOlgM$-V z-1baPjhs=HJDwBSZas|jIQDs|J$?-sIqFMPaA3@5c*->`mW@lIR%}kUk_^z4h2DZ6 zzT&4CW}*)q0&t%JG)p0MNA$QBRy;K`?D61GY=dVCS$j1r%b{A?f+Uf5KQ+UAbs$U0NeLpYTXZ_}T2dkTm()F}Dvc^$%OqXvg$7rU1)&qZ z6-Bv9UW$s-ZWnI&>5_fZA)AKsbL0~B1fs*sx@xK!|2xG{e57n>X-i9UZ4U>F0SkkkYpwVCnfkoH0h{L!>LOeh=|V6eRj zpa0~Y{`#{4Zi-3 znxrd##L-p$$?TTuL(k=J7}VkE->xC|_i*sgblT4IF)W4t&|ePSBmB3U^!$aQdbR*h|0>FEo z;F8*oT17|KdPWLz)5Uv#pQomzH-JlSi@Cg^F`rj<#2JfzPMZJyi@Os~gwTSF@IKwH zZ&C{^W3c>}Qeke8FohQ^Ic;eRbKVElrGa zK=ef)p~RWVka$TK9S;geX&@7Gy@aKZ)y}S!dB=Mu`uBq4r@2H0KUNp*X}KNrf3J|^ z-{ay3WHqk}35{v-iv=j4X}4QN2ybSf1XM)xc3T*?z#z_W6q4bxhvwT0z}$zR>LM|gh8 zNSn(&fFJp;zWAaaC(zv(4#WQUg34gs`pb}Y>wT~U;rRH8H3V%}sbtmERnWbkm3U{B zhxTFLj56m@(uSwoc9CVW?mx5-dms}sE31Ih;6~_JHp&It?vWC(goxFUyN`72G3_`} ze4-a%^CzgYb>Ky;pl}PF3dvpT#`bdj8|zS z-}j^k-m)Xe!-PyNREMATt+U8`PIY`&#;L4)o6|Vgc<`rHEi=cglds~K$+(&ql>&J9 zO7^574b*}ne7TF@w@G@eZ;kr4S z;&(>@`g(XEMkWer%h%MwtI_<2Y>d>}Pa0gJe=W8(8!6>&@y*DVhoZJLuujsV@`5ZH zo|3ILZTc_QS=6gIgWBImtj%;LA@k#Zy2uX!Hh<*WL1IjtH&KqyZ8_zzvW3!=im8n- z=IbpvbM3`!A|WU>a4y4ILBV-h+6#C!?d5{ULffhcpCueDFF;5JX&XCYQ^Y7s%>5>h zg=OWwOx3kL2u|9&6A_-tJb5(+S#7kV5D&{T^^eW_+CaOR1{W4A7wu(ajYBXigavn{ zoGlT{3oAKCCzs>w5fj)|M7)KJaY=6V+M$sSvkyn#>UA_`AuP&ZVFW8tISWEFopDdB zhHwsvjMH4F=ijo2^jWL8K20UcEUzu=7Q757btR*IF=0JQQ|jwG8t9D zx82;-CHENU!R|ijhBMJzjapQIw=P7(&>Ytm4dJpEcR?KXh;hPt8CFXyHX=9Z`DGR& zhb`UQn2OED^9q=N`BFrvPaxgNub?LZTi~(w%MM0OO^OEFCmRoi6IHyXz1b@PrDt#3 zHW241Fl_nrECzUvvnse@ZOv3bKbG?F+xiAtS2=lX$%fDHoltF;1Z4C9Bd`~2k$ie) z2X{6Tg~;Uha+p2Pzi!)5bBZ#gPsK7B@qSaZ6gG2T+<%z3YfRq%;KUxt-`pLaDq8bB zT%1JRgdna)Z0ydX2W8^BpE1#R5}`fli!VGjM9HQM*R+Y@JCsRABk*J6l~Q#XG#jtC z!Lr{8bi0KVDq);JfKPK^snR%PTag#vFyYe5pBXQF3to>kTm}dqWR0`&=Yyrqm4G;0 ze{h{@WXQ&lklP#|n%kW;CyQW%{jvhccLqa285*g%ULU_D=MLR!120cYD2s8tov(Zx zmJZk*6<;vaw!>*ZQoBMArIsP*c3t&sZV>d?(IsW;{O(m42~bD&}wcOY5VM_x3{qGz;i3I8>XZ= z&%4oOJ?~r8Vxv+4x@_X8B*@Bm2w6ynXI`HFS%XqZNuS&C;SkOsHaYTEECW42lsd{^ zenFtxc*3Uo(rIbKQ{(n$DXFB6 zB+2HFRcTV4R0J`0CG(%lki$kwbeSTGZZ8foewhUC4Lis5tVc2(icPS)cy_;IOD|$6 zD#^?#8%LI#Xk^XqvrwE1lrBx6f3;?I`pHVZNk3WLQ&@xSVjXMxiy9arwp>Q3GQzJ4>6|6xe~pdt7y z8!K{e>9z+rs%OfSvI6hUrp%X4Uo^?XwHXDZrgzhV*FpL9K4MnSvcLby>l50(^Zt(^ z&<|ker7!A-;6G45-2X-WSnu%ws2}|g{~d_K0nWk!O;6s17<%c=ec4StoKm3B_g+bD=w47cVE=c(s1P$^;0Y9(UT5O%OpGppD}dkM$T_D zAr@!xZxF;mOKbkIcjo=Mv=tteIS9|hE5Rdb%*PRJj^oHg#~hVZO|Iv$6w*i5Fvlo% zY?S-EJtz>}z|xRRZo341AlHB#TD`0oyfulf+C~gO{je^=0H`0O6x;dTd75nIkZg!t zW`e!{OZ}8Q%8M{#?Vq9}Jx~*MFVK>`+Dix^MZMsmyx@es<0-wdqdff&^-~8jZ5~`( zUAWEa#H1HKrEw4BLrU-H2%vso^moVM#q9m>D7irDFQL5F0G?`$JCV8D)k6UFV`*wT z-8$*r0-%1JPyeBQ4*sEjqBZ`9`dOG8m>%|^{fGLw{i1%j+h+KAp0h+Q1&EDA`1EO)s?Yc@FW)Z@R8EwV5M@(ZUQxEn`)i=L5|rA54+8(~M9Y0uTD z1Oh}so|0ct(DcbaQP3~sfaSuZJ4g&#i%z&S?T+&1EWn_y5!n6$*>L0l`%;N3r*ef z%@@1ss*ejkoSP$)2rBEow57)!wfqYHih|Tw5CKt;a~BS|W})8~_k;Sy{cLSdR-pwG zeU;S~;(Pw9tX4$TB|9zH$XMDug>#5IJpn2B!ZC73_d#$BAq&g^X1U~($lId`76~c@ z2jG5cxa9N(YAx4TX1)05MS6uP!3PE9-!-mD7W1gNtmpMie~#}#z)ge6ap3wMg6ak6 zmIs@F#+@1rvL*L)V zUt{PC{5g*+u>yitsgcArUx5c?L3NT}S&%ECvb=*YF@&yqSdx77p^q0(`oJGC4b|>W zk=^hsylEc2a1cUnel(zvI+3<)#A-WUO)=UofodN4cA923s|E2w%YyQR3zF3A;yv5$ zC8xNEPfmYCV<1Are|~~^4fQ)xc2Yhuh1A`9OP1o`-6TUPnTSplwA@nG*Il zQ!y({mP93A{KW%KkBkF>#Qw!3k+N=Ji{PUujV%z>Vf?SS5w zL-tD+J5`y{@D&5wYp|0(Bk~Y&3giuiBojUy8>9t&G@ensfL=pAK|lXF>{RHDhU8n9 zlfZZ3dUZnMdMK>A`8uq40nIs#Jj6yLCm)IFpeUW*U+F`KZP_6km%_(9y$V2ocJjn| zEZ|6XO+h1BBF`lP*H^(2%AR2npI3dSZ?v<8E+`2`izs*R9_ClZl~fyZ zqrWq4xT7ILTbw;b*LL5+8jO^34|T{x9vY+QT}JyX&r4eRO*HIVu;WJPOcqIpEb+Bx zYA>M8GRftY9z6Vmi5HgKhbUVMEOm9$cq9=MjJ-QtI)#fmUF>!opKKVKS)b~}eaKp! z)oR7Eo}|QFzPBN*aTQIyJ1L$QyGYtZ$<6q+0_h-o_M((ZSJ{~NFx=>~Us$hFQtbc! zb%Pchprz$Xi^^|252 z@L5<7$t?`(3Gy6}Ny($y>6|>XY^kvoT9+GVN~CH(V7?3zOwlqc-#fTI_Hvn`c~lk} zfwgRsA-6N(Q&;s8RN<+YMy|kyOEYq}jw~jY@S!h8r0Y_-lUbE}Nc0bU-*cK>TpXn5 zG_U7TGhEE*zQYDldG*zyHEb7sZ zI;~Pz!k^*?AuhtyD;&0PicJnyVqE<_hwS4kR)_}W$Bg}w*6RBru|hsog>oiB#PE2e zg;q|c8z^eCzDK3uB)r)bLc+~hPugxp9kR8Ntty;K7DM#z^{j}4+Ih~a)0ij2$LPQy z8Ry)5hhiXSwgdX{la%EvzP)w+ZcroNc-d)J$&#R%W3(nM$$pthZ{a$HbNP3(!Dn6j zW2U8~!IR!9ltN7tUi#PeXR=!=8NbiZn3Pf>JOf{q?imrB|1|e8p|N(e3?IVNMmofz zK-&n^r1F$RG8Xbl*W!Xvu5?Pjk>e8%I|dR!)3-U!iWD3{WZ7Em3F6c__Aj*CEx=yB z3O|S-H0;CPITlOghmdmIV zOunww%=wBK8UB?||w?J1Q}HISXWkdRHi_$UllA?gvPSw7}+#d<__g+CQIE9^sYg;PAs z=I!CU9W!TBv#6f%)rs)`euX;%Fx@VXc1ebbn@0^ES{KBw2+lNcWTG(%b8P27MO z>U|dnPyh4j52td`d?p~sqUk^$`PGdHpnmkCLGP=61EFG}C+BkBkai#a`~lkaMg1ss zw!>D6y(k^ZTia7x=`7JA5jFad!Ps$og9Gez*3abAXPQ-z!1_WSewF12OCb^8(%{z~ z_*`JE`lL`6TT9?+mDQ)Z-OyAzF*;b@K;M7m*-u}cwQeohd*^2SsXp@3n|klca?cJ2 zJo!{yvVZyuV*`cvuG65XN06}eXIWRE{EQN;Ll<))=hzT#GlO3bFgd>D?erOi$Q$|R z<3CQR_I)mBM*uo?asQ!H_wPBSu3^0^h4GI>VOQ#|SJr(%|FS@wqe%lEAW^9L>eOxg zeJ!N{m9%PepFN2^G{GCFdMH;mdyzv2=(A5+BiAEPDX+8B`!PFKm^}HJ@ILR?*DDH( zt?FY7%B)MQw$rC3MrG0fi$4GjUH$Qj*g8=Cdx2WOtNonZTurb+s8xDan#T;To?L(-po-b)>t1QeA7~ z{#U6Eu=yj*XX^1ip!wG(`3->mrTg0aQDV3ex@`rGxdOu4_^V&nV&q_rmGXhIfi(1@ zufAdXbxIwH0!}IJ>+0SP5Q&KS8gH1ujx%(B`vsN8h5emlq?y0mxvPjRqwahl2Bcol^8Ux{!d)pWX^fb}*Tflg^nDM8hBUzTb)XaJu_&he594 z@xZ+lX6O`o8yrFHWbSCW6asT1F9R(qqI_6cR3Is_mYlbZtb`I-Sc!10009oyyc;UKn@8)_+bZ>yrH%Oo&j>yRB>DDl|x<&%o1> z3QB)u`!9vUuk>T4-ylC99rrpl^E-Ohy@28=LO51FkPk5?fDpjwmVAz!{0zI%YT)tD z{q=dcHoJZgHqa@{54e?tH^JzjrGRucCjZ8)#hL8>onM9R+ZBQvlLeh&!Qrt0ng!*l z3Ofp6Sr&X!?*VkU62&l}4+T&tIJ+&dfCtH37MIAA86>>MTz$CI>gnvFCjbq1#18zC zNMz>~A_p#$?rj5dssSNhm5~1CV=6L6L9C?IIWm;uChR9=QQcsO=+%?wZL5y{+7q1t zw@fQ~+G6va8t1E2M+_*{$@X4V z0!np1)}MmcEr~u_HACKGTl_Mq=66OF;O@QhZH*Jt=>;W0Q^B55BQ}mqQA{l0Sn_yp zf3?Y81wQLe6VR8gAtDh9LSBO+kYSGr$zA)omlHh=Z1xYGx#4H9f0FnTo`ATMp(p5( zb+4zD>BX4fdA5Wn`PGwVbIRQT*2WlO!x4(yg=$%v95e7pdu5V0Bt(UX&ax_*cjjz zks=#({%cPpZiQnlIHAhU)lnloiN~daP-BlqfEi(p=xIUWPv^>kYyt1VlL|fbIvx8b z(9%Zyo`6vH)y#9U9IwpPZ*!zas#{oiO_(8x3j$x~u5K^fgEaynPh$NCK$&ik&Rt%m zea>J_=QVm=(u(tlfTm49lg!1>>mh*bWMT4Q7DkzmDOm&7&pRJf>aOw;Yvi_)fL=n` z#OX?C4L*OiseKnF(Mtnz(!9Hc1wu2B3@~?@GT+xuwiZ0^$-}S6` zP>;s-2|wD!lUHo5;{(w+$a+*%6Dc;6Bs`G*_(xycU8k(ND!~X?T`Y8aS3c|@5zYu~ zCqwK$`yW*u%NiQNzkb!;2Od_`Huechi|y z8F=Tz7nuG{xbmc`_EE`poX&ZmAY>!{^-(`=?P6Ga$(2NNY-F@tR21<{T_hdkaW)R& zz#RfFSd%39S_jDs>-*myWY(3;DD>%-TL*ywBM+OlVDzr^h2zf+rusn@v3nxC z_84jW-3+DjXEXZ#sm$o7t}~xmS;#~oaD1CO&IFWp+IkrJ9^I3BHXfOA=~8{kFS!1m?;nqj8mw+iBfEq@hoTI?U2gdNk!m z3nn^-gGR^H#XP~s(pUU*h5_aOBnzgRi@Hd*_NEZB(t)AO#F5vKc9fF zuNu}N6K^`$8rw{#R(W^k7*|~z$7D5mo|HlQuFA2}bXVx~4(u?S&`ftnQDS+p8x=Ud z*NVn`%sofQS6xbU*m|YOg}+5`+>J%!G2l=nnKkl2MhGs)LwGq^)i}@KF5Vn;8a9T< z=-kBO7tYA{4Tq8yz0y!sca;QCS$TtDwz^hXB8d>#!YWIyn4Hj(o*{8g4QJ9Bim4Ggsq+F7<}M zMY@1VZ0P$KseOltn>nt=&l}APu33RgDwHzHAZ38#K{+~r=dXcf^;`msic~8pJt|A% z{yY_deY&`CgFWy0*yLP^cL(S&jgLCoNaiPi%u?3i%wpv7#cBH5WzGhTcb?y1qNT%4 z*l9oShk?t+-9$!=-zY)PFx*f<%XE@-T6{!*&MKdOJ+*&bc3tV?0P*jfET@Wiol)8F zqHLBgR=u9h%Ln9RqjlPMZ8Ydze#m%UWU*jzC8z?Hw>+4B=(d*14HsXq=y20i@ce8lL zT$LXZETAmk?i2DJR2h)0_im(TeKe z`)st~MO$g0J;q09e1?O;9{^r~b`6+L#c+9*2!iNH=+O-Q5YGu-hd>l1<1!x|uqXn*!Dfg4Oq6D% zJzZI1&NMj7ne!VLZ8Tn16?6*CtQ%?+Zzs+L#VpR(Ks7Lbd&D>Yj=L6l=#WK}p`@u- z2>F-&2278)o5r$S000)Kd8^m~Bl2!431e#eiqwhBI)TIpcb5~|&EnhEDj?~$JTmkV zl!?Pur0IjBYhUv*g+Yd{f4g0&c2~ASm=^q2r3yf3yCP=fl?)prxYLg>64#js7GAH- z!y=P1#W}@>N&K`9Lt_4@K09TBwFpKTvLLePvV@9RI+*L{5GYX_dGKQokzcKlkTi#v zIyNL!X4bSyHe(fc+*p)azlBx$hoKGh5Mh>R;j7V0gy+tU;%hGj4rI*e=nhe?3qWZ9 zGY4{VZvp;oD}lW=N{~Ey>G-ct`{8Z9x2{{X+!4+9v?A;{!4O^|*qx0YK26q@rZl zpRp_vbYa6Pdt`pts?zHQ+Uy2x6#py#`R1Tm&4(8#r8)rV5^nZWWyM`u)L*WOMZBKX zOlpGRL9M*l|KAL4O^-NE7-gUEYJjlR_m!)1_gyM(^e6YCaCK;wN`M<&Lb=&1Q_>vA z`rO;kbpK7s%WNHalF|6N4~z#t3azE?c{iWV)f($tXbGX!&g8(JRLY9`z@$KX?E_Uf zqCV&$Q|f8(&?yyb?3bc=il09m%E9GV6*}6`+Mgp>KE@4{FCcmCLH3NAeu&gr3bX`c z&paTyiH!NB%jCDFyXV*&{Do-mX-(KM^lpnTJsZC!s%4^mWt`p-3!9TL5Xr3y5_Q+cv_{UBVx7V>ko@4FC^a@!-uo!ydd=CzlS)pNWrgo)ftf!rG26zz zQB;5RU`}xtGz)^9kQ?DNU>SeSk zN$8ZnzS*Y90=!1%FS}BgEuqq$PVU+vs2j3D_JU){$hvRq<*Li37Z z4|N<4!UtZ{cykFQ`}AjRDCuEB{bUr8^VNm_YCxC2P?jx96dUL{V(?=&gx45wHBUjxFcZ(yiq?gL zH?8`2NPa!$k|OGKd0^4WuyyKD5ardehr#HmExbt5W2J2;HUPca%D9i`uDTKB=DfjbfY5g@Rf5G->mrIAUOxcY@GKpUK zM%D*$K8UES6?;yx4+4He=&vO;&jdBNZ_wBljlIL^dav1-z*f11C^ldcd{%TFT8ZAV z+HONKSijs;X{)*_joTb_IHMTJOFr?D5uz(fIseGbs)$iewdK0zHP3~DFM|aNuY?PN zPlOL##zq_4Suk>7MimfdQ(4T@(|XP7nw=&G){>iXzfl}ZMKi!^`|bF2WL7%{-~ zi}#vM-^O1X%h-|uo4xK-3MO^qBnE;gbs}QM&mPev7=@6hDP|=s8M+zx1$#b933>VH zBzy>ah`XPcH5yG*kE$Q-VF`?vRd()|8E;!raZnUFV+o`qLg1GHXz@j(KG$ z6Q3^1c11Dy_(h)>J7|47>msU!w=&u-=3dhvkGKYBicI7;8R95Unu;~bV4rIqd{cl! z`s48M2JNtlPj(g@dF@iW<%NjW64=@^)irXEhPh&s9!zjo%q95=U;CF70y=F91DgEO7Yr`^TK@#91a5CHim%^JG(Un z2-Y(JcbC+ukN_2^lhlf`Nm*y?_}n*pdoxaU_AGcHHR}2UdlpFeWz(!89E?M@PmRK4B@;9DO4*s(8B6(dUzxqQ3Z^#a$?t(t&|!K(|ts# z9ksb*Mm(MIzlyU2{Z%$>m%d>Ymlp1I*4oQa6hFBuBa&K zFC3>it=P?|U=(=_5GkB9eDGIFD)Tfpa3|;^4+8W0-1Zrn&sy4T{6JPL&VPtST#Abq zpXbn?8uQZ_WVdV}CjWZ)P-L2}d}tGIMawv>RNNyzp!{(`qutu;}DJ zo)gwQLNW7g4$K|FYQ}UVS@pCH1q$~8 z`kv{9#x25W+c9icpzTbk@k6?0fUsjaY|{uC-f@mHGH!%)7mJz74x)#JcDr=e!GJt-U!mpfO8>Y)h&mrq|YfYMoV^+s;^E} zU41!3(+oDfUnxQ5{l#(N?KD&ySuF)@4(X+vZuk2@s*k7<6|mj@gy<|fQwqi(7W&tX z;SCtRlF@m((Rz^USkIheqwEpW&Z!6!Yg42SNc+%W8-V0-FMK)$~wS>~2^lv|Wnm^kaEM>iKG-jmZB6)X3A$v^8*H|!0< z1&naqLe(r+_I{IQUEy6yfqBVOuOa4xk(z=5J+Jd_j(`1;^Yu})eU}Wkhoyx}RK>-B zcMcCE4>N%LmtpV%U>M+#d`#BI2KJ+38BC?Rj4ZxUk2w0Wi1!N2GS7h&*U1^HqtzKczc z#OfeLe_$ZLAOjRY$PdV6FZ6}q0laF*8@hTBHd8=z4R|H$DYa&3gvs5vHx5E;^Fhlt zIF-#KU~XgQ88~{UoYP-6Z9A%0-`i9J&uB}of5aUNvg-Ub1#W4&^>9?BP7xq{r~*pV82B|206-WF+7);>{zVu-W?_pxCWA0+cT7zX?q!Ky zYUW9oPu_q%<2}|i-*tuGwID&g<1PW@?`YThyA#|tna{HUIV_*C=Go*at|m8az_GMI zY6I>j^{x6$H5jS4jsRWh+q8kxKv|`~?FK0TVG#KjVE~Iy?|16?{cmwCc*&g4q4D7A ze#;Q+of$5h4WFB^i*?r*ACx*rsInhxm%?o_xxu3iDXu=Nz<1167$i(is zv+Dr5B}W8%u$aG;wW>xScL7oUntC%dV%*jC;9pW7j8vrrVg;H2%9__nB-PL^5he0N zJhTH6pVHN9zydne+T^MM?ueN`O4)Q45dgC04ixnbb);ns+6ybChMmnLHbhs^g!W1-XHhm4wu|=(`19(>Rb%wP5X`Bz&3!dROe1$-!$zIOO`W) z`~=c!;%=ON>aO1tq{2itLIQ;0FsY^k>V>2p7OPgOrExcjiZCpHDXT_9{>olNw(y`7 zEhsGFkM8w!HBJbCvbMHWjy`~ivMxh)lXip&J(6dfgJQD@eF!tT$VulGe&BW`J*(UX z=8nju4Tp9GHXug?d`Opz4>qyO=8!a8Z#4mwWnQj29`1>{mhX8cYkypa9<_TcvIsyJ zU@gmelHjXQ&w8GOj{*<|r9Tyzr!Y*kTc_>d*n<^gJjUb# zmfv5zS=B%2VfO@)maV?lJh`L7&K*L6rglu|gy>(NEXgg`oV_QjOji7Z9?3w~*?$+-1%(6Xtpy$Z?X8t#x}%l%Q2zO3-pCq5zRTlK+TH;7e)llO_9j@osv2VV z&p%!IbQY_IeJ{{z`ukUIXMYv0pO*sX3gRv(v833pA~@k$L+892MQqmL8Ef6ahQl#4IU~4fZm9#4zT3X zE0b~u;dcIte=MAc%fmmZY@gpydTIGnZ3RE=lyCon68vQ`%OdI&>aL$w(`i!RlamjZImsvDsX z;?Bq3Bz%k1io}P}#1{TJ$Pk;{L1L=`ChncDH$&b7qyhF2#utzRnVMXc|G-C&vuvpL z-ZCj&4VVJepY~bB-vGBQ3IfbOf2v3+UQc|N0Op??RR~1hnz{Y>lx2~7MBmvS_)Rb$ zU-(^}+&7CYM%+%G-CdRI7P+#oL#k&eP_6w8{1yO2p&n96gsrxij*mmuC5)Ev~muoRQMYR$Hh8ckz|2w_na zWBAeZd&rG4Jo2i(U4r!3mhbYVDLhAik+=OKEpK(pbztr%DrzhBHeV_b&WWO2F2Nf^bML@6F_5)(#Jf^fP>qr0bI=?WRm;hh2EJ4 z7;uK~1u9JMb)pj!HE!Wff9Ys!)2^Y@8WOb5wzElfMm)dtfMykCGgFA00L_h-guj%+QT(SdWHq&* zbI zW`C#vrKY39pf0<$#0p9*Ueg81;=rz=Fi;doIUhh#cvZ@_8FA%jdIC@silIXYj(myh z#b|8R4~<=GFIR}_$aXj7{?Sip?(hPuXy zId$w_Ihi}5k`Cm%;E0nmTEr~8nAwRzN_fvEcT%O!o3cD&wymo{UBqrB`qFs(GICnO z{9$6w8c)idp2CDxb8p4Fj)>NlU zZeZMMcqEZ4_3RM!aox&`O46h5MsH!-#UW@2Yr>L)*WxnH^W@3?^TeP_WZJ(HI7Vqk zvboE8`MdF1Cnr8wB^cM)i_+P+^XN%~30JZg5zM-ghp*mCCBgjzxcAg?jqA-{v0UEA?dG;k&tK zqWtF2{1UStFT7S9uugQ;QpBNgdvo2Q9kqSb?h=A?mmTpR7C8Dvp7!(2LYJL*nO(~c z1|Pg{lJkoYG6wYfp+FNy#keO_UrXxW6UNDiCT1xJ4o`Yzb3AR6(}*0lteVLk(+%fF z28HtvvZe_#1WCar0_@Jn228KfO1!9=7YXG-B+8l92Zz{H?pql_a_1%@W#r|K^zFhr z2Nv#w@G;Pa^axm^%gM};WRSCbqes-*B?gb|Th-?1<_!j%YrvRT@p|TQ2)iOxm!64! z#22kaez0$`+LN@~?wAgxGT_XVXpb8XSA0gRqprNVvfsm=%0+UDe6}m{f{Lo)bl_G#zhMdQo zjVu3Ct{hY|r;;2op+|KVzx}kV_|w*T%Iwbev762pKuExc5l}^x3q-@wFBDJcEA``G z3J1+s0EZNEy-n}~1O3sh$@mTF`bGO_#O@KWt;; zdszfjwK1*RYaIH?HF(~2TjAT5+rD;1w#CN97mlA4?|Ca3=SVxSa;|me6`Sl^w#ZKe zZb#U)qtKo^rE@1)s;XX@>I+mpJ6Qwp^BtPs?i+{$&~M9kvrW}e;o?eX$yQ34`RNcz zg|#zgj(FDf-f*Joxq|=suKPdNK%2&^u1x=X4a7qK z?=?_N!M_|p0f)(eHBiKq@9kwJI>z-|_+<)uN1b0UBGqHfb!e}%v9d~1ef`zFsfIAc z&n4Pv^yAELUmrh&cT^cTWw;P|RMTV~n|_6m)OOB#RadKKm54OO^8wHbKLQ^e9)6K7 z`gnd`f4zEaIqGTgHw+Y}i5@vT0O>CjmJV{Q_+@)Sb1_0d+3t{{fT7yr%ruta45AOs z!%9oY!%A_A&ni%JPu>^02QWrF<*CiN!qdFo^h}n5oFEP?!nVecMyHeau}Vkyxu7a!4vZk1Vyl6iqPa zbUzc^AauxI_$7I-F2y71dW*z8B_)cd4ZLI&lv{y%B}uR;bdf8wJs=?LxH%qy+E7@6 zm`J#fOx3pKr-tPs*MfIer}aWH@iTP@h^=P$XV@4|O1%=%%X*_&})bDtx}8o&N@_2#+m=V~A5 z1v4Qzh+meHM{B)U8+TP_U?j;J{toM0Yx=nvz>{gT!5>LnswyjmaH<>4y-6#IQPl8B zzWt`pHaKjuC^NYdapO$tnbgJGGbjjem_>Sv?$q7GuqAGY6|Wu$;)iQ88co?FG>GsF zHtoaYv6A-wWpYDFV9j|d>iIN47W5@4uy`BV6Bx%J@u^2W(xL&$UCkv?AsKjJzH-G) z^}$(s(+@Vx_UtX%!q~P>0__d^&YLXz3-Dij>5~(>W5WMRDg9oMxt{mX&*Uy@q~wmv zB(B#Lq^QI&YX?*W#`YoL&spLg8O`j?OXXnfN;~-Ee{1UJ4HKIPKXQXOdQ!OKN)+9* zvqeD!n%6C6r?Wg(s);Q9&HLbeVc(Ds9ttt)7YWQO-A2WJ5+c&--tZMB#l72)jtj|1&0ph8IGoVd#8^pzKV{m{%wP70aZFBP+spVf(^${L9!r#ya*LpO*3YF-zjT zD9sh50^$u!)hQ~TGJPSBoKcUsylD9Z9j^?T!9nA{(3 z5l%H*@%HjYYbvuILF>%!@tC{)qF>X+$HxHu4^|MQDQt4Yi-yuj`20&w589s`WG^O% zk{Y-rf3_5D-4(b~;!TjQYI_Z|fw^wYn~JNSoPQLXC27B}foYM~Ar&iFqnAv#a@qws zaPYQPbi$1gJtR$Bs;W}*Sk}Yr z&!k@4nNf!?`&wfU#EN_+fJ#0oAa3<1UbCA2@)fkzP+Tox`cjt@ zU@&Z}3#U$DI7p+aX?PnoG=11OjEk3I*+5#gWM|g7I{%no1aq^gq5U?zY7F^EDup<+ z-<*%o(#jkNUO{{kuf>pL>3}kBW+*E;)^7Gscb)7kpp-6!0mdQHT*t{eb&ysJ%Jmzp zQBdMZ-lmYOR-C{a(ldfPQd1|~=stw#p2IdNu-!r7D`4f$8qRX?P8tbmEH>^~?O%0% z=)8%htZ^>vP+yQ-$od}X6t$(TMru6rkOr_C8Cc0VlwB#pJ7IWCy2&fFo;Hl3LZACt zEIwwRaZH!$=WuwNm>FVY`MR&0;#P0wUx{r78P$5)WM06V^dz~s@#19>53J`vTb*UO zfc@nwP%N$fw$5bW0X?P=RUD?;`Qyo&2UEO@<)qVmR7$xQqcktSg0`6!0mGpsy@q{7 z1~gW8yo^DoQ)VP>e3q5VVsjF?RZ6Zdp`OUhveFkV+m&W_qCkqVH09tTy-NQ*O?~S% zI}=LJr`j1Ep7g~{Gg;FB?HXaD?HaC{(AkR~Q1a-waT4qxIxplbs`t;uf4z{RjnI)7|9XfWbV-Xja=(8)=3L-=TvLAheGTP*QMmH4eV;L zAOhb@#Omm`>TDWnyHkcBe7NzJ@bJjmYensncS`>gQ%abp;@#jbM6vMLVh^37_*l& zDejBHwoC~{s~*=&$-^mMkrA@z)EK#uw$w&7tucV|l^Hp#4NEIx!l^hYozc)733Fg( zCZ+cU6YI2jr5zTjT1VX1?S`+BTsjVzj?j==dH>dJ3+ZMah0^nKw`_%D)b_M`S`@W@BDUcPxF-NpalO<dKm|2lsZkJ=^n%n-9+3{st2!YgDR&$m0WDYMfLSO5BV z9F0d+Ycvhli#LjG=cycg$B>FbJMF=;VcRGA?B%xf=nqJRb-j`868n6F5Y2}hJ#{Dg zBsM;;7p9|qn|0#&3Wn`CdNE%sx8N{^iLOZE@N5%>e}D_O)U5%G;+eIexrd-`CTX`Si`+sn(DE8V%>-siiX{~57v;Twwm{#~;}27JQB#@>+D z)JWgZ$exkmzZ0SVhqyrem$*Q+EyGMC`KSBZyKUBbb&X2?yyi!Ieb$1svJ=H(Z)c>x z*ul@2+l!EU-Y?~69m0QZRw*P8L6$84+^lSM(leS~H>_EZbHR&`g8Uxlsj3QJYHGed zbiXD!Ng1ts7y0MM2=|NJK=98Hg??pH=}LA#S0japn+5=I3n+ha3&IEbmdH%vajpNt zEo_umfTtxh+1QHQ{>3fWw_*S@1lrC2(nG7kSfCB44diRw2A#_R@<*Ou@F-oP6|@7} zJHti1BgY?I|9!NQ6OfAU7%;WAeE}1-1r+UU(t09$Q2<9Por%tZK-wuLc#f8bnV5&r2br$V zN4Lt_&KN707L;!lKsq2-7W*+L)jBjGB4?Vwy&8o7I$9kZh{Rm%_@KkVXJ6s3&Y;G= zYfmI2Bg(Z5Z*C-Z5aXtB5-wIu$omCxT`wy)fd2Sf1Q+iy#h?nK%a zAQNVAeZ3)jF_$3!HtoCy@FSN`MA)t%|2FM3!FOA0!i#uPLBFOav3&=@j!skLPC9g; z8dX5o#3k{fqYLz}5|eXn2j6S0fge~#6SfVE zo#qKr$-N2~ZTGS?=I->P_T8G5pM_+t0{IHty9}oN{Pz0-^KSkp4utSp6hy3x>nv&eUB7^9(j;B~&c>6QZiFgMk z31)N!l6mUYKOGbJ3;?hNIUKf=HnFnUzuawtxJJ~#hsjn5$#PCa>3rZl76Gp23SB48 zZ^w2RYc@yxQDJzsdwifOtgt|ni>WKzL2`hFkdyT0ivN-yNx#4bGNGjiE;XHu{s!G9 zSY=+N^hP{h)onqLBbaPm^$)itE-Bj@8tSyg7Oi72Kq5}kcBqf~$XzufH@0C)R{(e*EP8zuIiqTLEwEczUPyS)P7ZbuOP!`%koDiX2* z+^hhwg@`lVufA%mklN3`u!V@-NPrm#{dpW3WTerxbggBY!t!p_?4-90w@cXE% z6ah!8Zrk5IFO|VuyC&9roz>BMVE2`?Ho3!+jKST0?6dWDAZKMys{Bm(*L7+b)c`kgOMh=y8oY9+%lKqY8v}jt9k#73h(h}Q{1Me(CvRO0I2SD; zpU9B8>ZXq|FaA

    Ef3o)v~o2d@0^qfwZvj9M@V{Qs1;i|Dgxp4h+`dT6evxd8CCXU^ z2L<=5eLagzV#_`iZqMBl-7DyQK-qLgV{;MaT+?xV1pOkkCH1E}YdoQaEj*}(lEKaU z2nxtTp=rY{SDvZP*56PQK5iSTx55b9$VtoCpqatlxZmLse~!dC$8?x4>pD*gFXw7Z zQDzkIHUXl)<93g9d)W%b0|C00eVEn$V{(FQ4Gzk8w?(%5hLU~#&=eqX-qNs>2HZM~ z0I1mc1dL|OqkB|yH-HKYusB|T;J)gnV-v>_oBfoCW<%U%RC6>du~!WQxS*SfFsux9f7JL z>%~*yL_0=QOqaj*lgw&b)*QEe(}wgw_|7^%#es;OJZV?ifcEbpr%7sISTT|dKL-OA zP=8Xz0j+q*7fS}5hl1|!Lz#5-Q=e^AD&7~>7lIFs>fjwOe%}>6IA$l2SmlEg1P}?+ zz8L|mKudNQIggDc6xGMrjP7PKeQguy^%O#zj@o!cVT;-_x^&{0@S4%Jnz6)G_50)c zqQ)-QQNzcRD@{S@5P*u^vKO9GB@QS557^})D)p6d)7m2=T^*}-jkvoBi`k>~clz5D zl)n6y&yDzEDR*u|i`xB}G!N%Ma`|7q`t>c5w@IBmmxj|ef)5j5ak7I?!^oJw7D>qr zD|bOKEh10emS%syC0OFXa>JHBnWRhzbsZ(Ku@}kOJEziKddW_}JaszfOdHZhyoPz& zeuOm>A`n}R+y|yfCg3lza?~MW#MFlU9xSS!NFM-fFpYiJVR7$HPsXFIV%C?09~P3b zt;XmKQM)|K-N6lDx{AtvTl&P~$f(w2JgL#*>4I-^>x6GkcHzz1AS&X5 zraC|uKXK?uIu0RMm$MQzQJd51%?ss538R>^P|&`SWKfe$vO1p(^0%TcXDi%T8|RGs zrSxSsw?tO;L1aX(k9;Il5(3HMbo^Q-s>RofvAh*ryQgAk==LP)KI}`!khroz_bGrh zbR{5i>jx3@q0d~*S|mf$AUMYGS}nzbpEXz1TH8b#uSZn;K!i&*Eo)o=JE+q*5Z6ai{o*>6I3JQ)PFz>u{_|K zm>VwJHBHnDkC|yVrNhF+jwE+(B0Ihpo{i}AhRqwM!%qLw#L>0jbDrg3Tg;2s9D&oO znRo3bW3Bi|#*NT&8P!-!>oISxS8i1Ek!T~sYI9_fX|PBnk@Z?;12y8dOlZh!9`@ZD zns090`*!$y*Ru$e7MjGWgBg>e@haVWy!uilEyZ2=G~)A!OFK-FuEDKp0jF8Du5%aN z!C#va+q-uOr#k60Jw8Vz{)+x>izg?$eNw;IhRv)@;sd(zBm7&j^O=3KaO`W0f%ZIo zu4P+@O0?Kd=;xOT1RBN!LwL# zU8-M|gs#beow)sDchH0-2#=aA?{T1+Zazruz(gkZTuc8pc-BS{7(;&bGri_AFwIH| zqSnlNMR|fDqZF-@YGL$dzqx*!1HNJ7)x?RM&uGxM^!AeQ6h=dAYKw(gS>NE2cqUiO62nwo+)-Q}Z77?Jfa#WK z+(cgwr2{gTw4aKQyn57%?3p)4Rshy zl+xoXlz;Brk!jHH$PV!qteX=@#&xvA#+9CPgTNKrty>m&s^Y!*(QWd1pM$w@z#Ocxssi6n?iT=dCyRu|E48Dx;PW)SC`mR;N6ZepghShs7aO~jKb;i?p z)Q$XnRronW>+>0iV)dWRAuSGcFZ>0>@%#nE0TN4n;I6ryd6F!~0zv>2 zl%HuAL_RMN7;$0QvfL!XKZykm@$Dxdu}~Hs0mMLv(SU;82Uge@2J#(N*#mu{>J@6I zvn`_fPn<@698>a(VR$6dTlxq*eA~jJ?5h_Y_uy0_mw>rW0C4+n%}$^_44UYtVoa!c@`?{Y@+( z?qK?R?f^a<0Jt3xa0N&7l@0Qzw`Yoy;Ot*DyXybc>|ox*@2&|I4mc~r@UJMh2KxWj z?7;qS&CdOA&2F{^i0xlByT)paz<+9XPyeaeb&?J#{I_NYFg^c7eJxf6sajN+S_JUn z2!+l^QqBLmOc?=*Wd=7;2e$qMYU+)>u}@KqN>2L^sM<2u2~(6@AN1=mv{@2n$J&) zNn!H*Kg&M~oAu|6X?T{!W^5OY$=_R`PKw*0(? zX?TjCNVPp;kbWKT3!=hAH-Zj0?a%n~W?+1;HYC;W0hZ2qHzN6k?mK15TN;ylA&KZU zBr&eUuU8l64tn1g+IgG`4OkO^C#Y_owsO``4B7mV{dTEJPDjsr%a5F{5&vczd~=6* zHX!%ZywtXYEqyo8xXU9V6TuYJBxw;i19ihN0mPN!EwkTU{vB8X0D(pJt^!b}bN3;O_r`$t zZh9*Q>#;I_S~|nw$8?-%dwFy!(QU~3PGS~0O~HYp=3?9MZP<}=I!|;-sjg&U_Wf;8 zcevwr35dn=Ah$S@~^C-XDzZMVLp<%lk={j2aLEvgaC z2kN`z&mSu>&@Vahc8Z&Q9}<{pUty8D^!(bOyHAEDI+mdVc;4NiS8RY<7mwv>t!+>n zj572MSq=krFnBBPw~8~GF6KQ=!5&2gU657)Gm8X_pwi3=fix4)rGqSy*b}Dl-WqAB zKEyMA*2zMC!a`4J&{iWmOSco67s&=L8e4~w7$fKEWaI2oX3P&i)+L7W`I6XG#gi%m zB6$F4Qw`=&MdN*TOu8U)=M@W8*+}OVo*yvYcU1%InCEJAh|7U@mds$IRW5<#Cb45Y*zY zyhyaAZJkiJ!&4RgW@c_+?_>=h2o2bT1yG4vE0NH7?4RKB873>TS}60-Gg6x@!go0u zrRRIE-O}_qWD8wfy+l??mypG)2jG5&Uz1%2?uyI9(m$>ed?63i5K1I_*7%o@+T^ zS{?{O_*&2C*1h;qa>VAS=+&we%k{rAhut9t&Ae3%S0VzJHv*@6dtNMnpV& z?G#;M&$RV4epG&Z6mk@K6*n>D3{3;J4b7NGH*VlEpTV&~o{=-WAu#A`IKN@1voWdI zmr|xb7Y8}?uZZ;HUlD0nizZ-2bFD+tpbNI;Ec!d+e*o zAVgwz(UqL?npBZ|>i-XJq!p+67)_at(xgd)lQFD!Si`?h9I5YJvm+ zr<|{z)_tRuW_RxQ=FkGr->fMM`odE{-P)2H>vz7F)DE>gdm&Si_zT;BES^cNUNlaq zo+k4iZ1o`(4`PDCCx}j9;Nkyi0Czm9W+3Ea7~H*; zbFgoFV!+qM%ZW$2sc45pYP}SDm(^bT!$U*fJtS$FEw+p6jP%bm49QyZMwS_8F=^#m zT3}uGQdnE>YoK&1N(=`z1w1P#M_SQ_`$=k47b#~mx3&66^|toeOE8$Pvg26Sy~Gl_ zJ3yS8@gZLCAlt2UpYF}Y1J&Nbo4lUpvZl|MzU5Y-RuI!6F7l$pkpdVZE&7s&ZzfWe zB^NYE&t(qemAc`_TZibxZL;^^4=gIJ(m}$1Yi8~l^!-CYX(Jqd2@&NcSpn2k{oRP1(1ZzXbSH9Af7&UjihR3 zINC;Cj!7zPX2v*9jk_8cW>_Bq+PhW5jG$n*H8~|8r!&BppDA*$VM`JubZeoiNYWoh zYHwmbw{WyaueS~LXj!enJ#Orab{;bxufHkutpngBn$sEAx>rd+Q!1bPMXzV4^No;% zwqEM=$3?yVdWK%Rrm2BU{GDTmoO4L`A)8`0R^)sTm@%eXrz>tP!7_u{GxQWEwij=T zU$zE@EmycqK^x1gOEzPYNb#AyLB|9tq$2xjh4{<{e31Xc!(3j=6v-#Sm4?Yt>-vn0 z`0NB^#_f$%Fb(A-?PRHa#wmS)wu3jjpC8fb@9GOji60`Dzj`ulg$%4JhSd{>HwSWc zzm52wutL*JU^k33aNq%6|2Yu5`qL^~WeOO^_iuMV((;2*^0YGZ)#FktMuZ*M5J>h- z2V37Ko1+g6Yic}MW;28uJE-nQjL!$N?$w-DZF^}G8@RRIG+|v0pFVn7H~q}Z`+NhY zi{WU^bz8+I%w{jHe^+MQ9a{571)`4La{)=jz#pn~=g`3F%QjXH(M+z6{+=X+U>Y6W zhxcDllX?2=m23F5c+RmChlx`Zz=8#~f5bHT<1(185bKCo1?EJNfTC~F46WAm`F$nz@YjgIRSK48CM~*Lj`7&S}LI1 z<+c@x9dP88Eq=nNCB>yy{srSQbmf6tEeUd=yw_J}%tq3qAq7jv6#h|Z;j~4hqX_Nf z14U5s`+$X2n60bCL2P;;6Xr^T8NG#DR~$0fg5E>`#s6XJoq{u6*RJi@w#|;!v2Av2 z+qP|YY}+xrWOyg&Ttldd9wYVsxCAWJpxi?wt= z(f*I0b1VcIUg0>&IX-oSyx0BYyrtp0VEy=O_dkz2`Km(GQUHEVp5cFFCH8-^lBR~; z0Y{5(Z{Hi_Ap9n#TfuOmbvq?nJnePm;SXPI^E7LlW%|z-V(JY^7bTY@mBQ;h1^Olt z{6xZ;kwK@`=i^?OnQ9X;H12>;6-t6Xo>Mo?0&d>tWuhtfaC1N;<eY?uGm(|g1YeeE&ncce8%i@>F9ZJz_Ql4LPK=i68s#6E{G}>{M9o{x((p#4q=IP=)*=q??hda3#1~N5hiQoeULdTsq90xE2MqlK z%3Os~g~S9bE5V}0zG2JcJRD}a08B}1g)q-mV7^3J-UY8T9AoEVOES>lTX|+5LCuV>m4QS7_K8r! z@K>85I~mk?D_RI?3yB!@qCs&EHiyE!$(cF=a{bj~!gaWTUTP#qI9*6U)gjZNpdH|& z^RQjf^csW8O1K>wAR3kxqk3CQ9s$d$V}|$)&M_uPg|%nqfaU6hnqA7_H5#> zDnc)xxHtgQs%LEMvvQ%azuTm+i^j*UacZJo&{p98f{*3skc)ts|Dw@zLv>wyXdax! zHy)(<8G;g$&8^oAQmr&Vsp7Z_9kd#7ymK>c%Ma7{jQK59Q5J#}qXZjwJk2!9P%;&y z!bh^(N0m`8z;*}t*LTTOo4p;-tpe)45dTX{Mkl*@v~bBj8#aJXyU9MQC(4Z}y3_c>s4fJFUOO)AMiDomZHo*WCZt2@cfQVqzt;brg3F$+`7f{X5}>>p9) z1?dUkP-w8oQW3Tju9;LhA5>K;1CNHh@j=A16Pxu#gsAUj4&)P;TmlLWc4%bjV>*cQ3T9XbPGGZ`!IKoL}GOM;ju%r?&< ze?`>SCSIlOm@hWh3B&E2D_rPS7YsBbN(ud#lT!fAF9fz|kb`r&29t=JpKYxWR$qVX z?CZbYfrh5RqXRPYy3qC?kO=JmvoqJI3+s=sU<*AGEM>^Q)V;G+!BPRyu~g|l&Zo{5 z5tyXN4KaHwtv=v|K-HQL-hcpB1`O;1S%%Mqot1M2tt|@cO;~gge`;lj(EK0-2vp&Z zwNgw&hp-Wb1+oFgodYkIG)%QTTTXV(>Ki}kz6%p z&l2*1>D=yyuHvg7NMU=dRVLiRf0F`pGawQXvPVt}CzWVfCy{@SWj%S)>K)VU9ss{P%kl1~)(n zY(u;tmoN0*@b;aZ4m(ucHZ36xJT*ARoiewvs`rv?hM=Kjr!@A*vCv;P8`OY}-+6YR$@Nl}G3Y|0>u+8V!0x9I%7A>v;-wcj=K4ofGJ$}cl=ZipOZYR9bE3MQ{^ z(;=16TGY5>+pHC~nq*ofXxm-fKU023Yj$qD!eu%=XLzh00W|t&d$z>vZF3bmdIjPP zlaUtSevcVeT(t~Go>ezO#<7Aqef_=qBdpQ-EKUck3<0xrp~`QXVRKRrSBQdv+=*Y| z?*L~__6Rbe@g5_F@n|MBw>G^b3yIlcV(xQ7hayu#vG(N9#ZTd^Vu0BpJQ@?a5nIdi zU>7RYLT+QE{Q5!7vSm2P|Eyf+m6?hv316Z^YJO0IcEhYS6VaSKBS&M2Gb?gyfO7&W zp3KAypZZWTr#M)etYCJC$>o&oRy*eae6B?$^0zaxbI2WX)GI(s_i89T@P6ObYD4hT zpAG&G3V5)xhQ}zf%8pgIO^CueJfAdR(ah`{XX@#qM#TdVH#uK%HYDz3ct(Ee(U#pQ zHgK#+K5|;kl@o95c_hdtVcjhwo?gjeiHZYtl5~cWn@N{sqO-z-h_Z#XOxFf|y3$T_ zgX12!{t7rQSUTPV&BA`Sw%pG(_bK+q?()`Wb3rjNBt;f|+Dpf~kQVs^XZL-rwo*iqE!Ydgr`lBTQ zhVGB)2KEnKUHnLTf_)a?l}&=R2C{o1n1Bo{D0{AmX)PMe@xbGhsk5%8a#7IWGhmjT z?>v?xLsla#m{XVfXjYJa+s;vJDRQN{{nBSJ3p!9Q?As}@CivAzY8M?6WpGk=b|kuW z%Vi$4A2}}NUpPIu+UUNUQ{6#dUzTz^7=+z=7>#QNTb|*VN^(;(9z~2jUglinf?)tl zt+^A~51w?*YfU?J&cpuvGjG)1ApX~v+{C)v;G#bv$ho6Co!jhKuj=00y)RYD^C3Nv zdE^qDe(C`;LCD{>4NJlqigl2ErKvfb)#%t96L;b7!kh%T(hr-0@@q&d7kM(Fj(Mn9 zQU@66w{eY|!Yb_41%glyffXo5KBeu+&7b`Z$t8^vR1#e@#}S8tsG)$0`)UcInyfdECtWKz3 z{Ebq>7zRr1IG3M%DtNG}Bhxymx=m*rK@$H@f`#W-^QFi-J7_Xg&M=U6#s%L ziBZP$$WGgb8|YQA@rStXqciXC_48=W^($!ZN7F=psQy4L4=LA`#GP7aDvYcdi74;7 z``1I0G+gKd&vudQN%9g58n`pm!F7<8i_pS0M`OAKQBi{ajQ~-#fTJT-@GT;^X|R%HPhfo@&$ntZeco9z2bgBNK{W)~>qM^%Ayn9dI2qN0ra--Sm*ET|_|(fpEmytq)<7VF)InMQAyI$Z*T#}R1oAc z^771`-u-#LIKiZvBDVm49W)Wuzy7*NN+dNq|5bTl!J2I%hg@M#agGlsi90Q_Jtv7t zt)kz69M-1%wA?RfEp9&xELmn&m)Ry#Mmfsk8`xK$^BhX}v<7aN_=Yd`Sa?9m5m-q8 zMQrrW8YmFl*8n=wQRsi{nIm$!@lrYpP(gHR`n~d~uJ(@tR1nQjos)sAowc%j1)Y}d zaFaYug>Y6e5*I*c$Rg#(qj48Vz5uGu(=C2q9ENIOm+u-+`AfVFpz6N-bzf8+J>0ix zzv%ymsv`>~cx(8g>ZJaUssruIeE5f|^B5$WOaoALAOBEw8sK|R0Ds*VRrhO>#((h_ z?RDwDRNaiTygVU*s=LfJiuCH!8BpVj+|q*$_67O-1U~i2#(G3fo&%ujD8HyWuCWC@ zBh$T8rpe^|HPuZhvJPZ{Sbg`!ys(uz@L60gn3vrW9Yd}L7x<&}7d7|1Na7fqQO^RJ zS!@q6qSF$xWhV6H0yxEx4bXBMck{-kV=l>t*X5RQkTK=h2g=H>V zm;XX_zF3eCctve$DX9Ylt3Bs}KkB=P7(wI*hzB3u#sZtaL=dq49!+#z6tfIOGszMS zK|pb*ftCjhsyQBd&fn%4z|=WHN}{zAdM`S*d+nwmY*wfDu^&8NJ=QiUQSKPs!iOkz^xLTFT zUM*j`iNPyhbvImdIQmm&qp^Xus7xez-U4Z2_#? za0?!E^1e(Os?X5W&=j4lH8=`^;BfPrs;)rHc-!A&>i?D3QQMwg&Pxj2g=BsVo46c8 z^E-m>o48~ZY3x84z_aC?L*Kzq2IxjFRQ;d4uDM~JO7XkEj`+GeyWc~{rXQzY&!NO% zXsC!rVvQq-3=Wmnx}2+gSlndV9Z?!J-jeb{*a#Y`9%2QySc-?=w}cO~f1tY4k-f(+ zsIJ0A)S`T{#Lsdc0)AIOypsgu<`vh*C~ETpNDHEhbT&=lkZ)x{xrVZi076QIeB)wU z;tKvia2y1B*V;dt5EwZXYjhL=;M_jfUm@>_h*^36##ng~h3$(5yRWEZ?{eDTWpnZy zS!;blSTXWJ^~;4LVaUNDtOBgXUOo2E8dnTQcR?31dUXE;A?f$3dI@o4?MK1hh@W z(i8<<03`+w0P6T9tZM%S>WmC2^dys&WLu!&L+X8B{{iZvca~$&z&uPpf$chL2ziOa z>>3X-1ELza=|CMa^Ly*!9UrPEt=NAu@LagJt+!DBh7B>*%hjJ;HF=HLR>; z7L@g{I}R&|U0>hVJTHcSEm1wME+3GtZN;*mO@gj9G0o0+E4q^&Gh@>Y#g7L*%jt}z23&{>u(FoP zj^v#M4iZqNC=`vMR#S-2-(%aTJ7uEFB9jy5;yF?{2v)TDWDCdLYkxQHRjs(GWwevQ znpV6+B0~~?F zb-R!&vU_@%v};--!0n4K6B9jgz&kXwj@wHO*Oc@CBrg}eM1rQl`T{lo;y}yq$JZD6qk=GB4vLKN4 zR9;Y|<%y;m2+4>mGdP9tz{?-^-=JNG{LshvIp5fn2U~mfT-FLEqb~Z(k?*J#g>I_x znTjG<#Qw?9V~yjSjfZGtf&2z57dj&Ldpg|jz(tiv&K=a5N(h#y(Zd>U{KhNa0_}&s ze*e?9;!*2`rGW4FR7s1pBtqG4M{2*W!}+KmMCuXmqg5^}|Msp9_AYwPn$_mL4!TQ1?LHC@x?OSO%%)sd$4xKs?d6S04DKJsig%irE0eEAp% zGb7jg1RR4tKS6;Mq(Q;ZfFOXN0O5rg$gMYWB_0q~ivL$w`HyEoUEJwFBBR@G=mQdh z(vZO#9nN5_FvFkt1pmb4)SsLPL;@-2?LPA-5p{V{jbi!ly08!-f%UXppP%D?AC)jc zVtZuehy|k*_c7Mrv&KML2=NIr&r=?VSaB^(MOu*k$2_cavYVc3ufHllwA?w_th*Of zm&x__t9K2wS4bk39&+YIJ3>2B0x+8wnczYoZ8dhBBG4$A0N3_VF$ZvJQi(nFa5xO9 zjqYC6nUlGzVX{3lh%wXzOX6g?E@PP4j>&={R1 zl|Q&GmMq)41HVN-sqKUa(ml^0Q~yQX259TBbCLG|d#jQ{Sp5vJe&ejQ(b7JN-nKw@ z+(6TgeC>d})nFP3gKlH?fj|5|RoS!FX`n{^m}u`M5#AKj)qu*g*R~n*XW2VZ%xe;` za}u^e@rk*5DbT#axWj6#(FlDRkUgQt4lr3iA7>#LlGO{G#u@Z=P|sWvOM59N=UEKL zlJl3a@krvaOo7M)Pv`uRxBCbL?69a#f}-R?HWF%a!;La__5!|z+Q?9TM==5lO0c>m zqoZ;}Z5`;Q60Ux`52(fmWR?3-3Q1-(hSttUiY12_o-u{E#owYKHFL+%AGD25Ku4!& z5XR2ftHZF`;$$rA?i@i2Bo_s>y~1A|?cuBdvGA>D8PRviHQBCBKk$7b|5wkI=c!1!af-A6-yvc@>f`i#$qQ@(>?0wR6tI#3Nw0L4O=lqw?K2da%B6~ z^$WW@A>lv{kX0`I-aFegL3TedaUn}{;KV1j*l07p6fv(BeB-V3IBI~>XBbI>r0CL7ihm57K)6l@; zd7+Z(PxJ!NyYAbOFt7@j_D{xup7^3u0dbOyA}gifs(_Puhelk&?Q({>ykzPNHl>NM z>1320s54|!+3wzajt3oC3dQ!7;X9sEb|g?g4M6=A!a0`OU$zz;s@qpri2K0CLfZB zN}o->d%~I%Kv-;^7JA^*#!VuRjt@5L53|n4%8h~2*J&K8S}%aseEfSsxTP^3z-YX==~rjL+z*S;tta!AhP^^gTC&DUVAX{S@L1)%G5)od|RCcz95O6O-$S-g)LR%)(vhb*Qu>*B`PQLWL<^$z_?eeb<-$ zci3X`6a|o3TxXu4wTun(lm?YlA&ANDg|hjUskU=NBk%5FPdlyVJj)Z%5ve=mS}a_w&wJQEAu;T6YM5g4d_3UC7p}Y?4IFklT|YwkcX7Q!n@Zre z5=>F9=y5s`%W#d7>JU%^;GBvWqYVp&XaD>RG_pmS_=`; z^?Y0nv4$HXs}RFnx^Xogh*3xR4}Eu}!*GsmChJCSk=HdEl}Q|Y;vY%Y_fn(g?B`Nm zh@#W(UMaYjw%kJ%0Tb9}S(M*A)@et+QmV=JjM%CTm~}L!xe+Q!r|9K$?%C0*3s)uY zlfZK>7-?V%zL!VUB21dAnotlXP;~8M(3y3V6ug^_?fmTB1P+rVBV6~(!AVUR-c!3QxlD~vRp98pZUj`@Ab#rBv7#_@0nOcvXvmZWG zGuEqZEHddk!oWany%H!D(|S&Y8R`VlQ7Q|}OzU@)JfC;x<03zX^RS{k>Pk#2qML8gmREG!+%lw;J_(Cp)77?mPEPRO&5>SE7OydBikI{~>yP!2?Qd!vq9 z9~Px1k01j3F@IRELcg5Yl!k_8B&9Zw01*c~L$^p0Qv?pD#vyoiYIaUbFx8T+wHG>4 zwaGg(k&)8L^Gu8PbV;%D^6tL#y+p^AMIFB@fR~nuh{fw_KG63YSxo_UP#L|=8Z-MX zv~1RfR(9(`&o*hbNpWgJ8XeZc4SOI)eO-i@D|b75tc0T1OcG!aXx7Enjf>jfAt|M^|4a zK^*;g`eXb2+wNZGn9&mno|{a@@rxT(?VQ%=kU3SNOxAvkz@EmqnK{jq4)Inj{tWDj z8rTaf6}YTD-MWzH2g8%qPQunSm*!aZN0J%N=<;wZ+VX;VRhL2wqI$Fa);qMDDPBEm z$X2Gi%If92e(6*yUOZcqp$!WR-xd$X>Nf4Hw|4UfSuF#81rg*0>~ zn&m_UW~LjV!}UGj^QQXzv)26+vc}yFQ4lY3sCS0-?7+~IG zWg-Q3Y5Vi#F$gaw+xzo>YvSM#X@al-$>x7nf;j$L2?Ch6_4Gf3_JALT7v>Dk|H_yV zPqZEhH+c8ZI%_t#XtcharxjVdxpgF6Ix}~w6Csc!i2gOwsrpv``DV7)-aHv?NO?ne zK1A82%kt0C>5aM`^*dyXZWQVgy9)cw)TpP$$i1KM$Lr3=x15 zayh3u9I#fpZKa|ihCJ4gTaW@4z@8m2h6n@J8MFpTUuFz$FRI z=0hUfZj_W)2 zR8#{vrjraK+(!BsetJM4;YJwv{o~$-SgDAxto*YzM_lmiBctfnHt$tZcynU}X@CT7 z@f7^~4Qu@b;NGtLuY3Cd;NG^VBo0r`*(SgTP;P7h$}RT)N4aJEmvVyu2T*R+u4Q6p zP#mON#`cNm!CVD_+Q|anoZf*ganWo--_%F{VDvj@baR(mX;jbfJ z_v*S-X!+Vt0t0fs#*@diEju};hN=wp1~z0Vf_4FP(n*ndyci*)kFQTcHpIplXu7KE zvxQKQu{RU}Vq9IQdc2KtO;<*$FwCWUk`YBD*8Q#7`1h(n$h_Q%(3g zK<%JZdAd%Z@5VUhF_o!;8PVST&N{3m9k%f^g7+5{#3TaBy3ZY%3cGnGyZ#m&W1(t} zgi>fN*WODoP14Z03gZUcaE6e-d-t-pe9`>hFe@M%HQ`Jr>1e(u&CtbK?sLpuIPF(! z<#+XI_kt!_CE|^GqdLc=0wIEwRQ3;K=Z#ZLDc)!34j=>_EdIb*XprGO{h_QwMsugA z4|}(mb2v@PmK87)Q(*@7LQ>KHBqLClQR~@(O@Xs!W9K|zveeb`_L2!*zvx|&>+(mzyqV+62s zN`B}g*Gwcv*Q}$S0J)>Tz~HSKl5;}`;M-Kc__oO}zRl=Ad>adsTt#^+wVG+gy8#V# z6G$lNQ_pA&JE(atr0~%UT%Nq35=#KFK{{Dw9#jDYTv`dZ>U;{rj*#9Wr1pruN{kC6 zR#F_^QZ-;N=;Xad;>CdDX6XtCd`atM)-yy#M|6QWvo|f#Ki^jk;TONL*Do;5PBa6s+ZjBb~u#r zF#kB}B$m04?J6i00!A&qQ@{vZB?3qO1=;3N%hVVtRZws4Pu{OogB023s&&Dufcusu z(XuAjnf#ergG0KH{YmgN$*qL_age^&RgshWPwR8~bnf~d1ye(1^lsS}*I59Xc;an6 z74z_MGn8R4X+dG)s{b~Fe$XLovNC<%EJBf$L#FF*$kNN$29rT;$TZ$ZlmOAWMGx7c zlHEpx=-@6r+7vuT_-{>sO3a(i`I;-C4c4K(i~k;4$?W)U*`c4y;qD)M@6TbOwtX)W zl8e@-YdQ?|F#=?KLgyLm?qMYYn@Dz3Bg{Td=r7HIX%D3G_!DJ2=f=MB_eNd3A1ADL z9$D5Upny_ol#r6^D zyEAvCwV^_TrX{H<_I(u;e)UbqE@t8FN_()t(qj$2P^X;_m-FLKBHVGNOq0;vLLtSK z<6nxXq}to2VI5~*QRT{yCK+%z4~GAyNM+(l9iETMDsJv%Rh9N@TxIgMoD!>G$}jEy z)3p0k7X_{Z7*|c93csK`eejAsKXp?2ZaS`*7ipUd8=^w(mW@!%*+kL2&y2;6xG6Ru ztuPmr2Fk`1T+NLf_p`^KodQI==J&D9m0p>x^G(>eI`!{*<9iCykWyD;Tkb5^K+T6bYimkQo z2#GYWeguUz73y^3_v%vUg3R40J;-9{?SjQR|1qYoWoe9Ui`Lk(Yu@h=CzY)KP;6IM zcy<-GH#(A<$ee&x8)g1^RU8TjI?P5!uQMdG_I-O^k^>K++7ZaYdbbY92^5XnMYmUJ zI;{i2*)xkkA8a(bDBQ77F{MF^uEv>~ctk38l$osG7xKfVS6OZVjLj_;rTox>T^2e` zqR19?v?*j|@^%Z30qP;InQA+}PeB5|zHNsXy^Dc~`HH4-yThXhbeg$X8VyO#O++@1tp}TnTv`{1DD)k?&7mvDu$ujIS4SH|c87O-)7f)2){Vw6S zWAJj=8A!ZM#8J!y?Gzk(v(7|Ii%e$S;UG@my<+Qjs*dDTWYCpZ*ql|V?lN{b?huS`Zck|D+$CS$-$QX^TnU?k^Pp$->EdPjwWs&(qlv3 z%4*v9?3_hCQkA-Wjd%+n>7apgPH)@evxI;q4jT(t!`rKljz^q*T-j84sdSMiTYVg= zu2aW{Gqsn2f2O*s9V{!K3b|dr8wM>bTzaHm(X{>~9~1+aA^uh*RZj3-tH0?d?mksG zxhA2PtfR54errg+LOh*3HQ;QmN6P}|qY3+6Ug?bP>x|UNW23b+mpNB>8ro}L)D^Ba zczeY9*9**mzIc4jf(qJ7&U=S|1~i3{C8a(?tDif{vTAP4!+O*L4SUOw_!{vrS;+rv znfvEo%RW;Od0gh|kdM_|CRmg2{qOHgYsS%OL(bc)hlWo4+W4K3hb2*P>AEqvpbnFo zJE$dAi{+8`yH8RmZeLQEWX>hf+LTm|6%g-8P80tP|z|Kk27L&_?UJhHkM& zT%Uc#51lNAZ@G2-eJSp~@$*!_C+9p8S-?=bInCmX73(@uR$CNxv{EPE`rlTAiHjfg#%fRA_YHK=P6sTEbb=y=E$)0Fe zRX@RU-%7zz?e>!C<6@RVbZdSKoXJH}mk9P4?+W=xKK42{R9XBAaYM*~X;&uoqo^D8 zQ^sxlv1$9UUk5qOE2#$bxpJPNF`B>-=w9sptWr;(@%YF@c;4^l<|yOEBl_7mKDH*d z+%=mj=P0bzaGh-v(Y+R*#s9*?7LrdB-vQps@jc!;= z@Y8znP&J-JPsx8KpzwZ!4&G56#De5xTA(@Gp63#rC!Az^zF*#}8+hh!VAzftnI^b9 zIO^g0jJV!ALZ6h|K}edg(K7Rziz5xi;_|Kbe}2QkbN({H!TrYshmtGPOsJTt(zyqI z!?M5QeeBhI$PXwA$-AQp@~C=?1-E)_lm9UQ>$QF(U+7|{|0DUg9W?$LNPX+gxW3J( z$qp<1BXJ9A^xar<%fYgi2=8&YZitfe=6awDBs^xw-WNKgYXe=_YDvUp@d+6)U-ZV7 zpAM;g+S{OL{;5j>M-m^(V19L-AEQgfBz~Nz*Vh3kyphHE$)~3jhQ?F-bh9*oB9&)A z{(A>12E>Ta0?Da#ChPg9kk;T3MAh(h3t?}5B6m4q(bKv7UY=Sw{1O#RZ6R0^n# zuz_HXE=y}JKuvB&7P?C8%=vD4QQydIhoCYI#NnMGMc@ZxlGqlTHJXRStzOKDar>34 z&ckxrfgJ9Cq@_;cWz<{>D9_Q3D%j+N;#id&KtNRC&jL+_Lf$o6s95ndgIO@cbd((b zFse8X@J5iI$-z;@A4_3xC!jy{`1@TS$M$GYi#>!Dh8wXRN3>ZwB4=#OfD)`e>TKtR z*p?rp?jxkaW*H!YYd0A-{hLk9kxHCrqUW~FZjdv? zYj) z3{iy;f&@kb9u0o+hx~%s8c>asb~j-^HC5YU?0bb7%sbW&qM}|||Bs_ep~vIQ_bZIr zJhHK)7}girlB#iNY-na3yk+>Zei&18Qfd)}yjjtW5d#yz9cVPmQ&78kQO-b=4`5dK z#HjrS6O=my^w7W&y>F}!(i?y?GX(`9M(&>>dr*`ESX@mi-X>^H6rw>w&3g=D<~y7w zh+_WBKc3C-R`zo?E}VEg1CiK(sD!opP%Z>7glUV{gsd&OhTpSJzTZvmLAER zAL1iY!+>{(gRP)cX=aIz}Zd*BjI(Q5uEO9Ec+{{1Z zKSb#<@(?aRg(9-F)@S>v#WxD za1;awLriOf!EVmd^K_h%z!**9XIl>iRlSOT3D-(JtQc#IKS|}M=V=_4!kiJ>HFZTe zo4v$V4EIT+-padAG;i%fgL{RI^g76-Z@!`+xl;Ybh4*q?k;p=j_A#1kQ%+e!5cDCP zJ-&ygh}LkxVXw%i}u_$T7Hf>T<}|alA4&=-c3f0q(khHjaY= z<9R?*b~-1ZjWe+Yr_EG@U*uhbdECR3zIH+WgI?K{TE*Xe5>K7oup#)7%rGlzo+@|Z ztBvDnF!UF70xRd2;gR^&FD`AZ%pY}HcpSvdrld>hb&htlm|aLxSn=Qb+FN4<4lg8Y zcbs_ja+9QuQnNZ_i0_~4GHWJ+sF*V*EMf4|^Z}@uT)(uscBxwCPpqwO_MbV-J}bY= zVeFfK>OFYan-q;9gpRxGOd1WJ$%|>Lw7NvK5$e=n`TTj*1jW8g_P%pqL zB9Pb=8ouVAf_LVliasx=-=uL~U($<9!oIA6I zGUq2*{Sp152+u{Va|uYN>)CQ#rN%3^K7L$b zIuQJvciqSlukLZh1GCAenc1I{G>2V~h98SA3%bNxRy%7mm@vViL-TH2$DLHs?=%`Y zthp0y^?bi_l}|UI`7Y|wc&nwFyVFsfDD`^RWi}SzylYwN|E#a!o~cMZu`sJ8a%y{h z25f$RvupfB!@QZ%+3$%-7NK8rCz3awHG+aQtAs>XR+ZIMzpS9EYXnWWELYzWH5HHT zak@SimoD&2d4qQt{N(<7A`{}TgMuXrsqcT?YjlPJ>-rdpF;jlfKfVMqB7r4u29m;+ zw}Ghq&WiBtph5r_LD<(oJiOr8rG}^I+AF}KJyh=G4|}emJ${42or+kh0y}=&pFaG- zQJ*#UYZwqvz-N}PvDt}Q6}XT_5CF7!sF=9}wlS~lO;@m^n{ zQ)d_kwcSnLblobTa0NL8xJiv3gTcn`I17=nxdTa{cv(N?5L|AL9tR!QFiQiOrGj(o zp784m{<8Pl;wp8SpMHE_o^aLdj)()=VO|1!sBHCjenjRwcWA-8DJ7Jq{;Mr7Mg5xJ z5Cb#4kADKec6G%m_$@Zq@xI{oQ#R98e=->$cy+sH6&Cj;XG2kexedN&3r-& zBi}{QVf?Q6UU{Yd>6ib?-!aSE1+s$Tet(=M=Ces_>xa?dliE6?)*6G;)FGAMxjX?5 z>(l+Yu)T9=53pB$g8VN&?G+eTF&vOf!v04tVgBd5qb>;;R>kO%A9{lfj7^8lKH3^_ zHgj1`_hIAK=ISyGvcbN-ITue1AfsutY-pe`q(6vmDyBSL*vK8q^+WGb8?T~r6}-_d z?ulQDM91oL4tjTTX*cIzs!ZXS15v&e(C1Z~QPqAwKj;7aW43KSSq1_~C8UTk#}$B7 z5=3P9wW|8D-zf%2C6sz_yQqCFI)fyRNI$`3mB?&EkQu8uLbceMi5B+H(5I>RLQTaq z5im&wQW^2+q^kD8gI+9N0TV!cVRy0i zZ^!W`tr7!(l76ei{S0xp1LbFRP|z&QZXP^|p0qyuI%*FF{=yA3NSNmSSY-ifvVF z+qP}nwyjEX-kNjmeNJmv{VE5)YZ=be1RaM_v&AKfgJr~?|~y|&Nk3Z@MEumeSe8A6VyKWU#V(u zP1|mQ3P1Z*gh46dQIBn^8&K%vfRi^&P}gZ9pJk(vW5dfoQdN$kmcLTf8Tpp4M!pjv zB6!`I4PC+W&Vm8FOi6E$a~!!Ceu6I?W=Bz2{i25`5nDoEv3Z^mWVjfZhZ~qCAa_Ag ze!`6g7%9=FsvJDU4;VlyDX5K-i)bKl63IdqOG{p*F6z@rAS$!-B5DK%;HfWKCE{qw zN2JbW6lgUiJHevFB8k{eQM_<=r@1)*PF0bj-bi}T`wrh3Wss=BToXR~ot$HmLIpF& zjjTcd>`j`FgPFQ_@Be|lC05tr`XK2{E7TpaZu9{eBY`jDiqH| zFd7h8kTLesu=JU&%=~tJOAOlV>wN1}>?OOJgP$?xkhurjyie2>k@j`eHNKZywt7I8 zg&%@PBda4MS^VQv{d-EIaqDZ}Ak{H6KSd<%&Od+0&0XY1F!Jr@;liAlg6Q8~2QBtL zcxu(}A!IPPu3gmNTZfTbVx#(`e^ZI>^OOzO-&C@;MUDAasTy5*Kr>xO#vmux7_*?+ z9Owq#_69^LDUUb#0p%E^%7^G*RGt&yky#Nzg4XZrAlJbcx1o&n7x!kK$jn1a?I3Rk z^JhtSV2YFuuYX-+mD!Ieikgx~5v?NPh3{@B_nfIdo=hlU4^Dkcoz3Pl{P6wqQwif^+Rl}N>1aN&|N0Vy^|g_7@+-@w&<$4JJ}{qd z_VeXKVsQmem9!@bfd=Y<6s>-G@g>0mxgt=9fpXr;!BVI>*t?ia2X%+rmzEF+8Uu5E zaLK2))1_t|rFw6#Ru{rJ)s?CL`8)qc1auXRbxN)CB)dU;8$<$y0qY0+ zJ)?on(6MXy;)GG0b@U6=)yowZf~(3i?w z0Q9ACyB+|2sl&he(x5ziHvVQ(Ld-$EmUFa?ynQ1`8v)mmS1TR}Oo0-}(iGgmTAs7W=RZ`+vVz_e`h4Gy znmTap)k)l87N?C1lVwFd_;DVhFl za+of)KXJn_I`4{;xJ~Bg*)+*4cYn8rbh1-SVbu`Y(i;9Ek!@`3dv`AJ4kEgXeOOXM zk(_7;3yNG+jjat1?b3hC+QK*P&$-s;>*V4f5WQ6Njuny7Q2fVV%K4AKRFms>Chf)0 z*wUluTG~dIIai+Og%SaHY}W#`vJp=oMMkV-rU`jSIRU;biudYvdShn!g|&xTbF_6e z&vHFFG|>87`c$D}P18zhD(9rL=%W zL;0{WMzUO4FN*1A!@8U^kIX|d#UMdqSE9WpDTa|I>WL9OCY#C>P(&esz!W)WV{Xhc z%wXMHy3#U1rFv9dA|;Sx?({QBaFU!&?b{n3!~RrYhnNLhHU>3-M`q_#DH+n}@K!V*jF zyN7u*#ck2gH1)^(&?D0UVW**UE#vU1I(q;5Nyb%vmLkz#eIv&x%XoH6cAbzB_NvlB zE(6F*M>~$=>H5dO@5rY2S zmFsy*H`4g&0{iS$j@L|^RmX!RKV9`;D)Xw{nEZU|Yy){~E0@~McRygwO(Xji=LRPm zn0p@Ol))t3b!MC5x5->aJs7q|*WnuVYG;}Bz*=|*=UKL_8k9*|jIhL()8-?6FQZ2; zShyAk$azKL@~Kt4z`ZMnDqZf{^!MTTtcUev8!`-nMV|O*@`t72%0@0zV$s_vdmf{9 z!yoA~@#DO#F&LvqSaPY0PeQukkRpmTi~0*-`C_5daZ-&VlHFGfp`o>O+0BY3+!MJ! zrJ)7JjGeP$G_1wX#86;tMq}Om{eZc`^hhO`L%b<-4~Ph(^b#&PN%H%Be`p^B44%l@ z%IbBL*N3f;x}%QGXR6DKS^r$>>(zmOqicK+1Rs-VK4}p%WG%#ALTU0l)IzCqS!xam ztJ!ACf66&wTMo!9kZMkn#S|6LF(!fLkT%gPq^iGP$h{NB9^abL!`l~TyL>o>39&FW-nq25SrHN=NM~F=2FvH%e9hYE2Qpv2lv$InvwY$5U}m=iF0r zKWd!hJ#u~aKUaL|o_&fYx3w$pXoL^^>{S{gHMRdRKUw3^ZAbhOje@3IJmYnK7#HMj z>$CkHj5r+G^@;o6VoP5`^c@CZmevL!RU-ommw(hc|B|ZN{*5i_>hb9S1VDD#DYJb^O0H|6Ypw=NU-jeG(e&ayUSbmg!2B>vZ8Uc4%)ioW@0JY9O6Ah#e zh|PaM)j>n6%^-3X@DX%~XH0M?!%WNwBK)l=z@WK&23>D#8&zj0^qUI z4Tvt(Q{6FQJJ$fUPD}MKL|EM`xBb6rox0l)rTd)!OJ0LN&m7$gp6xKu8yY_asCBqv z7U7HQVEXKJ(Ih*VA-pFiK=}+n=3j}??uu05Di?i^%tkk7k@Fr6rI=h>`T)_T;j1-Z zCaT{NU@!f|)A%AMGby2e1+F;vbLT!7on~ToZGaMy*fx87=Et&ZgZvMuT15khCpSMw zb+zFxF4{_4kg4bs8$$`XV75{$qLJ50Bx%ns&YJl#4#p9gPwDC{U;%@6ZDQ3Cf7smL zQZbWDyw2+K0+@wF4v!%Yy$vV1nuC&iM3!bzPsldJq}F%F87_)E_J6XAKv&h}Dt1^w zCcoNbBu&l1-%T3J|8CMCb8$j)|H&>lzUYuRH3N)5j4H`Ov(UL+mdxi)E{3ogkZC1o zdpLmXVqxyL8)!f2gj(ZUw=}NuzJ;@?DJEJI?)))QzraZ4p==>unRR%DUqYRBh!uXU zu6A{nv=2csfiDOAn1+cXI!?R%O9MHJ|0fdNG|e!}G;BR|MHUYoHS|b=YS$G-V9qk| zxRWHV&M00SrN!oJ+2J8QxH}2CXeFhTR>GINtIHvKAb?c;q|%5rm9pYu;5W@OEys?) z`YzVtOq0OCsCwOVKs5k3u2wxnIpLpiVpVEEg%gYgO8|IvkZ42pC;kCdgF2O!>QK?# z$(u#om3EJ04r;IjXX7eQ!@;vw<-SNEd3Iu$@&081xTh=wN-&eid3vqmmSDVos*%oy zrBA=_{z+0c#tV>jcB$_Y#~+_2KidaE6TtG_F7dvMDk}O=6;L9b#g$ldz#M;xSQ6QW zj948ui7Qe6MXnWV{7#^&OkA&x*|M9j=2j8(zTx@SqoX2f57MS`vMjgXN+38*$uTo0 z5Ar{gGTzWj6ft z`866cqZ*83IX5uLf-W@M-9ck&!4BkhN|JDxX}Y1>ljSBS$|awhKGpRJmf&?TfOcm@w1iFerHpRh5 zfWew_MrUsJfWRkoMYoLb4zp;|)r(Kk2FyeZ>_?N61}mtiibuVSDfMS;9@|&3&9+^8 zw!t1(l9uwblTSgU^3$Jk<3Hhmo!XzSZ(NUq!ITrq@=r{V32u97_{^uE0MQx-ZDYBnP_Ry65{;je4VQ=lgv-SpVz2Rsh@<0yf2dLtH||7 zZ#w-4ubgev@5X9U7FhQ~3!=0@CE}Y<5?X+{d5sa?RkXv(^1cq(|9n99Fz~0?38uWE zK7&LFqtHfwsqmgRB2nWLb@p+@LhN7`eWk0y4=oB+yC0S)_-Y2Qb89pThLV{2h5Kv= z1##9%tO)?IQs$frG$u<04#wPWcc^=L(>beT98G(rM~YKa{`lkCZ35JAYnCIxJ0 zN_;$t4-*SDk=Oi7*&e2P-ZqyFQhc-IWUS>q!EC^gMChXPe%8Vj7*|1OVDQIfQ?59U zG5BKedy&lS96}cv)7bLJ!wuKM@qcEujXu&>E3@&mNTcu)H@j0~n=5xc3J4S8&uFL& zLViX84@@_o*pH4ki##Ct&U7Peg8BF(?CRvaTW$p)bn)z-s$4hAm3{#j*3bZKxHMp> zriyfmN?o2s-EGAm`y2Y%CHjge>wH{>q;Xv_w-fUXc^wrsDq;Zb?rJa@9<#F zvNa**t6jtS(L~;P0i=n5%Pk;JAuwPq!%cab9Ehr)Mn7Mia`Qy3q{@NpLDw5^ricSy ziw_W4N`6@7!3B4g91AmzBU;zHQr@)^wmW)wnA0BjYHT|6tr9%5I*w3h`o-M~km=_t zfyi_S;|)y(KO97#zYYavq#D{GrE0~!ig7c9TenZ1(3i`e7C=ERWa-M@f~b7tk7r@0 z?G52ZBb3(K+$lk`>&nQa)3z`wbRfFx)r@=_UATgKhXqtTuL=uyk?EQK6w3!LVLugr zMQFX2EfUNh&$DU!vbu_G_Gb|q3PZDtu_ZBa?iLSe7<^DD0V&-XDb~qCfsw3-hVFxSD{VW^r@)axYa|gB?@#)I$wvxT3dH^ z>7|M2GDXR(u@bDdYoV43Q1L`@giB_apof(6rb+>|<6TS+O(i}x@mOexuErm`xApb^ zzBKds2^~5U zk)`Dvo}Sb}{p5vq69cZYI>IP*9g*f_5zGH4-Jvh3Z@-YBKf>FwjuLP7fwy-`2)$m%+523fjXXP=@}kslarp~ zZ^wd6u5as;o=F4_p!=>@O*e?7Lu4C4?QwqiH}Gt8E@9O7xRuwEQbwWbav&1x6a+sY z1*Y@s_0Y@nSB*jpk2gIbr2C@yMbvKf?G%8KDq3S;O@^NNmGn^4jaLi^Qk+J!W=I5XXIimmJ3-4l8YqB@_?^nq_$uMpS}DVRU)Qt;ktN z>vgZl10{ZnPm6Y#Trb^(!aPLk&ha}>Jeu|GYTh#QXf5aMGK{Q^@VJ;qCTXW1 zaVs+~pmN}7-VC&0Jg-QW&A&Ba2v0Xz`4NUPvxZb2uVn{Qn>T95Gis_}zZF$9C42|^ zC^faxkQyY^U7EfStH$Y9{PfG3Nq)jA&*jFgXg6pB;$j6yiG&a*(9mK2b!9*KlwJn$ zK<4;Jj~^*(g!Rp1C~wI8dLey@ayrnQY9m+0=0@nUNffF_u^9)$HRHpK#eiok*0} zHXmS~081_(axh$fn<02~{Y9x&9Op+F-1V$x+%>ZZa|5>>xb<1vrsGUFU_ma!GQEJe z4H~nE8e0DK^0xi;_}pPmE)PEWv}Zzq6{E~0?oS~+7!0okD1Zb=?+mvky0E$=Uz5P$ z`3}8}6lf=B3ebhRfcLQI7MD7tBFZt@^Ix#iu+2HrB7r%^Y8okl0kgFGc_MCd`8`Xb zCsaN$fh0G0)@u9> zMBfljx}Oe>U|u2~V~cr)INU@#e3Cf`_$e7k6m(kpEGPIsdy&(e1?|p{WJy^lmw)&v z{-~z>G-QqHI5Ph1x8^nJRG;eZuwnMSuQi@^KmiXQ2#Y`8I3aDLDW>U)ZR?Q?T`GZM z7mMk_TxV<%hJ3C!E1B=|H@c=Ga?Ct$;nw4AS=@rLmM{;-?1`!Ism(l3$mot4nE?n& zgIgy53QDWo4hMt*De9(J$+1}LD4_Qkrl$)83GSxX$bJxs0W0CQuAK?t&rVa@UV=(5 z`;Bnz1f=24^TY=5fQiA{&!9e?M~U55jl5M2Pe-RnDDP;hPY73sYbUe|A8XQ**lY*} zvzz6aHwI#+Vdqg@6D8|`0-El|;|kM?RM=JDpu z7P)@JfzZ-9qim2a<0_=n&6*;+(Z$CHyqKHdgrCrDb5|lcCH8sQ=U|KBEu8XIC=DzZ zc8b-CX{5azj+B5!Osf(l4dE{ohP2VC@{TnfPm^pnUkwpQjmm(K$V&39Kck?PL)Tir zi)|-@Ln&eb8{r#~kPMJB=9$baaQ8puhePih1sPSwshlt2Y-*^9mV^h{?D(b<##euD zG|GY8*%B$+3xt@S%?NFC(i5B(Y6Ydr(XjX2hm!g}JS*d!_Rz^@hc{Qu5uGh7|9D{r zOsuD<^U{_o7dIdY$w*wg8$_!g=6@7bEy1tCvHMNMVFvCG*504x_S*F*&x9`!Ys9fp zvw?*=gWsNq95Q9h+zOXGk8kRIo}g{7KqX3|o@^)2d_Rm}9EgqDVX8K;V-0`dKpPN= zW99PC{}IO1Q|}SuJd_K8ipWI64&Z*o?7bI*r8w!3_fG9%ilAoaV;-5L&N?E|9ndL% z7Y2_X(;p&JoaM&F*@S}c{VZgCc1=M3ZtPi^&l?*oen-0X{%O$NHh`bt-{(di<;|p) zbPG)b4c^X9i7Vz$zE+S}VD`FVWwgppBtae25k>WFprDWymd4>0m+mcd++qcB%Ms+v z*ac}Y492tBA2((Z$_-+dZ(PJ)0ihG2l~J)OMpHZ&lO1R0na=7DqqhqfUf<`~ORAZ> zr<<-}HfRNyEP|btzMFVUVBh&na!nbikq4gI>i5Vz_5e`YG@q!PW<6}@SUsk*MFUWh z_i^Nf42M7+i1Y05&g@`815af>D^03JUt=xs>vCt>i0_{!@L_ z&$J6FDvLig@hYA|ydv2tT!WJnAtw$fSy#+nzfAZSS%kHeta0y`Z3< zW8>b~Nuh>lbf2Lm8BxJcZaabfdE02AFq8sr+rsW-$Du=Y=&>nXc9}6 z6FM%7?1NBwuO;%2DS!ULUPQVlw6gdG}D1r!AYT%j2|7;?tKK zBrEpIaw-$Wn|o*1UBF_mf3`V)rj)^ND4l5e>YAtyQY(}@&LWqzS^WIqy zyIEuN>s6EZi)t28#rwTAm=765C?PGQ`C2)?_thu_$Mtx3EC;~2Qx>o zg*4!oPR?tM8XXAWUQ>hLeB`zz*EzfdjtgeprV%Hf;+gUAzZ=p>ID@ok$@Uj-aNSEZ zJiCwTDNF6QE@D5a!VfAZoj0i*LhKc;dfa;W zh3DG;hc@Q2p~$Fxwa;ClvBNh6y#n8i71q7BF5pUSeXbqVQurbzy>UpVpxW7j-X6hN z{t4^*Zr*|2yy?C|Ve8Wn zJHLZM_|w|*fCk*-Zb@u`$Lxh-c1&4yG_JHxzyJE3gG;ly7J70f7~X;@OR-@NgDl`2 zYgGe7vL|=zQXE_@U3g_IM5Fm|L1R>7#;dy-TiP&Oe(F&lNnl;ino$8VK|6xVwg*2t zPuA3tvF6pwbd!d2$x{T#)rJnw_RTa*d!o;nfrs#&fE#wTWPThoY06*Sw(;!Or~U)2 z(HoU`BYC!vupylvrzI6J`v9X_gaum@BzcJE^g3-$c6QNJThiV1_%Snk=y4&3J{K|J zEs+=o)BO6;%Jq(8M{EA&qE1Bc)y%ua%$ML(Jf7p-5SJ-`frr5!P zE9^B$yuOE!1cHrV5)BEA#rj59~`9&=+m24 z^O<@b!gmX~YnLAqfzi^KZnT})Nsk=lYt-iK?`Yb=s>ZcUky~q}?zuxO=a-y;zl>cV z-c?IX@po4rd+Sbr1UYn`9i7*I+0p%*rPS0N^T)8g zWR*VyBz`1fY9n$%ZJvu0BbjYuN-{L7r3r)J0D~0hX50KW^0-L-#a%ik$-+AG;P9q7 zy?hCPQiFK|$f$e0H?=Ze#OJI?X)|{M$F*G=Wr&mRbmEUQb6!~f!*AGRk3L=>e<2B) zRp`qzXN=~Dv9D^b^DGv~LI!O_Gw}?5rbCQ=E^mW@z`)k)%)qhzDgg?`SV5ecl`=k&-9KFAF5I8TH}j568G_wdd4cQDH%M)<2aWmb7A`eA{Yds}iED*nKhu?>@eml#>YSriKEycijb#24cR`#czg@VuDaO8YM&!Ejdd zA4CGk3t&iR{S75Y?1QYcGU}%R07(rpsR-29(13#sO1O#~9Cj}3>H@_Z5e%^j@Bop5 z8u|I8CyOpXDqeal6e-#Kg7^~(z`TKblfT9QFmIq+14z&4gvh&(SwF-<(0ZqFea2WA z0GPMme=%>kKwDshv=~1kkI(}cv+Hs9e-TOnG(d;wk^4NjNpD1u-ZT@iz5^0;&j2EI zx;Au&imbD$?3G_Ma_=i-QIqFeV6DxI7)b&FE81@39Oz3J2zd7x1?8Cc#W~IqfJp6>6D~)%9{!+q zovU|%?N{*HB*)+(PbXntZTFG8g~8dNen0#VlG=pxnI3%QZB+I)bO0((O7&#E#glHX zKIXvOnA6~atzk+MO#9o78p&O(Bec3h$Q_FqO<|f0q4LL zTYv`01*(`S@F~J=#2_x)pM61*sGm_-OWS3PUg)W6viJ625XcR(wM1!8BC-U#@nObE zU#q@@Oq)de+_>D!7XF&fiqt9m(SHO|F(pA)*?g1_^H+3))ZiV+umWBf3!CqG5JnmP z2+(61;v{Iz7;BezaB&0XSkLn~)8?~2FMqKqz&wI*F;=eSiW#2ggb$RY`gXInIfNrz z*{;=?w{aMmy)q(C;~y4suKP@1g(Il+MY0LJXux7nHp5Wio;S%l>OGV?*Cn6w~ETjx-Uc-m2AsN9&Yj?6|9bdwtQ1}lY zflAZ8yk;M$d$wqMpgg*N2a<`8n<09SY!L{~qUBaCMqV!gf+{)PbydT>nzYnObT)NizRVij}-L9gGi9;QiL*@vA@XUz{78b!j<_C zi(vWME7{l+pWt>_bpu{4@;_VjBXPPOhHfnioL@be#{T>Gw@-)niG`8?*@3SHL>VDv zq}>?rQvAMnj6D8>hrV##>EHTisPo&SvDzGvizgJhl7>~a(OD)rABcsbJgDaJjVKxTryPCgZ(e6Z3-_x0dE2^FoL0Ft!Ia%7 z*Zv!_irnI#I=ttsp;EeSgp>TwKb=Bhy`Rf_ThdNct3irM*Epkgfft@;U{ST=XFU-Y z1uilwf`Bc=_{RlJ7=i*%j#BotrLcl24QpnWH+oe(a>ul*6`qo{)W==~asv(Aly0d@ zwsp+i&`(7k=r+Z2d?b1aPvXvh?Se)>Vn});w@`LI7BX5eJz!!y9%Lo9(M5|$H`CVA zg}(~ywkAU+(B_!&FlG?dA@FlhjGRnL26(VpPcRDcy- z4dwOYa3Sq=6c(fOtXC;cTj_^yUvGQP&hiH)#xEa$yELcCj?Rk*HWOK4`Vakx^$Tw3 z1+e0>AbKKQ0g6kGA?C~PFEw3fl)}v{acj{t@ss8B(FVs`jKBb1icB_ldi$?nJW~<& z=UE?*&By!A`4yaC8;b|b`&9`!k;|sH>1~)(#Mq7W*3IblemeC>5L|fL=LS=oz6kuA1t<@q8ds6S23^$&J_Qr z6dwHM)$f~7?-T1>dnxS6z8?qBDgC5wR#s@dW+eACV6ia;%~Nq|2D9Xp7ZsmyT$Z8l z*(qJNPNJ)f7w_abvzd4Zq>m}O1+g9$l&dbB&DktG3>_bHmKWl55p7|0kN&Y;#LcE_ z(Wl5<)-io6YS;r(MqYgs8?mDJ$BBXG1esC_-ixjkLsN=)>jZ4Q{Ev%4v6bRbtI@>m zn3a0g^68oofEnHB63?4MmAyANcX)6!7g~Cl>qe3@xFo}&UnMJxz+?iBL{I0`>I3ycB$cer;(b+jM{N{`!dq&G3{AIU% zsT=%oX7&5t%Hv4Q&{0MujE$IKj#g6&Hi)_I_JHv>;{9zK75v7o06p+WCb5K}oS9YA z=3MaVG-WOnSSO~(sd>jXq{}nNi3oEc?X4yy*kDmZEsseMX%b z<=>O3C#7x0X$R?mQ?x82>dhQh7!o5E0t9VgxZA;Khc+z6r$LFKd(IeH`!C(|g5g%I zLZX*j3ZxmK0ygb1%8nCcr7gVFxnGA-4Ofk3awsju`~%q6#Lfmol=ap@Ra}(LSZc() zWSKD=Q?$(H=PS+PLeduqQ1bIp?8=OxdD(K+RJjjox7EdGF zJxJ0@Xz52`w3Gq9inYg+NWoi!WX3b*k~V@%xJe2ztiiezcRu?)Hvul~*+B@YeN9qd zP~8N|Bhgsce6Erj7ZBTl+^O86G4Eu^r#5k`#i&1&3O6rRQZVWCBLp_ZiNdRK^OQlI zTA|J4OT6JRF}`t~hG+Ij_@XMc0VEV>9N2jA52xiBnL@fIuKb_V3{%N1-=d1G* z`l_R!Y?H}Z?Z+F3Y;~Zax5j*kJP79S>)NCiIfZjA*g@)J(CLqO?)j*CTivt-iI*9j zieVZ8lc(PFtJPSFHD+^)HX&x8G#8gmbu>K1w(i@swDJi*j_Xz+t8$XYu27Y_q^Db> zhRw%zLC)*4P1T|6k^a<%xB|L5W;Pd5iQP~hBU%bW)iiMh$m#A_!9~wcuV$^X%UqW8 z!Z}2>KM-mPujSbrLTKAflX{sc$48}}iq{}r24%Q<;;Pla>aPU6Kx zw(GMPRA0_7bsxK8`y2PFzaaiwyCWm32h>nbKFK;wUCqj>TuXLVU7w46I6WY}1-MDK%Z-4B zY_PahQ)QhRK|n}ZHha9Qsur&l%QeDK=@?lV;CdV%LH5qNdA~kveU7Y$1JN5eL)YDm zxK%UB!q(8xaS?7BU*fNE7$XH~UX22I(KV7Rfv6F4#cNpv<5j=}K?j%sfy5tB?EGNQ z2SD4P8}aCdeBsCJSW#3+4aD)<4|$2s3Hf&k+*2%K0#p9!SjvHp_C{|1I<9#-C-m9B+E zF}bbJ@`K&Wm$c!`Z)bTjTf|Jk+YF@IW=p>B*a9Zt$@*j7kjJD`yQuM^?!WjRHiLnH8ep=|@C3zC5J zGmc+t6dt&b7%Ey|w6%6GN6{NLehGJ9TnQ#M}8PmW0{DnT`^u zHi_L@_Bl8*1e^!0zr_v!IPkaF2|Sci^ZyGRklY78V-w(MqR}0#zT&n)GKC_5 z4!QIXo436a@icXs3pC)Ef`e9_I z;Ubjq%y{pFF6!OYlo(4hOr+`wG>%(DF!QKZ+8dfa!oQ0IM_w0~Afo9jyoFx>k0QrE z&W${%JB51uA}}#fK^rd-o~#!p$c&t-pr)rQqB)8*uRvjBIKzQoN<*W)CMTxbY`z*# zrQhZTlrTpJLzGd*o#=t4>-!zQ z4i8@Ah@5>dLKVq0DTET3?8?AY9HxU}8X((4$FZU;YIjLA!)F#d9D;R|Z*ye^dNKEV}zu>GbIrM%Hs1{mbL-Q(%4o=Lc?1QZx*d11Vk|;I1db0tsEf z7AZlUt@X!FXYNnRux}w`@Ou4_xuF&jhba5qJ6oIsmZc1Rd(PdFqu(!4f(e!V-4{?4 zRN5%@&(rKlFr4AZq?e-Yoyd}*l22@pZ8F?Hsm&h#B<9RxIGiI5s$S^CzN!ZopKgz~ zYe2`Ig}u(=IROh5vwyi(;{_fHRsTU_$D3V(hLg>4fZHS*62_i%m1i0l8ePN6@dsnk zE^z5H3ayHU-Wr4o01}2XdBfmR`^S$X{L3ek20Er1EIbtgAr9rNnW3Pg)=BokS~^CM zLArf5(q!Oe427!0|F z>@zJ?^i7rXn29Lc=0i4fce8kQ&pw$)p%t^_tVe-CWBgT^1g)8Etey(b2n1+`ZJgPD zGJeb=hZFiIR0qiC@C@C19rK-a)T}G;#wg3vHY=RHnsVucUH!p>lMDW(k=Ed;yqUea- z4#lfQgMLZcm_&Tj=Tjxr2kK#Vr1CFmIvsZQ>E$C-XVzimTKrohRup2VzoLhX%Ylhi zj1FD%{EY;wCO`Foi2a$2yJGs!;)wec-Egqq(XBk!0`!t#viiZT1#ow(M(k&zUJU*n zjCB*Aw+a=WCsh?6jZHe>>#to@MN3XOsifX>*fKEuk!aLPP&*Tf`cRqp=gwSJ$GFTc z<}&g56X+7Ep$AHx7vy1p!ya9hJxTV8^*$GVT{(SxU27YoF)mvcUX!6F@&)J}3m&fP zyPYwr8HBe{IXaWuzOzUO3&q>SMUAEKj#h5SN|SQ8(2qkQpo^hwQ1dmh>31pVrb)vi z0&9HqUpxUzIVC;@1VT9u$Lt@g8+?3DhOQ5mYyLT!?!BlhlfuxTu8wf zptFzFQsxwN>;V@b>9`MW-zGMh`W=eiO?8js~{Gfj6NeYz1D97l5$KCene z*xX%tj6*4{qYhe*4Y-wGNjK-Y)=LOg2AWGP;4<3P?Q`|;_`y-p^jyn2vo(QRa|`NK zKf|7b^h)jWg8RTm)1hDv~t5JMzpP zK$~RB8T*Nx(Lrk&=KjLla)o{lIDFNyW_8TD(yiFG^}aT8%x2&F!GX21+sjhQ&knim zeY5NuFZn19Hq}D?9rOk~S>yifmk?Cr&N?}s6c5AaTxQY9GE{V$zdSmj-Q&8sRNV4p z0cG*mrP2pmnQqQPit40jyXquJw5h1NZ5ku?_v&-`9l7u8>^?|YBbch3TiX3>Us`+= zs=*C;Oi7a&n)r>K7#pXPykKwze%^`y?D=gwg^k6uYY8RSNh#*SX*k(&jXBY5FT2uUXWRm@QrsQzcjZ@b0@=0&!}9$BGXA@#h9a$ zUL>s#NDbCyzN?o4FElPw2A*zuO*>r1sMO1&b&mz)gg#=E57iW;IU|U*<{^p}h23^X zP@1)krNVKjjohiJlq-mbHN`qkKB*FNxDO?@Wqr@$F?FD}|LBEM23oIYyfQvR^tA_V zfQ4W+nYI(b$e4`ZXLM4DIz?kPH67FaIN>J^etVXoLS%r~=bq2_gi-6bezPop zOxPkYdFd_LwbOzXYd7WSTPR*8yl^_z6kEbUP`A^Cd3WUDn+}g6J^@FbjPT@uwu9e} zht&c8aT3F$>4SSSffIb|Hyd>o7O8iwePS~N_1c*Qa)##%cvg5wZq}|=X%fdfn1M-e z+3d_Gnd+aCebGqT=ss1pmVHc-_m}F6!^I$Q90~NAwAAnx)Qh;Q4tdZ=qfI@vRc;{D zfcCADJ_@Y3vDn4*e8f_fZLQE9>|oQGJ|jmxhT+XmIe7WOh@)4DeI0&!LqJ`N`CBY} z_|l9{7DJp&$h#%>IAjeBXIld&|GS=39aVEd4Lwy^VW_q_Ej>ioOLW3A`@%vH{}PMf0OZv9bl;8SIdi&4CSo@jQ_d!fRhM7QN#W^*N)q;t0yNK{xt z;#=V4hTB-QY~ve#G<;X!F1-(#&ykO_ujJORN#iShw1$M-Q3i&@y9V_QZ{#*-hUTmC zbP;HYD*2bJM~BwF&gP%zUV|ZqebfIvqfEdyfRh0hXkGv1jOX8s0yyK@1Hh%XLq8C~ zP-_{a8f|+flw?=190`wtlc5Q}v%T~sF?fGSu*ofIFS0H!GPg5Gi>@n3yd@-mpD)|~ z8UgIjd>QM!u4^T{NXpT7PP_CyLWa*QsD84PCqk8F<#KjG5|ndH)_o$h!8akH4c<(3O9z#|5h2N$#d z;_LB)v7U6XN+Ff1^A3==zJ36Xo+;zR%f3UutXo_F~R#AqgL$J+XzltQi>qrKBBU?~KJS0K6_LCe)53i+IGW;WC2M`lY! zWS_a-!IHD(w$O#XRxk%A>wB&LWx=&f#o>b+OY%3R*z5kAQij4JxL?fwrj%5NQdfv< zT%Zq-oT>mT-c<4|Q2&>Zj2==*D zK*2eQE?o&FCcl)mmQU!KfN(mKPemM=B&$%7<2UghB}2$PWIyv8>o%e6pg~JuN66cG z2_>{y;q8%RKuX!ErId39q!cHszbU1WC#F`+0`9}XM9p6~85c=<4|tDLV56Ca(0Kjc zH1|4v`iM9R8UZY~SYYOfC)B{1-%68r&ea%UsumvvFh9!^2({D`n#?J5Z#xV@?~mR= z8P%ZE*z06%Yp#iwL$_@A12yqhdKg=X^ChT3#85!jw6&w1oGsZ{^fmT?7{eC>UJTzq z{{|3Cz{H_9A3 zIh3ArZUB8pWYh*jzd;pkXa+NyOUhs39zfPw&eFr;hro5HRQwzLow82&766u(5oArt znU1P6eR-p;*m;qf9UkNi!ZuZjKW zN2_(v)#tXobs^gP3xYh?Oed_LFf!5jSD%Ey|Do#~`!fIcew{hlZt`T?wwr2lO}1@K zwrx+gZQC{{yL~qQb?tTS{aWizH+lrW@A-Kj$5BlSGXfE->pNirZj>7}{@nrxJTO-B z>!tk&xWcreMhaHTV+8Blh=Ix(q%{ZdpE^z`;wA77jqZp+vtQhKTl_MjNYq6eg_u2W;px9><8Dp$upXNewvBthlw$K24(in> z$2Q2vcW-gztq;6=NT>GIk=alqyY3jmW=g#XM93C?51=g#DDa1KOkA zO@@^tloC5@nj4^yLf_u=Xicm~vF56Fs33OKEhbfJF>Wvl10Q+;e4P~Nby@JqPPtbd z+k3b-VW1asun#V@?nxQkE{zXsz>>^E^T=AND3NLFP~CdtnBu%sY3@MhQ;f6&0gm~nog!*YlY?@N}$uDuszEaL) zbf|v!xmtj-hC7$_m0hKyL`{$7*5P-oG{rDI2H2**AyfVVKs+0CMp{xme%tQgQfsGc zxqAr;3?(Jc&{8-{oUvr4BJ8$84j!Sn_dm2k%5wRbkl)?|j-(JtH3D&_X_jVq-KNAiy<8 zc)NQPRC1KioQGaBulox3O+#O7v9;~{w8Io@%!kkVNsey5%JTvWnzsX?xo<4Obpr6% zr1@>t)_y(Gc<_{Sr4U;;LA1~k#@>7BjWlGXoJ-UE3ytOpKsW8#!>{o{2Ds)>{n`Ug zQb8!tX^0kI3V>wlbw-SuS0RrTRzT|WpTd}`tgJik?bk+xoJ(;MzSY!!4oW9UWpkeL zwqLiOd2`Ya=Y}=&@7Gjk$*-mu`FJ8l@!B2E%S?S6*Hy8m=;VK_yF zlcL!_x=XNbvWN>$Ii|Oft_?Oq?s^xr_47TeV@_~iS;;-;F&73iy4iOF`H4JAfYLcf zrw}S=&WG?;ZSTJEu#sIY9WY89_&c?YIp+?UI%z2_Q9MA7`EFADj4XYh-tU5oxL?4E zj11{8y_N=UQj?inoolsGbh&b~sTwPc(RT`ZGZeBb=r64>GBxnJPmM4#AZWf}Ksc)B z0^JFSm~8zC%@$#xPk`_mFa+BrPzU~eB%NuFQ*yx?^Gxa|KG-8=08L$egoMhvzz>+8 z0mge+>_4p2!`pn7fXv#DkC_uEk3}#wY-J>!YMYzSOHGXklAO-Po#L`FB)C@b%5dzG zW{t$7mQ&d81uYAZU?w>OB-9MjI47mx7d<&sd!Ef~=*`?UIFk>Gp=E1`>FR#UJoBzj zuPhX#Rg-OI;9!s64NOmPa-G+Wa%>-sncu(1TNd8Csshd2PG|>FdagtmjO1h!F_7ep zYm&)0qcG;BLPqR^2?+=RJChKp=O^WtGauwPraLT*RbSkY$IQCkLgPBky?WZ06QSx2 zt)}8jJk@-^WdV^Ww@OV za=zFd)UC=*#;nRb$4wKG^Mvguz|PXG8`*`LRytknp_PK#J2s)M490NBD?QgaV|xH8 zUkE!j0p{IR`#bba^N>^FDQN<$O3s_zJMp3HI06)VnSYwFfT+Q1a&sXv!+ zq2S6=?iOrVQ{^70kuEXpvyR!w=-Ux>`BK>QI>o5gy%rs1N}9D?y<{SOrLz9Ym$FZQ zGvbg}1=nR&Pld6qVS6#PUjD_IQhz$)!Hf94t^&S%#cm^;n@AnAuxS3NaiRqi&4*R% zPz^jz(PPV4j+b5TOX}#us#bV9*^hf@Tdas#S>qJyXq29L1wQA2-mR^lhe8w$2`DO| zGZ3>BSg?8upzhbeYndkp3*$DQXid*~+ z8f6J1;$g6OfZ;bdy)vJl*&Y1}M`rwlSrKn^L_5@xY1dr4sW9DdaOTztVI8=b-2&+SsOMQaYKcrZ~YIA)IY;uLoc--K^ zLk~!yNIKv+mMPNf1;mmz^w7xpEx3i>@uX1OLRuS4GCh+PjO{cu)S_hC0$lH(CGIX7trSY4+%Xe~Si&kFeJ2Jm92uV$B=lw7JGHHEmF88xU zI(K>lwh#Za(9Kdy3mN~vKs_w~4eGJ@gnHBgP>;Db_794X23GTbpq~8y0`+h=enLII zAOC`SBDw-P-qf@zTM))Sp`OjTwJyl0d8U6uJ%)dwp55>G*ikCv5#!_NA>@KdTi;~TF2?MzOz=V9@&L9M!@CNsFh?;r8m%Ibq2ppeogm$MZLNMMFK(J>P`4($A zzDQ({*@M3;Cy^hog`R_0`bSf@$rPWLA2IW3?MGf)7o^c@L*8%D4Ew3#Z*&y! zs!9jEs*Hgi3`TSJg<()baL5~*r^OspWmQ3l?|iZlD-@7yVgS7!Cta5)_zmM}`67GJ z;SDAJgXTtC*C7v^vUaqU_?a)0J_Mhys!19SZ-ST{K3%}8D(eptdWY7{Ku9q6qwBU@ z$w8o93c}~B>IH_Mz6&z0A1=?eKRf(zJ;HVivJs$0sDl~soeVYP#RTm%J^=rp+mB2o zYUbbDkMqB7KbJPfmw}OjFN>^x*nnJ5ID|J`#Ro33y=KxY*n*=_``X^0N`_j8Iz$o4 zNs~KEzF*AiBDgu{3Ih1rU(vhd_9z}jQnLviEKXq}8RjdCvtf`T%maVq-^DP&+(C@P z)F_iG$A=;R-$zxmOZg1*AoHHvp{$}$L4lQ@d%l~HMJ?$wHBqIZof8sYg|rZo7W~)^ zjDYI5HH_d?-#&p1+CE7U53SWO)Uf;l3Hiuy$E|eo!kG|UnaWBR*H_}8X@x^P zu45D8x70K9BHZ=2(o8KH5-^JqDjjE(P-M?@ATkoxwpc7`g{77om2X3o#;<*n@EUrE zLg}AkgjNNgYn|fd?DTL^X&NesVb#ptKF(g^`HuVzUa4ejel`Liw9|5m{}<{>Asf76 zM(*Q}r5E%sd@5uA=k}9Bi-gYgjS<52WYX_223>Z_HSd)X)Bs(@#>Z&Mt$xQG|61g% z-c25G{J}MnW<(pe&z_E$LOj#?G3q6N^;K!0k@Ez_G?|2Nr~Q)dzD%mkM^T>r)9MB> z%E+rnnxp$^b(5$PPOFPWweuMlO^guwy#2f++X(`0KV?-!2%Xcpo6Y4xZ(BU%*_pgJmVSflk0AnY28b;Vp)hG&Ho4lX{> z+&6bgUhN?cq9rALiJOb6Qu1J0qtAIiTkX1Lb~s zvfWQgb`b+${88u#kZ~U$AYOxgj^yp+&YK9cd)^Wy*!X{vpcIXUofm2}YtKy-_BVcH z2<5BdEj8BNUT%Rr+aho8y#!er$F6*Z=s=tDB-7SS#LchIGX>MlP7AOI%=~Xb4tKdgKB#YH1o%zAu!Y?bhH(7}_Cw@uJ^xijq zL2_`|Snl_5_cuZ`s5_aEo9ndj7WCw=c$i6BEUP(DD_iy|9XyqfpFmkgngUfNMY{MopxPNspv2-nJ7n z6gZ}6biipVre-8iaRv4fbqD!&cVi)^ry(>5&Gmd>kf#E~&jW_H9@S*7C`GqkiXXeB zbw&xx>oEY6N}{&Ta(Cz`IsnxJzsN;8x7iVMJu*{aW}P!bVlxZ&dTfdmN`TM=VQO3c z7ziDQLj&FOJ#WGj$whcHCxx9RsMj(WH}!|~8>~Mc9YS#=u*hl71RFLkxsA6GeTTMp zgZQk-XpS~~rQ@NK?6%X1pRh6GreXn=P#xR(Fs0?6j< zB^nAk0=(W_)9UGLB$kg1R$`{@1CKS_VvpZ@L_R8HCdad!Q0(`(LU`3^4^D#^6ZbDZ zUMr&CQIGv&G~Uj2X_yaU&tYD^w&$-3$R$LT>9e~j!g>{OF8gNHP_}DYkaq`~F~2E~ zMeHo$m7!>`7u?K>tBC_{Qcvwb#Jp0%s(KL3<+nG-F7#)CJZ#}$wk9dJq6^|T;{;G`M z6YlBM58_b7rPfv-ftw(7pTrMtYR~ zL3;X!tyxneik39OMY^oou%gK|-Bygtey+0rywVLrIgti}`~#1fhvHdkiPmjSbVr4n z5LK`^5X)}1oQG*q-i?c69&p_H+%@mMYq5u*2~zw}IJn#7K0-IMBw;SukVR9TQMwP# zU9Nl1U#7kkmcVm6u#&iurB0(p`P(l;qZs9 zPu9ux@hwPbMDBHLUui30_)$w{{LN7DK+PD^oi~taU7^Ha$9_OUONp>FSTwP5bA}06 zm`ezARcSnqGj$o9v_i0Z!1uu(q@OEUwi7QWBE7aSV5!|IxkQ|G68hA2&*T6JAQ zgprmtWT+ioBz|L*9Do+HQhWaT#gr!cyuv#la@NSRZ*E60;N>^Vq>Sli{Y`&~IDGH2 zY2)TlYt;qUI;*k!K>jSmc94I>Epuo2WQh_NQrCE)mE~671v=$AWL`qAG{6pAN@_kH zC2ZNe2JhEx#fWVY4BEghmL$_9onolBAg8ShT~o_2b70fPC7~+>v<}TZcWuGGk7>%6 zQfKKK+dytFh;uzWzL1E19dXgpF*IA`%4*B0Olws!TCJWQQQrV-l+l*ho6}QoED!}W zKxLi>-%dV-`5aEYm<8ro?}F@1tK8I)#axqu5@aJlM>MxEsaHz#L_*nDZ!)JY#o;UT zrPomjAj|Lpf`7{FRPQ3>lUsMB+0O#l*=$U-6AuE;(;t7a#f=jgxvgTSM=HNTIarz& ztceC@x@~jD+1pFQolG!GM95-wP)P7{Ep*ie%iMptKAJjcO2z?oof=bg?|qOT=}vk|Za z8TKbW;SEQ7pDBYNe)j?MA~IWwgU2<6hAkByw9Gm->5i2Adj)np!vqr?h5< zx&RWp+XMRvpCtscT(vzYR4Ow4?KSc$BVtt8jc|Ho_kG`O7dK}>{k&<@Lx4eYeTD(= zZzO)DfPox(cnTuNC(rM-vN9)Uvc0oU%t$K^6@Zr~xot%I*psr=H!cxPu0vo?$>rZ= zvLYHp9-%A?>a^|j{6##eQsxpXQkLacfVrF> zgYy`Bxu;mFlp=X21mxPs8^DmToFF#SmL+a2e2si1!v1lvXhqawfi(m+(3}#>c0=5C z2%vg8pwu@(?9N+ZD#!3?aRm6WYEL&m%a1_f*UGQ2{75McO9E z`R&x`VX=CBfyMsDE%e_cwi!|@O^p3_Uw(@z%)?$KEEDYMB&7R)0z3eo2X_DUAEf8u zZtX?$74V;^mdw^e)qviqz02H$>+9^M_x}6O1)V;?ucrVlNjq>gzI@||_3rj&{BZeL z6?=5r`5&u2>b3h{A^;n@^#8D-`{ywQpn7&B6TPy2Jt2VMG0rJX!mx#r`{1a44`_RwTanw`{4W!$^O7uvySm2 zz_C?jrKR0%mCRa@lwf0)Vn7_&*D}T(bas3^c)!&iaf+@1)%xda2tV7;O3W6A>4jV* zccgmUXz{?uO-Xhh12l7q`zK`I1FC%inz=kh)ZmsB65Wyx>^-xYw(jHo!>MpJny#Nv zO9KvK5lXcl-Gp9P0R!yiH~7C^K@gX|O0)&%dSQijXDeU&tmuG%D7Fjbb_U&cA0+?n z_5kWVfNl?`ju7Cx{@ooCftU#><2&Yy8BA$)#FLrFL@qfHZb?a5b7tCiAQa;Z`cjQzmGe0s7k%t3xj+Fuzc+^7%&!gX+6+FCUChL?a@&jr`ku(A_45^p5T3^$K}Yv zxI_*`mR>aM)p9vvbvRolH(4_L2{rZL&l8HCk~>syQJhhUBSb8QZl{>H+D~ zp6~bfJ`1$$by%Z^WRZ=~4PqftWZiXhV^Vqua@Cqy<Hr$<`pi@+3MI4SkL2(az7iF1IvUlA_Y z$RpvAlo#7VJ$;TbrtJZnKbeb7Bc83t%PwW@ov{op95xbS!egW7zW{*v+{H8@{9eIvCdoKWh^MXFZO(rZDF@G*2;2iRK|h zDz**~%_V<`BG^LOLS5_RuNd)Qg(qu#*Du^O^)oa9F}Zi#ZU2$i*1hHhQY(YVEb;Nh zKFkOR5+u>Q%bqLRFGsx!4)4rgR}HtwI*oy5bWW)n|0JhE5CgoB-}>BeRis>$vB`3d zg?J9b7IcP5z|UVf`?(7xXVOe>*+=G%UTY#)H*@#IAM=avMuF40Dh)FIPdh#l&#%yV zbHN@Dhhc9Q$d%b({09-#?=q$3%g~h2@>nxDJlFp}jgqM($ z6z4lhQQdE2P(QN;tK<;8jzL!?Ei0tw3o+f|R9&rw`x+BM&uL1|xE*;8$t1gZs!2*! z1ZVT}4!~H` z0Dq#tCll9RJcX)|z=VDs!dfD(%_d<2x~(XA#!6Y7@3y+O0x=-1AWE*{GqMvG_D*1T zd6(>7hJAE_%B8Wb?7|TD>;A(x)w&Gjix*Aj!?48(HR141puLW@2-^Ov)UyR9Rb=bJ zic>TNhn$?-?ShdnYEse$3yiJn9|SuW8StfBgfXz}NDtBH%2#j`1lsI;{yYAQU`?ly zEXi&e9I0^HF%Z|+V(+%)eVKf&OJ@}t=yqzB4=`u#Rk+OTUFX$Dw#3L8cMWV&tS#^~c zFtq}PwD(=^aI4Nu>E_)tpdSlPduW607UI5fW^wb1%T+z)i#V^7e3I{S@O;OCEE_Vc zU&^i;25}1?VJ?I7^e)?Ii)L)qW=?bBvW_@7`cy|VaJ3m4P=0FWBpr5JP^^xTD$yd> z?jaFoPC*Vt9CPn;`zE9E=xL4_#~o8(yDE&?D2-xfl-lhN{yX8L##_5rZ6=+P!k&_V zO8~7#LHL>Q>0Mfm+u(QjoA42mmGf*th0vUvT$s;U%wtKKj(1WFL>W17g3 zGrN7*Q0Cl!{@tqp^*7-oVp9;f1TT90Q)>dHAGv6kh3c`#Y*uyDPfObmepN3jq%+<2 zGvQ+-XJwou)FJD9_RU$2mD~UgB%Q=vDT(&6pdJOY6LgMFSB+tJ6DQ2tpbSZr-#`Y{ zgc`cxvLvJ^!l)Tlnj5S*;^6Sc!sgrW*RkOrf?l5qA9)(de-b{)VtK;sP4Cj{+rgoA z`gRN2w?+cxmdw)IEBHow6Jw;bqd$7ilcf*7)ut?oo*uz87)s#Xa9=@C(QNMMEuq(U z*yANyhT+h{MdXXs?rmwdc`@X-tF_pqx^pMBHoJ2W{%!cEkxmAyi@FGxLZL>Q!e&v1 z`iCb84=$`QTT^6H<;tls9>th@WLHUXtBvj?ax#21P8nf=hi+`RjwD|J?JRIm7Cf(W za}B~uW|$os_MKP@Jor*=k6m{+YU7{6fOhOU{SlLiL@3`NDYqM@`ipxr3!0u+_t2KP zS#qy%=E~5k_^6?wELMgweOFa`ST#&ByIwQXT?sjf6{1rLbvhC$oAK9bn?+);lNWn* zD(^6K!>zg_?rLQG_$aZ{xx8#@)Eel4?0)9O?VN@Cx&_f9{6me9<4$@DBi?NP=~Nmu zTX@@cn2Q$fBx|9oN-%fy;_{Fpj6dI(Gkw=@v$GDi%LEPWp2FZ0*_#cXTIerEb(XDa zP71%%DD8h>fF)PQG;0mtXXEY|DE&x^Z<{+SPq3Qf-pxv>qnp|JhZqgXG(a$m|i2|m$Nzl9wT>X>Bl!@w`oN0<;?I?^HQtL!=MCd9G-Qq zW++mUR*dMo4cF<4Rf05mpS>Zkt%=53_((?qHR4vcwU*K9p9JEhuu-#kt;yZ4cE)Cs z$k2jgI4Cm`(wUQa#B1zS2hyP*Wh zpMZ5cb2Zms6yw1DFW8w1N^`K{< zvo{%}(+W3OuW)t)W3vbnA2cdi*;Ffvm2zP%(Kn)BFV9LNa9knWF!MteveU^an1>;q zGgdsEU%F-b2$hK6ldbA(H`ZPQP5q*}t+!lkzVP;DPnwjJ6kauvg?u1XIU->mvy-+C z&L+nrDv8f{~Xo&Mq*yYh%VM?tY+vXzGA zpDlaV3{pQ0@KuV`v*kG2z1_r9X(EH!ldYQ@#->7O5bpkEw=(Df2-xrFQs-h78NC2+ z_;B6q6D84DSvm^ZW~Y%pt+?7tUn3-wRThnLY5viUA%XPwP|^tSiEhL#KnyiJc$;7A zyB~9`$rlXC4wnKC!}RN{p-=?7Ce@RoqHiQgSiP1;Uz#GCFI_o(jSr&5fogAEFb*NR zEVvP-U4k)W*Oq#ms&@YD;L*E=LE}R+PWqHZwq8@JFh6@iErm@coz(>6GeS5xfeKsQ zpikj%t`DX?r5DH45=e1i;n5`<_P~IgfhxG-lNB|}iKTd+#qn42?E4G=frq|=gzpBz zD<5bDPZm#EsQo_d){&=n2@NpTR1PXqbV>9zRej}Cd^FIy8_2B<^+h-r}rCss2?Nh`X zbC>$J?Xzp|*?z)Te_D@e=3C-QSe1Dih_?9g{5t9Vn&ODdRGKp{ur@5X+kC-~=>$c@ ziaWZvBiCUrObEgH`V%M%=u?m#<2yw1*GPZ~+#708myi!$g1%^NBl^zE%rwJThY4B} zux)}=ca8Doq)33>k9@`2_Xq*#E41ke4eHITybOr_9mKCUM8usFIOGS0d~2x1SHQIH z6a67Mpiz7=5Vu|%_CDPrtOH>-@gG_wJP{S^S-h+A)eDs0=+@)mzx zWwf|y(1M<8&F5^ zTiUrt<<9HiFVrV^bNyd~p$}D8`7<;6h{O8 zAg^N%dK#;(+ftV4;y#E}&vDsrEsg<-qcSF(e1U?ScamH6*mJlvUhJHrbpW;71+eO4 zr2{IyHx1$*6v;Mh>WjHaZ&G~nwmm@YwhnUQ7(LiIFg7zS82`;PkBJ+CaK-__HlQaj zh`SBo$L@^D+mie1$F|h!3mdEua-F6C zTLSEEr}JR_~nw#?Y_;07!x*ep*Bqo$9ZW0M`rx84}Ko z_B-Xy>4G+i8VQYWb}E*N?w>n&;W!tcrU=BS^HSA$_%3dcE-w}YQ|YU0G;r)X5=8#^ zGO64>p!~~~o)!|TpI=W2Q4$2#kcrKL@M!395$C1Zf~ZK$+bu$(7WV!H03q<0!|&9n zCM3>bt6fYBlh{t!ySL>u}cBVy1P`!@LIz}bM6WtXk3Wceb@cu16RVdoY~r< zKvLke>w(4IfHt4{Uy#(ZG?p&J_G-CRH(OmSu zW}gJm`I282M}rK5GET`o%iTtWZU@kM8)$q1MdX23K=U_MLIlCWvTc8^d9wzS*s{eh zBvA7fF~wRE2FneGUD_=3REGV$p%w}qcNopJ;;=g z6)vvSbbvWwnsbol87b9oUFsB9M}cf8_RkyUoiC;4LdT3N;Cr~z>JLn5SdA-9h!=zE z_hW$EZNG)R92+2a3!TOu6Y&}UZiN$E5KH-$z`hjRc6o-g8Sm*a>~mYkat6s~2eM=6 zh}kdS;G@$Uap)Gnowvs?Mb1!OxKXs0TyhWC)}3<5LOi| zY8#th7XQl*LN+lG5WKpIdCcYAVHC~#VbL^{EVyT;%_3BZd?~j-{qf~Nx2Esk3{cTb zZqaQamEQG3F1dKwwna-H(}>I9s)6>%1BMx$j6D;S*>Q0uVNnn8t7a5k2zpM-5u88e zagRH33)?LuxEnG>9LT*N5LEHplGQOZT~nj%ac>`nz;%m`h)F`AR1krPze{{#&B(37 z`vS|ZX6hnKG_xuBKs87hqUxD-kzM+)_X&yHSGehI*e7=WY4ldrJy_;>lHtu!=XQu_ zJV_mX`zcREypz|>b~E}?GPim1!S0ZTAS8B;dK4Rf%taICO_6#e4a##}A8h0)hnN*9 zGT;^o!L~49KcGN>Qw?4GA09~M`km80k-Gz#qEHQ&0d3A&N8HumIP-xk6(5w&cY)w& z#@)f6{Ol1gF^88$$fZaC(FyYzC5$4)T(C%p;gvj8NUMmtwOGfoQjWr{yzQpXrUJdU zW{;o*XOng+qvkj#LjNiN@3iD+fs!jgsHW=nldfzh;B^4V=uqRfcyC{Wn9~PwJ*PCM z^+;}rbd3rIXxzOZ&>9f>SzLmrt<;$iJcKy<4E-Q@gU9f0Yu+on8bO8xM7Y%1dt7<{ zu5`CmMO6{th7khh5mL#GQgxQVRWM#anRW-UtCHxh0Q*%>@ofQa9B-=-CD!J%S+unV*%EioYo%NY zU_dj4kqqN{X2~hd3#X)03K3wYW=ZTq9t9TAGl)>OD2Fb*OpYl+h<88^Z$p+R7@III z@E-o{w?h(P)sjVbmQfBcQ~zj=K>1d*O?YtuFjF_|b!4Ca`o7d$3MCn1dfR)(r9pjYazd0 zh}wx>%*+KK%1o_$(^GvKY3{IrM=HwO&?p)%+2$HVP0xdp$pR#jLuI4xHFqW)#mFY; zbtA&s$UZwi%yAt>hsZX?PH)R|IUYIWP_Z-ppEQvFw4-1pY=&n3i=V-rB~qn7I>-f&tHzX&0LH+~ zZJP-j$hKlS7S=VViS##_KM*8qw8(~*R0F^*e+HtMbv3tsHPlrLof*Heh=IX|=zPyP z%*R-eZqrU62@FhY4* ztTpd4P3p1VclE)e-?XFl&`146=C*CWmwUU~m$-zW-8J1z&Ta%M_q9{MHa23K z*0VZR4CY8u*u}F|Z*ipFlkZ(fp5U`1mMJqj6!1_2-^ACiL~>lqxuzYfFI%|}U4u4T zOO5tO_-QQ>Acl0ODVKG#DJvo#fPMX$+cFlft%LYepsSmPy=SjH$!8>6LouKDS_qgN z@{a|Wq+7JBs2H$y%Mzsh{@lf+d|O!<79WW+6E@TJv4gB=9WgkD7~@1P=JyyzM2Ur> zwc|pLY{SA)z=9BIXzqklW)<480aJ?%!)7W>MRn=)G({S85}oZhG%~8eTQgFrtTA#a zP*NH90@Tv^Ygl5Rr5c3Vs>d|VYp<~5_Z^O8@{Seh)#VuM24^FP;(CWAv z`y&th(|Z>h9bgtz%0c|{TVOpG12_H(?A0m;xm?%PxH?!cW3Rp+IoeBQ=wI$B^24{+ zn%Vmx&N8qxNnzg=&vx+5-J9DuqBK+NbmZB=ZgF#(zcq5n25jt}h;Q-W=O(8^Q3(z5f`0WYKMo^M;VN_Ih9~2D$0X^s zz?m09jE=|EXpyJ#MYeGU14{4a)V?VI3{rmB2Y^AD^n=olA(Wmf=2@e%?MAJc!QNuk ze-w}j97b7rQ+IB@@J8nvR0djWbtZZ57o2{uwSD;FZ1f631rv=D7@N)iVd{J{b2vo@ zfI+8X;6FAhuJ%v&2Lj!#y`Nt~0ev6dkN?>BnbT|OA^tC5&_9nC02q|_FE9vRuCK$T zv^nCB^c@7|mFL!~SIQRik|u=h(_$r9Ls?5%OGArWWRjDZe|#+Oe!-aV-HW&VWJQ4y zDi>hFM$Wr^mwJ5ayZsnE_zd8J>Q3r0i#u{!e64vGV3~e@Jlu4C+_^6_@GJY5y)|V7 zJ{zn<5Ly_hm9G{S4PO2Rdv#kNF`oc)uP-4UA$@?qZXt8em@}}>*V>#eh^f4|fC-xt@R=y&m{Oh+GB5v@Jb2_m z6FdbW*+yG;aisS%keJOpUUy#jrKm0g9ldlCqZLKB0Z+*5z2jT2Cy#!+Rz+vW1(o!J z=W5S6``DN-j{oY)5l>55Vwi8HOCf?}g1=ltYrwicw$p0RW#8V2mz6IdUd}sliwWxWzw4o1IONyazC4N@_yvYa965Fs`#yK?|k) z_49wrq_4b%$y}P-JhKWekJW&@j~|JLpuN|ZiVsv|Cgmg#$b~z89=^RlQ4Ff7GssKRVC(*__;({ihSgoH^`zW=RkoGh0GY


    NG)2g^6fsTTJ5& zsF6bByyP1#Xd@WOr_Q=|sKd5r05Zr9`j*h71)FjWIw(gRWF$vO;1^lgXW(bHMjB6i zUb!(I?TMmJfD@E7YY@9kwMduF_Lj7@s?g|&sm?9^j z!jyBYphi>l(-PBA-X(DKYiq*grl28-P_sUJ=|BtU_@r3m$#(GZ$PO}!&!nCR>5DQ)fYJbd*vcFFm);mU&%e8HX~}NJ{V~mS28x>Rb>McId^A54dW@ z#AW%GVDkPT*zn5k!#{1@%0cVG@E>`{_J19le;51VPBxf$yeXcC?-R) zSf?ZUbHWB?*{h7x1WoUKGY3VM4H>Vrii+Wf0}Q5@R&XRI12Mxm2;`JTI4p;Hw!DwQ zpO(#wWO8*4G+UF>NI(%}2n}E4EtT=;mb6HlM!QA^j~}hU6CYkjwdt0d8wGDdQ@aD| zZ3y(|2AhY{)zwlM76_{CbV}w5@(6JPyruJmceeW!1>fq<3n$@OXTmRwzH7P@+79O( zhRBoOa9(IX$&vz@al3nD8n4g5le9mVkfP0I>xKLEE&<-Pi5>O~h)YSrXOcA6`bwho z$sXgqae;?z)tY=@sL_{IZ7czeDiU1aeUgsj11Ff^ZtTPwqKvHU3bL^oX9umF}AoZziJx3ZAKox;oXb9DQ@x+*SYi?QbK&D)f!zPT!nIxK^bK6Q2um6O&F*l~*$M!T!j+kt~#D6iHr zIM1Ne`UkEG2<`XT8`c}Ta7?^cd`#*a({i<$s?MJxa+>9wW|`GDwVV1HXT0|Z1`{NU z8)K+s4t5&_QdN3UCHCAlDCHEukbf5D#Ef6pmVU`pg3r_GtFa#FV22e|iy#n3S3|%s zE%bMF9b-b@0ZViY7In)8q3<>7kMx_PP8INlQ>T>Dh|(Dr6bY;qsH_w zSRN>-H>7QGOmmtr_u|0d!lV$RkAgJ!83tzTzS|L1lo&8=Q7bhI18*yT-?##!afd4? zKsGD;nh$NHJD^4k$wg*sl)Bz8+f{UD?;Mzdgmz-O@RXP-)zv}7S;J4qBeL@}p(cC? z3U}e|Kl)1(4Vzca8C=LbjYzxSZia@0R7>Mf{VUln+!0OhO)8<=iu#7KD96JvT5nV> zeD`k)6>NKBbSVUsIFf~OA#nHZ)!E~*Gh}qM*Tbuu`NuuH7fw1`UUZo;Ws0_kC;UFwc$d-UE3P zCyYoV)Lsb>bQ>%{uwhvXPO_)A2JRycLaNMw-1K%&Ru(wC-ir~2*cR*8WN z?$~iZ&hz_O`!mPc_n*uZHk*YU`+|2=jVbBKGuF5suHdI#f_PR>6SgD>`{CT@T8XeS z2^`xqPIU@}PRuFHMr*!R)UrkC+r@G}T62ho8tP6n+%%!tv*22YHp3=h{T(Au17j{z zwe6_UoxB^h#*|{_7_2VOU@qD9%j;_$78t8uLmISwo2Kn=iK7$k!jj?V453Z3q#b1> zAtSBMB8_L9LA}>%ivMKGnUVJrA6G~?CQ(T#xn3~afI&22v93_7t}YMskQGIAu?BHX zZa$FpBHJW^CHrNhk9)0f)l|o?w*DSN1N9Q&Jn6EcKBV3@IPR(Ps2FZ{TnKCea~L8M zqWTq|1Ip)q-R)`?EnU5NfqcaLrzQ$|)FoYFhEa>39IPzQD{-LrYU|)oh{PctMFAu< zltWAOi3Hm`h8ZM#TFUX;X@p1C8mi-3HE4SZvVNiV&&6_ImsnN-6t|LSHeei6tuNgWDnvn`t}I zs)v*#du>KEH_<~IO_su0`M!EzH6Tu9R9S|yE0&dEJ1;D0Fqzxu4WogV`wkX!JlF?V zP^dQl8^%dzS9}q*jRUb#cD!)xVxc^C!tk;!A1FF6Mnt`>-Ul3rO=Nq~%inaX;4p~I zHADFm;@hg+ox5BnR$@CvOlt#8>u^=IJ2?ql%dktR(^P3((G6%y`m#L{y~GIJ zeTo1s2s-wExS&{MdInNqY+|cE49!rCIsg|0eMbq4hJwhyt+C9~)zhI#1K@(7?^5@h zXj>NQt9vrItBlMf}UNsZ&`@}j1VvN$s}x1r{qBA zNzZX6?G`o&-G_}zSx4~AY1Z8D^_>-wG)+2w%Bky8$aQcYEufr@QNA#*{$TLj$q&%~ zq=REmmJY`KFI*7Yzqp{dJkEcnZ1B!~ZI4FPnDmcMDv+2smpIxpPcz*_;TBHxx*yMp z0q0|-1V#M4vUl^&+6&BCg`C8{^d6Zy7GR~;<&xC#r{)%Libms@zQGtLTng2qrJ>jOmN| z+HObwQST4%RLd8kkafi5O#YO661C$NL4aasWHb>(FftC1fMvr3g&0Jz2{2kmdM$jL zg`ycju-sxf$B}$&_LB6wcYN>l1oVEi#sTjtCV&?1Z|`ShOsaNuZ4dCSDlE%!ycUQ? zs!)KwipK9HbkuW*`n(Fs7rBEDZz}R%xHsC0^tIWSy;0PaBw%F%Z}z^=1LkbD@2o^Z zoxQ1;JG{F*)E?~z5hw(%S2sNbisP{RjF(?{*?{iRd~|(3g$qG0{n_Pz(IBo*G^pku zG-v}0w9^oP2ALT*ya2RtpJ* zs4c?X*~Jxg4uoG|BZbCy%;TT=(=$i|u0joBaIP*9YCwE|s}P2%U+h$Mg*p4cTxYf) zr6BWfJgg7~{s{_Z4Q48eb}s*P_MN%l;T?XX*HBT!4KW0==Op)lo4U79i+q4^!@krpeqj0hX`; z!GK`>6fOX&sXxSY<2W*H;pLVIkANnLJ%bJd`@g76W+EZ|OSnL)-sS{^gAAyqA}3Oq zZ9bJI{7hi-(kB%=r;z?S;r+(d+D;<;M8|laof9vok?nEC@3zZntCJl36frQ9FakE z(G#^x4CXXy23si|SKWaG9HdE*NF)I!?xX~GcWbY28p_V_%VtW zN?SY5LC(-ic=fq&YM-elxd0dB+Gul;c4AVOJp#mVep=Wna3sEwtfn+n35aPC)M=u^ z5(&`{4D$i;b>U9OB)ndEBAvGCpfBATviv-gk+ICP{6~v6yY@T+nF8$e*S4uDLe@gR z$COWZzkg39jRXi65O6jlva|%A!gh^~l8^5^!#weA7`Zumssr~)x3OWYg|d1}p`*`j zbq&ktLwCNwSDC!i_-*(b&ItJx6fcU?{5qo}pSmhVGD0i&ro8vUgb(>60$!5P1!e6_ zq&oj{BeizNzu;QTdZ9tJn;~5IHA92~$%jPDOY?=4Y$KY<;XSXvw|noS(`S?3c3r}H zmAo{x88qrq3aq4N567G%bKN!~-^sdS0%@iU`u-m>2*NaRYwrbgb;7Vh>Wc@# zqjz~0>Q;EPuXk2x4IR-9fD95Nh4g&`kU^p<|0aVN|1TL7CMW6_$+AIMY<6(AAZ`VB zBRkwCEB;9a`OAxvgG2tC3{v?IWRTE)qp2Ez41)S0p4yhNBS|jwNd~q5Lk5`w$e^IV zWROBde9!+SgBHxc{zC@+{0Sg~KDJddBv_`(v`Ih7Aa!JXfpbLtzhn@?Uoyzr;PW&U z^hpL?JvL`)wACX+#^hzmkks>FvPKObq%EO|^18Uv>kJ-T$zwdxR)gQD9! zW$2}beKTK_xrW?By7GJ7ywaxFegVa|BF|^##r5QY$#`Zoc|+V=c!Lvu_ko=b9${D& zC$Z>lSK2X8o4j*mQ$aKQO6BfKn764rt@nUYtmJ;na7ua9+;dCAGd`|+obxeJc!?$# zrR0v=l)^EW6y_+EK_Phw@YRiYOWt-?BiMJyz(n!4ot(6@<&DdWB;TXCT4D-z*GPhALUtoQLcj&I}4gG#9e zxg~*yY&g-63hNPQ0=S%C-|XpJ`21Vzf3nPZ)MTD(UJj-rA$XEWxAsVU9*mU?q5{ou zFDH{;5t}=9$=%lie06g5LLv0CSr{&|4(0aD|eH7&_M;2$H$B({gMh!!)& z0AbzEoN7WEguLGPRzFGeg=HP`9z_Ez*py-1be)>X3Hbsa?W9ditni_$9@I)>a^!i znz1T(@FldCD2DGS567a~Wpn@NGDVZ4^AZf7BJ^#6=J`rT%n(4qe5LviP%C^RoB_4zzmE-y`-ye>ak-bad%9(_X*sU z_a-En@h5NkHPd>g``Aj>v`g9OK}6fYjeF^(DR1UO{vR&Ar$1fR1F9`f>V~}>%cZ&P-~$PQc3)QjIX+Pg0BwEGa8lKMS|xFd>`|7GVFIm z6N$P**#u2~Ax2-@Q?T_*lhTqmPvcfm5A=#JLLc|2FLN9>N8SjJ6WGi+#bQN6eJPDk zXzyHWwsvk%v5)~N9<9V6l5s}}*%X`sR{^Ohr4b1?7oepnxg zT%UTU7&REqt5sKtd9Ft(V0fnU+9NDHx;4RM<`j(V#SI!hGLe462)mkZ7VDPJ562 z{Jfkgso?QY){$1Y8$dR}$4|(|l)j{tu}m}XSq5T1oSdQUI7{adyVAJwfjHZ#XG~~6 zrne0^mk)GobM9Qg%tvQxGWK*xKbw|%PdQF*MfB^U+{^i=FpHt2eDOGrG8xBr#ZX)S zqvab<<-hZryM+(3-<%9Fx!h2%0hk4GMSkIx{t~Yt0NZSO&Oyjy6U-!63l9$yjLX#E zBXI{86Fq#ToF>!BX8Ncfi=Wp=MR@A9iM>m3r!I{PF_Dzx@~IL$T>OhqGJA%4!Ppv2 z`1l{?gNZ1lLd=el#;_D6Va#Mm2gz~zjt0e4SIhU+;+ z$^|}G4Tay*$xVQk8bK9os@IGa(lw74{Mm*i+I&kv z6t$A}_=X3DN;`;N>WjeZ>>%d>FatV2ZuuoYwm$FlPxz;Ov={j1t>n1H(?^5@LFScC zvz!ij=vdFXI(z?^5~@uXOC@K=5Me#zi(c|(^}H|e$0;(URL3*?e|t))iPaqk17uzD zePOoR_!Vly&EC;E?0?WYIp8=2 zpmoYu#kuNWfKlYEFRgOllVDIzYkKFPXrMDDSh}*`oj5-TiYH*6BNHe09fY( z$0-1CAU2Kmx9-dRA7a$dk-~Nl% z-PcP?B417qvZMfLT@p2n4&{V8fYxC^BYDs%Qtccs=@y8S(aP|%GM9C34I_q9OoBKN zd^}rLsV*b%bBFMIF(jNx*&tWNFb^a5C-!f_MJI;_Zc`uTI9*8Lf!h=eyn{?+4bInw zPJ4c3=2Z?20gdBk@-?k^PxwQaEJGc>>k7_LhiWR?RMwi6KyZ~=L(Zb!7#p{hS=xR? zX?5-#up?GvY|7!^09yxP!Gu6Ie0A~8)@66Svvnzc((b#*wt~7SRp3d7hQK3=B<|D6 z%0n5ZTQXXEY+R2lj3L(Sudd8hT?qXb_{KmL;523WgFtIgEqF^kI3UeiqRoXmK`lj& zsMA^jLx`EL+pC*82V7uycA_QIQt-PK<4qdqZjO31S!y{$l8u(=RAmt$&fdwJz__pE zi^vqyLToC*rIo`PCkGfVNz2u6eJbV4lhLg{Sn1E z8-U%^AZsAT``9h>%RwFSq3e5wpPMd$sKZo~pPo=uzX!w@aHkxTc#hJdcWYhgtypEj z1bhPg#9bE4+Gv)J>MOn3_&!3Z)*SAEg?9!|GnBY=eXg1ZVFCRL&H=p!vFR}OwptFAZ<(j&4Tq6ze@q5OS^gEm7A5}( zVgF|h6$z;c!TUidjZT@{6s?onIN&QIKT79-fV7?wjKygX;EH27r;n%D`xC^^IJ-sM z1VDAw1#NZCQV#?&-~E#*=7=s@J?#Ubcdjx&JOmka?}$qAFIY_JX~x9;G~IIk6!$PC zjE=7j1T3!LgIbfJu{l&H-OZWs#aP`R0nK)`+CGx4hkZUa4{^UoXN5D>xkphRF7l~~ zN=D2%0`b?ie6f_|J5lEtvWr_~#8qKmKe|m_eGv0Cc-l6;%}rHZ?vlEWEJ!(oFe@*t z9kypg;ak6{1)<$k0^lID)kQZE`&Qd=)>rqbEWiyV7|biUOqhu7ERLgdtb)4x4sMct zhh;i22>R``*gyHaNy!O~BaBy*ZibbTI&a}=-Y)0@T8=Pkh0s>iDoH6Qu>Y)YCoZ8g zhdxWS*RAdxYozSlSj<%PZgAI-84@eN3i@+4UTPZS1X9A@shs1%yb zFR8e@c|0R#L*_g%(7M>Q&kJnO{dMY(u|FGJllweytoOKO#ZM3AnfoiI2tGs7e`5kQ zM&P(oMGeiMJ-umtw`_YD0G93F7>?hO3!PQYgkvXlRMoT`U`0p4e<=*2sV)xgc1Frr z97j?1k1RAiP(T4x-M$T>HZ~_0M4)j4m1(V|YkvD?Vs+U;f$D259eFkb zIugsMl?{7&Xu^-0l*%2usBD{`=v;J_@p%ys-I8jKC%ddqbRP7VomeiRwrdjhDsRDi0>sHfcZ?u(!>({;ToHe_}h=SC2p=6GbqC$u8<%j^M>p709#A?Bh|3nWfO(Q5HtEM%KaX)=twt;uc_f1`(wkd0Ns zoNcIvWXiYFgKP8t0zk6;`1>=gW?#!Mii#2(Tn##Jxp8b1D$ix4bnmwbObCfs1+Sd0 z7k%f{iDN}dti>v0&Bvlh0NK7BuCla>YLt;Y4WLz%E=aCNpFl^fVBB#2rLzP*Iqqsv z8mVf?yu4(p6{!dumu3{dMHp&F`>()ZJKCC>sjW0!1-m$WzbYuMW>bh|T?lTpQCdU* zr&{f#BluBiHfBBW=PQalw>!_mwVQ%9TV8GfP4v}jon4ZTos<1s*Vm>MEHs=tqu5h= zotM%K>Fs*)+W`b{*|AA?rva5#6cL-sx*w@_c#k_1X2o)I4)g5nq`Y?SkM|4f1(MAv zp{gxkaGn-9Z=V(?G9o3J>^0jwtfPU0P?p!Dd08?uwqzXd=^%9Nh5p>wom3EcPTk(H zVmw9rwtdW%PBu1+BiryntPT>T(9&9zO6|V0YnQ|pbv{IKKDco>?q{!Bj*xmDHnn9) zW<_rkwCMED-1U`8xhFTX1;&bJ;u?MG5k;u09QAY)l$1Y8f2i$D+j_LMM$N-P7gI8( z*vscUWi=RVa~FZ$NI9@qR_IwNVr1cx zi3sI9R49jUb_~m0P;u(O9!IVj`+e+4-tWwU`s$^EXB>9es6{1y3paoY24XTPD2oHt z(S;U`EhVX_%NN?QQL^| zvSC6>4;^;XOCXe_kqYP!cE?z|19iA&-7RuD0d<7KaXIOng?9H9?joaP19zk1G7nB= zZ~CQf^jpKMtR@QyBjhm@{QrKWyeDD&l+7kXzt=KY8_|euTGdyCdz<^S1{50Gk_1YSz)fu;CYf;(bTv zKdryum@(bQfo6!eAYSUaTizpl&u{YEujJ1os!QUYQvF*(+7}-i8=_zuH$;qrg9YLVF`q zDwoaby=ls`YHItcx57gu?^P*ySG7O<;i&zk{Tz=MpZW38?!T%GTCqlaLx4w1>VJ8( zaQrg|0#w`o-hbXz1}ik@*iPK#J^I#c;HDwTcxyHn9X-`V5>QN6rm8Ngs$wI<9Hcgf z;*ZX3nNGg}mBE8|DiHyyq~dPo03LEn1u(wYH??r{*TJwgiCY^q&%=eOB7HU z4AucEgVJ}Efe)ZEfSsNg>i8d(L2%e#m4Rx)x7O4m{qhc649g`zWiSh<41{UB3}M8L zTJtGVHQM!2ej#-0N40=a%RNTN=fbyYgQr`+=yP#{d!oZ({8yEAbsq zvRfCE(dNuPfI(1${-m~89bTBe5^DG`>QfI zYMvzJy4Mo{4;&*XxK9OxTmLyuO}Z5?b}E)DQ!;u1c8_yw2RvKSuChtd?kOu^KN3>& z_H-|QInTK74Af(LjkDDKoP2M5(E=WG4zkqxFlg-1f3U*9@UrVHgnt*`4>W8WN`fkQoS2d3u60!iTdNJ*@n8NYnS6*$_aJmKtqG zhz6j#n?YRf*qm{ypKgBHwz&bJYw%ISxcuyl97&>ONWVb?v)~iq?pqs^IWZ(g>ua)7 zXY>z&P0*G-$j>PK@25v(*mM{2IdjpS(^GMX-sQa1StA?85|NfSHoo-}*CsbeazFF6f%x^vL>IRJNw8YFs3WKt zeaJC$(sGZFEO<+7Q896rz$EAh^0Q^>>X4+@J!JapsFBJ6G@ldLiHS=>L8@`E4>(&^ zI_w3)Z+}hc>543mY)7M_HKHGNlI8jge(Pd0_Y7W0OAJ)6ls)@Wp)=C@;@D(^Tx0<$ zpn-)JCU@rdFkWFW&C*>ZX-9Mn6xq#XYU2|}oljB@?>d8&cbx%}Zv#A_GnlmIRO-Ugr_-#S<{K|<- z_MiFMJQzwTJ#LBv_R*{}$u}3RGX&Yi4LqQ(bYec_#)i{Dn1g^KVwDgu;si(;L%B}& z5Q9)cGkJ3h$^Q)m1-bbWu%H5gAW7J?LcdIu8NRjmMG)cT&$1*S_nqn+@KkjQB{#AE z(>eV?lv&{`rK!P8;eZ`WPC`{Irw*7|hk|`TprUPZP6uj@r#Bd7e?_YtMo*nvap0Rq z^Wo{`iiiyINkXvPM12+t{pwP?ZVAIMcwj0px`zgj$^3o*yS1B-N;|@2?^_mfR>udL zZC||sQL;wO>cz8pn5FlVp|K+q(lU7DU1mT8$PE5KY%eICrs)u)HRRc-)ExNQ+Cr87 zBQp@=aTEQI%)pHI!2b?+%JsftBA^iZweoa=`ukHVBVvX$UUkw?Fy@Y~+;g_C@^d!6 z&y{}WR)lb|7Vk9AwsUa27>MgG4wgYr0? zK7o+an*JHRp$rMzm!QS;Nq4VLbBobmFwX|}Ocx+Qqo>)W!hX8jFgUQr7c#Ts<|h4r=}S6e!;HUy+`^Vut@x4G@IF23p8R*kx*rvxqaUzve6 zRh|JAzP6sK>;0ynChX_wh%9`vCD9&?=vxMOC*$PMWY&;n)YP&1TT^Si%6#gDB-Yau zvq^L{&D!3c7(#RJeJYiPUI{57($w4x!i6Gb}?Utp{)q6h>iOY>D^h6$_ zos5f6Y1B{n(;s+Ml0tBFQ3t#)bn&hwR{}NKbO_X7|L>S)8pRV=^6h;euv-ugHK2Ghg+Hn-t0v*9X@|g)P{Y zP3x8u^pidXXeO+Bb%Sx~xCLDuDxTYCQXLxUu-cLd>4qD9kxAJh$gMF&%7S!-d6$sf zmLN43a|m_aq?K<}Lp)fE@hXi7QX~5zg{}S2LQ*nv`DMR0lG-GD)1!{U!wrPD^%;}{ z7!tb8dB*~}!klgR88{(Qih)?_$2AAPf|{s#;{}d-ZX=pV8%0zPHf+` zBzSQgpFTBcpeB$qdpKl9Sx|AA@rn?UI4o{LQMr@!PmQrcuGW2>P317W_mQz8Y`3l) z?Q#hLDIXr{&)5_`xj!;=16n)0pW%zAm#VtE-0AHV9m23u4jUJ#MQZS?FL;7oAaqY; z9uyZZp8d~-_>Pe+`FPG>9;os^T7Xf)lbcHnNBC@x;hOBU{vuZ}Ce;35LXZkg<8!od z@>N(SgXZkJYD2NLjhOCiw9R(Ubjzwnxmu~tjmD^>dKu-hmUN$%jZC)Wi2H~(gsjeG zSY<-2v=w#IiJlg27uQx7LI352FxQXiSX6zkKUWan5iAxi3!Ng!i|eD%kQ05}IE1gS z;iz^dP~@b2cis0Idyo)QH=D~>!mH3F`7oo;ra1B|@wK&yJCo!Wq0I2Q4AR0@iZ;SC zdS=iQPsLsMjxB;Ie`iz^VEtejHGzzOwDxQyGcx^Q`#r@^Z^^UoY~gs})B=WqYTVPL z+pWDhE%Un-uW6AwKMcOzFU1a~p?f)FQ3x13yX>r@7;Rhe3L;OgHhSN#~kxMHP zws6Nuo7~~ezn`6L5Aw24h(GjeM~mz^%Z`K$cw@u6r{t{h;?w*7YcbdZfke88G?wf{ zA)fiD0Q~(T)@X-6G)9!ftGU=kp@YG(omH=*)FD*7i-= z`rl_u#q0jB%TD@2Hu1JkUUbaa2abbCqXU=St4{8WYS~A-ieNVrQvi;YJ#5DP`R({> z{q1(V;*einu)L=rwRg{HF^IudQQ5HdYYt^L*f@j&8s|kk4y5u9N0x<>1_aGtV$BdG z^=n*CrKU&9k;DU>*&aZw`DNwyV#nl5t3gkU=`o}bL2Z^osrddcVy%o1K_#C-t=g{{ z8T4b7?#DkwLLNfROZ_nm^Wxq8F=f@UN5D6`vRzit-wnBi17#t=2=eF_6#S8pitk}T z`?;L<8m-}N8nKcP(aC*(G4Xx+Y_h3`5VXMu5l145=X-Ua=Dh>N~MEM((75!CKqu&%_9 zd*9@)G17Kb;!WK!7z7B|{t|2cdiJm0!ofZvtc<_Cdp*_f9mnw~K`%FwqxcHap#O(h z;~#BUPo=TNzM+OP>Bz8++-|=DjxBJ2$KYI~c7)pq@EGubkbP)aArdsO^C-N~Bsi+d zS|K1HUE=G*@D1UHM&=54<#R<@BIfF)H(wjibTD$}=@-g+#%E?$`>s%c zFkAUInc5)&%w7B02|v+Ystp=ge=J8TB2#&7}o zs#f4XGHYFwr&}^f@oI6}($(7bOaNG$g~%#rM9`wc`EeZd;hk99jU!5hUM8{fdcn`s zXSZJLkn3|^|6a#fmgW70;$NLLo3J$wkG>XR?Pg+yVc6DQX0@X1SI%upRmYXc{NFtf z)lOz=kf=kxwH@^lz2oF><$|rZn5{tCf}vXtPDh^>#UI76*&R4&e)MUpEo8*;*50c>1EXC zYXtNs9FeOj*k|Jknr?Jev~U**ZI&1aW@k|;hGY_JwmKU$baG6=wS5eDw5h4|7I3g< z(R82PTCUr`b578kIxZ+!>tzM`?x=kxet=k;m=*wwC~f+zW*YwD0KX?19SGR0^ZU{_ zl}by29niPdSnc;6&@$5R2qS#WW-ib79T2_1Y)$N;gF3lV9Yr`3M_b-*=xXnnJF0x<8FD&rozWh=`eb(L& z<$ld3ZxTA*7WCEPYEJ>>ljBknnbhs;y%%cS=3v}>=7{8>D8QGLbq;Zo_SH^q> z;TC*m@6jW5E9Ac(YrZ6hZ~f5zXu;?c&;Yr)jHRfn(TbTXlVC~u264&{msd; zekpV_3M9YzvvP|ZE8!&5cz|uZ!J?eXjME?%e|)Kr;l;)-Y@rFa9j}VJKu&q%BT;Fx z_W5O6!C}5l+yU&*S#*N}jr%$Hzk#4dNTO>z@RaPP1HX&QxlmLAY{>cC^bNUzk8SXd zzN@|yT|inDSOK9Y11liGY=#Nu|Ez$zO=guglV!-z*fz%o{}B9ka?d5JBeTeBK>tbd z=+gM%=TA3g%MdOj5y5fJqUr+$%Wq0VFRn=he9Kj0bHvWMlj$;zLBz=95-N64>swA5Hoq&UpW9-| z)-EiA`^fi8)K*zlalJ)V-ZtvCpH!_*@1UP%v}f^Dz&NxbzaP`IT`(;K5iF$dZwosm z__)#y`15ErT=Sq8_1DnN1lgcThajfwK%r~lIuvhHWcDQ1$hE&zG3Jdy)Ff8`#)pFM ziHX|qN8&F`A|^tA8f%54(_B75;guH~7$Guv>zqD_nx!ChXUTy?josU0m-U~JAgwBi z$g;Gr6sqiIbB8} zeQ3|Cm^AB6YsvBBD=6wVrmAijLNOF(WfikWJ4qqsP+moD*Dc%gU^=#KI#*{5^Y>Fo zlR!)BB8_7$4+_5n{a&H%9Zi+A zTF6>!vt#I5DVqMHz=21s=f^K1atj*0q-_Q+W-jW?Cn?^j5)UmgA52wYQN$eL{k%HG zqO^F<#i~#?Xm95lqYkX@*8v3!7otCz627a`UlXrNOatX7o^ay^nLw1Jyi#<^e9Q~` zH_Qj6eoF33o?x$zC^4sjP(2ZkBIQkULeE`muOmNP2->{pq8wd$M6A(|A0y3Hxqg#r zUXgO2sr;5(^gUTYlYLQOxggrgfuaGjv8fuBKQ;C=wL!y?bZM2-h;^B9mLs;PY^H_G z#a9YeyA>rv_Gsd$X}l%D%{q$GFC$n2hxa5N>n*+L!*F)f@#vr}^I)5l#FcT%=OLa< znK35qlhJ&plYVYKzB9j>DWu4XMI$f{=m!`C#2f_T3TH*7!K<>yY&}C?zFIIw1Zej) zyz<0Aia`(Q`bacKec{ZcFlD{#eJLan_p){1C-#>BNOG%H7F~Yf7p}4=W5DdikpI)P zuOADP(3&6dDSxp*r}2KW?&t14XCs&PErHV7J}J3HPi{HRtmBADLm4acTjv^u z2(m;y57NPyK--$M(A=Muaz{_~Zz4H~!rwo{iY(=Y=9eFYgX<99L1C_JvS5H0e6;=0 z<=;T)OO>E7k>5m}rOT|eW=&6jjDv*K!Zw^R$B&Mc*Nm#=W-Eo-kG@ohi?^bI;Wsc; zd4g#je)xTJ^&oN$;`%o0^99}sc?cMa|DZ511EQo^Jw~}@OBTh-lKtU`l2lS(iydqKo^dsrOq^W?bg0tv;idEaRIP={svO{Y58-6#&=FRj4|GfDO=e)#_Da z1bd6F4@S;T8uU7NyY}nG+A&`kumJ+^+JF16Hz54R>rs;bpA8V_zZ)RCZQuq(r2iVY z3ANYDUf8Qivo6bOJowbH>~3M6OQQjAa(Y{B7gv|5T!>bn=<2}`<(Nx$6!YxHmgO|? z{6Z9TuEK=Ui-bT}K7!S%3F;3jL&?FTI$u5}l&=|vPRqcG47E|~0p)N*r1$pp>otqL zlB_IeQD9|6XuH;uQevT?WTD2tx>wJuKU5!~awh`R8%{IH2!tvmR-%?gC|(s?0Q@(j zrsQP6|B(i&Y5ZSlAcd&^w=@tMUx>1A)XY8p6t(N69ybSqfFBnv_Jd{sZ$9|0Rcv}N zu>YAs6LaOE{5K6GyYX)tXdXxdp?oGv>nu-a#{fDS`8n>HZ}!>1YbxmqcugT}cw1{U zWC;6{{Mp)JV}A@i8#<(7Q6z$Zoy5fiMLtA@sy+R7cd+660nufNJ?7-gJGq9J95Mpk zw4{|QLp%CE zRYMqZTLYwU4;w#PHxpF5IL7J?Q<3{R&r{t&QPRUK-Z0=ir>TSXEyGN${;WXw@!uUNfr$9u*FU^NUqQ@Jzs*HBh#S=<`+b@~ z%jqN*s7*t`#3S)m`>>I~g~~rCKtUp?4Gu`*WM~gRUfT zUkqz#wt=S<+*b#6wipPh1_^43$$$lG<3$cKNvfc>@1H4u7ZkF>Q(ykUqkYUAwp>77 za{@bZ|BBr!fyMtT0Pp)Oj62jO|FEcoB2qhI3zJe6@GoL676}yZ4a+Q z_o?O{Uf%15+0Ydba!3x=2JRBg!QIOf`!!|Y#-8}2;o`G@ljR?VLdyq&?GrR_P&qMH3jJc^K17GNbzOLFKFx z=!JUBc5Nmly%K112xJIzJaiZ=r>@wbgReus5&`5e2PxUcdU4*475Kb?Z)$|Esv}Cu zxM04Sx@lpu1TdAh;u4`HAb^&a@EfKtXjUo{IZ)re39K`fwT(KMn>bJStwj9!&>jgn zCsGzJN$B#P`Rpc8nRtesd~Dc`=}1!;J@}lJ&xH>sMo17kalO^FSsgsrh}fdeG?F?K zLP9R?^*fb=w&-hp&g6MEEEjh^9Auv6=dX0)1~jA-*F-xSmHfugaY>UY@=_D2D{np2 z-1&|G5Q~%ljNQxd10s9{x;qNf?d`FW8ar|%pq=CLU3A|Rj(ADdlN7mcGvF00YAs#bJONRE1->Htkl0ZyuCtU6fa45~FKMozf9vyV4ggECL0bEVfb2qvqpB+F!UHC&6YI#vNLCI=r zek7N{7P&8oEQAUYcof~JqDGz&9J?$<@8cd4JA--5h#0q* z=M!J%^cLMO0HUkNGA8?oVgO6WR=@?ST~%DHL#XY>$_3GGTtij#XT=iviCW=ic2{#U zTw6OMAb0^K+t8OW3FPM=vmDmVscBv($POJ2?nImrHmm@xjU0 zbv~mB^nI>uOT?+#p5H@^n#65XO;V&ViFWx~v#(@Uw5&5E12)FtGLI2@lpDJ{^!}!L zX@T2bIe2u`N=j@Azk@#WIzpr){pvk;DDs2vDx>2||8X;SA^jzf))-vkeEr}8(HWZ@ zeCxtq-Lwo$&I+P+YRk1Vw1)p3T(+hOz`bOqP02hZ>&D#B`Bk!3Tzo<_sq)ml+n6@@ zfKv-?!Yvfu92q)7Fr&lUox`JH>o#5;4^*jY2}wK4EImzYm!5IYk_z$OkD-^%b;iGL zT=g+J@Afit4PNPDr?7$ihBt;fJ-t;&r}*;&D!(4jtgM+%7AH7|9Zg_9NQQ^ia zrJ~(g%|XqHk0&-1^^Ju=+ST<{^q1EbSu!VViBej}-K=oApocWsyo=Ad?Pr+btl6lY z?RwmZ>_VuVizf{$g;=gA99SRm8a*Gnr!*LjE9p)_2tBzHMSbEdrLrW(reKX**XmQP zyXeg4^tPv+71(R`uhuAQMyU`F}+JQijFM1Q$AlK>c8btG^JT8su!$&NQe*!_WJeeAt zXf-#{-0y)PUD z_+-ykCyI!gndZklHZ3w?0kj(2eiZd6bxfg32muFpuA$`KsRXM@k5N#`w+-D zqRQDTUCQN{L-%lD1wWo+WcLK~prX2C6Bq&=+j7Ey4j(}_RdH#fGd+~3()3?l&^8BA zOK9)Mu~oglr;ZhrZ@|1vZlNF4$oF&p+5fx>a{B%g3IZxYyjZ{@=rzA;|Lg&ClY!;o zr+Hx;&!;Ni+IF9;>TK)_4;|%zxCllsr&}+b;9t6Li!a=~6=aW(^#Aoi#fme9X$wGg zf&T@n`{zNWE@8LL@u35m;jPOa+)1LiLF&g(B}Ce!JMTn##M3z1u)41g^T?kUqs!x~ zBnqKYhChW0^TrXazly)TifwvEjYJw^LD0)=!LM1T_#+{(*XX6CH$JaevTX?iL>;*Q z!xYVE^F#l<@9Xwm+cvfWcoou?Ea4Ho43Jqx3hr$+dbE7*b-jW44P;giI{W=hT3W+) z|8dlnVFFi?ZD0meCQ#HjN}Zt#%z#2?-e*88MckGNDZSKCe|m@!=K3`4{0H7=KoVQD z7&krgG{Mat;KIIeFpf7+VGsCI+}*X=LL}=X4%tF^Yb1@lA=iDG&rL{3g3Nw_A40uY z{Z|M2yjZykH<=-jW`ECWkIP7ghSjrU&mziZZ@^TwlHMo$>4CxD1Mj*1v>gnln`VLG zTy>m%evAr;SYB?N^b9;2rGBshZ>ghQv}_Vy zZ}sN(6D|J6z-4OBv&r3E+>2r6m99|&NCScLb^moKI02U_us1(eRNyitrhfkwxJ>b0 zZ_G#W6#|zjG$LtUc92U%kn(gQnh)%ebC}@Mdii*p%|r<0c(OK_-?lrblJ519o~fCU zL26^M$B=Vl*xL=wE7MA%an}h5KBfVeDW?$X7ifZ@+i^%idN7Oo@V!_3r43f{y#wt_ zaP@gV4}{D6{S*yOOBiM#4FvTSghb_vSd4)OccKR`5pn{L3+_=_roQB0U=A_CC{1tE zpXwV+D|%Thm*3ccBED=L$!tYQ%?I+(Asr&|(@vrES}%(&4jFr}+4gv{X+z7}SCOy=t zf@ndR+j1noTk{@0}ZT<6hXq+Vimr2f=$nj(`_kEu#CkHmrjp9Xs9B!yGWCGNd3aD@>lG*8Ni@CsKe6?g!4oJ@ArCOp- zM&|wZUqc^-5v!>5c3aoiPt2O!{NnWK>62m(h*n_CG2P}U zEe2LV?xjudD`zK*s*X}YcNJKJ zF~iu=WwmF5T9>iq9ybV;W37A%!f(tgnS*dw4?~;lr(moPE;VVDW>;r$sO2DH+&^QZ$J=Tba8`ZiVGYf)8APZWvh9t_3y79Tu5 zuP?<#4dg0r=Y9ApJPV&h4ack1jV&99vbTv3FaUbn_&D}9TMnJ?k*DShhY|gE095br zJ^)I49{_zI*)}GCnD7I`rBn9oCG%tNhd9j(B=$oMOzG%Dnpz4320&D6L{28X+kyOy zpjLzpN{~0he;+R7kI`klol@vm>~4dNs~b2E9wB|d?4?sy%wb`;F&=_~6INK!ihJbs zU=|$8NR~h9Bae3Q^w={-j4}7xTbGN({xY%kYNvB8D}rtc>tc2+-w%(KJ=LmKR-Vso z97#id&IJ8E;(1-NwcC!0NCw-+I4i{7m7OcpjCJr@c9#=)N6E7;X$h?|ZD-b{B)E0t z3l9k4;Dv7^2=K8*S*dl)IK^&%aTQ*8W?dTSn zIEO8EVZUKXoVrSH3gQ&ZnnteJe1PE6h~a8=v-m~J~+5zQR$?H zFJahw0W1S%@tY+?x9tpu%cR2xM8k%=VrN5&baLq`HR;s&*_zY-mXQk*t{k72ygnK5 zmw}kAae>9wQ+{bV_UPaxP3~ji443{mcq%VFUq}KIxmULo5G}<}aB^$wpIp-rP0z;6 z^t+uMmx$SW-ckv3!;+c%{A#0HJeJ@(ezP^D7rvYuw}NvpSrt!#*3s4-NmDz5`}eEk z6x(1WAA8W}%&bJ~%#&uLJ;Kvl3~K65gEsb?KRA4Rr(|<>0yk3FNpkm1?*!d!Ka6q3 zCK!%Y1`xUrHcLG;BdN{5-8Gz=31a@x7_bX1yKyzg*=TGhxyOBRFEr7@ z2Wc%28!J?sQ2p7&!V-5VXV}Z>X}D(8X6|Kcb+)N|VtS@g3L>HCFdr+Kl^`MMCR`T- zFm!voiTgts^r1xvwT|VY>}#U$GYFa7U#+XQmu}R+y$0xNfL#E01y{jKS;6 z+9Bz($xv~f;&oCtm6M5EaHMnjkg)1MwrBdC;gi1TQpe9cb4pw2%P~cPT%HEW{ ztitSTIC;*f!9hidJXZWBnM@{KGYfV=pM%}zg~ zR#_@qZ27Gw-sWXkClFH@@hJY$2=#>-qbm9|wpm0fQZxD_t3eaF)yhQPT8XI6WORIc z*oTltQWbM|*jSy+eeNimlMY^U`X(2vfy{v^3R@7IKzATH|#$5hcP z$PSHDMAMP_tr$jnv9k&-9gUR}sgVLz8jyVK^Ul`b5Kbma-q zg020nqV#r@>4JQMg~-qRe6o^LvGjeQMH*;W&HgiqbW1DlxY_gRFJ5K_)6=pWS)$>1 zpI!z_*d%dH^!4cSC5VF{=&0POBIKm!bqSJ&ZNm^j`*cg(Q%sW!+MjeQ;N2k)8XN-! zLC2RrZR}U`Hjg00eMa^q50XW%hPE+~k#l#i84Jc){&m81SC^M~QA4M)>4pCx-Uw3t z(^W@(|E^3CnFHE6L-dp^B!P5_9}dOB$p(!7Ii`jkdAgJu{`JDQ>5Q}K78?hY=Pgk@ z7n%`~L$sM%8ZoZKBQu_5c%fj@y4@j%wyAU7x@L|>XklL*H{G0!f^X<^lugHJHTzA6@4d9O=S#>)4)XV%wP5wvCA=wr$(CZQGgHoY=M} zIi0=V@2fg>-t({Pss7zv>$%suE|=!-mkXzq$)wB~a0AV7hwu|j215DA`UBOZ14tHe zpeIa28%stJNu7>sYe$JVWaD9twm^rK$p+(f79*R}(A*kuDWH$`=MSpmC>9SoSJ(%z zoe=;K+*59LTsW?GrDVg-GqjUwB4{AA`O;XPIS;QrQD0#QzB61md2;0Dy6z)&B2M@a z)m8W&c+ZYo5XP)_-T3rjYd{m)!s>!A?8?MeuSw`f>Soi&y$-*@c~<5Cw41nQMGog7e2*&%npOtMb>WeSM#q*OXcU!lMgnv_6~(@MUWbAAF~DW zsomF(nI{w`0itPD#XkBuYX zk;vKnAo+Yz`~KXt5&aD@aN6ngn?}uQ9yAR-H}|rd=2MwU4QUykW;>$bTbp-X!t2kR z&zBg!h-Ql+)>cmGH4!7;nHaxCt_g59E(Bx1dFF zSd!=Z1u6LQ|Lp&d|7XMp4ge`w09b(TzAQihNC9f6lP%IJA&w(I&N1crFeK5;o)S8b zz_z#?&%j;RJqV-32SS0z&Iu?^p9*52Z=E+*o&;ELz1MJif$xz!ddS84YsrZFpnHd= z&l|Vu%Euc3QUD#OQ|ukTxjcOJ52U~ZeMLXKNp!Fo@d2uT@F8E!8HzU?0`d=+_y;lg zJ^&e|CcMD)Kac{DXFR~#2loA6NC6iBQh-OjInbZtvB?3Q3)y4&PPo{qNcS+c?*N&* z1$15fcgnzS#PkmX)Ey~+p#3ye+rFo)D!{%OVNm9B*jtn41|F+kcJP4;kF`pY#poFK|d%)JsZm-$vYq3{Jk zYeZQ+LQ&Xi6HnY~Kq#ZhwK{=Bij`Eq z;_Ea^;F!g4C;|Alz+pf35HCYr!)d|zjv_IwC_foVUAylNnJ>Y@zabhr;=EX49-@a1 zy4{%$$x8NGh8yB;?!uqiuN@VJi}6J%c;vVQV7-pb?N;T~;Eqbj+&KR!Txi>0*jYqe^_0%GEBFpwjoL|$9(rLzKi;Xb7@5ESe}R{ zSapGUpwg>@5iaFpNX8Z|$Pxo~GfH)!4Y{JNiX~a+NAig_C(H!mI|Odt(19S zQyW@?=a`2W9yCiKXTHTvW93!?0NRt8`#h~v4-?jKB?MP<>mh2WXjn{bIr+Tufp#YY z-EVu7-cAu}@=Vf)O*9`v${NN1fOhI>d?^5+oy;I?VMghP@Su3})=paQRFOo7R5+DUzPvH(J{uO_jQ&!P?i+hKc`>9F<#6_;8gnGo z#fLKb-)UP!GRDLCsDZ1meBxG{X%49M3Jc?Gn~F8^c>Cm;Sw>~R>y7(@gS8{WtRA`B zPu*jp3;H0bYW(P8+w~Z5l~?QmwZ-BOM)ZTSh}hHL>)GDqT(JnF@85Om2_K`nFbKw1 z@poN7(N=9|(8q3f>qmc(rjXf`m3J&mfl4~IIkHZ4|Dcn2e$VQkM|ZRU+M~Xyo_S{( zO4z@8)~Nw5b+-h>6J4MkO1kGiH4uB|`9HlRzv2lC1bK%um~LurKHQN{hfelkG z$b&6zK?dr5_I2$$7+dV-L$FD=p*fbmnH1@KIe(IzP3b%SasKQcYTaYr-Buxk7E*Sy zs0g{t=HyDbs$l}Pe@en`WnVkems=^z^<;u0!j%2;#@Oe5M-%=CoLg2pNc*By@Ags7 zN_@6;E23z`ALctEK@xdF+#z_ix=ZZ>Xw@SAHt+yA0SQ}w5aMT+(-!^XdRS4gwK-f$ z#7jA43~AY0&6ea1q91p95c3M0nx_LDo~Jh(QHl}dy~mscwb*I5n!V=qWXwk5W!(6X z2}reY1Dc7TesalWD;vl4k)^llOHe5ASm64N?!-aa_V_|=?7jdaE~41q(kn4W`beA# zpU%W_g2&{k%Qbb{fl13{ROVkyGgZiZs=<4TNW^JCOc0r`ns5d#Qg1p#cc2cE^pz6s z=e9)~X!)|mI?nNf-|=iFR`)@ICj?d|#$aixPak@tDyNq4%SJXf8o?ky>D1=$nxSek zaq#=SITwDLF}Wnp@>~4&>(q9-uQ#Qe(yv%Gzf90$M7MOuov<|PH#yR&F3LD$e2RwD z7u06hW>{S-b|;&Tikg6=E%i<#2(NoyQYVt4c>@cIWX&WtEDP;64(^`CKQd>(XUv_= z$(G%_Y-_!XEC7DK@Pi4R|Es*_A=eXs!J%3?^NL15sBUZFzGo8@lENa10%tl7nkAin^-D9#b zY312X46by$tb*b)A!4TI+?r>Gz?nE8E?cMm%ndd8MN{z1AMo~ZT|QS4AwYNgC&(~r zl2n7Vi_#74=*3?3cV?WNyWiG=m~W0)$AIpdUT;8onc{o~(^nJaT&6l2OPcsZ#w zsb(2LzH&(p^Hw@~bm9}F>S%MDi^{13x9{{0C2XhdGq6c@zg=3g&F|_mtsy;gATe!m ztplHpLd)5}?vk77!pg?Q-;$>k=V|3$OOk*5GrgIY5_~%L8F^>6euo|RI-Z<3SCHh2#csUfpU9POP~eD)J#ybc$N!wwEn(1IT|Y&#cE4EJ}+{386ILC}i1AbqPs_NmDYa zp;Nn2ougBB2;{L7tXh9#`%AKxZs=*wJ?(WiXk<&kf-->9lAxFc-2JJHwU5 zq-RPcMwXwkAO`p2z^Wyk5nWpvE;?~UUY2dIm{^KIA~k-rVMXeXc8rJ8my^;SaIo=v zvPmiq@kXc7(F=EpnJBV>tY5F3&CD>RvLIxd?yP$LE>8!HmT2p%iW#D7*XNFJhPl$B z9UJu31@+$$mmMkEF=LhTb7T3{dcfj;T83p_wd8h-_?wOys3{J;5TI=-py7}0Y?k4T zrOpeQJS?RxqNzTr-pYgz2Kyxgs%)qo`77T<0?FF*Jy9VL>I86qDqs4JrKDafz^1yj z_Z#<6)|>_nY}tUw{)!0IvL58v$7!F3kM)9e^__b_$G9VU-s6{tbAR`u3wcxM)WcaQ ztBh<#R|k7h9*^d&K8C`r#Ay&*!1w69bI4WZd&|il);VjZF{Czat;3 z0+1m!O2=jQHod&f^_<7<-GQdv=}(CNHu9ml;(7b3rTv$Y&wql-e;N7sw#}#A_9H-K zWTjBntZc(;=x#5^7=g;nWl5JfTun%c4<$zz%Ke(>7&-O%pnmF-H1}HpunDLh!YWlO zd!c05R`}FXA}*CGG{f=$Ks5}AC5H#gp+z6BkGHLlv?ePkDpMz>II7X5 z2om2^0ikOW`yLST1Ph$E&hl_R`<%?452>X;lSI?WQh0Myc`zQ_c4{{YqE z@2&tqH9%G&y!=mAVZVv{H>+?{q`3bA)Y4{ZfUtreri|L?cO)3Ed1}99bNPROYM8UHjKwQowX_+9#?Q8Z8Bl$cuG}`h zkRPtlVc)Bzyn)W#bMX+}-W?_;aA^hO=GfK(ypTX-o{+?jU6o@))L>w@$?Z|!snS(- z0a$8k_F-kdf-fv}F|HXuHo-5;g$$BENUP=oB5hCx=6C;Msihy3Pw3It?FB!xe>H!p%k6p}K~ z{PIVk>E7@)ML|SbM&9k#d7)SrUt|Gj{_iP8U92?R>F;QRiN5yz?}d0xuW>+xRFN(i zW2zEOs8)3xw*&olfKcdbJ_H+8V2p0TeSt$}ixirCgl3q26ts#8z*3{5{b%H3FSy64 zmu9U$K;0Hb8ouVzP32ZM{++KbzQ7rEnC>4gwGI-Xnr7xvp&e-=ZN=5R{VUk;j3kWZ zO}x`dDv_Q+?W%YGlx2jq2ezFmncz!Sy4{~;u*xYz$noVWHH|0nNE)uU8u!hzFIO84 z_d;FGcRi)I|HU6+bl;}%I5Csz2NON5j9bPuM9_;Qtk8LTu20-9;lD!$wW+x$`^j5J@j zlr+kxe_W*q04#M3mQC=q>^HGmK4wornV6a@t>Zfy?A;+`1X}5cZixQ%iIm)OtbM`U2uzhsBWKJfD;SIT^V=7)&{uOyGL;- zZyeRr(k>3+tfPew7l|6gha%kuK`>AVi05JWL1+k+F&u2+=pHq5_j1|x%Tw4V^;CCW z&Px9Wbk%28xIC&2+U2uP@&?RA4D4U4lSX@pckZ)_tZ1T-wEX6e3hSO7XTG697n(Mz ztCJ7u?`@wEU$!5efUPH^8lO5s1P9|puL)q0>{b)Vg*gSg2qv6rvY9b1QY?Ovb~dQr zFi4wN+kjFU>T#I9Lf&>FY9M#HhgFNX6g}Xs6DJ=A0G1o}q&m?;!vao{0_j*C*3@D|7xf~6FP2=aEUton;DXq z{%eoN0RaWM`vLVx637~s|Fx+K0%3IKFYWg?I;w>_mAM}fr3An-7-e00Ox(O`gquT9 z0YC@#6ZfnYhE+VF_9+$Hf9oQtT|JQ~ic?KsSIc}~FJLKaX#RxH{E%$QOW{95{0T|{ z%(IiZR_%b?iL8g&l;L!!6d=+#!J0Q;Z2GE%`;fT{n=7-(r{H>h8#q^=)RJ>**)VGv zSH-8u*1dVq6j2<~95z6Ht||vkd@F|``#%62~KYlbxatT=Y!i0 z{Sk=M-$n4W+zE->$+L5!devfA_IW^a4-KlbmqF07Q$sLEuC2~|yH?qyJXTF(`NrU9lI|=S!#?(Up z+EpZP+P7uR-J`Um3GrxXb|~tyiqTrCJ99d6ZzmdvJvq*II5~)%d{9;@S^Xf{;*h?G0f%B0O*!5^v)RO5MeMR+w%*O;b=aeZzDq zGX`5zc&9;E=Pvoc-IPJSAbR2(&5eoXJJLOMTc7ll+SpL!WSFWrxnW}tTI(`A#k_}tlj#?pRnr4bCrxXM1dZ}+nBGNmmE}is zZavYqwH_9@I*z$0>%S<#@tV&^Z9FM1U805IZkMbk>399=`n zpC08X5vdljy2-^KK*a()#@#1Apdz65j=Cb?(ZYm`MFZ z*+yAYAZ^ThD4WTUlE*$T>{o$sei*rd$ zVP)lW}bXV*EaKr%_{Fe`{WAh`~|EtBc?z#JO)ze%TjRaJ;0yH}xF^-FH1o z#2JChgSEJcY~bY#3pzQoO$ntRSDNiQ|EO~NoQZP#-H7U5#?D85sd!$T=poNBSh|oR z)1Yk6s)d{K#h3!NeIN1tArdiD$6|>yvx^?2s<(q=>)-`%dhhr**SmT`@qit?3nusw zkiLJ0u`PvWOb=b6{0y;+Me>F`mBqbk$|MeCh<4g9T)WC^sqC#=qHJpC=aWcBDC-EW zaTFvCjS1bp;?xh!&4=!HvTZxPoTqbikFh#1VLe5{F^nECsVC0BuE`=^UkL-JOCmW2 zwmE7#WKxfH`Z(PV!7(t!-2Rs9weRz8Gdp(~+r4UfO%vo+7PgwOBz|FxE;aG>cx4G2_3R6sz;fN!|i z*c;KC*w{E4+p{tLuj}XkvZr#ut+*DugJSQ!b^m4Rga1JgIjH~nn$+v8;-aFatTsJ0 zEZfM1B`o=xn8Kt~zV(^)qD#q0eC)qnH{qE-PRcyvw*&EL=+>l+2k2%Ao9mV0K~0R@ zt_B|X_cyl-`QK#+?QedRU2dm#LKA{KJi%K9Gf58AwO?nw9dTx|sL`3LS~9=ZX;(zppVe-A zgCltFjn^T{chYSWTmjSYzFxot$A?@AL+}OOL%H`Qe`IVoT&w}jG<`JxJzmOWw_kAY z>1n@!X842ebpEmYq*V|tD(w83h0cHRlD=_iZTOTH%lm7Ho%hX;9UxEjfvb8#MNv}x zlBYTe@oep1kECj_n}-q?)v&q$(@bL!bM;894N0+wjU{(Rz5ShGk~|+)B}Fov$hYTD zHONwpTpqVJFh!wk!9v|=dr6?28G)3yRLv)CwVgki%9m`GZfHJf{w5nQBNfFX>|SUt zV_66O%JTastm7jCUzG3=au;;u9g0v2@=z5kf+Z2U216IFcd&A00O6L z%}*o4S!#jk^t0L(^#Vwm7^w2sUhOamVwyrOQ3E(gAYi#_$pLiM!NMk2hn=>TPxOQ@#HZ>2s%e!}vZXiLS;)32 zCY;uK+Z%pp@^o(eeCeXRBTCZ*qFuSh?z)>L?s($lt?rKt4CF{kx-ab+@|H_AxWzk% zKRV+@h!j>@?^J%@s!Z)mB;x!K1k#EBYo1qHWr(%I3j<$%7dDKN=(BXD<(N5`_dr;fT)gouY_5SMAJq_5ZM^4v6 zKa9eUIZq!@x%c>lb>Q7P;h8U2-d!Y($^I_U&kABkPF3*#+j=h~-APDZ`?0he2iW=0 zZ>vdbyUc0XKlw9=ev%fI8x7_ViN_6Zs*m4BCKreT$O~==b-Jwc-9<$`{;+Jm6hvcB z*v(mzS9TfG10%rN zD6zM&)R(9g$h=FgUAd)cvsK7{u-3BtJJCm_IO7LE33d|v4-Vblp`Tvk)Cd+ZNT=?u zJQtcmr@nVDzc2hXip57k)%Lb1_a?!D(!rHVU?C`TL`vqBd#zE~EsT68F1Wb@+}o#G z1%X>t{V&0(BZnUN{#ty{qyRMwWhdXH%8NV$G(V?kSqh9Z)Vkj(tFGrLK*Smxfd+4; z_gnWno=t^lVp*X0p_wx88SjnHtxfa$!U=9ig5O)t^_WjXuJoaHW#m}xM7 zIJIweS@!>B#^1NNvn`ZX>ye=aFsH zyWII)YCkJ_yI8@5K$v@tc(GJT5SuK%t@+7x!WPGST(-D=uO?_kwwhgwJp4VzhwoI8cot3h;zSUhZVlzK`mtcSspGLH(H5kqNJ|lVgSGFa3jWoR9h&HP)dw ztR<3v-%>-)tRuTdZl#S;Gz2|oEF80W_rPu0@;05?lo=sgpvOES$SZRq|U-mlW*(|YXO_}WN)_yi;4}6Kls2OG`pHZK0Ha% z&)0I&CmAtvoX1eC%tHowR(4Z4k9@saSs!-7cvXJXZ!g!q8iz}Y%}E(b;4~d8!ZE7) zh(@xK+*>tWnf*~`oW-PiWFE_W;a-RwMXmYD@=}PXilw7zZ zP4*Vxc-irHJXR-*)jj)sio3*W$`(AS)yr%;euxD?{a+m)b|(%zt82(!^*Bico#I5M zkBT()skUwpIRQq@r`y%vO34KLJRsN_E|xKth@jD>+E=r$KbmBW&VM(q1qD5*XO0(; zuTfWtJHha!{;9EcZ@KEPM6Mg2l)9MOR&{bBnfNBntkanOkvGt9$b;iyLCT9s#)I8j z^^n$#HdQeUs(P)tHz0g`=-YpSY5|ftfOlROoeBL)f*t8p^g9#5aWQl%LL>MUls6Nx zzH(AF^RT<7RbSGe3W=nMI2K9!1<=8W^%Ne{57M?gF_RWxraiWL6 zRj%7|eUGiW`FVrX1)NeD5=z%)n&PXso`_VGnPUU0h|+zv@t{+amfX4*a-Qk|0SC=G zI*@vNmk^r%$=H5DkynZ1P&cL9XpO?D>7Nrz>7nV znd1DS>%V7@3yJy#PLLu5wh$K%N~duWC)Oflas8|_o%>~%TZsFZ$nI$bXkg69Yl%wV|~8fzhXL|DYr)U*6dxI z98&Efcz0^o3%#UZ`_~%>p%L|5Ok^+{Vu|i}v85|Kb82!j7ADY06ETGxEgPXYs@OTc zubU^WHh#6_^iQHhnUkDLlt5tS-}l(_bg`e}2MD9X9C`!}GC5b(PvTrws&-CB5_EE5 zeoXKEKr&-Rq$2U0@xnxv`{F_>+4mty+HWKXEMg+I1c4ZQ;A8C9vv2TnHfbC+E=wsF z{$Qb&&Eo4-JJOmGbF$`fbydwQX>$mqm)5>jNr6=xl0SRN0zbG1E&kk8_&RaHE?%o! z@&tQiP;F$DoiJ7vfdG$@rN*n zkM8W>&ipqwk*6ORUr$uk9G~99?Jzk%*G`A4gLn*JI5fL*&AEBhX%816rwpZt#W z?0TPnQ}a}(c>Vt*tKof191lRJF8aT8>i$hu>dV%9;^ z3+vyR^vFob7?pnZsE9~3uV3o6c=&l~V3AR0x0g*-&E@zcbuW)jvfB-8*GYKxWxzAf z2o1oWj~tr(@z_p}B2fVqdg$-0Lin(>ac612duC+2$ZQficMZ=POt$3#Ugg@V~MY?vQ6yqG+|c(&K(EI zEiK9$2gxZd$`e5Qv$Nj=f6c%II%5`8S5usewVqltTtedx)Ek%Ho_^M52F_r22vN}9 zck&IzPs0T)hshhuZ|Hr7f#-K?USP~54Fc!#3*ys@{JkvC=WE+ELstwfZ1NssgLD^3 z*JKo*L5F)g&S{zr1Z6!IdInytAtp&Q_Mg?hPa3RaM{9zY7`WIsK&(PW#s|czf*)

    4|HiI-U2QW-o-J`7^x6-fe zv^=JT8J@1RU=-l)ZRl^NFBVKlT~!Ol+{(@n8#zMYNiNS z-`AgVjoty2##;ee5RF&or5^}YE;ELL{&&7=p0`rq6gOAi^8LaDS^UGzU~0enuOQ~P zpXYWFaG-Rw?vxckvfY>+qlpbnKld4iuMN$0K`Uklt_@%%{pGLU4Bm(hBt2@J91Ns5 zmji%gg%khW94K}?Q(qV}WHfgJ0Dj^-FelRPedUh6DXUpA!^FwMy7gnVT**K^Z=)$N z#XK4Zhs&(gT$h)(NC570`O5!i?pGM4l*hD~tp`i!F}4Q*c&Q$&Uc;xL|4HoQU(Alb z!LXYEkq3TYVXhv|qhn*o2bs&cp512Yx;T7fjq**+qg#Ja_jB+0M=0WoY|meg|M7IcAmK z&kiZ6mXVym5mxVT(6F$vSbg=ginHb1zYIRL37Se5K|4KCJ_CT&!W3`{@&0~fwc5F# z8N)dTqH-^2u*o4qYxntnFYx!)e5*dG4A>mfkrFZHy(Edu5OUCHu-=FM^Pp24%*cQ; z7jDP6uSIuozzHb>D+1L+6^7J6!x1hmv59D5?+ARFYAf7KTnmAcw2$44Q!80x2o>UX zlZb8Dc*C0L4pcB+B+&z2%$EZ#n7Bd@xLE)UtlTS9)F18?{wO_;IH5M-cO0=&Z9-cd zaW@O)-{!#JSr~&-coKaXgKulbJs9{4HwYl%T6T?bW^Y^~Zxe-`~6Tsk*Lbdf2pm=1R#f&i3h;Ez(Y}4!G#W z)}W$991Kl@WKt-j5qSHp{=ZZ>7cMnKtF2%FjhZV!qjtSvrSEL(R2@dy_Z;s(mwmmI z?2nt!x1BEs=J@lL07b9Hv-npy#-FB}aM63&wqHEiGw1<6;C)!jJi$Zg!JP&M!wXm9 zoL4-pOX#J`FawUcU@~0`kbY8=tO37eWsf@*M=N!h+0*j?BXDr zZp4cLkz2Jg^852L;B_U{3;GP1Dm85s$Cp4gS4`O}K1aSpD2@T7QAZfyDR|pcWF_LM zTX0TLB-Tx9$RtT^Vgr60ErW=fQUAxIRt(umuikt1k4NpP(NWPTC{05tk31DD2<+{w zLdgjz*r`L zChw=FIxE47u31+VVn)_9gb5c~e7#J~UrN8*=a#4{RHYxpg#ljbAG&CNAvm18kppfS z7oXJluwy;yE`Lk&w|Zs{I8v=1$E;Yz{15H(0ib;{LFl0>Y64N*gNUia!qu#k%Lev1 zeRqc&Y$qf;9u;f%&{wGz#U7V)U#3avv-ac z(wQgT9CG$?x}gw+j*4BMX0#|2lWxDoya}S!80njKZR=e~qPCW`9lSbu-&QztuN%Q^(g8+c`@i2Rqh0d|TX`OF? zBS!3K?p=E_EzWJs!u=%`(n7O_nsTvYMEr1~mMj!yGa2gF8aTWS@#%unGvH`LEFx9a z8+dxaDimM#sc$?CGZ}a9$a-QW7Fo^H+rOpmqIr6I+?eH)gScp?p5O=dNuK0>8OQSK ze%n@KzvD*{xA-??gz*OvL+p)qmkJ|>C_}AR@6DAeSlf%Q#=PMgj4|do>W&(Ju@=~Z zy*<`qyRH+x=t_{EwG=P(_jX7ac3>m}aqCXiKF@*f?-hy>-9LtA&X>w$8q|?}Cgke1 zA+*UG`O+!QG95)X!fJrq$GDkc#-KO4R9(DijYVIl^}!Kxdr>@wgY(h)@(4Q3%jgmf z9R56?ZQ1})J%Ej&$3i!Q<=}s8cXzN>Kzae(2wXrq+!1|qR(L>n?c~zuzL+IDlC+wT zz-&apC9p$!$k4IRQ()Cb0Ym{xILN*cE0R_-8tu2LbDz9Il@>n3in2|f9!+Hcgf8gCho#ZSt~GMBk~>w88x_B74Lmdy58cw|uh}|!_o-i}NM!F3BC4g*S3F<1 z&(b}9^qksUd!a>YKXl?dsq_BCH{DViFNbWb4dTv@N~+Vv;m5_uX;ejBH94qHaY&Mr z>Zh`T!)gM2GUyvdUG?efJh3)&i@%xAvQYMjZJi}|_{l@Pc;E_@5!OEF2WubTqHf_V zC7o+bJn`g3gWbA$=b`UM6}S@xWl(#1STHx(G$`!?ov=2Dw1~RMJ!xgW!80s;ihM8j zwUBx}-dPz*eNqo|!m4Ujyy!z)y?(SI0v>-14xSuXwV10&F8IuNhB4c~AbfAz=!TPY zd-KwKDS2iQO$hbNeqwVP(_t3**rAPVH3_V} z#n)w;-on_xy@efPbp~`M^LkN2dmI0XZvZT;>X5N#8)xl}7B|EgZ z9(WldLF|a-b#g9X*t7uD)9RNaJ*i)(X)OpI0X)YUXsIz(2Y2kQ_IsS&nJu4xJ41g#6nH$OxZsPPt#`BRS9vGtHP^z0Xc z%KK{K`3)Qu$kIF%3{`nGraP?9`hd1tlAXbzT9@y{iPrdfiyd(C9qE~60B<{`++1t( z8MuzYS!3oo&9 zLhKij2z@N!g&w1B%;#5xXdJ#S&`ei3sy>MrUK1rQrF9L8NwMg8PAqTp8rpF;o|fj= z5_V0ehL;g6{IF^boM67TIGRKAd?@FILzBxF!m}ay-CWX|D~C}MR-lW8^3)ec-+@^c zBawotE6VC+z&*VCLZxcfam{)zY!M0*cqwAv#&YdSc$^)^Q6B5eR+0!zv)Ld)Kejqd zoCP%mi#RH^sEspHIQt0H_6SBsoPI@U{ZO&m60r415da6)V4MmR^+u5(NK2Q!sCx~( z6gxERhqcv@Eh0|84zKQ3{T{&T*UWdx%g(=AdDREkXSWP1Y0a8-ts5nsk$U}J7`V30 z#QPANUOx-b#DA-0y-*~n&7Tqe8@^RX;3s$UJI+Gzy@$V^V`o1}Ga=@JgS5GeHRe-X zvI!2jdt~hA2H7ogJs)mOdPw1NpHkDU8^?C#Vu+^mzN}7NlpA9e5IyicLQw^b+4`B+ z^uCAMK_?zo#Tva0_cssNsGFUHVzY>tN$5dN&65aJV)cLY$%|C3q5IsD*2TOoN(4N3%bUJwpt_lUuqm&3T z9cwPmf^Oe)_NB%O#9H8Q;k0|s>)Ja{56tsoz)!-! z<4nj~$k?=k-#uP`bO_&-uj-eY#p!Ft6__J=SUpByd0{F!IOapDQbIw=Ie@+PA==tF zgFb*29loGnfO+N;=wGo9c`DB@JjbY=3sIo1NvC zJ+5RwQUZBA+@PZr0kSv|u2N#ZPM%y@W>d+m7@%ty`y;U)21yEy|5>$owN7_Nq_vrS zoJ=W4J4MMX@(w#WZlG#K*qx_W-GAx~>c5&kT>od&haRbq3rz20ez8oUedv&*PNuo* z`y5G{cML$2&@ZIUtMJTS_VngH$#_zibaLQb%!zf0*UY@YNl%PYRlO<>9GX`Hm`seANFkLqCf8f zPBYcTM3LEj{#7daqh9bY;s$_&t@<8K8N_Ta`mjuUE4!WG5ij7qH-VndWB)&V=UPk^ z`Kx{#Q^Nc8b|P4A&?M|OJC?VYGt31<2y`z)P`o5{bR$5b7@`zHNobla15`|cfT$1H zltS}Y)aNcPKO-SE|10W))q)`uFJP=F06&0)H|Gg2>JI`XC8<)IpD6%8gpyvVE?BJq zOkAT!%nV5Qh;TkROFmc^J^d5);r=J;vt8hPyO4K;QcS+=UVMw#E&0<_`#D1!0TY{ znu_5EwCFmpup%IRG^}EN1VlYxz0_ZZJfH0N0-`=^9Ptl);6*v!xM`vPj{0c)chsl- zKSh1w|KF$M9Vml~{)+pnn4eZQ^iU^yV_ll8wvec1CY|DwV8F3<)ZTPZd+zg(SQ zA^*Ws0bHit=$%mU{#g^p5*0$>FXZYCWA{Rcz^;+;13B-=*R#8OSxMJi)%rnFZ0;ff zDe!}BQw%TvQb~kBkCr|lcU0-7(k7^@$XI*D0ia3{16TcFQEgWywg$yTx^9!iMq98E zSWbm0Bx|eh|6@%|>}R`ARgy`R)pOjXteL+mBqkiu@m2 zu#-kHdFNmN z=CQ7YkzR4Ygm*-~qCN(YlH1MXoRsol@viX^(!@1^$lnHQj&R+OmSicztjVmqZ62?x zPrE~1Ln<^zV0G)D_U8Y_mjtxjvn}4$p*5PAFRe`SG%6%nJ&%SXm$@kG6w`n1h zIUK z!_n19D+WlQ=DPtcnXnnzX)*`sXP9*^7)chbr7fj$+oYoC)cDRehLcAT4q(v6Mr?4F1k{gkvUCvzYo+7V;;AO&q9uUB5?t zoS`u0iK0zgOFcyOH$*CENKySBGF%cwshXvz?(f1h_`j+?O?Gx-1plh~!2fsE2Ma-P zXX(GIKJ%7vmHDm2>Sh&>j<82wv4y~X+k?YDZyUG!i7#rSa}^i%&)+fLbqs|5fqu-| zr2m0_R3X2hA2t5<{~h{C{3q*UG${0ROe*1AiR|^iWqrWvk-7e_tk3cPmGvq9udENm za&NN-XZoMNm^VBWT7OAV^(Fk$`~H#_TY3D_Cy`7c-`1RPlIveCSnF3$Fs9M z)$b48A7T0@>!W)U?Ds!eA26s-SDGMwrMq|9FX{(igZZL2Ft~wUK5XU(}CZsh~R4IDqUSC!{fzehpprq_`-yXW=+1Sf zC6)%a9p$&@$3~?9jZ)F;I>l)S9}*i_B-P2x;7XL(Gx=tpvey>-$6UT(TY#9Gw-AL~ za7g(=Cw{;pl6*{H+`Jou2yhk;z<$2{KsekYv|GYf1qFx{_SazO;R|=btVV#m{Q_rX za)PJXe}h0zsWQUvifV?Xy?OULg(( zR+$Fz_DSELF0nXi0QWNo3I%%oZ|=t#!2LMu{}=az`ETxLme~)=>HHIc#J8{cMC342 zmkgz4uYde@YRcGmA#O-dVb>ed?^ofrB=X7NkR~$Z1M~IstaHq%wo~fa=e*e8>eBq5 zm+q|2XX}cDwW;GJ^yA$*5BmNSuL4|m7ADIUJX>|Pp#p7H+{EfdNN|wd3*5P~&%s%m zh!+o|lc&J#T6X6Bp%(6cLMEdBkc|be2J%skdyX@_qQpmIr?`?(gl5qy?^jXAHnj8R zzzyc(iqmn_Pwv)_s_Pw8(LK)puKIH+Y-a^H45S_`tMi=d#|8eS zwC~7cG*>s9`3)6QJC$R8d=+f-im^-hQi_@m*#1%AI*mzStn|V}U`G1Dbhd0pYmkAs57zO2zdoN4q{!{zpv zpC$iMuMKiG_f7Vq6==#jv;x+ud?YFtWzctWYK;V?BX_{Z4WP#H1)vaR;?lN@@ zE-qh~RE$-9zkpf&lFwxvpkg;Kv*xKdQqlvdQ6^O&0{!M;P6r&AE%L_=%uSwZdzUtFl9RXQhwIzT3? zSvo?K#0k4efJAxH8hvjd5>SSXV@dHxa)x|I^3-xZ+L*U^=01pI?<0`sdGOX$+8!ob zr^Kqi>A@D+-iR6-&6nJ_fg(y+)`U+=J^@FpO4go@lNy*q!O=r$G8hd#P;lHz+X^KW zg!?ATOX0Kx=}-pZD0{U%J9fx6A-0U_r&V@#Q*)ElV8l<`?ggOK8I(RM;H8fu$8odj zl5faq{OhtG_ofb+gu3!*W98?V^lD&PpAOW@Xdn05(Wtse=+LHD zNnnSv>s5xmHmJ7*8~QL436$h0r#wqe;7N?W!C&SAH8eqU2+F*Q?CTuwhy-42 zJn(8fv$E_YzrH|{dRirv)O{qmfhXpB$zGE5XhylPY~;QcyB-s9_WHhC)zDxiA!PuF za^XdAiNRQFlr5D&mnWS9{Fp_UTCatRaP6W6A8YzeTcs7J`k_J#Fd4+f3%Smi{ON%_-xy zxFFrZM2pr=-)TQP_iZwKOuBF!tLhAWNSqJk##u%Hhf;RncuefOLL zckBX7zg|7osG8&U1r=(7Kquvl)-{5Pcl`dg#rdA0Ld%ZmI-u@NzVNAXUG<~kMJGNV0uAOfIiJ$HB)T8k$2CEdTqm4;?gf%IBW?vHB$Ecss>9u=#izgU-0 ziS{BRJGWfw#u0>JPHO+Mpf*>?yFPzcpBd7L#)p?;Q0O_oH(M6?s~RRm-#R}TQ+Uk% z7+SSbHTpx2gPVV4h4!^vx7JiJN|ycy>3O?feZyOC&*%2`r=|-YYjyvU(lRy5e)|zS2Ojp-w9mXaUb zlx#BygLr`4fI}0S#vv@k;{*|1KkDVP-~(kqUKraWLFB7x8Af1{7v$m}G^AvJJ^P)j z=$dNf4G-mmAmSYl<({DYgR97W7p({JhO?f8(_+N34EQC3AVN{*!}$&@5EZ_y1GjAl zgn4WkU)-7WFQD$DiWm~l?2jEtI`F#*WVoyF*UY0cj_W`A?1YnStB=b^4MT83fIfQ! zRSh}_Zeyi{uwJ)WCo;y_LJUYdMzR`cjX9QOM2_GB$qxe_f!jU)k2%EX;0}MSWEo<~ zT3nf2#l{WD3-Yaf4{WgXUG7&cwJU;%fR>+RV4d$eF@z~dpZyE@!A^Sv)O~f+n3UL%{a4o^xk0H!cBg1R8PR} z(E6)XT%UR*4+}3@U3u-j;p{&7zd*8O{D99>6>F1t-}wwvV^al7;9{n4u!hP@AQef{ z3BFdaORRM3v)PfaTq>Z9J(p`rEyg0Gx zSJw)PXnVBRE}tkDiJGxhDAQnbi3h|+!i2Y742Y#h>dQDl=kaFi1V=LrADM#ZpM&8{ zpiBjv_4W6OiHACEu0^pbOYsD^WoD=utO8Eyk}Lw+Vvyo4D?Ojf8=! z*yaP4Vn~77aopXqvDP|U>g3Hin)BTAqUumM0QT&nLa{K^(r*h>eK2QQBlNd(nY>z~ z;x}mLVNwQD`*8lM#pJCJsopMm<(c%crd(mc#agX+94v;H0T5*?LBDV4QEQ=_WPBh7 z%dEkH2^NBg7|d=S@GPLO1Z%p+9vz4op<96`Tk$dqC)V)0Q)s@Mm8n59XW_&#k-<{g{=WXpKFqr3Am+0EmpA zTB(UMh7qC!6Fg9P5a?{W7H)JVaE!@7mqx#oz!spOePyUjn$;_K9|jtF z%@pbOX+v2m#s-Bogg!oEQaKW?{%p@Z&>>9sy`gUT#@RiDpyUB6KMpn^SH48@+;AVo z(B3dBVDgZOn`!KSoE&a16(=!aXp_I(2^8p2Ol(a#X7%W{}WgzwO=Hx_9pFMoCPpIM~PRE2n9M1ViTtkU@P zHpv}B2pe;ta%mTP$xGV_=s{k#x8Q>I>V9S>jRL<}v@5P;75ymq6W5zIkjs0D9m=;6 zyG$>S9xG%m0C2N$5Il(atHx4>`;FDS$zRp8b|^4lu3P$$x4F3-!4^K477OsT$eTa1 zS<-{SNt#{s9G2K1ya*PEhf={ueT7OBh2o3o{cL`MUMn*UF6yqmTN`&rx7_nlW?h~t zvX0Ofb0|yeNs^JIGVRc56g!?>oCsdE3t3E_gmQuFrO}gTD0CbznKDLJUA4G0XXx%B zJ0G;tcm|@oJMlFbH+I4fqcU=|*yi*HOgvsR(H79s7LQl}iB~$Mmb=;W>NqM>(XZ%M z)3pszTRGca#fQR%ww}mww*Iob_gOoptvl@6c#Qp%+-A_H)Y2F|7Qy?iMVZz{{@4jf$i8wXp4%L<+K>N^kcJpnGY+`zeA;D8*ryK5L)MRb2fN7rxxo; zEr%0$?|7JN~oSx8j98=y2oHjV8T(BNm(?D)QhT|U|F=}ym5!Ehq`RbSJ+B6 z#wWA`t;P*SY^{@*?S8ywFhQ%#ozCU(bvkdJqVoU994_yrs7jWK?mGD#oyKw~i;R@u zxKKQS7FJJD^vmlXG;qnDJ&%%SxcdmTJzJM)nSNt^BPn|wUbazYDN%PnhYYtRvu{T& zwq@F(C<66eLV6N0C&nH(Wt+u)b<}z*MeUu#7D`BFM?FNr9mm|w%+`$> zRo#M@!jUP;ZvjAofSBIvtlMbz4$HbqOR&R za@@8&7wLIzrzV1^s(@K$p%!lhqf#1x+eS+j(#H60r>b@PJF0!i5b=68O29b0MzS-x81c&8_zDh7P)IjZQU6s7rCpUp>gFO#5}_U~o+f=M=4b^K%{mM-M0 zJ0>W))>yMFn?nJ+fD=f>wH_H+7?K3A4h}~=#44lq)~i+4qkE!&A9lME|*SauR_fdwkAO8Z3_ttYv zrA6QnGbco-L%zFEP7K6~?KoDrEE;=etEK#qlJPe*UK;1{PTgQ&4n=um)hUsy=R01c|%DcXTmB0SgeSYm*L^ z5P$eNy0h#pw&*nG%gv+j7R;Eo*xfG0otsiHR(#5MP-Mz(ov>4(Ya>?%Zwkt`EZQHx zQItDn+@REyLTR}taE&Aoqss0}LY=D*U%OJ$oc$KzAvJymL!y-vuqR=015-uv0>^1f z5Lxnh{ixF!-xE~~7kq(^+6HD$>3wxwkKYqphvLX^w9LKz`9`p#UD5$+)ZqpD`+|SK z{M$ID@78;LvT}vhT?7~Zcm9GPR)0utLTP~?QWh(&y_sNv;HQyVAr(EpkvPu2t;2&n zq@m$vlgwdbw$7EKWt+}wqUCtdyWGBk{vCX-`Kx>P8O7jh}#WC!2Y+I0H_3);9qJ2YxczN05t(*{^M_6ZK-=eg!Hr39|M0R8rQ)s z-6e9=!-m@u$CZhW8IN{0kulKv7ZI@A+Yk^igw6Ulx+0+^hLb{4~&qa1e z|20{jw8^dj5z-B6kMkX(2I1e9!JM_e1bcYGP;|On-BkrkhbSPLr3gX z@d(ed17^w)h=G>hdRKnHh#5wB_W7UicONpZ(j5Pf4Rejpk<`!$0P$1em$-E_OgN{@ zrwbvDp<$?H2_HpIc!nGju`m8FGXYOFz)Zjj4lonos*C=D6uFdGq*yWYfcW#{MSUII zkN$NA8Tt?CvMACsHX-uvVi>L{vE!pAPkb?{zvwE)n zxt{BMRP0@&y#qK_&Z-5jJAX7=K-A*8PJs=R*b(_rSe(S?V+g8?%2x(A1ZJKY4%1x^ z0+eqLMx0>nY0F$)78!yv6s^XKlno9k?=;6BuSUI{zhJ4b8$3y){F7*{y@aKMbkam! zfv*gpjhhluNvIO;3rv&Bl$E>3-qXE=l~bDJEk}Ug2E=;rHQ-;K; z1w%*7;P?s?1t%z_v=F=D+hJ5{-aO6tbK>DuHlYI?K0-3FiW=Do zf<$IQ-rmN8vZoEQSk|C66^ntb1gSGqKW^4~?}MD+W5&Uqn07L}GDJWN-0JS!gyp9X zYOBFmobz#L&OZO$!Gz$~-XGu6Rl}Eqg&v8-p!M;R-h=^Nhl0A2)LsymV(sNJkf z{u(VYaFG zeB6>MfSJ;1hwC4Ju&bB%Zv6?159pHardsk)jr9-!W=gsBAEblj4}8(j0IbXWrwN1& z6qen7hPm6n_3c*_4OBEi9!OyzK4Fof1PoUwJbmL`v;)sD&GxsNHQ^PAe=n!{7<1fM zol&^U`L!y>GgC?ne!q_p7T;jT5ylJ<*hyH2sfGm4T#US+r1j-7dR02{dY+{{R9qiO zc*#HA7I$O^!VWtb4r7X+K9+o}26CB>TMm>7ga4p>$Z<60R`ArP0IU?ms8<&@0#Q(b zNNm7L3EpqlfvE3ndQMyR!nVWoRvW!o1+0|GCZ5dHE~GK6c-p@9-bkT~3(4LU*N?vR zB*0Ny9E$EZAAe%Qk|$$i(-ljHFu6IC72!*DP_E%XwhqF>?_{@652wi(`jJ-JzC$m+ zHT2!k)O`_7Nr_6Q94a?=UY&X;BF2?OHH<1R7_L;~+(f~zqc&)aRL;VN1%CZv?Wgq4 z5m14_X~0q2s^;)PNUoN41~g}xANF8m`OUHhNGLrdR$%lu<@kDvGT#+~*EfSqg@FWp z;IrWNV>$2AJrddMD)Qs^P^;@VEv1f;ly&aC4_+LyyDj*VHH__CDISW_Md7Tl`krOx z&{Cht;jD6*tVOMXsd(8V>P7k(kLL2V^O}&|G`bVE&P(fGMvGxa<@uT;O@}viY z%!}+KMs(k`xUZFx+vUXLuJ8^MPxgF8vn**ZFa?z>iQXP#{6=DdIpi0X2If9Xt;K}? z8+}fK?lj^6=9;=HGQ3jLeSx1Ppq2g*1$3agx(gku0<#HCo|LVI{0Q63=;%A8gg3V{ zX2-%v7h6%ZihqozBM-}+@LNI-ZC^eKf$ef!u!uSmnV9%(Aa^cA;Y5f|uB*<}vw7xx z>#<4p!|{ul;@x3EvLzqoTfYzus!^%S{*?`H4bYODEHrE7h03d+KQ$|2;mgO6Y-i{9 zExAWhbHY;}Q!U%9(WfB8y?3RpwV3ZB3ojxAEIgz`7vN#62*_#y{T?X`K^Dcou{|hq zuZ+C>O(4!D)nGiNxL{um{P7TdynUTI#w}16E^ErFl!wv4RdUK2qpzN{eiAQ~0s?0n z7qaRX?cMiCcq=1vQMufg%7;%?-26^!hUm!#J?C=b!+sfhLAR!$qZb#W+`SnzSmZM1 zv@s5(`i#+Q^=Ta~JJ|;CgVNj{TcSFw11^OUKyb@Rj$z1mq3LEd=UA9?=`Io)tI}GA zqEghy46mm|C!IkRbnhg@2IzUEm}fbtpzP39d>U1QA7=cK3R&)o?|cl4)OL*;bglj6 z$48eBSeUQ_k7hAwtUF*5mx-Kq> zl};_L*H-mZdGKx>w|&DQ@=U0D>yfo!!CTq_Brv!=;{tNIU?C0IUfuZkJjsn!#Da^4 z7r2B#hVN*{4fcW4>QjRmPxmbum_4CY>1|%RXspa`8t=on%NJy4E-UqQ^P@>_D5QOr z9|~Z1J>mHvy*bE7c#?*W+(|N~?BqbWsF%r8{r2Q}W93^ui692$c84F|ug_P=jyPrN zyb{HK^x7NeolQI02eyQBF3Tp4nYztq^RAs88m&r~^f=dG(mq<)_tHrpE19gesAZXK zX*#hX%Vspt)@3)im1#M`leKyN1R6^)NLVMDE0#@U=3~}!cr>v>X4K7esNc_nAvTo$ zFvPnKMxn1Rq>UO%Eh;Df&Hv-=eB7zLCp&>!}w;@Aa}&;jB3kn^yCMu_`nWSUgGRS`AWr_$Ctghl4Q9JQc+cZn|(JB z0VTRkf4XTy^=ZDXMFS!xo&Ffo`LlLC#K7)AZ^4pEge6rcRSP!jrKg!%N;WQuLL*yM zF-T?ST)`nl_v7a2jkBrK+IG*6uiPho=cx`Ym|bM|2W8nJzR=XAt@xUSyXMzj6r~_F zb{c1JuP(QO)ir#OKS_Ozd$nH>|LwXWNz5em9dLK~FNUB0M3%pXpU#D@f4!u3?{ZC= zE$^;M!-;MqEuFF6%I0a-Hj8v$uZhVQ86zYo#)*%8ko|%rxAETYY`ISTFGKv&TUPs~ z*{ufG%Ord|6QP*L1v?OrMot}=e9l=hB&wjo553*q)@r7+??*>}J`eCkr=<2Ee&CY) zCYr_1lFJn1g_Cw3x?k8&x;k}84_14XMD(F)qETnBCyIvui&SeaYGYu#M_3wf?St1pY;;F`xwr)&P)d_#hzKzXdG; zs~_rKMtlIOfXL;q<45!q;P{E*ezC*li5>@n(=<4*q&yyEJFL8+jKTx5FD|V)^t9Ck zmdS4GDYvzM1p=T7aC^$4@x_kyea+MHOx6{80l@|G_t|UM8vs>MtLx{pp`O0^20#_m zr)!kzCT=bcUj0QCKs}7J2cZFii!9 zjE#^@s9E<@onJFx_LJ?0519P`Pz4TpH+bK5uRQkpA@SZjZ^BgWgxdPKgQnp9y+ON= z54n>D;ETKly6=zX;2qZ8@cv0I;eV5hyBXYjVg@=;L;}_%VnICnZ$ta)%%8ED>$tc? znf!w)ZwTry^v-B2{BB5M4(Xy(=9g0ivbn;5ZGR$ucROBrS{Tm@r|DuWR)ECG+3yJ4 z;QF5){>1kGmsJ3b1Ky=DM}z#ARbV7@$4pU9Bv9m)fK`dQ9Syh8BPphz6%OO52vd=B zhN$3`Z_cb1CyP@SA(w}>E*WT1k&)Jm9D7>Fqfta}bgx;K0{MJ$Kox%cF{Zb0BH*t+F;GN9Er^Hk%r zlHFOkVS_4Duu?nqqft(;%e-8+^9ptJvz`C<xY@h`+$yy&wC-47}Qc%T-!y=!B( zSie*tssAKrGwXCg{RtQ-?eH7qeRuK=gyi%3CLo!YA;@Qy}}^ z^2oEa_X=8{t`UGr7zHvuwz|i-xot+Km6@CVgRnv32ZXny>;F}`2}|nj)7w{_eAPqs z`9O2+lGy&rE@<1QC$NuLXXsgu+XyKV$ktSiqD#-i_A5x__{pTk&IuLaos3C-72Pdn zCBG5lzQ+ml#LGL^s%I4Rt9oOZ8bRJk7%p2St495{g;?U_^ZLqEmL*xtDT~wWR>N2g z2c$o#rMK0ATV6w+pj1>Z9Szok3tQZXJ`&T_6m!o=wdP}4M{BgCSqJj1WOj$iicc{H zlNi2KX~Z$XKLqe6<(|b6okKp0ji5cXguXwTUMAk910&3~+bCOd|7J5`!jd8P(_U)j zTz8OKVLA%EgBO6YwIjoG^4T(>1Z&--o0J!|w}7q3jh;Ix)h20RO_ycE?LlAE(xr`> zJjHS5-k2o3QAe>#sZ*-~>@}JuunI8a{elEZVuRtDPG1Mg1 zwTv8CTJVg(SQb@62T=$=A~HQ!e~b?3pArh#baLbr@3ghrCnhxqYirb0l_h8nn(%I^)VI9yJG)ku2%`uBT->k<_ zIu0$4;g>YK`ugJW%sZVhQ9<#O?cN8#mWq8mU>4B z{|!k;P@c!X_G_fdH`Ms27(kgxVzQ|&#&s+wp}0$ctMkOQ#-l4FreHs{JjMLCjlrDq za-Sao#XSxGBTxjq!MP|2TWWZ{1F415W}g)6Bm=ge5RP4qrejjW#Xe#uVbdMv5qer7?u%qMDGBg$^^Qfs+jok_5pDF_!ak5%?uaJ^7+IRaz zL-Xit`Pa9#fR}y)uhhG(3Vs)&Wkt^Ch?->9$T5$!ntI8ocgC2(QW}`S$WE)2`O#nW zy?U(Tm!pU!A?QLGWK2S_{;v(FMGHzfY94!YwJwFmRhz@I=zF*qM+9=7+KI5h4SHUr z=BPeR!@5N_y&CEi^su3kR(*LsHrsD9slQ6)Qz+ypq%!3>e$|!0&)F@ALCcAgqd^%` z)gPSV&_?zz^Hi@YucY;xi*e?JnB+>GEp zTDub+T`X$wgC}r^`!f&3(P);d}xoU+yU4S=UYHKwtNb25mP z-YrMp59^2MzDx#axje0Cwz^?Ov-6iWO_hy_#hGwgX{#KoVsGt?IGDJ!>0>$<*ZCay&JQzkR4kYedDe_YN{8RenV1OD|?A9?a?xa?yvk#xSJ-F2k&*gXQQBm3TjoFB`d2*(c7qa)Zq>VfVFwQwH~M5|Vh zKUBLjcQ56RZFT{6t(%0)0+vgSe$>$y7MuK zf2@b<6Z+mI{pyo;FBsvsMf&mY`+tQ$-B=*vem0i#dhG`fSNcn~E*HJBHE!6f6zu~6 zOFUC<+;vZnb{Trt1|>H~exUy?L_xipe-Q#g6cH5=5HjF0 zpZ0IQ@~WSpqCanYFK$3Eva)iM>wByr#%*<#bnAPtTdsR+<48a!WTu=wJ#7=EEYq>H z_!9YYWRGwvz8;^}pQtLnk=tVMs8`4vHyeVBnYZ_RwzX?M<}O>30&D79>SFwuTIiMf z>G$=1#Q#BSwMJ0Wy&^a}Nwn8?3WU@QO~i;Zwv;H}Wz}zhvbvpw{3>Gpx1^?lk@ZhW zP1M2sha^ZEN)y3C;_0`^;jJ*!K}`q%Isw9fLlds*9X#mOAfBuT`P_=&6;wb$DAN;O z^~-=FR6zSTh$R4g>-Ydu@xoYa2Q}mk7vUQ-|B9jX!HV+6Sgd}z|Ht*3p#fysBCNg^ z_!;vGS}!W@=olJA9LwHi$w?5HQSuO?sIBJ)6sJeS4eXEYCxcMbweZ~S=^;F+cTMhI zzE94Vb6(sJyR?7SKVx274fdR|b&lJl+idKc&Tjw~0 zPw^T3GAB^UEhT|duU`%tBEOv~edwDaN-%YSw)#F7T)WgAKiP;xyZSPrcKP;rX}sGG zV^Hxuug7}vl_r85E8HORumOSb?WbtEaz$aKdXIXby(2JbwGVbK}U5$u;ZxTia~77%YiQ9in@CTA(JmO4O`>I)F1 zf?34477wffaS+14K@nJf+vq$l>SWN@ zuBA%jMHJsA0oeIUwBv|moaQ112gQGsKLdp0ehDqVMn~-X=UY%=y=@n@tcxUt7WkCx z@<_+g^UvJ;9bGc_H0=UwZqSZ}rd_|Ov?=3=E@UYnfl3K6(k5E#4%7qC)B?Y7P7Mqa zl7x)5%RY(Rzgx|K<+6{`GqadFfPeZT+OHNZF30Gx?auq?#hrZk^cKyRS> zEB``KzhsO7W)BXg&i<1&a5KncJt&a0PF)%feKjvmXM$S%*re{WVEN5}gJRHZMk;za zX4-YgG37UZSHBLTdk*Jp^sn9?iA_oSFq3D zP-FZ?`i}&Wa(ezqR$yV>gh45pj<7E_@G9FkwL03-MnRpb{(Ah?bf34~3y*?SwEu>? zHtAjw1@DdjthXp{SP%_V^_3mjZ5FxvDS`i0eypb7B>|tOn30OtNH$ru+L z3ACW6;8fQ5z0WCz9cr`?a~zI6#vI}k~4o+EC{ zeZDzz@ITw1?y_LKs=wPGB6yJ+;1bC-Xet+=WIVGE!1kv+_FY`AcZ(m0ho=vPG*x`ZEe@LN^%cq%55weVhH3aAkW%PKLDy5>*fT}tJR)+s6pl#Rv=}vtdcyv zJx8T%s$U`nQ)8$!CRLpuDt0Z~{GlJbE=gzb=Gg4Ktx70-gj1fqolVkDo&|+PSS;zP z4MM&}pf`84p3xpJYH@fVNUuvZS?BW8~Mw?YN1n$KLk`6z;z;aO3*@=aclv?`SwEVI^q7exM1>_lof}TsvN9 zIgM+`gb(YgxU(%e`+hom7NsrSj%+8yyuK#`F#TChDjCV;%t@I`&$z>gm&v5s8=OG1 z&y|30jO7?Ey|tf@d(}l_ULR(A3nS8duJ5Q@khW=tVq1*F#~tMy5+_2A z#IQf5-D7ZVY5E7OAal~j2@F|~5yeY~GC3x6;hfn%b}U6q*=yi4WrNn>FJ5wEvW1h; zyNDfwSW$1##s#5WRa$2AT|3jT6Y*8Qb-XOX5Wvhfk-i@okea@&V&w<7jG3ko3rW4Z-x%RWy0BFuNB{~O*wvrTfo`vHV){q5? zm}-|*$~{^#_F$ItH*pDx;kTrXrRV$eQenHL5|Ap{F|4j@Ys;(Uhhz__lZ!Om`cPxt z{-?Go+@?ul8+Z|S{uO0CCq%eqka4J@j#zMD9=`F|tD)5Io8DJdv(@d#fb9=s5dtx- z_6CjE-aZRC`92<~=Vm5W!m55{`&$G9lbIZ2i`T=szN`G>Z2b6y0u5F!AD2W{68eF>-+G1rW>B%_?Y(r8X0qAbJDi=a)*&5Og;@+sIb2fO*PVJdi#DTli z<4mPNV2or0Gdhgd000$Z71Kn;^0^EXV^5hfAC|elDkf!KHOa7X3w^4u5$Q?b6MJ?*O7-Uy7DY zv~~0`wk}0ZXciY{Yyk|^6>Gvmdf5i+VIse4er1JDl#dxH#GL$E6M$L+s$p9xU8}`(C&2i0b#DH^@`>Y}tq2Q(KJI`nwhJta3 zETP!k0NG0PFM&Zuu0Cp>t%;f*;0M2t zH`~#3m%&aZpm#SS59nv4$v@A~G{tV#eR||#J-L9!9N9LnW{N)|;hA)IsJ&ak0Yi@T z`VKsuQvkjgMqL4c5~u^G7dRJo_|}bd`BI7sLST2NyI^%Cf_i#1|Icr04?NDuwndsK zs_m^YmdYwq`H^UgzrVM$zQKQ0?iNkgVz=wDJNxBl|FJ#x-I)GpFYwBW0(|oYcs+r^ zI#8f|*)%C_;_WZ}S=Hr_IwJ?^+{8%9f3}6w$^E^aUQoN_=lK4>7eVfx0 ztv>)7|Gv8jWX{=Hz(mkkfo5X5_?uV&!Y&5wg4%~lOeH!8uOEIUas_5)G_Z%%uLY>U zcg&y{hH!xhmA(JsTMJ)*ZM#IOH+XUOH*iFJ&Ipml6aURbf`_h`u}JO%;7xW z3a5q(d04r~c6dP$RFBPL&$>YjW}B&_PoIbWp(!Bo01&`JIkzC7t=SHu(0G-S`|R|0 zS9W)dXA_Q}2QFE_>rb>%si>6k!t9|-Z8KiZ>T+qIyf^-c5sT$etrBqo_-k_RQ3#u6 zGYVxs;F5pJ{O6r&_Zs3oj?~`N%#);=Ekg?BW1oAJ6?%*$q zE+eEmltRhVv(fHFu-KAr7s@6M=Jpz<9>|wSyoY`kjI+Q=C@h!{<5V*bGd!ct)+Lx27WzY4#dl8)vuJ0^kUePi zcZhs5D>qzB#49p}act#xL6A3J>{hxHWgYfmG72x(g?OYoN_y`NndQ`DX-Ebf!#>!I9+Z#? zY`v81Dy405HOFPRpyi$;y{kc6c9`iG^q=1;$cvCs=c0k%dlx(szIps*DV&)>-+eoN z#my%giZsmm#5>NE5u^*YR`1E+Ccma2i&%(^B{8sc$^1^Y3p5ADb)GD&Lqy}MWDIvZ zp9?-k#EMhoS@g~X;)A7X?{6wWcTkDvD0beW8LtjijZ+?{3_j6>`y0D}ak+24^dXQ* zWH7omW1bwr(D5Dl>*Ldqzx{8S4*XsU{Mqh6;q z4hm_C(B@z=s^P3sRvV_rbIkXTq`9BVs9i@8^LOVAkp&?aYqzpT(1e=C>^P<{= zm#? zrn7<&RFt@d zX=~kIW*_}PWfVy7J^+xyGsNB2HWtN=I{>2~eEUunLtL>*+9OO0pHfaCIY0_LyH2S{ ztYX>W^QUTWyBS#rdo>1R!*zR?Y?A6jKxm=zB!2uB^XXR5(eSjg`0aol(}nUJs_z$9 za=U6}vHeA1qJr`R@uI--u|#GQ=H5Cs(TOD1tC~x=be7){%j*YrVKL^xI55|m(NQ$O zoywZ|nZr|=0<;papK2~sF7#G^`f-_>qsTc;tH&w#I5W!t6Pxb{RdK?f5J-+Nx@<2&aYU`yDh~ou{268GRW&(^C>vZ^h9q;#oNc920}{h zn4OD(-)@GucT9^{6Ubm&r@f|Oi@3~w(j2z@5|*`-cl%SbmEB?D^PwC~WP0WgwByAm zs)%P?WzpL#dzJ)=wdmORjm@r+%R3ASgp z<>$KSSH@Xx*2OO)qvJINY?{MHRUN!$&5f@Q+O$uklc3y;j|qL%$|;hu>WkcC@C^h{ zsk7GcyihMv^wh{4ykO|c>8KY|oa_qEKKXu`skn^o(aGNRoGUe0Kjw{vl75^g)x8R~Q#i3UiV&u6 z!(jHibVURWzpB6UbQrD4#|)P&p)-}|Oueh-ma~o z<;A?t_}~#Mx-7zRfVHd0%4`nvz&RV<@o;GFBzc&*0eqWTWvlp;1EvRNWCipTj^pxS!bcmuYm20GTd#@%3&*$2Vlx^XEa zz2uB^jazM#my*pcYGP|%HH|&M{kGr2ENWl0BRQY_!MG)pJr@hqa6YLaM&-30gEDBc zEpuotmF20OdNJrc$wCu@PGS_=F0>;su<^a4xTEnk`!Q{AGLw5AWCpC!35`L{;vlB~ zTIb4kQ312rVMz*g6yTU1L~s?_m0{H?h@C!qNNOk)=nwJCZ2nVX1`_T%7?2?_lE#%d zpF862w>{}&XOGuVDO7ZHQiJ4fqugKFnnfXMmRd7WWw0P{Rg|6E znPMK(z^1IVVrfQ_d#Yj?13XrBMqcyh*KfK!xq#kuZ6G3>H4Xbt+$di+qo49splywd z01(*dI;%TK`ZuSW2pbxozE;YMD&;%gc_OWLEUo^)QHe7Y;hqEB?ers5BmLyb-inO|mfCgoC zif`2wdDujfyNsK&f%DVejj`MSuLtmZcxoAS6cFBus7}siv$NY)&PX*wbV-kS6SqxT zRL0R;G_}a*>?*cB0rY6NnMZt!9G)sVg=9419k&H4gDj(3e6hdYEYt7><+Zc#PVMstt5hS3>TK%+D-H?e;k$e?JYmRUlh3B!kiqD=ey?CbVwt9z!@8JsB&x z7CpR}^F$|MB}P|KA?)yFl@-%hWLn(RmeuaRY<{(LXYj@Zep=+=X(*$eg8bH5Z0iX6 zocQp4=+g$yB8+4I-M=Tx@AKH_VOb|szjcYS&vDZr-<*0wk@Tk7j&ay9ee*EEkXg%q zvWNl3404QEyyALdI;NJ07mbU5ink`Qu($24P?2fzI&ZpgSAm$zM$_bNQ|A`+kx$LX@Ek4ym}6O6^mR3jUNubIVpE zGvz8ew_qE06L}viNAZV?pt4cv+U98#f*EReM$yx_ByH9>_6bj_O&PK^WfE{{-L-m6 zy_&xIoXx}vEq5rgbd1TUyv>tD4p&iIZLoRIgY9rjn$sVxQ~OkDUmL!W6W+6Y4e#-%8ZS*gBEYzc9jssGg?Bd-{h_X@&V2EeF zC%4;LDa%4Vx1m3mv0LA7ckF0W{5EjE9+*Dcxj$Xp-p?+dmo{#`1_o+7_VNH9Qf~-x zLdpCjlqhSPZ^!alwfUmP$RRq{O;Yps7r*PBx!Sq4J)b>nQGP@qqKfH#{?|iRRHBwk z9ALmy0T?j-Pw+A~F)%i9WM*di=aL10E$njr7m^(Vo9V9=kG7o+h^vm52jUR{)6Map zlcT3$9vFbKDz0SSq%X*vaC;IBpBvCEE>JaQ9?f^R=uLRgIo(3+U5-4sN^Zc6DSWS! zBK6rA;hmeg76^rR;X+S{@XB*wTa#4Pn$&}XON7NYhVm3x-J=!|yZ|#MAspi!*vvaG z^Id5vn(e)ZNO?;GX)Y-=^#&2 zz>H~$8!4g>_?#_}w*@d`T0>NGKuWJY1dge4>s*LQ^qB&x_WxSWRB7U*__cef>XC=GM-$H0mY%J1Ni+X!X^ zw54Vhc^5)4OHh0mf;; zE}#;15Q3``V}c4oS0QU;gi1=Z`$lrV2?S|N^fK!q|LD*CX{!R^-7&NE|6PT!NAfMY z+p2rei5a3RfJ5O{BXLprO4)XN{;f|<^C#&z#Pyp5HvXZ!Z~uGP-H~*x3cS8VI_U@( zd0;VcV~IiOlk@YiHzQ)JOm}&rIRXP2Hg}}fl)~Bgn{>qeRv&M=NV+^bf?pHt^uC)% zKLY!%LtPQD#jP($A8EDFk7jmB2YqdMXMl5c57jznuxG$L8+1rsKL_FtR{_7E{+18S90=G2 zvK*HY(|^qv#%%^<3lbSDqiX-hu`EGEI_wDH$ zEA%=I>n9ky-q=lE{@oMz^Dnw@rEZ#7!5?fd)u0q1MP;se`4x5~$1COcj}edTAaZ~B z0)UuCKb5lz+nsA=KQp*TE>JeaWzo-*z~ravbCJkDRy%ad>sCR%Fjm7Ne2hhy&m4^|zsyP}y}J=;y@l8Z~E7 zFy+myN^YgG>e}|A-~BbkFZC!7!EY5pc}cF-PF*HNB+KkR^b?0tlv-Iifa^8^9hV;!xYDzrGW2BBS3>*hUyFH5|`~vjkmU!r) ziInmz>Yk@qD%Pymprs-<2)Kl+iOMCBD!qx;lz!)1c}ruZsO-Z|PtN3ITgw%r&EJAv zk?@WlC0)zA1J_FOmP9@Iv4$Hp^^Tg7je zoNklf8@s8%I3y85*`lt?n~%(EA?K$IelVJCVMkr)pD~IF7|D{DS78?8ucE5sPTghj zJ0RzC>FUxs@ln;BuTN@f`)ZFI3Mxd-a@u7tVxr&LXWNSpWl?**|41;EndGkQS&v(& zj+B%c8ju;!eDFYJi|oaJXo^q>I=$eRtkGmrQjwb9&VRX z+VgO1B6j-$m5e<_B<3QQ=J?0CkQjtyq^L3C+pS}^S+I05%F-aC%RzJ0Zfm!6p;-lP zQAthoTh@U265kxK5!Ng#0#sScZ7wNS=Tf34Ou@Zo5Ko`8OkU;w zzJ$r7R5SQ_;wvsKN=rKOFJW5xQ2tqF5VVp2Mdin)&yUqo6DgBgtC z3ZcF4HdY~`$HR+nWnU>as)}_>^s=?=M^^cGnvt(77mDp#yc?sP%Ej1CQ#6YFu&C42 z%8sS*bPK+uOK~|W?>EiVsUXn4a-~v8SNGf-R^?MweXF5lnT4x6dj}1=E^#gkbw15(l!T1O# z#LBA0fEycN&BI}B`CrB>Yi6aHbFQ1u*GuddQCaBT{=P+ z8Kk8BHpJ&EjqHF#@xyxqJErMjVwlyh4MW(}fjYdQ+aOFW39VG#2H|6~KE;c$i=aBr z5?r*eDlqNuH2UCevs8zLEe|qxt|X)5MV6}b86NWkQ@oWOsB6k^omr8a5qjsL#8M*u z2;>&hbeZnKjRaJ=U_>ou!qrZXvF>qdam=-iygEll?e>uMG*T_tSzg5P>Ke|&FiJQM z+`YpGW9DMCNcp5l$!*+VFP6UHiHTUh?s`O0EAK+FY12BIFYu#e_0Qi6sa&kx2P*2< za?3CctTN>2y|67CbUgQi>0_Hycn5HbosudR_l&=_IiE7UJjA0UD4dq{8udnT5>X1! z(hNBv(5_+NdW+S`E2~~xSh;pu$0AqK4@kr!=V#bg`#5Ke?J8wTy;-)b>swoO1WNf( z=%FY-qNX4N_YSU^7s8K(iCZPOr*4>lmhG;3Urhm*DV z0kzW%Gg;pvxT*nhO{tXmc;u*}z4}58yNNEipdAys44NMK$F3jJ=96x24CQ!@OOPJ% zA36#qqbsrE5g{U{)d~Fe!Dw9(=YziIijV!<%nR2MEaiX$7K#Zx!gR@mpL5W8){2Cd zPrS~LTD>-hnPR>cfQkJL(dqsX@Hzea?2F#xiyZ)9AO@xY5$B&}IYl-1czZZrthU`y zXOG81)2ZG5I6IgH_qy@}e#gdd!Snml`>*_kj1*<>OhA13`QPFT^Z&+|OrN~)7eugs zLEP>=>yxK-jBKXt+@0&!wn6OHdm#V}H=MDl$>wQQm2Y~OgV^dU`N{E`GYLSvni8-z zT>V$P+V=m5SC0-oNqJrVSG;PgrndUN^z`*v>-Sw}Nd`;bIo&mC+1<8X3JMI_Tq3bHsf(}{DWz98N8sUGb|UK-#G4u=4@=gtW%R)8X6 zaK6na6G#+zg2ju?T`USOJH6!c?-)PN=&+w|XE(p5jDipRY&98h!!%3|%T|1>Z!xzP z`UZwu!PL?TYYid}K>5WCPCajea06=#1H_&X62HcQJ+`;rzA@g6lsvl4lPwy!1HVVV z{#pk2t^S9@fI1V56o;IrxO0*1CJPeZLyzh=!djax?Vad-3AE4sm&4GevChcF4ma+u zv4J%7w%^dcH?J7Lu^D9)A@8^yH`)mzF){A!2OZM+_ASV$S;ndPKH(T?=9RVN7*hLN z=dI%T`=(HQ(lN@Pe2+h2rJV|fz*D4u{9UvZYS97a)zQD^RT)eSodM_~kvX4yl69UA76G9_Rh3*n?z)5Uo-@_-nVPP4zT_%t)M>6He5&r100{ziofhn4dX4YG0YfIaqVbAojpHG-d_m-Vz{4TU^fRFCO~S3 z;Aus*4l7#iMgYYSVxWngW4EGNYl*JXb9+drW)K&onbz{F?~rJ6hp7R87^0&+X8qq~ zwmDj3gEfI1kxi@dQs7A{xv}Q7A&7OR;!&m{$fvVIiiNfqQBFY;lD0`W&Xl3aa!|4$8K`^Vn9j#fHDjG&gZ@- z43hHt?w2m0C!zF9fPhdok(Cl;(cjr(WhDm@e?Cn@U<|DZU|tQ-zXh0AT@ZhlZt5A% z`XN3kpcwFNu)KF@_>=#kH!~7_hwWUVHeu8GWX*_(YzotvP7J#fHkp2l*;2H&MFu9t zwWcJf+{W^?Ej@}#^{<{$@6B{;^df9SzYin1^FrPQPlqt*584=fRG{kI-lU?4sAsR- zcloVb$cjuHg8v5bxU4fRMhpzI#JU%}dxqJa*_qWlkf_SI-o$U}G%V_u!r}fo+Wi7c z;sKVbb*dxC6t9oi^G|pI2@n_odiAF!myBGw=L3MXq)fx2EMqkVM6Z`hY2Qe6!cq+HI} zU@!(Bdoda8IhX5O3->Iy^cfH2t%OfYy;ROB)hLzS^*hw{>=1TSoPoS6o^mM0+Pu3iVk@|A+hcX{o+W!hmM=CcNigUdAa ztQGHdhluooO43-y#oW?Km z8t%1FjU9w+D^_pF!au>J+#4Hk#nNGHLDg;TrI4Q$$>kbX1$WT#IK2d!)*^ae8$SIadqsKD^u6UXGri!4l41T=|%J4V3igOS|^|{YdA7i4)mU$}_WL?|?T6qPf zX(eu~0vAmo-yWIq?BjiVdA-iI%Ta)em2!`!mXX?GNKE(sb8-qwK{2H5+`1+Ju+Ge- z>U{vlMhx0 z%|qi2)alUl>&?-iaVz~UXWmZ!nleS3(Xy71a$Nb@AlpWXE~TY~ouIqeRl{X+ zhN33IC+wf(YpzZ=H{-OV^kZ`Kq=YUPat)pw>O!sXo-At5`%m%&ReVcq2ZGz%LBaVB zBQpwy$H|FliOgK1zqETSP?D3QE=Pz|YG8h~>Y%RZ*>?iVj0{`N9^c+#>OmK?iN+=5NNvbC2}x#BK3B*gXfG?&(Z0gCE70fvBrtzn3PIi zlT=(oo?@~zn^O$Ksab9(8IC-ys<<0%PZcfEE#x8Il5}b(2w=}eN2P%o}WTQC(5JmAj4 zJ4vEngmmuSbFX@M&K}Nq?zz+47Xndy`-3J8fu(K>nW!#{e@#RoTTAqhe^~0ykFT5E z7!4V)OL^_%MSL1)#xyzk{iuMdqtBx-s=F?=)|0;W$kc)06mCptS+!_YJbByGc0;hq zR=X}@NJSHWoZ7MMRC8UzjdB{%ElzRapfNO<7V_WT=V^9buSulx6gp3jmY1!?%7&v- z*{H+_zJrxS;@YEADr8}_YM$Aj8P3eP>0WL0SAb|V;h`0$qV8xO8E+c6WTT7e}~MtY~rjo=}^E=CpDfx>i^JnPQj6=;nt3A+qP|MV%xTDOfs=Cv7Jn8+s?!` zC-&d7_c>MPV*httec#o!zIUzXanri@F-ZwP-TaN`!E7G@c~NcT>ciCTkc&5NpwcOj z?hn;ULpqjMxMoVka|inzL>kG5SD-H>m=-(v6`cINkueM*(@c5f#>UQ8S4%fhKt^+{ch5s?J0xE9*0lnS@ zcqhRD4LEno|8t1>cTvR3`Y%cjz-1`p!SE-v`V>v3oszX@*9naGsgy+eb!|E`fo?+t zEZ1xM@?avGSaDWiucq;oJtvi|9^z*kAdoe~-TL|NanzPF2uBL}9H(}Ms#TrdjQ}?y z$fvF`F)doC9hrBATLJ5PSD%@s^st@#^%5tzPy#*xqkSnk#WqV=$q_1?L`1U5!O#AB z!0io1V%Vp^a|30l6>E<|4Fw-eLH)}ToOpJMN<^ngRZyw$3|)Q(;9?E6j>0hM<;h>S zhMKy74tcdlN=5oU{Li3B>hGXv$d?mM(y&G!cu5c}wADLo5Wrx7-v#(r=V}w4>U(Ew7 zj=38*h?37Roxx;7vDbth;p52dW5AE!yi2R5r~8Ul?#XYx;1aBVG7q65aDlm$2f#7$+_7)KTzrJ;=n-{hr9Ve?_;Gm?SJ}jz<~Z+j^e8i*G^eR*yb;Z~IFicCIiLVnX33g7 zLLMk!Y)JeIdd}!qPcgAbYQ+*@?mAfh;&BCXTEJBGD~2s|FG$9#lc2eWD@e6@PiFlBmsla?z)o&BRXvmSIRqU7gk5pHOm@E1!Qq>_I{hdr! zB=jzpCNlFGR|F1awd{R>7~s~msUV|yAD7C52watxVOF6;smf^yZ?NvVMQ(+DSak*b z6iscW1_uqy_8%rgv)C1nA&$J!0Byzy3iuSSK}yvs`G`W*K^}JCXx~e%heZo2Nb(oR zgJJ5Ax#)5;af)|cOwDkz1oK=}hfS12@S|7!bP!QkkgspEZuMYZNGy8bm{(|$tUr6z zX}x24`J{hoSjkPWxUDjjwue=%N+!@pl|GVr;8gU1`PnD)gPt_h1@E(pCyF%fRTBIW zzi7f4r2()0S*DQ4pl!wLO)2J57g9boz&Z}~o24CHnQ(MK{E>F!X+7)X1Y;)86m13o zM+=$z1*Zsb39X3>{}w`_o29Pql>=FI9BNilq$)@IBT%Y~giha-p_L!8ZMnect3H%- zL(fT+qYh~V)FAlEJ0f)+JBQM=P9Qx1bxZFiEttSA~W)LlJ$7OPIEQH9HgwXMo@@+F85$t8RY=6Wc%MA=%w$>y`L9 zO+;W(kmg{Ue80Ujba4YzndK*j1Fr7GPyIyCb(RAtkq z!Q@*jAL#?HliYx>N(DeN^v^@Y#uiCuBFm2<;ct=fcB!%MMIF~hi}myny^f2PqvaJ5 zaATU%W$sD+dD_#e1}bv>{t$HpMk8hrw{>mLjg^YJ`6p!;2gnXy)RBc&GSI|67S?A* zSe&a_W_}O|oh)ycs0mXpc)`Uo|wBMmaSXsYU^w~lUxV|17>5>?OPEK__z{7q~Jn0HyUPrBj0hLYy9Na&G8 zR$`PBf=Se2ZXh_VMS=~8_@+jbbBr)vmJ8DrNcAZLWh>{#vGORZH9mkF)-O*;@{4BF z?iu#`0dSfeVzC8Bg4Aj_B<%nvT-=fxZz8!BgA8OnV}U`yRskZWg)p9?#aik=JvZk> z%kI5`ujTgRlDEr2tQU?&2w1c3y~BDkx6cP1icjKrN&cqStiGuI!wRt&d;CQG1&yYg zfm4*Yp-{TtSBH7OL39wBZ+0K+)qEpjVRXsRwA8;n>E4N@lhkbu*XHEIG!4ca4^4y_ zsN#VgJi9e-UwYY^BT$TP0uo2hkpy6uMy0*TCu&aZHhS@o_XTo8WpQT|M)|vP*NGN3 zxkVJ36gc33r~omjFWhlFFjnCa{4KdPSh2ON4SXi1@q5)}ldA zdgZ(ZbL!+r5%Zy_V>PH-))6YcY7)Ui3s?*Z;C~}-!NH4O+e$!8Ww%Z*ja}EW9LogD z+gjFsEY4b@&#%P7nR*n#(`NSMRp_emUcht6nUMH_L;)tCel25M*$h9uI@xG_a3R7 z!lfzZuvSJvg)oX{_pUQBu_*biw+Hso?tfJS#cB$|FRf#+-~#+ze%PO3hR$INV`y1- z_!t!N$|q#vyZ#|gIa$ZgYMU%RZE@9&sr9?Trtk&b*paOCxu*qoaksSN=@PbaFR9v4 zQC>Tx_i^=glif+3F(c#o#aCzZ>BLqQ3*Sv`)RHOTGFsA!Q+-RnE=-{^1Z zRS}K`*j|;WGzX)YYR9_yX;;~OR( z|`S^mIW?eVVF!&0J_oa&)I&9Uz<{cz1&+*pqph7>^K6ZL4nP%1+=QzOWChPWfK7A!E=-k^adyXwx;86}TnS$#fyz?&OJr zoUSYNXAjflR6nA=rH!xpqZR0+*!#Qs1-cO0|xw~l}0{aS(y1yZlBZP5zQkJoJH z+kF$^GIhEUx7*_Cuu5s&3k*BmoV`p4%;K_p_FM3o>!BX&Tl_!gET=1G^N{49ZW;Ig ze*T&D1gmvSNCLkY~EzQN=q=%!fSkNBLOmo4Zp>`K>JYT#(EG!4_FR1 zDAdn`AJ8BmT(K5wVhF}R@}#5aWR>9La77xE%OWxm&Na9ip0P5~&$$7Mp{&rhmHj~m z0<1-a5GF7M$LpXI1)zNV`9+_yVFl49D7q!yyra^Vaxf?-&-wx-h=6e61RGe=dk;J3n%p8(y4jwo9g{$i7&+5T z5(;NofwWExh;H3MlN0SmSz*5pfMD>=jT3j!xU0>5gIoVv{bk9WQ}<&qV$9C|9eGo2 zf!wep2%n;O`TOc)0)a5plfJ7(#7=`{nM(lZn14|q-HpTkpYN}RWqxsMMdNUYy>Z_I zn)G%w62Gt#NCXYP!8zsLA|r3rcqNeu5xi?Yt5kRu>z;)ixPazu12@XOg^cZm_vtZ1 z-63ycjl3BGA`=ZDGF|6uo`v8&YZ&PR3(?j;3jQ0J+Pn*{-8?;9qb&Gi-*mhce#0Nf4vrvmPC= zDF(m6<%ao87Vn^1udlXAH#swy3!)LRn{qE2c?IG&sq9O1l|5UWP*47WvN5htxVR<} z!C~{LOgTmYc&6R-Niya2KBH`vw5;ot(l}XYeVe*Ul;Sl=aRGv^LcZ>YIT7PT>UUbV+f;+RYx2V46;vzjDcJ>>8J8M&7bJ^^N5sc zGJf~z2H+%F7%mv!{Djk`^4K^|yL*Un2(&MB<^CghTrP(p|RgrnYu zKAhs`57(6%3czY;B*^_wO8zQ_DDhOceWw~Npt)9wXvjewm7hUqR5Ok}8WewM{k$R1 zN+!wrkQv!5+@uK*u=>>Fk8mW}v(GbnMDe3(75L)D=^fV-#LSr$R%rG99A=-KR)uXd zDT5qEuAjikE88uxPUoIBWplXB=)!{Un=WqI)SxFdmGtBl^CN*w%cynTBxHQ7lo zL`qwkf5y!CMM7CcHt5P!0b>d2f|lP@bP@>C!Jv;JQJh%uZEHjo)lh4GJq#7{`3J_w zkDjwtc>f*HK@(@R0kLLb#euLi?`XV2G@%&@rt)wAg2Ajjb)>k631$-P*{3wx!Pz1W z^>bq5Wk+&A!hH}feFQ z(IVnYi}jQ`h$%bj?x%W-1vqocA6WN~nhF=iriB6d!nV`U0 zlryfFnIH9%!bTJiYmB>p>}9ZeFQ@#6~J+M(< zn;=G5L(tV9*8i?@x)tX{BNs%HM4KnFZ>|PE5L4u5?3^cJv9N7gRSdATWk_noqCO1t zY%z0RWjYa@Qk`Lbtx-tRqc!c5U&^nZk}>6B4cuU~5c1l*&s*~}jRbqV?PYkVceeTf z$tRr^*xdT8maGHJ)W}2~9gqU|kk5HB`Zf#lH;y5Vk2jXS=JH`o7!Af5D%FdEj}1f3 zk|DON9t(m_{gidHImvUOo9K_Tw&Wr`?v+CHV^>p#4wTS$3CPqVol7U`i573Tc(Rjb zRkuy|&uG5>4x+D>4-FXr$m>{#$8KNl)g6t8m@MbzFXq62=$D0@?o5gaU>aBluUFbD z`JVRr3$|EZ5|yWh32ByfR&1@y)1_ZLMY<(q3wEQMVk853+V}pt>eat{J-S+{RRPXS zU?H`t$epJv;Ik0P|9C7UgEyq`iH7FCunH z@aGRNBp(+GA203cfd|(Km~vKvljXW%cl4&6Fe#EiRS@}iak#yY@JAoL8N^9w{)XW( zVN;m$5lQ2AE(c!x;T!Gn>erVmUd>%CtN2ujIj_YP((ap%l#5sAwFi1x6+@j&CLT&k_bx68U>+ff51E zd=*_P{>Y1duViNHr<1=&z4bjK!k%1-4(ZNBt_1TYE;u7j_Rb%x2{b!qz{= zFkLck_va!xJ2&e!6*?E1!HQ0+TfV!!wyLR&m!f>Ljt^yq$MNdMPXZrmlSo3QgLf03 z3<~T*=pypL;UygyYVEMb(+>2oy+i>W2WTEK%FG!(=ee@y+e+nAQ80|kA*yXN7PD}C zGPo#=7Wl?w`(tqvG7k5i?sY*B*rd%g3cuyKfeWjW;}N#HtY|QhdV6t#*V88)zf6<`<6lA=rQ@sXNbx)%^JYEbS2bCy!CHN~SFu0zhM4i{cT zCGxw_Rq1@0&-I&{+?7V*e=JO;hg?fq8^@CaUn#gU8;VEG3RZua)04uaD;kwH+{VLs zM2O*mD`2XdqSQ$r|000|c7A8i2r9+*&D2Gs(&K8t`Zg15pBfleJUNu*@+t4cuehM%xprPI(n44zyxw8S-+K$7HDPggo9)6?9{73D8MyAm&tw2vA&o} z-HL^j4X%1;?~yQ-fJ!kD;-$Pu%!ReNfajWWSEU0oZodG>nNv@|#t{+|lx*Jz&g=jo zO}Mr}Qx~{qJAI@$#yQuU!mBFC^HY7n*UZs(1HFTi9qdJppTB&9Mj6CdOfquR(dKP1 z=BRKM!`%3yR(i>n%#vmp^p&O=RYo>4yClMP4N6NI&+CJlnPo}eGIHzc;QsZjzA~yC z*^TkYnsdhp+One0+)_wJ&OHGOk%(0rS|KyCQ5s2PYwpNP1J9~o8L2t=J35_v7+Cpk zI(vQ4BglLJ=Lo)rb6Hf}amVSe6>R7=B4q#GJCOP4fL+KFjjDzmm zlPiUxG~*ds#VprEBh2#kUHG;~dQ!Qb(IRJB&9HN2ZnYqC#pfbdhF2=L$9w*`KYUeg ze7)0nv_NKxCmbp;G@a#X=?1{GtIw>QRr*MPYwH)>(4RXs^*22U9)F0(cA*D+aQ^50 zCXtfsDhLooJpUt#{LhX?C#hik-yKajrLq3Tk}eq9Q@KD8iN4Zp4I^c12uS3{?TUhV zL26f}yMo)pARjzBcm^$NkM2{-DL`8KtWVEcxC-89ll>~OY-64WIskvM@@h`s)p*{- zr38R#3mJAV%d*ydoxcTqjtJhxnuxKt@_gs@D(hL!CWGb$Lq3l^t-R&jULr*TrF|&@ z%>_z5Jflbm86~nzBypmR4zwR;-l!;r$iP`~aP+?AW+PR0X~hC&3B4*)GRAPgT4W5V z15;?+2Awki3P$;xMUEInoxt|a@R9DwiAI-r$sTQ_2%$#&;3EM8npYg#D! zv4HCxA~sMi%b-yW)YTZ0}-eN}D_H;ITV^8O=7EKX$(O zb1zd@iIXI7?E@POPs;;i+{5<=`KHfDuPUal89UgPedq?MPOi4v7=gkL>o%zSMa~c~ zo0#u%h-b)P_50y*7drvy|2Ru8EMP``uLT$p%N4@cwu?FHSq5--ELMAdPe0L22gFJx zbR2PJtY~r zjg(gfJ8p0eDd$cG1(+Q{6LFvnypW^4)@XoKtD!C_?MDD`aCa-|#)OW=UqywppIt&& zVnp!Uvm4u@xLtq+?LW>^48<8?f-eGAT1j}LlKY40Q3RnPYk~u)a7lP?Pk0@mE&vS< z(LNI#K!aORj4cm{fUH28PnR!~ID_ILU9nAIqkKF|hp|x#E~{P#E&uBRO09KEG%Zta z`5h21wxF!SC`>BSF!Xc+$}*CKcZC#VABag}Pi~6U*_5<-wIs&xQ>i+S$Y}#&z5*yq zStCkpcoo&)R*bcB^798XPg{e4Z6H+vNd)-A7RNKDG?nO^gz(HgA76<#!RYbL{Y5!3 z1(C|uvv+#@H7R`o@PcDKyn`u*G@3hs?-ER>Y$U)1WJC#8|Kn`?rmqGKSo2F{iKBAJ zad_jGG3(3ptuO4S=#qfS^(M>_@=O)8oRaovs!JzP~$8#|N&LY?#o zgS2wF`G2z9vkLhIdjCw6&^p7eW-7d)1C(EXV1?If)6T>7#g(aCNXml-YX# zng$v@0!A{_s@JuB;soqvcN+V}$@7zhH^ z_!Wag%0{7p@1Va^uvB_-KS_vrD6!5|P4VklcpO*u32$4e3Cq*U_!FA3wHddQi1WIR z4xPe72Bcp;>2p{}<_afrA^+LIZq>=r>r!#b0S&fe1rv+Xe9p`27k#t%uZ`Rc+--(& z{Ehn^3T97X`G?@&C#pFQ65{CiYvWa|M1ojClfGhcOpJsvmPFD!dgVCnKR!S<`?^Gq zHM%I_eff3|^<{a>qCdG{a}ZH9zI5W>ZU9LHGr38hruIT8As*PSQV8;W<+X(H$7T(Q ztDO;9uSLP?yq zoheA1r=I+%{H8$vXZa6Gqt4|r^J5x|!@N#_k-LSQH@E4z=?ah8)!31RSS0Ys?bc!` z=AZf1$e-KcXPD3=X<<*pC|JhqWK^bA^}*5X;`e?o7gnO&Sr8_OpwyBsF#mUwz|%~e+Ge6l%>^S|h!ffiQ0r`;5pFa$MmaHbFrpLcXS^#u&OEWLNx zpFA1dU7nnK1KIo>R}y4$5uIhcR13a;OPs~4WK7nR->4>I$JwqWgB40_bN}31awXydF~|*#^}(`= zWWEUZKzIF-ox@BN9UXI}7v4RK8Ja^^@GKNEvir%X-vQ`t#d21-I4^FN_ z50kLOVvQt~Sg7bzO!#0?2o1r9$gZBAF%&rV3aPy?g1toZp2`ztYmtecVd8GbnN4P+ zCnrfVMZJEWt~wAl*Nb(^T1mF4BHjXC0CZl(Xb1aX7?G@GQ( zWIm@rt_8B4%V&}7QGJ2E3%e$40)Stt0n0L7A4+bwMS%B8pl8H#?AVlGH4}MqJ7tQ> zkYJJ-$Dd=}`!k9Q$#DgFFt$CM2JI8d!CGE&>R4(c#kv3UU`RqBod(v}-l5G!us2Yp z7#zyH$ovDq*W)`TigYK+Y~(>I`vr{A@NIxgT+(rM!ti>5ApuwEC>g_Lp7V@=?$wLb zgOX$+i!dCENgp>YsZpN}&cP4ZpY~{o+2w+RU&B;FcwVM~2~Jj=Kt-bAAco5M!qpn< zH#xXfNTG7=&uW~{`O_Z+Wv;F1O#C`~)nkc^B$=HuD=#U_dP`6iUZ&$2Xb|_$71VEo zDH=b-ClSUtC>b;&#lHJHVVOs#JuUD}X{4BN+Uk!@mu9nJ#>^Rcy4}xB?y&9Zt}&dm zFUuDEmU*%X8D-NR&ljYJ5*h6nr%8KDB!UA225;Gc`US9>;)*vS6{m>`qA5C`_KeXMcU+_>$w+fwt<5>n=F@iGlLiMBu; z7-BvrOD_Yu$?WLWnt3g$L!We}Qy0zJk%wa8!*&{u#o~a4 ztg;#}M<+cA0)p;4DL1AGH9c;cpSNA+pe?s9IgT2cUd+>QTF4R$yM5roYFr>%JyiH`k)w~934j7dNUUbMl5%xPSzH_E-bblxhO&!j?%l3pmJ(X z0y!Lt5lVSi9W2)BW56vrgw)7J^Q3XSsT(S?>V&qnZ|EFwjkZ0UYN0Vic%cN%rUvPZ zQV~0dWew#(=%%|Kb=U=hr5<)%Z%DJav1$=bO43|vfk<+LiSIW>QteOF7bXm{!rCwm zkD>?EdlJ4Q#hL|EG_z*rv$kFvgvu^LLyEP^Eyf@;ipXoLyBVKJ2nGgDfJwaWjA&1q z<_T6LLR)K0Z1D+S2twh_s7=A!65%tVLG9-k!&88Nn$Id|O@Y*VmTWbTEk?_Bu>Izr zWxsYy)x2knuo^7~586eauaGT+XUFK1xBn(s_j)o$A^m?eK>y|yEv=+AzUA)RiWfvQ z6?V=}dUAexP^mOjG>va7q z;TN56ZGx5);2GZ}={b}WSKTnQ1Q!qBFHO1cWygh{1yQ-{@AbA#RsUZPkk<%=6KD-W zqC5e1+&9R;vJj)lUCr)P-#>b!2uZULxzV#DBJ1w(uoDBTgHk_xE7j2={`yO4m0(%^ z@t5xT0sN(hj?5soCgFucy)-$@-wFTMUrGpwEQy0URA&)@;f&J*MA-*1AhO_+y_!fF zAjiI7p}b&3eqfT-j5>`RgwQt-11MpdzN2 z-Y{h2~+sNX7IF)(;SPkrjP+jZwN zNAH#GwX=IC*j$?M$xnDy2coGqsy`Iw4;S8Ro#W?uCKL||nT98O%K>58?wFb&-OHA| z)XA^b$lAre;lD7jJN98e-j*c0@z6vS-q7fb2wU;l;=0X;6m)neUg}h2xSif{0VUc7 zVhVqlHgy`^L>7x76aaC}faMN^h&kx=9SO#3fi`^ETF9mG z;OYcw?v=UZgje^pXI9Dexh;ff#0ZDKuuU+6!xtfvyF%6<=-fL`pWx5Iak>_dHW+EK zgKKyMQ8fEz2wva*Tp+<#8C_t`tkP_ywYIo8Kwz4OweSuHTLCq{_CEsCaAT*$(}zrS z^dpkMvWo}Ea(vCkj2{4hX$y3-?89|Yj+sq42^^Q)PwV;i$v#3*UNS#@DK} zH+^iJ9RQhyX8D11CNn~MsZvGO9G>oJM@X#+JJsAVCrGsYur&zU1&~=9cEg6pSSs0b z)WfNmeP;Bj08fK8cM~{fiwP$uWW|;=C&dH<1dvlPY_c&p4KQVbElp|rRF{p zGukV7=WK1D{Rd#}UUvq_ER+8Ltnb*u_7xi#BU|ia{=m50A;{&Bc;$RBoRnyT@Iz(R z1i^R&6H|wmX2BPV;bV-PRB8>@PQD5GLriLDFC#%3!3?}C*gjaMGHEp(DC#y(Sh4so+VU(&!U8cTRm2_x5 z#U!XC7JSY@HJqs|;8I;?X~ z(9t&Kr!z)3v6C^eB=B;8u;on#k@VtMF0={w(a2#duWJ+O&~nH&@-=RA)y4C6V;#Xv}0pKVHy8C2Ws&DsQME}7TeX|nIG3KqV zc;FZM5rZmaZ=tVz6ISZ>7E_rGucOUiOSpe2kOExg8Yp=d5t^a6O@~^)*Kn76g=%Ei z_z>gUQk6};2D5MNw|XCN9rOkiI#d9qn%IhTC2-y}8?4wAK-Wmg?p9|m@IE#GM+o== zxxqy&nMa~{80-=T>l&W={&oW40ficOF{;ix@U4{WFXEa*|7?$X9 zj9@ZQI8HjEAD1b~8mab&W|9j@v$8=CrL{v$lKgq^Yx&Pm8&E{iJakK+gR}9e9Tbi{ zU}OG!iYw(&ZwSJEB#KXefLt2YTnVT$i>)#Tza}>hyuYoKXA*2sLKDUt@T>lG{c8X! zxQ4c5sQkwOWDGC>weB6-ka|N2oft&eCkhJ1IRdP7?AKu^-2%J2>f;`Y=wIF#?>xXY zx8LH|Z!nR5gI1&ySdaXTOz?>AK{c3we;fb#b9c3TAAlzH9bPSgPj`ddJuq9V2R4^h zYNb8)2mQB2q&>*HZnoz~~xZ4$PagTU@GN%fJSd?T_r z(60~9b*Jux#j8;CH#2dXAN2nWE|kLLkBl31Rl91})AqpDv!gWQDnNKwAClFaRbYVh zwvAHQ0(erR=|@!1cbxfo1rPheu7)BEfg~!8Q_I`~0G?F-o)+C7+6fImTzUcL8-@3< zew~BiT%AoTUjFM}=&Qd*Ciw}Tsnyj33lGLvDE^Lg9@r<-?XCu8@b5^c`_hQxh>8I)(!sM2H)R2x^mb*^@oDj>yM(sLCR5Np`wf9O z;BJ7K{X@6WPG3KrM;bBN^!O(~bD9-n&QGt+&D^NVN&agZp~Q{0N=;G)UUG6ikTQOl zk^44i-6Y`n{p#q9Ig=xm``j_E%*4aPJqzjWVIb7+OiF8T_(>OMpbki?oIrXg`Q z5GB%}+Zfz@6E0=is~sjxv!%*)AD3)R;*QN2)tU_rFBag1;nXdxbZ`&($X4!!$Has6 zc(o07XXsM#|88^`ENC`7KKyvIbXbg3^3l%~KFF8cQ3T?fn>i@-g!EivIWGdobR@uA z*W+}yqAXRKS9QSPQo$``1Y&{)Jvvlr38KdLxVGud8t#iP`?MexIu5&$ZogxDV0)dO znRDk*95XQNYJpRE>4=~leVkh5k0-F}+^!yq-2 zDSU?r;)Rt7t}q=|h8z>gkLBk(7a1}2@PEdtsHF%0{<$P`Da1-QgJsV=a-tS6g>b5U zuoMWDPT--fKg?~B8C)xe$1aO0Dy?6O38Qv)r`~@TP2gnPJQgo>dZNbR{;r)I@Xv zhKxMqe;HBwEuN)8fP^|2Mvo(c-b)FGJYb%hmHi!FOZ>>6TVtg$YI(TWmoiOV@|LF%X?p$afyx1(b;katDL5?Djm_=~;Ei^@NUD zbhsEN^`DK0)Gs7*qIpl;%)CtMr!{wPxY)@UPV6%1TEDK%Es!b!x08%0G{7B9cv{H1Xv412Q|wN_ z`w1{^QaAKJnv9#G=d!8xvA7H=J_0lHcGTCvH0Z^S5>`dz^> zG07}>goP}FN$+FdXNQ|TgcO9-<+pm}ou$&AoqOmRk`imS48YMQgGieiaTLR-LA;}h z8n;0R!Z|Vjpyghl7yYqgkeu%ZF&`PD~*Go3aH%?QrR#0j%7WD!yk2>>TnEKK}@0$8Q6Oz z{B;0z_SO)B06&KEYE{v|~e%|B;H(oVPx z>xg)@F5hZ7YeK`xw|iECA~>UrU;es%5d7M|7GDpNhMz)Ma7Wfbbi?d#{ialY7~Crb z=%1yCSsnB;s-r0;?0aJ5MN!pLr2e&`8`izCm%yBksgDhZ>8DIAkPpbyYL z6NTb>D@D#!Mf%-)d_gO7uQ-!f=a&%>kQJu|=$|pxuEXsF*lIQYlnO$5rS6>mCQ#5} z-HxKA1tcQXC_&yU=^fp__^_wr3MKF(oM)3(>N5xAPj62wt?^Na&ZT7jxAMswxM$=? z#%9>}sJka*>{rm`L8KOJLZjVv0B!(mG$a@EGuc|7D(%JarVXU776=U1mq|;PSsN2> z+nx?;1>Uk%!rR3)8p=PG`V+zf zM*oCr>tjvggj@+ju+Xa~oWm0#61+y%ALRU3zP|mR`;~O9R*7g5Gs7mx4kj761xdX8 zOC?bPeNv2Gg#)T*@yt9jSKD)(SmuY?vb-qd>bcmMK`bH*v{s5K7?~FNGAc}AIXiv- z?`sm`S^NQI3$7tn<9Gy`31~Z58Hi4CgX}{HI{7mwf3$m(;-0OJA)-#4O>JhfX&Xbv}||Na0|vV za)ogh(PJN-%$P=sw(~6H*0gwqHPko#JY0CytIXa95!^$BqCoGdxGK=PF}!UqacsO$ z{GGR=nVXNY^n$bBoW>%(C7m~Jtof^UdOU%b$hi8WB&k&P+s_p#rYWfY#^fWHTr&JW zzg{`rm&in37&+YYGNUEr@F~G>XlK}U;BzD@{G_}5)tR;f1^j_j4>Xl*yJ26YN{BE; znk#q5vyrjG_Y;UP5<`(Q*`^Ezfn!1GR;$Bb#WXL9MzId81Yq^aB>04nW6maGtF)8{ zfHRSwz3JIN4t}iKOqEp`DYH*z9`LixJkYTVi`E5TUv9#VV`Z>(Ei2_p4UoMcU;72r z8|dwUCkOX?(aZWXYpUNu(?WxHu+`v51%s~@v1^VabKq)m#6%|25IdMuKvP>`U(QQ| zyi5G>KmG;r81nQp&^rg8lKLWus%&>ylwUYUn2YI;6HI0P3Nfa6#e)-Us(EA~u>W@d zaMo?Zdg9mKGc-JFS7&Yg3?#x}k_n!Urhb)}AHgf0`nN#aI8a)hFeNk#$3XGBTI72S zI#hJ%)B?bdmCrPQ`WCJS$4I^Jwbb~!bT=N$06kti5_A7j{-DA;z&|pJV3g;nT6X#6 zcHEOP!Ai=4Sq6+~EP-&vKQhweAo^#3&8;KT%NOI0haB6dBtn`Qa+#-VQ1l0beU6Fsk# zL;0I&9@XC8&O{-IylGkAM^`r9v)Cj~dXJTsnHAgtRX{s_gt2){MuTPBybEihPu;9Z z)xh6L1o=~vu;a_`8Ik1|2Ja_`eMbAd5RpSYe2cmJlNH^rIv2XDGpDc_3vrN~SMa*d zRt35&bfG1c*_pkk43L;eF9%ejjkp~M%Hn){LeK4Dr%)l&q$*$k#a4rS`x4H1&PyXgszQ4F$cW(i2V4DD!>R%z_V@$dte8rCZP4(mY6?8Uv5xB z9*}d~k9hZx!|ogA&Ur($mMq=R#KOnp#HnY3Hn?wm0YNB&wqqior*@5N zYBQrKCe8vrs*^v_PP^2&LLMB++1#v-Vb_tn@_3bcC<#*!E#DVuU(9Bvp5Bu$=YG6+ zqhyzx(@qZd(;!wXXI+Gvln{>e>yiYzjyr%e?z&LD!m!ernkmXP?UoTfeQ+TUCYU@u zl{zDnZT0`oxmN$-$iL1}JedIp=R;<>nXewDT&0*G0#y3R0>B>(yjri^f!d5uUqWwq zJS!^=wIuGhsIACKE@aP#fuxjwspMRPVNlmSf5G2Deifc zVv6~=>!>BKvUwT{F;Rj-^+Roh>c`PLR&!?ckqXWvJ91rIAKYk?g!{&kY^(j1i$f18 z3>eK-%tGS&j;#w_QXwg5te05IFz z!hoqA%#)bS?OG8`3DYp3OW!lze&efrlpjxwj9=46Qk8yVB5)P{tEUJr{a{KBH zb%Zl}9QQOW0wJU=PguWoYr}O8pV=|jJ_c7=cRSOaBu^BMUc-KlkJ$jSkITC0OLwaM zX5luqcV}*NT)`hQr^b` zy?&Ci7RB_LpI=gBC-A%ct}k>R+PWghKCG~)jTkTA%_{VB$hP|AQ|gPp~vonkNaU=nl6g_DDGulv}JfQS6RMz`A`yP!bw0!$juA_vA?i6)* z_fxBeDWN#&G*B7+679K5hC6U)k=8XGNi|$J*B-trl(s@bEReDj!}iIj9p)^itx$97 zF!m0!G5*W6DXc4Y-uQvv6dSc{T8a;!iE74zDHcO(MHj1yIuUc9vx>#Hn?Djl4dJu_xtSvt|{j_ZHX_HzhZg7IGelQRoe+Pa}>2p#xJ+4%A*w$87_2 z`VZjRA!?0dEXG0c3b6ec?I8_wa^@m?=!^&lKapd>4X= zgG>2o2Ldpg5N1+II_@EQ+Bi1jW2ym3SB3Ks7|3j~x)XHWiB2_zARm%Q*O6y;9OD4K zuEL&mTBDO+lnsteUnd=Cw}yQ`+Rd!-h=c1K2A|> zD{4dl%5)k3QKtJpRJZ>NrM`x6;jJ7PHs>^S_iWq653$3(zB!jn44UlBP|HqPLcU{} zmeSz?*i}EI-tP>|c2=Bu<@t~VR>~bryUZgf>N;orYHCwAOVztli@YsQ1)wgEUx(z+ z{ufH^SGR|wi%)S$!jgL)!4|UymXHp~JDUVxx(yQn%fC*60R!WWu-X*>)r-%PiSMbS zfiB3Sw5mxWy6~58?@a!2u~e_Z1YD*}q3`lW%JsSp6?@?NkwNCX5yb+4p=6{~uJh9k z!uOyDmw1UDWrgA^J)|~P;suamzi?1K2+CjB$&UDy&;OR`s6GE5VfPeXciVmoJGPT1 zY24UWW7{?xqp@w+kOYaApVY!=MEseL zk_X_J4)22Cc@ixK^4(JhSw0J{9>0LKnXwo4?=c`92qSx}1(ee^#UmYg$&oqwgeP>NA<2=C}gcj^D&NKpU0sCf%7v z;?v|4xd24Bp+*ye?)K8UJ*UlwHBhB5qio+ZQ8eTXdU;%O!2h|X1HJvB=@MC~%a?@E z6LtQ_1;Ad&No^l5FA_=d6}Da9)8}M|Gy<>QQ~{3ZpvBSZ@jd1x+D5_KW8?Ciz)%q9 zJKz1+t>N_EK5ISby<{QiQ}pS7M-S-l#x{^_+z`b8IT2LjV(ERIG+ z%lKUI3LT~#9JEbh@e9(3bM}T*%6TRH@Gvd3G?30njOuW;Xws_&`Fm=;i5)D7Ni;+{ zq8vOvSs@+^pPC@Cd1m{#$E_BB6DLDar%sv zM%O}nv>gY#uJ?E!Z~_o7yn)INWo@Y`X*0B6N$19a_31LiC9}SBOrdw zo64=rn6ED=n2RH>`W3klE`iF5tevb^bR)bqW)v*yB=nfyFs!=h&pce-NNZ<;$OreD zzj(y6!|s)6E1xu=eppKQQDA9eZ&ZybMFz_pW{7JQ`P6mEMmcEQ{1vnTPE8_PFlWoN zg6vQ#T3`GQQa|zMtUFN$TLdJ@Jtq(u*dFjVB>hBNt}}4DrbdJZ-5qJ4whPs1brQX? zt2`Z~=u$seDU3pEK{nZ?x=iST;Z^9c_&bywgEw1rQSqb7xPVDr3NB~<4+#1hluMX5 zpF)?oSJ2K=79cC1H=qe$ReqOD*!Qd7-A!qLmJbRz=^965_izQSF9vBbSMM_(b@-5k zD>m?4woek|d{ipf6-sKZwiHqjy#vy0BY}X1JIRP3?bx5wvQSqK5;*}|Vrs81bG#d3 zu7<~%x2r9&K)jOYyxX3O_dR5LcUDQS3wybDGLrmr#z#M?^U*RB@m8u5JS=jcA+>B* z(QYFJ)=yC*a9S;S8MNXJ)qOvh9^+QmnEiJL4TcglyErkuBc29N+Om{(6S}yG0Ao`eLSIo!f+}K1Ka#NX1WG-$n)yF z;MuwKlWc*VD}TU-VNpd|Ju&|RfVrW4pbh1zvwx16vaw9xKd%GEOmU|!#fyx-V_mwF zG@jw!5U~}w?-_KY`cO?<2BylT?3et0Af@%5sJl(c3I~jtHsN0OYh}W8NWsI3$Jf&&X%5lCcQ5Gn)>nUR4z7FM*O<$7b8D%rR(-;p(M3CXqc}S#or7gkv&J@ zJo73Kc5RLf`SN(VGv+Ruo5D`MSqwc}vpP3$x0AQ;&RF0K>)_p^x*h_0KHr=%06m|? z3~_TzY%2dLumv)loou%`R~_3Xys2U4eO19l^E2*c$6vOiJdSS{JwuDcKxGCF2#Y$y z90EVBzcMeX#;L&7VAj?my$mt z{UKhj<-ac^=`V=vOdMAsL^oWq@GE}XF1IX|2oY>>p@Jd1ZDa&H)}WPN(Be2@!(7Z& zL@l5I>&|A-Xk(21E<_Ql=AgNe@GK>CtnKJkY!cHZdw8$sF|12js5)<$oM&pQgSRc} zc)p+D@cE*rdf*_gEY7-6>kEzUSn>P*iHoKpD{K4xj0W9WyUT!&2AO&DEJdQ+Ktq=F z2=PdWXPy+As^Q2+DTz;bFa2|DO-ei(wx&^c)zu2qLsV^DtF|>9<bWrr< zW_s#hgrh2Nd5XqSwLG#;e>PGs?|oS^s9FuZFVW576+{PJA(y_oV!5NJ#Zjd)dj?v! zoSy4&f)FLrZ@DC79cE9}D8$_*4sebd%+eb)4$3Y>0u_7I96bk9)Ly`&*zTTI#d9aOA@YaMvcBAf#z%g ziOeanAMAxy+GSw-8jj_#4AS6s8}5oM17T=nTvcdmtU_CxJ2EB_&(*MY;MNtYq(gqUPm}u7e26o-?I2k!gb_c4xCZ<9=FJY8lg{@|qUsd=4Na(WX(d8rD7J zWMn3sZe_x^`!P$u25dJIdZ)eE;f5s1Q>R8L5t3EYD4~tnhr&b}!0(bsNm*-wM`;tO z^zA`p`NjfLj7H42Wilj_Gt$A>OaAELF|ztHWo}B}WnmOn>_9A^SS|czrh2sv z+yT=0@p_(54o>5ZAz9GS8~6S^cnEilgi`J&KCsn8tgJx0#0tWsFN{*(R|5%BdV(2p zk4(Tx9iRgw%A3P}L>`I&7&nb7{5+}4zgn`$!(RM6scU-waC-FiXmwYEG>{{HmoHSo z$htY1+vDPepe8=eQytb{{x%`0rZ*M}%ZFt&_|3hkF{>P#g zkI!RA?~v_#g$(92puM0*$ELrSIO&48#2)xl;E%iPL$BBMeoq9wnmV7V9iPa8Z2y%J zC7q(#pBW*#Z9XY5o69ZkyF25P?EveF&xqvwU|ktdw@fbH`Fff65L{F!sY z3)ioh@|%q>@^ip+gW%I15M_V27dz7=-nJLJZxkD!{MK$;v{mlkJA^Qu4Z6!GE6?Us z!WSKVcmxg52w>p0{O|ne%>bdr|LO@kYN`}cK(5gXlRq28blGdYC9mu7MhzTyaAP>RqTzpy)u$Fx7Ds0Zrolkm|`01%PP+d5gaO_&}V2thlh7_ zjyZFO83Os>p^HvI{M!I(W(I^7Q9uKT_DXW1GkRzWzlt;n&;Wvh-2^m%J~e`x>msFF ziRLlL_(@zJPtdOP2gvY#+&tIb?6Ksd0ro9_Km+J=z_cqI@EUZ`)ya4ZLr|?S`sW+k zLxn0#<-FqhY&<~z5&AQjvV&)nypqm3H^{!j~_&#e_l@b%fjt zkV9XeTli|*{1ASmgqh2SmGqqR&!KbFsfQm@O0!|+XshB8FFW1UX6+!C(1zeP2xSfK zBuuYPwNN8FB=#7J=ckL|Fdu<_z6O=Ivm3_V*~5&c+CnF3UGh;!LKd$= z-7i&mB%UKp7(!*J-o^|N^VaXm$(|#?DJJ}euHNO(zZ~h|$>6snIwe3w{$?GD%#xRc zmxdQXg)TNj5?3z)@B=MgP4#he6se&IH#2(!?nY+fmOZhX@D!B&G1xQBpe*YRmhhlx zlsIERO26QziLMe_c)Wp39uu4`b;u4lYz9BWWn_AC69NP`Y+XduFo{D}Jx!mbE0LsX zA^Fp8)dGT6tt)J*@8-hvz)kP>_-9UrAt$=|txnCD<0;=|42pEW^KS|J3YL0Gw>wLw z{N!822eP7v8}!1kmsTM_6e#??<ly~~##i56zbj$h|FC=U5RVOtgbR%))+`iCV6v&H%ec#g#}B2uAf!cQ zE+r%78%Qw7{<9C4C)LKAAo{@sNGyJziRID>U=eU6l7_t&)nw42Nn?){V&RcgM>P(3 z#5}T5l6@wYdN?J?7{P5oVj(T6#mh@OLhNDOE_@X6_=$-qapFuM4z&a-K%T?63$*h$ zv0Uq(qyxFG)8*BUbp>pTc4y-m1uCV`j;se+U$Rst`dgX~rUjw$fYmwi1gnY&S0Ur-tocDuVU8Dhv;T6rdeP-`kiiszv?6o z-EwvaqsNSrBc?9l^sG1X1_P2GMc`5jk6x4z)=9ht@PI3ZJ{&(1Q8uyw%Q=-aTI!t{ zfl+W2^dIPZJg*obXV68}MKcVVfYDIFMT)D`k7fY3-n_0-&_D%Gd zxN_9qcL&cs9$~Yc=WVk7c>CsL9w|u260{qEbty2?A_EhOf!{8#_dgwMdNqStDqGzS{pUz{zwU3 zxkOxDZR;P74ezENLu1m4WvF~sESy%iS0lsK*blSYH7O*ec@Yqj{0Kj+=BLB8)PD68 zPN6-BSEYoowjvxjxv#KiIW04;Lj}X(XxU0=Lv7J7uN*uHWtn5ABBqJGF$(Xa9+y|= zLloRoKww)G8yH41cxvLmh3dkcb-lFSO$Fffv>RK2Z;urCc{uaSUL0cpu7`8+>WZ|+Xe8pUM2 zGFY)WA7LpixFi=5<$V4HUi6HH+JFBg{>Nd)tIWpktBVH;d=)Qx`d9XID1y<8F2;rB zU28jI4^riQ4(YGA*_nr}6x#ICi>5Yl1-UsPoO0rgN z@O{pOGPm$cTb)E~l-1WV8Obm7=>>CMz#RlF=0%w;(aW}fF&exd8oQa;1iZc=D7nTQ z>3uB@BX(5!ItYok_87d#(At7|N4Top6ja?z{5zj5uQD#p>{j3)!jgm2Y2wV$NIYFg zc`XIV$$u(7#bOg^2siJ2Wrved#q}Aety0b#m1m)xbTZc}_!F4}{}QvihA>7|b;%6!uJv9?N(Ym?eYaX9 zf?8=vEAku(h}MTI0w0Hi-;iP%+#oJI{S1==!bcGtv%9%wi~YkSYYmFiJ_eK0pwg%1 zheO!1U4Yg*|#uyJEr%4^9k(MBMi&kDkQ3yveXdkMQWR+akzIJ_2urNAW?ssTe$zpdn z!=`D3sYTfKT0s=FVzG(yUzcst0E+6JI$6D!iM2YNjUBf8Rh#(}UjKsOAx)i}OmxF< zrdrz=vce;-@<3cy631%(j!f%B0d>#B{inl5b-2B?<@eqU&5HWev7&SMFhxo5TkG1| zVdwjp=$i+wMrSIJCX3#*G+e~=deTsVT>1_3xi56?&c!<`KPl<>mczc@VpLbyq0{@5Imh-3kQLTi3+S$$uH(& zI6BxsAPAj2hEX(D^LbTDV*lH(wO0-^*E!L zOw!}hsL=|Yx7b-!)7u%7S~WaJDkp-gi}5T+QCbF3wHo!^S<=hWw4;(A?#>*n+yu*y z?O0B25Tw%gK}^2945+97?w*-bHLI)5CjlN?JFVzs=?zH?46F^M2=>3#pu{FmccK`- zxMcGf$Of{I(ECM^y5^Xc*;nq&Pwl6?-7_$?m!HQjfsj69b!YsiZSx$}wNtk_Pihow zq;~ru@n#hzyP$&jo;Z|zHGZIl3p>i9X}0ToHh1?pZqoMi;B67^S3|hf z!8nq9V5F$x9j+5rTU93fYt_*DJ1h zcfEGkw@k-MR0vm|uc%@EvT;wpBv+n(giSI%afQjWvv%0LNxTnvo_-{^eq8Tg=;H=- zPwla#O1R!pTl1o?w9~i}F9ze*VcQ|7Yz-&v4^dYT0MpxT_4FO>x8O%Gz~zG5QDSdWH;R zhKzB?OQ`^5g99-)NBYEfm5<%5z(ZC>BAH)Z-j*m?SH`_p^?c4Ar`65tP>AcsM8N+n zenyYa02V)AUl%)Hi7rzKth?sDW<~|itIa@>9_Xp3EqfK?WHa;n`B74~;?Z5y^wOe? z^<0roF+)*Z=3#dEnBu?y!1k+@c$zAExeI<89@TfP2%yyzV=4yvFcY|)V15qFaK}xM z*#E8eWBR|$?N-WZ5)Xi#n$h)-w~9u38Qt_{1NZtdF&$%kN}F5Sn{9d?k%ugWfoFcY$36Kh!DqRp^D<9izclZ&#Hl74a zU30W{GP(~T_&R{IS#~o3YT9(Wf!@mPu?YJFXY@RLQ3FhmZRQurHYNzK;W1brA;^|D zLGnH6N=%L4K>aFltpKTDcQEB-ZCm0pFiPO`5Wx=<((EbX;1y@(={xa3@n=ps^>uR{ ziqHBx_!$8h{KVGuLZT{#{q8rI2h80juMWfwpbAvynZv@OEZ6xM3ZK8CD}Bqach5ng zGCYc4?%yKjCjL+DXADsL;a00V{{6T16I2xBJkv#=I0tSTkcZhIyKpqxGhlIOGb^KcGy(pt@!I~NN7ziK~KMNetCeemnzT@atOpVxMl z*2b79y)UOOITqCZ`6u%wBupYfhRbrwR%ypmXi>d(f9F2+FMR&aeR5*E)ek6-5P%zY z{%o>lDQvQiq0_rRqtq7$ysq3hvVG$eO5z6%x=>|rXuMF3WIrBTuqa5*1 zIlwD5p)!k4TNW)(NzCcnwAm*P&`S$~_PUj74u^T5t>n6uPTCz-qfBfcimcCqT76}c z^B~1!pH$^K3L7$;&o(7c;FeA|A=EPAOhf9W7-~<*y!T`DPm;1WnuDydN&G{3`1Wqh z+u9FX3>J!5%GV7!WI5j;u0~OU4v?mGVw7kKR8y*h zH*998Mgz)^Z6rPSh|9!Q^yZ41F&Q@z)x4?5l{ z`?^o1O?yiYXnTS_QW@pH%l>%vgWkb{>Lla5Hy1>^DLwpsq+{e`u@+48C8?a= zIfnxnZ=YP*K+UVwu(RU4s~mX~>m&nY%}Z_`k9_$F7?Mh3wghE@>7rh-K;lf9)@!-a zSUbEuY}?%`Y@KSUH06t4YBA-?S8;3(tOU|i5^@qy7nk2>clBY&^PC@)Hcx*rd^TO^ z6CvnJ$R@zC!ii0BKJwgHv4NF1_}l{R1;D$0ie4f%;zgW>TE9`s!2>ly*xImS6#@0H zp(NgCf=b%_NGuBm!jj`#_cgCfft!ey_HhC%iw3J>F?fzIidoPJHIFJ^zt`~ncJcTo zC*UxZp$327sH&i&-jbNiEi4Vf20oCLiPDR6?{i}jZ6Ihv_8F2@w~L@5_ygc#E}k>UKCsS()WZOw{$$l+gQe~z3^078sj1!3~{Iuk5b01-kw`= z`VovdS)R$y+X#r^j>S#u`lcS41&H7uYdTw$9pmUD?2iDnZq}6z)xLXim^U}9R|b&i zAJV_p^ck?S6k@&ML$=sZP?CD~Y2e_2Qwp4m&Vfrfw*3`b(w}@s+l3Tx&hT%DS=d6G zySGyJs{ztn zM+m*QQ54qZsX4IbW@K={D)cS>e&cG=lUkHr)}os5Bc7n)kk~gBsceEllI4J03FZ8% zw+_rO{M^m1D;9rDj?=6!Rja6opD|)^-aoOzrKPc2->Hj-Ny~C*D4aDjV?+3b8Uvw9 zPY#%NO&X`~0reP05U?x?*fu=en!7{;^@aa)T*!6hA?j$VY)xiFpF{0Lw@X5OWPmY&Yxyiw@z5NHSkMJMPuL9&v2-yy2NjOnASo?Yy1H|cg%T##7vT0(=@cTvgGc8 z`cW1d5y2vOM`pfLN<@+VjM@mIBpQCJj*|P@Bkr_<^&@zH!~-R<%|-^h$g!uN8i&N+ ze^-12k2fLzYrKN{u%uU+wX&4)Dy^|W!yeLf>46O!X*_s#BdX+2+zel%wAu<=bS?dI zV@@up6~X$Sx_!A;H9Hcj!xLf>2u^zs_SL%swIKlczj=x7*O44>++O!`AB-!H7{xXU zAD$e0AuTuMB%*yAK}*ugg-r`waL)v^Bv|I!mfu*JjW-kiMKLOFRpB??9UmKWs>|=W zG%hsFzmX&w`%Nec4O{Z#;swbZlS*j}Otu>9#nuc&qyjaP9y<#TVQi=o5pH59xh#fk zJzaeO#UHLH(&VqrG|C={xFa%}>&e5c$O_dsBg+%NXh-=e&wWdekD~~LSWq77<#QRD zjc6z?QO6c^5J^}Ks>af=iK`6>DcNr}sxxTdV_8bNu9RJy3Rj$ZUV1i^3iCmWM->~p z?nq1>SHI}#R4h>>?we6Y$QV!0R5dqpl_h*#$N!<%iG?Ra)LU}^$B^l#%&V6F^t^M` z4Y7$}GmaYRn1F=w=Qx`kIeOWKR_O;?;9trJ9l1 z=Shi78<5qt4Ls25MQ8`i{wVwGn^@4FM&Itc2&wu+RcD5;S$6g_C?L%; z?V>$-@Yt=_|0+6+XRupB_ryZ4pgqf2Pz)%C+PvO@%_)*k%g>!1=|aMDC)~H-U0d?a zIWz5E*<0@=CG=ps&L7Ipj|%v0vc9^DYUq?kCJFQ+LV>C!vtu=zqb<;c#G~Q>HrOSz zkuO-0f;E*cOymZjP3UIZ%4>g-jh{ItRSftwtyd72DkYaonV7LyGC*g3OYW(<@Iih0 znmno*#cAUybcSfb%XRshpaX|2zVqX#=DTI+Zw0F5T8ZP5gYzLuM#RyAHY@la9dz^s zD>bcq-6=H2{M4EjDjd|&hZ=jwrRy0PFFhj8(SxZF^t|_ilrsk;NvReKZE}#V^AxRV zHPup@dqxa%Xe%2If!vZ5V2f!Ff;$8mPNVN-AUMFvdd`2C^}le(u@*IVUW{t5Ze|4= zt}@!s{#MZiE13v-ON?l&>QSaq5F3 zY}0xgTJwTKzRv034uVsLA|sYdA^yAIB#AV~OPMKtVJV}6OdoJiMo~f2c=C41g1%jq zm>2U&1*za|aYe6(Bag*bR%^&5D$pUruD9SbHQ?OtMqZsnan|{M?NZpY1(zM|$Sy@e zViZh$mx=E0z-dvtNLVKJ{-~U+)o-{{`!R{}Y*n>5GvEze7vZC2XG)iqAQM*a)C~z( zazTLN58Pn=CWyvvI&5>?AcC^O3u`j!wi+MT^E7ZSl`LE0DM`&opb-w zI7atG&;Ri?nm!}9l$2N0lkIR4jZnrm&F9`@LI83MMU3aD{#G6LNV z$VSyZxYwH)Ym9oL`ge78XEy_mu&|naqT^YBoDh2h=>2$9Ci$`h8vG@H-DxDuoMVUw zMbG*Ke9e0ekovBQC5f)b zVn{D>-4+JXUFcMe7ATS{W;&R(!jI*!ohcx3zoZjW{z8&_s$cRRaN`m6IDp;{oIbk- z9RGC${~I%uSU*J;?l(`JbsChAa>Pt#$ze-r&0+o3+E3qs7lR9+rQ5 zKd*q^j|c%@h6?5%ETODw=_d^jsXS3I9J8r;?a4rZJ8j2?ISwC{wFNcaLi7ZG3+Vj> z;HPx~<{=ZVN-_ud|8RU<^WfKRR2%^0gs)wH{<_mZ;CCo4>Db;v&hriw%nJBmRdZO# zpoqr|a43V37t`Gz)L17D)&$FdmmZHxR@&%dMC*F|K-LmQK!O6i^sIbZZ=0g|Lx^gq zf@>xo0f9dk0SSr-(M#vkoz4Nc)1L{d6J!hSsv7_&m;&7CT~}vAoJarFlORQP@ZF}# zumT=T&`y&Ba6SWp*=Gv0mqJyL$@%O9)8X}L2EwQBg-e`k%icM8L+|yGQ{lbLZX)*H z@K#qiDE3;(uV4#~g6(U2!<7uRHg!JozC3Hh1ntZ%^lna7h5USrQQ~Ch%+iFS~^@3L#t_= z@UIaur+EZdOqtj|Yjo8HKbe_eg&i4~W+nrAKU*EdGjN~1AFa=qo_cQCYB3F%-cNU$ zBpDk?dIw==MQ|n+=WB)eeY=t0Gf(`oVPAdT5 z1flWb@=rK{Wmb9%WmtnwbElo9qp>PV?#t;*ETpl%f|qg$38?4R3WCCyUKaHzW0!ZNUC+$~q5tWP*W_!CYb0Z#u5C$vfFaQYl40rC?CwftPi ztuob!^2AeUB2IlCy{+y0>E?3cF4BIdSS>%x*T@tN6_72}hG|O%>QJRWac+Og^g4jG zy@3*bPH}B|U^r;Y@Y4oZs`e&w_A4s+3;SV;p@dn)5xakZR70oNYs3PyxD3dI2gtKt zYPVd=gi#$fiaW-pQu*q`Ku23@&< zp@iY`s23qD+IZdL_RGKQv`?HIdu72j9mFUlk3LC`-sgRqcokoI9Rw^xpD|UkbgqJU zV$37Md_caX*?CWx=Rd_CtiQz{mrUG#=riA`%IyI~ZjnrRyKJLfFcra{f)!&*r@QFX zcOasmuN}dWY`Z3nBp?0PsOD~Vo|^_)kklb$qU;S*)ViTBTzB8gPJov2AXQpm^2jH) zfWi+p36Hqd1{hJO`P(%Nnugv5&dhaK1Su=T9AC;UEndnUPX zBVTm2)UKU~Rvq9h`4!}Vo+AXb1NUruo}A($Ix+Rqh>i#u|M3ChH3)Xg%XsaGBt-G5 zt56yw`by%bq<)i8Pd$0YuA$Z1m~;qrtPJ@;L-R(}WaAGu!2bN+)xeaqNCWSI|Kwek z1-2Cd)ZHl~d_^V9_AY_{QFcT?pH(0-Su7z*S8JTAUipkx@8E#P#{yi@8FL_0f}Up| z$p%%L`*j2Bx;$r-V(K)&NIE#)1qtS;Sg+ZL(0icWD}e;+`m_1disM+GD;abt%xlYw zl~4rsb$+wO7^fP7aFK83$2nLs2a>q1@mr&Wt(NF}Ey46<77}izd?-q;0fjA{m_BoV z>>mDptqyD~?nqn2fDo2Yu-yk@_&iAX^u(dchFxkBCXhj_?WAB@lIN z(770&!tgmA#;2pa>n=fUn9@hAj6>W8_SUVjZ*v+~LZ<;#v@3Vml)( z6IBS~Q!QE&#a4Z>`rXCGCVQ{U2Ea_d2x($M9kI!A)_K}u1Vr)_Y9n(er*wQHOT`=G zzT4DzZ1?EQNZIZ3eX(IsRh1S;7Jlx0SAp`r+3OxE?>27QNh{TJU$YjX9g`FL z036GKx1N1p_RW~#wqw|o>VciM1gFTt?w40_Lrv!_I58U=4@8NPTEaaXu!L}x%?)ZM zhrcOd#JSJw!05-}tr>gY)}nr0(pGC7?KMZX1RTr7XvF&(N3j=hD#7T45ECXybd@wl z^e!#WWUe`KZ>G%H+k+tDHpKkkImsWrl|fTq-*-q9pV+R_zr{}E%FCO1GN>i0t-Tl7 z6*RWg@W=zxDl06q!qZZtXz=I3p$#|7)mWd_TTbvWt3ELm-uRW}r&2q=M)t0?4cz`< z!uN~**esc5yU=xL&3{}r#2%Vms-X)rYiPDtWakxKp;HK{nXrvDsS7Eb=X1zM*|LnG z@F%vQ>?PGQJEj{+_C^+7beP8oo!?GAqC!LZc)6AADC}dE13tnJy6~6KI(tvy)tFW$ ztNyy4F(HzW`$U;yu3cpGZE{-2G*!UklLKSmnz?B@qPuDhjl~*>=yE)UTLWot%<&2C z;S3dK_~p2ChVdVX8haTXvdd~6E}rX_R>0#^iTg^T4|BVHa|rakx*UzBiCVXkylNj_h!FZQ3B~X6?_a6O)*W}d0^7jnBykk1jrJq?7-~MU8<-_5 zxI@$>QUXej0M~Mb7gEk{eaH|IwkPFKNNj{eqnx}mfd52JSmYOFT%{9uPM(B|_tu1` zx69Yr-?cImwd<)ycjMpHN$gfQo#!pBGK@_qGLDY#T$cJ7il(UGqa?cKxkB0J>-L{; zoWzV46R-mc{Ls0K?l?3vNcQ9W%`EK9jRno@Cm@u5Mb|H=Y^bdqbxUJOw=37xbWv+a zL8oLLzS1||Fl*lGrs@l2oH{&2?`Q<`9h3!6A&bgmm1R=d|y-yb(^I+rj<3TmfM zL(rd!R9rm%4P5LrBC@a;+9!WKz})-IX?7#FF-ad$XlK5fJFN~gb$)`Vm5gSts&x%M%<*LP;YVu$4l6># z!$yFh?>PnBxEkWj3h~jXAe#h&{RTpGyR@@4sJ?ij&-#MA>YQhf$oP-CHAJjag0<*@ zUF75CgQ~@}b2=^(*|ljiV})fW?&V4qH1=bz`a+PzH8+o)vzqwyQ|>&lfElA$=$r)W z(2C_z*ATy%Z~Oi^_@k|OKmc<^VOA^MuD9zX_~7beGEf3o z%-+dNPn*nCX7`Ps&J;)T!*+Zjqe8>2>qZTHGEl0JyTnxfz9(PEIMF#zs%LWY{f-&O z-yAt|)}X~vQOcdebE|o&(~-Hz3+W(gt!&gN2+4lGk7rcu(dU;A?9?Db+|t`^6>d6~o+q~AA7c;gn^h_gOdC(F*K%VC z2~}XPkK=otu+Qq4Fe|JLy%KS0HCLgc?n;N`m%OxgbJSlW$&&0pp;D(IB(`@03mW1l z2@^7f3WlQ(E{bU}4mTN~ExHcokG>^pq}%=nlleL-7fZlV;fr|V)f@lN_)T#6F{Km;cjp_aN^S?$b zAvpUDn%3FW81}~omcjkicD8!Z-2r`LoWILD+0(&%6X2QAzT%1r-&ajVsPcscZd#% zA6|Ti8|{8pjyfpc4N}M(8cO0GA@mt*26CiYSCDX%$W~V{cY~*L&qU=8zTH$AM8Y%d>y35* z{8!JWK)W$kg&Y5?XS-(u^z6d`gA0J3tq0JvKNA%nR!460r=;+Yo(*!^l7q+Q`fAZr zhQksdb$puPi|Zpc&qa>Bh6j(i9XSGe1P==CS(>Y^bUw5Q-^Vb1dByjohqVQ@G?v4s zdq@FCriO98OhcbmLXOJWQ_lhtZzW>i9(B;n50&D1gE%!Q%?N=;c$-=BS#rkCo5STD)NtrUdBOC$aMI=(^T?#8Dho7Kl!|6<+iE zKx0HeWx=*n2LI8sF~FerPD-m!flMz4X1I#1e+XRiVJJ&zg(9Q(MqwQxgkS|>lUWp7 z)KZ2%&OGS|u=*9LEh2K;BkYu_6eW$FrB|HuDNa)lR-u8;o0=BxLO_h+P63SvLEgoi zDcN(?gPAcxwGYmQnXplv49@k z7W*!xZe<68&IkL32&jMxgR;!`-kB}<-{PpM60(DVC$CiFYYa?9U!No02jT$kTqzyA z+mr{emK3#_+D}uH_|KY;;Xd?Jv}9m;$?Q3lbptHs_G~E@)Q(xAPm4S z8x*^O7YVL)L?7vE&m+-k&~G7_ab?d)C=dn`vl7-yE+*|_z6t|Xs*#QuFA5=A^S?z+ zSx(>4Lf=iAT4TN(%qsWrYJzLr{Ar^r+xuc(+Q6oPNTbufxzv2qKMz`!-+cz`4`sD< zXzU>~4`s~%6KM`DeGO*1JbPUer4p7Bh0hw%2M9HMU!}skzg?v?rGLXRY|yQp$YP=# ztfL6(EK{uXS1w<}g3_DP^Xz;Mt2&v8I{?s5$l@in7UKGR7kZ`g6{W$P1G=bKYUewQ z2MgcrRK7F@xQ8}=&Fo3zG)QY5IjX)|}J^u0k) zZWBtWovVA@06l{&Y#TGqD3>B zcwF>co@7*%8%qquMZdJwI*qqG#D#b^#eqVT6^x1hkzi8qYh={u;< zLqOAM3BnkH67=&_1B}Cnx3%@28cKg4!AcLG&!pZo$$5BdkEL4bFri1K{2zoYV~wi2 zt7d{H2EF2_@=EXTjRH>@gVAo*@J_w(qcmWvhKNKSfzJG$WSI;7 zrmr(pDUOrFQDYHj+WK}<-OLT0iWBski#%m*BE)7}AU_f?b1MuL;_4!JHOg1<` zVr$8`g`K!{vtlI;({Ng)zEOBANiXj6qkSDWst3nS))QNPwf0S>uZ^N(Wnye`|H;f_ z3@8=?I5=}A&db}a9DURcY+3T@hBa(%nPf_5;|4%X!)Q zDKatkARX}Hdy}GBq3?$n`aAhF6r5wp3mruV01mFToM>aT$BPE$_ z`Fqac4sl3bWDt$ZN-y%r&(>o8YQxdsCd1`fh`(0+&&NktPn1#zM

    RD5V>Rl>7iuV%X3g2CEB2 zSFe;E@aYDYG~@{IGniB&bSlE;fkg1eKL2~A4Fys3tEA>8As-tHx=S!WmDh#bauoAc z5@QNuy#XPjU`SHO!?f968F9YT!wm=~BFeeiwm&9L6+n=%p&qH0q8&7_0?vdvZ@wJ5 zFTJBFYYA8#V+bUI7OjjMeG)5F`@#+N6SoQyMaCYC6L~cJcXhQjzccLcVz6~m_O$(0 z*-N>$CvlRN72}D~E~I=h233zNtskJmL5%ay_rC~pGT@VQO5(;^3uxClO^<+tGTy^n zT``)wTKE-~Rn)<$jg34xxT%%8Yh7rXd*Gn0fA2(7I%!)juBf4pu)!R96V{uZHB!~J zIB-ZNzZpwqummsu*|<6{jLhsx7(A-81arp9B-x6keWpf3JF&xcvi++A*h_wB?+huH z%BwumW?yKF4uyH&W~c!K^Xj)DcoSX}YRvZT45t-%yYmf(KLN)2Pzt4An)xcv*EFWV z-s|xtUNO<})W*YApBY9s+=N+%^>v&%|0UF8;i?kgQ6rU*buOq0Be5k>LlX`ko&x!1 zlZn zzDAuAZM`qu7p{5kz0esWv+tWFlJc}w7*obX;l2Lcf(?wYfoMVXB>c#O0v$_GJ^V+x z0~K0>-?+rCPbqZHz4d_wS%V8UYUU*0^W{ZK|7g}27&reqWMLY`@v>Z9bK;9Ut7qqs z8a_9$;EY$sU1Htf&0KoWzC{-NNC7L9 zrK`P7l^7k*_EtB&tv}}+N$l96O&6IPIy$F$1Y?KC4+wr8DsP41VNWP6(w-nWHh7T; zcy|>y99A@*cB{`ET(w)^u@fxlG!VRKV#j`inUeD4yI8UBztp8YVC|_oo-t6O!M?zM$gJ_6qZvh@qAS1g^`%_Bx3=6*FA+;TS< zK59QV>J-?MqgH8N!=(#g%gh+Jh1^9fR)A!^vBYqFIFHYH5OrI8nMDM4^)4?H@KF$G zzXyXNRZeSjRmfj=hxwy6qItBg^yDJPeGY#zO1umO%j zw}e0{y*$k34##(1@}}xFbbcc)e)?~cIim}w@UZh6A61W#-*Jdu-v4`6N!0iq?+?f- zzW*hwu>RZi+4)b`$1f@cHe(;0F6H9$73iVg_;6r;&%8h3Q?LhU-V-p+*0)PTGu`|F8-8Y;^2I3bQln;jd1I_$} z!I+IE#jAyG{vW|MQ^2;_MOE1NA$-xY>UUtiMBMjqlaDj7eZ?f z_p?x3$UvhH=?l2vT#L2rmYWN_+zUhttMf0bht)j~n~gMUG6ZLg_wjcftX|OnfL3)jkQTg;q&^#9X3luo2%Hl;uA)RL#hIw{r`>Aq-A#|eu z3lspRNB;o|Wd8*U2F7~kiBc#)Yq{A2{;xm*?_Zz*@B;J~D6qI89(PRr2PmNQb||BL+9@!8p>HIOCjcKwa_Tr2piHpqezbj~RlmL%bN zz)lzcrl3T@)In3Zkr*+zBtHvNMOWM@ZV2f#kS+E%yj8&RD6XID=kh4tT*^@qV0pA; z9ata6o`uv&3+P^Z_U!)v3Xc7nj9tZB0%{g)CEe-{@@i zLt>PMZM!5H4v}hCer-4nL@&dY1HMl~9E-QwX6f((R_B1?Y`ENISbyYa@Gmmajiv|C z*#nEc0e*gUArO|My{v7q>csMMURTOg*R&XSA`($6$YNYdA1{bbiI`n47{`#U8gM3K zIAqnclQ@XCM3aK^9fcdMU&b)9Pn~@j(fVi3qCbg(I|9=dERLpHIK=+ni&Er};HiYm z>GTb|OU5hZ#xH70d%06+PgZRq+I?=!fsK)+CcyT1i*jy-E~XiBh}mR>SuA|&g8Alv zvX8q>#%ZbqToJ+L%xbV|0t538J6>VWY^dFtV9&?F^tTiA%IqI0V;1VK;UzUAGGgNN z^Ca@~J}A_BAqz7KAS5^1byg_)B+3Fj2THIgYcs0_sE|jnY;Pm_j(ZTiSHL?)wrFH# zlMwvyESaYa4sc^WnbGleX>M6|y9FzF^)oZ%@|1j=q7zTXH)k++-rrq2h{bw?oP;Q9 zZaP`VFv*oyWZWhLqw6rJ{`Cno|Kk%#wDKkj|84vH^$FZReS*x#eqm={G4{4;FH`&1 zcY(B@_c_+u$KGRp%^!GkJ@?sKBMF!w06|v68166j z@9lK0nMTnE8$9HE2Zh2ex1e!5~@$D%@r$JwJ@2+!zJ1`aA?>wuvAuFH2>W#m$E{|WteC!+j^5EsGF0+A(YNZRt+$-^`=Z>0e4If$ z&sAlehen-ov83rT3i%lWG2YX9MSH$3MF7vCZKapxw;#yQ5O+{N_;30bh1dhE1nLWH zRK@yJK_wvz%-yg~-#%dgR)W^^Qm4OGg4LUyT*U1&1=YpU%U^ZjxGC)~~o4l|=|?=X^t^6RYZXzb6{entGHL6fC!6_^=ZFOvG!eRezaxE8xi_uU@cU@6 z5gT^wo8oqyksKCa=1_y`=sd zAH}ZJoPSs`l-5KpkZbC=Acp_I1UT()zn_FrkuOUcM8Y(0V4=~hDhahi5nZ+jzJ>gw!@D!XfcmH# zmu#}LBRaX=QvCgB8fgM7{0H}{%4HQmk4eojgkk=<` z!y~F0Uyni#V>e$U?NP%L>n8y*=oaqld6Vu#@lG;XH1SKiU9DcD@h-&;oA=&4l{hiq zPjSOZ%yZjgpFdc#k5c4HskTa@4DncC4BAPhs+=1zR9KWcP#DFD6i7TIs;KA@_a8R2 z+YxXQax{6x03WKVZAG9Jg26WyDSMTFKg2dfUK+>?=VrS<3R@?Zvm8l3-ioT(H#0dB zJ@)n*3IJ8jXyn+29jKykBV&p}WNEoZtTy&?Wt5=Z*3}qV(MeRD%S=#LoW#6WGK=xy z;x@%@T^eyxj?kkY3^1a15j|UD=dl1^q6anl`5eu1hm)0?A*+H@^j$oEI;h zrnK>4E@x_r#Wq;DvkuK@EU+Fy%#!h@=UC%zWW~4qnl+E?*IFNTGc3DnVFq%Zu{RJ{ zq$`HJlPSsbjow^4G5r#=pV`+cYDvJt_GEWaLHL|SbK)4f zom4hf0kdxI4D7Hfm)T}E7u|WW3U7UqmX#l$eN0B~SRh}=xu%Ijm`4|Z;G8`bXZE1J z(hNBSnF9Qwgi|mg^cP)}q&o6o4n@HZhHfqHDVBpbma$YxfFDJ{0b%xpL*li!(0l-} zz2^wz_-Jj>gh5C7nhX|FFm_|Qo`Apejn}F}(FMe~Y8w%wfj*x@Ws%;~RM12me40I# zvvOOp$-dD=tn7YG$(UM!wVk{xVm3je%l&-_x<4AO)lNuL%v$?*YQVn*t=sA47RG3&cW0l(*Ja~QQFGR5rw>FE zpq1oP*Q5Gb_)!ASaE%dGhFgW_-);SoX-lQ49>Mk753udIlcqe#GDKz!TarX$#O6tb zol06$y`+$wqMUH%#tp-OnJsy;vOp}$;Mrka7jUNILTsv?eyImpj1~~Zh`Po{UH^_& zrRnx05ia^iP9Tk}_M~jziVRq>8JoC@{%a*L zynW6L(Eaq{6tK*C$O185jZnn&^0NzYCLV60B- ztbTE*{NIe#I`u59kpBz$^Y6u?X&G0@we%?-(*{GvjXku! z#oT5kLITD0V+@c70`z`176HIc%Ga? zsQe0w&-jxiNZ_TXfoG^AKVaAk1-$b7E&SbU!mC`%-*;18V{5ocbUiX8MVLOUxp7w9 zMV(eXAmK#~NV*a^;qW_e5TV<~4FUegbV0u0F+}301aRr~=8@_5$KJxH&Y5BrGY^Ol zsCV`CSG~d4IAqGZzqaaUbbzh;F^65w=b(2Q*I$a2K3UqA;bjBpgdM2E(3e4TgCRp5 zuFr!HV5|PKQ`@%t*H(R1Z&V7fRoeq>)kv8$E`BhfU8gBM)~vrdwS3%NqAmX5DR1Cc z-RPfC@O-QZo`@1c=gw~E3*+*H55O&x@&~%|D$pYW-dHAR@M%R7=Ge7@g@K4l1QYXndV!Q(8iZg5ciNHkq6jx^QQ~$8bd+>qqQQyXpM>C2YOHyss{}M zD`;de1TQ8v`YoXLgF=&-Dgbb*QPsRSffh*e2}R_fuQlgY{&1% z7$@%q*#2(TLjSW_GfM0J8~a(ik;14EF+87Ar=@qNyg{Yrv1Eg$Xp@`-O)kc~2kDXw*FMH223^QRF2mA_( zWK_4P)@Gf_pd{lgrOxP^Xw%=t+J@$@P}GN3#YY)~i2|J1>ExaT>%b#o^#Qr^;EpiK zMHb`4rx~tc);8pfpiOCOd_BNoE%CN8`b`9b&RPGogMaHnz1ah}D9=Jqx@e!h^fbnx;du*pT!#IVo-~XW#vY!&xcs1-+nD%vG$D<__l*9+GwRd zK)*j`*eism@IXL%n6aXGt61k}>C-T6`Z*^8#EWkn&UM&y?8wK_%_|;}D=an&q+}aR zB!$_If#s?NslMkO?Tx7JfN8W?XtCVQ!f4_C?OBm_A#hx3y}B z1jHuShR=K3{PpS-yb;!JVbrupDR+Zr1W_A$(Fn0MbLn#F?(1_TfT6#Zz|&q)%zONX zgyUCaLGb)#-KP=w>dAS9pnEj}wYY;g@E%Jm&Hd?@u)D13KYKc{-VFwb{Xjm|3w@TD zY^bn1bSn>0(SJ6ZeuP1v;XwJ5aNk=AnVeo7^U`z{wS{-JY$=;_(VI>-(kpZu z%?UTfpTDh#prvu!AQH)J2RTTET|CAw9`pty&a?dwN#6dz7TEJ7O94xr)p`pK6;S4o zd{N{+;s{8EYgAjv{T6)qTl-NBR%D$m*W;`Lo>^i5Auo3W<2b@-sd&~^2{JDKMf=xD zok0g6F-SOgm%eWe0tp7xv6#JORM#%)ML4CEAN(;5RJ(f-%1hs)uqi<~yRQD#QRhNU zubn{vN*}nC+l7%2fPU_+e;^Bc5DOqRfrb6)bB;)DC3De2qxG@et5U{zrj2?P+Pyji zKD3~==Vi$1Q6%dB`q_5-m{Fz5#@iqdM^K~Bo1E1^1*rY(T|=ADl^cclm;*6C5b#oY zdfJOXB7uByxg>o6dxm%mepY+ZC*ORAglki7_o;rIYo45gwGFuo+VyV>{6cIo^7@Te zA1czv#4f2eSPt!eWHyPCaeZuI!wYkpYGhYBe#;Q=WQp+m-_&m2u^m3&U61b z+?;B&17N?i1dB{We=MkaCxQCQ9UTLl2vPz}M{XUsj+AJ;p*UuBOe4i-4hx9ydRVu6 zBW&-(MEY+D?G5f}LtfZ6=G=l(7o!5q;vH+)WvvvUFu=(u4ri4_NSyKw%a<)V_A;lT zoPon^Y1F!mHss|-HlF>{FDqFz3ujv0S5VimKNh-f`&>^kvK#iyT z?14lsq6mVpPd<*7JL+s)e&dH)s{cJgCS?mp+9=XAHxFQ>cK$m{<7WiS(#lW&XO@;D zXZ4(=OR^}5Bh{8kdr^{;dU)k{$QElt5C2|U=j^Mxp4cALM66|MUWX&{rbT{4bdJon z`HPX*5o!i6XF!^?vK*IS))<*CIoyG_r%v;-FgsHw0yTbkb7wziqUHRHVec8b&c zvSQeC_J!u`>NDBCcgB!Ak6Y}^f%sU!n3`;f#rHcaSB zVnFw&UczQ;4Po#iV89g1gJf&%7YTHzrnV)8w*H8FUo2)h8J0yBBAH$$hv=@eH|0_y zo@LO3bG(&NLqx_hSMi6JH!UEzb&gC)?e-X7(rOyrhwtXE#Vz{OH9zTxi@HNa7ww+w zMrIR-FA7P~cGYtwN8;ZB3QCq7qg z^;0hm>Cb&vDujb}XAm}5?U@Ub$(9Sw9L5Npq0DB*+zhw#oeVg?PtAN4FO=K8_ZrZt zwG75o{XFiNwKXE|$FbqoF7Yp@AUU5E7N(xY)5Xo%vnye{c&`W`|5UU-Mfwr%8=gh0 zc}{a%GrP_uY+U3~b!_~OM#+lhR3MvBK)-LrkgFfidBogsxGLXw7&x#o(k@ZhJcr%d zkcn)lRb1A#%DsE|Sq#hevt~ZFl#h}-e~%%{4l}EH3%#r?WQ#_s$$HxWD4&R*`42L$ z1#tTEaZkWapmKUnwe7VNf>TKue4QG4xMDfU8H_NEf#NH?o19_ zH^>lHdipk}FOba7P$)7trz6`R3Xj*hk8Z9HO{qXDoMfgiJ%49u2^lQv7rAbci-miO z0?FzZB4=J zbRx52;^$z;oN(pV*;QB4$?-yG_f%V#q39(TSh3zC1(~HuL7S8Sl@AeHmQSHjmXQ)F zTZAyFS?0#qAdB~G!Ut!9sPJ^`Uz^F)4HA0;iwYtAJ5DUgE;}t#3?buoebY_BC=Nc~ zPsM^0#Aht4ps#Jdh2Do^^SvHBuo(3H^oWunqkHhB8^t3&)Vx~%wZt2OlzzNAq#I{i z*s3oH@83oP?5w`(3den&g;4-09=M@R2UFnb5?38mNz?jkA>~&N$u1N%=bVOeala#| zy9OSlNh1tG`pwaDC=86xf!}z7{6Y}3SLXOU3S@*&*96z)t&W!ToSfBu>t!qpV3_v( z$}ZrtF{EN+YOAOCe}-x80h&}SBv&fgrXpODP%@OHo{!QsF82K^?>aebf=VEF^9W?6 z02?)Y+8DU~Qx3pJ?RFRi4aSg`vC7(0;Mc76@uGop#=8E<<6~^SZ-uhlW{Rs`(o)>Z zN?GPZ>(hNN{#vc)7xv+r_OPrwM^5^APIp?}{;T^c@zeb(@hTFiGJoW*TDI{_n!WoI z|6+}{O1ES5(XJ4L*52`kb^3l2;i~hG_7S_!3d7sme}CrzM$?C<`(JP$_Wy?aY|zjf z)Nf3k-2`dEr;}>xadnKW7-$crV!k}mt_ql`nwgrIZk|S-Qc#Vh#{H5vpXU@G>;58s z?v#QlSPAVlPI(nlrzT{`KZJN6KC>$2X(&s|6;|?puebzM4+D6gXahLghrtj&aNBiO;FR8x0*#FPA8J^Fr~{08Qggv7 zapme9%wJd;=%?5@GC;V=rzglDugnnl^MrVd#ah*YEAl{w(3(fADt}7yJ)#^QVSe9I z5>6~qlUzAV*h3BbBSiYfEPUW8{b5x)cb2H$81=v0VE_ZZYA`%Fhw>Nm9$PLnM&UEq zQ4p`%^`hf4mdWVuJ+X8602B9E!tbrt=8u{A60N2lvqm z-2vb}rvJfxY`%{JaG$4Q^{9!(gsYR=%~|NbxKGQ!xR1k^HEup;FNx28a35x+|AYJ7 z{>6PBki@07FW{blqh0#@@pdm2dkOR?X#{ds6i3P}f;#e0wbdn}OZ^7HRU<58PV=gG z7kpdq6q`Ufeh@b3NB85P@_-cxhzkS(_tmx$N+ArqRZa9#IuZv|2Ft2IIl@P`V7oo^ zxEQF^ZeY>YRxB2fZfWm(|2TnCudVv#WdO0iS1v?NwZJ^5fLN@Ho6252)Gz?FZ z#a#pNx*=wW8=yP${DDJdfg;)Q6wSTzWXRk*Tb=I@5|HscJh$s>nrm|d8mG1KAZ?Bm zF$82%N$J%%lgJgFR-g?p5&@!+`f?GZ<8FoRU?(O5#>PvmylS1!RVxP;wM*%<%leR4 zh=)_qyi2ZiJN9jGU#emQ%)X}b__1tDW|{2%pmYtCF#9KPc>xLD#a@k#0W^k3l9~dYkWrJ- zDhExn3XJDBWx0qSsavC$BjolSC+>9RsQexPwcGKkAzC3pfL|yJK{@hMbPy;n{_t-+ zFI*?nVx8Ou1-ksLonAI=E1yCKXL_7{6v6-UK8B24V}xwP>?G@*@#Po) z@;*zR7XR=*WZb3cVXhc^B0vRb?~aFmc^^58FYzDZL8D*(z}?0L(Vy32yik2$f9NSy z$%#Kv1jlGzr?i^PC1VLxuPP5Y2fSE&K2uXa@pW1RqlprI{0-KB&YWXFbRmB5FUiA6 zhzaa$mk>Rq7-sqx#rdnbAZbi1?VD>97o};|k5nxCL}^3tA?{=ZEa+=Emx#pOv<~5d zna)Pr#hffLT%jFE*8Dz|Ktaq4h=Xa;Cb=`;I2Tt8QrKSLpzr>nxJ=b%@S^vi{9GvL zD5c==$M)nX!Gh35mPU3hQnEC-=0Wst>4zLp`f9=r+kSQ74)E^(nPe z07?Y*$9h@z3GxE<3j7*q(>p(`8IorMK@#7I@68R3@8$dQ$M=!SckYOXz=ZQCZ#A8k zMBMl{^#ek$Qjbn@IWZ9zwU&ADs$7sg^r1rmbeg_?XE#vv`*L)G0rgOjO*Q=A)tr5t zO}RhEF)Y6m=F^jsHf_+O%{m&2Hxu9)s@g5wY70Z?XOI&x$73pTbQb(MrS9_mBqet< z*$JUzYej=FrDjfZ!3Z{;y+zCmT==7}cjc_Pj|z_d)5b_5+m?lo#H4GvEwGX$S>tJy3>WS^q{hj)C@7{^lj7FFV{jLk+Oa zJ$R_3D7zu6ke800y0JC0^YV^w_Rm$~pXlK{8GD|;m30+2n=i#`G%}(t5;Cbl6gA=! zm@3DfF_n0Z?#>6qltk#mKdaduk9n^XH1{apCWj{Q%_6b2g&pX4dG^~qAEov>`Lb?t zk;{*HWnsq1+xBnb-#;$!+QJH?Znlj}n8#_e8uCC`I%O9}|J0wZy9}B7xwK{B5LC2V z70<0uOH?PVHJjngr6JcQ53tRxv(3;Un{3RDSqEBD_{mzIMsJlxS_)|<7vWqujFVnX zICw1}gTvo1Xe$zyg_~ta0)QW2ju{blONP>FS8%~OlRAEh<0`;mwYs>PcYOLZ!5aO@ zsW&J!$L-$uFiJ2v<;298xXUjLljqzw*EvoeB{JpP-I)u#x=D)FU-JQ&K$=uhuqgvV}|Xyv;({qCy8wmG#&%% z%Y!s;UCSXFcP)o6xom9`ytVs=WkhpvO^`yNym7dRw)|3Ovh~t!YR$EGTLZ?CpaEi! zx^+pv#vi|wWN|ssBJ4?RMka3{XjF9_hl@?R?URx_@>%CFK=g_d<2K*BC01LO4PTS< z9&YLkL4lI)F}$d6=>1XLtjwYbmrn`DIAvL{W8sH(_kBhp8UYh|${9qlT!roaULj0}r4{ zR_h>`ZI&d-`g~RHH0Y;1 zy|)xxa2JY1_@Kp3oOKeR#(LvZdVYtr2M|65|h3b)QlpNrIRC1 zUv~{QVHX8jeK@nsof;)kz1cTuHH1!$EK}>?Iw55neDQE&VdNSLT?HVyMELs#1v&uX zW~W`L8SEn>Ul~fKl(?NsO4E=1k(9!)2|A)Sp~aIG)DI2MUJ^`MqB-drCfRa!zmjO$ zAXy5|54v$dnW`Bno{6EF%PyYZ0UGa4na{h}ho?hkIdei)Pn)N5I_D4)Rzk-fS(rn& zCN*Pzxutb}b||+BoxC&X?dSPGG-#SJ9@v0J=nFRIvkPteb-{ z+$i);f)HVajR&>6C@;u_;PYTNIg4vH^|P~N+)NNeq>8q#ie)Jzh0q2(GCHNL&qa(| z#oHS+Sq-GAF1a&E7W$8A1p8YOJ8&~H0?$V6hF7`^8bi9y-^$PT|Ec^~d6xn$2&Tms zhv2@Vr`?6p04hI5om57nU=TAQYHsi~FWQvk{CpT8R)cQ5aXMk^fXi>uZkFtkveZ&S zHOg9Fz;5c3;#2j<{tSTa0iZtq`C0$cK7i_vckU0sU%oV(U7o>yIAXQEyjv7?2#!?y zw|4sFROf=-cv-6iVLTfjfLy*VMf-FDSQ>Yq6^gev`u__2tn@=6c>gcJ&%ei&#iU&lvv;7cCJq^OPFv|z zYG%u?$H&~Sm--V< zu?>*=;9u$@Z_4YE^S{FhBd^lCGJI}zc@dIkq`FV?<3dso&&ZTQY6EvD!j_6C5L}rh zdz3nG4y@+7dQK0AXQDM|drY8KL|p(MZ|Z$|d;D-h1h7KascSoF!hgNzR-lvYRCyj^npNlD^n_`bXddO3;V8GJ>pZh`VsU z)t?{(iCdjnRUH?j_lS&AN1s6q%S(WnZ6bZd0+1iHz3{M8*Jx^~mxZalJolep9+`-u z*R1#Sx$AKA0EvPDCj{g8g7n<^#tU(ibunyy&Z}AclA5s5Jg6I7@PK0>F852WC}{Q+ zI>}c8u+w&XEH%*upq}czK*nO{0sIm1g1P;wM+|t6VtfGI3i(@4Mc#ePP?z*U>ZOPE zA7gPJ8swAUQwREh2P)0{CWE04_ZAd*Lf?+N*Ya&cO+9Of8fn;*JdkSkB;4j7Pt zKQ2+YDc42jP?uE|m$eH-K%UG+jcVyt{mhObdS7M};zy`I0iXQC+OP{tigBZJhpLeV z@7g_@q>pNL`Wx9mO8*-Ek}z6z5)>uyaux)6tBeg2ygxq20;bc z;{1t-RV|zlYZM`L@0Ud5xmx@Wr4=b%f|)hYa5m%H1+iH=F-QE{C6e^i3{T1nLvFPG zefT$?D*o|?y8xa}9q{O>P_agk8C$R?(u6WlSAmjap+b;WxgMLDA9bNW2IjD61PvQwCowJPb2N|vsayqF%!rAOlFtZ+$PYb9wr1es;GfYLS+(ReVy zp#3T{E<1yO4Pdw#JI{PSmKd+t5;enA1kkOA4#016M@@R*e0_SbqfTKLg75c+EGfT|uP9REeM$d);30HA(QnEyx_ph+6^ z)IG;6TLs_2INt+L(1js$+!9a7@`8dP-RQvPthb{{&J)_W|*Ui+~mS|O(Fuxeo?_Ir9C!vr8@geXGC|tLg@$Z+^W6+XLk={X3A10Ua{2dnA{c`P)IEC2nva zg%|>p!;))ood~TXb2Nz3mZd52&^ym!*w;=aBS>GSS3bMqlVE-!aFOgjP*9*uMV3YC zR2{W?G{BUoGv#D$us)+hRcEZk4PmbSQ6hi^o$LtC{Vmb%vl?*f2iLc%r#%q1#dX{& zNX+W(>IW3m`=RLY+#87W?kjY1#Pc5m3odmQp$_|EBZB-fkK@kqqgaGJg3hEl5 zD==FikSVSf4-^(UJKF|tb@K;J;1{~`vH_`wR0-m1s6@%R%U!c(MCOn)tPZFvl3nexiO1#2vVDl|11Y`4X@5B?YF1~)uAr{^n5lRV}0rPUHT@E2}MXngSS*OF4i3>? z*6LL7Mh21|%sNa1v(Hc~F3mj)25QvTpi$f!F1|UD;u>ft6{2x}Mp=^n1*iUb_ zD&X+Ccu(hqJKF@)*GQme$cqg`v17)rDi)UnYV_H~Ce=E*`3n8Wx+1;`+T;?(yNZCPW02+hb0Y8>DzHbbNtl{s2ncFFHJ8XTsbF2h%`qz0 zI4hUSs7J$)V?Z1UA>G{Db{_l_LD6+O6~q!mR>Cu8X|QD0)G#A3A_JDD!=Gc8eFWX_(TtPsR%=>{s4o43=` zs0%w5!Hvrvtv@YfWD3mZ-!yjlkgKw+y`=Nr<0em4%pRq7fyDG5L6kw{=A zup2hvIZb0VARJ-AS)Z;r`fgeyakOSuhpTk&%NoVie@_Ch-ca|9hc6B;g&h%8lfk`8 zgP1HOi{!*paEwmNRLI%AXw~D&sr7xZ*ZFqPB_0`Hk5Va;yxpi)6*EhN=slhcQG%T5 zp2}1vBt;WL&>}FUg;9INI#pGJU3VX$FWBT1-iY{u_ydfA${oULoLU(-}vM1aXUAB z56OE17canEDpYgxT$-w_5nTsVWZUKjEiACnhgPXri_v^=VyIs&iVeX&MsG1=Kfg^* zT9Lhip4r&!Lyp59mn5%dB4cadnc{hJk=ISN8okz25`mb{(n))~`&E2ve2gs$FUhXL zJJiu!4gkH7xqhZ9aq3e`kze#^>a(%t=q3h=byZXYNj23RsjBFYRW)S8;qQ@BhrsKR zHK+yH^xOP@sQ~>7ziI|+>&FP$+Rk#9mOv=#pb_z-sjueY&MZXeqo|pafZ`n&p6>E< zTJe*=UNd;3BSa6R5eZ=+#lsN*B3sDl@M8MCsSV?;KW2TRtLhiotsWQ9H;6MMYPTcO zxJ~(Ubr{7!J<>V^2qIY%XDZu$kQ^cdTN0K7yG zb*s*=`s+-3>C4{b>j&=UB&h*W*b;wNL&m+C=d0q0QYGDD`?(mX)^^d3>G@$8xV63i z%DWiCa76bf?tjx}3wxQ!*aI$=p#OsVaQut={8ba6`~62vQ2no(00VfdRAIkvt1NDV6o)So>E_(1u3d(=d-lM|!H5Uvf#ErRfVdDfNINClRx(Ew# zJ5C5UWSspha6lfggYb`>VEjLF0+@g01bB1qY{PyCkv?$)z6gtpUX#xh{F>8_g@wIVmmcR8g2rb z>}WR&Q%S$Qv%frY<3z66?yGa(;kaK`>Kr%;>dR>)>en|8h}*1-$9pD(xyP(34I}Xd zc!MY&KVGH~cFkuEO58yy{fYyK;OzFt(q9aI|A|;T7=oh@_=fyt)y`l+^2JFM=--n8 zwa2$lOw^%!PbLWkfPHr5|H3|zh>6qi0X~pD8BdT&gYbpUgFS$-j~K@%WdB*%yaxF0 z3w;zR-$>v#3?S^&$Ta>=igs5FkP|F2Z_dyE6=uIL|CJLQ-=xGEJwJm8$_fy4=e>4^ zFZt&Wpkzz?0iWY2R0s3?;WbRnArLNxo3z`G5h%a~PKF8-hxPI(ZvyfX78lHIvru>C zu5*QTlzFG-Q5dX=xf=2+c+O|8Lkmx`LCon^pq>!LwmPgrw7KjP&TRCs+UJmUAX;o^ zA8jf;77X(Oi`plx6U-%jH2;|mN+I7o^S$s#4_7sz3$C!QWksd~cMbDRg3@0*0g<@& z+&vr%aS{Yg=SF}8o~yw!!9|zOz10|UIw=rG^^jl;w4fPzLe45m1k=c(YvBR#@9U*L zzC%AF;d24h#mp8IVwxdcUMAl71{(fJHHYfUHj*vrLT~6(s2rm|3=DB605@u&quHi2&Okp1&!spLZm2UpUMK<1(2`?;xN``T zv2q=E)VnB`%NpA5rrkzOG47~#_f{>{&M|C2j&$D+PU+hr|0P{jB2fC5(Pm>Nz)rB> zsKos~=7cB70H$(zzNFn4=n2~P3Pd4`1ULEt=d3&(KmaDYEClJEVa$zx!cMjU+3UnH zrNeH_9cydWX=b8ekKRhbBKn6-uSu88izl!-rq~SFIkf?a7ZtyFGwK1!i|9@hRE2h7 z0gjnG6z15otCYk6>W;4Syvqt(P#EwDZ-G3~A^Xj0`_HRUcl!V}1$Lq*wY*;v6|S3* zRFF#AkSy?(0km*KiYn3X`0E1G`4%;$`qB4vGa;?C2fIU(?{9sg-Hsagt-bO-K;A#` z$SsT42yOEFl(_?A6=Cx*3t6ngw!(BwEmOsdDwwE5z)!r7qpuUq!_RzZ_k1{8g)z2C?-WM^d+ zZA^}_NKdYr*@<%eRXKbYx?d$iM%e{f0M>5iE`QDXJ8%bwnFTtk2y!$g$pfoX z{F0vSVOO=*)3S`__=}Y=r3@BYgEGKc&EDP-)f%A-DnEs1Kq3)VXG+YH3G(tcB}E%_eCD{l9*KK8M=!E8;;1IJy0o+|XRT>+#Jt zte#M%n+Uw~T8yG~55TD+bupvoMhyL#4e%2@uO(@vUO!?Hj_;(Dp0?TkL2e824+PGG ztZumZ102_!ye7H|FspgUjQHG#6EtI z_&q-iQsw-)HR?BX96;UJ2hv)=SX6nc%62WP)h47Kqd=KSRef4l^y=*uvHj4U+?jVtnT-HIeK zeyLzAnPMShg_Z=&;#(pq7-9fgl zOkzycm!+lnYrG;t>d+d|rnviYEH%Ge$#6k)7Mt&JNJTdWPI_|n;7#DZ4_MAhw45fL zvKTLeE_y&m|CLY;sLdpOKgc&T7;`(rV28xacp{)2vDh#Nr;he-8>Il zaX-qppA!w9E9Kfg_ZGgn7 zC2fUq)daX-ypjTkY-@N@BQ>D#O>lGNyAuo$4bx2E;2szZAAC;Ss9dCrHh3y6r)MkF zY9`OcJ?Mb;jYO!!Fv4x-5K0(h4?>=8SOa;Z8!Ze(KOnsacE zzYfSbj&s>V32A31+Zrb;^XuGSwIoB?U7mI_`tQ~BWv`Ib8p@-sc;^dYGHa94z^p{x zZfGktq}?UdxjuY9HD4G!QAuZJ##*lcc7NX$t|77*OE?f6P!e@%`#o%!T2rQDvMy@x zK4Y_-?I7ZxPD{ctdAmP|*&D^CiX;!IxgagEy?B%`xg78s&+7@hJn5s_7uf8kR<#+K zGYDNp-of>){xs^bgR)Way|gu#ph@^slrdJ>kb&S@Zo2%CCz{CUCkh}}G1XjZJyvGxVwUa!!${Wy=G-n3mCc8VUfnz& zt3|wP#HL^>C@m-b;~p`yNcD1sfj=uv&;PkY2aUxgXK zVPhh{kgxtkbxP!^IVR*mPZ@OneELFj#XP_MG?=-Vk=l|I8r$~UK;3@2-%s4Ok#C~k zuD(+-UV6H+kZD7%<4J~kVr2|d5Xf5f?9xToI-$QD7!}~RbR2sQDU^;0LOb|#2J|)? zLcx!xb)aI=#6cGk8fb`PpgEEx-!~FofI+|hT(JIN&_6`o68Z%c?2Dj_A&0auxXN=c z9$e?dyb;gJ{5(}(XLv*q{*8;S`BYhWnFuXFy?NfbwX(O1?eM`Z}cscarS){d9(D3~@gyIJ6Qgq3KKHXxRxM zR%iOm<6s0^l!pz}`cV^Gu0`3nb!$g+GW;9iEc7RsZi}(eoDdJYO3r1EfB{b(@KuFE z0b|p*^y!vLA4Bqk6b zo#;wM{M-3v$5H7HWaaYRM;#;e37P5V7=4Qu&5?<@4MJQv`}2?oUh6I-3tMl7fUvRV zhl9jIF1~L*k5O~xecI=KE0!@?_2ftO>p6hmq2}_xm%v}4I+`XChG&-^z$>WYmo3qX7DC3b6<#g;4h&${1IAHS$K zzxJfu*`c!}b{?zgD~~!fb^X!X)TWou%HILkiGJ~n?fGF;sMWRq8sIvamg@TN*GYK~ z0mVDuIu%CItJRsC%3Z0Fw}uh(BK&AnD&y<(1JEATbh%&wM12J3D24X(Pk&ji z^wtbG(CAC^y;dOygRPvBgT7$Z*e=)9fDDj{?Sbhv_F-YECH7RdX~kPh-h-GYUkfuE zR|fn*CXB(3#VApG4H5KVmw?@`d9o(F0~JsZO7wsi^<_s3{$8aAJo^nK2w-vvQY5AQ;bK=kWvKQ+#$O&l!BQyC`7ex#~VD-s4!& zo4O&g5jzKHyZ>|0txMhc(^dq;Kb#eLz;@7E!=v>$1@)WP&HT_erAg*PlxsM^W6B*m zkg>)!;4vlo2^^F;M~=PEaoe+^ilb2#Dfa!B#$Gn#jkH+~Fo~HJ*LJ9o-eXjLqgENG zmXotfh=uPrWDAs?kgt(t zLQEWHFtz@fR)Cyi)JmsWNbUHj^@|+wZhn*% zYZlxfCl#qJGQXB&0geIz??LC6%E)q2rI`c?t+XI7b5(ERJ$l5zERY*^uig4$TpKiurL_#;_{|C3d6RYO~)5^PC4#Mk zfZ=C9%YlX?waa^vX)q*3x8QRTJ!s&fz>QFmXD)7qTjs2q{jrO7pr>X270ncuDpU1; zqdre&{B48G6v$%tVi;cr6&3xcN+{8;k{axJV6YxyxR#VaCQVlBBo)aju%4O9^b%#M zOO%%@;`S}4m;~kD`Cn2|4dl!FIV4SCU*H!!EQV&7sSp}`vVJ`-oF~IF1EM}Dsa}ym zz+T%0L+bq{1Nj24%>Bp85eu{y5@;l&TqJ$zfk8#4{V6h+qsu**&xC2vc#A0gp+g78 z>i1{ZUico})Uke82!8e6W|)4fEOwQLlp#zfOP^=!Y1w{LZg%m%82?{cA8khj-n#so zx&?uIdsKfeSbK>qjS)qqb9*GNKQam=XJ5-9wIKKVP8)b_YY9f@z4j5$VYJlTpFRom z(^C2=zdWDAcl2RA<^5Ggx}}F)0aYJnK-Gtw$*&j85jtc$G25&5JB;Vzy{JnyQxEA? ze=5SbT6()eHc*^XvLz!;cc-AjvfF7RvOexxOrn?WKUE*FfN%icqXvBp{XAEyMEXR8 z$$zb0PdBJHcvHzXXoqg2I`IUk`dAMkO9J?wWU^}#3eu9B8@1I_Yjol=z(0hJFYnZ$ zf2%$q=?kdOa517NaIs%{yqWMoDLF))eVqBJefHvC?$v**K6-zs6aiHqIb(+g9LNBp zE9jKRF4(_SpN_x!Hi7w2K-C9qINS`NLl8jfp@~WFItwzFphE~v#!Rg`G!>sm-7zhF46hz!5Z^5PSj%r==tNOMa?^9YzSA`BBo?cnM-vo%KlWE7zpIq{O5}OghlamgI z6G05XI2_R$BXP(5T29iLW;gp~B{whJtQy5jcVRX@uZE=6Hh$vF#Tod$@tDo|0}S@< z)^i)@=cYJ7;C3)nJgJDjW5oJ{;K$Ae%D(T6eE7IiDj)>HqES~sPp76^Nu$9Evu2aI zN!rD=OXGA&oyt&DZ;?qq5AQv)*`JeXR089W&Z9NN(O1|WGxB2l+Yh-v3i@kJgC~ae z4J$C3HH+9d2Ki3{j+d8zVq9>(I`G+_)mx5J(ZT*iK{Hwr#bs zZL5uK+qP}nwv+b1)8~1=wbno0Z!aU+ZIT|j&N*jF7W+y@@(;8H?_Ujo#~i7rOW!fK zWx4)}Gr4;BPM$btX<2iTWU!jf*%}TpkK`y0l%&x4)V>E_X;aEN?8}L^4C+f8kM+iA zo~owlI~D{W+7q24nxy)PkP2aI4D}usG=hnQ7fQz(F-N z-UgE&XZo=HunJu4M7f1yVsyy;*=IxTfVL4=V}v~|N>ar@T_{LQ-}>XE1q62-+^%LL z##49qR-+zDZF=_ESjGlJ8Js>$bKDOg7BGWf&_kVlZM zDkZN7=v5lcT4HKCwb-GtT0q}qZJkFU%nAiaG}==8ELPj7cV|R(po1EhZz=(-3hI!W z;JoBgLmvpvkHj)D6C;Zxe)vzQ>C72(V-KkZg_M7W9GsX#Er-0AEoe{%qGI2mu?c0Ql)ZLSVO*DPUBu<3{qr%eY+ayLNe(+E*}H8;lzFVei%i zef5h*6>e%amzZ5$EK)oFmlIy0U;h)R(0Rlyf>KZ6*-r%M<_X)(`^f?}q!b$~nk6&0 zRy8SU&0;V60I}eDoX4SM3syy#-zmWPm#&jluHIuValLKGS^m&o;}-c|Az63r%G&;* z*ne)HOh?b5jl6lqU)YG;;Gb#IyPloaV(FHHyJRDkxXL#Bmw>WzRRCWw?f}bgW5duy za8Nl!_~Edk!iEk@#qS<14!*1C23`u+&-RXd>O{KqlYoIfQ{gPPPer7Xb0YY{9j~>b zL4h>vbiFi+N=bPt+Z|Q41HEy}oL9hmgZQIW>@~Z;>oV@&kN>oYwUUA~2X~is zF|(Xjt>50VRZBfNp5)5VJz=w$I|T$(x@KNF$zMHeF?MbD$?i@40se3AI9I#KYxMsM z&cpHFa2`Ot#~`33W5K{^yfgXhUz%qdUQ2g-DTV|zMI|NSXM$4^d0}2Lg%)o-Z-&ef zF6E!!F}+VzSfMCvaG9m!7_FMXeps4-tyD^facY#ODUpq*-iiUSUE&TQ@qn-Q=Z^1p zCYueW+VnYr#bMlwvJ*jMDr!P9!u7*`#8s+YavHC00QSXY#KF)ggJezXx~xBlgO8IG(4TI3!tb>fRY+tDkK9FUD0KTMdH2fJ>`zd1?njkPpe%0T3{&cxm3hZeZ1P^~K6!N|&glV} zoOe`8OP&~o;;U(0)0bX#Htv3;RXnu)9W+DWcj0J%y?kgG!J)>=ZA_()aF|l48OsUr zm3>Kt9b7Qp$h2VqK)CO)&b8W$@`f8+q7f3`WG^-=!mU{q`c zq1OU8_%Xsx+$bJW0QVTNz85H0T_%*4To^#}bW=JR`IZMr3kQCB5F%6E^*If+Yu3T& zV#`%#0Um^%e?15>+zjw2wCE$e4Z&P z8QrAM23MOUZtgqAiHE$bC^1=M2GDcD(P}LqRn)U9|H@(1 zeZgU8H0>59qCQ)02HRrHt7AA5uRq_2h&9lkOoKiE+Jpi}*N2 zrq4!2ousySkLan5lv9_WSSD3i;YS{yA*<*XM5tLAu9Xn}m*o)`m->P3e7?t~dC!%! zP=nuo1U7#M_;sxh8R!kpmRZVp3)kzH36G+V&;j4_O{p?QtC|4@7ykMUk99LL%ckZA zV@R$TXXL>v!V9mOFcWuYx%bwP^7L-{sM-<;(4kOY`4*YW9so*{>JyRuq>oi5UJdqe z8g@eTCRJ1BaR8MEx5$U)!3Q7G|6JSUx#!nsxyO3SlEYoQr3oES?pXkO z)6#rZv)zG!jE)-#^SQuKN=2tUDK0_js z`RkY4a#cZN$oQn0Wbu$=`O7~$2^n@A)6{z4l@-&o3x zzA(ts_HnDwKX-0QU~Z^PF~N#od!+Tw2+A8Ua@P-t+Pi2xp=0R5Br!90;xeG-w>sl) zM`tUnf8?%`+$%!;zJI_3j}_AnWVWJt3X0i|g6J#OII`3OlOEH7<&+678i5K)PfLY+ z3hK#95>p=a&3zdLh!KVtg7}!&S~h)ICFX>vNq2}J%f))7>OMgp-crJUL7s5{$dh~x z==LD}zulhJ|LOLm{!h2(<^SsTNG(|t0lGa;&VE0>XO@mR=MLABjd+xh=jh2<)x1S; z6+Ips%_hz`_?=j}r(^Yu3;nrJSsHUmt6_n|HNQV%ve8fztu6n(v;}h_7ss32vZ3{q zB&hTAF|+#Xv_mVJGuN%10$gyLY!5xBtn)Uxbx7va;@-930*(OHp{bp+SjLSmd%>y& z#W)FwIQhG(tr2fPZV|(WwyOJ!@jSj`UM0qWKYMk><&O6F$8yHn+E|}GUU|`4>#xI`@qF5Ejg49pfW@iaYiiVf!_F^(!|?t-Z?HEB6Q zyuQ;{vb;t{OZJUr;;UCgv0>tUbJ#%S0AbgYl}+PrzLsqN(pud`K^A7(1lb{?bCd8= zTY%x_5nKW0Y57PyJTNn{>3ssKXG|p|D3PC8UGolZ~umicw#>VCGnj*`&5E z040KBp2Yr_@bP`5KoA ztuLp9FpB!xxtN%rSh)S+$K|r|+hmw-3W8^>(X7+7d}`#I!rWv_g$cC>0}u7duw#tT*x)8|9h?l%+s2;?ocbz3h+2+=h+rc=jP*MwY} zrVKK$;1TLnp%h=)9S>{;=+Rd1SFOGH*3RpN%=uG*zRypbGOTeWu360F2=Rd_E?=|W zCNCP*l4%HQ7@7)OJ#aDiV6p$X9JIDmWTM5c3%jKRy zXk>zN8q*`W8tAo5u)?1o@Jp{m zbKqdO7}8L8dPsd-HnE3_sljeJsl*%?5^3y7pM%mI&+M;*ltg zm^^SSz)exCBl8fg$cv__o>&M74PF}E;<9R%aWC2;QBgfl2X+0jx>)R*q1KZl`MZCg zJqc{-qE5BsKItv99?mbc6#G4Pc3i8{Kw%3|5O!I%amz~GXO8go$K#$;G*EZL36>Pg zmko>2Z|#KT<-aWO`8$mlZ+B2}Wvjb5zDkph;cFLViH=qB$LM3(e6ysJ2IkWtg;_)1 zE)=k1rw|$|j zys4DsxAR=AGB+8RHqXoH(l`(hgIK55DssqZNiC=wu9sD{Ql%|Ikek@L7Zn9nzaLcT zGfDek?M7Wb%XDjcmt5ru@z7w|5>fBi`ZGgg@k1;J`#e^&#oBNQJlct*QB+xqnFn(;HoB3Qi>M*J`D4zCe!D$ zhperxy}sa^r9Tk=ZC$m7gXn+qJTCv`O75R^r4DGLw*I}60~IN~?Y+1G8SIvk8yy@> z_S(`_+@!6h-TUh8MS^vFx#mUA!&5RUwZ72kNaDr$7WX{F2fI~ftcnVX$*q?1!?D2- z9D-S3n_F$EY*VRBGYsWZF9)&c@L)Kw;N$)0Oz(G`i#Ahf_JY9rh|pfkDVfBlCBc?f zFQV(EJ5(R;Vm}So3ucv-frct1PNIfc=qJFE&=+o0uc8L~jka=gJ95{-+%*5doDsrW zKDbOIOr>3)fe*e{!KU;9FZ2ThF+SF0Q)s~lyHvuUaub-P6D+XVJ*3|Y{seRV_nDAgl z^tOSjJc#eDF90X@fzaIT>ETy!UbQ)jZ$nL<1m(4xa zM#31Wd44Av31CQ~_{edvxo(t8v0) z=)r=K`dd8vLwLi>cu9nD@P29%XtQ-8|N7;0XoXW|**Hs4y2a;s`jKE_U~aErYJj|n z#d`2(>;KtRxJn<<2+D-HESx#$7F70wrWr*mg*2+rXbZVuN-t{x#a|uGnJ}hQQol2_ zt0&=;jMO&FOI?S`AFb&$3TKJz*Gbdi?H2vCpva4uZZAi4Oz1VTE5;JXWj+S}jG|U_ zhy$XisonOb%KigOT!>P8z^AN&JdMQsorW$YrnrUGBLnUy#B8m|d-4t*V5SXT4|)`XUnN00`fGIaZ`Z6%B35 zLX+7@@)iLuC1F{A)xZW%~<-5J6Ue#WMxiJ zu)DDR=7AxHzpe>*46Hwx&Hk$tsx#i_uo?sJs)_HDg);I59EbLNr}r=Z9h7R65HS;3 zVl$+An_&ddF%V32l5Mt;j^d0@kTc-G_0_D$Ft8be+Y=bK!0UjCW zh`w4s67^iD3X&iw*z;D`HFgq7svysCN{s&e0w)-*+Zzm8KE0@7tNMgsUg1{J1S#Yf7TLj|cHVRDnn0mAN}y2Xl?L7@IaEnB4LV7yK*E zRM1F9Vt2KYSr-c;DWvIcE`nuiey4NtD;vaA2XBseP57iz#vV=u=g{v=zh`Hq%hRP;SdRbI;n$copbVigzfNjy*pit z?LBC@C(G5Ip!*9NM}BeNn<9dz9X@_zIrbks3A!r+L#|Atnq>L2KKR$j0U3;YQ zVz*R$hdd+W!@#X-!Jn0Cg?$Tm)kN!?5uj{N*fkaVK1y{DP`hbALXW$H!u&I*C z-lb1YveTI9ASMXL%0VeE3Z?MG2-Bc4O&+UWetwJ^&omL`3#ywiN&Zs{b5#JXzIyjf# zg2!%p0Yoy?C`NlWf9Ed6vo?*$YTR+An~-bJln_)>r|pA#wNbY;fi@W-den%3P-Msj ze#8T8yuza{g6**yqcms~-=bVZ>23g>~y_N#w5r#5H(I<0p}ru2MCgb0sEKQ%8l`1H+!FXwcC{%Q|S2iMK(^ z97%GPTkNn!r=j|lgFRZb`jz0CxiqN|px|2u#IM^PQc9NK+;TG9e~N3dxffpJR7rcmVVq@h!Dih>aGrjj*|STqApDsJN}J@u+x zzr)3Fz~wILMEG!i3DvJf-j-EkX?5Gv_iY37(i2_21#Kccb>lj+p)tUVqv}APf~A#d zncVkgbdy5pkN!=cFVetkPDwd>i1P-hq7XbX??f*Hn1g%wa^!(cWyA)Fv`hL3vsIG2 zM-pbyKy^&`qXpkeqH1u1_@%@L_*d|8N*tY{w#1EvL<7MrXCo~hhe3n*R2so`y`iD9 z&5Z^#oe*6v3@zKa3auaTn!6Nu9N}_6IMmKOyUL>LE$@m*GR;5p^|AIrAIcY{-|8FJ z8sdf)nL0N`>B!}krI6is#fOiq1eRfS&W&_5#I0WP9nS;FYUr~^6r(jqcMY{y$veIm z26q`qs3y|awU3W}lf&0S=u$WnG8-5U+5a{_dAt2BDM1PFmi_^rd|it^Q^zjxhUKxH zp`41hlCZ%9DwB$^YfIfUf2fG|v>Ip7VbHa3SF+NAxRFzqsWoc(ohvB&%%pK=soW~x zu@MVwNh8}SDQU07L)A3c?uI021OzzRR0Qfd6)`X=r=xROdielubB3dx!!6h zigo+B77W$XYr6VY)4`F>S;kUP9;f(Avh~;Q87hc}z|?#UBUzj!!(SL&T8pnm*ZC_L z3pDfJJ8x->7$MfIsWPCqLm79&fbPSpIqqwb4#wv<%C<4U`C)nTH3Yg-RBVHgRQrm9 zxuQ72ee5FB_6dDs@Vwo_0+I2&mhJDOHEe@xTP_pX8By;{=v>4ccA`v*m{to`J=Qgh z@{qgf8qe3r`vR(z+BUO1p_*4K%0GI#54I`x+4#f6Zx1DE9Ixh8|n z^8>G>n=3IpV%)f8%%Dk*HYhAk7tjX+Q{2`z-)X2*9}G-G$jXw))2#73+QFBy_6+QY z)Sev_Q}j&ifmCo@Z@9iVWxExlQ~T33^6}-n{g;SrCpZ~zhmv1n6T6RE(-j^qPI@{_ zlJfQ;y-DRsX=s-ne|WCGcs85fe{B6%^T1Y=^_bg#HxFyLjzMk0z%NAqD#6KC6i_7Q!>csQ$Y5=6P%+O}bg)dtykinDcEfRCst!m)LtT7;&B_UV7MKm*CYW#Wd}d9q?UBWNkE6+luZUx$>86!ss{9VA?@MjqVyU{bP z28e@Fjz+lGlhv(zpC0UOk(zlfhwY{Dc978V<-Z>6Gk^!XLEWMLc;^^%<`tlGgVf&X zm{qWSZ{U{~N(Q4h-(H%2rKe=$ zhOJga(rbDo>LId_fGbNe07uuk;%5$n3|)h|S*~iyahZYZTOrs6eIby*OA(+;g3PvBNJND3(h+=&k;2c=4Wyg+HSK1i2D>v*{M zWqx~k&!57Es=exsHduB|sV9lKh8QA+6kD$m%NoVtD2{8z?trOc0AFM#iFnGQcNa@; zn6+S_+XsmEFiNP@PXY%c=Ta`W)j!^#nFPXNZOAF$Q}mjgQ2(EJ&#!SSiRZuZ9>5dO zf{4HZKQfI%=;E%nKgXj^yAA3u$ zNG5RURJ2^3N4;XJuxR}zfuaq=K*NcKP|QuKIcgS9MYYF1!5$16hP)f>@0)buKeNmt zej5i-n*3cW2XC+}NrlZ=Kn;${Jh5MPT)isAl7wLu&>Y{q6Abq}h}+rjAxWLNs>gws zPkB)l3~B@{UNF|RiX1g|BLH)y3Z!ihC9}{q{=LI<$qMnLqn;-<;JeQ;)X~SKYJdUD zOa(7Tv`D=ZZf~6mm%z4IGg00PkcyynN_`Ztr8qwdK|_+XpyQ9o8#;)4FI2kZ6RmCi ziVoxhLbVaVV9~gJmdp;_r9g#6oByFF?q+n7d9ap>C%_g~!8eWe1ocjSerywM;bmzr z;7LBnV9s<;j;`=ce-Pm^)^(jS!aB{6SE1R%OK`^U;DS8ZsUW&~v9r$iBpD1F z)E@G4bvaV%i_tdS;^sV2)>D z=f}Vz4-uO^!`A~EN6ApX8=csN<2^K*Fyd3`He~lI1}`aD#SOjYNmz;=fEiOrJXBwZ-LWLZ_G|G2Q; zLPhbIT^c9kyF?glA%OS>d;riVgc0WW?b}*3Nl=L0c5`kqHtDKXD%>h?U ztrYu$9#U8z8T(P49lP%bo0=UVh!xE*H-Z&{X;&5{=^W~DaB#nNxK@uA&8%M{ypGCl6~r^a{-fuZoi-=!L2H2 zo*qS*6@3d^$~ep<2B4#c0O+WZ3a^s=%AN*KhVh$8vp3T+r;HBbbp~pFGVeR`X)SZ9 zjM>|2`VEFD&t+qbcx*>C(6-QlgFdI-wbZ;djG;VVrYANNgf<5h>x2R-`ew-Y*Fs3>R&Wp$n=;PRu?J>~< z*r@T!1*3SchM*4=Z?sLt1+(0w6EDb(WgDV7$HESA;lbC#LQ%tX<3`(C2tF3_+YDs6 zQLU}K;R(U1sDFrrtF#Zc7bs|!5f(rjARnq10R{^&(}qHr!+G7Hhz^SCFqmknQ)kf; zay4HP;DQ!(vzGnQ3Jss`0J_MV2fo#Wvqsivg1X_rb!0FI_5pZsTc^CkIS> z9HNxwv3G3N+JDZ};?QGLN_JrOF9(69>adUU4*3-O$DU~=efI06^}Vg=b&vW4<@fQ zL|KN>#-s#ZuA@a?cvZIuUcC|(B1Y?0Oe=pk-qpph8A*QGZ3{7dbfF%L^NX+Id%@nh zpjiiSqW)zQPv(loCZFC zhC0j_6-_}|1Su~pnj$N(Q^p$Kw{m#^-5Zo^6j28$ypOdj8m98y8^yLf($&Tl@#yJ3 z$Wsz^rO8)}B%_rgQqXoNb9&+A=BeeJwKs*O4xh+{fsKexUXPcyT?5>G5sQhj9bP9B zJyy5ir87MMbs5bpnKFd}xJGp5PTTpE1*e(r_d@@mn1tsv?b@?>_!QGKe|U5UdZ)>U z?(c+uGNX`etsx@QoZ&P+9wjP66Yq~{(-m6ltyPscXy$H7y-5{GIOqWVw80fMFD}#j z`+wI@V-hTtg8%nu&%ZlGLnCI59oZXTNDJ5jejJ#au~@m4Hp}UI^1`PF-H4|Rs}%B?=bLhql8ysRqEg>;EkJ#p;Pw- zH*-~LBxO$>JHH>?st&}Zzu)fo{@j?Yelt)PDElZ*fLJwJ2xc%x63$-ikzgR1`qFU?P8Dm)tOt9I`0h z8GVYUJubEh7(AKH{il@(PJ_{RD0e6k@DOdY`Nf>HArGN`?tfwgf8G@-`2UfSql%U^L@>cQIBTLhDTRz@2#juO*- zaQ;?C;q3GPl~LVGx4nKLy!ZN>5am1RmU*rKfOxr*`7Hb78cG#6!;?t=I4 zsTwzBqPrQ~dwhx+P#l8OTbulGnl5y^s$Y18@aL)8;1i=tSKq-V(^v4tn6H7~p?0^S zCteuqe=CVg+v(hXRbK*q0Gzn;4UW&Mf}m3JR4g=kB2tw`unP|5`E$1`ssr)GE#VMtgGauwFcZWm5EuB&#XHMk`5)(rC}YK6M@49YG8!;1hB5!%fbSn81!@zhz1 zz>LW6NBqUqhfLGD?rVQOOkywbB=!$S!zJh3^f&6t)dAu0W@~*~H$^QWq-@cWUouF(sgKH?fq6 z%-m6DRYV(OImMM*II$FAu^w7dxa5Z^R@KhVfa_4-qv8lP*h+$1q8&tC0zW}jnW{ua z1+yNd)^kCDVgJAY4ZcKWZI8!M&&_r^DvL*J+kXyAz^w;Cf*^O1>))Rgr0@dE*wJa&N7HNT9foDiTlVkI;T^*Bfs|_W&8!Wn041~O5Ogij0bQwF6 z7mu5ARUk#q_C--YkeQ~ur#3Bw-~-_%Pm^W{eyu*l^vF@9?c}t*+D!*}=;(_0dIo-Q z=wdGM3-F)Y_v%5e81T=$qqE5;R-J>I9%Q3BmHtmh;F>*qOnyYAvMg~KFvVNC;%+7< zs=AG+EFjgQ*2Hgb;#i^wilMeMe6ljTq^ zb@Ak*S!)+Tm3~yi2Y>$^$3F8}>|xfamjnAO_MoQMOCGuB{w?<883%eA0g657JT$Iu zR>I(jAXonudmI48p601v*N^`x_KbZNdpK9s0L30Xev;2(55?EN#h&_cI6c5W#H9;y z^nn%vO+h{WuHV|Z6%lnLH1jEqBKO(`uZig-rCqi&J`QsZbA8`)V?1$60}c#3zYham zb>7dKq@M%GV>B%vn*vytl3^3aE<*O>fALpQXR5B)Iv$%os4U4wKTvLvCPiF;X@`o= z#k?qw$!6HO7}_1VdgIx_<^Yl8y=FS}x`Vi>6+)CyJk0@o2j}2CY)~BD=BFJ-nY10# z8mVtmHXZj(bzVZD6B2qeA?wXNm}c#W!(g$n-6d@>0_IodO>@rLa%r=$ULY}wJU_WS z2?okM=>gx(JM$bk2m0OW@6NJ^fMSnM`Kx@A^QEn$biK__GnnoJclXVL-vx9biCX~y zDy&h5rXI_BEXH!Wm87InI1zPQ*338|!&;GU0h_K&Lh02vZdv8qjds%Mc>{8x?LfG~ zTtYY*BMtzxMHf))Aq#b+X=hFBMjpcxFff8YTvjKR-eLq*yNLQ3$7c)6-@wL`F__`t zjx^}3{qyICwZUbpWGcr{f)ZE!2FbC=?dHwkXyW=&J=Uy|Ggu=bUI+O9-sLR%)!*ie+`X5mY(*u*trmAN9czw*36kUDaHtIRoy9T%%TGM<>7@} zEn`TXcJ$C%@(jXFaBgdvgP9ig0r&l4JBuu7X-#9oV=^CGXn!gub3;oymMvljXxexr zT>(=!)Pj!3NVRkSTSi3*oCV}JjD{4X*T~USYvANVSnpvH3*06TF{TI^hdr4`Sd)GU zdyuAx$KT6LG*+|OuR_hS-OOZi7-C@5_Ow4!*9vhKMR~?evIX;iaNz^)Y%A{>&}+Ei+gMc7gj@__l233;@bHwsb3d}3C0J*g<_XBYvW`vBk5@aU zjZhZqczJUKbdr?(jJ6I-iO6+!SC8h%ZIm?~(~c9(FzQOWC675?P^6Q!4A9}le!w#2 zK7p0Bj8aQir;ggqie`7K!vhx@{4OoC_bckl>8Obj*-_8$ zT6vd;LOGk{3(3hy_zSplfbCOZ#6WV2Oh_CaQ@sx^OEtAp8_3Y=jk)ouTS}8aj zdmS{>>Di;b5#iHXZ5cj83iNBAanT=ama#{UsF7 zlV;q<4kWglj|z>lnBvt##R+faR(Q0F;;3GoVqb_AN9nT< zzjPNTlTHGXstZWnL4nQiWbavt(-veHCvTSRo$fAN7LJp(XdbBTS`>#mo38slScxUe zNcKQy2bpHGyJdF0#KQefjyOSSQ^{EGPOT zi{0i-fRj0HJ1bH&-s-n?*zX4}?c-1;@*F&otVMbVgQ5u>!GXopd(cJ0xxYqQHuvqa z6GV^wy+!*7=pT3_X=A`iY~#PR1ys=B zTTW9@rH>-*gSWe|xi8aQQQ{u5O|r?(4GkqtN8)x9QR7(Ex4Z^u_IPUp+0U_(0Y>dD zHQfR1=HFAai%?P&D1AESIV)e0580OIn;HUT>cYL&=fTDP1(Hgq2-ZqjJDC70MdcUl zXYZq@UA=~9xEDaP2TpJz_4?1pe~#!*GNGoi!)bo6DpPhj)}3wjRBpVl4y0*c zu}V(wqC@K4ac^8~Z=Q9Tc=v=r_x&%74}`91;{THD;b8n9#s{#Own9I?fT7gTOE-M6 z4oE4*Xa|V{S<8h zL3l>D4-He+u|4#&s6OZK-!<*p_4ua;if}Aj^XuJ^F$YYcV?Lh0-?qG`u+bwW%^UIA zYNuUk))0f?!^7cmTs7ZE93m+~L1DeWfyBVjj4=WwfdA(b4ICoWs9ss=PKlOIZzuBI z3vh{MVh)h(Q1mSlLEVzW9kvO$O6H%^`z?O~gibXMNtGYka=>659za6h5D|Az!IA$k z=Bovw@CNsH3YU7pmAoRC{ASF@xZLk>ye0tSJ+1d2o+EgTeEd};GDPCZ-<<>Tb;Itf zt7vk)ZNLofpJ(9c>2fZAHI^=%98otv==D-JA!xiYiG8-pJN(N##god=qVewW(0H~SMxlIhyPoU)D?|7OkRh-EJ%an{ z`?`=t;D~;N3t-8$;q0+rt*f%7_flaFxhc}zO=3Q?Fiim&qNF~$X~acehi(2&2Ja6hlYSZi^2h1kIT)Qawh*d9#yr8u(h?4dP6Dp3xhuF%tYT&OlXkiY$!%h1MdY1X5njZR zgJB95OsCLR57!a`8Pcg0L6vIvY&DZqorKm;fbknu_wE>cXn`H1(?!nZ7+Os31>_tB zRJqw+>>vq-|L_ulIRvk8O)6rVGhjHS`Y8c|EgFz1p`XE?Vk}nXt?GbcV@^hG0*$eJ z(k-n%57;v(m6~XbR(QNe+#J$Sm~{ z13;w-@~G=FW5XFW`%{G=FAYF^645}PQ>qpL`;2&jw`h|WHkqDZ?FtC3tej$T6HF(L zayTgVLbBQ3OgOmYRvZyjq8ExK^{{FeXbc3x8cj%th{jpb818mH3v7yr7B}xs^u`2Y zkeO-+DC$wSW#0<#R^+_FJvND<1k*Hf4k6WyOO#7csM^OO>Vs(%G3B$@gD>7k@`7~b zpV>O>Nc?_5pM}rk1EFOmN$|xL~(ZV8X zJ)HYpG{XC!7SK9vO80e7{VK|M?%PehGibyim?^+MJ!=3Lk<&z|W*Yur2Ycuqod@i_ z)i+pnQ%5@LWA`4Iil?{Lw0r~tyE{S{O-nSRZmf>X!bR*=MBxC=;LTdMjTUKIT~p zjIwqg$4aAerM{uq@dxcB;cOYgV^jTo)^_iW5$4YR8~mDVfoufkGw*d*c^2k&Bv6l! ztjIN!651b0{6EFV-E3L;qEpr4Qd4zgBcHJzO-{})*{MKFdg6dsPsDV~;Khr`4BQVu ztY`WP^_Ue@ac+m?5)zq{N*zIBU#@xSi=w~0-aPwM*GRDynha(q#>f1JIlnBljk3>K zs$D-e)K^f6pR9)3r~D*5Bd=8nyUo$>Ohq$S{~|u}HK<(wB0g%jG)W-;AU^T|0L16x z6g@+MaheuTK>b8~V4|}fp{oBPJ`U5Lh>wlFFEaA9V=Msi>A9(ayP*=@e)}K92Vh75 zAU=Hb0K{hsEF3En=@apx2fR4}7F8pgybW?QG+39LW+2EgD4ifSuGU9?$hByIz;dxl ziyTOyNi_5YMBkiopv&!V%-v^^1C7do0%PnbBV z;ORZQ^;y|2^SB-xMspWQT1$~I{hN+aX9Mf8c7mX*$&`w#_{nV>k zuxeXQixTdxY^RJJ(zahMgl(?;s(4h5F*Kh7^tcDl5KR86tU>LsCU&YuL4_khA4O{S zFXDstiTI>hZY{LsIUYahfE2rs5A79ujnd5y%Th_UW=xjLh>h7FRohYl5TD=;^%c%d zajj3pN8~&-ZIqaAHi@$!JY7oT7mt1NT=}-`g3%r{YT`$S#tO&iW^J&Ot##W)OJ?OU z!M3LRT&JV`Br+G1lG)28#pWt`Q;L%-8+NAf#tI@4Rw+9gDPZ zzEzm`Hg#)!@}oRK?#lSb*vp1QNK>g8$1FyLTY>{2CT9qx^$&Ebj4-MP&g&@^eMCU3 zN1nsfsL~R?KZRaC>`J?}VuTPmb)!3dT=OsCqaXE2_?Q9#T0M^Y`k#c4t(LV7fbf|Y z$`%3;KC5X7d~0ika~89HGHUN$@-A!u!iUIC_(#g79d~-#$VjqH3+QdO3iI-cks4-o zs_AlCbJ@5b{>-f-7GgJX+jK)Cg-reO$-`H7jyTPXNn@7!zD+|Fw1DuzHb*Na?J^WD z+!$&A;gg(bA@5PW39ip|JYv(<@DLL&4zy6e#UcKcCnb%=Y-)VMliGFLHgm1x!jxBP zpiUsH?d9?OtD;{x*pn-^`N^Ph&`;YH%RcuYRk5_wRI4=aSsRP<;@eZLy=RIG_dA}gWkW6y?qc7_`Y3{2KR zz--g4lNZ{(c8)0QwerGO#vt$e)62ds+_%mJnz-tyr$GOIbiHG6qz&7x9ow4NnbZB^v}cx*+%i-iO&$sI@)%LtcqEaVA;6;eO1s>7*M^@B5PnZj-V zD#}p|M&=-XHr=V>T#2Dsb#tR(={c#S<6c)CN4vthfn}sFU|8oumG|p`8FVy3SSoBL zo)p)BObgrccM*TpzZ0JbK&+zou_?>z6}wvE=`t|woYl}_bHXKbbjfMT5LVHYoKv;j zt)EO`NuOgQv$gY^EC#qxCv?ADs62ybn|~|)(7k_IhKv}}lgudy>BGeDN9qL>dtnXh z9yu0WW`fCs(n@FO+a`U}rux>o0(DfwTPOLRF!x@CNSYd`*6%PTZTB)@slF$JxVgcjB`(_ug6Tl^F?m@~QWav&SAY z?-TXEO?=G$46?cc zigP~y_r&Kv;Yxkg5rCTW&JBBp4CXS_-Jo+tI(2pNLt1;(p~pKX1P)gRJ3b?4jyLW& zuW)GlZm0_pO0=BlHtxiHf28+gdwEJV%boCNg_7Q==OhfgzGwcevL5Z?h-g&p-jFtGJH zGYv6hy#(MKwX28*Iv|PCsw@RNt*O}4j|CtnOsJ3V7=w+Xgj5cdtMC}f0~S8W#Ix?O zA^>HNrMQw^ep+tGE;Q*P4&j560KnWMz5yU7D8zi?qP$~B0Qd>F80CLCi`aM2I^pe+ zG>Fa{1#!(OtA-Jf&Hpk+;uF~y73W+&>uL%~C-n50>$?AkgRMW2D~c2bl$J7`2H;>T zPw&=w{L8_%Q~ig7J^uN{!H%zsSdg3hA}2IgmQeSOf>2A>FNUq$E;P z*UfkNXZafYIc@(LK0v{eSsdt8F=w)sSKyt<_Hhai6Lg z=z&m}SvPZq^6gy7X0&M+wQ1WRxr7>hWGOBY)F9}s(KvgWk+~R03(Q!qmS;StlhO*E z#^k6l``MB|lA1OPIZTYw*q zJcyx_FK6_oQB;h0V3ET*dd$QyP8L*yT1Fqv0$Kse?Tv_q{@aCinz<+;r8o~8OYMuC zAd*-X*!qCXiDEGQ6n@hSo$*rYe(Z~(fK{pOjau$4q@COI3ug> zN=DUTvNp}w3u-fWk?IKPoVAkvks9!VUIk#Vy9jTpDaGxpC27qntvq62Wrl7*Mk09- zS(j*+VPyb}Ip9-P0sv!f(CKG2n8q5cR?5{L-{hkppMR;DUZg#!yr_0rD1*6|H{Tyy(2Ar7m7h$dzm+TrBoc8tC zU)5@PU4t5azcEELF(>|h?L908zq}*M1RSd0!>{rE_ckanLi7J^fauH4_^~bP|C`WI$Nbcz!1u?6wrC zLSX{p)iijWM_;@$|7IDaTYo7R59rKwz=kst)S~#Pv)yIO)hEk!=C`UnELi2h)=5f=v2{Cm38 z9LC{lUb`k;YjNlYhW=Mr0j)>KS&GWyfQ1ikJvT3?rIYP|etAL>C zKa@NceQ6N(PGno)FaK2L@OsWzfi7aa5l4E*33&RzdtOz{wBhe6<@_IrwYj4EW-IXg zzI~@48u*JZ9W=^(^c|#35L^Z^0}mE@yNU5fB_<)S?ClC zpz3k)1$FQdS-4jRH$??>DUVmcx%T-N)h%aZ6Dd*(dj2hM~>V;9R-^O zT1W^|hxA*o&^CVUkQ5TQV=mBOuY=p4IjW~~^&w-=U)rO`jg)yc8Z zYi;x1cWuwc1|Q$&7rD6KI5_}YIw-p$^Ez&rFme8n*MgQLpi!l%84r7_w1R})&j)=- zGF!0Rw~#Pm?YfqodLqh^)fGq*6OIDBC1nsLl1`Aw z?A~ltLwKRv{umfL(=*M+&q4qnREfd6?`p>4r= zr+$&msE))sBd=lU4Mo&_vh0M&61jChp2vcPu0-qQ>=@~Rn)k@h6|V@R^??u8-$~g0f6h_)u=w*y%Z0k=p?%(iuI)x$0SLv zm^qjT+8dj}qZ=m?e9_)HC2<1lJfamezKp4hbTOTQeBhw9%M^hJ$;Qex9QZ&*cS{_t z5(2RyMARZ0@;M9nyFrX|d(R$|T}21pZdyo{!)X;1wJGslR!g^;85~q}7Z2Pcq5WFI z0yd?&Z{C!5i!at(r6T#!ksi4`?OT+ae#td7uYZv9ws4Fl6CYI{bgbn^c~{^<96~8f+!-VH$R;iQgwIgw zEltkU=%QiAVF=2fQ>PSr1G$h*)r0$0xv7e}E1g5?SE1Ea3siFvgIcNDD_(OQ%5oql zPcD4>>huZCLf&E>Nyn4Od8sOn|kjNT5>UUBEbGLSab6lxEIGd3gHwYuJ#QZlm zlzlpDAv37dy;7+tI}E1C$Jf%@ao9YNW=X;i{ttG1Cs5ro(g zMZbk9bE`=$$eZMiDs_f-GV&2ZlZIaPGWy~s4a%A6qZN5hqtdbZGKMEM=t>*Vfmt;g zgB9&s;csTtkGVJ|%n#V*O;e~%vuQJRa+pd}iM@Fq@aaqrPR7ZE(rM|80xf;uqe z1T;2SXgP{q!ndM9b-&C+T-dfd2`#e88a1D<9)N&yu{_7I&Y@>>2`6i4A|@@_hHA2m zcZ#N-{?JOysb$Ne=7-C!Q329Jk?Lw_&x(P@giT_6T;J+D$2tX;SAj7v)p4jqAsIov zOK1=gK94vnoV_`b>BT=c;=B*L_>p;8^6Y+kmhImw=~ObYc+l<5NM7I^M(fdF9{olJ z(bx{tWIAM^wblIMm)J&Oy;3YB{tUY}?OA^3KM@A3uyapx#;iFpF~!BK;$UK9@+WU} z;#3~m_?yO!xJ0mRB5Ba~wgg8cFShzN&=(YAEJ_bh?g@hqs+3n52dos_k8W5BIZ=yk z3ko5smw?Xi5**gLpj=&APfvvc)@OIeuZk5Vtw!KyHIA@S;V27dkaKIVjL;WU)2{At zEc#j*#QA6-pu~~=N6>1gtn0VlcbVbQvI)mok>kh45mU^^JTP(q@|*E{%;z=U+2^3V_4TQ-42` zLtl}7k#dvc;+<>b6!F*0^=$Fn0w}HZg0EPas6*(Waxxdb{rVS%ZSQGo%l=*}+W`Cz zhyZNKsi9H-R!{Hq$nJBZBL<6o<{ZfNcE;V7O9I6e8U#D$!0I~k3Y*cdSGF6om)y^$ zBjm?EAsci?(P#zQaBm%yzH zi^1Vr>HDO?K6Sn%T%CrCd*1Ta##bcRu;edbYjYi--WD6|d7gT-9P^D4k0-eP9^yXn z6bALD#v^r54Ee47x>WjhxOD;YpM4LgInELQ@P=3DG(Z@&{2#y@x9kM~@Yao;@+y z`22vZKx(Srl#gs8f*EETNObOqMKEqfKPUiexoLrHa-Gee)aGTENGNs>SHPF~WnxvH zx{V*d6O6A@NWXj9AS;PDHb2QSc#Og@4j*8P(ux?8;lCi5of8=yvEQDoMhPGXpvuQa zSuwbGfzFa%658?(8nwNsq=MFk0oVPB62?I78jJv?t@k7pM^aOZ=7l8mVpmm7YOfFO z4AfSpbRZE`hU?JO=ODCAqmyP6Up7@qz%L#v3T3u*mq2bhk>W7d3b!QY$P|rTmM7!+9P8)XwnN!%54rKp8U1d!|5fm^jTd-!Ab?V;omz znRbZwi3-_1o@*~> zRy>e(tsuH6PQc&j8$Im6Z}FytSjKxW_2fodgAu-uf*+qKb=U}jxr0D|xj3T?3N(A| zw)>r!Mg0|^^Gs0F7KE>aZGSC{?j|KFb|JG(Vzn)I zW!FWh)#>VCbUKL01eKQ%TLm3L+NzzF!7SE{`Vxy;M#x+SKk3d8(1tIAqC@J}LJEk4 z54loL_v~&_sf?ohIS+5S_Y_{r(t>^yM;;`JSLQ5^UC~^Qk~)xG7FaXZ32PBm4B_DS z&2448dg~yZy}bg%Ym%1+ZEVZ)`q5ol&L;7p(3J`Acdq-4A1&Cz?;Lddd3`$7ihsPA z3v%_N(HSK$a*+d+-H(H$@Gsr(pcQ6~Z=fu30VRbH7(tOs3X4T~-%ru;OmVlAD@!gg-3)c#0_w{#_#FE@H_njvxt;#~ ztu(*7@fkh!g@g{%U1zMzNIxpsWTOtW+u;7fS~>Fu^&gMnJMPVsap$?|uy!p6wkmfs zTu3}St)3O6Crf?zYZ3EYj;SiJLO!LSu(trQXu^RPFPAuqvq442Wd?tKn0+n92kTWd zayS3>NsfF6N2(7u3?2%~@)OZ$*DF2JDr!khDHlVBINA9?qRzI`hm%vKfJQ<}fip@d zv1iCQzIS`O)ou`#(+{C5c-udT4bq6J_%AJPp!EFR6B82Kq%Y=OnzkMuR1)vLZ(T^A zXrm4B>jUrR>xZekV^##i`x)o{{!}__L+*~su(pLQzrEfMs79)HPshf zEA$ARX=@GnrZMYECM>jIj7iXhYJN_3sDUdUfC2KZXE$T1+93_+W2?|5tO5OI5~Reg zb4xY7hI#<96Uu|sFOhH;M_vb`hR5A#@}r3rH?R^AZM&mcDST~CPCoEJ<3`FudkgBl zosd*-kFE=gA5*mjc>``wBzI~`eFbhG{RyVl*m%EWejQDxd+|Xt7gPa>T@NvRN5*P; za9qD4yd4LNmm7MVLeVhfC8Rj7nnmHZ3Ru@mi!VhiStZ5vK+oe#)1#aBNzxlCPi)>l zuTx*8uSod@=vFsR6=ej2QV?kSR$Pn;f29?ZZ*weR_tmmA;7cUd{psz>jTK}Y@D?0$ zYwNRP)_6M4#_NeOE+<~^O*t3hKD4&tb3_6z@#%+r zE=5CO;z|%Nzb_q+8)PWrC)1dOklqDP?>`%eVkjRKHDsC70WK}s&?~9O@T+<^)J!WA zNqA1Spnc6L%b4=E7Y6{SjCW7dxp~r(g@lG=S`g>r$*jNBX7FX%AQ`keiDF9-I&*&f zK^MVl8;Hp8l=Kb9-_!_-hZ3eOg4SCOOdayO=7lj8R|-zmKdJVxujQIlk|UKa@JG2BV4xK1NMpr4FPa)azq@ zQ4es*L%n!u;mq6iYqR53%#T5+)ga&;p)|Us`!Gd=7n=I7PMPOuNyK+4OB+Z}Pe-ie z(=qEuPq?sbgfD!cV2&3WCkr^CFXal`lth<`+6~L26XHY{V%q*_B~{BQ(0Mx9pnMh0 zrQ8UDEB!%AYnZ$rU44}OSTc4$TTY%bnGCuf?={2i=#X_qU;P6qTov3MH#%>Pc(2~_ zlGLG#Gly7M`6#Z_`r!Du3&|#Q?|ss-NjkPv^|Ro*3X8rVCAnenIw4yu7&RxUdRKeG z1e}9tI%WMV7vtgb*UqaYj$@Y!BXjzAG33g5|N0vl&B|nomfM4EyzE*x&X^T(PAN}k4goVK`dGZ+lJnVPYe!0b&~nw{kOqUw+#^K7#9uXWrzjrP?EVR~ZQA3ew9UZ{H zdAWM=9emEbK-4NP>UXjta0U4il(ZR!+`W1_sf1PB90>$wXPX}%Z)ZuBrEW2+_CcSy z7fS6Nq4c&x{FQUR_Wt~s>e-cCk%OsBAw-dwmFaMIRARI}Ujd82xMUK+Q0t?R93o!K zJjANUGJnfhlQj&mT1;0xW9&-rLd-!F66C-p>3vcv8|Rc|^B9JeNb12)Q1Zq#SzS%A zg4*t>)UkMMlY+VxF75udDADoCGogAsAgx(fwl$yxAaaC&Etg5eF5&5$5%lc|>d=wd zW|Eg{M`gOMDmRnhK;7S?HDI&xL)|RMsRJT!0;W|!4m;~&bE%DS8K-otul-A&@jQXV z)FXt`k_A!`-v2xA3C@=}C-BQD(?{$H%-%2SqE8y}cF0cBzJI6Fm(y2Gy`!MJx(hZ0 z%zGaF$cwVusiGCHOSN*cg!~2SgNvVe zmi#tj%a))FD?JGddRDKYA#t0V`}vaUi-yM?jic`p=NvKWZp~$Z?ZQCAh&#TVAlGd* zXn?YILQZm5Khvx;&>z9T#)v|0zYwuIQB2n4_g3i!dmzF-7Dzr;NNWe@QmVg~?{V2k)m z+%ug0)`Ea9stN>g!SK+8=DY`bX!Vye5+4X~Q>nT1wABRua*LYV+P?sa=`Z5-l}-?d zZZq(+(8e;^QS2BoM+Q#0ybpNu8h0tx_H?N&*xJWVhh0!apRF$%LB95GcHa?%KsT^HfJQL38#3E%s6Tvr62fuG z9lHo$+6*)3kc%$W$qeB$HUaB5C@pgoDnFX3%h;+a#VRIs8H0daO<)w!HlXqWi}xcm zmmBJxV*+qgc|4j4nI@|Da~VU_*Fjtu7tVRZWtI|)6ezljp1MW~sxR^KBeCbf?j67x z1-XXC1@D%hr$WYCYX>%xzGbE;BNiy+j>oVP-j1Rf+99Pzl@S4NqX<^Md;wiRpjew2 zGD01(2sl&h;+FVjO?#`zK`f6;pTPRUBU)>s>EV|vTjL+L1wUyCo|lPS5vzN3y)U$d+~GkGejVb;17OptIc5~4-~!PG zEk)3>k&Zj+>!#9iw0gOEMZ^IkAF#=?LhumOVfcBOIrO-uaLr9GD@Qv)Jb$XCdy?sl zQ0UXea2$w#l4*p)3#PJbMZ;aow^6A$PelxN``_4G8>mN! zMt$R5>rRLChbNj*so$k<;ez)B8tB7YY@=^roNf`MbBH~1Ug?e@Xo2y;q?i4Ix%(2( z#+fHW6#5WC_a;=Z$D3(ME*6z|NvZD?^kMH7au4VXX)^+*qub3whIwpzpQJ&mMDw0| z(evj|4Oab%JTn+4U-h&1upQw_1Rm$OLcb+J*BLuf7xKjgD_jasy}nQSxJG`HM+rNO zrui6C*9avqBSkt(D6<8EPT7uPoBM?$)R1qJ2t`?r0oeHH#^wFv?FqH3`||b(@;~LE z>Q7e|0_ZiW$L#uh^;n?O0=VYSq!MT4EtG1er|$;TwD%|wpikXm(X}Dd`1GH<*Uz}b zF0hy=5E8!-!U;`#^#L+QGA*wgTEPFcZ6@GCO~cmSG@)}#U0&f@&@05DS;PT6NBf8me+3;R9HitsJxe4!HFU{rWoZ5GeO&uRmb7B8uq(5;UP827-b zWGL_LAw*DTz4(heee5QA8ctNftN#mH2w1tXITB@x`LZbxpzWdh)^lE{v22LQ__J1~ z-U~c3LIW!)9Dr=gYmB!7vbd22QF4Sqp#LqaSBYuRbz6%9+2dQhje}S;heUcm*ac)1 z4;H!Sn`hR53{qSwU#l-$RJ^@D`#Devx#wA+)+4D7>Q_C_!J`pv1Z89kKJNJkoQ$JU za?2kGo-pqOq>1GFz`PN2a0jLVk{=CxdiSAK*+1NAApm!J2I-4C4HW{mu>=6OksTx# zYk92B-jUw@T6mdXHjFF8*Y~-Q|CzJ}Wr69!0nqj^`Kh*=o;pJ%ye@?3K%zh51-yv# zULFANn^&Im$is;-m6K7kqdE9B4wd3wBrvRqA0yh=NdU<|1$%mKb8KumY6 zo>5=c9{duEW4%z@1b(1cd-~o_)~jHYZoZuz)!%OV=%1b#Ph1i@U!Aladcqq>bw=KW zm{nk6K^**Z6kU2Aw&gC7Q&*LIFQgEVCwP^39_SD1}@Ae9V_gwS2i*Ab`3d>-Q+4Ac~&2# zOc&j5NSH}pp8)i>kZ(~|kXU+{2NJ3;^PpZ+3%5Z!P*6y6X?SPD(m6LdB2f`FEHtLS z&3VEgbkQ2#R@fj%DzsnfI~v_mmprkokGN$=&rjr;N2=y<_DV8C-M3 z?THoIb~vrl_Z%6!dENSTsopIf3-`Jt8f$`yr~XR%g@NsL7G}e$ZfehPDI;e zmLhFC@^bT|_XWrA3Nwg{RXV1Wx!Un)JAA?03RE#Rc5xfq*jnV?g8Q}hhjXcrzpD0y{dKGSru@aemY;DMv>_G3OFjXn~wTz%ynsN2PSeC?thcg6TP+4#8 z{1fB?;zNP%`_7#e_njP&(a5bNo^8A9a$htR+DDStxpv=quu12p?$K=`uc+o?B!Y9? zk_nfVxk_#tLs!!ZTL(Q9oLaFG#%N5I3j1kz+1)Yccy*lV-V>Ui zKl&FWO!G*&kIut?Fg zU4zUv1yceSMs^xRX_Kn4*Eqm%ugiE~TZo7ESXZQX5N~ZtZUGS-_mQ#zNPBEuZUNFB zrP;CBn6Ztv%e#6d?3v-Vp5dyrh^S7ao?}Do8*8(kFusR% zZwyW1hEAMHJKbkjCqHfPp)+Bs)qPKCDc2;P1h&@J(wvn}3tFTmGElQj2zxhuHf~hG zWL66rq10&*r&2#GvVQ+;k!sq_FQbXM-TY;z+TF>^akg#IvXM%RU%yAUuGikK5nVdg z7CG)717u<+HQL|F&P%)CLplwT5$}{*DD`J^e@Y``=pDnRth~kk`+_uhh1?@oB}JcU zSHk)HPo|3N-h7XHp=isN^cWD*t{xl&ev@J= zA+R@8E0v$$CySXW4+VFO3;7zZ0oUg@Q)PlHj)#SbJC1HJ4c0|Ml~ga=hssG zJkWBQ(#vhMVC|4j@usm#{9&afzF}LJQj~mZ+`zMGL z9kUg$O#>lDcfuLNmojds9MpOi)4Q|IEaGP(weG?dV2~cB+Zw8UXb! zeZJ`9z6OTHeI}SdT-IyS2a?}Y78SvNl9Z115h4=brZ&0gBBj_-Frnf(Zjs1s#grLT z@2P(C+qRp3QOvG0Z#}V)qE_0jCl`|v!&p!xJK7@nfKC5Q=wbm}sR`c3r7qj&TWdgm z{Zs|5orfez(2{yoShnNF#1J$HZc+P$U9(2N)uDz4UTL4A^15st@BKNkqv$#QLg|Ao zQ}y@aEv7do#)jqOYWhc;43t*OR@l^xZr8hWaY6w#>)UxAxk!`Fh6Bz*aOX&wC(D7X zX(_kgHFfW4Oq@gH@G5l^LX1h?y^qdO#o@hkpyw=7q+ksi)fE@|fo#%>Je^rF08 zwe*FC4qRBAY(>IwR1da5E@?2IMBKyz98V9+iz*4z6CdB1O?+&4U3dd~ne7Wukqp`c zB4L>rvIzxP`jCrA_#5jl@Mci+k`vkM5=a zr91ie^C!QX#G?q%5)#LYl~Uoy9Br*HWQS{|)i+zmuJtm(Sz3h7Lyzut|E?C_@wWg( z?r8o`od4EH%YY9{qx$bkA5P}~o%?X5_y8Jdh+ue(^cytv`Z!M9l>@M*tokX&9w*lk z@XaQj1GNMa5KNU!)a2A>vU1X53JT2t_5@ev6sO|HJAujevLm-F4-(%}IlXb0Y3TR5 zPWw-FJ=)|@S3oh%)BJ=F>SE+&Rrd7r=_U8`?_5wNdIY}>u zLAz(x8X!dhkZy2&s29rucjSI~0Hhms#q+#8jen~r_`(Ys(*7wr$}OOW7G%U9D$*kg zIR7mCj9&P_ouhVx(dFg{J4bTmB1E`D^BMLcp4l_P;1$>wm*X9{?Ye_wlz4zB^x6S9 zefl)qg7PfhSwO_VdVjr_xCjHs-qRp(FFzwbK8M}QvVJ*z>fU2%VN>^@JEY%9yC$Rg z3py;@;U;M62GFdc!)ypnk%Pj|emou{{ltKGZ3m<%UhsW?UmP`&1<01QSfMYb8`d?+ zxt`6pC-kE$62*PUs&K+fX1@OZ7OO1|=sZY%`ZvnOPIr~vo3kUHs57$q(SNFG&ZrSz)ig@<8yA~t zX3~V5|58m8TSVxif#~&MM6i^;R^mpuUq}&1>sOBsPk_zqwsLw+@~DTe29*g421tEY zqPRTG+X-tlbQ9?Et6VlvuB!ib1v`UPs?&%4^nyTnQz=f_xLn`b3a+rM#~o0Z;XGv> zaP682Xal9n)4lcgXr$#CS)L}8g3LF5<-45sCO}hC=Y91If*$=hL{Z$V8ED}*?<7kT z{ga_I!__zo$rT+J!UcBo-$vrar(; z;AGM_PRrzq46@$p9=m&1YU%!hNQUfub<;3uDxZRqzyftpRNyK4Ky2qUH6wu1;psC) z)FqPR9vK&dz*_EPPX>Vj*rOgN4ZP<*FIfSe>6l&8i&et1{9z;BkQ{%`nOlbhRbe~f znhE8zLRC#{vIvM{Z$uos;prMbwm*7U{7ReRHCI~aw>IQI5=qds%tLBLyzyUfRpD{g z@WEBvVG0?h@_=BE{tzGYst?1U(fD_H8hXxr2%Vq!u=bY)+{+DZ$qfiHcK>!Y9M%nL z=1!?ReSapq^z1$3X{^;a8lf)C4k{JQ{=tB};(+kp`tarTA-Dgi9un@`|LpPm!#Mjw zkp9F4RY>!$r&tjq3h??Ue|ddy|0HPh)@*8xJAvI>uKdUA6D)yUxc>^eJ{6?<4F@p# z`Bdi*k7g3G{5(@m@+sDQ(>vMAMc+iIHY?v@u9%w}uL@^AW6kYP0iFh}`z~<*ZDE6Q z-pIY?FQkDAOXH@}r$Aa8e z0{Cl6LI3-f{7kVT|54_A77ud4Vp*8t5slAkMcl>sPa27*S2GyI={gbMI(5lTSY=F^ zdeUb|pCv1xHQ*x?j_-3y?i7e0*OgPP*vD$MD2uB0CoB+R9j-v5x6{X+Xzth6fi!V$ zNCNOM<{t7FX%hB7t4ht$QGdh{$QD8yz-)2SEgp7nq7 zh{QM2-8y9y$Ozb8b4h#$ehG5(=N5R>E8DpMMr;vQgv^fZ#sf$6DL4B-+FyFd6Z!D7 zoDKcW`Xxpk>QXAm%p7^C$Q&&wgWlD}gt}&*A@%hAi!q4rBi%v#B}SEzbtK7pz3#bP zc#PaMHH;Q!XAOyLYu+_hK}-I8(V~1CON4B&hdA4bIAAfjYFI~ZBP5%-3jarp>Pgmc z-uCRDKF157)5-M)Z?72)e>3$^Uf438&SAP>F+Bo-AVoDD_hd{g?W9*45K4j^QpSsU zQTP*Um_op*`e{%1P4JvH>!P?`Gw5tJ1(nH+X{H*v(lyj_3^raG2n$s9{i`=8{3^M8 z3+f~}T`l1mm!_!tB>p?)sG5Q)WCUB2nlsSAX}Xs61};`|Z#)M}V{Vur8nLa-_ErY2 zRb56dlem+?u@mw2#9l)db@C(zLP{24e@Jp}JRmc-pKbZjRf0jyBhv@Qw3)-gq|~Nc zdU=EB5y8txD2s8MVRhy3NhAl`Djj}J{+&q>t>Su3T_{rh4jKl_s*DKWMfIM?eG%20 z9NC!}@e}p+lE9;Di;ym_GI;yz?GJMK5uk`C_nfEhF3# z6Nfr*<|##vBdF37P@8jjV#!Oi_+1m?Rat+#-?bOD{-E$TIXIp_9;mTBWM9|QWPHcV zX*@5zJHvW2ksh6QICg}5>)Lh1k@sF!3r>7q%MR=8&Y{v2P@BuxAcZ!q5VWux4IKcu%U~y0j>O?o!5sYKOx%brCNJ8TNFXFQVll$cLYBu1&WnYu}Mpr{ym?@ypZ{r=UHW4m{M`inud zC_$c-_Z97 zs;HM}SgBH=5tP3i0=Awrs|O8y#A@EOp}?}Pv}b^1CaEB`q3eEUg7SR#6@4QyH@@}d zD7*TV`im;R(QTSbY-xOs-CPuJ{ZTcaExWkPCd)GIP_|)j)3^vu9Y!Y8fvnM_?)-X# zR9fnuNj$;{ZD}yv(fm6sFMmDrd+WRl5v|A8F>P*tL8ED?HR^r3gcT>_OY$hm03HLj z0}mf#bUnxF!&FUqf3GogFDPV)?Svbc*dfk(`T;`RpVc$KcOl4NVGgN0nC~l?DQoLwebdmX3*UGtl#keLR$>`gzX>76g$Au0;%aRjczRs$g=fK{ww? zWkwrkX~z#Q>-G!o@-+Q1r`UE3iX*BD?o%6apTjw*mmmy&l&tW@AdI9CN8u#aL<5tr zhIndHd@}_mX(?o@667QXQw!$)?P^+D1pGjtLiNc#oZlReM2I>Es}cz*l*rL5eiNAcS3?mKHI={oJ>mjKi^*)fPqz2a1pwjI-4Etaj#Cadf^s{mjw{{i#JG`Udr_YqKpQ#s8Cg&fQHJ0zSzaq-)T{l@%cFzs9o2^DG%!9&PPYg9=X%*r1qGb2ZS5B$+hd%q04D2Vq?%_Tx6(Bsh&CY1W&Lj9DH8GyfKZ@*E`Y>GR>zo; zAx0z)%#(;1EM|alW{%lWv{{^9X!Q)9kBrU7iq9ArgQ}A~ZpJ1v{Tm?o&H^RH50WI=_gB1hrQa%VLcn7W1M6-7BPt!z2EBplf>(Vs@-#KFuqk$HxnEWmQEK?a<$ z_Cip2)aFO+bdLBpk4R><4&Kg=_y(N$n`yLbB+`ED4v*Q`-XX6i&ld~G@y^TDEryLc z=i`C$Hw(I(L0)}reY*XP`I!U`0SpBXac_pjZZR9hlaOz{v0=XV0Q6kKCuTe`|F#U+ zmn9Whx7H(ZFcA6e*H?*7U;8w09}uYi0NJ-c_e}!MQmuwaFH)`~xYvD+?K?@jf*jjJ zbqkQ3*IEYnK!zlY=l?VHVO6kU?FLMJSbSwE9uV9f@U7ACeQ1%}72-nv1IhlMsSoNY zcKeBEgzJMJj#c^PyssDO>Ep?bth2D-oRglfS zYMH1d0R+j&HRdN+h5TL901ME= zPE)!dc5rovb}~q2uVo_dgho~$}VS0K#I3@ zr;1dPTG|<+{t{(G@hX8q&0jc7ff*-sXWJue9=TtO5eSQU963P;ir?mcN%Nj0k?2%W zM#vvSzb)xDPLZ%?^^S{bFoSqwr~t-36u91tf&O7as<06-mQqMuhUJP6RyY&H<4A9nX9p)3hgEg_GxTw?+b`j!TLLVgnC zxrz~aYKA?2}vbpRvzv%#7|sDe6KPDsFXH%E*;k%J5d}3s4G6t8XuZ z5ap|Ov|KrMpZCngE7{oh79nS9^T(7y8^|<>xV?7)Kdngcx?4T_T6El|!OBMWs#H#m zUvwBx-4aNT)nHdtO#4>%Qu+&b@x;o z1!;{gp1z-qkxQrpH}_nVj=si(-CLVbzf!)ze)?{vG>_vG`v0`&w-}-M+gTM*ZZT zg@|nXwOd?I@%!_o8tKD4Atp!beNunuZ-l*l+h&}0+(q6pdhEC%$C?|g>uM8oX!e|r zBjX?G0N6hEx5o6dAq9Lla>&ahs#0Y3Zw!Q34crJK)+sDH;n@2H3)7{0eRba+HW+p@ zgvXCLj|_Ky=o?(nH7)l4nQ-ll(@gBPglls!W1!0rqCoZ!0xrE|f+6;j>TrZ?&EYFP z8YXpEvnCpwtjngG=2kFf?X{5P<%0x0oY|n*$GWU89QOxYHLJOCIn%o>Sg`&HE$bUS zb&Af{USs+i(ndq4aIaFjH$_7g)fk-o{Lk>+eOE?ye6|^PYnkc0ML9XHt4yocvJhFq zPG6yga4X~GSR}_1C;S$B<_$$~-)N`0A&9H~7#YoRNkDK4JO6=}*}iFu1Lqm^8>nU1 z$zP5Xx#u64>lQMKj3~)HmZgm~DRCweq2k_!L#M2w5!Y z^b?;m=E>eF_PgZ9ltQ;)<3_FFi$jiMvrZJA|AwX2N)(j8GPil1qdiq^;AUsZxQO1% z_I6zNNOdWkEidmn3l8OL8n1iN{QsF~v_j>VVdej}BBd0~hw! zAv!~V?8-XxlIAOsr|)P`4vqrfa|9u1^yaOL7PJCs)ZgU!6A7{iU~ zeK{GiHetuM>bbXD_nRjdH!$5%mc2Ln70*I0#&V%s6e+`dHChdGCOH+DOx%zO2lpG` zAF79ti)ePgxg-iDzFGnYTzjU2veA+L51SZMn@)V%HOsAK_I-vk>x`l1(wxJhAC#DJ zjDV6K!eAo;!kqTj3w%v!hXy{aT2`?OyOaYVyoMUi+D%w`joaEB&+Msl8rEKMmmg}vhbE04L~5D?N-MzN?!v$;j+Z3~jN+Mc4?X6igWxa%Y>{#Ra7L;PBqrPlF z-O)ZKLohJ^-=&Y)ypy#ghBxVaG1mSr^~1P7aP93C7b?7$>=+%*hT03o{MoF=vHG%= zf%IB0W5-#qOB$RrELtESZbPIavl$v0tPy9k~1NE-)P*i50rguG^Cx?m>h{ts7Kwj%=xC6^@B|eTf|iZYoVN-{ozL{W>pn} zjP;Z$-!B!Z@2(l3BBIb>mb)~WoZPx_vC)%7e;|Kbmp(3G+K3qe7$LxBaQxPswQTbn{-N zLt;exO?=fT7IFQ%VIIo@brP?l3IKr6$MJZ$Pt2bZvt0H}bOTmd#Dc1dX$BP=t@T4$ z+Fwj0zSx>uepM`Z>Il{?|K%9nqZX^2hb}eaVLEf}(X&}>ni`R>V^WU>f-R4XZGK5} znHN$CpPTEDuUYSRR*)-A;~XJkrmZbns_2{|Xr|!4%Q}m9=Jpm^tNz(D{cd;Z{o&CRheKsy!s$ZuML+8zs3X-#9#NQU6@Kj>k-_+>kuBb!o)rv|p&EoW&PI zIvDe}OuH_9EI)p}#rmpxPfKd)yCmIL4*sht9w4ZgzT zkv)fk<8r`0cXxMp zcXua1g1fuBLvT%y;1Jy1-JutI@A|8{>#uYAjB)N5+;Xwj!}rcPLuh-dObdnlWq!=pXYRE2A}72*#nUHz; zLxLOC#eOuea}W!_6vD!~sHBz@etgVboOW9NDYZdWc5^7_bVuvK+#scz0lTPspg+cgWma>S!ZOXkz zTvMo`fhC>SZXCq1O;C`wV-f&oHa3;gOwY}H#WcOeW4N^ZvsBho-MifRY0M1PT#u;7 znK@HhKBv6-!G>1&5OpwcgBz|d*|dT&VJk@n^0Z}%T)@Pmv& zcwl2&oG$3Y?szNX5fkG;kuZ8_X&_zSIqEA_74|n2I=r z-wx+Tj~_sC{sst7ecl!0#K_>BtH}1T>jIWIT07RDQ_O zDH9IgZxtv|B{C#yp!YyH3b5q&9BH~ z%nYG1f_H8_tOP~^!R+@PzpNQj>D-xkozR7R`${MeZr{U@66`LPu&A@aRp!=j?dNvh z&ohBOy2ZOf%EJ@CaKj!Z*@TU+URk%)*SPRh$qsw^x%oZuc{};cE0kppU|D`%AXmnV zZx`oN72|s!n@#-3OrF`+!XMNxh>0Nz%cu zH+ZY*8TpyJ3caMSu$KXRo{Ie=s5$m*&4^=1v5mc4#19ia;O+1q;03Kw#4&mukP&5o}uSt-Ts`zo|Lk33lhg2fKor`hZ0|&*(bfA|Pwv8o)q;f_64rnPeDd$#SKpj{c+dqxmTB~K_lIy!LokmNGk(~|3I|qx zcV5<*4ntPq$k=Ukt2V7*@lCJcVnWl%4AR$Fy+(6ur+>%@lWDg|TyZplb?M-=+T-4E zikJ~->*8`34{Wq`$ee)|aC0ZYbq{(LgR3-s@2dC2(UD^W0sIF=*hDI>yVN|0DPD#; z0~~59jcTNjms<@}|2`^4(>l7ik?=(AjBvsKATV~!G$AsBaP%2r@pn;T0&^GAE)^R) zM9KXjkPD;2edKJzmLm^23%Lac%i?k8bHNFx@*;ms@boBEt0&&9h{>kjFx%Pfu*?`y zdSsT>IyIK6358^_%H*X%?4A6T0uBh7)PzAPx7XZmFw|FFbZR^n3}Q94WxU$R8k;FN zhjK$IBLq!$l%H(;%I)L?)dvG~ZiYKKCY7nI6tBahJaIk}MiOVoq3dT*W4vaj-D2-JR0i_mTP)U5tMly?L^9*(CV`X=LkoQ0~zpdW~%O;W39>GAZN~Ny&1{C{;=3rOq*h{Z7 zGgUOAL5N(tF+>FC!uoZ7?InE?^~+I{8szO`=uQ@cJb40=8ryQ#)j*3bJ)%T2)hIx!KIO^CK`49D24_Zo4sn>ISWmk&%q&3TQ2Te+5D92gzP1S?KmHw ziZW<%qS4EwYTSUTo!265f#1sYp=Dd0(I6 z#6qUVqgtx1b0;IZhbu%;YAF|e0apH6b!6K z;fiA}3naW|LjwBtUnZoz$*_ z;CYq{1kF;MI>J;PGhI6l&F-P%&h*gnMhrQ@S=OBZMQLDn{xw*cM#C_*gVOCY{1Sea5WyB9g+>ddlqT3@m})r-7fA_{TKjefocuMd9tY+|JXu|FFUgAtwA{axgP#JV(Z|^HU*S^eDBo4RBewWy$k z1YkER&CIjfj4m}x`Qz_0un+UMAnr~48Zii$@3cYYdKJ4E83|8{)8{^(o@xW0B-ZN% zbwesciV`KBP1b;kj*&zQcuHz1a(y*o2gsUwDfwCkQl6zM>m?jXLt zApvgK;6Kwo2FNvcOk~e=C=Y+DHsz2@H*U;(AwcrR`0;x zco^M@J6%O#*#@@|rM1ml;F!${p5RF=fp5LY{+4M3CaZuCb8j5T?33q+7wM2bc2*TvEh!l=%M=nNJs0q^YzuLH!FUzmq! zp8;M%so_|Nu6Z}hPM5)_5=TS?dPs+S*Y#nz?3)O`>5nE?e0uvXV$yUhuD^tYL}L2HU=owUt&wU#_!%pg}8>j_+si=}PqCu=jiSa!64 zstvWYQH)H{(t5DXI)Q@jBa{VtPr%+KT5YoBXopi{f%DDYT&5j+8SzKVHFjMmrHtbZxV8eY${pZq>pe9_aV;ECkAD^Mr}BYak?)| zeHJMW%w*7PFA1I}>QuFitrxw!*nktZi(vaJltZB@S2oo)6}k+ot0|j16gSQUTm51t zy0N*wyo_Tbt@v1Boz2pFTEJg?8qVKdm5+1|(+Pga0;il=(eE(or&V)Z8L={(T&@|4 z?m=4z)&TX-uDO`EVCJwCS$nfN$OgvWet*1rdX^^buRtmg3%%&R2QaIvZ$VQ-4|kAN z;3x*8^A@rxx{8>xciN#Ck*f)>AE?5jtSa+_p}!o$bG-GNsO>^-xPWYXxuH=CGK=(t zI|^?b47~Gg+&U8q%??; zhvCp@&Q^(lnYb$sWewN*CP=WRCpbe0v~-|m^1}BwDBqnix`~~PNhE;x1B5Iu z)2$oIJ_JyQ;l9O=IeA!ik`AbaY#?9YwhX$z-jRe%MsGPYDtZfme`x=Nye|}fZ#4xN z;2nFE#rHo%hZ)lHYJx6(8dz%CMTrpw48%OLfNPuxTUa$)`d7n_!90^D%W(#-S8&1A z>>%yGKQ2t2qix;^>-yxGqK1N0S<+!rW?8J-K$c2xtI_)}jWpH_5tu*fXQDj7U|=?q z(4w-b2@qS6YDCPKW`h-*0wFT|{^Wp^031+oXios}<9A3EE2u>8ZGBl?$oO5tN3Gg0 z#Ur32^xu)HKt1?x0-e^3H5A_Sm4a+Qt2l#OzpC&>&|G9x7hdRT`{LCa5CCd7V0g?5 zd=~5+f)k*#f(Rj?MponJjN14G{jbicus81wf&;wWNL2Y5tVQboNdYM}lieyCz8_UG zjVmEi^|)j4gK&UA6(Wq(&=0-0 z>btSY-t0AyJ6ae~HXVv?Enl{4pm5#yL+E{Lko_cnGt+5$U-mTPdp~VinahGgTJFp% zFFE?Pub_Xtw+cTdQpS4Qe|O)Ji&g&fge& zz(lL+^^cy`i;PJljC(X6Wzm9d5l&(XFV+}1gQy?LsY!2pYs|nOuL3@&P4900($rx% zJfDdIhHE7Tz0?=`*79~bIio~oJQnsIm7gdWx3ke}Sy)|^4$OS!&ovV)SdPu1BdbJOZe;rDEDzVX48 z!5@?+(&pSm6Y*FT=AL27oJc9(^aIX5hvSnPEYofuY8WbcoDF8wWyeknzChNuOhbiP z@b#16EfxPBiyAolD!-rCjJ+bhvw3efmeDeico_MGZY9C!Cqh$>OFYcNc5!k3^hAEv zX?Ek{SaAua!er+@f&7sDdCmh?T*<>ZxBAhnzC3j-h;%M7wA~hqS9fka_ z^0`o)K!7WAi{XuiWs5AlE_A$y14)ZdPMgfmS3rdhsr_8}r#6i^yJe5$%Hzju4cN8p zG$=AfWs9BjOm$8=sa}q3A;ZO!?5U+^es9+>k9vtZcnbaYL2GqV2Td1n5jCHb%~*D} zpx||V1I?t9jpRt1f@3wSGuEWs0(G(|M_mRV-z(Q^YV4(2riBgy z&!5;_1iEuY2~WwulMr+0V*pR)a$v9cLKBYsJ)}<&x?d5d@CgenB+%VXlFZrAGA#8haRv#oaY>gr!6?8C zf{EG`7Z)_=kgb#+hi{GNt8@>pSR`Z0-rJK^m+~u7UY0pt)maGeu&~N;J*y4dvrZvj z4=aR{vo8CoCD9p#%nI598U$XGLPk|pLfJ2J)E!3S7NIivl3D1ZrD08Lh8Eq-1oQJ< zUdZj~Z%59!ZT`ObRkxit&HhGqRvxG9bNO+qG1;@xOQDCj&nPpkTX;G*gBXhv* z+#FM}NG=|Wr?O+0NvCcWBV~C^!C-3(9gmYi7X88Sb*((^3$D-~SU%BHcp3p-yO1U} zLZSp(swp#0V`@JV@rTsg4{7 zW#U{abrWO!uDh@&(kt`Zzo1;?PV&s?kC(P&rY|!77kmnz%yWc@vpr8k{3f*|1_eq! zQgK_!PUb*nkp6(5F<40O-EVGeVf!i~%O&AI9mY#*N>xm)rBy*lWi=e7ghESD!9poG zg+G4A(i(d}0{*+bw+nyD8sQqxfcRsZnJ)A3O-)dWH_%9-8VEg&ByR)?^mS`HUNj`!&teHkrROx6q$2$f&!(ltSCr%C%F`>nvfiM&xGy8&Zv=B}&wR$h zUFPjM5%#ups&WO|n5{}~QPw!BiT$ICq7OU)n*naG*w=rvKak|_eyO*A|NN2rqsWIO z(1r@-qq$t&?+9bDCq(bZUUM{i`?{TK-XjL2-VN`@S>F1}U(Fxz?a6;{e4DK1&H3^_ zKtOE&KtL`lpAZm0q(I{~-+9QrDr((+=IVsptc=pEIVOXt5s$(Vzgc1+07Ugm{?rri zKwd#kBMAnY0EqB+xC_E&&qv{9m$vy(BrZg(+cB(GtyU0nhP|U_RjtOg$Pay)K#a5u zOo#=OuBL=%f$sN%fLFeYWultCC83!K(w+KqAS5?{o%&Oy!0@+9VKW-}S=4f+#t7L9 zD-%pknap0y$x;&l0iiS#%_aaKAS(WF^I>fS00cx~#HkHewT&I}Y=x9^i1c3|pr|J+ zsu)4tE)Z*f7%1mEn8-K08Qgv+fcMRSw3$C*uv6SR0O2T^=cyK-_gfW^`?Arg4UqpZ zWdGu}3eG141PV|o&{Gjp{8}?)<>2%SCgnVd0eIgONSmNORSHa>Dh0mpA?I%I1AhF* zT{;s0l>!Uxg~?d|9(SnP=YVRzl5o|KOBE))s|GTxMy}rz;tLnrZky)ge#{jM$^H#b z=A!_dezEqCp1N>~Le1P0;uY#eW93PI=;`HCPi^y;p1SVxEQ3Sd_pomgHb9zB!f&zusL; z)8f_!BmES=MG$>sTMNPKJ5vfF&>z4MR5+wM49ipxI{LZ5hGueXU?hYtq}_;XRnH#! z`zI4!!oF!54-)!5Nnly^38M0kI!hMJShoaQWxAlFHK_!E_YG1Jak7bwk zElsoOLa#F-f~s1gO+8)5kf0mja|eQA9A6RmE&~&X5+JDNt%g%!gcBXRam?KZ45$#m zfD-$U0hMEIz(YIxIiPqX3(9;BD%CgDq;Ex~V>*=5+NeI@&re64pl%F`@T;tu@t7LV z20;w8O6Khw$W+f{j?Wr{pCE3JK=bg!&t0`Ig88?or^52itjnBBxzUE|6p=usg`MaU zOl!9_TkNp&G~n;*>V8V)GhM0#VDQE^Tf$7@&ZlDI+_Z&*u*%inY3DsnVa6{W8!3qt zS*I~gJUixm$`m4qK4v;TWeTij&XtAy@!?L_1M4sE#yuT_uvF0DH`+KK#&uQOsLCjC z?oz63d0;YaQZ{)=!hjKF`}c?%QAI^ro#_a}2aG7px8G)LyO0-Lz*oFHQK(a`!v8s< z#wei6!q>wABWeLKq7K3Tg#i&vz7AcXT6#PCZ5ZcTECI>IDB9*P$&(-7OdZr!=uF*H z)y=43g*ichYjS>I2wn6sr{o(#pU$HUgxw#QXxvmFd!ttc(A@juAVgiMHK35XlQyl@ z>#AK$GB_=Q>L29$O>hh7W1o@n!XMKHNA^as9F8;_7;ocqiM(uR^P9U1h6;gS)F|9XII$-a3b zV88U+{HXUwfi(j&d^=GE>jvbtG@c(V#9Bdaw5%V$RW#i)+iZ_}Pn6ab58MD%K`Xw2 zvw6rjW98U%8Y!YrY%Y9tfPa$*&cWKwKp?*&+TBv>b9W*M81C}lLUx zIeyu7NO>*+>MI>*^j2*%3~fc^3{NGuAg5Rkns>{2(xV0tG+*a}LkE0-U0%Y;Bq3qQ zMEcY#`u+N6UQHozG7K=qLu}@+0wfFEJJxv`T`;OTeZ@j}IaSL{qB#ZyHwhR0jqnYE z3t~WQRC!0j%_g6c1^hgsl5i7*y(Z3}&VuB$BHgN>N0Pbwac)mRC+kEEno$Y4)B@9LKU?mr6wHo6JRiDuRJO{X7B?PNoaQ<(CV#sJF#toyu211V48 z%dT^MdN^jmJi?5;JsPFfkpki>m)az%eV>USvyn#@ZX@=gCkoprxK-L@(zGWMd?(dD zx5)|~-k9;x$ob5=9?pqbUHXN#ueCx%2G@Slx+FEXFBx)vD6qvk4T6bF z!#Fi(6yTmNTT)hIPaa8gZO^qiJ!$JJmn%DsR)68luCw7tN!#6UqKUcfGCl+-{bJ({ zJ0g7*8euRnR&|tC!E)D?<9vdzRXavA37~K#^kd%s3^gF%mG=2pu1!V4$(5Wj7ZH_dReaPpHlbTOmQT%s96+-G z{EueAe+!+`PI3vLS!ng6V_4l8wZr@6j{%Qjb?_Y3LhM0qH_|kd1uKnoVw0`NBNtl- zE#XvtQ?Pw$B}vKBTP*?ESnp9BVyCdYAa%c6oWmDy^yl=bz~u;2?#HY_8utW3lIcMf zAJavnJ};Mtt49D0JIh1oKp<6-B1Bxu*0G*ioSzECNs$04 zLuUrvfuVdme0H&<^jcedroHKWBx7D3zbpiN4vU|e5gQ;wkB9mqex%?o(&dGxt*(>X zsx3QxxtGvmn*Zf=#SHZ45P#l~30@|-2og1EGsY4eC{0%{{k*@FIdWsvi-aNj3pK4aUyajsmcKwe2qT!lh@ zai=~7F9Tf_JFKN1E;9e+cZ4R=JZcy)`Fuw8%xZviX%Y{)m2knGz7pfhP6c{Uq4BdY z;|9b?Gl^pZx8}6+E_pxi#$hNnw(tupe@+IofR(Hd21Hhg&aoA>!5{K(t1UB(5kqNN z=`w0Wq5+HwM&$V}3g*&xG3wnV?EP1Gc$0=re1!1SW4JXe(uH?{r09xbncp;>U81uE z$WiE=4Ob}A#BA`Se7@}J249TNmDSPD(pui{KK&*^yP9!*EGeyODKE@oIL=ty&wdv_ zvx0zFy#c!*hqQOQHeM>$uFP*kKV?ToX@BhpJV7P!lHGa{h-t2GQD(5>%He3fP$57` zqvIiM%_~5l04N}T&}tbv&B71YC3>YmsyVZDR7#qj{U>~ef_mfF+zF|O!&Cdf?TiR@ zj2n$Q?1CP+t7pS!3d8O;IEcbT$DPYT5k_d4>j?(2nJxqq2bc0PNMulJb;Nk{uee9( zsWaeo_bCR#U8BN7U|@<*?*8y~mpU~R0{oww3gDunAFxwZD6j@>D!u5}?`WFTN)Yjej%6V4hchxanRdST;*>nf~wjOU&$Z*zmq?%*FQb00LdRWsQ;_vPf}4> zddgg_qxcmQE6aj2CpK^k)WH1q98C^WSuTVTRE}j2c!2;gn8#=GCqn>!2t~4jL$F!_ zSg3rRhzUUbSh$=X#2vPN=6^CA;sIi9?;ZI*9Z1M{^nQ8V!Jw3W>r zH2+G*&H)x6d7pO=GLU*V5si8cWJ4bG8CaW3fZbCjBm>;jy+H)B zRUv-1R9~WmuqLO!J9Z*|-qSU}^k3zm%lO5C_Mm@?6-r9}B~~cTs3iYc(gZnv7(>U@pxWPNgzJ1|U6sxPAk8IM!6|^wT#FJ{&tBKJuqL)_s;^Aj# z14;0yr~6y1knEFayR^KdpcFf`>ls-yb-?saI~$F-cVvoV>WZ9}`mar859$6)piGl= zqOG4bozmn2QxWe3o|5!mK%lM)XQ+K9puaX%aIUsfS#b(jKbkX}eUdKFot}HNOxdEZAs!v-HORX5@_HZR|cb|`KfH2?&X zqf+c|9$@CP9k6Nq>W=1i?mQ3EISSqtpHL_dhJv`)^RBmQ4`=uu%{o#+F@VgnB42g; zMZ}3#L};QL00MmhfIyjuhAmW4`RRm4_Lp#nf>X|HuJ)zcaAVhwxDcz5L(XKsbU93x zTFi>1+2%%c#OPtOD-9?gpQz5)xBV@R*l<5piAWmQWeZ`<`HY6`86?dFa zM$?N=YxH$tMi}g;t>+S1zjOurKh>WTw7;uAxDoSlgs(rLzaA_Bsy}>xRe!2RrdaC0 zwAtlntUpPhG;2RqY1l47T>uF*fMdbQc#LmW2*B-Ami$G1l_n@2*`run$^p9(`pDV_| z4+bsmFOxx~JCJ@_-YwjS4VtpubMjDv#OqTK=F6lo{QbI*Q{V*d*$ zf&Ec)2=mE_(&b>B_ppbM{o010DdN{*0-BN2UOHl2Zug*=*Vwz}1c1f>rhpU<>=8~i z(p}m?inESc1waG=h!(DiTgR<|0H4{1o6@y8ya@XW#8gl8azI6!0}9)eB@dF@OG&}q}j z8)e$KC`i?%U1D@W@27CuWh=bcCfm1*?BnD4OY1TMECyP`pB4k1e=G*Os9V+bp&0e2 zsA$X!ieke!h4*?chbM1R>nqJ>Qm&OYG zNiMn!3+#Tqg|(P?&tya=G6F<#`PX#0bEV)zhdlSR~G6| zJW{<|h=DDsJ9bmL3e0Z0!pdi50}@UF8iT#RGzR()IWa@-``P!OFGTA!3x_-Y&LzGy zYI_t?hc|iY2QSoGigpqXOu^;-HD9@qq%?{&Of~i}OxrSOGWUbPJMGHN;HYXFuGRCj z*YfgP*raVZ22W)HLhb3JtsE{Nm$ftG5msC5()EnGZF5u8_FFza6G1F&`+;az0Sz!A zWivFwvYT=N+L7Dm0>FX^Fw%a$PpC><|3(YWrt=#%eY)|87RxQDbV%@zWS0p#wG45+ zj3`ts*g`CH{_BQ{PnTx~|E%CB$;>JC;;bY3~v_*nMab!Bmun z{mBN07+KhP-IQ~@dAW)iH^W;^CbY;w8S^mT64=P>i*UOr-1y^$AaqlX$^DM&r-f-? za&wgACg2fL)AY&h5)yE|d_X$fOJY3bw2cLan4~gKnU(V4ZtcOAx6Ki)NRFQ(tP+@< z+tbZ@Z`iauzp=|ge0Bd&ZKfDW?9->n_>F^1E$?mi{4ZBk_vUYq77twm|=pXfDKxh^56 z^kLlHr8tjON&TDsd*jM6Iu1OJYgwFHoSF(-if3ZSPW^g0EVpfs)=CP2xD|9R-PbXH zQ5ha`cXn~fTdmeB>8E2NbpAN>i(SV`)!4F1)&O>&%*Lg?#Rd6W_$Xc-KANC$5*Pw% z*Zd_g;C$#BBErWYIa{S6%p_dHYaCR5lR;j+_vRRf&&v~PfDxh*B_+HG?dnMm=uGe7$bJT z+P^1x&2Ev>&)Kvbyc{l~;%1XfV`HXHm!oByO=+R!c+$BpJ>!3D{aE;5aR1neUR&cv z3L&|=U}`@81L*!xb*M8e9!Kj)fJfD;9{#@bofd9x6}a~!jj#b23jl9DA0MDViZY;J zXh0A^PyiZ;7|3g(O(7hxRnq>=R$>2#{)ydbL-t3E`!Mtj>h$z+)r{DaQ^*^8Ab+|a z6K*v=gZ;@{{DLUQ_Kg>Q>-G4Z@$aHDM0WGorWxcVMrY z`YOxdnv;2=c2PcSTa=EGkwF*+DE~Cf>;nR&Zw?={9X08!y@!lv81+}Hu8p+k#+ue` z>UqTmAd`{>tPPC};%J8Pc0S=@=t{=MWb&J3Xq53r#nfribN#w9nH-#juUHxBmf%=$ zz|`Z8&18+Em~h*rLYChKxE+FiDgXtcCk*P8-7APNVa*-GBi&IG<;~-gJ-bL=(8fIB zp*&##o`aNM=#&p!Bpv#xJ#jacY{T-VV-f_%1lgSG1ZCt?AEALpwD*s4F3iw-2h(}J z?T3{rSb~Z3AqBTQ%|g*)h?eZNPVh+Iu6B|cJ+QwYF%eX(SC4G)$07sfidCO0o_TV5 zuK7d#F9}->#8i?U6iuV>s&MiY#8a%W@{=J%cPRd72%I$@$#+svfC%nFV{i~4f_o^F zt5~}Pc|^W*=!SjOz9A$EX0Kyu0 zHf(4!aka-vyK4AB9P`j;=QdK_1>)3+IeNP8VKeJT$@OCu)d#7T3M#vo3G%- zM3`oZqw54jXTc(w<@_8@StOeIbONG)Hy})b5IWz?J<$en1G2-$aT>zI*$KAZLt#_( zFFp_xu?1rrvr%ZZp6=OzCk_A8g z=Mgo(J+OR%ZXQP|WCYdy9$J74?8BjY;(LVx>j~KgMYk>fEf32B5GgGzGV-=+0kN?w zNVueuBOtdVb&R?T{?m$~6lLvZ{i`}?kBgoWeW;Fg#TaDX z`&Bbdhv|S~lP_VjRW~8Ji=+2_GZu8-7YA=X-Jhu2)qTu-y91e;!C#_&Aa>!9XA}oJ zSnjsrN|Zz1Y;5M+Geio$N3)GoK!y;wtjJfNewlCv6Y~hPGLX5L#{rn&CLjf=gY%@G zCDL$NK}3-p^*{+$gHUWUi!$LsX+sS)@k$*k>upzGW0i7$ z_ESCNZ@yib_HYkvn zQR%KwQ=lHi1>>C)&a@kgSU3V@o0eIXnOp_z9C+(=4J>KHw~Nh^*PZg?VC?2rkieKxO5a3b8%V=h;; zQwd%ic+9m4z<^dbDm%+v4_<3ZO5+25RSEQlEnf9gV%_RRnQx!c|0-x(q3BT*RQ5FA zcZUvs?w`p!E(l#AUp9c!?BWmdGf7@6WuH(cli3ac7`1+Idnipq&K6Ch!c|fhNw&sR zV^WV__3EfsL%z#{svhup1-p9Hip4g-t>zq;y!7V^3VLcFy=Q!kLR@%wc33RZ%T{gN zgHVQ#vvk8cJG{e+zJqCj?gPc@EmO415V}exO zZva~VLbb8osEepZ__~rAWPs<+;)2qV&aYiDnvq-*JoPf-K>h(4LHNC&z+S>8T+MUD z;@-qJGI~0XAxnMF)A=yGC}s`gsEWgKF4y=|K^En=QBpzP z;)idkQ(nVQC`>e9R+{6bg;zubk52uLpN}q;&e&vt$zq^$V%Da2s`YL>8J@vqUUF@z z?d(fy6dww7@JO`(3Z+&Ty1Gy0K2}ms{`t#4y491`o%WhzJOyGQ z%bOm8%UgyX(5)zUleD2`8K(hiYsaM6r8J(quZ`L^0JZfIugL=Gh%G+vulh5o5$?O! z^-r}mno!uB(~_G^NErq%mau_?vz5}TsZlwZ zC!?dl9w2Rb;lvlA+iP5PCmzt{j#g;&O1orw5|VvQaxs%#)9q#*-S{1#jO(}`TAEdU zn>fqe%nFnJX|DXGaz1X{&eAAptdhMlEd+(2+Fkb?x)f6-y76m_eXm6K&kDe8ecN!a zb}{A7=~SK)1oRN$G-iOTx`IK@X1eVDThH7_Et9bz$wEhMoe&amm!@gV`CFAK!{Bmu z9<>0yJH>GzRcc}B5K=7ac3e0x(aBjoTbNizXlen*q&CY=Mj?xzWu*zkYqaRgu-n0z zTtFI5#FG=xzWftG?fAM8d*&BS?zj~7w9OggGooJ9cGG6;k;&#c+!#FHwe3CsfbR6R ztILX1SzD_s=v0ryYG#kbrK;vly#AJUwtc)7>x2t7vBUOje@7fgD8*kAevyP^2gSd< zM|(A_=Y-kV-CSj(D1?tC5F#kw`yg z_$K>14bc*hn<*j;o%J_iy(PhHFdgdqU3<{=RxXpSXrns){7LA34{GwRPM>*2^~Lqq z#SA`#LK{%ol0jWwrRKw+kuCp_U*AXMLjLjF6rE8gA zky6H48C%{wwP%%G|KT1hlokqf{t(3uNiKDW7^H7_=%}xwe#XJBJd1BStLReGV!G2@MP5E@#C1s@k9$iwvQfUukcCM+@U>*%keNmD$S#P< zTkMZn1eTG1hcd@f2R@zp;LjNy2*?Q!(oExC_J6>Ohe{{O;hO@W$0X_2?V)Off@=ynMj;KZ0d1b4zK6k@%VmFtcXoVmv zv#<+*JEO60fN&4^JU-3_Cb~I4`_cKFluPcjaS293wZ{RHA}bLgiCvh9y*0rN5`KZe zX8yp*35;M+bTBy!uMN2DorE|WUVd}%MP0-<0zDX-#uQgFve|IgVGsaKFGS${Dr3`SFMP}w> z&Md{9Ui5Ye?1U7_OGcRU{Q%GD{c5uR!8#qA(jJRuMq z&=-mChDEn`_dgN(HRpMMBJ&ck9d5DN0^f$l1nak1VWh>_>WMIwykldiA{Vi(#N$+w z9)80cNMxmi{s;UC0DwQZ|A0SoQ5TGFJmnVJ*2loCB+Q*t#a~>x{sDh@KEa>R|F7T= z)rgU0R~jT6g?H~aQ1rAlMj%FY6XQkb{B9eWo2-s{=>L>gFI(sF80oUCf>nLWtB+T8 zW_@6fpwt1qQm+y`iZ+enlySU_nlnK)Hh^nQOFOV!n+2bP(eSS)mQF>1bO`;OaT7bR!KD$;s$b)(sm72?1!f3nTm7}xq z%MkH+K)iM4yfLSVkya!$KL>aUu~gYo>Yz@muvb{SA7n}IRB&$qrfYPnAYyPyWqyD5 zwq-c#A8$DZr3gx?dz$Z7S|te2^QwqrQNC!)AOg)6?Khg=_b*)vkFoRVN7&GEtq#qa z1@H2|kd)5%7lcdBv-;)0Z*q^!7h}l_ofo&9VJ1;G{ZjyPIv@B~0f-N4!p7<~vAzLD zK~jowfm~@m5T$ApyE>=f8>wr0sF!emc!1af+tNF_%Or0K1U;YTmiO_ISp@bS? zl5f~lni&|nztrTt0N@YUzrY`?{|5ea{9l4Ui91gj3WIdaM`F2n?D0Q^Cb%vV1wX! z4)B~e)Rnuf&R`sB#8BAJfY6p1L0l}eHIJY$hSc8;Tp)LNvnwvE5$)swerbg zpJLIbgWcZSF_+9&(El!w%Sz+-ovhdf>Xfee5Y$sL@Zi+qA=Cbz4XHMi;NJltK|la# z>O<{c0iaf;&j8Tt|03)i+w1K6cI((`)HrEu+qTo7v2CMq8rzMXG`7{)wr$&8N6+iL z*7IWB_x8M-+x!IcH~;$>gB!H+LoRmp>NCnRcxfu|tYa+_7mH|9Cb$S6b1x@w?7|(s zRMQ^^<4aN~v-;UhY^l2L$Zg9h>WIfN%i{M;;Gc@~sZnGFCnFqALENh3k>Ja5Zv5j* zUz$Dv$eWVG1#^xK`*z|Lf~M?Pnp#{W=*-#HR9WP}03GCvvmyE;&=$>$gY6$%T0+!& zo(}P*fi2^iD*L?q$;5!3+I6ypDIN6psnTxyEbe~9vO9BRur9h&PamL{uGM(1X{&um z88F2-+v8&>TKHaogJ!!xI0+{d=_$I@>j!U#A5wEG>ZQDS|J_@NA&QIBbvcg$R*3^Z zf8;~vwdGaPq_Cs0wU(%iVc}nn`%NjtABWRrV}5p8!6HCu+h86R^EOv^EFlH!x6@;W z8QxRmvu)mbmC32oIr?}YX?~9oApLM8PrX}68J}qXnf17gbM|C(Kwx7apNM6j!Ta;& zPBsg-jo`2;=fw*mZnCdw05!eOQc`h9!w3@FD*Q-cY-u*Q?qBrhbMdS!_u*%UgMujC z#*~zWS;2Am$7WYt3CCEm-hw8#_n)mKk7PFecjZ)Wrb6X5tiqqt2n;?=jQyAW!Sq{= zw8?j{_i8ke(>jp4DM(7T8D_M8XsC3;MwgSpqD71{4XHD}%;>P?*Y9xm#AJQ6r*?&Z zY##)+X>N-((%BDni8quvcYy27ID7c^J%hF+xq|K6wBnZH-)-8-l$Emb6B%~-;X9qv zp73wL^@gWxYqFmy$wt81G*%GP?9p|WoX$5Vs6JQ-xp&?r6w@(L&tx~C z0fYdPv>qP_es$hS>6%2qO=y0_h^JR{S2QKl4RN_at1$P*V zB#%ty6umyZLIsrFh@Wi@79&GSPtfoUYf`X8nZ2{&#pr7x_kL>!!ddeByMy`4Lq@SU zTJ>3QL?W-wntU@k2cPoe3#(mKL*NWNo4#T9F)4QphD*V@j@L#emZPWwt<*$}_#f*E z4sat5%$uTOx#&P0?)>BxZMvVc2i2SuA4Is{+Op7wt-|ZFC(2F=%#A=1eoP33Wzh@~g3ZqAPDg#v3@7}s{b5MvD{;tZ^J@Bh zL@DJGQlF`b%+(y_c8+4cc@7(OHwf?{w-}t(x5_$#!Q=^~bC=QTL>K%vt;=94B7q!Sx)PJ*@{65YQS~eli^VR-j}37K!aGn+y`Jq$qc@C~t>t2LENt9EdcQ)8#zK8^ zS~w(&`$qG-mC?&&IGIjIXEmASh%!)8oy%-J-W4og+0bYvs^tBwIjKzrffFK))Y{F0 zxMaYik$)mkRo#N?_r+Y(%@DQ|v_`h(>v4Mqrl!c_v}TdBy()l4&R-C8e$qE{ihK+FaD}Et|oFMw1F)%{tB8ri#--^SC}CGx@_|k zMLuOOEZ3~P-{dLzMuok`cC(q=)eU%$6@iW6H~Ys0W_=~ts8t9#k$z8vwIooYfp)(5 za=Aa|u&h-?P}vVu24|_5*`WX8KN8MTN&!V^VnO8GhL@C)w0SooqSvDT<$t6o|KWeW zy?t=&Z!mt>{1^WTHN2(E;cIP)<+%OPDLx4_fHb)E1^M~7LuY!m^GNSsD00R-4^kAX z@J(V41tA~AJk+?@&)jk=r!PODov@AG^Ew+@C$Ws(hWzNkdobByZh(2LDsG zI~lv_Ce?Kr&rf*`lz{&8`Qy(T**Y4iwn*Glm0ZJ#OjGj*{@Ds$l}`Qey=^{Ne-r0X z+TpV;^!>&M-7P#nEsF2Q|LlEZI_H~U_+R)Rj{hwJ6xfnEZ(uZL*-blqGqWu=00PR2bW zEGsL#nJQI7ErCwH_yOu(j!E?EWB1heV{miQ26q61l}B>raOitEH;TATxU?+vljlvp z+c>AJFs=`iNH(0!DjTQ^l2L@AMKE~-gHz=i0{O#O)j~g` z2}EKAj2HzFdz8TDJrVnSz+j|?n5%M6fU%lNYMHuVlmh6NO5HC2`{OCX`QapaW>s)- z7<*C`rwM$sFaKc$jZA`)BhM4*jh{E^uJG*nT{a&Y0`GW=O?&bOWKY2}ZsY~jpn`pn z>H4R)*85o)xe;W#t@#RE=_d`j-5l@CKla%%-|SLutEyfRw!E#s)n^F$<9Wii|5E{S zY{g6ag$yQHFW%oR^8XnWB7(X98Wgg?m^a&^cqGRDtpKI{TLC)sA_FQw%y&Qq=*$1D z0A0uZ-wM#}-wKev9_SVM6Y%(BP+y6a_}t#c6#WW3{`68+1URgj^)nMj`fsw_f)Ul^ z?7yMIdCk)NI6P5wyW6`s!us@vr?Q4$c?AGKD}Mk0sQ#Da@R#~LtJ zW2&>igAtS7v_^gq!a5BO;S^rY58!PVruEAnQo4#@6_P(%TEM^qtkp_F7+*B=@sDfx z1t*3U(^*Gp43iX<=mSz$+CNYlqQcp&J~RrCp=J|L)_J6$8nZl69z*YorVM26zRBvs zYq*DIyB6h#(*IDa5uH+ndnAjqC3a9OJ~S*O1`G-w;bJo?Sji;2sDBL#8aQr>iv%Z~ z+Rv1$LYxu3Q$9>c7P5Clq2Txd@>qiCWw157L6VzET%3ir2(d1)VWB9C-JxkpTF9~# zku=Ha-DL3%(wZ|JY@JQj(TW(SFLBVO2Ev^qbMgNC_K!%)s)2TnpC_J`b@rnWbk3^84+&=<^Prr)JK$2yw-N{%q@=Cl9 z%i9su}Dp;?XR$ z;16yZm~kKiG=#n17|WI z+lVhM=T`jL+S)l07c6F zTLFrH3;n+pAo1h`-eI3$xqct^{e{`*s_u{13EFU^onB!kl+U6%&C z<4?;N4h3&CyA*R#doP{+{K!iv3eon~23)!5_Z~-18f+l7d`RWi*y2hVzd7NKt9{L9ZmFghL2ddBr?em0YqnQgH zU*($CD6z07TlYtD@&|@?vk;h3#&=)+)t^hJsNkE>AB3kApqwOvS5+#X-bU=lyJiLj zXt-g@&3;X@P|pGlASq^`0hE{QKLK7s-hKahW{qmz$hqL<>*_uv+Y~dywe~NM0;QG|92K*qkPRLjr0y$AH9*NZ zfoAcp2(13ct`KqcQF}%9*REjD%*`E~sObADK0+hYRNE0{nJ^{u_*Pkwx-{#P^f>!&}%V=RaCbBurZ0xY0c;*P7oowb4Ri%_aPVHKr ziUkSB>i9H})xWEtJrZ=`Ps6vOJ$TJH{EQiB)19F6l6T!IvX0RmTTHkTW&@6_jPbXU zl8)glfx;Dwu}Lv7Ns6^(HzWGM01B4gI#T2b6&KDE32%mQ4+CSZcab;-z^|~hDr3_C zvruQFB6~h8*d*S*f?wJ~B+iU60%3nbx6A0tUS901Gs#hWwwBf{5;AHc7Rr5GyCjWj z*4&=U7Eg?~@Yti75AXaHNAF>6=)}5x`YHD3X|f`PU&Q=fJs0$6`RGR>LZp;u)@fjf zS8YAg*{zee_N%|L4BFJ!*_D$`y4qfdhQ0(=Cj`_2HUk+865 z&6B>Gp5-&K-aAu)f250fkLGduQrcP61Zg!`zLF|si2_7`W`cqxmJ{<^$1HRmpIG%1 zsP@!*J5*O&ZZ;YR>FmGqniv=>IAgK5iVwEj-2~I!9VGvD^k!S;rl@kdaM0!DhYfDy zIXM00wSp>`yxuyhVHTssX2J_)>6lp*`BP6Iy9tfkOw%j>cUW?8EAfROS$H44g_zaE zu|C%^|2*<{$|b?JzAwAUYPu1!BG*=$GG=#bawEzkd9?HTAzJh&GDc>>Lb6^eVerE zR1Qs{buQE?D-j~wgtR_H8B|j$E~%&II9yHyDP8ZTuh$(NYJbj=w>jO_7PxwEAsb@m zLxjS2@lnKm(WLxt(&?tQY}%%HgM@!g5_U*}@ON%{RlMNq=H|NvJ&UaVjGI} zy?+7cx{duAJcMF8q8D_HSpj_6@x{*{Np>EDc;P=-mTWO^&tlUPtF^4*H;3J+OX)Bb z;MV$NJ-I8EqY}-WR-$^6H`KRdK`{HR9b27QLmK8JmvrD>cHq4y1hNoPA8&kednhOj z0$j#3#rfWwIU0*}c6rfL$$#&Uc~C@X7J)~vU(0|UAxFMg4j?8v@6M&PCt7phn}C0} zDF_a9PQm}CRl>&QSyyn9Vbs~Q=mfU(DMU%6w*YG6s?Lls!whp2qiviWl8^iw5~an@ zl0#d!u(j&g?GybhbQi{{_P6?&!f01xn4EI|V`jcrh2tOx3Raon^6By0my2p^@v9uo zPV_PM-v))!?LY{q9M2<+m8S}EBwY5F3m$$nq8Q#HxsD(R#c{9)5CXFGCvK`(C>P?- z142LvCDEJNg|xlcZwX1v>)ZwU5v z#iFJ>yleF(FYR36d-yOODX2ewVeW4+4+n^=|Fi)ubfrg>uy#LjOyE8_&Z`jhCcj(I zROf)*k}nWtSiT+2|4c(atBu5sJ8Y};#YIgQOAu8@Q#2@xatDTndq*RsxYr@doNy3S ziY^eGy#0krQQSXfqax1bCzshn7JWJ-5=u)WryGxvoOalb+Syi3W+i9lG!mJ$onK~B zX!#mfSHL*qyGba=O9BUIpif?CTfXz|6(up_Pf36Q>i?GkvV27XofG<;P?U=MjFEB! z$pA1w#2wVi!w_IoeGAVx`qNFy@;={5gDm@jxT;?8YI9cKJiW#43;H5!GqqR)LpQ(x z#rmo`{{JyRpO8cnx?Iv-X zvi^r%-G8ntpahivZwY9WF4wJ$Zj$`Z!m*xFZTLI}YxDugy@= z{4u!b`?34jzMHB9q*Zt132-J|D5QFjg!+Pwo;Bb4-J)Rny5&2ux+(l@+JeRQh?rr4 zw5m27iN1ydLduDyP*MLqZido#gz?CFJb7_HTEME1sL>DqS4)RCO|A)O=@dYO5dYQE z@%k5dg7*Pd1?hXJuvfepo{?+7s<27SCIDC!#4Np$j^#L??ZEMZ)IfM_P@Xk`5K!Dz z!%@cH5YQZ|x*Hz{6<}4^Gytp$zQV+ur~ZId0hxpqmM}GWFx3tHN?Rd6$0_~KU22Tz z<=0!g>_LRl*QHwf7Ip)Su+J2aEz`iFPA6!J^*yZwEfveO`3qrJeYz=bksHwGT31X9)9GDc`%2ECbR?}d=w${4Fa3|W{m zfyb#!SF$N>x@kN*9|&&YdLLQJ3sCi!Dxd`9OaJNRlVtB_*2lxCV1|E6K*;**s3$J* zg8~#|GtL}it3pVsnqmW zr<%sa<~j=^a-II*a1ULL09pGZd~U9qupRo-W>D=WDL;)@LTI$pwq2bj(Tr@ES2Am3|l%lybS6aSGJTdk5aCW$= z;}8S9rC&UY;>f_qL*haW)u6=?*;IQYEfzv<@fMH7>|w&`E1bU1Gy6wJUKW=qSogS} z_SU?<_xrepsVkzA0!oEc^hjl3bNa9<^~vbOg0{V*17Fyc3-^p<*}e>r zRj4e*#dO+FcR`c~?`(Mq3AT?R<#Qfubywx~IPnF<`IAl6N@aW%xfHSO0m`b%%14kp zV0YfJ18rwi@aKP+y*e2SY=tCQabd}s{?QVj)KU&t)tcP z!r==LKyGMQDwMw2r`Kfj#LYCGy*YVnd%B?)knhv+?mB*4ppZf!5Y5v|^hiOU*R&u* z7_a4`+bh*!H60i+pK44{Vxk}~nfQh_T1_)*+;qS#6I=`vsim;<-e0_lC3x@5gnAAq zAqYD3L%~z6YrKBs3aao*eS~k`7jntesQD^>7!M5E6X-LjsS z??yDN7wNsGU&D^e|Hl&tDfc-IA0Bp#k6EY;iwH*lfhgC`BdGjAIw=Hb0xkB1nS3u) zlyyL`uE_Cu79UNQbX&PJ_e5xCt?>y|-^j=1&27G{-b*3>O#avi5riN7(bJQ>#)eib z!nBrxS8P#}yLVQ7=AjpbF$)+IsP~3S?i!_`!CW^l5|e%6Zd($K2`N6`hxr zwDP)%=<%XU&{!dKIIFb#OfV@HImXpr{(bVk0Z%5c8Kp0u5q*nA+xd8RUI$e|U2P3AaysbtW%yIPaNLi`>qVr)i9g@XbjHH$2mUtOz%D# zIZC?*|rjpVvw+jVWw_=NVv87eF&@4Qau{5$>dLtPt}?rlU>XP7QeC4j$TZ z9lp&xkXj~2%rItC0gF03cZ0sB!A365r2d(hwZe`r_JvV>o=uJ)b6H4iPGdATl2j`| z7D%wikHrqde`tAHSHYEUGj+O@OHN*=GS>6FI=ynF1F$lWp2D-!{|@D9Y=W;1!ad*f z+#4`;JB*?z9$RVz;+NW$W+^%Z+FVrJP=Utv)TY-x$%DPBDmR7utz{SP==QJ1phwFLmbL~D1;_%K z`)9BTo%5LP9fOmlLy#bYp9C&Hm*3Gpt14#He=&J&vAlfI)NL+KTIGy;r^V}=*|^8B zk-3mri8lX{86k~wY?Y}||Ls2-g9uHjX6%`3+U>>s{AJGOndwFfy3@5=PZ_?|Sdi-4 z4VTLIfQD7?`8f;QoIbC^9hY1FL$L%IEjQ#tLmnpvFQ8@W<%VH#=TTLVC_x4v_664a z;;$wy9&(=hgq9)|ehI^og7_lrF8quxjT+Dx+yrx7=h$dPSV2%W-2f2KQr4zMJ*%`8 zTOTc%Y|mF`&-z1Uw@M!GoeYR_hvO<(8be`{(KcT*;HikkNGSeePH!k+N=K3s&=?pn zw#xt27+5wkaH(x3Uvpm+zANh*<9hKj6nesc*7e{hc6MIuIU@wHN3fWm%8Lh~rmTlx|9!HziVnco1 z>!!!=EHsPeG+ued7da=hsXk|4%b&2G*s<0|m_Vc2pSv)wX)l*QmK;`CXSE3-Z$Ej*J|6;eT6ozlu~k*&EUSYhJ8df#S1fA&mM5c}=O&U%L#W~TS+ znG2VmVbe3U6OIGP4$Sc!Hyy6@)a7eHD^L{sn$qoO#;5+7F7D81a|PTK|E#G_$=M<^ z#?ymiO{7`0GJ$}g8I|^RHCTI|lLGUXbnA9uA!4F&5a_KVe}{Hkgt&$9 z0%y6j<30yehHvz}#WDl=exKC=;xc*GMG2GKxv0y1a3~6}k&X_C!(& zhL;t1+gA!{QVjIv^+SuQ)vdkVmz>g@d4hh3P2*HX#7YaTcil=i6NIBoBt9szc6(7+ z0pBnoHWrIY-m?cPgfw?H(mvJlz1sGXWJZ{T`{Cx$S*B)!2`fuJ?acKrP#NJ|Jfp_k zY7E$O>82HGOs%bTy%sKr3A1C)ecdtPJFKY6%W-={8TV#qjvJC3zl;%}`=MkN2D`7T z#3DgQ#c}9nG8<=gnq2mW3`+JF4QKJ|2VPA`rUFMB&UB*+SBRqXWoGU@rKc7!Evygf z7Q%3;I=c++XLow;=@87HQ#=CGAC5p(8=Fi5VM&4?TSHh4Ci`GgZyGZlU_Bg7u2)c) zEqd&0o$!-Y%BW_EFdw10*Lg$+4P%@TVDcK7mMP&WJG(R=o1%44^s^$WA{pT5sqP?h zkySutfo%5ce?znmUeTLv<4^5`ch8cSDDK4;8)^Xy(g!*~=@eos z9fj48h0fw$&FZztNgGl*Q3^ zNqq=ka<}FFhWW@y%Z5iYHKX8fMXH3eyi7p?S3T6I)7ukH$;9-x{u7=sR6T=kJ-_%b z{_~yiFaGmS{l~ukzxWSUWPdAw{~&{a!birwZkb3==#(G-DzvHGPygaS`cwblKO9_!{>kqD;y)*qm!<&zv+9O5j@SV#>D2g8 zz((FIf{^~=KPm_KWS+LV@zrixf9^Dpzg^Cs0>=v6sPAT@J`ZNy$e2Ri>&hNqYgr0> zoC9n*qljiN>L|2lWY3(#t^|PpghN4P{>6VF0sJQ$z<+o|&b@xgm5c-U55a?7Bm7(1 zKll$%Ie`DrZ1nb|cx`aO`aySDzkQi+SEj$7*mHs=+61XbJk9LiiJtB-&>xU-7QuVW zGyw3Q3NVMY&;6*EWBz(9|G|Hr0sN;@9ibAyf2LWV2go3!1G0 zbvm~KmvN9)AP`&?!Q7c)0o4W}qejlfzLxGGJrvGT3F=qoDtHN>y*W$LA$jzyXh<;> za=iZXO8?{*jD*V)|F?Vww7YL6Nytyf`#3{K-;LF%{cH{GX`|S{L&2fEKT~5|xmeMB zri^zT&hs=?4lG>cK?&;xJ!22xYb?`q;fYL^LSL>r0F83+F(u1Q{`O8eCRi!n*NFz| z&4GUU-2n|=13DE3)|1(Czkp_)1pEn1hT%HVLxo9Vp019j zqm^-s1awKbty`*mI+!7=^QeOe+8k1jpJ{Il!X)!Fj$T=w3_H?m@?}2L_+!2ysQhFn zCJ7kpepFQmEElTfCnSxc2y1r|7R9{g$E`A@JRNGF{}b)ykl0%N5k+toE(LL-SB_ud z$&^}CeLgqB&w?OTLks%#HO=#Kfl<%Tb^}xz4MK!jpl2=Tp8ycf)t0=oWa~PVBbFda z-uiEc1M(=7)#NzDlVAMt7%!C7ke;Uuj-SIYCx5%-U;K=#k;P#YNFbfJ4$=hC{={8D zkc22%T8w@B9cF>6@(Z~>oHIj(+jp^_pfW{|Msv`mjHTW~9=`3%Rkqh~(jd$24pKf$ z>I=uP)UbQ4td+Qe0T`hG0Ce+-6?X*yfZ{E`5IUVeQdwGb%*ca1L8klc*Wla*5^{k) z)N;$uSeuIpfwO0&!(Jf(@{h@x@+{A6N28(*!p2%<1_NflO^Jmk(-%DZHD508&H~AG zu;3smAZ1HDgw6O()75n{IHoTp)Nd3$((>0fn2}>x+4DU@hkUz0lEfdDwLqz$XW$WIN+(K9mIWtT2j(=|!=oZEYvB>s|MNmx&gFc|Dsvk2F z5FQCL(^QE~P+MsQVsWDjCqhg5!Xo>8FjF94 zY4m?nKwzJT5iSfx4Pf%1nY|-ON*dJjc=v?cyW}%M2i3s}Aw)ne5${(&D{pAD7Qbix zmjTLrJPKBry7Xcd^ELd**@jj}d7-pNfujhwIF>;m#FX8dbC^>K-`ThbCFi7pC zfIgf1dm85tiQDYzdrL?f{}N?XR*n(h7d6iYw+=;vTvbiq5z_iF!+Eu5mapRfD>Wx=5=U%_+!4y9Zo3Zz?&StprSWx4H2rVA#JSUgUs_7Jzh113Q3~#}V-%lbS zzj8LmE>T>n4H?!}`?$E^iD8@aisV*vXf&SDSom9%`WroFwWOdQyq;WM-*Q|hr~P}k zMr=6Oq`Y?#x+wdF-kjy+ZRACx%TM_-b7B1Dib(aGnTbjXQ_Bap4`8jh>H2fhlv*qlt)iL~6^lJ&c74@6+5P*U)^+=*)O*NweW8 zUgN`G=2H98E!A2Vxr{B))F{kz1a=RPr6#$iW#quxh+_c3x*!@nkS6pJo%Zx1Ibycm zC*k*EzU>k3PG6a^r>!a6sYm@_TY^#OrM$iXOL%ZiiSb}dWTEw4FV0n1`Yt}DM^x`L zb!>*;)F^rn)vWNqo`rl?Y(ZBc+Vpe_PGU97g-+qFKPk)ZiZTz{bF&3WX2mol{8z%5 zr1ay&^5tid0R>YtH8*747MZJa7c1x4(nA8%P!!_pDGq+1l*WNlY0|#kb+)x@dj(`7Jw^=HN+XgG;aD=H;^C3+(IEAXjn2 z3G#nAkA|ZUi1_I$o^eyt=uJ*HZ!R9@+3(2^8lUe}$FFEuWimubpHBA8x__vN}hicy$vvEIZ zMo9gBX5(wwy!hBz^~l6ESx2PyZX)8>8W~#hv~Upo$r<*&t)ZEU_hZ>$A9QJ*^muY3 z<;OAoQ^cAGbaXn@LmngGr*i8_eXs>qLp{3Hal+S*+Ed5ca$1`xkkOU^u4m)K*1`Qy zX7XbG&MY#CBz412*5go%R<(V!T~Tt_d9(Xngs1P^t6NE1N|2;tj9V!T{3Uzj!(T(z zKfp4`RR^)EijBvz-tFi(jZPAh2(zuOT%HGK2dNEDs+bxutPxzEd4sQokwhz z>WTHAytwBo(0yHm!{tsG!qS^{s|!9AUJIm`Up0xdORt=V$+umFVyq8OGF6RE=tj(q zGJyNy^i|0nOKw<6!nDbAlziq5uMV2VvPyGs*3sKg6D<4ETpoc87ELsr&neOl2@U)T zpTOb=OhCg9VKY2ffdv<~0up_dYWSeX_l>TZ%nnTlqBuhh^(|4Kf#KaqF9{P-zv}D# z-c#mb-LdTh!|=0}mFrHSts%zlTHeE*j3EaRq>CX3B#MlsnkXAWKYr+1gp^MIObkEz z+Ia&lT{Dcp&P|96T$X`Kq>S(28TP0-vv!~{f~~pA*chiWpgdDj$FJHG*7iH<=OIJy zBzvfsB@Eg0_FK3m#VQB=Fzlqzc z;>h)%v*j-W#EI&or~fB#8}y-ncG^TL*^C<=zw`3d9s8)>SSF8FDaH3aKK}ed-Yr0$ zqAmh*hY0l>slY;iDeCK_uUVFs)EJ|q-ye-a{ z1QAA^nX{riXv^gUbGnBs`S?QAH%~+Q030d6(*r`7PgI{TLYPO?+!NLejoXbb4=0Q) zA)+SH-Ph38ZU3veD|BdN7*569e6C7xrywau4y^fW1;Q~K@OV8~4aO=L~I zJ>&;)v~XU>LJQacM+>hC{rv!MGN3`7k2VN zsCYz2RnboQ4!v+M$S1Hj9m7;tJr5!#tzh?n#1Er7E{2!8t0Y9AOZA`GTA6v;H=)7C z$}KFF_ei)>km-|gLBx3iNAc)wsWdB^`G9c8PkmoMUPR`|saGPOjgm-D(HWR3c%+!< z*j&F5e8Sd^Jx2A$!K{KD)9F)SQBo2G-lG^kIVW`+Ddn6<;;|laYy1kWvhpG@ikrg< za5U8j5KF;Dk=p^?;TB$Nq9HU{g`PzLIbG&0V4D76dQ>)*=#Q*aP9Iu}7~4tXbc@H6 z8&)1D`xOT0{*+*|s_HcfX)tBL(8ra}=aH>z^?Jdd!l>3ne{McN7Zt0Lr3+hT%M6VA zs(R?2e29afQ(<0o{si@(*&6&^f(5#jHXAh4*>ml2Yk%rVD^X_7$+Bu-z`wJ#xPwaY zqHT0QTkS!sG}V5qIvlR!2+Y=y(m+G;GXAu>xvqW@d}dHY1~RtesTyj=J(Di}CX%QY z4_wy^bV|DVm7D%ljP*oUn-DsmWn!Vf%&OXN%R8|4!df@v9X9tSka{Hz)YGbjR5+Gu z4TXE7FXy>iDmWJB;zUj#iZ8SH@gvf3^3Sq5O6uLm(ij%c3#$Dta7^Qu=QhtgKRQQ| z`+ZT!jyy>zVmy4LChkoH|GA~ge#6f0AzzC(P+5_+s&5;4V1$_$P-SX-hBN_}sunb> z2V;TNuftds7s@SA9(v7i6#7~}XKMO`z$ag>>q-OT^>& z@ictTm`^?IJIuoQmIXXRsfI@-wp=1K;FoUw)5yKKcCL%D()g?lH_LySys zyT~JtaS2m)FQ)pV5%iFJMB1yCYO8lAKV$o3xgJ(5$bNizN)hHyzeOFkQmKy(gsR$=V&AcxYld0{X?lWN2yRJ&@LKO3Z!?$=zTUAOm!kU0=B(uq}OPc@=|T`nUz%T z(URHiok`_pBJHJvkFGG6k1N7IE%Nx9kiNV_PIC}Q7lM%8548{(O;dKqc72|-gd{2y zDOYEuQ2g@ZdgtRd`nx*gD7gw@5yadID0 zZ{Q)mbrL0jO3|u2%N9`-@etMx{!kVYkYIYOt?>1Y&wtD$IWpD`K|gpSF9edoF3KE4 zcuOb5HeP@z#-4uYkLu%3)Qzkwdz$_9=5Svwc<)R>i9ggsHc#-Od!XvF$c0Aiags~H z&@{aO|1+;jqfBZ+E)88nk*8-zJ{uBIM}$+BvVQZW@mZ}Ag@miH z+fe^^7O2kwc2702C(FP1P9gy_byjA`nl>%SaOk>&{1CaKJw|D^v@}Cz5OiVsS(KEW@3${_M4y+(O0;H-seo;l8UVEg_ZU+mH zPh1m4hP8v7Noc7MW(_;pP*_no~%KEsT0sMa57n46P(&<@>02gPbSiJ ziRq{5=Exnja(G7^eb!t=+IGCQ;yTCb6fINiO3EWO6_uE|8#Ra6GHO9nAaVbT^+v>| z@Doe!1uCXN4BiPZ1DE#WkvUk4>L2~NhiJ#@a)VyphV=(wnFUgi`(*Of6nV9#poz69 z^G2R<*N5e#S)|k8-ntyFSCz(}oQFD~lCwN!*rj(C9N|cvk(~MrUmes)!=x=7T6cj~yi~T6c`Bhz;1x2a`rG)rYMi`@l z>34iw9+mM66pEw8dnYro)Gug9Qq;b3laTs$MdhdrsOus!==(ndCZP$|++I_@bd0b$ zW}P`UR@&T{LmoFLHJJ`ikF?g27zJ@-%uNtv%Kh>%)7Hf11bR*MhXw87NuLCE(GXqb zLI~`@1&$j?aZ$q7^&v=I*=_O3StvHR(Xs03ogA^uG{+5Dc~}wzlN2Dg&dS~P{97*) zX4jz$T@Ux;gvAF77j=$=p=?3$Dqa(a9DOZ z4#8rL)Dn*_59&Pj82P_lvV)~sE(E93ucjMyRUwolxIT!dPj4J$p>YaSKHpc5r<%=^ z3l?`wJfka;$1aVRvW^ID??Y|H&>RcKgOgcHS_(4X);n#$IBlQ3>UXfVGM|nhzSNVV zTPn!LeCHX9ffp+GlBRs@zMCq;A1epJgD+e6xV)KO)@*1EMt<0BR7g+XxZ6sV9h>K! zJas$FM5M?$l01TM7_}5>YGg+UZcMCmh|JJmJR&7&L(l_n^uorYFB|A=3#~XeM2}nw zsyGjv2#Z7PHFDI`Z|XG z$!;Pjn`)q;X!Xri7gh?4)#?+^Yqm9(w0?89RhVrE{_a^g_q$t<@aDR7IzpCuMHzBS zbD#dJV4yW~UX-rhFi$XdI$G`G4LHMYj(upV?u`7BHlmoC#slQiBZGvFlxL&SBY3m< z;F|L+uC8P&NclXL1<3h8xc%fpoPb{H#{v%^K0=fIp<>RcRC&&#WQffq!!k)c|M11H zn^R$N!jkeh>Rq|qBSGwd(xl$vSZ#rO9P%^L_g{6XhoZYjczO_;QqGb!bm90)ebcJ- z{kf&GFTFSyb7quKk|b-ifg;nMA66oekbI6^2E%l0X7>{>wK`i{vE!H)G6WNSNt73& z*po?GJI2y0LDjvPHwB?XBaSa{?7#00w{=dVHz5jwttlVemSje@h=>^rWB2+Q27qOn zft{0w<|`A2#kv@Qfo-C?HnH?eBd|+rER2UO=>ECXZB=}~z=F@ukC|!N@2LHGb3wB? zzR$&WdLW6a(#)POyi^x$^ZZTstqe1psOuumXPv}baYye_@;{&7|E!S!z>lU#T)$o# z^}f2T>pSjJL%Lp@d%|glIIQN{))q}xu^0ZD*Sp&o!&9~X)3X3@5dFWZH(M6Ud3xYv zBBuU-PbRMa27h*>f#47D(gT6d#GswRPWr{Rjhj@k9IP)|kGnoVP#KP@p&NMYLDyGb z-gf{L_nUNHIOVq^;&u#tN*Ti=)@{ouPah;sZ+J(ETD zi5jVrP0f|V4fVOC0+KDU4NOVrX);uSVOn$)p4@<+%g72YlXJKk!a=c+yL28-mH(0g z$QPt<2W;q%vx;CpetANE{ezB@cY=ZXhpT`i6%7debc&+_!?X@@%kMz$hYPX_5l>V; zlv@V{8cKBDT>?`4Kd=w>6bs*GpjnUNVHv->b<2 zkG<-a@Zy%~c--;h-YI+giBJoZjzUQu^c`a3V1O`AhpPjzoYh`fvOv5)I%W^1$M{mr z?GoiXCZfxQ9nrEE*bvwscKVo9WZMS9mPXfK!DihtvA**?Q{=(TlTR?P zo0T5roEv$hKv;^1m=5clqFx zpL3AkvQmLuD&qOOLT)uji?VwqXjDhs8X`Ukw}1q?ZwL=GgE9KKj}3{lQLOl+`9@Xl zeYTEa^lf~0cdKnlN;>Z|o8f^MiEtKkb=tcQjA8HHCoyxcudzSWL!qv4vEe>q^HgG8 z%TM7RnC7b}bHf$2I8rX>a_?TN?XEQ_Tzm1qN+RonSX8p7h)y&eGChns{Nk3fUH z0e?}_JJicqK2g&;j6Z7F3~3VBxBkQ)%BSh(XFzdI>hYE`)(FL)JND8j39Yp9NH$E4 zL=SK@)(#*8?k1UCq>~kq^%NRC6E28ZERe^3PEw}j5P3YDDGPrTVm&z=Eib=4ou6FA za}oFj_yxp0ee+CthI6dKR>(Wy=VbQ&?iKOzjto&3WV9rS{hmU5JSwrVn%J7m#fR=~ ze5k5AC>~0CC!t2O%U-!rhR~>j4LjhcM@z=hb{Rr&uLh&n-ZN%T{6iF!UJp^Btoo|D z$E{_GrnrkpgAbudRpY1!l$IOErRc^tG6yG8uGgaipNysbH zIj?9Y!=ktqNTxfjJ5*&-?F7{cL6SJt;``i$)Q#bozZA5=O{`&u8E_IX8Gez+5-PCx z7>V9(jfUjeSIlONh(f0dY#%opxLpbzIBHi~u-2E`g>#*v9aX2v{Y0eIr)Cw97mz+; zu)ukm=ixP}Y{Uw&nlioCVUGPpmAr}f1kE57Lcp-&@;_#3Kp3hkwX5fxT67yCp0_O5moH@b-vP?)?@7zH@YDb9p{?fV-fUZSpY?U!ThKcb$Tc8eyc~agj)uS9 zgL%bFPLWp24&iT8ofT>wj839kr@UcV`knX8f$Zs)ToaBZqgWNEK`_&W=M}6M%_w8` zuG0B9Yabd_WkXS8$k4Nzd8PXB@rLTg73)HPvsiMwn{+KtJR3Vkj1H5*DdGyyKExZ_ zXw82X&J4_M{$&5Y3@!N+Bl`V3L<#OsN|5E&Ctp|+6D%(?y2U0fFOteNnFyz#JxlI3 zEsYm-#qA%kkq%ey{pvv-^I30_Fb0{pojAWcOPV`^UG1%qgD(oQ`~E z+K$LH(pueJD(as{ync>g8NNW7MVUnW5T}bUS&F3{V@KsiR0oW&alt!wlz9Y;LZL4_dnT64C4}g78XUgl=KJy1OvBTt% zbEA2Gve&v;w%;^%Pm5eia8gOw?qqEC^bq_NslrOgsk=uSjP^0szUK+PLMldBk?03) z{S7%N+0;UJvf`;E82uozV9L%}-*dw<2A0n5J{3e5MZ3+mU4SV4iryR=>jR#too{Q~ zRnl_jcDgBl>Nm3I0`gx^wvaJ0=Vxz9xwD`8khZO;yJZrok+P?`>sS*#b5L50q;nPK?>dGBp)c;V*i=GU_SjtvwdFl->rgK3vF)vlW!Z z7tMA{B0{GK^}_M_?2s!E_B#xQD3=`NRj#}O)#PVm1ic~=3@fGR4Kw{7Wt8p5utmBG z6Z+lf1r74q(@GZ3%hw`p4cEY9zG($6ssza4=&(gX$mdS{%N_ze+Hk47woC)xFO7i@ z-N?gVB$Ksh0>VDl8qdl(Pocp@3kFB> z%_e+=?YW_LkDKjM2|;Z^aBu`?`vH;TYCJ1Bs>fdeWPD@KeQr+0C$7O;)5>i1cx>G{ zs{INHzRESH?c1EpiWb9EBwGhxo$Z+A{jafY=>1r4~C zmK!LlI-J&(dbvtFxjE`E5CuDo8Xr<@mD~z1#@N4g7L%>M58LhQY{W=V4Br8&Y|ov{ zMu=FGrVV2DrCl`{>}-F}^n5BO9D9#W{8`A^rJpXkjV^N-*U;2T7_LHPt(^J2{mped zNMNzr5?y_M*V1%VCPkG{Y#j!S;`v3!R3<8ornP}|*`6v+n}yMgnitSWTcV+K$-Y@rjn60fg|G;WvK4bJgV?(0g1Y6md zb&_jS0a4hJ>!0tawTTzOU}u~~tSrgBRg*m^JrD7ynU?1$FrCd*0YlHULBHNm`tZhU z)aJo8s|DPtSpz16W>&4_SBEwIJEqm)jQqAqyCE~ZjT{6sXXv5{_D;x`fooAW8CHy8 zhW+Xfi%yv}8)lQr6DFiD`IXC5b(<%bgXk>K<9PUDnv x3LnAo2axO4-KU>J+tKQ z%f4f$R7XHw?S+oD97rKGGi=%=IJs6vHJS6m4>~anC(-57N`|zO7!NMoILk}^)>dW} z3ks!{t;q|ZTpqwBVN(y20O?!#2Uwyg4}J2;d{MDX>Z0mAhX0tbz@dHCZ6A|m*I*kp zN9-&J?L zj`@^MY0sHwM#q}vmBs>g5JTob#Bu?&K0s+BjSJE)duw_G4^_gl)0?Hv7zzybgBDyCKGSC$8^xg>a@FSTI2@9Hl&ijp` zWJa=lTc@~%iZ&mzu^kt z{P`u0?gI!{kb$x37_CyU;)2edTuuIK0v9(61v=1)isoUpdD75zIBHGxnB7VfRa8(+p5=0S0FDkEf<<7DXIX9X%BWH|>KiQsDpXc8K4;M9NV2r{dkzhg@ zoo_JAs42M+C>?dK#!>i!nTch=nHde76})e$V2C!0xg;0F04CS812UfnB#6DRq*XQ| zCsYrXdIm3lufz{9|A$;Nl|S&(o6#-B_Vu^XH(<4-W6%%oL1JL-!vVDJNgD7fdv ziP)*#*XF(bGx#y*%&m(Yib~qtIw5YUESa1W_n{V-{2Kfaat{!=3b>m={%tfbTkH-n z=40YN@@jSP5cjdK^oiRzoPeM8|Bn3kjC;3|@fHQ`4PEgo8N$u`Ka1+iYOqF| zW_bDn`-Ts>e?p0uI8hU?CB=YMG2{&nILv3VNF~K)eXUhGVDK{^KqYK5?OG*A`|1$n`q}9dDQKG*Tm`&?zuY4JQcwsr{m{gK}W7aI|&pW8KY9pmnxDk8} zepq5tHD+#`n5C0^2{dxmo-A@9?y)@O?^wo5KcXZ0>AxD&nw9q!FOw-W`DP2Tb7;7C_J@D@0b>jIBQW$M{1y`CsGDIifxr3aKNpY@a@!BO+F^W6k*Ok2H8DiS({7F$2<^skj z%k&%zY)aagztuLpHQTYlaeUFNQb_8 zmc_buG!yGfe%U>oG4oxbJrtXYcODK4XJAm$bagBo;64}8Au);eY+eHzOA`cRsl_f( zt9nx+`IEPQC77BX_mA?Y;c)fU@~(9WD+ax-d28QYqRaQy*W_#gPmMf3F%|_XlDNw( z@9dUxnJ5{m+gHBc+L2oLAK4ENbSjTO?{|LS-{?5WI{O>u>?qyWkqotB+lNOBk zEXojXTCzoP6cm7+ZFH)rPhivF8r>@9h~N#>1xU9qHweB*O3TXG4(%wgSsw|OvlO-fnASSs93x2+Fcz04W zBR@Q)If(I-qIh^sEVS;hzkq)W9QvOQkGf^uGRM`*EepBUlEH3^{mF>th!(qFTk)5|O)g*5%uqJfRJ%{1ClK7s)g z*Uj^D+Ys$?6k?E76IJAILcoismTj5{A}z|G7_M?$G3F&zL#~#CrdUq{73G*4R~^N5 zvsf|B_2UVH#9T=ESx5Ot_yDlB{EgKPENmCw-fgPFCPzjOeh30IGy{N~ef|kSnCkdt%o+6@ZZ#nT`gAkE84)l?%{Ke0X!= z!+9CZ!V;%`-!Q$lr$hGzLw~xutJ4I_T95sv=(VsqMaX>xHv&!{%mn-!1%N9c#%$Nx zICu3w#!>RLl}!v9LUl|-EOz$Ti6ANjRaMKn#X`VF=v5eJo~SB}8ibRvIENPtn_6pn z5ruA3myz4#X=89a1nV}gqbaGkbPN3;C4aj!Bn8NRrsV`+Nt=BxW=Fe3YCkeaWiwAL z(rA<5-NyR*_sNIa!ElGPCNXoy76(O5KhT+arIB9M-Op(XBxpRrLULH;>l;Ped^R!N zJ?*k%0t3`Q&bm);Ij(Z=q8MBkAvrgvkDgTL??7-<_xAazG}fYicf>wc44`fj_5_e-NI|BF??`ur1B zCQI$8M3%YRq031wH<>ybBSy9h;c3*68N5^n8gLS-i)Q)LhEocd`BZEXK>HlA-+8kW z!dCn~kr8E3SwdriB)W=xNW7@n%7#l#n(1)RC$!T#BMn3?>*_)-GhOwQ*TODt#{XyL zgM0p^nG(ZE5nl4wcZ+C z%mJXv;H&Jmd5^V@6C<*K$%hL>PvGvzHD{Xvd1w5gNxIaC)cNEfojvIhQvF;Ud#_wE zMY0kBDZ^!DEZOpmAakc3!w6s!4qtArVprl$@pb|vVJY;EU*coSDFhc_(4*-~$k9q< zDkz!Lj@PhMFlsCU@<(O|Q{Nv$Gq681=``A%a(|;yyK&sjIkvg<`#*CNGdB7Ii!(Y&~4FhFs712d{{7@;!i4FyroKv9`|5HRUx&uu&%Rq@$q$~ z5>^AYZ@__El1>EIsZ|7O{kg!gzFB&E#{|n_;our~f3RlDbj80eL@ggzxbC5z9^8b> z+`VqWC-sD4WRGyyV+|?P0@1czfp`F#gB$fV1$fZZ0xn3P< zt<3G9@3gm(N4aIN6s?65JbjyqW2hl=zgYPRQ=sO`V?zz?^K)9j->JPDpwhu z{`DtouGzCkRZp9hYVHm{gkE#Dm0H{Dt#gOnvCZ`1arb|ofoKW12x0(9B@B>MQ2yJT zGY7y_OdJ^*82+>PaXRB_@x88i`%ckOp~ta~-^X_3?3&g;B0VxP<-z%T9YoGORL_qT z2a0oiJtt>dZfy*25ypU>ak-jBwUcGE5Y%Ag`O;Sr}rnZ>d&gNS|2o>cGq0OT+U^U~eu zxlzGQ2!Qd&!1~Mhqe2}iG$@JEw#*L;Fum#SN8dS_n^vLOGlE>`hgJ@ktMnKm@xcok z(5(0%3i|>>Ns6Of7i{psix`Dhy7A}G0}Isb5Gv>i{o&{MV-VPpVLJZ}ASgvW=>t8*GW_)bFACa!3ya&Y;s(}h^T`4d z^jcuyVRH|FXR|kQoan6bZ3E!hUXOpyk9!90egNRvvBOnNkBJX0Y@g9rXTQD8jeF3F zQda8L?(*>m2^<8RXAwTt=J)cwK*#-x{I{NM?<2!sjLSY$EDx-hyFh$HKPoT1YmeSX z!@)kGt%$x=ounvWj@xB{7`)}Z%GpW<}ae+#ZJ@rozL#D_oGkD2&aP+C! z7xYaW7hZoA`Jx9P{Mi&J8!|BGn+n1{=vs;drEP{Vh#%0_L58%2dfb+;R)R2u)r8C} zL;017X~2AD5wIWXFbF2m5!k?1srq*(b6ZPX>;@I~eXKE=q1@BOV!S#592cXaLWmi4 z(3w)b!etUX0NM&tnZI#AWMrPHk~P;Aq0t!^j%K!Ugk=^M7ArTGm$m|GELpARitKQ# z-=&X9z+{j*LkvZvn_DlYVdHo7j`+9&J{-}3PS^Tp4^(z7hV9|+7lAh_C?butUeO$YrQkysw|&Zwfl_C7F= z(zPgP?G!8`k1Kk^bcVE6UGSp_|c0hQBA@8{91k27>cc^>Jb7@E&vWeqd(B9e4~pwyNhI+Z~f z$6_5(>af#%lcXY98P+3DiC(-Sb%pwJO-!%tG!Iu*$o2;Gd!H_bm_uTu>Iu92K|7Yv zXc^|*okrrySAni;X|qsO^Ndsy{KRV(>pPiTz`@_a@q1Q*GxR26$pqsZB!dzD@`Z*) zExNAKZg;3Je0C}(&_-fZz|k`E1J~uJGWy4}y&DcuUn7DkQz_wU zB3zq@r`jDmWu1%zOR%*C1MmRfV8f^OjBF;_(3CkGNS90*yO@`ix$ER5oM07v{!~Ok z1au4>tAucMVA}Z~5`iPPyA^JY$b#EyPhn1b@JRRv@4H=|3^nAQ zkEO!5P_42DH|DGegit8TDf`|)m4pqlJ3>J46#3Bk8`NY%?rzfabfTDG48}-{t9t^P zUI37_+VGoELzTNX5(QxyThWTVpC9q>lwz%tYYR^lPYuftgxYolsNDF*XNs=3YMf$r zO>EI_w%2MM&1R6*EuaPwXHr^l}XPRSnNeCF!ndWZb>S1noQNUMh=0 zZzTKQ?kY7)Who;3I+J5~mMCO%Na<{1XYO)E$0b!i{&3w)e zjw9#UjuK&fK+hjrjNWIq@xL7*W(9 zt~H5unucSv@L9<_0&yT=jjv|n^g@KDJmusFQj$!>yWIA8AKa)zU<6&%16T6bR)O65 zFP1`;8jzuHmU2Pq6G|%w5fbyqqaidhC57gPB8=0rHcrkQX;OR;QeJ)*)oJ~z>&)7w zv!j`u#iRyADKr?j>SJpD4Xu%bYugDs@<6$EV?~xTi-Z1DuY@@84a*+8*GgRZk0Rup zVM#56wiqv1=&S3)1tmxN$1-MNTWhZCuHbFjlchSy+7v%r0~NS5QXCuVLQdU>Z+`S@ zBQ`bYFDcELbWBP8szk9$z|pJ!b1&<YSzO-@Iv>S4E z%vcrQ_B`^7Yt1njc}zVCoM{Da-t97?G_J@SUAhZK{`>f7Aqx*0hOA>FdfqkK@=k=N zLf{}w6GB_MSYhxksNO=$%ct}PBc)4n59-h#%~5pg(Lw8}6d(shD+G2UrUWHVUWcg_ z*gZVJ%BT8Z4u|g1J1ERRY!32Dgoc}qx}ro@k(hG5liW@|JQ-tFwhBQv_O~iTsSmh# zqE}rc>s?zK(*W@T`0fa!&g~|^^>aWv@A7~!oB_*$ssKrY^)!z5Lz{sLzv^h9#3x^9 zr3F2WgM|NU=HnddYc;iR!|AO3tDY zM8jECi-ycXg6UfW{YgNq*y$J zkbb&i+gcT7mwaZr6dCd}SgCy@c^cA>WNsBV9L(N0z*zn6>Nt#|(TS%S(1VnE8Jktt zZ*OI#gi>@lStI4bV6xK^4P*b8$;N~F=VA*aBx`Sf1-?y~8F|LkHl)deE)q{9&$ zV{XYAK{E5ZJMf47GUE_KBDnT`TRG%Sr-=%%C2KR6v&6|%+HxDH;T`S8r^6Bdc z7u3)8oH~)w#ZpLzEQ#QX*=DD=Hs1uf2>K%<>&ec91|oAaH_erVpK@!;2AmpFeeS>Z z&e6%ke|BZG&%gZCJ26QMCQB#Z5TrtPjoLMYhm3gui;g|9cfylL!jlOKW60q$6F zq;qV%#2y_hNXNsH|8@U5cApwW#EoBttgrPTK%rvPYH?j6OlL>31@LWMIumIfyRu!3 z1yWwV@G9YuCW(}d=8&X|QC(=7n0Y9OhH|M&*XSG%(0XaWeG*IZ-BmAK*8-ROJwhuL#S|!0i zyP_$MTdI$#_JA=dh!ToR?uZLxJM){PTei+es2Q5<65dr zgFLL_@dZu^pN#k2L~5T~uo%w4X`PmOkbe>;XgyHNX)6~;ITe*dqhBX_yKtrhLYn}# zH)tC9gR%R(@HNaofZTj!NPu)-9#oK_C-HDPiSTr%v@Wjwg8bZ|-}Rbk7K#0xo9>l) zqY6UBDXD0NzSGAvLKx(c>ta=!ADpg@PP5WE7!vOXpIVOTAVhAMFGu~n1WJxmB^y`9 z&wDtoxB;cw5IW6X6~ATPbHB8XzYE1zwrFjseU*9o*pCT~U7vuvcW&)=7>*dcrcUXc z&-r6wi08H6?%TKTHCTRs{r+cosa;pPgZt0y=l{aXzq6nJh8GPry903)U%tK1pnUKv zk#hr-Bv)QYh~MHSrzZUr3Wg}_hI6&OS0yByMgTogM)x4F(4g^XEwzh^%lWL|F@OYi z$>A`#S1;*9REfsTAT$Z@8n-;$^+=#h4Lt`c^*qq$TZQhb`0;!UAgj$*?fbWZm_bSq zM@@~M;ro{fAVsvd`tZIUcADan6@dQ8D3A+|J;-EB2&osDBN6$fh#FRsLt;-Uf~d$_ zuDd_=?qjZ6WoFL=QuXafH!dKD&p>_`egK7tunXcR9}pO4QTeL;l$($P7@)Z({~^R5 zU!f*`F&e+4ANz)h@_`-k7Zc?kTjFc><8-HowhCM|!acBhaKP#5-{*!Y_pxQR zw)2)6G8qw^14<9v+J5V0tR|}_bbql4+^0xvxEbUK7i4@b>UO>7hYIfsXt15Og2n&Y zvC&3XxZbkVbF#544<+w=1~k}mu2Yiza1w}i3uM3?@^0}_bO8;vp)mCKrkgO~d+D|% z?ym-$FL+fC^p%)m_8$US`RtTG$XL&;OwRl&uD~Tv+c5Ml@%pR5b_{5+F&dhB z@doBDu;Xm&AdPhF3qci)=v!Fioi*S!#im##_8dc;0@TUDOp2Q1A-LNqU zM(&A65*3kJ1~edLDZM}Hnt_wptp2Ezj&lu9O5g7kZN&OM0i7ja>MEb0_@Erj!lB|9 zl_s3c6;2kYOc6S#@cT#cOt~s6! z^xT6}5qF4f{(4@-=hIvaQ=@cVFVA3{c&b|GZ54`naptnY7VWA*D<@b7RMsnJ6~`{g zfF1EM1!97dasfpqa zu>JW(ITx6JMn&OJ%8|J*+@i?{tGq9f*zIV<9cvS4%DFVyMT8U5(PwuMaZR&Qh|FV~ z%u3Bd?g0L3mKksWvK>|u9=!r}4`WFcmQmOQe|)Lah&D(#*7Y!Qr7;O)$<$t~@I8Eh zA;6kvUd62rnKusy9(;rz(uSwg-Nl`4;W#We&qQmwg%97Rl_R7_9^;&=}c!%)P zn*Ywvt=S>e*8*`kCe@N5~F1?PP~!HY5}zplu!w&Ysjp z!ml%WoX~l_Ks*Qi^4J6UxosF_G?~A|@7&&NR0S!V{SRSAg}MCA#QwVdhe|!JfB=*R z;o#mx9ftI}1ycOj1FK|Tl+qLcL=`VE8Dcmp{6(ea|Dsa&QN)Dzj98I0n^kSS4m9z} z%`wExVoFk^BIoBaEZNbwbtO7W(c^R^1n*$2`Mr3;87+ZE*20TM_f-Q2D+HOH<#C|5 znACtj!ABnPL6>!mj{5`|{!l3M^zdign887Wn-t=N9r#|JrCoc9-FDLNl6V8Wz6@GY zq=3DuM9n3~@3Kxxc!+}+p5MA*Bt5CcEBYn=>9oz}<_({*NM^X;K8_LPk?t40*y{R!ElF*WtIhTkm2bK|lq1!hlS zAjqi0nTc6P4bPQ)WYV}aJus--bRc}>Y{ zSQ`AHKlU1o-clQ${sakG)_^7S`!^21G|dFUR*rP$gL>Y3XPe75?&jQA)Xtzs=9;}f zph9)^*?sflLbdTcm9zFx=F4L{#jSb~I>UGU6;8pRPp`3gv?rWvNu6>JPT`wE&`|K8 zsiByY?g9lvSy@VG0x$oTdFml*mW~jZ8wMOR^Wu)%BD*eveKpIuz z47x5`DEre^+pny4Oh$m4k+(|j&;SVsHfV0BLyTj{_e8POLSnx`irlD=)|0!k#br6? z01oVJ?M{=KSSQgy-41)=b7AH@b}d&EV%jxy+|=(bxoX<;c8>)6>M6Z;Ti70B{Fx)h?PSA3ZdqYGUaaxF7}3Q$ zneY|YgvqN4=Px=x;yP00hQnli3+Qt4u`?|f?7JTtyGPWqthD&qQCwublJ+5#CxQNG z-n8X96ILv9wZUDiGS_LcZ8qZ*pha~c6k~OY8Skj7?X`Ne-NRyO8=^S}J{&3EXO15+ z?#gYAA6DNhEjuk@*)YkA>2S+dl_z}1gd33=UzF3cwNGjCvr`N%T?)@iro5%bA~Mg; zSxmEb>NLCKsKrRp-fRetG` z4^|#_wlpKSHkdd;nunqpAA(4uUTgcMRF~{FWR_TxSSs!Ni|W;E z(ZAU!D6wi-+=eJ@!aj`PM?)G^U7G%~XI{r=|FF>M^A8GI$kf_#L z&&fE^PLE+Tf$d*9<~G|+ZFV(2+w!GrQY9)>Qmn2OUNUu8mrWLc#9T$H)6V&(&?-Cl zYJfV0DzgSzX|y>0(k@!aWtbzmi0idI@rJ6h4!qmob0cbUo^M8zt;6ORvA($_66yi~qdw7y=a49C#78SGXvWggpRUw<*-$%oN{4G-_k6 zTzyCVRJ_4nUE&_j@lS(r|8|J|`St`V{i6K@u!D zBRYb$ih+B&gKGit78K@V*lKc?5NoN)N0v-#8{8f5E17Q2&#Cs$^413leCe{(rU{D``-N zm8PzcPpS$D1|7YezUBb5<(TGLJO^gr@__xsd!z zsxrq?jz~jnc_dItK~{}KYwh8B>rJLaTR?gmAR-SL>67~qxuIDYpyaVj)+1vuRR9M! z&pfI~0bG9QiE5VxbOnkW(-~z*Ic6PVbiu+1{w{31K~7+1GW9Ggd>0?&cs028@v6_$ z`2{Q)yx-**>&v8`dJ9bn4bjO#gCidZzEzY$f&s*YqsxX+pD0OqZ8QPRXlrq~73=*F z8s+=D0sAiK3!IRFC+a|?(N~*4;=~%58^AfY;EGV89j?M}%9-P0Szwu1U&K)8Rqj&VD{Op1Afv)TTw}}Ix)(KU>G?Vuaxwk`pz^5t1 zN2Lkv*0gS$`}97v)a4YU4|+r#-a#A`VEhrKYAtLV-ol*<(EZ$!UU~MN^E3l=KX259 zIl-j@IUx+l>IyI)ZFfr2U4-Oye`|+@`Val|`fAh5{z{SkKn%Ree$Ps-C_wfLCooC% zHlp2R=8i>IxvDln7VJJ-`O^J-1L%ITg(+TrM_ZV6&kVnGKWUHOv?z#4R{Uf|#?30m z-xGd(D$G~+c_(217-XX5HI>QMsC`9kadyY|X9ce4%|DVgqYXU9wnIu5adNa0ZVmM< zCDDc4%S0f(1-iK@)9>U+=-t!hvxgS+Ryg4CJy2Ms!e;iS{}b^x50r=ES@*fZdJxWn z)B%x9W;0s0B$5BXaqd@%D&}&?=ZNz8nJ{#TdHm3i_!=3 z5EK#blx5DtHgGH?C9rOk{!sch&$KF?&9+Q%3k8{%wSjscA()p&u0Eme@fKlG2M3#S z=XEx+iZl16R4vBjA)NIb=xUOB_AK~Wh|Q9&(jW-1{oLNudIo#Es>UHCg1xNPWL?P3 zk#E6n0Rs+Ep>~Mw9e9ZwC*BXgDco60%b^=FgTmlh3BlQcZ0FDu8 z18zpgd}m}wB=bDIsKFVN<%AEK=pba%p+GFdAy*WdL4d&I!G!xb*n=S|V{4rCkL_nn zXYH)G1yG;Mn7A|Z;+mUMa9Y5Vb&N$60SU*He@aCT&!)Y6?5H`$Vd7;k9WPiM8^*_Q zotYFw3l6y>Kj}b(_DP!rmz#(pId=xzpvb5I34FblXer=i#loE=565zw4 zbK+F}vi%r~=xJARY3A17E6o{dUC=!pf1CNa`Z4^mw&Ji0@2Yb1cqbh;0;i@I!`7Pgj7Mg34JXU5Ns6$hh6 z$YtH!M!ktU$TX@Tn-Y-Dfsuf4FOY5$ zFBop}px;fMrU){9>#2?rK)+K}cW#usk5`jZMJ=i`<8z^t7|6MJm2u46O1Mz~{kaZ@ zL_mLzu^_=T=lT>26ajUg=en|M*3F}*Fx=cPe@4g89c!^tko>q@ljZDBNw}KBH4T~$ zsm^Ah24OC_Ckj3+Yh)%<_d+5vg!VK!VP*Q8uChM@=XyPFXdPN*O17e3P7REM<2X$_ zD{Z(lg>9rhzsS0}m5mpU7S8fkxw0qcvC!4e@4hYxjoULUR$G@`30Sn64xK1u3ZYoGgiG~qk-9FiMIk{`ofc`#Uh&vmInxv#RDdt|q<^-kF z2-J3-Z7?aFG-e7cXQss)wR=q6GY9T53uqW8*~T4{=89!yxw+SK_xX2y=LjddD)@d! z!2u;koLuN%c`Eo1$&vs%Hd?RR4bK4xm0f= z-gA~|V?pcK4&Ozk3vo({2nweOO#6$3O=D&k@1Ga222Tfz4ri>0r4CXgI63*FvL~6{ zYO2|TEe*F*myuUgd79I<$THv}Kw#~gxAzQuhWz!*>!^kl^lZ1LT{2{E1@pvo&7l3Y z_;7QV(P+Z*uLz3nrIY0PihLz5MLuC_?mbyLL7-=U|2%IeuYViqViJG37QREdA zJ#Qk=se|{!!x1@;-d$=1()+0b{eslc16JjBMc0H|;uOK%)o-%1A4UjKMIEjzrahw@ zFaz<+?H!;;Ax#M)V4&BPKd%@>BRh!u$MK^RyjhkioI+T5sddqWx6qXzZw>vWQA;D4BZ&$zI*%h@FUKN$(Gs^&Y_A2=hs^%O}?la zs}Xn(Zs`sYV;;6`mY5E(1k4&V^YPX`X2W-CPHp(EsE4;Z=T113>5`9udM{ zQIL|)@KD}Zix86!dP0SJ#m>Cp%RlfV{$ek5+QaNXa)ehQxo!|3G@+^*g+VpFB#R&- zaV#jxJ$utv6OfH>>$A}F_y_pMw`z`?Fv686xrT z6p+W>?g$$4<9PKGv1O7Kdl!(e=zHZgNN?)l*F7d;z(<2s#10{rFq={5ex z^CJQ1(fz>#GE>i!MrVinj1<76@5I@6&)ZUE&)xude!KvlABlfGKPb$s+j@ckkk^;z zXIY!J9rDZbBSZ0opau@`{BZWRA}3=S&%`LSW*q0ABwc2KhNijB1otVm)@GQI_68P!+Jvblalg4JZiW)vI{t zFl%-PYQX1K%S-L=Ya1b9Y)-FhBod)#;+LP@5-rxW_ex8|E!=`}HS-vZpH&MJVRz0> z@JthJ-V|#* z;lOozF+u3xK9(YdXq!C=qzTmyMsi{EyK$t>vpwp;yFqn=Q`%67X+(8sS+tSZrRgPB z|{)t)ftcXfWDCBwCMB@FkDC$n-A5(|__{pLt?@6#AZw-)zd>+ zQmR{6+P}wb;w7H@4P_(YugsPAzSwr4uP~g%sy7rgC}XinDLYkHqb`rXB3Yf96dd9o z#c1B?TCo$>^G}orfas?aAo>YtcYH%s4M=_OL230_@@Hq)gr|+!wX2Heb!g_JIc0F` zLlWG4tk1}1rVZts`yRsDU(zb*O?~p5x^xXJ4Lo*Ah-9Ey&wKHLv1J7=MssT_)m5|l zR&T0JbHgiu^vn{-JOSj`T!Te^Av5d0akve38Ql~q@A{eEf_(YjNwR-`jf&r-FAmz) zigFF2Bd3Hb@fol?4dHJ(S`%ipw~dIu7s&VC!CV9R2hg9>LZ-_Z*)wL1?SuW69JlX| zcqDL`-W3IeEibSbWI8Gc;%+59PXz%b)TR|bx9Su0<@V|Pa{KW78mzO*$!jdv~aQxdt-i1JXdLtiu$2V28>8igXRDBn`du7Rko8NsRs{S4yxSj9SLv`!U%r{ zMqU-dOVcSsaV#)OI|={0w)OB$BT-qwaVP;QFJYrFC#sbQS3TpI^hLMu36FE~(f)MM z&x`vZ>iAXF`+b(Q*j*2Rnp!BZggD3=J=jn2hBSJ8zYg2 z>S*zHkpcUU!W6Vz3n!22Z>sR_6rZ*xwo3a}4(Fk%+!&Voh^(j4MMWgy3?L?m?6-5w zp{v{{NS|56XwGgHv(x&~)I0ug&-D&~?x@l$yM{>ue8fgo^TjGMW4CIM8X+wMl;P<41{7*4AyA~PBJ zw;tZ7$98pxLb|8)Tk?Q!e07dm)~2W+Jrim#gui$hDa3h`+tr1J|Gaho~NkrxK=(?`8KM z96iz}GQ~-g@ACE0J(YuS0WaW8YUiunEb_!o|GeT@p7Emju6 z*ZE>0ooml8j#)h>Tf6c=Jlz=1)BcEq@+D!CY{mj|<%u}J6yS?nhQY}Jy1H&e==<1 zXJ@O!#g)-e2RIEr$#Ud5JN$|Xn5fOuv20n&aiZQfH=r@ET(*T9d0RhRUsI8nkYR6T zuBMc0=j_%I1wLgne0HKwKD>F*=oVlmlryDY@XP9Yv zX5p|DB3lQmu2X4B+{&rtbYsnO2`nI|TYl813O+4 zcJ9ReP-s7}{^`7BcTT-ME{dyns>B95-NGtB!byATC~h3cj>*XrJYyXR z95n#+W{LIeND2FjUurtBn61eX&z8m`77aX){FLNm+IlZlizE`bXW~F0GbFej{!8GZ z0Q3BD_|ml6ux~KB-%C%~plty9XG2xAB*&=@Gjkwqj7Ga2Egd&PgJbQk!E;LX59+Oq zU>0*YDmR|BtHyiRu3BJ~P_+j^+@Tb?=lgUv_M9>G+SvZsGP+Jd#-?#~cR*Xf4^(KC zx^ZfaQFFpXnG6TCW-BnG_9&LV-lF?4`q-l@mlUJ7dqq>LdKas-_VBmCX*|IzhM(UqucyKQXSb}F{*3M;m4+qP}n zcEz@hO2u|kNzSM_*T2u+=d68^*2Yz?$1}dS_s*@B5lMFaa%s(arwTiQwIVe^vF)O_ z^OQVf&wI9@slXg};la_%Ej=u6Jj}zjMe|5{N<(K{+BiKGP~Y&BXs2LoO05i%A%?=I zgeTY*K_ZN*qsR|KnzdFC$?#<7Kd$xt-f8)WSMC zQrNVXpqVo)p&t&EPfqTq`ozyxd78!$8mxLqF?6xy>>d7Y?hj6i0v+;4|4~8Er(tkB z$_ZZP-_xOS?Q_;^xz|N{GS<%Fq7vHL;$ce8sX`Kp?t3kBk7tN~!tB(({8HZg`X;vV zLCO@#KBr3*^H?X(?Sxh>U21we&6e_CP(o}q7}RK$y}rD5^nTe-zr25e{I{*bDz|oT z1K27a|81)<{}1(ZFoEqOukr~hR(W@DK2J|<%iH#kpWx*v)fFsJ(>zQs?+Qcz-P82o zw)hUM+vc11_Mh`O8aSMgq+_KJ(#9Ad(U~9j z7sb;8y`LX;Uo@LuJQn@yiW~Gs=M^2ZjqS2X6)kSUq#r16svt^xrh4CyQ2JebCW)ov z*T7_z$moZm>$6!yWT?fJu`KRk%v1;O09fdne`h#c^TJ-{Em%o5LECj`$DGhHWW=81S>%I&`cK{lZN zl*1$|Ncd@afLxG(cmIM6GAjN%%XiPrEL`diAbyLB&5MVc=_Cz~28iE4kU=(~u>j(? z+)NLY7J&He`aa?0((@nj8yGRkx(S>4On}F>_+5=cB&c1R~R|swhdh1kA0P&kS^w=RL>(}bs8$+^s zq0_j$z7EIIxoqxdCSz0&vPdahjq7fdpkX?2GL&r`MDz{B6OiYipb(+9GY#MgU|SGx z@ed55GLyB@W}GV8?I_@o@0K4`kD_K6 zJlt+0x{^2TpQR!WR9$3r$Q9rK;jt2jMhRt~hYXgVJ+SDcKlDFK1tq9DoEvX*l)szZNwTQj zC#_0xUuEVbCK|8JDE^J=>+$Nq6&2`S&)Qv%4?8x!)Ar0*?=_W(kqlP$z4KAE#$d<4 zRsd*12~EODU_kp2n=vr|9Oq&GE5^$IOzVVcUg812~9_Q(`%VI zF!sA0ph-$*ko{(V@#)^6_jjzojCUtc_DQC&@c_n3rOe^qvC>bsF-C)}OyxS?Xc7HC zW5r?IT+J4x@b6dww#sLG5&An;4#}ojA%g*9#ggLhSP^HEZu(ziWrC(jSQ#)@W?m>f zT#euQzUMN4S#ZzAg_E4WSc!}XDxbEm$G~1Ur#TlSQ(v$tO@{R*qwGSRA)Cr}2@Ds0 zVPDacjd&Z^{rb#N$tUllFLr@s+nbJ26_Gi7#-%lq*S`B z_og^qzg`o+1@pUy92U)=8i)ib^PbBjpI@!gxQ zb)dP6wMTnETJtBW_KTK+8^vRP{-?4z?LbKr7+%f@@QY$33NzmIplCSWk7i^+P#W|1 zxeIkkpt=}r&0!ElFgI9~w@$nGW!(zLRoKbTOv;AnIy7nO*buI&(6>=sx;m0=$zGdu zYN)%ZSNt7&J^@crhn>)-K6?jOt4YBv(-Veo*3>>cn{5`iurY7XoWrfuzhOfv(_G;Tc;CJD%T^~HaWO&LonIh|yd=Lpt3jLK zRfPE;wqWq@@-nOBDkmE0$8(p`_7+#sH@aS62Z8{0g3xPnOMsnVAo@4(AGg(>eD58( z3&rNysh@_mbzm;vCb#`QixPb?$AeTlKc@AEVLN|;|FM;%mjr)ceQmD}Ei$V)NZkOm zc7AA*V%|@KX+ssD9~oMxj9#f{x&NVFl_&M3HxOh#a_!Eu7o&inVWTo>(UThuGGMp@ zcNmBgS-rxaStj}ZC#0*3w;E&Kv=y~@E9U{;Yb=f@$bnqCK^h1hR4&K_B=I8^p%Y&K zs)m}cjdERRpQeR&M7o#v+Bk#7XJ={s0S+RX($@J7?*8oLz(GW79b$04pq`x$aJd$> z{LoBS1Y1U-yEF+gX_nuF0heQYC>J?9n^*Y86pk2hdb+6 z_gW6u%2xKGN~P?0R550hMu{Wf%f5Id_Je9`v(#g3ntp!_#wGdL0*lWHIDNUWp@z9B z#yetU>N5jh>WL2CTY<`uXca@lhQ~7amMf#)TxO&E>y>MQNEzBUKN2-8#uIvA@(M?G zT>s%<+E(Z`9;h5kl1dtCLbXa>unp5}UVA4$F`L+#L3ch)D)IF;_FwfU) z$$+j?e2`P3yB+pgV9c(fbV@{BChTVumo!<^9mZ3em|D@YSs_uN(Y+NzGq#Q7MHts8 zmU+}Xon=FsBlGkr_mzY{3xovj8U6k_x~;stR^q+&At4eft}TZgSJ_@GA|_;T8IjZ5 z$41raqH)ZTM9r8UX*|;)Bb-O2j84>UKDlmkwHx>6{rpNiU;Slom3Ge5ua-JNSSNX>RnWHY11%LD{QX&dt6ig{R!nmmF?vvMg#LaCyT%z~1dY9u+9%>9@S zLYXogX-|Ch?@~!*7tk`hHD`9U4Y9&$ay;gxwNkx;`c-fQea_FaWj1I#Y7FXgc{v)@ zEAhm*w?EdFIwE#RE5^9p(?4cpS16(W>vJ_da`ME=L z&ZfESnX&kWc-j*)N6mLJ<(Yb+jh#>uOO~BCkBhG!JjP6W#@u>S-9iiaxu6}Bw&4lo z{3jJ;(@?@RCO(R;$qDp54uTLP7Y+Kz*w+b{JY!EBj^$Advu=yzchx(y#f0@Q@JK&i zvm`8pBGYtEj+VIF;@f^iy;1DpmUaRgc6!2&319vyLXU|$KFUwGI@o_#s_fvdANlT~ z#w7-A_JrWPqIjL3IhM`{z0Q9y471@@=O_Ynbvb zoFu1Z^go4oAH4&Zsh1{8uq*>AJc#NECe3K+zi$8LeB@W^4U~neg4z>8MvT@27_AkQ ztvOTchV#5v!v*22U&ev>!L2vhzR`dtNHwsEB&lKn4@Md_tNegfqNCT_j|Ol(ro|@a zOc2#dp+#bI6M2m3*AV;E36*^ih5|srWX2h*3R`X>&}hE_T+gG3V0e|9>onO%)YDMcf(`nG?M!77l9>rOEO%fx5k85geXXawLwWOL*eNd@sLu!bA-Z@S!Fc;^0KnGGr%wS z_bkmn{ULHGQ4@c1n@3VbrC?;$B0=n^)|Sgwzi=x6O@ZE{pHq`U8X!YDsrL*nv>%XV1-ALCOL=24N)G5iiavf5tI<7$pT^#&b?P#hJ z2RiCg*wh*}WHqwhYycNf6U!~KC|*Av(rOd*2M^OSK=7M^w4R*cC_s8(+HHieeu^)bkJW_gK+4|j5Y!;uW+;w~ajp9IQ^vBnJ(l?sV}<{A!6Z*CU1mEiw3=L7#w z&c{;|U!2KWtDj+i#E45cSBP_NK?p9YqK#V3H1fj%_P1wj5U}rV(MZ;Q6SFi9jfr@AKKnHVkC8`e7^vORjf90Ql0xfHDtwRj*^X|8I8mtW>3?!QL0IB{b3Q`OVeGJqqHTp}9>x|VEn4KfU;MXaO*iNfMzB0E z&7U9z`)1-u_Fs0WBQR5OlMZg?jieLOUowE0PvY9`aTJ_@Ja?0-)yAKHVm`_OG{5x7 z4=dXP-ZPjnJZ`U30WqKSe_}pce`7wRvzYTa#{O1Y5_I?}HB@f<+`#xpKMKXl|2%aH zDQ^DMBJE^*-~soP6|_Xmwgw?8h+J`%8t@qCah0qr*8O#G?8AJnd4U{y-9qhBr!U1+ zRmiNk8cmwY?hH>RyAkg2x8;*~@t`^!ex4)Xg!Azke1eNuqU4|Gd7&HMpe~+&x;xgS z4I+7pbdEj^%@*E^|FPR`$VfxsIZQjs2DE`AzGt3-05rPALVxaqnXucY02es0Uh%Lp4~zhCcNQ!cWMGwd)_xv;(EHOq4{NK3Hy_XD zCD@5&q-i)vw;BHn?c;!v$9g2XMy~Xo?wRz-Y7YDQ$8gRMuO;j@;|Fd1w@iW(PsaN>Kd%M6YHAS;)vu2_?KhobL~&EVY${R6lJ=5cdphOX2Fq#n*8cVJvo_~Gsx^t= zg=w?&xako}yIhk`a%gHS?yR0~1GdcA69#H`b`o$retJ^UmFb zF!8WR+|2!Q5x!n7VA-IwN?o&tvtO6rZWNb{}R~REKS5H|7uK^rKajQpb(q0h(&9|1OK{47I9JLH7tMoC~SVgPWjadk1By%mT z@1)9aMO-ykkiu1tRP+>Ahr`COTKUS(g4Oe+pc-k{y)LGbv6aE_6S~{4p6Wnc+*L0& zIeY!CdV9lTFk-XF(^_;k$)hj>ycijbuEnUqEzZlIbuvy=OwxN;q_bsgEX-?)+$t9> ze2f`ps7xRA%RRX*I~%rOXMw5~+i5!0o(&o1*V@#~cE)#|xXf?BrE{So3HAxdxc!(H zwrv*3OhNOxJ&9b=;Gn(IJywDq)B%ei!=Z2%+BH7?*2;b^U)h0IjnK+;Rd-Az5>U{E_TmDU;ri~# z{g_SkBhw5vw3$ys`f;G)xRV_zhkK1_GIb00b(%4$bpSjh-r=O~`&lz|;Utn|xR%49Vvg=|j#{Wt*QHF;X*Zt{StJm_qcwZYWFXS}3Woipeiy-W;g65@yq0Cp ze6vE1j43uhsKKU!rpMw!gfy#G;fgy;GS7?x!s#n1navp!1$%QiL`=GwSkyHQxXZ^z z1TF6~W!L?DAEs=q3M%|YjgXQfO*IXg$X6cX23_qTlbx(=IvXjV`}t_c z1zk$l=OhHP2LxG9uJ9*V4~)v15Sq6%8P4n@^cF;tRPEN>V0D4%G%%CXf_&|6P{a_>fcS`(u5&k)OmZZC)H zcu2Varb*QYS50>ailjoovNYs&q{RB=!I?^1Q$u5+OOUf9)w;mNqDiANhp75~Z?17Y zf&pxN0N=C_42#-GM2M)-wE1Jk=10~{dFd{UumEO$dt8TYW$7P{C^B8`2hlZHdPote zuGsSjVNNwvz%d_6|IZLpT6DQ9k+R<6?j)b`9C~fL!@L3CG+4?5CgzTp>T5@--(1wQ zj=QC7E`-ARxfHa3QbWv}EwRd<+iu3lDr>FKoVHk&`JfL$+gUTSN?&_KhQOL{9nHnk zN?M8b!6|qa`P7Fy`GGttc#yvgkntGzm*qoXV7wn}rx$TeM{qBfO;|>ON%CfzFt`I3 zloDH&P-ksgi*JKnsT{mOt?9{)k4&Fn*oPmEiFL1|cfgiF$?@+cUPty7h4o<)06m|d zfS!*Lpy#6v4h@VpLiZiV@NdwE2D5uz%QxboasnI`N}p!A$;w~Mr$znGizL)h;-x1+ zZ$pa%TZEO)!pJgpt%bd8B#j>I?)4w>&y;bqvAV8eJvS-BQg?~SP3Ajl;i~6rH zvc6jVsCZeJuJeQJa-ChJ-}&X)rs$ujh37qe@7xyTRri(p3Qou#&Hsh@-)57MZPq!_ z{|)G2`4{NXNGj??_XWJ^1WmTlF!*?>!$Ej2CJpTQ4DdimHuxyPa^>5c?IYY2>yffIGTi-{Rih!`R_PS_g|bxxMPVY=pP-z9P2;3 z3BvDR@$`Ri9uol0!%zDkoCg!AAtQYT5%8|l19;a-HIK#E#m6Vs6c|DC3ZwnN=n|sq_;YLz%dksYW5H8Q6KmG>Fs!;Rr!Aq=QOG`RXlb3FF(w)bNiS zGVDkz4sN$Z>ve$Jt6aj`K2TKcWu6L>fvCpRh? z=C!jGlNv=z22~*@nx_865wuWhNl4o({M~W6$P!YY09d~d3zCh(GXfo4(@=^?Qonjc zbR1Y=w^mcMhzsVb~++qPWS-1dYxgH@@oBJx=w82(Wy zNu4^=y80PVX_$#O`2!BL%X!iP6!kYkxxeQ$=*T$pEuK8BP$nG6_#N+7nFqm`S-s~| zGZJb%b)EONEEW3;Ks(*J7OK|hPX?pq)@uo_TOul7{Hq>4a82yB&d;n37dZV(_)=db zX+J!}W>obq!^WO>Fj1j}p`vXT<~QuzG>>2i1Rc~?Rz5B-cqdY`4!p`$vY;Y728^Mg zR5^u2;)M#{WGfx%sj>*)w{MP0=5T+O^1x>S-sypR@kbL7BZ6fG|5DsJQqbwJ-tcZ! zNHO??N`n#B^Pe8ER?eiHV6SN_+}-)n1=NRH_>Tds(Mg0)J8hWn>*TtE3n!F8 zCg^$biTd?XgO$MK>I1TxGLh_prh}6s#HvcoF~SORr#%QT)vq;LbEj<wg9SZ zT-~+S#r-!Pp(GJBEpyd!Q6GXgJXIIi4FYi0PM9LbnS3DF<6V*yK6P;&Ds?!omNol= zkKwW9Zp&a@@N>e*9>UNdL+{j@weT$@8@F$2%kPIWTaW&$9>41TKRge_NBh(NpXVw3 z%5p>uWR(4sm0q3;7Z8i5k?95anlciL#9F+pR6-T%I$hdJO1{7_ZILLErF(Z9F10UQ z>I1Gpzb4-z=#r69&IQT}f3Zxt`<2G|DLd0L=9Prb)=SGUG*Qe{uX@91aq}YfX96wj zDL5S~N9}ct;DV{lXK&%m*A(nhM^FN5FBXsy03j2gTVqn*nQfgz(hG$%SZ1f~x-Ydv zj==3k`5ySP_Ll|ISNFM0a}vV`*8-P}YckQepiuG6yzSBqE8@S-1_t-}QQX|X$)Ev6 zm8|s$hRiD`k@=0zdcq6x>~+J925W*K9{n#Bwo3j641JF1p7C-lkcV%?j7%@=Ec+OU z1}yMWzJDp~a%=`zS(#^`Dw7~m{~08cPfbw#if*`L8tnaNeOy82xz*Ns5Q(V&tvUx6GlTw6ud>mqeSl*ig&F8psIt_ndx2S$Y@F z9Umd5GONyeTG!)Mzhm9SO~ur4`61Zi{?ItdswJkJ$@IHU^8c|G7R}64ta2_ z^#FB$S3`hL27Obf!?8|SAm5JJ4$68Rg44^lcME9x6x`3J747|GaEST);M5m5MxaRd zrru!+8yQ^fUJvW+bg!)EX4tW7DqD}mknr-S?f3xT3 zwfKDZVQU!+N;w}k8PfRsmsHpG$EID#OPC-*%oc%l*f~X6IAmQ#>=-$9fN!0TCVJ6r zuUdUoZW8`F_BLr+)FqlWR4k$rF-PPNw}mW%%wuJ)xGY#?&_t#x_U-U#l%Giz20N*c zuh##A^cVn;9wUu!A7eTjXGaD-aIH=$s6YOL^kB=u2*H_vi~)W>t|39<;sF@3wP!g@ z9|p21BqHd3)gnosRw{4WsJdl!4h)fFu_Fwq63e(N!xl1syJM!Tgl@h2UJ)oeX@l>257-9@}?sFR3%dj|`NW>b!D7zyvSg5&EE7$5mL zH|X!_=gKYHdHjb&F8e`fX6bcc=drolK92TzU-GH3o^Z1AT)vsEBDEQR9@TUw7c8N7 z1zJp>cYq>0LM8_jJuC|te>U;Ar#mCzQ>}OXC6irFr>M?X_3rKi5g?;oK`yb z^b=*nSvDW_b%QP|KWt~00QzQzmnsvHY}FOb!buXh6m^_5T89wI+m_w04sLSTNP!bL z+Dw=Wm~~QQx6Oyh3!1G!IMv0OQU`00pRLI4;m*2?04`iP_ zD46_ktL5Q4NCt~`xT=AswG0+dmDycnfxx4>v+iVY?Oj6_lS-KX6wG=5ykRa~Es>*V zZZXF8(Hc2#&w84OO|-eV?@nH<$VHHs01!Pael_HzaP7K71{LXHw#pz8*%uwQLG|cS z@-yoeNi{Maj^j1h0(2qPRCbd9qUTlp&~3Y>CWc_E{b!B)3Ia)(HzQ+yCm~<<9ra?p z!~lu8qbfx)i_7k2!hyC0&ZrRaGy|-JRd$Ta>?KVgHi8?z1~kw~fIa*7z!@f&oL&_5 zWjQH{D~&E^@>-UY;3!|JDUA^PlEfLb%~Dge<0sMGTuvkSKZPfDW|qx5dZ};W7b9rn z6ACGV2KU73&cP-Az-ogAAUMTSmPaRZNog=A)k{JRQXhi`otui2>6$SaQk^k~q2DyP z1t>Snjssw!6}PX7l=0y=bjpgJ7wjR$uWFHTPver~jB$P6+08yaT(-_b zJ@xH~15{2e=}By{W_#4xEuwIKk#Q}>X(#2r%x_7_bj_MgzB;D7$2V6GU=q8^gkc35 z{p8SQljlt^a5t@K!Q3{~CHwO#%qmQKMEE^QA>V2mT6k)6f;rE*vv3Vnthqx>BAEvi zj_NHSi0Td)0YlN=JTF>5@zP6JBn)@QIROzPiF7yT=SS@~(*b|1sq&*{u=78Al3hC* zkvt+6ExCsM?1M9$7JVi-n?gq5F1>MTe|etc3VC@L%}eY+0MFBn$X>{$X7+D5VzJau)*i$s+$B5vb+yHxC)gg4!Fyu<+(!W z)YV>e&Q?!6pK7BL1^-e!pQ2oT+jAeC1@A5*&+M20uICf*cLj}cpg{JyX($F7qF49z@QF_7isJJLm{b2Hkg6OvAQl3+k&FLtH*){( zDRm8}|Fe*afh4@;>LLjhfe&Wr(@~%UVq>1>`(a!Pw7FVqnN~&m+vHb$^5i(ftS|HH zaUaaAjj=cyPr%m}S?~UI=)P6J)ys;L6D_QKk144fnx5KLKSyp>2{Omm<451ud7j7a zN)d$m<>&|RQf`)OVz3Wf6x-%a@=MmSxgrvz>76Vr?>9zS36^@^aOdbDXuOsIs<~)R z2rYOtfgcCI;pJ%g!%8Kj5imsh5lYvkld**_Lb3h^@7!;FHTky&KiHm^?Y)zI#R3h97z}S6^|qs1U{87pfm5aot=`b%TUIinjSd zhjgE#2U(?vHl)1lpCHY@u$7iWYM=HjD4Kuh5``5H7L8up-!O`*W4P;^UPIGp?M5 zNf$>4u()or$}Mniix%Z$klQEs^657tBG|mWbwnKE2mam|97VEAmp-Gg54BmG@~@s( zLw>VPTmb*`zyfaUOg|@sEy%&di5V6NF$A1c3z`D+(%G^~jV2|PlwTTcS>N6Xn!uUe zZ_Bb~)b*y)_Mwjs9`G88U>@y)N_v+vgazgc;>d=Bw+1}tW@MxNgOb_b#Xlk*sci@< z(?IW*jVBzZ6P1!Vz9m9)tBB33IX||adgWGlRUMq^Y`KJ-MLg7KT~H;5UiJ|xlq3s& zxgK8+vIUeXf88GR((uGQrYcz|Gx{T7ztddKVVg)VaIvW>*c>SHZe(>Z*gC667OOMJ z+8y_IzNo?1PqiY!uH+l|6uhTFB3JznT)s8*LZGESz(u+zQ@(npsWsUyb>Ni}*xbeW zPp>v{kD!isFw-z1s>Ck<{f}J(jk!f}!wZ19!s%lUmt?U9S>frhSBmLT z&^xIZ!9A-O4385~==*Jou1*75BXJn{l58s1Z_p9lNgg!VsBrAdDHbs@pjOsnDMbCj zJku81bYrIci4WhY&tS!{Quu#$3G80DwYh^22N~~37VUmdad8cl2C1M&IERSW2NiBk zK+^^gO|3B^#l@Oqkg`2Q;&df?=?Rd1`ip&B)gT{xW^(>L)d)qL$T9s^{Uc5+Ah`jY z3XK}sOT})9xGayK^(knUz)rw__!CFM)}6)_zxFR)6Nyzou~2?XHqHRl1pV3;>EnFZ z{CB!!K=ek8RYRGe(c|K=2Pe)y-tz(CtmVs*|=zhu%NQ-xox)iv2T+KE1gzF|pi3HdJo zH}?_N=Z~Z#+y!86X+e50JW=rKKA*2uFESXuDALtS$O;{a0Yzx3G{Z7i7Xe!|`oa~F zQH!Wo3e4;?f`6#&?Y+_hm(lNS1BW-QRrq7Zi(-y`30|9$0$~X10-5)VA!YyW7TEG+ zu7uux`_W$yrbVe}&xCW_e`}=#CmJEi)B37-j%ZaHn|@N!M<|; z7y5Gw3O|K=C*~@Db(LL3zX!2HGhyIX*%w3t-%qk9fF7GL9L&Z%1Dy9pfTL|N{g^Z2 z=$q?QpxHNg$tp+oba3uTV#pn4yxqg7?~kkWFC1>990K?lZ&PikE{z&8TA6uH**5}T zRBHm*f2xmuy9=zlT12#LT{%SB-3T$FbVO-?H=}IGH=duFSxQ8^o%Za5qKUqGrB1RM z7E6zUt@4sBIj`va%QVjAo6T^XbV`NSVX$OUTFTFzHarrQ9ph20 zxf#=^hi}2ohG`_0=XyLi-mSkDKMFzsOs~TQL-H=zIWXtIXCqbnDCS6@0M5X;Pn0rA zI;vQ?s8S-Q4UyD3d_mp~#^$Q3v7}6hw{?1vZShX9DDIzidFMIy5qUs5Nl1>`p+1tx zl^tu6`TR2NnvcfS)BDEPDUoMr$7crTcw7T#J1vgqiD8MD@7c;>Qs z*lcupgEw4Sm(y(BBFBLVR)WdTxx1rrG>+Ut{8x9=!EfJUTb1vI-1Me~Pg}&b=b3}s z>CtIYZafVSE93igi`kFSQF}1BY@7Q+bJ&%jT_{npgsdgMxJXu^U9`&yyPI>4wNwVG;qq7OC<5!0OOwm~-9<(YMeVXDK^>6mY(Xc2z zBR(EXTP?HO{!H){kst#VHQiU6P zqL&JjcR%AEqJc(H7}k#Ye*YFp#h2ubM&$Isk*&n;pi}YA!I!Blx|(#yO_J$0ESb_k z_bxXLK5+;uDiQ_m!VUMur#6DT)|kAYvO998XIOyUHi%8hg?rRSkrY8iRG*BVNDVu} zKum0yzA=){uys5itFj8^%~FYCPi+EcN;s43h;_B5uR3zR!l{%q(49dWXM-P+;aOK7 zjp%0{J`$B{$ze_@<93315^1mrS%J|r9qieG4@u#@j7^_L2iE2DYGm9tID>3xVZC z1W_Yq3vY(N&#^X`I3Me!OWoZgwXw9EcKgVrsG(_ZzXwd#XYU1zjSCrT&FDIcGX-&| z?}F!InGka&y;a@XBO}(CYv%%qR@>4zfR8s?#mOvzFdU!d?kI%;>9Q(=XyaRYiLJRw z9wwQ?r6Z6(vc0IC-eT5bWS5$?)33=mk~}!f(os3|m`KbfKR;-)_b5lF(&J7`0d3s) zFhE>qYg|fK`m#bJ+baF+zRZIaL@#y3f(`t%Hm`i)fq<)WRy@u0GXV2XOcw0mAQEa+ zB9Jr@Xmn9*Za!Z%xUqp`V&H zk(szjmL8Ti%1t=VAD^y@>MZDeVUe#Mrgn5BdYU?F&GPIO5_0-I*a zWG5=EWmkQtS&ZeQ;oB!#KaOadR?<@~@X zF>n~?w8Auq6wLO9I9I9=YlfY81ORa}Pc|louK+3hn^Eg<6 zGG5%-F5?ogjsrQf48_YPN&=A)VuYWK?!T^%QP{vfnU~QJacMAW66V(bLPz0l%6Jd; z-D3lDxw?4nS)~6}SG&9h^dTOarw^2*%>&jv=KAVzhR?J-@t)9W++w+N0&Y#nAGDul za^T?M=~U`I&IjcrB`G!>g35lZ76^axIiLBO+gm)wbkJEF^V8LE;0GD+VIezj%0Lqw zZ&V;^9dMndU%r6z;@g+i_Sb34l>x55;ND4Fy138DH(LRe?arf`_p=$rph8&mZigQ2 zCjILVL?6Gy!Ih%xFWCP!TAHwLEG+?}CGNkC7S{hS*fU%+0lQk{b2yT;0AdK)fYZ0N z5D5T#aD{Kq7q>yI^=7~G<|-eNJ8GOgKD0f)b^IT9rUqv#Tz%iTMn5jQ9 zXlvMG0cze2fJ4?Q24`!x+PEq z!XD_e3!i}zP&h(!2*ya7{FkjIL`_{eDF6-vrl@|HfqYJp?}>ds(}lcWf<*yFY+}Rg zJaMFOC{EikP7bu2HC|JPckZu!e!_^I+G9O|XKdS-29te9lzmk(K)tnNUBX&Te%0S6 zdaJ!(m6Vwy*cHs-3UWLLzi<}dAozk%`Wyo?LE9P0K{*T3y7XEqUAA=x{uBP9wku{p z_Zo*xeFwTDiu8<4h`fK9$st98^^*bCZ-TWh8bIxM+X6lC0PVO6q<^!;IzSJq*K_3< zfaY(nvE^)0Lz25OR6h&Cdr>pc1^y+s{~{0~yn7*?-(hO-X6lRR9DMSbt+0iEh1b)l z*!bQOlW(?{-klHrw>?@gg!)g+$3>)P=htf;bkof=7_*6S+j|$5aVffR#NLy6Ka`z5 zVm=4lUmDbFm|&~ zfP^3w1+CP{Zb5sNHx&FV0b5Av6vroZf3}b_Od;3RLRehQ-$_^agd*VWZm79{yPgFu zUa>%X_3lr&GIJbwxr8a3y6^ufAuwW`1iH}$NC=V!2c`|1>{XC3gvRicV^RO0Jpj4#zi1D8c;Z}60N!7;r<0Fk?e!nDhh+Lr z!D#X^Xf2=v6eoWjD!|7cpO=z#c2E7mXc=B)%Pf?bQ+EH9ixqXtU)v+){7N`Ou@1i$ zRi98di>+93p?7k*{D#KtL0nvJ19}WJ`ODMIp$pspm4V64_AlAvse6T?#}#1&mK#{= zv+Y^6!e}SBN(f{^9a+>tXi$3#hb1)U0`F{JW*%WARUQV9Uhogu!(Myb;W}Rt7OJj> zRy2qCV$*ZtGcjchQitm@4gB=YipaMV+dVOI8nCxuG+~whY6zMrOAwA<1Gc9DWRI?? z*K?%_7+=P2EFeBQ!1=tt_i=03*EvK>1>fj#nEpYcw(<}h4c0*~e+IIo5BzLiRF3Aq z6`D4UYF(^3{+{kB94lkmb=L^xvtQ^Jp^iHIGcFLIbjvaJDCi=x%pWjf2}%ecXPi{j zUHYqZ8(2CoQc~1FCjouvX&T`;Z7RC?GI{eZkem#O6(y5eO@`tEO(;1>=V0$f)msTs z`dz;|bqU1%V+Mq!T0))e_7g4cKN5m{n*Ha$4uZ~;XzsJdq7N<|IWRNR?7J={l;EdCayMadg zVXs;Oi_+Yi_;gp#do=DDFkW)$!@ZP#zLvmdY%*Vhx?1at*i5*_x=K07Db#+lN07q2 zHIeM!n*qn^Fm?iOnR(a;C<^}ImHLeRYa<}&R|NdiEF#_+vA!@DGgU;mbNP@~a_vq) zU()762N9pMdHYgp(X%_8h9j#Zq8Y4)(#>gK_G0jFN?QHAV8wlUb4bI zQE4af^H3OhZ5O=5j46zCSmfMTCE`{s@9OQzx_~T@ z2G9{WY4MM>H^vLc;AErK_+`dI4(cwzCPk-(<}PmLRf#2o!`gXS)L`72wxa(k;yBHk zi6?Y}IFwFAjRC@e$PS%^GyX)ycjXbnTL0mB^*yp@LPb+edg<`4TLofreNU`uEwe$~X{$B{u7MuJdk!n{43>SoK*tjm`QnQBAt`dE9%=ZZ zy6^S33~~&Npm)! z^}ajdgrL*F%^<}J1*p}i;!~_nU4G#>R?Ml#q4#l7f$tPx`BfT+$wgc?#VOW;lU&@? z&&YT%;Ne#yR>8s%L0S1`C|7nFTutR*){uRHRZqMBB)X$=LcY!x%!SQBnZwp}9Pq1S zgd9{^!OMg6hc$;KcA->;p$v6gun4D76oGYz5o42g4ksFuRoPplJqty{WYQZSk5PYb z0rWu!rI@2cs)~rn|I7Gj{p#Mz?angaP=zlht9^A{fS*~@8O(JaoqFG! zIfcuTzafsHL%?;(2##keO+n~0?N5|NZ(fDSv01Rc$+x44KWkbt^0PT&B(d88y+i)z z`m8bxk^4zAj0w36W_Ku3eDvJKs!S)kp2xWy3lK-uRK{jTEIt_&A_H6|Nw$7?c_YH< z+;cINHZjA%5Z`0*>6SF($ycp~q`N4ayef0YMU{gL7^CQFaZyc(xRTcrHAkdV&A^EB z(2N{#+&UYpCz&_48X4r>@F2W(q3A6Y-53!}L=h%_#*Q8}(KBIe-N^YH*5h0cU!h&O z8S$sQiTX*?QJB>qxm7+Dms##$m(O;_0-G$vX6$*)FlX^MH4kMZF__gdQfMu=e+Mhu zHPhJLPm^v9T^A}%U(n1jiD#DBVS973Coq-{n^~KfJL@-w!ii?gXHcR`OPH1- zu9z54*1@77p9fh_-5N4Zj1(=t-e5JlbbH{%8i;MSHw} zzL$4bHciKb4EIC$6F6!Yh$*GdLm64A`(S;ZyKVLW*{{M5xYwi-m#DO=&A-|cG4Cip z`+VW^UCC0vQv*L^TgSv7W#$6^q`JpYE>wcW{K01yIw>7z=eqW&w(0prmekub)DLsNR_UP|G%wKqn_r(HvxgKM~1JlP4;jrdzbj; z`!V-w9w1ShKuNgKyOv)`*EkO8!R#-_!TiV@tyb!y1S9_nrxo#VR1^DaxHaP~q&{HG z(5^*TjOfCmkoA)o@#r8_Z=(UiX($;e(Q`Va4`3oHV%eS$Ltm^&QY1Ay|4c%VKAweRYX9*~=iZ1c-eLVsjjk+mn(M6!YyncEo6B$K=YZ7c4j?rOI8Xy| zhi)eEE!>u#o})NSsAjH!`NWKx7n*IfMX3nkV_3CcJrU>el~ppcaWB z;D+?(kS;!Jel=SFpC@7%dzMJp-$_uO7RLL^Wttj`@l)~?_i~>Y%1HK^NaDtQDL-tr z9()d!8^&|LR7Ib=(FJ}u{mo2WK`eg7T0*lLzJSFMPJV%xdWi}BH;I4wpGU|F8};Ul zs8Mbyc4}QiPdBC2#+D^eb5UdW0ujK08dhIw{sWP~<@X?D9hhlH@Pc!&|0#{mib;of z>ug4$MHH71Rhy2W|7%FYA*v-E^65HLYzeX_2rKw7Bv?v60sepZdgt#x*gk7JMq}Hy zZQHhO+i2`Yjcpr^nxtv$G`4N$`KH%(&&<2l%=_E9&i`Pq&)&yD1J7#c)(_OH85@a5 z5&B$1SLJd%gx&QBk4fEX_iFWd6JDv7L@rNRH|?4N#BY}$1N+Rw^4q;ouB@8g1Rv%!mF}o%3^9f z`w5c!9b`0tbnaAUyILo|tADi%RK?IzXtM{VqfaIeQfPKwaZBEbbpYD7+dQRgAeq$X z+fakuC{Q;5CSWGU|HUpS_qlP^t4d7ev0dqIY$|=24K>#a;@L0nX$mcI_Si^Cq{upx zY5dtSdk5PYAR2v`S^kQV0^MZlOjF385ax6~F!Ay>?(ZIrp{R#BZe#VDT;K3TK~jow zflO&W5Sexht2#*dOX8o)7OBv0s?Y$>D4nFEj17kSX(7kzElm7;0)g)&bi~2DQdZy( zv}d+C&#K`m7Dh;Ib}2!&JNCWbvdse4LBb4*jDi{c$AI@VchE9Aw^Q4l2|(ZktLsKDE|o6R8EcKp31x80d3wpFHhl_`clT zOie-=VvlG4!*A_q(e|&dM@h^Ab$JZeq{eh#0pD*Eb^>_i@zcz1t>kjYcCKUR5(695Kl!!ib znC&ZY+6<^jZUTsRFk}@M1t0nTWN6?NBz(=SE#R2|T5Lnm;ilCwIu~{W;r$J0p&31$ z!G%<`fVPVJ+8la(x#T9Q;ZtmY7DiHUYKcafU^#CNQ6amc#^^cS(ONV{VDYV$i}V4H zj@H6TjqEVbN@z;75wvP>4_0Ol{EA^wTB{aQw*I6c)W6XK^g0w$&KfGk=fp6j$vT+0 zOYo>w8>V;!bc8k$$qLki_a@L~%~(V3Jzpuv2DFO(b8DmmPXyIPMs?wZp0+Pht$`h+ zObA#GqXLfwD+m7s=*&1&2&j?O_&KvS@xMxFf&-r=wEQJ<+9sN^p6;aU-!s)+wl)C4 zDOKJ3Z8PS68DxsVN(^EU4nWuQ-69j9>zQ$01e5<>@T5RD=jQ0NQIf8JdaRFc7}pYY z4?1uSJCHOkz{1h4Kill|S8ob>T?siR)#+SgLH(Q)xZgl6{;L+2F#LyjJQITf&a?=S z@CUbR@++`+s87&)trtVeNMGfivO|05tXGr1S| z*|J@6(N`mp^ywmi=BEJowdL-;BagOA7d1YwJqLN3DFyCr@oWXA!u?yY-d*99q$%8F$5`!`*1tcci_GgC!2$*UktNOAB34U*PE7>1zrk zMhgx>Ffe9ylvcrV_m$(I$J@E{+H_QwK~@O*#`Z&Gk0My~`lE|XCj0CSy-pBaz}V`J zP&zUh1TL9EDic@o!BETS6J6Omz0hvdYRM%WR5mCwP9e?b9)a5>F>$eSmTj5N4qs1m&%RZr5PF?-hgf}bgLQf@BRqG~< zmWgkK61S~y(x%dcB>dpe`LdIV6nusn1P1hRI!Xw-}6x=TxYp(=L5N*%i7j@+!J(3UL-IW!cM z_vc6OAxF|q(%zE-$Sfy>)iasl7s;=HmCZ82F zziqJK5~uT8Xc}{3l2M+G85W38ibBRl(`^Fpf+eNSL*KlMVK;LK`XbQ8w-e#hG>k_%LkvO61&!A`+m@6oUyI|hZ zzkV3EwZEhK4qdGoa7>p`k_;8p)!fW<2C`q!3U*>8Tz(G=O5NQ{k5^M{5y!d<&SQct z`@ss)Kqw_kg72O(==4M9etaga719Ea_bm0LKtz01bNg9FgJblHl}n~b)*QemZ%Lt@ z@R^+zK9jh%oig1U+xs4NVQ)KpHnHtrXjRs$!--;EB0L|`JwYX1r&Zf=U(S%LX*X}H zxfRT3)SH|ua7823oi$)oTBxvhE=0|X*?jY+ycIFT{T-)xA>-HZ79oZ_Ka=IIZYrC3 zrSN^yn{EcY7>59*guJz?IJCS3#i{a~BvRBMSLR-1ySH{7$-D;nbh^`HhF$g-v)bA& zbHsXcn-&D2xdwJa7PPL_DTV#ZDl@+W=JJV#d|U?Yq}+YOI_1-|4sdVVeb)Qwq5!5W z(?8Bw91M4(Vj7U8JE~}KbhD^L zCUKd?(fO+ewHRMij&H)v;C<2Q_%d2)1eObskk}#@a$5rfb7Xali~qWkG$f(yk^Y1)9xQJ*MmoWk;U~EpLu3@8Ow<6^YLlZ^QP|Ym4l|(HINZjN5 zr^s781QkTp<=1=Voh8%4oO|f#lamH7YC+^pI}%H^!OQwlf%(KyzdHaU419<2iek8R z)qY}6Bk_s{e!4v*l*Vw0Oqx5%4P<}GG!X8VK8BwR`f?iSQtWKIbRno$xIsexPcLm~ zL42OH!p#Xst+cE}h>fbsm(I241`^Oq%O&c$Nb=tx^Hbd3@R0iF{r1r=(?J2!7EXL+ z@ZEYo&EDyaXQ^37ztb}LWKA4A%E4)hZSrOf{F?T|Sbn8tHN#W+OMa)r!bP@);y2N5bndvEYT zT9@rg!I3P#k)h#GAq8GUa#Y%QbSU}$BH+AHSwtA6hsmp+!Qk2q0)nCqu=Z5dr2ZCZ z)Q(KV*X)1Z{kTc%v9QAtL*wO+SkbcNSH}zOXBQhR0rlm3-|jRAGqEgW zAit%uT&aOBgB3>~oPpI#>4(ZBjJs0B%NPv=Q+2P@FKo7}73y_ELwivFsgBf5$I`*aJNt+oOTtuY8M8Pu$?Y}tldu0c&325Ri+8Ha<>n~Nbdp)LLz$ox~1C^ zvL8BHE;zSOdairLP6WNsN!QOQwWy}Se0yUj$HD{TV&fk*dtSn#GbmuAIsZ6&XyvfW zY+&4SYka@$0ZkA?ongGy4T&NIQBENp_5y8b>LK#L|9q|)>!Wfa39Js0Q-yMZi)q7b zx$AW`RIOjdq^qx*FCbl$+3|@ygtDlwA@DYY*eOuAr=vOq^|&xpa}o}5SZF7g_ki1M z3krLHuL`st4B1E09K=)*7yyF{hQI78kbB@wmvg#5Ju(s^Ea|#-dX5q#1`x()}gpFxxjM52E+t z)&~Yk6Wia9sS-%nCIg9h%akcX^5Z+rkA;TZT(LvpJg+h~%Kb86Np z=66jiy@vVkCn@MXarpw^r}crM?^lg9Y#+Oik**{^{2l5iLD`8zM38kff2c)0uikN0 zVFRt?fT_2@7IID`07Vb~v+?mud_#Cz=-L`Z$fqw4${%? zgi71DE2?vE%6%_NjB_8B7EkumLD3?62T)M0l+;b!7pjD zzIb3p!JiW!sd&J|$2rZ{f_|luI}Ts%ym*i6r#D;gdkftgMVn&?rkLr?8|cc!PyJTL z%kG_zdVgapeHyVZ!hXp+T~!#}HCnEH zmwZR1=Mo{?DS4Z(D^uen0GMs2W@Zy!vMQv}QMBGiwQAOG;>VcP>nqCE0E@g5p?s?G zLonJ9Gl<-WdRHY{#F^shXq!SAiSJ)&&rsRv;kVqZU3E`u)IO3jT*9kY7A}S-dj1te zm?Aq6#Xb;idUc;ZQeJ*_q>RB(p}>=SZ%X@r-ZwGy0xya}X5PZbj78pFz2&gKRuJ5N2u;AAUXfDxX?p33M5`(?j%*x$Eo}!$C*8;8iCeoO^oQ#16{`)z&W;6=B`c6 z)1|HnzgG+>37q;Ekv569%nM}Qgb}pE`1q7pqxX5Y*hNJ0VI3|=Dt3ynIYj2m3bg}e zd5=PgPlVs4)Btp-DcL$Gu7{WHRZac!4ZIFyksP{xQ*Dp1U+?^Es;4b{0Slk|*I&oB zUDJ;VnJ4Cz`atyRv$Nzd^j)}TA^h0%H&#`D)}{^rB=~vNA0K)xq~`{k7yelqeAl%D zz8}d2w(2JXuoFa2h5+n@mxWMnjKBd;(6OsX{`rN5O^*6!v#8&ySIzaJaoV?3;g~jM zNG7q+ekugs;s$cVeN!|*vG2E@s^3)Hk<=*4M~>XtTRHgnM%M;rs__o>vF}a1PM#}% zl(bqb#A$x}E@h2~MH4ckodrNA6n2bR={rBN8tzabs}FRmt+ZdSw+zcUs`8o{6)CWW z>MkB~rs+@osa{`Y*8EXBq;s(A)_{K@wxcrY2$1&hxhbrGB$&0HGtd0lQJ2Gv7s}Kv zr83!HY_#RccPVM-;M8woT}8cyq*f<&m!i=&k%t_WdMNitG#rIkCJTNQQ~8rt-6u$rU$BTIG{cN`>}vF7)PFb zCxq?swq-U}GXcS;&}xyxvT)#uMk95xIzL04Q=STdSe$V`J98!fQ1l#|zH zK|gY$PNcFkT)EU1j&+)fkH5IGu}Ytr(N2CM)|Ik$vM(^Qp?-ap(ng11ezk2~liiC4 zbFm>)3&`H1aGB}5qnpoMCZsSQ^s09c4_{1}K7sbEmxs^c#XXia<1xV6BbYEXTu;+S z)}3TEd(sg5=G!<6KP9LP+@=&$I^cVuX*w!1zO87)cMy+*hlM{=fYS(n4 zbrslWN`-Zq3q=95zQdk-&V8Au<&^9+unr7&h+hUL*wmXxEV&pla~p9di+wa~Um_n7 zgzxt7+`Ma{M4mHa&b*q>WMv_0`C@@bbJS7}-vi>0EhG9DK}cG1J|#1`Ok*@EF80+d zb)}6PbnR4JgghtPd9a6cANAHDzLdgC}@ zxndJI8#XN_`8gHnQUxy9SHN!5J-PCV%&N@S&YATLDMTwnyp-qq1aGcq`IESp6RCjA z;AGRJ_65jLhO(z<$r{BuCQmvC8juP?te=z_SHQl0qlS)JFlcZ-9Gs!m!AU{ORKDTl z#^nP%J%qhh_HY?nI34_~i*K7`Vjl|cCo+;|~`c7+vwT_rm6?%j(*kZgevxSN) zZ`sC$C(AW%UBe>VuV&DjN?Rx=O&5x_X`xU*<_^|mrF`dQg8G{W2s{m0M}=;z&nyW- zS0lp?xY(UOi^MsnW0f?{yTg)3DYx0%rn)kX#*9L_0OKNTZ#o(^&59N>JJytgO495% z45(y*OmzAbiWstym;~<0wJT>0+A@Wcpz`RZAXF_r_z36abSImFLpqnkeGdJ1aA?H# zmR}v&_2f08PBiY48}b@i6P91C?HmHLzeQB9j_CK5guXNX#CaR}9=NvWTDKFwH#1OF z7}2*YoaB%bD*3=2(>-2XamE9l2j3COO1Ao|wk?Ihw4wDC`9v*Inw&9^oE<<-7<4Pf zeSOqKtUz12<8{WePxehR?G(${EhQ}_(xRI118(PfseY_PAI>*u1t@!t{*HZS-a3k3 z++-g30b`$|_fGqxa~#?sqr>foX=$&J1cQL~Zop}Z8n|m6`&-`N8)mzp&kr_|=0$;? zfZ?yP1-1WsZLa19eZl}xn{)r)YIFZ2t50{2G`3%E#1ld|hp~Rw{3+$SjvuHH(t{oV z@x?=#0QGCTHdofM{J7%0ye22T^wZpvypeh^dOO(zNL0n0`FtXaY*xe65k$TLeV>rY&DniP69MXLk$qUM1fA~n>=($&1 zh;+4 zz@GnbgcLPlqi5hZkw6&_!(E(i2B5>ab8{rzN|Hp^_TX5FOaC8xxXl$R`pD+}ijHp(LS3T5K?AUbhX*jjKBe ziZ^6Ond-K5OdV#+yr74mD$6RTmXO|wS-A^C>^Ye!iD#7C+Z2lhA-#>7wbb~Jqh)wj zv~l(f^w^y`85TSaM#J+!h_XfAJOa7GtetXjP6}tj^c;=*asY3RikHvFT9chnLw~QM zGof_E=Brg(F+%M)>I|jr#$LtV9>9Z2Lh>IEYG>PD4{Ak=mRvYVNh;d+5sh%m23TOa zmxe3#YDIk`d;UNv6fhBHf&SGL7DFJR$@!`FY|;_+=<-F^GKfBQr>yp4W9`&(iZ$yZ z4eKakRPO>`8-(gcNjQqj2Bmq}yvYJ=V~Zq!x<{4ZQ{4l%%QmM9H%n0tcEDA$9u4Ts z=~}P&PcsMm$2fc~Q`p^PzWJ8_vNP!K7Kx!qynDUO^(VFxxN}Igg^xFDHB)BwkUIufk@baHyCIk zs-T>NlQLX4T>Ecjx_D`+n!O0`0TQY+73XRw)>V-EdmvrcyC=iI{(|~ z0}V-9Tw5kVDr-8oAz1#}vu?bC1zRxHRB}j^L9z}}2U?Sl%r&?RG~rv1?a zUTHhN#E=WVb)Bh&mp<<#8`%oB(O~BDGz1QZk=c!k+$&=etUfJ-*gGB^`okW_v>Bsf^^V#s zKq|R7h5wED?=twmku+ewo zo~b%Am)M_HDB}#U#~#1IR>;d3z$)}}Hr1JK?okF=sgmrs0*V0KH|o~W0?5V4K9s1+ zQspFfG~Iahl-c~wF=@otYgZN;I(4X@?FwQ6M5X64MKkrn*%>iXOUrQY>?rnj^#Wl@S*L~mNeKUOiYhA*# z=+2+Eni=jqm)*i=I=)HPef=RH3ndq3FKa(B!Q~6!Qlp;KO9wp#>gE-n4&T%R2XvtSDlj?UhgIMB-3-n-`H zik}8E0AHmmX>u6Pgx-i6C%B1neFv1~{Ffg3Blf~mrv*@-X5v?ii*>P2%<8hK%ir0HX%oDtJ?Po44|_0gnD2Q29;$B){8 zK!5MIxO4?txw+P7nu_vp~74_KwzR?q1j<+~#fuHz4IiUxe3^;*#l&|K6C$Z&vy@fHH`bq3FO!A-EfgmsrWCppe@Wcr zBC5qKR(rqx;4W3WqYpT*Gjmh7D656j%E*#*mS8x_xXaRYo7E#=tX1WqC?$}z zysc7_EdKYStfwe51{LnCIsZ4a-(ZuGsnyf44r4|dzi{i?7Kt=G9oBU>`>bcy6d}LczUk5?Zc(~#QfS$z|!!9{FVi1mkOQfME&I_l*cg?Xc;T|}s+ zj0ae}i09;>+peVIm#2MO5aE#(ql64>itb4Ta^!VQslqsO%=VkujOtwpGsEaml-QS> zCI-?6Idm;@lc-#*G#knDkIC{H2-xHPgqBoo86nkS7O@4CoRS5ji1}jw>i2ZQoIOsZ zd0p>!UpSK2x_1UfxT=ph(ND8ou3Yo?2hyIQ0*+h{$K0;yQqlDxhGqB5I@9Uaa%b$I zuql=qawkM@DuqLsx#uNEUlyhNb?5DngKQwZw{EGp88qNLmEnxWo@^2#i{n0}!_cv& zi+As}#dr+ogXOjA0}P36eYmx@X33MwO_;&@TpA;%Y+;FZT^6kqMeX4&uW>~1q6^Kb z067zs)^syt*}-1V>Kt}AE>iDmYSyY-^i_Ab?M)f@y_aywmBfC0i%69!WC>9Mb_2P3 zNogkeyOpxpfM^%(B=2E*r^sRgP+F6-ADTU!BM?3m!vr-dI za#qdI%>C(H2iYi$DBfsRLdDmLE*)dMeE96LCUY57%3Fs!)l969g)s22)0(t(ZC zC^FTBk8j=dS<-?wBgS*MY=0~VCh?itB;k^%?s@iXrA51vbe<~MCcLkMzgW2DlCjh0 z9Sy1z@3GaVLY^1sfJoo#V=Io4V%xBIm0DF(r6D+5n6nm|r{I=kZa{;0iH7PC;lJQ< zX=kjIcQu9EgJQl6^};-#Ie3*gIzV>BBg$m2$`#fqSHlQuW_}Arwny7D&xuEY zFO#kQ$Zro9V#jib(DW0&kGY)%phwU zIN5lm)l0vM+nAqifjMN6{lt9orI4#<-zy9wAt;PKH;~Cs)=G2;9^q_bTygjtZpHS_ zlYPgjoA|4){NpDDyRPV3BYr9v|3b5)C-SbqjlSonPhf4vF@)yKyp15X^&;1CALm*v z#F6ke{6?BG=bG@vm&b@6jY(Li9W>Q#N;q<&0kN)hk0&~c%}AufXoux+*6=$KF-T92>8;W9&K|s z$X5tL$DnkWde^3%zr2!r^CNM92@psAR{}Oyf8@UL{}o5r|6TC_;t0C`-#CK8#ISCS zuGOvL2P)u+zr5JFM&Cjy0yQ56Af-=&dtXP>~}W2KxBOa2-7x~KqaD#@D6&`|frGa^>7YT=xM1CeN zV+RSp9wbi>5|%F#+W;pX7mAPWkdP@@!%}c!135#s1}1~p2>^E>NQBLaZP6te*?4;l zPuwl!hJrM>5g*Eb<^IgjHS3=kApa~a1m}{?w4Q(cl z0PH|OqvvK4?bZd{)~}APp_YIV&n;-pt-%px zQve-e5meC@Oy-Ntr$}^cx_y_T&K~%V``3;Eiuqm{k*T!7Ma(IXXvMxzq@gEk-d7H4 zm^=HjyVQ$BwrAoB{>q};Jl^hFgY5$!_-s!* zE^{nS4yef~HAmtw^&2lKfvy274LI(Y!aXckNv}y*JyR0l^{G^ye9dVGa#91BL;YDDq$CBL4=GFP7}QdAV|hnLFiVlF3R_EPS=cDtrjLE}q`^b9L5&C0!$T zjQN5@bOrFUjx;#ynO04ObvFr>N~)D9hp{QR?!t(jfTA41Hasyv&{MW-{yF2(QMV;G zAR-;VLRCFGS@3BN_X6#B1ELf|WR?1Wa?u$N#0QgG6odp&?`Eg4u(?+u`|3F5H`q-+ z6A3^js$qxLPRS~Ex1isWEn&?W@+s&6@{Df-e68qL@Md#q=~T! zug)lnBQ*^Ueys;!v#Cp0a6DnEC`42yEmKwfk}zmHG{99Cv%dr-=+!6xs+1*3eu-0d zxf+vaq6$*>hgJSK|AB}@>v&IzimC}j3HX_xbLac+pNlUaX4k$%lH;N7qNrLg29V4U z1%OC$uKSqRZ3*;mBxx!}1VobfDeL7oDs(_3K_H?TE9D02>HIRcyEtzdd#q+#I5_ot z{v|evMr3skK?WP3Q3_FP;^)|rsSsy`^e)UJU)t4=I0rwQPV(eaWCCjN0s>1{r)_O` zfjO^M=AykPCkCu{9ILQekslKY>m;ztnLk~kCC3N9(`(>8lHH6^F{Q8yPG9Yo#j9>C zf(8yI!SI{%BtS8>>wUsfDWD;S11i@6>mBV{T7===P6FQEryegi3sr>MV}&4MfJ;<# z)0SPn7tZ+8C5o{xWSUkL0)*`t5)L!34-LIp%_LNLNC;(EN0{$m6w-8WO%v~@*3eTj zB0Z#m69t{Qou5q&zzzJ_lPlsG_E4pR(9cZo8Gxw)B$8j_JgjT)!r>#`fJ9O%=bvvV zbB-N3OSHrQTg9mse1>?&00vjNNP$UZKJ8^aYx{i@>-=FX)B&-uTGTX9SpC(TlhhvTZ8-YKCsk>{VY%P z*&UUah_vQiFTv-*fUtq$r;b9if%|4^0<>MFpv3FJehESJS`D$Qoe^oTMbWL~%W(}O zj{1JWGni5Avd1IsY;ZB;NA=m%X#7hC6I_-kPHpP%aI`&pkITsb)cy-z{}~sXCL9M$ zbtKz(F4;@8bx@IVAAOAEBPHs?=3P??Z+YoQ>-O(KG(*lpzYn~f@PEyWnbVg$XE4j; zgZwmk?rlTLChMX=-sz%=yKd*rfgQ-l5Qi10kJ&1xRrlYmsTyc*)&lPw3_?@3VONfY zCV3ck?t{sX0Imng@;QMLoyfU`@LRmO<7#I$A1Rl>*bYSSIqKkb?QGg-&J-Rb!)&$l zFWn>?tC+2nQ;1n#|1PVL@nh%F9lULMjNyg1ZN}IXa=^5Ue!t%Mj-rr_=6TzCRwX)1 zPah<1Z^`78!EBwh^}YXeqU_fB*TP5~pV|4yzJ;b1aNJIJxdOvuaWe{5ZpbkP6Kz`9 z!w@p1E!$5h)2jO57&fu9m;0sJaA$V7A${;NxPya6-nLy0A@`ZobUbt!8-{YPt(*n> zlTaBg&X~cFlhI>%fs`V&MCRth-$F%ptg>5F2#t&q?vbMnsg69vJ6`>^LoL(X9R+q; zDigd2U47D{Eu28A1}9t^<$1LF+Su4q2z!s4x?TG8)B3F4mzh4i7@h4tT&jVjUXF{2 z(m4pu(w?FP5q7w<=>9yD2rONMoH~V;eTs$}lDT!BQ)G*ef<|ecbvbvfXDFbaqpCGX zgsaQHd4lpF{AIROh4-}AXa`}(64;!5^Heew_;4yv-x{`sR)5RrHl zn<-1(JI)TTHCP9!1nu4CYYJ&MrYuX}Zo139cI$ke`Q63dJ-@2HjiwO^X>XP;P2Lz{ z<9f{mB3_~t-9n5vpc*LKrMJp%f&JE#$Si0{nna{|RLeCnyf>ZU^ZvVdJl{Y0WV7epqz@LUPF-~qx0&VwI9QPnm1g7*dXg@l~v!XfU zNxv?9`>Au`KIGIA-+KCZNQ%!wq^2fd^tIh}znU#!?9$W4HvT7_bkV%CvCOtK@Y|h{ zs;$aKi-os)hQ5bZNlMHzj_#gQ;%*|9eJdtbGsLpe7tDN`$?a*W&CsJ_h$4xz5I;WM z!Fwl>RB3Fw6z9feoLf~xZBhEbMS#y@b?i-SS%1U1Ay31E34|U+o7t^!J8rk?ImF&EPw3JQ%W}G_M$2~lJjeO*t4OQOtt~# zJ9Qho9q=rX4h*+8V-6z=tM9Nv`V)O$Re2)V*P12==+rj7R^hOFH>yqDNDqYiLS1!P zdavV>RLAJ}H#pd?KSj44pw?gMw2==EYg0BZIJf8>;~-I;psVA8!ib1dTvb4jPN222AG^hn;}pEu%L z$V3Xf2}(1^uMD)jEjh;^Pi*5I8k71DQ{?M&C_%~eJ0t@ z!V5O)hCs7$@bPzd(tef;HcWFMDmQ|Ldgd?=x@HU`0Q-J6bLMP?+kth1JX23D!=4?anTN2nz|F zNHi0n3}zg<5KX{PozVp2lMx-b(Ul%S+natNN51_CBL37-*!1owlB z^qDRR&_3IzQ@(MLbO1PcPX4Ep2eN;$K;^%kJhX`9BO8XS9Grf^Bu&S0n=JbZBv7FU zvZE$rIA1)gD3qo;Y69A7hpSpE?iLsQ!uI@Zb(*pzHMwq$J#{`a$-FZ-W~2jn-5fTO z7XHjXHG-;U=Ijf#tiR4sLpfL{13>Rg z|H5nMrv(0M*H!6Xwlw5lwlruj&H`leAY7r>CtG?p)@c<1zY<5@3@zr9E&Xf=`29Q2SFj#!vv8eH4@@(~u-KTwMoY7drli3K>4G`+h>jydXG zqi8OI-d!gQ_Y95AObeq@`4!F!fDz8PA~=P{Nx*q|RyP6p6HD~fHdyVE;jMIpo5;S= zP?rgdn&<$WJbt_XI76xLlA@fEeyVOgi_D=@FOLnHWRq%1CuB@y7iqSndLqV4#t^m~ zeepy8R!c_9`%{5tUQskHNUI9bHM`fusSHaJm-Vn+vpk~K#wXD*u?Z~L+FUhgFbxM$ zZX0-;TX?m#5?_r6s1XY2WstXsX(U7))pE)@1gJn$4|xS%@b7YGTO7Rso>__NCmUmd z`O*x?0I<@yt4W)1!@_8)uS4uPT@{JyV2A&q77JopH+6H7`lK@gyfWG-jBYZC6>0r{ zDS2uEN**oq_MzD?3BCSPExfh3v%CnVDyn=w+M399|FEU&U)_3{*JeK1(qwSsRX2cDtUtWIVu23 z9xc^@s|@oDZ@T{|c@`PVGtFgZ=>J>Ev# z6NsD=iYgN#j3MAtQ)AVyzfo*}7!(oHo3K_4hDXOxiPh|@vD{K$zN_NCvEn|PKa8`{0uO6addnUZ2 zhNH&nVrB(3SQNB&huD&tO=vqQu+v*~jk7*zBsCuI-;xg>7$SaLDN=(|mJgqUV?~#E zCcPH=F4zE3;Td-qaOFcxw-$bU)qoS97p?W)Yl9Hf8Gy>FT1MJT*V$}X_fUe4t4?ZR z6oiAe?2tSoOWwTI{OXAT3I_apCjH3f$Iw6JvZRMJaP5)La#_?)UAA;tPtU*G9V>6x zE->wYXYEkuInaq(I&s*oSRkP#WXyY*Nh0n2%qc6Srpw~UPI;}>R!V@cv@;DdrLel| zuGbMnq#pOf;&^D$rbGSD?G!(gXRrUAqVr5e)=5TG4@E+IRTR>7Ht^V#&u!W6UN;h+ zAk^#0l-xDsF48&pQ_p_4V*d*YzJ0MTjK)>1MSd;HAvSVHhm=Mu`Ca>cMYSTjJz_RrsrW#_mS71cPryK zfR`s^&-e#=NMIh`t7Y_4StJ#(2BhqE!59 z%6Zc0pgRbC=oBn66U%in_qja$D_2IY#H%nh@JRZ~mHp3R#amSCgb`_h&-;x2(oKH^ z#@CiVJm`P#Gu@r63!{cSE6~cu3eTBbyTjRioEXK5M1jg6^4)4+#0Qc0b8#n6Ln->{ zD4w=1?FCUrJX&ZxTKlePiwCy4fxs?^tu76M;BSY{o8jg!BRFw!<@I(^ve0e13X=+2 zj$0{*h_{=D-xPM**Rbw2g12c#-E>A-jGW*zg;kb@-;HUtZ-;WVu0!P}I$gnA`J1O!$R#xC31+tZJ;7PNeST^=BI%ZwO z8Rj`SZEmDL5G!mf>wHo9k==2i2Q4|vxo78x_t+r2^EW`-4W7f#VkBd&k(Rs%a}5!Ak>9(#A{&HceRP&YDHka&d>V$gK?+O zz<)hxJf7e#oHbsDn=coPvOb2eJ@5QJCzWC~=f-IQ-yOzcT*AY6HQUX28b3S!T(DHy z;=SF3Mx$-`Tg~6|nng!5@@5q4cI6CD^;<}m52dxmi`iIVniRB9~=Bit|A}_#($Zf=dujbag}aFxDd&e74S$ zrmjB*i%rx?6p3Xv(Wj4ca-e+m@Kjam=K8Q|q9Jx7eOlY7k8ue%YNX>&d^K`HRBl=9 zkU?1j#FMM+_qQNrS2?>MgvqU5?(r6}LLJM= zUu{{&6rptAQfFDLGmI1SSKk^|ts`T?lyrN2zKg*Oh8#+a0I_I}7&9}|W4 z@=mg!dz0dfze!s^&YD4|cmA$1S@Jq)LgeFw-92|!LL4vj@kO&W8zCc8OX^4pC8^q# zB$3O27l&Ila>7j*R&(qPCmQ1@7eh9ihQK@jfNbtSJ&En5h(iEy7}>{p7ifx=W%FZXr8pj zZIr!6-bpURMp^Yq`_ca({@S4X753?b{s^GrQILKGIC%^_qypB+-Y!T?+Ti2rl4!|@*}&o+1J z-%Ab{9utFCW0w(5TlV}GIDmS<)8*GQ1?f%ah&`z2sZb3G@?yJ&;?3zrB^&%#cbEhkrB{2S(zGvse~IB0~p6r$`+q z2sie}{=^>C z24d%aVh@Ck0SvZq$JK*`!$rwgz%u3E$xi8JbBIJeUcWqrGzebrq^Sa!xAWMx1QhN` zFAMJms6~X7GY94xOnmMp)IKV%d9GQ28h1AlIiGZ$2iK^DhCqQ-z zKMSzcYSWFbli4iYWaoH_0C;(vP0fSwK&se?>;1}xDP{E-en@=XY_zPK?GD-nU=I*p zSK5e6_}k|F0h^uQ|890VduurXn;l}nW(UkE_j9wOcQYgf1la6s{oU-8|K04oeF9a&CYLXs9_&<+Pi-@JIXMc=L-LNdEi|&6fWZ85YKW=qPhpN zLom3b9(r1kI;2ttCoR`&^X~xIgP`N2+};lRvb68KZ*1oKHTVOPSm|f){4vODmqZed zKK~!=fu8Zd*aHns#leIH%VF<=hkvmLf67g$$Hah?o=y;ySL!Sq%@y2|Y!$nHGuv$aSw7h@cl=@B#*K4~}I_)O?&tp3}zz#T) zOBS?!au2rECJrN0a9ejM?-bup*8Zp^LGAZwZmi6kavE=Qmc#vMfZedIBUL?N3M7b{N6A&o!s<3FRP-G`mkx&?ZE z>LGY$5AU;`yn327C10|ZHDZ#3@QmaWEc!=AdhEtzeOO*8GCqAUYh3%YR9Hf^iaXn20+0yBP>ZgVkzW&m;=jawMR{U5zXMGp{K>&KG3vm3tSx2|ejz5{ zB!IoC5)5+UAi@zZ30iLVc@7I|LX(JDbyqSHMh;UIU~i|TUo4}=z> z14$q@>eO}KGE?&ORXO|=wK-~d-LsIa!3kkeGe*JcUVm2)tuIqN1DG^bYS?hXmt%(w zNiVY_^_Es6JLD&?AY*Yw4V#1{WC*)Q!X|x)#dv&HpB`!Jl{=c0 z)t%W7^ZdPLiSXyM~nO@n8^&J zK?|uGjcNIRh3RtG_Mq&xsk97SoF>^Qil7!sL`C_oc; z;qf(BWx+cn*-lyYsb|lblp6na6dO~UwDU-+tBD)P3``}h~Mdz;R4#P>XjY zi#v%{!|I(mqu|)TqtVMUxmR3HICv7?19kVFd{tJAygLxp;Ci|0k;2|E=jApgb~CTV zs^*x|4D6+@wOZlg*bm$-54d(&`Wt(qygM$`l~|aZTE9)!L7mXu5gXiOC6{vT zSC$^eV63uYxUos`Xpf&KRBqoCB9`4ZEPpCWF|*HRl<|w1g%<;2k1$qMFdiw{8N+KF@L^eS+j+i=Q&XQ!Fj7r9Dtl&b-sp(-G|n>>6w~7vN8OM$w_M(`@wc9$NIN9QF^BO$D^mWAuor#N#bI0;`V$AHrhi~LY za7PvIgFZiw{%rWH8Z`z63Nwg}e2`2U{;87>-Exq?>V4oe99Dd5^X%yNi)RYO#UWvx z4$kI%-J)wUe`sH`Vs4ZA6TwT&pxAKagz=2`gIJwlJR$D^fazyFgi%?D!GMmY@n{%} zRF4iOvQt=WkUtj)iFD`W=h(3Lc}aRh~+Vp+*T zDosW}PT?D0*AB(e6z9pvjsu8DS+x>rDZFJCXwyMNBX={g3^AyRFpT5}lZ=q4=Gd-$!4Z|jOmrT5I6txMaO;wkRPdI=ZA_g2Vq8@MS zgB^e2jOCdwrLrc4CEvsq$|CSDvSVHYKz2@4kZCE1{3uu=e)cmDCrjsU## zsnO*02nK6Uh4SfLulkoLaj9!vmv8EyJ`XFP&-0Ge`i1O#^?BYt@CgybJ3s!b=~~XY zx5))?BbWH!kez=gD*&>S-<JE@qVzu8-bOH~)hQn{@{#cHKhpJoa@*y+e z(#c$LuB)}_Z->K%){N=A7r){ARC&@Rugk;g-f9^2$}dBwWy*mDIczAUc~4etK%vys zwn!<=b`nxv0Wcdz!;Ijo%mZeg~ zBmWtuUu-blEkWtWoIE^?)ICDzD+*Hl2|mgvYXM^7PcQf|@0j^F9L0AY#Zy3>r+37c zaEqxPWZt3=5Ia?l!W#wbqi{Njw&bP!5V&KtktqH)_n8xMcngrQoceDqO=OFjEAq0? zSJ`YRZ2e@73YfJ17&GF<=un#M@+M%WyL24O+h0voAp<}=hoadvI-EKIq9 zSUd$o_`qA=iH33VCcl9#(&uI+aDT8GELLKW6y8Nm4nyk~923Mt{SgBfaSL(->Qczr zLZsFNw;1ZI)Q>Lt@JCQ4w%q*zSVxhfMMilfn5H{*NovmMCT=YroC{RoJDD@9RjH&M zq!g-O@}!ZCEh;kh@CbIST-1`kd?(3vcDRlO9LWhqG6>%05gpM4z3#{}$Nngu16?i_ zuheq?ZTP#M#eaXe7%Za7l_+Ttf4(BbgHEk;)Bz|N`Pai7hw--_sdB1mlrq>rFnd;u zvsR>)w%XcB>QK5p{5_Jq{wOSkZ)fKI+r7nx0UQdkl`4uTgny3ne_8*Mt?34|PN9ty zX`7P9aWuQ_<4T%E6Kq+{5%67|$H4u=9uSPbJP3f;=?I=&TQ>_fxX#$Ec=mxilU~kT zT~Sa0aN7;VQeO}V<@yggR3yTUG?8+JW%pqf>R}qpw?R<^F5*bwjn802`&VS)SG{6R zRZi?E^<@_;a^EZIx*q1?+Nr2V%di{#g9FqQyuK^CPttMtRDTdC_sW2&bGR`F>)o66B$B zga{ZLnh@+;E5C!5?jtdCsAz_YUG4_yIMRR0Jn2j;FXCq(ZZJJ6DX#<~*udIh8L znbmPf3j+ok{5a(b;i~b1zm~0yS2)N-X?}Y}Qd9O96gb0h-CSeRza;xD*x|iVK@~Tx z7@$#t!oHwuyH$u%eGdiGWQ$60IPxBrNpbMjmW1i(*7oZ{oPCPr@yxp;G@W7(o~Pdv zACI#d2@UJegxlJI5GM=3N%eM)p zc8~CMz=`ZVY@_tM=J--`jPVa$EGdDFP3#Pg{R0@~*%{G*Ug)BWpRBw^n!nhDZP5~~ z($`^UI&%0lQL12}@%29;<@r4$;l<(Fw>N0WJW4KScUyE1OeMO6w}xy4cplJdJMNI} zPt)v4qQN0%DNg%2q~fJQn@(al@sy^s!K1SHP@PT$XW$jG2DZZU{7i6I-f`X4Xp!9g zgn@Aa83K-24nGfmXDV<`)AE7KO4U070+%YBf=K;tj-tE3t7tVbwFnT!MBp-h`$%0i{t(?k;;W~{tdf$9iShi9Msaeb zX}d`4$_WKhL;Fm7H2xI>*}l%cgs`F3MHn;*3(fR_vA6M#8F~huuq=h0f?t60kZXkb z)cvWc;#or$UQ6_&SDb%J{GxUey__0S1%n5<1AV>o&tWP-Irp8dZLqG-^2CJ27R8HO zNBlw|3+lkf=UYCKkL{coX_MGm&8qomz%J_ps)vm0wjEJcqTzQQI2c{*=9M_TYEX}k z)yeJOmW=`RnYaTbe7NJ8gPgyo<_0B+0Mda=T%w)2f^&&+z_v%BGbM_$&+aHlA)lva zV*6UL{2i+N{Jo*DGVt7C6HU>RcXnLDXc2cRyb(zfEfH#~SBV6xg=_Kj(eDr!*2QEp z!6=!rz=sQ93o~I1Z%4ps9Us8tsN_1Ykk*?f;OhAC)_-=@kR z%P1ntBt0lu6Kc}Nj!i8ylDufCMtgH`f>)nbaX|c_R@XRS^Y({)vgNLQD$#h2+jQ%w z{%}4BD0(;3M0)D3rSUh84{WMlUa=QNyK7Rn!YT29zFCyXSvj@M=E6`GZ-&X7{uwgA zcQZ$(>ARy3x~Yw3LhZYQ$t8rQu3tWgrI<%-P@noLsBfY5@q17Msmmb!fCkcWsqBdL zWWLpCCh$Q!4f%THvRfR>e2vi}0>6Wm=W4C2cU9M79Xveo(p=kxv%H;)XZ3gIB*Mv^ z4$p_yXTQh1G{sYl0Fea+~}>j3Kf z%2+-{dp%?HRz`L;r<`%m^p_gowMKG1(qX^ZF)jb?7atiLi^#>&Fb&DnM9#UD>nyn* zMOVmqYG{sKZh30j(h$)k*U!mGFgr3Sndw!u&UMsZm2}&0-I*cVPd`i+B4n#---8bC z&dF61oCNg1S5&Q;+O?@#iEYcJJ~Mvoo|}`{N_I2MTE?BnoG@fj-`)w^pT93idw5)2 z?DSnr;UlK>dnktz@F4@8lA_jnjh3gzY!m4NKl&V zfNl6&x1_=D_X@7ph1P!nhKOKu|jd?E`|DR#J?a9!fo zb&+$Scd&KkCC$_%5ne63LfLdmM{cx~gD{}r-M_`o{>-M|u;vc^N~BOta_btaDtbi- z&P*TX>mOgjC%4uqU`I?eNK*op$( zddH3pTaOU&olU6d|7P{Ov^7S|(iMLaK_Gvl1+!x{J^mr<*3$#s6lUv zI5Y3o5Hu^hjsbfRoC^FP3hE#Wkt%-;B?Mt`avm>l*Picv>0cI#h5&y9s8tp$X3AA<(aL#wcEd%oHc&>jkwiW|831H%P8KiItDxshs zoWrTKO9Ac2W=PuOmzRu?QF5GPBo4Ik4JMR2}n&d*&x| zsw3iWF?F2d%*0uA#s>vylD3BdMJQu_4fE|5sme#=z9luq5>=}$_oqix+-$OI&g8`F z5wvWxD|fU^4|=b^FHvuCYm1+H=O1!aE{K~%V8Ik!L&~FpX7;bSN2(p`rE-taD2dvo zR~4t{r9nS0ea~Ja@G7z2ue<*1{)d%lL-HqJO8Ku5QI7wRJTdvB=sq!tpZd>|?$_rA zkh|$wP?3-5xK)g5XZoN)z@QIRaw-OGZMIW@?>fmoc|DHh`^mgUr_#RfM;Tn8rVV8Y zV&378`=Iirvth6#!j`G~-;3Usi$5(2#gYj8hJ7ma&gws^s(e4!_#%?b$XPkKB(+4W zc$YfpBDBEb(z5VRj+3X^QDZ?UUkw9d0l(SlYzlt;B>(hyWc@6PsI^Ng#9FczZS72- zzp>EH!2Z+YIX;#!P5w`hN1SC7bS4`pfUBV7QGQ%b=o$<#o*=z`sRg*mE*!--m;bq% zN46S^9j40J^|e|S6{lhd&yaioY5@<|*f%kl;l3^2%Fq(T;MK=snUe7<5P(|1 zwh=b)OD&+d2U#9QMDV2+SYy46|1}+`hw+hUsY{*wLiD^2eB=t$ZsE%Wm{QW%;d;Hk zP#)hel;=x${h9Z_J)QzpQ}?eP&pn{W<5B48@$!Z8d;)qrpcg2evkGS)nnZUfcF}s% zZ+b$w?ed2HljMB<{}e>CKGK+^l%9ng$G`@@00O`afX_R?7z*|8q8%FHwX4 zj%QpfW(Zaz12A5L`6jK9``y$#;D2w0E02KqpUuyjf2My-BFuj4Z%ng#^7jmXOJha< zKTBLlGI8Sr$Yz<_;Pc=dSZ%C4flk^QtL4o2YI2=( z!mcQ606iXisTgTQGS)FUX84PSXsMfg7N5k}=q>6+#NF;OHCLWunk39- zimB`Bv1%T^T7X&rrg#ZNpTHV+3i=L~!z{4a8WQ+oE)WQf+06st4vU>gX=BeLMc#0& z31RJ~2Hti8W>sO`V_1b2U^fPMZKJimiF+r0z98DSK?8a`i#ly-aAMkBC5@=9q{-)o3!)tHJ`E{$v8qjv3Cjs0Wk|GG_(wD2`=maOzw;L-(zQv2hr4eI zqyAl=!vErz;A2Zx)}#jrvmsL`P3y!((4H<60lmgFL<&OeJ1J2Q+3wRaq^_MU`dLSR z`jwkbm0{hE9^DnG4pK}(z^xSK_om!*F)Q`WUu`2=)Zy`GDEZp&)+l0VcV-g3hf{C_ zZ8@%>SY{=@LAw9R@!aG1VRY;MC&v@i1*u}D2oF~(7uJiykV(E}zJ$;nqnMZp*vy)W z80WVK0a@AwCLu2TljBLvRgp##VX}*zZbA~&^lbP&)cKzrkEIaxfIVD2YVgbX1cNQf zU+k_wxYSUSsqc{O7p*>bzqC6CV9qcpCNHe9L$%=EgM#RTY)y2f_PXq1@Z>{0z)ME$brFR!?;{ep-}&4bC_at%us`s=I(3 z@ZoA0j7!Gu+ZWV<9u-b%`+TZM{6HEB)Zhr5up59a-Gg|u5oQ=+J9^y9SB)Ng)g7_m zVdS%8ZWUv|Os8%}5oG=m5u`!Tmas9uFK2eoa)5~fL8fFg^a`D9W|$-2C#VWBVD%mE ze%A+yvYo@B{9{{@p|4->N83-MhDf&COrp%pWBw-5w*qFsG6#(oOrB|rZW<-lP3y;z z%Nr4k*;>zxnI6ZRP2q@B%qui#M!G@Tg>R7=r38biq)cFpcWM zAeYy#j{S?K7I+(JqrXTtLbCVXPu2{(3#V1p=#sW_H!}U92G=QBw37l@pG$PD?Ll%8 z*%Njwr{#m}uX|CB&RsJRcD8WeCgIq`INv!Fk<6tR{mk*MjYA;_jS_k=S)}_g+JKE@ zlJXp@x@@iTGP)xq$@yr#sEdk$faq#{ohbr0624Xkh2IS=tu0yjc`$rKiIPVh@u68S zNqLw6qU-ufHm+_Ahbi*UEDzdV*_7q+h=<3!NMHkFyjIj%*gw%^4JzORUxI;2Ycj6Un!V+mT+Yu%O!Y~7xNmMEf0)yxXO(9!EiKSI=u~HVNHdS5(r(s!*TQsc8xF{+ zDaM%(d>o;O+F8tUz5K8c(`N^*Yb-@5#@B&BW|fvBqJZDt8KYI%7R|GrYH-_T+ulNbm|Qi@_B2d3KyGI*bYPMmM~V>`z&D{D5mT*_!++Q9vd#; zwb+NSUfBbaJ_BmUKehs0N-QwG1=Tlrci;3&IZrpJ*4KKe@{ChgZh5S0Fq{0VsspJ| zC*AReJ_5A)TMH(s(Y0BdTl>@@m~TPSbH`-Q%+uP`?SDYrHAv~=k<+$5EgsB{Q)oL` z+x0L-I!z>wfRZBhIS~}piX)cj%#gJW-i*qw1s*hFVc+z)$ZEC7zy-M-8FuRqQb+AO zbrIBKS533&pfinME%RRG3vgf*DRfQ%PL3@@)r_?GebZ3o?Q2`>owT)+*swWfrD8ZzZ4&A}ceMpV|^ z);F9?B!MRP`*{!Sr>E&Y$mWqm!pk8ErQ^4$$)sqvoOgmP_2u%>kgV`#73lby*qUCa z$v?F87M<8YGdvi~w2)cl()|AART(m`ujK+55Fz2?e*cMU+CcxaQ>mu!t11@lz!?te z=4J!qeQwV7MC8QwSCC8~I~@-+o>{#qSGZ-|pxbb;?)J3Cvy(-3ZSZ$ZnAJ=Xs?iT_ z*Ay=&^?eLSi|W1sVR#}|v@nTsf1V6-O{1CMRH{tj^i*DKRsm##?(-ZWh7zJewHlYR zO2YsvAjsp}+&5Xza!Fc=RSE0zv*<*BXwPvC;lZo|NkvHPQ&|L+>-{g?z^IV~zVR%g z`Wr%M$=k%7jbL~(KC^bw!5{ZQy%Q}z+td?;(Bl(&qBWo97`Aatp6e@6>WHkP2kgh1 zuO81EK0xK}^@a4PbpRv-Nr|*H$fYlNLfXYkczjUPwv-58NDl);z7X|~v7CG=?yJ?K z!h5cdKFo^G&6AI!rq&Q^A`p?CY(vY1+`9I6QKvFpn*}wsXc)B3qUoU1{iGnvOWz~F zXp;5Y>z)0-jwT&3V|tH((ZrVWzu2Vz9ZfVeV%A#GeHf=d^_%(i4rJ?BYrWFZR_QKZ zKNQWAtt1l3Eo*$eB}N{`jlcI8$2U?TLBe$s(-C2832_+L3@z6b+= z9&?~M*vzT>h1%QY(j}DQpu&T|=@)H2Es6JRy^oh<-#u&GLDu>o(yQ*qUX^V~qF*(h zC7Aj>r7i4l;(qXa*hEBr)}Fy4dqix|X$8Zz=mXu=@nF{E76ygn_p})b?T8bR4S4i} zesl)Sns606(19-ou@F6|6-)egkbbehSnhGcpACvB{98Q0`+cCG?C)VpuD=!7LM^>v zp}gaSy<(x<;*{KfD^R;YYj?3j(jdmE7r-+|ayANqs((rmje+8r%_;Kigq(s(u-edP zVdVDl`yzUfm<|w0?Sz4($IJjk&y%*?Znd}0r<-1khOOFZRn;rZnD1tzIagLS%n{{P zBb!gmMd|)`rrB;7gA!JfMy~=fB#KJRzxhH}3M?!~8~?<3VBh`|rK7w)@c`~+|H*CEQc(k=5`{}4Uk(=6q#Usq|T;R0B4MYy|e zm)!qcrC|+uD$?CgVm+}kPXVEzrd=TZbCu>+0l}&!brB8Npb#3B+J|sKPC21*0%AP# zSOqhvX^)QP9YwJzyRBa)X~>gjVmTjxNxDpgN)bY|?eG`Tq7&i&Mf9Nm577flQ%oXk zv=)c)lV>jyp!Kqd&O0GT-zNzzS-%e{wpOlBy`6H7H>Q>~PUMnkw4%Q!CP2oDPCkP1 z#!0RM=Y9>%b}7saWdONt7oK(oi6M_OC9P>$p9dFCMuLp2L4|}&-|ibAGrO* z9ZIwC7t!Np3xD|!(c>Yor==8|2q1clRhMq?FiXO%9ilMA9Gp4|wJI^ws9cG_=YR4t zMJH)gUN@u zQ8S043(WrCqJDDl&cPS#%EQLe8Wt@GDD-{RcqWzWC+{O=BMbEbHJ(Z4Q6!D;Ex#2A zhkH#fXfq#Q)8Ef9rgDtY{Sd+HaIlrYS+W0qiAW6X`2- zmhJsE&F8APRr`FdcqoaoRK@H;RA9ka*Ppaw;>;59%vYHF7v|RzX_*&3n!#Z^x_f}S zE){mux0R5&x;VUegT(&|2KNiZR|=AZV{@o$vT3fAb3bD|?I7%Y7XZX~+=f#G&n$fY zPmCwm)@3tsI$7p?LoyBE{@(Qs<;K4R_cUr5gq0O^r#a}-IH-~<0u z92R@X7yKwP)>dP;>rxaw0K|CI{wKzR`7h8T{C@*Iiu9uUO`EV~UqH`wMeZi`bTYq& z=aw-l2(U_hqZ&m9<@(Pe>EHbk+HdW8ldTw@H zt^WW$O*Ep~mv3c6GnaZu-n+TVF!G9W?Xcf5WLPC`Vs135fD4>L@52v-afCOcdkB44 zvD8rCPgJ&WfUMz-?CLEc{fsWKlkfdQB<-wzmq!6xiu2D2Su&=A4NWG;m)T`7Jrb39_(yhEO-^QP^ z>ay5_&BJV}5DyKJ`!{+w zbO=-%f1&LGmX@khVnZOykO1@avMMBi)J2llBQ&eoswQPJZJfkLCV8F}E7{)M z+;*I8ed*XxFY9T6Ej$kCjiPujM5*_c>;RW%xpJTsQ?5p}Ie^U#8<=BoaNeN5_z#i} zGA?Et+2FC7T7WjDdu{Oy1$4Bmyd9aU5tVyf6X#C@LH}2d2k+R)cS*dXrzX(D=7}iHE9b zs%99&%Ge-DG#Edb@%e_nILPV70=}c?P3V`lyQH?g2HUAJ_fXl}9 z0XU_if<9_QWIW~tx#!hf$|w~1Q;#8OAct0RG^GjmW}4`bM8sDCb39SA)pLy2IJ68& zt~v3AjMNm_@20McD3vAb>bq}9%f${HQF5aDAqs=KUe5;KHiNB7`NasGZoK3Iesf&r zWaa`t3VV$=MxB$@#a%)x1t2-tHx7$QiXkZrbcbl!1^JlifjAuZ44`4Z=K2K&y0P>s zG^)9aia~DNRU=~LgRZ3hC}47|!01%Pg4DU(VTCl78%ZjazEn9j|Lvy~Ht`p|Zqo{5 zeA>oNVa_VJHqIU{)mn?Yf+{J_d4Y7zc z9#I(cWQeyyKB*tcy@VqZI!48+X6|R>u!0)nZFj-k*rT1B_$Y@X`f0FJa5>_AsnsaI zGKma=q{4xELU~N-7CULj!JOQxdVphm-#wX4T>5jFP6f83#C3srVGkL76k%sX)}R){ z>}~$+r@v5a@o1{}O$jba@vFABP1j~msC-p+2?>6o24WgF%(tt7x6s9cL{sw zlq`^e(G6p+x1QLk#E;2#n0j``*#5NEme~2xWVJhrw#3{_Afi$gbm{Uz^|>%67rXf= z-gOzrOLcweS@7@c58sQpi!h*y+~FHWnT8YErsfa$vsE6wFM_8-6kKy-Yl}9k$P+;D zyt|H90SKPA{r^tzuxJh|(fTgGz4VPbEW ze(HzNTfP~n(vyHFZ7pkUZ1r$qcgat+(2|wNzEL!lyniKZIaF0-4$tiNEmzDQwj8(v zaIbHDM$Qe11eyzyaLSwVf4kWU%Yv}gKA+wmyWX=J=#f;mtoXkC(CQ7qP-|ewr;W!Y z*OXH;`9uhGR}zTaB-M0c>|u1FZ~+w5C{4Xo(-R!QQqIbJD!V7>vQwKOroxsGl%(Ad zxoehS<8OdT$p$HSD|Atc=mnHtUNFrATIJJ*Dv4ja1IW?~3d-RgB(vYX*1M&+P5jASzr4dyn;0bN=h`Xv-T7-enaah^7ZG$nwNZ4w~m`T5S?cS5Mo9 zzT!F4vp#GgKePpGakv0moD1fSzTV`Y8ywd;kbLxS#0%U?4EK{;j-WYuK-I0!lg9Ra z<~rY?-Yr~7@eVWBPJ)#*!M8c&!vAbwgLau7VDno6^?fj)y%ef}OsM!3Cm37>$|A}IU}OWVakOmXof7iOQeYgB z`R5P*?UrKS4$(-k6&K21Zb;-=l!U>`BkI{Y;I|5Ai##;|1;IXB6wyQ;3F@OsLFtgo z>*1CDK!bE?MNp*KJ6+A96enW^7U29&)3Y-MA4;JBX@5?9G4?yA_8hW~3aZ>}H)qfd zGbOGHqz?57XwXvn46rhDHL=M;rTqT2#i>SG>V`@;(7Jc#3Z)4~4J1!&2-oWEVC`&* zjn+p$b<6!Z8Gz;cyM&zewa~FTw-m=J!J_9gw?EB-s}uN(-)Y!^co|{2!c(IU0E2sr zK5lK6bN)+|-g~m5BJ>}Ahj=P>37})E21IvYB>su+IJ8UpXNiv(aKRZu?st7;>QKYz zf50vTYRLX8h~8pWvTekHgI0OX@OY&&=mgT~0!=KN!&~w~b&4wD#|&sJ%Nfnwp(>3w zUd$y!TO*S=pozB7C`4%8m&g1MzSBV2^N%39UBL(2pErUAfbYPqBXph!0PvkMaCh*y zQG*w<^B(ucd@1BFe8-wFOJQ(2@fv{d@c)bNtVO&Zp-klnV@=XZ+y(a3M*f5E3>d5c z!lhdj6@J=KU-*uF=x=2h0KOv|YA-cP>>Ea8lH_GXKgRl_5l7{s!US2c!}4G|Dd_`Mo5Kf=B+;wO zU=4fo)DUzN@+0{kHJyqS=$5aDw=L-S=myk01^dKE7l^qml9n5EaklOV#h4;^;SK%I!-zAjGL^ zVQBptG%n0yrZhu|8@0D`RSir*n zrx}{b_jVo%A{O$C-*I|JMGe4(2Qz5Xu=O%TrgwzXZ=w$FC$;jju~fR3LwjlG?p7Qe z2Sj%YC7LwxUbRm8mvE=qY+CL9aJcbj-TS#)BwySMi-@tB1Gh&QDJtIw{4C2*|nW^(VZ#Vwe8`FeA`~g1)7=fIn%IyaZV$%(WPnf@W7K4$mxrXRPGTaT4Oq z9;t3)jQwsD$Jjosq24BC-EhTTr;{L8KElr`TE31y$~hE5f*guvcfycQRNGWf>x{oN zS9G_Y;%5{xA`%A6HB!3_4U*4UUdXaTg0+aaE=mjw;CJ*8#)prr{?0t5oTOu@4f#bZ z+_g`<0nF8qU5LSBUO2R>t}N5@C1;2oB=V467RnZ!U&ZE+)^_ z@Hu_US^pg*!eTv!3E%nnilx}WRc<>G1S>z!mE1oF$A&!iY_)wOMH z%vt7=cQd_RxHMwy^RH9qGTx~-r8934KxgkJHAHE=S4W`t75R}*$#N&!J(A8TjAa`T zGy}Kc!CivJ<3h>(b>rh_GZH==W_6ZgthzM{9l}6HsVmyIOM>?n5|boLD$-&pehFaJ ziXys7?~JpwiDme0PEU298;IV^%K?5`0E?yV$&{)3kx8Xi?o9>ZdOrEXPQLcYW0l;v zTPHOpcx$EpGIdE05jBaWMRV2AuyXRgId@Eva_K5%re41?cRXFRT_O>YY2tlvrBc)+ z!^UpTKYyH5LT|{Kiz*}p3WV&HoX4xUqRZL< z_dZPK)kJ{HO_kA^5t34= znbGO*dA@r)Ha3@{o|VhDz~>x7A?g?DiE;(709%jQ#Y9JzQ8xk~94^d101wae7B{PT z;j*o3*h>D+z8_LjO@?#Zm=ka&QhD@?Mm!|wz{FID_z@K)3}|>brw&DGlPpCdGqHtW zL4!@!(&LZ`Gnm-Q6_{`1eGILJKKY-nf`RF%AdSWuDAM_$MGGfxRx%&$bSD`&4vEHj z4`Q7Z@W}NfZDxq)&k?A3xx*P%lAfb=JxZ#o=(a`Z<`E zu_=r`n{hN;%}m=i-$?}@^uj&Bbr-aayCrTJ$3Zo91lt#1+{(2lq9Sbbq|pwN$JVW8dO`FFHZ*8oW6FnkCtK7~byND8w6sc~5wSs~6^O6H80Dl(fHa+y2vkx47EroAa1)^m zAPk~@GJ>x29IRuI5chLLbTbs1m;Og`KmyPfCp>7kbMkop%^r~RZ)iw+0EFk26R?09 z@5_f5DsOa=qE);((d}LeM07SU__zO21loN(_=i;!svnbL3&?5t5E? z>nXOedjS)(Tfpxzi_8|?f+oZ&9KvEpyV9Q8$#K;Abkd7azf?Z0%6^5JdtGj{YhyD= zDoHMAYPc42QlrQ8&w4hEHLO6cITqjvAhKV-%EEt}%Igt0goytX2X49idw@=S-y{F3 zYl%wB%niiX`?28Csb>FSBpm+c$BNwVJs_s;)^-?$O6YNAvT3CI0?O%Blc4GV&Am8kAys=zeM3QO}TT*bsf z4**KJ4M5727C-2r3OoQWkj^Wor7M`ttDqkwQ_2VA6i2=)ko%d{R5co>SNixgGZ)`a zeSv!z87>Cr?h2<7$U{g>fN-5fN?NS3G8a$j69!S4xPX-_7pF|`AeBz5Wm8w#FKM^>;drJa<6yc94 zUUA6^r~r&3E5!pI(7ldUn!>^0m*pB6Vtd?t9zwJS-}SYd<1Nwtdpwu~8EYRh%EL;k z01)&L1J`6Dx+dS~$L5tv(vA%z;z9(awwfMdTSFJ@AQ*8~rhr~ZDs#`I9qn`hifiP! zG0U8CVntS&?EUZBhs_>*!Ah}?CHSxCCLrf2>j(;@IbgI{xefJa0VpjDt8CCU@ifGjj-}wxHYJ&};of&a=^q1nDti!o zSHL?p9FYmiY=G!a)S(9)J}7g}K>}Gt;YOjhdr6~MMg6>FA|Sex^}REd>kk1;`={xJ z*Phsy;~G1@@`hL%i%Ka?)k7-iu^jV}I2jsG1@&)GBbuSweJQr)Z)abcun)6lt^};x z$}IXmiguK;+yistjIVD)1h(6&Ysb&;!N967DpI9j=rt z{hwXXU+R)2P!4#aK1hDQKLZXm*M!YW2oIV&GV1LYYTq+*Y_g708h&<c1#Qi+*B zJnViY7OAF9k$K8z1($4@i*TA|-X+SPz;eS?Sxl6fqb&r=%FDSe;{dN4E@)`F?TpblU6)=?eYHWR#y-t*Ahm!ciV!xY227dOe+6~;#(>=pFqx`1F!33kqOHFGC&`P#jb3HIj)yQ-G z*yzQ5ZUs6EZtdGV#!5Dx2D&E`wECRyB^!(s5!5p9`IzNg zY(OOChlbENV#J?@fIQ^@lq=_zbq;$Qh zt;+S~9P0?j##s*Oan>xl+B1#i5@X!=9UqcoO=Lha5~rM)EmoS=?iS`OTqzWgls6th z;~v*!mOn4XO4cX-9{B-Vylhn({pQ6l#NJmZA^A?0OYc=kg}_`}pxL-+3@+p^MC?fx z?~|;X;2oqF-{V1Hok|M1npC1~$lvn&w=2lP*(>~?KZ=%RGZW0cM3E(;F$h)%3@l<4 zvKG_xr0zl~-%wB7XI`_izHP}PLq^2vJcW}%b(DnefWmjei6%pLaQ@u;&X=)L*vLhh zUXVRvCNa{aTF()&GA>O{n%9KJIz9NVW0GhtZL4mec}L~5TV7znwG+0UmCDl4Aq?kc z|K`K2m*TLd?}u$3UT>HtJB#qbC51m{GphYSzX+3&2hD(G$AilpW_|Fz&vx<_W1@^;iZj|qqN zM4s!*bG>?FY@~mWIWQATVn{zcXfw}{mc_<9+GZt5-;nBIDx03{p7`XzTkn#G`v1^% zkL{JN>(;1a+qP}nc2coz+qSKWQL$~?M#Zk6;-r%7USrI6ZO!#9M}9$X&waIaGOVIm z*evu$quDJh9EamSaLP*aR2}xr^D4X@`U`*8=j+AKw)P|`{V*+`#!sBZiD{MBN^d8= z%Gg0c0=J4u*{#=vqr`)7onDc{py+~^p7-PCy|b5|H3yy3p%!=N$p&rP*^5`{SbomO zar|RHf6u*Phva8*$uTRp>M%=g(u#@bYnJNBz$oj$%BNU9Hm@_hVSjT0Y$;{x$o2=F zpJh$wSHa98x;(?wei$0;FRT_XuO9fwmIlYh9@P4#6Q0#z8kJG);xU@n^L8`bl;Z=U z@A!V5tfQ>^N5Lji?CG+>g2z5XWX_jt@BY;>pm0>tCBsyarp18s_1n<5v+r@;3C-Cy|0> zKT7nQHTZaQV^K;dYv|(l*RMUW7i3u{tgZb7*6<6N^Lxa?)!;DWN<)A-(agN8t8b-+ z!F^WF?;A}klMlG~4Y)_r+jZ=oy9KimMf@emb&%41n^`MNT1$Jvn0fO4Xy#tP=EMO* zu&Fc44y(DH9Od(%`iEF-E)13|XC%`29*EaNJji-muSd)Bq-Zo4K#g^@X-mBS3jEz} z<$&b)+mfe*lNBHIB4)sB!LCfHD63JOU&MAD-UqZr8cAe9T_X&PR4gzwWL^~JT3Q6A zY({lgY+@a`;IkA2UN=Q_#h33Vea6SNm{NGa&sHShmCOk3h!3-ii0O{)n$0FAOS9ec@w{;sFxVb}Ghn zr8?Y>Y_K5kyI}3mB0kqh+{f%=Z-TdpVUcnv*U=F>R~m5(Y*&mhN`2Iw2LGXem*~f@ z_wBC}0S`_XU74hpu?%guO}aWk7`?7jo97j?VvrF|YS$I-?K-8K4@94U{UPRq|Ha-p zH<)>e2ZWN){}M`=nf{NxbI|^u#Wny1dPc{%7uT!BX$xoGu<@LMyK8qF?s0!9nH*HY z(`3`wNMWo$iftt;xmeyr7zJqTJoHG|k4E7_)X5*DIt}>KbjBmG4OA6Uq9gWZvn0J#5n~i}o!Oi1d#}fjkTNgRcV3tf zmVSIep%L2fSKletK#S(A>jSQmajH$eLqz`Ap@Uqp zeu!fJz)({E=sSII;wFhz9zuDHz`(V;#L5PuZ$eyeHd04EWG6OKzW@f$THTG@$ zKGP)o=Rgn*NV5W`iisOoZjwDK*F+$(79cTh1i1x9 zB_g#ALuD&}gLkEj#SPCXu_3ZSZ3&f>^=~eS@26gUB%RBRfWBBMCFhJNv*8s|$Ik}* zDm)dcT$LMxhg0GW1j&YHT%IcnTJ^L>H$SKP8%svj=3ry6xd0kyDAar^XDf-0LR z6PVI3*2mo%BY&VBe~@NTBsA#{IF}d=AViQdoBj~q85BIo;rSpuu$etBH`LK)I#tE@ zM>)hO7(KL1ke(LKh8WGbvb|R2=UAohWAK^z($O{?AS;mhP<|S)QxIe;OAl5IL2mI? zh{jCd-Wi)M->F!bOq~JtP9aqBVubJWY0k$rhN2RQ)JYuO=Zu<`1!V?6KP6{hn7p2Rn8?03Q%-e)m*os4Gf5_Rh=XH+ zRZFc(pLJiPeC~i8vjUab7xWBe1>Du^@(Wk2o--QHzTln>QH*-Gx&CzN1yc0Yng2HD z&z2`f2ItyFwoljjMzoGOCOPce-{l#%X&@Xt=r9;F&2vW{N}vhiw}z&n1x>7HR~ICW>EubIxS?R; zS)>Uje>>cUSDovV#pC-@7_fqEcY`{hb*k(CLneIqLU^`g8!GfT{>KoZ9Vl2e7ce=E zIQl47_nFFsH?V4jmp?N~?HU4xVaD_md;|%H@O0%_hcXcIYwxSglW5tAPd1c^EE zT<1!thCk|eBJAB~E-i9`A_zH{c#va7;pbgQDrfq2RBx5F^qE=ZD`orfru{95Uym&E zG$)D7O*30;r`>NINF|sxsXT_2&(Xm6kRP@gmI0(x^F6(Rj?7cnvN^_5tuyYQ(>q7* z2G>Ppkgd{#m}eS{kxBNybR5()*MnN7vl0J<0FO^gK49JbUWmjfqi$ze5%m}_2o!Dq zw)gqtxg;ckvU^+B8dGD5&?3l09muTj}aD81U(W&7wR>qLhz zJ$#60R@O@ywoXasvxCQN!&>!^+I6qbWvg4@H?L6oA_=_2bEeoiw-h zR*ot|PC+JLb9u=h%!O&6n$+9^C=E(tfvgVr5e-e0J;FZ$B&Y;KoR#;5aw*qdk$!6} zLa>k(Lk&HTG!^ ztkMT_Tilvr+Rb$GrW3C{cn$5|k)isfHSbw<8eR-adic1Ka2aPu2K~B3zz-P4+!KPi zWBU_*1gJzZ#A_aniF@G*s01lYW8AUkj-L$CLuic9tE)U{4s`uWVtMtZM2R-O^@iyH zf9DC{@8CP9ceIZZ@2_g?-icZ4wP94tRM^UnvrhNJiIa{&(zu*vlNz0}ot|{~A$oSHQ=!|Attt;t=7$x2VO>m`_KNb!>ns^hVq918dA{~CxdMnY zLOKuMe#NIa4j5WgqAtpBt?}y^pYYZE#s*P)3sUE1t2&-_ULHlT>sS`^Zoh2N)vvazNJ#TWiIFND)~i4U=WZ@X4b&$ZWz0GRGOJH zX1V>#D6TDS4|6bnW|VAbxEC#`cP-MUM~>l>Z;`h$z?6;7LgjF27e#M$?XV0-_tH=H zC?_R|b)L-Y%9HEw+BwGJNo`~~$@=o(dk&{bSNiY&M^O6_qhES{i$Yng6&(*6Z!{HpdWtoQIcTg-^#MF5%ZC_}(chjW)u?MIQ&q~;R?yg<6>FXhhbjqb7m>JNZl3hmLm_`#Ak2rCX^%K z+Z5yGC9KQep{J!jGx(z}4Wmg!bCDS3SI zLQW|Hj>ZPt^y3;os=@hqdo z!j6(^%=O$sej-@BNd1&Fd!jm6#j|@=<-z^ZailIiMKzybse(YZAURNwhtnq{==cvV z+$s9?bGpE5aBz;xqd@JsIU;o7#i0aVn4hS!G8wIFA28SunyrX~2|sWD1l zc`#iA@#f$-0@MFN;D~rQeW-;mCj_x?wrh#D)kINXCjvrEA`|4pPQCVndC#0ekIWr3 zBqW(i#J$7MFb3zW63*xlR#|Zh7?+EZ3e<-bnE_MU3%1zb^eX=<0qhMdTm5x<_U0%s z_@o9+7_5gvsQKpl52?5wvTw5=A>TyXs=xXcKYr?-6G#BdLgRgWE>a}xt!7~O6|xWf zG_tf{rk8(CM>h4_@25ZZS+nJ3qZs~Eoq45`*Xzx; z3vDI(2+=KJ)iPzHc7rb|Q&3+(H3Q~Fh*Hh4(!Kl)yzga$ck97LpWxR$VSqV2t^|7X zW&*C3C7%X9)DVR5aJY$=_MZt*3AEuLK&dB4608*-E@nJv%g@m{pqDT-Zl&qw3O=;Rg)Cuh50$u4t zR4B6Qo7B}<;x53{{HN6O^|#a`{Q@{%1DvYydLn5H;53JfFA-fx06rcTnf%N22thIg zT7>?cnudQFLv#$)*g@tS{bLW7e+#nYjC~)D!l#ik?x4FSxV;8g);WH=yzCux{@F&q zsX$hZ*U8*n6SrI3<=laS6=m^SKM!Df7#2gmT`(FUzqE4ehkT%Tbrya|-8^KNedF4Y{rOdt#K|6Zy=_`}t_qoJ_s zX81y`J__**9^EA{vwAcmiObAcx<30OS#`#6iHsEo^L49e0tqG+?|oZn{v8}|r#HY{ z_J)nFMqIRl3)n@|JNoxgrC}xbAExIM!1O=>n4S%jG_p%HM%Ef$=>}VRCt`vmEPdNW z@;5RXeHTx6WWhK!QDi-Y>3b02Z_s=g5!pe*!XXU(GUC2^TTNgwCFD$0782x|zJHgd z35aS*hyA*KE4O|aqJRf|*b*#e9*NNYX18PqB?LGZk@-iy9z7k@dg`~{Yl>9OYaYX_g8KcmX_KhI z(Y!ht{VV5D#p55J55dN*!mal^(QpveKTI_DR_^=Acq=B2QeKOXNGQ z*&JM~wA#R3)=8q5?~G_|WS$1%Zy1WSrC8-niAy}g3gqnI9a)>J@5&J4$#*reZ$cOh z&IbG4KXd?nrXZ3H<7X|wPn-j1G;DDr!jfeGk1CVk zP78}T9r#`^aU36mChS*`Kb=7itlY3h>g~Yw!2xs+^6%JSPGrx5=wt$X2-hjXPi!V%4XBb>mi0OGCJQ}NGeY0(IGA%!#)kA{rgk7vm&jG|z zh6X%CZ*gX}_fgCBX2kU{bDb^!V5Zv9hH;8CQK0jl<6z+N#=QkB7>+FP<3$dwQ#2=x zsz^sUny-;1X|o3AZ>wiX>m_=)Aq*c}J0N8KmX-VxKjg5pzM^6cn1uB}_uEV@^lc+W z_3wO48^LNf`L+^Z=f7dOS5~fmL{hy~SNb;ENn2Z#>%YVke{QUnia5 z16#wD9h+$)fX23287}z)|JHh%gMewIgiwiEFy$b|#%PASu!3%i|6jEpPe82){co+O zOjAS1ouG2VEB z`d?@O?>VrM55V8#5KB!s5~bF|eR#*#U=vo%Xf;f|XeN9rX$uWJHcOr{nJAwsSnVgy zI{F{jxnEEIPpq^qL+k~fW>a2W-Z8;jCiOd~m zB4bsmPMDP`)6$%{h#r5+t9GN|D8H>MyxG_7nEvfuee0=?zIIO-@nJbqe4TsDa zl?tRF6`=SXaWt{naQ77qM}8BzxoKoRwhdk7k@_sUSsg8NxBl}bZ(juOX?W=qeSa zdBMWsR&tC@;FHn-40Mu1n~kGtcz z8=Jv)7q(KgS!~9i8TpYQen=Ty469Xlh01e@3gwxTM^rK3ClI$?{hHZCpz_%wfLc{{ zTj|KJ9Ve=2dnj|UI(5^ros-Km=N>p0NaWKgZ0vymu_5ZpT3%utyY@;IDA{dc%pGD6Xr3zN)e>drfW#3tjN<9EE5 z(#hD%VFU<09oNqFARc~Kr!=|xm|woV;W3)9TYcAAay0|AddRVBjmFmFzM-uwC|-23 zO;*Y>YFTBnQ~RG=))aakM7at!T3U~QQmjwx*5)fzbC|IPp`Yih=2r4HoK@NATrL5z zVCo^&%miku`U9UmTAbU{XphG|Nj9YyF%sx4@LZb1U%8pPrH*}cyWmkl^V%Sk-7g&^ zK7?-w>qP%Br3u*>H(7DFBX|0ED+2=4tqAIY**vv()C4g=hO3{DH=3GzOYvrSuL`k? zeZTZdEbO1xbH3sUSL^cQ&hw7{PCe5EF1nacM_%Z9)lmyCCJE)f+(`Z`q0c&9Lhm6= zY>MYio5E%H$CNX9h2oO>(XEvTAS`Y(iIsnYyx*L6Xydoy$ZNAm6+;V@BJb4G^u+|)|*;!V++GNF4P&cuhyLr=!;)~>t6E|T_*bYTYW!_r+*d()jE zBw5tNv)$6kJ-2_>*s?AI#I~VQbt^37X~glM0|?8jaHEqVYHU|J-6#_|13oAUY-$7~ABeuID+R2zVDQh=QE5>7 z#7d0UzaIu{3Z0ltBW))=h^*mU5>yuJ6M}QS41jtf%m7f&w|}9YE_PY_3T&I^Zy7Uq zkdeMTbJ}N6GP2T}GV*+F8_A=ni^Rjf;Oje56Vq}wXxGt}zDIcWuzI7`GipwBdZaqw z5s-tGp(S^}kZX3X8C}^iB+v>{19dpTri5qW9;0VWf;&8=8<6z;aGn4I$&?Xshp(@w zOOGKWgcWHq23;HBY~`q>aH`R1c5;ih!O=}Anp_)v=Iz7$`Y~cL4lsHEIuBv$3xMhQ z_wO%359w#Iz*QyFyR|Zz*U}t=F9i2r`E_~#-rc?!jNabqmVIt%2jRNsQ|AQJcb)0& z58;2^Lg2Acqon#@NI;5Bbd6m&FL+sM z&@!`t0313Xf+`E7Z(nzhf?tO>T2sQx;B$Y4Q|*Kmei5UXB4ZmwU((NmE)6h~vjRqp z2kJAfTJQ=u367CPIKAdUC~cznJC$hU5(z+b(s~`6zZxIEH3eBOsO~`~P82j@5`-UA zCRy=?ANB`db<--O~6fsJbQiJiWSdW&)a2+u1UvV9k+$Nw-rlwU0& zLr7rlOF>BvM1QbdJmwpKh5(VujyX-iNWw!c+FlisSL&e+I@&N0z{{n2az0O1E z@AMY-k6ELD*IfRIc=sLjuF4JY+pz$;F_}6z7K1q&k6Ey@e?Zs90KHZUb+(xtq2&Y!)!GDF*SAcMu|5rGTyZTTptmo`eF|7@X z?Lq#DpGOo7PcH^9qoi%5Y{(WCW-M=6K;OfkU4RxC=b?-5>&>e( zgLfgd>V>IY$Br|(A;20NNn`03SY6W~IN})=x^pknhLS5p$0_s8SPV3cLyf%vNkiUpFwV~)Og z{vV@94exKs2VnHXDvC*StpiFv{V3CS6g369;ls8gjZT_Wm1w^O%5sq~>5J2NlN5J7 z7jAS{iTrQ#QI+PJhNvX;fIeWX041L*Y;Z^ko@iz62acmjxefuV!tH5kHliD!bx&6R z*0eVRJi#QR(Y0s#C$D~CQ)ek-*r}+}e~ljK`d`w9W>ZYjhj7sKo}cu=yCG)F1HmKh zYmxMrTL#g(L$s2aX8$pI=tjSx4{IESn|5J3r~Pa6jPM}N*sQ+ZO`1}oFV)YAj(ZlvBNzwZh!X*49E5kk>*(a9BBHP=Pez-BY8%guLdVpu# zlWpiBEBgh*uuUX^EZr+u|4Z$n74~n(hwzdTf{c{twoVoKZIW%|AESo{>dK<>j+Jg{ zajII&6kzm>(4&5bbd(pmV65&?H5Pl(J$wvlw3Gle{%tZnV1A=%F1wONK`ISOf{)Ro z{55)tse~&WtaCGdj#Sv7>oEa3K9%na1zhB=jvsb7t4WqbuJm;Bo6*vhA@vX9s{vJj zZ_P)7E;wJGQMdcp8B|D^vJE~1FecdfWnWbJD=@?ERKHmWP;sCLCqD$c8(C=}y^m=r zThR4!#BZT!Af@=e8?!FA7YM*Rc{xs(5#A;xim8UQJ3?u%Y0jWC~*!`$<3Z_wU|M0yM*T6wYM|^3B zcH}n5b5(Rew#pTN^l<+$3JFR^e~UvHoYQ%z*aILvs3c$?Hf!=vkXNYJ;5R@+K84|J zkbK(+()7*(Z|-OUFT`ta#N##Zypaz<%SDK#Hm&ti!_mByl$@M^P{pfZrj>D&x14cX zS4VqweK1>z|C!lr_D2`#Et{a+oaz2Hz+&aTv3zEo0NlqE;e^$Xx+0s-DIarD@kLV*3h|>P33r# z3JeMRQP#S>#U{uUPsQVIPLATnBUHB7M?V5WRcXV{0?ZZ3*^iTVrfOI7+aI;c zptM3RMITqzTIrr(1jz*6)wmkD(BT4f?#k+%3d<9`U?T@FLHjgSkIe4-^0F&$9(PV{ z(($#?{wjhiC%jKXr<>o5=F%4HrC9Z9<|H8V$)+rhgiCTS>$_wvRUbL7SR6thWQ64D z`8coS9mZzwt>5vuu<9)!acq_~_PO4Nle$~9PB`<^?_MkBC%bVo;^c`f`SF}wM)_=F z1k!c6VI~a_v}q4|!Y!`w$Y-hc<(q9W=dsS@ZS0ZhjOh`36dc4)Gn~aUOrIGt+t*z{ z5=0}+Ga{RAFHYJ-S-Jkn-etoo)=F6lZKT#=-55xh-LCAoQISMrt5)@p4yqu~wkrE0 zH3v?#i(QOgWM$wWn_N_78jv_!zPra_oMDlYU%JJ*#$xj|T=yyq3J=?VOoITvv+GvGs%H61`fQn65>nn(=0m-cuWFMV6oB-|m4dqYA-u_@ z#>JkLHMz$c&BR>}7GUd$@xg7c+;U6-!qxF|!;1Za_fI<7=b+G8p%ciwGun3Us?yy3iFZ04q7YX!`!4@U{*LSmo5*4LaWXKas;P!t!4j@Q z?DN)x>-4mJrD%!%NhR2dX^Q)=YXvbUe>GHQte5ZFOd~YKkC(f*JT6ZS9`KpvPQ6 zbFD7=?|6Oq8G+EPkT_gLtP|k{{hkK2tedu9t(xS8GNLg3Wb}u%SM3=Wx!pyY`83Pp zS8p!${WrxMiwLtolvV~zlT1HpuvxD&&8gGax4iTNc<4fr@Y%L9Le43;=-9Jv&U(PB z!u9DCn_8qd3duPWhK3pzk|bK3aM1z}O^2#a@?bf~lC~DC-3193QGIHsQV*WXpr;%u z`WjKo{D3x+wWcCe9k~hzPF(Ak*{V9;g;5xM_*zY|?NqF16@fYRMrf*TEtg6zSdFlL zC<6UvAdf=jpB^yFg@|*v=mbwK)5YJD1^jx-(X2=-= z>HQ<0_VFGcjg18>)o|6GCQUg;ET@!g(r=askh8;A$~gUk9iQ1C9O<)m!h7?ReSZI^ z;qy$t^Do$Q<8lZ1&(D7vKFkQBm;r<}shm)+kBn_=bN7!aK>7}GGV=%ivAPBPKeLnS z)&l&$;t?Um4Zd*yTf>Kr0olz7a7|a#gTfnGYm9 zjK9{XZ(kn*5|v2wc1el4{G)SaM^%p>@t(<@jjSX0&+5I|DnRLxFe-LjqyxG$NqH0D zz*VpX=8fzbJMmr#u;j$WW;5P`629W&m{VB&v$odv_3L|itwT9{GtX>i`LMU`8xn7Zj%?9Cq*!(mD6b&eW<{cB!! z1xscKQ|Kv9m9x};_pikwEc+mf1c5`@{%8L>{onm-vj6N~E5(1|p?nZXzu=+V6I6b1 zmw4=>^&mPXaxvq$3gciS`IQkMW1kZ%5+FGm_xHmM0_7u9O#C#AB@*xzA^E#8$NZ#7 z3MB?+OKEzA3*%{fVzu2<8_-@iR^)N{2#`<1Q2lLnn)MVJ<% z8JV$@xQUobB3bw+Zf_93(c$1cI1r5_z$uCC+wD>p3S?UUEavENAA;SJ9PWE#fU%hf zh?Pnryrl?luX~Ava(M2RMk$2y-*{0i^D@)D2sr`_C;SAyO}`&71`H<{FhgCEcQGs6 z4m5Y}FY6C*4a68#B0BFGgn5A{Zp=Rgz=ZW~r1jgtTfRuRBf7?({Q=Bh<6qY>kEdWZ@2$-@W6JRDyZnt*s26U@7JU@ci<~IKsYxp<-B=~z*d$R(-fT*toHU4g zlrU(2eq<|XJ(?JBGL5nI6@jV;zpdK?>O|qeNfuzq7*vH?k44&GPIZnSg}V$q%^NXe z6w-~UM9h;tvhKR1h=7SX?82pDn+GrLp7dKh60gp%AS^wQC$F%A958|@lp&Fef&r#} z32|q=tr)y2(<7v1)+HReuI)fe6hx#ozsG=sGJYn`Wr$fBi8JpZBkutoY^O>Gg$qNNhx>0Oo3|yLb}>N&`%S5%i#rI7?0=wB1ty;2ylgADjl1WF zSZhilMq^4PchMZS*O~~I=HqDmI6xAwt;j!#*(_g{Dgzij0UQ0<5@nNgKb=9-~Nf(|T##1G+cr?C)S?Busb5 zmjFml_CH9Ene>hj4xMr|haolaRjc(DU1h8qt=D%|#_=EN3-mi|gAUE-1|X~bPPfHG zMEV+(RuJltV({CZwq;Z-G|;iexdYx8c9ZIv-T~XerCP=e{WrW;zA5}^1kVQMbC}_5 z_92q7wZ%t$iH;R!822_*4lWlbE1(pTW`D6ig z`7;ng`4vULGs2i6u0LY@5ibXt^RZUzP|7Jcamx1g*q(?YS#?Vm{s5s%UR4#v0OLpr z^9q^Qg@T>YK;JQ7M4F@uX`b287*+MC9M^s$f48}=HuWu4l5paCQU!n9!lkbx*~#p) z$;5_oIr|f2-=mKtxHo^(c!U`wyH|r4TrxFpptoWGVFOqt2w-6n1Le#VUyilao z>SZ?ufm*=-LC|US8Aw9XUhu*>_)X&FDKtVS>DR&An>z*%XMg|OzjYtL$M&WO9;PlS z@+;9f`n!Rzh7JuDtz=i_-(vD&g7P;DyX2ZE1aFztDBiV>U+K9R=G{;W0UoSSigSvp zK6vl*cnp|t+KH6O%U@#-r7w~Z+d7orwh-333u5%gZzPVAuY!VT@HLJt|5T@M%RI*L za~7*RcdRQ6gduG@?Q&}!7YZtu69h~@9%dRuq7wn`u>_<#K-@*LaPrBtcxNbv7KpGz zr6)ZkYWdf{Pno4c$a;8K)nwec_o5DO=UIpIA5cy@s<;n}0XE-&X9v|`RKB7R-er&^ zR%7+oRoiczO1E#wdVJk>rBN&(x+|MDu;H-lnpP%Qf3zINjKy8;s&e7nz}jqGGokM} z^YaSi9l%nS>+=N;sdG=ce#5q+6^=hT?zBjyG;)gF64CLTEgC5~oX@emmQv*qypBfS zhIuDh_sOGnss)PJNHK{^IBIA~d##9@W<(vfBI)%=A4i!27B;egce|=)z78-BFXYZd zJM_fT2s|-#=aPFHTN2NG@see5zYlva!6|21uM1wySBo)CoaiFT#?o>2DBDTRuXnLR zDL>gHdqBWNVc1s$xoEE--?nt+2>IiEwo!8`^rY*t?T+wK-^UgM4-Hh6$^TW9UcIG^ z*(&W4BHenQV02UBY{VnrKE3yH`>1ih3S^u!j` zFk8H)(JfA-?Hi0#53*1QNsW}>xd5f-a^GMb@b;}fWYAHnOhMO`XK zs-t5+JHK6<`GW?nB$;^WF{Q*R&ndT?d~D zS{>NF!i{G|vf232V>AD9nv65FgNiQ&Ztgwfbe~U|va)9tC4^tqj|*J|vc8+YN3JY% zceW%q^>n)7M#xGN7^0lp;I_y*z36Efl2?6EE1tX%=ek@gX*^?w4#Hxxp!D8y2tClU z3L?6yom}Mu3dWgQfrb87TOWCq1{TN4GH=FA9Lt83@bqxtfDdpDCdzM_SI*Z-1v4s@ zpiweo=Vjcb+cAetd_kiAKbl|K%n6eT+Lle)&M;x6$Z_Vk16TGzbl zJT`V6UhRAQuO@2PvQMy(b7z)_A>fUZ;}Mi6Xl_Oir-ATtH~-nWDV};AeMw4$-PW7& z)>d3yU)h|^ZtCDBOh;v#M>!@Dgiv zRVuFb@`yvF;UgmaYEKouD*RC~Xa`6xh^dLs#qY(w2JfJ!LZ0@W8}Uy*h%}?K26nED zI5eHgz%mhfR|IF()0@5UF)5Dcb<1uM6ES?{lz2U=_*Ga`kUL!T9x_1E?qkpS(9z{m zk0hHPHIj3ysCL)=hB`i3A^funSBIv)S!3Q96uahNssrZ0~1Myfou8s|9xg z*`+jz_3SH%44AI2kQio6FHe{BfAD#PX7{p*a5-+N0-jN(%2}D|qu@2+D~<6(?xJzH z&FweHh@-RisthHOvN?Tr8RBCxlIE`Dv?egw7c@#*4_aUnBdt2WM@cv&z3$Fmpvp~= z4nNW!()KjO^SY1EuCGT!4TSQe(NUNfEQ>1-%yuS;?)bj?wdp>UHdNRs{Q-{o2}Da1 zaDUl?JR)0*ZpU)DJzK^3xAi0E23mb~0hqw!l`kZvdx~Xl9fc?9H zt(($^nlfH%(~=(=DE=C(6I$E1UT@8Y3)muiaiC%l5Ib zDCGvnDKpglZ34=VuGwy_zMdpjK6V%yuce5Kt(pv2=dqb+E%^k%hyteFMzw)4M1^oz z@#qz5euIa+SRp|iHazJN{RR~h5=r)i75`vEixIBf1zI2k0nzOdHWmnffZtzFAWm{f zYEK|mc1YSJ6!kt-_|$6c?-zAJX}0r1slkzzu;7)6r|Vw zmpFv@Vk29%#VEU`a}Q_|7hbAFeRn|fP_BSA#rhc&@GV1+;f&$4pm|5^7j(qrLl z4gA0BK9aC-fVxjvP6_Sbx=&}q>d`_l4@kM@S^}R90Y$~PjPz|B?dt{LA4OX6`%dY= zrP^(HoJ_*MfM6^+y63rcD6|i))H6$+=bQKt*B~8==Ufc@TSX$Tv%a9V(70P{X2NFMr++ToWM(f5bEwt208dnz!a@o?C<$IYkcy zSsSR{?BJZh&d=})Sp^$Pok(WlHiLK~G3kL4Y(o<`pyDmrVhJGyA3NrDNSkc5nw5Nb z|A;UR6M(S|+I@@J7Oxgpb=;}&F}IvPgqWTqgT-T+_uY%0w|cC%6;k1!$vi>PJZ&E( zf>15+vC2E7odnZl=^!i?PzqE2B|7_lIOFdY^G%6l{BPd}Fltr)x9@ZLPv0kxU6*}#d##w8yP zU$S0Lpmw?bigYXnrZS|i>~C}Pm&5O>UVxawpDC89$cfO`20MRrdTiUMKhbplGrC^) z5i@}C^do=UV33>YfEY9p_u*6IZk&rVB`_U<2F8&VYjAGnDA|g+A~qjy*^0A=^T09|1-Ebl-s+?eUh=SB{ragq+LR%+!kqUsp*z^kAhfSfblc~2y zphAGakWAk&WRz^`#JtACJOlE0krV2`WT3*q!>R#T4=l9<-41Jj5$+yrvtEk4Msy=J5=&Rm_j8!LKU!y>#r#gSTKQ+kwa;lCoKO(LH zUw<+j>xh8ZZqhJ%`S;KD&3Nnk{kdUt@l@7c7{>ixXe0kXn>UqjvhoU%Sq>NL4Hkd7 zxa=qn+kZpvloZD3C#~ZD?dg`Wj_hjw!Qfd(p>im47VbojzA;=czh(K3++(mb8Muv3W@-Bj%Qs z=SaJI;$4_>K4df-e`AJRkKB4#AfWuS(PTe;M12!A4A>=bW>%Fr{HOeLJl4t$DE}-b z?3DKOwXRMX^8R!YF;_I3!E2HUC`s)`iqfPa>CbA59$Mc>+AX;8?qw#$JYnO1%v8a< zRc6#tf49$A(9`&KUIHVzob>aDCwTO)BX84DbBEJ7%JS{?RxcP}hP9@tTBzDsEW!{Y z9__Ryv6goeuaT(UcHQUZ#yyOTf|-^M(E~=bT@udE?F)tTtH!x+=jpu1*XQGk4KTp* z$pBT9;ia?%U8@g%nbBCY5XvEre16?I5_w*e6dlI~9a6`N{k1;I6c`a%Xwk7SFy40X(YH&0BQq$TPatSc%A7mkiRS4Zf<^=8)~QvhG1+ z1^4#2DU0mJFX=5F#O?u=IZjWkMZca?-O}V%FDs)9GFG+Z9+x}suwl=; zqruDTeO-HtYqJC(Y3G|-<2b&XwAkB7HFRpcrBeZQw0CNKlwZXPtihGRg^}Dw69uxh zw?UKiw}$M$94b(8f47$EA0|55&^mwz6THy3)F5kjt<11a56g*DO8QW^oOb>#{}jZ< zG>=wiM#pxa`6xQW!#;u{>jM;AWYrB$a0Q>go~ z|6D)xA~%mto2-?#hcd26fZW=o%3$s|0WUp6-rm%DLjN2zdUdi+8V+}%ew}|rbQNeL z8!Qu{UG?}N7w3g0gllc(px8<6ys#_E`~DK*D;`*No+%Tr!JwS0JyX9^1{Ob+59QRR zvSgzP{c6bAC~DEx%N25HiOQ^Ipz`h9%!hB5gfW$CivQP9F?S0E)Vu|wZC~bd`Dqx9 zc*sVgIYh_QLg|gY?HIa6!*UTk`y<9|Xm+L0bPM%-*c77B9jI)Vr1E9QCwPdm`GQ?Q7mLSw`bYq$sQLlo(|h@PnzSJ z^^j{*U+POW7ByKhU*;_3wVzrSi?Lb_cwYLkk9|uLOkmtg)==Vn|j2rKH0hMm?d{*nVVPMPdaT6EaP$YUjRp?)d|j zB1#g*&3U-jH}%hyJ*WPZd&AO}W;Z5w2VrdVkdU=JIxMh46Mml#LT&6owU+9{w0;Xe zt(~G1=+ya)!=mGHAqwKiEyLo=yvK-t4p4v#GJsls-@A6SRXw5Wp=ZiV^g1e zE4`>(RM}n525y&$7WgVNvHd&9f$NOsiDnpXqmhDN%_Vn<8M&%`*|V9_rO#dOmfYrD zjoC!~DL6OrA4>%{9mb10&(*?8w&!}}fnw1{cFI_;l)*IRgS<4PAfa)L-)n1=ea&TZ zrtxlVY}Ov(KqSL~(|^G*Fu;KcqwK{8??D|zW!Txi13iExnuQ+0UzGqo02|=99=oY9 zpS{cXSISt*J`+`N_9qnp@qA$1LY1Uoq$%I!AKd%psrAm4>QWT3G!v3M$0y2a7WDdV z_6Io>Smd#=4*g6#YX*AQRDZTaP%<>g6fF~j0~U!3KE-y+hTnSRdy$QXPe{Hkh}pcg zgqdT#6@rQH!RYq*i2s~#x%~3z{)*z=9g+Zw>R&))i+cmo-u371bgR;NUI8zG5O1UP z{P6B@8Q9(W{?&Uh#C$mS1@YfrSB{3(qtXAjvd_QaMN2DXlW(>6`;S*dG*x!aZhVLJ z(e9-z7KkPsCYzy|)NZ2?&h8uo!DKjB51t8Eo~+l4DwxXk#iWNbTb@(RkAwh>e4VLj zDtC~t1_eKoOZKHT(4jlTgvUo2f6EmcClFuI_8UNg2HR~tiM|fGJOR80-#9$R8j0;Q5o*K$6 z3(`uBgXbMTD=7$t?yN&W zMNB@nW#E61%ioKv<0^iObr6c|(GLr^U>b!hb*mvy+5?FAH~<`K|B3i4`0O-0@B}bM z4n`+#te^6=SERUu@;%82^l6cjEQEN%eXP3md%4{5M?gSc;YvL7ft%!bWu}HM^27qv z)Y>h~11!5_J7W`8zH?toQZKx^TaN}m)67dJLaHEcdOnVRko7|R ztEM)VsdI0g_sR#TshuJ73BfI2qmDoD)^EAUjsa?F;L3{t&mW@)xyELeK}cd!^7e>` zzDU4RA$WZUia`W=0~mtxrO;4fugjaQQ4waPsrK-xitB zj|;#Qe_tRfZPZ$@V8ps6*eH32o^46$E`a>X%tMaf0}rpBJwf)ROPmk+Xk-B*^`u}N zM-Q$>wV*`^Ko|-Lst!tm`Q6@(NreJkB&jeJMP2*q1X>`;DySnK_U^V+X!YL53j=a7 z#9PKRCp$R`8BPW63u4ShF6H)DqLy~D7%pRhZ$Ux};C=edRw26WAQh(^_D#S|s}9so zwlg-hCB$nZTsvpkPK2VoRISD)1J3Yl%F4+{8bH1~)^0AzY}~=8@#KM=vvK?*QESbE zn>RU?F1gre+HDu&4_az~75YU(AJPU-OfS54iQt;_XSP2Ja5 zi7|l9G7&L#=&Wpjoe-SiBiZRnlcb)O>23f6M+f!cF2vyh{YYfdjzhgk6=TL3P_^=i z;_8uLQZt{HVtOuFlW}gO86PXGy<7TB>rN2h03*Oro`Zb)Q1)}5WlBhg&|?-oe!)se zQ3TNN;h%bQ$i6yt0xKnY0l6B09S755?*6CY!}(%(^7&;Z&@lvCMjv(D#QHX-p&3F^ zM22;-Uuz`@opKwsoKS#D)UaoJfJF0e!w2aA!vgcKn0oUOHWqvovHJvU@Zp>>BC#9W zgKg2HQhb($5t1l#P?GJ5{b*dKNxVBdV>u2l8?q4sX1$*3uuxKJg}Y?{#_P)kO>YQRhA{%PpmE=Py8#O*|hn|;+d z(s*8a=s&m*+Xk0!mgs3&0ZV`@BnPaaC`Tcjr-?27vlkodAO5@4hFkb>V^l6Fqc6;0 zIeul3(6>JnNT`p=RQg?&evO8?Ug4fU|bmx z8O1ZdzXurp$S|dRo0$x+S#h!5blKx~y!HP$2X>yX&bmmC=%&c~N8d&R8kS!(M>;vN zBGyPG339{jlK27a8SEVJg}8|+_4)=_=TPm4seW8&-d>P7KH3Lv{_OD|B~Tc8RNykh zjR>~!sD*Lqy4BEs*|#e#jK~h+MBB43llp6)4hOxQ^u&MFA%08AGRx?3*z>byad`M# zSWJ6$D~L{kb)9lgmJ|Pa-+{T458yp-W7~{b#;b{dOx=hc`$h#G91blK}p)3w(lNu8B%x^h<@J7la!O&AQ~1y@O>)aK>tAY87-)5DUdm*i{Yb4! zp!1u|IuJ@j`38YEBwxbMm3T7TJn@6B?2BILFyeJt!zfV$0SX4&x`@PB7U?q_yKP-? zjQneK$ba3yjhpJ8t0ycXo4tL_uDdqpjff%ZVB8XK%ohV;|9bikt@fMyH{0)x^I7g_ z0`to_`7pAnwNToQWe)}W4lG3nn*CMckcD;b?T`~0jgyI&4KajRjSk?y$H(srt!Tu$2Zt= z*V&9pi!ujFlUPw&_fvGLijTlY^@Z)9TuuQ7>F3{IC`;?_)rvCeR}{4UL8`&%tOR2-<>wsD|D&HCOCzIjy~g(}p!}ul!auv~%h)b+>iR1_ z(nh^r)>eD?LPPG|RDOzm*+b7w*)$W*C1_hgMW1J4W1RAYxC;Y8ieB+!9fI#W=YyzQ zS_W&=-i%D`jmNtgJI8w$sM6`d;MkEH>ohqu>(Te zT3&;B@y?EB@=XON!yRqR_z`lx3iLXqirA(O-0MQA1!55jw9|XEvC&Hlf%w02n4w2x z=49v|R4Bb{kJ$Ngjs}iR^ZDxNV%Hh9E3`Fm*Rk<&b|s@|MyAhxyU0jbg|Z~`fzy9$ zyN}|!sgft6GEW_=&$Ycoy;^AG+ld7{k9q3tG|`pnR^S(Es5eFtw;!B`B>=7N9Q)A= zuT^?vnuQupBs_d+nnM56$*)U~Qs&nbZaT4p*6OY?vk3inq^fF4cXFfZ>hF#eQel)& z)B?P=A4!={NRr5^r}bPmPngAeFci^DN?RMVoXjudZS8h0OEF{*#mlwYkJDL`>fiC32+#c+ z)aicEF#4n58dDXyjXScWl4Ci@dcW`{AfUk??f~7whSQ2voLRS? zVARi&^Av;21il*wI%h=wBjPsbZ*hB7Q~0Yf4(C(WYP5gd`@EI=dx=?YgkkVm7y{M! ztV==Itf=-SK}i00n;ZY?uu8n1fb7FKde|dhZ5{G&kvsa}cqNa*HvTXQAygoqQIzaE zAOt@-FrColPc0koZRy4D2|(}9=ERcdk5Rt;S`h%YeP-(k_Pi?N;f18GrI=10uQSvS zY!~YhmnmDJ9dVtDt_mraRJqt^FPBr44YE?w_?>a;dxH2;6C)tvyYua{Tly_;u;(V> zKd=8dr@F|4Ilu!X)a*;;3|sqe?zPq}oo;jFD;?2*4C;QKb3finW&kn$*C=8=cL6H z6xjThcynRTb}ssO7l7HRFd>rLWb~+H)<3lZ2Q#y1>-(x}Uu;LLvicU_X>g{8ScZk0B6I;Qbf<0a^0=2mO)!f6$+_ zf6*V}|3CUubbJzbUK6hcfPs$WzN`UjAf!Awo+uyuf*B9_-=5wwg^*x)XR~ZNGa&$N z!UG4^7JN+ZF4R;z>8tBSDRM>HJUBp~nC18r`cE?Q>pM-2# zj}^{T%GkrcCH))t@%nahL(2RJSs6}z&BEW`-|{!`6AvlC@IkfIsX+hG2MGKa=mX!9 zzZ%rH8a7sACH?N~V2XL~vvnPystR=6G#_Fnj0)HRB$$cn@{RyoAg=|Qkdt!-_s2tk zHUaqqPZ@BhcG)wl*!ZU@dNy)^)l5bNLC@C)752kJmYeGMIm%ztwQ{>I)1_F(UnZr4U<9Y z`~n>?rludC#8$ZIw#y%NQVZ}UR7*VW2_QCnPej+q7qUWT(vO-ldaxePNCHfx% zRSiG$D$uT_Nw!4y^Wf>f4vGqZYc=@w0aM&N0ac;Z0H(HU4{dr6#mKk-T& zkVbnSByz8R81jE#YA6*C22hnp7k0w&r8W4yPT_#O4}>&Y(~Y+(O#L{vKwUzi8yY$N zwBILB#}=pPZ-)7oysRiO8CxFUTN-sh-UlyQahSoq( z)`>zT>RF$|$W`m;+A;$ruE{JDKGqq>DZ8kj27l%^-T~+jv#HZR=#S(*>Gu1VQBV6I zEG2lzgA~pmqgvVnR5cVBH%S%tI55~oNt)U?VH@^(8x-Vk$->(sNvJ6E^BW=f@2}Aq zpVOwUmykDHz)!q95vZ%6`TBj)BUVwoK@NH5gx%7u7tCYiC$NJLHU{nAM2kT zY zvEj?@3sDvn23{qIenokG5`BYul8t`2&x~qUn+x9anv>s(g*Z%_{r=RFpDA7$Fv=Fs zs>#z=j37FnSouedD&}I;4}$)`eVT`V0J+*4n|OFv3U@|e zLjafiGA^ueLs?&iP`bB4-7vuF_aDFpp!__z7?lG%x8M0s-ABXS@mH#^x~p<|e0 z8d0b6?3RQ)@vf;_x$jr&XycTk{hHOv${wccF{-vQ0K!2=9E?b!rhlOlt;ib@V2uziy zS54&}5(bw1WlQ4p5nj}6PpAPtg{I!R3s+3B=7NFRIVO{nc^aJN*-UMSiKmgVWv(Ai z+XtN+qCZU<=CK=&;~sD-$=tHoEIm0V8_>FpRb6wtqSD`Wk=^qW zst2uH)NQBF1T$UKoWhXVS?nP2QR!`Rya}YHWTy$BEx(oJ*cm?c>sTo@-OE87%Q;gjdpJO3LfhvMfrN zKKME5CbEs-h_j&gRpdAOW{Xpm>lQ9#)k!IEEGpWOfRl{Qrp+4FO66G77tQ)}>TF;` zNNcx4nm)>?Nq@x6K(OQhwHq* zqUU}boJr2GqZ&8WyH#nnG|xePg~7^lF}QNBH=nk$p=Bx-p4P}U#ItW5skCcf?z@(9 zHA9Ssy9F);?$Ix;maRM>7N(e1ok;quWLOP|c0g_HTe>yZ#OP8!Ec4?&qq+-RaI_2r z$uKb7eUVHR+KFE%eI239Q10F>rfail&+~Y75&741M&VGCv)%s8<$K@dZP2&|7!{Of zjZtg`CAFBRdGP79C#PX_2qu-?d9lj$9M?w@DhaSb%E}DNi`#mnD57}sHKh!rj)Z`)5|6ge3oHwN!li@j#{IMs%nvg;rvv;y*zKi<5nA16x+-ZOLggfNPz(h@DG+ zuC!<_Y+vQ(k_dDyD)pGaSA*ZxdciDfOJq;h@jXOk+s6<{(!~-P*|Q*wwDL5JR5u+# zoUOnI53F;BBm4=Eb?Y?8jCiCpOi18%V zb^(t|BWr3->-U+ZeK8N>evW1O%P+QeAH~c^4-|&=qLGYo^q@(bu+ASG6zX}u!>3Vc zn+R>CXH!pLWk|Ik zdELLmmBw1kz66F3pzs4cH{Us{sRx9+kPS#j#{jPDq$fJyn+H5XYjVRFrOiy$WYv}> z9+>5d@h`$VhT4!neyi_!B~L~fVS>%5p2KQZr3E0san$BkRG7Z}Qmq;c2e`B$K_1#X z*$>Y3_5b{i6?kYi7Deae3ETKlCZL{82K_gj8go{0hq<#viUdmYy8tv7=&wpUK4_E( zAft1nit@J`X3~*T36hDfQ0MG=#mYeb#g!EWgd2Qarf7tL2zOp8lmRB*xD7Iw3lxYm zzo=dICNIJSmT(TQaG)%xP|hJSHACE0i1)xn_D1(N_VcD)w0sh`9h~@wy;sNrqILl! zzJ|OOXDzr!Y=qT2us1)WHRGaf4BIGS5?;(T=zxMOu;CiYck9&>Eaf)9(9`wcCrD0( zC0b+6L+sP_#!J>oA!yQUk(OqKRM;8*0kn(l`#rF%j^Hx;t;Z#R{nr2m4=KH-%y zkPy~yoRuL;+9%H24(JgVNQ^@ujn)pUiUuNIz>TBdQJ}TTjg`<@0AbI#4XCGs0R2D#uI4D&nmYV~Qjg3#)b4wl&VqEHm9E9yVBg*hD!XK`N-o|& zwy42^&%tPL?GI6=#+yed3p#VR$Rd#_M3j*e`VI*E{6_mH@B=@ZtloA_e~A6IZiqww zyw}tg!wR$E-bM|scNDcfI%>!RRu_4%|A*d=1BCHUNV#oF;$GM<(;>6_CdoRP#K07v zHIIrE${NNM!d@E%l|(y0;V0U>7bq~NBF~veHFPAJTty_*QvpsoVXA_;#5CP=o+{K+ zLlv!H7X7t~Z*iKGEvt7!Oq0bQkWCHCvHV$~2C@_yA7-Qm`W>7tdEilUIp_gT{YK0I zDuTYrw#NcnM0~hKd66Q4QO<`Gfd8!4(BFYb1)Atd76R~}gzUI@qNO22O@AEPU5qNS z5TLk?zuDAi73zPpsgkyU?NlLy&SR#(sv_P8B~;i5Ae)+)1N{L*&8tp|g{=X?hC3qp z*Qh`ZFe*?3wo^p(f;&8xofA3u@qZW^PJ)QpP`ObY$#j`Xir@y5OOiK7Z>PN!F{Q8v z^w^elPi6R>RBQ0^lRMv)S>JN^u7!;zODlqRw86FRFO0bL=pYxyb|N*!@mw&2h!YM!|At`}CdI!ji z+c=>JT328Y^!Jy(JTw_N%*T2(cD>q(t|h@wQt3_XWS3%B8>$hS#@3nE$;Y@v+unRo z#PJ^8h5Ao!zz8}FJV0CLj9x$n{7bMBKJa@g(1CRQ2Y_M%ID|a19{gU$r_1n8lXF3? zq+4B30tz*`fH=Yw-F_bErlH3t*0Y0@34+68X5hm@@8UBHRh$w*?M@2`>%Sn?ufwWd zdm66kCy=Myg$Oe(nHXHt&HPXvZ@}NfZonmKYlHN= zWq-~4)3sTX$z_t9F_i7}{ce_B>QN~3{1Ny*OuH`sL@vFenev;|`QT!zEjp4whXU{c z)j73fSIn&hRg^;_?&-xuhdlTa887Rkv=d%@I1(rxKd3wGG6ed<92gkCRBu9%w+U}u zCaP_dH1uNwA%6}o^}sq^d_jbiyj513iOrdq>r5Q*rCao$VtS{P;M8eKhA`1MY5rhXwzYc(QV_XOII$> z8lKD=@i*DrWU^bFM43)3Go+UY@}@=<|EvXk`GIKKLO)JSSOF)@i>11V`6YJ-79V%SAREnc5pU8JO3GXUhmC46yHY zjm|!rTX7vMfGyEx8nhFVB~7$K>rZiwVA767OFgMpg4sJ(Lp70&vMb%O=1Rv2Ubn7m z;fZB3py(KK?o_?G+ScvO*;6z9829Nh)CawV$YBaO=a&&97FT&5IEe)wckEw}jufRy z;@=`vD4=bRS021Mh+)f3t)t29DQjtL2*O%vW~J*ZYMq%i10)VqjsZ*g8?9Pth z<=NVOWi5Xtt(QYPTR%Fi$ZVw_KZY5jus$l=e@|27TWrwz$jN3RVtqEKJqPce z-}|8$Kl>$^{r&~Oe$>sQv&=i38}e-OOqxHz&cB%5-MTEAXytZr+M6j6#tSXJTNcDl!8n40QV^@xw9Ap|njq#6(?!C7(1v{m5sRYwF_u;58(eJ77?D(q0` zvSwr1T`O^E=IZjdxkW7&Vb0%d%cLGY4UkRV#S+GjfFZ^Q0<`_uX#T)divqfxrbv95 zPJ-*qYg>41;h@hXRwvpqHpKjK9u>KG`i@np!M0x4KDvwdV!8RemyjcX{umen??%gH z5$E1!b@csW!KO3o+L>gF;d!oPV0_p>8~p(HeRO%` zR(oKEP2-+Nq)P%+~Pqt~Zzff8w!kZ;!Y_H)O7oDKFM~*wA z!HnH$-|`ZB(3@NBQr_H?hX+?t>Naru1k3rpA@@<0Mcp}5B&j_v1euBXRz{ePPkTf1 z*vDx4h)|0jCp*NZLeh~X5k(9r_2^`Qbl*a5Uo4)7fZD!9yiDlkWQ>SD%rQ;E+e&DmIDh)lv^gF5;SgTm20gj znd4T~9G%P4QQB@+= zC}6p;<0Lm>#v%H5A2FEm0YeD60A1T8&ZrOq;?>TW;z%;y`2N9fyY@>MV?AuL4@8X* zh_GKDOQg+tBjD06D|Nnh#jny`u&)un?EKTJ^+4J4-1-#}4{dtz%pM5bU%Qi(J~04| zAMuYaPqTU#$SX%zcyi)_@0}Wg9o3#kL{O8`m?|V_M}{IgWoiIR_G~N#2KV;@7JB+Z zWh(B8yar0%yNuK7C!VhX^{PKR7hf$e?H$fUVBh!kjj4}*HMD-oxK!oTEMca`0K%hX zv&k2ZGr~EJ0It@BOwm+SQtZLUL?f$%}pf`8CKTj5wQYh&OSL81%@2H(r+yk5h;J$^m ziHni_C**hF_UxClQM3%ayd3Hieaanc5-fa;E&?!DC&xo_nSb8iUV1(oE?d>+ff@!H zm4}a=7pCf4gA9M2tq0`zLi4hO&yS9Erz!e>k2y$ZR}%{l`CIr=$`UQfE;0C3O@QIK z-r1MFG%{N$%Ft&5C1G4rL6NT8Wq`vM9-AW#;63qNJKKaH3umw1TYlm!LL z-6bYZ;=1$k-nq!``A}ZC$j8`Kpna}EC$<71#BkYx92i%wLcPujW2k3S%QY(!53cEH-8Z2ALyq!U(f#jaV1!@ z)e|m_nUUw7I0|L!HbB(Ci&Zd~BMx#G7YybjuRu57?eqfTFzr~~AumD*cPso!G*yVP z9xXHxZ_c(rEiRIIb$p9p_Am4!?Pa&mDeFM8~FXcE$PH zPF8IY-OMsFeyK!p=yj+pqb{On+iy~eRdRG8e2rZ}url8p0PR#Td3M~NSDyLcPLPa( z4SV9pW6iU8`aPmQ$U}8EUKDe$-xawaOU?CT6+vB&WUE7A!7;Ru-BwdVy*;eW^28iZ zh}8>)D|B{oak#Dr70>%VIK0DnBuL`^7=0S7B=&{19Td4eC+}INj9?qAuT;HQ!9PH_ zd;%+E5MkYirdhLsiXu7u1O3310)1n{C07VG;KDPvTVIVa&eZH7I49LLi~`ZmYq=|M zPd~kb)8RPJKu?#N_y3To-(^QR2Zs8N)hMRIW}wVBnT3v$cH((V1T13Uah5$$kpg{d z;wd2JLjqg485;O968U+KQj_QDKZX0_K2k?>0hJYHx1F^bRxk*BwJ^F8h4hrY(FTW< zbV-VTco9`eWu7NF5$qNg<5PO@oDsnn4QzGdl2ejpEG7_wmX`w+30nfBE3HVA?~(tI zT&9bk)-+jBh}nM!(%L(b|6TX1M<$m6&2qIjK8|cG0|nSzu)Z<-a{4FYzBGj3INIa+ zuQOnCnDEl~C#XX5?cDu2K;Q=n#gKoC>|>j{H$flsVa$qZ#@vrS$yfcF!GL1@+`*I* z!n3E2^L~5^Gtb0d1!N!kdh5i@bNUIaNK_xex_jz6md z!7W{oxWy@^m)8FXH|#}3Crp8k4>bz}qeZ~TgTf4wIto{9BxVTZhJg0g9GbVJ_v?NZ zcI+#IH9o2aO$r*qq(}_@uav-^WQ(e&5ZChXB>fYz^@gDH7JAq_)NDgvf_(ZqS`*Ek z@*WmmOKN6(6Cof`UqiuJarg>p5fcQVhd&_NSUsB}VoxH&rsWT1=cAkZbzT7?hEyR1 zmWI4Uk{rG+Llxr~sNY%>*((Qk9_x;kd>rl0Ia2{G=t^n(MfDph6!Z-YyZ?1heLujk zwzXglX|~)_*c(s$FnJTW+3^QNkyi-EtDLj}R3%W3mlK`$L4ZU3vymdAoQMES6DYRQ zZERpk+W=A_{pI_uUjH*ZKTVXvLtjq=!P}89PXl>=CU#*+NpXuq{^GCM2vW3HQF=rUE~AA4J>mG-G*;IBGY z=TKCV6AAK~x>cq!ejk44Gg67*Ys-=sKQQEdJO~D8*w}dW%D=~Xz?!?;R$=UktvL!` zPnvAuG%S2sXx#~K4ipf8WW7(2No~@dA-?4hra3D$n61@KsB{4nx<4G5Qba`U)%}zz zO|=lke~pgN7fi|4K?JbNcAs~L8flsA^2EJER=(RQd&y_tLLJhgQg!~I#tTPi?eC=#KZDt{k zZwxiK(6@P{^Xi6>Nb?%Rs9l!9n(cqZ+ryO(k>UM@ngu*|Dm~lP(F^&N+2T1QHB7z|*BTJU80as_S5EtZOT(NXj};7oy`WJ|7ZeO8mGI zMGLE1mw#jV5d|b)$j2~wDOC`;6~j8IDB+;md*+lc{o}@?lX`?^M+s_NE%aC^$%}&P z?o8&UU3v4|>8u3GF(a1(n@I_I_ncP)=E&&>m%Q#qZQ8QfafOOJ>6%+<>VO?9QgyO@ zoUt=1;MY}t&#ZezH<-t~=&a3B);G>QA_A}N&H^@yVXnk2k;Q>w=2JREvrd;PQ`On|5!rJ zrCIL6!4Tf7KTWRda}&2g)MR7JH?pv8$<~I0BSv#!yQZ{0;mwPi5LhawyvEar0K+2e zuR}=DNCXYi5oLbt)K<5JYL_`wfU;2vJ#8O}qOZyfgWs->ObcoLEwC=7 z)o0&4fN}Su4B_%>)Xm*T4IApxaR%;X#BsHKI+X<)@ywK#tJ}4Wnhpgs{B!AXkd~l{ z)3!L)y<9OK<=uvXtvLD4u*++zuaNOCD$tG_yFQ;JUm(2Rb3idHUlJ0qmsY%)SiK z%FP~1)2VSE1c7G6O|6pQYe!n?dGA{6+53W?wCV3)SgH;Cg9N~qmTkdx?4=M7Ea<1x zzIvB6&9n!V6Ac-hb0)6DiAhG4E=M{xpqnbDSKe!wTis~$rd(VLP_=384L(9K7$ej> zx=!m?v4Lv}RWXjW5tj<^QF>JBg$};9EItl{>tLm`HqrDA&vRH$pnjgk)GbqT+7091 z{i$}EMb^^b(^LbvFhZ+Be}6Naxe)0c+2ED##Xl{dGPN&jM5LqYYBplSr__wqc`Vu{ zIjTo4#pfsmA4q~ym~0HGzYu$9;@yt@iCUQv+cKL115u!+f@#{rqZq=0Fj_$6Lv0~3 zOyB537}Jv|qU-&mJCi=&T$Kyew|C!NQ1r+?#|~Ga^Aw1o^tc$lD?4Mb1!#wP2_I>0 zNm~%df+A^|QK3^nE+LFMd)AP+?zn+RHy;BW|L)%Dv_ z5K!%GM?XqQIRm?Bh}poMH{qA}ey=eZ?_mKmZ%Tgy9B))0X$?Gsc2A*z%gWoIp=&>{ zIxkL0K_t#Mt`fyu?uv~Y(U$WgH6PcDGNHL-nC&(_dac^$uaWMa(LJrP6+h7bHmg8Y z=$N4XPmIsMv&#R#_|(Iju^BA0b13W8_2F($)euTTwDV+}aA!|?KdFYO*qljt{yk2s z{2CFE-myMZ%W5^eT_xk+oBD~4m45~iI&y4A$LEp}O|}H0{LtU)X``k#|8a8C^L0e{ zeMRmcNx>EgGr?a;f$smMq##@?&RX&T#ysgpgvGcDD3aI!_g_f?cF?OK63#*G^#4~< zz=#&~S5nX<00!3T86@flcSh6CL?}YCLsCa5Qm{?p3eXk|XMeOH5QwP(L0mCDH=(&4 zfF4`lQAH8}ITRIFUwhhV0n22y^;y_Cya9F#iTOYifR_krUMo+c`qFKU6(jlHQ!J&*qU(faZ zp~S&*u_OBZf)@9_ZL5cj45<3-z}R-J1Ju+vhJUPhb}G33@RJ1e3}hhfcklDjc5Xim zha>X7{y0GVbsXXp?hcWQ3-lYppQ+NFJQ7#zBq9KNrWAL-^@dlCBWs-+X~aj3_HG*M z^&1NV5DE)hHlZ-Fz30%b7TppaT^kR#Xrpfw)fWE0=-V!~5#U=HZACupV{FRC-sMx+e1^v{HUP zO}0Wv({m7^go3WRf_2!d3!J+l(eE=h>Q92=9CR&4fYLP$GD-+liiyra2Xx~~Uu3n_ zfmedc1P8Z5h|NZ|YZ-7FZZd9>>4Iuz0t7wAL7#WG-%(sI*#NSSc3dJ||jhq5cw>jJOQiV7#mgtujbg??GfDW_jtXS2aP z@5{F&QZGyh-Yh8psd-JZT!8($`BzauyAKgHv&+ef8*mJ&9xPW8Y6_ZgZaGX#=)jk?ZD#<9&@zPw+{Q)!yVzet4XlSLj=SMyjYQs6;J@ zd1HKvFx1q~W?7P=BCXN)EKi|8Ev=SDW5Vvf5`B+Kh|gUwIe)&In0+#Qjr<+|=n*qG zUQoxpqXn|6((MwR^j|NbRgH_%Sa7@V1Z>?n{O<*?kpm~rVT*JI5?Ewo++=}iz(K{P zLCG>#V=cXy(*6@*QC8u5AjbD~6+fQfx)3@A(8LAcAiLN2l)?1bqrI$kzY9Waac_FR zw=dMJO~WU!{uD>gfiB{y)dVAHM?dK$#f9~qweS7?65f*)VlR=UF{`L_(L?0&mM$95 z`YwPv3^N%!;plGBNIJ9}w1a$u+brt#@kCOZi#cH0Qxhft{zq#x^jSRQ!+xx_%6`|k zIBN0VsE-cl-it}8o-LFJfoFHbH6^Id0l&pro(*^#>@xH&WiAUH#8C?e%=tQf7u&wJ zNRP6TJe=YcaH1^IeO^J6ZjwWeV-0>1b)9n9EPjt5clPoiHG*Wg%@WLS8AK=}YR1WLXT zPjF`vI`EyCFG4*&tQFL*H`RU|Ae-#ry)i315iDmKjpcWG%D#NndwMVnAYfU{GJGcN z9D>Y$bqFSwqmOL*B2`^TNA#HcpQZsnJ-mq(gl827an9{)iaP6EXc#&&a)R|zwEW(* z;G7mgCu?*gBIj|5;S1@dn*^9x^U$l)xpf0g1Y8YPgob=l^Z1c#y?y|3ty6a(qD>`` zNhkUp+c|ZWTmV9-&yxL+r|O7diFQ{yGb*oqz>}s+QM>xs{%}6g1f+W1>;<8gIBzTY znTLqIq?@p}ep6og!8P(8t;zSg8bduf;N5Zn83Oq~QJ)WBH5tSvW48c_*`JUd!GNgG zl&ruRbYMR$r0-zRjs)`9z>uyXW@C-Mdf?J4=BS@~Xe^t9?4cv& zI=|~W>X)Rg8(`dElaE-u*yksqNnb{s#_kjmVZERnuB#3h-Et)4&pUGLC&!Apq+>~R zpULP^8eEHEK&m>Tsv8rj@suI$N&zL*)6!H>KBgfGduG1l;pzcJD2Jx>+}wy=;g@|8 zMwyWdryNQ*KW424zMhu#FfGm63Flcuo=X7p#%vz1?Pmzx;O3_G07#+6wt4Y7uv7~B z9~_P`mzaNSu0LV*fG+L~)CwQ(;6&ORR}hN{8b_mBR8kcQC>qNXj{j!G@`6$zoR+81 z94BlJP2<-Y)Og{v&c?~Gfx8qOyy!!xt%fFS$gFx zXW6HN;LV0qOb$a{>G((m^Ddj3DNnxgXC4aXgHAvZu0szdk~USiyC;_->@GT}*T|IE z%ig5An#*eA6_^>P&U1H(|fJ zvl%LZ4VClJFXTVbm)ub3!lWqQ|@vpQ1aiw^|y{9dh9Wz^ip5m1dh z3u{~oCy|iThnEvU0H()05Q-%nK1m*HAGsQ*RUMv*SsKUwC0}8>O$r~i(P4E&SXwNk zYEz__@`kzv9Y)u*;8oo8ZR@TtqiRcc%Fs*Tk#7N;?lMHc$iKnzV8UorcW`O4G}MdX z{OHXwi*`P#g*s;!7R7!;j@Jysmv@j_%ZYCCX#}~gbFr^4HwW`IkO28>*s?`KNX@;# z7`K`^JtV*4m|}ka87mS}o|SFJ_EZUL`Rp!%@d(y*;DMS!xL~#B^R^M5*=#$MEM47y z0wa%2LrrWb+hu$b&QH2vbh8FyyktokOwov@>&Qi7DPy|Suo6!#tCIe?^zBqO=|zQ4 zsqCE%o60TFJ#5s@98~nET=p|n$ zDgwl+tj>UJ41apZC0}*D67=Y8eQ-20;$`zj90g!15D&PS769QR#({Znl6!Gc^kGXs zGEV?pzcv?;M6i!S4j_CG>;Qxhm?t_K`V=tCYiWsQa23^bK)jLx0kpr6(SGjTiak^r`cpYraeqv+q)Uw<~gZJ`2di0q!$$VR_O zw{(8tU#?eG>$d)l`v5EnoVOV#zwIEOx4-BfVEHduzdr2$>k(RI41PHwV1y!}1_D9> zyu;nz$%Mho-rmL3iHV8rKZH;0MmxGM!|We}Rzdw^xkmf$Y&5M-?dGE`U#dp!W_Ia% zj6ZJ)NmuD631=ow8wKC-L<=>?nR=hRDnAqi)-*=3{H>o$|A# zMoyFN*c7D`XtfiDJS#WUFC6a({P`{KN24W|!rFVuXp3I=dvViTbF;s8adQK(@PYYv z;lrQ)zZX8D|1Nyg{$2P`X(BrF+3M|0-uqan6<``LgB3A3*8mni{KiNEaQy}#!#xlr z0zhD7WZ^3ci-;n1Scm86NT0++y-PG?$Ho#nNHL#SD8F&S0cq4HobW$?qo^=|C@R_p z@u^Dz*(}R#daFhr#fb96{{bW?2;dG4*z}VTBosW}^gYQ{ zBs?eMgv>_wL}2?wWLf*^7~yx&>~~y=uN08`-kxY0qy22{E3bUnUsJbm0LxoVGweskLknQxgTEY% z^n!h3xHrLOp9R(%l#BTlXQfA(>S2D{1{_xdq_N;@4&Zxk)!`<+x3`c+yiS?{9%_K) zZMy+rc^m#~c>|8qN^kl@jCNn54mZ8T;!{)VE*={89LqGcxmUg$5@Ymo!Y<4aK7GfM z@#1Xpc@n45+kOc7?w7n^|3|M4{#y=S0&8D52yP=$?(}^2G7_pIzzeAmNFg3`VGt>qAqj_8D zh01W0Mx63VVx?u6!Vp|0w~~BWKHUar-c&0w2fO*Al^#_~Q#P;HaylUYYTl436M%lL z*S_dk1Z)DM&Dy-i|7iSQbiGrM91PfXJGO1xwr$(CZCja)CmGweZ8KwKY$Joy$y?v4 zQ~&>+i|*>`zU!;ry`Q}nJ=^GN8p=>))KTfn3szBQzUf_| zX2$Z?*}s^#WnQ6R39w*aRJZUFAWV=J+rEixB&ZORAR>yye}zxY{=dSf6HxdV=O=@h z=9S*kd3`^*#meG5W29v%l?H{dN&-C);Rou0>RySOfFN5QoO0d03P z+Yx{SwHjGn#U_IV4@giPJ=lU94G)l`vvQmZ=YKH%_-%~u{>B=?NJ6$z&W#j^R3C(B zi40Dy8l;M1W$FugZH4kdOp}I$N((XIXXiHxWWIIlB`{v_cm>#fJ|~gj?s^$_HRa~M zlA>onm;@}pD2mUVh6qWdvdMR}CU5DzYbgOKO?g3>KnBc;wAWa9p&a6tPrCw=qx;Cmg!0rQ151IujBoB1X znAg6jt=QK-avkYDpS6WEUTq9;X);Qdm4r(3#fdqoIq{{8EYkK^^mgZzn@Pp?CWRz*FJUh zhKvy!)4yqTTEIquRiE&XceQ)lFl>~QNdKT}H!%e3?V(7%8vbd@@RHF)exoP!hC_HP z!FAvNSML+MWnmXT;BNtU#A-iIT|wsl`IfHouHT1fvG=eVN%z6}E^9Hrbqr}C;&JOnyQsGnK@^^-Tn3k)+A zS+SwqQhy!h^E;Puc)sZ)f;u-MisO|XBjTiYTaE+w?M2+54tBHUCn0)pW{o;2;ULt& z?_%QtqHozP$B;*1S=t8|M6AUN$R@8{Wi3fVSOm6KZaU(i6X+{A2Em03C;Kd-vfD2J zmM7I9JUpx z1>1 zd`@?e<`wa@z$RN%UA+AKJt>}kn>;Vg)U{Qwr`WZK0i5)EMVE}nd$YoFfRaT%-)SlX zLQUCj)JyuNMwqprIJhQ*+sImy1k+3Mz{0Byt5tI;I38?th2d}c1X%b8dxk*9uL2Zc ziFd3P#%VT*q4cg#B_lnt_>GAiid*CslxlWI;qUx_cvZ*BP)L6bZla53E+6~{)Z@x0 zbTUd$143Z36^|vEH8pQ1zq#IKCr z^ol(y{^=X$D-xj{Lu66CYsZ!x-ZaS-H$(a?1a-Wsr*Z8JeOrDdnsv?y;U5hEN&~7( zfHszBS27A$A&@!(1Rd^(K5tr0!ew$>|3pdexm66BWC@qj@}+fShAr^iOco^usSbaw z>Z)2tOTQxXDVmX9Ty*3E6YA#4Fa1`_8hQpOFsge=(Pa;6(3z{j;TpxN0V__tc#5`b z7|_hzD+Z8xY~R5}EiU<)rHst!592h|A&X|Miz)fYOYdYOvSN+y$D7l^oEC_bJ?`r-xRGMS+pT!MNlhiPl*F z#o5}1nd(6Z93$Koi8c%#KsB&Sgg>n`?WrHk(ihRncM@9cv&)NGx6`~Pc4GPg%}l5{ z-{ACoSK^zr_#|XNHwvXxkO@tBy~5Ufr3#yOuitUv{6I->q(2&XI`eM zWJ9`+VLhX15`2NtC)MKz-DYvd;!7L_GSNYm#>ey$;cH|@FVjnYwiO&RlJC2dt$@?W z$m{|7IQ_Ayf=*S-*7$f%meYmAeO(zKi-Ygjbu9_CKCp^Qr5(C}aw8LK(8|o}+Y}5lcTMAjjhseM*U0pRP zUMz;C=kpY*TfuAn42Y0&dOb`+x&+pVb?D}0PVMv--(?70aclw^Z3=!d)bs;C1%CW- zn7EK4RX(@e_ayO#e<8^VyiN8NO2=c>Dz+HTo&WiQvFqAY0c;pn#RzQudLl^f~j$G0hW8E7cdjc0<%DNua|V8v(njSa!HblBG( z4F++gN4Vu%{u`|sVYSbL#on(+UmZ?kEs@6VvK)vv)3p$$GF7!A-9Gg~$ki25!8`ev zygv+wKTE1XX&yyGO{^m*s)-)lk;JXaOU}q`)Oz|(*EZ(jl;r2l;IxX}WZ{X&a+oqa zL!DBjmJLAa34ugV8m45+COY%IU|b(T%HD{HhL&N;u1uu>%sBvU&Oe&W53c+UrTmGx z2=nT9kDHSq5WyMS$DBIx8{BhBWyB~~n`B=wjQzBST?VP#kKTc@7SDGeNvjq3{%Wji z2_&jj&LCCh8mdoIZiMbP^Un`^0gG;fsopLJ)}Z?q^LZB%aF!FX8y-%-*sB--82+37 zu5bZ64H&{g;k9@g{$@ewA7!>BYklD)M`|MH?DIA@qwTik9*lLJaO@nQoq^9`j~Z2{ zPkXV5fKYbkA^Q!)x{chjf%K%?NSw5~;rYki7u^w2BPaJKO9Nkg8QhqrcJo--3d zKA!Ev6i!C_QGa~+TXmNvX6$$U#@9-RfAmY1+!>wPQ~^b!*6-fl@C_)lLD+|~|AumR zgHjI^KqA@CxB!NoZ>pQ_6h|E>0<9iowd|7@VS~s`YKUyrvSKn37BfQ~S7 zgxxsGBCm;^uWY>|MQ>D559<6)4S9${H&0RI?#JM!@cR-fy7)tc<8N3n{Sqfbv@#wP zNOv9%4VwM)g`8n6GWLi7W)`}>f_wC+VrNMA(|m_X^lt^1ugP=I)0PK`BV>>vbE?Ev zZv_vCDn))Gl{sa>{Sv>^Z2J75fFq#qrcTWHqMCL(RJKvxn*3TVHnyNkPrGf^vn=FsI{6f z)@K+^ab{_{bT!j zylzbf?~2$g zpE9>GNKb&DsX#7WgMn74`*Y8tu)q4o#UDifP{Sk&Hu+H%ibFP^huqXQnHJwEbN4FF zJ=<)!#g!CC6zkf4hm0bGzo_+I*y#_y6lWSb-PLqs`OafskiOCP)fhk$q>2XhDS+Ou zxU6%SyNg40>y?DV4|?}b7f)KgP2Mj`51(2_B|S_Iys$~FA*yD>%U@e|u-lAmfV&|%1(SoG(W6Wg8o0&1|8C#6HZvdAe_S-PzJ4cV5c z&YetN<(tzL{Pzbkc>ijiq2lRW?D&8{krcMVtTjnXU$flr16mQKr-tK=dUxOPr5vJ1 zz-XEXCa-E0=CLtAv-eZ?%n0e>MZchAAPIc~5@fwrB@Q`Sgj7a>$jS1INt;nAJ`PN= z_to8Y?v;2FGJD95v}|X^+Q-GczN*kj6<1XnYHYq=4~#=JX5hPm=D9eh^li-tOrA9bVq#`EnVQvnb!YVU35mX4H0Wwpn0G4(TxE zaRP`^ce5!<_a@BCjfGWi626~kii)BE6v#q6`z>AgF3@P%7>kOy)doBoZ=nuz?jebo zkR|i{zt=Y5FWcMscj%9|eHzepM9*^53g#EWAd7PM4Se|SDU%hy#{Z{o!L!<4nCEpmI+H_lDYea+`eGVvJ^4TJ%=L zzFb+g{!9r#DBy7YfsR+>W5*Wp-q6c=<>6uL_+t=btK=;g^Go zJ0{S;0dMl$*$g3&wX|MNU(V~XwX>zWwP}q2dGD{&Ko$g z2W$LPicfZ@bV_N`oAsk9ey%odOjq!s&jBLn^IQ5JaZWB@??Nd6<00`)LVq+7HPA}hnrxf)7z6+;&N&o!NX)b-EXDk&(oF(B@=Y&6uj!3;=tRqSB zG}{l!l!9605R-?U(;N`^6gm%OBP1#d8j7+NM>DAuecLtLF3ci#ims}N-J)%jjgdQ#$qb= z-_L7!ki}; z*w9Nmz!h5~%It6vL+?Ij_`TX%scOW<&(Ls~IYV>6OIli);F)bjm@OvJN#jeCtTYv^ z2-8*Bso2UnJ2ibTz^ofYn>T0PscyVyIv)F@-p61F)Up-KAV1GcOdVz558WoY;BL{L z6PvIfV;`^HGht4ASJ!>e5*<%n&3}Z#dvz>`wq27aS#2`Z(P<*R67;a1;V_Q%yYCXj zDTG^;CKu(6lsHYc`+w;96 z5i!uV{Qdswr8fQcc+1g=daFW24uy#fbdU;W8WoYDL&t>6@@1PNCCm1gvz=rjrGS zViOaloH5s~gWrDDWHE@6-qHzDXcUS}ihG0w{0`dfN7%NUS1NUdlnyitT5`QUXb5^W zs__4|{(AwQF^CZP>xg%jp8SiML^QDPC)Pgm0V#=J=aD`NqWI0^KrYKP?EwoRSuQWo zABa3-Ey7K}XlWW3!o16ja|D=Bu98>b6g>{q0B+JR5%h~@iZ*C0PX4%5=~t&dHJ@fI zyJRduZ~}65E^16*ANn>eF8HXSY*+wP@-8_1JI;?gk!Wmzzlb{ed;?1F2V20w8@&+V ze3LeKKU3Z!j@8Ft- zB~u#GwCk}Zn>3pQOY0(kMMZkW)(Ob#k5`4#Eq3(IrkkY8;Pr!PCyj}IY0i5j-a6$G zSl#f`CgFb(b+I7RLT7mjm_~&p?GA_HA?gcBSZSn#D0Cg$!CE+;O05KE^?I)~lLA=) zm16A(ajdk1U3d?MF8;}ARHd}(Xzffcp;IOXUAtszi<-;+J$wArSNd}~8H_DNU+3M6d0 zWe9xgxC_h_G~`lgO(bQOZ6K#4S?IH~Uc1dkAe_Q{N=!jMTP6V|vXmj7+jI#tV7XRA zJ`IfUg_35c|Nlt@(4GoG~i z$RaLFKmj7y0)JNDp6Fi^iKVw1$9l`il*nOCJ1~xd3B297L+Lst9(cs&^BFgP3k%LI zc8U>93j={6&i}#dtx1c-9Rdc56Y3ClqILXnm6mPHJx4FdJ);2lItCimxrKKnz0xHP zfYz%80<_gQgV1!cG{l57gmK{!j(h&9%x6X!sUSh%%D=;oOuC^D9;!V)Jf- zPSfi3FFcYj;eBpp;}3B_(GAS=y+(df`w-s^ec8qs1SFhZr!sO-i;E^Kw!CN? zgf%Z+xewUTNW)yEH!bh;@|k-OO15@E6{M}2IeHbhc^+iHf#63mGV9d&$Ay?@pWlp? zXkh`RptAP{zEWo1wUUv}aSqDntNQnpXehfeC_=7=*n1yvPcp#sQLQ@kVj4f>OK3MQI1B(BjNb{3M= zo-rBTS~)>Ec`qoAetDYsx9Lr-hE%m|bO*kt$p%I}jE~uw^XdWIlWuOfe~`P2c%9}P zb2VSB{7#PFE3S(u116qM4^4Q3HD#>cqBF2x+e@D)M@Psr4M*a`#ehzub~uH`O6yN1 zrkHFeWjNF$3x%1SLhFbV>|C8_?us!(0EVKK71==E4OkTuMYL%=_N6POX>saAYAV#e z@=h4zlMAiZRqz^1xwUZaXhnR1bYGJ>X^r8Ytt0ojxnn)GKI0E6hhw+kr}f*%v2Rl| zGx+g}<@NS4?jUV?ij198y>~8N50JM`sfvZ|Tlmzp!cPE|YT;pKUE7O%J~bYRV}1-q z=dFc??*Mtae@9H~05y1NAy+;O2v?j(8gtKF`nraLm%Ld(W&w-3&pBOmVH#*m{|wGd zed9=*zb0YFn~?nI=Nx&^n~{$|B|uM|szzBpej3nH=jl&B*>4SQL)noF5h}F}s<_

    $BXt7mRY*hmbZ+o(v9@=l2d=JyASdS@)M{dQSi^%Cix=&4qU@Mcm|&YrBH# z+f=3HT7by0+r$5<=;$E1My>{47`Hrn4}TN3%@=(rK5w&~j~ZWHE1HN%BJ z+_8)=t@PEqpwxV_wCEa<8Qc%&o)GkS8s7?-L(^(!J12RL#R_&d*4LxJoj*Ekk5brU zW8GwcmTMd_6$;BsXGF?X|GaUn9*!7olm{0Y>||{$DhqIZI}9^)8v$(D++`wcJQh|= z6j=^$O_FZ50_;iIB{ma)LL~BnO%Wep!E;vndJAN&`3>2g2TYm{GFp1M*GAl$^atRO zLpz?r?9Es{J|A7Md8|3kv%T$yqcQOAiYF`?8^cq%dJXaxPEV3^{OpbyOfE0#)Ns}8 zvuBz_&f|P3%@f&IbLdBX=hw|Y60h6m14N?(qXLCqtuD@=OYz!vFP zG&{isvwY9Eu$EmJ>Z@IA2p&@V>=>JkxIn6M?|CiKC7OZj6r4TT?G_gETS$Ut))qMI zo~baKKh9L1^-n6{J8KY9I|4ZP(>ApCOllPog6J zWcEx`XAN|JeGhLMD3xm&+G&VC6W6WyuPG zQJ~8Ac%xKp>B9ILPK?CWIHO+WH-r>_-;ts=yfwKVCTp;*)rSd&<4XVGbrnZ@P?z=o zE=RK*1Fwhqm1J^|OeS!W#3Jxx{~k^tvB0!8yjH(ASJC)C zm@n|C)iA+fc^|M``l1pZKZM!oF{sgNdwN>!1uT~`_WpmCOG|sx&LM!flJ~#GmH*D} zwANhyvfpx}UjM39G1rUri8}Q0Q9y`2kYe|WMLWUPRju~UDOEx2()HOHR>h_!$Be00 zlR2+l94G=m)n5!qSy6W*`c0ExLO5|P@**Q}e|?*t_PLp}<`AlYh&T%me*Hx!KLk@%iGWfIM`J_baKZC^(KP z$4~M2g?6Rn^`{>WIqGy}&z&NR0!oOys*_SA&+SM-UeNn^!gBR7mW}^Mj z->#s4&8i)*{btUCCwk0GAKV?t0H$``-p&L}kc17FV7SQkLri|V zO$8548!wLtTc85f5rXC$V6(K=ivgvAl2d5;7ykC!@_*oOz>h3r{k71ATsB~t3#*+C z_+il%-by4`1n?(&@e?2?@c7{VfXg(s%dr*sA?E4Y8zJ<5jt<=NXc|#VvvLjv53vgE z<^jEwf|aMo;A(v@D^`tf@_41uEkcji@&(rAmW<;3e9K2ZX7N2z72lH52vSOamL~!> zOH`{!9ntv$NaZ}62p11}MQT*5&0Rc&^ySBFRe+N_thUV{DLlYJg5aV@@1tT;xJ_zc z&W9PnChl2<6?$puB3u}zy~E~$n|R67)O^H}lR4i#FS z)j}QRs(8FR%neNO?`Y|W1WX-3S;*vO)87cLC|L9ONg<6#;K{z|3<`RLP!?n{2>Y09 zt>((t3^!Yj_aHZ0`KC4td(X|s?`xyRPNZsZ*zvP&^tlGVWKV;mizC)bQu&!dv#?Bq zdLEaW`%Hq^N%<3Zdl;XLcq;I_&Cf?OE)xgsKDk~Ny3j>@kcubs^J<;JE|9GNpcD$I z2(y5&_G$|u#E=r(yineLC;WtvKXZE$P%ZHXQ|_F90dVWJkv_`?fAvIaj+fp$-USk@ zUR!0h5@n1@5c`%OB|#RXO8zIYW46t8R%-T-LjGyeP9+CtpfV(>s;#|&|amEI7c_k_7#7iMH%v}UDtm614BoVVV8*Lw- z0!|S~UHTG3WB)G#4mVf*JLUTreBJSyGKk7J+y?{=9|!6QZYr1!2e38&KLlL208KFf z0mlPCz&Uow=7kFE4}Vbv3nUj=h=`K>sKT#<)drm}wl3xr=u$Og2~q+1RSB{cKJpt? z^YIK>N4{HdxabS}ioq=W)hYGHw^B$xK>Y|+`yIE3)7D!+_0!;%cgb*=R|ij8rQ49Y zn`LSludb-y4@4gZ{Kgb@$dWzSdpf@g= zT(rc77f?v}5D^mbj~kWt2Id{eftt%gC)uj^h+gN-Tf4xo{^=#BjCv{C>j1B+%5O}Z zmftns|4xZ20!n2%^+Vo7nCg7IgX&E&wjg7Sjc^>21I-xP4DveF=R?nfZh*O0M9HOF zpK6XZQcm-`r*x3svk}OqeJ`cS0T?))jFKA!bOxUzr$Epfry`Q&+e1#5v^KlsOoR6?) z^xiOiHr4C*-BUtQI5*+rmI7}~%eokwl7`mQ=+yS=U(ep1I`nbIkt@!e9yvDWGuHG2 zj{>!r?SM`$&Z0yq)I&P-6Tpv;oS%zDNyF70xzWOi$!&{i?rq|bsnfmKcwhT5Ucqcp z`Z3?M`yw?YQV){ldrl^oMY(|cpg+5M{Cgs!c$7dj3Y6h2d-c!&32WNCnH+w?No;M? zAv&FDUV(vwmBUAI+skF@0e?ypJ+C2iRMFeXcxVVA;?zois(<0^+o8MegSh#kYHU|` zOsGQVq5x1J`=Ol6IisAhMDBrqi-PB+=@EgwLqsb2E)-wp8`;Rgih|h(f?98s@oP$; zEnUt?3b6!{X?)t47V6TcSUjIS*EB`{SS3*N-n-img#Gsc#cWsEsi)Y~N3wG7J%Uw- z^C($uHn9Ee$I>%|o%EvAL{%SRxlpkUt6xcl{8Iy2<+4MSIs?^mA>I=X5-syQZ3Xt) z$qC*#UZCQWEnWbvYW1;RQAi7ywYe1;YgR}%s&BWRNtYRl>knTp^v-tNYg(bC&CYW% za>YNVnKw~x)GAyh^nNt6&#YZUJS`HeUG-u5$gV?uLPV=CMr#Ip{XQ!@Dv}((>0G^~ zMg9$mpnY~*)9_Q3cJ=Vla!n00;5OE<~+h%xVYy zH5@X06r6a1)4pJx&P$&uu^U#T3%n{Z$3?{K!s%2)!X~>XgQH%^`k3xei%lzJUbJx2-AE)~0pYh=6 zUo_xGgIkfw4c0I)ULC@ zw^Xnv$3B6)Ydc3aXc0^u*=71Ut%-#d6N63GR`=@{`fjwI?O71&5slN~_jpGgKf|P> zjcC+y%*%lqo*^GG#aUjXbCcO69@ha1y2)QgPsXh<^?s(Y$vIh!zmau;8LGdN-3^jy z#I^Wt(n!=>e%#lq;dy@*Rk748F<fyOhF}PGuSFT_h3>-`doqrq$NO4Eq#JH^fSHMvsxHlHiw2q@a35Thu?W#4u{7 zfX|qR81e)h?}otKMER=Pl}2im%kc;!>Ry8(2}G;p;ia2$r)iV&URGgn5|`~RlxPVY zd&8Yay$faByt)kD`}RZvoNIs~Q5m|n8Ij8F=sQXWT~?oLr3zzvvIMr})=m;S>+__z z0jq0oJRx^5U+qlj9#fj>;Sy!b24%kHIgA!`@Ek9VBz@aoxpYrY z-?cmL)V6(FYI54}G z^5Z6onuK4D(8usH>f}_4?>2ELo(>!`SJ=%*Zpmdd4TV$H=w3Da!uJTiVvS(TEuwGS z=XC)eqxo@q09vOHYvg!9W&BU~IH2hWV#``6jgttwAliDq zr{&K3bj-ajkuzH>&br$%zQefz&+hf{!T-geH8&x|$UC+!M7a&>XHg0Gz`PrxXzwa4 znLw^_&?lvu?CQmz+V=)!qvAAHBw#dBYGN374qWE~hQ>Js0`>bIi344p0jCN-6v+KP zcxnyLrrNZ6@mihUtY~kc)(KfOLWepwzWls51isW>{i>K}%}!@Ik4Z_c!?}N-qwg0!`w_J0h8SXuwar~0k14I`j;;R8`wqJuHh#zTrl)nA+_F+S{Kax!X|jLZ%ggsk^- zokCjOUA?uU(pREGrF7Yda3gp2$Q7YR@Jsi_fE?6$ACOv7-^4U%iRwf);9I^ezsh-+ zY0^sDfVJ#}1AA5F2&;Tt9|wM&&vu;_IfK_ABv}w>e_Pi7At4_kRfT^O|2z3w$2lWR z;cXnopTrGs6-10+ghMzPEm~I@Plrf)S0f48OhTo5KzsPl+{Lf4Jrl4ol$Dt%RV6-S zr5*SIWcY$loTyJAq?E)G15xH3_+iv2fC=a#GKfgCHnHs+aW^sE7cm;n+v8WE$5qc*IvGfEOL{j4HN6m4GWt8+CC)OZ50^u%H4Zs8x z_pt>9vKPs5gY_o@MLVj;t)oNa$C<*X<~fRV3oj5q#6OxF zuLk3U14n$%fHDt6;9=j_?m_$4Pf z|1^paf)iPK0zLh~+;pWXHKnY7hp)8?`uLtmDL69aW+}#`@}|+)2|w_QiGK{4j{yB- z58V#m}4z>bn;g^NkkOU?V=`0kPe)<|s2_UzSR5*PI+n{3D zKmD$kNuncf%6Q5q10Ch^rp7_W&L^HH?;to>W#jiv%(bxSi`s^{yoVFfgl0<&6D8})sPPPcm8z&DSaE9^X5Rbk$X@4+{sd7JkM3kTAL&Xfx@Q<_T@kaISQBgukLMBGm#=tA7LY z%Q@A`(PN(gd3J_Yn0N~tSp&x?GxyKH+x<1F0%Sl<2z?{AdE1WXelj_v+L)43-aKG6_GFGuo)W+^;TZoT2Uw z&FqBRv1YKi6+jkd?LtkZP;8#KZ&&D*4U8DJgV&5sBt%~*PCyug3Bcqvg~NG=7vXkx zE6~s5ctE6GG_8XUfN1U0Rr%>?@06`z-`R41&zO?p49vziSVpE1Xe#-YNX3+EfDA_V zM0Kse#ln=NqE;K145ad|s+e#=a%aqM3KYWS(I@K?KL+!~H4=L4I66KR>hgsq8S~X< z?GwhOnFoo;gv>KUPe7y?!6;gj)9Vnk;B9k6*CojiU%O6#Lpxwk4@CPvMEnfcYlOH9 zb8H8`ZQ_YZRs+vB6b9IU;QT>djm$#H=>NeMsGlXPo0wqH5a#|6aBjop$>_e013yqp z{Q$y23777Gi(#_KbArZeOJekY#dtFTcggHiCau@Al4JIOugx+}%YW`9IRz+HH9IY3 zZ#GI?9H(cHQ~JR+{wYw-q$w4|p@HZ61+H{5-?NENYVf2tVgCrIf z?K&diNF4CQzI|md5!DGYjBe%MCd4Tr1c-Lk{zBQfJ&w%^Sm90f@TL1edY2_8{Phjy z)pNX!>UuYzB+lI6z0~|Y1o{jIs+XMi-b57b?&eqzf2`a^3{vQ zL@UU5E3fKmL6@|LeTtX-u?R_%kZKJqAIer|bQt;=`gy&-Jjv^OZ0_@Im2G<@c8_N1 zPSZv5Mj*EE|UW zE!it?fCeqGnorCF%(0jROfSL5PPYpa1EtU5e@fN(LC~@bQ8d@tvbtw|0H?UpOdd=r z7-XH{uTqtdPeZjS799fk|5d6|{8OsN!oah>$`yoFxVl?W#XWAoGS~8L(M**XQ{;Qf z^b__V50X6wq1Yu`i=DQV(cCEfT?LrL>i6!Zi_PWl@c;8blrVLm#nMrM^; zoa;r{A`1*+*fZD#X6mw(@$wxQtp4FxAo6)g_Y$1cv7#yLFlZ=bhFE6iL&e_+EiS^b z$phYD>{T_h5xr>>KfI!G5p%POFZ=McuMkat5w}kNl12QMglA#Fbh{g9Ie&XMZDWNP zqHpt5l6riK!A~*%rs{mBX0~jtOhO@t!j5O}Qy%>k0_*_5W!(Ijs=kzFkL8K(^6;P5N;+q~9BLXlqouD=xGj&nA| zVO>*5e!exI?2>xF-(PRs@l&)OuYHsqqUf}lHx~Y_ZbczQve-0}7+Uo?lg|)wJfy-= zJ`MGf884=d|2q}Ej|7dWu?R$?v2XvyYu#SZEja>pYtx-dk=Af6U<7HtWLte9_A9J9 z)6H=@TW@Q#e25rc>%43R8j1CL>fyrbLmY6YY5Nu_Pf~8HxH8VGUCYCgp@Qf9vSl!0EZ=YY}~NUxOrU%-K}JL<8GI{q-!aE`2(caS!Xd&H)wD zng^7X4KZG()8ZYcT?uGv!voULQ3b#GFZ~6mlw#8dYff_pi*5>_Y?7dG;MJc2(?6Bz z4y5kL4({o=43FAtsx~ zs*S;c(rhQGh;{Sx$&J_)#et-$vS=E??&wzy6rj^RC9t0{mKq~~ih9ntPLdU?J-YBc zd1!AdBV;j~+7fL#LBe_6+^5!A#W9Z7(MlgFeQ&KE2vz3Ykz>y(n|9yg!d(zr^W^nD z*hS6OnW5CSZ{tCP)Yn;!(4U`fT@QC$mML^Y_@hsys-|d*mTby4f$H1x!>PNz7QR5B z5mf?#3vGQQ%e%_aMP$r?;wYx_&r*nX&2JDotJcG4IK|!p+`xBD^M(f}jLpg1x(QGqbJljFHCF5$=U#^l^<7~Zi?lvm|Nc?bP;*A{3 z<VLe04*zDmHE~puI*r+4qdD_{OA2U z|AvhjiwZeMraT(_Acp!^hZ(!HNorOnF5-QAfy8P#qcJ;m$GJ<6x`qTFBi;)$UPpY* zGwLkVYH^FjQ!UR{NndKua_t1*EfFn@8588uHx{NR`=AZ9~OiM~?(J zdVRXq9a=I@{~uvQD65`%tfp34Cn&*fJtP?K2=+ZJzAXkeB8MZCjREpaw))GPFe zSfiqCkdPrcC2(yI3wiV&AhK6uXAv1;vg4(mZojmiMxtG)`Q(o#lLz3JuAF$Oqn_Lr z^3#9M+c^4U13MEuK4L;x$%fW*VGcJ_5r@m#GsCk#CDu#*;dS9nXG>oH_1Myd@tDsp(DkBcxSQe1~V(}gq`+T6SKeQoheo; z2_g@Qw2qVF-d70(ub4foeIZ{u*Q2KtHd5|MNr|wP&-+KDD!^Ka{AxvuiVKZUy>kODwMDOa+QEnj8(yK z{mx@sOnaB^O)BAAc7%>&?~YC3?$yAV_Yg$Nc)>5k|LrCXx(0t-?f-8K^q=5IM>~0+ zt0kZp`JNDpXTN7I)1Z%|gwl3^W&Od^Z$Pm0TjA^}z!w9s?^@#!isG*muT(*xgU1sl`g z_hGW|$*SpCaw-sjlw*ld2J8Lky&v>R5t8R1zDb;*=G%8hh?^PPp|DARZ$lr>HztSH zlUWE+ldaI?A`K+`fo+TZPxG^9#awr133oO~1lNx`y(;uT8I%{s_J~vQX-t(Sq}L5% z;|Bxf@(2_Cino9}0BCv&3`w1HMJswGYyuEYQ+Z!&0ZmU8kjJ|5g)LCei0{Da{sFg7 zP~Ue5y{$(*B_X+_?!S1tcQ8q(75x6%pM(;-Pyjq#t;4p`K}$o0HFcQ-zc;r}!}3)j>{kAS9! zu3)=;xd(lHy%;+OcxUi)*`r6(<@tA!%# z!%dq2=U0NA$&yS5?e{6nipzxi>2EZ$qDb?G*5P5N8;u`Ah$WYWwml&|A5KWFAq+_4 zMLfkiE18BsR&mV*k%t2Z)#IR&Q-;0OOjRwe#nW5iTanNWu`>-=EG>WxLLbDOQWyc7 zSMR5JIl^B9B2&iS$fTXj)bDsWpQNKdxy7rb4xe^_hmy(UPcawq7fKd!>T#e@`mZ z02owxzB)WT4!OdP4T~E@jUyo5NmV+#V5>dKB*YBm)rL z!b^oPLs}~Hrn+a?jO6w!(LrTI>hYvmG@a=-THxmXx_-2N7tLY4lncV<4C}CkJW9M; zM2wKtBNBg~Kqg z)+P;yQGvIJ*w1lm_TSJuuAuwg9%z(8^&-6?IEu?yZxBa9vXRhK{|F1ztCIAI=iD)n zCw~aIw&U^|;#zhLv4wLBiyVYS3%I1ym60Rh(HQA*H$nFKpN3g}vjlhRn6%Ahh+Nnh zaEmaSUPp?YmhRI?MmCWZQHhOv(mP0qoelz&W|3a z`!3=xZeoow*E{F)1bkqGvev*f^n073=FL1Q!cyeze}5_cK!X^`R_96i)91hXRQU`T z1$BO^v3pC+M4PQWN{#;69qVkQ_&ySCbz%L_CEr)qxQ?0bz06a~m)ULV+!$ z=y`op0_$QzAI-&D0W){Lu_(T&FdpUPXv>*FRuUAudsFoZiokI z75Th4bA`4oo*SG-Q4S{n{HwYtoN3&6{S0<0G_*SIGWp77zOkksZtF~LSG#hzPdSJ* zw+c(N0N_x~VK$}WZ)NqF-DAG5JVi?U`86f}{KD!Z&NPuK=+XpW*ZqhnQU!>IcmWR8 zRp6r}8>s@|qter_%fw7u_8F>fyM*)pLVjHQ$}u9LES(&bO=rE@2@d)Txfd=z5*DP|&A3n^+7Pq}vLqZyR>FoxSs+W;|R>-AWnzB!^+^KQU ziQ&qQ2RUQRDjC)^?*ah7F420Y2vS9&4{~1}F(vueiO#f=gC`J;QDQ}mwFBW_i)sqM zqI!?y^RGqKM+T6nzRh&}Yf-JVvCd8VIFm0$2mOn$t9+A1Isq+MFfaknhX4!zL+`RmQ!YW^WF*}kVNvn%aRV4ke+Cj_p0_+N?Y#VFp=T_giHljt@f zgR90N@ks|oQ{KoiZMiItIP&9}yB9YptZD}$ox72)1dcU5SHV!*=n})W2Rn~t-F9EY zp63kshcJ&!k(2R^hK*%6w~mB*mTkS_%zoNB?Tzsd>pxW9`l0zlFAdTdx|4VcPc=uP zLcYLnqeF~AP0^iXh z=HZC}#WwUI7VD+VR=>e-c#Ib$$O~BKD=uA_PeX5`5%cRZ{l%!31@KCO*b9_!Ef4z( zA^1=Z)@$kQ`RvwAYD748+|IzR3U~2rq3Cf;Nx9ia8xJlx)yeOg1TnX<-<|c_@Tf#L zwFBbN)l`NbO%;qu``1S2nlOb!XH@mFFN%mswd&#JI$$i_)6I!pY0WCDY(wa$aQl8Bmpv+qtw+{aDHU4hF)+;P?-LysFfnx zyoM*68Xu4V7iJKa4N4EK;Pg$0Sc1dTT*~Ni?&+u5seLxqy9=xlsz_GxtynlX7c^n} z4rJxP%E%J`GxRp?>ta)S{6V3CrE@ZVyh^_0(MDD@E>DWkDUb1r59RL=9iC<(NsH%_ zR94!!5_n;*+_s@i&GPsB9}dSg9SQ`GM{|Ceu*uA}*d8K|#(JF>nJXUtFuj_3&NrVt6j`ldKX|y)^dSx#Nj!z={5iS`6`C7@@iTcuI0Q)@~njK zg>ECBWbWo>F-ZicKq=m3So))KC+QU#5y0rkg#CLG(6<-vZ_dUOh0J=PqS-{*pbE_)DV;{?lzy?IPy%+U{7sT92UJ$FhYTWR z>|no`T&m)i1;A6}J-bX%EJR6Xl~00xz(T1d==|Ok6a9A= zboS3KXldi7x_wW_dAR#B>WhxnYXk2~(|PzQ0&!Q4)VnFm`mq4 zHUCW|P1|DPm2>Oy#luy?=Rh$0F5MUKf6HK3W=_~4fTCT}e=FMk{2!f>^&Ur(7lH1l z{|?0AAZwvkod@T_jJ~VR{)SiUjM?a-(Zy{wL0nztKACc+1PeV~J|T*$m>1U@(Z{rR zV%O40C7W&kcB{BYe>(g>@hfV2@L!sJGFY zw!Ob}yUTF>P}#$tZl*gJLI%aT7gDs_Diye@1%=5!al!e5LT5`U`uH}9UlO8!Zk|AL zF@n|Z{SH6zSGP$?zg=tI!m2j=xZ&-OUNO`=G(i29*gA%b;>R>^13>mJhKR&Vvx4g>-z(Qxee8{_9xKPhyt!mlc5|ZA^LnCnnLRuXbGN;2@}RN zplSy#Q_zMOXR)GwSZE`Z!>0Y+{N6Q!XT0GSh&NLc6blf)%)oQfF>wL$3uxDee>zYC z++$-k94@TD&{TCg!n|hR4f4A!o6m+w&9Ku$xfSFN7lPp10#^=0uVf|LjDjSLKia;T zP(lXMaeHkIZ7PmN4@ZxXScrx`*knmQco6Ck{G9YGdQ4-e`ffgpS3^!z59Q(m@pM`+ z^yxw&Y4dB6yMs@eNz$H4SibMTKk3Wtf9T*V|Dl6}#r=m4?mGuaUm-x!u6t*C0^%gr zph+j+aW+TL5-3i&p3M?Wl3}`X8rx~1F~HL*Y6d>RJ2?h&S=7dvv&3huD2Er znE5TuO3uKo;-i8CW2us;QdHZ#ox48oql(?2H-S&pH3?Lp5C9nr{5r(r%IEVx(= zwsAs0X$Z(oxgU5AhNL=qEeZ>@`z(OEqZ@AYK9$fg6Te2^U*d=zVKGsR#OtO)2~Gd5 zgHE{dco=mmfM`+a%SeM@BPa)|4i}j2Iqp6czJEN~Ad(>;&PDbUT!1jYc(UVEtN5?n zSC2~JQ@FDQ>El_!wenrD!ib8rrh+s$$VvEc_HKJxktIuo^NZg@@Ml`jxf6G>-b4O9 zB9Vfbd=aAYCDv-~gVMD$Biw4AOS^PjF4d}$>keG!YwJdr`N2ehC^T1L8UI#Y0-D{= z1QQWg7p_tD&KT4~c`YC4y;Fgi(&}j!L^2L_2iN99p^p0U-JBGGqW0+kngCYex5>Ku zx<2h~$vR%hMhPNa=7{XCUtkNgis`w9J8aLP7Qi|9t1|*gqm|>-X9P(`q3!T-mMexGjML;EX(n{xc*0!K#Y~^|ZG9y-ysV*Mhn%c1`)IoaOQTg-i*7WtN zDZKgno}c2+U>~Q@46~(~XMr&0T=dDxcfQ{AK&dYw09ZE<_Md)c@aAH-W7=obYp5rf zcbz-!lkGid*{9o8-^7OtY8!nqt-WBvr=4#8eOdZY?uDoo;P3pX_!lVnFWKp5R^P+( zeuRkX5&9VCNbKL7($*3mPqck^sV4Lcm$m0sb=lt9yzkttNl)AB5r5dR%dKK}{T?>< z^`4LRxqlNczwCcuGig_5bHDrnrL(KBd=+}6%#KaqMp}Q${t}uR%k9y+EYnXl)aV~U z7jau5E`yq13FSJ;p@-#k{PorhS}A#G|poibFta_0Gb>b=QyU$ zwWK*!y%$c2&QOj1_YT%1K7(-{0IM5b*`$J@;Ho6I_=)_54bu%u?rM7K2=Ml~s&8Oa z-L5N}?p#ZjO5&-(PJ_H7S@c6_v;9+OZTBs#!N5*ndQcqc%p6bAb+zAOBDH0}P~N@; zD`u41aH&6kg`?&6Pt&mFS%u4(!Za(OW2dEMSJfHU^s?DEFJ8ne{x~%lABMj-xCdL^ z9&F#5*_zA^LNeOf9>#Lpk^MVBw4h9CCxz#!G;dkCZ4G0(bFsF?SdD7CNYfh(xq?WsX=-sH0q|TGRgXA zqCL9ekUkLf%MvQDS|>rA2B|g`I96U`W{Wp*Mf~3ru=t)-<+WxaqF+(>38o2ZchV z3!(J4;uo(KCMum3{7lE1H9Ew?0MT=?-|mtstmQk*tsyObM^JJ%O#$C0+UM>BE`-M_ zqVFUwAskNH)7Nhf)Yi@a1f{vb8cR(+?##;~;&P^dr9VhCP2b(r^nnH+_%et#u1QVP zFk0b(8g?E#QCT*i7R;$)QG&bjxKMXD9gR!G4~?15(5;#ioHfJz9M9aTN{fbU>0DBh zw{3gdUOz(4Nkeq6n~A2AjJKCfFI2l!A4LOzw9T+6x$&$+oG0;mWxtA;}8lxUG$}sp~R{*}nR6XXs>c@|d zu@kc|Tq$L}w5cIYC;DWFZqsICNSYeksm#=_K%nV~P%UITbIMbEODT2H&SJEwAeiY{ zQ<6xJ%v6XJ!$v9a;pfFHKiWV&OEtNHTDcN){$*Gc5{ZpfMCrJ-P_oEf9XVeBtb0L2 zNn|kF@h_}fFmGbL^6<2cw0yU2T-j~hbZ_a=srxMOtg=yE=BD34mD9i6-%%1Y)!K9y0e@ND=CX?}(sx9*rU*9NYq=>FM# zqL_A(Vt!=Pc&2@y4H{l);CMv=k?;l8EVc$umOCI76JGLj{1h_H z{s;NHQ6le@Q9qpKg1c6C%qL`BjkuH3wv@6W4&CZud^xeeKb|TaT?${yj|Pq9lavA%5YoF!bq!e9XPb`>4D%wHKf>sC-Gtan3b+ zAT#J)92VneE&2cy5ubQATU7x+VyU2P3J`}~db7`P?}leb=(Mw=-K_!bn~?}w`)Vzb zuz+SC$iw5#juF8N$xM04ImyK7@kKDDzFP)1|*=i@mH6Sn$(e4rEQ-5REx6QvgKOy@;C&D=axn(0B z+oX11I>~w1)zl=};-dZijE-_eW>$QuKml}OoFYUBKaOD9OYG}TC-KS=hDm&b-sN0> zYsP9A?taDw^sTmiEe!F)ihOduN3N5eo}j%k)#>Zu=I4bS8(Sx7w2QyS4T+F9C;X5oJp8&2qqVPL2S|nf9CUC3{2#98vsHn9{F@+9_AP1I>m{?+Lp9E;_{PbKBS0=h9E;=#gx^am6uYJOrtb9&Ou zCv=t-a{+!zXB(;lP_+xVnS+Ac4Gua%9)c(JI6nk1LH}0mf-4Z$9+sv(15Z4yG-@`0 z7|JIk>(^HIncB>gVRN(IjAB^S1ySZe-QfJ^ZS&oouDin^ATn{pZivCrx}4KhM3%_~ zFRB&NXVU)3EjpG*?lecdA_FsjbIZEQzqy6&|Hv(mfZPJwvjsfU_5#Q){l_{CNFV>n zEjtbW=9XGOZULN)Ul5+h;8nEPOL%P12PgvlxfB+^!!Kj>2sLFRhqJ&%=J^h@K;M+KCFz?LL z^=5$Ff|p{@_HS;n!z>Nu0G<* z^;;8D{5R^(bsrlv1i~fc{VuIHvo-z}DZoOA1<@qpff29}n%M6r1Z{02x|M;t-%v}p zy(A;6L79$;bcGh$W(-GGjd+9_K3HnM7|zTU~w-Ta^2q8Vg5XD%tJ7bU&q0w?U3Q}PNCk+d7?&46cmxSMv8~sBMqlmHCeUquh0L}jquC!)>;g1z&SZMT^ zDIyO-0HAVLmo{6$0yL~&&~hmK6dA9`hh1vGTu>=hpoo{4G74<`j+`7wVEI^Rg;ldD zNrtB@C7Guz|Co(THdn*f4f8}`Z8l8Y0Ry3U0DB8ltbIc!=d}kTcgaj|!PMkJ$WvZS zw{Y)NALNh^QZe|EY7BRou@kSLOD;J5bgAVkn)PjgMw=g+Fx&ZdAEVwdJtrrQuSqh$ z37BNrhvMQlI)*?$%UY3qe!(w*+Q^B2wP9Y*kd)`$Px@=W{>Oa)K`ZcW9f!oM6r*4_ zC{FYS*t1B#ulmGXMW$Q2ong@iK~tSXxh{v#miy*2y>Hm}PXd`7I&lRiUn0GAIq!*?m z^|bKB6yX#xN!9Rr%|2|ggT;@dVZf&eu-IIHuMqe%3NOK3fTMiT-Zkznodk4!hhTef zZ7{$fIlfq{@uXHmwckp0RsAaKNx0H86^|h(E2ee3U{Aj{$TI{0;SuKSfHbm71#N#z z?bW)chvM7jE2<^}YkZVQXxD_lvW_$A-=_*ysF3x?Uey2ih)hw*vJ&?$F*7|rNPXdK zxmmTk2J-Y0V|->M8v~%QBZ9y_Bf%18Ss0Dkj=cpbXYAABI0r(kG0(N}`PNewu6=VT zAck#kpZcV$laKV~?t6GlpMmhsa(8|&yDh<@|8mu(t2YGu&;_!)L*_Phc`*@!t%qCB zUj0WkM7jKzE!B7Po=#2`* z@M}N%4?=U13M}X_i2L5;$h91khJ{P-{#_q2m=|i|cKfAM*n6C#VfP z%E}|NTX4=?PA-1->bd@2URRe=G7uThFV%!!7UL7h1y<^?L?N3(y$mH@x^o2A!3jSf zP)sC5_|CJnC>oW|oV@t!w|cN*A3p9c6Zo+6cYOfM-22w(PBE9@6*Lcc{XF5h6pl6_ zX1SLw-HM7-OD%up_c&Bn&B~3LGUFNBF_Y&Z`@_<0&%o2??Ebgk_ypmWPP#II?sbr` z1y(@CC-J4z2F#auV5?W453o=QW9RM$wIp>|#F)&B4&ae2!T03)r=|w2DUgcQ!1F_6 zFVx|-u6l;#SI~pDtxZ`ZjTP&2ix-)4r6EJ5HV&R@+&RP8%_y2=$r-pLt1^PWKxYN1 z2V%9TwVQD-$z95R-&>jCbQ-JF(3o$sPUn$ZHRwkN5wXv@9DP?VV2N1_3Q{y+=jNy# zPDVK(y>rQFojy9vX}PHd9=OSGmsWcBNU)#iuS?|132C|yt>dDdfjL{l7Ox$GffJsG z78gd?%G(W7%kOn!SVbl0z*RjwjSEOwQ-A5vFF1bs<%zEN#$7dn49f5uJ{!MuUCS&g zAfw)A-oP|C1seH8c=RhV3#VsPf{>jh{@re%?p?y?1{gAXcy1hbYXQ5BHi|{qESO`X zP@i@oU%9r~Xk2~dKv2SBZw0@fgytJ!rTi{*7tXTXsKLaPyyz{VQB0q93L63_}v8{we(SjqBoF6Q;OoM-A<99hANR z$26mDkF5}0>hjfiUR`VoX}0L8`#jok3T<-4EdjJ(+swh|A=b0xPCfAs#) z4QO{FYVx*jOW_lENS91-U&>r$Nz|C0Et7U>P9S*|&LnjVHCRSk_3~%lI2$|4Q(?g4 zTBUaAn1ke34wZJQj)qHN#hY1Xl|1{!l9VC2mxL<)$C3*)0>o*kW;$Av?8a~F zuGKK8W*SW*r6w7S#xGWvJKr-Cz}HyUUr#EQAVqtI>-4c!pyw#8GpnO}?OlhQWVUIB zK^+r|MM??%*b+V65U1=bN8Z#=;J-Dompts7V8Ke!lx+514j%XA`@4ikF|BLJ08ewz zY2)4B&L%%W;lq65E7!ZhT!Q*B^_^5w4O>!Qg~j(5Khk1}tF~ob!yF|Bdu>NB!~m@PrZb&fIOh*%j=;cNbffAKPH#st1xXA#uIimuq`6 zJvX3@uV2R&#^TeeWg3aRj*+30feK|?-|D6QV8KyZ7Cbu1Sk-P*3`>Nmm zd{ay00KhxBUOS_~W|8gaHJkSDQF6`o2vV}Wrd>}xXxuGnwthNyzg2HuT{ZzjVXnSY z&zT}-FFZWunKySi>1gq&&m0)sOF#ycR!{MXgc z{}@`$qw_n^KebE0h$ITVMmfh>kZzrtzw?c7?~jq_{GcU^0V3n`*fUC`mg452Ec=6r zo;7*>3qGgmyg$ZyZ=2$WSQ23**S9z|3SpaG}P3l`Ag7C8To324CC0@SQJ#5V+j`r5>e072_mrr#0*0x?n^ zKje^aY@SsIF$ghFMjj*>E>@|rTUT-xGTG>cE*u?~hYxYXX%rIuBO>v&5Rm0I(<3~% zS5@|Iji=U^jZUxcxCW*?;`3?LF0O06(j6SAQDjzkb&ByCHEO zu4mJ~e%4gG(trG{A22@kJ)H4_@cE8|gcZeek+vPq_~ke}Xf#&GXxsm4H| znX8wGxihStC@z(;*j2IXcmN_cfkByTFel_Rpa2K(vz9P$3Co&nPUk*k3+P9k#Q_R% z_$5cdTrccK->Q&v#jsQ_K4}AL^o{9 z&!cjnq16e$KPUEDP4)fm2Dy4f>Q{y8LLCYR8|n|?iAaTh<7hc8t4gw$&}U|(=}Vf7 zgCxBRyvrf5-dv8a%o(5#mwRV{Kbvw~Oo$MPCPptMUqKrh2OHaEZg0co%D}hCPxj;Q zW@tWQRm7x~zG_7~jyAU9p>CnIS>y?T#4gkCB)s*7h_6#AOoF@jX||6oQ;j-OOFD{a zliqgAjkJSQ;OjgTJOetni?q(zp}Yu2x&E-5xb{qum47(Lkr(gzN6(r&zf%R;^C$tR zzi}l|m~Fk3p&!s1zYj=6ts+ZtWqi3gJGCw< z`$a)VzjW1uhN+J9eC1a)PCDWrb7IzFQ_PmO6JXS7lxZ7GK6Xl2YRA3klp&PmtS*12)B3j}Gti#F#VFBVNXP+(#}o)(HSJV`G|=B&E9 z1L052R!fvbiL!u>>C$f`hT|p}GPv8UtM^pdEH&gF)9@k13-TESKYaM%S$UQW_Hjrd zMSe=mnw?sXC8nBruS>wz_v`?5U)kM)k$Q66lW4m9tTtj(nD&5c+w-5MD-+Otuwv_2L z>7<=fz`#@fES1nEm@Z6F@cd(X5@LYA~4any?86i+V2-btl{ru#66*t79eGQ z5~0aUpSc+Jx%PEBjVXzDj0{e{9RManDvTc0GNJD98cFq9N)%~9jy%b2!2z9%mw?Ob|6fT#S0sG;b$S2L8@6Y>J9YF^(2ifCrq~H#T%T>VOxV7(ZKaF7P}z=QiTqmNy7HQ2 z|CjA?)WT>KXO_`0GAo88AET)i8=aL=>Gt?M;nm282M0c!yZm&tz6>UZleIVPH~w>) zjLE`U^?^l8KjO73Rz6K%6^b}AtS zbGIEQ4rxWhsZ2lF`+@6G@3CA(&_9mr%n>Y4{t!exrWQ7X6@h716b%n^bub^eU_8$D z)}@d!iDEq_ci@hMC;mob=j9Ee=^C_-*X8*J)QP}6lUh@}N2XE4(LLSqA(Mi1gklrJ z1!C?%5)H3)==V*bTMFq#)x(lHmh>C9U*8b+L`|(o%I652M?LG5$W9L(@Z{#b4W@JS zi!g3`aZrY3L+f1$w(HJCvbKS2ncBSMek4W&eCB$FDS6Rw#UfU4Z7XAFYR_wcV2eRC z#}pO9k|#%M(YjepJ&uO#Ci_$gID%GpJAFM1G*NjG^S|x!y z8`Btd8V1CGs-{NkDLG9_sPO1Tz!^-aA|#(S`s}gYYiVtR^{2dEe5!u3bu{gjUG1f; zC?heo9#Y!xyatO`iXghd)NKIS)x+>$;g`na$W#&zoRo5=VERZM{`GMvD!50@D%jj+ zS1+rU@yfP9^7o_N(q4{u%UXET(P#rs;}D3Mq<08yiJpVsBP5(LrEuLGvKkWs#P?Xu z#RHyj4}R;H_?-jj`+#-WG|4aSIFhT;59H1y<9ZuMvZrwio-G2SV#QyXhAv#EI26|F znVjda`4mTepCsN6^F;M2Gw~~Y%k(=VcZs?jIpLDdXAC!cPCI1xf6h4JS2oNzMk5KL zzc2r?ViI?c?5GtOmRQ9@NS+Eq9X4n3t7&e7lLaHin19}Pt#Uk3B{sZHVRbYXZ_=De z5smtObx^px6}iuI6oj55K`|xLIh$M~X)H$&X}OtbrVZoWpPlBv<%&`<2rjzAJ( zp+m8gQ{iUm{4F+%Xa(clZ(!BDRRWe5CU!ZZ5%h*ndZc!k(yZ_l6CwRF)_z$z{Ear1 zpR0!u-?^?jC`_oE!BCBM))%43Q}#!Snf;LNrYvHk6RRl7@j+1lYrtne5U$239mFG_a;)RtzL_(7{#JWVvg&ow_s}qoPltt3swY>Q5YsT-)<2 z$34wblYO*%&jRbUhii+1hqU$RH0+#bUNwH4-mCXdf`A!ajm*pr-l}sTBSeMbD(uCO zff{p+7SqV${ov<&aK!(`ZdgCwP&j&*WLMxmSeGjbe}QJ6gcz|0eA(-pgFy*O>(8t- zplveBt+s(;Um^*7F)KF%Szq8z`CdDb=#zdZb|LF@=O_2=4!<&9RB{Eujd+&}&x{T( zM=U?J1!XXjLN8DLLj{Bm`pu|sMdLHUo)x~ z9Iw#(HidF=DAk1WYvso~<(D7O4{3WZJY5ZrHY}mx8+DQ6ikfrVd1#4UKswj&@}K3& zTSVP-@m@M)o^rce$>RTh{`k@)1E^Tl1!E5gGRzi|t!zIOmmA%?oNmaL#v@@GI)-|m zxMY(#Tb^F0Q*~~33T~3U|7%tn2ZgMa|Noi`{mX;{xPx}Z{`Xv{#gc{)`p;e(5)?GO zJ~AgAs(LIRj)K|VlB^L-P5DKcc{|6ej1n3;O`(jDmunN3t4!0^OLgCqSt>fY6(-kW zDP)~?JqR)LhVGZD4sF5Pug)YO8hREwxQbynQ_=@-&zIq^cP8sK!m8dC{@E$wz1mA4 zBtTkXz#U(TgWO`-rH8h>)(zl6UTrd01uz!K{)e%E{VT4guuVP2RQvkfjV}XSSZV=@!V_{Mjn7>M!h#_0hO_1%;UhLkS z6+;7o)oQUE`Ld0vJ5)tv{q}ul~o15MzP7n z=@xZfaA06o_tlWSWx?iv5@^& z$C}dPz!M;#^B|Gaiamo%)5^{v(7-c$lHXx&nER34L3XkF-^oE>N*Np zLyL2IKql)Ik=mLs3_vW1xYr=|sm=iq3+wnS$2%j;K-s1TS(gW0C|5rA02MgJKGS2I=HRtMFt0Z1$HTNnDa&4K|jF?&u55KXajb zq~?P%(FKG))BkHOv;YqZWWYk^l!EF4~;@`PY+P`z5y4oFY9` zThh@E&*WX72S~lKY&bn|>TTcBWWa{Z*{ohFEdVGoK^&U*7+J0Et3vq)m6F{|RBt!$ zuG-r`B}~xeQ+Rc=jI19Sbxnr)y0DkUHO*RJp{qcfmnx;2Pvr{e0Ecwo4#W!V4Bg;?Yq`aoXj)c;Zzeh^t3ltDvVnO^io0VoUq z@3~NuKz9&!^us@Mp>YxDl79?BrHi68a>w9+xe&l0WGx~mF2H|Y9g#CFuh5)B1jt$C zB~bkkVaZAGRlqmj-t?gXlm%@X1^{J&$cd#IJ6EOlNig?*&PL8qCjiPV_vBkhi1Quz ztKc&$>9+9Y$~g4xh2fv9p1GX9@0jzIZ2tIaZ$xBWMhO?g+vq``9|+larE#NUIxMnRZ}*v!L$J^UK%0q%n>R1!MG*3~HFh70dqZMa z#rR+r`ftsQD#f^~(lz^jO}~m$C*%R0T`3|z&sx}i0e(Abv~lSUQ{Qy;EL+B@77Ew$ ztX?Qgypj?M-(;o&O;BMID^wW=f+o&QW9}A3&sh+@SzZMr6u4^VD(w_?wk;h28#!5* zM4OJ+o_um20+UC%V5ml87_16(Qb3y#ZY;$2C7;>f7hngQKoZe&GtFg!N~`bfggaMT zKxC8j#t1trSuMsT^lAFyx6S~%l7Ic zUhP3IH&G z6ieGzLgIU|w-%<8TSL-_RS5x4BaN2~bQfdY zS*6FXKvgTlwx;*r)FK9=5$7%dP;LkY!wOgqdJ_$EJOu!nxSbr)Gg?e{w_-E5yZq((%cF z&S9(U5%v}MH@l-2iYyV%R^4xP@pviFH1YP1+z8WPOE3yNtYP^DBYWKL62`^IB_WbTSzB^u3bIW{*=DA316dZLs^D)lr!H8h&F%{=T?9 zw??eq^7)C@5jBQ%da|-&acWnbMP~fcq~TDwD7m(?^RPa*t*i!|*qnwlviZGjc|n4x zZ|X83wC5@7tp_I=Y+2({dW7zjuF3#zh|uW_tU{XY4=n1TPUXFxpbpE)DO<7D#Ka|# zg@pHZHOc&jMJ;kk=y-bcOnj@<`OMQODO~;;W|`Z#nq86Kzg?d++=hJoQ_OOi(}V+>K+IgjJx^dmJlp2xaUgBh>)B;y`w~vMf$^=&KY6wH4rGgT_gMdk`h2iZibF4Q$S~xYq+1Hv2rM>9g$=!2D4&6qM zq-DK1M$VM<=3Pn>Blj#=*-5)H;LjV6h33EqFa75_Rw-YRfL^Q!#3UP+s2YnSXSgE@ z$SI4XIivT8CGVnsTQjLolgTjSZ%My!8?KVUi7u+cUtG*p5VLn$+MM5E%4H%L${!CG zw~n?3FRW8HRb=CjwK6SR9hwa#L-by)Tc$*@C4r;NAO;V%bQ6G1eUfDP-Em&vh{IDx7>#XONf_hvx5sLQ_ zD}8AG>kw)Ww5Sx7Za4`fTfLt%=2c>fHyYb8N>^u0q=pbOj-_a2o2h>(K}yxutq`qk zQ#Z!3$DE?qrAISL4@{=xFm`u(}ahl=(QAm+?SB&%A=Y5;?;gn zUOqAxh*ztpsJCalk!l<(9s->1r)TFMAz9i-2aNMAUJBf>mFvfeZMDsMPa3vC;{5VP zR2KA2)jH$tMlL5-Wrg5R)kG48qJqnzlqYNih>TW|t*n|CAxlHE?;KWC>qtKhS0=br z-3}!n;;h)(+O_Vbn2^=OE7%=7h;2_P%>eW7-UTNiXACn!WsVGVfu6E>O>J-#Pwk^` zy4<`f>7wou$AcMsuOuN!6k?gN^f*8}oa7`B9r*Fp-gurOccqlo3W~eQi$!}_XrYmy zm21eF3Nc{(-@q)SMUfB_4G=B#BPsC1ehS>eI3){+aMOkFU(T7%HF(W$xvICaNLWzEllgIhIi9^~x<+Io<|=B8tHm9~w8yy_+I z;(Kx)3ncFs0ImV(3vjWLlLQ4r1A+j80(>U|QkJxz_6HoR68~H0j_u#hore8xTas6H z*$X0Cv6=R=sZP&NqwIT19D8_(iOi1k+YN{{#-{6khz%qw;!onmvI`v%inWELCv$Cd zq28b6Q2y#h!RZHh1U`Yh6(GL%0Uo%xp3MHaR_&y_E70FKOUrSG4pVi)n zc+(PQCXNYCx62+C?npy;VG`2Q2oLuf$LY{wzM$Qygatl(&qdM)gtZh&MkcdisJg4B zVNIu}@L4t{-8dmGslvq*-#G^0Rz-b>U-mLC#}x=z z3(dcxAnl&wp**n^AO`Gp2Mu(IqI3n#dqmHFV$X6q!)$S~g@HoD{)|4Dzf8C?Ek%0T`8Sa zXTQO4KCd^KaK_fbVisIC{d|eIEIWXqpU%bmYj3RuEf7U2%p%yT7kpL*+^RPC>aqd1 zDu2MO%7_Qcj90=^!Y~K}P(Jf+)WTHC_`;3N<<*mhv(>r5`nGxLx*Cn8SX&v=SW;|Z?QRAD7>|{AbY6~P7b-jkj2vhx4h^W zrdw%WqqQ(4awVm3!XlU@NO{iV86z6}Gv*C_u-29Kc(k=Y)4&773W`YW7J)pnBgW9< zKsR%v4heq@brY$;w2H4)vCqg*AmJf+{>ocdwKHnPUa|blj1+te0hcPtJ>XLgfsN*J zZDmf7J20T51+D@HN*^bblbK6Ds60*S5G_PP&!umVC+Flp>kt@`k$2ND<(V#zV^4ew zj9w@;iPX*tNVhcN-C@t5GW9>`5zg7g#H)YMq;fZSE(w;I-T2MyrZdMa*KqUJ$zAZl zlq`Yh;#-DSK;NTe>`>}Ij5T=hTH;a{Wo4Qs! zzAO5eQ3qZ@twdBYphV*f*R7d)Cr0rHr!1(Wz1JYp_9}W7!?n`O$hYK8TOE0_ zk%W^A+=oC$sW5_@&1~z(c8v}{1v!rD%=j&-BxSEY34u}C$a07{-B7;<2v{uL{#eVo z6pB)mTb^R|n7E`($_$bLoraSw&0oV=*G#NA+P{XyVIY4(nYY}i%EnkDA>3QU_5H6? zm0zIzwuMjk)8DPo`P0jn&8Np`Y)~XzXg!I>flvaoO;ZD&i)8TAMDjgyG9~tc;+*JE z0*Ve|8J0+*t2brrr+W)$JlNgN*iN()f7*MOCf%z-^HVa1qR0m~{`cIdr$MQhCmc`I zbWIvxb%-*Ok#w7Lp2fL2HCZ`fI1%|otDVZ&b?l)`5Pw?27oc=r5R@N`QL>ub;7_YW zQ<9ybQA-~`n9JWKF}spsPqmfAJWui`ERPRkmls%LnbpV#`9a1pmrkSO*{1lt(E$n} zzvJb=44fQ#$q!gNkfa^cSH#<@B_Kv1TM%Z*4X{79wC}_v5bi0UMAj7?M%)BtQ=2;YrxIO*Jie~<18@D zoU1Nbi$TDf-lz2?Bnt^J6Jh`gIDS-u2Vmy-Xm@nvfR1~qNIkfAc7ADdw$ycH2Fk$A zuzEw;;e6rKK#Dd z)_YCLG7@Qkn(3~`f_S;JGL!y}h`o0ppaC29WBlXmMU?1+au$-wS!C@d4TE_U{`mv7 zv!Gpf3M^M@rlKNkt~vyTErJhp`J+ z-W^5?2pFa*L&JpW`I|Xspu7p8GsrSPAZsx^t6V5Hz*_G5NhqF)>cY{Wx zLe*R!0U+bvAHbo_2L4{thywOQv=x+G4y^(w;kHj5Kc4C)uz0LZDjUG|im0qu+Jsn~ z>}*@f%l{v`-my)uaBHwFTPdWhlJ{wWrSlSU0>cu(RfE za>ALLL5`X^EikfMeCQ+J0A=@BN; zUtxRdJco?MKba`kGURA4&ktz$5BHG$4118Bk;rHLL=H#*B;mOS4-??UN3V4 zJUm~esZ;l4o*Da|o<1futI|TZD@@0$A8f+7IP=G`VSV;%DL1guT6eF6(^H%3tW+PL zwE3?j2EHFBQh!)m7X){^lH*% z+MjFsp}XS^=$V+=l%tOa2GnKCUMPoqUEN%~(qvV8mdif#sq1%H)duOfgA4i{3dbsS zzx?Tn3K${GIn}>AyqnGK(N3N^GwcCxa|LU)h<}&Vw#^Neb|ea6&m;+VS2JZ86E#f) z5^$fo>{H3XjX0!U`>pAsJCfwiuJhe)1LGz$$g=d3(bno-{NBBdogCd7lBQ!et8|Z$+bo3@U4O5ez{^B*xV&U@O>8xt)m^Z3uN~yhP!K% z;$!+TA{xu`PYyOqTWO>uvkE!0sD2(-Sd}9_N#ft!Fd9IM(&k9t8Qn~cobSD zP{}JjrFp3>@jCEElvXaqMNMnb7P&4q|0zmxJkZ|Ay68`46)w%d>9w;+OHVRLQo-Cy z;KYK9ACf#YkMV27(1qeTML0w8g4Wl5{y_~*DCKCBj1k2nwZ zWrHjP?{D@r;eQ%g*#9>s)Pd$hH}^;H1;l%N+ANiN+XQC3;ZS;OrAzC-l#rxCOX9|q z6jM5gcX@!=0paWIMd$2BNn1^+COYDAgY1Y+YXLGsRS^Hp2z@}u^i}*PBh;twW0rz;?HY0YQa2ium-}J!%Ipbo-n{Ej7DFr_5Y#9 z!f>)77>-4id)czq!Tg2~*L+?4vz%cNc1LveZ$=1f=D!)Cptjl}Zx@cw^V%PjbwU_Z1L+nE@^jen(&Uzw?Tu8|^Fff9I8z zG<8l3Fvj9qS5X%v(uyPC7(TZqztGmW|3E@{CF+D6P0p}KX-}$lc@aR-S0WY#F@8)9 zsG*6t;#NeIWx|+64l9syojY?TRXM-eWKgoi9Nxe{i>`Nk*}*yyTP5oWd2hTl9I2bpb7q45dsF}kzxulW60KNrkytWfSN(c^EU4U zKCQ6KqDzkEVgq{Uvb=4lg#G=|oy#i^bKFj;$Cys{^j$7O51Ex#)sAPE#O zK}OzzjeNAeK)+Lsn;n@QxM_K*&SFr0sFXqbBg$xV^^%;&%yPU0v^R3VW0@tLLuxqI zbf0tKDQ13;mrAo6N$Q0DbfJ}5+G}|(HRhNdhi8J$;t*$@S!czL`6j+ z07S@yKSINzwE-F5r@zGaRvpb_Aa(=DQyrJYoHR3kJ0QB$1;h)~KJWVivt`LviB`J# zQ)qS7FUmB8o#!0Zo^(D)(4*cgKHY>O6A-}xX7Qim-;ChXXr-w-4+lNZBq97JQKKr# zuRsi8!Ye(d;i|>Ed6UKeFl}Uu2fex--gy2+gtTW%*Qd>R-W^FUc7b4=+Ng|xySL4- z)ekHn=YH`K0{4IsJ(p*Xv}gDQoJ0qZuA8)qI9QswN*p~3B*Ew12Fd}kj5x%DcJ1hJ zjycz}*57t)gPA1yd>eeW@ZYqAp`-(iYhzL7C93S;h$}fMp%-f42q=DAXU8$gukZ z&j9$Kh#$;y^T9wg|M(yxQbD`msU2Dm3@`!D!BF7HgGuRowoWL{d z)Vv;~I!|{nenXW_(FlFEtV^da@{I=%$E$)8$S3hZ(G#`Uutb}EZ8{~jJ^${hkZ&K@ zpmCYD^C&};ts+hIlYNKfm>uF@P+9}set>?Es>I7v(5R;U)~d2J{Xljc1X!{Yn}<$9)gf7Pi>-exm@a z3f@bri(su6&s3E8j?r(oZVelD@o&TZygrpdylx*wsmo@(TMZiub=*&E{VQ&CI1_vB ziqa*s4#QSPrECn23L`6(pVVD?T4ZCd3biw!!Z~YJS#(!#i7IQbR8}R_S80;xrrMEu_?nc~vNN!icGpkajlK ziS_qz#BAqWxpi|BsSH!HJ)}tBU&>N#&kD&IGbSx0IjRR4jPKt`bOK>GyH}@%PH?-% zACyks5o8Jb9$oP8Cw2zJ!g1jmZ%Z;tB`bL`t=Yy?m)CPNk~b(3IJ81NWj>P!G7n~S z)Apif_6_UDpEkH>d;<(EdG(J-M0xcil4eyD zMfhd)rSQoHSW(15D|YQze=N9<*o?N^-dsqu7)x^=x$nR)Yt#=8#$8!* zAOBEo8lI#QBudXuz{_4ePiEXFSx8&iICgB#?Y#X4oNzF|NlfX^L&?7TZB3!TPD=Ad zNgdDBP1wmQ+62rHI^@SuP%&uy#!etf>p%yHdJ!6{(HZW&Bt8ClNT*A zNl7Il1e&47?&Dz?x(aFzj=C|0_LJnVd~O3|4o&mYnrI0w#I{%ScDNQ6ALPiTGbf!R z_xYhai&mx$hnaxQCanF9E7JCu&QO>HC;-1k)rB5Wx8YkY?7-tS ztDb>h`At6q!O+n)v4L~Oqe~Fn>}yJ{%&hj;A@k`b?>862MgEfyGM1uxqB-M_B!UY9(7nYI!|-Ra*Te)qgRYGP#05<QSZ+O-L1Q`-N<4LcUb?dUOE~wa5%n ze6{K57HO6s(-2Cf~*X~ zI$XRL!$Vf@<&xguH#E-BAua4LLN?X#rOCQ5^$xSPfJ8|N@YBZ?#|Tr@XP*c{{9i5u z%>*x-u};8*sCiG|!QoE?V1Ob3CIe9ZIB?(s=oo_Rm-yhzYrhb9u?UoP( zsl6B?s_2&E52;{x!Ln<7?)ngVrSYeC_4At6#dXl{5G=+g%ABQi=Io7XzFAYZv(^R| zp1eb$pL1nW81`xF&*C#W4-V1mo9+L&VUdH-PyPJA;Xwbfv8k)u?z18L=<59m+y#Cj zNnAD`zmxJH)NDD>yu*Aq&I{zQ(oQiFf2!352-%7fZHgASJJs?w&BCb@@XrmD!(Z>W zjdxZY;)--oc^1oMjk+NOm>Rm~+{@_DyWdT^Q%pR}PJK`VLf@c^9({ekj(NYRHC$2_ zch2ao(du92TpOuvz6n`$5X>#e`kRu#2`8z6Nh=WB42v5DFb8Wo zKhUo%yn)Y9Z-<(YcmSgl@ukpfbC2`A2Jw5diUlHt9a$2*f%3@-WO%?2d$FR564dAb z*W-f(Xmtx%c)^{*?*dXn^R@9Wv4jk@@frAn9)~jhmXNUqNCW(w5+K}xn?r;k+-vyz zfCIPlbW^vU)NBIMaczAkx(#1HqPDXTB>H7n01t$u-e+1xCGjA~OR9g~@b%S#SHD%U ztgF+C*5|w3V#nzZWPDV*=4^e3x2Zf?JjMkt>ygMarh znwH+_0Y_x4*YYNVLDI1+7_)O*#*bL551U8kg!(WbEoZ>d;0!;U_GYRkHyk(8V!%EB zK8ML3LI#M(l^aq{31b%ArQ#R0=*^o<Qtl*3^=@f0hMtCjS05&CgDN?l<>il*k#1M;^aL`yVe z-FYV8JSZkzFy`~GA;c6H!` zx~JYQOOH=Pj5_ZH(DtZd$F=A%s>*B+o*|$i6kMAL&1r3f$qYn|xPBvWMHs%f47hL$ zcV*8fQ*hXbC|neL1sI#wC4Z#-G1vrNGGH^bSf?1{X%q+~6favl9#5E^0NF9L2myZfA+b1`3z;nT1DC^rT0P=6)X}Mz;#3;r$vZ- z@YZ!i5q?OZ?q$!C|Mt&jO-uWTd^iZZnjY`9(_^dSVDpr`#)uiPW!w$w5C&Xg_J^?y z%85;^4ByO`1@)JRAqu{j1pi)sGt_AF#Xq&spaSRn4jVXF*JC$JJFG+R5j6FI3EA%TgfQ+euRl8W;q1cS z>x}yb(2i)8DEbP$*v_D-`#yctlwH@F;di+Z6^E?&W9VK_kBrELHeOmHQWNI%{fKLQ*K?D{3u6GAK$GG zN>pWB6Dkh^yosyKWy+|@x6ITGoe4%Tt@ztQs#kQ=lT=csR@yT<8kWgjx)8@=FDvV7IVG_Iv(ximb)d0&*Fui2Wro0i7JQMvPuu)z?a~ZB4ex& zNP>VVX=+lFNF>Qv-VU=v!Us`%fO8Nu?|nAu<|*jil4V;U_+wK229)G}sy09?wAXL! zT7KL~*WCm*BFO4wl>|@_Dx>QxU$n6_SpW9^X+7kh?^@g@hzb9z zRW(A_3ZHD5+=+R4j?iTK!vOyS_kM;<{` zv)zi?h;^H#q)BSV^jzGD^u@#t6{d0HdE{D4 zUCDmGTsRu944b~0=ERlKOyE%FdglG6176J%JRRPpxNd96MjIzaY5<0$5V3w=d9PT( zkay9i&dNQgqr_~Lc*{AnL^;_|_WoXzc`J6vD8LYwQvkdVWf{%YAK~NVf+bjae}X95 zxuL}h4gorox-e+?4bY(73zGP$mb9SM*g5zWkP2enb8%waKZ~HBXnVKLoE8nvR||sH zM0RmoH;%rRv3Ykq|W5|xdd2#g+Sd7b1 z^Z4ohw&eR>s0dzgX5J{z28)K?QsP)=~ z`#FaR&EW1Pm`;M2rP$9qt}yMpWQBoxZtLFdIUb?#fPzqTtC*8VFD5=k?gVo4^Zv4~lhky(7k0?0w#H)xk`*=Oj%PgTJRdsh71uMF?g$#~j z*6ZJ|@pVv^R&#;U`zPfgR4DJ%M$>^^#C!uoCOS?%B>>^IEJQEr^+(=Ggn?+{+$&$8 zrm-F1fGv@K=5D&YAM0GPL&{V1b#dt~nOjNrmwf|I$k9_<0lBgLNi|g=PDsCk-H34L zUP{dtE-YluST=NCIhwED+qz4gu_M}8(y$N#174?Nh_fQ$MYXlJm?x&=&kXn!x#&hY zJw8`_hsq5*YR9Sxce730#PBP(#eE$mEAGw5$r#Ehp=@^Q)Q*(}YAU=SZDH6#v6#J6 z0@zOIOZGS*Fu1lW8WqXXxs!&?b$@N$mSxaH8#h4QfIun z{e2E+DRBr9MQ!#ZeOS_6zennE){fA>JLjSibXMkHF7m*%VUSY+-Kni;2);KfS8AHjyQ?j`(@HRD$&!J}Kux zcq4FR@~~A#*j-JL@e8h*h?1}(Og9qVhLjY|2w}@MlnRHdTW-{9K3`eQG1SPHns;vMyUlLTVc=N)L)E*s1fvDF`m`@wO08_gVvgSWXA;Q zpO1sl;rO%rC<6*IR0*csUM$g{I~#SOgbcA0fCH^~DIF$7Csx7+9#3ESt4s`Ua`Y(1 zhFiSx@m>_-uA)3}8TMhe*Odj86p7uXqzRwP@O3&7S3zq0=1l!k+oRtpVMusKF;zj{ ze3i;yIq1Kzft(0qlMb~Y&2VJ z`sp{3{JH5K_B;-#59Tl34-RQD+jWyViD||Auhme~Gfq8Q-I=NJ9}R?Qd_Z)%u;%0x6XE+s^}L~B5ikb* zQOa=}wqjXQ3kdDu=bTj*KLFGT1!|A*OYmOz@DPl(fcS&}s%qMu^ z{y86$Z+gcFOw6#OI$(7wmmv%hu-^%7*7>{N2>|SOEXmIX<)}m2Jivu~|G)8|AG$;= zyrDwfA{O3%<3a9#co38{zKaI%%_2rm0O(QqPErse5}T5tsG}AcEdlAwmY&imuXg|u z+j-26{7C4xj5KtN5=l(fq@D5{pkD9nKX$pXYPPEPwYtxkCGS1PyAC)eNA=jlt?fJ9 z9hD`K{yAQ_IUowN-O-Z*d)b-j11pwWY`1xkymTKFOI>obw=+AApaiM6(HS;^8fhai5D7@;CQ4k{3ceNR^lTMYpq6L474@r$~gg^S$#tK9?dRk^@ zlwKuuC!qb>gUFiZGYVfzrIZw;L71`5j~1*9c0Pr{f6vX@qr%qe>G%eD#jI;5^B* zsH7P1K69olA19sNdNsm_=R}bHHc)uw?YQ<-0Ncc|ciE^PsbWG@g_Z z|KdP2W0oY%pk{Bkzc`Rc>t7tm-u)x_>-}@s$0;0L?g!jSGuVe- zTh$L#1!Oo^c{P?iFxWO}OM6-{_B-7sE7X*~28GyiQXykW>*Mb?bF5kqvNDxFWM6Wy z^=2Cdk%k*E-B=dgDnL&F1_cX_h&_uF>oI^q!Fw^nkw)|u$a@=fH1nHMf?U-H714=f z(xQ}^7%JH~CFMY!|6Z~AaI2qNtT$hPmPnmyv=by&B4o^&3Q-f~lMi{44;Dhj1uVV* z9dj1Wx5-Vf;4h>vZRo=vh!>AwuTKqTvPl3QNC0C|I!++A>JtfN8|Ch{7PS^e|Bvt< z{4~hrP44d?@`ukw5E%0IFdqxvVBovb6hxDzo4hA3l#gVWqO#eESHl1wrS%j`Co8nY zt7_wK0zS<5c9V%;2(&o75x^3Vz4?ilbgq)!8<1bT=VXlX5y+XoxecZ{Obo9B4theX5jnR4|3G|*AM!}2M=S$CU;4a*ne7%SE&5Z_pHwmlh#9eBxXq` z)IO%K*7EfyKR0sO{THG9_^pn zZ3?Jd1S=lo?&hjrk5a-bkaGqm!!TbWkbB289OUlqm7=hFY&SL9tZVprifrg@;7ZTI zSX+2Ec2pbdWhQ?-lq>>P=X;?Y&c9HE-ux;GLnm0*<%o@j1CtBahf3cnu)_oLZU+3X z?{5}VISzLBsOvzz(p|t`w0^unhr?28z zlZl|7GD-Jg+4m#_cnqA&z*1O_HDYj#{1>JRw|c9vo;FZwHfEUJhVgVX`WmY~Z9Zj@sTqA)d*WM6qF7;s%{5tTFU%0lVEM%vIQLSiH`x=Vs_JqnnJ zqndPn;SUTsNSnePaOy45R8S^n4oz1!j*_>MVR@1r0~T&urauE=J3G&N{fxOH5lgsF zsnYW(=#?=Urqi!$wk(>{-Urj8S>iR_=@e2Y2VIh>w*a%YeHV(+{$*= zIeKkrN00d_#;vYOev(VPrfKdM3m%x0>iH@G(9NO2p0P)Lpald6(;8}Pj&7gnh6Ny z;zHFu4R@-axA0tlz?Qpu>M>_T*c0U0#xq3fw{}WqubeBGkmaAkO%X*!o~M+j1}TwI zDMx`rxYp?B#SJ=-p^^IFP|MYWP7*?|csTX6(q~C5B`!vymx}FO7LNfT!t$r_^ks=a zP1dgb^EC^V5{W{kG|@utIw8Gl$FaG{-cDPTW`&-*;~7aLzy@?^WKndo zSeoq+G$uB?D;XIwA;JD$3K4ZrjM`+6n+njnd^%!(I%u-B7UImJfnJ6j1)$2|jZ};*S`P zPpf70HRL%4bd+@bM2?vFgt)8>nV8u9oO9YFYIfXdogrqm|*mz`2Qy3-3{nJ#Og~kPkTsX1j)0#{OeNkdU zo8+xCHcfH`M(J|xe32?R3=O(AhM#o@%FT}*Q+n)p?}Iw$2YQ88t*veioDGPhZkS@5 z$}1TP!9OiegaUDcwNNrexp)WZc~Fvse_ly&(cN?X-s#c?xhuTNSt~{;2!lL{Dc-fkn>S`xwS*SScGZjAxUZJcS+tElET-PA%I6@(@~ zP&&{PcciiuJoCC}$dZbNfGyTT{~(FB%9sq>!U?MBJ?57=Zwo3U}!I^jfw>JF19c;=6{N&4DHQd1CwvOr` zB97b6SjJviKWv6nwIaYYsz9A^x9bg;zj3NSAK^f9HdI0qr1N ztq(wCsQoJD8WVqr@a8U*xcN+jsuzF-y=iFae%pBjU_mst*7MCZPQ8=DwzdDTpehWn z{|grM`z4jb^?$~K7#RNJWl$3bWL&@Z$PRr#2E?SnW*>sn@wuvm_M2=^A*3SIuDZq7 zA4UTzuJFX_>B@=8EZ-b4O^ax_#dEj5h`&Cl?l&Y1g5u#njwv65t5o20K|3z-b1To4 zpUdT|h2(CXhrxSpwWg!X-d0w8zxHRFj8FB!tDg#0u*_zaVF&Vrk>X7-bCA7nt!Ti$ z(eI+eyMfV5YchqQ25|s{4C+k*NM<6a`PCc|x#aSXFr~)$f(wEq!jTLFf@Uem0z{tu zc|KS{BpE{cG)SM&1jK~W-N6-qm{CRbYPNtFazO;Ny7>)wLmy)7Hjd*?TE#w&gvOeVHvyNJ#(PLVlE>91wX{F610!4*Q!RKTz=B6_>y1Mbn5~1Ldu@U%^DpmT>zk z&v~Q!Q1Is9TWhxE`W#shK9`+87rePmx|M5seXgkBo(RB6%u zzk7xt!d8FF-~GW2!rO4MlY`qeTaeFx4w3L71{{98byN)e*f004V}T;c)CJ@d^jUey z)q3zT3RqVGTN;GDN5t0Mc+6sx;oa?|Mg#h-kcSHRQar3cZ}32+nE2G+S))eK0_SuJ zu=iK-;Q;zNbF?VKUhxbVxt3(2hq%@(1Z!Fr7-iVTFRfNYMUqn!&YQ`*U95 z&Wol094tRhSKb=H!|f&>PQmjZ4>w*Q*BgsTN(yqG)Tw!O|2$-VK}Q%7DjwRwZt}o? zkf4Z?cr<{$4rYd7srG~qjR0!_CP@yH!1UmZOZ;A`RYOjmCLnD>7hlLaUof-BttNq3 z@bJJt}}J0+TrfuW1l{;Z~wHfd-XGmG>>IZA~@N6I4r2f6FO;rH6@M z2^ijkJQ`xkaHEaVAtrNi7HTcEg}?n#<*M8G9O1gv_9@xJcKfa|YBZxLYG8k1a&UJ_ z$RXAJvv8B!4LJABT@Hk(I$%qpHeGosHyEVi^wuW?ssR1KUg`bH-n4;|`-Dv@l&2M8 zGAY5tyrGi3#gQbO=0UdIL_S12Is#3D6Ru}|Cz_J32VqBQ&;rk0r|96nlWx(NkHbM7 zO(gb28=;pL3{+rWq7fRVjgXS>T0*a1kb^EcX_0?&%9|d9k(qV&in~KYbpP?Bj%I`= zMOkXTP!zhX-m(lok9wgkasI-GNhB!Js<=oNVJH6vv;BE%(%Uf%niQ7cPJ-aepq#P> zO$A-tK~9b>7C-_s4>R=}D6@L?CkzZpvcT4H5^O<1aT6oc!wtIiTl661Dx%K;*wEw| zL6qJskPbL&P9@=8Q~)Rmrf6N(KLhs$eyd)I2^;#(HMen&m2(<0^P0sTG?H;2*p+wQzSek$tl?}Tf&Ha^Z@%$e+fPuTutHa@?TRV=l zm)3Ou(Sknnt2>L1n19GnxM)9`0e$#Ac>uOhOWI$9l9G5V+wO!%wa~FDsEnWkw0ElI zW*N#B{!zx?1`_oYXnh+Jq=KPD`=5bZ(T(nwk_+$M*ed0;RqsWICd^ZsVnPy~#722O zYoM+rq)1%jTMTjI^yoerzy9Z5m>;iAtU%F zEuKxEWEXcdAs+*cz+LkMP#Vr}uz}>|)q<76@dv38IeKW1Ey7E^a&4aO0``VR)ukMh z3(Sq?K%+F zy4(MXsBA2TPSmBy)#b{}OQOlTP@N7a^?c1e^$lGG zF4hMhL3NEfLE4;I?Y4l7b_JJ2@^yI4_6Gh7$vskhA&+%y!%Q~)rAt=DZZa47-N{NO zybB0Ngi{bZcihpM%0UOTT$eb^=|>k!N*~fB55K-4ys=dkL&^1-pz5V;LOrh&EMGIP zW0v@HmQGMO+RBg-uWnjrPJ+pkx$%mO5gqhfd|PXGcmv5ZyLHGzPt zrmcxjYOFZ9nHAo44VP0q*RXsUTkDl_`PrYuC0Z~O2HC`m?W(d1pGi|?Bl5;-{HgPD zeK}!e>m{m2sz>NWy%`djZ{eWQ3vqOWc^AJXH2n=abfj&_lYW&oC#KCodl&o~#6DTJ z&ZQxU@$4Y}Gx_&#V$SHO$=#YtY}f=I>j3NV-9=mq1HrJUnx;mXeQ&9ot}p?Mg*>IR zJk581%9)loAB4LXyKpB5UMY)Dt4a!qdnjd_;%VuHS<7)NMhYNY1L#+A-ljc>C7>hH z^~{<@PS#kES!=MhYXbV6Dllq4(n|Ag)+H z4)sV6obL~nSX3iDk7u# z8D-b{3EK^o+`fmC6i+{0R`OfZ+RLDDR`!jZjY&ges9-eDF@RB$8lf#D|?R?8mSKi`UilrQ}IC+%-~^owdxTwQQP&a0k41 z@Ev(X;VsUIIctk>dx;E|L!nLxbOGylyK|qP(My4t;uKlyh8?p-6u`>?d&b{KEgs}1 zO!s?;XdpgE%BX>*M!C}N#!^^Izl0hcO}ElI_f^ANXjY5n(1P%OF{#v(M4{RL#96Tm z?Pt&9?w@94N39+$g%wVE7#mC>aa{~p^2nUD2~QLxrBf_tN(pWzxClnbS&t7|%W4Wc z!gF0F$&1Q3#a;zlz+dS6o!bN3ranTbhkHR-oD2>|`aPk`!+?5o9rcMPwR(Sb|4nZhqbQ>sD%;jdXq8m}O`SIJk%`GW!xEe;cQ|C&f?fGe? z$M&V};pV*ee=MD*q`k&^{m&>61H=C+ohBAYV0q_;y&{IN8t8N_S%K_jpF#h$SKW9# zgy1BP8w31@GxAqgXl`;ZEuk>b2@3PqkoD5crk(;=AP66#*1aLnUB|?i09I@jGoS_7 z?BgSkB~L&XNxUMsdul5vVsg431_%+?}~hK6|Q0r$8kORIQQ(tcihPD z?8Il>3dfFO*8>!8_&Wp*0;}eMfJmlVG%oerp5k|I{v9z%?#=t|2M`APBZNZt-BT3g zes#nkKSp0H|6ve44Ibky`947BbnwdhYr&8Qxm$A<&^cwI{$n^faL5MeobrlaJMPD> z*5uFv6Tw!|S62Z#r-+wO14EAmkepzDS4CI2#DC&}@A`UUsebGQYF>ISk}lb}0e^(O zux^9<(7eWegZ=>B5<-f_#Q(N?nc*r9g3(V0>pQ_*8zt!#=XC{izzH-`$CE~Vg^`U7 zVbXO0(8hV&X>QtE)Dqxa57!MrvftDWbb*LXEjsza1b3~Y2|6|_IW`}BJAs;iW6wW< z+#qo?E*yJpj?Nn*h}4s9RUYDz7b-%M5pw^}dkix{+^hXI$Tks|a zXyf29cB3aiPvAkpy(=X^&n&SL};rCv^lCXz5~mIMKY`h5s~O7 z6fxd}?`LRRH%8wFx_OMUYzUD_OSamnYK9?)Q763gd&i?rwf>f$4G++7QmBj~-=Ow# zlRl_`8q2&uPJWlLpWu)5c|X7g_t?A_MjEUq#ST5nbWbA;P~QqX&gneR>%U9yIv3WY z_oa=(56z+??DH&wU__9cIm`W&Q{3NcM^vj@>!(|hX#hYeD^j+m&3#~T3ykg z6hIJYy?JcnFw=x#BIJv-?3B3$d)uAItD&F^hK5Vzwtx#DDa%PMx| z(ZhE6LlgQ#41JZTTVs+c;PEUfUZz@FzAFniuuqDHZ{K;%ey}Y0L8o=d`@p=shpiO^T7GZBxtnv84OW#k?*g+FVzq{Q(JPYHO2<~pH@kc=uKYfa3Zc{G`Nv-o z4qOkZ%8~)Tg`nd1)lY2+hnn0RVv25_6`fZVy!~-EHFlt8UsP0Ho_&DRY8QC}Z%&vT z429Vj+Oh6;I;2+=gZfeq#!fks1EEpc`S?HW?I|eYNJ=_(FTjYo{*(zbOPU46W)Q;HmJ7< zJB{SRTYieu(N4-v{2hx+UQsu7ogD5|Kt#Y}R=P9ETnu zI9PtH|F%wjP?m ziz~5SGEX19sj*;o>DV9I65O=NjZ4OKP)%119lvF0^~BgWREFv3$75;{xEY7Dd9m;v z4cB+eVC>p+vR#GUii=mF-%st7XONdt0IgFh@Lvuz7RLRwGy0*Ib)m#+Qf!eMV2+Y$ zEsgg)y2YALX`Z5?nFgsac4-%Yq|wN1b@dP!u9*+?U%$m5I;=HEfOW5$NR3nmo7Z-UEs*pg9IlcFz zjQB*Q3y&#mHQ!RwR~5pqFCvSh>MCu3<7BFo_7qTa__z zgvX8#8EM@+^_L#LeH{Q>+RzDCOG4a zYyI911Gq@&CHoWx8_3q!-ex_%^-iF9$$hkZ?Wk)7VrAMn*xZr?+jRfyZeZ$|Xia?; zvY6#syS|)PZMsRmW&eN)OThL)SY$M;h>7+OchGl8J5G=ESyb+jb_I z*tTuknK+r)#%yPvecpPv_PalHRagH5eV_YtopafoSmUG8Yq}+S?=7Rm{_$*c37gH9 zqw39P@b}S(9nv1{j~y+|V9G>xGV4;n#9t=(jx}|$>V%>6qDtdVFu;YfjXLa|SMA|D z6GbsBlCe$q;YmM%M*`+MSizvZ3#O}~9S!R?Psz+22(M9B@123kNDnam&Lw>}xuqEB@^+a(T;Nc7y=o&DH$ zncj8m#*}O%y~?H-Yt9jdZlpyM;wYmOzkPo+ne~#+n9)_y=CrwIZqCJ_wBwEw6c080 z!goaVcLa6Cmn`vffk;g2KZk>@&hag%LC+XFTE*?4YR(TBweU@-a$+1~h!qCi3a$H3 zMQ8{G7oMW%h$+BQ9CvQHP8y#6RCq-Lq{g1%n9}AeO-hJ?y`9dYWHPFH*6Qe)@EdnN z_h%6?u?c_TwNmEl(6UWt4bTWYXq{JHyIw1*0X?9V5BVz>#BBjEkQzV_XfbU1_K|w7 z%Ck*XPlwBL_EapSTATifM#bx|^0wZA{nYdSBde%-+6F)Y&^9M>ARrU~{N`roXiRTv zXXk9<_}{FeVG&or)BNdM^n$1;)~JMFcF*paL zK49w&RvHq}1j$)a(bOsikWlmy^NLuELQU!oZ zWhRU!zoyp66=%D@1g9f_o$H5{6`znpAL}nIkUHnRp}Q8YkBHlnBQ{oq9eC{`4zdQp z{5L4W5%{aQujv9Dz;wY$99sM4M+8Fn_<$wi^6kU9iM!?5Pjd#y%&BNqe1J zRP`0mhuip(p5e*)IUzJkp8{SEFrs;9M2Fy5ad;2+szxAR67jy8dW%D{udOvBnGb5J zQXvtmW?|ZSh|#YakVQ`MDH-}9N%()QKp9d0cCK{|+uaha*EIJ8c}SQ#XY;7`FI0q)bwEt(gl1hp;)e1}i5zBgj}41Rx~nfl14ZXipvp58!7=n~1y~{=!_S}` zwyQl=E`TOUfX*@R;)g{LH5GFOD?mZQ4P7M9Ie<<&nro*ca5YA`Mn#H{R(iuT4YXk4 zAVpXgVs>H1H0ibGyI8whYGW19&tCJ)rUbMf%NG+heI|H0BvfT%&A?NS;s@IgTLU8g zV+8`)_8?j{*x;Afq+_~8b=Dh9`YoBKDfNbgqRkY)UK=(w3PVuu z+Y}#U^e6LiVrSqYy2U`I!~sidYLFiAN#z#9q!)QEu~rnwnSoo#)Y1!a#TwCQJ@2oTRc zaX43@Gq&O{Q@eMZBBvNkqzH-5=qQSly?yibb5hl}2UU+AWBj5h>$t)CebOM=u)v zX2o2$QuWUYlpS&@ zWT2+uGk+u7%@_K!DIRfZ2Il2gqJ#2Q?}r?A#$QzI9)rMkhCSbeu+G~Ts`fPO z9h@gcX>k+kah+B<0r8ig=Ezh%U4jZruGh=qw(uWv0lJXMO#m$rFp{FERR=%|G~D%1 z3p74N|D^@0`$E@bBfP-1FdAT}P+g`t3@n6K1m+7buu6=>5$rOue^+2Rbluhb6zTC3 zypIV}q7;zib)_FwXBkR3AUtf)1(i5KIzyj=W)1Jg|KRVmWGMgcxkNp}3bc+Rwqv{$ z3pBC`lJ?LYC1r1&(ij75DIu^RYDu2~Rx-jh*nvd^rSM-X5bS@fKs2*b1bR?t$~18o zDncJ0Dak)lZ4XVf7L0btW?vUpNRkT(?0s#Rg`n)fp!(TnSbFSf@=dCtv)M%N^fX(~ zl81b<3<3X!ULFFR>*E`Ua8cbA@k*aEThE@dD|A@|>*NrKt2G2ta_cEhyvjFEU`%PM zj6&Va{@9*z1Sy@J?D?Qj0e<*^sRVzX{w|`wE1j59?tc9PRmpbyRG$wt_bwnh`yE6r zyLLqLklKvADzR%~BnG$y=XiSbJj*Lv>Zyfo6!?Py;l4p0VSL(~WDWw^7C(e$(2MQH zB+DUT5kFekedss%WhWhW1bkYxCs#Tvr4ny@{APyu!EeotAN9Glo!+&1+&67S=*AHK zJQXfb5ym`q{nUB*c|R(5LeQpdO}+z=0udoIedDLJv~%2<9((6G!Z3uE7(S16`o8unqf74r|Tyulj*Bzhm0t<-9t5(1rC#R0J=!`BAuXhcGMVpu%^5 zZ4kLGRWOp{h{xpWvzOsy-E>s<^V+sbCc#;{ce~o5SAN z$>}6^971KI4U}{gKsd_zRln0eK1cj#V3+FGuu}&&PNn-=TH0A`s@eM^UFg!Ml9HtIpAAu^T#~|aZVe$HiwpIeyw#h-3Fk!y{Hbo$ zHI`bAKW1G;DyA|DAriWmBid%~p|b2%(zxiU5ZFPva)fModD3ILs0ppTHtXdgOK2XP zg+XS|Pw|iEC$gGnwbHq!9+%vYe|E_&8+Dm`V>r9{jkhR2by5Rccpg`i#PD4#2H#R} zq+ut{n(-x>bUv867mLqY&-Ix&fiR_^-9O%Hn;LH3nv-66Oox(!l3TeMZ*UL_}Z`Y~) z?fIj$9M7|XVy)UI2sk+Meez!XKDTbZR3htt^m*Ei^LqHBDp3MC8DMd z56%HcCoU`p8G8mN+^T|N+l-&=zYiZuU0%i+=KYj6bXZ7W*_g>8 z@5)Kh5Swwvar-;#A(D`Ojv1~SZ))_iFB#kWNj=ykz{19Q-szsMS0KEx%9177?h6^DL*)-Mnfz;xzED%r16aI1T^v=TA| zq!;fD7w-MGR*a$S)jlU~9S5#&_(H2&K-^Zy8f{5k0kVuACgCe@Np8U0#Z7p@C8sps z<|Re+9Vy2u^a6{#aEE^%-!?)gqQqypGD;3@j@q>*)4Ml3y`!9{CQyAx>eaS3SpkZA zm1+XGQ%M)Cn$J9*hnI(!NUL2Y*sA3mWP_}fR9-ZneUIaA^}62SUe4%FYB~z#rQTO` z=Jnhp{kF(H{<7)M{aa3XpaBmmw3Vf=Pcwd>3)}U@_yaJR_##s@EIH+Jcww@Uk#HloO@ETE zaF9fLWBIXrOZ;s*LPbr0GSQ@&Su8@3u+-4IPHTN%*WsY>_8=m_Q9rG$nTji z15iANpbNK_NATc0s;F2jHFtzpcZ_FKj-L-MzYILCv@mGNmDC8l6uq-xw+lKP+d-lS zTLRO~V**pd?x6xl9R|FdulXZGxw3I3UQ)3lb=8JlV8=Mefqje^G!~P zMoYRA>q&xDH+c=k2VxA+2O`)j$*`ozZ}HclL3U2*2lRokCGZwc+SJR!zxqJ>35}!> zhZ5?6qW=b}5l+{Ix6-HyO}K%Wq5MA#@#fPHhA`k7R}%%13e;u8>p|nYsh!S#w$2Ix zRH`IG+MwSoLuF|h@PMd`afhTytx_5_pO*jp?&lIxtvn0MVFg8gp;DH%e4u&SAyQq! z5k zbi1k-O9STKnAP)ZJ&r39lT={b%$cmrQVlp<|^?NhgF_@=# zF)D9~o^Lb;-9S1$pemJh`J+A1?cbH-VTm_X?GLBJ;gt8|i69b#Ev{LnbcViC)1E8m z;U$Fai|QY_9aC^i2>3VT~euexIKl_%Oqk5v5qG2&QS8klb@ z3hubCcxo=NYXp#L&2R-2(>p*>N82QSc-8w6P-uj@G>uzFKT(`nYw+^Y`d-5fuflfY zv3{XbGv(s$UC13!dHH!qbP$Yk#r3nEdHb1kCXKQbHXxCKz!s0jQS%QC;yQx7{ng~b zllgoCe~*lK?J?eS;)hCl-Y!&uk9!sdqii_9wOY%e1UztVYE6)ccrH~9(9(X8x7r6$ zgmS$2jx;luZG4C5Mtr9~Bd@m?3$Ob7GjeZ+hW0ao?^AKEs@FRehj)O9wretzv_bcd z((>dFkG~~|wjc3SHY$9+Q_KqDcs^%0>rPePHf0?-sM5kNDFF~PKDu=p>8;u386>4( zDZS;-v~A~))J$N~Q)?x$Ff z-{7C?Xel)R$fD6MqL4b7pklvoGXOS@JH9h|I9M|p;qcQ=cMWg@8{@MYgEd9e+DMUuA8VzYgXuY5j3&g#;cit{u#BW_^K*In1sJ*Z*Cw!p~A) z^C+`!!I&d6+J3aHY;2K_@%ipHTnd}oj&GSGr^uuI)9X}h1$Xwlg{OHD6p!JICut{( z^pj`tUI7kMx@x@;;M#O|N6SUp>0KcX=>Yd`wIcf{et>!jegQP)l^1G<=-!E+nEC8| ze@Nkc9rZ6#UDgoIi)%;mrB<(rkQh({BGvXLkLr&L35zC`GMD&Ql-CE<3|{R`a2El> z1y@+!wDfMka4W$i@BOy!Q>S%Lc6vc?#6zE9b+x<6rlrg0Ynt|}PGOvw=@Wa9YS53O zpp{kl6L8uf-4++kqk*~ZET@U;B!V`|jUvpuDKKpcT__Yr=38a6&1^iJV-ems9H$7N zdE^$W)_7^7IpuW0Wu@0OXCAD_{v6EyP>#l_-*uyye9oAUm$$W=U|DOiX((RvE0YFB zn*`BLiZJLf6kztJw8Z|?sSjK>D|a!J-0b8xibsw`-$EVhXH^H$(kiwJvS zMX=5)I64TMv&k*L?VV*}Vu+TZ{xyLbcKRu=k?#LBfy%cC0Gic3>Zp{;Lu`J2ND%sK zz++gPXq3(ya|LS|`LRxWH2XWFOB|$w5IUGWk`1kqbMXu!ZqY8R#0QM1iP1?@T_IP~ zA4NE}Wr3k#9D~jUE=172-ExNV!>vn39_X>(=;&PL0adpA= zCj$X$g;Y%OeTLpd{Z{Za_HOP9=a`D(k5T-x(gnjbXYs>h=h~l*D@{hA;mt+5MEaZa zv#}j8RVZ8|*PyHm>F;_`kNc-ns$S5 zm!6A=a9kA>QU!tB-gXBlvlgu$6@Eg(Q$cTP*6{N7hi-x%Isg8R@AW2(aW@I*0!{Qv z{aF~b2_W-PG9R!yemCgesu0f|p#^EZuwJqEwU=q3Ug*suw3O4kZmxo^5_Ax{O8>NA z(o7%IpmyYt1!LEx|84-LlB!9+u@E+3+hE+eR!>V83ue!WHRzx372>8TE%tO!`axvX zHv7|=ls4da&LpMSa&Gou+JtAcfCk;uEGMpIZm0eVB1X-MC*oCHGCuWq9=Mt zDEARm?(&`dviB0JQpJ{f3r>L`!=I^s{T;7$rO~xPeHn5?%k_Z-_>T3H+$*>&Q3CGK z?;EgF9%e~O#UI`ao)iT!+uIMJyt@ZV1(T~KC>sQv;$*ska$ZZ#B~3!Vc%ft*x`RpR zr@u*NDkdj4EsC<)x{;PqOS(Hr#}+oefhpXALMkVN-U>rQhAodl4WD#VFFQBx%3{9h z^YOuCQ?6f~dQ&}?eI{$jz|@W-#CBff9G3FNr&T}$TQ9Xy(qFMZtQYHPo%UN3(t7bO z{F+4hg@1frZ55u%s@OoFE`4Op{=lx0WqF~T@K8@M|KjYSE@_dSv!Veqx_0K`$9*UE zn-Pr;&&OIg#Rx)49_un1Qg_?aqSf?e$*{jA^-Rajv$@!8y@^dYqP1l^Om6EgD{N$=M9 z!8UBl{AQ|K-MI&J#r^&oQ5#Um)nHX$FP53+Ky{%m?|l{l_4!gW?}XciPEK^Kmo>=V zxmN4_jUm9#+s1ZzUbePD2pyG!CXDHJHvNfz;{XXj9Ir=u&@$kNJ%sAl4-$J7u zJ5b5wl623<{uzC7dSa+=oO4)`vQ)e3n1>I_?;!B34|!E#Uc1m1bimInaM||cAS&U_ zwDcLfKDZ8V=l=`&?-BP*71>`-k^sN{ET}!keP)vP)*~GhM6v6Qem$nCB!>w3#2I{l zZ^&7;N_krhx9DkjQ0CwDxV!%H#Y^}lk1+kfcA;c^V*!5XN6aJ7 zD|?E$x!(t=FX&Jp%fvxMUyB_A--iYS@~O^IRk$9ULF}a;xw+@U7~pQfH>usu?+ z$kmfBRch|)Cg-a?KK3rt@ib;ktbC7M0Hap;5Kl5+(>y9J4J%Qv7GM5z*ZNvH9|e1O za)e{-Ow2%U1+_H@@U2=xs6e{517V|&yHL|J7bd0_3Gy;k_a&a;hYu=3x}NnBOf1#3 zpF`epK%E1;w}zcrnsqfrYV_C2qf4qrGtjwRxYE?)0@i|80+^~&o8ib91Jy^ka!Bkl z@r72URt;3paq|a?LTrI0>N_FTtcZ!_YId}3thK#!0mbjdv?Yp0xz0NlioizAXXecS zP?IAhEvDTRVwlI4$h8>C+(7S6pC~_mDX2am^VDFNC2f}n5=#j#EO%$VeWWB6`rgQq zU&O}%vD&qp%Gs}b^@{EWj7*5m&iKZT$wXFeR3iQ)v6fB%UX4K**Mbs^3`VEX8b$5@ zz~;{LzOcEQ@;ruTNjQDGqyY{|6Y6W6((CnT1AP?`^A}Rdv%Du_c8$|RMM~NS6h`1z zK8k(e%kwCTn@{$(yBI77*L|LKU_~KTeiTunbgGG8z>k_||qvG*Lb?j3nB_&!Oh72r7r84jHCMcCX;gV;2 z>7LZSVeu99w?ka7pJ3kaq8mFJ)Z(XR7N`!imzYpma0ca)iJffY!x(e!DDuK>ttDaV(8(jCPsuKZzvjM>`rM%U~ zFQwv$^Ju#1r_~*M^bAD3=%GDFd}}-V!1Pb}O;KzMgyMa|LNL)i;B9Vy!AblCHy@Nn zOfbuXwcQ(~oyYxbY+oZNpkQ@5ZiNZ>21Mg{bo*eq`^PKkd!KNcuC6Vr-=r}=H#P#a z@E(<&_PERVG-)w$)l|R)Uu*o5-+$rxGQoJY;@YgA2lBVuxJ1`n>oUZL+_mG$BRGy# znvnA|GAj-LnAl=zHMAa?Y3-+&NhFbvyP(h#NqS7I0lEoR+#oW&O?DDBRDs&7O{Xll zA;N1l*gP6;=H$>BPr(dIsnXTTO6kd}_=4r~Ok+2s{0afET%RE=T2aCE(b^E)y9N9?Oft=9PdWOvXxu=cnmC3v1S1sDsKm05BK0{`ifDS=Kq5Mn^5bVE+0m)D#g$1FMV|${Cb{I#Z)qkZ^Mi=~n#2F&Y~?G4Tc$puM?fa{M!zwt1LcJ zll$YWs7>vLW1v9Oo`JkZ&e5q98+}eAHy5s7O*MiEBI1To9&L^PxX$nbDT+Px40SID zOu?=Y?kN?AoY%LsB2G$38XZr4EA9l2s6z}J8YQ=`jf}7pzP0*q6Ovnx&-oUSL1oM@ zlWS)J%|d4wt8@`(HhuPp^FnC-47=iy`C@Mmmb))}byDFE;cE3djw~W;^W07{;ds&T zjJjL2``Y;QU}Gm0K@Fp-{!!kfQSU^tYTseyHc~XoZRojmmZufAYEs)IaIoBfEaR&J z(7lEsw&_^2i(2M~yZzT1z4kMhu+~_!`61jzkkdt zj-a?<-o`7&72yRp24*ZpRxx_{eV&6BRD`Fk}(qfh4|F|JHy~+UC)_f zVus1loy=m5*Ry6iKzzd^0_$Y&@Z-^%*B0!Ml>D6?Gchubqhu&aWg->sByV`u2Kkv4K0?*W z%6@Pv>?*bOAT*O7o4m1$#B1^)9#=y0(S3*MJh*y0z|+z^^upZVP`TelP|XS?VO7ls zfdd00SvggTj>V-!B|M)EMs~am$FOc6+x3VYDKIPYx3g%T;b$tm5o0bMUe@s38017# zWZ_%=hxYKTW7mJ3=n%^AgUJ*w3qZ|K2+6S$fuT~%`nod}Zh67HsY_914>VwXD0qYy zB5zAl>dqMw4v{uikS+=dfYLo9WOA3Baa5A`bgQM94nR~#`Lfi_38LUTRWNa-=ik9` z#r6x=gxG5MsrW6Co&B|Q{!7l@9wxsd1K{L*EEXXFoLt517bo|t8kg1FB~2);ss$IL zyz8&Y6}=;e>HEk3-08WaGQbT1WRsx(DVzM)NSc%{f#JIy{(%^ZT1PL(%8u+@>$ znZLK?nXy9!DD~j`eVBf?TvKN4T3W)bqn8#HJQ|y%pZPF;eIpFHT4JJ()Is7|DWf;; zG6jcV*xI?))~h)n@79e%rDb461Y36MYTSDz)cgAqw|y6DB*xmx70&Hp&a;wD3e63M zj2nAsb%VLhN`eH+{bC683#j=52O}Y9l+-+t#DO~6-(ZMwv%CU417oGeUhD=?>X~oq7Jpo;cvyXRjr1o`aqxnqPh&b%5U|WTOeXLZXwStty5uzr(T(EPAme5X>qj zoCfg}8LVzU^yz%Z4+9>7i#`6_3ue^&ij5wz3^8espFwfF}})e_3o++IfkAe@YRjSm$4%`LdTb_$q{6Ts=tZ{r7q6WIt(uCH?s zYc61X;FHrdH5Q{^<^(r;ml!Ca*em`U76I#@T~=#AIEfA9Yqda6|C)c}EdE3%C>4^h zauuST51qx2l6U*9tijPPQZyO{~h&a*+de*LB*3 zeu+Of$VegHE{w6H&xz`%QbXyG&#L2DLZCq+c+x3Rg|LlWh(?Oc&x5Hj7r@YTZ~B{~ zz$2|7?{(`ul&=G)ivz79-sJ-PK6Uv5(v@^jDCrf9b!R}OSL^*;CAP+bX9B1O#MKeV zYy+_vSP0>k#kl0u6jt~xgI-pScEtF7%Kz>?kc^kAMPv;Ssb2QE<(agxHZA4^1a2-9 z4xp&Z2&Mj>Q=r3ROg8{ZPB0TLsQS>u{fm;D0c4W}AsK<<&RZAuyk273d;ld^2VY~1 zA&KUC>AeKgDIM`!V$6UXtS;(wduO^D4_Fmc?PBqI58_ z0o$(?s~&|R%I+Jbp5Gac6yb}^Aa)@#5qXhcDiI=aNK_Z1EtbR1@K)l#ae#ZIEpzfH ze4mZKxj=h}Ac>YHeB8RSdu-6+5s+laSegGru56N$9iOOQ9yL%7Os3wCR7Dm71#{40 zzQHm0HT*VHhB4S$jN`PyN z-YvzzrE4rgYRmjFHCxg6CaiJKKd_ZCm@fYV;jb-b=~&IggAhhLugJhn44X*D{u6uT z@NjD;P_wf-e=cTTxKH)Su}YLa{(Y!migA+Gw|3ThZnB$pATwa&Cm^WW##OrJ59-S% zfD_^QI~Bp3s)U*bCbKs^%3xRWPC3bdca_yJH0~m6ETt0hMVw>#oNh9(6 zp3ysiac>DUKTxB6<2(D}Dd_~+k>AMj#JA~mmQ6ga!fl3;Rb z7f_o-VyxKHZU(d>&0}0&lhrIbfXQl7fA$fu3qyY*f8e0>?ofpJ^&kqjHioOXGL*Y# zA_bW`JkX2aJl_|wacb!np6$7NEO!gT4+#1;NOpIj>fZ(yx6(=QNw|!_24Q(UEW~7P zQ-de92bd79c-ki1Xm=q(4fOI1+LiftgSB|=^z%I?w%%RzZuSd7Z-YC~FH5LLh02^O z)adB0=5!T?!QN&-jCTaQ{a>hB5NW`VV#`0@Ur_I%o(_~=}kv7b7R zODU=aMFt{)Wq(vfg2c(ap5#@1jLYn4AeUs6MoZd;@4BGchAFD%rq#Y4EzMwva8V_d zTH7c`2kC0<>h{~+aWa~A+mvC)k(c}GcBfxzju?xyK$S5{wS%3Y8X)#bJ*!qb*xbXr z#+&IH{1md#05XX4pwztXfg(jPQdrSORswmJzh9 zAtw=qab-eeG^^k}KJ)E;K%#75LKtAI=GU*N@Ql*XNet-O1Q%4*y51VHFP6ifu`rg626K9T`YHIvTRH|ATC(ltk2iOL*VGjca*{YcRM;thV)gnBf? z4$6@G?)bKe>-;cKL%Amko#b=fx}BpDWCN|3m*m>TfI3aMq6LQA%!p+dwE1(#n^dTE z=Y>^^LumcphBf$*4+>*=y{TgFful!yFVCF7yhDmZ1OCJi>D`n2)z#PIg#^k?5#^$y zKN#(vN0^{uY?DqL>PWa_gZ{}~yibTe)A+Cpzn5$2OK7?4;x>FG*qggn-I_j+=8M?t z6Pl&Cim;|`;!H$p408bDv}tOAW@eYo<#uVfRqpgc*>P+2`_Ohg5Z%plgG{Km-wrrt zmCkFEOgo-9w5j{>S-^pWKj}NsSq5Xy$$zRtN%1%%#t08bV#S{&EcVB}6HN`2)iJfC zI+4&$;FZ}H{A}Losx69H($~!Fko3ZgF%EiEr!I8mVr=G(qKwituTcvN8Mnlm)k!Jy zM41#k$=XPiM_cZ`u4KOlwJ`}lU@YkLC(v4=p0SElsoJ*=^C~aWYBKc$`C1Da76g9kV6upE1%Fl z84H}n1Vh^l{6-N&l^P;Zk6e@`%#Wtvh$JtTYfS&aRxsetu5%C+;&^a~9qs1AXoVQD z8?7lP&ET$aFFwwMN4TiJs7#$eR>E>ZfRAZWS^#Slk1%p<`-<5wBR>`UakjGurW^ z=jP4adYP=8(d0AJMTyYa!s0w@`2)G@DnlOZzpE9)&Qq>d7aM3WXb=N*k(yRE>ApYq9hBi`{$}d@yUb zSV)q1a}(_=fr!(C$zF~m6P)doSKqXCHP38$4zEb$k=W;P>55Qn)B@<3l1wMkw)mP} zRp1_|qR>$l0?K=h!t5RioS)yLxgRnwJPBUc2F1uFou`LvoS8(Av7HG*N_1g$8hnTR zo>L$GQg8h|kaBB*)|O0oK2Fng*`cZCht=sgYjf!S)-tx+$1dTifY4(1Kb3p_6I%W+$&Zi6_pW%dwOgB)=ntk@i-}YbjeN4T9$(2Z z*F?FJ1i2@;T7ix^6b(}T<)LzvyJNp7hEfyT#8)EEQsrNxo>MW_JI`}Rd3?W`E{8m6 zLrf3Sfx|b$UdLq5{(ih)`F&)t^Q14%o>JHx)O{#y3t_QCkuJ1m+5ku+=2iUC+ zslmq^v<-&fjSv1VvSlnBY+BDh`~=0pmS^`8fG7`@bWp=kOnAZHi>&D)426B%fec0h z7K_U;jSkMU7$>>dTG`W6HB!l5{*bm}6N1}m2k7>Qw1UGax$9(giUYbm=&K{MG5Te! zBo3g3;z&hW{N18q*9GS0_5j6Ccac90T=m`Um*U5Zy0I(;I|pcc;B&~;K*8bDMkLZZ zjFoZFX2?t3z3n(93CZJnVVF>9iuq9K3Xbmw&?`ESUB{Q=2ks_Na8U`-;Ny6|??s3d#9x28xt+R=cY(UmJ{3we=mTDIk)~>{fwXG8H8=+VxvmwHX0u zxVW)cJX*UDA^D*dj6CpONkRriK6`*uCh;GxfRXvt#sm&?hU>4Aa8af>Bo*c) z7#d!^0CN;Xq%`EcW}S!9b!04ZAorOg;+QdD=cLi#Y7l^-!bMW08Bp$Fb3hd5cSvxF zkB}m!3qWSw55->7ieJRz4`C*?>au3FtNN@8aS1M0=Z^+;gPX7aQItBlq~q5hT5jkO zkOY<>hN5-39EX?89S?Ha1hne4Lb(EV1dV4vuCz%+F)~R6^a7eVAXw(dKnVBH0vtVYO_O}Y*K|KFN(r4S+MiE&p@A8ep}kN3@6ouNglYRn zvxl+K3h=(do$S^c>o>clB@qTI1QKt}>X5;FILw=gW^y#^D z0oPjf%=B!7#5LaC;g=>5t%E*`^$Kf|j+oV`vx3v-0n7{E1@n0y#l}{ z7XeAKV8$wQp1v9OIrj9~OsXjKjyHF{oM%esDRA4C%6n>ksYBMVDG{j_S9OhbcHb=O z#UhoNM8aAo<@ElwdwvM!Z|foX?B}V#C@9H)Ff(Du-jKd{y;QCMDRB*YiaHsh=G%>2 zKjq@clt&0YP}#%#H-|#6b~NGlGCl=Qyv~Y~aWqRU_X4q!=I(!MN|Oov5XRrru|^W5 zkTxo&f5EZ3$e>_vlluJ&)0`}B226@lP9UN!@bw}j88fx|&}5)d2?;OnP2BuDh4|L~ z`?`K1mM%2XAbfxU{|#RLVK-B} zdq>$7iY(xDa`30snoDUp96-BA@n5?~i&4ne1c>>b)l=#Awh0+l0IGjtR`u5F0QnR9 zr3afwxqpRxQ&0K@qIyqnT1bz4wq+Zv4Z#mMVQW9~q}y>40tI@*ejokWb2pD~MX70x z<={x{a`ev%BbukvW62>BXd^EVEh>+u4aiNog< z$1e=GaT>#LKkZo%e0)jL{Ef$}-1&EzD8Q+frm`%_3E|s$d6$DYc8hY3|8yub!lU|~ zR!zIzSv2C+fW7>I=Pq8@htzaakZ`O-5ugPY@1p@8drUyk%p?qc4A0>ZZdGm-vXQKF z{F$vb_1)~H)1>wU+BqYpk!2K>>d)IT{EAcZNbbtE$)i#-px(nph);0$XR>VU`@Dgh zTC~!@f@gL{Zs@6Vb-E~>3_=1$ct00BIp|ms=I*Ku!rHz;%G8e1s>!GAH~0u;=v7%l zoen=DL^tUaMA1Uu6r$UJ_jPq9X&INm{^3)cRdpX3KjZd*BE)*%MR+LzX~K)Apk-qI ziJ*%cxhb{%h^JMyyZ-H|_YVBEX+vJsAHEz6X$PkwUeLVyBU6IO>P}G%q-;byhTPX> z1BH9`b9oEM2gh46PA!j1F~<+0Zrd=L%G6r%K((1g)-xA@4~36|b>?z}g%uaX3b$;S zq#r@XFK0e=crRh9&=L#OeyQpAzN{Qdz~JyH#L!lFOdj1hiQr_mG^t7WpzuSRu@YLc zo?^{#20~&DdCmH+Jn=j$9OVAD)YSAQkv1W2q2@}(?kkhA!NMG%QJ2-N1^ms;Hin4b zmiZcwgR>awvJc0#Jn4Yv#yB$6!k|rLQ_+Qo0QH{ghs!qk8F>uOF*WkorqmMWoM!O@ z4YvA|Rs~LK+-AT#@n=(zgOK^(Kgdm}N(d^3@5{}hkEhonT?}Qcl9yC?ZFspCI_P%W z-1dogaoTyaoELq_q1DZ)Hh@nkgxX0-B1|tvg7s{rdezTFr(y^pl*Q4%2@-`0ww@_i z4a6_9k{vJTGH*VlJ5LV}3~BOTV$ii&*d;GV{H9rr=X@0L&5L$*^PZpqrnDPtVYlhK z8WXmm{Vj^`u89JJH*H9%Qv1D{)?{b`=q_e<~T&tdu^WKUV;#`BBerz0_DxrKo2B{!(?QLm!laqT(k~j3*mowrU zHzs^hjWdE#Zj>1GAEkm_U!R?Jxbw0&+Ty0Dl|%xt@$#gi2wZ#)%Ac1V$awq&9Q4>? zNo5w1*e*y2Zse{XP({x3ULxBu>xL>IbbY!qgVmMtgB+TL8h&h=QG*V=IwSWv7F@iP z2aC3BuDN?OkTT-MWB%!f`m3jK`JLauAj8r<$5j+oZB3F3Lid*OBNJhl$y&0+8&Zz( zu%jZk??w`ann+0Q$RH!#Pz)wbJYTv?Au0BQauV| zLxvswj)hojr)9+8x{i(Wsl_@UU3M29A6`bkY3gTK{AieY8jVezTBqu=rS@t8!=twD z&SpM4bR56ul?(R>i&No7#bWY8Bhy^a=3dzFQZpmZ^0>QR6wckE!e7 zo^tF#N=-@W8X}P#o*3Pu*c+&|}EVEL) zxxC_nl@VB)tgwY8K2_(NO?H%i?k#oocJ=hFJu@Yg4cFWWnMZAt%a1G65=Fb86EkqR zls>{@7#d?RYOVQWNN}q@!-f}jCc>#r?{6133pwR(N_OA?((OQ`J)6$M>Wh*@VP}eq9Vbqe^$Eh~j8GD`(D+Q&eE;n1#SBE{G zFVMGV1Sc!J^N?hpE^+t&`Tlo?cb*nGmlaLpv#3nX=MW>UCqSpYL>kl1v2CSPU;-D< zd+5%&CdjMiZ|n;=A%P6vU&Q}K*E>a5!nSR;v5kst+qP}nwktL&wpFpM3M#7Dc2cqJ zUU}bd|GRti*Jl~)G$-p?&pqe-Z(HeZY5JJp{{{4L(R(Lk!OzbeaYM1vTK4n8nFF1e*pK`M+;cY%?Mmq^C@i7A8Ut%Dv{@fe${}|r7ZGlh1 z&crJ|=VcaH!h&|qCzPOGK4<1kNUW3$fb$go&^J?YLlRB6Y+%!owUu6a6b`*pV*o+a`%Djc-~GNRSbs@2hGdy; zmZx>#BMl%q)GijSbtY{NxPITw4a{M`!#ekD*?N3@_k#?P=%lFrhuC zDZMUkWjx+5j;=9K-{Yt*fIY4ajwrd`R>hCVcDTF&P!GJ_6)uVk0O|o-wEL?39M>{6 zy52znpdMR91fle!uy9V{wW2WIE_H1nfrO%MjTNx}SxZ4M6;LzF?!^=@KwKtCJ5rfH zl`eV#R1ab4O)EiRi_(la9siP4V#yQ2oL{`D;i(1UE`Guecx27=q13Z>e{}ehl?8Xy zQOLh@<)V&FqOCCtA_`CJGfVm{Zsn9?Doe9B8 z_Kr{z1P_D?jxcJ0Ovzce_;MBGw*?3Azb=H<-iS;k9Yk3QS?koSe)Pm<{TA*Yi%&EE zVm%W0>ETw-Y9*;~cY!{R@fFMDQ_#F3GxwRmxEytg7lJTlOI_2vz?Ip6tiTlj~EWm{zaZV|#m;L#I z=$=9<`phtkn4cLVK5okceg!*xMVCsFU~Qm$nTI~Ek$>tD@Q(~3EC19P#+k^p6T4=e zDzFd}0os^Ys*GGAaa|7AaIH6F!@5iZCOQWVtH>97D(Em0Uv9>$=%qo}C3oI2fc_ly zi2p|HtXW)hp0OO;T)q)M^RTTnF`sDp*WJSoxLJ&B#^z}mV(||1bIRuHgYmD9->{Te zp|`7C&x3|qgA`SyXlJu!)`ZZhmPw0-Gtl)bf6V5}RF%p0O=Q`K=ybe0>re@P%@l66 zRmHt;(@_xST1ZI2_z>RNv|YF75>8QaO*cBhRDKRs zyHC(=B;DPY^;4kizmrICbu8t}ME&pqOb>j3?GI3!gGM_v3&#Ml+e_p-WLi{k=+r`e zJ~lm5eGCc;S@tKi0JLmd;)b2mtP!Rc&PkEc|wGM}A_HtC^MYy9C ziGifT-r62yWV?tgEI)Ok!-GdZ{eb~qgLi_ACuXQZmNx_Cia3ckvLIEho7iUCsYG19 zaz5=!nUFi{fB`R*uQP5E>-9Cf^rZxk28N0v9h>vz8Wu)~5 z^@I>}Q!m?RjN~~v5ST#=`>O4Az0pf-R2(JlNX#hk#z7oV2?^b|7GzOW1&**KuxjxP zmLQ1ErfGfplyKINd}_rXJt{;XOqGd3E7d1=XcRMMS||QvNq|kj`vahQM7c%7oj(z4 zPh=|s^#MByK=p)4d4e>XMDTqEP092`PqHtAXyJg)#|NZF&+9W|$dk=)^(5X5&34;56s?lpO(MM=pF+bBDzrga zHL~7DMsMdp43tf@{-7Q}vZi$KTxE zyAv4TSwgH%4pUfe%$3$(P4NMU5|rSv;8d&Pw~l+?e1GI7clp*1LlMEf>n!O#PynzV z^mCvM0M>Jf=-EM#xC+2}?g3a&aLuzwyw4*C(h6#gSRVC~ElENhI-+}^gFXLJvpuy3 zcf~SS1Ss-5M1?3p%|#+-{tvCz;9MHnt@ycdsBic$4z;iPJzMhC08@fVn{F94g910+ z!LJYX2!ELUnep>J^D;IsHD1q&jR@UD<>gB^`ATEf%|{sf1(yaAjv}9Z=lYB=jUWeb z3nGr_B<5o|#EGY>p}oJtfF+c?#T`~|2IlG~C423%ps zon(h%W7qF=B;T2Z_EE2!>qS#FAE04yY|4yHVwwEL;P{FJMu+;QX@Fxt&RjDooxY<} zOtuqQbUycQKHPOV{-9}fBK6UlS2)NyRk(w1@0@lQR#^73Kp_n?N2=)c4w2(TO^d=n z4?hLYnKV?v!LJ(HOhIhnvky$#rII1hNirI7haYW!fLZ+J4Lg?K{z1CIRZnriHz_kz zZ`k&#QlHU&T?1BpoYN`o`qGq@P4y$FVmv;C=`n+MOKvpC8V@cNl@8raY&}6T1)-Z5 zJ;flt&w5plW!Ri@S+JX&=s;b4GXkyh3BI{R#k+E5bTULt6EztBqOFmKBOBi-2-s$b zFBS+IHA9R3U2=+yQ2D``R|(GGEUK{hkEj3kq@TYh-rVXSA;!u@fBn$kL~APtaeXm1 zok`dXmWJcs9<5{YzWi_;!3iBTKxCu~v}<_HcHCNWQxrky?i#S})w*iwwCB~>A%ZwK zfqBcJD}3XsOU!6F%Ef-ms_8jqKfKag8_uEKsRh=n`RH$usb1A%nrNV~`zE)oE&<>7$)|@+n&RcbY#vJthM)3BQPH=zG zg?KwgmHAi42X#sVCI>zo5Zgo9l6l|3XXej-S;>4fC4=nQH8nE0&eY{c6I|YDLQ%Yx zaM`pAeN#(8z|I(fpgG2sVwl$|435v=_vMZjPViaw<;D@tgE4*EqosBkgwe( z#O(|o>Z1paruu0$0gji&KP^8E=f0MK!f4otLy$d$-qK5X_2|+JSw=N#puPV6z~R+} zJg%MA?ry2yeM67CnhNuwV!O_HSl0Kv48bav*vPZn(!}5h_T$*Lx8Auq?X{E^u@O#q zW;0z@17bh2?#8qthFpk$yBiF}nLKl-SPhHpPe;%abl8s3ym2a_0&k?5o;r`mqBIfW zQ6qRn!1!XSlVJny^ISIJ@2(>HTPY3X!CcDS2|Dh=b%2DRkbpCtm>`}Yij&h--kfpt zfiIA0I;>UqEO>B#S=rq3S7metBOwHfHCK0t_IJl(JBHNR3q@_KIh48qXBPcc2TgMp zLv?YR9tDl}o&$wLi@aR4yBZ4^AlZd3f*LWKo~-ArE*aN{3_%~S&%&X`1tCe{Z5c~!XjiH z*X_OZ=W3*PfwyRi%1}XXUWgq3R;0f zkIsflbd~8d{X{E?^ANE1t?1}7&XfRWnN{6=%a--xtm|*`2qG#(HL)Z_)(mjdDMQrc zXQI$Fx+hVL*>yi-23I{q)zCVh={UDP9Q*}jGo&qOD?lkf2op5|82X|#yIZvdL^1FfDA&aYJs(mcZ4gAT8^NHIofDRoiI}Zs-mQ5|2lubxbnyQZ>LGt zYS&_i1c*IH>2Tm#leNE@8zJimrrJi>2W;&imOKLI|u1VBBKbx`2|KSJzc#ai(0gT~t0;lV>BumguUx}_IK z7{gSq!}!(GsX({?KsbC7!zW-geSU%hDawF?p#ebvK>;jsL_l0DP&)pAr>CO-b}#qu zoYEY1-j!b5^!WXW0ERb%QzO$D(sq7=gu((s8p332Zz&3$IZd1UF_jFoc2HrRR*BJV z$whncbdYhwlks+IP;%Mq%p)&|$=edi;Mr*gX>J*~eYL!4IS_8&nNsX+c&v}P{No&O z82S0~;_v@zG2>F*25tc79y@a)F2RuZ!fCQrtT($}@iCD=x}Ce)%g`vB%E-FT^Xx2GHf>kowx6b=U-q z20s+E?tlVG_`o5q1hs`^v%C9_2s!1PJ8Gr*7VuLWCTo}BGp3%17Avp&i5)PF44kN;Y*Ii!654-2;amj!#VNg$op9&>{R z!n_Ay!3O1TtG4Hi)j&eb8*8qx4(Y|0Pi09}uwyeoLsmWaj#Uon%MULhY zUiqfM9)<9$6TcML@%vGB$J%#a-q$VFfX8>MJWryC%a92FLR}+p+H{l8+pQZOvx!(O9XxIKCBe2A21u|W zBv3H@gTjeqmAML z5^NkXj*tiY@&_)^diZWoJyjYfGI7lqZ*Rj6qxA;CL~F$*cfFG>nOh&|6{uX}KmxA^ zYS|O*ByDFO+u&eWIk86E0gp~r-V5v&SP}^>ejwef4m_bgv!P>UN5ohWvg&N#syrrr*P!Ri^@g!T6Sh58VsL z8c1RHhC;lNXv6o$)v(r_Y+3MFMY^@s&E`F*STLTUCS3x#Vs?;xD$Ee@GS=ml@+AA+PAW|v52N2NP-^o@ zCI42_e#lkWE<kB( zR~B(TY5hlnE#ZFDs<=~+H!xC0Hht@r$S&d_Qq#|RTBNLvO|}bi*PS%vvEo8l|7rB# zYa}@k7AJ};#U2Ai1?p6CUd+MVb*s-C^5wu*kOj)2`YrgFi7Yi?0nXh?X%N*)?ZF)lG+`v%S?nXa|T}E4s(!@XS4>Ibz+V0geO=vg+=04H7J#<^I zAt9hr`dPMht`3E#1PO`@dKrABc=)-)mgB@SZNpEtn)5~WD7c?u1`!HzVaGu-au91A z@PSPS!Ds_zc7J0I;TT1$HVzX4dPGEd=}7uAVLLBXroOYeE&gM|#ze5sfH=8yXzGe` zCHcs;CoM=TdC0q(^#SSwje5h6_1{US>~1bGnlBn*V6~+RNa^4UGXHgD8KCoX10Nv5 zR=mFfYW<=2fKM3~>=i@&IWFYfE%y)&^8M)YqCxd8A*G=?ExdkEEF(e+Q?S$|I|82^tp(@j1vT{cl-(*AwbID zV@+5IrY54m&ql#}BUsB4BEEl(nihaU1?EQ;BSplh8$zgSz`fhi5jofKO~45}>GMCd zIzxXw3}r)HpHHt*GaHa{{w44>yd|@vfG?04%CaKQLHiR5^2f%+6&ronp3-M=O5^i) zRp!-^i67&MxH~p(olp#zOYqD+jAL_(_;d(oTq=_;>gd*jyhiS{5gEJ(e39wj{H&B| z4~}hdW4kHMpEFEif2g%TnAEwur%jsU*=q2}k7N&uwwhP*rvD*h5JmYW&9*%|x6A0B zC*{Bilu48yEj=Wc}RTaQLM;q-Xr=HpyQ#60UPB0j062V^PkWDXp#~_brsep6Y0B-lo z%PnFKeDP(wv8OQ^6ezqr>FI;c%<-tUs#OoYiZRGIt@B-eOL(!$7vo)-`9)t+&qhjR z=-(d@va>^!UNwbtrPF}!R?>=X6^nR$?r)_st0!ukVHfd5Q@Nkjv604EI49BD>pby#y zrinfpPRAHh)zKKoX)>QBVe_kUq9Zm9Zbx!A5M3_+Awz(k_Vl7bx|_bF)XSOf%=w;c z^v!$}f@^~bOB3q?il+qFE>{9)Jg$6X9QInmy#~0TzI8u__a!`#Fd{1CD^U95XBt;~ zIh^i<2f7H(8ubck5!rX-WZ!OS4X`6jI3f8v7*WD4cyx{m;Mc4H-*sfou{5=;o)~zW zuydXifh{?>7tZ?gn)+SNinFHy>9&2MqsvZolc_$Z6okBHI*H$S<9~)oQy6Rny^uIl zm`||Vf67zZN=(SSkHjr#4ZH0e&KpernK5U(WUSz%T0A^7VMmWH>e&eoBAZwc8-feV z`3cQan1X#Zo;y_nB8@DsGL`uaS!RK967Tu=Y@+i;=yuHUnKxTuVuQQ;sc}q2(maI* z>n*9uu!&UN9ec;T2g^09S0Cpk3Ub3y!4~4ZybHZZc)1=!l4#8GwP|>Ak8oAzyZcxQ&>&x@)WIWir@z3Ie%gsb9_}Av$=%i5AR+z@!@k6rkw2zektW4 z?Cq2C)1`of%BrCnu}&Q8JogRTXuUGb^sc{`74-6neWfFZ5}|DKNjTZ#pqK|?{Dli@ zC;}dTCPJt<=DAu-odR>LdpB4;C=Ix9-0w-93yveoDY1{uZ>m<}r`Vl_% zyF^4SX1mmjZ)?#fC3?E!pgy8zTvSk)T9I$z_@49c}-GpCDpJxm}&71u(+SPe{N zO0yGCtPA*xR4`bRPm;@QNZbIlJA|_8#$pX2WGK{;Kf4f?)zMzlq=Rt9d&d(M9G7^M zuah=2gO+149f*eSW9NGQQuI;jp!eCi`_7?zeL){22&VtZJ7+zacX01fWYgTCZm=PM zJ^kVwYHz@xK@ZSiuWfNSx2eC~fBx5GPyKQ?T0CH`6#SRD!p!*3>yM_C%dX@qpe*`G z07Y(0-y{Q@D0tUKPD=XV$EM5OB$E$sC;9erIe})l?!MHf>ykb&Vnnq>v2{Nx3vdst zyU=7H56W)~Xp}pcHXA=_=kxU3>+02VD@<6E$)g!)toH)4gQ3V8pZD*d9}iP5V~a&F z;}3g_T=Th=?uj9EK@n_gSIJLVhn7l6kmfgXu)M^KauO^NE=b2}Iip-TB!PH-~K z=mIK$lQ;P>f$&m^KUm}>f??CPWYRHj=)o^mNU7VAe|-pFUb1(xQaro4`y4 zARqwuK>e3{fa}6W^3JDtXes{WG9lAI#2Z6?^A!kDcpzM!C4!eM(ApF^7X@$b3OYc9 z%t>|FEfIuK>H?yO^Wz#8rLT%7NMp$#yFkb@(7w&>Jq(3cV{XJj?@(alkYq;Z;O+E~ zf4~vo9-tjY70+#Ra?Zl>8*)EzrJ7crx*HH#qVD)lP)r&{xOmXc~=0uXX+^i%3-NXYF7yC7yTRA94}_t z3+eMZ(2)mFwz;o!W1A6cEoR6=<_6U8v#Iumqcot|bGT49Pr-FH)z1s`+q-a0AXIqk zOgg_^x^P+A7tuAu@-18O46o)2-xf{#S1Qy7rR0DH>*3P$OKq~J_+esRZwL9jN#gJ? z^6^=9VMA#Jn|nHe2($(8NJ2hpq#g7#0No=fM4-#+46q^V3E`@|BS2Olt){D&iAoa$ zB~)@qb_fkT!#4NpC+9B?-3Kmy!(F`_bV(t_svufC@JTXFmp&mclPKeOV%IC2B7V~% z4~4yHVg|?5gS#^ZpH>68A1o*gZsd~&I zmBc)DO~E_Vous|Eq&@BSW>fJgM_L@&K}YyhhsD!6waT#bC+;&m z!vO0+_@<(QJ+2yMFss?ewXoA&{z13kTQvEp8kAj#{Xdnu9vCpO56uJ9cxMAPjUlWs zIv(xRT>2$~4yOBc=n(b655G3`*5%Q9KQO3MmE^;aRpw%1_jz<2W?9#O=J;DSE6B!i zrY9%_v7(Hv9wgFnctMGwbTxz^Jt{_>c%i*5^PvXW0C11BNqT7knKMAx-%*GOZm`|@ zQt`;8+z+kG@h21Cvau}asa^hhA*$9B3DE0VAgs+Vbxvm=?O>d8Z;}TC^m?f1P7BPy za$_8Z%NWl3Jue6PUiSvSyG24$LN9kEivJo(A>$(=0S4eYT0ror@kJ@57@+&?UADN! zBq`FH!^x<|y2{$^SYAi4(H~UC=xC4vFd(~b?wEs8OHf@f)Vvxb5pcADiLtxIxZXI< z=%u;@DT%rh$XNN8Ic)sJ3R=dW19#8T2^GL!v7WSKsO-RzS;izBoXtpvlYnHVJL>ws z0W6^-O6$%c+9;O_*GIp?J7FW4@@h~%7N`wJFURf+NtzA>hWee!7(O&7_uUQj3yC;) zW?m#Q-@co8oMi!|MaBJLAWEUkPwm)w%49*YGv}{lr{t}|t~6zjslV+Y(*Zl>DGFG9 zy@c$YgggM71^LMUbptd@=T46V_hqDZc+#r|+lIo0V}zg&ajdxg?lLx6hI^EnhigVb zn$?t%ti7ESQp?F5 z2ZZ)yT<$Vml$GGhP?mjkg@2J|nSL&zM@-kfss)Z}l5zSL3jnvw(`h^Erv~Jc3s0cO zW~fC@o6*m2w`q&eg5UB%M{ksTLd*dA0r*5PdquM)xl4)&$U~5s+BQV;C(qtFyKuXL ziTiU(PBzlGhcv?03jrZhg^1DIKXtZ&(j&pC8AT?aE^c(giIkJzGbk@0yzgFFE%cL# zb@|LGVxF~%uc_IlfU@Y$*81K0?T1<64__W7$gx4+jrgI$<>%oommQB>UQ3I{UwBpR zL%Mak_8g>XraVV(gL~8jaSt2WdT!@uz4FKOUpnf(P)pYLWC5G!dX@`$+Kc2#1rmEA zLqTS9k8IR>t^Q6FHqL0}PhLF4ua-8{78|H?u49^) zc$~3dr%BiXQ7{yU?2byxh%=1U^O3kyD;4hog+!68i4p{YmN~V0R55ioPPfV5VvJ=v zZ|?Hn>Sp5TzwykkFnRN(J(HXP57MQKCtp(Xk~<;4O8)4?#Hmxp=%G62~V}uihT>CLB}61 z4+NT@?u4CM%h4q{d$B2W?KGAwg~Q{rxUUHv>XBSiZ6Q+2CgI$4($E}!+_~iIfL{}v zyGgW4xva5=I&w#MRdxO0rnUxAcyvCmx2bC;8jYUDDi&W+F9m-kG-KbLJ30 zXYVGp#9;i^V^#i?B(|$kK)d~2m^$1D880s_VXn%bDxfh%6kSI?MqkO`_y&lJj%2+A z!g|i78x#gOOEWltM;&`Md#My8o6C(W3scY`Y#Wk=V zyEpiyGb|*r%y!}uKy}dmSXYd=5h}IwJR!a81l+uJm!?RPv~In*>V0X_JfI;XTdT#y;hdbvXJO2q>$l=gV(F6t;hQm|(W;Ky3u6J)) z{%5u+!)@uh14Dcf_PaEk_k$oJTYE8sFcNGQCfH&f7hUS%h#gDJP!+t>%&3LeEboD6 z4x4g^Id%y64m%0d4((*xVf{LCNDX2B{x@48dt64tgfen#D;=b85Ms#dvgbXx`RdB} ztBzn}MgoG&9IK2=Ux6fwVWG50GBRxYen)DS_ms0R228~UhRSsr#3VMHA&L&EGDAlG zifa}qK4a8qw`M)s#9Z7dJfojAKk@N!p_Moo4u3QA*>H`Edf_qMvLGAvnh%wnCdgd2 zA7w+;U!ZjtsoUB`Uc~+^&BdimX~sAXx;|OiPHyrMG5M2_+hYTiaaTI_zVDlfibqBK zCoVr za>8C`Y^0AK{>+`JF90tTHT5Q%9T{@1oy_!{yAtB$IRU`=5QTCeU{cMxGFBA8ut2Uw zo2b%`0;l2U$rA$~C%n?h^eDorpW4$i$edwbRjuPse1%3s*dK~%Wi5*3u6R_n(gIv4 zi32zJv8?@zJ(@Y5k*@OH&AS6bTS82rp$t(L_a~Bw&o@<;hm~t)SK_5JJyOCYv5#|- zl>@)g2w`N%Hx7Q7rD5w)Lv*_TR)%8S*0n5bXDJ;|cD}h~sZpgV-Rn5gKts(TnW4f+ zn`!?VFji=jT@W2E?_r-;DX0FAou6T^8yjLkq6tr}8PZ-K8 zdfob$I%N+ZX}<(UjZSACKOz6yb4!48W9;kygY@~&e)+#hA1l0EDF#!i7GE8HlV5PI zs|^T$Q0PWK?q#G~l3clCT{|o=V4HC062xvy^s1X$7kTZ*mc6ag*YVCq4c`(jS)G=F9Rlw=}Hu;A(vHDOJXb~%j^sIB=u&vIfZ!KHxt3s zI(Ko9oL%VP7yEb!B9wj`!WU3MN#RUy_(5L|Gzr5Rec*Zm5MkYJVQXKwW14<|mb%b@ zmm@9ClwV=u33-s9el+WuY}>YRPAEn;htAu7Fup-atQw`+77 z0d8H^Yx|5B%m<;Vk8h9q22*GXq-; z2=v1(@!}B=O;nL}^{(*HG#`B~=mbasyEmc*UKRTL$!!<#d;?&|)Z0l@r$Hoo%#eH6 z4yL%rNfWn0fT6&ti(*juOGwRp3rE;o(EUn}_EMn%Qp=WK&oY};WFmU_nr^+mEx*Hp zH@HT?1C;}YyGOx#IXvB=K*TicHtJ!hhcJIDlKX+l(wKu>B#EUxalsA}X#^2L;>v41 zGGJ2zeuc^f^F2lGC*|?-A{(yBNuH7rItlh#OziI?VvBvu++r{7sR*AUT>+ySK|Rm0t0$n;VovO3Xn&^nobY` zQ>vnmyg?xJTPmI0IU+-7Kwws)`c1}IXui%$Yy+8?d0yfeXIhlxEZ(8)Fq^^C^)*PHx8k+|0CpMT%_M9-!_nBxl7uZ>FAxdxE~>GT6?YQrh~&nkq&RLvLb6OUJ}9ognVMZLOx-D zkk2=|fC+W`tf7)bY9a@h3UI3x=FHHnkf&Jo_kI)jGsrDxkX142GJHs7NX;7S|2UmnbU<~8PE zlrZ*5pyx#@dssGNin&sZ#!D=cD@y=EKCO`gIiVb+@_1*I)6X~|VR=^Cz3-oyjPj=b zx^Y<|X*|rnY)|mln{{SZ!+8wMZ@e?56%}IwV4un(J`Y90A9~F6l{jsAR3x_o3D>aX zWio_ssb}NS@J=H%c?^X<8Nl>T1kJLlErsi$r(mwhh!P}12OiV06{`sPIHS!*o0N?4 zLRvoCrl`QsYE3m7rLG*?pp(>id{9f?y}}kc@Fq(GOP`c`hz}J~#gY0mtl}&CjFMgvoFH8q z2T}@aVYB#+E@|3KiMEfb-F$Qj(s=ojD@wC@Ca2SsZRtyT869iuv%|B1_aSrphlmF` z&+|>z%8AG9qyP!6?_)inE(tcRH}2F(&Ad?ndw7^RZ55|0pk3r%D#f`+{pFk6rivp8 z6<}uQ)}3P;GY@!>>f?K;d`(O;KhRZBed7xpKTwT{H^AzJ^NamDPqX_Ch7@$g?3(h1 z?-k-9{^0;Nm3(y%{kWvu6IuC`);PTceOJXHR5M^8X!_V@+)<0$7%AG%zTN@eqwiV9 zFt2LW>{{NO(t+~g=9aOU+l^H(mQ%kfJjGR7JECMRJ_q#fk)|E*fG_btxGL1hk#z#A zkJX}m?*FbX=^wGb`Df#zqIKI-Zxv#_Lt#=9%Q7cbfZ-)r?kAwe-f6pqIfv)Wt{2;z zu^oCu`B#0XH9Th~l?V5JARtScj4*?JF*}WwnGynKVN6Gwg8HNElWBZie;&a@S2aAQT| zco1E+pK)oZzExq){4r0~co=ZR{lW#DtfA#arew?0H3uHd9MY-oPHNkapXutb!Rd|a zvP9&IS-)7&NSGZGSxuX^HR}SsypSRrSu8?Xo=AEM!%yJpSad%L>g~ilYSqHers?7) zjbUXWn@h%*B?nVtWL_lCY6m(c8PJr>^W9C^T=}FyTDCTt-TxwYLX(8NNjigWP>ti3 zrTY@O#)Sh5Ij%s^3WD{OW=kFXkawMw_ANjhq4#<$TfVEvWWBN)I(lsv= zOut{+>QP6TEhSanz0OY0R52_&J{`xZ(=XQ%I}4gtg**4ruV~ZL@pUxU=u-hS^Eb+QgI76a<1yefMP`5J zAJ*6s>hwo9f*1JYf~a>W(*;8${w|hxn9CaYYqCBB4x)5W`)(XEs1)3+za9TR5_5X- zvaXw=$ytOEna&3atmiCGkf6<3eIomDRE#-6w}JG;L-9#v!8kR^Hum{;AxG?)w?tay zS*`f}iL->KI*ZeQ_dmyU{>CvfIcWgD{4hd8j%r;OYqv%I-UX(b-HA7&GWWeA-J4(1 zw2sm1b3Rkq?w%K=pCy5@2GzM{U_dDD%}N+ad2`m{S-S8E#(pI76YP)C@Thzg;`T z2kB$w+jW{JH8V4hcG<*HYUT%OpUrq3|Je;iCmGb2(+t$i)xd&-#slb)V4rZ+$TB0* zqyirN1Czefy9LJL4jTN3Q#*AhP7be4WyB`+@k{mVjs0}ls$M1p{$(D1p((<>Y#&Bt zGP(vdxntW1D$P-%?xMi9lVht_T`-YQ9S(?`6WSjwb3uw0DzW+rkTM&0O~6jrj}#1W z`F}w5v?XV?6YKlU)Pf90Ua+E@eFD9yB# zhSvZ?f<8u$H3~>-GK;;QYa8XL*-w3!Zo*ywc~wK|l%vz)WEORbrTe3>VyVxA=U3Y2 z$pOVktxvJRqa;D{6M**l_wP@EN6A*vfJH^q=d@Do`xG7B4+!_;Tzb8((F6S=5IP6P zEA*+kZiI{O51zjmzHN-pZv=o#wEz1u&AH7KiVbkHM*d&QJ?D(&da zd2u}5*emg6ZklkXsZFD(-G9nGva|oC+_U4;JRXC}0f&D&Ptl;y0?Nm_-V3l>F5ZY# z>dORRV^&~5{59!jO?uf9_Qb!5*#5}RLq{BMCTC&r}+i!obx60%{^G#(p-`E`uY zJ0p|~lqi5OdIu(?1U&YH8Gpx&B0TLn{mI(-+Mgqef zhW`^hWz_($C?fZekcjyE<12V74G5kRzXH-d0tj&- zFg*T8i3F3%ubZzam{FY#(HX2&0^ZvbUI&P;peP^1J`=o@L}y7crrbXaTn)@>!o7It z1c{qu_=C^LY0@r_?4^97tc)CAfVXHEMu%%?PsFti z_?OFVQWbNCr$DKO$TdgMPpbGt5qJ5xU9vnLknYJKPMAjvSr};pk)i+JUVHc|+>z*a z8JqNDg0WHg42J??#_chIFuz=GA&OhgC0_Cy%OQ(_xiI_8~t8S#fNH2xG%50LdbIJFn97t`mF9T;TqN~9uHn(w()qq(9c^Ctd> z@zG8Ggz#`b;0$?YP_}E#gp(Mjqhac^NZrwqOAV>;lj`CtmYL>x$q$a{gOY5v`3HLUi3qEDSmf3eJes31? zLR?b-G%>9>8h9dNAgW&(Dh8iWVe~?KI^Y#oImUz=^d@7s#z2W``Db5U!jBMsZ$G^I z@iqGW422<|6m!zX>Mg0SAxc3~igB4tX(0fmYMZ<|un?8FamOqPil!XphQBm3emixQ zzG_**q3uY6zLHqrDHj!KsWLq~23+wg|LfaIo;^iGcAqyE)-qp|Vw~Qhg-MVVjhb_Q! z)DJTuM(-7A|IE^G8(I*o^+qpi36crsFP5l7(entOh;V;2lLpQul(zHzA zb7$=kV*qbHaq&iRhJr1aJu8y9U9Q#lT_idW`0XaD)ZZkyzV_BC;}kG{`uK)aCg08> z!w#r&3rDwDINCP@TAb#BX~=d!Z>k{2WjdW}EvUIGgn~2BY4&mOBJx^~nEoDA2)c z)dTJA@lUh#iQTxPmg@%#p!`KjWY#b|#Fnp2HcxvGv1dH?Y3G7UAU}210@DP}Erv)P z1K73cQs5cnc<`QU{i%L$f!~xJE;@3oI(8AS;(K5w(KO&7yyVPvU@GLkfOlT-tR&>j z`8hYQPxQm~wFaq<-0zYqys~8R{QTq9PbUT^Nq!dSV!{p@1Q5)1k-*slA513+CT9 z5Bow>jCn8vW;)U-q84xvm%8?4D&;ijoWFY^X!}O{OTQhcG9Fj|V&rKw_vSaXsoVRJ z;nNg~rDWWz)WC5+n!(HAj&j(V|3Vft@^jbbD~8JUk6anZ6)#tA-bgbveIh@f60DN@}bc(UJ`OCuY%`BaaLVcAuD>4HKI9IoKkp> zgtkAUW8O>4sSR&-6xT5;!HzXoceJHSYK(U@w`;b64l8UTchQahz0eB!y`*5~%rFx- zyK!mawF*OFGUzXVPSnOa9|0qw9KpI<)$Gp!))HPAN)!>4)qabcH%1cJ3Nsrybyl=x z^m+;61fILhWc2S+5T{xWW4P^#b+QL2;mJB$UKGl5D-M)&Datyr@~J2gMzU<)u7)Ze z1zdi+U_qtdFC3s)%!&ENI=5y4hB@k-LF&AFzfOuMfMV_y)QulrJPo>=ip@C#Pr9Z2 z{EunUh}Gq+O2a}Bb}~lgmgT+2caKi>maH95wi=)uIT8c7`5c&Ck{O#>ZWFl-&<#E~ zw#lugkh&&Javo&}my_SCJ*~!>_>2@6PQd%`-anPJiWV9`;+WjvJUy{FC}=ojCeCo@;s7GRm76kIH^$^*$WDp`F<4890HtN}UYJpi#VENn+2HZ#@4?tVLnN zOg-9b1ryaPOWm50qs(o&9N4Ax;2p}1AF;6~ia*BX7d7c?l0?T&wv;n6yhDf~-$UjF zX*7&<6N2Yy;l`A6FUryS6J?2wXRjQD;i;I!=9cgJ)@jkDaO}e?(%FISgOw%LjefZYuC1C#XC19O;kINq9UQQnlqR44akGR%VNLnYi|b1 zjXl&F!zEpm0_n2`)cv(iN*re~NfzGeVo6+Tb@$awFRu6N&2HC-Slkyk>>Y|LcQ`fV zN#HnDM*6OQQ!tw2#tzJ+o3(FasBGjTng-7yr1d4eyA~{ylSP&`9>)hw@LBD4kiCKx zU5MGt!>@Qr9HR_VbHc@CQrL3DZ7vsgdO2!=RUX4g_WdQ*_S)C=1RB>HShF$YGDY!f zX-3qY-``zGg~dv6pzC)m$!X1jh^KB1B#MyzA=^>Ps#G`UDMJf3OFISAEig4eYfzCQYXegWxCm~8Pwq@%*z%dJ(lA=valhd?DrUAnLPJmDOkj!Aqf>V2&r20v@jZ z3UAJ1cw_UuBcyd3fgeF46iQO!M^Q@oJ)=$=J3N!k+emP2Gbsl0IWbk^;(Yf=xY@Zx zMm=F0yXSSqvM=yPQR{4rJyB7e%dY^a2+2FRUg1A0_x7f1bvg`MUH$X3f7u^@-6YNP~px-sq`wXgyTl# zNI{k;0+<({gyB5wief`v_PU~ACzE_RgnSy5Q0#BKF0;HgB)k0cA8q9p+D z_oj?X_X%J0gm@}WyI|B1{7CgQyXe9)f3S0fZWt@olw4euTK6Y@{!I ziC1i-fB6!h*or*>Pp2M^@tjP!u0q&YT(+h7$XLhqlDR~V#`}R-Awu5+(@FiqnS!34 zz~igR>=XJ#Q2vkvHbdJy%t1X#DtPcHmn)yR zf_cJvaA=9{&%7ldQQoJhiX_CR;UDOK^x5Q!%!mAC|3qf`c#Oi{fTDOZ)!cBht|ZLfR;!<!*)ZEtMnO?SCOplhaH)?HCzG9O^o0y$cFu{zGk%ZJk9@N z?wy)D?f-4v*ha_cbZpzUZFktQ?WAKH9ox2T+qRufvVM7<|D3CK)m*#wuG$Ct?0y0F z$@qT8xUO~lI! z@h5mrIvDmCN}vC3cMm<#ZjH`+=?NyaBG5V; z0GGW_?=rhQoQd$;A*IaDbO=&@E3&|W(tqCXpNO@NLPQ*&gsjCYj^iA20KjFVDqTRb zxXFu)U8CU$OB_@42WvT*Q)K#~y7DTckHK@gD)+^oi5<)8Ju81#Uo~Pc$)yobafw7L|mkDeV=^VE(e|4e%C;G6pn7w*CaQ zjAfN~H!(You0a-%6Xvz_FZF9ZHD4@0?{o6je^C6wWzXDh-b-iysC%P0g%!a}<~?uY z+dNlmas@5uHr^zk)ss$iau$^IFQJvP0Flh@L9*Ic!6B&Iv8n^3D*1NHP^24UFlwe^ zjh#cceou#BNx=6Ui;7fL7SBBPhVUEvx2t*KG!s3fD96aH`>EGxWU9N5@Ij(Rj<#=S zbpDOO<2mK654%UFiTIpfurNnlB@>}E7P%UywYOYwbbIn6K{6ID3nP{9V8UEC)ESmZ zri%|{G+^JL>orubFh%kfAbLiY*K3LgYxIfJ#Y*EagoV)v$$CkDRF zn$xev6AY%m#ozk#3b$`(147rB%ZXTj=?j>Tss`s0cM%sW`(*Sfz`WKG?%bIo$mvYC z0Y}tPHw)5bQ>gQJ_g$HQ^26%W`8sTiAY~oqZuPp;SC9oi6bTwYH%%(pI$}d2^ z=Yas7Pi6vJ(j`{c&lD`E@bwqGP3H~*Z&BJU!x0;h&sklxB zv-P2aMiB<5yH~ir!4l0WI5K%$vf8d>0p~XMCVH%1FUISLzo%FZv!$754Hzn}X0$~n zfq(UZ?CunN!rWfW`oY`~u4Eskb#6_Mk$cczyO28-dWTT6t_B){PEView%vXpmIGuy zh@arOo}v=xEzaZL(4beQ9jF|)eatJ{QfIBp?APK$7(Ih6LLMvqL|v;Ht{Qhdf?k{U z%bE9nLVa#b5O80)FnOT7wQ$TPoodP#UN~R*d?<``N$vM=w)I_@O~96(2etE(vebe? zyg%BhM3TLE4^+H*yKNsj{+Ul&!)iwH$HbUjDUIqd_c^>N66BG2E{FggiI{sKI2hH2 zLAP+Urs})%!<~c0dn5mE37yjYv z4}7#k30~5b*Qd({MPw;UccI~ZY@0Y6A17PWdVIlZ3ejFty8<48DYsg>55BlOvamPk zY>E*@7BagUh7thW@bI^uYe-F2qQf;NS`|f(c<{cb$!B*6&tmbSNJQ<>s+M=S9hRMfYcyJ9rw5(-6c#LStMM z7a2^;{=j2`ndqs{=+8p}O$&IrVZX?nRC7DUkdrK-OS-JI$tc^dhRH%O?vjQ`&4rwq zUygeXa#nI5rCpt4XIUc6k^Cjz9LNV>JXd=NAZFLOO;(9zz1Jh6O*xU}I-CdbOi;5C z1N~Y$e_rw)XjSwvPiJOJF=_RI;X2~QD2$IchIlh-$b=-r1D&nMFINoUJ)QH1DbZHJ zjHAaucHli@s?8OiGUixO-I4Fb`(3_NsAepOo@Csf=EOGc2N`!(yo4q%V0BO-UDI(a zfet^4^k?;_z;YlD%Sr4cdQb2DTR%gz#@W0cs_ZDSs@vt?%q)g&d6o9L7;Iq+wIr@m z|6Ne{OUS&lKwUj)dyP|!D3+$=Uzrau*r%<^(ADgae^Pex|2p!N5~d~Xk0?ej5i3zQa)7T`!Di)C9M0X=>XLbLFq=t?z6rZk zxIPgZbn9xZrOaxYAWR3fL6RNh7%%EZPWoOw$%eU{hoMC@d9Cqg1d9w^a(%mA)KP`< zYcCo)aEy;1oIYOLhXbW$TeG6A45=@7k$LZyypu;f8kpZtEoi1Ies?W?s#~4~uByYR zD=JDLrFp{f1|p7A{9VT)n_}<1e5b4J(7bihN=4fXxanu}on@Q|ULN_IBfOt%CG=@Ju-5NL zq&D+jJK~bwC_AQJ7LTQ;wT*{(x}_SwlXJ}(r_WaHDzLH$q5W-OFnQpv%!h8_6q{rq zLWOhHb<5SPg|w=I_Y6Cqt!KHENbZ2^C)frtY>+ESA*Wf3q|tptO!>07?|9@v{j3ev`3z?vt3YUyk>nPXX+WyL}181uBY0l zK9CxO0H07EZ?FyIJ)qYxfRW>hR}I>x*GvGV!L}~Fq))|uV+ZR{UoD8Ra74dk#(T!t zx`RdmHNmszLfw5ah%56mk_v9$z$=o=$GF}&@y?l`97SSvt~r;JY&6QRRVUtAoOj2_ zx+%7(UL0%ziVEZrZ^Mk?x+9gc9m;ZWA*L^ zqjo*SU6k_iAT(!OES_v$Uje~P4q0P}v2c^OL)%XxdfkS@UW|sLtgGdcIRTeah0BEt zRYiBKmeyr@T~;lNPW(@dJ~z)FbkIeQ9C3(;+i5j<268uf^a zoL|1jpI+X>I1Pw0zX@Jpd_wC47i~(l`V}!==!aFyC24-}(%RpPw9Bib54*`2>t?L$ z1aLD~WVDV9_ zsprSeuPq(rb@Td}UzOxja2_&*rdRbD5Z>~#PAbD=|cDE8e z!S|WyVNKJ}3&sBlV7>h~V;N)1hW^{<;MH)>1O1?hX4zTNGToGQ7KFa=`S5TB02C}b zk5>n)zA13QMjW-G4hf_a5cbt@)4c8i69ppI@6kcrLz%60SO10!CIuXUG#dSpuvO7= zDmc^rSSY;1nC^cUViKYe3TGgY!i@ShsQU45LaB$^p+S0wCLjhJfr1RZu}dZND>s2^ z{(RNt1a^5t?xSocrhd%W#6C~`V6ce|ochsWM|M>a(ARxClMOE<7p}m@jg<8*D{dPa z7*Z3?aofL{AAov;$OHbohmM*q#b>5TX0Rc@ZpjMterx?W>BO(wtXu@} z3DA??YOH3QX?jPE*urcq`=XC4HED&2Zm9Wa8$<(>!tbHphk<)|xLp5;2n9^S6TioT zC{A@ujDeg6>YP$p$K(BdS^Z}#Ji05wri8X+Y|W zi!Je#WN%}Dm!m{|4YHKhQ+y8a`7}U$V`mpv`4w*yM@&Qz>NE!28EOHk$lq}&xM!St zfUQQQkAnCfbl4M~lf0Js5hP%BIWZa`yWIxv3+ zB@tGEBY-M>0=U{bkaAx!%pl7&BTS^NxN3K+w55>1!UX@@=5vPVTZ=X@vmQ;qbO5t2 zFzm?UX5fB7e0!1edd_jn6lEDEQuFT>4!$$6Gic|!ns3+q3Na*kYYeBTD$V5pGWLgS zo!-VSu%zfpds1Lm3RT&CU}B)X4w^DNaSzCV8O~?~8U|Vx93GHK%Kx&o>+p#>b9*jyi@L3PEWbGOIc0HBf zSihc+R(#sOddkGM2Em2K6YCTRCotL8)}KEo!C!^ao&TUEVlEYd;2%U2%5GVJ>yT{c zOBDNLTF)FoxjPx%d2$v=``fBM;bBMbwz`{tHva-jOhOy1S+(m=za7jg6WPq2X+)IHaNCct zIwA zW!7#tQXIktwI!3Gv8ir)8?xh<5EH#5_QBJI(}4!-w^f@qy?rW2V#B_fW4A)ZBP_T}_=vVe6TNDd#Y27`jA%6I{(W3pBA&eF^L1fEQiB}s4SX=Lifvp9F z^g5{@*Gur?J4*5*!>I=E$_bmqNWJGn|2fz&RFL7#0k2DK5+tsvF0X_$U6ueilGhBmK3KFglytpu2gVw>F^W=?Z4zFC=4z*-MNFAiKBLg082p+gWBEQY zvkMx-P2<>;J6Q^$PSCErcUqD>mxrg^5OqWp<>BZPQM1#yV7_{PWTW!XO*($bIe$*zc@XY*Zc+fZ{K__k$CrHtx5LkHC=`%B{7bsv;kf!!P{dg% z9T>waA>1LE9gfl7NJ;Yw4T|fne9%`h|Aasf_ibma^j3%xRR=!mXz#=m+*m{={n28O zmlQ|>EPokwpp!gl)LB?0zKE#6kBfQ|covh5Dt2sf53n;!xF3EGCTg0`V0t|pbM}iD zs-&&87E>5VB){xO$XYuIo5MOms=&Kc#toyiFtO2BlJ=3ldey(B%@!H}wR7ynw=V@k zPSKXUoru>z*(|JnYWa2CSG;C;McAcpz0amSiqXE}!5ezN8c#_Y1EQkPZE5=JNg!lu z3eaM!^E=zslmF$J&=0v$8yQ{r%pHK3f4pqD^R{?(py#&n`nhrGTH$voikB{mPp#@K zjR~W{lZc)ybckB`d^X+jh#U|5Dy^mWleMo@gAg$T1fQ==9@^@91j>uL-fF43nma-! zq93~5Ld4EYT>_+Ow}D_T?ht*F95C-0)I`7_>Si@z*MuwI#R_;fh(Q?C?`Y!RhxE-3 zB)<6;_G&pp6Y?u38P5_`92)kKG zO%?ERBw|X{KoPUMZ+9$&_Qr#@yr6VOXOEe+?JJO&?E+p;(fD`KV?%EiI@nJFT z3vl_FpS#;|{2wEe12g1^gwC1oc>eT@j)2x$v>2$nYhEpoyP%jrRjD~TI^IgFpP}>} z6Lm46xaAWO&7$ZumU(G-ypE!os&Yy=P_AnQ_Pq%Ez{IXNUfncHN>-U zqtXwVHLvpsRs&RgsajFeIJV|x51_U-r-N-m zOD-zZgv&;6aOn$U#@as3u3^$JI5$cUp6A=dU4=czO*ej2?fzI_Oh}-l`_h^ob1}07 zFpyH==#J5yK# z;+5onttL^opcXGkQlVJ5xp&&*MokbNsI*Ey7#F}zG3|sIM>LdE2lq<5pyt;aV|RAe zsY)&3_n^k&tk=4Aw{j7t=N5&h@oDvbc(gwhD5Z?kp2uOs<`30o1d2QpDL+xPkD7xq z`zVGx>OTN*Y8aZ-_0eKP;~mN;mC3jF32*0c40(`pksaodB4Dv-DV6xiuhNgg#fx4uYq)M!!G+bfQb{?*X-^&~CqA6iE4}|MWJKL{7@e z=O1Vz@WY{lW-iADqJ;{`E}~6<%V*_gDIAWME_kemf5!*rqagngsM`F0%W0}U1VU^*tZo1(UOe3XC;dTzd=H1YyiD2YeEz% z5g|r*Cqo?cdTr*juMBd}Jy)#@Mj5obLI5|be2_typ-K2>$5k&1t_H~&kuL<=v}4XH z6=~m`5o)$h1U-~~lBl%a9n0)0EI>P@(%wZqO^L4um4K9qzuy@Ax<*A&MZGaP)>%lF zlMHeurx$Jz<<9@oAjg2*jLeVu(5C!`y5U#9&f+&mHhfuxf6A$1w?$Sg2X+c*r$se} zeSj{Upj;qCex|mJJfv0XvG6p@q3{xPxfipaEKNR0i)^7zYpYH`eIx?+PcI$Y4U8>` z-Xr-=cOh&L`}pGT=w^RfZo-mydiC~IBwXcDemqb=JAr8L0qSWxbYJx}2A=t-l@P)o zIQZuvI&|EuYyraC>_GTTv

    jp`D6&%Q*4L(vl)Iw zTNGfiq0f#wrMOEoI+|*$5?E0spmj>uDBteq#&Vb#UdU`1c}xZ?hvd<>EtvTD4tffR z`a|@g2G0z$$RG6?HC@2<)U8}AhTFy*rq3Q*-}?1NBSfs{Ssl>A=o ze3`~K8G7m~5?X?Vv`LTg`3FHB+HDm?v_EI)k(HN{8}KTV^6}#BJ$gn2%55B_4Oa0@ zjH1p_j($$;I17_H@Y@VR)-|{U1z5>>EK1z>CuUjQ(Embo+-wmSSu@EmD2dO^$ta#& z*>fn_8<=CtYXk77)7wlNK!_z4bcV3q6b}-vp|YXSqE2A{j5;_4V+dbmH*uAhbmtU1 z^rOTQEj1TACc9Q=!8gvwB4Dj4(%OkPHzc}H&wP7Nnw^8HSlX>cV`5NR9I08A*a*55 zUxo&=+M~9jrz#{Q8hf!hX#oiw#TUU)c|-(FIzR``L}YIM9z~~QuXOs%s5B<4wUszR zimX(EOTMz0MJ@Rw(M8|ve2zu{ZpqY64d;NHkS#MH<4)LR&kQt`!=>h&zE0fGgF|U2 z>+b2|mw`l}Opt0hAH1sannVi!`pRmcBe2tqM}z^S<0c~|zZ0Lin`N%dN_#b&88z%= zf@2y`><)V=dbF#Xn|3kP2(_1;i!EzUeCsL(H~tK2RFZ0?byB>B{h=-L6ea)68Zu!U z=D4hsNLc?%^~CSgH7ktHwuubolp)13EAnnFP9=*<{)K=J*)jX-jdJj}`jjXsZrjxe z`yA4SwQ*SrH|E4K4&0k|Ueq8^HCK9zqqjt9qY9Zu^+aqw^yoZ;$qdh5%cJHo4coEU z?xCCs#D8=ssm!IT)xlk7?+Rx3%s6joSn^r@TGONV9IhPIB@OAO9R{_iRnzDKika`- z=&Y;`CZc|=5Y`3V5VPIKbNHLe+tbdyQsdm-J0SWStlsSkpEK;5Z(O?HcQ({Q{LlavJs2Izcrls53QxLdR3lCf zlmo#ij~X?0#Gf&7UR|k}Od$9}t5ZrsP91K*ftkxqq^q@scUg2h+-eq9f*=+4Ve zoEj7#gxi?^(>!5ZqG){ny2%(l74krEg`YbLqpe`m-aX$!=4g&y6@f}r72{3G>z;JX z*~Wc;pyA}=NeNV609$x|B_&baqzdy*uw=AW=@HJ#s~Rsfpil%CUG;CyhSMEoo^;qk1q(av8pnh5_*k|(Sv9SJO zp>wHl*_uPKFR{=Dmxl)hJ$vjaMI*`26TPgl`PfXLO@vIk%0;xQ<~@+HtyT^j z#xk|#*YKNfEUr_orO<_VG5t9=O}^nP3uuKpOq zD+qZ}-*?278W79bLFclkXmbct^`f^;%+oxp5UKrHo%B^>9B6KQ*e%o zAFRnnc6z|hb9n*ef&(Oyid8;vtLK*9&<~>&7A%mIw%xS*t2G9HLRv+;hQg+QEmt1p z;Ar8f#1}7CtQK>Mu)vo}7#vvUyk+v0`b?ZM?LXTO8$MLJ^AAe z$@O8WQ1rb(OZyYS`66kFc6HyqNg+VBiTyb3=*1fHVe^CL4wm;9lFtX*|2X{Nt`1IQ z{XY$VnEr2vKUZb#mbx$(aTOCN4KGW{`M;)!nIy>K*S^v05}-JVdvoJVaqR!SxC**j zU}TbAr*|#?$At=aKWz*8R@1q0|6TJz6J)+yzJs3r`&mKi{O8BZl+UZyW+T6LKwUt7 zrr4{|1~7pIs&Fn>VHN2gPqpYi;`(kfp8L@0TI~(uTY6Tgw0!aPuw8k!cre-pl>lj( zQ#JMu*Y9b_WgHn1Ke$DRS^M8?$ z_5m`~H$Y$l>|uh1yF_>Sg8SP=Exf*Ds4rD`+!5nI&YA}2WkBA8tUF~l6p{D@w)r4x z4m=nMNb&pD^rbi%yxqtdPGZ+sdm+fKy@>F0MiDrY&+2k}*Lma&RA7J%b-}q)&F;fX_)CV0-0wB$q5fhRr;|4iAgqHHieoOZN=EG-?m!KEgWP`|V&+=GA^$CC$sNW(ZK zo9lMqZh%vwhiNT5+TmTe>-7XKGnI>^2TuLx>SI{ubU_b~v34!_Ek;=3ZBnhGyDZ^2 zGy%6EkKRt<17~yPV(7=XPpn1yf-$?Hfkr4aZyi8~Sxc;ZA$59D=l=rY_=F(umjmwi zNqdYS=SK@>r6!cfMIw*ZCn(@Z4n1%~Jfb_mKr=QkP=$SJU=SNGXtZ7QNbQPWHiMhR zR!T=SpKJ#YZWe5E*1-ReLq}M((3=}9zCiDl1;5QbwD9)d(;ub($J3vk{}v4ePTepHh76q}rW?fQlY9{=eD++~>iLYMl?4U>!ZH$9;=7un}G zfeQB9q-K(-BOXiThE_VGzx#spTT;>os&=ygh+%?fm%&;A`>_G&7UW0rLwpK35zrl9 z5#e=eVG!T!5FceL7Uq;<-@kqzRMSOE-XI$IEJ%GB-&4Bc7KhToYwf*A|57uECQ(mI zGZ&ca)*qE8@+gRc$oS~g7-YAm>t~R(0>9}jGLpAk=NrNX;kLrPcfFarivoGeyI55C ze!vS?A{30QLQ^^c%EhMdO_FxXVjp<~J6GR<@Usj;QF;w2?C9hT{zcAdR0T~Vu+#N1 z#KLUntbb0Faqd}Ut98IAYxNWWqSg2+gK(B!?p@qfZykIs|Dq@m3widAAfO}%h*o&n zD))eB^$?KKxhNoRNhjPg7Ubrm@oe}Nt>k}&`~82l{MkXu`rvVhKZ7^JVdH651VpPT z_wM$3swelt+&paN6pb3e&KbXFw{UzT-ObY(K_J1;Rj2rO;MYJ8KQ8_U-Qt}KV8kXN zMV!p&PF!$A@9u>zX#2Ad7(x&JhGU_FG%IqH+FUF2 zFT15cc)o8P2%gqRUUHL6H0o~GT@5(yFLMUg(x8xLdk>PEx3lGQC!Y^=LC3;EeE8si?OJ(oe?MR+f;z8PUvhOSU)(%I? zymBpxzkx>rRoK}~mLDBDvs z?_w>an>B2>slXWGe#`gz!rGvQ)Hq~!cuzfedI?lTaIibC2%f?!ux%tr7WG-s7L82g z!wp5yod2v16e~Cx0I-9ewq**3q_>*DAV4dd!tZ_{(w3vG^&myC4G_jwY#P_^kmzaJ zv{}U7l{rlBYW-E(tupbKxcXZFps~%>#aVS{@tIuCd^;2l1s)pdnJ+TEU0;^U*z!M3 zh9dkE3V?Fanmlrs z6G`g%DXz^hnq8{~(NJWn7ex)F#ZPCeg~8l0>y&b*S`!fm*9c z^p6E^M2}TVO=dmw3aQtwfE-0^{#;W`)3JA$N&Az&sJ@!K@;mIVWR>&&DT&j(8M@E1 z0>XxtqIaGl`kf}Fe6}h;pSpUjpuIhkowo`esa--i~iB5e=8KG8_a8o@F7^?^! zqRFCZ(zha0LhDYPJ&bhV$yz+Ijk;T;5u(X>{TTMl$i2{wd=|N7E4+>xnWymWTDZkJmKgsFiTc~&mTRDt zw_um)Zi{~6_m@f4=HiioGdv7N!Y$3<9Zjw)PIv;Dvdmm$V|U|O_<~UX%t0!PK=ITfbbLrs)+_#RA1gq&P`^J3xeWQ|UtX7Hj5Wn0duUl+dl$JKxibls9QaA- zdmV+7(cY#VbAL|@izP($4ii4Q@XHCS%IfyWI*4Dv9?W$%OG|z0+5*eK-B{=>Q}tz( zM&5;+O|JsJn3)J_Po=wOc7Md9^~i&nM#L44mFGrNh+V=(ja|!G6R4yqw<|I}wbR)_vRC zXXMbKh|f788h4sg@J3MoJv}j#835Dv0l>6#&ou2oD-q(YkyE2(*ktl(1&9kRA>D6j zuE#NnyCu3(2?%`mTnlB;2pa#5S%&(nfJ@csi9sdV1XYHHH^M~N0|>3CuT`((1AD_5 z2Ha`#SIpwP@;j#cCuZ@W-HrVdvmoa`PyjIt59N&|9}$p405MB!w+j%n#7;foPXOSX zD?D6bXDCQKBuICdwi`dF`{x7^L?rfErKxLAx(Wi)kqv!EI&LpNqUO^mBzl1Q=UNzu zdd;*P2gdc6iQRHXrB8E}Sh>sD!_t&j(1nk+R&yr*^3PMU6DzB~SQ`stKlM%g@Cwx} zg@3)tM-xbE)3ut0Y?qnYPIvh2^C|J;KR3CF2zxQkdnc^!ufoy!{xSHpXzQ-x_~alI z@$OB7+U?wBqHf=~8$o@r2^QhM+k^Gx0rRx`(fDpoD@;SOU7*axR^X5i zF?aQW0`LkK*7-xPQ2)UzNTMnk&`2UDcJaon28FO%-YgT3untH`f6B&LiB0`Qi~J2o zcYloSg}*n&Sm8M=$F^i3n(V7mLEsqAZzPeQE|1H8?C~#NA@)b?JvI2lcr(Pmcm>dY zr@&?#wXRcVs6z&z$uc*2qg;R`uDHkA!XSC7;vXD_`^ikm;<;|RU<9+L!~RI zA$xmyeVdGzznwa2ml$uEz$|;vh$%SA4{Q2PB5qO1 zMyaxWel1TGp#2#IJNA&n`hGas8KJoA!{pMrFV+|AEQ}RbdG|valU!+4)?F&-sT_kU zW(+LqH1tG3E3BsI?Ex-tvb8Hg_^Vnc5%FSsa4puxFXOF8(|=;mt5uGKF2=r!auK~{ zqZ~P5#{%*TtJ;^JPmtklS$Z-RzfbTux|egT@GI9~x=5Zr0ZoDq-~K={u(IR+^^UP_ z3E4(-LrSarbe3H{M{Dw|OY+-;rst=KA2dMrgUVWBDrkOd?cYmOL8zR|H@QLn^tX+8 z=k5wEt1(*-6jMLc#qY5Q0EGMO{@VR)7`^pzT!TQ#+4X$)=D}P-eScNTbq&-iVqjm1 zB)aYeL;uOX6)=FLL3Ty>buGHhUS)^}(#2D%4~OnW3WhU$#pV{btok?6WKuIkSAj{A zH-bv(!aqE*De7vp{(P;pChne6e3Nq><8j>qwSTlu|2tTx;GS1NaLRb!#F~$mmDs9N z`5x(yhoQDYJK&i&eLe;nfzfu(OHVDwK;8GA>M`=rxjrEC-8$YEa$glOCD!^vi%wa2 zIj7+~4e>SrxPM&i9`o*Y<~Q&xnr`Z8PWm?D^pAE}N1qL!f`Di;?sW?bjKsO7x^0FZ z4_~IA;7^cPzU=b{`L~}KVS&=FwvvvMKEEp8La8Ov$npAPq5i}!<{@I(NZ{(5E+%h# z1RZPHr{V1MhI~$%9Ams4m9Ri>%wy7FtfnQaNGN{XJSqNFB8WEGiD=wo8M55%IdYcU zk309<;peOvEgJEbuPyUS|Gt97Ly#PPfu;@BiE1KfkVGbeCyltyF*k{7{lk!-(ZD4G zqt1=;nURH-*iCtS{$`FI`&D5aS}ux(TlIkPcSk{8Tm9mgE!WnK;i0rx>qCFZdyOWH zAu%fdpf8gTdcd+*p;y7xi{F>4l$qyoSy45xIJu%Ulei{$2uqWzq&tNJN-MHl-zrlZ z;XHo9#B3`2KG6&Q<{bz-v1G$(nZ)mXe~+x?_v+Z>+HLV z*Uy1r?SMXPWVSLr(&?0J`pfVX1!*9ujA@&}y>_@Sou#Ff3d<=Ekd>m9K5wcUrmG`B z!(dsK|1gq4dQZiA8YO0y%+*iRE3Tqzgt6M6XAlY zf70R%MaNv+ZA3Mc6wC2V)I@vB4#ICG?8b>ZeVJtj)Ks^bx7aKOf(W>V?=yn7$Ki%@ zi3*IR`7WN`)jg3l=F&pFRP^{NEyF-@gsA{(IE(v5-{grZsGR4!64X(i&6$Y?a z2F9*jK{!nA3VYRr^MvAVa}wgO!nFHO+KnHZx1i>RrMOE%GeI$Zk8Ybz%Qg#)I6tJq)?23q_cUJQEYSH4<`t zL-{4(E(vNMdi}|xj&uy6gZ|U9M*RQ=k6z!RY}@C^Y@JE{`Lhc}5nk~E#5(61y-JF3 zcEmn28wts1`29!cdcvq)S=-*+?{%P`?cX6l<+RPlda_VLv27Kpo$)BPK!tkX0?Z;`C?AD0=5b)q$aG1zzbCA@HWf#sig4=>7;ApH6 zOKO-?A!0}Nh*Yyw^*)UW&n;-S_l&`ETnqjS{#&93G+96mBh&IUJJVBHODn0qiS8qf z^+KHHiHS?rtQ@4vDa9Q8ypL5v5EumPltsn;*tQ}Cv&?Wyt9%8zkpoTCmQL@x!IUbV zLrII)1RwREltd4(y%^UhESas53nmU*s-;9I6i`y0TenqjZ^=ky2P^V4dvVb>*>w+6 zu{MMuY-v$d)87010$csM{3EKmoS#*-#tIX^@fWVZr4OV?**2o+w+{s8NO~fYOQ^~- zBa@40_LjryyMLR`20mgW{(0-?KC_D29WM#Csu1#xZ$ba-TgDRgzwb!4%G5#u zi?Jc|C$NVs3jNl1->&IfTcWEV1h=vmzB_Of6UU%F>g?kmqM#QyMH7^Me-_;`u*C7Uusff#P>Llf18fzaRo!rF84mS2#^|oNy*Ga4C4Yob84IR#;bu zOVPxjsZMpJoK$5*hd(o78y$(gINxHQkGe*?ZT6irTnRj_74?Qq`VeIF-F9wTT67=& z^qUY#JWS7eA+1hLjLN0~T%~+pu2ScUW?;1tiMHS4M}+`aX*vPGRSL@Ug5qidhq9fo zCyj*EZO1)F3WKEeCI7J&VW7Vt_S15DpkInVgrB753pN>W2gV@cPomf1k-fMD$bWt! zMa4kf@O({yzIbpUhTd3VWJqdPzRPmJ0+pLT?EVP7M%n&70*KPZdyisLp2T;LVm4cp zt~YxGj6-avf$g%3s&T%D@<&f;+=BsBr4MjZPqQ$FaewhdpL*}e*!|1!p@5Cv838J$ z?pm+G);!-MlW!pxYp+E^fM#8ruFo5{>hi}Bpjjsos8i@2x4AU+y46}$jo1w(K8|H2AzuK=(D$p63!)JqONQ2vD# zoR(akj(oui-Yvgi1(dFNdB@Kle)PWuzIEifb%n6H%Y=e+CjSLlq{-fdaJ%&wr`F-| zPi3TE%QJ#9+_?TBM$e5s-G>7>3&G=od)dy>GJF;5?4|FhxaCD+1{;ZZ76E4=H&Fs} zKR-xD;h+X`5#^mnehVD@)$##{cw!C7WBLwAi5h^aREe38$$!4U^4=|iZ>;|I2j7Ku z2v!GZxy3)Q0x80cz};?vEuk-1!D={MXuc^$vFRX-x_t-e3^6u=HBrA&+p9{G5PdYT z?dEs@cKrK%ln_rt8-cVzCEzRso85^6`xfU`1786u6ByJ?BDx&0>TcFbV6CnjSD9Td zvwq6087~HV0#KE95ZqpHh}%}t(zNi@cjUpU4BUdq%~A`o;RIi}=Yao1E7$?O`=#X? zS*1oGC1$Yn=*3<5#!GH;eSdz2OiG}%`Rtw||E;YFcU=q(amaa?m>u8b5wpn% z|FH0{@aMayaZEtkW}ceXeX;MW)6dbH|I(Vy18Nom~k_3@Qea{om;kE&*?kJ^1vPNyz|>;w4p)}V2Xls&zKL_w zVZcpZvIWi#Nl+HT9~?ArQ+=RkXM=ZM+t0>u)2Ih&oaw;O7mXso4Fg?C;gwPWzrk(f z;7*!AYC}fOJWDC~@bVUlbCBtiOzioQ*_-$6-W(`^>ZWq~k$E6~|NHaCFQ8(VUmom` zn;+ZAw9kE2U)?r6A4#-u+cRbe(>6O0-IVMwxFe5h6vDB6E3j!_5KVk#E)$e)52G+= z1_8`oTLI}U5J>ZjNOHs$`YRh$lEa%we&~Tv+e ztV4yoU7#M70+wm`)xr6;>w>*FG-rp z>~Yw^zsXwdzd#&uwf`yryhWuK4V@E`e2_tK79co9JeZcY-;T|Ty@4&f6= z<`#zpF-A{O&17EP4idY-OpPkgEh^!yxVd#G4Bo#ktU_Jv=Y@;Jj!H)D+Gdsl3S5~V zd>^`_K9c(*)EP6*?T6qpysv*hg0$mw=y4q<%Wi+#VmsEBA58q<>}6D;_5s)HiTVVvx8 zN9=)(nPq+LQiyV$yZb?fDH2dU7r$s9b}dwC-@BvkUX?&D*!0%xPGw^z1gB zvb&wY4u!LCWc}iTW>fxv-dR zCj6Qa&3vxTlxZmi5R=x66BA-OhCHg!K4NH$a^u+y16#LZYuDw&3TN6($4lqLVv!)g z`DKEg67yzeg~prc`#mj~V(E?7kH2(vcqjl)frjuU+x(LLu^(Km4r^O>-Isv+ugsSEFJx=YZD!#1OVgDhV~%0 z&qf9IzH(VH6Pe){Xff4;a(&@IL9b(dQEy%-53*#paLu1C3c5e`Z09zqsEB043)RfI z9V;W+X-2O?(x?FHw00IRfCHxl@7Zz4VrSa|x|11P>49Ad&0|XPjj>JOi@IhZwU@BU zGUZvnrizY6Xnw_nr%!p;#_~tBtA=x7N$oFp5ldVAqK8N&y%KZDqVnErhz)0GrSmBx zvq9Uku9kRfNu3E3Zqf+9lTyXW*c|L&53RPt+PJ2X9A+A=rn=E&;O+$Sp-^A8bY8(X zwDA+Lxc2-X=^-mrX?9bu&vKfQei=O1L3M`MT30s##JhYomLo0|(+sD|j6J%vxIPw1 zSx)*>>!arT*q$DFKvWUPyVjQY)f^dNZ5L!(b$4E_65$KSW50Lb<~Z`txPdy=j4Edw zTi4|fl@B_$TW#W%0(^*4KjhMBinR;tf)t4&4g&S zbJD41n^)aF*Uz*kd|0s36*>vRX@ln+&|@hH3oIi-t}77WQ%c1=W^&&ZznM2A6`i^= z%P+M3a_l`&!<$6X^S5eaH02F?YDMEiPt;6(0@^4OYR&uny$FHUXJ7RS9VJlY?eEa zH|kvN^V38bmGPH=hIx9fKxA-?I4JM8%~=Me(Tob6pizv_vrA$;Op33TKQIx~??5w0 zMr^RBv%*r?92D2nHGZ8PawX@WFI;f3eHgtn`5C*!iEbPr$F8iTcP3W70F4rbedco5 zk{znlLHJN`j1+k{A%<64!o6DB8XHITtYU(qiE`;V+o`2EjCxtoL|x1*JkFa}5%a3) zac;jolLfE-KqIfeM7+(=sYne4*-8%2NCuG!rP4-He=4T%izI?$LXJ$>LOXq1?S$*f z-bv$XV#%c1$PHUd*{l{_L*3NJrO`=Vx04%Z_x%?yBx5n)6|L2xs_$lbsw^-n`_5&d zc|>f7kjyp9Amx)h@}O$s7TrM7kV1$=+2us%O)Htgv!~6cEId^2W}t<^gVL|Y@hM%5 z-Uucmr=N|CNaAn}JOCe!@)>Wt)h2+<^I_@YIkW@6jk_r<{Ob2_L;a5@tKmD|G`h;w54H4bq1|*es z){|XRk5|5c9OIGJIf3&DW3-#i{5c>;k&!ZJlho_I7yK{dqpw@q=6u zwDMtBj^HFlmPfJ=Az+}*#?$icuhSh>C@Af7AtV8cMsh)h1c3-dKmnFkV;|MjI46WQ zba_sh!|i|A)g)|?5yV7cM@=~7rq{pxeK??kY9(ITkUoHkh=`**gGst@!^MaI?CL*= zz`)gd#EOK%p2D0jKO~;4$PRu;3|JLD49DuVCOoe622S1e=Aw&ar~BDD3-YpY7j1(A zAO^(}@CHCUk^&TYiew*bvge_0iXLnh^*(f`u?u%q;UFrd8^tAkam zqRy-BwigJC+`gvf17<*vGUD6Y!wBCQVP>wN$Df%SdX*){40UhtH5Nhd-(rUahQ|8T zgpsKEI=^u~2^Cs00Bnpg5LZ`XCcsZ%(IEP&vvf4v4KAQVsRw2X3PFBiuHV^|AbYSa z0)!lbd(zR-_wvD%(oPW-cyi6Z9mL3@kuwKVwzXg-V!-ukW(O3)h~Lrc`*L`;yIBe zmRu&Cf8}`j;HLJj7wid?N?kN&+W}o@gOX|0i=!C-h zCbDY86wj6VC{-MnpaYlu0VrHE^>C2b&+qpJ3lY7MWhR5BH)+PyAfo=JIjDB)IQ!rS zFZii+{=eyNWv5&k!Q7FUbU`sLu%b{|rP**jp?ToKmDDX{Mp^C)wdGxCHS=OXv{mHK zB`ye|(7+R6MLS6YM(606vlc3_ez*90Rk$gozm7J&P7MsCt9X9Y}DW}43hs?RJ z1IyUlYrmS3IXE1|l}`+gUGStW=KDX-k0k{Y8C<+OK8nzoU++vqk5rrMi1tv z*t~|DA9L#;#dXhMHOP(2@B+eM(9N@IVn4==q0UA+VWL1&0^2U1_2Wb9!zTxn-U66O zks_X2O(>E!Y?B^R+;7#3Ha*XeU!I>D3A~IcMU-1cB<|-(RI;+-+c|uq&H$0!FSP>w*v5*=?^d5QB?Xd_&(-VARFLgyE_iI$MijdjY5s{` z3jw4}sc6rFI}9|mhLU`r4Ju`Co>U16j3X%64{TYJ3MUsc4t9|b*@aloYW$L3ledr^ z=9p5k^X}oVcKsxii&e0~TB{6xzY6=GAy9PrpnnF%0bw?dKi)mityPFY|DKpcKy5$L z9%VX6!x}S6d*Jq13H#X!Uxqf;UC3lYW0lWlX;5fdX@Z&t!F$5&&l`8}EE6?q^){`NUNm@MLEeO0Pcr;)E zolI~?pe&0N$Vu`-yD7=yXD7_J<^>;)O*_h=rDjx{mQ-3=u|yBOmti~bN63h;vYK@; zZMtGhp!B8K5eRy~&lmyvh-vpt+ESCriRd}B%e;tZQxqMf;`0*gYD`MW3t5CaF4c)2 zo)Z9Wi_Ez>Wq$oH7g6if+a02uk$y#ivvxy~-=w2Qgri2=q7!{9x>^-M-D&4o42=|^ z^H|f4Zd90bnBfvcYJSRY*x+%UgSus>E!q5oheKpsFe=1S)>MU~j>ET!2UF?ahfJ8r z5YEJeq!p%O7$GflFs@o}a;=dzr(QB%fvm5uy3>|u+u zmUu%-(7VPOS9YcClx~nI4|<$18z8Cr>m^Kp3ik{8F0-;>p`k5n8uIhy0kIpO1TT$eP0c$-|K z5`*$QT!T7viXtGQ4Qb+g&$a;=8n3x=Xl7IfRE5zJbk|QPNoc0gFQbxfvUtaSjQ~b9 zc&f6tN55g=USncYc-c8dPEn{oR(&v{o65-;YkNp0O3vJ5C%TcCNU2%t6&s(rAE@XW zM1;^Pk29B?f`~i+)>fB5N946?S>CO+x>8{i^{y&iQD=PxfCRuwJE*cj=Cdxbh_x^~ zF;mPw;^9|Q8kh--^}8NZH;wO`gllRlXOk%&$* znzwV?Iz}+oLUG=8ZB788n&LW5oSd}+h}by{yGx2hi{<0gx=T5D#YKan}AB=1!a zY`$xk{vXyEEt7AZDnWJ5cy~?@d&KW*a%P%VZFFQD3#K>5JzUR1{4?Ga>?04(4WP*V z!7SQiliRE@QTwiP@aXacA*6k##mOEtd!0?rlJW&Buj?k&Hf2pQRbf#S7za3R!E(~~ ztu3x+csa6Sp}8`W(%C;&>P1qrxqfuaOJ*g`Mih^(vZIgcwMP~3vb9ulDuRlKUMJJ~ zHZ_{&H$y|aig15)f!u`@=#D~eKJFW>O*~E6MDUQGLn~LhX^bavjcD{^y?`C{CoTub&p9eNHquJeLSDVueg&996&>@ zIg`2~x%4VvAW>`7c9+MA7auatQKR<8wn<=K+>VuUb+>?s9^S2+@DzHd(KfLxlgiMDzQ}YkWJ3x2!Gi z7Rre0Xq`sexr2+hM23m_t}+81QJCKoNta|#l4!&2P)#<{gbWiLnl;dYe#;_NLqNgxPcD~iw z|89OmIZ9G@oyW`VVcakgFQj&YE6Bwoj|svi}5afwh(bJgEly z((Px>2V2EttiGFM_eDHE)pbpK;eURA_+G?cgaK9dPMy@qM!iTkw|wBAt-^9LD1bC1@18gR+k?;WntU!R?zk^TCzk?4m;NZjP zr)g{E;@(>cF(%jL>>gLwi`&$3eF~_kjg^m${2ghVMV(btNu(!~%=rQ;B>H}eU$iEn ziPWJ!#i$;@>Q(`5LdgsZ@Tx7+KIiFH4Jh2oj>CIjY0wMmybmvazQuH#>B5Skv#!Rp zYnt<_*+BI(hzFm1pFz~NY9g`jRXN5VAhhFdsB(1 zQ0FB5#7f7uz)p_@#!WP|LI!*O25~z}BwH@rs1I6~1N0rGe$1-$MPAqe?cfAmVOLo& zv_f41fPU*F#(U%Iu?-C?4ANVoK}@tq)D!M)$+Zu_Q{ayX=03-jc**_(z(tLI zKM2%57tfQW8NY&iLjD(|;%^_3v0wfH;IO{{aBTkoa5(btKW{a)Z6~Vra!&jc7R`frFTTd`?ex>Brb%)U%>T+s746Gu9p4@a@v-sXM6JmAi%9?g_0DRIfpVX&b)m+L zf^sX+E+T}#2yk+Xy;7pyx~maj5ryPTRN`Xf8s4qIb*vY;)qHb4tv8BI?*;_m{`W?B zGgz13k)CnDjJAZ)Dxeh`KnpKNKr&G&LH=<65fKTsG7uTBt#}T`7eSv5+lKk8MNYrH zk-ny_Azm8p(lG^oOGKe>Vky}R#0iO8R^Hpl*|uSxuTllNdM%sC6AMy~&cP(tL*}GY z1%<+SC%V;EDDSjRl#zF`JpcWB&%c@)@n&8Pevfk~e2p=LG@9$Bx2j{klz)!KUqcQ! zBgn(<-Yi`%7=;hmMo=os0_1O_;lOVzmCY+r6j3U#@t&`AhF!qx-ark?W;|I7?YX!t z;H^mYy5Q;;G9iX1vSgwDWQHvmvK%!#K%*cKXGy}kBy_Gy#&9=tIpC8d^qKj$V$UWJ zL%ii%Kv7F&YTo0*U7?+7h&M14N&S%)E8@4-!?C2SV6Q0)d>y$mvDCZT`1fI~GVz4h z8;_W;^W=Jhl2n=M@kf|}CfGT(@d~vO{q_E28u_wX{;fy`zvE1HW2wr}02-i7q=e*! z@v1-lb`3{v3>Ag~?vv1^hs%a&{rpfJFt)sEq@tR z9{H?0um!y0-!O;eOOLPbeIk4qYKgM(c9#0sd5TIWg>(AL5n|6B3`|Cu!gt^hYRy0B z12zIp$VhvQ<|+n*1J5SKqYsiv?^rZGRnFd7@lbXvz>G*8zjv&M>6lzjGCC}RY98kK zjB^Xz}?O+|#TA`-4En zSiqbIF`c*e+E33@;Fzo3<*1{bS7eBmDY%biFv)o3@z-f;8A6-r+{h0GWy(2r1v;Vk zxDMu;Mr`Y~^rcru|CFe*5fcETBLPqryrE+l!NSu_ag*4|=Qg|IZboLRtS|Fd$m~&} zKJFTzz+)kGemUb>ze|7n#eoCYXIruH)Mu!5kUDk2BAXsr`?s}hbgrA}>GsA?3Om+~ z@MIiAxny}Lrwmo!PO!c3I6rA;3)pJ`bh}8qZSfmA;e2eb;9r<`G01~MdQTB|j|y=_ zBDfB#McD_)J=6*CbD(jbyx?X?-ZcbCU2pyuS2XS?q2VXuKUJ?hp?AQG`G`eUu5l7e z;gGb$92_z8E{w@wLi<6W0(;YTrQv7WJ9K5BFRAxncRGeI$=Sti-S*SIR^RM@m#oia zKC#bg z^~4f@C2L*M8)Vt|UYLOWEUES~3+g5}cl%5G3M@7{!)qceo%*Z=<=Y6DMe2Csv^x^Q z8q*HOt`pCbms%O#NyO?BGCMB@*n+&|{Z>5&!B3({5q7c;=W*i&;OLsx%TRmv zJzY0UK8mPCA$@_wE4(o()a-b58p-6fszvE1wIY6R+BRy-*EK6}`>ne>5y{~G^~kB- zYI2du+Rgh`1Ovhu?$(o!62Qrk`Ibv#pOCVW%((JZSJEO2xVoy7=;hRGpCO zc!01KOo4Drj#8B03{$TzAwBWp5Y}pOv3`xKI&&rNqGX#W`60T*T-#H>R&9VLsx|j1 zu4{q1an_zXq8>eji%|-JLzq2V$d->gwUJVsTVtURUap>&@!nY&QmCLL;-M&qqf*Y- z@Wk3FcfjlQEL^kuSS-Ow+$~$~+4Ugv5iHi^ae`)MX;x1XE5*NDrG(n&V*a}?=t~5@k^$TUnBaTQXUs?ZB0vrp94~a=I`%;+uV!Dd#m0b_Tq^pmfEcw7`lfG)$ zEWN_l{N<@;(T?c-LjAir=O0mrL5WnJ@tOHPXbv##3tOo`)f^7)isONJ=>8J4ugN+k zbm$G+T=(q9ZLx{c5T@tHtx3^^HgO1PR2k;ySsjfH4&z~`^qsn($&-pbM1HR&4(Exo zxGq+7^xoCkFNe~ftUPV_lKEyI3Mv@lMR_(nL6nRL58UhLDUJ*?#2gqcA2ZYAM!aE@ zu%1$cP`RhJsmxXIZeE8>=)(tV3>3*alhLM^)>V;Rt@x6n{qw`aAMA>2qGW*qx|caU z*q-ms<~HO!nKf7w50jRy%6D2~HreIv*AmYVvyRwU{FIv*bP@eD2Do8&7sJNH*;{ zW>5-aE1j5i)OUxBkS3+#t6GE$bxv4jDv8`^&05+hF{7M)Ekek1)-3iWBIhYLd-#nY zB6OVU{1$g;MN4i*iEF8C9Q3pG=)}M$li`^<^SJ8CqK&msw*8yejCVwIX5Dd;U&+*Q zU|+FVe}g&VOS`pYMAUn2fb6qN5OL7D=;P8dbgE zNX)Xo>=7mF{J=gGdhpbS=(L(O%~C0UptoPlGfhl5Ro36UL%|gJn86g3daaX;Hz?9r zCK64l!{)s_^nAIiwTO9XiYcFNvwU@EK`1K%(P@Kh>BfFn$))8HH^}eqmJ#13tTaGE zZLuyhXB2r`FevUdC8l$Y4d0FFl!K6a272_d$Y!mkLeKI9SdUu=?Jf&sZ=1XE<0z%i z<9Q|iIt3P|t&L=-ZrnS_<=PxTp>?!hEIx@?;7rUG?BPP&Oe-@)V3?h=yW4vvPzZOo zSn}>yRcjwmo4|A#x4M<{t$1jdp_1nv1ne`kv(^BCf5DRK0<1z7T!o^W$*+fpH3rHj zdl)&n`8kYYTr2@+nm-yeKnVg;#{E7a?-vN+dxOmkkLfh)OU9^e7^p}!!|!ZP#b>t3 zOAq82bgwsSxm6W2Ur@9~-un8~&H!2FcazXX$XO2H@fD*wf~;S-A(RCEk|ObTKcSN^ zT(G<{q(%8c!4yFGWYP_73)OX`FgupCe}>)Bz>=dv3GS~hv-RZLwPwCONkGkq@3$~? z!8P0Sg;nUz4Bb;#TiC0HTk8ASO?(i2mhW-iy(V8g(y!}N9bRg;Z8kf1+Z}Hl?f|}Y zFVe5`^^)KPQ}_~AC2~ML-!nEZPVT&f0oOE(kyEu2_G6k)Hk&@3-sfy~@Ad~wFMdM& zcY4*`#1C$_|7rj8pKPU}=~U4MDASdHATn&0|GfTdn(b}-K+iOE%RBh9bUY*_ia@5;@Y2JgwTh{`}rC7 z_|rz#Z=}O;27COAjJ8^zi;sX@<%=P^DQRi$lE@yh^t1X^6N7`ArqPFkb=Ho!7B%%d z-%{)uNn#?H&XZssodO|9=RwS^;$iq09)2KS! zL5dKVRNmgB;2EZ0>@T`og78-ps<=L#PSBlhuwN~nA!LB959szl4RPINTwx8d!)4rF z4RNPa$yH}y|5DUcE@Z;gm;%SLa$XwVh|tpoie&ScFt`&veS|gr&Q|;ja*f=(puqjp%YRC8 zi|eN-Xm`kh7obeX|G&$0FMu+g_cyULmWGT@A28He7$k8jUduoIRs$eUQF!3K60`Ks z_^WNfPBQO2+zNxCLmWT8F?;>N7M07_4BI{V6>g~*TsCtqG)KYRz;%1bEqfbT=x`1x z>Be`9XY4MrPgXRjb~O9T8)KPV@Qu|8)x;T|JB2);TG^d0N)|UP5CYUMDg3Fe@z9Je z-ebam?OR#T%qf0o(KV0@ZXUs^YE3zQuLVfnqbb2mDvq%&N?O`#fMT#C8*!6&=$&px zd&xHm9byEkc zF4#yi7`T};?VV2Tyf?qr4={>JCJ@>;I44;(BFOK_0H#~}*i}R6oE1AtAToJ6hHZUI z_Th?Vdpb6fWL*e}bZqlIjZ0kWHI^=Wc{b>|g;M`=+HNcf={J$+P~C+96ZnL3iwDlj zTo?Y@C@|UH2^025J1Sx0;k%!qFW=!Ql44r^SC#IVDrIrvubt@#4VNK#o=nP+DyU?w zAhOn|6nyfM%XO25Ori=jph`zCAvtQDtcSA0xN^t%VQKVLrBkSh*d-h1W`MJ5xz>@7 z{ec8A=ACLf|F23n|Im_@q!#uK_=8_*D5UlG`jG!)cN&lWZNWYX&kmgCvpy<0Tqd66pX}56Iem z($f5u9blt(^)>B~7W#W(osM&LAx7B{Bh{iN*! zEh4^|?G6{uZjuFuo7mho#NEMEJxcbX4`$eL#h*l9K<#zZ*8;91kWe{?Z9*ZoR29^~ z6XhLu5p6SQ-nK?iFvai)mUKh~=7EL38Cbc&V9r2FJccOw6+eRA>I~8HVtZva10b#b z)#;!v?Gnhh0d+cR(myQqsQxd*i2v$zFU1x`Oq^yHIY-IukkhEH4;1pg3BNeoXIZc~ zxE^q0sKD)6x~XqAvF5HNlWbVlI3Omw`19NyMh{RaCE)r;Z*sUK>>l?iEFjD?(D)6T zJxL;2X*WHKcKV_#_tm_o2;mG&`SU4%rNoHQrJ5X#0C?KqzTXjmtN*-@Z$%;SXJ0wj zl*#JI`DO-1Lu1!|V(jt1VTQgzo7I$zFlI=QS@(6S?>K!p`OM3?$YzwS=$)4x9gl0B zeZXMM5x7v;z;~vkcI6GXqK|{#T~@UV)p=p_^#7Tx{4nCzmVA+zjr@EOFZ(E)f^5I? z%=nN>G(F)*Y6kTbYBp#tz)#sXXgN*ntKU6@H0*Od8ub1atS%K_@LOqVe;UhW$m`lU zJ1clchuqJZ##%HM%A**JdzO*4Q(Z>vU5MiX!hwVabn=*hVV^{%r*Bmcw*qj}uqD4g zi}EV|h9rLeQK~YhQIabMMA^&YANJV?A%+W<$7gsr!O7F`ONk?~#YIoADV;(?u));Z z)8EIo#@h4_e12iug%K`uL7EARz|o7877tjblA z&#e6LxR(tL8hQFQw7{tO9K#>*%Ya_zk#( z9@u!9UW0M{Mo z!-v|lA(O*%I>evZsM^RjYq!u3MA^?W1b;Y?LmGJyi>4 z+Gy|{De!hE^_dxXPVLpOIWJs}Grj$-(TWSyaB$~*zrt!7?c60#z8=NE4GXOa8bOLe`-=V!s|w*U~^nVx?6LI z5XY4oWjEhx4XVGD)o&9D?(~zR{^uvUhNz)7O4lcB;EvEb=mQ8Q20nKU{DnG}n^s2# zyQ1f>rt5kw=-jjQ^fEJz zDlkICv)aOUYWQ{f%ptbhM^4iOrs%$XbAa>)Sau?MdZ`-t91R^Ai4^kZw+2ER^~ z#gt$k1a5l+v*v^HJI(68z2~(|22k?L_lL5sxPWt&{HAx|2tD$@ALZveu3pPUef{?X zinc^bl(uy5bPJ7%Ko{f0gWG=UkDOa2HT;~D_-ZX@dQE1{{e`31It=@YhIa=#y!-7W zzae5*v$brRnvK*t`BR&r4a~Yv@3;&zBP%T~2kZC3beg11Pb9(;jYGmvEfrbmMt_bj zHL`0lI#6W&<-bGYaBFZE0RKC7hQNK!&`1TfWpC@$-1wr>CPJlp&5yR4Y~6GP-3aYBt-gRZZM!GyFx?4rZ#r6AHiGAv1ow ztlrtW3=@LPFj^r##4HITpc8@2hLH*In$fMlqCGIDsMUZ{1^I@q^{*XWw#?PI|BmrS zIi8>TB5IqJM=r`ek04eIPEHmo*LV;?T}@ID@JsCcV6fN?q~@R8+NI*YYkSJRhkPbo zto-breJ5N$CQuWy!cKn!QLc#2+&@pr(|&Y3?P|4G$=zcQs?n}-qg(U(Jl)WLy2{#n z^#%R!Vv1kkJf$-rrUd_Yn;-W7wfQM%L;oqS`Vlx|jmvP>&14X z4sxhJd^c84iJwh-u&4!Xd~P8ircnA#!Dt@vp*@Z&fCM#qLJs)CKv~=)lzng&Ued`u;i0?|NWS5r zJQ7I0;LWt#-)us1LRA5=tq|R?g_cjp-83F${*s5{oXf3f&xVElB?;?>H4ZRB?)Y|oi)H9Rn1La?m|KbG$=neW#c$N^ z=#GmOW(OXt5fx5{xQq-|w;PP;dLZ-C1?z?c_pT_O1Etr{EGBs z)BDh?=-?}+Ai4u$ikP=ZP_xqp+qEKCx6B*$YzGU&t_liwMIsM8~b>kq(ehS#$30Uws?rQrmSnb9nSW!MMd5e#(};fL34W zFH`Y;Y=|9+5<%-vt!)aQb}JYKPm*{0xvVPGaCp3VjnLuKi^v?~j(;!%#T9!=kT&qq zQ1#IcfIdZm0AkAYNEqI0TL4$_3p#%3ce34#JPZpTv`7%jnaV%cswASVP)23$Ua<{f z2!P{HtJEwnDUHq{u_ZwNH|51krRo78p_=Nw!E z-rP~^QYl<^W+EoEUVO5k!b7A~?UN^@k;R(ex>o71^L_;#qyYx7LH9`r9fj9aI0(EJ zJ(A$SyvULxP`#Upp)LwXeXLt-#2*sdfzWV6Wmq^!!0{()8>XsJN@}El)ibd+YKnT{ zUU)LyKXqRE3s+X(Cy2$XyEzZAd9k?DlF@q8&jA3S@PELphNhrUx?I+Y_g1JUmWPTA~KpnokEnJOUml;&xR zf!QTme3WU58%wD0_{D}f*+v`UERm0|UIj1z5BgqJHyuwzgMEN4uE{vq5M8-}=K-hj zj^M2#*-q-bkX~>Q(BXWxHxEFOu;0ZN2nQ8`{4~UWV0iL#f^yaza)YhDb1v};y*t{P`pzZ zu;D=ngaMzJ*kcXWngMqQz)sFXfkP+?N{cfCM6&H`&eSEtdU8B|bjiSN!XvISs@qzopA`295moe6womm?ib#Y4 z#oddLI>507HKh$gOLisl`oT{$)amZ=FRs&Mw<8YUXTVWQ&<;*6JVv|vo^LX;`3vGr zwHi=8-?hL=psn8#*5T)NQk3HIG_3&FMvS>7mj7>6E?|yO2Q{&G-9-30w;2kE(p>O# z1{NMgl-zdGf!|m}P*cghQk(3EO)C{eybGevzOu<8!|Jf%X>D_YKS>mPy?&2mNVyf; zS$e{CfNA;WTU|`UXWQ3uoHksELT&3p2rca`G4jS6S3_qN_xKtr4iZ~5{k7LmIn@rYCQr z!#*8f3mfAajrcM-??P!yJEEf&?Wiv%@4I0XqwXe&uV}KOIOP?zuk9Is(%UEe`5<;* z-*0Oa4FY)*xNp>jvHC;w_~YHK_024hA3JS*6Ja5MGbJXwmT*S84SX)!QE$J0Ixl5W zosW`lzQj64kD&?GzDR^x0w*mlr+s&0k4h*0*@TSF7(`|L9*w<&{o9{JSAmRZ zNMSaWP9_u_;Z+rR(XKmEH;c=f#(S2fiHH2mrGze1gdhhqrU_ifrDDMhAh}LeFcPz2 z&-Lij=b=R1R8)7%`CHd!zaxl!L7v4 zQgf(xiDnkL+3cTQF4^gP zzhnJ~UM8!mV%Pmrr$cR_!fX0yW@^2kYg2B0G#jY?Y(rNR$7>@7b?C=d$M|$2|7|PX zs{B!ATr{_S$~c!L%qbuekDZ~yc>#Of78Jt6qD`oe%08OZZ~@ht5|}i zRJsC%NwkY=Z4KpxjGN~iHbjTRaTPV~&UeyrErI%Pzym{F1a7*YOL6-PEm4nn4fJ9xd)<#bx%989Jzx zx7ePK+_221iwn1yJ5&k*nKo$jEmA3ZnuF&x_fjk1MD9HSC1Zb~0Pqa;{p5Ux+$

    ?^wvDHPaYxh|#88f|$N{h4m>mydOh>P1|JZ<7jNz>t!T zHN~qQ`F!{7lS?BXSCfC>et0th_pGn7+OW~lXjp4*=|XqTe)e)Ehcs0 zlSzO*L_4VK1`kSV;;!p6oZPeUnOMp?ih+z={B()-EBT~=Fcj2rHML%s`ih|lhoN&Ra zCA;jxSQ%Ce(1@nGRnO@O5U=P3e*4Cgwd7GTeAlcr#bdp{?hl0ElYCj~V>i}BF>KyG zF(hdeL95STQ3m{?hz!kq__-&+$NIn! zq@?#4xrsN^;32j*o@j_3?B?$eBHz9A`%j+r&m+0VD;S*7sXfe8DUZD|yKcDka)3+v zq)#y*eig0DwsWn{{``H?Yx8J3b^3qM{Y@K0)a1x0RFqe=m$bE+bv==+L^BFLDcoyGi6k7AE2rSGH zANny1Omt$TVZ@nSL!RTk7z$uk_fnGH)lD_&_V)pp)yycASLNt~d4}ZBYf^IoGScbl zoCN@8HMSL(P9)H3>b5y^ZMYfSPKc0sWIwl^|DP{rwd4*x+I_zQTyTpg=-kH_vl<@d z{Y(2Z?ER(v8Tbho<{2^fj5UMncC*Rtj-?5V*U-PT2y`|CIkvc?jKe3mB>`G};mJTn zOfj)$z{mBBNR8ro67VZT*dH4QK zGXHjNfD)71JVHPe!m?_E(0Kqj!D(h&9XJ3^paT7mS?$u;W8c?e*aod3 zq?w^A-O^0)znRsQ9;qsw+>OQyJ&uS7DykWV*qQ#rZOc>i!|*bxJh>q0@Qkc-$(mKy z4JD33M4 z>$Ln_VTg1@U1Y8*0*o)58uqMA@G0J6tPv-8>wj8mx#S7j*!TW)I{RHC9^Ku`leX6& z<&Xt{wT~~$*V=~~dZ>-899JQLoVNg80g9MKyU_+kRjNFwW3mjBOjY_6!}Y9yW9<$$ zWL!A>X!p%p6O&&= z#qa!cT)Uv(Kbno#<~Z!TmBdayMTQttiK_jtyy}%}*hPqIJiEd#R3Tc1e3oVmmtmYR z%Tc!!`Af9mM(ymd<{I%^*ml0esD6~es^|XkvPd_z`Hkye<$Vt?0uI0 zv-e33YctJ^ZHTiHw5YcYP-5{5X&#Z&ufS6L+WUlb`vN~jK`L87C3x=W<>S>XVuI7Y9idD&hICa(6k4JsEH zoK?52>v#W1qU(TA9E0nqiMXijxPD<8N>N{QKKHj>T~qIvKRN< z7<0j$xK!`8A|k98`qr5Cpy3&BT=twB-)3qYtP@N$iS8X41InywD=L_l8@8?ur3q&~ z!kXHkw8oS?1Ei;Qxcr8@<5;9kNCC}P8|~*vAnbYsVlPmn+8~|c`Ge%B?ydqA5Y;rLiXDL%jJ7*#VECHVH}zE!ND2^<|yIhvYz?PRt3;|)Q@7qQ&Iz6wuh@?5sEvSnM=lVcoxJxu z`_s%jo&1)(G7VKVi}KI=GyQiuT5i4d;?IA)KQ+w%yg!5gyg!sbbP79m314^_%lVx7 zr@ri{GJjmkb|b9SXKZ}5DNaSC_Umg*abI~Ey~^srL4WveAPoo#NUyF?9TK+|dyr#7 zyPli-1o8aVa81=Bt25N4S%dxP${MFnt1X)fzc2ZSx8#Awl+f13O<>4n@C^B#P4UYT zVD2d*Tq^2!z8gahrZY2BiHMi~LF5o1*tnBdN*8^*uEZ{_ze14da@C-H0gD`yTG#VO zTAgF`nw1N-<(CFSk7ZfNf3?rjP+D;(U{3<(50>Q@cFn=>pZ*47JVi(n{wVs zubvqi`BJ4i-z%9krIvQ1wpvTBJo?t($($wh61|CS1+@FJIUcAW$O6FLhX!sz%gm`@ zZXnDV55e(b??<58gt4Yo6Ac;T@?_F+tlMp%qwy~_o5U?=fDcnB60KSzvp_RDwW0)^ zPszswC5k#EYk8sU|Do%hf-7CaE!^1Z*tTukcE`4@j_stQj;)Suvt!$4$Ih8qYwxOa zYOixQ>%X2i<9o+=9>s^3F>A9v$pO#k zo_@noBU1x@7hxrG@yzx7#8e$Hy6E)V2V$1V>;GtfH~`w8*8?5hX0LKWX`8aiLgeYE##``zq>GO22N){9R)~i9|k#%OC>B1amyYUKZViC7nfcS}+aA-E)Ua z$sd@tII1KypIJrE@jqxHE0CGz=RKV!G44;B2{^0E4+zJ9N5)2RmZcC*kTouw2The{7hWs;`!(&N>eNBY8N~$ScAg); z_w-*M3TN*+`(~+jO&mzBYWUlDxgZs3I7TGSpAm$yzh>wQcfy=jWq_hBA00_wEY~my z>lSPoi&?PSEZt7W{EjJ?Qaw|*Rn5xJfLJK3xoMn!pCnl5HoM2V`PcUYN%rBJdiU?| z&z$x`Z(@IIsE!wFm4c61x~dh&lQ9-Penhh8Jj_hiRZ~R421pi4M?{iDb`5kSY>8qB@Z7H zo|xFmO~T!Y4fm1c^W%@?0R8bS();}DT6tfhGd79_;x$w;;| z%ABl*kGSg3XM!ILtMrmq4sK~pQOjPHSHR(GUszQWIksIc8tbCaD38HwtlJ3IOA+=0O}J^9C#E#S$qNDSXkI@C8Ls zQ8>d3e(;SIRe`Wd54bi5Bv7YQc$YuyF7zM9+tSzahp9S2J4eLpK)%-+GR}x1ILj^> z48lKWG!`m)KWz{IrDpdx_v(V21h{|f8ACDf1$w{SKTw#jCEqeckyc`-mN}A-YqQA= zU%5Yb_z7w^s}2D<3M=-r)^x`SWGA^tq1V>#=G%ta+|Q9Q5DG8=lzR6`F-|G%vhxWa zFK{Zqck&&c^oIhl=l0eR8q0%WsMm6moEB@NE5cO#frhTi zR9JhlEE&!3BA#uT=#muB3aVsC4-&rG@j=)KAI0wdph+Q>VkIqmB(IFSG~(m$C0a~1 z;u69ycWsR@$-iHcg~OOHli;f-c+4H}GP_)p%ULt`7_UsEzw|&WLX3qKUY;NYo}yNZjI=uU*)BG!I(j=wBLmZ$wvOtBP9&V>4XY`S;3^VDWSO4nC?8*F%YmAK;HMo zO|TiVC24q2Qm*errOmB$T~ECHJ<}QD0#>2P5bkS^UG!8TP1ic-+_8aQ9(nMKchr$I zdD-Pb&!T@F7)`PIIlgeZkfVh8Z5?Lp zy&S4h=T92B=H6vRrgspXEjjAQ6RV7P(7llV0gpGq#Q(At9Hfjl(opo1b3thDf7xy1ddUCydA&0H1u z``VfjsXV6ZIUn>6$!HI_DV&8=JgvFHP!QIB#(QlGuxX5hr3@u4kwU99w#jyf&CU9G zFa)6w(*}12N)n5)J9PSm3^r1u2 zq9B#nh>gbz>yUJLa7SDjd0~rbgA51sG!Fes);RVE;-)jmuBTgOVeXlz5Ih_H8T1|8 zpMZooWkvW-_*Q0>-*MWxtTL$Z)35mKo6$L02)BU2k3rhW*WjmX4}_IVyf)-8SbF{_ zZ_04NCHF$fps0coW)BXg#^K+=Prh)k^0IYd3giU?dG?M5$sg+f8T_E`RqPh3?+#kD z8@HBk=IHNML3T`voMpKBbuh0=d0@|L!Jz~s?N7&9cMlBkIEi0&H+oQ}y?tU_^N=rp zCPY-fGfwt=CMv_T?lOEU980{aJa}p9;7DBUY~&nPtS+u^FDm*0j-i(p2u8L=u81Om#B88Xy&HuJq<=c}q%ewx_UJlv@^o4oZ4olVS?097a%NbivUkdaTXbrjG zJ;wYx6$`RQ)!$b`HP)c-B&}?Jc)*{Wf~~oe2l^$0CBT>ZBi^tcUjk&1c7I_X9dO{g z{?2FWf6UKmA%MT85(>F*w$zj;3|OwuW%c9{D?;#}-K+dmr;0rt`H@2U_Kwoi&qAw2 ztVvt62~Hhd?2-5eDsa{awF-P>%1O=+#G4HH<4Mh28UC(9Bf^TNg;g@YK!rzi#FYKsup;=q2VUKu&eo5qG(`vOI&kQxFuXmYM+;u!>aow=1*OL|X!gBG z{P#z9q-W4_F#_r(89PDV7T*lV*f#H@Z}|Fcle?s5PO0x53$uPVBu7>ERBgQU7|vmSXWca?h9Fh3>-UCE z1?|-+6(XW~H_C?(?QA(3hGu}%ZFlEPy(Rp6czHOhIoZG9GKb3IzRqz@RP73(O%+}% zED8gW`4mMe{b0SS!IMp(iQ;7z*DG`=Erw>q^*xg#aUdPv{?x`R7O>3KJlV&>|0$k| z$I)=mD1eLSWW9il3CF1~FMmed;UHZH>upd&Nl|v`7Wyux0-gM<%s!US#S`+|tfEye zD4m@1PKD96km*+z`!h&oM%X&fc`%dXkbjWNg=PVYr&T2?zlG2je$Hao+Bkxi>FOH* zKPM@5F0$TGkT2%5P2iY{u=pq+3AQ+23c4J7S0bsBF3i zo>5E8VZJJ75tAjYot7q(G!4E;p<`6-Id7@%_%vTK2fdvdl(n(!H8$xgL3dR8a=QK} zXN1y-r?{irMP?DLjb*K{H9N)bfkL0YEi)%tKJdgg?!am{iybq*m}8Te>3C0koH7Tb ztuH>93m(AAjvh_4x{yslvBh&6Tn~^`i_nWN-^@(dFMAK&DcM z$Mzb}jaC;KW9cKenJ9$Bp}#FY?2^G18qqGfOmsjdZ@Llw_+n+NK3ERN3joKfN2Cfkm3Lwx$|15=#51b7((dl`%Bv?)4$#RQce-zZ%| z^5mH|L-0OHe~4dZpX{}m<5&^da@0O-STPwB&&?i`!S|ePa#t4WGUe55diYT}g@j|KiVfMt@r&cZ`-xjR$#6wiUIN~Z{4wg;(su;H$&oQ7 zka~5@f_<_jcGctbR#$!4-<+SlBmK1O$j?R7YbUUow>YzrePYF7B1PGP0HFP@I#dD% z4QhhRP$;`_Z~t@BuyG`&z~?j+h?Z&5gU7VZM7e&Ll&deVq@ThesOF}8(qF1;b0jlH zF5k(xxtd7r9MD(w0=r9S1I9ti4ZU=)u%hRylQq79Bi zAxX%|3eUa1Y86JV>7F%fQX>EYnMLNw><@gWn(*JV5;l?QBIcX~J>16VYzT;-BS$As zE(!O1w$`;ZotdLDgm*359?U{3ot58vr8y~J%p+TU8;({zXsegiML6N)G2ALb$e4&3 z_G{UYdcZ;5dK!+461>@8e*0vGu3A)>C(VdnT&A#C&oFNop2EbqCLR#o#v%$o(lF)H zA{ePlkfPf@ozx>vI{iAFT)QWCZc}YLMwumEh?F-6-ng#xKj`Hy)9$W*J+Mrbtn({m z%+2RX5>p3LSV_AXB9)_TSfP?J^VVcFc9=dFgef_@u9+v*TkwX}j(AtiK&MHnF_y8y z3kxHuh%6Xt*)!;IY%0z^JPrBPKXPFO->#1^8o{?jCXC=U7hTMm^rMcY+}REij%5&!WA&6G*!9y8Ttzk5ROTe||M5TP18F7&=Fr6)|w$7D!lSI@of4ImQ z>xgJgsRSo%dLOnOLredAWqqex+p)|{8qCJeO(t5n7BuJ?1^2hzV~TPKHVj`+x>h=3 zVwn37VA2^9G0Edd;>em^JzT6Y6Gkh8ivmtUOEm|Fs3m*GiNtrWo%@QQko(_>D5Vb~?^Qi(RtW46F>#ghh&yp!#4 z@x`Eu4WzoBO(olw49{)p*?cLC1^Z73XTcl`I(C&?|MmT7sFkPr1GOzvR{^8@RV?fe zOURZk=}bM&n6^ZnN~vD#vX?6;$pw`wYrb+HAD$z=RmaAO0Omb@TeI&WP9I%Guf8&m zfc1|r{nr=ojoA$p+JQXDx5pW6*C0i`PbcqpUVVXY+xLs5AcK#_#~>Hai*UZ3AGfdW zJ}rdLFaM2F$kz5;`eJAQ{J%Xq7FNc8dvxEO%cWPla>}m+H02l8Tk1JSgf^1c278S~ z#d<~T+#FF+Eo_kD^*>#MGE6AE<j@4Wrm-;cT@87)i@WPOnM*vsrq z>UTuZYu+tBm**RMMM_pAl}YMifJ7&aZ+A&2e)xWNcfYe-d9vH&E-1~88=uvl6j`p5 zgb&2{JB)-0;&xG(CZ}+Clv<7b^}n z7hv#%)prAz#ytoNaX&{$J45!b?uQ6qRpnECEy?2qalS_ge?~^y{Xe>&dB3>%XY5%X zcbF|6&hRWK_%@(W@yIp@g^(>@T%0odmw+5Sq%YkMoB+3907(Nt_tSKdBfcGh zv@Ac}WKX$W>lvza_0NT>ezRgpU*Hi<{<_t6#!a`6YL-yS-g?K}MS~$Vz!f2j@^^!{ zAcde8n9}a^Up}5-eKC=sO~8dJ0i=$xWn$d;G%4>vqfD-9;u_=$3jk7p4a&GB0N}GJ zDkA_yI{yB?H2{$=cqB-l9q_89N0s_wa?=VteFelh{%lg)V(3zZ8GMfnsM39!Xl^)I z0Tw@>Vzu)W&f7WZp5XDzWf$-NCaWdvvK_3^jTxq|WL4|lBJ(6I@%Lj1#1N{N%TMU` z2fXcDBC@j&{WEl>wO}X0%{~C6;3*!>Y-({o^a>@|5BIhB!5-hDiLll%9gj5 zd^FZNGYB;f%C?JUhV2DJJx9$88cCq@k06#V*n^nJv>ZqrS*;<)a>)MpAkLowV1w z$eR;ze~}b^0)#)|8IDuow1_>S7ZhcoCbsHye>XEW0VIWE)Uz-2)*%g(^i779EY$O6;bMf*KR4uFzn% zg7o{&#~Nq`_gr7x{xgzUtXS6WsFWdjr~FB6^L1~+&oxRzky-jEhUIP0MC*v6k~H}| zvBi!MTAfl7$C3!drp0QFwCaD5bdu#MGc-DwU$Y+tdTRrPrvw}%h6>}fLJ`Pd_;n8( z;e8x5NO5+#S+7&uv7hN)Kh~vT>w8v!eq34Z^}lgpLVfPMJtvaLL1H1BOSMf#P+D%= zoV1+K;cc=I;1bfKuv(F(#6?pHZb6-5nPqwYpicPkZsAEnJM912-@OWMdGji*j{sKo z8OEGC9E68oE{t~-m0r4Of2X^$Zv{QitVAZX8EpJmo1QrdA&SO?DdE~CXAkdTo#rl$ zEtxw8x%~DGNio6keGFXBp*m~KGlFC0Z<~IYS=JAl(5r*M7L1?eU2uwr?C@urD+|r> ztXd4cLWz1tIu!!)yPS~kO7X|fBx1w#`|CgX!N zQQuae7t$h1(2L4;sp$6-B;2ea;3uWP3YLtkg7R>=AhF8(US4sSs(Ck@{H7RDkTO+{++DUdUS~kv zp7BNe_EtDMXOxj1SMN9=l$^HYJM~h_hC9o*A4(rMVBE(cQQ75Zye;Z!m-3D$uhMgL zswX?kv2uNpul@1P@^%X~yq93nmOM-tO3Z@a41k<(zu~EO_^=uUvWhjAczvc7U9K%)#&kmoTUS#ok)W6+qFinq+gN2)PC0hbK66*0N7 zP8|zs%DLuTQty@FB$Ee1isCl>96vE@N2rpdlRW&alg=BntAr#{^}4@W&|jn(GOgd* zURP9|KVdWsYwpg@eoi5OqL7?VGr$bI595Gufh1@z0~yps5WJYFw_1NkSR2B7JT$A- zelD88<~ymHz7Ilv;p<+Ih@om+a**v?S7dw5%4f1zJZG!nPvh&idZ;uy=0FfL8=?LO zW#K{~hD{IQ;3qwn*d&93QrOk?lvImq8$u@nMl7fCWQlHZ5za^abC|EYxDIuXRGn+( zNd#{rJ2Qq`{EKPe2-;3(Em){#3=|BGb-t0Y9Fy-_HrS!$Xz>hbDbU2sn};eyNe3$G z)p}z6hS7;#n7G~(NRQ(H=Q-Y zk}-FBNhbfw+HZ6H&GyTNJzU6M15-0=WT0YuX+17l%w`^)Rq~10WRs&T5GsN?;LPl{ z;!hu1cIVHA3Ls0bBkSqhIGzJpaMkiL+eAhTL!K#jmbzSS?<7O;?_wfM-h_z(lGgiz z2dO576E9~E0ie1|N-|KC-Ay;*xoJYn$~+LJF4{(J z(2z~WG~-3xv(Dh*#05y>ohaqLLh-6t!;tts_;O=Zzx8FE(l6*~jqT_ovf++Qs7hC? zltwDkCqj4J+L0BG-c4Bil$Y3Yg9|gv+k?8~P;K4#k!9UARxP(C7yL0VlG)dG(;u3~ zsqOOa9-S8ynvuP|W@Ub6hPKYEHcjN8nV^W21I4{2@!b_|tQwnPaQt$O$3nZ{LS<8q zxJ%%~M}!|_rC&XetiFfmD0nJzz*cCQ`&o0}jNrVh@RFwPVUR=J(`egFbzk$ne0*LX zSJJF=R>Uk($Q$+b?ZxAcch3le=7;aKd4#Vtr87C?8mX7r-dt(BdG7A+y)=8#{VeUk6;@|Vxf@>3=@%v2K{Q`cv39??=MWsz$7xkl(mE;uP zg-tq0BMF^pSK7IxJC`)eu|5P=&?leSpA>{AJ!(X5vE(ZoW?W?$#t045mXGnTD| zsSq58iRQ!cvmUbtd>bA{i}k)jvZKt1S;kQ&G(9@sU3ra|rRBYQNh_g~k@5O`spwaP z^l^|3wffk1z;GRn%-`aSbcwC-g#8wVfEmsmdl>Y59MV@c!A`%~8 zv7P#(GEX7TST(X$8E%($#ZNKzxRp&7(yeRK0tSNLEi;H5quZTJ`gJb9|zK?rj8FWokyb6W6v zhf~HP14xPb6Te%HYWKUg>hA0-mR58y$f*fo1ZNTMv?}YTF-XQ8Uph!s1FOyd+3Gb* z`{3^URj?A~A7RB*@D$FsuL(-b*qXRM;XE|ksbEOpoUR*GmY|(x} z-*xR}YvHonv$6db1hAsXeUNMczdQPpeq`0gc;oBorc#i4Dz(p|=Bxhe$3U2Q z|J5hrf1QCA>-lXH07)h7zmf{m|15r-D*$5BtMXR@oy&i~1Q2_3E4s^=aUR+F@=Soq z52)F7b$4P-*8YES3BElw{)t3E44!g5#nGzP$^({VaLGP9`*|~8xs<31D>ng|cdx_n zyYQp>>hrPr$06NPw6%k48o*@hQPpmV-3Ud@q(d{EXdhrcKnU#iG64h(Y_rBfOAJ{n z1&ArT>ZqXo(#S1p60j_EWn0_PyUrG7l?M(?ASTfL3%m2wdW@wx5Iax_7G03}-9TVu zg=LS5e-uRif&uag(kmI^$N~@PrL`mh)bJ1Z2){T0qaeaFZvO3`n6e3oDV0bFtAq#* zsBXq#Pz_Hm5!r+eg+phO0La>S9sfznc@(%ez6b-D)( z&ze3?Y5_&M^2IIwIJA_{RzQ)C*buEOr|_}yFCeDSr3N@cS27N2lNgPMd4U=3dd-mV zfawE@beDMl#FU=ysd1A3jVXWri78)}pUD4>DTMg{#+0i}u<8F#OaTSN6p#KFKuj@a zwZ{zpi~Mx}0>l(Y>Iy>KtN&L_Nh>?~0K}9fnt(;CvO}wXEI;>v0}x^hvqw?E$aACM z@!&RcXRarJ_vRrL!3D7VfB`H&dXSzs)&R>7;6Z_zQ5%#3thV?yo&=yI{`dY98XL&p zVu|+8{fDdg0}sEHSkm}AphpLK9L-A-@1ml9ng(O76j|DL5ipO=+mIf0#4S~qJZ;v7 zm}s-II;b!cJ^*DDRyA$T^g%l}8}`<~3~zSF&Nz-1T!msm8^H=12@2_pNQHLeYRy0| zNqUhOXl14oK(@q#B$p4o%P!2@RH3KF16Gd-^t!-X$~3C*n{!^d0<;hH&`S2a1?aTB zsb&&`p(*ztEot+YmQ)579%F!Q?jJ2_EC8@){boUg*Q-*AA=$`7?%5H(J`-a$Imz)+7skBF|+h{=4| zeR;7DVzS$hIKIZe)@gyibJLPd|57~XUrM?ai!zkDgEahUKj%%-#c>BocFzNJ1Zwhu zBv~`IjPDkJvHl&Bhv6?dx87sLbR{yQ*^?4OxP)3SxOhO>_oZl*rV4XFsZBjFkd%%@ zwNhYmm+~v4TtAb99MK=I1BGhs>gJ(LqbekJ@3?nDn0@zxJiNgkcQxmUeJZU+@zi(A)Y^y zSeTNkNu^845si!fi758G8_s?*b12*T%4hB#JFXqq(5*gEXit=#D#}QWm@hc6RITR4 zb}}a2(75NVEt^f0hd3c^OB9%_>N8$OoU!&dw9np$WX->vVF9)u8G!BQJD(xH_D}mx zMWu+a#X4&C5kv?i4uTouKjRW4+>$CDp5>vJP69$<*HzQ+Y@a`2zUTxDRdlKvTa$s1 zq4O*s$N)M4Mff>%Q4N4j@LiGAL}-|PI^wexP%3q5=Sy9UWsTovNprV2I;De#bSvIq z_o+tmm62!W(|Nky+Pr&ztNE3-H!XL+c z2Zpm2^$RoGpS2spoN@rZ`t()lPZY`8IRIb%CHvXb$N7@|T!5b#DL`a!?Jis@(uqICF(LeF>Gmt$A;gX8OtBOZsI@M7>=-N1RiCa3dQ3g0)!q>R8`e1mvxYtL{ z&);UA(y-QwM+^XcHm}Wtou5g@6z3)VYD{v6Ztkp_&`yL5OL)IWLI$~PVB~hc`W;{xO25;qfuR!$AH#(n8+{;mT{Zj$9#by(~Qr$?Rf+Fr4%vX5z*ISw*V zQ-%Awb+v(QZ8M{5##zPaCf{pT$MEytC)(4^9aWo>P0u)BORuZnMlt*s3$O<&Cpu=5 z!a3lw*;f=MLTq?h2c*sjVZ@h`q|(3i62^2i0cO(K4Mqw4@FuqIA^#fyoPaD+EpVu# zOi8`|@o|0d*NI&mXAzNgrnhxpWctX+&7}Sb7AV3Y^Mpeb?MQp#eEK*g zpwE^k&=Gs$T9y=LqwiGNMVI87q331lZf8BPO3pJ8$S^_XzM`nA&qK2|MtP)EgO0~` zrTDhG&{pn&9{wj?leMwkjvl9*gSRbo4F7GK`zBvN7mB9D{orCE&);t=@7yKjstVp{ zsXLo7mp3z^*46g5GF$FE0mz)u6yS)GUqY3*yIcO5F>eV{nb*pT$d25|7c%rV-6Wms zsmq>=Vw)eMTEJpR3D@%Yb0QdD>drtw)2p7$UUoy73AOlInOQl?*&F>)vR5-Gm-1!p zgnzSYu!x`dCyE%p2{A{gNY^*|w%t0I&IN}wkWf|5-?&_So~_s}8m~gNtzfY%wdO}3 zt{kvOWYw<872LFmyiNNtRLo1EvjTU0X6*&?iM>iz(!(qeHaHZzSqw?xD2WN4n2f)W zEDHX5h`z*fowKEb&J=o~*t@9DIVZ+MEs);@K4I_g4)MmL6d9fcU8D(6bb^3}-gHO} zJxe0{$d~+JWYJfXU@N!dh-ieM&AWI4^wZihS;Ie57%Gl} zaK-aZ%7G|9vMoT}8`In8sD0sa>lk=^oQu#p>nUN4H_!%pjE1wtwL=uo5o$U9;S-|EgQ&J!_LRp@rHFX2eNq!)wv*CZty3x=E2U*hM5|jev7G$q@J#F&P^tq zRLpcp#*uEhW5f)qPA<>FKxVdJmdDIJQ5Ie}7G}$nmek9O4EVoS4xzt zkN>O>1D< z=Anub=clu-aHE2HQts1TcJ9o47I^N&zM$$5 zdY$ea0iUgxtph-SY4uKn08u3UkSbQs;)`0d7i+fjJnL%nRLy%mZ;uT?R@)uJ@&zCZK*h>$`tB`6kavfY5|N-7 zK?V>Qs4lFgL*4$K&Cvl5Ep?&9QT!|!F)dq~+wyAr_2aGndR^R1oC)gfi2N_SJ-e(v zBHZ@c)Wp5j^}HqfuIN4d0=&;{t5$~NZO+yguV7zyI2_xdiNO6<@rNC^6tWu=?IPZs z%AP&`bO9kk<^C^x4^0CtL5^D9aJc9J=nm=-rQBbRaH*$de#Ju*G?{un2ovG+xbouu zwzBT?luS_?aJwb{41ul!Mi_vE;H7r?Q19meL!d%0$oUUsq-4OE<(;h%G1<5)RJ2RN zs5?}&Q{ogrTGQq9yaMHgk|S`_7TPa^t`uiKESsT%&mnXuB^Lyxmy`~VVBx?-dn#d& z1T)|G#yj?835I?P((gjG7mCcwF*kChcOLd}Rv9v-NGo1lj|mL0YCbFLGAMIu@HCY-jYW^l03QYFr**$whT~=9zh6pff~5nCjAQ2wkXh${xj3MPf=3^eV?}fw;H&wn#cB}DL5-Np0f%~57HOu`NTSbyG|bxF52^;Wwz{DhGye@vJk-cBv1r+B0p>9u ztg&thvdL{HZ$guo!?8oI24ta|Bciyd*e=k^Bl5t@B!)k(e2SS$mr{X4g{S~FK>* z1x3WyvGi0CZ}|koM3r)>u|qOJ+A0I=exwv4ih+X=Spsjl5we{@qx-au;7+tyFneI=TkaO-Q%gwqmzq>d zD)}RF-8bGr5C)eCPb7^-FYD1idC)eH8RZi-aFe^X%SGu3*YGXwf}pH8cDXsS1sQwg zrt#z?-R5m}3nguK@l)F;D{B4az^ymbOB*4)!}>h3psM^G?68srHQuQeN~#sf$1%~k zZvBK17N0nqgLtCA>z~34>}R761App_Sf1rkXhl$_>*8XXtzvE(Rn|FX=z;T^` zy7QbDJeOqx+&L@o;Y3mEv=vzuRrq9c%#bsWfP9g9i6~pdlx1( zLN4RJc-8p1q9X?}tS@54m7~yD(9F8Hi{Pcb$YvHKRKdA|c~L1b{bQ1iiH}V8!7bEf z8-0Exv*3sEN| z7u@18^%==}=fBlIoYe4}mpzskha?`V(OWgzI@N#Ek`x$&&~euH&g zAuju3l(8oR7h1_JDEwpzKxiCoW0H<8gqt~hW3nb$eAWo)KhlThHSY~aFt8fj2H{gc zhKv1F@B9@5q}_SLiwj!qcl~zwez=&W#5et00DMfe#RVChqTUhCpP=9ZGZxYTN7V11 zAr2ZV5UV$t2@pdJw6++c4*@wW@=FH$h!tY_`hB^{kHS&uA;=J;z(WIT`1@uKZ9TCz zM<0!a-5xoVTX&D{#(>Y@zK*q_?pl|$_0>eebLIVJcAL?F1Ww(=H}L|$l2wCtu=^On zg>e*FwEAOyCDthC3-%9hh}|=_*6(P#E%La$c`aV$q$i8L_p6Z)F30rs=wP3@pi;L= z-m0TFN^$6<&>eIOx*QWZ2BQA3(LWY^8T*Dov+dR_F)j-2C3;bWLGA>=TU|eaiM@pf z?o}bpFv^2{EWU&PV<~;tLJ7C~94 znv{ZPmPNTQHR^)3#lU7*p;d=L9#ku1^$)3k-HbGuKkjruWA(As|{*-Zz+cYu9N*B`Q-l^BrN$5V5v7o-1kH!&xP*Y3`Q)JK6V# zw19#Mx!O7q++iM-oUa)U4YM9(hWzqVq?{1d6Qr{roTOVs^TSbNEuG`WZr@QE!ef6oT5c*D zXh;&&dJx9b_~h2WuItOa;+&3vWtvi_QW6SY9MCB=K0dnl9` zRB<7@NxwDur7WglDdlA!bPCivgL5i_EymM}OkLjkD4;9(Pc06!;W+?s4_|7G_m5eNwVBn@L+oR$0(hTP0FZ0 zyR5!u3x9QGJ(<%NKdr0yE>(3cg6l_3<2(j3>AdNZW$hs^RlOEC<)d$fOImCSSJbzV zi!v!kr1YJpC6Fd@Tlv28BFt=ZBWVUN6jM(c2@B*ux_M$=RBU+jA$=_o>p^*|CR64s?gh z4CrkFioS8uDk6IJohfXR?6^l}ZJ}ocw}$jwsZ!vj$2WgVhsG>To+>b`E8Oe&ZRxo8 z9EfY%P#Caei$^v#bIAGXRbjeB^j6U`C;oI=#10k>x!2@X>Trty{>5Vz_qaLJBun49 z(gtB}{MMZ5@F@2zk^DPd`{X7EeAc%dNwYL53mGd(Za@wDj>a;M9(@qm9$s8=(I+>P zkUPeH=mik{>Q8K-yieq@Oa@qYLMzi+^(SvL(qC!)&X>>4L_7V}5QjDl88_};?n)o( zN{?BXsEd{KW3D|j3;SjDjh}3A>FD>sMs$dukPDaha#OQ$y9Aiblq-IloTNKN-dkwW z=AVo`WcL2-+Rgse%eYdSd=P-b+Zwm->sRRBNyNXJ8eO4esRbgd4?~uUr_AZYcpGzI zg^qJjxz|Er-{=!jB33gKhh|{*dr{<*5v+1##$pm*+##9BEH210a8s7+_8fC$cg#;w0VMw( z&`bis@f%(vjm;g3a!wot?b2BQVHJv*dQrYiI&O;a8_~&57+uU&IQVawFFy20o??n8 zK{3JSP<=hurNKJB+9Dg_oeiSr!v&zWBjL3aI)?}>XY~!k#lIQR&!O{?a2-PQq3?BPO0-L8d9kmR2 z*cSSi!2w|kDVNFLW5*_6rcz!Qg--G|qj&XpHIB+p{iBbgrPg+VZCa3OKR3(yu!-Fl z=jldmy$VG480>~N$-G~SXZJ7*o1cY`kX*PVFCX^*sn}^C?3i!`gcYCv3M-ud%~#{W z+`3x_G2R2eYS*``#a{7eY=1u^3Angy-S`5m9Zf`uKuSgrV4Em}L~L#ABz_V`ulpSOGrF99^A`kv#B`PkZc1HXA$bI$A% zgXsdp<(3}qpP~@|Kn+bxb)`*H!evre_&-M;uVHdn@L`4^&n^vDeI zm(~Sw$5q-@f-LtJgj9{7cB+&Xb+Uv3?~tIVf=Dq#S(4xkcd0HCW)+XH#beHi@Dt>qa|34`=u zti0s>sm6%lp+tM%i~FQurUyKrZqzCeBD{4kz1`@Q-|qG1;1X@|iL0^>db!&@tK{+2 zD5yx17Rq3;y)^y8K*cnCl$g^4pcG8V( z$d5##H>b`LgY17G&@|kNA>l(!!hEx@BUql|gq8t9M+~xJjg-BrI}e0buz0JL&(2w- zTGH|9lR<^cvDseG_z9RoHgjk%tkeQg`@2Mb+Uc>(ZE(NGk%g9^dC|k#A_jzl@OuDm zosHF7)TqJ|=t?tjG)2#ELOYTH{x3=KFM@jQ=3@lMps6|OGLdp8F@L%6&HE2iXgX1snoY|{zgg-WjqMZ9!T+2*R! zV@be8Wr!zrM;UU%U6bWrkgZ1jrx5nct~W4A!iQV1CcaRg%N1kA$;ZO0?3nvHf>Jw$ zT~lhP%r=2*POW_eQje2IwcLKUxPvAp5*mF~QmTNuQ+M~X>wo)TFw%#OtS^JATBcup zu+!ZdD?(^=N>OVmqJEH9`b~BO88S6t{zFyR-MXS?7>b*}7`87MVGFf5Z#|IVse^{7 z6y@;m*mk^2B>R|TpkBp;Qf&A92SYNAe0F3ZO53Xb-Eo zNOj3XlbIaK8?yGZVF@f5PKoJ_S<8pX1)GwIbG;Yf3Z&Zweu{mvtOt!E->c%?qnyUy6c8}zjCCxqMuT>Ni; z+?My2W*n>KfJhLpaz|{BR^bsr8R^8$`1qd^HpwjZ0kM(hg2%7QkQ24Bk$YgEKmfy_ z|GA^Hsae#ExQVaWe|OEG_4FZAlyxKyI#(5b-@~D@r`>S&k>M~pE{b^PY1_sZybj*z z7_6OOV8tMJHv;KL7x`iMjSNzKx5?rKHg0&MZUAs)femS2qCll_`?|6Opo+zQ@PYol zs9UH0g}+J}s<2#}Ev>Ho)4fyCQBC5Zjz)gO9fFbLYNjAD^-&xyjr6z+z&I*}?f@bW7bt3qH6@3V1SyDMjrz1sX-|eNkCIVbpP6r}s zr%0a(@5%1&%xzyBz+rd&xszg}H)UkE;`jbQ9pb;ZFY+;L*$=0nw?r^${xPQ!!WwmY z%=x4&+!DL7IF$dvqWQN^mfPdaPLh6v{k-hPQVXuJQ`=7TRxoA=vwMvr`lWy)_sQ9gMq!dB*p#sYW{z20Q0f zF$=`YvhIP&+JR!saU|gF6YFF{?dC@`Ho+I;+aa96yxxx=PzMwgbXxicym)( z)~K^_!L=VsnLbgt4{0Y`$^dc{z7PQaY__Zk=+UJInBR$~qr-I|Pan(4mnc1E>K7&a zVo$c=$m02~HU;aT6F8KhT3>@f!?PWC2jAL0EiW3kT*eDSY;20el5h_d<{;tEJw=1C zrLCxJm*JD1xm<JS3>B2c>U(n-P+tB}|R;RcV%P_T; zaF-m!)$e@+OBf1;?mQfIh7OO_5Xmqs^4a7scetV>Un*vC?#XROpZue>Y5QQq-nc-+ zy|flkdrFJB7&DmL?s!K8k9>H_3fq?*>B3G0ERogI+Tt@evM!WEBuj1tXS%%BfU|AD zc$UPAh2EJ|T)5uxdjkFFfC(@9rl1SCJ+a8*HetebVMu#7?7RsK%%?O+3!^lZpSLR3 zJ2w4K46kkUqB(=rY1l#Q2zh5!)0PsxarIKDk$zfIYfh%I{>00qxMTlG;_k+Ur;1o4 zlVV~vrNSNN9VDdFLOgdlx0bctayPby-(q1tFpo6H-(JM!?HO&mAjv0SwTS8RWz~; zon(?jihW8`w>sYa;&W|92#;ZNo%`Kx3TfkAp}~EQ7$d$Gyf%){&Qj!wZTYIjeInm> zYRJTqS||^f=WJ_JKzur4(Qn(-*?~!p$%VIEZ!lzs<9XryLt93S8%;lq&0eHDYT$EJ*Lg* zg}d96==2$YhxIlU9=(~~ zSPy5b){o|MjArrk%K7v5b-f?o0!=KXyM4aA-^}rq?|89uy{(!a2hGAWsZZl~>MPo1 z=eyDsgHMb4-Ti-$SI(Lc@zDTe0A~syAY?#{akqCeVKB3|cQJKhV*WRzXlcc*bu4r- zOn(}*2-?5NH!QEdxhaoCbuc70C)mUMPO-5~DV^x>FL8tIQcXB-v|J!L6>@Vv zCu=2Xz<1Y1!ns5M7l3jz%xp*-0fVFm-H=lou5uT^1u#SkMS}XELwW}$q$HB-46*uP zM3o_|+5~Fk2Lo#bBo!aH6PmtS0+IYJVn+fIt1hu!fzZ35thZ(ad~tOk$P2~?HXwiu z>H7cS>z#rtYuISr*tTukwr$&1$L!cfcWm3Xt&VMVtWNr@d_VTtRsT76v)1*jT65Gp zo@X?_q(}g~01JU%9%z{e=>|@K2U>w}7pkU%^hN$Y9GPnXQGU`k>&vf}Ga~%{Z@*g2 z%K!1Jff)bSucrQQzgpc&#IL(NfrKUgkn_IX@G=WFKZQ0Of z{2Sl}@Du>l!u(F^|K$a^26zF!jr1`BW2dLxOH5g%2 zqU}A&Wu*$r{7x!0cJ*Z*#AM>ul{4C?{=(l}$~Z&a8y4YL*)adCue%xo$<+l}B$F;% zOCQp074Zsf_k%2%D*_LCXE?=R3?cxN*Axxq9bS;vFgj;16vK}r%dBMkGC`kes`CH4 z6}FUn^wkO*oQ#so$$!}tJBDT>>>zQ`;it2SP?KjpUIVIe)f0`{LpwCkdH)^E z5}GFGV7>&|z%=9c>;J7+qyN&YY5Yg8hNBdW&R58;fG)g0*Q2#F}0P~j=AWa@sNxoYiAO*MrNCDy*e7MT8POV`!z*uvOu7f$zA7Ye-=yqr=(F>y3Js9N8g8lfcIXlL>ySJL+L z3`Os6Py@JOcM`bj6AFPYdWqOx}*>>%IZwhVdvc_ay$ zoy=djncT_^4xm32O=T4zIt-8hI1u7p<}8=Tdg$F~f$ z-3+J4PpfA7md^uBaO7GsT=(ZmLRftxNSCyS{ec(Ua|>yefNBjaABt9IV;K4b`+2>; zJjpXP+VJVN%C9bm>RopFuHMZl}1AC=1(Qj z-i;xU|3SYR&OlL48>SUqmWlKo;-9KjkutZy2bdEvoWPy9PeOyQCR+EodL9mt1N{DP zv*kGAsCIIi3qQ=X-7y+%T;Qd=z!KQyxJ)?3c=tdL<^iHWZ5(F5=~XFPMzQuuKow0p z&zQgvDn%&LOxt>ezPR=_eS-Dh8-F$s`_UKpP6oZMr(I$VVHV?h!S4ZR#uamzcj@1${QC>~7 z=airNfMiWpU=jDS1Y*76@Q-x)+KV9qLw#J#$=^YqB42~Q^&WRC4Xje~ZOXiIRO}nh z1{+fLvG+i`;C_OT_z0mdiXLUyQ=v5M^)t*p4w(8aDtc$f(Rm>3OMUN6+$;vT)x`0P zEaz|fPH^VG9r7)L4g=h3S91WjnyV`gz^zt`<~8_eksbH&+>5@S3*yD*;?sodsHK2` zNKmOThQ0E%hxB_I{LNu{u0$0S&Hq9&lIEj|=z zHc(cD%ZiQEMZiA8+pXM_5lcB}bt=wGD`)5GNf(_;*h#C~&Bjq_)T+kK+!pV^4dP@e>z zcsk_1Ovu%pR`)jX+-rDiG_wD49-ZPR_|C0t(&v0wT> zL@X!dCDf0wu&kiX=VqBI63#SOGd(fo3F!S)U_JY3IFy;p;hou`c3B#fhI#FL#SwQ% z6dfk5=>Cz}Lb{yPV(Pu3<6$9O<>)4Yp+jJdIx|%~BQw0`Aw~(?=P&}dxR)&PGcfc;nhhHv{I zon4$F3EaL)2JLsod9Rn93_eWwfI*tYf)|xRnka?uEic1Tn$YjPy~7c2NA)YsH&S$> zx~dDcJnfLv%%G61XMS8|fNUyLAzq!rJ-vgKNP)--`=mdtZr{Sp%ROTi9Jtmn$jfmUIKE zao@}_6F!I7%7bOpatEBdtH>p8v7ox7_XSr2oq?f?UZd5E3bjGQ+|}i4Qhmv_Gjvhu zV_e}rgmH=Jn+Z0S(v~7lsqePUdU9b>z1Q2J>fqvj89QD$K27P2i3%LYq;-gLN1?B~ zKTpYlgZ~moFj-c2Ig4Uu&(g2BU&68@fyW+@F!S^sPMIzSwWK!rr?2hI8#&$7wfHOk z$P76}XTOv*clQ+;HWCzMOG{xlGUb}Qw-!K;Ko_x#^wiS@nLios#G3{Ds(bDYP zwhy%~IkiJCU76tJzAg%5OZn!tzFfJqufMW730NA?n5A)VTw0CXl~ogYw&y1wpH|UB z&Y0^sTak@MryZ6iVpmZ<&FuEajHiqUWWD^%CqrX4&h^!AF3lRs{@J)MW-JXCQkpDK zdbRx`Hk&D7^E22AnnqBqdkh8oMv8U<$tll}>rIR%%8wwahSwwVASd61L>HRFd`?6( zMLdz{C5Otr#Du|7Oc}j%Y_{WL0#R{;$Q;v8EGvJ!8?OaI#yVv{+A*tq&(RtWpjT7b zX7hF_rFAaecJkC|E{V3rnhZ~6QcZtXb$_6ciOwbHTv&g2dM^i#Ac8MAUdu=qvk+}z zkXP5pNaAdI?Dv4c_d>$Pxv288retH6v6JgSE}n_oFmGMhLpn{W+bWLC%RE_o<3iNX z&-@m=Rql9_$ZGLiC(yin*7Xy^dk~;k8`w^1=~=(8E*VQDW!JNQ8<}4u4F%p}V4P}% zJFL`dE+#JouZH*mb(F@Pt9kuXAN5^&@z6rReyqU!nANle@q19Af}4FAJ~cW(uXbdV z%vfkzJSfILm%W#uIpXJ2TU(&VogEW{)hq%+{p0}T1vd0I0iT%&$M^l>l!dw>e*UrJD#i$+*q+Bq_TI0Y)X;AU$CaN z)jufb&7_r{2x>-#dNVYmVIK@j>~H)gBHb39IpGd=_G?ol>4YRLl=t0K?5 z0lNY2fBygUYE&qHo69x)&M;PcL-ae3nxi?|x9tJ7Gz>`nd%m5kyzPx%bN~Ku`2E@c zJ^1N)KdeXq2vH<7|06_k|8wa9SgQZ;C7mC@2S0MqI1DyCcYe!8;oAw(u|x;>k=1SS zFS2ImpA80m>Nh7@IozL{LQ3BTfr{Y1I0O{E@e$v#b`rfiE=MiUI$ zlmD*w3tK^yErQh7iacO%e6JlTb$tm86h-gIx@fNx${_m|qP(^H030`0#Tz_}B^c9( zD!?Qc&+GsY0Qkp+Jh^`k`UzNc>jN_8HLKi>-(1LjC?HLggy}B2-Ut;L@|hK|_M~iN?EuRWc1LA81ebN9C1o?fxHou_)hg zcIF|!5g)A=muXx|fxF$4P{E=s%!%S{Y+nbU2U;Kn&Yes;2drvZhoPv-z<(q9$P%NrZhJ4rS>-_+Gg!G~#dyq|Pp`67d7ImidN|*9q7U_nH?#ULx_p zdnZaV)7|VYaN?LBXUpLlgSoUW(kJ)Nd{r{J4A9vk8HtV5pNe2)Y0a7`>0l+Iuv$$$kg1)5Y8X;s?>&7 zo4ff;6PH-QmdDyaWEnV#vWD=7n#0=|HTf$%fR34gR-&DyObZ~Vxs>wPz=6f;JIFln z10VEtv*y=gD4pc?Cq^}aZ2bHZ~2xp!Ycmi z<>c()CAPd$>hf_XQaR>l-tw&YoJ>mBLNH~kd|%bHp9kgOT!YGU?EJNts{Dv%tZMu| zHd-ik|1zsZ9X1cLZ7zgqvV@Yue3{j}+GT=rwZ@Hk!6KvYcYe<}2trW(4Xv=(NS=?# zG$*I{GsWUtIi4id%vjz!3v&!Rcf~6N9)GyA_rkrNF-eKkBa0x1Y7yr z?8%k!=LYr#9d$ZjeCR|ODQB-&x}1jKHXKUDe4KNofv@nQ%=v0t2a|ZA(qg@}=^=M_ z03HSF;P4%PV`f;mmhHFSZh*F6WF#vH+h13j;9TppS5m(}g#|x?Zt2*)!_;-WGubDn zyr)aciu3P*DxjS{LfJ60m$9;KyOfpCr+=?RIKp2k1Q}qau;VN210&5V_q$Area85F zPyyU((EzvFH|}#C@pQPIX#ahGHY!DEKeYhc3jYBdD1ChC7m?Sh(Ofo-IO2E}a{Gr>wnd4?)aiJ+7oLo$0-06K!Ne5HQ( z+3=g*%a>S5WbeFCL-^wemb#X1YvPHcLO$?Y*zrvdP9e};V03~d7Q-;Fu?SPMt*6f8ldaxtK*Yam^*PrF6BOGpn?TiWLUDTdclSJ` zY!2?{(+lVN5j)<#2|H{V3Kt=^VfdBlHO7h!Xf##h?QHU`aCVEGyJ47&Vn~v_#bW5M z_q5RtNDwv}K=Q9<^pKX8W6<$G?5rbnU)JT~B=-fadp7IYc}icqy#;*8GJG;5Nb)yI zbl!#?U>00CPoTDwbQ*D;{#DDed9QSl4qi z5JPpKP6H$?nxD9h)M$K>IF|UqPukYOx;95B0hqv|XMp zU$wdY!)>h@aOM;!qSQcENBodqYl{ZGC*C~*h3O+`1f6yakD+xw2ADFXgEkDM^jXrt zBQf-s7-m6nGRe`?0@z#K&uoB&vl?X%!-OaS)UXuYk0%zE>wJ1(y*B-9g^P@dc1!SRV zzs59Gfch@;j;bvID{1anAlZB(WvV=_nq7NdE3YPjA4R%Xw08V6*f6QzdwqjN5& znYP_)kP~e(DGy@!L|a_Xj>t-L>&{W}uyPk*B^@_TH8rG(Tb?j2H?|J|`#3fSJC#>f z7*X<-o>@+sw1uTMA*3qLQ2Lihy^revUCu=nMq^K2kgw_|yW~0DiA-39di)B+0WGDp zUmh46me1A9wrcWVXOG7M`e`>sSHrVu|1Ab&C92UWM`B>e<#df_W(M91*UMM7dDS1m z;{Ee5Pl>>kq1AbZ?ljhgiS!h4A+b66r&CWc7i9#-vcmibgs;sn;ef`=N0&!yDv$W& zPgTJ}MdKk(jx%3Xr!DEfTsRg3YbVxgH>N}Q@8zlVnw2#b$7fnYuk3>U!80Z@rG5y z$`bh81{aU)*F6@U!W(S(Shp3wPTNd;ThTRVik{LI^R{4{w)j58|L8lTt94tD2O*ZK zTIZrLfN&KoEvAh*fJHHHeeOJJwU8v$g8Sf=>7eywLdxY!`(tV==g{Gix#AA)3Z;G`RJ8)U)3ED-#88Q z-ROiza-&9{Z~2d0`Uu|-aP^M$o$=BFr@<-MnbYqz^X?NL@O#C)x8N#-p|nyM+T54- zO32a)AG40U33{Mfo#-QJw;Ez?RrO|fqtKSSDSFu7tN&;+#*6eioceFgeFV9DcI3ai zi#}h3UE4E!{SvS>2k@y47EF^|$+ct)=;m8=6{VfF{5h$>`Z= z94cYvoqxZnS6fu-(U@qVV`bxyrZYPooyzg|@$n|$-Ez%&x(HY!+`2R-_N3&8xijRT z%3w1H{RfJt1WIvYwjXl=Q1q9jpehChmDCwTvYIOrj#j>3gP)$RsmUvZwIV)0Gg2dX z7%5={PE(ep(z~C?ALo0&XVnKr#2+xEgaoo}5oJO6VUvVPPN9d=Kp;)Wgp66@Zc@B= zZn8UilxJ?Tb9$9`S1HF$YR`*ZWxG(Lxws^uNg+<>Iw4sFuRmacru6r2v(F8%eM4)! zF~^~$icVk}{74`Zf2_d}U`ZD5sPE%Y_&M*%E;m;M`By|&cpu+3PU;8l1Y78T#f?_c z+%I1CaJ)ubpC6f+9R{IWNZD$cyb1w4)g123_&@E)0@`;Q11 z8)b;{%`4y~1g@scb63<+>);EO4@l`IJNjoWKVoPP$OE^ZU}L$q17G5vEb3D8 zK5zs~urWz#vdRF>f=H9pWHvUi2e-m~rh5ov1(-raWD|wdY6PF2ZIjA6!yv0Vuu6XE zTtMfp5ZoP1q22)LeT7d(xt4)Gl)Z^>6uhE9J8pOb4pOH1%To}%4h)c~y(Bs}$Tf|u zGAQT74&)rYTglyjl>H1^Y^)uQ0Fw7QxG)wGCUOK#J0r&39z#o^y5@VaQL{>i^%W%_ z&E}Hf*ZK<>q%9@`d1PF{t2BVKn6l$-Zm5OpuZII>d(ZN`S)tl7au5iVMgK&&Zi%0j z|MkW?gnxv&CQ`jJhP8p0_10$T;7MCfFJXNEQk?lNN=Q8~A)zwC~9 z_2br}w_})=3i}H{_8XStBf8gS4&Hwk^w;D*mvmzgIyn39|;6Py5hqM|6Pks>m^$Z{6pc!VR8pO-fFHA}}@Iekv%loJTh;PU*O>T`zW@&F^D zd#vdLmI@xe-I?!PiwL|+1P$cgg@B54?!WQp&sakJcvI~U1k<&Yc548X?qOB6Qu}=o z)kLjw3P6EzgoGABZ6xI+cCRz~^<${ugr|f`9OprspJYWb#ssJeBTk z%657Z??x8*m%p*`$Nu4K`~+In8->lyYyD>R2X=I5EjvxzIh>?-E>OkW;@E==#9dF# zf*0&DG_bK&k;tg3;$DmyZ|0WkLvpXU71kA!-LFm_hhMnWTO`KKX2&~!U;?4aeA##R z22RLgyO1&hP@a3Bn(WIiC+L9v1j8HX1bJTlqsikLFtFHN=3&JD;eo+LX_j-VpYZE4;sHS81m!fxC3xHxE49(8IS^+wVEf*u52B`o6CIc-0cp2pszvm zE_>VE*@pYLt5cQZc4PJHQp2=W`03HPAn0HDUC{H7Rmu|p^=aG`aq{&L{6c+j5IRcL z*%J{%qO{>R_s6EjfP2(hW!#3_JTmT!m9vY^gq(l5_Ha#B(GUsonLkyfGl`G9lQ1)M z?w9?PA5AvqdpP)hMA^d4X8>UIJY{_X?5orFJbF&PZ)!+naT}L@+&1lpY7LPf1JC?X zMbNU;`Lpboj%@X?#Td=i-1h*;ZO&pH4bU@b>nym%T1dMIP6F8P! z^eqnO{mn^dZ10z3;G2^Nk9@JK7kY`qHcIq|Uh_9lz`f;Q!WREl7#UI3`379oKKh2S zC_6#bdpkQUvS+0pT=6|4wp}%ztCBtZ2Xf{NiwD2Q)Ji`p{zlpc;3iaDY+(1Bs^Hyw zwi|(F{TQ;MJbB6~>w2qkhZZs>cg)h@8KKmM_kP9)Oe)F8G1cnOT5uXVcMO9h)bx!n zZ^ET^7k%EtEem-H94ji5G)+d|B~%txVHltv-%*m}*tfTJmM0mgtnNaG(t**5ZjrFM z(r6uHMrAGK;ofF#2kg%SdrXL|b0Mx|q$<@br*z+(VFQDhKbHgHLPqxxJ(Q5dAaZ$P z#nrO3_nfxrTr$E{J2IZ};7^T3*HLk_SR54O>vh{FAZOKco8gjd5cSzNY?*;GaOJQm zVQ9V<;bm%!Kc?%5I7GSE+8N5)u4rhj6GX2JV9mT zzD7)5DOa1yDnX+QjYiOOEKgT<52jDy`q8*rMl3^ta5%#IaB%Dn&V;c zs9;J_()RS0eg&{Lwx{|%^)UZi4&9Kx zqnWM!xF11l%!PHag{jKHpDD6|YPaR=0Y2=>au$30GYyM!YIiHzew$uc>*IySpBOVs zcnBgLoEsD20uIVvKI{n#R-7pV+s@ns;4ZRjp%=k><{%qrJmTMa2`>slfbNT%ij4YT z5#U~4qY*1YrCHJk9ddO+N%Ui1uA?--tea>?zeYrMbC zvEObFDYPD@r7#1=e`$DrvJkV*)Rmuk3{qq0d^{FiJ%)B;7~bD|OH#tv+jlwm@N3(j zmLC}DTgCx}q{+qkT^MzYyms)eZ8Y7m?#m5GUfk_Y+WD%rRDbATx<|5%OpMffTpT6F z_{3B*ra>;>xU{AQ^RK(T>!(pHW*g-!jLMQu$ZAB=7&Ud*{KfxI#}?C8m6$ zc+d1pJoRI-B+u7tjnJk$c<(9F{D{uq-^QsV6+ayHU-D>@A`dIHwm~Cq$#_1}oVbA@ zV2}!C0`d-{@c`FGwKQ!9=VhA$-lDc!83%4Q5LBTEE(#}Xf$Jev8^N-x=_Hp!ST@mq z^0^byf*mk8?QieyVft~vFmhvTsSnB^)aVPUEA)2pP=lEI4Y(6VRS$vkl(;z+9EgHM zy2s0fYHI`SNg%z+*JTy^1IY`l9eKxz+F32r-`fnqcS=QfNFbLfkT~;4)pL6^df73huE*D=LW7K8z%{wy1zD;Rw z`QvuDGqzq=;!46t)u{gNd2|^M?r!b9`3OZ^mFxNZpOZT2#hf3WfRqyTKT- z-)qh6k2Ar)>R|r#jR!*^d;jKptVAYZpJyMB3f{kDYG~gvej8f}t}=S4{9RrB`@SJ~ zpJqGE-ozuP<7FnWy2Tc&1D2RkgCBS(yPL@@mzV6%Y%C-+dMo#1%-9Z@O*+w>HY(qm z5_(+**cc+|4St4BAk1QzNHUt4NH&8ZLbcPgKhGcgJE>T~D?!937}7#Q$+jqSFWfMy zR>e1=%hJFEwVQ;tSzXCRdaoSR6X zp;6a|?}4NV-eD&`XaDd$5T1Lts3-uw=X+qiKejLth}D|FKYY&zUU>D!Tj{7bop+^9 zz`J)<-ABBAbPFnUr_={ocWtboNvDk$Zq`X3!s3FBnBDtW9Fv?Lqj#O?Z*4ZV(`~?x zA2t!}pZ6}l0)Y%0!Gac#qcF_A_=tde{awwZzj%oxg1ho?w_3Nz$lKRm>10C4e;RH} zJWj##sZbGcxN6Wi{ox3mxRR|CJ976%hXRY$1 zPZSuxR@$J|V6-+OFEAd7rT}@WYv6Ct25VI7e+@{=nE50bt+sFS9}TI#_#VT)4)Uc7 zGDUyIjCNR(p_HJt^BYkt&_PL*{D-o9sM=J5K1DRDmrA>J@wIqA{Xsm{zflNk$mgcI z$PvPX;H0xqWb{lj-IoBoXSjRdD#Tm&bk5>z);-CLTG)aozNY0WurYTZITBec6yQ>G zeq~o=6i6yf1s*zOX<~o{)2IBcg#wIP9s=Qqh>Je%ZhK)_g~C-@mxZlqH2#Pnmh2hW z7K;>rRUx^Iutyg*=f#ewEqABNiy&-6%Or=anVua5o7ipJ;m6}sAKMk8r$*yUDzOx! zL&T(Df7Go=utFr|_@sZDv~>`St3N(?KaMA6y{d~q0U zPM9MoPFs|_wdZ~gv&+rG#UrQ?Ln)E%XRsS759%+oxh9ocWnW}&VafN;gX_F&@{=Bp z9r{PTi6Jw{8e(?}?p%Ir^#os*Faw-?dZkm*d5uYlD*!IFAhwJ`wCdteI9R++&kZt~ zST*X`3{`rm2@ETA1-xCyrZY}pSSPGMWDo$rNBL(_1$@XC;A4u0RSZOgOK$xI_)vTS zKE*q^ zUt&>$77qHJ{M4TFbB0Kwc)aUz)(9T#@{WjFW#+Iuz#FO(Q2oZZ8aq->1yH z7c4l37h=`k)+${qIoM;NG)~W83QDwKvQNAYiyKM`dxo@$Oh%<>y z1kCx3V^de8Tj?7H6Uu3>>bs)b?3T|SYTOeBZImGvgUn4fb&L+&N2oY|yJfM1Y+g^D z=O#U^eY8oB(#zx9ca;$a9Yr|G1Q61N01E?`PS)0ml6Vf8T~vgsQk4`9bbZF|wl>m$ zwN$dhZxD5CI~Vb?+C7{meQe^ZB{ruuZ>TWPH&G}+FSS*_KcE$#8`cNVAFt@#)TH?D z!-<~v9Elnz<%|^7%~}#b}yyRmDW-}e4bB7@_T1`m_6w2 zezJ3q$0$9|_cortzB;hhOXUB+32CpP4}H=~>-@*1Mx6x7`t9waKM9k~`sRLvn41#) zm+H|$0al!cO+URFC$E#L4*AKOH%RUGIk;I92aM5ct?bL!MQz?#PkkET@$VaV22*6}46X04ZhTlz1v!MnU0iNe+j}ZgA-{g`ZrGY~Bd#`96J=*h6KaY2Z(_&5Do3q@ z*`)`n1|Sdq+M4rkJ$Mb`E_Sy~B0#IL`Zg@Z&B&k&zufX&U29hs$i+m{B1DfcZ#qv~cqzmX35xL&}?datI%qo^>~prDZ%r!SLGV z8C%9W{SCu@k#PJOI}l_Dg42C=%XOV|SIOov8|%@MeKsQj?zM-HVQ?T+p}i!#uFHrO z!rtCJryv)IT2Gf~{XmE7#Ea6~66ySmb-T5#E# zDDs3Fi7hP$NUG|E5nDFbeqh(g;4LPwE1oCSnNqMc>b)jr%l7rGM9;uT`3M1g)j!=p5 z;sO^FeUp!=E11Lx7g1V^oH;nCGG z_icaVdEHJ>F4XQ=BC#}4KT%7^*OWgW!s&RFBiW%W6!d%Jtm4VyF46Qb&0~Uqq^co} zFU7N$>`5%u?m!UJBBdzHCc{2^N45Dexgc&HEm=*eq#l>u_r2qy^9{S+B1x6xQ+f2b zl~5EX=L8Cn9eV;{f}>=$l$r6lY|9hzUQ~wkXlD=LMhT0^E@VzHKmwLR7Hgz;KT1ro zm6cwXfw@-WQOCQEyZ_hYz)j)2Z-hX561Qs%pfpI!(&tP1iPHc9kSTobIkW zXBB;}J7)|r@#Gti@}dJSZ?RC=aAuC=C8DsD_P#df1E}}wv&h{{scPV4+|=L?1VT#w=uVdpi`4~ zc*u0=OHPhjh7xOY4Yd43rgAa2&-s>;NYU*q1T%WcY|2dB`RghBj|76}pN&~WS&FBs z6~$sgCcs@KYG%hbh2lIN|L|z2i> z&2MoqO7sqfyldRDz2~P>Eaocdkmqqzt^|IH=FN3PVHh|-ZjTc51+5MM_>{qkQ4BA@$?F({!O_Oe zYv9vMHMe<(vfe%CXC|iQ4`bCSV8>wy(*}$f`D1-A6{~o~i1+|PN=h)_7I7AYBUj1* z98?|=fr)FjiEar+-=drbMiYLuO2x(#I|Eb%g#T6%K<1<83FC_OKqzzaDD_}uC;bKn z4##nGUv)JOVzSo-;(PoRfy)7Wk2&%E zzxW>d>HqRQNdUfw#!}pB+m+$fV;(O{Gfx!O7_psGsrQG^mn7R*A zR|h+9S`M?^!~_|#+=CEthvLzp6j zPz3(N_h8rjm+yH2@IAab5hMV2(cCkc9+rx?GK4OEhV6w1{24; z{I7D_HcYb=F0mzA8^kn6n?tISGDC32dfO*bb7&NY>!Vij8PB4XYd3GX?V8TMFdvCC zeEneB>10ILO5JZH!D=;8LNdh8 zRABLI0b~$ZdDzXgj7Yn(Xt}4gjGbBV!9TNwH9)=BP z;S29c;Y|RkKu5%)oFud5s|JF`1IM4dAImuQBGSz}Ut1Ir=_~2FbLY$_gI)!mbc=+q zJ%mW3vfFyCI5bNK5v)%d1eEwOPkQ&VxBS7BK4F_f)EOjLFqH<7z~4NDF4_kF2Xr zqA+BEiWfPgt^8>bwE1c(aRO~^nGgf;*oD@)=$ih4<4taqr~FY58J2`(Jd=N1@1PtC=s2k%;w+77(=Fh zJpvl9dR2vGvBo~UawP`v{Io3k=I@pjl%=u@g(RCbVOb z6`x%*R3K>erWRS08P@A&Q5Et>8qD6yWbIXxcqZRk`Enm{*{C%E8dUdbE@NxaRiTBV zYOGST2n5D)1;a`#=kEL3pAx+R!Vj_GD%3*K{2q*BT67^W%YtK#I>1tANEhhS(CiUC z_#c8@E=)9(-bb{f>_F={61!&VaX_P+AnA`i(K1eUsZF84G*Uu~;x?3W!HcHo`}%N5 zU{tcECAF_OwpXE4-`b&W7-8844q$^!!Z3e~DS(|j*8a2W$*7w}0LmD&lG}rkkM|gO zZySv&>Paeu)Pke;k=#eBbDTA2&1`p|iuw&-WwRCQ8a1Rd9Wte`y6ds;7GB4S<4jPM zv&UeuS!z-AeP|c>eHnDGNSy~T>lvU(o zrhTh z=HXD7S?^Q>I5G&oyOQLV4#zz$2T&n-gw9FmGo^eTq{vGe6|w%j@l<@PPFkF;4U`^j;j?pu(K0 z4x_bNe3BCvPT#g3OA3#)P2CZ)Vl7Mw-zzh%>J>j1Y-TUUwdK*qH zXIM%s-}E*-z0yR{f(PY6Dcm6LwEeeDZ*-+N&(=L}V-RcYS6cx#E^yfqRwB;(d+ zyl1E_o$BLtyUSP`?=Iuam4n(nr>>B7r6pWaRqs9=kF1D3AO7Bre|c^3eh|uYS8k$% zH%(SymeItcVB2{+F~@d`#Q8lNnA%5rK6nreY%Z6Inz5N)3Vqis$_exKTp6q8xaDW2 zzLM0L62C%NPB%9%ztJPHc!nws*!=^X7)6|qt3@>%*Yf( zWnd-l?ErV2O&mRlymV3dpx5=~aDM%xt&G)^MXsdQ^lTR$6%`K{lKxBiOlnrrz|!yh z>kZf9g^fisquGNt{#;M3!7GUw1rQ6bB@`Z|#8_7rYYt9lO4u}Jc>NP3K4PUVK9}Fa zb9mgyT$|}WoP-`B7H76?$EuIF1oL5D72;enoeI|4!dkU65ese9)@CwU4L>KZs zCV#(wpcG%j?G&~@W%wh@%Q0CfSy(&`GUbW(ZbfX=b}goTT6JYx>Ew)kuEdBEr>^Ex z@rX-#(&Zweq%^p7T{NrRxgl8Z+LMM=N~AZifT+$`B`tX~R-+;MOUkFcQ1Q*HXBOzH z!!(`e+KVDDso9DZf_9}yE{UpQE%oiHJY^hLTBR7_sZpW!VQ^730VL-mnLK(#5m8jU;G znJ9h4OYi%O9FgMFe6uMBd|KZQOHl0;`FUZp>+2*R%c~VmhS^qa!vbb7o=WN-AA7V< ziX@m-`gImL<8tt@K~6og_W9(ETjJC@dk>rQ3{Xw#J@;o%nt3tNYy|hFMy4#`wHv1F zET*1j*V z2%ia>NrFT`?tHFyOhrX~rG1-q77YndtlNqy(Cw53Wo2hO9 z_#R{0Q2^hAUGO|?(mTz#7)*In3(ApA&N?R}gk21E$eg4W0PBghr8oBD)kM+Ka_87( za|g9g!o`iLShj6Q`utIG=!f4lW1_)EgUm4z_*2nQm7Cqt4UzuA4k@u3ZOet%%gD;e zGFgqgG_Gc8TS-4Vb%igzZ|^pI(*Djj>3=Fv+|Ho0jsCU4RJG8D!C z;CopAwVR`T=DN?*@>f9pCLk}P;&njY2N>>H!F%FY#_}cDR5~>y3y0@m8t3O5<+#v7 z_NE+ zKiLvJp$bWfqcT1)J;coX-i1so>5L$4;-eWGq#Xiz ziNymCkU~EE9%rxL&s_3`POe5=z|ND8VJ&(Xqt`9oSnXXaQ)a~oNKqXE5$nRzKiYk( z7Tf>_De2K9GGJL*y$Id!-qDzAD1HQqvoIJ8`=!Y?R0ZEa8?{JJX+k&ll~@zF%I4kc zRFDlP_I0)+nY1l>t?FumQ z*#LGj6baOTz=DjtkAtPmd}-BV3<*e4CT$W88q(!HjPlpyRir7yJO-!1UP#G0?af6- zKtDrb)s}a4@I+bRbgNJMJbY2F@TGv4qj0e(jgpvaG{B(o-bkGE7fRY45~h`&E^Ua3 zjZ_U@JANo3t*=5D@eBb7pLlW@-fulL+?mCFUp_Zfi29J{-u`TTZkV}GOdCig1POkN zG<49HW^Ko2TzQ=GC-O%PdgC5ozc(N%LrbroM}|{W>|i~pwVGhoZ()`h-v19>?-X4L z*ltCDzp)i z6jrs^{A2}ZZ@oXTx2bw6)Zd9uQ0Jq0A0SAToOCKKP4uQopyTD98e$h^dI3T`*}Gsg`GQqat%KH~-ab?}LkaUR$2iJuo}47sFeQ-6b0Uw!o7 zAhj}Ns0j#CGv5F~3fG|Fr{#V;Wf|JtRtX+bV#3l`)#!je>!~|^g`t4Q-yk&$2vYn| zoiOzO9i#?pFTBnHK`N6l^>2{E*}3Mk>HNF!xmAeG`98mY{*3XiV<5!KIan8BdskFC zt(!AYju3z8Xka?d7`X?BP;2o)7q}H!UPV4n#v^olQs0&6uz${F4xBpv#={7bq;8CBB0D=6^ zAMlUZh~XZSz4IAF)E9fD@=)&&s=%a<10HA1YN|CYmA2F+vG9lTpaEO$HwA~?7pCZ& zqj$*WEZ9#1rkk$)KXtxF{_bEoPEfN+RQcDNhI*t=?(c6BnUUP2EyuSj$;jaLg4r9 z15SqX!ezE7a=7h8-!orUq7pFd!|isn%vuQH5kSPs!YbiLl2UN{Y*BK|l=xyPnY~vC zN0_D*gZ^HR#)DbNn6hi}#&K7z24VtP&rrah2Qizs@jgk1TTox1?dz1OomXavmMM6M zWiZWf<2mL$vkIY2bZOuZgEHe1zXqMycUlK?ODn$fPWj#^tA9^a*@T(DarmvXN7e^A zjsYw(oqU>v2f4Jzm*giA5*daFkrVoqb>%J949cDrD>zH7>o#Pd zae^st(=dbe)G*OmIjqdj(BbjUUkN+jo#1Q|W0H8uS0U@g3v`WG4093<5^<%00E!`N zt}DCjr8E={LR#&F1BX$-ewL(vT$|1d$Z$vZmtDO8QH}$>1-Qi(EL-R1E@0kswsSw* z(gm3Ja1Rp(Ze;WXNfJ8HzkP2vgNz8S@~Cz4alY5sd@w3o*M-^)Vnmx^(FwoU-K#7G zEuZkxeb6(0OUW*7?{S&!d1Q5H__VW<_rX0YSahnhl#*_t`Eyy*cEh6p$XGab61de( zNC@;Lv8U*C5JA4rjZ-6uKLqTn-`%`yrdIg7wCqayLadrTgQufENNGM#19&K+?t`^q zz~WWz2Tnzo$t(g@Nsy+Rpzd6QGDU9 zvWfToQmvyYuB)gY^l9u@&{gBl%taUYmMY^jJj9PAYN#E`Ens7(;_0TUK~LL4--vu> zF%MhXJfSKGw4fL^EdygY#vkg0ZEu276knrc{%;0u+*Eg59Z->33xz6K3{|@N<4(t| zZdMZQIiW!sO85%1&5c^MYJ=1PES$s!D6!M*HV4AYG1zQ7FLf0BUIlnA~kzX#S>X-cmNSAi|aoTtCA#! zuS~kX6;4OeHDm5rk8gZ|DvRYZXv+fT2!t(Uk_3HR*G+CbYANAqd45aza}>N293z#| zAam}wc7Wxmp6%=sR+a8~F|?^taef0yQ#z;f=9MzV2}iWEpGZI{0gfg4*UxNdA}#Et z?$q0@dB7>9Xe}I~b`p6N9DfZ0%FYHH_2vi28`7tubvG z+~v&Ht+{nJgI7FoIFQn-ktSt!+l8vS#)meqvmA!c`HPdg1kve_yi(dYX_5825DEsw zC-TiQ8ZOM!cwG0kuivwiM!XTzGG5YzP`T&)OvYNcS1QMh=p#oP^yDcz)3IjPHdQg* zZTM1R1B)XgU+jt-rldiEo2A|kp?U)NTH0d>$JU_@pZEDXRBxlf`)hrv9OHTn%fp~T zyz&QinRO*M8|AiuoV7C;;e&_3{B@uhq&3{v$le^eTR5V1=CP7|na#}!?*Y;(De+k_ zvz(Z`>Vz=ydqQ;zbi~LMadFcsUAj`}_B~n412Rg6gz}OD7ecgsjF+h-daKRHrs8yU z?7_E8gi=?n3`ue<_ALD~I*gJMA9ah+v%6W%$?a}IUX;C}&ZUJviCscUzoTi)qidC_ zl5IPyxj@af((B8Yk*=z8O%X+7$SGe`X=)}vgREY|nmTOKw@rn9iL$s=ri+05i)^>$ zy81B_D6*f@hL*7`0Q2Kx6*9GKj6Ld8UQRG4Vp*iTBR08mS-XVhAlSi~b*i2jkACCB zC%k=cZxBh)64>mV^gcU*YG2keB|)Pr_4x7AaT8`&k*TX%VEc6>X72D{$Y4@B57+&8 zRjp)V=A>C+f4__vHgT;H5^9Hal}Ul-bxtR5)Rv0PIW6uqy-mx7Y8H0_HO2C5BQc$^ zi)562qS>4GeS`(?a!Nu(x*@|jF2R9i#{xWMmb^%91CRAsp>8k|Z=A_uR3s1cxosetBz@xjLo5srVW_w)N@NzwwjhF!}ma3!q&&J7?Uu| zs<6Fk>!vdQ-v^iwCol+fM8f(=4#DU)hWSzrvxVY~ar=VmR6(HRon9uCdA$_ums2RKsXcuca#PfxCS(cq7l9 zrcZwTTIh20KtW0qC4D`Ts&%OuSXtMhjtY_lVw)K##6A-D8Y*(>OYAyKm8@}UF#!Rl z4R&*buPvod4I(6j&eN*HTOLZ?#h9XSY?k@WDKNwZKP9br1$#5OYJX589V^mfcj~)2 z_Za~g`xL#q$~>Q^T>Suyeda#hH|I7vG=c|a4xVSFJ%i%){o1{{i`*jHC^kp%@>4D>}FT8$ZXw^1tzO?dZP$!O!U*$v0}% z`}{(yC)M5}yMB_%)2(mP1TeB?l$y=SS)j=i8^r=R!$k=a2&adgV>$o4n4`bM^h+x- zzzA?eDE#-@r>#xviC}$FJi{`t>{Zd?hh276d$J{s+FL*hzfB#KtvZkuvQZ=iU`zz&tBf2E{u5NVvw zL9?AVFTkT+sk&uZNzvz&NxTb>Ku z=m4t^oPz%~AXs(u)^Ppd{}#|Qkb$(6N@M0-1h^}@z74Wz`vvPmdRZ0|L+qeVBbL)XQ_E!yZC zUABaOg~vM&nEPx9olqze2;_MJ@N*t85oDGBsi(3D?;Zg4RI3);H&X)_2ze~Bj4ROC z-dhVGM0+CGUJ3`a7h$;yVHb;Yh-jushTPmp;FzmHt$cWY7G|`lL|bSylXw^>z~1NL z5waBjdt>_jv>aXubhC_q<|6R<#*Feq{tZu&8qznzf- zZ44V|I4IzhjvD>O)pq*-*!zsb|J(cE_g$?o#sT&|(kNn24W5F=ojICPrKTxJA=u%I z;gqe&Gw#NASxyXf{;vKJ@kqP3_N1FI$1!AgYy^gWW}< zRA-B2MYSg5&N{i&8HSn}1sd_?uH%ows0RqS{$>Ml(FLaYY~60LcQ!~cDc1!|lg|ZC z5as6jQOLj=d(TU3kfa?V^h?^S6RboT1>fF>45#v1p)wu{U7LjupU8SKh4k`6gk znGJ9bAVlp~{lm|RlP@a&AfF5 zek`>j(&C#R7ZH_}MQ+gX<8@X@M?-20?~@eY-% z$#Q|7Aq{mmOr!NeC7io5N71P_LSTl*pdGVG3LqXf8V;GWpcV z*LlN7{az)YL<1C5!j{IL-#c>kUf5;J2Z%eb5Nv@3mrhl zKf!|b{c_D4kb#TLzt-SJ=fcjSfG;vxnB4EZ>*ceX%kdY1+ z$^YlbXk>a4?#f8i5UQTlYdmOqh_Y>k!`t^aKumZ^q!lX@by zxa4P!`BF|mia+Ti6sk?w-rj}yXnyN}(gQ^?xJ8kf+JJdK3_Y)|vh&u@I?7bT?LgFDc}p!#poS-IKfcBchvCI zmcKir{2gwW#1G`wV0U0h!TTJl-Am}W7OQSh*w@sCUP$R9>}{|%ct3DO-u{Hsx~B;Q zBh+F%h%>CYE6a&bt=KCs8?U9Y#MCcav<)Z&3~Q?*0n2h3tUE; zHX9;_xI45`xrzG^xL9NFqxyQSgv-uAoMAFmX5Q4q49%|y4?|g0=E20Ug+9=+J-B)* zMFUi*K(3x{yz*Wpcl`<*A40Tlzc;p?n(FTmWUhDppQAM7hq5qb8{xZo65WL5EsA)c zQGXN}Q%n3E8llEMugJM}QPZiFIE!h3RZ}{s^pI^O zO0+x60`pp3d*}30b@up@v-WqLsH@6AQ5~C$^b*2vtZ3{#0?Kjrv<2qJbdGv1Hdt@sm)dVauVWA@MfG2gcKMvRr-iE~e42HN8m59=kE2L1b28}{knk0=T zvrGHBaW77V>)wLp#MJWbi@?P?s4$<{o7um0MYo?^V#H7ligbhkjo)YDDvG5aC-~G> zK(6aS&Ts1AvIJ_F{Az3D8BN)j)ih%KeI(2}e!D+(E-vFkwin9qv$A37xg6^>Jp^c^ z;DuGGDWLm4vy71${h7DfTg8*HD3KX)P;<^N7oP3@_$n=oz+uYrB-uHSG2_fh(;^;wg?xp4_OwRt~=+d1*{L5M$D zR*iR}+1!-3_cE*4&AS?KuJxmuJ<^A_^`|7#0JQp~!fmDOHci!tp|Sj9Y43w`~*ZWg&%eDgxw%PWeUIi7nF3&#mzQ`*zSFr9fcNOgUUVwDbZ66P2rbjIc`B|f*QX26mvk}7 z)5{`{Gbds=iBiZw9;n@vSI=D&D1UwDk$f3}rP!<9Ah^U(%N?hPM57N~-ZI#| zNs1(9f|lZ~HJ^7{dU_+Ff(q{ojXBG#cZM-7Yp5j7l5ErBx7mXvQ$QPNX`E-`){uzS zF-da8Hp?3v&m;bA+|6p?kbyd55S^%>JW0o!xtrsRodtV=Q8U zdJs+-e1&mmI+~FymG?KMW`B9W*2Zc;-JI7xqQqld(Kq5@-1ED?u%`-Vfv{uX&Qg;m z$IBd|m)4{7?4}CVRQU2i1KsZxx!D9a2{VXVu-i;O?-o_TS4e4G^&SR>b>!TaJ1+GkU`cb2T#81uf|5rXnrv4r?pLVm+i52X+j zYw3X)Aj0OzI^vpuVwA9fF7EoVPr(`3Uk~`&_aKIZGVq^ zUS;)l==uwIsOa`tdgo&g%^|^~~SYP=8yfM?hFIH`4P!CHLM_GFf^osj-C$3?GBx%A_E?H~cfgh7pje;eouPF8*)xhWupC1F3)QV}AdD`IGY_*Ui7#k= zfWs@r;jMzNysMc+MD6z~WCcrZ8+xZfAr-o}9S(Z9N)sU7>w1jpk^pe;58uj=b(}LF8I0)_?DL^dQTK0KwTte#0%^PsB^Aa0cRN? z>*%DFElE@r&cL7{&b(uAZbj!NEPO?goH!>f0I`xrCc2=b8?Ff6qNI(n5p5ailM2xr zuT%`TgT_#a$DXN?G*UnLQYQK0Ae3K3VF@#^W`ZE!+I0*1LH#KP>m22C=Mw7fqFqDv zz){hF3gQlDKKa>1Xtd`o%>R+Rr;2>kBiTvuJs`1caBysyEOe?&YFUu|3}$j z5H=leDIcP!UlBfT%=GV9<3L}P^JLIuub_P+LnQ>ZJvc3?HqyIU9V2yL@&s(_W}geP3fFbYXZV zZmJN->=vo%b;vYOtjc{waiH+=r2(d+ByWoEUYViYs`&YHN88}get+Z*=HQ%sA5U|My9>!{M~xn$na3hBR(~recdajN^wrqYCy=|9ZpGMVsqV~;*V2HgP-v< z>_}iu=)k@Qf#4vh@R%`k@-Lw_MiRX6%Z?z=rw-y-0xtbH+8D3(la12GFj0n762pod zLmt=Fjr2U)QxfP@qd+<2dI_^}`k?z5pyH*fl8I!B`ZZG)}6s)hz4+83tFrd{WV z6I`bR%kI7YKNGIolh5lBOm~-}xb#V{k=L<+pyKC8GbjLdmwS8!h*FLpI*mGZ&!Y6B z@-wOHBc`{kYvbS@NtYMB@|Nj3l)t1L$X|+cVA}NXit2dlS^>EvhVw7Td*X_d!l*&i zp<{v3-W?LKgz`BH`@s>-xjV-C7FMs}@w0)^{kUVXe|y5MGc6-Az>3##f6GA!%4mfw zkRBqleVj7k9Z{+cTstPOdV8$@2nlw1eMe}OSR?V5yc52X+(MF@+Og^R7gD{Kk zY3#&ivt*Wdo89wn*6*W5msCdD4w#Xydn)9%opQvpdlt?ZwDu z)_%+)d>f4=Oa912CEpW?Z4t6_fFpEb?FfRa5;Y)9ac7fnSXp4ZdzVlw&(Cu|Y0_gU$D@lBtbTEBtx~ikj#uKw$Oj%>#0{C9Wx4@K-tJS(N~imFnM(A@ z6CLmgGiG`u)9$GCxfvSj1^!OdH1?vA zKRY`-m5UaRba`Z;gBXW#_%`awSmtfgIm!78at_de^TkWeJ&*r`^1fuAB-6i$Ff!i~ zdk1yBdLOtC*GtAJGwDb$ZIr{VF``Ny-{RH&rO;6SE0)7iWV^&V^30mTQW^X3;h+l4 zI@6uf&a|Sd&S5WNA_FKx>%L^zz}_1ranfHl9nhYyHMdwWy3xMO4Xfl>P*`R*k&h#> zoK=q*^>(TRmx!m7Sl0M4M)Az+cqeA%$F|CI$goS>yPtrLXWT68P$_cvv697^m*CT4 z>mu}@GTwS4Uut}|A%elR{!BSfPM$u^-&9kNnxB|5ch@o*+c1Gg09{>y3(0hBDhcY8 z8mUH+%C*6Be?O&qIWbV=bJ@(Tqvm9VC}?XHLB0uSZ7Q0_PeX_xfKE;3ZJ@u;S{mL=8Fn#7 z;vW}qA%s`@2%_4*y7WQzM>v`R^vVevjCaDas-)Hvu+i@nN zvu|8sYz_yw7XO4{kM*U8;u9cvDigNO;Im9CxMGYjS<48ix6&NXvfEOWu<|HwHcxO> zfT)v%G(22+ciNroU$q)WD0HztCR>hmUzhiW&3v8b#L9eH{mBlVVm@}6V84O?V1M-- zMd${DZ6gl1_V6u;{qtfKF?k|))v0H*XvT5x(BFb#-*F4yV%12+Wi`9TUi@eMmWj48 zmWudo*q%>^%e^VjB*Jhkv}>H5*_opUe<_%G20s(((`P(A9F@+&fLywEM>2*@%wjdAR0aDd0ri7n)^_@rc6H z=A(-gzJc(eBW7c>W^YpYuDZQ(VjYJr+}W(6J(*;Lj+2-J&@hT#}s2?I)!@ylhz&@{ES9o%9@`-11qVqs`x zib-O~+VdD4VOHnxvPMCa^pWgFA24o7BJHF}?{ba=$+W&b(3DR(j6@7}E{+Is(2j7Y z6V`&T(iAjBdN5Zjs9rdHU*xIDqXk>po2Cf)E_8!r+@;-LeK&64d{*!zi(PCn4G^Wv zPd;HIf{<6L{w#yoDzA9+giLjMEcnY}e-ej9xyYnF9dXIZC~JhusATQ6Zs+MX^+5{zc1xJB zP;OndcSk{=I(>H+0mR^*j!xO#B(~f>cS(==qw9;ONZ{6xd^YueUQx;KsqQ-eKbUm? zbpfccnwT$1;JY3ENeD+_q@QVJ_uagl;(I5aFk} znlvzXA9wD)>0{S^2i@v2Rg`W*H##NV@sAnkSiLSm`_4bAo^moCwcwh17kH60rXTww z&;5Kpj|F_E*J803XD*2B%=2z_+=<}U!H{tQhNN4}ZMJVnpt!zF{t7_rZtzi~f+i?` zQ4dtn{)R(LTIChsWf;r$4&q--tSocPtk|IS!Mhg7jdz%EXJJB|`C_cwAhS6@!Z>pa z+LT9Oc^)7#j}YOXXh;cX@Bj*3p?lK4K$vKc7z*G3uv5&+7vWTn^VJ>{FIdf=+ZO2+ zM|AN-@TpY#;~q=PtCkPJ5CL-HB^Fa!&@39$5x_LKmgek6ri zYk5_Od)0VwWBc>uHBs9cM;Dc1jjV>yg|&4oPFSbQrVApzrwvS7B`%s0b^#T*;y3{L zPvx35g-`mK4Xm`?5jQS;7F71+zCf;O2T-|&zi@27>XE%Z|5dqe0aUKogvh(=Y}W}d zl!5vfUrCmF*r{(suN%N896+6hKO7objalunf^QQxu|_@(v^E{7YXETXq1pvVuA7?v zPLOap3+}&g?@IvO8)pHJ&i60s!B-Z5dQg93&-E8}&* zCwv>^B|>Y%!33ak1sz^x z9_Pwd^9PF!tUmNK&G|Q=nr|oxF$Mh(>OoAg(^aEb8$f#4=)(!Q4AW`q)G6u(kREFB z16PLLw{M8;1VAkQz%~`A%88TwTTszRK=Vovk9XU3s?#LdGjb62nova+v|St8{l=#B zk3Y70+1M)7h6`zAjK}$Ba-AQlw;lKIvMN-!iX=hv%=bBC&@%stF*R#iP@di!Uw~s~ zE^ctvBzUh#v=_f9q&Fb9$Y`96FvB~-_J)iT7$jp&sNW>}lW_l?_zczCq3u37@BMSg z*DXT*JIdaj7Ro27vf4p#OmG??ae>SkgfKTk+#`%Sp6r?K*Rm=V9T>~95!1_P@wAW- z_RQw{MX1Av^|>4Qd!*xuGvR6U*6j8>^9cti0?=^tSZX5IB6jsEpyEU+WvM{c-IfAK};u)h|fM5N6Wjq3+Z^wR#H@O2eh?)nWJmLI{XN>?ns?`3i`rjQ3=+=h9H~^X%Yz_E)Bgo}P??)W2n2zqxOC?0Ce;dd z6ShZFVTHX8InkRTq?=Y@_-6MLMrFp)>I95SPyW+h$pJ)hW{r zip6JWb(;i-NB``W*%$)|X1_NsnBlLyp4w6}XStI`&nwsNZw73MfNR)9{i9g=oz*zjDxLD%3`DJDFRNF!n zx82#PTOokU^=e3|q#!)2fK#}RIyQ;^M`t_DUO06W0HUqB(M@(-MgV|l+uMigxvfl2 zTJ8w`=+vUN7Rqqt{`C7yi0Ww?P5il9aOp7#8|m@z@)@l2Q_odANX1R?Wb zknRMyP0Q|hM;dC9$kJ5Y_i7sAp2SZoX*@|kl8gx3*?TLd6|MQdAlh_h`(uA0+Ji0R z03aPY0HVE-+||RrRAE4K4bD{eS5tJ;u;r1`G6-N5s({e*vVr_;DCqK?e)KUGVwmLO zb#2o*Yw5Sk$9R_yo7dG-Uugw0K3Z9$HVI%~K7AaOo45ijnG^s^rsgyhhbBE8H%*7b z!V@gGU5!c1I-_TD64iJg%cd(UPjXs@zc$yf75ynKjILYL3KsLkaemcZHO``|)0GTV z07N_1J%y<&K6O}a?~|OlM-*vQ*5{n|Cz+Z^VE+^j&5EY-Mz`^BHh*T(yun2>fJo=a zKmC?^K|PgONL=LYX?YEymC`}6Xq!1Igo9vgdHu#>D{}?A7JGtC<8CHYSmP>eS@$1H z5&gJy|73V9X1sn}oZ0@4w8VNgdzJI{dCh~12uSbKL$x#hLFFb6tz6boXoJVKPNyCF zPN#*J<>}RKrak7BsXoZu!aUim9oQk((~$A+BU@~5tOiQ_K%4wc<>d#=11 z@#>0F>dZ-0EqTsKIrijsC*VNI|7bzj#mWXix*TVe2+QQ0gt= zNKRrUeUJNi(Xjupuq^V-4Rpd-UB;+y+j0+TGKH(ZGFZ%k#h5zYC)Hs1XTp+ty}mb% zC)M9vpdmy~rcJN6bbWK6+vVbb!07U#HqtYxqrQ{+<*LyS2fpEG?Jq}L!PLBy=4hUP zZu*FCb~3hsX4_Il9y?osEBs!fvvnT??nvjG%`cKd``Pg(>Kc0~4{ysDTy2^x56`>>m+M`pAB zoh_I8kH%KnF^e|*);6nV1+F;y)fa{sCWEXU30-C-;5B3h_VnfhSQn9?7RC3RX>y3t z^=b5PLHkygrE)Q8K<{fSVp3Kt+Yx=p($^^QkS4!(f-&PbcMnssbc)F*(Ze?R>mXDr zW5Z){rt9?-#0)hg9eyy=N3B9-K5UtSd+i%(dU`sT#29qUwUC%`tetu(v+vz5>f*_t zu?3Hax~B*+CY053`16&pL{^$@XazzLYW4g0sT6Jw+sB~M@xjwT8>+C9A6G1X-xKkO#QP8^CbG5Gus_WEW>D!7M(8+}#o=%Y4ga24GIq}oQZm2i=&V~7MbF}E?2$h4X>;v- z85oj2tbcf04nz6IcUOBjir;h)-FMWkZRj+bth#hAkM2kp>0K8!;^w_4Opc%5G?MHJ zUYcw41i?OZS#zpOIJFHPt?}8&o#_~yNi7IQo}A%xFH`Gg4=}k>B@dbM+twi_OK9K# zj*REf8J_fHzjZwEBqNRbN3IMyn>I%dSl!(_YnCnBEZ^U_qv8^h-ZHh&?gvrvPw(tg zazALjz)zV2_;h1e?TZ#Ol7`auFq6yZIsv8;Q>spS^dvdsWKSV zU7y|0m|S=)Z*TweNQsm<_Td^42ndb&|EPy7Obtx{CRY~be-a`Mb?1Nekm@_3%2xS% zz9UP7R0E&3Y<@i@^|@)JV&NdE+1WCKpmaT-+jHw?SDhAp;tuf5?vCir$K`d=b(0f~ z{08I8hyM>@LM=6eU;yNSU!XFjOX4Umxlqf%N)JmThme}a^X1*%@3p4~U3Vl}+rTZ} zC2I8LW2ew^K`egIfmUCJ|Fs%9Ov<7pCwfLg7!Xrnsrpw$9neJ1)zHF1lSvJzgkYWM zJX`y*58r1dG-!HFpjL$7B%+ineENI4v4cf5f<57b0TQAMq!B$4N&GmYe`ch|&QPqTYc~7{L(~Adev_{CiN6*i zT7ZQp@K9rrTA4x0-g*Cdv^t$WRQyO=NJ|Djf(~(%2@Yi>=4!U@4<*itiyhJHGFbfk zmaPu5;k8Q>LkN4F;sEN7_e#&%)HBXhPi%PJ^$dA%>$C?VEW>iA;~priuhxr5z9+fP zMONQ2gnti6F5G$6*j{L#4inP;SO;;SEouyYTh?F||VtOxxoL}i5tpZndx zdzvPv78n5Z-~#ziXXYrlx&uV6rVqsmcLUo4{AVi4{50*_bvP4L`>gl-9< z7mF%T+_4=L;om78OxXkAlup;df@N_Uk#eoiB0K(ybhf@}LdFnLVy4oc<3w7g2gC9Z z*tfk6;u|+%#v+QK08uSN1S_Zwq>C3l8UUTWrpD4rMkh01X0qW=mWqoM+mCRt7POIS zO(4eumCOluX}<42$jQ*OCn!Tl45x%tVV%DdEVxCt$Zc+C1AGaDzWA#ZLVPB=9gtNF zH<&j`bpyNj7wEpWaJIF-i|?SFzx_0)GF0+oD%FU~%wzYAhueR0YhGD&qHpt;0;)n-FSDkgq7u zwqC80AF0uOgo!0KDP?ui{=5N>=^UZ%{<>Vvn6a1|E(fLk3b?UkkZ6%EozE^C0z84+ zeIYF%2P88;aE{uufoY*itHBYk;HK*FiNruJKnpC;$ZCGo*{m}wm0_PQYKM@+s3;0N zme^v}VaWB_7Q8Zxh(u^J@}jaLIp)6hqU24U8LkEvnx!#Knles1#^}L?3ZBokhnXia zeK&F95&J;|yh=oVt??irc7d9Jq~YVDuATEnzba)t|PhA=!x6h99zjv za(%nwU8~|MFa%{Fslc#MT-K%$$GGN=;$gakW(HRumH_gfPkAXm;!03pl^;k>L>()3 zRbLbv=MuIpqp%|$Uz;ALs2O4}t(e@xIFW0$Z=$ogK(0N!7Qs!tK~C zz`r@Y{GDfSm?`bvT9F;Y2yb8re`B=BFC_s&En*~JTOb3tR**pF%s)}fF2j?8HJ-^c z#C>y?c-fUpOfErS#ioo~;HOCC6xYK37%RD_Aa%>Kp*weJ{i@N7Q2x_`#Wh=?MNc*~ z&p#GB1>#cJ;-=Y?fP8_P0^ZJ}boDgbL*A;3De_W_mTGpgy&ZxiEG~6X$OK$RDZ7y8 z8P8B&N)U365ymhGdji|r#7m75ol0C z6XqH6EmgYUo_po@A0RxKvSsGly9nBC<&Us2*gu{aW&~O*&%3U_kuX9(gWw6?XG`r~ z0>`y9u7zMf9#T4}Nb2rK5w%4LzY8+UAk`5JpDax%TytxUwDngpy1tp|I?GQQA6v+ z3gcaiT}|mVh0klnA&gmy^kn+gNGq}5rIR4DIu>^TmpU8Lo*s%BY!(kRf;bRwN@ybuzr#RKN8)J9FYx>K@Z!45M z8RHj!Z`&3Cw{6lXQKF=1*1hR1(E}^1dwL2^eA{We-cAexbU>?rl7P5Yio?o>av zq{QoV72%l;U;I^2h}MmLu!5u?UiI*bdIN-S*1=EQi1&*B-~pnRWIiQQ`+3 zWcVh@w5vxGbxst;A1GuBfBaq3SaKUhMB!TD&XMuKO0Y|SCyTtx*>RU#ehK3~D}PN} zlScZv)n#2mWvamU+m()AzU_=|$T}1MDdh)g_+xVH#AUam)fwk%4k^#^1$2n4*X_&1+0~bdo!OPA zI_TcZlTs7u|)(EWS5B35uS_K0kV`AZ?~wovzA!Up^6r& z1ht8+wQq#Tgl%KzZms;Z{WLcGd>VU>d3Zz`Dn8-W=!B|^gt)xr4AaydOr6m;<~!k+ zgiPz+J{{J&ao=k~Qluq{Zx4toZP$nl#y+a2r5V@M^#%6jCds2L5B-z(Axe>j*~ay8 zUdp_MN3&P8#~f@shMlq=Ygx$W1q;)~MRBywnhGQ>bURu5z1+;r!t5+}YSBg^J>xZGkd+f~0Df}tZR=p8uD~md24;#vmtVYK_V9s*@4DCx!6@9+j21Tlx zB*$MWAwqSW_HnDhN3)5=$qq z&Yp#zB>5N+9E-EB(e{IYg^v9$S&ldzV|L`f&dS{h`7KSdFshC>kM$(HjJ9Oh&)1yr zvTH&j3f@vcPZT_nKj{^h+0y4}f5#W_Ff?UWD;j$d+teavFZlcjoKZW z^wjPY7S=58AZ5IQUM(w8$au`NWD;kY3e)9L>2#}3FIn0!zBFn~qs0Re8yoRMpF2`! zXxxnJdsj;1;cdJkwOKy`df$?@U;!QjcDKM8Q+IJR!_&>Tor>GpE>0`TtY(yN$BUXm zaB=y@fkoH`&Uk^0- zUaUJ~CzOiNq3;mH`>EpSqEc;FCJ8B48 zv3G(byV`*yNeKtT??Xe}U@QI-m%4;nN*H<7WP`)$Dar>v|3(BUZch(m?1TmfdMcs^{1V4bcAKal)EuM|PG& zSF@*;g73H^LabA}gCsn)KPT~L_63u66Vz+>L1w&dnzoZt z9mSTeIe<$B-OgTd8smqR1$FjY*KG7a2p~A_Z^`*-PG1hjbz&=KoKj+xh{XIi92kYV zKI%3OY=40{9Ugah!6D@iQpHmtmjUOA_FX%F-prw|8jun!r_6FjgH+XzEpnEKi@kySNZql39BwYT3(3no(E|kYTL^{Te5vVq267xwB;1H|N6L z@E#Y-_!xSLd-m?W5PZC!&MqYHce%--BXSt#?~feP#DpkmQqEC=5~;L;a2RB@VUrxAL4CFvd@;W;*$YSFX*I^80bx9$ugyHM_vvxBiy>sE@k?z63c zU)fKEvEz2Sf*e!sqtiK(Pi_q2BZ-XeFev$<@5bfY9q%b?L4R7}n0JM>Rf4*`7V?{V zrOJHZWg-(s^@=GVw%%Gy)8=D#rC~{h9VcYARG9tPR#xGXaak&vM(BgnhEu5m_`Tbl zlP6ZuCsvwCX}!ZmP|xhlCG_o`bKPJx6eH}^bji(3M3YDJZK_u02@GW3#arlE&*EDk z+szFDJ*zbKMe<@Ap26xI6?M9To3_w~)|U?_H00_Qe;)hz9D(!->l8uv*|{e?C17L& zBPpFbK%>B3dPFX-_I_Diokj}@)gwzDLP{5at!C8DjdM)J{=8V%al{d*f`Frde7t0n zj{e2{%jgPi2>B;g2YJM`!jjnafpP}R?clHc%ywz7Aq#bScb>4p5LguBH((GN!8~Wozx~QcLY@51DVeWNM@14VC881^diUD6k4l!b*#bBDb-8h2NX7LlUy}GAw;X6gMJ7Mi>)zn?6V6U{pK=~qA6BO$)yPl(oD4^aN)EU zUmX=~Y zf1U?4HRB5YW7QH#qM4MjW7GDJ_pXpY8tqQtV^FUQ0AmDhAnozBkyKLEU937g>t?|z zo42ZsyPP(^=Ym|$`7`ySCP7Q_0^lf?{_(8>orcl>6ykm4%xTuwLWPED0Yv#;(11^E z8i0X(KKA?CpRTkVC=FDDbYy{z87T)fTp{*)0!$9g0*8!df z{{N2R;s5O@2Dg}j_*o;g5c3pVBQ`?nBiNe z9mRBUO!fdrafYbSef!sLH$lS|?Xtf9GkVH%x9zMOh~eQ()UK`V1HoqUxTyhYH+rwI zwWx`wWE@dAK1Zhn_WOfvb0dN%KPHyo7{VetlCvo`)FbM&_LFIz+MVF&t zI9XXj$1^U^Q4~V|rqzXQ^>ayNYLtmr>fW_n>mLU4x4vKanyA>XGJduHkFI+RuEXEE z1s>bB8r!yQ+qP}nW|PLY?Iumq*lujIcenp@&VBBk^Ss-$U+>Y2SoZ`c|m66cD z97xKfKMo`;uKolXz=7NXIFKXs7VpE-2sy-&dbz(lJ>1uk1z#8z9@RUrrZZREZ3kxD zg3KgQtRA^;mgoQ~PVH6@6=O5e^){Fu`oA4Wc_-E(XxkR!T&D;MsmFgD$Ta6ljlT}$ zSI<)gXTU3F{M?cFDoYSk95p9D3-2I2D`5wTyEgs-x-4}W_I`875?Ae9{4CnJzP8Kn zSZ2}mSO>EO$VSJcH<+W3M{|KrK+6tW>`ofx!?2om2vr>=+RaImJrT^sRh)(~1BhLx z!43~YnmVj|h6;07OvdKd|8yX~Lr0eVaUkRW<3NH#YIDaLaXqjfPRe!&*bnH=I5GBL z`7C&{_)=dK;PV#<|HD8^W&DSMJotx!jQbA*iS=&=Qt#gkq|RRklI{m_vQXP2$9C`K zy-TZ02$uMB`5ueXF@hb&*GPLYs@w5N)pJU8UO>sNtmzs($^@1Nruh@1XxAd!X6G|N z4vU6SfPQSVC4||Kb2*ZDMkofIU zhZj2;rT;SN1RvNMj?Af@2HMZ`6#LzKTa1jeReEh02%WU>gro&iHhBO4cObI>4kXN0 z0j4E*!VFk6vH)D83h=}FKO4l~OH0T4WeOi6>cl7|_;%jcOhb{jppZi4@+$)NG)2Gb zqH@bc{}NzxT&9YCBOmeo>iBdU=-iyfL5P)3kp;2({Kakmj7_h}(%Z5Ci`THvo08Ki z{l|mo$TsS@uKEPj%P5ffF`c*S_3ct50uk7!+cEhI=q=P!@VmiX{-2T^Vw-YrRMm4v z)9f;|Yg}FMMtEN!fG8QcSL8NFjS97EZ*%eOxz^O9ZlIN7QCf@PL;mn?!szL1cQH=j zMimpD0WYnaaH@o?jQCuys?E4yH*vw@RJ@v5Tusi90EC#A9Xg&P1PNlNE^FRo;tQgD z64nvMxmH0o<6U(RLUwCYnquNp2v(psiH}ab;Q#}~P$Mnrcjw{AFu@b6OMhJI zCne^vB6*-LkbJioK!FtTu^R!roeEd|!XnVNrEd$XPow>zBW3KCF>mqk4EH*vuQ@Z$ zLVX;O!NgX_S^TQb^7%m}{Y%f)5axHC98$A3KdNm4M(qJw>p(S82?&P?Vzi#{JX zeDA=Ou>n3bM$c_oI%_ROnO$d~&1Yg~L=PkR4{$?)EzQwu(R^#0tUFxE4`w0LFE=d> z!`w_)C}`~J0pW3M!}sv>PxqIU_z-?|KnqR(d z=OsoQ>20+FKbH<3W!I7UDiyvdA)UzNWdZ_p_0Sdv$`maJj*G?n&w_B|d z@MkNJYc70xNk9weJ%_s7UYi))l@;^09%v4EDa(`G)tK-K!IziuFW!6kt>8p*4x3^n zb7L2jMZ7RSOv6d3qdB^%<=)t;eFF`PC0R&}yCm zr3g?UTO=3P{q2@!DQlEceugqayOhj-(B-tNY@Q%VU@gR{SV(CiqvBXCy=Ldb3c51C z&JVpG&!8#UPMiAj1CadnKDd)ZEs8}~AM>-XY0wt<%+z2`zbXn-#VxQ!yp{ zj|KehW1~3cwhbUQWzYPd5un?p8dut%i0L zABS8SA?1)4{?M7U>zABQBjPPd2~EyV^Cd z1d?{7%G2tuYHJ?x$mU;8abj1Rx)I;H z{iY=NQwf(It6{!V`c^MG8S+&0$kssRZqBScA%xd}c?cP%LhzR=A>~(pPPXSC#^^|} zF5Z&t2f@1RYdr0gK!9r^(dO)=wnlS4G}mK|X~lJ<@UYy@Y!1WsQ5d|%)qX8#0D7DI ztmgK(hK^vtA~SUtRKV|6h>gwav3uPXwMt|pCZCAz)I{mT?x+8x8v{=n!7?glYYB1I z6}Z7>1i0Z-B3Us2xUB2`!pp)I(*!~@m1!i06pqHkhF^gTcgLG6$!4~W!N!mve__@7 z6PrbQ(v1;H{q4?k^>{=bSaJl{`kNCbb%_u^_MCYgLjg}IyGm4g9avF;i{i?dEQ4Ly zxmJv*y5>Fj3L-tEh&%u*x)_Y3=+`G{2Ubs3n4(2 z4>K`kzR}t~{5s5RoPXFWXMN!Z737s&yK$(w6wIi>5Y!-M)I)f3Ly-ppTcy{+oZ$M*{%* z`1kY2?+vm|RA6n9q>=xDJ_71?H{{D*aVX90BLmC43LZS|Pp=MH2G>SI$9Dn$70#~# z0eWKo-_S>vzwfC4IDd~j-M=961rZFNiD845!4TJlr)p^Q9E*|X<>xLsT&tO_*Zy(> zDQK2jR$5A$TNy=ZaXF<9e=>ib+z}qt@6UvdC+Z6P5qce}?p z2=f*c5x#m?M6gGbmiqluf!@!ffOkF{F2>5jRe%O8eAnO|$Y`siYD-{ikkI#Biyef; zc^w1o3&R<2v!)6`5@T!?PF}+ZQi?xjSVem1W7nqr}s?r0fC_ z??d@d8%W3^{6cw1(O!f(i{>(4K5nvIP!I&SW1QNfK@g*#@9^RtA@dZR!cCV@{+q8> zU_rM*Wi@5tPcW<~H?+f+e^Fdr)=>Ft^t*4M6@R z5(5lBn_Yy*T5ET(R6e3%Dv{=JY7`Uhft|&B>1V5F4XZ+H;4l0{HKv3dlDzbvVYO}UI02D z6>2i+-{>PxxecP5!CyLmiUcSZbN>&Wzot|u(gpvQ&TmBoppVRLGf}v! zzJou01uZnrLl@iCn`O)T2YsaR5I4=_jsRmyB86j^W%WQGbH`f`&2ui72py4+jupxu zZQ9W)i9mJTqU@tJ{P7hAVb%@U%e3(A5BiAnSI?iyE#YIm+R5I8f*<(&*7nFiX<|D0 ztS;e40-tgq(ftI7e!4|rD#E}VrIEgl7;24DRFk5e@73E9L1S2^s2kFQ+Ojv=;-QeG z32%+1q8k7Fsndb_@*Icp@x#pR9P)|__yN$hGhS&5G8l*(vkv7AaV#v`$4VD*5UHI? zJ=@2aio=rteeaEk$h!OV8Mf=fZ$|n#MOZI;C1Yx$!2TngQvO5 z9Q&0s1e7*AAg1ui5Zf)ukm+>MWM1qsgGA$L5?LI(IsnkY!$F9;QEM<^aTe*`1fY*s zGYkOqQR}G4Ynod?ANz`w8UBP;G^#&d`Cu%~z<3XzE9lPQ|EiD7uYEL6L{O;DeI=^+ z3C}WMR80pwHeC6O{Kra%TiO`JKdX$c9IQ?Z2EuTM83!kx0P3Su4+7J*-_9TP5!V9D z^7ol4SYKoJwZ`kSg;*Qt89;r6``&!dY?D0YJzZ9AR(Jr1JjX-e&BzauE(@vTsu&*y52`%iWvfuqqURsNsV|Lnr7D6{)t*V;Kz56f(&2GJiB`EpBND3M8I^I z6?u%%@(F5@8cae+g{P1#el;QWOZt({88O$Njn`zny-1Ye??l$n4{Z*ARsD6Ha&};S zkP87nK4IVkU`*l~2%X=9Vb|gzM7GcmqnHHq%*(+M7(;WW!$G+@+Oi+8Ap#7D<*5yK zOCouw$KrY4e#>tDAsyX+Pkwl#*k3X!w7@_p?A66gzNj~1eo}j8q zzIwcoe8R_ysAyZzrs*xFtMKvIWG!jVCF%s%I~iwSL*#d!+xGYTR#Y22yh0}3sg|_D z^2Uviy1v7o1tfl~EEa%wT~DEuM}j`wIoMA4SH73#DT)0u{U3Bb5%=SAs{}on4&*z+ z(9=Z7EGzaW6(8RGG(0%&i; z2s>acJSu812FzPgONO)HTy2J{@`|!!l*<(bi33#}u!D~4&3f#|9(-LUf7C$pwsz>A zL>uvFVekMZ$1*sY#dQOX{21(6I|U`a-I&e9RX;A_#wApASVg;mv}?-EtkbqTN;f0E zI<`-hHT-fF5BXO3JZZeRbSIlx5K=memTw$T8_nMJXwk}RMS7&y8H&4`**Vt3Sp);Z z8Qa#%#XoXAMqE~L700H)OP^A9hbPL|?b8Q|X<8eROdqZmV{;D)~Alx12`h-WDD@VZZ3j1F>?816rbo@Dk_KbRmbY*4;e0J%Ej_ zZcASb_@|Rphtf+g2_P-^Bl<6Sd>0F$H(2FVZrRM{{(RrvQMoO$eToO9(!)E2FC|Cx zvh;rH$z{$DIRDgIPT)nt*Xa@sbdsTQAT6DHu+dhrxHp%RN1gmiyJ#4}L+@lUS|pKY zILkQGgKj4AFe}^im~bx(1ev|jZrOkRgfC@n1G7cgepeyT9lNS#G<)Z&;RtV{GF;W3 za~~a_UYj>pt%$NHnLO`=Db_t%>&i(ISmlKWlihM94sJPrDu290CDD{~o!fZksz!NA z)>Jk5;%4T#S8xMFYx`T5nmsU#sqc~+5&*DPC zU7?3*`wY~E`|3RYqs$KiTpS<&$j*@B-s*hPP^u1X?Vh{3-oT-t`3qyAEI=)}?}o@q zKWMD3W8Km+&&fu<@Od}YyYrwXWbocH(l&U4Xn0}evlri^vY!oGVIxne5Fha~GlE2} znNkk~%3ld9oUyi>_c^tW#sg8osXV>x)}v=7w34u4-ggp_W53x_^=_TZRl0qVg(e`& z%ArvFE}zY8kJz|cID;y}*Ii?%uq0nLRfXW|N zc-ySa#zl6F!M9(*tHOB%?q)H#73L@S3ZB3m4l^8~POcXBMzmQ=u7r!ni z$`N~%1&XXHF;i&tXYT$jMX65~SVrzyC;Q>+P-33J zTzZJTLyLCh!(is3vdlqTJyl5+S{Ira8+rvz!Z%qRsh{%JCdOSVuSJy?>z$heB^4#a z8PkeY91K&!yx49uOdo7ABrau{W@e_BQ1=ZTm`fqA$Mv>tJR&NP#j-r`&^w~VZ(}J) z#hFgc?h-c1=3fh{N=Gh_aU9O+$F1_|;g${2CitsOwKwh*!kcZ~{VHo6$ShVMHdL3^ z78>9XK8kmv&K3u%Ym%o~+oyuVIs>KaxuxVW2|dJp07$}+1PmL3 z1+pS8P(!2KWoLNmedjVPv^>1CiDV{HrvgzMYx1A&PD?8nUNApxTY2NA?0lKpvuPPt z{k@a+)&z49GVsNLzAMRkeA`OO_MzyI01C-x{~kVS=)D*2-5bKLC#m21&HTMO>hYrq zxEVP0GvZtl$m!^;z}B)lQ?tj-*li@OCyg(q2(@c$m~wDDSw=?Blv`@h@~4n;{9b<% zyN95{pnAN)Ks<}+RrJU_d0#ASeD^lkIU&V`$k&WO9BJg_=;OHMz_)?vFy2K>9*C;m zAu|g_kk=zjxE zzTHFMqytKIegADj`JW3*Q_E#fI@|Bx7nW{@J8}EPX(Ey_YRvGD@9;I0Lbz)qbyu>` z^?Hvr?j6632*eR&I`ZF_QnKFf48o4snQ5Yhb^!FF1Au;f5jO<+{k)-DS3*&{8i_j1 z!Nzf2b7XEcG9BRe`|9_r#g^MtIk3f>69;14QE3XP5$2HbPy;XB=P%$dFnj&-z1Tq! z;H~g*u-`+*hb43StCX?8!_mhaEAoF?Xm4~6V2>QlPDy^>H3gG22`?6lQtLKE>Vq3J z#E^4rVk`03 zJ?KHaCTa#?CXh*GWc4`sObRhSte(MwMCgFI9fg#IWpjImEc*olgh)8gf_9XCF??xe zVqm1pV7{UpaAApizqI?DH{nO=(V6MFn_C4xoIS`N_ zy;kr<72-Ab6%Pd*S7bMaV12ajWb@t3^fyws9iWL9u0PwguV=@ z5K74*Ox9~3%VJFFskx2=%zAt12kwdeZB+9UOJY;$ndA6)e?YGemMr*WE)aREoHuZb zQE|46T3c)}-gi?FZ~h$tQI*)Xxa&`^4l9;+add)Rj;%_)9h0oQ#m~pk29sb-_Mszc zpLGtS{Igi9*_O@?bzw;5LO!8-4pZqti~Jkx;fXnpsVgz#cl1zu<8lTBHqc5?9=*U= zn8VJrMYM{NZ&Hd0vDWp^-jF0t3qhOS^<&NtRrGHIBrqUvi=38BTXNOo%P3Wt&(H^_ zl?_K=vs>_soh3w#g&u`5)MWOp`Q>e0q`SyY?GO~i*60vPt$`Z+U1&8R)A*0 z#mm>Ft;t5Dv320xo`{)ku4q=7nPUy@QZJmbFlaw@Mk2MT*5ik_du8h|I z!LSgo&W9bJx$bUDwyhOkY>B7+=(gXZUEDpe;R}*tf}Q&%AiSf(ydNky-=@%oC#VfO z*C-nv^i;@IGuhC7QnS?#TdI%XRK4;mQdn*I)@#g~S4kL)=X$w~xgqUWh_4ov@QBL2 zzXl{lnW`YgK-m_DVzt-<@9+#Ik@14R%A64xw2aRt-F%=ugvqt9y;iP#ycqX&4bxB} zCwqN~^G~6+aTgX3R>h2P1GcUYrCO7OAr`c+N{<_wlx#^(V0s8`r?%Q0jOV=%i}^&V z$B7Op00(|#24E(phT!_3==nLwv9Z!1bSe8K1m1+ssHOUZY01J2NSK9JA*}qSGrgjp z3{6L{BBvOxq_D#Mguv4^631*;y|a`b1y=V0 zgV;f^UN_;9LlVjU2Tzq}C*-f&bck~Aem&<^0dz}ETS#mgs|le($!b>|^5uALE{L=z zjxIsO;XhwGunm;yf^$lEZfzjsFaK%UMXke9M+-9TLh^2S*eZ^Uz+ToUi?KeEo9Qo~ z`PNW%pgcE(7$*3Yt~rxR{sO4>G!~$s)+uf#sa#UnUoYNF^d*|_HG*v4H9!=M8TUXl zeVEz@#{u`~*zfYKX>p)912G6ZP=<)>(4&vtr936R*%|?GX|;A&6mW|wCzwFOVtCwm zNXKH)%ZW~?LSS@OU{)V8Q=qyuXzdXwUqW(Jl-G3iaqBu&uVb}|&uj@AYy&DZ5idi8 zWyRl~#fNewZ}hW^_neON!>_1YfeHNq!dA0p#}1~M8#&2D=Zza2Agu@evbppU0Vdd* zE|vK0GK|}nsy+MzvW?M~s3Xlz(dYF6=0v@l-@4T1!oCj=pu$v@NhjLl>oC+<&PQxD zT60|^awoD9wn(JW5n^dITQ*>LiQ_F1#L0BD}fArsBKx1eZC7qPgn@+NN3P z9kIx|tfGH!;}GExI5#gn=ZWIiubk|plLr@iEeJq+FTj5{J$SU_(QmQ~6X-nm4`#U0 zXT*a#Qe#R&3<=hP&pjWWngH%qZEMM5BNGgs>c88$JW367jd zj;BG{*F}4);;B(6&7Cn5M*;p#+Kg)L}Ptk0-e6R{G1!u)wMm^X{-Z~jEL$<;`vYWsg6;i z$W(aqm;`A@Z`k@s8%kx^TdIZ{B4QoF)=#*2eB95BFLiiRgYXG4{K7zx*pI zl1an`FRb`F<_>x{-RVa%k+XGX{jm@(|HCxf4oM6!%M-XD)Jcp`qD|>&RQ15YS4u=3 zUK?+f#jkZDo4JM&>L(L#N%95a=_4mG?m5)j`Kq_ev_OMFG&)hLc)pDu(IibJjI`f| zTeGKW`mMIxWX$?cvZ~@KZ51ZM+>Ikn8xJ|JT`+#77}x8M(}`ci-5#2GNRRcrm(=i} zI7Byc%VhN~ti`SX*Qf@P`51k3p39i2WQO|Ik-(x1;oEuLPwo=PnE-)cLK#)X&CIq9 z$-=+baKMQ)2eML zW~9;7r_mJ$-o^gHXh{8sIV_-PXW?9+D{J9La4>d~hOXVB5`LtD9LZwMdw~{>@#Ahm z7hcW0+EaxqR}nmKZHX(F;C}I2@qo$pq?R3dmK-qcS~bF`{VYy!hX;yrlRO_UZbCbA zCiC4Vu!UbR3Pn|i{91l#xXW>|sRkqN&#m=F@|Kw&Vs3+l!{MKo)iaVhcm)&K^U`rm zg!IYW2v7EwH<>;pYHpd$yNjc96v|3?w?L4FaP{*+#3Zyj?zV$OJaqcIUU2)O`Y5LS z8cV!=M?RE4yg#@R9_DNt>lI;T-8nUn$~) z$v(adB}fOK7px%%jfm1-<6bluSq!$jPg;|bF41f0mDqGi9P6|1O%?8xod~H%pH19J zU~mm-QK@!d=PQpf*#s)zDWvnPJ@|^~&Yefcn>>9s_dDPHllMY!3ZIb!w$uulrfAa;zqyEPy!ivt9tH(r-ZGLR)0J)o2$4BDA zZ*mW3#7LJY`Cd@u>e=01$|ajVIB%NLX#VIsU0A+%k(}Dq5Na$brjtYV1=^q_;qGan z+EA8)VMn*P1B0Ea3jY4JIN9*H?ewo&BjOQKt_wAj$BxlISdS%P5PLB?!#x-dFpdp7zNFFvk<1;%$X=brxi z6{DFWQTD$MEVKUWohV_wd$IQ)!rtLszIiqIuq{RSmc*fvuI|e=+8UY88~yLsf%4&|Jhd-n~~jz(7d4NAz2{EanBCtgOg!hzfL_!IkI$01T%k?g5{-U zl#^hoCy8{69frnh8RVReB?Z=bKo`(R{)H}2vmH@7CJl@s($8MHDxHgS$nwXq$B!N9 zbojSnPxr^LX9XDcpbMW!NIR$S%10)W2FUTBSST+TQ7>314;U410M#C_4d!-D#Oljv z3DHniQi!XQSvGt`>kHIhl+0bZ&usfR%-(`fKkQ zTnd8goufE`l5EULvMp?1d!PecAZ?bdELwZ4O&W+&z5@Hm{cgY#j-z#zAl{Ky!!VD@ zPR3L>kmS8;TL4s8_X&E4O`2*$+QH>9(%dssDYr-aq)$=t>}y8|(XbE(e=!%pu=hfU z0{@p`uTOA$aFn^aA`M0It?Yq3op3n%6y*Om?2ASJW!TRY7Qz76Y{I5#W&v50P(e^+ zxpzgC6JdT!oYV~nTmu!$>GikW^UN{ywDzQchf|r@K#O-o8+x3;@k1|OCa=-$S76W( z6g>j%SpzvHhZsv%oD1YMoOLTyhHmGwu4AE0PW~pu$5K0x{QnyE7m!t)P*a$9fuo!p zY{mvsasE4HMCxCRw-Ew+ac#a#=B@xO0h0^=N!MA1^NlP6Sej$`Wc#3MxrM!}nwK7M zH?T_0F<3nlbkcH-vh)os+;}rkwHCnR%c!BSj)agnL5G?7XSy(4W?CV92c$SZ3H%m22`bL-AK@-ZP-K!R8lfSOYHx;SX5AAp!QO6l&ho>W)RnRA+zf#tNdsoglV>Y1B_aBLG&V$;aa~S%T zVi^(`+yv4Hm#Kv`0!uxx+9kmn=3Q78W61_xe!H*6Oy#OKb^g1utaK^zpOs}$q-k8O zcfiUrf`XzH(Gr=_CJ>5kKek;78KGcPkzEQBRRzW^f0=$_Vfs&+>6H+N`V+vmt)Rej zKC0nN)exr?_?K&dVZRa^WI=?G>YHEku&|y=!}9P6=-gRDhX6Wv#iJTSM~?SZLq{%= zs_=%ASfmr&q`{fMA>WLG(_Akm+WIjQfHI)5)KI2@M-Pl8oX)VV@jU}5tFKg`3L9kVaI$s{$$_$$F_9?935~z7mB|QwAkVIX-{0Nd@SI=d%?SFZS>dOst zkj%xJRZ`yXBXWJs5@l+70<0`wKm1);ZvHZ|5VDPYh1)9X{{BExR-m!};7Iup0Q1?B zhaAk59F|ou@i9-~Av}oWPQN zPE14EeGYx1Ppn5kPNQ+`87{jR=L#->W zLa+$+2_K|FV6X-JLib@)M}ON=M@+hFzr=6E^UJ>QEsw&fUAmD^8Q?g3H(`R%JCKo@ zA|DrNsT%3_hh_>&DgD#R`w9wCLh;^#FD()cM&4gagjP(-A1OLPEyIe-+!Khh6!cbF zl$^G|{DasF#N6JIjLUqX_JX%|?Ew z0ZlBbn=={yzAU~#BnNu+2eAkC40QqitZQdTy?*$cuY;_5UT*4NmO8cki`WAv3G_#w z6agTHKZrfEjAzgF$_9K2@Qe(egA*#kJGpW}GyM;UCP53Xg8>)V6G-2rs?Rm>-_su} zbnyzXewXVN+?&m3ito{8q+2{gTtS)y2{?RTeWy&# zt1&z(`;m-xJ^fk_MUOTAz|uN9c_)d6fq`$P%v!dL2Qr)zFU#XZp`hgcw)a#)LJ0v z!Ro53pp$Ilmz4jS=geq4}Kx$dm?XIp~L;S z5e;PHJbg}O*MK`@<#z1ERfisR0`CX8j`d$S>vA`&S$)j%fIy?L@g6peIAMA2skH=F`L+aK_vXGBF zMq_?xZdPOtx9Uv|+s+Yxb(`Mx7bgFnx+O=~xYb?NN+! zot&oHE$uvZM6~rwn*kI)N4`Y$Dc;PX(TONC2&vTS>L`p?`bex}lq!xQXK5{OCFKFQ zK8l`5Lh=|cqDA||%jlC~XTKk{wOdBc`+=g-@ox{Mp3+nuiqCN*LCAGqon-~Qa zneiuIrR5Lhe^smM^#7>XULrAyz-B_X_L}>ho{zi(cI;6ACpClPtZRVNe+LYiuzzAE ze@TsQaOAvbRTV+KN>(ge9CHeh^Y^}?KFacQGd_+e$~D9s|Ov|4tZo|ED+Cuvr}e*5~P zYoA$~m$)D^A_%{>70ixLtn0O;T!kIK>0MbWcVc1CgU+53>ifqA0tM!Su#BEDzg^5K zaYHk(L-{89sDzTuxpA($CZwiQE5zMriKg5rD~N0CwD8Wa2>ke@FT^}7@=**JCd-?W zV($FdCJ}aXWkx5b#Ub)G_q3DAvX0tb++bt*K=bt@8AnZ>$NI;A_Kqf zD%)#m8>;7caU9w8@g#ne&7^}KSgZNQ_9Js1?5tivHuXi-{{#~+!e|qiWA8|p_<~dZ z*X!)e>(CnFjE_KZhKM8z7j!$VWes(Ny(+NE^Y z$w<~Pb`D*|pfXfo%h?Yi!War~Y60;;V-?)SPZ6|6=zJ(`Wnq0MGJ5L*xe?~bYbvi$ zrz$G>43%CLt*i{x>Az~37pEK6OF2uk#|OlfJX*8!BG)EA=)1=6npcLIulwTn+H_n8 z)!*dN>~g_-M&endEkqL*NPo=2DxoIu)2!Ues*O%YB?_&0X+w7zqvu=WlQ)Xp?mKz# z;b%*@p<7+v#qArM6p zx!;7d_5))!dqZ~|ozJ~Id9SS_H{N>8yfFoy3UruER=F;KcH`W}ANqb$hB+G)jq^a= z_+q7S8?rOJPXa*O%Z|D2#??RrX#2CT?A7uB+TKQ4@dfAF|1WLNF9KLs{^*tYL)-sd zTK@C-w@Zer0+=CuP;nnS+bP55?W;$_3M;qzd(=#A%4*`iv+<1S; zfworjP+L~lnE5d(-;57GF)_t3LpQ^f^|0Q@JX1p|j>Xj%X8?e*%s z5vQ%mf}`tb=&u1G9DC8l0Kd<-ZGRaZayS~xR>GE_fJp0&1%4SYX^xa~fjSMhdvo zE+MR7ifo3UV?-cgXsc5))sLpea8dqI!+vlTpC}bC zOeL6r6Ux;Q35)-fRp^)s$uAsZmui;^fdI*|P*B267xEWWim3x*^nL-rF3ASiC8w_* zUmQarU59GUIMA*&<3#%0@_suOBxpIL-PP5-!43IsH(GM#Gcq5GU$b-gCR|RQkjxs- zTpJa!k+ABPNbE?oqHX}@m6cc*thNP{+t3m{FYR=36t6a{w_)r6p+bs3uzgG3QF?A) zoMh5fJ$d+Fy2PN?YkydT;Jx`eLiJ9zV}U1R20qXqxZiq|CuIb_*lUESxok7eDc8fk z3Rm6=J$9d$D&5-x?maup0w@W=?X64kI7c6vS0gC8M)Xh6ZuE(1WMkL)Dk~o3Y>Yh^ zEtu0&*u@|24_%_7o8b$&+3|gK0=ES+Ji$oOG41&bP`TODO{82dY)}T;RoC`ZHGt1nxe?~UX zh8+u~;*sm&QESi_xYG-g(xA*M-v`xIMOKJD)K+64jb}tfHBTtmQW7QlP%^nA+9b2I zXuzIpf$ne8PKkGsVqjhox)d<4?0+Jd6Y*zWdF94$M5H&eM;%-XJY~{ojWubOcYV&A z7$^8c#!74EPtfid5VRwL$DF9U-fF{qn=dF~csXPgbmt32qD`)%+@_ z9i#u*aJpPvHEUem`s%{=m;9o4(=d1<(HlQOf$UBWN2qg`1P2GN@37=$v zhDSNU8GQH$Enzu)Z3kyz8=3>^yE58ed|tg+{JrxGjn3BD>(DU6CL2is$=Ny!XAu3$ zdQVkd3DL-hQ0u9Q0fj4|COHtSOl=ObAU^+28Ui|7rusJQ(Qss(Oo8{J0$E@JqZ z7AFaV8+hw743M;Y0wnE38h(h}WxMtEFmFkXu$D9dk%4@XO(fLtkBs6t0Q+U2&5I}d z3D{STjv5Ux-Mi~YG=4Tvt_+rVCk{^4x{Yg*)wo)b*6e6g_X@nP#95-F`@q)a^am5k z_3blS?;vu61>J`HOn5-W=KLbKKcj;DF5C1@c(PB3zIpvXQ8C9tIsfynTFZ3FhF^>h zJr7b*F7S+@q{F2;^jLQv;l0r^yiMHGrrZO@m8Y=$#1Z8wC@>zTRE6~RkD#IyjAXFD zInx)Tv`pP;2uRwYJ{1c&Ngo%z>ZmoNE(z{fN@ka!?9=@<3yhJ( z5vVRsj+XLQ3YY+W0!1nl)0znG5QUoQ(Yh#9JqJM@v3W5Xu^nKaC6NJ{D%Uy+YW_;% z5NtA<0~-9yg5_hQf$uha)PYEz|BBk>0-|=&Z?f=p|B2ci{)yVfKgt23b{a?%|08Ng z$1=phk+A5-fwFF=WvMeLDA*UYQB)JtL`r+lbk;iO5_Y2FoL&AoDE50=Zd(qqtAhX0 zt{fo))@wQ{#l7okCct#Cj@N5J*`*%8R!bg(He)kkoNN`?ufk8;toTM~GBeGTLc&~J z=D@ijFBo=!?ITm6<$NJWQYD6O?AB|FJ`^M|Hk0oxR2IZbqa@r)2d|`Q!f^rd)gGzw zeSG0!VG6$Ye{t|Z;8>9a)Xe!+vIIFo;)c8d|UYXzhx0mm4D z)&cI^a^6SxB(mr2SvXtax>==XT zi)#b9P?YNA>c;b@=p+N!F6>VwFs@694TJ@`zNNK+EFOEYbyO%yH!aB<3sc-jNh3bV zo=>UikjT$ESXx-gVHxqwCO6;F@nHsnYBhImDBe`p61kcpUmgo;D*@@&qmgzPTiM; z)3oHWZk3uZt{ym3X6if$jX&NS>(gGfbY$ceemxkrpG7w!27(2zBE4=hx}W!+;~vVd zJ}yi<8Lf7Hag#JmVKa!#{;cIAOG_+B_OW)%j?eJ+UBY++Jn=~2+I!X)eUG;ko3k|* zNRjXE07*t}u8Y6;S+aV}B+cJQ>O>WCX)Q3$-e93MzZu_{HM^|^iH`s-p3Qn3u7%3M zEo5N5NyJU>37cDD=V63B7)=e-HJ!qpgouplIA`gGwZOs889TaM#KD)Dj0v&EA9sypqkchxwo9j1AP86=UVl=o{U#A(aH^_bk5D<|pxoJlqD z#;#0O(8{#LL!b_vU`D~JV#qgC6R<7Pfb~d6; z89_2OwQdl{n>ij6s%30f+tswjx3T z2!X(*=b$Zz)pbGWSLSnAW221!p7#~S)VF$!MjG9d27zNZmm=<+cE0Nlj`YOW4achM z_$zaZyN}pYN(|B>#I0@nsWP5s97!XEq=fNq{+crIvCJ(mer3pN6gKrL0gfqs`$>Fe z(;fNRlLAB{q~bH;Y6H-49z%egTIq{s27ANS{_<$;g*6&BE(&@P)I0{B@-gu|G>AB= ztq|`mXv)eKupY1ump3qvJaW(2QG}g4_L1z3Ke{7%HOW(TY9O;T@*vn8E(354AZfP| zHRhq_eG8GXDFl7|!d@E5NdUts<@d6GV_f$__R~gZ3)3VKq-)SunVbFf((tf&+eD~b z9dKIRn6*cpN$Fl-*y$GRWkYCuD}Q7I%q%mE^jSOMy?V(!-KAe5rrsUVZO-U)7PPrK zxZD7~sdJO@P^gEBAc^@WYIpuOYUls2s9keA;Si>!LYw*X*eybT@~e6bk>;lK(gX5_&Nr}rt=jpaCsUa=fusw~g|LP~o=c7k|K zqQ)X99eI$TT0(QK`0Lm&^?6CDg64ej>?f%ls}g-TeQb+MxGBp;L&g*bRJ0&98KgT~R-?GkNy-8Xcrm-7!SUwSKI@B~`{u^FoTcDf zqwj;x%aQqbZM6+-BEA|~0+h;7)Osgurj(EZ)K)H~>!(DeKMk23h$5cw9Fe-cuFCg= zDjxfOJ}TmiK;n_~@$(GO9A2UBTlQOdi`p=W4i?z3OM{6zwq27h>vD1sX!_y^{sgUt z!hdeC#LCGIlFZo5AA%@V8>)~WanU?l@ic^g*O>zEH>dwDp_DvYH@T$)PqwLN2UM*|_6 zhz}(4x{w$6cc|cv-0HV7=Zyll9UECsSWIeolNeQ#5JF-sjXSs0YRv14>*8xVXMb0{ z--fJVGCGgV@WqzMbyr6Q>qU^AL*O2mEMy-MR5=zNzX~b%49kz7sCoK;xJCVcSj!sn zFivE7P#;&mDTHmK(C1cev7%3XS_?)IN<4s7YTVhqgjVfc{CC+DZ`IQ4fBo_P{qI0Y z`h@*DBjCpi{)zx{g+R92fJZDJxL}v0lT?D(uh>i$iYqxOQ_w3?W4{Q|xECUslARzB z!SZEmix3>~acV_)f-SmM7>!X%O?`Y5=fn4fU8ks@n}lUB&D6%#7-MtW@6**s@@@*u zkj~C~)-}%g$Thm*8yD)ZepE1y+2WF(5?TG4J?!MQP!`;n5t=%m9h%wFpt3>a25Jlr z9$$R1SvX!l;Mbe^Ynaph9D8mg(Z)AKLqw4m7>p;jnAqB%$vUd164;Un8mtncOig7v4bq_*4__(3T+P+co>Bj>7EB81Oue2n4lG;at)Io%uW>%qK0YN=w#&Sxd59L&xt1Y>G=@;i*ifEi$)f%PW@Zk#OZ-!yhPuUOtYSTED7 z(E2n11z2HUNcs75Cy-5QFQ#8>X;kfn+MqgHk4W&PZ0aA$p$C;cK(=a zY^vRo`>M)Yb`03(styW>;R0QmGJ6qAZGWJ7Y#mO@U7?@lOVT4h?HtM*&Puqy{QL7& zernz`X&&n(C3x>S08vj-Jd&~(_&@BuQ+OrZy0#fx72CFL+qP|2RBZ5%vY0 zfW4xC405QY;8i$%TMVdSIzpgV#U4U0BM;>jW~4uq!lZ}F>>P~^+HOm(e@t#{h2b=rl-bEb+W-UNU-?JpJy7)u& znJ#{|>{(8w|EvZb^~Gsj_P06PmbyYK_2wJIe}bHW@3tF}{wMDa`@ivkRcUlT0;_k> z9qF6CbI%s02Y2!2-b#oG1O}2zcF+Efr#lrh(2cAMQ|_#FtZ3ByWwny>pWHfGF1mm^ z5ZGxuQ}NHr#^nM2y#J;Hx{wK0C&e=8-@%BmBNT;K`N^5O&wYZks?Lwx`t#r>n@g%>0F)bj3y`2%Ux#FfSp zbrIpdF_FHqA>S~O?yxDp0N%R(>1?!oG@OAWR*(|ps7F!=m$!NZ@)sdn&tI&=VoBkdbx&fJ4`Gd z-|FP7gVQD9ad&N>Ta>*`@nbP=#4!LLRG>NQ3LmdCHa|e<1tP&$1~~0-^I)IoeyZTU zX=br%@(Sz`|GuXAWJw5-q`M1nKW2)t7~M`FPyEs6ejNg@?t{!M^> zHIOSxfQeJ7r64Zj5w~KQe~pcIyl{LHEA&a459Dhx{FW@{t&-S!YE+?W8wFrz#WCLuBf#%CfK9dOfp%(+AFe9s# z+OJ(~Z7sPmf@r4z(0L-L70_@`#sU#)vLdKPIyr+Gg5uebhuyq;O6UOu&WdB7n+4aU zy-RHtM=oN(sM~_AqRTO2k?ZCDqn21u1z_dPh}&&D_0Qw^0iXl$rBU4hbU=i43Nn9Q zLccub0K&w#Af66m)c>Lb%!{#bMlBMGpisfnedRmdY?3fiGdv9I!KUgbID|MBkbevH zxWa1!+F|5pXcufP$<7!lrS*!KWanlQ^!XO5Ohfo#Y?b&HDB5l$p-XPHXV~j+n7p$h8zy=99}X_pP0BXJrCW$@QkfJH;{sp~c!7D@8QjrhZVHdO4r; zbB(l6)C14~R<}X_rUM2)=>XbZEIU$g03D#VHe^&(s6FzM=_RDwlq3(RZ1f3|>%P(i zf9`F`1p2CtC+;-M0a62u6FUjzDLxng5U&?zdu2GA6>kzWCkWFSGW!1`-?$22ctP&rE&;hKn6}>!c;T4*lz?i=T`+;uvlK;&m$~SIUgLqE%+yc@e147qp zEDOiwj~Zx`$LHbwRvyDgfbIwNUKEG8ClT^mVY)ug z;V7UYzVnTE7em%?N$`cWM+T=~7AkG(Gyo;{a`E2aI%o~VlqhOqJVI6? z5}>oDS(wFpV7QyqJY8x`eO`wK;4pq4(mfpbl10FhCv`5sLw!uxV&7`A0X%h5wqREv zS6+g@gT$pr3x3o|xcwWoAv{pCeEx4!))?TZHZs~%KFFlsGt^p;AguoW?V$7eOjw!t z8PMxuus#H)RwK7;1|n5_DEsspgD*EARXcyu1etzA`Yg>Wc6Y^HkIhzfo>5xkwptm# zZc}|3Q9@+wc86k@wGSqR;(-(L%cl|?$K$Kx!JP83?yuHEd%*h?0blF`?^zZc@gkuH z8FQ|@lep{v{5vJq?S?s=p8kG!icYg-S*PLu1_W-Sfk$R^ZcBIetG=*FCiHY5Y><8f z!r#{Q|Dd^GA?xJZ-c}#;Fhu)sMt|g%!ac7bY}sZYtcTQO;+v0I0VWp0(KZLJ!NAWr z)nDKLnzl=4KN7H|i0*j0L;D5R)tnEXS0nDHSV`ImgYMPVI^6neZN>@8mi+uLXQG<4 z>Vcab0Y92n0nOXe{R2lH?YXE4E&48k0vS~(2;cWc>Y+rD?p$?W9v)?u&RBYkH7iG< z)aIP}HuX%=GJ&Qe7wQ~}+rSE-U#Y8e@}g$Yr|xx1QyyVYve?m(+dc3k>3A8>zctZi z7@U(2-eW4pdvTMETLhZM+ftV+G|~g6HSWk)@YT0>6aRA=pPtVIqF}9 zn6=RwG}*m(w)9)fWOQ#NG6^$xT2LnD0j9@SI0e2 zainKz0p748KHsot1aY@`DkOUqyr~9tY2!P1vyc5>QLV4Jiv_Bx$c7 zVbILX1D-3a97J%B{n_B3kik<`biR%o6&^M1H3w3iqvsTTk2y++h`m=mnNaJ9%|y8OT!I64T4CX&gR{>&u#`l$4>DAFZl+*74VR#$0y@kdB?1Py$rHD- zeq_S^1v9?=ln#0}M$2G5eGJnBc_+V_s(<;{SAcT-AxhFZ{)Gb*Mk9SL?8WD<7E0Y>*3LWhXV6TE0Vjz;(tu}ht(x|OGKOqQGqL6PR5Ticsa{2-`LgAv$3Ac+9syc1Y^$ng$g2oG_2nLll?k{cq+r8=yB z4*BA?96$=ynJOZ}(R-C?qE6N(9iX}dYu_zS#FYbUfCA{yDzcjPLi(cQRSXv!5ip8v zPV^!FlCoG#aT$zX=#gMxu2f)F9$fJ`j%}R>t$Y-M`7;%7SB-yEycUB4{{d_ zlC(#&RfQGU9D+3B+cc*3-708q0!Nap$L)8$O_(#l;%(`)tONuyPYO8n8j9JDH&f4hgo;uvFTQuryar9%fWDw`O$))f2apJbZVkQOM3jy9U>U#@2 z(**A8T@uj$;l#f1lA(&R(p0yr2QQ-Hm~Vn)TKE3;?nr#ite| z=Ua`NtpYr6pX|qmd|G$}YdSk?4uHV#TiaB5*pFZZm#!W(zof&@Iq7+t*z{Q=FSe`U zsF&0h2e46<`oMd3-+15EX!(Y|w#z)brQ8aIf7>8?`{(n&(ST6(Z+6!62JM4)mxfFB zU(fsGsy%SnEZrhOYrbY*xEo&HZ83NM?w8G<{`imc6JcH=8zNwSVx#;&y)zjE`yQyVz8hmeOsgHB=vDdm1SjL*W>?Tuz06mt?}#GOZUg~) zR_hDuz6~FKyw`Le((!~-Te=~&T+jGab4wvNQ&O|z{XYFevBgG$DZ=w)Dx4G8e4g$< zW@M^FJ2_K`CO!k^6xEz?M>w~80zXB&8D=i#6@zZl17XJPmE^wz9`s~|6oXuLphI{M zDkv$O{1sO1!-_JyPqz!$+6M~C=?)_N1#^}ocvm2F;3uGeF;w+i%lOyQ8E~1t`vWlqE+#jy6Ks^zQy6d&g%W3Cji0-WnZ&XhKE)Mt_Z# z3(BjubaA26=J(?|fVq@fGDpdst>N9G4+d>)|m9`29kXX*X= z%~W_S@1xl+V%fnD=QKd+JrB?egg-|wfDOPa_}ZU4kun$UwC;gl!Sk05_(_@k^)DL$ zSQP!CIi-+S>(Qm`S(SYhgD-%KM-rH065-vW_o~4SgV^nkvT0T|C@vd z=~Kd^6j;`G9#%@H+NgEn@+sk&srJAp1z+|$A@dY1hs~czKDzndnLIiu^4iFZ2Vesl z>9GT=l|5+@+)%=UAowso*#MggDs(9Y6wSZpQZGnjD_+43@zUYH=2Ay|A=$J|@w#Na-J*CENPWePy6@?3ajYF~M zi(kr(^#pEvaEA&tij(1P1H2vM%CS3pSm1%fm6-f@A<)P0B!L$qASY33N3a#Tdswl+ zn6G%5i@otDEK0rZZ{v_^sT_RxWGS2W*MMqujr(!5dI6R9kOn^j&zyS|D)(y9`j!Wu zYCa5GaDTni+9#uQ>hgbKT2SG=?RRL`4~-sr4{O5l)| zdy@;&|1$8@mKrK^O=g<&HBLEA+6NaKe$48GX(TZ*oB7lLmNi19u1Pjub|?MZA~pUR zcv$}z15ff%oO(h&eBH`Ovy)_!D$G-=3jKE}83(j~yrncL3v~pqBhaNO0BWCd4q< zoZ28fZDIWqdy(zm$1$T%>W+y`q~j~R_u&enIt9=q0StiZy_O5mMWTt1$Q#vB*elpa znUf6O*47sS$a=VAYSCY~qFByDV+>4xK%Z8<&eFdX1#{fIA4+lx;uGZg&fG90HPHL0 zP8p!w(%7Yp?m+4;XOk7g-i#F#=?M?S0wX*eykC_obHRZveT;`Hf9jt6wJ0xxv)tYh+Jn;17#LX{pb|3*8rqS}n#2jIX7>WfCE>5&QJi zBJdl$M)1Ma;f15xOjD203E8CG4r+z1na>tN1zQ3rxA5W2Y@%!;XZrDdnxQ4f0wWFD z0V4>c1$kU~*|`oXABg|*mQp*02QxTe?r&ghIZ3 z+?M`ZPZkrb6skvdYYe!uNh6(Jt7B1p+>m7pTG?6wvYl;*B5S)4sYo#|R~X158@+dArCz^f*Xt*j ziJDD1u35EWyD??Ss@amgOXxUGq_|H&|Fh6K?Gfy=DW(D9`ba{{XNk&$oC<*J-?w(( zJm~$Qk}oo&5UR}-iQ#U+Is-PSkxZk-;4H)kDVIleW@3=_-Cys;WhR?__J)2gA=+_b zeOD+`8ROHn(}SCH>|$4Nv)` z06_cUE45r^W3g#Ro3(?tmwv0nWEI}AKKi|h+2J#augE2RC0)Nr7pUQSmO!|{*nm2DXmiltXyCruVXoVjIL7@f9is~#u zebKBHeL)ZQ1EJB%LQmjYv9WgtTWE-`sxv-Se5r;mox6a;=A5>Ob}Sw9%yGErV%^be zo(dZKpsgieP!(~KHl@470)$hOlFeWT<=d}#(yw{HZvr46-nQK)s_7xB%sXJ07}--i z(H_ii)wE5=zvelLvu8nEb4shWFYhI+$w1}K!{Uaw-NR#O1>C^o%+_be2UmYLy_2}% zN`=g)lzkLz#YM8C1RmB2`f~u(Wc4i`dn3w5QR^F>rVL2yNld01|MARZ1M~88Qr6dt zc~-Aor5eO0=(Euie@8>;*Id8aN`U1>$PlJFi&cj~vTF137BO{TO?8&Ziy=jnZwRO$uX zq29U?^1G(C+$Vj>tnonEqDwQ|Zf?lTA7zMJB>VAQ&TQ9 zr_8zZ&LXAYz7m{E)sEeFqAGZH$1(*C>0f%_;U-GClE9j#zNCcr1xe&*$p_tWALkZTOK|lGy7tR^6rIY-E#`1{b@; zwZCA~6bW4Ywl{-!{YO+Ew60EJ#ly^J)$sh!)ViK6iTI8DZ1l%dEfH{KleKzx^a^SLEg52$gkY%grvZ z1}EJ^GZ{Jw_>$o{nY|pINoJj&Q|Z@mWSh>v^vek7S*El{w{dHiP>bPwzywhI!A{5Zd^CPbL~k~MQTMc>RG)W zZ|<_1H?V=Hs4q1#=KK!9-haD9w0We^4J{cGrqw9$Ljo~g9vMXCJE_5|GVR71U`I5 zeMXkohxO7=M0)G*aUQ4o_Ihxh9eh+mqkLa}N_w^N^>wv;i++nh1lS2aVE^V(#IHs7aQkF}TUO^6n0fRcFb9QMaRMj#zUYdwU zOOC+CSp#v)7fqU!b9lXiKJP@MGs|95r<4Shimc5?nR2ql4EPeb%ce;uYzn6Z7Il>a zT-v*kQh<=Q_g6osw*4r66sTj2l~AQcSay6Sd|Tg=CmUE1iePO&D^|X_MFBczDYpMX zqF}DIV0-#!@{c|zc^n6T0Mg;5Dy#~HI7f~AZTeAV?Hhj#^c!>xCM>ti>H;kzO&hfR zeutXy{ACQK@i+OGh--MY?L(HyVqqHBiO?^YEw8NWJ~|7!t!#Ekp9&0j`b_>)@j4xU zHZ_^}Xk-XjYD*XU?6cXX0SQ>|!`Qc<5SGju)>{&FJmA(Q=KDH0B*g!d{1b>E;*xZ8 z@laURv<10=Xen`?>MXG;LIbRFHUj!3 ziq*!;6v!MsFPBYCKa+pxo_&6Xsrv?4wvuxQE&XOXwPq^2GQVwNT)m@DWM(S1eBg_=eOe3h6UD?F~{9(wO^D3I$}Rr_XXa z{p&U8NuhtU)25lf+3EX#oc+(Wjo$x8vIXSR$xxNhht&hl=)~3& ztO_a@gyd)8`54am-$zEcbS2OL74N9=M zs_=q0QiO_ZgnDu$Zze90R)wyT+VUimp@j>qvxJ#@j6F?8FytJo(mUHV8^%&+HdgdN zw%-pKbREBenRi+;1y?LVNA#4FjA;3>8-*85rKRrEiPb1ssVy!WxZVqSsjqR!S@aIH zni;j(Od#lUZmq5|{j8Y0WTPWf`FV}qEbC9uWhI@M@?)VWK8^4W)^DGbxXJu?+z`(Fz->UO7cAU#Pu$P2^AqYRcWb)u&UYQPAEmN z<1a$N5)0756kyVp<@7wNyW5ooiY7C3x}|VYlPn^%U;PbrCz74oGrtKhQ2IprVCu08 zU{3y?O%|yBdw365mh6wR?IfvQM`gu6j4BRB3BZp=-NC4zEwTu5fTJB#T|yO?5oBTT zGhy1(-%YTZMWt&_IqcwFy0sOthn!dfG8Tk&__oVEUvU1@&8wl9D*itn-oFo5|M~Ee z%dL&-QT)HTdAI2Q|C{&!2oyiot#yjjXGNP>HiNrc)AnivTA54H0D^ybZFzQ70ipQshi ze=TIi7I32b8CZRYB*ov8sZ8Pto0n^VfwaYYQ~&6UYK1`V0fUNreQuIVC_gE;SJQZi zYE&*+FeF&ZnVvkv)&2I~0vDuxL0X2G|H6G2Ub&Px0@6%icX>J<;a9EHyG$0PB`cwx& z$$x;{GJ)8MM&5tFkZN6;J%3&D6oa$Ehaf!*6I?e6NUQHUiqvK7??x70FRJtLU$jgU*iXmgyRA{k?Gl`IMR2dW%-_E4OB-1 z0dl3&`uB@w{JPEZMFag7H2JHacH8d6+eun+=1WbZ-mV&S8vbr@S(N?SB*+y0USLWm zPk-pRg9*fff;Q1eKaxSN8C$1lj8C#8&TaDK$|n9|D-6xBK@k9KMR|{>GMv!sR8mF{|dlXj9D2lgYR71zr=h1u$95G%0S0gib3UnV=GN8YcKSu z&*d5*Rcy@tEVCH}B%+5esXO+LC0A)NJLj=@V06I4kI<7JOpTi=lC+9?*La#Kpm(ov zB?3be>nz5YR3a4%YvP1V6F|;ju@dlJp71(Ae0c@A81~#`#UwgQicw|XLc!JGtZZr6 zkqaQR;w``u&^6m)$`~=szEkV^#jOU4W$<;>B$CQN+ZDTzP{r8b2Ej#3MiGv=h5$C* zZL+gKMigi`3`HG4UmE>q+(4p>>WqY(ejENKDH8rkf4=f1+!U8ZaZ;AL_SOeHUy4;w zSN!{$`$B=Wgkb{EZveHzMh>2qC@Ow1LO5nvIV8FQs<_pZ=EC_L4q62&7aY$ur=T*dvUXWX{$E_ zGvjQsN7p4#6FIn)gHzdKRn5u?--c%RZP!6u2RU#7|7qlwpOtkH)D($+@dDukburxQ zXRRpKFVRgcyO*e{WR*dMn|VQJ+l0%(YkErTKUDe7if1W_N_tF9+Lsy-ShU;s!)JeV zsVAj0ZX7iRyKG;?L^|97YyqwTrgIBTLI4i3dj(V{)PTK7$Hpll53abO>-pZSB&Q*Z zphzn)hMF5i)5Ea=Q{0teG*4oYJYlgc@2MqRASnTH z&56q%A=<+<*!l`*$9FJ!IYz)>@9d_K=hU_M8nL$<^*ZLQH11nU6ygH>`gBs=SmZ}z zlmVlV9>~8sqlEGOety5;1l8T)w@s_H4QYd2fWD$6h!F=Fzs$u@YtnPKBV7vpT3{Lg z=XeePc)&`3bG$dmYv!1b25cKSo2UQ29&o-A&JEvJNKhT|R2n0GHmv9ivT!N5lE? zgmyzN7%I!bm1~4s1GTy(`**3V0i(JolvX18Y6g;2?9qWK27#>dtMZs5pIx3}tqy`H zfiXZ zy{;M$aCRUwBej5qz74pa=fAJZ!`+faWKn@K1+;ELJx$18$Y z@VC%+2e9d+tNY*%8>%f~wbya2t5edOs+vIEux|g6OT|G~4K8!oh+x}RHyPJ1M*{GP`j#NRa>KaS5=a!_=Zu{>6<+5~UWxW*c*?h#$F;AoKoWXO81natN3OhE?er%+og^jtdBybD2_b|LfFiY@Lb*G6^A zN{wj=FiPAyCe!#G7t5)bF&%&665vN3O;C-p zpP0Xiamkn1Tg>P{NtaHf)GML)oguM>6xT}ir_pl*N@$!`N$x#04z8KIOL5PcU;(Z`W74*!~x8&~(NVp>U*FTniPb9VB?cmjzza~AX9 zt;dIIA@vXgPiCNCeo!r9@5G_D=vRtE{4-b`c z<(k7iL5)D*<;p$vX!gy9gZ*c{+lJBHN<{!S#|>m4RY z&q^;D3i<1n<@*NI^+ycmSRjJOn(xZ8gT*8g_R0dMAhFk7Uk-`7c+>W14RSaab+cy8 z%JG|2EYby9gGQyeV$`*k>Jbr9i_#$7)Ufs$b5k-4F__6{`3edmAp=HQNWzNoR2o^8PG`F_OU@%r&AkN_SP+zDY4NZbR8g~4Tb8WXlNR~TU;OY zSiT4qN1U_INqW`uugNXCO!9}ESfA1r0Ce~&W2O^`tDWo*axbiyMPck^30x4WL1;zN ziBpyW8P;{&7xkIxFCaRh??ILk(>P3rR7#(1O|IMV`DigBI&$D%D44G` zoxIGweyl~^OL$o*Ohe8jnz-#n3gP4}`h3Du>}hS3UYXe!731PrRKLNj< zco3CPp`Y`EK}5YB#Jqm~5*-Q-+q{n_NPdn{rO;7M_mW4^ql@aR{&xQaymGn+E0@QC zshIdMC29`qFlwt_!NuarMRZ`tuUx5XIPzLYHJcSa_%>~rs&kMhFf_kZ|RN*N0&p_-A0`M zPNYUG9c#(#I$U79e%mBO0avyu4WuTo<#03FhYD8VlH0MLUl)OsXu@0vGR%3_JGFvx z%WIP9A`r=~%u%0Iop1LYOLLUy{Fk8aT}hc2J*eJxMPeU()21a4P56}0Vv)vP?}_d6 z29XmsA~^%xOnjJ%6_u2YlsHTZk1~X-drpJoOEzm4SQvu#?a*a~m5Lo=krhMY=Jx~4 ztMRz^9SRPju5;~e5$mjUiPz#yuz@eIpnh1*`XKe!lOgDDKE>f3H7-;dREGOd{#nGz z0j-&xAX&6OY97hvPn9dkg$$**G-9Ibk{?5$@6t~pf!picl-Ri1s~E>i;RM;Fb)xz7x`0gwvMv3$W?S{5Gd4k5A@slei3Ir7WHH;kVe zqZ6D?{r_s$WtkD_hd&!Wv0m}DRHuPf1QogK>+z|~o-BO6oc?$nzWh24;sjoekf4r# z9IFQDUn+(aev$e!-RD}54cd#WxYbxC#u( zGeDW{m+C)Eq|ao?4@{&7WXd-tk__vk-;RG9nL;?uz?c|-*W#=N*9;A_dinRn!{|=l z={km{n(jgrwD;gCd zTXvxvfb>D^ZFV1ys&(l@yiPKJd$dW6=YqW8f(D!lKC7Z4ARx1FB=3_!n72A6$4NfN zC7nDu>i?qryAp0%zEEA`Es7#Npj{eme^UOB|JQK|c!mK8yZveEpQUT<_B1U#z6f~fN`l9FfOSDoRp4k{Q8prGOf9uuzC* z1WvmiTiOT?l+=fm?H^?COrRoFns2{Rqq?HExD}O-(N;=rrTncnsjE$ zWNNA$0Lxi{7<58~R0E*%r^$>4{?%K+V=S!GE_*t;Hl1MYNR4{nY8R?O1uNtRRYw-< zM1X$X7%Qz}1nzxRMA*noRBTXzCW_u0&1mu~?}9U|JpM=;NAL-`|0*aFESUkQU*>y#rth${?iP zBXSm`q0aqTurpE0fc!F^yS?@eb>#ttPyy0#t!&@>3$(a`M{cH%8hSm93Wd=}w4riA zz*%)m-6u>veJVj3Bk>`CX+emEp6+G@xtC`EeWC!6OhAKcGo)=(4qVs_N-AEbwJkXmR)JLs<2Y@PfGDNRKiI99P&l$bty_4W;HfN!Q!VyLa_5>+|j*Tg> z?o>Q00a>%mWwh*xSHg~yg!?XCobJQd1NND-Pge7qP?&MD%XBi(v6Se-X=v-mLNR@nXyjVAl1F6UwS5$KoIyTq zC}_sUXLs|vPr458w#QIQHnD91>pmrOPi9P7H8N8tGmv~~?>@X6^M<_Z-oo5lSwW%0 z7MgvX$OVyIfM^QSG0s-b*OgeIDSG}YL-7q+XwPK3s4kd0?-mLM%Z5>62%G3R8Ou}K zAu~EKAPl%^^VSpBL*YpblgCPK%)KF`>BmB+Bce=;JK;X<3EAw_9pInPdX^PU@$j9N zH}1fyG|7R_1_^B+R>!=Rl5^|D+$bumI_O&Ix!!1VrP3U)dslV7nGG}CDW04wy|Yq_ z=T{?3)-@aop2NNHwh6C4M*}t&@0zy77gk}wR$hnnCO`NuhN$+H4C$Fj^Co@Br#(>W zbJLsEEx=6>!iet$NjKQLNIP8Yg&@YIEGBWWi5${yWN?)MCA-mr3mtxTo2pbzS~eC` zMo2@N1&}=KZWiezC=y8XcZr?E6RF|1v>4q*7I4csEjLC>sn0htgx_7Dvk+NZFX8D) zyxbN?#F}{;-0WQB)x&wo82Wfs%tHpOS4;uhb85}Z!E(%(%S;gKBLO6eDcJ|YG`0HM zDC4q=f_saiTv?o9uug^zMPEmW^H(rVuD>q8Yh}526>i1f?@<=rvjxt;SSwUB<}T@l zCJ{FE+9FY-u&)iBUG%uY6diEF6A?6@8@geR+Ss^J%S%_9Ci9+g&%lP=&@&8)S=dzK zadTrM8-QfDjp)*#bm)wjZsA%Xuqm;=sDje4egCSa#2(~Wn-z8cd;k}s$|l11tDJWt z>W^5xdc&_$&b4uDfs`X8Q1RWi(aI;TT>>8ABtiH+y%QwhrA-G{Yw_UXvFfKO>&DTN zK?K=HEQcF!nb|a9-g0b~3pY{@kFYTDj2{0id`OXjANity2yWY_ZETdb;dXLk2hOvjP?*1JCVo11x^1s`{Y z3x+0`|`INg0V8P38r){)^!c0_v2ndG2$ z!kYa(Q&`+OoB`wd2$PrD&DxDAug-W7^c){7$#UK{!zDNWCh4i9&Afs|E@J zT~mn3?1wcy>oL{(Gn8{P&M(})bT|W3I+I`c{k>EX@thN-w9 zaP5|5V|^m{LN^!f3wf%63wo=^V{uScSdWL=d88RS`kBh)9t;cTo4XRJ%!209mSJQY z93sc{LG$8&IB_n&zZCUlu9mBS8rQNb%PW&D+2I$=s9r`)mdWQIcv3xIk_X-6@- zQKcT3qq?TdCgO15IAwUgvx==tGPEYqTQ)4cBA+y^(Wm(Xx#Xo8fYP3Mj1R`frYcrx zRv+fc7{Q_?m97ukspjUVL;NVJePsIuKU?!?fc6dXt+VR+tIl1MkAOpk-=_N8L)#SlYG6w?t9nb{jPVv7%{w%D3>)X!uOiL@aKoT%MS$zcU$KMaCOjO)C0nbfrngXaa+0lAHE+*mDsJwFr6CTc_3ga_>Q&o(I2^KXnEMZO z&C=NnSTe>1{%K^}?M(Snf+`~224vowrofui+g8rUQ>?&EbK(#nZjxR7YRbR3!5Y1a znVedUcQjhk!(tK#MDb=C2m~6lo5r3TwA=@1gBn*y1)Y-z%ul&tY1#8Nj^=>*iDvP0 zews}^K5??fP{17U2x4VIu<3#z761YxBMo0toc9o6!rVDQLwX}399f_#JQ$AKM2Z2} z)1R=z-vADE?6NziLX8X5PIpJ76(U?$LEIy%vmqYZncaS>&-p3aEA-I&7|VEP0$%)~ zuOE^#5U?fp9>=Rf>Rg|POo`N_TMbAGCQ`#V1|c1XVc%b{-F1~s8# z7-m(*M%(OLDuF~^jj>T6a;3z|d9*25??6Qe`?}W2OT77Y{wMnCz!;o@|E1A~bw^JP z=Lb7+KzDyS)XvWxKHARpn;|J6zDKK1%0JCH96oN8*T|Mg*iOl;CW8 zUh=AQWR6io4SOro{+YsjBx9KdLZ)e2zZ52N@EV-a=3CI?YvbV-ZtRXNJHWfZ<(*S% ze5nf}9R7{Um-kg5bkQ3ooU2^sC+MkHZZ^U7-f(JKn->^~nPIbc2hu?Mw#erIC4^Y> z16@$zi1J8{{XD<$zw;(AD_5RblP*Bsl&6_#>sIC^71Bm2rh5MzG|vtwnK(AV8@38O zSKQ!{YQ%fnE3phN(Ud2oaiya-Xt+HS@mozpAn}6KJmd81F!RKxG84;V+s{h=va29nb*7|ni&iNATnP~F8c&Q@C zQPuct$WcPQy7e@7&W36@LrS4GUHU9UIH$095tB)rLy_W-eH+Wtqk>@k5PP1gM(@Wm z8J0S`Wtn87!VUYoB~1g^k{=lcn~mXv;(*2!_(M$mJ_b{fK+uS_mw(JwERX2mPBkHE>@CJG24cH*!ZLsx}KL zibM~4!TA>K2~LMfY0GuVwK1!l$7)*{p;F@JKJeLhVhNH-y^aFkQb}U7vy#Fjnxdf^ z%?obNy8o6gzTVe4iXty|+cSTi+h^lE$q3 zUk-H#fJ1#5DWvoIiMTxl>o@j;(YSvI&4ga5vcJTW=d6jQ|4UbG`Ngab$xpT@9f_A%8roG?=i%KMG9OVm3 zu1=XAH)6<7$!FkoaSx&RplN%8>VN*JbDH z$s&a^%8(S-JYoMcLP>8Ls9KUGPLoQ1M~7Xhs`c|GI`~nd6SA@x4fa?v|4uSvl3Iwb z7-*-Wo3sf<^?j9A?3;0VT(Y2b#yF_#totv&+;q86E9X6e zv=m*3lU1|1uou$bz+8(Wqf#B$)fCjvh5q;TG~!nr5J(~pzjhN+TEyYviV0gkcclI4 zxAlGl&%9YkdwTcvSEV}?2*2;sJ_aOs9cT#I_ZtYBB9@wZmGU;giwU!@bAh)Tc~&yC zhc6$?K2F74{<&JpfZDs*nXJV-i|W98%p`e+Auto?yxaa}QTF)c&Q~9rmx2AZ;#zMg z)-)IYey7v>(Yx)<;^9^C9%w}II%UBQ>Jthp7|#>-l?l^+Kc6dQ!*&Zdk(ocETKsol zUDegVzPVGJ>eoh-n37Sa5!okXB!zUGp~wuau_xkR(>%ru1Ql-q$W(r)EbBdWNpEeb z;B_1>>?uRW=+%wz<2jj13M~*(tLGKq!xF?01IUhN(I51grCwNDK!v{QThzCl_^C*uBLrjYGg|bXWRFS|G=>N z>OMugrex=CJO_k4RiKmqNmsO;E-)`G!FOqTmoB}U0(h+$R+vAWGBpKaF4 z;wmA$#ybW(5mPoY;kaw<$pGwyS~ncrh;yKujY&bmO=$6>;+|31(ShUIviTdQrLl_~ zM!0jr^rmF9GsK!EZ&`)1h25}ppu&;3CE(!11%6>LE3oF+4~!*EsH_`sVrrdRj_gR390o z#zj2zL?ourL4vbr!uW*bI@wymx$kg`c{peh?tqEu9z(|ISK&`O{g~mdjKc_Li&Lj| z!ywx`1rUNj?@5NX(L*TDK!YeUhh=JStfspQ8PnP!q51m;2Dl<0`O!9Ef9mK=$@(D+ z9|Cx;aA<%ZdQimAa&VKYA z-zG!utP$LD!RpV%Y#4hAg4cPYm#bKQOF36zi`0&`oxD?H?y!LQ{2Qk1E<>LU8rv^h z&jgm{S#DesYndby&h*j(=gOI*)h*6gri3!VJj;O&ubx+O1J-mm=%U^hgh!7aGg^z-ZUT0*`RJNd?|IGjq};Ya!32 z!?Tgib#fE5Rj!=&@fNaG~u4@ z*qqf0=QGMq@z?9EhB0r8GPXrOePi%h-TNK1w2q=EZVAu9%EOdIDhh)+Z(UVe>nAf1 zryz`in0Z4**uv{E0}qnlVkG!Wnd7%i1}>eoYiyy?1a3uXUY611z3qoPkk^}kd_z(_ z;|JUMt&~MX1eJXqwFWfsNrJ!j17)}~wYRECdEy-2Sm&&rmciz#3bFe0?77|B7!pq` zr){?k|ednZKIP*QApG_tF zZcw%2wj3r5(o&C?%DhqSfz^;Jz}{JGI>8Eqf5T3`t*RV7>K`kWD)o$+0rLqK;yILc zf-GX}sRJ^T3$c145fh^x%`ih9#$g57f_2RC+n>25!9_9}*KrOSc}3Zv2qlfzwLgK! zPq+G=?+7n0Y4>L=CqXD*?J}?bK7SpvoMc1o;D9iG?Wk0AIY*x5^i^-(HAQl?>Dj5| z9TmZIdWvx>8^FdgtIq|gcl%h;*TQE<@BAoj#5*>P6 zdpGTeo~=DD@YgD(Q9>}{3IFVAzy;8y>(d{;nRQ}NmfM%w?F0>bLhrqHcfIfXeWtZc zkd^nY`fiK~f7IDgO0JNEX|x2C3?XJ0hzsJSjs_99ix{NGAcXOT!39!KqqOu<%?RT4 z7jc*8lsSBWlwe*7vy!lfCL$9F|7pe{&vhTl{SMcM0y66jFX9IRB_*L;lZQhXvIjM= zNK16247fI_OPnA7O-pZhC?7cCUwBIU>`He||CLHX0k(4?;!7y5S?i(Xqhl=H5d(zT z9oYU#rHm3b(8XNd_bIso8|4M+t81<#S2H=G*AUM%sN7YYnD44_XH7r^`4c>J@Rx; zvwDwV1iC?XoUf<)_abHi;X^ke{1m zP##us#~=?I)Bjt}lgwcDt4t&lzPS*45=-zeE4B;t9DrbS{sZHKv%5?}tqUmUDI1E| zLyEQi1eEh02J^~=9Slm&h>Daf95%8`B*@rh1FcL{0tSz10p})!y*c5HWI$M2M=VxE zN@W}pj1IR0A<>r=pu9%Ks$i}&h6J?pzHt@Ff#tg7hSwsc^gv}8NmLn9hZs$kt^a_)j^{l{-rsk_peIA68QcKt$6lhH161wJE_qlGIArAF3Mt%Rbq zttyyE5j%JD{T#K>J^G$D{N1wwR;hgdo{GF7W4^$yfNu&7hM6kDHNp%NDrW_1N*3S| zkbit&@$AJEG{pjLYNB$d6_r3|;;7{2R8@W&f(}X>P%QhqNBYFWwM7}$;G7|_6=QuX z*N&bkUwO+@c(nvvoEVLuI%j^shz$IG0r?<)&p^2*dD=JxdwHz4kl(RXFeHXMB^m={ zC4e6N3i{<*JwiRW_KV~uTOi!^S>9F%?bX)`c%7;(%+HEH82Gj%8PTlqI`@$m>EoBH z4cm9x<5=idMca((*}BD2S8Mulq}u}EvvkT2e1J1OQ-litJw&cJe{RsT4gTG4Nghri zBEi2~UUU>wZ08GC2b6+fTB+YWEJwe{fot(MnR{(fFA6$ESt*%+I!}=mn6z!nmAZ?L zqpiqth-(3v9pw*2RMTI+M17}=&OgjvqP$*uzA@jZ&VAhC#a>p4 zk}arwgs~xUb0<+)4^lnJ<=%6_`&4j?6is%+0!~p`J%!ju6TrOd#>a5zV#;`upD{TP zT0j^6PSRWyDyVODmmimES&Hm4ReIo3kGpe{Xn2AbNJP_&iqKczYB$9GIYmK$v*G2Z`83jW$;?e(CN7@Y8Z%XRy^{jkqb16y8S$(efp~pvhAycYBR@ z1GuP=TH^%BCdKz9^-T?{7IUL@lsA(12Xp*2ZXVdaK*B^j-0vx2UBts_N7K5`Ic=A1 zfLjztNLQ9c(4cqoUXkK&`mZbd;O9^Qg8PkgdkET?obcrFi|i5bRcKGCw^q9B5U(PG zl!z?+73iwC$QLubOz5tY5}|5LagV|%`pcv#Ibk~nBLNmOw@lPJO_Ej=_K|fZ{+uWX z`Oezo5M)Z;G_flM3|K}-jH65M7Om%ulNd~8rw#RJO1lO8C>TLFa*{ZvodI1jK@)pR z^-J#R68S%E%yJ0$&2c8g=Y`{r%XSUv{g$j03_*hZC>*TyKL_8gZR+I3%+J2VBc^p( z!ob6|YRJm1Z}2xLnY?tG)Y4JhOq_pzNa;9`j8qi|C|Z4QGrSYGhqt`RfIKf`1-&K; zOLUuMINpf?bP^MV6dYGrivVHv$o!_*UI&Frw+PaUgtskSJTV4epwJM`L|k1+SeGrF zP8H`^$Y;->zm~ltZ_I(RFNV0QC#C7{lZ_1;D?P5zA}2SZUv%e#b5l2BfMe9JM(kNq zvo(U3_~yB=w4T4(bkb1nNx;upAMR|j4J!j|H!tye8K)I6@zr0LTFn%I`8_NAw@S1q zYAPq;g4HdmtyRjFMA}MRc=^Di^VmVNy-ZiExMH^{7NwJYyCfxsUlWB8k`~G}@yEZJ zH5Fu~jWuRdd#mI4km@#yQwn+aj|;o;+?Jz3F`+0@vkLqjX=v?5BH}xLYbqBl9O?2% zLkBU5;qa~0m9Z|`1anb*FUUzk2hJBOHTO8y_8jt8Sk(+|r}eI*jmS#-`3QNs@dN>= z@6oV3W?x7p&vKY{L>#J6|8B6c{Vpp_jc>a*1X5@nacW8Fp^SZae^3Qxo#aMkXIilt z|6?zF0tYl*>#ju1&)$nAQ8qv*EgDEjT$gt3%PB$tw~JK}|Gx|&$m5{&LHp36&{oxF)_hFFn7vleb^44ACbPt+;V??p|V z2>~NCq#2#{~HYoQ3B!Y^mTAB=V{(OG}fRHcpQ4T?!%0t-L5SpG=S<8wu57 zIvFvy*fOh&ZS>_@T=g6Q^3;pQmYy`e=)h0Q9DGY<1CQhlhL@pD!LK9V?q|aig&wn! zTvjM`Tp-LdDY)&f7o1O$_2p+?2Z}CLc=2%9husZ6~K(h2;Rf>xl z1JOPZC`-QG^+%L^SsyJb0~N(8FZKAMLlQw1^7K=$3gNWmul1{wG^~qp{E7{H?!;Xj zy!y{}vT$Z{x8~RU^;+hgiCM3spW~EwW*o8P>y{AOeTDv`4DY|JD}RYBIcqz)j#nEF z7&)aeE3fmRlw4X|(h}?Z=)|4NI^0O1#h-$iJw8g*(R^d^**YNF)nUwG6?c-d7z`A6 zB?~Ji8@tHkI-}fklaqjR=cCa7T3d_4P!iTG38Aa(X}&l`3y%h^TF1awN)lB>7PXPp zPC{5*I?EVN-F=y>i$oLjv5K#Z!g!BZ($^wVbabDJ|9857cia+IAY~q);Q+y3N;t22(bYO z8&yChVXURM*v0%tMxAEd)sdf+(cz9#Nw<3(Qc8+?K}yQ0K%mY!Z#K-%i+2%!>i|qo0Q)kz(~dT1^mC_*D;o?-Yei(^^N-fiC-3` zh9-ZFRR3Y4R_*q=)4K=_wt9bnIwdB~b-g&36Wia~ja#2*gsA=FqdKhc4fE*pNFb(O zcc4*SEL%7knh>N86Zs_L|HSqCEc|+H>3gzDLmy;-%06A7tk-J*0Zp~5^((JQ-W0FX zi$tYoVn+m9QtoWrd)@y2b?o=fZqH=~C^7}L#)l3mZ%QWA3L@3*YII@v-RhEpFxMu^ zLtH}}tXCT%e+!fO8^Kcgps>{N`pdMm;w%9X%p466!AR*tgOG`&v0^aD)oua>KbWAz zC4N3*gna@bCB+qQ2{H4-4Wfosa0;A<`V*qg^KWjvX*}Q-DZf`qMx+|agz7w)O8WcvkYU2Vx;SXmELhMvq@NWc5 zhJ1huTyf|JL@+?%4>#-I2-f9x@i&5{03w+7ZEO?OC|IO_||gYR3sYcN^$BTLKgA64X6Qt;!;305#%0H-UrjX!kB4?6tYn6xh- zg5_Rfdb~SL(BaYljGyDg`S1ZEk$oZ(|KYKa8@gNzK7-2*^SYC-`rim<{!aws5Tc)Z zox%1HBeD#*SYSrK6ot-*Nr6WP|qh$6HMy?_y#4m=nTogJA3^U|JlOpPKbjjHevMN|9ymycQy(9sH8 zcV4WZfi%DXHrRd$!b$8LhybCl(;|`p@KFQFpt)VvPG?E&@!GCRFbgZ_d3bdh5pv>y32|btK23pl@>C+Y)HabC72X8^-d;L-`Pm}i{C^mR7u3rn8#fcd152;u6 zG$j3rPQv35Li%m-b+);3AqI5mm)G1<-dj7o&}>ZmGBH~ykf6};G+^B%N)A}s6aBPtZqoR-W*k^?D9}sIwG1!eXZ?>%oE%A z14JHIbrNidt~~F0B5Z~bbTTwM%v%jo6h6M(Ziq~IhijO<9r--4L)!ZMii*@?gKA?0T91{0r5*35Wi#IIS90=xt)(?zMqyF}Kw%1If_QZyWiF z-1jQ6@?{vk!Xe9ujuFq*o#rOpsCwJHNkp>P5}9cVm)ye`fb2(oJ9i zP3Rgu!QlrKyC=NEcb~BXu}8b9txztYxC=e{-IWiOp8iqI0V(4CaY_avUf~L4hg1NH zcz)Fv1W_-yBmmG5=APt>My7%dmv{!6F$*B|n1C_+NJ_^oU5d1g277c*3p2;MfebQT z1#GA(_<4{Y1{YalY|h+cxmy~2Tw2d=!4oLr%o>z2wV|LOak$^0!cw)uVWWCP1+_jFPYu-&-H+dOmqej@eVT}7cx!)mUb{CO*2wSyK$$k(L6{oPE zt=J2Emjc~8vc89ExNX9~CxgCblvS@I%;RY_|MQ;iRuWL-=H8L5hVv))wjGn#pS=1; zHqQDE6KR!n42F=l#zr7M4*1D6z)m6iv_fvfjzhJrE#-~H`_(FPD`ykDF7%gW3G}wK z$aY+!4B`>Nd&@E(<2IlCgyIg_s{ymRx{%j~jqBGLWAOWL5rU|VOF*E~Q#kA#whuiB zvRjsHeY zAx~H?hVW?E{I}fq*uk_{lxO>hU|M%g>Sky^jaVUCn`R6Ct%=fS67P0@%0NfLafLzv z7gVm(6pZ9J?Xewy`7WB8j}rj(4WeIEqczW&w%Kxg+dOpn6)nwV@Hi(%F70lCo%OUa zW5egwKTFKYkw0M2Gic@MITggZ9P=p1h)ox1S-F;F=ttf7@o2O-7on4y1EPo&tb0B^ zoFH2Bk+zswdt#YEpBVjPWTRg%9f=$QZ(ur^nLEBDR5s&DwDgk$(C&MwsxwK}_@~{M zOJW?2^pS?`?)jf~-@|{}eVPP3C&E1IQ%8>t`G>(?8tsUXN~3*x8(Zz48tZZE3C*OQ z6I1E?M04ugc~X_)D?eFX%jP@wer%TPTlUpJc-wwUy25*yGt}B`%MlPeqDRO1ilX8?m~`YXf*FZ8vPodj}pl>R71-4q=qn3G-WT z9%5LjjWasR3>q7lHc(`@jQfQ1^1e*CDZDN}D7H8ALWQNtO4aym+(W6)zVm|57lp}5+YgK%_V zYeh-1omuT2L2L;;WjhJBl+Bb}o*K?gxO!_cenTvXsOZqm^g@-ON{ui@;k(o^5(Ha^Xs|2G!9Pu}$Ib zlt|i~KYRz?>FE8(jvS|Pk7{S*c3p&o&qu-YI1VqqfFsaO2VX;Mztn$sHt6>1qWmrkJoUVaqUAro8r|9*iIl#mycU(7u@%4WV5TetU-9tX%{cJ&SaI`UvB1eAsTh-t zkY)GA!f5_+S@8i+RaLoY32qYue3wUIW+!o~*@jCnHM+#EQNk+oyIBj5#1EX#Z0hWy zLq7_NdS}dX=~%{z$v12|hM+lLaQI0=&N#plk7zc`q`p92q;gAI3 zZLgAFPHSKm$Q5DvF^cG*qm1EJ&bn}{1}@H@*=s@rEe^l%P0kk@q4ZVqdD$?00r3 zL!oVwSUwqMilSD;Ep}2=U(&MBlX~}VH~06@_jcMh7xj=qz@Nvn>hopY)tcY+Ur%nP zEguLmMH24?hE?1Xm?`?KjElEQoxexQ1a9cj+lM^cehW3VbW8a4h8m0Id}02tq(pbu zO^XURRK@+Tr1W1ZDsc}$Mg5)i1w*Z4lxbqLfn#07<$wSk^ywe}DQ|NfZ2$a_kr0sI zUhY*fmg@6NwY?-`EGfTO=B*cF^`J8z4 z`=@<+vl&tv;VGD`5*Y({UJbS)m@+#$qiX&wxZL=5XmO|%L=dvUuNgY>sOWd>Aiz>$ zaw+P&HPI`m01>flXNXZ3ZUiZkdX0ZMAqYsd9&sI^u%|HBB_JbN7p@J*r7lan12Cz! z#J9EHkDlw?*?VF2@I0JLD0OH=$!nmV0F?FeifOIe!JkeQR{(qxV1a; z5)LvB!k^hEl5qsP+1?K-95yZWxO;6F3Eks0M%Yp}hNhZejxwfx)_*gS3(VAiW_|z7 zNQ{3oQXnM1{5$dD2KE1SNN`QMADcN0?f@JTj~xIC@?*->Wsn-+kT^I0k3+%<66vJQ z&Ic35XOT8wh^EendUg^3Mcn|PD9+YIuaW|TCu3Magby-zu?7GX1vule0?t&BOQwRG zjJJOPojy$|p!m5(oXxD`(1=qY@mgM~on3Mp;Cl#hK|&oiM;Y;EhCD3gPdI2*phhcF z1)(C?sS#%Oglg4wQ<>mSDzSyNLtrb=1P-594T@13Rn)YlXfo{L1TJPP@>KeJJAWw#@V)r^hiZw0rD${b|QXMoQ9|2Hox};wiv_;}a{!#=bF+IZmU2PVc1Ds{jWS zN)CCLJYs6*&RdvL+`+hzG^&5zx)x6@c_0kT2p~k1aGlab8K#F|v_w=RV4$~ArGj)X zn%6ZbK!^NTqq1tRiS9>%nTDHAmd@S_q$J5v{pk29At0r-{cCV8|OwHy@_9h z7!p;jxd6#w*zsVv{qbnR&pn8r1lHS;^phWpCh`wJAd$xa69FQ@6hy8S;WRrPf0b`p z07P4cbh}i7g|wS6H!?XRs-Jof8>$*d=sgY{c04PHHCVs2Lgl}yIgUb#?$cwvf=R)NTRy3mSinWb$lZ)8%7G~l=lL;7d2K(E zII{$Pa%4)xIm|(TPzCt6NB1Eb&GGXl8?!|oc@db$4iy!rG+cyypr z1%ibG^B9)u>q&SRo}}AxqOsp*k#YDs{rX|UpO)s zY^?Rc+c^AynjU0~M*jg^x3 zdByypbxbYaS_trST6L(u@GO1eqgC^2I5AO7gvej{TxM*$*3R0nPFvM|z|gTJImffR z6PX$*-i{ya=k+_aKg`S;S8F#HZs)hU%P2bZ{zPytSHhn})l_>f}^SXSQY4Q3iP1bWZb%%4zWc z;h_sf)|bMxGm;kSYf)ucvRRL>jytRDgLRc*!_agl$eNbJkv~$-Q6g79J9@?Z`_)P) zd&hmA|7wM@v&}X8^-V?l#sva&3Zr13`);Zd?Xp8|BjdQh!l*gB{Vx4LszFqFv|;W3 z&kcK5bM(eZuHB5Zn@w21mE%U?oxAFK$)m42AqpkjO5{?=5`V(*nADyQ!2%<)2nP~C z7Ey}QfFMY0{6I0H;Ul8Y$|rsSH`lf7#FV>+jgJuY$jk!^N?RszV#dq9T%U0G=xe9` zSeOZsC9$@0DWDmjfodCapUaH_saMLNVx&~V{Zmo{G=p0X79mBK8)tAMzh$0QTYD|d zEQb@pwuDc4p8Vu(F?p?V%2AK~>{dnHvY9oEV`GJHP@)KgAzzkrYGcp}qNLv=J;xfg7J+_ z`iNc8uvE%LIO+_o?sUX)H`J`QoRZ{Me1{SJgrV|ooV5*r@PAW)N!HEAo`r6L^B52!@+y5<;3oZN=1}87B30TcS(Eu(EizOh(v`bFxHyl1moRYg@f4NE6rS`B`f3ua+9C&rtQoOi1ZBkIl-A-U9%ysS=FC`{$0fz?k6wt`_+9w# zXJvZP6yeOMq7%K>+_wgNtRek(t@JC9+;U>KF&vttiy5Js%iP&Pb&fZ}>^!EFMF|Lj zc}9*^M{UV==^*C#B7UWIjwhqKFSKTR*~65?SGY={MP45P4D)~q9r)=aR};)le`uRB zA)_8!GLH+g&E*8>vX}?awY2o6*ZP7<8wSVv87{H{RT->1!-FP~)rygj4l~D9Bl&g8 z*cMYq1dbB*Qwz;M*R>ejuivFto|9A%C#X@(*6C+S=}68tz=0KOC3m-gg!JRZI(@-a z%TZ@Kxu^mGG?eFB9auo@Mzw~ctgNQ2UiLDp4OT53*R6;KRG*lIk#zIV+0@3c*CUt} z9Vk?jUG-Y({OwTpCRT6MxRdH+ZrpHn1Vj*jNsR+paKwKHr{Tc==g+Ksmz%&Ce#_5I8^*$*@l63I}*Pqulkv6h1 zX9w)VVyY5BZ0dtfi1v$D^siqxng_>|YYz&KcV-uWhv|%_98PO~chLvH|BP^+ey5Xb zw#Gm6(8B#9>Ch>^-fu}yiags@W_40BvO&I_D2+_Z2}j^lRNJ9uLt4O?qyjjsI`nc?x6nb)c5xU( zh8N2M2ax``Kgn)zB3|vNAcS=~LGt;*z}h^67heB*_?QWWN%TnpaVlSrwCNuYUm(E4 zM?(8Eh$9S?K6rDb7li)1$t)jOOyj~l-?p?o5~_JMQ#vNW_a0;&7hx!>yWhwfbU?+2 z%17wnylf3z=Q>N<+e@TNJP)tqXU%=L+b#4PG5wV+4~h5f9KNxar-vj=^*u22Qq~$a zFAA|lGCGXyqM0}r;91PGp&Jw!!1?n-^=8^fEhvw^nzKL=d{^qoF!ML_&Q z*^viq2fZ}h+m3%F0(oA~4-qO&vL2#b!F^W;x*^92W8EcPkGqY;n4i?gTh{$WwDsR(rbaMV_;X|lgg}XuRUR*HpQWrE6 zD~RzA7scTX6Au0l7v=aLE=sdi>n|7O93ls0B>O}xe(lbd8_G%ZZ`H3nT}^W~z6zIW zh>gELkS36=9o4dq??|wF?ba7#+wnojA$oi{5Urw~lxY!~7ElCI`~I#+VhZ?h9xXB78Nq5n zrkA4Zpbb?kERQhL z2(eJ+O44Z2VPyO3;j`fIHo&86(Au}Aj4SF_sP*o~nfE3{V+CMQS}MqK)QsMnG9$1P zradg3VvEL zUo6V??|9_d|HYz~7yrSc;Qxa~Rje|}{l%irNTN;GljEfxRJs$;U#J>I9~J-}J|p_{ zzUk<8a}eQhT&nNNw$-apO+f7=j#~Ih@FL|U*z+BT%Wc`SkpQuTp4PC3Sek$|#Xlat z)-j)7cfMW?gqwTVNl*nIq>+A1YD>G&)X+oiWaYRDf#AFa(T(RICe2psWaUXJupSx8 zj1uL^OVk%!0`{#Zm;@EX{Ljg#27k>Gl5ZGLIHfl;QF-Pncor{Yl4oVh)R<k{q73q`*haZn*C?F24xZG#~B+0WJMh$ z)ls&BCZT&Rn7G;~4^%ENI2&K-V}#@ncZ*^ROwgai6LWxc)g`9oMKLB@9r1Jwt~K~q zEfFY~gTcOF&sf+|>rBtclb#L4FI~kCLLc(&l;Cg~VNmqsS6pCeztTNrF}P*0d9ht6 z(W<=df=k6-m#{(()B@jjKc4NcEU)sxAGU#}pCg?IjEAaffuBZdE@|bsoBk`} zQ)Lb8{zt?|px)8Jo*%>p-fQ}Y=7sMb>I&{d|1O7m_X7H9S*a_i{5hpzXIb(T8<4IL z0O@MGAmXIUbpinmdUd7_AmY28(UA;axhVHu-VNn_hgS`7p4tL&GBBrb*>wv4gX^7s zw!0Dfb@9-{=o+i+gwkI2U29?yopx-~?n=M=*E=Cz7blEYD|Qu@+97_I}VKDpFy`oMdV*5mFDwDRBd z$;3p}@i16D*a$>G`6ICHY%+pA%5=c$T54O4e=m}3P-!PmpPwkO4oA^NA0+IPB7+)% zbKRvdhi!__T}fsWVzD~f$<24p&ke{F%abc##2>C z&HK7P`kj-*Hl`d1vtsq84r-d7*|krQTPwLiq^aoU$7n=As|K`|X6>EvirM-(1N0G# zdHk6`UArd~XIKCP5}_xyGVTiQFc%?smDw!&y*zhF&fbZie|Z`o;dB3|qe-0F_pICnh- zQRnY7J9bRm@*|6q!^ba=3;7R|)SBd-m3|2e-nOy75>rPrqF7v4(}`ZkjqR0j54jN3 zGD$H(daHG06WT~452qGL!XI8F0(3c7X4{M&pc6sVD*2^gBV17#&TVaMWdK;z(mJ^r zjmT;-ZO@TmE5KtA7D5sgCd$bbZGMCNq(jx`xE zp!0o7o0L6{ayHd*HO&@Z%AGsaMOUEGYvxNg0H|X=2`roZEa`??r7h`*z4T ze2;XGQXqKVTdb$4UNI#=$*Z@3dkyy9s*eC;^IMd_xFrvlah;Jiu<^8p5M!=9HP#TO zu8ZP`Qta^?Z!7}Wm74#1X^U|~XCxH~qEEayaK0Cl(6{Y}Z&IP5TlaB<$+rYo)Cf}* z)r(^4u=55xS$t+uh(+G3n4`MjE0_q$Bs0Ok^IbD01JhUNIgDf|(4sSouHWk>;}cA< zUvm9&A@4UdU1DQD;3{h`xj9EwRC$jr>;{PI=x79LOgM`=^@i)}p_@8Ia@<;-6he4N zP7&7jFZy8ad*exh8+MyGHMqDbj3h>g!yzASv?kW{{OG`enKx>4r>M0l)swl$apvOj zlE#0_I+vK#89gVv^7?nW^o)o~X&x)$NWBxW4Fs%g8#>h@gUpcww_uk^Ug^BnkEr;s zFBS4=5ON z+P`F<$HTw z(_aVQW_fhEvdVmJI+|J+M*H?l=j(FicVXXu2O@I^x-S#{^ZeB&-A)eD8q!nI&B1=k zxOsc)RxADFe3CEA@b6M&Q1#!XNQM6_Mau0@|Lq^l2eE2l(4=iHc`OMy-XQzSx0n$hP^3)foI)x}?2bW2XPpn-Ax zxV7<^8oj^zq5|no2;jOgc-AoeKD!75MQ`Di_olI!vKcDYlu#&Uf%_e<*Z2W0;gtXT z*8`*9bcP&``ph|#~UqXS`_;6$Il9Bg+tq zBB~G!36#bpqn~N<00o~KKq0}y;mC#!>X_8Tx`&1~jWvN7be$x^t_NC22qc78KVe<^ ziYN??Rt!)`JP{L#EYgwzx_H|La?e;OZ#a_gSV|x4O8dqVH51hCwmVE9#HY>%cv#fs zLk#FxH@j$jL^~rAeDimm_fbriyAa0iySt!hd75rNbM3yE0wus_AbdBw@_L3(sSz@k zUl5;OQt!>aeZ96#1AV?Fi;hd8Q7Q3D+B@w(jZ|lDg)C768A=t34fcpT{xqz=%m3{L z^*thl+l@2s+zVs`Q>$E!}w0^Zm z0hs{Cd&hOC$emE@1W(p9yuS}Pk;YC|?_S7ktC7Oe-Q^J1766KZFIj*Yy2%C~@0f@5 zm7Rd~ACSA)M9iz@Y*TWtj>q94ZNudj1LGG%^9$vHWHdo*<8MJ;z{<`yXS+I{d7Wlp z9`+bTG|=T-7?;g{$77DnLME2S)|l+V?OS2;5kX!fKsVV%&j)@N3kl>ego2rianbGl zUi^wpu7Yf}pB|5l>thlnq+6&NZ(d%AKA4Zz60r=~#GyE6HceQ;Hpy&MvDL=e6kweB zj`lR-qNucj;)9boO~UsUmThK66uTAp=n#QL`DanltxUJw9%ERdPOgR0l7w1$!b%&zzcdD%Ct@o>BRsBRf$$u8p5;3$xT8f zlL#h?O3J3mC@>3ijmnh>ScUd`BSH^_llMNHyd}Si|5f7m{wKrlf~yVoB89*ew^GZx z!S!>ku0ZRg+#MX!sRgATB^63>s#DL=!FcSXsqS2#50?k7#$kKJIi@g$~kEiV)91h}(US)60(@Ku&Ny$J09F$r8W&?-r@7Agk%h6+N%P+G*% z1#bmz0r5&#RPkHB=}(okjoVVhpN1&!VGq83bve3w;3~LncVpC_lIEJPlyqbV=Lw~B zLry@ljJ=#E9<(hBMA3}4l-cjEn zFLAiH^pNc#S>Q)$gtqVouvv!2N@UP;1i}8b;K;n zD>lTh1tXaj+Ax^}6Msi@kPqB$VNuGI`)J6Wy_-hMB33L6p)!}~fJMO?hhqES@ldBl zItdVAW20bEa^`^deHx!?#ruVT%}^ zg#?WlyNFg})XO9y2}JRlj$lyMX>d4&nfGD(DQ@B2tI!7p7ke*~>-!csPAl1R-ej2y zeJ@Y_Ov+?*AVBcr+0GH~t!zsCq>4FMQMuA72W%tR%eCE_#pNh5%!}aE5<=J}xc@fMh0J)ZNlIkGQgZ2Xa-;SL-hx%m#(!U0vL&`4x@n=NSw2`EOZa9rTYyzr*$YQ&{c}C% z6mE;g3c0L`j-Ipv%>^oy})l1rS`$AD4X-YHUAshE-fK zn|AOdv(_obpBhaXcwVKdZ+&^WrHWhl(9Xi$Hjo68H{Hiq3=nZI2A*ZOt(PswG9dt4 zkx_uH$X1Hs@kclp(f4erc6wJyH}kzrgp~cM@-EEW1OHX>kSKL44|-M|&eBO72xB&@ zs&kRmq^h)YgZ`Y3vNq*1VI0RL#YJkQWm4MlUo8hRKyMAM$l1R;1ujSGS*-Uz0(e?F zdrb#U%@ecDGgzn7&YbcoC(4{oCRpsX8cA8#V=7-PI`!zyX*>Bd;h}e!=BzJG`p5=3 zw(fl6MM_?q)yVMO6rT)8ilBeg=O>46h1`nCjITAp8B`lKiZm|bkw<42&qoSmHCqP* z5o{Dxd5)Pi?Kd{05g)@D*|xzakyizK)+}CCgqYzRAO0W8&M7$3hV9m|F|jeRZ5tDt z6Wg|viETR*+qP{xnHUp0yJz0_|F^zC>*R>biTabzRRrRd+an8zzg)G_<1m#hqXhX(lZY(o+zvzpavGNK3gFZA4#9A zD)ZNE)wHvFXnR0e=+jmgX;`zEj^!1+3drK@ZG%Xe0Ee zq*wI5u1uB2yuAQL$lfo5`_thC#%ayATR%mjs!bC?sK?_^!F&E470(`A{(<+t~?(idl?`>WzTz}rv2i+73; zH<*k+No7nJK;1*S(&W`G$GrA%R1ApcCh`iq^KuNbto99i4@dZek@$~lNS9GHB{sml z6hiZV@0k9LmNZu#_FK@rrcA03PYTmVGq}AQ6~6v=pHsxrvq^^bOD!6%#YJwQS422?;^DBcZT)SDSK;%k)-@GJpHfOe;l0blT4upNM1KC&#aF&ta+Uj@C- zwO&Cp0JR(>u9~a{XEn82EadNqDZM5AtaTLHVDB8jkqG=t-Lrw>GxlNz33={e;2mqp z_bc|m29Fwl8D94o@F>vqeQvA#hgy!pP%qKJ(OMO?RnTtH3U{}_9$2`5jh=?TKn!It z3~xKz`$>U~>r_R!x{Mn8yydKej|?ER`Or3uCShd*|4o;=)a*Z;|BrMDg}~$b_D{N$ z^_RLw{fD}@IO&Ryt_JrJ;D0i0%id?d{jB-jo~oP>_feyEfZK2$E2f4d)Ud*z&?P2fXzE^FAaNYnJ#@q?*6pVXji3xsKsA>DY~M>2Gx{-pMO?N;qKC#BSB04WK@4GPjEOEx!iE=I{r@t$v zU#J7d)m)lP^_Fc-pemyExKh_Vz%dq+P8&UbrjW`4oxgzJ^{@}I<#_#BPQYd6Z^r=K zasfVnz>F!F6u>R-Tb>LuQ0jn74c1z_7E1ni#zgUt<@I3#v+S9NZ57_PFN13&1 z#BOAm@u0~~+E;so;XIS8uw|PcHz1Dp2-4Yy=JC(izsj_M@t`!Tf^S>^1-Eo#07qg> zP{12mO<#JP>Ap}!=Kh;PT!fHPqTGeXIgesLV+C7THt?OfvhZ#i@=k}qeIB5rw zTxgNbH^pU_wSRg6B`dg9#CFa-_63`%%S3^IBWS#!`fjt@_Mua2LvWNKb$RZXTi6&a z3&7kfiRk~s-0N2Z%$SfVVz2V8_iK~^GbU@Bof*V>3!iyg;|E~~v1G7OI^_b}rZhuhQoc5!MHqNKy&EaM=&mXjr(G_ zYQCnTS*dY5-~I7>dRx4P{_rJo4vJl3G6exKNB`L?&OC8-gcQ=B7G71JAx4PvOo^B8 zrv(_bU^RxavDkkRBXm#_-5I`lfe`lXjX8`T9AQ1qQO>iSi|V*-)0=)jjgH^dN(-DQ zdCyM4OjJ6cUx`<+{g@C+Zzwdi>mXXf(lvkMfXcm_9{n5s6RP};0ITS10 z{C!5VG}tky{V=%WbKOQZUafRCi86>b$bsSq$}yxkQDgPlr6pBAnwY5R{($$`ZD$MO zlbXd?Vo7?s;l2<01YPcA=iQcXWkGCZU%Sy#;*_L&al)#OhLwL(jW|EShMpr8UB)D- zvE@pP_%*5IT2>Xm)S->Xv!IY_orhh|XRu1Xo=-92xRB98^I?Q`4GpKEQ{cZfs(z>6 zwjLT{utTooS2K~4#g|lkrRPW6qXz->(#o4J={0P~*6`c$b{spP+we|mC?NX37we(p zk*_nO)CEo_-D74lMk6YIU5*g;T)1m3cPn34=ZK8EFJR0YkVmX`XUVY?+=>eH#$;iCj3dG zR@KoNiX!9CXxAvJgBDcA$zDSeiI}5?wb(HEOtF5dmCr_IgI#7G>TQ^H4n>Hu>&>oG0IYRb|0PtAi&2ROIrBbVChNU#L$XC)=<`4jsL z+IZIH>5Wd>$XX@nl^FJ)d^~%@A&nC+Jj&gX`v0IJhJJmI6c{?4{)>vpd&yqHGw#p5 zO7hcmb>N6x8-AmS&b$+xYEl|pb6V)IdxU+|k8!Q5!5P^A|q&`19jsl8XCj9cYl#3Q+4yv>I1Qe~yJ6w8iiUCp~(hlT*OIhQ`wsx*^4qW~9W z)K=hjhTCbfrQc!ZhRWjVO0k6U*g^{c@14;RCGl8^Q|=;-O8>Nz&UjJIwjFj8ylxU> z27on%zt#`$HHpw&KSU~B>oM9?mhi%Yjb~;N3$!F9EfWbgzlUH|BU6168dI9+4M`Bc zYLPh?r_c8yND7<{Pa!iCQ!UhYJpTpnF>|`87G50DDp*Y!-TCD9esA{0j~`D6re1v* zm|1&4r8gwH$keQ#sE0^M$c$FiUX~}P4mhTZzHl~9G>p-PaiO+F-k4L+BHkU*NaNj# z8whtS^(V1eq!iZzGv=y@3muzr;HI`2I0ySu3Oa_Zb)+|Km=Q#oiG2N~w*17z_Bzmh zI9z%t(#g?ffZeU!vbJ`Unv1yi?GtUNInA zN`Ne*f@_j&bsgd8(ysUSroL^aZN-#dI?jRH5=N6UgA=dWT0(ME&x)K2?m7;5`Jqq~ zpo;0QfN>WHjrvR8{`d&J8Oh{`_?R_gt%Y`7aksZ5>*|+Oc3<+6GJol$zUTJYufE>q z10(8G<*keP%Qtvq}kRO2K9ml{>e6_!b}FBKVv2E#57mzfz4p5H}lg9|w~ zX&>&sl63BUwI+yP1f8a#G?uAcI6huEVPHBiC~L5G=u7moSmre%ik+P7I*cM<1L3*! zT)i`TKJAbw&1RdrF<_Q=>e^W<F+RjE=(8Qm*GiF6K7JjGOL&+N#>1ByJ@1^fBR)l9*!@F367)IrWr%NKohZ)%h^hJgYzx$I& zDbspAIxpRuGU(2KHtb0W2;dlc3s)0Ts z3ZJxJ4lRuq9BJLUeE6;3jba7u7v<8E3qqI3AF(6{ItiM^f02d69}=}YO6rHND`>Vb z?%a**@NS|Rja}JQ{1cM_Cbj~tAv}0DWVR6L<$%! zBBAG_jK6fo^voD9SS!K8u66bS+P=9ukwVA!OzLlmlj>Je!R&P#i zVp#Ljv383$5u~JdXUPMeeYGtw%K8`9x9YGb(bmO} zbc6>*wztt@eIb-T%=-1~7d^1hMLXs^H0Xw}MQl~SzD}WJlXIpa>uI|zw`gxNGvbkk z6lr(AHNV|{&VQV3!)#j`sb;q5U$2nhUz_y9M9w$`ZW=na9&b8Mih(rrEOao`;Aa#i zv3x!pc7L8#yRS3uLuBHST<|dAXCMG6-~f7jwO+LD*WZZ&f+z??v17wL>-OLuhx%3q zB(ggyl;Oht-;i6B#bKFf&9iqS_YBQUDh}GuD88Bn)ZT&~&fCLdF z_h?b?H|1%9OFTeDd|{vz?;*mTap$-vYIB5%wuu_~LPR=6_xM8YhBDupA@Idifw(Ui z9$10Oe}1^7bAj2BG6etTMx z-p}>U_Vvw*k+5C9oz6Lf8-HD?v*X0ChuI8YM2D&ElWf_a$ zE8u*^_~vESOAqV&jfK6Bl<(M!4(I>}XsL$JODa!2LN3oBnEO z7Ko9OTF`R9T{DGq>XJatFE+6;OLR=>UBJ5nu3vG2UkGIr1JQ6TRs?((92~%>GD}tF zQg{Y&!#GLLkQ=Utvl-o>jw4`bREjR!gjuH1*jEpgyR`J|UulimkXAoT7CkQ_RoJ#n zHd@!X09qoRtLYU|F2-vTy&ElNnYoe>6 z37!&rQ?5&HI2GAcG!lA26FR0WCc88{FzkqBJyjUsw9ph{3Q(vx6VGOaPbgC*001MJ zH?lxQMeAvkcPNpA+uIIX{Gq22DEv(NVWR?#RULUM;glGlxRQ@lywi_Tupe|C8dJumVzo3xTcKW!lK6u#slIuI#kLB_jvOqTYL7s-nBbT)I0~V(9EaNd--}B=!lMk{Vrw zgaWGQ!cIXB^bnfOKv50U3D-r($rMNn(?`!zJ%kjK8eH^;`Cj@&yP4GCS9_Zyfjraj z2BBjsXKZu(44H$I6%=xf3&0kH>4m2T7S0NgDegd?LGC)aqFg&on?o}9u1&eUO zq902L(Jnsl7Wm-5s3Igic88D;o{`Sdm52!|MR5?lQUT-MhatPQSuNC5e%#xgf2h2FgVc{_W1J(1hvuF3#RbY<@F{6-Yxk5(IE0CerND3XV=^sqnY6(&-(>MZ& zzm!QeX@znJ3T|2KiAk#|`kHN^-X+R#P@R^Mc@?p)G8bz+Lh}I<5lA@8s*jf@mHWc-^;dZZ^VmUUcs~F4jiNo{+*9_r6vWgXAe~A1b@pn zvXP=!>d$Z#Le`yzAUdbSoVXv}&-i zDU4sqEdp?FN#O$StpwVhw#Mm=_hnPiAbJ3DNvctc9Ig`Rua$oDWno!W*<0z-ph95BkSvj;b-Ln2}Zn{o9#dX)Q zr9G|chB^1Wb3gMSpvm3c+2wWVg z8VXNE=oQr2=Cyx5R6CiAZ=8)(`0R{H1B8fFNWp04faAGo;q)QXhp)k;yr5dO= zo@?tOsOlTWhmpKQ#sUNxwJd5*Zm2W08V&c671K2C7SACI&Skc>EP^Biy=J}`5@n_S z%EB&_Wv;Rxq!ohZH+~n~=$$$%>0_+fq?k8Zv)b}NO2h$G9`%VHK{kEB0>6bh!mbGS~o}<~6cW9R^ z9bvN*R2b@T=M8hd$tbxf&!zlQ#oeECYAvTE!JxJFAjjTnD*k4GO4=u{z&3m|sD1zb zG-bG_SG%6BN5N1hl+fT!Ua7iq=d^5Tedu@Ql(^N#y{^$0S_0I*A*iigg}xC-_={_yF!CY!X`k4rUn59HCtHPlMCA4Z98w^@yTc!UBX&n~R3_ORoc3k5Vt;>BAih)3t?oBJqdY8fhY1}!^%Wg0tGcmKGs7O zi-)J8dm0Z2|Ken6l9~R{fC$*;HMBxr{+il*v>B9Gmjw12;=+4;U7O`Wb7iK*$L|6f zIuyUOtASPAM4)Dxz+Px~5FE&-zZD$t4j#30mA`qNC{^TE4+1xi${sGuTdnyHII_5E6llVTHp?Onlu+k$Ls5r1(c8@5 zieAiBM@Oc$CT+h@Z<<*1+p_uwHRm*^cM~Z6dET=4=vaJnFMlTRDtCwfwxbPF{Q+{IE3~oqM}(F?Z3MsLjr+)mWsl`E%zt8eTM(@3ZfJJhF04KkU!|N7jE_ zNiqGGKWe=V&4+&GQ?Erp*Nc43YV_u!FqZTx+1efNwP=QJb&W|w$v-ib*P z7Bw_b;^6D^Z!4ao(AyYa^glV)U;VDEH_;jEzxv%5lTBZW)KRAFhe`~;$K zEkM5uFMs<-zsoLB`IpA`@R!C1;7v?u6+QrjQY{IeOTGOga67qZLtQX>>`loyNe}b&spi~miK!wenJK*S@GVXwBO#a9oBpe8Ua-zF`k+$gH!MkXJyERjldj zy{VSE_1g4f{dbTC5It~n<8MzVHQE#*-up=)y-K9o6G7f!!M&DQUalts(ZIkdc#_xb z|6RXZHgOI2g#S?8blVwzdqu2xz+DkWcuBq0-*@(}ewY0t)`+GIZ`Q1&}5-{);qm3qr`~xBK=5#(SRHf2mBsdEwyl7;5&7@u#M1 z%bags!N^BzAVVlXzboeGi(q{R0HQ0Wya569yPZ4-qtlG_4hv9X-*m4c&j}+{CIfMM z_Z0&1b^8CYNBzh!@jn?^VnsDP&CwS`6V$9nDXrxSm>OXM=yxjtw~am>Na)yi-`F*O z(TrNJiUgyCy*BA9*?4Iw8D2jzu;6{sHX+@Cr$&$>$mbIys>tKb8H(jEZL+XfQI77wJqmn!9T^li5NNB{VDx4}2}NM{0bPb^C8iq+HgpH(}5rj+!@8J$r@ z{qgU5EGi?8hkK!}f$%q)wgUXSCfAMyr&xJip_UYU%sfif;AM#4kvJ>S(OE^xexB4@ z0WAakyD@)eQWnELf@wlhWX(*cpc!ZbIJzYU#qt zAQJV!r_JC|H@~F8+h&NU|0|CIYhIAmALR1@Tq0H!Y-DiBHkdF5lUzM>O*>L8 z_Z!;lLGM5Es6`RiJjNd@DxDU=s^D7$;ROJB)b@Gy*FJiHJgSk7m?F?*jeWc8^3Jl! zF%WFvxFnz1-x-oULQjN!AI`(b`YW6VE6XR}@09v$_%IX{P8fzySfRjamSwT`&ol-T zJumI(cHw6{;x?)s_wsi zY46t!FjCzU^+Hx1qpNmLN%9d-@r5mcjS~f+vmYAMz(aCumb) z%0S(C@BAGW3{_+vi{%2WKpWTtyQ39&!l;f?%1f_wG`(>ubqF9Og239{SL{_+aia|N7(Jrlj%ft-PS*M)J=+pU=C6BI0R8T-PCBnDByaI4fPU8lpx?#wc-}QPkp_h{+h0^% zwTs`lc=-Hi7J5n`kMXdHa@mI;rwq8LeT8l%8noj$&R!Zc^1wu`yzd!}uH@t;R2$!< z>G-0}E%B^PFYE2jP`~O}mRWqR*yCq3w^nbnF$Q!cxxjJtt-y;ehP>bGSd?*Gj>gc9 zCL)QTo!ZjZ+)B0AruHakAw5djuy3rhR{L6r1Su~F_-Km@!SE>T;e~hk_MWqo#bk$~ z38r*f+@Ou_annZ1QA5U@%$UQ(%BMJ%l;*e?qn(v;fZUde*W{&Yk{Q#kF)b(OW@j$m zfEzR5cUvlX_+m!n5`MvI@7`mWxGqUgzgoe&Y%n^;u<;WE zi087|(%v3q(@|LiFV-bKVT2AEZk9B8k`=*VKO$LGV{3ngehftNT2q+L>z(ThSaa}a z9ei+hL)9g)6uihqQj$@U%k||5kHbz4>oLQI~@`(v0>+3%f!?` ziMy2E*6rDG=O=LL0q8DfxY_{wuK7C8edouw@g^foHqZ29Z3xl%JxD3x0xe}>Z*-pugL4c;q8LYb>g=Zd-F&P+voaMZA`(AK-m?p--?;EPR-CQ=Nj9H@=a zB6C-BmUY#3QcUX89$LQu(|cp86pq4;u`zCci--5%IaSKW&0`aQeK)vbcHf)Y86%yU zP?pf_^r$zO!H{gOUi&RMn{h`Xu1!XU+^d}&DxWCt)*k|~|F`is+iy|YCa-mi3ogcW zk}oH@=aj2U=``OclUyka2`ltz{N*>lxB9tC_<$)eE!3pW#TzO4i1Mi!zAjr z5@%L4rdW0q7<=;}>$<6Rt8q5Wb8cm) z$ylOSOE*npu_||N(}WEz+OK4nVHaWJpu#GFFF+ZFoxk$Y08_VVWje7GXT!l>5ylI9Y2Tms$I&O$=1nUd~1$L{Scn=7|~zK<&j`q z&&wPB-nfg0poI5D5L;wIBPU73q|)uI?>x!4-0JLfttnGb4NIhLjO)zBcbJ)ql!eSd z_YxQSEAE*My*TxR7Iy4kWGVv*@z ze~$r;K|y_fSbenc^mRN_23fyc`ZWD(B}l6g8DM!6yP@lCLSC8 zHbUg$Dj+AID!bJq>nL$`d#JCb{nHq>yBmfA5zo%N1T7at3G5D2(5wr*L7W}q#wh2? zyy4B7ZulJ(;$W^IkOKJ^GHK~DKfd(?Yj=>x1(hccBvlPL&B0i$zHU&PShu)z$uiCI z?MzhVk1{|LYLBfj`cMfFp|a zKkcWO|2?7-GPnTysj_E8y6rOe-xoD2e!sJ(P$8~fZ63!_xmWxcLMOX@Nc7vePh`vH zTk98;Ghrme=Zfo3G6P?(K1aN(o56O%9Ak5{PR2r z83@XMV5xoney;X?_FSsdQx+@_Y)Sg@Vz}tfV5Oj3!Tqy(D91}JMgWfHNfMF|oMwDc zh6*%Ju$DzQK@}5tGt#gjsRE)DTMckReekgmD>64=g0fL;DiE9f`a7SpOO#;M{X3sR z{&zn08}-*In*6@7Kq$Z|1?c|)oKl~E=TlFA=ToaRE+Jg ze3lZL;EP>}keVYe20B#2FI$E(oJ;^{Lep9N`fLc17%CAFZoV9c9rapWCO_Bt`=_05 zjD~H}S#|X*%)IAzlNom$ljHH=brYLM%;nf2%nZsl9N{cBS{nY`-zwnM-zp%slMUg? zBWmo+mbDH#(-n`!HjMQ*^I+4S#~R@R`d+N`6s#DRe z5=KQl>MA-KX_CM&yuBao0~YVc!!%xy4p{s(*5o^9L$9O6gx&WWQ1xZd`ZPI8mY!*PaSLDp4kpS0g8==m)IRVjm(XT2HGwfV z&@B|u*&t6L<7l7>YROEZAdo@@naC=z#CB4VyX?k@$dVu#k&rehu|+T~>kQr(6*%@_ zOA^bZhPB6~r>#CNA(e`=kZev!#*?H{Qr6d>mfR95@H#tKwW|Wc=_f7z{tl3e0*!mX z??%{0QN`$l{(%B)yfKlb*^qTuW!b!}Bw$u!)Vi)H-(bA)7~oS@uD_Yoi0Ge9sgaVm zqdtWt;Whzi<{Y2*SLZIoemA-$YbLFjlc^f2R(;dB(@-G9go|B;TWzEh7`f}Ne&Nol zsNgT2xmtB#tzYWCgR5P_(bs4zRjA$tIGLrlhZ|}pm-fqYE)w?{kc$ox0&0NQG>ZL{ zFIyCz5Hm*#;E=~{BdXN?r^LDgI_3Ty0g{I--sulBT*Hg)Na+FZQr4^V6oy7)PpabH zgzyOm;vJ8#8Sm%l^tq_0Q`C}o3B7fZa_W*4D}(y00>~9JUn_e$;A>V#n(QSKm0{d- zl;}bwrK}HC5BAyD?x<5#Y6-lip-YYy^-=q?q2FL^cvOiGu!2BY@rG+MJu)1Oe{K*o z>s1|cVDCKgT6JLYb8lYe;PU4f7Mc(V?@?%Q>A`}-8&ZuRZ*-iUr5Fpd;kRCkSI zEE-YibO=@z+aiDgn0JM#UOQZ*H^_&d!e4}ET%Vyog!j|Ax;lyZ5R9WDxH073&!J+b8U zYkUw&Y}XEYOt~l6{ry9LG0?)@h#cg89nb*OXj7@C{nG#xxJA^Bk_U3{IcZ-stI0Xl zhO!lb>Pwcl_1a^kb%Z}|Naebf6yOc<;?KP#hd|W9mq*k4RT;uH9Ko}l`zf*cpV9HlN z@Bt-2yH|Cy-K!va(>z4NL=>LV52_G*byT=lXzyvwOw1;wT4G`x4)YY(00=KQQf{-BM!7Og8#V}+ZS9~aHq zFT#Z}9wzWE{qXcOBb8kr%V&hc+;Di8FA>jPtij zu5%e{Z=4#L!*7a2eohm3ZtQ!C6do|l6Ki9H88X2IJ}ZxXp%~)Hv;64KV=)^^&MgaU z<$CP=P>KdJkY$W}``rBwP(VhJHu!b-)aIkK+aH3*L0c~ezke0QHsaKj7yKhF2-W=LT^=|sk zVu6jhPh%Fu9pqgb`|45JvmbqPE)edD78^TdG~KhB-fou*es(>Ww% zBoS|m8m~$kjO= z_4ct2*oD_icw57*HTHkHpL%R2CEJ(-VdKfT&~b_sZk@Q|4)Hf$FG&`ip13 z52cHQf8hNrc9~uEfG=s=3d$bS-YEB+4CYw2cnbpxm{mlm?A=|egnNzE8lwHD6?%3Nu^&%T+QL#HlD6Pj$kPuR6)q6bJms{P;tLg zEvEQ6T(Q8z8l6=tHP1{LUM#o!t8VPgaV&;@-Q9!Z)uP%H3!W2d&g7FuUQ!-sslC%L zWi7#j$L=EC=|GAfmCM=WB>01lQpmn`rS7L=zH4$X-g){4+Qhhm{9^y;aY;ZC>7)?> zWVHLtYhx$@*UW}(s}F}R|EhHsv0qsS?HnA1oh~<)1DOW}1)dTk=8Jz@He8xnMuz7S zm%3p+?ZCzD+)+;n`uXzF)=lghwadnG>4h}R>cbD9F>&*?qt^tL*Ba}IlYy_OB#k!f5f-9RmhamUWdW?kJwaRG9AQ{ z2W;u0DFLaFxLlqe`ovT5aXi}Yr+Ey^Su`Ym?}o|J5bKof_p&v5mZb`U=q;9Nnrwtgi9 z_5g5W$KfbGYs@mq+b+YShju)9w|8K}^^ zyK&WQEjp$%?m~E^N`DfXI=kc=jV)c4i_2H|t*8N%2>Gt#>;O!^i<(VzW0VngJtxCyX zczZ^0Q?c(hKu;rYJ2QvFn;clWIOA0sG`E^eqO5Fj8+nE$Y* z`WrzNCXd>zGkgiY0)IgWxMU=CkNQF`aN0CdDKQ7BN3llK2TyWXB)6TX+H3);@gP_z zIXRrupN4dW9~}VcX+fjpfH#yt0arpoW$4h1;M?WXuJOa)S=}U+T5@?eZ0&mYe6 zINg*C$kKd1knD`XRkj#PBVNh>LWIE}QALaW>o>y2O(vmP!8ABh1>7WFYt+1@K1JP{ z4MUtI4hLMZaX3D|TF9v{qqX*TD~x*)UmcwyRK4YyK)|@A_xLP47%lue%J9wDV8F^e z3ZFUV_}Q8<#lO829&*ez$Z19q-}g!0fohvm={uB1_8@$u;~}qfV7x%|U~@kVaX6Ce ziA6vJrg;(MK~-o5q?%x$BukV;-k2}RFL2RBN?X2WENw~2QNOmC(^3#L(a^X?9M9UH zVQVoDxF$V|#RC!x>U-eVxijeriH9iN_?grs;|zyq z7y9;c4pyD$D;-$?TzrC5Irs(Iw`!FF=}YfsUxBvcuMIc7-{wG)h&6;xJHz?<6&4Ug z-(5Tra8gy_i@DII^|K83{aLSV8BKvQT4}mN<5_$}x6rvW4c8&s$mhmICbc#sGoK}{ zs-%Lh#L(IbYR}B%zDx2vd5(ftaOF)UZ0L~xA|1x2Dk40Ym!%5a1~4t}pa}Z{Z@}JA zKnB^3Q}D;_eV6>J8FzWLOIRW&6{FyN0`#<{Qxxhl`FzGW_^_PFT9GhZpss66Jt zc9UvzsC1fBrM@rvA@fI{LMvDQTEBr-8+_gVk6+%x-vLAgc6D2h8*s+T@W*XShL#y7!gPi+WeGN`Mo_)9mM_~ zrsVfm!Vv&FYS@DDrX?Cxqg51Q>&}DfAUkUN?@Ku3@!)#Mv&X$tUIcvRxCU?ty zp$mP@qv#*Z4xHy*-TT7(%^a$^{e6 z@A3sAE(c7`>>(yEDqF}P_%!~irwza4D1_&O(L^;Fxkuu};$n98mRQsoFa&f{&J9rm z=*&>KU_5qz#u);P(%^%sr>5%i;IT_)klzX;bD8Vz$t2m+Owj%YsB0Y`gpKeKY~MX9 z;*A0=Tu$G)OHEV1?E$g$EoW$_(9NbG`BVz*3izy*f)INQFGsKjRUw&9TT4MBOG^6bPDOsJd2#^Fmt+yp77u-OIV`a9{9wBAzFp-hVcY^1JD}`2e!=&v z#YSmQM!f$X7s*gd3<|(ZLc!X@N7i69pvl$0mE^B8staqBw=A|c|9nKBL#i;aX19wh zBG}hS(^NDxTM>sXE9+&`NVlq$H(0E(k_%}CrOMT`_qwn;c8e-N^#KvnS+>LF`No+F6i1xY}D%K3YVRzXMaPky>+9&PD^;uMi0fEe(zJhv~);Dl?OaWPyq zS2lqpt(+y;92@&MMG23F`bNPF_DwnGV2TK^*qe^3D}G&LD$9M^Al&7Vv(KX@Dh9y% z10)Vvtg{hzxW<=)07JmbqK24h3MI4ACsi?TLfHL{kgUh`jQ3;o>0A$nbhY?nNJC?+ zY`_q(A|kL3m{h%&SrgcOSlpz4eF#`pk@CP>wv}**wkRtjE@I1Wo}Ncl(C3<#oG@Dz zQUMMk_)1lNzZP3?x(AoygazVoVLg$W`S7Cz+<{fR7pU_}VSnV2vE5WX|F{=4w!-qzE!LOFq1~qvYf)S{}VGQegz0n#{dB;2t}X;u5Fk1 z=E;$jsV8IT3;;6;a)w}o-V7^J$2xId+%C#|N4|7#K*!%b)XAKP&@oz)0mb% z$(ek5!JOfPw&OcL41`f{u5U%1hOu_AAN8ev7*kJtFOl^V=af!_O5UCtp|<37|uWtzk*x ztY9aSSr1c?g1WicyLglvh}=(gI{>uN;5+R2(nWmIr?uYxL-~}+B)-Gb7K0(*ASJ5p zWOIR@E{;Dg69W}EXDM|#%Yb*52ydpv4i5@awQ}pW8ug*0E8?4w1i)cR*5xl!B|qQP z!ObuxA9+%Xkmi@Yq8c8g0e=Cc0x*-L1J`bWLM*z(#Plp9F#Y;GH~|2~K#Bl^csA05hq+dAF}qOnj3?%)hs5 zOX6~}Kd6HwzM^r*ecdW{hsP&Wd?*Y8s$#|vAspG0Dl-lE-gk2yb&e8F^kbRN{FAa%!2$W{oXw?fsL8lgi}d((pA`dt zojy^plIk8KAr>=}rMNTv@I7%e$|wl>-TZi5+VN&5b6U2d_43{+AV1XzdYx!z=sZ4#?{&+fH<&$_6FW1R zzNlpTPCA{gc-)v?`Rl7o5tiwUmaDnbuPBnldDazHxl(T~2gm##zkN4bv-wy!%Xa*; zrrZ}#u(-*m<)J;C0SgKF5p_c(EX(lY*OwKAkb0-nC_K0l1dO9wX{dTw{`z=L`lOWj zRssqQo17(=3lW4lJoxu@6y4l0SSo&$B8;FWg^-SgNhw{O7CD{U@An7l}pJ~g=0^GZs@{R%5(# zr1T4$9W8%M86f8Wa`zJqRC>L%Z#v3rM$+s#p3)+}?o9Bh!IQ^DARjjfZf8;ge*98QJ0*kQ2InGXX*rlOWFSC6m zF4NM?_%0%mf3*9QANy;;<>k^?_6T#waQ^h8wjKz-owQ-84q+Vs=hWj4BUhpg3*>;d zOWJv%93VmpVw>@12qNh)4~<{TmgH*$`PxKA5n{sJ@+vxfF~PQ4@51(lajMJNb}}Y< zo?v>--2MLW+_HI(0gsMuZ<4VyQ$jx{KQf7vYqg2Z5*u~8Vff5X7`v>$@N`JqHpr=@ z-iot%mn{5VzdI2@!eiJ_(CjK3-ipPtNH2SlTphl%j>DFI`40L7U)~Ut={%U-%n@KA zY(SS*-^LuY>k+7MTsw!h@R(Xaxi|-xQGCfe2LqTSGA*TW{LR;<>6}USpNa3J)(O@J zPkI#z;wm{4<}9m+EqE1>st6dIioGao-1HASMyK1~=MblL7>qD~h^F6=IBB)|5=sWC z+gUVKQ>J$m*_&Qs%Gj%%g=JOG&@QAe=9`(cr@q9w>DsfnyK|;U*pjem&#P!?o=xpA z2FV|g>nkEQxeFCin4T%8h=qO8POs-rU&FCyI-BfbA|0{%FSOW0)(b1CG|jSD)#qFt6bK3JzcSkzDQ<(aCmUD$ z_8^jZm6Gxt@=dW^9>@DAbRbHUL+ZQ=c?OJRaDGn)w8Jo;cr7U#FI+#|OuMyrQU1FODw(uKp6TfBOVrZfolV z7=~tL`^Ocfk+9cZ=k2=qj!4}$#=zY$AvMxKuM9WF)zgY4COwh%@_{35*9 zU7KE-)GMLE=M{qwL%TXoOYc{K6O6o%jpljQa}vq?_2Lo=173-k0J7RS29IrGKQpfO zFf^fWM4aJy&NPvro3bdiY6=gIY*t&__qQgN;*}VNOkiZlo9cTDv<8f|IS_eB2u52V zJ2^lgD7z~28twB8CSkY;+D96hBW{Sqz$lx- zcuCdg$P@8?`Tc#~gwM2Vy|Sl^fJXMW$-4gq=OC>Lht!qzUd(Z|7CnT=VVbwLHGG&H z<}uSX>N+&xY~L#_4p!q8(Q^!1tmowqePm-o06>NPZfp{a*&9>q(~xzzvRiuX5UXlV>L%$iEXz=-;kECu)UOa zXiw!C=34W4RXU8rjXnPU)L^XjxaD=+KvR;aaN#Uyr9DLG`}t_fY3qoJ9l4e)$DU}qIQvoImIrX}-F17^tqwrE+uLAB+L5ppaRghCIgOR=y3;BSxSET@9f;3zAjb-go zrGq;h3nE3DD<-x}{o$x3$}IC$WS{cC z(eviN3a$DVny2$mqSsEjIB`L!T5UXvHqjHR)*AL2en&3%FIn zY;HsH`*zYI?2)NW^jh}~JMut8E3xDr?vZ^j{#CN!X4M>0)wm#y1-t!<%=#-Tn>qY5 zqu@v;a6#5k0*my9g2X=-*rdp+=(pihsAnBqt86bo2!c>cPRLWfJ~5Nt`l@1dKW`^! zW>BOYv_s)H_(Hao>jU$d7wCcN-(?naWeXc4+66~N3kHZ;IBv&QE%n4jlu%5(`NEE~ zd2ClyKUh{(AYB)vmAtlnDA?^hN#P6}Kj3FgxQmrP+@?MmEGZcGvm~W|a-kO)*kimJ z*ul?p=obcu)OmZOx}L5$MM&lr`FX&AsipS%9_GtN3F#dpycHiyUPV3qnjuJBxBz!n z4m6rUbW{AQC65ndU}u}f9Zb4K7PkCOA;P96IeA@RDNInLrf2pu*Lzm=9fS>un>&`` zih@z2Q1FG@rdwmISM+Tf1-!?nm=mtn1E^kZSJ$uKE>e7U>(rtH9f)V44`~9rujRMn z`s?I(h&}WC^-k&3%-$s{Jl%;UF5hf}K96}v!S7IXv982|uuztqf){KFeFtq>{d)Jk zzlA=0Ww)527uIN$2pkqWd#dri5*R=y8sO9yhJ5(Bwv~-Xe`F}PAcEIDntnZ zx%KP0Dm3Wm#XN*1Np5&ne7Dc$;G4*av~`xagFYZ=qyg(_}! zas)i7JebhOx`E7xD+1qH5Zeko2W!K&0{suHJeo$#d-R=pdWpRPWo7H3sp$ncjhRIU z4)|)QffsCz;{&m5s(FAqA;MCY;TZ=>t`ziQP&M13IussO2oJ5{r`-bLs}0ut#whd4 zQMs;rT|+&>@|5|()gff?bmfU4oA|vbj=XdXPZ}A||Xe4%+^hiD#0?Y?(EXI+4YWs8?I$nT8RbUib>iv%#S3L zy@V}=kTZv5T3RbsO_qGhYIeRR+Elas2DouNR9mhcS+BE6IU{NFSz?0{p2JL@BUBEt zavZzVbGaXQc}f9P>rsL-!yp@GG7U7=JQi%3zZCk*sZyhVL?p$wcy5kqzO(GNLJ4 zki~&}MUBClhrOJYHIh#`^=cjN;y|X(Yr2n^6rMX{REC#*lNe>Duham_uwspSn*l1!{y$BkUNzyw#os)tE85ufc zGj8Ij*#G3NH?pa#kwlVb$IIQKjC4aPtYSDhlxYM?r3M&rL}^6Ngv{t+&`ch)jSzXv zEO9K82r0{LCWChRZa|ueTH#mLc~p-;WwaS0{7IZ34b4%nT7eY`bZO)vTkiQKV_J^P z{J2A2pmdYDvxNc9xt~@vR6W|;#p;|zfu7mO9_`KUW@yJgWFzzbo)fnYk(7aMns;RQ z-DD9&=QfRama9j*XCh`kQZTeYrYyp&cbB$Xcg(74r$J7%IQRY+GvVFBMdTKpz)+s} zjLZ~#PpU6GR_@I1@D;%1kNI*K6=a2}rlxq1gG-1Dvu?a1n+Z&+E6+D$Mq>;1{Y-s& zRX33c{!0E=D&HdXkerU{!+wkw6wVZihp61Nk39*FK86}ofv4C=zr!W+Uwggtmf6{_ z8#!Vyn5TcS!|VfQegdD{s$p1jvLL<%Pbr&{6nO4)(*})3khhFG`&tIiTepAxD^K!( zKu&r{UJph&3=cFpnvU?{H`=eCbjQk2{o$RokTeL z6OrLxzqNIJY9I@`MDRO=J5ZBcEQy7(e2cKN7CMqs~$+_6)mkBD(>?{?F0HAgRj zk8fwje&Vj!10OSM;JY3;>nc6G>h<1m{}ShE0@ek36#BLY=#gw&*|`$C?%Kx(D|AmE zBz^}XXKo=D3%rR9kvd%`98vi7TP9b-$iDOl2weKjYmSrs__uHM&Q%*lqfYW(`!)Tn z{{b1T%NaYZf{`3(gtFpG`t|8f%ZowB2hPh~`rfp4v_K8lN9W;FjlLtVFj{Zl%u8_h zqE|ptiva#c`(hO=ux-vJyycHRAX_5+YJ9`1i!Gmz-jJkWgHOW$GzOiJ*u)?C-vH^~ zc*2XsA}+7^ecJgbw7!DWCbM&WZ5K*&LV`wGDA9Z&1>W#1;RT`-)eFDW6Zc zEzJU*z+(nxf4zKOM|4;E5`$RL{#skWt%Zk;1unr|=xQH^y+Lc~AC|pFFQw%Tm zUD3!?d0j!GDT;3C7rmtVxlD+!(U3n10FXyfH0{Md-=OF zl8F^#8e8muCjw_^r~6fDfnV8U&s=j=bRH-|oIy_3D9ynYYJpv^m4~P`lW2dAHM=yJ zs9no7)v_)p2acu}j^G9;Efwxloh4R9x}R0bX7&JNvD!eH{E(yD(Tb%Z{F}}McyBTN zWOe>vltEn!d9>+Zv)^UdIk(ashARdp|J-W~dB1A`%;xOVh-C}_kiK~SLXCOX$nN1>o>oOGtPJvWtXrtQ z)>QfdH!gz$2efXnsTle*!bl1`E14X2DmaVTTcejI{Iz=gFAlCuDsw)m_3kc5c=u$G zAn5NxMMs!|q~}MK6ll$$30%MB!S$R!%dT}uf>ahWiv3p&;He(>TC;l}zIM~)*r|2C z0x0O`Cn%7j3@8{H5Cjku;L;}s(jIP7`mb>RFCQ&TUUyh00>FKqdDj`cE25txmb<3u z?HBvi35AG)NX@CfhCt6VC0F?cDoxm0H$lC*?@wAT8XFt%K)UAGG2(1=3}E$q86;o5Ax@1P1U_)dn`J(eV}0i&H+}^;X0F%Q2OAB z8#et1p&KZqbH?bG(vzW5@W*nG+*K;1($l!ZJ;~3N4P(47mkG&xlJoplY|#s_l&gq# zMOp|6I%Z^l9&at#VbebzFD&LpmM=Cv4&2W3+26;z&)St*JE&YFD?1;Yzf{WT{(l~? z@k)K|2AjDAWu^7ENu({cLtHV~pALT>FGX(*b<3Z}8~cyP`|gRbA~W0RIy2j=`f6ac zt~xRU95PxnEgvrZ{5nX5XO~Ves|^=-?J_AI76^5TL2!`HawHBKp#U1{=?iWKDu4lR zqQ=5_QNQl^)Z6%#bFs_~;R+8IzS7Spf(vwIp=ebsvGs=Lv3W2qa)o_{FHVo*>#tq; z+X)Ge-*uu-Myh!{IGm4Jiw54 zgxoc^uGS_RH}m$95+F{$BA8bnb=2#ByS=gqJfjtmsJV75q(BvKv_#Zg-u zi(;(Nf*UN|1>TnszON*s^=C~c-scp5%ifUk%{EoY&EKlHzlXC7e9v4A>~}F#w)+eB z2?20l`JZrq)7Mxa`V3n4pKyO&;6HwrO6ex+fdD*f(*Km}XaC1%DV>-M>1J<%xo5=W z7AO5q9$olh&v;~r0Na&q>vaawOGD5gV9>{!9O~N5%@g^B6VseHaeK5s~TI^KONne_2~-uir& zn02l%1lEwSY6+d3mSY&-r4KGDwg~Zf`EoxAR@nQKKaFV6ckih<3Z1Bq5ry))9G$Ya zaURWv{8*{FWRfORs~d4r`X1zu=hxiBBYyP&72;-q=zHVV- z>H#k50|n*q08{qPRLBu%!XGT!Ep99jEZQZ0>IHX_#1mA5k2mN728kaV=mF6Y77^s( zz&V77#JR+>bqy-OBO;sG)_3gf^aLbfw}?+%SV<^uScjzPBB%uj_qVxA=U+O%5B%UW z?$W90>As{n-~O@Qf5ACH-#|2JW1aB(xLThcHyS*G z2S@CiC(P);HhWEIm@7e(Z4i4M`vB^;=St5SJ>1u+o*2pPt6B>G)*3fNScc!7_9()L z-fK@H$nNAi6@5u=k z--R*Ss}RM}41K0X^=T&s1wgtV>4MOt{6`2+$g~q$hkz^6K3L{1CF|$WOt1oRouKod zZ4|_XJCW=UJQi4m7^6bC$;+82!F*iceJFw$i2G}CGvNEcXn%dRd3qWE-v=E^J;c;h z9EufpHQ}2LnZd>mAChX`v{qM5jbIivs}YdA=+B=__p#aKl&j?{_n`!=e&zVXMO~wf zLz_lbQ!HA?Wr2<=a4Z{%UICwV2F}RAMHSWA2-|NPZj%-XcUJ?33Bn3M6r@$5 z|MGp;htYe%x!N~Y9bv5uwF*~Txl6i2Qq7?kBfJ%A$qM}}Z3j=o*J?;LF&0`8lq>{V zSNQciQrJHQX>(Gb!@lNnHa~BOl5behE=Z~-9!S2%5EVy)F*G2|2T3&@(C%?<2rJ13 ztAK=moT&ZpDUE_k7p?+IWrvL@q0@plj@AYma-hQ=P1g$#rc5Ts%!R4$8QqM2`_k2; zL7f(HcfU4oND7HKyb*6qCp|hp0x-E{!62T#ShRtr4EVc9ZrbRUnz@x|lMJn%Y#h~k z62hS7((K`c4YB+Ym8UkP-?WD1QlLW?IFuPtl8Ao*KbzpHV4+7k*Q8nN)ScWHKb2U| z6TRQqW*~HFzs5=tO?Rk&t4+PWPkOsVSSXT29!9C$Ce+mEg$I zooyMiQ8O5chlTq*rsu)s0FPiL$p0xw`;qrDWDIvT@s21$47mK|`^(>sB&?Ei3&N*F zi+EbK;7HrE_Gd_OsTqFb{^9!!7CX2oCF~A~6Cb#NQ{A!nC=Z`ofpw&3dk!1;?Q3zy zXMI&8N4Z^tgS>0R?=fJZxMH}#&VU$fXXem zQbdUWLZmSpsX zOtomiNTsTERV9tKsPsu~|MaRMp6@XRR;wxb4$F!m#mM<#@$iiuNYx|w9_DD!1ENQ2 zKp?<_v5XSpp+d9?e1lu2x6kGrIQ+okz76T6wh=HT+3{yeveE1Bl;qRK#0)(}C`sx& zfbnw!SzV-2xwcXN%E9zTkC_IOHrfO(V_P5uOi2P5zfMPcod0&>s!xyyh~pOM*t%YL zL<24{sC`P&v4Sk_9L&~OC%sU84tMF98X>%%|BGnuHAg5D2`_H$KPXJO&pD!Fav>Bw(Uz=Jb7_l3I$Rmh;G*iirMNIwBO(jM2c z(6$P0tv^VdW|#ZMwXQ2D?#YRHf*b`<0dQ7CFKF3*yo4?U*QE<@%;QIobP zuJiaUr3Lpw6;r{zg!Ipwx=`RckWBD#FtT5y*pfd4peC`oT8dZoEmQIbhx)DDe?5A9 zAFzOnlAksdZQBqZn7$SQ`n_vht`6W?k|zA_=r9;l z6*U@&U+RrK02Ac%oi=+I0~Fx;#jzUIL>2WZ6!&9Nyp>{wp%ye@&|;AG>ABbO)ScQBqPBTgoaK0Wl;wsloB65`hGJr7h$8`+8sHwTfOo_eaz>ms z#ca;zP_;CLsW+15bRK{v2}^3Q2Q>3TPG8^5_02_Q$27 zjroVY4nRG%WI(~~zCuk&Lc}arXg8rKQcl&Z(n-c$E!5&J6Ch&m8B?Sjqq`eFJauEq zbx~8s2g*6JL=R2$wl;>Fom*5}EF~5!AeQ*Pjvn$CPBd?C9cZFJMY?qd01kORs27ivM?$*G1%FgPSrt z<=DpL5*RT<%v>@1n7wQ@r^XjBe?4~(gPmyF)ufS7`8*SaCCjkVVPGBa-uR6As-5#p$6b;ulRy8J^pt}QqA{Ga;>hUE975OlCF%ThzO5?`CK)+_6oc}XewK#=$PkKxA?Si?Imd=U}hLrrSfe^er%O6 z@NDpv4&WpIhRC{cF$x(5wDkLj?s;%&aR5yRlElzK5es%Yb9@7W-vhB&Hkyh@iB%aD zG680jAAhDKmndw?N<`T}bp!}{fAJgclN6kfQ$@VI5it+>QC-z?tw0f<#QCmAHmbHK z`jId{NLeZD?<{1cX!ZapTdIP2ZasSxOtDmO6~~fO#2EGI^bAs z?KN539T)tWl1yVS`W3hwjQuGN(5&?!oG^F`L(X|dV^^!(ZE*eXlw`=?DM{Bnz?9_p z#>cuYj5Ey23T-Z%C^b^bDUG5tx%U8o=4&|cL4(}w7P*|mSgUnW3peaM3HjRiPk%pasLq!& z&4Leq`Wl~>4wva=`n7!z3*`Xy7LntZ6V9YUk2D+(TYyoD2~dZ2~5)Ic!0+5&|Kzr+e?0LsyDZ zPN)^g;P47<3(9?)bU7~!OyzV8QTl#$3mvsx3h6I{EfCdfTx|;!!hA{f;m8uzIraT* z-h@}VOC<(?^GSX0>a2F0cp<_E!xCOsj!ByyYKfO(TC!8l=Lf0&4ZeEM=A51I^0s6M$&bx_bp zZl{C^n5AnBlk-dRy8_+90~G`y5@5K(T?YG|Fm&MVtPpOfyJoJ@0FvKKv^PQsZw1UX zK*pp@l{v!1S1v;{nrupRY~Enp!e9a=Xz#u>n;Pse@;%MS9&tGk43>|7Xg(E_g!@kg z!%g;uGdY6KbY>bEcp{Z{4-327H_1i3QsfN+c&weMG0M3eC7veo{_i#JGL5OD>?06Ys6%ixM&rFTMO)GpgT%%_Qri z1}NY)n=N`9Kyh+c?Y!PWBELo!BzvdB@j`RTFBWr0=S&+uo|g)d3s!fYJlN$CIkrF; zt|TGa8WU7e9rNA;WWBWH9welYS-mme0kU4gQ|dUx=^jBoKfquY6U!tPnE`fu33NHU z+^e=n%@X65uZ;lEmbV%r_>q@5i;w=Ps)EvNjJI;bq_u~f_D ziK?|26U+}KzNQrCqc|Mdog;BQ7Ox)!Y)Aqv_T{VBs+hqfFxrz0IFhQa^Cen{(GB19 z!VEFd^uHe6OEU*&M_ySiP|EL|o>%z)9!YpVMXSj*9X*UiiMTDzxL z3lIT*qMxtVjbRrwtXO|8A|1d*OzUD%nc%G4$tR0T zmAhM8QI?S`aY@nV-8_jS>C#F;V$pa@3iZ09LOfP58|ltQNE*QN+nuiDMAxQB1GNqfBZ~mR=EZo*G*W2%jXj@Fltn%aDFyl{X@FkTZ z>5}Mb%r9e3c|C$v&>!-k%13pvSHIFPWqkaJjSO}m6tgtc-FgP*`9{uj z?{C-j8Exgi{XzMM0)nOr$BaJZqz#}cftha1u=hK!8yik0T4?(J(d z=U_Aq)lfOsWLrD)vUkY{Z?-nC^4=Q?QFRvNYj#b#-!$Dx!pF8gw4r+Lp0uVX`)pc` zR)XvtQU{<6cH+0L!cv@>a0orYyDqg>)3W3EyqY%T-f4y%^v8}o?3F0GPQsw)#W>BA zg~3Bd?)~aWxnZgTRTQ}Ug+=0>*9y;aX zkebio%fskHnNFn8^rkfc>?>;t(Q{4s8aZ(?Ch3{v?Xl?mv2)JuNMhOz*xzTPWqc&F zo;E=kjLHEl|2U5LB5U?3^Moh5gt~Xp9OKgQN*bUrJ)<0OW{LpFp;$E=>S=1&j5o zv4H;mZE*x@zj6nJ%Q|x3^XswYyA=ClusnF_gGI`?DD+(gW8GYGCjOy}-2Bh_i706ZBzMzM`r-h6*z(fAF9=X%^kXghAJbFl+lIur z8$(=eCDlZdsMr^X3vTC#H6{)!U!RzH5}kC`lWr)~=k!|W^bp3{<=}jRjjEh^><=c zS+pciUbScS(CHnS?Fst!4(C@c>wLMiIrlWC3#Tjn*A%7v>wL+kd_PvL?4uC1X(~N4 z*LwC}AGO>VCyeH-sz~6)|3g# z*oZR?um9bn$&N3k_SmwAA3w^JYKE^&u6Z)Klh5IFS~pw-Hy>y^tSO? zY>;=gvo)^#!5KBW7xMXZ{_Nc|7{fgq>r3y$y`ygYEyjGo17ml4A)7!n0%b1#gS!+@ zphHmTff5(+`8k56vMG(=Dt-t7sRQN%_rz)-=ElzzZL<@H8E1}+12URCA?Cd?OJpaC z?7Y~1MtKZ0d)oboC?Y&CXy_sv{1DZh0lIau{IptM;*0@hTdh-apIIu>#Z5XbCdZb{ zBV2L)P~{l9MRj=s%GCw6b2~Ny*D#iilm~g}mm^;Mh%+JEGd;NYZ7Cf7&0DgZdYa^!}b zpTJ*?3xM-krq&_kA5-EwE(pC0HgQcI7w&Or*&knD(OedNt_~19ntw{RooO)I=^nB z)5D~AoLwkv4q`;Cw2czO!_B~p9h@3rRihh!i~&aok-SCB*MW#e+4|%+6Fn~+e^(LN z;V@+2=JqSel^BdQ673rX__gGbkkSpIZ_@})Q^3sjfbC+B z`2*Yi5!*=4GM91FpBs`U`d@JV;?}gte?_8y!_NN~=d=HR`pzWuL|+(wydX5StKp7@Ba+B{<^RB& zigfezL2GK?=z9Dj#+_j+d6D(K}VQHiJd$$mUR+url~cJi2NS_a*# zy|!O^0%10F0%jt^LJ^t;BOg`&^{Dv&AI``7ADmy`%i*>OIYcU0JHUBbV6IV+yi#%M zcUT~pTP~p;N&0T$IBs9q`lsnU`BM16smzcmD$tu`jzZx&2DQ6gvuYwVp_4}mv^035 zk?rUTVczt&EIlQ-=JXFhr%_t~HT8m!>H+(I(f3&bUr}0tWLwR*s&bsf`XuRKn zBQ;CcM$g1L_^FzCi&`6sLhpp_nYTZ5%c4+ZQJ?9OAi@>bHqq^2S3xvH@!F^K zdNX%00;j0=4;PY}#2$sn{{Pf>-r2DH(|5K|#0YQaHLfBrEl4G!snUrk+6jhtkkgm9bAbYsMgYLBWUea$Hh9<9On+{{{!e_L6qhFM#77^~=8{^)1beO#dYH|A|Cb;|q9`yK_RlAwzhKZQd;Euo$1N zDiL~Lqg`K%1Mt5IrcQ2GxQDv;d&egSUO1_%t67-6^YP6pO-a(?OXW-rb4lD9e5AkX zld}}8fcH5jy@;yQnCF5Hz@HzTeqD9ntw`cj0u^}>H00NSWvTvnxXbxCV>l`{5k+t1 z4$U}H^r_~SLScs{S;C*!*i-1PkRXCkzXd4Ifd44ZcHu|@a;3rts~ADru}AD^wBVW9 zs`Yp7-+ow%7iRAmgN-7!7l?6utt1@)yuy(@9+Gn6fl$2B}74c-wh~UpPDOJkIfsS zaKN>nk%#kMFi3WV6&h>JS&bnWnX< zsfS_=Q7Aq~rv&6Dz;-dy=4ZO4B6#T8;(iqCaa8eGHM2xLc@6SUZFKy9)J7Yy1GLcu zi85U*Pa8nT96*^i-7H!gj88NWc|Dz*P$NH%tepqGQ~|Wnm_y1}k$wiucR)zEVgIX* z4m&Nq*_=hre>Rb=b8YSSnNhO*+=u`mPn_=DHi3{OALuZPe`uqFJiLDH<(Qc7loCfK zcKtYzx6&hDl z+?2nIf*5L83`aP~bqg=B=}%2IJC*9lJT>||f4W`rNb<;~JOIu6J&_OexS`a)pG8F2 z2TqmHgXC5Veji3gP4CmF;7L4zFO7 zA!AM9tU~Y@GdD4LpCV?68K`uvZ;d7SPx4sOEwS}s;{UBZH>K&s#dPl!8*o;JzioTU z3wBl_6mXuT_txYNJF@v_`*A5YC}k%8)kY`27O2NtbA^K+zY?%^1br&Vf{FC{B>GM0iVcnWB+4$7^n6Z#epr+B=Y85UBt~x#u|;XT z_F07H)G%XAeO=at(7~x3G~yR;ns#L4FZv3mfTk}%HNLq255t)hFZQ+v4EYRDXsu+6 zZl*`%+Enj%S4aoBQkHYK zK3D;nkozO6U zH`o9-8klON>pMc3<=7{i_iuyzta6^_xoSZ*LE{W#*PKXFD_~15obvhP!t}u$4e)M$ z$>y`yXfHRIOksV%bL@3VA_)H4YIrzqRxDHTfugvWOtQL znh(v0z>1Ar#Xl1NmJFpIfsh7v7~EBR6ogC(M_1rVbsI$325aqFR)x`L-fSIO z#&%LM9E;lmxu=UXfB~$HWp_$Pio~U}cGjpjywFUQj`|KpKKU*Yn{L?VT($C}x=={%?DWgiBGs2?!o&C-Gd<*n*^BWF&? zsV(xLJ8d^x@+eXSfe^6?Jep}Ga=z^usKQxPgA(I4WA0K0LCoINi5K#SytcJj$LhwK z%cA2YL9)$-pi4t7W{XR;fI7#1b#7HC0Sk*2p6Hr1DVpC6RD|6yy>ogBUiGUJuUzY5 zFZ)-|7BiitP>vY~6joQC2@aLt zjRU@{U5+Vn(uA&iiMOSqR*O=?8P5-Q?i|F9;Vo>z=e|Qef&s6;wwd!ag2bm9^!k|BibFN*U8VI!$#o`fF)GXw z*e@2<*5DPaN(wlMArjReOEplr1_-C+x&ft)%vPxChR}CP{E9l21ZkpUW*JfzNM^dV80>9} z+>7<2_*6~R?L;@6r~jiY@BHC}N}`ZH4snrFx5#ZsttCfJ!s6?=YVE zbui7sKjO7Ui=g~%!|<)hvXhdiE=94C4_r<{x~7UNpsA=rMU?#LJ%g(*J7-{bN*AM4 ze=h^{&=~kv zPxU^No_(A4b1K=MfzQE6k+eCZ(&RB*v;fT^b@t3gvH_YV^LvUt{h%2IJIItJ`m1JB zIKM1UJpTNE8WSiU#6}i6cP2$)B|>H&^>|{}8u5$2f5WdxqQQnj+NtmEg`qWYvA#@> z6If`m_=T^J&p3E9PboRJ#j>VaMLD5cq5I_9BAh-Caqf~Sxu2CLUE6U@CRr~y+cJ&R zz=Xm})`Aeyl=u&ZnHMPm-+rMZZ0#r;Ts>k#RFd|f0`EFJLO2Dpclf&mwL_rB?c}ed zigZ=CACN)OHq)0nFYdr3*q3PgQJN!e^6QjFii*+O6x5?FvXo*4k=KOLS9lNjsCgkg zJ2O3=8CUYYezaq~0)E>fA1@EB)I`*Uba@{epJ#7uYljaCK&p==czVBQ-2z(8n;|+G zC};*!c{~*<5!4HwuR3>_UYz3h&w$YWe@H$*+WV~j*JT~ff0?0n0a9o}s}Im!>AU`_ zDF{D1+XpIGBY338YvwU&kX6adC<6f(5LGn|X9Z{HE$pa;M((8|a$lfApGpmzHU6@>FVu1pm=%uG3Gof6vJQ%oqqXRD95 zu>%=l0yro;AE4LI<$*Tn2hM-u7XqGqa7>X59_JUw>6cQ)2;;;Oy`$cFTJlx5r~l;n zbtY1Ba@!beWzb0{$~R5G2x$v`t{t2q`g^OkYH43tr3w;DZ*NL1UK^ZsRYpuOk)$7ckIa~ko^!m_(XXap4_dHGH$D@+NZTfqSCeEVR`vS&`Gzg zPAh&u8ke1koepl7gzKUM@eJzpy-*n&Ewf(f2mpyu0&b+MKQ~ghU*VRr;AvZnyOw0< zUFi?HM(Ct}nW3_E>;Yyd5TE~JhC=)wGZe~SGt@0QP*uiXGt?A1=zI>q3}yf8j~OZn zV1~LY)ZG1-847~&957sJ>oGK=jb7S}^T!O8zBQtHhM?gFNRASCpA+2|5JBh6WD<(t z@&^sVEs}5fIrAw_Bf7ttOwfL33yhna?-&Rm6fHj#j^4g06+)~@`p2}68vA5tA*s$X z;70QKdm~NSl!~7sag)k5+1GEPoROm+lK7ThoFOWA0B$6V7-u|Nl<(1}n^OK(Wnr*0 zP%=%}*_8mJ@w2vnf6$wg3c9!xJ!3d}V6_Rr45fw-Fhl7<{xw4}ppeC<`{t%&s~O%L zK#1;I0(C?i{=O)eSOnCX(ZH4(+!akKVJAj4{C)x&wsq}fw=O^rdOE2`gJH6k_?G#~ zq1J|hleHBu?f9Z>17UqIW7-Tl8(nN|EwRyt=x1(u)>8qk=V|~oG-R=3ZC-i0QwBvD z1vL4R?D`FSDo-xRDI3R(La|b{{UV8E@63_hGTn&kGJHLDWwst0E%a!jM)xI!DfkEA zMv}K0pwSXU3EJc_XzJW35>zPMuf>I^3%K3do~p(IXZ#F0?W@EXz-Ac_m%DEJ+4%n` zd#Ct3+qLgDY;4KOc_-nQK_aj>378KT3yRCDA{ zS|`uLT;9$k7F!PR5IWBc;)y@6;9(_Ho>t{Hg%%57nstN=%+vT}Uu`nakMzNc2p^T& zf=vJsW{MY1%A7D2BAfziKG7f7DQYr2sWlFS7-uyiQSqjGD!i_?$)RG5r+87H? z=r2c}(b(2O@<@pr{Hz{)ffC~ZK_Y^2}Sd?mM=vtDhSspMRv5+kh+r`+Y@GRsw zoTZxMQ>ERn+O~InHdpEEtS(PR%56>GMInu*#`?yas<_`X&T;v_AaRu*$t1M;rw20R zr7J@7*0Pzrc3`J@XFtuVKZW(zgyMpyc>7LmF)y3teE`f*v+R6-%uu6vB~Gk=%}}E= zQT)1wSFU_&cWz9d!dLWx9;RL@zq_OcWgS5unT-lQ{+gj||CpgN0kctP*L{E)ik`Wf z^`bB7%jox%Hib-}=o?N&5;dI>o_3@EQbXbXTMY#a zP(#`K4iZCQ4|&sP-)jIR!pG=rXDEPQtxmtLSA5Ag&(rL%QvvO+5Jb%wTVWJnY!Wc) zIP6BoRVOe;csYN7XT2mb8QojfnH6Tm3%kU2e)=gX{A?)Hz84@R z>f%iu30I@z?>bK3XyMnuQoLQv!R+TiN2;{Lpn4*K{Hj+A)3T4y3yh+G&*%gj`5hG& z>B3*>1U-rWN$aFK6BMJ5E4YMzkT~uD)KE>9tv1;le`lk1GZh(sW}_52En{K-o{bjo z0cNALK!jJ7|D<&|{-kwY|Cx;@-e{`~bY*~d$@%1aqy0UeUVOe529Ged0gk6W|HS-1 zX`NOK7+i|FHDA2iEA|A}8ynlCC159GUU)v$kj{akk^_3Jr_B}EHOsDaY?RF}E2b?m zi$4W-IIao0_Rk1lz2=w!?{^i)jbr#)8d$s1830c3Pdo;VHz`=vET=QvPYO2TVnYe z#L{>CR@WH$RipE=+A?E|V!@>n$w+%IrZiEV>jN$X#bK|ih`7u>gXSJ}ddzI6C({#a zz3=xsz@zpnYLtZ;e8up1Go;v@@A8NXFwD#F{uDOO+XS9`R7vMKg9=o$*5pLnSXX_( z(H26tY2u{*@=0WHS>qPeC~MV$y1VTI_qm)qfjdkn<8UN9dy5$}C-pJ3am z_XMAO7n75CW-lvC@Rd`6dl<|l$ukRs8d*!uZb-xO*oX*L!8<%wy9VC`xwlwN5Oe?K zW75#WvtB8u8AK(c&T1!5*3rz}5i{ItFKl>yL0cZl^&Kfe4J0bo!;C%g6^%Z_!ef1O zV`+F>9Ti-wAVVI|J2wXgYL^W!fFe#Y{<=hFPv8ZzE`riK=T17V&{ z&*htT`NOHx8Shk^6B%_%AaMmd<;00RR7yh4U@_p(L-j4%Lk|_x@Mn*J~Ov7}9FNy6Cba5a zm!O_x-`8{vj70+7(yn!9?V&glIHAMo3@)b()OFCOo&kqb&k+;RVqg%x(l1lihM!1P z28_oTyqxQ5yRJl}Gw5fqF_w^dRha`njS_BCw3^_R22su%I?g1=S|Wc1mq;R~kETLD zWHeb9+Sg5Ds{D9KThmmM-PwJ0%|0iH8jG)qa6*Duro`TAfqOVoYmJ)K%)4aaT}1Q986A9=lK(0#&Kx$)!e`$cQbd+>WEHxh zw~?NOZpV*m0@_Yi7_~XZYZAW_$`Jk%Sx5)!tS4WbiY&uhZ9OYIyjia5=a?oh27a;1 z0vgF#zGm!Z9#cuAJJAz!*ib@=+q@R2$h}HWhHX(k``oJV9O{A#UpukV_a!poO9^jd z*tVgB#)#U1NLvxC9B3g}!mOh14~S`3v--?kW3xTzbFv|QGlax-yI6dCJcEZQB^S8_ zoZ~?{w$5Eq3?b_lWbKVjJ3pSw3e(Uu{<-*akSxq z9y!GKeMNkPN#PXP|>eO~)^}zku?CU>e9UT5#6F^x< zjYIwSkFqYxJ3mgdgxI5vAQ}?;s+7^wAVT~0CA#{cbs{u-rgX4a4>hJZrp@fqe0Cic z?syXVN?7Nv>?5FC6#jyVm-=oci(xeksaTAPy!^59O9_nE*(WoLYB(xU)9)&MpAN@m9433}p~I!@7I;3CFrCDs zl&n7cn^b${Rc7=1U>cV~bO1=-gw=+w$?cWeF~fIwQg%!S^!%)b#U#B(j?6n$95zr` zss}3|SIDK$7(8h}S?6WQjA@uu%sU>FxQ@*^qYTAG{~;7p3^U5n=6gV)fqKB;O1X_; z5PD+=Xe&*v-5a!1oM7v3)YqS0si+k<@8nzE<^?nA6+lKQ#5qINmba{1dM@@vsy8WF zfL!CD9qEO1x078xk|<@1h~&wBwBR2(v_e%zd4hcoi2IpVDK5@~Yq7i16a*3IXRH&uE-S!bQ>z4dQd=OXT3-~TS_bdPqi&6m=z zzr8qDTQoI0O_MLSMMBrN4+t*u$UAcvKfYL}>R##j9^G~U|ED90%OVcs@W0!Va{hZu znh(g6%76RtA1xUPw?=4V>^zp#GiayZTBoN%*Q*BB>-Kp+C4pL9w{J5kEuu)=+jcV- zzy&-s70N@r5PZ^rbjA5{T>p5|GU}X~hlZpzb>IGIY1Jy0k2EKfjGSWg!1Oyj0VkdJ z_If|n{fK4HWU0(q)|(k4Ic+&9G@C0Z?za>CL8=Qf8Kwu4c^3{23e6Q|0{k_&M)q%7 z2UQq`6iTD?XFzJKinYymz?PJo&5i{N^d?~++ZH+u1NNXu5KJl$+uCuX$IqOIQ&ytB6*cYX}VFL;Ajy}J}FLUs6%z$Tw8eiGnQU-(Qm6}Rl~af8QK z--?Dj%H8TRyxVwD1M^1bc>GA|M5rpjrR<|71$hcX2H%uGK^2KI(C)!i zeh-5#g&ck|HtZK8AT!8BG5cPg?*}VAt)8G?;_^ylhJyC9@k8sESr(F})*+FSk3q&e z>f`SW$_7AN2R(k3r{hT?+t`>;%v$iZR$%HI^dniU9+AC5(WPDyafj8<_Xt_02`U=# zK{7SF4$vBwiySN7IfIrPrAA?na3TktNMZc=chvseSU)yc<^Fk*B`2aAXHkfvIt)-$ zJXB)+{zyzkW^?S^{oZDMcga?P#_y74_ok8fv}YtL18#zQ{#Y`0gC*b#d03Oo?q$R^BYppHL^WdLbuLYA=o+4UZsCqjKy#3Xq~at#Ass{ub5Mn9%C<(d;{x13m-UE*Q(7fvd&jZ2 zIJ%{{_a(BI!t7B8{Itd~+HRLZ$d4TJJ!*4V!>LoUU9}_w#e9^IC@P@Bq0tlj$|V;> zZ?z_s3|PR5lBd_Y;vy7C+n1{7uA!v_Ep<4Dx_&2;@#;|!RZ8d8 z`qHH2^J++jqtn>j>=?y|aFnpzFcxOS#3W7AWN>sl*B=ouEp(e*`Qzs3kc->KIRV3d zZNAouRMbZVkFZQA*q?fhNvGStX--5p_H6;$Bq+G1b1!8%82%)6?_?-|Qov;tuO%ZP z9_iMC%D9sYLf8oZR$%1k7TJHJK(oKZ{AL%Resdu|eN?m^Gur6{4LU397idWFR|>Ta zRtveiOJ?}%hG1@|q#%{Rbo@6E+e zINEjwNrN$+&Ff*A3#SlWe9+IK4@sa6WvZvk7RvV#wt&yzIiTEkeb$YLy%)GkM5|Ut zWb@SGETMuh1ctqq+2s&L?W4!O+JBr-3rnY4?0BQGyu4G3 z(i4R25pn%Qz6`@1WO7XVh}0@W3)vC)jTjj^)%Ix5`ZP|@y=#}Fy8-RNk^5^F6JKy2 z$o4?jrUT2Rn5`e_cN%7nA8bAEo>Lwv51*=Xdl+~hVkUvw@v5X>2f*watS$1mmY;%unI~?34S{s#K!Ca_o)_2}j9v?+}-Iaa{3CW<=;)}m zcy24_efg!|TH7a3Ebn&TTgliMITI9w?Ir5dz++468L3p+ui=W0wdCols)ptF`E+IX zJBIW6DM#OZ3%9t`+>89riPFQvw()-aKr3_jgVsjWMBB1oAMe(IZ*3w39WuO8O)`(kY+z@j%>e$_IzazOY1?_nmO6|q~e7I@)EB-`BL7d}hOD_Ypd z(9PR`u&s5J_u{^U_Tu4^ENtRNKP_=yK^90_ zcMD(o5xshydY!7G%#p@q0-Suf3Z=~u*)a@LTajBS!J!bkqK{Eu8p?%7N1lo1Tr4~c zyuun3p(^G|%iNAVS0B`a8L2_dt;}W=E$dW`HnB10&^E^i=XyG)tweZ0Og*}~dCLrZ zW>5WD}N*7FMLeBtJQ8ltTuqcPct;mf|5Y?xYnc=0RWi29JFjq-4q3vYSa zVSs`6w!mpL2R67zDQ?I$9VxkT8cUiYcH{x2o2k@gN3P=BZODXqD$x?&Z)%RqKFS$| zN@X#M(Xb<-%?ewTc9l}~2NHm;Q@h20o#Z_C$6w&wk~m!c&MtP}828JfqmK8k+lwD5 z^@Cx4)yAzbTD1xs<4!4;wo5tWHLztC)wIwDC@N^$EC;5n3acr7RiNLk~rT>3$kg2Q=RKA`zsp+Mmyh->)d) z&|{i5+~NbPG{SN5!S7{_Vr+lSio81xDlBYsJ?+0AkW9mvkl0L%zs>k{pXdE6agC=R zl^cG?jJ6oqD1)kQjmmBPGy=$cw5&i!%VcVtF4Agi52b0`I=7ic1GHgYvp;fcD`42w z0Q9SURQ%&PS$d{&GOGilPRM((QI?tEs=}6aZAMTkqZ~I z>eYLO6N+Jd-hAiv?N~tnG+ln~+NJktR+JD8ZT1A{XlzHTw**uEGnS19?N)j$L@g zI`3uDgDvNe_#Tn$9(~)~g`w#Z6RM82g+uWRhg$n)Yy!w1=yZ)8sb~+&_)S1%DS70r zB$yq0a~zJA-@uU42ts}oj#tjABU8WEH=b#3IMnLh50^|edXCSCYZUQDOU3VVu3kFQ zTl~a+1?ijAGhue5l$zw~Pz5#}#-}Z-T}w0?tFEPvhBe~CoDX?qM5rGmm++mCtsb~1_Yab3a?(J*%j9cdoZD3>sm{%Af z$&>I;$Nx-7;{isf|7g|ua?h;#-%d#XB6k0)RVSNpIO-gr)ghN%9oD9hB=8}$WZY)) z@i>}wo}R8)i70;(`Z4A8M$<-Zbpfv=!flMVXdW3iiYY3im}%djou5s=N%x)7E~_{L zvSJAvFICvNDVu-&td6(|NsT)B98NpG*F9eE%(REpHaSkYEOX;Yx|D1o9j*xWvSHj7 zo5FUU`MdG~F3o*lF`jL4&vYM$hSe~B1gK4vnP9m|a8_&vTubkw3oFv-)%TltOx>GhFS2wdGvlacm`?soX?ac8(V72Ud82jO zgkPvFU_-i?g4b@-+0bC%p_GcA${e7Cig)QZ`yyh(CB+1%}5m@Lzhk>?qCZwDt2Sm0?Z)`KFiuCTf2Rxar*~{=hct;7#{RC4%4P16M4%5Lx$H+M^vsVhzZG1G8vDj}eFF zRwDCVUT?buA90PAyyZFbI&)H>=Pl;KnDvmvGnRed@(}2zg!pe{p9F8Ud)Z}kutZLR zxdh`;)$9GH79%KyG#k+974uHe&HybVf(U7K2<>bH-+^yGJrYe<#hzRW>+6uP0{$|RxwZ&@0TC4Z zMV8+IEu=M9v{}j}%%1`b7oeEx24)aXA@%lG^l^5B5I3F2>oK~!6e~ultiplM-&A-z zG{<$TIDIL4bsKXl)AIIQSH+xIZ4_N)g(C5n1GBd1YdWgb+PH35V&zdYjf8}QIG%na z#sPag+UmrBgIi&b+0%rU&^lzJhbv~sZ>S1vlrsYupPT+9b59d8ym4ZQH-G$1=AxtX ztpk#|;eU+J&LszeEps^jlW;y>;N2F3IPn8;`L+Xu^~tl5w%s^?q&oG`gTVA*zcw&I z`ArUh31@PxyfL6XXQ_P`zbe!u9$g$^PCxM#HgjuT@EuWB171cYatR>lO}B=ozR(jf z4mb`w|8eT<5=DDOq$XB?Q7W}+Sp0DHDlUfKfy9f3zPXap1AY^U^3xTa{SD34=m?Za10T$#5l%; zLK9W`BC+}>?U*$Ze0M+;#2VJ1)!6A^?QE)!Qb2=Q>t;OgQn?$Mi^KE;Rbx{^8zuQx zM-x7xJzwoxl)vVSs!+kv>BMxWADO@B1q-3GYLlTaV~fk5nR~LV=;!An>$-nxC6p_z z0|ASN%GMr7MWZ;?di!lSOxy0QUkYBsmjF29^TpZ8JvaJBH%CqEPc%2x*swbqS9U=X z+3X?Kht#d;pDVk0bYuT3AuDxu~$60^D3DltD^iZjTk` zJe9}*U6_m_&pbxWtO8WwkwyO5aVHxBH3ts~d)0TI0nw}w&+qqj(Bz4;^=8Dmj%-tI zL}`8<(q`%i35-mJ4rO^8u>s+8s!tbx-$n6rxF}Opcdj6Wjj%GS;}nX+{c3$l)pAKR zd{d81mYlB}6%{B;P;dB(v=Gr~eDuOLAh$@uB;li(ZmFNDs88pe>M|gnW9h1j5!a=4dW$RH@d>QODCyex-O?eRO zU5~&AK0s5D2NY;SA`^q~-HRI^e;~gYp{vX$F!YnTmp6^y0um|5rDEPn` z`KZf~ltkI)vQ)J>DWG$ZwC>+eQAn+8G+Y-=UFm=o~eiRBR?suR5hW` zrsGO0a-s$~@9P?ti%}?qb>!88!X@fa{d?Y*9?79waFwOB90?x!=0&+!rcimi8-uPC z$BJj@pi8o^w)BSKX^p|9qTioC^ZFIN+Djff_x#{sKq? zvmqKn@5d-qRW$1(V@Y{pohZV)s;W@5TfEymtNJBC8<0~78Xmi#;gnQUx$6M96(UJk zyRG<26ZO?suwxWOYEEpyO`oGvG9LEb0wnMBn|7HgmudWO?_RlkmFnrQ0IPCX7gbC} zL>$Zw3}{L^{dAvSB7I~rUqGijUTf%kz#6bt%q{hV|Cdgl?c?tgO*Uko$250=AifXZ zVpgwA5QkCd(zB$hEQw;PfoYlhRADFQ9obJpc7zaV^$2q|e@quvz^EaipNzEAP~;c6 zu$y5yisWYRr^3m8425mFHvozHZZEY5zQwSDwelpBWw8o>$rkg%4HhdGusDdUraw8n>h*vrU5FxrCJDR5X|S zmRtgD%cL1|0mYeChD&bi_fXMzN67eU3Lh?dX?S)}t~5a}-uk;0UWMS zL*W;`)o-g0q9bZ`RJ4wX2QTra*4dd(Uv1?$_}IVMa2Ty(aa_U(q-}t5svOOFAuGd! zW8ejm&b5pd9D7L_tMn7n;$~<;wfcjA;7m zyIcL7R-pW)h!USN1?8DH)5nY9-(oJ^59L^>u4ZqT*Ws#Q-qh7b}G!UMoa0`ys^M>C-nGyqw3^u zg*E01cE1t)XzN*i;C$s@RU7wr)k0}u;b0uzz=R|O&nKZr2LG|>e{)SpbuCp@Me}vG zj<<`|h;H)BI$np&o(u_H@VDgf6xlJ$^juBu*muiO2H_6o(gB9-O7lt@psy6t-TCPS z6oQwBS<1>D@NBj57^fRk_o(VPO1G&erP%577WJ%U(j#V!fx>{Ed**&Av!#P^#@9*a zOg#5eRSm2OWx?BdEv$O1nwpgd7VpJN*Pq;{=li_db{Hch=J4_v>T1>@y8Nf-g2UV8 zvJ6z@&rjWxx*j&EM=Z$%POnQb#S-|4dAPDOR;qH}Z`(l^#m{*%8->-+vsAsDe^-ft zZ>h*EtIz!Exyhh0=N!jwXl1vkL*nPg(p7*#(KJI-s1qG~oYI~I!A_Nw_Z zdf~B(YZuP)Q(|8|t0IN!5LURMr5d)Q1iI{_6{he(G4V^Vqg;bzr!;|i`0|p>W54Bc z$zw8u)&-Y%MGFpXuy!^@9UUlH1CN_rVGxZXzwECJj>l+*>#^~;;}=_wxuE{9d|bK1 zF%fRR1B?WgC~1+_v9G)Y5WqlL%bWkb+#w&}|G5 zld5bqUiesefuM9`fXWh#eSxr!VZPk<5%SFEoB&=w5rFid{=RZ&{AaNJKm9%|FAXcmxRfNM!dPkDS%w1=dvCg98`cH#lsoA-XKzh~{}HlU+@&T7avq zfxyOHOlq6;=Bh9g9_(77;5`m&TDMWZ6LDOL){Jo*Y$cEJ00nT(R1gU1S-buEt>NPX z-rJUsBCG#DOzTy)Z8AU1i4QSzBfEWMf>M%uJqkAZJ zW;*TN{}f!Hfl>U)C80Vv*$yU#!U^?eBwZ|RHnc*TbTEN`*KcH~-h37U_{hKnwHX_r zV5`hfwxtsa&}jQ$Xb25w^Sst7JpQU2-~5nCibEb^DIz9PxnNoY{zCIxS2|%iCEFO* zMkJYsSDC>fmDnH`frSPhzn)0(>%r-Yj)({;B2iTe7V3}f{V)A9hCZ!P3XkVu;?qtY z>RYY{eLUri(_&&sG{Unf()F`4>=bT-RT{erN(K`t zRhRF#ldWs!yN4e^s@6xVbgh!0t(j)t>gg>lg=Y1wU<2bRz(#j)%;2sD86jJp zl?%$Msu4U8Exv4oU7Z;6`RP84syfMbWe>vmS35eu=8nhUkg|Fubr2%rbvvO-HSRq8 z8$g6xzvw_p{srv7@F%?aI4}qFc?`_ca(($=?zvQd)ff|mHd*=JK-<5=kF_dP)xJG4 zEIvb@2`t%>DK!~H8-WGUC$rE%C=Z>dGyKVlnqw%RYpLwyEulUudm?c|`SADX;)u#W z)~hQJZ?}wWMI&KwETM!>mg;B_7wD(4g|@k5f;Y(d6d_)MjQ4>W1;Al#lolh9Zu8vl zcmAUtg`mWOxK%=ZGc2abLs3MAcg)pgsRonw5Rs-#Y)^QiTV}hnCqon3I7Ef%Z3j;) z!Q$A9WPk6~1HSgZA)D$-Bn-!IiC()7b6+FcOB9&1Mt(Hs#+8J4hm*emHM=<$Oe zF8ea5XN=cJPt^0fgcNbY+mntWKm2=fFwYA=;~L4Q3xOT%-t>-= z(3QGN4X`;93;HnUf4jRqEThae@w0dvqD51!;s}m)+itE5X=F z_N7QJ_@)+iOcA$G~shwn8Cqplu^l!jpF$}q)U?Qu6FGZkZ&Agp(1kXT*Zgd75o zp?k~Zy6^ojM`A)*o2Vz*r73X&c%@+HtUhySfJ2sa$0m==rY}p(-rVKpN zpZI-OZt9C;>1-S1cUd8ty!#O>Fq>|Bo(Mf6fE~r@2yQ#`#E#?vo~ zmM@VTt_zK7SuV~64f>=V+jzr=n}yAutIzTM$Zjjx&B6jfd`N9|4o3^VSxa_uwZG%a z&c?>wG^b$J#;P&c^A|byjomzmnUZG4x?6?LYVd^q8pBcpGjo9?E7zqy_)qg8Onih$ zsKk9Ae;W(ad}hx|OT(TLgZoj`#E5~WLFBTzT5-mHHGfXVg^;PHweIf#;B6273|HY? zR=&vgFhi@q2JPFP3%h2@DxHLqi^`9E31@>Yj1lgmh@PMgqjIe3-4hw?Hs4mI64!il zWpblPB6}TF09|LvA=+zhGezxANg!jd!Y+r`R;RMddhR;kxKc~EUT@CU3ZrfGyuq=i zZqkI}8aK2~AIm{M->ZsM3pnx|qzKB+ehi7* z6l!Rn1gw=hT~tz%Yru2 z8-@8eN_HUO+g&}?<4+T_jE5w1%E6S^Em6$~5nMI#dQI~$$7vy_c51g48-Oiz=Vvpk8PWKpU(adVLK0Q->0XV} z5n3Gke`5P8b53_S^x1-H<9{bkkWE4pM)e(j|U!B-IE6vv{JpN=< zR{XZHBWksFW#qz9hD^1kYrm$|EM~7{=6c$^U^+u6*;x>ysBJvHmF=d0T*2BN#W$rSIut~ll4=F zVqe>~$Qd1$7$Tj|PKdESn3ls91Z(qM>ep#a6x$o<(hF!SCgab2t=ir=Ab1?GHhvUt zIH5-^AQclRKP;g$e+2ApI6$+MHSVHX&mNPl)f$IXW=DQ8F(59d`B_YXQaX!`hqlT& z%!<9|lYCBUoUa~eO{Iq`AylkYJwo@{9SUD5x6F(X-d)1P!?VC^9577N)cO% z#*jG8pGdB|CsgDs$+Wg~Vds0;xOVOy*RRGSXA&f~8{#|c#IC?kh!eW+8vUZA%JvJn zN%Q${;~sEVWEyBb2t=o>KhUHpGFhB)FB1jZkJzF%50rEeA4h?^?s`x8g_2IGqYdk{W30i@U1VJ}vc=)zhZ zAbI>?U@dNe{eb2I-1bs5QEXLg^Iw!M?f)A}xBS1MbYSqeAbk#0yFti23-Q0LwHNu< z7D*N~=U+|%x)Fy>fNmseXbiWRvAH60BfrhO1@|b_g#hIGSqt`mJ_Zv;nLHdv>^98zSiT5no8yw_JA1~+SI8k(C7SCA%qKGD zNg#bt%m?S(81@c*(+X%6&B#9yhVe^-u$Dfw4Q9N+U;=K)OiGDf3YNp6DK~i{M&W-w z7~Klve_}GjXu|0g+}(Y@+=7TLZHXaq;W3};v-kx*g~A2xmMF_ifBbua71iJ*TTc*8 z2zwoRUgBKP#E=S}f-|Wy84zIr%ClP}C}{jKZ9GPB${~l6A<=M2x?Dfk4{j=w!=Xb= zeP^c9iJoIa#9yHjh@=f0p%0aNiisUA{4IE=TX0cOifrn@$UTcNb`A_|eykWIoSvN! zSsZl95v!8nnPM$y@#V@I4~3ke(5V1QqL3CS ziDeM&{Ng!bDV7{;lEQ-9GV*1`_CL0fAsB6Y?0%yvDcX`{)=Yo6Z=!X$(o8Jk3l@I^ zq4p3e0v!imUWQpl0D(|2sH5k&+bV8Mu{$IY4K*6(|x5bXSG7;c0?_4*AvH_dH{#tz$k3!d=e^(fU{;4p?$MQ^i zqBv;N{i!gh3Ii$(aj2ur_h~vg@WH!d->_$EW$^0DO01};Zxl_#Z%TNFGeylgg0gYG zO+o_xm%`Vnn|U8i^? zdtZ?s3_s_8Lg|LT|3&FQ{*BTVBK{vJ9qC_`F6sXrr9o?5g6Iu(lUd=I%f$fQlH$trVh8w-)9Ag3ZA zRp^lwP%<2T#2=y-oJPH_y&X;?Dxn>}2PR+l%PneDnLMgwYuv##(d(dTP*}h56PXE% z2hS8#VE!@$Laf6)>^4jfD!R{`==f*IliTh#u_IRUS1+H)mbc{9u z^$n;CuVZuFoS~Gwb)H(B6=)4xq-VGs4;0lNMrFYro~9@E+YCBLu^=!UL}`a169?}C z@QNsc2Z6C!{~fC?Nd+&;KAr0D>n%vd-gT+~V>tq0gWt<}V1jCr)xMGR{7$#5&vS5* z7=t)(&f7}f6XF^qA*3d*sJA|r#3(N460P4JAFJXYk`DcUkaSJ>ltKGYxYi%BT-Wz$ zmEYL3o8@tN2)o=UInBOJ+>3~AqD*NS4?unl0_h*ox~bgUEQFu~A-XK)rtcw4kz~N! zdCz+m1~gIdtVunim+t6J_~}w~Pj^Av;e3D)dkUb<3h$@TQX?yHM=OtKw_SBLT(mBGakB+=!qtE1^J&`NNT4Qq zzbC9?fX*etID>24`aore?|@nK$YbJm?L9ml4|;CV1^M)<=Fvc3mQ z-n|t>aP5M+%NZXMabrjc@EALlqcBo!X#-wZ^VUYm^FMNMoYooipM8xSqD4Eeh)wj) z=_2QQH)WhNV$^oC%wd-l+xSOZi4tlA=zu9Mn4pQ>r2)W=Ew880L?k1JlnfoU2PN64 zK1Eo>LG?;RRCta&-qScN{SQI@cH9(SqMz$MS1Bjy3XOE!NJpdr-K47sdLXI>`FU{8#x$a)Apo$$Sie@D^O)&HfDd0HQ zWe*n`^Nm~VwYVZlHYEG3XfAQB3#_iR0Vo}3UeV6)==#KC zu_hMS z%^ihNmfe~MXUO0I%IdBpi1j-ev0hCz`dwG*FlzILP-U)=SBAc6fETULJ zp843qjSe`sc5)+W)vd0PP=XmN6M?1q@_}C1?wjco&pH}x#m_JoG-}Br)5)0z))aI* zrWKzG;5b%6hx)qOk_bEe80rIt5mGOotBjY_IMR4A@Hup=#(ni3$jtZ1HcbR9Yh;4TNe&sWG>MiS(vK`a(DY#{Bqx&j z&$g|a4iUY|Y!L4I*3RLcblXJSh|3eb(-C?6QIo`#TV_zj%{Y0UDUCx#&*dmzKVj#hK?ABT)}kg+WAd@q-tpI%MT5|~7!5{B@4+4H}hBTUurS|>9O4oT+K(V8*HU0*GH zPdL|kV8fdY1tql&IfU3qC+J14b{~sVwB{vWynsSg=`)nwgk?5g+IlAPm4(whd+Fmr zpwQ3nPzIYH&#z+|U%)mJp-zSW^6{b&p*pUk6)MxOsb5ixK}_oJ!9*OXqf5sX#FcIk zxA-7TZvyNcQle8@Ad@Qw(ntTwbM%^=PglgdTJuVzMhV5eu42X9zGav%7z+A>T{XqM zF>38u=)P%#6ZfvzW+a=~KMdw)HVm;alxvbZdga$(M6f~ER;Ta6iq;p&LVf8pQr&B@ z&Og^jR*N_<{e0=2&~HI3@H2PAe^5ii(^2|OA%UUlfoo!x-W2d#=DOGezD4MO17?qGjhh7qNuC_n{zN9xx~O;dlTO}(p9*+c5+_zH1m_to`3C&w zLz1pg$5;IUFt8M;@iXindb%a({Cr6PZsT@Z80$+K#c3i9R?A}ZRDhb1EHt$)%KGJ- z&PQ2tHc{7KXwFk%N7q^MpYQk2HL`USU@hUTecg2P`D81vckZPIO|3T5_|tVUaE*T5XYk>4;MmmJiB~%EbzITExM)3gh+u8n_V`B(W(KQ3;vUSjbBxD^g=mb zLsE&P9*!VrtHlji@;+Pl^Cj7PPnIH*+SDn9<@UE*WvdxBE7jK;Ekw-W96e*wd7O-I9fgPMd7C<4EQl3Za1-dR*Kdo?fQWFJ>ZY=c2BZ}^*4z_vxRpyh*|l9 z@5nR#nxNoG5cA|927P1mhFs*q#XNY#wPDeol&2(c!%_E**=dM3CcET4mYi$vARE(YE3yqK}1g|jy!#4*V$F?g4Vo@lU794-l$qj6)vKRmVY841?RH}lzk!S=yyiO+Qn&|OK7 zdq@19A_yT5av6IHf!?fiT_hF2daJ!E(z+dK8G{%;gzxSIF4o-g4<5kFx9!U*PhO9- zZAY*w0~A=%B6d4ClAZ}6J`__`fkHD^F648oox7A=Dr2!LV|kGANc^&urChqT{Z#qF z9{!XV7Xy}nE=un`}Jdqyu z88GnJT{TsPA(gH?zpp|}omf~ki~_@Ihazccr$UJm{|h|#@ZZ35`0=a6|1&%%@_)i} z=l>UYF8aTP=Rp5EcuwSB@EpN^!E>Ddg69za4bM?az!}y+Y0=kDFZ<#uR6I>_fuxUJ zN5b$F`B%evWZz+RBHUt?W_gkjgW!&&>qH}tWWH2@F5!o6%hKqF=N$-FNeO;$*`ju` zn~V6dvwd6jsnCS;KiIj{|HRI{{10|c_Wu_F8U8Umtd4Q1*!0Lr+`&Yu_w~G`H0xA-9TTqS*oft^iqrsgcuz;na|e~&gg|nGfc~LOy4_C+FSxQhrG? zk`M;n^#5V+p1bpY_b36!X>8lJZ5xek+qN3Jv5h8aY}>YNH)`f-e{;@YowMc* z%zw`d_^z(r+52P|J6?6;WK2mYfImwb^|=E=dMN ztD_tzxqbeefwX;WcBRA5X@lB9vLf)`5c7jMMW8gx-ys`4s4b5mwK%&r#qC{FB&Bi{E-8mRiS@-(@S^P!`*%ou?bpqYs7Gn zwEFe)gk;)9hiH*klp>bzfx>!Txv(3lV!Q_bpyi(PCh6js2q%49kH?KlhY+DGR35+m zg4VUOh5sd7Wg8c{Hg_DQqDnZTFRmccD_N~*?5yB*khO~BN$@~(B%|v4P6M&n63UiO zZE`QE1pej%?}ikQ{&E1t;-8cj!eErV zWl9yDK|JhV4kMZB?RLgKID~=E*HUz0!@Pk3@vNIWa|;}GghH`EmXUVWZLa6^7O+4n zM?ja{Ly@JSAev(KU6(;w=d{2hP#NVl8@_7F`!49u=awru|fblB|Pf4Jhn$ z4CWfaqis1|PDjs=2YPX`+}s!AVCw@i;sT1`NWs*MJwb{y!n?GGp=)~aD}|C4-B-KI z!@y`i(8kHD+O43q!f?&f&>9)q?V0%rST=$W_a$F}ZQIf(P8SvDmYIc=GFh$atL;y< zk#3oX-m&anvzCf)6&=s#uMv7Pwky|-vExRpTaVC&tIiF_ zE7=bvZ?C6SIYX{;>}GB_z+dCJZ{n=mBposSaxB4)PO$Pz#pm8+JS;p#$>&xQhc^xrfK zxU**ssHg+$H5y}xF&b4?5OMbCp?*e!t++BmR#W-&pRO`*MuboBTohBe5(V^|z*OBv z@-MPW^H~r+)1am(95nYPdRonvV&YciM+LJD-O+J8O#UXt2^Yx)%J^8ljYt}n}_Y{QU^hO5@spfIC&?_h&6b~aV67*%m4Rw zF7vzl92DXB*%mYVN+CZN3x84tw1mnL@6Mf0?i~31N@fS)I`vsp2xy9n_C?}VMS*zu zxTX0d-kG9PfL9FBeu~o82<$eTl~un%w0Lz&HdSUl1v$?`XafhwCcdkz$QJjb8frxA z$k^S}^SdliLc`;r>)e-xSlVU^=q-X4=Vb!D;fph)Ijs`FDcXik;@3I8XL>v~ZJyE> zF)js;)0J2=>#)fxQqRO@EXPCa>_`{navK3~+IcjEjq+l9Hy?ILzR@GX zFLI3yJ02VfeOE(F;#Fx*%eIAOrrL+lv>;{I;%xq-H(B%i7KYiNu`W618B8_JDYTmw zcpo#6Zy%~A5QVDN{j1;k^*YgY=4e8j-sOp|(vIZ6=6weN;lvj!&9{P;-CS2#7tt>& zwmS;-LGn09WUhAbb*NgkaCY3klgkH>8 z&szI;O(k_TrS!qBNkMMYcqn!V(LQup>-OrYBD$At&S7>&z24$0Kbg#^P-Ux9Y4fRt zHz5NS$ciQIWMrEpv5>6zlU)x{XY{NGZ{bHL-v!%|bzSd6Ne)I#%g=;rq_r_faUTQr ziAH^bWosJOdXv1xsW&jiSsWK1+%exYhCWwb0_z4kxkgC>!*@g`5tX_dh3Y+Y;B95j26hzG* ziz6r)h5Wc0u55x!zPo!FEga}+V>Mm9E@BwR?{{LbmRUoeY4hTA-Z1Gn@S;{<`36?{ zDkFNz=Ixxp<0K_E>8KM+se9)v;B?M2Q=u*C!w!^niq&(pGMumt8q2klezMKCF?rPn zH;826SIyej==n#VHQW0}DVZZdbfdLz&bFKtu4=^yt83|auLfytOXY@ot#ui{f|zge zS*mr>(zMUqt~<0>hZp1J!c=VGza56I;SQH}6+bv@YvZ=gk527+IS~eEwk*6k)8PK_ zwS!t>5|d+-V0;}dcRX9sMH02}BMfTg?w&f5s)C(cvoi2(I89wFDHUFXtSF9Il=ntT zAs>fvo4M9yKcjsD57Y0NaywE?PIY~)1(`|Y)4CdSQb=X$AFJVIPhNG~SJ*%!=2PcmZ);-96(nwLSuNt@IZQ4vQcU~(d{eWN58>Jk( ze223MJFKPJx=`2#zi>@F_wlgVWaAzAB1@F&bI)UZzBRY@@hTGc9eTc2lh!3`Frz+>b=#VS|oBKmbLkanGYGuA7XzC2L@i-g5sAb(yt=QmmMv zCl}w3Vs8x2!_0Q`-YJ_FKwRoABDLNH)OChlc$iVu4+d^Q?e>Hqeg`+2)u zb*QBTUJJjchMp1k6(j$Lm{Q&8S{J_mT_9F3Cih7alrJQz>NfeLdZcAV65*siJw5rc0l>Tg z@|a2JHH_R};0boV)V2}*ay<`6!cIn@Td&ksNByNCSCHqb`RSmopkbeK&QQA!z3#o; z4@8blN6Fi<=iKPBhf$sRt7Qqc2F%n68;PGK67;m;mc0QYC0rI~bp*$vhsh-a zj2=l2-U%dre6)+*ls=GyNW9RFsFG|97o&6NNT$W|j|u zU(k+;MayEw5mdBWEE>$>zGfVyhv{5zNJd?rM23$%6O+DCOm-kI+>{k4Ia}V$|M1wF$-@t0gjM(0_ML6 zAKT$Cr5_OSK)aYU8wNO3(MQ-~82PH3Juv|%#8d~%seW;Uif+MbdgyU6RIL+?M%P%f znoYE?o~;&h38~cB3D4mRb({qN_EyifKb-3-IP-~qfGiK3vD;vPp-q2WYp^9TYuzt`fuG|RQAxHKt#nejcT{sad z6de3O>%)wHU+%73k0G4$&+lp&AM_X+a5Td4MHj7`n$>7{9!h_hP6S{D@VvH5ITZx7;-W$>4i#FtjyDpmTRG}Urt%I6b;DOCxWS)Q@d%G;Y z+K|T;Lru!-j5`G9Lf}n&s|k99CQM!Weg9|pa%<0pxCh`QrL(cUF!~44zV#o!UZ<$5 z&%L{Qb=uAmvUtZpPpTjnHpSG1Sh_Et9)27m)gU&`0{oD9BJw&BkS8fBQytjKw-VB8 zdC|BN=XTuw@$2RP`t_XvzaI0^=0sg`zYg1Qnv!#7UMYI4e3=TvZ0th{=1^ST2-tHw zXh^-#Jk9R2clMr47@M7)G%~>k3(0YWux`$6h7EITPj6vRXUIb}PA(vZN=)#1#IFW* zp!r|*y3Ig9y-qJaS(I|{wlmKU_f-!;?7`pQ?D>7)cZ7=4%n&V4CppP#tNh*bCqsU^!smV5=Wl1x zSLK3f(vV=nx@z^eU2_dyeX$o}6rDW*JFFJ3L9XZpn7GAX=_g1veVsyzsU9b55jAl8 z;zD{j=xkr4xPg-$49^3IZ##DMxW&eb^bQZ+{Fu&_@6lklrB%<=M$p-8G1R|>+2Kbl z5HZ%VTGEi0V`U59`QAMCB`omyPg}mf@$}_-aTW__Z5TTY!S^tO$bG8u0&o#FzzGsB z#RAgrkO%+!vEH(*la$)51rQHw)ZSp-RT0F2gKt37kS)j*OH$fkc|qVmfz-TvNqKqI zkX8pngaR7a3||wQBbTm3TSvd%`01CS@oqt(vIyg0Op-0=>q&VUo@$vjxsZhE1zl|W z@~s8#1RkuSPx~5)xR4QHHh~?f;HfYh5H$}n$0*>&wc9D}H)Gad@(S#z+8$Sjb2CIt zmW+Jl1pRW-T&B*z-y#n~7^udF7S}4a?^GOB2X9K%y%X{`4RE+;^HTkB*N6m44E8ZT z^YsSu0&ypLQ~&wO<>nCzVL7Nv%<5&i;f4bmgNv)x z#G{Iyr;d0$gY>#6FvK6Udh%+@K>pIfd@kYES?I*tD+{}KqW?4d>-KmKhp{zk%LwL_ z`C5H`S^dUGZTG?4wVao|*^~jF4m6zHnrGirWX?R`bu=0-_M6q~>hQhbxWwD9@9E^l zhA+&#f(Sy2h2>sE{W8YAk7+iR#E={)79A;i1Mb|Fr{{hWil<@7 zV*ALscpY|qbnj=1=@w8>zT+(v{CWG4R-r;m4MDd1d(z^TheDyRRn4GTCr}mx#jqTD zmM7U7xG$^DL6U|uw?eR($Zg6?ef6=Xu^a3_*osH&$M?0Lt0@AFhfHa>&8HyMIB%#I z?vqTe)Ij04L+la~uNvAkK@3KZfag*9oVKwPF59&VEYp%A$q+WuYYG2DbXP`fP`)}4 z_Q&XMo?G0irt)S{NzwZ0#OlKXE#w<`+2yGo_LH$GjL%p7`E`_Y(W)^yQ?`icVj)Yp zsY2YbufWb(DY!KdHoQW8PAv^q(}Js9Q<6UsbZdDy=Fs4XmYLSBTGO268#o$ZQ?Dy; zm-xIctA@R2PgYoa?uqmjdK|TZ>Mzh~iL?1^7DH|^i>O>Pm`nWl#+!_}%?Gl3Zxf4m z^W(Qw9M#P*T-2>6P7Ii?s?NND+3~b_B;tXKQ!v;6O7m-c`YBwPz8#c|yAW$wg{KRR#&}Rfu)yDv?LnVBUIB$mfIED_aF{jeok0&mp_O#U^(~? zIY-pRMB-v?!LemltfzmLzic!J&gcgBQ#mYoEvFzYE4>N(gR)PmEXZ+y=1*IL@65Ukoa9FXHS9e8nU2JV1 z-dLP*G-e8}2Hhk5{-u+GNT~F-N1*|6sM_d?HAPhch6TOdMb)e6MIS1OlO&2Q!sa~)hds|z;#n}@|CIE6CRE245M zE_~7Apd#vxoj!p7mEy#v-TPt6k>3ruKivUARiN1H5*^1_v=;Qgx=^_tk=XA74qHke zL2fn(Ao(-eVxEZQaq2O(Ro8U1-phuoN-`*>PLF)BbA7CyI`G^n3hdoWgc>g4b71)l zxP8f0m;JiDmeTTgsdPPuS%w$RJ+4+tQw6oy;8nYqj&)G1lM9MumyR?``R0m>No|YS zm7Lm1h{~M8lP&Ze$>b8bSIIb0pMLE`^hJs*1P%amv-(|`As=NO%utgvES204@tK8Q^h&AgaxU2|TK_lbX z$F_@245ym1?=+(q%ErgpRBp;YDOl3Y>W^fGmB-__nL(e;VD zYm)qQDN^*i|M~IJCjYu0@+#n+?IQEVgH8m)-=iW~zy0Nq!6@zObgr}goKoo9H(aOr zd#6qjFZ<7m7jS|aG~eI<`P%5vESLfFzjf=F{}mIh@h)}cR=gmfs<3f%;Mp4(Z=K3| z0ykhWTK7*TyW?~ij^lLuk>Z?Oxg?&tFyAk#qbb(`UP7~fUP6DAMW5P)?~Z$6y~atu zLO5{D^1{P#R^lcny>4b~*^%=g!p=eiUsh-*i(aOu{XfP9?sCBQAaw9ZJ9*~_GU0)g z5c-ifnS9w^4%)qN$@2kJeSTbM>fsrAYIxlrs$RXC65f?XYDX;y+r(-Ob;YeOQCuml9FVZH&V`jsIcz*x^LC|IoOj#bTZ5VFzU1Dv>P@H`}E zQ03JZe$#hGkl>emL$72<5h#L8OWcQ=bAmr}UY%YakFNTLUf1jBcEd(yz#U*4OGDSQ zx}7?(j|&{2ik5KSZ1wPwu6eDtp>2(9!_0f0 z|9A}7i&_2z2|e3}a$t`7xA^FK*Pi8BcaMIpJngha$q9MfWJ zf68wdJh7)~JTNNw`4g(uf#QaG>TsFxq2mi5mVvftzk2AurXu_ z6(Wv1dB?=X!d*3&rct8GDu_!g``EOt8v&BIa0bgr7hSp^W$QvM5&bh>ObAxd_W@Xt z)Qq8wK#XeYqP*49Wxi&Ggtw7h08V%C> z&|xL}*uj|Ff3~Vp7!@G<7i6fJ)`gVqueR|ZyO%5|b3d+BQf*H@iA=_QEMRn0`i--- ziZ?(s;h$iY`DnyxY^NCs#oxRNAG)vDzyLTliUAxOy}`?-5^JWu(4RDEf$)9Fs0oC2 z4`dlN$Hi$lNfDXBXs+q*Z(r$d-P_xGJP@Y>cAD*8{K2j0TyXn1~mCG;K-I;>vP^eOaqqu=F!C=q>X zGuxfxwCGcjJo*#wW5^;d3;yC;Emy}Wh*#&+7kj1#)!FB_vHW2Z+6uD>bwin}!WMSe z%mID22ET!QTb;j2)q~Pk@gz7({)J0pR?9BMA;+;coBFF!t<&weAKSUs#aGyEYn2PV zUbVpspw!5Wiro0036&z2^?E_d%mLxeWAgfyfBJQ`AmQEqz`tT3RV=?GdF|=t)ky{o z-3nBgHy{ZYgBGcCQYZtzyFGl~ob|TkoGjLYECM-LBZgBnIKnDT&?#wNxBmc>P#g97 zk_QaVs#Eq9HG1=~0%n212Mdy3j5NRO6Z7*)7@#$vT{FP^j2gxOAp?^Wva>Gh?)-a- z)NxU+h3rMe`1!Dic~l0OtnZDA6Nm#Gq7;|EmU{wUbXWtNg)hXM+g5h2I_Mjh$B$Iz z?HRzeM(c&38h+)biT%mqoCKiiYpuK-a!Gvz{T>w^=PI+$zyCwkXCS@PfJWrk&hAI0 z)y7y50pgVr9FnU#4Dz6w8LJOmU#C>OM!yDl%&pGbZHxk)M-Ffv4=VAe4JR40 zJ`|*zQKT~QrVft9ZKgDK|75Q;XkKB_v6>XGV9G!ItwFCrk6fo%1$4Z{4R3rL`2gX& zeE-PR%4)Vl=>qN8BQD%V|IE8RtD~i|CWRGCmAOgf0R{7VI(Q`uyE~dG8~45Iyj~T& zWo=?w!PDV1q7DzX*F$##W$;Wv+*qI9T`tp#PNVMP(HqD5Jil~3VP!4-? zgC*k=wV*AhK=wf|SGPlbQqzDwpJU>PE6 zsvCK-@_X{joCgwt6>4q+`)F?s_|EOiN$~1Z%XRkR9js}tIScr1w58R_7VN%FD^K*m zYLX1U$)C})O7zJSTAZ6(27hNlJJqE3k(ox@kwh}D_n`G@pLPr)F1QbbKHsopI>q_t(Sr*SA9ycv6e$GP9NjBF%dmYB_zG%U0D?8iW`Bm9&Z(7#4%q?TV)A0 zeVQPRq;oFm1HC3#TkT8M_y#>GsPalvaY<^!xT1L$;sWgId4`@|2UKlW3NkTH#*<&q zD+k$M`1PlY%@Mk5jM?qI*A6HzmA`9Pu{0LRXZF8m z{ZeMHcPl`lTLQBc$mV#InjNCWtbf;$+n8M$;-ITxkh;HIh!n@T6sFNN;|$p zA(Cc0JM6cM6`Vbu?xN4ymQ`}PIc9EqsL7tv>^OGtL>QQ;m zdRv3>_fb)hli#e%OSuX1>UEQ3)^#)kj{L$7lF@sq+>aG4nAvSHR33YRU=eUk(R<(V zC6P)Uxpu5;FkQ#mqB#?J$tSaNTE`)53XO1IqbW;4Qw*YGPT2FPjeuOI*81HRJ_9+_{XJ{AAmVl(xV!e8b7-r?o?ZmGpS7|V&^T=p=n2g0sPHhKUSyQEk zRVy@VTMY1}uP1V;msbyzuuEa?oU*O~;FgF==Duo1-y4mpVH(v_v+FA>t=FAM^%976 zi?dzbe;8Ax>}a775kK8Iwj-9H?I2o!y0y!osIg7my>h~+1fEi@Ne=RyT$*rZm0BNtp=#uT_^f&lL6{>+km>=-`^kq#_B7(+1bt* zHuwHw^&S6U_1Hh#{$Taff3W(ef3W&r{{^ehX08-C`EPYQmVdpY3Z&8hCQD%`OblCA zh+qReizt+P5Y$(%%)Qhji5K6x{g{QS&$Jiu78g-i?j0^IB<0QgJe%I{1V8q3Lyy^+ zNuq3b1UT09Z_N5{*z(qYzqGb)eo@#oBauhdSJ&CWnVy`B$ozbNUG9D-x&AJ-5YX_^ zk_NfvJTIM?7j9T*hLwZte``Yr!o--wfPKSgkkMpjz!l*V-Lvko2u+-aD;toroy(Evh;s%TeCt)&Y?x;5#vLxN^nV%2oajMsg_x8=h zu>Bt^^$uL) z&e!{Qc^|#iPkdJU=Zqadexe`R7rf0&@52$c@1V1yh;dj1O1tZ9*BKs+!TRXGldbi* znm>f@T0s%*fh;C}?HD=^pKLKQUYfd-;JyW~pT(+3fbXs_#M=7DgMOAx&;)2GxSW?N zMzrfQv8qd<%0v=G#v;b#sziD9q-@a;fFJ9xe<}P@)C-gGVQrCwA^qnWg`&|6_vn>0 z++8xUrVKKYoU@df<%>vF0mBxwUI@(6p(F;RYgmw{y~r9R9c#2Hh&%rd4O0O$#@#6x znG7W>o?+q;lyCSET69Az9iQC#k@pi4KsG#X4BX0Ro+kB&M{vlJxuPueC&2O$T0NMm zZZ1ik3j2C}2f^w@cyI#E&%`|Y1}YYO)FZzvE+6W(xmJn#y{HJPOhTMZ!>1DziSw+- zj&H@d^;Nmq_eV4kqkc><{{F^5gbx`LM2`ZYx_VzAcwRRS4T0|ckUmFcW4MD#L`-5sBoke;gE$FAcc=G<@R4<@?#}FUqem)8 zXS`B5kO5~rD%P~OM6!_K?jI#C00*i2hqj~=uR041!G}>I z4R$W+T$-qDGiHlt2vS ziL$zaS|;G}TZIMuouGmBOhy$(VFPjClKNk<9v&dpbH0Dj1TqlB9{}^(8ofc|iT||3 z{j6?d#{nA3Cl=u(54hf%mb>O?zKT8zwDYBz*#%3JC*Hw~ff4+!U*I+0U}zgb9RG+Y z2#Q^{K69Cp*yCwOZh;2(i=S5@ey%wQ%=0pZ3Zb2PQ(qlECAJneYMoW8kMpad|J%@5 zru1`tX=xdg!~DRnO%-BELWPJIZ@kpkKCn^U)PTI<_-qDNaMRXm3bnXXztbMbN@^Z& z+dCPYN8Q|=TSL@N3gnzjn{Xn(>5E@az~$;}x-E*ZIf_PnUn?HYF1!*7q%nrZ%h-Ci zPX*69DB`FAXuXn9BGC0;w7w+7Hxx(E@!x2D_!t1K?``9%Yy1~lpASImrzY@Op}=o# z&`$tpeJkFOPd9_}2MfpUjy*9##Qmb4vH7nbm`}T|!3W+xIpx2{LO&-rS0)w0Tj^ib z3gnk*JjZX8yBXd;?7^RTzUlwm$hs)i&PZr&kRdStg-sA}TXt;|_1yy-ZNbdM6vIj= z`sUF}08%~r^pz^pI+R4R@Z~$a3K!}rnmX_vlWWms#2E6@;re{Xw8C8|Yj#X<9gZj~ z56k0iG3}C`N$uo*W25fd+hM}4vNONZ0~Q@zsdBFqa2#+Kh)zr97ty6ahtT{>ueBhJ z)B6MFJZL?GV4*guxDWo~wV%}Pd&sh*EbVEx$f+57kFt{wy}j9yX|n6?n)M($_87ZF z&$Xxo*&mL~o2cJ3*uxt}!*==nI`JsQrmBRy$6dawTvU@T5xQ;7olNssdQ7m7=CqnT z9ZpQu)q`XWL5iS=@Y-B@uAK`%-(#lAY^)nN;@R*Gtx;;IV1dhs-hpztF4iSS{$8jC zTD~yG8AMaHXcG=PgH-`~&P~lt&ZBioEfiDy z%OdoOkU+_fG_1-hH_NE|N53(+B%*{j3RQ@6@?6upyh+Xglj~`Mr(f2-Si83x4{GW7 z51KrB4cdoDIQo$Z=x2`m-Pn$q05-T6?7${n3D4<9o}lH#c4_U?rdQ3V({%dsfd|Rr zC*?-*^rT;Sbhx%mB*dU}y4#c z7ksho_h*ABxwzK9@75ov_{s1D?uafkN(;N|Lz*_r1c8~AkX8qx!IQm-8o=_;1S!Rb z!j4LHERcOfm-;~K+ttrp<+gc_x2&a^5|?H2shCvLAL-AZPt^i-u2S=iRsqkCIJ&Tt zU>yxi54{PE^H&~BoidmWt{}Z6Yr%^fLqK5 z8jT0>QB&;HcV^K#)hXZqB)b$&JEcCB(=ho~N0<|9o5t$KlfofAH!J^*@kxAD6tR@- zN}H8Ne?%&q-FcX}erXk>sdD#+su`r615)Vsc$BG8Q;ivA5J&?2fzFN}eI{Gj;au4! zgA=qAdte-KQ5zUlyN(yptIB_ugG61!UF7vpx-7!qqT42MG*xCrN8n=Gv{z3bx$ zH%|@>m*530_J22KhwkRAG>B;(xEZ*o)FnUA^mOP<^cxXkw9qSENYS?AVBj3*pj3Ks zwN>a^s=s>gR^-S@Hr2DHX%)&>4(gZeqQMvo3=ilGNNjecN1*K}Y8ZjS;f|r4WW28? z3?yaIhlDb6*Q&2UsQhqd_wZLWXRx)IjWlpkG zbhkwssx`(XD(HsS_yYL>G0#in&Y8|y$JQUNlC%ykFWO^aUc&SJRoQvddI^U zf+V;{SwyH!ph-cHr9m|%pQ>SW33KPKa@zeHwdl!VjvKN&W{opy3N6%IzyIUM+h^M9 z^^o)UzE3hCtE~5pA1t8dtN)@j7e%a!>XimhEIJJUWnyf*f}x8rE4}p7y{-T z{znG$_H~s=^80OA#uv5$ej3d>A`_vn+Cv)RHHe z3@ch>og>UTVC-o$geK=$liu5{-82HMlv>gQ*+d*O=s5U;nRQq&g;Xv>MfFsWjA;6? z8%7pSeNR866RTCS{JONF@A4$%rMAu?XWl!|VrtlGJpr%BxxKc=)Kxio%|=J2(shU3 zBpX1`=mgH8>l&|O$*B1=ep4HMMQXOInPYTB^-bThy*4f%GB#m5D;u@(t~pYQcaIgc zpaGL)cbZL`44Jq^-y_jlJ}WbtmY5jm5oN_VDmFAXeIaiPsp!eDY5k%c`$|~XAlPUO_*PqGy+$&|~=YPFfAoxmc zgnN%-Rgve*Cv9{pOsELKs!B^Wgjdg{c6?C;J4F%-kywNZp#YP%sG#Rj-QTS$R5YHU z(ayKQj;$os`>3qgr(xyMC;|A%s2dpd zt9dp-E^v%Px^tM~3cM^dein3F#&2V+CQ<3ya}HZL=WZ=U>>)>%z|2KqZNA+Kk2jqE z^e^w{X5q(w+n{G-{kNLavDn2h^J&l`X#Xz%Q>*^nO?l*7$5>NGtdELCqlrvGmG19H zGOBf!B&oSk(#vp!h+xSBqL&*R-s6b-IDhmm_3m~-lYz&lK|TWn7tY@kET$`|%D zhUdi|4>v>&2+|huMGK^THt?qLBsmNLk#hlA-JOqviimu4(}0zO(>H*m9+M}veX{PI+4f^JPHs}vK0UPw$f*N9bgQK>8O3q)$y?Z2mX(WFvMU33# z;R_-1*m=ak|CX5D$#VuB?J5nJc(%L0i}yNKdQ-DF|7zv|;e+s|zW$;&`0|WIb%(bk ziujCnZMgfG!y)f;(mRdgFUiJ`EYr#IYXj(n11QU|lSOlbQA-`R&x3#S%dqbsLsV5w zi1Vt!sN8+1hvB;?Fk)up={w@zrG+J{$Rmr}%~_;^M`KyGYlq@bVTs+{WB5Ko5X)cD zN565`PPj;q%IIH!tIh+xJV*9(jm-`%h@z9bX7TYr5G~svxq^lZA^1AN=mK(PlxAQ! zszK%xs;w!976kf(s6$wr@T?NpgQiB9c%|-jN@L3zF~}mu^!?-4!o)ILeX5d3Wp43G z{3#x3wPiZNVj^G}Tuz~Vk#?7Iwv9s_4HUV^%WNodW^j zoH_1NI};%QoMZTBX@R}J2^|wY!m0#^!kW?=ubKOK>0wKlJLqfGd3a7E5YrW4g1#Xv z)!QMjLL>J0L@g;4`8;(Wf_wr`5%@6!GCIk0k1aPq05PEGt;j zap%gBzao(;1e$tkgrhf#oJa}yD`o|nM;bC;LSnz$7bA?r?%ix%DiFW~{aSAYV1nLx zJ+}IQg@zR?F(kuR>dyqddiuJ%0W>V#mv?ueW)G+bLW?$R>J6$`GtPX?S}d}&8`9Md zY2(!Hsif~ggerVgk+}DN;&!SM4U#&`yvIevT*iqB8kdB~};WZIiYLH@Z2^E$@ zv^YJkvDT7ESwR~z)&zQrB{PY))zPnl=tHdtJpan|9}QS*i)R&v#;AFT$a*y}!oPw_ z{|GYwnTm=RFcH=qBT`lL&jNk4wpRNO5`xaZYEIbSmNRcHd?6>6Mo;ZOYEB^6Ouc2+ zzttQy8bE z%%mF~Sn08e)Ph_i49+6-_u9KnU-U6#u5~uji%LYT$$imS6iS_G1?*GL4*w-UBi#zUr zV*NTi|IU%oe`5X3+#r9t1JJjBV*Sd$vHtzvSYPpPtpEK_tRJ3RTfj2~wA_NA%}uLq zcqQx#!aH`X`pw|wGA5{^NyaYbWNGF)dEgvG$2-pi1qey)XVW*7DVD3oU=^}kYK-oS zea&Sf1Qvjr6X^~9?VBc4YGj*PR{YO=YeCC;w`gT25Cn#)f2I0CA>ICDH#i6-%0Nk8 z7l2gXB8p^G;HE(jRPhvQjwTDm3hHmFU(s8Zaq{(Vs((%jLQ&}kMtPK4R`sl_5kyjH zVhg4i43a^w%43F{g?|pUHV7mH)WB-=no*muqzCXtVeWs|3-N#o7ngu^fEO3U$y=jptlwOl7vG9Y?x`jqM(B^=d>)F#V&TAt5tTsv)3iZluNnL z$=ic#i*^ZFGTP`7xchrz-J+ioo)J-s8A+zV((q*563tI6xSL?V+ zArGutGXr6In}bwGV)jT!gI5E2O2<6M=)_(^OB!9wWR9vzqR zwy=875@C|>yE4V0wF_WXzvOId+qP*X+>blY>}kLAKc&?h%xe1^x|-Q|sWrIP@5g=j z=KaD_Fc7f+Ym~Xf{BC3Ak+U0oahoJU2Ynk`#w2nvJ}t`yJC*{u?EaWno(Rx8e`hnY%u|n$4jET$5eKtMVEKYaV4fOP&H#x7mbX$?cO6 z;ve{iD6tpH$EJh3Zlc5YA?wiyX2#b~@J)QSniQi+YFi7#o13{&n;U$UnDHfF-SI3Rq*7GI3XzM4<3qY`zVoV^n+P?+bFZVy zfy0MRk|4?8dC5sbcasJ`R&|@k;v(9}w2B5e(a>CrMy0%m&CO9(FP@lC86uZd%^Np< zZ-d#yLM$aUh`Bcq(Lh4M*4+9?&0!)`eOg$l>=AentE+tYJ3+tui@BJiSe~Ax(Wd^j zCYs~cKweLjOq(td{E+>DT#RC@2X51af=WIDm?yK}Wd)IIJ}nL18|&;SWQ9Z8zarM< ziL<^cwQI+-#NwASl^*ks+f#MDrQGH|aYD`#Pfiqe$anbDZ>9!cUa>qN&C$E zcMqebVWlsQG!I?}yqKRWTpMr|_U{w35+Gq) z9-FkA<8{h$1NVpEma=x42kVRP#z#@KT|n;3Fi%aILAYRH?}m<>>rUYyCSE$+>wPG* zGuATDXc_Ht7!rdGS;L-rOP@lZ^ft2G#*SV-3_5yS!j~a z?^sUDYHf^|U_P9TT{FjZx0@l$oLceR&Vuu%*3V9M=+b8IjL{mqBYQwsYFqyW0r~~& z_4}!UMa<2#LRZb2irk*Ul;>$k9%)$byj1S2o4rqg`J}j2R**x2s$ZE`J{j^>f*yT1 zRPF(_2~BSatd>PY6eY4~C53c$c{&Y_lIkG+U4vcsUH?40 zWUD7Zf(dJDTK|%PCU&vI92N`PJ6#NkbGHsQf(R;=>=vCa!e? zUnT78O|<8Y)wMFW`~=vLi6w*Mxo{d1M{GuxLX}cX8*H%FUJZDHW0}9e#W*j~SyC`! zld+R;#w#E0yUk`B^%xe&^tq)C1)1d>K02aTwMmadxs`Thhfk%i_rETvl{PqOoxt@A z96Nifti4)o8(}3dNKk87z7EaKlY|0q+R3DwY9`haFQ%f)(HY?A&?c`Ry>vL4Z)B_} zU?!#ct|^L+Pne2qLH6}1QM9oy#3n=cPt6}6*oGc@LN~j%KLnX7|RuZ)+ zAbE=I8zFad7gP{ci{0*#ca}^Gaq6a_pRbSH)(1yL@o3Sh22nML3cx3cy3p?FKRFW4 zxq$J_PVJsN)L1hX8)YXBSc?TX7M&k=wP z`b#f-zy`e%V1r(Fl2oUHKB>#HWo%`qar~g&rRU}YNzU2FI ziPmGWw$3NK+hyu9{n~+7vr^!mHm=L$y-#y6pdOtHs7JdY`~K$mj|ZcMooiRifLOnf z^ncr{`xiaR_Rk|~Id)yT$+x@b15yZd0|W4P-?{Hk0jT9!4G+u)WDg^2Gk&$Y8+3oF#FGM=(cQ3vMv4_2f)Awu0jl=#>C;3Xf?Q9|k_XzPSI&|P+N8goCGGo0 z{c&~-O(62-p^f$BgxH#x^kb$qAHV`g*j(9`o#&wq_Ac-M&FFgyQV_rZJ)jxQ3=;lN zGg<;FH&YY$r~Q2{{(b(*rPuGv$8&2%kIOT8N4HTNbwp*<0QI7&-&pFH_G}qW~9vhv0@h zLHqy(M9Q1cD6`15 z{92rN;|zTvVYEQ@HoWpWZlK-~Wn6hDo6<pEX{=C+ zosR8Zd4)tdYlg`B!82N~^56N*bKL(j<*tPo*q@! z@jB8t6_bYi@3A{sYS-^JEyl{P;pwG;%tg?>9t;zYb7S-4e}{o=ljGja36O z-3>)ONNDgf@9mGe)dpR_o4!EGc@ly{J#O%6ZLlEycLIobltOj5G0f~X zGUH5-%H`so5^9)*Js2nDohLd2mMq}8I4+Y=j~*NTA2N-EgrJL%`A|Wsu;UQc6``l| z9gs(yHCxfWNSL~o>%NOj5IHhe77G+|2F_3UJD;zH-G2d%K31IvNu*yQpwSN$1JOnJ0aub$V^Jr2SzfyM1o|^I-2!}09n{Iv1*9HO(JH`e-!jjfNgY7 zpA$1gKmeG+y+gv1@U^gQ!@_vKlBOlu0mzGQ+z{ewW2D>nMPcrOJ7F>o^wPIzWP0~8#%LAMT`d$7g z{~!4;>!-J04ffJ`7CrjNgwD)Uf&y&V-(plbmKm?%XenmSJ!(4pikfQ3apKIE?_FQ= z61xzR*uqbq!{ko&rG$TZAih#B6VvSFi;w)KL{8O|^1k?ke`8_NYxYlu3quf<2oj_WR33Lk{)f?_4(qSC zLkM4fd<(8j`?vB}4H2 zmgyaaBz#56VgrOK2omTY!`}karX*m#0>)57B0KBvZKvP6i`fpmGnIN|JXt++7PvW+ zLsY@>dcEHBZi2Q@ym5bs1VAaxTYD}fMs7YfWOk`NF~N2|{DrpVP|TavDtI1*8oH-& z>He}w#RrTO zV4Dytz>;#mdnRu$uc=X1K@V!h%?D&SRHG%A(%$xtW%4`y@8~5+d2|Fm0F{@kug^=Q zxaQ*A+0-Y4@iJaT*6TL|Jou{U6=nRY82h8d;$*x1s)9ct&c0S3v}}up=EJ>bo_E-~ z|KV<3k)8$I6_sZq_iV%(G&v8|rZSkIYkD#|VI-jmiA)POY=>RlS>pW+ zuzprHjR4EBTIuR9Z3C>IZ?@N-I`>+0vG;oXG*}fOqYO zAEy;rH$o)w4sq-AmFKD*pM6=ONq3nZm7j>Z*sVOY#nxqvL1fCG8FzA<%Uru4)6yQg zP!jQX@55DRH@#E7F*a0}xXVlXXRBLyE=WTcOPS?YIs7+&c4=(^%%9o$?F~(3AuAXS zDaP!TU<^r(@}q#v{>`7wau2!C19 zAdaqn!vxM|)fO;|Hh9m$_SE!Chz-gQ1#14f@Xm3jA5_WW(2$-&yf1FPE*Cw`S+YG3 ze!eTq9f4fVE#v-Bh*y=7J85HqHnb@;fDL$JfOR6LbI@2qv4u2dl3tyhVbc^>YoWE8 z$ULrD*0Ff~fhepw%Qe-kHkUG^g^fM>Kr!0e=AI2e*WJDln_t~(UzuJV`U6Sc?fjcR z6Od!=BA*JC*vn+TD=XrbxJ%x&h%pz`1L+_;^(EAZ)ZAVLYVGxUR#=y#;=rV|wGI*O zF6nNCgKa))!RnGJcaa@pnd%RTkc2{#I~`}t_XC!(=c!u|%tq96_XYPk*~o+|SV=;N z)_Te!^~~|RU;f#{UpHLj?8(3B?}Z0v)@r2KsN&<3TSrN(jdmLNI@_iBx2^(pi;%hP zLV)Js9gtxZHD-$Wap(?(O^e0ICdv5(ZQRriu8&#RC?Y42qi9_9g}v-WZ5w*>Y8pJ=eQLcg(fB-NQC z-$oU!1Xc(uWj={q*}G96ovt+r>V~P^y;Cj}7k7x}Pq*pgRx^`xh^DS%2cj;;trUcaq{kw4fYR&n)W$1wb-W2pF<3;~pt_&;TeJ+2p zC~#Cdb3%PW@-)r7R?qJORH3%KyOexf>CCeHj8(~IqpS0{ki7OehT125S#E|WM6c1j zz$gh`CR>!Of$i|*QZ?-Pz>Kz-Vri&~AU0TNrL3x65`TnCZwROw58c36Nx{=QA{{TZ zVI#s>Cq)xGsz)Q`@gv?(#$h3?uJzKWN+G<*G_h}nIBro6{j6#6`KbqO70V1hkrTFu z+dm+rSrrjJhd!7?**8hcwU?xZoF{aQU>$FR6iQ4Ad0GXT__2aY32*J*AHt|EC+F>E zy1&;q>dr4;^5yBx%N07lT0M3Otd)b9N)`?DTCZhIJ<84GLoz9U@M2ikyD?n%>YO3I z(3CdgY+6TCYG*e%`G7LLGSXON(?yP=^>n{TnVRGzLywX28|d_7#||s^Le(LC`myQP z@eLY#`eSr?P-WB~($q)++Nt0+ zP4}CmR#gL=z*+|fUzBYf(#y=4-UXsR7{7Z)k5k|@3S&)P)cKV1i)e}pK1K}cNouRZz5)C+~YOelU|7pZ-L>kKCV?y6IPe~D=5 z0x#l@MbbpPH<9P)q%XF9%vx=Ix&vXGRTz840la$frJxJYVej-r0{U@C^K;X>RdBLw z&RV_ZxYtVrwj_aJR@5Xdqt6?Hyom6Ub+@^n;6xAA2l~@x@OBw}SWgYtPsiZ{U_ru1 z1Gk65-JD`SyRN-^G7HjbZdW1NxlH^EA({$%^R#<72E4TOb$QIqS;g}8M*m-9P)U?B z>jxkPp;G;SVvxCsfw74rBkTXJn^zMGc~ZJ^!#p5ExeaYU%<5PCZ?`q@^gC+Z|JZS@ z#KS{@LR?gOgn9INB*X__I;*NK8k?v*%Qz>|z!d$X=5QQKye@YicBx5KQ$jGf(=q3s zIF7==nFscG(9vUDmU_0KQE2L0;=@%P->pWB1E@LI-%ra`yBUhm)d+iHKd`4w*d_ZQ zLTUp3ROQovGN%vFC{_4CK{-4^gunl%Q37;H zU7{#_zm)-Mx^K)m9Jjk|E)KYAAow+gyJj#KlF+;66ML9kB>OTl0Z4p_DX7FFI|l6k zU~{V5NnTX$Ly^J8LQ4)+CUIcA>2eG59CW^&^`|D|7(;G$4s`cylsIlaDcYzw$gvvVm{J9m~?n=VnTM@H?{+; zbiEuq|F4y9z|^pvKe%t}L29>Iv!G4W+s!%3{1fxn2Hw>L{|TkD@0IY0$PHRoUO=w! zd1vqd+%g%zzsqMHKL6dzaa#Ic%`oC(I~GqlAQIVUB=M7bN+LvhWY`@FN3;)OSsDsw z>vNPC#>45dJQ(EaC8%bJb0V{YN{~sI4kdDcyBkFYy$0a!&MTPA;!U+^AA)jhcA=n3 zsm|^Ii5du7BuId5XMgI7>EF&tTOg(LxiG=6zy!U&YTeX=meFPtPRfT z;;;KU2dNZwaK|*&kAb3MR!8o;TO6CWkbcV*#I9qoh4C|nh{PE1PZV38RFVU%U{G4T zAxXwZw!<-*dVX87ww!%+|Ly0z+r^Vr(;N0zn!;o0;00P^30#s@V&a0h0Hb0PivNh| z6mcA|3KePDfS5|qfG7Lk+mw*D-@mP1yxHLluYlpG&h9}mJVC-O*wV_&-TPD!=cIy^<<0f=dsUM;?ns_P(P<*j`k0 zU%m%KD8W9Yu|~#NwWB_yM+bc0uD?HO{h~xjANa3A=8>V~QeG|jAK*ssRfdQ)E;Ggz zq{Wjt#)ey;Jm`jp6My8RhAhKIII^~}7HA1~|3aySmgEgVH3uS7E?V~|oyFL&3N7+G zQ}MZ7p=hjmq%nBWwf*&6khO4Zqx^c7;n1TL+9NPm6pfjRHOe_)mR*a{+xq+6ORjKx z8`arb^blAiL<){>1X%rd=_&t6qjsRgJZW?RXMRfFe%*Jd8l2dmNUi%}YmJ~51u~C% zF)x^4lsvmRpFk;$b#_w#u#|)VDq%A!`R;C8){YJwCRo{BkBpubQdKjg;*}%v7D1$3 zA3)&E*sq4%?Ef}S^H1O{b@aPrc!ry7DYxqfC!u>Et8n2^@Mv^gPhIaa{~{6@sOcV? zddl~JL)m%4yi^dtQdh8b2#t=Xy5(Ns=&e&$-^~9DNv{?Ur|2|a*6<}b`z*X}mXZfx z@SYYQQB~~)|4as+m|Q+VHUPNkxMWaH^g?Y7`H9?sFb+O4p7R1~<=xxyWU*hA?>v8S z*^u?TkdN5Bz=l0Qr~1o>sIkRKtoX-d@1G|e-!-7qG*n47kUWw;oR`ZkwfS=%=1mom z6&?cs_YWM4LFu7i>y>qa2^btsO1;IVHyp|%K5o1HUuCu4Y>;0$L*_ASyIrP9@EMhhyUb|O`lb~<>Ku?*J50OP$e z-n^d1&vJBs?X*=EV^njcRR226=u8Ia{dS1yH-Md^LDQipex^oAjU#CnO}1F(k!o01 z|3=NWgf!2-*j4H#e#&s-1*UKdMu~jz>G*>kCZn)t>l!Q+*Z0 zuc-R;GQF9^RXKC4kZ>-Qt2lx+wt>nGEN#DP$9~ahU$T$>Jw{^{c(DG`V3Vt<^GRD? zjU~7_Wy_g9yTddxJH5P7+YQZbvv7HWD+>cYwgAC3)SDN0m=@T0l~!E@+iN98E^3&x zLaCU_=S;29n!CiQ#6KDtb6l!gaw0&B4hNEz z(rS=Cb;lhWr9ULi66w|)tgNjyyV5{(%GN!LebbgcUMC!TI1=3Yd%4EVNr8CRN>j5M z9(y;4{0*#7MzQn}t(?>mgDuH4>fd+AlvRGsrm3n*JxXS>_p`o$qPEJgp(+;XJu*2<*luM{9tmL`Yb^Y9`VUCzMgwZZI zRpcSx`yJ1gxw0mY@sO0z@JqWqwm9rGngY!JGRKKp8q%<2bX9*dg++=hz3)fgl_hHg zmDp&yq$5~OZ~Kz{X6c5M_UeO2T$m*XXBaG}o94Lf7E=Qi@W$Ih1M>~7G$t60hxX=e zcF34YnL%adq;+<4Y3AUb{fcTQ53=0HZ9{}`F@23U8_W8TGnut(wTF6awXc~3keNPa zm8q9RF2z=ptPPLcx{jE|=Ui4ajk5sapFO$?1oEYJK6KY!OZwwFHR!-%HVvC!!}_6k zL0q;)Z8P~$`hO9*U<%cpJpNV?$-7p$pG?io7c8$LiedN-%hD;2DIKM?3`p4o=|mKq zMJ%L*DwWWYSWT3~l zk*w_WJJPDbo|+#yHM%pb?MT&s{RJ<^mfXZJ26El_O+|$#NXpAK!ZD&rO+J zH+gWyMc0v(XBT2-TB>8Uw$yENSu$~lp_XrN9e9D9IAc!f+UUES!Kr0-CeLdxT~tR2 z4sN>rEmT04_sY0zZ@e#>EV)}bC{3>^0lXRxNHR1N@>u&0pjPVz2CI|Pvd{7p{ z;n{hoKTpVJ$zuI12Q^#qRB)_@i)frID~&VnNVjZU83klZdFrov<1}xQt1*Qs zUC6pIHI5ugd->z$7nAH__EL#wfm8zk=#@iLd0(}NTQNriN@}mnUBrqTr&IN=>I#qG z{xQDI{)@b&YE8PxPUH^chA6B1jrBZ?Zhd5|-l4|GY8c{PrN^s@8i)XZ(&@oYkmJMb zrQD!HL5M_!BfcSMbX)6+ALx)SZF+5cf*V4 z!IkUCdOgBvz|(JUaD}%mzZp*U3s;?5?&|gNI%)apbnMzm%qsZpq&PgVlGiZov{@HR5z& zM_K*jKbQnS%#qSRJl)tOrY2%YW5sIjB8lK%iZ6XxuWB&``B4{srhX}Gh+{V)6 zH%3ovm|vsLj#|PuW;`*!zAV^n+AT8j7N9U9^~e8L7%AUNwJrRoFzN=~fjbWx-HRdG zV1U{uYe$ZG?yYOz|2MeXiZm=obllMk@c@rYD?j~0gYj9W2{^JWKe8O{|2MdE5@IE= zPu)q5AwFIP$;S!$=_z>c3t#;$6b{an`T@2?o2Luuac9-{Q-?NC1`D&g3pG%E-iHzy zE*AUY2D=5wQ&?P(K)Xq5BgR@s828sV45Bi!wUJi*4=bOODBS+UrWxBM2bu{{D$7GV zL~EN~;mkJonty{krg>kM@|0>5-w03A-x%oaLb-!4jWYCnNu|kFakD1+x~fR+a(P{( zb8xMAE2mx(;DSz{x zf;267Fx7$OMp-M++25ABsdNmj8Lk--cT{%6;K8!ukl(O-8K-2YFjvhn(szX{o=I^r zJ5)=s#M>DGV9ON?30l14PTFPEDf_SFR7%dBC0aEY84PX$;0soK400*q$1iK(#uog_ zKevZ{GOmLRVdST~e(XXRk7a5jqEf>&z@62}Ag*lIb1>Zb^(P(tw1A z-sxQv*-}6-e2ZonsU+@(mD^CLz9ko8#n`arTk8GUszjf_nVEzX(1@^{;~&`A!I}xm zJGDI7krT}LVSdsKu>m!B3z*zp4mH?}ORO&{5L~0bQZ|A6p3}e68PaC-oQtV22QWrj zh2>Hu{5Wq`fX$;Pu3Z$==(kxEFiLRSm04!yV#E!?m9gTi)fAga8T}-D4CjezByipS zzr71YxyubN7^@A$ltrW?u9C{=I|wNZQdSmJpvD{>)+h#KDw*C<<>aKTMa@#&2s0RT zZy33YaTFgT@L{Q|0PTVfEEub@d(H3+dmWf2pVXY?iO+~^nx&7jlys+vvws)j)(d%n zD_8b6Q$SZ-k*%OGaYhl1QgBtk$y~!cHvwN6{gnU}>PjWqZ^&q>!JH#Cl7|RSzX-{1 z<_%$qs8{F28?QGQ43W?pQjA50%}45@7nTH z=|B3tPoDcDtmnOmx-cHZrO#-95`i0hph(jUtr6G1!Jk!obEG?1dt?LHHBE zZzZTW{yG!doo6`oi9N!#W_Bd!K}pghk1cGM*oz4GrI31m$?WFCdb0U5rnsw}0J99n zA6&oa)B>0JTmaj{bwKv@Yv26Ua~WC`=zdG0B;5tr5#&@ap*k1@+puDu_2opKMzx^w zAlS`46)x2!fb8O^GzWnUpn@QveP9WSn$@&CE?~#Melyg^)w(7rfFLINggmZi+H4uO zqxwqEqwbiMKSFj~a_PPVe{>E;EMPQX6+aK5iO~N3>g!ACWB&DLFjCKb;d;+|y&#Pq ztwJ|fe@5NpJlukf^F{B4*fB+q7|73|^SpTeC0qQ|KJ9BG2Y^Ao{% zRcJSY{|SydSs~-P!1NUqj-MiSL(SQ-K)o#C0E`!5l%GQdqIQAlWb!K) z9n)&3Df~xUv&a+!;GhTz*(Om_2W|B#Z36yhYS0Ck($~>s^#cv!3L^lsHWT3G({)-v z?eowpCGHER!u5a5+S=O1^_i>--uzlCe`{2ewj2&wV~p8jJ;U3d1M6GJo-x*9P8qoq zhYhM~T@2|O_zY05Rtl#grTS!Zb#DbkK+;U6vZpQ)D*#I~sn+eT> zSA7eorgm8un~k+-n=W^z1vZnljCmbnV_M;c+=51Q=1Jr%2RtM) zeYocj`r8v7=~u4dzpxvI+WwMPrG-azD0G#Y!9gYSa>j~z6E>4crdLw(DIDjsx5k`2 zic(;_e$5#_UXp2)J~a7Q)ZQ2BJROM-AqJ}876+BdP}yJNG3DdgWXPin-$5v=?>}$xQnf7ksSIkenE^t4_@?|2RvtyO=n(`BgeTXt(#$!)ZN^m~2 zDb>%>2i0%Sn8dFHTBYYO&*ZkB&aEPHC8*~hJj|?^_b<+%A?mMRF->*U1z0@#Y;DI> z=?hMAxCH^Tlj8|;%O&0VQmKE`*T*x5*y)zvGj)q)kMh~eL8QMGbBzTzin~#f>*1)f zwZ%{jXiMBtRZgWj4NGBw!kwTquaSGn4kaF~n(NlxWfbdsrbnS&>f3ny_}vL#OCFpggsNk5=Qm-Zh>_D?QTr2UD!ZP#^sfxxjf#9f%o2#njx>< zoMRv_8xA!j7o$+86bO!)g9^4{zDq86M}WcmN6mzW?R+-K+k6yZkx&kOq{CklNgYX{ zUfQ;Vj`FC6NhsK6N`wbt=y-tBtfRUUGR}7AXZST}gPli__XcwzVSy=%%gQU63VwvP(a5b2L*z@nAx6 zxkd+nSwVGt!}{afdePs#m>O-Fgt0M^A?D3R*Wr-M@#MnnUmysVL2DK=&*P$b<;a{0 zHGyUq&Uen)bT!&_jIlwRluZlSj+k&H zaD13|l$92&f8)vHEO~dbtSDj1V_Kd!2>*f&$)gdNUZz;OX(}ab)54sIGd(}_xHR|I zlJ<2+xf9EDiB=o4qbY1_N-63r(l_~2j25-}Yl@i3wYZJ6IllhtKmlDZ=Nf?hd`uF8Aso~cMGXx%a+Mu zmNlFLEXC32me<(zhL;=cspD2Dh@`GmTP8AbOwTnC;yL-`P4MY%SZGAbb-2gGm0HjU z#}(bjTpL2C*}d=glJod2z4?8i^jrsv1u<5M*$f%6Z$f z%{YJUUGMdaIMixL?;Ak${Qd?7Qji7(Lj!^Uf&wHJBA|m%k(L+`ARsH4|09_&{?A3w ze?Mm#_@gHP$n$$~pox(n^M1u?SUQ&nD zgkP1}TQAZTWJ{UwrEu5HlMdJv4v(f)B@>+LXRwOgdkR5?p$<(O3A~t)JGk?K>eC3k zB%C;oA+@)bP*N2B`k@v~B9l{MwDt!0*n66tkDm#le8uAb3_)L(JVL#s`C;- z_6hw!%fG2GH_U0mL%Urg$?ENj+konba=IORKataJ3kH#Dw#X?#0O!YMudBgiDO_fT zDSyy9#fnuljQnO-Ax|}Iwpp^lQTJ0q4r>^>-FLmMtcG7|*!*Uil4M@TtX7zSeHX^i zH=Gv*<%)atXN6p^IrS+-x$W!{;>(}9=bjV@gb{H`x;eQ4|JSck6Ws?aAVka<#rkrs zTBJxt?7MGBm$Nw7u{69j1-O8IQsTVUn`2e}4zS4G4CogxQ5i3nC$o3IUNJU?|InI% z?m6V6pDHM-)^n&M%Rw7(3BV7#;89e=yP}l$Hf|x14!%}REh)W?oyC7oXhnQZU{;qE z$|i4nPfI%v#4JlnFpbqJru9J2gPJ1=go>>|g_8ewi&=Z2@EF<{BNQ$8$3CBFhJ6~Y z{s1}9fl+Jd)bSQwrSpdNF5hkSBab~uTI;Jx%z;Nf<++ie{>oDyM+wG{Nom$^rNZM$ z9N4n~FCfCV_I@8W4;jH|3JGRCK(IIHm!R7H*Z&-2dX`ihT&clI3G>@R*f(mLS5j!B z+xdb1w_h)23A^J9AXk(Bw+`}ur>o^41@hnJ_)O_FF=6=6$+O2yk2Niy{W<#zCZ^|X) z$s*O8;s7{HH@N@dEFogwKQF)yM$O5-)(Wl)ZzE*YRA?EA|eO;3El~eysa;2>duy{G^p% zt(CrubwhiRYjfO&eyk@}G{UZqDyS{q5fUPQ++n{bi0GU1qEpePNcT9j;{=?i2V|dd zJ2bf$ILl>(w03_c#xaGHx(Hs{0MqA?gD&042;n<50WVNR(f+AI`5;;ghFwV-Q9Ymr zz|{^dGY;zRN?nVI2Rz!q<`V?4xQjV;!P~sxqBtd`dV?={2yW8dy{xBctVscp6qh!K zrXUiFx)6!mdo1LIF4uw2;Bdjb?Gz~Lb2YfY52n3|rzwEP4K;z1DgBx&RF0-M{QF9$UlNw_N>^#EZb2jXaGlTsRLFP z-n2w`y+4<3L6*}3FqbQ;$(SL28?7p+z%3t`=N#&{S7Nv9pW9#i!;~#+=i$NQ#X2OT z6phYYW7b5jqb-BKqM1(Dpy-1z9j4b-LW4tFAhTk&2idrjH%b)b`5acN?r2Coh)E%= z0f*r=eZ$vWNFn>b>*cA7v0^@@Wtdu%5@=*tCy*{&(B3LlEAaJhbO1LFHe+Udq8vfQ z`XhkRstJ2|6$&=1!$jl@a+duVRKzfVn`db%Qgd;sFB=ifr@GPd`N18Vqz@vGqaq8r z_Ol}YW}-=-U+*@Lf;d-2P*J$3B9m?O%|7eWTnX$i;kDA*61)i0_vJ?3p-9u{jlyU?R{#seT!{-W%*^VrWOKepRw1Tyq&BM>LE{ zGgx2m>TlZ@Z)P~-D+oC1vwavF$*{oGYplo5nLnOAv)?%dwy&Z0c`E*1g6QB3!2r;b zPu&y1-9dxD_;OPU^E|rsbPVH0vovSF+s^R7FV@mMXZ%O0mzG5$kzcZ;dqjx=?V}Tn z2?pGR%#S|*1o8Xx+3yQC{)XJ18)GdEm;clHw$IIfJNH7z-H-d)vaYBv3-@Y*64tY9 z*q}n>#(EdwliER+F62Z>p*CsY5-3X}zj^@@L}pnQ(yny6^%zDDEKHs$dY$XaWy+Yb ze|aFYwd9!NSE@cj74;gjBpwHL61mkd<*vjSP`0P8e5fMZvz1`q@iG{`zCi(y{ul~3 z#R<^AARqgmAaBu;-^Uk_&=XYuT&Tq=rXv354UMut;1>ll2X-^4{Rd{YlfEBh4t<sJYh!>#Zk!oQC$X-e>quvo*K?E-ix8jI!7u*sBz%;SsB6 zu!cvqD7Yj@hts_1nb!&Y6!cry-WKJ~Bf@hkvlI@VJl`dFtWJ30C;3S6D|6Td{$b#A z@~@VBi4orvjXbZ!(6@HL$(jRQSPBE$4s({9`T4<5Xjs(}UgR#dur4x+^fP+x7du-B z+b+M16Qgapg;_^NJ@&s1lv3Ys`AEKdqd_T|{g>vGtjB?ej(^1+C0%>+=<(GC_uaSY zS5&sA5H6Cg62}K!LF7al4@PVvSf||BreYr&x~0h< z&h8Upwh9j1#+LALBn{3*W)-(_Z&s&%xwcrrlyhQHzmZTpi#hhf3Z??-z;U>!A%|U1 ztR;KKoLl_z%$H9P4yA2JA#k2kX+srNb>VQC8X&`D{prh1A?>b=mHYEa@tUVCc3-%} zM#~!%lx}(chU!_~n!VvekVzAL-re>IKeWkBTYtrX})_5zAeQN@V zLI(S)L8ZY4pXpft78P*8R`@bHGem^7W%D;{Iq>WnMT8EPKAMbSz)=8@;|l>f9&?!2nV-g_l5>CH!>Ts zrilrW)!2n*sR@rEGMT;zqp^u z^%%&v^-icK5f0qVLTxFo8*Nz-JQi08A}<%9-2gG(ZHijyWM58>Dpl%e6GF0#xiN1*vnn z2_+#4XN_WUZZ;RwicN}`@M&`cKUqvgl9`5%do9l)e|r-klQTY#`y4{&Bb_Ebg?(QJ zuIN*j@`OlhwT7s6+I^Rw#ViXhY!t4I8@oerjo7d;JjuCeNb)p2+1ZnsDIHr^eWR*a zynJFosMDk8io3JUjm)}H5LONGQzu1PA}xG%FU6R%R!bzP+&I*_krHTqe_sEVH4gf# za?l})k$NhdJDb$5vLyailREEQlzt&1I~tEc<_dCw8!?<;4?8trCObAMZKjf}9F}T) zxRr|!9yM4yphiISVK(%~gdHZbi3HD;%;1(ZNw)f_`JS}K9}_Tl*PK0$rpQcIOqv~> z4ss;cYAVhQc&fI2|YG20qFOh68GuK z#?kyBQ#L7R-yZu>KIsJ&Xqp%g4ovli$3@DbCV7l+hvuWFK^dm?@Fp6n<-j9iq`rK6 zwu93OROne_;oMJ9@vt`sv=MWRFzu=g(Ejp*k%9N$sr99K}AVBo`5 zTi2}He%&|YM3e4$ZCm*Y)ygvVb$LLYBz^x#VEUmzy#IV+DJzZt zD#NsG*pqkioMo?UzBrsuO3Z&eHKMtLCYhLMm|d}ZvB7BNqL){ZlT712H)rfEcOgC~ znYL;7um{p?)5Y)^9eW$MG5EdKrAg%^6|Op-Z)W%Mli+f7H7?Dp^D6pIw3i5666r0_ zKiLM>sF)is`dT4GkWnB>v7QNrZj(=GE<`YP!%pKaT(eHo&&gA>U`Jsh)uWa<2i8h( z1sZSR&pc`g^BnmLUPTp+fccf&7YLj1!}?7P0(mXS?@!@6gV+&a0NfVr+)$FwLy2^A z9O;QGRY>nguKN-79m!tFd*JvLwCq!cyilhUK>IF|*B^bZy7^bQ8Vf<$u}P zjnu5;;!4NAVDxFa{HCAc*U70oZ1Z&T`4zDDm&)1W(c37*lHSkvD+*C7mhTHtK>nX8 zA4{r17y^+0DgRqeV*8(ywbg{ZfBj?dcYr?eN1w8lD3oah9*U5)Au@LdM-y=XThRiD z{1=p8e)m8+Ro+QWPR`j`dR_l)1tryTqT9Ha9eMXx=S`=S>0mex#I(v8s7AGV0CI+H zonH+d#vQ6&HK_os%p@%6d7EcT!r3?#l`kk%Y!S+ZFR2+keqr{zcPUrjP;(*P>@pXBylL5R=$3C*fnR^Pr{x zOU~H7XSP8r2``X-hxN)!b2KzR01N0v09vj<_AFIjp z#WMi*2avj@h_#18j6ocSt@AU&mlps>`;YxW{*V2!e;4Mtuli2AOrC5BSZcz)s%^gN zO1>@w*dOp~0QLu#9ntPQt6kE|OrYKm-&Aw_VCl};R{;A%?H~JtQGJ8qg$BZ)S_`JJy0QZn=+uvnVAvTlemCx`f=7*sCDNgklAC!^oGoh%xmvUZ+ zS{=j;4)(v8q_X2$bPjXJxERZjAEA%49?_(JE^Ks=1|i9g%|Ikv&F}+wVXc*~t{FU$ z&FM*-OftnXOy+otRHG%u6X+32rf{`H`oSWK-^u=okhfYU2ww+o@*YG;4SFF}Bm;Og zAUh{A80NG+#f-{OQd&?wCQ7>Qz!9`SazRkrE9~9zu<|G5E(?P2y8&)e+72)c0*iig zKahZ4G|svl)S*tgM(IK{Z5dt}@x;I)W1r!|97sR(e#9xcKCnmiUV=M4)iX*0^29%_ zN0mj|jwY5SQ>9s(7i2`lAvUgX0?)-9?J&FyCU+iC1v))T44{j2U*nV!Qs^YO+wz1t-eDtd=DorG|I=eRY5jJ0q}6@-{DTrJ=Pl3+`yR&C^(@f{b7a! zyww}|4g8wt9#LpJq26MHmG=wbk)d)#B%k^QaLmsg+iVUek7F_k7j2;}c$I#b9|nMb zq=Z?kB1XbkQio#gSHT{0)({QbLp9JXhaYkeo?Z zn|tBbF*(hSi_5E&E@%MaOzWrB1P;OcG2%MgAQ>E@%;Z7vOHRUG(hA-6qL5zufjMX~ z4$pfM>OV!Ke+~K@I-rOgnqgu9*DN8;!}Y{*BrDM-NEXP)7{SQ9-n8(Z^%_IFhxD4p zKrGi%h#wK3D;5u?1AUbmhhR5zfA*?}E0@u)O~Is7EEwXF#Qb)Q5?v9402&U7DZZ-o!Qc$MlW4^_5BObpZ2wh7#NlMgE&iR#5HcdoWJLoRa4C+c4tm=GyP; zeA)mSGGMq_LEkaxp>Yy+8`;+n<*&W>UjPYt&Oi=#6!xk)5EXbYQD(nBMqGzkL*|C}mi+3Jb85jP4HQsz zifD`10Jn{5LQ8S?(3kd8X1i5pUSeIB1S-Y0?j_JZ~--{0@Js5Au=fcR)~rHVKk1)@UJ=mI(6tE5J@M zy=X!aFQSM(&^d##Gq1M(@U=G;&RZqJMeI$l@ScHd=E-os)7^RI@oLM=mfQpUrqA~) z72bk0;%?iQI#@5`pm*f*%d_qPyQ1#7^)fCi@v?3iJvP#??4n)NXV#@b*hk216d*f9 zpce^3oHMmW6ZcrayKehck%MMSt}nn;ZpX=9W0rR+xj=|f?8}D*|GTs7Sd?)Ycg^(L zp65< zz2!)de-*{#w2&QZnNROLwe;A<|6zM6;M!Q0DxtMZU}5FxRdShzU;oPiZQxCbVuAb| znQb>p`;3K#O8fED7^L-3-)_mZrs#wwsa3zka#74IA=0$ZNq#%xk$JTRk{%OHsvwR1Cxg^F5~XY{!fS?mcs9VaTAn ziavtIj}Uhfnlv+#1P!(}8X{<~G|@hygeGZOdeACVT`Vi>7P54an*vxLM-ruw>z-$F zE~V1Af<4%!R|$27Xa4S8O}=+PaMdM`X>yQ!g#dH>xnW}L01e{IvE@0oRr=% zwk^r4d4EXLo!cRr!+F`s4fi4$JFDJF?Hjtbs;edRQQ=#T+@xqD$D@~RY6cyQM%@aD z_EBBM@F;dgG0n5w6P|_(cQ; zM7a$heDSg}HSKvyxM{O<**aUQ9a%B+(0zwpQiS2kLd5xwVDs6H3VR|;$E+Jj!qGh2 zm{FPb)YDhTi1_DRbkw{Y8Ky#@F;}8kJ0^}w6dFCptr;g}RU;mOKw&niNY;G3Y92jI zh47a^N!A{?1mErPsdYkd-h0<-*y+*g+fTsWlRN2>nGRB$#tzD;1aW-d41*dciq4NW zO*1uhs5Ks-9papQBeSj|xp)S0}Tse46GS^J9-xDerD@0p@JOhEV=~UDo zExb=FBT_9s_GAdSKJRV8*S1=@*+2|c1wcudP3mR5?OR@ZxK+2xl!Nr)^ zAX>G+`epd-xH9No*aX##1{QmMjOHwL|GnP!~E*U2(s_-u0E^Pd> z`Qr@PCE2#b)Gax~(aFL_WI9ix3bRZ@(Oy#UM{o@xAxkfEk#M6O>N$5Fg>&3*y(tES&GuHxW3De>tU4&nohz_M7!D+{I=t0oGk>oU9XD6DDOtM%c5W`-Hyi5GOvC!b z3+{0nk!XLAg;GRB_!k(@g@0fb^yo%#N;SpJJw^q8JcEd^gs?fEWT#w*V$FJ;X<>|6 zwlNaLl*n;PdeK+7F)@QFt9-A@+*>_#0ukSh_|I07{tLk4-9h|mKjvZ>Z}pntk>5+) z717C_PIPY@islfjtM$v>qdKQ{F%&in1#Md{|GYAln?~8|6ZFB%nZxwsmjA!5HdE!< z>Y@JsJc$3Bnlxh9IZ%A{^uL34fu9EFXKA%^PJfb)-%)Kpj|-I2YNe8$-PP(PG;D63 z%FUb_yVeWfiV#O047aPR7=FKAZ#dDEqYujM@T-=~8#f!iis^HGeF1#%l!(!mWDps4 zmbN=uv5S2X04~VKwBJWMs|}LMjwQdXY5uJ`FAx$NG%*`OO6g!O&u~~EM_n%k$xT>K z3tm5Q10fT1Mv=q@Okq#m9;WT$+=p^xr5Xo`A3+9|1z`IMq|wJ=j$C&~0eALSkVA+N zyEfni5l9f);*1sTep7)bpw$z6z!wV2@e$_VWgAZ4ErD=>9?9ZAR-%}tH{5A5w?{1= z4-_o{!kXZL1(0hY@2HjGQsRLfL&knCUk|dji}(%Z{a@s>V2res z@ig|No%#$B-~0Bj-7ft4t)I(!de7)7?_D;#t{?`7J<+}YVI?MyANEM_j6eI2PRF)wCmpL}+fF*RZQD*dwr$(&IC-n@duHDG@XT8E;rapB zs#T}XK6?Y$O+m)uS1fcDqQbgKg@{IcC$a3Z1g9=JRmOiRh>zz8N*T3g%%(A_@kV9s z1C7_DtMyF-;ASF5XF?HlvlK`^lY+ZKKIvr;B<-lFgMY^*7W9yG;6eYu>cB+km-c2; zC}c@#0fnhZslS(P`I0OG+Tx*aE{6qHZ@r|@AaAQYrHr%SY6q4*7T|n-b=W9cApmxh zsbMM%MdL5KsUB*nA2eB8_A*2iN>z*!2%gv!t~J-i+Sw8tt&eu@mS-s&fcZ4`_q1(% zl>i`1?4DvKrI=X^x52~R4*Hux)U*fPH%fDhsz4J2@$eaU(BUa=vx$u|c)YM6A}3VV zeQD27P{CdX9(SsRt1$wWL}k17Qg!H*_Rp3WHDHD{gggY?w&{>T>wm&Db*a(?GY>W6 zY3(pm+rdf-P4ZD}wUdp(Oe}IUfCr-o0Wxnt{*@&{17wNWCT{)}YLOt$XQZP#MRiu| zOadL5XNLb&5O+#GNnO#+cfa}AB=RydkSl@@nl=MZ?pxwJi5@h1#Qs1m%QT6cgV%Po zgCz@4j`cL3{9qnK)MV;TQY0AZ<9ISS{`h0U-#*Api6wR~h5VskNz;#_gdFK?ug;bW z=IACyO_%~=#MWtzYe<$Pv~`>aW4JMw-iGIX0>}Q*_mlMiavQK#GIz!t%>4u;I;lhe3vF7Sc!ptaUE@?vfc41 zj-2=s8KO_kt@gjss%NHW6Cpz2*AsEg1g^FxXm(O>?%Viv2IiJH9fsa}w|@CzYz_IZ zED?35`5#&0J|uCanKdLuCdGy&WQo+CD4oyNa6|PVzR9z02J#a$Iz|ID4T|$52a&n( zu-{zaBxaEj&|g`it!iZH)(bVo?lnEo?^}H;IDMsVZXY#jU==O_k6(^L za6Pu-*RCzNkz-*tFJp>uKrIl8cJ)-lK!Y0~Nsrl}(so8kjbT7k3Ig-~7Q-?SCBsw# z9hm;t{WMXj-A9&%O{V!9hkc#=^fL@G(_rD>vypPM7#3{l3p?wbsOdA(@gZ$MD*1V6 z131rs50}YFf_B7!1Xn7VFDSAD8z&fh^CV{<<>3~10kTBN|B)pgPC^Fn<7gMmK9e}_ z0TPHP>^iOTxIBcvJ$f=(q>nxF^RJ-*b_=5*ub)7S59qvoot>=tkU(Ht|0PR22FMZ} zbH49hLLsy$b%&Kdr!?#=L)k^v1Z)KV_LCq`7<^FRGC>IsvTAK{bn3cM*J=K#5nr6& zh~Y{6{#Z=w;cI_1fbTM74aJ8M+D$HAb~Ua2yshiJY1M+2Cj15T@ae^-vt+CqpXmFM z9O3&7;7YvMYX5z3u55pOw+_rnp(WTtl7;@F-+F$qk?$xGvyplgd%x;|svYXlFCR29 zA|Jknb@}4R#EbBf779F?x_&1&P$XbyT%IH8K#x=LA;^BwZZH4?x_*Hl;dLcCwXvmZ zG2Zq&+v?oVFvcUDb7#>-ZxWm_F-%~{@24vg_^g3&ht#?~?@yWO2_%l@R&BMQ+9aCr zDpLFQ{&QtEx&Xcgj3woIKk$#6`eO(a%YFFZ;RSVeFbL48l>K}1d-_b=%MZE}`a64` zruD$Bd^*oNuhqG`NvZN()k;_oXeQA#rieci2h2~!Am_+z_6m4sJk*@p zk0)-h&&Ixh`6;@y<w7iR@;n+An3a|-9$i*u)32$C1@r2Pq4oY%Yh%2rs9;k; zSCvI)Tabel@E9zBw2ap9bdGWi`Bx{U;h8o7%w$=qA) zHA2yI5cfr(w(67&nzE$vPP0&butF9GyNK07DIJmApqy)S+aZj376ES$%xj6mH8}{4 zF)z-fs^%06^iT1erhQ2wyLE)2B~<|+g6O*WX)Hkxla*Pt9`N(g8Hs*>Dz!6o-iZ$w zWvuKJS2WOk7%I!CN(O-lA~E^RpoRRdxMYgv&)ni9a9su3mfiaN>d)zV?AJnF)4TK% z)IBmdT=Qj04$Bi<3V~IcC1+-dyO%7J6EqI)^Aw*VL;4CyKI)!Jw#fPZ%+?qwowZVGO|kx znoo>8AN!=6<|sGk84(VU=70S1D*v@l!-%nowVVS`+Tb#9W~?lIS8;ufWdDI4r&-*t zt=y4#Jk8p!pMb<|lTlFJS(QRThFfEr*|C9M?g6zanOK>U-3t~3{W0+X(J1D2Y(VPR zo|;bKSRE}^#kyV!HT?O~ccsEl5q$8AhxHYtRlkQV)kx>rUC*pbj4RyRxiy1)e^>qV zB8B96^wO8;^%&1%9ov$k>d34$sRD4Xb(eigk0?V&0ypd@TBf zgw+$9Isait%BFwR>HsjUxx|rYZ^orG{{?=7$Yqt-!x*oB0Du5J)G`=?wG3b=3=MOS zZU1DL?ypm^v_(^Nyg#XwsZW|pomDak^#8qvQD9tvp@kV6&b}bEPp={Y`J!GlsjElF zRm_%!L|bziqB{j@K)~FkBH1PsAtI+P;Qjb9J{vo~)yw%H%= zpYTt~R?|0ie!bMsA?}bsd=$ALWg{m0ylV%=Jxs=FhiP(FV}gJl9(lDX2TH7{O`%Hn zeNKo8Jok0Bi%#!!C_2n%B~w1?(4kq*?r+WUC$ag&;dqK7NNPNx!m{{JA*>4qiny^0 zOdN!L6*(YAn9n1d=_Kq6k<45b<0jD{B79kDn&BcG|pNs$xws8|^-1HrsWwLRY=p_HSo+v_;}v@EbdUTklTDpyvS&rL^F z>qc+ie!=^y*qe^k1N08B;`u0VYdQ-5eg6F4hD52Cq71#ihD7xLG9(84Ye;kg7!qs# zF(k5u@_j-6r)?9eV>$gHfXXZRPl81D|Lz_Zw4?dRt9}NKmyJc(B5>>4cqpy7>GgK# zDbe)lgBn7|_DqaYDwT*e@RiN$Q z%s9R8J34or@v@dDam;!tJLVx|S70Fi_1X}d0d`FDj1P(*bkA7 z?t6<%62RCPPY>}xX{HekT#743J~#&}t0@Quhd69j7JX!@som9!H8?yoAu&E{1UsS} zTqO!csmqX>1A$aZzUT%s-~;kaV}!{zuQewa`FrIe4&kS=fCM0V*mn$w9?HGrBEO-R zeR7gs(JJi&42g52o*6p~KzwJ7`UmDv9+Ayr zEJ6T7BEIP-i%`~GE|m6EXF<=g1@=qT`g_T+SEWZqrf&zY3DDEe@%+PdR7zxaxhuzl znCI$DI$@GWfQ+n05y>u&Adg^O?nWQ-y1}e;zB|x}-$CH0?aAJ~$IGt5J7(>G36|cE zK=BKmdzzN@i;-B^moOc3k8z)b%B$l@2L-|SX1p)QVUqfoiGVbR8|V!}fTaf#A%a_M zKUffpz5{2UgJ46=HIs=7bJ*RU=3Wr~y@06($dH-wGDpbZ+NbD7n|9WU)`yf!42-`d z@y4⁢P!#*Vmflfg}}z-fXHS4^EGgaoBlOUVoEq;anE~E1gMN3kFfyL(J0c!JzPz zZtk0P4D{FybQn-~zDO_o92j`qzWNV_VU^$c0aOA^-DqZUY$BtS4$kRS%d1pz`3;o4 zbFY^ng|sS-X=jc}#qPyhN9_o4ur##JC>taIb~uD~76Yk`HX$P7!Q2?z@PUnmo*GQ2 z$W9N}41x*LxgFkxYVLeVP1!0wnY;tv#q;oy;NG_;^H6kt?5RAR${C`?6WGxKhP{!&9O`+A{fHOYz(Gg*Av z3lfzkE`AoE5i zu72n7e3Q-weBz4@72qO%!tV3uNJ3>4n_PaUv6x!})>eu$9w(~bN2oBo2Ib&2fg|y} zKH>1s{t$;w{TAR3aA3k_Y^lT~)e~+0&VU=E{if;ROY_%`=mpd`S~qEu^@(&6EF<_m z$nZyRl4ryBP&lIye^`S7E?F3MOFv^^lG9`o9Yg9VMN}AvMZJqD657EOp8>h;6^n2~*7tL+($NQna7E1Uxa4;_SLG&L(~ zi4nGE^LLoK1|LPIj6UX=eD&~(synJJa zIxbd!27NJjb~6;hE8sGU*OQSDkM(FnRUXI%BWy)@NQ`4XTGZ|4s!PQcv>kryI@rv~ zpOxgbWmB6 znSZ9wVG`b>qJl@WLfY?Pw)eKX<_kxY!zWWDwX1tS;n%`7@^641G3EmWw6g^HX4_Hm zF3EZc&^rWuK8jd$V+Jr2ox-iBLlUJ$1s>3GRD3TE1>>A z2`%f@BB#T_H00gxyObaZ2EM4w9^QTg=<*?s3OlV0Ordc`8jGZVMrl`|h3*NAAVxvW zbUZmOzD?3{7dYf?a>pJBuWg9>m(ZtLRfMvluaLFg-;s1fs z84m1CkVT+=x-J>e^=B+GL`URlISF+3Hc60?oQ?96ss-Cg-q_fI1WZ?H|e-!?C; z5ZGN%+V4U3U-XZJZR5z8jc2%DqNuSnt`h?`i#U325Bdr94TE-im>aI%Lc@@hn)0|@ z?BLaOpV^$Zm!L`!EIN$}usL>yyhy5=#x7kF_C*nU;8LjB=-a<;L;}Kk3a?cDq_kBb@?ApwDv;mL zd_R^q)oohP%DfYUkze7G;5|FJq|ZX}k2cxbt7`$dZ>G&3IuF}xup95S8EGinau2gg zs!Pu9Yc@}xpDjYKU6MJG8`w7DmUYz<;y*TGPRTa?1AX2)sfH4Sea z-cu!-t`QB*H%sfThn5I$9jU5S1?J(sM(%WU+3&I6DN%abI>PmhuGL$XowcV^8_GGQ z^{fh;P)jsh+@4u~IA-FtBlRyYg@v4>ivoeA@w3lU>_< z(GE^d5aMUcQ-{MB@eqDEuO_6NN2?t;vp(QFihUq@o;5ih7?dm8v86}xCAG<*m(xp>pkXU>n6Wu5q-!y39@yD3{sU(;8j)hYYTX1~UDFMTf> z?MM_|RStn#RO+9MjXDl%#mAdm>y3*^W;OS7oW7)ev=SB`aea*TzQpKUyr?Lif(|tA zY!Plrcmiin50c&F%#66)fO-OpHGZ0+np?T|NoS%J2Pb=90=1$G%HC^!?E@~FL$t78d+*r=pr4d8P zG;iJeEc3Y&>CZB1Xlu{N-PF^&3{Z&Fn|7o3&UYQjGa2Jfe!F7>hIYA?N70f+D_J0r!9X@VONTCMIt!$c^D39=-3!^BCLiD}cGYMXmXI>DM~1+HaIh%VE;5nRh92ZD9q zL$_=+bn(na;@3Uqp|KW9$ooq!-g6;fhyJlRG>zqGP{O@_Y}$!?>XXLybMp#X%7xE5 zXsxho<%zzTaWnm=G8gv^DFdr&5eL_1n%`Ju!}~`UofcTF?KDMafGE$_O+*T=3UdM) zUC1UMxHq{jT-hJ!slqFTX)#3|zD#;Jm*04h{T#a17!P^;d?*67CpY%C9z0h5W2ao( zP9g+gKZpvdmy_tye+Xw!Q}A&JACMPOSnjgIA#`{Z%*%RHLLps>v~giCx1S5PrC6f4 z90Uj(;ur}3c0eI>0e3$UvQ+CBV{2K<_;{#gn?6Uvi7`0?L9c*m;+607Cqi&g*2!*T zU~z0s%l@W+RP!hB*Dk^;a0^IAXue4~nOPu*Rgg}@4@ltj>&0Fn4ejFyj`$EsYhISj z7pvj&hFXO`!h;GFQY{UzQVB(5+_(?)TE_ToApP_PuIw$8Qj_h0KY-1o;iIHD%IGCi z4al_8&F;Kd%8;&q;+x4!JM;vw|JEfY*(*TM^50@C*MDGN-b6+b$)mZqG0m5-lw6a> z<7u8xI)Yg%PJiRpH>J&^biHG*#Y+BN?B>njiE-oS0)dga?g}T543ZE=w*9VTwW)>e zsV80SM-6ha(5}uhyf$Lnm{{Xh_jHH+(zHyMBmfk?Fk%Z9k?nbSaBNCkszx*HeA^-d zlakQ7LT0U{yg7rd!U!p3HR}mwm&_M>+5s$e9t`m^}swFn2!iAoIwAO zbca{j`fB z%Fn*7eCV+J>ZG(5H`#&Ly`?jaJz@Jx<5`!sA%6wD*E{RkZ`o2!AK+GPetI12bR1r^ zw9f}GKJxEruOX;v{hW^R{aU|vA7?DUzQ7x(;$gWumx~Xgg^hp%Ab8IJ1P>|HKg)~3 zF9vws1rBCh(8!QfZpWA^($8R!5m#z1Kqlhcl%v2653o_p2%1_LYe@E_=eJ7u1zvlS-RBWB$W7U>e%+X{Z@ z%Y09PfES|nOJWQ4qV-=ji+Is&l<(*MhHDX4(UF~jOGG}U3#f0c{PrhaIS=1aK4K?f zVI)XR7Ei-KwbPR?$aTK*b-e@-c&Z=MIhF|Ho}0CH9QY0409T^)_6ci!Mf>e>vg%n&9#lYa?32TdJ2 zs=oxDWbFX8_fE;c1`xoN$h93LqWw#Sp8s9x z(lX9!Rr8FjR4g~WQ$+0~q4a$sz5wzRFdaRd5HrL$e$yFN(80BUFoIO`phKoAJkQK7 z4ke?N6?t zmaPGLBsS5X`tSY_-pS^*Gvz>1Sj`$q8YRVm+Z)3J4xCB*D7&R_FPWd*d4%8SSv zJd!({b4$&dN0q>&dx|t$aM>Al*MPwlYTSEPv`kiq=c5T_U;T~Tbu~)d@kfU3o-WJ{ zH2hTDi_go2@<_6%Y36C2-RP2$#0}1+epFG4bLO)nJFGwpUgSU4xRSM?0JnbrT3agT z>PP?i*Oy2#ZjTxzJi3LhTaPxzJaI_PzzJO z7ABGPbQj01ViWb%S%*x=49ZNAk-bX-! z>r@kv;2QAe4MkFAmsrFk=$RJVXyW>akp?B_CXLz zJgpCvbO&ELmr5aFgJtmw=KIw)o}twcmLgom7}iB&h)xV z>YTrOP#z@o{nhy`(IPPn#PUaO_(XyD)jSRr3PKJLEy0-W+GF3wc&fkW@^%t(U$ zQL~2JAQXe-tnC7%Ip*Y+gn(E_a!-ZoQbYniym5AI#z%o4d+t|jd`=@!5Bmz82Ah(g4 zD;ZJMSaY`2tO4Revg)kAZ!w7CecN3r>7gSlmjv=oP6b`$wqT&0{LDM+wHQQ>t(_}p zhTwklwUqXL1YydVJYhXI>h+eY%W41(5t_{Kt<%%3Fey1(-=VP*aoBWDy#}pEAjwUP=0Qv)SV-?Ab7+pxz$k7X*58upn7nGGKYUBk7)Uo4@P7ygAve9<|xu z4n{iK#2v%p@LNr(j|5p2Ae_&6R>`grcN4VJ$}#~{{-sLP(7zWgF?AcgmbusKwV#RCsGw z(V5f0xt^3GiD@+r$K{<1vx!-E;}CK-#0O$)n)Qyz<0z{%Ilon``b~U>4vUQFHJqgJ zblr~MC5GS?w0>m!?h(!%;u^fbdQ6T(`BcPBxY~olRg`UGO5s9 zg!mfPo?NKj){8dj5q;~x_L3j=%#O%+J5QIv7gprdnRwukqiZTA%u*gvoppZm zQfpUF!uGw;V@e3XC$yonb4xtImwZzt7VWFi;^tb@yGJA6D|zbQ+={~kFNs{yI8%lR zDS@B3=aa;_jST@OB!qR0^a#bE%qzo8Cy=_1Op^Vv${6jVm0~M*X4t0?A}DNk>EnBf zG;`mtf<5KVze^r=M-PX!WL~|#m|y%9CeQA89%Z+dGCCCp9uv>ZlhEm&f%TnhBi+dJ-L7OYy4~!`X+l7D3FQ#Dx1p zO_NJAnvYY=&Uw3Hhbos3_)qOdmto(?bc-Mq@*@#ftZQFt`lXb%sp&aaIU18qNu(ps!=fZVl^ll0syokR?=qmCvE4OOt4@;797-8Kv&Qas9lA<4~ttQy8zaKZtGq z8Td@Iv#6!&$4+<7NeI`5@+6jPl<`8C;qtPXQkH0q4C!JVGIAA!smSRL%q19@CD_4J z)c;o=tZ>qb9-)F~DME_fWR1)ct{F*g1IE z*e!4K=B)<8&{NYPLC)(mH0|$ma=u}_vE`R zMF=5W?nZ(5AgtC|X=oth!s0mme^fDm1fvbxRdk~pX>N4(VGX|hT}ka4f~^d}ibo(< zxD65dU?yvg0t08DcXHu~^`!OLx%9iyv*vDqK|(b5&Z>{e$p!|}a3YT&N)YV8erzIn zjlCOyq2K$PyC=E}1IJ9VK({YHB0N2YKH7ABzP8uYc0O6dwCpofNOW?vRYh$Tba=D@ zMJ}`i6wYCzYv3=Cd@~$|yPoa+qQu5^vLRf3LXCadvev~%zUHymhPD>64mRz1s`YKk zx?armC5Y?UHjo9g*Sp0>*S&V%9|*yJ@4O9Bxfg01;0~OI^Ya4j!CV3W$Z!RYgFTVQ z^HFviuJ{!=a@J^ox-)gMnRH&U0UiCLS8I;m!VlzvRO3xHXh*eiGK*yJB0cJ zg9{pg-xV`24Xqt#o+<6p1Uk71fTp0fgmzi1|#-Q*a>gpNMPhy_;FUSXX zvKuu9asq`1-c??#s^VmH4iU~cIbE9zO;oiB*Cc@>Y-&V_PNC7fSy}o|^;j2BJ^uB# zdTh1lmZ9&tup@{3Z}s>Fb^LJ@+Z#!>MpelpHpiy8H*^csq%9aw?TQ-AGZC=g$vq}6 zLN>cE?~;j=&`kI9Fi{B{Ou<16D*(RW3fOF^AaLdeiueZfHV7d3wxla5XOJrp0>FmO z!dF~@768?*EM@lkT<6>{s(-V`)qk_c*#Bma8!R5LXixuF_Sk;0LRs1*isorYK(z@g zIZvV(F2rfv9u(yWzSPg8A9QGxsp8-4F{JnSeL3Ugy#QaxVnfLt$TiTqm6;|fKUj>MC&L|hkP#16`@sH=-`B)=E>1$ebCOhDMs#fmIv9anaj zW8p%2uS%<+vu~ptG@(Eu`sZ($_Nrt7gn(kp+`cS*iSXSMlYUCYkU{%bswm_2w2J4LgIvoikiEOAYaKtQx>8f=KzBKKJaMY{pXjPEbX$3=-9sv^&9vWi&ks4X11 zgLeOdnd2yhM93B5vDyih*B2#Q&U)qCZ{HPbn9SeuGnbyAqje zs)B2lhD!0cu%1ZG{PZ)v6wB?`8{vu}4_ zJyQ9CrS4-_s$O4MF<6IX@^K8KOdqbqqw{<5T?6iVaA`Bj5r0I7k!ZH{J(-rw2nhg~wxs04vZ2 zS6I)e1uk%S8yVHPH%9W#2$co~FiWmqG0dVaBa~dsB-o{)AEBQHHlz3CvVfVkh5WC)z8Ck=@6Ix1ukS!iLSV(X><>k7 zaN`CmN{MvrMG5>Fm#Y0XS*bkOnJ&J5baVI>s3np2!xRud@8y2 zCP!Z7*(WfT6jkN`Ut<8w$LgVSd)I`7M+$XQBg{TZkSpGbaq^Y^Bm||Gb7Mz+*ijnp z%M0U^MOu9;8@qmkfw&4$-PTrI7a)#EQ`#YYHEL2}t0a8#*aMW0Z+sn|0p;Ucn|cHF zU;J*7T!TN{2qJ^K0Oez;Hv_?%5IL8^;{!xJT32Sf-W9o62f)%w#GQki;aG)JdLq6C z=r&aii#@*~=pM{4{wc_wFNI=Wk>jo}bho&flPh^}EM_CAN>?*OwN|T?CTFdo&O{E& zogoe;8UY;k8`^(`k0s=BTLIzY(ZAti?{-8Hx{H!?rOQXNO=G7bycB&QywejECaSed(u>to5 zpnJ?@8V5L)d^EXys5Ch@8pdaSa@#Rc*8rB=qZp5!dTwh%!Tb%nNUyI>cW)at*iyIn zjU={?9GWRP=tO>DU|!sT92}(vWI_CXUJ`x!(94#>@O-yc#w!zJ-&FnC%P1!OPk;PC|jA_Y|sRbFFdOziQ*}9ka82r z|ArcU3X?PD=p2k8a-7>@zNNCGAVE;4ei3J>t+GOfUuhah>udyMsx?Li5~QW&K8#{L zYx^B9YKE&yH`$QfWQ>bb@pM7wWD1d+OmLk8fjt#XF)!}$!}hcdB#5G5B>Z-bAJ(nA z=G%!^ZtsVgL)?gL+5Wf;?P+s2^}Z}m=01k*s9Jl=ln(ru2dC0X>$T=bN0QR=lS+>E67@FtQ>{ z20b002^Lyzdrq_5OQr1U{63RDgTuA`$GZV=szJm22faXC!o}W^6~4S zmR=+~!R&;q{jcUVxc=D>7Vss<4JULEbLM5R!uC^pnW=4p9XFfSM}>Vn*j$Zyq+4@w zrESnAKFy{jKRMTJ=mNYoB@&PkaD$ai5>+}TFBXXLl-n|UTep9pC~`bNBZysk{SL=+ zb7>eXHhPVB!;QI{8X6X>%9La>ZKn&~($E@d0KPtg)X?{+TBGbeRR=N%-c6)hE3?iLa<8Gsl3UhHBOA-WtD8=JxJWSO&T2XaRrWzvY3BRB>(x^D zw|QKT=n+A=Y3&sVk_ro;_(}?cUyfvMB!}rZ(=upY zn{|P)e>Gm+^g1ovZVsO0%h7o|kl<}bG=S~xnESz%F=^@t57#11*5REv@&r4B>0U^B zRa?2~9=?rCzXq-$$gdL`AAyR*yMwn|!E5y!n2hKK^_XNHi8u`W2`FK za^fj96}Eu^qQ`rGqsNQlw(VA~g+KMQ0nuZ6EGYCsL5Zv=jWFXs;SKbOG6{)mt_EAO1lCW zEtNQT_{QsvcE`ZWkx2eeo4?%H_K^ee6}12xAbL!!@=x@5IPc%+F|TOVkpMXS^Dk{~ zwu`5{>e=f$Viug{bN7>>C9y@)a_0)RaydoWKno@H7tIr&?`HdRW19Kbp!EeNWMse+TMx95zL;wQX51}w;#E8uL}Yc_T%pX z2;5LV1uuN`_4zp0`&4wgpegHJ6UHK^_w?kzcmUotAt3us#~k%GK_N+Gl|Wj*z+AK(*x0I|lZ{X4?$k?u}hZaGwI# z&!Uw@!FOBfql@@P{C!mb;bRNqx=(5X(Gb1$ zZ&JwF1sE((%QF!4iR!uS2Nbn7IA@RK^1iZZzY4@-zk4?@bATD- z>of2u*g|!|~*+#bA6$|cELKoDPQ&w&_*!lTryy&+iKs?1IxG}iJ~z-*sc z#4Oz*3wp!awO*fp1*6-GtX8PR+211k-}3EFmn*2Zi;Z<2#3{gy|AgK*L+@irc^$5{`G@L?j3gg$Pve zD@wjJr1I+R;?;+z=;kEV<^MsUqWVk!7lA0sEoGHm5?TN2;LIe-oxnl*OnPTRegkpf z($6ignnXd!+uu^ipPxy+DF_mGL_F3?PtbT`$~2On!8MPX-}e1R5u?L)0ASzd*JK4( zf<^9+O(`di-l7Il9{)8)ku+by$Kvb0HAGRuYeGM4mKle<^}6`o)3)q9)d_}gJ1_o; z-C3j~mNhc&E5Dq5bvX6$^so|@tP=d~`xJcNhQ>0ap6W{qaLiA#m~T32C}IV&5$|2o zz0P4Uj9oR*#qgrdeGIe|)LPY!oLc{+kbBwLt*+()6!~Wze7*aiiCGj7*%`9MqF>n^ zrvS7MlAX6z0h=#xz@x9+sr|(Gl3`rvYss1Y1FAU4 z^B0c5ldk*j2eAATc0=IUxUG0^JE!C1KZ<;yIR3o;_p-4Gcorz|Tm6)i!Kb$Fv!Zy) z@&GqP2#|NU1v>B6c9=aN0ux>&-4uy#qLMZwGr*8k^QK$3Emvi~V>D!!S4J(D9-9CD z^gF5Vn#Y|5#60)ZB@CK1M(3AQd&HD2aR zAC3H-NE-gibLG%aH57m%zuBcSqwy~CiPSzWDQ-ss@ z8^blF>Glyh?yyt2`xhNOdzeL4UM=B7#k94V-vb=^l_s~%->PZ9bAo+XwbGcDSv-ja zl2N?O87?l42h8u~PByi9pIM^d&sh4x518NMUf&rv??$(I^4uuz1ptSfqNnbsM&jUv zJ+9AuAPb_R>{{0bk=LD|ph7Pxi1uQWyd-0Ji2d6=29El?a7rJsw?`wNY9l)AXfv@z z>!RG;pR>l5B#U`1Yjpew>n3u=Sd%-Ebfl9D7*NLw8e`|}BhL(z9@H$_^$;j&0DN~L zsQtW_f?UUM>6QF*@GGunl)>sxWVNH}Sn(uvy75faC+Q|<-7;-ra!TaSExV@@2WH28 zJcz>6tPUBc*T#&@?=fR4VMI_rub4&aGUCY=`7kGw^~(T?e7rCf^i#6$6`5iX8g)B36wPO}0U(;0;*R>T^sPIvzWT)3$y7|OS&C9Z} zJw2r7zlzaNt15_*_zuD(jh|-NDa2U82(iX#D}dwZ8+n5(_Qf`4q7RoL!E&Nlv+vfT zTpCPahcrdAa*gm_B_nYmtsm>#yiM6N=HFPLgQ5sXS#WTH3N- zJ6T&o7;l|0^>**vR>TMWWBIdOFLmC6KLVgdg#07skpB{Ih#=Nk+xJ)jyl<8#mMSZHfB$wq}tj=Cq{%SeKWdCG;_TS>=8_lUuS1@K7hU*)DE4ADS1 z^%|Cc+n)?4HPhhC;bmJPI$6MtYBO#t0vYAMgoEv)(b0P-dWJF=oa z4stNw+XRh%TOjjz>H9vqw=w5v;KjwH6#8ghl{;yz+e^bUr;LtRt`=+1+8q)^7+?EWvdZNMu<}PP;}ru&KJ3B_j&d4!Wth zax5NSZ~E3ps}e4r9YTnjXtQu8xIoNS^(EFO@-z?fPukBR>;19F#RW@AQ2NG_sEPxI z@vNfEC+hP??736B^2vS&cOteD`wjLY9|Q9U6qI2#q-qLr*i^`I9bX#=(DrGXUM`~0 zGLx1EAMBR>Y%)i}fO~KFiNzOZHhC2DSXMRA`7GI%Mz$zvXLbcy>&idv5v5ET>NA1e z4y&aN1D1-DqATlDRsl12x?ie5BE4kb8i=TZ07tWtaa;MTbG z$q$XnL_eVN89EyU#;fKdyxP{MlbvVh20qfxWm5;pAOYqKMrg`3 z{K@I%w(no;$Gfk(k5LcqHwZOv5d1 zi;#mP0=4}dX9dL=1?VdkXZ|Jy0=ebl=`kc9KOH0N3tQziqe*1n3Kuz)=rcw5dy-6$ z$y>(0?d{a88VF8!=Gg*OhK+AKWOtx2^os@(wRsWbeXGI>x*T%!pE*ik52)aNkP{CmlA`AQ_V( z5;QC6z-khGWg`24OHPrh1`(lrt5+$J5PLWK z3bY-MHq7*I&4KI@YICi2hVu<7Eg*_@Ts-CY7^<-4oT;)CT%)5PmU?~n zZ9JoSYVApgS>c>ykI?l>sGdY8>xp}wN$vG+OVjBuLOEw2{NZAx z$C_364lbMRqJ(ufB#2Zf4upiCNU@WHNZI|p<3c_9tpVOEO7O`pZ;pXYnuYNI3ZT!| z3BI*x5nf(-I+_~t5L+9%0JwHu;gwu&{DEO|5sgr-1i}=k*W& zES;OD&PDp;sD=Wt=SyaLmIPF{e`!C{#`Tq*$tw3=)IgxV*=x)1c(86K%ePW(eL?)E z#VD=+e&qkze)wlG`oG`ZfGc>i)jC`vIll$#IIXxsgdT-P(I6a&G3lIc;VPR&i2A)i ziG=hR{t#x8tt|p@gg*=F#RpuGHTev=@uiugn_TZNch=3&py#y{j6dS5`%#*9KQ@o$ zTS6*FWPz6EOdw^K40bc85bFzbLDs2zLlxDmH_;S9$}W?U!r{jbD8u$j&&&(HHK8ZJ z1{~tA*Y?Kkb7z|fOa{LkBa0eE}=A8qdxo%gymZpStntFdj{ zwrw z)u|7qaRW1JHDiwLt%8Xf%p(u*bf?CB%yayH=pn6mTFb&@eP*83nUXz!Cp)XDz-Ona zaRD)1u)EOIY!-ECbrb!uD0fCxPdLQ!svw~mU|L5oqJk%j{7~;Z3G4+>*CBA>r&;}? zw#|6L^xVRH9AAdkqxQ|g6epIOCFY7`M0wL`Q2j_4@ElCub}-iVV`OI*Bmvk!@@OPh zbX0>CPUPwA4wsFoN=we0D!bovc!=0~Ytv`~h|SHz0h!eDHR3C+Yimz4th0P!N_hK) z{qNy@*7*3Dy?l;0+B@oQDP?4{TCPm`wzJn9Yxe;k1z0*O z*Cj5PqLCclslMkSY|fF=7ZYYwPl(E_lNSSm^3B5v(*!C$p1{swFPZbHJ+1}`%$F)t z^FMQ>x=D4oRJ$#$QeWo-Q21lgq30?OR!^YS2RkT2eTy9vGMB&0CCH(`d%`(gkui4jW+sCeAc1$g=F7ScUcP9ewdO;P zq>B{oFp51Ss#qxFj&|ID1Ys&W!5U)Oaj7%lbWQmU1Zh zKnBT+l!Ntqc~wWgltI(Fj@r z0S?zQtm(lx>(7De!U{aVVBAp!L{>hGR^grHz!r?qVC4{nrR6H)I#xsxBD|&JeHi$faopR3%qHsyPNK z3XRH8gvWx?9CngearA3t!~M+cN|z-UtXkCjr?>a)2yu@>6VVZwaUtzmt{Mo~JozZ|QTJ_>>gcidg8+$}EB=O)ht`_bG zb%Bw+m(F}BMjR;*8wTk|YD&!if!27Qf#JMi)#+iR(Tel7%pKtp4=1|P-#3yIbZN}= zQS?jeE%jaVKz!yB-4t)UF4;+Yf7U=+?9U71@T>JwrF)h)#ua0I6vQ_@N8k#{(i@T% z0@RyKRQM#Nsh2>Sw0z+O;62H90p@G2a97yN4&j}Yiou!laBk%jOG zG0+`KVv|au3%Mke`KK zAn31xrX?5x#Ak<Q!6q=+53aMh-REiqK zLfESD>a;`~#AaA-$idOvs$7Ul>HhelW^&;Wx9Qi5Ir2mFn4A(l%w@&^`Pb!IVdi?k z4&bH^-5z)KvV=drRy#rPop(dy>;XUjuh&n$2Y8Sq@U2`j+#WU??7BcZ2q8tq){vf0 zlviUUQpAv-nF@d+afg|0X<|`ei5);{v>Z^H@ zo*79_SW)g73)L^szPesfGz)VaiAd&xF3GxT%&TW6IM3R zX8+rutG~X}o2>|lZzwDBfbF1{hI`v#QX-J&)$9;~(m3-z$|W41I?y#bknzf;%m;P2 ziva&L`4XIM_e&l%^~@D2s9`T9njaIG52VbKKuWM07jAiR>hC)#2+r#ApJHN=&M%E4 zx_Xm(nehfY2)F_7saZSZESJMm5c0owQrrx55$0}$v)?e8oz!Cu3*p8l3^2sP?H=NY z-FdL5`f-xLr%<_IJXK{oN{>bs;L(iJa|{L1g|#|RPs92ACPox!OLc|5+oc-K$w?A?KoohI%X(*S(8C6%fn2eA?N;Yw+wsI^Ng^`MZ*qsg2$m#E zLA4`bTBr=lGE4a{oYBT^G9aejloa1`@%v)4-QLV-Cz~ovT(E@#1)`g zi80W{8$DC5UXna^vAQu4TyDioBdiDqO3G%l2uqvFoePo<&(DO|tXlQsmWj(>kYc$@ zKl-?fU>{Y3_t{eiIgXP4^STVh&Yo#c^Vjbo7)-$=5!~!u*rH9+;Q+go19^-R;(qsA zv@U13!CT~QmM(n=Gg(aH%9c|`2_RML}L4mth8I=o>v!J6z7_4si5gT_iyevzwMJGmJq5Lze#&i=0DJb! zc3)}WJ@&R_0(oiSky9$1QCQ>-c{BTGD>~$w7og24*C^AC%{>=abBN-KdU22dae^nBKx1JIGiyr8Bx9rO?&1cb_ zIk6a!vu**4tF%7JxnDKV#-R(t`>mYLO~iu>ftyH|)XkM=zwJ^bubMR_lKf!5ltw!4 z#DiZdOmybi?fI3(PJBP^V#pw+2t16>UKvU3`lOnR4P*zOaAd%Khx~gV1r+i3J__XfK1wnqU>^kw z?;-=}+(^t2s)5DmDWN8QAv@eLv0~@d!(Z*kgG}xhgO%E;>O3DWqW$0^YmepWXqIdF zo;Ttt)YO6t1)p<;&v4aXNP~FER=!3S5~IAZt#|<@{0^n3YJ=XPxqQf_UR{BlD|B3L zXyf)I;takfdY)~?rz)}p7l~qSBQ+OPa$JCY6vf~BD7wr6-Hd*io{`xq0J)Tr2;i5$ z=@Hc<-cP7YxL5uA-*PFpMWwF5zvNO^V>JOfq1}EX7Yc*U>fC0K?{X<880Sv=O`W@$ zY6`1>R@C>GR+jL!tWM76z${7mph@ujnja2kLCgeiZff5An|v`3yJfGrVzkB3PG0J&p=Y%C&U78vue)la-hS}Z$B6jC!N`sgS{Da z&=OUgJP`q>3-IkXMTHog+}t6!qjjq+sbybfs{_htV^&Lc$+Z1gJ0`!r#t;~rf^*0a z*g826#8$baKy#G7(S_`nU#(~e;bh!1f?!#f5*bG$y~bldiRq7vZ3BFU(QkY93j4-B zA5`w=PRufn$2?Sie!aSbt!WxgqPZwpkH#o{!ruH+m>6f}MOAKSL<29gyUKT9Pv^7r{MX%L5Rz}vEfUVxwTkjV@<3J6+o_E3r97KaKLWN~#WFt7z#|O)#FsXW z*V(Ecnz*uOyr?SWMg0*|m6aHFWkp>Bo=*!&8$Ao1WgWf@-M}EtIjcg*)y{1h4BcBz4wbMVdI$<{_uPLIrjrc8H_Ar3&bDCMF0-Gg zbk}IJk6U7TUsx@;xrVO}Hq9P$-Ol#iL4eLuaGW$ix7|~IKb9u>e27i5QX@8^*{Igm zTv?k4m#Q9hw~oDJ#qN9P^~yAX1fqg@;O_Y_avoXl4!i`;Hle0B$`LVd;uf+kf%cMik_jbDL|+u=+&&n`N66Tx_8 zhinyUAhQ#sg7NaO*r66eoL716rj&2AxSjvh(kC_GO~_?I8sX>Bn62$@yd&HCmw|Ss z4i2|t5j@b|^op+(6t)lzcm2DZkqt;7+vXF8%?*tpI=G+FwKL+CC&YCiiuT)a&I=__ zg_dc}SK!RE3?rrw#o4%mRfeeB2n{e7(M=pk_EwaT*aCuHWKQON+%&W}5LmBw!LSB^*D zC48-YId?Syq2UQ;bYU4LP3Cmk;8e!36-&u1qj!y|2%AEe$#THR{CYr{g`|b3Bx5u8 zYDG2Abp|SYpnj_S{d7T5_iT7uXNH4ahrm+~zeCsz_Eg!N89Sw*&mygtF^6MxhVekV zS{B-db4kQ$U88--QeMR`d*H_|4d^4!GRO6og?`sa$wx;~f>@_dV>Gqrpr&jof-@$m$7d+a_|t$Lf}`BL(sgK z{n&u|d`AEQ670{fsPNHy^2zmFnoQk|1frWHSExMGlu-=%TiXF}vgA-uvi89j*#sO* zPY_42Bj1mymlP3>ne^=z2R&3~=AUJI!WlmAk#s`L8ASNu6GNRZ`gQcq2Y+VW@`5Py z$r{c3S_QN`yCM3;Zje+;iQboI<&3sF$P>LumKBn!mRx3jrOr@4pk1u{IbzC&Bm1%d zM;lT#v2>worIbsQ6~0{3aNoM%Icu}Rcl?BTZ&7y!;Fm&_dO4*#{`23zaykmNKl)ii zeSNZ4E_j=vrSpaCa2}P$uyt%(EfuWL#&sUQ`P(vuAn{)|Qs&P?&sP8&DFy#vnPOx7 z*G7s=dlx_QAwQuqwgp&5P`I~|YgoQ5g;6d_14gAk>^4utj*rBw_L#h{-a0t(7twb~FFD@+y; zeXOSuWn`!%5tMdmWSCEQf}a@S4>23k3L!HVNM^vL4N-dw5PW5V5{D8wrA2y$CM*Qh zOoEMkup-E7RX+JG$paIWZ4f%-2tWBdz8uCKwMdLl5;1;?*UAz0M3w7Z1%ix6&zHj) z@P|-j;s*yHqy z5_Ek3IW&*k~fE0^GfV{oR zdYJ%50f?EreX-QTN_irDTmwF02l{I0eO23P+-L`o^VWAT#yt1hx(t_n4RBb)=vN}x z>$wc}0FO(Za`u4^?pjUiabhjy)VhXpjCA2G4rTMq z8-P0`?e=q7Rj6V2xc2I+#HAII!NNSBW(2D%ewO&y$ZJK>XI%t&g$fSilO#$_zgkyg zooalduPB6`$JUHzS;r>SJHjlRV8<5hxg0U^F-$w7g}}>?ii^YXj zyW;`rK1@dWXbS!5Bb`3A#)Cw*YdMivil1gBvU66Cw`3uf1m4_n$5N?8wYG;xFO?+* zRC&Auc(Tr=082P`m^R`MjcQMoeIyzqpfmN|xIqyDEeF8g3Q(c2)^?jS4xr_Z=EeyO z_U1UZxJW5dyMeF>MQvDk$N|<_*)8m2Eqdvh0v7Ktwb2S6P9fp}AWLbXynwVRB-zV3 zu1urr8z3SweVcB_X=jn&0E(5XcjLdUX~sFc2xISGP;30?vt07XH*!GXb=OpC(^LKR z+pT?`h!OP;!l<(}!A3e~rQ)2=i0bI5D$L7(Sj-Btgbu(pMX+;c>^IRZ!L2oK!eV5% z8V=rl-PofD7b)}Heydky0B}wD0I3*Q2wEiYgRUnlD?kx#&f6c*LE&x+d16W+M|?_< zn3Td9ZKegiE06anqmEJBi@YxDKFS)@ViC^4Q5^?t^;aAE99Wp_D!?jG?Bvc1>h;Uc zGZ-f$Oz{k}J~3hk^h;Y4=r_s4lP7v%16ER6d7i&-y*?UscMMRM(iz>XkiN-QR~|v* zKs)H7sDc;v!kkZIkCDdhZVir-DOwgveH%`-5>iTTbhR4>_9+nUj?{n;?Ugt3b5Fw^ zgvQk%EZy#N;uZ5(gvl+M1yg%>P1UQ6?xKv{;yMBQ@JsB5o-LQWt)D&i#kB{&gmETR zVa- zq~GU@nWqzExh@xbpE9VOpBV!8fk>!j2Mye$>h9B*owEG290|i`Gf40GdHf<5WFime zQ}@lqU(l3m4E~H}HEuTbNRXW~bg}-wOrJ?UY$#7XO{PKlm`a@d61LFDd(3Cuh}yrw z*`REDcTE)*eE#E_0z^P)#XR!(VJZqiH(-Bs=JIRhZUO`9F_sKqAElaXS_=Cx*0hWE z>~}JRcU(HT^2%un(H`PikYne{$LgObe5YCa`#*%~fLbOtqkdKsDD?i8!7pWcCHOL# zDbnpL^z(IQt9_R=nDONrs^3$D9HKgx@s<{sQ&kFSzMDj+K zD1Y;LIUsQ#|C{k1(Kezxft4X3*23K5j}0k8AeU_jKd2y}gq?j1@;;G6H?L5u;(I35 zcTeC-Vd+zTQQ#RR;!gssq==1XNZdD;R2@TK(N8@wPZ^02%BMcAR`z&Xid}6$2+r9t zond4P+oo9ym8{!%8!8S`&Q7ome$KPsyoJUiP}}e^nri#T;CwncCu@fxabAB^5R7sa z1bSMAR-`MsC`~=#9N%3jg>nsvr;$m}G+ac(e=-dmMA+)GuIej9w5>M{G4-OZ_VB~6 z#4Bcb=y<=SKw$$;clX^k<%V>O$~Tr%K4L?hRErwx8pHoN=QKlaCW%D!OU#ahNO$~9 zUaY#CD6XREM&guH^s3t)&3u1R?Az*UUJl+JvlBL#0zpmk_u}Ow(z0K^zN3Tu;MXQ5 zcNXj$SF)l!PhYu+)J-7aAQM_9$Y=Wr4;Mhmc^#ZQ1*(%fuv$^Z)!dPpi0_}S4P5so zG4^@(Q;eV`$TGioFs2CgUMlU%oW#_(@npjlY*>LsUW!IP^XxD{L9<75Nt14qX zw`0Y*k;j^D(y(IL3O~Vs681wU{D))~V|sH|-G1GhFYP4-48##A_L*n2#-3!8(Yh&! zS|cyI0V5_qsv1O+HQ=FPxUDM<%w-*(v$39^6y!>_m*|0Sx7Tj=-Z(oV>YXf|m0ju@ z??Gut*JoF3Ge-om;S;M*AnKcm=L4FJwahRQaEG46$kF_7p)>4FQn=`;p<9T#(u94O z`O>2US9w?N8cjXCySry*X`z8uXSpX_;u@M6G}5`o;rB&cCVa?o?0tB6VcWf~uGiOi zD@X}tD=xSeEaa2uzsL&~jm8CaL8a0to14fr#c+*=7YDR|ybvMr4%bWc26X28Z!23& z<#>>6q}zu49I5FqMIz22;fsnCwJL~;F#1SjGyyhhHwTP%WCDQ)MF*y^Lszm2=mKw(Mg%;3SUrfiB;Fx?;dO9p7H4n{WJvW&1 zT0U0biQ}X6c?PdFhb-DfMFBHq)FExplndI>&V`i20 zW8<6zYvPZrQ)^s1mJNs8wX;`AsE8*iIPDb&rBBsp&AoR>I4UdQVf zsT;rPon;okO7a(U25zE#l)mAuZ^^m%(uO)|7EP1`pw9x@R!8Ka!D~5T(x$AK${!U$ zJUyFLv``30{EI*m;O5sq;|^EVp^VI0^l^;0*?P3eXbC6Q-3R+}$-5r+>3?cD$dmlp z_G*GA)7CKk?T*wy-PX2Q^pYYD{?<7=G#gt^yV*rU(hrN(oM9B+%m!Br3C_}#0UPZ{ zpCw!Z5=&!{#nG-vJKID#PI=yEI^cO&LbM?#x6sF_ypfo6-KQ*wMQ(gC182T7UY}`( zQZWX2z>bxSh=U-K5gBEL%*Cy!17U=_Q)CQ>wI!)RtSsKz3~xRM8Y8DfHuCplLqZ0w zm8;@NV}=y@s<#)3hzKW3a7!lGh1t_y#mQ{#J?110&l8Vt$$nL38MZLr`0a&Ji^)Ab z*&gkYkp_&|q>0UvztMOxJ|;2q*bR=K;Z8n|v=rI47bh6AOQ#gwo5^wEth}jq1pkV`Nq5VI@p*etcC=gW{Vbn#+12(Mx0!a z$jfyhEiV4uOF?A_wOdIuyy zT!^qi@4L|{H$col5#3h3V_(Q}*_oItescwC=K?bJisZv)N z0dQBXD&P<5yTDDjW0ACCXZHm-I_XUp@i}fR_f5gs>omR(;!F*eKFjHR?68BFCj_H$ zt!Z^`*eip2<`cUwqPTw8$*1q#_8nIhL z9n)RS@m8UZix?rqfu^}Ju~>dt^Kxe%sNK}6%D8o&*a1RIk8yS0Kbizu-TAsY>E^h^ z@b*Oik0jLP(RTj7ar{3psWAE9NodYrBs9JFe6KpO5K#cBIW?>w=sHh+Q&hafin;y_ z)?e`XN5fflYujq%$0a7?wghT4-4F_cgz~7-ahO-nN1r;8{~@7M{+iBi&yTa?bbpah zxmonTNhswz32o{q1dvcYr|(yC|4Bl_*H8c?bUhY8LeBss^zfa8HeX^*e~Y939G&tv z33X+%@_#3xe7{L(#cvYI_!kMak=tkx92debzT1aE|23-9w!p~R~)$uL}V?GzMACmSV7D%nn zK6o?^cadDYbnbzvB`OR{+D-mVLW%#0gr5Ho3H|U+LJ$5Tp=JOQ`VB)Ry02yAak}ua z*8(P``OGr7&mN!jzTwmQ6sUG$y}dXy`fEv9y15&LfP6ct!t|x8t2;1DpU;GqkRdmN zrv1M-zS3VDe?7p6KPCfu?JthM`p=b}$(t{>|Bd7S`5j-Fyl%Hjh&FslevU_Tp=?7Q ztz2PQRJl6WQFe~+XM|D^An12fSF+igv;0*xCIeQu=Mb<$#W}pTK~MyBH>Ob?!5UF5 zgjO3+9)ZsyO~Yc*Y9b5=qVxb4#iL z1h7LT@q33#a_sjO%D@kGx>mpzicT|TUt|k(L{B;Kh=(g9QLmDz%veKm{z55>=*rS0 zmlr*6)pY8v^))t|j30rjp;L9o31P{M0n;a<=X>1Rlzi{Y z-2Xkjlvewfs0H=|mYyQ!jADH`faxXqGrgIAPcP-~>8<#0(~I>!z4ZTUdYKd#@h(Uv zKNq?YNC#btCAF9Qh@HlNPH?}vPk_~s70M!SdreI}%(N)|l29DmA%t~JCGcm5O6AWE zRayI)M)aQ@D!2C?s%8mR#y#W!2Tu7u4oS9B?BGxFHwBV6fzxPow#&2F!P_6D*lub7 z)4Q6W)Y_01@z$?0-oOn#m3RTI@-zCo9KD~|(xj#=g$*Rx|5uK0?d-w%26%*WBL6q5 zpV_BR&ZdrxY)pS1p|lh8B|i9UhP?vZ5_R-)tZqo==dKnuYn}DwM$98oRvQ%FF$s@7wNV{;ruMXm!kt9J2PkEdA&^$WJ~D5__WjSp`|=X(24o6n0bgLaPFf* z{8%T18!|p$6xf6G%MBv=fgSN=2XOl7bb{pbgMqbq1`hz5Q1IJJu|)AT@vX5$iZ$^o z1j3&Ca@*FBkaeiNf*2%u@x6BSgF?j11iJvIA5Pk*C;yx*LV(lH5RQMv*N?dMBm_z6 z&W+e!1ImUx_lz2*^%H(#sgtI!n|7?m<=iQK%_hF zt`NB|s#^Uh6o3aGW?@Cn4 zdnKv_P>EV&Ho~M7u9)2vBV-%{as-PN2laF>s0Z>C5*Mr~KmGzZ6KVH1lDT1~DK(NP z;I50u^gfEB8QdlrmK=|OaZ(H^UHilFm)|-5EEu`cI*z2P&Mu~jg-9-k-bd@7mP(xm z%andE&W@mB&d5t8;6Zjq7BtcDuo0k;pahiY*DjWmF%l%Zss5g3N`Xa()W6*lOabf7 z?`{c@Sumjc_evDeNG1srlQ@VX#5>350lHmJ9+lji_Sd!^@bOIFcxee z2IqJkTBw-h_G3@+dtidBW?;Y+WVN0MQLP^Vm8ggIGzF34Zftv-?)vTEF{1FDiRcWwu-#tF*#P3jp$&gx*2EtO6TSS+-fU6MFT{XKBfIw}hDaa}-lRvP_NX9Av$H z(lgb+XQGA}AA2=4L&*zCFi&S%?F66?uAq*`Ms3jJ(GL0w#k8NtYyqAv;Z4SjPlXD9qCPa$3TQ%W`+Y|Suh;ft!&)KG4RtIt> z`qW9}@b)OuZrGu+yo>FzZ+}_$am2qmaM~g0o=Z5~Zm|zMN6=DpzkQBxn4I0HT%9i> z2=Jxc!+TXE`bCFDaDvmCLrHx5M=c>u_;O(BQTJOdA^NVCAO)x;p#Pp_jO$@dOy}gT6mag_3gAOKk`O!Bga(3pc6D0Q7y#!W|lf z5eCU(GWyr7Gb_xBc8;p=ohT~&9Oy47H1K7tzcW#_&b0L0A!z|yshqw+Vjxa)c;9RA zB4Qh;i9j7f3y$PzKrMqmnd^lTw#nPh-Inik2`l74&GByb;+}uW;*Ky}1shKE-ShcP z^2dQL5(BvR)ZNg@vsT)&OOL!j(nrg%dN(lz;5tR+sq{9m83mL5ub7;ZUJyKkd_&$o zflYq7x(n*CrrZ=%eHqofIwiTO`itaW{u{}6k^W8cU6nP_Tm;u(ynz9p9}&CBH{8{} zi9+hWLy&3p2M+cEO`u;Lh@H7hJTd2rd!`2le6uN;mErlvfjS5rjsR|X?uByt*l=ktvVm5Kg=oQ_i`YtC4;Sypn~b%)K`(8>io z3sU+4fVmIG9)$)a&OO#7*ZGyOk!)`a-<&&~(lj`>Xm_XagXqvtP34kVR7?eJpQ2rI zjj7lPZ8Hn$*k1d_(JIx95~`j@M@M&>d}dld}%TYC!G^rQtet;m&$C)UL0DWrT`uC%#z z#&`9oYF-tX)gGQi+M&y)l@%jVoGgvF1W(Wy{L3P3+SWq7xxKZLq~OC(tP#$)dJ zRN;mDjX0p{=T*q%08^Uigp+0qr~C-=Lu zrmg`CQ0q(HV1p`HN4X(3Gj29Z2xN8oSyEhL^h}dq71%zI85B|VHLk1p5T>>!a=4&t zBUn@&i9}cIo#T530yuuQ%;)49c{tl@0BTo_IVr0+M7*%~Oo-i8U1&J#2Nf(m5Y(I( z;WcA|Te|^406dpS34}!zEHuX5C2%P~UXT;}vh<0A|xv)~lSmFuG zg>5woCt6E%v>a$L!;o47iDh5vn#QP%hfCqaCzbLYZZU^@Lb`IGQM8JDr>j z&iqM4*17b_#<)KH11}9meMe3V1Ub*Og&x21>x%8rGjUtP?G5lx(r>ub*J?DNm`#!6 zI>sJ{SD1Kg#)|Q&3dQP!Age#D-{Ske;1@uYan28U_tH17#Gq?8DdOLABaVPEPCYof zhLMX}(c_zs2_QBp@)Yve?QlISt)@o$#h?^->gAXp5YNg*1*S#uaGf|c*d51Uyp@Bj z&1UFfF6sH6$n^8UW{qQJmhisOj1Lpdu9}Fuh%_tF+O$aOm^>X85oSc{MoI}YIK-sh zEXiYNSZh)xKGDb@j3&6*;;nvCkDAqv^3(EE)300h2a?m~N6?Oh7ZWrdKeN23cLesf ziZB!+I=K-#r3%P}0pZ#TPzQzqHSNc9!_OZ9`6&tv4(0GkRI5wT<9kr(#$7x?@(O}_ zv9`_>Z%K6ZhatmB{^v8KOShX~s>BQ!g`~R)m3-JwlD29UoUD#mbY`|}300W|S1)zr ziR;zI`@Aml_eaaFl=%4b#2Q9B!gh&ie77x-UZnToqKd#zq%BnIp`j#c)gO%)izabC zcjVl$i_qMy^xv*Qk8k*YENa+qQP*JMD0CFDKn@SRFwv1&>Eb#IA)3~A$eo}(wdK=I z#Wi<9G^x>PRCBQQlqpu*!VKkI;`EBjH2>m+Z=$GvB$~XII1kSTN=-?^i*i)~_^KT; zO_=~(9%B;cu`LZKrxWJ9j==<#7iLp9h9%$ZpZb7wEem0#1vOw%lv?M|nR2I}GsRZ! z!Cp~t+byPXx@(GMMRB1$`B68*4$!w!h+YTft%Tc;w6=w|x z#3kF&HDUsu^ESP+q|4-hsY5{Y?W? z+rJVDus73{lPOjKX38bP3R@+y@B5!Sy(sPPg&fzFh%Cm7T*B>*VY@!b#_w_5sG{R?X|jfBvcOBEskS z-y{-j%>P36{~?iZMZQ##&kft6yXcasm7iC-0^&Ia;?`2`BzVUJSK4rx@I2ziv+Te_h9ZJuh^C zA4f=V#ZRAfVVCV^6C^3Ne)hZ`gfxRgJu1|fIYOOs@UukajG}!<_BO$cEa&gY{+4hy z5rFJz_(IGEJ!5_&dtF|+^BwTOCrhLlq_72T!Y5RL5utQX*ufVTmBb#cPGBQ`@SsM| zK!7*m7;iT{M>v1;dX5d3w^Tf~tQv=$ zd)sI>W(q8co{%1U+r1!fs?L&HWP5WZY|Ep}b2U(kmU_d0k!)KpLviSB~-m*zJe@BL&aPirCTc6>e9q zzrL{Yf25(ZU(%Ui)e(`EpUkv*!59|c5iNt7#ose8&xQTn7 zwE9s)>sQ*D$k3mb=3GWU5gO^F!F0*(^-)g90BI;sAa3+y7i(*Cn*<*@Lsq8ho`h4p zFfs>7hf^Z_QPq@kydF)syc;Xr>(rwnSKOnr^)^;>k-LMzk*|Q@!BOFo4;8KN{sf+PaAf<+E{!J5MuCBmI)iMFWPvYX zF;@Mqf(CgFpqv0=pX*UygVnkwg7bf-@^X9LgngK(3q3(!T)nL)%@` z&o_QQAi62a3NU#~^Y;66P&y64XAJQ~Dv9Kh7iQ7t9L;F}V6SKS z9*2s&1~??LhCMk1-yIU*oga?)-s4aZG*%ia@XX|ZIFyq=<*)^m9DS#^ zJ1JJ41lc{)32KSG$6eCD;!r36V9)s``VQ>5-+{dvyh$&}`Lvdnvw?pi27N|QQ6d#F zfpIys&VylLObqHPa-QVd_2T8?ThuuPnHZ%Zqw>#_f`|weQ3}r_Yz;FJga5AK4>BBAC+`~Iut;HAszOU@vPrl{}+2BkYK{l?>bc4(q)p52iyz6GkM*QY^n2K z*^x6faNl0|3q$ZU=+$<|HT1f-vl0Lni6AYA@)D%79Z)zAI<8a3a#+Bx)QFg$8)295 zyF`+mbTo*fGJ(Koie>wL2{8KhpAbnyQ8#f>YH})2%gcqN{<27Xr;--Cjm*m+Kl4XQ z9Z9du+G_YHx{&hqQI9eZamN>(LV?4bCRt`&&%p5md7` zHfnqQ2Zqj3CCp}zkk^^LI2uT`ljg?-j1Ro6rpwF40Exs!2VdT9Ki!Hv92dJ~h>7o{ zfa9~@99;&!7KOh&M_sm*>Wb=LeJE4)cZq}nKq4_*M0a_M$sn8Od)l7y7Ni8C10eRD z>U!?JJ+qxdHoMo?tBR#|a{iD1)`wC}TNZooLuJ1Ap%&FUMNXU#j1CFQKR%V+03;Ft z;0^+avwD!aDH>fwFIYqCI5 z8C6<s6$w`yS9ffs-J0V?uI4}=|N)MAgIM0}JSi0`YxYpivamWhU#*AB!hZ|M3 zC1l*;69XL>;}C`3akz6N7N2_PI;igy)Y#jYT z4+w1z_P~?U3r_uUwAQQGaq*a)W>Hd6?Ca9SR(V<-l|Dm#ajvB){cc=_Ej_ASZu2yAS>!1XL=pP zXrD>EuKPw7NP=u8kJ=Y~dbx!38{pEFhrUfjf3@2<{OXPd4Y8CHF^(qEff85jW`K42 z(~_M}89!-)G=wB7ZF29?PUwTmsX=X~#kivS2wu3z#gw#C_6;@`4S6T4lZ{Ys-Qgmp zQf|bxSfR%9r!j4=q899|GZ~E_R<@(w81BHd?YnSg>{_!qePq|MAhTq*?!!YAg)C{< zb_HYK4b;I4jlO44w~M4+7m*q|h%(a-*kSAp>3XR>r(ZJ}=G5frx`j6;i7{iZ_Ogl* z_}?<9DB`7RI2rh`6RMu{0eJn=LKd-r2AJ|mnjA?54IOP ze$>LB40Q0BQxBlgnvuZy#L>2?5jjrOK?^L%Jl87-@fryeTd~`fTcVYjgR|?hM@joy z8x>(wK2q=+bB(F3JzVc?DA)1IBK6`^jDqtG-dwu;7-G77g>tAz$~=H$9yJ#M0U(jM zdwMh`{UXO9t6tA_>{al6i=s6BdcfTJ$sjV-5D*R|xDx|2DM`#Y1}qxi>+RP!EW zHbLyo&C>*Bkh}HcuqDDpC67&7BQjhn%@2O_`-}QMv)w^2`be)d9DQomGKHO$QWp;vjex)$6DkUo>xw z5k_rG78h8aDet~25Z6aSQBAbx{4gvv=fQY7S;zvhWA8E0EC*2pjjIFl5|od8j@{cM zv_%ePzTWF}41#Dkq8q~63OeCCa%Ver>)9Mx@pMFI7k=wWVfkz0n>~Q#)bt&A(`!1y zG_pt{x05wio(L!zD%!^bx1oj3qPqJg6PVV@k-X{te98qe&w?W7!N|^(l#v?85+xAe zu|YK-VvV0P>WMiy(t@1_K$HEOD0n(@J4P*le*(}JSz0MXi)y0zd0*7tDpEcP{}qMG z$>Dt0N$|gp{m7*V5{}>hBavA9OCkXP_yCCnE&u;&Ly<>!|8pBk87B_wzXJT<6zQK4 zDBXWWpu0f-|02*%%L0l9z#+a+1aDnw?=;{L-)!XfA-<(tlri8CUl*=zh~1qPZ1DXM zp9A~%A^y_;J;eVJ_eJJkhxmJdLwqxEIJ>0yfnNQF{)E&PrAdHBVz)-e-VMa8)rK($ z;}a^Hzp8lL&6$x7 zuhH{-V>O?M7WR9&|e>%AZpV_ zuOlfOPSwwB!-+ZTbaTBvcF4@RgmQmlCOBRnM%nIAEV{6KF@6X5_yB+p0s#1jl6L%L z2b|>CR7HiyyVVLIUttu$j*$g|Am^bU$iX5$m8-i}KD}x}b`9lnw<=g3X&0trUPJY^ zW|A9blISbW!vYTRy%G-~J1KQm>PuK*`T?Y7>~)~sy1%&)?ZT!o{}+Sm&6(VP-ZBsW zzGV&!c-KfAy#95|ETi0iR`UVv*=G%I%ZznX?Oh}B`i~lkV`R&`{|fMb|EmAb>DB%V z;8&miUx0rM0QiZ21N^n~BBAn0j zy$xq3f2P+IFue-z)7yP?*7>us`BVBtK)AzbpW|Zcc~)(86RYuO^$dOrEh)9u@77BU zz&4pAZ(@VFizWY`Qs&70+t5eDnHLffR=Mi9_GnT+0mmvPX z)=xbCT0gn`y?&z9S^xm}vnu0}+)z`Ab^w6ym4v4U99^5!kgl+VAOmxe1=F7X=5*X5 zB2{w2E(_n#t*vl2?7-}wG5=Ycce~vE8Sh4Q>e4eV*n4B_#TOyHB zkIl>CH&)<>>q7yV_JkGj1%i^4Q2vycN)WOGH8zivdl2e}r2Z)mfbP9TIWCMPerl7v z8B2_57cLCPZL}(1E%XYSgj!4iJLC$_Mc<3$4i7v1^z$Re^8_5?*9xSPxCH_Z@gIO= zrpmd6dNlZ>dQgFDZF1`DD7NZ+V*2k~Ui-ay%{q0fy1Oo@ZGL&L=AVQ0P2}bDtgbu& z_R&^H7riz(pyMFfjZ3Ws8%wmquAwjkTB0(8ptQsPeS;LlQf{AqiyIDU`z|;E?1TY0L;H6XPasNQ7X; zp;TBKf=HyUo#Z>6z*F`3`RsC}tqGn|&C3)U;ey&?sPB!cWH>&L1X|`02p+(_F2tH@c#}M1BTK(e|By*ea zi|r=;u=6J5GMegS7k(0$&39^jH&m%Ycf4BKn#S!U8pH7XyQ~^5y$hu+ay7@f7=fMb zm&NXeiUFYgZi&s+c_S9%6OM3res=I=BFVz#lmYD)A&=lTAIReOM=4(nXI(l${2&?i z{$TFGX*lxQ+jPw>1o?zBRqRy<8&ubdG9OCnJ4KVoYfGNdtU*r}LBJ8oB*+0x_4dQq z%#k(89Oz!ek|liHB12iancNJ%7T^varGRp&^XJ_gxM>tk+S>Q`JA9`5q>1O(aUa)6 z3fxte0(hx%1 zr4Q8ohfZNEHvf;kd+P3VTeL7=-SxyEcCYItp&TinR?bYa}&JOcuJEvCvc+-5y0lG{HLUw%>GX?^y_LKyF6BhPgAAUm)OE_7@OAuh>n1KE!@p zp;98drpD|#ORB5v*B!p_c#KQLF!dzviZVy=U8vsYJPUC(^a~hmB3RA zpCQEBoPanEFq+E|d6a#P%JQw@r2^8IiNjdlyh&KAc41#M}OkPr}Y8G^Z?UTy( z-i>`!Z=Qs*{dZD>H3i?#6XMkpzX2A6*#U!iIq#;~gOp;tTW>2S{!klGNFvsm=AJw1 zBBMO8t=6Fj{0+8?bYZUmVUlb6c;jtfpV9OQE73BBXYqykKK7JVr_JicEDMZBzsr@9 z(_C%hUb=r1bx7N(AL=;)cx-C%$ZmLa@e3Rf5me>JGDNhP3+CSM*5ChHhFER>ScdS( z5SV-;AF_Ue4ZZ_blSWK1YK#$I3Us3wT!f9fS7AREk0qCMvm?yi6o@;1@7F?dn@e#b zyVEv&2~5xb!tprmWxD=Yw?5m46GYDv7}nCb!(B>B<@H;O{ufm=B(noV+IHwJtKFr; zDsl^<@zkZnpfMlLr7LIKS)@DpVh$AbRn6wQduU8tXutYe?_|nb$liQ0Fz{%<%1`YOq?_X%=+jTZm^h=9WA2} z8N+D`N~`jmzzEiXI|`E{Tn|?KAmJ`BmY3OG1r^z4QRQ`qytr?s4u>U0rY+9ut`VTi zQhA;;%dS49Hbd5e+>8}$rm;8!10#eiImf67+oc4KscLwYkl&dC)-0NvaJZ}LoYU<_ z`KUWx(=NVcag?4XBqAiyK@n%=zT<7 zZArL2&J>NRGIPp~TIGgH0IFR6Ylw`J<%UtWER56mcaulTAYdme9!E^+Ss8!%WsaBN z2SNu%P2YExLKag^kka)jD(y<+{7RNBa0+7_=}QjZP(lf55`v+Vx6iBeuBynCX&r4a zS&d;j^l`}SvCSJlnad4XBxF%aqRpX;pKv9SP1lF*D({JnS8Qq}Pp-##t`;Is9SiNM zrde2zCf6C6=c7-yC$<0-zbX;`a7ih$ywi%!>a%GS*%sqa=2Jnoj;uc6=zz%aS;3l^ z0{1GNa->=LOp3$6f(W$_4BtIM^ww6S4tMF1pxFEn-XNq9c zC&8gC7|hmWp;`(9A}w0a+jjVwE#{bU$_m2tX*sGky2$~yELf*j5SFdsW9x>66*%}Z zvFM$jalVCZtn40R^{sdk6|XK|sN;7`w=d&-`f6$8(-D=SkA~?CVhcZO z^=XNv)VMBL*@noMFVC89%QTbK;4)%VLDZLoG$xc3w!#Kvw&7#D>ha5Kp*dxmbf~a} zAtWHgoo6P#yf3&fIXVpxj~oo8kTmNoHdg;v*Q zk#6P>F>_5rhklMdiplkrrU=E7`QASvh{e%&fN&JHG%}34WEXf8Du2fIY^+_q|61m4 zbb_Z@uM2EJDM}cH+<&0e{l0Y|)QJP7o29d#+6iK8Z~nPpOB` z-yk11e$m~+^5J25{bK)*{N$(K%+l3AOhd4-{_6;pH&Wy2-1m+M!}*hei`PmB1pkpk zfOh5ay}yS#dP$J><(?gu)N%4S(@rj`_n~*XPe4U=UadvNMDhL6Yp+sCDuS}nqhsej=~9XLMf>;Q;_uhd&AP}G5mxo{{tViw%v04^ zFnqW$)=}Gpr!Y&)m`|@JH=?&XW9%|o%++I2-^2T$+pWN3s<7?gv>eeHRCZqAWk>k~ z3&kWM!jSb*XKBeK!{5ODp3ISOj2I8-ke;ClqyJjhgP;EiI5~NzW`Tfwtm^^Xy;$?Y z;m5k(`6Q8oO-%CS$GYBQh2N{sc2D-PSY@mLJC|W4N(Ms@DiEZkVOgUQ1-SlB1$Vfi z+o7B-SQ!BneZg-QAzTNKbz92!$Q}MghM2{c3NP1kv2y3q`=&*sfNggxt)Pq+sNm)RnKvZye3vWTYm=^v}@ct3IwCL%VuLCgxPYB9dyS zcTt(2s7gWcdajFof)*uVvne=WToYtS7>kHd;7BK@-Xh!Q+cR%7{`eYx@zioxltw_~?R0a8;p)OdEDOX|KD>w07y`j94r z)>|H{YkhQNc4)(TH=~KC_Cx7hEDmokpJsNcN!fa?nQf%23@h#GERnM}$O-G<;zXcs zrCt2bE>e#wOAcAiLXOBRnH*QA_-s-_rHv=o!&G1w%n^n3Q69nsCg8h1j^mix|T*VDn(}orN21=ws~JX^7snXv4ME zZ(`YL_R!5pOO=7t&WQzDa6>shgd$}TyLU1;y)5u_$Ym+ARDgB8YSCw9y}b!yvgGc= zFY~h=))@2h?u8OpZgO@#=rOaUp1Q*M7O89!#_Fcasc1cb2hfs-PoYd8QUf2UzDDzy zN5SncmpZ-m9rSph>2{|OPexVMk8wRi9Xw_DXnknY`oz8VERsXf)d9hhe957~bPGZ4 z#(3FpU+7(X3ju!{cuNnWJCK_Oo`@YWZl{)T#Gxx#qykfRejZ0j;YQJ#OG%?x1*w_? z8tl|7GRsCpCJND8THc|QzcPF^NodShbY!Bh+3M!W!@O90JG!L6NsQstH70&^Ekmm5 z7J-`m>sc^)S%IJl9_S9>0clvsqjBzjzo_1VP)1}Z4-$DhyXd%3_L=0>fq>V86>R~j z{^n4>61s_Jcfj$H&QmEM)h{Ck@>Je+;RiT;dMgH5VziFVyf|!%umW8I)Ze2oA@JV| zQFi%@a`$KgW`Dz08o0cK%^iJCoV3}I#ZLQ%46R8$r-Y=e00KH5fJx@tI(6)(G7T7p znC{5oqYRn7AI%T`nSJOWZ;|4J{gLWtFa;WIl7=k4Qwyu8h!0=onf)XvP|+}!knbuE zb^3w>Wd)xv!Ob{=4lS-XF#afs9UuHVW%ugU6y(z}l_q28Lri!U1C zaTtr$)g}oByaz4%OE#{ctKM%8Yuzb3jri<54K&XF~4G8r$>JI3Njq$s`LhPjXq*vE`&h4nWlw^)i}adu`IeuN8HMj&rNc1Nwvfs-xZob-ZwgL|CvfOv&z&y3n_wm6%A< zmB=!g;Q&4fSsgA+Qnn*q)&9&w^Z9Qjwq(BU3+3qtF!jTit9HNKC?(>K(OX|*q z!l$9JGh1WmABL+v!G=`_W-B-E2GSQOhQjHL?x&w?8svI8l=>xuP`6v#ZTY;G4QlC4 zt!gJ4P$@euU02Mtqklro&NRo!sQ8&qw!<^IU@xpzOq_hRG@MC^KN^tdcKv0h2!inF zq|c_-FLd4}G!eV*ktn{dsx;O(;*05Uw#8gAbZ2WL78fxmLLXod-YxMKJbGXmx$2-J zau%BKNwEb{OjRVGiXAd(Je!OGrb2&`x*eLftwNYpL~Oej=?ZG_D=Uk-2ZO`X*Y(c{*p1y{phmiI@f-8ub%l{}9in^R zTp>%!#Mb9s=W(i1;-OmU!glNnn{*-LRFBMs%~kL_*x(!H5^&H^!}_Vjda6%d7nd~8 z4Y=xEVf|nXcs+7to4d8;&J9$1?lG3fBZ_0FeH>SF6}$TfS#;7bXxJUtASImC7x-5lgfovkcgM}FDDrDWIhpt&^bF$sF zWn134(L>*-nsXzxO0g(#hJ>!yMvN#a&t~VMN$P>>{1xx(347@}y!{xzK4cxtTEzQ3 zZy6~T41x#3U~^-`YXJz3)J{y*=J z-^vmW{$oD+Ct~`)dH(rFQMt^&i^{iIyxosxou{WOR>I4lg!HF8-)P%tzFi(y)Pk6mh-(FR&Vn$&CA`UN%SGHnQ@_IJ2n_h$7IMJj`taa1c* zH*co2{39OqyDR_i@hE<~ZD&KnpLoKc%eWR6NkDA(k_ct<@}#jg@8^sQwY|C)4eIZ;@1B1+?sc`jRw` z_=UN-eqYWKZSeN%5B}E`c;0GwssR3!k|Tbrd7jriAl~Ij0nx6-=WFmOs31;LsDShC z{H>mn?6PD21Ouu3yH?NHh0l*=-~|SF?5NEeboKM7m7z^t!2c;9)oduj{>Pv9&*A>R zZ$yAxA~bL`lJr4Gx6;|u#NGj8g*FBU!~WAogedY^N{#mLAD#bMLS2c3iQkTa>C;)ePJNHCKl~nAQ^1MZrwc6`QEPEpS&X7?-IUJc zE>GTThZUeAhbx-WP(6o9{MeTZAr`f3mO=#i`JtP$kdrYI-|fqH#yy56JeR{?7It{#UlI`cK(D^GCL? z_rJ1zF|aQrT|gbEC-GA#^;NWgZ9H3F~g6S6JPIz=a< z=+i!h7uuSSW-d^|9Zug6J+Hu9FD1qYaHj!&Ug>$BHYH%!nU8^!?Alq_{~9;8J+R_ zwR(_b4i7(t^{qSL$nH{ZUpZ_*xUcVNmP}y0CjWEL1Ou|;^d;!kb;z|!7w}e3EqUX$ z5qz~KS)))lc4J}Sa$2WD8}5FL-4D$iK1>Gjh!GBDFydmm=Qkw|*7t9O&yQ%)uN&67 z$jFyG7Mn2EhSq_m-H+8?4H=j7>0X~=x;G7EpzQRn2{3dof9&=_61=rv2PxkQwe)fO zO~QM-g9@A;aL4t-=ehNF-yP1v+pRehl;O%+qX+Nu(ImQ52;7lOqM6-7o z+E%2NMy9Ue;}fUy4=5iZs68`$M_cB1M#|?H%QaM6NmS$QIE<*TgE%)TocV^w zOd}Q{kbif-F@*3_eV(TqnS%g+Ya9M6@Do@hh+eUIVlaaBx;JCtGd7wsa(07T3{Dxz zRya%l7U`@tJ2LuSE}CM>DWbevwi$C`lnkB?DxBQ?CFyki+?dohlo(^Vz`~JzxNcef z4G@2aHaKzyVuS^Jb{ZC*6tN2AjQ|ti&Shqg;^^iHk+( z3Y9<>7RO)sb`2s4Hr*c6&yP)WdIgpMW~hTQ4^P+wlRo`L^M;58cZDq^ zI@W^d(%}Rg+M=XmCe-5zBF%HVhWgI$k`wr$ohvj>nMt?{7&mGh%LQUbV7y2|Q?5g% zg-PiWQOmp};WJkEBd>)!t2=^#`b)$1EvJYD`DaqN*su5~f@9u2Gxgn)txh9aTVasi zqhR5sAr~M<_BCa$_iz;me}(&yoy)w!KzeKuZk9Tt0ubZ%Hk}^p$BR~n5E3}Oc`%b; zGx$riAjs?C4qGwsDFBzo@tf~DsqP9s1QnG_(&87UzbwC!3+4kL+)wto{s{LYobr=h zuef(SdJ~5tyL9*N>UgvtUPG^xuBrmu&AgO{ekX>nzCc{4jflTz4LyOQ_OT*)KGwId zAO-T=xudTuKr|0{Ow9-^!`Ne%qjoFsnOeY&*w~=WHR!ln_B91M73F6l<*tB|rxET6 zh+4K#Zu9Kwa#N}pR@q;V@})Y`Js|Zy0$TRfs*98Hy_po0?os2}>>UYZHl*|=WqYeI$%+r1&)S+NOa-=UqLkA=*kxpTjGx!mh( z%iW!*L0bYS1z}=YV((qJE+*_xd0tV^haLb7m@CZec(N_x-(vR{8WP!r`O3fnaaiQ zymNQmd=gJU?;Jtuj_`5@obDYKqkf2wl8YNviu9nvBP-70! zBb!=~Aw5Y%3D3jYep*dw-2J%H7Jfm-Mtbz6q&?h0% zQgh3^G^4MeI?sn0j2{QA!hnFk-x)fS2VU*T6b@={I%>cGSF(lODj{og8CpU1es8D8 z3^BZ?$YUjW*|8ugHtwOF6ihm13hL9FP>)-CsU4nNUH*|(HH+^sww^aWQ3C@U8AqX% zm3i%8NipMzS*+JrZ8-38Z#AGQ9PT}ULo=nWB<__vkja+5KdXO6Bw*dlkzwNJV7F}| zyMS`r(O#cP+5ng|U9rZuqlyX)X?A{3Y3+SPH}Bsor@O5qTwuc~thPq1`)qoEa%eoh z?Ic1T7QYd0o#$vPx>{SPbIWoCK|{B>W3Y5#>FW?P(%3I4B}~HIt5NGbktr{Z&ybm^ zG0vMlvi_6z5}8oqV%@Pkw&_odu>~Q1Ko)C+9}R{W+&_IQg+66ehN3YqNXv06TG|n@4QT;))=$FdZxM)_0T)icqeZhe}>d z@<6;8R7*lku{^KF1>E7Kh~?aK^SHeFQIkH!v@&$Z6+Dc?zNDL&2Gk63UDW#b@4E98 zqPTU((fgPdJCOryo#u8P5}H;;vMjA;n3~5Z*Uh}6P9YUx?In)J;rwkCL_T(9>r8#2 zopiDR3Pe#~ae!A2Ea>fK*C7UneBv{(n)(iJa}F!wiMjE|b4DAFjJodN%nzAbk`$f| zKYQKK7`7ESC8}#`&ET)n-G@k74AP7L;OhYkC>me(k!L{fe1K26W~X4Sz`&Hr;>`%j z_`Zyt%4Ly(VCs{_O*Zf(mnN{GakH{1iq>ZK$qy6+F1NqaaYndIQ>Kk`6Q*@XcQ}98 zH~MT`QDY~ZRkj-8wJ*KSdxSx##|~=&y#<(mAI7-X&P~?all;z-pU2uST=$O1e1NLk zxCca5Q`NOUlVxP+yO&h%&|1}3<5?7RU98Uu3-+yh8|n0g2IWgMPK`;3MK4D(iRTx0 zlyD1y&K%PBXt1?}xf3t#KkY61H8Cx!Xt`C?)D|1}#oLKRTP3+qFZ2f$se2m8g+$Iw z2P4Ux zV2&^>oJ0Vo;d~7#M3^V3fiyUjNMsAZ!?(mIcT3v~>bF+{8bLjv*1#??5i>U0#oMij z3h*)s_0wFoa#;fzP)kMm=hQ3DL&UqP5I$kgO|th+sh8}&uFKfJzkfRU7_Ti@xn%sgzvUvhhG8e@2>o_V_c&zAtt%aC;c==RzF zmGI~O54X<-d@Xwq78=~Pb20kyM!MDy@I+dAuJoVW{);YM(@r0Fk3+_b(1N9^KF}=u zpM>8NP_-{n3SM~N)9qTRSDycCvdZgyls~jFV}O-|TYN>-jAt=}1%4GQ1}k#kau{=y z)i4@}``r*I3#joN2SdSoiPS8X*p4RL$AAo4yR;0vC2`Ki_RBLP3-baD2R1Mpbno=e z9JSu(;w%UQXdkl<@LYaiFuMGbCiyWrVLPyy6L|SsB?0*|cJZ^r=nX&_Js!$CM#yhG zlv|9Fd(M3J{3vwFcZODgy9DF3SdLt1y=?wrKd*3*__aKqR&{4WlEw-hYC zbp%j+M!#4<0A;83JOk}{-iNLjkbiaU=YMqVw*k8LHwF^}0A2ekAE&6pflt>utU4fH z4zvVAI{;n#knd2weRjQ&+)r7eeji=?zhgk{H`}6Ugg(0V-R8(u3_iN{Uz(Plbqk)O zKDzd&MLxRr6+XK5Q=dNjeRST>>9*M9o{=-NmAyK6t!*LDqa@S|&=pZXStkWp#& znF{UYLJeemUU7UnRxFo9vV~%C7{9rj-Dy_G=}s@e3c3BoZr(bwgc60x?^^2k=E* zTc_yq6w7fh66OIOlxqkcarwN&$}?wkR?j-bDCOujHKr29)zgB{4>f~GRXP)6AJF9WVktl-W%gG^R(4KJty|fi-DjW=8gd@NqvjN8|v`im2-+;0o?vxqG5{|WNYd0HD2#DOTBs%9{cC* zWng^ysvq4PTI89#=9tk1e%Y2k2rg!M5Yd>`dEGRF!71a}I|zu*o2kTY2d7w5sJR%^qq7zhYcMp8&Tm_!(_CdL5RK0zb;K4my~ z=Lv%oW(|hy_UV`VuOLPQi%9%+_3~BVsfbF*WEBV_I4CN;;pQ7bw|I-uMjT)TNeg_P zvEc@!ac)q4y z=city)9B}KiW3rDLz;osKjmN3yN$%Z{ZadKbXa12A8J3E2}w=U>2I|^$K=zYY1sTZ z(eTVdmsP0B<*~@@Zq|0nSkJ8>@Q7Scs6EbRia+4DEr{-)o_&DYZv@MPz{d~*^z7r2 z1A6v9&3*Lje=;+0Gr{Zx^z2v6lli|KEnIh2{l?X72B`huj?UeK{Os(c5W=S5R6dRwP(!2tRG z2JUr74nJwhBKVWM2n!Yva-wEqSjiRmI)bp#AELDjLZ0T^c`>P$L6uHNX>STpAnd_0i16LW=HD z#Zza!Fd`owq5~Ut@CVpWh0Yo9V(JNE9tUK=upg-YhJ2g@rzy`cj%3VEG zk369IO~|C~drq$JJph+Pq!DOS0?Sd>WL8t3Q@82n7taJ-*HX(2IdesGT@D+SkGk=4 zi7Rbwwq6wS_r%*)*@BvF&@i;~ZyoCzH7fjgKBrV?FRHx$%k1A!d{5>FnEgQV972L~ zln#K|U;Hrp7>0+G2qI6ow5@m7C-fmC?#cIDSFJ)fbe!Y&0{2^9Zh0>K2JEbZK5-|# z1+D70Gx@VIzkf9;zUdIkeKA06>}4Hf=*t^C7u$_YcJ!NdH_b zv;Unc$@7f<{Jo(@7h?4}6O-AEYibOc{TQC2fG`jRm=uoVR+TY01OI%Ockwm?yCQY= zZq8Ur0^{em#?~`#d{t*ok7;Ro{UN-7bKmxEMF)4@T9Uf9+b_FH->kGi{D6~AHR@@6 zX=wTf1tfyX>=S9vHq5Gb$n-QT+cY(*&!)KGxggQq*PzNfMvyc;#9TzXvoLxz40JlM9wtIT{kN z@ctxE50MhJDA+a;ps0)2LX0xm-I5erC1@(II~$hb-HZleadTa4c^ECEyHimr(lCxa z%NRPv@K^{NjLB{ba%jnDnI-_8x!cg`$MM*ZV;aeu3FwRV=X*@aU6LD)wZOk8r%8of zLa(JDjscv6<1yPMA{`HgX z{+vvM!hWIa4&!+x@&J=6?b~dP9hNnvu+oO zNT`((-qGgrjYado!KPt388S0^dEIO)YI*1g0|p}gfsTm}QIyXLeS|zCYJRy=Vhmvv zK_B9cg-+711r2kZQi)JU`4gonK<(ds*1_>zwzx-3HN>ppX3_x#CFn(U2B`ggWq$Ui zcO6E@*70|5JQGVp-xgqVuYAD6uzjTwV;Fg?Cb`L;8Qq6iN_3Y)xWl}rv zoL=F`WomJdGSHJlJA5(`jdZ!v8R%TQ@B{ovHLMT!a`?H71S~hK$#3>tmNcpJPGx%b zL1@}*IqfC{Y12!0B-l5VxjK@f}BX#HUOv%-^H z`H{#CcQnkpqy#kZJo<9DYQqMqZgpAs3kN@V^W(OaGyLowi5d^>^08tSlTU8OL}E0& z$M^h!Z}l704!(TOMmI6GHuOy{WhcfisNKQ=O%1|#XsbJpnFFi#pcq6dMJp%(Qxgk z$C>onfx3OV7BE$e0Yzzl9xee3iQ=)+uoo*SpWf7VmJ&hQH`KV>!a!ThZN_XfvudK4 zILH@#|c7X6|wUaQh)h(mxa3Z%3mYZOqR+=u%M1 zsqM|~qRj&9V>ZmFbfyh2_sQM(6hqO=*i4trl;mnnZ9D;)<90 zt(7x#Qz6g`s_z=6ih?$;y0|=XUv8NP|2F%FrjfsoO(P*i1@S`r^Z>y=xB3r2uz!AS z?xh4zN*xoCcsQx@kA1$toI&luuh^dCK!fEwq zri$|_&5!Exv(v(cZ1*KVbva$G*kFaF)i~0o%0W~pny;jqD?Ii{Pn6_J`f(#ya0yHD z81B$7638=fn+@(G7yZ)rs(N14!71RNp{hyQE6L}hBT)Y@x33VNe@%1KxU`M8$_AJq zk3@Bx-I3iH6LWReAa-Xjox+dM`QmmWxzn>L^`-jcBOG;0NlwDEEROfhm*Xyh^W6PN z_PwDHM^LZipwKqsbzEr&|FC_3Tmak0N-M&_eFOVQ_Vd2B_}T=0`cqv#`U08v;r0(5 zu|#iOoh;AHIjX+j?BqrLG1l88P z=-(1;x0UY!uZ14eKqcQeN-5+!Qf)>lw9(oB^QqolO>_Pqqy0ap`v2+n|5d#I&#e>x zfARjmi}!IwrG{ZXW+TYEqe`nkW+S5invHmOLs*iU?)?8$>jXWw>fdf3|HJLmDFWQS zzrOZF+-F%;=+ZCST6=G1GjIAV0a98I^s7fT zp1aaX+)vGTVEInoGXwV3-fkAV-bgN&%(aEfdh_GN4h~z>3KfC~QD(t?GTmW#m;<5f zXXVJ@pv+b?p@Z=TFa+b!G#YcUQV9WWKbOGdkK6D6e`ksq!fCAmyZU>p&cs8W}xfiLhb(DrOF`e;#nZ7@1{5l}ly)L~z=)!^3) zXqR17jLQvh`$0+{ZlCuaZt`)4`6uZzZumt&5TdQW>N+yWz>5J`BvdxI`#@_> z_vF12o>S%Nr;Ag@(+rFEdq+Lsw@2%+#$9One9yn5{RVB{11cZ`O^b+NpQt;i-oE=> zx9?DVp@9(VxZ)4I;9q^b(vrmHxT98@gwm8#wxR#C+fVx2?OOxfK9ADhZeI_$n%o7@ zyKhimh2{VJy_GTY5zxEeTT0Yeu<#=w`xJ~oig;aQCtGl{S5nknXEh8J zLxR7cIu%<@e|R54B+kXVITGpdyi{x+VVfs#%99PzT>450DaaK@1gnrzHA!STKzy?S zoFlUxi|~{XHQ^)LxA=n3%c6s|NXsChCcfahe6pdn>jrxYrBb7d^sJ8%SF2W#2zTdm z*etFhlPC;xsLt{gXc3k!o;w<#PClhV>L*ybzr)EL6QcQCCK&0x0X#S7?g!fs(f^C>uZ9tgc*R_JTQH_F)}4dp>!rGf zeX#w*KWyKplfJ_#LMG_R1J592Ke&(61Kw1-Uw>B=TMV{u|V zl8|EI^`}X)2dL{(VR!s$Iq!P;HDUXfN(2W88wGNB1elxBWJ@2~sy?=Y=NaQ^hhT?E zFwfP{btqZr?AVjFw;1FS@uPP?$Hr+BWjaabd_yyXgwzi>J=^zPG;7h4j(U3~QJBmCIE z75&b@+|7ECm*_L18sBD{;T?H%oj+Lo_5f+1vRd#L+m}2Et1joYt%c6Qmg3caxqX8t$_`{jEJu#Q=MZZm%?pi^)f}@6C0ytA+U867F$x%G z21H6RzuepIdiBcj>AkF!B<-qWF5_9TSJErs*LmS#i6Z+-3hG~(0tX=IBzw4^$vI6Q zZeNQ8LRtw+JLp?1KVj4r{m^g6-zg{?nOC+n``iGx&k1n*`I*l$(W_T#NXwv=$pqAc zXM{1;@c3=ri?CUzmYgxIIx0t8KLrH3e5hw8`n6CHPR91=T`NE9kQAjL)4ShoZrr`Q zKXNn-3NG)#-OnUV`pvy;n?LmkH*`N*6>6vaJ<38oNW7_x%yw7-IO-y;O)K*v0KlDt=e z|KwF+?1p6ZHhXNY5fJ*0ebiw69nUAIMa$EzT0xVn{y1Y2lr9l9o%o zy&w&bXb>!RpQW(+nc*^Lr(oBNJvB^gyeK?qamF)Tb8d%==jv%={uLMHXQ5T_g(y`j zTNN#>-?w`TfZKmDtgL@?ao>Ztai*+Kab8RGX6d+Bt&#oI7>ByAR6@-NaQmR-lTAvs z*(;ILR?vx|fw>Er;;uTbq7Ta71Ov-T+6^9P_pGyZ4aI*XB(VBeJopB#EKqfvV`tY6;K(689y((**do8%4JP=@I~0Nz3il}o*S>jUZhzHKaB zH3`u&)Oe^mJ2f%Pb(|4jS8js)%E2#H6q5KbzHTS1;IX?ji$JzzCsL&~L5fNB?fm4% zpWnW3Ed?ZX#g+ind0l^T>_8yL3c`2EB|ZrN_n)eZmH}{I@xZWN3y6o{Hc$iPn{!@Z zS8i%Jon%-v*;zQhOcSifSg2y61?-QuOVGg-`#Jr1dJzupn4qx502+I`m_mlx^g2eT zQm_cLc<)_>?|3CI-Ak?$%6J+Mk35ZT(w$9vc^ypXQn)uiX4${EiE_)liLQZ~9#pT7 zM@nRW^*eTPAs22MF2gjDZyCR{&Fu|DeOM?);yKL|6I_dO%hQ$psc&%&1g!1a940$;d#+wLwnOR<;47pC)C|$3c}}8 zw88Z!z)$`7cqi!tIe$oFJFrJQp-I-`2x#O8mt>q5!p3c)5aN;2=Z@^DW?pDk0EH3CMh^t2@?bqpi zy@bpeU6(*S-G(BMjHpk~=HNVj#$r7jevSdih;SuM1{l9SEFG9@K$tA3A&h%EY?rqU zitU3fia5t-LXTacd;V*GX^v>bGgW39 z-&7Q2GbE(1ZXsMV+^jstOAggNnXwpcHaSGSl&~&tsl=t?6KaWlnzdy)T;W76;og3( zoaNqhymRlbWRA%%x0n#o{Wa9(;083o>f5=r`L;7WUuDWY)a0vr1P8)4o;;YXA6ktB z@$-M;PPc=-apiYCg;QB4wg3K7fAQjZ zr9Vykl8t)m1_M&>mS_EZYvZ)b*t0(UW+H?Gpo zPNm2_Te5MGB<4!$Pv-*xr_wl6>7ji58=Iygt_Wze>zH)fYmTOITKfR~@&dm^%I<`abR~O!|rPrUvqT$4s9N38lx? zcbpg|b_MVVl+11rx;7JVUyh0=;#z(}m?sg6)T0&zBp?&XXk^Ek$iD^&eX>DGgp1zO zBYi>>SrE&0h8p?dL{P@6*$1pB01H)Z5jg?~{b8;z=f8@xUFW}wvm?NwU#R@T(JOQz zT00LeWnpr|yo#C^hc|tT3KktT!TH%U&483}aLp7(h%b;k_x^rKB&>->k>z zcuB)#v9+qU_(6UeLMW29@L4hSTXTV&z@UO}I?Pl5#v5!4;{u5HF;tine^;$YMiR)1 zXCq5$Swy(fg_0Pfw4K?PmsBnS2i{TINBL%SYH-65&m* zU{L)xQMSl+!c6^dq6|U_q7?_$6j9KB`Dp6&f)e3>2mI#9kvqZf^`C6o!hZ*RzlN}X z2mDVagiLD5+rI<8{POKHfeZRL?9473?6~gy?Z-%%Ii!nVCkD{@$%==(flkl2bFn&9 zu$E~k5Jg#oM?5TMj9kU72d|LYsLpV1y!Bz`j-TI5ls3FhRA~V+D;F{OXl-UmUzaae z!n1PdfMb1|i!3V^JZ8tuh0(6Nh7lz=SlxFmFaJt|E?`}MAQck}CA1O3!0KDHRADAJ zc9qs&B*UC}_!w*~v^#G zJs6eplBqA)zmNa;ortmxRgP>n*e)OjAoPP7-q)z%MLDTa_OkvZ^igj}WbfU)eEc;V z$ZyzAYOzoNc`_zq>&8F17z*f>fQ~>DOhL5-0$yQU-lNefT9`E(_6Gc zar{#6|9JOZXR^mK0p9((8aV1NfOj8tl~Ju=GQ4K{2H~g}m$Ww-`kY#_`~)Z%;IoPX zTM89oERTr3*pj@0zb76A!QK%;o;3g?)39pgFYd$KSO-0F*vk;vdvtacR#k;kdr@LT zj+ui|*QBY`m+j{!K^*7;uNu{+=B8z_;5+(D=(`~OsUX|E*2ngF4Io3@u}pYVKVeGW zle**dsagh#1f>w+q6oX*ntr@#&OMVY4-|5xo!tdXnL=@Jv4RX>`4eL~h5Fu+eChxs%&CXM$LlV3B5R~4QM>%LzFXp}IYwNDYtNp9pr_MGu$YfgB?)rUK zJlA<)iERcG;1TN@NEO_a1tjTX}OiVGTXWNau6ou)3NL z(C(kL^Y`xeQ)?^04a1U5&U7F9c>%QheUm^8i9wW!8VVXoYDv0`-&IcgJiaAS9Pr>v zW<4K3FCBIgpqgMq+3UK`=NL%8sJ8$|?j&Ju5#G4eFl(1~e7K=iX0UF*F^qJ+BO<+` za!=%xPuK`0C?Y-E{nYcxIj@i}Z&+t7>rC-N`FJ#A>Fj=kH9{n$$l~Z=i1QJNc4ke7 zyypY5EbDlJ+_1(}a?!)L!-VX`8kjMI)0%2Ov?C2Qc|wPw=BXmF<}sZ!RX-n_BZCzy`z`Akm0@~7Fz-!F z`xHGv$$uuQT`2Qrucxv7hfFIJs{iiUU+unaaT`(ArsH%i?}Zcz>7Qyq%&NS4)_C1g)cl~<=RDy|82ue^Yk-p2rcOgfvlyt`l- zvwANzow6#7$BHQJlLSRV#m1yY?iN^q<-XT*&X^`*!6geq1aZg?@RP zAq2nYpQxlKlB6a?If!)na93lX)jvBoS6;`qTz|+NmqMKNO)QfE*$gLk zR;blgmrmLy9JLjwJj(~_Sm?yUDdeACM<1H)<+#8}&bM{T!o8KoOsNQ(vW5~vJL9m3 z<;4Id{42TSgbVD8h*r?Ja$7H{a#llm@o`7ANdeoGUz%8AiNn1| ze&*)BKj%%7%{Ig8^f*iU!)PuVN~y;S9M^axJ;%@3@8 zH@4;tjQdU@S6_@e@sxK=g17y~zX5{#?q#iPO+z*UzbMPcC-54&TIR#0R{g6UY;Ec( zcNGVTwXPv~=CqTk4&gLZZ7C#)?){X#u=CU|_Zr{X+_mN@blaJC*~W^e;2a}JAn=$0 zV#68IPii!3aD}&Ssq{A|d*jU#9M{-*ATLz&MvF{~`IH*AFz@;P^|kBZU_d%2b{#93 z(QH^w*TD{NGoVnmer7IFFlQQL!Pu*D_At?r12uN#VLA6^hV(q=(wY{}W2<sSY@T{12z?CnsvQ;%Yv`Ocnxu$(!h$?vT{^`1R4&jpC!G zktD^XQ>|;&v(v}+n6zl$6jbCx)NG=nC-U0YV+ie@G~?ExDwD>a!m5>aJ4cz^8VurF zWJb#te7n7%af3o+W&g@ zttSxlxVG2U{(ASX+3CrZyY6tB0O|2YCveVx7f{WH*iCJO6{*>-X3o)ny!-7nF?o>D zaod?$XpMKxKc#s0*g*5^u}F8P*|o`0NLutg;;rQ~Ga~8u>51@xFcPCaG#VmR`+FLu zuX=V#=gSWlN>I2u+-+FuAin62z;>K+FwK?bmTI_GP!wSH+5{0r-Lgw75Zn_f`B~PV z$@|tx#SM0zvgnG5Q#yvK<#3UctRi%t0RVG(vSXW$uka$3&o3V=T@C@P$(^}mfodhZ>4d}M z)n&VrY+Fg{k5O5%KZX@YqlDlmqi$d{Z{}HqIlxg4sm@{lsLKg5|EkN4v71DtYtA`s z;hnp+6mf?BQI`wErM$561d}~*IhveDED@BHF;pJsEH_xhhw$M^xdz$ia zy8UpT@^ZfIG+k9_hV`w-zw$fbh}GbOs{z;7*Y7qR7Xq9`X|#&2ytW=r!irFA)jvhLznSdei3p7spj z#50prLCTFP0;&aP;PTVkVP+v#5RjyTVKcVuk&_?T!GM3y$w=Wt)Q{cy;qNk!6iWD;s2p`yY%ymz@(br|b+kE&XQKV*Md&AwsOm%tQ zliq36ZW(s>v7#+3pK727S|EAO?G{ZPW*kg7VSl|%sA13jy0*PUH6gC4dZRMVp&o^_ zR?zUsmD+CT(5|y2LE}Y@#>JDP6R6n_j^Y(uo!!k-sulljVMXCsuxX2_=e);k5u>oX zc>A6UtP z@?Q8C!z?B7*TjBb=m(oJy0{B8)*y(mI`jetcsasgU{rN*BFt-BqB%5*l$?>`6P!%# zi4SgEcZFFS{JPmE#Z&_FVLZWk@)K*xz5m$Bv z=Lh&7_2@gsx+Fr zB@;a4`i<~WoT$+KkUIHrJ=#fBA|4wk(l?7g=UXe6AwXCDfo+`Qy|u$DbtJ4`BXeX5 z@rw1&1J;eAo`J1ipk~3=OlXPAc+PD zDHh~Y#bX$TO2_bW+NYK8^8tqV}hG_kNNowv~sev@`~`ft(mduM2bG zS!DYhSmMu*Ux7I#q7^{TK{PN1P@Mf}Zw80Mw+@U1a=tGLFv~C3qi&3<(}?je!y}Jn zqJ4kFNycB5^j`dpNU%V@6d_og(aA~usnS{y|9rd)e6gbJ&iD&pu0`VsFh^nD_qqpc zGrG}rROmjjXv`TQ}JE%$B)ozp9hI=diHf(sU-fROm9&PtJ zs-y>65-sAuMhm&~g3P_y^M$~xN_1W*2c{SZf`g#KV}^o9Sizhw2HAzkia78<4k@J7 zj(SLedGyJDI>5UHji!VLn-GO^mV)_RPou4PLQeHpK*qq4eKyV&{vY5&IJq#GJz8Q2 zApkCFKt%2wxneiR_8e$xxHwdjL^0@7+Q0S+Oo4B<i z#Y%Dx`!{7@ z38(Gsdp#@VQ!R^~%uT1@1N%2=cK@S3f9plp`b{$vI3J#+xBFF>(Qy%}vya0Roew!8 zL@%?)rBCuN~S{wP6lb!wf zR_~0AqP)s)2jJH~4H?1%Wr46kqc_E%guO-Dvzqq3-cqx%3tnc7oLfo3s!Wt@$bT;4 z$!D+ts>F|-wb}9Dym@d_-cO?zwi_kA#EZ-DdC|bf> z;EdjPKC9mWp7JaokD(*?I8Iy`iq1QVVm71rc@EtH>#taDfTx@U25u#WqnMv7u4GN? zr~^W!TNY_m(Z`l9j`&D7NOA?`Oscvso8ZWWI#q~G>nfR?)tF9J`=1s%d=Aw|jh z=)@Y8RWi?yP-UK2X&e_)&vOqES2;V_HJDRk*0?agQhIhH8YTuqN)tKlZ z=H`p*sI{rM=VW$^)Zys$H0#p{umDSI`uEC%NOCGxk%HALrnNQ7<|OJ$Tm<=`ql@TQ zuZzqktk~k_DH4^_eYaFa26Tl(ZYc}Ynrzc`PgQw zPGN3Km%zicNi+Kn9V(0``>F6yr6Njn6z)v+2a`fQxF#8g5=eR8vc{BzH@SM4ud~5| zRaoZ4`NZlY#wqbtbbvYGBb}Rhh7bxl@#SxmwuLCsogW3GF11$#aMb3lofvjwNp(>s z#OQ_Ty%+1CKk%Xl7d;BC&+mEfJ7W224c#5t8a#;VvebepCROfu^D|JrJ)1xq>C&a~ z+dD5f4#X`JT}trWHkDa8UtSH9a9@*gwPBk^yf5MT0KP)`n|9BP+4Bmm^11WcrqS<~ zm=!iociE|AM??3&Ib)B6TOURacT*z-n>Yry@U;!;ry`6uS$&sy%3Ch0jx_j(G_r5gAOp;G%q%+{4vbAg;s7ESxYg)rX@>BUK3;%%-TJS)+838 zsL341$U;n~L$z&XVq^N6=iCrFw(gdEB4hy=9|x>OU1tF!EW8Djm)`q<}UvG7Uz1t^XnE`#`zMT_r$yC>+2yAN;%{E zzgwV>y-K+3$d%wvGp$}H%0$RWC9IUjf=mYX$G#68O3!js*Rmjb$wjIkgvMnh9x@{uFJ9czl)(n}LkY{A zqM6GRgAvQhcu+$@r7gaM(x_R*ce3LBQO$bCg>s;lm{Ltp{!NbniO+iuLi)S|9;0)O zm@82{Zjn?y=P7X6?U-H2skhiM_W);(T!_u&H!1vpB_qamEvu2BipQ(uS|SFDh$gwX zgho2<=pr==E`*jE3jX(t@O+X8D7gl)SE2_xBVSM#F)Y)86Z8wB;D>0%i=|gj#oCv5 zO+n^s*w8xE63m`1t`L_a_8kK0k_nhjq>Vhv26nF(Q-&fRQ|}O0)Ye7`oqYJS!}$ON zA7DN!SJK%|^r(99QgzF=LEl`E^*u0Va?~QFvEMN*->Z61>wnqh&?k!LlVPSPX+_*& zCr0)qE{mq9cJFo5@c;PezxAXJS)JZ#)jGGbu8G`jpT>1}dex zq@R_fy2(1LG$pCc9nYU7Cn2%N=s)ROlNdzhW_Y7=M6l`v4Mx$hVeqV?$FPRz)QU#R zSL=cZu~X&);`myV^Yx(bKZ+BLo^*3UWM`81s^W$OgA0e6fdJ@#&$>@S4b6zhP&{B; ztXD&)!ii(_*W<~^7=pZk%HR=z|4;#f~f$Qd2cwjizM@bne2=H`=zmDpElX6v84URsQ>v6 z6Bw{vgWmzd8xWT~xh{@j-KL*@OGQefmy6>jM&r?ND5_xj86E`p~1W$}j_nkra_M}c1Je5*J zcBEVVeaFsv-)?_HcFO~vjc!nD`UU&1o3)|yV! zU`GbO;l_RjL63n$Xtc4Ed$fm zv-wR!Rke%)nnizqoE((P&S19_lr~rAF4q$X1AqUNGBsCk1}s}*-DNs>70Y}&o8UVL z^I>RB2DGYt7aP!c5l2VtxoCc^<9lR5|&8hS3k!SxmwJvM-r7t|KeOnq3}aoE&w$cQkWA zHx#%DUUq?|%}YgPFMkE?!L}nJOU#R_uOuqpOvo7}NzwxY{30gs%2|@#`A+iDkSR9BR(hGM>2vGhL` zPwqN%{qWxO5ZT@Ybl^U?$u+?nFx8a8MYzJhUj!HB4EJ|>@IJrPpviwd|GkwMp->;3 z58l4#zx|04ZF;ZoxcT$*rvubW3=7hTYkcH~#3&ix*Qfv2vpy*@{O7ZC+~o*7ih(Z& zq2G^(&(&x#_r`I(Fd2xcfm=UWr<@WeAK3?}9I6gI#lngct?+8_eQ_Z@)H$CBn_OTO zhj_bo7gXQDPL-3VX`f{Mjb+OknJ;PVuA=n`dg_u_Ph9h^Fgt?qg*vX$<7KKt$AG|03`-q{^ zlN0ou%ma20E3{rvs>?jwfdiM|_x2YRp~?gfC_!jgi&l-xL@5ss8d8>D(7{0F1RO+onV36zInPia#x3LUCyn# zkTs`#GoQiny1AOg%ASa|<2rkS{ zd(Gp!h;*A{P9uPvlg$gTp|d07L{V0GW~C`cm1wyCNnP75rkD zu?G)t)!4L3sw;A_hFO+FWeZ29jOCu8AKCb^WIzK{*dO^VdltVqIQLpfuz-gjFYMCT zO)X6R`|RALiCMSH1D*RbY;&DCkL5~KW7Ij~BYXR|Tektk3RG7t(V;nm;>Ysgl}J{X z*8R#IhsFJU=J@2#EY;PvwW%gZ7OsZQrwvJUx{$@>S(mA-4y$Dz*72ReE2b?jiJCN5 zQAQlR^RRZlgY)0s8;XM2+bzE&j}bEr`#kZ|tw6@HQ1wUZCc`Jcd77(;4W{oED{inl zY9C_Scxz?+?loG_g7$`9vSs3vh;@dgtwFC|d!kj=Ja%c#FNQW|UYgl?$7Ob;44XGZ zpejuto{9&KLrS+?`XJ>~?%7ho$5XR7Q_zl>%d|4_jUBRW_9wU*Pw1VRo0O`=Ialt8 zaq+Lk#%deC z*augSJ6G*5Rr!=!+?)n-5fAR-_s}z6{mzOPxVdir+fHH!1nX&Nwz6$sn;Q%6Q)@B; z{LhB2c6(6~pYx^7mP(QDuNXwf5&URYDS__XY#4O;l#{B+ z(InR>LA!~yZ)=niOCXiMbX{~XripviL65z@5MLTE^VU-ciW)f2dU|c8A3_4QHBlY% zE?yjjDdp)DaoictEn>1=3G1saUQ@VGafj(#R`7=*bdc+*4| zb?qU3_%4S(Q+AqdP!(1&;bmAAyy$J|)CdX=_r96!6V(4!SipcvofIPF&%7j-v3yKy zgqYOHz>B+591*2s&6gRufbdIwVM1=bu4#%xnCR!KkrPO~6fh@ErR-(DUuQb4)}oDA zbw_0Wre@a9%Sog0mt*HdmY#&Ug76UgD%UD)Eb_F+(8yS$x*f_Iel8h$JziUV4(Jny z+x+3uUmmHATCf*kl<@S=N53a~CGlHmZKl+=Xw@P(!1u-CUn@)oT1k`5*$f>ToVK_F z>Xo9z*$4NG?FVS;O*f{pIbV(H9Ywo5%}AzJemfF6;nSbzW|88Cj#MCfjHb+$&S87O z0@E9#mS;K6HI?l8A%ijRAX7G&v4(4OSv`}xxy6&XYhOdk4J~{(uSoM+G|K~jLYsjg z0eQ?yvV#CT7nsvZU!Z-=_t(}{k_1nQdhoLC#|i-9U(k}CNcZ;m_1o(ACNsqf&nm;k1%!W3fL~c zdODz-K34=(nKT`xYnyrjU(kxk)^vey7@l(1CwP{7i*#?XyzCM>e*^ou0&|fuBG(rs zocVMwG4%IZ!U{@C{fa1A1zD=#-kjmr2&6X^PMyPokz|X=q12*Ixk+0keV*o!B9ls& z87E^Ve}$8haGZl3ab2{3sF775>8>8~(~VNP1$;i+aNb?npHL580blzLoOW9~54zzw zLNJ-ZQNHev@1AAZ42$jF86b&z(s9}q%M~==z2B|xF#%)z!ztl^J(qGjI>Fum=aMt! z|1mF_+1tAS=B59fOPVq3fH$N6%5(L7DAy_{o27^~n>wz?R~SPv#^ULJ){)87`TI(Z zJx!QU^qRysQ6WLbjfmXsuX;=&9~1te1L=+r?fpVG5E2pMl^v z-&Wi?KBGp!U4BG-eoTE7Z~b~}s{#6YZxUM{MWgyIAZ2g8|9n!dQ!R9k7QjTVRbaG3 z%Gbx_*m**L9~6_HC-e*v@2dc;xwCzAh-I-fyvyg+66-TwjQK+8^x_!#GTw-BBA^uslO215wcII);>3cW{f=| zvS&JSM9%p`2k@531p-|86sHkA@0=$lbV-HdSZZ-Lb)k&=ACM(ZJXB(TsE32!pnik# zi=&`|!e4I-GM0UWr70y5t>7df(gaH0k5uR1q*2z0?Uq|IKPf6NVvk~w6m-c!;zA}5H8?fXoKVT2JoF^6vW zgKk>j{^&2@Is_JEWL2E?&;X(#8+KB!+(g!vZ)Xb$|Phg3a5pJ`1Gz9?Dz2Em-+L$>+o894@sV|evN-Q$6)9SIv{ zRhsfQLeIfm5@RSy#Sfde;m6k)I@$NM`#Y4scSB2E1}4Zsp{vYt6G(9>v@9b?B`y5Y z`RGtE)BVNQ2PoneU7^!ao2>(ixbWuzfFdreR02CnX1ubChm@OFh0(y{R5uLH=U37{ zMO@;4i?~MEfyIA_rmet9ic0<#aZL(O)|p@W86o$b^7Xr5bU<^f=CKF_O%WX@`1b4g zZxo@UtK!+21i_&#yd^I~q&!}9 zIYrUmoA@xPNZWIjX#(u61nmPGi+M~5k*k}7>zlNF2%0#2T!lZ1hv+yTk1H-5tzW#u zGWnoy@Gd`di?^rXHypGm$Y_bhE}}YrGd-uyV(ZxAm?xKB)qi|B!X$q!0g+ zbvSefsTh5tlan;%^bR$e1G*P{ida z`AgPSjH~6BovA3fOREcYUp0(gF>Gb7s@l-_T*b_=T5xFSW zbLPmUV_^Gz+IjbonaGKJ?MLM z>3$c^joPDk2UXb{$G^0cjwC7hi6eF>a@hDgk(>Qm5spL6J|c>}=Ruht7R?&llXuyCY}S-dT-iKP>^=Ldjr5##-Q;zO zX|+Y7JMFxK5HY&$)E05j>jIw>EY_5Bi-cpP-^|0vha$@gPcAJXVEleEoB_+ye93b# zJ3lXcTUkom6w}3@#~@Rir%jDa0p9yXyn2{t0&+_AEY6rj+?X3_4@<>; zT(CC#%2GY_40c8^5eK2RbM+O4(~2ICc+TVZD) zAC(>Htxa1OC@zDVa%7#e7E2`s1p9C#sR&7e)CO*_Y*Y?+zEI)2v3AmjnlZd5jBY@M zS-LdI%7gUZVid=zus#%EBW`%Dpqp3qVbgcGLThZhfo!|AqcTCafjDs#xTm=s$T&wY z%&!(x`t~fv8xl#;Ro!ilf1jNg>>45m#tTLTCukoHDyRST)WSQy|5_J|?=6k*W=-IN z0a}V#y=c2GtPpsdg$dp`n7r3Qm${lSf!u)ix)73|sFO8yZ&*=9)t0{lTHOMsc-q*! zXL)TDQB0(-;t-&SsKzzX)HacJGP6$b)Nj;MvYvonC96xcTM?=>bIXuDQ_@~#lV^RA z40JXLn#y+G+J4Y<{+Nl&)qw@wgk+^g;pFl}HEL4`Yth>1rc+E$NFK}*^2 zI@N-h6;6}eVW_}|&eN+K9ZVJ=Ut%e-aa%PpjL2W)uFEn~(w1l(rOwviXNvv{*F|KN z;I%x=)fTx3%bZ)hC8zhgvI2hm9y{M+v($(2FNFqk=tq3Gvf!jGUGiBnTz;6fvh~ga zb|rYGWQ3a$rWDhp856fO3gy(6hWYU*qBgwdo^;C2)o_y!s4~fB*t+J*wwK+Bvrz^B zURh&y7l)jb8-rI2aLZ8MnQej4kzxRUaNBf(RdQZ4G@O{S>TdaGjGLu_ED44@Qd1nJ zj*rsLjDCL)(-O}(hE_n;`-kLF1f8v)?PZqa$)Hm_zOUfdsid< z-}ShyGHsL~4Pkks`WZBbDRz#ZJS&afU2eC3^|&aB8+$v}*(L4x8{VJI6E!amb1&on zU8Eyq5{_~D{|Ml6GXHnFE(3T!BO47X*d4dyoqUi4j)Nz4u$v!cViyquS8@a1yeQfiwsPD8%=` z^cwrPm;k>n7I~%TSW4YPn4=Mjuo~0h3W@=B-1dsI1M#q5PGsmA( zX2Pzq4+75w^@{ z4N80=NBs^0CY-PL?_yte)ZPgif4XAn0SV-P(Ys}9TYnjgg8UI=Lmn_5l2CbZn{1~b znAk}P6*x>+p8_;w`Q3r;;DL+-5dY$JQ}CdyfAKm;{=aygs|r%|{hr3&|KN3GW>#we zyl(3=BCl1ed{yfXfY(9!$y2`pt9#Y>pb_}nl8!h!KWkoZDH=te#pm?2*_JM6 z@V>H}CO2US7e7Q^-JC%FE^hye*WobrAHPtzJ|x!Tu)NKv!~*-cCtu1+C#ULT)!MO*n%*oPmo$I1Q=Y091yd z`aL{PIBs!5A+3dVy%luK(!s1Se~@Y=pc1G7CiSR7NRN#LbZjA_-iV!?#}ywe(THF( z%=y=lJ7d!l=m=rPKD;=#6OZso;ILV);Jitc(|@+Q*e4wz>^XmqEF5^U$sKU20s!p9 zOq5o9PZp`lRiy!d9YVWdEZ4~gF7HCp9#FP_o*USs373(bCbVQX3z-C}3U1p|U6e#TDXro3Rb))iA8kd3%XX>jI(%d|+~S`veS zOY1e*pr`@L3_g)%lw_(h=NM`idH;tZ*We#Tt|^iS{DOzw5EC;Ec!N!R;p0Dw+(&>S z7sD&?KZ;ywvd@1NxxkU6dy;i#qLSF*w1G)mqc^?Yzrh-14Qi6H5F*J5dD69GW~{e9 zsc}Bp@LX1x{ql(0q+)B=MmbM%`uw@_v_j4{be03H$wlY-m7irnJA ziriK+#I8klf+|&PVP6-Aj_dP3VHnXlh0I1Z*Dof$m>RW zLGAq^W)HCM(um?PcKr-JzKwvs)J;@)eWpMf7r|VMqEbe1}f+%(N z6m$kq3O1`tLmVHQMW``@ zZ2vfh{Ql+^PgK*%a%iYt^nN~;H+P#P1l>Dx<4~IS^%RxFnRI2Upgy0_(^DBl>3bOZ49UA`J;6Z3*o_Z3nv1!8eAJc` z9+Z327e{z^!>QtRaC=7g8(_(O2KUe2Absc{Su@rR>T&D<~?j)O4hQ zngiTLH{H%Jqa#(jZVhG{p#p6aevyo~dQ7pQ_vKg$2u?yZCOkZ|&fkYp&fG9`n49+X zTQ;bs=2Wur(@ye5QN<5w1$pzHBT?ry$6864$G{y^r%MWMiSSwsCmf8&@iNDZP6wyv z*7UW{i@J3$G{1}{!_vQ*6@Sh)?7S!rfcyr@Y_H%7zr;V4_8oqV{8pA;|FBR1tF+g* zWvY4w9=L=ruD&LP9a&1+ta^izoStwVN08B(#gm=MV!Xav3ggh4Ez!QwJ!jjt;BHs5-n&?@7Cg4l)b@Y$Und)YExNSi?xAn)%zX~bTW za@JCkQ!g>g8xtBk9OP+BT>B2`@W}SIZj0A2wo?kx6Xu_UQ{R4fEis2$x2J}#D*p&y z(CVLzl|7=aC%~Uv>P3!8W&ukY6*=T2d1p8e_jviEsBzjyQv+u5wXIIWH`0Tec+jLI!74$hux;QYW zP#Ktty)Ub!ZAD6o9lBhd{Q!qEDtpg-dQbYI0%WZcaudvnfr&Et=%0gINf?t)p{}_=0rTwfx7#=#ufx1IWlY@<|N4`5NlM zW4|T91k})ek}o!)PNg&@b5LX@wq0?H(XRhA<){HF@!h7eEiN!`;x=LC!)++-^~{vc zBvP#MSji|a8T6yhD5A8Dd0N}PO!<-j zkvtuz$X&(IwblBwm$ljGiqerIP)ny3R0ePaT;JlP1yA2piJz3_BG$BPyGCM65`1fm zJYs~7rva!(T6=I35i#3sR#1sWj4|Q_UVN^h!^*td}b)u3I1{Dw* z(S(Ci_Nk0vsKp>IJx&z&370s-l2Tonnk7Bv^?~P%Ngq!9fr0&vsmk4o@PtPON8Ivk zdS_xwGlj9qjw48Q(ziqS?1f@=lQC@V^2PFYO$qJ93Ok+kc$&!r+2mM`T??J6~q*k zLD<`bXRB0ZgZ-@+vG12$cod^n?LCNhFFL?MVl`Qk^ZSOdD$>jAnf)(B9dp=j06*?f z2hN@k|84I##r1fSpIR=RqCa%IW*y}T?_45z9IK;;s=nHuh*#5NNip%huZMHLC8bmS zl=&sXS!-5RVWC{nNv)4yecwS4H)>JL5M-okw0=*9gSAJ*xpUilUr#!Q3I*(l>ioFY>!)?>^GOJ_Icj!ggMXmEV0l!LYgpc zrMFH~jf@G#(Op4?<}qG3%luBbxAxXhL#rji4w!%*9xle)j*0tlL(hyHi#;DUOVuq2 zULsj*C&3_20cv!^x!oW1QP)sO90!xG&7xpRRO21n8B`zX$Im{9QJ0UeuOQ9LcK(nT zRi0RfdS4J6A^^Is2GQ&q2jBRku=j5TS<#?JP)y_vPU$S&k z+W}6ki2tGMXrLQWkOX&mUZV_l>s1u|{Hnnw!wy>*-jXfyoKVo)RsWZ+1OES*d#j+l zx`o{mcMWdA-JReTJP<6nySqCC4esvl8r&@ecXxNUAn8TEt^e8kboZ(1s=j-xxSbcw zHRgE6ubT^v+bXqo#23J+8z0B_@!op?mU4gJunq>~5+V7i=p5kP@~GOq?c>(8@sV^b zTeu*qd;O1n+%Nxi9~YHZh2p>Ib$?xq{VN8W<5~Z| z)9W<;((9`Jsn<3BpXhajZ2wKK0|rL_MX&QH{ujOO{{LgWE{eQ|^N(IPXe#$_dYzZd zh{IocUD2Cf2lxL#uk-(#UdNaF77yhQe~X721MyIw@;`dr%ZUZ&O&3Q#`m14Ku1}-# z^+^=ijUf*h#*6m;AeJC0{$4sU`gia+f9N9r%EI4y2pS{>^S5c=gPL{dsSvlDQo2UX zb1E`zmD^taqZ=x(CLfOh{N+FLPnN&m>T_l0faju*$U$h#oE@{4{u?~AXuke4Cpm*XpeorU`z_Cu4}H1tr|5tC6)U7`T5Vn=n|22*R0UgDCu_1Aqa{SGaWPj z@O-RXhee;>yQPgd)L*K=OHn;NH|#X*P&C)su&s&eSO{x!bD=`=QQCC*HssOp27CrF zU#k(@dTiBxR;bHfBDMj&6Ahv(aKNpLb%p=m*M6L89#+^#y`%1~Q%-k=~1a0f9bcx?=}vy#&2(c!(DR+`1{>very^sgO`sPV7-c zS;7sN$`;ax_{Uxtf)V6T!+9fkQV$C<+kmG0+g2w^^?dHQs_F@D*kk>>Ee}#1+y?o^ zcMk8Uv!mVi2?;M+kc7GFg{$oMy+n2^009NwigpX_{~@3$=c@n#z5GK!=gLMe5P-L$ zRlr-()a!H7cMm+}p+sl2z+2H{KAZH1iGVE5*JyKXsw7w7tte=;4G4Cx``g55wF<(B zD?i}YdF|JX}gF#-*tsvW*g^ zpxgn~fiinVZZ4??=jU)U?;uEJ2(we`{Qe~rZc-5^+uGi4e*}3w2C$H&=2xNy;9~D^ zxzKmXF^O9InlV#nNq-B1yIF!n8O#2Qw^CdBvwL)wbzyf1!&l>G|A|is5#%w(f_59( z`y>Uz9hIja!$hYPQ07>-ap{^@d?oM^b>~q}I<#JjmxZ{ZdMCV@k*T4z7VC~DTBn({k- z+^Kh0WkV^+G?rn-sdUg32?MkRZT0&Le-^*L^+RnFo@n-8UX2A>`{9e7m?7;AUh(BZc#eq@zUd+v=z58P`*H1cT_ z+~azzo#J}eixf`DZ#0}vUH>Mip7YE^6};SN6+WGh_cY*|+x)<_-!iZneirtEDoc?* zXt$9Q;b;kI1^2QdXPvqWt+(_}aEJoNO?7g~I>9#6t}27(uYRaE`?30oGQzrr;)!!uz=!dHJZ^Qe&^Uu-KuLN%WQa@>>8?S214kZr? zx_(X1>nG>E|LlFLpb23Ofg-kwH2c~&5uMmdVcP<+_}G_Qsfcl}1@uF+fqv+oY1sk) zXSV5_6pkm8J&JjY7VFuY4WJ+D`+StMm9N1w&x+wCC+MKYPWqq%g(9MpH;BQggEuJx zBK%iB)cvc6-)oiIKl-8HN`Zdp#yqTTgpL17P^a&Y_n-T3KJyr3g?+Vjt%i35`k|Wl zahXKLZMGZ1yw8ZrF}#{9QYN`iMgbH-~V0TFZDsC%2Pd#Jt_t} z?HPRQAVU`L5qC!>4Ua~b>Qh*Y3^FUS}PwjBlFtR*%ghWqJ!%t>a9 zndu)^SF^%SNBGWZ1Y=j4%T!6_c*x0l!HW6d25*|>b|0<7upm4pmf37dZK-mjR7qfW z;F4y>z>vR8zXox$5SwTmkt4x2e!ohjT#8*+P>YyYNQ^E>4owM@jdXTA8gmjKkR>w3 zGjWShW5&QyV*o%X1`#g~mggAUYtHy}?vltpIN}*}-tbq=B<_wM&g83ejYhSy`AQ5= z=HF|^uWOTNG?JWtxZtChQBJAJCTBNGj#~hRsR8-mSBP9|PVoF+aGhm!S`mB%b zCCV%)nfCuu^pR}H_zIt2Q4t}D^%*N;x4a0phRh#sf{?Mc{ioVQ1QKOkLO0|4_9DdZ z`onw&Gkats1N|FphXpsn>BYm>N6C@#&&3rVLODI+`e%yBn;SM$?4C-%98)A5kYj0+ zdM}!s1KwLS$psFbaeupP(}L;VGsUaBbjI0ZVnUclX#WI4Je+jxwgcfNM@NscdFMG= z*I>ZtWYzP*vWareOONfgpK9M_1TrXEZO2CD9t$E$*_V<}r?|X}Db(gv*qq?xd!4+ev0QKV^#P@W>m18svy3?s;;!pt>@yp5K!U!_Jl(-`%Jh;r+M_-fZ0IeS z7iaPrJjz{iAR*Gzj;^oYi=&w>#qijjy6$!j4~JLY9uqeUR_?qyT+96T_?zru1@DE= zo07bd{WVq7(;#)_iPW3)NbuA<3fKd8u9C?Y%`JP61dJrP3so-{^{@)YbK+!yDmlY@ z)#Qv)c{{S)MukD0#AQEL8267_W)&gjkK)~j^@cLoQ$F>m^3i=T;#|)<%H!0oUmTK; z|5DhvE{EU?X@(+iVxX>{(!O&7-=K))IE1@&q{~yA{WB(qc`Pj9JAMJGrv;r@pX>+g zJ^hMa&7+GeLA}P@WuG!h<4KVj+HvA zu=Ds{t)`iqhP)#2+&ht&-9j~}E2Fl$f)5ptrpdnUv<(FJwETO zr?g$N?v5x0Dt4iJekVRc5^{tH{Qi#{C3Un0wP*hgjk5lA ziCVPZ=D_sIDt&}bP+(^aOG|5_wkwj5=V`D>)K*xL4CQG$I))}9UnFStSUFQ-L6%pE z+kmvS<;2&V>U{m;YE8MIWXToZIORaG}N(pc9G<@nG2 z32s}E6~tHC2}3|p@EWcNctARBK>mk|PFs@8hHv2nJXoXPZZn^;qdbBFv!jx2LAf1x zZ(Ov>cZu+giwfrgx1}Jvk-_L6^AbR(q4-ayLAxOCp1V6>0^p)JeVMUcg9|;p(S{BxFXosKSy1n3D zbEBP`M4LmISHx02H^R8@x%_Wjp79Fy-y9@o3&2RjRmM2R?84D0AkSc4}FoQtyhDukcE$(nj?V47zlH6pKdMW8y5cxxXQ zK&WVJMGIs@<&MMY1VS)o1A%Plq%Y1|F^O*_ll(-5IqpYt@fvHQ$UoO77^73!;=Z3S z6r>_GTtio)b+J8lR6+`OzXGO^=$39~4bTRcA!rraTP0Xz$eqw;NI%o9lUv+;)LfmD zJQVigP65NwLb$O9&q>2R0?)}6a?mY0CMptcuRK)_lTnx=D;6JM$8LJNJvr&lzdz~F z^eS2Qt_}(4@?=JGm$5}7y-Vmjfbs@wZh7Z?3UotjSaN4V5wQudbAN`=GWQrS$a{_= zZ3UhA8iHF{eWAZxi#?~`Ayw_?);_@f2BIW)I~j{3(pzJBP|DHEVwLW1%%;@q>`9PG zFabImglB3ZQnlA4g_A$@;~ckAF^P$w+DMLJi& zm6rXoba_v^iO^v^Bj=t?zXi2rlIm|m+OgHGBq~`3^$|SuNNb&VZDe9&`=?E#DFhc?=V3Pb-}bjne%cOBx5IlNl^skzjw#8 zpDoaS-w-QIkAju`l)<)UIL;sHdNpo1ZW5$~_?8Ye9Q~6H#Wl7k?d3V|_bMj$ZHJq{ z$Cf5`MsIwdGuQT{#RgoS4r<5Sg@qi!-?*sC!Ff+7PmcOd3wUP(-O{^RV0IMcT??uS z6ER+dfc&@MRO61Ez{4Z0hcEL@jT}ZWxAKU`->ZJZ(c=@60aUc=!H^iiJwfLT{I~IM z5b)EIzK3JYc+WzZUjP+F(DC_>Yc+863-VlP#nFgtK|zlXQWAqecfvuwv=5-7;s6yT zduuQhyGU+12mD1v!RQ)f04i#-a{NX`v4Z=C|4v0cCcmyq161^=_t!_|de$q!1JjAr za&Ul(3cgX%vNtMv4vFN`NqMmg9_tArhqs}b-7DeWeVJ8eQHR>arDO;*`1NA-spjzI zWG=&wZ=%8mk~@84N)kUkVt`sOMJLyN+ClfN9O{H32##CKGjW;_+x=LRlC50db-(%O z7vGUd_QQfvrg>TU@U_;y*wIrDg$O$}*se6&`&ZA;GO5PeqP$`v+v&cCenou=BIJ-q z9;?jPzM!E`i4c0h1xs1jxIgX1z07-|TWNTBAZ|kiy^^3^J+VLT`{n8pz-3%X z@A)1>=gZDIZVD5*3WnZ(E}1H+J5~#$(ZXiTn}hJl124HwGI@&X8oMl$0`J%HKujLWAEDd*L6mQ>}Hyag{ zP~H8$RwRDz*`}oD6o0x*)JyW;WeJAu7-;RbCCcRN7v)ESb7!rtL*t`_esFKdg2W2n zeU2Y**jmX#GR8zJ7?v>pA`BS<{;P|NIfJ~77Ij-QUhL76I}@Qd2X6pDfcbW_glpM&djE$AmJ|Rni80*gcrc4e>m0xrpoDPML zuJt%qiZu?qL=vi|Ry5?n1c||>ahcBn>dwk04{__Q%zCTew zW*|);Dbd)5WvM!rvZ7I|;K!o!jsxA`d%woiE2!pc%pfk{VI%P}na5rH2g+|*dPb03 zP;x;O;;u7G(&2+b_tMyja)I;R@0J$aLr|$yx5?oW!*}Fn7L- zcd_)$i|DC&=)UYt3l72W*W0O6dPWC|5E0uwv{hAuQ9t(73X~VrBL? zLYXX`v*je|=GFUdAZ}rUvGYqE!F!0)%%uj#fLyDqfP~7}8(TOe;J@%| z(9;3?zOu1P&69mu$6^r4s|`#2KwiQ^>dkjU3c0p2TCPf&gvPEywuwuHkY2E@!oR-y zbx2rWyvAy6z8cRh%L7#OlYv_(cuz@Q8&-((x&{4*z|T#I$py)ghl&aKga7AvJ z06~1a(RWtLZwgXH9w-*#_Tnhu>__Lv*`jFn!y40V($yLoho2rp`dKWDqx&KwiY0hY zqE0RK5L_QBEgp_)8w-~>HeO!WlqmA!J||ID_M3mpAKAm$sNYX37_~Jwt`b8pl()Bw zPu}cUwx>&2%IJU0$IdjOE>O{OYmVe7a^xMA`#>t^H*AN-Pfwx1yH8Fi(`P#xxm4YQ7KsQ#5hE$>MMuv~i&ZpE>!1ESI`O zGWEU7a)m{)z3>SPVedTz^oa;2Wb@KAO;?JeT9Ggjt{kO2A%v$t))ExA*UsY-YC8?kZOc0ja)&1!%l!zj?*Y~}3mV(Gwv~-*akJ9+H6UkdVWuLS?lB9U57F(nHeDZW#!NLM&d7sjJh06@>x#P-jU_&D2kn~ zviPuV-lfe`7b7a{NtG>fG)%}Svpyz$pkn7%JRk^t_qD%X*79K`utThKP-?<5Ir2Ey zCX@mgu&B{!kar6+$5o2&nVJ{OdhcEN%3ju(>TqEk1f z|CNvaK}`RRk1h{sQU0Is(RGF|RQ8$0=`a-wxCAL8E{$0Nt0#3Nji{=$NvDWfc|9I+ zdMBpcWOhlhie(vV57MRNb7_c02cDR&wv#ehf_wea%1B(glin}L!xzw$P-iL$R zMw$tgn*?XZq$4)>%)7Ef6rc%K_p;&S8k^){auwtH?!^gan+vw2iv1eg!CUwj|)NZ)PemlH6l9xjn1w{<;V zFf>Gb));~9+T~{)%gwLQv8yJ}MDKI*dmnPbE3ZOuMkVKI_?=Mt>-m?Y!lKKl$@fpO zP007Ltg4@cGboy$l9TuSv5VtljiWRQ=z;HqKtI$UCaM$-Mh+%^LP^WHc%WBJJZB(V zqvJ`jeKXlvCE#rUi(X2VD$o-)!@4E&(cU?RMI3E_pNuPyMw>xoA_gVtK zFz>4CZTM_dB!@8+I3OR|9RTD*r+sL86D1CvUJ5Jp&Q#!~dbzAAZ0pob%Yb~SjSu*L zI=rXU4&VRl;r(;9|JV2}*f~-I*LTuBr07C=d)n9=Q0%bpAtCVpjNjI7{WE^MM(`2! zB&9}kh&`-Q7@bK{d0^K%!n?yWt>UvTK@1LcyrG4oKIWO_Urf4|AdHABQ*dZ-@8t?eI$dZ9BJ*sVl+w z9Yy0$n5~VfMLnSrjS>@(xxPykZCe*G<0fD`cla;3A41leT-_&ZR4!4Qm^)X@#$t71 zlF^=&Id}JITCG}t1!&(Q8jGu_&M&3DZRZlA(?iBpUg2_-g9y-=IaIbD5fx79ve*zm z0f!gseRw+~R~zx$qv;qC?b-er#Bu%0(JflTJuM!Ca$qT&O}XXAdO8lrQu}{21e#?FM-<>=!o7CLn3ebe$pZ8om41 z61ig0mLXdxYXP|8(iF#a9kb>|huVRse3UsLAm(u*{T9Dv&}D~p%G|j#(9d+p%~60$ zK8V|lw?S8s<`Ljm*5^6&Xj$OFlHU^}<{r!1qd*uuElCn`&5 z3iz{(x9wcT!$wi5q9e{vh;_hr?#bYv?Oe~d?cAov{|NWdsOi#Q{+ry)_BXh1v(5F+ zTSxbIz$WM&dEA`Y(3OmPPH(Kuu**r3pRDwE2I+dTr+G%nMcFAy&Z)ypExHNodQr@w zD5sjzzURkt76kL=IAd>ozL^p^!}dMVFP2Y}cR3x&W%oc52VBe$PYC}5@@-t)?C+Py ztltlHrp-hZ-Lvv@H1Cdc&OoE9hFk3g`FoH!-S~_-7KBh1IN#c;3 zS$&DE$Mh(}SRVR~@Cl zinRz(+@o+Y``Y~SLzV@SIF&#W=Tx8zRntiXNaD1jx{`!jQR<%1N1a1%$X;|*-8I-gIeYxlZ zki;>ilSY6K1BV7Dq)re{+rGOA5oL)asx&UdP<8GAn}Vj%6aYCV!~$WxWuUhv{T zHkU#0jT3{i-Qfab`eKlK(*JqAp~QjfR|)vvhjSNX)WrUSkL$&2T-Si33Xkko||2l+U?`!@dSj3qe>c0c29@oE_%mYr9`FC59wvLs`V*z&BHFba0v7;&zwR@uCO;mrY*QM zE7Xz3TsiVpYLqjZlC^d*19n=2V5jEhzD6JU;jH|!_TpAPnv;<}G|S(fEKE(~hK)x+ zIsW(olS4~V#J*h{Br(fo5pQ9ev9DncS44ErqP}br4_a^NOrOUe9cXvfJN9%s>h1W= zhVKIvr-_`sRlwjS`6zPB1z7=tBb2(RT z;G@{12|b73@}ZKcprfI^xaPbwiU&B!;G~3x*{SXs_Iia&gbjjbiB#Cx_w?p%IQ+`$ z&qHtV&{QNgGPqbrjCXn?g56Vgn^KimI~E(#%0G;t#3M$oa+v#PIQ`9o)F9W+!}17& z0@hFb=zAH{mMYi<$Uj3(FKT-|)lQEujzzIV=jMftLCg`X(D|XRN;(|GuxrgMv9tZ= zxGbu>zzAi9{s3qD3YF7s5@eqH>hlSkvQ~g$a5U#K5e*SotGko@kJ$eVz>87r286y1NyCdX`3tV%H-!kPN zT%Ryf3~u;58&A1`powG3qPI<6kZ7>!jq8VfRGn<$mjw*xBqZ5{zBj`;%0w%SZ{(ta zgWMW}j=@-2l_E8$L41m$1F~R914n8ICECgyrSW3W(b53{!a;o1i4^hXa|0}jCW)5hF#=&2|wh8v~@}p7ZaUm_jioDzj z|Ad#Gzp6D#R>Q~lyB0UiXA)n{dtTE23ZV&0B&*Kb>%D~={pEqUTvg!#AeDag`5Nt_`%)%Ya zzS!>HGWE6BaG4E2wk}v46Q19@fAtA^wSgFqzqtGQWI??yto%Hzc5w{xFsC9^*{dVC zb6>3AQiWd!`B9i-rG>mj+qIZ+DTPE5O@1j%3-z@HEoCk91*ax3!%oA0{6lWl4|!{` zX^>Z!q>StZ-pCW79ndZB&qvsCrTg&4uZ3>guijR#hztr1n0S}qfgcjnn+Bc752 z%*z}`=j93Iw5E#7`FI(6-|vw8G)*Ib&tMSK>nFpr3j*cLM4zf&+{`DQZZ9Mt(UYkV zB$M5Lp!d6rCMr2t)FMu1cID*Pkg_P}?&ouF78$Y;HYANieuJD(NuN%>qNS}84O8xI zm7LBF-^++6giWgsrdZYBjO?&>$E|@zwIHa6+{~BJ-wk|b=Q9v2w$xkYe5p45mdh(Y z@hBLOCVS4CjYS!kzIUt`z^+nc8B-#DI+M90eV?5bzikT1ow%x_pk(6xStUUp$;*8b zB{)##5`NqiIS^cKXE{bhad_G3)Dcs1 z1rHun<4BgSz+gBlkA!AaW4^}`K4q&XTE0ld44WR3NmF3)1HBK>=QfkVPYN94HpZNE zXFn?l-t*>}oiR4V6wW?oCB^sOF-(d2WFldsAI+ArYbpsVq?h8+>cM0`%7a{5XNl-y zLP~qbeJ~PyWSg&R&%b5N1{2Y@uO0Xd9>~6Ik}$J#~|Hg-qa=cGkYmeFDXix znrMnT{e>?d<-9-#e@&&Q4VrCqWxb6B_7 z7Tb0e+jMo(S^eGVV!cS!kAT^=8*cC|wzFeEa886qvm*|(kQakXS|$kzKH)csx#P35 zhefigKZsaYnJ%P3?32U_u@QAZcrcRixr|GTW@!G>G*Yg39kM=?=F6q8*TvX7CoTA; zqj{n&Nse9b-icwC2C^KV-@Hwi_~|5nu4?v1 z$;Q*bQjRO0>;EUjcLE^(`GXFDPtbFV^e?AB_0U!Fm%o0$)kCErY!N?hb#ly>GOk`- zxl~KvJ09kKVsOF3pz7!sn&*{s;VHiVWs{K8_Qe5s2 zOz%$AdjV|OJ}=UAIov+6J>a$w21hcbftoOioCJ9+% zZ@2HySAs9E>pc#5I3Z}17ldhjlx>S39jM8XKCYIPDpMjwixLW>oa~$z-3E0KlGmMC zzhA1>um44G=J*%EIqq+Q^U(iRaE3EMKmQ+sbGQ(&1ob93{|m_X#{Rzn`595f?NXHI zPX8u2`vQV9cQEh}`d)KOC|^BkB$pS1=G6 z8P7q?qGlF%8ba39;+z@&l=+;_BCP>WtmrQ0;(8IFI;~ZVy7C?|c{76MuYPDL1r^PQ zFeh+3nQKoZP3aEZ_i0k zRhJe&$s^0vXhxM!V%a%q6c)hW9vb5sIubJtV|=yNFJ^>g2M7A0TF`I(P^&T%!&qn8 z0Cz*p0P-X}l+Zk+lcj*wq%uaQWn@e{6jjCnp{Pr1IDH*yA;t^EAF~P7CeRb>h!~D*9hXtIHmP2>KAGC8sdz8`K)UdRW-o5EFLO%v}m&(fQ}QmqsNbAow~| z=aelW4A;Y!BGS+Kojy?T@??XjB62dxc9rinspF(i=d6PRAm8k7AYc6-AV2!Yw_@;Q zS&ZJYWHHRZ)mH6@T=fD`m7SexJg88B{AR%ELHZm?@*%Rn6Z)6ZCqHTkgL%OOp20~O=p{Wt5tyKUyIc&-i2nRix=$3g(Onyd{np+O319nDG2+Ek;MJB zFj9;a9{Lr2#vhVTW56B{wLS!T;%1LcS%Lso<%b(JicKL_ z;G6gBr)++na~GT2pDI>Fi!%i36fB zU11JfpIl62_EAr9_+fUBi;7A+n~I+(M|lCgRyw~i)VaK42SVCAHsc@}?`b<%pkGH{ zB|(-HsozMxcOlH(AHSJjNd{F~og{tv(TjpQG={4aj<|AyrMu`=--38NJ zTz&)0|3>mr0g`XZ{fFcq)}-VrhyOQ{|5=y`fo|KpSf``*pmu)?Vv0-{l~L7{WfspnrLzx5v^-#7P3a1sH2m}{?bM6!}F zxfz4$=E^u=WRjj`&Z_L0lnFUXb^;_vA3a$Db47dICnOs z&iFE_KX_$g!7($!%z7GC2ss!`f*Aske64;VOB+d*Bc4i=5y{!~g2DG%A@8v6#>(s| zVd~GATBc-w>WUIHMffLG&!lT2-7K6~tzPaV1R@X z@!{31$)#kN=d1Xk#(u?P8N5oF$-N8mxI^#DWRaDp^<9edgxMhy+Bzr!V}oiD%;4Ro zyag$XHgt!s(;jsmQV$=6;YRP;~Arckrp183? zyhd|*0gFpKTivx31h%o7W+f(at|;|S?&BRlJ}z$=&dx}>GktP)-np|+ao(2fI~;pe zvfPucF9VUZ-!IpX;5{ug=^B*9o1Y#(-?eItPhcgkLgT z1l_sUF!0oQ1qTe7{XU+5{JxOnEg&j@twpiZGGoWSoZzUj9zVn#GiJZ2QcFpz9>3-G zU6OJj(~~5`@4ciwLHy-{hQl-4IVvz~^-GaKzvhGqoQ${z6$7?)v?GJwcO*p##8c~# zvE+M(ZAX1gJ@aAyjL|Z+`r;S5IyXqJ)2AX_pT}N zF*r*v((#!&RL{RUH?Cmu@fr?*kuqiws6-k|l5M=pRQ8Q+B_{Kp%*s&uh_oAPfDlYG zGZv{lm=x)(`tc(Np+wwEq%C!|&yX=bU48(-R#95(HsmN7`EKRl@vq>lcNPVqzZYYp}kj41OL)Nlp47 zEX|QygYXzd#>~bxOq8OOrXLmhL^_xl*|iSXI|&YdPpL5w{3&1fZN#PGZ?(*w+nV;!5<&&C8PVrNm%zI2D5Bi~x0 z*KNHjIsaHS#z%@XY*5?qaPuq$>CT;(%|F!Z1f?lBwi?s(MA1G#Xx03}ZJ>={$Dj4E zfnIDS86!&HlAia%;WPCg{pJ(JH@`XXpMLWZPbJ1hel!r%Ls0*fXYYi^-}YIEXdNO411v zmm1>;W&U{xdCJ(fW>~LucURX}VC|(FOTIr65j2NdXvlA=&5)#!} zjjCDk+z(S?o&^Q2Lf_gGk|wHRKhuJOqIbmUz+&=C-|h^)@q5)j{2udv@O!LmIpoeS zzf)(ICj_!SygrUxj+;cjk^G9R4`=9*cEICi;q~J6?y%!5q{^t>TU1bOomPv9BXICv zV3*H}pnUDGPva`?s%FoR|M_C1&jg$QUlHgZiuA7t)c*{Y+zo3BLSh=T14Hr`2*O7V z(I&tAwwptqnWHaOM8o_cY$cBm4qU8TtG)6Ux^fXlQkA_A9B|+?p+A#XDtfc3)~yru zbO{o1_N1nqTyr@*n|?nZo<;Aaz;>xG-DD4Ok7P_!3n%U<>3Yxt(~G4Qt>jWf4XZ4| zlR_y7qZcG7^F9&G3B`hbjx%^eTMi#FC?Jz<&(vE zK~aL&YCUE=vIb_N2C=*2O3T0;!ljncYrX_=v17q}bPoP=asFtEby)zmbih!X--&>I zm-fY8dq5;~;nHuZWkn|h0^5-1UndY%@jf!)d7uCRt>{O2BcN0O0bT9Mdn2H(x|e1k zlE_SyjvIrydUO_0Bw7Fg#Y_HzSj3Gnu9so3?e{MPG?vZ#;~FMUy1_D33+2?X=&1UN zWcs7Tc_o1F#V}g(YK~3QD#_kIx9@;`$@si4X{4=m&& zn-}!=SHa6qiv@%BD_Kq(7Ba5LSTu+R(@F*boG9VfLnKm|v=7b?@(-9F1X_xHm{NNR z=smQ9<=G;zqT;GfC(u^6{9Ef%VqbgXN5ApdO~josE8U1EWN3pDkO-KtQ&bZq?~L$Z zIL^N8_t?N<$tv5V!WsLpXZJQNDcT{ExT#;o(U4NZ?tD1>C>vJO3>o z%K7J3|L>1a&WVO1cTM$8C_er3@d;`$=#EHM$G1r9S!2U~EU6t?a)ZudKcc`#Fgk=YNi^m<&~OY^1sEtl9AiIK2cyBX!?kVKHe8`gtv= z%_F2prw6>}7CjEltk&5wAZZ8a;fGgsogD+6Dk^ZcTbG`NCKZ?tX{z*k;V$xGIrdx1 zko0K~DXuYVea1mOe~pI&R}K6(rUO)U z%J9`UD!XHq6RS|t4>elZ9we12Pu}zJgXVa-?UA91Jjk|g=y{3@Zr$?ZD>t`jY)>M}g_S&m7TE~NtO}UCzd~i?0 z(++~G2b|s<;PlcpxzHS#|B@?Me@C5By3WQv@@g(rLpV4JVg2RW>h^2d*4}?Uy#y&@ zW&ai6bNuy9$|5SS4dYe2EQmJ15&2Xa~(o}`WaaXa_+d(5t>@nhZsmpfhDg>My#JAW!loL zq_q(sqGS8N7A22=KVJcIex7NonnFNXUcFY|+*!mxud=?nU=FJKBA##wYI z@4B44hKb>#7ybbJe%R`Cwm=Q1a4OEJUl@M?KIK0E{!scAY``zQXbNJKih02sXy5Fw zY`3^!k9vO#-~N&F181JGr|^302>*m{2}Sg^NgMcsZhmI;%p)P`0|1{vLYOpQ)lmGa zm_1iN@J)(?W&H+RfJa0owzV7E+wlQJ+;*0L*zkl800; zPrqHOqO;?SHhsfux#tw3hq{hv)Y>8rm?u|f06#|OmJezWBa;QWg~^?{-u7^W5eS2V zZpV{&<%8VOvrSX!o8gICY7|b>Oxc9J;5*T=!h*usUl-5+;i8Hrw4%}$9GK*>#s!-L zEno$NoOl%(ZpStpz_WEgZ43)?kg+J{*|y${UK8#x7XcTP8Hn^PO19to6Yg@vHG+RW zN+Hi&i)6myvpS52=;b3+INMTjYfvltYmg>HY{2Aqb3) z2XI<)7Z#Zr;6LPeICVvne7&><54imXrWUHRxonv(VibsV=I>6vin7S!6dO}usJb_U zz7hON(mt;@f=`-F3DPvaClnDXv_}>b^ML@x2q5_SgWv$cPjTRV4E-CyhZ0)|Uj_(1 zQOTlrDt-1F!9T0mZ2ybkhl7hlQ=ci9kh`!AuDg9!rWty=|@W(ddZ*wEjAY4aaz&^|90sx=+4dB12`MJ%@??VYOUGXyJ|@Y1HX64T}z&kFmEwGuN1p;RNv$W zZ8_Az%83|$oxq5hPR%YSR$w2+-KWvqe@u++qW;kyes_jr1Vf*)_Olq-P%r(d`r6y4 zE^BoQCmtcs?KJ+`u)MqnP2pX*lbI%aHiUz#n1vcOs3Aw26|Mofvhdoz61>6+%Thtw z*8@b(m!AfRJJ9P6U|VKR>G>%~zSTjvS;w$92qS(m$kXMi?rHW$Zvek`icX$M@Z4j@ zmDQ8RaUUyqya>gN8|dCjOesrzWd?_o9t@;y{uyWE$0$#fM2*j`FdRI9jO&Rjjg9182ki{)y*P7L(f=WcC3)=ZZ(_c8yfG|y>4A(cAm;01PiBw>zgL_7*q|YD zeU9ey0e(H2%PBg~aLh;W-~?VIFM08`3U*ucuZi-tn9Z{8^N@Q)4Sk+h_n11y7LH@* zqKqtmALR&Mm@C{ zdkjjHU3s3oIIwh`0oqEl&WjZ>E4X_Zv5*A57Rd3IBt$)7bGLRqZawYJwxwj+J6ro+ zynvXm7j)i0ZC9mh$6VIMGRamB9?Nk@PxWa{R$gjsW3zwpup$g~mghH(eEH`@ImZY(MA672E8Dw2UcMEpaQZ3?PRQ~b!A}JUzVluKb?WaKVJ&2=d#kWV z(VRbCevzdB)2B$2Y^m3gmmBv_^8=$GXTZYDjtX*eob#@xoYD;+=;*Fec(e@yQP5g0 zWpYxZm`t=0Q5(`KnUC-LO`YuDc-^ezZG4-XUw$^qWBj(qeC8hVJO(~hZB`LoK`Sxy zDMc;@kr3mZt-RA>^sHoTEuoWClwS(vLw$9hMrv<;aL|Y5iK~Rjf)~|^+g=Gb27NxS ztk3?x*t@HsJokM|)L3wLw?J@r4elP?3Bg^1y99TFJHg%E-QC^Y-TEV$tM}UL%vGm% zpX#bUU46&py!cYH{_psWXUy}4pXhBH7<%$1(>gnohz|lNzF<%2?N!R<)yB5%`+|Cy z`Vp^`7`%*vNj-V^0F4@RT1C1wHnM7oQKKVcC}9SR*vtXY&(uF(Tg9mT~kqRKr_Z7>+|yG+QHNOaP#vBWQ|JifeDD6?NK zVPPIO4CZj>Q~Px3m-l8HN$D}ITT^feLiQ(PW3+M%UW7Ts^DMuQYn3Bep9l;v338%+R3-F(B*U zNPY`y5RvOweW75SMVuf=^w2fUcEh{@g*7&f>C(%=4GCetl!4<|+h@9yX9=EMqkHa6 zQ@m1@+zBHH4`pfKn6eazP}RZ~4r*WyDrg7ylXUu+&N)g6ufoHb`fa(gtqMm&XSLz9 zdWkgb)k=!_*r7;7#{uOL{_St7qY_ zgg{sl4s9EUZUus-1g@@CGQT*Nz0PLt97f3I*7AFp=dZyJjACl=vqx(9A zvMaAfK)-IoN0;0rKaqK#Yh*9l8AW!vGM`z1cE+Sj<*&gyhZk3AzfQ8N|9!Mvn^I_S zkp;XuodKhYRMpbHc^d_m{ZQm|VN2ccRGdd-ep|{{9>G@%i6qE`q-E5&c8<+%hBt7~ zWsfGiZ^TW*u|EMvEQRw<`iUDePc%re9~YFeBS}H1g^PFimuaySv$C9Ry3x?M&W<*@ zEOJeU`V@77v!EfPf8ki|CpK*1q8$N8ghE?mY?#^&FSV-6E}c&rQqx^#33}t6x zc-HPG4#s$%y$>Rc2`8P1mN2T4yby%uHGRgsO6{}B8Bs8`fDWp>S0ubL^I%qX+bqD5!PXM7j-gP>w-OFR3O!9k;1hP9G z))TGkLUfbw>XJf5P7Qc+14`0jR3;b3kX1=gzNggA4{Tv(ti~7{29t-w44eQ(s}WyH zfKcAhO7FaSh;LG&$vkT#_?fg3jlK5*=yudQV-IUf^HFUYt)@SkMQsI{sr=NhS`<`o zCH>c6F02S+ATZlV<|59SA?ZZw7_*Bse#vQV8C=lSw~RJ=zB;CqU`hGqA9y+EGAhIE zKX|sOCtJy6$~rPb&|5B^3>Ou1GTBcIHgP6!K|Sy$b)GqC#C~d0Y39y0ICNSa(zH_o z0{pV~0KeAmd#3Q`^n%XUB~8ad)N)6sb{V7sKFz~2zMI@Vgh&VR>Y^u1rdV|fOKSA?@O_|z!ncMP#(dmE#|<4 z;Ppc?#Dl3d^kAhUNsJ3h@xQq!v~?u*^oW!)Lf2WYr=zz7bhqqLNj@8s2xH96*!r*NH9fMJCjVo%{yM-zCu^$E4{XW4@iyH{zu5W+Els@SS5FXygfHRd#?DiwXx7P0jKLe*B>K5sMQ0`aM)OF@!&LSUB_*Wck=E zWArHyY`1@=yn-gIP#AikKz%$_0U4Y5vN91Pnx!vvZYNQLZ;kO57tz^OW&uVTuy_7p zmk6vZu^5-Sy zK3TC_s&n*x(`{KkltPt;WYhZYUeQqo?9sbUt=bY3YO!A_zCRI}K%iN~-)fQ#eCi33 zIwOkqDoJlay@Q19`+flJj{mbx*ySRUH&seBlvd!VQfS-(7clGsizZ|`d!af_wJ zNvQPX7)7y2FPf@t3+M#NDWN4#w|>K+LJcT;1W~n4m>@n%GitYYnh!0kLibE=`4Qjt zSrT|w6%HsW9%|O)4;+Rp!}$r&DQ}w*+Zg*G^OB!57Zcc@)#pX?gB@PRLG2P^WoIU$ zy?Lz>;BA#+cIH2gl;n=^ z@gTT^$=VT!!S+wHz|?i28`8u2A)TXwW$N;!wjC^g@(Bkeb)_$Wa3lm<|JPqV79_!bxh zo2eR3qQPe7WdX``qV%z4QaL4?9DQfTse&uw#yVJ=t&j{R>8d{9pgqqr+Xq5^N_S3*$3+2N*nTXv&uZFkT<=j zwm?nuaATz2V9xlj66OboU$6c+gWDn!Z=t0|5SH=xU0=nQfG2C^AkqG;LZ+zX9}E3C_|vAmdYn>x=plw6o9sMjrWvtWrHs#5Fsho) z<*sWkEbosurO5reGSn6~!sx*LYVl<%TTJN+k_Qdvk~zX)LGb`%sUNE?=|`_t+A~-x zpe=xVwk{}|)ZTM2Q_&wxZ$3xTYr-`|;e4|lKrG)fc8KeKN_0-y@$?iW&_j+tc*nJ- zlFXZxNjc9e9lkc&k~_E=$O%+X`)(=;lj8nP12Y~*klIrCX=dIO5$+30#M7#xOYgo3!x#klXeYiKM_rV{2U*hw8d`$C&S9k7-dUV>E;31h+Jui|3{VZ_T8 z62mS33xbuiXd+?84>?jwoohBsLv7F%nPphmBy#Lim;C2rSH0oOk4uLHbUmFBEB-A_ ztjZy}Olvls3u*B7X5BI_UE&=unL>O8U@6W+n7yO%x7%q)54)kW#U?Jtwb0_bU8l~@ z3qfCptknc9K4GwbgMStwrOThj)j=qUnpttlzF=Ttvq+-=#wb#&9`QAk3`PLd!)Zg* zvKCt=bO*#+t5qFti1(_=jqNNf)9)AkAg&kFL2VYfMVrhME$j7n@e!V5>tnsTzQGLJ z2#JJ+bw65cdjt_)2A#923dE>hLqS8B|Z#zVKfHEDq>P73oBRBiVX)JpUnV=??d+>TbpXI>S{Z;*|r^HWNYq_BGK zh6^8ARjd{qg0lXZ1jG`4U5EJXwtrNKIAk(U_K{{>mdRDHA(nm7XK_cFZ3nyDot~{9 zY|AeN^TW%=Dj<{BqguV3?u*i+v7)(!-I0C_cZu9<(gQxG00LIBTyYw$He84}*PPIaAOIQ6zghPJ*~gHkLT$V}`@z~U@L%L-x@lOED+cSc~->_RF|xIoHehKa~v zFc1SulG^G^TDoMrHzmJ6DU;3#l)!i5jTdjOyO#|IsWMt{z&~cmA`^4k0m`Vc!Q4DU zGp;0^oGbg7@DZMtU-_*_0}^Pl6a6|Dog`-p%YzfHD1gVrG5rT-QadD+AV7YfIO5%@ z0So4xd5bPJC4SGhI{)~?@yl+b1xA=Tl~$!16#K!4+aA3okzHfZaQaFQ--C3Kg5eP2 zsUHw4L5?YB=)n#bJ0l%xAC^|W>evrN;sq5~T7Q2wV3#J2iXA8hi*11;g}GY2&MA<{ z*L0e-PZTgaW4ExkI0`gS{8rV*LHA@D^!dPy=>{PG}*9e zDjQVFkz5xl^=m5>$RweYR+@D{B$`;U(gOt6OwcX?@O6OeJg}0^B z!X5nTiB8MCoUYLnSV9E(<0HT;*oe8xRFID3oM)B7cq1e0M5JlE~K4#W8tnu!%j zPBbR#{H}}j67W^aYJ<*gl`=&{sjzvAxadPL6&zvNtrRzQk{T%q2q}LG?(E7Yij~^ zQ~?RLW%C40)_X7uW_z6a4y<;O60SjZQMw_|r>kHxz}Ci8drA}5Qbziv-Js?Mn}<3{ z&mxCST|%XK-qktinKC2}8Ilie5df4=RB1|kc+h^hNjh=Ce~mZZvPH&dGQjznSO2R+ zn1a$B_!R(@Ka^>={w+|B2rnG3vu`%@7f^m->)P#AH+KqM{oL-=#@FoT*e+}J_Id@u zbIknuX!W-lD5qH9%fHP)f2T}g~}V^w7<<2*}|3imPZ8L09|%xCEF zm=j3F>oLyHyr9?{^n0-H87L|@JDNSqOCO_oP^|Wx)gtz;M@-Oz@JAy64Se=t4#D>Z{s#n^4_eZ11^-oEUxdvz9Od8f`s{ywlZsdb z@cINMub^LZ8a7UxKz*I_m@45|lYy&h8?c;vz^$Bmo*y|3Kvz;_7*k~odEFI$d{s#; zbU8G47`3_i{OWwWtZpb$fpQ<=u!*8wme`7q8Q$huT&B_~n5P|rGQ+0Gc0SVQqSt%l z>G67`^BVQNgru;;^z-R%=BsL549W3V)#9aJdA;e}q7gpq<w4Y>9F0Lc{NHp* zWY!I+LP1tS_2+|CUZlc~RM=mhd6_>d*r|pBB_~)G$$w2tXZS$?ZlVV}>kK300R%}x z5>zKQjUYIIxp@dDcO}TzK7*4p+ZWkNjQhesa!I4`q%StDku%yCxmq7{Hw*9~ul2^E ziDjiTa84Lx!@^DOf!Z^Z*ps$6#eoyp-F@Zp-tK|Jb!YH8vO@_(jP6GS5>B6L{ZBB5xydY3mS;uICbVjrG4>0L9>oh-s2R1!_1F7q zQC72k@8p>=tE~tZ?ocD0Pc5|ZkU56S+<3-BSk06t{vCJ%M< z>Q!$L1pagLMWEu9Ktnf|?--ny8z|q=E>}zsT((_L`}N*bn03l`{309~12n%aZmM`E zBiQHYL=2#cD9l>~fDhU7)wm=nzZQE9505D6bFbnNyowW@J?g3FDd7+K$bi3UC4%p} zc?9i^`1wBrxnDU9<7=@6a;~pWthMt$p#0r@=>#ILG4ekJKfX*LRQ zh#;0JM>kMg2=WYVJJ1(n>>X?s8Xsn?$L52^orJ?ieqP_h1*NWNFDd7pBTIqsZ)Kpr zHey+uqd7?A=Uc9nxPCUF?gz!T;sVSrmdmVag@d&ubmYIFB*h>o!w?YRfJ@UKI~x=D@|RSeCp&}n(&AG zMR=#s^n?)$rOMbECr{AdX>dxFdiRw4a*R%w;et3~W^x_#r+|-mv{`QI1t!U!U9&y> zq2GL`)<%`G02u)5t0VrTsd23(MrhG{hxLX3g7pLCQ+^n(&&X|6;Cmaz;^r@q$Q1rw z7%zO0r{XX(LWLcF!e?p4=KX*y+@pi_PU{=`5Xnc96h%V5C-_r7arQd{b?q2X?FO*f zro~*kQmnR$bxD~@-gkkU`+*zl$tx^Q_mu@J8b!olSj={wS0_g@ZH8QZ5iyYOvcAMh zhar)WJ=0+OM>9L+230$2OUJt2dOBM!?!U%2KTKk+hx4Q&9kl@37`tc{huK^_ZJ6B5fbWH6m zr-G8cm1wpYg(&Of=?W}9mrHn$N)|ttu_sD0S15vpAPi2tqr(WwOc~*k=lAP`Jc{D_Fp!XedSpuO0LEC4=QE^8WiTD`m_zYV1 z_@KgzqaBd=;J}!1kj~A{jWYE)6j=jWjW22_EdCD zh3F8LNeP}VreGY0z&mraJ$?gWkzjgt(k!1RXfk%fqvo}I%sme?O104cJFIV8?R?5B zN7E=>yLg?Rh@w+=&}cB_@4mSX{4gUpAYNx%YDD>%24t6r_77NJl=L0e_aT95J{p(4 zggA%X19>fL{1;gNh{WdlpJ9CtLkuB62VcVo0PCyj+->3a4N%t^1yVl;Fv_0NjUq1z z8qMylHwawQ@QyHhZghH@F87%dlH_`*xpWY5#{x5j0lhi7`K zv=vriJ**WwKp!J3L>L)o!6wr4ql(~i%r_&Jk>zlP!$rl}cQBMIr$p$!?7|$0D_&LE zsd9vY(i(0Mo>GL96=-Nuh*1&e?xw^%i)ol83^QvDcbX3n$%F(0_VhxHpjz-x!g@y! zPH4;~86teBsB6r9A^5AxE^dXn*=R&GF|il0#VWq0Yw}`fSTb`kBvo;x)iLem#Cnkw zuosDuMg+$q(?<0JX#MI2(VYgyo-rY#G8TX3`|)9JVOsw2Mu6g z1~3@r{;p5FLzlJ)?+HFmC@o-5&-kABOR(~nCG-nUbcKrjp@m-Tu@G%aix}@#Nx+_- zYO0@w0pKgSX5FpAD9TAq$t~&bbZ_O$G)d6Nj?f3L(Iu9u1`1?!w1lYJX&nV=E<-mx zvjY7|@%)fkJ^P`&s{m~f$|jpGEhOo|O;?!oUdA_}pgtR7dR$SKEFwA@csm0MY=1KI zyW2%ih4?0>h`{TF?4I0gtR5%qbau`5Dr7n9I=}YOr>QLgbU{5SUv_g>R0F z$--Z=3x~fcEh_Gx zG*rRJbFI;kVw)9LJygm)1X*Lk+wSh``HIMpsey)1w}-`fle-)XXa|4v>5*v9j;Gs( z7oDmwq6DtFjXN<%P37!+5kTc^jb}P_YgOc-fP&FVc9`rHQMVchAf?CoLDo=;7etQpc_yp9bR3PMmOpD;l9MY0z&auj)QN67I}I71^r`?Hf`GdFwGWWUyB`_O(6SKMFq!uu zUQM#MQ7*XI7!6NL>x4#QyB*Cwu2uz4Z%B@^gSFR9jC@j$X^#pI9vN=BNm^foMP~Al z{^n=%a>dI@h1E_bPu6$2boIe+>QbZXf_E|x!|E9EwaX4ks7tf~66K0DH6^(aSzz|} z@Ju6>BswC&q{AA8Yv$t&U(D6>rX~|7sm$4ah1PCIH4Z0<&>l>V8VPA&nH}=+AVT}4 z<~7uh?rmgF>J=Z0Thi}Si@2NR(R8`la35l^nuB919IpUf((AnmI#L5qtS=Gd4UoiO zZ+>C{Gqm8fDV15LNZH3EhVA2Ir}8>bMbE5YUE-n_gjrez)(RzWgt7QfZF-#aTXLsIB4#9AmLFYRlpknbjK z-*zPm_;TeD@cbvu=MVB+BYpYv_n%l_7tZ_VpICqIXsx4kW%I9CfBX_1LhFiq?IdG$ zsm;KnBQQ=V{q1iNGZOUf=ve?_mQC_c7yO1+R`v$A3~U^Ko=^+Xi(&v=|HlJ_Pj~`G zW3iTi{ZBHIZgogRu4a4VpL|WoG;S~7B>3XAXhj>ACwLITx)e&u&f>|+Dm~t;HeADo zr4-m;@qd@{=|Opzm)ku6rTmvb$Eqk07J5ZG*x^1ylV2lm9k&c&Q zp5~lDLU^!}4t>`%*D+^@;t2uh_c?*Q=<4xB$*TCDz~5KLcQ`(CI%{VwI_|JL;ZrTm^q#WJsb1YrIGZ6d%f*<*k$ zz|{xn`pds{{S!bbADZmV!7DHdt6hdl$_=gE^s9brQp)HAC|J1Sx@jq3Smo>HF`S5l z?-T@yPt_?Tufa1tNZ>=Jo=dEaAQVCJ9?8Du-sk1Lj}u%s&qqhRUDvC1)SBUa!yrx+ z^&`@&`b{p4sE0;tuzUtA)C@evee_~@Y>idEZ}QCZ2g`hwXIO++Elc&>#H$T6t68iC zj$KUauH9{qqj#nQZ4qMYXXl@M>c^ZSAazQeW4Z&8o}14DrLH>bySWDT!1-E1bRDiz z0|Bom_xIP+N|^QXcT2$Q=>+h4;>C$~B7^Xt8HVwi1`4#Y`#!nUSAz&G;yE z)#vy1)H?UAQzYue4o5H2Z*L!K>6?VkS?DpL zl;Vgl^1H5&w3^TDl}0Z&UPPHBJQMD=!iPKc42x0-Sv!#`COwS=D-yqH9le!nI0HRK z?4{mtgi!0KJ84LbpUf_Uk|K6|`HioJ`D3N8bo;G((-y|oBY&h8!DAUur8mK}gjSZDGgLx8%N=O(GY6|uor~bM z!~dmJ!mG|`XWUo|DlJ@vEBOUgmK7)IpxzsJ4BptwunXoU#zfJMy9Rbl7u8;Rtmsj3 z4CV@JIE{y;5Id5p%yvbKJbJ|}(4;;Np=<bRj=0Tgc)$rvIkob*%WjdF=zE6_?aXl$NX+TQt@w`Cy(y0XE6IZ6 zeb^-@#9!nu49YUob#21xb%m>PMrI8OO;@AeW}L_;`>T%muU3A?KU(?7@2&iY->rNs zKr0`6=0pB_D<7P^yPU5hBwjjuP^>2Uj^W0ynzA6ZQ^M^!AjAW$f)d*ItQ+W-n?pi@ zo?fuc8#-bH3|xfND@j^G4xt6EVNiiCLLy@vy8FYvJ6V`jrBV8G)xuRG5ev#Ak`0L( z6LAh~cigWJmfxKAT5=F_rS!^@4r#A*BkK!QBF0TuUx=_@=y91B_OvsJ8^z`IYhudA zKl^#I3DiK&w5H)({aGEyruOl({DcMDFR~>YyP5eb@k~t5Sp>sl2EgbjVevaNPqm&L zwFyA8iShf)AHgLL`}3Do4!N(dnWs++xk4v+rUtbe1(UoI2z0@Q8kI~K7N_Z)%k)UA zi1?7g?S6?=oB#%=!APG0+x1^1&yRt(rXs2HakK)~W-Epl7V_mMZ&w_$rJ{7}ZBeF# z?`vfz(Vjg*DI67`^ga_uag;47q%K0Z!jPVk?FWe}611q42_A(8sws220w_V8Ki1BLJi0MBEk%cOY;g$kgF)>O9F|h>yQV$9>jTBc$I{%1)&Yy|rH`-$%#6#hn;& z`VfUZf-a@k{2Pca`DXcn;PNvz1gca70`mGk@fGdsA+}$ELb>yZN6u*H+s+k5zZmSw z4crT4#_FnpKNk2r?!eHL5wA?9g%{>#eh1&RYE9w;apoId%XHpF!SL3=fy{;%ok&*& zuiYsHPJy3$73vE9lADV6K0www1j@}joOQ*=KrOm)a%+{CtW6imsWjmWle+;54JhTu z%HU~@m5@*QzcQMMpIg}z+O*E3DOS1_iNXLwzL?EP-#}m@pMJ0ensL?hw?c5L-$}rW z)%M_k-W_S5Sp#cu@caB$pj+6TgiLvh!C50KH9;-x%j(#g0x)7LEA7k8sL5-EB) z4IZnp=`psuA~TE%o5YT7UrfNl+Wi**VVybq9(NTuK%+_;wR9RUW&q&g~wP!-Z68uyeMFoZ?y)TA?~7;(R_wgE=R ze)bAUL0hDA%<{e6mz2ppr}UEccrL@!iQT;S(ebI&0@<(JmKLP5R)SXmUw^36%m|9P z7WXTd?W`*QXi~;49?NZYW{R{=g$l4~*TMnG-PSX4|7ZiL!P7(MBHVPdbp%zNLpOvP zvs7-&(a_=h=y+TtBM-(7;lwQVuk-3awS4R4}W+sQA8) zbi2`Bqc)x!WeY5()9A)-nxCMc%GfrvBu~w!3^PGs{!B3xbTz8k^N>h~mQkeGlrl@; z$WwhRZ&UOtIzWkAG-S=Fci=FK!CeD^CnDXn%=MB~g;w*Vs}MA*3r}t3Srvkv!6BzY zw35B0zU%}xXzW|*XZ^LC1EOg@n<3ZeUyWIeabY?`Y)A#To4WjT3%{+1b>&K#P_La- zm>WNEF%1C`jyKR@*b-el<;F;RL8z;$5%T>;W}=rH^Kw&4dSzn1ckZ{X&x%5ZtyK+E zR2?*s5I?pwJxe+Sp8@qo zFIN@U5~QEg!*|DbGysu4^{t`6zTyGiR-Ogx9W<-q5FVGFhMBN7Qs(N28C0&jYYT;I ztx(-XT486I+juQ2{@8GK@82f$>!gWR@}_=rlyqF%Tt@{ zbEulZV@tx&BzB0SKq<1$PkBGzrK?Mg@rHKFyUnN0n;dCgQu#1F#QVT>;&%CID#kY~ zAHj6;A&&2&fu8F!0nE~?_bbs|AM`I9uV@iJTl_sb-4FK4@cb# zb?Rf$z|Q*dR*VMv6i+St$<_xg;94@vR$Ae+c38Mbya93Z@{Z-c@(24Q;c4cdCXeRj zl19c>emBfAhUVL9o1Zk03TPe{E-6r4^Zc~QpG)`qIn;aHV z$;JYDr#qB-H6me1<*raB%`A`V*M(A4 zjg+%a^fixD$1rNHbG5r%iA#bq)9EshT~f)u zu++%P3wi8}ahyWtn#qLOi?A5{+6mlpDuguaQ;yNtzrKMmfV49m&1&vQW6}17qO2p z&QwGuZB)X_{Y9S64@Dv6Ds6vqZU&eccZYhh1MFF$^?g>sebcmgE>Xe#9_+&oroA%C zc6e5{`Do;8R@1DEw0;xQ1YSamF@Dl@6$e__^13vpVyjB{@cj92Gkn}a7lwbE;r|Yj z{>v$7f4j#sbrY54DZGLZmm%JqX;}0Srm&QJs$Gp%b~@ev#}xF&u=v+72f!hh=h~F> z%?`AwUXJF$gaA0?KB{BzJRdo5Z2ikFOd%!S9dZ*!p^;G$8f!Tgpb;`}z8NojmayxH z5t?67lSC#QVazzu%2Q&#*3n%+a{&~X%f?hefo+ZGP0FGvX&Sv`oQ ztDne0ioywv9v1va<2jAK#@C^?h~z4%>3dErKpd$3?lGfm#ryA+GH^L1E<=wE@K}ajH>?>~maV5;ef`_h{9hTqLH{^!wF3SoMN(M-vlvXoSn;O_XNmb?k5X zU6hyDq>Vbd>kaf8%!c8$+1C~qe=GXT|Ly|C^*>#pxaR-U1}!ZioP4>yP`j`J{kX}`ZpQA<^NlTFN#$w zBvE$6W&vjhQ1r2Te=GU|?~1lMGc`R9Mugq_t926t`FsFx)>(w>9{K@Mz2v!&_(Q znEit9UX_e@<0c6&sr|BZMc$A#dpx{Klgtui`|I$A{jgWgj2U=N-|%1CMr>1Xf#L+ucFB_>Jg)Qu>4Ft1Nx+ct`Z1 zp5GDuyFZ9Nn+(W*Ao|Tr_sc;2DnP|1ZA@y*^hqkP!*1`0zAFIH-*`v#S7W{g{R7cg zE!gqEfOeju3Ya}CI6WL#nLx^VahGEFUT=3UB|3512k(RI`{mki_vJUDzxx}}KYB;> zW8M+{L!{7H?}fut0mP#K1P-6RY;c}tW%b{PzRE&%Nc3MFd@OWDq@0Nov4|U5``_Q7 zP;~hN03H0?AA?$e4!)0YGK+ih7Q3{yMWG#;cx`t2Gin$lYG24V|I(fvv-mXkep#w1 zJs~U5BksU)2iP#uC`$pG^^7y3T!GfolLM%roOA`bkx;7gZCg-c8)h#p(efw9nQYTQ zz7SyRv=Luyl;`PiL7p06#9#D)41eOoyQ1&T?OXu|Q1lg{ZQw%7v1+cz?fEsUnn_Xx z)s75`+^yhFX>tG)k1qV%OW0zA+HvZP8Z|AcFiP*=pr*K?hP1jITgH8Um+-H=oy$vX z!^+Y-C{6;hPM&rE*BXQbU55*E*?)!jovcCBzToCVR2EL8Lt;znOE*c&w8k~P<+zwFk<-?tUGpCJLNaEz2BsA+ znE}E7JH;<2>A93@F-(&W?6TRV3_D@3O>`_Q@Svc&ls68!G~pgd?Q>!Fc~9{{exc9F zxf!aeiu=0&X(4fx00+OP_`~wQ+8s)b1{qR(mL;uD(&WL%qX$YtANkN}?Q{;B*H({3 z>zu$zJB+otdOl-P6`lLVg6V4^E5VU>z@`D3CDp);8Vwf6aT0}o&0_`VBnFaJXfn7N zza9OVsCP%dJa0xmB_|lp2jJ+>>hEKbLb$MsO`0BB48|pzdQMBgWb<_ZwVcUsjhs__ z`OM|U>o3+75Fo@KT`WKxibbxv2(LMyoaP4ORsq`}wVt1rfY1C3(X~-$gubx-Nz3NC z%lbTdrB3MH;7e28?jGcz?tD|SmCpA^jwNTk=-&POEGGFwcuVw-AC`Ss*ZoPK$WyVC zJk#%|)b4}3gTio0Yu>;!r^Zmlv)>(ku4-P|zLm@&Jc?56=Kv?23ImhAbUNEdwJ&+8 zqe9O__df-A#|h9b&!TPAR@z^runOLSLUri*H99SlCflF-&YGGAt zJD2?r!JJ|v$an&F>ek?j7HL~pHZ{8HzbNQ{y=VB+kYK74oZ5g4-?}Unkm1wWUR-(n zONI|SBqYd&Ahy`gl*z0{#ZSTEA6PdmW2F?Dzxq(rzHwHD`tImM>ng}L!!V_2j(+8DN1q0v zu;m*vF8&e4Vh@-e$bgXMu6Wu4iR7*zsL@hwxeoFW#k=t*L_+pS*3J93 zDSFrk(OuFxvqt5G>kVEgCq9oGIorv?l%t^FRmimT)Lf*&PMhyWFGJH8MV^qwNlYpLi;b- z?~Z;7vw7W)=Zi9==lT8WaO!Dcoo+)=`PG6nLHY)dm_BDh?uI_Gd@<}2?!Ftt! zDHtv09IULHB|3z2eyHQ|1v3Zye1ROuCRCMPOTvJ{>dznAtMQEwPV+}aQHP=oLw9(R zE9oI>h^|aVb|%z@8xl*_odZ}74n1-#g`cB0RnK4ZJ@?0J)9b@Gg1e%UgYshmRp5jn%m7EX}dIV~%l8#iwg>((wl z9&3W!M%P%thu>FJM9*hH&Cuzo@}g?vNM=+d1|#*Wwm>n?0!_>*j~PJ+0)jKpi;~EG}#Li@Cdz@B2M-xuzD6hprV4l97^^n z!M8y$f?b9R{-+irR^D+|T@|*5>>|f#h6%wpoiwZkWC*WQ%q&-V=*5k=0)xm;0*w&s&e)v%VWUtlByVQdi&m*rS#km+J%$o~2P=yJ}jSQ{TEma&*Ws-m!? zGPqJlEp6leBwI#B*vlS`Uaa!^emp=5?x&*WOo~{I%lt_?bv!xD(Xo?y7#sVWRaXl4 zh&9@AWI(mEB6=zQzgi5h0@Oe(YhMCBlNk>p<(l+= zRddRT75p6c;FxUMt!2Z$VwRlvH5Jsk#tvh{g=q<$7{B6$wP={Ti}Ox&pdxI@Nf~7D zH8}D^2@|IjnFL9MQc@ICM0QBKhM^^4n0_vQa?EskBd962ccE+@I2UffP>-f9e6XAD zHOESMM{I!*FW5s;@>R?blD+T*=D=jB);+!H-qJ#34|a%Da;k$3;aQXEC;^C+#r83U z+4ZcE#W-oIwC7~}%IGKVd^afe8JA#^{0kdHn^g~vs$e*rl-s?;rIli%DJf#<&^4E2 zyK(~5PY%0TBL=3$iH2g-1#v`Zx6#)wT&~P_%4mVt%5ZK&C#K=(_G{1SXrudl8@_{MgleDXKFS7WcK9@Z1(xTb*X@@wWv-02FZh72am0Hv)b%@~iV zTQ)f(4kqE#L6!3|CK$F(us};=T+giI-VW@sju={m$M{sbBBTQNAK48p{!(94s(Go{ zx1LO5d~@j>yYKuKDn(c<)|j+kX;@>2L$lA#SGEUa`dFEiIL0Y?R%jOcYHUGZid%-M z8B>i{PmN1*Xc@*N`O4On{i`&4D{7%{+yh(9FIM=EEQ9h(Sf7#;@h}gghkyPb=;@I5v z5Qr<{X%Pn0zPm$66|z$VF{-mCJkp2Az27*;T_r)&R}g~6W$SLHnxYP(Gbb6^O6Ust zd?@mDlZ=(94mX-z_qz5*ouKYzcCX-)DVwX=X}zt$8eyC0y>wfSl_?U`X%*tRU?^9^a> z+K*h>*ZI1Xy~RI#AdtcKd`0-%&s322i|RXow^H8Ug!SwUf4!ArvK!GnWR+fhhYAKm ztPr>`*RFHQFIs)Rx8{wiC{UDpca8ezhB2h}=np5zQMpHXlad zV?^-P#+2Bkv%!T)<6%HPJ|H_O!=mix=ul(IjoWa;$Z>>P1m|KURcB$U6N-;3(0m*Y z&2jOq3XaHJsEEoQz>LhJp8N4$!KeQWM=Zyv%j-T$xXc8bHIi&vp^L-B(TvNvyae+ad2LvHTiYB8{ELKrRTgpw_=y<6wf9e zL!dYPp{$*6(5MCJId=^gqHZcODwz)Od9@(kxu1bTo^>DRh}>s7}2Q!T#VKHKu4 z-{09dce_~^xkoHcGs4n&5y-!xH?`BTyfF|9dJ-mKZZd3rq;zZA)rtW!I3Mavw;iF{ zVV_A12!BxW`{wqM z@oRQOwEQ+nQXJ|piJX0Ei3-KWm&j`GU{(#!(n;nqG3nA5#DaE)QIB9(RGDZE^B~@k z0gE(kw;b7zOo-WRneJ+Y`;`7q(f#F-9QjjsuNoEKVj{m#(&&GrfyjER>l4< zSBHOCq3KMqM3mBl$XV7)6hYwuy*Vz%4--JKX-aI~fcVgqslE=<2F)>87ywwsRW4XbqGm zUG>C*H?CaC{WvE`^6*6%40qm3`3JZ3Yphm;D~iH2_m9MX74TU(9%q5gBf8H&8I}vn zZ)K|F5*BHmqj7PV3ejJjKg_x2F9i{Cz7gvq3=SA~Pun0zdZ4MP>9XTD+}2#bs&=}8 zHa-I74_8!DPkaW^ilQL*mpi7cxBY3rU;L4a`Wxg&31*t*V&HJl;%cq%>!1>LQF-eA z88<-xKFruhn{AK`N4=`v=Rpn8-;|UYBsQ4cL|Rp`JRjFkx{@|&&qbL`M9|s=E9`}8 z08*H-;ir5$yZ^v~X!KoQ$jc#eS%zZwZk*k7h^E>kiX-x7BMBu=zYoV^c3ib_CkPpx zHfzw27>SPr`h!qVCRkyeL7;#7_i(@a_lE|ysAMJ>?HN8eV>6hf;PUPLBI4@szx(&J z@BMr9fAsH-0#BX;7q0w?q`fwOa75E!A<2X9O04I6XLLK)UglT-ls_j%jnJbI#M4D5 znm~H?iW=sD4c~BV)cnSBIcTONf7-D_1ba3%va1l=k=-(6n>EA0;zW47X z@bA6R!>#JZHMDjn)HR87BA{;n^zUI}{_5YyS|;EBYyTd1=;ghCfAZeHCz-Qy3bdXI zi;^1>x$eys>i@h*N@;zn5p0kC+TrRKrtjO9*i2#{a<$qZY%0?53R4@6wrk7RPu`_^QI6 zz1F61ed#TRpEdRAqO@O+`s3ua)wX&GA1Z_ZpnmTMsNWZLSa~d9{RDlv{73yBk`m%~ z{eGlf@OS;b9SH4P#tBg!3hBm0L(--aHDNa8+#lg(uo9T^ zLVX4yj$+&*x%enhct{~-ciU{MjmT3KB4V;Ui`PGhC!A<-?hk^?s zT2%UlC&eQKRzapXmv4~vFFZfxOgh^N-Slj1SH62B5-QQLWk=XQ6*)Vn7JD}fa??Hu{`*4 z_YRuS102n^5kvw<)aDH$fW{K0r@tbU`(T}SYjLQcP7B&Cb-(e;gF3XCV+zq6=2y_n z=4v7z=wVhAYkx{Yd2?Sf47I1mWjL=$Af53Cf{%f#5GH+6R4>+*6**HTr@*JQ^3A=N zX%V4kQvrp8F!S5Rw%kZ=wPAsV;09)Lo8GorVc%6YI7u@ztxG)|%QM^YcT#b#1zjD@ z(#o=I)iy6VJoR_bbsQN_+NNVk_?kP|BEufXd6yWgW!i95J;;QX;M=OX>~gebBkW*( z@{rp2yVMx+v2M|}eAUNkr_3_BWCEL1{eGwZs%)b_JJ#H_S+6q9HJ=(-f3dVa2=1-{ zHytxwjQLkKx!q@Lm$uXiaE0~cmW&0gqYyvPU-n5SK4-=;(t)93ZoRmIWSqRseNmS~ zWaVf9=U~jGmUP0cb0cGMQj2=AxaR)Vtcf%dNrcbicNRRFHy$?flT=xp6 zseKu6K1rxz?o$h^H3_>>r4v&u%K#1A=b$*5TF!HFCwrHf+adbp&86A3BoF8qoni>g zNi-hkY0XrHQvinoSvqwmwQD<%nc&{Y?syTU8>z2i1XD9h%)7d|9eBTb64Jlw6xDCs zNaB}kq0k)UimQ7zN8Q2LB{I1MKy<#fFld@K>mM9W)ZH9F`rHsw0mK4of&ryGI`aar?u z#*1TYM)eG}^~^ySsCHNBOhdzHVwC3Aa$^UjzSkrMyx7vCfQ4 zOs}i(c~dtLFj)2Hbo;*NRjh*)ldCGy0D>lHOovt)$;mdgBYO_$PNXAuk>i5CLs#xo zmdBwSgX(ff`qSPUodi80V&Z9NjiwozKKzI zovGtQ4w`u31!1&sOdX3+InA#%Sij1Pg)5ek_OClNi|3wNDs@pzDj8YyEO%2in_fW2 z@PuDZE)MFC z6EF#0+}vcjmq-9@kyfuxB&A9*^xb5$vb2sNb&`g}>fEa|*C%UbXuZQw^wg z*jSva9f`{IEG{-ZJvc+n=G%JzIx?fN%V4hje`_!oE95BttEBNQ!!<30X69^pprL(Ldptm~gOj0j$mL9yLy= z!6C0NSm0AS;jL=#^!zwIN;Arc;^m+-otj4($Ck`>eiGOZejIIQgskJ>%L_B5{s2)O!P7=!YLYt8wsX*BUvlcwxB^crf zT|_{^j{Xden-b`RIWnXooT&1&==;KoI~F-!%;#y*!Kj)PVJyE`oKFo?C0>KI3^8mE zW-Kbm*WZs|fXucYDA8ANy)ehrVK;l1!GyGDk@RCyB~`Qw8NSApUp{KSc zq|Mz)O{>z;TdJy@VO6)H%+=NzhMk*ULkLL>LMyw#VSnw2EUI9i*K~+dFroWhA9X4M zzaT!@RzE#Cp!od5Q6vlap?-*?@S&^hZD+aw66eO7X_+7p@jictv`3lI#M!B=lJ-bW_rs z!ePCjc>WQq6kK(?y6j2+U+CWb54wl=Pf5t$hUp53f6(vQ82*Lsm)QX5Ui;m56Zo!o zdXic-?U0Ii_}&Ab7IZa+I=D&@_pbbheAVjeq4dO|KA^pf1Bf#1^f##}>ApXnuiR4< zV)oKN;uX)3R;kg0;$m28^L$qxz7uFw3(myCD1rdFu5@MDK5FNAzsCP*2nQpKR>Kj5 zty;kI9T&3u6JJl0-jnIepwlg6Plr#s{RT=$mBuPD10p6Mp07U%O_Y&r6IN$h#8=ce zOPP|^jxZWD154fKMU}~E3O4!zi04}(Mj!@1nGrmJ@`~~&xx)3jv!cpq1HgSHJ_x@? zEC1GC;QpmQ>R?{9t3N7nUi9_@+>^co!2Ja5LL z>jDqz8uDDsG@$kFw^_$FW!pCk!4UUAX8InFUN;rz#{F;rSK z3Xj9{=9uDbLE=V2UtNgn0KW)E`1}x>9)aPga{%v8JTg+0^$+S};b)e28^ClCCNSaC zEe1#1B@8O;x(zIVQ>?+f?xzr|iX&hwmeP3gXMOlJ%zaB~y2(Mr~HQjR=9*8AZ5>Y974$u3~u<+A~>|&?R7gd5n-5Cwn}+ z$_U5-zUHH<+pKFrEs2BOM3 z`Wbrv_0Eu|sh5!qT>zRdZh)x&^{=CRtL2^0_p|Y^4oW!9ZYZtQ;skl_FIU+lSeTASINqtcq;zI`FtVD0$T$9XS?uQ@heJxS~J(iN*s!(4Xq4Mnz zrW&SmJLN|_-=o@17{y~z@vL;0U68>z&*Q_r=P}}B4bt(8q~J#JKbtW85^`V|M;KWm znJZoFv%gOIX8*a3(8gR>#Cva@fazsq;@jE#JRsKp$Gu;OMjGn03c5#A|LpkkNZ36- zebzFY#QYQTEjJ3`M8yB4SzjZ8)tW~^c<(3SHoBzjJnzHk^p&mv&Q-{M=z*5Lm)VL4 zHQcXKGN(-rVBB4WEa8HeJ6Ar{b>=TJ*4y2-rJ^p4@!z4LVM3w?%$^ z^Etpq$d&hsaXrzBsx%HE9b6AJss)Lf`Z7nEgi?g)!THqgwyUiueKVvSVFpyg9M&;e zf&&!MXrwXsOheIGsWkQJQvm@m9C~4^HZl%=G2(faF9EMA7Nf`Lyo%YlVB@gT#ajz6 zrL+52S;@;pHU8H-{vk?<`m3r;Q~C>Jm6noZsHY9g{6Nvbip($ISd zL?}=vx*fFFp1Cf1aPTz_q1c59{lV_0`1x^h@5mzX=-N)7bKm0;#9WNOkp47ig|{F$Q2#ZFp_@z`36>05A8GtXXfu-g)v7gMWULbN!(Q?}m~ z8Jhw|%tRh{tU)vVZv_W+J@&!G%*-fGL>u+I1bw%!BZJ!PmZiTz5d?=*GzobdbAPcS z_tw2Gm6XYwwtmfr(n0JK&3@*jvB^)G{t`i_eXC$3l!%0KWHR@Xlm^qWCb^c1N_}HQ zEoM4~>dt+!(YD+UdpN5~w10RuQn|E;Q@%Ck*CJYNPd|z#EzzH!w!(6EkBFC|_p!$bp!|tEuj@d$9 z9Ne+2-G)%Y75E+cHLb8A+-SZz2qmwU2lVVT>_wJNAv`kzBWgQqHDzORX^brx#>lnR z;~*p-tz|X84btr&Lt#?(E7?!(fdPh=OV~+EhDbH}u_ADA{WDc(YW2(*^VF}rl zo774h!j%O#d>ZJV8|8W6#ca%?cPP#;z4Ge>CPn?HZ9mt<>Qh=4p30Y!B5|oozWCN4 z4rhzhWo7S{aJV1cJUEOY-0|@wB2Vu+^FEz0ED3sZqM9caPTmO~6!g0k(M(0DJFMu5 z=qv{$GYWFoJO}8ZdQDwsB^o{3ek)rtM89*iSeg_;(W?+bL$_ut)?^fyI9~j71nz@ZB4GKBb}ORBSm3zKX$>C|zSY&3C`Aa#~1~(pZQK z)VBo<i0J$z#g>h|IA)!D%b-%=By78oj)P zI)$?mVPsO8XTlSR1mCh8u6~E7FB&x{o=t~nUfnQa^QK|nyreyZoJo%fQfMT99;bKl zMMC9o(K94Il$_d$?O~9Q+pZJN*5UGNr{tMAF~{9Ld6Lh*3}yk1Xd285tZzS3Ml=)31nW;vB8NFF|h9NQ*LKbl-(e@$BtN$ zx060EpHtXl^WyStaYEuzS@+k*Vs6G+*QS94bAu5bGD8-Xp;sori|5icpviO)AGKCKUBI>T*w(`MmuRc# zhVd_QR?$o80p8 zl0MEYuQmBLprk)?3%4QLhuizpGB0|*G5n`%m`IV+(PjO-9+)*Z3w26FKW{XfjV(U5 zM~~yJ_29e$y0aKSx(9);$v*Fm$Njd@`AUUlUUNpU7zrEIIM(_D4-tRGbUph+x`){i znQ4CYtl1)mr|4n$M=pv>>MZW z{k9=~|0~>Q`lFXI>BT<XVokY0Kq}6n zd*FlBruFqDlSbWWhEsI56sDu20G~0(A$6E{OGu`GuL+ z`v23q&oc$P<~Q1y6%(ty_d(dM|`gaylPH|dU^07KJT9XT30@y zP29QlU^QF4c#(-u!Qkfs@^JdPV*k_bsITDcV5S@dSK9iB_=+~e=1y)Wfo$F0A`zPq zK_3@v!V8AU-1tsh?EPv*a)PSq+~wkh_XFqa*D6c6loU_BI_$|FKA7^+cUFD7Q2@W4 zxBBj)aF}*yuSk8D$^_irYzhXo14aKcaPK#*M%0QyFupw-z|>@rjb9elb!fOl$NFAE zae9I{gAP)wnZ9ue95RLiUQ1|=_0Cnjy$mj&Pr+fGweXYQ`&O}VsxbRlD1<@tfL7Mb zr+wOM#zh8Csi|c?>rrg0xjyfCDqUN2LAe1~asL>q{N_NHU80JIz4r zBLdV?WXHE59gP zSMC{Z!U&HP?<_&12YGRQgDxsBayO6-NHX2mLDAN=(_xlCVMz=yl(LsVN0km~l}a+PP!x$YpxO;? zJBKlNKQl4;6l;D0mkKR=JWi7kjI*b#qnk@j&N-5>rzLmY#a(_nhpAkZfiD5EoLa#7 zA{%2UD1Fe#c1dWFtpk(hNQYAWl?92$46YuOA&un3(3wF^M4jXJUIQFW6;XMOdFV6u z>U7hb61j1#a(sX=!>gEk1%G}rWf)4hfL3*6f-Y-yw*a_k41^nQ;m$6d7*wF>XTZzm zrIp;P7rI`UERQK;VY<&1kt%BZ zGow%Mr!#JBvV3>KVy3>ag>qlAiuA9l`hmJVV=eJReRL6yL<=bXNq!e)P7<7G>^G*t zX0ZConKeHIb}CLOU@`N?DCpkqGf^YEjEf6(bmyh4`YdD0JuVlcBBCkjg5$Q;ts9q^ z`WxsAYn<8?W`@Do*eyF&sp(7S0s$~dE_N8h61B>xIZtPQWO00Z( z%;@Z{L3kUJf&N4Lx{j^38W1f%n8mMUK(sqa3j3vHXE?k5#Gm-6U`b;I8h(_2F55@? zjB+}kpB)VgE_^seY*CkUTFDiuW^1pQQl}`Lcez1T<8Pw^95Uj?ky6tAB#z5!-YA*< z2(n&s_lfcI!dVpX$}f0_YEq~AXT)I~?*(%}^#Vm#!WpBDXsOa+fS+gHwH7Xa%HbDu z8|0nQq^vu4CyWPNIJY&|D^5aAjYaQ@3&s!4sU&=nK$MAyrxtx2{x<%eE3$MTM@I-) za$B^Fod|(Qv}N>Lj*&(`^p(K{HG@Oj2|L#0U1G{iK8EcfQzZMZX_--76?Mb|TPg$S z*nDh|n#3n}M{GIJ_?C-!$fJJXu!}hHaR!A6FGAU2icaX zQuGy+>$+#1SBS=}f6Q@`9Hd{{Q6nvKnrsb zSoVNp_GuhgE?-5YpNs3{UHMk5s+TepbAt$SSGznnIMsH0#*tgJ_4Er=kOi8)oA$9= zZ0P^QY+QbmJHwK5YE`X{mEt7wp)r%=pFFc->5PNp@*plhF72nMOK6hswl%$E+bzIw zTs=|e48=AeDsBf;gzRS|cj(K#yB!I?vNh*eecNzfyGp3VvWl}TUsvDEvM#J&dz+Ck zuMA2JMP=v!YL$&E#|zk0`?6P#Q-ML;)y{@X$vg9KM`{WaBLioUjK$Cn>^3v zNgx0T92;H#fP;_M*oQ>a$WvRl86ty-fVSUCyPrL7*xh9XZQf>3@!Sd6=y;MqX$H$0 zcs6k5E98xO$Mgms|5(qi8y5RxTl};m+(I@Zj2LlGAP7fJ+v{c5&TE68BN}>O5dxF8 zOrp$DN5Cyj4f7M1vX5bR4KBngNfKGA;Gm_F@FDq-iL5-d!Vj-9JkR1c=Hl{9o^tlL zmc57Tr0sFDi1#Dre%~wtcyDFaoA4*>l7`pAjqlV}N?^{V} z2*9F#RD*>bcj9!qaZ1=uLUFvN)jEDztqhprS!@(;OJw||04%E8*v(R6vqKjakJ$nN zz@lGb^tKN&^?Hm1$|m8|?)U~F0a!Hnx!`cIfc>h-HDi$svEV4WtUvm#vhk5keu|X3 zFFMa-$`+>(T{;VYLtFtW7TW;K@nYUQx?`_&0tLwIWPx&f1lJpL6dTs?%EFJZ!W2q3 zDOE~^Ad_JzUsXV^xPp$M^pvy|fJMLGIZUg`a+?FN=%-2F?K$Q;!=Q5t02YPj%cX1$ zfZg2?A+Z>a;Nhlp^9 zxsLYU6d?1xsuwEpsRuL{^%Ls|3+#h5(Qy=q)vbuF9uZeJRl*m#q6yq^O<}ha@vXIW zi81Y2D2Jq-JHWGj_BmN{a54OPdCZp~KBOEGASApv(v5UPvNrPO8`+5GYIyf>sCnzm zDLNJjW|jwlkI$_sIJgDl&iMjRnp5yKXLvBAHmBmbO1sFCdPAQN>m3igEv-9O2PMVc zO@{UsaoG>VoG<`c@}US?FZk&6YAh507q#63aM7bTh0S_DnEWDEDe&rcY}u`TIWF&` zS$B2r&7y`k(Er3m!z)!2|MB$x^@0DtPOtUHBE&9W5hCe-EJ6fz16^gxtP6?cn=)3N zzGH zq10*ezW6;!L^pCa=Aok6<{WYDS}nVw3+dmm{W_@Mxhzl(=DOs61g{{6V&SYtW*Y>Y zbS!}GC+_vI)tzHb4n|SBhbIWgegg*M49osv>d0W~-C6`}%nb!r^eLy)SWE800ItCJ3FV`%n;94;mx4wo1ih>Fu!}VI&m;T z>-G!cc^r0DELC?k-fuuuWY~|D#+bta-X`g*Y26}uO2dURy>`y$3zFX|&m9fmZ+ zGFd&PKPu};(m+msKg@wAkk7oOe0>!DkvptiHX%uL0lq z>1YhaFi3wOD~5N~4?Irh{12#)M{-~N2kKW@i!h?S<`*UzIg#(M|6if(T|O1c_uSof_m)vGDy=w#=~?#PH$qNKtY!3 zj6etjD}?}6@%U1*fUly+HNOf1f2YlqTN_?-Gf~dj)nI^D`5hkFK!=dR9tH9xfyvbT z0G-4K;zypEF(cax%v1y0J3>Qz{zA|*OPR9=DCi@W-O>|3F(cp810qx(W&QFMa_7?x zI*>0|H99y45N!O#XOO^puXG?HU=twR zdaJS<`%mQXob$H`_qU0+(zS0-P31su&vin}mtbV_JYrU6+xG`$YBYS;s9to`wZc6e zBCdWqTdtE_9ANlD0={Q(#LsCURUPf4!$e1^BB$z^Qbi*dU=MhA<#jMGA=l@CsYlL| z;4f#CYu#PLTvjPy1HS1jZ&9Xc15^Mt=8S zMn2Bc208J^)FYq@`InKOu4j07gcJfW@-f-I0Hz*Aa5A^$1n{&dslCz%hsoNg+KWKqKUCN=@ekvD}w~R;dG$U(N&Alv^Si(kAxGk1g z`{hj`f|YG-5(>$8qH=rabF>i^ke>R%TH)Z zhP=e^W9zXIc#;^8pp2-;qxnd#R^VgnF@013VC19rWTt^21(1i#lE~SAnR2oKjv%G| zG{7++n2R{y5tJk+f*^(7$2=@Cg%$&->NnlbJ*;(c@GF&|3vwrR=X_N4K|MCuY2?wC zx75r-_hpM%ypH`p58;Xe-zFi9f>sPMw|NHS+arc_+z->Q-s^A+%vP6+ko=AIHS-*B zf#Q{yF2wgL1m*U}lmXC}eVg>V?M$%t*5=E6d-ZbYm!Y50XI`cNv|oJ+mh(fUZ7_;> z>csA^s(!~uRo}=sZNCksi9CS-fj_T!vn$nfQZm$P&TJ3Ui7m!lD;Ky9ZbY#x?#wE9ZM#^#qgq*nC`#RYW^K9d9MdHBQPi5T+Yzm>Jnj1_ z&N0Rz3{{54f6MBRXAq-~n&m%`>KUM=Rm8}aNMsdx6RTt~s!4>>^cYgsOJ&K6{ffG0 zpY{2(^a%PQob0(<$#Lg<&JKK8!x0jz2uxS7*#}s9{Fc4**V3a@t5hR{!s%a2k8Btl z_gtnenA~o#5!&qxA4)zbfxs4lnDQ5-URWF|@9^(+6f$k#Z4H49k`o_FKEr=2`2rtG z{=tWmfAgW_f8U23)CSt$Tb@t#9Cg%6%%SHldXS835=a&z%kpItz*9|z3DM}jK1cb< z4znJ`2D~6Ae*x&~zjjSnth}c~f$|^!>FOgHcaeuPO=Q0e_bt zfVj)%f2-GDQDn7lm+zyXeJeM334uDof^2tF(=rbd(0X)7S{;V94u38%$f!cwrO_bG z$aepBNKeuJ%BM2xcvy;PnHofcQ@pB?dNtHR~X|Q9h!bWtU9k- zuK%EwjC>DWM`h?%AjxEZ?Uft;4Mi;00XZc`!QOfJZ@B*xjri%6QfS?o>=%FB49dAr zn2-W>%uBZWoEaiHSFfv(9U+&{dPFC_Co_gJ%IlHR1{RP7UvJ|m^S;OV z@PKj&1IqgQ^YGmwhv89O1>N)~`QK3{ZO6q|;f3tdml}@adp!bmx#b$%TzJ{BP*WlD z7WrqP2H$?W4BjS{DX@6d$bjHi{NRd9v8UK~&DuJL(x;K7=WnC;!gLMAOK53f*6m>O z?{ql$`UrXjdG7P_<362y^Arl9UcSw@_#vTsVqWa%Hy{`Z_YsWT2szBO9f3!NTArwc zac{k7Y>P)JTvqZgBZ39H!7d;?)o3Bv%ovkA%i4#YX0}bj-0Tv0Kb2Y^cZyUn!)Yp{ z*PxkUCY5ShU0Z(#NcmSgYa^%LEE@G}O4cuPj)F8|NO!-^bdd)zhF00(M89$3Vgs4WXtQ2*@+lQ=u>dbtxs@S^fIGG|BYX&6RD1Q2^{~fYI+5f z)0SMnQ17N8U6Q(Q*`GRn?a!^jvKVEmf6It0yusrEWL9 z8YWMd4+Ge1XR^kO=K%HE#PzsTH-A42_TEGw&qKU>Zh zGrV8Sz`9=|6UO+u#dz#FL`vnV#Ny&;@lHw`4q$3Ha=)a`#YGv3!vy^$VL z{azjJk&>P}EhzE4ch-`lOew@cF91ciUcq>ewSHKY;dh~m|+w?-$?acVhpp^Q4bkW~Yz?w5L*f9RMQ zsh$;=yTreC_S|8Uhr^7K3xhN!y|cOHuoYPLNDmcfPKS#yu76O~;;QrM z*Rmu6DTg_mj#W5xXEnDgYR_u}>(TCw&c2;H*v+1I9DaWihu!vJ4gEguP=!mZ_2(rJ zdB>He=G8&`2ly~ zTz=XhTB-0Qx+QUnj)1!WEdd1ooGrTi{b{5xMb+_Khw^<#l4T%t`#!gP>1jsjfOdjf zN@KFHJ2Z(JTt>-6=FFJmwEv(L6e4^K+N274tExl1(Xd13ITj6lT&x|#IZsh{>p)rm ziq4{D24qcAoi7a1xCLU(38qN6?T&(-58_o>(+H`p3?eFD2ZV;T1h3A*vJGH-f;`5{ zU9JN-%Z;vEtWLqXk2i4bssjIWEZ1T(XHG^_MtJ$>Jihg2=Tap0sOn#Ylg-GoNC?_A zRgKMtj!AX;eU7oAYTqdVUcTPIN#*Et73@e!InDxiv-RBScDAjLSyuBP6^GJ(nq3W( z32*5Y@&qMYX$5OCTbfyBTf*XSggyLqXGBQT>z#2knD-av2cEut)FxUZ7*BFCb;fprQw{-I~3sj-}%XUKjY!p%1DS*LeK0y!v6H&dLy zr?I$)*dh{4K``*?RMdQc=~Of7n_$t3;W7@TZ(%hVq)X$$G?oj~?rH_k*Rkr!7k^-V zn-XX#Wm;<(!{q_$XSCMkPAR1)f6F7ld!h zEIuXoe5;q)O?HK;2vH%~nAbTbA)s8-G-e+84Bh_DlA!wwgsFq?dv6Yo9s5skjvo^1 z7ZN%1wenK@9X|GjIL$q33FR@e<%?x?dEVrxTlnJPq8I=6P5bqR+<3VRssN|& zbMF+al$s8#R1~psVI7{nt9)zc@81525|!~ueb@noyzG8*GA+8q^iN1+!KN+Xx;(&s zRQkW`WmjYbX8$iOzwC{j_>MZ}ft~n_T7KJ3)M{$*XYvLe81PYz&dD*kYZyXYd4Im$ zgP)fGmjm3q-84*B&ao55Dx7rs1mvhI!9&XJG$i4!0E}~rgNXO|tQ`)M)pa`Fb>-2h z?c3>HB5+G2b!dDnnQV?$%-Vh*{-q|nruW_=1fO_|aBqizryt)|!=^9p%Xn6%^gevd z>j3cY^VR;{FV~%=cU-0lLv$@bo`SFHC+_7lFa1HVuinPGLH%Ko1sA7DPEzi1owP7N zhnUM#hTWsw&wx&_y_%r7omE!ou~=b;+!t3d`d>HdnzrNQI@!)b^?oDRZs7lN0gnO% z%wABT-R>#<_W=R3gF&K6dcp_xTtA4F-k-bK7Z+yOndsei4?cTuSW6rJ$aWeDFJN;P z0HG3L&maDC3=?;#F7h)t84Ztq^`pjwm1-?LCjxIavMbU1Pe#w z53UneJ|Ff9JTWoi(!0W_C6M@($v4nKIiURZ<={f+L_2gaGcz)e@s!qKXQ1hfImQjj zwSjOr&cqx3l~9G-;R2iaYKn7}c#=y1e}h`16Gd3|wW|&^x}6d$Xv`8;)?PL!2#Hl! zaI~TjA`f&sWcTYK@}e3^>0CCmXH7+LsPlik6BCb8( zQ?kiE@0hkM0ODnALgm=IvEZXF8l5jxLFTo{2i)R9DK(#{C{z^T8S_;UM(s4Jv9rIh zwchM){?ZR4{Jk<Dqxqxa&N z?f{IRF?pU&?)u0}j4){u+n~Hd7hgF2Kc)Pj4=Ml6O6x<)Z~ZSRAB;leFDYMYUFa_< zzvn~B-zEHz@((|xd`S$je~|Jgbo_@JkdMmORR9oQ>yF8R$a{?)y#3iV3~~pG@n>v; zAFXcUngKa%GGYJELKxBb=I=*Ly?y9-Tx>Zf<_s(7pYAo&CjbzC4~2ANI;QYFt#R-a zR6dr8t40M5AGnp3Qw2?G z6&oF*AQ+zDW?0-BnqZE+@C;KwH_=qO3&=1MO?0Yf8EYid8llz zaGGB-MKa&xl;d8W_O=W^iXF3-7qu;rmHpzyXocCmuvn#4zwO$_uE%VagtyF}X`fr+ zp{3+{G9o3g1-YTi99rjMjTZNScr(3O zl}J*wiU}8=wM7}Kq)uxq7wQwRfOsEVE=Al?_R4N7^=MZ!9DgYM&G77!K&lW180V|H zb_5Yekwsk7I`5e>8AbYll`qNlOqL8l$`?R`FbmsNw>-dn6=Q)9zyoG_s-8BP3co7; zW;4c2vOLP{wmf~^#YMBa6n$o(!z1Td#xu!!bJn#)&$+o@Du#$n=_^mNmTf-tyFoJN z7giaBIfKM;@n$FB3EZys^7bb-ht{*MfjK5W_kLr}d9BW6d6{b1?*}q5sVFX|Eu_wu zY%#D-KPgxkS(lJ_<5wGpRg7es2Y+8CDk`xhG3;?C>^GBZ(uMnW!c^sEmC3Tni`Dni z9F|d-+E=7F&aG6!lVBIjV=!1^?uL(CXtw9E*b7_Ds4f1kA~Vyi=uWkE+z*(}mNw}~ zma`J_PJ|hyvidnb4rZNEM~Fyl@#A#B)-7w})tmGFb<<&_jOJ6RL33yacCtj3c+>t` zZnmKrXVQ*3?TD@0?4$(OV_*26mw^t{_}osi7-f(42KVp#g)ho&8Z__dI^0hmO6JD2RRQry4tG)z zd67DjA6=_0-`r^`nfU7vB9O*v)@afw@<3vU@Q!w`i3e6qm|as@&Bxsq&E1o!ibtr8 zLUFcAiEskB3?g<&Z|h6W2q8o3GF07x!XM^F_HARH;+E)?)BgyC%VTv|wMJ$9>U6nc zTr&W8`Vo1QVBw)rUOF=v<88=!j>2m&pRqkHd&cRGRI>f3l5AmOTKA)d(2_uUx&`Rc z(@1h0CVnoY^VfIVZ48Bzo=79+_D^wQc_Vhs2lr)mAO&S*^7mT{-CB+&H}0J292TAs zy}#D59MxY9RxTnPqf+WWXD~c7y}oHFn}aOa8R}{E65?4sJW9Zu{_cfNcy)C8#PwAb zzF-bndUvd2AfU3~L?+==^Kw`hUknwio$ESwDkMQ-{bLR%`w1)WHmq;LiYri8ag^Nr z@l=7jvcm7tK43P!@be-~p~$j*9hQiP!r^{=9h;4u{;o9_J8}n= z%Gr}0BSwXXCDa_fkQB4}#Ix8;5XX0AurEpHq1t6*<<&08l)g1}SczxmO$N0liUrNy zrlxwe(^`JHgI7MdH*N{x9HCs^o9GqQsf(z&2B~kwKsEXa@y%5$u?8a*RYZ{v1}r%9 zLHG0sHD5{CwL6o4uqq*5PCke8T474jxg8%ndP8N&qPygCec$~>b-u%bw|q8G&3-C7 zbq2qnHApse`T}Pjuv<>Pb|AA3KI1DJ*R60|wkap94PCjDypE}UAK$k&A49nj1JqOt z{}~YdAHt^oMX7bt+9K$AS|?6|=taSLh25F8Z^{1n_#3haZTa@w3-x5*E-{Ux7O)0NM}WpD|6RJ7uvs2)u}OiC)@3j}!UlS=s8fn5uXF9T~3=s*cJlYxp^kjw32% zS7;$+0;m-!MREJfXitw%r>4Om$D(P-nYMNOB8HQ%tNSwb&%_c^Ky!^!cS&WkdnwX% zbxe9O3uc3ba^Edhn3a%=M*|cB?uT;N;Ik`EOtQ(UKgU1uU*T33^i6itshJMog>hMj zmmYmSq@YZyltgn?F44XW<}?>e@=wztt1f@dt=@OBJqoXUJN@# zEwgJ!%;M+llG~w}!4K9_aFlL9PT!J_lTAlc&n)1fjNu2R8sMLXDYFGSU{A%y(FV(6 zUmOYF!4mHiZrcv&kiFK{h);P-@8Zi%90Blbf}S3Z@```)PcH!foYM{R|S0x3OfZcwq8sfJjtexzL-Wi)RL%rfKF1M35{FP)H5gzZk2W?7(`cPek#O(o9Mf z3dU~NwUWRY46*=SMOk#oGNe8ulX1_fPax@X%7$K@d@!iVFC#vCZQX(Wo+_I!W=V^3 z9fJhmpHn*~$&>-8+Tny)JsYanjhfZ8b(4H)vzqwr$&LY}>Z2#*J+?`QCJl zIp$n*kGZb>t!uA?ebOsekDr70|J=`g|4LkEBk+}4)lp$a|*;Y9=--U_ZYxy*+l^Nl2^jdJ=gGCSwFyfAU1!1Vw`rWO8DF1>2K<|UfQz^Vqvnf`QiU7ak`T0Px zw;1OcY4IztPyIL~ojugw zo23Y#beu0PDVzYXd!@IXto;23TN3H?E-!PvtSQIQi+TYk_v7mJ)kypUM;dW7Ev2j)luXo(h~xSY%s<_ zpyUBZ{AP7VzvtU;FTZBpYT@0>4}9*h=yrtFjW15iYplO?vtOj$2c^4)y=Sk4s&>M!w+dkIV0zzlTkx&9zr;__YnB%^yD!n+fgkZmVpcso!~iwW`c(OwvLKV$GHa8?<7 zn{zU>e;o_7Q-2R!Ag8e9moVkSmr5x0(!9`eQYX=%;DIQn`PN>Abr`&Wg-JXxBKVpM ztntT>b;EXIwAvb1pvsG&w^z{={DWfyib4QHSk7PlLZ~Q@VGR~33ghft+5qGZBI;Aw zViM1Wx6%TxC-uxiStKNId?!q%NZy4d?ki*yidSbwJ@lC>@9QE#_MPB#K_$T|-A`xPItO;0>o`VoK0CdO!tl4UjC$)i~Y@3i#YYY@y@5fxQ2N@fLPnNH;1`4Dj z(9I839J#$dh$?tSIXZxu?`ycEN8Ya)*LOzX|m- zr}k?P%&?-6{8}?`1q%fk?;u@ofg7P2`^C+O1!9DG)SCV5`r(35y9J$gjR~1TtYFd7 z1noqYa-~&5FS+1*ey?GP+9Qatp$)qhtH8OqIzR2t>s0CW1w)>eJ(4rF0X6Tg3 ze73pZSC%hoyCBL&+$)q2-?H7PJdVK);AvCVMv4&hx47=-C!T+edpd?;$npg5mD9cs zD=+&~6pO%)n@Ean7~F+^Ptq9br})`ABd!bMwyo@>n!>HMemuibMpqg z1P^Xl1iO-#0r+0;;c4(^6SsXki6EQb2GTiBL)q!W@n>oN%7No8S?m|o7c(M)7C=$I zlWeD>+2=Wd8TpNZ*|QtW5zc>um#&iCpQzHaBlOGxqG`Zm>Z{-~v@J#%N|#(DGa1Cs zM()eBKZ^Ro?ccsSANDJI=)PjPcuQcEr&V&gNgvAsS;FvIjVyM4z zJsZ@3WnH0fq4)eHpgZu|`PU2?Ey-KPOa0k^mbfDPYNxrt8TS;c%Iw2cDM zngki08&UHna3dBAG5?y?9H(A+_~bAP{!H2pdQ%#d8t1vAJ}Lje3p{4P8lJ6%_l&&AyDz^D{YTKUWPI$w z6VRA!IJ#PYfT4f-gK_JlwC=~SjH*qJ7>FhZ8}?vuu2CY$Of@n7>@fA)MfwM;vq4K6 zchv*C4e9wqL%LH+&E2MH0Kl*DVm=V385`DVA)yMXSO1#%9mgIq9Q>?}&geQ<_O8J< zBg<7%U4Y}bm$-=#_0&k}d%}JUB`q!UNS?8D#WFVH7gy%PzIGl1b^J7RTz;y=ZF_e3 zK}*cIv9YRP6sl17b}2sA0WEOtzCH&|5gg}TF4L{VVwa834&Hi)Y-P2AXA z6@_${^&Mg|ewxEk$=1;pG$}i-CBh|NIf{L$beJGNlnV&*cPh81@HyKWU4N^WDi78Qk5KM}4+SrFQI=@5kp2dC*eP)uldquO7c%3rk9qt^-<0se z9@ny3*s{4aGbgtxsp-p%jqv!Al+3QhWkY8^T4YRoK)bR|zo^*>839h9SqrzRZr%RG zujoWg%%p+AgrsI)W&FdsDQk0>nat^%(rR;U(X2W>6?8Z+h| zRi(>yWhs4bTgZSZyB(LlqKQj&{6uNeMQ=`e?p5XP$(m#x`a}sHAL64Cl29SdY%&ow z)5gIgWK3u`3Q{ba2Xs8~IqciUu&qqa7+^i@88Udr!s;uZ{uYu-l4Jy%zbY7Jajlz@SXCiPq(_r96`j4gM!sc2*k-TqX_5cN*;lA`nrAfDJi%^g4@0lg0_T>h2)BO zRAeVk#gSEit9-YfnF7*16MsSYk(Hg+Oi(9Ir3D{s6qZ*DmwqXS8-IR{NLoehmh#dk z6`O6-9bJS)Jf)~cj}C&x11*-tu8vyziIKT6C!3%^YT99bS)5a!xIqyEfGnH_4dR`J z_?Qsd@G2TGO?W@I?&TGIBgbP|`zoG3JSXIY=ST@P`fClI0^?Rlf|WhXvHv7m8G90o zx?QM=@+e%xe;)oAh-w0zpFk>fUSDd#JF;2@>g1(L7|ESf-)Mwtx?lIC1*dpuflR=biEZn`cu!sPJ+eiJ98e6?>06$7SCT zXbkBn zb~~XJg=<@8u`tk?*u`mhtieQQU=D0CE9qEKRw70Y317$)X}$ZnG7W^ z#g42D)QNi)%=65yD zXc@B;K1DU%%ND|RBQ)2SI|rL>y zyip<61;a-a7N(e9yeWh432_`%*C11(QVu-vNiOrH8(QG$v+3lH@er~gR3Of(mN%S}q0_{O3u_9FEz`q;*JnBq1=X`4n7_QE6o zWuv8qtPVkP#;F7#eOMat&99(zLv?vBek_2}eoA#>?=V!AA66uKq2i_Q^s5OXv|ja@ z8sRpIz?4wVFZ9qC6H07h)pp<`cW5ZnTZoV++!^kH=`3O5bz&yKzZ=93{6RP5883|= z;Du+&^RyS{LP4oVi-63Q47R^cq`Qzxs<fqz0D!l&9S}PWB)tL;bdZWH~U@*P;0Y>rJ48^FZCt7#t1S_S(VJB$j

    #{(h5YYi0bc*?<&?2%zT?xj0!h#tGL#RMQnicOmwhTc z=-T-g7&p8v`G7`Z!A6-Mq69eRQImxj9pU7gYiU0_eaC}f&HKW_DgC3Y+I*FHMu&H% z)co^DXgxWNTa4CgWtja7hg?r)pXzX&;4CT#a{cT_Ml`vZqikbBIo`2kBNEO@8#tms zVOdv`_8poKD3U+H{`|5M*?APk^E{cR;AQkUPSOKLb4>xoF6oeixH3mJI8Bo%j>$A6 zxP)e%IkKX3NrZcNF$JlDYEfbI&A^nd)8^r1;_2@EGO0_W&3Mf+ktjR!|FBPyvnx>EE)p7(>y zG5fTu>NYVZs-Ku@@(NYD+!q?(%vw(wXaxlX9*_(6m{M$HdqKZ#`I{ouxN-A#bkeRM z&$Av>AtJY+88H&!M7(9A%dm~V2*9keKwgwrTpAY}K;2H4?|5jvanxD+kwzf7c??oW zTC$eCTwy-&-^u8H=S@(3Oi^f*e?of_k*K_z4=tOPV!h~#oSe5CU7YfgK z(0q{7UqydIE~sIjcQ4{@b$}p#1SjA?NsJ8(1Sv_kT3&Pket#!x!+G}`?(=;=qR#sY zDDLY-&6JeXfGKw#q}qt!Lur7j#@!;@E9Ol-g>r1r7)%MiRDuL`dgWjI1dZkKF8s2s z`Mo!oJz}R*VbKt@i&I`7YS91U$8+=H+unSJ4ewN`6*yP==8OsKgyIgE>|RpQ`i+J% zP7ahlFTl}5MHxeJDk#JT?6C^RH1VMIDMXZxf zUDWBJ_w!4>+w$z}4VZJ%+|!RmT`@wL;72#S#HSwrLybh=s=??C23Bx`X0rn6s6)@g zF33V^Za0f7Nu1kvM_&i6ogy~pkbV@o)5y~H*?X=u6tJrSpV!n8P&zh}nqOnmtS>lXAp0(lDym4_m0_PRN{AoPvy5D`oi94uvD_YY zI5_&d#BUEJVisW;Zl8MqA4=ApwGYEXr^Ajd1z0KEt~Z{6l^4L6QBOwo$ss{g zZaPx6EUUO#Bf38a&qmg@)Q%OZG|sTjbSEiNKj!9d$x|!S?=p2MdBey=2meKC zJ=oF3I{)DTGkmsKl@@s!e}bI4_xZ(?cPcbpE+>1`K1Fz&2H6Y=$IIk)KSQ!^a?XA< zo%!Bge_vSzSUN7lAQ%b1zJce|>HD(_>?qlpMO71g1Gb(8YFTl(FB$P;WV-8<@<^Zd zk%IS=vkjl5P`uX1;pVyr^G?8zE3r|S`@EKN6uyxjo1SwGt(k_04$_n4Xs*!?)V?Rx zLH&ju9risjOYX0xa2zPaDtR}quB>X1N&G7fOZ5}J6lFK&exOrWN1*#$)LiV`U!^j# z2fo%g5nDw^Q8J*DC^{kR>$Y0wdVq@|x+z7lZMP-STU2I@@Pz0+%}`vs^ACnO-WNGh zPQ>ddiDguMIzXYO9}4${JaTU$l3~@hkn9-9K3$Mow>^#AY}~C_SZFEtbnKQIi?`Qp zDWpI9>LjxC5spiQRaH+>Do`X5p<{m^8j&k)1LbHbDF~M%+PRKjc3+35J+!Z7&W3C? zNnUg#ahMB>E;u%>HUf`M^0lY(u(m|(k}Y(0Xch1y(tL(7AcabtX7iKqFfSseA40e_ zsv(lFEi!|{FyT(IcTbWjdh;(~4l5O<`#LFbjUUXP7mjqhZ@-%RLQiE;EejgbC5!CW z4jYp8;yx@pa~n5{W~`+@hp8~}g}nrPg~(|OotrhF{z+jm4xK(67OF4TQ&hiopkky1 z++ttUEZU8ifMTth1rOgWd-F0A%N{dmU!RMOwyaAV9OSV|Qa&!SUmnYY6ZAR$A=jKZ zcorD}H#I?KH%~h4aha%QfeCS8#9G<37LS87q(^EfNlH&1LJ;VH;bd zE!TKxiiULG2g`G|W(LmQUk^NnGy)&fBAqR9MQP$}WYQ8;PE6ixsTGWBHp=6rEO0R0 ztnW8-rW!1K$s4>As>wi3R; z;$D=IIL}a0Koz3MV1jN@Q{Xs|W4@D3>azaAp_fQ+*m0@$1RRAcdj!_2HGONJCpQd*c#dV#gAOYo+OS|dB@TAzyrc?Ue2lk{ z4@%Sa70a=`gv&w`&a)a3^cXfik`Sg1U4vm-C&|h_eVzgrZO1a5W>&?l34hV8nGE^c zBv)P}lEWv=gS!=^1fvG@-N{!cKro)HpmXS->DcCq4uA{>*JFa`lNiAQ?7sms3XDfa2}Q0t`jVviz^hm`N7D*r-5?R)t2UW*!$FXgTRpTAnPn%!C^PIk2) zQKRxU{J`0{w;vm1F3%94v@ZrI?cZL$Xb40mXTcn)Q?R3Ea6%0zCAwd?5+1M5EIq5n zg3FrO8pFjH`_yf17!PYr>z@B4yD6QjOz;L`UL3aqgUJeTy}Gs|GiEnmyq;?Ogp&|g zv{b%Q#PgXAj#@(J(Cj-PwXg7&I=?!VmG$xUW$g0L;=T;O9Sj7P2~B#osP zfa@nVih?=2odUFc1lWV$T>s|g?wsFis#kia^6hVj##N`vXa6G_{SBA?7LDrvH>rJn zZGO+hA7~s-kW@K%wUK7^BEtsZ#05nY%_|ktllxZxJ~SRh@P9Kj?#iP0Z4a0BHlPU4 zrl@ zRpe=K56~$;eD9Q}!ifV!XF<+k9dEN0IPtqFYp_b4@C~sU?Xg`<#%r_gsIS*^ zS4!J3Qa0>p3n6WX%nh_G-*yULiTwGp=}E+?arWB7NhytVRQhQ=HJmxsph z0bKw0(D<`4!habWZ)WD^{R+|AIMf~lEpemGYV9`0_tu` zrrWW9Jftac1)x#k^O{FNtACh%cmg7tdF{+ngvCnThrF+8!;0MEwVAM}W83b9t z5!RS?fq+~&EHr*PAXk3>CmUt?b7}m^hQ&K={=Zuq-&~P5`;V_uet*^HB@SDzG9m_^ zgFnIho_!#5i9n<a&{xbNnY8`MWwfe^nSskAB-A3+0_59ZWhFXM_QK&d;QS1JlBT!IObwQ~%nO82+;< zarnC_VYu@B+i7RP7uF>(%uVj96Zzu12`f*FMS!K^_{`&#pW=DjI_^UtP) z#~)3J*gu;R6n`}(DplPWc*{?Y3+l7omujlk;Bp`b%gxNk5jPa}%>G|CB^KtH?7N7r zj%!iczP>UsMM9((h}NMClfE?nf7g^?GqVx3*(Pakr$y?(Q8C!$#H+HACVJg)oA0Ap?cF5wGD&IrvKjvSYyC>337&3!o|S z0nn6C0W>8>^^_xjTlt@V`AwtJTP$Bwhv%5IIVZcD1ufY7!JJ7ON<1NaV`n%U5|nA_ zm7OM#cXS804}M9XPwsNmj%5K@`3m=0Fr8%ToC@tG)XBf*y^;ANk3Ps(?yX({to+uE zzb&GiVpOCe|0k}``46tY&4upy&h@t?u6xQSG7-neup;K_xT>R0CylN@QdIE2sXS=X)o%B}`3-VieyCh5>w@~ivBbZS1oQY^ zrIPIZN(uvFL9e|IAm#JF{j&1fqvMV+({_liyBcyX<2J#r|MN;p25=>%gS>J`L2^?) z)u7SabH&IGpqkcmq1#hcv0&z8CV~ZIw>0T;Z3yGx^|-Ww-mHe4s_ClzC=i!F2w?~G z#uo*4A-%o*NiVTOpDZcS{nXn*a(;9DfIfHFL%6M_D599kn5HNqxyqPS0%6ym(ywNa z2qZK>evX*Ws?aT$_<$=Z=SX}Y>%2d%q(G$7+q(f*QZGQF+Vgnbg=6O;n~eOdbWzM! zlv{ega3RZ&pMsuUhg?fly*z#>DX%{_fUjOAE4*ta3j^oV8ue{>*hU-BU-Q^#8+ft@ z8O3lpT7C!jwE@9>eL!%34-njU`PBA1xL;4h!UNn9^sDsLy>k0yH5lv_-b^U?IrP5j z!gdme0ucT!jNs2pH5wsX$8xs>+NA+ns9H~NmXAi7jo}1`w6>&yaL?R1F?(eG1G77d+*Xt`z+TO#<{tid(kVY#v z;&Lzwo&iA@Ew)W@s*4)qKl|vr;A7A7FpN=TyWZ77A!Soly8rm1tO5bATo48* z?vKjm6gljdDrRd)Jop1%>&hiJF}~fNos8H(U1{Z=mYXsqGgY7VN$}6|2ybyt{X@%F zZwHMl6a#4aA6kSYy&-{T=e4(_t4RB=q}mPRt9rLM?GgrREJnq+=j9QG-?2Uj?=401 zwQ|_Nrd{q)%6Fy+Ge$m^sdLbA$O@{5rD$PdIk`W2Ot(KA*&h*t%5LG+Tp$ z6@rEtAqH(m?>~b3Bl6c2L6e1u#cEyAjAF40Vqi?55R#)1G|MA#Rz3`gzyPX0kK7AB zfU2u>U4rF`_GfS3z1FP&ti#;&ejz8^8@8ps^PTEv)n?$3{z3J{oV079KH1Yuc#AF+ z2sM85d#CzbFj_I3)c~r$phal^l#(O1^j7&n4}9+(>a(uIl=K`n_C1Hv#o&2$3?1&9 zSS=hD%^-AlqF(vD7Dam{gqI#coEeRX{gTmt@%^w3Q1V>>N^jz4t4qtx8oz$q9lfMP>s?5;)Be(d1@ijAVtI7dh`nKGboB7aHfouRn-> zAb{wffn$b|D&xN4@gCPBQt}44g4+?(fp0{4v`RzvvUD!b883S9>C3r%Zc9P0~ z-acjbcZC{sup(gKFBnC5Oj!5?$5dCeU6Dwa5hr z1fj6iv|it+8i_05$%+?Vi}))LPft70+hUuMgtJ>uZ+W~`H}&gJ+6#x+mH{O}%U&%3 zeS|7q*CO0n@K3(%YpdXGn$Bem+~R7e3W94e9>6b8C7;e1&Tv=#Ch|yp_d#YBA2?_I zQXpSfOEZ(s+4byDIg9y{C+El(6+g+n4q63VKt>USublz5Arrp^v=3SaJ>VwwXe#m0 zhi(}!(j|Xh9EKnBKiR%scE#0XtiVctT%(MvnZY|>o>k$ESW58*y7XVJu^iK4JNU&mfE{kr*@3{XiV$sIOX0CdDf5uAQK=Hj_6>zNGZ1?T%!r zZYT3)H7pZr*aeO8o;)%s5_bvKREJN0;AdN~Sg-=QZDgWV@?RW4Ha1`Hg)%PlfsSDF zy@6x9xXFx-@bw7-x?SIOmf!v6iG;epW^A;2IJRzI-)4;f(`eJxsxl|JqPD11$JRk7 z&P|TyN=+?T#^50J(*&WGNz^7}wrtyao+3_sgdWnZw%TshZ55xbJojYSj#q6%FEi&p;Yg1Ouv!T z848b0B!{GgO2apdEoU4_V{jJ$Tco#0j)fKv4cQ)=xr%rTESJgLgL`ctfr(r6UIRlq zwRanQqL;+WGFXlMe(R7zi}JWe$8FkB6Es`np}1f&$v8>ldvHYIqJi~ujv{GHbC}Fm zjq5tHCySGIHHt1)*@hnN?30(M(YI2`WO?KMrvjEjV~Qj*>-w~2y?bz= zz<_1Qz(zvjk;Ii+@BEt0PYzMN@_V0SO#3{*iQ0g;G7mhSBG(Bp5tkTV89@%rY?qL^%MeRt=$Pv#>4jT{0 zD(YYk4UF&oVt%Yl$?dT<-7&%Hv^pxa!8q=%EN9lPp-eM_*91q07&}sJXUm1J8_V_G z!a(F83|Z@8A^ti^)IwdFp6el+58U&{uSTj=iF5 z#jSzVQfxL=GcNeR^uF9tqv9^HAun%OI(ib)L#fW^LewGr{I@c(4!Z1Ef(r992s@zJIxpSQw5z z1;@TMie|?({)4Ht%Tah_7d4AjzMI*uU)B+L!=XV~Om_kk7= zIiJkFl|RkURd_+RI*yuQSpN3(r+-8J768;={0;TF{}a@=_u9~013>*;QXn8?z&DnY zm90L5p_P@rfh`l~$G@PyR7(dx(mp??bYJsjsiEj)+R+E=ZaCEbTSH&G_%8zJUcdCo zO%p1mbz@?}jc zQRIEMg~MQRJBUpiMlUkKZr6DLK-5o7IebNic4?%6*f&ktGd(1kBFecn6JkPWqINdO zU3zSfAS9nA^Ax=HM6h@f3IQLJ^aMU`_^xSnb#w2p(yR)b%*@!LM-h(v<=*F$wi~N} zKSwm=CJGp|`}Z7$9LIxWh+P2FkCyGvjyM}o&500XtdYl|SOuB>RK7_&qHXqk2U@NX zU6(StPaZk@Ni7>9s-VNb41?c~muG&@RX?IbY|1P_fiJo+&CGi`V5m$U=trNn7Pc9L zETsJtJ}Y(fv7)ACw!{iq*ino)T%zVV-~)>L52)`s_mfeTR8GGW8X&_1to+S+3Io{KFk6K36Q#Y=Z9qzxO#d zquoAd;3*IUX*P@gsyV%Mku zj=5MCMu4&>dp@@YIPFL$Fg;8=^BAia4Ay5W-yuVZj%9QBCR4;?8&$-J0D3)(;jUG( z&G!hD-AX-nV|OGqGdl)oG2cc52)nEc-$FkhF@e!}tHvZeT%P6;^P7yAocM8~BXSpq z@=a^-yf)?wDMVG$uuZIC4jMR|va=;QA!9Uw(A6mqb?=tu${jmM|fhx zC!ZW=&k_E}t3o>6#kpbF;t%&m|IXDoyYtInD^Xz9yIWV_Krzop3M z`Nj$0_5MI^o+4AUXk+?&d0%WRz$8)N&UKI+MiZB?l?UQA=`>E&TE<`jP~Klw3MGE! z_YXu%Wl-%M4+fO?;kOHLNPJ@9uc!n{E`UH2xwY!Rb^~5H%ik3N`O?I`Ik0%8rfqZxb z_s(ZZ7Llhf zDQ<_SAjM&!e9Dv&ncCXCL~<<-_U&~&QWy`TC1l-RQ^5U?a&Er*k8)A?1}dm)EoUYC zKG7Ey+Mvd-G&C>HU9-G{Cp|Y;t8#=^6FfWb*1i+sBMQ&&@;*pHHVR&=KS9Uj_$}cn zjBgJNJpW#|RoRW${!uw2r2HNzFpt7gNB>WCge1NPD=QICo2B7BT6-3c8dd6JM=fOk zt+!w0yKlP}xpGT8r~2a!XzQ2DzfiTd+Kow}DeBWF;B|+Ka?%J=K2mL${#1;tP;N!h zZ0ezu5f+cfyK|SDU~wEK5#TYnD@$T@8F=*2{R;KVhAD}BR*vUt$Ny(R!$&T~pVVS) z3GJN?3#HbrOO20VbWv<}BNBcg^0w}4gE@R4>CdLfWM`2#L7f1WJqjl4#O zxnb0=z<}hsl~qicpnahXTBUXd|2n=ruTx-XwJ&2dxVGfT2@PDaaD80?RVl@9(<8?& zH|kQdAl`jwt`E5akC!$;g6F7rSF1yyS%0u*vy9epdTI+2R0S{LGjJ&Pp zrmI*tliTZGx+dqJ$|>7(kLn|vk_U6^I`2WmSGS)->rlStVECev1F$}7Mo! znYry+oH!F!o1NB41Y+0ROmkui+wFzg{GYkHH5pG+WHRMEr2k zwm{5ga2r&Nk=bYMJ~wFIufpu)O=Gr%GUC@-RUNAfGBZ_ChnJvl1uffb0F?dW%_(~9 z4ESu8deZJpbdVwtwM$lTY_M_RPff(2dbYblkFKVA4E^M)>l|iO!{r?|MZ@xXY<-y{ z>Rskn_*(a9L+h$)9e7+WJ4p6o)n*stvG58bTMF*CBx(~PQ6*ptW{yVUhr3h6F^_u^ z<93Kgo$buj2NNsGPhi@S+6CkfebnnewK~x`lCohSW;fWOkFE0;j|`c%UU`0N4y?-N!)Um{Lk!{} zh1}Bj|LTeOQ34WY{YD!$ai*Fjotv|=DM>oI&^CLb0@BHg&qaaiy!xk!m*xyq70Y#~ z1K9(lp}yf`OnSx_c6Bh!hUlL>1-n8yhhf7NYcaK3i&r00YOAea($vYm782~1n$W{a ze`uFC#{-^uU!py=uNs}as&?t1LxZp8Zq`%R} zsE9QPz!sJ`L>6bZR_xJ%8IMGED-76Jr7_ozSHm;)y$qGaQmbyahTme;CT33KMv2>( zN{~hAqBdgB`g>qT56fDse+Tr(m{XqWM|#Z9F`st3YLhgY>C%uxI-^Tfc@5` zwibCh_uZy8+kvw_BYTXP7<(isIeW^k4FTVIy}8{F;X<=$Vi~<~OKF03iVKkHgYsoD%dfT5P2_2DYg|1zCP(3#sOc>QCp)Gw9royliz}R`^ zw)t?GlxdPq;WTo4+~RajjJru~l48G=W~@I*mXIx^!4<-u*N@v^Q`pS^uYr82 ze}eqRKS6%;Um)M=e**IPjsFhh*8o8N{X59_u(FE%w?H|S>CbbNIOjeSh)+gLB0X7v zKso6jf%0@t4y^Y;IoCe|<)yy^m8VEBzU_CMCer?@ov9wf=aVq)V+yf zhYr6A%5~0^U?h4uEy=BGRgFt2)X}WG{x+}Aa#7?J4gv&Z2K_G|^2P=_`hR`M|6d>8 zp{_s1A^vv`@2%ngmY|RMPeI@6PeI@IFF}8u{C^h;&ZeL;m7{+SB>KVbZijQ_ZVTH#sf$SQe6K>fzX(S}!vImVqqg;TW* zn_RzTIMNEY?sR=D8tZc=O_3r^!J_4%K!m2o6^ozoWgoW`kk+5E!)ZpMkly5H50P=M z)p=0O=I*#%TC?;IvaF5C3$3KF+{B3*9}!D^djTZIUvdvpOxA!(f8{CpujtK6&sGKL zgc#yv#=2kO(!s}eN%5Qb1c4VE8bc_8RY%5f`s6BNLZ-%$YL|9w?@P?I^_cv8p1M({ z>e7W0(@QPyE0*KaL*$2@8Bi{JMh|`gLX3_kT^Ew$hwaynF69uo3GxO~vWi|I5Pk}^ z9vh4vY81-=V0^2X768WIkzQAWL=ftQ^fN?slYnli4selhpXh-E!lf?G<*JBN1VS;g zWDMQO;_m_sM~Gff{t80kN`BY#58w6tlzz|iKlS|5#eeGgw1$7_`AQ4~V5)mqo}qPt z{r`=gAM#tzZxFNyH0rvq@~Y3+Ur6^Ni0RtU`2uC5b%~FzdG4~)2a5mFb{QmpE!5n{ z?KcVM?GD;yJir~-50~rK-&MCi3ulw=gkOpyZGjfN!$XtkYy|rfn}Pupl6iE8@I9KN zUDvuimbxK!4G)hPn}0z58D7bS!5&qW-wCmgbEwCNb$@?qV3MfX+hG_%TLWQkR52WkoF{uezT#4>WF6gD(Z-$ZsY+^lNX7L?eA(_2Hd>e=x&*YdfW86M=i zpC_AX;!DJm($`#q2dd!t;H5^;?DK(#@mRPU=%@6mbb?c7r6BjGS_8l?CuF(*hi0xI`C~>0YWoGx9p%#`S$@{dS?HTfo+Ox<03&%gVx~o-d^Tzfz zULV@d3Qurw_LTssrvGpZ5v>h3VN62z2$TwEk>)QZUJr=t-}-{p$7`Al;Jf>M>AX+| zf9k$Z2XfQI8xW_)_F43f7&L_C0kz5AttBlle7Ez9@Bgcv4<7p5zjgibQwankDQv7h z9HuYxi!~7RmgRM&|HE*(2bLdbx1At2sg8D z0Rj;7RhAtdKMoho_aDTudvl>D!DjH5Xu*(v1lw)KM37Oy<5<6XY%>^b;UH5$*vHR3 zFhFH^7Eof}y&3gjcD&krJcEyL%;UP0FM9Dm<@O2SC+3A-7e@aIifc; z=CdQ5CM_zGTQA}r3@OA#frlTnSEj<4S5wyt_M%vu*!O~x;08298dcIjq8~@%G2=JR zmMYC!Zx({B;BKYGe|UPEA|#u?c!Q#qA7=k{^Rwkc+DG~so{bmkmxN(A%)XsycIW6S z0vY6#7#mSq92g6vwk37Nr~CGX)yytZizuJJl=gL>Yf(K6fEKd?iSydfcPW#0Z$1zl zESrM~98%5EB%@GMJviRHS|4{eWgaY4A};`GAG5+wi0q(tC98GUtlJ5EfG>}|ClmmM zD&iJ64IbWnS(4hKSKWLjloT$ge8e_A4WM*tMg*AotbIE$KFG4jj9t=DM^=@8r1jlG zQ^70~vAtX+U~T6>$0~V4;bw7&;CeKJa`>4n1ZZ%1>)pVXALjxzaM12~{{s2BC%m#2 zfjY*aFDy>6$7~u1Y#LQE$UFj_t^(;dru(i1J?9^^>2nRi-bR4*56o^bFR$v6*u-YL zTH$|?dI8~Yse8ZCoWYQ}d%TnUa{$S|eJA-`D;&Q`{_by*k5>x`Ao+D;$eIj1?2Wzp zUDwQmYHP`$oz-g;$t5{+@ z3@^W|$nGh^vg&$p&neUjNbC|vaSI->&ml=-_^n0`Pbd>lBaHV8?|e}&Z%z3T=#>kP zjm*C%7zrZpqoWwuvg#?~g7n4R`PghbX4af}C!@Y-tJCHU+oMLVF&Zuv7e`4eG~ekO zS>V%`pRQ~$AmGun?CX8bVxF-kPN2nruhRAg!Z;&`*L@DL5BR?0y5g&TczrWxl?3Vo z_q<%db>Xh&fT>UrN1ZH--kNj?je1iXHlKO)i^7SE`{zo>=vOG~c8yOm0bV8ux}ya7 zabKFn^zAtDthhj}s@CrkY7WYXJ68`KBSRWvmHpOSB>l2xRqTg24m<2dGUECts-c0U zV<`a36wY%i2$+>HbNpRZLfh-uVY$_}P$b#a z`UB!l%GibwMiU-MsXrg4vr8ZQhq-V{KtK-0#q)X=iLsEAxeiNumRTxD8Jheb_TC~Y zuLWzM#32L=?ry=|U4y&3yK8WFcXxM!YjAgWg1b8e=#RYjs{Zc3YIVMw7d#fwp~%_D;>DfJbWhOz~_tOVoO&gn1uXFq)C_vi5yib5ls=+i%lC^RXAfM zo!l+E#G@D56_2GE!%4ZeITp-$+y_=+Hk8bUpRqFH9+d-LP2z$gaMbw7)$1sktY~j< zYBC|;AbgtfT#p*6F&0uPI~xAhbQ=NGJ=|4n=>?GU2k-WPx$tZ++0rzPcN^uel)Oq- z>RYShtOyPDnG?So7#%^;}7Lj&aeV2iLuqy@D5A_kJogjOym2}zxzN}5QZaPxlY()J++Jx7Mo zq@eMRJ-x!Qls9~thw`m0CI%{t4T6DL$9Z^E46jZ$kDBf#P)&zm!@-pj(eDT)rM^HW zvvg@gBdXkN3+=q~$pnndfkt*S!Lco|LY};OpI4NM$?USl`ouFSQJgk#(d4#6pO)6( zPi`j{wQ#$mOzqvSbyyZ6~!HU)qrPx+9m58p=%X(u7~ucGu>6*P+nf6 zXTI({_Ld-esKa&nq>RBjGg>Y?d$n*_8^F!r?KeBeE+rN(a7V#_wQW^;cKe-|v!H^G zkg?)q{EB^lRm)sEVn=QbkdzKS@z&lGa2dXNapT@qHC@$V2B)(R}ng4$`181-#a>QthaQ zE6XCbn6j0V^DZzFpyxAE_XG6&(r@W1s@7F%Hv%}jN^QsHBLfUpvB~|i3h3^$DECx_ z2$~iv@S*;WE7UKHU~J+_zUyao0ZO;uRx-%s(Pjpg38SFNc;?u3h}N;gSh=@&I~URQ71?C$?;`5S?C0WyCsV zE4+=`jZGWFa3e6AnKluAp;JnXwI_tbKjotCx2lDaX@HCO7rxGyb796v6LrEtEx%D4 zt)<7&m92FF9ok8FfnWXt+|%8}tDPvuGTX0J^!aqbbz3X4i&2mm;ODzebh87eMD5^X znmG6)akA9D;!N!UKt5|t9mo`TBggsZXoY$Hg9@;Ty<{V*I4rq8faC}595(qZJnjor z?bZq=CUlPP39%7&Ndx?RBcJ9!etzIze*X6-9{|aRYbjLZWI24ueemBTB4on)AAY_Z zmU3}TkuUSt5)W9{pEr=ti$d81KQH3EHc32Xw>MqH{(63WZ;@yv1E~q>n$}6jyi2zJ z{>r)3prO@f8-KDc0vl#+_ltS*W*zRd<5goH%_GI^_tSq~hK}m#Z@v02em*<>KT}lx zNUfJk-zz*cdk-xKx2689T{I{$AJ)nP8YJhpQ_knRCTL=($)hYgndsj8-swKRSfx89 zW#fh9Pp=Q&30bQnk!*G#?=6v@{HxTxiy-S)l?V6EL_G9o%5fB(Rn5LOTuqcjX74*E z@2`6o!jqCas3~V;9fWgPtIlab++bo%tCtD8;RmL6F<{2e!k@W_>7+y%V+cc>z(ncm ztpn|HFvLKTjw!vWh|jPxl)Yf2q7y+RgM74v>JkA*`p{rbi}}9=2&XjhJ(Br!!P%Ws zBVWzRB7-!zfzG`mBTNBM{u6tF3yY{H+$ZmFA#b=)*YG|MxFadH?>3-ZP_TH8Y5b>O zzq&?H_bF^kpz;9!k`=?5x67;tNg;O%mcxF({uJ3&0qG}t$Q#K=q@9CBle;PBci@cr z(y{uxc+jK7tvc1ajoTRgd@u=ov^GSp$ofxmzgCOU6Tvjq{iVeO@vu#d-eu2a;?e*l)&2T$&OpL5cR>7AZ1$g3+IVVi!3h{B_7 zUkeFd=yJ3tn_--CM<0(kn-k~_!e=G|o-~{j!l9S1KKWyag2x5u`8$9isvRBm1t0QF zE>-2v5G9lQ%cYIbw(4Vu;sW^?qKc89e9GHZSfDF)IHBaR4YvRXt}IOR(ZoL*XGp3| zpm)zPWIv0>R+I(060#Ps)VvTV%RV!K4CaFqwkx>zc#TD{1GFW#3n)^_q zdXV-f{J5jc$wg<7;cQT2Dmy;?Y^==sI%1JtzlwdzE%Y|wd^$8JiAFM(fHr_>%2@4) zM5bWe!>X70*Jd(_*L^w~Pf*`YrSPat0jtm)+J~6o_@&utb8%RLy|tFQWi-MHT1muw zWy*gKQNSzItWz{W+LLyP6hkwyo2;5m=L(vv-m@JjIC;g=?S)oV#8O8{IoB-f@^6(6vs9st6-SL`u4`eu2){3=;ah&yp|d zZr+x<0F>_ult5yeR5*?2dw%=}<*V1&o2bR2(6uLI z-H9`RXGxwL0qzOfX1*N%dcD&B+1f{00<3$ZjQUQf!g3213D!*WDIH>|8#7~CS^b*- zlRp|wdO$;LniS6f6H;7j;jK91{VyD<=im?}0L#aRh)EvS%P5HZ;!3^bYCVWgXAYj= zkybGNN6;U?u1QQX|I`8mXwqKMxQBtg*n9~3im<;#hhklOLwp$URWObJ67&hD7=Sy( z^VqwRHBZT{83n9d{}S}O40QtKeI4WZ^gQEirg#J2=>$5Uy4QXTJ|qW<=4C;^pn?dn zZexQPmfzXTZI|Yz;+g8Ty5Y6YH{e!Ep@4V-vS`^S?*XV$*#-25)qqdI-C_b($%9?* zKRgjZvr6Y4CsWB^#S!}61xx{R)(;C;^pg|Tb_Ivo$XGrJ@H=FDrIaq8y*$ZKeyzi( z-$jStE+QW{WbxwW&LExS1DFmWvB?`Gi;H^D)>Z|_w}x27w(lI`bJHjalmUJ|0l?3% z`XMCyvn0&f7ZnNz_LTI3gifVE_kr1_Q)Q$}==UTd_)qVmUwfc29zZ{&wl#gbZ6gGx zH;*maP=I*n450=BegXXav)6r=OgqLYD{B%-Y270xI2w@??5?3|-Hs#n9F_pwA$Nov zaF!CzuG5CN?!A`G9;N!O2mUu7@lA$L^(*C-T=z;RZ>{zvP96=pV8oO$*q9|hz3N8O z#UFkY7ng|rGA_MpEAI2*%fi2T-~)dOgqv-ng6+YTa{MVv9D@>-wZfhDGy@LrtmS-9 zxBVI7rAh|h6W!<{6#r|Oe%tz{16hkF-|@T@8dUSMf(#6{CIzEy7ROB#T%&5 z8(9340#Yh>4auRKeS3c-+a(tDOS6;HLI^nSJ_vjj7Wrm=o#vg& zN60M5+KyxFw$!Hh*tJ95`p9?eW_$BZ-Tr6Yp&I4bv{!rKA&E)LoSk3Qv=?2%<7iQa zq>Q|nH8Ce|yo08|V)-joGa=K?$Fzhdmt>5JVl-+hUfB!?nGF%`^%(-DB_J%c-@1xp zdsl|&aO-qMOQEIklYdW3)tMjDQWR5iYF%ue47nQmD9LCbC^7n+kAn*mWUXhHmYl7o zO!^L`XHwRSAv?lyO}14T(PVs?VCkr}Jh(xR{)0q4Na6mic`QUT%--<0ej)ZQsktb1H)X+4JZxsV&W9cPqA{MCfnxfst0u9T_Fmzhm;k7}&pQBS1n zvj=PJ8mBO&=3RF7boFKdBAKr~*XX)$z<$UK4-0CVXln3ZU^pz=118c0o_x{Uj%6o` z-&T_HoIeQ7YM^;ezgk=9B0bT?F#gp*Q%FU#{0R=$uPW#MtX$DqN?HAg zLK<#w*HqN{XUsR&ERl-i44OT!bD=>@gu&F)pb^HYu=(719TA`4$nu)%m@V! zZ+J|tq%lBK9#AryLH$!Q%X{bMT=eN$$_L~}vq)?;b#S|GfH`G)ubjecC{eWb2E$Iv zUMQAH^+}a_7&cR<^Dqssd2q~&hv9mI%!$uwnRS`En+izKJR>$%!tm?9MD8w(b=BgW zA$;)$bl{$PV(6^Cpx3$~EC?-1tLm(!kAMM6W@QW&#?RBt*^53uex)Z$(VJV}5czTM z3kAo}#48$p&pPbO?`-Fwjj|A{=CZR{)_Awo%pT#vlt;>nTbPKgB&{Rfmisbp!8g5b zK-h#}oIEcNU3ffZI*~h+H!Y4PQ@89sT55`-t1lNXtxM76&k|HXd3#|^zhNZcPfp)nJ9P3!BJ8M;%={qf&Rh_v9 zjaQN>Sx?LMT`9SDR85=4c-VuVGEqMkd6;fS3?ohWRMN2+xW0$6q5C=WPO`(1nY~U? zjH&|Xi{^8>nD;i$&@uu&j67N>TskBe%vUfyh>Rhb7X6mJW}?O5p3bR00y&6ZL(sBJ z2TAybpQqxK6P0Vx5~mo)SGSlMKhNha$@`ORCLf9)AwP;um}DIaog684P5jbiAtS-g z3b!1w5t*6zdC0b*hFupEQXdsY2NUMv5&5giB$&7-RQFQDD^&Co&Ua3cwYqRm@QmRo zLJ`$!hc+=_u5``{2M*WcE4pElpvtMEB~@huBUk45yz=}`NSHfv@n6pBMwdZE;RvjTcdp)FoZKxums!v<ev00 zkW`{yA83CVz(R3uzPUPu)}_*%F=!b!4fwh+!;E)@N(1#?X879^+TslIGfnJ6m^d2} zzCh-T^3#&p=oW*=gj+hTBrlo?FFd#av%7no8H$58gB^of?=+ul@L4#*6R6y)^7rpu zSg;#l^5v$l$};$P40RLVokj2MKI|YaCF%f_sV*OorkM0Dh)GXfi%0h=@Ux_&W}4qg zraktEsBKPINgqR!@K6r?aPHcaKusiriSn(O;w z|5XDg_W+-!#dC=Iw=STceC;02J~B4%Z#R(KV@z+)@Bh&jZ9kf^`fq&yFU<5GRA)}U zw8qQ-8`b#&FUk+n-JD9n9%Z2EZ`Iiv<;~;Oxef;Oq-KmxC9bLmsbQ=4`KI_q@Nd=G z|9`5^l^?2e<9QN5b#@+w5{CRgtIpl_(I2X_9YA${1o}sHHW&<{1*pzA>i7J^Pza}V zp)V!F{Uz+zWo|kD4^-#MKdQ6yAJrM_Z`C=|2V)!y#`yXl)mckY6+f3@o@?m+CANhU_P<;s%Q`(j6_nl5y0?5mL*PGKMwuMg(~ZZnMF8=&D=xT3yerG<u zJXAd?eJTDl*vAHlZsJa>!^B=5q(veEe_5mE8euk>h=fGVhKRWZau9&@qQV^bVT?ax z)O1keYc_9Nrf`M5z|MlJ3i^)f08x`VdL2$KwxhCZRolznXqDqm*daMr(Vy9u8hv}- zD)eZrn9GUT7S(tpzTLekL8CkW$ti31o`as2eL?msxEL$ve^i~R{#KnWnq|$<(~B^% z+I@91WKiXPxCYn+;|1Ep-sFcrL*{?gT={XJgf2V_I4JY90>?c~P1DSo{&#>M36lE= zR}c{3Up_*aBDi)?HUI(e{fTw}-(U9z`~ui+Dc%*8>fWn>ivMOSBa`h&vl#{O{l)(r z;737Js{5}m@1NRiE+EK;G|tgvEruC4S8*GC^Q-;dwtrnY#q zJA1iZDJuQ5VAlaa)MpQxpw?hAgeFLH2df>^Z~N27`3P9Kn{YXaQzclwa4~#Y zW_&FfqE`clQL_TqZ{kI<`+_s(m}Usl_UM4~5g?>Zf1Que6C2YgH33@ayHWxC+<_T2 z8_|2hn?8kgl@Senccv%kmN$|dt4qpTC}9#_S(@bd5cSW}i|Tas*FHpjV^OjS3#)PT z&G~)!u%tMYs%uOZNgq5VJ%_5cKbZ*z8-f?Wc1m)d=S5Ebf7(vTx9u}?`(N8B?5vm{ z+bLW?R9~^4YE3cz+D^&(dpo7y0kEB7`e!=@qsy3Pls2!gQm3|wBx<+M+4ns3ltFG0 z=bU)bqrl~3J4Gb1_3!Nz*UN{v&mY?<#aV8u*QY>N z@>An z))AGXD$m}F7sg?|;mHr7lgnxy`5)`+N77SAhR(Ho*g}NiyMwK&O8W0l7i$mZr6^?9 z=v)f`zTaUCE@Il+{Z`wlNe(~mMh&d4Yp#v18hzIze*FISd(!)NYJ(-h;;&;_C6|8zLcXGgHssW(%Eyp z(L}u#HCTb|`l-1xax=fpyaoG1(&sDvkn~Ibhoo-{kn{@xlKwG3(pURi(jQL5$O78z zeVcdgRIz)r5(4oKX8zLW+3&9E+Hw$ygy(iSJAfxY&bWto0mH)zbd3UJp?V>S${Mkc z0?L>r&DvwP`MtuLEl~*}>ZL$+JCpuW!Z-_HSaD?6SIwNq{xkhD8t>Fota0m9m%#&>TI&sTR!hgRu7#qW(_KTfiRqyab7)U$k zkNS00!Vh1ah{`8(NPeiqQrTWWq_HRqko1E9lD^p=Ngp!vFG*k3n}A|W7)Y+=1YTaF z#+1<{+6lY(lXSs~OPuBM$}*^_P!5|mA?2-@X6Js+B|dMZqW>2ym~nmJ+!J(63Bqxo z?JoXFVevo@t<^e4L@`ePnlua*-Qhh5p>0#3wkX|)vog_nxE?X=p!>S-vIc&T6>L*J zB!R#_wXMYB(olC=>1xGwSQ=9tQ$mFwbU$5A;xi0cghf%h4|qa@c4MErg{ut#PB+EE z9noZ3fY@@myo9+EwaW#c(lpf|1K33DU79t!wQkQEFp6yT_guUBG5g43lr4-~km2ig zd&!%2I;`H~<=MPAAIa}~C)NV7#?_!nM@cO0aqPr$bFDW@qoZ2Tw?cne`sD9U7pD|< zP&a>B`Wf_%XMG^qW?8wm*yi`_R|}Q0+PYO6zQYQ{lMb6;T8R=lko>drvj4L5kxTw% z=>wgam#K_|c_6Rkc^u2wo7AF4{yGquXB0F*T$J@NPD5aw@;D3|GP|RzCXi-SQ96?ZLXi1dA8|pDSr_6j(3g9^`TB{lNRMPu)!byswVa|LIUQS4S{% z&<%z=f0s`p_*2QB_{rl}->GjnxXu8QwN+xB7b)-TpJ6Y|W+P*U)cch0BwqL5W!y#(8s_ys z7^Ux_5ju4InxI>(GNa+Jazm8aw0Z8Sz*Tm5jgG2~J!^r-V6F)=Ce%TDO^ct)R^Zk! zuPSplzjnp<{J7^ECWQi5onEm{wav1v&SdyY)AwROQ9n)m8}BFeSAdKPX)#89TNz@` zVKSrS|BBJot6^N+L?NPh@jG$n@&V0f)0HkUi0(tv$NZz|cX%vV5GZo+xdl29!gkq+ zzPnUoMwEwY-;Kz@0yRO{xz?KpBlNF&iai;IV z_ff;7_Z(mRW-%$$GOBd_*3L)y{X^520D06>;D5ar7@?GCy8cmkBzBnTdly{YPbbQq z^Lr)l5o!$zKSCW_*jpdt+o&cI8@1mq53}6j*YFoqeosQ#hif2*`otz&@*pD&Oq;jZ z*5SLfDkT=~W*I~t{GV>*>}E<6cS6FONK=}C62aR5kp3aHo96ZPLI^Gh!t-Ko`Y!ww z(c0%*?{W8{fF?4oHSs6ZvTdCSKOM3z=1ypPtTzxsPd=1c!Mzk}a>O578xzxaJqDi3 z(uQ&w(A(OFpDq{E#dqJfCu+G*BUTALXb?Ojqvg3%z5{ZS$8O8kj10lPpto-xEL!$I zD8fd5dW{D1y8hNRbhcU7`LU+B*~qQgjP^ zC#^emGU9hhN#=AGcV=-h0Vk3;AD3QZ1s3DiU)-sOCV6Y41LodSk*(Uub-%k<+JXtQ zUurpm;1J_S zp+7YJ+CQ4Ur#PALQt|z7w=lGt96as&v91J`4PDo7kxuc&;$2Vn9xI03fw4QDQ{b<{ zJkmwZ?o%4JKWG7(ev-+*HT{tfO<#381fc03fmE~z9^>BshN2Yj@&ai3TOXP}!wGBd zvk}aw;#NZ~7-qT)JqSiQukZjS;d9WjyPJwsF#jec@ZI^Nt74*p^B2W~wV2s6Lt`5b z^`y4oz*V+inM}u|*9&(_R*^QJXQIRsvqH=fP9$*Buj_-CQ}SE;%#`h#k7I|?YewHT zEKfDR+pP8$IVo}(RTWcm!5lTxuqR7PuX>mm9}~|i#aB997gY4RUS0N`oS&yu51yN8 zfW+-CX!T)!Un?`|A?i{rvX#t!R7|oGb(Lm%;24M6M}`v~1C~IJ)%-P*kiONeKc_7R z$+Bx@@o!E43Tw7V#B@9;C5s-3Q7QA(Cbf=pIup(r44~qa%MGk{p?p{DV7CJl?Xvr=70?ph$dY2<$>7AImPk-r|vTGZbJ4}LS4Hlnqlz+!@;!mZXq>$v)6cDXfsFgAAh@rVz0{9Kd&u|1Vt8M#wa2*8 z8|v0IjcNxNGSLG`VG{+b)2~GFPFNUNq_B2`t6W2Qp%JYU~qdMo&rAPGY&#ixT^NtCEmkhRM-34yah zjHXesOQe5|gVa?Kq%|#?UG-;r^NSdt)eGb&9k`uWfec}B_uR|3JwzG0QG;4wL0hS- z6BDhnsEw6v0k^Pk7#x@JWOx~cq{GN<bHJFHm6zR2HU5>I|C05v~X8>Lns1Vl2> z*crB_rdlx^4^Kj%!?-Og*xJ%cQ7TWp$uj>Kd7i0+G%&F`@Z80V_I-YIGDZi0@z3LU z$gir~3jTV2^FEI|4+W|sxV)~GYB-i){rQG-xiV-IlB&b-0}9o z^Ox}7e&hYe&sAfHkT;kAjpsA|Jv2G&wAOmb%)i1@6jIP~;974NApyR`h@E|IQ1=qE z14au?Z&vvE22w!m9>t9mO_sR3WorJd2H3;Yk+su$#`|6L$h{J~FBA(R+G_jrhPCfU z-K++0bv5$3t3gAo47_MR5ZKjH1^?efUwj8O1BbYSkO6m9I!%NdMgj)%5%8_iC6Y~2 zfbvy8fCp7Q$pWYX$^ePT4y0N`4jU665Zw2q9%?A?3}hVn2<|I)0fPJCAHn?`k8XS~ z%zy#c2=~uIULa8Cf2~Es_UnEFtVOTO0P|OF-~&?oZYB<62On$Erw1`5P2biIVm1Qe z-&wkPp}=Zpp$&8-whSx*b5r(@Ltqe5^<%)?RD{ykmx>j!4^b>*3TCqY#be~R85rt~ zAd>5!xoK4m`?l%^@BAkAxWoAE&N&;nJ(~J+@(#Uh5g=~1KY#}S`dZMDW03sn8nEHM zkZ0%+p*tcj&X>I55S*D<-`*Cn8BhFOh| z{m@_22g!aJJ<<;H(Khpf4s2gW5p?*|Hp4xH`tmzN{uZa|T4$O3hxZvi%r;%P_D60X zt3y`b_fKvgw`4Jx>xtQDAqtiMBey>U*YhX0&xK2kzE!ybdI${)zJ5$fZoz)-^x01G zg_5d-ko@GHka|Ic4jm(`Urc#-wE=lQ4_R#a1YX=7Fg2+}TVY=yR(u z&;&bW4H%k0jJXGA%jhIT`SDz}*NeYvt5WISotnu}^HsGUJGta8?N#A)Ia=Up_j9et z&9$BUf%%TYB2jLDv>Ew3?8Wh4L(_6jDvT%<6(#VIO3<#E-?6}KXVL~PR*DUu3m(wk z*SG_<-=aBfZqP6Uhi#~3Yu~es*_z=&tpjvbv5TwQfRn%@6s<+v?zH711a#(9UX3<| zD})^$Tc^2Fb890sLbA=^AUT(og_{YmH&$Ee<{zUd*p`!#P;*q#2^7j152)!qV#mPTQ|jawC)wjuQtcBXkki04*{`#!`?r!eGtly*saV5eQ@*CE^WZjbSUvLG-2ej zw!bJaJ)5za{;0MuC1@3kso@z`In3_)iIuAzuwAvh^D>%8Bq!q!5sshh&lU{4Z2pSX z;A(2R52>!2wH$2YR0&w37M8`sS!!~4&7SIkjbjoyy~9bT3iQ=n-Q&6ZX_*a{!E&j+Kl^8G>MG&K7zgKoPY7pECN(I?U zf^Bx-t-jf4&tkBGcI+$X?Sdss?_7eZ4I;lF+Gj`?dK#pRl&ImpM|pyQO6XXeaq? zdQu00UHhc`T--aNwM^JBG(*2rEqe*f&8@H2sEJs zGRzn~jqGaEfwjf!1LechBm}^d*Wmt*@&T#+S8zIYi^#&JKeqR_XX=ilt~!}2TVZ1OuKrH znsQu7?r9b9*WCq|7c-D~CAtZw9J+B3n-sA49Ng>cx{?robdyuS3QER1^V!~~TIJ=t zYqu)R&?CUgAF-rsN_8m8DjpLr0lo_0p|h4e_tQ0#)1h)SCnO4Qf%&2m?8iSeWUA~NIm;dII9mf8c?G6+o@w1Z;8<|%ng z$X>_xuV|s>!|~HWi5_MhXBI}?RTIF2_JBlUwJ{gI%Nt_IjkPn+Zo1CAW|-Luv*n>=t3WGIL9_!F3*(5gnMacr?<* zsrEE9J!8Wh@?NS{6~(^F3Fme@&QXu}(Lte(wy&v;gYYP3{ks)y$R_+1Hh_d#8?Le5 z#2Cp$xk&GNh$QOQI-FJGgXKia(KP#C1+F9NlP<34&PE*})30 zIxwcRSy|uLJ$Vve0^ND$e2Bl>vet@Z!PP}vhA1YIW6vh@C?N;4Ya?bZu6f z)e3zXhOH_&g@$Kw_%4c*8q?(SF&kO6x1)trZM!H+6ERg0?PD10?@N*mLUK4Hw=#A~ zn@urK_)|mZQ!rfr1@noNW@rp?}oqpmdf)z1(h$xAs1!VPxP-~b~ zl|=fp9Y@AsyhRtrs8mMvN57RV;ngHAd>uMa<9R@NXwQ;1+J>4ma*)s4svRoYHfCA^ zCyOWM92G>BGs(|4zz&Yj?8*rkoh~djB?PsjEZb$*n|zB>xc_ah^XYRWUMBnZj)_cC zz?gA znr&O;{unzQ=|~Z~8x^cY>1XDueYj|atRTJQGX)d)@hq8)EofO2w(N-#A{x77BF?X6 zrF(b5`8#%l*(~ZmaBlZ<+XsZV=CC^eA852{CEMd2i+n%r)|F_2!1Uh9Q)#pF;S~1# z9ExJbKlXS*a!TA~bf_7X4BYf1n`VUK0tF@Xg&~5bp&_4g^7EMj6OD=bJ=AmW!Y9M0 zExpkt{h3_l@%X!rb`gr!<|cTCi7wfB1B7hgv7j|l008H^JANjx*}wTAJ<(acmtg_4 zXMK(z8t^E~Cw9DwM?1C=En%u6$316|18k(nZUKVD^N?FPeNl^AuaR`}{ZJz>a70Y; zbiqn7D=!TKrLg7}{BX9{=I*ESE6eTQ!TqPyoyke;_xVX|moPszFm3N#8|Dk$y*nAm z#lhp}5TNSnby(9^UtmvP*QZmTtc|zV19&%8v)^~`|54Z9jn!oOZ{2pxpsPC z#DC@af2RBY#q*`)%fCRc3d~7LkN$4`cwJp_le$XQ|de2u;xX3P<~%|LS8KCF;542(XQE z57Fl6~-e);~NygB88! z=HUx~=aUSXxzX$S7K*2)6u}Bt%IaMgG-lV|YrDxWFG^W-_thBbwQ!C_Nvkd{r4e+N zkKv(E6OU>gF`L^;6$Q0(&^b3UnQ5*(lFiV@)jU>Dxus2hT@o z&A&P^mC+L8dUPKKui(g?h+oqt+b1Eyq$n&Ho~2OZrjUwiNaVTjJ7eC!ZaX6i}B})nRzqV06X|Bv1pg{Mk)h|i@Y!r;Plz`rv z_$Rzi%qR1MOm>=;g1Z9*Q;*k#IkyHU1$m7V#c}@ipvNW@Sz5^^4cge7IcF()#|>n$ z{Hf8SN6GH>Kc0g05@D%E|8G2>=^vh-4mbq~=N*2d+=ErW6%Q}@Em)Fg+2Ok5n`>xhRjQLBSeh-q~f3jkc)PaW? zl+&8FW+S&g*yN^Q|imBUx=W;FUZMhB?Mo@UDh#lgP}4j) zeK;A+X&XOzfbdGS?eGMUbryxV{=^7n+(Yp*A_VTVHX&(3p7$p_C>zcbZ7DnwRkYm5Ac!z%3! z*xNbA*Mb>L#8jFogI|MqK2?ZTN@iXK6S9 zh(3&GFf+lwi9WpRKSW>u57GaP0#up)hv?s&L+qwH0$H!op&gAV}U2#c^H_{pzJQWU*+a$!otCg)?MhczhMBb z$<&Z^iO4Ym8<7+p`NX9_U7nw20w0CLE3i2vvem$LZD=0xz@^ZI^l@5JTI(n5EvO)r zOH5B(rD`MjR-bI?BEOIcNRbwhDJih1{@gN9yRMuQzCw`Bsxx6|Vfk6&5)%<-RgV_n zEplwWDxx9Jwr9DfS6y6i-#bg(Df9zUMT|$X} z`TC-FPMjf_K}ckj_!f2MR}Txj8-5%hN)mVcfYK1NBr2GH!Q@O>rpC!yif6`ynkKK5wTrh1ECGdf}8&3G9nC=IlWJe`;KLAM6!d|k|a>MOBZPK zq2$W=5xKnNk+JtcA!JTc_ZvF#6$i0j3b22nnQx-w*>F=ATBy$`dPG_6Igo*UY<}w< zOeI|VCW*YKPcQ6eTNE9FX2e5OQQ3@eyU& z*ZjHY^RM(iOKv{#J|Mk+or=Fw^R9z5a2pvtYUgrjF6vhb`IBHn#Zqng>L5JBBMTn2 zBa7-c!fy!zyrF35CzavmQk!31MG<}PLIboZT~)r9>BW2fL3F!HlW5Z&BS4GI@amZ4 z8vN&eP9SU}2a1t=PiJtit&I}ak%tRY=Lvl%er5MQ!vpYaveW9)iGQFzg%aUMd*6#0 z0QHqVp#H9Qw{m|4)QFJOyo~J1)U+>?8d=a+cHrQq5osHxh?NW{X!d5T7;0pwcpR)zjpdtxTJZKE!G7Y*3sfNh_p!%|ZQT;0b)i3{u??+5qnHEDI zH=)UEtF!b(5a0|y(YHw%G0~bSd{X_M;h%!E3de3|QL-pY*08}4Dhb%PT8)cW}H@MI}5M@#D z3Oy$uv1zZrQrAh~;C?Hb%XjVlM^M(?E*tXCk6YVRv7m=zZd|Ta_@3d?jN^bKS3est znxDK_nMpe{P4o8zv>CNR5Bj}-E8BY49Lh~rZaLR~9EohMXAns)L4bMwZKf1K_Tt4~ z`RwdmVC;&gMbkL@%a6{A*T|uREmYpyEoZXSBWvn&6^M|5cy4CM2;#z-etyOU+)XMI zCVY=CmIxDPV?=i?Rg(5D74_bXI_>M3re5=08k~}Wq(n!oVvXjKu%9(Jn}doR!ZPO? zihI<_5u=BmWPCm!idHOapraB6my8))<*=b91krYvwNX77`0K8H&OlI&!(hBYkkLr-9RtO>|N_4M8nw=hZ$bFUf3O zTxA@!!&t_SZziD;I9r%Y5f6JlpeHHeZk6*!2vTT2?#NhDIm z67wUJ*PfEkijFgr_$ot(ZCF}kT{4xnLQ7}-^Fgz{x@diNpnr2YTULR!Twz}&RPqoz z?Ne;y0zxW@R-b_7aQ8%bTJJbQw8^IqT%3r7jU!wtiy0P~JW84dOMeL9>eJgwfTqa>l47Khy46`eNZ!M-yn}eApWjo3KT~v?Z*|Q&z06)WXn1 z2+SV8<;t5>Eqm@JJQjGJSASt76yP2WtUhW1!5&$+?SG-ZnA&0EKkosw_aFSHjr^)5 zV6_az#bQ?)BNl5@?nkpStSYYBPm5-)7^Wg`AbOuy)YcY6*rTtQ`^8#(=q)tP#7W$%v2~uM$)0gy@~I%qoQ8!9Ll;1^MMj^`HCFY9ch;yvpaP-L&6KzI>&HPFN&q zdV*&E0o_J~V8?g2u9_|}OK`9YdGzh3a)rEYb{eh~oh5Eb-ww{?yJdy*XLDlr8DeZC z7RI_U1%k7NM2Y7w^U4XM0;_Uo-?%NN`$%62>JCvB9QQ0K0pHB5DX+W62t8txA`EjI2N3A&@i1~*lF-b^d% zJuW?UXvoeY;Mbj1VrM()dY^;u1hjJ^n8Ut=Ez|QKBVmjlU~$uiY8Pvr|yiUGB#|9 zD0HniEI#7lT^7CJ%HK#P%CCuW?!`Ne)F<;A!*()@I9x$up#>$ZEo-Eqq5?U3e$$2G znAoUdWjBgQG0-p|5b|}#juDL%shJEUM_duLk>?v z!f<^Cvbw~>#M791a#G`3lbD~uNG>9kl9iRk(U)={oZNBgI;!F1Sp853@w;JEoVvXr zj_l-#1Z{#BdOf-!qXIufv| zfA0KW%D&wnWncSmWnX=LyUQZ0xD98?{k3U~_OT}J@a8`+^}ksW^Y8sP#LxWq92K7j zn4_{op5TL!=xI01oslmTWpc=AntxT%B2~me6N7*}pO7)il|L&xi8|f&jd5vmV#dX% z>SR&>#r$C6d6+i7OEN$NpVjuM zksoGd2?GJjexElql-V7G*dz7~=Rjz-p#CP|Ja2Gchp_pFvd;l-gM=+29m1i74k;3b zyTgrweszV-P4H{zo9`!&7;OYn>J2>@1YF+SFKKstP;4*7Uyc=ltOgHGIiWqOvUX~| zr@!B(L@U`O-Pkk@!VJDI{V-(@wGW$s%_0`3?jX zwI`e*NE<+{tL(%K8uB`APkqZ|fl=t27h1ZmUWa33HidRFEn0a7LWwF z69yaS=xbRSr+hL!gG+r%q}cC=f1UYNa!BEOy`l6ZuseK97}`l*7Zj{v?U5^f{q(Xg zwru6&6bA=O>JAnf;C7kb>Xqk=$s^AgS&7?yWC)Zkxs4mQz|!_=6WkyKaS&^*A9Yw7 zd0qvor_#+)}X`R;Sn7Q(jr8pRq1R;DzS-RK|8S)IuaMrBx9^O zJ_4HLo3-t<*0_{ zJ!(0lBTXZ;Sx3mQ)MuOhp43cpnqsG*WGS`_nDykk^XyZYClr|`L6uoW1Z~|g#$PEz zg9uaCMoVNedUj8VhF^C2y_`Z-WTEwMM%V#_pX%rn;Gen{Vj`?zH}=`IxO%;=Z#)`p zx=^23VQe)0UO+&7gz?q@aA&^odrU2av_IZ1&>aJNSiGW>u55SYfq4X?Ke?`TJ|>Tio4Ug1fs1cMTfc-EHFT?gS^ey95XUg1fuBI|SV`S!;E#?*3Qru5)T%>^kR; z3U|p@nf1=`jqy+nvhUWypthr%Q zS+20YlY{GE+6t6{%R-9+q9V+)`u0*^7Q~Zq0TfVptt1X~Z}qQ(fSxZGDXfnqZyF+n z8{buKuLGor3T7xlHFlX(Q7xaioT}7GBEd;T*(pC>tWV5sa(zFI9trUEq`TY-PE|1W zaG`|`XL}Dk83V~%Mv)}3Hu8sKorD@Z6O;Dvt}gb#gbyX<6{?+XNrLb?OQAvj7Jgns z2VJm37lbBZlgC;e{ItTQzOL4uCLrG{m*=ODy#Y=p0dXCi@qI|PCk>FiZb}oK=^Fd~ z0Zu9vobN94t{FrZqhza1%3Q*>k6g7o_B{oT{2WCVKp zA;98Gcx2&(2%y*87_gIzUz{7vbt=Vj#nE~p}xL-!!upFs@E;^ zQRAd*z@9ZAD`RU^@_p^o#Dx2ox~dR8E2MokA1w`uD)om8Kf2uwiYJ3TJ3j%DX+HNc zfx4}wR(QTMbZyp}o>q}bdE5XyEAaNFHmln2Drem4B(KOq_!IK8n z#Zs>0Z{+DQZUu@>O&_2TcYQ+&t`lB3 zHCYwMyfA`-I3^uy+37bNfMvlLRtADch{;p=*a78-Wc|Ga_iCCYH(qD1@&xS7T9792 zDl=s!0m>1>+5 zC%``>)Uu1i=n!%^sOD<5I=wcUZm{t}^>Fr)PL1Hruc^-&D+&3KzT|-hGA3v4Qa5gz zR}7(~E~;o&Er6a!4daWd6eY(o12emP?CH%7VRvy{+Z2jVi06}`!8F2%!5Ora^=U=# zgB#Zk8=OpPl%%ibK54iGc=P?qr4+I@qPnq_G-*JU_6@)CcvzKBE5F6@ux?J|41bP! zHSZ~a8b0i`dNwv{ykF1L#-$O{QW|7nRhySkUJD$&lnd)yAnwHIYgsB|j8ancFK+?= zpfSxAtrK|GX=dA%>vJ6_|7h+{ztu zR_=b~(3~34Rj*~#js!KU6FWirxw#LN+A3?uz`4sQ+w>;K}A0h`#bR57~y zIREg_zKte4_r;|zUj22<9lj|VX3-WnIQ{YL=7 zGtOVbUnv@x;8_s2y*Y8_c}J$hY~+ohyBcH#PG*^FvWls?@@{<&W34rQ?qKQY2wbGz zJMtJL{qW!n`MLeEDsH*VoThU%XDn{@$mGC*gBPWn{hPhedRE#ndVXwhiC>uBi@zZe!zSwIW)b;%}Fub2SGp! z)*&JrI=!pw+9-<%#uNWVBZscu@U^<#PTg57f5tQsh3$p^Sy6Ps>i9;tndV#O_SpKP zZueXkvFucx>%t`o8FPr{_1Hypm6xpXh4m1og9wO7RggG(Wz4mN>|P|c7ZX#0{ zSctrlm=}rK!!{iSUth{VtDlfvao;K0TeJFpGFt9jV=S<@Qi~VW1PKYeNW6U-TABQJ zM_)+D`9)F4nV%YNi<$k`M}3-&ACW7$NOo~)D`Zd|oo;D)yWrq&U{}{mphBIm&lAMA z4l|D@e|;47IOjk9ORoP1F8w9fH~DWe{QrN+{2yHZ|1%}?H@b4bmd>u|Mg1=kd#JSL z7t5G!j~x07b3>!G|C23q4^K_uf64X#ob>75zUEs-YnC$VAKV)yqxoN=F;`X7x* z#9`B6@F=P&1gqP`#E#~FTbanUyVpusfvHRxxeu*Y-s&7;c55_9Y?U112z5W z-zOYx!~-Mih-_r0+3^*C<D4f=A>2yJe1)V{AGuLy5d<|E>4uW3>C_Im z-&kKHSaJ?FmIco1HZya4t zA)K+z>C|`4-yQyu=cNU^!vI?;nwKFt@prq5{Uu_^!yz{a+NaL(IH0G`J<22c$J0mt z=_36lZ?EZzuY1%D1QNb^&uD({vwz zpLky_XGP=t9O(6B1%FkehDlqL=6QiAn&VdQR+h$or2jtMnw5VO42=t zPkwAHrH>l>hJ*Ho74ZuP?Fy^xndK|j`R;euOXhkoW{a@8nxZ^>Vif%-MXg&9e=-JF z*9GSpID>-Q->Uu$G&k69Rp0Q987$}#sOks*R`vfVCnv<`C!{BxX0Lay`i7ntD_AxI zAJj7d(f}R&?~?9g*S;1eU6@~+=HnNy{fT->99IvC2w&m~0z?j=68#iG+b-7jF;VZw z3-7BY=j}%?5gv)|YnpF5LvJp~j1KuKVM)*F)_Z$S1njdOyMuDM-r}wFsIk4wFWW#j z?LjPh0p|6shAuTY;aA@6q_NNA#;(1Vm0*sm=0A-tq673SZ54mF zBGZDf*nwz+HuxbY*g&Ebn?JX~q;tLssQ$t|YtRQvEj&)P9Vq&?ReuKzB$5Tx-7ei5 zi)E44@ZL#Z7G#U)8x=aF##yu;63DuCN;n0W+cjmpxoM;xXbJ>z56 z0yEdz|CYA`fW0I!Xvd;oWx=DeNVRH-hI7NgD5{>;Y_`Qc%F8&OtN%z0*<70Y)UXP) zPS`Hnrfx?kHTxKFa%r&aTfoMkt6{R$kw>t|IcB1@7z12mt;1Q;!PaC?2=$bTyAy}1 zqMwAZs-5-EIyN>=&09P`=b)!LQho~I(tWvvNP#f=t(}nkfcuk>BxTp>v_+efu?p^( zu*CXfow%L$axLD%$Iaytdr!c|AIvEO3zC>mz=EXBKsTEeQseJ}elXOv zNMMV<3X%#@``=sqSilzl)9)5Pr4$aE*E^eGW%o-ffqPiBJ9)a)r>wOmc{#WAY$8SQyaUGgYuLIu&Vy2s zhSlT08DxXRUh~WtDfxO8=9QgI>yUME-11S}1=m&!7}UdlL{e*P)}hKWU$rh#NExj7 z{8Fz!(T?TC(fhEB(WX)B%0d?i?8HQ)Cv!R>lE|;i8ptU8*s5yyM~z?X-)j62z#2bO zwK-0NvCCr|$wj5K&Z`vuy$@utI znm)2K#Eb_}mTN#?At0)7+8a0@R%gl{qg`ZB3mrLKl47H3LJbcVdQiS-KOJz zW0alsuNZrIQG>uPCngRw^E&Z!AIpL zENP7`9L4hNpI>#4$CpD9P${Oe2oxTSS1Ug2=Di92=}Q91er4!yvag<3R~-K)7A@dI zeK2EiI_Ll7;LAI--PY<*pXB<~)~>m%nE2aCIdh9GO_uEaTGQTDd8X9VbB2>P1jz(l z*ENM2LLty6L9q05d?d8@3`TLErW2QVbbS4c*v4zQNuhwM`qn!tl$2)@^58?t*D)Dc z)q%47tkUr%bhwD??W2sjwb!!Mu{Gdl!*=U&wK1YlnNz5zX8A2F#uT=oGR83iL*2Ou z70tL>w~`oPg4pgA2QBR=8sdDzk5ukyQfr-I3M7`6y6f0psi_NUUBsF8-+4)N7E?mv z3blPk7s-zbmcn@EmO+{dLt9%$wXIN4>wne(#lOq&+R6?!J|H z!c(;jXGFU6obXV~y@~Q2n`atQj8F5=+I(NEB2`3>oK5^=5^S)38v<{qQPbrll8!SC^I{+*P*=+_icE1yQle;N{QK13Jd!hVZYZ z!epKflwW7aF@a#8_ev^0Z6KsQada5l9oih7zpTQCCJ$9$%hGc1*o-5C!kh?mssjq6 zlaSIW>c?rL+E=M8WNDdE-B5ZT_b+_Denhf_(@HA#M{*HuU~0MNuG*GzCwM@<;PvZ&DX6e zUL%lNIjfMNgmsqVwMiXDGd*<-R7#_w90mJeUKF^4@^$4v%y$@bICMu%!QYn>0Z)kE zHYhp=nM8UYW3%1>l!}3_&`6Qj&@A-(&yzv^Qmomontd{)vHb~_BNYM%Yo;beY` zx1jPz~fs(byUqEs_S zK_WJK5G5e86JHp&Xw~nxl|tbCyyFUK&ZfF-Ry=4|Nwv<#%nnY)3yKy|cxsAs(Rp;)A^x7Lh?iGWw*Ei?U_-(X+)1PJ!Q?MS))0ruyE-A3F5 zkk=QN|A76qe+T>UK(Md;ZoTl|wfLb#Prh?DWiqW@Ke^Xhx3s%$Q7(Lofokmf8L+@V z;m%k4aBrWXe`#29b@10~d;@a1xo7_h>~sAC?63T@yKfA1_mdnWqe@ejAJQ;@1=+4Y z;{I3MTwJ~#N7|v@gc0&d5JC2KeB#XX@9%}TtLk=r5$KN-wx{sRcDP+whq3koEiL#* z5tc29YFDm55xsZXbaADhiS^$vnEaRkW_T^#7D7ju`S+{MGwi3NQUyz)CFJ`2l2JkA z%ri{do1_7jyqN(QB9&y^k@>DP(coiJXv`^jk8O#K_72*=Sl9*B;h1s2+)&5Vw`ZyK znQL>QNKvs2*TJ@OLBQz#oKcFR$}qFXh)NHt!on3?QoBG;UyI<5hx~;B?Ujdon*r^H z=PTFNZYSa;3A^{C1yo(h*E~F(@RGhXdT+4q{6yaJ9bQXFX60j~LhiRcbi4p%WQe#) zKfC~m4q>j(AHNquOq|i*d$n9C#$74h>9M`t1EQH%Ra9tG9_9+?3Kg>}`=&Yq`op8? zwqnM9ienve;shaxAGok(KQ!_`Qv7SbQ~Y-SZHmA0FH`(0FhRgQGi>&Qg-HpfWXSAheBvdLmo-Q;V=AkQH4Qneog=|o<`Kmv~0v}3j57h2_ zAb+tnk^B-emLp1f%@b&pqn%Y>S0diWKPmov1L*GcsuWaH1sjkH5bU|AR#YZd0TZ*3vr&_0lrWzl^IbPtKj3#^@9T4pU|8F>~`Z1Zk9LB{0rGarz1ZWxt zq{0d2C-my!kR$QGha$Tcaf2NEDe>dn{^t^Z4JY%4|G6N@Fz^NG>BBf-_d67nkKOJJ z>1_@4(kupqc$zR0Q`9o+>c;8C`9-hAB|0^jzf1hDYWlzo5U|9bi!U#a+$g>p_##)| z-QTqxpcE`p0c8pwnQ6C7Pwem5Tqw*2@0RHJYO zCj()#KD@2JI~35Vm zID{bLK9Flx?&u^J0|-5Mteh1Vm}qTKid;&|nY;D9Vp%o;`l2H3kBt5o(3Tw|IcTJ> zUzTn{NI!u;qB@bUGk?fK7)%MxSRcCl;Z+CGC?{NzXn}M|fz21Wa;t>D{z`-Q%1*$% zwBTDN+%BD0yFSDPwD>`De6NP3+Zn*Yv=l2nQ zKyezU9ys$|zX|oa%orE@Zu(3PwW?ZnmCL65ltQxj9x}=7{c1Yrz&1Z&?@_W}j87Jj z2zN~*Tz&}xo*KnU0p*#`cm3rnSts_kmxzy)iU!QFDC%?`u>;8*Yj!4_zJq;AW^aN$ zQpCdDey~-2y!MvlbTGe41@B0r@LK`xGNd+%3w!PF*|LTYkQFtaH=SxwL_mFC`4Xt_ z3kre^L2ounXVEd^#41xi>Ac#sfNh3lB8cRoczX%8bZ)E`v)J*rk5vSRp{Mi41Vv5p zLNi~}rP~9L1`+e2uZbWm0w9l(n7yh@96aqx9IzNJeH?s+i|na>r}&Hb=Yc7HUgzH_ z{yd069I(f-P@unG(NX52=mq%OZrOJ)83dSJSXRH9kwpDN=FX96lG7=%2Y7KXt*yhd zwZaT0U8TB{#)dFdeda|sAFzQi<@+3%!~&Sme!q$AUAKVQiYUf(YSj$cCl=aR*hLweGsLau7RWht7=8ks=9s7TqF9U6>A&GcWV_?1ay(0=BU= zw^{(KL6zi1r9sZQgahfh{8>}3vOpHYx@QXQ05xYo(_jQ6!RpX$mbF(Xg;n>R8xbMg zyG&%=9`ejpaTb+qgAlH*#T5F2jtC7r0P`2Z*knnc&QN8*MMubwiFPfQQLdvL!GrN7 zBXg-w;ITxn+#xXgRNW^;sGgR{8JaT%m)hRj-T9 zf~w#BZmMd3us}nt5taRKd-YoK#5I_K}5T z%>%El+_^pZxecArT9`nH_lxEaCP|*&&-A*H5Rs+uanzAJ2n;O!D&NRUm_$^iauUS0 zuMlY&jxdky&0Yx|i^1mEQx~|qv-(H8kWOUu%!jDcdt4s*MP0BR>_0}mnq!m&((O3h@`w8_T zbNc&yY}#r@l=znVe4qFb@XHe#zt8$lL2M+Zeuly6Y)a`Gm0(ZQVFMpMWCUpaKqM^;#7Zf8zTNbxT?C(rAK+A~A0|BQ4BY9Xad} zSI4jDvYkLuGaj`A$kWJaY&os+7*tQvLc1yr-sdnND4Mb;i=Hhs z9t*DHJFQnapIn=Ec56F}xbc`gvKpCPJAHVvbdz$sU9442%T$Z}pd-eLu@FjJxNU?# z>yPa%PZxz$(?(@Ub8VRJV5}u55jF-m`X#uZm}ilF>oS@E-WKIP7TdZ)+Sf=nRT3}( z6UZ+sVII3xt&ASF8_unL@90dSpi{1GdSw)0w*Z};<&?}!8FP{m%ih2Q8==TViV>G)9#+pC%B)WTIy2;l@+nz+7IdNCJgnI_a939*mDYp%h*{RevbS? zcS>#abmD5qB?&UIk93lSlmp|DDfhXv5vG~>&x zv+`iUCCfWdu&vtl;$r?<7F%Z5iK7%@bfxH@8#Pnz`Gm6DF5q&{DKJEJ?_i38ilb=O zhl`23c_pnZFRy_UJAOduwM0GSMsgeW$^k6#SGm_dmG!1Yc%hO_PsaH6$!ZXbC^hXy zX&`CFs+{X*0gogb;E^;(F>dx`kamRjjRUEp!q5WB%>@i6^nf5a$^Yc{k;F-rvy>2V zO6<=F-I>)9kc}nGST|>>uUCSp^?d`HKK#wIn%!SEPjHhn_M{84QQ`r`$u#b)qV>gx z!CVe}@nWAdIXoVj$3x2J*_h|oYb%7?UfMuAGP6Oh&Y-+OP&1Yz4HGMk?J$4Q#<99X2Db~;t^(uy0_#Ct(`V}XhGGaOFKi>^JQ{pNKd;t zEl5v8lfdZ62{Zql@0Tq{(?5SSnDl+2|3+tbey;+dV@9v>6HYvh6i!p*Q-9PL+$-SK zw+`s-|EFhZ2@JSmq7&SyGjTx!; z#Z_-S8lpt38L6T8#w-cE;3NX5*6B+Bp(fTu?ni4*O|%=mV|Wnj?MHm_R24$?2iIqjAn6&Zx=eAY2> z<)*J=S4^}hncZg@V>q4*G?GLBEc`N$7xXN8KQ}7@vS>M!0x=la=T4CV!O&aGt;0Cd zE&GJ@I8s#mgvB`0PDiTus-Un0On(u+Xded1wMYL)ZSUa%Xb=L+vWjmxU(`X+i|m;* z@v{WGQ8is9FJW)OP;vT@V{`! zr&pFA1=_7sA3l=ZRFPBxcc@aKZ~qh}9}YMDFc1-Vx#C~E;0ApzIBUXd-HDp)Lz?xB zL(RJ%YWKvx&UCNRXIQ3GGV60Jdp}pzUa>W^39( zahk8J3&eSDB2#9J#4FS?M$y8z7hiKstuxYkP;(5pQSB$O9bdJJQlKA?_VL0GKU%0; zgRDtxYNA;}p+F-57}aQ@xN25L5F)>tS}u-8V$NKDF5A*v__?Lt&wJEVHYCx`(TKCm!Nzh{67bSiL(ikB@m`asR(f>pW?fqj)nEmsh-`Q7(l+gsh0IkN zQs#m~$KL<`BU_gSN#rf6F=&n+ifz9+Tl2^~u@D9WGSf%8!xcYSBYnl)zzJg9anxO; z#O=-k6g55oS!?{)<>sA|C05b0(zp z+H`vn;qxUT=WCBK$078FGuW=DD+X1WO^7c%C(#PaWppMuLoT@`+aGPeLCB`4NU!H_ z+Wy=nO~U2r>+rwfed!L^i2sQ9(f$qZd;eFw|Kop(_n97a{u1vK+`pUmXa@XpBM-AWgI5>9T(GY8WcH^I zHkqJdt(PYV&ob>dWC-yfu#mj>(Y0NG{6f_iqD3lL;yitU*(?|Q13+=l1*`#Mg(1Z2 zFo?;a^=<3^o;4W&_`RziVY~Dj2!Br}$ooPEw#?&GaF`CwM#!g^6Rph?a@QF9z}3+2 z{)5B@KW`_w&9K8EY&~jaJvuKJ*Kd<@NT@p;HpBQI5iwDPKCfarfn0j6jbBO zuU};_jA~4R5J4`Dj0X`$4+Fg%GdErpF{LSx4gApby{ylD`U*V1@xE;OKjZze-*}$_ zi1&fw{&=!)Vtf2}XiRX*z+80z;{L*QvHa3QOnf=~+iBW_h)P(})l`&#T?h zqw_bl^Zj$JDp1GIt_yXcxwDpk_&&_P@qL#2yd(^JS_A5WSg8-Nk9a8B&g!W_iL?_sLP2-=!I`g zJ0o(d0c6p}MBgV5Je7}r{6pOT4}2e}X?7&mV422EJ6B!^oY8J&5lVd9(p;MNzcR^& ziRPnf9(W`9k|J0?ZYmJ78XKN8kZ)S|6lfS;zoUxjHzcaD*zk!eW!T3*YJi)Q4ngD^ z)K%-?2G3y``BWxBOW+|@6l&@QGzL-Orf}d6aLA7nIkV>|W5ri}U9|UOX;<-BhE|-t zU;vDv=JQ&mMAB}DnE7Eo)NKdhygT;mkY(9m0=v1A!tk2^AHc6=Pc(vLN?q3CLfQ8j z(cHJoyua77Ywa`OUOHJJxtWrOE=x6rIOnCuY(C40CrngXO|{G&MFv^y%;@{F0i}~K z+_;x&yx8zX!nZ9v9w%CJ)DZIc0ZcCZ$NCYbloWac{%MfopDL!1xzgUUh}d6**TyBU zG6V=y>-(U1hwQMU=Eif2rJ<c`94W+81*(3%T?XPj{(htY=m(s3amGv`|pZjnzrpI=4^Z^J!(vjsDPm zEs#HS->isG(gJ4#Hwv{_0Z8{34;|u<(OT9_VM{U&j-I&T)eCxff1J;@L=ECjc`4;C zADgJl%XAt)9vIo#)9UD-X(euESe1s-$!~B2-1@A9HB8#Ha!P*Es@qzMSb{F)qgOAh z9NY|NPg$D?QOcPe?}YZ~n6YpaKl>*Ux>j0)pM{r^obog5%GZU*#vq~J`NIc+ej~U$ z>+Fh*+&ePa9gIgnEnWNunrt}y9(Jk;-t(hHNJPVdk!{b`OlGwofW{9l$|l>7hGGb@ zF764N9(zEFcX8QC#?_dxMmV{XpOVB?n*=sVQN4UIJo2^R_(22IJZPtU#|kkIOabSj3|@~`?^?gVd3fs2=}G`0r#!`!2O-gzrlTxKXBj2m&KLoqNHM&wAvm-SH7Ee4@Z>JaaDG3@*+#Sif)fD(pVT2;nI7`8bv@DQA^+fu6%t zM`}N@{y-Y0{ObSq^d+P8)7spevaSG&GjV@x=x0S=ot&4!r`PYMII~WCV=vr*O4Zy! zz*y|);x*YrUDxyzaut999AI)JLa-Ef*N{E;{`_m>{i)M}kEH6ylJYzw+D+X#XnZ5= z2Q~q|*#^aY`(j5dzRe`uFtJnaE=zRrENuvR6>>%jOPggasI=ol^#dHZcu0_W=$jitS`t(d%m9C_31&d761U2!OFfu z#ucf$29qb|;5BOyyif~0i4Fw^*ecN7cH2F{+fIKnPgkO-jj^Qyl*bt`U&|$Z{X$qB ztFxsAp=5pY6jWuK-l!Edz$;y^rfLLuD6T#`ECIB^4J7%05Uu??mBp= zVw24Qqf4cvpL$5C2JHqV$V!`hqOF$|FY^T3H#gV_Hp0k7k|{>m*A&*uq#;o5gfTJ0 z?WPwUgoO@nP?CUjsz3lbIM-UY^K){&Da42WR~cd_xNdMtD;gO+rL6#KCwG;WFBE&J zHDTIUFG~OuDgF=odE}(-oB`bGPm;2B$hI4Id1abiL(T{jlXsbhUcM$j8o=@L^x%zd z40Jpc@^W|3al{GvU>tIZARJkOmYnmbT0z^cX&2T)(84Oid2L1p1UopLr3%0Lq*bVI ze;PlGh|X$E;=Y;s#nlnDqG;^#M$vAqk+c<_v17vdI64C+$wJS5HZrf%6!;6wp(KG^-09kUVpPd#OtO!|!k;bqHYGyc*JYoTh7s{Bg<-_=U@uA*N6*%uSkm|`JAWl7JNbA*v|G2c_V%KhI;uy?gRkn=%imp^T1=* z1cO~uaK?#mTF#~ZDJsskk9~3vl}m+fkz1rk%X`<@6Bn-in#w zUREIum4c)C2y6T#@Z?>vO+zcVymTP5L^t~_D!48v@5+gn577R^#PPev9?K?gz%qZa zN8$^n&`A@{6KE1CK~lH<#Q@;ZTFJF|t~(Eqa_A5!8^kWS*yI!a;XV3#Y%;9vcbQ)T zgrhWXPqe|9bf?#tFz?eScjV@;fZ(ni@<%!{;;RI3z9~-xi8_-?QSaArj6VG70P1BYB=vxRL zaZ`1VF>+l+L@zpgp7=E~kuFy35x^)as=87v|^-Boba>Y zk)4v$a`(u?YBW*&$WMs~Cb0(0?BE`HWFODG)|acVL?tgD`}|G%Z9RqdoJb&atv*Yw zDYGO2!9FWOVlp;mEXQi@h-vzhthtwEW$Kh!mu)1KB<|6CaGIBK8%Ez(**;waZumxa zg-$Bo!-p3VcJtdFmF}+Il(nvS7lma{I_a#fo6upi1CPS-E-B7QipauUWwKYx9h#m2lx&j@d2hR`UY1*s%vn=WICKwOZpLzvzWI z>!>WwIDWA&sAKY%6q#*!V0Igcfa5XtFX^Rw6zA4mHyw=RbqD1h>l*O>k3kVpKAep(cQDoStfR7YE78;v!evFBHHVw;f@_xLh~RC|+w|aq2|B zbt|b~5w$R~oQGGbe7~G~@ll{r>h>LLKb$5@k9Hh(n3^MSt59rK!*XGG6)Yxvv+&Cs zUvu!zn679LVZ1)eFpe4H(J{S^?g+O!pBS+-+8w69ErHUE-z!FW1?~3VCb{mrGqre} zg#WA*8Vm&mCG{dxj&aM>r_km=-eSmfb>@STgyT`-`y7 zDPCVA7d=+2$jVKA@m-)tPEJIY5xuji?yXsO4aApx+ii;rWZ!yQM5m>SL+c*I2Xqac zx)qBuJ}cQ+lh{d3TT2?3i@~BSL@<4P?$CAXo+O8z~Q;4^5giC4G1* z;6@Q|Y!g>h)8>Ubt!oR@ZfA@ZMNJ5DVJ73*K!oV`$6vozMo7Kxn#*nbS_&vpPdAq- zm1p9!_u_v%P+3BY>b-9@U@@>h#;$0dC(O4=nA&lTrX_toCRB0D=Y@hYxv_2C|Jd%QFyd_&IR5L1vK_FzO5?Lp=QfGgcP%d0MAhPPC8+p0V)TwcgOUIn&e7Aqk7Ad{e(lgJ5gP7!^xDTzLP-NDX21`VxWwvWxK1q zaR>UZ8P(fe`PGmi)L>?dvVC~yTVB;qpCh)_Pf3E@0UyFm@8cT=pK?kgjcQsG!H?gc z9`+NK(uxas!M5?`^gz4vZkT+tv24-^*gl)@x4HJ%AM5x}*n9&1qLK-8XEy$0RvCF^!5}o1^!w$*eun%M8bZ*AL;2a!9ubg_Qb+;8)Av3%kp1d)9$H%-US z6&-I&o7w{U6)=}iL%IRmBakl7m)?8+RyFVUHz@>2QbO;@e{~7LyF&H+OI805Px_iV zWVgbM5_$pogcNwrLa|gwNUGr9XPcmt@D;gRsZl%_Uusx3w@b82VGgSPG)O8bGfpUs zjck3L7y{XCRr|o(*h&rAFD!&i0W1i@#ndn za3n?$)`RMx$5Dpr9B(ICwi`$n4xt#H^GqOM+|v7eW^Zj~2|PauOxj?;sNG2|?EHbD z1T;rUSUXZPf|fk7v+z_?$PPti!9y{uV0@3(%~A$8dWUo%)~Ad3JEMdFxMTPTX4gK! zA8M^&jWV<4HA(VWhfB0Xl`CqQS*y-!w11D1pPm#q<#{ju9wje;9;mXm8AI9lv~MjA zCsIV$8H%vCDM?{F?xI83r->)Gk7)9c0qz#ab#dm(&ph|0u{=M=;?hleebRv5q4LJV z5(|}8EZK-9O78u+LHPqo;I|OTw*9`gtM2U?kVGN_g~RSR@m|e&1hMwhdjd}8Dm(>O z+MHhAfqro7%?%?35Kd<;Un~mCm>VH|~LEL>I-c2NCUdj*^bsWSyP#sJ=L#4rBWn z3k6&$94{^?%xjN>dF7qFGSbrstV@#vzbfjKA^7g(!Az6+!ypf%Un;_2Y$WRfs0UuP zpu75m|7?WU3*qjnMcVswd*$1xrgM;AL-j^t<*%JM7;tZsk*{K&A?Q+6z``s4Hh zD*4e7Sjhu$Y@{l-(yqV$<$y#%YyiQ(MEQU2`2U#T*Ri3BQLV5nYF?TBR(3|@Z-iDD zDB^!pSF-UV_o(Aj>^~*=SI>%InnyLOBQYZxMKNjv%cHTsU_RYFy&6S;ok%61=EF6A zgf^R6J6mAl`u6AP4Uu=xtX2X(y)4b_=820yS6^AZYK`I(TE$(aYN-3L2{%$1Wxs)lD46-Wp$oXtnaK0MT=J6B~}f+ z;CSpJU-nN6N)ml!B72dGkB~D5u%HPStr7tVe($ZXRU8gB%ykd-zHUHja;#T|GmJ^_ zpmV%{1b>WFd6Hr_Ai=*;J2U)|;3x5&&`Qb{4%7TA!5?-80!Z+i=T&j82@pJr+fGUb z5{f3a7XQBfWAz`ujX(pee)RXXEI@*v{3F4CG*=||uLS?kzY_dqbgQa=C-?zYpE+_u zQ5x=#)sLr_AwW@z>TMc+oGEzhF@s5NJarH1wId+A|6#j6O``c-p*cS_{B2HYB7zHQ z`nwIZ(#^L-d>!DZn(QBGa!UwOFz1;tt!ZzLM@_;K#m8*Y@ISgVHqzdzZ}2U^j+}klWiSsHOViu6*A4X62Px41xDXY7{79+7Q9{p z+arZ>lM-e{9pKr&{hsP|#7#vem)YcF4U={Iq5q(f!_|4av}P@axNbrM99~Urvxyrs zF)N<-{_?We^+IxyN@Uah(|dMI=&aTp6zPthX2z;dF&@z19}qxE+5C>-rlyw`ZKCIn zbb=Lz>h=?6ho31P%;u-+i`3UNRrX3igP(w!Ln{(!HN}LQfj-<6ZaYMP6Dz{`7f2i- zkUvU%zb3_TNUj;2{VhbvD>2dVPuzmZq1et(c&`kkR{&kYKzdB8aBnDXyEgLeWK+QG z!EPGPKo+uXE@25S!oS;-jXAecR&l`}K-B0|U{2M}1J^C-x@X52b ze;WL+8-E)71|6z@8vJm827m9F+Bk)8y6>MYzdRWcg!UGWP)VcDpfAV+?xo+Q_nXrt zZ#V?x8Ls#p54cg*xAf$Yey*66Cc)Jl);^}qZ%bV(la7{?T`}UD7d4;#o2%UrVXN=k z?Y9LGy*D0&%G`6cwljMUAox3hb69pVN4A4!It=tyu8&07C;x2ujWE6TS?H4Oe{cE1 zkgcym6uZ*ZSQ_O(11bQiPa?cClybbbC23sZZ1Z8NurHy43%hwdZpFQU(XBD83aa$_}mXZUn~*U9}pXLVH;D zi=v+J0cgjX;Nj=s!Faiu9Co{D=U4?|fYj#{`9w(xb)0GspQL5OPZ|wTa{}e^tIB)c znon&&K(8|el4Y=^JJbst>$Mw_UPZOP6QAFUZ9z1Fvlh4#R9Xqz9zL=L`wmU_M?iBf z7xa>#db)B%SJVDI#w>EhA7i2%tJJ~SU^KX7M}u2dCe7qjEHo{*UZ&60iQovS#Q$Rp zVr6-{oTW+uf->d7tIxTdVZb@S6S~|~6`C4^aWApD4f+wm3!mPpxNa+PoG7e!BePmm z{!Af{T)|-pHlSbN(bm({6%CU9Jt*9GK4L4f(EKyR!fTC~s~sLuj``mX?}A8zyk z^`9-EZ-~rVA*j}%(+bQQ=d8@gj_KJqS|mP%iJv~t&q^Z^UKne6o}Z>I*J{w1myY@8 zM}CdrxD>o|>=_5t1WqEm^%io>NTpdtw2Z)2Kk%*5`Y4Ax60&an8AFn!Y>ek2>+BMr zsSaM>O!(RcU`v1__oJBKM%2_p$O}lZPU359_@P-ZBU$--Acw7fHhxv3EXBCuE!K%u zqAgTSsSVk%oBP78BH(?=L*AXG8e$IuMskS*xDFYaYpR4tvCIv8`^V|uzLkK(H1PKT zbzI2rly5oCiz1(@22ULzmEugtQi#Vpiw81*f=l*+4a@5WjktleNNtt?hzav&05Q>= zk~`^s7P7zTv%5@R|M`45R%CB$J%%)zgR?NvRL%98c813X%)nW8D5caIkRC*zhiebP zQ&+nks1G{PCHt~R<0-V=&mRpE`R+fx$@J4E|Lt80t8bByZfHHX9G|j?;3eAaSB7B)lu=+?BNG+)P5Eu@B8}p6{Mi{<43Ai zRqRcidwt0uW9o735*c4H4v9ppq+jR#)s|d#miqXSgh~yN60F|cJ>d&ZWr5d` z-_DduQNATc=-!p9FB()EJm{nw+`}|dnTXX$DWRW57Qo}fOMJgYNr(sLZdZ1B(ijLm z&h$ZNe|d%Nw&hNd08N=kJphRkL8&=?%=ci$1yg+Yv#3sin~ah6b(sPA6{3#A00{7lTYeF4 z8B_lKR`(I$Czb;_v7#`5zim?eE5OeqA`QX@KA4?_(ua5Jdu178AY@14OLWSh^o+Xh zSHCvnw@xCyuZZb^Zzx!y%`?lp-= zg0gMhDSut^?wP-t{x^OA(?3h$p+Kq2HO4sf*s5*8{S2Cw%)YVx8Sh29fY)3*1Ky-( z(qXvo0AmL6;gjNP1MGYHb8R|dHpbIhlON}LMIk;DlDqfKeHZ##HjVeJgQG*rxtZuT zO>&ay1H=WSp&y@Z#PSOTT4tr5Y4Kz{+U3Mk4HO;L+^r((V)(T<8U_Y_p#pR9q84~4 zIex0kwhV-tE5DSZH~mQRwi7GDkPX({>G=Fmaov(z?GJ`MNz10+h}5ZD3XTl&H`ufY z#RfeNTR^Z7=$o_ag9283apz`-%~_44i%%dKPnibv27TVGw8mK%B?y%gX9aLY2?GSA z?SbI0F9yyg9`7TW6SAo;hjmKe&C9g;#cN$o5VdtYC0bD%3?ne~* z6-@-?779O(9D7j}H`UZ0xDJxGq_r!%w!e`6K_D4P*4j2nnEK9}3&WZsIj5eqP-{Q% z*1QU@o$$BahJq?Vigk?a!j$NvJPDaSnd1s2&F;x=Tg$kbzQ`1q2AT^W$tm*$=laHkwjA2SXsI9DpA}ZJIs9$NrI8VAp#Y>$wQwugVio!%2BC-N}WS+UaNeccGEn*NPhdD>nI^OUfIG+jz4ri=}j+7Y-g zy$*a$eIp_r(+bHcva1Fj;xyLXxE8KKzvbs~+OUf87l4zpD|_1cMpVBuXajQ&nh@Jv z_aO`o$Hiu07k6Vu)SlQBaPwqG*7h|X&eho6&h(h`h%BXD;(zHx^1vzlO2u9Y2e(yA zuF!ecSBZ}`nnj?#+D>gt((8&U8!07m8rtl!z*9$SnrZXNV;v*xI`hbQ2wur85bMJH zp!#m#ViR95T)R>Btrp~_uW+rdzMF>a+GcRo+m%SNlwK3Xzd=*dGJ~NQdO<%sh2pmK zbasjZp|2IxrhlqMYsEfe{5CH8Hl%?t>)u=9OGqfG1B#P+voGpGp-P=;;;iDt>UU)$ zf+TA5MI3QYpZ)}kvGe#k2HnX3wK~=cit6YCjosze^~~(2{K|8J7)N+L@8b}q0$K?g zCbkOqTqE;!%C@w+1}V)=GU9o(l?@j$$Rq`*DwdOwK$@((^0#&nJW%KUb42rADi2Z{ zSy-RB3wzlb&VJtTVtn2BMiHOoe0SNhhZrqwb$vtB=)u)v!~-`EQN*PpZn5%Chb%aW#Qed)_PdP(&TF^m=-$@H|eJQOZO&Ad17yU_DW-ccUL#+$C4siN^ z1^E9g_<#WaFW0YsulesSlC9(*&B5K}U92p}U)Hz(IQ@2)nGdIrQ{Oru@W<(w{O$Dp zAO1stUp$QM{PN#BeMWkQe@yxLqqW|y{jZ2H9KBySd8`cP>|;Pl`Egh7F(J9cPr06M zn_x(tr;f7hWn=p8`eyq1Uh)hZCV5FRpcYK=9T6IYa<^lW4yn30i8*yM} z9}8ykBm&D#N-r(O6#FUE8BC0!-X_RC2m32X(lNDn73mpnhKe_wbW9?MRIsnM@Q*}x zmQhT&(_#VfK#`Ot{s(g3ZUp;NTD0GDa%doc0RQ|e8q)MJJjx?Sfh((+7Xq|Tgs=}n zm|H~uM}VK*-4>J^3ZBp@P2iN0(k+s4=&0@r zNPn?Iz9@bYog7@c++Xtk2QC=T9jhd$>ZeS-fb)UW!tP@fA*0nca)HtpKdEFV*XMo;?+Rjmp1_9>RU zt7v>hMX($25rwP%=Oc<4WGEl}Q@ipvARU36Zq0S(Q4IvIb$`6MHyFSjv*Febxv)fJ zDADj7`Hb@)0I2UE4^wz^23f!(SASG~z#8ttkVYODVy2fOv0qdZLSoh!^8xic|7WP5 z41oHLpqzg}eMEsBIU#Zd0O`5!El3pMn|>@i{X0D2akxFu)gP#j9r-^(eIF~m zPT+Mfpae3zq{10Ozw={CqCnpZjT#42^>~ABUgjF)$UOOk_On62jdIB#lLF0)KTzLG zS@-S_)UU>!_)cIJ(G32WYSd$XiH;cf2~LBBLQ`%YZqB3yY=1fW^PnCS+?PVrj(90Q z^6%fUZ^LM`4nClM`%*RCZx{=pB|z`2Yd8^}M}P#lO0u^I*rf*I<4LrqT<>Pk*k^s~ z0+a7C3=@F`Hk2K+kvwjY5pTo>=vWYZp}@Pw4p`)+MgXYK`d^?v(+%%#k>n3Ki0Ku>ClI6)JiE7DaBqNYmg=iRHiNe*N#}yrgq_RU z{;bISWX`TvS1tG#)aU&N)Ykz({pFqKv0f5+Sx^XA;9OjL1dzI)Piz*y=cmUJ>*=*S z5H|o&f8lSaKlR_CK51^_nBk_+GH)30l#<2EfmDJwS!@5hpcz)@Tb-pF*2xK5yQ1S< zR2;t~_$?Zda!R-FUY=B#fc9bZOVOeDMbyKF9AW(Y8Kkp9AoC$49z}yxaZxYk+N#jR z)-c=G?OVt1xoK1dDi89^#4)pFRdvF0T_xczei%^r@TZ?I$mmrI^zK<~J5@)!g>>qcejQu3p#$;F8$k^QZmvJKoW1U|X4*4NTicLH$><$1 zBhZPS;B^mI>vbG)OO6V@7Zg~>{YJsz884&mH5T@;q)uH?*LA} z)#1bG=K`F5EFMltm-mmcbcy@A;^LC8nr`Ll?w?^|gegAnH0XyAJZq@B9t zNMq5XvsQT09%sQ3U9?^9=(k}Zo~vYuys(Tf!iXqg3@^_wTE4IG65Spb!D2}GlVhpL zHc)kZZq+HMnFW7i#F3tM<;>x{7}?QCzW10Xk_Nq4aQ^j#3I%-tgW$W}S=ajvnsv@% zf|!*2D;mVv@!0I|6u*!E$V+M1IKdK%Q=W0s<-mPQ2YNj4)EAD8ZBe|3s3fnoR!+-) z5JX2m$VK>siy8H*Cu+>5)`d0gcHD+!l)H zWXSXT`H|y!2CYl563Zq#2i6L+VE&{xzdIcLJCFcO>bDb`s)&jZD2PlJ9YIs++!y{x zZD)!DMW53J-(x%PmSF=WEso_$&VZL@wN%KjloAK+_ME0lqkZ~}?3`H@r!$5@=?rwP znC+)S$0{O8R*NE1{Ym&V8Z0>HqHc_`rDsdCT;!&Dsrv~Gba~WOKRrVr1XSgo@06+9 zK2ujZp_7L=IMkCg>53QN%95x!%OpGSx#k(dhwg}(qEbKXQJAJg6pjJ=eLC(X3EyTH zl8mgKryDtvoJNl~B}I1k3<#I>2m-t@tRVq(&e8_2a3E9W+}x-1wP#Lfu)!5m5VB1} zqYvxCV`7ZDfIwXXlx@ zy(%H1`dIs^?YL8-5fC*?tQmJTsV{*@ZI=yMF|X^Z$;AnKmW0QWzN9rD5h2WPYWy^8 zB}~%7!enP9#wFZOcwcPONlz-J2_{-W5XdsqfVzNrU&Ppxnb2GYSDxzaG;zR^L-Sx_ ztQeWL`Vy)a!!bi#F!p!TtmMlF)Yq7$mR-}lTj0Z6EUt_Bfcgaujz;ApG+}N^!q+%* zPWLIpw1LaU4GDs!oJ?ts6wdqN)t`l%c3;<*=l8#R84u0T{N8>I?AR5npBfOX0Semxfv7$IlKRa6sSm^c9bY7}M(4ogJBS;rtJ;Cn<@}C* zyd<1v?p$qc#o*|r#piA)3SO;&4I4LBB1eTf3Xdc3K~rcT{jQ#S=AMMbNG|B(7B$FM^B zQCDkchxjza&JT?CUjjmzorFT&ejk%Sl_h!p9t9qgAAODZc` zAh6^%F&t2rHd_$?i`4&xBCRIVYtUrVcZIgVTtfj~SPcwl@v8u0X0}2;-un;NOhbPs z`E_5%f9Fv62ISsi0;oR1AFBVY!X^gk@@{3_cYzRV6Eie<3gPnT?3d45PDtvY?mOYX zTbUH$L(~7mMEdv2^xp@5XfpRGByzLu#^FlwSx7yKl~29!qZMK|J?UGasO}F_oe^d_tgRW{%=XO=sydo$ZNn18lCm>HC1GudAnPR zr*+7JQvmF_%s-Bl4-3e)_Q}l@1KwR|AFcgjYOZBZ5w_5|2q@^CsO?X zU+GLVi~WZbe=>mT|38=FPwXneK>qhspOK#NAHPhka4&Rbmpvk)DYCG&<6p4uXHF(q z)0YGPU|o}PZ|cEq{M}nk_!Xj+E7OQGbKLV*IY`OsNZiATHPf-;ZHRBI+jdta-b4Oj ziIjJ1A{ZSf?kH%|(6J+)aAiU?%{;gCQQnM)m73c6?fP2x{VFEU(DW;41;U&RGH#4C z+t@ZjaAB||xW*IZWhAKt3D>icFfhh)qp6x2GTCR*ZLnw!dlYPyH2+Fc+VO^Z_aLUx z``pwp72g4**g-f|Nyc)|K_YLgz#g}XSB%gXAf(t>(hWg*KDYsc*m5@hn-E_hRohqq z(DxEyzcUoy)g(PP6ra~DxEqSyXjZ&j=*eG#>B+$-^Goux+1B$*!khXH3KZQiKF9NG zjLJ9c2OHJ|Yz*NhR7EQZSi)l;6ds0f(VpTyJeh}8*7q96zp?)OUs&Jg1M3s~7#)}W zvAVL$(^{VFO0t8erXO4%OqPUrgB4VIGH`#0zTkO z@r2#21SQEK+^-xaNmUpD;@DW3xu~LH0QE&;$Bon7hdcZi)|Z>3LI$Mxfeodu0V#e1 z{(P?5Br~DSNSc8yQu43T!r(0w0ZQjjpz{b6E8_!(s6*!dsHGd3^9@#Kr>1toIqW*0 zEN|TXb;c^LfcY}DK#{d0$1T8f(y{O)4JUxMeFc66NPv54uSPJTedRKh=V2=CnH_@< z?cV}&!S6X={Tb7WFM3THeu{bRI|#=2BVKNdh7yJesT^6}fh6Z*u$MElqaS1e__Ls( z7AT3?AU-Yg8ijd^PFkgJh4ehi#Xqe6mryTDg2EEj;-obkwX7Ww!8TOxm-JO$X5P@_?uD1N+GX*ZBABY2ot>zq#6E<=!s0VE>^iq-N%L*@-xvzv0ca6 zL*L)WPvI81;=b1g{NnMPhEzn1YKV}qy^ygfp`3B^P)>JGiJ$P&Kg1wI1 z=kEBUKOKJ27DSGJP<>|sX4{PK*^!CPZvGM=wRBM@5V3mDlV&8;15j!3*6D-dUmIfY zId1*Y8tP@t$$>osq`NNF;GcT#Gl0J7;FFs#H09+01D^4Kxj}66kCB_J$aYA#Fe+Xk zYO0qe(_?kt^H_MYc#bkZNAw*yhR)OKiDQwDaFY6`00$Hr2P9gZjWl&95BrXxMOu_@ z0UN@E6+hm>bs)6!p^5RqL3S>CDT3&-Mt!qX9^i*qcd+U7T0dH}ItVgP>duFm0-FVN z_#u$jB^);6qFSaeST5zxO6&`1M89{iDL)52)~CKMaDFGJ|~Oxuxq? zBkkFKAUs^Q66Qa`o~KShwZwjKfqT0==_$xMT&zY}0Ma|535!g}scxag*OyQR5wj&~nq6R_#i<=;iDG4LqC{{brO&+2rF zqVt8Db+MzKI=qaCvsVtNE0-#6azN7n;c(pJlUo&$SA?u1kJiIxR|odPz?->+j3C>b z*jP~Oerq_zsL#75;1bRbWPVM^>P*_6QqS+@bu8U&1?IzuA!UxN(`T|D$8C>(sc~MO zElV=_u!9YKOuATm@+wb?Av~Es=K{5%ppax!@lVL4vVMCfW1$bB9E{XT znL8z7Fjn0+JZdj<$s0Z-C@*)?5Fr`eYNFElaQgNswUj)MJ0rwwjn-L$zGJtiH%ft+ zMd|EYM7Wis>SZe(zwH3ekIn&?Ym9qnW%Sc69iN%iDB4AA{9DLmj;_s+$$C{%bo7l{;$M0bAkLmo!lGG6Tu{x*hzDgwNTeKE;w!qZ z3|WmUb8pv|aIC?NI3?Ad#2Gf;=`7ZseO=`o?QEaFh9?kll1*Nd>?*MC?4oy$$EG-% zF?}&|*mkz{p=n~es2B1jZMjwn6D4pRO}z}0I#XaTngT7Oa8Yb0U5S=q@-Owz zP2tchrHQB3QfUDvs4D7!ch)1>Xq=ZsLDsR}tK^?{m{wTD$!*Xy@E(*JS8{TwH=Nwi za(!N6fHmKl*ELiT91ztJ|24}50!A)mA3}`G&La>zPsdGYXUB)7{du=__P0o9IhMvR zl_So?sn@dNecW%{)vcz+>F{vZ?Zly--tkQh@-jjW6YLVi$ZIRwcW7_@`YlWi;s$;0 zO7)llJegCKy!r}piHEWsWFl>pgrl08xZia|wQpDr)n%<_7?Cz@_-r1j{fn$h+o05` z5M`C#*(Z&3&`MPp6A}jWJ2mensA8L<+Yqu{#=I!E7`QN&-)83~EV!j*Khf=QfF!)q z62o3^+%(HQ*K*@dM`nD((}vg>bm=&!IchQ!ns^D~$~B>q^J-jF7lCFwQC{S|+at-Z zJWN8TO(6l{h8RF?+Wt94i6aruo7fhu_C#cX`CQm*Q0dIeMkSp#9I}bTKI(_A*&v@44as(l(l5R>Hb9w$UfSZJK~KUW_xX2YcZ%`k|~87b)w!%0<#b@QtXBBy3Q<%c*~c>`+R>0r{M@%#Awk{kjot#JuQtfU?6KI#LkAIFs~#EPI*5MZ)Snv(MO=87C# z9=dcH@aXu3eQG$MSw+Mq>a>c3n%o%j(}naE>*z-IpU{pqkX-!1!W63S`gT5Z|M)>b zO6d=y)d*Dimd8l-R-(AS48=+sKHgzbRi&w|oM2Qnt7((Irv81IR6@yggu3nVO^vYQ zx4(@nLVP>p>#Mhck(wKV;jxhvHBD1;yH~Euv481GaHE4&(-#m`dgcY~hCNzY^T25w zNrqZQg!C3>0p9?ro4w$OFtHptu3j&!N=ucb|qn@Z!S z&c-KWUgd14W(<`ZC3ZY{sff-cqR< zD6zp*Y9_f@qrAJ%=QbZupZ}D9$vy3Uae$k5o>R&dff51YY@o#S;?`J;CR&VSDA*~m zgVC3BJn%ghANeD~kLsMbJ7wbI$ZG6u%@fusuxV zAiY2)a^-D~ofXmQCB1zb>YM1?Pv)=AYZY?z1^L#iRf>;$L-xV+g#%6c?mP+qZt&At z^c{cvZ1ovDu^Rls^^N~M?T~5rUVHYUtpHKt<(cm2um67MbNzZR477m6{$#0`|29io z?E~57Qf`T9-BjT zJNj0M*Z=2~**5HkjbAsEG+Pbf>MDQ%H~if?19r1gCHmL2FR_Dxhfmt^iIHGcCQXzF zP7)6CLE~z`HHuwIkowgikQYNE$r7jn$`F;r9;8}Q9uJ4;>!wmX#;(R}XD{~N(Db+( z^`;)!(g2)TgrZ!h9ugnCpdt5Q2lyvGU@%p26x-aA>|g`>f}glK=f%D`Dz>qQQ^XxV z*!LYjKA-L!0iRE#=Z@mGy(2!joBCiNOJ+fUOJ+4Vt0~n3#WWti-Em2+ttTz!;0*Tr z5cw@VN2oYG@~&XnjDQ6Hz{@lkf$@f1?~n@yWXH)v$g^94M>V#O*SZ+ch2dQ9ksDk> zX>vhR?Qb!wMYv=kl52t31(iO7O#!Z8f$ip*O#GLrydF`&A+z^kAiyEBCv@cBJ(YJn z7TABu8x%SjP923liKo4bQFBDC5v@ z04RMZZyCxb1l7lCE41aVM&u{^6p=4x=heCJx)ini?jy2#+HCVD(pfKQjFw^%M2b(M zwq}s}6-NZ~P&P3bk(VlGz&C+@{yNUcfCB$xYY;o2!2ekZIl=kkj+qcvB;3F@DfI|o z*q_Qn`?`FBDDjQnoJlpt8t($7LY&ey4vvQQT4DZ^9L<+F_@_@*x+nElIlLWO0g-gU zCJlbm)^H7EaVFh+-J(+>qCp-IdPVSp z7s|b-4g8b+0iiRZAOV<`RtyOlsIzqqKgaz+AP>ma5}p1;EPaM!bHA-X`!T2QPN0h` zRg&8s%q_{WQF<6BPjQeK`U;C_`DBown=1&+%E|iJX(sGT1)zY=nVSngVAj_$%kWi? z`MYxlJXOB>=Ze|*#}za1;Y8Jrb2>EhqZJ^jrn@a=ntXJTjy9djx~xJ$S))Hk%pxYc zdbG7!5VjsM%~{PL`Uo7yB>0~aiQUt3TBqx)3jx0gU&9}sgXVmEJVm@iIjJK05rcUx z3Z`;Rv6(P$3PJ@B*gv)6=&5&$Cl(c}R-+G4+=#r+f5i7Sm;(Uu{Ry}zku|}W@!1;P zoJV>z`RQZ*Wx>3nbcV5KyNn$i3%ItN%UO>*>Jcyx#+E|)Z1$j&AJqsOgtB+#itYaK z#OY0S511`=x#UKq!_Hsl(KcZg>|z>c72qV%+Rau-%cACKt~QFXW9P{#RW)j3Htc5k zge!u3Hz65(JK&+)Q9Fu)yJ*KOmm33Xv*SH&{Ek~o`H3fa1F!5BJ-8p-csTh6j)3^}QvvC_RzbkWok(H7M-R6dx(L;f! zSg6}b2YqQ?l$h9BVhia%@o*GmQ5Ubge0rZ93R!GkQK%W!~@4eEyQIq&aNIJMi7Obm-aP`erXAX-E zzhhrHuMb)#b8ri~KAJfE1!gb36V_2^*RMSUNW;#r2zEk;8as<%l`?GrDgY>pQ2glR ztAE9v1?9c-&(^Lh-?TMD1fBH9M6)KaNGdD_H!#!NZzsJUNuHQ>4pT+fYXfXS4_ER^phB^KwE zyq#4SUUJ0{M)l&Hi)jXH!!!=z4L;x`_X_B8TaW(UZPA@g@BB`9#IZcISpG`Wu1AAu zQ1I#u>82Vyp9qlSc8wlGh zPwbAY7JIzy^@7IJ;8`5Ur4ncAcZ0+S1zR98zNNEAW|Ge;qJM^#T~Ngo%q}H*m#?k%6M2qMO|)@}adQM{Z@%s;28}MPw~Aj>Z51&Xt5~ zBXi1~t>8p2_m0H+Iz80`Uqg;Nj^C<^1hHH`!2RlMT!dHBt)?+8-|8Q+Ret*B??PjJ zXYxKjH6A?3c{GNjF6z}Zh1Ry>>4w^^m_gyN^xu`8AD)Ap^F)bk$B`o(mn|;!prh-Z zAK`THR;#Ee?)i&8=-;i~2NqL%QpK#4bp$*YVOf~|v+QR!;lqt#m!%4-lt6_2Z> zT}REmG@gL(Y$Uh=GA4H6|o z%M*v*M%5Ly%Jf1WZ_ExBq$?!Di@DYY4T0oCaC66SZ3G`GB=uK=K#YMT<527{n~-wI z-c#?{;Q_5?)%M$ER2A4|Z52mQ2jhBD?*tboRCLT{Cp(lB=RkNWWV=YVsl^vkSgcOC zZP6P_dQn9eIp|a{x)a=UX&a_`q`z)>e$I;5=7yLYHylhXlD4M89=1g4Z*E=+X4wo| zJ4_pmaHO>lA;JCS0#^7d`{J_hF#E$6>4Ggrq8r+E?YMd zOn+vqC6U4EENA*HW*hfu72U0af0TE ze=~u45iXC0w&c5#d9%FH>q4$j$fejv5D1$GkwLHqMa`NeS!EJHl1W*ZA0uYWK_$4R z9kaQ=I@6zHSm_?IfL#$F2-C-|E;kS+N7LkQheS%6knkCylrd0KMIf)GCXiUOTfs*e z8{KD?l8NaBU!CcP0$|lA`65y}rJ_+xlwJHduDX8h!6+X}vX(p{69zH#DLph@-v={8 zD*luPL0vdADmvO8PsRl#0EJEr;Mi+H`YW4Br=Y*xxn{H;U_MKvSiW42Q=T}VGmH5S zAJAR!@;yFnnP=Q{boP>y)KrMBY#NY>EcTD|P~Eu(m?|?Gn*Ug*pQBAijq7JmkaGw) zV@+c?=*B8fH#zB<4?z1eUy{bbE#r<840r~f+0hq$UCX2fd<-`NeC}X0B*Ie5 zZBEZk;QC^oPqx}w0GGf*2UBcv!m})K9B#awxyuAEm6IWIi=u~Bm2B`a?CVp#M9kGf z2uIoa4n34HP{u}v0HAZWV2i+6tXsF?80J- zVu7!eQeMEV9uJj(j#*dmTRULaPurQYjOMH6cq?DTa}D=r2h;gA-IQiqbM;glVA;^B zg1mYAqYb$73)VDz|5yWPS;y=16yZ(H?8C|XzwJOfUpTA&2e<$Cxb(lhj1G7I9Wh5x z5au$$U$lsdAHx!nlFxK((9X~P@_(_we```vG|r)R>{o(sU(z$v$F5;BLJ$dR7i}(3 zVH%PZmjU0>yXeLOR*1@9)5naRXJVRk>p)1-WT8Uu1;#07%>s&g=e$xnhem_dxz z2pZrI32^)SuYX@DPi+it0sJEk{cL27(pCLov$ZQzDWck7N0gqAuY=0tHG5CJ8;DhZ09;N(Y`=pQ2 zYDznYfJZ4TMjww-2AD|(YXOf^CWFT>;dSl=et$eliGKR?DCO>dew1?l5uNzQqm*Sp zbV42BJFYRQ{pF%nE$M##v?|a-|8G~iW-bt>3^uIZ>lozl?lQ9BuO6)WeuWaLDFyHV zwy%Fx(AZ^h)^Sr%SDn7#AEpmr`)n!r88ub4EJB{DsnzJTq+{AgELJH%d}V7UT1`I% zq6>SB7WiGVIrPXyt~YeVKo!q?3az#Ag&^@hb@6ghQtf4<=G%3fdk9-H2=``NvPzH& z+cjNMEM~B?;i!4y@UMZ6Q{q01R>DD%pMH}@u`kjZJa?Ag~a7`fRon0M6*=myyIyZY^Tya!Ixqs7ffGC$KnImmV z4s)Lf4VIuZziOXIB)$Ma6Yu~-+7fUFd4u-bPOlq7*lXrH>0ZQgg2bePH=Gkj70M#U zI`}Sv^@Si?jstK%;y?`Z7Eu(nxxVlVHCphT*>C#C1%%4wV6@)M@q`<~A}gJBdEYD} zv79`RbTvg&-5}-Io zT|N%;*RJgM*J{3qq;xWtW=;uB5v%pZ4w?u}usDq@RGg#Y=_Zs|5VmI{zgVEE6HNqp z-~P{L@t^FeWqkJvDAy!d^VY;qFxksJ3DYvMzyWSwz4t1T)Nzy??zl~WU63@b+V2n% zNC4XWm<8>6U5?wY*#o@a8w$$d7AEW&YZkZnH=$6TE(!FXd?X8B@Xcsu?;-+%0l9ww zowy)Lz`BuSplBW6peqtPE90*lP(CgJsras5EbsdF54R6bY;<}diWG{pB-6d5ie{(F z_gVg=?(Mvhpmw8dL06{0-T z$KSM^ANk0D4Rq4?BoIJ8a+2EMI8*G*GFQ5E{1WVe;OELKUYPG7{-Adz+%MUJ>1|m|G0fj8&0w!63s=q z$WotRaAi1iD{5Ahe8|i=Q?PgpG__b_s&NtQJeXv{f=0a=ld1C)(h&v0^rJQL@Ex2X zA|VnKl2AtNTv?QtG}B_BtGQ8lteMqrURoljOnyUiD>XShcB}{S(%5RrZ!W^0u!rE3 zn7+f%@aX!Pp}-?0BX2iq--83}wVBXOO=Gns>F{$BXvf z=0D*_)hDL&LuTDcLRKdbw`j~Zfu*p-Z(3 zQ`6bx@GH_QW5u6}u}a~}0Xc2}Qu{VEXbG|d7OnmzK9i{1P!!460IvL?JCp%9^{RJq zBG4K^9Ri-cF~-`BxLiE1*?9+0kJOeq3`@XkGKhVmcz3ovEra%b{KDEO(||RJ)n;>S zl&v0TD2`$Q_@-Q`l+)4UZ3k5}GLuK^gnsf(=124|D$niB+%^x!Z1I@j%#G%cUlYL@ za>l1VQBnk@p}vwggMDGn-lan!A?TTkDl-MOjGveD#9%MdiHJmM{p6s5n!qAlR-~S< z6>!4+O97P~yd`;Ng*P8Amu$`w`__*p(vi?*!`AjLUz0mPL65l_|2tu1qOzNygg;={ zFNa9bLzpt7rCtR}g||%~RQsA3+r;tHAFU};<>)i9N8iV;5Bk{Cl;P{90oe76IEX58 z2fcXwvivycuk_QD6{{8L#+9D)RaDZ*U?2{?B5-VjWfQI6b}t{%K1oC3pn!jEg$biK z$Xo8W~zd9VoHG~y7TbR9BZ_Ao)QKJ+iI3$ce;s#Fg zGFhSCzBA}&48Jwwv4sqBF$%Ig!2j+vkhB`g{^D@wKAY*xsrVSOsSD#i*! z3~_EcsmcGVnyH)Yye|oQOeLjFE)yu`YRinY<^{n+ zUU}7cQPjaYg-rru7-*4zVp*8qAHDKqClGKx{b*C^Yy0rP)U(?{;Zh&mFAK$Om7Z+_ zl_29hbG2`z)~A|sY3+%52^l?o5kKZM(Mif&->AMmJW~h!a-&ZKNtsuChl>IqQ;L7V z=R08mO3Whe=;f%5>#-fWywAarDhm_1rIH7*{YjJ>R|_s*gLCM_+g!vCw%;BEWFg1D z8e%ad<^Sr%Bh;ow6t0&fDy4hHGP}YgZ{wi9k&S7VGGq!;i1y_Zmww4F9dUR4BMqHK zI41BO2FEw3D6st!t^{4pNGwxTL5S_7?wV{jgjtwhlkFHHu-R!PCtKT{A|G8zo?kt9 zX9<;D!8;sr`^$U|d>vYI4R%bv&jp(Zk3aGE3zRt)QPI6*`5igXNp^8TLvx!Bq4)PH zkx`AXp}q*Ij$Gu3J(wQ8i(X1W+sZb#C0)@f4RmFIcgZmRdZHS3et->qK~R=*O*CxG z5g!iLY!Y6Cy}vakS6(?Qo!^k)fqwH)Ox?(O<){tHv@eFwh85P0%U_E$0e-pQbqX-J zX0Hp0OHO@#v}#2|>sVKLzt*IDC64DRxBFK97LQpp%euJ;>L4?kQ{HeN;XuD;M%Fal z?l}}?9+d%j-){Fg(8LK1wtTI;m38GRWaox{*AxYURMBSQ89Le2AV=;sukt3mc7xDq z#|DYKo!##2{9I|WuRpu(#L!Ay++e&#?keDg0yVTl-0n`1nwSxZ?_ExP)%<*h(2wb%Ct`b zzz1W$w`xNtGvclCZ5DJBcASn~AUc9_0!KY5agB+`5#$xkVA7d0j`D=~0#S>33}Ql@ zJBL+z>F!-M?S(Vw_4vG;Dz^N%nN?s2S#zJz{VAM|8fr;G25~+;k<1~E zS7jmQd;0=UoV#@`{uHuLa=KWOySg>n=d}=(e`*W*wG^j8;HqeR7SdY#X_0(I+AK4( z{+5Cv`7;ChvacPq?0sop#r9>cSn*Dz?p>3M;SROtB0g(o2TqA2lMfNF9#_$6W<$KQ zh_y*N^Wx9B23M$E!5x1iHzaAFA74}r-)jbanLF+BWS z3eq&c?~#6k2{Et{E3in{i9J?IiJLK)ch_^_M$$I*kOA6LRnhs1RvsK>K9>_|lAlQk zonGVo{k*y*pO1kjYRMGY62G2oi&V;LFX)AZ$B@6o%AGl0MSmua)V(a{+7E(l{motc zi|l8Pu|@J|7S&>>)H1QN`P6;Hb3F%z=zQgchSNS!5%YZkZDmmoxI;4XqaZ10$*IG` zZ2_XIv*Fy*kU2l#beCrR>#%%zR?v)o&(m@21<3(%?Uq5`JEnarRt`2C*6`pU;Kg(S z5;ZxRozYR6?Nn|~`W5fkQiHY$=J>3NDVOiJT7b%S>x#$Np*_#91V-%Z0M_aWuQ^_L z(W6}HGNWkVpL!ytvjt2mQ$-pT(QP!v`<>lMx$m1Eos2T|5SG$E^!DLXf1{Q0uBNnC zi6M>!ZT}yXy;E={?AmS}+qTuQZQHhOtHX|M+qUhF&5mt5oz9;9uC@05s{ZvI{8c%a z$EkU8&u3g?TvHDHiHPP^&(6)zKVmQXOxRvud;oqlUB|1KXw`#Yw8qTpn2DO%W8$_I zw^KV74$(u0HKwc`kqA}n%El-@7A1Tl>sveL>D?-izHi_05-ce1rB7`V;iXshx#K)| zUsNO<1sz2lt!-j>is^t_quR^7c=9smcb*>ROdp>!DavKMNWQk*t7F{F-Etl3fA&VT zKza5&wH5#3J&UyP;)m(Drr>cW%rdSFo2HO!?b!DE_U+hs)o=kRI)`+R_jv()UNiN) zoqO`&tr1PnNBXjjX6B4ORFHnk-xT% z4f#BTn|ur{-)!He(UG4JD^QfYMUx762+$8o>)^SKB%jnl%AF^?vlK8&i8OOSx9Biq z)Hc)ck|NMKM~x8OXL9pTun)37w3ZS&6G~js?L?;fr4g*+AoeQ-fkt-=s0Uo7$Nb39QH#cE>RPS!u6#HTpWH=mxc z$ZdYlk?D{IrjY=;L`#4fJ~~7{HLdU+VJOf~(`JJPk(ualwvBEXW{@pk)djdEV``!* zrBpBW*(>Fhv%b>hE2|6S;l0~Y!ucLrJ3%W3vr zZ#-)yKAo=f6lq;CFlamb`8K&_UHD5rpKVhNuZ~TJ4`2Tk;{U$6RC@fsJ>#?ehl4JZ z#_-Dve?tsKWn$R2c1ODb$p5J5+jnajP^%MR$Us2eFDO}*s@~PzB;1~cr+9UFa1xU; z407rEcon~1Es$SRrXo;*hEAv-LTc5s=YrUwUS^k%3O|<0)f1PX?1sV$9&~#+rJnK( zzTVUP59K&wXe`~+Ss#9S*LqvwuzjO$;H6|tWB{%=P8a0(G#&^Ds)eNun=rCfp`D&9 zMjx4TP6VS{W*?lAtmNRVdd14b$K}e52KJh`kLGlX#DqI869SVi#Bm5*Qvf1{)jFm_ zds$Q@2>~qhhy7uotezmGUhx)qMk4@_?+(ebK-h4PnDyU15N5in) zCd=~0u3%FEXF-hD7bmY_U&pHNaU03ZaQ_VSF}nI0*Z>245r3jgtp7XEPXaRgJJ5HY zra58$XQ2N9A=nI<07c|%Y%3Jh zd-N%L)+XTOCh(%*lX44`CEo^gfz|n8GFT5*FX9B67Vj;Zz)22l$$_hMr= z%u9?@IlE=n(8#7p&TAzbTYWx@EKpEyT&}yMlzNqJ?{gz2?6;4uD>%hXEtjzC6e^fF zXO&?Ro-Izn4WH6k8el+mO7HcOG1HnNoIe7)Q!iYsv!9tAXBD@^N%K@qAW0HhTuZJ#$tSmjN)*@`^AGUO&(IoD=!BMfpg?mF-gM}1|(QX zX(RL?cAP2G$LUxZVWh*}ehT5-G+LyM@xJAm&SHkL;-g7SC7AtTLpC$4b=`cF4@KOL z>XMuUd%}qTSEN0{!t&!9r1g3!vwU21{Ap&u6B2kvF(BNSd+Z`~KJb^xQ4$&~)i z-MFec&oDz=;Frl48N#+o#lwz^(t8R(AA(r1_v1Ng*^?y^u+A50KO2=SH!JjpNucKM zk3W&OAQg8j*g>2uB<%gx>&3Vn}S$XdW~hiKeCC`Ou>bK{)(HZTa}25vk9QG%n)0 zLAD!-H_A*R_a$Dt3?u49WEwsydI}ilkGV{icH&z@Vbf{T+s0&+SwaO}Yb zQpMeeGL?f<6oS|Q>d2vjj+EsXe>&kkp7m{P3Bu6ai*6#Sgv*Q%1{_!%2lsYr{&o@|69E?u- zdSAIX7MAR{)4s0rw>Nv1)|NS$=>gwThKq^v2Lda;bm&60kW}qySBhUvY-wx|>t*4@hxONZy6w`xFervQt^ZM=%gZm`@ zJq@fW;jq5S@Vt5S_gnKc##yJ|&we9@m4ArCi%E|$re_?sv8Je2l2cKtZG`@`RzGik&v;YI2@+Ylw#dNbX8`kr zO~ziAkemZn^n7_sBa4~J^G{PqojthH(lX^S*29{l&f@I!sA^gV|JhkEq^sx+>iHbO zo1e};#k-$@JRUs*Y9?uzNx5dfqWZHgWEy3cpueX)+49q&4NQ$D0a==J7e%?zgR+qa zG~#$OyIf@ei3#0C1!$XAW{BsnsLvh@5j*;5gw?QZp3a?4c6)2N7t~`<9anEWqcn77 zhj(XF(V3z;?}nqgh_bMS=ZyJ$iP6`E@z%ZIP=?H4IK%oXk6c`W*^`2x-1*5 zifD0OdX%{9y0Sk{m=qP&NXme49kYZ1%ld#jd+CrV)#*tD``PpJLq>}w))G?Z>IMbB1^r7f-sMH4 z43L^b;T<=|o#&8(0l>kqUhTMU*J>eQmME5IO}DFg{Wxulw3@PYw_wIN~jR zv$U50#J$L#=PE%3HWSSvrw?L$Dyl(TRJ$7TZ9_vQL$-O2YY=;9xhvACGgqNYu9w+r z{BlxQHkdOHKD1?~@sU_(aV_xXQhAn}ZHlJsEP{dRJ7MR+hT2{G2;j@nRq|aIVa=2= zSI(%RUGbvG{aj0$q0Qof)PsASOE(4qj1d;|*Y*<3hi#k=XH|OPD2oQ8_jrZV`Px<| zYQdY(R>t|_g=yxnv_K8r2S$1{$EB?=^`o6Zn|bE8)ojs%sn^W2&$(HRg0X?&E7zqh z1-;mGqx_8;kT!GvQ7vs%V>GtsDSspvNw6wj0sLA}V*Qw+w1g+P19Fy)(W!BEPq3Q=<+9a_vai zfx_VPm>i#-6;-Th?|->#6U9tRYF{I_)6Lz_gupB*e{{Po3)}hGN9~3C{{J@lCl;|^ zXBM%LV#Ii%6b7d>M?9KNABzK5cg{Y;0d1?-D9OHt{RTw({5-p5ZT??x!36d={+}HG z^(v~AWq*kV0Rpmt`5y@~OEV)=GiPSTe_oOP=Pn=QhUuSOzTo-)-Q}bFFT4C3g4iHP zA9LHMaRGzAt!hO>{Dg0N(v57~Oi={a0{)#mWLnlB^{MP!mYw1m zF5Cla3(?TVlq6;1S}ks?Bucesgm|NqX!$yVhX3UHP2xae2kT1ipGqZm*PRO ze0Jd$qp`+f@ku+en8(^Ymmx<;0q^&m=S8KMMHp*U=Yi%$g87vanQ^3_CN5D<#qA2( zv7~Yz#mk(^4B4Ur{VC=s6m1hwf5qiSLQ_5k4ghiaxwRTW? zDJE*FW_j|R)rR5{4!Sr+%cq>pO$lYn_pN4(Xha>1)UJ`s({{I*8tnb93Ev`1;&j)N z)p{em-{r;A&Rgn`OsNn_TA=IxhXFmi(>{>+@UksmDXnsDaQKelzuzyx>XQ9sqX&Tj z;_{jiBxwKIbt+_}fvv$JU6KP`{?XTirWHq`9JAV*&LiGosLO+y6BPr+2yAiNcfyf?+@(A&>Jp8 zyX77}b2Bku&ntcdm&iyOQ=z)GTA^64!y*L&uFtW?A zG93cE`%HSFch0Cq&i~TxUl2x9I9kc%tx~~R%-=h`x8QHo(|v2_$@+FCAiLh(jta>) zo+~KkuX=WdJ_q%|RRtY#)lW9tqaviS=aaDHrp1{>ev{GD-o#+eeG=|*&JpyZ zqen|d!L}=<*xImMA1i(KYC?A7>-9?D>)=Lgm1!Si4WDd_WFhY_m9GaTD0e z?v(yR{ap<4J6SWW21f!(H2gopJu#>9EGdxK^9rF_3V?7=-w$p&d>O5E|Za)j~0q)hV=|8__O~TH;Uurtyg{7OFlb?Ne_>H{I_G?6O)|W-n zrh>TP44CU5ET5G7HBSsQX$GI{ixl{<*TXl&yg)uN=ab_BBBo;;e`Z_DPPj!37;mh zL}Nx6J^391q3piU5#ZfvzK|=^1^PT*_a?*Dcx)gE3#(lsJWwWT4?tr5eA@kkIxP^p z9E@nMDjd^|1Yw=_16YfH;C0JM7{%R5+0?`Ov8;lGoW#jCo~Qr?ay&D8LdFg7G zO>rd@6R^TBEEGAJ>29={Td<+0TZr!js{&Qc_dtAGy5PuqP%(gBVqUfhzCCS4BcVVs1{}EolcF>10{%E1Ms5~C;~K%IKw{yf z<-tbquuQXe*0cfsvE>phz*e!u{YrxrHGk~TFXCMkp_awKuG8OlEso$0MjEUEAlwtc z`j)i|76L}1hr$NmKLF!tNkbQcWL?A04(PbE$?~tT;wE;MxXaKy?=f&bdOTMOv%G@h z3hJ{~?gWbL$GjGS_pp1Xk4a-l1 zafi;MI+zPG1}ZHzFZiVUiVkan;E@@s%ei8nX2j_&f2;;RX8qDnQd)dn3jfmp_+Nd2 zbhY4$$a)HXex~r+WbBZ^Yvb&qVZpjiowz%XFJYPTIAF0Bu>QTaMSP-*^%<&j@GCi> zyy69E+tlx1uWM9(QQW88^<8u1t`4tc?n+P#5W?b$$4+|YLMzdcbqVoK_LW)Z!d?FbzzFpBcAxvzuM3ZZYPLo+(|Z0YLNsv=c^(X;&0an7bWWDBrsH{w$lPP@)V?m=LpNF@I)Lfn zm5JnSIg@E^mpvsn04;=e%il_$P?7c;nt;D%<2+-$bjh?pJE$cp3-qadjuTY7+cS z5`+fxrLM*MPxw29O~~2Bp=J>KBRSViV>Nz zYwkW^QoiSbRUc9PC;UwmTDVsPn$qDiosi&y6aOx@O=K=B>aG9SOMZfb$6eYwXwr>KI?iWWE3PV~m!5#Y1eY+bQQRR;#S1Uo4R? zF|B&YLYk-kvDfKl_YiE55~%)*4d5FJV;IH@hcKvxnEac{I8JkG5Z7q zUQ)>FYlVPg9evMbhZ+|j(d5HkBbkk$yYoKz-6?)WV8U@3FDEmmI4RnV_0bZOK;(M6 ze{Uv>6m4SxDV#!=sWmNqj*KlrafqE9rH(cs{ir&(C5SCrmu}0>P2-}ijXc8w_ik8@ z9P;A#qkL6@u!V=36sdd5!Qx^22>f9*84{4ECok^oZ^ZReHAy_i(Kxp7k~ZHXv6Z_9 zm0Kp7YH2Bm^>gc57vb@bSGclkfp5quIhBdM-;EM)$}^f)7(NaJW9C6?v6S{YQLWM0 zrKAnUOFa_9{&-2$&Hkouq9!8I@kIv$B)#A2&={3Q)-4wT@tuK98K~;l!NNM9-bqVH zpuA6=Bno_NrOxi3I}Mg2fitf_Uk*5U{dav@C_aAM#&Sb>1mwtpwg=$&fo2Wet?udJ z%I<)7lkM&atuvBm;|Ky#tYrH>jT3n|h^&36K9d_;%dSICqDscRhDtXCg|X#NZuVE4 zw+on-Mw1KHCe9%NgSGE!wR^}v8;sw+bzC>=q+WQ{vl|aYk#!%h*m*LAykL9cgQw}E z@|XHme4V!~&4&Flcysg#C$Jry>r7p+zD_x+8Fjf(Z@aG25Chc~$k@#~KOzSAaky}W z$Nw@X=f|Mj1AUsMzZ(!f<00pVaegdId6h)7U`l;Yvhf8IVSfF}!6AHW9hLY~efL>? z_nk)VRzPJWOO@D{O6|9Q^<9s_4r$i=_C@%;eoXXhAP#mQlfmr{`gmsJ`k0L=5!+{V z!vFhAVPj@WDXaK6!^z20Ua=YwcF=xM!<1O>U1lbaxxP&aapFYn6eQ@nZ=|4= zdmNTxtJ>S#lp|L!P#tTA7<1YnI7y?yQaR7s0agCvm@PkfwjxH4_Es5bX*#HN<*>EL zx>Z)84PQX@)KrdVCVFjRNL0X_(pT5}jkp5tj5B8@RgxJ=!yKu|w^z!#pQYD)$xC9c zr>Gezgi87~p%9P$sO!)dH&|8s*M=PbPJkRT#SoL+Zx21w+Um5Yw&xt!tVUFO#z zq$d2D#cXDyCOPs5naKesS*uWaEM*eY`TD4&`H4>G$YBLfFV(l;vtL)vEj`7*{3mhN zja5Mt)4B=X(%6{QGlBgLXe~C8uxIL*n_)OYlAfOLOVS=CdWvW{TA)=CpceE2s4#M0o`ek`r)8vc^pFhug&9&LndU@^)XF-rgfGj>o1Kp1b8DD#dMwbi zc>E*|)>?AJ;SQP>O@gn)*GS~A1qL_b&b{P2sFc98nXjl^CqRCh#+yJF(o9JE0o{jH z`Wuq@;De1>e-48)4f~#*h0NaM8eCy)&Zpqi4p^SoNd$JC4~P%T?DY`-63kj}zw)5A zTb{b|&v#76Py$C^-vG603Sad4Vu@bxW?+x|#s!)g72n#ry@|F8Fm|Zvn}Pc%c)w30 zyCVee6)4ihPdfb_i~!vba9VH>-~sM+JQQ-080E|!f3KL!lcAF)#JsONob_OYv2gzn zhyVJUlhOBuAoTx@TxS3GOMKi0;3b~W>JR9?^uyqlXB*RtySV;eA=%L6Pa1a5p{}Mt#D1Ptg@F|C&xwi^F#o4*3Q%%jVJJHZJ57cI`r%!aPKv2?AZDn zUvpLrr_y&3H$cbOHr0Id_sL1$*VSyd3Aqwz_49!|!FikuGJ@2A{6l!;e0ode6=AvHjx~* z`RgOo??`&t7zmzw9LPr(&CLw3cNOGi<1X0)1wvRJp2u62k`9Pi;J{kGQ}~yU%=5?H z78Kk*c<33*C_K5RZE38$q_*X zzC{J<8sdaA5IzV$Tb?~WZcjon(BNlyvX4{{=GmUp?|A5PNtq+@-0C3s( zl&2b+`1)VqvO~6K|9`+`OdkNa47^(hWVz)F0GExL>#)NAxONi9J^;Ywp^6$1r)?lKj0H=GY23V~c>azMlSJB_oJ-zVSvE)ToVsCE@L6`w%;TC%Ojj4G+MRLmM zFSxw=7hE0#fXjpGB1qr(dRRDLg^I1|ccJj&AZ~BP&46FQVnGbl7HO%uo83T1(~m6_ z6+;5V-G$kdA^Wlab-HJvqaPN6DQ8?DD)Qu8vK+_Bp^-C%Qg(VIT54OLQ#k%0#ZvFL zdDK$v!H_xw@#D^bA>k&(IzkcTK<2~VkyF*?cEG; zL_;82MLz7+`z-(E#~2mV@6C>A8SR3~a=$!`1|k65&`AR04)nN{o^`SmA!~?lSSTHC zV+b}~U-aIIFA6^tkwhNfqSf;1W8>=}gda$~awoi+4eqpDr6ObgEO%lEs+PbiqCzVV z8o{>c?hAT|kRM<^1pk<1rD~(w0=Hng3tM`jZc=#x@rI^4TZ^L(W;sD);DLJ23J8wD z{}UV&j2N8xS8!~QQq_44I(RMctX<~+-o1Z9H9W~SmOr{yYvLOk>A7Eb9 z8Z#vQZy{N`bw$o#B=0Lkmfv0j^<%ID7w~;Ecl3U-1%y5*J3$umZFD3k8}1lDp2dDN zA=@KhOCF-$ZwR#WQhsOtnk>0T88%ynRFTmi&nUU?CJDv_3L&!yLUXo}#{3e;)&BPER+iV4b1)_a7DvsC znsVK5P8@z}o(vpkJJqh=27IzZ`NtKbm&D0dSVC&5Pw@1RMQ9*>{jCn#Yi zdhy;^1na&M050pB1=wst(!nR!5P1x61LGaJREp>Sc8B!S`$gU+?rLM{A-xYHq~_Ca zdH{)6Zb?@r&8g77DxX4~fZ6ft)tBi;_e>pn)AG%^&alc@9mK4#^qi8)?(|eJvl?|M zIXhrT$E>W4T3qwyca93!!#>vasNTm5h--tE8xipP0i5ClVFs!} z-5IyqBKXJf0O;f2;+XuEu7c_-AMljfN_4&hoM7m7p#(aELyVcQ(c(3qizyiA2;LbofR%wv4!y(q1v^l)6j?~d+EQA zIe@=FMiD%1;@F1LWGb}>%iM^cf}jWa#REH6SGZ!*eA-H7*Z0r>@pH#hypSq!FTXHurn}C7ZQAwykR}=X*6R>nB`#qSq?RKE>n`3+Wz|jK0gbo%#M6 zovVYJ@Vp`TNfLC({Ia2m7eV_D1rfuhn%^)Q-%B1^yOP$_AmB$dZ?aHv37-JqvS2k_MjV! zi|6qio7pAA%!c zB(?jchg6K;)Z5&!gnUglEM}up+EMb5st=1T}NT#H1E*p41~g+1RH~Cw8%vB%j<#ren@nCXc>5KG`;v zs78NcNCdSZih}677gU~egUKAztiCSGpk_pi5BZtR=Ox*fvZ%F^Ne??7(~`l9?I`aT zAIG{=8Pmvzer z*ccZ@gmjGN6f7!#r?1858M8=2CZSSUNIXezrJXOan89*zQ>Hw6EDS`n`j%u?w>7Gi zi=(TaT^>j}>^Yet@JpLz{?`vM9ujq7~EVP>cB!8hWx1kc#P?Q3Q^i%|@JfY%}-woOhT(3$35i6*fl&e8n&M{4MSWQe5=SsnZ4n(1wS z*v@Xpu(s3@G~h$={L*qrnH@B#8S?b#fAj0(BXqCnX@z=tJ1e&M832b=zSaetEHwBT zcBu(GIIt?9uj0tg=6$ggzn0Q*1Xz!%I2M{98F|hKaY3iY9uVPJxa=q3YyLb&0J!ug z?r7GW5Kd8at~o}`bd{GsZ99@Vtp4VzaCk;-Vss0AX zByg37BW2Qy_5WzLuj}|hKTgneStBSKre%${m<0C%xx)L$p%<*zi3+|NiesRKfb_;KBcfGjsfV{+U!LiQxx$ z`~=|44Gi*Z9!M6I9E#lrLUbc((DV`cf+QZFPg&5`Y94AHsu~JYmqTmw@!3Fx! zL7zVSVRx#`h$8i{cvmVEOnV?eP_^yr{j2LVdcw?mFetqZ&j{f9O+MlF-~9!?J`DO! z=y)QmE!~mY?&o}~d8ANUp-9;AcQ5WJci2d=M0nmzh4TVhuQCIE8kr)qN+p=lMCU{A zW6>?o2g}A?XmB17oX9sLs@#6< z9uQ*zupiCdA;aI{&fpJT01W$>g13UemSl)il2 zrF)mSbhPA>PY+!x9hIt&N#J(6G8O zm%tCC9o~gJ-o6U1(NKP}->wlno(*29HorE-PbC=P^X516L~!|4jAQ>XI@_10 zW%2&uGE0pmASr#EUU4Msm*n6rM&2M`OWtc?26>G{0pFRRppxc_b%S@2{bZpo7bY{& zDIho#Nsi_vjc+D$c~Xv?DFl-Vxj>ZCDYtA|8snB~OrA6E1W3tj`JPZVNtuGy3TPh1 zRJT*d*G1l&nemytakWp-gKAOR84%o1GlIGKFnQ3=-0Z5pu}dkSYQ{uU*S|W07D{aj z>H36!I4_r2LpmZ0S@vOt@ltp}hlB6|<71J9SIHQS1^(P&L(f*`0Qt)@mmq5xi%!>< zK$e0QWgd-=!>nsF=v?{OI6D{-7ErG|i6GJ%>hh~e$Us2!Z}I$8qh+|&RoOlDo(77= z)%*u$UgfnU2vnQ7dt{MKGMWR<)p$P3g?!+u%;n>w1?Nl#NXdw8AEs>}>o=K0H5$U{ zV01isti?JeuniiLhSZ@pRiNX9r4@F|#o?1LvB)~*2kf-qmG5%(^s;gnFK zov6CA^&mLggX^(ZRls1yRDyqCfl=zgIOUfX%Wj6CwboRHXR**CoOaP|!Ym->?0H=I z6Ji=fg1s|Qj+i}ow5~yM^Md)YPOdLF9zJbj^_ZlqHIM3!vfs&Bjq@{ze50tP*m4Mj zl0lyxL55OIe0xk4b-%Hs4Tk6b4xjE_ZShD{jgG|h1Z@uM9Gl8|Aoh@dpwt~^^>ycghd1gXaw1XOpl4A5N;}^U*6u-^Q5Od ztT|e#jv$LZvIMQ8QzM3vdi#?Y=aUi7dHuw`z@#&xp?-5*L-SHkufDWc<#*C21I6(~=-%TW7{_V6d;$@@AT3!IeQEHq-nglD0JI!2=V%fvR*ysJXYml-^vjH5&%mj$dl$e;S>s+Qw_ppbupn*YI|anAd}*fEZR)e08+IqV{t+NHkV{NtDs zgOAf}eZ4SU0qwerH~#<>tp*Y>?-a_<>NB(V{R~*5&LYsJ3Pt2>AdptmR&(c*aVm-0 z2d9?%$-!OE?J!=XoYv+Imrgd<=e{NDFZgXwe-2`<2UFkEr+=ts)OPRwep0F2US9Vh zi>U3oj;ImRH(fwAV_leHkLdaer0|YcIF8_Wi@me9 z-dALXnN*SQamNqG^Ua>8i6SrwtEi;18r*Bc{^ieu4DlyLA|y*&Sk`m&H|0EA}p-lejRrd3)jOQMe(zManMD z>n%AD zmsKjra|(Yznk{U-7aG+Xkr6U{)}mPUbwOhH=@=;~@0ZqocJGK@r$LkCN!JCFHw-%q zDspO)fKB>3w7mHczv>TU~{kSZo85~#q-g3 zurgI3`(e9!%9-XjuwiV_0+)#^YckE{mD4@zHGfEkbA7F8dweZL18k-3qLCm^*kUE^ zrCRtCP6`V)Z`{RB97EN`p+4L6TRF`kg6O8rB28l%6g76W`4;7IzsNkq1bI-hj+hsz zlI^Smm0Zq3R*ZWp3Wkv!ymzrvMHgc>zmqJ;3h&b@Sa|x})cs7`Z(R@)iz?^(>sM)w zL~a%A8^p~H+-Q1K@9*rAY>P8^HnuZ&+y%<-v^7ojLfXZ)GxYYS5?yk0i15whY2=2D z=JGK;OKNL_d5ExDGFQXgZ6_*u#^o{bH*K(~nsZ!^co)K!yqgYJ$AfX}CdAEdp@mvG zM9gJY8OOCS(&yOCt!ooB$j&Ip5%9_FzXKBykT=l|?fcwJB$6M-&!o=kKT)M%YI(Eg zlB=l(-en1Lnbr94Qdp-ed*BqxVj#?>*Le;KIH9$S7z^)fwg_1!vH4WQ3rE3FSEEcm zZB2(zk0^M8^W=leo}^pjKDQGVHPTAUb<>?n_Ab*GgiHt@SFGE7R>pKHT+$y$d$Rej zd4=EtukpvP-5ZsT>n#5v2y48!x4m2o*DU1o^Dd z*R+m)ob6rar10_)^b;N9{4UTb&zug&^kH@oEFXJhFUTz?6|(O(zqDK*pN`4Z0+~59 z?!dPv6URVw`3btbydaDgTtJu}c9xL}kL-Ch6rv8NXB^jc*F10W7V3tTLoa$+*Q_?D zi`gRv?0$h#pI$M{kLzZlp#z6y=Xx4{A=PZqvP!v%&t+Hw{X3+3kJ(>5*O zy9K`yI<4_tr~#mxm8r$*v2E9a_E_P`Mz%r2nbavliYpe>&6Ate+=?AG#HnwGaab$B zpBi8|Z*;Kj+V=}6g$YjG^$q9;COs*ATFQV9rb_NCB`~LO%GEbMEdjtGXrCp3U2F+Q zPEWE$r6F-3?!j07>}(<&$6GIh_proDKP4K$Cr{u#m&-=qI8@DAm3O_e;>1^YFfXgu zZ|p|FJ~nP;I1#+5oF;MX+UWes%9k9VRlfiM%YwB4Y7U-D5|m!SUWT}@^03t64FWaq zYXAgm=9Iy(FG)ZV^EBsr(nMD?BOg)-kFJtKwKcpG3)}d=oQ48mJHQI&Tn+v&?AO#+gMZEV3*W*i|sr>Ask&}nt@inPJeO)gx(+*LsAOZ_@O`ZXtz$MxrJ>TcE| z)}PT%fFoDJOX0IaD_9v+HmKh;!Cm2W#uJ}};}2+noIx6IaC%&0+K(c3ag9>{uE-1m z#v{AWZ|%)w9oSt-V95>xR_R^*#;xzMbj9YgvwDD?=cYejA3Tov7q z@Fx==Wvv_Y9iktH=XsRVh0;(w3L-e;KP~x-TWM)MqE6?XE^u^MhCNc=#1n)S&!p>!MYvv-q_SB4%`$ua50)A6zp>0k|D9#_ z{L3;+A=VSQ{+nec0kF&nxasQfW!&hqMmZ)2fo!)9Ocp>{9khMniL8EN+Za6ACchv$ zDHkS1r*$@^vfm_cYGr=hh@*EFHC$LK=t=Ru`iz5Da~I4cZR%4VlaJw0mk^yT%2NmL za8d<5LJEoY6MR*r%93o_J|O;c*z>~9;2`=>Ex z_MgTWcXXjvw{NzeT^PG-6zuiPe;Q-MfX3JupfRTA?*0F#G4}D_8)L0tMQsBJU2k7N)g3N(vLSHEbKAwE78ZEe0k_6#2=XyZ;C4PEsa3)k7F6PrfYt-$`q>9 z?{e;eb$zO^e3gHW7X80g^O{OaLeM!k;xe`JdsS;V5i-G$D^jn==bJ35h{FSr1*-Z< z1B})xk~%gn>|&opl%N^;G_rZ@DBca($oCobNV|_4jt|W43y!{VtBk9@bSPp z5pm&>yq)2y3Zy)pPss*Q!4MAD)NNN|VZ){FIk48Ba}XWDB({)w#XszSaPI-jd0=0K zg6LODopRJ2>c6aKEZ1vTb((%89|tS-d) zTxDG0G1||N;RO`ltl88H8`680B4~1?*?M?-eF~-Y#b4Uaqr1mB%vKn0o8an?qa;#UZogF?dZvQ(BqRo#1Ciif`G4|sZ6Wo4GQ`XE;KBJ! z!I3T;DEI<4j$})hq<89cO8i5cy`W7(&Z@!h7{?fK0SI7p8bV$?bdI#MPRo%nM*+cJ z=M>TQSe-Z?6Sedh=p9t7;C?i9#uf#5vU^rV)mDNzVd!YN7u||AuZ@s=$Zypk_b?J3oT}528)@QnI(&v87*dJW@cuVDrKK@?|ZNAiKy=A8uTP1 zrx~#a`S0)BYiS5UYNOrRuFFeph5jfLymghLsDB zQ7^p?Ok6SXePU-M368SGM%M14}1N$6f^CJ(f51(H@W;_9%20cFV)TGYu)^`V9!DW*?aWg1z)rEviA4h zo|fKTb@@9h->m3sJ}kIrnWm3Gt^vDy)ah^hIQf;-5e*`1)j*WJy_buVipu6I1mm!t z@L=LfeRW z88fdnxP)E!uw5aO(U^hHNl*=JzvAlVGZv|p$B4-NGn4QDpe7f607@p>vj}DK-3#7~z)f&RM~ckX>!eu4cyl%z zS%r`5WRryGE~?* zc{>H9v7}>#@7=QxyrwNq-0W5cg;1xEfk^h3rqL3QOx9}@?gxUE<|epCY8vw_yM__y zD74OId9p&R)*g`EquN3}fvjlSf3Q8jL6EGU5<$fm`+5eBs8(6}O4MKa02_D>t?wn7 ztI3=x-0zzgm5m#daF~Z$OKME?J&zS>gF&gr=t`#?3RS@XAG&oeu$4H!aFa&;-oot3 z+Or#O`fRvhlu&CvAEd>)0Q+wG~M`fjhJxeF5YpZM)=Z;(mUp z(QfR!nQl+LZhS|M?MWrerD@ujMISR} z?C?k4HF!P^ENqoGxos+%8pYlXnWd8Fm1ikTR9*JST4e46IPyk9h#w#|bnC}0Wd&hyX$m7f`T4M$WjNIpFyveF+`uY@k^ zEGe`2n*3n?!!InUgE2hANiIW7D;?5Wd*?)&FgM9j>!+GJQ}U_=h?fGlik6^eVnpyC zzSq8~qNv<*%rKQmN(r=3raH2F`U4yGJVMopYjEPF_BBg++M&3=rtF%iNLQkPD)4jl z)t%W)p;~hD#??Gf@Jp(f2AxxI!^gaJKBT&`RF6Tz2~R<~;1AZ=B$C96_JlBhLm6Dw ztvaS9wJFm6^qJfQb{@@={Nv&G>*QnVL(xf1NeHQ5a(c?y)8z}Ny<(uUtB@zAevAq52D0FVm!=eCZ>S$dKvLD`UsvY;?V{hwe8dN58o8zo8 zJEdZ9Ir^rsRH!4T)S>gQ{3HT42K^QKhu6uN>(yMLQOH^zRLDHM)472R{X8KV^PuK> zh6oUDoZ{Q)lqw8O>xM7AsViFC6#xV*9s{O=>2cs}tQvSHBZmy6;n%wQi3ce)30=Z@ z=(+UKY|F}~<2eaYT4g73Xol(`j*lbl%|dK&jfj0@r^0T`KRFlcv7)+!ubKo z;{=de73q3UtGNPtv}{$v#KigGW}dv{O9b&P7*xnV?VuY%tp}PM-J`)}_i|2bhk&JR zl}|_}rRlXT)R=Ld8I#E4bA2TsViezOVc+;e=QLjesc;1R`0_~r70B{ z?T%SYV|!eg|H;qq{5c%>gcfxqFEBO3+Nnir7-udjwTmL{M7h-{mG!LiGAiN8Cau~~ z z8ZMZr0Xj-;O9nA%QCF&_cZCT3QK?9pJA zX&UQ1K`GH*;6Zy#QJ6DoSnkrRV6sNC#zIW`rULBk0$qrUh55kV(SaQ)fJhVKTClfQ zO~W644BJ0@Yq}D)(&Yl$|E$__B?N53C`8@(Gc`ozy@P$dGP%vP-d1US#>>~ z<1iqXAwN|RkCN+q3MdIboI7>+nt&6esM|vS$k0Q{{nZc}EgL(P5sOCF%KoeR5&lj7 z!gzb`Wxo80?(=H-Q>EseZrf>}yEiA`^EK&C_ihC~JXiR+S}T{cb#HEss(fZs#jT;4 zlJ{Z+?bk2omU6z@`ZhL?j(}Xh^w$sn3FM3krcnM22t#ei|I6daz{0}z{fe3O??&m; zFLZaB@i(mo9!*zrl`qPz;xNk54o;fA?vyoBAzy;3?4RZmV$H_H3{b?#j6*=Ikb*c# zxYNS+@T^`h#yamzumg24A<~bg$*VL#y?_CVChobp;?r-%8X>4(XqgZp)@|OyQ0}(p z8=ANNB?Xk3@k2uMz08ZoQxcJRvcP#u&+?vh*SSC~xYF$yU^kF=MbpQCD3Ngzf%sBd zZ-_wMnz$VBB#gOoOTmk;j0}_3HCUikz8gl;Ai)3%!Ad>+a8jLKg?w-UohvDlCyNJZ+zKG)Mbi452?q&JXWjq zc9zIv7npw6GiDmZ!ry*d=0^H1)ODBnw#CuAPor%S!ck`xWd051j)<@{cg}`wsnOmBF_fB!dC3E6_HBU2GmR zvb?Kr6xZVAU>e1w$=N*)LVbbjeTgQk8>6ob_SO}B5LA&jI z8!QyLitK?5k$q>YorHC>5&;B%jI_d zMo`KOjjIeRFoVY4sZm;S2rn?sa=a-{#9diAE*BLglnTmn*A?;kjhrJO+LcLw-8PgI zX33!y5QYw6b5}-p*#pARy|&lX6>~7@S6C)oxsZwXGAZFhCk#N^7xlYL3IiyU0_?UR z-(W%B)W^je!JLrj)!{Ku(S#UM#!Kcx8BWhh7Mj0dEI=+;M#e@1^JMu`|+bOSXO{xs0_%bxx%_iV_IQnOMhWj z(-Wh!W-3q4RP?$F*xV1;7-wlR{JuYwXKztDN)*itc{@^H&he6bvP>xP(N*puiNY>` z8CIGfQre%hiW$}AJN#Ii{O1`TN@c1)NsU*mBYTZkbgNu z8}TZOneyVrTu6#*(hX)XeS$m8dzbVW&?S`|Xecyach3zSe&g>gPs}LuI&XT1;IeMV zjbTo-3kd(SZq^+Ah2cWlb+;JXpje?#wf`vZ4LqU0n#@fzGl+YE#*Sp zp;jDtx&kTPzDVMs>w%^KSCsN_A=-({RdrgJy?#$hU$1MSb_yUJz17=6cpS>9@)s#1NG1gWU&9mS?=<3HV`2O>~Svh=Qd(L@iOeC$B0XwZ#_BZ z^7jYkvQ5oVK27oNe?%;W^^;O|xR=|gp=V#TDl#f^k#jKS+eWBS*P%KR-77@GG)m(&nONx9 z5BR*+hS#|c)Km8Syo=}I~(9e(BHz%sZ zco~GV%3~M#5&F{u@1R&7mVU%yi>R5CR~uu=yY5UOfh<(+S0{>{oN<~vV6;n^+B0+Y z|JI99XLA_}^LWu?9xiq;fg6UHRQUs147x#0QZmBH(s(cm|2k%)D6!W@6dPWl`FLok zHV2)pjTQV$YtNakM<$Ht>OI4FQpJIBLTU6DkN#z!FJgf<(5#^!yy(70<@YM=K4ZwV zi6J$9YGsb^M;ZFctE~&aH?O2C=Aq}GwyIcdMSK07r-hq~VCIyvEwCttdE1OdRVjk& z3(a!Z;19fh4UAh|r@hCbI#LJ2#bBejRJ&=y$vJj9Or?klC?UJTsjN*)hKw!a&eDLo zh54qcAIe)8tN`_@%osC?Z%LNuXs%*K{J3f&`^s_g#VDJT%&MvL#68LW>8p}i{;9Dd z$mI2?x&V&bav|l8^njXyFkkwESlStx9&fE#Dqsrn;QdBGksUa$gO5iaz_Cln2L0JA zr7GH=QFsSSOPbLs>yB7?M&8R ztAS+2bVN3;KQ(>~o>c4I14TT2>KaPaNVl_&IvEvLSWDZoTNZaQ)KB|SGI9Jl|Bx9T zj$uVg&cg1{oGLp-@LHu}MlI{UHk-1@ax-W+4Jdh0O%39d<27x>AVVk#4lL@m;4}7Y zkY7eqZ4L4X*|2~Gld`rTlgbDREjNuXa?Fl#(KVt%l*(*x`Z300V$AmE1?t$9Ohhx6 zPFWx6s>pRl(g@6YP{nN(GI+^MCztHAJ^E=>DUfiX4P(YRh{w@d^2z=bw&nRl`iBlV ziP`TbNlTfL)oEYZuj>jAzhqIfGW4yuI|sjLFwchu7}8rRX}fC+#x043Q=TMV4M8K2 zh@{)Nmy7tQZlpYk69{W!cU8JPp#vw{k=kadSh~w5E>ns9U`wjcZUm z1U^50I&N+hilvCRdu>MlG3Oz+dKw|Od~|ydl3`WzL+yZ*^Tb4e?VN?WZPMJ{%Y54K zj0pWn^*S8F$dsR!Zd>9=L7X*-KdBaj8fEO~z_1;?Gx+w;BZ@6$@E?*oq}h$Ky|~RK zypJbLpuQDpYh)>hyP60h>8vKv*vKCQ>qw$q0Ar@2Na5MvxjI|Y3SdOh1hewkh6`pG zJf*eo?~nhazU|`Uid;z&54M4NYWRlU)3)&#i)>|RC8PD_$r?3?s@ z6=D$CVqo=%x3KA5%%E$sfQXOo!p+jv=Z{7YDib=HCKmL_Qil!8-015sJymu{GgQx) zIv35djOyTPd^$C5bKFwkZ{_9>>IIuf&u?CXGIK*V>gxDuIeV;m3W3ERXKkY;Rn0AO z?!Pk4UseoKa&Y`CwM}D*MO~p$2>UUgm^(3i?rG273CfCcO|RXqp9mH_j|kUDb9dVf zVosWFZ$x1haMj>K$tl14y7aMm^mNN^hGt-Fz$g_F>p2SVhvz+KYyIii;yNfRRHKKf^IvlLb1 zhrCsgl8*||_jdEn(EZ;XFje5I1teKre~K1<2UczWW*;uXwrhP0V_O&BwvixQex$(! z4IFZrYkiDjs^0pYuf?D-Ex^L;i<HtxDOPzE zeU)F4Rp+8(Knw`4%Z=1@vv(mvt7Jo0U;(U@FhzNcco!YjW=ld~_-o3$dE zMsQu*OP>v*{gRNL4u$-@2u;uncoR!vX6jiiW+c=u1CD20V5<_qjGx_Y-~#2eBP zAJ_RfejniZ;5WZ3ZJ!XLU;2TP_Ew*Ei2f*TQBD6SZGWC|*3bS+Y1{WlY3m@)`QMbb zr~gvgo?@lqLKrk3oBM9LTB@#CnUoXa?e$c2L$aMm3^s!Vj&#>}!1y&Up?}k@<*%;2 zN8X1*eom3O1}(eRSfJp1T@;MWCWO}aUUmuT4vj77|m^ z&qPJZ8G=HhZ^2D*(wQ@&#>ryUEM5UJ;}OUYcrX3Tz(~_+Bv8&C%Ra0X`;K`yHNx1x z&!-hn1+~&GrHW?)p$15r@b%;h=1QA|C!%W@p%2rf;W0GNcu2x=DpX-_6U*GE^|=#; zc(qy%A;0uCK?k~i0d8rRBve%FOvC4KVZm6BW=Hm1^`b7qup$;zf@?~)nCG3QO=VT? zsAVpWKBo{TAk_mzP3#)`-cCr0wU0&v?Le$TxXDE$6>vT=_=%^7?e?yyY53znBmTHp zhFS``YNdetyZt-QBZVKyfcrZ*gRwFU1(5B*pBjjmFmRV}CO~8iws$7*02=NtXa=5u zHQu|`Ru=xZ)s`oTqi;eCvaHJ!mIw=@?_kNqQy-Z4V2*3Wq?AH1lcp&Dwd(!VMESg2 zU}~T>oDH#Q81MJuI^vTV=&gVl41qGU5^7A=WmTsO&{TPMiXIVYija-RTyTXwc2laQ zy2+ovI#y|>ZlcFREi^|7w)Mv`aS;*omH|%ifD|iyU23Ax_@pw{1*Uqn^>dt~BEH^u zHheN(0o>qS`^UTz=`f)|a0db(>sw;=1i^und%=v2KtTxRdd7=y=A1g8Sx@Dr5yVCF z(I8=F-1#uB>Pr@e)vdP0aA{)6K#oTQ5)ULJ6X_F{fhky%cR`*BpiI;Im#UbtjwiTo z8=0?sEB_0JJFchsLC|@yBdC12Een0nE1aSdn490JCj= z@^7kuvp28p4(yAN7Msr8i#L51eaDob2laF$q&LDjm zmlgEpHxAVLP-RksUA)KAENe9t7NsQ;@PI}lZ|liBq%QNt+bNUd`Y4CE5i`q$*FzYk z9#byhV-_#>x^|I18#;RH`sye20Nph_l=7n+Xn8}TxXy?iXqOxX`FPTfX92+5w~A*U z%aTc%MbJ%iaXsm@Z!Z3UkWEC}tQ9F1t0;5Z=o~64v znGpu@xtpUqVXg%^bk$;UF6XTL!7IB>fvsz8MxqvLBJiw~$BRK6OWdikq~g?8yErP~ zT__OAlZJHVu!Q&G2Orb)8M>2Nw6=|wF?J_BXCJ8Xx3fu){ zVJ8!@UfvA{SzrpU6zz8gZLULu&&uY0uMhv*Y+L%b*;el0-E2!Dvc8ghD(c})w4t^E zF~0oUY&*r(cbxT?*%l9Aw!H(GZS^DpX4@j-YFL2T*0BcWdgEzX?M_!3Nlt_H@*Bac zzexnAMk=YjZ=ABG=NNjl#f5R+6D;OyJu@f^_i^5CcRi|Gjaq@Jf*cs{d0%QE3mYhJuv27N{XUr?4%EOWCYA6ezkE&a+WPo}0V*Y#Ii zL;16|1xdPs2NAK}Ti=jjyJ0MM%d!Zo9C84Pxj6=d?amakd;;}A6wKR6`9@4I6$dQ! zAAS0?S>ekHJ)(&w5@kZpX1DgIj@E;rKLWBpweL9FFYLU=VPt1>3kw$OU=%BOaH>^i zkyFocmG&?6^qf`T-y*rd`hjlu{sh%tl%RPsi!)o0-AxH!Mx&x?mu?2_-S*a0QH{D_ zAAkPnzXS6&tL%!aia-m(W}5TSP(0FAC``>QLl4zsTfy^D%l<3XBx&1aaB5w*8Mmeq zhw>2YUX8U1x!Pza@8?r|$%(rAR+7>{xkVe^3u3oY-A{A&bg?GC5=^`M{=I=eD;O>Oz$Rkw>IID^a8%l2s=2T;FY>E)B}pWen#=P!6$aM#i>GuxgXdZsKQkBh-%rdr)mo=vfIB!3RAm{tEQSQ5?YtQQ+Vwr zL2fCWO>b0R7l?Wgt^?PY64{-0IOn;&&Ahufqsol=BT2&GDm=4CPR zAKWQ_=92%2xLsU3NeIXa2pCq<+Rm-s8@ym_g=+9MM94@XW-+|crmjy^mR&5L0X+nA6XhP6dUVbT+>tDygxTT- z?vAi93(233TPF5Jzh0#%?F^OKEmNV-Cn?lXMPX5I$t36}yx?K!SLF0*1^2JPF{`v= z{vTz52|BDlUB#T>^a+bdjFrf)PaU-1B$%Y7NopZYec7F+!SEleYZ%5in>EGUM-87x zBJj6ZkuW=}9%7q&s)f(rv`f15iae$5h_#_s#_WX#h;1KwMJPq2_Yh*67oVnlAxSmQ z@h=zaj*kM9Tqf{BL{rbSqO;1_LCfnht5n7=fVpg2;!^9Cco!^O>hxI;jc~w5SJ}5b zK@%gMIFijsF<>a+jslxW#O~G9ub$J+h_uT!`-tShEQfBRjCzY{^=y=)F>|G@4O8i5 zyOtu+8SaLhS`GN+_Xo@hYppLc^kgNisfPw~BvaN~OB}wlvhE!4E5YxCc`%DqF|Fkj z+0m)6&mOGn4Y5$XI$Ilk!n^aTz>vE{sm8RJimF?7RlQ^g!_{Da*`cpKBIa4A53oVt zkX$?KOs(~T#1JH#xOb>ti>wOZZPg#AuZ+7&MHuyl)?c6+d)Ywjf<9B1i>5ztKqa!5}fU zzCi!_Ze2)eAtSpvt3}=b;gxSG)EB7@w%XwY{VRMA8OP#kGYD5@{uX%uvVZ6TcU}Zx z2St&fuE$Pha^^|Bz3>EIh^rJrF7q*R$+7hXrh|GU{1 z@weG_Wt`>EqGIzl-$%8!Ssr=)q`C>Bl=^>|ZKL=9!E8G{E1>g_Wzye~(tkJGo)Hf8 z8Ext%|2o+&i^)OcL8?pi)B<`K&p*q`maWBBzVK_$c)3@$S6p7k&xN`jRw}z>3NGVA zt4Jw|-D_fcym@x3;`6d2kqnYzQ_V)L-aoy)%K!N-I+qOSXqgOBe2&6Kf*eaVnNH+5 zZhM-dxb8IgQ_zh45M>vnz6@S~w9;*jbgVM0s2k}++PfRn3g8Ca1_HQ2yWZWPx_yDv z{=*kc8aMxPgC6u0fWNyz7buVl4x@Irgx}_ub?_)pW8$}jr@k69g-^qh|K$c%{p|)l zt{~a19Y+N+-MojzTu$}GrpAHWcsPO*(3(NnW^75U=$6S96PxnSnk}Gpl39{eaiQTV zJU+^+)zX=-s#s<+5F#%zH5)-%li$S^fE}<_bcV+zYmfL;k3ILpE>hQ+Hi;?n#RXwr zbfVc|e4<_MNz-^qu5TPTpuc=fBKZ5mQ#S>kWir8p3S88={fJ&6o*-z5 zBxsZZiyu#odzCI7v)TqXz38`eoCRS={HO{1qg`Lt8?Qbdr`;2$?=#ZVj( z&Hv^G4gcE>3j6K`tp>P32?((;r}VLCSTz4~gC_jt28}R9^RG5?;(nP$_%R<3aD$G- zUZ>}or7ep9+@O*fS!>1D*Kq&S4f+B0-)_(q&;RBIUE=1}2sBR_j$lys zSVC^o*E-X9F7jOCW@u1yH^TM5r`Pp;dI4rz!1S{H$LVbuXL&cuNUu(onnw_WIZcK6 zb@*ztQO^&PU&JB~UfqTxb=+sg<#jaUs`_=K=>8n{KZW^(Q@%ME|A2?0qy4j>GL85- zjQ*-o_|{>a>weL+VbFemlGmx_+QZyR{VHR{G~cdudOzm?VRmNDEW+}$MkbdPW;i9u zX?J-yrR$jcRry|nxH@YdyhAtU-j@YeK?`UK9wB06M8$cZ5!WgUJa5;l-PtT&;Wr=Z zb?1ZAoJ1Cc8h-Z*CnLd6iD+MSxDfch%i8;xGaTeVuT)oh&j{cpdwAF(UOgQWiFJ9Z zP*3e1y5;ZV-hl0tB5O9_v>C9S0(fng5&>zx4*D2YH=@rtR)F0qNYn=)ZRscx{jR z60^=MbKm#?c&I&uPC^jl`_SE2yv2PslHCI82jG$;FK4Izt#n<39V4R9*wzVrd=Mn# zUyy9xec8ZV&C<%hy|#)oHNnB*W-B~&c@Nkaazr_`O_>Pj_9Lw#i7_0V-fH)kXhRkhQi<4}^7DLk|LAqCE*(UU&UwhZus*95dfOupti zMxPOwK!ZUcxiBfwFYSKN$dW|IlVzk~&uCrjK=5xG0X2nd-JKi?tsu021Zj7tLo^A! zL!pAH=|JEEr?H2y$=xj7n|M0&pEYKEdn{rfflcZ4RQ zK=s%+e+TI77g3b6xb5H`D1mqr_iQ09xB$h9J7g zOj51}%0&xMj33^$w)kl9{6+cL)n-6*Y-L0OmN3>dr7n)VNqm0?`h#w9e+ByBu~6Ag z#P5Or>;^O?bT1&#$CdI%=gbbv*$39EGg)FSiIsx|1o||A#qqOWj{Aiy8V)cCiizF> zeXX(gKpz6*9JkZ?Tqi}LGjLqa<6vD18RHcL;Zrw zg!^Upn-8T~or>En;v4>n9l(cLHy{e#SBT|}F#CMZ+vc?k;6qtsv=UjF5ebQuym^lg z7zUeXzrKlKQPFZ!_pM|W<5SiVJcm23Rp{&YY0_9Syw!$k((w|EaOa+X0A~Nk$V>1@(hpxah4eUsQ=D7_8SmYsn~e0|8GE){ck{&_j{;MP67z^ zrIJfHvC@Dh1U9 z`q}>a?fkH#AZ>r99ApN_@`wb4yx0niVmH2^Jyi?AOS-Co~I#@(#;D$9=Z-oyc${Xn|ehV4dq{P3F_hzUI}Eg>8%(Y zcsHJxrU{#!+k(P8^ZJFiGqLIh>2#4(QR%@gMl3<4#1X|&B!Ka`C47NWr zleigJS~aHZit`}vf;vDi-vLqPCu(DI*Id9O`ZJ;Hn%F#WZeaxS&8|QAAw@u*kH*C> zA@`9_!5`apTckSYey94>MVp#q-v3JV!2zlMr@Vkgx+W_BmYR4>~4&-cC-&hwda9Y;ahEzG{4lgQps7NxQyl zLw`=kb7!=6slm0tQrJKw$d))qr}o^)a8SXFIdGR6Kk|yfKVV~PR~%Y_Q=_dz%~3N) zBNrhUMi>SVqGSyQ6g?fqibHWHlslb1(v7-oQlt-U4bb8_Yj<0sF5wXj>Ffxd4l2-; zj(nQ`A{Q@tvLMVr9=iNt2)r-gBLrY^by`Y{#3q?Texp9dvb#N*LMr4%%^w8oXRBV+ zLQvWiT2`}#5?TmaFME!HaXmHUm6q5U!;(b6pgXrw0ApF3l%9UM&KEL4ghjSxM;C$K z#Eo65Jb|f*%S&Z#?}Wf^7O>LyDzp39`iQ1vwInrd#w_)CUU!!OaTyM$6v!HOSxR@J@uVaC)ArB_nv9m*tdO>T00@Qv*!gl;*=bimb=Nc`x7UqWgP zsllO+F*kfovt@*7yuthG7WO>LABfd-LiRydRlAlP zAGe%3&3YlLYaM!gen@i6id^QzrTwr1T69ylr1r`BVdIlq7;`NZF28pS{or|F0>^2JUM$WV2V6vS6m)u|8l$AASTe%LsBsmA-_YLJ~x;b2;Qe-wy=ly`|0kvS1v z8W8Ds0wR52KK-drnIf;5V^`iEvjA$_yRHlU@8;j}H4RKe>TlGsEjByw+Rne%si1u< zHSBJ8!HI3LamG3mMAcUX7M!wM)?Hz%<+=?xC^@gRV;+wg{{gM{#9CDn-s(wIZ}eb0 zph>@edz%_vmv?FvB`kS_FUtSLthM1jR$tEZ(0!79rUwrj%V)S$4>!^-U4F9?V5taBE}r>8>%Pe=XfZfYSo5E)FDx;b9H-5(iY9T)&?L z{LF4pXtqt`oiepDMGE7v9~fA6B${^yH$t1T3qU063O}Rv$Fy@r?jO0{*GM6ae3W!E zwiaVNV5{OTV*u}OExBD?7ORcvPP@qo=0 z`TOQ-Em~ghGyztB3MDR$urhbmnmxxvd`}jMG60>tIOL`9t8voC)higraWtgFeW%~;XVDO;Z0yBbWTGd1JR6jQhr`L^+eApzd$gC(d? z>i(h>2g)Zn4#|)XGELt;m4HfTLYFRWL$=c;7dQ0Xp{arX3Ta#|;YtTkifrFE#Dz)_ zejf`DE_I^DX*@Go*-hqI*)awv&RPh5IAXB~2P+Nlye%i+UXEtRZ9(R`CQxV2D(hzm z`{ZxGy5pYIt&-wxZ(i9m9G1OP6+l1H3h+d1Jlv|bckS=;r5)S2rN*|6>?kcNdYU=g zA_7kNO}DY8?lp{B?1Gh5fAtwE91O8Q{0Y4EGYu`V=c#og0j;Bu)lfbvr#a)06E>-je6yw!dcaE&w_`UmGHxa_rnC$nm!NpI zIp=5)O5U!HG~X^GY?ekQagy;nZrSS6jx^$Xet3Jv@A*PJqdY3W5L#B#U_e2y|7zVq zGK^dV6PM9j2$t1iL(0l!7mUTNaQCSWj>udnv=WS=(~7C!BpylG1owF~Mv6xYoK+=! zMCIw{OLm6sd1gct(kfjAV&Vn|@S%LV-4PD(w;INXCM=@v$B5`GqEynqImbwBEP+8* zqGn29=43`?_Ss7M3OaN4NJ6nP)305FayJo*MK^U}x!XSb3L4FV66qbM3$6zt%}cb; zJD{Dbapy`uF~1$qeJEZn+g&q{z?L|#)Ss{h*+5eUs(xC&CT=ax8)|3wlZcJeAeJHL zaR)=be!lNO*f5-s%6EVq0N9^6;ZC25koZ@Jz9QO!W^{4c7M}JftnW<+KXVcbieamqtbPS4)P@iyuHiDF=rYv@J4YvlX^j)l zr`TbgWg4ctDKE$fjw)FQ51Zc4)Z4~N%W+aJOOUa}&{rBuG z6sXt7B*E+N!tamCZtM3|d}!%o6PR$iy*Z&EfbF3Cai87mNy|*BA8#7_e!ft+T-C+B zlMFi_PL6mA22SIQhcSpFP!;h)sqB~B36z*D(6ZuIWM4O-&18Rn3PK=#_e^fZ7V!4j z;f*Uy&=As^rv(G(Xn%eurM-}{-&dQCimNS%SZk+ zH~}I`C;rEG3l2#5A3-zTYtfRgP`2t4zkRn|aZQ93YOwFVTZ(XUkz0eXtzY4Blr#Mq zHRyX3!2(W9n#W)B1vv%Fac5%SON>>zo`-c61qB0TkjYD-gK;qAyGpFeGM&;a3Mp~C zr-qEqG)4R=qR%x1-8Rvv$6D!~JeudrsR3>rK{E}GTtL8&&ZSLGROVwf!-Mg8oS;|zv?%d<}!~Qx~9NQZgroJY2`~v_GMP8*@()+Wr*}aQ{lw}1Ax>ih1l1Qcp66;dU znqEc@6QZTy6MK~lz;`h%kc2(>4$lZ5rSERS!y=QFa2Obi{abwUIDgYqL zisV5R0Ehzm1BeP;ZAm}cu;86ZQULY&3lNpNzCVosWcUg`_cJrXa~QBmKhKho zIZYf`-<~r7RK|mrc?C-4#vxKMr;&77Q9KRM-AWza4-yJrC|$uETC6EK$sTCj*1)5B zug9{r1qcR1Z9_A7G*MP)-m^9h(IeG6=)q1`H(m_x}87C8!P_Hc5BSn`rCG!7XPbxPS^W0=tk+0`6KFg z=(k{IPvqvy&L_~cQzir4goL$lK0BLT)iv-&hd1Dl9-RRXvT;d2^iU8sSHGNxoY}bL z@+e0eWYu80e0;nyz<2hz!R#jB5<`PlPf%(l>TARv0li*RcksC~=co&aN=SO?ajo0j zi6SZVcvB^MrH+I=I=*FoLGK&uc56QXwdS?wQH%*6(xF{825*{fer}gA3R4?q(X}MK zSFlAHRj`s1T67#E%~z)1-qnE?=2O^vjvZkjiY$Cpj&|7_DB#}jT_KcU(_UX(>B?2| zEo`&AG1aXNWR^|Elss)PoCh_}xfb#x?4<|ZMzKWsEF0;p$}WY@4OI%wRo}Oe*@aQ{ zsXKM*GD{T2^f86av=erp!9|;an5JMFPvh>m{nX5-<2+LJXMB6CXUGi6LRvNzRsK`K z&zpoEuu(Pran(y}3K|9cY}TtQ5|fKB?vPy%!j}7Xtadq8SF!sK^h@Uf%iPC)bXJtW zPnJhYUA|&CxJj_8{V(*qDMFh|T0!DE6QmS)C9iOhrhz-Ec^?v2q`!tf@PEb7%XF>kHV0NjYPc> z=K3i~5vRH=fZ#b8Srvbsx~Jr{Rs;Hc^V%e2(aq>sU=QK5H`r^|Lvb3`q_65s!+m`yFKt-}zUe8;GU6VSnp|EJvuav+--?ue5%k+2Crgg!%3~@s3 z@$`xaMZ}0t>;$j6Ic{@6I`)Ti|i;xE$E04eJ5m+2{_ z|2k@@QlgIVWoQk+DG7HWBwsZ6 zDoaoP1g+Y_P?k3ZYy9lyZo7!+Q!=wMVoQSqQ~7e10Q}R)gfZw{d33lfzH?wA zm~&bSM>l~bimMjlWI5=9n($qtI#0TxF0Ym&x+5qopAAbs2$!bv+PtP>9%J3Lh=5Q_ zy8u)KPvD$-?Ap9=utsQ=@u{nB?w`T(AmKYlnn(|(4yIYZ&ylgIa zU_ntdP0T;a2J9-2T~?pCF)e!KwwYO^<2cCd`{RMr>IcSH`TE77FrpR26!l$Yk)dY# zE^IiZMob`w<%U6m>ggXRHL44J^6CCB7p^eDJAU(c0U~qJO@=P5tn?x}=^f6t6u?(T zg%0@&)7eeKlgjyEbZJc`6MiC8(q?fEI*i=gsRw4xsbbon?y7o=3?E`H;?p8xbn@;D zW?flj*+UxWmDR>u%Ip`0$&A}&M!==&P!kAu8zI@Of8QA@HierZe&M>8R0a@k2@uor}R zI!!rZ%9+Nc>%u-c76kWDl}qJy~`)?oeyQ0Pvw^OfIi%C=2G)xS`Jfa@~GeYT)c)f~Wp2eQ@;7 zhl=~nhe`+Vp`M2?0HRxNZkuOGZW~Stm<>Sl*{@Zh#Rt8f8-JOArd|ln(dDF!X9yAQ z9=3bP5c2u@_Ke$OylZ5#{0-tiJ&7(E8_NDE75x(|{XgVG#fppqLeV7T|66=0i$w~) zQor0*t;Rm)602?2(0FWDAYH^1qG;W%{Yu?#%x}B<7^ROHdVo+gvHN!@3gYyyQ1r?w z$HUB=EvaGvDy4}LAEnxe}1w%u3K3swi}lj4-`UH16Wc&^&%Cp#l1+i_eD z5qs}0hnV5av=%Sf@M-lw53lf7UW|Vn-rw(eKp(|?nGnhU3{WKee9AJvs#{|AF?UI> zu{in~7|LLdLJMh~>-vD>zM*ib|LE9HyW{GDVK}t0k>fk^aZ;t)jwzbDAB7g1Jmr{! z>Gjc$_W$go93}j}>7x+;-|VB5{^_Go{kxB{^#5%iMd+XVD1HB>kK+D+p^wt|cOM1s zr1HP@QO1ItM*s9t8UTHi^8b@Q3ejJE6vV$0{h_}S{d}hPM87%R-6DY5OcZA09d0Hm z%RF{U!XsHlE;Vr`@9YfB*y%oM!l%taOWEM?X}{=6(r*ogGNovh5q^zu)f}c6O;GrC z8VPBmCA|!LXuTvJ2fTrS@%yTQqPphEjG{jdDWH9WC4pWn()Ue@nl86g037IZF#kEw z-@&nh`E#Jp%J;GR53L-4Hv5ZKuJ(sk-tZT#eB-~;%DW?oTCD#UZSNSKcNgH@#&*)! zw(T^wZJTXu+qP}nP8vIDY}-xx-tF_u%$f7foNwoIzV7R~v;S+a^()SL>OI^r-D$qVF@72q5}b*vJt{{!15EUomk?V*ft{eWP*(DHsxV;^a5~HqO10FX6xjG4YZeDycP7DQA#&>AHVCoBs0=ZScE*}Dy#)HW zs>g=npW1<*u;);!^?FFJ1|W$I>cuH=Cw&|35`TK-ymSp^KiT}xgV`tWB!C|?5UWA! zCfRx%LrR-)TKuk4jYF;ny`n12x5K1B*bkFyJE6Y-TO%U^ZP3`dk$uxBD04rqR7>j2 zx<#eovJzvwb@*JkzHl)LyVEzh5NyVr!sL+ynP;dPVj>M^ea~_`SEFQLRKM;^!qiF# zx(=wBAR7yeJGE+aD0R!&C9BbEoNgnDBXv!N;6$jKcVSy%FdgQPuulIZDKW1qA;JU-DZP`I>~%Qa+K1talnRZ_hB7HUl4Lw{ zQ;B8v%F#kRXxo0l{wA8_5Si)uGfr*L1rG4K-G&}YBPU|7;R1{izv2A z)}&f@@ctUrmkV|~juUuQQR#*NiTh)~f%oe7N)T}Vha=Y&g6`EA)Y6XY(0d4-G|#6; z`~m~2_p+V5wgC8Vr7_5-!mppDCOWDd4!ufZM}WO2br}V~-qYrvy(iqei9dT!W`MmX zaXQrGYD(8#ZeYB_{qZox*GtzyfTM38{j$t>owR7*-|*BoP9DTuVS!gG^LOtlojUyQ z-cuG}?@8*<-jidk!K6`3;DpFR9fHRCSYsTkCQCmRmuP6~4>^0)s5Su37b@89ReFdH zRiYA+Q`SqYO3{7=g~EXC91jGapB zg>Ja$QLV=Y)!RrV!C;#`4t^*I*71~VxbqasP)mnThxs2p*e2TZv zV9Xe0m_*x{eQ@2PvC?{5*i42Q13TQ`6Mq4_2e}G;+P};s-8=<_YEx|wss5VOJUJ(Q ztg;XI8PXdthVL-^pulB@8XjcZ_6^3X`=-6ehN7ZC#?+L;)%4+9PW$0%Zz>$`ENTPB zgPze_Hinrc>-D6!asI;#z*QmhGc&qhZ932v^9#Ozezt!7R3?5_yZXM;O~xQ|m_1|v zc93Nwq^pb&Ss<`#1>QRQ6A&q~jLw=_CUGMIW8#%;SHj#XCYM61_ayH>|A{?;sfNT6DGX_N6}(x|qtIDz488Js%f~lb`aaKOhWe7=UHHy*S}`Mt>0_ZYm2;u_vbAmtnc@USjAO%Ufv{ zQJjsyhKywV%(A2?3B3@(3aM{r4KE*h3leS|`vSGQU9n~-8zrY3rqYe49=SBhvlCtH{sC9*y3BV^*;Jr7k+;|c-@sb>SXAwakho-awPk*(o z=6Vcz+0z!s*i;6tQSNYS8I#?6Kh=Xhyo}wr;K}p2?)sbtS6H~m2GiLEY5ESJOSP@@ zEVuRM4B~=^TqPVYOG;U;AG%$%Yu30TWYrr0*jAe`v>Vi&xM4~kU9$~Mx8iJsll!2) z0u+{bKa5F|mcn4-ar?4pJwztHB5Q)!59I3Zwph{5G4_FJ_kmSae;^ z;A3`=eXW~UU@`&pu~}0my5t?-EvMo=9&A143HYe6APOWBVOF|nO_y{oaAZ*Wm^hJl z>N9D>MjB3{DjRuo7+}ZiONR_wkNkQt1*;vZ?M9D0nR&0fC@pAPzy?irf8>}T)E1%UkC5lZ>3&Bx}^IJ^sJhVA|ng;Ox?(O+6}p36>hvFk!=;E!VXB6kibeF@+0O;$w2MJbX9AhWr#0j;%BpM-FPvJ26^N`nVw^=)3|_fpe#}s(3CfLcEwA^hu-;VaF za46je&oSFkxLHNGexEK^J6^c7_4EMji2qE%05>Z}A*wfVCuV0D+`8@r6M8{pT>qr& z?g5Wr+jSDX&9Pu6jy1MmN8O7&CEZsm{1&M%E%JT1K0wtddsz9u3;Hcr^i3zGEVApq znUiYCAj^V&7ifu2KMoJRoS2mR3^K&)rD_2L{mHYxg1+V-LI23DC)VBu@Bc?ZpVRW! z|03weaXF@4|1W|*6U#rBrL}~@iDqxtp%2Jl++B=pD{|nkqe}=#fk*B>j*Kv*7 zYK6uRDnZOvLvptQiJb$!Up)B^oeRXNf-3$^hk^;X#1dq(EMxVIXJM;HLTC9q_`n`SYDBQvaz)isoO?L;(<9gdYAaAQK3=8(UmE0ENOEdfnhkl%u=$V0{> z;wmpLQ=R1aCO4AaJ5 z-NP-B3HUp2DAaPe{{o>pSZouw>L{R&uLXJ9YpnN5F-E$= zxXQm_z*V6d%y?8tnjy!>6lmodP!t)89ni@nCboPCZH4E|e&n8WZjoyEC*Tv$H7!PF z=HUb6d<4yW`NF#v2^fqA%Tj8_4kXNBl)Q7yvq)i8$ZvTI&T+~@f55#Ed3h>nnV8rY z4Xl zE1}^oWmxj`0GmT{=IMO{{V>5k#8syYkenpivz{k%(E;ucw?{r%C<}Q>2ULrP)cGVtlbW>RR^rOAOJbG5kJe)7#Tmhh zQ`h;s65xmuZo8xYnE5&0rgxui_4>Mh%zPWYPLaRho`?c?W!P{D2o}9g+**jd&bpF^Cm+RHD_1_n2&| zmHVQU6P>t@-xcD#TPmMv#xIV>V_0D;@*!kLQcWge1&BSV1*t2Omz{122s+~vz%s7C z#$9}2#}ZWa-ezvWocy5wWRFyP#2+o+=^rhBH^>ROV%=Xr3*9!{37eA^>?=nh8cKuO zJBQV+%G?jcraGNMPyjU~*tM@m7{9wS2ZqVu0vSd2((SOqxQ`f!TT#$kfOGOm@b99Z8hXmc$Pm(}Hv7NojoNK}UX; z+GFS4;U6XcZkP`Ti)O`ZaK2CqmzYuO+Hxv6?35>%)mpA`Esl8}2{m^6;YybAC;8_<%td#E7`CI@gbeHzZ<^zQU^f3&M zptHXF?gy~^Gj?P2#H78r&}J6ro2$^(rmvqw?yTXbim4fn%vT{^4K9yc@0!{o4YVLE z2HY2X#NMqcVf>nD5T3q45tN+{kvn*PIX2&`0blD)=f)2g8#r&Cxwptyo8br&p}5~q zD_Os@2V*_V9s$sPaQY>1@&e)oIuC~JLZr;`p}!79W(7BQ zva7-RvTWA>8peKBG46{h`lLL5Q5XWL2g_=kqzt>DJDo___jn7+!r4Dq&Htu&G%#(d zc>(6Xj4PJOwoiPb3~9$Q2usNpx&q3_$gS)0Pmj3D~~flGxno3}_;DTFinW5tvuQX5Y`CH#2-1BbvUK z8g!10qJVBZBZwN=LPktsvq`5|OUBUZ7zxayvc!9@IFOB0J_-?=-&6#Q-`Y_qTX10K zZ~?||@1};huB8MMegejC$>cldf*rz5$dx!tWcjEkU5t4tv>>Y`??>P|zP^PGHwe-@ zx{pjd`f{Z#FUCW2PG;#A`Z-ik+Pf7{c}8nWlP#(VOE9GQW06E(T%Sa;EZKnbkohPJ z(9rydDpQbeoPGujI}J?7y)GGC;F0EBM~O5EC>-}}^dgL_=I`ErSD%%&RUWF;=%EZ| zm0npk&r*?1%=Po^8}=OrY(t0XH`CCRihx%3B1aTY}Q z4``63FpuoHU!0qCXoWWiQ~i3c8=FSCt~YU5P*DvIE;>w@qvpV=w@qM4oA5;U%9dUk zGf4_mDRi4_M`G5a(~v4G7{4Cp<|zVY4aEngFGMqeU8P*z49DJY-IxdWYT6h-pfE}+ zm7(2;F{-$2zkhdSm=Pg@Gwu<k;OtjI0ckCW1DZHx^RmhK4<)84wJ1(hZW!&d=%}Bu^Ys)w$HNYk$l|N1OLEYiqZiBo zoz(O)7cRj@#x*sL`y3wLy4j&&_Z-cakDK)i0;#eFG|L@sqq+TN0>{tq$~UOV=h@ox zM)B)Q$b=5%gIw>`rI#&%DwdAm{1=&x1+^}e6OSR>dN# zhBgs1+M7$%xGd)S1Y?s{=k=_MO6nE*QML%BI$s8BDs7F88w0-^xE_-`hrB)nbMG0Q zdze6KGBy2_Yjx$VX<0=rfT z^uyz?myd$v4Dj;TqYmgp8hS99TbWw}Dp6m+UB1J?k=!6mPa<*Wh+A|`MT*y$8)ic0 zO%_s)+8cyojhWW0+TWemrXmX zf+S^>N0Soo3FG4_ZGUq5JoxAZ=m)RW;DRC~y_}Xw*|=T#)y`eFqb*ve?01}K7X(j8 zs$8Vls^k=8Kzu1yc*{6h7_>j^^>}4}_!r;5rtilXA%zSd$^>N)&NdiAY8>U@WKd+Mo*SWds^{A?suLiR|zi2yY?5+@$M0m{bR;;2E zCNV{26tllI>lWrR=rgEMI^~pQK~=9}3nx9@yH{cxKzf>O6fMe|n`k8Av8Gk_wU z&B8RP9idk^Ur|-xdvX!@P}O3eF&z-@I62_7l7`pi(9_&(?4_P5V4)>d;&ll482}Qn zI)t(7I3p~bH)yaR>U_qnODyoVw@-*Kf9jooQXmjU#3kwF;-RuSyhcrQ8?uBDF=rAR z$hB^fA{BAyy&+x6;^e^6^wJXK2BM|Jd9Am=stobB%-!@K6faSoESD#9aJybLF@gW3 z{R6u1ke^|?pr~5kv5qVUZOGXlKkR~6Q62A!Qr^p?g+MyUUM;nx^fq=b=PjWP@i~D- zL-uPndHZ`>+HnA8SyFk0^f>eI`ManS^`)8xCQ3l9Lut;7M|H(=$UnKyt5*|}jgFL3pf3gyf|7ImfhEp^acTRk8=~zr4|7Im9 zM(Vw1!sJ49cCEW`1NNW^R}FFD701WRxSlE?^43U^%CO^VO5#83+h19gcuDC>;uDB0 zxuRL2D7fGpiZy`~t^Z~vYyeq_?nR9M5c7dpvRW|*BA=ln`YK4qNO{uh`jkv%NHwJu zX;d5iZbSW*Et(B5+G>IRCqlToMOvxrMZStWvN zoH+k{<~_=8sABPz#6nky?P?$VIw^SVw}44)xo{62a6qTK zN*uL2@voMo`Z*^f`rESNXc!OdM6wl(`mK8cq1I1qbw*Q`(gun7^2=IEK#nvaDF4b`Hs^mE~?PgTxk)7wm~?|ZIqRtAC$ zH2~wY%h$hZJQ7A_q9teK;GLYN0;NeNi6Q(l5(ECig}`WghDL@yJP#+U<%p8*l2K5t z<&k!7`3Pf*=hl)Y?xJ+(A zL1LVt;C4XW#L}7^0_TL>UckgHmhgyns&d7U$_X26avSX^=Zx8;2acRS2EF;rx;1Nh zd#-3~ej9HTT#`=E=j9G;tRIkc(4Su{z725`O$Vt;1KgV`jiW%O8*MW^pdxg@TamAZ z_8!GIT6kwUIa_#mB;$PK z*t{ox)Za3OtuG*sbrDRr@jRY(^*(1AP+_hg3k{rkH?guA6tUWdu!>Fy5cA1s6@PZ! zt5S{8oBtY;ipg|L0?GQ_;p(y>8FZ&#)#=iXIhDpKXEj*s9DZzpZTUycrvr%jH3EKA zj#Z@L0${p{e1za zL%ZTr)mRq!7u?)o2xj>*$gwZ=3)qT^{Y6e0T+=)j*^ob60!j>?=QFQhCy+FmyOR}j z#|B8Bk&i!a&3ZeAVJW|e-b%2%=4 zb&N2$a5wMxY+LZTwmHA2cJH}Fu-TbO5fX|)*%g2E_0PM^O65NsXzxg`hfShIpOr($ zF&%=P_;3wUf?mrH1HMh=+q-OAz`W)rIO=ZoeaK<8|3<~?H4JEn7$C?=QODVf z69*{yJmY^m`w;)x*&mgW2XywI2O3%eTg9BLF0KNsjvzLr5hGJzmU|peyYx% zJTrv#+$vBV88QQ;YN7jV@h%(WWdgz6)ZAByyPeQARb)E*?| zUQPB6GQPq}eFPRH<7|=I8Up%4ng<@Y4xKo+TMu(fZ-y2^DQ#R*`-*LS84Oq~gSuvb zWgXau^;Z%r;xeHCd3^p?$d}!eAQ1?B%Jt950|@!|)`^KmZX|t_b`d%sk$oiV&>FMW z%vCSN{+;+#SDA3n!Tp<)pc8X0b6z`c{^sBvx8?}*=WM!(tlmxX*n9@P9)ww}(#IYp zd)Lq=^qnR_KIT9y5BPjUU0obTB1mHW&L`xrpm$IXLZ7wo3`sYi|3UE20R$fmkcc`(azt^<%+~r6nXEGWyeqUpxFvLUH}~`!fLG7d#)0pYlDb2XH3p>aQZ4fNw^0 z;2qY{LJaDb?xf-|Y~Q1{2s0eX@1J}Pk7i7iGjp_vfNSg$UlY6ZOLg5ch zsAc|0EO?SjRP>#V?)1rmn(wRcc>h)pg;M9xlDck%%rDzokj1s1V+S7;zfABY0k=}6 z2&FH)SEgWSqs~Vg)W<+>wVf^G9bLc7mdeg_@?K5R4HRmmDkrCq|5!?%mP zK$5)^p`?Ym#(dPaCrEyeAJS7DTiG0BRi2}Ti+6r>J&_s=zQ`xJ0Pt0+y8eK>`9ukh zUClQnnr-L-e&sp(ijpA2I~NFhb9|T4ia;L2{lJusZCmbmx}-1{rcOU#J?HAckwdkW z5c5?2;pqoAG*5+mvSJ!0O<;zkbFLGmJy_a)*MY;P@d7lOn)gb@rQaF%be$o=x{s&f zfi-u;S;pKQeRjc>M0UGrotJBpU3cL&x3il77Css11;X$G7;Y4J+4hRh(_S(nY!tiq4$@}}xK=?*^BMb^pZn<^AqyS z%Jz`Wn!@G}VzT2b69rZA{ZFl45G5fi`3Q_vnWNJY4XE_&_sZv<9^`%!YZIb+w1Mg5 zlhx@FGm!WI-z1f&lN;xOcRS~`kAqbhgHg!GY%zcYC3wx|Iw#MV4eD_DS<#^(ZQSGZ+!1QYu=z0_QLNn!5TXt_Eu!U2KjjqKTQHHH*t2E!Mw61m?6x9NFwQwBK zoYhl>q?iT+@J)f-jzpP4wQ{MgEa{@o=^EK%@oan5k7`;jJ?O0Y>415XO5n9yvf&0w zm($juv-vc_7JO=Xa(RT8b6Qg0J&>+LdAwI$oNo8%=$wxaxIKTYe&fSgp~zrESgO{@ zNuoUefkTLWi&`xYOEg#>_&Q{eEtrduI0->K}F{`Vc;R*lcD4I7ru!J^5WBHD9f&2!s3ANubMJheH?EI`^5ar8P= zX`M{K7gzFYWv%#)*1v&fbf(ZRW@F@k){#pJhh%8w%)^I@BFiUbwAfB|=#!2VcvAQ?m8%6|_w$hQ4oY+w?2mtG z%A4qEJ&~;qT=og#YUFS z6VwO$;NcF_FWinfx?7a+#m7=n{=G%{Hf&=|zuaIBPsShi<^Au#C z=k%wwokhJ@37@}zl5L^_YYomG)XFB`Nw>Cr;$5us>36y%o^OglOWFM??%)3@?tf?> zad>euzP{Q2k6*0jw;Bp=|2Lq|_V2wZv2dc^2LSXDVYmhuxcO{Af?_;z34@-zS0V#d z3G1&#57Wqm&NBH;bK#rGVgiQ;n-ibH`XZ1=pYf-$CZZf9%I>K zs5myrG1RDtG1V(G`~&nS5&2YOi8U%nI?HjF>>aECK%Xw@AE0kFVOVwi-+_Jr-ha#O zzfuv-p24Gha22_-k9r}5dqo1g{BV!R#W&pfOb4eeh_>T%`tR6!Cu2;!ArwF22c`D} zfa@4WQ;gQsbb!dGe;S%hc6)s#NqZD@pu8+a*7$MDx>?f16Y;Dg|F!kM1O3g-!@#Pwr$YsN!N0YAn^b^` zKPJkQ(9lXCv7yjpIeE+-!vU?9*MS&chT~*3S{7QWQ6sE&a$na~y*B{iy&ZsXbPfw^H3LGn;Zi`cx5b2#&7%C$`UBr;YgZ$Hcc?$qdag@4|*e z-@nvA)a6>{$-x0tPaTLk_3yTp=98#WfV}pLoR9^W_!&OhE~*Q#))`-htyitPZJ=Y9 zU*^8D2T(6Nd1>c*D!!@|r>I^Du8cl&^ z2#2&2Z@p}gZ?R>_6neCo^q~^0={kLM$nU#rMbK@OBG?)NS&!fLIZ>UQRE7C2D)zL| zgP}?J`;p*GDj)K7CRN^p4NL6rtaB~g_#D_0*g{Xr76DC~y>~QzQ!-{ybULq zAf%U?5Ng+$!gTZt;oxW_xXAqnTaFIH6RV%qV(W)`ictX!6P0%j*R)9=R9$u|@)@Pm zgV=lKE#T}frjTEe!K?QU*+?rw$`_g-?`5QuzhVMP`*yi{k|R6gCjb$j7&f)N7H*4x z;i*!(D*(lR%3AUzQU|~ZnNb{c57gmT`(dUn=%&FL#QP&tqJPaxERho!S3oPSC2X`K zbDtnY0z&(y|AzJ(2*e!apR=&7cvpm>03tpYp13311OGvZbThBjaC-s?z2GyXW!Gd5 zN;K5P_IM5hT=~h4_)xsbaF`%g7>zSYPvUOi^H=Dms66!;68wZV zi)L`isoronoKV8|-Fo`>^sYG@3q?Of84xIweOKmh+i8X@r_!#%ALHq%T5%NmI0t)+lO}2E9j^DH~GQv)%d;w<{L1 zEP(Mk0bQN!*v8IIlP-%`?TaP1 z?ZU?eL$BE;y0~EeYP4dStc3$ON)&djeE_6Cx`N6#&+X~S%3pd`^9Si$vA{m1dlnDh z96assa_5S|7V=YBNg?`7oUj1g3Ef0w7 zOZ6Extt>hEK}KhfandpNh8eB}`JU7Egjc^|`e(7}5SmBFd&$Gw77Iv@Ud_@2Cx2cz zrAr9898#FgBP|SiSzdTLrDz{FFLCa7FJ6o9^*fQ@Aqb!qAtxjr>7=#gHz?MDuQV}% zvQVHS)6&4Vf-+|e|1fi##}=37#TscV)+g20qB=!??lMz9O!+r#zPN4S|&I{xfoAuLSxivcx0TB)|-M- zBO!Devt*z1A#6E2t80E&S6PVSRA0xs3u`hu>#%3jaK<->ZwBMV6^HkfWu+?ordJ}v zvc|LWX^JKd2<=BZ%%;=M+z(cieu-(~Nyl;Z)xf()xMCskKdr6;Rfj88B-}yCN%2eQ zCL#6N%GOJX%-N=?iLz3BZE!Y7E%au=_<6aeU|y(e7_v`FEbNrDaY{tZdditSjjpkX zq27VB=hYD|)d$;dcIaMMxGru<1k*!sJ2-xTbg@zyyx$Qd8T$TsS~e`4bLE_2vS1Om zVQh`hUUakCsBOfQE*8kLy*DZZO*spC=D>`2PUHNOahMtU7}l$C-TEQToLgASymm^E ztwYJY6R~dbD12&UIoVOh1{!0~RfL8a(Q?OBsjAvT4|L@*)~Sbn(+7V{>ys;VTAUQFGk3sM(IO6~mDc z+-sSUBWl@{z?#N2S_(^G2+3xe!k`@)UQwc8L%R6XAf{Y8c3$5d9*NacHAe|RrgV)S zW$Fby$OfYN&(iQ!fr3^6w|0ZcksZ?vdsG_|H(yH}4widXk+OJ0z>?cfvS|nU%EZ0r z8BJ#N<-o1wZVS@2Gy;@dn8lEQW-ZP&2i1t)9J-7LBQynInUc%lLmc~p0srQV?*BxFeg4LkxgacDc&b%*PddP#9?{Pr!vxQ zw5WDnF%$Rh)qERoOJ#N{NGx^n_)U<)>MlDqojP}XT)|+xNIO3~mD<@ryPN0_`7N_`<3P27df{@mEB{1)2mYjk$=EP1|Ed!3cg2a`&-(-+e^p6 zT)hIexF4IG!&!BNa0;i1>HNh_e{%OpzeCG&!I7c^OfTrY!=7W`1I`P7MPwq6TT>aA z2q^8_s`_o3SrPv&?Mt3*5RA$LO8a${b(~4YeSW$={N*4xIXni|51#bkj~Rw*>~AR+ zc}^%_I!$qsOUp`xM5&T`xZfUbv|nrWdf-3)Vfns3M=$p*qrQ(Uqk#oLp?#AK56x$I zw7nmvJ5L%v@d2s*=1veg0meKAB!*nP*@cbX-@k+qNf3HJ|L0t}-~yGeH2^Htu>L>h zn=MQYO#t)FO#gr-Ex?QC4y+z|)vf+RmBW$JP&}O6hoU~W?e%x3L?dJ|c0#zcVRiQ~ zUc($xlvTT#hb&3?nXJWem4&6e$A#Y0RG)F*ch58KVoWe1kuBr&SHV>2K9)G>?oDHN zCVRfciDJfiUgd9bkoc2WP?NsDUycPn=*lvCR3jMrj_d*u}K4MEjm1=?nz z6vC=b0{wMhG|^dslJokCG&1tJ2o1KlMVS_^^A zo5LMt3V}%#STXnmc#9!|<`Eg%^OORyXqgA_P%ku;@*{|(8_qmN8tQh)P>)DO4}7?1 zxQZvvJnT0oeQeG<|4-*pQH4;1DCQ{1NOeqjk5CSUAkR%C zo#|g@LDYxDsGM2uqC&BU$~#L89|U$E(5H_DzYo8i181$kM}{U+#)-*c>b^tN#_P`M zijItf>m^A?!}tXrhIP$`d`|JS*^3S)KYbzn%m6Z4X>XDCI!ac)Y}LusD%-`nVLQUp^@WonJy#c zzPk%5?#qOw^DtG@SBITOgLL(`zM1fLP^hV~re5ga?ule#?`Da{<{PsUFk~+r#Q}Kw zZ`URV*FE;cO`zZJa_4rQ^PO{bjlMpSZTmT=D?BIi{^B<>YdJEOKgE8$nilpi;YlOr z<&#<+kZy+rX((2 znhcaacUv%%Bba2JVo?pY-ilB$u%w_MW@A=Q#5|3iX995QLUj-(Mp`MIjaYj9urJdLG{c2C3m{-7tJy z4h%#-QV`S~`Dw}Ba8OKRtC)&2#{j6#r7psWoIVDb;-ljTiycOa9IlY-s5z@NN!!Xn z8X0R>m-f3iByT?B%ok~CIBuXT8(M0;stDqlCB{+ix_tA!W>DBX9j7=)AhWH}Ip*&X z9eSXga(bm)2vQ?%&leUxdV(tM`R65Hi`Uy!fKZRPyU;3wNP2w=E0c~2O%7y(E>^tJ zzBYV1+a0uk1g!|@Z}=Cm*fF(KA&C%xr_{`|rd)XMvT5ge1+;sCo5@z)R^71uFx>*h zL0Z-czt|8}J0OE-G&JB(!zN)?H~X_kW`!=Bouz72pz-BZ+t-W-n$Wq>uzMvqTDPp577d~3eFB9o}{;abz0a(q%ZBw+{5P3Sa=ch|A z|LQY>BV@6WxgIz8_9->&wMbBquI>p2^pAcx`8lN|YD%&e=@9r29SQKnR(8=)MtRG} zMHrpC;Xog=I_&zuS}fqlpBsn+W$VrKX!Awmr7onmNRob{l;Dwx$b0@?NTh46Tv}OhWNqzRK($OrmpNx;Gw7RkBxV zG(H~%1-={V`}DGPHMdtFT;LA#5G8#F@S6rFu1=cZO&dCz zi0Wv>x$yxD*EchPon*!YY<7FIUs!RU|}w=Uc?;^NC!~8X3qJG&qfv zQ;$^_C9%+ZaP0(bD0wV|Y`1S6|DoaH>liVSXK{j-nf9%*VOe0J0kr1$fzgB(??|`R?545;RsC#X`&_JGBiFcY5u0 zPC0w`{^u*OcpPE1fI|RfT@&di_TY_EsLD(t0zQcd;!p{`6ZKiJAzy03Abl0J0+Nt# zegM*a@f{(>p)?zJ1o44hMU9StfwiC8a186Q9FV@*ma|4(<_#{5|c1b^Vw`-UG{ESxe$iRvq0zb>yQlzhvE;) zWEd0|?U?bO-tc<&U;HT_=^7hn=F@Td(wn)|(OK*to609BtQVJl^l;idg_M)NQwJ~N zI$Zn!MO(FAwq(oS$2NAciYf3GmRL$T;E=nwDWnWQ5cM7i#X5830sNgsJuvWI?j$q1 zd4b@<*jP2O4cDOslVBy>6@Ag**tuYf7cUgGa_xG$vZ8Vt9iC3MVxdsIa=Bt-HXDJg zkA9OPFY0B%5p||e)tO-MLk?R}6JZs0r4JML)Y!B*!VW%CzqrhVvR5VLhjJsrFp}vb zxripHQqPe`%of%NXzlTVpNBa>Bh?-~phdh?7LDeRSGL|cLHt zWQgN2#M`d4i>$e{WEv*hu&q8;j>HmHj*(M}`zQYV5+*(e7vZGc4)5$LKqEE6CC@0s zl|7ZGPbJMn&Sq}To`!AU>R0WlD;-D~m_A)D;x6ufEo(n`B2J)Xg~G~{f>l}FZodIh5R|~#|b}giD z=JhUjLL`v97cpiy?CjFH1ZFri6H0lA$J*-Y3&QquiXEFR?2FAdIe4pwMr1K*XDa+I zp6C5CdV`|Dh!vxvsd#Gf?mvJFOtJhBJnoU~_UiEO(@CejWLj!HC)6=Kb zJa~9j7rsogh@V;vQnTU7QEJ(SCG>L$b)783^nG@aNmFU0ohnMcX-PX$OEn=m2XRZA zVJby=9KC%auR~Y|_E(6nCCA;(uW!Yde7+b=FE#!Y1zoMWsKRB$gN}^mbgs;YMGvJI z+@Kw$iv_KmGJvExmH-o<*+d}Mqlru>F=eX0x7my}zU{hds;1(Zew*f>v(jwTq&x)r zVcOZd%`tqaiIyrigQJ==U5Gz**Vq@0XE&aa`FK(!VH3MX%GOalGySV9I)Jmr)#75fG;b)2|bGxaw8V&g5sO%CkSv1&2zD!o26JwWQm#uVG3`G}oIDE;VcQxC{ zy*D$Sv~C5DnOPy+6vb4Z+U22BXBvm0YZ54R7h?^33r&u;b9=jf&t*NzjFMm5*oi)@P*$Pd~n zm#OG6hT;$&Y|uD0HalAxZClFe!XjqVxK{og5By7PP^#1aL)Se9XWDOT0*`Im={V`w zwr$(CZQD*d=-75Tww-kBq+`$1@7{A}&dfel_lM5cR9B_e|61$%WyY>)n0!S>=ImCJkcl98vRc;H(XjAEs7$?xV0qZp` zvV!1ykgHOty}G9*hpXM$nh8~mvnne{BS)2eR&$LPKq9R5DFO^Ci~j_Hp0r1y@i?A9 z278=Pc9pMIVpJw>uMW~}_9JLcFK?w$hf$+(>X!itgNY|8yOS*2;Vr7I@_d*H2Ka7> z#WT2#%=q48F^Ap@)FF^ZW;ho|{a-^_7}!r#}$>#>Kxg<`&f zrCEvnFte664MHut_HqSNAsRJwr9>dG4kRm1!N=L|Og=u7%!f(f_~AO_S|*s1k8Pe= z7gA$>VHcveahM6&;rf4ioe09ZcAVbTfXe(aYP)xw06+ZeduR9Cw&(mLY`XWGxb-)5 zzi!3**T)}I%KuC^LZ{O2i_P^_s#n1gF3Z4A+-1@zod)N|>B=B*_Xh3+eCu;A;Kbk$ z@rsS#g6;E;_#d;Yq_GUC|8ZgUpX}}FrN=51)vCA1RZ)IEWGRQakDG8H6xW?u7E?B2q`ito(bWUitv@)l%tjGncmeCy zaxunldC0kNf7h)!!G`~?TXWzPnNbvDtp5D})~#<7Qe;S{!b%QV=819+zW1e?fy>mS zCJy!MH})rGJSph|X`qhmwC!F2O*#P9tr@l{C_#S45t*-zg@8$?GBQqRMQIhzqgfjJ z&#if%TH5ZgRMa>dahyfS7=J9a!6gNGX!}rhsk!{QibG9g-G^< zUGqB%s7AZ==EjeeY5q!W34g`%+QoXAT9Z_y`O3ixC6!ws<%(uR;j3ArPDJYe7)aJ} zKG?J{xwQno1*$8sIT$H2rNxE#;p^s&K$xjUSH_1vv)650oXC1(&nOO*-A>CNiPGvf zyq(68gt`IVLD8@vqU+ig%=0I4J0~5AKZe>>e*gHNb?dvQBvincQp|zb07;5>uhQcU@;@!C+Cp5$lgk(KtsR+;Ku48AL>21x{E$lp9ID$=rgOEy97oAXd-!^| z_UC|8^ZkRc{a8&2Net;lUiAo7w;E_i1moUaehE;5UZqZ>SoM~6MMB7 zN2&lywKky59oVo^kNEal_!Yu=;4NWwMdJ5cf>mwe*|o5jsob_Ts5tPAV_B?_e7qy; zreYoeLDDWVD5Mu0{K>#`2&3g5OtJ9S4MNmS6>gAvqaTi736BYItC_CitTHR~$1l^* zeOo@_ZpGGClg@VJj4g9qREC2|2&Fc|u-y zTeK~-2bJ)n2%NRAIBNEFIsWvWX>OKc?E>lveUHB4X)OVCpu>GY*rG&i#Iz>d9A>FY z@z?-5(0ip>+y_jzPkd^CE@*)I!R&cxYp@<*AxwKN?1Df6S4%Y~xfN+vY~=WzsEaJfW5`J_?3{kdJ-*x;S|8&J7OnJ!$P=qH2D~YpHx13IM%{}B+8Mbyl)*+SFzTlN;UT6ym5dor zG=#>;treh^VF`gCii}7`xTXjK7b2mkZgN6fM zMo?4i9~x%-Z8SUUyC7&d9HiJa)TI`kCb|JSE>D-25+{P1!DUOO zJVJ!I1XQDLcCS>E91lDeS2wjw<4|Nv$8&Op|Oyq{AT#+W=O~HsSgNyV#;7!36 zl-Vv_cneVR0C-av-taKwhJ7%IX^d?!BX-77i}1!c_i6rpPS7G^)Ce(7Q&NFv7Po+q zcPyX`e~Vt*b|!ZZ{WQ=_=Zjj;FogvRD+B>LkF#a)5!Vv+_Bz1B3`%ZW&=E{O_i z_TkaqU{nva2LZPEP1YzWLsXbNah2sFqLQ{pFK0>hyH3<0exh~}GU+mlcHCfN+%AB9P>kMMjv#-k+p`y*; zlh)V@nDiHMkm9p8G}ZwZ=cGRkHZyDKtu}I3#6xcFTkpy;_rAwbYmyU$@o_5&)8q&e zaDbJ>=gb3Y`K6PL6XHH>qZx*UiDxaSTJZg4K>VX}z)!aOkO;Um$Hfr5hP^6P3OQfI zeChM;#&R8FhYhknWptG;iuTbO&a5oVh8%DKlAV-YkC4zp$_H^`zr8F;J<$1@w0wVO zHnYSCzk>qAT|CB1buj`9{%F@$;D&;jh71I#C-rwK51$Sb({*?!Y56$^#2%*{B9IDe zq$lDBY#{OBj8KtI^AN!01`u=+!+J=O2=YrARYoK`Bbgw?uSv{E|GXglEcoD)q_yZW zrZf_9qSF`pxP+x=Ak$Ue46_p%l{LC4D+}j7;ZMTq?PnD9v5ioiMOu|7u^THu=Z3HO zl$VOXwH}^yimxET%_Tt+W4+?;Y={1&V08U1A{wk+QrPDlAfiUY6u5 z*cz$@WI>-|kiw_eG!MCnlaaZ-X< z!hj{#m8)8!dGVxr-ZZhbzP}F$7de}De5&e~<)xI&nrmac*!R5LF;?tCDpr6 zNlo@Aj#kgkm|v|cy6hW#@zsUbLt_4n`PD# zy9=_*Hxv;7mjat^PJU~S^Su0q-1kO3*u~7`%O4`+lkWv_T>H5WGG-%%-_v0QxPG$& zhxy=0+eM$6OZ`lj75flmKj{#plmOj0yOMtyfZZEdo<{r`+M8)rl(YKJ602e-|2R3P zg<`oXkldzegwS!O>k^v_uk*lkwPTn4A5ZDjAhQM@%cucdh3{rMEkFWX6KQrw^xqES+(qG83)-DC@sam?0jg}VgWO4{UIy5j_ z6WIwR19ZKW3u4+2%1b9aNUxOJb|j6@RDd3f%?%LZ?{5tkP`bD<{G*E+65q8nnZ)Tj z(1cT#@{vv9CEuK@uW_~%x$fWWfGu1o!UrXI&CERy$PlYlvZpVPP;}F-_vgA5b9NSbdx5A}e$B|5Nc1%?bcJAF!Vmo+`vZHz|!U&`-?J_N{1+z(E zrAL}q?kKz)=6vSMmn$S$8DUi>j@;mn;j!D)-C=K zGviqD&RB94tL3M(6w*v#Wm@g|Md4t@fq#bdmg9L*MTxWw!aS9=lk5z{}8GV5`-+uWxBkbnNbmCc=>oL8WQ>0q*jW*4dtGLM$BDBzgb`TyW`LxEepNT3!1dxEjKWmVRvL;^VqT{$^s`Ku` zJJN4wgz+lgTx{U8Jk`S0G>|<{b!ALQC5VV_M=Wos`L=?d#Z#)G>M#OlO(vk`D@J)E z3tr#(ouJ+8!h}V{H-!{SgA*k`o8)To4Dj$^7Cnri5XaP7myIV5oINSCs#UWFtK2ov z1B^>&_#yKKu1bep%7bIea-GI?2&UyW)1E4 zX*1$0eA;m}W@&*;UF>B0W4Q2+-UpEonk{*LH|4c?DI95+ddFE_%am4S=78ZU+~2%; zcUz`Q&82juC4LiOd%qusIIbA}Q+C;y7Jz_C=bh3JBc|EeErYqBOrv)>wVxs84Lc|8 zekhY=Tjo;dXH5}v6xpH=D(>`K#*5<(m11Z9Xl++WdZ>j_OTK}A$SfDWX>vU*!F(KKh31(Pm1X zg5g)&`kPEE9X@7cmV>ST5#3Z^TFr@|mRI&En#Y2tZ9_~LqAanOUx8JhTKbl<&G$PI z#wr7kO8bt!T@_cA)^cQ5xAo(FYC?wgIpGM?lkjPSjUU0c9Y8ikHV3)sgSytvP)m79 zY%@9Kbn?_`G@?t|4V7?*nha?>4oqoUeh-wtVp36lHpVT8>**GTL;H`kqkXMU>91i6>O{Hjj#s#1bc2* zth)%#E1CI|$p>*f6}EN7*UD>Ui@L4a>%^9pS5T=30k3~5j6r(>2x78QGq$tnioj{r zO@E*p*8y$(NkLjFl6q2|_NAs?ih|cof3F|?rbrg)7|j$ZCCMXfq=&d1^Zgcez=lZ4`LCp}uy4{eWHx0#8!GM8 z)Nb~Fk9!aDxh|pzMv9AGd zt3(M22ThupMG~BNc8XF+xLJi?vG@BnhS%_5>m$5+Hye(^p*<(z<4?C1RYx%1* z(IdP-gm9WCwCaZ)W#E8HH_-2Gu#j@Ez@c9FQ`kvpdtoDelBMl172ik||Gxq5A3Yon zC>cUkEuwpsh=#qqKZ`e5kcdzm3Wdd-HK5KRlCbJnOSkd%1yBzi#2%{qoyb-xkZ=pt zIO=FO8gatCo~K_9=kb#E7#|Gz+K3CjTXhy~5T<6cvAfOo&p2!7Tc!mgd8fi8tkf*J zWa7KxEvTDa!B1)|Dwg_!N%qi0x0}|TECza63j#5z&HE-_v>`|t29WvFq@@atHKm=x|)afzQV_w07=kv|ke>v)L0*0+n zweN9vv>HdLd^gTUS3o47IFIiC3|norFsjYa4GwDy*1_AwR^SH9aCNfO-=PcM&DC zu&G8m=nV;#KO@*wfT{Ph0&yyNO=5(a#TuL4ie;qcw7?uKFaH$Ge_L zY_S(@u&k(ub&S=hX4SF@9F&SeCt+JS&UU38w5 zH|q(Zq+_`4JSDA7$Cnj za+5W;CslM5l11`}6Wh?8YQoh?u)rya|9M0d#@lP!L0_S)i&=u&A#09Ky8)l zDt%T*h^kGI1o}ZWZ)0wl)pxNuu|(zoK6vR>-jy>8(!-ww4I(y;IHOW+D=;}7m2$ibs%v^s(2^aT6%|Mj zAz)ZUr5St+gxjDeV1tQBfca)`8-;)@Sur&U!}~7!H@~HB3AX>6-*Q8dt}+Iy4*>Gp z2-;wUf^UOR7_zmp^h0R-`)HF*aBm>*-JG!uUh<)}UnbWt7sRZnR48u}EjJOPrUv?! zS~q8K_I?a1NU6w`s-#~H4DiDW6TKThw{uK>aS5CK_`Nk+JB+5Bn$?@KMpw}Br24hugkavZ|JHm#?^^I7 zT`@WdvNDH%a@3nv1h*i>SaU0VI_}IQGR!cXRCf`osC=8F6{KZ^6cPBqOPYd$|1j9pm95Wg4_lhvKYl1w0Om=`|@tZ>7hsL9ybM$zf z#R*0}+(?Cm1y)e8CKu31{Ea2L)wKZg(7I$6RzV0B3m%!95E%zw8Zm(=WKTSaq|80} zk0GT_b6Mj^R_Qe*ybe4sAkNEciD8OUB zI^Zr0K_r&YS4f1^k~rYYZ!6_~CDB;QWN<>Ea@&} z%EnYX%CkZYly4E5!ZRjN5ux@)cESl-*lVg=a@Ul}ueLLWg=6H8Ns(F%Pxw$sb{#>j z$3#2L)?VReW9NETGV@%&1kSB@1n&{gu|J5V0@14_FR(q#bm3in&|fe#O0qPr2X8lg z^ZsMBq}15N#{cr5)%}R(d8asNva-FH@=M2Oom{%D0w3kL&OW9h2QYyF>aXPQD;g5P zYvYC(lvTJ;^r@u}%0<(S>Ka~|tE!0Uchuf$mhs7jd#_Ohs<}A{#K)<4qe;1IM#uiv zU*WS(Wmj%Bo5{rfrp+G;K~-% zon6O{CzD>&S!=MzNByL2GLZ%CYi>^Sy)wyJI+=uzJ?t#DFwfsqTi@Gq@UXI&USQmi z$yta4YPguz45Rkmj5YdYx+_yNpThP~Y1x6hfUUe^jmLn)tb%?6Nv%ZYCP~w{p7WT# z|JdP$BrwQievI^8uJAB+)FDbeb4gXKTD^qq2i!Q8rH%i{$h1l$_agFZj^9}oC36*o zS5iyQH^6mewq&>BN8OE?t)k782@k)+p>nG~LBmg-;^Q&;V@}&-@t+crnq=oDVu6-t zP{wi^k22;gmiDck7D_-@7ba@iv1-{{l7>s421sr*@Pn)z#$R*jT(` zQs}h+=dLv*0_NwBT2YAE5OwjkHAf(hxYab=We{<;W{dE2AmtY*+e&K1zS+p9dF#<9 zQHTa^O| z>MAv!dd*K9Y?<)nQrW=HzbLmQx6&_FG7AS1-1AzTw^v&S184bKOHWgI4**YtM7IxZ zj8}GEBMDfgU+}c7Xt$n<_2lK`78!Del*C#|BQm3a2bX4p97;nHUETRK-SzRxv?OHNp% zv}{b6Fix4aah*^kma5+kX-a3SWnI98vCpQl>A@U| z9R`q=r(+);4-|9Ez8(&t!%gWv-rqIMGY?&Rab05C#^U;APC2zlZq*J5Z6e=PeuJMa zl*Pe4gLo}gidA`Ar(Iwq=#;L-H3@>)L@Udr$e>^SJb9B~I!rojqwkSxy5U2)c9O)o zmcI3axE7nsTN!Fa>`m-tf)?4f=jy>2u*?^=xn{@zzrWs)weB64_ujhBr|h_YefcBv z`R_mWF{%oB;AH)3)v4u-8Yd8;8P?vDhJ$tGwqX^VMgka!^Xv&6t`6e``HKhH2IBwo zH1@!KREqgOwY2;z^wQK!E|S9dC-e$qH`41`vI*MlUP2}M4MBbN%+ya!nSJqmPJy~u zc~*HR31n)rOiA0uyLbdu5ycfr}Do~>b+{_OK2EbNC{NPUE_sZjm_i7Wl2!%=XNaqNJ zy$%7X7bK$40%Y(%{lOh`z_*JhDPf5J)gKHDU>pooM)-XLNbAnxc9DO%le!==e3wc8 zZb#W~%pCiE^-oKSNw;?G-*A-A8og;qud_@)B}@278O#&L z8{-Y=>$(0nN*t^vd!n^gv;@y9TRj4!YaT0oSX&?4Fp9pXI{)U})huSrzTr>o^3!C}tehHJG~1j2{|K$PE=tDKSXF zay&9CCQr;5?mFgfpo_S8Crt2##VoB2FIaMae|7Rtfp7q+0}oE$AZ{x7E-D9%kE(2A z`N`}uJeF}*zMvpFh*l?VWg-{Iv;;Cf+V%aKnJ9QWW#HoU17x|bLKAlM$hWALdIWJm zDzV+PxG1{|CGCI&9wug-tgLO5AWRF^jeietPr6yw9n=pC3JprMQG?FMwe zrIB&G7%5|bZ%`x!C~5(ls{8rcfiD6-7@3To(5%_q<}KaTS`a6Ie(q6dJssS3wp2mR z9R9<(F0gW4CA>%iB4Tb*^szSaap3eD}>hc(J79fhwjY0wU92w~EHkh@a|E#Muq60%Vb z&TNvFhAnxscDY(n&%kawa14oK(4_~uqaqCm5#)z;-vEBGLy*y^nJ|N4 zS#Z&TD$YWK4DacR@|Kj^NpT;>lCpOacl@FQ3?KVh9`eauIq<%7IE3HzPXY(glO`<% z7NUy0AM%aB8h~L8DUfQmd+}-yTNErU#@=)hvcVzsjr#cG(Tu-in3w!qriOJpfGFK@3;2AAHtksl`!)ssiH=Uzr|~I$g82Mk3^n!2$!1TBzR*9fd%i zTDW2k++?41-!EfkkUT}l0yCqWMP+;Cn#sktK{X`{a5#t?-*_DRF!?|eKc{COn8Yk- zIOt$9y>JmEW`jBwy1JxF-WQB#5?}}HU`5ttd;=LaCzaN`!ll5c&fh2DdwuMk*7tqs zvisXwsl*9_%!uqeJy-Y6Eza*8k-Lha=0)@PtF&OqTQN+#iLspAC+xfLZ$tUh1L|aP zvL}?0FPKodKHn&@m^;5%4P|zo+wk1OYuw1r9A4>edyFQ=LZ&ZHzh=Z`*vqpq?d`Q0^jts;eWoxPBBsAKQqJPAsJn$nEw*2w{h zzvNURQ}%8p>aVzsRU>cVtmh`Rbr)3f8Z_L3VyHBwDU;_=Y+9E|rH)4Hym#qObzpd- z4?eA0qR-`cAsj&eD(uXZ~{sQ zxG@cA@ro7hpU&27zywaA7ilt3E1{p=?)}`)`^)oAmTN(lfeg;cVC2m9vHCK!2O74W z1)veClU#`fK%p!+1TN8&`%mjL`*iR7o&?jvWc2S?7uT5;ubfo7_!(xY3G$)QjPX+- z+$szFyonD}OSL`MRGT>*7KYvjl}Qtd2@L!$QDibUp(K&qxJBMjMM1Q#up+mHZ>A}5 z+%7BIu8oE$;M^DxiNv!-p8|=fP{^t7<0m6)S6sF#PlJ4a?*hLr2@gxQy46rnzvlrR zFR>#&Z&r1ljPv$Q(zxqLG2X?T5czd-$en<4HSExq(Q?gv9T#d+PeF`)wy)=$FfTa4yx2yd})xOFah*4jKfh)5mAGC z8_hlb%7XdxK*qNb0?iu`)W><%3J1Ij&XjMh`%GA6c$=NLn zjY-u>w#ONqBcRNp<1h|@`z>9b;^XDCG9H}reDMSwBYoUxTha;QAVK3;Qwv%^?bXog zQkc@WSL0TY#jwT&NtEfA(A0~jVe@ex!%GM&J&uvo1+JoCTD)Ifzde#VL{m{(Np!4c zILG3fn!`qAHbiNM((o?2$~iYNq3*%J;)XTh}fM+OcdrlbH_FIoNMOC;&Pbduu zz)22{z+`ecPZ1E64cVU`_v0{5KU2 zTAh$6OEpy6PIz4Y*6h8QSRSW70=JJ6YuQ5SR28Sd5}%ht-~Am@HX4{eT3EVq-rpBN z8v+&LA}!lU!eV1ua@$y4h-6E>b=(n1y zCbKKnKV~qmJ5dms9K2ra>2i6AEsA{oKYF6c>*E z_-=LjPoV?Jl4>?1Xk69D&B39X`QT`}^Y=5rMt2`!+W@#C_YMO&jAiw)bGM3jkpmvQ zv)3i@pqkupChtaS5eEsBC6`g|J5e>|bQSQh5Agz?=x|;I*wDIqOQWO95Bcz6fdb!Z zS^J~A(lbd(k2rSlVy53-`g$TBG?z>FMPu(4B%ah!t$!{^ z=1*c&`%)rsb>QzqUC$Hnwb{VS;y25^Imc(OgU{c(S^M`iAJN$3qD)r#-anxi5KgBo z3nErIQO*0sYwYRZU3m2C6C946@D#;dG&O6{A(OhLBM5@D8Y71sX$GRM>F7094Lla) zKfE>*=CS!nO}!?N)f+J72QM2ao{>AxLy<0Z!|RD2`EjPN(CHm{36(8svBlE-;6M$Q z;G@Ns%)FL=n9HVJZ}PZ+rWxG27UdOuUqp;-rz>edP$6hY0HVvEII;*kEizo`Fcvi{gw){`3kn6V!Gx~Mc{ zNrj;${WSeDsg<7AvbkUzbeTd*u2H$ZzC2H=_GTDw_Cqu6U_zokgtOxH5(Az2FpMWZ zeL6*p_zl|7g$!}UbeY9TGX0T{xh^&G2f`BRkAS+yY{cak9-d{cm{ibd`0#t9&DO_t zrb*1QAGpwvEP+AD&Fu>mj z^ng&7 z|N8gGze-y)f(w`QvvD5M?HoV2SDUr)I(f?H1@~==!6A)@~VE6)d2O+~LjPy1&FAO%5Sp#GH-=bF15iktv*7^fJ z9!Q}#GM6%S6H{3kc@Zz8Kpe^Ow`9dJ|LA|w`_`rflerG=w#)evpR*!m6dpo^AHPZ| z=Vd);Wt|3=dK&`eons~}e|#`NH$fBCQ@1e?#c7J)n$fW zn4Rv)D3lLrxy%Zn92g=2h?R~sQbMRDR63Q#knMTP_6}w*j4U*BupHRH4I!r|k`UvV zaA)Cy971GS_JJqzK!UKAXLM+Hg90EA`84+hE#fUvy%MObbD{K^gqbiT0BHVG^L zUxeiyfUt-W1?0MAJbOV9CWG#skDcQ23hqkG=nOt=UVt!4ej*fi_Mf8S^lKu5<=6XR z2@<`}f)E&QDGnUJazbmhzR1VFNIa;qez|#10&S0^g-%3*Q8F`3T{$PmKi6c@haas$ z3Wjxyk@W@p!38fm7DIAB=ZgmCPUDk(<$*fwbjH(=oCRxN#+S?14BUV`BR|;J-*rpf zU6U#uKo&(35is)=4YXQsv)&p)^wPdlt#mojKM4M52c5MC@<8>uscSQ4vBwH|Y3M|b zd+WD#9jPb^a@fQiQ6fC(+o8FGA!=rtcma@=SLz^BOUzqy3*tqj0J2ib5wR`$Yg~M8 z@0cwpE9CeDeCmU<=@XV5qx>&fxe?~oJ+_dqY<7BrY$CN|^MELraS{f}8njUi!Q2%_ z8c_3HaTcCkF!GRcnRSTqp|-9dsvyQz)T`*pkm*m1z`Rha?ue2HhN%Sgrk}!kkZ5+Z zM@=%BG_>uHH>9z?IhDEKuhS1Xh zIv1eN0IV&iKok4#iC|7~rozNW^EzigT!ye~3B>t{voBUH( zUBydLaY8xhV5!8J4ItE*DlR{K0(0z(EW8r z3Ez_pIy7-WDani;;s?)~cMdHBR~3*KKVOC8Md-9pszuP;Fi(k$S@0IjvTZ6Kn*2F& z@iLGA5#T6-C#fC-MFr|eUf0Nt&F8_OSdd0_v822ZTAzZV{#1!9Hr&ZCQk)+aO#ik{ z=PJTZh4MSsC-{^2JskChM5Y$10eSXq>LXKvuJ3c=@Z zZOb}&&@0xi!_LYVEZrv26v~jE|88<-iCeus0qB>>R|(K%1>F0!PKvLo$JrM#tAIf_ z0AeBS@f+mM_}ki|4N+A_R8a&9=S9zV4qXM??Wcf_zt)|&iTg`9$uk#;Fe(BfSRtr1 z?b3+ar@x!m0Dqi>5X#PphVNF;aBrc<1yv5!la|m^ z475HD4r^;g84PHDDVBZElxm8weNGP&R{yE3`$yo4&};%7O89&QBVI#QEmgN}3B^*_ zeQ;{oQFpEcuIn+>stIpiu?*8f|MQOQPcY?y?g97$@7k`L&ww)T*fpWU!`5Pht(^8F z!l2Dgf5=4s!ol~7@ktC8Xz*Ku^poMI_MWpJPMy5z>yQ-;{rdjfg^23zl6bp=O&ekA z@MG);Wb8qqkY5|;dFmIfsMcs4nT#6rM>K*2tsCR~Uy4$_Q3rFh7oTQzzeC$yZl1Ri zbdqxG%39>LIPor*k``1b_??us$kU^z$huI3m^q?DHS<#Hxj1ibJqhBULqmYaQZ{bw z1`ab%#uf`KCO(X~2;jUGXQEN`@YdC?J*d+Ce$!uWHP>rFWUt93Oh1;?Y76^q;>SoU zMwyVLFzzlcBz<>mX)1HkonbG#AILHpK~Nu$!g8HnH(jxF4x7MrX6p_CJtDF@Isi}0 zDn1Xy)yl1A$HRAaUO>Z!Ytxb4w?)?BU+lUi=<%X6RwHkf^+*&s|7i(-J2%@^>+|3<3^I-}uzFjx0^% z5ef#}`nz~P4)IGGwuhK~PJB>cIB@Lty$cSFqhso?>2~7d&b5K1B+iP}5l*`<$zs)pIoJWAb7Rmd%ffO_?o^a9~TXW2;EHe7Ak( zL&Y^6Gl_wW7a7HiZzhtgh!7K!%Xn_0n~4&sY}JY5IvNRqY^ODuq=Zpy8T!cyPCqH_ z$)Z%>e|1$Tdo|8Y&xD9-7zYzvv^8=w}vj`_$pnsVY31 z=}cP0p0MyQnD(`Iz@PgWElB@oE7Ul4id?sJT(jHd_+_17n*NU`NJC9~ehrlrtC6WP zIQi8AjT{apz7)U+a;NgiWzF7sc z9%q)>vMuMW|2Q{+%8497Wa!{?i`Y`(jcmbi6IkpaZ;?-iV94Iq%bd8Rlq&7_=!yoo zgjbNj%@P&o0r>gsr~N71eHPOZZWk;0N zB7Jo8O6z>Lk94JZBi1TdOi%86t}{oDLepX)_+`lGjh~vto>X^Q4}aL&794pCl{9a$ z8B9cjAq-Ux1zgQi;29N^T-jkj9qq0XtFIgsG(Rb}{(KPm@`$}N8{ChCZ8Ym?T`|Q4 zt(^c0B(#`b@B%|qDDtfr#7o!TU|L%P8^sc6jm*hrh!0z=GITU3SNoj z6(v2vP6<$oE9SoR^U=vz1d*q129MbeN8OA?o>%V5yO7sX$25G-EzN7Ywrasjpe%UI z2qSGhbTvoJaVEt(v{@rBgQF$NftSyyk7w4cI}`i}R3(#^?$l4d+vaFtXrIyz+pSeO zn+U_R^@$qDc8r`{G)YBL2#$txULw6LSP|5l@K(TEClM5-3lO%!MaFO1b2v%UaVYER zw@Qm39r|dxa2K~XC6(kZ3L10kT5^%%3vF%zbJIYJwJUc8P9?sx4&!!@bp~8;XmHI{ zta~ZAq!4Aq(7hbFi!FDT);~3yj4S*^>6{ZSqM8@;D=zgBjqXlQpRJYZR008+EH!f^ z)p)K_NzTu&FVJh$oe|zau~m^PGQwgA^6SiyG2Dv0mcV@O)e7zr1z&H@<@AZy=ygq{qiyP}b`I^^!~Amge*E zpU(juIw$0OqkHs=2aXeeMXrSCFp3neU|9dS#`-kdG4cl=i5#%&hRa-2cn3uw$;- zI3pUFH(;_R>IC=|$wi*_wZ(yd^_7;IxI$2bME(3+wA4Q{k%}C=ymKf8izNQI)Uje#Mxu^2iuW+_usr&0!fEg&Ko0%*A z{`HSv!DO`Y*RRMcKgV!Sq2Qa}m_XUQi-qsw_oA;FTbK;0^#uAegz~ZHN0`72*9r(#yVaQ#bU@KP~?Q!AvqSud_WXK zZEGrJpg{|3w7C85YZbn1BMh@AXD0QEsLWP-MJXWPK&miDsN&@V$}-?LZ6##L{hg}K zo%*EmjUjXgg(|0Vn+1LH(@LP8aO453M*YtACFJMtt^ZuaDh0vy9q50GM*sQWd!ecM z9|4Qm->lp2Z>9yh4djYxG^J0t< zCRn`d8LVb)W*`C_dmZ8Vx$09PfL2w2hg$*-e9>T-Z2SC|UtwYkE5_Qy6|tdN&cBQg zHOMA7)M5N;^*-$W05#MXr0=qe+Sj17MaG1L4JNB(vIaw1knI@LlC(smy8ntUH^UzW zNJhf|e8smyZY!{25yJ7Y1HHlnm1PskV6ew5 zqX*CC%L7(a`8}%aI8s%=$Guf)oc)`x7=mEQ$rmcL_aeX1La&U&*#YnsSpdGmJDlbn zlMCijpBt(hifoTL>&@CC_&6bBuj7ECt_Je#kT~8yHnX%ij8f^<%i92wNQo8EF(ghL z-qWMH3CNE`yuY@=@`xP3SA-eMd;s_gArb2qVOAx`QEbjI3d^42MQQ4BQ6%M;b410B zatmgRc-JHwrLG~DE3)CH#i3vi5fcx=A2j!xDm`g+H%R=KDx%1`AY%1Gv#ucV!-bWk zj=ig%A8W5NisfJj;7n!Z9fo=gSPB|F22{kNFq`BC~UeQ&NstkAd zon$g2rFT;|mzeFi*g{rRj@{yoK+BTVn{nA06l?~fDb#uj@Mns(|5Aoc=o2K$&Qp)8 z$b)R4s?6hMrG;KiQSZ6>mZG)k+Q+gvAEwR}PY$!;-ecw2E*+S!F=ogORv&$*|21vL z4np}AT4}2mJr`49I{fW@9Ze&QEYVCK#eNIs5dG)~Gy_B!7UWBKR<<3?6NyO|9`g!K zoH?g&+1e|Rn@6%i-SVIP)QTTorB$oqiFD&-kF@R>6?O*or1G~Z`msot09%s2mmO7EMg0`e>Hy9{MO~#(p{$0cBvQ23J_*1(pKuLk6mVA!k z*EltgA$g$&X1FS-WSxk46NEFgL1XI1FT;uwsnNF_D?y!>MK?Q9KEGnw-dhdyxBmE? z01rKUF~*C`zS_NC#=Js#icSSTim}xGNkmoN_Aw@#@gPCpd&Fbi2hGz{{hXhD5E8Q@ z;Ua^{bVEhZm>mF#Xj9V9oIe=PMfAU!#EPw|I!7~%4l4Cng@1zlmtHZGFqbZSxvhmx zoFvG6nQgD{{>r=2E(k~JqjH-`=^D-kt0)4{RXt5?zddrX@_g~#wl?12M;fDY!?1jT z3Juo6iSPf_E119kqgPDeWB1^^2YT$(n_7H32RFVBN|6l|QC`%%$+X9_ug7g#Nv3!BJN?6Hxp|ca8^Bi#bqCQ!uhCPZ zva0eMS_-R+&zD?cm6=2!*k|T$|HN|azN^g<>Gc=9j}2F%5|HF|V;I$78BRPPJZ#hh zl{iH@N1uXLjp)Ju;P0~fUir;yiDrZqXdOpv*JL>kXk-&4{h=pX%E2bJDHhmDLSRtT ziXjuMY=mp5^MnXWA??@SICOa(77&M~cJ zlFz;`09tX22^{=vnT4S2!Jr1%W>|V1Xp2m1fOFYI@AS3W&QpecvyFNb+PpmlIM*jP z5aA~FoHE~-UH1WcMW>CIMLre}K(CGCSe*Qu*^|I|70T z?DOAx#Z%C`{(~On-Ul>dt5Q$w&*zoK*%fG)hwHytXrKh410W0KG{cPyv9-|V?9ub6 zs^zXHk#tsU7!Hi^3vQR$z;u^fEoZ)zIB6far{k1tHrOltTK;iu8oo7z1&**7HZklo zMPn>^_IbVId@CQwbC$`vim-ymk7*mf!JjCt1o4sQqID==EX-i8&P&1Dpxhx&kGTQe zhU7yd5h61qzvXCeO)hSL;pMxErpek(c4yvPl7s{AL?79)NJ822+sgt7wf9IJmH=-Eid9&!2}i28n0N zrqLx%Nmi{-CsT9gwB3$@{cd7o$o;?Q`lskhw1o@Qjcwaj#kOtRwrx~UF)FFpwr$(C zjS4C}v)0=Gz3rT~_uG8P<7l&G%>IquDPdJ-;~3cAOhPu5MU{iV&S@3K;OI{S>#*q z52XS$w05#Q&ZYBmG{c;<#J{2kj}Gtam_*7MuTfIjR_@{9+Jv6*n4emGIB~;->qD15 zmXs{C`b;zIuS(%ax98AT>M2Y)KesyLO4O%?e`v0Cd}?kbz6CdvcyDG(9T3eg<1k@n z5CE#oR*R;iqXwn|V@u+75bX+_9ML!G#pxdwAKPWA6 zc`OvBy(=+)Oa~tm$p3La&weH+lDpYbE1WO+;LPKNnMMyMYfPUpUGo<{R-IVRsI;7% zQye9TY^9x}t>-zxG_B2WWuHs{4K|zphMc=OKCY8s?fx;`S)^=TL0klFgfy&K5aGk_ zWRbBzD$i(nezKjxNJ_D|Ap4n}Ez{eltM#M_{Q3|}HSPkQgUIW7iujGxThH>4WDC<) zWdq|5=P6NsE?tL~_Qqml@xhATD$|c!p)5?GtP+laVx!i_#$xRFE##7s!bA=nx_r=j zUJ>Fz#=y2-E00aP1p3RAu%!&jL+rsf5`(Ay0u=|DQJX=tYz;dtkkZ)d_lWdi7=3+8 zaqXy_U8lC=d=ws}k3Fvjv$q0|tss2Rf)cy6(cymkgaFq`-}urZuQ8BgJuyqqxnskc zGGChv;!{Dmk2SYf~Y-zU$}e$aSiUSpp4?A^RL|Ff&Y_A;+{kpEw1x>L_Oz zV0ksE9kfAS+~Qhu?2!6YgM<)XBOPyqWkAPDBt073tQ8BVL!~lMX!lOa8)0DCxQlZD zUqZCDhb?E3^C)I&n)9@Qp+^O>yFa`=6P$e4a)+c~S@Dvmig$JJ%#w|-@%v#dZ>VcT z4px|<*n;Qr2$vW_Szj2h)cW0O#*Yun^Fesjtadf+%6pYW@|9gjrNVyV@Q_AJxi&9$ zr^93anHnyuxs+GT)%$Ovf?AO?S`^4}-2ux-=cjgZ1gs}NllMRce4hHmtY>YVRsVHc29hrf5ae0xDHxKAkkdDUduj(zY6B({?+jV;IJTiNWCso>d*N8j z7m-4d#Q^1T=a2=wh$YGe4L4EcX%Z*bbQ_j2$WB~8PY6axo#oflJFcUz|!LnrL}r zCFgY_QdVzECQukXQv4)Z?x(GYJ#VSwy(h$k8e^~T)M`^i)6hEdS5d|AjKn1H%Enze zt#{>7M}Vz#!69WmA1;K!!TIlN&BpMX3?H|T>vi^l5@yo0BnYO4ny9YDuxC8_xGiPe#|)XCg`qfa%79N*{c6h zp`yF6n}Md*P0_vcr{G=Vn}En?yUZ(KvLXrP>)!CX=>GuGIrDuWG%<|5c zr`q%>4nAr|ECUo;E|B6F<`htjWz}plni>ayy8!K zDyxH|_#G1~%d>7H~7u!16vC+JA;C;+!0UMgbuxwA4O5+T(&ETzIQD=;9|D(&2xG zD?&~9BSgE!j0GY@yTtbSBYqEOb+#Z7g!V=NB&m-!OvfGaL*t7tbPkbYX;JKTtGu?b zY-ZblWo*DFn1tgJXkWo(j<_MyH^v~DbdTiSHm}H!X}gaF6F%cEm71O|0@}d0I=el0 zUWlkgx%s#C7t;2MG?^f$yTBZE?E&LmVLk|dW1c-yZcji68uEls_Lcy`JkvEZA+jGL zapjXIS3dPO1buR7e%Q=-AS6Y3fvg0CptSt`{VhJ*Tz9#UJ+|-EOP$ILcYV7qkVHE` zj1Vt|^{pn39B`AKTw72he|GEI4;IyhIH#kHBN2yt1(*RLD3i*brcHmu~hdZUf_QpoC9*l?IYM&ifg}u zY~X~d)Og4p2IBy)t0~IGeW8w7La(!dRNVOi{+&S{F4rwLl7`qm2$_8#_88Y4i9?oB zN<(qkdaHNn6|6#Y1Xhm`HnCizBo*#=kV|7;`8wPLqwTNoGHuA_gI|mug5a#U z_J)~3T2)R>%&mo>J+QhhI19QQqb0T8?oG8ML@L`a-ai!&TQ`6hv&O?YnB&M`co4gB z#F}Ixvn9ujDB(~bk9s~sw)F9O-!ZKv6u*VD6sM*H{-zbVXBBG7vo=t<*}^%-ot=Ud z^olz4!uUcyE!GCngIcc+qVdQs!A2N25)^_8A98x7fUl)9EOh2us4^Afhp|)Qd&F#e z(1fMDbt$+`4`PbOrQ&bkU979|nnh1oI2W1|EcDJ`8bfQHc8}4AD5);WO@rJH#N!|4H0+`$bIeB;W&p7z5qSdbH*g80tc-K{x~s*!!IxvoEVnUR_Ib_ zyHj?E)3(aPq{7I3CbjIu<@0fU-ofKDASp!1#aD_UyZ8U76{f zDx+4yN=;3RPqXJV!$}+m3LjKD$qgl$R+-8VonwdAOp)Z%B4}VoK;`8QIK&sIL2h3+ zuU|5_?{25uq5)ZuN3{=W8hWqg*=6BvstWSJJ71>t|8ryx}l$~P`-+f~YAS!l92eZ0Lp+an<*#<s zJCa@|fF#tFl@EGT2FCxn5ep)o673Iyz_|c6~cs{)j+IX zN)~?bt8i}J1*$Az?kTSl>%y^9{fEynSqp5T{F3XQxYTVZ-bI;lk&4d>EV^3ztbXn> zSbzmk-2(w%wWpVZDB?Wpt-XlHTu!bGr-mmG>vIamcFwJ94HHjk=es*bEU$RCN#O>jm2iOLt!wM!YC0k)!*zt;z?}4m*E_&HUKkR7n|2h-7%MoTLkdK~gy7I~a6Ly{{I9 zb5X)MRB_`xkMQG&!S**z|4`AQ>sr;)ezWI`gUlGpsCFroCxsN5%OI;8#akF}EDf84gKjH|lyckyv0R%+%reNOp#egE}8f z1#(&$PKr=agLt^u3i?J3#NG7&&7eKP_){&Dz0-dJZwNE%-k?qXWW zlz&s2SMj`Ldx^LOqj;k*W6^|pq#@Mwjh=dA24h)%?!KR^DsvfHqrNsr(q}}aiN5=r z6fMQlldS58roqK(rbEZiu(fg#(dZ1o?MSwmx`BXTYPl~VHkIwTx9#L9)w{VbB$xg| z@2wooE?NVlSbpA*ZEYiAV+wu!#|Ux_PlQWd7WZ5?2-#RyLloP6r^dHXnL?MyekQ+T zC9m$BUGP5qM|S$3E}Urdlyqm2hcGu&Yv9*46!+oWOu!C7f7lS9N}BK0iPrgQ*iKl5 z544Tl`(!6o-JDxXzD>)vpkHRb+L0CWqBYv2{U+$G= zxYA5f;X7!&<^&>XJix6=cHI);&JGG=Hwl7tLF*;ebQSvSqa%ZxATO<_foBt_=QUM~ zo=fwlZpD(By=EwQ_qJ8NDx(z8u_u;bJrq*i&N=lYGep<5{bX75vE}bY)$TbOBPy=N z?bD4Xn4vq`FL;HaDgqxxU-`@OBvVHeP9wY}e@VpBkGbud>P4felIW#j5+i-< zkY!CF&B=xp36>`GtajR$R-V_Xq9cANLqL0&+4GQ@u z%(|8{LT^2m>*{4%aXlAoWOwXeC@|GM`VpuU_dk>z)Cd9F6-|pNIH{<=MyNFgYA?K3 z*4HnoaMwP-b4gmWyA>&Q_p2%0lhaHluAU%E7QzK;8cnNQkGeYt#rE8PyGwAn4U#y` zD2sxkjwY;jykdo4g#GMc?)8m_`6A&_5460!Qdm483t&o_8oIo*sYTTb>HQ{1jDlq( z+SeCGz?wxw#M*~Zh$>K9dj&d+9-orLQG0+l@8j#Wim~D(rE%i{jGo~>TBQy;P5j2# z3@!Xdzw6}aL9FrUsYSVT9eS zB>aP6k?oaF<6kPeMXp_%DLQ1oBz{C)Zl$OMBV!O)P2gYg$yQO5Cs4!n*$J4f$T*m> ziTyff8zB`H!UL(XKgE6I&~yUip;bED?NGN*YkDE-m~f{M`$y}*kK3OgCy2h9R_~8r z{}qY)@g29S00Jd(mj4om{(C{vwgLo7sUQ4*7t!J2AVy`Z8cZi@RN%+%yT>~|it?87 ztENzzR(rao#@#d1yxGbYFV3NnFs1Wb@v=K^qteC!<9ZFtK_~{L3@3p9trkpX8-Y z;rUy9>xyL4GjW$Qtmzt0Ic&`KHw}#nbG{7Xf zFYHJ36>p2-r=MuJe+VE`vK!Q)>dbr?9~2>Y=e_Gtbt%z3{?T^=)7uS#1b6Y{TQsfs zRj?5DOa<;iAO}MQt-KL>3}`m`L?;u(XTl`Dpsnx%fQdepYrw=Ub29x=Ug9=0}`yoVPZ>PNjEt?5#eY<}-8J)zV7fqOFIp4}66wSCM z5x4Y8j*m$D4t|Ty1=F37pOWNldw~+mbW~$0f}Yrb{zp|2WIcq*1w5fN z>P?J@jG#fG9}K5NPC|GEG1t4_%fY}Nh4#hN#b9Ox^>T!R@$l%`YiwIVV zw%I6Oc4xB=&%tCM{lFQ80V=eQ$ z>iyip9h$pg)ojql_o|)R$`vL-Ss|)w$mPL`=-`c8OZ1R06y6?0;K?%fhIn*IF-}b? z@x9eMwYq7IR@JzsCV<|Prg&9D6@AYwS*n#nnGiD&;{lnb7;=~k4*jCcN#}lz%EMX$ z2&Uefp6MU0xE1aXm%zCwMa)Y*Z9fkU7QyhCnvPPB&d{-n zxR>i^%C|M@>s&OnNg1i%NqP0(Xh>G20^Pra|4iB%@!WEfXm z@L+F0Fj%{>`E)w(F(qbBpvrVc<2l9a#Y9DkK}Vz~!dDDEqkWWM>td8DFmQpeRiXlq zKX>--6(aJ+ZXig-e6tQT5UPnM9)j=POMTiTSpzz;F1=tbmkKdaxI~H9qLdF+ik@e@ z6mkxF-ct^T0tladmh}W=ci%j}BCs}gyY%mKNbp1nqiRxYUd%r8I9YTHKJ%bva+@F6 zzD(%5Sk`BJsrs=4rz1#gK{n)XnVt*=+MjGRaWiblED7z?38mLw&qU^$f)IB{v;$VN zsz&eUC_caVZdQ^Kv`Ou0G9@;-tL|vla7$lln`XePtU* zh08owzTJCz(u=MH`&R_nlM+QzOw+v!N*fx2Ch7rlCjv=*(Jsl(>l~>X8Dj;gooV9I z4J&Z2R!ghu3Y%eISbPvrsib9-%z!?X?}$O&e%ygc8v)0xuOF!OtkL(yKxU3ioTLkX z3nzOLY}(L>#FE}Y9--Mzc~iP}HuITixZ8*5N1zEaaK!uiXs$qaM_yJTA0;k``iG@1 z0F5VLtiZ}V#MpS*<47~cVBK-b%(AbEnMPGxkG*}h04H>Ettys zRC+Tg=NSZ$_8?U|eDv$UU&xdyZr%4`@Ow=#5Jq~Xer35Ca6f0u9$3G`1QigtM#@-H zzTtUu3*@^_j$g##eN(mO9r(-+ez_MamXBh{AV(mm)8IoPcU`&Fz^B z9P_QE=*@RL2@;ihi3$GOyNk3Mcq^@9} z^S_?z56m|nNAX?|7JVAZ+DmCfwCq1-cAU>V61H*ExAYz{gw;~qt832|SlW?Y*YAz8 zpCLEgr)M_g+fPPpe`U*Q6zs~X+4z%~i~C!`ZxjGZCl?O{e@cVJ$Nu>NM8Y4IU%}WV ztKPomxq9KzAB!sXu6G~1nK?|w|jo&>hBj?Ra_nKzM zM;||%I$Hv1V8hT$>-0NIjVMnKsLz8hUWI$ZPL>9`LOMN;cD7oHM2~uvT1y=VeiTN> zZ;Djja8}5v4kNFRnGM zw~O)BcYJk<``NhPVe)0hLw`FbL5?};u^2jRdBgkjTUZF21=rS|a?SCz?QM!nWVoSd z0HdItB{!BA&b4s)%G`eSAJ>jEh zgHy0XaLAe`JC1j5>o7oRn9pN(4)hV_Wc!VZc3+ru3MZi00_3|o1SJFYxXQ1@MMd;Z ze#e961s=rJA*qs*v*SUH-%Hf`gO@+~WvpQ++EC7^7YbJUt{NkB?tNi?*x zdALu5_->8~*dngnxE+S366)-|{nzg**mMF)@hQ+9*qhu9(Z)7}0#eLaQ346B7hL4m zyaSp^1C3np#;^?$X)-n3Rn=7HewwpiO!Rk83`Osb(($SxO~bC@i_Pmc zfi9e{C4JhHiw{aGT9T8W+2S@Vp(}jsFPzHv`xrvzBtdz$Tj$6*IHeGJD(+@Wi6UL48 zFZV~yYB?>?t(Biq*(zf<)u)8~tg!~pDpz-)G|jD1#W|3R02+3AXmyyP6q(B+1f7W! zE5gLezXBA`2;K6Sy1@X_kavJ;xwHtnVIV z5?=jP0@vi)0{>zAlJCKJZtUP}ifEJc@ZvioRH}IyerDdx{wtJs0m5FV%vIL${wgVl zK9P<*u)dfFrN%j8Am7YQwz0fl+^nIDfuJxKS$6eM0i|MU@PUDR=D=v#c6wp$u&{S%n{(W?)>XMSS>uQKHobaO zzV?AvqSu7!U?B38GE51_&}PU~#6xZK@4>Cw@o8QoN_>S_8lSrHCXS4*Xf7dLv#UPY zU$ScL$ZFx{9hwtef4sG{;!a#Fdh~czv5VGbn&ruA(m#ubAG|4lOdgd<%|H~Ny2&5Z z+QoK7S=emY3Xd&a+fLWzlEWmK2?F^sEb)9cqt;0;F=>QA#wt*bC>~ZRVy)hnqE3gp zUN}8yn;icV(K%b|S2lkI$z<#BT})XZ2y9p*xrs##8&v_#9GtRU!h56?jNh`AlM5As zKhw!C%^+zy3@UWb`yI|f3OpE=CZMIE#l*BRF=!hJYeU}wA%Z$UG%=2nOKy7JOlHJ7 zmXO@F+Elg#KbxYMoUpG^8v?h~GPvNLk^@PZz1aiJS)0!GSevp4Yp8&e|2l5di=SA{ z$A?Whhwp8yViB=pw1!=KyxARDiIn;R{&=q;g5V3xcbb`wwVg=b0bZz~wH41V86;;F zEJdwaryNzMaG0lCA9S&Q;}g7w95Un6@TKcfJ#5_(Bhsa{uvedJ78`0Qig^DjK^SsblsVj7Z@(fco*^YiM$>A4rsf=f$H{lJk&;RO=-D z@MK3t3Ojk~CDx!?PeO%KQzJP8>BtT@h{2FN)^sY)=))^YSc+1r!-wwZpWc3*+TlTN zn&v-gr8M>u)^Gm>sTmd&KsHtjT@)3J9`YqnT8Sz_S51b4R2A&k8Gu3z^8qL^A2a4; zQ76@>Mx{_~SQ)k^Np#YEy!UF)Ql7Ig+lavk714Hu!yWBPklRhW>fjG*;>aGun?9$5x(9RIT)FWw zE`4gOFE25<_7dM;G@y1We{wO!LSz<8G-8O5`RX<(kq`xUgh{j=54PR)?k@l(5*W&# z_Qr_~XfDHvwqHKsu`^cT$h*;G4{(nRgWBxw7|R2(yJ-1ikXyY+b<(?Yjx@u&DioeX zW;C@HaNZ?s>!<#mr*M@pNt?@VPi%dDPGr$^6V9S&>yn+6iDgrj7Md@qQibSoQUp6g z77T?vf_|X{i*gue;7dOEtOPYM>E~%x1k6(uOCV<(u9?VKNK+|3IorYopmr z1!Gk4-M-O%7ryoaJVPr_I`x@=+*)TVDJ0(+f{0jv;@TbhEb+aIx(UcekkoXiijc-u z0KEFY<;k-cvIJ`Uy z9)4pdv47G^*np}`nRp7XR@&=t1QVoypu1XTugtzbN)zbJ;$z~c0ove6<&_(AA z)9F8t=*4Q3tkjlQ4P2juywx{2sk>r|kd>ZXrTZSISvHWc z$r+qO&n;fXiczaEe#-}8Rcfxgg=1_~_07P_r!+1PGB#l+GYhTh{y9>Lcb^qBzX6LB zps98KYH9<|M1ZFL6+_2QPlOMIk^JLbvoS_(pto`6x_6Isq5NpE1ckHH!+yr4 z{A(T#U~`cXT&9s=0Ef3P1aNp4zLdi06Xq{o<#Yx%YcP_-oi=56&6{S`6kUik1p@liCv3psIyn$!>9e?c8R9n5&(up2_ zsWEqt5+0$Fq_rUsC!|QaM8XSWwaAZ?9+#P_B5^dHpf62I{=LVHJ)5BGmt_;bu55QKd2CQ zTSRg(1KKq~qlo|505-J8t$%C)xM%Y4nx1x0rZ z-oB^&3Qz7?Ntv+IT^-O`BT)%>rL(f)7q-{!pwo&Ufz9P;;;4h$CE>B;Og)P-b1PKF zM#rpMI?@|wM+v~xHwBiCv)w_3I{-}G_7_ukK9u^=H%b98HPFrg08?k{IDOiQf&@gc zAp1=u(LVrtNZY1sy>q0n`c}q>2`p+>BOqxvkS~`;c)=-;S}EvuO*Y1u zG6-%NTB0dWM*G_ffT?pGi2;~82w4y6w=sC$1r|=Uh*-$~$pF0#=U`D~6eLxa0vNjP z%|J;!c*7Os%Wl2L(sh5vxZqx2c0}tKk09hfFpPt}kc{eSqH_qj-8S`3@|mN7%Rv-0 zVXYA2t8g1pHETku3t3o|xs{Lg?@od9c0PhSj2ofI$sdbzAUM05HHD00UBL$%y`Gm{PQiTmcsG zkjB*?LrJ8v-T6~~bi@GeO+p@V#rPdR`Rmogy+aA;!Jt%Aya{XiXS%s<;0)_Zp(CF4 zKMhlg|29l1k&V>tfNdqqiDK&;G`ORN-6RuK--~j4F(7*Lk4A>k?|I|yp{!=eC_48O2NcZIR& zn{ioVi}Q}r6WB_Kx| zByh?CcR0mKdPS`pu39h&b*T-&<7x0kfEY*|+x@KxX^BaH>-Vz=d11x(N8^)ha)&PY z%?xZ~;)n&v5SWbOtUURm!?(iDdRN+S8&NobpS5BHc*%pg&Vi3s*oVS)#esxY&8c5e z7eX5+=YqB%wc}EkZbat}kLjZwo{{yOjL!E$p7&zrn?_K>1s>@%} z8g^Hp9UK2Gmy#q@{1;S5h1y!CbG82qs>z^W^=n^%5d%WPB(*UuBDHE+E}(APgn!fX z%c&W-?*+Ilcr*;ym&f_xmJSqkYBtP^BDH_L(w}_o-WH^$hg>;M)xvH&r++{h0EU=u zpi9*FaR|M=T$UOZOkBjDZi_mzATVR>{y?W${VC%)lcPV*q?%F89YRO~Kg6Jf^nG*7{^s`%o1vrfox)X^IZw;&k552Baw z&i1GAf5eqF+c~L1x9ZMJcTD!M7LDG&8McmF-1T3^K+vk+7anP=-p8cO_($8-MXV-K zW(wJNwh_yo9d;^c7)}tVoLD-kR8j#)+)d98TfA?sO2@1OpQka>{kpCBF|@E+ABQ}u zIRMVQj5X)6IIH%SaOjsmgnGL#*V`FssPd=yb4Z2RP*ztF8j2C%D90;+d>Bp^RneFx-WyQF> zP^Ymp>uLJ(zjPIr)#}%B27TTxqqJ(y#1B|XxFb}$v$#(Dpd}N1EYPVBtpuc?(tuzA zV!-WMNvk<$pKGpOwSDXYmJ^LVPID7|6n$H-mifA-I1Ap*6l9teBaMnE6X2<{b361+ z=9Hm|mXPMb7MT3<69@cQoQ})42IPB7np_-yU?ZbjTT%GS&5-XJ5?AJ@``lyTXJcZb za1&bI&JyYmAGRwxacyDBX>VcNaZ@Df&uJA_b7i0_Gp|u}7gOQ}pH@w8*_kCjeAjhR zr$mKzx1-I1_AsAX%)lY5YvWwh+I=3+ESiEhTZIG4;APL+4qIf0WcZ$pY$m@D9WYpj z?{h~xLhy7q+AA8akEK$%a@cy6UE3jq17{AuKbw#hIsKhCrMik`4qFSZLw5>-&&S>( z$|b+6s#!J#xh9%hMpb-GmP1A=eo?*zcYGoK7p!fb4Zbvg$%`0&HNFcUexj@=-ZRB^ z5th@1r3^;1>n?j1_{8@oqwb;fvVd!>h^PVTQ}+5hOWK++SuFz3kwYKSzyq7TO)wi- zXshNHow4Xc!>M8^$cfgfvV)&nmZN!VOr{r^T&UEj=6%&*y!dVsm+KF02#AlhBZHY_ z6CzszL&}V|dhYBB{hj1BW*qX1jt=D#9z`;cEPRv}iFBu?8B^S^i)l}`X30cnWAv0i zSxmE1sPHHDaOOdoE@Zt+97E(302E<@$T9GS~v zYff5_l9yT7$YelByYaP4kG)CETflGyhLE$5i41oFi}a@+TFEDa9khYKg|XZ3W(eF_ zSkdv>pd5iextZst4V;%xk#nT`OM$5Bzmsp^+|L-zUeiM4MqKxSl&}ukhP>+0Qv*Lt zQe`22QMWlMR6ZYK5Sc=p>}zWs~f5r z-f(vSaf70p^ssn&L)Tpfjp%-e z`QrNlc+c@4zHj+$#t}JFPPhk89D+_$BDB$Kw5w=yIT4;s0)D8DQ@Z^Fw`7}~ymv^l zG~`})GV!i81FIVVPwlS^!rXvBB8S8=Ps>mQyM9UE6Y6~hgN}-1*w<2T6Bzbk-}G`< zN498Fe9(S6yezszR_->zUM{aB7hkX z^#s{(|3{@1^FOzJz=g@>puNstVd(>rrikVnH-Y_rF{(mTg}c_Pwv6KJ2zV@D7yhhyZ^xhs|S< zO-rKcgWMFn@9k=};QZ&v%GcY(PIPw4Fg@qGg149@Z}Sx^ybo3?7W-}EVe|=>Q#_dZ zD}V~n)zXasX(A6&i0^~xr}c9(3MTfJkxk7s75as-jK}4r*QxjRLDfcMH)E9K`t}h4 z<|v0fV|-vm{Xw9rD6 z;^J|Zl&a}|*cAU) zQ+GxZU6cN;lycc-y)y*sk$tCL=wxQN15`=@$2$OFf&Q(OGIG=aXzI0pG<9?P9;^Oe zO>Gp3=)6mq;sqZ6v&`xX4aTd1HhkE+%-m*-Zx)&4g{$b4NB5|!Udi*l>Bnqb2%WEx zi$A>Gi*O|PxQsu@MSGsU!~Nk(veue5RQf!N_do&RV8*rZkKHHBJ}8GJ0zm~Vs#7&g zA+3po8lCSZ>jp-`=)zhpnAUadp?#x@bn^8yOVvfUbkcy|jX!f6A(Pl${;Uq)G4w?x zJ7bRZ&NFj}(Sr=#qpao59K1G3(_)@4Ot6if8XKzHKy3{x>Y!Ld=pxv<;+v|Lt~7N{ z&L%d}!DnPUfu`!(3zEg+)Y`zh=Tv*KnhE?I5i;yLhoq-yrT*?m53amh5?^7HX9_vH zT}A$#nG#}_XIAWyq$1BZ%1zN&SEwym!#|c9F|mCakDdz) z=)_V)#SJ^vsFeZom#ZO9H}njGWuW^6d<+ZY1yi*;xEA+s^4)f~U&rl2cVG<`8n8CN z&PQrB9k5~uUJz_R3uS(u=oOY?MmN0%dFmVhQe#LHRvw!EvT#PhzLmweV=lPvdRzi(Pvn;T9ZVC-9@MgX7L5WtC{HF_&H z$CsX&Pu}z6S@4A83@}i2Hg4agn1b-7Z_bx0WcELta{dEzo{)vAaC=NTc1x`@$j2v)B? zM1)h~lhAIH;$9v8KyNAf?7dVXyPktybvx@qfwJ~F`98?+?xf+4%d&aPiw~Z)hcIF{ zppWmIiMCkC$`Jd~hD99Aoe%nz!t|)C<>cX@e$<1p$LxH+!#x6`#0B6X<(|~2*+e;@ zQI>iBzgg-c$|qI;Xi`?n2BU`vIfT>*>y-?T%sU$A+=z7J+g zmMqIN4xS~)#k8b-i3ktWlI5pBA*s>K^xj?G8C~Lr+iy+VC5<)R9 z)n{hF7&z9XWDL|fAVjV_9*0`j$7}ET%!h8NRB%ry8-3>63}b5%xx%$(bf)Dtkc3s# zcs+EfLf{X6(K)@mS-=SJ6OBRMHcDl}vSLXwa(?Q3*tUS2Mr6Pl)yd zlEAdCmXxnA%H0C8xE8s)wH1YHsZQ*2KVPS4YG}6Rv$KmSgMJn5dMHE_2k{ae-?(|b z!r~TlXyJtNrJnm6SyIvBu{8P6Jr}{!x@WmRL7l?}tur9rz5tos1m$D@4B3CVX-m@m z7Vqsg7lumS2MSXep`D_Ss`pJf`Aj$&`Oebl|zJO9@2_ z4KvsiEga+>9uvi@lauxmidG>CD#wOwXRkr`IgR1n!4A^?t}`bcbw~bj&bn>2_Fffj zspq2!&Hv;sNl9~H%W|L=cJGuqf~mW|$Z!^O=E9lR>pJasyTb|PYvkoY#gRRRE@SEg zOE=?q1NYTTtZXuUK6C?`wIFXEVhrkn*LVjr6OE{sCa;{tfe@$Tz|XyrR4z`nqw(mh z6t`AacG>_Afm&hnsqhRg^Wt$!?R#M=lOSDC{Dbn7H3lVGFnF> z)H)iFN`-C_bC_F&Fye~|JM_0O#TiKx2?W39xA7I^+v*NH%OP~_vh)4+3@o|$Uqf6Q z8FCWCiee&c)SnKQ#OKF@^~Cu{oG)GW=}UNtTDI}NH`rs~-@CP&D73k7-?LPf151n% zU?oAtar30#aa#Ig4@8ySE^7&6>cBICaM?5pPG=DP$;N4WHOx?WPtXB94=H)@Di>&CC6;z)X(QQC-ii=tPGXsy&KfEzN(e>E&~NQOcW94#E9US`5%2 zB{g_4{m{0_$2FG+K{giB5X*M&`_ml2sbSLrocdZx%<1PIIe=3$(Eo&8{mZG9#GHRr zz`94iU8L6+$;xj!z>9G<0 zfQK-qVZ9fA&CaqBw7l#yYUK8o5JM^~i+O^y_9cj6Ky_9*dtnw(b=BBW8>3Ka@Gqjf zuVTyAaApTDGY%}F7y7-D&~B570zU>HkcolPXKyQ)evce|G=fbONsp_P;JM1@@xXP8 zI?M}H*R7$hx+3psu%)&B(^dIA-vu9I5*iMRZFkRW(`iLCt)9#)oki?gLiLMR-c3C5 z!L>ydp#+$dz=DnmuSAC0bNu#U2swnUJHcr{P5P;IDF@Rzw+DwtvVp6f-z7P;iq#)t3XOMd!h`el-W)T_@wxA3FO0hyX*iC2 z8HGZz3N+81=rNybI&dGtuEs9KFxtfqkfw0iwwNOvs5eA8u0GRKE&Pv}9?x&q>}S&R zuBmVeAe6HCIEsZ4i+h%Y%b4e01F92r+23xbtR3c2gA&A9TQgTjYthu!uV~pdPBx~7 z!Pi46n?s}bc+zApMF_HB^{i|;lfG5RLJiu+MVj~QF34GB=FUX`{>d*!r@p}V?^!_n zq(c`ZPX>|DZ%_5ZW^(zKZ6Z|!i&rdP6|x1wmhvC63!Qd@^CCD9AIkIT&yAfuH)T4(=gv>r zktHA#!kosxK8?UGJRhK}tLfsM^UnrGG3Kxb!C#;>0yOn1om0?u=)zn{27ym_5X8~k!&2v^WM=c_<# zhp*2ENWMze&)2X2nugXI+O7Ssaw%r!|D>USC?8I62lA2-uB)X!i&g4JF?f45U_z_u z4M>{<*u(2p)}V zM}Bv^VqZu0RK7AIKoU((Q11J~ES$I4}gaQTo(C-c5d zHgm{tnGSAOKUbH|5i?Q~sSU*7bts5pwcCP!Rr8FNv1-z3k6w2HT^3sIZ2U4cE&Hfx z;#(Y<1s!SqCk;KhK~3@;w1N;VVHyq-uxrki9Npc%Eu75++Bq9=kxixuexY zK&2AiOw!TEr48l3X=uGNAPu$l1f-##raU0{ANnUFn1ZBu%bCPz&7jf25xEq7o^1c0 zI23}*9>dXuK4uBEI;!Qr7e-_MI*0t9Sw74Eo!-sASw8I}KHW9P>b6OxElJUaYFkC( zZ(u0%6)HodUB2IEJTI+f8>1JOVMcuqcPx`JZEZZ#$d~DLx<@u>dSO(CTx!%a9yY%( zj*RMs|F0RX0JQ;ddN0y`iTtM-4N`99|KE(3a=1uU(R>|66S?F*K|KIzri>S%qzQm1 z$yxx2Li#6LQ}y7~35%ZX5C{NK23Sdl>r6(zGlWmxvFSew-Tj3qv9G0PL#5zP0En{o z4@5cs2cj6`QC}ye9!M_mTe1CxC~E+SqJ@y8V@Bq5yK-4ec3d@!`nMU47IQNz5Ssx9 z(2Tb6pJueKpS6SkX+~TArx{J*FGMN(3sDS>|3VZta|z1I|3H-ghrP3is;f)XElzNE zcL>2fKyY_=cXtS`!GZ*L5AN>n!QI{6-QFR;RNY%uvJ+=YZf?N;+l(gj zPi8dh|7k`$A^5kC-f&;z-fh@*0HjYO2jDI|Oe{cCsXkK*VZ@LY9&}z{xt~z~QR5h~SX+o-;pXL%`EypB{ktNB^zQ2$8T%#?jQE2D^qSAGT7ud~5p7!S(y0?KPW#pOhLqhAl ztc%7|Qn7jR;CWl0^4<)OxnNz`((M>vPZ0HZ3n1d4D6w%;q4-jIKZsz1nz*0fN$7Ls z0MP#nGt;Df4JK$+z=o+DNGQd-?L0Yvw?-Ruf&hpgd2-rnhq=0m?HY=~EQk2h?HYxwjd<|MVtr4A=MET0bq4d#QoUsIISy}F}hHzWXJ2`O$) zPf0~0A6(I8W&^Y~NooMeD5hNmlJfursda{3IB>7Be7W)8V}AdiV?Ox#YCX-OG$C)) zS3CPZ$9yd8LIl5`)7VJB2nR?Im0N*#`|IAQaB!d5ejK|)4|trh(jgSO;MdxGV{K&Y zMp<{CZ(kg}`#9PjDH?TFK_1vp{uKd+?ykjdlLWzQ@m`?FHBa*}t#c28w;g01_I%XP zuG>_L;ltK}qXF(+TK{37f*SZ%gG^}dDi&zF@h%pxC3)VJ0Ohq*Ihb}aS#nOVi%5U) zdViw%>c;3Rpcr*Kh8Lg>Hgyj5E<5j35FNJDx&&371HF0v(a+OAJUPLSO68fuT>*+| z))d6f-=7o6)uOBp#1oaXuCf3oB-US7wt=be<_BGbI5F>BAhZa?LDGLtI^rUC+MyWx z9a(axoJY_qCwoNG#HS{Phz;U1+QRm1E%Gh6`j9*j!v0qt=LXs}V?E^-DkK?<0yb`>?q zPVk`|M<(nf~zb;f>*_K+A_8AgR**jk9+G zmV)_+Wh;zRG=HR+xueP_igHG=JQnSVvP$S-I%9j3geEm}EWF5s-vE8a)?*j^ng!YP zi@nfs&F4?%iHcH82D-LrxM;*D8l&VGud+*3{L77|EWZy94{`sy7Bxm2gs@W%`#$GG0uUC_NhMK1 z22e-|-K;pxox%DJ3@4-n2J9LAZlOL@5|yhWEH|{T-joqunDCy}?s)-imgaY}hq%O8 zj=F0ePfb(h3!`wGq+KFt86om6rqzf-j)+DBBo<7S`P1isT$Ije7aM5=uyZWfGh~2t z8@(pX-J3<1Psj6nEsEB~@ZS8KbJMdsJ{Qlsbzm?-%{zikPltYx5g>}jXOqEdy?qg*P)9b5ywT1%1qFxjqW zGO*0|=inlP^dQvdKj!?No6&Y?z&DN-<(C0^TPG`7Y2_G zuNztW$+Fa=kkEFDAC0^KJ6a#Wjz;rtN1F|Xj{$p}%Szcs7$8}Ox%3_Z{K@MnxR%8q zSj#qbM)`FpLM%K`wppLi1aEz)^MZacEQyj@3M_p*zX60N)I)ZpO=z7h?Fh5ibZIAU zd$o{R4<+N^-OA`aC8Qa-Rln}H*B-b(yxQqUfKp8SrvHb`^QT^()}Y_@Xqb)v(4&P9 zkWqDdl{;vnFaz{xoXq)-k(#u1C|`;0m484t%HcMf1N3P5j$YUf?|QVY-3W&q z5J;v8Kf?Wx#=o?`m zBk&Hg?O`b~CP!q=oRa1kTi$h7Dk)^4+5kY0HaX)ucfjnFFtumt5h&1yUgvNb2K{)^ zYaJnZFo6?}kW^^}B?*}GWn>~&*=dvH+<>$WAEhH4}?4c&70FDu*uZS-3M z*S*K0Ix-iN#Zc3@G^c68$+^!A7^;yKA4HrAr?NL~nKHM`x=MrU7Ur9)tkky9*_~TY z<;Pe_14^R@-Kd&4YUyO3N%CB0uP27|2pT4SE=AW9WfJ|PGY6)R`E*Dbm z$PEHS==>QElIdsUhJ3Y_X;z`TxNzS_K#^QHuS1VVAHV@GU;YZ@u$8Uoct+;?Ra(-5 zMpbvjwo4N}sU9vJk4&yt^qG5^MZqPHlY27}titCDk@F<}8dNXjcHl&{pPdp3 zT4hyg6`BS&*=<;ok*Qo8f=IbImxO?)9;O>EuumCe$i;K;;^_1xJ%}l@bb&??I`L>% z09Z}%zzQe*k`k+9l@UJzp~`g#dKmsTv=9D(ae{_+PU~@n<*(LphStD zZ=2k|duTU-JL>6#8-W>=p}wwK;O@Co*|utU*F41UZCS@<-fijB2!ykUw+I)Gv=!Q& znl2?Az?@+pznFDBlcf2e+xK*o!^$B;_xbUMvF2^bP|KII{#(N`>1eYIa1&e8bXqW+ zr(R3p(pVCPPrxY~;#r1#mY*oxZGeo;+76wp?gwBaCi!sSp6wiv4I`BWFy-N{kVovd z6`1@GuSPwRip5n>-Lr!c8unv-HY=Ls)9Y_dVsSXm_b;U?!bfrzc0s10`x=Q z<55fbRL;zA<>=&IYpo5-!MKzQMHEv{$Q2ZLos#+vCL_o7OJq!S$sPkqnuIu5V?P!Q zBr?&!G1b~#44;m>v|XelTT#nGM#-5D48J&>#5Bf1PJg5WUh!K)pEX7is{Su=%%-w~CW00m0hO)A^tr90r+SWkg&OZ`wIAfU&Y+P@;P zQOKwQa+rgYc@X?62gzRy3Dqi@)wR!X?SgJvcST|!RAcGl3=&k2E|riE zS%z-7JPa&0%#r7sjBr%)8}d3?sERy*|MsGJt&zR7Njzruw4X))`T4C;qKN{eCXjfj zopq*&Ze{b)rNZLQ<788+%moL{)b+c6xoi5Vv+dc<8e{urw|F+)+rNGBnN;W;?mubK z7=NGi-*^0+&x>stMQ1z>TuKgGF~&@~9^~BM5G`jKsVP+GmGhRy{q3(Y0Vh9YCbshw*44^_z*Vk2>MjnxKe z14WKN|D{E1-B$-_(W?D_Y6$ijOo>euNFau60O?4y-IpN+iJ1blXyX+8L-ugIsCt&j z%wkauXuVm$(O|SQQ+}Ef$tvtQ&zQ+r7T~F2Kudtrk{$GW8!Deqm7nnQKewT#WO3iy zQ14o_X@C~(iQ}hB*cL#G)-JTk6V%fpbm#$pAocmd28An(7l^Zz{735r=86tzhOoZ^B_ur*=1ZHp|xpU<%J+H-5YJl zH15VZ6e2{A!TETBc3`dh2lc|`IP?;RC9H(oE+beM<4EJ71#Gpk$3GH6zRD%30EHwa zkIH0?v$Z3emc^S##4n@Z5&2~(gtm4oy;2hh-IiMgc;OmPz`T2;yD`K+$!cAqsLsLN zxW!Pk=M67T5D&z*P2er^VOli(PD24RwfO#zG!$G9!^rP6RLM$sjVex;;WlRaPuDmb zeJZZ+@}z*n66Hx3;IPCEaEeG>Am=O#F;>(JOUOkIobyMPO<*vzl}`Qge{^(!V{AfA zo`K+JgPKkdOa>nDO-uit3VqX5r-H>OHZ)m*k2R+|xC0>=Q{dlli+HzlD6sq55wcj%W$CHh)CmmS2C=L()R+qyuSOTK014qW|EpP*=FeYYUUxi~XHli}!?r8{~Y zxJsd`9Wk$c_BOtZTy^Qg7n{g@uK@aXSv1ET5Y4N@>2t7&soe`(MR~Y-V;=i84q7WJ zCdV3;oc8k@gp1P*d%&K~&xOo%Sdn2GYTyHv2z1p@Gl99b_*Hz1L>pcg0w6R@b;Pfi zBAJ|A;CYB)TA)g&ejWCBra{1PS?uYg3&kw&r=^cKq6kZ&_NaXzIyV^2-&MaGpF8Dv zF$x$Uu_5wYfeb(KUg>?z{yEcK`zNgxAD&A(PRmvxZc}n3J3t96~`^o2^WS zdO8MuePi zR2<3M$a@y*^Y1Lw+@D#fNgS+IS32dac&OtU;v9nXa zpf04__}@@pSD?NkT;1<;nex>E)*H6jNN+|svOXT zQaVt+b!6d&YW)P>{-h2IwGGVRT~AY?b5GeiI7xqaDftA`&#$(TTsXDEsk3)^x{nwCEb6z8Fu+o`iUup(`4u>KqCb6hvYoyUY}(;bh>0X zv=~16)qyEjFoZU$L)SbbWPg$7Q)P1c74=Y#8Zi+qkQ%ofkWdZ*V?4Y?kMNWV*b9 zh*mp0f7woP93ybJGlgNw?()gmhQf?taJ)?5*!aUg~k+NwQa()!gN-SO^0@pSL>!3Wsvaot)!{0m+l){fkPJm5T} zb1x}}YiuayWZ60rx{K^AbQ~qB7_$1~Fj^<7(>U)qkpu%8T~&MYhy4-dnNU&bW2uoy zPK~t0FQzV1z=9tMZ@EkBm@kt$nQ4{!qyf?+X}B$P=I+(!)18~DWB>8ON(j|m0qX=| z`hg2mi~PE7a!|>uV7{)cJlZPT_(fc8m(!x9VA~S9D&~S~O>SD(LHW)}cGSR|dVVTf zCVZm{pwetL{ zu5L&7Rl|-|0jt4HfKmsN+BzesQEH#2%;?mMI0r6dN1X{53vPa~Hv8DXRBv1tTw|PA zw}SYp_Q9A0$FzbEaK?20$|P;PBbC^qGm|#^^1OUTXii}&MzLgi|BLdHYTl}GJ6lF! zz9B}WFVj_nU9OoziWtNtHW&jHO&t*g*94B10=QWj*{Q8z%u;;8_0!c#Pe>rfOIPXV zX~XGs#ml-}HxKRx4CtA#oubJKSb5D4uA<#?5&+FRaBz zjX~*D>AoL3f<23w+KJ?9VtvV|Z2Y`nRgXVT&RClx4c2JF8R9T7W}QV{i(qnTlopZ| z%e}*0Z3A;q$ZWWOoppxQFD*3GG_LNb-m3}ec}3bFj|vXXpzBQGSyvyt5~92?J6!>} z;n(Fe<&T5Z+vjjFV`*#1lk{L1j zP$?yT4?gm3>}P}|#sCdvzU;<^04j|RWp5>{INM1qCZ=b+@FcZD^xpWG1o`qY74_oG zjQodTm6a;%Juq zG)*DpR_%SYJ}Wgom~$WakE=d&`a@l~uj!_bVN_sHqq+^)_ zu-AoPjA5irKMT6XLx}lN@Z`Qg3w)nn1Lj5&;&27!q{`GpE86pPO;Y^S)(*o?vD?!& zY2HDmNMN5rS+@qV*sTHWs-Pq5==SJIW0Hm~Yqkd;JplM$=_u;?gwk{HdsA`QB=O4A6%1 z0$9(UW+q0PEo<_D3QIhY^Kk2cWz`L=lTyHgMrG+S6C=tJAB%BTRfb3W&UqN zehM$P%72_fng7e=|Ch=Ce_`_P=>ESj`HanJA^-8q%kp0)|G!NB{|l4fB0NLs@!bOx z@D>W@$ogdbn`#bwI>pe_!kqQKuazj(^Pr^An|1N-0s;8`pflLV$JWtEIv-*7VGaRG zOGt8X1Zi+BsW%a^?gt-;^1C4epJiuTMDtj>(7D8909YPdona zC-3`?zxf&6i@@v^bW{9FzWy^c)W+(e93i4Javf@mrjZ@`fG~1&M>)X~a8Xfllakho zi!cdGsr0eI)765bIvU@8R;S+$XsY z_=gnl;qr%!xBF_-1vPp9;_e!yo?U^Jk*WqE#KHqVUKt+n^dvzuLz9eQN zJ7ht6HMoKIc>TfUU%YeqTL3P&tL=q zXa6Z0>03O=Wk>rcwf|xUB;laoRfHL`#ht1ZYa4soQd1U~}C!KBZ9I*R>xwuY6`W`Na zFB$T6^BR~UFfiUYWC)A(UBG77i`@@I;PC6uf#7Zlr141~mm7xxgv)UTNMol$Uy4#4GiW{)KEOp8V5-m^}%Mv>|siSP)J5O>4iHSwz;KdT#3 z5L{0Ea>ATgigHrt2ZYP}CRN$8*low}e#jH)B-}m+3rALuv+4aSu~9g!!EUrt{JSS4fNJ2Gk@{^!k&4h8zj;XU*iFEeZ$A#1zQzB0%SRpTA_8sDHtk#nMw2an zh-!pH*WNnH-%o_=f@_0}FU z;w?i^+)>e6%DB1szr0^?np;Wz9_VKAWN8AKjO)_;j+v;LF{1;LJ*8Wmsbet`k6d)2 zVQD@*v+>P+g}Np*ZNmPzOci0wPN^}%l?5*o9sZrUqs}+UskrbDr}*)5b6}<>vEFmt-xE zxlyiMwyw`=eZhtC{juHfZ!UilX#5A|`;Z^N017Ul+YK1&t_c&UZ~@tJ|2|X{ znY&^vVYIL9)bB&SSM`%Jq}RfgL`8@K{ z#oqT+PvyreYn78{#AgYjvxP|L2baNyGV67(ys+Un!9KdgOj_Ubl>D9EK+5fnz3=-G zOdVvW-SNOf%8AXgX+V*e8wC^<&$p0zN=rs_!uD2}Y~s5v#G3AzhA6_sC8kyg6sZ); z5|H`gn?kf+tNqoqz4*rW$|=b8(C8S|+^Xc*O^qUxed$oSgBn!ggIHWG?3}Gi4B2jb z<JZwTo))@0pWK?^ymU)BOqN^Qnrz7|TStHdzty`m7rA z37-{4R-!w`3RGOik#4UrEv>iA{mB16o?YgT%e)-WZkUc9iR&Lzv_B9ol8z20gD zhG`-I%g;rX=|t7!d%5NR1tT$cS(S@pwoSlvE|N(>FS3&Jyr>_*-i%yDX?+3v6k@@v zzM+=1lx_N|fa0X3xm-`Vi}I~$&pk1RZ=uNq8+S=p?J{y%f^N={X8C&Ki*?((#lZ3L7X=snXq*3f`PX%w6 zW*mF|IN)>-6a0*?BzYHSPzTWX2S#XRAAJjYEJ_hSsry)mXGhqz#(Oe8x}bpwe>~h| zb+1X>BrNSflKOPs-g^4fduwMNF2KeV_`R`dGgqv6UCzID5+> z1*wscQ%=YFEMdpAC2pus-uX()KzL|dzf3BJsgtccM>cV%jV&r4-i5s=h=C1*fiQ`c zH8p|xQu3V4T(u^bk0AwC!g9CtLJ#p?nXBRMzTtd*uOE}?<4G8w-)ibLd;cX9do9$icTNq){FQM z=`*$%k{yMlj|`-Gl)wt8DO76mQvJF(*|}X=4V5I5+9}%6+;JH(8}^G@Oq{gHmYL}> z!IvMYEr@$>{Wxm@N%O0+Gy*+)kx(7;I@HRKh% zUXD+F%)u4z6t^W83ffdITTS}_nLdz4m08H*tqZZ_Tw&w@J`me0NXUTS3=`<2Ky++Y z_a(bEj00x`LV_}oFqI**8KKe1nmwLFZkwy-G-6QEh3n9c?$(NX1@2b_@vu-DM~QON zoB|Cse&9+Qwr~_~Z?zt}Gs>a^A@B!G*&~`c>U`OQs+C!lk0x|@C!?acNhxKW)`S|1 zfP2U_%oD>C_KQ6+gw(_rV@}SWzNrWwr0flh#O$oU$`;4y!!%q!osyCJ2BjV&RFEkKmq)+~}m<6jr4+Uv@MY^_c-n{3`_R^|p$G(5&VofSH zZA%<`CBQ{3Z}Grx13RP37$FiiG-g>rN1w}$?fAcGbhgOCpObtL(!J3TLqIM>AZ!Ku|tXq z3*1q#1c=;h*`d>PO#KewmSg#sW@!fmX_87a4e)KtGW^IBF`3o!-58NYSz{_9+ek4c zC<2FVZD_t=Aq_3m7;70+BRN4xO-F`I_G7Dutx+LVv49vMRKi7frqpc>HC@=R`!om- zdK?Q;+`U9XGvHE=we)b0s|#Dg+nFhJMj@;Eyp7e6;z2aaXw@?{;7oNm9>Z#ylt~<8 zKOPJeGMlw@cRgLlZWkJ>%?a>#3~GoMkCwBUlrB>JbHzZ-)pU8ww`(W0%VPv5_&w*0 z#xy1usQqcs>Yqj?jDbONymj|S7p{}Bk>C*uQRQQPkb}Cj(ilt0;5+&IV4HdmpRxVAt0^FR+c0FA_ zI)SALK9+mC{6l(Q627g>H6ANc@q&8v6a_01(#EM|{t|x-)!}a~+crlAL(l!_vEfzO zMJHJ>XE}B^5ndWzB&K+@`41Q$#IgN~^HrrkgQ)#9+G~Z(Q+5+jHT&c9%iA*93No;! zK-B&3wpo44Gv4tew^oyB%+QK3c&LrtILp}73jAT~tHv&d$GqC*1JA#G<5`Uy%;@qz z!T7(A`GAvB%+f!@_yzzNKgKQ;731XTHF^^yG`1mTGh4?SSbj2WEG+GUJ#KqrzzEqC zhyZ&f96@S$?M?2hH3_KQCfKV(%)K8QP6r#v)J5dj$c?z`W^y>`jE8~)C;=Cn#1H1T zi<`IC%exkXTszQ++Zbtl>@g`$sc!f{vOqX4nukpeVO&z*I4=ee1ei}l3_$Ual_62= zzACx&@UTBfZHvlwP1Gk_Ir*(>3Uhv(ERyW8M_J zGC#Khn}9*)`&hy`)L%3{8Gy#;{ENotM*L?QUj!;WC1L(-xsQjtk7S1P=6>mj0i=N- z1zoz|AX9XOv^6rEN59#v0TmMi;oi)Mp{76EW@W$IX2BV1={Bq$BmP;ze#!`; z5XdttVPbh*c6A1n499+55=Xc?V#4DwgWTbdJye=$o=WGhU#oP|Hqm0i7Fz5=yrZZs z-1vq4Gy!ch;4)pPJ5v&xo=o1(?|D*PzeI0{2|N#h#gryLe?xQMhog8A=rN~+^+E)l zA6loEmPZ5A21QFxVSo)22d2RxGh4Y?-N}>S=Kh%bO`DLG_YBgkWhfn5;5FqRG=2%z zpESM;qsO^+3GYAC__N&C$^W47X_?mxG zy7?b8{_nDx9H4AA{a!X}dzCSLFPo9vK1N6x`+Zb#c6Iz;H2(QNXna7~>}&pJ9?t)u z@oCjzulVcF=EOwY=z8w_UVr?wW-EXPZ24Y<9g0KtA3u6@wkmyu?{DKE)t&=v`J?DGyG_#9klFr0_EB@ zZXymbf*~H*xDO07p6RXlA7!&ofU?;+APlf3jciz}BH>z6Jo)0ZD|>Kn&Ii?rOb=R; z^^W7)d|a7Ij{xBK?qZ#1>F5F=uKdGmW>?o3tdeI{%pW*E&AfJv%f@pWo4cr^!xoW=mD)yi1E01h2R5n{4R&L3Q3qG;42bSlb*p%C|@Kvk8A`{3%fdLNRaCjYb)HYt=W$tjR{U?WP+&f!1oWcNW zehOgC=g#VWE{qt4*F?78ocK5%bmrhdLlI3m3VuO(4Ss(#*1Uaj_^FblMA8W9i;8Gl zFGbQRo#y@8;`Q=#MM@$G0LSmNXV9shR7H&g;P{B|IDVAI%Zcttg#!S`et@h*6LOL4l?9cKf0pm{yec*Hf$mpVI z>(g4je3oaTDpCL3HiIT`rYp9m3#~b&e{4yM?ezJ4xx}H}rRd=2ZrU~I{e zUIdhIWL7iuLQT^v(w+dX+{>J#aaqx>PbQ;Y)~p^?{e56hHG-RTRe$(Dw9N921EG5geGvi18O9sYjU6}XW`XRJhs%lt!&&G{o=7Y-zq)L#1_2j zDx8brF-FaHYNQ*IzqJYiRAs75n@`a-`u5A|AqG6NbDvrFmS~OjZs&=zg-SQ_WXPvt z)es_#kJd#+hOq6{O8~F4jIn-2tTAe}(3#1$x;X5b7HeXYzIEPqc8GJ{k^|8A8=98+ z(lzBkV)kbx`r%w>{TN+jlZ}EKiC?Y?xYlIO{njJgQqYGvETIoj;wgz6yW%*SJ6>i4 zS7j;4*J_=WCD7YBM(G=Nkn!XUKqdTZ;qlt0K)|{44H^H%Br_LP$ z(;V&7Ya$9>H7~HV$QKl_AA#9wk*Kh6r;2|WhQGJ~TTmkgPB^P_ z8Ew78Ta+Uk3Zr9GKoof7) zYaX9o#l2|ZU9W>5N{i1Z5G9u|nojo=LyBw%KK8LgE>`%Zadz%*)NT^5p*2;Rk-{1y zy?XHYJ9GGq@={{{sd+OCLJ#dikASX>rm?E|;(Xt&!p*QoaV8A^1^PUG$WfSS1Edjc zh+g6c|BJ5#C(1*Odrtup{jY~#>8E^oi|tb^HE7HXF1KrQui=aO7ivnZcY2XNkYs}# z+nacD>5vnRkPBRm=d*fc!inTio#K!9{*r?XBbg4_3K00X(}g2BY440YIUWmOE~O67!~7Vhs7Plu_XgmoqJYF5voK@LZx7Sqj36wZUvv=i}*a}PC`_}VKL5|WwfD1U3-9{Va;zG ze+Pi$a|3XEcq78HUXI^5KD*JMaWk(!;$|W~1112{(mB0t4UQ>pOTvR0=*m9xrc61y zUMlsNM&D+Nlk$(anQ_Z5Bk?gKD;cV$O)ETw}>!nirgNwguunc!3}YmM|)=rflXB7;qL;9bwvi+czr$pE948 z)D~a79oe$;9X$9hw^WTd%5D~f$&I00 zDE&prEyMvQF0OY7Gd|O8Gt+K-!*adH(w{Mh>#gnZ>^gFx)4Kar7PW`y{4lUh&f6cY zo(FHaXs0w3$R=Zj#nh?O$C^;P3{UptWX=0EGbpZ4=M4ab{;OGkA9Ks+KMtX+{|Ypt zSe`K`vqnW*6)h`?JpzGMTcFZ^ILCjy#`9R7wc5Tp{Tpa*}Ja>`cA zEJ}c6#JimQ*H3o%oQh+!9Lj3+csJ6AhX4h3D5(43YQrX$CRXwnImqCZAaPBKjF^7_U%@S79yCL(Gx(lUy9lq|( zo9ei(}8X$lV?|IHT#(OGUKDq6LAEkS-!h;38m88y!LO8_m1a#*Z=X$%l5Bd-v840 z|E2N&mBwfN|3l+be}CD>{7+{6-%sA(E50betZ()Ps-NqrSLCUO!=%B@h&c?$y6b`U z&;y}!&)V+AG{vjrq;#jOau-%3KV{Cz#CSE-z(|~WlfeT$R%&GY54Zlok?+QRQ2(R& z0S~~f&o1XF-~_tnQIcS+`L^}$*3W3MB9ntFx!rQcKa6zZ6zgIQ>}|4gGk+d*xTXvS zrGEGciI1)tpOd1BF9-oJMMkLWq3#>w`j<8pWfa=IK<8te2`~|}Kz=9EMVYc<5g*=! z^1ru6#NMiywII9%<>lp%{t74L$%g9BSEdcj!UG1@;Py?>8}?bXixipU2aOqyoU> z%k{aCR3u_x=1E|&#jaPT3wu2^y>7JOSFM)K>ge2|oX!aKm)>l!Txj&d9|%{uJ4y4XAVOV;!r# zMzp;(VbXIKRTTbZm6o7y3GS=x7e0_YR?kE;Tne-oqw5Z!ggU_VO%Hzp`SdRbjsm!Q ze**cN>@uNb??ArcJCIKr_@YI*Eme-GSxjD3+UFt?6uf)KAhfn2ewGx`)g6fk#sEDD z0P-IgYBm5szMj@4-d{j|-|(ce03sE4D>v6Y-%oSe^$)m_*yrciRX`pfBEEFf%rJsM zb!D9ZARiV0w)wlXV@Z^VUW z$p6sm!~a9CUlHur;l_$!8s>t+bUD*=4B-W$&qC~c0<_;up0YO`BB_g~OHA6sLholh zuk5)3pPjtX69Qsbnxnk8n!KzbE0P)N)H2S3!58MHWIj0Tdw^@1Sw!B=_$h>mSAV1i zZw;sslrmG>0rbTX+cdm5o-Y~prR<=|RMKgMFvI_FK}kT+C$HtwiA^uaLJLx|n~$|6 znuAhqzU@khdYqQbgZ~e`ej6i;uszegaDFP+}V|;D;m17?D`!(va(}ab|d1H)7CDnMX1in<`t<$#~SVkb9u-1OP z@A$D#KmOkFfwEm`!oBE~l{cV1LiIGUmtgbyk+J90{@e!}w=`X17ZfiFXc;R+?k7Wd7G~M0UU7Abt8g-5!0I=sp=aPggz9amI6C;$M_-Y#G`sEONfBW_MMZ|{N zdH1)OdZR1e>Y)rC`}%hpIGGp!_UjXKzIsH(jD7cAJ`!8`?bjE$%He-iVk|4hX~>{5 zh{JfZ#%kB~Yk=soNsq_C>G~0rPM6L33uvwZK^>b?gYVSO355OEo?894M8U1kU?0L)*$H)cadw%8Ie787`R|&~Es@4r-?@9vTUmQg(LQ}Ne#(@b zR(t`=g~P)Wjj1(Aj7G8jD)%nf54ai40EhSTCSS)v_&EtgdNbb$WDo`Bztx@v5bOix zQplF;N*9o?FHJm+ltSc~XKS=VtAhHJ#!#{+)fxa9SVIlDjRBLf*ND#s0KKql%ep<)u@g+1IGm z5KtzYv8I4sx$pJ>n0!|ACfyA7uRdNkfGE7m=#AjFHIxob$=tA!v; zH0gPn0NWsej|e-)`diV{`;`B+A@0&j^?k~3lSUSK`#4|)nDUQ-l_e1XQ@$@?o`Nj) znS+VEQKCctj2Ci-drySmB~U1VPdkdt=`-3g2P^|V$#(x~%3}fit@Ng2=gEV%zV!jAZ}1iK2Mu&W5>?mL6>0n!?iVR@br zqQ6SjEvmZ4Iib(|zy_T&UZ!+GmZfjFhAkN#mjGIokg%h%Sdh=qMy!6#K~p9priwu# zLaPb!QFC4@&VKG-Jh|Ico{82U$!VPxS=-Og%bsK0Ag9@>KgJ->MjiJXP(ty8YswRb zdNBMeAr@6HSA5Cp*MbT^iccz9wF7Do$My5*&5_)$zmm2WH4@X*n7Gdv$rdX5hdJ;Y zu#|~A7$-_%Ek*Vo(os^H{*CO!#xk;q{p=`pHql0L+u zDe>EaLJ<29TF?;@))~gHk(fE>E zX`ar_jiSvH+rws~uZottqpm@KYpXrVDDiaXsaV?(L1aqYDRlg}y=E+J#8Us+pRNKR z0z{rYn_fYR=WRW|8p?;=EDi_2QjNs_5bWcmo8GntPRm2p&g>gf8SC~bl8A7Ac0y04 z(a-O(IW)2RmV|_M2)MRNPDdhS$7&G^S2`QtdMG39xB`Z}^Pe!{FB6ALsMZo=tChkk z*SCw%`AVfh3++40$bVhuH;kfDh;d`w%>csX(N$% zXA#4^_-vLqEz)TZ4Tvh=#r)%&yFFZ2@u%e2c#5dY#&Eg>({mjG$QS}vB^6NzlfxH` zXa&bk#)lG0IDJ}+heigi46V{!eAMy}yGyTzKhNR^dvSDTfs^9vGVP8E9reK6+vnGZ z9o_MNKK-&X9?XoQ-U@Fy+&-)t<3y*6K*7~<8nv$KQcN-KEhUyXc>OV&iXZQQBhjhR zVX`yM1r?fk-rX&@jiazzxWf&2Y`hMgyRyBFDJ!3kOu$kj!rp6e^PL| z?z69E;c$Km-8j8NSy%Kr44PKUh*LGD;W*+yAx)yyXez?}q;V{&Ur-!YTJwk#ArIBY za2nWS?WRfBgaXDcTJxoT^(R9<_FkcV>cddkbk)m9p~+4bxBhMBms;l-H4dtpz|*v= z#@dfGR*g0+ROvK9&ANr=fXmKEFc8Nk8tZr?v9>U0WpBP>uj(R7;*b zSm(p2rk)hxFEjb>87Ls_0K?Yu?P`EAmw#)vadnrZMg>b zEw$Kg2cp+Cf;Ms0*gr!%M}xX$P~W9&GE$jcd!g9Q>)o7}DElCbB6S#iZF|5zr*CQe z!Fkh=E-c+Xx>KN&X2i<9_=A{`RxjG^VQbyk=7DV7LS!+EgV&eai=h-3=en79?))zJ z!%gx|18qxXtu70ch1PW73{{Dlt`zh~9hB9x=fKyQ36p{H=AVFhpCI;rPHXay&u=^~ zVt0Z-vxw}E77C@0lQd=Ckj>6R78us{txE;G6EyHGyRJ=3zO8fKL(hH))FEHqF#g>Q zR*!l~^1*-F_3PAi7;?uL=;6{)R<)cvmh+mEm zz7GXt)(uwJ8w5&ST+t>s4G`Q%Rs#h0CyISy0EmADfcOF3FAkDdT9n@$1&5jiOMu{h z0U)^Fs}JO{VAek}k9v=Z2PGRlWp*9l1Il9uH|!V(+egyM6><3y+z&A3LFy=an1|xt z5rA!xK8pg$J~P{IwzXKWma65MFBY6lsg0`pOJ ziVF9Lcm;TQH~{Wxx@3z8We#(RKN3R%UQq?K(OD#M|B57*o1QStVnUcSq+v|PW~z%O%NJ|+&fJ<$h%GVgPH(5Sa%(&6RM~e zHto*B)E`4~0+2OBRcrnb^@jnX{%r|l2qjNF5BoF296W|uK$94}kxOL+P*G9!Jy-;xDebLaN7iB^|W!;o9%<0?W`F7?5qD69So4{+VI-ZH*X| zUnFEv)gmLPYM$L7^CUI|Hrzsn0V25hn=QV8X*YH-H(48WhzAca-Z6Pd`B(iTsMu}` zSfnBuFgXXg5J_U|fsix-&8JD?2=gRVa_qWBou&dYi+59ff?TSl8xV{MeJx&Pv9A!X zJsh~P<(N@NE@4I|Zj(S_!_70RzPNJLtux%9d0Gd4)hnX{Tt2n_)7`&>v`PJr-(l}TOUUw( znb)HPZWHstlgyb$8mkMRhG7nIW*#8<1IcKixL=58967)Xk;1g$RXhCv_pBUwHfu4JX-jzdB;kom>YvgHO^u@_@t{+|N91!yo<-CP-#f~l8*>{c$xko z%UQ0g*su~23s`aT58jTr2zin{cdUm{#TM?jvHhPn2HkA~)D&2?AFrrbYHGJW89^-! zNM%s<8e#W_Bs3Hn+uL2Ey&MMxqkTgu*3WdBZtXS1h+DIH-Xm&w#l48%eOyv;h3)1* zXUcbm?0E!3<*9N^_Sj2PIO@i_ zzvRJ9B=*Q$etX{T6c^AKDp8G=h8$Fgz}>7A#RS|8MT_*pMrb{^Xr5u*98goc+{d|> z-QmlSqnoqbl!?Bg4{sLcfajp$4?xI+BmGwSNU*S5nwLsos^6{x*}1rgPkVtv=m}@r za&`7Q2>s*HW&C05(>=Bo>f(d`9{v>y{6i5Mkc+2yS=%rD9lQY4^>4jCPjrE*vpID zecRo1q1^|2M?qy}@zU#jQzHCAWpyLU5-&!Fy9gd6cCtD$i{a-A@t6nF4_$xT|5+D2 z)a$pTsRv;?Qs$Rhdy&6ved=mJxy+7Y6e$vVrv1r&6Yx&r%s0=`+=TI9&n=9H$`ZH$ zvpdwa?L6Tq`7(e!vWA%x1lNGO|EM70;#EcN@(J~omy@q%t~nme{UVVPv0ZXgR~4Z! zsv0hgGHb|=D)-l8WFlMQrID;Ao567r^z-ICu`r=*%FB90kJpa>KHXQnnZxu6j3|-1 zjoLWFbQ@3onf_WDu63n5*ub|c+2dy*k+;&(?{LI3l>olq<;iajI7LQ_)=!?HCR<2# zLDjBP&@v}-1CmI#&xNN3;QR8WFlpIHt|VY4n<)M}N^6Ef!!m$Bo6#xT`jTepgz*~06YPNWgFQp$ExG($)U zvFf>|LRV;zwNkMU2K8f6q3UkexFUU_ zaup~%e0I|lQ!zP<8Y-UHXb3O{w96*@tS)ucIXItxek=J@uh!U}?>jV})uH8hPjrNl zyS1zN&ijat3Or+BgHS*jAJi`O^~*b@y$qzjq?Tlleh2s=J4yeL=wS!?cR;%AMc4y} zCiZiZr(a($b{V^xA`J`C} zAYFD3NSC>wdJ0|AHQ>#n8q-O?kEmel~8XI=7-_H5;pz&cqJ4#HEa}@f? zy(^mpWwNAFs|3o>hQ;BFwIsUInI1!hX=w?yo~&?%c!MYvRX3rh)tWY&EH0X5jt;Rn zhjIcN(IAD6kkv`T4|8#KNwol0#^aqR>C9HUbL67|lZl#UBK`%q37RX9>1k5JHLPSg zR2bQdFar~!y`R2ZPd|4YrK;&5T1T8Pk{G`vyL_THyP8w3Z{$hS-FE<)t8dM&q%5lr z94ms6WWQDE(~one@N!&eNBz7Xdd>jO(%8j0DYs_zDD?%BXUSR+2}{Fy^;=Z!HZ_hW z!K}<&hdFK1=R-Qg2^8CA0#>a^gES{GwP)PeSDE@PJW}N4*!pjPezA@h zJED}Vs%cft-5jSnADLZ7+uC9FVKf)(>45Z_SRt)i589=ORY(=gtO#IxyAZ0v*RG#U zF6|jIv|y`R&*lvY8OK@g`cpdl%%-6#9J9J4BLzMee7U_8z;}jt@t8T1>>*Z@ao=^R zCxX^EDKz;(Idal)_4<`ncAC5=I}pP86diVcPw|W5(AnY`_^Vpc(n2aBn_hz#Cqt-FP`nYzy`O$`pL2$KWRi=z&6$BdDp-?4*K zi6VYxU>=dzt;fynD}gvAa?CRBJk|x%x~I9v-{@pc7BLq(tIj6QiCs4s^i19sL7i`!!oWBJ&KGy*nOATB{K)I;{TnRYlzCk)F0eu%hyx)Df%A zTDA@?{LvzOM??!y55jj!X0;#6J2x=rg)q+J^Rb#DEbJ?W=%^93Ol5IYUse{JROmOW zEAGt2hx<RhvjP$B8Jw6{dC>1O82jZR~D-@IVvEWk#y*jHD7LVXb-4$&O1AVy_5?i zp}}&(D&IwGj@3)a`1q3j+$Np0FucDu*l~o0Z`MVQD{9Se=b1TX!&`v{pixlW6-m1;S8?frPrfNsKd*( zUEJ*b`^6vM3B~g#+rOow8Sqk;|B;Te|8GJ63#n@)5;^~A(@3TG9Hbt_8c`oS$w8s) zR;~)*T$1{YK!L>MaCUzxvdxvOA0(tXjpBFIp?M0p5)vxI@7>VeT^{Kb{XLvC%oB+P z>DN+LF5XWs^B0Vh%&0z%4JY#P(kWcUiUBmEr9Dnmn2cj(ndvB`F>4o?xyL0^L2(pO zV_9FqDBOS;4N@D;PZ_j2zmkin2`MycDGZ^o5dLLHi0u<3M^nhJTf~1)^_Yh zVI5^e76Nb(Wu7?$+!KOy%_w40&pC5kvnBG%;aImFl2_m=mPCeDMNvIS?@4@U%O5a2 zz%@frolH|3SSho0y?SI@q7)$INrc9$ivgcdsPa9MSkW4xVTtG0yyn*2Pt1&T*($*g z`jY|=tdV#)thEg-f}X3Gwx|@Kr~qXD8wDgEm6?6f`YGYioF0=6Vek{KEmDW;Rmq-j z>0|d?Q)N^xC_=1mcII{>;Ow{^%Qg#7ULz(E;OsaKDF{)Erb~haT?P&!4KF<532;&X z!n+zvgySTC!MOFbKInYej#BY1M}@s5cg@GyaS%P`ijnYM0eV_fD)Mzv+k%H;JDU6N$7R2IO<|Io z&dpFoXSsEFCc2u0G~4>YoiUh6e+E;gn>Zilkn`x393xV3bpvq2WcPraDs{ zm%V+o%IPx7ez1I+_+`!?N+9+CR;GGq^%79NyJ_=pf4r=Z<8}Y>$IJ153Hs}!+T;=h zK7^KxJ1jmP$Mep!vz2QR70-ftGhXjB?bOzn2nxbn#(2x-k#XagB2x01_Kn*4+4Ng< zDiq(dN;04-SFrI?g`AtS`8Ln%iJFnssFN??we$Pj{IJBV9^| zFNV8noV3Fxw_9XZQ9Q(@c?c}Qvn%PH?Pu4p9>tFUwT&_ps4xl6ip_v;?OS$X1uI15 zujyyO$}={}M`tg=_Bo8_&oSq3OA~z^K181vKZ$9`5KV)ZC^st*U?0`@vFJyWvTjHm z=+|u@j9Y1*(*jySn$~UI{slGRGHU>(YJ-aAt1K2%|8Cib@->s0aa=P@Cx5Q2qPF|^ z-2c9!$tG>eFVqgOOIc3A>#*%=Y&7&xP3JS!kSy{zV6{vI;xj*hv2HshES}S=GyUBD zgj*Az=V@aT7yI$+eUu{*Lc}HR=HQ|P4clz!BYR%GZEPz zXCjLJJ`-^TI1};LF6Driek!k^QrE7AGz)FO(HB1iuuD)W|j%JG-7G}ChklHO&Z%Yd8p2H{d5^O+dA2EOY5HcT2Ywfm}HEhqdt|Qy?A_#va zD4{QVLg}8M$vo>PV3%SE*rjZpy+4DP2J~kz|JkKnZ!66#-e-^1kSe%ocbi$Hye<08 zF+`<9Z&aYKodR|#>;Hb2veb!D3G|=P{-3|R=jxi#`RwQ)XkREH_K{R^k`;+bv6Cn! z1_!!TS4UI}?lZ8I5720}E>4`1vZ`ZwTbqe0wW9|7W9`qE4Uehbhof%$t?~lGFl|h3 zl~UPnjUXVX8rIv~Dj0WDLirk@s5~_efYg4i8-(4%R`&0gXukTQOyN%roFVDzro1Z7 z5-4AwiM}}ZEbqy7S%@+OIo*y1@B&+{vjWHVju4r~5rwN@3ZM=!u1U`MD@B*9vNL-V zqkxzdoo{Mt>kKN< zUFfs$WPMi`<8~zfrePZYm6;p3EBI&mg-7-N`+5l43xb6~$XnP`&Gq+b9CF^~?IV_=T^_&AZ!l7RXH+N570AGia#wUA3{<_@MuOr7$Q`I)2)JqgxImFbG zd4aeyI3w23CC)m=p)n^P=sfMsGkJ2K#9$R zq+3{9v8K^08z}RH+ZKoL%B7bPIu-;3o>SWgcMEYom!Y z(PZ}|E@|fakzY3`+|gMYOZ@iiK~)ueFNswLWGs3*{3H%o>=UR=H>X&+kkkA&zuIt4 zQwV(|d zx$*@8mNZfD$58_8ZeAgqJ=g6GjuimxpRRm>{eeGVADqA24<~vN%2l-2Hw$5}Aj2*F zyHU{wL37;3h#f=EmHUDVvxgHqE`_)8vjj*7^QLWg-*0=IzFALlZ=~4Te0YR3st0uRH`%vFB1h&edzM0L z6G{)H$n&QV!B?LZF4XS5yF&Hmgw>5@hggwExn_gP^e}co|0}is`X{yT^zHfkHO{W* zU{WBSch|_MNhOz6Gx;21Z#UYl@6VDL@8pQ_TZl`Ozf${te^UFdf2HEjf)=B5z_3WyZOn(3m4;Sb|XGg)KRS2iyg?U!ax7xx|KNKZUC= z8&vB(>!hPR!8B1AbCpQ3INbRZ!fT^S#D6i&h(mR72|vGA84Nkg?EVf&?Ms@zf6^07 zSTKC@ix5%7mH4H@UH&N~Axp0_k0UoL$42b8b2Vs-NlMImyP$JI&<5R@A z+m;9^dz0ka0MI9roCBgp45_|;L)PB*lz%DhfBNA1Fn^WyBg+m@PMa|lbky4tlchI9 za-Ai62)gk9D(%PrUE1FVl=fA{8YUX!wBz$$WZ^e9KMi`u8}Q1vxV!RmVDC>t7ERRx zK391cSbKC9S)fZJUZD0vo~t5)lTXgIW|cg`4B69cEWiNs`($nnN& zllbMs-PcL@d%4p@(#5^6zcRsQm+IF6&Anq>%b}`(b-ylu0b+}R8wFl{sBqsGhjUzA zdcZ%M3pMLTGJ|nsccRw^GL#Fg4XmAYG>;Ldc9tumCMbyXty@j?FA>@NpQvlXbKD;LmT{F)8?X1ne_(`dnwsU z`MTuO)(vFA6Ba%jjmoy2??VBR(>2rVeddB$@&bGv><_-Am7Tq|*=glLJ!n4lgU>Bf zeqXhtGIG-Ik6zfbRxSi=rpCLtHO1YsZsrYVwsGFSJQkM$9T!&nE`{*mv7Km9;2cuhNT7gd!G7TBT& zioATbmE#&dCn{@Kl$K#zThO6)OKN{>)m)F4#C9@t-Fq$TB4RUHi!x1I)G$ZFg7r^< zst{WlkZ~;CYuLA4&EK=@qkWB1UT>>2T>j3lKLfRYPgarSPoZ9V{;a=nOEKms|6HdJ9sPd zwWif7h6th59LlRB5gG_GPZm_4v;v(=@7wMvHf1-8$fu2br1q_vy|L!P>jh-yCtIhm z%k4WtxX2GSvI@Ss=VTtlw{e0OvFa!!F!4F56v{_|dVgj&CzF3SC~j8X89^;&24QL3 zkA~Z5dZ$e{=g+l-@EcKUHi2so56r2rdjP&5n;0}*aLJK}V}R|MbdtL}L>pg;8<5u`#9@_X76{K^u1nl2xc@)H`uDKFjPr-x?w}_WaG`L z+^XqSY@hYlTp;e})ihn0_;KV%l2J^@Z^eo36y_%Dsbk2Efkh`K+SpEyoz`Ty9(kJM zE$o$%OGmRcV&IxQ-dERs((TLP(huVpc^(L3znl`n1@SF#?Cm z`}1-}(?bAS`*Cez&eIKsHX@s=$8BW?j&)U9Nx%X&V(xkb{$APXpL~*2xA>|oE{1?J zAPxGPa0gZ$zH>G%M15D2T4c2{-CIC!aa;)Tb4>f3JqIN?p%JfM)Wnrn5<`VQf*wmB#?Ie>V4PE=DWV7Ga7>HwreAeA8g&@6`wbHN*<63$c{6+*enf{W zlbWfM7Um!w=(BeCQ#km<8!miK_}w8%Oup#Q{@TgL2N*`nl0pPRPpU!akK|#+3;l8;58>YG10k zmdNiHy2rvuc9cn#Cf=h3F$9p4`hD51f=$}5?rZcP|Ns{!HuMxK(O zPuHlLvnKc}OqZyWF5x>02>QX-lNIo#JeN-a=7UZ=h+8XbEolRd*0V#4lvQT7(qUA( zK3C3O^uLtDr(^!I^LZ(5{=)YFQ~#IuW!z;bP-X7OZnbpc?N_$$UwG$hJi6^J@n@T& z&>9=N+ZI{H?RXpRKbt4$pKIce@4Wx*W1mx6EC2dGA^bm&{XYnQtk%nU;3pysM;|>W zkEOx9T{P%Gp68Y>E=?f60c7p*@)lLh0#C8~5DyQ+I-(dVsEEp=~#jH$s<$mw70fLvS)%%DX5OZZ`Vbt=36zw+XQ_=hK(wbwdbSz9t&2sA2xt zHVL^IIEz{v1Sxa({8viFiY~O54ppF2G@NVO+g`0%eWdRV| zSGf2qwtts-wDb|%@8R2)2D?f5E4E)13Q7DC+fO}AvK{zzh=I>TtI;bkEA~6Xnb2IG;l84YUU+v~lNAY)^F6W+RO@xonvt0Z|OldM$xt zvY^*EIp%FAz2Y;%e8EoZi$QQJiS_~k9;T|^xHG(v0eMKLvtIo1#pJdN$a;3D3e~-w zK`=J(+Umj_oM+1YQ^}P^P}8d+5Mc~*h#9UKkwr4=0jP9+u{(IK5S*g;0_v7!<3$vL z%GvxtOR#daVOVVj*tpYD8CtAk;3HEZ#YU_oeTlTdQVqzay>td=eoz)1YrPC#^+~%% zrj`QFZdk46(|Iknk>VORr^Xr-Le(GlZY^^Au_khm44GrWY_)z)XioTUtYPMfDB7{H z{W6#&2xH!z!EKVbJ?|LiVsf%U#6?MoKKIl@w=4pUxn{awucBEe*mBYleQwc4?`VDz z&q%X^2O-^m1oydRnQ=FQf!PEZXrktuH-W}MM5&gEH_fXlM04rO%74{eaWC~jdu*0u zPxPb=!VgU24wyfuK?)&*SK_0=lavKx#Y+X=Sq{q?u!99AFL89mMdXmje^7iHt%EKq z7w?XhYPuU3Nk7XUEd$*niL5-Ii3O^@_O$^!*94d}#G)I> zk;_CVE|Wfr`tyfd^^Y&nn9<4Jt-Z53{{DURA$Q zHQ2r4hC({K4C7OC#uBvw41fGl0*F(Q@_9Oy;-_To!f!!Spe>J8R?dh;0K+eB0WkcU z!hScHI4ViKneVeA;riOgk3ZXv#jhftf6NfXEnGk-D+se3LxRvW(iG?QVQj1m4eqS4 zNdOprX6`9ffx@#qi+=Q6Sy><K939ohUjK9_S_683~1If$h_$KgoUJ_i2#eZttS& z1JF1RpnBcyv;V3#6{5eL8)}EH2+K_j7s~MUe3a=d){}!RTf{h ztz$VK(hS?Bx$12xTTh%_)dh&X}r?#mL$w@{#M2sQ9^apCVA_)yLXV7)L}(vt@_< z_36)B^(U@{#?Ldy3{D28=GJsI&kDOUFVuGoq+ioGz75^#Xs_f z&7|C6Jd5ebVV_)09T*`Fk3kd}zp)8r&u-=&CFsC#r?NiaOVhbN*!Ly9s0>!YTRc|V zhac=XFQCmJ3-0rGt`)*B%9!iPNeLGwuolJUt~(hjGG_th>MLIhI`<+QX}jnpsL6&e zQrRC3Ju40EyDkjSjid31G#0R}U%xR)r#@_(HX%egG*lo%PKA}zJXrce3TQ61KPuC% zp;yyMWfr*aeX|j>W>Ym|!x!ne#GM*+Iu(9{i6MEKqFNfc^YZwtMU?p!E$W0hdhG5e z7(LWwNwZmRMt@ZduYM>|9JN+zJ?w_A^gg_!0mu)KI}2PSnTvx;{)SK0tVb+@dm08# zy;2jnXZw1xx*4g~!Jl!j7W-r17w?5tF0gbLx&5MP4|CE`kVwMcmJoPkEvz5 z$FPAE&=!_pb&+5yUgfHv;SB9$WpSGltwzHo10-Qth5RY>?IJgG(nnHL3CO^cl)khn z^SZ09vElPc!Gh!9r^;|$l+^|h-0?2uHMnAvFUR#Ajq|YDVQ%a2^kGWWm(IiC^OoI8 zlXHqqV(u4LkK;nKgF?m>Os8|JcShcE!bDZu>fo4S`U}|>o}O2@|qzoWS3#jk;0E?l0t$*^9nPn1;Wj#YK|&p;RP!=1ULK4fu*e@zT6+VD1r7Z*j|$1hEXyOP9CFPFF>v#1 z=q9^9JMGGv&g+a5h3J z6Ew;79+TqswdHk%OJk$`?CCCHsI+3lsqDS>>e&f3&SUh%c8jWPzg9^`mn^-ZOGivk zFo$=(jk8hgxP3RJ!X4w+3b$vHTp3xn9ZSl#`l?@c^D`tqd3>Tu@&BKqPXJK#8~>xC zpWP)#uC-f5?(`oNeS-g6(f>9KgXGxtGxRlMpT4NAH3g;{f@_u)>K#Oh$QO9&-6>~RsTl(cN6EftJ<6>5Fj86n14FlY-*(c4RE-bnc*Lv^Ev|@{}$vq z0bFNuT_%e}WD$6qwa`{j(;JYoia~ChK%D*Ra`Y{0dUK!MogQU^tGGN#WqP|m+H92i zaHB^4K9eZ2qSBF;)$;Mtcysutuncl4azW}QQL)3B&5I*hwzrBAE3maOBX^cgP3tx4|gRBswcoNJoV0a=C|RcqP)cdZ=XSLNTp(An2E0@qazA$x)$yw(YcUOc7I^#^cFeUO~^c4h>T$btoNEFPi#zY=Z-`!2edU)-AjXy z1CW~Bms`VGCKY(l`K~t5;AooiB*kpW?Q7ne(GmRTW@d7rx z;#7h01zd$=cH|vFcA!I1g3QMd61g)R(cIwL0$~$@SGk!7;>5&<1}(9Q%Uz;kdMp?p9JL~Jq>xFUPKN1t7 z!VupSi^4?0Vp)iKf;WK*mYmN&TloO_y=fb_g0*JdZ&x|D+l+uIv zon3*qr8Q#|+LOe%U4dD41Gd;{VEj2`%N$McXeCn|`?H0U8p@r{F%FQ$?lTU?My3xI z9X8y~%Nvx4-Xh9AOJ~ZzSo&KHk2-D&tIN_By#qBy`mLH1Q8H@FD`}s*$|u;u(BlrO z?yL*?23d5D7Y*AQhY z0|)+Nh;j*xo&f(bL{XmXX#fmScK$I$>9DtC`7=a;(^E_~#*p6~s$N+~5o0p=7@|0( zmbivfGSRzMgL0XGw zCcdB2i@&E9!57#AXc{Vh--dw`3Nd>dsWn z`2q5AfPOUarO;SoPEteY^JZH|fbzNkKz^b!1A>bR%|kEdGc7YckOHj6kB=*mohUAq z2#&I{S5Z;O7ukkk?fsel7@T37x?E73B%FiOrrXOi4M#C4du{vVHC2$O2cKoVBU1y5 zhba^wjKA9VQ_R8>*abw1!MnOtHUN1MiS<_3nPHIPt+xdkO8um!Dlrf?)U3@q#{Mpv zg)H6{Y7beIrv=8S-0};lF)-|l#V<8-i6oS7MV{oPP5Id#Az~z=NT1pSv&jxDfTwwP zixW>M^2TEwb%+3+{b4|7KbGBe22!mwq}syWtB>e}98;M&9)_lK!^ac_5osBDw@dq> zWKEw%I&Z|45z$QQHa9bXvmucpfI=l%crZMs%fkN61tc`G!e2@W#tuHB1grUe=02~$ z*cXj1w&J0VbW5|}9rg@Lxt1`*(;d6es9KUXb+g|0?6Y!hM-MEG$m~O!zB^&VACABL zKEl1C(mJ#}JqvA~Yw+g90SN6U$jSji`*spNe+>Oxn%HIFb&x{%>TfV#(V8zk7Q?t-sU{o9;&JVghFnoreNL>4^hSfcVV3f|ktVHo!qLOW z_W7sku^iIo?10ezJuAv7@OP2(22rI2hSD_SsCqh$BjEb@9Lkl>`=mENCgCJ08>0pC zI@{DY$)le)#@%g$uoRy}?$#(@2G!I9$ty_E&gNRo38B%CBbM|&i>+85G?{5pm7?78 z7Hh;L(RM1cOZaS=&f9RS40~M@lM`mC4okqaJE1Mu?$u@yPE&Bq)a%2Pmo`(X8khaF zgGCqh^#}Ia${%XqsqYW(=J4PR7Vj7R;P_R7e>nacg2t$7mIthd1f*SRo;(jLFjG+i z&}OwUCcw}yWq&nezn{F+gn6wi-P9bnkNC!5`Sge5PdgDx>H9@f@uC)9&KNU>9XrK+ zj;@d{v~CajF!Y_!yNK<~4aIyPz4=X_6Ommuepf>q1}_}}41I@IVqztKKBOzICYp=q zH<2LS;!f9g9z`$cUyU({=O%&gvVW!aivg+q(12OqF5?% zpj_*{PIsye-JP`mX)U2ewZ@2XUBDto-Ho#Ex#78A*Iy zs00O&NkXnfId5;$gTz8j*VVa5mRs4GU(7S83HkW8URI0-a5i9=gS5W--PgEz2R(i| z;dz1d(i;zByImrTx)d9o+&Q>b7?qGgd+JI#EWaoC-2fmzQJUZ)UKDYq8edXIBhj8m z@#YDPDOsCQu#4FT%Pl%9p`(M%Kp081*YTL_1@somR^V6l8-2p{uYh1p%B?=-_cQh5 zGcb_5cEaWz8^StBEk+)ts8vBCeVjHK-)ao}vvQ}hv0JG)ZHf39*>uVVcVO5)kxU6q z(P`2mn-M$X0DFR;&PzOeTRf4K`o{wK-6_*5ew=X!Q@?+8#{5DX?M&rbE9%}2Ox=Hd zcjBiLCp~pM=&!?sbKdmRbn3L6mOiFyO|co84Ma-Yk(ij=oxyS(rt{{Wj1uyqOZ53R zX5|`Vi-qQyczRSQ|tC-Ukim&W7`Dq^O3EKGzB<045gbP-b*$K zKINg63l}8$pn9hYhdv3vWq!E^wHKVOWZaR0d>t2m)X*^hRsgkBmo&tKq?0vi z03{q>K;Q7eWJOI#%G=Sx{tF)pzL2S2!xCC9j7FP+6Rv#y7hYmBU2zku1*UK%h&^lMMZu~*xSKfWUrOtDw zD5;RCqFqcZ^hzc0%>%79FEtmDY!aU`!=XZBN0tcN$8n@~}xM{(6ZRzzmW$7?hn|7n*q(Asc7 zPZ1!st7nBgtmCp4c@WhHPSrk}G@!E)_9g!5l}3$4R9_XEbP}%&8!-dMcEVy!6lHMI zBdsc8?_lPtk#bFE0>XVpt*?j&%KeAS>gLQsDXK<)XLrLwX8cLyo^>m8c3UKV3YZW_ zW0k1gx5=#Pwn?d37mFzzyOKad{We_0l^;{V+CklLiwq;^EF8rRRdThGsm8r||uiRDg6+ z8<#jH>Ti3IHC$elv_?vp$SZG=*)7M2_bDFP%FOd&qw#(dL3M2}Xrj3}2yBJhq@%$Be38bBgrIO$BqXcoAqdAjkDDnR%Wm;k>v3-<=ux zP$zj-x|w`vfE7-~6;$JF0}{E-O3LGZ)%bGJM1kIxz#ybtA1?b+!FcRj_s7aEWH7g% zjn9KXh8Q%BtdH4}Rg#!dQ@T{mC6Ou45f5Cz%c)C@j7k22_|ku${Q1Xm}#J_%S+Qe4MtW{rbQ|H_*d{?bk<*gm zd(@4NkcJ?l@$N5+W%Qf7ug*0VPaYS$(pAnlpG;lD{i|KGuAFSI zF1DDuclv!tm%Ty%-J=QgTW96vf57?7e;)k*it|0)R!GqCp4j<)9<@zRFd)nM4N$pW zAJ||?9H&pR>|~?+ANywq_+ynHlvRwElA(V-d81{mk4#WFf&4C&@aRp4pI-*;zd@9h zHlpRLn-t9`>B?>Mwc%y`%542>@9g)_gDclz$vlXO$2}SRQ(0+1+6>|EwAtX_X|ufl znKsjD?4y{OWDhF*lQz2pq|FFE(q_Sx3{B*L3^wv7fg1N<(6yt zCHm<_{6U82w_E!(!)7!s?6_Tu`iGN$C`wSP&7%!>zrg&npbi^7m2QRc+7OW7J>T|3 zhv)n#n-PNooO~QW*$gsz?Wsh%V)KuaU)^=Lp#gC6QJx_?LJ2SbcJf(n2>o=?e+2SgQs(Bl{QU`p%MSfSZMm_Lb|S|>k70cMtd-|!s5ovNLG7gOsL_-@k7#59 z!e+o=#L|rHqq|b|ae{P`F$t}|_}6^%Ce?UZ?K(slKu9-5^2|z0({u0vmtpAC^QZGq znFk=AU}_;Jy#$xN85DHPh0DZg&EDw5FM~KNTi(fz(p6+Ler$f#WKxUKdzk$Y59R z*GX6Y+R{AqgkFcN^wHcu=4||CyybxKC8bP+nMG)p-NCHr;u&Hefq}n%2jX>< zrHrFW1Hz2yy1nR3#k1@T;svhEL=~PI`1^r!bvrD0R)sC=bD z9yQbV6=?qzftPA;Rn;hv5${|#hO+X-GWyQq$obA?F_aLa)isDFo1_OuDX|Tjq5iMhLB~X+N zDNkCXtQZk;R=Y<;F3)3l7J$>EkMF0DaWmd#mD?-D63|nEDOqKgIn8bUtg3x_AWu!% z0AdH+wk5Hr{g`0(xHXYQ4_BJHEjAGQZ8C%(D}-8_x;1tu^N9$nAtF~5kTmlc6^lAu zB5wFcZyx~iKT+kSV?qN!ejotkw|{{A$FzTddr!KEVoq z=k|G(aHBlqNp$#@vC66dx&12sw$F0{*7ZOjyhak{rL+%C;{!z|XlvLYSz1?N5sH02iMt-z`UT3nn2$ z?}P+K#&{1iXM|oJ;Nr{u1LMPEBcyaHFtPKnqBex#KlAP*7TmMO6P9cg`|&Nb9teZg+Dqu-lN7?)lv{-4uq_(Ky0$2BkCDO$hZ% z%+O8!6?$5in)14OAvs;B1!vcQdwujwu`=mq@uWfT>5S)B;8I0aZ8Zu6e0e<{l`@CZ zW4G8mNsM=+rL^rU2SUdm@nVT|R}ZEFabQ0h&zc^@prDUHAo(3XTKmA!&Diz+W8*er z0-G7^ug(J2o8CSn`0`BN6~y(Rnu0RiYT#}+p5{~vG%$UB7zpn^!CQK>q=*Z?JsxM<`JG;vq9wtg8BoYgd^T>7QMfxcEos^A=YyRnPGoz z&%Ggc^|cFhlV>aqn!ayPubpLO;;l2+1y?7no7whaF3GlP(aYQxu<^_sIoRRPf9(Pp z*n7-!%5zGxtrCZ`7r@=GAGKXTe6z-!-56nd1ysviW9#c4lOc@`Y>wQ6WGhejSw-)K zv1MSQ5JhN^sC!b|qx?pG#8%O8R25H;6f#OjZ907(160eF4|I^$(u6F+RkR?4PJ65{ zT%Z9m{&&;ph|4Lw$mrBABaSiBCkX064xZ?rui~>jvD2OVZ5PwH`M&*KTj!P=#xp zwrimg4mXrW+)^WbXP%K=XJKya1whANH)&3PTC-;1wNJbAplV`1`hVE_hu}>3zH1kb zZQJbF?%1~7v5k&x+v;?zj&0kvZFTUSxvu-Ir|R4HGv0&!PR>eYl1VC+^*jFSSndDn z_DPd@FDR*ZP)3A`>}4{4s^nb#b{DLHtXw#Z26qm=AjKF1X&F2K|I`2ept7nU&b>|R z>Fqfy1@lq-<8T!grqZO!vO7%*aw8#5dNq^~VXE zQv(XO^Xjrau>Wo&JZuv3)aw$F!B~l!%`5$4%vE|Vr50t(qB;p&_%x3Vtz#*AyH=NKv;*I*(*- znuyb3*gmMx&UyW3!D-mumFr_^f+U6`H;hLR|g&JpFeL(R-9ZrZ>Z_4D&HNst-}v~;2_5EjuB3|;59V__d=?w(il-A;Vee4v%1=j zsY$siNl$Q2bcXUI#31KTNil{alwZ@a2KW9)XG4;b5j;_KLQ9JyDZ}S~6R4_=T)D^I zyh{hM@ZncHMx?SBkD9c=OVE08#@^${Jx|+xXF|{DOQT{#8#>^M=HzxgH9b-YE6~ka za3&1BChxEYBid=BUcB#MOifu)F-?f}y?aH2;sc3|^DzkIJM| zFb1Yj(@@f>u-td~x>8D>qXl3^CG59m0yQr=_^Ak5UXDw*5lfI(8ZvhLdN>fddX9yF@@ zhlHIJ5f(lMBJNWB6W>ktZC`DOl0NJ*hzcoZIr!w9?{9OX3g{oN6uc4nQTga z(a+apt>VeGd<)S{+UQ#}6ogH488}@c!h*5_oXbC|B4&_7tKQteDHDF(jH{o2C2u7Kvw zM0Dw*AFKjlbM%q69WY{`HdG60Y$B`UtvB6oYj~;#W?V^;{!m^irL7N6pIaZD0Nvn$ zP8?8(r016+1Z(%pfXbPxQWRF)l)ctt?SkM@NtJUo8_Vva^` zeI6TdJq>V`V0@XCXMC5-JRZe?J?rrOBYdjw_F(gn5u7HGVAlL4djgdO)#rS_^`%Ih zxV#rv8eXcyO7(HtQrQ2|GB2mpLAU$wcd5puY@po6)LoBB>p>eP`qCHQqX}ZBDXyZe(0tUsYltC8kK+Y>sQ_)c5Vr z^}3j;NGs@KYeJANTqN7twE)1lUk@xh^PD$}xVo%`o^-dnP2!VtFM;#-g$Zu9Jziwg) zyak8sqM$VQBM4Bu&wJpQ?J}MK@e}^2ZUenMT>4*I3IRi=I4>J#uc3cE`#qcVe7!f+ zu`d5M2Cq4!DSn-$7R9b+bUWG!%}dRmC4aHeGV7EKb;sIJ0&4kJh359to&Gn;oILZunz<)l7DOYUo@ZK{)^@p0cbuzrVpU``?!8F zrtK{Mxl8fo0`5}ncVBm@a==|mv$mhdcsq5x9VqNUq{$a5xcvlO*h&z@8fgn3pBRUK zP~|Uzx+jA(nijtsQW2FzpBd}X(X`kUF_XB<2%>>5;{2E}!6zOI4Q>#llBbs2j~78O z6--C4SaDEK_rf|LPa$!^>M{#7bo`Z8eX5T|wpWrez49VwV*U-d?l5{V&z2Ct z8f5eU@pK-i{j^J*60!c*VT#0`75X$?5gtR|R)8!9qUH?Bb*su}-iBX8M9`o!4U%oJ zEgboUh{@AGw_8IO`KK$;!-fV9z_$-)j&EKd6=r1+G*JWVHGxnNa@jwEGrC%#)!V_= z(G(YBfPUtlZ$%r>e7aCd&Jq%0yrQ7$9D2fN6A)0U#b!OUWO(TZW6r)Vz=Q4CFbHlE zM?uRO|WSJ7(JB24!fHN=`*F_$&UUXjI zCS4Ta1QfBA#8Hcl3MWiOe$F%^dk3%vcw15uU0CCTB)W2@055yTJxeO{y#yAl%37SA}(kWx1Wk zwFUI@LG~fHoIuV!T(Abhe*mT+*$6U`@1r6><7D@Wa{lS%ZxS{n2+=7p3IKZf&z8?< zJiQDExl_bSY%s+%_eSIu=V3jJ2k9x0n|A zs^xRRZpCr3#}$$d`U-vt_iIW%`B4Y2A7aNG+>R~9BT6B=NH;mGHCJwyBD1{o;8Fwq zXa7<^FA060=h_1m`e^#GzQ|$Ur6hLxDKf~AMpWg0-S+!nA%tpQbxM7v;~(R`_BUE> z!%HC-5Z=)vG?AJ&S8*TRHS#7gXR8u7solqbvPXe0cbA^lw+`^=+?mlgk-_@#7C7Unm{(W0rD9_Q5 z$`(M0p65DwwGst^d%h}DrlfvS@^N}QSx98p0OfvPC1jyzfp!;+3TXG2avwX|*w4r| zeAIKwpPaK!YEcvjo+|HBpg~;*;`fkgfa?s%R;VTpllR1ugcXBG%b4oTN1Z^qyBD#7 z3?msWf@MipN5bvsY-Rg72-}x(|KnZ&%xNBUv|2X;HW8N?x|d#fCYRerVho?Jwhe5= z%SdslD&j9aK)J5~Q0_a`D>@UFxQ0?tWqhzW?VhpeHUT;)0Oh`b&x3-)Y-RRYdPFB> zUQ1L4@*53kSbp_PVMJK~+k4|N3cPS^}U`VY{EO-h}SWzS20wwEM#&9}f> z;C+GP`SK!8@?FR2(V$nRnPHtfu9w&0b~}lv+6`_<2|mQ6V(aNAVg4AHeMj1MiazG? zN-6!A4gQ?Cn4UnCXYoE=3+L9OONO6I1s8k+m?S^s5%?`zxK^V%@WpoMn*QW&)3js4 zk?+*gQ_Kab)Gs9fu2)VjH9{2IsJ zU)09xjgp)CYn^?bW_*Z8XB(1?zRl^wTz`Vi-{krpGbHrz#6+9=(loehVa?VL^`oLT zAc{@&p3?HXOqeV4)wl^nCG>7i5@YHmIQ61_Vd^pR*9)2d*Y)bROaCugyutU5y%B@Z zE9u!NiF7@vI>J(1bY;%f0h#d>e8BOFYdvPzJ;#~dSlSLhtJ5Syd66@`s#)m|9Rb+A zz{Lt?X`ZZ{*6Ftug3+7J?`<7AmTfcl)M~__|*LrR`v~#O>@|`Uvg%}k3iuG zLiWaz)|0+hK%Ao!lsMH~Ul8Mp9flto^N2NI zf3zfWGJ_baNEbxWK9m86?BSVS>5b#ehJn*pg`kOOG@itCqezPb9IkSf117vW3{L(z zTm=CRSLmVQe3}z*F0Cae)BGTYGAMK&Z)mUqUP$2nV>4EGAlH7m{Ft>WRj9#JB<`rxyz-si z<%ThH0-cuNQ9Xok$E&gSTQ_QpX?MZG+Axp?#p+>CQ@G;{QDo{ zO}_|aXHCny7FJ$jnlK{Y}tAZ76b%Ly;REKpE5JD4VTL zjKg)Uu~XtqC--^f`wNld4;J0pkA>1sJdR4=d)E^tmo5B>372BB6C+o^&Zt3bh9N<8 zq`WRpUGa6wNKzo4oF{lYJsvdHy8cNCrIZe?K-BdmXJ zSI8MLN60vKckiSe%(WZ%(+Ba%dmJ@$c(bBayyp>P_15ZF)u04&gH_;`0^r3^$4tEP zUEuX%9GH$KvA88gZ#MKpMi+2G404G*mH{$}%+`A(d&>_6$wUbPh=O1=H1 zKl%6T|M>QoklY`ZipAc4Y3qCqWey7cL2Ko=Msv*#=;%eW1&sl;AN3EGlIVNjs;#*ypNrdI+&YVE)REkb&-CAGo)E z*Iu44<9=ZFBRtt>JgDPTM>LJlZlLzX&v^=VLwDe}u-Bz!58J|*SY+ro&>0b=Cu~B+ zoi#SQ40p!BFS>7~$MrvSANaew#y@o5wEg^x?%Qi`*k_b{(f!*0L-!@d=j*@d{tJNa zH>mt+*v~nJLVn9q+ThVS=(tsMe`|;)8WP0l%;V|`VfW1M2U#HJ_jlP)sOIpvwHmFk zp$n2Z!S0xuK{S$e%NMi%S#J>1bPAP6BZKB#o|#v1K($EM&va2;lLwPuF$deAf!p(= zh#G=YQ^$Ns$sOaD#Hfz1!fK#sW{aogo_nYPm{e<|h=E0VX2BQU|GtvPu>0C5M}v7f zH^w%6EM%aD3$-z*ppRk+!3ycxis1Nd{%lpxWSERjI?(jTx*vHeE>d_Q!ue|8MyeIP z>>4751CmDdpkVBcEsT-Av>^Yr^6)}KjUD9lRwa5EGbIEgH={@cvbqrpdaC@OobW6)O*2e>05}HN2`) zFRxH9okr*4Iu91y&AYR6S9e2#yncgiAT_7xLv|XI5_nCfXrUK$$+Oazwu^-aboJK| z{k~EZ9H6Uj!v|iB6r~HRdWpC6OVd0Q7@pW1VyI2s%FhItG&v*Q)`n(O5i9bwtZP}f zUyC!a8h0WQ8!NIo_&J@t#C2?mH!Xt7;vvtPSdnEs?SMJUjAxK2L|DPoqGOL{1Wk;& zC0Q|-Gx+RJwcI8l!(+L0djJY?W>eiWW=mZ@Jj@c1|QR>`1Jh<`4FD6Y78((3AfX?l+3?!E@6F1tIL>QT!-> z_+tF||1f@2!p?<;%Su^vA#Z2<_KUO6AdHyYA||6R;eOAU(#1cF-xtO2Q3dA1iC(Hp z3GS{d4yT(#zd|gtw$rDNhmAuQ8@kb1Ltaox6cX!RC&_}T0(K*Q3l0CI5_t>fRX3sa zJ?}djGW;trqBPxDY3Vii)2o6L=i>zN&1(x+e#W;VwP!t6!>8G@syc`opBc8jC|)FP zhWl8@~Jq<=fuLsTmJF?R_)6d!f3B8d`R5&L1VPCMtVS&;|cDf5Vy zWBFh8-GNej^GU`n>7_e1l`p=#94MSUkLCp#NSGUeJ}lW)w0}{4Pe57UHYH$-k1pgN z%D=SJ3ZVQQBY?6#lgbh7MsQs(lXBZojXw8vPu18YfuJ|B!qx#Y0b$-bpOS8?aEM6)^x(adU4bA3mv6{r9{x}-ob`YGQEIsz!`%TjY&aLS@%yAOKbuf7{JW*2yfk*k% zK!%jpb2+?zNa!gNOO5Jn&EN*#ny()Ut>Oj++$v)Kr{(#nFnKN@CPB=H-rZ?piwp#- zpPvhkBSt1Sq&5^d%i$jF1dVxc%Jc{BQLiHKs}!LpN|_N;`Bap1H|}%On;JImBF&V| z*z=GidPtS;6~0`bhl!76)NS+HLt61|?FvrE-*rzATB2^Wg}bu(S*g0-Ul*ZoD(t?ugQAq^ysE!z|U}}QoLL0BK7uT^^veL3{s>8=6NGy(ui;tpn+Z~B6aRIL8f9sf&?^d;LTKhk))*x$+H3foZiA#$?-n7?@e0&PtX>PCAAhh^Kn#fqqM{Q)QnxZJ~>zx{OmsO!CSpVxo)m zXw{YsokPNlWeLHOomJ&eGkbp7h3bJ&7hSjimB3~DaP$l7n7Rb`3Dl~bAd*}YCZO1s z0yZ;83$%w z;eA3B&*R69jNn8Kgmu_$jZmhoaU?B;+o}W(o`}1)@aMBib(mq2-Bd1qWS&wZ9Z_CL zPEcRnCElU0C-@W9Frg@Ah(&V?YB-81oqUAoMF{;@DKS(9yPJ-NcqU7~H;K+bT2EDM zAlqeh9L`R9ahz5)Qs~#fuj$lush?ECX5_gZpp;tjzftB@_1JjG@p2-pzgdgjF7juR zz0`32AV$YV@?#8=bxtrA=<#g#0mzxA>=?|XckM`gtP?J}t^U#Qx6c0LClNOu1^_w<7sD8yLP+V$8wRVFkk-^b_583ggMym#?!Ta^r#ffhv zF#qyMc`ThUCgYKr4k`!!vxg0eH;{)LP}RRim_#%D!`aw_BMPXLhun0t-{~EXE-g$>{&Dr`ZuG~GVC~@?uA*&WXZ+^sv z3>lg5_BihKap-3BuLtz|H(JC8tYd+2eJWX_zN7E=Y_EI^0j^_?I+)(l^$J|!5gV=1 zqsl6Cc?D=Goj~3I>;A`5)&IYBzYAd9ms3Ov?LK3;uRO%BX#Y6be$~(=MBaXAXala~ zXUtkn zcHfGze4{;4`uvTS=%oQdRKtYX? z+6#rHhSyj6gKoIK*~gy+fSS_dQ~G+K;)vnIBT>rTd-6JQgUG=GeBniWfuN)$l&kYI zwg9VSVdd%qeX?8LFW!)yeB5IS2m?HV+p`@^=&9luO;zwwMWn#yk-U>zM8xS z=K@+kGREQ=2#}E+T$Y>?QH&DS(Z!qs_aHd~3T>f$=H6_BFaRy&+l)hWaNfl^Ds%lo z{`Eo9#kGa!u_N~0+f5F-EIFbI5`Y1k`^x}bwgbbcv;~7w!A4TYTOy9sAA`GD5csLc zx_qo7SZ7B~bk||k#ap!5GXFtUPo0dd2ej4qG2q&%?(ktF65$ofhTLz{|5M}Hagv7e z`~7xmH~=;A94KAEeOCv1MF%p|xLT*J!g>P_WYkmR=ylj?si*=JN0DOw7W`v?wlcj0 zGGbxMz7oo>_9UOypqs&?>*V4Vs_%@YeuPkeb>oJ4;%`LqM3(5oWPKW%hF}1oCXW#} z16_>ycam7&sPtcj!Hi0;Vn1sT1&U4x_Mzxwaqh2i8i728#RUm<>S1KW8>{laww+PS zkY>|dOGH^saMu6h-VN#>tx==GHktL*1{olGPP;cx9hU^~Z)xX+Tt_fsnjdN>KQ)0QGh0?YyI_yiB5M~s>IqjnlDF9uzA_+kjb3ss zX&7j}m=1wjAa6Uty@}(M10UCWukg55aQJW|GF?#-EM|p@`tyAp zI6DW1Qz3fe<+6bg*l238s>A#jJf<+ahfg-IPFx6PH%JKd2an)JGLfFKr+`<7Hd8UY6g+4Q6_(rpHF zT^juAvmXR1$m8>RhN4ryYz0NT!&&}|(+-eY662BE92{27YH6<~MgzvgJ8K8*r z^b`;@wT0?#8~g(7mo9allMgwKCZ5o>WypeOe|GTbxg}~y-DpVc>IIC`n>o^(b_eE6JNZ+Pbkj5Kx)$3&8Tz80+!??4+pe8NXd?L6@98#_Cm z>=uQ_BdHzR4m1wY{9rBYzTg0ygm;~PJIam*jcsp-dEB{Q+j$8Xhc7Lt$Al#Df+&-@ znz~F_?i;Nj?RkQk$sM*RhJ;1@Sj+58<+uBN$Z3z_-K1y5Lj?%2W7r-|>bO+^k>#vNR5NpqA%E_Gz73 zRo>W^*hqlc)GZ6QR+GdXhHaeOByNhLPm%xpCqVT~x^_+oaGHr<&TeMoo|#;;ZZ-7J z=OC~;^~-YiNfL+U3ju+HPPVIpk(f#U+=w}Q8I00Po7*S)6FiG9#HE|eBWdK4I;ToO z-&50qnWIt{B%XBRF%=`@aTYxoI_|z3OaY-&W%k>KAWM^c6%z0m`kQI3rJGows`O3r zf!1O~djlu9SEL=^(1#I;#{FQf_H2@*e4BMLZv#U5&t+KUf_}d~cPs2YR1ZsD>Z~c@ z2O6+=`TnIr6l|jvN~#|f`4Lfohubzz$0zTS>^aQx9hf=n7QvIRO<+DY z{yqr)snHS*x-!=5Q*o~2Tfi6Jme5G***pGA66wS$TLFBK)VepldEP?Np&5JnhIVJM zuVcmCHMzqk*5hpXp;el1Ee?ngU)OcABcL{Tvv=O2kw4sRawPGN;7oKcF|TcEXxHK} z#}x~(O?LTh_IS@WL5U!_L@JT&zGZ9tZX=17%BPy8!n~}8`Uj%Odh#*)imEm&vxY2B z=Al1mfKBNUl!C3v0cE^VtB>#jo75hzQVI%%p`5d4v$3*U6%XHT8d#LWX(cp`Wr$eH zm~W989H+vs$(%S+{;RNpif`uLd4oqE*Sy6`zvSrabVrz9m9eXhzg;Bbv)!G~RjAC4 zguo{JsLwC?IGw-1XWF(9sb2A>Of6kpo#95^nXmivexF{jeymr)C`sJA@K-Yo#$O7E;A&7C#); zWd&D>#2+};vs1w%e9vfW)&G!tnQtNlc{}!{VCeuf8@c_(tMo<7R}ZW4h%B=JPMJea zesj)rfvu6R>S~hLLVijEuH<3Em;z*AmEecn>N1Rd8{rS9$;Sqhcy`EF*0Gks5N^WP z^eUGiV<`B8M7Vf?-)aFRz7(1a=}5Y5ZB;3H;>T5oDvYOh;;C3it1QH`*|mT8$zX}D z#2rYdS7y?e5i0AgmobPhMI7XijOa_pyk<`#jO5W~Krr#)s9f2YQ=xDb_xbKck-?!( z%)t`RTPRswnvZ2MUksVJuIJ&ZJQmWS1FabgQ|3@gWCc^2Iuh~RLa-F{Du1K&P1Ygc zV_H-cvkqvS+b&#X-m9dqY93=7=NJ~TVjr?&N49;eo=)^e)6p>}O3!bgBrW!wCLsp` zM|M=OU~?*3D>#pp3`0Z*#rMZ|%`6xl;4KN&d;t zUV~EU{A~q%i(UyU+{x1+w%=F>M5JM z_2V>peYBEf((x{{l&qp$Ac|7jqt@}@DaV`okXgKblW~{rP>nm_!)GJry%qm2^z9qq z(`^$_G~wV(A-RbSXgGb=)A6ZnR~eIjxI8Te8F*4U-aS2Ngjvx0+pZ8?@AqS@xP z5PFRIC@H1XxR<^!!;*dyV1y<@;+sJD8O`rI>-!;n*^)dDLkjskrFt4(p+>s}RJ?bU zQy$s!wp^lCpm8TV0p9tbLswDqnkw)6)|dO|a1)NkzMhcnPq%y38d=J7u~uz3r$sZ*$WU6MIIGAJE3t z!L`X<1`1nny~w;X?*EgZ((FRY{z*{h|0byBuLPxYVJvZPRrER(m$oDk4fu{DG6Ch%3tD`@ z{FR{86Q}L;2KhGu2`cm8p9JN&1xQdalohZ^tx6vZ*_;7vf*cH4od7mnCHCTl_^4q$cDm z!<{>>>MZx^Kz)jjILpf<=?<1>9pGbiAhtfwBU6U~a~(#gJrfsz6gqqCG(uSme20@E z0x+}#+V$fQfr#1I=~I^KUbPwwr+i>lFVZ$92C32x;NIy$-^`8)*m$A?BL|bb4mk88 z)OsQ(Go@m9fv6Y@Xw~1Jc>-+cSOG^R<;1by>kZNxUuUkskqFg_*QAo}&KxVM8!Z2tAYf1W~Sb^OFBnM|{cp7{b- zvd)^$!FZm8(WO%~^>`1-*VJK0$S0!|g0vNC+z27R9LzEjWWsN^TWm>CD%eYRbPg=M zh@6S)X9&55b0^3QnI#cDUB6B1t!j!lBLZ;E)vI7Mw5@e;Cx$lN_7J0*v5^&GUMG$6 zSrTVHcqOQ8P;fJtmaglqsM_+PsJ*(yV4nSGrJ} zwLwr8QMs@~s2V8S+TiAedWo+9ybu8!RcNxyRHf!ecKJ#-=Hiff*h+-kbH1_wA|p`T ze(l1NPX(0EO$K3f$bgiovy zU-Ra-R$&jo&3n#wqeZ9qy-%kT^pB!d4eJx&e=`DLd?>A|fLqs$qh*{SRT@BqvQ%I@ z{T5}imV(?gRz;72-a^F+?sLXqWR{Nsw_{OQk=~6JijI~;tktkD<1G?Q`jwdTslyY4D`7eOkZr#&HP3;WyHG2pG9 zur68>I8_fE{ftyrB$0S$WN|b|MUm35cCMp9khB&{lQ5$9PLV!mMabK>m7G9(6hbeR z8tt~K!cGg0&{Q{``3X_PSk)3ers?R5BK710-T=sb2Y56`;cuP4Gc$MOLZ=w4WD)Vs z*vN*%0=2Vsdsd9?104z>I$|}dk#LYW%24|DfBA1T103{+I_RNkO`lWjP@5|7D36(Cyj>rz3o%g`YR6+b801n+P^{J+Zp&m641oC%u;}q2ms4Mmf^EN$4o6?O&9@fg_c4Z zy(R<^Rc?ekCc@tNWt0z$Ucz!h@5>nfAOBO^<)$K$idXGO$oOM+LPy5>Io}@VJZLv7{ZD-nT17)wLza zY(DO_Ah`}(KSgGlrS(1wj);+%)>0dRd=UfPJ*4vt)AT48g>-;xm!4C-7C%Os#BS|6 z+&tO7K!{zMlSIXr`F;hCs8ehFMnBx}0vmRZY~mmLOP@VoVmOG0N1TIVYC)7ILBxS1 zj3=L_`!|opOxqt8Qr8-0OW`N~@0(9%nJ-Df)n9@|D;#0med*oRGPZq0deRkQ>C z_XOCk8$gIUzbtDiS)lBlth9OEkFxfUAt5;O@U2mGw5>Xy1LY_{cVyRv?@2G=cng|} zdZQ{IwO8jMPn^qRM`t9$cF4>?b+j07Ls=LTDb0+Y*Xu%cUMH%!@m@Q}i|{%Oo*duI zBE(?vW!sz&?k8|%`=hVC#>aLPEI{HH1T22Z3%27U+vd0iU`-NfDx$!?_$m}D;w4b@sx}gwz1(jwWH+D#`&F;n(ufV>~dlY z!Z$A6j$B3(O(RoM%pOig?B;PFZ1!bUHw#iXmr+8k9aoF)+*SFDCJl!W!$CkF3mQz| zU@%87J%f9~W#0S`e@msz&bqz* zu8Y~vadpz8`W`>l4u`{hF+vVYp%xY1c&vo!A%aAcOyYFq=B8{Wjci<@evVQ!)nF0H9ifuKh4q7hX%s<{X=QRx>^i$q4;?~y#<^^A zqX9KS6pXVK4?jHz{Wii`xk?6S##RHSGbFx3l+AB9g6T*h%HJo&+Zx`gB9UQINdTw*ugY#Hc{QqTQ2kJ8n%l6KR=$1d&k`{#j6SQ7 zWm@bs9qe^B;2Eu}a?~aW(#ow3eN5jYIJaLg_%n+rTd)Ovw=ZZ*sPvtE)`S(}&{W|p zva}_mex=4nwm@;i#?82vFiPzFW*sNQspiDbrt64#gH+dV@&}()1*1WrJ)m`Ya?yw< z6AEl6`7vYs^F(klaKFOuQMhPo&#Sm%-ew#RQ_mYcJ*gl|{`cnh3GUnYxx@27@Zxo3 zP@#jB2Me&q`2xDf5IvgVAlVBz;bAIHP3_(KNBOmUswPf(BlVRm&THIFBj%RAh7EHb zwS!K^?C~V(1rn)lLH2Ccel5D&3U~vI4^y_&;5>)%;)wNYmlU_5z4SwiY==(GpGV1k zj2->#04LxCG&oMga>G|zekBPj$r>1iHGMYV*`x0PIW&LCPHD~2?A!66g`JF#NsO;6w3(EWJ>WdMls_`4 zpoW1s{~@Yoj#!EV$JW+pF>!WMOg{f8jtuu8OaIV;uEB(Q#Y-RL1pvP>m+&ge`NjiS z>1JgPDgmWvlWSH42HkgJIEXTpeQAyYZp{{b=Qq?Q%Po44qN|w+W6eZE#2wK+eYSs$ z?_}%Am71BC_^y&Lly%YED?958Hp>Em=?bl8L032#qILOAV?`S;V}2SN-7}KL=|L9| zL)UR4QEX^DW40MvBykWb=1zMVeH-gfdI@g8&|2~p6H`o1|n$ZW6u>s@^PyJ=0-JJScoBL$Ue>LRe#|!xU zNPIGG+JKMwCGiHBEaUAwO5LJiSlCtSXlthyyqQ32ZS`!a7HU}P;_~eo+JxhONBwW| z9Yo)vSJ3~hhKuTnkWyuSD2&#W;O(f$aU_PM2w&H~{X%2jEWIl=#nJ zHMHs+;cy}lf{AFFjlEFErg(*wKiDJ|0NiQr?kOKTJ|lkst48uT21k&^xA$M}RPcZk z_5p;H5Lc`x%=E>b(g56P0uh+FN{_gfP}ozL^YSY-k$o6Tj9V2g{ttJ8FrNmAuNIn* zw(eCgG)CDZ-c|^%I`pKcMWPtdHB{l?^zkFDKMmPt8FVAP4nl;RGmfHxX|ASJobIgX zYO5ToXexh5U9t&2`FD6UjqBdXT^F}Q+-<=T{5aeWqGlckIh|mZ6v}7_-fpJnlL`mN zxr*qd2`%n*(?t(M>5A7PC11Ovn*__iVJZ{-3ndPdj%5k+Y!8SY52VQ>t?&cWX! zN0(4A2zGyGmr)f+cT=fBwaRVRa;mtHA>iEWRH*bX{pygYk+1|2WMe7o-n~N)qqqTb zz$Ug`Q;jXd_tOOPd$1;$O*=IO_v4qIy1hHGE{wrnvJhSS8NR^E%XV0T7m~2sI2p%qp zCl2J44e?lfj%vx>5*URO>c`yODAU570K4eIpWh+mz?rwbOA|o}RQeDyeRMYN#55WO zHQsyWDXDE}&*8~we}zE^n1Y&tuF`q4aatUiF6;E9MY0I!jSEO`=D2*f#0@A zXY6ZtRQsRZ(Uwbjgj{)IC6;(%hq$8hxG*CKgp}f7HOFL1eNg>*QJq0^m1q}CY~?7O zg>qAKfUdNP^VRT6SBlO2r7P7cClO&bFZO=87?a~S)c)k6&_2*I$6X@Qa<2qjJdi+j#k6qXkx^{}|+Y3qG z)Sr)nx%4r9uurAownOpYx3(YaDjfFw%3_DUBzu@L3aJ9m6LYsl!g#l%N0G;Rrhd}v z;&kxIl~is!+`#w;$^~L2Z;udys%t$~q^<1rxZs}5R90WRqeOt+QOB{b-O-bz|Ll&A zX{H)g|9Do*L}`L)q&00Tk(pO{4+HFu;!7qr0(M7;O4(Z{*GB_eN(l6cS~8@A4gKZrZ#yP}Quxx9-U4)`EQ+=OT`6F9RO;W|QMxZ( zX;(+wZSQPDyLGu1Tsv5X@3Uo)<2?RkwT&3mPBM_-@?rWRWsGS3I9uLavH6EGtXps7h9&2Vx|4iwBm2&w_(zCmRsM2pT$8K&OdeZzOn7O8XvW0-) z&<||@i{iVa7^Je#W7nZSw9>qm);TH!kqvxWhe&ksp2 zf~z}mf1XDCtB2*#8)$NmDB5{X>Sl2<75%`xJo(t3rjh7x$!otiX`cmaRDvWx4g7oa z8%X@0!VcS^2QP0ahA3#>Ve2aAUUS_MIV?zQtk;;Z)1 z8RCT|I)7^5)Uy+dRB$u3@bf&x&~h)FsmjSdg8`b(I-N1goSR7H>0RwN<8y|=07<*I zbZXg*5sTca?G*l^%N`605k(M$z3kFhx&6{wRnD&9`D!E)b_{)7X={|R?*LsX{L!)o zsmvCWu>4u##W(5@4joeez_2?}CPAzdVgv(x_X8eTulE8AA4bUK`c4KgcsnU*G)t*hvsW{ zbO^wr3YLP!=x4oq*c)t+s|^`W(6U<^>TZ2pCHQis68HD#Jf!H}Buz~0*;hg~w0Wf2 zxA;d9jF}fz;_{>_DBw*PzdsF7WTI;ox@27=J{o35*sHV3ADP#Zwtde>1};1ZNY2Q1 zfOaQK5%aAO(OV|bwt$ITpC2p-r>q=ys5u&RA}@TZ?}L~};>0&8#1NyeYI_TG!l}@a zo%sK;cTU}zwr#c!D^5if+qP}nwo|cf+ZC%Swr$(CZF4>Kz1^dGjsALj?W~=Q`v*K5 zIj=eAaS(k2BEw?5i-c#(pjk+4yVvK_Z2kCAH0G6ef@5kgDPd`^-sXq|Z$UfW2I1<& z>?rE`&f5VxV}y?C-D6WqCHZR=>vH)xP=Vt0gWlio_lM9O` zWaJw4gC3HbS3=HUS+g9CteGh+i*+UayJe=spef9r=oSlnbsc8o@QJ)mvft*6GMm#7 zFEiHLUHGQE0lkg-xZ84``_eVCizlUV@OodUKf;cUJrTL!YTC4vU%OSF`2YDPew%@F@*a#Mn-s#e>shYZ+YT zqhCoopnRUUJtCIVKX01X$V_7+)IbF^S;!2{s-;3HmiYKMCz{im_;Ws#0Cttk$}p1q`C~s_EMV z%gY1C8<_p3P~rnzmIV%Gl)nXdapnf~i&1!lvgjaJuE6qg9ObKxOygXX8s&-Nf2axp z!w238sLlHCarPn5wn4G2!Ao|}r2WQ%6ZPGpKB*W=UcN3GL!x(0_7-cpowO%#yC#V97!whwhriqr zsZJJ7MQO`lMi#*~5D~*J8FgZ}+?GWi0=CcwhmdxAI1>a1=e@NbOW?BXIqjHmZ|Vmo z%%Q7`;ZBdVQdo~<%%*bfKZ$aJH1GvaS|Y5i&Flz}Vfb(lTY61o177$!dbXqRH+n++ zr6_s3o2q}J8(P!U!fg{UTGL_ykvRAZ>)=P~D2DB03cx-3H*f-@N7Gs%>CX3Q()9Ax zLpo&{d*Jpmvf8mkT52`HQY&gM>|voO^^)=Gy7PRg()9^>Z98M&~*Sb_iul42NNC{PWmfoswRx_A?+H+Y&n3q3p( zC2%X-zV*l7pZt7v(*L}fT6d(P2s4Cuol-f30lbTD`4#Tr<&u#H&$~0duiMyiYZ3+UiN`$`RP-qoE{OnEk%166Zko?s4pA^8a}qt+V}%eT_`W^*KA67+pp?&O5Z<8h zjS0rugLi!}0h_UkO`run@Su8+!1-tFS*}4AzR>9 zs8QTB0pjKoQb(M_cmF-l`@$2zS!|l zBQp1L&l@%7Y5f)cNi24p$ECM6Dm~u1yRz|GXo zp7MeZ@u`re22_*w>rpPR+OD5tR=KhbSONsr1H=s$Gp2I;N`;(F3s^jLv+r zDi2PVoT1NoL{5K$b^c5S_bZ)|N(%--$wSoB?%v?{3GFPTbu9GgHFP*oXTER`+bkGI z{GPfR{g853egGwZtq0dMp|xK^&BzV&T7EKRe108ykK*T}&@3zE>iB_Ua^V>)o&83r z__q`nd*pQ@hxTa$se5-}o3h__@w^wxLQ%8=b?QXNl)-Pi{7i8i#dFTpO7Xf)kGBCb zvw-({F;NnAuMW@}=F40go_V8|Tg66i_E`LS-Dn|Pp}SFVHS&HN_xJ4Z&@Tr;X-!S8Cc^JqGx@&5>TpFp-yQrs(y)c? zXF;dSwg(+q1j7YTrf2OllZ38>Y+94X_EZzjI1WL)eB%b&&P$kY7T@G*k6?sOfd&vA ziM1FB^I^x6yCpA;pSL^21vCeX)gs{_1{9;PCuqcuNv=LoqJ1#oTh6W6mgqP7)x}+I z;a-cb@nrEM?JCwzZaz$IQt;>E`apz_@g)@mRVlv&XtE{KU;I&1tX!tGbPi@T(ST>g zAco#LKW)u-p6!tg9$#bR4h^fM-fz*L`5xt9ud^k)eWyf5)atK3@f1Oy4YL@KX|qi zlp;gq4jhHr9jCJcAWMr``w_+0&~pP|nQ``A@`<_m)R5aFfW7gu@YGM%Bmz1fN0UNz zgrAm@L1%7~1sM7q*=4~_ZMW3jl}>aY>sfe0E=hm^;?W?;eJCd1Hd^M+YXOH;5_49_go_vm#&R)>{+sZzUX$7s7azDUon=a>NoZZ(9yGuKv6j zX)McdY%)FsxEqC>`D#uOkDjycS+Rqmx|`}x=lAo!YIr;v)@62*ceOr6hNIrgr9I}1 znA)j(?HwtQ_&IHgWymalhi{LL(JqInLSUFKA&>}<#%dkJY(PcTqxBC#x$8rW_r-y;)G>`rmi0YZjb*3}*%`~aIW}~wBl}TX z8geOEoQaAVj>Wk~mNt5-1S+GL((C$Ot#sBb#~kPBLx?%8yxKIoLJeV!m8QnE)T*9b zo7UxgPyjgU5+tK6#zEHb{Ew!{POF!&DER3EOB(s=41 zL?t?u-LCn))yg@}mJU~OEIoAZjPwCbMCputX@p*`wtnHe`)93fbc-Qpr7K%$p(Ia9 z=RF&koeuS!_Nj3v9xAXScN&*|-|I^+8ddn_IZRLLicAM9wl!h*kA|!f>eMv?=?7D! zY#NWFMnf$bA+ou)Z@`(OOA8`FvnFy6Mc=u%*kzzq7lQ*Concc_p8eO8 zt6tYD9}Mvp>zDIGjhZa({;}fl6xjl`I2%V)VNQ zeJ$oSr#2|CyKWsBbD^8X<3jXT^F}5P+~?g1a}TZC%-#svSQO43l@EpPEc+`z&jXpX z7n6ett#%%ea35Dxi@?3{SqWFeYY*&{&um@~bStA*@?hY@t%GPjMx)Vc*5V*&>kAvo zemYt$oa?}2-L+%X-q^Kf_Ic^Zx81RyV>$3KrIsh{%Bau!TR*OaI~t9 zCbw*@$JFG5*D_dAc0o#|&H(0pCA*D%Eyzbic&o*b5-!vUKw2}FX76U zcBG~bS4AjO`U9aFQnevcd#H|%Oic;PSE$FF?b?Q;(vsQNNUb(=53s<|N-CVdTo;9I z4eKSh!+pG@?EwI#zCMS~cT7WH_e?{9`3UeriFEhLw>Z>YA4@$KHO)MR-D_5^P?Eg# z+y5FeUC*t3eZ2(Ysv>!R{CjO9Rs65M{}uJf`VZ>y|8q)7w?xT7%2M!6R~CZ)Kd1D6 za7uRs5C5NVN~46~P(T1FC=vO8Tj817+B*F;=Kkx)`xo_?KicTih4{pWei`<*TWP9@ z@N~lKAHW_-^oNe@mw>;p__vP-GUWNv)6&c0%1dv#{_w(l{2{ufB&!N(z;uQ1+A8e_ z87?H>(!ch1!QbdRreCzT%HO_Uc+mK3np^ThR!lwACC`7o9Qb}6;kgfm*uzc0C(7bt zgneaUVluI zZ-$xeUo7$8L--+tGCyEOycm$DbSrm&So%OhDm*}! zJTUxb`(?xzBHSgq%Nx?)E^6rudy>onUIm9OtQy8?jR1iuys%6FLc?1)0}2wue0-99 z)x*?Fyn+>V7(Db{KFD+f5oGY)04xU5&*CM@T?jbm%mUk`@(%Cvj^QNB^7Fwl$Kd5k z3zcRFSrzyLZ1ZsNDqe?02TT-Goq+m}Xn#uVK4fqILw=hpByU6r=LWz)!UJsV?~9cx zHqX_x+N7PKUa|vq&9krPjQ0HFU`y=xu&X(;(7IWBXi%!vCOK3bI3LYB!3;Mt?St%* zBWSK3aCOMTq`rNhxgG=Lo`tIs_Epx}X^4^q_@0|wz@N<%&@R$L41Pnwxeo%AS5h^Q zsfFA_%aM&~hWrO3;f71QqwTaP!lNVB0PH|!55YShc9CR7n32u%)45DhN!v!=9sOA@sb_Bx`iY~d*te|YBWYS_Rd1Z|efg z@Mh*lnD=Mey1A z>8fymNy7Sl{KQW9wJk&i&tm?-4;f!Yi{(kne_KgYp>#TcIt#C;Fw(!kkZ(9YBiILS zKXH%LEZV*}rud|rzAmLMN*?(TFbqhflNu=NjTgIbvC+ayM;xe!YPg{nS`R$(!VMvi z0Q);o!2a$4TaPOc1->u);LRlG@C`qw;Cy8%zZSUcR&q%vc!SpcqFTCYey1U=7h5EY zOQ#`U`ygsdeOQ4EBs_F)Yg^Wa?;H82NV<_q;!IeJH5uyr?7kMP1mOs;ZMzCp653zV z<1OsO-8z8ucz|LoAnweP*{no8QSDWx%QV^C8*h9z8VzWV0{^ir*1L_cMmfp%I+OD{ zszIHYwl646>z3cee4Mh5s9F-F;V%q}R)r9OV^isi(jYBxuQaz_L(m(Bg@pBn;`bH-2`l>kDML0paLf#pC_ zsEL=VpNF=Lv3<2+)qcYJhP~<8HS5jWBEBIQ(Jz}&sZDr`v81Qe?P5%RYpPeGAi2jCfkgqDWpi;tE;+p4(7N0Zm zoA0ZNnKs;gnVi2POg(c{&rB%}(Bpxbmo_AK(yCE~F%GP}5NtXwlBWbQyHBMM;O_55 z5b>41XZhZ(=s7r=Rh95~6s{++#}tATVI+^LEAVj>Fh(WORNqi=0(Grq{_(?{A;SAR zyNxS4Z$Q&G$b9%AX1*Gl`4mr5CoYr;Z_B+>EnG}al)LcWg)z{G57ilWeNF1Q!_|o{ zM!FW=FXz$x*hPtM(8jXRgala=ZMll)%z$|lm7q9VC;fm;%UCJR&C?m+ApB;R4R&9C z)E%9;535fmf_9$m9T(x_?YW*Yh2wcpp1lkJ!K4acZ_EtmQ4U!Vpf>||j9yc5NIBV=75jR0**vf0W0uR<|Kw=WWAEq^gDZ=J3=^JDAv^UB6hHfurfDNvbC0{EZfD z30{epEyBo`atiw~iB=Zbg(At%cy_f$cYPH9DsrCuDx%Me7bhBGraRU!1#j(e+m2RM z;Jo5|<4=u7aB1yc(0n!=i{rTLpPBmYU~ytUb&$yqXIR6h_{X<|BZ$FF-E=0m;|A!O zDX|VG?@i}6nhm1|5hjj6#J%g&0Pcdo-u>PBLDQ=lJURHZyhe9`zR~)yXo$PLzJD1C z!mgh7aHKb7u#bi8+pgu@Ttuc;wxDs*Ixkd;(q?{>zoE0)#C`qPqWl4TnycM2hCMB? z*hqniG$0Sni}*P$x{C%ym;+svOu`(#;FnunD+*Iy4rSwOEZWKY%QVq$Kh^J5--lcF zt>~RldZV7el*`0|Z&Xv)Ewo{YJ#FMhrxeI^(tWmPd}QIon3PhHR-i?#qnr<2 zs+JEo$4zS!AL{8k*M%g1`lkDtdO>WPh2#s0b{H%G$kDz3Vk3&Gyf%|T)1#eRS?r9T z;FGGG_yOKT-1i{8$_Rma-Pq9F?{`Z{QwFkd4iPP)RZ#CzknsmlD^<$Ez0fQvIyd*n#<6JLhXK{t$(3YgXkbMxJv{Lptwo6e|{rLEg&S(pcmH6>n4 zyi!nC7ICS}7_v(3^n2%0^7kJ~s#GO8qEFzir0;MCthHs*Z^>eYGt)$rv@ZMoyxEr7 zmb|z5>aPF-Eo^n04MY zo9QfChQu=JqB8+c`oy@3WJOubYxDl$MnH9rqG8@_HI2jO@lFY8cx75ugiUb~<%~Of z-m>VJ2p9hOQd_EhXPAHuP9Wjn#bsBtFVe>V&6*OIrKlvGJ!HAzzERLgPQr*E5hNKK zHTwNHEOC>5DuhrAgmcl76b9K@2+2uLHa1f&u5P9KNiC9_2e;gRh;2Dg`Po$Oq4{S< zc2gc&KiX;hs;tw1b%>vqWDAd$=a1l_Lm!0aLN1h54g8wwg;~*5_hCJcG7QFD9_hF7 zH1R@#Hi5*A#p7B;VQ+79`Z<*GilA!T(2;a=^Z|X{3lkF)l=l!l1Tisd4NzTR#@TT@ zt6C!9OdL9B%rl-IJB?=MAHDFe9JLg|_(AP$>IX_Cbda_9+i;5{xlc_<30&CjQi&WaA#7{0zHfWwL0N=RPtn z-Hp>cBFR;=vox@6vM(>rbBRk&kE_Nf?aS(ONx$gkOx$Rg0^kB|?|% z#b@sKC%+0Ok@p0?nDtW=i~Q|N@qV)K)1@MuJCkE9AWn4*xFUf}Xf^g5@-8TV2U*G;+Zz)wu-IMQrrIOSG zd87ALi>z1A8Ow%}_r&A)(W@y9PtAj7=5RJCS7#C55)4n}*FVlijWzLn%&12|akO~K znF^4Ch76ScX>)iVXjmAI^(K1Bf2BRd3aL0%KNQ3K3&&3h7*=~=4=LfSO&zuW_*Qg? zCp1UM5!eG+9bS@xP2%zSFJ~jne>xl0|1W1_`hPeZc>&JG-T&!qe6sd?^S=}**b%GD zY#N-G=f5<*50wR+9)qZ~qEUw6^(zjM-BR5g=s&NI~^0t4`qmY$&`Ry^`Fn zHr>d@-iSZAuzWsxL``SK%D~Lo|H>wl&0HV)>uhAvzF&we^OUe)p`OL5F1Q*ymz_m}_UGy%D%=0gbZ-GFSQ9Hn1Pkw?+T;THA&g^U-7NJXF#iV0VtzhlID^ z%}03$jlYOA@k)VmYoi7mos7JauqT#FB>ZudWXZD){gfOHa<{}PNOw!u1C#z?Wgdto zIWDhzi>%%R_u!E@)Kxe>ngFUVsb>9MdMeg<061FTa~{9f>JP*;G6;CbXnuC8!~PlO z?ypxh@nVoTmNkFu5l~3cbO0NlWY~iuxQ<*v@$eDU0xN;l`bB%_hO`G#`H29@S*Vj8 z%JMH8KkmmXH>DmR1?A6ip#&{}=~OKTZjH%nWRFu(hiB$wWu!cIrlO-Wm$)UlDa%#> zN7cImu<B z#8e$A)JbiIW^Hc!90+vYDyAyixdMA{IM`R>o35B^X0411HeZIop z5|Il7P1j=GnGn^Jc*7I@+E1aK?QL@X=~ks;yBv?|XPC?-&G?1J3;{LMir7|i89xmNCi34Y+bhp{J=qa%`o+W)a3 zc4hRs)+P2&VW=Oiu?(bp8BWP64OP6kl$$v&+UYjdYio%*CKc^a^{{i2K2l-DL?e`?_J5;0FW}nK62}0COWxPN?!&wG^dSPlt*m{7@$cvF=hC za_Oj`WH6ot@}qdgD793;yGZ;3Q!T%KS#^3nPC*@^|3Yf}i!Nm#{I2gI`}=2F_Yg!} z`}ZQ5pL#v|!~%QIwt#l%UC(zC48a_r&W@b3OIz8$sFJMHx4A3N-145+UzA4SQ?gifz=K^a|&EdEFkADi&%p4}>CV zw9isi%spEc{HN_?v64EQRtoRLHyc`W-Y0ShNRK~Q{m$EKd*5)fFF8!H{-ka_2DEe3 zEL;VwXM6$0^XB!vmqd)SQbTdfFgx7uylHPa87Uy3w(H-5;`#)Ngfdq>LNnztooLtvJ4&5iv0pBz`=Ux;i zlV%bj^+_W@to&reehBPD7G`E+tp6+-R!^VSAz)6yT0xy|zw@0UagF90L~-I~ z;b(OHeLA0YXMu_|8x$vq<&pTm=3G!z}-7{(9sS%jN zqMd&xi|8#6i&N4kF^;ED5t#C8-JLsO@Je!ydTPio+(Rj&t;D)@-inJssH;B$e5l_W zx#C@)^YEj?GMSHh`y-R018ABH12KNF)P&nPW*Zv^2j+E-Q*QXq@xCC#TVthRM!H$GEc1 zC2fp)MuWy#gYE+?ez7VH@8mhx97QbjO@=Qi_icWgBcha_E5GC6O7#m2UcL=J8)s?b z-bxEI_stzN@^!;W%nni# z?T0XtX@u&trmSb#5d{7@R3;0jK~~JOTgJ&a(Y~_3t|;>y&2P(3R~>hsos1Lvoh84- zv!*}quK2qS$!_)`syAPQq#*?qTB*d|2j%2bc5i#F1rd%j@xa1I{h_`$*`=`I<}q}E z;c6S02kCfol-F*+4l@*lcEOH(z+_G?UA+Nr#uuR zOWbsH+@{@pk?OOjNZcwbdyYYul;rFMBB0HLcj-G@f3xt#z!z3xFSyS*K%PjtsoN(> z<8ZYEqEgT&hg`DXoBQ*OEg1|FV_(S*E>d<-L+H5HX~@nBX0s_?NKzrPBg-j>{{=fH z&>z+fgaE*f5Kvqjl<+0%p)_kE|ME6Y4lPZ9L0jN%%SbJ=G6-Ata!NT9%bNdAEwJO$5B4 zlJ;j1IL4s#v5khs(1a^EUt){Eu!~yRd?|qJC}lm#d#Q6!jrWHqh3fi7UJpg6#g}Eb zyky7N7o%nEQ{mKH!K_1LE)gyRNg%Y5oY(9vLx%p3kQ|Q0ndKP+&G4Vf`RZSq*s>gq zAv$btgOi4$C&Q<7&Xhqn6)?`dB99)1q8bdWnXXVylNzvEt%a^a0<9kCAyh4K9S+@wao1nFPSn5(duutl)Z&-<4~=LtyR5IecFG`K z$2^4JLJ-}sj!5iqrihp~cL$K!=&LtCr+4C00rdMl*nK25Y}XfO?fTKDHb2Lub2;-C z5N*HLZfou>FBo(9OM-oA?aH#a#49Tf6RK_-riM6SVXxr=q0=?IA-T<1sp_(7_9X9a zKOG<55)iCYoN55uF*U$rq8bNcg9MX2OL)XaL-d4V)Iwenx}++m64!_7YhkP^kFSd3 zvmFqJrteKz#eAKz01{E4(C#s;SIq~wl&w!EyE4=!N|1JM7q#32aL`tNw-y)vh9=*? zfv6}T5cU1HP?Goz1JD085dGJM^gCtEVGSQ3ZseMCowmEm4K(6PXHS#ZaB*0Yn1#TH z)RN|>_wzcQbDf!~SdA)w7Sx~id8clpvbl;?1oJedRvW++Q6qp>7f>0D+`#*iE67A^)jE5kLMe4k$CE(j)=ko}wu<^l_?lDLYLqG%@4h#w^#ER$5UTt$-mE!z%~ zb^;kOV*1F-Jyyv_%Y*-P#u>^{TiV^T$E09502zJHG)hO_Tdpw^MiZ*MfzyQ(xB){r zr;iCK-Zz{F@l*kw_CkVGh7(_!6aQLXH^ijCO-Pv&ABn3^7sU)p#QxSiTkbbf!I;4Q zY~`YkbfMbu&IwgIN((imt>^qW$ho2dW3O%1tH7K>V~4WJpbzX>;RowcYZ(C44o7;2TI)Ln z>`Afu1kZ_?X8A>Bo$-q9v5o#Ru_B>B<(q>ZOe8x;#2Lwe^r>B^LP!ws7EIQ1INmZd zygLW73#>1&G8`*1rp^K@{dWF{&C6J!DeFy{-RC(ZN@TUYWjG1M>Zsv^NMiF5(LrNR zOx6hFBxjr&-g;?A=6*=j@up7b#a24c6YU%IxSZM_*p;f?ZHaWsJ#sPB&wV5;^e2hg zd;P~~oEmThJ`YIPbuK6HR}lY=%!0{~<$8|uwiRq^AWU*djeBW0K`cU4q%p=|8M(j$ zxmRQ+o(?M?y3EdO3QvUs`eea@&}{?OYBdc-Fjq#&F`x7TcUvM5&q+4Fh_C$03HUVR z8%G&b@J09U?ah+hvJ<{!AF1C?r9N}>^lxS013uVn$jurPO$*4C5w2ap|L(kpb2RxL z2?7LU1^wRwQF9Xm{9|LVPh$bpBs2|@ZBKO?Jj>pCllfxnE#H{6KGv9z9A>yy@Bfcy! zRVzpt_FMp+5cBUY!?j?DxsRQo8H!KfwP1;1K1*EO6Yp?B`T$c)msDS;AgT`RGK~de zwGGY&Qa2jX#W1^s9XDUmr%$vc;s&YsH)+16@9e4P(wt-$t|r`QXd1X9TUa)BQ{@bc zkfBa#v~!^-uTovOFw3tLQ^B$Y^PA6ceT8ld|C#G@S(v7Kwg(@k>)S6FVjv>(%Q7NSY+Xd z$wugok{#hs_`b3rd?>)}cYCh$#=Q;4NDwrq9|fQC+J7}&ogF9!L`}1Lp$CNCLJ=SM z`hFhqeU4+oM@YFj|6;Bk_8_-KjKG9VRM$d4A1UgtGyKI5;a#iW%|CQQ-EB?Au zz8Ya@?oZsK)euF`l5h(?Il2{UIwTr`hTIKpWF3v}{|*)SW)nwA#PG1h{|@0-9mM^F zDfw(uj49OY0j~UlfN*&FL-D~#+!j*p4ISwVQ{o*x;Tp5#li|18B}%)C9lAflcTReE z*r2wWF)-0~KG7$1cE&g}kIqn8^u!7s16aCsUq7Pu(+~v6M^~aSX&~!un8zRByh*Y4 z%gyCoT@_^IY!QD)&EVHtO*EUbhWs(_U^+{K0BvK9w*Mjn5JA4Ck>R!xPcQw7#|#Z8 z7@kO9;2M?qD-HN>f8VTBk#(-v)g{3U#b1B3{BymZXwTqBTcZ2RuIh>W>#FUc!Kt3Q z98lE|eAe#-3*1VyPm|k@;M;n@^VHXq#`Xindi3aLCr-$KEPn_9f>ICOc9V-Z_y+_9 z$nuFi-*m{|RjOb$tniJjh}p!*!nWUjm2Pg!_AudyT*l&n(S!^gLruIf)L$xzkBjTv z;;5&BKD@_~@ePjuv=U}l{H9uP7DCS|jprB?D+cB17Ov^XT~iQ;W*v|@8(twrJeb6{ z7eLutFG<8`SP+?2LmEb{cT{R3InV-$SnBp-UDAt5V^64bBaN~8h4zMTO{g=7m4+SoxBl?Rt5k|o(45_lP3kJi>FUU5 zgs26^0TpPg?5_IYNm9J^kKKhMM|Nm zBU#=u-7Zkc>F86hx|6_k6Z&lfXit#N1(uxvNC!t2-C~Jls|w_kFlwz1aZqdsb#a=) zS7p`Rf@Rcu3*M2e0a51O94wKkkQCfhaj(id^`SgOeKlfPtKN2D@d0M5BulrA#ky67 zY{B(0^X4gX(4QmwnxfwLFmvl-Sx;*jAIGRuxhU8ZQbW%WMka{aVF`BSQu+D*B)@i; zGzHy}k?Llw6T>J=5N=tE)Z?a8W`?ua@on2r&~U8~_?}ac>E+4_*aa~C1j3ndM;RVr zNB!gBk(8x7WLxN!&gC@8*&LBzhu=_HHeqwDH5+6!FU$k<31H9+ocCeR zVFNGYiqda*jkW7NkTM^`r)PYxaV4$dJo`%UoGQ4f#!I=sMY31h?EjX=2>peO(WM{I z2G(nvoq~py5GR&Hm(Mi;l-eAtMM|q>e@W;J!aEvTfVg+Nb`>IG9a&IaC031obqVSCZf!ADQ!XQZ7{^hS9lDI9?I(XW%DRYIvc+MRNvyfFn!FM;7lGNmz1BnC?yHF#q!! z!}A8+w>`sry>Lf9f-_p|J$>3hy!y!+A}ZWfqHS7Pm!)gdyd6? zZs?8pI{SHn=is*j`x0`pmz=(%e*ofRG;r^<*8Q*B+r=;_#DE@?W6BqvN64$FkFDz* zik%CnrzOQsfzs#Hy6YvV+w!Ua?a(ei@hgb|Cp~sk&`9B*$DAB3x^Coj^THOaWDax5 zZH%AJWHg&Ro=k%SSv9NuQyh6!%L2X+ zqPvczt4w7nN1z_T)HG$5k!g=1%mAG)tymx5YN-kp9VGJYpA5X*raLXA{Wi-29qzoc zq%o^klOiPY04`L#+3r2U;*Ht~DO8~l)b$uY#Dv0un|hIBJ(6ollj9#m$9%tzeMI#@ zP|s#9iiX^ng(`Y!)+E59xstvPz7G+=h3Z!a74${%=v=`l46FutyXu%WuRv`TSZ$F*w#NTl+D}bdiJn#?KK7>uQv|6c_*7EcSDL4-iUy$;d zts&cwhTO%sqPVb-bLcz75FGtb)g96PgR?Gk`psRvPi#_d}StqCThoiG3s>EAy z*1SZk)9b4Q2fSLbk=PK)ki}tM2W6DQ@g2+vjwy|-_D{1@dCoBD(-@#Bnt?zdwh4VD z3Flmi6nFu1+4(g26;j1zT@KNlr#L&G@*~)3fa6&ZxNc7Q6vo1ZyOE2FY)f;Te0oXA zNZyKqLQ`hpp%PTvmDpi}H@$KDdH8Zl7kP3exL31tH1cwNT^hxlkRKT0<9Ip)UB~gF zr9gFSk*M>k{^6%t8H8Eq^tp=MC}ro$mPOfKTt+(49`QL^#ti{fef?Q^lJ)PYmh?Bb zUq8qO&LxV8ScXJ*ojqyWniExIu;?JxialAU8YHr??kW5BDD7$fK#jLfGJoIH88S0Y zIxlp!0l>gc=fP`76!;rD*+LUFkW>bK+uFAFG6sqI(jV7#T0PabcA}hRvfjRiGFXP< zcXH7P(S=QAdUKb9D2-&1Ts^FF?J3AY4^6sx&zor`n!>@dW!m%B+;uMw=-04KTX?b3 z@H{A4F+~uA9lcZgl@5kZwCdyRpcBI)w2ox9)ZI=tvyZ)wkN#<3Hh8=&h2~6vXZe|S zIa~Q)?B>ux-kf2JE+E}kQo$rUJy|Vx0!w5zF+z=1YOS$ooQ7@ZE(Ls`>q&&`swJpk zd>+XNg)q_a1AZ==6pEDhzESL*9`ACw@v`>T80K`}(g4M&y-w|{PKPDS3c4%LPt)rA zy(-BXZP0`z3-UKvl_*OW8s&0jl;!&x+M817^7?`cs;tp@9p>+`tBAC}4jCKVnP+&O z^sAC+*`~;IQzNO$mrbzG%BGh~lJ7#CpFCXqL?&cAy0ZPd&#}Qeog3Rn9 z78p8C)O#3fWFLsU9c_V85hFo-FdB71R5jVq(w}BaNH01kP0GZ9sqlM8gW?!_|9nC# z>yhi-NR=-It4jBF*E-N*XBg5PM{{o}Hlcg=lkn-At2eToI8U8KnT~cHQHmc*T+51dOTRv239qrz zl7H)>@Un%|xz!m2iyC|6-K}ev1(H>+i2I|ar{e`LI@Z(o?f&Q%%p(`I`|dV6JROB7&Z?n%GU!;#%oA`*wIXHjSu7J8+n zGT7J)p3&3O%sDcnfGo!C8o<;CV7}dq;lmCZt!v@mBJ;}&CAh(ed@!O!5|nHL&E$Xt zD0T=K0wR3SgXJlLc-#2Z9HIP8Li-#c4`kV%HK15Ss-P^FBrr_Bh5jB88V;RZGDvKz z?m3<CZO$mqLC5G$&1;epa24vB}2ZbG$V#@GF?SmCSrJKL%u z*s-tWT00KhI_T}9ZCVM1kDEZ8fT{c**(dmfk8vQ4 z?X95$hMS&>N8E-7OSX0(AK~|mD-eK1>kBSp@Z=qWv+^n z@{04i1o-WN7OVf785x?fzWrln^ahw2?JcYDv9AWI|C$*+4RnEjlhSYK2@+hn3`}do znOCOpg5VHnc9Ejo`B4R`u|{NVtwHt?xAxPSZ(ij^>yiJJj?n$HWX}G~rl(SiBvAS$ zYIYu^kblCP1ZfldE$UkI0Qf%0KR{PyhO*RU|LoiDuS2z8@&nb;m;IXg(FXLj%2;F^ zAlW#@Ke9!D8X9f+mRJ2HGFrTBcG+d>MM}TSPc<4{Zh%h_i&?iwtnNh=J5+P;^SHC5 z1EXj~O-lriNkd*|)tPcRtLL8L6!Ns2Zf^sWXKC?E#YkDyJvu<+*-yJ|c$SS?UKLXN z%;SaQKP<89e{F+OL9ysN7a;IgR${iw20ApaedQn1<@+stNFz0n#YS1JsM%65am5WdS0#2vN z8cjvCAjvy8k33uYxB3hw^TkJhsm+(K8(p@Qsq24H+Fh8Ay{=N`U8{ zcb`P>1x3{5vzKPvLm*3CHuMPczub`7ZhR@CqIF)EILh) zJ3(LUMG1&zv;ORshANYcgOyQ z^8Br;lEUKm5?P5sX6(Prl*_8|f7pAc;7S{P-8Z&vvt!$~ZQHh!PC7})wrzKkj%_C$ z+cx*;Z?4+soLY09eYtPe&8WA=<*4^!JpTtjN-+!Yz%`A|mqJwt{DCi8!0I4nAR%Gg zKB?zg(Iz@hG?^yeSD`mMF7myISh%As-0!a3%w9tOjr0Z3k5{$4erS65gkw{-Smda8 zl!MG5NEea)psElc97Un|5cAql0K;4^P@SoOG4u!$<<&ibsIp7>AYX(0ualo}lPpX< zTVgn+Bl2;9OXoncF`pA#QW_rsyp$W1A_(FoJh7GUbtuCF@x+cah!6D~W@e~!ncj2J z)Xuo0vN) zVi!8PQ}>Q1{a=sf`$rMkwo}5G$BB!|TCF|_R0y9}4q?}nKM7;j2^=VGTB@O9r!PyN zVXnjr^F5V+oSZY#V!0igOPI?e+$=iNNN7||hG7Dt&GUjdV+cOoR7cpq(7p-snmtyf zGGcFk5HO7nZgS?zB%V+ayg2pUs{FyjA2&uP+Z@|8&^c3U(>wpuH<&V_N7?-ET6i@aZ@x!QojRwXK4B1 z`6;7HVLZOTD3izNgNoaiI)%8 zB3L!0JH_mS!^p?(4?3q+>+A?wu8yyn)zt$NT`jO1S^Vwod~AD!?w%NFQ$t&)P%LfP z`k?l!B7?KoL@s!&ch5+vGs94SgDgk@81^_>ca=o#sp<@W7*ZbX%MQXkRJ)dt3C(Y) zE-tzR=USe-$u2^Zj>D+JBD;+lah3+_HRfh+?_QoajX+%+JgcIi+?ihI*iteg1#+M2-u zJeUBCE^Hnu#wKzVoP|kcZge!K-4k{L-3_u3f~}_rAP|!ng3X5!$CSGcDU~^T46xhi|H(*)ea;wr`B1 zv~saPK`jQ+&4sLptF-n?Sx=#7uD(cPP~K1k>-HcD^<_g3*-MgMcBOSdC>(b(*_oO- z86!WjJr3-URdJusCe%5Ps|K3JSQ!}$J+FOxeIB{~u{rgVp`b?T+pnjQepBBS>B#m? z&t*}5lg$3~1##_$TmwKIwj zb$Y1kz2(lN&3^nln#V*1MAYZIqTUvqd8;FSPHOkIP$9M z?F)oZeTqmkhZwp-hfOeb3KsO%CtQpO;Gzh-qfo`?jQiC1_MY=1Oq!As_KY5mLQV|2 zamCJgQ#Ftt0sLNO#8>qPRss5R=tLZM0QA`_q`7JEx#ZLo1ui`ZoX&_dhKe)&?ERpr z#^uN=l+8=l#Og}xpj-(``8;gHA}i`!X{i3U7JcBkRsI!5U@ode5*@5OolE(IRyVE+ zx=D$W^Ie=hhS6da>zBym*4U82=;b6C)58Qhz)xbGZBlVoGwxLh!fH0WEwk6wDwn=$ zjwJ!dD9|ug6rJ*nQ1@xPGzUBhny?ljIMw-Ujh4ktQ{{(~PWX>_4h4a34` zc!m-(sO!8ho5w8$BE;xDP9<6c;n>3>stzNxYeo#>>Jc1C>YlnV{y|R&In>{u6msF~ z<7$J{g=h-Q3@+3otrNmm>}cz~1J4%Ij&!9+d{nQ3<3^+hQfD!+mg-DLu;UGi*e!uB z;{C>t+UId5d)k_TrYurinSL{neyGc17iGvpz!WwriCtNtGy^#8T$ zbBRV{FD!RWDdhf)>QPD&1`^pa?Xdn^tNs!}S(L{df7v=FVH`_LRw>)1S+5Xachaj< zIp>sRK~=Bd;HQgtwB`zIoHvrRB5Ts5Ucl=W_W2|lom=*jIi)73RAz5J%T$mrWx|)j zT{TZS;ZQm)vZ$*Z;?X{YmEk*;_0INlYTJ(zM1wlUS_xHIMC8P0!MFD7EKK7%QTl~*6;<`WkIzHy zt6Cf~rh+4##`~O?)9^bTyPKO$d^Iu!EVZRed=CHz3LpXN0~q^`Q=-y2!v;&@Ur%^- zi3NTR4hiw)kH6<06$wQU@koDj@labIT%jg<4p>2mS}=+C<=V7JlZiV1z9w7F;^e^A z^3@jP2BM|HeW|y^t_%;d%H0U+mncyiFIOOU^aT8QGlhTGnSky&;AfaBD5^Gasw2-q z8*mFE_IZ;4PsI@hO2tQ%*RWqWvu`?I;+lEGfbK zr%o}Q7kVDl9BDAr&k9s11*oJMRXz8zp?)oi{GmLZHbrc#Op9>MTd3Z)G`c<4WLhOQ zm@N`Q@zhB~ahA5G0|gtj;X6|=fwwhyzB+j7FoAS{Rd2h<`&J0Vw;C%b_Ivr|24K}k za9Ke8W7YTm%c?h$DZ20QpI>5psst}K`p2rLYx--|xBh#poWBFW!G1{9h^FbH#s)`isB)cV_*+Uf#dO`%K=Y?%awO zM0$nA_2-K^Y)1c5mciYPl_8tGOltKIc&Nrb0|Atk%S+dU6IbTDMGf>)kh%E#V_WW{ zyw70)*ex4Vb+lhZp0+5t*XI2&aE2YdJN4~aPlVi);#rnKq8A zJuEN#g&hDE$lLHEw8VA?NA2wH2{snT$qkFT(aDmR>PBw!2!xP$>^*-Xd`ir2=edB6 zc9#ZDJlWsf#(5qoy{TI!TC?zic1L_vUij7?zP|x(PzW|8-`}F1>aM+~asPsEk75Ae zTg)-?O>AHLzc;9%y3KT2d#r342y@q;WLC$0Jc9+U0ViB6#JlLM~) zP+^@X=pr`FqApF(m&Z`EuS_M!Jh~^pXOujj+d~+?3*zt>whKhCdm}`0Rmk`Qoq6Z! z6Wl%@rD<_#Ly;CcxJpC-iDq01#ctnN3L-kFVhAc6Qyr_ZRTmVH>ToDVTlt5Bt3g>^ z*aOJ7P~4;<^_;83ZRTQO?NmalkFOyM^t6CEJrmU7KVUS9T|9rWO%EuneJZq+32d(< z75bG$_e264vLVQNK<4e?Gjeb-gZbuyPTP4$B*ntrH5X=4qH}X#3oL~=wB750l6dfj z%gE>5dLLzffHg&dRu~S2Vs7+}#ez~aNuW@$DrpLify%Ci=D17kO@+<`QPqTXK}l`H z_5PA?*#P9*CB-H4MU>0xlddpVu*$y^@+n%?H%%x-qf|(A)0IQ4)1WVS>eD$G>R_g0GzK21Fv3UNhUxZZ{WR$! zC}A5s1~CO|#i9yD`*pa%D`GDWo))cyz-eE?7lw;JcB0$=l5g85XVGFsCcDWtJJ`l( zCN6jwxuW(tAAjZjv4*}Uvh0BPwhkR$gcWPg9*yFriC0=X_xJiFRhx6F)<8lS)>4-9 z+PDrN-?BWnD?P~?(iT8OP2;2NLS!K7A#+tDL_v@&&PQvp2cF?AA4@pGI5SlHcnYNp z%M7(LpMq+&jrk?t`3E%SZtQ|5ffag@#`rUonWp zsY_RcbxxOK4yehTVF1Xt9P5Ay^1tNUY3RBmzyvuZDC{%*f~T$c49ho!CR-fJhlM{$ zG%OFFWyxsXLBYV@TZKa!{T8`m$mbg2(?>|l5Pt(p@!f{# z{nE;-nHa`v@lMUPmbr)RvOfi3Ts`fVVm8pvTdqYCO@E)lyqb#y9nucAdmi!|QN=|9 zs#UPS2=wX;b?77Pr?qlr^2cwOzt1%qYXFVSt)CLWE_%WQ_ArEvceanFXR z$SJR{)mKk!&`B#iKGn9bpK8JU_j*-f43&Rwz_MaUF>-!NJlL`Wsd@+B!yEySxWDl~ z1UkJLD=57mDh1hq*102lMy>IHquR;8o%vy=Y>#}?!USf`3oL6Xca$JwasRL}(|1_^g1^r1c_*FFT@&NeIvhtW;kyV6=cJMvD{pKN~ zMu&~BO#wi}HQ-ataBuni z#dZ~j(#^lKqdw-Lg#P7?@y;!!`?q$#!vLt=t1|H|#IA;s5aSY@gXl5vvU7B4qJV{A zBD{Z(_#ID@5b@(zA3`0=74&tx_&q-V_`TstFQ9gReDGG9&IO+(N?4mR7M^S>bo}+< z0RBZ8@%J`$F@zhg_8c-?hUy#k!;lk6{>+$p0};lX&#{4&j}r3Px;--pcE~+AX*_0k zAr-O_)I~n|E=lVaorqxm+n%^S=Ma z7Wl8QvD6Af}tG#q(&>o$8UmuoC4YVpIpDM8xmWJ zWc6q-N`q1`FP$!0VxNg%BkGGfx~nc6o5?P|C;fpHLLl)gG=W)uWW;qbP32^;L1-mq z&Y_$z_hr=a(coTrY%3PIa-hbKnc=1*mSI9=G0VoQbUmeawFt~k$g|6W#GQyL zn;CJw(ebVU+8K>Qh_-%ipvyM2NO5INF=9^wlzOm$C))@)u^4>?YYON&M zl!FX-Vfo@Z zYQVe=^CmB)qw>@y`KoY+FC$84+uin@WTqN;>OaSQ(8zA45IY{2Pn*ffu<$`-JV4BN zG@j#)cZulLhr*mi1VS^YprQd}<4d{|zD&B>|7ul>7nB3V7Lj<@ensy+Kd+1(`oZzoi3FIMy2$2ars)k%!Z1mx0>Jq4+n6W}6jwv=|^**>qFjI*5t0-A1KcuLh-dAl>TF(1Ftv_D)a%`La)66Y-8 zyosi(@)j3f(@D8x$<=u+$if430Pwe+_(RxgeElLE4*(Ng0#M4{dUy{}k zIV7yAJx_Q;N|tw*h;Tg46B65Rgqt2v>b2Pk=U(#19KdzhLmCZLr$kH|P#t-Y*G*iS! zvt7qz;R9sUTJwxi9kGZJ&pl-?r)ycmsGB!C8V)x{GN58I zk2m+G+rEXKY9*y{RSOb(sC?YigrgWl4dM+q-MR%rAkKk#Ynpp@QuJ;|Km6ebK2jn9 zsZK}!xqm%>1zaXvMgr9Uu2;2kF|RVMZJ+q( zYjm}GO`{L?g%H*DPBU!NcN++&T^~A!n7%7g_b*%jwrQfvo2YdCAG-LgO#i=Kd{JfG z<|_v38WQqLo`*9AAnA;o^m-P8(ga?-cG+O~ZIQxXH*Sf5E`CzZpOHyUCy=jpDc{~q z`1xhf{u_nq$w_T*<$wTmre-t{z$^6xXJGT z=xBJLoowqOC)+qC+-|85H&#TwL(qrt2LSi&?=^KgiJl)4+9?tG%eW=WV4o zfRk_YkCXqAdBxkh^gjHLlP~<&$uIls4q?ILK{u zFqqE#5-k$0dpA&L**hAlGGQVc4-q!?2qG-2s9vd*?Mz7+XC;{8i3`XgJ;f&M@gs`Z zR%r3Ofrv5(ZR^95x`Le>({`UbRNcXc|g7L-Fjtj^;PN*u4y}&_F4mJ}5xk>%)(!k32 zIt$32&6r|rGkIH(DL?Ocr6iSV+ECD<8*qX?3V8CE>qz|N42f{i;6uY;^JcpBBgwD_-l^KMGHryW8} zpo@)_;gUdlUh`)=!a{-cq4*^`M1VRz$hy*s-|-^V>^JmIVbX{VMoGN1F9<}pVosnJ z22}-fKJ4f;Ep_7(Kpp=KNfkHkvHAW}v)>oA;{%9FA|7veTL5IEfSM>Y@Cv8S`KS${ z&a^Q?FOGLsh-`qEmEDKA3ha_a*dt4x?6K(?a$$i83PMx7lS)|nXP10oykA}0ntUI`^PgREYNqS}7N2g$ zB6AP{;aD;oaj+!d_PM4x9&CP3hLpe*=wmh14dCv56A8C7WbMgc0%C=^;h+?6-%`F6 zWrD%XN_7i;p?&s4St3Vunf<(Cfc*)U0Re{rBFwRe2WDD$UXo5|Y1A%`*ty6? zQ0;~e;>UXDDzN+oO@}8SWiq0_RX>`QDrTBG-1F7ohk}|@zVJSsPW2&OKk+4Onbv*N zVB?83`+&PCwC-v`HZv#42QGRL!LF{AX1^KPqz{sP_+{VkH(iTPV%s)b?c%nlQ zr0&z4Jlq|3SxW<1v{wmF4kiL@1^=+@;Qr4nxvLr-^g1nDz|#U2(g>>Qr+wy`uTkGU zy-Y~mxZ(waE93~wu;c|jppG8`iJP1aP)fo*fLU@$Li1I>0&Z5ZMANsYbt!woxQ?=u z;IM>kXow|Lq zoSb7S9Z^*8QBpzP6Ff`G%YEvj$4DjO`-nkV>=?+M9(a=sT%Dn9-DDaDcfb{5ZLR8k z3|g-;^<>T#`xx`7+V z$@{KP>v@&&U@dX}zkU3h6c~#H9S3`ud3Ox_Tel9Asdg8BCzUGUz(P}p(?qDB+Q0ZO z>U-Y(;AqhP_VL+Ua16m*mn?y^*@6IleCOt%1cmqbA3)8$=gvw+Wo@@n+0CynM%_)1 z4cbXlUKdSMZCMc^MFEbyVjDXVQBB6mR@2~vKbvF1>DpR;Xr)ziiZ)fTts{(@rp#r| zj#}bpe~va#RC&egS`{DY@ItK>EH&0TueNY{Sy`G|vSIWE;p>mx{uw~2Nft8kV~@>NhFsC1I8BraWE4}rLbWwWG6g0v46gEtO*JgBZK zTX1jFx;Vvv_LX-5v{K7{Ge(tknXSwS%R~>H7^y^r{NV(f&JcY$AO`FelFo#F>NWe8 zlZ{NoiG46M;dDiI>#K0me+SI-Gi26H*!~;5!C^$j{F1v`gH(}h&45^UbAi|5bdnzT z%+EbKA-E>VH9aIlRtk>nMCE%ZbCb$~J~6nI+!6{YTkMFa(EiJnsiP9vydDB=TUJY#{#JtQRGb+hzSV7ZbiSt@zn<_r-h zoMoG3dbe`u{Ma|u+<8Y)7&c?tW&C?+M7ZTk8^c=8{_Ob5&9o5OohBBQ>HG2N;c>v{g%DEG|TeD;;4%y2|{6t+(PLI{? zvO2)OAFpCr5DQfLarSKwl=zQH12Lv<2lWFBE#RRLIlaar&97w8M2~zm7P@z(wv-_tD>5S2h{;gk_~JEro`wc zbnqrxS++0Sg9g*`5ir9A)PKA91DQRPoYmWSs$_`PKz z7nC)uRpsmuN_EluYcl<8ELiq@Z4px_(1TvGqq+C|9=*+n#MtWBHw``c9oomW<=CAS z@V?XNZaYXg1fZx$P@z7}{p2n&ii#)F^MmVeR;JSDGGvl{35dr>COY?hLu~>dH4E>Y zgp2%>=F__f%?nD&4Gc$mjW8wCzR3#+nyhGK@dof*p<~8l#M1x@3iQop--s> zxv>SFB`JfWQ_i*xQij+TbM(gnSfSqssy%8r5~tkPV4PY96cEe_PvGAdA)qLC2*9iD zBuwq8>Dvt)0s@VC*DVLd<$VgQ-nqht&VV0x(tD+@nxI^6-D3RF z^qGXw=72hL?h;k((de!JV>7O|A+9n^0JF+$z)FSJqXe*b1Ab7Hf9>5KY#uU#%M=pK zpCGB;5EUVf`G9ZzDUv5{A0^dBmm09r{ham`j*Z%um6W>Z4gsM5?&YNp(qTmfIHcIr z|F4Yxe>L%0ng1p3S7Y}&le-ZauM9Z_?cX(Q>dACIRq!ouy2pO`p;|VZ$`n-Tb&rYc zLmx?n7ulx%s{G73J(V{{YJwq;kJuk>yt$71Jlk@ft}Zgi;_3;gQO+H)9=vxmT7RI!4(T_DE%U|{XuVFUhfC-6IMKZ$2+<8cT@ zDt?Pw1HMV-@v6ng11mwqr9<+zhO68Ox?Z?W0#iWZR5X!r(WRs(q8QyUR2>!o*rc2Q zn{+YeO575OfKj&9eqFK0g$?>+$?bjKkJq?ME%vwnC8_L_-+bSRXWxVgN0fs}|I={| z9z7`EjjX_sHmUG@m^YZeDNipSwkqR$G`UgO%`R_ovW5>(X{y*TIMHSlVCYWad;108;Z=u($61>`$h~x$uPX$1EnAW z{ay?~2Y^i)^20p#WMl~)&7>mNNElrZXC7uj@j}F6{}evKURfDkWk(;4)Ozn#&>EJ) zZs@&TIstAG>Fk0>ik*(l$z*|K0k=~$^|%o!0K;iV*k8LGhO`4J+88>&63qGsh+4#M zkNC2XbeON+_#Iee5d{;KPdK@zYdi2PnKe-j-GE=mty+p7BP?(o!K+XVw7qS3H%=zX zwFy=wlTrilf`^%X4k{&UzFS^o9nx|S)DOVGy&G;QdVl0Dc~Wzf%x)KJM`~QGA;y_! zkj<1}sLjDrLI&SF*NUPV-12q?*?X-z>%6-!=q0`)@M09~eWKMiQ;l{Y+2vcpNk^NU zn_irp(c^gqFa?o{{!2%uB3eAOQiv7jO1MTtG#QMxNB1|boMJ(TqWwJdz!9N0gR3cf zN-)PS*o6=+gmAu+6!i2Pixdi6GHA9p$xbzyBnHOis~%ftxp4E}VeLbtd7wh$YKoik zceMTWw#@}1TxAr4N*qRi)qR_uyIXzPh*&=LwT=%m5A32Lhyt$JB+x5uRo?Y_QU0H| z3P?WWmnw)`7?R|Td#SasJzI&Z&^p*#`erxJyy!gQLLH2UAUP}tzZH+)e5*g@Z-B`A z4fUn^2;q{=T!p2B^XXy6K#~lBQ!UA-#NtS|#OB3;)s?CDyA-&H`pBD;b@C&+9p`HC z)W!U-=_rZx#UYK*Jmj|36nENjgr|G(%1)@F#%o&XHO$9el&Ghg@diQeyC7pY3N1=| zKlYDbP>9)3aZm;&JEFfcn&xR*Y2VOcZSLu>1nG*`sl~WL;;2C3FN)o*1`}?aec3$w za=@8h0>gbfy+g5+`W~Emh5oQN^V7R$_UpuYJC%C&TTfSB6bM$|Bx4xA=8G3EZ`3d= z{|8Oj-j`nkpY-BW2-zo>vmc$(-IqAY_=}eQ^VfhVBiOsdsLA0sY4OiO(}FgIuaBPr zpEja>^VTCCuN0KfmfR0dJ6B69z)3%G(ia zHlgS}X~!wla@~God=Qj1NJJ`XhE%$AHrga?l%LoO5ky`r6S0PVIASR3Y;YY<*Qvk& z=7^l!;$!3G{6v+;(S}1G;1Grj##nwI5R^W|s^2I$yQho|Q^O_H&_=r}N3cnyOmj=~ zIxC-Yc54xu{aq^W+T~%pQvgdD*@Nm_K{+8_d0&P3jhjeFC!HK~9~b_6X6rGr`9U=X z`~cH+jT}dPZXORO=J9*QTV7Br5AVhl1)VGHO9Lja{b1~81X1f@Ezulh5-5MN{%SA@ zF(^S5-bN~~hQ@^?hL{)shJeS;@8-+)Rev5P z@os#ZkU?E7w*7i4_s`oS-REq|pWfyV93kk-ilHIn7vcNCNrJUBIVmrWO;?BK4K}3` z?$REkgT5@lm<6-l5)L{cy{;-7(WZbKnjKus2ahie+k_EyBmESOf684e#mE8hR z`AIpriO*E^?dva; z=kM6>7^?6H-t~Dk59cN8*ZMyjh<$F2$;-W#(sDn{3s+YpHhm{D@7FTZcSEJ7ez{^h z;0!Nt5j;aH8TJS@u|3SD^DeV9AF<`Xngx#x_1Ty}!_^-nqcJZD3Ju{9zqar@Hg9s` zzkp(bT6dkCuwG_0{$OlL%*eVlcd_}S*0|0^pS>1;ULwSh;1SEA&aq#UR~<*d!s2uu zu_jH5mg5Bdqiz_%EhiPP=FOEgrhReSaN#l5x2{TQp4V-CN?2x@3`kZd@mz+(g0`E7 z13+btDa`hBFRmKz*g2lCnfgp}D4Ft#0Jiczq7_Nz2Q2&@DA$uLO9^LsJ<$G<15lX> zSi{lbz}dmi4Q59$}yiKJi!JfF&j@b+%~flibKP$MqFsSf~P0-RJ&vLC9LRj`Djn3b-NPzu_e@#!*L)#3AETTF z?hBK#dAZ8`%(3+Kgo~U(u?YW7{5$sm1H#LtiUlpKaK7t5g<-X(jb8QIu_#U`zxo#B zsVMpaZMpS4$RjVW#9=L19grUC1V&rbJv0quk0Y74J=_BJ+h&@=Qet}temud~2s|!V z7Tac<7YYfzviH;Y`l)tI?yDC540q-V=_a#EjP*rw!4$u+{jJG%Ht;R`BGl?zt_8bB@V?8VOduu<6>ZDb`)^YB@m?$&i=%~aYOCB9`)LC&s&LA5 zL;2>$sf4qB@Q?rLcY=>T7q`_9z8Tf4#{qp*full|@N3OJ;n$Ij32P@n)`qgs|MPAr zVn>mn?s8;7I;%=!{gn6_WvSmlt#g-buA%Z#GEaedB46U`;k!T9d|thl=u#iwD49;H z+@|0y#-xY(*tF#X1yZmb*H;J}8vjiJvJj_&5oV!_lRgBLq|=+b9uAbSeXDLiC8N>X z!*7+o&M439&zvN(I!IGXDBUVX3CkSC^9H=4HZ+W{MXezqO96MI?QqMU=ct4U_($X9 zi9(bXP5!bg73W&pzw$@7rr&JT=%<7~B^)xxEe*XHjGTI~Fhl;T@$U_C^VFz3eIDac zFx5N~)<&Daum^dr=ND|$3Up6f_gVC&FlDKv<6UNHIVJfJ6y>zXjN_qGj(3egi+F=p zli&8kb)J9^|Bcv>4*WOh+jqdH$7bw?2M1>g$<5E;&FpK(MyYJ|PEy(_#g#Xqbl`@D}!~9Pn)BloCT0eKWG5iUwK0$Y-@A|5z#D)91 z77GPepyQC1QkB$EM#LYl&xYLt|H7ThYc6>T<1^GLAL~C}Z26A{9*zWHr>o7((RhNs zG%5La9x_hOf_9!GhF_&m1nK}=zdiA3tv6)mzBdnDG$$j_-nEC9jk|aU6bNB)U>0v# zN;)u-g#&BxMuBh}s;Yz3GwEgnif#fHZoW7gSNd90f%LbZ-j|~RqLzckS#9kb%)H-L ziy;pJ%a4JW#6N4td>xf3ut7QACAmb^M)4;gd=UP&JUjoWC(sapdU{I%VV>@q92eQm zmbkFVmn)mN274xWtZlhlkGgXpMS13_f+oJC+3fEd=X1#N>`YGpf^olMUeBKpOTss_)oQRS)8vN;Ho280uk2_kuvejWi0tgz=iEfmp7H zw646_m?bWF@spkPXq)pXDZIWmfiyw_w|Wi*sHe4KYO=#R`oHQa$lHHpkI=;2s*?D7 zQqCp;{yUK}8>S;ztOUHLC%hIAe^6l$rga8*fr!qsVRU%_1R!K;Iq6;|ehS4&D$)#C zD-Y!^2-Zy!v_5+UU0|nLgL|ou-IFU=%=h+4Fx0j_rEm-_)z(d|n!!Z&rc0aye{W(z z7rmD^Oo9olF>$0tP{aQY3ZV!24gK29Zk!rTN-i-k16$4T<^V!;*AeJftl`r|g~Z}x zh!`5!QlpokNoQtSd@Y4J$2BTaC33wDq~I3YDsQR0DaaWRDlu_Q5WpX8`Rk7^!coej z5!v83b3ZNJZw7ONs8#KS)wDwyFH|bam?Ov?8G@>@rDOD?kimxkBcJvW@&dgl;Q{g~ zkF7=~(b%e=+& z7yt}_Xs zX!V33546;mDI|1Cxc;&O; z$>RH{l=q(gcNof=f{_d^!4w@uXd-q!jlMLAp$Vv={=_pM`odUfh%k1SXMJqNmor%nrsqyyWmhtvkv zf2OkcKTzQ|pn@TVGcO(kwyE;Z@H|4x}6T6xtI!+9OQkaQHnImW!@6$dq- z@6&5i1{V6tFG3}4U5?aR|Jq;rZV!JUFSTwTXpNX=`yL31UVV@kdKc<*k*6BjH8ME; zX1Ub7A_BK%qjIj_TVULRI3^0vREldevq7v{JmJ(_z!8{cf2W}|uih(rdan$ipNBxp zS%IYZ-06EX$$Gb+ua329!39sC7iiK@E1;j<@BKY0d&@G8)oVePfDF&bVC2m&uzJ#T z`WiM}1fdbC6Pk$y;h`)!1uwpjZr^JvY}0#hzY)oZl+?c9SYM=5d9)*4O~bMd?6CwH z7l;8{gFpO%rLLvj7#nY?7!1m!I3&!$3Br2-y0gjL?b{cZ46fTK$jHUQnQEaE9=+`VCm6n2An`r5RlJEv3gn90HSrzTGt>q6v$kV8>H0A=LWg=QTAp62J^Xjz2!Y|?y&_=Z{5zPPXB~`Z*R`g>gK_?R{PR>0;mtNjLdX8jE^R&N@q`cl zwJMQc$Tah0s^0aMHsXfw?`&+9E%~M!l*(_nJRBi1j8;Fe@HyblQJ#7ON#db`#yXh>qNpW z!>K_u8?_|?#A78$e6JZJ#HwA-xd>^nwOWWk8nS5 zY`-yjpLT+qQi!ze%qHOA@+AyA+e=7cQk*uNu$UR0l(G#yuBJhEo8tSpit%S{IEU7m zqWuxW++s;~`j@N}d$q|S9^yJ24e~bUX2$D%bS^G#(2ZuEKXAWue1IKocO+c|7H|w( zN?v_QTzBzM4Le$6xqv%z9(z`s1`Y zU~`4DwN#(H%|lW(YD$NZ=2H*uq-p_R4SsZu`%2n%g3(p zfr`*Ec5baG>@;HQeNTzfDd9%Q73!PJSFgIhiSIBEv{(Le(@;oR(I3K144e7GcY0ER zN1zCo5qslFy2&{77QYhgtuvYR2Sd30cZzM>slc?yzX!FVo93)Yca?GA${}r+H`?s? z+v#$uI5YM&Iew=bA;?E(@oq$a8isW*Vi{zl&XV-#wBP>aw6qdyrl-~}vToes9c;9U zY=PG&5x6NjYT0cnnoAl2W}d$y3S5Y=nVWH;mNk;E|l$AtUxP{M8S z!Am4vREKVy%F)ZoI+aQF+z=c=ZB~5EOdB1p#EcQ?LUm>{|Am?HDV@wYSomf5sp-o`!FD7bvhkvCB4IVi;qZ%P$? z_?4=0mhcJ7e1S)c>M-Wa?a$9NTVL%_O$rCwTk2-Qn%H2H_7f7&5{+CSs6~`*72cU z&Ssmko<9G=`n{+>0oCKjM>)4QYWt}C&y8;5wzm&7&g9%zVz(s=@)RwZsSZURsS+7= zjpPtBMD97F1+^jdmCx`()nEtN4&r*$pJ!qoQ9u!qOGitYtcR+5wBLr)f1gWNT{y_| z(I8$hH9|g=H)l?bS>?02US&;Jt65o%^ZhA$R_9s+mr>JM)%GSs%9}T9*GeIOVP4bv z0IzDr}#9BG8GmcK|As_X>=I}ds!4PXQZhbsb1ipQUn73CDcVjTecSEwe#B>NG>pQi zU{fxBU8j7|585EjJqw+Tbvb8Y07mZ31Avixr8WK!BR4@E1AE#Hv#(4HDRM`%9>>8Pa2a4DOVwCWXFAmy!f{K%` zg$S0*6o8#C^_*|z740PfoqLwbX}R$?WNNagv-nTQ^p?McR$HE|3eOw5b2>&~_m{Od zB`bY5de5AVsIAw?PouatBJaA8FD=%ElTD$yTrQ%AuD3SY0{*te&B7LW^l;3cpJf3* zvai%KzVPBn1d!z5Zqja$(Yy8TY9fC!Kb!3+v>ztBlp`ig;|KbK_TVl-BL3hBckCyM zPTh!c>Va%s#4nA483JaAE#@By+M)pvpP2GbK2c!&o@j!OtQB3F_v4STW?$Kg+aPs! ze%~tXzi)~w?p~vGWHM}K5QtTx_~T3T1Ot31^Jsru!}x!W|3SeZm@7@T{yuv!L#qzeA-~;C zHV0>laC#5q{%!7TNnf{4Y7IPmaik4IrpALPV*r1kI>M7yL$AUeX=;zL$sk6AAd%N{ zFbJaB9ZPUvvAFIcd}OOR%&j|cMR-<-_*)Es`D86lN5{C%Sd&f^L}O~xWjp$F>3Oz~ zUs#RynshoNLh3~oz4j={W6ZiR^ikDUA<%wys=FEpGaeNw@XIpdC@y^vPM4&mPBf`^=p*3Y22L`qWZwL z?`ppkTQMV!-+!X8{28@rZF1bE8XYpYn_G}1u8=gRfp2LDeb!huNo1FQguruY)s;eH`9ZbRD&`v3#MO~NotYi;qvx(K< zE+%5*+_Z*1Y2^-i($9D&MRHl(G1V9;u}`EG!(<$R6krw*b9FVQ+(@&C$ID)reOOV~ z=d_9cwxW2#C#_N+0ajE###KLE)xWu5fDqeA$+{?cl zQfjZ{tcu$KHlM82K1mX8I$k{g7R&<&6gf@qJx3^=q)t+NJ>Xs#pDF7ua{`zAro=93 zNyFa>l?PxZFe|P;)7AXAlpmAh6c?e#UsMTKy#fy9bL;-XTn^hMtcZ?(xfT8k{*@T; z`<@O_Og2cEDo=SFg8YMuB9KO){MdXF)Sy&V3rT_zjHK9A(oR-WM_goV|D06|Nn%K3 zHK!gp4HI6;=y4-a1Sb&wo}PI8pb)MvfHW3%+$hzH&K+Isp72u8xnxBgDJm8EMK*W~ zF#7aHsK1D<0orw%vNr%t55IS5x)?(|^#Zb-DInBD93!;W55#Vo3mvyELq0I?gukm6 z%>*^`6p#!UeOj@qk@Z+nJAG?+q;l~#QxsvxCacPQyZ@TZnS5cUATysh(;;-GU=W2I zz-M%5S4Z+tgx%Kx7phb-R%_snFvemi(z1xwU3=U|KR$&q&ueC#Kva)q_$mpn4>{)ju(^11T*GqFfoJv7FOx!@OJNcAI$>(+$>34Tu~qvId# z7sY~kNkAHnz-+&gF@5zUoD_^v8Wc&&v~+nOe0&`<9lNeuVSx#^_7ADd4~kvyMPsDaJ5Xb?=?B)qy9F1<~}87HXun%g?( zQ48+P)XvS)=YeY~td)aBhml)ov~rc5yj@!3SGPP0u9(@I14onm$M4QN#{+4XBeHW5 z!z#Q}N?qO9G}(E5&D(6PJeG8`K=Y{C5F>ih!ZEt8j#Bu{7>|6~1J@6k!6hWJP{g3Q zWL;C31rm>jn+Kjj9R0$G>LYGBG*M*ep20$b*i{{Bhc&xRLUXph748`xC;NN)x$?+) z9-Y(3ZO9ZPUL3)Cm3+}ch@qX~N|466OPnHjM75E*fCY@;Li46l3Rl*+h@fl5)PB#>zKOr5S0SkRDVT3$-K8}n%{ z@dSNUB@>oKQ?3K|a5OC6rfiw3Pze2?>QfzmPaX_T5i~q^7ZQb$yt8NP5rbiM2aH1? zuvJzvyU~!WX`$9LzhJ8W=;{{2p`5{~w6fP+-!rHi!S8{yG<{5-HpvI@k<)b&Ez0lF zozj-=Sx5Nt3MH(B(Jrk-H#QW&;3@tID6J?iKhJ=~0&X0?X%Ny6%dV#~x6q6}-; zbW>C7j}^7%*oGfEu<7j0)C|s|JTLcC*6KSIJLPgrS5EAR#||A%{#xEN zxgnbp{b$nhXunfwrFyl%N(p>YsH_2woti;U0nRBlth*TPZ*oh%q+d+GI$un=>i#Ok zPaEr`4SlumDxVsMD9bX-FEyx!dt47UAg-ZTtL9=E`c3Z43t)*+McKlcdUzbmA zV~m#HUy-F{*o9~&T_R13?S3>ikGH5&7vE<@F_4J8ih7@PKq%af; z$R|^<#M|8P=opSpXnTai#DbYj?!v-$%sz$0vK|}*#EUm?5HW#G)TsHlPD2?XBe;4O zVlT*QyZ&3r*l7yF37^0;g%XQF*#_uweOcd=`|PicIXQdSgdWYEQW~ne&M(f~(gzpR zpE1j;QvI#lA2_oV9wNCEjv%ZtJLbWx^#Uy9Kl?bHCg2>=ABW(4S&ca5i0R_~PH~5l zu{xMiw)MpMXasLIeqYvwFTQ-cSKP$rm%s^NsihCaypvbYXUV@Z5ER z3Y5rEeM^(DmJSp+%5!S7x(7X}5Pt!lSX#{$#HgIUeRY36T@lL%Palh zK@+VQWxy#lG$_I1slp50ND(Qr6Y0s3zM42iSrj@;YRi*Oh88Ze%@JkoGxatZ!BB9n zN$>8|Y#K|Q>sT-VS%)9h=-T^%eeV3i99+=?9obt>I;!Q%VH8m`m7aD$FIJ;up|-SQ z;CwIaslLuBXWlp1YG%}CHG!bd^!6F_1VC}t28zbGA8~;0IV)u5=O0JDDELTign5l&S5oB3CvN!2PB;m} zsY**VlvK^7biyctogfPbODsYMQ-VoK#O5ImX-&aYN zI8!rq7xkr|G3nv?`PL_rznwX6#fBss+A1@Nzy;y&Rbi%u5(VXCAoZK z?*bo^=JaBJWX1dA?;r1X50xirO5oK9yPq*|rqw8=`YD75LrtEvUxwViLJjuHcVqQZ z`rCAbikT9z0Iqn+jemhVmKMV0LyNRo@qTcV(T#8n;{J3-AK=atEX3VBkxRZXlwH8F z0+2AY#VI}7&AcLBK&vO{pfAh^xKsAVUFa6PClL0jM{M`+D}ESo#Umhy(E0~)gnQEm zY<^LA)OO|z10+fR1@8Pwk^;aT-@rfM4(p);>18kg+%fq8cdBy=ay|6koeg3&?Na`{ zg^oY3G~0JT7#&1lQnobBN;qpUqy{+LR}uATlah=Fd4dU_w*uZmAHRtO1x*2xr12oi zKRPDIMNWexetPA}F-%^9JR*O*g?1&}5RxkILsmu*UC;{j_n!gYLLX;>3^?ABED4fi ze3%|LfQ~tVvW$F~v^JQ6X(5a{vjE_Z? zbDOmDxwXCBoP)o-;;G#6>h1_0Q*FGj2_K7Z<8|k@^@J|@K}TQ%z#R|(xI=*G@nSVG zflnVCKgXHz>H|a~_dq0Z>8_d^rcnz%gUSQrxl^2M!c*@8K9qK&=!A|MnTJHKByiHOGURoD_0!{+cDkR+uWl97FuPoUS~^@7Gh#_pcYm$|hFHn=Ig zBodrd1%NvspX>Z*)Ik0hxU-5KQJ9UYI2A2j`{)Q7=-m&z%OkSULQ81I3p5V}^lU`1 zkakS2j`k&D5kwfogq@-p59m%WU8|%4S8Il6=96Z)m0|E?Z5endXny3$@EFKm)DtwVxr+LmZn1WX~zcyRrK+zEFo61B+V8)P9~!Zf0$BrK0`cu)S9bC zkgP=CnR-6NSc@FUdg#g=e)_?GfjiQQ?+5;7?SLdHOAr}M=0}ort4Qbr+`;|;cWT_s zTTnm19UHr30JszJ0q!)(C-O;&ObVdbZK52YAD)7yfl$^uze=Rhc7pIAHR^&d{$!I# z#M7x!hogcdSHyEc9j><-ms~qgMU0BnMauvYyu++(kc1t%v?@4H?@bd&N6P_+n1W>^ z^dz~~!rw>#L{oyj*9g1JT|FDIjkd3+?es2$Ei5|RLUW2Lg;gSO-XXYkuF>M|pJ2pP zlT~2wcaRie93sgOA@&RT82Lw#bbXlkBS`8a-$pb{UzNTdAG>8gZ-=KY>U&8F2$HIY zDP=j+Z)+&-wc!W@f}~$gsN}zwwNL|sq_0Y}V|O1x(r(DFZUyFHb}vJ-H{>Fx7;I#b z@y^)DMx#P?bM=WjOr0ZLrJ!xmJEa)73~a?%Z5a{DiCKA&h?HH(&h-f5qxf(<8Q5nfb=t zy%!D>wuNHT@lpE0Prnlbrm61VBMoSm6{X(=r*GCLPk%&;IMgUmc!xed(LC+~`M{6Y z77gU16k{X}f2+7UsT8Z_y8kV#>Fty zw;`Bm7IwTbF-AujEKq?}|1df+>0l#AmVvI!LP)(|g44Q-RsK$mo>6|JMwy2iM&+?i z?P@+!qZMx%83drevNZjEYd5+DQ6{}*(4kXsih%S}PWYoL1J#n zMZWg;ZXG}$D$v>qFuTMAK&L;my6m07Yol`Vw@Sg~#HsKbaby&kcPT2BA=;QF>&E?p zBeLBpkVs2@5O+M0<9P|ym*w)XzvDylP*!p(qTv4A{+Uv^?>&rz}eWe$-e#wb+ zf?EDLN4myZBt8!K!8NA)T)_jE&qq9Dbr~CvBy)K?vTJ)Z58}g0-!wo>!K;b%id{z-<6Z^ns&>}h zADFGqT*lO+0W3I*O&@bXxJas z4mn_SbwhDC7IP5z3svYs2ap4lDmTH9f?a^>QC?*>g_--28b!ORs{53Z_5cNgZIw%6 z@)gNv0FJM#q_Dtn+eoO3lbaxUin=2_(y4mv#FeLkQ;&XpbD+Npf7BM|-q_>pcVsg~ z3%HF$W4}B(dH8LSd@1}Asdc}S?kO8Bx9;7EdxHIV-&W;MT@Sl;(mo#7&M9354Kg5W z9Xsw++o`p$7ZVF7o(d5yQ)55Cs@o(-1`E8hqE9E!H(;oH)gxZv)LMhr>95hMR;rA4O z-0ket{HPR0G(7w(OVbysZta82(3*P-dMN6H!QvTB-6iI5Pzs@*`kDBCKQM+;XbNru zAl$n8%sw%~W@iEla9^dwK*BXNxER-MxdfM z^rRL=DbTeX22Ok z>wjRnRK>9rsVFr3*48I)s?$y6;e8is#4z^S%)y^3muq6mwcnu5_qd0c@Zi#hPn+5) zbea#CbH#I-v61D)41|HG_FAoERKj9;8PZ9^-z;8BqL#T2W#F;>$(FFICU4wpVQ$F1 z-rV~*Ps~`z#)?zE1c3yDt?O)1;IW$RQl~B?yvp??Oo~nNGdvpFU|y+6>ZD->FKu+b!vgk=^&>5g#Gxzm=|s&i&DB_Y?ii}h7@uG}j-zaMhx zqxF`8$UUfIGQDB;Z>P&BM0)jk$tDFzaZM&co`{#^+R6TifCoAv*rLQ3@!Z0WA);&- z+^}CxtNAA1PK|^hp0c5kQs+5yRT@{(8`lk;)52vjhlcS^T~_HSg$N)x6 z7}}}p)*45w@}&RQF%)|@7kT#n^0M6XLTa}zr5aQb)S4YOY_chpP%DR2x1-sO;diY^ z3c_5Qr~q*ZZMa@-gv=c-8%RNo($WuwrH(gH#iJc(;qVG$j`mBGm6Sd#3fVA`36Ea7 zau+-3w-HhbQuvb2ziV}{LoZBd5=7NoKS{-e_1L4P$<`to+@fJywKFS4$S#3lAk7_xgmWbpy>Av`$W(md4{ zgJr>uWzwbf#ouRV-Tl{FE%Y1mM3p30yZg-?p0O9@2YP?>QBA8)rXGs1MB(_Hof44m z1z+rE+5${}s0bZ;wRm_)cHNZv&^Efz{*OMo3(!Z=p8ktITJ%RBy~PEZ`b!_J0vtpC zqmR=3rH?NBr#{+!k}UKe`sm94=%X{S|JFyn|BF7_81}b5S}KfKV+5N^>5O*UFIUm) zY7YhX(qgaM)mu$SG zc80&@XVrkAR9qyv{J(CY3Ia7=peVpCG{jfRJS$U4HG@(C8VELQDSOTZblTC}I92u^ zw@}r`EtCPcg>b%Wj{t6=jE%oDRMAKxt)a!_dpsJR**M_l~Z&_hbw8K1kBP0;E*iaIZ<}d4UaAqq~7StFHK{r3d(V3t{rnJ(1 zqegqlK<-IG9`+Mykm0*u5O0SgnBg02Q;-^cDC=P}zRuWDaWBh9tuDd+Or5HRspVHM z8kRQFzSr}Ry=xoR;O*RK+0hYJm^34QT2c8qd0%`(Wb&UAQs#$4uraYr$TKle)h+B--dpq zLUFExesKd|bpleMg?7L_p*XR3P@WKnLgN$;%5q(DZ7eE3W3{F7FsZO|ANVc3*}cDa zK1K~3IfXCKf00BZJE0-#PYVbvG8;(NJs4~0#T<(p$BMD6+YvE|jIZ!mgzJLo6h!+7 zh4!rSH-Pp4LZM6TaCva;F0D`ZE+qyH*|>vJ!7(&EsG4r}4M^h7wBK_jmN1NaG(>NH zq55&d{)pphjw>Kr@)JJZXC=)|TYdWmZ32Eca?r}lwiUlq(f2F-0ba+L_s#Po71~$7 ztimG*{;oY5b|?|@VmH=WWxMTL6g}}C5pBREtOvT|rZ8RsuQWO^tuc#l?r*gbMvtFT z#pIU9159w>R4!Kgavv(Jw*L3Y>P?JG-gPmVIUzpAvV3&ZYS zE*|U(92%;G8~>!oDlfVAaWZM~ic@n3gkhSO)Tl+5ZarxT_y6cYdHf2gLhTPog)+`) zvJJ)W6FzFy0GHl^ouE%aH-Y)`{`PZUG*p$lE!POJ1Zs6b2}o4q1wnI?QC)gwpzDiQ ztLFeI6$X~WEXQXB(4%+%UwSme!%r*Mh`;~}O~o5knYOg2E8+V4TveyFl_y*$Tix4j z6VzcTWRk&pG}51&iDQ~g(1EV-pgNt)Ch}0QNpZPv$S2cSK&jNr!=HPNW(^T;oEdI} z{e5EN(Nk`DSPt<5H3)KF12OF*6gsVX%MUzhrWPG%fGq^)^Oe9zznddJhz$76<(T3L z^cLy?CNJ^JP75iL`6~k zPKSzA!uwl`$cqY5thgwDbd+XA46WcXhIap!14zOe6-nNz)p?$vDoDC=bA8GS4PAPc2*0aeW zwTaa-Y6+T~2hK&ge0Z&=$2|#RKo+E9yQN{GPfMJ}5Ad5;K^P0p5 zEyj#2@XgI{k((R*6QhaBqnI5@_Eu^xy_J^+XxjD zwy#cpqMFF4I9gjzDLKsBit$M{sSYoq3TV92nAwPIt%T7GsGcgP`z$Il&1Jv7yQ4lF z?Te|_FXkWDdy3z6QTDWfW}%dabu|w7hmG;1xVueR$94(x(0UtZ-`$ZpgHxS3e9@x! z>AR7gg<4VWH0@2k2Sl|gE*#=V0r;qb7`$<}=5wc+p^%H9ZPv9`V%^AySub*mTsG!u zH=#o|@L%}oIRGD3QQ^u1txV#R(}k`alS^gmB$y;zQt&!}y8YDeKl|vNvMFZgs7>># zn1d*(KDCjn^?1SI^m4&>%3GO7wl$Z|&Ao%(SeZtW_{)!$a{rihRdHcGzpS zUm8}i4LYUej|_pT%+8UYxKECt@+yqGg6E%7m|b2a-+kJj0Ps; zc{}>#sSZ#2S*Wj-KT(DaXO;x+#spQ8#% zoJuR(v9rKS_c{<+WowUIh<{SH@Vg9^tb>8!PK zF{e2*apUZh1zr&|=lCyyboY-yI#!v5<~i`UK-!WKJ(?=|Z-KPm-?oH&;xB=899A7R z1D*lnJH3}c%?5T0#l6Y!eu;n$RleDwib*?SaCbqBi%l**HF{`viI`s^W4}q!fF}RU zoZ*aijOV?+LCDj!GYgCH3K*F3`6keJCggWf*Fpa;mp>Ke(6uEe-#FOKj7<2Ya)jf{ z7E1sEDcLN!7W`Q2SdO zytEe$m|q+%(+(JMAQRR@#o+kl_I6!2W}hEof4(4yN^gQ(TDis#WbNF_7y6EdnkEMn zeFYVB{(GHK59kL$nxt8>=A2FQdKyBkh4*J=Ys~NNp-Tg9Lw)Oa#FIVk`i%!)&B)rTw?Z#XB zaBr7xaA`z2d-Tsp3CQA<{KbD0NZJ4OtmL%*z0Ox*@fDG-n1+#ug~NC+A`1j6ke2FV zT?U307=>4e?&Yopl8E|A($$nZd4Ffd%&^$}FmtQ8gZcNfAk4Il>E|r2fcFKm?(NCY zzZ!NWhnCcWj+5dE<$pEo*kxEP-uBMkUk`qHtV{1fRNg1L5}Yc?@yZQwgpz;oB-cYu zw_K7Sw6FP)1Q?nr1(})zgAn4oVERq{Tr-no0aZNZ-^!$JU`j9vMOls6!-k-0LjVoC zlFwIx!Y^!4U$3wpFv4HJkR&Bh?D9&#g&H#rF5>1cmH7Kta7x|+08-?bCp?rVjEGk} zlsk-wXS_LFx9cq)cccsfIBntcGHT~N(8IE;6FdPB`_kf=!&Z51kdGCI51u5DR1L#e$s$MoQct9_HuCp=XC18zOkegdydn9eINR9=B2SBvArlO1^5QlpOSw6C%$^&oIXxGIW za8+t5i|UCT1*D&Dj?(gf*%v)XOYH0{BZx2}OzpsC+*o}HN{ve^Xy2!-t%f|kBUbSJ znjTUWibT!d#n1I9TxrQ*4>nQ&Ot4i-=by9vvEnfK_liSEAPtyy1%7!Q50JSj6$T}D zg0;Hps2FvA{W78AI=~;jDFOJSQ0j&4ZV9H^r>kij$Nbv6Y$+vuirG0mpOU^j4Fu_;mbMYI!xpfeg5_ zB={n0uflr2xNr{U3scul;(88ryP1|byBZ-^i;z}|vWtV2huy4Z&=S;Y#3j`Zrj@BC z)7diofH8-xS{H-ae#j{{}G37mf`f!F2Ja zVYTt?EQFVsllH|l06+Q$_rZ^%1E>G#*BOVkA*6+>0P1z0<3AZaPiYjCx>C=gQh(Iz zc5?yWA2iU80PpuG@~7Pyr(IcVMWp+hN#;~2ASf69bCtM^EJlNH1V zhf~q}kctbw`!s--q+~HLKS1)1%_rf`F#G4RBb-W{SJ}@2+V5C&=^Nim6-;+%9@M6u z_a=Q^qBImyKHUs+zYS?>g;5rgg}X>;atZ~4XU&RhhYJT}VcKK{Cns0}>UF2!Qj5y# zA?RMm@R@IYCTjZ-f|tPOW)4`C7SnK@5SD!GCic;h!0fn`7W{V{2j6A7_$`Y<)N?ic zw;pn@Y;Tjau72S08;}%!4#ZcAu6(V5Ck7poo|m@kyCirp#%`4b90Sgf*3^SBr%SAj zJQr`OSg&k&rRP>Hib}0gNOe488pq%Idua340LtC!-t&4ssS-VCNC?u*Bo}CyHQU=) zUA`rwLr7iC>e+yr_TjE3I?-(jR>T&k*KgbXSBY%mvuC_K=`dZkMXAq&@AbYYsM#O- zXc<5sy&8NEv;yd(BNyv-hcr0b?KQ>bU{~U_GZke^|DY?(_&d*%qagB z2O%N>X;JSQ=qLs=r{QqZr3^v7>xaSh@|NB|0txo?M;{e3`smNuEjFw|^&+S-1#=U7 zdkM04{n+qis-|oQj5LfvH_PvBn{vbeU%#L%X6Ar45!VYXi37nS&Dab5L{IEHDNE1S zyX}1-_9H5;Ne8p|nGC4U(QFxLAfU(AfJs9&gD>Em*8Gt4FgsDdZ~VYVoh;uj%9z38 zB+#DL>2u!tLr=b@Kp15fX&YeSd}%W&bj>{IZp<~&Ff-50?MC`?ehqapK(`i)HmQgv zoY-S7@7N_|sUe5SAsr~OuNjL@`*W>BzqE7?+$)`(@{t!bJp19;VQAcoR6DLXzzx4W z;th&nNB56CO5Z8CbER(5tOSUK(v@baNW3$Q+B_m6t&&O~#x|KZ3zL}+0{$OD{84gP zo++8ng*q6-gtX0><}wOUNem&6`P{_Z8IXN~6j&y|bpZNv4P@sz`q3Inu9Rm#eiT1lhu5Ld+18)Azm}P?Tj&zwy2`RyJ2LU1k^m+|2TZL_ z_n=}4I8gQ+a($r(9L3zN=<-77e`5tivu6>Td`0$=f!C|5F*Wf!R`=I_e{xpdr|N-< z^zn_W-*g5nk6P+;jTGJ34|-{>C=_PzQJ+HmNG?QAl(wRw@vW?4vmS2Io#?k7BF^`i z-0>8mn5J&PA&3s^BE_e(nnO6)U;qD7Y4 z%4c%a+LPtHyburVKAxqw>u+yKYX_E3?uE!IPp*0)JTa9PfE_80;C8#3Zt051TjVPf z>q$EiU8XpFJ@s&_3*0{zH!ylJEWy ztLK#{#K`^n2+;|LTxg1U6{OJ5_YkB;1V1~j6ogk!;rSqmq}V)f+yRt@tCB~9qw?W-!SJoosj znL&mb%P0Ggz1g>L|GSY)KG>T$hOdh235_;o6P%eBm9O7e5Un;T7C z1W&7X)42TsXE%g0NxvDUn1L}!gOcF!*}O9Q1@@t2F4BVFubu3ac8@2;XgO-WNDiAr zBn@Y1MAzv9yw6o7Kbs3GN3O^P2r?QROYa%gL8N=f-uUj9Ub{A!cc&biOq0-4k&VLY zsPndeSEz9rkr)t;jsHHbV_Q(hwA7ThCinnI87h7b41bnb9le;AqY1pbP3PG~fy5v@ zI9PGyeeJtyJyeik*Sh1`^mPk}>c2a-LEKzGjvC~bLbk#A%!zUk6>HS09{xlNIss93 z$yjd!9uD#2?URl8wRu5{04_@pOG|zQ>La$iGYGOc8lG-kpL3x9446(_%u8=ShntXw zkh=U7mvxSBlZ!$yNo@8e1Jb%feY|Q;nj8D zo$Y_7EHi*~`noRXE`o!$2e`Mn3IU#(-k(4T)p7h@{r>Tp37X4B@xLZU|6E7^nHc?* z8)U+p!Idtx>FT&FH3vxqr6ViE^pEqRzhafaygt)u4B?1r5W{E+s|`nO;=Fo4ap>gr z@+g~rDh;ffjnH!Tdw81vNj%Al>hEGSA5?6W#9N{gO+T4Vb}#K{nWU!UCYC&C*>RAx z6U2fYGeA}8xkmN9GNh-zVQNxmm27dHwu(0yyWt{d|OYqG=1KA+#?39wXY%lpve40w%*lUi;6FrEV9aMJQcCbxZ!?4oxd zqilwCRxnMCXuq(h^f)B#de$WI<}6>}|LPZgzmhr_)RU^)Yl(8oH}-R6kniY|Xi*ZI z&j$MUI1S)PB7TtY%UmAd_h6wbxka-P%Z+a?+g5PxL9of8bspsr#IZ=xQKs0#6uyl7N1yelr?jgN%aAd%#5{G;Yu;T-s)*tb0ozZgU;H!VU6G$PGE^m{3CU>Y|p` zCNnDPL3Cpg?a8ridpk%XW{85zE~4C^cm6BY;u)4*cF1kE?*a65>+I*Q>g z2ogacFfy`;WyJ+fQD&_DQ*^~WQ6c{d4awV)xGkiZCoGgFoQPK}lslY=XRJ9|HyC|h zcQhU1FO3CcGc1a7cyu!fugtz+y>%%b?MGg#(1yDc=;Am1uaI0I1-4MYX1=T-QQ+|w zPe~qP5jm$LWY&7af?LC)OFD~><3}9**FQMv)2bu1%nnOdU97JOHq{1(M!6u=(}=5# zA`U?L#f?rqujqNe2*p6ZUZ9h`XMkMy_T1AN?*atU7LiQN^d0OEfz%rF5&g(Og6t9? zkcw=G0|e4kCw*>ce@H=v7vjZ@zYHCa4?}0b^XRj~&^7~B+Er&eam>S%nafaFC5S_( z`4Gyl=l}y2C&;*r^b=oHz_=VO#E513q2aRD0BdtC~QSVIik%W04HC@fa- z$@$9}PBh@DlqfF}xN0`C>C+kLUnhROl7wn4rdix~eF7nyfWpZv{zZpQ;aZTzw)juu zOEJC>I_{A+&0{b=8M)JZyifk$)T;x+89p6a0Oy`zS<9GA0`2;X{|J&M-`+3f;}wZ- zG{I2gPlTc4Hwci#<1kFcIOov2EB|i9CYL|jeFn)k{G6T~to^yEfC;n?2YKBV>{c&R zE36<@vzMp$lVrGzA=prBQAj8*Is3d!19)6hjC6k$TYGYDj1a~dc%7YG0or1D6?uzi z%2BJ38hof3SEQ9c#inD|4446Q{r99s|8Td+o_nqJz(hC;HPJEhS{Vk~A$SHV%-cS;Y zbc}{1Fb>$H$jp4%&^^ja3e!G4P@SHg&rnw2ij8pU=-SA$;@$ScAT_)|fTKFS0kM^e z3rzV14lqa`JcVZ8=*#tiOCCI*$%LFK1zLUqPSu)W+y`w}L3cNmld;jfZD$>#W zYHDwO-M@!ff!S$t>s#lM2Y*pt6_9|C;8@E(z;;}gLlC14f`I8OSjn<{t}R&&{whB9 z;u@?>+nO4RjCk#`F8X}JdQlX}0(>r3?qDF%#ZX3P{Fvfl((-~=bgCBzc9u~WraY1Z zTsWpfJ;7D40vF3~cQnA1{VWj?bVP{F)fXsB48kpQnjHWc2Ntv^Sm4%$0W4R5kA54` z1eX;Z^zF5rxs2!cVo5MHLK=@uewW(1n0{J+5W?}V08ofV`K>@8cB0%9;3iUvf>#y( zpav`@tUyE9^zK4ZMJu=bjeU{MA4lK9M|cC218sl+YR)_?H6xu~!%<3cNxa`gr2z=N zL+2%OF=7=2vblx`#t?nz^8!#(KPzjC7|VGH1bjIIPitfNFeS{wR4mbZ?e`^8F;=uO zwo3y?#;y&aX2n^^#KKup=W>Zb@rvt8a~eJxU>z-V%tu`KH~>WoZ497D`M=jwwX*3A z`GQ?+X9wI^y=6meU0k~J7d37JADA)PUw-G?;}ou*G!WX4Wy1BY?5qd>6bRvbjmD9yBbf5Ow5##-t=o*AR673r+fYCy zrIHF(K}4z>Ffwrg2C}0>z_;)DIqo=}@#7?h-zo%XO zkMT`WheNZ6N20@1=g)RzRa9M@{a!0O$^;L}N_QYyI(w%Pji}1Dvf$jZw?#43lcBMz zX|!I0M(Pf&r->(ICMlpJ-YcH@ChMeAYi_R>y3-o&XzV-;ii1GdtvDwHQVS>+df zc9l76(R6{&<_eW4nIw)bE``nVmv1K7xmH5}v$DmNTiAoo7 zE}41x?Xk4*_BN=BX;8UwGhq?PH>tIZWRS_KOw>o&uB9Zz{k^Ph?@gJn^bn2`vZ&O& z$e|rnG`Af~S?WnJ3Z>hfCE-X~NUIwYwXVk*cvq>VTlw}-tUL%7e`Mw_O8ED_%j?;# zVgEFbL~{eodKDvj?n+L$-yu1hQe?|?^X94VRY{*iS8ROp6-pSFH z)TwiEu>LmqQ#^J_UQ`0*NP0o5^wrS?4$s`$R=(@TGJ}><+{$hGI#)Jo14V;EoSvY4 zM;!)RDX!yeYNGBDJOGH?wr2c0N0A8!K0~vQCA#?f&X>kK3BGxPnI#ViLbi_iWGJio z!KLD^oUun5vXnu~p(+?ryR_G!6qyT;U?6kx_5ux=JGLRWtLny)vL=LRr@*lx-#UH- z$>iklc;VFZ2uHe%<@-~nOluqqz8vf$`Vsz#1+gtv84G1~UoI6Hhr8|lAbC$|${lg+ z^R=%B>6_nzN7u)k4e6Dm&75Gc5F4=TfCSiwn7WaYJc!-e`53SGbhkUBfSxRHzJ;3O zDz712iV;9S8QBFpb|+^fAz*Z!2n*63;4f$Uv)4>eObQgIjm0In!cwZZEb3LFxhaR# zbO$|r3fsY069P;txfXWN?I;LA@kul)Bxe4kHaK@pz)~pE#D#vbo~n-6l3y&*?dFNR z5tgtxbw7?$^GAo(D@u&;C16;>{XF7y1aWeHKy_g)c4Cx2v3WW3^-B18f;%gOn-!%n zrLfavd8&>xFMW?C1F>2496CJ|=m2u(+^Ax%Sm@J3=6GjI?doB<`2;`3WTcN%soWAa zM?~gh|5-YS%G)Re`<~0d7Q)PhDgDLbO3UBJUKp9M=1$&XZ&Bv`6s$hS2XbJ*+r-<65kaR<5AB4HRI+ zVesRX^aU{D0I1#teskVN?ybk$Bx6Cs29r}ZorNLE&2)%vwyf|i9|lzKa(WOa!x!M_ zhy7gutOHcW6Dq{rCJ|j9>g2M}Eu?>3FxwqYp&YPv?{EhLxSQs1|D;U~ zNZAEK2Rr{`#32@f9?65|)8?^|yQQ;qAS4)G=?s7&4KNRua{M<#S_NQ8qX7&ld_QRD z3Cl1bZK|F)YNz*+HZ@t&Irx({b^g&pzZOF|f!EI5S@m_Rpu@2Z>~@gVNAt^9Kot1| z`LXUN*u(L*4;noD8fV-4zYhW9EKfo{@QRD zn_%@{@&EURgMNj`qWWG(fyt+v=QQJA_U6CRV*&?a@xi!3q%J=c(u`{~6jt3-Z^)%P zA%4OAtG_lJ!~h!()R2Uq$`46mX0A$!5NpsddKLDm9@W?;J9ABRH0-0xe8s`l{J-3( z=ZcpHX2qM}kZl&OS_+E+a8JO7gXjVV&06%6Nix})s;DW?$1ADjt_U9q6MVN^>hXN3 zJN@>m*h`}_x|lOE))9GNHHteOf+~K*|6%W)zAJt7KHJ!;*tTt_;#6$gwr!(g+qP{d z6<2KANmZ|^-`;PZ(`UcqjM1Yn`(};x2dshc=)^PVWIWAJ~psEUuGC9dD~pHH(G|xjtFWctlJUxm(R z)W{fIx%Mek9p_*KFLpjwIvY1)fF}F`JQ*j4%}0hB3{iY*?rB95B^qZVT5TilK%71i zWODL7dTzhXxzvMsATjHJV_cz%v*5;csS51N29d5+vX+>nb6%o{R`N>Z ziTa@*&CfBB1N>m2+<)6XP8jx}g4j;%stJF9CPQ6%y00wu$3ZG)4&%xIXgG*r5&ye& zKjss1@9Wh_u(^lzJ-EPwEW(#jHDwo?270)IlM+WF5S+UZEiDQtvwD>s0fsDDc|Q}}izCh54UWxQ$Y{kXV$UJi(Bc_kWWF^>Z6HqE5|oEne?SI;k-F?(+Vm<;i*dyf z7w+aApKS{+cQf=MY4BJn{D+LO1TN_*GigCuKv1zoezNxIAKKLAODYq#iqWRf2r99- z%OsX2mU}NvtS=^lPh+PTj?bF%RrMj4AhY?=?$O3dw(pEXd%x3;H2*2*FL&)M$@ueoC{;3z-XkbLi(x>k|Gy7mAPQVgse z>}LgO5fhpToi zD##3uxA(qG=b9I2e%8&*N92?aUL?R7MYEKKMeAmef&BsAnZ^Nb4$;Cr9nruj+cd#5%yz(Lv+ zIBEtmtXvpdM)t$*Z`gr`0T6ZoJM z-d93#yDVt4Q<$QFabrNF6wmZH4=~^gEjc+NC`Zw&J=GLl6n!7s0e)W+>6ff@uA!j* zl_Pk>EG;(10l_F@H(wYCaFDVB5#7{?aEuegi*sTe{H}PHfwq%#Z%e+T(;n{43h9x} zEA&Gr~aUw{dfttf%g_4lI|{YQV2IA7!UZ+^pUrUU(luAq)WEkbhW za+BVSKPS05zh6F#$(pBYPjLWF^sv7P?6U9)xQO4q^o5Mm;yOCz1CbiJj&gm;6y8cM z^Cg#(V#j)f?9Mxe_%ez}Tj<7n49nn%zI>&qMfWl7yn=*mRaG|PkK^)In1uln0i+1b z>5%#*{DSV%l_&Q66vfjvdbfW1NHG<0ef+KqMO4*^(?&IJHg6X9WjdO-FwobXs}8iV z+XZs)PuPK135Z@b$v*QHLp2h?7x5|el{7~qJD|Z@0~y5Zsb? zKb4el)==!y>kNF`Pvag16(FAh*B1adNEt~7*Twd_$Q66PBCScd+tB9A(t3i0#4P0+ z7{N37Og`vTb4Z2xZqorZZyh*ey9{0sM_&|?7k8fiT%WK^;TbJf;z@MGelWB+b|-NW zxteK0n=gD*#(hm_SqR6{a|47O#1YVDq!CtN@Z<3Yc_PuPcy*s zw&vHLL}$*?8D`;QOuY)-&BAPXk~BE5L%WVHXQtJ0sElkdZiXroz>Zs4(+lJw)cs!At;{4=2v3vv}FbAYH^dp2t* z75^~(CWA6S7@Z*Y>}I_u!=^&7i-3ZdJA!*saOZ#Zy4R$sfM<b)+tj7k4$0_TfR7>{0F#aZ~M#i+4~ zU_%J5#WL%eu73@MNiQ-rVaks`H4qR8PG?DMcmlJQPKXO#yjou@4?u9yJ2KSGn0*iR zizLf?u{C1;7TCq5H@(Rj0kXM3|FjVQguZWie&|?hXHs)4(&6^Mue=+&PveRPT5=W zMzCge82|Nb#X{3aA0GU3qcO2;hmBdDyNIp#L*aK0omk8|)cfkjE&8~v5o`Z9xFlxp zol-e|Kx83<@4B^f=zF<)`ORJfKRWjW`(>&2bwlg91D}Jw7H;Be!1Ga99?%6|qj6Ey z=)*c+KZ_Cz*CIzyG}f}auf!LnL3FQQjI%)z>gN|7foDewtJ$VjF-!%?%8;ObKAdrC z-^kcu1*x|bt&%(Cf#L7Q!`Z+0IH$n7uv4t-jv{tt1$_{ies9WbFk?ej_gyT+j6lpJVz6!-4<98m?FK7@*!=GBvWJr4$gIG_IhFyA5C(zD z8C(b*4A%f$3$tRONT6z07H<^TK^X#4#{KbJ7#f`4vDaXnj?K))15j|V_a8Hhs#?UK z2~H-w2xiaOxPnTevOxK`f>_ms9-FwlK(mfKofYX?#_5ITnrqX(ffMSLM=re zw$b<0H`}vCSZx->R4QpN?qr~<^pN*#zjnW<(eaA_e50Qo(rLW4&+*1>a+rF(9Rh;#b`s&h5}7&Te^Y9gCInEn_+0-}w%*>Q4S4%=1KfQ=3exjz4FIEjFNvEz#l@2cq* ze<2PrrhUv$j~I@K-+Zl*son|5-jSSbdmnQ*9|?$&-XOZ82=SVFe+{u)>9X1zfb!LN zQ7Z8;(cTL>aDpV<24duX0dS>8&bF9ozZ^Th#D4Z0xr~-~2ijj?3?dU8^a)S{xKeiH z!8ZU`YO4k}t%9Y8h{dxZ{TV=fdHH`9e)s}$;i6nX)NTaO11A)~3 z4XzyWBrZ@v3Hj<-7x9d4gj7?a(1{JL1m9f^=1r?|GC8-%)dLdoiNB;-o{^S?m8$;< z+eejkR3|M2yg9R=F?a0X6ocevVxC2Ts)TI>WXHxt!#s90t5K~dW{~^xF<12O{R!JE z{LircYt-2DwAy~&usa2CLMeIPu^05gnbc~dxB2x5OmI0K@Cn{Yfh7uuVeoWbrDw;X zIQ(EN3iwsCMsu*Z)txyJPCxasD<~xGN1JDbk~9QFAHT+&vQ4N7_ay?TTNUu+6CB_` z4>$vUbcLa>?1wFBeL3RDu9iGdBx@qlR0W0zay!r?Op0pzDw6O~DSfhnr+#U+%pRT>2 z+{oXqecObO%FQqLdOe*zwC_-BT?t~nW65lML?l8rQ9&KRZgrt%O$n%hdU-pdlOsYV zMV?7oQNM@`RZt-W!U1flBhs)W!HX>@TTbQ|xM(S0w#*?(z6bt; z66tPUOR^AELVCexNQV4T^$3Yqal~WlEJIzJnR}bKIILQ zMmv6M{7iyo)WE;FP{{PCV&C+j;CHYXI>o~3JA4Ou&^R_Rp<7th<%ASPq2V;?WtO0p zLuTeGqhb%X!mr>ji6paf^vFcN2Ib5SDo!@h{4LunfVSQRzG)FA|-C{L8t z71Yw9k5MIO7{&p8%e%G>w$YBFAZ~iMM_$EnQbWIK?O)!_K=k+t$KM$@hMv%{qe(Gw ze^+;~TCGJZ+d=CHn2>Ukwuq!^I49|qe9UHC(nUfh)| zbYGlSXkPGGfcUyCK_QQ!7y{Dvg}rq`j;Un6b0+0a7@?sJKiQE1>X4qM-5`~J()M|P zw7m>L-U+_~tH>9){*RosTYz=6)sovjf7MSo;8D4Jp}G)Y9i`SeVUV{9>|G4_;UR~w z($Te2_$s;A*;@0yoU1Rfs^$))e4LE7MR4O>%hXxc_2G(Im5HJSz)QQ|0eC5j)RCNv zvFmP1Jc^uYfUb9LCJq%kxWPCqh40wlw*4B3oSIim_RgR-@{Wqo9UlKAtKDJW?<3cp zgVE2aGfBL;aYf&=vNzkJszX zNo`NeJY-$$pD)=S=`pqJ7i-sGV0f(OW~VXggrb-ZtNFXj5Mc5YGzL3;H3YmqV9b>h z-xp%E4-DTODPiJF9bS*QX!dApVYjkt<*f6zoC&R9GA&s!*R=O01RP)i&)|{Wkyy!b zHyHEO@KdOb&~iPW2!C(SOQk*(LNcE=Z8G7Z|NP>z=PKP5TzqukSuiSQcO6Y}EVJ#x zSplMLceKm@T+@V^-6h1V80pc)T6`;SAgZQq=V_VHSUGoIhxdfpSxE&sR^16SP?a4T zCL`&3!PPiRVH=u^wnMoE>Vv#zU`4@f3z?xeROda>>w>;LvJ4t6ID<`>&`2)PQz{nA zo@R<-ccARQuJ79}bI90xr$l2Dv1U-u{OrTVaM5VkI^!+?3sLW0w^`mXh)8B3cF@#~ zRH9pC!)iU=j5jq@RsJowQgiS!KKdBC5i2`-c^+M^gzMBl>SD}_Zey=!JEbYdAV&$rU-KJML$HA;d)V)6`E_BUl(wPhk%GiD2Z=PrZ_%nkb#VlKr0F}+7u#v_-YV} z@%6Z<*~@)$+2S+k+zq0V>J6izXO zFqL6*bk0-q%GdC@NOZU1yRc(KQV7U7?7m)W2MMMS(ZJTf$|23U{wC_oFMsU7*daUi zt$ergLVm%<^l+`F=ms8{M!y{6!re%lbMQq4LoO*RpiiciQ zPg)SXEj9V_?mNS{Fw&10W?l8e)$h-*Yw^M|8c#8s;gcJ&?5_K1?V)Q#>o#r8>?4P; z0R*Dv6Z7E~9yAeJE8=okG03?CkWHGgay|~#aAb#!v@PYZOUxL%ub3Var{<(2Iaks) z4K^)9)dLADDX2qc;0G^~Sr4JFhMWe}g0NL)KE4ebJD60@i?CK0FV^h#U60Ii3}$`0 zZRk!Zk;zvUq)Fp@u8j`<+y-g!RD7lj7B(r1fED>r$!4%e6!LvHw)E>jj<|Fk4PyDy zLM?_#c8$chMqC8#+Qt{`M0A%d0$D+xv#3O;mb>H|#xu%XAlEBISj8P`!FmB`7VV<2 z*h+Og8I+PRomn;)FRqN&9v?;q&K# zslDBe$w)Kqr7;`0tRK~ibsaHcm=!lS6VX_t4~e%K_Y_Ya*A#6I4;(V4wbu|M0~H_H6rIHaiFUXzd&Q3RhSP za%+@R&Wq#Wd86v6dd?7;-x!UA+)Xm;aRQXJ`>hasO4euiv+}hFA56+4bfw zo@rZc&slTOm6a*wz|5J|x+*BUE!j?jSir`3k@k6bqM)h|A$FxVlmG>l$S2g}1C;HB z$Mm@Lxny1dWqTUIAFodo=F*AMF@W1(^<@Y>zt)Rxn-0wu4-O*#2K-doHEaBv!{aA3C#a zYA#`YJsMMO?Z$#(yR(x z5s{k}F%wG4i+Kg8DLp_wo-fsJD^>qFZI1*%OBo(w-tem0K2HHM(k=WiJD1I!5Y_yQ zc??Jlxp;E`8R_p2Aw-slo?in0@d=4xJwEHdWlR4)A^pGE(pQ!vKbP>1KT!GDtM&i~l>NKgB@H&M9UP%TQ=KZ7&sfkLJ*;_Bt z6=chq@TG9q&C?Fp6b?%)s!B(=w2vWWcn)R#^Mjn4w&VEGp!TsALRDsAISE4!?NE-o`ZSArKC{AEk& zn*Ok*t^b)V?YY6P_-}u_oPQqgi&DmIHyDvZufg9C0JNDItfpNPJwjI!0EZFEz~D)QV8lI;U*Ll#l|{7EUD_XM`gQ`pkBOVb8esNL?P+ zW%~i;PrVB*)v@`Y2nl+***nPqldc2n4l7?lGbS;>q>DoaLfoe1{@sc`3kQ*wAD-|O zI3*b2L!C9+Wm>Rk(stGWbg^Prxpa@K%E_9y?vF_qM4u(~P)#9mq;_n>FwDt%L-6^l zXLgxr6i*Z^!RhBH@@}U>$d&npQPXG*DgI~o0gP(4e5$0a0QnKuC^mI5;px6Eb&wtx zW#9u8;Xu$G*ar&8Fo#KM&V+;CazHK9E}nK7YxJ~I47_i!zV?i&LWAtiuS4-&t%Hw~ zieLTaFsUsU7ARu#yt;f-JuM8KD|Rl$W2L{EXk&db{(QYAzOhQjqritEI3J?u(rpw$QP*wrs$w{r z5NXtvR^)4PCJ25q`n0Ba^z-|5EbwbeOBQ=&=Zw+fFyU3*ZIRW|K;5vzHID*7L`MsO zWIZH7gTQgdnysrN7{UUgq6}IJa56lSJF1EJrk;wu1L?!>b5-iIyM|yAMkSS_wz*)HA4qj1FTBLmXqN^y4G zuX$BDvL>jZM!ghiZ)Y%H$XI59kZGEKUJDc1c@EEM@-6A`wexTbH}%F*9U-_OKpAe{5CKHGKk~v> zr2cV7QD?d;EF@H0QI7l&7!0HiWbHsZt=|fn8B@fSWtZ&HRWzWN`jXuFi?A6yirwl> zebgai=WB%z#du3$?gwfN6zZt7aR`6x-5Wj(FX>>r$a*m_9D(4sRwT8~IB)UYMt)G@*<^ z6@5e^Y+jF*(!2YeA&w?wMj0yL=-Gh9@-+W6u+7v%k~^$nc{0V_4*rU+h(vwZQ|MsB zDE|8&d6etulPkS4+O(r}Qa)!|1^mXNFzgXR86YYOdDP!B!PesoQQCwf)pDI`)Nvi; z4OVHU7bgY6e3)F@2@Qy`K)|o2sIA{fsm6a*0POkIlx|#w6pDZzj^JMY$4Yx+`d+OFYUm;u`S&|mkV*su8QO|-$Z}(c9?Jb;C=zN!J zq#xtI?NOu^0DBY`Z((y25-_t?yA5)(R7G&tY&klqiL@P>EN&jh&j;AJr33=+N$9%L zC55b_3iv>5OWtLp6D%@FPj-m~%QKsazO%$b9bz$`oZR*l>X0YhXwJ;R-+9EBA3q>n*xBBo>>v z?iVz7Y8F|l@Vl2h8c&lTb^mJaFcwt}-dCincD12te-?x5llMwy<1*qwn4MT}}!HPC>jHzuwnpW>D>Yerv2c>yUQXCFmPU0y$5( zNxNPg)n*+}tD)9Vhti@Ru!(h0vP>kXx&oIj=3U-hT^^H)A>D($<4;FGQ@iQ|R+ac!EZ{^{$~9 z2l_^?{8Kz{lu?{7?_<5-g|hpLB2qJFn zw;T?s^lRs~JDq1!#jf8G#o)Lxlb?T(Y))Z#uQXg-WwV!NKWsuYa61_8>pkYsRmMYd%Q56p zc$Vg%GXqmd)lGtPMlMIe7$&}z%*g?q=Z{#uZ#OKoCy=Rli>*b?+XNRZPD=;n$o4Im zcq<<61_$mKt_xdTm}DrWo7Xd3T=8bGk_?Wvo^YAkNgL$-%KJ8sSkX2P61lON);Tq8 zK1Y{sA4oi@{@unlnL#AJ)>X#r=E9GYm?>5RRz}dQ?C1Jm%&K;Q(QE)^@zQ-vYzq89 zjvfeh_WW)h)#wMY`BgcQS?28zjY>~l_xJXd)qP8J7i5op@Qj`T4zq;_$r$`7O-vkE z(9D~rIIgrxk0A$5hqjBvaY_@6?(C&i&$}51h;Q$CFB4N^DV#vg8}UD*H0Ka%W$A*9 zxiuRc;(ESUMiU^$cJ10A4qG1JagY&8+ID$VC56Sf5_=P8kDW+84!Th4-P)l;NmBI%kOCJW9<&84xr2-~p_T?A{S6=NCO z4Q6%K?^di5!CTyy(KGUt5VK4c*Pgb61yc<2F(wck*a*dwGjkJ|+i#reKpgB@?<`t7 znVK89$f8F$D$ZU?wm84-H+o~&EW}#irGn*Si<_um9j;PfMCTnM_tR;2SKo>wOuC9> zlBOJ!fVUXd6*tybBcp>~tg5$~p zu^N}t@+zL?=Tdi3D#oJ3`@G1k-Y;PXDCadJY;+vchs$H>`2siG?>4pI9Mp{n0tqVkX!+;h7RWhvS7v zzD-QKTo}{hPiuN5qiI&7PxB$rRD{l-O*))|?XA?nhz~6&FDV;%8~b^a!e)zJsSaVi z5{(9Z&Ml|qjk2d-VKcrVW29f15RHv^Z|5ZfMPHzp)^?8LTG7IoC}$teTPxhevh^c$ zq8YgXqH^dpYbvxY6#n-!QGp}gQ3`YFN>*81Raqjr*hXpbQArv#&1gdM;J|qH{dB+~ zISq%hUKk3-z;6ZqAi?g8B6J%Sye54jb{=Dhur_ft`*`#++MN+K=%GTRo$l5I*Da0h z)JYr2^2rEK>IF`2LN;oZSZwx~^oDfo->0JsZ>%>D#$7kq8)H55cpjWvk>ac#!O+v% zrf8Y7qq{ffHOF-fb5i|v`>SEh+N1Yxsee4%yfqBFg*muMe>E&!+n&1UJHe$=>`2pf z3JK{pA`S~iPjugj4t*^+N@#XdJ z_URkbkXlRC#cm0aHJ`xK*fdnCO9WXU1MWThhJ2{_k};)95rS2=xofMbf4SBqQgc(d zw)Mmfdck`Zr-zwG2TwjAjKm%oj7r}ef@=OiRG9FjW8esnVAFIGv#qvRLW~eB$$_>N zenhsDO7uA_XDQrqlGe}6G&`;IO1=eBMXU<_VzTN9Eg|iOk@4J6K5^YUQ>jUsYjNt>%_Y)&e4KUL9S4()uP}MX^E|z zG%&Fu_RQ0p`uptAY^=7k2oMb=`2Mn@v+&RN-vVxu&tHL7klbHaN;DsfwX}aDxL)Se z>NNdLhtkT|BsnD&*g0KI(9iQvJcKnXD9=WAw0&Q6p zTW`-*IEdVbqCVQKo1X0=_27O}$i|lyKjhUbz>uGmlcSs%wO-ix3`;#E# zn4KAkLUu=hBZ9%b5!joA5%2fQPwmzy#>@P z01npd8T8c;;S_H_ZI&p(E`b{m5ZxlK&lT}ZlHJ+>LloW_l%)yhqYH_<{c_**;tick zXkS(wdj;@A3Cm=)51PmN{R$SdUk2?joXQnD(bv@nNoBsK?033He&5{qC>`}K@@&oV z>*O;9dN!IIIOK#wEzc}^Zod`xR+Ga3-QNQisO}0K?hEn#>xY8maR)?4vY+rs-xENY zXS?GjMfQTUF1>z`FB`Z6e}uoau6o#3zs7xm{s5i-iWG-Mps>5acAeqQ7^H{(>${aM zSLzGl>rdb@4xngYes}esOshB$rd=0+=!mzy)~3T*86ocRaQzS@*G=3+7l_2vk0w8u zkgj($5vOM5#y{;)s4pK`iVvVQ54x|Eyua1~?a&?Mo;enEs3M7pz$>TI_hVTHu%K|^~p z#o|=hrz0H#O9yJo5&X}NFD*Rnf7BoF1H8VrI1l56>hF#ZdU8Di@)d&uf{~l?Yx0*rJAPf|Ybf3j{G#LnTGKx}{)agc z0bs|!6~>qfEb^>~OM!a`aB9l0T$c$mumHT(sX?$F<=9;V#+$Ql3vhriWgA_Z*hxhA zz_;J5kaOB3%pEveTN;q^7xq{@{~|0jWQW)1T!FbY1lB-#!T(^1xmg7Iw;HoXAafxY@gMm0ZI#tS*{%COrxa`JD{$t_BnjTyF38xy;+t!)t5F5 zKQv1Ve!sQCn-)oF@t9{$sK7UsW(<>M#uJJ=NJQD)bak6-3`dgwbFxe>YhYM0i3Fpp1Nw4Mp6FGAT0w@oFBj*Qb45o&V_>tb2bY zH-A#Pn>X1b6%u+vE;L|Cv7P4!^Lsbg@=IiQHvYCAx=n;7wzE1EG~N)F%$V5zcG^SA3!k6|}*`3!ZVw(Vd-wmz-P2`q|4U_5C*DHyK%mm%s|%-ik+QS$65 z@J#+I>j@+;Z8L3Y0l*NoAu8VAHM}xRK`o~iq8l0NmW)%BpQ4cSdCzL5IVz| ze_Q@Gr;#9hPP64*`&|g~Rsa_F7eEn}iYRdh%xi;u41*_z3>W)bRVOnBXe6Ilgp)k@ zdTaLEHAm}J^m%}-56#>zV8-9yfx|8ZGWj#(&jvITMgE=f&GSwLTh*i>j*m?vRhdAx z!;S$nzH1_3Z8!6wfm-qV`9%K0ZL$#byoHDb{NsvURadz)gI7mJ4%ihLc(0cx9P|M+ zlV9ufydJlKXKJy~>ZSZ8101|byHSa2>!7d2AY>;sPbb)8h@j63g}b+Z!TZ;FxR6EM zSFa<|Rz!)-iqnCR#2sj|Wu;=N)|na%stRX=F2QQ(U$T&j$9x{zr+2z>_(c{wn}6b= z{on0t>_N@1Xc)Q#{=`FF|5&0Z)j3LI0T~jnX9B_o3g2J(&cqC{7m}<@|uZgy*qk zFo7Sfz33m;xW3GeR&{ta=`&dZ9aFx+47a*-YQgsvn1FhyP%SDC&%BaiKcF5;+GdEi z+-u*ikY%Ehj+=hM95*r*SPOI;yu~6bV@7oxImC!DB*d>0R_MFxHkh_6ma-<0JiHK< zUEJK;vMlY#v*Gp<#fD{m6s}O5518>O4FlAHWj9rDhn`}cO~xJgjHKwNBt6gOLnxgL zt{bSI0|n0!3THPYvEa%{TC?}bXxTm^lf^((#-2n>y2#Po%@E(MA#8AwZV4X(wcnZwrZq9l^J^7v%uqSWirWSPc6`P) zU?bdJ1uGh6eArC}L-m?FyP)CLdJ_T?`MOXi)GDUL>$3dH=Oyb4#7!9aYq?o7mDoF) z+V#|wv`aHst5S21-7Hnv^I#f)Bx_vh*S^^98g+t!J8b0FtOBq5{$C zT~k5w#qS!3ai-@x;o_6njXSiRcZ##@?nq5!-DY~p1vU;713x4?YRSEL9KG6wJ8wDn zoR974Ta+l))c}qtH`RKvoaeI;fFp_?a4d&BtI`3#RN=enGDouKS~jzD+xpyS7_XbZz>OAlR=3$fmJ#SAkX zD^{A}C>X_Y&S-Y9`4tikE;ax8aP38Lw(Bq1&DE0B7%p`eoWP{@r<}^97p-Bg?4U3< zQy@s^G!~N0m%;ak)x|Lq6vZ_(Ek^!29@8agdDO3}7A#dcYx;r?@0&HNQ3`&YyI=v9 z!$CP6oYPOz!?b)JUQH{%Ye0QD@tk7mCh}=FbT(E`{JCL*m$;cRWLS>{ zk&bUN&nUfMWgax^kIKQnE zjjdXGgO!b&oTE(~8V+#)Gd>q9S}ZAHRR|XrS@zgQ-CatijkIrtLr{2f%H&i{9AL)B zo#DFR_36biftgHxafdoOlt0(2Cbi4tT+#6FB+?bnS! zA#;F3;-O;KjR0>|PQyk^!5*em6Kb&XSkv6hQ)q4cjNu=-7d6nm(8TYk#d?sh z*>-+`{1oj`<<|5iQ`P;l_V6IRKp_%@gHT;T_snp3vm~rrN5d!_b#<4ZbB7AwlQ`=3 zaVJb_c&($(+lngRJN-davUn9Mfsf^V#%y@EePP{ke=3cs@X0PnKE7+puKro^+5fKi z&JsTF`|gjQUBSL+NAH$!&Ur(#Ke+36oe^WxR;qR)e!fR9_bj8ixm>?Krf&5sMf425w^r($jQMwAXIa)dRy z!1V+mf!f`|dw}#vsQt%i{K<;MV;m7vZ9;GyQMV(-@8+POIT-yycw#+ieYW*4J?MA~ zH^3lantNw8$K({@l6PvD)9?rcJ5aG5L@&{=n@}$Q#7NKp=b?ZYiS~%V&k>SkoWp+% zJ6jxdS+b;mVyBZ<27 zu08nJ_*aZ%BmBAU#&L#*g8yOXI6|N(gXd838jfEL=nW0XPW}2PZ4KrCco1Wb8pnXc zc6(I~XR!)W?0c2^SvJ#+wCNR)Aq!LXwQzo|C)u1j-8?Q`4;Nri>WQPef^fULc1FGO zwI-tcA~9&j`aC-4IZMPO?lJDBuY>;MlQ_;VI=#Ixgi-NLtgsbUu;>*30E#{i=HUjW z1;|rGT!=us2}VY|r6vzk=@Sm60%>7YtV~oBk(*@phooj+rix66mqK9K<0NP~d|Fd_ z<0!RcgL3zHlU-4YiB)-O9(qK16thl&9Pvjw1qI^W;utIDd}bdn9ielwpp8QrmOSq2 zNxMXOe66%c3UNXcE3nCI8CcY;8ezs)_@UyEwr^@Z6OKUSUx1!;1j?Ak|Heq9A^wIL zClLJKYNo1;&cx805LmyU?;&FvFj<=i?E04(b~rTnH>f(4d(gn!krk1o4R`pSXrLhN zYqmEVtFAb@{RuO!cm$Y9t`=#<;-uMM|0~Q$ixPL+gd&loOQ@9-w!u0J`if~fn}co$ zn3MkKbu#JR7WC8UTXsXH2qOkYVrr!V%((J76dhNggf0p`YrTvBVaB%KA?q{Lkc0R} z8?n^~EDTU^fQP{?l-ecaL-30Z3}=G$MynOWp|CMjqBTePueem7AfKk#AjsTF3=E zhh9RToDbdj_78q-m@ghuO)&NhWd%r~_J9}(qN*=G;`3hpUa4QH{a!A`Mz?Y|p-fUP z$x15nZrXRXJot*FmI7*xb<|#fS|j&X-!FPzRl;*)crf_@kPLcd9#dpo{7UGIVIUzOCB&fz zGH4;qPLxA(jH6Hf^C8|XXjCN^bVcd1ZCwcugVPKa4pu%0-3)cV7tJQ8Ajt2mtej6M zc;sq|AOjE#-iAbEZqq{+b8w##$NEeCkSP$uzJ~gjA3*mAmFB#RxU=y^g1-{lZx4^^ z1ETP=$RQBNs__{~VisC+%1^?pw7IaNm*A-mfHFIbtAefcy^5|J`@ZpO^^c>H=gljaN1GvTey)w)jZ) zO!DURn~A5J>+ukR>ImQ!Jp+=@w^(MrG>@BYU6<|;3l`?EfTWYpSL=?d)*q&g_bb~l zr-%tZaoRVvo>RSjs4sbac?ge-;5wx4>nI@xDT;T{Ba<%MnX2RO*F3>yzUn|JGI2zT zh^vV4{7RFJ6Y(WC5M(}T>B4c)AoirI$mP)L_O5z@+^jnf`NDu;-PkFB<|N>F{Pd)) zH52q`td*+h^ z4LjH7;Ug7Ju3+w3#5t8mVA%Iv4?qyfV;?^BeM%jcI0*Q7^41{<(yRvUGSGHG4|U(& zvK6vhwEM92NLqvD?(G5-$|e67>N|@{(@C;GeFh0TpKYUPL(MgdTQ7?E5H#r1evAoR z+(CVd?QIXx(l&9pcCs#xv|)rtYF>Q(o04%AQGs1rPpR9IHRb~!T$$TwSkOAxk(s2+ zf+o#|tm%{3{N2DN!_V~`<%T+()|Q%DODjjOg3EB#HAy9SVxMvprG!VQOnc>2?incr zH9l^9ijRg~7ArYhE3*xeer{(#v2j-QPq8sIyHT;OrEE$j`>4aR%Oy4^izW*LKCa-3 zA20H8mCyFy!N#!a3`P8887(-;6O`QX`^#`zN`unIEMr*%rLoJ1w#6b0V>8X%gnq*x zx=dd9;Vo=@;{J}(G__=rmoLrbc?ucwR;E-2$R!nvpLD4mD4Po5BFJ?k3L1ZdjVY6Q zi!2Zq-!gU1S-*jn(@EYng)Bo_dY?Vbigp6{s zCx2iL?RlZB)e7yO{7C7mqJH?HF|&ZhU0vg~i_`56%BJSbX!_!Ime?RZmjVx{1$#D) zj});~p8K!9TpKd8i(M?v5LNCZ<=XFL85o zcRFLHR~s^)U!O3A0XNrpjgihZuzRiHEU^>+yzyEKZuPOzEs~KVFlpCoO{+J6hVINi zhLJxo-~F-U2+BrBZh7qc;ar2)YU>Z&D&+mM#6L|I;r(&3iw4=D)4nAr*8NO6Y-!4l z#dW)NSd)*GBZ_;FYea43eHhWC-eR09ic&Ee{qtZA(JWokskC&Oy&08S_hINrSpHts zE@_&g^s2m@V|hVdj!#sJ(+CT+B`Sbtth(Mbh6*OMe11#|#cPCsO8c7(xmi6wuES>C z*fSpUDnqmr(`87Z#5RvU>JRoWEU+84a#63~I&b;=P?lA18qWB%%RvW`i`luIjiedi)qO~pzV~fecgFKn)m7z9&iqVP;>M;K zr$16$-E7bIN@%LAy0EiTOvO18(HY)4*ny?&s%pX_b!L;XTs*nO1`M+0D9*pHf4!?X zh=)F?IYq}wUVk_kJF9d!{=rQb?&Lb=Sfmgbe|O}Z(|Wk8tSPminwXGy*zz4Hna^0_ zolZPMH+n%VXv@8)!^Sm3#A02#h@*fD;)A)U*WDO+A+u$-)^MM+=ta64TwRP7?(b?e zCVZL!Nh04^Dk_jkwfE~>dx99kdlFKQH_7H4q9QyRfrDgG^tRsLQ-|7w0*bbI1`}!J zp6r*ta5D(v41Py&ivn|mqK>xMIMsxOyc7(I9_*&ZXDlGn$a;6~d$IC~iGIEExmx>P zulH;uAe006^gH@owQ&nFqC);nt4r#8WwVQ^L7g`qdK-S^Mwc7T6 zV5VK>Ou?0{(2;!=Bx4%B>;@6VGwErEbfUEi7AniDdd^Qmo~j!h-^}`l+Dr`Et)>uk zIk(r>nR+Ux3E1e!lzQ&4TV(tRnjOJ8bX?+ZeVaMv&PRHulwr$(CI<{@AW1~Cl zIA^B+OMCCN?!BkZt-5u;WqwN4thZ*>?;T@2&qq%bY}-Bu(?nrzsfKd}MGj`SO#o5E zIlHt1!6lKB@6&n=c^^lG)cpLzu&JDv#72n6D0U@9o@~N~m-K{#Ae^$KL_|q-i+=xANXjWr4im482w*a3uV!-b8_(xyT3(Q%ErD zeiFR_N`h+h?+U^6adT%+GMfDxH5iG(b{o>$-x_CB=y4U(x4k{O&*bxtLt@?R6(p=}he3B;Zo-`F88Y&v< z+YBiv#<0z#)aGV49i7O%Up;m_8Ye*Na3KKrT;!VN${r{gjuqZTOovCmisfAqSm{Yv z(6ch{`rW53{?|Lk?nC-vFg8xEP)#=@p2aM(u&-DcxX}j|R|P+Dh$4l#-B^VPVXfBL z=;#pr!s0mnQi`AggVBd=X%t{T(O2tkNA7x=Qq0(MVgb*k?wAtQg=50)W(Z_htI29jOjggG_(4vsp}xdJ?+JBp@-UFc**OH6tI&!|2Ux3yyg!kgHvUV#Jn zXjifC#P90Y>rmGt#pkLS3YBlJz@CWDnCp)^gOAIA{1bmk1gRPMr~b~(=bFrinE+ji zw^;MbM5zvz2QACA223R&`j4*NVN)dhT3 zpL>bv_Tn`$fk*EjH^=eyRT~LJ<~Na;t=r$aq8tFvD0PJDKf0p5fq%N9W&&rzCPrlx zvi60_jAgcrl1PniZh)?60=olX`D>SM+Eg|bMW)e|><(>?TuQ+hkNyOfn4@8TO~hX% z9e~`4pI-7gu-dScKAIIY92A!qlN$ZniCRvHEIye+e-Tw#@9GgoWVaN!{kvZCNx7N| zLLW4g@N+fcLh3d-2GsWflzt+=x;CwLUQ=ExRUrVKmrqs7PI+r5>m08P#1NCg8Gqz3pjh;XcNM!&# zH)yE$(>QasGt7J;VQBJEl2!Uq&|lYm5}45#tS$#?6M5m61-&$Dvwqk#L6k35xVnw` znFoPC#77lqVGJ=Zd^&O4KSAxhVVZGQ;J|rAT5&hU%h3%hup+Q|$aSdFCQdV@{Os9R zkETeg(PtP(p7F~)FsHI9p~^OfF4kem#RC(o9Zbz%|Kz>EgCMj>ipuNkTu+Y8|Gi1#co z?)+q0Hl8H6UZ0G%xCikQ!2;aq!MCt!Dvkpa!GyK(RKTfv;TUGWDt_+=d1OdukCr4? z5&H3@47yui*a(CBa12ZN+NaO952@<_a&GJhwp(ZsZkk+K|&1WH`tjVu0&Das0RclijfgZ{qB`AAp`4a+9kffA3Edt_RgD0O9o)J(nPW|E;XgtEu_5 zwQn7yi)1aTFo<2=(Nw^!vngQha6bH5zqGmHnynMwtz9FzRgvx0a_Vm6M zg53%za&Y4dFc(FFR6U-X&f~AQ;J+2AS%A+Ql=r%H?%N9M$@`lpaN7@#jLRAN$<&u4 zLF2jX;i+Vn!WD+%GD#fI-M9%wPd4~r@c7=vx1lkHi%afFsC#cvWAiUBQ1gOG-0dktMIxwN<8uta!gtj3!6aacb*jhsn_jfj=o1gm zA}VVHG6XPOQ|O5lm;ZNX$}ySh_}|Yj4f|KJxv8de9|h6dv_#D0>Qx7+`Mnt_)H6(7 zP;L%affM0~Ji<|`*7$fP^STXEc;U9OdN9SzDhRfFzjk70kE zRFJfCx3gG6((cLPb{&Ow^@*hsNb^3}FnZ{8X~#_HZ<9Ugv8!OpNSHMrbiXP?b^m(! zF>>){UaOZ;UVF1L$->t^Si5XRcsO`tyH20#wmf=2k$S${aAJ;@T}Odg=xL1xsc{nR ze9o*ABkW9*=<7ORsgB8{(dU7}JhHCHPe>bZq_c2C(sMoCw7Q-Xo`$%Q*7=zOqd|{t zl{ILA;EwGkO@#}zXgf%}PpAwG&%*%;#6-s3e)!JQP+E3Up&m0$DE?7g`lv*vee#&0 zqQcP=1`^N_Eqj0_Pzyf7zp)Ir`03U%9f>}yM80jw%vXK0Jt3}#c^lu`fi+yd>2^7t z5zjb@k*~TxdBVJ%uH}IHtQ6EdQp8`kM#{x&UGG+JehE18_rz8J|9!w>9E;$}(2%^2 z4|0)FU%eWtCW?G!r7{G0L>&|z+amPX!hHLLmmC)Yv<7U!W3OK@F6L1~KJz=VamMI^ zj!R>Q?Qe(Xy5V+>g@~f4GukzntxR#;SQuV2THqN>uHx(OA*-ncEq`@H6RtS*F$1zz zSK8*LnnE(2VtL()O{93>PNEsOj;saOJzW53i+QEpD2LmDj&WB#*L^1!4=Po|-!0U@ z683vjexd~Il9H|>`I2bSC#X4qjwlo(ly%8`q+WR~wZXkQUGwN?hKfmQf(fxK@NlYi%v-)rLFL>wKI7%o{o9GH1JMPuaQ>!0>F-)rKg$P^VJ5U>3l zRLQ0C1bB@K#zU1cWSwbsAK_Ff|IIx&^>Ed~{8jqwYp3j(2|-epTSQ-&s8}tTDB9IZ z!Ja9Co5c!AXmY}6+QIyVWF?S`Si@O(Mv-ugtUJ2_G%l6HCT4&w3&L=I`F$9?hAS|0 zXpDZ~*<`}HPU+2%I8v3V%y?p}W7iALPe{RZuEg*&bSz@I;%VQK7$Z&-^D#Alq>$DPx=`FUl<{nxsjXE=T?6FvVc z(7sP{TuH(?>3XTL&5IhpV(B(+>(3^vMM933ewz)tcL zm=eP@DK~*opK6PCv!$V|)KMe*l1>`FM;{P~@#X-QK3N&XDl%kD7{IC1e`XC77Mfb>*pkQadpy67p_#>n zZz~Yjs0~m8fXlsP@L2-b_b!ZbCn?fqO&R6bdLJgy<+Y$_ z>VMI$z|H=F=XOGKk|f|U*%_mWb3q|V(~v)&OT;nGYHDdudPk2thetI=IZ}S>G4GAUq}|sR>SsHp`@Q1xVVTvRPbTWkYGoI+ShJNJLpglK`6}EyA0p8&3RrWUfzcG zMwPt<0sDBK&&`<*;_rJotv^*1kp>w6v0a*+VR0P+&+2Nm&Jfi`6jI(=M?{Ei zhda34Q~vIkJI42sHTG~CS0|+AhM51C(Pb)Hqpu2-DF|uyv$?&JtUfNx`lu;SNItaS{a@bwKL~ zf%;JDCoHHgL-Nwmb^s2NS7Cuvz~n9pkcSd$-583WTadjOif>pHE)B=(v?jc-_3A@` z@R;_GEF)ivA{?B}GD8zG*_M(n+wx*&F;i@I^d4K=z5t22F5>qdRT7GBQxkse*{j5b zdC`)|&-K!Nx7C$Xw@Epxsdw-EW23?1rvRk0_Xn4i(INWC%4 zi!J?GuO?hDSvlNLl3)qHpeJ8HfA3WipAgr+2321My?cor<{zH0uLBL?o_T2u?qn(0YQu+nGAZxeV6zXiG9b6v6LeljgFM#JrnR|oKOAty;|!`ZUE zgQ0Q2w71;`Q!m|^GImZ^=llHyq}>kAtox!DIuL-y=`CH!Z$$EIy^bp4G21go6Q}@| zQ6^`Jx3jI)i!Vq=-SRF1tyt5ktIlvUDQz>`rZ^V&pRbna6?F8hfA~?`RucW%0^dZF zs)f{_R}tTtV%4aoW-Uj*k>=u&;i#SiT8E&BA1~7(roB?IjMz2f8O{3Q&N-NaYdq~= zjH4p%X}wq%4Z1m8EuOjL>lPF{W_HM`@~f@W;+}*js3qlxbGE|JO8iw-d8wiOVyx8Kta^krt_O7VXK**^Y>iY9il<@^0O;;a3gOKPCK|+4 zmgbYFjl4V$=uY)>7*0r9FBFKjRDx zK@Kz;i)X+}neWp&EOiat=Gb_X^}vi2(!=~RX=VX|xVM#qP^dK+SU>ypB0n2$YH};a zS~GU?`vS?Pm%>If_9d!tTMA@mf#47CZ5)}V#nR<>>CFdsnPrA_f*+K@hyyhQFtTe! z4!jDZzrolssj&05u!!I~zr?`k{J>!*5}N5o*d+7mA=uHWeLwrbLf*l)Val|XXX(l9O*9-o_X88)ZF;&U=rR_lu0fM2LjfLn?a!)3g^ ztqFz8FNZJ3IJ`1ZdOJJs_r*Vr+lR~85bj5?7%*?x7-hJ!er&xbNBF?p_D-Dpv1@TW zwjR4qUWDq*X|Jep4Xg0s{7meqQ@lUPV>U#0Z=EUrC3ICqg#3wx|DIxO!7Mxe(QHF2 z6r2d3qe+ItyioiX*|$`uLP7QnII-8-pFs*rSgWe1_vt1K9|U z77Ljp{SpkJc_M;kK$&h8P@>ObOJ}3iM;R>6`ZBY5>mxiydDCpNXTz65Q_~?K4~gpfr~83x%CzJ@b|V zAawb#U(~Y@U!^eyFSSUH0^ly6`o~kXbKu?Mtf!;e^0M}vHlz|8c;q#4dDlDgNJxJ=b6i5L+G?xq?XkOvO)W+|@1(O6RmEJxhgNrPZm$H?DJI2?lWB3z%Fiyv~rq zAv((<8VcVsuK4h@BBdOD8071F#hca{O5*E%S1xx5x9|!^Nqbs}icJU4 z1x;4^f@fioZr~wlzrUH8E&H6^oM|$81@u%cZ$YrX(SSC2pv1T{r(yGSoRc;gJa0+e z%u&hhXzorlRAgvU$%U`5=~e~z!8^`Ao!Rw7{JL+hfBJhfVjXW5^s_cKN;@r3(j{`~rhAjF1GkK(yM z!$?$MZv(Wt&rOd?5uBx0PMSs6$$v$?g&DSE&Rdx&Gw}>6_DF*y-(RexL*C9K6ZFIxq=bT|5W^VN5vD5YDmpKKm}}>3 zHptHe-?X@lc8)GuHAU5ZO67{kj8BQ+tC*!!`T_rJc*=uY24L&D3_IA-hileJq5Vku z0!Ddf_?2>PE8@n&Hg+_h!+T3QqjO3<6EXHdl$8;v8{ve}dlRGB#d3aY;IK6b&E}B4 z=aT`tuWm?HitpX!W{_&XV;)q9jl(Lvk}rg-dJd|hXp6G0U%ABzu6Nj7o9dVZmU<#X zks+q~*{%vwIXd88vNyCyFppno`;wttQdmsPMqTX*+`9Ex@E19Ei~P0g4>|W|y!T&! z|3%L22+sR&q^e+&cW-R_x={s=Y)eDYOwx0 zJ7WN|V-+a-61U04-P#)Mv25OQAnX*oe9vRMRl~pKF{bAIcS`q>HcJ?eZ4;);jew8! zR|ynHX1XQ%?eZ(k$AoQqD8KZN(uu(%RHB+@8Eh?(p{wY0?^x zjQ88r80DW!H#W_~aNC}i8ZCGsek69g`+OWvp+8Sg@@q;Me#MVjsDt4hi)}^FbGz0C zJZrG7m~9Hy6MiOg$a-$!A>wOU>=Lswzz@dki7EAo$U0j{f5(dJ;YX4IyGp%6M(@(T zsSbl>c`)9QYduVI2t$mY#`pCE?K$2K2pPmLaOm&3P1%gHJx8>z;FiTl4>auNOnxAO zd{anM1FDO|T9V6)b?G)RtxhjZ#^Fc7C-%=#3is|wx}+rpFVS6xdL5Aqz+`=1o(X15 zOf6{Jr>wQcJ-wrd@sUYuEP{xo*6!ryaq})TM_7Qej)9o?C5jI07!>Ajt%8b{gg4mc z$65S{j-d>k*x2reQzo1m2{*WF6q1;cgqHn(!p#Nj?S@7F?CmPh(h7^ibYmjTYaiSp zN$eKE#Jy>1pckC}f+2<(?ZA3y4Vw6>w#(-A(k*MaDpivfv32A6)? z6^*RLc2tpTeks*ovC9|G%utbX{Z0{sagAJQV8vnE(-%`w@?<*N1GGX3+g3hVD;;8$ zFk=9(-el6#0LqoSYU}w55@{Y?knEif2PiRSmdiQe@#plPt||olV{Ui8!R4#3#@rG1 z*+^l=>v)l>Tt(9Hi!4H$AL07(3og$>5-DLeKs5q#XT)h>oz5)Y^@&UjRT;PKzVY@= zz26hG?G=bhEDmpY7cjR|{g=7jyr1*&43fXT-N)Qc8ud5~Ft?-m+uZH~Ft<|-!2X!q z!RhJ(O19Hk?083I4ANf`zo+Z6#+DKkPuKHhnyj|r^#bO03zsKJMj)ivTmN=$XLcK* zr7@3ckFwv!S&BR3&$dwzRfzNgLeBV=9f5{&QIv0J0d=>$$QhQ!eionMDI`)w0q2DX zvNmN@5RKAnyZvKsC;BnBTd+i-{O8;b?dw11cKD}T6Mvw&SpONCi}l~2xyS#2=C1t( z&E@<9&6SP$$r#Zj!UoSp=NpKS4@Y5CaAmWwTUMM#XsXX8irBTtMnGQ#m&=F4x%vCf zM+kO3A_1yy*~PPd`&scIWw__P-p9cAUK!-gfkCoM5%0M>7N>_rr&2WIe?W5~v2L|e z%aJQ#v+~q1@kcw6H*wd5<2iY|xzLc|-T4ru=;y0Te}VtLm$&1*pCrC|YURs2r72W= zP+--MnJX`^H&X95E%z2AfU?B@n&4#Us7f~T6wa|lYdja?L+bF05rY>Q7&Vp zODH4`;AZSrS^m}^VplqX6b-%I{@Y>xb+U}Rz&%%K3&xSNwV|8Aoam8g0?B%i?nJkua;AN9t%tt?9pF!#+cUFzptn-SqOzw9@nLF2b~0y zawuD!PMb15{?z)qI}q|&YC5hyJ@cJI=lR#y>k75jvX-yyM87Zj1&rj5nS9Dw8enCF z1bNcH-LJf?tqaxB0?8ROABYis`i*0Fv@h74{Sh4`eAU25T^{J>JCZ=(GuHhQ2!FE} z?rMawf2~QzRn7e8+-}Lip#|3p%Xu^h?~rL|*>#%mHYh?dl5*Hvkk*Tqd)}cwrbewj z&1Y~WI>o+KM{D2A$JwCI5nDDDT^D$l*-P&{bP8n(IZS~ewBM5tKMJz92bv@pH)Cj9 z3&Vn=e)(``ZLP9%bGPTZ>@#lpP->cFfm!dBU+AL&IHybENK7T~$w>S~%TuNncEkQg z0j$EIzfO4~q+l*v#%%IM%dOZ#*gE|cN^*L_Sr`FsXD3T`CX3hd4q$HAnHKWA(LQJ3 zcnvWsPJMVampCLGgsyGZc~bUes#>U~-+9IGyt){VsQD5Es=*nD;1l_3-O&VJP7AiG zs&9cS;;lqzNLAKI3;wY;a{o2;JG;6kt|lTA2)M;}k=}Ho$84O>YkKK29dSy)<^hif zpOX4t#^kELlYa{t9NYN4*ikzjzR9)sN{2PD+v{9%iol;(h#fb7FO=#Y*ECy8zU<6| z+EC1nTx|~DEc_{(a^jogr>|m~JZXo8pbYh-HI0@L&)%AI?n{lj-({-1Ke5IWNbd!p zb9HveanF+Nvp&00J3DamDEpGR)h3CPGlrN+a*EWWQRB^HFeDv?VCx`dB`g)Y8A7*% zJVg%H3(&N57^$_COcc^Pee;|G8@Jd;b;duym-}wq+<0CZxMl{e5ssb8yf`xJCwmd} z?XFI0xACsFyH`L2-2Lx+JCEGLj_tpwx!?K!H>kOg|No-q9{+=ytNH&SHTUBGlA0@B zUGV=3HMi)0Qgd$r)Z7;1Kh)gR{|##H$K3A!gqlkT43e^%>9x_mrq4h1gkL>CNm@%M zcDijoqlAm3#ka|*_fGikON7Z!<$DW}#6qwDIoaBC1$68rby-=E| zfhYT!CRm%}d1=aEcy$G*5(vHT(NQwXuFiqCVXq@IRn~@yC#QMii^85vHzj-_8^f;@ z_p=K*MFZF`=UM}?5D>9Kf?e)d!4^TW-7r1&slVQL9V>wpj@EN>=_MH0p4Jy)Tj5t= zqh+_Lk5QS8u>6|sbb|Bt+yaL*J6sQgDVjWhxOl?tUm%?0grGfCBD0e*(>>ZM1EUQ z%cE?V3rg!D{k=x=dosf*qDU!xvG_NHUNc>UQ~Mv;7|A4EOvjp zW4}EziRR~bczI0Qo1VsdU!2B64EN^*)A7o)S@@|pcp(SbJbZm03S?8W$!2=z2khnN z`grb}{p0QR2+=)N;`Z(x_}^VeVATR*|FKc}>3@Pp5gIw0NC%)}+vx3S<8Ohn!ka>E zK_%Qy=3Pn`tJVZmJ(0{5Z?2APzYVNE7i{-teg-;;<9tv_!kTA460H=Nf@PIj0T? zE4wqB`*oB9oAN<}l|vMsnHBn2S~Eu_!byz(>6OZm!uLtQfohr2=-XFB_8`2a4mF|*}2UEotEPNacBuAks;hEG7{~A&hr(wu{cHVhg*<_PG z<$rBA-e=DdN`T*7-Nsg_}bMh%`+eU0-eF@P}XJNUe|6VhLe(pNyE6!u4#%goiE zM(O&(@C@kih|QGjudk2K1DrT^=>)SHk#WC{(yLH_kvAB5M%hfJqQo$AFk<0=V1>lI z>Ant?>l4kHG#}N*nJwC%DqZ0%akCR>fWBimK-9L5M?_FboT=?w)%AlnY3F*7bV@Hc zg>Z+l5T0!QA&(YanthN*yT}M$I`=_T6XcKnkVjj4KFFi1d$RvR9zFewJgSmHQ1M^L zqbz@sM+?WPG>UAAZwh|V+j~2%zUZ+ANNK)(M<_5QU?iNY*_;Wswj14CmHzUsUw*in z#d$n>k45toFeb<7ix8L7fP=b%AZ>q`1=E)PrgYLAC{=RGAp_sg{Z)Q$fr3ILLJ&)&IW@oF` zA}b$+^k%$Y=-O$mf5s?+d3>W&8^rmdMhv4as4^6>iSz3D$gY{!!=-2>QtDqd8>Zp- z2b)X$fz5T&pARUuNCaSWBk3p8$nGWW%@b8LUA`m@n71D!?gV_oj_#+bbYG(ys|+gY ziZzg3#O|QsjZAL+8s157M@HEM>nLZG64rKUOX+q< z+WD+b;>l6Iz#HWgdB2h}5YU~X)nkrw$}@T~Jiv1#B3zWn>a~GB7OMsvPQ(im`YV?U z_&reIN@me`*nA_$Y1;y>EdVwtxX!ISj5r1A3=Y(EAVad9wKf`RwxVkA?}IeG!X1}T>8H$aG8DHnr}P5S`UT6`iF4cg;g$3 z2tWqot{~psm3wSeF2^gw!!3gPJ<9W^NxXLFyua4)MaBlstVhJ z1zaC^S!!pVEQht=62J=OXW9jk&kqDfURbs)Kj9*52ex~Pj`U1SG_purIP`~_3*hCx z;)K0pq1^n9n!Dc(pys9n<9!!6uK-YU*>?Z~M%bUkwxz|@hwj$y{;6axK?E{m`v{%*ZmQtE@lO#NN1SasQL6K!2z{&ulxf|?qM^l{jtM8^!}X^KUH7*l zbb>+IpCYsyL@ZX>jwdFJ*CMUoQhC{F>FDGva{i;2G@G?8<$GGR(DN{YKS}_dr;vjW zT-7@o3as*n1NY#=fjbIt;5sfKiAw6)++6?-lphL4Z(o%PBG%~t1QNP zzMBSspopWag3K%L^H}WRCJwlBRC}+RrJh=vmqP(zAzy* z8#?k!D5QGEgxQ;ZJ^}L4?0_cn*h()`6{$@&w~kENi3$PlR;y5XWVxtwBv#x!+28z| zmLK^MEs{(=@a`v}jiw3$6>gvgETFSho>JynsYy|ipb55Ys_9mu+i6|LU zd{Yv-j~?{56-CfZV7p1%1V?b=sy)@`C7jK#;$pSoPOmd8CPcjeX72vCX-6x_^6&%K z>QyvO&cd{4Tr4IR0q_M2f|;0Nzh&1`Xd^TJ65?H^+9FMt8J zJ#^6)grB1vV8GST5(XG>Kiz%JeVRd!n>Wv`BvxdT$=Qd|I%;v}2v&;qD5HPIHU^_l z(;6>DG}6y}uKkAr7p%aIKH^`9xs?E7F8K#B*Amo-y~7H{;G+V4s0@p;p{QAe{(KD2 z@!DsovJbgs53&nL@F~j-K)Qo*5bvTH7iS^!pi+kZ{C5; z*DiBO88TghRF(#)K#R|*hzBx*f=kW&)3%N!)c7%83VjfBDcS%N=b`FT6_)S+Ld=as zc&RVj{92&|WjrJOe7c_UVZgPH{fn5Zx7j->gf%UNcrd<9EUDn;~?d_EBYuQ1X-jX8^N;w!ZgLJyx@#pII51x#>2rDUk??eUsh zelcf3+Qt4Im;8$OCr5|p~TxnOech{f^ zc3ebeF-ClCW-*V|jaHEQb5IDT$wz{({PRU6{?~6cnC>e*8gQmE%1dmVKLT8Q{xde9 zq->JTzR!8-eKul%)iX|HMVQVVjRHJSv#g;ls|BR5!6kIkT^FpBtx-}(5RkdNK!1?= zu(bc4Fz=W4VGZLv-O$eqBW4bn{1)>nWI*yAz{E(kbVYzqEE5d+Jq12-*XWZ6C%s-MwlOcK1P*iMnP*|)U6i@46XD3$QNRN;nzvXt0AMb} z9NI%lUd8_J8PW}wTc1Ub4`A+wuGBw)xfK8bE*C(6>m5T={QMU%S9qOf_O4IZi=I-k zofmVxX$5nqhX3cx{i-$!`?>T1yJt0$mz1nMy}IkK?#2_h!8bdDND#_Ji19(sNvS>O z_UD`}$ty%Zp5vg!ErcaJeoU*Fb@);8RbbvCFRi5hSsiLz+QCu8DC(-%@j+*hDX=ZL zPkA%rhAx%TmJDNuv!R-ySh3PL+*47wZZxhaY*cHC-Ko)#{W>c*eW|Fy$+O&QBe(w zd-e3YMKf;txS0d{XFp&=*!9nD{@}02mK?#NN3*!m2(4XKFmMoB)g`lr$eFl`mXMu} zwKOH88}T8p=!}nZ_L~ah{< zm}0*0kz;FGJ8#r-U6N1(x-RzQ5tMNPL1IJr!x42-5g#Ln>?Pcz0=;d0fhrDOg5k|l z&Im)w_Jr$AOMPA%bA`5$Bo7y&B%X8fxv9J1)8vgTQ`+L;^GaR>1FI@z2fsV02-_hB zbb1;D4lk~>;th8_To(_udU}fm))?)Y_JwPBXdqe({G-amN^&Y#;R4)FyLtzb8YL=t zMuIQ?hnF!2&ZnZ>aN_gaF6b4vb{tbwF_K3g2HXjga03ovsd6(5OJUYSTR?mtTDV@U zX5=!(IHJcE$1&jt>Tf(X&78Y2Hl`V8(EhgBQKo2qQ=MfJD2QbkMR1Oj#yyW0#90hn zAvTuIWJs}alYhg;YuNLq^;LGl^Bl9D%J~rG1Dd;qn<;ktR2UZl=xf)m-6vKiSQlsR zyLHtCHzXuRHJiz8iQ$GTsw%i>Vw0cFTl5lO;)m;Um-AqdWCMoS5=yvy20dLDKUY1! z(IoPLeyijilL~f1AwIUIcM@->c34Vx>G)i5nGO%9o{7;HI~qZk-~n0TNN15C;|%LG z;8e)7$*{kfXR>x5Sn|~GI14-<$&#EWPE`Pp0}OAiyuqh(o=fUQ5g1ptkCXZm=>qi#ITz#GZ}T@|S~F*ktf+ zR64q-CjChe6YmRr)Zj-F*2(!5r^91~F3NuRadqdr<5TISHp2T!+kZZ0@7$WWU;h4lY++y z9We7dL0;TXWZH{}){%&<;ngS))Gpv$xgB%}fv z@>6~&h{$s(xz8Pehww}q#+K_sT#f+q+wK@aoM5o#n3Q+^tn4!$KvQyl?%6cws*^(6rdEB~w6jSUVbW$&K8uVuK`O|oG{l2A zCxGGM$8bkxEJxSVv^S3cA9$gc?KoY;k<1C#ViB46HlULj*r9cMOpkqX?LC8wTykQ2 z-v?xG!iu?^--605zJsqJ-J8mLNH^C-I>p#4C>rtO!Hdnxd7aemhuq-b_s9IeW z9DNdwOTGnfEol0x4D|Wx1_LsD%cDb~3c)Va=9UDVB=FVXLdSO1Bc z+bjaKEKl}kp;YxWN6+X3+3qNp!mze)->l%btBL10dE?j|;9m2d{0L5{isSPJph5w? zzk>qFOM!x+0YLyk0X`E0eWLy<^c#@jtC9at!wB1-L;u4tvd0$MVM{{_t@ z(S@{wYmWb~89wHJ&+wTq>5(3xiKvJrI)d`Oal(6%)NFj$az1!ag8BR*x6!r}N3kQ# z;^#-PrOo0SN3lOz5}ucO0q$GdnGg4^9tW3xHIDY&HZ%yNxq(HKAtm|1KpJme<7U=uP1g-CiINVu@{7AbF^LJGlWvM8_=xC(gY348d+mgSNqW$M<@B?-B zOL}3`UoA`nQeyv>;X|I@5y$vMr6m0^VF{Fr;nAxCb~w9L%g3kmU%2egV-@i7=0CjVaV9 z5;CaW+1QJES9b^^yQVa0T}j8q^K);uD-@L56OW@4@f<<;n-t#8_*Ya&2oJjjc>Ua&GnrW?vB&_( z+!6pXSLHd~{pS+XmajEG(3le0bi+f8K=UHXvCxb&ymIRe&!nw90zQlo6J7K?hncS# z2=B=fOO~YSe!&dJqP9mIcg%twj4sD%_RiT&soyTkGDQZwoKqexNy*|%zMuFVt5^En zHrM!45|pgqWs$RN4V9tk=!1@^7YVFdYmNO6LYw;v%?|%~eO8;oS;nC;E*@g?UUf`J zCs4^+{}1(TzAn+xm-QjRqQb8u!o_IpJ?2pZ#sXaPv5X|Wks4tE;7SIR$=QD9RsG*XNAvz}N# z19GMW4<^rnPH{i2AzS4rC)_o~P|L+K6H}*+*D@x6`nI&bMth+m`WO7oGzfz-+R(19 zzYkUOTEMQg#>sPget{}|KrobEK9B+ge&_51YO8B`|1x3=6TYy&O+=KKg*HU&hyC_y zcdPf0{WgEs#qkrS`=%sgOxU~r>i|&JBG}8ba-wIE>)X4(1<91i~V>6;8sg~1Q{ zx!z=mGghoh1%tqJSS2?9yJD7Krv?3c_o|5-IesT3(KCs&4_B905j1r1q8|5TNNJf8WADrw;XVU z8bFX=1VMpF_^l2QB0r&lyUHqIV)C-e^=Oy;Xk;^0RgG zxt1FBC&TDsosa}TVN6%#FVGYI1o_&4AYV^MNP6oN+T0qg0)f3sM|ZV24S_B+8Y&$; z>?6*p&6c>E;fao{lQR8%7AtUfyEz!>2kS_}e^85b;`DU$vAV1`w>%0DN z`PeFgpcnDX${lnuxx8aGRXXwKOcI~z^M`x=awRtW7KL+u;$io4^^=7kcS2v#S-)eJ ze(v4E7C7$^i=ol^fjj#`cD1=aqkT(xjB<}o0JP{<6!e>tXVYRCfkv}C3;gVAV5u9{ zp70G+ai8_l0?-LeOMc%mZ(XUq7C}pTf7B#?nc6eq<$!G83D(E#8`Vc3^$e2o z?xxgP8Z`AhN55?|F*b1*z5lgn&v93SHSR{8b2j)T?Y5YbLK<@?RRac{h+rOaDEgRg z2R{w#FrR0{Bw?qN@HUIc;33ZJcG|ekp47vbpt@>uY<&{3GB$nQ&pa|!!iAICl{l7J zw;IS~itCU5R&v={%S)6Y%FI6bSV;9jKyvv&5X}srzx@Kx-x53Ry1;e>lAk}g=Zgh@ zcM;ulDE`TrT@Iv{q0utkNlPzAS(5{|JV>XLx;d*iIab}VCJxZwj?e6=NAnI{+V_Fl zpH2C3T9xb&Yf^IGXRaQh@(+%|*kb+k<3qTrZA`#U2{=t*rptk{i6Z}Ar$R^?TNey# zRLPwGvn;RRj&gMcmkT|2DMy{8gQA5uCW_ujA^nCq=9}m3?=g@nx?Y+IG-;V~58_qgCCj zs(K>Vo?&by&qJ%3e#$bAe_=dMGLdcm9n_1zau8~cn%~Tu@nrd(w#qbf$of0(Rm!<< zO0a#VtO+dLLSCgYI!AG zt|U@C1ojS7vD&cC^!&RtpVYlSj~bfAPD6SXgM9BbUqc;ghmVevWbCYU_LD2|8rG!0 zzO{#V1$>=H)^!WKO@k(5g9u_3meuFY9(!2&Fr9?(8_XAHia%++ z++5i=*%&tLN#2$LbIaHhuneD>c{+{Gzfj?SIB;*`Tad;84&2?+OrUS=0lsK8=(+pR z{hxo7Kt{JWU1QM7B5;p>a`Ir#eEQ3Q8OkqzAw`U}XJS^0;0@WuNi==S6 zAH; z&qpozo>^jO$9rtm86g;7^+*g~DsN+kHN0aqK2N>l-eg9D<>c3bjA?|`kO#=D@cFlr z`lJsaiI=sjK2^v9ljN*+{FUa9x#Q{X?h&ge3OD-vao`&HV7IQnDa1vJf3;bfFzPoJ zA!5cLN7M3YfG(CkJ|Q*MCge>HZd^#hNmhy&rWPBlJ^Qw`rg2V%tMN*nE7X!LTgJlR zu*||eHePok{@VN4almN7_T#qDy1Tva%Z?&p=WAKUiUBe==I25`;I_O{tv?Rj30-VG zX7Rv34qVoUdz41-(GpRc3>=tlV2{~ZXr3TSu3%(QG)pb{+!HY1Jm_SioJYS82X3@) zCBT7;e-vB&>%)ONOb(zgfuGNML~53?ZG+S!8fFlE-vY^oaKW^vVAxt58U5XwY0swD zoTU*;Qs7FJOLlhwF1-Hi4Sh$$fUt;HDuAU+(P-G;1?Ci0eH1=pncB3MYm-PpL#a@w z*{I<5VHip5o5ReN!|7J>nLM>Ru9>Fv@#1?tyBXEZk$cni=5q_=`=IAC!bCl7R=2z^ z*qtReGk|n-PA%syhQQt$?;SWmoOZr;o+5gFg!w-IHq0lH?u>{A0Rpms`Ij@v)L7pL zAYx=={aYRiu!zD5Y(btA!gZEhlglU;nE5fR&ot*<@ChU(sh1i-$7harc_-GacA!UR zKuYCJ2#1rHZT=uEg1VnjuMTGmuNFe9^)HXaY-f9VytZl*@^dO236%%eEI@5Ie!ILW zSr<+>p#Zw*D~6O=rgD)j!O~1;kvLDtNe(>)5t!r?Hd9YSh@a)y8O&hK+5f zv8~3o&BiwWmG;Gl_xtzZKG|m-qo>bUBWulj&g-oYMJ_yPfny%|!69*7su~2Neo$g_ zy?jAma#*v-6lk{lT$Q1L2be{x2J1&?Jv4!@ig=`?3p1b(HJB(-6`ws@$SS(HH^%LG z>ZWnXAzaYe%~`E?0#TiVI$PUhB6DPM9iE+M6i}QU2#<;+t~{T5SjN*|#Hu!|+5gfC zbd+bd#Tj*5$5pS(4ViLl4DjR`*AZmJTjZ6J7#AoNhR~2z!>)z1AWWn z1?m3{L`BYp*^K+7PR6*;_#jp~1El<|(k%@7Ny)ZI)C13Hl5(T~eW;&#L%WcZXbjd1 zQ#b(|yc+yux;zts){@lA3sP?|e`6sH>@Ma6+UW{1E=>n0yh67+S$-aY4(7xk=kwOg zQ_+~$cYqiRA>=pa+ZPFMmw z-iKq00FcA4!xC9!nmMF@JYLVY$7^Xm)%rKgC%VzF1HgP-SJ}7@i|UQojn;pM`AChV z7;KzwSmHx)3;uvh6sD12`=fD|>}q014}Vo*d0t>Jp0FHZ8ZO-04xJew))X)hWzb0v zoVN{J8PXo%Ne3Ki>}ZuK34c43E+Exp$;4$U(y#vQCZXWWr+IB46%-Ne=YGwkOkJX( z#9D1~zb;Y878bscW6&6iM%SX%iseO_8+y+y05))~*I3iQX?y8mhgS4l>;nFP`A-TH zicI@&FdybDC;Au6H~0l6i~B5CNNn#%rA^~gGyl&kXX6op4_ zx}^)hC-~ddO_j)<&Br2loc6Gr>4fgq_Jq_<0L*6{I5sxWamdb6gh}SN&U?3A3M3jy z04(xJKF!Dbedb;ML6tDu+uLRP^>(}F>1MhkDWQ5rtKhbj---VR%r6JP{On&a|E+C? zablF8{mP_#xfubzC+Q0Ic8L;E?jtrorY=im1xW#W^6L`Calc+f>aRaSK#UWB|Dh$wv4=mjD9oT2;jkl?*7OBrry=A6iS+5e#Rwt?Yi1w-_NBospxg5;Yj*dIc;Z*998fIp1{nGd z1?#o`T~J@l#(nMeatm=!zjk~@EZ74E78g56N19Hj#pbJ$FHY zAPeH&g?S45W*io9TItLQEYBIvrp!DX9=3tpoi1TmQzB>n%LFb=sS?nSnrR$lP{MuW zz~DpC+dU)?Gsc-n0}B~cE)dozlHqTcU`FK?(^-73}>_eAzva2Amj)BCFG+J z{Uzidyb1Y&?I7#)XQM{;T}b6vU#^{+m?LgS4V}A+O8o3wD0>u7!+dpFF5!qOm6o1~ z(H`W|4VG&#XR4vF=hIXZcdg`5A4^L<}VAa9F`29Q8h&bsOXn5bl5UD*bf(yJfLcc_VZ z6Qgc1OfJ$fC^GtYRIYk7gQC>=Fmr_2>Y7oe%IY{AeqF8i3F zAR^5nZ?z(_ei;j9F+Uag+UR02)2bvk|cT_ ztPFFJ%9RK}^Z9EKIvD2eda=_dZRSDRbR)3a5HFd(r+bppK+ngjww+LX{Ah*E3uIMZ zvk|x4i6T0}18ABp?}TNj4Jfeq1qWSbc$wCt3dg>Z7(#yUG3%YTM~U>(CyyYO%>8Qs z*9|hidpw%V1Jg;FL5SdsjA~Z^PtOz_qy2TVb1%LxSz|G4hrLf+U2%~YHSLXpQRsy^ z|3F%w80-5CT;;LAS+cT?JG!bp)-Pf{TF5-5(4jaK%2Oo@`B~0orp^Ye;LQmW%YXsg zNb-Ljz-?a`dmF$N{WXC5?ri{<7P_YiFn}xJ$Hfi6`SL{U|2}{_WQOqpZ=GZDiuM~@ z1);|n^w(blxHvvS@ErVehTDJvT(N%{z+IMtt?uXqYX3EWyMWxIi}&W^Lq`(ZN9Gns zel>tVi0=@hy&sIR1>k%l22@rHviP7d>b~?1RhD6zvlscd0o(_Z+hdFe0M6G8b^Kz) z)cJb=cf{pw0GI#!9bf=gI7O5y+n-Yyfb;t`ngf5XQNB1}v=Q5bROIBY3lOn}^pJ%= zzOv~Hnt5wQGz%y2ynD}fhkxFtKQtN9uCskLB$83PG&L*N*^YMM`&=0LN{y{L1HW7z z8+D)2e}|4b&4%P9=d#-q$hjQ{p!u!CKywY>G$;VF&&dyG5bnXg804IbrPDxV>x5OD z^HTj)>Y_D2<73|#St#R=6WlsUcIkHIY44O#7#+?py|@lFj^g0fER{BOI^%n+Amf7b z_3r)v>#>xx?tKrMNiI)6y zrzLmJfB`2Qo5wsg=Mi3eBNN-KMSeO4TNC}p^J6=*-Z%UGW#s4UQ;ZAbt&eqlRfurw zxUU_MP;ev7WwL;Qdkp@GM1OlUZLL^yCfWVAfSZDL8TmmDD4#N~E&`Wkd(eB(f96c94 zd=yO@9Q<%HxHp$pw+C3jMdg{su1CMp(tAk8GdAJ8obWcyd%VA~H$ns~;JRNfI8hf0 zi|#)?+Xg%ph@6xz@0Ynt>m&~HWUO5ca4q;X<>O(9dRNTA*km;>q~lKEaAlN=pS_1N z_!R9>%;^-kXx2w4H?`%HF+fg~WQV&N+DI4Y5qGc?vN+P$rK9`JNg(8N(dqodi`KCJ zd_MbTueAoMykSG#p6@O3NA)8UJ=+w>5j_wulh&)lU@bK_r7fTrZ-e8^$qWj zB@_;8IBn4aSol^`s|K)d64PqZqfI}KBQo%m+13+0zvyMCTPhexb=*66cno*J7W6jD z%ejXdq{^hZv^OJ73#Kt@ibcUz8&bh!SIGJ;$b($bBmx#4a*4PX zC1@%LOtz+A`KiEi@neaxr8j-LN^{dUY2<%xWV9msS6pf$EJk>uwWe~7qn=?;A!r%?vRs8jww%p*5*CEKb$7Ufd8I(Xg7N(={on^UM>rDu0?Zu5#J+`dI^U zZXuAb6ZaDasDso`SCw9g3DFMjzT%*P5fY@eqYjC zCU}DhNi_Lm!-+9<@vgy|UNlfdXE4yW6(b?mcu`ZWw4HMgb%_W*a)f3!$g3V8ivUY! z9`?1Ejn6+tg$ygnu_$0oZ^#@!v5E7u5kqmQ=3jcupY&Hz4Bhz**+5g>a%*nXxH5~z zMKKO?3Q|GR;+bg58pt^9StCB`GcU)a4MfBiFd&`J{Gb|d4eh%fu;I}(qiLlFuAK#z z(XcvUNIG`oGlf8)6loa=`W^=jm&6x>vSI^DJ5>u>TwT4Q$i;6#*+3SnY%;a)w0RtH zqj9Vl+TxJ%UJY~90=+NB+3aZP$XNOWA?74L1Wo(Mc9)3hnpC)+A)c}V92VCWD+8IKsY1$@%!oB5L(l%bW? zYRJv3sOh_PFt%1b$YNer&53NxXx>>6jV_2ygYPW;|P%LakZ z`abO3)EA2J91gIwEi>^-oJNS)p|z)jQGn{AV7=?5@QV+D9Z&Y zrLO@({#DcTcS$HU6~;Kj1ht_HWkA5J@6yx5@NnG%WvSGAxazmtvny9aO^K*)bm zWfTzpL&DGOZvPJm=LW8?J)n2L482o$tObL>o;Z{aJCp@Pd#C*i~fWOLwXA5 z2W0%L74NSiL$eGzA#QgrL5ERn54>eILsthvzejL^cAfuq1b0mIUq)~<39#q%BtQR~ zln<##0IJuH1IgFxUW5**VR0=O`M#{|3m>GQHwT7_lf5DA-%`FyZHJxUGSdo~w$N`W zKUN&}9!jOMjL>Zsk8DQCv&Lw)!{Hl(6MBymR(uY(QFYea!qeH24}uvxuU;yBb@Ga}kbg z_-*AI{2Ia4c(d|NmV)EFj3pu{7SWuJE%%=*1MeZ6E`jCCWF531Uy=9nlR=cAddqxi zTqAO@F&6a&g`x8Ox2{HT-XhS)bEK_-brP5NKo9qJ3uY4bG}g?c--poat>CNCo#J0 zC4UhuE7^zUf_BhGnT0p&L^+ud(}2np90-k<{V^z68}*I(`b(~b`O1$7Pp6>J7h*%U zSO|fB;3H!Pzy-7waQhq4$D$C+^NFXH)Ie-SY}{951YAI8VSa@je-^?ytt#k#DOk7+ zAa;iBMYbnXXCcXj>yC?0TOBy-bgu-fmC-AY$6^R0Cu~ku{Wfm7`b>@U%!=oMKSppZp{^%Nw>))UIcn_u$-;m&e54Z$)0ieGraz_B0{qJefYP;0FjDKEAL|(NJh@-BwbV#Pd+>E$nW0`W`5Zl zm)8(}KE|cBrCAwDFUzOwXwIEIZNm@-`TTx(4X_6+O(}C)h4y9TL(0RCaryXWlLIH7 zBTN{6PUVFK@P{n!+H@hq_-mGr7?;rPP7p_S} z;~2sclr8<*r+lYB%MqwHwan%Cvx2{r9@;#h%0SnD!4+6vda-^;9%E%)kl_er|@j*K^z0ctV*?RM=v-9mM+tKSS`DZiU?C3u1K} zP&qBx+UArDA_l>etu2I(*SxGOxt*eCjaK1d1Sc}s{;4+yd#G%#xiz+Ig{!;t3~HaB$})*alJsV! z=Hy3XCQ|WXu|@ZvUx-SdcI8`3jDmGcPIq%6meQJUE-7;t%5+YcP^M}0Q+VvRR(^t! zmd)dxG_0<_>>Z?LsiT`K14=kluNm@>#@I4sk`OO8h%a>U=GAf*(bXz**NAe(Q0Q=( zA0(pJcv(itpC(^4Ep}SsGCtYwm#wq}=ah1Z&l34Gy%-WU_Wm{$D_-udzH^h> zimL+(tt2YMFOTTHjPK&AlT67kN)`CPf8m}tD!XNyax{VSq$LqXgU_l5%o z0*d|V1FCiCX?ZSw45|f#jGvnBVd9_yfr;U0H~Fs(TnUQmSoLoafDPOb@g)_tL%PqC zfDK$uppUwzTzOjZ?39c$X}ORwMyDb=j0xt9DkL9V5q}!+IOceQOGLZ7qFZi%7HC8w zi281T+jrHtHhTGt#t3y&sKjdfy@EDZPK^Y58zy0T6a-Oa>LuUP0LWC+0vq&4X->-y zwA6(r&0iC^yCRh0?hl)z&f>kJ=7QK!ExjcT_&DmTkLek-9a%IMIh!6AGyG$>6u&lb znXuwu8ru%;NS1WXrPg!+8@OX<(W=!uElB2kDWe{$6I0+iR*tK2Q!tSUph1*_z9)dc zo^>`1i)Ch~#;vcnhbr*E7BXx4F)V{9UHX+SoauqxI5g-a8-J38)oAMI$ycRvDQ$5h zt{~0%*eyetdXQD*zORY)bG&sJvd7{lgzeMwRNM}4jR-NrW@OPMkVY8(aW22?9W4E~KFroev-4*Pk3wA2jkToot>m0V+}XW_Uho_ zetVvIgKUF_c|%VB1Kb6-elhfQwFC$){n8NV$ zB7Es6@x&>qip ztmCLH!$Ds&3vW6)k46Ks3g`Pk1E5H`r8%v-j>Vqyx;~UfwR{KSIQc|??suRyV&9KH zNUQ0#OmsUIl^&7n;3{jalDOpMKz=4#$+)1D#i***40+}}I^W{Bz$L`2FRrDb;&Y}P zhoY&uGu{_)6QE&D4tfNkIL@OjF05-V>)Od}X%FLT{jOCOdTs5{z`E*a7)?r)gf%gv zeS4jRMe@OI{+KadhOC&FqNF4C6!F>$&9%GhelYs+m=lj;z=Ed_@d6-|X^fZVM{Y-8ns3kVodlXlXYVwu1>>i@fFHM(>gtb~DwqE05KKAp$x3 zM|v)nBS=^vQwEAahW%!|fc$yLAdll}gPEfjjs*6Wt3E=E|$$yhJh<4uXCh0@Ucl=Nm!v;iq50t@~3P>P5g53Wr+Ols7-QMsLs*;(N=GImjtjV97a7xczFoxwCFzrpl`Alr?bm z+xXtqxhicRw}OUJew2|&_Dx*+4Y856G3h;3$-+1vAeymV4!?jgMZWv{Hx0k;@H0Te z5C0DhzjnMJXzlwiau1O2|7H5NAcKnl4cs28<>CEW;aX?NQU-#}x49)!0J(Pokb6jo zEAY*oYEU<~$J-2nJ^h07xqpt7L0b)i|4);d{Xf~K-^u^e@c*BNkFQn83K(|!R}KI5 z;{S$*pP3-L^gkaj$A3Ovkkj9f7a=nL?}o%zScyUDj5gs?n;D3zO@E1)pktqJL~H?mXe6$Z;y70d7@;;L$Mi^;!M$AeDC?nly_oomtzdTh|n>DxDk25(m< zZ{+?Y_uY2wf028`KghlH`ujZn-&ZGKzpqXjh5m!w|JLw50UExWo+g0YTm2^YM;`#> z{uV&)TL(Wd{uj9iG$j59xo@}!Y>)l7T0&2Kef2-d{jX2nH?<^(8^epx{6#pHc0}5S z&5~$)^#B>#_lWrM!lB0?9*hYXgsk1mNS6n1D5cD!}VbILU~5-efbdn3UNpZFadpMJexTjOsjec(+j>zP@)!3_#X9bYux!g5l*@99wHDiwD|!W+U1Hoo^PWYc()f6l>IeK(F=1f z$CoYsK#_K_O@YAf7BLIJL|GiqeK|f}Ad#RyMwkb^&`Ljr2R(P{4@fXPi{Rqs^psR& zih&h9Rt`=NAJUqGh;^1-SJJaDh_dUF=**j?Bwu-y%I6&i25`sx)v5|lfOp?MG^ueD_biPvI;5gY3?boA4KCD{nU?`sQ zTIj-BE1CyVcHCBY*QTAurF!E=k*w*TrJKL+pP z1>S-EJEh-XfYdv+-}_fezZa0w2e|qWUIT9_eHodb&GLIGI?ydD(yZd4rx6jzowv-& z?Y~p{$AoVweYp+PK!JpJV^E>l zJX}mqtB_cv_T3ohK=5G8kmb~}G*uvO(BbOD-ydJpjMa{(T{AetGpSr?HIAf;c2 z|Mf~c$#-iY9Hw#oc7NSCid4`7eX*9ef(pKWDpsjrBT|F@Jrtk#mycLT0; zRH|r^oiYSG4km>YL6|}nUNbx&^^)@%7GCn!OnBaMtSMeZ6V#7Ve4ePCjw3v!ArQMe7>q;YYda? zzQn~eZM5e3O~d!l`>o-B2Xyq4-o1P4=~6kjD`Ku5ac-??;Wy-=eSH; z-dHJOse?*)q26rj2r_TR^cfftDY*)riBx&%@%o(CW>o~S9g%X6odyU&O-f{5pFx7n zME73f*3)bhJWXTdmPK-Br4ZNm^Td{{M#5< z2zA>iF%SAL4}Wm7w8hH84X#xQ z%~6LuQuKIa+udIHII#AoAj+iW9MZ|XMm3$kaeG$28acQ(ZjYAAD*YF?fA=T1M+b2G z>@G6jmp{1ut>2UGW%_?|`%N5OZ~(Ulj^cmg_D;XJ{dk>&N9&oIwu?d0OmYal=27t8 zTuPn!H&Fh0K5UVGrSV8g=x=lJ+`otVgtlQ7Y(n923* zGkKq!=+aglsKbXkeN}UOjC;KXrHhC6_LH8T?`gL^>Ik}EJ30JfBC+p<2&fHHc+&Ix zh&fPU1>cp~a&dew2ws=`C}1hsYW3~_u}Oapmh=Obnu)9T=ufZh(NaK2KNZr_c_@_9 zav3l_&T()h-bfUP0-Oh8w@FWe#f7^V!vh!}M+J!A<5`gDrVWE|1^-W zJ5(2M`gDZFdI!-S`n(_kbTz0dWI3E3vE&q0a_@O?Vy!Qe3ftk;0^EBhL11Yae2FXZ zj3Q)2dR|*85})Y$2JQs_;NIXNaNpg{H5S3YO%>>1WnhCT`rCpi9#=tftj$bPtwIf* z>n&`39c3KrQSapJwfJK4a=JNfws^@R4tP}CbZ}9J+ZRzz(m%(?)5(^rY*T8}Xcywy ztbF{B1|0dcqmZibTaUG3Q)|JD0l#^+@`TinPFR{st%L@O3%R-mdGOhP19bHB>rY4~ z_qtr1vUzEeqyXdN-^Yv=Tx51XcFis{nSGd$S6f4^T+YVK<=rtgs=#tp8BX{21J6%@ zQnWGOsgQ$;4&{Y5OfwmttRNCih+ zW`)MpQweFvanYACNP=bO#{}Y5-otIWmGncv_;}xt8b9^VQC4kr&}+Ihu|pA#;en9s z*d7I)xAF14JiTvK>^+S5r7S2ByitpWf=aY6{T)rqZJ?Mz%CXi zA!<^X5@d6FaV_2hq8O>fq35`!ofknX zOOn@%Gu55KC2Ud^U?{L~u4Ri>5)V7TUD)-K1c&!Quoo}hhJ}B6uh0bY0tMaA)VczB z=`o8plI5Y|@)IyfICo^)h#g-VClmJE$Ig5oa`P{xrKaPH7E|#@PIW2%WN1E0wdE29 zfFEgOS69k+P1<&zre1hm-Ihi?;!hm?kz7u0j+zzPuoZcY7+E}(etKB+lyE58l$zDs z&eaHpNh7dm;3Iy$sZoZ^;m^|^-TuL$ysAr3v(4MM*K0(|x*4@rIAK)0+D<1bse5EO zyaz@}MA4Ct$@n!n%9V0QUFD}316=^MeZ`#fIQqxJ?T87@BrV-9rc3b8iw5FM9yr4? zaTOk1!u)wCUlMEcFRiAdL=})lJvu}SfY2ToRdJGa~Z@#D}9_F0i}fnG(yaFFDy(gDsCRxRW4bIVby7Dg*wb zP6wpwxEYrIVP6LMM)zlxcD@grV32u;B=)YNC-`@UHw}OCP?4IFSWlrTHbPsEK2%kx zP=#*p@+`bGpjcAt5W`w4Z8I5SF1PRk{Lbs=?WS(+9o)Th!qp+ezCX%qlk~&yf4}}@ z*iVNV#|fc(S^P-d?sR#$)>*c4SsTjHxN04n*+Y-ew)?qhsk3#?d+5mzkv5qB74o0H zD}m8c#$Eg`a{ud#{x5PrSn1{3{fr31^@EX{&&puR{u?Nm8R+q2s6RfL3sR`pb18`A zier=M^3+zvvmGn5ypghJTwKz%@%z_j!o1U32NuZ{rcXA8y5lZGa987YppT8M>e6yD z&2c6cdWAYziDSouGE1*_58mGQ?i1Bjx!@*{=H*|ne%8epDOpJ+!x!M7 zkLE}y`pCQVNH5St6~cJ#u%b__XaRzyt3b{I;9xaw{vuuo`)MNz8Nxr-NG39bNmfai zGlbnxKfEjfA(FBHrKu#|SwIk=;-1fJdjzKg+2xwNMaxux0T+~Ag*J9CU&QogK|3kK zGQ={G1z2UiF`ZCtI6g*$wJtps^m!Dzl_z;O^O+>B_Qit_Ren`B(MewUNkLet&7uu; z9cl}qZp}u<%%|7KB!SQ2R^k7u&N{xoEObGLO?2D(*g*1w|I;*}rvHBHcTN8??UW5r z(?=E-SeJ$RyQYsw@>bJN+KscXe5>gLd4me>??T4(;QKe~6Fm&=2XdZ3ew)EBIEU%B z*M$r9j0Alx1eo~K{ct}EWJk4i2iMG8X`%Hb3~JJx`4P=Lt0I)=>Uldr)Z`pF*R!kkRm9VEd- zf4ym35kzWM_l;xkGPkX?Y7q3{$^o5;n-FIPN3b4wK0)j|LLDeKA0`g^p0gz*qn-2t zIc!RlBxtoHL(rM_7!4kTUg=cFVs3zM5JB2X=D*vAi0M=Ki1 z=RLAA>-g*0Zm1jvU?YVE5KX8Q^j)&mZ1a}QHs{~spUi}CeQ9Q|Nyk!y%%7)o?xEdrn;*@XuWSFo5`ODi>}6 z?6f0W9t8UtSp(T6F;MgIjDlh#B70T1Tt&THv6Gh7VLJ53bilpsoxG~l`^Z<48TOO` zz3$;EMV3dY4Z2`tZN0_0$wx!bOZdGT&`dhtYP#?jC?`!hU}7+jIlnlbp=dPFn=Jou zJ+$!bZEKEv<0LlV=|cCo|z9sX!_$8 z`U`&9CW-tbkb3D`2Z|tp9cPN}H?+ZUyh*EoqQ21v_w7vQpXeS$?{b#>UbM_=4;lyB zP8){}zQP}!GpDp#1UuUgyAQks(tu_JZ>(Gs)?5F&9mjb5QN0yl6FPQJU;KCBLySmhL0qj2c zjooYD6czv#{Q!fY!_=Jyn+{l|G7E_~T9r6~KPDb%@lvA{mGBqp_f;Hnu>8gDr|}{@ zV#ss^IIzDLy|)M;6h*zDDm|c)2DuK+KQJ}(?VstixzK@e6oqinz1(%rgOllgrBgV2 zG=TFN~^$AaslLVGT4tJ5St6P69slL1?8%~%4k`>7;W(AHg*AKPH@qtRzp zbsvbso?vDH?A}6n&$k5FQ0b1Em=C`&Zm)RoaKGkWcv*L<%>Hwq~NuV`XBHfatHwL zeVe!(um6De0-Z)L(;_B_R?yrNby9bmkISoHi#jf0BkCKGA-!@$3G2&GU@AMiWVSn< z;dgkPk}W$YL0?Oc$7v%Ti-;jVAIP_z08_1$*GdZo92-Q#u49jsrw|_;RQbFwDB~q3T??e0FqQj7k~$MjRyB0ni-^ zqx8yjpKw?mEOZuQUTiU8Mky*61MDs(<+7)4ZS^2a(`p!(OVAPRl6?s_idd3}xab`c zVCVoGyWP?lCi|NP%HXn}hb$iEGSx~Mbl}0^4++lB>z@@JsjVkui|u6Qk8FHZGN)t9 z*}0e>+-*rR96b9fMBp11hc`WuwIqov{q@;(5~`i_gJUL=F+B8Z_lu2%7`J?~upbg1 zqyyN_O9eRY&2Lc%FP!Ugssj$8F4BfBy&FUEoY0T0eZb0Jtv z^;n7?iw@g0Ziu1Q*_VUOB;w3|5!(PND6c@d4;bd8JI~rdxCCN5u{xhl#av`^zne4S zt2NShRQ2?%bn7t4VGn7RdA)a7v5+=g7bQEAFv>JcK|)#@~#^G10Z?el8DI8jIRC5WL&?NAsU zdknhlA_{SGTGEr+!9(U%mx(56qRXkqlW@ zBxdalmiNQ{{Mx(8h_q80oBXPrL}b&zv8@r$QzobYPP7d^F_Rd2Rr6*})8QgJa6< zABm%==yW8U$9YM&6lykZOowbI*QiMS(qpp{xIwEzp-T=+L`Z?BJX5aYb{T&b$tVAzNM5uUM)&wvk^JOF5lr)~ zNDd{ma0Y=8H6t1{BGi1OP?yDo{X?T>q^|-exL7DO`5Ori1Wzk=$q+@2yB~ z^{Ys(`m0Fp@m3@U08v1ZJoR6SlBjnzpZD8f!9Df3k z(+`l=ylHu_&l!qwJ5X=47gY){@FxH{ee>_TJ@{aIlJ&n(D8j!;%;2{lz_n#x8~+yY z*8l?kRzp(9h(%jzx}9>%^FIpsyUQH;|MT&3{Wr&l{_ib_f8+Q^e{+03JQ3uhL;%M} z4=EEy`^E8H0=(M1nl-XJxJg(PsRmT``sv&nUZ3`DGIo>Rwji9!_hEKM_t6Zc9Vx!H zVx;02&-7|5kyk8QaTLW*f}nTeo$!s`kuQskqX8bz zRoI?YKYUxy5HVFckRN{U1X5gTc(P%+1yHgqi0^mceUmo>KSl1%zy~z-vEQ2d|3?G= z^S>MT;C~wU@Bh)jH~8DY_b4@^PIQW!tI!9(Q;@{N@|%&_fPvGVi~Wt7=GC7C}pFs!PpEYTAmkt=RG z#npG<{ZxI`DrVCYj0^Eib`$l@DnU-RvHN6IraB2aXGK6>|6}>AU@OsVo zO2zGh!_jd-w2u~bKJPTidZ4Ffz!_gop5Za~wTrA~N=|IgFw43*FaTZO%7E;{dLepG zmOeT3ywtRxmUOZzXO0H|Er;s!fD85r?e>BTb_;!z^22%VZSi@-N`T-N^^Yv6_j)0R z=Qfov_<+_Wq_tPBmuo;0IUW5cme;R`Tb$sy@0r3uEBkuO>aaa4)`ZFAr z@YC64FQMWH><-E)96txp1w4?U+Nlf%2i!@BFZNgg?qUx|I(v<+e?L)lv(@%2xvK0zFj;OnTIFdkX?$|T%1&Y-=C zyQcE;qCT@HA{r&|zP~GxGqxl&{i4*lRda-yE`k87gdl};m13SDSuMsbzSLL;MjR|; zN3=>Tqi?TPh8FQ`YJd%CqB%>w6vzqH-%v6aTM&H5Rgk+`o^vfy<){pd43;&vp3gXFuG0Wv>2&)E}2nB5q zAC`&jT+?Cqqd~t(vI(S$U7^_BR`!IxkW{{>$!lBvl1ZqQyLKC3l^`O>E2rpVr*~6V zEsWFm!OKMQ_<$tCGqQe&51##`fo`(TghW3kY?%Brpa<^bSULtV2ysoySw;_yrLJpkJ{t#8X&w-iDkgBu71SSfdwh>Iez#Uef!0%@z$DRi{%Aw z5-NK+9T0z=x}8m!%xTZJ7$gAS-b;d{8k*+FkA3dnD$Dy}Xi48g? zh-Y?BCV5y?PpxWl@T^Zue~khGdep6C``6ph*2D-X|kNhW=-WRPT(tA@#e!?qG0y^4b^J_x@^OEETT; zsJ$@5--hg6&1y({X8qTYPjTx+T%N8;3Nn8Bi?)}C2!Ow8^atID2RzvhG!)scd*y{q zzXpftG6`vcZrmCb=vYGu6S%d7oKS&kZSkA!XIg z&NK_Os$W{p07Ui6_qhxAeLbVkfFEW+H*=ME=2!q8Baovy8|j@Y1d*_APT$vr^6)+V zWW!6+~wn>=P7E@i4M2{#0ZC5`3{|I}>=svqe?>e?^G`1VtjoG-dZL_g$+qTiz zw$m7m-S?mN-sha>oV~~UEnhRnm5i}|Yt1=f&~D?${0P!_snH&~> zYMJhQM1q^0Da#-$+aN^zYB_aDx0I)fakh(ROFMLd>XUng(faF9)n#>ZvfVS$dd1*^ z0Pz*A9BG@h`kalLC(yU@^sQ`eJFCLpJe}R)`-tj@a zA7qo^Y5fy1(#BNv1o-2No9FnJ9)0Q*Bk@V@UA_G^8%v^xpOUT8lQD~AXF8i+!_V!|&n+=FxpjUKdKDwduQLz4*7E=~Ae%!j4Fi zB(&`VrKsC`0u~y&bEBk(*OJ^rh5ITiJJ3U#_M4SuNm#2ECRoM?q(v#jxw#w;+ei$G zSxs?G+#=PP(6QZ!y``q0kSNpf$?=W}pZ$r-cwPCnx4jwLq=%gf_rd{eiItZo*{R6r zep&TTTo0aV_Z7!<1UQE#VkmWfskK$gL#Eau@IoYL=W|o9K>m6)?-UKv+R{nomdocC zXTD~`z5*ed#q4LPvU5^TA}cE^={72-8O~J%a=K61!~%tc%ZdHA?iY^1wAK8z-#6zV zG;0qC9L*h0CI=6;S&xlwg)&OUZcb7n6Lw1~-6R=3;(yE+leIP?r`Wwf1Gh;Rv_g&~ zmg~7{wF^eGtQXJjJD=(E*d%Z0Iy6MCxVFQ=A_0J&adaHcM>ubIz53@#+k#Si-hit6*v@b!TdGW-8ZWJz5&Ks5Nj|$yL+gk_ zf@)FomRtlHY#mYFUDw`RAns|GWS7C zYB(wwhlEq;mSz3-rSbYYF4=&>5_{Pi-n;Wp_G04%^Tqep%$4MYo6N5cO!Z5Nl?)GB z=_t$QEwIUHUCy^>67$}a_OGl{bNbkqmS(bmY3B#2XJhWvVIjAX>aw?VYQ=7R5Ve|d zF4idDwvh?@VxylksWZ_T&%}WfQ*=}#Li~o`83M$*{(SSpGcz?taeS;nzjH_@voDu) z;O`iGWFkDzm(vsK5tE{h5$VuxnsVAxL|1SbM_?i;RolD%VA2#&NHVtHH)9D`)y{)s zcA=+7M{t)VfsatWoi`sCDb5_dISI%c=&)8oC<}%G5s*NgH~R+fOa$`$IDFwM^-Ld& zZ4mdhbao^v3~u=@d2$yWobENj;HT4mf-nILa|Y{B=xjNS=~uOLiHw{EzjnvtYGBcC zjj_p>w zInr=Y)`2jb`})XVE`L*M703EfHhEpPN_zID!*3sV>3I|%{xqiJubmLfD9Os@>VnKl zCksjc=Wc(KExrWU#KVpq@%FGNkyH?~Uw;Fn3dhIJiuc-JOS=bD1ZMa7w zqo-UI>4_`Epha2kj+xDRbNhDJz*MZ@r!6yxr9oSv7&N60V@Ni{vF`sv<MsNl)ldUN{TbkN3M|Z25r*&RE}uRZt(XG8w-{(wkj@ z`GK<4vaQv|qv-G6;)^wQj#04s*Aqa|8@;lE1hjSm$tnjA_B1mJa)C={|64*AiKRax}U?k6A&r5!<{J$~M|oy&CrklZaFQ2ydyD1WIn zdJJ?oK=a&Vo_tZy75Fvexp}!&_TNDHE&mtFZ$RL4Ra<9T#)T;AKC}LA;A5+~VRuqO zg!l5Jb^wy|Dtfd7BqVa6#v3NE;{{#VVL_yE{xS9l3i&ldF%wejxa(TM_PH@KN5mVa zBWI;M=(B6?0Nw%_zn{~Zd^Nkn6Xf!||TKm|de{>55V(G`PCVszbGel<`uz1Guu*EL-i z?2CJdh;CVFd=5dDehYzm{#5=+)0Z!hCvy|Z!$J$x=vdO%<8!89H%eVA+g5f zX?iP?3`&U`gprF;BoUci|NBHvxqI7zIDCIpJX=GfdgFI-i&s-(!d~h{XHdxTw-)!Z z=p?vXKd-u+@>N!02NB4$nduM5J`Z;eXd3*`5<^ePPY(0r;*p+H;GxoI<)L3U*cDm$ zY$afn3GAH&#Au}Vi@RW}Vr zfG0ME7~*EP_>k_4VjIZOl0dMzF+~yOI^MIReY;tG{d#GTfI-b@-zYr?bxpJh2~&PLV7lr)%f`y#P4xYp5gu1<)p64ugVV#JQz4dK+veTRjn2M-1>MA| zCMT#U3W;^Al~RUW0h{Uf6%&7?6L|x7RXC1=x0?$M8Qz@_QHpM^s^kj%;a=X3<9>qp z*K;dh?g@2);-dnqUi55PS)HL;w`rNTAOVymzDB&0fukzv^m7>d7LC!g;Oi7fa5uoO ze*hZSfhd;_@aqT1f<^9it1JQh`gSG5NKw$+?GFxfZxf~5`R+MNTQH6sy@mhy^;5s) zxz9D~S%rLxaY7aV#W7u;K2MDMqLR9(??P$^nfv5&%O|ag={sTH zOX2dVeIWTI3}7ei03;t2ZG)mrINmC1@Q+^~xKtD1*Ox!z|9_Eu%o4WVtz&_c4vJ`M z?ak9aetpfQja!NofM4Gl;MYG0e1HV_^~dR{8M^VoPk;XL>tFuy>m%G0bFs8flcN3c z>u(+Y6blm-RJ-a6CA_*~SGygaThP&?cw~$RbJZq!LdZ5wYj)iBaaeP?-t#t(;H8-f zDnHQg4?z`-`F+3S|2wmP%H0~lxgUOl_Ay?VQ0x)r^2tlIr6PRhu>>u%QQzorGD7(u zzka_vRWiV@pG7%`ieD6NE6wl(gA~mTxf;c#-pBcgX&l@xW{SLDf&YkGP{e^`?kIaq z|3K`1lt)W5J+V2R5Q~qk7<2(^2GxuMz~mz_eXIB{zkZz|cNHH=@*pec16LrWgCK); zGNj;<>E}wiRl8%vQq*S6Z8BQ6p(P~~!`u5wQ_sm;{4oXeZF3gbhgO&KkeQKFihd`i zaLgiBoC@q2^snhz8vEnSw`xH~QMK(Ew!Z6a4n)#xX0F4FBT<|t_fG>dwRIqPgC052 z!aSDeBCAHZFQRZ`6t8Q#zpN}5h5$_d4hXnK#J-35k?EV{=ldX8@RB=|y)_qZhYL&d07C!Rqmf}}0Or}niV}>c7 zeVSJXT6-!!0kuFJ&+@4R8AGt-7Y>m+Br3eQpY(}`!Bjd(XOb2!t_HyE{*&0@Mt)j* z*Z%6eo9@(Br7Y(Tm#%qq?Umr=DAa2xb!aS%26?gl!W4~%X@$DU0~V*b zb-e;2;OCp`DTOH8d)Y@Vt3qq3T7iNDB`lnN6t zRu=Ilq?j`O(Uzk3lZc*A7VxMi*hdM#;H(rk$XjEbp9n-QEcO({@XxVc z%x_hRl1Uw%3PPJquHpz!P}TfKI_cib5;f=5VHDK!1|~%1f#skt)#4klpRJT- z@W4dVy299uB=Xl&zXm?IFsl=x#&I`F9rn~_O0!0aZxsEXMp&8%nWgJYf|v4l>r}-R zooBDX9@!LtznqDt)2iA{>+Qzc;mK=GeHGvP1?M6=D6e-oL?ceAw1yz2Y!AM-<6Lj& z%Y_k2XV-g`**~~Q412B>Z%!!tSKtSn^E zzDFrGG@@)CM>pZZnb7l`yulg_>!6Kz@~qu?0^JgJTZ}*9DS#ogR)-EXeg!F_&FG;S zQ)Flj7sD>SupS9ZEwsvt4}M39ChiO3WE;jcWp-%n9kZ(nw>FNM#WTppi7V@FAL_eF;`Agu@4yK zGIe}x`D|LpG$Pr*$el>hXl*mxEv{u33}A#Uw}$9JVhO;2Kb`1dRiXEt0?|T1|7MUK zfd~=v1d-c`iX!fZ>WI8yhQpsCVcp#Q!NSg1y8$}AqmZ!2 zUbBZcYE;E@5q8>gru^Un3<)8pW7Y_vC2&XF{LAx&ZrjXOj@V?^K2A)wtNI|J61dRW zm^d`#F-AOizL`HNyCXY!y1H*yKGF{%;qj?J*79*Zpi8X#@XJ4L{m_5o)<^7C`JJ|~ zHl3Z#`9E&=zw$fqP{QmYx!whKDRc**H}m7K6O8>wLZ5tQ>EFM74seR>`cIdmpBewT z*|%Q*xY?(8RcsqGw6TM_v(r`lQ`cMA+xWTbWF^A1X7 zVt1kF4FF|JqH2ZTQ%8ePMoDC9-3sFW)}?LL*TY52GM-qlb|r1)>hkh5H^KCg8gFbk zR*1Js0i?#i(~gw(IFn;Bjh1DmBa_9fo@3=6l}HE0QAUjd?ndQ5?nc!JYTzyKIN|e+ zAP9SxK`}%2mpR-|uzr~iqiE;L5GF_i^&-T#M5jfIRmOZ>0Hq`M6Hti;+~WfnXMmDi zGP@y5EbT!u-K;=|Bh=fMMutrKA^~~1_glR2bZXOraflv zA{I;{ec2YDzkrF@HeZo0X>qU5`<2-*$<12;5_J2y_(yp+W)bIx3$_4?1 z#8_W%oDwWCY>99FUhHfC{(G_C0H1G)Tzz@?Z7mnFtsmS4lZEUpm@3`GS_zO`<@Lyf!6=tF(|^Yx0y)W2Hxp-5%2FpX)3 z>EzFrRn&GLodw)hG})w0`iI(me7!079kyMKjRu}y)A>y`z7%;Luvw-8@tYsOSht-J z70>F{nG&}H2>tjxFB_Y<*uP&dp)evINjE1ql{w(+jdvX|gAg%c5(9j_OXU%z;f%2=r!nXT*PvZ3L}*9+Zqz{fC|S5W!Q zu7)fNZNSNoAmofk;Vb?HrJSc>6QR`iOV#9};$P7-1TS$dh!1frYBEBZp-7)wjTft&@}(2b!R|H~>oZw)+EApghBzU2bXOFj_qN|bjJv?^Q7InIY1=Omr=I(!6HOYkY zUVI1aQvdE||L=d^Gj&aed=3ont+F>ndbx!z!&xo(L6&1WI6xM@dcZq%_Y>o1A~>uX zpSLf%+>#Ui(7I0YofbFIf20oRA!;XTzxM6x_seDkGphMf>Xu&X*peDeUg zzE{1Dlp;w3JYmpwt~ZF}+gA4Pr)d70r1(L$1}8uEe*^^P3yfeUquoPWidrE!7L;pT`C2!X)If)opDtCa#1>);oAfZ||QoVxX7 z;3bxhYwyF-Y55H#Zn^+Ztb2ATwjBzz+GBD?1LIjjxL4z(?&G5wt!|@o%22%qv)yf@ z*^nvV`{^$Jw(YZb^hMbLb3+s`)SRM)2%KkuI2O4kLz`&ucD|{ptq1r>SD`QMRrSqv zi2I?!i-u`D4GRx&SMXc-IY{^J>skof6M}_)$XeJ#&6WKW4F&M^c5x(sL7K^E;U>0c z70@jW&?E@pV*hKzPw;@6ELrx!Uz=_fRUC;bj8P8-YA2aYS5n4Vz@*ORHr=p+T_=e> z7LoJII3p7?OrIY4ig4IllmK@9*cSsx!N?sZccB|^xXK4K6bG$jPsqgs0bc(7k!U8C zt-p5tlUCvg_&IUB+&u+h0v#GU-|S(9t8z>KyaEHwCEJKnA2D#1@1~YC%=-Dk8L(hV8^^=e_G_jT}86+_!7Ts6Ow>0`S zVNan{YITsF1Og;i$`z#`+Ik$CB~)mK96*FW%a?ubU4*qt;En+~VI$P=&`q}R+yjd? zV@UA5Og0F*?DzC9GuaCH0`mDFusR)jEzA`gsOjtKm5{YTXx?IEwT1#9#3omsvGnxdD6@%}7pQxt=$mVW-`lpPtN>4C z)GnzCFr0bIFZt+LlLS1h6-LSO(j_WP4KCDjl+gACOn8{Fm+XqZH(^PO%vsfh2T~H()7K{ z(!6r;-5y@nj#3HSPnvLi8=U>J3SLmUr zzW8L|J^|B|81XXezpJ4^gcKs}X zUEe1;qWlEn!en&#RnG9$ANm9Zs+)}aMqe23dh{^-NXOV$YF(TTHL;S?WrqtG|Db;+ zMB(ZDp|7k-sygyMMB$#ky3nbmBm`)@#SN$u=|(vi|1P zgcg+=Bc?S$qdYS;4_d2zb&0f!#O;KPynapN;$~_wt;<)Hn4^cUVO_uEsRJoXDK@dO z!;3iLUOPP(Es&^qf4GY}d?FFuit4@eX2bf5`gWqSjRRzrIcSS$&K+WK0iAs37yQN6 zGO;2M*jz$jP1u|v_4`Y(dzeeDE><3GWNO#GMMa}Y-ugbZn~zRTA`c%bWv(m2TIu)a z^S}hmq^bj>F-FuQLZvHl-2qDRjlI`Z{qK~WD2iB(u0d}DY#(xc$F)4ucO_JpW+S_; zyc9XKi>yn9CF?}aP;%nYqsbB&`#(f5+uy!YiVaq+4LT5`&-ynf^0)MCTz z5RAe$GkbB#&0^9iMT{+Q+GO401Us3rzj5DL$U1m;-Ze&>ZP9<*V?1+7@}8CxE$uK6 z)p=+!ZG4Sd5&EQu+a~K*jY)7KMHahuUb^i3BP+zavs9$r#74HIghgTXsI|v26VK$Y zTz}#2W@2xdAZTs=Y|3Pgj3IjUe6rh{W`G~e-sC`5?vjDio4Sp!nIOhN(Og zju;&dtW)|q4yp#(A&VE>6xbGAw2(FW%cKN;`}z(CFI;P?8c3X^!GxO~i4^#^qGvbF zi-ULtpXtapZ#0L#p4#?yB_>3Dn~RDmmoc{z3kw|{uDvWh#Fp4uLUezu5wHZQo=|{Y zzr(BGEov8F*UvS%=h%>p6uN+lb=1mOJa_KD2I8?7|CVHbot%D7Ow;dE*w)~(Y+Hvn6n;U85{!U;{#_5jv++P;g z0vHa=`=f&)dv8C#2xYqlJ3&j#S=b=s-g@(LDe@)C8U>L`)9GG&@{+@r9j93eHx!#v znxBOf%oPFj`lC|-y}qjIcvOHtXwe~-qK=V~cEPf&ExQ#?!c2#SiFhCRS*+y4Qe=K{ zs%GMHF|h^yJQ=V)d0m~>b6S>^fFpB>mtmE^7P6=r_1=viB>Tp@n*@U#K(D`83}JCn z4AARGok*q{(;Vhx?(eC|wJ#diZv&J2NtuHbcY8WL5jE=DE{NtXB(yyqq29QJ3OWbU(A@c|k#K zQiw=p3x4|6b}fH$piw=R=u40itzuWgAnAWmGQ@j{zVEtz_x8lff8mmo&U(?3srcAb z=AreIC0ykQ{8wvjfogOc38t>7hu7ugQJCbxGG}EZduehlY{K#~95zO7@L3&6Tes+MF1|?S^bH z=#uBA_cV0(Ff)O3@2z1%s286D20oN_9UYIAGXo?3d49}8NQJMUEQ(BMYo`ek_BI*B zf6tzdpy2yGb-|3@@2x33DeEu!Cc+Ae=$FXEATD%L$8~ z1tqN~F2FMdw4qIF;=s83q&ZFo^2gCMtFs50+ni0p2&GQ7HOLas8qHlIgw7e}bTayW zg8yLjm-4=&(^Kigh@bHp)ZRDm-lE{4bsR-*eVsEd=0z*+RQ4oEOZNR1bc@Mf8hT_k z1fv@2WKJ;lFS|a&hh1N_t#vvtdqP?7!HK?*8vMvN_zW%He!TD=Mp<+8+b^ktr9urE zp`JX?D!ldqjil;0`D)Ir%RO98$glA&i*#!(TtC?0t0WZ;V6WaLFAuuipRlh1eEyR5 zEF{_cUp^o3^Y1C`Svuq#HZ=A3#!^+UV~phP0PVJ7DNGyt*0mCWF-<(ri5th}0FUb5 zNl)N}vN%5Pi2wE$zcAU>{y#M!KQsSpr~2;(WOH36t7K#mc$>BGR#4Lmkcz5)Zku47 z!^%?hHCuXfpWTfvRf3y@0%>J>djQ%@l=@JkM*cpt7_yS`p_bLs(cxHgIC@wH1vP~b zO_P}T&*_cxLpk=BieW3T)lnl4;iZzRO+zeh4Mxdz0Dxj%%>Eu{9(rfoPu1^X<&ZHb zsWlO?kiZF9)P>YYg7CMZN4FAS4>ZX{7jg%v=*86&e|^NM4$5%^fpShE7oI<}oCksY z?*ydGKM6?3j|AkzUm0KKK4WjA9t;Ni>X+S}>J5F#GfgvkAj^=$YAstIFyjt@jIaEk z1myoY>d$l^-3FYhS8l;&LZI%A`?p$*Bj|8!ovbp|mM;*p(vc~3h2bmpemXC}c%t^!W#!!YE zeTbhdmDzoZ%4*zKU;;rmk(eC?Cy*WJP?R9^QG`UE3@0>qxHbTR0=&Y*G7u*&G5Et0 zySV%bPet(&epY7wQ?^B2G7v)`jvj>}l zj9@W|1bD^(Z#HMCJA?HTeEC&>R@LIc@#T+6^1uR31`sgKC`&l}2$(*f8v`1U z5?Ls@_Dy0G#xwnIhjK2#q*5|Ki>)#UX;lh8Gh`W?SPkNqL;nO!t%VW?%mH!Sod9O4 zsD4UXk5$Uiion9I7*9FcGP_%jh$I|)pg;H&^4@Z-fe5DX&qs{v=NwlsC}%8julZa3 zc@Pg3-f2rTDCIke8@mD@OKYYmvA4_4z?9KVac!&NUdLT=Wl6@Occ8{duT^tA zN>*)YIgPlhe4ITDBkrK;7U#3HFQJMxOBG;d9RjE%Er?#C@oJLu+%9wS|IDmSrBS({ z2(jO?Gtm;SqXGETHXvZyi1le_iVc?xm4~jH$3YSiQW4BF?P;F|#_Smbis;kFXFPZ#exk zvwGv7m(qkn`Y^Qm0%lgXxV6)P4#PkAl-ugT|G=mIHM1HG{he9i+JgV!Q+a>zsqkaw zh_CgW)Z#mu`>#iJ@4coV$xXLzk$tupbcDr#l@)$1PN=0mHSWDXVIrIxdOH3LTKQHy zF-r$HvL^daz*HLMqXBvH?y%D=0#jVZE(2cQjUx|eK=S&X0veEfJ7uoFasQnirH9eM z`t3jMRDb^S0(PqSJPE)~74n7{gj&lW%l1_;qjXcC)fKZNp^yPp3mhDU82on0hP*^& zL1jZhd!rr~cgC63Fl+qvdi^>>crp7oeP2!zr{qb%QJ1XOr&BhHI^T2gwU=l6-1Wwj zMl_sQD=;Gai&F}U%HJH3YX_MWDYHQZ3Hk{ql%cj$(j~q3vGQ7fYEv! z0U-v~T587o1Q{wbO)8pH$pM@cUu0Tdg={3I(cPo|<7N76V0cC!ZWtxWgmjuJi?QSq z!VCpu#vNY72M9`1La918ucp6&qo&Jng@%{6 zB70DYYchRnt0}j;yruK*jovn_c#S)?E4w?aX)?CG*7DB5`lxhc`c7B(dE3g9qO8wULP^=`=ax51utRZyrh8Dv9t~knC>R??;EGdRg7IhJP}_o*8&B9 zJT)UzUE?nfAT^_3>g^n4eU%m3@0G*#kzkuj0B9ls7Ve|3Kp6)eEb3ZJ8klf>?pzyK zLq3PKZM({0$B~y77Ul{QdvzRL6jw>LCJ4badMMp&3~Mjz!>q?^Im>Re_9vDZ`pscD5uHBjh9* zx+2}sSGed=P6#I|x=tp{Yx<}_UYwGSD0&9R+K`UeMH&G83K_lO;UNu@%r5XQv(S1|Ie`i{ zhz5x7izUHq3YGvxDBO{wAecf0eW*4fk=K&(6M zfx5*p)x$-c4GlH%lCZme4qMikq)zHaL)occ%>;l7E+m3qbpy7mqK_3LvSgyW*g6iF#BXw zfJ}1e9IJqD(x(%*{R@cvdw67}5}g=JQB^wE6$=e3cAQ9>mu!bKO#)^L;$;sSmIl(J zjXz(4R175X+=A_ntQ~7V^o08a*A9YQ+(bBQ)F~H6LV2m+|Hwd6i17%1WFR4ulICqa zt?f*848ISf*UkYRxaldfO{5u8YaBi$#pQeqRrmMUM&D^ub;e2%4R@Fy5+`5IC%hfQ zP2^F+el{9h2h`TV$f-$EE*9D?2%wD5U|06$fz|+qs=1bb4OMiSV(qr^NdIf7ibpF$ zfU;<@`z9CjXQ-kKT$n#ifMr>DZvp>XfwWQBo46{4+LuH4n5i89X9Y4UTvaFI8s`xO z+%7dwfuzyXP@3siWKNo%s^3HV2Y@oo?xE{4lPq(-sF9&h8gOh`-Q~4%d}w(nP9=S% z@WUi;9)Fcq40%J6c|Vp-M)?3I%P0MDPW>@#pfms??}sPpB+CfQ-|*Cr|K1p2^YWcW_O?A;6I1pR$0F4L`+ z7{Tq}M%0mkrHAYyKPeQ@mT9-m^o_dSF(oZ|MR-k}sbWpX|J51o;#%Fkrh=$7i^)Fsla@D|a9kzTNp@r_Cual~95 zM$Yc#`U7{9-@rq?eFSeKgB7U+Bzf>3ZUiw`KS=uNgp z%W2{duXKGrg%*!4Va`>mRTt^_e6u9d-@~uB_A*QK>ApW9Mq`4_9`*YH?X44t*S}UOZoo>V z615@*SgEWxK)x}oFD2VkJ8`uwuY`FazdgGrZ)Ux5){179t_x0q7gY~S8jIBfy}1y& z3wF6>Eawjg{M6-}OYUI3a7^%dQw{Nf+MgWVcsH-vchz2pSa+A09HBod&3wzliu!Cm zqgA5QWFc#om@%b_YD@m8>WF4vzD#4_RCjHd#tPd?wG{JUAF#!kTCjx&RH9u9n z*IR@6;Lox1J=fyFxmcfo{C!^Y;f{umlArLtyr1eN+o{Lsq5)P*o$$23{J zJgFza_vYaCDnMWEcT{ecz##&l^ov0pf{ILXyRCU zc~38sZaZwt=-rw|Iz$PYLxK?B!jT9uGI1b~uE0B#=(_fCRqd11xCdBZB-?attys$Y zFdRrd`=reOE3~#QXdhWetsK5FdN86FSEi6P=kjV~B!iW<%e?*lmz?p5Ge0oj#EB{w zRoF%J`BbafiA@e|kKmm2@(Chre6YE#v+#v^{t799G@Y05ft-iaU$HQhB~oybDH_B3 zPwqk($`%%NGBb-a^6Tr!rL(!11$j3t%o@`Bkj6v6y-v3dAe7y8*Ix?M$SjZO0+=-- zWt~Ya`v}r+bvJmP(~e6A2*fI!^Y*Zh&f}Nel9n^d9jvFbQouKd$y4ud+ zW{BTj8^+aJdYRY#JV~HeIw;99Dz^C)7+xN0$<>$`6*rg(4D7}<46jwGl$bf z`n?&4BqF{daXpGWv}(d9^J_!?xdpXUv5Fi+zA22{-!X2GW@#nxi?e!+H)7+;;$^|O z@wn0X!3RS2538oOpGcz7Z&_H%){X1(sxf-;SMSZ#T&RYWhCY^9#wt|%i-ck^&TFbjqJfV5shir0 zkUZ+JN8fNAXi9_xc%OB*lux05Mk+238XS{dHuLC=(H6ztrJw( zWh!Y)19@gU<_j`glqs`galGg1^+GOQkh0H@0P5n3=F}!ex6L?2$7(fJRXbsB@-%dg zK|Mt0$*i2i7`sVOtPy>Nx`M0%>kw=;C*jq6zZ#sQQhR#;+5r`cLQch(`11;){ih1? z>frz~8;DM1yEKGGOo*6v5^b%pU5zvSKo=uqf2Q^+wF)n}d4^uW!SKyTFE%Uc%-E8L z+($812HP7lGH5pP3#9% z9V)b9P)<5;QAG&$IJo#@fwanL>~oc@olJm* zqVf~hhf4DLTj%S4Qb{KLQAz$@RW9#x3?JL-rQet<1gIp}t(0>P{+CJ;lRW$PzjaM; zL2?9N{Ri0O??E4c>pSeV)q2YSrVBy;<~O-z9ZaW*0mWgY>%2~Trus@*QwyHfn4KRa$wHDu5pVOCms;p;FP zu4LJB&(>(1&!Bceg?}y~>Lo1p{T*g(oRksp;wsThaHLRqgrsL8P%&D0@BIt_S zZ~|8~UG*qyeK#artWZ=}6_`B%_IR+OlM?SD@(G#@9Z$H4kOe#lk{*nrHS>(LAFvR= z=7?Aa4c0Y@t^qGqgyLLbMc-J_0*C=F$woeKFpW;ZJpSO@$=#GG;#iy5a`K3V-)Q%)k|!Uc1A|>>$khNpdFb^ z-Oi1gt68?`4)w@cQgqY@JgBppHrNoYM8n0nT~vM}Kp|W=-^%}7>f8^zEk5780<$&gHa8Fe<(>MdRODu)wHvVS07|q4#Mt)K+rJystIfptX5>PG zcNnmC5~Sn-zQe%~M8-Gl=cD`+T|mDe=uL@of1(Ntr@W}FlKeqHJmlvTmFU*am&?S+ zzW!>f?>cxH{g|wWOVbbx2`Tx2@>fk2?#UgwoVQGBU}aEGLe?e$-YbzR8z!s&`HU}= zjWU6N92DAZS(vfHNNhE3h(X#n;#?TPMe|_u3Irl7?64n_RX;w{P-Tcx#Q|u2iM5yp z?3-fpsAeeDf;N{}LyeOa8HI3xTF>B$nPR&;je+yd*Ou8P>;V zaGWrUQEq%T9U1RB#7#in@HQqp9oFK=Zad^xVf*n#;)Y~%rrCV< zTnLaC5iAE61r0s1ekMKbzd4KB>T=@e+VmV zPX73}04Wc#`(^HnjiKvdry2wus;LU<2JknS+Wa;r#LAx=*?BW^{eB}|&amh+GXCEe zWV?iZqrGoHEs&zQ@bY%?)2*T`Ffyt^eYYOO1~bh6Wi!89Ta-#@s@Ez8*>!^RFk1&F zNI1c>et+j91Un=*i&eYiV#$o|zA;Mw5cS*Wg_L|%sq`tEMd7(I@a8vcuHN(DSlNtm zMb_4p><^i*V*YUuPiQgJTs=L2@LD7>gCnGOrei^~kSC3)i{y#3|B1W^>k%YKfku*& z!Vc_3qvBuMq)jJV-U&mI%2O__#=~62NS%3~A+0Ps23$xycmW`F1N0v&KKhS}AN|Mr zo}Gs&G(JAxeNYZ7ltT~*5@?7apYp5;F(7XMZ1Vj5>ili~*4yE9u;t=tu^I$lmeC0Z zlA_)YPJTa`a_bgv7(N!V?lXvK4+uQuxDFL|MphbCnkb?t;Ur?g?H#G0sz+nOOB?mZ zHxq=!sA`M^BwAs=Z0eG3@A}d5FU<|bmFAM$SxPr9a*=)l1jskdnmliT@N?<3@O_`9 z8oL--hwX>_AA;p00@Fr)XbCT@(I^gYA12Ih9>WnRk(RT9m_-xUc0}laNMW}^!2zqupOwk9=m4h5rZ!}f(#zc&IQ>c1YIdM)q3eo>wo&w(2|-EaludwCW@A z80AqK`)54YoJj@`q3mB>g#c4qp;^m!1* z8T8buplmY98frudNn+}QSoSNJ;%rKD%kL5`&k#3YL;5EYx!Co8Sw zCSVU+90{Ua8DL*R8yt8{jc5TF?0XLdN$Kk$M|K?1j z9VUjJtp;hEu`C_Zkbi3`2rd7EPeo4`~i^b_^X zr>snxo?dAlMi0+J{5Jn-1=0q7`Moawj))PJ(w!U2ud{SkO627td=H}+w3?bT4GEKB zsm^y^t>htH7$fOQ;8>Bv=w9;I2)$L7jpbL!;YPusk|-97xu5KsSDNceS4eKnbO%?P z+H*9V`(CaG6~znU6)_|CoW`O@8@~a&=esp!|04fBv(w-yL4>_T+SpC(s!%|%D=3~y zSlli;Mak>tQ1kWOxp^5ApT|(_)0`#;cNd;aoWy_;PdU&YWh4ZPQ_gute*uf*3!Tm+ zUXzOJBv(D}G3Nzu!>#%WJv%Nytxs;@Y`R)H7V$+z1wnZ>8Ka1BZ`KiA*_Xn;w`>kl z!R6sv8l|5RIVh|yylL#m_>EUzVXo^k?y-E1$Cq$Rb;McsNQFJf)QtzvsyPMnk!?!b zKC-gC7y|kBfKE-FlD9Cb!$ViD{;%Pcg3;hbECmx|v5}7DG%iipQub@$s9^bETQ~!0 zSB#!}_Mx3)pD32v+`&0w>BH-hLJsK`S=>3Zt6<)s#0Xuxyp_Kw&OW|9a!Aq>xTRch zw+ED--oIn)2Qaq2-vMqc#7@Io*1Px!wFv{)bfr^-Uu#fR{s2= z>Mw}$-e<}*q;U!th!$iQM-*;AoLvc~N8uP#GgrA6Lk+TAr%mdPVT@GAnc#k-$nX>| zhHbK;8IR85GG^ALUy!s(%FXTk-d?ncPy_dA1*k93=VQBRkkAY#xt`(6Us#k?b~pe5yYs5!h!5 zcDdJ-TeA{ZkKU8=$o-PC?;XQZ6(spSA-OJ#hq^%QRqbG zo-e44*dy7Io6nZRucPZ>RkGVA%QMi75tJM)L;SINO zJSlU8Pu2(-C@+V|mQ^y&%lLGAsu)#HdV<^`EhD|<5_48+@RmefLNUHjDAZ{tD!7N) z<0K>qomk|R|4l+#98Fn7@mF)ccl><3N!#mopRg;Y>><873F=bt2|!=s$JZ)9Xbc0Y z&fZ`%b?WuCCeo?Gmp?z>@_Ek*P8|I9oABRVCZ)R;Vxj?bX4q8!LuY1cq-O}wnSEyc zxClK{Ux~}-N$R=`af1xz&a-(nsl{S^ysSWg+kEh9J=R5rz(q1{u6`zdhCY-OLur~* zN%fIYRdt#Y5s!@}!k5gREXpT&s`eS_F@rwe~ z9j$?O2uK-1I9}f@h`f;KJ4DDQ*2KK0QjElETd{XOR+f2YRxD8a1U(BqxNA(fpY4LK zU-AZ)1kNCRW4_bg;FLXY$b$raw8;Q3bO3F#(BD|IxP8!s!usDx7Wjgcy&_4yKiXt& zfHoOKk9Z^o950>Nf~}mJhO4wc1sI-bZ9aDuYBn-C-MTL85WlxC2`ivYrZRCUR-!<_ z>Zi$OLwVJj@!k84>;0IIpk9Yz@EiXFa?k(A-Z=$l+Hi?Bwr$&XI#$QFJGO1xwyln> zPCB-2n;oCGzklYS=AY|xGdE8q7pdI5mCAnhUTgVmH<|N9fOuSp18~Pb1e@rCs^(+_ zH^znRG++#Kqz|O)&{wnlZ&WyzfD!3$o6Hk1B4IFH>sb1stt|||G5TK{ep&KP({p`s zkcjjSW@7Dq+vBJ6<^~we5It_je*uhUL5>-25P7&jZ!m&PeY~7exS{St`O#^MF%H>o z3{|*thUn4zT~w(aW^nJB8Ib-X(Xwxy3M*N9)O>1D?AlRR|7w#BZSPKP1;qw_#L)-4 zLM82hPrfiWT}ew$*z4WlYb=95wv7}K8k^c$0Y@h1DqdgtU|DuVaS4wX1@m=@()n)# z?w-TYgyc?EmdNpp$MO_~(TQ->5t|gwNzBkH*)!3(ll=^7)}oALYIF%jYl?~|v-#63 zGL0=`Ebrw2Yaw#mXzc?_S)~;aAC$ytzHgo3d7hO8;amPk9s&8|Xtq%xlY)Es;>-Qt z#k_UL8^NNA$(iXqL%}ti+kqR{Z1ZdB7koPQRFi$UpoyCZUWoyo6*yu2r~r@;tRYKb z6>C77EHglPFBnJ@G9w%cAT%q-T43LvV3jUobHbLy1jOu6?t)f^QN4Gwlb>YU74(S@77z}E=S zf)wK#OvH#jCmNk&N)t>8BU&v3?!b@E@Y4&49O=I3C(yA2@SrqngYR9{_P7I%$H_rQ z`@^IAHiCgu!K2$Won0czSHu#iN3{Krd10Fkg5_|1c>56z1MD=HBmbjvdnk&xHqY8Qm{n$OkYsSWzx&{O8? zi9;HqwE{nUZ@bY!NH9Y}XmUmx5?j_zqh%d>Z$mrwj5P-S+zJ}bnr$TCWq)BUI+hMz z0A?YJO|V8rRvhVTK+(9R$J*N0TM^a~FISC%gTz)wz@HqtU;RnAdH!Yf$D0$*=n5E) z`s^OWPAXkE^&0(gedvpS6hJ1Rli#Z#5{pYoX~3|K!>!KUZgyozN%0o@F}xQi6;P zD3&@$o?_i|@<-&gGwbJyc=M7gI=*J+X)SyQDwH92WEcU}5YIo|9_iExl$`%TDCPq~ zFMe!z&Dm-W7Zq!JJL+H*R2nPd4psu{{0>EEr{D*PPh0OY#{)q{3@i&-k;4QXH+_gT zZ6vrYQ2}ZCni*_R!yoRL7IpKP?t(%<2o{-+Q;MPB_bL2WU6$Qmdy4Fwg!O)9vAcDf zXFsQKoKDn(Y=pG{ev2ALm0>*Wnp5*L4~#(7#!;sNph}{t)Xh~`0=|1yPQla=M;qE! zrtH|_U6Ps=OA@_-=3PWJEYfpdf<-5ckFOEz2mcTUJvyTIl+^I35({&H>$aMgy`Vfm zm;&eSJ^E(8bBQ3|+9-ujDBW`r606-{{7yVl^FkZ`0DbH)AELgLAi3i2Mf>}ieEQIY zRS7qyVq;}o7n^^xV&IB#DtoPHtZh~B8n8M#Rjhnt#r)8&ip{#@Aa&YVZ`jJ3E*;P0 zv1ZfqdvRj;Vwi;_ZR|MTQYx1{?54GTd&pKZDBI*>xcf9%o_Y~mmqUC{x0%0R^#o&7 zk$pg=X1z1ES|PX$QD)(X56+MQIt|~3ksB#%IH;6iv?|}U=DT?075WV?EOe%AdTc*+ ztama2$dLWaemfs+p`ctUugdT-T)BXEl0r~{sRXmXU=YSy!(Fmr$6sb0zL>xpf()5n zOhuy_-RrVpbKgXMpvKHGtm{ZyQhtq&r3xC)z0MjNzC=W*Xuv3;0nTRpT_$^^@6NvQ zmebZc@_Tl{@~JZ_^Q_{&r0`JF#`SI}Q)69h%bE(<^-xyO_!oJZO-J~0v&b3V(_AEmJYi2?$AZo-j!GNDRvz1=+(#J5(!!O-xmOHwTW_|(oVtG;C6sFt+*{boPE*C;*K*RnYd>}J6%ZO%8HTE@o0YO=t&Qt{Nc$v9*2 zMTMWel6L+0s3oOHabIGG7Wvw0u$#lf&83-Im+vX$fRp4%As$=?# zFuH~k%j#59Kz_MJS1x;N7{bc61bgXvoEZ!r<-_eB+fJZfWz#Ol{hDvVbt%n)u^Q{0i#{yjZzER?guY7v1YxmI9aTm}-VhhI0G3+$=n~Z(7cTS}FH_ z9L~=bTa`%IByqM!PbJqT9vVvmaXtWZeYX;5Q2Q-bvxq^WmvKni=*dSDFCE8Tg$mBy zs&U6!RB5lWvJTJiWaI*~H*eXZ=u~f%vqccCVkQgpyivQ~Ub>l562XbRP#Dxlx5lav z6W_PH^{~`r`x4!A8I4jhFonfkbXx0MzPM6=DM#~Q>kPCsdi?|z0L*Dl>=_*B(9^NP@V{O0{?LSG;}*!3B{cfjod8eln<9f`{zcgiA=H$2vsW^ zkCg&ODV5hj6bk}UOwlglysmcTnfYuM!qcF)J5mO-*1fV9oy+`HdPdxoy;cgE$^18J z#YPFBlp)83oj(q1KZ^JwN}NNM49jENj|NF%&5#3b%o8o@3d>VM)i zE}-q5x*|;P0A(J>lls5t&9 zCS{ytqO*5Oxk*K&Sx>0HSF9|t>pN#Y@NHH`Un3w2H>7r(I63pwEz)Ji9#OARcHet+ z6<#>B-XnqG{1h3FgNTRBUX&aDDxWXMI;W8MgDnqZLx|!`{m$ysDwrf&Po6N?7 z&}^xIE4@=nZT%@sx0?JLb*;4c5?(=bO!;9-ufH_?6Kn5r>O@xXJB&E|H_Ht!zA-2n z@o&q{yx&JJ5( zmi4~&-q8tLuzf!PBhiK`D=l?=I_lp1Rl6zwTPNA_T zcji(BY83INlMX*FtT-R~IEv9ee*n7V^{V$5aUc&rctOxV^p1aH3XWAw+gHFH_H;DvxoPeWj2;aEw%we|gw- zD*5Wnk>gbT{wBb(TtP+zWpl!>UcvaI8H5iXr^U^^cIbI&Qb^uaG%nm<6u=Pzk!fW#)1 zAU2Mek1&8_v#8cB3J(aA^S@zbB9~JGsAt?@+X^ADpO|oGWkQ)?^7eKCC-VP<$>~)- z$_lUm)H6i+Ej7_E04H>G9KVGe`+|q^ff4b6r}ROO@(d92T^;ne*q?wR!e=tsFG9Hl zf$moJQ$OV))z^u)nDV+NlgcEv_m{W0y@CO#XZ-#eT!ENA6b3ebWlmeb@Q(wjci!=N z+C$K|MYF80|BT-EveIJCn+v3Q5Ik#RbA!B@GR~_Ir@JE-vJ?))B^fsZOTXSL0r}i$ zZa&iyKqjChxX07#Q6cYhQ|`mq^?|Kt(}_6j8VkZbL*5Y4b4-7l;Ia;oky1+PIf0_0<6GJrywg z&xFIBm;FbWJVr$t{+}@UH1lHD;NewJ?E4@fwdV_D`~^Pw$=6CU>0cTBCTVHzSh$9bGLx{R|mwNgA|EFo7K*(|&DfrN_H$~IaGpK&qe6rHUqegyi#_i zN!WK_9=UfWFtC9}8xKl6u4=z2H%}+Klz_#P7_>(f+5rtJgLq5QN-Ty4#KrbRlA1=kjdEmQn0mH*MM4~}RtU39ZXu9F{(0ZtE zL9x=vTehQ+M$>|tDFlOWk!-Jn2KrlnT(-Zv<|U-z0_051&ae}^V6LKlK1C7}P1#nd zP6qY!?;5Ik7ChLSHv+b;m|Xtc&!~Tff1tm^zcco~hX3^0e}?}V5uH$T6?hk1Y-K3x z#h2yXyUy{MBgCi#lAcP10Z0Cacdl2w?Jo(utS7Ua1MSe&FQh@HKYk?!@fBQYUjQ&#J8q{n zi@gUuWN&CW42Az=?}g?9qu>Q6UQt@)knB4RSAc-}pi?zOIh|{$o~DyntGKA_{kmceeb z1;+&s5g9!cO4ZGf0PY^WOF&HyJPr{g1TCt9d|_Kp%ERPT?YUWnK3EPfKtPwBYh?>n z&btQUP=Zq!>;q%|&j1@Tb#u&!r6S#Phy;HXRlByzzBK+LgFKZ}VD+Pl9SfVPS%v^A zZ`W2%b7W}{2lOtgYh_trjM}Ltql(S}sdhjj>|GA<#H80lzQJKPGQ2plbDaohLtZ@Z z3g*Fk<$Zp@GbP{V**OM7jsCQ79$Z3=ALaqaJG|&!@OgUK9Idt_nRQ=K#;)DxapeX) zZy^=*o)8wy31{-!!>&19&r_I(xV<)-i(M3nzAk4tS zu5|gwiv_?(1@Z__`WU(q4Mvc~nkE{bEh*fMXMqZxchLD8ehlPi-z{h;Vb<_Yx*08J zy?Uu*#VD;^r-BAChndJC7VG?#dFE~4HnBk&P&V&55X4fftEcX|!y|V$o9S%B<^&J_ zmfi1j9ps@>Q`XD{C?~E;!ap^lN97Z_ItY^uvs>Kzqs+6dc>0V$>UZy5(%sUHsCZpM zY+7db3M`%byP215IVl@zjmf&X{IQ2CJ|_%ieEFPLAmNST-fD?1O(t;>K72Qh;QM;n4qmJ zm5)tEcTFY3?!yx#Ad6aBc_HVs?ROTOJZb4yQzwAMQw8be2)(?Z2LA?FnursQ}p zIdcpgkJ!EZ##)@-s?q$}YF5q#OXSDcO7UnCd0Y}_Fl_l{Q?N4>H-xO%z(s^beD5WL z`4jY#_#<=^w>+0N7vkU!WQlY^Bv(sPT0s_1+SwzNsZ**Vq-3yynHNtI=Ath{OdlhZ z57-}^^eF@to*&6<{N$&>iFmNJJ@{7I!fJ_{N)Y~Di3(upQZ!{-9k3|g0jdp01$c_g z9>@m=KPsKZYF~bks;A8+%IJ!n5iF7C3kEvZ!?Jn_J9S2VyQ6x-nmIs`Ip#?}XJ;mb zirYoWV{$C$?;D&taQzflSN%k4n2_UyBH>Qtv(|y>d$d+sMy&dwXLjg4waCfVkYW*q zGUFkIW=iAYs8x%PTebzI^;59Ih7|RXpi1j_cWo(spGT8{vCPC;>`)UR^{VZQFe+Jc zACccnj$YRCtd-?7lh|JvTx9k^2xkC^VL*W27LR!PPL_>CK#x zSjwUX#>+1g7p+0-(#DJLvl3DInLM59<>wn7^Ju%NVJK{LOHmoAYoj)rNfZg1 z9xwu)9yaQ`qNpwucv{Yv@e^<8lwXYusHXb3K~EVBKp);0j#ce^RZ0@Nd-zbs5mXSU8L?y{Jked9Db=}- zfTIbV9;?b=pLtRu65jme_Z-!z9Jc#gfV|sEN<%jiuRwVosV}0iscIvY@jUnP1`yqjJ6GP> zujICgEOv>#DJ{RgoR0aFl0Pxd%_&xgQrJ?E9a|KPUdxJm_{_=TmT_2jN(qk`V8q3R zP2W2&Bgnc~1i{K;l;`?@R|h(-OP6>2fA@a)aGDs6e;<_mBS*#vOgQjTrJp6@JS(b( z@R&Wggy3?<-J)_+UNPX;woPYZG5bg~4 z)&ZZqwi0>i75-iZ~9{^U3&cC;4>mQ1+Mq4z2r-ZKzdT)&%;e zUd30xV~Ou==dLA_ZRs%1$#w_zjDQ(rrqP~fY46`Yl zDej5S{X7#aHb-75A0!`Jl)M|$!B`oCmxQ;lRIdWpQZ*jSK;8CskTG ze~U8ejqeLZI`UcST#bOXQ_2arPBf6k#KQww<2WVUUYO7tR+x((XaXTnAWGsdE2^`w z0xUSd1~eSdb~*qUpx*v5K>cky#r)HDidlI1#{i|z%N2eJg}_4u{RroZiV6F8U>`|H zWM6I8vkU3#8v0M$>Eq-EICiI!S6EW>Z`+Bu{=)yKE!B?GeX{80KW(R9o~{41omTqa zT0+(x(sfORGB=kf{Go$9&CwTp3&mN`fc=( zQLp(dw_$9QY(gpfp6mUZb+Hz*{Rk8Kwhd*$9Q1DqF!ZiG_Q`??-kWa2RPJTkfAI!Q z!~1)K_oYAaCJn(CISutql+DN3zq|b%hHTJ-_XVg^-T&EyngLa$Xl@}E#B+8Vnb+i= z=H_nU;}fq546D2$xFO`7Qn~tF5m7;N4au8-P8U4p2^$5R{j2SC9LD#-ZHkdgFer(g zx!HpoAj%0cg3Lz%f3h1h266(858ho_s;lPw;~XNAd6Ka{Kax1+YS^>zx!|9+6TX(Y zno4>Ui>OJRfaK*s;bf+t?H-qGJ;-8b650B!yilmPd*q?$Px0l%v*wX0;DfTPbEZPr zJ|0G5XH*emi|Q-|JT9z1k`?iQwv(?g$!Qtf0&5ZuUH68+Bp$rMGV(=_?nn7L@(c=4 zw%L9D@E@YaB*|%OWKrzsMRdgnpanN$TS9qXBaw4KR8?UeP*Uq*U49n+cs4qL$y9|U z(?yi4n%V9UXRs;_foM=|P>aPXWog^0mTON1RklGEoh)L5N)GGkIJ$J+e2~l-pmfOf z$|bN@?ChVuWNShSF{eU6k<`_>p!~H^BgyJLR}^SJ0BI*}Uz0)F3^A0UO>T*C6ehpV^k49X^XIvFIJ_YR@A^QrA(-Ez02T+%>>s5G0H96H>K(F1dDN(Aj|-($^i+RHWvk4{G8*M6l}Z zb&gxtc2AAkd_jo@YLZ?Ei{rcdQT-J_`8GnPLiJkXJTKkhiD1L6cfUNjl<7C-0DezkEDaB8%GHi3bM%R8 zqDY*zdDom({>yVjZ+3{CWcJ#KBFmcq5nJ>SSj6iWyWz#iYa5fOpB!L- zvMT$Yvht4s>TlZ#eeih=ty8^Tm6>*sWp-u~G?C*;mP&R@R`L7P&Th@md2MvkO1Dqd zy_@GcIN$w#6&M30`43n&3@IkAPl-os4j>iJ&#5RX-&>_8hl z(tZ857r>G2W-3cz-{|@iRPPu-%msnz2`jseQ1HHSvNlCQ7ebj@`~tL{NNe~}4;j>l z-tIwa_HHu-sryMR;U8NumGm?_QqpucC57zAE(ApQ1GvwC50@E+hE`+Z1KP%w9wY|=I%D<|XK!wSA8J{~+}muoVCHz>goN9qV@ z*7veZ%5Hds5nA9#X5e&lI^>jVQD^y-YucjxY#_V%-qM4}1z{=+xE_eV35Q@wZa zqk*X=%D!WiS%o=|WNpWBU-=BL^-t+K!IAP0rv8%CM zhdY5A@%LbLz$!`bQV;E$l*gWwZtr}&zSI0M>dEkj9d<25RZl+@BA`W0@njEyPzD<7%Yml+>1)Uq1FVZdJGx6<>mBQnM3z^a~Bl~~hk3!R@Mh0i7q z%l?*uj-xl7p2$0(8#TAh z__0Kwey1T@QbQQ~2;ak>BqtneA&Vsu(ZEuVEdiMxR0?8eZDc&;-obMHSqMMxP%4K4U{X-kSO#2!uJY)_baW;YVeY0Rg=3~DFglx2? zSH}6S9zQSKf5a3e#5fc~Nvt7fhkVunzGG6Gl?$!)S%U`lUw5Q&sYzRzYpniG7pvsJ z!TQ=BgQ!h-EvEQ6GraV~0)`l-G4PJ{HhJEYH)t2}Voe?@YUw!&4H=kwtq(fDPiDe) z-O0y>v-=(n6b1JI5N>BXEF|h?pn1pZPFWlr$IdBZl!qHxhgN3gIVJP%Nfk#|O%zaz zTw`MeAbbd;s_XceB>lB~-JD0Ubg7-FS!7Gq@&P$WS0_4+=mQ1*IaqPs;9_3Xn4`E7 zgo(c5y3q(`YjHBOEVO->wkt5HV6xnWY;jn0ak0scSf(tLP%5;iQTs1?>kMe;cw@NB z+G26*L$zqP>DVyQKX2gA`Lc^8fYWZfK$3&tiSM=S9Mh+hHF7JRwWoYi8ASYYyb9Q4 zlQC?jei~fGl%K*?ep|<$aL21rmmcM&x+|z*JWYi^y3{%l(ct?jZR^S%*h7Vbs_7WQ z;;-1bLO%?*q;qGy?lZTFU>11s*fJ}0NYmHOp+Kf5 z8w(rt_B*579`Q*SnO+NRlEvJ`1>`l=^$&6!5?`YV#6BXIY(pa*jo8lwD zN5Fj;)}8*<$Nl=|4MUY=2`A}s zd{ZUCyg8<5#^BXLtmhxO>h1*i_FGjzF9BV~@?MCFWCX7yaUj9=Ohpbo%3NdqVOw_z zgsJ=d3|0(N(|nylwHOoyXZqfz;m=+#N(m#GB4T_inUa`Wk!v;_u$Bi+tLY8tk}OWC z1NXlXB%VB5GOES`)K1$wQDWo9psSe-bF_bO%zHnZ+Z2CmpraA&{lQt%s7D#m67k>@ z*K=Y2od4)1N>`q<>uMMl>RBv#YxJ4}j{zTBfrh*v{!7G+hq@GBANy$_{=`m0;W)V_ z%St-PWO6G(W!%IHwY5pPFe9Lb5YfPnkjXJY@yR4!j9)KCMk*y4p92z?nT#LBKC7QD zh0%m5HT|`?N#eWT-jsB8YkJiIgg|EZrXarI@u`BBp?@w{<}GdR_8o~*+sZyGQz;^M zOw;vkqm}(hftcNUPX>pH;jige>@RV)I-p(z09R)OIS2k5Zn?taD!Y>N7Q+C)fu^tS zul`A^t8>ONej45O%Z6bH$KJTnKbKf3plv}fz>@Y9*BAP+L+MNkDLsv$*;rkp>P!{T zaQcl1;%t1LZ;7(lp^B?oR$eN^PF?M7O?-#KlF0Qx0mq?V z0Jcs+8Wao-2m%NSFgOtd-I;J>UH^Aj-9IbOzZKl|{|l?*F$Q3DNe+=!Pd>}ik+4)s zdlXj-b-h5;7Q<%4Q|{T{@9Ym)pxOKp0sj_7U=nN1i3$ z8~_m~^PY4lMEJK#3T0T$)2>2svmp2$757cZ){~v)A{%2P+^9JoOL@ zXgp}-*WZYf5*9c_xG`5s@k<5G#R0xK~i1kbUKO4C6K>g^6 zzqF~&06QZ%3&76kgPN#(5tr=MN%ETR@6PDu@6HJ25hLOaZ!XLJZVSR4351YCOX$D? zx>{UfV!qG`=bO-uf;8TyLr!rpU``5~#rt}Pj@c=P43x+K?2L@`3_#LYuBrN+SYzI& zY~JUM`INeq<9fRZNd4a$EOwpwAR>RoB)zSikhWBXjRz!n_Q}&!86w*k;DZXZ6WW)^=T{$^5xHo{LA>4gvuY+ zsZI)l=$*6(0h3JiVe)U1-`xI5;QAvHV7S3ug$7_VcH-`G5pJltWv|gf{q|s{yA?us zFJh?!GGb-E%o8TQb{(40pr5s-_XXn-1`{Yl`|zjjR_B0;>uo{qP>c^{G@q&~c+{t2 zmhc#rH`wG@IF}{(%4Ct&h9y?^6fg682$G!FEl1uUfX4!iNuVdtpnx%ngo=jy&IQy# z=AKrjT$swrO_+Y}mFZtl9X&fOHD448nTeeM6+rbosl&(V&?Q?>Qo<+7Qs1;7s{nxN zxw8p}QDljcHRomt>nI7bs@3Q&s=C3m72)tWdl3R{xjkP zaj_K0Us^@zvWjS`h@?^XDij563qqnV?T_{c`rzz4)hck4n=vp$1uF0f{z;+b--y#t zebGxOz9{^BL=w7=RU=JA+}w$xFh`(f^?nFLI=F*s)!&Gdzf)5|#TwlB4V=(`vpQtU ze%8%}KZH5QMjsbwBhJ31Nj!y*K1i*0vqdfLfpR*3r##)YyJuX8%_o5KlA))C7*!8Fun4pi`3u!m{e|kX{tr|q z%MKQb^q>oBa>Xalil-9>j48}S7dzj&2s92NUbw)&X<0)hUcgvc_WARQZ*BnkeWTpU z)L^0zV$Uo#z~S1808R|8$y0$XzWmBm<|hN58E+^~KLb@))6{Ls4={f0?fG)~?19Bq zb@1yr%C|*oJ)zO~NnDGEC>_mtR2Gzj4z6lgdvNK0B2EzCFnVk@cxvL6m@g;Fh~ZU< zOVrgPB6eJ-gd}PrhBrZ2eR>dKirLOWJM0R(?b!W&d}kw`e5 z6L?N`3Wycug$7Z)Rifb(W??~B<#-2uQon~GS4vS`xq5p0X*H2o8qOFHlQ|=qFcIO# z_!VKuvroPY!j7|(|506bPgXO5dYtXQ?Wy}h)#CEa77g$2F;2>uQKjkR@SWPvxWZ+$F zIhysS;0cyJyC$W$nHY$={_T-h1sqTKm*&pR^E8;Rw_qaTjs+^Ox;ay#f&F{y*{U_z z3?e%Az&GOeCtq97-gXyb6*uQ|^#BA)E*BJVvl%XMsypdqJ5Pj(zhoT(fUE=0L}2qO z`C;#COJR;ddgJ5nOH^V<3H@`es)TO|ka6O10%V+;^V1CynnGXCIjg!VoaMcEG6^7U zGyS*u=>x&;g428Fk4_n_(>F|{kX$t?KSBx$=-eiLUDa=-aa6CUuB{RSDo&RFsyO9P zMw&`y7mjYTQugQ)xl|UyQbq<*qG`yd(B$xR=oM4VhkSxGQ~cqDm&|!SP%IhuqW6p^ z3vjdQVElj%4R#8_6?FOstdoDnYYh4e*7bLBJ49axZe)D{CGZyvzE{LfAn2et?#+1hGEZlbPt z`-)s3?XaWo*s-{S+V9QLg!bb5@o-HjbRvRzui=Ojx?SB2tb@Xhf2l^EHkge56qr28 znKV3*m|0xb)jZB^Pd!z~YbEuVB4jkMU}1J4jcE|6`zyPlgC}&8>Z&^EOs6NpIwfY4 zb;PTFOP*70#}w0Y!}8gR9XAlff4RhCG_2(AAUG|czTDV7NygTWEu-l>^z>Xk{7gwL zD%zHYs4~KtrZ-v9Z}>^cxSXhVaIv@NME9G($d364xc$~tFuQ4f{F^qp_ER!<8R zMQLC3Vb`_9#t&=5%ML9)uCkPQp50Bli=n%%+hIWHHmw*vVgE@6?=7Kcseyajl^M42 zH-dxa0*>wL4?fxS#~t$)gjnyUYGlZ%$|{CO>mW!W?OF1-HG06$>ZbEZJp<(KJ#9)` zC7b5XyDrD}3@ysXKkI;`9IvZMV)(9qQ}3dT>Xh2c%BgG@`LGJ5?tI@#pZcZeAH3 z|FXkPyTSoQM#s@)@R^=MH}GR^!ABR0A7)u2EWe$>)sZ;pShy8yVLWZ=q2G6@ zF5OhhFvGRtqCIqmLm2{^hZk~I$8^!=J)EOles{>02J38LH<{4apyQPTlCoZbbwPe! z7vaqcU@)8jK|19%k!rq7e_pI9ftR8zsO4EU>W}X8R|LL798B#bSxY7#jfx&+{StPW z9uzerxDTl zDTK=Me9_*tRXp|kA*FJ=MwQF*2Ew1N%QF$i*bJrdC*<}6^;aZyz+aa50%}Om(!)W2 zeLdQ~MT2B8>~A!i_u@<)W_DZ8PO}jc5j5r%J*NrC>1zzJbrM^8-%g*RvuwQ2;+x$% z9a$`;=iE`AJId zOQ$%_n_-)f<*lJG2U{61*WWH2r(8-}c13#_l!=k%@hLJlv*njU90J9!y?PvQ(u%9^ zDGpD){1Tz^(O?2d>ukn*5YjU+C+pi5z!8*x-=iYK5!_8gTu{8=Ac+pV@e>9`HiR2) z6)&|TYL4oqQ7)rm*JdO#BgHYb4%>s_yKc*Z7PkkM8LGSs!}zQuv7EjB5&){pxpO9~ zecg=lArK%nyvFqBSp~#0z zg9FcNmUn~O{|qbWE^5b>7&5q&Kpg%$au{1=y6D(yZsFja2z9jsE{DaFFI#|4<371H z)QhE4KYNrfgZI<3xb2{&<~NCm8ff40>?}&;GD7Y&dl3djrNUI~e#Hts4@vKJ?CZ*d z`r31@22$K#&nusn`o`XwwV?9Cz7kO@v_riy%lrdN(cWGtq!tw{m|`W+d+!aS#RsSZ zeJm}^#sNRY`Oz2C-nAG4SH24PSixt+CUC|V*8O5zWCY)qm}jm>GHp;eORgKi}>j|y?adF9<%?>TgLlZw2Flk6T$k5ktsV{r^@k%K2X}LjOlE z`agQn|Ed>-|No*F-OWSX1O^QK82^q4<@(=5C|5^MUidu%g8Z+Iwnh!Ol{QK%km%c< z>z)h)b_2n5eEmt03Dl`1JgF5qGc%W*>gu!D2vjlgzz6Bq2fNot>CZO-$LX44ajexo zzgnfd5zC<)_WbqF+x8BBWKY%CA4~0)8)EOFtj#K_uQ3XBRMM~X?IMOD11r<~f&h&&;{W7JB71ZelHu?qz*6tYu z*nXbE4mc2s6mFBS1CUU^sJ|^7T(`R|9xf<2LXJ$Lhh!|ZLDF67U25oDBK!PbEtZ|G zI)Z=}PCr$P-z$)W{Q`b})%kYx3=v;GuB~owf&Z~3%4^N}pRzaiU!GNXejghWSXXbQ zA@jGv3BPU8wueIjn^0~Y5Uo9I-{@xX;855{sP~bdL0--`fS1a+HMo+m?BK<@Ugv4x z3%qG-*C8AgYyfSJ*Gli&l#}#SZ>(g(b^Tv$jyoc3-Eo)0o)98HnEdpIS z0>FeK#n>4~b`PTeWkUC#>4R;d5&=x;=eMR$028X9cL)C;Oz5?-sRcD~baL*}8KDmn zO(iUM;CK-Te^(&A|JID+3?ya@-h4t0E!D7!z+f%H|IqRhbYk z#pv>wbI=O<^rq9OV;U(I6_M(qSaK;A8FB~X1(F3^?<|H{GvZIW{eh78CM9rjXXKM1 z7-4nj1q|>=h@pU(+L&aRmyT3SXcQ?aBZVh8>G~5#&_byNK^^VzH|N7Dx;Fz15QA?I zK{%)zD^Nb<9BX}XhSkHrTEO#rXkquWR|NKDT+!Qqtg3>@2$pu;xo{Rx!7f9Hv^K!k{XmvNYr67Qb>x!{*peI- zq6JEbdFtKD(d7oS|AI{}QbY*lFD=E!zBNmwz$Jrbf0OJ|l}=Vq&vG;1pe~hb)F0f~ zL7oZ7Kcu0ut4oqeA}hecNe;49!gE0#W|9?&;x$pnjEdAj%LM6N#B69(fTp-0$iRwqLPdLp`y%*45TD**i>pbrrxlj&uy4v@#9b}Gzq36#xMmnZRX#k zZ;HG=zTon%LjxxG{e{GQ^a|*q6>sjk3w`lk6%n~!1$5!xS;)1(+b~rWfkfJnOJ^Wy z1!BV_ZZ)pv390eEjz^!URJRcm|NI_#)F(->_@ZKbw?l>s{;E4*b_6FU^^2DAGmUmf zi`*NM|9V;O{lY4+fAGtOzm#mr!+NcH+2QTGR?ouNTB%*frmJAW4%24&?w4CN%dIHv zUT**9o6#`bD(p^M?)Lqn1z4_PhTseo_~^7W=6M!yDGF`|^s5SOzaiF3S6O4?hJT;p z%7a^O)+GJCGSXF839<#EL`oZZjBSrZ@OKX5aX(een;C)==v^K&U;6+YaGwtOPsSN= z^GMQB{hLlLV1;>i$`BtA@=!{nYs^+_xbaxqmr+Ga(6U$&dlnjm`VT04djmgQ0=jsY zISi0;L0}i$N_;>wV|o#5vJiMXY!uSyH8YgxA1V~~{xjXp=r0vo4pEq@;O9erm{Ov> zw4t;B)h1>Aen!1J`;@1!He*!&mkLE{;yOYt{Lw<7O`l0@xH?dlf-&S>Ik@H0380=x5V*4m8c1&tcRrDj^T^Q8pQ2GI>@vZ~| z{TK5M;I1trFQ0J*^W-J+jp#Ftmv1wcg5H_NV-q&F#Yp>2H(vYRj%bcD8RT0E!)hQ2 z@j3n^o^BeS`f`pW%1}EIK}Zi!-e;FAATplFH89phI`9lL+j>Bz`Vj*AH7PqiiO?DG z?XE@xpAPfhMFc0R@V&M7XrPYo)I4K#8(~Sum;q1MR)8$+2kt}1o<$0xM40VVZHL-f zy>f>%U><>PLy9TQyU9q+J8*DwJeV4N=i9>ofgmGwon9r*8t$T143bHHU3KQedJ4?N z4aO5-d(2fnkY;R3JNi`8X8gFc-bO-knp1xu=DdO%=4J##0Vadva#1ISs=>b;!(V@F zqVArdY?wE7k~#`<{YmpwI8w<`HkDBh6!e;~Jv9oFt0106%Db@6>&E4%WV3#7j%DAT zo9mY0XIOG`^1RnilPB)f$a+zSlSoOwY(qYc6Vw4bmgKw6UwU9`zB*BIY+W-CIFi zZ2mssF-$HqfU~~fq3GClIzP*Hv=mgN$Gb8&%O)Ya4{+xw$#Rkb$w=5}r`b-Wd%G1> zv904uc%5IgG%}or7O~c?g(>&stR3@16rXl?!=S%55mF{g4>?uHp`1-rnXUQ?AF14z zvsC9#8!Gqlh>}G;L?$1{fS=Y;l*OG8n0Hr=V^W35&JD7z9iE2B&#o`N`4 z&w4XduTm}DJ+!xI*Q;7+(rQSp%x1uyC|12d+5m73^;QEZ)Mb0{5~L;H14J5fH-m~} z!WC?)VyjqFY=`n4$;A92U77}a$*^7ne2ae;n@*GFR9jAJ6#(8haPfeY*I^eoRi&sw=MO2hso?9MdXzJS%N zsBs+7S`OY1zGoI*r;eN^OtZ&PC4LI_7k?0qtH(1T z5^d`Fq-oYy_i%WkpFi4DlL`b^*aaC1W06j@Z=2E>d(Kx@4LeJn_crdQJ38Xmt?AfX zKhPWYo@EEj4iqQ#riS6`j-jJozU%3Lfq<@&S~eVEY-!#{KUx&NyltvPMw=$rh((HJm^(#dMK}gnD9%v z(=ZXcWmIQ~gwO%J4r>VMO|b&>cd455h$91aTuiszped)T4&FI8@@59fsk5IcirJOVLad~GKsaTjhRKSX&s8))JL>i$%gi+~) z9RKu4Szr6t0u@CgbqC;^#53Fv8D{B=gGcr1gJp|<5)06dh>YzJMHAz9PFnRDe;s|h zTG{8N;s5kuSP#fD9lJqCbE< z{yy6=jh{c@V@o98qYO&;x{jCgXzCXCw0zo{sfBJ+&^j7D+slQUTLn13LJ_4A1-}0M z(WsUPyvJXK&cE%3{%?XVi*KnXukz(@H+19AWj#*x_Nhz&vtC2Y@-V0Jg+U`W7}nQo zLZ7Q!S&~dyQbt`*B^P>pY_WvdJU8T{z^4boySOcR1!hQ`>>lctwMGGQhTaJu2dC9( z!Mt^`Agt_UobY*rrk2HhUf$Phnje}jE*X3qk4&eSH6MpA&>ll*NvIXL)+_Z*G}(7j zTyK^_peXBgR=VnN6jV|NkUA{~6l}H3ff`S(bSsN{7_;o{FjERGU`$d$99A8A;H4Mr zpg)H39K(h=t%3)T{`tXVw-}MHhExzDfMKan;Gbb>;S+04J=pkLsA!LvkwBWT^p+jNjVgownoNU2#%zQn8JSt%_5z zZQHhO+qP|I-Ss?UuD88&jel#it(~I%c5V8jhy zb*vny3IhxwzNqj#BNYpeig0E| z827|0Rm0RPu>o9_sZMlNuwSDzy3XHV6t1}RQgi^=sJigK*r-DTKr;Fl8;w*zJm}iV z(54E}`wU|nD#hr-a#)k0yG}V=MUDJ1(Mh`5$~HX!%~jFmj^gGo!6aG1%pL*8XdOpQ1;C7&~9 znwO(YT1>Y|{!4TP`%3X;GD+-|`jdM61wMxHrZDb?p3| z4h?+Yc9-$yt%{68g)65t%^oyl@yV38%RZPxomaF`tQ?A7*TWO)=oB|a@LVv;+Hw@w>~ydi0S91{V~f6Ouc z{?@NM*~>vHL$^=a{mK9ZZ^$H=_xUA_NyExdKeUlkhDX(i{~qbGRc&N6q|3nk+>S~A z=2`HhcwH6Xkqww+_#-uFOW`B{a1`!ea1`SD zT4m+L;vaC-X>jLC7w9iIirtf+>4srS`?o8N0(7OqawkA1Xp@I?lCphmuxW3QRD31(fnSaumLT>aw@wj(AFa!)lai70?U_s&rCV;9HWF5;d5OqyI{l)ebfYQmgv!gQVERXi( zhW^e4oO$yzdhHqm=>@bj8Q*;9Tqq_Q9`7x@5(7Ui&5Ihww-*+He|N_w|6crPw}KJ! z_n{{+-%@aApGgZoz321RCc=lo7b{Cq4($Dnd5NW(JUZCP)gSJ=KlaZ(l;<^Z{dG1s73Dj6rmB=E;^596tdsOt9r zlA~qeN%aohFT_mrV0KF52RFYk5kENfn?tM+5D#3@NH<4S7%C>H*XfiJr_NWzSt!ES z3C2t!qeN&?Xu4avWODmGi9JiMUVNA+k`Cc;-7e}V?d%vdlS&EeouX#Yxajhj4s5x> z8T1ADJ2)>wR@`qX=6+b8bKxojSF+#DDI)8v8tnT2VARPvDlvGX$YY~{*fpPWSpt-|X2jR#OL#oTC^^&b(H%pkNk+EYY%S}A@U60*x$nt`Brsl$I zh)c4we)f(IU&K-OswJr>rLm=Fc7EhhPDc4@|0z^(O}3Ci=IL?h&iXQA9v~o9w#hKv zmrr2nrSK+J;4EYSDW#mp@*?MolxcER^!Z`;=3NjgP-!QjpXAb<`Oq})6T-QsKrbQe z(vaZHBPb;(bzzZ-;HkNRwkg!r-j2KFAZ&DW ztg?OY+F2BQ?2+B`Ve63+o2D?7)S}U7=BZkkrZfs+q&w2|_)9)Cr5*G~-*_V!)3oet zCHttEu=Q%B);-kky~vc6m`-XBi>U|&au3K+Wkz%l3~gFqR-IWjd<9CjEbM) zh;kSmbB*N`g{D|&*{xai?`(pKzh$)o;Sz!<%x%+wLcW2OCWO1)-d4-0g4V(1XY5(` zQaCm6KV2uQLyzknlxTfVDWCvOx&~mQ?|4KvVV~#CN)R>i@F$O)Pin8YE}Cl({jSWW zGl3xQ57s7^CbB1qc$)OrDH0`SwLc1e*clx_)6=udfV+^YmN%M02X-Z)$_MYo6O7fm zxoK3z6T(4vW%yf|*!VJS;SaM)tkKz77|a(eM9uZp9t?U~E$MQhcac+f>l_u2jZ#Of zNpLYekr?2JuKwc6*z4?zaL*X{>_zrV;rKox(7HSaYJv5QB;}<-r59Jp^OUJ&R((&? z>34H$gw)UvHyVG%@wB(ngN(-l+aCI7qXg(49bMljcCj1=N;dVKkHE{&|s zyo+XZ%IrmkHU^8tI3njv>SG=E8QN>ul|?h#=h!48zXm;O?b|uAA|28?cz))V>y;!H zU-JYy3G1K~dgNHT=p48YPq}@pB1Ww-8XkHI$GUQ=)9P7N(?-N{pT?(P^(2-PJ9KGL z;sETzq>b~M)?~zoND+N#cXQxx#xb!YNUO7@v{M;8|zDFgsX=fJciaW z#Fx^p84XP@MqVI*9m50;HlIb-1I)17nsGYP#kcxx$3JPhiKfY{+r|`RSY&Ts8DUj< z3-$ur47cbFoX5}gJF1s9ZY&}?({psYn3B}OtN>gZ22unC_X4)jG(YX}|;vGob2P1G`uYssRx z%f1-5jRTgc4oVz=EV|8`o|Jv!f}e9k&w$??6LE3r%@>e|-XbXfZFAes^zWc#R;gdbd&`cM&cBMxIwPqKEtYnEF!RnE% z3y`8v8&W~hmX9#(FP5vf{8~l3hC-(;mou;Oa5Qn0_2JGUbW>TO1{6*pZxp%#qTWfBn-5K_V+VP=zh~cqJ`0{S^-yYsQPVI7D{wJRFpThK9T@^6Xu+lj-{zSk!DsAo2 zZix~m(~hM;dzwMrIa2LSO!g@A@rp=Dw&H%i;nI;piXp}=<;&m=Y18MI1aSAsyIIpf z{xi~$_UzlF+06kmcM~ORk%qcUD14(&RuDf|A84)7cECu(1?{8z(o59Si}-^M%a>c*6wu{RV!)UkCZ!^W zgpI>q)N^GDJ%s2XFn>iy;6QhP7up;UCK=r_U zE^6zH%YXpYehvsw9=4hrwyDL0xJLsu{gB_Uqek07#K-6B|G)&azo7kaXi%za*v~wM zLVizI*x=SW=(v@4d2fiw?iWPw%>LdL$nKHzPk{1q+K{W_aJ{t{Ew`fcmp;Mj*qK2z z`01P@YU^IF7ua+Pl}#g!>R6VRU4B5hNY~GFQB|D{lT$ti+n|Qi`zxOcf?|c9b~qX} z6R^_2yhITHs5fI=nYqfjNrdSWdr6F}rg2zU98`o^Da(Ew*4$Y!HyZGIZw~-Uk&+i6 zgqoPcfLx95(;N-0UD-HTA=VqPykalB^v5uftR!ej{ zo2l!X!(!E;PVLj+VT2`Fsd;3Opxd}s$E64p)3`t8rVaiYNPFu*xw1FxLHFRs-6G4B z1rrfI_-r>?WgRxMllx9r7J4^-6CSA1T8Sxw zIvB-q9Y5hOPe<*5rn=;~eT|uMnVQPM@^#H(&rp;gTOS+lAD6p5KwCe6D8*uMhqn1a zHWn52V0xAtq++-xCUvxszgkLa54h! z)V1(woXrm^>SbN1rbQhd#!jgrgGSgoGnzm zlM3W5>{spB){ksHRAl&9U_>dpv67N&@TXTf2hPU{qMO&2?>VW|`6|yktol#0rIoe6 z)VhvS?L_gR@IW=I#(DtBruDZ71jT?w>~$?H z{igA@D;`0Lgx+a;Qe1nRu;SV?&R$!WbmZ(QnB(O1Tci?5(amw2bI`L2CXRkW5`e`v z<(j@|i0yeP$;ed>?|#~O@rm!uBptS>l5Sa3KKpF7FLv@Uk`rPSUlsUxz@e$4-Wbiy zETr&BE7*3H4I}d5AwIlvYQDrEm$s>8g>r{mcoA~WDYqS;zhpX3Lhz_QtF050(}kLM zcJ&{Eq;!u`N+MTF%>FZ#vHuEOqROG&EQi9A+wWGce8RT!KrE6#AC6(l+Ou^caN150 zWud)!Hsi+%-wv?4-isxpOoCejO?VyzJVEkonvdgCGj!pBpB>IKb;8=8eS!*q1|!@J zk+Zl@lcM(LDd%Er6*W?mC8!Tz56# zH4of*8OwNZFNmEjC>ZsZ5Dx!&vl#iB+@Z*;4s45&WRdzjo(*E^9DM5$K%Pvq=W$gT zy%epvQ*@T0es*g}1IGy0{|KiEzonH;Sc!?OHDb+C^?(ni*Z{rg-{3jWiorzl<)l5F zn{h!xSZ6G3sWC#3QEquOFtNg;M?78KqC7=;Fo~&gV>R6DZ|=@K-wy^O z4~nsED<<8&;P_ebq(y#;V61b}I^T37a-Spz37M z@os;%8p^adaM`nzmja88;A6%?MdAM@zNnf0APz)R{IsfmMrg#>1A|#K4e@0Yyya!H zf9PS&dM0Utn1{T(bEOs=2*_Gp@k=H^r?IFq6*);~pX`HHy|s-Fh8#*W=YE%qQIVG6 zhSfhEYArRCs@yX`H5uE=j;U?(Kj;x=^{+w zH?53%3fBsrbetbv%ZJcO>ka9yjmXY26t)FA!m@>V}n z?UDTshOh`j==S7dY?pbRZ^7lD43WLnwxldd4JpzYu4t{Kxu~3G)F-RogGZ0pwv}!x zMhn$>n*xXi@a#{06ejlos0Nd)GtG%Dw)dXhAX1-Q>nY?N9KS9u(eid_Fixcs^H9ZS zJ1QtIINP>PW8;`%4XKpi^!$X2{@gdI!q7M>kwxRuN#Q)NaVg>?!SeU>m9eZ%jT?1?O$##0Tz5!VLL>G$)2A&5@z}#?Gn;p(xTu?W5dLzPW=imtTA1Y& zEJEbn;`~XYFyC@CVivE(bKC54Nf0UUhaDZwj(i{1ZnssjNKNlRQ~|3~6BH&5cxMj8 zeUUyd*D$r6BV&1tM-!e*R#|nfeHI-N+BxST*{IwqQURtw}vE6+?8@cy`ea8}8T3|u6#9#4@F-=AX zcumX7?^=6-$TSs8EgQJNAW7WmckNI2eO~D_w5mIC$Z9GiR<<=L$6)EWs!S*Zl$%~ksr;{cBOu2m+pi|dKl8$q*e?$>eD&ph%SsD+Wv(}b1w;gv$ISNJ?eoM zLrq>8&qHIZjD=ufEcDyI`R$z4A57xV$tQHOMlUvZ>o#qEQWiwYkzcBZw|0XmkPiPH zXy`x1`=E3svxmTEy-hD2KPkbk z(v8_^-_y+q9gtH0K4YhrmH+7%s-X4?a(}YZ^s3wDh4XsHGL)6|{queN=Ex-S>(nHY z`yZOLYq}}bx%&3C$nVV1$y3;SY3UN8{(_sqjxta- zr~V^O`u%@!(*Iej|36r(zk^E1yQZ`Ea#a7)WA%~Jd~Fxi=L}1Xnyb2)4z!XWT3?Zt z_|hLe9LNAWmUslCe$A7Vt@0LKo>KowX$eUV{v-pg?ex`htw|i9xR6%pyP^wE`MB4d z+5KSNNtb1--2V07UW!s+QaJyox68r!KX3Pc-tPa&+r|9<gAog2rlQcr78DbX}IX_Fsufd-29~m0&IzsPkNEG(D%R>mQX*Ty<60G0ohK?yUk?FsyxK!8%fEMuzK11i2+?G0z< zV9#;N4yi^;>V`_wmx6bM>}TuyIg1wG5UF{gY2j!=gx5p8`0!&Y-3RQcbUrqXcdh}i zm^yLqdyd2nqq0Te9t6ZV0D*o;g}l!*+h)sj15sZ^go(hCLQf2AwCAqyE{2x=@ zxWzA&5@jVzR2askAM!MG4JhEC_njgU9DOFLrl0%QFQ~+9->^}@M@E4)8I7~`%rtDt zR9$b`t_QS-jX=Z}gq?Gk29}jO%mY=xH?RJy)6bmo(PeMYv~YsSflD>h^?a+Hn_8KK zk7X4VL(70J=WbSqB5B1snkKPek&m%3{j}PZHQAv-p&+-9pMS^k53EVvmHX-<568kJ zNZLD`b`cA#g6JaJRJ9Dbc)k;n;h%DYRnK(xg8D3oemWNmcyIf)uEb%>uPA!>hja!8&! z0agC3^u3{IG{y#?kD#AsdrD$mV#2bXZpx)!L5<^l;31aGV%6^#L zs`x6{!yqzD%GfA}7jM3lk?veoq5dxw)H(|*`cFI37jCab3m|G<5w`#bA+~_6$j>Vs zHcZuT9jD5<*g)19gWINy2tWht->A<#F%q|jsa;`#=d-;7VHYA(z=nd{LVwQ)B6ZV7 zBzNvxZ;!BR2MYLAU2mXdXkDcm9IM(9VjioG-p zKwT1(pQ(Fr0fscKG!?AuvZjy;oB&arX1<7A8XVz54}G;=_nN1 zcrn%*moav#_^+k`hi)kB=h6r49+gO*QZn{*YA%3ZRVS_kpLPb}AQTG_V*?%&QhUGK z-m11FZxDTWjsq3|U^Fg2hE>!W{0P|!FmHjURzly54iyf~zzAXlRYmmJz;BRAuq`;| zoar$`=W=OF`q9G~z)xVzXlZQj$p{=*Y8MnX%2kD~@f`1%aas-MV&EP~Lv~*g*z(HsMT1-RabQ}ds$PUM9 z>Y|bL*q{$IhL>6U4f!!&U17mEn_B?j5)K}>`OH$st6yiDR5eTYXL!SpPCED-1TJY* zAz$e5u{DjI*SAt#;$Q>XPWHrMlrelkB18DYVKoxrKffR{7jcgA^tSZ{DmZxYhc=2i z!wf0f;%+xA^?9ky){}YzOJl z=%^7mJh@T|*WL7RoZVGx=`7}1qqM8q=5OJlfoLr7j>_Z9$tYoeDx)F!{9W!H8?RyaXSXBK`qcA6E#HV^bnm{zm+FiwW+{bb03q2nbpkSpDIBk;IV>KV`1Oh7t0% z0Ippwg-mOV+skPdEB9W-5B=6-Z!=N+DQlea;RfN;OzFEv(X}bE>;iHKT=+gyPSv;7 z$p(sy943cLQI#Yrgg{*NvIYZ7NTD9L)$44_x|*iow!@I`mydIlHwo=FR%8_E6_k_E zxmHdJ^*%9={*OvO*FU?-mz;CUDd#4Jq2Ej{#wXI^+4Y82*lV05m>LelO~vSYiu{YM zF}hbv?tU-DI7f*|bbH^e2*mX3;L^cw@>(W}w(Py1+iGxqZ0y;`NY%?gxjQ@GBIYTW z$Ot!cGt>`>vg{JmWq!AuKEk*iNfoyq*ogsblup^cvhY5=;X1NA*=9cYJD7aG!Rhc! z9SQF~ev_cg7sx&0i$>#$PF?Y;oetn7`W2=fU6)gaEe2N{mopaN%+3@Yr^tN4I|&(t z(1w3AWaJJ^GHpJ4KP5b_Ryd`un2C)xU1SVKgnsc-i#et(uOy6&XFJp5y_?;3ROjbM z84KkpFASXPIqzrJsR}0Q7qn^nR|f^UlChG{={!!}s*(K6`*d#qqn6=_MkMzMQ|<(J zLOqBsovm)mI%#~^{F=zb)+hgn=f`2xPoG31#VPmEn2Q=%_l-#W1i12$M{nJ^hlKI}) zkgO+~a}rEet)p^}o~2y}f(eShfAeXY@l=f=Z_ubZuU%Uw4zO&nEF4229L8iPQ5j}J znh}O|2qd}1)>5GBt=*UfLG=D+lx;nl#gW2=SZ5QJ{A0i%DWpU1cApsT=*oW_5j^L} z>8=md!jc+hA-^7imwz2eTc|gV?|^Q$g?yB>O_=vr2$jm-b`isQRkVvUgA3|~HLLs1 z^;6tNv$ad&UXi8G=9I3R+CaaX;ja*?(ZL~Sfl!yScjrv&cPVN$n``$Za*2S}q>j(z z;;iaB%BfR@QXFA5Wd_aApqj;dufN-bJul+MvPN;La09({-YMz=YcY91LRHA6v)9nq z=`+jzlJ;!XKMnpF{mH-IUs-MWn#A4~lqg>fB`TgLiAi04+O0)W7*_TzYsCULbO^17 zuB~f=9ZP@4-hB~iBKW@`|2rYn;iO6F`F|?#|M^7)DDdO<0759|g%3pPmQe<-x^RQ( zoANMJk%RPyT>~J${`3;vKfnsJu^P}kECh>K^s7Q0%+hWfLkc;i~HHoT(9tSg%Y6!jAHJA@5S&i~qO&p5B z?l_)kO~)7or*9cP6n()LD@a&NCjzcySKjl~1nVtV(}Qf(L-2!4$LFJ4Ind+~K%0Am zNr^%sb7_$mbzG@K|DtgU!cbBlDAMiYcHgmF>nG-D%O3^-S-~y-NCN(=(jhAevL7;P z^+_mADQyS*n&f=T@`#J=h+mZS8d2?=AdiZNe}K(XyTh&!qSwl^VySC^)~;XA5rRM` zupaAm&o8^7ZEMWrM|(g}`sguq8Y-#qwLQleKp_bC`Sa@#O`x2j^+AzxU%LuZql`4P zpdV38EO`4U*_?k{@+lz_X&$Kp$SChq?yGR~0}oskAFt zSb6yslpyWFqQpSmT=Hsx+=Rpgt4g6mLnAFW1egk6(9o5D^Jg*yLgI-WMFS1&VlCz- zLSY=_eT&a8AWQJn>QBm!$Rp>#XcRgiB|rjWxuCI;DHE?^*9 zAM8PM(lD{ZKt=p^y9I|tCCR1_mE9AFW8ztF&Qj#z(RHr`NFyPt*PtGkE4}8ergVin zZQ4^I*~mGegL%k+wYQ}7$}5Al$AVt1%LS5Gk-h%~put6#;kZJJ)V=1XFF02O)YFuu zJnG4#&}Wg$4Xik9yL+Sl0?^EiK#gXC$}<2T6mDOSy()O(#R;Rc05~g7WRQRIpiUdA|N&R1gP)Tn@2qp?mk`W zbT@X<;=%GoO1fL1#?VF< z%wHcA_1h{9Dyp@CaJkGa{A&B1AL+TJn>_N7i=l<1VSt%o#VAI@E_wLDEqFSFM+U_oNcYrvtTQ zXD`W1*EV+doNm5oP>q|{H|Nr2$1w5gf?hWm2<7&-y7l?F?3cRy(f+Q)(}_Y!u7+-}`2$ejQ`yjNjAcgV4tB-ALC(Rqi^Y4{H40z3y`3ZXRbscT zDW~mNcAD&*h6gD0P7?M?)}?hR8Ba;aiyL-vBBa6-W1sIGGWZ;t?5=2)g&Powgy$&# zu|chck;!YpI^zpKI= zbEV3%7!b*PG$H?1IA+^h?hk_$wI((gxvJjFjlwi4VwOBrly^gj$tl=>ZTN#AeazrO z^l_C_M{}*ANf%e0h|Tzi2m#C7rm4oY5TSmj67Xck&wa5)AIJU7i{{mIt&_U_bt{b6 zamWovMSPK(iq-Je{JmKMdGapZT{2oW3e`H^#WqM2p6@2BnR_KLwjCKkLF;Xe1;h6c zBc_Vudj&H%h#cknl4n+`RQA8o+;GQgik7v1x(ZybgCm(ZV&m8StTmZR@nnC&Qc>~F zdj_hP2o9>~=x@eV>hjlrQF5`M^%-0Q4Hp>1ri-Z|5BACyjpRx;{${hUtH5)uk)d5%($+uRv9GOEf)?1t> z?^T}Iu@)b^^IwUS?r^Fln`0!$Z61znSE<9hd~=k&&{*;k#PRr3Q1;86F(OLk*zwM5 zErgt?YPCqJCTne{24Kg{>j*);wNEef|3NAh(#zzuqu}b5z60KqLcM{0PlgM#YC@YR z^0&PI9pIj(ZX=d~mBrD0i~ZuSt?9~uRDa%>m@Y)AB{i-fJ#=3p85wyouT!i-&_;@1 z5%56=K}$!~T(SY5?l9cLZ+TtQN?ov^1805IxuUCt=;iNou+|cH56Es2`h#lJ!xP?5c z$ySn~KG*Mcysfqu+QuuhJf}^jRwy$iUKUVh--wp2R9P!@ewc}o2&|v^z+3I{8e4my(ccsl`!qR_XdN-Q#<-DEF=E=Z z!6lGF+V9g$d(GQ3u*d}ap><(~wk_RSsR(TE!5QYZb@Z)$nqBVX$I{%SorEN{jWm1R z^J(njE-PQE0IykC?FG_p!gcj6X&MlBTOT`BEnCnf={;sl8|9MxBzgO`48Uj<7e_T+k02kB+J6gEAzd#`g+4|ty8ibB;KV-RXN;8^ z5Me)?Ke?@>FG^Qe3fhNF+k{-$K1JEG{fxcAz7ep@tQmxatUW0CEc~q1AE497(FuEi z0v~tQsFUX+>@43>^~xDI=)}C~n3`=Hr54dJjd0oqcw%QGAiZSlNy+}zlioxNemRc? zR-P0U5j;M>^W&!X-t#ZwoHS&Pprj|OCT%ek_(4C<_R6d3Z`@an2f0CpU7RjFV7(xE zKvilcCl4c~>s^WORrbkNR+YnF_5HK`@cAxvZ^{DD-?I&o2>)+3D9z2*|IG&V@Q)43 z1M@%HpxUlUK>uR}%Je@K=>Jrp|0fmb_y139P%^USY|#I~2F1br_wAmmuSD)Ow{#-f zZuZ!Eue+2sti@6+`22F+dO9GVHXqTTv`DJDMRM)s86l!tJ4ih}QPkdGfkMy-h#k(_ zANsR5l?9;lW8AID*m{Q{J{=NXg;i(*tAIBiqox)fO7HqrY2?eFTX#XWTq@B;l|F`! zzFx+*>Iw^j&^TA4Qq{A0RVz3VQo)eT5_hO(D5e&Lkbqe}^MRv)3e7AaVtnK%Ok;`d zsGxj|g^|-s3!Y0*l&fqtKKWRAm6!px=URVbDt*g+2F!U5KU;r+YrsM%B9I`o*(n|B z-GrPIh}{E3@W(1Sg)VJB}bdD zM!*k~1&{7IKj|l~K>$5yRpZ@y>|ND=^`Ms|fFAVhyG^>ww4W|Hpa;c|2WXz2*MW{X zfSe{=j*RX4wyQAxA8Y@{`$;3GKB|A?{ofw6%jgi8aMp0+l^pf8P!%LX*#H^)^#CPe4(JQ#3y-xE;)c3a zmm*BL?3IZ5?E15X44Gx5BMR^#W?K@q`qUvfdFU}_P;{-rSpm;=;jkFDbJA#-Gi2Eq zG*H@Pa+;`=*r<@~t?UZa`)3+Dq~fGxA%ZI`v^}|F@WJHrpmtV7mvaeKwda27P~I=o zi00Cch9vh1%cj8mfi>9QG|{~Q6QSV_20;+@2&~BHyV#ieOs3SG#y-`#Yx3>BwJLTJ ztx2L!D6`1p238EV5m>>t73&%bc_zzZu%)3D9H+iO8F?D=@MDio&475XL_-hY^@j|# z3Vt>dL_W7NLNR&|dVA`e1ChjX}Uh=yy{2>GnJ2ksDfYHxe?) z2_Rwi)h{>a-`qsrZ@SsI5%!GdOl%Xw!Tb)aD})loD`LA98oBMg>+PU%Rd=)#p70KS zVgiu9iDlXC8AR%t!W#40xTvxVC25R-X4o3*^lhzbO8dFfsLvIh!5IOPj6OvXwS}No z=qhq9hd6R^ox6gv!hB`E?Y`nh99FTvcR0rux&C!Q;r|C0)X0ByK|%jNT~LSruU$|k zVn}~%|7QDAVE7ONQf*OTOlG-q*70X_xGOt`a{+pi#=xKv~3+Z5n#9-(PSZl@^?;r{DD2} ztWWVBe}36Uv65G>=zf0D$}f}<={GUgoj+j$gztaIqGD($v0e;+y|Nhg=gF~BdA&|` zeSQo<1>}A0S(=K~e)Lc4PC#w}dv&eWUl0D?nADR97~x!xm4Cg{ikJ*R>HQI~_B0j_ z*ca{96zotmXacvD40x0y2xgS!uxgL$+}5Gt1SQldz>IQQKTGX32)x4Lu$vmQ3*Gb? zsVX%^h~=tgqx`uVE?0<*0nByj@f}grY@OdB87KNHd}jpB7z*f+I>yt7UO>?)_8q*d z3=N1a!dYRNLe9X2_|eO5Y_R(LI57*ifZg_#6D(5xJMdc6G%)02(@qbFI)xRnH_Sgd zpDC`}wQ|rD9sZe5nh$Aii51N3LNLBfEBR@t{oCC$p`0)qHeCHTfcBY&s)}}__OLKl zwEL&Qo~kT#RO6TbY#_N5_)P?oU$*)Ye@%4kikl^yS)#uYY?ewY>RX6U!`L@zuJHDk zep{zf!Mpvc5}*M z+^OGN>0K);*J5ZT9OSt|J(2l7T*LTu&dKcj6U;Pyuh4RBMkGpKVKF|_(lXQVet+}a z*R0`Eqdzw?*r7#jx|pDQ^IcV{ZDg7#xAeRNdqRbFfzj}O;NEea^C zC7nkO47h!Njjzs6CVYQI z?8G(c1w#fQ%8LQN{ML+>W3BJAl*s+oena85yoU45!_Nkn*oFxm&TVf3&a9XG$g?%H zDMHaaE3((0l5v}G6>IfaI@3b4srKjCXT3+)r1A{CmjSuhV-m9DKyal8tU+Q5nM|$L%dg)0Zn736K-P!Dfy5cdt zW5S`^o~cd7hRWi>x~(I+(%bg_T8ZbTp+M^9TA5r<#s_DP7Io$roJ288)JW}z|2WlW zacz3>UmsLPa52dYO)ZNJt@s}{Gn-^ZJg7pZE`RS@DH@I#W#b{U#=p*I(fd}p5s_8~ zPL&Px8Lm^AkuXl#q&ls`c}M0)jkIKl2iIzT{CqkHo=BAx0IwoZx&K|anug_<3<-6$ zMTIqUjSR*vE7LJ{7A}Y4b189nE{m>8&x2` zwUW)W_5-<;lx4XtpCGucCXRlXYqxRAm>^}WM6XA|wAE!+6>5t~E&*pfCBtubXRdt1 zfooo6JRD5Lb$3lV$01oL#X=y#a|tLYY;!y0dN=Q4jkf~u;Y^LF7j|d<^Xv-RYfj(v ztlcS8d9Zr53V|Wu1|33Hpd1DrRt=DB+PoHXWCSe<5H%Ilkd89*EcZo<1_qeBE~8s{bP7h|iFX)QJ->hIF~y{)#`%01io9K?PY)R~2Ab@8XA z)GhoPc0Z?=W)~NXW#_D8kQg%z2H_99TbPH%EDJ-*Xr<8lMz{RGV$r6S?x#v~j+j zNux$swaq!BGbhkTJh-GM5)V;ObYcb-2%%Uso?SJnujS@{nspU9w6$Rk-MN_mYP+HZ@B+h0XdvL)-=ulGW91a za;j;_t;BI!|0BY2DC21G49>DV#0g#wr{&#PF<`AA%=^N{U1JU=wm5uw7jw2|tsR2r z(dKe5k~gPfc5my*zB+Z#da5~WU8qJ*7@++U6NvL1p~%rGc)@@2fw2r@>5tc{G|HEM z=Gl{M0FfQ1Z}nuCM+jlo(h~hnHEJS94s)jss;%a{)Ea0+ShrU$q;$mu|Yo~9v zZ|V#7zbi!X(ZsUA{(}|jU+x*OkQ24`|6@l7=4Onf5>2>ZM`EuOJ3pAG%>e8u-n{BpYKi#ol}L2?R}0WO*i zJvczbT)G*x2b*)ehs;r4D*jm#9d|3!`s2Bwntb`zD6)3rpYnqvu&H4NkeTR{yfa-2 z5n(HkV@`+xnW-`3-^`RF_y)*KQhzhk;or=Z_t-E^o?z?(;(_?4y5?#<^3sG%b&I#y zkMx9grN48K$sxnD-y@6jN1Scye`O|BpmOU@7WH+;R8=^kKU^D_L#{_Ptvm55J)Dzq z1|`me-3%$N5J))F)m^XwohJ$17Rtq|<{r+D;ig^$iV@uFEAEAP+t-GWIXFI~E<{1{h<9${>?V3e4~ws#>ha6b*|!uzOWO+syQnVe8M%YgpF3-_uBH~ zjCRD|)FD%fkpPiNo&~S~VC`3Iz{#XVtX?J})!rofguaMeYJkUJJAoA(rjw$fP-nsg ziBnQKX-_-lfT~?#T6pmcF^VVtSD$+yXNGE_^#F&m{IphhhHhAT=4%;RYN84c1Hyig zP}K&##`%E(TDXJyH!{)6PqzXhQ<(PTb4UViJqQvv=hwsK`EO$HTitB@aeJmzriSum z|Ex0)KO%|zm7{*mCSg~f7B5KhscCVFEii2isc1-|Ic3`&nHtu<+X!Ezr0qezf)drCuUtDJy_OYCD>34)xxYfF$j|@4qlMqxWOr2^ z4jQnDW+*un78KzoDq5-3&Bi|+VUM+9gMs~aiiWfHng*iyIeqv-C8k8e1_cx8g^44v zI5aXbw8m0%ePDeQAsw-b6j_(?Ok{|hR9dqOQUael_fNz3X4yNfo9EJGkG8dPK}mzn z@c$7)o!FebFh&1X95OGQ#apKpK;DX0I!s8(m`$Pa_~ZL8JUT+|hGy{xUZ_YzhSl*e zJbH!$fJd)qhhpK>5&VR^>Q)=;4`wj2{Bj@BG;>@1|H7k)k8v=s?qhBA_Pc(i(UV^y z!wl*9wSm928<`o{28rrCdLphxA=-w07v~k$BAqa6QD+qqP+5hJS^+C+9bp@LuBKp% zYSuQm@Tqrf7!st?g04)0L%wZAE`j<7X8VihuXIkgHmNdguScL=HCS|SEVmdb;DM_c#m?AqKlqn#|i^eBG(W1(Ug!45$3SSiRl zL>wi_hQ0G&^8HJX@@z`IV$=fYQ6YVb*|}dZPB?!+h<$s}7lhB!=}1vp_WH(eAN!46 z$wm_YhI0rXz#lGVHXio&X(K?-WlWKI)6#p0C@PL==-=#XyzN?cCBr_Uz5LYKHt_sqfK~TEE*)Ui z%>h_-*_Eqp)u)_J+FY!}8?zv~HP$(|HMZhAnQcWM+W1gM{EBN>jHXv~`-v|bghQpq z_B!N8lt*hJAd6bui-S#LGLI_`+%U8{$brizv^IKN?mLFu(f@%*yPAYsb6j!kSYSM- z*7EMA7NOn231x4xO^fHtwg4*%W|}OFv^itMWXfaD3Ok7EjmJ+<<&s4+SsB!R!srGuM7Nm13`@5(4#8iw;alj2 zVlw$<6$j#&^H~!?v$@hQKD&Ls_6}HcRZU{lXV-uhS(bBGWJR%e>Pdw) ze3>~FmOYBt4uy5(IsL$NDT@@xgW8AS^g3E=qpIg*cyX^pdYRp7R%f?OUWXawc zk!zdN??oY070_vnd7-))%xdj`NrGN$%(Wr0!El+5kkg}zdi7}|+=$AbJmovK2j*s_ z$+AgF!=#Mq-PaIujg)vO1&8BcTVa=TWtTS2vqn&wBtrh(&lrov(A`?fV64;$irJjj zbRX>neD};D zr^Rp_FuA) zR2!X_S6({uxT_fACVsoTM@VP^-NvcW?-$VBZt}k;7iE?orU;G2SaS&!2Pf-?a{0&a z4XBq7b;T97cwo4jY-*UqniJ0rPU{d)#wyq1ras$nrHa|b9BVJ)C@-mTd=E# z;An}{cQFRnU_uP=p-#Rin=syLZkz@Ni1f)mnhtqMu9N8 z7w1%KxBDo0U?TW7bSg}X+@Ip=gJ~-|NEDDj=?eBDtJQ}lP|HFVVP7vg;v$WhI`oF9 z|3XMs*d=++f@m*E4%^n%Z-K=nyn7{1+9+zTM+wQ99d_PmWXwrm>$|ZFxJn7A-kjF! zD^35yGicpCmKE@tYkL=*s=CfRL)ce+t{vHT}KMD zYfanl$HO|ZG&xeQj)mC@P}EzF)9rz=V7VIYi0f@kO=y**&IN|8PR@QN#7c4b9qaAq z^v%#Ot6QwQf7ww;vOlhA5C4Atn$ex-Mb2kM)BN~Zq2zaVyaIqoJ5Q`J?VY+eC^>%LN7!3i*;`TjdZ+Bs9xfBHW_r0oA3O8-_x3#Bmp@*-Xl!%&$RwyoUI zZdBw6De2qt+j?Z`VPHr>K;AAWm=&wu)Lg|~9|tFSbhxn-lQQ&k>3;Dje7%@sLHyj5 zR3Z?WaXp9Ctm8}ox8YysUrF=2sZgye$v|Ec10p_Y_j8QJS-7a-;_ma{U zv*A(axslcmRm93u&Z1afXh%u_X7e%%TnMDC)}B)Y7$plZng(k)fK!u79jL}4oJeYR zcB=szC^sWCfCkD0dV)D|l1iVkJP%?ID$t@Eyzs9Es<@(6VNzcB77U<)LVEu?EEDk`)kBa<=OZ8=>k;KRcn!bu-Q05DPDfRdf^vMmesQ@!8-y@Ld4+rHsVsg zwxu3%TPO4|%-*I#YohMXq<3~2DL&D5M;!DaU zjzW@eQ1AUn{?L@BUjg&Rq>5Mh5=m?yQ0UX>f92@L3Y ziQ|-sX*8Sk`*(2=MTmB6STaNb|CQtEvr7sDfCmbhZC@<99;-EG^iDvj>62xlpvHCc zoJZ@tDAWh6N`pTd)Eq+TLj{kneZl>s8&Y@ZZi-xTo~3!!g@?a!Zw(kvp$@#4i;FE6 z^&6(cG(^H781OZ75D=QO1}~&oG&p54dpAB&vILsY;@&D>?4B$wVbuPUaGll<_4a%k zC#TI=!SkZ~x-W&+G$4;ZL&Mt@xL-n&i>q?$SV2*KSmmmee!!Sa~ zUrA=sb3v4$hHJy9-351FFq#K~!W4L1sNI`}9d$>>JC;U)HX@zShC%eFFgv3LBPf2m z7I`%WvPxS;6PQ+jQ9@;Ht^~#uPw2vdm z+F$MQTxRjG;4o{d-&qoPN-iqYm1IB5ANu70q8DPhB^P(Y5Y+;f3xS6rEaaYuOKwv0 zM6kGDQJ6tsu?NutwsUS3m+JSUfUmUa*UiOO7=~Z68MIN|&5H>+weDrwNbgsJzY^qC z#pLTvJLUVhQva8*6-UCS5$k&N%NzWSfn5g^icLm+ZcuR~0^@1>!kUDE?l-u?%G1&7 zn8R&Gf<)SQpuZLLP=incQPf+?8i$mn;KwLS z4e`Uk)z*AgPi|3jQHYw6u2(&(V1#}D6w;4RnqUTk_(NbGTcs};JTYY+$v&W^>nn6)z16dcAdhZ9L7u5*bVa*B4WDbSZ4-N#^~ z){IrFL(^jirj=A#&&{)kKYv=4K6D8Y)%FmU2gr672Yq|(#Sep$1@zBwADxP?lM@%v z8TcKPwTLk9AHj5fn9*>-hN|Lw8=E$s$eUjk-#H_LCQ`K?eTGah6UA2;&Luz&x$xjV z9{3?qbTK+z{n=BZ?;q4}+psonk63Q9Rp#kT3N(y+adhXP2WLu!CN%D~%%>o{WpkOm zcoVdcJ!|J3LqJg<=Os#=ely)Tb10q3!p_p`jbDScj_K-EQtrNPPoT36O7I%3ag{b; z+%@9lwT(O-9~7CN=U9$Lw4B zr(>PN_VH=WG=&Aeb7CyAH2sHFQP(^tn~&%FJH13+sAkc)(A7CQzLV7zrZSk7OlG{AV8^O3XC)nVAo-FF1Qeop61!ey@kN7RCKDB$ zL}m>62`fz}4G_7!tB2b)Z@$c8M^rm$J^{62O=C6_ds6Le&`vW_diD{lDW-(`$zbO< z>5Gdyty<1eFG)!E?NGzd91IyPu8B_sS5|KxRq)Uyie6I}xV*jS2G8qi`~5Ph>FKcCjp&rb-m#GzPM5Nqe{ z8NYTatvoX2w};A<$zwF&S;jRZvykz)jCAZ!D=ZYp+n?OIS*G$QOKr+`wFO#D{%1v$*V z#L<=k&*k^y{)d@BLDJ3|PEH0&Cq28m8evO%m!Jfoc3KbhhiM!J>fxH$cwMGlJ!p;g z1~qrx#(`{2->s(J(w(T{0aFgBrC}3PI%hcrDx;JvxQ*98dTF|F$Z_8k}$^thbZ&%k*^Mmr}Q)g z^YAJ75YzPc)yflH-z!rgvU#8axGi-|P>JfV6Kw@iqiG^_#F#{pk3SfFf7wKwXwqvBZ5%MR?&q_6*aA} z4V{cd?L2Y;>kPU734xMM^qXmg2WS?_t92y%dy+da-ZMzVUW4<>Z$cqPEbY6go9Jq9 zY2zE~v1Eaf0KcLr5#{2T4>9T2NDOZVh5~)>94Tn1{2w*@V)eh<)n)zshJ(DO9)p2= zrCk&`e?;nT{vUo6(%0(+{;TSswSb@B`QtU?U}gr_-|zS(&+phn0d25A;v=+2tvfiS zl^<^tpP^M8%)|StR^S#A;sJdBs0q}|>-{;8|8&o6Y{eh+zul7JXH{bUM}U<1Ux0MX zZi5ji><0V|0ptdO%oB4TOkxY89bNJb2u@U6WDuP6s6>9JK&{mZRP$D_SaND4Zy*EN z{zje{5n)oJ_7Fmpod_nqnEJ@+mmt4>kE|MHee7uRp;RM07jxA04WEApFS(`_NPQ|B zr&WhwhBH^+>U=b`kv&+MnC4Gsb`|JqH*PsV{x@l#Bf7t_ET(W$OXD0i0n$h@rl`!Y zc`=^koA)l33jEJp_8~x!5n|DTs9CM*UX{>p$9n z5;a&t8D#0stRECAq0K9W7qwL|G*Q}+*YalIt+>1>{b}%8Z)(`iYDST!y|S7~)KfLt z8i^4ksqO`jlNwBr(u}oY>xyJ-$(X?!Kj4kP5z*y&Q(hEU@$_rHr6#rj6d^%BFK3kI z=mxdOq1Vz&#F|N@KhK&?3QWYI^*7~;4hK87h7Y#DCMYc>&P#*Ex2nuQ%e1ZB0mxF- zfeN`HXOELr3j_EM?Md+7Qu?Xd!oe8*hE}pzlfjn2>mQd~iuV}q7?^zX?{Q@P?nN+L zb1x$nak`Q`Z{B0*)m#PiNt=E$lg?r+DpG<;Bi$-tUB~%Q^CSUKh~ucg<)P4al6Bpv zM?N(ndxrD5+Y~InWszlmyMyX$OQ#?3VAU^jLhBKoj-$UIh$eTil+I(LgfpMJGkp7r zx88_H<>bz!Jnx_0=;?NX`#=f_g8nI3a)K#9a(Plsj@AO2#QCrPsp5b3KfV7~|C5KGidNqBU)|aITCXeuufSMga1i^$#KJuP zz4;qxW5}Kba`PP~+rYTqJb=-qf84T|G`G~Sk}IG5?11D=M$2>b%xg}(?M+mD>< zFhClfI2-1;hKyT6FKdJub_8@peHkJACMNL&Y=jnGiT-iu)Gg&7Tii~~F%>=<%Q&*P z_5WH>Z2M{to{bYg>B(>B4`=g%{()61?FV$>lz)xr`QbcCi$^DtFwed|;0r`7`-~)h z>aiFfz9I#?%kG5sq0Cm(Rcx%i;t*ZoFAA<2VPV6)NNgLConW3xy0t&(B`MktWn^`K zM`(qEZhO4nAeTtHl$?GYL#o}9>VXs&A)|aci~hz#?Vnoz8;So)MHpEZ#H>MR))jCE zEifYl+(A!_0C!OOE72g)c@(J13`KB^yuS_|$p1KWQ~?eh5}?aYz#X&@vW9Xte+d{E za0exI!v)+ywKd8HV`xqAObV4Eqzy!->TAHmKnpX^h8;ppYSQS=mNPfCG{nmzT|Z}= zjtS|#Rjnjz0*|ioim6lW0Zs6+e3csQSe$f9cS7(*YkbDoRL$DkW)M<`Z!WYmG$SlC zplfidGr1V4U^e5h`s}D~5;j6S1{rpi1F)L?D4|z4`aioiOM30A59{%QR)=2g9gJHs zfs?<4Z0%K}=AtufM=(Cd=SWe2ET3{cuGA>&7}*JWZEopOk9)$~sniJ}g;J~bI&#b? z8^@dW zUr9Wr5H>~60o*~$qXsGgchEu-t>AVrr^`-{4G!8A6==^aWx9xo)aB``(UD&k3--8b z1Af1GDG2q{!WH4(F@9UO-DfX#o1#{`)SpiDJ~> z=`TCl5eoOim{eC(1ns*+b+e5Jd{}E6<|9%X6ZVqPfaow9iTeE?=eCalQ;Yk~AqixC zb&ewgDNh~-N`ml?w5sUi)2gpWgw=`(Nr`LID39Av3>p8TXo~VAl><{1F`i5JV5yNYky^&HGARWD8{KsBS}rC7s{v5w-B2Vu5;)$)dp1Aizk9 zC6=A0%H6J%J9~qOF*$?I^SNZ07u&C=F-( z(Ff{Q8J-y9cBILmqH{>1t%;6#$PJpF^?a&0HttQr6@c{Dkh6+7inqz^|1$R7iZPW`618MN5Pg7K zLg?o2ls1avYN`#{rjgl6Tu?#8z<;y1htPZaU}2>Q1bv)yDyYqBB$n*{^+kv2k2xBg zur_dIF~zRxcyrsy)K1E6Fq;-z<-_B7eX?13Qw(V*_WTzW1vf8TgFzu;zB86TlYjo8 zQj|yaBT5Z0nY{8~-&dma_|7^`>X|;3{8#4O#ke2ZV2gkt+Veo-Zh12u^Z0#r+Fh2Z zp-gxR_g>1q_%P_(I9R-NZ$@jRz#-3^UfqRP4^t85F&aLX4*hdTeNuH~4yj|u#051D zrorH4XpIy``DAYP^XBR$kLSS{5o-%wAQgZVT|1+KozBL+3I@ilxzns(-@0{JO7`_^ zzqasP*2xZ1Yg+P&{R}16co@#po==vQ>vREcof1CBf9g-BlPTmB%orm2!$OjOqS+V6L6 zt$B^FW_KX)wBUd=!M&p1OxI3h!Ci>%Mo%SJT<0o;t`S!cE$#>~DeXHj7aw39t`v2z zdAJ>Q+sbP#H=I1CdUX&18+3Y&a6UUPW4ysCm$e6?++-)MjJ;)J%E|>@^AX%%P4Zqz z0Z7sIDv6>vZn6R%n9A?MC~uqQjW+CL&Xqq`H04-SS0;)!;HhMxk{Ho*@UPkib1vlaIQj!v^|py^WW!<)^w7|tTPs>t zbP7Z}Q<+zXY}QGaq38xima3lx3W?%O(r~G_L};<;MP$ic6NOSnRaXPSvG37k2p99V z?OV>a5@XJuvU?-kqD>Fwa+M^ptZW^#GfE>)S^x#M2kdV8wFYT8wDFX4p$3+&nWNO$ z{eHchDoU&cACJr%j4%E034DH1e}b!FQ8^fmI}B`CF|Yni%y>gu2ODPg6*gYg^dFCG z32QwSHZQ1N16kRXq_Ym9(Ih0eyky!_W;|ly$H)O~O)JDP72W8kvPsp$YGzP*vfW#Q zj=P8aNm=`nI4&RB(W0SIxY!1`u)vky=@!gTMfA;WZZ=Dc)=+i|j)9#dwRviP_82UIx{xy{&#Ebs%3O$F}jVTY$d zEzyJCSM$`EPoDJq0&X@M{^rQpD*}#+hHO4>VdL#lwa;z*d=jrqTDH%vHJjHNumRG( z{_L_A2J_LfV=yAK#E!{iJ9)JC!U)8+)8v4{!RE|`-r?kF{MW(=&=40E5HjCu*yvb< z?lU9)$rRx#c42cp-N_IlrfkItOJJ3GewhPPj_oQz*VN8Ra_&&enB8jw>{#dp8OlZj zHtS)nueHcLEa&q2YLh-iv!vQKoN79Mj9O^R1Q>7?cWDI;$O>%{8|d^K)9#d9xkJ)X zZ=d9nfv_>DeU7zLD?h#$>-;&`?NsJ~wnXKY`XC|-S}~~u4#!M|%#iV02`4Vt+!~bM z0=UcE?NH z=4j#x{^`X^`Pq*<^&;ukHkX@P0_xd2J8=D;uFbaH?Tud_z60ULV*3AGlzZ@@vx zwHzc9RfWk>$Wyz@(4eUAY&`b$DgbH!LMaU{uj9nMFiU`h8SkoJ2AmexY-lyT5^BXDe}nW-@kS2o?BP0!K2`(Owi}i}F1+{r$D$H0@I_ z80t1)cDwDhn{y-riEsB0JJ`J9uE&pHSd<9Bpy#mBfdM-S;y*hH?Vp`=sSPvg1K3H3 z8SeN$>q6N|SO!pcy;py&PCrXc|B4x%y{RV;Ypd} zq~0Eoa-7|qzdNbTKw)^{?@r?WyOWv$J1GxsqKg^AZ)_5vu8@&A=~P&)(xd89lV%Z* zvX6~L?t5lZ?d;3>Fz14~BH)JFf-2oZ&3reu_$-T0Kj=8*uBV4QeZ7}Uj}}#20!?c!MyBD@1Jb~PpHEM+Xxn+G*aFHC zL)e@*rwXq7^>n%6xaBLK5 zRFkZ7wT`i)t0qwy>hL=aq>7fTlcB>p1zvHBuYBns%m*4Ma#Dx<&rDLG!Dm6}CAH?c z0$V618120uO+WTz%*#JtTM!cJE$#a4%3L5bkp^tgF&Ku~7(@n>#oj{=zIGInr!i*8 z9MTYVuYWUaM-fE%6`Bb@K4dXG*k}~*b3BACz97*w^JB&C#~q0CCxT3Zv8dt;`DrGt zAbyC9dS58FvUz)lMwMDL>NOOLZl?q&E$lbR&g^q!&4xH)?f9}kr0)2Zd*6KRl6g_F z7s`VUoP`CBp;-vpiQTmDFwkYF%difrqn0^q=YGthUFvBq_=#Z=Ne{1lKL^!JKjho* z+S$GoZ}osE$+ysxEFy?bG4<$|5^A7Fn1Dz$2%NScqtZgkim|~77m+N9Z{<7+N^fp9 zGZf|XE0X>7TLb>RuQfZsOAAlTaUOiOZg*IiRVY`GW42K-J6X9-nSL_){Xk9W6dVEK z#WxDuK5Qm7qG*2xE>E6F334=^L!!}CLWBtvQre&(<#9f#E|B4zklvW3awse+no6|x zIEDG)`)@yW+)qZ_H?wCMEZ;R1yP6{^k?*IyJ#SB@WqD0GID?WQanyXMBJLJVNTM!C zrlTY@$`u>6yRWT3_;W(*Byd45DWP9*Lc|)n)_LN;}e=L3xpJNS7K?uF(C^6(d z#QQ8>MY4NzXy)Byxnz|DZpTXbT&*whA6itG89`%xmNlM5lX;kmQ!qU3f6=0*m9yL{4A;S`?Syepg4CnERA0*p%sqxtjN?K1^gCty-hnVgJXs{Ckp1 zBmdgS0Nr=xS?v2W$1J*}nEIK`ZUFI%3XD4#*ZU3c>|jf*;vK%&FSO7})ytOlM;Qih zWZy9MWPO8J`kzsFp6)U;fNB(3pqrf&cX67DU%E1Bn`+ICs};XfORw#{#JjbuQ*$*c zrRJh)J#0HygT_eJZ(S)^LjP=0=8$*15O>Km_C9gIH7|xj(wDVyWKzQVW z_Q6J0c(m1Zjnf@=8>Q1(+1#3!b(>3Ee!7#D0UJ+rYYQ)OYLM3snsCBy%e1&5ye9KI ze$pgbZ0SSA%+afx45rM$@@uBa^sIu$hO%SX5dGP-O!`8f)25#DI~N)qBe!_GBjC*) zY1qw+dsEo3MNFq!suHcAdT4E%kNrma=zhP0ijzaq&4hJRGwwvy8jvrHxb( zZuq5C^OBBPNJ`O9)muu13|QOcC{nYH!yXedSc?3i1onz!dFxS%G>3Gt>&r~ksYvj`DVc!t9u5g>05}5Rq zC%Ep+Qh7X9gv@RmaAW5j_G7=O6Awnk; zza>`r5CmCfS0xc2Pb?(w@~TUSrMsdMbWlIz?#o9kNI&aP_0>!Oxr{J`)=Ak+|| zQe!f1k2G%T=%9-&{q>v@*D029%$S~Gm8e8F(Lt@fr0L2kaGh3x~I`n1<22@YB`4AZsE2&=5IK_shp

    O zjoOnv9Bo+jq_$Z3F}$5-yv67LR|Tk^Ed7?kAA{ax$avQE5B@6XmrhL`%p(|iB_8pQc>&r|vRKY^nE z97O+uq8k9)sQh2sXbCj~m$4lRW=^!Sj)>LHa~c|^Lh+z)ncpY4gd{T`v)k~2N@6%k znq)n&kA(|+kDb$>KXLu8*jN!p8_&5}g8*C>DEAtt#of!!Zut&%1K=Ay$Ey7Q_(pY^ z0lv`|O!s>M|9^a=Oti~%yOn=^qa^%KQ-@L40N-e43j)A53OLF9>l+Q`2$TL%nO5O= z4^f6mAk0k68lHq~fU`iy`oDamkOz!U|M*7RgcChrML${4Vu)(CfqwFXgZ=ahUVH@{ zm9mQX!$o>TjrhVvxV1u}hk-CeSjrFtli+1MUTZMWYBkk3sP^$Q)rCj8$8j=7#4Jq3Jz zm;1)87q7!J1P~~G9doZ#uzoQS2m1GBLG3dgkWl+{9_ylFiv6DG&-*?_bAUoXn#T?F z3K6i}2bna47u;=V@HTNK#_6iq&z1o0!Uup81sY%90z9q*h7-#)a!9<2n3DSI8!eu^ zf-KS1XvUfV_(ofy#qzxn6ToCxT~QVXl;J1vG%Z8S-3~Q zry|6rmns`9NL<%X+{jbYxlYIJ*Z*!)_fV)cg6$5RI>oY6s6^A3Gl=dTsn6?a3=i73PW%CF^APz*;p@X;DL&7 z<-yAHD4vpwWOyQEu^oaer3AjSq!24(xJ$Y)x#Hu4akLt zS+nshg%(5vsoh6GpezkMSeEvBrq)a#;|BFhU*+ma4$mgt0yt3-j9Mps^#9F?3bNT3 z&oMZe%F2&Q#9!>^+x6mA?_$}KhVEigddxLCDqvM?9~#T>64h#1wK9@mZtWHNM`)mj z_8}Spd1v5?I2Ho!*yayAGY17KQstW+a8!hEhi|%6q>0xQ&%z9XpZ+0?abHtDKJ;hy z?qMv3$R|J+Ph=$#8W+%ko;;KbL)?xsDK~}lUeahSV0ax>%kc_PyT6v7J1yJGAM1I7 zL7$V24q1}y5&S~?GXS+jjOIOozoUEEPSlGJ zPzznCEeF&>pA;N9o@5g}K6T8?J76l%{Lo}qi<&DdX|a|WGAs4t!9ldcJI6Yh#?hfS zeTTAcQod6ne>L^)-Q+?0yatfo4A`JYe-Z$S zYLg49dH+lq>7m}zS4T*Rtz$z&g&Pp!S5@%;G)rSoxi*zoUozT}ME%`aB^ED`i*)b4 zp>qO@O6sn;52+hwkBV zo6mc|VofH34&_sxf&s5;rOU;sS3;o_<{Ru{=I+0wsCWwf&7*~1;>&f-Mb9I}HH3 zyLVY{*6xm<}2D(9X0n-j+XP&$n<17TIKhW6Z>P`w*fDzvZL)y7X->Y1=``!RKG&XtpcBIGX#9ar7-(2Yca=)(uAT7=%eT4N~ybf~|&b z-SG^u0<~3p7hoJ6Sy47OiSRaO;WK{&^g>}AerANeZ+5yBpB_FY?RBIN!8WmDS7VK( zsNpEmIhkR3(GGkcS=E)}5U|_gL@K>v;W4=|8OdgT_t`Ji&;&*};GG>I!f$ayxoVvK zKnXiS{ZrHQ!q#$b4Cb`#5SYy>2Iz&lH2)#R@fI!vS$u1nFeMIuP07=+lpaU8FKJg_ z?5dx!?sOeap*E8{pF9CIx}U8`lt_t(~f$VDZZZIW_on3&sJ(u+Z8Y&s1d1$KD083DtPomqG| zOgtPME1gkd5ILIN!*%t&*)^wFzfBqo^m{5syYMsIDt^RSU7;YwSVL26rT?o-QR z#uFzhZEb@5>d!QHp1IVmh%`C1Rbild{#zckbkzmKK@=S=utGHEk1ZXBGy4WZ6ic zf4T*%z@nh5DhCB&R5m>Ckhsr=_9y$E5X6L>vH;4)_hO;FdhV7cP6aNAqhJZ`XEl|L zNKX0fjPrn0M}QRIo~P_`$I|9{y^y zBA27Bv2~C4fpd)r4}mx^EzLE^T3nd}gfjnUEG>tgwPGZ4;eDz^0r4fLw zE`{OWwsnY3PI>5G1?S6o!n6N5x-fyoh*>L|=RKtK%+i=LHt*Kt7{H~6s@>0gs~a9u zBaG3}zPv!wTj8Qx(#25xUTscELEnzn0T#pOfcH6>T3r0I|CA@Xj>uARWNih8nGz$4%)!nR3RQj9aw6d!^9$^yL`oP`#Z{ZPIS#9k1m4OwOLcPNeP#I$!3b4 z_%~x488oGD!%|(e(XT!Yd#|7j#09HW2l3QC9wy!rEC-m3CeEu$sU><&m@(g#wzd+{ znV-i!dkRWI38`f&TAc1U#!3Ok(W=|F{}@MS`A^O?G!T<(+?gaAS^0~B(a-7NjWx4v zJh_JSXWYVJ#CQp9Lcp6v9sbdz8ui)W=8ZQP1X1$z8log&@%J2+!wk&+7 z(tqmQ_Vhob=zqGQRe7BFXyA@eU2j4=BZN71xA;%=zqt600CLU{1@ns_5TJ&*~mO&kSGMsTSjXn<{=Fz*NKVg z38@%--w=LwsN#%9A`;75@%_P_j`r~ONAYwp7_Ls?fCWnarTsMQUTqowSHKB24OmV24*bHOdgQ~BNx+XbyE8O4;aP$-@s^N zFT2MU#k(qi?>T1<_;Bk>aex-~t$MDrJA_%A4P(eeD{^FSC0T@~7pq}tsFWt3G*0At ze*b83OJ4Jno|n?vimY|to#8~k6MK4&j-9Ttb=XVo_Z@02D01C1RvQfjKb3hioz^A6 z=#oB@WdVd6&RxR0XUH`}NYMVZYm~@H zeOvuSI?j8W76!MLK#qv@#WuSmg@)DE5T&|q-UtNgYVc)T=remc#zldwzwMbYfwDSS zIwMio{f4$vITDdKAUY@-FGT3HHZ^r#ByRXqp>|@ZUBnLvig?|~ZclH>)a%bfI%J&Q znV4p<<`k&FW$~Ytuy5VdrlQG?wHT}`7p9W(! z71I!>_L%4x`b09;1XR-1Y-Mb`@;aSEaauzAjm-Cr{qv0sF!CpzrGKCg0lm$b9;52g zYxV%k?%w20NdLSiO_pYw_fd8(u;)#iQPcVJuXS`G%vkLIq3axjBW>4(8{4*RPHbBf z+qRud?1^o2V%xTziESq{U(dYz?0vqfv#Ywg`hQnF-Pe7uYb|o#^*CHh1Kw2p;BOFO zL!ri=S|4Me;$X%Wg$fW4R2Cb(wPk4H6hrfH*{R>4aMbYj%e69cEgWBA%uTLESV`%J zf}n{cuwyZZX}$Xly0MGIBa&`#!asqKQoft&iKzBqN0veX1UjvVz=kz?#7q3451|ep zBi~n7Bp>65RrN`s|3{z`7I?TXjw_xM>cGCPl7oS-(1!|vzy{{B3*s`I#^xV17vTQ^ zB;m1$-&dKj6RlXvYoTSg)S2IVd`EqUyK<}Wd>i~I&iw1GEv|O+SuUy+m6}$>F51qx z@cE<$i$P@nK$CyGNn9)?>JjR56}XR&+k;SSAZ8k#>@@=fWv1&<2J|Rf<`U2p(Mba| zMffiCZI9c)kM$)?PTVyT1ve!+!$KI3I~{)-BKoEOxe!%kxS!s21~t$Jz6pJtp86R| ztiw#TZ|aJQck@>|S|#kz8)cLZ5a{f%+yfzHj=FS1hjg7LlNhrXacKbrI^QgOaaEfB z2y|wZYJYc!%*O0edkBHcW=Ws*28;ep)S%|2XAsbE-*bk=ZWvfB9h+iI=9#ubQqg`A-%!+&_5iNT> z4=RVxYD~XBW|4E2?b0O2hfT0qTOSiE602Aq!qCo}Dfnm*G{?MOkYvM~%bew{#A=s~ zZ|0nZqeHNB0al_pI@ij{4VPSp?kh0=8ZeZKizJf>akehJRZ6QTwiea^CH$UGxSV!C zLVL$<(v%nHP&FMv4{79^dZgw75+70>B$ov12p`>w#m2VdVDObiDEcd%H5ViMb@5!6 zs7r8z#x8gbdyu0ZZF9=tnWn+DfvTeqer0BL!(oCQS1-ryb|AVUL)$E;mKp!>()3O6 zo8N@fR;Qe^ZkoK~(}k6gJW)yKohyf7RQ?b66lf=0y)n3WDvQlm8q-%g^E(P@1RUUK z;I+TfQRG2@bo8>?i0O*C>2g&#*P2eZ)UxWYbTrQgfH^~!^upq4zvCRy5C-ByY1fF} zJ<&`-v&9TC)#63>-b~72O*GSkHbvFgG0-?F*+hO+_k?GQYccf!HU-RtjWLoXJutvF zXI6MGA_mP}(~_aePt0T!7zmDm3Q_kM20I#ue+9Diheq3LE<%3U^EsdJeLhe0y+%V+ zWI;G8R(Z(IuMd|OmEv3+5>o0#p}Rq$&#!`J{n=r%&N-U=70UBk1upzPVR`golvJPh z6hMxW`rWWo=IMz;Dn++rJV+Pa=)~5VAK+PxQHhJKXs6P$4t*2_v+$AD1^8SG?N6Po z#gERv$Iso93!hl(CyU?Dv!#HU( zDU^>AoQXgmpMDvAp2OUM~~okSnbYoQje*sMPTE&dNy0}Csh%4jrvPbUD(clx^7(4a$eFF1qAf1!JgDCccWB^t2nWGToPJ~Yy z3GR%HK^neggd$b*g*&Cv9)B`lPkQuI)|PQlB?<$DV+|H#3( z4E!xR9||!7b|NmwWO36^iJ+ovKvLT0#Kyq$YFXUpkXzB}=GiY5mdu`0!Jf0Hq4mNJ zeEYaw7mumSD*~4rF2Q%m%Ldcpm7j2r{3S`XR?7D0 zSf}>b`YPzf{;zfv=iuv|DWlK2aPN!mckO$7q6EqW5Po!qwO$hB^UKRrjAUR z9ozd)73qt;85Fts^J(03tz3^NaE+YJuX5MfsXcXOa>>|0gT=|h8L&lRfAwYm(;{tzrtv{-_ ze_M}cBBUqB_I!RU=YidMG;SlvkwQ99R)`BStKABW)O?^l`-=mg@%Z!TLFRVoxnjFIlMU1Mz>oPzYQWhK%-%>O1ERYZ7Iog&a$7S3b zeE)4gH8-X-Tp!`d%oOsV%Qg<|eAST$mQQmI$;r0sP^TT+JZh`0yrF5EbDKMVL%M^V z11F>a!EMBb4}9+nq{$k+B54et-3aBd>30%!OX*zCCAKa3lW628ZuLZ2a1QV$P;~c< zDrxtmx2&fnDQ{K28^uQYLlhwhG&MaLxRqO)$UNo@MN10G@uJDPX@uq`)U;FiRBn=7 z*8Z!6`T{EhGRyPlhb+*a$&L;gAa_a4WKC%4RfzMg=kN@qZl24hp7neyoW8!XsmwgZ zj0p(=niP;;EZE-17Ffc1(9Q3<&e@<>5>_Bcj zY9q#;8&gS+JYYu{8hkB0v+5c1`}OQ+h$K>~D6RDnZcWDF#1F@dX9hU;8nc!cjvD(AFqE25H=YkSkI#MYtUbNz(IXVW~E~r37Qf~ zf!UK9O_v^dyk{`8AR*n=E7c&d?J(dqlCC^y>dzvSKY-!OrD0Bq{ji_Uw2dNml2B~%jFNfv@k`4dU9DTR!!w!A13Cd*!27n()2P1b-mZa9Q zEzv<>mI5xj?&Br8yPsbz85Q6%oNYJ?#4Rf6`a1cvqk=LLazgA3lc<-Srtn28%C6WK z7K_E~*C0@j^W5J%4%02?d@{FGlTJr#gsr$!&%3xHkGd~#f0}U;HWCB2&S}ohhUT4F z`J`!GIZt!S9h?Q90udQ6dcSmJW(Zg=mFAGHW1=#fLzhWWx;#08&o`8FYbcNK!KQhs zph8&npiD>Z&T5%&AQgyJ!LOWYc9*ek^G^pK1>I$$4LzXS2%p65>0Zlig9T?9#kooRBpv}l3L0x8)90lm**Zsh`jUE;W}Zsnj_E1c z8n5q2tv_mF|4O!OU8>0xh+ZZMg3YrJBR~fsAaI=Q1f83v>-27uh?ii}>Y08}M3zgO zPBraL@1*%C^GkgikywCn*iSF|@aJbI*1IS36F@o&IeHIxpXtKtxVHD86FKgIN{Jls zcKa;9)8f;wL~Qv2ZsA8R_E$41dHMKPGs;}}Uo@kqx`SO9|4lRc@AbNMZh$hU;uR6C z#Y(RgpV1(wt%cR}X(}K_b8;d{-R35g-u~k)-XyPMAzQXIkw--ZUAeB9^mJj(WxDQd z#{VcsTWX5R4dmaRQNRKQV%$;_uZM*yEwduPGYY!nQ-uNWj2<8N{Jxy2vJET)QGW+K zGamt-QNdM;|9D2h9Ss5%ympZTO}W~oOoU930Q+^V=;DEP!_1o%m2c%Z>OUO30C5IV zW!6?K;4e^HYNQ573RsKoK}=v0je4MSgh1a=<`=EY-rPm%zyQFg;{HF8`pJ>++eopW zfH(tA`73kLn|0Ch$alTA#OL+CpxKALJam9))ZkyD(HmfpFd7GdXjBlGS?UR*5D;Ma z6RCFx`(fw9A)I&vGT?GP3{UP+MG?Q#UE|;SL!zo>;&ElgH{`V2Ub_`vB8|(z*g+e& zOTzu|PA`u#=M=PxorFcVY@|2NmaX+{x%S3s2A7iHVYf6!peVz9ym%Yi#}4R$7D$a_C!Nj? ztC|)fUm)8qc)#;rW6MFhk_hius&0|TcsF&D7c?B+V09-%c;`VnuZc#{mc5&YTbQjU zj`|2e-DAcDjll1M2(FL_I(IgUPy|;XWDstNd?(PAPjLpYVP`y9Wy2mEKfkcCA4Dix zaRjI{-2SW1KnbWb^vkjSyUtLX2SZ#vhp;4xFJf+TE|*}(97I#nuLFkE8{F)mviAal zKLAi?=x_si)Qz8X{wYfF?>YmkO=Y(oq|%Us5s`>yW$RK~i`nzv_98x`%ake7{vXw- zvk5>oT2ayWCBHqBo~q7lJ=VT=6Bu2wx;4;`1-^4wHHrw>xW~Gkfj~u z^*i+spDnr7;*;|LOU~6$btil&wB~CcRi{pwz#PdjLmoII$itqw>@6X*-Ve+Q$Oaua zb2>WOFMY=lBa2dhGxf{#N`Eu;V@sB?)_$liL8*d>-%2X;`m>ErxhI&HBK7j*6Uoy5 zF^!(2s_4?u-YHqYek|r3Op~x@4a~&Un}fZvROG#ES_$F5S3v3_b5&y;po`L!p5D7a zt*piJhyO`0TD{*yvjn9?+nX*z)-z4}u6p)#t;N~h!c{;PdXh)@F{!2eE4@euNH3!E z7NUQ52Qm55X^Uq>o-Dk5oCIsMsl3sK?s)>w@!4;zdH}iO1oG3;6>G@A0zwa*ouCr= z0d6udW7k>}@0-3wwMAl%dZ%Pzz=+?N8#g?&PVL$s%R|8WRIW)R+J^q z<8SN!wC-C+t}BEX_bQHwf8bH0Kk#VZ@uB3|^UxJyUk}<{{;d-6ZyIclL-@^^q`F^! z;n6bdKk(?|{|eQw{C}bPW6>Cc*UQ+?`ex7;aTjX~cNm8b;6I`ITTlYE#*`q`Y1FHx zAQkdk5=?>Xea#gkL{^_4auMF(QBiBabg1mA0>qXg5@COq@QO`<{u8QKm+#-{0s0sY zDrXCj;&Wq|)nFS+IJkb%tOip&1v*8ahE@gY!SCAHa$=&PY(J!xU8IuR8w)q)ZSP9D~g&jx%TX-DjF$#2`mg&Yo9ddJ13iOLj zj*dGeXSr01UA(<`wnvv?+ylzB{D!|JvtPXAR)*y;uTUWoM}H77QC`ls<&>RxgJew5 zVH59Q3Bq-W#W6A3$5;RZ1-j$6OZ@`k>u(eMt-fV0?cv=&P@QC7Nb~EE?!^@Z@3WGq zWsi|)9`Y+QUsCK^CB1f4|B-Ug9(6HSik9NBPrpSeh4t%vjtoJ6sC* z_^C{4`81{>geg6?KOR?{j-x4hu5MIa@1TnAP+9xO$EC96T?9K}+or!lPQ@Vo!6=-%!^J8E@F%8nRJZ{&F^$Jo-}@dFYSTsOq@Tr<1v@Sc0>! z-v>fG7mk^V|A382QZ6>YS#J(sxpffI^I+Dczb7axUYu=u#1arIURL@u64^vD+wmg$AWLnaLl;}HTTjtvn%PWDeH9j0*B%QXnIt+}< zi3bqe>&YnIMOfV5M2BtZ({0u^GSD(gb2bxSZw;6CHAiUTwzKeIwSV=`&9msmO{Xrb zUaKUvp_EFLQUs-NJ^Ff+AgYebs!}X5GGI#bV-7WD{xvmN(3-sjZ=nPrEG$1!Ic({N)mPR(iNnK&Uhmn^>zRytNGt(mx3=im;lZu911fA43-`?Lz`; zoe|bK>Msm;4R$>b0}I0nt73%lU~Fxveanh858rq!T}kJ<{=^!3G$PNn6fRsKr-Uol z=(U*5qco8s!q6$HCO*q~y;REQGVnV<*BqYTv0Z2cZU^2pb1_A&syWY<)kPzywc2S2 z>AY8w!}4qDn>TT6+S;XWn=Cns(Dqt2-ORBZz#4&D)+m@uam4Xf}@ zrY#l|D15DdRQJnrXFnuiae#nOKiL5}!oB?dj?YYl{t@b)!zL#p7ig1DS#(+-v5H)w^Q+lC$-W?Lu9;F{wWnt;<{77 z&{O0QKtjIF@pz6&M81aVZN``LwH|S9@w)-&%j}7r&sLHDXSGANI7GqfQ`ZQ^EwufY zfYSHSOMJpi+~Vh6c3j5-uh6p>0uP%MBD-HtuRFir*ss&176Tf(S`#7Pj2EO6@`4QO z?10r{1lpPjUhC{Ba$R&wR91O)En0f9T;383`z&EZ4fTR^OV-73+F zgBP@0;PZLjL|ZkiGUI6fEGv`@>&*y z1MVs^@N}jWcW?EYSB)cUofc}u?+e|nJi9`tT!pcL@MoG<{l3p zl1q4H$h-vbSbH(!peHb(;9C_GR5V<7uAq*x_pEefAXL`wAneLvOjy{FLsGGU;MfWM zI!Q#--k(C2kQlbZXLS+#w%^dHUl|et%1h+Gd4WY9c9_I;hgWQHQ{$H@P^u6YMs+LE zAhk#2cXKMbw&Jgzu8x)|{;>8=E}$>B{JBC}h(p)C86b)0YOq3Z(XHcKzLC=t?z7{= zjG!g!fP&;{1=8M~Dp*q!49M3%{VQL;9mr7e#gSYbkgu;O)%IIty5LmW)dS?~J6kB8 zG3x)5uP^0pGBE(UCVGSk2)l_V&!g4bv^2aHhgvo@UFeh}j9BT6y?a-n*dobpSh z+_AYchL0CzLga!qooBA@hAs6Z|L~+VB>Uk>*RM{xj#H<>ih)KZea|+~=X>Hn3h38! z`fkB9$>mWx@y(Y%MH->K6|`H;yib#|r}eGGyp7#FiY*F$Ogfr0?3FXXiJ>)S=(Bw< zBPf}v=g%@<^J4raqUcecy$?GE=Ec&TtVB54uXMyRrk~#f``a$q3OTaFEba$m zRIDgFJPutzFhT(wgh}BorPZzC!X!r{6MiA=&Kb^giZX;EAv~V_@!OBtzxDcyNAyg( z;BK9@L;f54W(By}bm?Aw^MV8C%%Wd}!k`|*_ce2dRWoJePM2Tf4||83~i?_yZ9=%vhf+B6Y?!w4(C6 z^q%)z@Rm$v#rRp@o0!TYYrUYsxdVqLrFa`jV8;)S`)Xwf@}E1fc)$DU*X?<4c`t_*l&1coqU-eF9Ey zec+>=uDqUbPel1X2Se`cn93URGu{+Q}87d|s2+0TXA23bj)w^JK3r2L-3|0pp zbAO>*=u8Ivow*U1C~#>$JlKF@+o(s+QN@NnwC(Rl6Rhv?QFMIdz_HGBq0GrWX&C)a zz}~zVOCjeCy!xT~LUd+~zgzFp>=(E(7vrIG7w2=y=UP1Uf+?q=nlO0y$U|TqDYuM= z1c`VX75x3H3mX9#C}lX7pAAlsie}Z;s9t86jCI44TNEg5(UDCVjSOO{%ij)DZlonZN)*lUhV%u?qocQm4i~ zwoDIF08I*UfA6^tdmqKrG@p`$k3s9aqkiAdPwjRd{M=xGBm=pTUBUCAm|!L|GWi7$s z;+`$0q##kj%8e^@lFEI=SiM@70gx$nllx)lZMwf z4NI`I?qJy->}u2>pRlnGjZ&62Cwh7;y-gv4kY3$bl7|jE2*oG?6zn-tXcS(*57qAj z3ii!#fP(!+&iWe2gJsa2P!aWAhLtw+^`lz}H^pUeI~5+{laivzJ&Xg5x0xk#R*I&< z=v{_o%Bvs&C29$+>6jfkp**Mq@3e*yr@Wf3f6mY2DEc>;?s$i-c-W`b`J9x5ALMx; zo6kv?cWI1c!e~n|EP5J;s~4B|iNs-P^%uAu$hj@}wim<9&d?1ajT<-Cw$abiV86(O zRAR+tC$z^t+WEc4Es|c)`16*Wd@f|HO{r+Z4C~}{%Tn5)6cpl1@p7Y0$Yy=p132(nwaR`}G7q?}bAnj2TQissYleT3()}dvLWZ6G_2p7)4(Aa6VEe^GB9( zZE=#;g@|Ih`6Wd+j?5)C+9fgCL&j(n!>T%FCCNVxdp<{!gNYa-ykG_tw?l4(KMi{| z@q)J6VB*XHHGkDJa{py2(xokWP38t2hC6rwykwV4zoaJ5FV~R1(J=66LV`-^!Em04 z0w?dujht-gf1VAWU_*~!DH!4vunDF8$8^{?EYzCdkNv)aryWKB{#aa9a;IXUliBTGqIB&KQHpPFY+VZiAW9dgUHi$e zoQy_1xtO!B3_Q4PUmFUBGyT*FMga-?>BqSZ!oxoadoCGbcsQakqwAlBST*QIzxshE z3`suXE;N7(rdI@%v=e-+9$L!h_Bjj~xw-!)?7tg|_6>&+xcn<&k1D`cw}lT#*r)ER z0}}S*-afC5vY)6E4P~^VK7Z|lz z72csOv6WGU6f+9u68O~s680_m{`}4#_v!n&GkCv!j$X6{oHwaqej<51hIA|S1fj18 z;Oh`hoRfldcDt?QE&WxHzWz~=e*RIA8dA(1{|0cQzX4dOq6{b)8W02!6admA1_G~} zKlraiDaSuV>4wt=5kNu8v*14KkV`Zcduj30ghFm(OqWuM5OAKzyvG*cbF$z*H&?wL zUG*YtFzfe0*FkG{g`h0TV}`$C6_YT5B_^ws?cAhWn9I1spho4CQA1wIrgDTw z_ZU)!?^xD1H^8Z7H%1T*>JV!wRAnBP6Q2d&*1zJx4pxi`KuX!L3(U+5F*wU`0*(>| z^Q;8hGsNFUjxZJ^Pro;2iD$q|RazDaagG@VSP!7d+BGH*4(N9bC9Jm0>j14H&FHu7 z{(_qHm@|S>w?{<_RF(MN@L|)BB9qO^JfR(_S2$l$Ro8QJ5%f^iY@adxEy59il&+-V zcRF-8H5vP;X9`$oNtgH>vfHEs30NJ%*tMS#mChT~TM&0V_}bei#Q$-S0@}bL zh7ymc4FqtIzSdb_SB3^! z=57TJNR+5flq--scmOtqO#V1Xp?eSc8K(=1s`VXf$#c*KT>}ZiFL;&I@vo>9d`y}N zWrDBOQcFs2GxflBo*0Vc1Q@tQ>PHcSz8+q6|B)l?oB)e z-q+#zYT>Cv1k%e-1ZZoTQ%t$mr!dWTmJ9yK37AWAv^$3dDYo$|LUg1&@& zU!ZM<3^i-p0U9hQX(43ce`)|3A$M`I;!Yu1aaUbms&mETZq{E>n{=LPE|5Or|62n6 z1u-PKNDs}=Z;(Gf4pGfQv;>nomvDu4FT&49l9ir~T>z$fCax)&|JVM6|F4mqiEe8O zL<9Gub2m1p-IfNVk$Zr>bTM{8s z{Sgq32n<}IM;s4eM}yk7N50>zNG^_iZ~qa05=Y#{Qo7p|C{c(0O^QbvgdTKjPzZ#c z>+lv8C>C&h%eOOO6%g@c$CQDY!!L-u>M8-%euPM>D2bGwvcqmqHFrG13;n+Gsqp;y z{lTx}_nY&M;p;UI2HpsfTJo!<+eT)mgxjSXKg(S&OoOs=n_rM+HU%sMnzF}X82YpApC12hqamj&e zcaMVv$TBedhyGrZzR(8b7;v81Z^@4Bl>^0%m-Gd}G8LgYIb>>qWvy52(n@ ztX&}Z+s;8`ZAh z{IlZ3QUQtRGb`rsq`nl&MwoMPgHpXit@(*k{l_qMSu!}TJhJ@8R|6ERwK)}5GFY%7`lYp^uNhwEaulMfLO#c3}EGuZE;m6Pv(AUG{nhqF9 zjcabhbiKlXb0%=E$anX4f{LRg96u4_kxx!(zO>)s?oJ_OAg_$ec$HglYLm7+P4$dq z^53aI$=;oAmTi@~|Ay=XzrQ>)aZDi?2nsqQ-fYJ{T0ns6Ur!a(g2u%(n~M*Vcm~X+mvqD-=3@Yf1XEN>EP>)#rD8V-gT3p_ zAfeQP;iN9R>qUN}heUZ@6{-QeR2=5UNiWkjf<@%9cM zkAPu`iv*~RS}rqm(YMXd6Ci497OOL%^zL|%da$~|*gP{vWVeI6z!g$%PX`!)6qcEq zw=j9eg+~B!O7>Ny;1JBRW_o1&-hrIAxAT?~7ui>#eS4q2fPIH{!{rD~y9qdYr}g~8 z(j$%2=+aBggmIFVOSs@%Lr%2us=OLHf3YlS2mi^R@ETO+=vKDPWF!Pq*CjqQ185=| zXO5~5|E}Nh(!z6`@j433Dlz zdV<(^%#vBJUN1xw-m;VeL|_7-pc2TzZ6xf#XF~`D<^m=#Kj4UNFQ}w-ShXu3_Qsy* zaQGNTENSLQh{a|_|M$oVTB#O??Ue_%yZgyEd|p$0MxSqL88e+WS%>6WXj^Nv6A+i}G79ejrb~x&e>YzhIF&yLL}gINq5| z{kmXuz*%NqC`N7H5RryZqZJjZHJ^ZG6oX=Q`#L_3M;@6Dx#SJG!jd&^;*)@{ba>Gn z1V))l$bZewN}TAIza5QBBw($Znyaf>B)a|T?SEReS zI*W6l@cQ#Rs&nl<hN zf@Ne0f@N(M3r06I1_lS|-F>%)srH$MheTL9u`4L2yn709?wqsv#4`wB+gswh(|ETU zh78deR9{~GFwEB!xDofQx*u^RA$YN$fU~M8h0<~d2F8oUDIT9XeY(r+vgBlU9nWl1 z8jM@2!)HCFrRJ0F;Y+Yw6j(bPiZ?9@w9p%5T*p!ZH@#*wJ2KvE^RCBLW**2mcN^`J z>cm~x3O$=yDw5E*-mY+TL)M@3i;hlga?e+5gh?c)ly~WKT?6Io(_Q!7z=OA4Ez)cs zjk!l@ai%akV#vP8E)z}yBDB$NF5gV#z-5OHkfp#8^z*+7)6Y4uI7yLA zS~qo?G7Cd-!&DpMZ0$wjF(W%y?C@{Q{;$EW8yPUTKPDi1L*~d25zmDd&`6tWqwEillr5!OaPt8s|Os>vTuh zYzB5YP#v>6a8$EYUE;&p2Pv!wm@gW1j`}o3!zhdjaXmr(U22i?LE-8!8bd8;do0SG3(kqzI*^^QoMcq}f8GR5)nY{-%h7o-}BnB{Se4H20FrqFfOOuj`LlMzt4nb*Ec}eu{+39rfWa1o{Gm6 zS~L!u;c7=oNpDuCNc%b5t$9+VswuZN=_)q|V??sM8Jo8fwt+ggSpbWfP>lx#iOC83 z^csfcwB9Z1F{g-66w~h?88v7j3;84=YNf7Kt>8Y&8n$oVcD$reJEw9Emnsutr*F3B zaOdW{|+U;K3?WvC2{^{m&5RpWPIaDo_rFr7zfRq3o+I&XPsFJ z+pPF_msD839?BSeXthEBIg&u&IPa%T2rt4$!Fqad2@BFNNiLiniQi-jgS$%5A&As` zfYy|S0G@)biNVcrUZ0q~3}iGs8cGTZxk?Nh1nSPxZ|R7XUW0(Q{g4N*wm?ch8Q4QR z!9_|ukEdb|IO>+hS6K4+Nww!u))>&Ko%w>KP|5oTMABH~Z>;Y}gYRV3)T|#3-k_sh2*M++>C67kG{meS6y1=hHJGI1(`izBtucrIa>n5XuEX! zl{i?0Z$55wlh4N1kGBuos+l_-N6KygGC#TlWgWYsz6a&*dmO}DF>u!K2=C#-cJE}Q zs9-&;l?vbsx`~obfyGTe;^}=)+tcy=LiatL89(%BFmakl)i8k*mtx+sYTe8uJquSb z2(uWRXT1PgVB|!|=`MZCQ>YWJ5$`dVik8>At zz0+>l>vfbZDM&)mUXa;7#Ene#>0bP7c5AG9>DI0Vbz7+_H;&j;*s zwMkMy+F*2Kz>xC#=N+!USrp23yxt#|+`kxjcO%M>e(99x*S1>-eOC6!4Qx?zIBwe2 zK5IGp;VJ#;1xTV?H+P)$QNY)wid3)NH-2``(sW2xVfT`Y7}D6dGK+rq>kj z|JDeJJNbFz`*vM(GiR^4;Ap|nyjt0QJmc&pyctQywaM$R6p}{Usoo-9{bH)hBYj&W zLmy}L#p?h45@?VdrVjS{!mmu089|vpT;4Qhr($|S2EVHYr;E`M?Sg0#_)rO?iC&O1 zq-RcaH18Z=6^^WB1YM^Gi`<6GsH%h4YN@bV&ZQ_V^ziXn)Fi?v-W2ZKya$axb6OMa zIv;ua^sPFHq60I_$+M<@-^6kIl4FzMDzt`)D62OO9#XB7n3qO?Hq|w|BfB}JcFpB- z%HRkpIb1rW)2VJv*?l_OraA<=u>8yoFUFnKvokyTwnCmE6Drf#%G7N}$mE&R-T2_a zq@AZ>xdiyZe7jBsBathx?tRT>_W{Yx`-^#5U-qZb7TQ>_tGnhAWN})XNRdhN)1jz( zQ{A%LoRNl`w0%EnkQkfQga@rRsrJM%igq;V;~7+gWl)741TCx}cBm3!!aPA&p&!jm6n|;NPp)j4>e*79ICAZji3lr8 z&`%6!#nHq+m}PE5VRrbWX5jK6pA#_9(oDy)@)@`l9cN0N@kJ;}Q6DZu(}FhlGz(0f%@anuT* zMpx6AcuQ}pPLmI+jfcFdsbCDTq&K1c3=ee^KlRWfJw4HJzq&e54tes3|tS>TWXJ5@kYHO3Rs;`ICYJ+|2fpbEkJ!yZFQvJXU}uA;#u9fIphW z<_$(IR0}iht+txMN$yLJJqS!EPsBMNopIA1EQW!m2IL259%w6SYLgP{FE)cvZvM|N z$-NNyuUnda&3!)v8d9E{*VMyfufxZHv2W7_f8$vbSXp;|d!Rl4@{F1C@8@IxU;8tiwt=k>>hDrKh>s)f z01$h)RPSMSXs8;)t3Kpem=O}E}I>hzePe2=n( zNm>I&3n5-`AA@fF-Yz%%kr0rVxROuw;3hfVnWk+0vhMJ|v-rDdiE3vmXg76Iw z(()zv=mSgZH#ON&8N(|=)p?+o-)JJCv6*2dadcA7_7&j=ks3Ru6F^D@@8wb52;?O! zA@rl(5`!Fntv%F8_7gx62uoTwi?FM`&td~8f-ww{B^jDYF(9S2b42BhS_{^s5$;$H zXtlf|9w|0@c2{7WJ?fP6@91xI4EnGRZo~qYvLVR2P|^1&!Yj;dDZv#8LxDjxK}j&L z?aj$(5k)0LWoEi&)nntWT;2ZXkrc8oDSv ze>iNFNh(((R4vGiGPIvKScd;_*p5>UD7C@$%M&RM_AyuVMWh--+MTtb$^o-lIV*{xRdsc+QynZn= z{lsG6S2_PI6V~CC5|N8LC!A>|0MU2`WhhUQ$pE6e?dP&vvzLpz2L*&b5?|JQVx{k7mEWO^Az)HUz|~oj zDR)5hH$!wN9KOoAK;k6E;V)I2S*Y%Q)^NTVa=uJm;o!fRs&urZ93zeArH5tO>$|^k zZE*R47`c3%OQ&*$u4S7wWiD)A*KZ-XOv{NCnt&-RoQt-aJzf-4GY@nq!sSJXdGVNVSDX))1*Pu z7EzBuV#HA3Vt?!LpEm&kmQ=g?x$c&fUFb+2Li1a)8XXfTm#(Z01N7xILy9NE0WeTqHPnZcK{HZ*3*YVQMi`= z#ZpP=^GSG|R;J~yzS>G^x1{%DK*cz%kU-JTRz(NO4h$*SHpR-%$U<@gA9U6Bn~6Y^ z;tE65`xhZ!62<2`Am>KSMnb9#VyKd}H&W+>b9UVhn|6m>G7mw&M@6UknymAP$ZpEK zw#i83j~L*=S?!0`1Axev9*F3sMucOGFi(OL^W=BM`yY|7M{Dw(?N@-v7raM4pwJ)v z;L8WN=u-eqN!U2^h9a5CK#*$QdC16{w6v&D+I@fE_5ICCuKVb~kfs6TYPvLt4+FAq zkOIq;y3Wgv*7K%MPc|0m4#c`a{-k;pCr0p9k00%e0Ov>9v6?@t2J=OhK;StJX51TuhI>3V~18qs)H`kbrV}SIs zaB04BaG89Niz<}v9kRl)b^a|Jb=!9x*jJxM;VgsmlnUq+MyX2BJE=u{U~CvYN0df$ zCF*#ys-&?kSftYTh4PtA-}cJYIzw|xHka^6-jvlLV*@yBMk5XWqdy$BQ51nVkum(y zs0OL%jxwnFc}zpRfP;)+H3whz@D^3ijWLgH_?lgbhPLJu>~X6Lj)cy1zaGgIo_&?w z%~pD&k<(@tw6Val8qSyF3^YC%DBt2{sZ>c#2r7hOAG>9zNT zW|JCYedD7_hQ=cE<6Z2tE-pqd4_GdT3&R((KFe2Svn|v?5)P&{hiN?5V^sRddv%H& zWHUX#=3G;F2sI*TB_73a;lZ4ernrDRMYtbVeS4pXXe^19?bST`K!FTa(exZZovK+$ zYxyc{%N|TO1UHFgePAF_IxX8^dI9!PLNG=<8C|Y8b2q&L=%EOkmNxdxceM@PXSan< zL*i^cL!=_Naa*@0Tu!^FY-A;>3K!jJW|-HoXXOmJbV^bC=GH(9>xpm4nI>7BRJR5t zxkI^`R?eqIY0&b>$|h*&lhB~NWOEy5E@!aVLICMvYsUHzKR)Kb8o5epCSJ_%JJ@V= z;L(l{Jlw1fa?3i~$up%NwNAy>b_iiSl)@V^QctfMaPuZtBOnvQBf@oP$iLU~H8?ME zv3JFEk1i71yTGNCMc3z4VHOZsB`m@xOO5_N_Rg_A&wpFjvC-ISY};02+qP{Rjh!^M zZ8o-(#soZn!-yFb8qagX11jq{uYd$c}AE)v12zDX@j6RjV_uIT3- zlMcDam||Ocgykk8F0o?;^WtCMo*0ZHanf_(0NxbCM`Rz9`nfoi<3^*44}z-)jRe1x za>|C~(V={J@`oY25IMyOXPl5x%a$UaG<}R{EW0iZcD|P$SWbN4#Q9=%!avNDkQths zYOMEKE&}u3CpCL&uGXBAdPqibET8$pkRIN_&P0Lu_NNnb_P)|++VgH~RWx#8{hVVU zBd-;LeY5zNUHNp&=z}sT#_njAQfJ~!I@b-+%qQ8A(N6k=E_{f`?;%rFT2&{yT2qlW zbtzF6(501hxN_5V^A4=uXzmzsu)(_23H;1Gk-!riv{hK>p}|%xcQLJ` z?Z6)t^uuvssM3!6kq|7(c5H&}H?qBR->6s+a%it@6$5*HthIAKgcdzam=9H!L&-{B zVnZ{%dqDB?S9%^;wT`eaU}7v<+!YCVEsxUOJ2Dug`a9v=k}WVNh4yrquYsNNQ|f2O zxO!k(0dDr)<9AHcKcL3f-zCsWf)qeqGAIzB_NX`r`z!P?!Wpi2-r!^GphK1p9!xp} zfD6*-9m|+A?x=INZtz%Ih;QbxY>hT9AyzbQX2!DL(X2y{r-eJ0GCQF;q@G0V?2&D8 zbKIfGQW86#izM2Y4bE-oGO3vgoePt((bC>vGoml zv}k?3X`ml64qEBj>zd?QBP=)TW6G73=kqd9RlCXBw_dv5)#&;E6Umnxq&2j6yoYVE zoPKln)vea*$@`z?HJZ6cR8X}?&ZVpT)x#E3&-MVw&C$odh5d|c^tj&qr{?wFUctG> za^hZllaJftZ^&fr1B`5ZGRBkEks(4VGli3(Aqqu9Waftl3?NdM>607>xw!Gi0YLM5 z8=|%r1)Xgbkj$QV#cV{Pu*3ZW@~s6SX4%|+-cVj1Ls_;aDML@oz<^kCYN$^<LAKni&UXcNeJi7{YS_OB4RyFOY;>AQ1G#K`n~Y z5}TR+&^5C&kk#TR;prk*S({h}qd3Bt*O-6x*IVYaG0 zmIooR-s`VRwC~2+1|dg}5Cpn`_2JHf!T==S4g>w+@yk$v9 zg9ebUXMOnNi>d8+!FL>R7ixR{BVhDRy8_a*lyHi@ixL!^MAvRc7CKDq%>vE>;qgf9 zhG3JWKfps#hT-RB=2&Z+A~bh@u=+OU#R;IDy(XAV4uJ74ic8x*&^{dlsWoAx3|W-J z1NhP-@ZaoRfgo9Mbj`D9Q6_I1sV3$G2{m%UURkDLqp(VIcxi<|FaapvxGz${&S$mX zFopmm-+WPpqkOd=A{ENlFxj{+1q=>5FUx+V6@x?^A73xb7r*y~r`wRLz9tiSWaO>& zHq{h8jbI<*%uGTGctq}dpno78L&yMAf*CIRCv#8F!$F=i_!IqYUN;N_GFgd^2MNSg z7$?+05S<5%jwto0;%%27zD&YK`0RxIPPnCoAd`?~P~TM%$01M`2cj*0f!^UR%NsI) z6{jw7b|*#)l6?2VdWcZM%=V%1@atTup}T>Rg0TMeb60PFEF&lHJJ2$z!X^-UWiP%> zVG(8ugU3$2WN?-;&I_iJoP@meS(5Ad0Jr)*B34Bo%d;SYKK=I}9FktD$L#uhZCF8r z0x;$;9Fk}GPekm1;elQ;Z)+5x=rfl35J!}hD z1_UlTuu#h`E(xG`ZMU#nR-8^?Zs1i6_UjZoZmB)epRe7e^Xe1iYa3t4Xk2skY)p6G z{*(R_^35v>@`Q<};_3B2qDw~) zYM;RYbD2%}g>%!D&recD9&#)n%z_yVLeXT6p|Ascc>xRn`A!nuyteV>pHhKQzEfn> zid%$~(||9~x0`0=Lw;QbTH4PB%R!^8#lJc9DuUw)|Ipaoews$@^ae^q?6dgZsYx*UMyVfUfZEYz+A1c`PqjpA&l!TJZM+ z4z(TC=6FtQF?oJ!(WfR76vQKNV$0(09)nHls-7j9i)Qgp|BQfYtLdq;`lU1u4@c?w z`IiL@kVl=|-W!ADZ1PA`sKC6mEhqLiAA!@nVn}qUe)2SRIf-Q1Y#n+<^^-t%jV7{Z zZan$yr+vn`gD!mDZ}T%fE}JrbAe1}0eGoI9YP#-zz4Kke=e@VL>k4_cvO0SmginCt z^}gISgI_sw1L(IvL7p{I?;9W6@=X!+p%6gvIsnKwC`1Im<`RZGFib-YY?(F5?#7}T zQX28Sh25uyAsrg;i9{;Q z!ikYm~7i5Zv-J zhQDRdg1h7V&ZXT%uFZ?YVzyJ9zxi zi)uQ~W!=^0mtS)WlI{GGk5fb6Bk?bW_F!u|!kpT&+fsQ!NJhIlVp(rHbB%+=3t`jy z8GSC5MC)>QN&D~~*l5#WXV7NJX%s{pW2j+WBOuQ#+=R2!;#;bQSP`IGVsBLm*CMwx z?XmM6Xc?y&P?*WNI5+0gxtFu?U1fus9Zt&9(3BDqFy@}#qk;OS)H%DVPYF5#31y61 z`Sp+T`8#7Jo91pzx@(S`yQ`2{73y^tb@p+*SZemI3rfbDJK~H?g~~O#g#1s*B342? zly|9;u15n@C?<5(wLM2iWvZpX-DoSZ*t_f><$tNZ_=iW;4PPWxRmEu93e|Bf8^&-3 zXh48$5QtSdG1@3SO6VSb<3^-g{^j91hgC+9(O}}{cS;Z|I)?mx)`BubH8gjm8nfC# zWf;CjtA1qivX&#nlj^I0l!o0xt-5g$h2^Oyi<_pAR(|C7)vlE@+vyF2gYt_LVt&aq zsqrVqw)W}=q-qi{+40`w0it;rf&Q9mD0^Pq5`)+{>Z?wq=wGWEaDhV3Mo#5Wn&^7_ zXKd3LXg?&!T$pI)zaG7&QfFSZzEo$#-gI{?KN`we)4NiEBvqK`M%wON)l==pi914w&3#-AgrmZ z6dl=so4tV%A=Wgo8g;BOWoW;7TB;d)XOOAo@=Tdq_%+`LC8*t}%U92DYvLvS2x5_*;GSN!C4n+nuYSVt(x@S@>T<8lN;ThnTrR&_${D%n9{tTUj0~s8x=a$k-@G*O3PAI!Cu0`YsZl^C2 zBlj{CZ0`nw2$4g5k+BDR8APj_zvZenclN`u=QzDgrLKa| z26_N)ffjnB-FC2-BeL7Q)5*^A)*Gi(19e?*10`kJ7Y4>x-1_5gaO)@WiT54zVZSPv)NO{>Utr zpWo^IC4CP7_5E0!#zl+-;Q)*6o?$9tuDCGx< zJBLC)Yg@)x)F(**(AOfj5nKE;l{tkXcbc;$Fr5II`WaLhz zk3>&AsJ_Q$`{qxeV#{2;eo8npr_W?X_!fs-n_A#;mG>jyvv}QH7Ml->kf4{FjhcKL z7ooth&B9yIg!y%6niYo>`D?3|dy>^u77jcOA3WhDFnSXFyE;p>%4Bcjxb5@~=zRH( za>*`dr;{~HEyN$%LpXhIg_b`Zj+R@&%8?^|QfFV-ew^Bo>dggRyva;7CGVknrm~9^j8)fg71slM%;_ zT$gPtxb`sEopSdNoPQUIrfV$4|EHq?4u*ebchq*B0dO<`{)!NI`M)vL{qQ6QMRHsD zsx6kF8aIN4l9MC31L;V1S8{=nkd`z`jwr+P6mX>^R7Q?H(0<+CnUw>*Tr|uR$%UEM z-)!9do?hlJ7$=!g{F@q26u!%(ahE6s(~Oq&x>8{>j+JL;B9q3iU0~)PmwpRPq=+5M zVT+WvGAN^0$FGIA!sUejVFE$Ww*q<;zQ4lZd5U?n7!Teqc*aM81ssS+=0L#Of!!pc ztAfZv01l$UJ76;X+8`f@^0&a+p3mO$Cn z7uY%cJ!>(o*Hu4}`AT_4=eRCh5rWc`v{xG(y>&AbEsFkdn;BT(EIBMtS{B|%z{8yS`p55cD>w!%z@HGwgR z1+ba5X=ST!p@W`na!5eOIP5;yUO-j8JmE+Zg(r49~a3kRhQ*<9%Zq2)84LZWvR|^f8({u;;l&l&7l30k^aVXdIYTt#6FBFVGj}0F3 zMxD8u4y8pYK>eu0r;!w`K&KsyEwSksS~FZTBFSG;d!aHF#9`qv2I1$W=SY*9G@9C5 zmiCu~xB^uwF+{qH{0mPP%Sc-wQjS{XRagLVe#K^BnP!VNJ&VDmKa4q>w>~aSgXW$U zd3@1;e64p6_PjR%DziH8o2D{SJSDyN<~NEjKbg#XnYzY8F&q&kQC)1kS;s6>Q9Qqr zif2QS;E(wQ;dFFi0>Ek(u`2YT%%;uR>L+FyRtg*ltZ!NF7fTfM49i!&`xJ?LD|Ug^ z6{Iskc_-MV_T-p}hOMd%23hi9LpMvJ*Z=@Eaq?-IFX<;(E$Xz4e^h5slO-e<$7LEU z6q#M#+tx{bBp+QsO+>aLs6IgAfyF4}X@_f>*^@CVa6|fxW10fRd~{z^%!d$Gt*yrK zmz~|?4=tV`WCIpE;~T``F)kh=(mwT65f@OYT7R>~gcKeB300d+k>o^6B0Hy3aLL6v zt|C0hf52+2f5B?!7A~md7F!^Kpse^AjQ7!zptQLp7Q7E!2mRl=_$`ZybPE7^e#_rH z|AwF2n=eFSGcZ&{FtJkjYcv*xx+a_U=t7P+ytf0QV|uRwEhCTlH@-)fo}B#UfTxaK z02E-Gy~7R$fK_v_qLo8R5^Tw;u+wt|#Q7cuiNnXG1;D_)=lm&+_e+gFdxf|(8U$^mgcG%zBy=6VG(0IOD{R3vpSO6U8l##AS= zD{@E62B5uMDNnoTV^Ua-22EtUg`<%9B`Gf@yR%bO|6g&w!}A+;$d)@pG6*2fzk>T$ zoX?vH50sqq6%gkqr1aa3Y`gW~N1sLb{-#oZ2WpWuvaiMV0>t^y$qxaLpK*R?5D>P! zzyOJ)`i| zIy+elf>^-&Opd8uc<-UE;C}1fkXL`+l-7oFLI z1z!Y|KN8EH0Yx^dXa3!kIu_yAl_- z?VU-x!Bbm{TPvk&Igt4150h`P&o{QjOoBM&dV{q>pLu>s-4GCQe4Q8-(-PP$L0Li# z;=VU>>^qD+!2|+in;Xqk=eenyVYkZRqmdr9lwHsL<)b@)97IIx1Bk}@_Bx8iNZ~hX z9nR>7K%XW5h;VSdrIIe?d&>DrdHu?k-5K0CxR zH7u_D{=g*3gAonzMByznjYi0WHMPcVBuI4AnHPENo!7Ui@0=4~ z@jZ6>?xIZeEK{jo%2VTmr0iu4pPHQUJ3E%ic|EJ(ed@@sVzw~{+)55{I

    9l>8WBjjWa0gEgnR1mt>jcbWIh(Ckzq0g#>lzXbnQLG@x=pu7@(v13?C~atIkawbY!)?Ctp=}1Qqr4Z(kC>RD`yYaYi6`Qx%%E_`BV|kpQ>KC* zDyR9=tlv25;yhL+(#y{n@5#N%Lmp0@b>&+}R#EFORx*E=St)R|cuQqHkLcm#IiFr? z!hp7t4rtDM*Wl(<;l9dBlkpK~MwXjPzmLeW;Mn*yjZ8^jwW_4^vTXQ^SRE+0&E2nZ z?6;@7Dqz01yPTBr4*JLb96n!`jk)ZxiJh28gTj_GGx2KU(NR)qNQeAJ$Z?lQ0!Cpu zHmZ-i_VGu63#814J0@P(;T;{0c=bfT4ZsxI@e(hNR?%Mv@&&ZuemRzTt)Q zswtD`i*>Ds(CP6VMNU0{-Z8<9-u}c~{g-sE0eY=62)817^R9SJO_ge3PEKvEejVSI zL|5_hF=seJTXR%Q@v&?mLgDqXRo>bX;S-`k=f`K!qu+kfV;D+*zT}&TTqSo%a+5)< z?ZQ~)%P9`vjN!p(4eD5LSG;(i@)tPXN&ox!zfI$F&GgJ4{}(9kzgtbf+6_Q?Lh&^) z{0!Uyei%qtv>3UO_55~r?X%`^o)Ta?k}Rs#^nRA|+nVC!H|~k^6cB7ZE?u11jfq|b zHIv^*(|^yHS8f0j_djRMBjAkbuv)N^Dhn<;44iJQ&Z+qQu{HJiu>^=* zx{+Lq0?Ce2sYHlObr38 z%_2=JQR`>LUqrIH46T6HCV+@L{ngr3{%UP{h>3RGmiW;9)7k|3hw${(+O+vE;c382 z)4k;=DFMjydTx+Vd4lCY`3jC-17ODiGS|G4#n6aa1P^4)mgngGyXjF;#hIjr6!Z97 z^E8X;TE;9JnAFU&bt_od;9fenLA$I)+wq^)CZWm%?mCrwQNi$YZQyjY5C&hKhd{`p zA51uSnM^0>nPYA?;m!U~s#dEu7>TK2{i{5bvE1V~iEH=y+|Z>O@M%Lp~;;$>_2QA==i2#N4L8L;zaj{@vCjGi%(!Z{lXPAG0xKT(= z7iAI)2tBlbD~27>Qugk@S4^*Fba*^$Zl@LOS*k}ZcqOP@P;fICz}>K_{iB(vDosDW zD!0OA{d8TsKnL~&O1)Me>3I>3v{|DtdHqx?drw%c7H?{fb)xs%Kb_4MQ0iR$+W?0e z+4jLDc_NwDyzkHa1asbmXeyd~ui8P-!-<%kw&aQF!^}Urnfa{yV70_h#4d0R8c?nr zg%y79m*5BVi#%7mnP@}|Dx1cfCYEdANxo*mm{D#jAjn- z1Lgtd{}eW9h>O2&nBSJ^Oe1afS!dXmaK%KAfWjurD3msHOR^H-a4+Yh(b4;ZnLz6R z3njMrtv1G|VMRqRsxnHHiReg75Gma%k?FbW9(E=IzloFwtMaaKwlFuXf4#wH}v0ZD*0>nq)LWH>1X!j z4HMT24j=xLR4-T*i$$@f-nu!yoc9^$$r#-+ty_tXiT8&r(*tW)dY(qWW83a==*~7r zo1OIaSdpt$r95(?P*Y~Poq_8M*P4e>{NQm(K1+ZLBuAv7Xwxp9=XV=&*Cd>Dzl^6j zt*40o@L)W$h7X85Bicj7aX=#4tC{!gz-9YI#C@{7#@+Q9NM4Q+FxbDlt!PqAZ25x>?>=Osg8d7;yBHx09ElR{(%mFqS0RKgFb?Oob4%%caMwAdHh=;QyYri zxlq(!`Ey{P0%lB9j|D+;b(kfW)q_WfiYqu2)4aHeT3q$&O)dWVQ3IyyuOT%!V=2WZ zHcn&_XZ#z!0N`Fq$|mmU<%&!0wHw-Y>%xgD5BI&NR)Pm=k~guhvGnpczJyM?4}g@h z|DMzy4P>b(I2UL+B>S_^hfk~xiwMprSzOlOhHZA0MakCDXfp@%N9vF{2$^c6r4Wx% z$(FvPhtY|)ej^(nuy3-qADA|r(>(rYwT*b#EX_A?r3~|B1zl7?EmL-bUF?8Tcv#=`FeRoK9}CirQN-HHyRS{3aCF0XrEl-JqI;}s`?BB z_uWd2Tg&n4;KhX5ozGG97}l4Tq>0_Qooe^Oe2_n0oWflvH{R=TUgqsym=1v9B%7`?8JXch{lv^h z$?e#c8Uxv|3%42qUl86HO@23j@`-qrx5#>oX*KUe z80)zI33$|6cOF}s+=8GTdi?|UXPCwRKfTOIKri!8{~rm(Va-4;=0&I(!mnQD;4|gF zy-dW=T2DYPbNQ>6nMHR#RHdG{>3hKT@SWqAXL$Sl&)UXsO%$s!CrmtNQGJ>QXZ^Z> zfQS4m;K4)>Mf?hQ);+gVqq8V@8u=`>AQv=JJU;|Mx~W_Dv)jn5U^jwG=O#8eS6U?u zs9WU(2=Ku-*6>Fs=6P(Hh~(@#)GB5|FE|Ulsk6r5q>k(SsUj|dXiJj|>f~lJ`|?U! zC{P+iswG_}8HVlIln7G!Ai>tsb4&z1l9D)x2g-y@HfJd-7moL_jZh9Xiy_y{4kw(O zWbkHV*j0R-C?+4$p@tFuZGtYBcg9j5w%<6tYaW6dsZ^QI+05_AJf}HwRW_-g| z78Ql5?NueYkn3_H{a&*J+_Ab@87)hbca2M7?VG)2TC99ikrC{%ZvVB7nw@IOiK~>^#7_Mvcv#z-J#ar< zGhQpd*US}84Ryh5-{cF#*gMV?U5mRvrNN+#!aw@ucH@YE< zVdQ<4GMy2`IVaup0%msdIQaGf`Hn&vODNh=)q=1FY(nl4z#k_0kmS9Pbb=3YE)8i# zUK`wI=9)1PkG&$tzbi|h7@cW8{8mdg9bt^^QSD{ub>6Gx7V~QZt|EL=#CGtCCaQpt_#M-?Q9vLAf9DpT_ zB?tB5rYfSV=289We`@Ehc#v3`Fs05tg*zH|nN&VVZaMzP-RvpZmDj(+h3MFHRP#s( zhuWBdbw7K30~xj^4rH}3pay#!^a!l;kW~_wB3cM%DE-U_| zK9*pdxRV22gpQIhObQwkxXD9oo#bm3XBQYG_`gWpQdjZa_M8YiQ75=3Q%S$S3EHun zwb9$(nB*(rx=NdX%KwYR)jBy8E*I)NhWSF`s!;TECJg9ymn?GyS zkpm<=-c@+GCY66-QBT>{Zhf3htO_hq7FwI5%T!e7a?{b&J26_fp1)8{Q?UkaQeBtv z{FHwIVBCLyfB0PjT0THkfO_Rpk@kI|j{XON>q$1fUj4{{Z2`zY6X$XI(TOeOz5XZN zEiC^z>&M&wCfl@+_(7`t-)3(A)GN=mHSG4jW^UadkV2sAn9&oY@%d&Oun=*hTwS!O zQsGkLv(;N=`J`(mZU#+WjBYbOaOBkAPJeT|$TxgESI<6LwqR4(V(~77OSJ2=fby}f zcl(xAC*O#a>&qy!F{(1ajTgVH$ew<_-2D1{HlJynZH6#|lxhpRD{f6FQo`*+*5*~AOL8a+k?v~8#R-%d!*^ou4Ni2bANuLLxL7tgdNz`E(u|e3G zHk9_}X>*vut|0Q55Ue`Di3NbcI7!2s6zAPUn6Q4I!YkgY2>O?CNZtW>xJEJ0cqq>p zfVmsWJx1w0z;%1L-^F&#$P7Ad5nNkcl#8>LT0J;K>j~5ym)@Fw)^dVvxH}Fn?h?31 zK?zcK3B_;f%>femoM+^j=pX`}bE<_`Uwun>dHe0;!t&$ZDaXi@PzQr{$jB_sQ_3>~ z*H6@S!I^5FWeZN3l#Q01k7$Td5|5+R3-Yt>NA6rp!2TAB;H6iSgP5qdeYwv>gH#eu zHn4#3hnicbh7#af0{Qf3|JLs_C?VulIlR|?`iYSr{Z`fTTfdjQ8`mF{?B!gwUmKpd5oo|cSkOn=LN z_7R==$89Sf_ilnK6y8VcDemM4SNV930*jU64Y}wd(y_ij@(a1nejdtQ+Q9DdoG40d z0u(LaLJ1T@Uj)bB&XDptFv2W+HLuEQdT74O-=7-9X2SLNpd}&}iAXKy%5EXICAhf~ zjLym#sP-Ds50*m(7d$(Z3PG1kxp<4xw3J?gY-6stis@pe7uwl6$YYBm>g!|SADJmY ztuZ~Fq{=Sc2*-E2l&XSD4ZKrCGM3393&YJIG5|UVN+|wv17sV6Mn{<=lKdWHy?zuZ z%3jBO6et_p0Hb6;wRm(sDu~C@;USfi3F;5X5-27Im#AEl-e$9AsaCM|MJ1`` zl#oZ1MC34l-S%eOA~jdrrGDRR$=L=ntZbx)R_YI{R<%XZ9s~p@k3Y~U8^ipsqJTs9 zQ?Bt@eWLX2&==Jy*huKGY(6$&c*P`*)=O$M?6*}T9QxUvhBSXXu?rr(29!$25Iai1 z!4w=0I|VR^=yDC7ma8*X3oa1?9Z<&aX};;? zTCswsB2DYTi(jH`fboZyFFAKZ_tbF88>}$Vjm^)=v(1Z)3zLA43ff(y{Uuf}U>fEq zOGiGPYlgsQ9Ri7jQzcv`uGglcwW=w_Df;CEKJKKe7t@3E!@zRQcZM0POxD(6o+8G` z`RUu)`-8DSYdN9a*(coMl$LF^hh?p>glsZ2$C;Ty;98E_{U)xcnsh}x{=YptP0Q2** zT8Cwjy2s{~BLIjCO8nX@(G3IN6cqh~!62^-_LCm0ei+n=PoT4tb{+Kx4w5FAZY%Z? zz(Fh^+TWDw{YJA=j<@WG>;-xY=k}yfDSZ6mYY734rA;c(kOczyta1yvt7WhF+KK&{ zgL%b%D1|nZVCyXt!hJN%n9sxM)nnh;vHYLStx#x5$7#Jwy1qp$gu_S%`aKO zxEG0x?UNt5&>$V|@0KAB(Y5;_PCLn+FZy7f;uX$zKs*GBD$?)XARx)h#8M{7`VM_X zQ-_mEq%D}$4zm0H=|C|oHHdGBjv8ZPaR)4y4L^;I&()^i|HO#v&2fuf^T7^Wwops! zn8qSmmiY#ugy{l=k4>mpUd8@iXd#^`xV`;{TVx2?e#JyTAefw>CLj7cfCA#c0{6NK z+&VBo_;Qy~qQd9rJ<49YywuEf;qS^6paXqsoN+=W>Rh4n4swh@uG)xJLU4xHka8ig zSape90Ut2D%ZlyM`QSj1Vnp(*1Go}bVbw3azpWaW8HWvG!jXwa0%-|?->=coSCeks z3^$gM<)suJ5_aN%Lf!y@p0JP1{Q91_xjM^eS*Lm%mnWpNgHt+3zOqOHX^9}czXok-vJ{xw5 z|57xd1Z7{Fp4lj7pI5ky&}!kQB_E%*fPI%-u`d&uRFVwNBLGg!adE>D$n5w!TL=s!j zg-+R(#fB0;+zSE7d~3p<18GhKtbpU6ki@GZC#&)ju@i!1+dY38k9oP@S!ciI;X8Q} z)MaDRRgBR3SEc*Rbm#hL$FW=bE%cR|FXKi?P1SwYew^!#G*%dm@s4J;CcrPN9jxD`ZQhdGlgaTdw> zlu^2xw3BK#F8=l~foLUu@hAHuNble=IQiF*>$0L06xA`AtF8arj=J{dwW!JiZe6l; zNo7c^d1?SQN%Z;E@pzVH%uoEe+|ryxbhAO#-$%huY+NMWo3g1a^(0SXp+^I0V2_aJ z>u#?p-&(k>o_M#iPKp}2D9S}A6P?VHt1El%XiW>`HubPp(urEf652}>9dTl5CJE4q zd#dmnSa#)Ulh;fVNEb0vU>;)_IBrWzkucEHYa1_UONtWg1KMlnflrF&#jIxJY^7PX z<-jyEkJkN10TVZ8MD>-LiUxtriG^<@(jKj8ZmywK7HcNS$MCZ)Sn|wo?he8BEAvT= z>34Ivs0mdYS>WWMKpZ!Y_~SM_F6hXJSxF7F$pxd2e~ ziGQ|xadF#|T#vV>b2~a6rxBs0r1WW!eVAudI~~?@M2*f9u>b|!9%malGCx$M_1qH( zFEFe-019S!qNboDZ=#A7E@^hg>rclyvqBzq7$oFvVhP_r5 z(J}{OHlNN!p*YXx(PSGIFqh7Ey=#zj6_vvyP0!V5Am&e|jW~mG9x&@z>b4m?c3E3~ z9#8HK!#=d9LcI4WnTU6owVILBnF9uHB@1PCi5-Phkx5NdQ5d+l&X40%1ESd3_>p~! ztcUPX1L>NjPuzTCT3gr?(0^h_q0KlFC;lK$N{eX(_UA3RcAou0_aRf25R|CTM;N=} zcu~i-0ujk#PoH)?UcCtG!|vLB#%JiQH4e>@{VP3&)f7la;|sAlO{y=zW$kxz*l_uz z*PWE6hTz($u>EYm5Br1N4v1xVLr3F*KM9I44KjO8@WTP5R4C;2G!ClyYvBeT&wtg_ z2FFQAb%BeuvpLK-C8< z+&)ez$^Nr&^C2hvT$KH1;WqXETezwIXW@2*OxXR+{_Z~uH@_{%%Is=2DEE%h3c;B| zy7q;nD~*<#hX)C1zx+PwJ%;~H8i7lOo3#f7R!RS>cgOyyxq-3HrZ|EHZW|1*QVY$C=Dx)l2vt66BMPy{?6Hh?bxL7s1pnktKD7<2G zq>&fI^0o!A8O{1&qNc$DZd+P5C>65INTeFN=i3=;_&I23EI!W0KHo2L#Fp6hATseu zH;9?}IW}0MTfyS6st&A1Cun4*MUe;pF_OqA;o+#qcNe~B$686< zLYOCBiLjVd`X?Y0$zWAs6ste~6nbZdl7JFDqC^BUf;L8^i{j-UD|c}w{{nRz#FTM zlwiGO#EO(DK!lumFL;f8n}Y1#izqi{GR`CY)RHzJ^vM2s!bBLpS$VX@{|h_$vD0+N z5yU8|H0AeW%U>^N4TTh8lG{q60c{fFu|Q9_z<%(VK>W8~`91QF2=Sk?z%5rBLx73U zq~a@bgH!{yKF}7)$AoLAhRlc4fAT7mK`&8&k)(~3|86@a7+`SJ02oQ6_}zeB;04!e zHq&S?v9fR>jM_yxdV#Ot%6a5%(1Sqr(PTOjK)cWn(FKi*ie6vJ)sOHL4Z#Eq=Q_jwnrEpKBo=2_#m;!; zY1t4tCkXmT{l>QEshIB-z8EZP^U?f#QPHM6g?{`(8FC)Ew3~ z?aPJ$2&|N85bEboLxo^ka5x?|kWSlb|IlNH(S1=y+QV^~dX487K>FbKLZIWFK_6H9 z3pWc`JrZMMwy7|l;>_uK!IncRW(dT*klypq&7ek-DAW!4&{y zM4`Nw79YZA?AAW#(8Gu+wAfrB(jJugK&~nj`qk!T(I^dQ?Rs%M7hh~6R5u!>S~-tH z*>OI)7cBRU!#%9L|Jy%_)ja?*V*8a??ND}3C@I!e<6bS`9MFs(xf%XJ8<<(2V$Asq zcPu#V2=8oLjP<9FMYqnV+egtRo3v%kjCQRtO0_D~)4hCHERX71$8W_I*=h!Ell?Ru zkYzLn9BTX0 zqUftX#j}{7edo`;v0s4|XM7blvNFW3^qBnB_owX+%>ZTc8VwmZplGT=!P`@0z)RmH zTJTA5`3*1;YL$8_P|GFn8h-r{%q+bzm}_BGMJPd(;MT^H3fMBB!oxiO-NU|gvf+X^a_~=9gV?^kNxke9UfsLr(h)O} z?pxda%UX!n5k{T?hSXM%WpcTu+rMq34LTyeK0>kVgFlo6=B1o;=T-woL2tTE1j`({ zS(qWWlwIm0U~57giq5|SC?)_?$UXh`^ZInMnc#RK2PK$Hmpi(zZh-Jkgv)J<1>B;Ic+SAX^?vLk1`ba2G=LO%L?lR;8T*9s*MQNtmc zIk#M?4pD>4mME||)K`3rIpuRb;@?>yM=lQ62gDHR6N40nYqM)8H&)y9wUr`5AO2WM z4PQAEIdm=&m}qq_6@*&AFetbz`J5?ClXas*_#bx6_C7-LZq!*}k}XzC^ni-ML=pa6 zZ|e#e&OwUgTgYAs))5v5WJg&~0vt__#P^;uwMSth$oze#fc2lD9A^!4ir00A&;^fU z@>$Pl;OE0_H%-iI8W;4sDq*F@7#)M07vBM)AH#qE_|12;2YZgy#^=Ig_lv$%-Gq1h z+=s~wM_#TnvL>aCxBdx>B;9J)x@+m{EFx5x0$v&wm&1C7l^bS@YEd{z^7TA;V|oQ} zg?w=_1ssgqlOMcc5c+6M!L>FB@@g#)CN+(SON*}f=NORs?}Bn%n1J$bs$BezGTYEj{4XNoc@WON7+IokJS&TI?-(UA)@w|A%j`G+O7 z=3QM^jVB9x8{Umv>z)D^Cs%J&3F9{9iq7D^u)a1=>4jVF3)xS~qFo)6aN1e|BsAv5 zAK_7KLKj|U`zL`G{LtbA5c80?w;pA>5#^jNb;*f@7&KnhmSWKIxYOKmmIUx9CqQqd zjUruI$E&^Xi-7Xys3p zrV<79^5rS!K~kwISp@jaaJ0@EWRn)%IG8RnnoOwJ9y6bD*-S)HQ32^7lMLUL&Kbzi z06-5;EIo?5#@P`y-x5ysEwvGLIhKa_l*Yx?)$d&@jbr6Kc4aMur*$ID1O6utU5x|T z26%rSoa;}Ro;TTfIyehV+(iwGcU>%X6$0k}qB|NLA|K=Ph>f-WoFi7dn~-PNOOB-@ zUk`y{%oWf-7%DWJNTn9A(;nIHC#NSH*u$`QK73x!_%+t!L2SBSCZJWtkfFk!jzM8V zLzzz{r_Pd-u&`LSOiyCQCoQ)nLuT5KB3CyMv`a9=i{yH zwvwnbKvHQuIkxu}|76L}N>LC2r>m}Mo9b}EUdJK_Nk^gBNTXF%|5yJ!hkR6%>iBkM zFL-#igoWygqU~Tk+N^F-*q(BZovpXlwLF%xF^2U7G18l|fr+SQkwq=@ypdFh#?tjr zNNUmybV`RI^4$B+Q{A*>&i*XR!nyE%L`@OM_Rvz4x38INtLiENym)uIlwm0F)Vag9 zR}l{$RtrPpT>PB)(z9Um!%`hP2WL^*`1tboQ@1dDt|RfKO3ITAl}LH|o%PZ4fx#`Y zC`MC-QDjhr=I6X5D4E^!b51M!^kB;qoW6n;f^ee)|6x0u7%g6>2UB&y9Brf^ z&Aa3?V``fGk_ciL`QRHm5Q%BRbz(Zma_EXCr2-LXM2Gp2BP?5F|gID+1VxanpF2uov&|5Y~h)^uU^ z!SaaH`!I25dWHc`wZ8~o#ruy7=B-033~CFD?tGp(H&1ur;7nA7b$bhQEpU4{tJ1!d zAl`=3t9x1wM4!7p0wgaT#5WbXCN+7n_r|d>Q?}(x@j3@Q(mG#N+=Jm8?crN%3Tn$D4hg$6+{U|<5yi;(Rc~UK$cNSI+9YlUI%(_lb%MlU}Rn+s` z@1_|fIwaF=&CC{@YFb)es}|vF8lx#jiMb)5^DN4Zv_(6Kd`Gmz-!*h2@^#mTf$#lZ z-xy7)JHngsigpoG+abKgjtuzT5v;FPLOwIG)F}E4PQCmYtX-TkFh^f-VlM>N%~?h@ z%Isgl6P3(HToz4g6u2cv2XLnc)L#M=gga~(JdwaK3Tdb}oSO$GnrE$-yKkovDcQND z^8@MW3ks;Xr*c85cptQnJMSSs`j#p`H!eQP-P%HJh(N@43BTjq_tdq&D?68~H=UM8 zO29|hsU5H0J1z+~G<7}rkc3(d8hjA`FB0Oxz5dECz|K2BGyP#y>|JN>P zdGOFxJrsWV+_3Iw4E_qkz3<;$P@S#1+W*-F#r#$<7eM)Z(?EZU?v+=KdtYx~wzxGg_8gQ7|MbD)%=T$(YbLuDFwv$nlpL^^}W5JPchrSb(5%UW ztewMKuB0O#U*L|F9wm034lRd5SfdN4*{RGhBvj@O}_gfM+m?mx<`Nu zov)2i4s^8EqdiPRR6(i@*k>VZ6me138hH`b8(#Rs{9u0@=3T+i-#bg8oDw&hdhp>b zdi7PM-#%GcGWk->|Gj54LNwY1UISSU;b4v=jc7yc#6jOY__--L;=mE3?0>p--BXn* zTJtf`YPA%(6BWGo+w~#IlrsC=IoEPa`Dz2_5O?|lQV=`B*y6!FRi_=~t5OGwzfRRD z=PKE_!k9;dw)D-YE%^&#Fb;9AN;nqbjkXGa7-+PNiT*meZdH1$7}h0+Ps|BM=!gGT zGEY*56Q-)bauf`*_t2)(9&p-cy$KkC zjVHNy0)&Yz^wDP!iH6`N^>J#-LE|A!awZkOwTFi?J%u84JewTjfqZs~{BAYzpL?b< z{oVEODJ+VXm8J!wkIX>6B=eYatmVa<#p|i1j}ny?%+!f+(~og%of-TG+1G^fIn`7E zh`~3d_}^!VP)-oi$&Cpcbvq<~$(Z+&q1;8uev#?$^+8IQZIKEBlcR0R$M zzk1mD{iT3bY&nT|_SNwZZG?dZ!}}ES%V{*c>mPpoaK3&8Zq^wYVuoY>;NYI<5!*** zo|E@r7~+0ti&`9Q9PwU#?uyJ^m^&5z>qJqanpSxJdOPTki#_tP-l$}DuP$MW7FaBA zB{=;BjoZv5ePFi7htO*P9cX%fM!w+)JrniH*3bqLp^)pRiF~jjbGF%gyZXU}t znnb+cwp$&tkcgqVzteUwQugUjfj3V;2kzy*Sa=4yX)^x!J4XyMl#1%_9dDpW5@xj- zF(7!#T<|aNJ94|U*$+$>7!fRiuoE59Zlz8*LKd5?{ zVMYW+9dn~|KMQbh1lBW1l~K0rN(N0yUd&vgR{*r{7@*LdOJSWPN5ROJ{BLfJB3<4q zQ)`rigfw%fzT}{A~1vA0@iug9%2w zcY8soFjqK(2O}x(i>uJB7t$HUQ_O!^t9CE^5ua)H5LZ z6Q;sy*B!3Z4ypTSg?T-{IL4AL0%hhgpOE1+=@}KrV`^FzYougpc611&5x_bP!P>wz zuhLGwGPnPE?}ravao3|$Uci_g3inQaTPW7|X?zdkN= zgw+}2#QMTn!eJKA$@2fwa6CMy@N?9(p46WigTY(MaV1SACMbFbg))DM<<+&M$h8<( zP7nQ2!vv*f=+pbH9Xn@Idt%2;v^XkyEn2Va0pz7}PuBC5^!0X>ve6Wc2{ivmFFDc? zOsozr9e;8**!|JFu=i!;o)&BSK=lG++owB#)febYv{)frOa584=y8qIh&I?wi{Q{y z?547(Ipda2bylUg4X()^MtYnaHvf4|`PY6A576hK0Q-saq1ri8PSCDsdACVGy==mb9r0 z2ly(5nZo4u%O#N-_LjPIz*_4;D?gPXD2hx6N9#fwnGzcUEqNNX>wJCw`WacclIT0;x-S z-guKA#l@;L6<`jE+Sx-t4n&>$CLBv`vnE=&s}j_9C{b5}^*OOegc(Zqr&qmPd}?2M zAwVbBcy@f4`>C)bsJmc(X2P!~44%O?EISwa?=GEEFS(bg>X~WyW4bh2oSg?EVBc84aWd`aDz4y`amyTt{vzulGsB&X$lGyim4q(!w^P_7Vqvu*Ov%3NZAg8cnne1=4IwnliU-wy*i% zl)P`CO8g-N>upxS6UKjBaHEwN;xQ}z*1@lYDB~`p011XnFPh?Kw20-vm*Gw>@&Ptl zP;V?euAqX5SI0(z$PQ{T(}^{fQfKEVMeFjH8GV3ED59{Sa&$!yLkyt2c8JQR#7Bcm zy#p`0*F6p=mPVKzfwLHhBCdzWy2cRX*PMuLZx6Vsw1zbjjmAj&?x8(!ad@w!W2*sb zUXN4BnA37BvCxinEY%`ep-bhVLiq&K&^ZaqpD*vW7AHxEi=dp0i8yGUI~{)|$uN*U zrbpqRk=RRMiz2S3gAX^1CfjM|>*Xy)J?F~efSqmrD+}gZ<{pqpBxcr!*9Lc4vT;v3q~5J69$e&FR((u*rUjORp!2Rhnw<*QiPh!I!Z<=r zrw5%9x>(TmYaXqfm}}Ax!avcjv|Zk$B88#r%8e~#u(;j~&*Wl@z3i+T(p|o&r8qldv~wgfrkocV!RXh45#Y|ouPe^TDC;?H3;7xcQ#h=?@j9~*5M3IbLK$i%L)jt@&0rNHjBzWK*L3_ z!u+;aw_?ZJemxFHgTyDB5yEVmnL*34m<~iE@V0Zgcme&~(OLR5xcOkvy&)hE5=8sq zpKUdNG~G~{090vyP#o65$^Kuj54#Unhjgh5{%SzOo(mg zJGg{Hfv&d)hEGavbsUcEQ=${J_?woK0;~C+>VAiSDze``OA&pf^|K1%$0oUEEfC$2 zjOx*;nEr{5P46uYf*h)7bMN|@fAKaTtFf#s<6K9?3C=p?h6Q77#o-#_CYF0UaZFQQ2c2W$7%2K6X8Q*W;@3jbfl{| zVExJdE;7R7NahSF~0_+39hB)Fi@~QgTX$qGDa9}Bp0UTH? zM#(m@ee8kuX@CZS06-8&^dmYb%NG#jxaC=H&)EO~f?f+WcL6|<&A&hpw?K&S=6z%? z00`pJc5-(Kf%1zkS;W6Q7noBr{ahD19x?&|K`jE|>>mFBL4H7IUjG0=N2ywz03fLF zy95;;L-Cv%kgH)54#nIl`yt+6$7#LR6nYxouVY&0i3y z?lRVAPXy!ab)fYJrht5dQ^qQz$=eQ5+=}7iG_!}xan1Qb{jD+(nH?ZDz>>$}kmZp2 zrMPImaJs3p=lu^7R7vP52%T7}QJjJ|+}(ixhdSLzE5UxxK@u_+Hx(dZ182q6x5Nw7 zs<^3lPAv=;1j^QkvC788VA16B)>cK1qpI@RkfUTAcLhqdH|wKG0}w%3JO(kfs|V59 zk|RnKFsPUZ0?(873_UF{w0E_07Q_txh16| z=zv9Rr~ygfp@@d4d|9{|X#A-BMf8gxMx~R%LHpL$ zxkZx)1X-^o;J)%ZI@#3&@O-JE|8WXSLIKIo@rwxJ4hRz!N+=g0j>e|c1c9wIwN~f^?`(!_k=_22f<@0tPS}>NF*SYG z{VL*k-{)|hvB3iV*KDr2Ddh-iGzawcp8(c`n|)jX6L;yctZHj;h8SaBFlRWyisIkS zdBM9YRDUkmtvF8LVI}2jLL{6)<1q2}&vZs2MgjVvjodPPsz!phSdXo0GqWKB2B#OX z_@jgZ7y48L zwQXn%>;m*PXHd|HQwMl=yiOWF*(|(cH9R{>IvI>doe- zE>H>Y^Wu8N)R#P94?hGq#z@9za?W{`D=;J&?cSyU8@45vtkRPn--K)A=LM4isbV)k z0_!C^;1Gn3iPzVL4Zl_D1B$P=L-2E{{U0J|51sU~Vh484BR^tJwrnT4CE$I&h1Ocp2wq-aCxU$>Ep>y%SAeh1} zTYU6mGag$EI%A!QgxV~%KLH~)E5L}&4KQL;BJfW9m^YVC^TJ_q?gZ&iT#R+xQ_ptF zmV}F{wkmWr)PKH%+_U(WQS|*3)bo>$66-O~N0uSp0G*m=nWOkPS%?V??5F zkLwH?o!d%PQM6=#A0KYvl0y_OL-W=pH66RFT(di&&o6UvLI_Wquv2}5gMGOfu#b^7 zI*S<$Utg~0Dh1IkH!rqB*3~w)g>>T9O#w(03T6yPB0HNkp|!QD?^LGE*UtHGj!+Te zYz%-msIs!$o|!kQ!`Jzi*U@-10{Tp0qi>)E_-sW7zl%IXVX4dhT^iiAvi)WP#=NK~ zHi$#=l7i#a$~!XDGhGJc>gmQS?^V3ptB`pvH10mSzWUgZ=YlBnv=i`jCn?{bb*51N z?}$y_vXBSb*tgJxTEaUulneD2=Y$Qy5-4+8;kdPB2BNn{J)r3hF_gWebNq~hD55(d8#i1l5#qtH;LiBB*)%CE}>TDETZ98 zLu;ebN3qi>)@d*4&HdxrouL0qcb6|YYp=(Ny5eiZhM~ydDB0YQ%)u-4^aj~bfvo+S zn_-dqBMmhR?@~Lh>{yW!Lr_CQXJqr0fhut-=5LE8P#TK&<6m zaizvIuc8PXD=}kLU=8Yfw5nocN-L1w|f|?@sR?Q%`6NC*&xx>Wtz97{i5?MuydbTvw zm)mFt-<;}?(?4=kbx{Zc1rO2uXT)V?PR0rgBdl2?^==U1izh)$KMbg0YLa4?t3hnV zWPZdEhCCu?O8BfX+YPViPSjo&ED2N|CeoGA)Pe1#+O5Y1+r_TS^e}cFmqr;AKX`Ob z-5m$q$%79gdV90;a7GZ{IxznP5q+`*OZ3?~qQocgniKQWlt=JTsBzSH6~xt}ll5Kc zXdZ_mlzgsbNO*;*X21(1o(`?cd(4;!!qK5)HUJt6x{aKb?3 z4)BEw9O8CFd{h$1FC!euc08;++Q+A5-gPMclelk9*rife%3i4PB|z>Kj{b}dM`Yx5 zhs-TK3SsqxqbBFPxK!Yu<3I_F>d)v?S02Drx^aJ5GpC0##aG=u9&qqT>yKl$IOfc& zcn%kYM!S$FXu7LJUZQ?ahuv42{XOgFY^pnzYlqepD~Gv0tA0Ric$2+{^cmK=& zOE?RJJpkScJszgN@D@f@>&Mo$%%3H-u57SC&l_bPx6p=Cee~RwYTYRjjz)}9a-|BL z1|`=>YaG?Y-cih)*DQfj|A|wU{U^QItF{6}>9<$nU7~ z{6($w08@N$B{C;M7MzG|7(7i&7A^DTQ0vbx<+ENp~SEeF=Xqx|n}sL586X4m&VD7>8)Zimws_yPY?^4z7?N&n_4fIeaL z84wGGaM*03)s3YPB;Zl<$@nK0>@u>1g6YAuh=U9Qc{=k%Jca;>1;5kcoY&hEojjq% zwNBdUVklm%TW`U9#eyyVjRl`2W%?8T6AK1&{0)c&ck15_{($BC>$w9s_Jlf>xI_HL z1$u`GSm@?KjKUSaiv&as0mka(t95mb%voxvAwPB6he@oz7UuduqF&`Xgu=Psy~w6@ z$<%4dT6wsI!3a$vTl&y1Ve!Eaf7*d@-6w8iPkb=de>h8yE9&0@m!E}swT$EwnwVQr z0Y@iQE}mv&6H=FgasiChAbjmXbOG7ZO4G0$La`^qi|A-3r3Qw==z`k$=#;s$;giFQ zTnYA(s^}^^T4*HH?(ag@u;g|xyCu>I@R6uzSv*o8VF{c}r^u)O#)2aZ#+n_71S(Vm zk@fB$jKOouz)qt;#DaIb<%h%p#~!`4D6k&|q%{Vya5B}$PM~>GfaaBV#H-UmzODBM z?Y-~bSM#dphtM$>DD{7ksE4oFJdyt z3c$|E<>TS<+)acq+dt4a$cY(`i7gtc-{4d?xcC|3D|vNM7XnCL-61G;%HQ!y_#wIk z7YkwrHJ0U!cTBPx%I=n-!%GX-;7KuSI0hI2(Oo8q;M3ANDOo z^|ixLR}46e-}8=y^+ooqI6Xoar4F}BR1LeM)j10T%+VMM%{p_UbExul2p)czU=jK) zdv|p$|D?YGkq+8vPY4mfq871jJGjjqHS(yf-H>kBo6whqGM*;H7JcHmpLiVrMNvT8&hR zRU8|B%@usH;`~#~APm%@*yJqQ@BIw({_U*|<(e4r{Ne5IW38paww0n0Fx&}|Y_5d5 zU&N0q=;yy0ks1)ypTsv|If6WI#q8f;d<7Z;h^6WBey=JR1-z9U1V7XA{?Wq>@h`+b zdzc!1HVN`mT?@-^q9ZF`*C`_oc>B}cejw!!iP?xb@NE>LD>pHX$h}(s67=);11fM* zUjO!$iqczQ&*CSpE+{#{lyaX%z;A;>N6v*da*yi5UJ!Khl0QTN={ywDP_TBzSIKI+ zJ~kmuVP3`k@@wvjsAkF84Be{>)sE)R(cbUfTue7=v+uXKKU-5=Q+K@4rPpoLbQ|4_ zg#J*kLR%44vr)>eMk-$7i<~&(yr|nnz-0Izk-ok2gh{cCr}=s`N<4y7M}K+f@CC}y z30HxSQXFJ+`WICe-Z!Xt`kZo9I-Qcv`wI7_1p-HBB(e>1KsFnUYGP>P8j%FSVg9Ts zUZhHW-mAvUP^VvcGU7|f8lXBCG+^efAN00&mG?9LWB`l&L#`JNSjTnwl6^g+@K==Q z0pV|~w;k$la72id@%A&kcao4dF&M8xQDqziS`f3$IzKBgCfEo)|C;RxcZw|#Qq6mM z2ApsX>ma&@?N~(?e@b2)dy#GR%0X75JtGd+5il}T%ywj#9A5(Az$KN(eRm=9+sq43 z{ng~9DiG`YwCbAp4*U}08^|N*sQ+i@0vNHWv?CPeu}Y$lDBA8KgQ)3JK&Sxm52qKU zULClYusUlDo*o&$+ESJz%0LTIy0Ae&*GIct2Bx=E>b1!#@(w_)pyQNKy4f4}iJg(1 zi0_8#yRTKltx11qBaahh{N(RH7Wx$vHWT;f(X3n7WyE(AApK>!b~UnVm5e9>$z`El zn@o^KMVB}>;I?Z3Re3_@Q*=;#shOR6&Xx9C;#{~pz_kBdi^p^})t%Hj?uW8K#+O-P z+BqohAUtf72jh7b{-Us^YkpDYJI|W4u(9k*B){oURuAVCyt$gn~xPo>0T>LUPm!V72PFh)t$zVX!1A7>WV3 zgoRxzP@Fq=kRXg=>`vP$xz_JbEOF}20!x+<8clHq|3J&@6}PF*!JoXw#I82dJ8d$0 zc;=R|&f!XUpPkpUq&fD^q-k9AQEkaz+z|lG*_-;IFutolQAcxkTU05aT@M%QYz4kK zms*v=i%%a_(-_8z&ZD28uVgvH&g#fGE9X<@WPf6gUPQ)FnqeG9FW2Ttt*Q7FycqVw?zCZ8q^N>>_n^q%FpO za}l#q1QfBaw_Fm^Hmylo2o}|+Aqu-LX)WTa_j_+tu49)rg$Ai`QQxd>7$)BRBsV5#MZqlFTyspu~jrQtuY{aX21>Ch+4~sACAX( zrOE)9JvdIBu%qO(i4$G4Bh6!is)A0u<=BD89QC>zza@2UNgCp$B zY*G-`&f*ak8QYY?IeB~SDOs{s^OqKNAJGE=nJas1`^2rnAnO2fQ-! z64OzsINs;`uy$p$4HX^m3_}YA?nFhh?K4yyHkWuCO;0RKBhv9}tNR{WMJrO$?J^Qu z2@}nI9z!^LaQpdg(Z{X(tSa(2{kgIkb%N@$&J9b^IL>(xn4@iR(awuM%w`d#hxpNC z+z+P~S&Fvg+%RfP2Q0g6qIe9a!cDsT`3opkw{7r5F4c8A%&oT8uQUW~kC>NZaV+Ox z;p>EUDK%$+I&IqDYPG;9noW0N~(&+l<1l871m;V2h1}r?*j#f0yYIxuhium zQ4;U}T;T>D&Q7Ru!P85G8p8LHn7`#>PPc5rr>q$2m>&9F$a4hd!$2Ajk@rr@tvN%+ z#s37x4JvYePm=kwPG`J0ReVBBANgRFnK{lh^w1-lK`R-`hj-k9L=eeGvJ`u90>!Pi zx`jr{l-qid)p$Nn2gljekj-RPcaoPzPdrka@e#{NX~-z^{o)vx>#{VxaP?J9Vu>WT zMH-i7j0^c_(qm@?Sl6MBaOPs6_bi1w^C)PDz9_BzruE(|BQVu<-FAi(n?-oy7uYO? z5Gz?OO>Bs#07fU^|EYV8>G_4C)Hz+j#WV3(&kx=$FJFn29ihIGa=Bm{9ZUy(6$m6Txy?*FqVkd9$OA{VIpRz z`t{`U0S`6b2l=nU;rz+Km16chN%CD3d{u)_Lyxw=?D^Jg%geAqEztQg&aFMB=|CQ` zZ8%2=HU6P{3fXdXxHZS=&s-+O|EqHqQ0eSH^jZ49b*=yu(Eq!0b@gxON`o}{R-2~l z!*}eVuGx>c`%KLoI+DR|ro#ToFFC4H|1*B}_g}`{>oNcT`1ESP^&WKmpD-ZKe`j_& ziFuM3|D=M#0I48(HVz@jA}oLG6B? zx4NB)C%^sCjTFZ&NFRjmb&L7qAJXyDx^GFIS~~Sd6fV5zChmu4L6KIb9%kjw{Cz); z1U}kbcxg&{R+Ls-`VXBq#%h~IkV;NgafcW$Ljfipqm-Nv@a%&myiHY=uPWjA4a$Kk2aVT!HS>^9ykC3fI^&GI&AB*br zX3;+sL(XqtfhK%+@B-I$D8>ov_~K9bdyu3-bp%k~Ox{_Aqo4xKAfsI+fTtduQC#is zeiPiqA7@#AT->D^L0;)#&<~-y#e-Y9{my8Ya9_A5V4TXuHv@R^g0=^vReYI?7F%9gzo&|<$QDdVF4>UFu=-AAJX&1 zrk9qFFH9CY9e*K4Fb@|v2`Wqi-pd1C2dE=AKL?S172IB;vGQANiGLVmDOMvJPfhkQ zwTpPHRlJK%!C5mvTL;(BXb<3kxxp#QGsH&yz6Hb;@WQ*Ma$` zXkiO_aw&4a1WmhwJQUX0_g-{Qc1uWyI&F+bv8*QeO$xFxmvqmb;YW}wK{}p& zBN$VwDh1q*KmzWp@#a&JOx;jU(l)@AAOIMU8z0bvp3ZV{-S6dT?rBjER1QEZs5xJv z2r?o4pm+u563`0T1x$?o!GIPK_qwwK(f(-#`L4P10b;{T)-$#lVLa@%Q$J}_d2&Eb z8-P+J)_R>mI>3%(V_Myiw)y#>y3GKspg@8>2-DFFT|`tjuAN0A9sb6h3N2BdNFKx% zYjFKS(eDNO&8Wfi63mMu8kO)79J_Dr@N=Dog(x>2MnYv#5?H50O>VG#d?0j+tgJd(}qLATqf zvcaa-6@(q9eeZLOClFQ;<+lmQ3rjCGIwaND=AGg=07DSkEOcMjpd+yyzW0lK5kwg* zL43XZiTS!frZ4nBl(sZE!k}z6ATKEucRJfl-HlIc6tP$<3e+2__gAgU>*tIi$l%3gnEpv3BpHMsKs{AzfTU3Fi@L?DiP5O zZb4f4B=Q~56Ayfndv`Jx7>S4w#}?3tha?3y&$`v}VDo!0#OEeaoiC`&g%6^k7$BA+ z|NpI^{{n$J03eWnOq;zyD&_3fo|Qr}+k7|)K3#M{_Z0(LY>X2NI4w3~yr8>q?yIhX zf(2h7G?QX}q+Ol&w-(H32^kC*;381dPbetHAx{3sK+JU=aBqeiF^~32jT)^P1^^C5 z7a<|vb0QYjZ+Co%jJwFOV}C0jnMX=vl2qC?u@e#WK`;6DEvrWb^WGk4kM^Nz8rCwB zWMu26O&@d`WEplF%L6&2xaImO=Tx>dQ0Re5QM0$O4h-*N75J}GWC9D`RbN4bZIU~Z zAiVwbZSHDK9FYDumikEOJSYeRlot$PNt>$1+hxp@cQy-SYy&&WLWk3`9KToNe=(q$ z7&Ne>aX=x+O;5l}n10JD;kUMJ=EfQ`k~`Lm3TmUS56vAn+K3PF3=rbc8p422p5ns` z*xn#Lw*uVQE$NVx|GuAB8<)ESQvht?HZ<2FDn_A-=aLMK^v$%s8yWO-3EM?iwz?INfD<$%(|aMs{dcmR-cePQ9q-W9rhQV5JTaipEIEPZ zb9Yo5G|x09z&qzm{X1>sZI>TS2;iM#sE_B$qv>4HvJH{R4tVEa-lN|%Q-|euC|A=A zj3J&UsSh6*^8jn)EyPZ~4baBkYNj=>pYRIAG=~NNk0dQ{3K-o*BYMqm6F<(6eIf;}0hg zh8!m8YbKsgn?+@h4{h9)&Wpyg`AnvA%%Q+x{o0xwK_Oq6SuhJ%cgKX22wz`s^n?JV zUz(e{MA2K(-xYtit)?zIS&t7pEnR^19&^=TpsyI9vTjUR$=Y5oyQ=?BB6^dZikcAensZbD2V@u<%_e-oV~&LN z?#Ler0Sv+VGPmbQ`RKe%uuXj#T-(Y)%idWmWLyKPG z@){vT*2nWHIE8PqTJx+5qv_SCSk*Aw2XXClq(vFWlTQi ziJjby=jMxenG6}iUd{RI&=-vZvao2ZMp!$Ne(qP~BU%ZVRF<)Sze)%iEyi-76_Y=4 zv?F=4Z5Y69)60F3f4A$7BA%0+zw~fSwUQa27V$juI&@0CtbIo};i+<#(VxIq}q@@^fjUIh}wWfam z-IO^C)vBwhK0gG_!UhwR;3PR$0r1Kx?&NkDaTSR}Gi$~6tnp%lL11-xl$36papQm3 z9VuYi(~~BlO}q&wNp`B=(M{r$IwO4Lg~&VtEu^?loSU_N4xgB%W~JvP94#!iZaW}8 zl1bct>QoQgjIB+BE-YCJtuc9KYrw`Pslx6VPO6+NIQmWlo$>02rJ23jWRcr#2403( zImhpRK~I6Vwq;>45Px^WX^X1kG>TAZlWS3q08h>rSmH}=D=w!YDngTFg+9h&K;to# zjw<0kw)%bsMj2{R>K%m(mE-cxXurK_yzJ?ADljtjA%kJDDs zM!*f4lR1bCku;ii-e|Xy_C2Lt;g^dMQcD)%OQ$D%mdSAailVZuZ*l$8X;`w_0-L<7 zTZ+1_aKmf^M+QP2xMX1?cbV{%Qxktinm0}3RNq3fl&k>OgLo}#WJCwY_G9r$ZWZ~Q z@I{m5HxOAagI`?e?p!~SBWt@h5y<;Ur71R=nMXTUW`)XJNng|J&gx9(iT(sZ1?Z8t za?mu63yzwZd(lsLqTz^kl^};u%VMrwmK262xum%yi-_Pz29Hv{=TULdu3-J$9Z8g& zql=o|oUs?t>{9NW$DdFNhIoihqJzf9;`r%_id;)E4ldOC4+iuO$ODb;N~V^jUE`Bi z0U69ZV=6SkuZa!8ag=B^PW_efg}n}~u(!Vx)-nJAG*6zi;BP~F3H^x7d>RX>&zP1e z^hgiR;g4-MUSk0mP-U_;00Z*UP;EVNh{|~!0j{o>T`E|Rr8wPlwr2Hoii0eOdKvxi7d7wd9h`R64fIg6M@Dsk@yCid* z7DriWT`jk<{vfuMjKpkl9pP6U2++*5Do(=;owD17-Lzi;U_kmFKK9=iZ&j)`MxFTT zT?Ak*jvfal0gaTGt1TM+Yu+tEhVr5!b|g1>lMOckx-;gxdSBX8&OPJW%i-ld!*1CGgPpn z<`o~(Gc*y=H>vjUJU{Hn0V0j7fMW$<;L6Rf%g{@#!}(F%@RQ`m)HkK8crU=M=t#cD z8}g?y4_L5#5`-5*>j^UK{k?9#0ubk-^VGEuLl=;2W=G$#zQ+fcgy90{x14eV@nd5l z(-nTRFAm5pKJ5J;4rth`OY8sRfWX%rQ}vGgQnr?g031-AZuB^DbswG;yo?>;F%t~S zQq;d35SGgo(E)%1f&g$p=&1j2K@T{rwP96Q58wXp9=ap zIgT4JK1%oWOL4eOpQ%}W%2i{EAQl1n!oVcbvs*8SgFEtP7bcW64*CsE`jfZisf~2` zcFR6ywLS0y`*7WsiTS}P(^t$?J+=1&gBLELHwU%)D4IJ?dB`k-U_F-+1u(T~P_Og{t( zkJ2&tVF=&syeaCgzX8AfN`j;5MHkKBbJno%#*8<>b_0aAf~CO$9MBj@WC5n<{J1P` z^|==$u_I@|hIsXm+eDdF_zZ6h@zDft4%6n;1?#-CH&Q6q@InNq14+)+;;cLjLqniz zz>hejrhce&M*~DT4r!f~Uk5fsHnZV5w!} z8X0yZ(HdQ!TgNm=11M$A#x2R6t&U|(l|de{Mql8?tEKGI`=9hcKpvTS2i=aGwu<>P-^~w9H6zE^@jE@Nu*JDTlXOMGO*G%&kV+kQx z_UtvPYq#GBkzP_Mb}Hn3 zxKvs@iY|*jiCr19ZZin+hw=LWrsw&&ck{3r(oKWWFIhnkX|GSKsU^Kn_HB4*Z^6V~VH7HaKa|?q9;=4STU}kYU(vJO@;; zp_XmLE^OJ1AAWZwMw&qtcdXoN6)O9o*yWRkosgx(^-3$@Ky*Yo2fz&^TCzo_so{+CA_l5l=eWew>Hf z5c3D2-_a8SI{v_=^YQPU>u7y6GJ1Ez0H6xl&mwWJ*IPuR6sZH*I8*1K@j1vp<>7z6 zO`oe$?KliT_wYX00>y6rAKaT5OnL2wRXB3eq&j91Oq;xGBdrxEYf}pCDHY=Bb z){g3J>N@^0R5LHrMB{kN^8|?ikHK>-2D8!3J27Kb=sfKS^86b{f)~e8CzBzZZ2AXk z$&Tc@E;j%M#Ifc6+?!U~%4SY6YpLw)Lu(u#0c7#P9i#jddT%yz2kIUiqEDwGQm77pN z{`mlV1DFCgPdvPr;5%`c8tO+!jR%enJQE0xO?|-NEYW)?&hwyyvh~ieM8Kef8^6MS zLF+AQ({aRsU#E*cT1RQe-0E4TLt%7yTJuxTkIud)%vq@sXg*AGBWqhY+nyQzL&M8{ zk_5B99d)ugtx0=vi8ANw{`@^lzE|2W45-NiZ6<-qp-NhgC$qL5E&*G*zyCELjH7gY@BT1bS?KmPUI<+L-uh{K=yBT(^!GS}(Bl z@c8UJr47tG05mw}NynF{igpY?G@%g&bHT@RrMy8n&iVK67Vw@_D2I$IC^JT)g^tGC zde~Man^qGE5NGj# zqa5beGg@vWTq!KMU?JTb??)KrVOoSnb*Tt8HY(mJwyL0#5|Z*u(=64?$fHSSH_{7I z+Mlz2$I^>=wr`3(q*A!cZrlj&!Bmch$%##;lM<&6EiU2(!7+;z+z|?WeJQnADmra8 zGV?Xe&}e8sZE(atIOMIu)4@*4Ra|V5TyNqgt?aDfaGRu}Cz0@47+P1Ii(D9I5TaIWxf3Bb zHQ`y^ykO=M>U=TU73CA=1l4nbL><@-?CnZB%D6%95j& z(*9NUEH=(Tv3;(hR-y8p<{Sbg*A97G_0O?ZDHcz%my!WoK1Wk68(FG`O*VMJD0;oI z-mfxSt>;b89)l61Op9>O1{Sa7%-@!{dYkx;ccK|ZAwcdV8R@eOd+Xb=kf^$GVpJsv zKHMJPC|(Krj{9!wlNDGyQG9k*O-yk~cR~>8^g3mk968g$?u*!W!N;hes)xuRAS?Om z#0)LZ7cM9564o!neytM?rZHb3$n%@W^Lc-}s2rndT#_GoPPa`xNl)RXnl_3X+;_|T z69or62>WTqr0)g#zFYYhb=xVTf`NXJ!GoaBiKxOcGWry;FmWp$FB z(a8FsAF@wkcf3)68Te+OXW9{ZcDQBxSQLf4YxM>wpvRT6Q|Df-4Svk*&UJoT=4Leg z)E3~(L3nTuEIls@BLM93!nchqSxn1t7Kcp-Fs~_)-8!;YIVwlWj_4{uE zhi%;Bm7MZkxJFWLI-m}iD86)1G|C(2;iQOff`62*dGqDl4m>&${e>L2l~4#=lyC{; zc03^nBztO>!k#JwrU_f^-#<4lKkx0Is^JBR9PWc<%eXuin+ziDH^wSn4|it*@^sMK z-8wcK46oj&eEs+O8fL3LVgHl80CWQe;eW(`{8&SrN0OSp_o z2gOV(#T0=5B>hkLPnZy$d%`^A44`TX$N^;zgESIe@Gt#}dJNXADojIO5eFhZa(+KA zc<}doJ~Q}GV%?xE=~+-(r8PeL=ddD$RC2(T8xJ_F&;SlAbqW}O!%A!C0TQ^R?LULI zT`*1g^xg_plF^uYztFnTr`(kvO5Focab&bplFY?Ey*YkZAta>2KJcRcKv2?>Dpk3u zgkihT{R=cik0OF`Wg3#}fGY}8>?an=JC4*}ER;JOsW+@y8h022!00mz3Zaz>!XAbf09F9rq1H$C*%nm4CkD7Z(T#Y}L5RtGU53tFWV)xMt)sOV0 z2gIj`hzIkAkC)aehoC1r*rr6N;_)EXwhFn;{5I4pE_-D|jho$=8gEj-epiTeMbB{EH;H~~9T=h=2 zWu7N^3O>LOyjy3ICvgB?q}>>4aqdK%^MmK-0{lOBmEVB73JZka#5ha9{G{zwxZ-h! zK6L%!Fx-^nRctI$7GTiU)|b_1!5!%?;Er?;mbpv8`gt_ns_?Bw&~*gSP!DnbP9*yS zkHvW^!l(eQ!rUD*u%8ih7@3!V?RbaH7Wh6SHb}quBq=r4R!@Yf=mQ)>m8qa+Vp%ep z-bFkcSyEednY*Z0H|blc17OgGiedM7?wm!cC9Rmcm{q`4=?KHjO3V^eFpK^|+EeA} zhCn1Ru^xb|2mI&>oO=d_BV*DRwA;%movCeW0d2oQt4E zBxPGur~^-Gh}9YGU~6uQi#0?)3wPX>6^!&&vmVKc-MixbL!E*NmX4{Vd6^!2B*8uo z7_>cT1Cx}M1STk2qWU8w zuATEwSGv&HL7hnADZY_I>3W zhz98LwOXYjHXY`wcozlzuK6g4vek#A(oYbeZ2sJ|WD8Dp<6%7$O_csa|C9pgADW5( zrhjxu{QseUia-H9Ak%{Yxvw6Oi*9p574I{~-vstAeSx_3^K`1yF0K$;UpdGX;=l}I zU(ff)ZuOmCau=K0nI@FMC+GH^z8fb?wnq|HDLMI(lVFSZ>$G9W8&Xck@eM!9o2)HA ze0Lcvc5qRO5uB37pAn(pO_-+gKm6seC~E(~e{N!<72*9P+P^QOtlca{W%{PMm{%;S zzEl1ECCpzG@82OjYesfIE%nixUU#V_h{F4E*HJacp55{DW z)OnRp0R5xF3sAcKe!vNko{H1o$y^@ZZZi2Rp$JdD(4XU#{0AaH#{!y@vw=^L=_z{j zWjdUUvsQXj6o`#7=R%~xguG|RnNOrmlPJ>gD+hGr+e84B8K zU1%6G!qS4aleqlD#6g_rK}W0P#3So)zkxcc7%nUDLRy7>x6n__3soRK^=fYZt~^cw zRwXRULO*(NmQ;-qZ>0g!=(Q>@SEu zCvuP~M~PCqGf6k|(0lY!n`|A)oSdAsp1f1Vqjs_}@Eet98M_JXuP)I`I^KafE9|zv z`vP?2#ojQ1sJ{8*Vcm)HbXer<2LS$gR`{{56S}7Nl+w<-*@lIW}qj<3f>JNjW* z_G?}E>6VY9$kmBo=Vx~)QvWe2y1J(&;=@d=Kz7j(us|XcQJNF(rb07sB1p_BdgLPA zV4r>$s(TRUPGP5w`{R)l0r|)JhAz&SXMMIU*z9nM zCrQYQ6vB|j)a;df+bXBR#T4U*dd}}?p)9_enYAa__o-R+*$Eb!(}?sumEX&L3i(%0 zRWwjCVL5c-5fVln_gan6pPF`vamg3kmu=}mY5$q{RjP#1dye%Zh|+e>fjtS&3tb-1 ztUo(8!zaEX)c5kreKvyAq+9>xSTmT!)3%(AA1(KVEr>Gg*2ZLnmgx$hbW{Hx8OfLtTFiZ4CieWhMu% zCU>8rm;5|e>WO`QxmW5L{FWZJ7#u79wl& z#XUW!mnZv(RwtKpc?*B>nBedF$%>LTcg`TyWnC=OdPi2dF60KSqHtgf8S8TlX`qx9 zt2#Bl!CdH!CE3&cj9sr5=%FlMk!@c0nQfAv#1^+DJ+1k6EismCk|=G4P%~zaz0`yz z-9|J{Qv?j@EgWYsA!BgTB6~bG4Let|=B|o^@3qcYmK63y2t{{$#{Q@9Q5`i&tF;yI z=J}{gv$!;AS9L$JrjJbeemDBQuYP85`;6 z#y!pHxN?JW#74;y?V4o36rp|Xk@J6&mTfmh*ILG=KHLuS* z*}Tb$hp@}9QcJPKmDE?!qFIwGm}b=su0<;y<_K4tQ!P7tNzjD4(FRvqXAA#?NkWI9 zN27he(LiQSNB^6x@kS7nmZ1>(;)b@MPtkU|p!b1ZMvDa#kOSfktVu*cn3Ka4?W5+| zJEc`PRHvH2;mKQ)o;nfD0P46ezZ^aEX6C$l8P7(tU#8Ddkb@GYPdaJG zYFzzae7$3EC2YHH8{1CDwr#7EjyrZbw(U+jwr$(CZQFLzarVsne(S8-Ro_1U@;jBP znP=YD7^Aj)jG248_7CuZjt5QpBYv(a^Su~0IMjijSf6K^bT~9(#|4Q1?H`X?zLl8U zc?VI)21Xd3kAb7tUrh-NjuD#%g4%qXs0noKWOdqAN8{ZGzmuDuCF|_{i0&j5ay99O zMtNTRE~@J`6uJ0MDXK~1e_GG2IPP9WK5CpPhUMC)DXJx1nkSIPIsH1W0Z(=>IPVgrLa)tp0E*9HzrRSMc7{ zqFjbn?F`l}i(De8C9C5no4CsHhH~muq8dk7U9L?%G^i&1*8AIi;voQNW4X0BRkVTL zI`0&1fwh=CFrg~o(&eN3^YrQekN=@W`D`dr@j6Ld>I%?qJF>vEvhP?c7QCTDXgzdm zT@&h9@)>&zMdXm~e8c%~k0pB-qxhfyFZ}0U)tiQTT;3P{gM3GTdl~$?JNb(RYdww) zxUmOT=Q>iCTn(N*P00ABiU8WuM8!m9W4t`F6BS)d+|QBJi#shcQuzY_0Bw~OsH8XR zUn^7K-?&czgw&1!?@C?`Xavjdbif*V<~mqvau2=V|0fBw*eIkGkQb1jAvUPA0ZeFa zsAj;KSVb1qY0wNzbA8~!7_AG)1Z%+6Fz3Z&@NRH&5ffhIks>#Ls% zhX5F&joa2^sXenm+~^~H+hcrW`#SSb0?s@^x%_YgdS3w0#J>R0%s&9op@ZbUMgHPZ zbn%iT;N+vz68E{<(>DyGmxnjl38BZfY1oNDFf{`T7RkDOT6yFTV(?W2asU*8IQ{d! zia_32If2hPW^VCrUqzrJPE*|>f%PGh#kGZ}vm^fA+f5F-^vJ$)TvzDkh=?t~d&!l9 zb+QxPSJ6Vv((QkB2_`doc@Cgb0A0fTU+ec;fG$B1pi4MYF?NOUM0{0Ud)66v{)-I# zhPNn+^cVR`f9H(LCjDtTAdBK7-du+=$<^e#1vt722&>Qi$k?t=uL>*qro9z8@^#Y4 zsjsBm-*(+(0Ocy&&&T)>T+jey?imTjZH^{r&|J`=e*f|qYUTw?=^n50TKAZ8^>bM` zdiNTaFRw))h}{(-1bbAP-`7c7o&nSC)^MB_m(D+CmSZ)*>p!}L+hQTasss!{8-OlB z38SJtpG0#>KD@-o5BevV8K4L>unNRYBGO zWM;)ku44cGIrX0+kOcg419+RMsVUNQ?|P<#u#w z<97yzw^g-FQ~geY3}Hy_V@8#R&ZJ`YmytTMw_og4_j9rm>yPbcSbfJ&_#nQ*#tgM> z*adSy66klSmsH13nq)u{=<1&&kOsh9xO9MYEIjSZ7T==eh&o7Gsl$>@3O3hk_d*?M zw3Z0${!_II4TFn{Rs4Ao009}$rFP$m|6~y{#8?7AKx)PNf_FI##8nG@?Lm@1ISgaJ z+otb*Gk|L&{G45V#YDqSWo|i8$XX5>o2a_qypns&Q)>4;?X}h683Is1W&ct@C_lj| zdqC)CzYPa6N^FJ|{>W97N{If;zu=osYj&|7>2)6%_c3C`why@lIQ6(WqEQIe3U>v; z$UR`Wi;wsvjzSl=ZnkQrlpIQsMW1nnLL7S_;@Awz)sTD)+}v@ApJK3*hQ|IvN7bJe zoSCidp~KxI(WMopM_n!@3xbUp8LB+|$#+kE>rEN${SBe?9F{9OAQM|@v)FEQ3^1!o|>`YRE6C&m7rE|m^?_eWSijykx;jz9yn!trYf zIGVh9%-g&-4CuZb9l^NCj`+o^%A4wHOfEmoQ55uxg4J5)id}uPGXq^1)NP*Tt7hiC zi|q~sbg%;Z6MV+FYl-UV!RF1Uxojv zOJInJj;?}%QquJv@K|l9j)N&%QVM_OiHwglGAY zv3LE<;rqn_i8MD+Tmm>CQY_rh4$mbEqI!`O&0hW(i1eb?&o))I!JiUUFZ+}$f0P0^ zc{LhDf_b|HAzilu|5*L-`Nh&&!4(L@!UdQ6p zM)qL+Q2fdCE478*9~0tL6RnSi8w)9NTp$(+Ix+fyZhcYytpb5rvm%LKU@Un4GL; zqxFDqsZeG(o=6u0S|C4H&N`DW8c~%HaI+CH9gG%EBf*8$k<_Ok-6bR3@pHw{Hf${iVD z<}~%*pd$=tl{6en4$pAm-cB*WLkFdCbBxs^qFCp(p^JW5(jY*nU~C>HuomZM9GPrq z!#N4~N6SFJ2`t@xj59og?j(e7=`Mnb3-G=7bk1Gnuvo@jtvtBjqPDndsuVIp315@K zHAv>h!B{4KN=5}oEMiHGK36H2R(WBO6^7QabvxpVUh{ZSh{0d+0Hd-q7tFHAM3ahV zDm_h0i=?MJCX*NoA7kja!{_`$>1s1P#lO`@77gvG@fu-zpQqz&C}&JuROB1Ac&N2T zfYKKz2%MBw3M{fWYeYNCM5eLm$Wd=P<3rLs42VR(Zpy zJVwIFlbjcXQX6LIK1I$bg}cYWf8*>&DhK*9+6*KuGPr$6*msLa$T2CKA9%^pb#w

    |n6aTO7dN#Ok(>eu6$~?QOYc`QP9lHf2~D%g&cf6gP&3b#-_h|U0fY)i zf{I=OXE&Y_C%F%P-(22z#K=_xBd3%aveRA)B~?OL2N>F8>5biz7L|lylvj2_DrUnx z;(Cg~cwx**&TQh=6Qs<1PZS8!V)%roDDI7U77@$6vgZoS6gcfv-1_Lau6fi}2Rx^3Ul%HSdrY#sj-~ zDF@x^)qi8d!R;k%X;2hWNX?(rJNV0-qG1Hvl4wtakJezevhO{9z|faXez?X5qW48D zxuXTWC-8z`&2&WX)tzwylJURg3R<#4^{i!>S;h3sJ)Bh zWZ&ExAtCX;ry+S@DFCmMICUPnG0?i51dbJJZh^;!Lf(E%^6mH7U2l{-3ihyNE6dTK z(NOK87W^#vg~nkGSiS9P0)k^vP4aoW-w(Fh0@6#8X3?mO0QPTB%pB0O6&u?@V8$3P zv;q8VeT@95@nYN+7rPHWFneVU!zu_hR_qP&=kzdyW)#@d%h5C&U8d zLy#)zDi)bI`5h~E`iH03!4?rLc3US{ssd=^Cn{LdGKRvqT2<2z{ybDYjwpu6OV#S( zoEm=gyEt-(eA<^#lfnfYAKb_wll*Mp(uRLBoGcV@AIY+#l|sTYG&Q9N6pBQmc1XYD z)5rU(UnjBJr2=rXBfEWYo=#Bzot?9;G$%@6JS9NpPhg4;u z&FBWXbqKhj%17FF%>v}x?>oaL!&W-LnK6!4A}ecJiM}Je*X!cg1VzDVmo)TkV5#LG z8Aaq$m~9pAjikhW?&yJ`(8t~1!G{xpLe=2C-Kj$!QZL-`UkJY89K=)Z(T!0`h`GU! z%IJSs}+jS3eSI-Ej-a`;^`gK1*|Jx(% zq_@8P4`62(`CoQ+%#8op+1cy?eA@(i9|1cMhXWi11F@FR&ZRj6x1Gan@Af$hv2-D| z&d*DTQY*6daiy{a-;$FQkV1G#1v1~G0S_>ktuiAOv^GN5N~Nt~zyl0UueIj}Kmt*H zkwCKb-SfOiY5)=_^z8HH<7;TwzL%^3Ux~0Qi~nuPi9)IuL8w2-@LA(+!X*N#zgxBw zyPLw-sx3%tpO6{)%eM_fqNipD*A!b%IJXNRfhhU^7>jElV3G(1G2+sFFW&_Zcrijs z+zxs4Abf!plow8QM_hO_qKp*O>Hsz9{PNZP>Gy^|0o`e?BAU61(a;q!@02k2fj`OM zdA`EK{jCB7X@&Hx0n#=TbKP*99wdjvIgg_1!pA{H^yS+I`09N80KPiEZH@_DaZ_Y| zM!G7qO@(d;z6k$GtM@rWK7$UWiY_mF8rmy|wcZQYUTPEu*-MMOspCowdQg&w3c?-@ z5@J9Q2u$d_d547ONmnc&U=ok?H3fuut8Hpbjt+)z}sI4epiWp9k0!GSw|A z-~kqeo~6HYk?A7qdECQ*<0HjZ6))|@{Jai)>;jao?^Ua|&a}z_*XtT${d>=wx%`qd z;mcQ-t9Ba4b$vD74iY@k@8}I3*m;&9Xwe|*Q2(^^^#EflT!z#->6%q=ed`cB79)h$ zonGG(!D-L$$Nk?T&f0QF6m?Omx`5El3)1b)hG;HxjY0!c-ybU&-K`Z75(}E$X#sl{+ZqF20s7;2 zU^AKcG8~VF9w%XGigkKH0=&Kkm->DyhIPWL z6^2>4l5oU`>L2x}R&=+;A4kOFItwGU6@NSsoKqwFJ}}HjssQd)$t%v5WLxT`12t&# z=N7vinmO$~>z*KSIh2XUK0z%#G})j+V++$Q8M(#m8^6xjKu3k_=wg4_^r|&lVM{fo zp6V;agb6EcH+>L0Z!U0x;kli`w0`0E1Mt>&w*+zKp?m5zZfhRdDlL4;PAuK(ngXCE?{< zVBAAf)qW7~t{L{m;R%H5f<9^xFX({_2fogH4Y0Bt4yaP)v~`@BjvN8X5DMUQ*ytNj z!fp`5wq;-)TN}Ld*8a3**NrNWy3vm09f=Y`d~on33~*zsuOLwAmpzV~2__~VP9fui z(=YGsPF1M)s0s|fCEEfN>sO6OAibax?pF{9a6LL5q6a$a)+FQ|efDu(&{O^aD4_Zo zpjc;!Zd)$McEcMervS>xDx$x#%L9PSy%u-E{a?Ki@T4wQd1 z+fKaz%{B^U(9CKOKzZ=#N^%fU;L&JHb=TJ!N+bt4alm&oUealZ)zhulR2q*pfX zV^Hw>WopQrSyNYx>3UB?qX=7WK@&VEvob^JDV7tQZM9oI~;EE+lSm|o_fzNceE@`E{&pq&D^gl zi6i*0D5wq;LZ~^UgtJ~Jc(>$6{LKlRg3x8q5dzOcg3)7iVnSCnqI=9&H(2Fxx2>c* z#C`2)Xl%ek72bkY7bzkvDA4_f&qU%uDJ`B3S{YPy+)W{8pD_DY{YfI*)%6%Qx;fCac~Ed&}_|{ z1@QanAb2BHYnJUzCMHVOrp$HMuD-M{m}5lv(gj*TXx&WHpm#HJ}yz>qbo4f|q2qd}=H?5#G`VR*H`+j`kqhq9LAd zYk3Mps07R`bdY7-+LH?{Rn06Rw4xN4^hUHfjkvBNr(hc}0VB{6>J%Ktz$qac$TsXtW6MNk3nA(fhJ8FoerID!Pv(TVuFF* z0CgS#+NF3YE$5yCz0lD97v?&=@?g}iqYLfI@Rd%Nl_`q3%I(9Ukq}gz1O@-Q5}@09 zuJr4`(!e@iHr01<9_9BDPFyxv@`efrPOf8V`n%ad>!mw}P-~N<`&xCpaP6uY7n6^l z;S<#N!YH0yYh88ILzH1(eZ{T} z-fG-NsF~Y(PEBnqZUpd({Rzw1iu)u2y2TL+jYfEntct%;b|gfSP~Z5ZW?N5W$>HUy zd2KB<6xd86xEL;MODo3j4niVs(qhpi~_!^S)5$A#WSjBhB;Ib zs%@#?!UEN#la1+uz~IxK^D+^d-0Sq>vvH@kunuyd$Mo@p`Hz|_K+zTC-+-J`qzpNTzLI&@Zi5-_6V7~y@2&=UairWwyX@R4xp#2fQN2o4ftMOS z+X9{oFP|P8pBo*Q`dH2B#5W8~4X5+!>)ynzPGg#X7Ygz~1~{l458PW!ayDPHo<9cv z7>aLwV*a;hOVJYl=hw3(>AyW&nErjXNX6}PVsy&&zd`y(Cc|bNz#FDrmLuR8)&;EW z%M{mr zLF6zY7;b^Y5CDOo#P(}ao)+bBW9^^9%fE^U`j&A>-Va505@{V7O73ft9vVu{Ykmn0 zY}QA7&bIY`LFi4x80!8I;%H>jjhIru2lFLib7EU^n1j*V&EN??g*ZaA1ykWe@*I6K z1B18|>AR=gi$vk)sN+1|TomA26j^M0cv(BD>Al}QC|FLY}4}V#HABLhJK7ZJV z`V9v>)Sm38cqsU15wx|%F%DPg{|U}zDkWW z}@Lc*4wB}{bXKCrF9_7jiIjgwoH)hCkb1z7dD$`Ng)3j@j?*LVgt z_0__(FDYKF+hIgbZv*7iDVm~daC}sOB$~>rgQq@#QH2fgTj6$k+R31)g>oj-Vr#A*1)0B|)*CeQWPh!>`I@BnInMX(yYZ3)@4@<%TI z2p~;OOm(Be-JuFPi(z{q7SH;r;pUrVUFjcA|69BPV)_SMBw0);s9ksVk#GS>r}c#q zgqUI-Yq`lFo0@$GXbdNAw>8P~KarpSTjW1E59avOSXTwcxWy$aumNcM=A!3ZMAI&Y zW;)Cq?Eeb~DX79bQiS6KrR4+QAXESxWN~XMgy*MJekPIG0);wXCM|7^AhYD`Te^xD zM1-A4lmD-!=7I0zrK0SZ#4 zPmH}i#*9*7-s^gSa)ut=Q-lmKM3K=_`-DJrF5m=vU{JKG(}6P{r=ww-n_?Yvyk>`1 zeob}1T4dDqwcY|=B?pADe15lx(fC3F&#`UyWMpH-8u{XKBmF*R{L|ww~uBna8vPJv4~~FNISkXeM^lprgf!R+gJHX@Ohhs-z## zgK=bNu;|K_@g<9UWjY1@iM7DL-!8CuuG-`ZPUa8D1nug6WrF;_gS32kwxjjH4eDbO zg`p;b8h;Sy|0fgVuVLO)Z$RMPQ>g1!4)eY(A?w>w4(OOBOibH!4?3_wWcqQ+-$}(T zDqSgAkI%pMsc4v!$v|Ac4u9K{$%>WyNSZs64xN|LlT0QZ;U@D>2aYQ+EBI^qBp2(WCI0xa8rOpub>y#OE+B$^D!1a&pRPVbwf=)QMgU6*}q&9!jGBiJGZ za<608`fci(;;J7Q!%oi%QUQN}8UAfa(PCzUAe+H~aO(VV74ft=jUPXM7D!1T2ni*O zuZ%q=CVTDgaYp!epffmX>7ASN3@jYWdmi>&;itS`jNmC?bQey0b}E?Kp4QDMRR)D| zW@BQP9PmMJcm0;(?|^B0g#@OttK)|gEebj0BXMO+0!A)q4Rq*RM#wq!+~x70rzLlP zDhIuXVhONbuUMuFb4cpBLELG}W8}o#(u0`-0mEY!<1u0TOaFp#ndu`0iUCdO96*|1 zrBT4QC)(7d_|d;d^L3@+(xU)-Si@A@RBJ7It1KnUNh&xb*zUAw>p{JLwr&&gHpsn~ zmF_E+j>%f}RcsbNb%aiT7xm2yfU!=>=0|2d*2xlFPd54+l53WDv3*X^lD1wssXc$+ z%`f!?_I?U&H(QZ$76@a(%b29j;_qV!WPeBJ9`5?Q7>rR!)eQJka~a9z9#sKwq^W); zLd?vWCAlbT>$RLt`3runBl3cfb)Zpw-`&-K=Q>~~z(Vd9XP&p9xWc%rjFj*5u5#;R z`y|CszGGc~!U$vIk@ZE%FSqD4?6){Eq9%lS-4QAqqsneFpq^5s)+8VY>(%jp02d)T-X+mF0a64eH=+ z1AaR!7VOFqb|$L?Kcpk0L}}5Gx7Rg?^v}wnmJEN@>|xnTc0P7@4;x;tgO|vIf9N2FSK{Vbfb=@Rv7Y`Y#Nc75kB#JI z*L+TC%wJsx1Opc>Dx@pjp1kD&vyjokBuS)G)@7W^MUI`Lj~a~g`(q)0%XZSD?D-R| zd{?mkK)jCyZD&LU1Qu`vn__kid30xycqV)DVVvGRk)Rc$KvvOgLG!H=g+<7-eog&j ztw#K%*+rvlbGk%;C~xzJ^2W}e(0T*=RUN1~!bSFPg|=3Rb&MvbC`m?uNRTA?U40$) ziul=aXrs{&wL4n3+3#abu2_w)8dEK!Mr*tK1vxSIda1bSVM{c>R>LSTWgVi9>^WQ* zAi*SKAzkpw_MaIiprRzvV|tmac9g{Il6S~@RyEQN;lbg=?xCeg{j~OCduea<_|9xf zlqmLTm0AXgb{17OZ$ve3HDSt7sMk<#;aC_AOJnjtGg@FLVrm?|)jx!__lzfp-nSon z$xT5aQF_ocpN7Uq1#j3QMit}@YEmuEf#28e(_3E zdO@m1ctPtV1CU-XsL68tO|syZ@SXG4`ziZp!CnH3IXyv%?mK^!QV1$oDLSIZ+<}>$ z+KBjpG|$=!*lXXZ+T(RG3kLV?=t8(TuQWY?r{e;NZ>M9TpU-i&y->HYq)j(BkW#i| ze!;ZhONiJArdiEo=O1aaJf$-nDKEa;;p`&qOh+_{QwW5VO;f6zuXavb;UWo0#FI=j z>e4OQ0cW)Wl?v?qKQX|nHJSEkh&>Tcbu9WDb6tJ2K`X1nGAnL$DDG&j z4~lwUG6U*vaKmEWFRugk15<^RQwZS1IfXPG+Qo5wK{%NuAhE(&*I}3hT89u)szdKYpt5o0f0Cl+Yvv#zz(EakxuwO7X(FmaON2m3H6a~@Gc z#5-?0SL})NT#4uNr&|4yaMw0yyCcOvHju|A=_#U?`*mZdXp+W5)1ts@^^T z0gi9WWAg31Il;`qfj8HoHNTQ}tIgPJtR=tVLcZ#-$g443yE2sjwkD6n=57P+H8o1Q5g-3{Qg9A!M%Qou$gwDf$2N)@(GA+li+*=0Y}xpoAR z2m($-cf~v+%S>{^&%Hrl$ZXCDyukOxN34a*YWK@P^QE_2uv68cK#%C$0^6_IQ$UY4$4p(q@%aD@L6wo@wn*aPnqY$&)~>~(tB>h&*}DVA$q7}*Z; zcANLek7=i~PnWjOi;YWtTp*$CW6TtBuUlFh0rZX5g^JhHU4?*u`Jig+0hPSTSr$~Iv zBbm|!9n!GO1B~$HzVPM9STGN%FEpp%?b%Wg>Cc6q8>N+(D+}Ksm(l-Lh$BSlYXG5pMspR1L(%J#gMfn4Tg%i(#t!}g;Dc&S#h4h&Nrf~U z>KPYePthlbxBeIpY6M{zc5~}DYrs{!K?l58BPAk1eXt?D0~3-G{pbiX=)?&nVN|X1 zJtY7U*6I*80K|ZTYyp(e@seaj6cJNZ%u^IVcwMyJ5D+j7Gm{O!D;Q9W!y}qK@JH$1 z*Ovs|z4gfBI-F7J5+cuS2fzpA0QewZrY@WuA+YXx&%yQ_-=R|~gtUM7pyUVRmM=c2 z`t7e(SR*PF%^z#FU40+T#8IiaH=1+3nP7I>BD zA11dQK(lp$ZG#>rf7$hIS7H6WacpIZ{5xsr)JIj}Z`V#Spa__|=`!EJ5i;eRcw@qN z&C&QRnaevg0OoF3GcWvw%RK8`u7!ES&ou$l5j|Ay!gt%Yw(zrazV}E6sOUk^;#?oo>JR?N~%ZQlHkiD?d z>o~YRA`46?iy&)*9J={smx19+6Hf^4W(#fgeHQ~5uj^1Tqs7WE#d)(*!WWAnw6NT zlrDte$~63p2#MJW;o?TdTo&>*8mHA#Zl##0c$pbB$+b#i*-NOL*Ab47Z zc>o_Y5~e-*6q10;MiTAH`T1qMHt@aG&F4~S!J0^3b~fmla`H2hL^1o~gXk3g<%1aO z30XU#Td5NX5rqrOwtF*nO@mOE%?CL5WCKW7%2*SvG$AaLl-`8_g`Q!I0VSVUp0Ebf zaDI+az`4attLH|28`-)Td>FlE?v$`fPmyZ^t4OHEIA^@rf4F&==`zhU;_w*#KZ^{`vQtB5Z!elEpk(3X*fh| zrEtCp29sl>?e|K~7k$qAiOV#)dn2WmCX6Gfk!;P$iKZ%^_wTMN`-cTO}(TERGFwZU{&D1vA-i6`gpQ3{d$=Q{D*P68~4D9_x zRj!@EmttRh(EO~zN~k?%CF(SQ530vX*zy*jwcv5J=x+-0E)whl4_yVNNJ9!P&TZ%* z-r?QR;Snn()!E-YdN){XSf;`1Tq^AE@TUu1L7+x;n&8wkBbgGM&7S}(`W1{|6O*x7 zie=Yvrz)GfrHkaXm!k|LuPE0J%Z%~Ej`Z2%rd$O`k-Ohr%z+p_*Jfzjr3*KFEX4bH z)DGUaF^Gv%ErG8azz2=Jbc>L2Hhy322SO*!J|Swrl=1H~MBmkhLkgmlHY}`q{$_EJ zLg~^1vzdiy3LZ5D_MI}b$C*0Y`+wp<^Y>s+6sGUUrc9#>h@4&Q*hKyuAYcl0J@W!~ zw7Eu^&>Q4p9Q-%UXBY!saR&Sf%^q%oT&tsLhyc|aFO{uNzK(rIp#{bdf{Qp`$a7Uh zaEgi9mdxTO50I2GYHXq{tZujtu_#!b&2KZnzX_WWHb{L0@prVNKP^63$lCdKc2q_= z?9e~$FngovS2p-G~mbJTB{d3fu|9H(#vy<((|;SrfsGD*0c_tnDcQ3 z0PjIrB=F|>>$Gs5Pg`2O<+i4&NC` zkJSyHW8K1c)=2xWNLC;JWNgT{dv{zfgl)DySF*W+GThYyLWqqpqLjE*(;U<4CV3bG zi;3u88bmqkZ^m8jKAdx3@`U5e*KSBkjegguHBzHj&Ou*C8ul z$vI6MWQ%)!9&QDG@SiC}&|cpd)f@5RxCVIKGthsa!;76~N^+xg5b~HCiU)<+c?_I$ z5iTdXhX5ZWsOW?#cc9KI>*TR^k{3|)l8(p7A~v3nq@7wPaduZ*=%i~>f zZkF}R){03j#*L4{ig6JjcRdbV!NRQcNd-Bh!`W6Kt%}9(9vfTtd^WrUt8gAF=d#IH z`mdZ5QL~~~+~qYgZ|iuBaaM399vw`UQA*}1W4~DxA#m{~Ifc;a1B8H0{rM`=H*5<^ zFGM==f^zGlh5{mopWA+_fhM9q|MDmSTPrDRnOlutRVu%roeOA;R3sr;NSsBfqdH#5 z0GUpeYnu#aLclB}!9$F|kd7GN?6I+`n&ga1Y zElTr@TQ}}+z+ORRRByVxWFXv=A4md7HGENuDbQ>A!?Ut10*O&kCV7Wc(HX7Dp#Rc^ zz5#5*54gE#sWaUNA++SNyr#x)*_8&0L5OenBakK~Qgufg#vZk;%C*O^v$^~jYwtg} zC0jO)juzuyMgr)hh#VxKjAfO99v@fC=5-@Z5`2733XSblOvSMC=D~z=f=f=mcgT<2 znG!Fou0<9?vZWDm4ifoXP^JRN3Sdz;K`gj@gd0X^5aJa zaz!?txX`3fk5sbvs?pI88LX7%($3WBOxn%*to%G7~0%GhpYobMeDYJw1 zxF)N<$+bTz+kN_!PDgbtJy#v?VR|$n_*BlKH8i1|y`h!GrnkSc=WUB3_k3BY13<~! zU!1bTK?qtj>-K|EYs6igR>tjohZo!yt*J_z(FQ7(dmS{b?3l^4g_k#hG^LT%TM|0_ ze=xnf1uuE*aR5u@;6tAawc5ENAt!4|-tM~e&UPRe+BmqW1r~usr`0o={cefTwWHF# zHnw>to3)UjP7wqu9X4443VX@0zu7YsDps+a`g;>m5m6?kb%tT3m9d)&v6NqY+i?9p zc{R{weuI5`Mt`!TJqtBL+kokY1LjT&}{_j#yl4I^btkG8~2y?`_U25~4 zd0LpRk=-K6=RG?9BA>gYRjPExMV=B-_CbH}GhY8EHUvTVSySvQ`JQ z6CW$mhHp_-`lj<|)j-H8PASgQc8!jI^G6lK=Tnx?p%qJrxosms)1ACe`I;0;BQ)`% z)pp5Ez|pY+5~T5MHY7fBa$z1QF(Pq5wp3_;1tW|j(vWRQ<*A9eR#*4Q!0U9l9&T+NexX8dV`uE3&HpN^vnAI#TP7pE z)C%ql(@Ka>(12DDFy<-Kwc#4H%}mehS1YKBa0Q@NaJzKU!dLva6$DULPx)Tye;V*i zRd9at|3_KPzQ;%F*>RYFis*iQ*PEp{0Si!8!||&Ey`T#!L0<9FR$^7aLgWZs0hVg* z4w~9_)MbRYN9r~6Jcip@DQ>_>I3fBzP=TGN34#s_q74gAhsRLJp5auF5UTDBj%XSJ zjmY_wl6@wuM?=#=Q$$P>ZX=M@^f;#nf<#3K^Ofo)$!SJ+zBA!kFU$SUx``q#+=> zYb=YY3rFl6%Le-LG(a2oaIVjNVTza51qDDrr|cG(CF63oz$?REm6zaevBxvD+4{kL zjl$}3pgOlK7JyMpS9|sZ!0LQgK=S5jxMlv#~W)4F_@k2rLCJ9kJ~n zXEluWG_!@1yMy~`1wGXH16o1vfL4&uzpbE%e_KI0;~hQBjO0R13pu39aU@cY#0ZQ( zvMJupi^BrNWMLxwvR3Q1-SUH!)NGV>#j~gKzQIg;!mbXf@*Rf_TQp=B6DhLEWErER zoA9(^^$-nr%{M;yGY1uhSGmnoMCyA!>0iBn7zniX!xrPi9W}7N^ysM%P~?+ho$pqg z3qoVq#x2I?qM{9Z%+%TiCn!U^;VAtGwv)EPG~UnQ(7KnSFC!Ls%0xw)s_UbaB}H-t zY}LyD*{Yd;ZPkvQh67W~y#QOa3c(qm4jcWwi6^Q@d8k*Ky(5S4d7v*&$njrJ2qk%h z4R@1RmsFVEaJg)-6*PiMH1br1r2c<7p)e$22G(>CuLkh0CfZe0 z*Kf*dP$JyH%mA|jfx)haF#lV^?oZ(JF3ENZ`CPmYr8K0#&Mb{?gzt2_|5q%C4^b2l z3&M%`pIA_#g`*W)>4wG_^Y1s)?$*PvSWqMZ1@b?!pccZ18XfC@VnLwsxujpQpxZ#R z+fVpPVALp+k{y=*sj6Ad^iypV-sM?6KbSaW|dQn!bfS*FvOC0i_A2 zxj3Zuy8x2jg*i88o#$YO=XQGX6ZMJrbA*KUDEIhv1q_*W12w&-m>QCKski7iC_KFH zaSev?9u)HK=|P=8adLYPx4@x&K4tZ0;T#TuGB0Wzf?)DW$fZ6avj8HH3ttCmPI6_` z*P6@sOO*@-w&@BT@b8a1vr=fdLKjGcQw$2gS6tQ0;uyoLP}vaRthmL_tdNbumPJs+E=#T9rjkL>K<=r(jChb@ubn-$ zbdgp}KEGr=TVieY3Sm`413dQC|0X9nALvXeJGubDLr|*>b8sUG*vycOk7@F0M3eft zoV1R5BYO36_2Ff=GR$8;`o3B$Y>I=wF6A*Jkwt#|h_?8fMOf>hjJu&)xe`Q7M5AHs zSBXM!R_48a=J+ee5LyKIBgj6fadHyisv9cb@|z;dwHY=md=7>EWLW~`*s>`aTy8?O zs+ZqKUrKZ2-u?Vgf%3WD7n+*bF|Ieauhnar*g$O|Z0iv`#Z4NRb7eq3SFEiA<;f$n z&#^4*N!ix$9zAlmL!+3TH_udjX0@gUfgm+>UUDR6mv(KEh`5!tNuDClD-zOF0~39NB9{(J4%P9B{KG&8HEtJ3#nE0N0J60yx)I$L%l?(5~EjzMOJ}7lbaM1Ybu`1 zZibhATT6fI%u~O`5- z*v^6He!&9>9i(C@N|HWY7gacajJwkW`6Yl4lvOsN&`8`}?4=9l7quy*p#vDnzwxcs zl&~yWhH#Se=Vj%i1Lukto4Ebe1X#4?SN0j3vOIGbptM{5JVKtXBZ?m}bx^Y@jyRKz znWi!83>Z)+cyVc_$=%f^$+FuSrlc>Tu}#bF7BY{XjA-60l3poJBvd?7yoHc3Tfmr_ zPh@=S>$nJ!VTVL9Vh2GoTl>iES!TKl!%_0e&B(V~)Swj^FKNRF0KQY)$@-?AS@_=5 zLwhOXaPh+>l-t_bL%mkvrL7N0Z81JCNG@a+-k8dbmnTDS=4F#k5w zwzyU$$v`cN#A&Qw2XhjJ>GRrTyfTSSEX9QDO8tepAsxJ-mjI7t=96I~iL}VNToFrP zFk}b#HAyXpt~%DWBm<|D_tMNp2jyRGeJt3#kzX#W^q93rukmBzAG51CBa(Ur&>}2^ zXX(8DhR}Xdh@%;Nr_yPi2Eh7K`hqmtGGzMg>M>w+-%ny3VC=c^nlFVX=k|c%3?3`p zjxj?!&EhSI$=CYUm9i#Xe3=(vU&ehExJVL49%)s%9s5%9t9P86j@b~(S;Ca7?d~0f zj-PL;<jRkTb9+h$N zpv_feBu&V+uQ~H*ZV$`F>A9|&NUZLwN0K#3SK7HuceQLWcrVkDR%5dOVnJ}L_je`& z%FF@AWADyM!b2fRBDrO=tLS(6hC#VkI0#GNtNPS}btMM%jnr?MY$L776%j`<}XGYp9;JQpjHILMj~_zS*}2CK*+@fZr> zllQvFO2WDFk?VePr^?)w5LGCN?5pan**S&w5Be=$Kp{{C`x8QgG#1j`BP=Z9r1nE7 zXrWpCenLOz{NotI@HcIjmtOtN8%LgBuiN@FAC{Sy{5NzyOBFC3Wk!Cy`$!vV)Ro2k zewvmFan!4aa}rnZY#mb4arVm#WZxS4eKA|O^4~?)$#2;@Jhuo@ehBMTKu5tW#rD{9 z1WYwLEO<*|pMM5LxyVLc?Qjl?DXWB1sK$MOTPNS~KFjuEkCzs109a5{py!h&%>e)n z^63cwUpfeY2Km_CoSi-$wQ_eFc_RHGzR``DFSV%Hz5Ppq%20uXW6i#4_G zUQlCtb$pN%2;AtC&m?{RR}(jqHN}TBU}_it-==oV|C!oF?Mh;FMzMYZ&&+Ba(=xaM zx7KN}L)0-CAI;ug0@=9!(G@_}Cmb0q2Q2Mk4w+>O-VI)NFBtppO~pZoekF%lcyk%nN-uAm!%*SR6DR+%Jj*s05*TGBIPCXwaQ#lXf+o zM^^S){ey=?6HD>pQ%7b{Q|KL~qG39Hrt&;UqX>!x4>(aj(0_S$4h0ti2qP%rRh)v; zW&Xq(4)N^^#eQ^UQyZf1TI-Nvda;vP4+iEZKeqW+o);NDY z{xC4=B-+BXUn83)aXLC~<#-GKJ$a&>UzU4L3G@V+b}GgN5b+XsTR`13Svt;l1egja z3!Zkgd3s9vFfI3{Z5A&AJwZf9U)H>H^xXeELB9P!Pf+h6DP8w2P|ym+|6+Co6toI; zECW-xfq8ad{pY8^6mEnfrxD_Zv|r*}`$0zk*{^c!k20=6I_-DJ@C1a%3_JS5hV-5T z>7W%+*X5Ug@eCi_|MsgkyyulHzqEv-x#TxCC(D_`a2<)P2$IZb9RGD zBI(rpJu7XW#LDbg&fr7;?PuKu`dOip%mdyNYG|p(RQm?O)S%zf)yu`LiFimg&ZIiO z!K!V;*(e2iy-?EFrm5)*|%emze@jdE~MMAdTxB{(; zkvJCEQFrjX8feT&L8XY(em-2h@;3twZK(uF>rC*I>2mNWMo!{PQLtgx;C2U%Ug=FF zb0uU=Bw(B!I43iyf!ws)J|&aJ(QGT4ppORneRAM<@M-|Xps+3)DcMl!#icy58ay(k z43!Or%3%)f4s|i9MJUv{p}3VKzftz}BBldXk92)tox% z0C(;pU^v4%Y!G(-+gexCRt%`-m+%V5)QIEga-%Wp>!dQ@KTl9xPMdke9qf-!5ZTZ| z&CE}fQ`|a#L~wcyp)f_ z%0I12trtE|l!RZW+4`Bz~YK=*2Da zO%!FcS$FrO@an%3$es-kiFzv&<;V9UiMN-OmZ5~vCKM+eb_bk9*^4W}#X zgkX67g5&%gHBvi<5^x4RG;_rsiLiy#hd`NIf%bwt6`T=wQkL(L>tIp&9ammF51R}( z|D4OVJCmyy@yTd0mj+*vF&|GQv1le9ObvD-y(Dcv@hA7Wkl~mmw8**|%u@CnXr<2V z{ABmLiWP9mZYN_nT|wjDl-=^NhL+|B|0PV+?A}qu^3CsgVno+wR%5U}11o%;6Kgn0 ztNKJiKVYnZZj3?&?m*ty6>PKRvq0&xL`PGFayJaw~D`je=o|rZw0hQqG7{KIwj`8zd8iF<)w03uSR-4zu=qRAQBpQz{p z{tQeLBO##?6SQ0q1Oc!Tn*qO1z#`Q3E8u2mTu9cy1lsCaD7i~F{duf7!t*CGRVl9P zxE;*n7AwW93!V3c`w%0rGqER|+1=m!&KV%AD2>~x&4)#WiAzi~jIH;0xTB6FOCQV;;zo20{ z5#cTeWO&LOxcE+bQ0OI5JzQzR?41RK`~XDo};-r`T@Er znQ=+#C_&S|cCo226 zSVf+~SdbCpRfo|qdsylMZ+27&RzOHg*RndCAM4hwu(jM-p=)_c}s_# zgJ1FIS>jExAXruBR$1>@>XEj6Y4E8dY`Ho)Mt&1Axy_m_!0sj`X>T9z1K8a-Efufr zPNP%GdTp9bnGO-LIM!#O9Y%vd-L5W6P~NF-NoKG4U!*~k5WzY8>uw4qfZa_HH_IyY zqr)Yb#$`-Xf`B7){%RIs+|h69K4=rl8mSHYQcWGL88}DHz|DZ?)`(=JwEck`n=@`TzG<#fYXU9vh=uGDwS5g~+*qXTdZ4hGwJ1HD{Q24V@Z zO3!DUF`U$UvcIqj^xUfQ9|qeF1spmQQEdaXqZ--X&R})R_Gv!{|JW zm~2I`ne%S~emH`c=*nRsjGOa}6W2GQ$ksld=;M|a9*i=v=5adDb=Q0>#P=O@UYgF{ z2De{-EG1_!AhVY_XO@)E#0`ksnrztYj4zOTNP^ z^e-owGP5*LpPn_y zuCDoxIA+^gcP;Wd-iDB5J^VPlX_dsE0uiQi(BPBt{q5(bTHrkQ>Tqr@y@f@PmUw0y z$jAiU%>dZ5)^%GG%=wszTdusslKq@M^;=_s*3i23YO7M_>m$*Np&x@B^S(3h-6hpN z1Rli4)d*C|bpFP@Z! zNz5hw9ah{%?CxB9V>LK{gHOL;WlYKRR*GsWka6TQavC`4Zd}D{D@v#xtWilzFS%Y( zPS-voWUbRG-fS5n~0`PfT+YNa3&Zol0M_5ZY#r9O`x{bOJy1aZu{3$xr!Ix{zq%Bi zq)ML6-n_~i0ZsXp?RIY`MZxVQ8(7iXYLC?{J$wj=KxD+X%RaL5ou01eO#PlxYx~gJ z&||r~WB$H~uMZ8Bmz3#PG^F4;wNpI3n)L!0Iz~P|4UMVaDoxr_`Gne?NW$+OUJXeX zeZ60Mdw(<9bZKkzSBw@XN$)!@gt1$wXqfeQ=aU=)EJlez5I@WV{Xt`oGB{F#)`5jv zffQ|IfE6XoW@SxSMy{%Zqxmg28|~_kW^6DHs-+bZODsn0X@wxiWJ&ftum%HwFlytp zcln!w$SwNm1%cv`j9_?`yX5v-{C8mTHZJNrq0|em@+ZIYy^Z9}HnqpiK5?T6+b@5v z`EM7aP&D&LD!BaL_9eq|4_*noiDfhU{`rF5KqV}JzMyg)ff!;%kb2ub`yF780ej5Q z>VI+!%zM;o|K%9ie*M@gycV5g$j|G4-+W>1q)nskmj&Yu7PV2eeV2?QmepnSG7a0W zvb3D<3HsNlV7@$idJg|&S^i7YLS2HR4-oiA1O*s41Bsx}zrpOxKqAOO)1&JwCkf#B zXKK{opU{*gPxiYz;E4d>u$f1P=^lNG5X53oh`{a0s-Zv_8;f$CXAI?cx}XapVdTruI4B_TrnZ#G>qCY5^&0W`wR z;b4b$h$JwCb_1N4u%%fcH9tD5iI*|J_RzdOex5myp61?t07L&T}}F zvoVl7QX8q424dqRa8GkWi54^>?9$+7z@8Jb{IA&C00UMLj>?#n?MqIXXKq!LWJ_Je zvpvi`q{}DFJmiog-81PlyH)@nbVh9;(r@@B(_kKrnsiCzP%O*LE-4eL zVTC0z!jz-ykgLP~F8LXpIj8-@N24>6A zXoreIo+AAHG#L(caZx7(4eBL|<1=aOVjao%7<_r^f=WK$Iw(I7Z*B$K6Y@ZCP8^1= zY`1JXo%(r16eN#< z9@p?2Wrx5c*S_d!mUq-pqLDzaWOQY{PAUhyPEQi^M_DqtRcXiQewkp}$1!Sr%6tJ> zTz)@6mtVrY2#U$%yBM#4sXuI=c%B-xfb+Z;KxWYIfL}~lAE#+SPTUKO0uYGO&Fs+w z6SepOSQPCXMX!XF5$nQQaA2zO{;6Th^6B8eAYpD9D4<2qInvK{07n0nVsP;3I!g90 z#lR@@k*5(Y;O!lc+JSE8-baQLb-!%>FM*yLlKx9DLGKE3u!Au84I6Z!dd}ynVDffT z{ub)xo+aX=uCkqu>?dAO*BT`{o7;j{}KgR zuYyC+xM{Pr=y@V|L;LTAW5H>0;_!fPojfW3K%jUD4~^rm&M#>gA_b4mv{lU7N(YOA zBhZKGKJX5tFBlT-z9xu_!xgOJ)!*}Q}-Fb6~(pB8-<@Ot9Fr+o2H_z`HlgwuSc!=1LVKJ2x4abNZ zD25Q|A#KlFJA5AeO3%nD)ui-~T6yT68KNy44y%WPnljF`l($$nfR)atQ@86G4|(Ob zg_SeP1HW&uY`QcwpGp$<+BK7DM~TgF=L<)>5C%X^ta3K4HV1dp{$MSk zJyWP(c-3uK?eJ?S#MRhsJALAai9;Q-BmyDNnacf&`OI_TpmUBwWxNg&s;c!lIp`=l z^Qi)uDkt7r3S#LJ-Ri9t6-rw9W6H2&musWLqA#Z^n<#F!@Zefu#QY-19X#I5eV1i* zW63_7qJCd1~92^c;A7-2^=U zWn54jvFo`& z!Wu%I*IT*MQrNpvE-m*iWnyP>&A`1Ywn5KQQvt^+)1QltRuh^pUb-L)_r*EDD*2!m0zSpfG@_lGC-U(bsZrf~jcrnI9IynSO z0&?PTwES83dP7^!i7ia)UGryQ)wNk+c8e;QZrDrG4k;-8XkEw;0aOZ)!CGhMnMw6uMC zS&vPWwL=~0Y4;uDUDa=rjsmOx=rm`-0|fy|TXWP|VhQ8fcmu4RSG&|^fDS7}#PWR& zMz0IooNp`VNtS`)O_$I$EX*xUt8>G%eg=mW%fhp6zHkDwd25RT1iU{}Q>UFTFLY2- zms7L8A?o$l;qUj3D#=SnNEN$uc1FrlfmY>!l>j%4`2=vaw3x}q@?VabxU-JzQ$IjG zQh!Rw-&;*8tW88CSUYaHh{H*+;a)AK%X)^0Tg{gddpjX+ZcfL|IHef}9M)M8H2!eG z;p*&}p~$SdTto^}Pasm?+;|{szoILi*W+9=?VsKw)6u%KJZ}LhPN=@f7JvZ|{I?(MpLp zTp>E-!7mwdE@+S(7nx17qrUC_R3$XOvoR#g(TMY`()L}^`1&- zq6K!ZOP@if{rT@&ufXkr_U-fkJm{9$f*SQtAms2r07CyA#|9J#74cyD5?TEfNv55V zv1hj-KHj}R2_Q4wTT7#LlLVkK$=qFz{o{jHR)BmEZ&3nI4dna!-=7@+#RqLa(^TM$ zFhCRjhYw-~Bfz#d6j0ZgniVP1jwryzu7m=;Z}8$cy66-5x+n58mxB|>Xyyse(kd5F zCx9NJ__yKmX8keY{s@d?3(RxbN9%9Y-63N^#sQa8HeG-v&Cha*ZcSV!Ry(@Dke>tc zL88_`K1eWio`5~j{BN+352s`fa`>nX@f(<+BruK*VdN(#x`bh^K1joV@j;b-@aMFH zPDCPw2Bfz{BF6fp?B7ElCUZX45D|r01%oide_|Bco1*pN5+wZr0STjV0R|f!;20%t zBZ#{O9YJvkR{`^|O@4BMD!lYF@sG9x`5YB+8BqwM?Tm8ah}7Y{C>Az_Al4KVzOix=chg3ffgXo zxtBp_j~zn`oN>#sk3Q|F3GB)FX;4hF`~Gn z^qV-9Ur6G!{p!%H2(Pp8&NWO}1`l*LR}CCV!$X!k1Ucjp-fp8MGUEj-K?5!~_==eq zg3Qs&=aU5iO4SVEiD2=)v_I~X+Y=)G7ahd0BIqut%Dj!ukN~8ERyx~4pMh;mB`^&8 zVVXKTN)U#x*(2N-p}_N~7!Ta0l`S*{SMcYvvvK69xT z;W$OP*VA%6v7w6oYiE|?VT0Kpf2;Nogt}wIR4Uuu*UIA&28)kjX~e8=;drlv=`>uhmuS`X=1FjN)fkCRO{j~-l-bJZkKb9XGz%ci{@e)EdV~aYK}iKafMq@ z%fCB|T{Yv5)26G+FO6AY)%?)yK`WqM?^!PWjAju{jdn0whH7+7c!xdvd@>j49ATxx z5xbX0{WPqm8$we@jdXR=Ue>+DDIgim3|R5tu3F^Np5@;ZU9f$!eKkPv_m>)qfN5jNmR z@wV|qOn}d{+WYz5xiq&ii(rg>P!u^QTEN?^6;9HLQ!-9UtJ1JlyZ`zeA&?WoNfs-2 zMK%9{7cAb;9-cAtmC0mo_)|BwO9YFTG>5qJIk%2t~m=#=Mu86f|O-Fz8a|7yXo8hECbj zXQcWE2#L0Zx|InkfQnrQB*_6pRTs4F6aEQ=a!Axr8J%zMeVH${uQ1^EY*Y^Q2QWu$ zp;96;D~TGK3#v%17R{qoSVY6x#^nvF{x3i%Zs-37goH5)9VEWo>+qu|BlQ0p5JKU~ zOac23Amp_t_P+q31CoD$(9u6Y$OReve+GmiD z5NnF(S8V_DKZFp{HCoXBNeI#5eCuQJ$9co$r}22*42L8J|LgjT;uY);`Z@5!;4zo_ z;1caW1|bcgL8zb(?bn4v;C5)Aza)|4$b%w}Ia)-pouv+Uuf9ih?PkNa^~`W8{gdd! z!L$XfK4FV?j^Af$lpi#3 zj;(sPwD0gG!_s@(UXVc&hH7WkDFZ3=-Cp0oE$2ZoZ(h%tc`te(WFJq6#MI08D!S7o ziw#&M# zdw06#QLZ(7yHc0HBm{FZ3^A5JngdS2_{O4s*|k^i_ky!gY{FtM2KQh^>C`j5Dz!CT z`K*RpoCh48_33d|nqOg9UEi6CYdEn9m3@|w(?J~@GP7H?94n?02&n4&rYUcyt&zNB z^q)>fq?PZZ^YQ{A_x7I~1c+cLdY;P6ZKf&8^g4s_{>FDg>0qOsfz}f_$oY7XD73^( zzakX-W)L?fyliTc$k3q&4vt>T)i;Eu_nN)smPRiEb&9ZpavAt>MYGgh;iQxm6X*6k zZLNCjQ#(V8H3Z}KxHJvjKRy#Wzqwm%M*c$KwTlUq)Ug_tHRK;8$xe{TIVBIfBqUHE zZoAkLx4W5aHABEVZ8&np)b6AJG2F^L*6rlBf!XOOSa3B%zsXLbG~4OKLQn`i{T=se zewgb9K`eK(ZC1QEwnJ6G2RmyTO4eL4XS!i8d#XCLy54CyJ+G)Kfb3Kz#yBw>otHG= zysgg)g$SL>-6iVpEJN!c8hQQFqV;d1rzV9WSO}Xm=J(A-1n){VgHtd_RbD6UV05~o z0_!jg4s`~8Rp`ALB{EiI{8-*l4E1V`8N^in4q1l-+WVQ7Sl3}Z1#2s{o_PRAU)p72f$HipKYuDy&_HydZhU2I&DIhaf z$*(U-nHg!eiNpT%Fyg6MN=Um{9#@R*ZJtUrF{QTG+s7Q+4hoL}hk$c)%~;azYb{WR z@3A{M&vqGVFQ6gS46VEOyr?+~(@&NAP@}K7!FrGKwA95MP2UxJFK<<7_xkD=q{4;E zx!Bm0Z?hgZdEfBxp12^yM)!~1%J-=0*;e{f~Z-ZL{Ol@R+W&%&wFW^ zaC!cOM)@!i5sc3+Q;cMoaQtZ*T-Vr+0;<~edG*}Py!KLJ%|WrJMExdy6i407Wo@tdD}E&a-MNQ7~0pY z0d1P#7X>r=PsKjjPfx1r%D6#0gAeQ{!}E(`?s#}4zw(T^^Tk2r-d0Vs<#6rY=bwBk z+YSQio0bxXN=EO!-bHC&8(U#)mdG+Maw~FU_YDbQyg+d77sG^fR6z-HvVP~L2gMvO zAtD6J`C+;Z4T3j!njx_dUCylM_TtcDulB=LlKq08=jkwOr4(CX}qef&X6 zy}P^y$SYI>{=l>c+_a<%j{g0;n-+ifR5{Z@mJr?l3OLc{boDM$Rm8Mgwl%5VOP#xl;6rB+VL9yVx4y} zlJv(V;rV}^f8}`>dy@#-P&K~DsFZw6&eZvVb-B&0G3*|D)hPvHa&o;yo}KGMJ?noF z+{1mR!}j@$^uO)-zyigec(a-&cN5SrYIHjH9I14*&ph z_}>ANLW>AA7=boQi3+J|hK!^NN#ZFXhg$4}ke@0hrUXWze3Q&t&D0@B0f#B2!=vI( ze%dclw6zN;pyydZ-43D=?WxX z&gja&?6hprwn>mYE>J=+4|n0=2LWhOq2r6QcWTzmv(fLnb-5EDN-UH^qJfh*2P3Pg zsSOqmnT{MB9AE(YWhsu#7K|=}ORYep5-UkbNwqKuD4>PIE2*Rt&t4&;Vh=ELv$J(k z!4K##qjpSkn1--8IXHg*;WH5U{=Kz97`rtHxiB_1*4&n3OM!y6f1g)~`dXSI3HIKS zBQD{|tZ5?);12}_wWe9aWE)m$6##tPFr?91h?Bw#vGpb5k2QP+f^4=GsnSdU{3Aq# znTKFSNO5DtiCo;>zj*lhThbvGS_y)YSI+Kz>NV;512K)ui*vpHD4tg+yD)Q~`-@lK3 zaMUH)OXt&!badUnpogEHp6CJnCnqPAA|fINpv_+P11roIBbwbhWj; zU;*j!Wt5p6x3{-(Nl8f#GmwI!{=mNcT}MYJ;C@29XyN4fU8RvOjV2{>S=aFJ_GKql zu-QwIA&ex>|O{;7wEoE@^<2n7nAMuwkI03>Y{%01^NV zy!H){+ER0P3jqKq0$2F|_abt!G_x~f{LlCQ3RBdQaX^#6@6)(&$G#@`2q#E{h8l@Q zpa(A;R&>I@iFJpX`(1553e&6RSgl$?Q{zRY?7**T2Minw@y%>jrB8W*{hYh<>M@BM zh*vEECF;I^`P_@kX<*dv#A9_44KC)h@@%U9DN(8o-u6D6< z;YB{mcB>d@V(4wcRs3DZXJ&CLm*s}#MLKyI?mJpoCVK-FJO}p5gNVFo7>rA>))W{w zh`{fpu1OJi83;W3I_vNHX79!&#KzVzb`iA}-?{bVk)tm{<%5F)>sM`T_1EcN@Bk`N z?e=Y3=c};3kp4bIbTcm0CU`wD+TN2*;FF_*0;wf_2GFJwp7v89enG8pTr_wq(&3y!60Kpe7cXt>rqv z1MH zKL#}HyXlVnzRsKWd_NZvRL%CA>WDsXj~AL8zJJ|^K_R}x_6MHLd$fyLvMo!0z+Zgrn9UHx!r6?WyGfpsm7}+=2 zbN=rn!$NLZ%2RdT%UHU11;TCA)+QG&QhA8gwwWk;11fA1&1J62qh52)4O-jiO3jvM1CJ@vUNj!i8G_OX-mg7rU9X}R%X$qgdxM#q_K zdRl>tLP(f1!^jv=cWi-146}nFpjphQx<0~cF4za?!^_dZil@~g5y}h)xQ3}Y-H(vn z7^~l7yso&xPOEkJ>P{OBp?@WVV)V6~5V} z5T}f=r-o;V->@lVvZRYitzGMKHxB0(n9NsdIe3kaSxw;$euE8lg8eAA7fcV4nz~oB zpQMfQ+%7W4j*Ufz4^eT6gK=O&VLz-^z&?Si4)P8iXXZkeD>i|#cHQ06q<{HP)FDnU zLZ9(VrTtnSgts3JK{Quau1lXe{~KDGo+v=7GHLY@n^DM$60?H?dIdV8$maG{7xNFpmran+Jl^*vblcjF~A@<36( zGy=YOh7nsfKu*($Y^HgN)Jt2eQWG+|^I5hYLoBO{o0D$lkEf}To{pybgp*5WLT+6> zExHBia}pDCxG$dD0fP7*III$8mBn?5--BvRte<^=7gJP(^Ctn|d&1Wj7~tP~#Q!R^ zLZHF3?-Brje+MS;H~!B;i;d}juCzeofmIV3G$`;Eis)!l;M4!VN{blquhR0!zUuKd z)DvqF_^b6pKB>96q`S_a3?pSyMX($8P|o_10{xHL02U1e4b683GR!&+#z^0Qto%R^ zKMd48Dr+C&Wbqm@8YHm=ICQGGO;LSe9jast=cnpDB37HHt1)hFt0i-+QxU7@41RC( znX8Taj2815`0IsF*3V-KU+W}aXO)v%1g}R2!~SuxlzqE^imA$QYC9kEEwxm7G$XvI zcKRen!E5z_Vp^XrEHf4ydxwKohCVy;YmVxW?BX)wwnJY+fbnf4`Dv=8%Eq-K+qC!+ zUuFZ^BbQ_b&fQ;ws$kclPOWbuI+2et8TKTXu7%d5PHI<3Fo{3VHjCU2V!WR~wsds@h zA>{ES7J*e$rcVrI3B*SjrRv>Pi9?@^=QN)m@Dz;NJ0<31nZbE#F-*_UW;%G}CS`w1 ztf?u9rtC63=Sq`ye9p9pKK8?UpRfORgSX-vyuW?|bve-BbolA^GmezmM#E8cRe^t0f&cqcS3pzWpOMz1U6-X_r4AqV zcD}fTUFm5;y99T;XgCbt{Dppxob>#mE5lyAN1Hw&h{!e_q`4ByfY#5%0dXNQd(x84 zHLj0Mx&u!elg&Q`FB4Y+CowmN%(4ZTTLM2+0;!oH|q{Rv<@mDvTv2`{|f}eJ1#Tjw`q(Mt4;n{dU=z+Nwlkb~cW~`Iu?~n})ccJq) z_h1bF5ypBhs<-`?5H0teHp?a!Yz6|w=_dk-^MNSYEjQvVgDwcw&d#Y@3cE}AM}l%; z>_uhRwswt;>@|{JmFinC*gh`KinZ9pw$0AHkgtJx2ggL{Z5f+@}#6E#G zwoyP!Y6&7gd1j;4E(<;_nFYl*cJfR4&jM%9T`4b7yU+1~H__(tnnz`+GgQwCWWDz_ z&wFne(bt$r+|Fa%enhnlLGk`xRI=~V_ zapu<58s3738UZk=$BGOBu&T?8#%_ADiJ(d0l~|kGe6FWe|NHb@Rr~kD&(G}&q7I~} zI?to{u8b(}GlY@Q(dAvOjZah0-y^-e8yS>YWJBEWJR=;Nu7<3(&{ju2#EB;`_s zd#oq6eA8m~N}3pnqEA0dPYM#DVm5|cbFhVo(B1y`RMK=h!fmn|&b&4n*!1LG5hFJ% zYjcb}w~p_|dMYo0gfwbu-%Ln>DFZjjN_YsHT?9AcVx}HArRKH`i%TO7U!^?yHh&7V z#nZifca153mqBYfJfw}CidsUA#Eh&Hjvg8?{~i)lZZwqiQx(ysfn4ugT&_)KqVFEu zxc&Q@*b}R0D!pv8t(Gm37Ulb3Y@QsVE5Dd0^JVQ2Ok;V8%cNqTws=Hwgfb~Da&@bs zSa@dQL=c06lHe5*#n6Tm$sHuj>CWr)HAc|(8Rb`|PVPtPeRIrIeM{@KUF7*~w+*c! zi7338fHehcB{7ra2D+f_n*~+fDLYz#R1h81m}#jHFnkvbTwT=A5`l!22?h;Wurx}! zbwkN7cH7RPFtiD%P}#dGtfny9iM`kagSVa-Iq=GuF6(e-+j&| zIe3wX%*~;=AQ#F!aIgO@!v1Axg#crXT8p-#1;achY?VW%M`1*2l>{FFI;0s3v$52e zV?3FdlRRv7@pNQizzf;D)SFb{l2$GGqE)h0|QwV$6iIF{$Xhb?4TI zeeqApZWY!=wC~P&UeoWVo=d8zF-kJHr)D~>t)zUQ%{HvlJgaGTeGbbuTS!#M8Nb6M zC&pKs1xVuYz_kOkn7JF>X)2UzF{q5?L}A4@>MOgynUjmPHq(=$vF=M!FKU54W%0;d zMz_%N!cQ6A z7QcD#V#Aa~?r2#fpJRiKpRcL`*y}|hTJ1!Y_ex*;9I~|qH8mjLAdHM{AsPr>RmNj zW0v}ecKX(nmQxCJU)N#r#b!!!)%Jv$ES@RV#(b-JEJ)JCGe&-HG){G^m~ z&Ko+quC?Xo3Vi7B#B#^1>B^cjWw(_|mU zO*X4W9rA)4SkUvfnh1GT3udZZh;F=74gX*hvHKJLPE*U&B=~S+W<}dPx6%0nL-n3Gr zu*?S+H6-`q@HeRbJVQX@Ge7M1y2;sV{^~OoA6Wx{JbEx`vBVU zv!;mXYnXEG`%TpePKt%R$JCbZ(;5^7esd>E+@}JC7r)x9v!e1*H(I$tWi1Xi5qg7`fY;7ZHKl}`^oBgu?Y>H04x4TVn0 zc2?sFmuHqqb#T^!%TKt$7Qm~4yfSGVk>l4}q_wowV;Boe=~JY`@T7W+hQBO^cLRHq z`6`M;CV_$miJp?~0?(puL^-OJm~KRRI%$!e&C>O`b~ZwPi?i?*sw(9VZ}$DA)_9kc zQk{^d9z-4+nYyT^9$*Ii+)p)+#O$2dQT^1|Qfu-(a+<( zaFsu!&T5T+#EDVK)cFI;7(I#_z{$Bc#kYMm|28rzOqoWm$H>~2y=6LVaOgG;VOZK- z`VS1N4~A=@03y><>dR*0v``{oC2JAT64Z?$pUb|3AOvCu%sgZ?+R4D#iBNMQwxaTq zaJ zt`bK0z!()P2XB9}T^>=CaJ&9>$HD6oYmUDU-mq;W=Jux`#^dm(3`?RiaY;TjIY~)) zxO60XK{38v7Buq@3l(|4K6U{M`LF$KM@qUeqK)7m_Ps{x>l8QxOBFpIXf719+WMs= zL8Q)t4HkCKpM$1s`_zZixVEFZ$OJqE@Nj;kBB0leP2DGGTw`_V*LAqX6);G^=C#dARBXw7Lbz^zE*n;f7S)7T+FUY7_T}+cR zqQ@>9`k4+ey@{BMrdQdVK}y5WMUkc0G8XaK>CjLWun)VXaYZU@iK7>dp`zIE4uSH@ z{Jtmh_xL;V^@gA_#=6aNZTyDdK)6YzRV@Tw1|^~-y9MB4LCdU07rT;N1Ny*~X5?VO z7yUuOs#_X49C6$%>#}^GHg0DW_{^fNcB{G($ZU~N57iRCvi!^PG9H1i@Hsx-*4K$L zW=~t+yK`^?lw4o8)fZL;wb9YsjgR0TR8i>Ax}fOmmRqAZHKt|_6t_igcK=oaya?mh z0_QfnKRKn}uW~&+8U=ffBJ$a#N_I)GYU)NkHrzZP3S941EKSxMX5i@0N%!G;q!yQh zNY2UEiT4WlrX-;d2^X`KM6VTuS1eRL%I6!HI+{Q^Qmcs}|FHgd>S= zu2eJ<9nt8XIzICgh)O~%+R9Z4$U==+&9hoN7n8c@j+pZ>@|wu>L$A6W!}hjIq{`>t zxh^$lh-fIzSJUagGur&MRp9iqLaiHp(!(C8f~wUGTNyfQxm zseLx(=PaV|YriC$Ln00uDhM7`-33kjb@%LIO7NRJcK3R_7azN9hClVK72{D@E38YS z(&v7)peBTKcUmg@^Uc=IY^mK)L}f5mR&9E~a>SJ+^|i(~kt4))=)p;somysrRDm|N zCxV3TNH$SGtU4b2sbMk%#Xbg{InUVeC{LK42->hdyK4I5L5_=8MTT26H;?{xy{pif*wdwi zj$@G8&~Pi8qC?01DpG+wR%CK?H1VKVA&Rf2DdA-+%j@6>0Z|ix1GqwGqRa6{B5KnC zv$_7!infn&KRI^2nm;yHvnbX&RNWt2&Q@gnW>I4t!W*ef;S|7EQ4jX$~NWX2h#2yG$d#><4vnp2TAJw@Y$ zmmvwj17RYbC2YW=VdG-xmV#$G+Sg=Xm0ErB*r+3Yf=#dB_4DvAc1u8#2R1iH0HtEm z)5gL?WsDM;NNMSmWOeinF$xa$nbJHXOSw`^n8`}am3QktN_lAG&I0@a3RMyMYjT%g z$(`^_cn&%oJ@NG(^s}L5pUdOC3}SZd?B8r7M`un%N3Uf?%0E|^FzNuavRrFnJUdHz z6Ndv}Y85$|*>=jvCO`jTe_L(UQ%<&&t6&&(m5W#957BA(ah{BlPu++UjH`le!z)Ne zb*5>pomONAsLmjU)P)>@b*i@ON{D#+IWxZAgClBMts!l$7F|h@z+8rwp5jX9t`6cB zS)b}jGOl3|QD`wnE6IVKK@|e`eD*?MLbi#G5-r6SNm4U5YGV9jfzW$;mZ+`g#MIsW zmxX}y!O`qK9V2xli5|`wRpjWX;k#Wus7R7h6!mOSw@|Op*eomxJ#dwPrG3P~oPX?> z=`)A%xT$;D!q1XxL2t=v@bdFYt)Bw}vowclS!`1#lcLgE{NMnElpS|mGbOnM`K<7B0MF0;TuR`5jmYOD zUr#m^&;Dz%fs^j-vqIw9C=6;6*70i&>37f3W!~3=%^8K!iOBpCMT~4_!3mUB9mN&DA)y!!85Uy+mq+(K& zST_Eqyo}}drOlt;*nXufWk4NNXw?QKX(#AY$90e!MHb2SC$wmYNC{QNf)rEMsrSP# z-W}V#R^VU#Dfz3rUG(VK8eMjYjiq{K3mh#ReWr-*vUr)uKz4@ml_FJ~q(x8+B|L;Q zOwur%p@VBS`eGfPnbzK{|0b8zc)R6RGhJqSz{VR{yHvQ&(`grG;MN4TI7}AMyf8^ww!$gcS?lQm|Xt$e)${5 zvHQo*M)?MZ_yTc!F+mcL^Z`2`<6i-QC?`ad(H{9w4{}3-0dj?u&bn zMT6Vh{PKP8yz}bJAA4qZdwY7T@4Z#i)3tfo%O+(N5lDLiN^OJy^wfKjF_=|w?bAX^>*~XR8Mi}02s%Hzi9-0hUy#{_pHT*TZ|?`S<8>m$zaC?65Wfs`zwGw~ zMDzcc+x(?ehK_Ixk!w&Q}|Q@eCLtwsdBjoO_1yhPXL|Fp*NF}7DH%B|Oo1j*bZOR!y?myG!DiON}g+~y|B z(}7v~(LtxvWL;DjM!T+^I@Q8$kvWX>)Pt@QS9{#E5cvk<=1r=<7?N>iDRU}kGo|n; zfE8(T6Lplbz1qWtkd~lNffLqiuro#;c51>L*pYH5d-wp~F*)5v3Fm@AZ0v-UPJIb? z<}?<7S1HsNPmI+Kf|xJrKDr%N#}Ty2mJ`-1F!?AD^3wv$`SB|cp5kq~nT|zR;>v}M zL`k|=J`h90mDw-pZk*5edJkGfP@I+)Buh1JY>IpB0-u?SmyY=6hKsj1I+kQu_+1mcW zM+@CphB2C@8Gjhf8bic@4R4hGuWNT(*}XloJc750Ty@fNFixfC%Qrr;Kk?eGc@`DyIxaLqy>LR{PV*K&F_tpeooK`hcf44Di@{=MSvC_Qvnb0-Pl@&4EY3CeY)MjoW7(c?M<3KR zl1rG#$VF%LuRGH*JDppGs4RAbW@Q__cFdw;5%{S|>L*z9qvs9rmIa7s;B!3^y9ihm z(Ars03o^put+qs``^R;*O-K!1Kk=Eideuj1Ct>l{3w~z%0%*sE7^`YcK|rZ@U8~5w zv()9v%BP+?gBn1k&$pv<+;30FTy@eew$lt9{b0+oDur247_lmV>|j@r>1oWn_kH#LmiXPTETImT2qedj*BLt{^^5aDM4RB z#Xd=DqWNNRe8XPDUe4S0u4J16#N~r3E?;X{ZbxixM{sUebgs_*pZYUF?C}97IGISh zc!=$;UUaw5Z63q{de4NHGWeUk26>N%eJH##`Cu&*^UnaRG+)1 z5yK66b|ui~785GroRRLUsvkX<%kH}_>UjB}z6XUd1!0Awz+x=L>$xq?Qhn~ov^|37 zmD3ii+bz>14!E?ZC2FL8w&jCTx?gw1e_s}6wf=sKn0Q5^(`~3raC=E+aJO7X%lpU;4}qwXx2Mt^Z1hv^tLJxemCUO4vsiu)ds1SebW~Ualup6N*U{w;CjpdbBc@Rp$TOQYM`y( zzW^bN{V901uwGT%J4=9|Fh0)(FR={|5(#tvY`_ zMM647Y9&~i>bJz@HLhaKJ`H7@X_3}^t$`T{ZLy2%RZ==okuFVCDN>P6mMyBIO;$(j zQDukB(_=^;rw}hQd#mr7q);gnE31&9P^T^B>Xng)phonmQLT~BiA`b#JA`V(r~U4w`3Lsa(`SVcqjtfm?*ZdbzZPRa5L z_zo;PXy1`;&)O*Z96fe-R$Rb#2W+(Cz3c}m5<}Rw9Il7vK94(e*REBgy?+k4sM9rQ zM&7!MPVIg}uNK7bDF%P5vtzPwJp8 zV~FTfgU8#{3k8U-_ngNq_`r9b`=|R0i;PQtO#{bCi>XH_Y=hgWop(aN!rK{rQ!o4& zpSK6ox9MpRx_3xmZ*_J;5oqPLUN0aQP54FL~ZGE+#_xmHV=4;Vw=d;i8=(gyus0cJq5H2S%GK9z5 zPArwai|TOu)-M@nr@?b{eCLIx&ztW~Q2PKh zHBBz(r(hMB_R*i!vqS7Vnt8vae#9isPSS9$$dXD@$Zj@1sm8JDd^YflR+VxpbJSft zV-8BpPGQ17sbXn9D76Jji&HVy>U}9(XbhRfQJXdtpbp+7RA+U#gU@YT?d9V@H$hKO~H70UsUx)dvQjIBTq zXvKkvqb1Ct04YNOr|s5KxJwnQ1h3A~_8Gm**0<6iUWOYjlEb7#+sO%{5)|cbLajlO zZa~kQ+Ji4I!)>j=R^MT+Uv~)8W7_uT&+m~#UHerv8c5IG(qHe_-LdMfMWlOg`;r;X zk*()@;kgJ94?T)ReAehj(1F-f+^25sP+E?2Hdh6)r^X1+0b4F4fsLFwliTq`-c96= z1I4`W{)oX_P4^U74ciHd>s#Z*FIT7T#&Bpa&C!Z2`$$YgZ_l`zU5C4j6ZbMZQRyJ< ziXkWn_?(C3XN7gHKZ4PBo$uGr3cfVZJ?Y&~gY9T?d`-W3xA+2fOjAMk#G0E=BeT05 zDId4Ct8USW?-TiZ8F|mc65?X}@fhAB%M(2UJoJYdL=Aa&Udu09mUs;zApWfd@P9`( zM1hlVc)|)e8+(N~Or_`YJFp1wd2ZgkV@X;($Y$*N48bE%`_ktJQZOJSe!kK~<6zxd zsd>s;)??J>#m^Qw+>8=Dpuu z9&m>U_qRX(rVsJebCCJrW(d`CbtB-sr^sOi`Qz5(Vzn>4-+OL61D|86SluFf)`>x< zv{^fV*D#INa>`bg2QfZvhsO1;oFgD`iV147yA+jpO)Y;63{S-oTRgqhqL}-C|tTI~(eR=C6IR(e+S=0=W`>xa+ z2Wzz5dRn8Yg>(ICdK320Tr9UDLS1G)uzIcGL;q#Jpdn(7;AafWc&x(VUG!I2hD>(>B7xZ&?NHHcV z3`&WiJR6X#7EEQlo;DXk7!V8t5w9*2zvVoBsOzx$IT>Q&{l5G=JY4OE0OYvU%iqyp z-LZV8O-sW*tAgf^bz7n1H5POg%gYEm)%Eb9AcA214f%Od%KRB`Rbe3H1puPt5F3vd z@Wt+av*Y!NzpAp+2YaL+^m4~xN2mr4e!UhMZd&@i&#<9@%Xk9x^6NoN!Tsetyn*`+ z)iJMTrT<0w+Tmb2k117}_66{1_TpvPXY+Y7RsZ=7Z})DkduV%a>xMmbg8035-~1Ws z6Ibi|`SJxiz_RJNEUho&qW44A-VgoN*RBmQ*~Q0A2fepL*-h_x;Nm;w?Ig-}O>4Up zeXE^^QF&TurX79Y`Y*p5d49ul!5cyU$Ma6F{)|oWfV-`qxem77HwKL(smX?{tQT!- zN|h9`dQEYHS7uQKugs)>R`Z zK%Qd$Ok~H6PodSJu#fY#ze06rRX2)e&$h?L@pu5Ed(13k09nD&y;D3odo+~6WU0h6 zUUh_%j*R;>7!dx6GGH(518;?PR6Rj_^pss<+;FJK+7CzRaqG2+1`RP_i#I{DTNG6j z9cE@FyIerES!CJ9q#EB8&IDVN7xVf|gQ_Wh`^3g^WXZ4;t-Q3TeD*m-b>M{JRTi`t zCSW3sxqz=gEr+?jl;-LKc5F9~g+mDtW%v!=;& z@l_qyC8y_pUsWLdUoE2_U2gjsUj{pUpdY%gI_29)YIqy_l5!v`8z-Uzvpupr?CO?c zQVOPuH^l{YO^?J$4}TX)dd#kt1l)7*Cihi%HFp}u%QAKX$nq{a{``nHKnz>*nG(DT zu~B?Ki#42H)b3^@MY{0|im?fANR5T2 z*0A8=Z}H)PI#9Hx-n*jTGOFPIwC|h8J<7{@PSB1Ioc~e)PM7O5|L64iUu>Fek`=Kp z3HUSCVxJP^aBA1o*Fr4o6R3LX3QEqJDsMCL_qtqi4`l{sfr78!wrbY&IIMt@6QO+e zO=L`+89B|*{(nvdtM#kBUO}n;`+)lLNQB1~zwX}W_$R!{Su&e9U-~reMCtMf5X08Q z=f=;CX$%izxE|_kwBCDmg2#KRhOH&5$D1kNUTpwN-pl;&cC(=Oo73=~j^i+bfDuXJ zOOqOtyTj@A5!kO5A!<9SW3M8e2-u=LF)t%OeA0jPw6>1)sKDv%$BX-t2Sd(wVubHU zCA6pq9A{5~yQ4X5gtyMg~Nk3b`~&Dl`P6Q7PF z?Of>QDjFa6?SSrB8*K7+N8R$u7rNbE-FTg5gJb3B{M(^EXFMK<6~#lv;A03s7ByBr z7JRUNIukclH5E1edw^|zBCNPLY-nf*4iB*Vk!>PPnIUz&2#!Gi8^Nbf6syI>#gs|v zs-~u@qPthcLt({35+3cPrM1QqtxjRqX|qf|Q!(5w1b}J#4AyqzyY;YEmrqAiR%xuw z#&=m^t1f_vjaK8SDb~XY`swsFE}y%Y)p`qXRfrt^_OHtfgjr{%0 zs@KpN_ra>mC&08FxDluG_2O(msz=5Ko5QAp52*85IDF&vl8lk}x8t(W%N@4O%INfZ zQwCYryQ-kOIUmo1p+UnABHty>+hdR6rAV&5HvZIyJM(<|8(_m)zd)s(SLI_7am%lx zv-s?W>7qlA`?7Kc?%%P3PrmQc)qE+s1HG1EyZl;kK##u|V^jUg2e>sPVPHbxPjm!&GxH(>sY> zN&+hDM0N^)L~9l){58?Z#tlg6~b%JL0}M`m28&3fUw zl1|lGwwHPFMjMD1up1?MCrrUYhRYh_T);Vh%tfz<^8?3jpe-#|{REu3;X1ZonJ=U& z%^h?a8T(Bzn%$H=*ShzIr8jSY#yH29!vSyWlL(a>RAk+4@>faw(vzk7P8=*mipBiM z!}^=Sw2GW;8?|5AgCX%Q^kl8e9D2U88TK*eQ5PHV6HG%ZL;RCDkS5%(D!{PJHjb%P z6VLkcjvtfCb;c>|t7h?UEGZ^%;XkhAG-QVv`Th_3f!KG@1|cktu|W@-|oBj zCUYOpEOH46c#r8FfL2HRxrB;2P`j;#lZI{W&XS`P@Q_;zG z^xUQ_nMS7l>wda-ez&!61^}6qTnK79)KkAK84}`jgyP-Tg6d@L3Os!7aa4jF{O2{` zth(Ui`SCczd;cVv3aJBny0%aEe$JXh>;8Q}coDIttwGDplMM$5(rBmSRy5PyA+vdB zt@+G(B^tf+U74?e`Du8g`}svzHo)r+w%XG7a>;Tl@k~mGL3q`?4iO$eDnq|6zg%>m zzw~C}TfS7V?6<#Q$iSTWbL9$hu0K((?F`;ItNxcQenJP=HFM4W&=sHzFX7yseP+5?LEsg6)V!z$ zWVhnY7UH+EP#xiBB}q23r*k&O$GqnD*)@j-(xI_lNQ^SCu|K#DEdq(|aH~eP6d_mpA>JOz+ zNeQzo9r@8@w_e$aHmVas`;Oh$keHSM>tgx$>7`Nw=oOa|ZAS0Wpz0Iu`$He1Hjh_; z;qP;gF86n6G}`BW*mSwk*Dl1K;CnkAk7@S3X^A~|(U$Zjy{|HCG-4SO6L24G72uge zWdlgm37kRk+~TyDtZ8%^bVRz(GwBy&(`iZiSU$N?(HU&U%z^R&FAr2c8Uv+GcZQDc zr&E2WwIs~CYuzjFzqhS*;UEnb9=@YLS9=)vhzy9i*VrvQyJMFg*}rDb-?xg^Dl>i@ z&8RqiT#r)%;FC`7C2$02HdI;aM>cR{nyou?OD1rrQcYBJMmb6ORzHprQu)i18@#x_ zZ8VVD8_EEd(l@3cYjY|)Yyu#w(oien6XZh30t9$-c~0l*PidSvu=2-tZSPK#uMI`n zAt?{|bC}^CNYzC9b{GX;b#N1_Ey!foBEKC)nRRPm1u$bW9$Jaw98$}1IDwLOGY=cF z@0xU3C7kV+ug1gn0yh?yXIe)Sw2Esflva_8xaJNg(4C;DYTVq+>YnM=Hdp4FROb;P z-ri>RP@4rGf>afNrke^@ad+BDfbcU(sh@-_u~NxNmBf2SuRqbLhH@W zyQSHHimfaH$vdq0`we-v-O!t*%;+YsQ%K(@uCR@|$=zgmbf}1!gXOb_DWl?u7BOo4 z5@AYGmytxjF^78W(?tVEcR9UT2(qXa7W}3=Pc~fpM;1W6mTp|B^O7>2zv+Vr)3!ok zuU8NXKYZ#?MER$vxML*v?a3QHf~&7#F!@Dg3X6xkh>fG&E!>|in-Cry|iOa3c z^+41Biq^a6ATVt-mWWYh(Ap?h;n!x|3#BnvDsHigwkkh^H(5&4#yo!*4r9N!SK2K* zx|4U*{rd5BQ9BmpYE2Wv=a)88O37-8LCH)zNm9C2*>_)5tZ`ke51Rfw#RL*w)e{+9 zSQoR(;?{E85?aT@^AX(^_hWwKOU5>}qiJT=^ZV1@?EAb7T^;iRR>| zzkk>jb8vIV(Ir&y+LHmCq=)@0Xz)>t>%O;JKwOTjU=$EI4u?ATG4b6P;v(I_QEaN~ z>EF8lv`V_#{|)(_o{)`zu9+yFYc8y;RV5)>O7iZ5Ch2c6@kN$t=Ur>k@0Us@>ze3A zT$TCO6I#ks{6M8J_mFidbEZzo}oHT5Uj%z{1o@EL|qa+}AMnqL~xhYqR&hl=O_R zyNj$*lGam(4)pigy2FK$I>CC>Z zl$07KJ)H2dmi?1*C`%JVFKDOM!(kcPFV(M*NYE6LYPKmo=}(tK>fgOnh<=#EeD`K% z3AODieh4kzR6FT(PON{uSm8Gat$&4Ad2aD4akCl-e#!#Kr7WeL0o*e1fmvcG8UPn! zm6!-Et2Fv@+64ZRaia6Xs0_i+(@3D#i$!G)4O%YYC8CQ54Re>B`EG^HSgKUj;_Ea$ z!c?6P7GWR0xy<8Mp`bMXk#b4QXZIn4vXXP^VqyC(bVH=Kift!65Q~23OmRP_u&mBP z-kiv)CaBD#ZlZ9xv~ehdd-Pg0$(`BuGZtv)30zMUhu5jVX>_CYa8ZG&8aX=i#t~<% zlI7?BUDdlP<;X#j3E&beD3q{wD8wqvikBm=%4Ben>Y}ueU0+yPkNP5Gq>|S06?6a- zcI8T{%Y;O7K=8BNOgXsT#XUuy!(;7g=@VirV28(0lB!CviI8;=(K`&k+-`ir)w$hf zb#vg1-~OnI9~jrpL`ph$mhCx75~Xh4UgCLOh*3Wqwd4-5y*|$ljl(#u0Z=RDA6qWO z8OJoVMPp{0C@ad(bSmNAns?0^13IA!XBvkO*Qv;7?4Y#WvDUOtkq@h%mz%9v*M4c8 zoy*FW`f}r3->h;reqMCg7`0w9c1#jqU-aPv<5R-!!KPyAagK`3#prXOz5tG-yCIbDsT@+)Lf8RjiDLaqs;Rox3Ulob zZmZ#?rNtgV@y=}Revu#WuF$RDimEMb@CC|i50R57@@BfcS1TpUTVbGdH=N0dF`XA~ z1UbnMHJ@EGP1{A>#)Yp*y9-yG=lbgo;3}=-hjpguz^}R9BlgJ?s|BZzVpFP3cyWs} zFcua!CFB;-J?FA+6QDu4w!EX*PVwDQCk`xjJQw%mKJa1-#(D46A9J^XIt`r^Wo|4% zz$PcNh*pU=?(UuYYj%nxZ?|WMwI~l4QUN;xa~8WlO$o^ut&~_x_mrSX62r)aYcZ2loJ^Rs}@JD+Du4Vg~i~udb4$oD1;#i~~Sb*1LiZGf@Z#ASS z-O9xf!B;L{kcx2b5?6FfS@F6#v`n?qo!);;)8Zui;)&`$9fNQJ>GRq4^H>95(i!|< zL?e*n(>}Yf4o#rW#wm=9cCtM?wq3MBVN~RBy_XE}*IfIb?~UmP-aijk=2Wv#pCL0Y zDE!?Mp??6Qyy$@nUGU1wr}@hnw8tT}^}*4I+o%O)OwAuHPB9w7%3?#B^!1y}o>`E( z6xV*D_gk%Kc(Ea=Pf#9S>Sw1}I}I?#nCz3SHiWbHuffREFcI|AVy~hKktRxi@KA|p z`fM&=hL7C3`j%f90m?V7fb5@?5sp5}YD|hQtK6NRjNxD`hGJd9P}ePmnQg26IG-2>p;*PzFZqRbb*e>JccmXyal-GOu9 z%0_YKk>eloCV(`b zI+cro-NOuFsyBt-@pl1l2Uk3yR8!%wq$|nNZ?|A+L5t_YL&J?K7hSR22OtQ5nPyI> z_X>ujq=s9&X^lO%Sg?5nz6O=AGNMfJDLAQmthIQDMiDEjRUg=XfIpFT<{+OvlT55@ zkX?ML?0W}SJ`P$PbT`<&`eMmI-o#4DMNqrC?xmS-#PKW`AqCUinMF2Ih>)mRY*-0^ zo0gW+LXAwtOlsItb4C0xcVlzC+VBF#abYU|+z)TKOCvM;130;|6%p`gsuS@huYT1*(ZREM# z&-OMQsth#!U|LG%-dESYC-XgFuD7Yuby*wUT+O)7mGeY?TtUIc&8nDqoEFJBVcYG| zy4;zAOL&5Pqr42uI9n`3j_S&?i{9iXULxwIrhrf>Z?3d);XW0%Wk9@DV-TZ#n?Q?nE@v$c*1ousK^~L_@fyzGX15w z$075afnuq>n?fv@<9z+cSQOWaK`vF-1q*Sl?1aU9)i-rgp4Q8~PpWh(poNy9&Wtoi z{$H^|*Mg7DXAae>_x>uAe{3wl4@St!WNoF|F0Q3-@BC?IEoEyKtFg|~_b5(^C$x#3 zLtG_p?TpNYpi-kyaE?UpK1gV9Kv!BH+3$mm3Qs*CIjT6%V5iV97d})@Ppr&N1m&va zBOV(OdrUvU=BuSK{f03#=E;6R@IRoC;+zj6|9My}r^v^8cPhA%+^Nh_i>tLZ)@NhT zu{Kj({no3#EJtqaW;-jXH9X9TyZSKg@Mys@I(*{Sz{6RXsq@xSt&ys1qtRUaQ8%#i z_)l>K=d>aVE{{659LwobPC6D#re_B;_?b+6Kba`*QrF^byG-(!LuObqjjAV8x*B?k zIo;GHSz{B+gLxwo+8&M&>I6PHIdv8IrL+N=xcRc!!JbvJLR zE!012BHDtE)9v80L88M>>!GM|x|-jl&G(Mog#2f!kespfs=!)A{q%J2K^9+tLIO2-}1?IXbW&uU&1(z@V`5DC`v zhK=>6(hw@Xg%SSu4ikOez#YSRo7~KR-qIc*m$MSIx-?H_F7(%WZV0ZboJK+VXP@1* zHMJ6!lv@iSl$avn|LcexHkShdUwf)&IvJPNu%C@tBcz!pAUBO2<^umS6JZ2h%-}SHLM8K2_y0N~ z)Z-pHJcJ~MVo6RCzjJv^?0qCb+z00088~HM8-fF?$F7t!Y#a|r9 ze3NYZ5lOU9dWwSqFjGhh9z3a_K%o`LP$65S>eNab)0Sbk6$r|jLP|1p_eOG}LGUQB zKm_a4A1{FO=X}qnMw+s6Ft>byD~o`F21f0MK^dD#6-5$>p>J8#qWWGIxzh_?WzNsQ zrZC1+Z)R;XGlV1{WN2VFT4p4K7zyeiK!#WT1QK%o8#`WmTyy99pQW~3f-~!Un8F+4 zbLNFv{(Tz2;@8pw=%e<0C{|W!(j9f7pY>?EC&$F3VxbQHsN_TL+gI=kD~>e49~ z`gLIm-1-K(Rw7r8viiC)vqAH1FDl;VmgjoMYHR2Dv{*8m3S=odJoNHmSfbXg4&rS@ z<#^gUqrK0Z%M7zHEYT>7o8m$}ccLZ%jt+zz%$TaubVZR3vz5W$2$?`1&rWX^*5uFy zy-=!a_KiooTV1R;l|l(Z;`j1JY#gHMP{pw8>zl23h3>z@jNGKa+rDgS6oeMLirhcU z(PyFBUl;;%vho(#2P5DqnlLJ(+k?*Yy^ntBZ;q4umtlR@s_7F9Q(DrIw^lL_X;D7gk5vH*CU+s>nN2~n#cVcnD!hjUj7O@m|VL;4z(q!7w$5(x!`l@}te$F;_=I|rUPhg5x5E0E$sKJO96Iwj-w*~T4S z@4*xsG!6^gO?mK(XO&C<`=%iv6QafLY~y z`8E!o{2~OlzdFP&$WEyi>|{_=SuS?+yPssBGa^PYd}ivQkzhFe&Xk)b@D(Ro8IlKS zWGWj6lQV~1xuc+QvCxOlDBx}igF36}LDwml_bHDqr!1%uJ<}jA0R|JjQK7;qsR=2oPi2y|r;w2GcgfWx#Q`3++r~%LEcKT* zzRoTR2NAaHG*3?RMA<`1aJk3P4VpEda&FdOrTPWzh#i&s`$5PJ@0v&?eK(e#$FxzD zHm(YX_H1>^vK2&gGz98TyYp=;=dKc;%tm;#mT;BCxbAl<^K1jO(E}UmRd|Ls#rDth z_gyV1YdiLV&ypQnZ+;~xbrYI8l;q0~wJ=g1gySX0j4;YZ2j5sZk zb#uX>FNY-7aK97Xy%n%?oxcXrj^J}lQ|)*4O?2QGWk5*|;q(7+%H%e9^Lx2K{Uviw z0`wpMa}s2vkR5K90>B=fB{6>D`Nvp1J8Tw)(+rt@lPK!g5yHI(UrCJ0XMyAEyc;55 z;yCLeDL3RDYbtSL{?Wv`+DlIKkF+`?k}a?_oqTjsIf8_^5dW9{c4BtEdb{F7Ac)0{ zLjU9DVr(%IC}@!>lx8QS3TD1D*AM@-poBx-ObNTf8i|MT#vFB6(JRJuC2n z{=%0Tq|hBA>r+$^=htoXB7{{5;=tZ7<*614;28 zWx8OCxf440pHqyDE4mBxtaqkH>xkHeoKq4F%LTpRDMN4~{H(^`ZV9=Hk!6clBK^6f`PUv-np_;JV8ep#P zxLD&M?Dud6Sl7Gi_&3tJ^9X}&mWo8sHwEQP|C14XCB1SqfF^>H0i{83Nsk|?4}Y21 z(C7WQa-K%@-G({(0mQ@>=0e{Rl6&R#dM1qh%ZWmw zkUaf+Z?F6<1ld0l{;nC*AA9$3%_GCsAdB7gLXSst#jzrjchAgbZf{%}o3yL^#F*`Rk5(v}gE=S#PZ3S^Vqs;D#{)M8}fLRz$~fRXTC!_FoMfZ~6Gv>tBDbkC(T) zP-wbYNiBh9ki+dGbK9O-J#{gx^d=*Ohdg@(c!UcSitP&Imh@79-G2|#v8#QqpcGPvWfLI9v(;F zH3gY-*4|@^_zk$?>TgTk4Tl1v^~E{XtSMP0o|&Dy(@)2enzDKeKN=veVbicM@D;DL zqVKY&R;E1U^!*{%AgA%cA-aClk(@Xz%)XJxt+x!I4!(VgGlqSxyKRy-9jp!R-5A-k zmOCt^pZB%KnL4!xG6ye_v_CF%SVnSw_+Ant7sjLOGdNCjQ97$W4lgd#aOZscc=Gr4 zhQIz~_V|;_wY*d&uF;85R;Dm7_r#5rxGmO`|pvhXqd+ z<|1HiLOBe9ADh8gKiMlNtTvNZQ%1|7#AAb}Rd1~lzx{;gi?$R_X6a2%Mt2^6JF+JK zF98=r)xgTo`Jc&Ig^02%_IB=&iYq9;pnF$zsYJjdXv>|!o7$!g+=*_7YsYIgdDvwj z=d8Cr*W+;;SZrGT1eJ|2Dtt1D8U+f%Ao7b#G|*mS8!{BtqjwHEQUIquxYZe z%Gj~s?lP|0?fwr(-9ImAwX=((?N@e^+3@Q8LWXDyZ^7;7_XEjFsGL}w?%Fq0emu9c z+xRJW$Y@Cn7I^HU>uXUSDDu+`;EOs1r%wOZWsChpfIjY2TUZl22=~;V1XM zXi3=Z70+gHasQk8v?O`k&@S8qi08 z*s}(#@UUI~?JXhBVpyK4x&6m;t7DP(2!5(3wlDhcg{VZwh8rATEbu;!f_h7k0lciF zhSiSaZ6j8ndzF19!@ZJ>FWJ9Go8C&{THh;) zvR5*G^a<=j&WAJUpdh4SaZTmyZVW6};@cVqqNqcGgP|)FciH7_Gb|7o6G!_CCE+g6wXi0fX_#yhp_%7)#JWzJ0@e zd|G|8B)o!d*TC4W3Q&RM6oE*$6L&&|fj5@0W1xg+UZtp!zbxu8rDTw;vtRvx{tQsq zCn`I8TsSZy{^0;4VkMae+FHS;_e__WGAqP{;fy_$geE=lnE{aI$c*K_iPH4b_{(u+ zjihF^qt~eE4PL|ZGMI7~J!#2=nkI_bDmy#sT%r`GE6^MuIcS(Oem&&aW?gsKAFe^b zW|7k8NezlY($Pk!QAN=#x(9FAd7t>W?DQUr%YMZK%(S%-lrP6o+Kxi2gU0X)p4-@i z!TOvGS+Mx`AA0>@t17=RxC+ag(GL?scY${=eCc zmEIlKQ<}rGG9F8T3|`HsxsA1B{bq$U+2n*kc*BxvL(oQDiH=Y6fOAb_4cc~A4X$<{ z2SF*dkKoq-LL)#oT71-UoUs zkEFp?*(O~)-jmPgrE9ph<2f=6S7Vy5&A1VHI6-^aQ)hJyP1Whx*z5nzNnSMPqskIT zf%ZlZGdoFSH%Os-jAr0=F9QJ_gyjXX_G*S-lRcY9)n^^iM3Z|A4~~)#@r`$AZmI;g z@(lHDxnP*~t0@m%LUD4ivALK*N+<$*wnzJ(Gr&bM3kGT2T6HCe*34UcBZ!vP2!1f7vGysqY;tUE0G{3`TIo3(Yj#ue z^Lx^TuipXj1*8@x=4CG@(c*PtFkcDlkr2^Duxb?4k_Du=$d}F#BrRp(LLOzg(k2?~ z0HML>4k+thrP_^bwbjEjcOGcSjQ+FRg@QmnHKBy4NT~mv`(U}Bk3e$$b=Ps&<`dpk z&+;@oOney+CM_*kAaQ+P)C<(@6yL04z`Y34NF%G=dp-8WG19&JhhKKE?R2G%wXak; z{eWi&XwyR`i8I|TMS>Xxk{vVmcf#e{E!tC>=koM~e?dQg;^uFm;iW8| z&g6JJ_$9ja^O&Clyz307b>;PwPiMRI=b!W&eVMp2|7N}9=>8^$W(4~t$X|Rmg(m(tD1Nu7I(&h z52<#!PoEZcC)DETyI~rz$1(iqg+!33Qdgp%gHg8^ws0QdE`(D3+vdV>39Kt)4|~dY za+`o))ccb!N_BfD3!0MjLNe0Q{ zdn|?s(nk}ZnbSVvmoH{?qShW_yhIYqRZ}@c{B7=TI@wX9zECLlN(5N8AX{Jo7<6fX zIglIpTd`Pz>!NmkU|lq-v#{sKw>vCZo-?k`_8sNnM-;qIB)2UEbgxM)tmJalX2MZ5 zGFKf#o)mRqs?z^O8jU_~0=oi1Y@>~g-aA++tYX9p&1{)MfZPtd>uJ}47Jy^h5nfq0 zbp7L|Pgu~B0nv#BSVvfgfFShmxiM| zLEsPO3_M#jA8^}eHTJ{8PM#z9KG9?<%*y-!Lye97rZuO&qCd%A%h#F!^P|00O$@Fc z%W`6W8Xl2>b|aTjU3YKuy2gr=2F!Y(*}uv%drj4bk(b`!S9fEx09lV~pCbp2%U!r` zI4ZS>wDPFs7A!$#T$Mim2I=1fsGMM0Gbopba zuCCcbTd?9TGgyz`4vZiX5#Y39t+yR}-SqM^SQetW-8Y&~oQcC=%223?QK(RGLx>>| zh%xbI<0|xngUHcdioXG-kvFDI8_~7e#tzZXoE%{Dd9D8HvCRDBp)++S;pHNV9;N;o~ zz&{)euxwp`$!yv7XCRipzMV-+72T})E6C3+V;PLFIqbpT%1Rk@uzbqe-L^KNn2fM; zCgveYX=%)hYh~-I#&g2$iW^7IwRMI0A9Bd8~M;b3s^|6fU|F5+b-^ldVGbVcm% zMOWrGrJ%)B=&|KPh;A%M_%U(ZYV=sn>(e&?B798YI3lCuHbmD~QP}R$D!Lc2#nFrs1aXW)M_ z4fcoixEQU`->9{5iv|b`INbn|YlQ!0UMNh&+ZB8hI9^4}(T|MI-jG z0#%FwYpVc;A@O9e$Wy=&vgPmD_@jq^6+|o-Na`PVHj4c(sSx~4il%>wgj=%S79FHw z<~u1v%azT4Z_HQr4TidYJM2@3gM&IL7fCH%up>1RL!40!QI_sC2{=ll`N-w!UDE0Qe z#{WkMJoyo06!|9Z3KkH7Si+cNQ88iiLAC!7y%_Ooh~}pmnG;b{;$9shtz0@EI)?jJ z1@>RZfokHEDlY3xURsh}w$|lUq?p$ip?tow zC^G2}p=H0ogmT1JA-!ICOgdXMniGy{PFd5hVFBhh4Z#1$Z%|Mtu)Uubiz3u)u{c#% z&8C;w+T4_CN-$ve^P!^Dn$i# z2#G=hD-#0}(SiLtN?4=Ann)!THB#Etz9E|b5$q`9YP5rDwrOis{TdLMbSogWZYTjT`KP zQx5QbIXpNsddflxN>YsZ{|^Iuf1zuNscvZr?|(CWST`VPxTO(=^rEIyx%@RI4oPPn zZmA$H#9Z{3@rD-U<60m`c8G_L<@5&n{|{AP0Txx*w7rOcw1BjLA|*(NG%DR4(w$3p zt8|xihae!ZG)Q-M?b4k~N%w!y_j|wZ2lj&NaL(EDJTr68%ssQu1LgR~GF^YjieE0KMPj;=3Q5#EeLFwCl>d071Q7Vte)JW=u0x84)kL0Q!KBTiWn@lTe zb15hWww4H!@G$cK8^F&Li8g5JCtv_5mU0tej|qu_ki@h>!*D+M)A#h>a&Y#4^xkt8 z9RS@2JwGv~D0nU{UH%9IB3gtZ67^j}r# zDcG0AkvbGaB*suZiz-#${`k- zlU;U6rhW1`{M8Q`L&XR_)K$X6GqE#ghb0ehMvu=pL`Bw9@Uq9Vto zZj(a?$ORD)oDKI8qnI8R$iOag2v}ekqF4uc*r|7vAWyO4kU~=ScEE`#p+p<`K{nu( zU+cmweVyJBeTKpK7Yt>eAi+7&=m1yrzge0B?ZMJfCxuNtp*{=V7@mC8o5dX&@cJy% z7}GPOD6F(4fIy;@a^Bmy+xOEU#Fj6R_@|z81cNUvN=3BC_;o`DL6Zm62f!yA6^Lq( zAM*pSUd6lV0svGUwm8sEy*}D~E&b12;t=I~h9p|UIs{+T8Otv^c^13??M-8>F5jgF zd9E9eMt&XJNqGBDujan-voxGQh6-O%k%kl6tbK3h;`MEN#?Bsfnp;e5ckYO95LXSD zE(nE^O^U0&L~JJ${K4-;xs;Cw>m9`{s4X(OukKcUOnL|In6t(Yp`19~JHkv{a57HbL4MnBN zg=AiK_*`nN@0|SLtQqJlgA7q8^G~|-$I3+ztg<%bu@I~GJxvX>OD&sP641uwa}PRx zXB+(G2d>WQn3vhH_G-pf+7>%eROE^#ROAEFZ0^M;ZW@LL zef?!@AL=2hl5nnJ^wKGO=Rk2n6jmkUEwo+ONx@DmDd>yN8r1=Y-jQ}v88z$npjZt7 z4zcchhHSU^mNE`bvW_ozMtErk244g!=!>l5u=3dYSt-gfD}1@YQp3UZg~9OAC)+Nv z25B4|Vx2Q^N@erhrhB)RXSVFJKNw`~K&e3HpgGr*TsN?&QA_zm+raK_g7esYm7&jwXVsIt*M4OEUp&h4ZoXT$=5ey`?K zrIkYbSWR_3g1LD}(I+GEA5ZL;CZ8h~aSUS4e_qfjMoUEf6cq3+4=y=RO)j5KS+j|I z$md6$*cRQnPWSr1Z#`z{!M??jk~$e?X+^kT8tgWJv6;>JX?A2-*N@cly-NWj1bD#o zu-&aobC=as3Ij9l9tZ+xTX%Er;g!@7)90_Y@2P;z7+&${)e$m5+>fy}Dl(f^t@MQv z%#|n8+>Tk;vGjAbsCYmclu0}98aqunq|&MuX#CuJ^(71)zK_n5(kIEWoR#fGbM*j6 zIO(%Oz6J+#ALkHDs*;J9YniZMmynG&>%>{6w{Tn@ty64kx3%y4R~aA+;}$C-#Pe+N zs|wYdKVQU4n3W2^LRdC7Ut5qI!#r8eX5d&+fA6_gzWMp8VpmecQAOB6)3Ko7QGJ`&U>Bro!>EVHHEIn9Z*L zreD^Wxy%AG2Iuojoz$1$+IX+x<>2h#@ZCmuH|^iU;la@67H7tH>ZSQIUC3~i&Pys? z_rXoJq-Yf0(;CfHN+k(9y-*t z@mGaJyHr%x+I@HP>En{`U5r~Oyx2nzuKbF;1w|u8AVeY$?8WtmC@*W5| zL-Ta;j?JJmIlnDrvGfurwiu38)&#Ch{Xu-Eoz38L~Ns zRM^zkOhD^GQFu6RsG}o|RxRnmEU9IgO92g74C&X%=R;f}{-*l4xLhMw;@ia@o{{kN zY%0Ik$+5{^lao{I|0`->Xp|0a9=QcNC|~c48MP3hcmZT084~9(WkE{Lxg9N2h5+eCUmZ~PvH6ut91B&Abj^dweNWn%gZlsuM}6Q z;0d35g^5$KESiQFhs9AhDxHti!Axdl<=N+Uu9{JRyWy?4v7<4tIzUd@<;UJ2#wc{W z0yBnSniLFkT`m#>h%1J~q3A|_{+sXmlwXL^T&N5ZaHo`1!VX^tgKqlJCn}}LuXyfJWn0m92-LT{8_q&%R zZySyrw~CDStl1i}LC}>edSF?v7M~LbLEnuVTQ9vIKI2TpHVJmFoU?;^pvgzUeNY>N zB(%+|>z&<{ZC+rVE`G(}-@4hIh&GssDM8RkICLf*RNX4lYx24~Z*A~hULbXIoT|T$ z&vXR*T)78lX>5H#k?Xllfjks0seKxX*xQ>Xw0hNicym29Q`T~OeWuQ==XyPuBk0b_Fi-2$Yp5wu)1#w;tYdnockG!zo}sF8RMR(2jO9P^Q=9e7L;-ezDl| ze(&n`tkEMN0v}^qMhnYAy4vXTK0NKGSmAG{fc658x@>6rqx&4~Y`y5ZI4e#p(;L21 zM?AD%@;&SJJqz@YAg2fCc1X55ccE1sg1{%=9LpY-H&TTzug@qNz3w(<{$5bc0KWvo z?NY`E)&vAkNakwk*NOmFaXR-w)H|M{@qB6UEaGs>{AW=xCQ_D+-7&T| zXXb;x;KRKYu#n$o*-RlM_o_V?wPOvhQhJlHN3e*MR+lWEw@O_%$V#|vYGxG~Wz><$ zUF`f--G`aIdh(w|yQE8=0yFP1c&(x;)mfbJ$C34%Oonxvzc~i9Iag;VG%__Pi*n^Y zna16Oe>^fOEo#1`&p6qdU9Vy?CI)k21RBS+VTwxN!@|+bDP^EVyTw28mI|-g^nCTo zxTDa%D81}MeuW!9Z6Lkec$5%YgdF$t@~k;ktzMH*xT_o|46%8oUW=NckoR+WJ54*{ z7XlI4nOD_=0W)`5SD%>khO^{0;ivoN>8tqQe5+6}h*)>`ef+W|RC6s9dVG1*`RW+n z)j&iaIW;5sEcX#e|=OWTrf=*3g0MU*JuN*J6p!p%~RgWMi@uwar`M+?cGdJk(!z;NG~!Z zQv$l(WGpt<1Q#1dK38fh$ncNwk>0Fu;|G>HB`>23n~4>~=Bv|C_bMqR80pB+$+Y`) zA*YoaIcU6h*&Vq721YWTi{^RV=Qi$)vBwIXB*Bo}jlz{0c8zrhcKe)L{*R%lB-%bl zL9&{vjIWm{*jjO}@$6kTSM_^cVz6;mJL`tZKuVt>-X$l&3V4{QpIXDacFhf3wA4@fh0e7)RVoH;eO%AqD7aYP3&^j#URLp?^R1sm?|-l@wk?(t$} zDFd=Pmp)iqY?Rg(5usUo^WJ8wup&P*oYt)NeUL*_@|L)sBJe3b?43P>f}6e{M;H(} znUN^w5gTW^ilPxR@1ANVwbjs9t%B%yHCz17In8N(!LyadM$gZ%e>;voJ;1XtOo61HewUazeAJ z%Lig_WcZJ-j>92t8IJTG%bU%I7(c*SFYwX7G_f6}anoL4H3As9+v&L43;kl!zs;^c zLrv?50i2!TXuHH$2VfQ75f&EzmgQM(mt%;nTgG9>1nE@RikKdvPEp;QJs05@0i1A# zu+(lA1K+j#<#bQKS`-vpOf0O%GbYs7rd5>0-DgDn^X4p6tUQT%ZJ78$##<6KF)VD4 z(7QtBcF^j$)F|Y3ao^T(fpR#{$9>d@Sa#hk*eHSN-zYu!ilpGEX?Xr`EJi=;;BIaA zA0@Vw+Aut91s-$B<7TmTsrlmI4!8prat7(71eCZiW}*HCRu-oVpq!*DN|1>R~qCpe#1|`JL+?9i5u4sh_k*_C?h^kJKeJI33?HgIXW?ChJzAYyI7C-IbBE`JW(IUyq#*~pmY`~U2SI1FcSHUWQx5EeiBF19}KLRWF>oI=2BXDwsWd8xl4J_{>0 zKX96-)pC>f2&vnmK$%B-B&}SbVcE!GI|(3$s#egsWQ_(YJ(%YxtpLymIe`&OEN=ba z1J;9IyphI;4YZB{Ly*|>v=e^frvjB&+RK7PW*Ne^emsIgoU+#WhWwII^5ws z5&S0yQ7n}h>c+^X6nXcesZf0zW;K7F9B((K4RtvQ{-}tHU9$A8FXIXkhgf14MhywF zu#_hG0+-SIy6k6#lt9cVn}=6pL>Tn?^sw}6q`khn2?H44feW0i^aPYB2bG=e0vykp zG|ozYig`G_z4Z%Ns~j4h%lX<+5Sf;Gk`Y}Q!mH=%P?8Zbf?LfK_dvpxtLa)Z%2;mJ z8$+ntPj3^*G~iE@UQ!#|39DjQq>9$Gl~AbxcuAM??fYG$>R%;f3)jB>UrEIP9($ve zX<346RGsOzVCOr(MA;O-mU@~v5}iq2BQgkmwFYuUcf4~o9` zXZwfZ^bF9iVPYXO?2XUL(ugE%Gp zH+iyzFyz|5vAQ9U#`Dx}%K5l?IMULJuZ3unH;7_i!Wd}{jL530K+%b0P6WegO0`}5 z{7oVGGBJ=}G+Kyic2uNL1Z%Pmf|wQ2@0GNf-mF$H@Xv8NhCr{V?>PA+p!7us(y*WP z;ST4S-6yY76=a_YO5IsoD^5*(blLy@)mu!QM7O;R^F z4|VYWB|)6^#s}vF=)X7gz(n zY2-f77igC0@i)uO;O<2UrDim&4Q!9=)kf`DE+HhRkuBwaU3kLV{gpgq^98m|cMn9k ztqraz&n-}gCj2|H6ef@rh`eKl?Wr8@~o&7P9dk6Q~xwxFc@ zKR?9ZJssi!AW5~V| z5*+$;N5wc|)}!kTGNW19`IuI{slRo*diFjsPVXzV4&&Rx5<>5_bn!Y`=|AWtqIHOW z()g9Q7;qecyJ-uctkArcYWgrO^B^QFv8Nj`_(zpvKNd`d*N|vKp z*2xZXT%!!foo`9J>}IZS#e&KSXZEDfN*Ai95#TFvDukD(x8}gq2^8M(Z%ajIs8&AY zFbD5^OI~$}=+ZAP{}JuM@v^Z~u+eq)@&&V>*56r- z;VEHA6ErC)=+~}c2$O7$`51-@6Fc|${8^Wsp^z8|GCT}erL^0@ zO*JcBfcs_ben%2Opl!8xF5{2x3XcIujt8<$5JYw{2jcQ^R<{8&BL7-$kc_vnu7N~{ zJX2mY@Gvug@BoCSxb7TGNy_r}tZ3q(^N7p! z$FQOMRMZP_CU`I-D5l3-3Vss6erd5)04;tgFCrF2{!}>w$o0)%STh5hix!%NWSN`% zb;reSlU747S6%!g$AR~;efsF3jj4H)aH3-(YM4r3;j>#vNtB#k8b!pwt}Pt$%B-g{ zwX4=bMmERjCFETZgp=GZKjdMCqp^3$#l@xAgB7EHuef1R*5lh|Y-MW5?@Q0upsc~1 zWNoh?a;k)y@o<7+m+6~6`O&nnf^k2Cp)ExO$mnlmpp%=gqVrPAB?um}KjfSmYA?Z|p&zWU-+Invs|E(@mS*HQJ3jJhPe30W z0XB7foE7{*r0!DuP|+AMT`CGeJ;peIOx~uvRKMovc^yADPBP6Nb z{{{gusnU&-kHkpCqD};^w3xc9M_irPj3C=1arKy~RBuEVz4$MpN7s>ss=#0Xm#&~#(KxIMRqSzFt1OQJm`7)FB_K&u z-2yPKI6C2f9{y)P{>$!2@sJ*I0@%Qq$|z()|A2@o9uq9DqCqR<^s!y8z)}#{NzjRQ zuz$yiUqU-?pzwMpzBnlZ1uq4G@{@bh1YN~f#xPBLRaNggR2f)ZsGkWM}~h94QGgaBM* z9Hb*ed6dSlq&r`@;)1Zu0(+@}^B>Ntyf|z=Zp@1X*m`c*XYMwn8(zyb|5kxEAOtcE zc=MIR(R2n-q>hx-tKrdS0hl0;{Nq9>tGs9~xFihS$n}MO4D3wO%iG%ZkyImpk-Iv} z0K_U{g#y%}+d=6$4q%_l-&TFJWI7R0nh5qzPyj=a0 zV&8s1U-zVvSui!c^nfX_t*j%gp?J*rwy$a+$&wxVvzlCqVM~|vC3O|{p^oD}?^LeDdw*tt*zdRzw`WXL{4`HkKM}QTK*bp!&6~i?1w|WvCTs%FX&aZ-5adt8)wT%(I z6ED3OY2?Pby54tT6KdcMe)e%8B^zbhaQMRj@uvp7Nq*vE-GUxXEX3+kD8B1TCvdP- z{u{W2VZwQp&U@3&+W{%zS1px|W6oYPQf=49FroHZbvyAT`1Z%U!e%OV?Zy)~IM9Fo z9ATjAM#ifH50&ZrKCM{DoD_7z(Uk)zP8<{&Tlr!5RO<5Oy?QS$Ur{$ErDY5eo%?ZN z;|Q?8K#XVE=QVXALX{@s#p)gUx^gdWO`2F|Vd3<=x4Mmgk}A)5I5H7lMCN(OMWtt~ zrEe#Uz)7X#T+u#l9zrn%GyKt>@mK~q<<&X_PR&;pY1JP_zGk{>n&>KU4$xU`9^U6@ zf0R?OOt<(>HtE(xDWY&|f8-MoAANGAUx>1bNV>AthI3ovTb9=X)4%r2^^ptQ5cW|^ z(}^=e$=+$oq~#PIuXwF1yo2o}3uP?8lXn!5KrvnZbSu1X1g(N@a;5$Mzu7#bw^^BNcBIq{3bHxxu;SZNupzu&nT3 z=3A$ay&*Pn=G3G-v9j!qm89C@N?OEkIG~)R&x91hKAIh~f*Tw|I=)o=4)8z*anZwZ zFQy1p%iUGML?8P6cL6h$4K58T@zFLo;So-bNEl1Qc?y#DSKkW_Ozkpr8MCSB)-P0i zpSQ0qJfUB+`1QgD9Zh(*5%5acUjlQ`=GH}jyZE*7t1#qw+gx1VFItO#mRK0hH3a4x z6SKYjEl(JCGAU1$4+vt-6dxggiV}Wv>i;JCUEzQYqN>v(E7qx68wxFdAmfUN`8xQ8 z-iJ7g4umW%UFaJoAHzCg3(qAaVvhmBtE?Auk}qH%v>Ll^SHt2UV}PBjmPFU6X#ut} zd2wOG_aCj0hWFYh)`ec$D~itA#5_J2mFJ4B{L)gxz6P-pEs!B#B5|yXVpfbuLW8?X z7~=d9Tc`2gHzW^OIaD*fd#bn53p0;=18cp`iIN*TgLL@8pvqV7Lyt$(FgezLhzGJ; z^*1wEDb_|;S_~oRhlmF3uj(Ez^D|d<>XT~{E3LSt%Wi@Fa{aF_7p?WqqH8__NuR=p zH%vT{l;OvmcE0WVlVa-GqHv;b1&Hq~FUr7bmFrx-cEdSnMh+Pir=(|{ ztGG&%IojpSrDY09>h(9K`rrqfz4tV0BYAC|{ZDp{A{5*(k2in@wnxJQU`@@9t_zyX zd5@1yil!0g`0)psQwU0-CKYrb-rGBhWf}wI@tQxdBq!ubiLT-TsVQ(ZLf_f1 zJ-TTFhyYMF`oAgCZtp=ya)|P6r?vDWGU@a{nEc!&R7>J#xL{s~zp-8y8%U7S1Ccge zR`w-7SZ^w7xSK#36-c~RuTx89bIw7aIkXfD=HAhdW_6(y_%Ks|BI~@6J9(%FK^6a34pqxlyn+dV@D-+Dmvqj z^anoE=tk-oR%#gfkRxYTkRzAIyW^gD+5d^LrTzY0NP<>K5cNArCQ0(Xn&$n=egAv&GB5MAN`i_0cH44be$ox zWiN`CvES~rn(q`Fln@1sj>MX+F8iD@uR82eug&TBvH8-Z`LB_h#4Hd%4YV04DymLn zJj00-_iF;3HUKT~JeVFlwT$@D)@^C5!r-Ec?SgoeS&knSeMcc0vS#HI9QP9{mU(uJ znJ0?;g}QOuxb(<%xZP%f%kxBS*ovUUv>fAoQVFKb&nC>me~K`fuoy;2`0z|q`uup> znh{&oHVY$PEcL%xfeuql0?LX?UWgGi=MJtI5PURk;A&4r>S@E8=*AJo-7$RqT3NoQ zWgO=ji0`dnNm#b2fU=8;%%TXKMeewLQ4)TrYna21NyD4lb{NKO*2Ab#w!}|j2-0Xr z=WDIc+3W^$U{mkGcVV-pmK>KlV}B#ozeuREm8bvQ&8?a#B2usC{b<7edbTFBAq(d$ zK&arvstmw@lJ00UAt6*MW2;#=UB^*x5ep3M`w74w!px=Ux5bi1$+F z$d=>AZ=Dj$A1$Q|f#n;0Pu6&T%i2tO-Z)!cTb=e1vdS)N!W$S4(CHOT3*BMZk9#e6{7)|+2&HaAVS2HA4u1v8wBISD$b zo-WQaH=b1qJL^fzEtZ$Z78Nmev-jj8_GR1W${&*C;_L%A(aJuTWdyy$8FV5*-IT>) z$3K50w*OqN7&I=o<;H0H2<|iGaH@<5+uIBq?@cdZrWTGZkBL9_O(cYcft3{z_8j^K zoH4&qd<=BKHMUi*42dEa(71KDJhFF<`BkV!E;T(t+CS|qJZttS(2~w=b~q(1r7rhG za#0!Yj9qVXJkv4Z2n~{Srr?ra2Q+nH8uUf*&$nX7p{b#%tKH4rYo8`2fCOoS$8P5j z7+dk-RQOY$CsK)LIunij34Hc*K-r$&rc^h&a%)#5y^QO;1SLugNjeUt8r@vZ2Pst= zH!jN3^jC7sv(N3g2`YLOjjx~d;}_`5cZK|Z&zrQTUy7)Q@)2#x!D$2Fh~D`m3;53J zP^ID*Y}M5)W*)B~NIkCteAlS&)d{5QYE^gdPTk=le%_by!kg#lEGuri0&D3;|2wbo z-6~9Ec#*<|aEzp=ie$%-*Vz-#I&vs*P#+bDgZ@*(IZ_e8Ka6ianf2YOZoZRR${1+V z22+7~`0uvCZ1*f_?@T;=ym)?lu)(?Vf2(a~SAfZwEt)o1{~_43!kjF^l&T1w)hmar zRqv8RAK+)dB+2kba@cIQb=s3iL3v2+x`6CqxnoFt5Y8xa~9w#<^PrJf2yr zA#P>KA>0^6m`=R^LhLK~V$=J=y4bNIolS76Z2bR0LVYsD z7H-rAfq<)gestEvI`6*_S;a;Vye$@L1E!1)G6>3o%k@P-G$z8Qj~a~D^;<1rCY%)! z#32^20PXjZ33BJ0i-lao3=#A%L#hAvK^2kX^N_05Z|ep7FQ`xm?flN5u5b9uVSeynj(T4a#(<<=(`pFxjK_DDMNs*5#`>*|mr_0}I5&i-* zVFO(ZGLg9dl!G&8Re~$rE-aJjid_o2lRvKAVIjF7U-d|jQ~j^!q*hEJNR;BaLQ8G( zB1Vow;0vcD?S99HtrZZi6A8wI^8=j=$KM78o=g5PAG#Is2V;Vu73+yTix|8B=Nz~9 zS-niIX7Ncs3DL)xh|&O*a&}JxdEE2U+sledLR-L#`}_e4K0wP6@%;ZZDR@Lf%w}jy z8=PdVn>ec=5Fj!^PL_vGoaB~kFDzs@AFmo)fj*dx&+M@Yaqb*_QWeSH((*N_;Dn4M z{dz%$HtuA)#UKs!Tp$!FLIyc8aMQ)z_M10Ld+qg3gPy$X69WwRST3m$azgF)P<4i2 zb?j()#J(gc!JzjYQx)m8>ZGo+{&86cd4)3u5cWE7WcarL>9UO+wv`|vN*V~%@Jjt7 zkVgj7+Rv|UUkGE&;q)WeRRzm3|>S~YudV9<(CqsV~3R; zCWSCdK{=w!My9Bd7OtX0WR z>LX03A$E?$sI=wD7;p*7o%B8_nQ|NEfre-8+nZmlN!H=>GG_O3FJA*!uMJdcsj5!R zRSv9`lEPL3^5-)`dST+#BTTk4r}JbH6trA%A!^1zcaO-S&axrYStfgj_IMpcCVjXP z)gzwX;@mcg8iu{l`9TIfT{q!r)Ik z9w$7RWq{OCKEWXu^qSY;LXMvTyq#y!GA`#WySfFi@ki6*f} zk=adQq*(~gmgm1iyVm!}N$zp$@~8H$1qDq<77b+x#m9L07&6d5_If51(;hmLi39H( z#N|@>eP=7tFuTCmEnCyqbS*-{8jC^Ce3WqK+C2!jruXR6VQB_AitPPkbb%Oeqz_cj zf8?RfG3k&uL{T82OdXVVb}Ci_Zkx^hdRv(jf9f>uIPc^&ihCPfS?=*Vd|E;-^yyOU zzIFL`7Dnak4YhYP$Q>h$p<`oj zI*H}|>2i5g-d1+IAdVkSz&5>-=HPa{GbOF8i&ehzKp;v~sF;w(%U=ko z-)3h;*+Vb54b0>pya3YPuFkv|z)j-9`raBkQYCxz3TtHfg&}{AyVc4NfB+gsY8s(T z?3s&n-cXypM;L35&fhu!Y97w6&-#}SzDJV~ntPeQdpC9qI`V2i7@GRs9@*A9w6o$T zp8JipQtOT_74xkIujhSL!`cii+F{AibR^T}fx(xnXnv4tE{Yy+oaJh7VM^j#TxYGv zAa_H2{?;&5jrRpmb9$*)>Uw;QDQ42O;z<#%L{UpP0(P#+ey@@@gYTkd`u!4qy$&QK zrrazIdn}*Y3bVvlOxf5bFOQnA#R_rm#n(_#gewE(m2{Q?j2d2QuzT2H)0%T}yB>oX z-x|yl8sy1-60!hNfSI|Oj)RY8~1Ri z+zJFb7s;_(%r<(2C$#tDDbBQ3q_&yg=ZYlo691K zZu|Iq8{zN2sQB9BnpO+_hxp$DaLAZm(GljXXaL*<1%NkqOwgClk9Rr+p_01DjHC}} z|EZ_0+`}W}%Oq$~fSj&-sQuZ73nbI(90&Oipv^FQmaH40tv-RMOF&!ECgi*0=G%da zhN8pq#&Ik&$%NxpB(riDQxv+R-HH_g)D|d?<8qw?WdphD&FYkbtz;F_cbK?VNB$n3 zG?Wfk_TRq*5f&Yz1FbUO%(xq-B#yrHU3NJ24>wN(&f~CD%y|_FQe4+a=rAVavl*bdmw&VA|+!#TgOrF(D z<6Q8Rj0W)gQ_9yp0bsikMN*xC%DpINQ86>KdXkH_Tt%X5zToTqR}h0 zl5T>V+v=d|u29~i2a@v79muga2s1D%heY~Z^Q-$Ze=0rK1f8oIe&=>f%YMIVuY;>T z)s?VVuc!yiU2bu6lTKd zu7IXl`zx}Nmr=Ip@@JaIz=TuUx2wfu)o1y=G$qSe%rnE`X^^F=Hm*J0-aVMW<{}+D zqGZnnu)owvDq%&`X8syh5*vds$@pl;39zI~aRwteIGC~&}+pvIduresvPi_ZOTiaMT ze=F?31>`wwk3q^unX>Qrn!W}h%lD7TX_h`?R%X9vy65beb~!0otIhbShW(?_P5UQn zii&isnCNZ_f&l90oQTV41O$S-R+aWNaRq@ud_>e(pf3iBoas`~(;%QB9S{Gn83z-n zjwbsL8Gu0`-XCGg^|6iXXdqDQHx(rpN}vRNZIHuj>zD0lpmsH()7NA&XP_-cuUoE zi~lq$u32b$3`>>OO)u*0-CIUY(8y1HyXBX+5|rOz-s6|mQsh*3cZK1X*Z)<0Un@wXqV zYpmLWYB^%(b#v;YMBFt74m8fjVM0>W8OwAHn)}Qyn2QbH%!+Hk$FqCt`nM<;=`8wz$7yzCPRz#G&QTf5T5n#bE7^7jj6y7%V~mrb{S+EP7jAFf-jX0UzM zw{&k?STY|Hm+lsQuNDsDTYmli1L7$EfzCUb=w(u-YHpHA>+IOa^xadsxY-saZw)K? zV>Yz0pj}xBo++waWAx2nldidprPYS5(k>-~1wVW3VIKAsj9lUj2QdGvZ(zedJ~@6_;*b6x!v?Q&va=kMLD8AxkV8iZuT+OU%!c8 zOsX%?t{I@ZPjjozIeh*jEH=}>9hzXa=P{(mThV0{cg5XUvYLjjOQW%zL!k)rfl&E? zH`OK0>=R|7U1iO6%(Ep@_tArd&~L!L0sWytg!8EjN?jY-5YF5dU_KJ!wpZb1rB*T;4YF~wW2@Sc~!r|h_y2AGt`)(*BU zH=(a**h5*70b)^M4~;s5*DQCN3M$8yk$|*rkykB_`ne+Zf%H8d?T((B7!~f;M5x^@+d*N0QbW9v7XwPXW}eZVTyn7(@>59Pjp zqI^Z0kAoWhTz$8T)$b2)r&}Jvd~f;eB}5;JdN+pW&%|b>R#UE$wSEJQwNDBYORCKc zkhDl|)NOs0OB#F=3h-ooTG1%*8x8N*a7|OtNUJ>1m@z6mn6xWqi)eqIQ7h%f=ECqw zs(sW)k`-KSF)uf)sMOEb#3i98%IJn%hP))G2VKO}$ZY`M96KVUSvN~nk9W3|*faLt&IP_B8Jd$9K#{%v(itrU;(SGg!Xb?Oh_=~yWp zW0?A=N5jUrx}=xAOTdy|8pEA*Iv(wq`k{+{{hvuS6W)`_Hx*=SJ0htX28vbnlUs#Z z>im}?0flrYx5q8oJu+$O1Oo#Pc^lT>(4_~yk+ajTb`JQuYNvFsKK*>_zp*d=yG@Rq zO^Tut3rkppffjwQ^CK#uk9sVGj}c2Qhfe#{sNBpym1};v@57$)k8e?vyFu?SKXAun zUX~x;-s-vEZu;K$_+Ey!9PRQ&t!oLb`ds!EoG|+y4jtZ=&B*)iXo+=rTeU#_K+YjV0s_BnnF{LQhM{dI>=Sk zOY`kcG%UJk$FH__FcX6EgK3&X(SNLg`lgK=fGXkQa?e6y^TOIs+d^%!qc z8mvru#{>zx|NCy2E9XpG>HXfr`ON)J*?oVaklWqvoDkE}wPO86>CM=QFVDkn1F+YP z*O{-`{e_R7*+ca%y7haW5`~SXrP*RG4SNQ8qjl;%0q33B{PPZc`p((z%*rm=oa9XJ z>Y+nP)f^4#Ot2O8^^nFf5=7V0!aho~(yAt8=J4L2{-N|{6MJu&%=M7;fg^w|%HfA9Ta^je1B#)P2N=k?*fk01y-i{|!&z=BBXu`vdfnUgm(&8eZhsW=%rh+)& z2&$dLXGahStMl=N5YGTCX7``fAl=g7-tPM8s>$~!8J=3R6$JFFDFhV=-LIN_;+Ox(j6hu@eMS2wN?09+6ekjI>h>j|L$o}xz5>G^h?#0h{ zvInkm zXuOU{o`CyYyjt61;Q7!nedXKYuylfB5fpwkH$K`o6Sd8*9D(VvpMa%*Z`)+3m5lmM zyCO}pUu$V%s+u={-p%sTN8%E+!D;NpJae<*oM zIJY03KYZrTdyfiIzpBL&Y9upqK4+&$=Nt~~`|O(B_9M%R&1``H*E8N}-53A#ftMkL zc-@rHf*FR2ioD>K^bBhfxuy40S^jJn=o{trM4TEB|JQTJ&7<+^v1c zErUL|9d|K%Um+d}c|SqCofTiaSRC;+d4f2P)986+)pG4;#q@iExN;m1&3rSG zKd5(%HKrx(k-3LC5-)q~;662poTjz~kv65OkC{UAmmID4JkSSqQn>hU(^w+d#Njb&J>_R;6m zgl@F*gpXq?%=q``qn6b~Cq6kEl?zKjZNHQQoBcrDfu9}0NxQCgcO9m$bs%Z-#)HBl z+UDdNt+gHBKJ-=_nwk3@S;zAWU7wRbF=oqz53P{JpbOXge6$P93kE?b|Bws!4ky}+ z8h2Yee5@BVo3E3(vNe+y(HE2aL4zixn09fI={6}#dhgYfk8*f3M<90bc{9!g=Q`=7zw zXLNflLb10tLj}Vv%K_rGdUrP{p*b`YJapIAJ<3nMa!<1M-pxEy%*VfKCp9{%nt$<9 zv`VuTHW(iJCw!-Iow`rP9Ow8;o4u1u_*PZJ&j)2LRiAm5rP(Nyx1T1)^o?P>`TMc* z^`!FLSfj_~wQOI5Mqi%zA()$*ijPE!59x39kqcrn#ZF?-3=J9NKTpgiHC(%r%{Lx5 zA^HWCp?jt|mq-8HDo`ne)T3|uo5{8tH#Md3{?)_v>GPNsZz8Qp#G;V%$*cSr07V=}p-9r&qL|EHT7v73~GCBfMSnHXP5+tTl5bQI*~r2x(T3TG2U3 zJ~i=4$({%LkCmF*sNtmBiqizNTaJ9Z~5i(W{AWMvVXau@HlNL^F00W zV0T)-mHtq8BEek{yr@y49DH~0zNA&s7+rf8{2;Us=O3i(GxwQ73Jc(<3cdSq)nE~rzs8(mddlbPQwyq39=nQ zaqrrz^gPdTl%K^v^)tlh6qT!Ofpz4X)*^=uS{+B!`D1QM9*Y! z-q8R28C}gjm4atFJvta-%Jh0n^P|O(4D}F(`9wF7%!?UtbWJfP%tirgDu!f85y@F0 zEFu#<`E3X6=W6NbolD!;d8a*>S8AEgGb6$=7e|+)53lmQma4vsMY4W#IK(`Fnctj0CYat9|1&ICiq)C%9h4kT=7u0NiSS!Yb4U@6rsmU`FUct^Jr$fueX+HXgADl7_!N`2HWWT5#Zhy2Ibr1P zyV(vK%|c#BgHg9O6A81)*>#g?gJ8*&UqvFHr^O`So+!g$rc!-I(rll;=0wCeKMx*+ zp$I(*d!iP6Ba%T8j zvYuj*=wA^X5lO%)frKe*b&YA5b#Kj+$U5Bv@y23Ya7~GNp|iH{X-8iZvT|ry=vqyO zQ;mgOjsDJYPL{?WO3`4CLyj9Cd__~k?k+~;i_rBeq&Fg}a116&lwfAai#>4#ezLa- zCY7-s7IU^K!x!V_DSxF=uyt(b0#;-He>A;ySX|G~K8zN3_u^Kp6fah+#hv2r?#`mc zp}0%Y;;^UySp< z-y2TA4uf9tQ>1rJmk^CL(@2w1uX8u;O!3i<*K$(qNA;qjtRZy7*47Y^Q*R%sJjwDM z{?5(5B0d8QODcFNmFCN6vQ`j3Y=V20QHhXpt$A5Q`bkeVv~C+~g}`ln6C0t2gfRE9 za+C-C$c{Qt?hl*sX9)%RDTuT*_w5!MqXSAApeoBQiC7^~Rw`aIF(E;gA=&WVZ=)JA zUnofU-kVrxFqg_ju7FFqTEdz#JTwDEz(M$(0!@4%%n!o-9hi~?gnc<5=v;kB8;mJU z6Ske;Bfl7JL&>JYD22Jtu7VvKPyG`lTU?Mtr?`gEh~a-BLG?Ck$-$l`lP9>@#|L=# zyk8jl6XbI3Gco@wK82=tEb6<;%S-@S+Rz*Z_QR*oLjXkDxCdUj(Tv-Z4Qeveo0>mu zLrvd@Cu%*hS+|+^d7bG_Rgb^^dT`s((#4_|#XQP(j8m}V;*=sqq_D2Xs|i*bbKytW z!aJEEHMvMiv@`Bj*J=anD}$WLwdKYtW9=y3+zOf#mFZO?=ZA?I1gR^AXBfUg4i^8> z9a0Nzo!Dife;UM}vi`H(b3*V?*|QW8JIEo^x>Gd!;n6IHJD6fBAf5-SY<%gj>;R8| z(C7eukSoSV`GxfF-lv6p@t`emch_kUa(fTUUUU+X?U2GBE&71-k9X=)%fDtYh_$5S zjq-D7X+PCPFCR9xn~(?=(>0QYO9EA4TziydgX|AW znM3<*B!LJ`W`RpA5Pe<5qy+Hl1;0+&*LM3aauZ8=o1P_%mMtE|1*|DiiqI-UQ!(MK z4!WIt!!;Ji96eEuxju^{2Dx1FEGY3YF6QcvzM1~;G+jR+^hWp|x2j7CL-S{`0PoSk zrmd>dqoS)Uq`U})IKVh1LsLZgY4-3tmrw@T#_(TC4Cp7>PP>2?iW)#20}PNekRVGFKSmhhL)+c7&&hlyKi4I zTzRbph4qI<*=T6u510D4wZ9gaP!#vHMoME7p$VD9?pPeBMCjMcAK1BXh{IAw&hpxc z>Uf>Ss^w<*JxpArWRaS?!5?O#uSfo}n9pR5oR68J`vEGaYe`IhPn3l!_*;G`kLefK zpcI;_F=aDLGzYhmTF#7_-_LeS)s)O~+aUA9xez}<U-sIV_-&->pia|j6cMSI<8?N5@qM^fE20;-8g^UG)Krk~M#N$ozE z7JsrQJ6x>A=2DNutzc=Kc^Z|U{jq3No3IPAC`{sejUf>n?wf%~H;P=E{XO`~w;y`! zMGFMhRlSx8?+Z8B?;Iv1Q~>~=uawO@a(m|)b7Phw0!zVTWd2WO(0FP__x+47nI08E zGZ2oZuSHjyt|_GRc1sMU6>-aBbq{Zjt^p%$ueN&$e!Ze$fYXGC<74aPK#?G?+L zK3F&>#x5GKG9#~U!2xEN$L03Oe_%4ncjacbgI)Xid2mTNu17%%7cmDwP-UYb ziJwC%HEklZLS|x!m;|SY;}KWSEz)Br&|eZ!3D+;3AXtFmwvVwA`mwfHQ3_!XL^hr* zo{ZQz@+njc6)ys0=!k2%lHgyhN%H~ALva6-zR8+?iC&IZ6|0UGuD&AE)Yr^|DcJ&K zdMU{-I$YPj!m3l|VNo81j3iOxsxhynEg%YMRmPj5Flu%4Tuu?Qt4vSjtl7byI43Y` zg0qWU2hJcI^>TeNwX9(m^I&m1&1_uC z9dKYK4OIR0N1M6A_#+|>UFNB3$?B3N5g5+tWS%Hn4F^+*j*Q3uzOF0- zqs8(MYO(3b$H`!3OSq3^bUMKKuUqs}?>_zaM_ABCqg>IWrVH~SQ-zDRSyOyNF)>DV zrI64V{$Z*2+TWVIbt2Vr<()UHJyb^e)+#KIa_VT32dda&*{I^re#dV(&q6YIe4!m!H4Fcu)&z=w?^q&y{E(XQ*y1e&m(OUR%yIO>s6#t-z}q z*3n9))DWDqEA>f^(F9d>M`_CM;>I#C2^?zMp6;!bErsJLyj&GgeXO$QRblU9Qgi?8 zfFpo7Fri(%+Wfm*MqMZ{LdS-|MMy9x!3<+u9#pqFUNy!tA z-F3ytZY^Yme9Ae`VQGl3$iF8olr3QWkx1u5r%K_w5HD=85U;y_L1BGn!ot4hzyxMce-T6S#b~}}jiKh;j z@h}1Bfk(L$i#({dO7^SNq6Y@V(=)Gu3mMYexEQkBi30NvPtTh?CA_9%D_A%vaod{U zjd%Sn63}vCIlnN%@whr@P*>x#vtN;F@OYGG;L#V%v}5C@Ba9KCnRS;=eK z@{C`v_8@PkDTW(0cYaqXzKaO!x4?z$2jP9M{`~aZRwwkNN*i)S7kTW%SCOjQ0GHgO3k7$eTnJu7?sfbOI}NI?&Icpr+=qr~2G&r93Uj7bik^>EXml-Cl$aIZbSYq}@Xm`0USYvlZ4fS)5|s_?Bj;6qZ2}SyVgGX`y3i_fH4PbfL11*WT)jKwVC;bcT*#qW@gA*;g z@?vcXK7A&NhbV|l_sfHhD-Z1fD>r6$|@Af}##5`-LSSEK9ug{PqAI5QTRD(P)11B5d|xCL@{qp1Uz@`q!@e zK!VuY>NqJy7`9$$WHe8|k)dZq#$7kWmze5qS_W@8#>1M26a(jTgSY2;A7(kl%>SKtwAz{0a?S{R= zfB6?K?sY(m!)wm(tJ?@;yx_4fN9$D;(qlrObhyw0g=RjjX zUF0=7DG!Ne!`|Ps^A2(JKHzvKPH7#ywVaH*HOKv6XHgh|;iqF10N8cbQdD&Eo3;r2&amA7Q zT&HycTa@hQu!u}=E-xGU$+MU#dz*_sSAYaXMuoYYO*9zx`*&UUO-RRFgWJ30@l+J$ z54VD3&B_d1n$Jm{xYia@4nLiL09^>O*lLm~AIiyZWDnW??XKijGn=TH$wz-THVHAU%}7oC<@?6^C5@O+a;I_#S{ii}Pc#vRs&yduTU}IG9IS;m zVNzt=`OWxDi`m}SWK`IMmX?5Vc^R8E1sd%s-V9mMD^V5}dN3}7|3Fa3>}6>x=%(sI zPt_b2FuO>XtLKW9)XBm-7x%j$`@+Xt(ISV1O%DZ10S}{qZ90LyO@uUG>aoFQPUX$IxhbC!XSH{{KYgWvyNDP=nD+1$3)DR=3wPwCc*g|`%% znxA_-{WgypMekbAlniW>C|DoW)oCQ_@HcFNX>ChU6f{&zeloEyaB{mW5Fysl=~76_ zYaVN;_Q}g8Oi!ATp*34<@A(xC)$@eajjkQ+fZrbymdpC0-Ew)Uq_)%-A&I#LlFcJJ zL}YV&Cw5*u8O@ZrW5@urQtR7MqN5lNrEU${vQ0(;w0e3%bQ=WSuT*uYZgQFFnuM1_|n zE3vFY)%M&t%)dS0_=R|yG!lDPjS5bB!0XZuL_Mp)d_yNP+lc}sd%v<0X)F}eHI!K% z5GBF%;?-LPy!GZI#975LmcFw?7USnrtdj*K^LqZ9+DxDCQJnrfDms23-~CYdkpLIe zED+~%JJ`i>AJBc;Dr|WhW|?u(I?*yI+5Xf6Y?)}mmK^-*Qsb#qr&M91#p$`wl`~Ac z5bsh|J@C&FCf(IXNKxpl?4BJ^bd3NLFRI;*NA?g2d5jc#ENgxIr=VmH9Gf&37=tZA z{$%>w_!8+!N&jtY{}bTSmE&bjBI^6R3#+=GVWRcoDI7ncV2m&Cwha#xu!a&Y>Nuxen&&j%RVW#CFh!;aSe46t zZ%O<5?#^*Y;i1~0l<4A$x?simzI%S&be0@Ui?q*EgaUG4w*7vs4MH! zb`;!-(xqf)_PM&Z%yXY2=xjNN0BVwZ&qvYLH0>G#$FMo0X}vBo0fNtCd*`iK(yR={ ziK+;CmuDL9Pf^i=am~8{x}q%jS#rRc=ZrC{gis93UKlNjWiIaQJP<#kC^PdfN7$(v zIHakXgS@Q^8))8lJtqH>d24UEwNmoCfJNZkbqZgpU9(EibvajJfge|9hnZJ5^X!V~ zS>ZCE*NUBMPgga*x%<*@)2-4m=a9u02$Srd0cLz8i@4Y8aAT zC1^>oH`~g-HP~Z3W9jrmgC`x`yjDSjaCk-&3{RFC<$zX!{-?|(JwRVztAlu}FRi>Y z(_fb#%o?iY>Z;{>^)MG^3NTD*vb%|wdMp|5cx9@Q>OWMFhxy@^%TQqGH9iAm%Mw|# zu-H>n*ee8pT#n#OAu?BsnU$qt?^bA*fzg>>CO1~=XyMYe*Z9}bjOb=pF3-5fR{zF* zzq?>|Jg<9gBFd{9!~d+{<>drXzw!KzeBXtAZ+utan$wcfVnPi{+Q|sH=+^Mmhw-t9M|>#i`liO181G`5G! z&HXDt!1Mj!S*#EgZ_u{d@QF|rwEJ}5eheQDxZJDx6!psp$W5%$vqCo@Z-6Pd`98my zm)d@LJtA6nCdZ+@;o@}Z%xHiPBLg^Fu%v9~fPGkEK7S;EX*($(6ZN_2_>+9nnMFn1 z6?Fc2&$C)+FVvAc&|F`%X{Y}g8+Kh_S1Jv@Yl#T@-8avXSKCqV`LP=~E`-!2_r6P% zh9T@X`scam76I@w2DlzpVuus{))mhoeE7S`1M}T7RB=q@Tp9%EKV?P?Jf7gc_kj@` zycc~jc(aBJNU^@n-cBx`i{ zyDsq*@#r5E@l(C$bMEQqtJ-4~xl5oDy$ESM$K3cefdSYWtY{^&Yk#b~ey`fE?$F?< z4Y#v|J*9xhmviA` zR@S>4`(Fjjl{9p`kFq!*jnHuT2IEW42H&9ynrjm^X%5oEFRH`;X!^J>1tsUnRSVpM zisFLB263hyc27-sK84voW(oJBE zyk+Fql5cUi_04Aa*xRKx=O)8&;_|t_c5qepV6C(0UUB>-mQn zRz8aO`%hLH*S3&kf-wRdYt_DwCS${tuLY_{Yihbb&!h<~7BOrYDt2AGHNAOTKRu89 z;IwSS^1pf6vf+WEsA;lH+@1Dt%9W|}S|(VeSi*`&e}_4*+c;6WnMHP*&qcEs%S_?= zREC>2{G~!~*`2R2-+8d{Cu}ipNF~4CFiLZ{I`1@0Ox~Jqux;I z`$n_T7>Cc)bHGbk5JtPBj$Kdl)oe%&Lf}HcMyJR-dF=;ogXgz%1Gk~Ifq?7NJco81 zW6X2M@ryKeP7_oU7_Z0T{VKnH%JER5_S4bvUaiio_si@&N)Qo@UAy&e^Zt9^a_8iu zV6o|?U(XAz(#MN^M?nkf+Tva1mxD_-$90OXskF8?dNi1mfCuK9!X!#Ra*p~ps<-Pd zCFfox4*n^Eu_-L!fF3mclUh_*8tA=*|Emm%OKQ3R@Y?5cyUIH^tlJL&e==Rof8`Gf0|9^UgoUh_d=QaZ&&u=#qq8tfCAK+81G_1Kl%`g%BIbJufZ=oXP4y9pgb z<_KoFwgE#|Uo2msl_I*zeo=ND!PUd`BkZtPm?M zMP@%EX0yyq)0FA$#zUSxuBvRp(wlAJ z#>P}#9FbFIlRZaZw=VDc zsN6cJbeAVE<32!Ruzy79u=R`}&l+f-xv`@GI7-)9bJ<>Mq`0NxTY1wYeow!@&GB~` zOIz)51L%fk7Pd(i558^il)9k0a+ziVUuje;W3CNJV-&Rfj{MFZ_QsIL2J>os{_Qu+ zjZi$DwEI){&!rCMqwr%Uzz+POItL7HUK+!|RIchW2pUtgeRtp_Do#+rRfxZ7&_^}HeQ{SGf1xnpO9}MYiGy8hFQ$;M^{9yb?_%&^E|3+ zs{n+)Xut<-K9gLT-OxE1_#s5 z8zX`T4VHfU2Ni41wQ>u=mK^=1K7hL@jlna2&-2#tCe-(~VDCIBMsmO_(zw7KqoIIF z(E6G2bB_Us-}T7lneO?S-y0OO6?7@1Mb-Y2EliBH?j%hGxGI!6M+>mp*08PHxe-pM zsIrkmM+RwJ1F@baiNT?;d!YiGT|o9%!70H@__IlZyyNEsnT{ow)qfRd4+G_vj&JZ({yo6E z9m#e7b3Wqt;efJ{6_;{YD|Jvis+6rFanoi<cS}TLN<7*g3kjre{uiYbog4R^j{>8S&9E3H+E%~jbs#S^#`9-u+HzZU z1Gr*}K5-&&^!wqChJ!(1fumv5N#1?Y=xhy)0zu2tc6qwTI08*BvXYY^F8&s#@h8dY z$}r$qOZl1HBOYwGc+2!Ey_K^R#NTT8WfW-(+E`&6*Tr{5ZR z!a*EsunXB>z!_v8FVj2j4sQ>MU`vs{R&%vmCdSPeL>ra1vhO#$BJ0HSAa!9vtcr|y zwQ!-aqF96F2J-v%g*?24Qv%-JkgD7FGQkUNXJ^lpK3iot0E*DGLgwM7M+F?=tR(vC z8u%`Dpye2QnjBCT=$TRV+4XF(f#a?zE{fkbZ3#HsI;sk^m{@biay5+l{23H1u&cqq zRI6&?h}Zku(-?XWs_!pMpej1XR-Z^^8SyBSt$LtKnclMbn!|)H=wWyasDNA{^`!BAuX8(y@p1tvAbh`@Pk=k|bGLeiwSt34_kg(ZogK18 zzL)Vnz5c%cM%BbIkB8;kL%ApU%hS7H<9St$@FtC^+c-U6=RSQ!z{+FdLdUZc%%Eqs zx8HgdjMdvn=T%tsKHz|7f^VGtP2Uo2g|f?Er?r}Yzpt^uuQ&8^)BXMW${+URw%&DF z32JF>q-CkRZdhv#cX9hji_??#B zWa#pO*j>_w2WTqj9epL5SXCvpvV!>hOP?hwNMHh7){X`W?54@Pm zg}27(L2uiy-`+L~b6?dT8(VffADF*iuGuPh$&GjH74;Ird?(JN>ex@*U4M+|E>b=g-Y)-7@4X;7jGoc+UC;79)v$CQ=d|6N5maehQ3px-{yfPg~&(7hC z{P6oA;6P7IWAM(o&TaVK!?g%VC1>>kipjEY-eKXR>>sS!ShL8^NVU%|G&mfDBk}xC z4w4GaF@4Z>S2RIm<`@n_>lSqTf=-nm&$>IJy+o!IBe`d#D>Dt|iX9JZu0B2*qx3+a zuZ(umLR8eJ_gU#} zD#}rBkyrF8>GGeZ`*D_UdbU$J8L^J+Be>UdXBFAEPBz=0&f(3(lcO|ohpjhW{iLpk zPq{QcSglT)R%+OH*m8g=iP@<-@cOSR(#!oi;AI^t)f2FDuzGxPC^`nD%4~+_CLE|- zYfYs{#>X(w5?phWlpQ2Y6(t@dNNVBQQzHKWP5lLmCT-mFEK`9O5}&0KoKMnC)2Kra zdbw3tW;CucT$R<$5UHJF4G~M+XBum6-DpXL>MOHov`B#JcvP%yf?Hz@0x9oXH|kvG zqCf?AE=$B`mzT5@R6%1*ZX{))!RVwMC`q2% znwJu#m#abf-|Kil^&A4lpc!=tkZ}NKDT(=`YYpeg%<>+fuIBX~0z9ovtpV&m-@iKd zCdJ#2)6MxS-`FSR{MkxR@?51qk&FiI9v&K`xJRSM6oybWc}EMq*j-s+>L!fEm~*;z zjO6szJ6vPz&w(d%@l9QUFvhik{ujr4_u43@63FQy!W#$DOWE#UwRptvw9*k-@g{P0Ms7PI#}IcM+GprQ>g^agRskN*yjrn4>mt zHJeoJR|ZQ+1X4Q~K>F@Ogoirnl(K_&>)v3l&yv4ciawc)d?TVo3AweBidVlREr5;@ z{nX$i(H-~uHgD3_fIz}*-y5a7{hL7B%A&W6SYAwzpD@Ba_`I|<=8+j}-`MYjE zTVd_UKqneP4@kus|4V8}0YdTI2aPYVOSAZr3KwifG3lP_Ly7|BS6NXGgf%8nAFXJB zxj8KeW8m?RKU<^guU$ND$*GTg7>)|a)yGLwMA;mUfUOAnrB*Y*A9X8`JMSa(r$bX6}e3-@{4hJ4@o7 zremxP{wwg$n2p(3GgK&?YT0Ss;@K=+s29Z-7QO(&05_INVaC99={Z^AJ>N(mKF`a- z;PO2Gxj#=+KvE+?!Y`&mF@a*J`W<)Ih8;9vV~kJ7T#UZ*ndSI`>^n1Ad zQ6(yOq3GhuTkwae!YFM=qyUKDw)v3JC^hi4k=AUxOQ~)t!3Ja;=B^Wdb|{!?R24<* zvHi`0e@VS5cPMS!M5@6odAa9VPW zh_S*v0f;3uAoiFw2Mq9%s5l}=G~D99~1Efr<{cs zQog&8O}9P+`!n^eVUkSNEc`Z+74Lh^+=QIxd=o4dHYPaP39LAI?{{E@}}|k38bMv+(^Sn{K?Y8 zn!Shp{`}r0jeWNL#Eowh`$-bDL8roH`y<1pyl)iRmZ$={C)z#L3iP)z`v&(LbbFGn zCL*{JkjPy}nVramaBkb!d@Y!-mcHFg^u~jbh#2Km+NESWrSA6#j}?D=8+h@@HdVtj=NQ&$7kYpl1M zuG`(#^hX28&TqVie^sMJ8#?BKJdfWt)ZuHZ_(-qS;2Lcq)HCAjmhUri`=dh?tKi1e zOcRS|5Rf(KFZsXrWor)gKVJ7uYAL!XtE*HFsG~={r?y72I1#8Jf*kiVk zlN$qB93kfsk^Nn13RJDFP!pQZ95`mO@z*Zw&q*re3d62?1X;y5Ts#R_kuz}q%GtAL zI4WWW^akx@%@T<7M6^!edCBC(925rHqA#pc1i{l5TjtdZ2rwy{N5$6EX+tmgS?!%- z&RySAJX_oMxMqoou}01D%zW02SFWry5I|d$L9T*>t)Me?&g`mBZF-fYs?t}&ycEvo}ApGCgre`hx|pvGhJ%})~yq7`AOInrcJGddLkm`AoSC+oxSkp z6_G8A55K*{({p~U3|N1)N<$PX@*3vLiO@%syliqSHjTd`V_?vrUyTu(bD0q2 z01;kqFUAn*;R6Hg&!t9l*jh}+e~}OkIH2Dqc(BzqXd*jIBk;**>}Vfy_b-(l_f-LZ zK6r=|jx3cC2G^FW7P=yyDj8#*fNSB-$;)S>rx?1$TB-)sJg*O7RX&B}8102d zo+LIAHMIX7trk--X!H4+8zi72#Qx>^gLrxVi%9!ygWRJI(~jMag?4pyxf8gCpGsZj z);wX2Uhxcb*{#Xhg&=s|jp zZv*KIk9J*J_{rY4fA1K_0L>K@Z|RR&fQXaE3&o->$r{|wGbDF+dIafjm$$s?2%5(Y zD}-lFww{z_kb}U5(|5gois@iDQ_dLty#a9>leE2)0|=TQ4?n~_KOKkztzTp4=%|O# zjniNSasGuTxM@WOvna0_{ME(^5;J9H=soq;!X^i@FeWoL))jc-i`OMCBR4yjq=h^F zXp^O3A4SxR@rO(UoCB=QLE=||R1CsC=+2FvWMrhI)MgYOn{73FjZOw+|G~G9PXhXH z?thxuJr6)Ab>7f4A~Oy8>WP^JBYnK(zdy#l`%ETNt=w9J@YrAUX|4w~!Soo8G22y{ zzfmlL`*ffgO_kO1+l3nm`3Ju2D=4HiMQF{%x)%dZ32wIn9Rbl!M07ndZVveG4_ic! zZGy^UoIe$k87O@gbv~;a7(&uxzZB-)>LiK|2}551G@i^MdW)u|PIlkQD_CrZ4*0)1 zdcq@bk4Z|33Q*5ZvGTu0T8Ru=A5Zq94SclS9CgK6;N~IYu5y2>expUL%-4QqFx=oV zKYI)`psV%q z*7xOEtx)uFOyB!D82Z(x!E3!c&)|BsqMBRO(+E=!sp%l^GMroduZY@Goe`{h)nbhE z7yqSdSR*7=L4%s@d%o@lu*AIkQw8quIQt#N{>kZ&O@0f?Z3+L^4#gu1&zsx+FF2d$ zzabP#dWyjr$Y!OyQp9pyS-%nH=2VU`jRtjQJx0Gp=XALCJJ(qID&zvukbT$eZlOJR z-k#`CbEH9p3ljT?Esxy+Pwu&L)#iOx0{or}=~nphzjkCWT1FB_ord3OCeHX^RTL32 z0<@jecqn2_vj@|{p$_nQh7S9`#*gvoK#e-QP22z2A(wpUC)W$B{r{Mwl&^5)uDS6} zA=&>&{t-I{{xPJB#gw_l>HnU_E<>9taMU=Fgpwk_b>si}4UAr>4Qu@$eL9V@h4=D{ zJl@?;ENis?F<5M_k(oRJY~x88VFGH&`7S? zxc>JR1Rto;Z11cUTKV3_VHkf=yoUw%Xzi#%>`5B>Bf-Z{bmjlQzpnz zusjQ6U-DzX-kDnWKHTtn1y@^G?7360;Uy+-c9_qV)saTYTkjB>Vce zk7P0_i!>-7XKGET4_2c66ejSNEF7(&t?th|rQ6eyxqok6G?d!l%b9g_udH>G?Z1B^ zY0z`#6vZ@o(S{4ymagocb!qM28B7>qpuDLbA-?{Ma*dx-&ItF;U(|}Zu#rh&lDF-4 zdA6=D!o`&Fsw{87@CSyj_8`)BFcQqN)+dZaGk|5*ZcVbYJGw_H&kB#*1+NI`9$mZ+M>`9eGi$tY!Y|y@*$M{ql#4p!W@wqD(8p*6CZ`4y;dLhK-K2iiML&>=Ka8=2 z>I%+#Yd6_;2|DR5^I-oQ)^NM%C0ihyV7&$%GyA*_7{gfU3s0I~x$1b{moK{suUL{d zN!DJH8X@{x+H+5J?k#U_$(!Rapi4L-yyldeGeer4m^rVpg7W`i{}kM^OL3;LV}t62 zr?!P)h|7bZgS}v;+{ySRcMA36#Tf#2O6f^%Zoq85ExKWAiD(M)IS)er=xBv*g`GDU zyhxG=qKJK62b{{1w*N1&NstkPVrPLhitb$&3WCNYRBsi!W1g9HY#8Q`&Hk4KPZFM= zUFjBd`|AjjJ&|$FHA{~J>5&kKq6teMr)xyxp_Ot*%*Z>U^8vjjL%SX+IbxiqIB|~s zs&3tLMc-C}OQd~fw55B=xWU`UyH!c4;8gfj7$>wDC|;9?e6+)u5XZ0sQ9;$AKKvym zUyxX>t5HTeHV!E2)8{;>H6m5iot?LVe7`*`t2lXND(_0FAG^?U-Fvdj+Yd(Fg-W4Z zkvp{Q%tr$w!k!e!XsQ}tr+B&ymTHBaGUS;t?9yq}&=C5aR#M=I|qjHjj@lyn0e^+4#cn;kQPW6QV7b8H45G##-8oU;0+osN$-?X+_) zGHy^VS|^Vn-#M_q(2wp21DvD8KK{j097Y`IT`;IPjr$~o>hS{6Y~rMR@vIzi*u*>_ zy>MwRv~{aGv5NGFAyNge8=s|4bGx0^+s&lYUh9?ABcuFGAKndIsieWir)dfO(khod z4S);E7lbp7m+6RW6uoy`Ocpso{MbHL#Thz>h*Z<^fqz;HsfG6$;$Jz()avfef}sz8 zXnr(5H+6ouMm>IVIc{FgIaT&0K1B{XUlJJ2Gw)B}&pTeR3|kxuJwY#%uWSBK8DxN` zyhq%Gg{*jIu-+!6M4%f@)Dd#r6-COj{3oW6Ah{4Oq zjWP0DZ%}79DQ^T6_*!+zuB2ju5NsVW`LB0R{Vz4xfz!;wt>Ulmck^cV?VTAQ4SlZ3*(3t&? zVv>KOe6Z#J+_XG1YM3RXan^mSWC!7YPTr_|Gqp_3cG28a{G)|-*Z;L0ZF>HKjEuv0 zp+JV_69U;**#76lX9Hn=H*?WX*6H_ZMn$YJTrq#o`d=^Mu;8+;b%TI%+V!>ne=b0K z=;^r#-v2Ewb00aylH2*iUW3?e7^X`~hO3}tqiz@I%R=_?I+hEyk@+#;wnNS&8!hON zGD*1QKhQpdWhMcvU3!@XVyKenHtfv0{~PT8NtRbf$5Rj)hty+LfQmV({=S|!nR1BHgq%SZfkw1 zk522>IR_M3>fHQQJsdG1B31Q zv)iJt#+_M8vPhC~P0Y%$4LM}BE^{~%2kQS*-90&IX^zggb-KG9Y>veN``<*x@18zo zoDv#8Ec3kTF9nsl^Mog`O%s%aHp+MJ$x)JVONoAR-{EX?7H&yx9FS(CIMyqZLBp52 za;XJ_RclQPppyE}7n_Eq7PBrtFX#znAELpA*!r4?cF3mQ-g?u^j7$^!bgkmNdoVtu z;wg7RRkAKOnlOv=M=|Du`}M4O3#$3K96Z09P$b+mPYfppn0O+P7;W<@tFzS~gV(n@ zr?`^Ho3q5YttLX$faSG6a5QZDTYl@b{<#KQo=tfNl~?ylY=Ts8VD#(cToQ{bZO zgPC|?$m!8}n;WOO&`M*aeY-xNY?)QDku6lSL^=)RwFs|dyv3s*S|KY#+)ZG{hsX-E z-CyIm{J#T?PblEwm+R{pck6`$$1FNCTD6NGIWfn2?tDnLk+q>hJ3<$2{m@j1D0WQJ zeu}n$S?yrY<0rhc*OuFY#`T|$JpU3{46j(jS$&F;=x=W~cv$hdHzOv&fEjIyw_UjL z#Hh4IG)j)JEs!OyFw&pkhQ>1?zC z7@Q@E#f;WIf;xw*g%&X1wIrUtL0tr4Z@j?wOP*A6PHD>sOPEvEUsKCQIi&%-Jo(pF zzU{N$e7;-jkF_li&Do-oH$r7)%e(xU9B4FHNgDsJy0FY~&opKSI-dwV?y}CSQ|iV_ zFkVliIV$)vKiIxN`b)GXCF>ny;c9GB68{i+6bw%$yD+C4h4$)gjyoaNCNvTJTtaHk zRO@rl1AWq;S_67;&WA6Ac|p7z-sbzPv|9?^+7+Q;1rlj)SFnADV11QM#No=%pm*ipGQxJJz~{VFt}Dcd-^ zB{h6&u!DfnkH2a2+y$?%P}4TX@U5hv3FZ>l^x+liURrmvAQq&ii~5Q4OtBOEOB`w% zr(zCru7v+-&66FpTH}5zrlmxNqXKz)I7$4NUu;T&#b&U}$B@-qZV_s8_>*t8wPWmO zpVUwF+OotNlrq|UcOI;&pTJ21pZ!EwwY~qs#;mRUhLLa|2sdP0M{pkF)1lshaB+qt zDp;_bps8*P7Sv2R`N8qO5s5wt<#04^cDQ?M{Vv~T(QasJ92w+qbAG)mgGUrt#MrRI zG}GOEaF{UgI;S}9bnjgqHA?<6I~{W8`wTtXdQN)JzPz`?n*#mYHsY(&A6F2)f-Ygq z(sOlIwON{MlsXGj!BA0$eCSH z(!=W1F{w<{^WPRRLc1Lb%Ww~MK4O1?(Gg_Vt=j`Z_YBfsD^<}w8mm0{icmZdqE1Ad zYIvF8QM%}3uv5BGLL$F}){-IJwIx7TurD8=(yHP%MC?^NwsFY0!5>p6j%^Zc(cl&8 zC6GqW{F}`QpQ)U&td9EM;yYPci*E0}X*M>DfZ_Bb)}{i5gV`!a#mR_PV~Jv+*Pt#WBSP`D!EV=>y;%@05yr6@ygv7^Z3XZ^+QJnO7)(^<&DP*> zdUEyBOX0b-Fq)8dW)`TiTC}#ppHo#l4cF`2R6Q2S1ZSWfToZp#44)Jx2DM?(unpM7 zuH0j~c#Ocx{iZp9?pNGb=^6jWo;M;=tWVPJC)u7EFANP+Fb#thO=`3n0~t@vu%rGO zK|1}bg_cq&U}cEaJp5Tv7udt(bBz7$Gr#fq7!(VgWaTpu$sn6IlARjTou{_=?t{&q z!&B4tlB!Qo@p(gImA6#xuJS(EVtgF@@60eCGw&Aa9QX#vpRVOOF*$Cjm&ZYsj!^Jz zqwgQD2P|4!RsI&6noHuJ%^@(}%?08S5V1MLcV=zRwaw4jHRJwj9;B|6HAjKQlt|qo zvr;&gWC0&=6111W3u(Mm#@8Niu@iDUMKby$w3|PS-W}}k6ztw5fh2vg+i~vVF66E? z*Z8I@^qTSaExL8g7k}0c#K%ajmWOeX5t3qWd>5T;mt}F7D`@^7Rc{>^RkVc-58d6; z2t!MEhjd9w_s}T}F_eI`bT>#Nos!ZZ-3@{Q(n`1A!F%ubzVFZR59Y+|v(DaYJ?mM| z-aGF*mQFBNg70BV=Hp5a8&dyLW5H%1$_UrF^j2fP+6u$TVjAVx%Mwc&7G)aTBflj| zn=ObYQ+udtYE4Sij!REbLGh1z6AvJrkQ1)ri8=VM6SQXjsvO$qUwM>uK}N@2Sv8GZ zxdp@|%glV&K>d$R$H&r#XVp*IkvJwR%chH2wwn3?s@w~H(6K?>QTT%SiIveJi12F^ z_|6?&%J>=ZD&ME#HR*={5Zz=C<>46xOy~JGR###;L4D`>z7AG0_UtFOYsTPFnIit7QIVIo{fd9v~P zoMa6)Bqs626NFhs_SHQ4X)C9+>)y-3B^!?8{UWkz&EiDE=^)NEyJ4%jwJ}OUi5NJy z%8NVmOFiI=dU?rbDuW_&{g>P}?-$Z)zHGe;`snI^7b(v!`rGWK`llj7Jmwv1*MwSf zYyh?#%q&hQ#5k}n6Bd@UJ{y*En5sn=NV8mr+E6*OCdU4}((iNT#Do&OAxD-K&(fCF z%j_q$r2e9vDoK+r$b=p}XMJ9fYyt5atc)au3GXzPe)M$@dqjc+=S21TmW?JnpIAn2 zwJ*qqmRiNd92A+Jk!6!~gZcLOA1WUUF?VQ?SZioD?gJw=M5#vgiezJb0EUx~lU1v= z(nCUTm5M3c@Xej=9u=DUF+C^EM+bRd{I;1%bf|&b9y1w@To_!KXQW5DfY@MGHXvF zneH`KbC}qgmjR>i^#ZI>+_pgZ~%1O_Tu|(`enk;HSfv_W?*Q7&YyX@M?idNPF zYDgON%ByN@os_IQ7q>RRvhTCxbFz`|HoZh|@k)(0J__+yJ?sHt*Ov#XMvnL&)Vzj% zz7t_LjDIK^NE80Jt`)y)(=Ml0T_Ik0mf%ycITnHY`YGsH$lf$ zU){mOfnTi(iy{>|%1oGH7tsqwgIViTUgU$9880*?s6bw42CDB2`{= zgsQS!7+7=5Dlu#B4(t6GF6>*Z-j@f^ARV2-(lX9P<3Q=ooq%H$h07R8r{okx{>5hc zcdjQ?-jb~S?c&@AwX}}8odJPJzn6Gc(^K@)Ckuo-7u(RZR-wsa?a1Nv&oiLs(L@DM zOOlHqo|;43Ivmo$N~|pY3z-c=Twa7S@vv0dcA+=J%LJEE4=U1@NvL?tXIZ0#sx~0z z23jl)bD{R0=e(n``<$262?yG8*?65hEnMdoWBKQkd1nm5$BZ<{7_5JMU}fF6|MM|f zJvr;W$gVYo?NZ0wA;T=FIjM@Al|y8=7z_@P9mG-|x{_`PwltPw-H^n;A_bV8IgCn9 z7sE}F##b#VMl|VRq*_7Ma+72N;=B<-^M1p6joSWHSSob8t*P~YTf(gGe*v2}gX$p8 z*?dQYK(uj_r-Z=wc=V;OJNe15?@0rXQ*Ks~RkYzy0Q6>s^54ECv^(`pw675%uXawP z3C1v0W*e{wf(O6ds}=4YNb&uk+DHAUbDtCoo_uOVN?68-ozvN}<_Snv;7W%B^KS1H z!S`GYSaCN3LlF=4)I(nm{5C~UvIx}?vONpIg58_Db7-mcsD(~7013T0ZiYY&UhXaE zTUfQS5*H7_SJ4opBS^`C+nNxkW$nB3jo+B-V>&n^0q<-A?}8sPs%;H3bRtWsHexon z2*(I{-<9SJcL<1z?M?qXs{s<&)<6o!(l$J1RdUp&fag}WzMrG>-mI4siwuAzq_46T z8dWhh%NJW8eo!L@r6&-7MGD>xer}8{NHC>Uq~SGU4ZfZ>x4=9%PeSI52RdRBs<|zI zHN0sG6Q?6zc7z-Ai;NLQSPN~(NOMgn-An?JT{bkg&xUm%BB6B8WYp014wD=AmsxmFDN`>ouZSCi zK{(;)L)PY4^*I!aTlxxf$Ki{hb%_)y(EKr3rb11{o++-r4UgRuHg+zD;4fJogGx)% z^RrY<)BL?@;)&GRHj7PdMG77X zN1Xyf3ms?YfLbseONQ3c(>@LiJ1ZZ!_?=Ka(HI5qHe`APKcAfIGzoR2%PO!!iwi0J zL?8z*KbhM!AfwGOFp=&`FJ}a{#Dj}9ZC9!=u#W4KC#-N)DvYKT3G@+O zUcEufbpIk)j7D?8hKmY$RdTOt^BXowmsH;Zmo+ec=UMWP{znB zj40U6CRKW!=_;-^dl#Nz@Ui6dK_mGf(V8l=tWttzk>*|_IVfcPXYFT~)=cAx3Pnk~ z*Irvf)i>(TywWUOY9bMHi%J#9LXsy-0{Pubb_*P+mZ3V}S$WRCCQf|7;{yI(z1t|D ztAu<_*M9C2!TV^CYWkJG8E__WX1{GU%YRw%mdAh z17NbvT^2WB`ts3r24Yk5&xM4!qIZc>^Pb=NMES<(9nYr6e8R0v>p9ZHmiRM8pZaGF z^C)~CB1@?QEesQF(^YL=rhNPTGOLQUx3KftDfxx-GkHkX@Pw5WMEp!|Q!DE>d!N6K zUY-5|b@g;OECRc^*CAlc@IW8CuzBBY&@QJP2{4r0tL$vtQ+J)&9Bx6gDeG-bfjfUv zJo~;d1Og%MK0;S3f!6Z^dG6tn%W3E5d9p?h6GBHr?6=%VcA31x8_%VeGVGQh#8dTqPhFHQJDI@ueV61m8{AM6 zxK{vW4|KE_fX?^VbW}CHuN5!XInItFno5vG8M5fYJixqV_>_71lfSwCuFYsuPxH^* z<7n{Vj9+m1bCxj_DPMf7LI9GsLnrykiZ1g8tDNWB1GJHEx7}{XOR-QsXGQJ#|Au;sRnfzkp9R_ zH?5l!+iQ?%U0JEJ)Ltcjy2Jz~-v;%Z0A;A-PMbz}N#&t$)lU<%pV!U24C5LyVwW=h z)AhJGmpW?+I%N=ywQ}M`MQyU$`=xZLH*5h&AP{PeL84iDyUzFZgqY}=4XkN#IHhza zA123YQnz~J$@+}(RIm;7co0aBat}gf^D$YItKhQ<2P&zsWH(-?mCji%(hQRn)xa0n zKc71%nOQ&DliuO~qxO;{AItcQl$Ui|r%Y!~OJzIC80!bdwkXUAi^+aXiWvFrk#6K_2}vm(N0eZi+f0}U%#}1mhHCt)3zi_IH!yzw z)ZX8hXSS`;s{G7}gOPY#6k9UhsJR%Ww&e)AYL{ggZ^!3s0WF>isvW8$N4#pYm#4V$ zQKh5PJduhC`?BxY_Hx%Q)1o=|eHP=P9M2wQ;^Xc_mzmtx=B-~8%@KJMcIbSfCl2xFiS_Ai7T3w&Ce3lD#fbBtr?ff+87 zAHU_stv5BX;WsZg@kFN{8)yfU)GQ35+C-%eyCdLi5PN%3^B{ekdmF?(U(d$dfJ2kQ z0_1=AA4mM^mQsSG9YR-$aM-#3AV^C$?|6=|EIaFgQ`yW7F@9Vgjd^$tZfy+?eXMzi zh>Ib2`ztYjVI?Ok*B@CEnEh^2tVQ;~^{Yw%EzdGE_|`X_BlLcV;(^kt-5?zYy+>8p z(xS;mPmEqc;37buUr2w>Y87o)&!!7|qH)WnyE)W8?oM?ffV}x((y80I!YEBs5UIx% z6a;Tj;+bz(fFxDaXf80?Oc)io%)1TjR??gw!h@xqsk6^UYNEw&(5JpeZ5*8m2f{|k zwsRE>-3%LN3uRnwJ-dPr#{eY-@nBW-(z(CuTmSh-Aw@G@ZXNrLmb8pM=W|n$GE8+c zz0@!z?y)|-mhHFtvix?&G}OZ7Q&^8{QqpVH<{YyC>~r$(D&zrIpC?WVNpoR-d%tzlX?@p&kcKP2w}dGVI;%s2YYK3!gN=PP7aSCB2bYsvcwZ{N=g z_+BW7_}`>IR;d}h-6C9D1SXsk1RIqetTn5Uj2^KNLEgR4=u@wF`WaE zhx|~59CnqJlDM;C@kV1`g|i``6v`(;Aa2v3W4mjS&0p$mA8>Uk(h%NfwL0Q>UW}vJ z-t`vA;%IqMbK-0}c41)5{Q_s^u*!;0R9er4Tjaabx61*7iL_Q9g%2)36K}%}4tUuPaImg(K)-gTD z=y5$Kmy2gmJ4>B9^K|4BNwOdBGNR7AARyKzZz90u+Qwiq?ZCkaZI^-G+vZ(7Rb{CjIP)m20XC8P$ar z0sfCCUePPAIY2kpAc+@8mZS^DxA>ZC#xqJj6u2q&Gq<=tQ;cE-&0bY@j!Kkjxi8$g zE*Y@WzB;vMG_Ww?0>YHS6bS}JP`})yFl|IfS*uILsX5Ae+r@rlr*D8A!Ezt4KY~w3 zd_z0QDDxK{*y2ciZa73t_Q3ym7ci+J`FW*#2_IKCOAKE(T(ROyd)1!r)cw+^;062a z>Z|WjC|`(&rDa04JiDRiW`I@8Z$A|I>>=889~gs{@lK}r%yA6kX~0rpv4{Bi(}(CF zPbBu){4hrf+Y0zOLbq#W(S4O4)l1ePg%FU{^P!37Lv+3CZ4tl{jWe~W-pdic^AOd^ zKv3ifUR(Gq0{WcWR;Q&R*^w__5*Z$xbFHQv&_Dx)GNZhp*Z8C1z!Hp6{=dm< zA4?8s=uh_M>{7gR*`zk|57Zm*Oq%LO3ay%twX<*eJWJfJDmOkD;8WRF;0F`B{iScF zizZF*NF{xQxU|`p1dzKyv;cqc%_abFG1-q5UIk&p?@M-(t_e3VXcbVSm)*o1r3gtJ zLn2HEV+4gjsj|fNL`OUDFe@_Ye;GHry_r9b;>SnzyUH`4F^j5Np2ggHN#%)Bz-E6UhxzI7e z{uD9pV4y-d`uat{5|}YM)3H6S?%4rvx}JMk&q`{|;~hrj&@Ab@{Fp!Tlm7I@-WB%S zW2JP&XCBFNyDZa5Zk`ZuiQ|pNWacZsM7en;yW+NXPlr?Am$1;yk=8&W+r?_%bw;mm zEXiJ2yk7ss8s+~^xu_4OT;{4I%1A-NZ;OcMLyVk8j%-GvL?+L|Xo7PT+9N@KyD<=} zeka?5Ixp*-{=VWQfC^Vt#%u>6*EWBGUaq5H7Bok)Sa*dUrNwEWw?Oax;p+RJh~76J zCZ@oJ)0S14NFZBmz}}f3sc}lZ$)T?p+hJQJ8Avg^pB2MIL0COY7hIs2-s{32#fq;5 zC9{brv*1Aqi^Q6jCfYJQj+4_Ql?6LcuTNw)5-K2-W&^WML}VDwt#(;#@2_dhKF2pu%R z3o>J^Fc^umqk}bEO?{HO`(Z{yhB7`j^AZb0|Fl84a4R)1lcs4sEibKxI87;@-k`wj1gSqR%b0l*~ zEb$bNR`OIoXt_^!y2>A+OKuUGQ3yxya-!%%^JgXFhfR{EJAW(B$#wA(GJwpq%b>RJ$3!n zqJ&IK0f$X3uqVkZ4QDJ)UcJ-^_oWR?o0Xqh>N**DOk+AX<6(J^eKVa3_BAIaRw{c@ zC}XXcVl?}s95QtOBi6;Og>RM{pgIA zH6qEYK!*eGO!q_Tj&uo4EE|$9zz`cmgm)ymn9-eP5|zDplH2XFXpv2*do2)=E;5WL z`=SWm37L$^2k|pLuzh>!^$9Gs*CJbk8Nx-}>A*p7N+=Wjo>HoxT=qSGhy{~BBAZUF z(9U_Rx9Z~SeO|l~6DKtH&deP3yV=qJ@P=O~ZBMhA`;SgX1nz|l{@XdNe!ug^<=+i~ zZx-m>p1(Jcz?njV3c0z?UozuPaL5b-IjYkT^TCVk0V~Xo4>c^8L7tR)Mf@3AV`H z#B40Oz^kRB{gY`l)gl1xojWA49pop9Xk?bmdOwjY3a>kQ|8?Wv9cNa|5I711|3gbgczmI$ElT>@CbQdPhR{g zb)tGVE5BaY0?z{4x4g9UG9Ubch}BOm-ZwAW?M(_p(v~|HwX=B-L7{a^b#t3o3-0s= zJ9IFKfTKH-XJp!7b=ip`6mJ2j$JS_sA;^X#JezNH;hG6ImG~bgUmn~H|K@A#Jl;1twR*4T=2`(#cnuW{s4H}y z3v6_8jyw}dsR&oS4c=bAuODrlY3(8%Rr_IUjQlFX`w;a30z&_OQ>0GFyMT{Z1;Gi2 zzDbz~eJ$Ii4Kx1}<3X)@FUz}s8|l`GhF9RJkFotojorE*^>Tw~rJ8cruHj#N!ioOu z0cOqqGR%AA&ze)b9*{~6zxR+b0W>f$2469-jSb3)8=r!}7+o?V#Xy?LbeI=3ytixr zjxH?MAE$3zf_FVS0y$N4Uj>y8e=Jt}gd(7Mfqm4@7+>nmjmx>+a zb-@R2zS^Djp|dbzSv5t&88`(`G8+G*d>RtWAj$|mEPGJEjQ(#^Dq_nPH6@MTpVQ$v zBt1!(Vg7nEaO(iJM=WUiC4s8c(zO+i2v za?D(rb&{p4Tot@*bf)1w!3BM>sktC|-J)QOdXe{HvuYkov zv5i328r9?WQluk>;mNM!Yfln8BEs2Mo{yOb=K$&v{=UF;Zq;;eyVAmuXLDA6ecaoG z!>(SQ!eZmI;Pq(nntqd;YRv(5sf4l5W5RpZNkGy7KQqJ~EXxV9SJkw?ewrTv;ZWND$$&)zLbfmfyBwwMTdY+sENqL%E(i#TlgIf-GO=@F#W)9rc``zX9~Y4&Ix4& zGst|H{&Zpr8)vKTrSn9F!9JU5s`uP%Jp~y2WP9A(TwOhjp({Z$iE%r>QS? zb_^xSFRRR#16#g`zc@~DD2OSM$sw0N>mgBzbCdJ@WvtU+lNAM_78$9CX=>};S550x z1Cb6$z~7g9k8um9fsFxwi_cfK7WI+HKWOpxEZUv@{1U0uh@~Evq50xqT#!z#vuN=B zttj`1w#2>dqy2czg8o8OFLR2e zbN{MnHyJ3NtowGssn<;Kpz0N?cfdX9mIbx+D4>8cJ**J2*M24kFibqS-t`zVLk z;%~dJd+t6hKDg%;6bho3YKOS(TLK+Xvd)A0gY@@kH%6^Y@8!k?Y$5FK>#aKljZu7g z;!YzG>duL~TJrT%e0I7ITHn~_A#4c|UOZBNA)v3cwm8+P9t-;s1rOqxryECWon~F} zc^x)dvg=1&%&#PT@<5|q zz^>te9!7-{Hb!#}JNpQm_INsF$VmblE-94^^vgPUlMWMe5XQ?NA70iAaEinVOoEveU zTFeOB#01&ma_9P*jYH-CGGXb}zO%xos>U#&j3lhPDyKsj6B&4Ragp_$)Bw0738SeD zPf53<^j^ASw3?5O5OuNb6CYFKoEIo&=Lj>M|KBs!1Wo@qyL+vlaC#s9D8Oq>z8Ge_ zbCZ&_nl&;uEdc_3H>1eASU)glz$0?3o>SO6M#r|Qn;50_t$+M8 zWDiK9=NGPGJ_V)8P00Rr9~uY-UMDDGD_YlKR`cEsW=Sv|P2~BB{p4z#Jpp@1k>H$z zzceHzamD{e)CuxmT19+JVCkU`|0070jSQcosC4CzVjdGkm+3ea_A$5oAv*WQ1p38x zv}5X(9^tK@YxnZctc7RVsLyYT@PYs6A#)wbbKeO1aooqJrR;Q(MsGB&T8K+fLa(MB z?W)}wNN8q;XOTgmSu_$6)|oUmeq{jjJ$W0y`XqEJj(KD9{2W3|>1!8$RycWV(7&C( z2~+z9T%kl-jRFXuplWTcOb>u)*|M;?s!dXDL>i#9W963MIPM{;Oircl0&?cr{q?V& z68|ug#plIrtGFEdB}}X-4Rq?AqF0%>BKbwBELqRuOh?ecGq@$gD!&yKhtM z)Hy>Q-mu_o2Li926lQMTtcu2L+0BGy1-@;&mgmjD6#3B};81I*Z0*sV&;WBEUf1>gJko;#8w>BboU6rB$E|928A4Hg(2l_4$5P^JI3%2H`SYq%Zx zVO8>xxP6BUNh_0gC;oqtU2$7XC}8o^NmnI4T3#6gPpv_!87&0_a`mphkx@I|`f@wd zR+$I-yPlcdFFYb*gXjT!b`cRTa+BdtO6}!oNsUz=a~8DZfqCAUQmZjNv2gjBb1_pw z)52B)Sf*=;jZ&d^L5NdxC=LFcF#cFSTf{Pc@3)Gj=sH0OeG{w|*1$CRb4|^GRe(&{ z*DSAu!YpThxm~gQM~(!R_^Xx?e8N|gm3^29Nc-Te$EoAX0QWs<*YyWF63z45#`&i2 zIf~zlzg?9&pn~1d*9+Xc2)Oqz)d;zkM&GBYz@GFA#FT>Nb$flu@<4ebv<8iC`&6&wraP+qrVAfCh*+`%Zi?b`&{01)7SVru{AIY^ac!U9 z5PlUKfZ+IPg?Jb3q0UK|NNccw1v0f<_E&A|+t7_-0MF%m3R@^>yRP*xeqKB1Zxtok zjz~iyH`ZLTT8&hgnwZW3N44zRY&xFf1YhXLzw7#|(yY%IFEYm#5n&*oTFdr_(xsUK zqE{Q&pY!Q6*PrRfSJT^r;KHX6nA5U|a5;i5Eg`<|lA@LljtB+kW(Sqd!2D!5iF=ZZ zL6TGH*sj3qj(=o{eVHn}Ckx$5NMzZ3y{vMCdce`JoA>cl=IzH+?@uZ70KjK0v>|Z6 zTsc-SS@}+#5`O|6`tw2G?{!%o-WwFpLgsC(F{!R{3fblmskXM)9~X$e;o&$pEF>_* zvfce$Wgpt&J700zaExp*AY;k*F`oLFdWUn;v@YkwypCms(jt;j)pfJW09S?|Apja- z1AtZ}|0Gy#EebUddRo1ZfGeMRGtm-D5l*?=WZAh~zcKdH+>0Z1)**xZmHf`zoQv|m zfHL0tF`|84gsDZToTd8i8bpZPPaecR{JwNve3;Djv^tex7=K%2LlnRVkfAMs*nV=d z)!LU%-xwe*HZo!I-<;-_8O^$gZnpFJB|F}ixAs^?ih1x9=%Cw^IO_+8=C_=@9XsOW z87XQoz(G&^CUwqHq@cX~l==OXL#~&(GAb*Z%^qOOB5#Ew1tz*icB#Wo2K;yxM{yYG zUWmN{Ppl<+DsBqm*E^#o3D(P|f*ncz>hvAYUB>6Wz{6LU@oeqxe-9b08K^TJ*u?6} z+>IrF`dYE{P%%LM%)D{JWq74leG$&l=*^&U`Hj;uLx#sy$G~J++@N6;6!Gh7u$eK3 zhx-#5jHG_I+!{gXK$4?^*ah^BUV$X8mNahP;xu4sTFqFq_5+3WEG1a-=7-A3h&@!? z4I_Q(=<_?pfEO#jM=Uhtd}cDWY#pvo@{K8M;rhvW|b+f@7 zZ19d&$yYJvYaSwZh}G;+!#&#x-baP7y!Q@~t0iTu@B~o&ptYyWc7R3ja6mK=!6LzX z4f5+WJZqP2SvrCYc>-t4Ac zzyCl}D0&H3 zaD2j&+w5ANe*5*zF5*^ypq+NtX2A8FRT3NOdHTL|>6!SRwxd0C9w_-K+FowwF8rNX ztvpFLd^*1g<~0+l|IUkI4iq{r+GoJ%61XDC)-x!tKb?_ejgnDe`nntTCy?o9F z%ve#F=ua(=(GNTQBNhYXL2{X@wG-a_?R*f;1`Q*#&qn)f=lAM|-7NRPf^{KRbOa!5S*I z&Pa!Qb6IPT=iJDR=vMsg?!Xw9#QlA(H+Q4_c_sgNeYI3XtQ?tD?haJVC2 zA!iYhgw+oeIklbzcvb7|ArZn$p+4JK{I#Ul;7>wc^GZ4Q?l4QOZ#S9x9nN_7pM96c zgb2#|EL7>QAMgvSUXI%zZ%~#ADuA}v3AuIg^~Wa|ANT7Ge{T?eBs}`s3E3W7Pqyao zxC7S#Xrg~`iQ2$2eKiMFn*vd?<4~mtjYhRwX2UvAIMCHD$%!?$Zk-^hQ>MSz#-k}B zA`~~+y~V@ZTARoTDu0+ssFlJl(ZrFRnDIiFyN04nFvwdVcW>~#xy=~#DswdGYJc0FL*>>0-8VMvoY+&`7oZ;7IU1WJFn+7UA0K`s;Phy@Yb{Z$p=4~M#MLdn4H({qkdF68e&e8MU4Hh-%2xg1tUU4Q z;*G$h{d+kYNEZ)Nu`~K5o=YvkGHWtJllgOgI-;G$`ySxO`6k|7ZM6X@byv8vv7AO= zOFPQ}sWwVG{2yezqL(mn*c`hgx}mJB%2+IgA5hX zW%zVk#op9Nq41Y=Ri)$)QK!*Ro4>&JK{>aoU@_&6;Xkz@(cpGnf+~oO&=3OxgXXeo z<@?q386s#-*3LT5Np7AN*C_C>pHP8Zvs&(A zEJMH7{p)VC^hR2^{2a-2n)O#ZoGB9#!<{T=7e~V4`vf@~^SV_dN4?Cx1@Bj#z!7DO z2oYY+KWCq6>pOuSL4VK$RvU|02^-Hn&roe%4H^1mUL(+Dssy{VV4G040HdfP`?g=1 zA-J|zBC}NU;hy@w99jc_rxEs-5m~w+9ap~@#;65VS{9mpM}XKVllZ7c*m=00h~iW@ z@YZ7jHPhJPJM<7y+en@}q9v#?O^s=p&CO#xcyL&kC5LMdBeDj9(`V^GEbBL==5+=X z;f&kR*E`eWWO4d}i?tf8rlr?UGM7yRPw_jo#xf7ewm*v9|L$lifN@c)^6wbMQIY&m zu4w9?e^E@v#Q59BK^;?2xB2!d&6N z9wwEaeD@w$W*GN0Dq$b;nqQA`=IqY&{_m)fU~zU)!wC`(9{V8Lx%8Vb0N7fzU^XIf zo!XEJmFA*HZ(x{Ybq$|irUsDTM6Y)yy!dWH%Ig=DLU@fEu2 zK$ojwcx8?30PAsAKjq4TeNul1kZS1RSR$@DFTHDdkA zMa&ia_oI#)Zj@JKS_j-a@vSVR#kJp<3woJvrMJU(0RCyQuH2CBY^>u8mPkMeSFxH_ z;+k{k6|NREw|;~qP{5#FHOYUF5UZ3TexM;TYuHnSSS<7WwH`zjhX*Vx-}e$JtRI8v z3||R#bHjuBV5QmDO*Is9r2Qg`H4D|CohZ}efJb&N%SwDHhlM2vFJX`WPH_t0*7mJ! z(n5a;*6m{I)%vgg6wDIx66Ar!j4uNup?aE9(&h0-)lWm~Ggnn7>GxyYT}|zON&}*! zSWj9bkGFUA+1$u=u{l+~i$jwvRr6dDcbE3@ikf+M^G53R`WZ6~ht zim|jcmB^dN++c$3UJMwe7hu4>{rVULhHF`+k6%Z|R=a+R04FKB_~mh&i2a(Kn*8-m z)F6#!Te2Y~V9Dg(*@?yJ86h>q8fqgKEB1(!o3bg3_+|hI2;r8`RqGLlOdVfQ zqGh8)>qvrx_^sa$kL?$)QG2lXoLIq|jb9vV0>{<>!hRfb?scNBfBIdO83tul zVb&;q_BiZCLX;G~^lF!4nBywLZl=9lA(x(=Jw&-)`FSPL%viu;x~y2{(QG40;k5MC z@jEocFS%lSo3&TvxTa!8|7{IMFW>9d$Jz{i)bfRxbS{v7&?;6GLYKE%MTG~DfDkbM zF!*fJkJ34;Qbx^hqbN|RMczD;p3P?P{uuCs;5=XZ)LRWVc7TE>Sbl!_Cx3vN9HBP9 zA&?(CeS5RdrlO&oJ%ZL^6CyXAZljA_(P)g&vI!8{V^n2Q zDhXSHAwx^K-#`?oSZmH8$pm^{Y?4irBd^1=zw-^L-dyQMf=IULz@e|sjmeYF5=Y23 zk)K@Ar$}1YK|vqiZlLHs*;3=cxQGqOIM6r$I1UfxCro~=@MSoVe02Pa-yUd6&||85 zU=vV4>MY)Ac!?df{agOFv%c*=We7#~GaE8YtGD>5K;cp90lxVGSNZmFg?@r*EQ zO~jpY19`w-YQUj30MdzBpEsX8l0%7(r*uLc5kLoUiDPgyiEw|!#m)`ACLxt9UW_}h zFh4FZ$c7=uZKKe`fe1%pt9jO(&0YbHc-f=g%9&u=9=fof{pLM_B_t?AD3OO0-;oYq z`c+VSqn&q1PFBQ7vljAsbXj->j^MpqMjjul_>oUDih5~U&Q{Vu{>-4!>DsMaQ$&$) zyNz};BxKhd*t5CEYL&V4_EKG^@44!Mt<=9U*159cr5;&r`nk+7BaZUui%T+*3Q0fd zUj$G*GI~Q$N&dy_>W)rfGN{g5Z_~&K18&lZ{`w0REC{|T zMa%S5Va*z5d{g4qeC}^j!hz0aE-2vo(hu%;ty)L>~q%-cfv0 zpaO6|TYOzT+xb?lrnAfKpX$cA?Qx}@X`%mJXe? zJdL<=x4AJ4fgMc__U%2^uYAyVk zh-*igLgh`rp`TBj$YNe~f-y?=_F*dcxdP`oz%G0sH?YIolG-XDO#=I%RY6-f2>>!- z89=x+=sUP9(DKd2wEt2h$}muewhiBo799*!c{@ zLHGZy!@+{#*j!g5J7vTzKj)gR$nqXV z6bLUnd^<5=E488Yf<%2r0Aa#83)tdsVPZyd8>F2{5e&r24__ODZg?3bDU!C0B$BLY<;%}HCk^{USpKCfNo zD8gr3)0iqm0J#F_+vtJtu)>R;RY}1Jm6pg55_u0#X*cOiqu~IOgm-O!51|k3_fLR8 zq&};XIBIZ$!-;|Bnmu*xGPbR2>;2(>I9epry)$pO;pC-)3Z7!}qW>e97}N8H9`1&o zvq4Wr{3X46bC_`#%MvRHG)3M&)&qyOlRO}HGz=fU%m@ONkv#`!b_Le#?I*4^2Y`pC zY+cW%7j1%C8}2W>9>e|;VotCE2nNk0fWdwCNB+=VK~?>$^@5;^8ZqCq{4ZR zu0*sq-5-0&eG@K{TVg?6O$!1sp#ZT`Lu<`on=4^(9-ws@5L(EK;=S>16m1|E`@J85 zC&6u9r$Odn?re$Z{h*~V?P$cL3e1@n;a&xPvx%o$qoqAyH-yu@@zt#m{nFe;3{Mi* zZOOm(Uh;MSi-_Vhbodo?D4#sbqrYPUY&DSDIddvWIFd2gfL$USgr$&ypYMZ*+!T2S*Ykza$C{o z6r&)JYg^2d{T2ii8_0umjZ+^^uu1cHI!-_xe@oFDqG>aGW zdoyoUclo9MWhe09&Nmjom-hIjyVTyc*8{x#HMOYIJ;8JBTDw(dtZ+jrLj`ZAUobw)CXBS7|&Q+6`POu}^k1aw}{&x+^B??xDvhy&YZIS|DF}Hwv zE6DCnau{U}@9HJbdJzwHlgZ(H3}wf8zp1ZBAT>M)q=5sdED*>DU2t;km&2UCAZaZP z%sV^1jd|_DeTILnCc_~H@WsaJX^IViDbmAH8x~#EPg$In{)Ir>5@y|-N)oa~*#^Ca zbF`1U1^u0)d#r&bzoqAZoe?SFOZ04fB5#|Hi{Ih(?KQH(M5D zD;NNtx`A==)pNZ?_tsJAs%0(h%it zoZ?)*YV)k4e!+OH_0q1w7`P%+{>H!Wyf!04AwEB!5*R)pP#bPCxH!{e5P8}5t*tG` zf1g0Lhwh5IAM1A|L3A-`@PEfR^=?QT9TNqii;vUdnAEl7^xVd`RwytC=Fo~!(unB8 zUFF_2;0NxO zk0I^5#Qh_t^MHBmV->^3ur3zx?Ks2K=Tt(w@MT0w2a_bg$$@0zotDP18)S|Iv3WkZ zDiLrAH3ACM=MG;ccB1I0=mw>bN0oB+nb{re#~S?kTs0#Y3%|{0ZnUCw8`8(11;{(% z36AGqBzI12ZGf07Ua$N)p9H=D<)g8aal28-*W#vH19NnN+A3%+Q;vV5#me;6kXtAN zTR261yeH6#{Dombw-75s4UNoX${};$pWAnHfkb5ERu~{Mer}8{I`@7IMR@3IY@RyT z^z1N}X4jFKbKpEkY28Gkh=w%s^*9vSAeKJxXgq%oed9LC&%iZx7trljf;{mJMGzUQoF0 zorj0~TXuY}h)`2YqnEl3JhX$+zxxN?wq}p(rX1-y*)C=6n*4VRHsdQqD$Up9i+H6n zgyL?0{IozWUnNqdd-zKMRk^6yM{jU@WGYteMfAp{$H>^&`K)>AK}e+lSf1p+qsI`S zHX;C7ty~<+@wcntc{5stE>T>(1cuPs(3>T4d6$j44bghw6U$c5HjW4bz%yMEKzb?$ z-pz^SuSWy&dvSdVze)R$5ssDT=n9NHG5r`AP*mq=(>aY`BYCBqiHBCtCY74savITc z`qpK=Zo?KWIuzpjEa;O1)LOj9x5cWZULn_cKa#{%bJ?*wT>z83=(mSfhZtet*S&4A zM#B%@XnVOKTqt08F_=*M+52aQl5Rt|Os04nN#3l45O!DNX)cvBAR`6wCJZDMtmlaz z=(dxLyl_<1yT^()kS}ETHLRp@siZGTwt}XL)*>(scA_ghB>BK^X%hjqyHCRWWfwit zY;&)O+}MP)dkTDE>o7_?24rN6bAaNgZ4dy@e0`o{s&9c}=yZ0wtOC=s^8!B?MLzBl zfwP>724qz(+<_GXE;8+oaU1w&*a=2c*F*J(82#H~RdoQ-{nQm7uEewx!3|nKa31du z#(SE}JGYiGr=t*;&y^$pv?G4wH59&0C3+4}ii(PtUxD=X56tDV^c*FPe;F!|*@<+N zo30Vq*6{)t4@d=MbERucj0l|U2j#AxeFx!e=1$5*xr>YAfrQ}3@4hJ4l=dCLpPc^p z44u%M6d8x`#s0&nqAIc0?f1gwxPHdZ`R1$;tQ_`SOg3ufnbH*`Hfa;H>}|q5$Wj>mxPYMmtV~cWcyVd7*Mh6 zo*&zzFKU>F^)El-%kb|;F-f2Kwl#qI%6{JuzDHE15X3=D$F^g*Fzf+xa#~F>#Bl)$ zze9PoK&>&ap-#wYja|ABqD}92NEikBa=Sb4b=Yu&j!0GjBC+Lk)=hIb7H}~OaB(}p zkZvre-F(tZH+y|+?tMCsut48xF zqJKhXOF1CpO1`Yr}&1i9^8}*e~=p&~C%s8NSC?8e}p| zQM?=_%ApG)oEZ(hxVH!2zt>ZE{9RV?H2B}qeFq0${V9{?j(Tj)VOh{(CV3n;@?o?4 zl%zmD?E3l@-&=1amBbJ#mP)EjgUk}}n@DzO!8e~S$VgZZou06IDH#!K<4=ET5KDTG zQ>S-dpMEkv<@YN*igaHNclSL1fsZ6WNhUzTc<2-UX%~D9nNVKgfxN-)E=%FOmGR!X zWcfelo=xfpVO~JijWG3o4deeGKSgKyujC2m|NB#sAmSfOMG-@Z`X?dHp!|2UkebDw z2IHR`I6*}63G}}*-giLd|5~R(>BYjTeU4Azzw(O3SDj2ZuU+tDX$)BLxC^wcigE{e z$^=*-1PX>11W-8sN-Yw5OnCoW%#c1&s;M{IiL_V61-J-^qM{TsB5ye&nJ)L-&{>b~ zjCIJZzShkKq%9&>N(#D+m`y<1hD7Y%@LGcx;V2P_inU77|9FbZOo0H!_MWYVMH6yW zS)?sA3;)e&ig=}NQf0jIbZ=$D;&B`!$EXSV1qn3#l1SndC@EUy!6p^XlqH)}^#Ibs zXSH)}o_G_=7+~RdMkE@5^ebW2l7uOg^JLQl4aX|;S8TdawC-m z+^eXA6zq%6LZk;T)aT>?DH^aftjC`>nt+?gRfP9S} z=UH;MyWi2{>uDc%s2l+>2^X|qc!QBm(2F(t`?`ee0Wc3EJe!qXS)*SU`y9}O{nci0 zKr|~M;V7r{=72u@Gm=`)<7%)i8l;^Sa<+XAZ83Ur%qC%{%GeRf|Gtb5BkUZ-n{E2# zD0?@}uZ>-m@cV39SDWu+o_rlASWbZu-t*!$d8*ab@CA*T`A?(boD32dMl;cuTaCgf z`d-$(zyJi&chXkFf59NMlIe>7I{3v2+t$bU^Qrl-DQ)B`j_kJ2<___8T;YU%t2m7{ zoNk`iJG0`Xf>gD;WreL4Pm`6sI{o}_o?)B)eS?nT7OO9h^Dbmz!efFBsT!zR_U}L3 zAtMZH-`D=D`uc_OxLMYFmA;K$_sIIE)tx5n6q_VGV4D}Fm8o`kMwb%zgsn{Hy!bIg zN?Bcbf86FyHS0C1h zh5f%Nq2rqcPY~$cw%x0iWfYfDq;S(3^nuL-nM)A zwHvef(;R;HU25&7A zT9B={q5KbgaHTFX=fjUBoc>o~RU_g3|E@-f0p^pFZT~|wwcD{qNjz6^wL_#r1?7!u zn#bG!kPgU2?ffMAKk%aOGKM!AiO2q8Rh>juLh%-gAs$g`YvElu67$6;Jq>Gls$+co zYcu!BG|6fCh`$^Ec;du+qq)Lq6uWr}W=li@AY81^%ZN@4m7; z%JGJQ9mdiHTVd;!o6q93X}t!o?#7u@5?`z4HEEi0hC`dDW$VcGwk1)*PYJ zi|q^${z>LLe~oBlynB%7zD|3nbPIT&FsJLn-~9+)LriwxZ92mcx@%Pze`LItr9XOg z<)!TYA!~uwz|6UpPmY`P_actEn48hN0y)HOhjYVcZYHZr(SO#R0@!4M;vLUHlpj8b zP&5e3>V1Z_^)04fL@|zw6*A)u^Tr$rf9-KUT5gCg)RwMuvyYt)YTwze#r|9 z4w?tLXLu*@CP zWt~!fRrd#_d{U!a1wTR`=G41yLcnY>zem{2Q&Z!=U*9J+gZD2K=)m(SYvGs5t$omk zpD^$x5fpllvhoyhNvT2lKIycNR(C0`0dm0LiFASdyBeHpv09Sk6~XX29^ZEw&gQpq z3ek{!dY_fx84%6`AFq1PVEtR(l)Ox5OWPP|YVJ#9X3#@JzpAMgsb>n<4J_Jtuw+fk?lXirbA9*GBm2i&GAGZaTsCnA z1t;E|tYzo-zW#r&aqm(>c5%U|MSOg+=cGfzPw&%kGMgS!GE;|f>W-xo<=0gX82t`5 zg$zUk^$*XqinY3ICJgfxF9*3zx{lHR~We(B@{l}%=KkqH`rfHCZVu}Y;fA+HEI6FeK&JJ-sdXR z%X-arGs87>@niEPUe(aqWy(cm;bxa6Z!xR2WPn9<@gm@{=%K2+^1B>derClCNa^+~ zX|~@*qw160NzL5aeW=uO=vPAKWoia~KteZ6B7B_)d}s!R-)Q^nZmJjDrU{-cL+_wZ zkKK25(_<-!YsUK>?3(VodRa(Kiv=h>bYpIW!VL`to8HJwv6}RzNIZsSfnvm)UB5o0 zGz+#m#j@B_Gj|YRg#Yknv?y|p3T4B&uBbTbBCj~8=A)b6H{Q=okAh3pCmcL^Z-rQ{ zNZa(Xj>qQ#?0WU4Gsh4rIBRd4R{g+taQSN^Fs!EIDH?HoB7=CCw>BZTxRqI({E(LI0K-CyCgwb;W@`rNQ@+9%#5)6XkI!(w@?eU0w) z`K;lbs_&UeoLS9g(U_LF=3rCW#{5F5NSb0>+%XV*^E3TvSefo(s`>oD0i3pW8*_Ub z=yM42*{wnl{b6h|`JA+w_>Wy_s_Lp#171bxYolY}{VPCj%qYNmL)<?})1mf(78Sooo!5dQjipnl>dL{0{nQ2rST-{v0Y1+LJU%=UNZXfYMV zu%M#hqN1Up0tD};FjTT%p`@7&RdBJOO;r|>pJS?$myq$xqYRlq;7P6&Y{hSkA3}|Zi7&h%%xWUz zIhr0n)FBH>N%BsQpJ*9oDS?qtbgCk%I-4uZE(|*C51!|(K$I+02iH@vX!5kj2v*le z|7iL0dDcic3U%YMZB?a#k`mDinih<=6q4!rB(*5fkq(h%5zA?Xhs(;lSpI=2sQIdL zW%*9SkwQU?n4f-%%5@V!O+Pfz0jf$=#6m}qdbAnyorQR zU2ESr)(OaArsS(uEYjRM+=X%$=WDk=kA10T zlwfunoC6!j`(e91rrc7@z+M{1?BGaAIH(aUm7qxRB$D!$_E)@fH$3 zMS#)WIY4|d9!e4hXyIDU_zMZ6IJ_>+N;F3skwfkjoann`x=hKa)%fPN73JJ6_{>%l z{3>WSr2%Ga*g0fs6P}n4d9|J{Ra@TcmWAN-?GM~p)B9-REW-4^FhI9So7}2_;}J>M zjNf;TxvqX(twMIB4B21h5-=X~GM!&qoQX?Kl>=xiW$~C! ztIGhU6JcX%oR#kw#3tGxjB*?N{$MKoL(xMd--9EqGnzL}tT#w3>5W8#5T;yv+0bzN zz+za)RuqM0I!!D~I)~#5B0h5bRG9Hr#G7KsN|@&NLrU>o?{~Ij^<+4s(?XzvC7I(H z&w-EHIGp0m>N4wi(uAiEdcxIdI5;v0R6X1`_OYioayS<+l&U52VBwMr zGWKzx^}(>O>n#4G&OkNx5ye>tNev2B3Gvo9++{f0A&P=xp8$CQ8X@}Fw+1`hZDyRo z_`R@4F`@qD0A9TD;}optXs4L%JrJz%6t!J7FMv<3-(Qc z^w^~qUfPWSB_lj&risw<$*#^9(4Q0LYSl+zaucT%1wYAp)9aQ#HF_y6$YL}X?S@hA zkNb!ZnK#pFIZ?mkkIe4Z*FyzzddV#IEc&LyotC z_=)*zXYwU?Jzu2@uHR$@K^Q$u&H+^W6x}TzZ0{y>M$tavmw3t^7kq9Eo^En zP0yF$%816G@v4Bq$wBQnUN48hJio<6@ZXK&gDf+;4yp5W_K}Es-K* zw7e3xL*Sk%%G~Z0altyqWSs?LbXkHBTi$rD_r_f3aX5OhzT|@S$PYk8k|@$jE_T!Y zwoMyVZ95ST9bIW(5O{#%I81qW)ZGb+Y}>MM$qsUzGo+J5b3C|o0)+9zaejxsVVoz@ zH`Q~gAIIimUAP=84(p7Zstm(s_q^pM7+F{-l1-3j3PQubXVr^_b7Oe$;$BY?DEs+{ z4Szs!QUvJ)Nc9C7ttj4dcevlp?KoZ294g~2CZT1J90lzjZ*)alOPeZt64qdR*U%H8 zZ5{H^k-zNW;1WHBlkY^Dk{x_GjQtwrnyGIzI73=*g~7wP{yV}+wS%%eH-ExW`Lq8L zha;=JBD1eM6ZWPo;o9*I>VllxHYfbE(cVb&Pmwx6F6)YIsV+LbV@Vpl`PmO(W(UFM5pz~WhN_N98TK4>esc7nVmuuN`Z!9i^ z2p5Q*)(3fB!C8tPi0?3tjJPw^KLj`Tp zG!_aBEjSP=Q&pdP^+MEQ?g557Zb!ofg1gxpV;K9CEm$ewxRI#7Q?2!N12P8WQS8l< zG+=pO(E*EU%Hr>M(M!yURX`KPc!*y{ND*lI+dNslUJ=O}BdQ>qhr~=(JBn+R9f0Pj z!9^ty^`e44R*lo@Hy_Qk?Yt_@-u{4bYAogeMjZ+10cI8J4-fpPZWeQbAh!qZwYaH%;iGHIA?qkETsndO>NCBEgD zv??Fc57Sq1*`xkh6UgOd;@C!28E09uuli)=lXg;mSy9DL@ znQBf_v8$COQAykF8QdbPrY$zV6Y--n($DEG>YbTr_-apx3)ER%pO(gbS zsr@bG=7g{o?hf%E=4ln zV!Y`FF$?HY$@}lSJ}9WcelXE-vK%|CGDyzr4zQmKlbe(BywIXy4hw9zNyltKyAwNI zM&ErGe1cFpKAOB*y`08RdfKI^iU}*fL=<*uC5#t;&?b2D`#O%2F{7ffUd>A@5 zknxsUNYt@6D7PNY0$*_0I}FDp{ZV2N80wUvSS+D+)hRfY%E`hUj$i9s{;sT6a>|wgAGhM+8b7al0cx@-6P*~qT$^g z#W3()>Od;-Vaa{#%b8HEYqB4OXbQ7cQ2WR54;UvZpvJk%iX?rcEbtIBcduPmM|aWE z77YYe2{l*_ivw>yY;XFDz@s3a42S4FfKc93cnbt{>~ZJ}%nEkuas!%WFE#>ih(u_e zfqIZdE1O{fo{MM)1F4vLnmsnxvFt#L$er6G-8kvEUPbX#xSi|bMeACbzHls zQ0#;H-(?9VBU2f3O4lFpg#pl!XWx#03?_3FK;Jfua3aVzYlh{8$qr){S+AKtGGkK70~FhUj;ogY5}Z)`+Dq@2Ut&LbdUU6H}bLJf#5 zS+k@CL>P@PF9;C1x2LPF?ClcMW* z{agbTh1a|BElKEG(dVWU!8^r!z38r9lCE~5SU!|VUksi}H5~PA*rdi3IT|mMieqcB zhLRC%&5xeU;^P*?PbwOlUiQRmpd70#R4Ql+4q0b-1c_=1U&@e&Jc!OloA^yMT1Q!X zigR{*W5yn@C3kRBj=vqT7Bz3C81<*ezwi@lI~8ndW#}*J7z(oK1dPp15EfkJ@5nm} zv^9@j-=Z0c8euEJ3)%j-?{eLGI#LBy|NSl&$J`s(-XJi<)y?Bpp6*iJo2gIJVP_a} zu*1fndg9z$qKYRhLgHlHP9v4s{2o1(c0=BAe2_#K>RVRoYD=haK1GC4@2xC+f!(~QKoSWzlIEr2)+4XrfRcFus?2L51~{&Pfic{2j{`ooo< z{!|QTfb-S7GL<}GEC5JSTUd=C)UXPt>|}acQ4hnRvg)9wc|I)C-ByH}oP-n@IYsEh zWF^?`7~Z8mQ}$H9jtMOq6d$J}Z*3L#TndRYP3|I6gY71P=NJ!Ai0O$2)Ati-~m8teQeTM_~Q#(rtO^7qsx{ zUP|WQdb|D`qDO?c__~@Pee(D;8D+?((BS?c!X~y_h+frci$tHO)FlE&- zmaG(Prmh~6z7i}=6NnU!t%~lz4?w$7w}VIwZEr)+=u2(9BHAJ_SAU~9dNC$`tvnqp zWi8A%%&yS07r+^>;u;?!+7E(tk@)~^&ti{C%0v8V78yhB*v$LWSNSGzenxb&{IvuO z=FY1nHe#2|yaB7QwlNmIv`>kkRiul=n2 z_tibS*>Um=CBB(*7`T^FV@`CwuzP{3f&;bZJvM~*1`BtQ zGtK6btzO}%YvBBenQc8d`)5Q&`GRYKO2880>)oP&9d@#6_T@K6Fs?RN-BtR4tii6a}E^`g!o!Vc{-=@K7~nH(KUi>=eH4fY1892ASlin;nBy z##?lXQ*`C1KsI6Shon$681>92Yx>yBok?#~6i*dD75? zvOMuci=Ghbtki1{s?!pNkv~7y4js9?LmBI}ujE~fA35LXemsy%(>q=>KKde(szY5W zRvFV4N1K(!o|e@kvId3GR{oS92%Qw@heZiJP;9^Jq||YS@-(TpN?R{|8+@woaQypv z-Cb(<)VLU8q^o{cYW4fZ;<)^KGkFfV-K>_x{7O9ig?S z68sh?OcWfCreoO~jC%;g;OiEma&$)ZZ4S;kV$ANSv>WgKLGBhC?dNz|lQB<&JI!f{Sh^3~7xcTk9vLZLD5ys=b;;@v3;86RC)#kg0QH#E z!W*K4`db_~oaAa|wchn8LFl2~Ysmz)XtS3KvE=o!9LvwMm>V3@5lHdgA99YK43x^ zY3U0ze>D##tB}fhi5hd(324pKqT|)IqhhjtPz-WHSU<^h>PkK8$1L``Y_)PeL?}-W z{o<YkBsB2!xMEAwBDT>GT*iB6dnXuFo3;c!t19ux6M?M!lQX1*AZ>q zDjjLMRG#H#&>Bbc7KizXtdH%yHTeuMw`dOj zO}r85RzG=$Pxe!PsBSfN-$C%|w=4m>&qDG}`oir>#E)8FS>;oz5SsA#)n1SV`zwp^ zmJ92?59l#kL4nxWC~v$AFD#{Q8?nCcwnq*f;sWlValvawX=?4DgudV+u7p^f9<|CC zx@0{SyD#n&5o-oB1tt~feuBd_J+ zd7Z{ga^Exe=?JH54CHJTwVKF8Uyvr}wkl`uJ(kdk%F?k%hJicAQ1qESnG=HXVCP6{ z;mBGLi^ti-(piS!%V5__f5j2N<5bZ(3RviPHewq|*+HHxsoL{>0|d=>G_O#q{9N(B404Rp5FdQOhcF`qvd7<( zq=`-fHIVDFJEEiw2D*|)RCK13Sa(K+aJDm6>9@H*$Jyo@<%Qj|3cmNBL|Ho2xYgyT zOk_^d2T(c+~75c6f-^3&{#~u;B8Hb1I_0$98PLB;z zO{d=sEAQdn7g|H+S)8}ZCQ3uFQ{_K05M(4N1(7kR3_^0Y(@>mLjA!XNrm2fw*s^dgHek(KdY>sw}IB za~HhZ{?ui2uU8<)>80`x4^^l7A^naIwo#%)@AA^#+qmqYrhploQuiF=wP=vgfr5=v%mUqzK!^QkH9mrre|BYZpF8 zEMV?NFA5+>tt`!G=(B{-7BC+APLhY_1NGl(uQvIM~8GhZZi*EduA$T*u%#i zMf_3Ot;MN>{qMS1y4*1y?l|0zAtkkI6P70JZ|PkLEdUuc_J1Mj{9ZYd#4Yuz{;r&^ zfSb2%{j9|dWRvDSD}5ZxcO#s+GMeo{M8Bh)M^Sw+g!$jdc%_0T&fF{=1oj=r)biO^ z$7HwkX3;`RF~RY+{GFyc3b7doVHKu z=N(Z=!WX<7y3bI)I;_;N!Eq+W=ZGG<6A!Kj!3`EnGe#S}QZ45oJ(Va(g{- z{c1mTOwMQ{rzDoE->48H0fzr{he?C}=YR$qC??nEb-p%E1rHqEU;Dm+sBz?l-fvmKrLt;OQ`77(L z;Pz1NDVwV@JGN)>Ms(ulgotA>qIRqJ>=l6qz{;&;;j#1Vhs62n(IFv|*}J}+zF>SQ zs5z$y<~ETOAwg6C&1un(f}9ejcok$HS0AYF#!qywpApH8#t-!SNCtCTQgmJt4q=Fs zLYSqC@a1R;#;UL%8h`I*Cx^zjt5$erTI`i{O8YwH&aNGV_I=qy_eS;iRY0-{I3%U* zOM78_IH6Dp_BaByo{UI2;74=tUWXuyQUl5HHD@QL&iSKJ-wvI|&k1ZGoA=vRLRaSc zW1zUV!bS9IW3TX>(3)285fXBA>|lP4+Y-)yk%N&1i6BjCp0G1am_m<8}3FMyiy(SjO2;J5$um zN}nUEfj`gr1tk&PYAyRd03(18tRgGx?;4`wV-+@xso`4QDmnn3M}VF{ag++O=nCrjF(e3<`q66}Gm*^Hgx3tEjFEC|jezl*gZxPfy>l z=|hVfIxRzki#)7;8iX$reUo*DwKjV&H4@ijA~*ih=eImuTwE^9v8nw3zs_MxHmK|7 z8}^+rv~DjW8)?WB7m_G1>Lt&t+C(7!8d_Y}B{CJq+gz`m?MoEeOtb2^W}2Dk3e>4j zSiY7Rr&~zIzcq*X9}}u^6)kG7O0A}-CbHr2cq9M?uFJI7@P5Y$4pk-sm~9M=#{FO9 z7>3!nqmKV562KQRD_UVBK`2HwGbrm1)D06J&pDd03%s)b8!DA;kDHzuG@3M>0xvJC|_FhbI8d_foJH51hiGq)ru3 zl+^|cE(q*$+s`h6G}PJ2{O)1Wzw*OJHU&F@;dw6cLTNK(_NR?5Y@d{9-eG@#qvx3u zM|jxi?j_<<(OM@fR+F86nr_Wmg&kFP=$Qd?3NiU53J%9}J!3t|dvcJ(6FHaqUkNgk z?dUWQvMap1Ts+ftxycuMY7f+%>HWkK5^_Xz`dw;S1_RF;S%YsHBJG$ie}#{Q>*>pw zT?DvX{7eX(bj%jWDYC${t}a^A-Z6G$NPMpSd#+3J9OmbE7tEk^y2MyM7I*|L@Edme zptK3#M9VT*-G(i%OlgcA6M951{j^Ipi!8{o=+B0Hw zL~HEDA?Hy;m)Qw}|3O2~$jwFaBAK7VDv7jD-#u#O-SfKw9duv{N$0>OKwf>Z zlbuKo#BdHxL}pcH2gj=b0u0dBqE-kI15cMAKu?XY$+$9SC4PzsT=-OL4Fg@ZkSVWWH; zjzm`h!M{erJ%RH9wmj=4{z(=$WJ z4)!l{F2dVCFYR#*YWdqONHj z&_I|JQupe;+cMng0JPf9SIE=fLEYZW)L00w^CNgtcbD7E4R04SYNv5_bC#!)>`$(9 zv%ifqIYH2QExYV4biZBp^lk!Wd9P`jwo-LP_+TRDOjqN+TB$DF`qMZxBD4J{Gr*cs zUY3_Z(mq1M>!_*=THPYLlLr{+MM_Nzn#}N;6fRxpz;XM#gg3|;1 z!afhO7&duVqID%E=8~n6npt_zzB0k{@e$;;{9^k;s3E-*)ZI7~Yqtf0H#dMNMBoF9 z0pETz_I0h*Rf~swX+E~E2%U{H7lT`EOEbPKKPBBhw!3OtJ#F6%Po=L!b`-$ND+O&?|Te1{mF_j6MXn~QMa?Q+C+oA)+a78y0u zVQIUNMftD!sK9_vW^3nTbw(W^PxumRQ9di5#q$n_b0TQfS^zBediglr)YWd7E%%bR zqN8*?WSJ$&oqM`}a+^%2yknep?MCD56_7J{d96{a{maAhwy5)R-da<4wnf23>*Ia) zZwfx}V*herM{}45AP5MA2Ha4)07W|7sU6*j$T~LvWG`-PJ1|@~ zc3k_7dPJCz(_{s4{7o`(KLY~0-;FUYIyS4{2xa{q24?{RcmlCzT-I{PWM%sETwZtL zK-K=X&6O_7hrja(B?(s;Rpzgs=@f9oYT^ z8GF2CpQ`EgvIDbQ!IvEWIE6UhCh?3Cey2UN4=I261w{$M@xhY&?g=CCZ-zw`ZVX;Fm~ z0v>HqSoe-hpJ~`i>?Y*HkQn_2s6Aom*4XgZDkpkvT56cQeOaB0(6(GnA4zA#&kp~r zkZuX4@DkR)9T>Bd+C3YHloF8NxL&$ zgdE&A1pE0mx;~(P%YPAoa(#YyFHIUj5*{YVDc`b0P)nmh_|e zqx!~W`JG7h*H1D9x9{_I{$vIebZu017u;T69A2U9hqpelrB@qX6Yv~|Q@TY@uG62?LTj(s zQVl|7!Ey05afD^EfS|lgP`3hF_|AiE%a|(4_>(@N`xWC`IIWM)(C=;qLDEzDnfFT;&yupel5ATj zG^!DzJgn!g$Kw0Bn`w%C230TC4j#JME;a@&Psof#XFm;V&pFr?PthVjiQX>4<M?3eluM(VfPK2tkhLcU79m+hH6mUZ94v3R^WJ~?-hB1;7vD3#`M_aS> zo7&(8^b8w8w1f#G|J&^Gp59$m`6$*ohwOXP2l45b_#@8 zy*nE_3w5lAN(d{Q!dO8TN(fQQ&fLj@qXt{JpA$BMcsw1f30{TO)=*Qb+`_0v?ieS5=?LZqg{C0Wk>7p<%u z`o}eUQ!cbT>~uLC87s%`pTq`XJ?x<=K_wX~0diQPgg zuu}e4qfGNkskEHtb{IFiM@sT)f?Mx)Q(bUpAKS+m58S&0wcPj&9@tM?z|sTiSljTo z(4Gf4jNAu8eCNtJE5%}3P991A++%xrUB2b|L zu{k~}#rHp0maW_AUwLceZZlw7XBUkG3)*IbzE8SSN9Ly4G_mAJF(v&{Ash4R?g|Hx zgA0#Iu9&rG_=d=s8zs)GCr5u_Ka#TAx=p-4IB}W#C7_9}92`&jV+ z_R7GlHf?o1b|?F;;4vA{O)H(;0=g8z-Tlx6&K_cVGZi#_kP%SuAT6iV5x+g}ig!&x z1m%#yca2Q@3S&OtS4XI4q=rdqk+ej#;PQHffD^T9WZdhsM2%8vG+GlOafWh03K@07 zU-Pmv^c`4XI$8crszhHUW>@PtJD^m=-BM3?aA|mzF43tQof*$WZ zcOR3Fz@xvMl&x9MQ;yXeSNU`X2vq|Ns9@4sTyBFD2@2}-8_Z*iwg& zDf2EHt%^myN&gXejlqk8J7D7A7~*kKQl-lGF#yi|DX>^#*3#25$4>Eg#`?VLN7%B2 zrqkVXPS^S_N?ORNHS;q5?bl1V+QvRDt?Q|pZ@GKbjji^k9poTVANKInfUdWB8chRn zHc&L?~D(x;o^td#`+qSvu=j5wo?Jd&n zEI7-4wWEOh?6>(FClzko@9(@^$r~b@wJm!}XeEu@)%K9DKv?26E7<0Suh5oxCL~O$- zMZFbi^SAuJpVH^nvXoDJ1SB#M$)!uf9QzJ0knVXl#fLh`KS7|x2HK5}838G z-N_IKU={ZKRRvF>^O}4+s8xC1B~vl5I8j)w@zm8AN_w8cvfZZER|xrF(nSfwqClNt z+?Mx-Xx%HiOf>|Y!o$~^tjasAUB`W&&t|LtSnb9#W3@uI#&7}<128k!dsoXI(>&YHQv?K4N*v8 zmp2DfQKWwbKX!#U{rWQ_e*LU8dvC2u-Cy|hd*FAXS-VLuR+%xTjX`?(;^I&IihT?8 zz4ElU@hJ%@)#F%Q+Yh=SlVzV$0%?0xHT-fDNxfU>G>_Blnpb8MbL1Y517hs>Y|oKF)2+XQ>8n{FANq^Y8F#iqrHZ^Kq2>(bNifNbYjGK{y8M$N#O z%F{N-^5%NHHudnVYTHF40~z1pPCN(>(@DQ{($E#-HCEKeV9`nKL%W}Ndo8tR z&aN;|_V24PE5}9&Ii*cX^QY}RQ5|~4DT9hr$UGp@axa}`+SkIe0oLerk)kkLWBlAj z4TJCT%u0-_{d?hH#cTBi2`ZIaOTO~X_IG1Gd#qv^2Px;cGYl%o1QzeR3)~OR73i2` zo3lsy`rJ^$OZ%$Sabc9yz)kdlAOR z5a(`+>-=k^>j;$NfTxhu%^xfOu>>1FtM=95<)$8TJQ@(R<&Tuzj|1Y}io8wv9Pbf*=k|j4n^~FR1uJK} z%%=21?q5^qx%VJd8*AFS@VdBZ zA6zsQZWt6ByZc}=oX7uo@#42tf!QXDyl{gb|I@40Z6TvRGP{Mb7u&SvKbIA_m40#H zZa?*W-26H^aw5#`>kWen*>~&7EI$$@G8)n2Rwriib$Gsz+ba#3fU><>dnxHz4Y2{v zQnyc0DoFk56uY5y0P30h`{sZ9iXq6$esn54zHxqRk@-k^GENI@DuFz%S%DqnF0_yt zZv`#I7(Xuxj(Dh^ehyBIJvnbmxgN_ZHI{w-ZV)_Xr7%?AxLgploL_t3ZZl4<49?+J z|Kp{Tm=s!cMZf!bvjbFP#je+fQW1Vr4cLU15$OyiSe5<#+JV}farh=_-v*fpJlEm6 z!0AWF0lm!h2o~p2V5UifyH;!a=L@o1#(N2!L@QI+jUAso^pU^y$gJa0_p0d>I19P^ znzOjJ*49dCwk9O9l1PqSL~>6t#BB4{K*G;F=Me6O3)c zH82CS%mxWHWaRwloRfmHrbKK{UU#ebW-)&wWBQNI@fKX- ze)r1~xAa`P69;g7!5omiP>Q(7QW_7I5B^h=zH)Pr$Ehuc#dV25w`V+5fKb8`*QoY1(X~@N(oWAJ5;2Fp&Le|K|nw{ zMn$??=@iL9U_iRNyStkq2bdYY^V#Q|{o7~n^F7zMuHRn_^IR89EY>~infrO)@mlNA z4dMKT5ndnG0S3GIKZSmHZ=s)C=;s#txrKgip`Tmm=N9_8g??_KpIhkX7W%n`er}V$X6j}MK%^+EAPd04!UDX*`~Yrd0nz~M zJ9qxNV{Ugbcbxk;ICt;j;NjxlyH9{eK!A^jkN@xy3DLtx#E--2^o;=uZ>_~W8QNY=K&7R1G0zs56S+wZ#PW<;`><9Sku^841hbtSlGl^H*ElV z%=L(HFnjyg4*&ZN>keig@8RBmfQOHH0gMQ62MZhf&Ry)k_8RkQAI$TByTmvoPkCP5 zBULlOWpE_p{SuvdpYiqYW}y1;5fk5gr>_t2$SEkP9y32>Jrk1vjuAaWBnYo3fm9>rYCl^;YcMng$Z~g&+LBSz0v2pPUiQj)DWo75&{>=N8 zUr<(F0jsR~Q(e>2+ScCD+11@MGCDRsF*!9ov%Ippw!X2swY>vBJ~=%*zd&4G{bd&x z0Q=v}`nzTSWEU~Ut~+<{V&BF6%Py=tZkT~hd>7{_&pnb?YPcqjqzt@Y?vuTa&ivi{ zfRRuA2>9M<7>}HZf0-HnmuY{q?0?O$um4Au{oSzt&#oB&0X7!q;9(O3qyWf*tdQq` z|IL9t(m;j;2Cn$V7uZmMiI9X#N?uf1Uo_f1Q=*hV4V1LClJO|6Yd)FVE6Aw%tibdT z7nKYvmRd1N{04)PAV95^iC5l9^^qYi%6b}db-(X`I9Fc8>&+>?H0$=|wl0lg6 z%Z$XIL{l4C6;&mHL;3AI)Je*D`+;$&e`*Zoou@S5|J1e2e-H zYYZ?ZPuEFqmn4QioJbpbR+WW-XbS1fF!lf*e5$=;ZYHVpeL+TnJLhX}x)HpxJ|FoE zF@L0TqJgkmB@9@^^~PSommBE}s+j$Cz=f>s%ByRP?bo`u;Sy|=6}kR0D70m51QB@T z*WQR*1hMjQX!lgIuAvAjelmK>q0=u{F+sPf`+MxEt%zp)A89*lwsKhm%N{5!;yL#E z{VcCw_2(+{3-6JT|`qBjHi7mwBd6(143Eeip#ipC z6!H47x7U)gbcZA_e4~7o?FR73cEsJF`367)E41ZsYq_erdQLEzC^n4Krt~RF+1ZZL zB1A}c{0APu_v5ZF-MF{Fr-Yh@A0D}eH4n(Cr|2lmm_9dg<5JzVoEpw|_tF|J{!juv z?d_$u9XsK$sQ$95^sPxOn+ecLkjE(H?m0Oxw7>utSjay*rw^vXMnq@MzFHM~!GB2X zZ2^BW_ISeW>k>ORM|*g=PwKjXwdH%WVBdbCXu0n~EAEC!$6+)d!ij4}akJg8g~$DS zyM3BKz3XT|^|@_(X&M&WrISJDN3Aq@H-m3%8|Jjw0B^ez1jz8HF&b5#ZSzcNOicD6AJ!0L9JWv*YaQ`G?>X{Y{XS4W;$ldR?T*kjo%=HgNd@& z<3l}Rq^|^07Vfrh3Eyn?Tnu+9)@k0hUM(a$Ld~yszl+x2zKTm|e#i2@!r?A^$-O02 z=a=-)kZcI$5^rsIV8E#@zHO)%hoxTm@T1a+f%D3;Ib|9}vya@|=F(xC(K~GELv<`A z?%9~DRu97-g1crnPyyo`#}}6N`x&dk!h?qNir3dmSxB2PUv~5$k+;~ySr__&fq}cd z-stPG$AfagCs^bA2UEOq%)Rp{SP~U}*DkBSdQqq@xGcn54o=Z>0|>mr2}H6iKJ;dv zbc@kN+yIv6;DX;z>brCj!G3)&-^w^{DDetK6Ihl0`FM(Tqzr_vGQU_sIU1-NS^J+Z z?I?s9rSmj;bIZ4)4j$}|O~?Sq)czk1^%{Qro*u2ZrF_aKBO2E272`=5uLxkGAy|#w zf33WSB}1nEpWS2_4R!<}RaUaHJ?1%p?&o_7OIWX!YoFjf&x*n!Q+xT}4j@NvMPikj zL3>3n+g+mrVkeb*x>0}&7T^$9Yq4F>U2C`>(rKsiSN2Z-6KptCjxf>G@l&1wp{&L? zNfye=gv9Zjkx?U0l1<85L1#^^Vgsd`p)-Si!7DC?^8w4MG>+y<`7o`3S5KDwx`a#o zR_xPrw$s>-E5sDoE2>6MFINJr31WPY2dJo0BegADO~W{K_woK<4?JJDg32NEu0_0+ z5c7G9V0Vh=iQv8D7VtBc^Us`nGepbVLOn)E7eoKenAV-Pbobbgkj34Zk zUbfXOQ3=wmKO6GuRkB+a#wQZ`e8`0Ct#V*a{B?x8cLT`WmBb(RezoclB$!S(+E%XY zu-sMhsT)du+O{I{EOk}5>a)D7Lo4QNr+u9AxS?wL3!Fy{nM;wtU1OT@Y+V;+hI2c~ z0|C3{XCboTO%g{v9z{t2Hc)E~=)55(y7U)g6t@dv2zWsUi#V3RmanRRPDyHIc(5bj!$ORWdreg5w-V9_(^akKhe-vt+ ze)_QD2GHbk1Hij<$RD`@r0*VBr0+3pIYM&z;?x{%t$4{e@b& zW^MH`)#x>(>F_nNzr@BI&5}dqqfF&TUY1k#_GBrW z{)`7;RE z}Lvvkm5&im-vII1Q-XQ7LWGk6i$ z2!&469qf$QQZ3*Ir9Fr}lw*iDS~da_ymoMu+)SUwwyg5AVr|v-sXmr*seN1-x(U1HKo)6@BL%3pg01m3NDs7;ywQj0A@8_SV4=nb?5{~FD9%Z!af-J%I23qEv`Ay zK9%CV?Vc}3&S-~ArYxz)us#!hlp6GGhpNJ#g$dY7u{CJdM`IK3ooW$j(j3m-q${;(7nBdqbGR zDix<^z66SIkG0WHoY3W$VXKb^ezV!11m2GXc~2q;#XyD^`@2T_r<7|h!0{%8H#uvu zCuLhwAsy(=nVqYfTKVxcIv`ChSeGTV7?%u9U95lTAeo9HB!1%O*PK;_G|H+>^*E1v zYcSy4DdW2e-@Uxj#_^W4P1NpjgniVy@Pl0m3`3v6t|z58^ld+3mQRn@n8oVzKMzi; z-dZgfT^Zgf7wOF25EnHq=~c**w|FhAmw10J=0w<&ui8Q9tZr%d=syxIIbe zAkH!Rf`O>#qkNad?kPcFP-B_XoHl;a!njlir&Ru#h=npL(+?U9L#5sTP7`hb(tQo= zkZuilA}YW^>eOpe%;%S(jRyOq2LDKrS_@Upw{Re_?-#9?=fGia-5Wqm-YVBM!2)FK zqG*uRU0UzRZjO9rB2_S*9Zr>b0$^jsb)Sw7kjB9*PajBOtDl6;-bqPG>h9Fh9+7rR z5g{K!RvPiQ!dGY|Tegesi$6_gr=dxRsrv*&I!wuFeBr9USf?3*&GY&oQ)lM-K3;>l zH|@qRGz*{7zQT>N=?E>}k)$5CbCGz4-c=eaHdJ!(Fz1uz=M?1?jncgKGp;K19rtC0 zHw5QzFA`PEldgzg2ohRa7a_j38)%JAX7MuR! zN=Jh$fh~=JXnI88D*hm@)MvB0(7lP8w^h)hsX0T`uTJdDS+eB?7u3O6>(lvW;7KkS z)}a)Ex0VCk^8D~9J=mT-P9KrHqWm+PIld*(DDiQYys61hnB@H}+diq~5AKWTKrSN4 z(g+02S<^TzhE_>mT0}*73ZWCFjkR8qx6fT%mDW@zDJB2dJYi1KVLul6kYFJmqrenv z+-dIcSr|%LO4U$x11Jea?k;dV>0mo7BbdDw;%I**<}8eUa0B>pVfZ2uFgj^L;9OK@*ciZssabNiFT<5yCi zpi%P$WzM|ADWnQLL$7&op>3`ebR)hZ1i5IIO#jQ4cv_KBzOO$lwie*&DxiZV0bOBM z%dT{k&Ci6;_58s;&qzhLX^FxsYTOp&i*K2aDMM6>R}rg*bqbTGUy|MciZvU$_Z2H=b%{iP z#l|#CGf}oXp*Mhgnm2&8zWhx?r3Wl$k;oW&WKh+yfz5r&DQU8T>pp*AvSh|8W7_Gp zm@kfiUAK1{sNUK@I!q@v0-AVqu7BiVruk$xKGs2J^V#fi?XXpa*hlvdDs~Z91AKaV zY||VRaq7l3y5{RoH@9y#m^qg9gvwyvp0>kO&YH;%$_Paq=jxc<=YXsIeQSvVXmnA?staTU@4N# zX5vwNswtIeZ1;ez(*(N@+Z9E)^L_Kvr(ZMnA3Lfk*jeQ?DqU7CYWs?`OwkvOxd%go zt1c?9JY!plR9US#7^}7POch8)T7NN~<;ngKAcwk~OGxU_yN4H^2_PHMqbVC?rMfWXX=%3Q5FTR*OAHF=T1w=ymVuQ?juKr!p(cuHrGX?YBa1YegpW57%|PVn%hV~Uo{ z=l$IBARgRe>)ZzI#y?wi^!MIbts#{2i_L9Cl=c-at2XwE5;~8I@+VfDUp#B!gxct@DVN6()nNz-{=2Q>$&Nn-N*jFsx8 z9nn9Xzp3I#iyH)zp`Pt6Ov$kM?3pxVFARyHnO@m&=r z1ekoy3(BbPZWq`Z?=$%IF)yUu>YdV`wLktW@>ARjMBIa`i)pZt`S$3f=El&wN$BjQ zFdy-bZ%4wZCThanZXnsl;tH=E--qqGFHCIYNR@5xCG8fBOG!lJnnXMwf3GDEkH62& zqj~Utz@{UfyLR-cZ?2BRdb_Au7j)B`LvdQrTn9%-K|Lkw2CzRZfXGSjLnYLU>LuJu zdlqwH31mJ|m|ZWpq}gAi8o;$lY%QH;hf?d$7EgFL3ngTxHyWBnPu>8=wM#MwWXyR4 z6CHa*v$3xxPyJaxxi>Q8$B+A>sxz+g+a0Hi{ewT-UE(46;s*W@iH`?1N3d+BJ>UM6C7`EMs2s~LT^XmJ zY(Z^Nl|qbW*o#$C@z%{po2?W?Ir(|!hIgbOT$t!v$;06fy<+)tFDeEW`)NIvrO^>( zdrl|XJia0xKvjtc!klNcE>YhBVk~=EPZQZA>=c2Gm7;|6edyb=fqb=$7$|GpDyO9W zgEU5S54J*1A7Z@8@eKg3327-mT0~((j>Q|1TAxmJj;ki%^e4w)FR4#A039cXE9~4G zz-KvRgee-B9&iKLqP_t{uipSxeqqGC<#OZIJ&c3!fFKICx3YKLBQGzx>I1K8V)v?%%B=Jacc9ds@I8XI2Y%UngE^=QiYd_p4=gu&FA#@Hyd!-U&~=0%UQ z3TwB32b=z&l67u{1jTY>`+aeNYiR^%MX=U^DPaZ@VkiCz;*j@*vzvAX#L!mKWQp}P zz+{%C-om|uS{c7(hVBb_v1yUn~_c#UmER9jgPV>o`6K-w?8PeJ~uLw z$e)5pz11*j7m)I31Go3%A%3NYN}vGrq}q{STGF%Zhjo|)&IW&Y!=PyV)31u@+-Uw? zU2yr}KF2Ek=f^6Ad9%tzol8(99!Q_jej-2Gq@ZT4FF-M$O6 zt|yVa#4Bi~nxo;LBBgAZj_dR)gq@70?hjW-)l@RigJfV zw?i`PHr>s1i$a`N3*op9a8Oa~PRxZ4s!sV~A`udfa+kwhpQO3ng2x{;TH;C@AbI;oIG+>cS|QD%g9O z6&9__{qf{+11q#_E*%Ra+DPh{>TGaZxpw^B7?$(*DG0t! zWNY1nHbbfO;XY>?f$dgHDp{L-JtLWU{e7{HNrSz`>=d|#a*8?dqr2#NN{xbWEeo_g zPg$Tb@#RRI0?`@GW0tZtj$fu@sSvHOOEP35 zs1y6`F4LXchvUj@#!SxR8)V79%N_?Fx)lFf?b@OIS+nz+xLyV?nCn$6z;_|)Z( z*eKLlnI4RdjqXOWn=!o>l(?{@&(-+)Eas(d0!uaj#}b){ZVz}hEVI{3hJV)Qpd`k) zxbdmwWeEk}ddvDnq5zbQKQTTPGrJjck49I9vronRZAA|ZwPmBy)H)TXp=*+&j^5J2 zZKE?z8<@B^a%+H0T~FXKALcqGFGd+kVeg0^d8Xlf;{Eu@_WQWu9C&X)O_uHS5FhoE zjYr4TpMRZYt=N2LKGJ`+L6K4@cU>^60kRe@MIiDfh8_85j?GwWb5~FFHRbgE?L}Z^ z@1OS#*paq!D6`_wyz{-qg5k#0SjpON`MuX933L!knXNN$GM_y|R}rm@lsm;j4fS-) z0>ePlBfq&Typ3V;?J7DICs4g_^Kx6Em&gXtKEK)eXZWQQS6UHrHQW@GMk(s*oPbtB z6LxJ^bn;;mmE*EfE$Iwv@3TkZa&-5#a}Aw$!CyAwO#%mg)AcSp+j(O?Xu-irZnAX) z_Uyr$5YSrj6_rpyJ~iLR46~#bn1vVY2L%BokUrdM_rk2SGVHobZi`jyzGA$|Bn+Z< zv?!_3%GdEevEE2hb8)I%A9}cZ1F*kJ_uKTY4)CB6q}^61gdrzEpraeWwsD{abuh7! zCwEt#Ci%DTr9L*EXx?^pO}2qJSLNB!OcYPxubttrh5aX4A#8DT&oMdPe;k;sMJM=J z$fogZ3gfMGwQ5(Pm((!u)gC0Oh!rLM5P9E|tDC;XV-gt#2cI27t_;71JTLL%Iukrl7J6lVEn(-~()X~BZF}Znh5K*KPN9Z~%@x8R z$h~6kx8f3}M~hA1=_*m*$b4gO!O?>!wW$KM5>UIIxw-sQ2KShk&9sl!p5#-qv^NlM z)f|5D1{NS~MjcMC-H~DivsO{tSN_l$QjLUT{4e|jf$Kb|ROUz2zq}t+(=K*$g*7}w zWk}+t1LqA82GXUKaOT{I!W=6>zIO3Mwmixr`)3K(=A7x4urz+vrWX;?Rh+t?y$5B; zR55w&zYpAhb@ImrXW)Mg2tN&8KG26unqhQ_zZbd?f=aioRv>BY`A*e*hGc8vZ@HIi zrO-r@$FjpV<={ZCRr5%83>;5dO1}yQx1{iwBS(P06%jUcXG&+D$I^p8pk8^b)=0Un zI^bD3}3$;CQ$O!G7#p*1r`!`y@dW;^?l+} z(DNc4(lRZYr^0KM#NTwM?2N;nm?mnL$HPN?HRG(aSgFLgK0YgGV47L%746FdxywUc z@*%U3lRwmcN7WIuaB}-Y9IpA6D~0Br&7Z&PW5UPxW=G{_+YRNwxO!&Ot}(WY@i0Xt z8M=Wd4b3H8tkaT~e;wDhb&;ohcBiWd2FOH3CoDD|>#3A` z>u>;GAnTUeScz{x))TWdK#A`(K{aBk|JS zmw|@(g2LV!BgW(1P2bKFv`MJ9Lh`SXiFhIN>4qDCWSaJY&D1M@+&=>Lax)U!30uUh z3B}%aS(n^qrv7(NY5O6u1DgEYTd@q^($`xOY|_&QzygnS8WL`BoJ(VNAlBZp(GOYip#ah}~wK?wF$y05g(9Bkmx4eCPWnU-z zXLU~8ELW*i=t?}kE72NxgFwu~-tnQX(fg`iT0T0e25hcT>EDsRcv6yT5aA!$5+>}! z*AHXvkuXN)AA+Mk%F6yJlsNyB>q&I6IXVxLxdAvR4xetEfwSQ%Hpc{c(?hO>Qmzs{ zo3)p0jRrst6JCYt2ql`>LxXd{8-QC#uDL@Lo9o0ABD!xn+jI<$eDT|_F0DtiBw74; znTkcAQsc32l8Nwq$aIePHg*&S49YLQx4&j(GsC10U%mPV2l1D)z#T+m$`aAFT9|ZC z=OtcC@ggmxYrfzHFlmbPH__RlbXbxe_LWDI4m7S=hTH(4m~`*R8fHtM=y-M^xM*%G zN$R7B#w9K~E1`y`N90v5_p+Hhm1kyb$aPBDa@>gIx3-*Oy22v95jB0izX1tJ2O>#5 zj?kk`;D_RD`RYQVPVr>z!@Q0!3w_@n0P!OOLE! zf+)Kc=mTXh$4Utu4Y+?my$Ndp$q}}-IY~}a-22CdzwVN)5n(N3%)yim2CfU_$Yeu<0v1l~06w{}>l^C7uA0kkuVu{Duoh|z7c@2>sYL-jR=CyH`)>O^K_|BFih+D zeB9BPs?A6J!_>sTxqTpKk^Oy@-6?oP!3NVCuy;rp&}@{oRb9ILQr@3xrXal|wVf$&Z9(7Sy_3VRyPDr(XG^W3?Nc4A za5=5#ao}rY&_+{6Vv|7b95TJYigxux9iRjC-)%%Mt>&r@!xCyC<#X?pkX)l~RTGs| z@;hvB=`RR!XjCcZsi$p?zt7<q>+8J4%7Nt=3UmT24Ps*OIc=X85W={#Va1q5~}{aP^O z=5l5w;<>J5m3peMF`t%L4p|&U3tXm3-RHymG*bLS!*3_fhQGmP@;ds04^E9MQU$^m z;XF_U9k^933^cX;Od;ZM{AmE&^%6p%q*m4S7mS#yDV$Ds4x=yW*x2R1eII|V5n=vd z+ITKr{rU`;R%S36IJO&t66 zay{@AnC?gutEjI)&<6<`JFmQC3AtXNU!qC&&!icp(%A)OTf}OA1G`Wh3f4HEH*)Md zL=Onp@(t#)KYE=0JLlBZE!HSmpBYWBbf94Q0c+c!(iNflvS4DOjkpt7`1n#@+1IpF zTv^<#K2^kcbMB}_j)vc3lUkQ0{(V@?>w>TtFT8cArEPDSo4u;Msu&@yIX%jAu*}b~d&hPgfz1*jmk1JX?-)(0;7n|tP%5ZBtuab#pr^0^33Rlwwf4Y6 z>xzA@B_kHagyyYXJ1_;!a=iOvYg)F#lE(4xcU-SSy*g2 zi(w88=Ta}bKWdiE(O2eYDPElFqjmUP=3mYl#LKpgeEcK+Wo|+sg?+z1m?KT$r=g)> zuE!=F1*O(0u+Y>YVjM*%jVt%%kE^h3Oq;T^rl;}Y9=Jj);k-6>(ivXxCn-fMrI#rA zoM!~zK+mVpEq1cLs4g@?)fAWNO8dKNJ*zOoapy!XbZu{wC&4r%UiKhz>uos>4K2=H z7^X~Bhduev#j3ylmW043k>N8?l&e&iHqib*rG->mA$RCPkL8ZiFgbrlaUGO*Iy&($ z?VkaU)Iud3oP~lSd}$xk2b#f+*4x|?oVMV`_(FeRNds0Tm2*6INJ_(dNj^y(hwC)K#)r$8fw!&gYN= zhKU=%R}XKlqsTS`LNazV&8WBO>fHqQ+))8)ms(pR_H9wW(C<%7zHXq{8F>MH{;O)` z{g+LWE{OGI5UD#z^$3+0?Cq6>fM<-V_p}&Mv<>e%PU*jqkC@^WyRYU(@;eOhpb5$c zg`j@b@tH0i-uHey3`I)iAq-YH@&b&+LAf&q9QAE)=KDS*9SdAnaea6nUA1B;N&z6l zZu(nS;{Vc;24&5_f9!_*#?iQo(HcD9R|f4Nmlw*LYA}or$w#*P03W~8rc5zt9f~8J zLshkUix!^+3zSE$bu+4s9pN%fGK+_LK-fcs+2th$1x9URU=69919}0HDb80qe0dqJ z!n6;4GnZXyRhu@b))s0sBI+sXpG_v083zu**DZB`emz;W{o9jfi9P#CmC>emDpua& z72DDQ`oX~>gC^h~a21PP?bzxIsz*2)xj>Vh3{KFlp)b_eMQjyTB~8`h7@1#^rxDd| z$^)*`{9m_M#f$(B2VfE8(5AVaHvtN6<=eN3G#JC^kE)eFT)48OX~|!kEe0 z<3#ByFtK$NG`25PdPhb~mvGZ?9qFZ-u3x>ZAP8b5{k;0+fGs`p7%4^cF|7QB>{;oA zW1_M4q`1#xw__Vrzq>S*0n3W;k_KwrHlH)GeBHOkpkK^YX#K6@%&&Plf8k;wqt=Cj zx78Z$5Kc4Q3)v$3bIU`Kl82gkY_1}OQ@>+FT+<1Y@!g*O);=^@$s8g)Tn{^@js{PR z^jm5Ku)VjI@=RoJ&?!gK4sQALyoYYs3=doX~BxcGCbr+I<+-C z-BFTaa+z1MO9Dq+e*-4j4Kgs)c0tU~DkLiT!zP}Ar)5R8k_|qjr53)j6JF9RoxOBO z(dpU{w`E0mjE2D^LvdPm;;s5SUk128<;zLXy5C0 zY@|4wwzE{866554sDJK?9#`y{&9$GADSgDtc4jX&m~Udu{_JrNkG6tU#i;ZNnzYB# zIJ-?}ynDVXpZCjSGnXQIqQxkjf@4GT!Hhv*F~p0uh=VZ-uyn^4ehTbqq1!QK3eyW7 z012$Ro3{4Ud%z!=P>*JzW)~OImE6|mFON$SBsfI|j97WPj~o{B>x*+l7pnw&d(gSb z)ZVVe*TURVczNayDcW@kFkG6+_|7^Rb|Y)`uqt$kCk=C~9HFv`y!*Bcna*OOU2AxmtIkK;6o5e9vdhw|4mc8n-H zi_O`nciK$WXlz~iS67C3+&AX3_#K_aURzm+YjcsniO|t@LO3fO2^Kr9%&QDc zSi%Xzm;yEyIBbsf7PQ=#|GeK}3?E@=SFL3f9F6KcDGz6`~rn3(K>Xb z5geV)Sk$}a88Xia?p>7kJD72*#>Zy_ypg@HM;!X(y|n4(&fhX&|C-Y=F1%)ebdMr2 z;luAiSxm&XWgCYHh7t>J0E6j)H-Mv*(MCi&z<~mTODh-8AsZtDj`} z6K$%;Tus6qAP|nl5ep;3QQHClKHX^u4=;lqU(V%ZtEGWO^{V_?*ojM|Ca3jJrC^MvcXPqQIZmdCh7ZNLJCF&LI`ku(Yl#k%@{ZIvdz6|FFKvWPlK)zvptl>epe?W=XN{d&hpr8+VOl zlOy*RCKmCzUYCo?zURIIEBC+#q#;_X5Z8(0${JssWTk5l(v4_S#$Qf2Di;Y;QjI|< zn#Y@Kl}|=xs&Ro=GWIy#Z~I$b6vOV25p#|{dMJad0`;8ZjrIo z@3X|lPp7jgp+mE{i~@HvNNminv$xgWepC>51h@TBD%h608bfEb>5bHdN!X|nFuB>Y zR)+i((Hf+*Z-vR^_ny}lS+YLDvEEKVS^`lHL2F%qBusXZF0oFhHr+mhhf=9qCl+(^ zyJ`sQTDi3|h^G)hofnWJrt^zF{yCPWr?zjtyWReDd}XcoFUO(D;|RUP$$rPE=H-iI z1&8qi6ma(VE&5BR=?im&^@^<>&<*8LPmwHZ4=ZX+nK&;YwQ8+7V;S-^MV=P5*> zj!Q|M4mWlr+z%_`qf?Mj*1vwz5BacES`8w2x4r(|Q*|RmMLq863q|dVWT#NCDswMp zbJI&NQZUb;BVVU>O3`eE=?fVd@S7NGyV{+Do=Z%+C%yUxaJUKyr}~HA4XznR1Txz3 zMVo~jEHM?(yQ7#&?7ibYb)C)p8-O3C_R>w3!~0gSS3Cxed<#0sn>9#@w2!yrkjpi! zs$6q4q)G&;HZSKYhR5v1sh^aED1e7{n$3WY0;}r9vj?*dhjwLN&wUSMtbQMl+FK{U zzo~d>`&R!FNd5g>E@{(dvnn6DekKiU|1mF4POT%N2X@dtD^uLRWV~?G4kTQ6Zr2%> z6>?o19j|5H=nJ>l0viRz5tYUeR_E^(qYr7u#hyQ~Yjg4ts5iZLziU+h1#Fu_3OzLE zKTe^(cpl*-tFT-|CTI!u`&pir0J$>u4+~ycf-Q3`}9lF`{Vw+aXve=vJco$s$Hvkgx`|0I3 zfKW8G`=TaXFwRB7v(=!qW{BUNE9Ti(s+A~3rn)M2S_?xi8J>e~764W{Oe)aZWO*MV z9oa#DpI_=51+RYXEAz}5W&6b7#ve3F;%!mxU5wktPmQ=D*u`m0Ts|}qPP+8FPDlM% zo8;I1)ER!#BolJ5Cfw=Ndn#d@^fx;QwNSB*Yuji{J$`C48?yaLU|nmcvCIvbD%IS0 zO@oP)IRoknK0hmCGJYwC+XvnRzuwmWx?oV~ck(3=EDe^>4O^Ivys~N>s88tF+P<)9 zTj6W-3g>RSuHWq z+Pmfw{Ci@6Hx2d$;t=Crj7Sl6=@R$TggzNiVOv5-38bk-oI8zz$IyW*Z|^$OU@q$} zO{!FP4Q!Ho!uU}^LW1!025_dMMQZlGn!47BGD-xPo4J!bB+X|swyYPqKpQyGs0$|y zm~inke3e+(^TJEMc+r}v){aB4d~5&m;@+kMds|&PswAIu@(}NE`2iDV%Xo^))z8${$~|Q>Teqy|cn-6Sm{R)7v%)0*Q*Fl$IqV3E>MI@269tHv{4`$Y6U&TK zX!+6Rw;c;g|KwGM)xeyCWNr1BX|`g!x(eGjRW*{9;lcrwqFkJ(&C`+_05RWTiBLf3$hnBH(DSP@t)vrj4|0Cy zAk}*c5`Yo|)jt$fdfLo#c!YV-RTPf3ty?m~ab*Ihh)5?D8kTJNXk$)J|H50MJAZB3 z`(#i3Vl63PqDp6c9%i4!#n-(`GvJZHE24~h&@o_eIP5wsb~b)VUbO!^f=zlaMy3 zQk&Rm13hU+f@4&r#s_V6Hv^9siJGWYGd`RqoW)s6M97OeY{GD)TGp-<%%A>Y!30Op) zhj$f$igZGCbWfCUOB7qs|HK*gKw9$Pji?6=Pi_FshM1-h85hXEI7iNQYl(o0geui; zJLiW@A-Wc?q0|A*+8SL?zTOwu6H)~-2dWth{B+L8)E70;@9S3%76I^fpGLfmUH0}r zLOFXr7zS;9(YX1&Sz^oTCC?|ZRR#}sl~Wpe2T&`L%~cmXU0VMHgAliTkg{i|8QMT9 zI^M-@Y(kHr9jLwD@yFV7qr+R6f_vgrsdS0+O7h3Lftn+O5(~ zmR%Ni-&#!{MA{(Jo`<~-5PqxxT6jG*i?~1*a?jGNIYz`&&m_F>EcU5n3lNs$FUCWJ z@oOePcC$Z( z7CrSn4f05CRt0aZ`=EJ)p8YL^+U1GfYeC~Cl+_gI=sA)tDG&ST(@sZL^E78j#TdB2 zuCYdbfkvY(`sWf{$e}O~A1YhaaN7SIsou9k*H@61Yu1e{eNlye_HLHLw3DXJ?-FlN zURT&Y=hMBEp}Ox2&Jl5|Ej0Af)C8|v1hq-$s8Hz9G5y@rGK!R)N-nb|}XPG_!?3-4@Op9)Y`SzhW>+S!*9 zqd-T%+KcY1^BaJaA{x@gJ2PjH+L3bD?bUrAGJjQ{n0zb+?uU;dyx8Ja?QQkAgvwC9 z#^w|;O1)o4Xky2(o6doS<_;tIQwFQFg{~8{88kY(Db8slO~Y3SzV)Qxq(Tzrn zo8D~kn(dlb<6hMY^Hqh$2Fy zyV)%4xjI1GkD#0uAY1EdC-?k@F4nU+dQR5KY1_SWW4?HHbNQ2P=Z!KnRrp(e`WKPs zujHn2KKLX=mQBW@YkM(W4WvUi0IkI1?;B&DTGwKprFQPy+8j^uBiLF75DmIvWZ6_k zX(c+X(b*x&#rVWewC;LpY-KgxO_^5^k<8nT3i+m~it$=F{~gr!|H2g-pgZU&CpbUs z-vyJ2yDTNslN#D4oa?)Ng|Yl5ncMbM2P+7SB_C0cz6>d(PU!n#b;l4#PVG~tR#>#e1Pu}0_qRk=*a%yF9CN;)2Uc8o9 zg6=L*W10t(w@?2d`3ew@nM3?O41F`rIj!=>$hT&aKzQsHk|L+fuP@ND(oGn=ZH~pcC z6{6r1xkEJNNCYE(crIrN{ngtD`>RF2b}^ZTV{>jX6G~*Y1obE!4bdNNsM>9RXZTv% zFyaSvt1h5{G?drohcU-CbM`L9Fq9v~Rj}i@G4`8A>PIVWpnhJ#K}{Z}?%91R#{6_L zTFd_3oC0=8Ck#&Agx5>;J#xjE523l)&XZPI=KH?!Nnl`|Uc$;;>6Ed1af&6rz`U^< z#PcnR&d{_Ku_vlkcwANE7(aSap?{ssa!q;qQ=o*Ebj2Oh4H~IKAM|T52s1-_%h4`p zWW0~~R8E?EF`eF+?7}m50cT$-o8dMn@*V^kEHw?vWtj$LA`9pd^4S}>BOpcM4u8@JW zhG)T$^$BT2$O)W^o=Qpg-G97Q?D`fW9k1u@<>3j%gEihhAMup*UY*1l_CEzdJF{yq3lA8OT>8hsQDq zh`^ObgfCk|Ar%>A<3Fn_(^}RtBIK(6R7KO?Er<#xTa${W0AxVfpq>cJETq6udeiXg zAT@&C5RU4<0R(LhlROmC7d5K<9&I4a%U@Q+8*}m__kIpRsDeC;ttu`K+-+rlv)u=z zq&2eVEwEht2vb3qKH7+*->b2!Ja<(c=sT7_7VBmz;}ffmk;l?C zXIPYtewdR-s59%5$Cn`WSCouT=v5!`HPO=|O^-SijD%kP8Ht$?>lk|~8sKLFVXkl1 z)L`c|e8t!{6(Ok#oyRS9L_dY!%U$VrQ=Nb%Z=XpRsHPs+A9AMDl`F25i}CCzFb&~m z{Z~E14@ac7yf9sSD8v}#lH|X_jV733K1K7eOhabdV|~ zDgpum0@6#Qmk6PEh=TMcARt{S(g_Fwq(yoYkS-lU?+G5olq_cy`qM`&SFWg&Tb&Z8N zV}PUM%m6jrSJ2yYrb?LEJRdu|>G0hwA?7gL* zERnGu4*7J>ma**gy^tqPPpY$;XX2)v4nu6+XJqDBYIWx5S<51i&OL5vaa7qFJ_9rQ z^o9Kcj{7~Zol;h9xI0vP3uP$Rdsu=R+mKCOBmg12+Ys>PlGTaY`Do7XQuhAIn@SS_ zRq)agU%^g%>$yqs>bYMO>K>}D${Q$Ds`2IA_Dpar_OLG23ik{20bYy*CI})fdAXcG z`}stDb@-=l1rioS zv;}hZ1!%YXY0J3XlvFvE17i617#1w^xyn@*=t)6D-2*C1NOHtB^UPXX3keO|c`B;0$56)zr z&{r|oT@KjXm|TB>=r-iSrBUMb^sh=WpweF3hKk{cVk^?UQjib`(dpGIlW7)_D0;9F zkkD%I!pV(hasU6r zz=Bt?Ea-wbPj5(1bSIco^C9cpnKo{mK&=Ls&mz!ygkmMSkZxzDp$o7rPGs+@Mdy*N zOpDJ>tHoz%8!rOu*#f_TV{4J4#VQutIi^yD57`VM_;<~+`h_n?6?Mg!-qCm<*#;139|#+rF7#JRwcU>dHrObQ3opb^9 z(F=~0eZn_7EQI<-((0Yl(P=(4mRpFiF}<6Ua|Q4?vn`c!ktipf7U*2#?hm-yJxo!XxTPGFF9;+0k&Ejf)%{P574v07Jz#j zZ40Q?YE<|$<$s)&i*L8_2ONmM8zOiJ4n(cC0X~dZzd+yNn{3p8PXj>y&et-5F$sVO zAvY9Y9*a}{1PB^-U}1wfOV+^HFI10|PP3XJ`)D{$9KOQ#|MFQtu+=~Pmd5$>dBh1; z5YG(Wr$6lk8oPf4#tGcX#ud>robhJ0J)ga2;H7Fk@aZM5;8xHNtMLx=Waa9Oo+VD~+?GBN5&7d)X6ymx$ts0Q`S}ydFa=Jb+u& z`S`ka>(FU6~U z#C||L(tlQzf3ApzpVI39u|)7Q3%0{zc0lIqf#c}$#JUkZzd&!31_-I}IU0D2s?9Hu z8hAGXJmLu0^gp>n@T9*$)l~ogJVOJ2A@-0t9Ec+`(fb7=0)*Y5bNepTnn)Jm5@1&w z&Hh+fue#};Diiz)Gov(?k9gO%Q2cUJgEA~KYJM`__j8q9meOOSjN09?90A+zJ3!20 z<^L0wM(H0|n*QHbu7ASP{FgaD>O2)?gSz6USvi=8)tN=Ec!eys(LHdn-EVc|=NvjH zK+GCM#VN0pWcq1_jofDN5d5aSp8;T4G!_M;P}ZoRIZU#bt0^*`?fT}p;i~|akt#{S z?VH=kE!eh3{8Ovt1`cunk_r{@xWTa*p+u=7_Q+nY&**oxziZzt zIRmzCU5=lfXJTyDr9eCG{%+3Um_HEUcYVud(#WrM(=aTJp62JmWeuPBCguly`6*+o zF!_xy->z|CQ3hqwTNqZ{4K<g4pk~BYyt3d|j+5Oh@jC78 zXr7ur@hShQQB-4!>9fqwv3E4I4N*3t{^{e%gj)G8XK{0c(%yQJ2B1P#;5ag%-}X!@ z=iDjO>KL$e>Mqax>9oPWo%If0?6UJ60aT`xz+G4hsZ5pY2lgrB+Y|m>;L)$1)_TC# zIo$~(V~B}9HXBiR*|n{vCAN*}`bu8l+aYg}t1HN+emf?LtBIOuoN}Jk@ohPlc)fa_ zHNDS0`(3a@t#_od%t&{!j=6`AIDJ;?`01aY`Ij-Q=o9pg55!Io;U_fCZiQI6s}EEL zOC93}6=CBGu)0X!EQfC?CFP^saptB)d-(xVJz&9bZ(~3t|09rFcQ*#LHXWmW5}41srsGINNSxn; zx^crEN@}!h-pt0#hUQdGw^)^~P`5i%{dX3oY3bFI`GqS?cIcDbP1z>Lh9d+k7F=_z{Y-KhlNWQDo zhKW{I6YdTt3U}u6ec7^mHzpJzGP)d3ADIx81;w|L3uaWG$7)0yv09*Jo;$~Frj`O* zIwbk5rzQkDim|%h zVMUu}ISh~TY-$FlFhfpOCC>Lyiw1DZqa2{xK|;P$=pNwY zYW@Pa`k%qaOgRX)@OdP`Iv>v|j@s{soh`#VVsTF$;H&9#$AA0Y|MhRC64+ngo1lq04|+*8aHle$ds}J3xt}Me8PCCZ&qZx2r z6cZ!RRpc~dFBv7PBqIym>n@gTgmBi)DE3J}H?u3j1`E@Zj5813Lmxdx$_|Z+)rjmh z4jWFXnG7cSUUiM=udH_v*fzGY5WnfK05ev2=fumjN8uXlb4CE7kSAhpcw0-kY89j# z`fEdi)cfS3?^MglhdGIr>xV6tBa)mv)!YD8a-ysdIkJaf5rWfgyvh|xQNHLVL)Kc# zc765CWnb2>)nN35m7A5;hDCrOrc>>bKH<>s|8iGV^zwQ12Px7 zzA^<}eZ$e}I8?>>QfU1a8Oaq4*)d}B^J<$QX=|EqFy;e>&xcxhL4H1Lrz6Q>az)b_ zxl20vY|hreuUVLnVHG4a5cq@WcZ|)y2I2wH*8ek}7W(b7Rn)k7UEOb@ma-@DefN{R zS*lfq|3=gTQTo5I8g*cA0tVO1HIJXfyQrjJ1D^u6I>X^-)tH9Z;}Y&1n$?gowL_vrC`Tg`RJ}#;XKbKPkrRK!C5U$ zmPz7-QKSRiCEcpf*UpBTWxVUP19C|M4T%Rb0*pNtp?UOX6PNQo1nV$z9uSXx^{r28 zLZt-JM|x1pzCJiOECm3SuO3-v`8;Io+G@&*J=uK0_i;V-H1k3aN5XQVWGEBL+r%){ z&hFywz>JjW(9{fMR)&@TyQx)7h(<`jGPgI<-wGCr%+8o4?Ckd@TB)Dyh59-JB`i)ycAc@0AwLKB!yRbptn!P7LBq6I367Z3~jU;5i z{}vApEKl(D@n0Zz_+jxDe6)%GH`M~Z5Kw*-~(l+B);2vX_ zSC=stT{R=e|6p%ZgN`W*b}>G-`U&kzqi8%^IKrNI{kI;n-8qY8C3_ z%H)4U5&PeRNKP5aCe_n6gowv8$1yWl8eDt#Q`$sXm-X!ps^`$PjT4GvbpF~ekSJUM zr-7%i!F@V;3J9Pl7RLa1?cbp{E-W&QWR~J&+Z2Aw`nkTGf#)QNCyAVrxjz>`^Eu9O z*1)pW(rX)Z_~=-@Qg?m?I-GLBQQ0O&PrI=sxh8$-PhP&PC+_zLC+dC)Vn7!ec3Apv z$7{HDm)7e)B#zC48?QWXaSBkQ$Re%NdtcWBLnn+k^_+4hE5TQdX)0KhQZz)`4sm*W zoq+X6Vsz#R`GI5dlH7)~9h9%l#(ar*`iLzgbnl5i<5-x~Q7cyxe5 z>(?hZgmefiyd@T;x#_6C*}Ez2QmQ?Q`VtVCz9O`MFVo4vEA2GHz1QJS@fzyk?)N_V zc7Okpu_rF_bkp$Y-8@l5u^kCWveefW19+cmm~6`5${`;8-TVUt)ERMBsaA)6bL!B! zr#huOrZrkq5A&GwtiKa3#B)ES8$YkW@k39g=6QIhGChbQ%X@xsqgdhN?{|*g{|Su?Mhl9DK3)^ z{fi0I6c1uG4A&Pjc?*Kt7Df&a*$h`59rh^Y^GyKN+q78XH2(zh(}zI2;H*LZW08lt zuUxIflH&`q$fdXdwQIP+Z@-m2Tvt>2ZgsTQzQhHu(!``SvrB#mnQ1EZ>3+34Xsmcy zEWwkMGzRMZ&8lmO^-&SMu)8FpTT=T$CS8g7Ov%6xTo7Nhk3+8Iy2RraeCW&at_u~i zq@Mtz<>xv*)9kO%DZfBxBg32XbydQZ)=vYBeGnGsyxV>XJ-YX)RKqc;Jv>51$qt{u zsF}oHpt>EuP7-S>N<(it4jXT6SkqoCVY>8u$qNxpBBN6nduk6)G#^`y2888TfYkgq z-EVWR$Ymuk*)4!MO~API8VUtI=K)-7I+*}gfaY&YK=FdCC*eAr)^>6r?kH<(^CwIu z`b=hkzjb>iC~A?hxiin7d=WlLJ+Ifs#snqY8zo$T#uh_UgFEuQe&8Qk%8L$(#?wN| zF%rVxwjm;e4_Q&z#YLOYfV(*OH&a$je&CJ_?MJW2JsbU#V*m?Adi=?;hRc?vPx)v3iRDmK*`#KWe`=5Y8kzQ0__@v-Z?x3P zDouMcnCXIt0lsPT`nk@^L4hPR;fT5%Tbk`clP!#o}>xV5&U>Ufff>d?-N#z3+2 zn7m?6o(gp;#9mk#tZtpv-*bL7@#E(z7PlfMSeUNOQ%8De#kV+hdO1Skm)@8Ly;a6B zdZ~pdtrqL|)6ApNvm$y(^wwEO|hBQEtDK2_!nsEv%<7gKktKC-Qiu1MAzt_PSOZxqj6!I zJd4>!+YsLtDI|*{lRkykO1_o=zg*#Gl!>%x>L|xjZKPmfFoMN|)UNq+>e?{saM^t{ zQ)f|17e=!o5PElLDd2GhRJARIFw@xGz0WI-Vr*ad6x24-`e;@tA>u$S566K`H}N)i zrseH3=ut!IPMtpns9EIS|JnKX`}4mOQGxa#F)M00b&O18{)fLO0P5QF-Qs6Dl8?>%(4%GZYe6iXG@KkU% zo|`~&AO9Sm``heUarWaMs_TFEu6-wkA8p6-TbCK$q-v*kU=eN!O_G8c>x}@cR&pHu zLMN6c@8=rM6rkM4yn^Dfq;h>0@yp1HAw4HUfju9tW7OCC?9kAWok`t`mYDnLS6h&L z^WSJyT5f&24p6n)&&u4TJ?H4~&f}wGSguv*R!`N`G`TS}7kY9Crd~+D^h`%7x=qfm zZ>DK`LzT(A(oex-@Np8hnn~S=^j)Jc;AvJFk9L8kjOOhh8eDbx7|aSd&^A|^h+C&Q z@2hj@M{K4tc-1BO3M?#*6k}a;@v@9Vlp!l6wKa3t2Vc6$&JM z7qzYBZ2b08etqIxlJzv4X&F;PR&0))XtzwaZB~>R8%i53>r;TOI)29cnhdor0GoKe zuAT=$zm)ngVXC+5M`aj=vmvGf#A04#s1zt!dUu$U?4(SvFT;Ls?Nu5hH(omK_#MijkI@Exiwa$|#%Z%EC z*R{RnMo(9yBWx(1XWA3eAjNzg<%F6Z^U|90_n4s%h+%_#9N|$d<9^sqevdUlAU4$WNf{<*QQh`T#(& z$K^l4J%0dgv;J!YTTk)7l4XDl05-xUZos=}lJE=knD!vgZ#)m+c2plG)N>Qw@~*4= zALtonFau4|68sLqG;4LX?y(3J;Hj(Gj7dC&fh;~HTQ|+rOB*eZADqR8pz)j)wN#dg z0Dx95L_K2pj!?BqR-Hc;1X~tP0zxpPwfEVfPXtMKx3ewCiiDaU`UK6zWd$T|RqF}Q zG}Bg##w0p*AW&eeq=~JDlopj+OvaLiuDb`zSyUzi}sz>tvoaosV;K0 z?Vc%4jIpX2i5HpjYkA19ISjDtnm8<(n(HOtRt+C`hVwn~a)q9C>b$b7VUPb9g<*!Ed*wugumOq$-wBI;rn8<1>K}R$lk3HBf2tK zMc$y1vg~2fNx)z7aGHAhl*({d@Lhu!;ubE=LvF^w8nxH=Ec#G}=rjO%x*D3USnGPP zZ6u%eUia3n4cyZR3WeYYI`QfsSJu&7+0pTbjRTJccVCWdE!Mti?O41OGdpKEXvuJZ zpvBZg3do2_zw{m}bHOCUz#C+Lfim2O@w!!K;GI{i_bqbf1)Mjo5OlgB^ek2yj=7)w zhhZA(n>D7Hu^!%>_xet5)V0^FRoy-Z zc<70JY`w{zchenRDA`AXk?5vrq}7+w4zHH@x8;FkBZo6#73)z72Z3_ zoW*=(ee4O2)#%T{pfUCj`0NAll*_C>F`avoc-~XJTLXp5DGIMB#v3KSN*tF#@RzFb z1FIBc&%b+RGT6iBAu-YCldM5);hpk2OX?p-u=k#TMqFzd5=#48U(RiP+VJ0Qo2`Zpv|2l*0s87S)kg}qBKBjaI7|l{G|pc5X^qN&WgBPX zToE%e65=IH_nQ1f!&*Zqnm-85ugb1ni2XB15Q3+aiVAuf`}XkszR{4tQu!#5rwH+C zXF<}-I=Z!EbEo8EY@P$Wr5CWItq!#Q0^!u{=J4jPrMCac#WhgP^eU4*w9O}{?`A_a zUF-9E6l7t`WoD7~Mcew{_KzuZh#f(UixOvA$AkdDQi&=hh%H((`gYVJc@590hHB*_ z*D>u6eq_*VPf9j&CYGdbWVx=Z@UEb?Rp(C5fS95h+~9ekF97v%{RNr>)=Q>6csa0Q zgXyOMIL|pLfxVsTlsK6{f;yr8(|KcvNPdK$AiC5>kua3GdiLN53I@A!r!0R}n{shZ zw_%h#%sC^2>|^~0@U4HWXKoFV3M3Q|gs<+v&ratSm5%au@#g~oE1ePEme7)n$3uX| z2myf53i-bykpX(}Q>};-#2>p^?CRhPTQHF}APi+Rjr+RVEIFE0c0XnF*xJtmGjuZh zq+{S_s)PW+ufKtOZTf&#|Ih_+4F0zD`kvG7L;mSkM;Zb18BlU}6CTa>Qw#VIxdQ-` zuyl9fKUh#0vEOXxDw+`B-QE-cI01ume2D5m`iVLCqWKk}knMZh_P)8S6LcWLB z+0RZ!Daapd{;LbOuF`|$8nUYsn;CqW`Rv(z1@THJapuyz-fQ?DM`#CHeYM&Ea45e+4)(%gu>3Pq`hB@0NIjtWL zO1&}Ou9eS-Q1>>SXF1rOidYeKAU}hsk2^L180j;CZkYJ1nUxhZgU2cd+h&bTR(+If zTp~n4k|)k7={w$nx6j!?j?26}zA7oT_;b}DA{k+^*2oJPMkY?#`BL_7^H;FIh$XvC za}aPtU@#&L!;7yk1{7*(y{$@?-?=~g0Fh)9p6CC4vRDt??{!J5URspw7jfP+@rthXYD8@{g1YYB(2;ZSLE|p>xYh8Jn4IQJ@r2f^Kl&JJ zD?Fw(ofxSY%{ITS`UUo0o2G_dg{|| z@?=I{=7-~9^+?-m;Pk663Og=$8ZTMgbcKL%p?VKiD&2i+%)92;Pwz4?9)Dvz?z7R< z{zo6$+hxp*!gEy8atk|{kiIj=jY*N&XFoL+>~R{uhc&0&P#hT6v@^vcW-!?L7fA5C z6ELnej6hnkP1Cp&Y@*3-%kGUSyP>{(Q5vrWu_dotxmic4W6Uepp#4mt5CaQy$t^m&xn(2GkAcDCcS}a<_5GxpqapFz%zb z_}A~)lCh2-POTdZBQThWCwJ9eye}J1j2)>Iq{jX%Qct?^)^4uYQDZq9;$yW9HTXJ? znB7@JeE0^sX7=K0OHC8==AzPg{FU4*cJ6N-T3-WbOaHHn!Q7&QUo zNQVrQitTb+IP1SgOsIRL7z+fX0OTuaUgPK|+Rgki?`K~+SF5I96LPr>fx~;p8YUz5 zoD5zG!O~K<&Z%Uv)Hl;Klh~-#v?2$qrt=)@Cb-~SaG`9Z+rKd*O`A_7|2vHw_?~Fg zi*8Zlj5~Zw@KD;H<4oz9k(Yo#PU7M|-Oi*j+r671y47axV5eS3XMBD-QosGs_`*cLOt1bBOq9~__}PfV z?C|q18QW$2OANMoiaZilcL#QMb<`iEGm7(ay~1Kj>2sOq-j%F2zS(=aYpU8}A$Zqkc->6#C3 z>fvwKDV*;9nHf-Cl|Os5bAwp$cKO1w*SxV2+j~bDAC9 z=ExV#XWYguzd-q=-tEA6{!5$LFd^$~2eLRg0dEh+hZ~pvRUt>*eT5&QvgT;?W@qZ< z@Po}Wv+6lbZole;Cs}*z!>(n}{<|Nq789<`a1cUKRDh5Wtps?b?*g+<;wgat+y!Kp z<3*r5ODfB@|9(L#B`jU!M|(qX@b)}*CD3a4V6{5Sy(t^y>gjs7^OT$8RpIFv{hvoo zk5>WY4*BP9Dg9L;A8@Ff39;HBUK0k66}>L-DW9u~+2Qa8d1SqvI($%)*&IGpj{4J` zRSyB-nK5Mu3`7?fhX#Q3n@m^JY|!LzDkYn2+w1n)s(jVM>YQ>`%e6Y>#4#lEAWV#s3qm(;7@TdW!S2(b%vTip^XZ%+X!0*c>d*J|SHru+MSoFl2D=ma z(JQo5j(wC5@BI;(ca-Dmdd1iO$&FZEktP3xpg`XLv#Z1Fv9Ivs4n{mK4-qTMhMcmO zs1YHC6)aj-7#6)ePbf2k505pVBS0H}9;;ZKyj$!kD<1p{6d=Y%cv7bO7lms4E@iK= zvSJ59-BkxzZF%i13Z{&|Yt3nLva6K*WV2kFXW9oiH~*^V|LzF=Rk=aDLiQR{QtX1S zmyGwv6t{D!?fe;7!E2V8=^kN1c-It901~jX{(JN9FDL3qb<%*ZJ7t5lSiFt?NFRI0 z>x4I7e+FxAD1+SZyp|8>!!NbZRON%$(kUyz>!!}8 z^;qd6dn{=yjL}aHQ$FH`xDJ&Q9oiOSzMeg+&K_&XM^2q=*cM7W_ItLdF@+$p< z5$Df_9kyq-lj70X-TCBJ%Bx@&AoHjm;o^hn&xQ2iV%IJArlw8Oa_efk-9u?BtH~$Y#>(s$q*;W}wLSlizxeOubZfB_ zS?D{#^Eb&>d?Z4%=z6&aJxUHI2U>@(a zZ4o!hkZczU76=`WtHM1wN`2uXN{@*W*_CQltfz>gXjSTR$c{URyLpx&^eIuDw zMb#ecj2V%W`(_~-1)dGEpDZs1UuYW=pa^xEXUkaoJFCk-*j@ge_omSE=%wLfhd_W$FIpowfK3_8 z)Y-nbNjC|Lz;ih-tnD1AG9avLl2nTg-iF-cek&4O<9yuQ&58r<;wekKT#sr;+~K59 z)=QYVw=&-1DXzW?b2o5`-|VU@kQoifE|aqcPg)pnSVoVi7jQ*a+w?uW?t)}{EfK&a zchMi#CP$Bn4IN&+L%#SJX1c#)IWAX2DwjxC9!X@-s}R*2~?zkgu~+zv&n5T3C0Ud zSy#bUD02LBtZ8G;8ibzDUGz&5!@`)0c0(;G&%JDlvwoN=ob zXC2RJ1Z;u=MDS9W{1#cGh0(0YrrT@c4rtrM!Ll_&t|pFX5aMvbKL!h?r3x=f7?x@Adw%VF=Ha4#o5 zVIy<{4{{@K!w^=OM3e0Jc5O~9HRWj$+61y6`c@RhE z<*+4Xzdsj2mwBmT#O7m~Sh&B4^19*>ai!a(N3b_~i((L4P$r=!S-QP&`B2hN7 z~+Uk?&ybB{B&>E9#BjT&x&&urO{ozQI%Rfx`F{IJ2{CF2M z!VRsa^==q@CAVVMbsfkG^_NZbG#dDC^Ie7r3_W^xWx7i^@aZUy3ahGtGegTdh;1_W zX|!Z=4wku5I*zNQ+^&Zjs7Ts!x?3qJX9qX)Ji7cMN(|&?7`nBdy>Yq{Y&I_#3EY$o z529O}T_qBHKR11dYundwcfQ$1)-rZiGuKYrdf)@@$j4)`ac& zTKGt8LC;mH7dzvWpoNMX|86n2d;=p)u2_gTRotGCG3 zR^RJy-H&fZ7bZ=qhcH+vy)t6nL_9DjzGS{uocT7r;1XLHyrQw@Eg#{wku8b_e}9pR z7I(#}cDzA4f67#zlWuUjv>~2zsHNiR+E9Cw80>vAsNy+uB`)Yp8b{v>rVap2;ON^Q zun;)0GIF#cI9IKqU4f7BMzuLMsH_2P>SoShRilvp3E^_k!~OlU$2cdv_IVCo^@v}4 z3w%TL+zA@tx0cdBv#k^qS0+P!xv zR66qt4X2lH#>N;qSOUS@zpeu1E84p2bdqpAY(!{aq@D9kzje*VGN?YU?WhaFk}&A_J7X1#p`HC`3xy|^1PdmBhKieNH;jy3U( z$*6v`zfr=JKb6xIa?w_d)Z5%W%|Ef8`MrpZUt3$J1IQ%w=t-^ZJOiAnW-~2 z#7nBGc8pxHZA00lT3ik!|CrYOX3ptlfzx)C>ovctLwp40^;teFRU1EBE24N!+x}EB zL9DdBee4sTr)M?FM)QVHte_R4S}Xi)8I*yjnG=9JY*I1d>NT*Q;Z59r4nLNlUNIH( zz?HCXx%psk+kA4@!S$%1FI_~E!i;V&k-4QyB8aVb7K|;8jcB-s8Glw4ftHS?^a^m` z!G6{u=PWJSpnsEdJDhiUrbFbRbYh1P(XE@PcB+ZFhd90L%`xC2)A`*mz(4$9bahI*IuN*CZ4Mj zUnB$l{c#)QoH(({8Vmyce$fG6dcs^R1s$v`?aT!29L#L2LGGvZ7cX8SBPAudOhHCLK~6?aPI>jlHOi~k zuac8rqq}yUnueB^mV%0&fsTgZ1`RFE?@EY>fpacix^n5#6&gx%N}B)W$FFao>z9e* zh$e`M*g+Sr6A@o0`qc(v1A&Mx0j>Sr;Qx3KT>#ohLVEcM897h@c@1=dh?w}oMdIJB z21@$_$3YjbU%GKy_z?-UrWq-_GmXfbxKEck9#=HeY7JsI@0+^>ULm8SXJBOFy2E|< z9*?M)xP+wC1NkQkib_wFRkUB|=<4Yk7+P3bS=-p!*}J;Adw6VAtg0CCpYhNenDZ;m&z(+bxrNpx|Y_q_Kwc3?w+CHkhKdUs0_b~* z2Gc6$mQULP9Cs7rp1v%@QDHheC;OVQoxyVSg6$@}iuH7QsnQdw1#MQTSNu>9CTA70 zUXp$1WO%stvHGd@HiVvV0T;A5u&w>ki&(k70*QTKE7Xm?d9}G==6(zH?ReEpw z8q5AkDcXqh8rhdhNBpz%4@gvqDP5LcTD#nJEah0{k2^KlIQR<*y-AK9&=t4(3s#nL zsvl+*l!bBwd$UZi)s2PtJGdE)`o1>KVUa3ij?|ABO|CT583uSNcLeeEUHJ{DggzaT z758wH?AYapVUaCML%2{(P&uy|b+)titiX`rj#9xai=R%PXN)xU!#Aj1GJ%K=l zkR#IIi7U5+D2O^9F&>F+0$j2jzX_2t zUbOi+Sm@=eGg$hn3~|ug%M2aa=ePd)W>NL+H)#N5*-DYm0rv74pOKhl$BNAsVvg9t zS&4CRpQauyO5YRRz3yj?y*0u#<{3E8C&b?#UFn~(Y-DF+ZW$iXcP&oog9O^k81Fnt zxQ}xY1hS^I2ek-$eQ0;g6l?St4*7ZnZ7U7e{eClcRmUqSKCNap*p$w;C zj6ubnSLWC=DP`67oVgdbt~hjT*S`i_A2BJcRhzLSn@6ecW1r+g3+2tA_X5!ys>*bC zEh)=$Dj0Mr9?$P*J{TVbQlVz!D)R7Ga2c>OC5iCQW6b)MK`mF%k>Q-~BSRh%@e}bs zp_Qr`sw?m z=9k>&Rj`YEWhC>@T_3XD!SmwO%KUVJgq#OZa%iM4zl}lV;MMZ6{-f$I(`qa#mQF%K zR`OA+aT~l@KN`5pymAHz9YAVNNY~WLdC2I>-m#72_Qyp@$pK?Fm9w+?Y`pzQ03TuC znxFL8VHe?wk&&09!SLe|rU9k!eWKCrou48~T)i{r$W%u1u1%g`t&&K6$d?E|B`iH4 zN`;C~V7XoeqdFYP5(& zu6yWnXCo~WyWoTQ4dp14EMb(N(9_oQohzFoWB)zR(*KNy=`W9K)rmUx^ys{wFJ!ni zq;1y@WUm2MLJ%hl#bUztW3??ny3qRPr7?x4qC&jOMs-2XM&B)B zEJBGY*}~Z^--t?4`>h-|Lv>Q}XztLkiO-EyhI(<=7doXzs&zjOjrzn-1=)}KZE7<4 zo2#Ej>4ZGGH6PR^Sr&wL%*tKQ1R_3d!89q2chuBfX2kiATGG@f;T6`Ew92`sTXi@NGUTeMhSb1*`C`E^Q!Xed>;k_ZgoTYQFOu zzi(UCwFc?}FQ{Qc+oWPv?(|%I{e1kmcKkZ6yaQNN{B695kkCWxF4EWkp-V(DDiOZTZk^>Mb?iIQC>#RI0%ob zvyKZk| z0B z!L}dU)3h7-g~7V^t2tKnn8rQ8WmfoLXt&#_aL=u8C+y!x=F8gUuyep>9$;EdA? zZre!cE7r-g{5)N{a*TH**wlPj`k78+VeqKVf&bN3ok3Hk-u-WU4~c=RS+=W&`J{H$ z*XE}qK-9k)%&`--SaT>AIlp~tb~ZAFUZ}w@w zeaG`ac-L@L-o|X4e*)Ash$t}WK@GbhM|*Dcr?^FDT)*cUb-W-q<18Bl3B3w;>cht{$9P4u zoarGW!#;13Rv7ibeVbR#h1QaclEjmZ9L=Uz(v(R~2|~%wF2`_mNBJaV<`0*jqQA6g zMf*Lur#2yh$k(3ibtzG|(Hi-9qPtfexr#jF$Cv1g;>DQP!tKabp3=L$qUTI^J^2O7 zOk727Ckwq=a`HxqU}KVAA*o~^ULWZ0wB7|W%c=!*b{LqjctBJoniT{sbFSpp#0&yR zR?7GOO!YrHg_;{^P4z~;l_h+ew3!lP6fk%cGXsF9ybjLqpX#b7eEJ{My=Pcc-MTJ} z6<;hUML?Pgh!TqQPE@1|p?8S%CcU>rMXL0wRB2K}5C|PYN4oUhdneQcl6dC(uCw-8 zd#!c$x3BY^AK&+bD_oPzkvT~+#xw5cF7tM=6&~9AqJ|D8EhRqY>7?-P1}nvb6|w87 zm4o;lQE$bCniFI{)>Hr>Kv|C#RWK6m96O;g^NB0i@OMTq*@6epFWsWbxly@vq-%~@4=qpZp_@6-4<2K}y`GO%UL zHtt;enxB+il6JQ<%1P@i0Cg@nh_) za%$%n4?QF0dDw!VL>;Q<-Zsa0`Ide^a$%azJ?*AO0|0aIt{Kd4j*~k|a1B3ue7D<4 z9-!$T-wF;vm$}Sn-%Oqx1$S_R3r<8Wl?j;v$WRm^?KjDBBESLYZRCV^X<(8FL5|>K z-*IvOd_!9e&T$Qap<=Zby4p_>)c0T?v|gN25Bli>wyAl`JQug-;2USf1C(CUdI$D1 z_ov3vgfciWbeTsaAP!Qm$(SJNYryjKjuN%(CSv{;43^T}s%Jc)>;&HhI9*HVn;Q{J zj8ZL|2nU4QWOh1{;vRjkP*{iAeFhjtHJ@XWg}QlGA7bXp*3ipmF!Q?I_?c$WBgU7c z(Y76*5nEF9qxSBSPl($}BM3t!M{f&$X#s9AKCx)civZ)QBG@R51Jf8&DYyk4 zOk~CeFW(#>1;011|GYC+`=$z6JTYTP$nU(8IZd@V=T6ugX?--?OnsC~b!i`b%TLP@ zV|BWJkP+&@8Ly8`SyKL<&6dy-Y?SmMOWw@nSGd%T4ZGg|XQlrA_L;Nu(%PCoh5GA9 zY{@#DhobKiE&meg8+Td&_Q*)uQo2R}3@Z7I-=5=o*a6xvyET0w%+>x<+*O45$8VCa zXNJ#`2%h(z87x*U=~V@XrG4xO@10QPQ`mVn`2Cu>-PFfYA!mjfmR?B`MrY`wgawQr zBvty_t5b)gq{EkBAIPx9oHBRb{sdly`Eid$Xpvp6HF7PXA`Cxop2D1OcW+XWMZUK$ zJg$z!$3swuNC7zqR?D9m1l#Y4pH~Y8dVQi4JtrlL&gn^8@XtPFKA;U#DPGP_iC

    )mNu3g2-Y2CY`)CgmSg{f$}tye2^1=q*?`RQiMcBnltPj1Q?gG_buvJ0VR~ zc+ne3og(#ZnI--BLL7EY(7wwr9nxR}1O@BFMIw_9PW2DG%{3oRC&W4GtUsAPtQ)kh z5O?x=r(z#@-p{Y62b$!fiB~tSy>D;YZXmQNMmtOW>qMK5Y9j7(_Gn3CYu?X=7#6>x z$Vuc{y;7Ui*96Wx%zC4-VJD8BD+$wwa(h%}(wt2rZR5r(kEf579MeCqxfIyn@^tmS zD|glY(c2&2)CNlNAltD!32A0@W^rBpb}nO_{-AT32-h1H$B#aK+kN1yreJTKgI2;- z&TGR&TPB!`N4!Fjp;c#<=RR?*cU3uTxL9hm^vo0}MO*V(PV!{G3f@P$pGr#UFndK5 zoe1L5#NpI6s#0BlD|JQCm@-eR&c@e^I!!)2^&1)Yy;of5*GOQ!98K*EF)NQHP~6nL z_pRStH(qG}g>$Nw%=_Kk@(^B9giUUvHoAJFp85J)>lLhW0m8ygRB2ZMSGBfNoY;9- zTrjr8sb$zvtnTWm@Gh|n#8$RFI@{1&89-YEV=|!kEqGjws^a1$?eiKJJ!WSBN-F)* z(`D)uSEi2HU#HpkPNW2SwpM97bH;1OFtKBN#!;}X%?+x}vBh2siH>j$C!g;nfIFG* zUhQ65vbg*%OQm{gN6dHEPpa3XB@BY82v2tACS*YVJ0^`;xiQcEi?GfTD#~9*o0kOA zL`BfLmFR_Y{_~>5Ad`=IA>SIh+66a8dkylP^1|A!-zrtFR0p!lPdrz+`+Q(|J{>hQ z+a8nLjQ)HznV7v0?k~~t=|CjSL`|g26C#U7RQTq=Znx_`GqIJURJOaGyj?g7mW<3b ziF`V0swIy}xbd7$l>ONeq4|+3M15fJ1=OLg2s(;c_hVxDG`0GIFy7> zn6t`|GW%X7a&QtctUv2rUJ&D&+*cRy(OG}5dh@45Sb>B=AY9UE&-MV7&AJ2YOI@J$ zarrFAp06w8@*Nb?7F{XKVt!@53Y=ime6Ze1b2q0T&%*FB7|sLizLmTktCFw94XP+zbc z(4lj2Jih|az2D2>Bh84^89Y9he}z;n>2>jqGi&C>)Nb zA^5y54*rXg2Y(s7;>vtbj28yD)${nMKW{`14*~@SxoPygTv}&nJMDhZq!l75;PWKaC!R)rJ8#`OT3imjskTCFx;ORUyC^ zD)s^}T&oc#Tmm*MO)NyY_jblQLG>1*Kz3R=m#Xy<5jOnwV@zbww2>ez* z=vGu`MeAi~_|$nrv73BF#^fKfEYL4<6{&58Q%7eL(X8;tX08mzMxQ%Op1U(V>vmP) z=o0h>=?^H`Ks`Ur{H1s5-;J7c@Md}7^fhQ+e(_OE`1C# znPzXW^y;8jzS%Ox^x;0jtl0Rar#D=p)~+JDtt^Bk;$~SsxAt`JBNuARa9)Z(SfV1b z>L3Y{Jd2%e5K=$MgOw^*EX8m;QA9Xrdd4eAJ4vwub))(>$?I2*Zp9sMzS3sBN3&4K zA44ep)BxB8qCDLA-0#6J0j1kYkRal?8W01M{3QE!JpkaW2}Cpwh$TGwsF?AbD6p*y zEg#tBT4sL#K&2>eTDiD$0StH)A;7b>et=fB=-DqZPe8C za!2NcjMsE46a4`+%+F>SdP{#(%qXGcYf+a(xv}l@=`Y5MhyXrRYvQ}wkG)1UqAOR{ z0Jqw|d<6eq9{xK&!33Ru>+z#+3s`^RfZi_t>G3`h{DNT*sQVt>gr0Aqdv$(AcUI`U zZ?-+vpYb@PosuuP`pzWA{FU_EU3WHJpS$vsFOivQ&W6>+O4%|U7a3Jpdl^mLuO80$ zuZ(>ydIk#ogb}*Vf*nxetMRysUJ_5ycW!+~<2}rqsdWPoc#l-lOvRp3P zbI1NFYo__SvD<_%n(toDuoBFbCJl~@cS|6Q(tM9~SuHPbsH&{oUs+y_UyaY!q11n- zWary={&bFjM4cyox>{9J6fIMQGL>0k*TU_Nri>a`6J>Lm*jb21;J+Mn8g2~-h}7Mq zQ4}%X9o5WpOjtp)IxmQ%1Y4uj#%&3U;`n3u*TL6cCC21JGh8~}yNDK+V#_qS8Yk&o z4+BkaoSzJAD%Xv^9l7NCWdeRvC#tpnk2XVa#$c~2gWzVX6`ic@uAY(1tp2We$GE}H ze0D0vQaROv+R01oG__Viq>dfgo~JB`PI@sEuWv)WcqI-F)^p3BS7h0fTwqPIJ~*LXu}z%()sLpTxeBtaxdASodY_;j=69t_O z+KKHMYRg8at92?)B3Gouoc*Lj+lHrH)_{F))J8v*x}M+z{yDPtXTy(6QE%_v@kzht z#^-d$?#rm*40NYoO%`;#f0OVX#H-^GD6q=Dg0R?{jS5_DRHPNoT@}h|gs((^Z;8H+ z<-}LdfQ+@)0WXPHw39bB=cy}us!bcOMA^v^%n_gSPIu-D2hnM9QgxpSdM+punc!A3 z8z;~deuu|Diy39WUNm#H^pml3kNcbM1k9Y1tqn?SRxzmn7AUah#kL|}(KTv^f@YiV z5jZeUdNF=E!VHp5E9T*vNK_({|JJ&UgPe!xFkXkh#~)v5t!_CReIWCd|fCtO%S&+qijJh=sB>5KYGbBmUmIl_AT z%)GQR{NktF28Z|!#RQXa6kP3KUP_~tzr!@C!AMGTexh6-xxf9J#Nj+6VBN1K$eTfk zaZ{lPg&&7N4t|qt8V768hu$;tdHyp`^ZutVrT(@)M80-)O;CTlhw}7rCV@9Ne`_#& zZucSJkre+gKHLCm(Fr{iwnd*z0JD{@R^2~3_7kLU<8S!zbTPMhkK@BJ(33;>x#34Z zwjawC|poDM)+l75k!@@y^P_ z0$TR=#(NvJ`yc$M3-PwYj>i{Xc=5t%>*&q%K;#sqM&jYk4+6J>S9u9(Yn=v&myI( zxOLzA4g6C_{ofe59TxtpF~N)bZUeYKfW#wnpe_mYB^JR68Fn=a6zJ|Rbj>GtP?JE* z^;~O(CW<`vEzpFcBePcR9oZ3R0%a-lG8Ed9Do~CeqW+@l8=^w2oP&lbj$Yz^7}IE zp?hKXvkZ94q*$H`pLMc8)8(=gE{A&z(bK%%-s;QWPC5}vCB_X2St0$CY~n8&U+l@@ z_I2<7G7medrVlu%iDbmwci6wiGuv{m(7d(&{YOJ=#OTiSu-tUJp&XP{&wSD&)^0ul zrKlvs)IV;2Tw7WDoeN147O#K%{rcJ-NLJ)}f9eR}g9a=3y!?mj;n6$d(Sj3Rq{gwQ zmjC{+WPx%9BS`gSz)-?B5#)VC3n_P-^yJ0-!@9Pg_fy|{F;#?;$VA5^vD}OqPDd5K zJ^hYCqdet4`y=a~ZR}#ji9+MG!$qRdJBPl5kwqukcrn^{5myU)nl)mK9KL#R?~b1P zgdYnAx|3>zDKo818Sh%QIW`Zx@YPtBXk;*n5j#%W-(Y8(Q}UKOF}9tRY1OT9nzP?2 zgp(C1oI-&2Pi_St*-~KKyhb7Sf@1_yZJH=E^T}r%1G`D7!QEaMGnjpDNBxR+Mm%6L zwY|LrqWFC*Ls)SmukvC>%dsr=7`ere5iu)9cDMn%_tmK^&FHZi;yZn=!N=h{B1LG6 z=1pzW%4Slkat9IDoL#P87BigLYR2Mxz9K^T4qpUaVlUaeBnK`w)ZpZKBWWV%&=CfuRSRT9M7Ptu zg`E%mjR}QCJ+($GhuiD0&Lg79XFr9M{GqV~VT(yXSuK^Wy=Ob|GLW=d&_QlWax-z` z9!Da=&pr$H+}tei>M>&<97t{pU6NQe*|->rFRt?(J=L!SeAk&#V#h9q<yJINsR^RoAG09|IeANqHp+m`O7|z z_f6{@d0H*gsW6pze^FvI@`FIw2K^E~d&KOj`fB;>s2YGgqBFkW^LbN~Yq1edpu{nU zh}Her>l7?e1^duwCt2C*BFWS0T%WsV>%+4UncpOiii5{%C(vw+itXX8yvbi4MPLs} z|MfZ?2yH;kWx}UW6RE@yw{LJN^qa&pEZ4#@8sstd@GjFQolU04&io0RFL5@*SyJo) ze5?pjBzQFLb;?~be=42BowY56euMI}FYT{5K;{5^`10jHPZ9$}pe+$orv<=0oj9@< z#QZ-R@#<{RIxa{L!sLmR{pb~|Fu>OifP05lfRWsoc(>uC#OKyh^aqjX1s*1A;l@V? z_p98mXS4b!Pfgk0*C_?%c;1!Y*l>yc86NrRZqvsbYw)lPYCNU)0dcqqdRqci;013r zQ#UeGMUU?f9jT2t#IlDm?lL%c#B{{=Qfqnh{dn>Nc5id;E{1Cs8GOQg*{iby#xcSp zQAAtMyF|7f;16J@`I{6pE-xl&R` z0}~k3V8T&Iad5@Pf+D9W-t>WC{#B}#yO$P$+W``kpz5$5=5o(Kq5xiW#63cRhnvT3 zpK7wTu*cqel{+nqEn#(crTvu<)9Z3CGaItJFF*OD-o5v$lJT|Ly|<7-zA1GNtGvv3 zv-JQgiZ}b#=j*+=?OpODXinGBs*190oI>Ggqk7IS)9J=a0cGG=~ z<&CCY9yvie1D+>K=+}$AKpqTFJL}HMGWLmo)vdQuHAa<<^f0y*-D+w#QvuF4j{Gk6 z((kXoP{%CMuUcGCxOCpyO((576vT*dqAA-aNBGXU@~gaiVDda+P_EdmDg7<@%O&S{ zFHg>NzAWWjYeY@XDRh1E$pzhjGZ+3);ZgtI`^bROqOnplQtI2Ov{%ALs{*Fb@0P;X z$v@p9N|!sHq7n zKJGP%hUwk!4?ECl+Whoi%}fHD+xv6oIZdnVkD)^fwg5L^XP-Q%*(4WAF=BGfW3CGh z6&}2Emt0XIX44SWfpB+!vd_D$mda^gg>%nW-koTsp}Y*<%oMz^WNz`>%6YuKT+m`~ zN3WvoUlXT*o7D5(gBcmLF_cl*Cf;`qo1EhydiW6bh{5`A*J2iyb5#dXiFNSunYT)K zo?*|bu}V7mEf5C3eLLBy|Lp-?7|@fpnN{SmkvW0vLuBK?a^2et{JoFc7iO1^J+*BR z!$!;tXUf@+*Y5S1&rC0>fU?sW#_W4VHJ}KmsC%_4_guE32E0DAX{h_<=sSjdVl$~` zxborYj%2%=$C;YZlZ_lbQvW=WlKWd+h^Bq@$?T5B$>oO!;XFQWv6QnZ3^L8^C({ScVc4!Z6;%Ni7=WSZoew!?6 z>YqyabB51(TsiLYUQ}{`A1SQOrYDud=ZA@cxHRw$eloWq#8-`gt$163M%(d=m@|G1 zJ*j9FT`uSE2B>XcVFCfXtgb(2#9Bk+a=f)4gJS}5%6Mk)GiL}sNu1*>u?XwnJdAQYBb<*BV( zBS?03J8lHZvGElAqRUCMY=*hAAWQM=Sf8lF?>_rt+8{x;ZOExw;=|0CU@GTsLnv3e z!goVMpIusS(a zE4Alt$|>*AO#?muBG0(-hT{6qiK=F#bm!V%R2w)%9v^m&V}hCNkcLb?&k)*75ArHF!TM8%Mc-7(M0;S7FpAt+T^{(veg5&a`v8@#u+IJA z0EXb5t+L6M%;`(bw^SZG#;-(QIvV{`aR#JO@Hgq}v_(x`boy|iL+e2c12hW7x)q+p zhZwfXuY~NpK#%mUF+J4^QxiK8aU-QBepG@2uD@{%h@A2E;{md_49KZCi44PjX3JL- zy>f>I>D}w>j5s&N0zQ9vX!3E5z{$c#(i^y}R^Eqel5)qcEsw+)@6RrKL@6o?YCj55ufhYbG7kV4e zH}XPX8nlPu&Xm{HP(U40fN%Gwe(+YCHr1f@S3Knmp{mtS3~>@FSRS>~#iBNHK*~DK zCh^%D&KV}cDK9x7IBXk>YE0wq*9($Lbv@VN&->;f!gw2&x#+>D+O$TuGFPh+*+A3q zWIUzJIQSQ4)k=ptpgXIsZ*$x{se3oMGREw3#nKxxgdGz}A2d{Szy$ggqhh(O9anQk zcjuZ$F15+lH*UzbAq)v~7hgtINz=7BM-`OhX+*c1@j~l0KN#A7o8`ZAa_$)5ZNzrV z@vgQ`nqU|C-mI~UQ5u5k!qwBN)hi(?e>JdcvrZOvT)%sex9VHx`NI_CAf^$4>={C~ zl3z|Abl!$~hb)D5)EUk~;wkV;kooBfG+-mu19t$=3~6 z@xH1V`ZbFRLJ$th_sbvlKp9boc<^1P@bYJ}C#7S~Nygga68;Z74{Zs3Uea_1>`NjG z8iY~10`8>pRamV-pSXwc>Ko^&{8_m`5rnW&>s;ZR8jW^1x4G__Y_Y?s)xK!SZOuH8 zhiK8nkGL?84Dytlo{xTL@0%=T{vzLB4L_uhfsPIJS!o1;Ol`nENt}&3<#@({^}wVK zx?K+H`w85Q9>bVl&ZzGMAP{L%sA9g13_p}XZ-dEjmZBM7NDFvd&oIEn5lJeVs3Y z7)a!oQanXIvb&zCT3ybIX?e!FRFh^*a9G!jXnpK*LxK_z_4hj^N{1|^4!Y*;WEZEU z#mos|xr&JTP}J1`NQXuN58| zS`2&}phm!b8H>4CqDdAm!!XCx-7QR8W~||Qq5TlSWiPYV?gnqn9TWQDEW-5sT!xb8 z$}H}%BvF!EwBLw>x9h-hzMuh-BQ{?p)YDDOO`-SmKwOAC2a^GbN~zlQ3Mf*B@r2HL z8BQY`_3$cUi4Ox?oE*8bioDk*kVUxIx%J_nDt>_a_80M<^#4WWzr|e6^PvJA3Z}0Y zUF4#$l3M3lU5wM!=*n2k!tIt@`}cN z=d*mFbLK@JM1s$Qy1<)-PaN+kk%zd+BLx~*I);>8#b<2QJ8j2nH8#!zYbwLMZy57f z{)oxqtg9@-w>)`z=?LB#h1Jn^!MZ9P2qB!8W>xyftT5!^tU+sYT(*aLb6Q@D)uvl4 z5krsLRqI%UhNJsd-H*w4)d~$Jy{s0=KOj*`jE)`Yw+@b{EE_!Y4B2LccFxNC9L>2^ z6B51!y_UV9cklB)IA&0} zwzTba1K+%c@yFFMW_oNj6wiYMBQ9~pp{TB@ZIF<-U2cqsC_^3MW^%G`+7}RRE-I>| za}ySE{9r>Si`s7|eXe6%E5`8vQOmN{4yz;!DJU^Lq=>y-f7ca?#+rp>hIMVNQY6HW zG%9byY~%;6mv+uR9qXX9uE$*y6)|Eqb(j3@h9;AKa)|zp`;Dsn{p9r$ z1kBXA5B}OqBgN#v>zRpVLar}vUKw@@6I{9uHJ}XBT84X!9ah%DuB9klcvG&$n6c!$ zTvItqoB*Rk2n-L_S1KP4%hUjd)iMs(x-f#qk7;Y#CGD*%8XYy33Y?8CUXg{DV&e3T z51}7_WvJE~)KHuCH~FNWz@;^AZTWM=3w@CUIdsfN%Q#_R79V;JMJ;qaFB-K`o(>n4 z7v)94&vlE9t$&;(q1}$BRX+ckCS?)4`i;WY;v#!f?TwRygfq0QTB&eT?tFxp)uuO8 zA1-ODc8k^1ful0)yQtOxtwSqHrl9AvuGos>&NZ9OM7$L>!7*gzXSJlsHr_qX<=D2% ze_$V+wsB-RBfqVNwW*U^If45Klc@8N|15w%VuGQ^QDCH4mk67YNr-YSC~DMk%7LBwXv_;+Uv#vaL-@fQ_JuOx_|iH z;NtO+;J5ahV$H&iRzL^z>M+oWy?)rMuCrbMnAWocvBFe2d~bw$Bw{i6H;|*eX@k@# zhXi{rxm?4l$`xlrx+H4V=EYpah}a##gS{+F0s3pJ*__&0a9JHOy*KT+Z(rv76t*X0 z{o`=h!6p&&NyS$iR+BH7_T#Bs^1AJMRRMDKM4Gz&>#W3mdL2U1v~M*kgWpw2p19H^OoQY7`QGw=|Z#reFs_+-DdSfBJ`gn~S$#gW2^PKbHjw z)NK=Z;oBAhhpF^u&t&J2-r&>{qKzAv?&m>5d3}p_5S#BPBY|cT%4TtP#x*5falJ@0 zEK~Lx7yO|aFJJpuf}T4#yL5ylIH%wnfRu-9{$s)YkH7yP7T*AD{x|J?Ba#qJ1UMEg z1_#K_sm?$cmCbJw8rb8_+Vr%`n?5@<{CfH}Wx36xO7wp^9=#;CmKHex|bH2Q_2oWq3Ev+N)m0+UO!njjUO5DL~=?nnz+Af zBp-M0^O%hOx-u@H>(&`@)FczOw<6N%(sL|nm;Bd#kpF8ow${I9ExmtI#%laRj8KBI$5<}}HdW01r$m4z z@?pOUXaNfrOjnCMbs2_^5QCTATytv-Wx_x?PKuXj6Iay&gvt#*SRY1>_0In#LsVRt1aIZ`*k~?uB#2gwhr3nrq|nCVRAaVIlBaC)WLoVs+QELJLtqB?ZOFBj|-I-3*(HZDFe83!2M8=*|y>Dldnb_R^zLwR=OQ9)shquO*5CSUym%hqyaF~ zgK>StaGz1J87O+!ZqO2FPR`m9%)S<9`iON>qXNR#;mymEQ z&m#J=HS-k-BaCpn6yVAq80GtYyHbqIn$k9I(m+qz`PLz!QsbSrx~GBnvm{NzvN`{? zrfc)lwAip`^;gIv@M>AxFmYmcvb~woFGNLKfC886!=NW|ke8HoZ3T~R=_Pq>kgcza z{h94O&;sKh;j}!+Xq{#bt~_Y#l0-%3dHYq}Qjt!qiRq3OX^94f{BI`1Zg@)`22J>* z@gWdlW(bf%WZdCpp7=CyGx~x7fDyTa>I>g66bnyDR)vms|Jtt7PLW-d@Y-0;7{J@&)1QXF z3KDss0GWF=F^xUL7d@Y5SaFU_pr1-K?L_!jf`UZk1Q2A{Z~@IkWJ2{bVShH-Ny&Y$ z!@81QoDbdpy|>R46CUj5WvwY1Haff18R!pu)jJc2Yd5bZx9o1{Zj{GA=TPv|x&fIr z=-%DHs^O0GUI`gD5v(U52T$>!dvvY*9D_z%%=ZP1uwzl) zO{8pb<8j|pyn62zQ*U82JMikxP7bQR3?CnC%?r2Y^cy#wyL+EK6e5dTL(59%rgy3H3R#C<6VFjJHLK zYJ$Eecaw7yExwSDRx+b*Fl`b{jj#hK!zHk1OZv1794#gkfda+ZRIvs-i6P?;e{L=P zAio#lpy8;!H$ClfVm=mqtut52oo~9WSA|+uSsv_`e)6HjDA<`~65>qy=2^6feen>}wxN;w2W`!FL|Ur_wAgPk6aa2Ww+Y(W#N)bnwOA#UVK(X`-7jfV)eNMh-jnvbw5yoX1nJ3sBewJY*o>d zh*z@YJ{{vInkub860WD>p*s!Wfgu!+L+l()%$I9w=_>q&@dkT)OnP_p`XRY~13~q| z5Z<w;^WwahT@do^zwS1mg`0U3S|9Pusa24@YGC0g~GiVrNt1 z;#JW2lj9_wnVVyL(r%~Rm_LEjLjGveb*+p@7x6}b`B~KIOS#Ew@B9;^%Ese}bv*#9 zf%4aH60M}eFKZ({S{LFzrS@K%+FXxrMuJ-Uv5mUnRM~V!=_NX?G1+0th@1BwYF+iw z*vLX(O`TN`mCDJX>QDv2k(2`($`@fp^ohM+txvfDX#i-G`NRB!dgTjoKjx^m(`YYG zqhXYh&v_?g(7jJgZ%X`AX(VWJ$SXH=@%p@K7~d7fNru~BN$8*zLtA2JABeZGQx_dl z+!zy#aPap;3kIlG`WJ4n?xu zjL79K0g`qj9nR+i+QnrW4=tXHo6zEGB4xz+YP#gZ1+Y_iFQizGv65INPJ~7%hjlGYVJ2I#C$< zCbAy7FHuXz{8-KPcHZ>LGMFj)VQ_H0UgFYB>4dQtBGu}q;H)x|gGT8vhvW~00H4sFa-#bQ72h3xm80e!fawjO z3s1ZRU14;#gKbFsbvQm0JPFBVpM+%M3z@O<*+4yEg>Pp*h>-)j_yf4G6Lgsf`fonQ zz;YTV0q~ZYfW5`H1b}u6j2FYng+$47Ze`$EouhCb@c#71C!z4wF==er5r&SLPD%GI zz{dUX=c(dP*Xjis*+QXMAb12vv7`O%`BDW-h@5W5K|Ii8mx{uL(YGzVL~$AZ*tmHK z`s|Anly>d5uOYn>VqIkpIWHAJ+BPE?0EweW*|hHeO>(XP*Ju#>#sB{1@e3cznu++C zH-=}d1cm&y+Vqn%#dXgY+3!h*DvG%d0f^w#D0X<^O}cGG*7m@Xb3^PV)!e2X0%hM& z40Da>U2p#yZzM4KbSGnJcd&7MP|uS`xB2H%Mbuv0<*cgk$El}<$qm@@N>66LgMc}7 z+O`~Z8?Np77x%trU97c64TSrM#!w+xkBY9}XRgG@<*RDS=%lSvqiI>GD*w}-sB-q1 z@T0wXf~|W*Bgs<1)GKrQ^+fh3RmBTUq$s!o=050V%cP7%_VwKdc2H6O0{Ap=e<1GQ zB|RbLdl{Dez0P7a4HDU>I$bbff2G7ylb6SWc2|C>76O^>(9SQtni%(7ZHVi+^zGnC zrr3|K-ujR|m%PSB-R|K&`A3BhnQ^?D%!DoweDdONt@QuB($^12X++}aQPA@pcyuwx zEM^=ZF@+>}fPZRJ!!m=2S0!myq825#iLzeEa~zn!{SqkXUM~N~B<7RXG9NJo|A^=E zUW8C%Nu{w7i#AAj#kaE2?=_X_Ei2z5<*KTyVi>O$Mu$?ZfMaM#z9B(KAFNdtUhp8J zX>fUf9?NWqA@l(T+UtW9w}th^j4Hpx7)bL8loj*E9(~Qdk#p;_f;_vOD(N+h=hE(a zyFWxpYiP$$a1n6_=%7m`%R>@%>xK$s!J!GJDGqXmJ-(UK&LI8JZh=r z2hi1-N(w=so(iV%%i6!RtWvTuwPq#TQd8=pzfT`>NZjo6(%HS8$C6CQ1=AMWD)*_C6#`$LHOOIntP%&NEfo0u8#W(S=LM#3+uhhoRXJ4POf1qGPE z*&3QPH8}YUU$V4KL`tb5XGsyx#7CIxxl4VXs$-~>%@auj)wDf_eeTrya>bQ$ao#Nj z)?cJq#IE^6H$W2uD4$#h(Z{t9fLzdja-T&{iW5~b7Ul_&KElK#X=AMy_s7^!qo33a z<=kQhP!5l7QM{lJGHMbcSBoakr`|u8%{-m9h(1_eb>4?cPW;D)I0iqoU?#;cv!9brjz|wJ{ho0%n@9Dl!BF=6T z#x5A`drjgZPePsTkF7 zA?>1h9$Ts6A`L0YrLF{)Nf; z?}C*6e(e90<@tBqi__+pw0pjRw5v;{_Mu_{TTixFOU`@4!jJM-QZL0tg0=v|M?lqK zix)l!4wc~f4jY8g9e8|9f0XXUc>=wpR1_i4X~W>TF<=IgEeW_R#L*Mf9nlG9ReQlS zf1!aLCsHcIr89{4J%Ta9KT&QM#=(n@JFKXlb+gV>Yl#-0y;igDc5NUe#oOFQFa6#ND0)ljv7fjYP7b)FiFg7DgS^2SAc-8S}?MrA)Z%+f!o zddd$(6;n}&cCT_fEedY`!Hjc<_i7vHucSZwvq=Z5i&%8H-N#GOVfMUlB&E(dbt%QC z%6tboHl{N+RX*Nog;#o?%^>ukA(PrX)$B>^rYCa#oJEdE;T46i>%xVB7oP+Z{WFfJ z(@tM*JiT~$OwGI%e9eA`4Zv!xh!*f-KVY8?HUrw*OV+@)TA3Vwq44*!a`5d|{y+oq z&kNx>0e?iVw*ftjcR&OKe4CjP=xG4V--YT2;Db1z4v-pxnMPq1GJ!(F2F$BBZ_e~F zs*L=l+<8Vb^k@l=6#{|_{x6>eh^_w9Ye5LA3rHM>2Tu<^qB-vbF81gYjOBikg)O9} zy#Qsjsm?vq^HQ=L$b1Xp*$Mcij;I`tX)e)of?VZ+(OUHlo!AP(C6&j4)%VQ8$e=rw z2X|XG@z9mESg!%{##g&90nHKy^#4ABJcbxJfVQaf**%Tcq4P?*zeQ^9#2PRww1^69 zL#D?a)E#yk3{EUUR5{4?W5Yl=#auaU2bV4Qi&td#)Qm2NJuU9}`2H!s^8bIH0l{C6 zI-w5*bYw<4zez3u#clur$Z6W(%OG9@aJA8_Z{>AL+wRE{f$t7x<;L=m(QS)GZ?_@0 zLq3NuOvUH`fr&3 z1?PtolF?S^Km63n2Xir6bEq}1pyjsvVlLK4tqxqQL&y2ZIlb^0g|*^zKedpNN3(!1Iy`=e^lpJHX2n${$4}#yQH^?%yB_&ecez3N7KCbE(*Hv5DkUSgy9e)l+#axcBx&fQA{y%74CdAf zSVVsxnls~n=+a*Q>MteKzf(XxBjhebozv6Kw4o3kR30o!U-ZfQO>W37`%1xWbv$27If{mllY1&E6UP zaSG36wmMfM)(+H>pO{L9!~fy=PXUn9YBu=%2U7=lGXFyGoqxur+$1p`UQ)i-O3;lm zW8N9@Pp*_2IL-!4Dip!vdS@oYV!0ntr?ygk27eCw=jhwT7r@f3%`(w>A;@fr0IuWd zpOxZP!P)#h}fcV5V(u?)weH~kOl-?@qZ4`N6SYQiO`F@)_ z{|RK3ad)arJX8e2zGdMpxh0NmIz_G$9$iNq3_nOCW_hu$xbbNx&pQL5u0FcLaPx+( z2)9q}aNz@_aF&M@G?f3#inkkvV`hK$<34-UY~Aq@zolhkO{~X7uj@9^R|Ef5QdtjG z)e;a^bLt8m(Ua{dTDt5aW}b-XspG2$24n*Mj)L`DUx;QCoPsUR0HjlUb@rc58~p36 zXn2v!UM~_DOfHVS00Avemg)!ADZ@vT{y)K^HJ+9_z~St!xREjBWFNDY0KDYxPU8ym z)=XVF2sk?A&39)F)!1+I;MSc4wI!@VuEp6SDTY{`I*tvU@7+f~9Z%GwNhRq~?t&fj zFJ7|xtkrVSs9yM&(5~qcbQ zE3}_?xicqGl?KP?iwvYt{BW%xPu|{Qo?LHEj_Ppys6)IRuu%26k@aPcS0Ku53@=#H znwN4vee$ud6I)rDeDq8D8dCP|;K1g&OKZ>y_Ruv9B&1?8D!iU&$zN(}6j4C{H=oi} z>cb)&Sgj0nvuZ0pyzlujd(mO4Bwij1Nf8T zg2;drs%Pr8xl>=4q^ri3XQxIT&ft0GBPVg6(IRobx29;M%dJWY%2tFa^$$V9=2=)( z-R*?pv?-$H1#`b%qbNq!C5^_1s$t^PvAEG*PpZq4%Ru_QNRcVW<2Pglh@;>lR`Y3@iXaV-1<(DRJd76G`U7teB z*`!NRPAuMGdXlH32&3&CQn+oBP5Uy}y1GDrx~@(Vy6C6_bnXAwSlL7hdMIvPm~e<* z)`Od$W&^_x67!sb4}m6Ea~aU;e*+&gW+7U`7f?jYJUpuq`l#RWVin#Ig_XC5ucywR z0aZkV1tD%Ks?1mIKbNX zgHB531Cid$Tb?)ITo61x5Aikl-@j%u@$vg-lT_h^fVboWPs(9kyK6 zF3Qu{MIbPH*6><`LJ|eQS2i3pwk7*bl7f#+o|E6p(qj?TK4BQ1;|6_=NKt9fGkg4^ zvEc?w@>X_?RUn&mymPeOK_vIjLZ?|l2}!%dt|E~JC~NJkY@e{*c2+r9Z*gXd zZdNSb?&T|#Q2N(O`n_9oMk_@;ZC&T|+A~Ax3{0M?;xtC(wh#Tdq+) z7eqjXJQ+#hZ7J%io}a4kuK^8E>640hQYj@J;v`tA8?s!AOmy;82KN2IlO+YHkwYZI zbNKzOcR74t6|TBTkhLP1@2y|B97+1M>W$)<*vU!-*FS~VBnU0T@Q5P(4vZzDO~RO? zGkQ8{*-Ytwe?A6Qx)hAQaZKHq#ucKwe7vNPn=_w_a&($*B;z=JOb zoIaEai_!}rdmV}PQ)_C@sD09@H}lqde$Bj`wCg0#2R{B~b^C9GcmQ(p&TF0+%ySpM zFa#%Z|J(YbWF0+jT3h?4QA^3|*gpP5Z-z=G-oK1mpmI8WK2ZFpUGVn*VD7!+nuyl5 zQ4|yf1f_RWK%`6WL`6VAKzb+An-J-ps7P-D0@9^P?}QGKE+9k*MSAZop#~D-9rr%_ z+}+OiJLjJ7k2{dxK(aEk-Zit;$VP@&2fx`|^Hsb}D+posagW4aOTgec`9D2g>ej zw@wzvkHeg4uj$u?y>&I#s^HyfM93!#v?d+P3NQ>{HF@>G2uj$e@k*Z zJT;gu%8N?w?eXzRIRL19{lqrg?=i#o-S+Ib^BrBjFI#CBSyumj^I^^qu^r@zQ?{kC^$$Avy z($1ry)anKa>vFTKigYUWcD}4*zO3V4w3H4~gUnlx%UXt9NZso>MXDqvCD}5))(p#L zWXgAiFN8Cik5#b}T=u2MEt3Vqrk$bSB;;x1KqTn_WQ4cj@EMRv$f^tjV&os9@R>k` zy59uG!14s$ngnVbK~G9|q2ulRf2bC4#engfC=bCx!r&Xf3GgZ){IjN2f2~!2JrL$O z{BP}5hw<~rOZ26Hl7$glS^vz+-oJTi#SrSqV(gk=-ddq=?rbu|noLNOu&x&v%h>F; zi;TIHN`UvzhJ8QH7YFcRx$OEJS8uYs@zZW)Ht2ztov@41?goNRshLew*Kdut)4kId z1;`&bd-B6>%;s?A9OIzb6J>KQs+c|b~YK~`K&`5dvL zCTj7nas$_1&(7J0xCvH4CPuee?&38jHA@^$K;T~Oyfh2;@PaacwPbS~@QR6a;B;F8 z6oTY9#F9){AJL=5b3t3hWqzAIx~H&h-TfKtjNPHUFe`#epQV5kQw3N#pI85OgY!8| zP&qb-z>;c8O-%=?dMmagjlv1}x(S5+5(o~!)&R7hs~bY*qij+&Dtjdt6J?63Xe%>z zXwF=SshgAMmpKpv?1 z+@GZji0#m|{&-!5IWh9W3GmB-N$^AMk`wLpK3q$H$$`^!UfKv`GeJ{C9ovivoCH37 zVBM4kdbB>kKNZ6sQbXjA>$4>zkgA-Ho$Q{cL-ln+h<5O_NSqL4DTc(!#NB3@$;_g% zAYof&Uw~n6F8S`L%3-&!d5|s9H5AEdCBV&%2x*nix{02AcR%q33KHkhFQz7Uec7%t zMLCUoetsQ^ctf^X(>=p+S4ihQ`P{*B-Ty!{;s%ICkbwP~ji3NXL6r-k=nI04I{5j` z>Ho+g4&(+)&X~w0x6rhPiYG9|GtpZc-TwGX#!N+@^#divOQ+54|3#(aziOz(CFW5~ zQXFhMLLXSawp7vcoG0@nlip$)&IizZE(;tDkX-eQ##TK(T2`O5{h#lhFF2v_Tr-pB z{pjoYWDL6)FP9kiS_keWXu9{8w-`Pqj4ObeuD|Sj6QoX-P26no zsd)ghoH*G&aKVwH4BarLu4YzF)fDbN!5AF&0p1^p@wrpjXZGo9^4qQsPJG>VmaBxb zr)-&WbXS`$y^i(_gu0lnM@Vt{Hz=G#V}caBnx0`QWkOk@opErj9T&r$!5ta5a-DH_ zO;A+E`lBUWgz)|$t&^}1UXbvU9Q(cdUEcRcee5=iren1B_XcB*14-wd&54)<{uqo-Z; zIo`#Yp9GP**175gX0w!@nSyD0!?1F+xj==DDNbj~DPCS*4-j`33Ri-^C|QU2pFm2F zTHvY4^{IOrfcoWlm{sytGPV3m9s_Jef{ z3CS9tQI2Lz`&3X+4jEf3?uzK>QPvJk1&Xl`uOw2DNylj#Z!Kl<76o@Njh&pZ8E?2a zAKp?ZGy_a;^HPb6!gKI1KRnHnt0w8s6&|XgD)lmJ_8M4;TWJyez<8VAaW@y)+)(~; zW4zI^%nhg7&Zs?iKzah6YcKcfe|<1ws&qpv(VLh!*2(vq&G%K-Cna=3o|2XQk~-2^ zv}KlaWr&}cV7?eX=X~oeiKm^ouvb;zuU5+u=KxO2ugwPLxlK+p0qx61; zp9h)xRa#y0?gc0g=!;OOMWE6KcpjCcIOl-ib4kAmn)d_xuG>=FGWMlqxAWD3v>(Rd zXUi{FeJW$F%jy-!T{uFMEGIT%0A=|#pf&%+_S-ouaa(_%;t|A@E@0Yq8x99u@&F+= zy(|DLK>e2`pma&j8-E8%V?T|EKh56V`2~@U!O9}|yY}XSqgNO@`U(O`SD@2Wiw50n zj81s&ar{-MxKgLIklsR{pSZ`?3ZkQ;2{hm;l!VZ?J+Sb|V^%nNWyLNGsPY8;X3mN# ze7`SC^Tp@s!1nO;1i*rkk#K&d>9%YAs3$Hzf_v+UtmhEyY`;j}+@V9cW#Gzc<)GqFs$g9uTX(pXa->W1#1>)|e-m zEZmxI*Y6!@gVj9S(FE z1oImuvx>Z|^}s^zM$!LZypV}U2^NF^B&CAU)0YypPxR*rSoG@$LJ;xgl< z;_Y15ZntL`&>X|ad?Ko1)-b|9b9nzYi4HmRQtzGbvef!(6Ty#fPwtAaZRzzk1jgD) z{U&e)%9j{)VXS&2BZVrB3wX4lwmL3qlgYwrqx*B3h*H-H1*NTch_QNDunc@4l zJcU#n9&r?B#tMr}w8nz^C$v(#q&j+d=u^C%^K^U#22=gFrvsGpI;B!hW3L<8a?Y2t zh|P8F!sWpszX@i(D$Ys`^GeU_BM;b<++%*dk*RbwnG~`su$q6e2lnrjf-$==8j@+R z7itUe%NKuzo5_f#jkB*dMhO;&R5F_pJ9Kzf-6{~mWgm-toVwfA>9C~4f^9jga~`lEG@p=qF8 z92fq&2<{~=|Bu_V8vFBart5#T*Ljf2zwE&L$Cg3vQ1s9_GYfTwB}+j}4aNXgD|z6UjG znrq+NR%5iR4N&wNd76x_XVfqu{@5l2M4DA6W89ol#|w^5jL6--gs=huw4L>K!me2k z5e;_3$elELpXOx0Le6|aq|z)5uNw%ZU$%MMZ^olBTFyy&Qab?-%@!9QCOcF%o&wkf zO6otpBInhn{#NN8BeG#$mRpds_GVbSSSQLpL3H?}?kRoKmj!sH=FU=$_q|buEh&XQ|Wk@v1^K6$$DIV9z0Dm2To?mV{NLeMnUK3c{wEz7i6%V zHLsp2S{!^*A|YhW%Bvo_sHm4JOzw0p!r7-9W4H}{y8c;FJN@T|V9t;u#>>^!a>RO_ z{aw~KAW7gzuhR0nn5IJd_i%H)=+3+Vk@h36+@V(7Bwy;IO z$h1JSFu?Z5&p5aEv-_tqsf#~4iEp#E>UWn82Rde;uigq`=<==Y8Wz~tZkjMJeNxIw zwOlZ>%!J;$S61>1{kAUx25=dwYaW*Q9arngRopMoID{O$#y{y*m|AvJs7u2c0szGU zxBmq9{2elp^3|0c?b;TtIZuEDZYDBI*cvP>N-5f{(Mpr~!C#a-P?-_DfJ{KfD*vqvdDS6cK*e`e?K07FBx86W# zu7es~<&*z%yDNt{r?Plub~M&0GFgU{$$VR_#n>G>GmRU+$R=Dm6-aW_d!%8E^n-@L z`(d=X(D+dYxAO5iw@M|3A&1^nv5f`NfTx1|Y?`0mi8a6f zkYxtFn57tKqrHElC%}MuQcp;@^ocRmxWMGr#=w5%YMg&CTK9;oImUlpzxKpfxW2^Q zzJIPXDb}W8EJ1iCpz|^P4iaG3HFI7yw=_t^Y#2*>NANxKad*P@>AkjYpqCFL{7t}G z`LmH!rpv}x{(gv=?p*d|>zE6?GikD*Ih$&kF^No_*&UhGBM2mat@|Z4TPT`E-)hxY ziYV$SHhdy0z$!&8T!nAP!z$V4w!n#Y=we_7N(6cwnIXmxjX#xIEa@i?fe-JFnb20q zDe(r6RpcUxr-69M<5{ZN3ku@{!H=yzm3J}eUh;F!w(!HD7cnQYS1y8J7aL(2N{#N^ z-D8C`-2J-;c2I81?|7y5V6Wz6mZ?XiP!4~(=ppRVjUSjTolZvNC-1`Ae}ZF6*Dsr1ZDOEtlju?g1L!8adgmE0-_xldT0l(12Yjn^R+Ke@LHs*4gHMl#XPeE^0v@BjWzqI%}`>zSTpbtn5ggeGv=#yPc z<-?XjDH9-j#R4c3BD?rkpTb`wU%=mlKie6D5Kzi?VTa~WpdJO$jyzX&6+~ctMFZwQ zDbc%^y8o+VTG*G_-INHW<|O-Zh^b5Twbn|!YE6~o-Qb_W)9r=TD7I+%M|cFB=oQB7 zD|p+$oE1K{2dgcx6KDL8^4{KM|7!MJPJ_L!#;=$6*x$@V9>vYDn~$_=Vs!(w$7Mls zZS(Q&m2?T;QQnN{YNdQlBb-4!s#OJ z!^x$H$*90;)i_Y6sPgsxlBADqOjqyDe%Y6}0%vIFAmB;cKy>{kz-Txu;4I%t?frx8 zgs5kHopnE~+b?g3rL~^6>m@fCN%&fYMU-R7p5eEnvs-zDE(8oK5?Jjsd=TKNgqP#R zR%{vkdmCZA#+MYMjS5j)s2=H`nRGhSl5HGGWog^l?pvz7>+n6bg>x*BQ`CSNxh(bv zpg!(Ev2F;j0 z>S9sb|D4Th_b3}g-^b*afr477;e!O5{s8&94FRkEu^Zru|KscRzoa<=|HE0w+5q<% z(DGmh8pHNW8~7(`9{?tyX&*v=GQ&|~f7s4dwZOpM(HsCc0fTdP0`G+dh&lT&^D8-l z_qg|PExav5*worplYa48>%ap+7k@iR$)5k>Xh71QV!-4-4n64a$AlWbv5d_=55p-& zvKO{aQCtnNn%B*~SY- z!jfhj{BI5J@mDiL2qpW?^D3dnz+glfho=}cR4XGsrq3zcy7Vm&u=O^o@(y>t3M$st z{!o{qurD$%U72k&NT~n*Lq#RWT$=Ip5E!g)h&DX}$Qaas7+$zqET8FWjpUtN(L7Ixh+ z^NGCEjXZUicfY%A3Zc+*>zdZ`@0mv+)OC))qW<$aB_>7=!rK%)OuBJDD6caadUYIR z3GKv#WgU$_G?(Mf+~e1O^rSH8aRQv)(7R zs8{Nq6PVrE>{Yw5k2TvH%8svPlKu4V%mpEJgpPJ?C`QmlcPKC>q&xPe5;NIKT?1L% z=q(VdNjg4uGVzs}$vH@w&Me6Ke1_DBvcC<=AlEJKz0qg7YQ^FX24TVsq}OXb{TnR5 zFWkR)NY8Ngjp1y_PD|%+GW7JwT9`!Ssix-__cFr#=g!)aqjIsov=kjNntz5hug6#% z7}j*G(kT-NWc!;y@W&fqTTdG)Fe&*CC4&&I(+{|}AK6mSE}t)KTa6=8sHtZU)pb8rOeV#R)e2Iff0bw?Q+{w* zD0R_X%LV({>^T`VO;*nDZ&rT(MsV9gm%Ou~ooQ!9c{1T<{!ItZ56)e00kmac(+V=n z&o#bm6FkM}72>&Z4xdg|_pP;E;H9HdXpjOtCOR#$fxA}G86{`78O!5mAl{C3!{`U{ z4DSPw(M_2bXPVP|01+CtGOPFp4mdmvBH$h>!Zx1k@|I%kRROlAlu^a}9$2o#<5vJw;u8|8y zMDeGnoaOTJPG8!Mh~pisMg4*nS3rH@v+Tnyqg6a0^2DgV1hexNW9GeY$doE8KWCwfO9r;xLb$@zqmG^)ix z13DtfWCYu@*3RpBcM`}KUmm|*(fjMP8h z(@n+?2}}M>yE*iJ)EA$yKKc9Od^q1Pu!7S(clVqAfzK%8c!gI36NBIL{_n01uh)^{ z&j%>+_=3tfQ8w6&qeO!+A*5)MBW4FT73H(6QHh%iqz1gkx-gH_Rt=@0D%Esp!DWxv?0R~H$N0NwuIN&ep* zp?}wI1gDt0$(S6sS0rIG-F^|eSPV%Codtyv?a_5yjU09dbO?;N9 z^5|D(mexKdoi}nZl)|Z@wpdL<9|OIKRw*>aV@zn;wOudPyHQWyZ(UF42$_(e5Pe?z z48g>e%Br-ShY2C@DgQes&ObYL*k0IAi^rf37E`)zk%O3l%A*E&BI%f~#dHy3cdQR* zX3f&`n;X8%`(NP*w|dcT`GT8_x3^sk(>}ON(F-Il(qq^jv;I$K&;KX11}lY7q{Xc#iS;xF1?QWZ6)Mt_ox6_ z*qcSR%+0^Dy8MmZ<-fCU54((6MIQI#AMH%Gv-}KDbNzz3exO|iL$jum=Qy!+E*R$a zuc;PzUyJYcTMFNI+K4;>5^M&SHA8~fRM3olJ%>BA(~w9Ur|Z(@{;?W;rENp9TB*^8 zP;Rad!XXW=XC3{l7=i=btui0?)5bARD6tdkHPpffSzqx~cmJgYN{rGshx%$*X6u>T z^t{otP6kTrm@$na&X{_;p~rXJU~F$Cf;i=g0wLY`IszS_&Cb>ciKKY zaE8&eHl_?I9<3ZXPjgR;gT)_kMr<~|x{edT+(Zo;V){InunUoCg5d!I^W+nrMV_V3 zGFmZ|+f2NOp(@~sY z>4KS~yUC z`;(E1O=HezI_V+!6s2H|S>Ndp>Rh-ihKj$tI$Lfkm%qXOI)C48jBieWB_?bUOpO^- zMrFd^dwhqb@40I?G(D2bPc+K6eimPsYoNCI`I(Lv5T02)iV{Sizzbg%i z2w=$daeCowlbeRNsR^WSP0{8hm`PDj-_T07d#dHlQZGw~Rl-2Jty z2{SAbifHpMd1|#0c9h=*!dpJiH|jl(zW>(6Y)zTu3!A7xbATL1tTaFcV}!bxpI=d^ zfuTX&R!jB*3!2yQyb*V6nerP6-A&#}$J6>a?@BoyEkx30U8^4RcpgCPU+PF3tPGPb z7%s1)8;eYIUoFY~^g;aU_4!{!$x`1=1cRY9Vusj*bq>OaoJKlT+O9s%22IDL%)ktS6 z)7CRep6X{rCBg5F=I%VPdufXzj(HuxyQCRmY%^;>Y3h^Gh1$}0CMh;tGc(X^<-f;w z11vE5| zd1O~2f}J_NjWPacuBFOv2qquzZu#5o=-#H{Ct_pLp~a%&7tE+BQ)4y99ouS6H|?co zi2K9V*bV~4X`>6sZTyIz*l_$;#Xz*d3R`!}V4&?Vu4B14c}63Y-bVSg3DZucv?bv+ z%gxfP4;e+**utUJZ4Dpz@b^sY;nX;h6$%>6O`FEaR++*Xa|I6Ck=gRr1dh?p>gSuI zJ?&zUPbmb|FPUmF!B`m#T^EQdh+qms*CWl0=RnKK(+FeSwMP#Gz9g75=Gnos5js>I z93g5Zp~F)`RRoWZj<8QLZ*V%7c{sIGew|$qrRb$4@_F1q+|axI6G?$(3Bn(p@0edO zSp*0XSi6a?U4Ci3Srnj%Aw^%emsPYY$J_~!DcoTcHhv-p>#6@dz_>oY`XgrjdAwpc z>s>+-Jm#(Nl|CHTWtPVR8%}7vHE>xlJWcRzfW%j)+nY%B5@R#de!iM6j-vaq^AdKD zxx+^KmqXbp#6@U{T~DW_9q4W24zyjz1tMbCBehk*VhMZ21G%sjKXX}$I5NIR{dxkr zMM`^W8OF@~ZsRnYTC@mcD`&7YXfn^@a?nc~bXVkt!1_5n^*59CKw)-#jfthw0;v`Y*4NY z8pe~N;JYUdr9SC>wDMG#M4L*VxEJjs0vjiaMY^JWdk>M_uAX3THMaC(N(3=+}(xE;?6zj<4A3$zLX5cOV&N zdEY+XVQ^GQg;T@$t{jBU-vdgGRx%nnO|1R~`X#;p-NKt! zMQ`@%+;0bvkMiM}w&wZJ6y5x6U6rMqI*u1giDKnFJrg;6-rn_aJ1xpbae_AZdhH18 z8bM}d!-4?Rd53}#)1ry?j%eo!aQ?aKXZO>hp$uV3G7H+n zB&N>q62WYP^B{D2Tx2UZYVt*0Y6%!kXLu|m|S?NZUi&tE)k zO?-0RS!wRxN_wR!7Jd0;P(uH0s-OGtABoh zjR^R?cH`PLBBE;~#KhNckdcs)k&=*--Xf>GeT)1KIVtIF+S_-isA*_u$SCOOX{qTc zscESH9OMci@ExLSH?Lj0Nqvj-7WMyl`~8jJ&JBX~D-?uR?h{X zt^vLM)8YTvu3QEBc%AshO%hU|0qi!x)hmRASBVJ!^crX#2z*XJbmto7J)tMpskAJJ z@4He9zl+bg!Tz+mgGPG<#UWzp_WmXbEgd}rBj*FIhul1(V&W2#Qql^~6qS^ptElSe z>ggL88W~$z+t}LKJ2<*~czSvJ`1%EZ2nh`fkBCf2{FIcO@;NmvH!r{7Yhh7wNlk4X ztiGYKskyVOyQjDBd;h>Fa%_BJ^4HY#((=mc+WN-k);9X^==kLH40C?*N3JUbgnt$5 zKPCGox$XdRT_qwSBqIJJ*OjZ@z>Dw>(Y1R**D0T95nH%Y-4}j$gZgQFPIbpkb`fn9 zjiuWN2`z`{5-0kPXn&FHzbDxH|4)+rr(plDT+;+(gjaxzM|g(-M1U*#KiF)9TfYfH zp*N2;>2Z%n_YFE3)%zk@_c`ACUz&R~w8MNV1E#VE8qd?N$FlrXikChI4ETzpdOdg) zm^_Hl0ZuM<3GQlV!w=|&tk*Qcn==KqkFb_b(5gC0Rj(B-;&uF>Sm6Mo; z-NMDF7->1hR>zTPxq_C<6w=d$%xbZ|#M(uA`A2h$+KAtdy)AXrt zxB0+Zbe`P)V#JiEZaM)6)V17#v;fh$pLjeXc{88**F42#vOJU7cC#+hCpXZMUa+kE zz~l4&t4Os1Pb5d0wR6|&hYiRByx=jkHCrCRj@d#5cV%7u32rS8*vs!V9qrl&-DM5_+7^_k)hgG>fl;^Fti8b2r8OnXh=b$fEMIttE-}HY zDh^4mhYp30N8}0dWA)@&+?KGE_E7(Z(U0iTWW7F9a>q|7H9I%dj~M3786#$A8w>L-)Y(dVN*+)oOqRW3 zs7#rr*{L2qZ`eWobyQ}@$@&RpUG@I?Qs8d_VO))Og;S68a4Nd;G;I9j`AQ>fG~h|O zx?9nj{>q@Y?Rj&>%KXQ`#DT-dJ3SulOsJpZ&Rj_y?E8h-@%W-y!xzP;YEt|rnAU#W z4krBh@lbiA`jX1NF5e zF4#sqP#g(eq93PVd-WOmP2E3Hky5#>cfk?itUsc{#0F&R3JjFmF^>*zjuqv#Jjed< zzOm@G69}Qr2~3pL#;Ud;Q7+E&EOQbS)1mXzYN-hvY%(mcJv!u;U)clF&l$yMpwa3w z9KVHyk6pFVXDCt|RPOJiLHUEn%3-wUXQs5Kk;<`}`zpFgjwk4p^bTWG4W@nNBS7*M z8t3FJ3Uy5(TiDaT)mD}wlK))ZRz}f3(n0(pEvf01K0cFg36taN3K8;o!RK1lz+U52KGlT@>ryW;RuHyH-2c9?XCRX> z;N~k=I=@%DGf}7+$JmmB>o1WPACHEm>4dj*%eiwP{q)9RrF7>t=e?+ATLusUY2Shx;utPqD zAm(xEfi5y{Yx&5@zY0!2bs^aoavm7;cPNhw?pku3EG5xGrcO!ZjvX~xB{(FDn%2G{ zSZ{Xr?hIB(-cO|y=DJuIZevnMJ;==Y!4WIr3;HmKJRkGx`QX<5z3a@`9CSljU|6o6 zvb<@VS4nfXePd=_mLX;URZ||`AYtwE`Kbvj47p>@AkHXCwI}ZgfOPs#WDR_m4z426SMpsbxf(#-GF_1RQFkS20as9AS{@iLVQJ|F8i%N^OdNGo2R zEvz9vspJ#E@%EcXMVtX@aO>h3o#c;nZ;<@gmP!gAisvC#P3LQ={_`pM;18_z~+ zAmP{vUvdgk9k%d++8c*sweKOj{hmxqFLZ?$DpggEIF^%}eY2PiNHeTvMDNsHFdnB1 zekd;DPLR_XJg=@Y*`EQJ$i~7JyI3_U0ZzGv%gg{)2`XiQ?y*iwPKS=V@vO~g5Yfi3 z=9k?TsIw1A$aNs%!r_}D>TaG2q_7y^^Vk6r1~^t4w50l*V9Xl2DDj)X&J;ZTOK=0n zFpmF%X1lx!L>f@QD^6rR)(QC!4V7`+;EU)u+;xBuX%j!u0R=5~T|QX`U0eeQ*Z_mB zpVcPglH1Ma`}ax>K+zZY)iHiZd?^Dx^#to-UNkGE%WaLdF5T`2v%B~LZtV;aS&p@S zhJ)1~rEer|TWqPqOy%;ZXU_6!0N8faJT-E?d9=*PT0KMsBCe-5lbz}YJ!XUz8f~+& zfxCdE1}49Aa^TQO{c`>; zT440s#zgxU)EXj8R&WJ;D=zFJgHfs6U%Y@!2V;KNyTmb~-8*1|M@E{2=h>V?S`qU0 zsc*m-%J!B=KQ_`dK5a1hOZI{=6gsQux;J&46eWl>l!m$Xb{zRQ?wSoMYK7u0fBA`b zRa5;Kf6QqfL$XtpN%)5PVPL5LbFL4S^M?5`XI5+8mCpdqmtY@aO%!oAg2KqysH4zq z)*<_KV;!SsOqO@X0l%{|86E419)L*{7;)%#eN<`$?RE$Pz}MNnj%AEuh&qW>dou| z9BEwq>|_m@R1L%#0prV;pD$_=Sj`c(M}Jm%-dfBPK)L1xe5xnMywMei#VrN2LRWhK zGpw=8)MMuN?LvD1C-g^O{qGCAD;q7R^nKpq|qx&nUJ;n15!^#+2x|4Yo%- zZlIaFizYI|ZI`RZsNf75e}TAypa{8`khlYr?7`c}=|f?&zP$KiP^R)JGXe2D&4cvU zUaQf<6Rq!@zc_rxm4d&nGaO5L=?Vwbn(O9$JxrXts1KAU=1z9s1DF;v=1<|ayoKL8 zX}MrVuqt`m=ie`o0-noOS04iRPfvU4gG%4aF(~FnW#L5%^-5LE##+en+NYCCO}ZUl za=JUL8V)liz0xe4tk<dq%b1wbEY zoWBW2rFEjOHO3Dz;tJoQfvn<*X~Ssn)H)0cgN$7gM?C_X85F8fOs4D`C+#_tBa915 zl-IaV3ZM9UI(k(i@F$`-D+?FIL35Q`0p#GgZ!2rDJ(F=&27Yqj?>G=$ROfP)R;R_5 z+H{+kv0&cu^LS*OpQ6cx6aTGYtPT$Amrv9uxnytHn@CI0o`8@4h1igKT1 zExOI$1YKqs>e4XD`r94;;}5=MHV@g`#2+ez70QBJZZye3leTRf46Y;e?oc!@@EWKk z6RZ@tHS4vgJy^${j9r(UnQo1vT2a7iXA~O^JyCKFELJYwdc$0D`843{rJDjW*@Ih~xA7B}u zd4l4CSVycwd0W)g1(ve7VkLt3AMlJoBEj?by6*4F{31F47b`4-KCF6XGkB<}#Z4bP zH-vDs2iv9x%F6SP-LGqujFjSlHGYyQbAt|o+ROxT)Up0e?GJpkW!h*1ADm$yeg|ur z*qgsXB>&K=)&ol*UTN}Kiw)x-sKAX75WodRvBema_gK52w*J`dg(MnX*ZUy1oFJ2YY@N9 z=s|1$l|^+L>#f(IqJ+Ti(YEEiX!!9sZhvwbg_og78tt*NVVi$g)N{IyfwS*Rf^QnI z7#rHdT^pMOPTOKg?UN;I{Pg)}4~pj(1ADMAf0Jh3+jW{J(Eu33E4K>PD>PR1d$eP*iFr4ca)tn@`g7n^V)HKAUW`a(6(x+^1*eV76Dp z4sEU-?%Er5^DkcL^Uw8j*Gw7w6d5OzJz1^W=>O*^&fZ&WV@Tv4u5tT7K{fl~{j@nJ zR6rk-fl!a;9fMMk$+x9@@4I@VrGXf%xzYR|TF!@iMyw*hBsT^U%$wrYc}=~_;urw% zNjVhYvFSUa84tzF%4x0Gfe-lr#^T_p?o3Z3=eZ5)mth!haaUO#$zX{kJr~W+rXSWUTGN|+gN4m+{OnFPrHlUgrEnC}a$sFzn zMOlE~)xhES|b# zFkXHv+8(=vUvO=(HrJ(8AKp;h7@QgOE(I~;SvIptae=Nm7--LJAGpeM%QP1K8zV&N zlU^iw-{F{(tFqfIpbu<^+N}US0sORaU>8r`w~l*>nsz-hD_rts)9UA|Ds z$GUt$WG4mbm8U;M551a(=50Tf!1HYLU)PHX3SNG|zO7r;_yUAVl61S^wA#gpr%aSg zcI)H0WSiQ&g#vWk<7sL_H^ zq3Wy-j_Zk&X~wgdfR#HT*|(Q%QU{albEiiKbI6v;Ubx34O*DU>oiomFFCB7|pyMx6 z!Pfms8h3aVrK_|8F+SI%=2m4ezgqENkm~wa%i&<2-N+jjLj+r7L0C%;NBK;ur?8ls z+e<%wg+i0d+`06TQXTyy%leNi<@%^q8!DC;*qZxJN61OVWcjy+e?(v!5m-3=g)lG<0tC6d?Ghp-d zQ*~pEqxu|NTpVEb_#QWU^*>_u*H}u~d!dKCU|`w`;d-26$KzK(=QMy#wDTEn*<7{I z7gi$sdIzugIs4)a^!AJNZKzB*)vi}u{qo@M=Q+yDU$~;!g|kGl z6fB!2Cwz}|Ny@owud)CPqkX@vq&s!0(onM-tM71iEuIL{^v$dlNJy@y&9N!Qc}^76 zA=#1qAH=uAlh0`PF)>PKMtjcLu7Dqnz0d&L4b0aMepxhT*_{;U+~#Zm6GV=wjaN3Y z)*298?SB3v_RPK{V)iF78`Iw1xPkWY5kcC+4g&0U#$+&f(>OMfQSLO`-9F~bc$xME z-gB4Htji%f1}Bg$=I`@5GCA;Vk9HV(@l(!*(~F;CZ`Akyr2$pu_UdH8v`28Io`y3y&-pCyP^_rZB8#PbDVAK1lhtutK*TR34RN z&M*|zc4Iz7GeU5P<$9jOh9{`NqQ8J;N{&}WR>7GA+OAAInRaiIPl7B3>>S#7=;Ios zpke6e!;`SK+tj`TIg}QWLe0DCixoz`U*F$5n=Q91ye&a88$;%5JrUry7O8@BI#$gq z@(ER|zw`JrfU$0>Zla)e)esh~_OMaqHQ?T&&eqAhnQqN+omQu7Tqk`*NxJ^~i3)zf zyBc`n45wx3N|j{_YDx{+Z%;n$W#gCh+A?cZ?vF~Q3lR>qqD`sv6^Y~6$RWWgeBPXg zug0ero2Jjiamp``e;55}wOs0;50_sr=hryEicbB$C0axN6Z+@NLKO!Z7&aLQ?R-La6wF0xe1)fRNolx! zI!qnM4ns+$?Ma;7wX$TE%yh{Qr{D)^l~~r9D8w{dXT7b@ zUA6AkIw(wey-!-jL0I&f_t$`NE4q1rb|p!0&wnwKcWI;Vmcg@8i>f+U==6kU%~o+e zJ;SoW%-QN}kn@6n8|CJmZJ$6d=nc?nfe#el9wM=n5-fVag!!`7oZRNTG$U5s(&DsJ zeE%`yL)PcZtRB_(9L%)E&ijN(=24X)E&(*?Y2?#(mAlPI*n@^-sngOm_p^GL%FDwc z%unJp@+a$Uhug?Y1_~^%`3>r-%Dmfrr!V*Lo8=E}#}8kd@#%p=WI#VJA@77QjFR|V zSpBE@g8 zl-p7qOi4BiQl7C8+2wnrJt*>dFpZI$(?6%i!ISOO-+yec;st0e0q>DLqeF3Sot+tI zLyrb?9avG|=;KIAm-ZoU+CVM_eRs_RS>1^XyP?QvClM%u1GlvT&VUZKf-~PNZ=yYY z25v`->ErK9KRWU8%gB>za=7eu?qM`}W)1Rd+Ty~GG;u&n!7XaOC9?}_^3TA_Q~JkI za{mu|ZyguayY3B-iUJA}(jbGhq)1AQbf?m#AT1!$ISSGxAT5lvwB$&RG)POgbjOf` z6THiP_I{qd_xbH}&ilOQpXa<%L;i%A|*rHapQvv=tB9qKr|^GI}<>mPwfx4(SBu|ElM6Ftj31A-VVk{snMS_I^Q z>dP?fjf^~_Xr$rc3FOOB14bhjC+t}4wZ&L<2T+LX@!vx9Zc6AYMFTXKJ_6Wwtu7)b{}EC=o+IK&o_bGDVxj~f zr~A`S~D$kw1Uc9(yF6#Tl011=SD)Ls-5uMQ+sZCclpC9aqH|H>`pwGQpURqCY z61f$4*RdfiTw2g>rX}0Q)uVXc0c@APw~F2Ad9CJLAzePSgpc`9K?30Ga2`G+plsW? z$pPLFGBCq2Z?taPz3vFa2l?{G^TPHimzyNOOjn!BmwOX#*;ALdTG+OqJOEa{qE_sP zzFM+HALlO6+hY%9Ue0~Z*eCRkfmZTPlXZiL3$Nt&;s#HR7Z;O2#SY#@+^>TDMvIG= zr)RWKd>bPVek-EE%x2cW;HYJFM!t&LtQ$~Y5lD4h8F;#TqDrz4aj|>ilL9@S-WdV7 zX*Y{sv`^4^uP;H)&mf!sc53q`Zt%P`;2b#T^P<-!NGd(<)CI^e%1(kb$l+$cL5GQO zCr%258<8zXyh&f@9y+Fy&tHj`!11QbCJuTIu)u66msh;$$x_GP9TRnt7i7+;%vYps zJ{K!UzWE{hU2E@Chu*qUEqjWTNolL&h6Xk74xRT7$w~HW{C6FnINv6y==DAbXGybc zDGK|MBt>q*TBo#W%90qML~sSSs4mB#Y0q$E|7Ut9;`l%RG(3A(Mq+B>a+Lqall#b+F$c5bD72Oh*=(r zp%#yxr1P6oD>U*+o*?JxwdQ!AWnG_U{Xw~B`T`Ei2^dj3lWM4|!e(Oxh1aIO)EHKr z&qYYqTMYpF#I{M?BJi~QzZ};l5PR^YsU}`PC#;MzA8%3tPwiQtmCTwQ`|1U0&_5*V zyUzn%8Y5q$EJ=4Z{m;z`TetiXk&Fz1(k3p(#BEtLp669_WlDfS8vskxGVY&p? zfCB2sMg7|2nkfMSYn%lk)mr)B>B1j1Rh&KLTBn5%ac*ZryF}DSX$W96Zg+Ic*ofkV z4z6b1Vh}tXjdo=3=n9_3bfLi@##a%b^l3f zwd-Lq8zKo}0#gl!43a=+4Lb$1G`iEpS-!x*U;^oL^tj>F1GC`lqMAli%z?3}0oinS zeaSBepN~g`!%LV1KL6r{{o|AwsNiAhGpmoX&#@vPhJ`n$d+9kvV3aFw^2rOw^XtmOr7g`AF+y_iK z2^N!!_O!V82|ZZ*hl>~|LxJSc6#z%saI%1-gvevyR-r8lYHYFBOTi$QxPNLnYG4#Q zooI8=X!;d#T5&5ZnYoOYxgu|c*y2VzMXU4!cDKk_@iE$A@p>`n|=ndA?{z@n2zU*LeOTCTJSjI zK%g`2*$HB8z)l5n-(=o4767$FrJujUVDN`wl`_rXyY497T91+4175yTzWt_I`Bzon zmR`YW=UQwAW}nv0jl0Z>n>}ig*yheRZ=V0CFH%_yH1n#3cc`J064<$cLW;xHhTy9> zZhHg~b!X5%l+<2Syz`yD=PyKPITih^Ms+v$-uo2?L`uzab&I6G{1;UA%Gc9If>V6( z^jTe^+4c|a`Gr0rHF{IkzVo!R5x%!`$EpA~(7WcZeYoOdscu&I{j|%#_AnTyY5@4A zb~d%~A)g(nCWC~-)axo|Kh`#W_ku1ukDn;OF@7?*?a2Xfr-j-qw7UkpU*=yIPzy;z zAB2Dz1%H4)Z*%6fJjR9pt>WF^zp_4~?AgBldQz0QXwfHAPg<``%6BhE#;!>j8<^=( zkYRIAqX6Nz#KZ8KsJPrOT)#w5Y!snm%;&TK*~8IN@v`58^zq=mL(ils-mw|EJTnKJcz( zvuS9#53GBKG@(%OY(23Gx@4v$Arh*WI5e%v=fN9jxO0BScZwq<~qP6h~FwOsxEC4v2Hf4T0om$<0 zJDmW-_kSz$AUF8YRuuuR-O=qDlzN6w-(oe&Lc!#(i(>?%chdaVRnuoX`{V-Fg3>{* zNZtDt3%tiF$>y8Cy~kf)uT1}R8+d4+yfB~d(jfk%r%TX~Zf#?RPr5&N&7#@Ds-2di z8q-B%n=gEzaTc_QyK-!F=0pU$&ZBtjtKgM5Rpiow+g4fK^u0Nw{Y9?6UPs%owN3!m zz*Sx$I>Vu6*L|&G0%6(Nj&&M*p7I@Le?Q)jcS%|ku4nq9=fZ+~P@tRLr@Sflftg-25dC7*o!(R+B1@Q$huEwqF+ z+-OxoU*pZPGFT|#$j6PX>YANTKGa<7G}bY?^KD11aAwamveD~x9n}%g$k$)4W887Y z-a74tXAKMGIcv=8mkCLdJjm&Hjo)>le%8=R@(UgKtWdAe)}3TizxAp`!{)Egtek?; z^<{Ti4E)miMY+Gm#+aprk+^E=g=C4pes`g_Ml*O6xs%`E!|;`7<6gfjS(~h2oM4S< zu3ep8OEsI@Lg{A8v%+bHpB1W&ZqBZT@bH)UDo=uHjy|@f&{(^DcO}QJAG+jCEFLPQ zE^)M{qSh&__MO-k_+Kw%J1e*D8HqO!TM#aqRBlmULzd@RF4N4Nn>)rJ{clK79mZ}# zGJWbb`H~$!7<_jlX1n!WYDEmHFR-jGd9kYj_ErF%0c5+!$W__shEZa7L{ z4caz#*bQ6vfjDU_SS-%&nJWDKGP89=qU_1}cTHk+ec)ihy$PgzBXoLd&-@sOJ!BjP zc*|oYq`{A~MdThny2OGP=A^YAh+b0ajy?(776-Vd_mG^c|CCljaIoJpV7d2EVC!P? zQGtn1n(zEL%Q0`IDJ-l>?iMO&M;)DI*meo3X-~vDo-N{50evNwok9U%)esp8c?D{hFQ%_Q_UHY!tvSW4wU!gRalb^?;o)gwC z?3ri@YKp%5{AxE_t;uCGMyxcbJCxEuTgG7%8d)U?LDF@Wifr?*%~j~$IndX_uxpi| zl4&Mat8J!orRN<_O%o%nl!RhlnqGpuIGoYv5S9UfM^5T>q-`qV2~}#vr&8vEXHnim zXyK&Kv$(CWG6%zZYVyV%$k5LX(lJtf(TJOf0~^GxUIEDT^lGlE`Etf28V>Oqyx>T{ zT9N&rhPv9ezb4#UxHICb?-jE*gkd=!!1drfY+I`XN;D#u#Cs6Jg59qPB!xZqFlzAA z3R}r;-7xZHj<>kGN&%3jT50DbewQ{b@0b-$;|q65DxmWS$=dK=H=k>x($`UZecg;) zW2Fb~=olMEGv+hgs2beUpgD_^_6H;ph-Y(LJ1HZfv`+`O@y{q3e5pyW*u8tlBz-|N z@q93zrE012JQb>XB+hxw`Xn#NF!={=Q8!s>hPhV73%asdyG816Fv=VxB%tcaM?$$y zM~v}xu5|Qz;Hmsk!UyVG#@q5n5SR8DQ1gYL7|*Xr8e_u}Kl8BB7Z{ni9v@sTYyF;I z$*wO1!#lu@3s}Px8=#5`^T_(o&KcGA<^4T6eNv{~NiMKskV85MPQt*MPl&LlL;_Ol zKm+%&@S4uu2weQ-h#PQ)S}j46up6V$4*6x0iwiL31_xk`-EsqBP+&e#uH?n#%#eXL zIpW&B{=HfI$AC)f z&vArkf-K)d;$tvzxNCO+A4^DmK6I!Fkpw=33sqd4ryNy?{^RZJ{^?g-cN>%&4OGzJ zAcYR~0Mj8LC5CzWg$mj4v@g%sUyQ=tgL~oLae+}L=>`~d--Q7oD-N8f1g}KvXQR{B zGJr?L2}eVREPmNOZRz_29s2F|cmr6a$QelGA?!O2h^GmU0MyXG-kl2)`OB$4g4|?I zdGDxrISd6aP@FZt^=4YSiMO9jO;zqUjY)gW z1AEXv-8<}m-}|OTl<~{>XC|rvp^&zwUYGLhCfu0pCeC?@10CSd8Z2v`k{%97za0X# zXM$FI;~w_~Tc`s#aWVwKs9nr zr&jP%>2pVy>|sIWL<^=Zg=gVWQ7Hj^@Z>p%-e8%nvjHH!Wwyow<5^H6PFyy3C!kQr zg?AizW_Qtztu4t{q;TmebIW)zC=D3G$iRLQr#5z5UrzP0WQU3u_$= z5HJq_0G`M3k zH3vQmWNu8760*0@lIrKGW_8<2$zYJAe$YazMHJ1gv^#^3!8t%s#MD50ijtZ6uD2zQ zbRmad$E?umLn1@fN=MEwfn{O5C;e>a8R{ELl>%)p#$j5it|Ct9+Oc42v#)#+Z0A#>hqfIYhn;y7N3ynetuByXaC%A0FgkPZ90jAW zq?d??9bu85olZc|m17<7*&Z19^o2C;Jkbl=EZ~zJ;9(fb?uF&wEU(~i>M!1?kMYNQ zJv|=yT|x;no#^T$T-MhvWX+~D1qjnZ@oCwz1lmligZkXFK*vRLi0h)=5z{TXBAjT( zG5GhC93vJjh}vmwxmi6v+9@7V8<$aRfBvwn^J5Cwc{De2*KC@v2bN~6=F(gV^*S&4 zW|#Aqb~pb^@8{kIhrt;91+u+GThjw8$`%&v#cjh}+yj)_M!Gpw_6x@N3L;lL-IVPxyKC}q0@$mG53S%-K#GSv?#>PcJ^djzV^AM&cWj*Df4Z#fZ zcTxy&EAdytW_8phS9(9^E3>Uhb%>)Z=rwnJUdPX_pj;PMQ+|*vhL|fQ_UnS(usPg_ z%&GcuvJ+#oy}Uc6#t368z5fzPS#8+eudn=~U3oTV5hxdjh`zR-;Ff+CL*3Z|%xtLt znExZ_XC>QW)^mg8voqN(zVdQ&HMVe#w`V@Q6JmuB2^W1dVsG}4I$ZMB;cPpY^n^E1 zg5-{O5cgpN?<$$__`89-&8y}P8#nvbRc`UEZ4Id4M+8!KR`{#i@vsDIv`lo&;Lq%? zeI?s6DTmMI?DxBg>`0X^dVPmL&QGw~P`~~|Rqh=P$7Qc?h8}lic>MWo&J5^+^0cs7 zgIk48W76h&B7-e9uw#DAG5X+q$E_1sAGn*2zcSY=T$j*J#%J5;z}aTrrq4gw_onp) zLi8{8yqrqEp;{u*9Bl|%+%?pb4r$8CmraitMC-gn48+4So+IuA+l^}Ad2>;E&hrh- zLK|SNqp9OK7JsVBLu{YDG|lM#DOsLL>&r<`A~YX-YsYP!NU^EZH<$&phaNeXUIzI$ zD)`2A$Jn;|c1Q13NRm153T-*b)Wc&RRI=h;!g!#pekpxNzMl@xacCcpzcjr4O}kNU z0xce!4DwM{+DP%8`!Ae4NN#T@3-tNeZ&aB|ee82tJM^y;q_}AOU1$Q>s?dtwJFPf@ z;TnRbM*)t0LgFEFNF^6rR(!2WKNCE7wG)#4fKS;uaQ~DRy(r~<{jV+50W1CgYr@LE zOD<{B%{Vxu0fBxWf0SGz@_$WoNjeDoXL8A3l4ky|PcFf#(2ODunISkXps(VI)-NLaMHCr;fs__~-APJGN=&c8V-O7MFAnStp#uy-+$AUy zXx|fX2Nz7|g~J0h)=q;XA#u^Dmu8SP`#J1@t(Vvk+yFWJ@Rw%*9)_783D|k>3IUz$)4#nf z6sd=b2d1x8z~7*Nrq8=u(H(kf2v6Cl5Jc6ZX;CRlqM>}k8{<5+879!vA{YAH>$r0v zt+^DSPsy(Vsn08Y;SOVu8v1_oLN1H9F>thj-4NAR%4o@ckz^K!wL~UyQD2;OaS$!w%m0%{6eZ z`xKnVfK}qba*^Kh9-9TR1XKCH8effFUzWN$IK52G&Fs<;2c7SSw!_X!4q$I!RUAQ0 zxAJ?Pp09PgzjsMK!ilwvKrjH2Z(WjwH@w?I8#wc;D>fy;Y>ScqaJ*?2GVVh@TeWY7 zION)l;rh6fE}}8jm%5GtzFEAqL;WxYYU-3K$1jMpEt{9PBMD*rI2X;gUw)$s;{m;N&Ar?0dyU2tb}sO)8){?U5$_0?4~1 za|D3R`Yv*B^~EK~X?*lpztC79JNhE90Q#a6c>}gKJH3ltCC_c?!MV?3*MSaHj%(1F zs^k7csm{!Ifo9{~NlsUNU^{gBPxXL5rnfX9Lt!4)Qk^hN3-(m&yye{Z0=9f3#ihu* zz0J+h6`QE35jZ-Ou0lyJqHhz`Z;LKje>ty{j?q3w$1wS;AV<%n#xN8|4h@vuvnLmU zP<9PqiS0Rc_nnulqoaJBoLNKdR#g&LUnCx|1x{j~qM(#RVYN{N{$E)m=FgOv8x&^| zUXx&7gb2jp;N4^(LqdDU)kPcB1ozN++?)$Gxv9uar)0PAJRSUKat@F-#e)k8DJ5K| z<02O9WI<%`@5YR;pe+M&J_W4OXrP4gnJTPoorPcmR(j|8jc|qEWD_GFT7>72};O^Fr*}b-Jxs4mf4UDXg*V25t zC_qyuQh@o^(c61KtFZB2$;ZDq!f*pVpH*(;daXC7o6S9BDRIKilx*~&7x`vJw+~@R z>mxJi=Yv3^M<~YL^{kf%BUjifnJ7cf+wTQ#KB7d7R{{4j!0mtEmS&l=%RLK2@q0Zl zR`Du+nLMzTATpQia_w#@qWxGA#_JZy+B_i)r7*WkXUqIR*En-Ay4VdYpike*DpPu) z7xoQ}5Ik>ZGw502Ax6B^bK=~b_7FPb-{Zrd(@d!O#b`rM>Ut9~UoDHF144VXn7jePzfUFtd4Z@_M*~^OD@d^)OefvN>}N zh6D|S?YZ>%!aPR!*)~;tFYAy?<(Z2?+$vOa@2GtH7r~&=#=auXZe4Qp=_p4M(5q$@ z%^wd)YOvS2<6sTpDdL)=?b8uwHnN$V?2_NW>XU zNEa4vA?K9f8_I}r2q4wp94fuFDqi=Z%jnvyHjw6ND?5+)0!J7#%H%WHM)pPhcW`~K z=00Vcp1&5dU2TP2d*Y5X6T1;>E-C94XC+Te53wqw2_DPz7DxuO2$Hi@`45=}?+l^GO%~^j)%KS7DThvHUIiWFUZ3ztcb&8{^s7CyZ0qVzj8pmNH&k?_*XHw3( zMkMbe!Rj#6kxP(Uh5hhB@`RcfJPFcNcBlLRo1BOv0KQv}zk{2S(1(bgF>D2(x2XR| zdJ9Pqx4L@t6wG|-ZYqzYAl>C-+*WCTc)dpE?Rz`_3T0T z;fw$xLA?IZMJ`1nR`i&)#_KKP{id#C9X%)zJk?#|)|sx*RmSkDoz-<4=AZ)aK2k;U z5B4=Q8yg1tGEVqzRmS&X_(w-|k%bs`x{4I`%v>4XcZ94?6!4e3RXou{xCw0SR-hyb zO40!#_jc)`(=Xx=ZL(PU;O#!3zbu8+x`Qbrio&QaE|fo6O);Go-bgzxJSd06B*C2$ zQ6>la;3$Zl6lBSxc|9q2w!6q70f2h8khz%kL7<^fA0s3LI45pemVEu<9R23>5yk+i zrrn6X3qZ==YWiJ-R7(kkj>>F*oNrum5vrmCOv;;!w!(-W@s&f|s-$d)kDLIVWHJ-i z4+BdoA;De0LgQ8>9C^j<;dE%5{RB(83#UPE82Oy%dfmi*&V8)@Q?Tdv=asGCrXwC@K@B)uB)D zIgw{^dchN0a)cRKbA&aaww4A&4Ht{Ilh44;4So^;A&B8A!wsSJb^vrpCT5oqd&wHR zPwkQ64|T(4CC#gr?zCr7x@^B^6aaU{-RfJnD9C2Z3AhARYk`OAq2jEl_#A-Xwu8*D zj@LxJTU?z{?Dd2#SP$WX#%H_}we2c!qw6Y?USR19fEdIAklx~$@^zBmsWyV#Ub+{& z=oKrx2uCB(ygpM6)!F-+0nijge|6#nA1|Lf_FUw(Sue%G%TXo9A-FtZyI=-7-UI8z zZXX6fR+J(oMVB>Rx2qmz?&9czV@=KH z!wNq5Y3C64e)>z0qQNZm&=`Cn0s*$hscDx>P##qhW^9OqAutsz6;X+!TJ#ulnn{_i|fg2{cI*&UFm?`}1oj~tW$AUZBl7=o#!w)N% zurNt4w-q(K#?eCl0tY&;nU!QSMB~tce)k1--sik)Xyz(E@#bqE(fGxM`FT~CP253G zV~Yzv%5elYd`9CvNVW#-)Yqi7{P!h&kU54mh%er%5;1D#EikkQYuv^(Hy;!^GmJ7o zOU-ywEohOVvXl>+bUs5Xd{}U7ILh~vqG&RVL_>nclPLz(xtFC)Fg8fi4?kvWc zI&$5luh9d26YAl`;1kn`yQq*yA(3P!i-geG=Uj`8CKiMC*>S2B1 z-;3W@UvhkK28}sr;dD%`z zuY{f(T3y$)3lU=DSG4oB33IhCo5rmx|7@;YfZ1Gl0Xj7TJ>H5M?Tm9OR`DTOoI2c1 z+|Xz&>A`_9>b1>C{ORnk3Gyusz{JMyPAz(^ea3NlFYN}72tkexB-(KmSSv2vv6G_# z*$_c{^2FlM7n(p;q^#*h#JWZi<#-xd8m_N3^KiV6zabe5?fve4&_`alPyqpOtxi>s zT$%x&*qIlGtP!UaM1J(OLAl(>wa3p;kFmmqLfxF{xIni>*!c;0ec1Nr6!iC2gnB3rkHAvf{aDW6_ z$a}JVK^j#kH4((;Zsx&s{OQZrc&|lKWLFi{MI}zRzPRmiK*dieIpoaLmksvodNS-P zMMGQ!sb7^PIt45qKw zz&Hlrj?k6y38;g87Jc=RvomX=IXbZk>dI_$OeK;m2D&IAtZx1Hm^ETtanH!F7bnMJDn*2}* z=@>pkgaS$5iQmXfH2^LA9{oWUuwJub&Qn~_wOe#+opXq*7$ckbUN1kpxK&mtB#nB( z<=hi^B92I5wE&9_D$ib4*KhCH4<0Ibp%H*#K3x_iB@6Ub{u&_KhZ~HzyM|VrPjM(g zcUpsYM+mX8KfNLCB-EYW?q~3yG6-P{_zM47A4CR~j&Tj96r0)k#x!H2*KhTC z8Reuyem>XxTp}zzhRuZ7L2vEI9w?79(NQ%9z`q}z1tj{IMGp(Y_g7u^;k_1STR5GJE@hT_QnzW5+P{jM%RAajBC%c^Tr1^J zWmlS)7D8SHT5c}JFdiNBD80pXlcXH^v^;?>>K%9Q*4s6BeH)O|s~f=}s>T(w14NJbLn-C3$I6$tU#J{g-945WV5=|U5 zDif9eq6Tay%-=DH{Yg>8I)0N1fUa#%e3lUOQ0t3C?*zP2k6E#m3tkZg7Jv{lJvT@Q z9ER33R|GY2lzVfuFPNqm6yi^i?zO4p#JW{5q5_x^I&8jQ<|3vu_Stp$rPcLV}5 zE$w6b9J?-je3H=IUw+ivqJ$niE#*Yd{RE)iBmFP#qX57*#&ZV1y?P9~s}I29$l3T| z=O2yUP}&Qi(9!-6RRwRQy%03dY~aM=?HUB(f_LmnyQ`6deQ`j+ErqXq`uACm&XO%I zwk!ZXusvQ#>le3g7>)o4rCK@t<)&a%bOBf+x8(tHv1}WR`W?#|2UsEhI54?2Kyl@N z?s=27xE|P{23F!s9hDD>d5Q7xT2@&fWgiXfmi}0`6K1#QxdiN4L*i)hNRZQi_I3O# zjqYEKL;tw|S7~v;74mB!(C>rt4+?OJ^1X7ljnLLqBECuYyKEP+in6>e@Olq8zyvpd z|Ls5IRRJ$IEY+0cL6^V(eQGXD1V#v7DI2+gK({-7A6JsNZ_|T7SF2RyWu6*_bSBFv z)9a9i+Rlftt!pPF1x1nFQ_h%3H(?{gBP`&d=X~_x>}S6AOQ+Vz>mtD#dt2Ej+#-+mrEV7jx(Vg>hEuIZJdV<;Gu3=`ud9V5VWOnM*hO#aHr5)_wzrFZuRr?@HA}_bex@? z@q)gst*vp$$;nxShJ|@~m{AW=ufMJ@0lkrskYF6WS3F*9mb{jb!%3)m9}b6m$x$c- zI6Lo;U$kj+o~S3}sWzK$XoRI^W(GLHXG_*z*Td6Hjg5V8f>JdLInwKqNMu}MVxr5y zjmPqD#>dCeCMG6tk9!q!N7l~KPpWuQxRN5rOrI?yQS-5nYkal&QvCdUeFO1=TfKI6 zb_#eOILRn0_T0gNtId@m69$7`EHd2;kp-F&T*7N> zh1Wys^e|WOcgH*^B@&(jOB$r2pebK2`z+`mtJpCjPQTv*1nBqiM~+5;NB_-IRPr|| zg4oeLr|DXh&~jC-EzFcu=4P&YN0gcFD?atZ{F9g3HRd|Gx*NKmX|J;R5t?l?QNV9= zG0%B&q`v=Z$flO8OKxmTEZ@kQP7`LCc)a&QMOJnvz+w~s;0Wt;fs{OuVqju^ub;0= zW|Rzw1Ve35>$9Y5H%kn8z6UX3lnY1sX+mkYc)MLWI=Gma)z#Jg%?%B`ZO^0x9ygnx zUj-%it%XlB@)S`vl=o>CR@2`Mkxt)}Afk;Mx z;*T%_S-o-EsLt0voZ)7y0pYvDLKZsVP1IM_g~PREP<8Zp zZZ_~mH^55Ou+z$8~n`&xKx&R5JC%Vy}^q7aAA5k~E2e|?=(AQ_QaQAur`sfLByz&n` z)HPsXy2h=1U3n=&pTb(Siu5+#xFqxR^mM)oDlaRO%De6A?Y(*8+k84bJxvl$P^RD4 ze(cXd6}6^ip`NeH5A0O%#e><;a;)SLd5Z^^GdrhUp&22v_W(H>+OTSuQb|x9v8#DZ z4te&RuZC;?+`_T02!H_}W=+bo=JJp1zx_YPg_dZ}a z2;|=Zf~N#}^W@2sT5Zm!^*7%jWSN-zhlUD)rNG0-*MfB+ZES38L!rD`Qu;c}Z!U`_ zdVAU1YQJLr*W#nJV37PDVbFiK^!yEjJ_y*|c}~&2XvSABqp|cOzes+KQ}2hnXv%Fa zcHV`1wc2=Qrd)chHShBqgM;hdGaHHL-+d>idca&+V+NcSO2sCUKWx%ZXfMGk;x%+X zLA7MPr2^GzBE4|F(S3Q@f*($hm(;h$nruxEdb6i5#xUsic=4)INDJA z9YA`BEvZS#0MT-_v|O$oJ?{X`&dwTuK$8;_&SK-wRC0$s%=R}oKPxiFdlb@jkfs;h z4-O7Cg3ku58opzVbg111RwZP8V*~ttlT_w&vH0@qdb$Gpo2=sUu6F4K$_XE+@s=ba zVyy`Js!Y?=*JFA5#0fzlu{dD&54!?_*VUCL1iE!={$+)uYT@v6!6LHQdqNsdC=^C$ zLS=Lbl+J*s=mWheDJc4<7J)KZiXtr~9e$MYLndK{<8K}&1 zQ;GhG-Z)vZb(w1Za_;pJPX=HENMKzHkcO$S-L!LKPdCv81QXaP8R7ucil}oEES#t`ex-!n#ferv%>$9@5_^Yd{wKN^G($jtKMOtoYeUc|#Sy^!riAQ z3g!?Flg*ZuWP}wE9^PWk80Z3l5_?xiTUuJQuvjeEv6gOe=4*Ae8zJbGwe=d62f?V& zb;Ke(`-6t`6hT43 zp(~)2loS`y1ItQ7Pj~kdUMG+|UTQ{$UrkL7E8N^Txf8%4l0XEsLbnKY`}Xa@(S-z# z+v^9`G>Qhcwi|HZalDF)7jm1~E(rm|adk!Vfj+US?8GaxdQpL(A&=#0=;_r2h^#os zBT_DjExo+XEtyC;0dSpzaEHSngPw*O_jCbO>R(~d-wV+nV$g&CW(@jMivEi;)QuK5E*{f-VpH`J?sOd={N^@iHu<9p9@sMCK?oD*AD&rBW7|<@Jt&`Ng#HPoYfj zlmh|+8U}38&yC-)N6Kbv+g4Av3=Ix06pmyE0UKmv_k-y8-WMN*#Gks7%H|CY4w7gV z9@EFf+7q-tFw_{mn!rj%2Le3+chAhElYkz?D|_2@&(+*1F20eGkpZ8XorR3jJ*NvI zWmZX$2jIw<;K^CO?tL=1Xc@3M+<0O{I@aW=V z8MVM($U7~r#9p!L>6ciey3Q3>e$daZt}c&~9Mqo1Q!dK7!orQco}QlL>h$jJZdiCu z>O-R7BEk;f$4Z7Y67(i2D#{BtJ~uLg)JeAPRDE+N98jC+8M?92otD{vb!DKTp;aS<{1<44sa0Gi0j?qv*2MCGK?F){|aHn`f@tX~;A&TnsT zk4lz{j*V5EotbH&xEa#0qG2}acLgM@(dgGC`ryH#I1Leb$rVyECc2o=$;rt}-@Pgx z?wFVu2|qtSgYRoc*MXV(#2IONC%pRh(FKMLKATAtB3l^}avcKt3D|J8mp9*re`#v+ zk9tm%i$GW$`!*wuK_73u4JW-F2CL*TiI8VbtPK)7pJk+{&vV zLvnAjt3}nV{~D$KQ~7%Mr+ob>Uw_Ki|EYYHNkfci0qpvH{2_h`{tNj6w&1_=c^6^x z0l+W+MLw_oH-0Hc)B=3o>@$jP3)xAU+55TV_wz$ejVnpnug%NYa75=x><*9KCeCfY zPyc~2l*5bGd+G+&`e$Xo!`0T{)shE|Rl)Q<6h?*>+?<1DPgQMeBdn3L)~fI#jh3$@ zjPIH*VHOLJRkCk1!Q;jj78_0?Cf7iR_T!6-m#sIbUsX+)ZoaPP+HyC};oOF`08nJ_ zLl-S@a(WuTKuhZrkk$3@g{^HjF^J|KE5=}WcXu}+*?Q;HH&aSW$s_<$#SDYqz$x z!fgBtWcvF0;2@BTv-7Whl)4f}-)k`%A}(o|OJDR5#iloXcush~6eEUqet*BbM7PNF zkt0Snn-m0UYH0ACf4Ry*-B3OX7>>UUm~9^9>gwv9*cDY^tm9KrQBn6Hx`HjGFGTYW z2@z3K3hRB1qrFV|wg=HvaorZG2_MdUn@z?YYO9S5`BEC~(kG~?sP@U<3Tapcwf-yw z%(S86;yS&Oam|X!M#>mP!GX5=`g%XlM(isWmxG67c7SDDH17;~N|Aq#vf)d)bp_&dgBGB6#MNEiiMf5;g8po5QDurqk5EuVd+}Mcrt2fAxgQ z?w;@NZCnL`ejk5`Ov3-o!W8ybWcsk^sQa9z8z!pxs^*pe<-qX#?!to+k({Xz*}aeC zIeW}apFhi!O_Swo9zcnUp!f zl#hcT==~GF#|C;_lz`a+*jv|yedq7!s4ArNosO;`{q=HfuM!5mXL{E89O)YRZc z({gZR4(a@-i;D|Ups2_VP`)9Lxs>|usV{e>;ck8w6tGbrruFm6hU@ZBRrL4w`@1*J zkL#CM(^2j3?PcP}*uMg?_EnABRAT`L*$^oi;8B`=@vxRTzGvt8bFL)cJYnM7Z>XrK zveY#-10CVBwl@ZT+diN-TkgNkK8Z?5WZVjCKR9^|*hd)y3jpAxgl0tMya&JvZd2`J zk-)maL<|_l2U|B{X6!^VY%?_r0V8VxFlp)Ek>-!sO~u`P7p~1o5%d=ZeD>|*pNZx@ zhNR50%<Xm;FRbFEWz{B(^G<5oBT2UPOG*R-WC5EXZ};s5cyLy{uGV> zUy8<#3cfrwV9WeI{tz|(yWlYQ`&DkCFkAG&rl8~Pfun_O;8@~y60OD zi;5?p8fd&%y`wzj&DID{MH!`D4p{*r9d;8wk~`xFL*p zPo548hB`h>YuTa7j>s{uxW%5hWg^LlP|B6NUI}1G#)??2e#x|*`{!kVy#ox0cAM&e z?2!@T5r>1?K_7Cqgj>Z>YqsC5v%nX?022l#v^i6X8x_}>ZD1g@yD_VYt06c^8_)Hyjj zn_mIVO;6X`J*7Z2M*!DQD^&h=sUGI7cXoCvIl~)2+tXQz0Z|z0oD{0*1M3w$eZ@e4 zK+5Hqq@*Oq8Hh6|iU%Q>EGwrdK+hhgHLW1MkAS{$VEUNQ{AyRgOkn{11gI?G_IrRY zD-(zd0VqQYW@d^g1$d{WeNPo8r&@sF_R!5BZ5NRYpiN5^55%k96kz1!9Q_38Vx&R8 zNxWIVw~wEB0KVL$5l}e6``#CdZuKAGZcj#qY<@fU+Lt~9>|r+$$Y7tfkpb9q=YCgR ze*k=7>onl68cJYoR>{{Djmb*5#Cse5iSxS$>H-14dv!Ai#f`_@1^}X9=<}M8kdW?6 z;v7@HD8Q-yL78>`?B+6l@e@z|x*A^1e~mK#X^?{0zd)J)(@>v3gB1P@Quv<}q%eMV zsrK>{2=x2-BP0_07i7SduRv=@7XrZQ0l^bhfOxq7BD2N>`i(^1A9u}so>3^A;mil{ zu6};^B*-!dPe)$fu;SCh&F@QOhx+m|tyc4t*Mb@#^O;#5W+d7$b?g?G6i$WloJuGrUU#*ZiA!mpt>x1!qj3zc40%T!T7iZ!uPZ|Qhe?#C-9Zl z;l{y7>z0qZxUKny>>ID5OQz1P7Sz2P3s!5@I*=|8bM`|NR=h=DfV%mG6no=C*bF*T zD>*$)A3o`*wlTdGw@^FVu|AlRgX1lB91Zd|;@qktA-TN}D!@Ljq(_&sl z#*6D4_G9iFzbP{jfz6%g(Y?5R@9Du16)>(KOnJlshsvzBLR!Xp2FJ z3(8IE-B5IHC>NBoO)6_rArfIWksl6jF#5=&8^Ibf(mG5$-Aa_BjsHTVCywA5!95Tu zVWy0HfB(bVZ)ur=d~ZcNvcP-b@sCCtzb{>>{q<0hRWFXOzLeSOoyW&_vY`oM43Bb- zLUL<~Ej6|k{_e=B1_59-M1sbu?^3(Nhs54#2 z-b@RZjSuNJee)QPTpn~w29H@ro>U%>fSH*<=KZ}R_P6~o8}+M9c)dTY_isOcP{yM} z6@ZCQG7B81gy3{-s>(uQcqzza`uApPew{wrwB=Zf(RPI6_Bba&mQB`$l|**5j@}|ctAQfvi`N7MAt;ma}PTDu9#5N z+`uEck9KNJZThfP*v;I>c76!yTcMK$>cwY?4!!a7y-WGU&$m4Wk0-5Z!p!N$6Z>yl z?tPkI;Ned@rFikRYitta5gZ z+0v5yg|gPmFIj^;;fA(X)%1le1;byM5ng>y7=ibeFesJa=o1sYdy#?OP6KZA_T_?S*+vuUy9V^*dg;uU<)J4B3p(R;1WXfA zOx#=u9@+OyuSv;zwwPpAAGGLfPlxv6rG6wUxcdE>6outDJ?}>v&5Z01>_eQg?|fxd z<6k6yv|BCat|H2Xa7K>i%M;m{iK?hivQ@M_<%nU>aB6?%(AoE5L0Cw>`l*!q{DWd= zo%ihyWlA+rJFyOViZP=}Biq~C1lzukm9#fLmE*hL-W(?W#U4!CW}$bpF;aoExF;3< zfpy92&inFhihE`EDL5GSLc<@)f02LwD0Po4(x@8qyfZ|=v%lbh5btrH4e48?$b-sa zdF8hc!x)Q~OMir{_3_}_*ch;qIo!^bF8$iSTce)W@(Is|>c-BO4`H-dhh^~CSNK^S z@mhmIbR`*NAEaK#yVmwhhYh03H5141i@{oWCYtudgCt+ z1E)~ZL0>71^76!ri-X7CKGV~CTx5LEbhf>JSAvDHC!+8~!m&sDRM60jvb4OM5AqY_ z9&`q+aPEh}yJ;{RgsSQU4{R@C z`Man8TYs>e8xI8Ll8*OA6fLJVQAvx8481-oWP)fP$q03bXuK$F8F4u5tm&_iKXgH~ zvOS`7kBt5AW~_#0tEt}4IRgm>z2T2|{E&yBh-q<{k1&Qq=qb$=RwDy$p7FZ-g(q_48) zP3YxKPaM+H_8{l;ogIVXRo9p%3L1;G0$oS(I~tcr3DP(udjzV{5tABc6oN7wQVDwL zu7wX&%u-IqZ%9@Q+-%e1F2xwL>&{UzHN|usn|%vDAI*)KvQSyD>eZ52Cb4fO9QV@o z1$^L4Dq>hl5M-%5(Q-ThV2N7=0{F>a;v7v>7YdRH5grOMWq6ivvJ^(gLv5LofNv(; zjSEN@i914`KMywbQNqMmP6zg-7NILMAsOn*t3mNqZD09bWZ2p6hl}dE-){hQU5Bkb z!Beo^=m(hnW07ONZ;-^W$VM>RkS=|2SOEZx`VyPoqdH|df%fTW{|P?3>%Pvqj{BCS zt<8^$wmDn{x{BZ+Aq8~uB;;b1Nwut&1dvL~PdJAdPB(za{9_@6chSrpA?r*UUv!ve{USYt9;ZMC3BwUF# z2=*(5>KnD(d4f_zu))xUMHJH5StUM5s#59r2B6h~^>E46s0G9j5G$SE8qY!llYLjls`5+DxIh*v-U0YLdK9*Xie2B zvBez7CvLh;Sk2y?PY|Il@-M4$z{Bg;ATxgpI(^Okn$~ zn^1#rP*L;qYcV3AaG_=EYqOvg%m|2s;=fRFPywv!Dr#R|+r%V=&;^QUn%`u&spK6M zR9*8cdFsD}+B=rO01gN2Z58;N9uM4rHL8;Dex?RX(5McRtTRy-j%fd=n*n%zOnDtWRbLNc)ZjN%C5f;3r?_1%r{C9r! zV(l4deFcU)ND*z-z1P%srw$=Bt%!|M>30H*W%fublahT6HUIje2m>h&_$KrbGg#|a5ce|U;a!wq3-w@zRB>TRcnp5iV zSKGp0ZQY(cO)0|^w=uJ;;IH4F4AZV5wLc~U0RdySSB&}%8U5SmBum+eMvdhu>wAmy zs}$tcy{9bK$!I**6MxOuHqbk{u6n7YCF=x2^ zAeJOP?vMiq4~oc1)OSrZlO}M8i0`3BO8bRs0FRD#5`?qdV16aO#X-%1rkEc@;}`nV zPSfAYnXIHap^weE|ahcK;tJD4J(!s{8%-9>8N>BHX_mdqUtIbY5 zX32IqHuApc$!7JKmYseET_1Hh5Tdr^wy~v;kO<6SpDe;qZ-qQu9x13>Y8G^>k?xYfGdP4d{d>z z^kDkKuDk4NIt}G&js9zIak_WSd%c7JpZQITOV`Qd2-eahj3%P5wM3tY@5Nm+N8w>S z%Nc08#c@1%q%UYW08uuZ7U$n;J)oG^>$woYSEbzR^ z%*{4fA5`!?!g=GUS&!%BwIcURPU~w723I|fYb>xbPu)Ld_2`~Zf=c(fJ5>Ig7bCCz zd4L)qnAXh)XX1UnBsfmFMM=xN+zKcUqb(}J(3 zSNBb#ey*?kI1vMb(4nb(mxl^1P!rM>1PzWmlp}~6g2ez6)iPO`2fC)tG<@$bAu+?; zw>#uBv}jUv34^O#UZxrwgXzFRnjxyu2>a8NRBc02TM!Zm`gQ{D zBE!+Kd_fY)DX_6ou)djEL{``GUB{y$y4&wtO*32q$hzNI$xN(jhtf67q4#~FnlU9y z&;!`?GL?D57NE<LAMlb$3+dH?sNYPm!ZO7>xDilH5f{M>hA+GE+L9BQ zCuOFBJF&a39aL%@UnZaK5^}&O6iiJQFB^Tmp9o+Rh-W%|({68X8}ocj1z$`gJw3Ur z#o(G(TAB*0t8MPYVfx{?`l*Aoh27DWV5tKJZFc47U=H{{urme&46zwJ?+)(V>_d#C z@*~j<;DuC9U;~1pNnf*dbTw^LxPz#W5cNM?O5{|3VVZM!Zee@9V5xj+^w=ZBs$Iek zWq(I2cP4sbI_Ie;>idE}^lG~jcJZvpSenIFK2)~7Q} zasvOQtB5(2tquRz6&L~i7Q$mDhlNF3cfXE?u8q%@yi380NY=`pkM}J5H+>i7@Q?9c zhKkK@SL@EbSMxkq3a}v5h4&X7n($w4%@~Zz>^v4_qHOMwx zirIgU)WhQ>?a@ihK^_N11pg8XN{?_c#zBS;is%oDIB0HTCYSsBOC%l{mZV*El^)4A zNh5aC@DF7IdWzfmGFnj%QjD@vYe0frIwK2szX2$gv*_!O1bIbuHRP`+E>dh^C{?>XAA?*OFZcg!2l5 zJpP?r6zHy-Wojr0n9u8x+dcnwf7hG8ymq{k=kR7|iF`t0_iu0*TLO3YUCi?Gxh~9T zJEKu`9_TCb)t|;F+eL7kW_#zuf;lYtRRuNZ7h2jZ_v=|o7E6hDQ@PWc%Gf>bkjDpb zls(bTpL$$XynR`l%k5|Gme_gD`@Kus$!J4+cVF*3mpPkgA*QRQv z{r7X;pzQ5gLBub|=bE-?uG>lSEtIp5f~P1uWoPHD(ax*z9`ht(lH*`ZeUM#N^Z9xY zzQPi8v$S9A^!xa1S@Qe373^rPM1~Aq`3(EF@jQG?6eNP7bozkky@Hr!ihs*QNn~uD z221oqVn+IYo9j^{bzmsbgyg=wnl$nIji@TCDFW$Kx(Z%NgLsP2ADva3(>do$9|&HBZ?p&We|;W%$yJP@Bkj@X^MYkp3j`s1q9ZA17*L zkg(Mn>octVO&nlLjiGl+a|4`7IDqa{=3dYr4&YD8-ee-!|0vM<)g z3)&#gi7CS6!lnxYYYR_bG{2x66ir7{ck8Y`wlM(MEslkYiU3F<9?0#P->&_DKuBVx zH6_oPN|_L}600YD@F{*;wRfe1b2pRTpVkjT*J9jAbGm+LqROMoubX#uJ{xum;a_t0 z%HTRIP7c$}!RqcG)!+Jle$<%^5jHq1_WGL|{Hi0dc8iKc$@73ac3guq&AaR}-F>Nu zcFybApA3fKIOv`Kiai;+W22M<_eKs<)P10R`ei*iaqKf{PM($aF@L8uN+f5r{&0!6 zlna?}MCKqY50kt=RLgH|065I^*Vh8@Acz- zmzH&D!%_XpKF{AnyDST9%2vDC^G=E{I*bNi za~tm-XEeI#>Q(v3&Xy61rM4SWBSq~70m66cPf*62tM!+0h7Y^jnYMuDhZTDOf_E`A zj$A;XzQ4z3(N*W?#oT5!>-Y(0EFInXrVm_}uLWt7_4JGS-bKq@Ez>QqYG@EYdnm1W!!KLfF_vCbtnz9x16t zCT5`W5zvXvbWw{NE1DP(b>R?oxsnRd)vHCJP1T5~er{fOC{yE5W?%;`dfM?2QJu{fkigP_|HVEes zrHm5*n^?YHKbw!m`Fwov1+($~xv+KIcQH=X_;duh;6+t&K)vfUm+>BBC zZ8L~C?|yuV$Xq^iIpwB*Y-wt`r!r-^jX{CIw`1QajhMBsrX%}q7>{$x@1rWqUO;wA zm5Bd&)mU8T&-Fq|TF$zr`H3H_?oknpzTc-rueLhd*~|2mZ}s+2QGng_)|(~slgXv` zERhaBn8P+PYd%a#=Z~f-VO{f~zAQp+r0vE+a)c?~BZ$)L-RSMqs(b{ZC!kB1#|*?b?yF631XB9*+byW>r@q@Kzi3rj z_Z8CqL}}lcSnt+o%oz zYH(zu@Bm^rp*S_LY7(&cBB5=6aqFirh=;Do){~ZAY8*%5ZB3`rJb=V(Q^L0vI?K)+9Q9t$n`|`PT+FZrR zZ#>^gCXfe6U(@O-pyQHDTAJ2E zW++Enk&nRX$7KVO;zU9?A#1p!$JP`qA~1UURb0fIW1^15udLTk7fDx zMk^EGgrOE#O1{vHh2u8_i=d(gaX3Z5%M}FE_NkE=d23LTSNT|A#Ypq?-JkZ!X;Dw@ zzmJkU+K=AU3#yNk;no_39((M{r$Q@6)r*qK?!yNGl?(RIs`V&oL7JxmCq~uFjn0=f z2+--PZT9xW8d$KG6+m~GAYOl&5O3 zioU8;w(v;%ZS0Ouso}a*-O!NbC6ZMinsJ4;gk|#m`+PvDuKjcIWd6wHca{K$_Q0Ee zCY)1M`Cz46SBydn#n=T2GS?B2z(Zw`;1Gn8oE}GaZBimYIhBn*)X( z9hi~e-)9s~z4!9%<9xa2h+MT8&r;v zU2kUCyl|*ib@C(9Y79@|z87l3W{S$Ei6o8-H)iU@lRExuB7ve}qlOSB!}daeL5qNd zGXZAi1`y!-Cwj`doN&8(0ELO>WrzK~a}+ur!g9 z@XZWKMq~lU@dw1@mAQvO1b&STF4}+%!@c=9`0xy+z#|6dDXM5^^zO{eUE>gn|3iwL z^-Ljie7wtO=~zuq=@2KojWr_LDwn7dCG6bQKm-M`P$GjUB#ryL!kR6tWjPx~*J7I% zG=wx$-?}t-0T^$^)3C^;mD-%r6%&?t^Tof_a_J5EzcnGC`^ikcLSt zqC~3_*tmDnVI+hrv9z*3rtm9R2y>;uPKj)AofVd8k9c7dUv7&eta*qfLtp{0gKYq~ zXp94YJg;NR8m40GS4KF+hjkJ{fd<{znX2Ia$^bnACO>GGRG>zMA>S#F%8}MJr<91m6!iNZ!A6y}Jp)h@w@c&FEs79?2IYQyTT&g&KR3|$G4xHjB z7S#)l-y=(Hi54ZmjhRs!RyR`gSBEdD+=l;HcSxAXD7faNb@Gyyjjiga66+vFiQM$(9j zF3f%px>G;&@~CI zC^?u4bKZ$kM*_~<8RH~nMsvv((nWWveRYQDAwPS6HYQV|7`dh(_%uQd9+scl`BxuS zHw#6a*awpbS*EJ-djzflJZb|z(<~<`MfLCEF|=SGVmq#< z=1HQVM+&Z+RnWR)gvw&bsEkOwT!#v!W>_D71FOu@ulC;wOa$}?ZemK@-@wUwH<*CA zXJ!!bqcuu=8;A+^*%dZg%kyN4i+-u{p*O1aHtOGAZG>E{7h4Z0SeTa+aY+i(d-cH$~KAR1RJA9*ZPyaIYEW$M93+d z1$GqE+bO|W!7A!D*N$rj(iJG1sZ9H4g^5~tw#tUrd5^>_Z1tC9&$m>s^1wDv&U@Pk zTR(Vf|MuU)E@I zC#ql3l4y;GqA^gZRVBS>!~e+{lMBEveJ8zxjWR((sf&UPU!tjuZ9HpYkYWBN?iAok z9l(rYXCqqNG{=ZZhZ%DTU#yii>AQirv-gKT^l_Cb16%>Vv`|L#B7T$R$s~y|PlO-L zS()>th1pGWfg0AB8AS#~rb!+x82_)Z85jjR_{2Htj4aezd6!BEepqij1NQp}0bDWs zk2I`|v!wJCt5LJ7hiCpRP0VzX*4s@`f65IHgA+)c?7{&(v$Ek{jHEqSYG}ZAa*h0ZmQ6`i>DXs zAtf;`USz<1tvOGbeKjj)noa!4=N%i3-Alf^6~lTdnJoW<+W0ud@CIG5`nd8hG4BJ@ z#3jN*3yQB|(PM)ek!GLK!EeS&W?DxsJ<20$8=%vO4;&Apx;=Bn?Ol68YaD}QDliCxm)>h?sfx49V9e3ZlW5^RNto3 zo*~qfS2OXl&=gm2=+Q|}Ae67@-q`QwXQ&R;hp3N1i}EnkFCI9Nla?akao9BTf%2xW zIP}CMOsW2rahVqhI=F{~$@>PI|NZ8N$8>J}gKnl& z3UvK){GGwjeXJ>PjpfB^@V{Y^JsUBrWQD16&|v+|+Ru@3^Z-*vgM+yL8y*l}wz7T* z$*ujr;b5bGGbiXK(_U-!hJ)fXgms>rFG*6I zeoUG(mJ22|<;~y$bwZ?tqXLH6nQ?K9k=7MYO*ha-Bbp; zR2Yw_Lypi{{dQd|(>dGpOm$IE>q`wZW4Q-2yY!M55b51@ZLr}fQ5!;KQ1_A4P% z2hiwcDfXP(r-D4ccG9kBbg%Ahcz36z1?8huLd zIuzN0kZiPOxv&paf+>_Pe&YQOokpT?rN~G}AEXIf!OluVCM2p&v&D6vL;@UohRu(x z_&p=A+4ea$hG0-yi=$DzPse3wtT)JCzOx^I%52$w3}n;o_r6r3P|XZs%m%gi0j#lq zQGi4OZys0N^=@P!KD}Ag3fTPm+_0(dpJt#B%An!(2B5|G+hovKPG&JOK!v@(K(#jK z+PFP)S|&-1n&E7B(7H9PS*RH}$BCdh>m%V!0<;Cz>oJvyGS5y^po!VLzt&UUPpYXc z`@$K!;`O6V$tQG{Eg#N>Q9LnBk}@~_FGZCbTnEFoMFMM2&I!|yqBWFTojMLyFK1cd0ik;cR_9l9VgyE`p zpmNshiB!g$Rd-;~&WwBH81GP?gZ#PCw1=#Bjl9!ick9>7c&W_Q{&xeaBR%)48OAWB z;DEWeIKB705oygCzX9~A$x-mqR2!Xau&a-yj}i|n66cj_w5m&wYdFlh@eJh*&rAM6 z)e(37G{AGO_Hek?w9R8s7Yx7Wi#r3Y;iKvMyUMOv+w9+h$L6FpoJkV)R z9W_osQf;Tsd>0C4+Kr3)U}{>X02f}>;fM2riLGkf>_j!vIO0al^JOS5*8?a@#{@8v z{dqu25GD9>#j|$^g{=d&9i6>J$*?mX*8{=y38V!>?DRFlx_+R{TS$BUY}3;SjpYWb zD?PB~=fSH2Qp=n}sV@+xV-oqcA&<~}Sk#tw*SG1SOnB^cMrJCnSTq`ptE~@=MO!VY zgG7hh-2u+J`A`YCVl%GY?h+IjK0j-+E*Rd!&0OrqrydS{+Q1cB(!+I4A!GjtOzATF zjCt`Soc=q$z_ldw^94CyH%n#DJba3v!92~gS9Z8{G}$4)5u7Gzp;fc5KXL|aT=Hxg zMWf|bMuz{RiAc6p$$Q*QQnY4x?`A?93ZH7tdi`{ngZ+oo(jx(&`nA7IM5Rex4IdDh z=f41or%tWgfK@}e*=Et|z5%4{+5Ttw=VL%_TK4_SeF;>QZa0N-%3o|P6TYu^^p4C6@q!Z|IZ&Aj zY$c7n6MT{%>05R0Ni#XvDn6LJVmA18H*t~2m*RJ+Yu~HJ<+g2V7P-ebJ_Pb&HUQ%S zEkD7ZvUg+6_1OT=e10T~TowBAfY8u9l+KfA+0B8HzCS(Y+Lz{^H!a!R>PO~t+nwv! zrC=pL$8+@~1=Nw;!SY;wLDj#!1;5K(Zi`7*J%&p$rRlC(f{IR-;q}AIV(9(w?K3;| zn<6sTp_os+zblNjywusk9_zGNoOvOx!`w@mru|k&qXQulfk`Ruksb#dQctF|^w~0I zAK&z~XWk@@b|SCqZc^O3&mk!%p6VQ(nuM3pf{rN|*{oXFEQ|XcJhVob%|5Ocm{OSG~2UcxK0V`kb1C0X58z!e7 z>&+ z8+K0s^}6fToHnx_-d-Fb6k=zdyX}?LjvAq1f%c@@s7K|w!&-bn@hn=;#$kZ%fJIY6 zbE0YdPOsosHHv^1Jwmtbn0|cw_v8M)33YWuul;r-z(~hMPXoZKUA!}4MUWqBslC)* z+rQu09(SzJ>ajV{xV`#H+4IFaK)_s=L7V?hq^(mT?-4-v&@y{3ymKU>xOUm?|7`Zb zN@NQ@(|Lx5@-fNJ(OK3#*!~|lXd*5Y{CF5O=px zEs#RyKimL_SY~-t3y)g)X89j%z;dwIq-X}NHD3HTi_Lqf@S!Ejt-Zw)@mj*%|6oNu zSN2*N)9QcFfb54&!k9QU=WPpp%6~9|M7SQYdy<)RjZ*kO=m2ei+_^~CW@;KMoA}=_ znn(mjD6Wu5Wh#emD_49BbZ~cA4ODQ%!g^bU;@I!&LCT~UXej4Ft-KFwY`T@%uMV`2 zy^U1be3(CWI0Oy(osNpl_bF{^{)~0rhz_z21T99oZ+FPTWLZ?&93yPMqzlPNB+b2- z^zdARzb4=GwRTqVvZ#Ea7Mx4@?9Fe>9W84;YlpBHLkdm5&Jy09AzP#lQdelZ_>n`Y zY?}>Wf7~tOyPC!F@7WgBUe|fvCG~#xu#|S7a$$JhcsiV6eWhHI_e_PJlV%e`inM;^!R+R3` zeg3QwnHLJ-K_V0M@4WAk60PfHerq-FngzAPnKkt&btatc4w6-Gq3aA^K?c%iqh zbXc4DHG>&GAa+S&S2wLaE~eS!bNenvh<9|pF=5zV_u(*}9Xu>wez$_dp#?voOTEM9 zhuSci)N8unsbn;srAfK*6u^PlC)+J?So7}YF&zkeJG$TaOvHxJ0c_LGc=cTEo-Ebs zc+&eoE!-72dw7}IlDk^&lRTle9adIN{NCB(qx8Q|h)Z6?pBIk`6txUEok?)c21vOrkTC7%HWIgF4@V)ITr&W*Q-RzzB?_qb{Ts1I1akb6f zlE@~QctN&Y_=()KotgXY&S!YLT9$o0)EQ4tHRlj&p+}S#Yy|r?&9F`SX=)Kh9Lqfk z{?vlTA$GcCfUlWAYZb8En^9Ek=;QJk>O*SRV)T~#E6xfDai|m9tcV@~OUHTNVz`GI zpD6$Y*4s40!u|+rkhOmv%ZA<=1>r)%QAX&1ar;ijcMaYx8{11Y&x)zWCdDm>&W*?G z`oL|ccH}l#dW_E&gxlMwgMxHu^Jn1C!}-|Jbc=uSKa(EsC6V0%h?Y z%;|EuIm9J>MMo;|owL{}0wSQ&BPx2ZkGXi`G?Y2`F#@b#F)LE^#_6{jx!>e36np=H zG)qxC=~vBFsn7jbA6p;$$2v#vx7UXAmNa{xd045fw;mK`kyBig8nzr{d1f&Grfe;~y}kK#?E^hRi3 zFK+eHKk41j)I9GQ935}xrA}lNvcS0i-b##427m>}a1maVQ=~^FgWN59z_!?nBQ1P$ z@1Q?!x5h$4a`@2yq4|;3d=nh}Vc*E$cI;UCR%^axaF`}u_DJ~9(OnA!Ed`ho_h46eT-Vf1AI%nXk6cFu#}08_kyX=v=73V0pn7Di_bs(EB4Y;HV%I{QI6+%rP#!9ULF_48gDBgKr1dXvE+dq_3)t-H_XbT*KzB`SQoDV_E>^_FV8S9k%YQ-O zqF^5gyUQ*HisSp`Y_n)axoP-~LJy_cD9L?Rekp~S_3mCbj{@$gP1C z10*tnf#pAGfbED&ez(iDr}ek-Pu=?a9QLm>UK_EA(+sMK*f9q8&&=l=Pd~dU*cKFF zoH4VQKCUMgGqjm212IyQTYPEc z=hYr?K4u`73KV)l_Du_!CESvHytzFST8GR2kO^0%)l5P!H#JWA>*IQPndAY!g<^Py zHtu}0+hoxFMgLpS!zDrIrt_9>T8^(U{xt6v+bM2(ui4>pV1WPQ2r?*<5p*n9A3iRtvY zo@J;nis`xPG;vm-SqbjQ2~1bS5Fi7l9QH zveE;I^U%o5Oz-4Yjy zuf>~XjNintpR#$}2SdroBz<(MV~{7^^T&<2eG4Lb=T>wX|8XFDOnoGr8Z_7@%T`8|!u@bUm4a~wEO0lSmD)!MuH8cg^R}LO z9Bm|pJ;k*Fc|#)S3OS|YnrxFnD2mI4O&IS0)M%{LyUx!ktL0+Lmu{cz&)|*&>}W3g zgwV?p192h8hJ3f70?ZF9T(1()V~&hqb&|B~K^!CsD-{LcE{R9pF{lp~+hvdLS&~5N z@Qzx$Kn|T4<#Wt1AGG$jwP?qK)vJ4I>wN4J5AMHImlB~#lue?|K?W1CsNqC|tB~i3 z2J^&!&TZ%U8uFiLxO5P3FR7bO8}EuC_v#*ORphAn@xAQZn)pg_q(x>tD<`tBQ!@R8 zvi0aX1}T_g>BH2}DWgCW^b7oLkNpyJlc9-iND6lhAWJ_}i<&-PS!&sK(ILKUQOh0W z2RQx!Nr>peHes^c*?5y1ziaqI^=j_m-78`@#s7QZ|DYv=7;+gXfCxW;_aGx$gsYFv zs!{QW@qqf8od14%n+VCuUW;J{5}gyoKr8u*1?=(%jTD=vY{akdJBOILdL>}jw3d~Z ze^pGQW)m4mJ{YthHT9o-$|6e7z$HhV)|(M;&x{2gaNSnY`F)vwCbMwdA{CDpAipc@ZNlb!_Uc6>}N_Ggo+#h zg$A35B^B?W5M$lVTIRg6hcP9hHf6pxMqjqgabBB@1n(_d8xt0=QHKmwp{rGwsl5%e zO}p$%jMUd={a!1Kdu!K5wB}_Ty1)p#?-D;xf{*;;th$Z#cgv>GYBCHT)zsILGwrE% z{UF5u2|Qcrf6w=i??)du?P=3FD}fPSQ}^$rC_;`Io9)4loGp`qvf3b<%{riVIHGAU z)FBT~CV()YpYQ7z#zA*jIU&2rj=YpV@tWES)pwXyswN%9?8AB13Q|os_m`$|F<)zK zN#h<;nf@0@dv^W~H@&>2tu5>JO9lMMVxYenJ@3@##OQ2X(>A~3!j;Wl^YGYvh0B2L z@kU?pKU%E1Aj#)}uJS+qPgk7gG6A{Mmk?Ccps!cUN&0`L*KjHY=j_~ z{|{b7jGQj!Ig* zNpg`0{gcpHBrfuFOqN%M)_RAbTKBypWsWV%B3nsI zym$9-SXHLAh@_HzRF@4Tm{u{?pE0?I`a1r3)tEXNn6Q)t8o5Aohe|BfZ za8WO5F(}S2+B2ZXxDTmb&DjBWDe;nq+cbs8B6f*;KkIGJeSjq)76cF;aKUL*oSx~* zG;bf~|4R@DHYy6(*9FaYXT_nuYB8iB&ez6E!Oh`_IzkPZ_24ijbb?7nedi#(bZimA z-maIY{yBUpw)M-cY3XROE0cDf-DPv;Z-OnG{gXq>G32*{=#CgO+g z;E+w%*BEB8Z?Q%G?%y0j@7bJ%?e;wGD#(<%i+uvp{VJ7lwoFti3CiHhY$=l@O*48^ z1UjQRX@$WOqOc)NFqc{E9&E9-Cj!ctsi3y zike>CP2M{h8##h8B!?&Vae^Uk?O74@tWgGMr)>>C#O%@FMv#y#pC#nmkAvQV==dH z5%@GzkX8e}J}%vrS~Jx(Z&40II30$bn~TdzkbqhMhX;n*q(=a&0s{`lpYC89EB3F} z$Vbt_Lh7^S%17U){yg5wiEGy3({8_D^)zvIMkljT7Z|R<@g0tSGET`$phIUUAhSKA zo-AOZ3_dD@+elP$$;FI8`>=;8x2U7`F7TG-g@_dakP=u)C_TIljo_qhLqgaN^u`p-gPv2e3`>OH8bYf)N0EU+2UAk&fwlqxAf-*@%)^ zn$&Nt?P3wa^^MhUGMnt&sx}b!dSjU8OLbp$q+EOkM5gxK0#C2N04wb`2)tr{bZQSh zzKhk^M2(7S@}+Enj3pAdrBAX$`^qX-mH|R<-ANJVYurr+fQh^w|kfLcUs6j zq(lk$7#LXjcn<|; zILCnmXFg~fOJ;i`LXLk`)hKJ-Nzz9H!nX$i&2I zI7ZCMoQ@L^PbdrtlL!p-g-Vh?Ul3UjKHW$y_GEuTb)URBjT~?c-6yG=UUT^QA3mVO zGj0B8H~th>_&q;z;(q$C_ar~LrW=TVCzmpKz$=`q2>F|J!=5fPBWWQIle{H%O+ z(=m7Sw4_-#L)}P*GLh*8wfZF*rzv`QoC78+EWf;Clp}46R8Fj$1v!REbh+jzHke&D zuXBgv{$T%m`QSlC+qg-l(($yeK@4*`M*0B*h?g`1^0qi*;U6JYMorKYIO)oo7(lqN z8<*_qq&0@LBKlcoD`kF-+vmq(CN!sKe;FfKR0SHF-*S_-fI5G8U{7lH^bFtH66L13 zI6*@=jFs?!BSS+bYMyOeY@(ROWZ&~KWO>34wEgl(_5MD&qv&ioH$KOqxhjb@*9uJL z^JbI1ldPM7{(1P{yCihi-RtA~=y-Bt=D0gh{4)`+j(l@RXMmI5d3Wx;i_A8;=)0sTUyd>RCXc;iUe+cr>9mijxiMdXRf2*6wl1kNnOwV z+tAG!g0FKyM8PMuxKd01o@^NY{g^b-;KCjosX0fM$C@zwE(?aql#?GQE$L|1b` z^@^3`%Pl(ox=}we@tWIdxi^)v9Tc8Z=GT{XMkZO%84M8%nk`P8?Q5U|s?*K9ca-pWhv!{_sB~wT`l`>Dt4*g`|kOmPx6mGfqjNGRTnyGKTJ5@cIb9BCs z3?2SQqW+^uP$jLC@KJLuvdQna6ZlY=dT~o*sV-D6@!=x8soK%XF`gGeGAp!6zx{E3 z${uzE61sQmbB4CE3@v0rx2nn4(8CIg7lrowT{*6M0dE6SxSp73(Mt}5^YeD<(KMTh>-Vx6R6ny= zZ=KfA>PEAdbWMUHV{Q^k9x^NwGrLiCsc}}bvHN?)IG1tHV(lqX|E?qZNGd_^kMZdw zQfUTH`ZD7<qE|%5q{K?N90Z zxSQFs?Usg8v}hLF*4d0&G^&k+UC-RteGFcECduIRg(Dz{%j;$5!kZwU>AfdnKU35E z#iYzyxc|%q>d!aRH%a*EXer|1l^EuSXk{3`!jX6G%z_*Ro;FIzN37WP(b1d^bd10K z+Z=an6V0~dS}nvY}i;%+x06h{$@?NVOoWg954u&NPeW&@0J`zmif5oQ2@@V zul$VUNxOW*-MrtKMNqfikM%o=8GCWKFtqQQeRTZRd|R^Tn1NowlBjU(ZOWt+TfR?N zfX^1v-|#*yG!2#oXc~>JtyZ3&MlpB_6bwIK)Pa@9T9~s!7Pyzf55T&@G~@7%1*5V` z!M_Y5zfE*il(*{U27)5L_ykmLS8^kRQ+Z*=9*1CmheIVvxZ=134+klC=COFo#2kco z^UASG;vlC;O?dSRoZb&~t8YL7E~Y0YU-r^(^s6)1YzVxO;YOn!&epRwMAw1Jz1G^1 zw{_KwOXOKpc$ikhP0xEP;n*fA< zdUopJS`c8O!}O>l^iJ!lvCKCPzBIY#@HUw@+TDeq11^RMT)?c0M0Weyj)d~oubqjf_&(_PT9|hX_|fG=Lrt9Z$1-RC zf8+@Wsr8=E*1ZryIa0M2LylveWs{)tP?qW4CPO%Q>)(ru>%OLFDHgSc@#!c~%pQ!# z#FL2D`@9q!$F+p|PeyKB)Ts-?=-rlK3~%_Y4YAI*rQH+xx=+M&IUosMJWllQZD5;K z=KplooA9)iHCrcZaCn#U9Y-egsXERI)%WeJ+#j~KdlO}m;~rn%n?N*r76f8v{_$2w z)DxBhio6H{Cs(K(scG&+ZyK9FsPItdNE=hjzasx^gptkhE9-JH&Gh|zHVe%eRw$Au z4`5a{D~|JO)}AVw<%R^;UZ1fZV6v^vFju0TID-a}Dan&kQZ&A!D*b17gu6Y* zzhx5M3S}@g2v3x+elB49X>&+Vu4}C~7M5~Uw0L2W8o|=ZYumtM1&E3cg^;TeMsp=F zBdh#_D=2Uu;isZ5q?;K+d72m>&G}O4O%o8fNLgh-1kp$D6WLz)6P3zcc$ZxS>GQm; zJB?ELzip5#U13!qE(RG?m4!#*l-ko|?C(r88jUWtVC1!0r*pFA(Y6UGKhNabUcZY^ zhzkvPwuzNX)GC_0jT;l5l22Pm>MCKXn|IHNvqY@bEr79yJJyQB3w<-Q!e{x5TH#n? z_1v;Kgw~=M53@`Wv-g&(<5q8EI6L%H-&RYt@nUuDGkHSG{;3iDaWXTJH!ow@bg3TL zIb{*qN`^7||B&?-TyZvE@ZdmjcMtCF5+Jw?65QS02?TfdVQ>o?++Blva1HM6PJo^F zx97j-?CuAc=k)EV?yg(6`Zn<^))K^*Z?;NfXQ8C9frW&Mh$MVRiH6CtBCWIe(7mcL zVC&ZSu9YA)k83SUyr22phVVC+lHor}my~;3s@rF6FKV+QTq^C}anXDB(f-TY>p8F5 zUp`C7*5K4q=+uC3UJhUWs#o2%jKouBP4&xGKDfY(r-E|S(F5H@20v3F4w4Fgo-x)n zug6U?Je_@~Uz(z>65+M@s|6z9f7s?hx9oX(l<|!K$=7thjiG5WGp}|YRe&^TikCM0 ze+i!&P@TBo$EJ_vXrw7f*ThB^y2hlRX>MbNF@Bztek)Y5jKjt?Abz`chEh~um$U-| zP-0j=Wf!Tg$Tn=m1%CNUe~PSHmCTr{dRqA)Y0-4|(#e4qF< zAU^g?k`a}(hGkkv>fCCdbTY5Qv$^F#{9=|vyO<@?>DlTy&Fx^LQbtp2dJe5P=L%2P ztghQutF@^H88YkpYRi+|W;w{Hy30?M(|au>VUN?z@f)6P+l*e-v^mchQIk+bFrGoo z4_$N9uGvhvb3sC`Z;}kxv7kjgpvG9U3T@QT>^db=!I;Luh&Nk7cYb8)c62RD02PL( zE3Aq?c)sG2;p27lBh`tKrhxTa_2c@JwgN`}|AVwBm( zopUh9!At5jIto7od1C)KQ`I`CxXVrzR zeMjlup1#yzTNwAW)S)K;UTfLVMYy?xrFEDvW+0|x9J~k{@Y^`#uV!4Wf2yd0gw=V0-Ud8!>CR>b zP%VN}CW(Tcqm(N7VYn6JI7|NE<{yQjsipd=8|Ko7K+fSC}xS2A&Yc@NwRPf^2NCQ=LCm8QDuG zp5*FQvV6wfS7Ur>!`kF<=I44J_MH&T!xDS~tFt{LAV@UVLGa zi-DANE!oPyzZlXzvI%Op)gBE?N$F`hY$Rn%ugF?|0nrZ#9w?ufB7*DNS;B#V2we-A z4H|tvxQ;pOTz+Ee{C@@dm zdrlpFeW|-BBt@R1hcX4dgYUh5h|bA;{zq@dI-Gh!+##^qet7S-(7QRqAK=yae;(-PO#yB2b4shx;jA8Oj#=N#S3`oDxuyC7)BeOKFp2Hyt=mfta z`M3N*G^EAB#6vSa0l6WGXM7lP0~AjRwM7RC^)ad{tv3i`QmO zOca`ykjk{ABbfA56&$o!I86EU@DUcYH-8j!lh|rW7P8dNOep$M?`6aw8jaH~X)5AZ z*WsU!6yiHBR)Eueg#=#W#3r*jULpiJ>7 zBazA?FL;@Nn{!lXplm|vcgCk2PsR0^e6e*6b%$y1pbiX=N5klyK}O0@PJ5=p%3QROz~ zzV7{)HFbJ^{DwxUV+Sga7ICrqDG`q5?k>gIsoT@v^4!3qlUGX%s9HxF75a#JDslh6 zGZfd`5VId(By)e)WrcuaJWV_I^wR&|@;I5uL;Y|CWl9unywII27Y*k3j6Wvk2Ek1oe?e3_ce7V9-DoO-&Z77yr5Am{uLdeEX4~UpPuo zN$+`e15{)2D!sgx(45cglKgmjoB1nO!jt*P#Dv5C1WhuT-<4A&E(qgPv)Zn!B(~UR zx=ZcS;LEj*k)loCw@Y3Jum}tDi`V`^&eBq)N-AXU%U*jvKs)TtuH1}{MV+b>Ca z-&;2~@UEHTpSZ9(ajd?y8w$atRjWhfCo4v0N|392`Hf}+X4PP+QcV?AWWY)#Es^J;DZ z&Ee*B@`XNfkIt70}=Gq`8 z_8G5cY2Ou?RM~Ial#%s4AkI3023M@)p7~LhVjt$)c57e$ZTNeD&n6j})c1?GYz!Vb zJ?LT_-6Sb-sVi}$JUxe6%UQX|mTst~W>{!q#2xffI8^b|!)`9UJtTZ^poR)mh*(`S z(hj=p{DmZJKvz@{qa3QG+PpGsy*35rXzpVIm)pbH#M#-z#e`+Oz~*YLo5w*mmz8C% z-@)^>Ul9?IF^&5$*EGdISidNlokSc%)nzpum13M@0UscWlan%dY*=w;GIc-aTjQ}~ zVxZXYCeP;Q;U_B&_G(8iI3#F0BMs;Zj>%;AS;9zS`Uz79|9oU z4DEYn3*Ap_D7Bow+CL7VwtW}zSe&CfzpuRM79=io|PipIL&P0Qo6f0xHV z(*klT^LTUyy*4W5Sh_04sMzHY1uJHkx0L5kOfG7fM3`ua0(+5WWl2}#91%&bK}PI| zEo@mBEF^MHGC5xRbSN8TC`CU)K848Gw6K-i+T>VkbdX%Cn6h>{=}Ghk0(QQD$x&M# z8I{x8^aA21_}`D=pZ%ItYy`6J+t5*TcgR;Dzkl_40d1E~==ZASO+`^YJWvbsmhfMekY>n^DJqd{3glPA zMx(6z<|!79Bps44i0Qx4DM?IP=#0fvbQUnlnMg zRr0GY>XsleBEC;OpN(U8b&PaJ*m^&aLRv;{2DBWNh!crN4M6O>}PZ+2I2%GB?kqtTv|T3qDtf+8_LXDf9%> zCTEJyxh*$FxqxVuQnN`LMcNNYf!(@@i%>;OWz=_vTS0O>qlZCya8p^&&ipeR)SR+y z)sls4-7S89Hy)N)?7-5_hBbGs(oq>g;u0Dh-}Am_nv}|C67Zc5%{~H1mhQQ|A`IK5 zeAvhpx$TgM?3gBVm;mgr@h3AD=zA%`?2sss)0oHOzjy*FE!a-wKW@JhPJ`CkgW6H$PEHw1GR#q+{_$LzC+%F+rexoomMtw#;!~ zqy#!76(EF#9sj)CcSdf*6~q;2EwMN4>%zpKDrUqbjJvtY4HD zPDzczFvmff_i~J49i9evq$HFE+>VnKqyY`8IPj8sNM~XG3ElKPyL)`G(rwF(lbN3z z7o(&VGJ2uEpck4eCRl^7xrYs{f*TP!4lO`KxwQP&N%L37u0^n0FRBr8hfh_PsO8dL zK_B_Z|Ik_Vz0+(9B^PeP{k@Zm%wZ%c`)Lm43qi z<~*Gq`rnstZwtQ9E#oOOta5Yzt`3pp`JyToL?e+*O-huZLvS6_Ad;ic%2BF>Aw$T7 z*^t4;JSMlv7^|g|XHx3FRWz)n{;t31MAyKJ6&D9SSOj4{bv=cHNAP`{){OU^|pCrbSov_*vOBvuwD- z@1KLH9oC!J)*3C0e9~5`yG>&~-+u(Y$MicnM1-)}CsErNdbP<-WjJaxt520ID)-b% z*^2PvIf;#*0A)sa*b+q0uP!H-?|D5yBfWwPACO^!2r<{7S0R- zmAKjPr7RqLWQP$m5dChiXyKVPGX>afW08J0N#2{Oa0S-d)d_UfF%elSBYl`Fjsi)M^4*FabQ)BOVqnI&e8XWzd45u^r=ABbkcLwtrU-`e(+;5 z6zFQSKf75SOKF+h;PRjEo$hU4ggBbZisC~}OsNYqV9>?w;n4o(j$y?AUQxNjN!1=W z!_X9Z2Q#c|rp8}KVXO|TW0}c1WQzg-=73&{1P`aqBViuN8UT@>%KKlZo;l|$0%L-k zDlXF2!wZ#=DWDdPHFS|YixM~LP=vflA>alkBHhmUL;+Yc^Fk7aB13O-0dHi}{t&EDIWG=z>pk1Rla*xktfK^@a5uPi zKCw$NtTj}uA~D$uRFm(t(pH%R1F{okCYZM{f0F3f9 z+XukjdTpbT^#RCsqJ-Jh@`;1kq`Usfmul{CEWz*QPbvpK^pOO-~ty3vf z^C|z0gGK&U>ffB0fRWj3Eq^;Ub9=GwD9`<*Lx71BFsj9Zc;9C3NgaO zG%g3^CDq#E4D9ZsR2rqFSKDC#z@w%_kdb?teib=_CCn7W|)XPwgzL2r^MFV%N zsVBmi_`plR$f2kNfIx@gDYRfx%6Lv54nPi6>EYEzO}yLE_42@Z3>UpV9+O6#qq$-5 z+$jypsc973_}yzH(?iB-3zJ=J#}QUTi3kh^uv1bdA;?uSrYz42w$_%@@V9Bw&LqR8 zsMehm{ve+BkY4Fbo}&=}h^kP-MxDe`YelF#gC#igtsA7!v zpwbc+e4k?{F~H-ON3uBsNaZ?O@3^AEM*i80BR>m~;7=DyApt8a5_Z)X*4_{X8YODs z^5@{HCD~mi2Ki2EL~UpUxU#reUod^umn{2a9P~E$rLl&>qC-jUbZrk$Glvf%AZYJB zK|>w@=-!DR(h)4D0p`}eUvTc?9rhlzdF|4=|Cb_lE9I>`j-HYQaNHjJ#gbxc*3_Yo zJw@xQ(yTcM?iScbhJ`G(H zetblpwsF~pIMuwAiF#kRBAAryYy%~UhaWFub+R{==U)L=opGFkSiMOIU!N5{dzkMO zJ&OcE+QlUAZ^6Gm@7K!wMBP^nV?*rCMX(u}$e*6aXC_gRy(7v@PA(g?nS%m?_~4_d z=_@gpN$C78I(M+qVVv_3TmgWewaOs-qE9Z)1O*4^eK$}G3FyzagKk>CuMl^_&#@5a z8zafyj|v{x1TRz2*B)0zasxh+D-JhJ2Two81pgFt?ULb^E10+TZHm|MI}X8!vWAIc zB}`L_^ll_v;?+9gBHn73CS(o_CLc;E_EN6jc4|rqmug>rE+yKR9z14~Dos_NEQb@W8$rEX~XooOs9$&JT>M1E4dph>9Ufbh7b;+8@k#4InC zWPS9Lh{oohK<)FlqG?_z@teW|oJPr|JV9jqVes)X+(X~7g3O!?`76OQ=c^ZEzVr&+mX7Mk29!AJD8@5=ikmOA-ECZZa~yQ|h}Is499t2CWG~|{ z1~@urbKVPo=U?>EN^33lFnb@H27;cN%S_{mpL;Q&o*v6&MPNQIPA8K|_r23OznE=(r{E}j#p5ju$KOl`j5(|}2xDMYeSDU8nkREkq&lVsWt5nxL6-I(ruxC$q2d_4p)M=6s|A}>Cn7+=_o%F$Q82q6R5MLl6W&G^?* z@d`pXqqp^yT4Z!u*NOX3e}rWw9)S+@M}j3eor?+rF(C7(B1ta_-C&+LipC*P0duT9 z5ZZ>Nz3P?KUIeMw^TmSv7Y#khMO+{G5|~Ff+uv&bL(qpBPP%sh{R{{5vmP&C@(vC~ z6UO3&;LjY2t_8*!zSy2J0%aA>R;op;RHC_s8V(JVq;h>pNeDW2d-U$Ssd%acOZ2OnAa!Vt>|cant1RCw81RF!d0K1- z9js|lh@xrj_s84fx~Qm_QU#Qmcn=!gM=5L}+Af6uER z)ckxzG_f-g9a_O5GItGm=d8>lgGcc=umT-kVmJX)9Afy3`Df-<>%p=95}{MR93mR2 zfzN%J2Au75V$7c~_6eZ@lr$ml^0MV{5Mc~4pB`?e3L+KBk2a>aaI9(gl0Z(CM zB=096pGSSy%iOVFn;$bNOSk-T*&7IQiqRPG6F}}dCzEh<>^S1ifM}@hE*&9 zd*AMc+VUI+bM-JVB)2fsVtD-bTTGU(|Zs2(*$+=de{O_i{2gndWuavj_{Hw*$u<);ba6Iy||D zK5);KP@PhqmC1*S8pz2od_=NmwLyZ}w`{aOOt7SB*iQAT@EVMz$8=Oh?ipPw7JjAj zu!X^G5k`&}eea$ZNp8Ko|;(lHx7=Lt7J zgEKZSw6DU35;f^|sQN^2bM~8GTSHgJZp{=a07_J&wys$f(^o_6_PLaIOmRRuHikeJuM)T1NULh`ZqEy)3Jy%ptqk6C_lu(Y}>3!)3&kSMZoW`t?8z>=KlS z%76&OTVI6vMvIbaE?;McIoIhl`{y9m?GCTeA=~AyVDq4N-267?;nMJdc(9b8o0Hmn zeuwLv-4m<~2T0Vjq}oXw$f5#(!$x{WaxaMk;%+}qn-}qof-sj9hGZ;=BfOCZU?h&M z){Ifc2;5SH4X^-6$ZE{(ifl5|WZZWPwRk`*k>Apo(|tSKR{A2L@+0Xn8&odf?U27# zjxXj-|wU z z%hLpShVB>`Z zaPCYOf*N=7@d8&*zAKtMZPXUl@G`z%{zqkh{~W}5#>bUJ3sp_O@SGxhyiQ79`nu}A zFeH6F7!ccY68<$SWA0VeboSGNRSr2;;JwQ)*l_dXmowUARap{JD1r^H&v7(=yt?d| z+(P2+C$jkCqeY=fw8Org19|&sNLZ4kxe-7BY-f zf5ezIspPV3>;jf9vz3oYdhWX@%2mF8X*Qkf+r*CJME0xsUvO}_IevdKc$1031gGA1 znd|h6IH!Rbs4kfmAS&mZWxMAYuya zLOjr;P)ArSAW=rYgz(r^eCzV;?eCteO>{ytj=J0+Z#{ub+@y%d&irm%-q(kR{1^21 z@Avm94|lE8;hhuZr;{njv2kurJ0~Dv+xbQ7cy$fxlmQ#$^#SRW&(Fn|I-*}ryzPu< zq@RzLqh;{l{kx2Z}?{l)TCxS?jbG{zliVbgiH z3Pio`Z1$7E-aY+wdj8(S2g1Vk=t1U3yLh707t&{-_}riC*!hyFl6ojFA)%_0%s5f3 zK;7VX@;aLW02X-(0rh>7GiiSBsn(HYUOA ztQIGYvp}cHuF-#i&2d`#8ckA5kmn`l=JO`eWkGkZ71u@k^*J_z;f9~14tD6J*(5n6 zlo=4wkmWk)3Zj}~H3uwKkH`5j`Y^=+DP@t)t64I3?cR80kq5DDK3$Q^B-!>&n4d)P z0>jwHoV(P!hJX6~Xj9+jT7KIqjIdl_etu70eMtCdXS)0&;|67XbcI;^5;o1)yXE}Y zds;1NQhX7|9KtNPzv}_REv%o6Tg~vN8rVU}3+ZMrYdRlvo%;(~0^YmRCzcE42O&h| zuaxwPCru;!>UGlgxSAJmd8Jn+Gmf{GI>NcEYq3_9QC$D+F3mm?HTIW@a^@6-WEOJ& zDm`|qHD#oHy~|Gci$U~S=nwDLG4$m)^73zO@((y=|0R{cv-1DNu3ve2F<-s4)7PVy!Xe|}WH$$_lbi5nvpxN!|U? z+UAclR=y3uH|`&)owG- z=8U%8QK(#kG+~Xo;%2av!K_(y5!|(@F)CYK$pf0@zk^I!1w2|lVCMwu?Q40$hEpBj z(TQ=!NK{JM!X}sDvxRygiQwf--7TrX)9e09EFLi0hi+h+a2%;*t;tw)TphswezALr z_Tj}T25vJ;V`F-fzdGMJ^{0g2Wbm_1VvG8w3de_{Q!lT&6nAt?KKDc4Ry}QgnKg=) zkjDiHB%aMG3+Bn;AwRiS_P|+9up}Z5!IhIC5FXX< z2aOmo0W2zN`3}@$=Oe1u*Ry&+`>#$;I{?N@i{C-iqwqfT z+G~iipgrEpR8O;nU6@q67g%NbA7vqZ8m(RWnM+oRg3t1yR4fpA8NnW1(_d{DQ4Z*F zY`U`kz#!NG_y+^s+8+}(WR6J$t+vMjleA0;Hxk`ZCK^4;e6ES zzwN*C3Uo=(ZIIFXT=+XUNe;&4=di_qQ10I?W=Ew=-%lI}I1bdWFa$B+EjLuWy(u{Y zpK3NR$4|_U!WJMN+)W;lww-0Ax6iG+OLSjB4surL!L`)dUKL|7Bb?;sCGx7}F`@v; zBvjuzRrEzx@cW!pnVl@0g2duVk2+LQOGMS&uO#UrzCSGm@VE+&5*z+g5cztM06R)bDSikuNsBrfU_ege50&TAfStco)8R#LAy#@5? z7t>aDN`U64KQ%Rkf;HiA*=C@3MRj?)y%sJEDGp&1JmwF(q2Tn-lbb}|@h1gV{SA?S zM&R-qc-4C8rYUoNKTXy}h7kpwl?7zco=d(Jw^NGIF))%M`Rvh@;_%A6}m4wL#(2 zV!b;ne2a09BuW(Nb1P?q_C4pQg~0jSyII%99mlaAxeJ)P_77@L5uH7FfXl4=6a6&^ zh_;R4J$6w-ACBS|zO!xeZwqH29@r%HBB0yA9A8khJ@33LnJtyDOy3W`e>0lQL<3}e z-0bipvjL60@iFr_M1`Ca(*Vl_+|NXtaDO4NuKqSn7JHLFcp*w9dTdlo$(lSNp|ieLDv*>!uXoElnvKXO zyy0wo^Webq@BsZC$ zP>6-tD~fHX^X^#=rjJviqGMPL_%2>1At#48U?e(DRgY_!*PLdJu+KoCe4 ztfH8!;ap|_V$5Zp()0c{5F#;x z!qT#hW|#Yh;K^Ox^{%C8LI8F{yH)%M`h=pZfZ6W!nw3((pKlyYAFX9@GdKGS@5x@# z^RD#+!PBGb>b)2Lfy}q!e6Ak0r{P;@lTNfHCPTwb-FuavjSrF)27kJVnKNqgb56gRTOaSw|hWr15P#A zFi`YV>@L2Lud8>*0FZt?2nxHEXg24H_)A{4c5uuGv&L$JO7xYYfLPVi=;XfS!qvEd z`FPvDoPU9%%q*u*XX=O3z@o^z_l<#~0i-|^@N4(XC^pbYU!&7+^6lIJkpD7uBaLW0 zZHlz{QzC$=20cYV+A~#N{-T`>N&0VrP9c%SIP$CBhV5&SeXlqZuUuU@_F#hD#95pw z@lq!aF}ob?dJ0L#X=?Y1zzpdqs>Nur|5+q}*Suxk!^BQssaP@>eHW!h!NIkFN61q@ z1#z>IY1Emt^x2}L=-afN_MXY+WzLcm<1FT_#0#uZmwL%mWE%3YQRcyOe<)J%xF~dz z(v}!`_B7Ab%{A+kY>4u?&$H8sTLxjeO>L|O5k_)av3Jea7$pmRT|Q*k&OV0qsy>)I z1oEY$>fRt`ouI$;4*mKXdmf`W7&ZK%Lr7(#H=LE!L1y0-Vo^J{2}%DFBRgNe(P|qr zKQph=^I^w<_Pjq0VFGG%PYswCjLU|ql@FZp4_4M>QIU2%M(0JJLbbgqQfUG~2A~N? zKN`d_MoD#9(A27a{=MN|1MbGT>LG%tz$OE(w?^ve`ewd&jgi!Y5 zZ+u);DeJ9FBENv8GX!|$V%n)?kfv|5hwm-2Hrg}4DKMvSFAO_`Kj*^!IQs(w_?UfV zRplO=ERR#ou!5<@-SpI&Gf1`)@(NVXD`j5yUzu_`>XLHf9Fw*wmB;EZH=zI&X@8FW zOMgFK48Au|OI-ZdJv)t{a@n?FNO%Wd`0lQ{6w47?k{_)CDIt#~C&9%?c*IY^0Yn2a zSXfgrB3j-ba|N2>R97ScfYyuM8LliS7`?d*c?^Wj&OiSm+aVRj#yQZHyOHWmPGkrkawFu=`ByAZt zwWab2)Gs`Rdg4<)D=Iz#<{iE{|K^vMl!$W@P_dl!Db(TrhK{c_LGyAtQntV*@^&Q( zDI75W&8dMGHA-45g-b>whY7~el7oYuo(BA^FLfzG24=Ziw~>n9$-jfzg$G6@nzRaj z1nVwDsP6(T{@5^S<8aZ7BNY3r4QYwg$~UA|`Tv%qw=i|d5R}4sC2mB2Tp?Vhl1+%4 zt$M^SV37lP;OK-GP!6&llNhwc(1A8oX4xfA9&xkku4eZ5c!GD&jri(&Eh5LPH%o%?jP+=Udq^jha~%a@SVlQEzI(QM-b zv1|@0KyG7fvvb(jq>+EDt-XrI2hTxWWJI|X1tRtS4-oPq*@0sVrXNpd6b8EpcW0K( zBda$2@oD~%!eeJ?wDhDzLE{tJ<_m5 zWk`<@OYt~^Y1wM~tjaFEqR>Q*&%B+RdNP(z68$Umf3*e1$vN5XfeZos$pHJcf5VZ| z8G|HIy}I>$fXRUaPHJ*eKse6(9~Fet~~Wb@POpeIW%S&;Xb~4CC=2j~i3<);*y0-=~g@ z7Kq+kAdvEKxE`@p%aZ+6|9vW76p`&Wi`eKcy$_OPvj&k)?2Bp|hNKeYUONFD^6l^j*$=y`!yNpJJ2I z2tZB!yFC56AMy#K=Z5#B z?MT*Fv$e4qDf|uh^~j=w3)nkaVw%z4Ga<6T@nRW#H3c|L4TngI4?uQ=mR;GJ3F5q6FvY9>puQ0`3&J$=3g}?vTts*3Y8aRlnJH++&3KVguiWT#PKMf_Gu{HPX~N~ zU$OHu5>zp(y>^E}1$(?*KC;*@0(Q@v-x?gNWl5m%)ERx!G#BA2 z$ZHyBzlkQJ7O}+7o+<>q&~st2jm|lBB3;5zVb{8!+MAGN+jA!L&&3#V(dq7KUwp zxXKi8Ib~2aQ0+3zFj31Br=VHjwE8@fl9Be zJWFcI^d9b-f`}uq0Hf;ww0|B5TPY6rbNDO-sh_r(-o?hnR!RqP`W&TAaNb}wdP5DJ zq`TB@7E38@q?8Xdg|r`YJhiAcJAEpws5VQ8wOCHN44srhbSYNwTz6?Tq?1BI#F=sG zB5nH6OCdpq+Ox2V-^V?T`v#ijh!7N(n|*?N5W(ZMu0xCQ1)pW{E1JZT6+e$KCMt>v?i5XL*_AeJ z3Y3MyBsIFp7eChDb=Aoe_;g?5i5s;eaKFk)xv4AaffG2P13BEYY{A>!W!?#5uUD>R zeO6|3JSZv1AB;@qV+M<}a}V8}`cBz@A0bhEYt4g;Mzq(iS93>f^=JLlzsa z7M3{q3vL$eb&B9VWtzpx0D!1G4R7ruUVDiV_Z2|yWW4z6Gk^*JX#et>Km=uVtUDpo zFewv-8^?(i1%MkNek|P0`PgVP@^=ZiI&VJE;hT)QthKA+yr?I)zL1DM%{G<0&?LM| z;$6x=?A-8%BR2$PQGEqf&y0}D9!D-iC)x+O3gecj1!~uL%9yd#zB|SeL&RNP`V5|T z#vYTHhTDuTbA#M~{!)R2Sk}#2=dwPTs5(%xnd8s9s=gm7Z3K(?Zws$%db_Wc*yw`# zA6XUw|89jp_+AWd^}_6o{`!p<^L9+QAK7gw-$(SgJYp$Zun3#geJ63y;5ISpiuxma zCwEhz$RB~QLZjC$6cuE@z5N|xJ=JVJD^2wPc$wt<*zeN147h_l zX=c0GvXe3=KTdlPn$#TSC7{6@fnQXUd#ucuv)3iWg zTrno?SJ%^#OBwu+X&+P=<3@h3q8%=wi=TB<0KYUGw42w6XZB;=pCxO0@NPzwCaV|D zJ`w9TPiXmhJ_Qt%aP(?j3`bMGF> zm%SG&A1v+$j1emU%nAkw!9AZZ`CWptrA!v8Q{D}ja=9P9%}}UgImOi>46-o6)4$Cv z;O)=by;I9u4+Jc7MZ-;+Q0j}k4wnl@M-)F;EuM$IVb6H`*%@Yf>0l091^@5A>>Can{I;VaX=$LU>>W;UL zc4uO3g~(fzo*R_^`JF$#!9VX@=J2tf%0}D>PGbZ<-X$qFTE>^S#;1uitVVZD zfpF%&z2Zn^%y1-M8vOzaETjM~}C01lOhpVG&;kRxop-0uu6ki2?3Sm&wiC-}mDU4E5Tsn^!>8Z;l2A1{K1jiodoX zLm>VP{8dz^Rq|ENc8gc;^uKY08OZp?X0pl7cLOynfvFI&{S@0uES;mUZI364rHEAw zQxJgRxZ1ov3!~kJ=w)`>m$RMonzz~Z(bn>JBi(D)sq5BkS<4<=i3{>QXcQ$e3>%Wp zkVN<9!Cve6d+yyeexdDi;q>l);dDv%bvFoB{&I|#v8Ycns>&K{ps44V{nh6--&$S_ z;}Xw4%5&=HVa0x}O7b4t=VrG96$A6GtnNF=a? zeFp&!W##8=rAb8?44P9;*K_9T5RV16TGkhMKq-_cOi}5lGzg(QzEQcORz>+mM{#Py z(2D?|f=Bm$b|Jih1qAXv1i*NS$jkD6GpAIoU{`%02jyV{-JkwbdE@_`=0$nzDq}1q z4oEAG)nliDPrG+e>%GnWi0&;Xk$?1KqRL&@<4J)SQ>a4+i4vA zvtDn0L&>L~>IQ!ox}Em>3$bwU`w7f`6Hqm^5_sLm8`GQ#QMke#_RbRru&tzwlHi2e zse-^n(Wt0vtQjUpV#G8vG{AFqR+>TtJ_8QtS=M%)`d(8Pj$mfxqC(vzV!B3^zN<@o z`}V?YV8#kTy?|9r;(AR+G8}=n7dI?vb|UEiVGq>pMO0^B9cxlvr+!!$stXWOa68Xd zLw{6Rgo)nhd+0W(s9tPz)=~A-C3HP)EaGqeebGGKv|Mv;O3}a6rrs%3z&jq90E%GK zpc3wSt&!M79F}Tv3|$PVz#)^%dH&U<3(mx_{+g!~QxV{N?$=*!z;~tvxfasKL_FN> ztyil;+b=hoA1JB#U(RWwV2=SGkp*FPCSsRn;qsgME~8t+G1InzkO3V=fKI~}C+g^F zxKM+_MPJ~kdPRc(+}!jFPOabx95HYy;EgTdn%!a(kjP*!1ITM?(^`{si+e^Jj-UdGUbfyJhgZrhb(Bf-FzsN z%yJ^C2&(y8sCnPA-{qh5Ce=i)N(B%=w7j{N3;K8DQ9O6N>UU0Uej)XqQgiA1AhX7N ztpo4m9XGLnY47LuJ;<}hc#OTG2n?8D63BEeRVI@*svP|+V#hLuDXR7qS0QW^#h4}P1-)}N1c{LlMsHmG^MR&?`jzi}93AH{;{b6DBjhs`Xqerx zpi%O|3nPQsQxGPfzRin4=w9npJ&;v_rHb5razOfchn>2aMEx825;O7t4H3UN>Ejg& z6imleRsUhy_Lct+jpVj>!7Z0A+w<4+ij83P^6KBnj9Aas_>zc5N1g)O`a-Atf9xu; z1{KP0zkvxxDtB(HS7XgD$1!*)<4{+)A3yhh+RyJWs@L#I0w@<S24k!XYvB>0|&G}Iq(PM^ znv`DgSsGi!+DDyuY5Zgi6R10J&ukELOWx}Xz(7T(JWfRfk6povxrBwTFk3|q zHKd_ufS9ye=79zBNYJvNtucVEd2Ab_**9v`qXoM`q%l!)vEa33U|RxTGs`F$6d(f9 zYahUUtgA1@i+Nc|BXZ;EPM};O_1OcXxM(;O_43?!h6r zdvJ%~5ZobX@F2lqcFuQes%Gl^=6-kP{xx+r)%DVwEsMAM=_S3MUYCpQTjXb$AgQF! z5hN2zYC|{QxVi9$hUl>3e{XvZN@5}NZt(a&org2j3aQgJMI8^O_6^p6@k4Tx!{CDN zpW|VW;Je;_jfn<gs_% zhSx@YV%YJ>w%4M}dbm3i*ph74u6booy(>Kafoo-%I*p!`d@%w)H?tG=6C}QZ0lC9Q z4qsfzAkxMMFjq(^d9z7yVqsxa{KC88vp!C7bk63_FE=g%uD=bnB5%iCtI1*JKap@9jH3v}g;=hbaG2^0?UE+GDyKanDjIy4_AF1OXAN=rd0 zJr|9%L+rgbXJUMa%`M#yt*Emm3QcSohxHehm%wQl>4ZD#V z4?13}S{+Yz1FxF)N)c5r&y1G%x6s%9kT>0`R`T(I53O#}ZzCry%7A)T6}^QwP3bF; zf+P!N*7AKeC*JV7AgZ&2{_bJsjYPcI*qn?$2w`fNv41^mQ*1gpm=9*Ns9OtVQY;s5 zT66xZbVoYlM4c-+OVpq(YI(i2fPAsvvqT$ddB+}AX=d=ozyV4-v`Vue7wlXL+ndBO}`i2S==o$^S_-+M_Y^pkrVyzNq(SE-}?a>F7H;yGFjB8O2{5q_(G;Fw8D@zGncf=} z-S#ejhvbja~!SP-z8gCTz(?q)Qb4a4&3 z=*6b{3W14D?2&)JE5+FmQ*vJW6pt?CD&3$&&O=5=6va3;E|0`SmJK@sE3r`gF~9;K zZ>7-CVg8?Vk61W0U`x6-htzCjeaEpyHklEsxdu4&(}X9LkCz6qV`C*mk>B=JlF77Z zpQE|ZNP6B@MoYfJ4YvCX^z)#|8>>nADhmcyi|q;nOqn#we}Y2{x>{W?+=Vkt6z#jl>hw%sIWPDt=~B+*oyy}voBvWn6Dj9ho|_^+%h9iz zk1k-L>Vt$g5e1WyJ;&DFuTP5yygXn#BVH-tQ@#&hHgDLwl|`JDq<~CT6y+1K-@w-gfmH4vS!P|ZqcaS+#YF5_0z4PovJevTpUAUB4PiAntwi@YeP z6ONocyrObCs*@8-^23o7L>ysy!sY%|G$k)3e6u#vy#iU=<)ujXa+VHjGuY7)?~9i? z*a-~vhbO-(AX&(ss|oMk#l0&%o@{dI2&Mv)K%kM%eDps47pCY?m=-ua7;z{?U;m0c zeX@K7wNNibK7}-NXzGkO7%k3N12jfkh%hawYFE`$W5z6E{ny*+ky%S`g@awJaVWYJ z(};pOEWY?3Ak0wF4i-L#eJn#lpPdrHI*0yl+P9kG_W-#p2%sSUa3T;=uew;dt%ZbvkxU>t9BU)S*MkD3GH82T#KHtTWW)Fa z4Im`v5d>Ak-tt0iKjP*;@%(ttmQr|e8OtS&enni1c>YOr)BS%Te@Na>;&5>|XzKbb z4{hWO=KI1z72k2dGSYE#J(1D_$;HBcaNkE}k@u?Wez)=b{-yfuopVJ_2~$?3VJfKf z?f*{bcqO&i=TA_R_j#z(tfA5EEp!_EnC-KqHPPR{i{UBGMXZy>K^LqHIXiaI#7lOR zGr(Q8D;F_(4P?7buPHM~Ux(g#WPk~2J_}gMs$zj)tL&e~SfrB~AI{G)$nXi%LqdwN z2FV7%XabtZ5;6L3$A~-(&4pq=a^8>{(F- zkVX;m-`nr)gQAyx_#Yj1e;mlHedZj26&8eCrTKVJ3Xhg5_^t_Z-0PCQF&8+Kf?TYH zftb&G{miwA1oQ6phgn7HdJ}^ofq&C-_A|_Ch%7Fz1{_etdV+V$-52)Q`u%I~ z!*<#*NXh%L07H=juR4vbYI)IhdH=8&i&{56A6BT`eqQrqk)~(>DT%zo^6v~0_fc4w zcYaIUc5)AnCI8cjV*4D}{;K=!?omTc?K79%qJXPo>r8C}1keFnS+&2g`#}+B9UtqH zH|tn@*%9AwwcHS@&j)iZM;r<`PqeWG=B$6d<+##N_wG~vUS&U+t8#nUb8%)QCAwkC zBNT95C>TZ>$&f2yLY;Ep<6w5E-xC#@u4k3TP5S^+dd@)3c;nbMs>#vncAPh)I?wZY z#i%TBeGwym8E@tH(VP*5jmv9=?b|7ekaO;!FM1p<-X5bMpJ&^8U3E21{XkV@G`}8^ zUk-$pv6g6$22Lw?qP}>8%DsM;R2st9>fK%?`9lN<2^=Ef{+N3U`!C7&INUL{3mQL* zF}s>@*|Dsy^M9qH?!6ntG_TrwID%%77Os61og;i7prh*eBnALVI+=8En%9-sv|fV* zM#Evx(6H90{xfLPeOD~pkbdiF$B<{&p7eVRJ9B^p9l-rtGWSdO9rr0110peOOS(+NEI= zLEkXUP`w4Gy@^GVJZoOlGnf&;p(vC0^qCLY=x?a4je%}Q6=ippBWz-K>_Z8`e70Qo z6rU@-+}mWoKult@?IMpu=Cs4%`c?X4*7;oLQN^IUH7?)Hz`ql@NKA1$U&_AW3+zKm zQBiukjetQJf08oUPIXX7Z+t5Pj+vl@=_JKFHwzXhoI&f8-&)h9NC}=M`OEG5md{*~ zhS|jL7Wm6v7k49NI>tZ3->fG3q$ilpGk0IaXL7M0Hp`P>!O$T^Wd&>9PcNXDFWMou zOxAL^$SeXu6;7%9>d&$Cpul<57kLjwn^bEh0nj(>RKcB>6#elQD}NiGi>piA<`rSh z=br1a<7)zwKW}c`vZ6u{1%PHB1cA6M?qRT<|A01iO1ivvi!J*+Bt(077QkUKXDj&DT}p`)!n^^kC<2tC=cV`1Q z+;JquBmQU?U3-tOz3Z(3@}ib6>YS$4%XlzH-wy9;Yv>u~rWUPWEJwr9%B$^$uw&l9 z&A65~!dlWwYQ4I7Ia0N*_IVEOE-dMtW=?A+#N2023A#u1etTmo6|p3^c_Bfd(6-tt0Y`euuL`{y@zsQQlB=pzXn-5v zT}<)FB|~Argu8n35Cudab$`$9%2aT1mJYABr~qV8z-VJQ**tv^MI z-kEdRi&X&=DYqT#2v?jQz((n7zKJimJc_fkw)HjgIMpmO8tQZ5sA+%3MTV6@0+dP~ z_}{Dj5c6}SRl3V^J;?u3khlnf=20WXxQvlu0M7?=6&nKjmMWjX{Bq^O!}UBXj(N zOiP-NDaeNR#huEmcJw|BxK+t zhBFr{RHr-P7{)6UFJY(K?fw^o(XxjQOd@|LD=((1y558C znBhlFeekN7x3=1}R!;kBdL2Z~DMM0#mAWnEM+z&*hr^z)Od0)?;?>~(G5;|tK!UI@ zrtTAX9~~2iNPnYY&h~|*I2HVam@?n*w!Zxc(TiL`Nr@n3g50|H?{gWyBg__u1s*BX z)att=&_t+~>>o#$sn+s(*gTI>Ai+)ZN7}Z-aQ5VQD!lhs)xkrvuL-yQm_K6yt6tL2 zE_K}yN^X~;biTl@F`N2+@F3@-%aNNwc};|zTS`#uSzwZ&p$>Sqfe#WbW%r-y8}*5N zymUNV@cK66iLLNTjaa|hJVD9BAT?uCTu(<7$!Kbv>csy2I2@ekse%u*0r$ECUj+Ex zH}<`WfK;znUk!x-E+`cLfVBXFTl@Ec_9ATm>mE)pkaJ!8UMufQoP7U!KCi1;F~FBq zuW@^|`P28?gNo!+`E7+qUU%!!BO*Y*d8p!yIK_5)thM_l(M5~`+qL9N+wMPt z@JiBmvYb5ty0%dSHZ|BI>g_Css;%hIOs>WIQ8T-7fVt`XOM6D~>9IS*;0BKf6nZlE zy@G@~afz?9wXxZ3v^1f;DQ6HKdn)OJ4AMPI(a-5^tXf83V}J#~4qLbXhEQO)X1Ojb zp0VkuYi6}|CJixn%udCK4GDsnez!8SGPpaFw!CGqcy$DCKD#^y4@52L?Lq?qL?>v_ zmHv{J?&G1KDym3RzWqm=jD&+H@(2pCxYTlh{*;}K>#*vN0#f9=*A4J88jg(`#D8YN5W-kqy*^w*9-+Ep;1EwJd@=Rz(nd#s+5209N>U|ltHc5730A7%9pEU4L`~H%bK2dP z#Wjeii95$kSnjFC>*^V`V~triWvCdZ;>GE5a&J*fS{`8Lx(F{JtYJtd$gD$LdddFb zSt^R-mtj=S6|uKyFOum?HEF@i21UC8v$ z^P7--J$}#cN(*leu`J-BphmLS#_fR1OYYUzP6bJw1h;s6P0w@Bep7Vy5sGj54Bx{a zlmJR-kK-|+;G=K?;yHB;wO zqNQpvQIq|4S1Q4dw=4}^<;9}mq_HCAr1oQ85jEk}bU<-~k?SoP{d`EH#KB&MvB?%+ z5PKtMGMRhp8?x^8^0l&5 zz~?m|aFU`x;={z1;zamHC=d^@D9>ficG$q`iJfM(lLEfXoh?tXL$~NRyfR1TtgYts z8VTl|QLR-oSSq^8lduvh+eTfG^UPcP7bi_V65DNRMsiR{X%U(HVr+$;GdjU^0|Fnm z@f_WMe+#60Vxf*NxD8kRdc8Y>6-go?lx%}XWTui*DXAXN8 z4vjON$3s{U=2J9n9EtMeJdflFZS&$Pot?}2$&wx9btQPMp>C zS29V;4ths(p}4hbL^IMolFslN1u+F_MUYaY><^ik5P4g>9}_s2-0CXzG8g){J8dsp zmwt~|&sRvyBSJc3rq{TG%-difP8~l#KZlt>qN7^cZbB4GDT+uiF{~7F;NEPwwTa0f z6bPtV)On{=C=CcvzkZ&t$G8mBjXB30N*x^%OiUbIRBwPnwWLzDm?>COqeQI-4(jUY zIGK|jj-slpq-6&dsz}phewQICDkun8+t@r;Qb!lkps=yAnIH@<0F1ph*^=Ztk3k3s z2#4^9i2PHys}H0Z6K>g4hu6o)$Mb*w{9*F%4Nz8Buk^3iqR+FyE=`vrzc@xxuF+WC z+Sx8Vt5APY2X#9-3u>gw~IymmTJhRNg0-Z$HJJ&uXSjUQ`kPj=SU zC&sG83cTMBoHsFJ4w$hKMl>`u>_MQd)z$U~MH1!_WWwh-vm|De}Sqy%}`49FR1Prm-X$-wbosW&^Cy*j97;gg+%k!+3fTYcsbSqt z7yUV_^ZD1WU(XsO{QNv0D8c1J2$l&(T_PY7Nec_UEjvQGzO`l0L>+w)78a(by{0aAN zd3ia22^}7d36uhrshG8VbGVnoBu9%n1qJf*@+y#l ztXl!`e*k!M=E?2cxP}ek)e?Ept| zlO`jsrKg9F0$GR_Gi*=De|-O39Gd7w7DGlFSVS#jV{_VCYIRhVJvcbXw6?Y;V9~TH zAr=bs*yQEq4XLQ8h;WgZSy`|7vgEuI>7N+EqYN1%XkAFmtRBe{jzMh zaBj35`&(aUrO^7duB;J3g?p-zBS;fP-b0=ajLjE=TV2O?2K7j5r4;!BVwDV2F} z$E%j>|7(7F%>#g?jvl*Ex{Pd!bUyDXmG^(oFcdgErRJJH?)}Y}|uUND+{bFac9Za1K`(iUbzi7#rG( zWha1qn<}O?5AP+`$r~OhE;KmY0_7J2o#iW@l%Qyu0mf9X7VNdjV2aPmjN-2ds8F zgL~)e#M#*yomi+y;SMWq+?^8jZD}_PK9V3umfWI5asMe&Lw)_##xGY)n-(2K8#dfH z0dNp`=!34$$B!SYf`o`GI6{@hcB90y<=rKRI zL;Y+HDK0L)0StRXDB+p;r$d@Ks7x zL9-A2`0;}P)Ysk3AEAK=VTT@?7`T3J;K7CetixVTi~{&SG}s8x6u1PH)EpcfdZ0iX z8yik5*YX_VP{_Y#NayB-8!iDYtaNg)sHmt_NPoePW6M^+RWSIBEs>j_-z(c`{Dp`z zWekQgrNY_M)3PvZ79WO$eCOuTK$kw9RUKVtuUw6mvT9LBh8#`NQhyd-k}~Bt1PB=C zJa>V!=zp(uZWrLnomN~>4h+W-@Ae;aDRNU6$Ok-DO~4O01#rX#O9Ixp`L?+CyZXdT zY!fA!914iPVQHt={DM->umcdL1=Q4>n%bPFi{92~R-$$-uN>F=lp|9jfEZ6~FGr5H8xt-mAz|?J`WBl9>J-!QmWuAhJgjAcuQC3=-$HC72x&lmaPHP__ zNr|IT-Jf_jl z4VHX_L^f7dkG0hB_lhJasHJ6PM0jx{AAx$~0_gB1xL{YBu@Nt`rH1k zzT)@?T;T#({V%icF=EpX==?W>5Y7J;glI|YmtA*6A2k#)$6BW;Mx!YS!*mFPGbTM& zX!$7dgTVb*`l~TQE^DdhmEo~*u~H^PQumCxOz(}K3=k}cMPI@0fS4FruI9@aT>^W+*6zk`IWcUa* zvBMwBW}G&V=jVw@5fBmmGV}8M{nAE0?O$EZf`O!9liuho0c(zB<_54NMhr_#rh16f z)kA`WjAD)+pVCCw<`+)yvNtz3%O)l!6xXceg8=PC2t;P^@wwKmH z*R3jqBfq1F>>DwcyIU7j`U(WVfE+C>j_j$tPoiK+8V7eDNTYuOJ?q5EN@3|_75a%h z57UCE8Z}xtgu$G;x;nwL1yLwKdl|6r3 zj*q_^RH)e-a`+c2U4enjn^ujBliqt~-E!}qUv*VgRWsg_0VPsI3`?QEtZl7Cj;6iu z)dLO6R49YMijtI++@^^}D|`F{LM6$bLUO_PNSC9eLKlzf)T{NApZC@cJ8*7KFw^z} z!jh;MQuECQ38SijiRv2?Szx78H*v6r95EQBVa%G9b9{30AIMIjvkjt}W( zcYqG0%dLtxHFY?}vJfg;C)ybcO}e}24MSj8=qffX_O|D2w_l2o4QDQ#{MxA;s z;I&I}kRpH@&;0Zm6Iot5l!-;u$Y3DE!JQ+ktm@)anFg&hvYDH6FP(K_G4kl5$YgTm zD#X^4hX+p#(AEC_el14#c@%Yt3N!W#DpG`??i^c?n6eryiDgB9yj_h39SEdVwWy-u zV;cm-YT4+l`d%b}r;M343UDH7RqK)?W&&@CHevxjfez)eNI}^APX6J|k53G&gbBIx zBg>x{z(Jng-na$}*Eb0Ubsj*-xcU0=CC2KfNZ}P9HiAE=e98*6ovrN|puAq4x$yTS zik&W5oygJV4qx#mA=-uxu619Ri!;~DVW{QlToO2yuJ_FNbdj+(x6SdUCpD8{*bGy5R z%^d@KM~nSu6ih5m=-F|Y{`2rLlxujumcTR`0QzbP~^=&#V8IcNGF zIqJiA?|EJht5A^X>Pl)xnpPZYk{Mb>f00C*uCui@t4glH0@l!ecszCL_9x zkM`bvx%Yj%v)FsmYLv+Nd%qOZ%F{=0n%`n7NZ`<%SnT-}lf-;E8bnqU`1KX?=a-ePi&I8^Zwgcvf8XC@RO^41 zfI6?7aWJWcZc&=skKG%cuSXO3(>Ndyh0+RS1(Y}QKi{`Wle%5CI!!ojO?3)Bqil|3(gv= zysIRilnZ+N!*#vI*c+LHXoFp(Bv)O^Le63V#-60JUo-n&18&P&l4(aC@n*#lSlp9| zA;BtSP9k%MtPz*2A>6p~Qb1T`l1Qd{iWK%-oR$bmkQBBztS%BHDuf7j zbQWo*keT0F0N8kaW1H+UlN_nl<-&ikcY?msVfoqr^zT%)~V@%4V#?`1O) zZ5#rwH#lk+D5yIS1SynAs&ivxUI^@V8AyUX3r1j+hy?!eVUZrpiMl-|6j> zO-;TUWeK_GKuRxl;pxzj;vKKhgw4CA4j%q+Y#v9`ke!sENR&u9DVH>dux2a!eT61} zsJ@UsU4b6f>nc$p!*(E{Zy~horXRsrqTh{=h%e3Y4O6aq&4QUlIMF*)k(a z8cis1C|F2NjyO1x7+e~z&vHlpi$(>C779xRWnedJhqEqO`hIc-4_rmjOF z8APltMN@FaJx#DhNQb?J4I~*4V?@M`k>u#t*dfTU@OY`j8X{3mwTZ6~ z$m<87}@6^N$QXlqZc-B zLLOXbv05(DDng-*`jqs=ObdxW4!0cc3;C!#&St#L7t=uq3F-~oTgSY(fwl(5FsVYoWuHnuC>s($FTj_po2Bs}d8xPDe&cuMUav2s@P$e-5^)8fb<@Ad{g+g!|Eo znhEw9Ggt}+PD*_av6VuS?DI8U!Kt^O=&YyFdZy8QdE|Fm@W6uFWlm^3ypX#%VGJV^ z^@HrX9^9-Nzj$8rzF#3VnQDG5%-*zkdD?FNPax6 zerGZAC!S|XFtUT;6!U>$_Du}Ih=`RfTP&XBZ*`*?f4v!y{Pi#O^*c+1Fep3Fq=n>?SezyRz2IPdfH+w9bg= z%%xI%*mG-SqE$sN^@FEF<)ztUl$+Q*7F|mvc(Sg{`1oUb_q#{(_oM`K%}LiUt9IP0 zel)!Go9~w4Sw)G8GP@uu&Ecs^<3{{2JpB|dw0M;XkvfTFdLxdRk-|l5Hn!E4kq5e( z%0p%Z5u$>qO2SP^s~%SpKG|e$>Jq}#j%h^UZslb>+z`Y#?~np$5;uJgXz68&Ces56 z<}DrO5VY-37|8urM74U+NS77vJOhFkTbQCVR|=7S_g0+ck3rp7#Ap)w*mwGc}f zV`!*SfhEGT1I)g{2(WuW_lxWcXIrw4OHRDmX9_uESF~cI5YZKWl<=?UDSOH5!mbG{@!u^{b~**g&36vkxlI-<46{i z&$yvFJn43plKZn-5)m^e(70{rY&u}8l#+Y;$+p`~lNhbu5AnApAz}=?(__U6y$tQ#8x%(iiK%-!boofv^rjU1b3pUphTxelct7Bl~7f9unN#LG}H4l2rS zW>Jl<>W&m|RbKmzf)%74A76Bk$mKqeG-9hZR){H0J@!RHNa<*#fN;S~G{j)LeA$c7 zAb}AV5As)BaO5m(y)$YyKRI^5%JKaQc&4pOYQNGOSgx6j9}t8du@Hcy*&PBwN1A*4D^HV529jj zcZi5_anC2G9+#VCj2xeE!>`)0^sGvXxIAXIbW-}1HMh$FFfDL`u0Se6Lf&A~iI89i z>0uy7!7j_`{LAjksEBF7OWU-y9KmfLujQrwweAz~r6A%ygxopUdh}?!5X3u`lhPjQ zD{uUblRiAbR#h{;+nvo^4g-XO9^obS?;X(6lHG?G`xpbKs0Jy<{K0(VGj=|5Q_gX= zGi2E}vqHA1xo#0T_bXNofz>7&o9MjgU>aD8W);I>Lz9(N5R~)w>Z178xABva=A<&U z#AeG{dKct+=6!og@rb&M903F~J6}~D4Mdp8aFkT3beI)c=yBJ zw?BP}!ch1npXkIl@H3V$d$f2nO1yUWw}{t|a;^0D!D|98dWc`KsDA=Nza4X9|JqW< zA}1@CO+XRWr&>&c#7_J{*F70nE4xdQTzZdT>fZm|wqo`AewE)VT&V?$Ual7`>oT_p zJ9m`~l1&ubKn?o^micSobqRchCw%z45NpsU#nFOHCj(%r4R>cBMo zUA4IZ*Jw{*0b@wV7WM*016skU^U-uJNah(|f9=Q;6qI48riqK^Mknf~pW&_Kz&s^c zNH}b%209L;@KEyMxeum05_rJ^sn$K5hvo7$7WOkQgRDBB$VI__m}*tPq+!j8xQ46q zR79&d4{7HnV8@3ODfRA_SP-H?CPeTNUc+BUuFbT3Jj9a2^PIg%(_L4e%)C1O-bvMU zvr}l7vq=3l&*?!~3-m0nqK=nvBVVul(yyqUy-o z&;80HZ~i}1sU|#a=Lgv<=P>W@-QGsqjT+lbhAt=7&x&UY5+!2*`Wqy-D{2G^rV7Kh z!Uq%bJO|)-^B)d~))BdI)&&dqO7r=@B6HgM-DULDkP+o`)e1tK=6CHG@*dZr;vlM+r^L2k1Io|haCRZoI+|N^)OX+6yR8}*O&s=7&Qu3}x70F)n z@nSpU{iTww7z(QXyap>DoAqscMx$r@bb;hFga2v_xdw^H>_s?VKzYn=LQ>!T3JgmA zqYt(AvWDP0dAQ+fHy5G!d3OBzdODM*^A-2J$tZkFFG1RpHCmd({4EN%H>F13RlLqO z5~7jw#r&=d1_F2N_vdbkXNAtbGI*Q8iF@DW_YN@q^Lppe_pPV<^m#=ltN~`_kPiAp zk!Ai4(?g?KGFKX?q-j>Ma4Rj83Wb^uslY~dX-^-cWaiSrkvKM0oG@>%II+TPU^_$8KQoKH zL(^v8dvxv}Io8FOR#xiY)~E6V^zRR5|u_ixXFF$H*d zC+pSE-lv?W{DH*iAcLRaKQ$5w!I+ecJWYiAG>0W)@dFxUO!u#Z4ZCk$rKdQV5w!>` zA#o{!QR3tf<9z+;S6$P(1E7smM!um39KzgS0Y-`cvi!0h`BKufUBDJ!x!!n^Uu@9v?UhdKRsDeXu(~QD)y~glVTWPwy@c;=0GD5B z@4@JT)p5TB!fUjlj%j6wyE{Q`L};-wS2BMoFSblsqQOfJDMg2$2(IYP(9d~g?sd%# zkGU(Gttk?e&}bCJCxMj7S;SJ^gg#Y4R2ZH{46c?>MmZ2!{`Imv<_WyT(4V=iXS5{3 zjhJKyV;9|Cf)s5Z)h>a^6FTs+QWo0KYpk%3?wyX1#b2h=kv*GT^R&ljmx$}Gl1yfx zmh%YS={5y2slskS3*BGZt?v9|xqa;?>zZ>JmHVmqR2Rxv<&`;G4RFW(s6j9zDmY<- z1Z95%=Sq0cb)QM+GW{xJIi$$FqY{=u!jm*uiNfq$q2i0x zwBh5D3fam{r4U&J*hKO`?J2F#R@3O`zf<2YB7?pFP=H`{=f!}7HY$n09hyF?`NUSp-%_J3>_ zUSHNWuVyXFELkPcFjw`Y+Oomu+`I%ku2hadAbLNi%12k*=xr-a=C$1opMt$u>r`}y z#1CPS@KSL!Jb20*ZMB2)eLX9_#|U^I5BUAO%C?rr>-(qP20D-Tc0Yjs<_U~IXVFf} zXFoI>*}(a}S6L^p@~6PO0>A6-Mw$PatJu*9C-^tt>EZ5P-=C{9>u#1%2)I7OQ8n@c zs3YY>sO2V)m+RYJ+c#-tdE8bDU{ENb@7>q1Z=3FY?V2qRJ^nUtAJU+|C4ZKxn=12KQ>VnHT(d<|mg*gG03z^uLQ5*KtTNKB~0GFK%^ytD}% zU%PAf3oe(dhqUiw9qxbHDF%2?llURy@O(Y#btt@u7+&nY>^RKKF5_G9Su-|U500to z#+auL#8}H424WO%i8?3ox z$n{tolN8{$+D+`7F?eMNuIt&li7syQe^~`=VXNM~`ELF?LcudF=0LlN_diPdW5O#9 z7WzThjK`1S0ek_o+S}Cu0hc#E>p@jL565=h4fiCQg4LB5p+uD@)9w3}JuyeI7n2t0 zIVw+Mqg6aD_Pu6G8VSX19C1R?SD5-Ps%-!x-+-*u$#qh8^X1 zdz@1_@ITfYG&@YRwjLS!jU6%ZeG_l3TkWvxqv$;~xVg<$^nGjE66JBNUAr!(|Fz|@ z69_gAvRipE-^snZ%igy28GnDRUWC9f(r6E92)%`fi# z#xKifMBegQT6v`3TXQubX)TA^8G9d|!2- zD5+tBl6(YPe|bix%BFYU{K9j<$KB`_lW{{8o|iHrg=T@2V(zk)i^32WFRyb$t30P* z))O=W=>~5Vd*2(ruRehr4F@ds{I1pJkS^m)vzr&LQ~^4Rv{tmhq;WSOc`{P)&5ww}}y$|^^02jWdQ-<#aG zu>zhK=XzgWn(gffT86%BNaD>}y)bwfovtTrx@_;`1t9KZ&dpB?wtmEB7rJDl%V+x6hfvbs`8GHtrZR|35!Yj}fx>93W53;Nl6fkpbu{10Y_$^a zsQ3DeMbi)t{CCfj9W^aAao_sscNQ$Y-(!0T7_seV52^k+B(etFJMDlzK*_-aY`WD6{&=E0Py9_5f z(~Z`b+$-2(cO>b+cXM_R3Vc$n%TWv7>Sn_A65f8As@rZZdp-l>uNl`^DV-XfdEbL6 z=$b$}kv{g`opnigKg{c=+kye%3w(Z9aXOD>@o*(_JDAO*$e+${^E!GWYO#2Fw-awe zdO4SE64;zAoiT>;LC#{W#{(hoTs_rLF`jD3@y1Pm>bS$*$K&+8UmLx6I_|836N!RgfD{)goSN zwKuu_9SK?3Q7C_>=`-06Gm*|)Up{+Li2|@PHwgKp zobHEdzuckJ2QO@4xH^=)Kj-|NqNQ*v2ov!?9t!(Aufwott2pvtBm3#r!21iffYjls zIJ;CsRh*?{ZSb<`w;2Z*_dniR7b(@|!mIq~=3@jM2)J*ZvULOj(4d9d_uZ1V8Q;6Y z6rMIP>-2!zg>@o7wv+lIsJfb6;jRCJs(*}*^n1ca;SMIYGqG(>%!zF~nb@|IiET`5 z+qP}nHctQk&vVXt-_>h%_lK%=?_C>p749m8P7j|?6LeSJpQZ#6f4Q8!?|bPy<@hTe zx5m(?onKee8n?Te3O{G6$Ue`xylTYiru0jf+62tRM|Gw@|FG+{)5^O%-+8EmA>(0wlZEyNeWD+1Gq($-z^?RK}bd0M3`RrdLk zX2>w{H`=C0+!LyKs(={`6fxcXijq{=w3B46b57xsA&C`IrqG==GLRM3rIkqpolO~X z%W3Oq$)`tah*|Le+RK}-jctbCpFAwqnz(9~XUcs($IXKQJ#~N6H0o$M58x_~`(t?C zhR9NM7GVT#-bIzJ@V;Y`vbwr#%##}H%5!zhS8o!irzo#Y{`@dn8{LY^IE))ycNdH4 ziyj;{n13Tc;IExW^yC@5G#Rc+!F!quoaTG!9p#w136^n{D$cn|?{VkKLs=*DDEG|Q@N(BR(0<2rx>r@f{s6Zw9?|Kxpo3Bq`vnLk0vHMMiaG_jbQ)sHa$_Z$Tunx9LoLCOklbz8l%8 zpPHh)5G2fqlAXXUhQ>^7!F~(^{Ug`uqU2R71qOf<*jy;E9op%`V!voh>~d>i=IEx+ z8;;o~Bn6$;T}B;KGib}>tgjrEsT(5CX|)`}PmULHz{_N}E>9QBO??VI-`S>Q zrt>gPu=Ir6?wFDuAVk*PXG6i_OXPfN|4aF^=d(9QjS?Of0o&u)D3k%`?p_KTFa&I7 zkf=q5lo+|E)T#A-Hxnr5)N1vb=8a&SYa6=%{j#LC%tA^+xfn45cM_R9<+smu?^^v~ z^^^~%-xqj&@;gv<;qu{JSEs&o*gqCd=Qhq*M~K;J^=&4^yE)6%VOj|iEeTu7w(!6x zfPce%YcyrUuC=#j>l#zfW9%5q?(*K(y8cxL&_;XeoO=9pO98@peuXGU0|q$bDKpw{ zT#o7NRC_HI6%*v3L<-IHF_;wjvQa@|Q7GP{yARL&r$H&Zw|)BslF}fve9Wu65!%h6 z0g+v1&XA6|7=ZmAR2w`^rhMN?c-SfGYY6A@pFMOuyAN8?E#7D5-V}PSloJtF3#N-( z65;G`DQhh`AXrYD0qns#?Tu-^_b)jhV$$vhuY6WKece~>J6W#X*mhg_x@=k+xDHF3 z`M#d+zx+Usb?D)h{_VupB7#@(-w(adxbFtMYlUk(4X($Kw z5pz3U`8ii3ku1Z4i9u2Oxt6dS$C?7gTwtikOhM>Z@sAa>!d>U@YotUqV^$3~al8dn zV4Yd71-PF?TBpcPARcQQ*&?fd|IGs+SeBbdK`<^8c(e^1g->o%uUh zgwz*bbG-LDc6^@)dsb&S{iX_)ZX*2+0Q{d^ zfS_74g1!>6-)@#@z3E5R6Z&lKLg@(wJKACZ_E6eLbd3lN zi4~9~pNE5H3RzrGGj23Rfub|qLkN)Sj;EA*U#5Bbf|)iWy5Hanc3{?Sw{q8ysV)-T zvIvl^3daift5HgPSzpu8I_U(edo|w)!U^@2hLg!rMZY5l_Gjp6?MVd$R)=EFq%+iF0dewU$fa~x3z?jrhWsFK=I*hRA)_aSwX-ZLyscY0 z?NM##1lL~Lo#josgY+w3!6yCbS1=HMBOtTEzYV^pzIQ5>bMq z7U5~3sfE7?RH2N%m~lVAGB$93zy_&6u%1*%t?EBD7!(?^H6sYsXFg9=wb{=$R0gy! zb-vx9pg)J@=s77j8(LD6WDJuHWB))nzY+rqY`Ne>+uJLvcw1Sd4{ZiGWgmuW*P? z*pEM49Z6=L1>BDO$!5zy=v9a&reA&SA=+K^u*^qU`Z2pwvb+Q-GkMXf^_0L>W;-$A zJR&bjYuR#McwVs`(c9M1s%)mnYK8BlRyY!xHReBstAhT-wO-c z1T@9<2iK6zaR4Si)I|isd!Ul0r<`kOPow?nAMg9|( zq@Lg_3X`YdTW@i+?PL+`5BXfju@ss&9?w>+Od!02+OHOiRf}C#pBE+X5BYiLB1B{x zsPmqStI_0xt2n$fHvk}ymTxe5mzm#+{A*@XiXH= za8SgPsei}oXaG4&q9qOKmK0Z2XD{)xWB4CtUb9zI;m$`+l(+JPl6fUo!&%2@p$lG0 zQ)bcKLhs>(AXT7XsZ^Ei0!~2hTZq1JzAjMA;E%cV=QwodNqFx2p*_1fY)y=e zHY=w2*gbZVFp9nty)^CdrDtZBQ=*J;DhBj*p@AH{0g0nfSQ(jE7zHqhAOSV({Ps0; z6$7KDTA`CtjIK9|h{Tiy>FW@off0*2vF-}Ut-&*xGki@fjCC6qTCzAxaY2Jm6L7J$ zjLK{_1yXK7Ge3Tkd4hLP8;xvOj1!Gi#4iPzJuVBTMAt-Tr;G;wCMF-&TuidA0?%l# zO?3%AMbh7_)$wb9U5mzsOFA+P_q=IR6PH)Ot7fgUC~%+!S*HD@ zGCTi9m|^v)jCERH#s0nf545FunNCCDs+?z(|?1f(CQ7y4te|7h$lY z1=5f}vnVk(O!c(tkff{wE5yr}3r=?0j4(K}o>aFTxSzT^@}%SXI_^~Qn# zm8*=!u|bUg`O#}#Lqo@^3}w01LZ0$hjFs|br4sZ(R1uW=wHsa9nB7z^olI=+Ez(Nh z@Jy+flB;XvR3POWVdq?arg{r0c^CIRE!Jf2$4aZco3r(+CL;}_kN^8^O0aD)X@CuN zL|{az3RNDTs(m3%Js^Qeae*7=!|-&d?ke20Z=sox>RQQ4S?0j>%0d3Eg(-ZsQkfsf zXTUx)!T20zuZ%H&Y|oj--$Sho^v@m{Cz5BIxHE1nm9a+Rg|BBEsIKC(kn&)Y2@J ze=Vb_lmfJcghW{S@qL+t`qpUuL-deC#5&yf6E@iOnsWalHSX!-PL)g=+f!RZCKn_I z8|G@fm*SG4#EeF2;1Gmg$~2OK66k1?3Cp#n2?J!M+h)Upp`-7p)3vm?rG?5hu^@?f zo%TZpYZ$p-lF?zyPn)0;7gstbQ!AwM)9V!U(hRIBaYrj_h6mt`mf-YD5yrC{=};+N ze;){t4svEK*onX)V(*GOxur+arUvYtAa_mW~DXThS zZHbkzGN85KwRy;vTz7&DPgPVSb}l>IU-y%Q0`+(>RG@zeSM5R`@tnoiRf$mhIL8#gamf`$*z7+rS2q#L z52Jl?6+v)6Y1VOT^r#|eDhDQ)d!*ri`@%1|Fdp%b|1mALkZm?kOrZC zIk#Eh{%3>x$gfdstVFN>lf({OfHQ|n@sH;6$ok}lEwO3h0ICG-)5 z+NA9tUVAqPAq%e&gM+M^gDkvsM)s&bv-w#fT{pG(6m|F_rP#95reOqQr^yXw4!~GV`53_e|jxW_CH4jB34!mJ$>r&zX>tmnbYbDz{rE z+mQNd3L){3+`Mn+t2?kCWyERn$nY7CNg0TCIVCz%nM^32{p{K7!>QsuCXT4ZwSUD5 zJb)9B8r;ra4^$LN@acleA-;6_Jp*K%;47r~L z2L{6OJUr0Yx}ra!(syD6%=j{m%DQjHfa?f`&b()*$0pB&C{2dVcP6= z`$V_$^74f6)T1$t_^}TUt*3rn{l`VW7f`1@DM**1q0?fwOT5XbhRZoL{onsS(K$v_ zcjTQH+9)8Ic8fR;+H@P-`F~7l0fRLMZ-)QlaIP_$)Juhzy0QZO9~H=u1-ob+Mt_@; zHjv3K&a}m6MVZN+FxYTm!$O&EKJ3rX$08LueyYTRqjV!zspfCidg^F(Ne`@e`5`Lr zJApg}M@u1k2#B&`YxX!NW6=W1+kYO?awL!tvP#x zi}z-!AfPPaT0O?i)b%nXTvYl7KksUzjT!E!mDU<#*s&O@hT?&z#`cf}d!hQZa^ zZy&U|UQ^YQAPW`vu0q@9QWx#$Bx4Y=*#z880oQ7dV|p4-PVj(*4#pz0K`qZupYHAJ z?RQntX(ooCxc$px#2S$bEhh%}%!}MxV|iXz<-v}mGtSv~hd6f5CZ-x|byZKEHgQlA zf>i@sjb=9s*JIw|e`+kQ%3&J+F1SO(i>)ZzzTQSfSWSmM%9d%UuY6r7%8sM+JTWW5 zOp{7a*ve(*&GZRF6z6la2N5Q+XQrtFOd)_2inA%^3E_XfEFRy~VouGmB#R!9M07Km zii+n{v&t5P@c-o*o)%{a*XON`!JvQjwjxq@0)?qO!dTBF-DXf6lm5OF$uuSsIpObl z)eZ0GYhF0!f12;9f7mg+^#Lj{dG<<_g#hU3Fv9@l*l-u6^6Sa^#Pq7`Rj5<>A62;H z7PJ}_T%p>=>hY($D}-O!cV_n=o!8jf^dj?gb{Fy2HqjU#RH53%az0I?a5smyKNXoA zd%b?Q1*&4Ck{rF1A}YpX0ohExuNw-=T-MMv4ve#rujT!c)OmGjyp@nLENeC1yNn;6 z?8~C|$mmbmrb9=~SDJwp`4;4}I~qfyou~|Us)wFeX^=Z%Ut+_5D`dKtSiMydiWJH- zt~j`Ar03z%>LF6N=o*Y`jWtg@BbGqaovuaR;iLAE`|KuJjl}ZY=7ZqqYL1JM+|C=Ddn^onx)MvtSiL4!Xwg0kjCnUkTF zHiI--`uxvNk=<%{xQcYoYueo56G-+;qoXnC;bl1-5AVWNu+BaIW;|62zbhro`-fRx zKOE|1`U~C1oBaE(pPyc2EVdrN^5LVX43&S;?5_vDWce@Zr~zz_dfB0O66Y?A*Xqt< z?qi4uSf%!dLHq4fKY31b$dN^OgjnQvX^s<(HrsSuE7pd&j}nb^9*d5`3O_Do-cxC& z&vgPcs#SkoD_4Ibx9m#iIRA5M8G@YpiS>y`zX{r`S*5BdJT%a!3ikbl_-=Ce{g%)Y-uZ5!LW7jSB zCx)EDUw3VKU|0&jMGi7Jby(hz*$@$NKUA*uD%N@@xRYh6A(Jg@d)0V)CUW?7Kmhf+m1VC-gJdTjAHT|7ZrToEKfaXMD@y;y z9_CS%eC`Mzq15cAMAeeiM>y?|Pt$-zX5E(4ivlFY;P{ZwuQV*X68ZTXZBgyZx3z0P z)-kj6ev5==`@s8+O?OAiT@2&!_l{7Zi(!Bbev->#r_Hed{L<1rzal;f^wHP@g1At`>iR0L1NUuq{sHZQ~}($xlB#P zdU!=iR$TnDg!7<=PaTsHC$ub0nLW=?clYF!#^zEDt>}y4du-xM;t;Tv{k{A*{F8eM zF83(o2hFTmkHqI+5H!Tfk%WmqS`D-gx# zE7+9SyqmVWeaH$Yv=fNj9cTjf87LL&ZNfiRYMphAD?|(mi|}`I_lg3|kT<7K=F#hI z(s0#njqmDxvBY?Xd2rNYV!pk;JKz&Oz6z5%&PGoa_Am(SWq+x5-Ce+0rX%5Qv$b*L!={*%d5H23|nE&QVV8)?c>z2QtI>C~AKP_vvYd zpG0+Yip&$n6@ZF6r?PiM-#|BjiRB240@o8*qn9JAqzFCBEupst^6>;}Crb1iM4tD# zOf(#+IxhVc3X|Og^rwcx59R4jYCPGUA_b4$ms#~+wswg9!H%=mur)RcHJ|<^t8I8V zT(1qgh3XGOzL7hdF&A)NUAn*UBC6fq;_%m(H?)}g9=@GAe6ApSMx=(HZB=ik@c5}i z;3sI?&oAYE^C>pE>|S)~5U)+osaC5gOJCTEb9!v#fao9O(hmYNzrgt1zY1Fy0cFa+ z@I2Sdqf-aHe}kIF@xJzTrz@1WZ9pIHCefKnsL+w*IbOdC%(Ge#u>z36oaocV2GZ%5 zd1I-Z_>Vj0{WSu^-(=nGoDladPH#@7K7rd(>dlojulFvKoBC2P>4dZOJG`f&4lL9g zZreI$Yr$wqpO_lQ{`=(g%W~@P@}~P_q}G@}vdMy@i(OmkByw?dnsT%|I!V~cp6fg5 z!tNE5N1N|~zer#+Jg3>I@V|M=J_BP>?AgKVr`kGV$JCwf;p-e5UfJb+xo7^?vkjlY zo6oalFpue<(jpJ1UHyQIm4+Xj|Bg$^q_#9nVkMqSztwL>NJGot9-zB5G+SHr?tgns z7M(fsR=tbbAI^=Nfe<0A*MQJ$XTjpv-2W?hcIx&$6;_G>+1^a5C&y*4Obi<{eZ=D3 z>|P+)Q={WE3fZQvn|38I-aPRcO57r&fkf4D-u9H0Xx?lktf(8LEu9lA&wdz3yrRg9 z{-k*NkMrRlXZBh!STvi?LYq`f9mwZ^?}u&!zY?4kSNtkKn0rSuZ>2 z?pm75IDoGm_@m#Cr3{~+h6ncu{LJ*AroTfLc_?518oNY*MD<&0?}E~qKjebZ{s?07 zI2rA!Py;J1L~(OAiJ4t~nfn(T@ewq?PhBB(F%|B7J3lmQmZ^j=(RR3t))B3OxXo;N z6T2(pA*FrsU9+;V?!<}t&eSHSGohrV8Llm)kRnK$e~=Q}f`HDXkvhbLv3>i_1qgN{9(tSxJPayRod1V> zPyKsKhO|M6Q_TK{NM#6PYg~5NH|nYgmi|Myb3cx?L3_cMgZ`tASP&GMilc{M%7t1Y z)4=p=x8jm*!9FC0fr3+If$RW;36Sc08tHs201xHv)RrZN$N_UjggBI7^7JC?Ftz4$ zl0zJ?GTr;8UJ9lQWyN~O{yV+dRyn-f_?L{Pz`U0xGgJ9-w)1W|Ka1-cUCxCK&n2-2 zX9a41$YB@`y*6ubP3t`La%Rs&9dbYQV%H83$vS^5pW&e@Zjs2%(x@Q4CzOtMLPpLv zKvSLV^abBP0_Wn=yyFr_7T9DU%u=cjpLD2matbE;V#r|cy3uj<>MLiS@EMm zSrLfgf5aNtBLUpdmr+)Ybm+BL!se$}oN7kell17YS1A^ZD>X3wv^T_uVsdlklEGE<(1^Qa7aRJCWAwS;oSiJ@&2IY{9tE1V(+5oYD+IEX2 zQE)?r;(f~%nI93sb$lc#UMgUm;!SQXE~^^~B2s{jnZ(~r8x_ieOO*mDgwVDX=VW$q z7)a2K@3149^Me*&$x^lSdm%;G-2#NWEt|vJ?!#lR(>^e{HuuE|kWXGmlfI7y5s#s6 z!^d*ZJuypWfc?-z+!@gH>V*_LFW{0wuy<`+uht0pVITNZj*DiBFIwttTrZ*PO<)OQ z(t(bp+-nk8Scp|+s{Xzwm+3Y?K%MSXiW^Y(q3#EoB?XWcjJ?`UJ8b-Ghl=G9Rz^Ui zg=(s0HW&@xYbF+h1Q}nve5Lfw;9g6wovQC?ih)z#2p~3H76UE_EGAVS?h#7B$kyxN z&vyrn|7|fvKSI!2O?2}MDZtbLPe7T;+CB~5F>h6exll^p#HeE&^@mS)JAQ*k3v9$a z=ygZ4@r?OD$7>5!2B-@zvkC?!VrX!bCo4KdZfw&DA3D4$^ZvzMX6w7KPQJ;)<&6-j zYWgQsa8ubVJZ+q@8h`Hh>9xISq<$2EXgb}A*BbDtJ~d+tRsKfFYOlc*116y1^)i}o z`WY#)?BzJnt1~-m-)QqlFx7H+K1+sYG$e)hagFHRT2dKX@rg{DGqHRQ=yZ%UE43r^qpQ_dq=HDa(xX? zq1VO38mqcI^i+J?ry8;GBE)>#xrqtZx{`A@@3xZ#iNLCL+~;*Vh~8Z}#o6LVJI~vh zliuI$aynKk)+#aDT%*$+oQHVfMt%mVbxY~=f&&HQW2Pd8lSO6DC))8R_v#yER@TY( zL-VW@{ielG`$_T4{YB9yWk-I7GJ^9q`^A}M_a2lJk4h*kZDr8}q2~;rerBLm6oVI#!Y6n* zls~G7v!BmB(lX6U=%ty~*WONQoxpZ4d7pI*vrxukEp^a(7Dy4hy7)>+ffQ7t0gETJ z#YCIi==!w^IgfCQ><@MbU>)x^w;!%pAO zAx9@jwThhR0rRdAQb0+j_b`#3+oA{szBL(;_z8xQ^^-(L2r32;jHSe~)^NDZ{V)@0G1o20+A`RMH zP;#}(yxCYx-X%_~tO$mPa73NW@(K}_cn{+dwP0&<6jakezC0Mk+#cB+tzla^J`&NQ z5dA$N(M^8>2kFU6y`MXy+_S$$e;3LRJVl*jH`LpmK5+pZ@L*sst0=o5# zg-Wu}094%5v839+7s5z!HC^*R$eH2Ry!MxA53QQW@yYHv|Fs>;t4N6znb^S;$oTSKYMY_AI2AR0oNK%kZ1Tit!*C z(Vz(iX?~!4gpE7Kl^X+comC<|ld+5k3Lyt^Wxt5YG?3hb2=BQe15%-p2Jo59uo@y& z116%n(g%EwxLx(KrNu`{RO(5{c*`u-2 zNL(2i6s#;k0>yWPPFn77189=0K%vC~%~ri6od)A0Q~d%OYoDQsm_D*n3n?p!1OZ~I zNGFpH{36@wpwH2g2}B!U6=eLF;SDkj-RgxO<4YSSAkBuSaUN2ZSP-rw#KPeha*B82 zix>aR!ckJ*V+Xka3xm*LwZ?iz9ja4+y{W;2E`X;j&b`3Gr2r_A)wp;n72(es{>{@W znZPg}{M}oaYBd1T0GB_kiEx}1?T$Xp>df3vO?|(ADgy0zgnyca+dEqabw(x4QBH6A zO~;CpK?v+U&YT?oHr6CCA@f@`WkpiGgt3&DorXGhR>=s`F(3`4gSq_>5TH2;*fr@C zfY8zu{vmc`k-oo@Lq$~^7k%AT5PcF}u#T9~#I;#qNM~D0cDI>AODG~4?VGC4A0JQU z7WqR5JU~qb{{{*0gu;^v>$CD%il&t<^CU*~|4!xoSD5}(=#PaiaFH7%_a7qTOcg~c ze>4Zb7C}Z^SJ~<4e%OSFpaKuB##n5k>rS+q{86DX+5s{txO>oDKPVu`A4AJN*ZeD0 zD@!xOuGmb$w(k&gn10zjHeQ?fbmfGL1f5H$)~S)>R1o2!2aiPX**yq=3~j>{9TnG_zJ1df4_UglERn3|*sfhHCg~7f&@tuRT$jS&}*(SnTv!6EGM6WlGR zcE|6+7T1mE;8wux;WNr$e&;K~cFKGlPNQMw?)wNCsw1l|7q09q)iHfiu(Ac5tr^U< z2w7>`DaPq=R^AR&9`5`$RtyPH4J?U5co&Nl&qG&fF!itXS23M=o2jMiO;C?`KgM#J zw{=|?m@8-us&I4iaa=>R(V<;u-BU+)hcjf}x~ z513XH;X+!nN3=TA(!;?41`gpo^7wp00qh!!XQAp^ut*Bc0IdHv7ho6+DmIpmbq@V@ z@L~kXCzhg%O{XfK8pXZ0@}1zxj9LQb-8Td&P7UiEE{qV)JJ|0=AXcR7-C$l1koLN! z?;#z+`B6h>)JERb!Uw$b+q#3WbR->^=G*wKc*3>?Gyf8>>sh@f8no&xZfPE^(SyVg zj-{sLnm$qz6X*FSu*CDlwt|jG=oR}PC4V=k{>mxO`N^t0S>r)v;^|UPPXuW{=d+S* zJjDOu9^$OsD6Pcvp96G40xbYM&9V(ZIralOc4Wqi&ibu!nBL4(mkTccNYzY8q$!rc zXQ+ZGhM6?x{~k&!V*j*z)ipEC!SnI7wATT=YO}D=5p6b_Af~y(WPB(n5aP6OHXXKc z*ObWCbx1&9RmW8#yrsn)EukLI!>{G*aS*C2ELn1t)tmy-4Drb~Y@^>%8ZCw8-X@Q! zX|8VoKz?ZQ$LVT}(h?ol#I+NMpFXI7G=40F68pt)wY8-lPeNE&bo&{T432K5HdlpM zhHNYYI+^7QG!}VlnAff<6vpX}`(Co0yP`qC5L_6fBOTI=M90@K=CvC$njB zAmt0x-%kZFHK~y~Yyc)WrF3kcFuMwqrtGB7u6%LgD#9Br_A0PrEruq0wu+iG^>6lj z=7LEGvTI@xYC|NkCaz@WSwLK4?yH5l|JMqN7r#;;z<&B7Mp(4B5JpE$M zx<9>)GoKWOO-0Hb`s9W_w5qynqs3h-Rs?8)l}J_d+V;eyJIX|c4w&D+y| zsxm@R;)-HNXbqSU_P>i=tjttQl3b-yll}S7kBin~lih^)FM_EHUyweEqJy=!ot%!H zUjEeSY9Jfh;Qp9qH#ZBgz!cxd%ZQi_KQ$O)vT93+1o{8nkYZ(^lP?DMM8cAu4CyRd zlY}qxIc6qdVNRoLo@Wbkk{ECcON-y{5oga`FIV-p&Bc0z0D<|BdI(fx6(F+TE8R?x zDKfDz9>46_>_~LF`0tx^PsGYTOUo*LgnoHcN`gKP95OLJF&=z^fyh)`62n5=^_xsA z5e0en94i?VnJxIT-6F^Ly#9FW?c$Y#zuXea16z4{=EeOn`Da6ws9;fcos%0Yro_je z(dT+H7vK#qImT@_OhyLH+0-&cXQL8kn{uvPNSY#UMJ!dE_&_9PdNC+Dz+wAun(LIq zfL#vid9(TOJj5(;N${dkRc3f0U!s~!8PNs&G`qk_2sWAbKIwdBz|c+-v3oR zvc%?rQz&rc5QL;*f>Adogm_2Ihz>uhLiv3E?>d~%>tqBwQmafEi!V8_fnd$EU;~2c z3<8k^p=?^M^}=}2y4b9%l!yPjn~E${KWZfW>Vf$%%9&UiUu*iH;RQRPleC+u_Xduk zvkqbjC4>N7Xhx(UvCvq$V&+ha@xm2$n68lx!iB z`G!-0W5#_z-~`koAv_+}b6^Yr2vU)drE&7G|9|)(Co+TUKp}ibs}>B-6o(KmLRaQ_ zg`i<<3VG!=(~&p;ykn_|N%G;-R`!>ydM8k-@+%^|NoUF2yXtSlE{ zk-$*!*^4X=1IRM8pf(S=)LK-C%v>Smp4sQjr=BuD*9iAEPuhN*8EAF~rBXWN{fYNe z0|lJQXP_Lge{^#+c|&)=`$klNj%0VnQYhX@txHFYtidKStY+&i(pu}Aj+5xG)}*a^ za(C8*G&QU%WsApB-WAH4!P|s1Ks~Xb*kb(3`)x?*xB9_{i9@0j1fG4gZvct^a@=5p z1ccQTjUU|_1y}96ziqfs&s9+7hGZY zBj-QS3yyf*lde_BkBCc3H@iNIP*2I?Y2j%?+GkKo{zO&F-Dn+8=Fy>gY?n22|Sx9MyRJe{T- zabCYE!(oyLm}^5Z;(TIMSuI$1pw|R5ktCdzh8U=qxJN4C z!oRiDM~P$plIw;Qkee@R|1!QkeoIyL$gCSM3>vnxNo%8myl zVpJ1FqdgtRF;y$l^Kh#jQlDA=Kd6bFm}l;q z77cv2ei0*p$$;jSu3753i2`LqC!M_$MJW02FT8ebvohx3vt;4Nu2#GjtyG!+VI#%4 zH?o0L#dv|}S<9(uE_ur~A%=m|2za=QUqx$tpKj{Y2Ie}ui?nrT+H%$@=Mzg{O3k>~ z)-}kUK$wWt9}fJ%kY|(86SDd(`9%?54`rZWJFsXf?s6xP-i!i}97V1hK8Ze6pvOND zM{UcI_&>G`P{|-TkgDC24a0e`E;$XxtY2x%|8#quedovWy$r^ih|rO{ah5B0VL~b^ z)pU)m0dwW|bi6AZJBs^1x~YQ7=DMiH-=Ir*fwlhzg)w#C(~rd4i0$&$w%MCatDecZ zf+3LWXPEr7D;G7&V=TFnc=)?PJx4psAtHk5l;DLj?ePj}6G79VicAgx`{boe#GIv1 z@6|R1*Bm;QI2afdTmd5-TtSgSf~RF;%`?S+W(2P*m6sjkJi?wj7LK!M18|4~pN zmO1bzx}Q}H#T+};M;#Q)KDD+By#uu8FF3^vd&Ek8V>;SER4%BUk>lv`p43*}|Ia#` z@Jkg8#y(h8UJ%AeQpTM5XAl|Kv5>;G-ftZ$6#Wu_!al95X6M(SVT^^Sj&$fu`!raF z)b(N3mp!4*seosQ5}wqykAeiXESXy zheoxmfP0O;LT>4`3~^}P59073BX3|C{T5u?%EVpq=RT@G!0-Gy5{lR2xZpJT014UH zqmzCeqbzu_jqXv5tuilKtsHj)BmZ>$hh6%|7w(~j{?Wo}ZzDv%svg@{G`6MM3&8rW zN1;)SE<649mpnv2v(j(=qtERot*O5pR#mB0twdyW0UK}WK4pZJM?;|b^u_j zO1q4scWZTGO~QFCw17_;E0^>x>2eKzqdB&1TzfmU)PzUNCLQl@VLm{Q49C{Y+X-Y@ zk*ODNS#OQ;$LI_PLK!d4R(IGR=ozDjhelYlVW?!W=nS6t_?+yD6W{`%*z+Q&G;j#L zU*4o&Ba}h;9%;3rK z%O%}ekbx~Qv#B^lngQi_mkfQE^aeEaR6^gHM@ojCZqN68C`Nx&J1Zm&De;Q~qag^n3 z`(`-fx>yjr+k*9M|^m!Zh^URm*VD*$uDuj zOO_!@BUFOeqex|(e!!@K&8*kyn)zU|5c*|0;^lT$Tke4X`eni+M1fM&0~shl1n<`v zryW4jaDbMt92HF)_{+c?fKx-_VbUs7`Bvx6HuFN( z$*#ErtIG64%t+6NXrT!bs9v>I8aY=a>`Z_#iC`e(vp8A8s6)H1bnR)!$Cf2u867G z>b6j&L)HJNH+O+Mn%0{w;5kv`_nfJv3wI%sPRa-oGEmFfR0J@N~Em|XljRNL2qq~;q^|Z*|zcjJN)fn0=d*kB_6yQhN9#Sd~1G+vMZ74E=m#g zUVAq{KdX`$u-wg2sYYCBSR!D!3p{Zq&@y4VBDERiWcIO6@7lw3?@+J$FE1nw&5TW; zi&z`>604&_l5X5(_$PEpI*~`=-zEj(muK=sD8QsEDloM4Oa9RV#%ComR@7$BGCh{W z!Wa>O-wL#rPxsb-w+!z?bnx-f@A?YwQ+1DDYqy!XwCwXF6(Wk_`jm0mvJIEnMOd>2FID++`Qp2|e>Ezju& z#k@K5EXeHCy$#4b(7b?^XO48W(-|&drU&> z?{_;y5qoeaFB~C&GFf%P7XCX{L&8wmIFz!ElKb&J-_xVb%)_+J^G$*G;h808^D4W_ z5g3h@ek@fwhMK)Ey(u+7?oc30&eLvRK%A%2ks>w>B=pf-*mI4}yd@(95E1^KtW7fd zGitGjWO*M!+r=L@?>7=-Kb=p3nP7jnCnDmS^DGcsXfe%I_Jf{UlS)4EKgC zQWd3LH^94oh{sdqWtj{>>LeWQDWj&J__v2kIAEBwwr=vM2p<5sN!{y*x5UC`u!S%# zRSD6?2DVtGu_zi4OGL+AcO~W7y}U#vDu<+%=h=;hV;-YjxR^ET4Y~0M))`zRBvQi3 z@MUNkkJWDH0>Y*l)W|qYprZ=mYJJScIUCuVr;1^WPGhbPQ6K{z!dmgNF?PAGRwmp% zFgoToYo#+NFB>>ao5C2bR-^6;LTpj_v)zt80*_X(qeB}PjN-2!!Hp6TUzrL)c-bb~ zc#i;7#WhP1iwaGoX}ekm5W4TG~3HtvdBZD!}k{Kf~`m{qEQ%+L`2m8v#C@ZpfPW! z-kg_+;UL=y8oN;LBpuu?o|&4S*@mGrNUJ?@VDV$Cba_wvMY(!L?{u$l?gaz{L?IKB z*}V-bwZVCbdsY%M3-(r2{!n>tZNoXBf>&9&AU?iuFXqzonE`M`Jzzkb$+%Z6^g`4J zjR_fd8=92d+SjF8d)qoD2YH~uE=DIZ=zfcN3^G#N9PpR*%djJIp_~qCs0I~kp?qJy z-9%Jb&0s~+?|}Z6<6X?h^Q0XX-yOn_u~dU|Fsj0k+&~T%y}tkGFrG~fJr7f!NUOQ1 zyR0w({n26w;rz@iRtu~aT)}I!#?>sG(U#L;?6)@c4}}eCC}*+=18|?k%GMF%dxTIV zawr_7+R5dm>Wa|$~orS-mt7kfj|g8deRA_^+>hCYy@l@^DB!fxo#cHR>w#prIk zPEOh``^~)AtryM?YHnsxivOdQn?=HGkj_u%mqTcy=F2bRi zulzFW?gy-D=D!K2WIE2g#Nf%Z#vrH-@|G8T@G>eZ4+I(wec^!<+^6i&C9#~>{?cPz zg{TDbioY^#E9)~I9+M>604_{ZG!FD*P}1dcz1)EF>Rzz!1x?IH1VDKP;w=+E%0NCrHY5 zw}mn=zjs_9gGK0wQ1hVam%`MedaNU`f@vl(xUJG;IGu9S`-wsQ0G)j&c;vhCBdH;k zT`kxAXGJqo`C~~2N`I7CuRjM3hP1|w?+1?1pvGkeTLGj=l7rkJqMcbmK> zUw7r}=5;JorBvzvsU6R}E$-gupk#0JG3Z`)N?npWvXer8&OpzHvWQ2YiS)}5Er*6s zfD+9xZABBD5IES*eo|cKROs6Cc>^_<&QBUw66BR7!~*wnq)tDWP=~IAg839|OoH$; z1Wehm)O>w%R6~i#F+d#$hYa5pG+P*0s)MJS@rBWm-MfWasbJ z=F>_5Gp)**RSs+O&Rit32(|8g>0`4I6qB2$m^Wne0(f+VObh zr-^Mz)Rv~tp4IbI&X1MR<04@l#WW&NM18aN=2IIODZ5IPkCnQYPvzNKz&a*k z#B|PXjdYN46W)m93L{aRJZ0i76A&B}$r$$H#N&0Rg_!WS44|n*&=p(^D$3qZXjum> zXN7YoDh1!hAtOG`(e58(r5n z9NgXAokD@)?(XhRi#rr|Demr&;u5U5yBBwN*W&QydhYN2ljF!_XC~P*v(`FguTkMi z$y>$k-<8c0G(-VyNg-`+{hPldB4hvfvG@vsb0nKxU&f>Tvaek$wUsL29F0|!C2GV1 zW7#kS92ibyh}@NL9?{5%w#3Jpt|_lvfdLwPhD*vN$h(!n_C(e%OFah|AJ3&`ATP&4 z34cVylBerQxsSiGSJlL@z%YkPR^XGPX;3{v-zojjL2yL!;Jm2C^iY19fuROuGy?hr zeC(2!$myPp8Rw|BsXS;NW+Vi)4WIhdE5%~dStQ&-Xv>_bx}1+1U;YTNd>Hp(e3eup zoxeJIWaWEkDYj13s5je?jVAMXTvAqecA$A*K>53$vMQ_I{HZtM>RE68Fze0_Ve(mN z%XLL2?7te@K#Mwg%%mbWheWkVL2IOOWRHVYl<`yaV7KCHHqs7cN)};YNIH2JJ`9c- zKTJ*JQy>yW2sWz*&cNv2VvRw&gdZ?$K7V18(>dk+@^@&0EJu3Rn}2|{*J(YLPz*Yx zn9P+-S$fBe~v;!7IYbFRBhMDAIqiXJW#(4%$*Rokm zRK7B~bJQLi*GboGdvxN#h{^EHIH(VITemmObW6k5Z@BzM@0b?=cz7yg00G}F6G?#g z!OGI6a2utIndRVg+B%1s%%_2@24c*F=2-4lOcbXyjzmQE=g1 z`K>#FqE&g{mz~roaw45eoIzx>0-RXSk}f}DN0OHl*aDXKOJDy9c7N+)aRtsV>jBBT z{Q{Hyr_q8DM(6Fj~aZubw$db-TWT%=(rm?*L@F;en4ODBpxRGSY z6Wpz-!I6xb#BZ&jP^60LVa>IshOu{W!iDQ9M-gO|72!^#d&_7F>S}?eN#mx?hBI8O zpbCM?*bFsgjxbJmQ)E0& zUUhjEg2xNDUBxOMs_fQnRJ1vUVI>hy!S2o4C*6X4xfAp}maR{)=BIZ=#7~T)6`hj- zmDXn0tS-v?jJ(VlK7RNZo{zXAfgECh?V7237p5ykqqYr4@P$xqmJ*ZUtcv1%`BrH` z(KB3ygbMke~jIpQ;wlaGKqC%9ckNO|RgU5LXEDJTZR z&cC!C=OH67blp0-=x32E$k2U@lwuZ-kTTv&I?$Ji-|wF{BAw@Id3^wZ@3lhzPV1r> zxfMUf^Rd#i{LqsVg3$niBP9!rtu8W> z|9@V9#)KVf&uW79m2l9=yD& zAvFz?#M$jR``1YJGg%=u8lm03Y3lJ;IVNx|ql#-ZBt?`kB9dcfxVz0iA}x(02YWK!{uV*=S0Sz0 z$;DP?hffwAg8E$wjZ8;S&vdJ8F6z2eX@<7(=n&V?6F&%=G2z#ixd3Y&zfAiBNk@fL z2r=-ssjwt?HQ|MYx%{p1mhhj;#1b0HEAmE8tZli8HoE1ggXRde^o|%EzRYY*T84ux zM;_#18Y+AEB#6V~Tb``>RFK~^BI9iqr2Q5Y;XM>65kx3q_i%nEI-AY(HDZMjw9KAJ zVw{$>?Bdd(1!vMPIXo_5QabT7+3*c;mSVAW!moE6Yh_b9;e}bNeyMi5QL9V?$s07t zr8KK8aLut*Om}k7ox)ofK4zxP^yeFWCCEZm!^>+HI zyGt|0^#yqPOlu{IyEqzO+m9_4 zSd@-RaxG$cFt6)Z&u}q9Vhl`rWy7w;OLAI%c9k`m?>tn0^4hjylNMCImy+49S#f<8 z8Q6bs&Y*KM;ceCuO<}IsmsGLf2#&W?uq@U$+%tm~$|`@3L_)jJ=WKyBe!JD3l|3kP z%+mwUtJ5!L^g;b-R*O#$RcF#);8JX+zA3Dcw7#alhCmd+3I5#y^g?oYZ9RiRl)&OP z>%*8WfmS&_3^0<9=Wk!7Mra^hEGL0u+;1t4x(huX1R)2yc-XrHz3zX{_oWy%csCz~~#y%;>#L>3yDF#JUo{124pBJfN;d?FzD^#fA^6>+0|v90M_nMM^S%9_{sLwfC6dDpH6tpwu) zt#h9lGT>Ko68Cr-JZy-JIJ$+Cf zethR+EczT2xPWMP^_yXh4vubb_eGE7<`rvQ_@j_1=}o}$qRDD=_Hf>Dr*xd3hYnFy zO{)a+ucM?ykOhC0dNsIP?1fF1inYYY}cMz#e2MB+IsELIEs2U-;jYltyv3|C#G`%CG3FTA$}m=qcE?hxUjwG&F_bR ze`Yo4(shW-7+dN`{(fGdW_4Bv3`s`3Nw@4VKS~4W&a9foYHh@&c6(Lw;u0ma?*1?c zHn?sKFU}j)Yn*T?f_X9>_@%Zdfo#Y*{2xu0?snSQ5J9P@TXh5Nr;7msN%ZE2EQDr68sEcffKN9)_ z3J>YJ+&dSH9uBENqn47`rZH^fgBh6;?B^Lv{@UDOW23!+l$&~^am!Hc9vrwZq}^ve ze;hszcfH3EIt4N?jxC8Mpsb&fVCfo~d4jfjkD?1f3Xwn;kV2sjv;*r=Hw*{G>d+vy z@3-7(@)eNx$vc|h;zQFtq0;TYu<1rmkZP(l-4t;aMAFYG3)b2FTyj*XWt;$c&;a%_EmPl$NjCPd@%1h&xP^A5gh(W(r zFnS&T6^-F!X0#3WQI#<8yW(&B7x{_WPOoZT;N3|8ser!*4FLYZxYPGO1fiM!6x+wE zk5CS%69p0%EbnJXlVh_gV+plqMjGsF0;3%UAd>&P^Xqxhqm{_uGxN|lmJZaut}sYz z_Ok*ea64t49Os?T$ZXC-k2xI|s=FE_$>FcfUFCZ2KwHPM3MsxSVjk$H?E;R=2b*Zy zvItNfHviM}&a}5TYD0?aiYX(wvP|L1yWaWH?{7qHBpTKZP}yO@^yK>|w@LTM>@3B% z)h&m`KCdm!W<~<(J6Wt}H;z_mQ^=c8f zTmO+q+1aY)>2KSx?udF0hD%Jv6I+GPH$oM^3L)Bkd@wj-FF1Z5E4PTy#G@!tbDxF; zgA8?d4Ee!IxA?n_d?C#|&w`34kp)2{_xJ{-Xq@kZQE0P*i!R;T`fo;>iM{{9iWuzD zdm}MeEEi^q;UfC*e63<$Ve^862l9UM;RRpdyK-%n?{k0g%RQf^Q-12>mg~!nUwP** zWX$YUk9!9~R>1McS%aUl@m+cdQ+LU#kqEy0-ce zEm!w%(*>-LJ2S=pYUbmg0JoTLnw>vKgvBG&&z++D?oSFk;o5|G-JTly8K^?}w3N9q zI=_0Kwn?YCK>~1@?d)|tmeLW=H`<|EMCs`UtoJ^y@Hc9Cmz(P~%-FG4@Uj!O6%eWh=pULc-K#{}$Ub18nV{`z&4WXR>v3`nrouu<7NT3A!%0gEOo-nxe_(X_ifQnc<9pKrzppaJ zvuJ>t)MD6%P<C9=Z|)cmPVe56#me-LJJNrYL7dk2)ii%KtiYOk2C_Y4MQ75Oan3aD8ERqwS$qNV zGh2mU7h*U2`OD2$M+`nO+-v8^nPRD`v#!vqs>ZDq;tolU#a)+QtBp9vJNw%ujG@T~=`LzC zqG3M)4Vmc0ij4>&$(`9YE&H?G z20=`KqM5K&~p`Jcijk(&(JE7m!UVzP)8#i zv^v0=AyLpN7T(vSewypj%NlH#~c~kV_@(%2f%Ap$4U|;!?iEGbL5d$|N zG-H;&QQ@gXM(=2ZY|h&#rP#*7w&t04Gw?h_TT0UoP@!7+Az)K;{{^nG)q$Q5lecu= zFJ~O{c^iL9h_&y`menz=6;RENA;1AS*}@W?gmRjuaRbuK%3)D3oa2HS*T_AU?DU5H zOIvtkgSe%P#QxSv$c6qucN^p0W%>if*th&0tdkF)200cU2-$yh+Bq+v0iF)j(F zCYca>rkAN(G5BQK^=Ro6;+;wGVDvW`?L#7QGY-&#*<2!{26RLWvHv(`9*J4+X8MX3 zlI6S8k9*ytITAQnG*6Wg<`zM!x+Da)h)D5*`^yf4*=D_G@i?gu0XY2ihzJITdTd_ke4T;lY88bejK&6D3$JzK5dhIl7TsxXwZb%hV?X(F$gL< zHy6QqC&vw`htS*lF|HhTZBnourK&=aBNkOea}gdd(N`!FiF~|P`Ff|4FT+F3{v)cI zSX^GKk`dc=;Z{DqDLS&>0NYYdpJcy}1jBPX0(F})ZU8aycLg-Oq!=|ZWys4z&G}k; zz?Dp`lPTKDdP^9p6l=+@0Qvs2UJ&T1PBL;C4h64r?el@Wt3;Qe*fV4ks@S2Lcc29N z(4eFLv}%V3D`X)Lb=!9WI=a&LP`k~yk1jy3w64VMBty*IT=q4d6by*Alp!~+U55u>R!RL-Z2;y6b%n6%Ui zBRySyFAq_~b9C$6W)^6DarRevPZr4?Et(tm*W1#i7XYbMItrX4gun77=D6k>Z)`Zo ztS1?P-9{!PCe)dhNDU^RQ^e7%2e}JY-&lp4^prvb%FvZtQlez&CBzCE&9T^RKkW*mtgX%V&cl(%G*kbfBT{L#o;Wb_xBSmxb5PP zQ$ng*!$nKiFHnKLYdWzGUAOYFtwV#-MJ|1Vv_Ck147q|;m)#q)Fnc?qK>H!~ITt80 zS)UU3l}764Zw%!V#KTqxtrs$tjYUop8gf?)gowTx6nPZm+~X#IehDH&HakQTEY1;{ z=VWW{4*%T~)$NDwkAtYpcqL*@-NqQjxca1;)WB6|@)3F3#G;Tq&_$YrES8~$z0e%9k(txne$MaHw z-lPGwmg7N zFA$8mV@$ONRHjYuz7&*)M4i-LlB!;q!56hGJZl*K6O@nf#Y#T7aNcZ^xdChPGEfB<-Ms} zC=ErP7u4D^Z+Rl$*b5#6u9dKS({Z2f1f!7BQ%cwvzxF3(3t{^T<6*?Agt;8b&I{?9M3u-YP0Ic%q?+D0pB$FN^p0**@`H{EXw zHXAc)&(4Va{g2Q}Ym%FZ=fAN8m|VJ}e8+7OZk3POa(Q>Wp3Hxzrp-y}oRDOg#B?M5FR&3?-8V0Nl#0P{-SDr#z4_KsogZ`Fh~ziwPRQ6ZEgtXLJfRgmHGdn002X$a2KODG+)E>Cvw{y-mIEs0OZXHU_a>+XBE9u zz+2kcmYwg%g3$1ds!N+9?7<4LZiYWTxnpTjsiDG>*rgV zEaJA0`TMjm>BCa3K+JPgp?_{-L72tMtUAoe3~f4)@bV)%Bd=d-2_>_G>vJRZA$rTd zftmrS&skFBWMe+Bars|7ir`AiOiaqAxikxNX(Iv@Z=Rr)Ncmb0kI$Ys95QF3pI1!O2>?j)Y=RB2R5 zMTB>X<6BA?DkY%*HXTzyj`uI|0}en?@`60&TP3O}nh#Hgv+G#qLTtfOpW^&I_?NuD z`^z!RnA}p;uVTBDDg2*)@AokntZk`ulmbo+u`rqnZM<$#!JC@+A{ZM z1{USy?Nl5ANsbvohx!_7pbk0Yf(y3DAjHV?jt_aiADOHUTynKYENRt(9nu@UqC$S4xcibT z+Q<~?O3^fYHDZf(F>J{!AVxQ#4bZbX9o78ZhUNQM7#Zc|wu~)dTx-T+jF$w>aAxX| zAH6ez&I?1#e7jC*TqRC!bAw0dc8srRx_h{MCI-XUE_l3j%m1h=EQ#gUEVT55!#ZSS za%8DWYX0WMR_*m4-9OgvwV{{{NgWz?xF9|M0;yRwe{C=sdMs9O=$F>F>WK6zL^eBv zvLm$<=ofgU(Z%5JX$E5sz z#}Ynp`*aHppw@%W>}u;5lKuG;X)!{21r{ZXA8F(eXfHaFUOyw6vAyfw+$$z=-q7!& zeSwO#gJHuIWcaU(J=`|6UzX|V$MsWWbi9N+960TK)A*?SdRaY4WZ(nk9t0!IYLFAz zi+~4>lVsktJzq79Gf%h}?^GN{pF3^;Zb3r~-SdmG0C(0%H%OA#dXpIXxuxYX+Hw=L zMN>9`m-80-3ZOXQrQv5zU{|s55u^x3c7#b&BD7EclSb3>jiinN($iTAH%isp=S0E| z80ZFUO(+{{E3+DKeZ?D(F%MwDGwzs3eV*6s1d-F-MoVw%siE2rAs>EYZ8+Sq;M*?N zdx+NUVWB)27?j?a;KQaNN>Wy5X!vDuj(ZIFe!3t{%b|3LEtDlrVA?BNO=z(Xo1U~W zGUj_)AvW|y{sQeRI^wZlT+RCrl0j83+sXvxt8Nacf0au@an;l?jDWwYQf__pqQerV zDV3a>6P>~Z-J$EDikk!S`+42J4kzo2y2Sw}3(QGB+5t!po%rvyS{HRwz0z}DMg{aM zk*A0p-Gk$tDGO^_1Q^ct%TGY-H_FoNn6Z8*3yj1@Cs^$^0a4xuJ*770h-w3XKS9w) z#X=F!Y+I&%0w&?tAwb#+=lFp_UbN&FD4$RJZL`=&nw52(c}Dxa09>lqLY(;8Kik1b zaz-pYS-K}Kb0QO&i)P4Rs-&a@Hj@Nyv0-ExLhMBzRiE*iy}Xf%B}iSJ`mVlpoJX3PyL)RZUjq8)O4#6FR6n^i@$qHxfXM+2B&)lej>!2;@8Y^y>`1s%`$3qoI zN{tnC&+Q2uPqaDpzjEgT)^s%`Xpm-IBlVx!sQrpJj}&8DImhf517;eYxHLhf5C^S^ zmf)qd5Mg|C#B~tDYf6d-m#}0G=Vmb%n@>HRlS-qhFtC>8NUeX7NGhse{;-nb<_q^D z%uep$xdHeNMJnyo4XU=%NH zAiaiYR)HbbxbEVnsTn~NJ?c-IS%hW`6zZyJbZ|oPJlTP_mIc;B`HPO>fZ9#5dpyu5 zg+CTYSjs(~R-pMs!!L)W4}i|zqv0%frHc0#cWJ;#HNPSrp?reZ$|_3xgp`P$Mes^Q z^Ck#P;3n$Mm!6tK4Q8@1oUl@aXbi%g;H1Z8p5FgIPPV?U1)F(lc6gYO$-nB-ne7rW zouXn_T;q`$%-({{COH*94_ic>AIgEd)fJS(OmJg#`a}Et%Jw}mlhH+hifpBRA-3uM zWz?o&0Kv^c?c0fRz{_6yC**R0KaM=^y5HC~qg*+Z?;x&PfR@kFfNH9)v5K5~>@o1U z|7C>T1PMcFfS%)j_N=!kxsjXG0(7YLWdyBo5e|wmQ#o_mGDa`MyTh z{=!pjgd>B2V8H~DoQtFu1H^Zor{VIpX7)IoK^#7ocbZ(>NfJ&A`2SBCDjqD+e;S+x zQK+Qd1Dc`p=O;rk*3SN5|;nwci5 z5CQ40UB884z`8thMKxHX&uQZ$PVY(F%09+t>~)`{lJ-yRY{FNQc)2oX3No*;%7S0d zIo8UQu@0&sv9nDz@jcN(@S=2brKnKEXz{babxKYoN~nUKbzVh1E2jz~**3FlfgwX7 zRkE3Y2fHbP8)SJ#@5=i!=N+qTyT5iDnvNs&gKcT2lTEr|s#3r&^t{We7e*(yC%#kY zF1KzN@%f9Hb|KAyD;Nr^3{LIu-TQJJ1B2{2c*-cQMS6xRE*;MHh9`{r8;Bxfhm$&T zQSv=KfHX+_gxk?%GS%9A55X$_I8m0sWRIN)Fx9di1d)^%3osaK0|3ZEWFZtx$WnTS0QYW2{*M6L7!rZuq)2-fKk)ku=4EG2bK8lMpz`{!Es3zidQg1U5D7RlhEcVNr5H3I1I+WP-GF=0 zhu+vvWnOV*l3&Q285%fq3d96<%ph%oCP#X6s13ZJmpZE`p75Yg^4U_{NO0 zRodtSDryW;0>bb`Wo{SEWZ3Qjf<_lSBSGBJdTmZZYX$Cjo}G~QBqJS*R$-JHeYG2?5oXa9<*fLSf#d)3Xi;1L{~$dV{Yr-qzM4tiAPr!< zvTd()D_#B1zo#$D)KuM0AjSDN>-O_~HFP004EAq{#v;U%&MNpdO$pXgx&#Pbr;ihH z@atfACcXOCfhKzc=Hf>BrKzZ_wAg$HTB>dmE|prFAD9Fs#dvaBkffbWcAjki z|Ahr;oIWJ61WeL8(jo5*M>AW3h*%*On%SGpwQvp=ct(kMB(x0$GDdE8GR?^01no9_ zwLE3>*8ezX$egTlUXzHXQYh?({?!K`a}2BVI)~3?Yy%Z`xdDWdjS)y3Q%DTj#|P3O z9lj5FuO2So@A`gkhHw@z8NJ%hm^6(#9;VxqL9)oHS!8NqwUr_SGrX-B_Jj@%tzu>? ziwXktl%zyj0+etOpD5In{+A`j%qQgNi@#I&$MzWF`=<*d2@xJ$l9weggZ~Mqn057P zNDRYbx08kHcrpBXIQ=!~-58EH_@*g5S(qj0(Uymn%85TVCa0)n!<3~pnt zN|yDInI#i~Jy$viUU}p@qkg5E;SCLhCO%UM$EoB*nkGcEzU6>R7u%R%#J@CsMEkjh zat4rTT1_1zjI-sMrK&W#M|) zIelVL1El;y8ehAn#6piFNuhdyHIeGC!)r!!?CXCe z4OP-V*30?h-M&Z%0rxc{3LAjK5PiTB;A}=v7Y2V-%S*eHj(DTpl&&7uB6OKVf~4>K zkOJ0gIb+-czc8>s;GaR9L8!%5xw&7UXfDV^q(Vgi$cWEbjASD7s8-+_(@`Em%w7#T z4G7dPTn}tj$9+3Q4W(!(S;J;`QLI39{}%z?A**&!S~i(&R9E%*5{s5^m#O$2pEqDs z@2buN&1huUN;1U94Msa(za7DHoH>K?XzlnHhS85`3MG@$Mb!3!3YaJgf`FvJ?hWw zUOxokNWGt|02={*%~vODo(+ia1vj0$N1)s{lJQy>QeArIgX57S<{qqq;hZe2NcMJqT#5uV& z=l=|DZ+H2|fQk-*Z!QDEW`9Pvmwo_prtbY#AJwn)3)%)mgAWHiB3177LGI}-;Gf6SefH} ziGxKrl~VJ|c6ETnXT5gxf6GCX6qd$WoF^HbBixu3Y;cvzH7wNS&mcE_{Q9Y;-ylR3 z%^N85;;2dQdoJS^kQOgO^|;(S3q8O*XqdEp7Ab)7w@bj>eSq@nw^n(BHo4H>M|7*l zQG&BeD^OY+x1^>|*8Od$zE2ZO@d9^aRBIpq)~>kxIB=ucmg>A})GcoYq?Z{N5#=T>-J}Gbg3o{_@x2@lwCmG1sO44}_;J zd#mkB3utYVub}H+=?7Wd{Cb0KqGH-2&5F>=6&xuhKw{WU(C;GLT3E5nMmC8$(ZL|y z$Hc-(+-HeWviWGKGiKfUu1xVWm(P9gQc@MrhX(862&3_?c=DOoWIf!H_6!LqxJe2^ z`uGkPI52dOpTnu(m)@o*h+l^YPkzB86R{w7l;n)EVHmKo;?(=Y3p2piMy5~mUz<$V z_4&VWitbNDiqM1w5?KIQ7q<+C%RcX3vX799X3>~>T9sk9$7qTI-Rh@OcN9lS|DLh{ z%G#Eahv&QHcX9U@&e_haDgn#U)rT+X<(%T*e@!;7s@AP=Ql73C)F5a_>#MwZ#n&Q=HjyL9KbVT&ItK381X##T%eHOUgEF zqh{-avR`i4U?)Kp0zie+jCs{wY?*c=x|U; za%9TT5xZlK=KLb*JI<(|9MFC_J5TyrJGtJD(RxF~3@cV?t?o1k2t%`SB8!HtFB50i zdflQ3r!m?ld*WE}aiy5eSVpWP;^^|tL_DxWPn|i{MZZ@oPbk3QB8vvCYYBy#>%HL+ zyI1n?<#^NY3|@`fQXNyoY|a=}%g7)$nw6}p5#!Oe^3lwCnR! z1~RbaIdzE6A?km-JDg;NGFq~5x$|VrN&zH*@7&QWB$hY6if-WlU8K|`o1%vi9(OWp1Gj;J|F!t{`_P0f3rxm_}T1nd!Jm{X+1Z5)mHCdB+VT-@LRj>#mJ!g z)KTv9u|g3`+34kh2uPNTau%RJ$Mdiswecs8JbLLIvL3E#{`V%@@-bd_-PPV>K$H6k z*4pLT?Gfizt3y@gre2aO_I4&-3hFE-1d-==!wTm)Hp%G8rHYQGw$+2}3mdw;!y!Ut z8y9oC`c-hs(QKezicqZ)54LSBJl)y91EF=+!@D8$)YRCrhB5|6jeO>$j~ zU3{K={66`-{KGI;3k+4u<%MeQJ%B*k&dPku|M@`mUtq+e74V&_dZvCE#9Cc5-nc(y z6{kS1uJSK<_&ZlQ4FWq-!Ko0E7=k?1faC51?{hN(h#z>fKo*wJ+ylF22?Y(0-a|VQ zZHS@U`&*460o!$hh6|k8AjYtutsTF79fF4vF7NoiQNttqCvw>c)ZeRnbpFeU01pbv zFd7-48uh-3@A7|Hlm{|#laoo=1PX@ezt5W~D68#(YJwv42Rh9w{~JK@j9I54hgywO z_J7}~L#j_Lpd0k|Rx3BbJmap?75G)+Ja{2IO|~ObMO7mC?KM?5@=NHvVj(bLS)vqO zjEe@-S`AT==)euGH9qh&(=&{Co~orVe3159uLL0VcZKWUEdhTzjgC4e z-`bE=siL5c>)#jJ28xVO`)1Czx-ttj^J7FQZNRT1m&i4`((w_E@$iRfvr|k*Aj0-n zcyvg$*ckWUc1%BA*YxxTR_;O8umb{(WyNp?nkxgGF$IgQJ4Il0DvfQq=Gt0@;tc{c@f=Vu&euMIc~;nUT#uoJyqm%`R^Fl6kK4 zWg|bYj!tiO{UJ2H!qR(9r{0C1OCdTgyGyUeV&UE8{ZHfZFN~gAcnFi2hY~eGhEaut zTkxC=)$PUG24ehOz4v<99lYHy>#T0=YWgP)(s4DPoLvmFnd{9b>yDoPW8~jI0p6x) z`yPwtz}92k-&m<_@KXG%CtN+lYW~meEs@pGOKppH7A>aRX$yxLNE1tn)}P1zd0)rw5GCEbzY%8oL-WOBV@`QA zhK1nfx@K&7U(ck!4`!P3dBXl?OEGTH|JzO9qPN=P56UCaG~)lg2W#w)4(qWN!#I0a z8N|_pW}v;zmwb%9yp)p7k3;E6kPdV6Dbuhxn%`6xt;gcm`EOjt?mM8nQyI6_?f~rQ z!7L(2n-(?Gm9|4i4)aGv{Bn7Uz)$o#q>Lf%}`eBDtH~#o1}~v{iXR z4zq2!WxRgE1q0Il4+kD5L&~JO=rCnf34=vdRujgeVFN+0T8?C15I{F9OxCV{{^?mY z4(0jPhU5jV%eH5~?SEeNvzWACWJ%*-Nxj1_q4)^5k>6>)(Z$OUsQABMwjbLOVZ=i5 zxNR5Q+h0iTSxVicZuvNzWR(3hv3%b`B@sFJ^$z-ODImn#oXD2DnsL+66b((ja76_WgmyBCu#pcw!8!8Ry9$tMNLmaCdT*h(M}95HWC zmy@vqux%aQ#%H^KAYSl4m3t|nlmgxNwkxuNJ=;WGzb_eWN6+2_R#1pcb#UM8TNl?7 z-y4G*H=LgPr1LddD)Bjy7vH$x@A3_4FPHCLhO%YfsjdQf|O<>tzu`3L@O@&5^gXq6&PEFg7Qn zwGOcoC@;l==31=^@LOf${)u((NGTdq417I?kAMFX&{0mchvM?4j z+SFplL-A0p7_AT8j}4BCnF59uKki%N;^Oihy%PZa@nkm*aB2CTLz1G95E|=o)&EP71;FD!P0{GXIkzlx|`UL_8 zdjXWg5sDNkW+mAVG%|j1n}W<$U5V(J(Srg>^%JVFtcX{guf6vhXVR^erp4yRm$5ov z={I*?f#iUT6PF0rJxSb46kAdiyECm%aA5DI@AraCRG50C?^ql{;Su_oPsYPoTQM>= zLL_5PLwvdC%FEwZpkx|1y^!A?uMHo7%C=@rUhZJ&-a; zHhIRhr`!;4^m|>K_>n0%5f?Qu;0&F+t6u;zG zNkhwkT@n-#v_wE?U!$IiG zIV^Z^Gb^xSB67t zOvNL&oC*R_wVO~w=*&%M z;(kd}=5+`_+0e^mtACYa``2?014 z(WJufzacvlOiJ@%LnrS;ha5Sof;5TvTMD=0v5YKb9GHIr2@P1503Gp7{`vKX4ZIj9 zXDM)sYyO*=iSprE(6Eh%4k=+UeS!e)6F&f1KvU>_`$|MZyxB$PkTvjv%NPB9=!mW?OJ1fK84p$Uk!3&nU_@l#|t>yH}AZS{`9Hd?7?t8 z;FDQ(zWp1CCXUOf3<3OEr`S&)eRcb+<4FSOc$X~OxO4&kZR$iqSb(^4{nNb2Dp{In z+#6()7*CiCqA8786>0@5#P3m$31daTFE$>l1CKF%$ffN~NZdnB+|jHXrW0s)tx z#*ZjwCs8`#V407 z2%+8u2QU^S0>I|PazsEDJDC#E58`l}_4u^F;=A*G++w#?swQ@+Gu&RR)dlVzPk-GP zX2)X+-z6-#wa95et>pjejEx>P0~LDE4U!L%6WELcVrRttrk@Fo#lDAWtnKSv63vGQ z+=ymphRuu0PBn)7rN{ZPr=fyqnk4sh4<%%uOI;Go$z?v$reXI1Q1^s<2`BZ4Zip9ZeDK|g<`M+tAe1&e+kZs z&h0&}Cz@d7@M14OIZq*Wd>C2nSA4H(^`(g+&E-uSVyFF~A^O6f!;P7;n=uC{XhZ0y z|MA7jCJND+Pko}tgPVdL;(V}u zLw<`rx~Q9OL^gA^Lx$wCZ0l>KjAT~%)6TLgqi2|kjo03>)jwHTPKMDGBnn*F~C z&oPN(p)5n?Eg+KoKtBlAM_+Y^nuZi9W_Z7y5WpVCXke;w#YrD}Dh z7@cbg80{HTUu&dpO=dvDJ7k|)N>t@e`_qmcsu;W#uTG4A7f1y6`j}{@5pWnF1Irq} zh~mSC&CrRxNXcA%?V~^kuZHl$heInxC4rUS`5J;fn+<%$nZrvu(8xS(6d5+DXulO` zc}c4xP0*)|z#DHHa3Kq_@CRhH8B7J_=Krc9CBLD}+{{jWOlRA00Ra9#nyvvjvZiZK zY;J7Zwrx8bCmY*#Hny>`ZQHiBu{U<|&-+#VcdBQm&UE*g+qZGL51z*y9e3Vhs|P5m zNhOB8l2Mn6^g})&j%7XV`zE$Y_b8v=fykihpJjh>lOFOOkV(W|Q>i$|t&w!5g&Oj> zfWc)YNFKc$XME*IY8H7P4AsHT&cUiZsHxCrwPaAFGOvm{Strp{WmtZd3JyPJedHZ} zQYdPFx}`~>o7goxz9wvWBDGq;HJ4%* zNmyaaSUiE|T=j%U7G+Gkn;r9ac5$pJwQPx=GQvgy4u>Qub0{8>#+9wdC7V}GUwhPT!3F`@#a30F|YY% zaWGtU{XG0A*$hAojj})+vIBgxB{zi6d;Igx^j-zU56@418gsSyRb7*1 zGstI|hC;W#B(8Bu@on>RLv_sTnK04Sq6NUSsLP*l-(7&37#H1A^!3bL3-_AfU8(Y8 z!X8;w%Zx_VTQ;|p7JNJJ#~BxgxRi6V$4gPeGIiW2BAlxRW!WU4+TN^-+k zMQ%0R%lRi49wwiYn0QPB8S*T%@+WJY(gWsX7n{bL$hE0dC3MUJ@wp&2glbcS1ZpGC zC?D*%LS|Oh=?rP(4n|Zg{Ym2!x`*j!ZNnz{3B&-Z=7CrK+>mU7(e$EXOG}I27GosH za)MHCq4v20*;@)2A$+>WRr23~vawL0o5o=%&# zcOLl3UZ>(D2Dh|>*`HXiI}P+dShUB2M>(r6@Jwwh;qwT849^<~)qZ^wdP~xA^Pi?N z0)UsaxPn-Xh+&YDEEqWKe+1w~3>eP4>yK{%0RBrDK#IG)lPROEnW?1_qou8pg&8X= zgM*#LZzTmu1X!H^iXli#iKzepAd|op01XPH$bawj0zV*)WhKP`-~YY-beARpDKHLF z+Rgv~;?REyB!w0c_y0o#cw}GdyBn&hKYh*kCdG$fkVHfX1 z*mmO#f3y8{&41H*lB-Klyz|h-=P9<^%f2r)Q|70inKO^(*l+ZmjH}m?6UGD0dJd~PHbHGufj6- zLCQ}SR0P4s-ovokiKg*ys&q<4VCxww(Jm%DA(-Zh*EKU1?vc7>&})kC>lS%={(iF! zL+o{e-rkMTPmYTp;`e+W|XFoq*ADatkYSlLti}HlfvRqvV)pD1Zv_CM6Qk5N)Sx2kO9S4 zCJ=QMu`%IJO^Do#QphL?6QLo1;N7*Cj+ri}gkZe+IT60u&b+a4xq_z9d z^0Nt#++iJIV3K@Nx%4uA&T` z&BoEl?|$jkI0O#D!+E4*3L69G>7X=CpZeA|A8PgS^D1bfFe_wX@MVB`mbiZt6SGCB zn2vqf5iFER=9e4J{zIg(u~nl*NFjA(W|9Cto<(AL1}E;8)t2{L^F~$%}j0T4ZFyxTJF!w3^8A9R+igK0+5t!06V2CPv!c;Vy zNU}^^mY6gy>^8~5DnhK?6=Or)QX9!`LPZ7#x6~{F9mpTR#u5@CY^>pB^NH0_phJNl zFBj=xRwpIX{+w1Qsd`T5vwwtZpLYgh_kCK+TJnur1s1YIi>vH#A+Ih+1N1HvMh;>V z&SW~*+XAVTvcvLCxw^6ZRU;{~e)N{{?UT z6yvajLff98fu-7aNzp>Ku%{Q&o*6$^yhJXWnja4@jlIwuKO>$WUxRxs!%D$Y93`*A z?tuZI6<Jw7GBX+G$dCTLI$VMM^30o)(RsQmJ0~zAB-nrVndd4hPY8hgWxk2}Z)GM=aK|4_D9;>$m!sl6@8+reVse8c zB@9uv1Qc%DTsI_0*c@i>Wqg28k?nG`uyOPUP1|v1J!94Gkq4~gXaNogco0QI1RF?9 zh@{YB2*p?-j4-lTX2h!(Mv@b&uPpdJG9M*M){$Z9P~-SmtSPp_Oc43i!d?B?>H@NS z%z_#gHWRz5Y7WzqZd6ak)oE&?@qC%82|MqpgXX>EKot;|7USswF@^#Mu8zD;4)H$2 z)eK%ht@c+VH2^xwQXQ>wIU7b?QZJW2aPn_4&d&RYOj$JcT8O3!tTF_f`PXn_*Ae?FRSakq@>2|KzG zg{ZtaOBIF)RwN@c-0(fl9USa^Y#!VD2ecQ$!4GdS$f6b52}UYD&xXC1TFR8&IB)-t zo67sB*0q$?EvKg&FKrwtt8OxWLBTPVm`Q$6(5kj&uv0@2XeN+$Nx$i?@3wet$kd@z+nlJ$@vA8oWCD8Lgw*G93kBvL>!4}nF! zPAOVTxh}H$2;dT~wAbfEIHpqiIHE<3O44YB55!({sWHT)(3md8hUFDg8Z7vk6)rO635flu?BjT_<0SfFA}m-7LE;TWT8FpLC}hHF zMY8N9sZ;S!=`dlbLsLW?bS+^r)*gdOW=6jT1Y@t7MUdS>XC8;Uy;%MU^04OKTGii{8;6WCJDf(8l<6tm%zWD5gI-f(J~sYCPsFk#Wb9${h- z2qx6x1(%Tc9I>}*1)`sPRSX1xprNfSM!^O_2m^44Ai#^D;=!enmCUuF_l_GAj|Ewt zZ!vQ_-YODknqT9ly4%H_P7h(0iO+?g4Z~)rK(%0pTk;L_)xeAZLP3&n2O4nJh$R(I z1Y2aa<2%+MXpm;YN*Lh9r%fu0V}%K$rdsmx637Eh#^IW3jwwULX=pQqMUb=#4Zm4T z59^Yr0j7zWTr_sXG(#0BMd;HF*h;l9zf@1OQy{Y_ZaMLPkk2 zGo3AG)jy+V)R9)B?&!jS0vGieUR_+*E)(#{fFn~?(MtB|+SDDHVKF|$ze#kX2xzp% zO|fJO=f(2eGXECbQ1F%ql@%B;c)H5j!py>*TH0Jo#nYiL(SC!RCW?w!b-=?&i-{4F z%c)qL89`p~zzB;Zl9gHwto+NA_X}=7FC$?IVS<~MkTW{2IF@k@qezC5rv43}jvyin z)Pfy6hJz7rfH$Y0UUQ(t5Gix{4L!9mCc>XXY(T7!1SyKB8$chzk-=3B1%M{j4|D0J zDuRj?NzTP%PK36$>^`TV#A*G|H*(_y0Fezb&({7V*5i| z+iup+8V8!r_Nv%xUodW{)QkbPzy>E323|B?r-D?UtZ*AKQzrp!46wA7$lfuB4iYSM zn7v>W6bDBr!affAu)h{`|9x`oCm-wUQzv{(ILe51clz?E$gb!}hRS|aw@R&-gg}}9 z!GH7f{pK)@fFK#%aCG1`@SY;B|HER(X6dCVgw;Eaz|Zfx68n3dyZrvlbyMHNw=(ZK z>r>&NruxUTe_i#giK3ez|GM1!&{HU!08fT4=g|~Tu3^*+XZGsVSiv|F=c%&*;a6hE zhvQ*r4wuJXjxHn~UXRB|%63LQFx;^{q1~3so( z*K&DQ&q-3;bMAVrdlXNs72LJKeczoLOzT}09V{yq|9Sbq=Ct={mi z7pWvu$tCFb0CdgIq~}NPN{%Ny{_3lK&QI;!SZw!Lu{|)#^viy4hv5mBz`zT|CgC@5ECeBjj#Qfb#L#f)5U>U z#`~78_gluF_JYDghG8YL8GRyYB563XA>bD()Zq)-B(mX56qQTttW)I*`Zy&ztm#Ia zM5XKonXH>dV>+ntjR8u&tbq_kGa~T-E#xz?fplFHsYR+`KnMVL(V&DJWG%PR{;G7B zN;g%-yE8{2hu2I@?Xp$Z-HzJ^?w2xC+kN<_Zp(??di|=$j!ADemm{c9iTV6Jbs!%)_Qav(iITsjnBsm3gG>P}JP&iO4 zZP-{_gLId#2W!aEN@Q>s0@wTH6E=|eXI9s?e_@r3Hm--4ovHrMlQ%O`nqI>FJ4m10 z`d^=YISANHBj%p+yt#rl1NhO^+TT8TknS{mb+0k9yIn2)PJsjy9!s8ww!ylDdaN#c zfwa5IgSO2+16rE}YJbf!;k)-i@dPX$alJ!Y3l~fi8fj{szah<6Cs#rr!??XniKR$4 z+8-y6b2^vp*S)1C#{#P>K;%gkZKe~~Yn;^+6p{kW#Og3met}PC-m>_v896|!{#xun z#N9;adi@-E4Yj3YvzH2zS`5)2a)1t^P?@<9#OmwWT7=y7+Ro^^qc0z<%~TT(X^79mSEB~QgV@)+PZch%)s^} z3z=ifKi?q@DM=U=#bBOna$bn5;Uha`i;Gu*JG(>?Q7x1}vP@)?ht>y^4M=VlYObG1 zNFK{zF{D`^nvy|XaspF@U1K9$t1ZQ02_}vp<6dD%zX0!(3nJs=qd9T(?7vP^KmsqnhL~dOinB|5r+&I7!U!(z1>7R zC@*fDW2?i(v;7ubmyu#wH$h7I8*Yhh@zZU35AGcU1Ea>z|1&=7tv1zZTelXGE8Dib z-sT}Qab3-)__kM-Yrs`&F}ws`&}0l<(C1NIDq6f^)WX6O?eol z)1eyutJ!MZ@Vd`sh;Nxs%h!{C-_~B;%)x}XPMW=yjMv>C#p;hZE7UJW-XkyGSv5X~ zCQS-`*Ah7t&z4^+&QbmX-SR+FgjM6a##OhM>rl;>CHr(}_%<7-XH(T2RKz6XLcg!D z#^aur&e`H04Ap4>;g_eYlT^RV1)#6%1<0m=$A0rROm2ud=FgR_zp(}a-@URmA10&) zq6Ss^@57uHIjol-xi4lH7WM+);E1c%Zu==>4_A`BH+U>f4v(CIhpLmN2jVCYqdiA{ zIZ47}UmuU9PKhAdA7`4VVk6n~c^^*0_niu4rts|xdchvXs~hY1l0WHxjb5l8H?&U9 z`)+1(@<@u#&x+_dex^Ux_A1VLn`M8r1J=|w*0a;5S<*dSdPdt8^n7*&( zb$9*lI!y1e>}~tZR0bpHX6C46f`Q zjoz$1F`HcFkmjyFsH3jN2@Dw6hFkIV@1OH~Kc3og*sOYAsrBmduZ>O{>2=*VA?3Ug zKFwLaqR8|8S6Tc0KCy@p>*HFmeWj`Ag9zB$+n~&&v01|Mq;w-&Ko+j0&vJbXNZ@Vc z{Cb-~K3 z{?V8V1dY!;)9n@X8;%i;wF9d=&tPTz^bJo%2u#`)+_-5B!Obf9(wo~Gn1m$f_djTm zHSlYa?hkw3;qkmRqn`czyrS4%2;MxtkiVHzi4sw>xMT;;58rpen7Q*wcSv{@-pf}9 zJ-%1J!5V~j`bE2II(hkThQl#@?>l3IadUI;CmHXWH1yvduM2kq_r9K2Yc|!}zPmfR zPadjRXP-ZQ_kS{8Zwnp`vKthUvGL_PY^0dfC=K-9TlH!1py1__ z8r35=bf*RPCZ^X`H3CnBckWL`S4PQ`E~kr#(8@e7HR@2;@E1=A0*`hzperIWCNa09 zV=`p17%9@(8=fMVPTG?OBrri4?b>gut2MC%88y0JNk1&Hmkvt(fXO_b4;ej>X3AyG zS6DemQid;3kO`ukKYfN4S&WY_TdtJ^#UTR3EWJTdr02i@_R^9iETl4;-v(=U{lBN? zZt18~NJUEACdA;4q2mob*0fM*6BCs@7PKMbgsbXEKtsTY6-yEM-TWF^LDv4Q$36=# zL`AB>Wp-J~2?5RiN}uo$wm!~xoHGx*VxCrafQBsNHBgYfE-x$N0qz4uSxAhQ^_OOa zr)f)9x2Fr7%ks~a=jhwrZQGUJ4A$YKC)eJehvPS2zSbw3JvX}zHRL#^Fk$oPD0457 z-WL0YhWjSY_8<3zfNa+D66+bu0U?6?!O+z_|9=G;27;Vb!Ubm92*>F70-mU4Su4}L zB`I1@DlL~8J52|#qLS{ucXwH{8BBrLyIzRVilRI1y&t#R)wBBZAbpjsE`I2?H$G;b zi-&j;60@{+SJ{welsDw*tvc5$DlZTs9pVvHy z-)ZvaOVE|MI!;nBAJ0s^VC+;O%!1_8h31#p-U)fIxw$k&8&yTx0A){@e@ZMgpEq2WTm^sj{pl^CS zcN?q;yLa_)PDpVe8;I?9#}p7b_jW#odn=NRHa_oxxws3s*rC!^&e|L9vi^F{E)^UH z$hM1a$CQttAg;PkANsOrv3MH+Pi)+^7k{knAzG?^@4#@J7_ioIT>s3MS=U^_;w_~z zuuH=1n9CqBP< z6xvWMcbGX{W#0D3*zcP*zqVld{!!!WYA^h*S>4*Yno6on>k)DhNd750@~7GH;$d<` zq5s;e)_39Pyk37tr(=&xxf^jiOphI+4~UkG$8$IA&Dj0%1Muh1P4bH6uie`Xquv`8 z;P@8&-mtPGY~Bp-D@)40JF2|*2Yut<1!{!pYr0>~?K;2azYAjk0T_ef`i^G4s@O7w zj_-AdrM~UI_TxNx{k|>|bKy9POPyva{ohGAk1mg4MrXUs40%|Y%5L?cyucS!Z;P3k z3RCeRfw#S9vYD6jINY-t5plX|d%tV&2m<)ydcu5=Nk)k$s3Das#$m%6YsAl98c!FM zY?34O0$%Vcv#x4HWR5YwG?CSxa<#WVsT|z*~Vy*L;+g`$y?QwV>@4e2#Ot568S$<;?qy1rOJ}DDBBfa zm(p3N%@*TgYlc5cjV@{wLRpxJl`E6T6l6(-z)-=#`$elj2;{42=9H;!%mFuR_ri^dB}Nx&3ntMfk}N$1S#%oY_BnpQQ&vpi}$AZ z*q`VJI5?fm%7T$<2rM>Q!p66{-T!UQa?@YnJBx8|y%ka%bh~QxZ_U!pHkp2nIHaK8 z$#dT;YV}l#nlYbpRT_1xT7cer@tCC&F$}I z?E8F}L0SQo6>U?Y*>dgZvkOb+W1PEvCb3 zqx%s6=*aYywZY=+kxe_f+<9bo@6t$vPwhy4Z^W?6sdv)o~Z{X`i|Qb23G*UfbK)70b3ep6KFYuYeg8rmf5KwBYHVCDM-xO?VSyEo~U}>G#_(C zEQ3W<%$Ms-r8x06CP;jDzASC+KVR+N_E{nZfaed_ZeUnnd?4}fe4Q0|{%ZT(N&yP} z+4M2Otx5ONHvS}7voU?F@T2;tSC&yXL06kURG*$IsMN@B{&&-N38hX zT$odrmTTAUnh0GV4gFS3J`NVj-8{clEY$B+WT>b0O>F4Y=8Eev=X5d+tAfor+Avdp z;usZ#vKO0Y>Y>MF{LqjQgb38a(tt8!07JP@3g$i<3rnTZLYBtQM3$oiZ>&*42WKj3 zhl&1fr#Xw`awG+;FgWFiV9gx0%x;q`VXBCC~kUzhq-lhF*{3CvB%J~Rh z#HNzoKstQi=PAlSG%e2fe~8~4fh~X-o_E&fx%153_nPqfG{KRY`^Jw=^(|z1GeR)r zKI}4E1cQuI%a8D7^4>W5_JN(Zqh{)Vw2IR=bbXGn0;2tlyBUzAB&48lo^J78-c=Rp ztT@gFQF0WLru1=g-~VOWvT9-f?t?!yWUsfDVnJJGsk8TN9nCcX9DH>PYr@%Zw->vQ zMB2V@=0c9oWfbeIQ7zlvW%Pf%k9^eV?+Qp)=gUeFkvY1ZmTGH0;60aSfvjY#->a^) z{-qSpZz!dk*!Vm>E7tE$DHs1GNbt?^*=zpP`NmhyQuk%Bmtk?BQKC#X-gi z6b{Gff;EQAd1##wV#l)-52~}4C}!-KzN$gGEZUhpuvOS>RmsA#~zSp%W#R*L>`_dm;hAEV{Hg z%grh~qQ1R6k^W2g68e)jbDW0oR( z8#6i#Mx}k-eN2td{;kS?j^?+0ey-5by7qf!G|A)Z-fi}8qrVErGnWvVyp^UM*>=uB znr6)Xn(OxNv7Psni>$d&5s_KJHqWzt`02FNM>S-vDszTb=M+MtfmvN zmM*Q-X+NzFZRm9QOpGjwx`}36HLjvlQD7`ug zBAi=}94IhS=^y#+pcHT3^Cg$}ryPI0rsw-4d7YJU!LdjFAXL5qQYvB9%4R7p4hqsP zw&9v3{k6{ogw|eHr;(5-ovbGhlP=@g5#A}eOD(rwS7Obak{|)yDZ1@4YqI8RJVJe4 zK--mqgs|p_|j^s|!qX}mk(ObQMC!m!|fB$m#^4+}Nj@rnd2#0)hxQZ8dE%Y(;22ake<6@}n~6Os(9?|ht>Tr zQ#_bl)Ww=gV4S6905<1j7Xwm58$Bcu0F07ir2u%{iuP7jtZ!UOROlcg;emhZv6hcX zBYJa2PhA#ICpMub1)-5B6zi<@5@#0_*#1TRw z$W_zv8ot8SyKL-AkV_G%%MOccLv$c6zvi7@c5`)~&93W{MuO^w26YF_JEA!#o201$ zb5z9OL`Or<`FpJ=Mbbq187CnO%4Fohe}c7{WKE7zk%Q8+C5MNQ|1vRiqAY2r0Tm&( zKzNNXV%2o_AFE_~j@xY`q)j{z4mcFS{WZT%DnVa}D~+cV--ms2wZ z)}w>mZ5ld$zf?=Ne}jd3>5r0$zT9JayAOgoQIXxli5lf5Xu`hou5^7&I^s=NZax<* zCH2>-dPnz(^N3=gVPJ0>z}q#G&--+OM_>JH88CE9Z&9BOaYZj~jZg_gRpPOtTPaTA zWw+>aaE!`S!D9qaLFboA%_5zn5Zf*jRgpHonXE0C(ELa>tn9rzZIwTN97hU^1ZsBR z(Ze1F41v!P6I>KRn7`;koVdJYR-zo}?p4~PI=M|H0`Hr;u2pPVyBJgtmp1j-JQ9tC zTSb!*V(5$-t(D$r81#oDp&kGy&67N=x&8wYf70K2FxH5)R!Z()Jh!|JA)$#KZsY4V zU7hM?Gde_R^2Y246K|MS-9qbvON&;KiHFRv>UN#kO?^_Rf})I_`Dxw!##m+#sj!kH zGIX<()D;&|vvn$)tCny*-k_;g`#32yQDLFu^xO9Oqd-rT2|JZciiFH9ZcV^vWlGe zix{F@BuX4mZz?f}LJ}XhqH6%v!Kw_)%m$6tP52 z@;xJY)uUmBM-(u^=layNri0tSlSQNgD8K=#-s)cI%!a6914U@g zfAM5UIhsuFt9}e_Co7-uVHs9=GDTKkEz|ve{NPX=tbq#0Bo%p$Q9?Iz0X#LY%k1BX z9eP__)G3qiUhAg}>t2PEQfr?kittzmvFS&aQ3OdD*Z(+-SeoXgeBC&3f6U_ss670d z^5be!2=-Yg(oGV|w<$cf1REg^jpQgUuB;%1rI%m%qocatY=NA;aHI4SKeA$a2U-)$`|ubI{H5}o3VbSG&d=muMeq8&KZpz7=^U*nR#VKQyl z=idv{BM-4pX!C?ICSj2)p`&u`;E6HYaYH_~1J`ur%y>2gEl?(x(3I151`SKD+k9z4 zkWmi>@juaEfqk`rM1PgL2(s+>EEDYr-yJr4`#tmwdV*fA7@|_1c0~cwgaxk3jT|e> zW|@al#kw9GMV2C7Nwy^&0!0)S^la$dhf@j$nnJj!aANEGKhyc5L}3-(vdkZ z#PJ0LmzxD(ZIM|&u!=KTX#>CF_Fy|AhLXW{`3uZ?IaC>83PmQ!7&2IA{a8=3>U6tH zQXkD8hn09RY;dT9j3gC4hg^E`>71)OeySR5A65aYHyw9k0D6sj=NN^ig-?gAG}08| z_fjT=EDZabW73~u&vXjF_FpCO)sAWiUW$?a)W;P^h4A4Sj&2^D5vtw{OVd_VY5!pe zUYS8ANo)9!*0$)fF)lW13mkI~R~?wC`PBST&;ccWxk{0?5))R}2W7bIbJ5FiAk5~W z7GL`>%j8_s!LCBY3Ota5-9?Vb| zeR>+h)DbyMLp!|IchwZLCil(Elosd#a|G57ZZB4?$mw#MvJAH6H+buUsD97^B1%Yb z=0+u4Ylx7hH}kp>H8@m24i->PzmTf#;bdB+AgJ_U1rC0B;Ha*RK3K2JVdPA>*#UsR z2ah&1YM4C!;tZESm2O~)vxRq#w7HSOj9VNv2Ynwf)o#)0_wdLWh$dB*z;#o!B{SpU zX@fC}B({-Z2c7K-vDZ&9U9RW_;?0gLQHm|r_C&w z5D+gtu-;uApD0%Zk2g_oT#+cRxw_C+T+E3{%83QeLeA6aJs>Jjm%oWMb9iXYSAWHV4Rrm_>L<}o^+P{pPNl)VwpHJRCG0tGTE|< z`BX?$x1)kr%)j3rtOLK-OiSu!CUAzqVnwT`m^IRCosv0}L1PWg0Z~ufK~y?(q$ zZg_^ohPRzf%^V?@rEk<9!=P&vY&`~$`0mS16UQbD(uKqByZnCRs<$dH+Gteauz{kP z(d2!)`M9k^-`rXh2gL8R+3j_wFji|FOck2)|6z+Lz(`Iu#&)U_no|*vDPBtMU^|*5 zhaVm#6(W;NsUe{Gna%<$+O>B?vF;=heHlKHdMJ)TwG5o|}>nNKca@H9M`(VV( z7PMflw?ju8F9$Pk@-zYudY$1JzBs*L1S1rL%vk&K$Lv?_>IJ=IyIz~a{$GFWjEoH3 zR)e50dV1T<7E~>sz}1V#_s`NU8wOwo<<5kR446gpKT;Yw!kWav>2R1pazp^h^50TC zVEKX2D5oH98y$Ikf5-!(G%MPa|1x|?>}eewFBz3DP5$_g%YZnW*2SU?t#DJQ%YU`* z7vMn`D#tl1R?F7?kBe}67E(aOV;!37N$~$TP?07NoHN(x8N2?+VnX7@ie5CqRT)z5 zRB|7yhX|9q@>7h>cKjHYf*@Ub$ZWxrJ-?IP$U#4-ebVG($4krjKXpfe~fc7W|%`lPmyKr z8Q6wCWZj{Vy7NZ46_%#FFlo>Z1^N$60RrxpQleypu|hX^5x0(X*pbgL-+kP_dWZpr z8-#YXBU=Z&sqqoBoK3Qg6|^dJKA#hG1rJB-BUdBh8B6v9tM72ep}XDZ&FezDudStE zW1D=(T@0LN>pdBwy3bj4WNtPPH&^%XJ>74`e1I`so(}zEC`uoJyx9}pTVeCgd0Eo2 z+rUb1U2RjwJlRhQu3uezWBN>d&IxaLb{V=8;_7`XM*42_f?@pbA@o(*OA}`&Y7ci9 z@JOn($$lqFx5uB z@zYsrI$7Z|v4J`C#0{?Ugv4YyDpv)8jVP+j;*2EfIBHqAS-w!Ao1(KuYHD8d=H>69 zeyF3KKOoq?C#_xs^R-N48nS_v(3xL~Wbp5>X{jvLtq*Z$$iC z`yM}_Yg%>y5+4vC&d3O6&d0`$FSM6WVDHyFI^V!u$WrGx|ME&Gfk6#=mPB~|a$67% zDl}uE$vAuMy>I5%yLMUDwa znLT6SPbs~2ry*DIZZd=o-v2sLL@Eu1&9T&lv}z28ivbtfw;MTvvYuGDt5Ph}jefTA z;S?DT+h$t^?-x!f74SSF3ea@s=vFoMRqmcyF*_p6=HvX~SO`}6=|?)d9=wo)qvM(2 zs`|Edv<^s}#kcRxFZKWe**YdUlFS!i+7l`SC*wT*P5P!`e&;=AfC`9-8q44ZfVPpx?1y=ORUc$dB$M@gwFCf4gw26wMrXVd{#1Xt2s76KS(scHQm)?+ zBu=fH?jB4IUJw3d4(wx0TPh!o_A-p~h=(LJ@VbG6h?5NSshHZF>@4U7W2=0S9Q5hD zxMNt4Lp?s`JNz})`|_CbySA}Hl!Em$`L3Y9*e%Hw@l!yi*1Ao!E3+*y7&ds$o42RB z?6-dit-#gV)8r0s-STI_0VizghPZ;~6WxG>F z-;f1yqcfZpS}!!N%y+u2?vA=aY~JiJ{~g8YChT9$!wT)}(+lnTZD$uITz`gxaXBrK zO;lwqOm|!{`_+&dR+^t#dR(Z!2hWUYU*-LKySwZ`5^!;&$tJe{JkSS(wNQ}U#pa!J zj-YtXKHxSr50YoaGTkSrb3Q;c5cr#`ORKLrEXd4w+F{MP+nP?FOzE~!iL9+;vh)7B z`!UsZR4fMo{$qumns4)b@zqIA{Qb*j`!}ENC!0y?)U>E{LubV_V^t$vvu)}c)rgzc zOGt`i`|JMwBh6Nd0#>LU5X0xx8`-q0H1FPl zy5AYLs)0+_2b74FbF6@Xj7%@^u79^_Vcs8-REX#T-M$7yCVyY9rKN0lF}ai-*!-G| zesr?Qf-YpaOVP^Ooq0R$;BI7=JXxvSzxAx%FM*Ihm_m zkM`w2I?_5ix4EH`7OkH;7GX}WIex-2tNET**9A0@jlkz-Wuk)h|oySl89t^?*Z2aUD>^g zx}%UmL~Hmv8If%sX@DQMO;>36y&@q!8`l+35!WdfWxh; zZX1qxW~=iH#cz5RsTr%@-Ck4Y-0xR}sgG@3f5?FK?^lBHQZUN9X_V=N;B_Gxm5h#f z2R0kE*7UkzOX?dzk6le#Ux8i1jYDMRTNob9TO(g{h!*@6eJLgNU)x+@+MN6-fIE)b zI=Z}VhD-3hP}&i@88BoI*ROZ1r!?moD)q>66T8c(!Abs~y}N?>j4Z6Ig1lHX1at#3 zOu*G{ugm$(!t}d1OGjhriV<>Iis}t{?g{lDPv?(_&_T-Kw5qs? zMJZ-?-(kMW?dh9aS+Z03RiT~9;VZE_hZ)5Zjym5==t{R3z-zLkwp+It0f~R^`&v;t zkftm)P!_o&w(7SuUlCa`$h9lz+f%-B&~(Z(*XpsDvaPz`{aLevZ;nJl^2XE49YFey z2smlJNJ@R&rwEqQk@tF?M$mGI=Pyho_RSSFYnac=EH?%U6YX0 z@+9=Shv_6(;E{WL)!=8RM*sI^@_gwyZ7)Mvu+qpXA^%u?7rL&l3Z;0jE#GqFVKP~` zy!RV_fdi2w^X|pVLgAVJ!91jH*rxmeBn#vHkn%pFOgZiryRhUj0B9CEJ4vOApMU(Chk$mdA^H>eXPykhU!n$FH%^>yMB@(bm|q~4OdttCBw zJ@Tn!Fimb`)CM$3$HCXA*(U}(a=gz2uWGn!9D~cPV4N~$4ia#AQmR)2y|J0Xat&`~ zfjun12pa5NpvIe7Rv`d_y}-^8_;?x^KJm}0^_{2RPw_WG>2s0QG!G4b1LSxf(e549 z*T2!5GMf@9)!m7$P!lr|)|BR9b|1!ZJ)DlvM#XI*evEmxU>M$3RE~E1Cvgt~K`_E1__G+Z_5bZRkfN zuu{GU0fx*~Oz=?4T2z?q&_MC}l3|w?M(mKKDoP3&1}do{gF)r+yhnvW0R`BsrEaYs z;=ThFFDGqQ;Hh$1cK$--?)@(JqNWUb$>3Qs{D24{Lki7sS7j@)F&R&^ooL;!zqJo0 zw^T`MCl#;^6-e-Xxyz`>=b&l&`pGCOlzYBC=M0e`{(Z9oB~y3fPS>Q1l1Qz+?iT~% z?Lta7VVTP;mvv;&mkg8+%J9WatRqMm+nnBCyPwmE@hkby`X-bAhMD|{%zy5?-fkoO%8o(sS}9v64ZAr_DazSV9B1-iD3z)ZaupUJSyFoLpI|0O>?} zVXi2FT1#gyIBs2rw@M1M!fH-zU7&vA4Y$F=BBMJNrC@+Jz4#|5#10bRB;I?=9Iyqk zcrp@uHV_I{QgN;&D+J!$(-#`GFkrka^an?FKZJ9;vT4<6jy8bb;Cc#VAuz6&o~u_7 zmbUR1!xxm%HSn-)A22MqaWo(fzckjYx8qVAoT+-9F!yYaJ1AA1{J!$a$#^eJV3rf{8&{v+wu}?_Z`lbhwZ@wGm?%& z+|uDMhzf8qTy)sVt$JW==4e3z=871!C?*HUv`>xnrLx6cfX;tzSpaC+gxY z;Ls$(BDQ;Xzp8#rnsy7B@GC?9Fsp-Qna1VXbDw?x1o=}pA5epE7ce34ZxA@n7-Ry0 zn*rdCBz0QndObB*<4ipf3cC^r+6J8pDzyT~o+^zew@_(FDSLep_!)!2e*+cY>M31F zfb@9cU&QE~}g#31+IFs34vVSP^D@XhY+Bq`99#Mjn7EA8xW8pJWU*T@rk5K=sh zmpmuXhR_Jw*1g9uE1O(u0xQiYKZ%i_{+R*>czH{jWs#7#Q4RA826^&=8i7ICU4=((bf#tYqDIx+``iBF^PI-x zg(en7K%TZXe-pKDLiYC&kxKI+(Kn}kD8kP^JN*_8gMdhefn0(y42Vruk?Jj@-$K=% zjKwb?lkg7VSowLaA|{zJRF(WYi(0a8X87dYdc80Wf?Jlc=MJNI+pOBBG+Imzqt2J8 z>b6=Ni5TP(gi>u>PV;$+cM~XG7tsC`Xfjz>FZN?7eCqybpDlFjD=R#ATbKr5^>T51 zc&8nzBbSJa!Y7HFCCu9ii%;q>8R??r_Uz1Pn%n{VDiNA=SzGE8>d7)SYH(1(oFF|vT&D8m=o=Rp zVkv0oel`B^p|?-J-d+`fXSG-P(`QTrX${pKyx#9X6*3isfA54U}3w0m4A!N zNnSpYQpjJ*SxeNrk4m$NDiqavJ7kRlBES=XF()r@p}?U*9_!a}j47!oD?;QWmHiRU z!(}sJD_a5`AWr%#aL8vg)Zx)9o*Lvrmx+|=VAQqLn$;?gZ8g-b=JCaj`pyT70O~dIK6+*B0kfE2>+7pBf^&wQL zFlBO=Xf)~~P1SD2NKl}CwDwI&8_Jrj;&fZivtbzy(_!KVknC5qMa&vkrh3uGj==#9|DATUwV{7NqTJ?0E&EE4Jo zR+zA%g_vNvGX=ORk1u4qv-dbT-pc3;_f%7rQ`E+SLK$0a7Yo|F>4jrVlTQDSsc(*s zV!sO-0z{j^~`jX5cfq=Cq9#REp$uz;dkxEOsvA(hW@Jw;Tj4UXGTfmyL>_ z-q^|!&S$h8iqSsCu!V47^)3WIRY?|#A=KwpEwjdy*PF;wHIx<<6Q%Bj>3hx--Y$KO zrn8BhL18UC-{6A<^YZ_9=rO8+4!Qr1I8dBfJcT9(dC9OZ}`2A1|(aIR6sCmifeixe01Qnjvp#%K* zFn*ltF3XgkW-?Ug1#8s*C213G-=w+iw?a$`AtC`iaS1pzcFL;m{8W&(4C^QTI z-hozKmp37Hm%0HRShk*~t z@*s##8;2^0A;==*Bj3>xq!+eYOW3S%jbD8q+eQm=ox2MRR1Q6Xqq(edD_+RtkN7PJ{jyGdt~6ptIl|IZg-q{u5=X-Hs6 zS>a+3Ugab5XAB|tX18JwpG-!*>(%GNLP&?pLHFI|+kuqD4n(Bq3rI+vl`K#t_;l*qda6)sVcoqAUwW^3H6bcOECsa|9&0}h`0P5oc-ao0Q z^Ur_o!RX4Cooeg^R#%j(I)1AxKE8!|q3nKfu)aH-Jp4GzBWIxR`r73C({^zw6@o%9 zrjYmQuF1>uyHZu7=FSt$Z7*%Y_R(;AIU@lirRw?F3PZV2Vu`yW6M(VrDoF}Jrk=_kT^EWtpCk_+)UiFD#6HJbn zrD`wlPlb0SJkfhO{Uc=UnBrKGv=|QgI`f+DH?`7s!VwqxEI}ZeTn#iiLeBg>q&YiQ z?p;bnp+S0U*7y5aB`PI;9~FRCPOPd<`lZ;G1g{#^R_K0b z0!Zhur3iXlc*oB1IgP(1XM6cKG5p3c%R5wW{ThZCm3EFFSov05?P0gCImBwU@QH1ze2i_TIQF*g9+T?y?L z*}04EjhN^l+TtpnOz81hw7lt$#$s>t*~zrWK$&=Zs@WrayovaXy=qK&HOu%c!8M0@ zI+JqQrPrB%YS4L|@2A$0Z$f1gpMYhYA_qjJ(F6VrwLt<0YbSm+=s1t6s*fdSOVLrE zmI)-&u4ZuUJ-*2Dc<3xSj%Dz#YM(iKzhwrer2&|SpB5UWIKXgRRwk#rlcUdDnkP;& zT+9%7FV}?U>AfHKu3Un|Y?(}FwXOXLaj|v1%{7gjI&n2Y*>mcP&C=Ol{jtH`6?u+9$#p!_LYJA=S+%IFG8Ohl8#~ z>F2wC{zn*fT{Tc?7W(xJT{cYlkJ50#e7HRGAq{Z-YCh$mmGV0DLX^6ZCI$y)*-Rj9 z*)2=iucXGq#$QKvGQg8emeZS!tsb!1T%O0WF>8;C{nD3mAFNw3}1{Iwu)y=3IL&s`_ZH7E*Rx z=rpLDEgYzn;Xix({q8+0?i1^nnEG1Op6HrwwkDnNT35T@LQa5>)mk6bj5W1!I6Iy= zfVi8+ZbJT=hp8DdCvCoWVB|*k#;>}nTf|82bMv?63+*#+KigBK@q>SDk6R@VTiN#P zf5a^oEa(8~3c6qbLKTo134nmEY#D^~dx7jCUHaq(;>DX73A2855sR8D`FZku8vq#l zV?qRx`^P}H`v8Y;5eC9y9(qLdET=> z98t=w9BOqkq{$%MDgJQ-ePtXLaHwy!i72(`H!w;EtJZa-~Weq^@5_FjEN@@<#=86!wCZ^IxTo}L=Cg(i&c3XLw+ zfA4J|Of%88)nS${OSur0jl?J-B@X!YB7y-9V6&d3p!8g8{&4?Qs-w_1f?pED(^J%Q ztNM8~QMjm?J+97GrfkpGvqjWg-jk^kuxdc?e1W6$;UCJfWL#epR78@5+okz{)VXxk z)#7z<4`Y%Hgza#-7{=DJ1Dk*lCjHc)WUqsGI0e#(t!ODhEmmnh9i-+soh>$bK2m%dj2di^1Q z59zKtPdFK^BWenAZ7(a&=2x1npYb%39)wbK%GhjY^9}SZc(D7G2>V{JWH zoWlesFfo*h8jV)R+^4b;v(o9!wZh3m*HmbihT^wUsOoz%_bENOqXbRe)0m__>|Ws{ zJND<+^MiW$cIsrQI>K4LB5u`Xsy>;2J7jkJPwJ)6q%tPo#S47@uM~0d1BiJ0a|AT^ zABh^${93`ktSp}FC-$hhfr^FgDF*CiLEosWXa`Ysns1R>q=j-^*YvfPZ zF8?gq3a7ftU%*20!b6Vvd>T!i!rie~d5q~|B1%C@!!q_S=#M_5$pG7yk^>Y?aZBSX zUXdWL^RUa^ipt|)t-r;etCRMbzIQzhz^m?jhrtY$s_F4|>%s<|rDqD&i(?=|>_;&z z$g(LkS5dCCzpW4p`8SynZ@jsjdaYFs0pi^b2L>FB_%u(YY4B7-J$xXD?>d*`L(q4d z#MXn)_O-X(vcOo7t~5?DBQkO|6lAJsySj^sXOjO4miwndY{3$*3rjQj zbgm-OLiFMHOOhsHA7H@>XNY0 zVq>#mu}J}(#KjFBq9K}qO8Lc@3VB#vImS{0T8%`|wy%I54y=k4%GBGw0~PEhC^khv z*gw4h`(~^tqz~Xbl`TSLAgkT+f{}^=EQk{)AVL-WwwqRw_lCHld7I&tr1$v>#QaoJ zRrUidB*;Pn$_EOACmp3bwa5dUPzVrXaK_|vkDa5qK=A%f=PL9#wyUO%W%+gT*iVT1Du;cXD@bDs%x4YJ*1309UquwnPGQ z4aZFb!r)wIA38mJ+eD4W2IB=<)E1pu7H}5wYs!c#G>ymwU|ODE^@H7LMX@cUj_=1X zI^Z*=Q!Ym>Xf$f+R2reCV9DnL+OeM=NAK)Xmz!*tJCfshCV9}X{AD|EG}aIJa2B&P zV|KKX51t=sXUvAv(#k(m%R?>Q=XX<~*{t5PI>ajeHu2 zAci-SIzQVWAiT(!{mwDfho|uuPlrLgAtrCwxf=~vAI|8vw;q&h$5mo~Kc4M`mp#VJ zUVGgGct-6}sC$~WO~+m3#a&VXE(3S1&4;TPbH}<%Ny|;lf8RhNnGe4PVHx9uYqh?A zrTu&yz|-3XF&uN#Tr>BJOSzPaS&npMbsh?ug`ch9d=YFJG*c&C2LrvqUAO%woKdh^ z0CE({>|H6%R2JuHaLLj&Y=Z1`e|#A4Za$?OW9zIkcu64)Dc**N&$`Ph2nm{XGqQ^K zcxWvjk7uH+71RIp{5NVjpu!?UA%uyd-_ATpTjEB~YE?)f8Y zghmbmJ~q~Q#H-#F{^p8nZ1v-CtHKFDxxRre6ZG+@7@C?mM%>=>(GGO z-C5tSUzhs2nzUXwP}?p4YT3S{C0MNJTTbLL@aA~43KU_MgVP*AJcd-ODJmyR*08Cj z){Hq>2+|u1f?)4M2ePk6!Bsa}8rkKz)~Ups@8i_(?lR`Hy&g&qx}^F>;|5sv83n8+ z+V7=v;8ftyA=q(g_R#+N7=!kDW88jWf|te^P$gN+2oXv+dS2Qvf6KvAp@V)UQ)O@$ z&w%I4nML~1Cj7o4;ux1sKcHyiXrp?13wN`1$T`YfKe!)tpK_dE89 zLEh-3ITj3T{hW5rgexPf$M+6yH_XYwE0N{WW;Py-k19;ef+Eu9(Y_Tg;JB!w_X<(J zV*yNfdn|UY{_3^S*VYM8@ZZ|i`dER`(ZP6?Cb*M_GAGz`ii@eny*1hUJCInj4)IeyS7?=lnlD3EL~=1g9T>*qj#4qpT31T zvBxS|zXN)LbHimeGRh)(n3R=^;kcG6b?2fFnfvMw$EjuGfNx$~gxSDn>FlItSN(p~ zln2~Gx4{tgj76B42BF(%jM2oF<0De&qO$Whei}n<$^Q?}? z)6^{v1RAn6O^1bm)*3I-gZ4==EbG7ao`OT~-^rS-4<;~(usY3CIn8!Q#;P*icQgO@ zI481pc8&IxU4LdzBxN9+y+aULx<@s(aeV!4=KHMJ6z z{q+&0%x7S_vmrlRF70dUZ|jzLAqM@pSKrSD*)U+7;FLkfxJ|?f9#Jm?6n7R7N1MTdG@}x46!FB>v0ch@1hL*>xNity(5$ked&h%ykwrC|p zl8{KT$oRgMz0bWoJb)Q`p0CF@vGO9|OzXEp9)V`K-^!-doBipjb%(|a&xvCDemOD| z0+#5gqm|*h8v%bik~%ROR#@nSh^eTlcXDSm#mR6QBU}dvKhHh3z6YNNd3pe5qG>07 zY^j8nz>sK=X6_jTHr4u1Gwke606o<{6mFW6#ZLLbscfOP+C|)t@%|9|pZdzdVI1ga z9f4CDe5od-U3jWC^zR+kP5AOQW7U<|9osc@^dYY2I}9OS>#O;g)}_x05z^TBQ&5PI zQ_KBi(HP%Bv8(3H9oXSS6_`UHveD&luZFtLiFGyjglnhp!*1T$F5S1n@Dorx`IOE( zIgbXQp!7_!$p!H%dQ2(b;bBry&juM|gKf8(7F2~{XZongd3u1yA1}7%LoXeJf1kvf zXsd`)kaUgiEsbU)DO>#uSZ!w*gRjE?(BijBx)ASsOl>$T#<^Q7!O3G$`O8gOVu&V~ zL$AQmwWM&hc<%7^ti+pa@%+wz3t-#oJerrEk#nIkUcd7IfRgfjrSx1oL(KI>{=QC` zDDyxeLf_U(CkM{3bs>KlE1^|f}R!=s%TB&*|7|JJ&M za{jC=Zm4#3T6cKx$hvIOY<2pU=S<4R^zHJ$X?B~#lWZ4;H0_6~`kQuO(y8cdxZ%7w z5xbk(NPB{y<_TmF<$-v{goC)dqvMu};cz4D6|>~hoqBqSVgwK*hKzf8L;9`tpEwJ_ zh2ObE9aYZ+N{DwZS%2aj#rIM8WXul@KU;53oVny4e#@op2#7ljIGltUuC%l5?ptFg zA4vWZYNe~@8el7-?NGR$l@v(C(rF1Eb~}e&TQ8tVrtni)n`)B|>)D!?4+Z`I)zx3N z#6GVS1xI?hSI?JgU3RB`y-mFvOp(i071HFuQ{PGTYbp|b7~NG=fN8zm>cVxk_}V)= zGNe-3O~3DYxZ<9dHG{(-UT+QBnpYOHhA3=+=fP6bRLHUP4A6T%o^yFU8`h-hKAX|S zc&Z4b>HdUTX8~;i=G$vZJvo;!s9HJ!g>c#!*}8f|cs!eK_K7=126^sC!rOjeXfaF0 zM$$_Eo0wxF`m-8A*Icc^?r`U6x<-M<(S;R;#T7F>(<)&WItTnbB-GSse$!IDYs&C) zOgFWMTD!?w4PP$p@$b{spnQDb+%Uoeh7#AAFk@1vOjjLCnQ;H;zheI&W8)PXkVwj3 zv`X?nUb47%Dt2Y?ylym&h##4@mu^U)x|K`y+@PQ5%P|{>)v?&B=t5)cmv+ z3lVIPEGXxU)yD}LrKt`yW=~X=r|gPK2oQ^`D7<>a>g&`yOxGs7a_Y*7tPRFQ)G0^` z%`i^oqIiYC2ltGiy@Jz19gWv0gbdyi!r&&6Cv4BA_ciZJs@h;zuTrUSHl2#ix3ZK| zS#B)Mh3t*W$Np`xP##v4XR+BTzvr^xg4SvJ%FSUTc0tTFi0)^mWoi6fGw8ONO(Pgt z&4p^59_?lSnyTK*YdI-1Y7B3j#_xDdC3~X=_`5#1rW2}g-$@3{FM%)01c#!g72eOB zy`K@0Wo-a|ai!r7r+66J>-X^|Rkcoe#5_)j{$B+Izptus3Jd zp}0V`!f%5!?IH!FRVC2BAM+p1j%ubg?e3`&?_6oMU*A6QRg@OMI7Nmp8Z~;dgFVMx zt?P(%TC4>RQ&cUh7FTa$Td=@uGcB9uEt(cnRJ%HSyB;nE9of~E@H1h2C5JVu7J(4- zbT5#-B8qcf6~I>|*ZL~t1IjA=F-sIHCeh=LisxY-BmTWl5=?A4y(w}de|6^M&ffaR zR2>x0vJ2zNY$(=lu^I=G>weKWlW@}2OBo4*0a7TcFm7j4soy2C?duy2EX*Dzd+R_J zOm`khO5AA0%O+nZQxmd4E#Do2`n4he71u?g4W(Wc7c z4A985Zvr?@O0df#yjyk_q8ZvuH&hc$$f_|r+YLYkNAFVAKA4^2 zcHvRy88@A95ToKFBqvoNs6i95r~F|$a*f1iYH}yqT;AHZ`*{<*8hdq-rSLRqN%VF} z%5z6=^*jcygqhRv7is&>Pz)^h)Y`J)dIiA_%Bx(%bB%PP8-XQMo z4-R2g(m#7GmVQWxZMXSueV;Rtn7wx6=q4#yakO`u4^>q-SX&*qSpadkw#VmFuYcMa zvN`MiX7%V*x7K}Rcgvd&8w~>OcsqFq*=2#!D@G@!r}9k1A7gQO*{~kMu`yox>vHw^ zgaDTDNE2a6t@9mIAT0{X=%&hKdP&S$-3lGzR;SE#EFvrZ{(n_FFsX3)O@PFmj&@pCk#ZM@w6fF>=m`o z8*>~p#{Hw{=Z`+G$3XfIb^pZcSbcnU54!&cTC)3~fLaJ~J&U$LDPD*{g4)nBa}9tw z#NDyBe1PClf`eOzqS}52sN5!sF%I|@78i>mDpKSM!dc-);e*#(J>>H4aTK&;|DM)+hAG557ZbEWim1mwwe~sv39T^ zdT{XF>;Bcrie;us_qV$M;kveITaM7O6wStz@9=Wo>FbUMbfuBMT<* z{cdGceTI$ooACO~U<+oSZB7b{?f$(lGAQ54uK*dEvU_rCDSj8Jxs-YKrjRK}Vtx40-RPnZ5Qt&_aV-VU)_u`i_t%)-n z=N2++F%YAVUp`TU{r1WHuz!lZ37(sykSqI?YI{?G--RqsE#K)c{=<_O;zhsU#1wG| z1)u4^l)^A|Kaw0`zpA>0WSD7>MsmK|SzCeW&X`iIOHEW&a=v%|MdJ-x(Pxrv7Z*np zBk~iwvdMAw?FLOjsNm=|zyV7(4N)=&M9u59_sPI9yM{QLRX9J-n)J)9{iEkVK5s5n z@TP*mi9@zZ!hCJGI;NN+Qb}i2DPjD6g1vR8B!|cr6@42IMrl6x7loV?5f%qLZ#mWW z%EBijU>`f0R$CLS06{;aZ~=)hS^1d%OUA8$vE_a8aF5?kk%b1&<2r|l@9J|8E|BK9Y-zRZP4BO~QJlIx7K z&RgI{iyFb(+@Gvt15<>YzdEk5&2yUvuzW0;XEs-Qe1jDvPnvHgJ7PV%1kg9UM-u96 zQ^Ro5`@{bxU3-R+;Cs(D#(=h+qoU@-`FJL?-MJzu-}&-xP~+B2%-KdQnoezd5VwIx zI%YhkC!mWAS$x}OmOpjOx8X%)|Mq=KF(Xw=tpNNLGMY}Z-R(XW87#^&~(3np({n9EtPRFImy@Q=k!5+ zLEpoxvN6$y;g0c}k#DQMVc(4mLrT2!`oJs4I5lw7kBr5SQN+(KBhKyUPC}fe=Kqq4 z=B+~-Na=LXjYn}j;&o@+>}_Ywh{J%Nh64G39d;7BP8-i3Sl4TrznU>hmJ_x9pD#e5 zZT8P)8!AqdWY0Tg5ZjRUVtYE4BwfWh#EBN&i?sau3!X%~mSD&_l~oDj_liKJ%>r;b z%Y@z@Yg#+P0uBD&qjP41{gDr};Vic$bm!9;Oip%xX>djK5FN}RQpZM1E4}N}dDQ># z(8#s60ZLVKmt#iUw-oOHlw}3j&NE>5M)O$~3=K-B(xc2!!k>p1f}dBajEu|7Pp!Arye=bO%^OIh|uC zJ{!$0JN`7`OMG9&ODvj4#hQn*OwD5>mDQZs(iuF(` zZFf7Eflaxz|lHQ<`=Uw>poVp?t~8 zM8W=vm~BUEO@CbeFa?3Gf}M%`e;-GjG-c@6@L79YbZh=|rYU91I4D@OifGYjKnq5_ zU8DT;%55eGz$0E=XD#xE04?^K5DR8e?SUqW4Tx4LT@IRGqgH+eiK{jmjFj&0K0LLr zD@}Lfk59MO(dr-@cn>1L(!^M%k{s(~qT)VPH|-EpV8UrI2&O-gNwmfOrtoE2+5rTE zH|ml2CH^JIoQ(X*X|PT5+>4S}w^-8Y$#)&%Y<_^TfPb!1hG}j?W&+bL{?M=Mk20ZW z0QY-Pf$$?Z>%Q)Zi6FR6Q4)fM74J-$WsVYMY<-aGkAU+I$NywOFRb!)3{Nu#CAnbs zIl$|}8O&WefjC%z*=Ze`ItG0v|)oPBIo3Y?$g}l+AkO6fz zx>Zm+bnAn)DxFXUgHDw5@ByX5H{C7>udMA=$mhkXF&u6Uq)8nI2_H<9{7E-WY7~Ot z(^3xq9(K36x8$_qXd9`+yw>P05i{QOVW^d3aN?0n?7^LKMabkP*c z6=mamb^QKznrd(ZmA6tQFw;s|m`tHT@1L)$o}ZGh>Zv_-&wf>U(~x_rX!~s%=cn#dPmA6jvS} zk1kYRUMe0Q!r+p7FpeMQgq~}A`MpFn{a`NK?k4&cOY{y6X$}QnUfI~iHRMwpGNSBI znH>DN6HMhdjar#*SH@FtOhyYEx+K?aKf0*UKu90B7iL=1%WgqapFjAwR}$Ek?Fv{b zUet@wXu-lH6xWgg1wlXKoQSd+rsUpjn4vBm zxD*c0)B-W0NNVcXzhz$(X^HAWZqCpk$*g*bXM+Wo*Cp zRVgz?>-!rIT=4u0gD;G&=OL%jLb7BkN0O=t$e_-K?YwjHuU<;c1#V|ood?Db*l>9I zvEzJ_LrfogMgBNTR7OP$(ITbX3ztf>Zd^50j!S#tLMS)56`D%19L;L*V7X5%A)%q8z{&!8O+rB zADsb#%!hVNpb=e=&&9J(o|%dMn*5l`5}AIte?Xu`xPP7`q8v-r5CH)vRh-I1Vk&Ju zTtET^%owl=vCo5-?CcCt1}Nv8xSes>Uv#V9>EHy8Ig#(7=u60F zehGZaS@0gC6~$40>um2#PBLM)z|0lzt`gV zBt$~GYGycwV>c5f`36IFKn7TVB(F`!616+{x^|I&CTz}k9u_(jAZX>U(l1s7Fe}Jm z_YL5kzcI(}Zv@}VX_N2J`Jw)5<-|0>RDP(;o1`+S88&nfisY#_X0Np!Xb@P;8j3*^ zvlJ!~A4DHKTnSRRBJKZd8!FrA|2BXV-rV&L{X_VM&5M9jMCpS0o70u9h|*)x%SFut zX^<>@(n696qRv^+V5AdTL~{DGsPWI_eozo>i%m$g6!DM*BLo(I2FC zce}dTAAVcI7Csim((*i_V{x*^@I_pa<`-u{-#+Sr@Yq=EQ^%DKUr0tR>cj*|%Q3ez z$;PT8{Gj3yRK`*E$=)vG)*Oai&RgqFEgP9hNdXXSSKn|S(jb;VZXtz6oL`uax#)xm zTY{V4^Zt?dQ9$~oC=B0L6E~iNqsGiZ%CwvD)0F`T5d8$(8kHq;_A38UvhpS+dKpWv_OIKRCi# z>TLd`@+bPHFP)wVBIn8^3QFlX?P)Q zRe4U)dcKDp{u(M*+3Y9!Qm%$(5$vQPg4~89Nds}^@bUTRbXrTP#yOGsgrBp^KdpL^ zGA@dvSHZUu54933A9o93kF(8|pO-%_Ogod%wi)efWdm7L3n}I2`fmHj-ZHu0Ye6b} z_eX8HyD}V6%h`B6g1U=-qmp?P<5F`7QNK=)`Nyb9Q#er{v_${ExzL-rt5B&q^};F% z93Qon97iz_>yKAcCh}1Oc9sW8Oax_Ji>i3en{=2rX?MDik;r&{6c3p+yjT})$v#2A zx=1e#acpiqJV~1`i}JO9p$XF0 ztfXO#6nqZM^2Q55R~Fu8MYZvK@5R19d_*IG(`mtH)7^3Ikas-g9HL8-Y^7PJC=6b@ z;Gewkoq&`0#wz=5BQq3zPGP3AXd9;`=cP}3$7Oj^(|rTE!&>Z!o#etO zZl*QUB}}AALUM^41teD89nRBb3~qR9?$Y>rR{N$3FPbhcokpJ*E9z`MrD|5}Y%k_# zVF6m*%sf{HZ}y0MoM!ix{E3o{)sJE&7dtb7p8GC0`u8iCu)9y5$G#r{qf)3R@ftW> z82ie=_*8xY!I>kX9Kv`gQFC!%tSY!NQmS+ho@24A$OcQs8SW$|^R05c z>ay7L>G@Y2J*#HDU{Zixvr+nWGgM^BQT^#O-_u*0@~iQL!>3cH(Z*kE6$D6rk8dSm zc@ND{s|`%S$%nhEJ#x8&HzV_LTV5QCkiVm(zmD~2E%)dO8vsZv-9~CSb5(uoHyd}x zqBE9!Zuvrx7;NwzH{0Xsh2r?;Y6@~k|DuKFv7-zmy5_?e@&e9=(l*I;-?ibinFL)G?J4Ii;&!x$aooepId6V z=01dKzx)1H1ho>(a~BCTc{?e-psctk2KEFafz&ww2!R;p=hT|aqJ7?{w-mvkf4Q+D z1YqGwgiqM&=RD6;*`uJnP1;}^vHSjLAO`7aObjEsmMiK5Ypw51Ker}s*5;QtNIUF+ zoV6=f>=FFq?SfIENU-DdU_W=#<;kG+d3{yhmVkHK! zwpoO(@-6gy~ zg-OE?0k#@yYTj8$-T{OMJ{R{|-p(TA?mFlzqPQidqibi;)nqE@9$tgC8%mL1d{)m} zBG9q!8%!V;9^*Ogg;?ul_UoG$c8WqbLiPSVaOgwzom(y^Md1>4tNs#4)#B!v@kg>! zAtfuq8pl)2Jk8{s1v*|lBYC`b#y5gZ(AoqmoIHY3F*C1IZzUBoYsQLaYb%eUHYV6m zJHE*>!6YL?ul^<(d=yH>^<{XxR2ptBArS6JDfG56)xQN^o78igwMb^JZALvv9n_d; zdSUe!HON9gK7QTCx;v>3k|b|tm_f_^r;!<=I3$kwR51VgL$Gq!CWi3KSu&e*_-`8c_`eOyHpRD?#cJ<6 z2HaX&-+lG9i>#in$GJwJ<@jfvhx|WMwFnCAA?uH`JzsD8kG)sZ4~TDV3Ex7aktU`1HHlsrUGZr244aZxUogJA^A%W8 z{0X?~tB=Iob$cNGaaTSfL1&x!`N#?=l$EjeUAb%6Z&p2<0+e#uoTd5yMV|jHy~(6rp5jhhj37#O0L}%%J3D)udr5_15Cz zlO50+3DA2vMfBTmewzN-s8O{Dp&7^PngdL?qW@c4MPG=4ilFsoBSMec?KqKEk(B+n z<#m)&s5-1j9pZ1I>lfT24ISo5mh{Ok`IkCP6{|qbY6KH&vK8ubl@v-w=Euq#mbvjTO z-ML5Px^nbQTpMYTnPMH^2~2olkT^{&h8A#S$HJ`s6;o4da^dnoMe} zdl4&8Y$S4~>mTNQ2`wIkPfT+FKDL^R#T^8bMxJu$sW?DBBW@Os{2cX9Kx^AYJ(Jo< zo&J!<&VnUh6au$r;52`H;$pFr;g0QV$ty?^2bq5A&l4Z5@8DIomJPT0MpM8%x(ts@ z7$pn?<4JMLt&@c$w`Io0sDbabb&*@|wch|F7aJ;nynAXqPwzufyzhi{0c!VWx-Pz# zNNseqBu1zC&R<~K$=9A!=dJB`Ieds4S z`KX;#Nt8B7{F8tKv;QB3rv>eLf~#nA*>R82e88GK#H0PTz?KOY5AgBAdBzP zaDEd0zB|u$RHNI)pdh0r$Par?gNzd$LQ*I~Ft0Vv7$v&@^KpC8UBQ&WYn4ZjCWtU9NSgbj*_=iYSRSPGWtzY3Y&3e*#G7vC%W{0$lJ;3P?2m4 zF#(%FmJBtFJY6B#C_RokT1ErM9Z+QhbV0yatV)wcwCK3mDh2!7&Cuk4o3&Q~e9UHP z_1P`o8-hA6YvSdOeh#z*z&cZj%#136tw!$p*4O>EUl3&L`TcJL&>l~VFEI}fD^?3R zW5y;dCH|H&xkkZm3#6@XQ;7<`;4aks&_$8N@1+TpjV2l$qZ+yQCirY6Qi{N5{VNAH3E0ZG7Lr}>^yDIDXOP&atURR(JQM>4LKP7<_`oJuolu1XZDL<0s0ikEt@5g|p zCR?l}+H}|*`tg$@O5bF!^ojDxWJT8*Q6SvrtsrCt67+^dX?V3U2Zza>&WTLesgB%D zXslV)&;AZWwjfkN)M2yqVW!Ewzs~?H_5qCsV2Ao=tNmTGqK;Wih8PoDYWW!2C$?imfsu%mDbA9z0a{!gkXOH zQ6V)Pax+G!AQ@Ro7Z@czIKDg)dR7WF`-H9te0X(<0;=`@t*M+uS6aaSmK%XHH!xKu zU$m<}LGKjFr0Lqv-Pu-2F;@M0Q#ercND~IYZnw>&h+dm(8C9_V{D&GP4IXqb*1joJQ5sIuI1yp{jQzugz- z{C#4Omr_JNu?xbutdI!*_Ft-=zEx9v1{F}{wEw8W%LpA|tP>*$;j@##O^GGJQZ)TW zN2x!ToFRJAue>JHPXtVMSz{y|JFnT^DF;x{b%BI;z_-f?8<{S4d)v*ivu3lCs!Rn~ zb2`pL+^557w+$?IlEUaE!*_PuJ?9K#RnH9-b3C)A7OoadobrR_%8EDb6&Pf%`kvQc zelB#ZzUmE?nrp4w%yt>raqp@nc&1KgtBxlNTW(yr9#2F4H!Q zlLu9o;Q4w#82>SA!6$_Gd*G)DH9!lu^~xsGKf^c&qSxMXo!L$dLU3dOq?@Uy4s6A} zP?Z#_>E`MRos3G;o^5o3&pa%@2H=F$_e^8|z7ye3!ouDEI*o6A5{!_lX^cE|k#c-vxXlnOgjWsD6mp3e(s*4shWVT%ZH@9BTw<-Y|u9A z;rV*~&6lqEe*6q!dnA-Q)|D9t+Vs-nuhG1Q(;{_DMz97y z(NYBwozw<~xrdTDY_tT&TR8z)%q+i1D`eTbI}~(#wv3q59%uo&gMTza-_NTq@~;jvh|84R!0&r&rRlGeXAcF&b+v`YTji6YQEzTS+I;oolMS#w<@H{obe zPD9FbW3=_cAPqPs^hM#I4n_2UPx{Soiha+jc)uQTf14~RR=`WnQaj!_Ky07j*f~6p zYzh^36}`(mM&-i=y7DN?`KcIUF-(IqE;p^sx>8azLECSXU$SWDU+KBbuLU}Z96WXj zK*fub5eo6OBy*NVm47>MBE<~v$Hqc(y>Q7?7??ITm8Kd)C**ht&o8^A!^XmdYd@h_ zc6Ql4z3|r+FL%ZWj$Krs(BLdEESub*JIg5?Q8ATUm_NwDVfKoT&(D-mN~fUhK+Pp+ zp;(P@%d3-k@TK9H(){Tf4e?UKHepg*`CJMlpkPxumO znw7>B(bZCY6!dAQnYnrWNCMX@IZ#3TJnCSX2P{|-Jj{r3d8jW$j)b%HkS(jj0)C(k z4Ni&Z?%wu`n#xhh>VU&_N9yEY`%p^yI4C9g8(g7wFsML$$^wv1uike)D7kx>=Xu+b z*&V$*7@mky)Ot!oh-PUXX|?k6Vbc{_D+EQeB2I-x(gubGk*tAM4v~sA((5BNfg+Pb zE8J%qKSE1FJsVTN5mUU4FBFNh&m04eg_%hopF}T&$tl9pA}jp8i)nsF&%YiZGxJpL zY1g)gN(VZ;1rt?~t7g#?fr}8i4YtH9_v(Th=MjwK2vJIts~H^ZqQkz|dP#!M&T5=( zjm&iE)m=$oR$MtKLX%VHvH(;Z-k~~5LRh}ChrJteN1|2oaSVP_NGsr2d z8J-vIS)YoWbm&hWFkKm-(8|0rn49{q8oUGEAz0#OAYxCM>rTFo=_-#DCMmn%UaPU` zIz|sjJ7C1Ha8>dKb{^|eyha?aq{*vK+yVdkkN6Tdog8PA+Le|8rF==b=tKZ8CTq9S zfc?t>J&ZLIh_CMA+LVM>cRt35UimB#kQcquxg^DRZg9O)L)FytgZNk`K-Zpl$8T1b zZ}*$x|Dov{fFx<6t$U0e+qP%N#*S^lZX(9--Mfq`>p| zbt5l~9Q35&f=S4m%p%K!Pb7(k7V|43H&wnLeQSKMbqk?-<+PdLXT`5YPV{ zqonJd4|+xoAy*Zf2-plBmqa`_$VCbf8;b!wfur)jw#?_$K(?K%BibBY|3iw{UAxRl zmL!si%)&w&)4X^xwaD{TbOsYs(V-bFq7{UW(+etn_gw${YICp(XtP#&jDQ<>kbrT+ zExp44>bVl~UNOEX=RginG^ za}y}ttF81@b?Po~cBq?i_^A#eW$xuK3|!f8#izCcc1}pkaS^Y{^S~GXg`&Gc5wZd4 zWgP>*W_>m%N(%4FvEUje|AjLd`o48sz}`4@>jd_b$J_mrhT$zgOc6U$rIA%p0bU!F zUu8nNY56&~n%%UDzex;=$kr_P$km=rL{BIn%^!*63*l?w4x49W!)Npef(&S_x(rZY zFaCgq5b)K5`U^NA=PIT-4yGFHBElAzv0r-1W$Fa;Z`6imKd#YPE$gJ4ne*%NJPpu4 zcso13Kwe-G=RubpLwPv0a=Q9FR!hmLC(Kx{J&7nMrnOn`+F%NiY)bt( zU_YV0&)mCJBQs-85#n-^WEN}-;LX#Q2z>gII67y1*Mb-7krn3lMOf8mNY zO|aH^`p*9x#&9%VI)&N+5HLmfT0-p^rT4o3=I;vZ_%vsYWbWJ|ll=Vdo*3m%(PlCd znIHNkU?#gFE`uwTjSbxddN{Z<{&t0b=lWwZmbuE#Jgl6je}OvMf_@D?fK%UGLMeDF zQ7yJG5Nq}Kf-G`sf@!Ydny8{WsZ!RKQr)W(1)tkRha7MS2WC_`-qvrZXj=Niyp;g( z-{}IE@oOlHtK9p?MJr3-;`hC^lO;A{*WC`xgL9O|Rv7uV4QcS5>F4zc9GE}hp3M-{%R@p$NeLn2&wtj$g&@z%Ue_fz&W`|GBVBozWgr3Ud zyk&i^>^xm^xxw`U&9uo!W+HX6uPdZ23AY6acBKrD5$tMFd}svv zw_S(t5yDOGnSYJhn5o@4BK;Yorh0q=Jtlq$Y7Ex6(54yc0Hr@Gt9vpno0g(14KvAC z+)<6%YAIiLV+EF+FZckwL-#0*IIed4p30%N!oPzmE~E20uhZtW>aq4TLx0|1*Y(BY z^sm%ZRFYR3o<5yp+!<3cn5xUl5Myonn+hmPbE&snF#xewG_vRz4b6*sV`l(>axN7O zO@`x=5s1Tuk`YkmV=mfef;p-bfyR(%@}r+o2IbL3mchH({pl?Gqj?mo!@>zDT*#4J z?KR{UsDy9u_DWS5|N*qD+IeYQa2azW@VH;D(c<2Fa8;Wn>PEC0YR{I zGCEe`A_;yW#aX@koYhQNoXm~2sM{0fc-klIA^{%+?s|3n;AG$C71ygG$q%T6|GhV% z>>l@Ug|(&sB)QWThj@&dnZ=W~%8V{3CicFy1Lm+{8>ePm0)GuCa=WORI`c;^m;h)SJ$6fuwmYXS)Hh+x|Oe&YM|Lyy%pd-B*-UBaaCI$&Gd9?hDsd5HGDcIy0 z+>#aqu3m1NJ3##P?~k8y)Ev;eyy$F{Y*{jK%6Kk);g+|3FMPgWXewikg%sGMNR>BsSBXCf zCm3ruGmJ61dzmX>Z`ESXIlX6UL(=EEXG+L+Awke0Ss|!N+Jn|68BZe}ISeEf3sjoj zcgIV)QooHk&ezY>wWSI0TKpvLz8t64>^-FWW#@$FAFCOMS~Vi6woigcBEG>ysYD;PJDExIX4L7I+v?i1Cfdhs39ii{=Mo_%2U z%q~5v_4cF%ETfU#p6Gjc8%{G4i-mONY##SGxPO;~yjygF44f)V3Ex-ij0t~|HLFHe93Y5CQHF1P`8|?}uHl z^*kCc2u1Y}cb%>4FQo2Ey86kqW2M&JhJr(yLpJ&;wlnS(o{tD&GOF&{FB6EQTF*OP zrH;Aa%G)GPV_>5jXFNJ5-{zidbLXiAHJ44xLpBOh{DxnBG~Jqa|M*-@J$r7Mtu0MQ z;aWK}Zgj`0TjJ1ZKXp25D}red0N?#nU-R7Wujig`E=|Nd+o;xprHO@&W}~3DCC$eA zjvA97ea5~{$E_Zm_pgrFyC#Ai+DSWGIb68TCavkDEq^#f74V?$0)U9%WJA3!)Fw~c=v+9Bq8P99s2aJ}r7u!!mHP@O+FyO*gD5K% zn!$@7wnq7qc(FTR0Tmo;|0(J3-93JSL8^uhfU9c5Ey`}>B} zk5xzbNL?~)NHCTl{_}*!lqP(kIffBmMliNiE2Gkaom{?U;{BYD^JNlo4F%0a(cZ;Z zm1bbIoMqdiz7B*u%9LGl0+D*xyS2EMO^&4rwaP*hwxoNcPjf*FTn6l5_q@^NTZrdQ zE09XRya~YW`Jut;9y}d9$^LWim;(KVcy^%lyL5Z>!@a6$4&~==7gvoA(57Y9kr@2~DFgi@-@vkV+r*^vKpGq{UQKRmk$@u$HGB2KTbpO{(;O z>uQrzvI~OFSi?u-O*g*KCSNQZF%)ZenGIN4x>&0H3&~+-?0=8y>f^T89S&m0;Qzcv zT3u@oqO&beR=7H+2L_eKFCQ0WhZq;Nn=o=Kh`3=xgve}YCu)+ZM5`V=XgSLO6VP=R zR>$0Y5x3!B3&%o5c|X6UJA!(dED3swax;JOj9`^`Li`Va_7jhTR;}Ic)tyTl?vt)D zy%PxQn36@*mI&9tIWIv$lA^vQpIz?)TQvLTa3~Y>>|Q{TA7jYqx0l4NCQpQhry(`c z`}M(ab)<^?cgb=7fVp;8w!%P5hOjwN*%dvCaf@pnuzPlzc+8&TgkZkq_CE+=$}P?A zsYRbeMQue5!&k$L$&k+)pWaK`9tSbGK(9FRbD7e3?lI2E&e9_jzUQ-$WT`Cfw%Ccc zEj%AHSb_CocMhJHa&qle?c?BICAK`YbO4HJX0s9vepX!^vlI8p4!yb1_ldV!k4#*xdh7J!a4(@M@HPu1WpG|3=o9)Ryg%@as5cWD z&n}H1vOFZc2aiB5I>SkWD6EF_73P1N%XC{*ivW`Kklj7#+JAoJ5lvu$o!l2#sOqYq z$Kf|UzpkqSq;kFPlCtQ}q0|nVXLx*V^joTHww{_ZrP8L>Z}bc=OD>-H{=gqL5C4rS zwfQiRmOE`o+;-lit1@+a7kJ|TJ0l@|A30W#@98eX{>8ne^t7SwHN$*%X}sD#Z`zn) zPsKR?8jk#Aw%A=a)!-Y2tU46OK;Dp9z(l*h9h~78J-xsH$IsHR*fwpAiHoP8VQ<^ZN4ae}1MV|m^>8%wGC@pujj{j>HfCC) zmnCWVBa>YGq>&h@@v#AjkthrTbP&ZK>uVN7>wgPiJavl`ohq?UPQJ-of46^ND$DLq zxC2?ny=}j@Jiz?3O3i&bKXIGTE|!-;T3a0MH$a^NuA9F4 z&0Bp^%sYhnh}LjuRs!pIvOe3}iOtRlIBt+2rwPWq~SKzQO{OoCy5(#>U33FFORU`uq4p zxrC8F;gX_h_eS1 z%>}0rX;D-CqJ97Mf3V$$j?oO+`)cr`ow1W2gk?9?t?CpW(&F>xS=YTAmiu&1sFEm3 z4#xlck0I0$ort8pzRkUee%ze<%;!j$*9}^s7hd5g5^fYueqSx4f_#@1mcUx7G#xN5i2_xTv~Eu}(nJ5R zQB=Q2k(j00s6XgdP688eylAOCnp&k+Uyb@|{v&qk9NwC-Dn?V(yvNU9Q-AVDR=fnX z)S=aZuuIv7>q%7kpLjtglZh&3i}?Rx+S7%N`;WmX&d0WNk&g8n14S) zxiis@($SWF5p5MIkp?GWT*#!MeDy{h7g*wtIBrf$+ftU28qW?EOQ(I6sPfsX(M??g z1I+TSlpAME58d8|-J%n1YCP4;n$-HdD?X+7SUKt|J&&U+z}~Is`D}20uEhMNf;;ki zY{S%=(QJQsPLE@F9rVks9(a0C_J}mrrxp9M0ZoaomiuPuHzJ`>UxX>r?^d|Mbze)V@vhaTODrkYVuOy4iej zD?(R!L?#E{sQLV6m&M_}vdtiFB@*TL*6zntp$6X%AVItSH&9D_Rzks+$zsrr#1HZc z3C5{}Hq?ez9>|3$ya$498|b-2C*aAgX#oIicNd6RYVv;`d=y*97{kf`u{(jspIT;- z_gLNA2PrQbVP*iqmTAio{02H*~vgw&~{&NtaZQl>ZZ{IY)>0sT{9WG z2#Lx$^%gaGKD%qMhE%qG&Zi&oU|`MiUa`j>o?UmUz{u3{3|D(WU@=9WggZbG*HT3uHW$L3~eYqr(Z|ND# zIf?|;mjW*6(ar>yh9_ZLZ#xdH#%eoRX_S4Y`EBgD!-4kLembr6ovMIa&)$@phM)+@ zPk{4QA>;bERox1w8b97QEH|zONwI{Ruv^C~SBMCQcoL%`pmpPJD=sP{3i!28+2&v*1{hV0o=s@Z>H2Sbo*9Big z8WsIb)nR}t1$-oDAszj;sk(=Fox$sy6YPG`3y9Y2eh0~W+aK7q8~jDe{-JZ5vZ$%L zWKE|1wsC*_{?!;~UK1Z2<;Vta1bS!yHEONCs#a|0=CftX7!S$E?}`hEQt7?6+opgL zTxF7i5@Od^z?tZ92@0@YBRZa&^Qvq%;^JA*Jo!VyH+TGP>@$g%Kb}O3HZ)WM7W;d6 z7CT8S9;X_8AsDY3UGf6ERet!k5-tn7wXgQ5p#E$ilGr#O_+Y0L6riBFaRh8h1FT$M z3=cc>T}h*dfi$3bSFC(V`Vsj%rUX+nnfi%uaw+YrTr7N~G6}ee8r7;=!ShLRfR_>| zHvPruC&hIecu1IsQ|Tsp!lP%fE)Q=Sd3hJ4==Nllw&8s+wmJU9&li7wI%_Gg z6PV@&w82GJO>tDbf#J3~5TeMopf2R*eCy;2_{g)t+76bCG$lxZs=%ws>|CFT-!qaH z)VgZ(zSGguFaZDm>>cypbJ1A}hZ^HD=AqbcuWy{B=2df?V6Nz%mn(8kj4!`076?n~ zD&a_sF5@m=cRkYHos@)^6o(jbT5!|iR+LCuGRy_@)B13kT`b8+J2W3v`sx-G!;3B0 z@9*JXJZ3+i5^0#C1zv|~1Km^$|I;CmqGy^i3m#GjsBdA43t>*!9359KPwk!e-jKYs zGv*Yz_}y&7>udT~7>UPVqqbZC?JF5c(QJkIy42`jKJN)J;(hg@4Od9V84SK~($rM| zMH5~dIKJMN#UeF0$ppO_=3&f@G~N+(6^kpaR+Ih~Z{pNn$LB2?JCKb=Z#DF>VDLk< zedy8rPQ>PqXJI*n53_{N`o3X=JJUP$tj%|;IbcJoCy>3G#1zA!}!O2a0|GMm)%1}H)pqqHNQY?>`+i4}nJ-e(N z&jYzXPZ=w(hdxn^Rc`dF8DN2b+Elh%jAwL+omzn^X(5%QHO^H@Kz1<6bOeBq#wh$^ z7b3=(c?-yX$BzDlQyucu78rf`aB;)2*8`dgzmxfGb+74o!GuDv7#H;=Bu*iTs^c~QWPkYP^Ac7+dglcd0tgYMg{lD{Hi}gXhp~Y+ zm1`dfABT0q7lSt2$2lNGpy9lh@BPk0G;cH8VH?XnCgosf&5~dV{0a);%%D63^ zDfeM80E0C%@38{OvRcl0SJPXn0my~>IJ)-Br{IXB;g;^_BJqFN>LFO_LTS;VN#||z z#KX*msNFuP`!tM8Em`^pN&`yuN&9kZHQPE5k8jb*?V`?dH4ck^995pJ7|<3uW>lqz z(^;BzY3^HGb(XJ>PFRd5Fe{Oy(E;<->g#>uL4=xa0eQbB7W>VYA0@hY?o>@UW5ITz zDHY<2!xQ8(R`Zln8@1HjRHmenI$Dp(C2msFh*Xh1VRES0bEA*Vn+PN-8%IzStiVF1 zFq+Y!Dr{rifIMy~n`k=~Ve-_PTAz|Ae^?+7ISPy0ahw^P+2n#(?Te+njQMNsH_1wvZCLl_D&M$_2$&tMisSX2h^<qM1erV zuO8aTX3vE8hgW22@V-nHbZz`4$c0$v#H|>PCJA2tS5f9R5*bxL}_ zcYIf|fZ0#Wf&s)&aNzzdEvbCVIFVByD0Hycgw&-#co+GD94n6OZjg#fe=s2VhNFVi zD}PI17W~2*^#vA4>9`RMomJiHaKGN}@*-CeCGT&tlLaL#g3B7vpeKZ|Zd`)~X%=-K z5_%c^=>ngeM&y*iDuz7)1kg#;pL|y^;rPwi>$KhNm&ksv{I$JXs#JgF+P2ueKllE6 zU2)%DBTcLb_XjPjsF0Ii5mk%;Ds=;;JuO*rgpGO^Q7nk?2DrE5bbrvM9SLQugnuEW z_UsyjQ%!ZkM#RN=-SpKzK4RK$cb@XMRfcDN=Xm*2?3Gb{w6-1R*yxW)(vD&}Iy#Px z*=DdsJ=fI*7mXLDfLnkl^qMtVLgTeD76^LGX^lI&(@Z3bXh)I-7OAHg{wXSAuhwcV zP{h)px(ybQmvRV%CWb4t%(@4{+yT(1WW{@8 zKs0iU7%C=ZN1hnf0lRW+9u_yT5%Gr~LKj{NlI`MG9Iw(;=5lQ2NCVybiOrQkkV=;n zx-xcNl3)rFX;G+pAR{MMxQNhpIDa&1ud?l_ zY24>9&{WgXPs5?_5K0CKJXMpdbbUNceUtinw(qZp4g8S*Jg{k(|;_uDOMK+wRVCpDsugzP=r6;s%(L< zHN>YfS%i7!na>S5Pag5|ff&N%f(v5qodmk2hs}65J}8FeQ$h64vrz zlSVCHYqr*p50q$4(}aZ&4B1Rb_+59m+e6E43EkGEyVCP@T3lrpL{_t)+IU-UUi0De zsRLN){!kabzC(41k-KRF-m}apB`Fm}#kNNW7M-2z^Bisu@Baet0Jrr;hRvgN%R3rD z==6_4?)y`-55k~Z-D&IB{K_daQk)o_J}t`uZL)P*6JNhG=%a6)%-KD{xL006JC2--MP;0KxL9;Y`g;Sqycd_3-E-$9tem`OVgIkyEoCBr*+f z6LztdyD(Y{EAi$g$;OMs<<=#HCkN^V*gQSdHMIJ|#bLucJyZg7DeV3DFTgo^Qju3L z-nag;R)Zz~@jodR$X;lG2xQwuF&p-6T_nv4_r}cefM{_{Svgw*%YOtHTjn^4$2hi` zE%vO0{7d^eFsSgFPb~#`m(4-i>es+34zC6RO-w*uekA=ms9+gxt!?m3(Wf_b$hxaE zwl-6mI)>hiNfD>j@5A>TRPi%!Ym^Y{^}0-Yr|GrxQnZtWq-1B=IfuGd3-fGcW~!qM z?kjevr-i*kI+I8ekPCisg%zp)2Cn`;{-Zs)IsEdK<=K+CzV|H~uSBqM1KxH@ zbvB@Si!<#G@|RNmIyECgf5x#;YwAVz>hQFZJl{Zw*QgHZEQD74D%siISh=Jx)>+W4 zP5*ixcuN4D9?^rX1YfMH3;=5B*rqI_T0h*lr3SAo);I(sAE+(f{L;iN{%_E*5SbX& zsr>FY!b-Fy9NaNGSHS05%fTXGxuVLVsH=O_*MPGup90xjZlfIUDTlP`vBveZZG?N~ z@jJr%dLbOczI3?th&pm#TRPc9J=|f1Zi=b0d(z)w!!=)Fn*k$QthS$i301~)xNRLt zk6v9^b-0PS_+&AQanjNN)_7mv*X-oxRs<+_QOLdwP?%=>eED(YcZYb4A`H#7L#hvD zs;f+JKYo#{KeNzxnbGg~zm0g9Rp6%%Fj%uW2eGwUa79(&M=>Ukh-179XjW30pHEn{v2}VyiFNNuZmjSZ@rCq zcK`G-!#(acs(`*HG5_CQ+KU0Y&}=OK1 zL}dfWfw<$y%75o5rUcRTGHX3gEr>cwXO+pCz_^;d@G&%wDYYB3<<7H~k7G$kNly>U zh%v80aF=rcfo(52eY>R-09oLDy!G6t72ql=v*z~Q-Y=gDDEc}bQx{NJWP|Vz<;Z&Ik+4HmAql@BuGtLvz{2p4=^w^jl?by=@8&k#Y1bf}5@6eA%C-mi zhjN!1rIuM(>j?r$8h@*3ow}X7xA`lOPRv%=``fuJlWcn8vfGzbe2!k~Zqt*qGoE)| zl;_ZdN0SS(t?yxo3la1lDkNQMERBJ$8{g!@cZ>VcoT92H!S^=VUm}teDp08^C<@_H zMPkRkNLd<&c$pUTR687*c_EY`Y};~&=-t)Q9ok?PpK_hJ?=X`&s!*`l(w*d z8$1^x^F2;g2?P4qbrn;Gi-@3B!sQ=MW6})2_qnMfPR;0lt&bne^3bm2UI27rD3$Ek zM-)7<;4Eo#IoQ}PA$D!n%{}j7SRB5qPU~CTu5)vI9_pG)+O}HG2RV;J^YtU3(xd)5 z(pVc?ZloSMv#2+@036t^tOlU`oQBG%Re1%@Vas*FJuUuy)p)YJ{CAU`$TKdXxsDk&k@QDsu zNrL2U1Et8UMRCz0Um&F{y_{n_%KysBVNYb()Fu+n3i`hKQBnV@D$k%T zDdxoSm$l`i{`Qg6Ls{H;iP3hn`*E9qUpuPLfQbPNnixWQg{udThM{Fz=8L;e8kK5q z#uIga)-yoQHR7wRHpYYrD_Tfcm~xND^22?*h|?wK8KFnw{cS)Mh*`y=BlAeu743i4 z`-Rtu|8N$CwZ1~Zj0HFBA7W91LPZW}lL#B`+mNiiD1z}Z!3^p%fMZ9Y3dcMk=}Pq1 z>rcsUEvS_>`k#LYe0dGPR0lMn!l2#y*rNRRQ}O-{r}7PIY*u=3GFM?tB!)RQar%$ot8fc6 z3?yM3T?Wl$l18Y@X!ropUR+u;=@ImwkQ^d!ahG^ly{(sRjX8GJPIE@2n@>75CjVZO z-_HuaBt7o02zahWK8#vKWii>63`uu?^9Xv(tYI5_FYT4>1capcSi=`S-_j3S9oK<1 zf$5iUuB33vh`ttxvtjf!m_(>L)=vMlG}6}EK#7-+O`-^%-&DxrjWo3LVvwA2mS!2( z>DWk@geGpICs4;G4laUB4||>B*zzp55=F^39e38i|2K}OMkAE2Y)v^fIf>TXh67O^ z-R2gTMOy0;QXnBCFHz&M8tIMADUOjM1)FkOT3W0o!zjP1Yuez(w?AY>-F%!V>$OYu z?@r3PSW2xp?X0ItW(ICpFr*p4qrd6Tadm1k8+zrU zG*qsQrd$K98QeQ6uZ13G^l_tIk3v7XEu#C0(@>%O zC#PRIIYim0Z+^Zk?wV-25pn}9(|JA6Z4`r;W-+b*6q_-4&vsAQ;j65qJ9sZmmJs0ZVgcjmqjp(`PyMYZYoOrL!<@R+S7cA4#Coci_Sa!jILOjL`R zA^GQpLGJ6oQpcV@a9)<3bzoN4TAhy`(gAGyU>QEH(;kGg8AQCW`k-jM{3>oqIcFBAe*Bb{m%HgP9u-Bq{* zczyH!Q5*3j8+khK)aY02B^3?+3Vll^m#zCU%ei}JC7mT#qLaQa4L|lLYlLVQ3aRB< zqv`V>V)F7-o$jfn$6SHjdfL=vF^l*S;+6SKT6$K@wk#>o^k$mD`6iaP7la{S_xwdj z=n7Wjx?Xzi8xkR{8d>KweI5X_d96Yy)nKztHTh|2!uXkGy4F}R6x?j~rS2oM z-!wz#wR{DsbNzYfYTzxFaT}mtl*N^7fB`P#e{P$3spHMslfTEgYKE1Y3YOP=)eRA7 zz;E8z^-0PA3lr@dd!Y{__$Lg%7b~j8=C3UMKWO4$TE|H(wXWh-Xalinfj-4VkITil zYX&KPXQ@lZ5_+wE%yd{56qvCZiTY%E%_5O4RnD12P;nUXnkg>R2n)S6C2gF8Y8A$x zwsVOjsKB2p-@7?VJAtBNT{C9me1nLOqHf6l@qa=s?U!H`XlY-~l!ca@bodkbl96Jm z6=#X__%#q5ooUE|ek=dQi$A<~oHJE1N)a5N_BEot@PUU}f7=q z&vMgeevp^(?%-l^0av~8cUC8}AGRwe&BQ^B=JNz*i*7hP|y4b1pc?YnO7-Hj_eyP_x zx}%wZLXmxv6>Hs`0(GQbkQ;+9=RZtylnQtg{=?{0;Q^kN|J8|looM&M7mu^7kPloW zeL!r_D063^D6_Z+9`EA`r=5Lw+7GOFw;RNNnY+^k(4_ZvaZDu26LKf!rVX}Ewfqs~ z;(3IWlgIfNp=TpD7n7tE_HhWPi~-RELrEFHp1&tBI~O`~J}Y-ygZX3@1AXipJ zkm3Jv>IWW6u7LWNVz)5-;t9#Gyf=k3MshfcKR8OY6F&V+ME%1Lj+p#Dd=&9-*IL02 zA`mXCTHer#Kj&8X?dCVQUb(OwI_x}1uQOVp|94do(Fl3ky#IpHZSWsf6J7elk=t?Z88NdR~;R9K=>Kt0B6s)(4%V8tINJy!a zk=?TB=*Ps5l^`%)(f~#Pk!7IE>l7xS6xmwh>GMZkA%0yiAX;p^OEuR(9 zn!b#27#kra?lgJtf*Gp>(0ih&Gzw4pS%~(}T?WKodLR(?R+{U92Ea5a#ug?Lm~o^) z545`M5-D~gjCKx@=U`m&Tq$TExLkg2x_vZ3i@Tk|<53)&(QV~X#gG6b;Xw|AId4Y;Zva)oGBZbR&wRZ(DJ!IZce_qN!*$SVZmi-ttfOCQyEuW2+ zHDT zz<+buj4pwao^9NQv6X>g@FD=*fx6Vl$_^V?MEII+(4c0F{ozTYQ1c5nr|d3R%p!8- zCa*&*RG3U3P&$5Lj1Hq%2VkMMtsMx>^i&d1oPT%%JWln$gnIqyr!+_b#Z*WBMy$|C z+d|Ipzy!i|_<(i2hjNJw|I%ch0II2Q9tuGu0|pgrMofk1#NdwE*C58?Ti=T}d#+C` zS*bWW5jqKJ`ZFz%UK#)cCy!xlm;+Y7F47Z;ntdO3G`|@3V}`URbd<641fjzT97QHb zPXJhN(0(z}!7Y#LPYX~xTrgvltL<kG zP(gY%qD?>oVWiEC2g!Xdg^*TYi|pGmR`9{%9rx=vR?=oN_ufmS)6bunnv1D)!2Srj zKX={`48Z&g({l*Q=7B*^jAkUbMBB1|-`3sne@7%dMuOOMlo2Dn^#;5Taox(A<| z(d$WPf1$j#m<^@d;`L6G7yuU#1i!Qb$SZ2isEfx57&50Yo|Kt@>l1@uQC9|#V*E4< zwIdZ<(25UKi9c=jX(hv7=@wX;D#x|)dzQ~77sT)pv%wO|qK0L1^A2p7a$1-_&koLw zOvAjpaCqeeC?qUq1lmQ{T1e`8dwzQDJF?u>l$blX#LO*SA<1Heyty}!BqGOXt~ZhG z?zJl#JDl&p#$hu#P}8WwHMqLMx|N6v3|6Y2z zd}_aUzsOxVh!nCv$V#!u_%IXmR>@U{J=OJH)f@6vbq_$V`j+g2eu$RQ3OKxHl$b{n z>($fvcz)tp`>)J`E781Z>~+kmrErsbXRro1nJ=*X`3;7XT6PE726ehxb-AM_1$`@D z^q68riFQ_lksb!mv{*?wqwX%UGeA>mmK=zJq?)&96_F_YsvWE1rBUHwJGC`v?_b8} z1*kA^Js;vl`~x=~U%D^|)a@K2-h*;0R2p&zeR2$+eN z`n2eZt%)F>d`iRM?b2^nt|wK>E^0@TjYM*lOFK6IxFB1un@^^Y|E0QkLJLo+BG9eXgTW;rgZI9Nwpi15mec$Rg$|MR=H8dg<_bbD1 z3_YEjQw2omxSz_SBQaO$i$jlNyUS$*Bv$Pbm(TYfx+sOYrN_8SEp!0E^kLAqZ6YIc z$w|T&0x=(57FkgIw)boD)6b-#e1OPWlQ8|$sVS_*gX)tiu z{|bN`F<|ZfH{+im0N}qJ16bm2?_|PgYieR?$Y^P6Xl}~F%HUvU9-$y74iAg--)ZoY z5+X_f0LTPz_lE`rmdJi@_W-{jjikjz0N?+8^14csfF&>v5}H8QGs571J4gyG0`C8D z(mb**d_42;R8zj(?H(t_69oZ6%zgggLZVohKtqk(zc4T`h?@xd3(|ZM`{yXdZbzIb zJ9F7SRji_d&a99SegGV)EYW0ZT^T2pH3`)~#z^7;z3%hJS8KDIy1TkNy^np*^DEhs zs_P7wYg(;bcE{WWsoLG@{l`TRi{9HkGE|r0NZO^ph{N4!Ro-+%IR|Z`{h^z%mh^Lt z!#=*EW3>`XYvGop)5g|@v?VL{&X-I3MmswRCiPH3W;6hyZcRn!78-NkFoaRt5iME*$DlX9p$b zK$gi1n&Lm`jYWX{?m3VV42rn+-x3$mQi#|WML77Mmr09Dg=Ogm9*VAiEJ)Et~N;v-CwX@sYow|VwdH^Rli3$Kz9RLFDpC^(SoEOU6 z3l6~q4#uzx3g-j@sOi5@XJ|KFj;@FB@_rF<-3#N_*m3-h#PRW7-gn1)9IN#67$MZw zq-a7wA)<&U0#B!dCKDBBjxF!U0~KnT`W0GP7580yexr*E|}32y>7` z=F!eTekhqNa`5%K84HS?ee$xFf9!!c%7T~|)`DM#-a zy-77F#&4^{i+$*V32CK)d*tZE%X#sE0+khbZ|R-!oLk*O?UyqH{dt1k7yGU?e0mJfYZ|ZG+hF$R8(_Z6q%@JN`=RX}ZM} zx~jFbE2hMQMcTC;05n>v!)DyWOw8L(pR>5`KcME!ooHs+&&0?;GV=gZQPfY5pmHj0 z@U5j^Nfh)$B190i8OQ;e8!GNw zw-J)H1!CD60#P5|4vRz8D_gf?ZwDqm-UT(*i~Hv*pDTWw;S_Xh=WOy}mql%_d))_8-@%Z!e?jmwBx9fjaXDbUFyD z7>^M!YOukW?6IG(Lz?g3OL{4hI6Oz6*WWFPzQRi@MA(ffF*qOXw1wA~QKVusey+J&ikR`}MIW%3`@XNhwmJ z>AR4itTF5fRqg-^=v))m%;?_@AW7_Ip3+5*0@{tHbh5bmwd4hMGKn~`>czv_+?uH# z@{Mi(C;=pIT1wT=88Jh{NX}-+4He%Ei{>b=8utu}f(^ti!p^MJ%iB>1H}wGI;AbPV z%k(!g=|NZ#f=^fyq#vN2F8~0vz@4B$nx+R~YmxpA;7_o@&V9(uXWf+X{!CA6!bfN1 zA*LuNdrsPYOBNeDdp9t)9>r)oum1h9s{i%5PMaBZc492&JH>C<>b9NQxH*+cnLIC| zii~71RgK;Y@gom`Vpkql59jqk;JWSjYUjI8{>twr->*mQ>+9LC^KPDYSpN@9{2iW# zlK+uru|(3v?5de+tuZt(3+>{G^|Ou=2$T7dLer{#SGC9E--0!r7=bRLuZDW1@^I|f zGL^DDPK1PgU>8N4n0M>%%8KANIeag$?6p7&m7GXNxw=91z-)(EE12U@v;Ahk5mv#= ziAt({2C4PNIE)AF;-vHDUhb}hEkKAomy&ItHqn)piG&%+c0q&LX*OcwVW4%>z0>3` z;X5l(60AZF1VeiK_4zFE2Y2zw_DFm$&|G+xze{Ph#`@+bsxWI>hF=6KqiB|9tWu1* z;RpYWf2yw@nUA!11GDU1i{T$XWE6Of(qajHYo6{HZLxa459tV(95UvQ_Gc*yw+?-C zm)*&@WpLig2v!GG7~hXDzS6B)?HgS!vu{cvX4Lw5?{U3&e`0WICM+qx&!E1X1d-X~ z%JU>5B`HO$adNduaAHBCf9RmUPJfz%;8y^^_V-a4yPC!d=RI1|udj!tq`q-*cdU$@ zoNR19hGH^Zj$~z)AK}Fbot+#Sk2cfTZ4suUW8_;=_fd`a0eFHi&}FcB(2+!dk^9-( zgtVFVyTlazmm~GBBcJPe%i7NWN7q*d#np6S;;sQga1HM6?!ny#celaaU4pwy@IZi| z1Hs+h-Q9iX{i^oY*4F%)>f3d?Z{P0IN1tQ1|LN0z_EHvC{jOPn#?lK*1*s`E>)>ai z-&$*-4Hq6xmpbqd4&v<&a&pI`tF2*umjs4IsBnO4ZYlIj`&-3MB$>22-9(}|jxkF%*FatqiBoZC3TfyvS|5(=Wn>H2u zDZ#h1r;X6b5Ev1}e6)Lev6$(EZn@veq70)|6SXebrVX`(5kq0|n)LQHBwh%v)M8l* ztdMAJ55fFcB0b5?e<4L@qw}sBrab`n?FwWY?K4|5T%)oqrQf-m{!R_to@=If{M>1g zaD4EIqDdpI<#Gx50cwpCU*EuW*j|**3EYCk=8WwLVm}3ec;y;;8e!`uhGHg}P3ob7 z@fky<2jq^FG!*KbQe8q9Ka1R+{&|>1k%l^kKuJ(q6<|m?;>f6Rijcy7oifpeXxmp@ z05ikkEg->@3JmjBWcP8jnff~Lw3c7TgY);7q^h~wNnv!O=?fo*6+d){CX!F({Ob!y zh&eDk7trJ1bYw^KQ0V?_WC-T^BZ4#1{u9?X4BsW-F+_E?)oN4mOgKo&)U}s zJsoxj;JdExSGnG;V|e)|D&;Ra4xJsBUY{L(@7VRa_7yxY47}H)DbNl6B~QLR70+9O z(+!>;FQB)29P>PSkAlM{dQYj)p982Fo))0$nym%B}Ai+7~< z8!(I{h4ZCcb(!@%_=(!|VvyVI3AC}6(0PlMhJ^-+>V~sTDpoDn)xzRBUJ|vheH|{i zq%6pygc3K1!70dOp;N_Z9Y&D)CRByRje8y;tz)7}S)_1JJ-~pj`vCvqWP~pe56jL6 zc|K<=S92iHXW?sJ9>SA{i_6>geL(AFko2X`7VD+8p||_)KpezEo!;XUmeOhR%NP;p zg-GC$1Pg1|mE>iYJwf0MBA5k6Ju)KFQiK-@#|Xjct>|g@O^e8VZqtS=g3<6H;-*vjV>Adc&_a16R0wHm?;_=Z-)-KTa zG8K}~_fo#`4X5yV%IBCBYdm1RJ^my6^Mwi#(naPkpJgaU?NnzlrOe+FQ2NRAQph2c zG&IyzE)ee2$vY7TC4cFQFcyyt;rluQC|>m{%RaKjMpAyzA-?g_XJigX>8QPuNPlc0t}poR?)47y2edSLC+xRyYkd{6`KBN zpk?DA(eCap1QXG7Iccg;F@I*r8)Qa`VF4eZeDu3N(gVBucys%?+a9Z<&*=xaXO&~C z>GLYOcFmmqqG9{lGCVYQ8lh%p2&MxT=u-?%fnMdM}?!o<58{8L@uO&+d20q@Iy`bl{4VvCLqUWj34y$016mY zfd^feZ+_M>w&eYO{vGi(;OdUZ!QlCauJ-o*t;gq;p8L!3BIxnXz1@!c`IggdCVd06 zN>cmWbJ?=w4d=9#M14-wf%u0{P~ATJeRBDP-LT_f`u*eOska%Q9OCiaZ2r-o)$+4g zY2(XNZ_Ot7VPRom?uPrGqNv;3FT>6IiDIoW+`F;$ruF0<9>2M91|A}Ufew+bKZj(=YfPq_ zWvE;mwgeKzx(VY>GiDY4x0&naI~TqnnwwG#zu}ghr={nL;>0Y=_n-2SMVwy!g(Ud? zP7*~Xtb$2xV&mz(Lplt4CgmJ)-uIHv^Bb;!<GftrY~Ys$0JW9u0r1W5Ef$NUFMK~pQKD?S$qSaJ3o#uidYc#J^tw(*8RX8#32PRozcls4=8tj!IV zQN?8Djgl0hsA0x;eM%Dy@jw`5V;4x4zG|Iso7hc-Gs?70;pL~Pg6^A-+u-W1FxBt- zAuVecii$4EOsID+!j_r|aEcu-2|i5PpCn87(A2(m<>PgJFS(nWS4rs5@WhXWSX{o2 z!%Cm)?CO8Ou#FlNeqzQL`B2lKj@gSg`F zPgV0kuO1c4xUFSQL&N8OETvZ%1fR}RFb`^i=!P=_v!FklY7sdun~NL2=VQAI@mE=% z&&m|Gcvrg$z3;@Xi!X&jLArl>FC4uG+YKI{ixvIPBjVwAyGGcl?Lwv(h3=z1pL*w| z&(XHpN&L<|etY&m`rkF^oZ`i7`p!uk@{`0``ag75>5x4|Bj1u=t&$V&saa#}SW-Fi zhzhKR42bzdzLc(KiLXY$iXAcx^=)w@`VAo8aNWJZKoRZ~WKaH}E~+khXV4@YruuFF zR4dEHcETvNaVJZ1Wl!F5KHZlmGh`TDDIFS`g_KF)7-?u%4tma$f){u}x-uyLJuMd} zf#k#?K~NJIv=NTM2U|=h%b(gMM;?gdQ>>Ml8Jv#Jj(PW&DIuWq0fB4_vzGX*D#e{O zlGF_$7_z4)*PBHE(efaX-SR;{H(G?!>fNIH^BwMn2zOg!yvB0;rUHJe5RaWcwJ?+2 zVmyx*9s==SH81F6*3&c%t6BFc>j>FpAU1QNdf8;v9>FP)3{tcLgI}b7dKW2$6k+Sz z8;L_ZTsN_J0oj%PB82BShG&njR(mOf_M{+0_Z|c=3<=S4v?d4FG`Tt0N~GFYfLEpU z7GBuXZGG1fqOZsH5bD0I{WXnQ=;5c4BZoiB34&wm--pRpdqZb!dkY9TuMpWzJo)IB zjq5;h#n;sYA|2R3g#>};;?>RTUgo#?2Ump2P4COcg|*uwWB!S@j|2GUz(TJWkN5fa z)45T@U64MRg=72eB&>GwHxYYzLRcO=JtB$lp z;edAhJOYwFt}R=b1WcAER`h)PZ{CUdPj{*g^R8R!meT;G8G!!i<=mD#Q{ktU%lExD zz((u*4_oTb_kQNWk2l3lz2~Zv^cEAL1H*vZ2LMEUdlX)EiVIE#@Wx0T>LmKT@r=$r zbtd3NJbd}J$axu<>ViXy!!^M&*&7g|x;2Fr_b2_^FZUxin@VR?2WJ7VYJPg}WMPWQ z7%L8V7_q^u)uAXs%d5m{;hik~dZ{{kS?z3sFH>fLpG>!kYQ5vf?9J1t_SR~5$z8=^ z&Z_bKNk8uf%5yM^oZ%7*2#T%>`Ly_p=$?p8-N`~ds>M;fwbLgX4eFXP#=5YoK^CE; z^u{ojPY-6_Wk-1-+=-V|2#r;XaL;u*=$D-6jyq? z7~XuDMusPT=t^zRyNUwj_fGxW^>?}b<llE2$#+?XHx})DE{*>8tMf4HT4tzdb$7heO&Z)V8@??lQg6Im2sWD!oVIwcdkKH`W>)tK z8nMu`6kwlhWcS992jM07zs{)%!Ec?VZ@7NomA6I%V6}SgExl-I(o;_xstS1AB7LbV z&ijJ2$s!CxuWuF9=i>2#F&nIG>Qsu!sbSxGgr_cAxJSspWTGm*06QoqxpHi;wDgq8 zf*p|YwIsEliT&I(y7$k5%nEi1rJ|8B!Lp4dNpGUf4U~)sT zd)X^>sWh@x3xOiFd~{ccEXwYr}UO=<-04kuJuuwU-?X{BsGR`P|!I#IscDN};N z+#uDdDc1e??)|l_pQ=LJ2vA27bly8qWdggDsMTY?CZQwS;^7VoW^piug8R26E>Zxo z^eT@qHpQGB2nb0g^yyM(YCil9^#AGpFDr`Sx|ypF7qsEVm}VZ8#h2)#{^QUCstC12 zR^n%%MSMaRlW#vNE%f6|`mqNC%rt~j{FQj=N<^4+io}$E74EmGJlnt8LBiZYZjXPv z1~DO;mt7WA;4kl&Cj<7uX+99Xy8@ltbxSHnV{1C%+uSmvj=@i-KOz5BeY|C}Znj`j z7BFIaPs5VA$$Tr=>Xb9sr8I69HGGaouIo6@i!fX|3S+Pk_%yO( z5Zy8cc?Ut5uJXbdO$@xAVu3bo31CsqJHo2473MmZa=wg>#jAP`1U>3Zsc-(w!ixYS zL}3B<+b%rU?U9t>GG|HCrj*P7)sn*%fBX{{?(%QyYIy2Kzjz+0S+=B!SC$rOryHRn z9)9uNNvPYA$xf)Rcfnaay^sJXC{{+b@gG+)&*<mu$yhnG#pL%m@ZrtRn#PFVtBLe}AxG{B3l)>>?Y|;X2Zd zfQhI#DZ}q7tx&Q+Y?=DQLnN|-Ek@yD>I_Uo*!={fDWL``O`@~=fdE#BOMk1{tHV4m zp|TseS|9Um!LUc@q-Z=}|L4n&J-a*R7g^o!2~@@f^Rdv3j0J%8SbYnZ!btt}d$$lo zE#8fp#60`yO3b+XFp@KL^juX}@B-17#(TEuI(B~s|n?3mMXn@56y&WyMfalStx)6!$lE|A<9OWcMK~pHY zA#;8q{zX(#A*Sk`uNvdjMbINdj}6dZz*eh=;F-V>dmsdZuiULwI%KQI^#zRRUWzq8 z6-yOC{*P$Qw~!Wa#q*)#kV;Nw4(&(X+52UL%3Uv+C@yEIKvHY_K-G>b3yLJUb-S5o zQkB2`U8%dC9_7lXZL2fmO&nk==tVb!H6W^li^U!q2>J@?6_>1&*y5QAg)G{m3MUqr z+Oh`OEq`{DDS%O}o!H`%epQ7PBteO#t>k{canwfhCO1k9jqqt>wvF|E=Z!=8q#3@9 zrD^wY6TQnxK@(dL_hdd@n38Ql2-6%Mww;9UrAG3NRJB673jrUdZ|?bShd%(5?mFS! zmNkA>*?&uEb2JHlalRXrYjROZf^THllGjw^i_@ij@C3CgL;#lrX{fmOm&`CE^abQ? z?m*;*nqL9i$!X>#aQW7vq3VNKl6&{no;FiX*YI|YE&rb2B&MLdFkY>OOY*2Z47A23 zEtDG^P0(@jK6Ach2#@o<`tdj~3}du411npk3H6+YsjjBN`;b%#VDND(&!pV*!L!JP_G zXyAM#2!Iy72Gv`+JAziqlJA5FZ1lmTP@`*}Usw|c=u71GxFP&sH)2eF*u#eZVVGT- zhrw+x9Ohz|-McOtDcY#rTq6&==*;^gXLg-?U-(*mGSFN((vas50i90AH&p>4HBx?@-&KEQ8L$X){6Luq5W*( zyHAziO6C;%&pyhz*tCvuRO#QZG|f&{XGp={?EC6w9GjM=!j7EiJ+a}BGMRo)(ANzz zvWd{U5ax(o34i(;VMu<6N?4vP(|)wSuQC*-SNF$Fzd|2$J_Zev_`hXtg=?p5X)tGN zz1C%eTzeVqQIBvKPc?B0pMzO=N`W&S9GlDIU@(v*bBe@35d;$VLeOS^*s#NGvM4^ zwrR?W0nTO&aFnqES=iWaBH%yp^|}NQQY61ESnk_2(Umf+{;`%f#hmFZi91f`pGyM7Daf0xgMGoM!!g`1g;Uc7=lx4Gu1*{q;EF{-c^X#bTQ_dU7h) z?c$YssLd>J+`d@D`~2EM+&<}pf00SN#{%wG45MB(p9f!aqQi@7ib!*_`C+=jwVDt| z-DfkMX|@WRTuPYa!jp@L=+Y*eXW+AP)RJ;2`+Tga6-768uehQ|bt&b;yzNapnSQgz zgcTO;Ew`bul7{|$A67LlSy96zS2kau^WhG7AVxcRab6kFTdsOyLl0`}sy(mfC~yyJ zX~N)FHefH-gY4xtfEq{h(D#*qukc?*CYj8Xh6&iqbp>f+9`2&Ez$LR9dFo|{+pDZN8e&Kp8bXwmI zUOABm9h8nV?oW}K}F5>ajTT8=1T~NsZ0yj5+iH%Ls2pa zeionFr1#JQ@xD{X6|uR^+t`-8$-DFZ<^_m(5{Ou&>(Nxs+cX=0E@*6WM4!2cSKoTT zv00vZUl+(r&YuLS=B0{4A>Mo#<)UY!E;OCbuy~$R&Ve`8au~|jY9E@>6H7OT9_*;z zw71m72xd9jY)e8n#uB5u!MaHn$N4t&qzmk4L4eLaHlp6CrAWEA07KJ;wjTsbVqN?| z#K_+>k?Z=}Ty0CI#iJ&4rz;mKOG%VKfx?YgXe1!YxA_%anST0)iLDto9ZM(c=(C3A zfHv||J9uYplg{Nc5zI3Y%}9L~Pu|%Z*M?CZyH8XmsYQ-2Dl!uoL6JcHZcA+<>TiVJ zL_;U57lo>W#^w4jHQD!#aV$KJl8itgRs>OpjaoJN!)yCXqqlL-w+{Cio%Czxr5&Ti zN5{-IJ{mcq2+n?^9~eH-q-e-Yw>So*a1C7Y$ugTb`>>}j1AHN`H8BV{&K0FC6vGBj+acPfiPJupa~Fk6DjmEhie*M(ARyRXrnmZy?+IaU z2knk|0iBo1Y3L}GsF0E2E=kF#RNg5TQ?{8hugaAE8?4r)x{%=V3Hg51Pi zdN`uwX|>bYp>>1{7r$Sj_tFFzJoGaKGkO_CNQTJ7zTS+;sxY@@4Nxv?q?przS3RXo z4nBf_0HM!nzUaNJ+Q+n9^b&oZ3r&xZ!HW8try3S6J=~Mfoz%5VsZ_+DQ1i8(u+sz{ zt|5_)HoDLFoaHacx1pS4fEFd1EkLDARG1`s_*RqN>dKh0+l`-AeMp3^p_XP;-7L4~ zfJP1i_7fePnoDX@|4i?MZbGKBs8}5Wl+-D!4I0Z4>LuWT=mulZ$h*hRSI#?(cErd_ zFMSKQq@A3URfm_<1ctM8<7tYXYijWh)fiS)=L7*V)vDI>ym0Z5K0+TXh{(59>ZS$s zYKT+paWmuVCs3~|)&2R&nin6Vlca zzU9n-!R#SH=P&(*Q(vzD&V`z#p$nC0I1gRQWqSSJ{-II|fyJch%5EvsA$Vzv4g^sC zWGD&DV|pdGVst4x%*9xxZ>Sh#)={i+_aXktPfrI2dmyigftiGn1VjwQ7?W4Cb#+9U zkyfJ>1i%`Trjc5sbXSn(8ubki7lI=ST|_afvxQ^|L{XQl6MlkP=e1h%8Ew@kH9(eFr>tj`gRU zIt{hzE;o_Ax?3s(DnEPvk>u~!p;t+NIifXyGd0^2ATNK4YFsv6)XD?;zl)gg70gMg zc%epH*%sCKEQkh@lHUwiAo|6J5~(b0Z!594uPfz@pEh!IGGT?5ENWyG3Hk1uXZSg4 z#{aw6Q zs7B6Cc@~1Wi-tix{j#(LdI;~a#9+o#N-3_OUczCgRnro7l^Rh>EvpKMez`5f_LuM0 z>r}>w?AV5d4(;&}kJU;^XF5gUl2b7NGxV3lUKj+j;3k7mT#l5(qf@x2M=ca%N9tqZ@W8xneMq~iYYnxChq8w9jk0N}od3~CZ3@}b#k zP3%o6g1OxJNG9Q)nStes_Fa?47tADz&^+U<$zyWRX_ZyAUgr_T-=~z_?7Fv0K*Cv* zXQ9xB`LOZng>L~hEEiu0?~p8R1n0h=5pfw0MHm>kj^7vO4O_>e8`7Ak&F3|hKp7I-wJ^*Lp;s6u9QeDp7NpNLyp) zG4ZvN4LWkR+}(eU+@!FE^F{o4M}!-UyVUS8{Sr@|aL+6mAeB%&+VC`(!|2uSvy;w~ z_x3OTB#Y88!*eYqhoW>!{04#$AWMob8AmLAX|3&5K<0JTNXz?LI>qEAb>1T`>!tEI z%p6TZ{cTO*=8Bk>`R9!ZEwdCHLV{5yL{?L8)q=3orpJY6Xb*DB`pz8t1YcKMyWKJB ze#rbyXexign&-^Fqv7^C9p{H9+848Pj!L4N3jMAMvci;JS**4*?`4ZmxNH6j0>d&}FXy@y4K{pDE3xdbM;@HL6xa}W3BQ$WH7`=_3vPIHAC9|0&scj(u8ctwjUApAsh zI2}TQzo~MRRCv9_49aNELA*CuZ+hN%MgIifqQetT6D-lB{~G<^?0!@T!Qyy5Lg2tK7|5jJYhO_#O4$MNY^{zS{kN#*xXxR7s2?>t zi+Ni9^Myx>3F7tP?qk?QogYs|e%7{7%q0aYkdSQaaselP;Y(4;wJvW@Th?M+PSUL? zdpFirl--7T2;%OBp-7Wd!BSByj9v|aCr2VPaWOGnfax7f?bC|xO5^?GPgY{C=47UQ zl>8W`MZCltUqclnfWStspe*^#P!3!4jA2mw7@sM8=S!||DQ5+t>%dlljc9{k24@7~SR7>-6k^Ka7RP^goQ{z8R~T|R`u`+Z)p)4R|>dUO>n z2_ixU0ol7vN@{|F&WbV2|8K31bYXa#%POLZ-aOAzHw||mO-3*2G0H*oxRHNaaQ~XrX7U)FQHSzTuse7`PGPPr){zHz1kVY6ZJnkoW-opsml1GeYy!no|J_{>y zzA%=nTLa{@N;|Y9uAi61Oek!I<3R51-N@8MZOU#>OD0gIt(;#lL+jTaB&Bsdco2ZI z!`lZwYqY=G^#Q-2GSDFC(=hE2TeyC}*``M0>WA07Onyc?ls!elr zeuWW?7I9=ceXS49V9an%gj`510^jL9qj;w$@|kV1BZMKb)24_B8~%}5w%Z6UFo?Uf znv=)T7h$Pra5#Zp(Xo{~vqyMbQl4>@K6!*i&l0yjX<`M@6oe6UNli_6T#a@DJtm${ zvkhLeDeg3#bY{BbRRof#Ha=0k4<+<%G+OqkPHEey?d3dni_s+=9LF4xl>6q4KXVpp z(iV;wExjXq@%wAMhNBRTHy}ht=)JL}NTGW499Id@=_5&H5;MHn(Pj#=RnKO_wZ2c& zV{8JFL>s%aeX!?=ygB~Dc*C-=&Bzz;8NS$={CxY?e3+A2w%8FWA<8FLK%^Pqr!8uP z?7PII;sAN%XLu&!-xSR)ZlL^D)-2UN43Sla1CyV_&mx>TUV@etgKYo#xWM zx8r+bc=H9jW9H#%TXUU@@FN@)B(h~f7pW2CSz5L^YBrH{mHSy5(=Q_4GS!E_r5>{8 zKdRmd^oE|uV<;MptY%1cMB#OSZ)Kg6Gp#$fKOJZ zHSThkw{iYjqWo(2p5{!hcU!dM+YRB=*}tYebbfq$eJ!D*xmok|7;01`?g3SeS9+4SLOQ5vBr$xth^>DrC|mv>^liLrQ-Wp-yZ!i zEoQdY9K(T_bj*9YUQb}JA5_%4U+o|^(t*S_W0@W+`)*QGwG&1|=Rz%UdSZa0>Q7}I zwbWC*s2X$JddLm%8FlO?ErP|mM+!_IIPnm=3pIDUp z-iG0QE*nX#H3h8hW+GOir@S>~tR&_aK!1BY&XQyubdbmP>3*ip zpEht#MLJIKv@VJTGln%+zxUDRR)Rr?ReWn3h6EGq`+joHe>kwJLK))3sD;MhU5!HxK9ZSHs?K!`cyP>*ghG-fI?h zZwdumw%lN|ChU__TZZT-%1TU196`rUW_BI3 zMNh}FQL*nhRAzi}piev|C^-c-j@VJ>F=a;mi{@TJ#=RpGQakm7lNe44YB=WXZ-Y4x z%Mh>gyI8b=h74fM=+S;Gg>9Sk%fkEsmRATnM4tJDEvTZ@GW8CH74U8w>I`*YnIIma zCs-~aPSe!QGC0_0sAEVWBA9&`F$(S$Xtpx~qYY>sJ->}@7~-~#1X=qb(*g@$8O}vx zSa;{gRAG8gVpW)&P*e>V_WN}xCFng%pHqfuj0Qvv>Z@}1Xa)%-XRV-%kH$E7S&xq4 zIxlBoA&eGA?HfhbXkO#z8?h zfLq$Y?G$<}{Au-AiR7LRT7iki^3gVT+W?gZEGfKMyws&S7f<(f8?X7??po@6ue12y z_qI}6qx2Vd0qP0-rEQ)Dk2AM4f$A~n+KZ$LY@SbcL&!-$fas}9nLHrm5V)c$&x&8e z0ie$?U#uwuXl^uZ5BOaOo<}x1^^TbK{wPkUCR~0p@3K=#C~~C>R8K}ev!Ui48Ai;~ zV^6YMq5gUEulYxxu2xFf@d-k4tZaw?Dic4N&+Q}Vw(zv8eNv#ndpUmc^RR8GbUNa) z^;rD1vs$``*Ie$<9u@VR%4U65!zDq^x^1S2vlCx8B@?G~e!jVUv_jPJ{SxO)H*s?r zgT+qv7B$b`WYzrDd-H=?ZM7~&-+S-l6>aqcWcWiuBBD-rGj8t91=QOde$Yn7=-oEv zPO`Tw2y0e8M{OAtt^4SPm)dKwxXncxkk3@W5!^3MkQepleX@;^>qV_S1Jl^{i~yDBg@@O2|Gtyuh2~s6oN+`B<&g&7Veh zmUkIaOrf7OD?ePavOU*M^2&bbQ4&kzD%xvHaK1FExm=|9j`r=&t%Oh#D*3DIIQJ?Q z)nvuDX7A}y6aVm15z#}I`~d3eX-p#h}R>9wmD zZQ*a=OH@hvz-|9!Vj3kI1$hmlNGIvL2_p-SMCAt)fiSNEGwgqQOLeT+4OemmXXRaz02IUI}4*-sczvLp;#WOm+`80kV>3zDLJxSPr26YOEFw! zMyPcC-gq;u?q>X`ko#zRK-;Wc5kND~x%M#b|7$sJNmLOji_OXZ!yOAGbDzyEOG~sY zHU~BTN4pkMEd`FN3l>>CRJs$0cqbIO@7ai~)RvT)>9{tC4yx{Wy9t9}nQR9q!Xtbq z^Lo~5Hz;{vm$?_|Gp+LyR1d#5ZVw}>wcT)uWgDQ8?B1&Vk%;;5TjS5*FB$AKc5le# zHyr114dr$<_2@Lh9#kS7zc4>WrtiVL02nYUq=i{8Bstw`s4WrXC0s?QLcq>v??Ai} zQ%9E&%31o{_@agb>-TQi1Y#~Fgbw{yF)Hr1a5lG$f+@1I1$nx`vVgaScmw7EH%8j+ zG?O9#BI6WRYvqO>;v~(LP0my!K=z*rqgl6Q*kVGd*}aV73QRRlGy;M=a{#wWaL=;4 zm|a~J;S>72*OjI;8Ebaq`QxIB79x!ewt5|}sTSz#i)fuOrAT56R*`Xx0&d*iwvJ@6 z2sdS~VkF>{PG6AbPiOp-8f^3&k^nlR*rz`{A))2jnjFZZ+#Gl5CYsVJ-ft(V4NyE}5 zB^f!EtqfcFD*u4z48rF(2eg1eG}Y-!R8O=gg%y*hsV1-BKR#ma$_rF8R$zqaqp`Kr zlhzloBrHWc0+B`V0kn4N1v{j>+olSEKt~o#pc;IxaYRJV*?VeG7wW)8Q~BtZFT=`_ zs{WPmeqXz`+tQNfW;F~p?G#zc469%}Xo5&hjO5(hal(Y!(FO0_bfn2cBK+HG6$Akb zt=&|M^p2V7a(AK6dn@Cy(5K{9yd#;x(Ko?B@aqv05CAA{GMz>8f(%juX}bKhq$w1& za0e4*8v(j`sT|NT)a`QcnkP{d()|{NL9vnqMfx@OH_XZqPg(j*|iSfR71XOkDi;>|gPDqAze2NL4`lk4Z0`)RJe-dJl; zI+scfvsGiYG;XkQs+ISUinVy%qUgmP*g5%k|CrfOb9Axx!pIqNFRTH4+(H_>9rwyb z^h$6Sy&pOONsxOE^(nZPGWJ&DL*W9%(I%gvrr<)%W$X3U7ZZ+4E1#S%XECmaW40av zg)$>4OJCu5>DV5}^RXkECi-OB@I^;S^a~B^Iwd&vS_rnXbD)_QJOG0HK=iyJ{~Ah z=fJqbU*8o$aFNJj5oP2`r|+B54N43DhR2&fqW7JiIYk9f(&8Kf)L;)Ge5Q?cv(N^W zkMeQ1I>py&q7O+b)*gKxrl+K1*k>!a43*&2NGTO5^wh^F5)unhZof^$H0Y#!>FquI zvsz9+iN@sWi!tkl*IiQ>n@%bmg4WnvW;T&w9&6pULOauFQTisvltp*Nm9*{F*oB)* zY0eaV8zCSJA~Go}D~uOP`MUd%}g9&|R%$#pig#HDT4G3k@`}`MA5v1mN>tdAm#ibqKS! z+t@bn)`LN(tt9&i^aU{}@@3UijH&y$SQstGwykE}?w1v6c}9Rsx!k;bYU7z|n;hZ_ zWwKOtFA49sfbF_}ou9NW%M^=S1G|b$Q!{C0W_X3>>hBXJG9$>hX#FemR(NkFJ3}>j z?qX*pqu6Abdvi7(5@NsK>v|XHY(yC5bf<;RI-+nbG^oI}Feja;XJj*5^hfrSHeU(p zZ`pqn#OgyVuTs{2Xk8QHDA;>5VoB}GQ}GIQDz?|cieX^?UNLdmO~YcI$Xw%@CHj$k zHv0L;(D2}Yj#B}UX8ZW-`YSo}Y*G+c^nWWJ?F+b3D_|T|PSH?g5*uTsDkbN~k4Z^? z$|kc21i=Mipg@jk?&|%`wrDqH*T5%fb|1&hyN0*5uCB3YqQR-0H{Vu_>|_>Y0dTG! zvB@buMnCn#{bZy~ITqv>dXOL0akst;&B>l{co*JTi^=`_Cb4J-V`72K3mVW&iY3 zShq^}=y%9y1^OQW99BmEUAl0^g|f! zH}pQ~xaX43qWjm<4>fhn?^&Pc;HIT`v-UuMMx!)9!nF+@8|9DE9(qDkzCjF|)JV(^ zMC^Qd$!DYaq_@bXjzL&^- z0};sUjgPRM=6FUB_tJeH=yC2k(-n7YYb(O;e0t)x5^F=KV&LIKTObzIj znZ^z~LK|){Ui*b8Z0N^(@mMxD7KQ|(3<8UIN#PQ(e3~gg?(Ji*##e{4W~MxU$$gnM z&-R6_>7CC=Wu~-q(|6D6d^z-PK18J*^=1uQRC~7aFE3aIxQ5f(4Bs-1p@Hqq(ggGU zptu>0jH09;_ZQ4V=45s^gI@v>#4Z=-^Gs}iKzqOM)g){Ptkn!ea0y^N-_P})>H+?R zALgHEdP3HN1}JG7s@BtZ372S=G~~@s*iK*ZuYl=_rI_(KXkm?BNRWY4uLwGm`;3SI9X zc?SH@U=7H4$Jyt+C)YmN6=|2>=CEw9Mf#^N)isZ|Qt!_taO2ia9y7%1*&9D?odllylYC5UEu_JYn|I1JA+M?*)3?WexXsqTM-BdpbIi}lPIgNc zVByK~wRa+gq%9qDq{h|#`|kc97;>Cp2UIMPhtEAO$a(%0U1vkH=cuyxFkr9j%0o*f z*jAJ9I-9~_>amVz=ZV7MFE|*}`n|F@0<11-*zH4;dU|>}oc8~*^9Jcu4AJGw_;Y>z zzJ(j3YF0$pexi{Xy)se=%O^KQF!^N~UQ6Hmw6}J_dG047rhX76r=cDd8k8y zAZ|iuRTZyRoRYHg;E@HQ@e!I&-YyiOV#!>sn$Lt=tMCtMuZ$nD_m5 z7y?204F3M&;~=a$}{9F;W=;1jYseBe|oPRyk>p zix&<%IteJ?Zm(VG`71lOhdd6-DN?tCrIRvC;vFBLPPcFpPU}vX5+)?ceSu+5!**W- zHY*iMstK#uO@VvmYoev7KioWYA~3+Q_+-P4XhJ+PZzOfHp`I0i`QgNK*SJ+Yg|xeE zHZsy(uZj3ni^yMLnH~>cqd#uO9MI0FuVQCZEr8q!Pr?ai>a+QVyvBPo0>`Pvr@beo zhA>GOzm9=-do9Gz-L$=zUZWQfo`>H*U#>xV>DfRcV|5&*;tCXis)3bi-4Aa-nD|H| z3IVLS9Bb*taYOBIH`?+*v|0!#7${L53@9-X9$M9PpUtNY?&_3FKQOJYjE2uPFSl*M zD6wFFJ5-U*bd;)~altnU`VnjC`JlVg-9*cv=92`QZpwJYQ(a|HCrv%A4t`PO%K0d+xN^>^ia_Adj+WWdGXA&aVwco7h36Pft>k1 zkV)3RI!A~5zZJ8>9;JTe=!4J5-+t5A6_yi$A*WLP1qF+&rT;Kp$6T~q`?Mzg6_fGh zMVeV}dL3e+%lJyBui|nO9C)JEXQhi&V9D#XlpKQ*^WQP^{;8%Hv;F4NQZ!|2i%Hlc zR*!~VB62^ZwkXAwC3rt%Q>b|mB>Ei_T>=q#KO;hDPhN@MiF#<5s*f-pja7u7>>-Q2 zsYx=H1Oh{T^JXE!{ENJpXoZ`tlkoLwcJ15tr-b5}Z?JsJplATg(AvrSL0sz)ElT+R zVehS?;&`HW(ZMCS1$TEC+=Dv|65K7gySux)yF+l-1b2r7g1ft&`TftjZ|C8z`*a^p z_v-2HT3szQyLRoW@7ud1JodHp3q)`_^#cQ)M1N`qZq(5yev9bFS}OHiosDrA|2DEw zAje~9yi-D`=&<~k#P2?L4)axG%1pD%NUwZIk$8ojCLwISRZ%Rt+`opALbGYGHOU!^ z6J4v3$WsGBZ064TciWKL-u^2dEj;x=<-dk6f7_r*^jdm1s2a)=kb95mM1JBYdqaf;Q;=_lw)t6g^Z^n_+mC zSoy}HQZK43%^)9V$YNjvK;1>fHR>=P$aY81!sHc_c3Fn;4+JR{ZmbGlQMV79f)&2x z+$jrMLRYP~!Y`+#(Yuj1B?9utKCqHr;TJ4mK&$9yo#rq@LPZg#6T(QjUKy>_CRHyR zZPBjWX5W9tY6Bgpij{EA}`mt#sDM`}j8MzTGD#t{T>U#4oc8 z-{>)F*Y^v0Y_8|lwF>I>=9~obJmuE@8a*(N!Mj4b09#0P*mxA>91;T_npLa-^7I_O zV;-B=yt)%@{V#@01nSi_3;|A9c(R`6v{p$&Gh+ISf@ACID$DATy2ux^1M1QTN42P9 z*r}Zko6{gj!@G;2$h)8hhPc((hzJxGZ_ib<;Fou6Fs_PMyr-$LX=$iG{WBUBOPWG7 zT0@*UjM-qNhg~t;DN~EXD2<}?CQWb!Qk0^lU`xwxn z=|O-%1lKD0qJM)siY5qo-ZqC&51HIAeb&N{Xn)=w+MqJpW+3>5+bTDC2DaIxzw7xa zrE|g(RKh1%7?r$7sk(L4oxALBEtoYJ2q*n+fJujh2rxtorrwqxtPJL>t>v_z=86|= zKh5#OAckDE+FVXzG*;u3lCp(xYhOKu4R_c$ zsIabD(h0itcMch}5#)?X?NDY&@wQ9U&_&Ok9)EuK7oxlC`hN}eL@k#`mK^?n<3FDQ zisQ7@3VM78T$XH#C#WS999OY$J8*xtJf>Ub*Z>(PdN5q~1#L*52s(ah>M3;ge4g^^ zt%v7^08z@POZZCDG<=*rz{?ZZGtgsRV3OYye5~WH*LAZ>&V&M{cqZNiY1=9!%APsR z{>*ubtCAStBen=ILoL?*pK+vTCnq-Q=7hUWK8kprngKsw<)EPd(g`?7}h9F`2u3@c) zJ8Ob)a@L;XqG@d+;3ZMsn3T1Snu|VHdsXlE_zFo@Q|9O%?4j`D; zzyFh93I(l(Ad~0*Pk<$8wSe1`x?+PUnXy147~3qYO{xtY_KUf3!L*u%6Ea&B5-zt( znK-W{mKKM8ZE%9(>5%09&;F~-tzksi`V7N`3R_RQs@Lox(;x_QC#`xNX)s1sHS z(NQxSo?MuBS^doiN%23lG($y1KZZ zw?C2ztTTggB%)mr&fea}BlVr7LLmaMFw3=4`el*MyeXpotx)}r=;d55$zxv7J^uI) zvmJJF9!#ZXn3fIOiJp|Gm#b&9?jrfC z$75r;vvU-;E?fyPpN1{G7{U`4am~LJ58TQ13up}%==m!-j2;OC536j>z0$cPF8*_) z>ONNE`vfL!zh%p0RvC39E*NDtWp7W%Zr?B>jUJ1+48CxIU}YCV3%}|`#+{rDl|q!9 z>D&uA9Zuy9VYdEV6*Z+mec9w~TXM3Sx!{Ly&9PX)(Y>D_6Alx-T6VsT&}6Nhc8 zja61$HwXrbjWm&HO38QiLLvf1S+I1HmQL$mCl1ojfv6d69(%)j_8$W*#a}P;y8SN+ zT{I7k_b6y2l+t5|V3EQEFexk##P0)=oa(bSHp_*U7@&5c6s~+V(ISFA>Wdn7@Ywt{ zeA^wa^|OC*N!D$3J=Y2Q%gA~jjD?echitpNSG$(^U>m`#+o;L0oS-fePq9CCXKHV6 zCz2Y_EiJf0wX70&#Ing1eJ~&@v`CC)DqP>PA+1z)t>tIXaAGp`)U+}pO>L< zSK#qG4yrF_FIDua=~{k0VJTlHLM$O+jb*>8u0(ai{FI$bg&0H~4C+W&nOnu|OT}N= z6zrTx%Hil^^U=(~-rT3;#ZJV)d6LCq9SQwJe$rk{zE{nav&%ostuj`d+)l0lNkCLJ%FOi=X}B`Q*!RUe1b z%=++dSpFPkZj$pYmCOdrMAu$NmIbsdRJi>vc6uiN9Ix69C+T{jM>rqyGp(0O_R*x9vCQJM z&ISI+tyak*FWz&Z5LdP3?PMRQL)_HX_yD%!W6M03{trIpabjWbyZQya+x?L(G1|4V z(P6?OA8hz*w!Li65I7BDixhk$D9)c|{xmm&bmH9RIWtF?6`vle9w%sw`6Ts^A$jSZwfMB?zQODm#UD|yz zolT+u)SMW#BR~BEw@*vox>7oF_WIz|86tqm(RZr$uw(=VSEiv1zxWqLvFM{x(E8{F zY4P_ej;~0}Ol};m4gmoCy%(&{okR1HjngBvo7?}<6*$+sXXi8Q%>P<=kPFroL~DNg zjINx>MT@1kv)+!UGAt_!x7rW;(3lb$v#bs_$f^RP4{VZjCj}GIUbfY=GfyIcO5*6p zl&Ry6fy zT8T0^eS%p!lx%CZX9^OXpR`?32xYjN%yQ1^DL{C#p`s9dW(Gs+CCc?CEWHELS~iKg zpmppR?=81=ggKsI+mN^+cEIdU8f&%;14iv&Hc_M$lei-0SuPZQuvb7nIlOo0OHr@R zBG~Ogyv56~rIXQqO_D7F)G1#K43?ueig`(4Dtp7)XN9PW4!@ysnL1X$43tJ=u$Nes zU4-PiQ6P|L>69OD{(@%n63ji&ZLSv-DDDDIz!JMi+|=!oes%3sd$jy^e^Ft1G-wd9F;jUp25Q0ZYkc@kS`5 za35mykej`2Jn)Nr^$;Kkxhs2gXwc=e1x}vqYw-k6&GFCGYC;0i84(#hc_L+b!d9Bg zmh|lakSh-?nRpWF#N;HDc+&xnNFO#bB@zk?7lm#83RcAs?`78#)6EQ?eM6d3W0sMx zF%h93=XjfJWi^MyL5RXQ+Wfm>#JTG}RpmSBTHwX?#J5B;R~9Yi-`RHCQ#>M!vWEN< z>rZ2u!F4WRn%F*dx~aTh^W`m9`~GZDlCB0F3zHN`?oP;~Usrj%PqGLaI^MK)4Y?7< z=B;X6N+Sxped;>0jEI8-p&BP89mr1NcDl4(w+kid>(>GcK}x+mUDYSVh(Hdo0gfn2 zthDG#sLsJKe+S)z`&R+o&^Ji@(R9I&>zqB>P-G!0vs`dU8&cj)L!DKYVg$6}iXMInUkH}FQy{>m}(OL`tV>oftPz>|_gzz^lFqDek~2P3{; zBOEyP9Ao}%32ldzEB|j=!l$;gW^kM*IX9`a%F+~4IDTs=A|Sg7=*@S-QPIp z0M`dLOS@9rff@6p1&XG*(|(2UbDS(0m>@f5a*SoAY))7%j^MZb3?7?;bHq)q?wlvB z+17#h`JZY35&nD$?v{~?9AeVoKO7_IgK`E+G>M1Nnb;)o+|)RuaBgRMa2OoY1+Hkb znf-8XlHMLv?q+x08z8QIkTJ9**qBg_1dM%M37(?>M`J+eF!8CIxHbrSSbutu6`; z2o9o25rP}TQ=?}~2PeN!jTdz@za%4#n|9yTS911U3fv)*O#hvPakINc$yIfMjcl)y z&P}|Gu7*ze`;8aO3enS{S50JU0UBs(P}KleX(isng-y7cZsbPLfrRD%QaH4&r--j_B6p;4U`TEzNtATprmWRuO(o`$*{nVO>=TP0fpL2#W34v;h$vFoS z9e^t!Kv`!)x`|ARl%wJ> z2p=AY!VBHr(78GE!Cn!(%@6b8-hI!~InUd)30X#R!LC%cSWMa{VJQLn&SjlgwO-X= z#{@`&jfKy?9{c$CB7w(Gp-UUmij)B9(()WejHnhh^pn!aQaRg>w=)F&ljp^J!-|5Z z%H?EQHSO0^MeRz`98p`rd(pRV1730J3^^~mMO+)-=e=Z<<0WVZY)S+@v?=A(f14fp z`uR^zUYt>l*|B%=H}f0ZXdT>4-wNDLzxo|!9`;aiYeFbr0&(2&GQ@5b>g(L|VmuMX zeT++rXkm2At9M1b2S2iZ0i#Ac**TH}nRP;Vsv-_=*{F`jwFs9-6I}HB{ed4U!B8i@ z@QWE1;lk#VmS!xN5*_nY5hA9N2w0_tz6jL$I;jo9zPfyVv@mpj+Z}PQ9pFoZLRS+9k~F`=@803qG=)LNX$yT zA;u`?#vUAWYF1k<`bh)(Y5mrS;VQeG8AI8P56$y-H2Qh0?Bkts9AxLMRLH0v&r%C^ zItxh0H}~Qer~bGojFhq_@A>O1FDHFH9xiWq`}qRiizdQa{I-MAoUgsE?_~3>wr4dX z09JohkHdLc0Q?fuX0O?6Scprmf@?1>rtJU21sI^v;i?AkW#c@hD_m~7eqdQvd9|4( z)^!i){i)V-%Apvx>?FL;2rG%0#+PhcW^~1t|J{I9d7>095-jdAq$likzxqSaoh9F4 zvAmuZI7s7!6;hkg5#c$veN12fyjr1di#|ELvt4}NqV%>Xtb8&k43MIC(w=hHxY$?K zD0HUof~_{9rOzO=I3j<#(=w8x9fv1*4ngxYux)L&92iZk=4Q(o}z?haM6({{_<^1DL!|iJVB%|2!J;3GguCvSiav4wT$*{e?FH0XDVdp zoc*@{E{mkSUXOw9fS-fR&bntzI#Gd1udaAy09gL{Y-IaAr4bDdo1lyI?%qs_R*f3# zn`e=x#gOY?IxmVay)RRpFq!7LL=-55OI;LVdch{Nw-`t=iOC5h!Mltn6lj51WLQN$ z&kc%U%_jjHd+l|-W{@jeYGY|ehqO^cKaOwc$Wfs>bC6d$>fFX0Q`jUbe}nyD71B?U zrtwA55R@}XB_dP~R|N(@`8gv>}azrw2hmuHBtRnhd z$sRaFn+y=qHyShb_+Uk7_u5>(-$7XZ2JYMGA_j(_Sn3Ps}Y= z=j@2Z62;e=Y>sbE#`-&DA=lbmQimDV!r1i6D8V2Kxr#Kr+qVHk*uJT^z$(8D6eCYJ zwwzteRB=JPDsp$TxKpf-Z4i6k#9N)78@zARR|zx(3@QQ|TC(=)yww7RU7i|(cQ5xs zEN97tYm#FzRM}wTts{SA@?U(G6A7U_s9d-?T7<1w$D9jz?OTuE-O%pv+GPp{r*tyx z+bdB_nZut$n4E6NOK7n>#_CrJQH0! z8g)07)wDnwRorSPHURwvZr~|7l%ln(<2M2c?K@$Xz~U?t;9@GbL>#^MG$;lAHwFe8 z05@SW3D1z*g%%fbQ#i;xLbWHnmqn^Wv0XpbvA^J9fc}Vt*vOC%IWoyYR8CAkuPNTBzsdO+Wy?>Nl z6={ST%L=q~?X0e+ zCrImLoEI_>zs(~EXK!;`q(EC;W0h*ETxOZlJ@@Q9&dUFi*t2Q|Or3?$)qu+xoMZL@ z?yDw(Wi^|b#R4`cJ~Q*$PsyO3TKMRgA3JuPito~47s^2cz3od~b#fh$$G%fn3og{UR|8AqLa3iAqfWcL8bYzEYMrf!<~Jc2fZWO7zh8|Cx`EJWpV zMRL*h#8@5E+ud|dxdSlER7o73CY|#GAkTjlv<_jNh?TUjsc1y^?L?vf7=XMB*g6Po zH1p1|zQf;W?{qXIde2W{1QQZ$v^%5f10kUfcP7e(HbvA)eo83B7>!X; z)m)+W=Ze~-?9%GhO%S@%(T}qyljxcIuMUe5yR_H2@F7l0yElo+TI&H$sdLPy; z)SOTvnrgAf+^}R)4jh7^-{~f}$On;aIQ;_WB@eBULZ8;{2Q4cT^{9~`H)WjBq#Ua} zkD!IhzXnC_)$2}-0$`=mrxF_JKZe;fB*Oc3k~Bg&!sTijUThVCC`L!k6+u}kI(&Fh zcnonN3EH5DZHG8po9^@^e?)`-)) z=rdu8qKoq67z7$#=}ca3kd2|omDh^iAbed+-uyi#o_NY${=_Q3;s>aW7&eK+Tqm<|kgzjBBmRT5xpq8WOithuD#~&&anOxT@M}?a zA@=?mYX`H)c=2~~4=C3(+&(vWha>-Y>pW`=UVARWh7+|x@#WV2KZt&bbfDXSVz95! zx2S^a^4Pb28by-A6gr8?hPYx0nlU;diT|lDQ7jgOn&vS=jY9coLS&=)ApJkZKBlHx z9ZHQ#;lti0U@Nc;@JCU7J2$Yo!vHSS{Ha+-G>ZqoF&8` z`&HO-YM9=G568~(KSmXK$GADWQ_-50Q-BQ$ok^ic-aUQt*!vi~bl$uZcD`D?M{o*SWUiS5R!R&=%1sj56pX-;U~e^H9ZN37rH*An-$CHewh4siFxvBEHym|pylnQd5HtC(y zL%h3Zjvt*e1`}&^RMF7o&#(C^qJTpnvH+o!Sb5;pT(=y0{hJr_@H_CAwHcxGg`SAa z3Is_Ckstuj-%7YWpAnbI+(!N1UOIHt)%9*?gInNmX0(Zj(>SDho{7xlsT=-o`$bTz zN(5i4p*Zt^T$iJq@J=V8>uza*puI8{;w(PjWrq6hH)APOun)A}o9WggcnnEZeTf-n zOX{!Y?d$?TSzV{^hdB%&1~YHcR#i6VIUhhjQFh*Je8qFy?_fAoVy6IdVv5rN@F9$35$fsQ+Ls~k#VMx# z_Vt$yRh@oWw8U0h0{5RZrqX*2osJ9vmg)MwTW?6lexm-;}lwabtL@_k?WA);N-@}75IK=e4 zN*#Zb=2z`k<0vrBsQg+yZYD3^YqrnzdZ<-p=~-xgYPE+8{^o|y=LU7l9U2Sf(TQ%T z{%|=%(PoG4;?KwocICD~q_IiC4{}|)WpdZo(A%1n#HsyZZhmlp-Eyzf5zV3J8(hc=QpGp&r%Eh=KNS|`MIWA8`@gYzj}SA8Lf)n`4`*B5pX$8Ya-&^4eAFlXu8O`?DsqJEyN0YIKo=Xo&alwt%M$%N+~Y((}E z2|7P84n^iWj-@72Tw*Wh1?_scKYJeH;;FFNiLT7`?F?^}rz)+)=e%D#&pB04(#s%W zt8&@=?Qr^oG?7@XMC`>3P1*p5M-9Y`&}C4;=8H1b_9R4Eo)uhkyX42x^fo+{FJja+Qg7`&cm+Tc((D z_fr;HS!LQ8#I)RKy^j35rCiQm16X!f^UKX7>1y&h88iq<9y_dGOTiQEE{&#&AnZzU zUs}BuOxtQSp~jlTvM_w8MXlABNk$NHb@o`=AP5{g{7ywFBWzk6GW)D{bfjs5B)0(h zS+kVxs>dx%HgZR&m}~Xhjbm}@?^C4I({zAm!ENQMA5Tx=&?>{uAh=Q{@;QSnz*)M} ztsXf68Nfqhz}K0~1;5>}uYC0il=%pmDR@m!RcSno{43!w>!=x_g|}DPFfGG$@HGo2 zr`}LRaDNDZ5dDqJL+Fu&EUqLZ;NlS<#qS33n(_| z_)yM7m!5dy(>!)6bJ&RhqjCB92c|hbiY{ikypY@Czm_5?y`R;c^VhCKbf6;$QH0io zF4v>K*n$G**466$2T7eg#_y^luwMmnW)8p;-o%zW=`ae`8`4FxS*Yr( zcs**JVp4D6&QtaLb8@M{&E1CtjD`$tVMRR>dg&jm)7x;Ir(b_y)oc+-I_pe@E?$OeN(o4K4J8qtlmP&T|K0NhSe>@n^(`2P z+!6*xWyb!^V9$i_e^b~IlVgCGe4GAL`=xw7_M9q7BJrJNv$dFL)ngzo77%b^{)Yg- zrz3WrAw>VDrMU>}OZ?}0i$-e<6=cI;jf6AzrLC5Vn1KPf9q|A0+5%vGT|Pu*dRnd6 z2zaj5<8M|MRV|>YKUCfreI`1hXn%Ms|EfxJ~?IMHS z(492d7S{ihqG@D%eAB-4-^FL*J_qT8>pTBFY9zcJ_0+NEzgw(+Nj5UMI|)S;SPj33 z+foIGg(LZ_6nd=|;}mBQ!=u_NW+p2V+>w`%T5m;1XZk^($y*|@hlkMomCtAWE2`bd zM^D#!AU4By!sjK1LS6c-YCH3TRTVa30W37rXM>|*E3o01cW+4Z(AJAw({8+lz4XJA ztAu1haACR(MjY!AG~})3i}MuL@`wf+YUQdX9NItoTgvIXdIg4sw7r#}&_Pp4iz#we z5fLXO8y14A4G#3^ON<~BDNzPwUu5uK6;!6EDxshdd%>8^jmAx9ULv7bF`BU{^yPD1 zjE$^=CGb~0@tN4(bGm+wwzDrFFuGU3@_p;NMP~W0%WHNzw0-Z1N=?4=-wPDdx2X+( zU3DE2B-r?KA9e}(jU^4gE@oV$Kd!ex=OgdwT^yLP%Dfh*v~~ zZF3Xs+3Y*JM4%pt;n)}N{99GbOXBATV#Teg9&NHmB2)Y~a34|6dFo1YWeDWUUw?gd ztR~Kf*!G`#8H~qI?<4Hh`b;pm{{7$zA--M(HWW$XK5D<@zCM6wSxJNRTrcyToTThDdj-$mdY!&@@Q!eakTuK}cfIQkRp z={NXk3DIzV|Mw`8*thU@J&~milELq37GK!G`0tQYS%oUNh`{$ zqm3=$TtN3nwr%~Vxdia`fXu8Au1(BB)1;dbU4UgdSmDU7*I$8uJ^k4-)AOj(!k_5cl=QC@ww4y+ZJH zH+?=nlE7D6S~l=E+AMj*h=FE>{ct7fQu@0Yg!yVm&L?!fz6_=G6#k-R^k zP)})mh&56CgTe^3HUGb;8%)(C?ll0vp2PHGOt`uV$%*wcML^$s{J9JbL*G+s)h?Vb zgu0%}*6Qk0*UCJGJ}l4ct_Gy{&clF&r-#bT8&s0~{ z_L)4}6gclJ%JVyEZTEG#o<0Q&Qxw@>JSRKW7#}FP!wJ8+QlP&-p*mTgZb2A6-0+`N zHF_+sR(@&I@M)!2pG~*7uBes_l3}Az;Pv}FTduwLf4UYRC;x2nZ-0-omi0S$!U#N8 zX9Z;Oy$@;_cbC;og23n?u>8zOcc>mFt5M3%GqA?FG_lui!+7bFDrSbZ5g*Ve~+L6mPsXOBvZ z7}~#R^|K~l>@@cMMCl2x*U-P3=h3;N=>T)d4-k7xeR}?#;X9mD>6jQ>P-dj`qmhX( z!d;#AnCdVFxVlW%dzM08iVZ}?3R^$eBOh-p$-zDtK#0F-yf2vXz8*cysPns-IDY}i zXQ6B2|4uFXCq|2f7%CdtO78!|#%51^dC}c9DRiI#n*3cHUul^lNVk7tiBe4-p~8yv zb}xNuTHsoFJHNWh*}1Ba2OTj~w#tTk^z{%N_09+e7d+1*G8S`$VRn@F_iyT;PgQ_N z0Rn*B)?@dF=-@Op;}2Pu-ThV$IFbg+3%}~W*5T2tI4qJI%2GvAd84hZ9Nb_7JpAX= z2X|qWvO44ES0oGhjXpm(uP>Gsn5`{jH+Q61=nK_VvrCfe;CWWBp}q8`alE!j)cAul zOH-(avPcI>O;Gsq2ThW%aygaNE54wedN~>Af8&$062amYoQKs0ME^kr2>Fgrr-3nu&Pa+z7SbM7 z`Nd?}WWdzMn*hi#+khsn{D?bmWrb#)wybnKh%TxSo7sf9q8B_m`ZT4j>c(aC4LQOP zDgA6%4KnfCMbLv*Atu{=c5|K2#$$jqP|&Ct@zm8>XUGt{9CIJj@voKhBXnICY*!kU z@*Y%V%2)8WUO`1{cXqLzZ?=o{Fhe1zp#}Rn>}UhvYdNq4YyJ%jbvu&AK459?!j5)B z8zM`luYUNhF8?)t!7}L@j4z?pd@|B?VaeF}WB~lU?2rEoxD1TG=qQ<4KhVXE%Omxwvnq5gi%7X%|&;4uB2M zAN3>CD?6xA{WE#uzGw!@4G)|E5h^z>3S99LJk?%A^B?v2Uzy+Pj5N>G?JxY&Ot6^LbVf1%=YxUb-F=-MUpZ#wxnDs%4g z=tLLLZX?8(t*jpHm=+hiJI!A4U1|pUDe$*ee?ElaCWpymy+7<5f-wX2h(CmjJ48zb z0Ib*iWn4NYgd@c^<{Hq1t45|vc`km1WiM=wM7Dt($pAU;pxxiUre%e&F+VcDK#*p! zk5}}i6e~gnL{(o`keDFo=)n15fQe^5B-=iJ*V@o` zL}@@W+J2^CGa{tUkJf_=V4c(#TD_t;;{yQH?a83eK*_chZ{&mgfbHNE2dlFbX2Skk zet_Yk0i05%&7r&la6R74HyHdmy!5R8zM@+-x>2X~tV-11bIMv)vAD7#s)V`3LpM+Z z@lXXrN))G#D-GFwm;ep-EC6|-ujju4(6rf?Mh%q(lnu{oQ`fZ^5K>pyLSMO!;TraE z0PRPj093sOf;lu2Ls&+5lQNoe?{>j^hPZ<}DqD^_cu04jo!}!?6-fTO->tJww z5>$3XVO|TgwbkUnyrL+8h`J_t!%z+XA zlO48UVh^dOO(g_Gu8Qh6j=nxXJ}F1qG5XPSosybv@_IRShl!~oDNpti`_nd9h)lHy zF$8@cO}XF$;bcVFAZ$hayigpi`W~Un9DDinVE1u%+i?;eAcGAj0xgAKkahn!k7r0S zogXpo*lr5^!-HSn@jaeXy*^H>`QL_@-l!{rnql6M8L*)0>30V}xdSU%tzxPD)G8*j zY$XpeEh&PM5{lzq^=tRbNi|E4Ghu&bd8)0Z^GwQhvB^7=u`i0vXe%t^A9yt|i-Tp8 zE2QAzAOcNYovBihiC7kTM73clys+#GkeWP_Eb_;k-eVgf6Ad{UQ^u395b%v2q9n{X zc)-x^#yV!sYVR$)(EQDFdq8ZA0u3GuVaPb*Y&gIatr;y19qzpvHwp!8G^bGiH->{o z`xE(*`x1@&a=>vXMAGRELxZuI_pW}Kt_p*2BOVsG%Zm6q?O=2S&#+?=#;>U zg0@sHp-tWkR?dKy2D~st0~}6xIs%0-RHhx*i$(kki6-dNa}+6cZgMgPl1Q=f)HNxV z`;#JgK>joSm|s)7JuYk z2wJogQU?Et+t(h!prm9Zqaqan z85ZECXTFK&dM-nMI753a;0$rkm-jpye3q)^)Hc2qls^{nrW?G3vS^nMx6_P%pG2BR zW&LJ>ncF&bz}||+K+{qMGIM%C5 zQ(Uh2aQ`6g-Bs-C3t}xG_naFw~ga?}qJZKW~(gZ1U1^Ec6_>{mK z7yTf)e*oFD+~27vk=!>%G_fESf-=iu7Kf#2g>Zy$5T&Jqt#-AO^OBz%+WU;rEX);k ziEu}6uuPM9@O%^j$&D@&^mEidj9A$)PsSnBc1|rNFVh@3$H&N=aHK(qs4`uw*97P%7mbg$=j^qDJsIh+=`HuvCf|Bn;}yE1aq| z0ZrE?0&;l%G}-aIc~EKP37~zML(LNH<-Y@q#Jq&wK4Xt%`O&o>0tE_C3>W1jXyr0= zn5K?4X-UKX_zE~J7aTsz87-2l2Kq0hCx8k#DFwz2EBa@75G6w2FYFnnk~tWtp*&7k z>3VWSX?vYK>sQ~6v(&nr+)TJ>G65ig$b3*5PuRWKaJ%_=4 zk2!ox8_rE_ZRJX`%SA8koMV&XXh9*0!eIo~e43(;9HR+N|q<4Z- zorR1%$8j?=3B&;i?23((QV(yc!LZlLsFdRXY?>m^#2*Xnl;Hhx|nBR`ff}sJig=|GhoKHn1tkC_#D(=a6 zqEYPMC8a^5MM#4*q4A+gqrC`>`}wtZ_{A{IXTabA6?Oogw<{!oGMmL(Zu-}ATc0)& zO&~O%G%!+1yO$uqXw5?8*oxHM+1bFHPpI#3K4xJ9Zzb`8uu%5kKbDaBRg? zY@r>q5{ZCcK=bi!`0{vlDe~|5aU@B@Ktw~Ud<==&m_4tX^5}!{bOV|? z3dk7zt&yTp80}b`k*U0-QhQXjNxnUS$^7V}ax|$FXNdz`-Cq0g6D5Ou!Bv9+yke2~ z2&JSZ&PWN7_<&EaLa_%#6Qdv{5{2^bo=fUuCMHwN%my_iqsT)@F^186@$c_IN@_V# z^jjc<_&bS0@xmXJ8PH-GS_+esl&e?zBmK@NB{>C)xf$gZE0R$Xyx@4xyX#Y_OtE@$ zAj6?GGjcRwNywsRw5XMeY^+QW#}UaHqS)NK0zwj!xpbwBf~>*Tc1D8V z6I*m?+ODTPL6RqzR`!8q(9z}!^1Z&|Z$ z&e>9Q#PW7pnBi_13NGIA?uw#1j)?y{`zttnmEua76iKeo`vMfAd}h&x>4Qr=mV}I!$RsgR0up+cGfNdDY2e=rSjWC*E{I261P&Yn>5Aph zKiLf#dZ_zYF#8gdOiZtJX6}fml*8y~E*uE_7yw42_05K>KaaxA7s@B7UO)-nJy4dv zZ}m26m`xm?jaJ3)VjmWc{6*G|KS>~b*vNAfD6jzFMMgqVyiU|GNLdaF8u7mb@InS~ zLzBf%h6Diq+i<`s?)FZmEVgE*mPRa=wni3aKu%@{JBvtVMJZ%N{Qt5c%Sel>fcIdi z0Dun<3;q@LeVhXCV2$OZ!~viGtpz>h$>0D$M z(-bN&K)7LjPIu%V^O6~q2v9J!Al>$gYzaifz@T<)=#kiO@XVX=w%X8StK`<`KasSt zn9WJ&2=#DRoq7=InI%V-MD9(2^5J$50^m^wgkOuF}~HN-s#7A;KZ+`1_3Gr)+I%s+JM@TR2m zv)5?U>{eK~<4Bbibn4K(lmMyO!X#0GV1svbYQJ|WA{{@zeqFS>Z&In;)MdoMuU>j- zRHofrL-fe|yJFQM>^`uXV9Nf?LmV%>g_1ROfSoE!<;F*ZDhhuCj%Mw^^A>~^fCjnk z>E|z$pT9f79!ZT@m{CPT&@JoYt^pHyu_7#&YCe$~I{-<|{&qz(d^EFFknm*c&&lHcy$0-8DCQ`$6nN%9d*?x7&hc>i?@4bNyd2 z{=Z`U|9df(iLA3&PXGY^+y0N*nEU@M#*pCaAt~X(IvhY96JrYA{lC-3q=5glu}98X zk7t0MM5^!y@4Y?-#zR94V-kR#3|dz*2c*RpFv|vI2eQ!ZXG?_k2chu?AtFY7q2`Gz z2%x5Kk9m<0N1vxp2$&>|M#ObXsixJIc9zbW10-K3x4 zyGQM$cJyyrDTCWkD)bDVzvdg%QVbgpM?s}N@_((yucN;jyye=bn|em@TxK7#yk8+u z;O?|33hg}A=LrX)qrm-|5ag1*IS@kjb zj9+#}IMhd!aznk+>3XPoU+i>m2Q<#2^h=FS>F{%sxX12e%sMFgqZZcekDm@o@1gz3 zQmH$R8KzW^yRk$`f17@;dd!vL)aE8gAs$W{Z%QCHqs@$nsPSh@VT%6mG3qUc6hdX!phI8$Zgw3nay9| zs?TR}b`xX9C zQ|q<2@pXKIScdAD56z+~z_xgexgQBK5FtQi94H7Ham7H~B8$sk5$RBw;y_U0mkJ^PA-+_*=}3XKpf1CtjdAgIBJr}aI|wXM69=~!EI zS$8mT+$Thyk-fgdX!B!@M72fMgk7%DlKMbHg+Q-6w8CO#;ycIRo9F*w@)2|Na}~$QDugiK$0h1aTjT%;+&ux)1^gcSx^K3D z(*mb4&AnZ;y5A6mR_{KxS>6miGG zhkC9G5<2{cCD*e@#)CfDJ~k`fe)n(9#(fHN-A?K#Jk@M;A5PWCipp7x-3iU}D*e^@ z@}na=K>klcGbF>$jR-a?(mz8$ZA1mTmlTeOm|CF-4vaOPGhRu9~*yL zD@pe1^Yg_?>)Ys2bpOUCf*ZrbfBl*gBM}iK`()W0g3)mMISWHgRKtBs$+bAHHY2S40eKzlX;*X4WQmviXdsFIyN=1B9Do0pk`5(MSV`0kv{2u)U6{9n!V$a z0VSJc@lETa{<{%WZ`hs}de+q@H8eMMOn?yz5UK<+^RLKCrmo16+kDir)c#PHQmQM1 zEs|!@X~s3(GHdo=&(A8bVNQ+e6!tC0uq5=y7&><yzvhC9!D-I3@X_!$g@s_ zooRxsa;fSe78pva}x#Z&{C05`j;61xEfp_0cmL2E_=Ea zb=7^7Pj;QJ@vxuOM)%x@*4_t~ivisrftODP#_fP;AmkkWVt5Z9a-H*ie_!dR0BxP3ih+EteSRhB;OH*k-Z&lJIZ z8|SmRCCV7#Xol#NDy^I*JZ;`~eu!Br;nhF0N*jz&35+O&2umb0^$$zKif?wdMV}KH zJmUr6cRy<4mrNOt_a!6lh6kUTtA;gKR{Vpn(+x|cgA9oC4`0{JtRJ9~1 zKmODPF5g^xF3~zAXM0_&;W-K;12`=Gg=zBD`3zw6cebM5&` zT#oO!!OX8qv#iU00<`&jD+rF(q58L=)4UYs?G=|$h!w9`8kc8Tj!FY7TArVIbso4c z9{tm)f_33m6Z11?CC|l|BuyBx!c!1l$A}p67^98t?;a zI*GbwP9bxmGg&L1$gk?oZ37g*08W@_A1&t)A+q@#ssq3`JEgZFVd9H|?1B7H( zA9xTA^|Yj=W!b2BNfpjUCg9LR9M`Nvb>SeT0MLbN#{Jki!t!FovNO_ql#Jiy^=(Yy zx*O`%05Gen5q!rP2*FBoL3mB%9@|5ZQcQQo%gS$2O@$QvEEM6@6yZy6hJFmYuTz5S zo}+S%6T@f*eH}Q&?neg4Yzn{G9#QOVgnFK!UN55|sBF~y(^dY~*6USGE+V4{9xG{I zT?}QC_k4^1>c&}^);EH~O4IdASKo~uSUFoca;=~pVEJAK8!mlL0~@;Ul4$)2TeAB# zgU%LEY*W8ASu_&ZlKvYENlhXZl^4PKtdOU*pU}yZBC)=qM8d=MF?-X7H(~1H#o``D zX`78!yvV#JdPa%TLhZp(1(1(``yMpq;%vKsZ}SAcyvMv(oSl?Fa2SCPIZrasg$-Xk zkuC=DK*^a*qTSSy9cv^hf>Ol^m_E@S*E@w;SU2rU4w_G zh_^*aLJ<5hS5w4>BP(VlFzZd=abUW4J0}zqd$hzNo3%PV=gJ68gG>r-JG#`_Fy1~T zE8U=42sOltf8Kyoyo+dPT9oK|jbFBECS~;$jA#z>tFvuetwC(i05xN66(d{k>(SXH z%*TV?)bTX%rxuZF=9?2>%zLJg;iwHL1M3?CYip|#adNUQGQAxFL)MP2d~|xQ4A0XJ zv)z)2Kwm}V6e@7d)X0v3*t54I)iFc#>>#DV1VsV8?mko4}4JIm+HCi=JY5G-MR zroL!}mO?>nz3J$jwQ?TUe+oZ_N`FcOxvjc>g-{X68n5t2`UdP?fnbVtfo4(=!78E+ zj>wN7Eh@EC-Wfx8{b5uh=nGo>Dx*>FJx7p#$uB6?Cnt4VJVIkTRg|o|w$J4*0y^kX z{T^L9OIgOBgwF~$aNOu3T`0SLj#CEI3iA5Ht-Qp@KPK5tB&A!#ia>W_Y{h(wTFRp) z^DJg~AVOx4^*O_NW|e=pCYM4cQ5UKF6iG)Pp!<$QtrBEvYLX4~8F7iE6^}{c$DEPI(2B$`od~+mPW_Duq&;@kimt4 zppYHIUWjPV1;J8tv>(R-rf;%rA$_zb0?t@k{Wb8oJL9U4S&9}saAI) z_PiY!E6G63XqWug*QORYHTjv6L03?&%vy06q|698$ zm8k{p7vxM-I$m58B9z?{18 zP_*9B@`?X%OogVOA>|b@wbA9B`4gTTL#MaG2`Sm!KVD+ezjsUNb^smDXx0e{*s(6q zcmDB~fLk+_q+uCBG}#YG*mwyI(@A)>;aO?LY5l8@(z-CqwV4+8pbJi+sVfk+N<|#S zfpxyX?FAqzokS-x9{x69Piz`V1wJM}Glf1io|!5gy@)Q|GQ67lf0tq*R$5+kD#qmC zu=21*Q~yFLepZ{W6lC{@V>Kvv*2KP+KzjmMoOwpn6^D7a^i>piM>A#$i8D<8i!q$k z#Or-6;qp;C&Ko1sO6kGSd`Z898_XmV1_xw2-jn)insr)qQLzxQ>MA)b3F;PQKjUGG z(`nLwrEP4wE>4^+Up1Ygw|k9Jc={R5xpPG^jA-wlDWg$HwVd4ym}`!Oni+fug7&JX zFnY629u7;*3uDJfO$szc#W%8mYKRc=Gcp-AzW)%S_XhX}48~iDOk$3;9P@P9 zx$8O6UI(Ps>a3Jxdyc&w`EJ7d;6Hv=^KYz&-bj)ooUTGpNzQGe{6^M?4WXQG#{Bya zmBXLYPH$g?>2v<7Y`#P|Xt=*o>2}EMPlD83!s38P$Ewo5M}ai`ORmVgJ(wy*B+ySZ z#-)TPAFXzeZjdCviKY?-uN^f(9xJV0*2W0uUCV*09M5x&o~F;!d6%&{JbO6{7*^fP zk5qQ;2mR1)j&1*ZI6i$kz}@T3-mPTW&zs^?!M6>)&Rh6#lnh(%wGKyc$J3gYU?WxS z@e9UA%bg=cui13h{VxC>%G*^DvCcMB&+$%Vw<9k2F?hF<7$WC+l~}OROk|J6uIghp zDxqf#V&keQLl8Wi1f#@Z+3|D~Ch@(b$LKA@5Knf5bSu$DaT+CW3iqGj) z@^mLAck56XM0iKb7+w;5Xqi$LSE%MXl|M^+4|@M{^7UdUjT4eOh3rsh&D$r=F|xXd zCXdZ%Xy3&tpHgjXpch-x{-3M_;)@g6YK(G=@DwFXotD<-rz=q;A0|EE!!e4mhB@7I zGY)DdxW=y0=Q0>Owi%je6kMHvt@!?E1(MZmDg0LQ((IEMPF-0-h2)q3LE0cRC1N~H zC~vLSy1vRyWA&-6z3ly_%n42afhs@u0pyks3i&3$zNf=`yYX$ppDIiFb;}Nh$2Gy` zPvRou+@8x>Dk2~6d70DCqW+_=Or84KwlBAOJ1S0>zPIhKMi(UVHn|_iUKj2!c|H8@ z11?zpU$Alw6Sonu?6KOVNPc3Kh9CnWnQZx?mGpKJAg*=2+YdpPdShm~?=u0sP>+>wJNL0ZH(Oa)pVaHmi?3#{5}bXk zkIsDHP$gZTITVza{nv-0I3isA_EWVF?}hRKrk5$=1KZe<5BC$np54M}@B3s?z!w?b(m$v5w!H#U`(|snZQhO9i2RHDrKsPzFJ5;0Hrelw z+ky^l*9%Ay7-~_eHc6g<+(fz`7`xy|*{2yCyxzP*%zwx8YoRa%j@ud~g!MA*^=C&H z9!zJUOk!-XV;qtArU*i!3P}Y5#ux|~M?HEU@%-S^rIwz=gy^1*yQjxBj@ROMH?oFH zzFCn$EKw{%!7Eb;;`;;e24IW%xZ#8L-8q79i({au-x5K(a$fM{d~$#J&|*E@;%)fyvseX=n#Hq=WLOhmZUcW*+nK{H$@8z7UWA{3=Dchc@zf>xM>tsgPw`F8nXh}n? z*=naW2X5e-@h|*3u%_Ynsg?<$e5)q%*|pCAsix^0l6quSbc>GKkpMI5o?4K|sd~Sx z%mU_@$~^XfFFX~}kp5OJn_lY+DcHyP}o{rhCfEjwfHX! z`TTg1;Hm_Dif`gc#Y^QINn}$Gzjl9sN)803dvc%uz|VZZpzy_jN8~}Z&(GhbjWRZN zX{XU>(S%+*_ix3st}{l!0faL7vsAlEw76ztz||CToahg2BbK^g-P+@8!K?VoPc9<} ze;;fg%beDTxg|1vC=A!N)6|0NNO8{V?)h~(0Ictg-?Wa)(_^>S!`eCIm2A!PTu_Q{ zI6t1I*ST8fHrLAq>=g4}ixWmOE6=rNivc>f&AzIYv?NT9;V3CIiwqi4#9}qZ-Q#TI zO_8j;QfBVLFZQ^N{9*pKB@FVVGmKO_+K3b~O9Z?eVKBCLL?X&A>@an)lolPcY`LRv zBA`Bea$*LS)Y$<-|J`73qIVAF zR}ZmryQkThO04#R7xU$mQR|>kF>gWbS=q%OrBHZ*sqy*@5d>R_w@u^fMt4cvw3o0c5)~( z`G9EB*{GSZZ{VpoX6DiisMW3GtWDcG*y>+)*W0%A9=Eq6)0?eF<`8m%Y6Axy9=C*@ z&y2ocUEhm=4u9;I&A@lLM%j#JfotzZ^Wkw@>>Qtr+6yPfrz z%!a1}s;j*ZMsCLso!B+MWwJ*-?^`(3fb7kqVjhu4CAi+C;tESXz;`) z20Gm*z=*CmzyB@xwsKwy?aF)NZ&%aut4Cw;N9wM&v=15tb^kYbKj&+^Sf5Lj3&p7h z$M0}|j<#^r&}Tw=z&AHRF+e|fM0t{YWE5?11t$@}j0d>2=i1=`MG5ivzA5Vc0%i&& zja#h+N6^La+CNMzXS?oVx$%k0kKM!Jtf|mwG&{bJT9YV@-7(k&+l{LP@P^0z8f9G=p&|(9(#7h)UO3^0*N@NS?&7l5F&_CSYvX!j(S}bfG)Po{Z^% z^lS<(Kh}S+i79a8BP~WUWTY0^*nAVxFOg!|SR)e`#I2kR9}x4HFm?-M?q~>INB;zk zU0TA9hRlhB)*6aFofg~T@TI?P+eJQm)-b;3JM(@Sh_ylMT|Fmchi9>95Kio4?f`ga za+uz(2H(8tZ?3*MEw zgE6*rzUY?J5QbvI6J_c3{x>a7n-r$3MI%x@*OQdP&Zm`nr5VP zTDi2(?glrFV~GqbF5hLcq?AfZEtF`LsOGT~78gcSIW%Odf3_8r&gm@vUa5ZcI0ZoT z0@&|s^xn5`PhYFmuYt$CfN6@(XIUic!aW+~6$d+y-{yLPpn)_2?(o`<}a2zxlcJe|R|o|N;N?q=KdSd3aRYPg3*^B#_QYj4u?gr#18B6mr%9WZok3r z!OPlDhhHD)U%zoP)ld6^YtY^Juq$HZ4K`*+)~Ppa%nl{;0{O`$**gb4z?K0!@3&;)Ps^qJk&dqLzKAqrFjc-qF~7ajx14MX%s0--IjDReW|CJK~W%dmjr8{$bH_ z1}5XAT$%P@C05D>y|U8IQCRD&5kw`Yr9jnR#(S<>B|FBYnzSR8M5#ijWh-i&QcC9! zTv92k)kq=B&96tBn#K2taJn1*b&T*?9v{e1;xUal6VAV+%#vD`FLO|a=yrEp$dJgI zd~96eBaoxezEmuDF(`LDcI$JR)As&AW%bE!Dv(n7cAfKL)vkIg7Fj0gTRzQNt@m=` z0pU*}=yj*(3dI4z_3|}`&zr~JXVZt;x6@$Y+6%fj4Tq?M*#FgzFQ_l_FmpTKeKKL> z;~omG$4JdDa;zI)&ijb2bMNm!33TsSwH=WYc)IUx< zt=E%HtlsU=fZHobj@UP2HsbNk^#1kHsX-Bygf{PJiCp%339pC5JU8iMOMxIe*~orFJF&~-!^Y{0?+j|#LVk&zHblH-C#Gy z4+5-VU!cW+F)x|GT|ZOy{{l*>u4RXk?Aptejma8t|K&r*Hwd}SyE-|aRlMT!Q&OFJ z_XlVFm(vZgt=r4=4xCztgNm!$5)PskcIZ&;rx<8AsM^VZk)EuLhghnflP_Kazj}^` zT)IkL?+bo`uh|}e!_n-f1aGhVH7`s2hm8EkSfzh%^S+NMl%a9#_@gVzD*Yr2q;{7p z6Aa)xDOIk@4@%Wh66t7!EL>{H7!wf=$t)3~!CQC8G{kJy-5x)mm}|@uS7tD+b-fVX z%Vf}}oYThMDZVdnKO0G*(zpElW|dIYz*;sH_Jtpt?1WYQ+uAskj~-R-Qzw zQjVpP#%ke+83B>qeF(X7>u;?E8op&Q2DK}uDObs=CQzxhY(#u+#;8CB)8>XD`>D~A z*kgUiJe&G9axhTG9bsKDQ1{Gi9fJ;x2!JVtVpmnkEsiep`KR)SB{vU3xx#YXVsWgn zRNnqHh2}FJ7?+99E?3F!et$3nd%prCVSBU1-)Xhv@xP@j9d4ycf`kv>j}zc8wN;D{ zP5FQG`kNY2xYD^Tkc@I8NfGpM;qwTw6*cAUQ~SCGOdOg_ zlt%7wh}1!@&#`}|NxB~?qj&oEW48v!?`6JoZ^UgfJ0_Gd>m93^NVf^}?W{kQQtaPf zm*pRJW!N5zhc)lLr>;_*Fpa!07qfZ47X-!7V38Z zXts2#%$vG~Dh}uO2E{cO+L-1fxf>x;7I=5jVx9sYz95qYmc=TzE1L_xLbl za%N-JjXG0Oez4<27A0sxxflUviV+#TSmTE;ROdNXr$3@2gKj-xP8ge&Ny^G!zq< z!FGz=XYBx&9?_N^9gz^MRm5Rla zLWbs4bWWY)6FgBroAtu>twPBJ^SQ*6J%(cI2EsPa>c8CVuu={xcxhS*^&=(z`S_TQ zTiUUWk^l(mstNRvxtVl0>0MS9`Ly<=?Dk0xExWX-?r3_^6$d5&16aB0CSjb(Pq*T* z3F<0C1~3U)6`K1nyje;SsJGpsaH4!)=ZFG=$4$=%M+U+e^2|6?jX-uj#(}L>^L@$gz3!SpMPuk#hl_nNWjpKkFW66nshrv>5sBykJZn0t7v- zrnW{dyUrZXdYpMDGjPMEjzSuc=hE3-y+8dYuY(@Fhh;(f^y3{)lhxgSmtEJHyWrc< zEx859`4?C()ieQ{u3%z!OZ6ZoP{3Y-ARFvwD%b<=+ zn@X6b7!IqnRaP_G*Lx~Bs#)VTMgd3&stJUWF}n$5jHSMdD{$m=_ZG%D*sP`ky!+J; zJnMH3e#&{;YPqN^(%$YenaQbxAQQU0lm79AqzMMl=P=Gb@D|# z6*(N~arT?^E}UJmV!TcIn+f+@KHKhlTrdXN**}wWkF~m(3%Y|9Ki5jTi8WDye9?HZ zyoh{T%XWEm3bX95q!Gc_A^YXLf+SQISg&CUe~}>Vsp1zHssP?_KO^@1=#r9~%am6+ zM*e0P(M;G7O`JW?491w(o7AiZQlR0;Q7eZu`wVB2u3ab4m81ZX{?PHxsat?1c+RSA zdR`+lXInGiae35qf7z-ps^$WHY^N<@ua1TfO*^fZlDfJ=U3$*J;vD>shB6(ZE_Mdu zdGd^p#~NIsb`a8Od=`o>iba}ftR_;$`)g8~7rIf>CHi`!Ncv-YmM&xD>>f9JRn3sX z!gOT6=u&lbRRW>tU`6EznfG*-bRy)TA&Mrl7hw<}D2MdLRE!|BtCTA~r`Piw|E0V4 z{Moyn5^gvz*HDda$#pvM8-3EA5bGg@myJ7iEMI7kpyOBF?}J=sC%p#|R+PL#(1qvN zUYlQF{MV1=t`CP_y^rv7xONA=x;B}D$E#2HT_3bQHq&qzxpqqThmWJ|z|T+1)vcD- zkm7G6V2Bt2U*PO!J2FJG;8CERuVD)cad*Y_Lo_IMb9^X*5QX=?#B9p%&~}sc8-GvN z&X%8{en*hNW3fq1_9yzvRdFPf@20P-x8PxE!8D7m;O(X#k1zhnI?~nnrsHacuG1XK zru(tiqbM#0!u+A{*}+CiPxUL|$3CKy;-w^ST(cC_z!q=!P3!!$z{5lhp({m>`~Gi2 zNTbl|0zs*gb;m;muQaI!Eh3;wr6l!s7ikXaoA z9~<;CgTOk`C%M<#vt7q=FjLQdhTC~PKXJGFXvCxT!u;!EcId;awVOG@dExreMAMZ@ zDiG_NfaQDW<0~u#LDNy_$T<}635$8fvhT^SP=cHD#|yK!o*O5t&5zYA{bE9VKeuyQ zxa90xSA5X8mnw1FhcoZj+F@Es3)!>%d|7Kod zA&Q;|T4BMTDU}xM23Sg1LrPY06wg)4U_uZca$AATZSJ$2-@5%8@5lLkiQmBxH~`j; z*YosTZ%#07koN1x?;(Ef9XmnJNNAaL!@1vX8xL`6=Ser0ru0S1QpY_=J&4RMV|zBP zId!k6D5?-`CSSa&)1dsz=Qb!JEKv37;vifl)FgVr2h}Hq$V_*eo_?ElzBgU5zOR2j zI!@83$F#|Q&%1g&`?zg*ZnHmz)VD(sa=e#WaoGOKZJW>0>~H{8AIte%KAh`4*FzI+ z1pD#D^SN&}nROR9YJCWHIo=3fEOjVX#uKR|DUPLX$Mc#J*t^+&9=+N!8!+VUkw6K6RN21=ybE&q(2Q2v0VvJ>Q;e z&oB#(u-tf2a~vRoLjL*LPv()TJvsG5^K?EK*~@InZybRnr{G1aar{+6sahb~&@4s| zHYva&)VXw+eu|=J08oaqc=8Zifd@UtZYGPQ|pjTBQM=NnvQl ziq7~_T^tes4P}#wy&bQAoE*iis6Vj{CsvF?E$r6JN-p2-Ztfp9uFr}`ybroGd5jYj zt?|tS$(-dfl*5VRGqg~W8}#bH!!oi67UjLx&8!SC`;3DmqI-`9Lx1e!S+^!f^2J+G z;=7!o?0oG+bj~{W8@u%CHt}V3x~uJWf64J3CbQs0VQhj|yUfmsD+cFbof}5o>)(%l z$q8JgSi$K^PYgThmuqNCBe9rMlCS_oO*_a?9#&CfVuXaW``6_EdN5|-1A=-Hpl38s zH64s4lz=S}2#L`z-poQe?c-Xb2k#JnDvQNL;4VvO`VcK^JjK^61iGu0Lx)#eWRdgCPOP4*g+DWrQI@pP@M=VME$LO$r^;YQ zY9ouZ=L>KCmMzAm)qDz8`gl&0AdgN8%c*nX;MB0lSc5;BV=~!;lb~2=JR*eKQCF?) z!yis#>>=A>?@rNvg8A1T@k`km&Q5i8iYjg=~1RG0cEb(-*wCnh60*FiSMGZHXV zZ#KJ5Eqqsd@SC?Wgw4LOml5Dt!V*KG$)|Aq(nj{5MMGH2g#_AXRkmAaDXJk0n&KSR zU@POTM>qbL8H{O2-Fu97P4}760a~6_@E1tcQi|k%>uJr!c zL*FAdQ$^FS{)V?HS80D&LUly-x^@h;Ahk2zGsh23ym$BH?+9-D?ey!9u`Vk4)FeypOKvVrL8<)V1;D|go9?5j}C3weHnbiKrzTS8R6`yHk>2^5$^g0kNX zvCq`eQiakJ4Vj-sRh)22wjBX1?0uJBcV(|cK4X^$H)hJzbPeKAU33!OV-ft-bLsFYfi;&7=ZLF8c2mLZpvE6&!)JWq zm7OqK1m-1(S}#h-Ap_w*nZ-kY4B@PdC=Qkig|}v4W>Ey`!u{CzQAju?@r&c&rfFl$?=L;uPbuqm z!DXxJU{umu zGJ}dAa=89Y8Vw>-s`J%4M4vlwPgCfu^Iv4Yo1e`ew{Wwx+fK6ETmadYjhq-}hiAQJ zE~+ohmoU3QrTjj&Q5Z$t{X9V1eE%N@ak|gHg8aj7i3C_OC`xD_WA7UzL=hn}v}IjI za5*CZ8Tg%Ct~OyIDnCV|lPj=OF8>m6Eb5C@3XMil5}OHkwhcvln?(e!m?D`au3pEy zjTQ@N@`iOJn;oV$Gq}yUaU3cpQnokZE1=sF)Wgf-=LH4*U5nC*m;5gMCzV15 zU{ecj;thpG;=l>+)%C&OBr)v50~q0qMGcxR`lDWa56F-~P3YnZ9zEvP=P0C6Vr(ef z!5Q{}9TfcKV@j@{Az!@&^$ujTl7X3%&X8g-c^$r3SSmgAQrvQG33nVSuAY<^6^m*n zgusNc#?f%qQd50QKJF?$D$EEZhu$$BZ;<1t*}b?a2)j^ZB&a-HP6v` zEK=~D?ql!GnFo_bqVZZhCxX^{BwcALz`-cLQGiU$&B7d~#+6{I+B$}3^c=;BrB&UT z01LF@?fP?0fMxkNR$hMVPh|ydg;H9fKI)=>I63Tqu+c0u^I=9QT+P>Chk1CbD-Mw1 zAsnHY?P(%X81fr14mK%&OWj(Y>oO;8`FZO&Ou(T!#t!h*e>o#u<3tF0FlBD+M9$-z+aBW*q-z&PzLUHo5EPwEijEuauj49#vRDxtv`JpwZroE*O z7yn=zX{%UWP1uesp@Zvc$!(@4g~K9|-4~dke^Fk?-*WT@TyJ496!;_?(ta#WJcLP7 z4`njbn0S)2P<>Cb4{OmFbIAEd&FhZYC-)o5Ab7AVCu#~Jxb-x2tp1~}i#Pa2xh!5P zyr4<axGvfYN8>m z`2ix!8GJ87DO5wpPe4LUl%!QNNenMW6}#nxWSaw2(Wx!EKeC}l2ihx3fHYhL~836TVotv3tnX@ zLA2w)1@mza1haOC;~W|9URVW=omVlLl_;mZzS(9Iu=`SSRu>G;m~6Y$eE1N;1Aevi zS=r*4`ub!5!r2eXY-rYek3PRX0^3K&!u%b_KdQ}8F0!l5PB>5#)XU*KtC1Gj$R?*sWsO?eHgXC>3LimYaOSuXy`d6bu$@%_(OumgQud-7@ z97z2sRt{%xm5P`s5yvXR%KQ1K7iMYw#j@S>JRC!E)l$ z>1RV9STj)FHRDtGvrNc#OFk-KS6$Yav1Q&d^rN-4E#@3~A`OKqA?$f3Vk3oB^vk$t zo2aF&ZcX8{HrsD24c9Mqd;BkDP7j!AV#=x6K?^@Rb}VGF+cJ#K`a2it3Vig|2A{(X z<~1BFcy=$_J#x*X7{(PYMA;@uGh~^Orik*P{PCprsS=U7@coHp-`eOn6cD*%+FjVt z92#(5kBSi~=9-_$*I@kl)^Q*1DZ->J2OYVVRQlsHlCQ+-}=PAhH>uQi3%?n*=>wWR?{`e-9>SrSxJomxWD0BuSP@2SR;62{n5-y6I9bEp0?OR{3hfvCWb?nZXi?&BB&H93=~t zn7?c;mL(#4^q@s5n^V;=^Y3wlN2&{Oj>L*+Ianz=PI%js0(Ci$(9zo`#5SWmoNG>6 z`NGN}*&LRx9o%LQho-xL|2qG5(&eqs%yh;qxfO*Aseytr&EU5>CDB-RU7YWv0Jq>9 zDq0HM=-#x?w05iY26c?L>p*G=zK2+II_s3o0c8|vacGjggZZG?d%;xagpK#lbpQ8) zC0C#2Z$}sImpqx#=5yF|n%w`!4OSwtbOcNvj9B^F@}wngUs8+c5XtHQSS`P@_3}BO z7!w356Y*q!Wn(uX6jmKKpm8FRHL#`&1wL4MoMX1Rnv;;AH%-QE*X!2%>d{&bp!=nV zux6eIm6SN(O+DCb>miHre^cBB?1eS>?7|kgCD-a0hfaA)T59p!>}D}R6m4LbbiE23 z;3%>Fb9vz*)}O8T+qZttA{Po&JI<-g5qj`tMC}@zmz2JZSE4nMMR3ft9B{^~4?fC> zg8cbMUO`!^V2wD0pX9ClR=`Tii#bE>YQ8Ny z)Fo&=Xzm%xZx%kdL1CV0y8ONLnL3ND(bh_~H%OAV;Hckx{O5CMQc7mVhGBRI;BrsZ z6=k-TNuVuNHCOyYsm9zUl|ZZPVo52Oz?$F)A&Yk)$KUv|s7i=zRh4BgGoWt1jK0vQ zCCee4KkLJ%8V893Cir6vH)$IrYrxhSL;bd+zUm;NgsT#z6U&%HBgU6xP{M4eK`@+Y zHRC~zz+At%v1NpB9G3XFyRqT3f+k+ocK!nw1Ae3ymiD?VVc}C$uMfK(!6PKZ|FE%f zi5Q_a`1}M6U7#U7`b|HI<&)@9zkJ@(U)V}Us_Y^b#ThMM$+>FygkbstvkQZ#)I_Uq z^Ige&HA47*El_=7{il7q{5)d)*rS^NYYDs#(uX95F<049`>%uWIO=(5gJ5v&CwPGn z39j3}({6qPvzCQePu>3{KwW?yYOI1NAeVD!n`!!Q7zW59KQB*J8Z-22?ElGQ}^##T#WWr{hoYp}&vd$H+sLtA^qJd5GN;Ipb-0ojqC}uON zPsIUy_yMJ_R1gV^)|~rp5gF~pVA^dm2A5rO^4sO*2qIbmx>ut2mjS5m?3DL4Z<4z zX&SHpJ#8 z5R0h|MJu@uwjio$Jd6ciN5#7|FZc8kjeD3O z%N{z#3JmD3ipL8U;_mJa;&aGbRs%#O+L*T9Ujq?ia1+POorg_R^PMU_4w!Y$orbmq zqUC|73!vYQ{!5P*2oyAmKZVWoW=qMq}AXg?X(%@4aHh`k>u+&nw$}MZ4 z_ho)s5RtVP&SaFK28-K9XX1hL(3%*_gN}OH%P zf>p}U>X9^?!ktr zU&L_H;LWDcso?5(;i47cQxIVapsB3xGykfIx-!JFB?4m9s-`oV{TRO9AI<(`*a6#iavcS08Lq7HGg$0>{2uF0^=IpWg zY0GdkdhPT5?QHg?Af?0=^~u-zldQTcOts>+KTsYH=wh)KH(9hUQP%Ldjmcdk_tnK6 zIYP|!Tlt$~StPb)>3^zVtAv-_SH>(fNNMqyy_UETs;t^5_7}n~jP*N=HN>;&LNYX* zCogGS)!qCE%UBPrV1@-cB+&1jaOv1myzH-2M}NLYIC3B9wl$86?4Fddy_jyHJJj(= zF=j+LGw9{eB<5XsvbNdO@9T)+>li-8T|(Sv6iTuIKTo_WK$OT*!S1kI=UMix6oj*| z^Bb>10>)|A8y=8QyrvNOu!Gw-L;)E(c2i_netAKno(bt%Uj&(S@sKl>j6GGc9gI+9 zR2DM31`4W5go}v>Xr#2)|8l-C*{D}QO-o~Y;!IY~Gj#p|2@L1oeIk9p+O+m3YEaw`wx)!@pm1$7b*6gi_W z<kL2ooqbWlG^PYg;Mk}~4r!|1pe z2P7(bi>+#P$aflw9{b}-M`hwAYM45cZ(~)Ln$ChuCA zVI%>2Ir5`)bQOHNKACk;UQa@DbW=YTK(~9zuVk>E3v0;9e{}ehZ1x#XA;~2e8qPQ52l4}s?)^Pwu}Tw?#(}G6L-Gz zjd=|!J&N>SIT({%{hw z4^6D$s&^?`=a4QmqgknADpHcoUY57QV>YdKte^M^n4lh~i4}zxX8!2sGZL%j^L~@@ z+8F>8j}g$X@i_>#(K*nRaiz*bfZ6@BpKcficZIFuO--l_Fx0VYVR!NQtwhe(F$?p>pcN|umq`9LR0Z3d4~L%#Sm)XH zarH(0sqip(KCRxL7$0He+{Hzvm0~8Bs6y0)r*x!B6NNA7C7}5RK|*27@IUh^94TBz z9QFBZTiNgb4Bs_G2@*<+3$TaW`o9i+TtA0p*QyOLf~)?|z~Yejuf4FvJ6xf2h= zg>57-eO^U#X20#%jEuEO{=Y_d%<|3(2qED)IQ66dGu%so!1Gqu(sZgoDVBEo=KsuO z74*KZdlJ{LiK+jd!iB$zoUePTL|xwyb^Mq1e_h}Pi1@~4VKXkw=NilK!e#%@LSqM< z*;X&?6Z;Z#h;|S2Ss8sp=MNMjIg+rym>V`FF*^8{-=<39zx%bLoW_?!u#Jq%%e>3A zP)LMfLWrtl;|59My6CA&if~|eed)lPG%s9Lg04$vvZB^ghQ#p$?f-vn1{~bOv;auHXTZ5c6Si{3`a%qrC;KY)Bg4uS#|v zaGJVr;r{R!7w6ecW~1ZP&;05RLz=g>4-r`FUt{bix(#R7ON`l%d@7Q)>-G5o0L~u; zHLWl>>NQTsXBwv&NE~danF@G)4vx;m93svCbESmIFi+Yu7JN~ttkFn84IULQ{?$cv z9SlY#&)?VSQd}V+OzHV34DUBY5367UqjceAt2dog-QGGLFW}Rs?VNHksa{`eRP0H; z3L|Fz(-5h61?QA^{Oejci-6ztuDrGIS$H@f=JP290mg~JT1+~S2Vg~ zu6x(Jz%3@;y7Rln=MGSg?-W+f2Q;8+;}-f*qp%4>@Jh)>dExAdaKrw%yW$&mG2@V( z!5o8x&z{U6z1T0MbQJ+=H*6dAU2O)4+v_%hvrXGML3n)-Wdixf0OYSA^G z*R%uTZFdFZvFNyvKNPTF05bTLJu66E#2HFcz`Pk-@lDk%FX`xNCzeL6ru@^sPl{Kj zi?c2BIM--TSMc-xKeE08Dyp>&cSH~oq(eXi=?3W@5Cj3~k_L&P8-_+gX%H!CBm~5v zJEgn3ySoP%;BGwU{P&!DU9w!VhQ0Uqe$V^7&l~J-fbWACult5EbC-uZ`-HOY013}Q zO_G5Ryw!p^@qg+bu9Prht*7pT($Ko%iC{47K-tRU%Pb z{fq~u`#RJ_XM=5Ht*2D4HjWcQrlQ1#VRLkyu|S34a~Y_C?iLG-k^Z5G>koSbOvj#c zE}iD|oz^?bE)(&yfq$Uw(l%`(!9`@*%x|`b2Cb(J3SUC`Zd5p7#joXUu7Ez&WfF+5 zAF|NYMvji3S0$xpFYK-u^8O*HtQLl@N6ad4^eW(ea3%IXM&0&1_p6`wpZ&n2=p1L} zQc1)aP(~*t;5qtbxl#ZfCJ{)aKgdc^`_5W=#;i%rHTLXJD$xXg14v;xGDX6LjaPhG zycSrz6=KcLMPw+DWBGhVTR%4mu1(_KtMW45tAZM2Vd1LPpT)w;PVLQOR#wv?o1R&V z1%Rbo%E2VlPh1;}D*#OH&^7vfE_?YsU z+q*B~UV#Dftb$o^Wd!EK6lsL!i>Lh+fuC|%M|CM`Up-+i~ zOY_@r;Sp@5dKDFj_1*FwGuH8MnG*`t9z##aEe}GR(Z@MYj;VSbCmi%f{DIKC2TQh$ z@6+LegxA}8P>)yjQF2Q;xDfQO_MT_~=(|0el ze!sp~@^1zhgdVa>1+ocvj199wU8+{*g(1#?(Z3xdbY(SM2I@ZS9T%{+Ozb?}(<{yZ zLNP1e56i9YeS&ynBYMfle1N0Qg}!SQfAq4g{TwpZGa3>^JgtL4`4=%#av7^&u^B?V zu}Hl%bcaLd^|WxRb;l|PIb57hoJHq{@R*SFFXkFCzY)~!3g_ry5TCM^Tm*qO^#%hA z9^LNv{l z5a>@`*45VVRlI`~vJkvw=^2sNO;p&s(eeb%FRt@?DK8b!j)s*wW~Q&3>uNx8lQ? z)R)gfiDr}MxEphzL%5cb6)sb=1Z&?%HWLpVzf?d-IdHM?Z!c0%mMq!N?k;e4lIA{| z1xFltIaVwgRie%GbL@FdhNMsJ4H3T7z84R8q;0&ANGf_NF-LZGt<$TDr&cb~x*0o=Ygk6?R}jF7BP= zq8ojezfiYl0zd6wKC99`Kz^R$Z|Y;i=6c{)tsR{aTCF@`iA(jhzT+XlL0P=cs9UL} zHR%0N+u<2kzyFdT4-yUo3gr(wU?kk?d?P)at^LuUu;sv^qPK>5^gLx%wd^(&!M4J3 z@-xNXF1n4Jm-xjL#dr7$vr*==){84n*^38B9-&E4+Yt)Dr%NdOj)Hr$b6v*}mU@vx%64?=ObCX0~2VX~JYdC5;n45%lWUd4jJ-rZMjqt(hOM1B2iV03$ zyW=lxD-?M7cE;qrAAWr^aa7!+djQco-}|N=qYj|!v2!Q<74I&j z1I2Y1wzXGRil`!Lv6~WHF5q3@K<#4z5XWh_5BAW$t?NcCxMuO+4%98b! z6)R3a)S2O)@ti1bnKJ@9x6b!5@M}t0F+Z!Wi}tK_L*6p{{Q7f}Z2DL@l2yP>eYDG@ z;~V~hol6KT0sXezuR8loI|W6|<6{tGcjvHT$l`@z^mPaFmXeYGI4f1T3t9e}tQlSv zJT+^_tXceMip6&0l|@3#xUJf-U&X`f+L|C3hORT)?{)BSiU0`UjCZ5U9n`vzxtesi zn@3r2Xz=uvAKD`$Wy!3^7$)&04-Kz1FC=c?qxhjcdBuwNm=?Q}S&h`u&KAQayq{4b zk`tT)LcxR39~g+{f%;Ydi;xbw2E1mZy8H}N zesd2t50x_KLczWH5v6TxGa15SL;EncO>AtXHw=zHh^w!;!vo|9Aol7?8KpRnr$Hz= znfDZrL`nY%cqxeDnIvR&{(LvBiGv8K@T;ew!}W^Ng!17Npw7NGgRN4;4$% z`GA24iIE4#GjA*}^Oha9-m{~7hV*z|=DFTz1zidQlIS}S6j>X1yMHC_!RkuPOg@~d zVWFlz1iTDLWb|ni2~{P@BNzfL>&d+5>_NMYH4jQ=BqllcbS^xzc%ddd1WfYhgO5$c z=(d>_?@FvpWql^5?;*I^m-SDC=Xhl9v9ikASWP#c8?I|+mU<#5`^Suy;B%ta;9MRO!Pt^4mN zo;ilWx9EYQcfA-8{XhAu^hO6wAc@Jcll<9yo)aoQ);y9YtBA$6pEp`YOtG)sO`Q2 z&jlSYT8GyY@IbJP`b_@TTcCP(6aG+Hp#Dr-6)}zp^?RA#7$xfPQ za)OGGQoX)Es>MoDlI6P}`TUU$Mn|TKl;@`~$-OQ`0dU!;BkRO6R331RC)>M}#mN&o z(>#vUL~pQ*_165sv>RYI_Id26lAEAiX-Jkb)C7S1(C_yzzHsPKB(q>+pe0|cJ!L~P zWUDZU8Pe*BAJ5?I5wXX7ON_Mojv%mq7vcBPze!>hO}ot&DWF1%81O|~!)+GwqV@*( z%J#>YxN>hvwRuV>*A1dFvS-P{d~LIztZmwClnRiI0s&uauY#}0WyOu#Iuj!MHTjaU z<A|aI)!C`FtOtqcd7X(UAh`Ob42mplS=Ky=>d(ZmzEXetFYEjPyCoZ;FcjS`W%H>V~rFZsq#r|p}gfiCaF>2PktYxeRK$=f8H;n_Fbc_9D ztIFaUD@t4XDJ<8}f> zFGuQ!b+)^YW^E{bS7z%U@tX!;0tmpjuPE6_>e_gTje)y@_!x68$<(ik^SGTjXzr51 zG$_hz5+-KJqOTQ-rg*;e{0ql}5b$%10yy42U{qVLCgA0vi3vB1&Xa+A0ai+q;V7*D z2|SZO;^bKp{{ow-0gk5oYX#_rGlaf4s>}O7S(2>Mc z*uBP*Q$FbY3XlWQkAu;y(UE^E@&Y7{)N}~k24^b(f4BWf>6_Y3Z*1Rmm7#_tpdcw$ z>rYk}suC>tSRWnvQOQ)z88)81SdQObGk05Z%3L4|x{#5-{Jhizs|k5_-}s&~LaCV| z1dKDFx^*~Cgh6OSJX2B$PUHenLLx=9Y-r}2N3}&5o~s^7d6qhR5cssdnq9{7@Nw|~ zDi30d&rGGY&kdoJKt;l=1l}@bC7k*SN6Y8gbt&EJBb1Z}rnHo%*ip}uDY0WHX}5w~ z#{rgQ`EBDM{aAf@sG|B{R(g`KdsI6GP(fr`ZQJ}7OCj%BEE0>2)hhw*5h{kSJpk3W`4n-{vvK6 zLng{Kc{!ZN0@zgEq9N(rop0xn#AcdxP9F439W^nmvfg6%6FNPk-G0CTEZ%Dgk~Dsb zAu2<&@8W`H6!}0vGvQT1x5zp0botAX!dY-wzhAob7m-AK`u8ny`&_ixOh<&xM2$3* zXK)5@Sqh-iw(VEpzs1VmTtVW1WNb9iDn%Db;`C$g@l5fPLwOr7C(k1k>+rIGKB4_8 z_dO11=p@iz48P$yr`|Mxk0=Sm!RSOYQ_vrL#K&?hOHHZQEB)<( z4zy?cbSoWz@@8Q|shO#+fL^WDen@doV)`C?9Kc9g{&$V_9+6SZwdjJkg4|Cfi=}&~ zO~X+NUeE@hk>F11vb&|LN`)$?gda=2pFw&fpT#=(mKa<5CnwI4kuQbN{u68=N`KW9 zRAmF}ry&{aPW-8Z+4Q(Ll5eHmyXXzS6+FZC4fsR@Z*rOFBEL|&(5>9xnbqF79ulds zRaW;HRvrXHx>+Lhc=HW%@J!RE*2sCCxG}#IR=@-^Jj-O;X&K-#7Z%=1# zFHfa9r`Dyi^-LGfSt4t$Pky8)hzna&b?tgG=|7$A}18n=HEQ$74shKOC zrLST2I*Dt*i2|&Rr?Ly~2Wegb$=2$Jx;w#IUZ|XtbU0h&$-j8=qy4?_E{OuatBfnW z=rcw%|JK1`GDeK?M+JPI2^Q_=>ACw! zAV598bEd_)_D{K zIorN)Q|>o)wY~p}9v2!KYI~RD)8Uk}n=MgxLatyIpnIEtVO5qtx-@%f;+>0+B5o*3`XmdKvI5!J znCC`RN8j1m+kcO_+CL!iI>sZ1-oBa>yQW7|r-U5}>^1?%%wWDTF4^ccbaXtkbJw$T zeQFhg#2{+uU2(fgCvqE=N#0mh1@Bn!>5Q^#L6Y*U(^?+WnI8k5w<%!J}6?{nEGd^VbNeZzJK1z#V?LHlgx)k{eX zHNKP*bzCnQEk@UmJ#avNC0plk891smt`I&D+u|8(*;WjqVn;b^y?b#o6fR9;PE<8tSQ?G+Pq<&l@ zMRl6!$}lk85^!Gr{0X>g-9)Zdk$?D-Yg3KTwHaR_dV(9slXM8-+0kW2&<9-uZO6 zhe@8~$kys|>L=TiNG|y#TgZ(oDcq%N%DxwutG1E`{ z=?tO{DD6JJea^=a6?9Mf(xExG%hU`3-37~-UlGG+hq9EOBf6k*73oG=bpe%6%IDEi zoKZ)6b_p@J<)lf4Xm2Nix9LHOzIKfJG^{ME+h^Z9SLHY1m4e$1-sOnx{C%oesefhx z*5{CuRb)V4t%lB~cK2%}X>Mm_ypX8~(1mysV11F-~sJ<1;qL<+wN&ez7Z4ai{Ctbzt22jb@CH8f7iBe60eo+=$Bm;4g8YKF3iFNo2wr(E7Vk>d zJPt_aUQNkFZl0)&Msp$Bl12%k#m{s!MpdC~#7)tS3hI&(lJiR5@<^2X&IdQTl>pfq1 z-lwIt)oZ#pYssZfmYuT1`}we^@Iw-?tn%d~)nVo%Khji{t=>Gl^=Y!cELd#+AfvWA z8Ok^V)Qjhf)MZZ%(j%!`uNom$ffjdXRjCIUi&s{v%%>@Z!vQRmH~x5xDTa95YElnA z7RXGY(8kifxdFl#N$_07Ha$<{*=x8BpQHS{5_=I)&^~oo_TRhK!wK2tO}S z{|&@fGJaidInCSySSiw`X0_^j+z9Hq$;leECEmzGIp~AQn50sudZWb#_){PGI|*Yx zVX&bxpTqR{HhmGkRGm`wZ=P~IEiLcBsTA3&WGW-ixkrlOttr9L&Duq2OQ&ufu5Hc! zN%CyR2Emo5KnRn`E>(9hEl%416i&kQ1?k&HyxJ?TU>=V;7VNrTvi!ugn=Yf^DqgbB zOertJ%NJZ2zI@ozJ}Bb#WF2b%@qs)J?mYPkEWe*zYLLxo8k|$?80RYcBcG=&uHcLhn&c?nDVnO~ z`Jlbgy`C3Q0xRB-fd8m9_`0@4#pc6N_0>RKo*`M;E>r9Ifg_m=t5 zV`mEt?%KSFE}58#IH>majR`L~b7|Fk2AIlEIxaBsE91LK02Nba@tVt))=kVu04s#0 zg_+F>Et%ppG>wM`M#{^|PI^9_HC?+PNn!o+;Zi>O9vGc;6$&uB0Aaom1uWYmX8V|^ z9MLDBbiT1@gK_mJt>qMAs_z6P06^$JB{C{9x)SCb4`(fXfL!;A&dC2!aK@JD?f_Bt zgR`t_X~=Nd>ZF+?F4U?fr>x3khvkR2x-w|cvz!FZj~_2M5xrw1ZHO*ixii?w?Yw(K zt+VxOw^pQ4Ffq6jJ_?3<2@pn2ZSL2tCRPp*0#TzE{)-%NRDpXoEEuQ=RhIXT2rKHb z>OMimi&{DrVsEjsa}ps7dH14M_7_nsQ|ZK{pV8t!8zpM9KUXt5I;+hRGa30YNUZg7QZsC8~#abDz@d@hqYc1h~V++x?cA&<)g|U;y4Mrm(i^k z$=A?1k{In*VGKIJ1r%YwohR4Mu;foKou0ktNKV~}E|_i1mrnV{q^-hVD&MLHJn$S! z^iQ-jhUJQ*`Bgn*r7hk@A3I!nd&v^{AwVT_$8vIt>_AA@(c(qnkF*OZ5M?{1U9*Ib z2XG5%fhfQ;ZE2;?&$+_i!VFyM6AAJN&&t7`T0q@vX0f}KRtp3$KuxT}4h{!l#1v5pty9{U)V!Z*Ra}c|(P$!)E$Q2cV z#Grig%5H^@3b(};V=2jE+RzQY84+;c!a%hv*MQ<4-FHsAJe$g72Iayd)@#(ts?C+v zsvs1U*U)Ylp$5WuE}lwjrOYYWuXL`h#Z9N=%YY;6f_9toL_ims;a3jMy9h@eM>nHN z-PUsjjyRGLRCy6i=l(!q0QH9Iq=mDh&tuj4Z7m09_pJw7*I|<4%xF-cd<;#3*nTo# zIXc#F_-dK6D<@Ovx>IIRV%CD9tVQ5)@&|M!LY`Lg!N1l6q%4BtrxVu$gY(?@gg4S% zV*qN(Pa|df^1*XlVIyBUUL4pF-WMVQEPAqahvPy%?DhkOX%TPQbF?hIM98|WoS=Gj z{`q1a?PIf{D>q{wQ}Y`pN<0h2{^prX@mY%!-={n-ni^e3E4&3~DWQdQSnHI-0H>dM zvl@8kp7+n1TjlUd)&^I*+SdWd=hw$B6CoQ=PDRz{1XvkF!%!|WVjkNcvcB8pU;P%y zIqI3~U0r?D?bJ&68aRpN52{BdA4%n`WHntaFWqP^=3XyudI~V}<}NsR`{I{y8=#v8 zL*p=GxE=9aHm#ZAshE1tLOYEQ?DkD}g$wQO@$P%Z@?t)XpUP#zV)4Z&m=A40?m)j* zDVMV?ZwS}y@{;)NMBh*7)*OuJgz8!W{g#{ zHeQ_9b)n3iAf=A*AldQsHt|wwF28hMYv(`7ATC`pTg1f$Ex-nJ1RQ}ubEv-`q=zoo z?wVzn@{qmSBA(=Edj3Bme+}JX z?5OTC&B%!U{YYv<#XfM?1JaaL$2SkfOcIRM{IGIWu|WQ7-$-R@OsRLDJB&P@%F`c) z2ax;_S(o;fJe;`3#NP@?S~vZB*BBIvGy$={96KI&!2OReIBBhx6mWD2T+Sz^JUg(7 zjswIMCykMVBfbXochPJkv)H4QsjKk<~0TD zIOogo{;YXI>=;K?>q|XotDKTOHF(@4~-)Mm#qG%&9zt+lx zO@bSEfL=Dsmpydd_h9;F>;|W|aIP%S(ybRUj&t=p=G5<263v#iJaXXJ-1ZCyj3feyP-a*pJ`C&Pkx(vl;F}df>U`lfyn2 zrToqQkpXOPa_;-rBp<#v(h41v05mjQ9Q)ia=Q!u0{F15X)Npi9VAzW*tvm;2PukfPxO%@-5Ws_U8bKVb<_l zitO4wjcaFmnk&=kdsGerue%5xxVSf;2lM4T%LjC1_A#rJsoTfBwm4Z3YJVg{oI zoNz0@F>T-i>Pg2A-S_o|dw&rSm$oZOxD#hXSWbmNfa;UPEK)WlWoQRvP2DW`GkVth zh6xHFzOr{69}W@As21i(FxcN_#^la#H~AIlk%wr1b-GXcN`6{Z@HOx!O3N~(@Rv@? zT~HeL+=t#s!u_M7xa~Xx2h10^P^>sxcwEg!9-W5`nKH4w?NeiJ=*k{i$_g>8vu6-T%HCYo~D z@YLeloy_vkMNVzoXQ`k-!~&1q~_l}rpuUy13o;Be(Kj27Jsnd_mnx0@c)Hfhd{1nTwCMnj&19+z4N_f1ln3!{z4K6@P@3pe7;f+Q54DD3 z#!D_ecM+$DJOXugkQ)U`4(W`efJA%f52~OP5Gl#YFvL&eIzVF^pz~E5OJ&d%bTN%} z0)pI8+VCH%bV$Z1XT*&6jP}$h1_LF*UT?EM{QCD}gvKcU+^{J-r`^4>*_gjYV)!4n zc@S6UuDN2zf+h!ZHQTi*f&diDGF4ZojLmcNr zP&&QjBnVWN{N!e!>9Js;1yIKj(i~l%{B(#$KKa%l+A!dcPlgTP@=iWjDfI@HC|7PH z;+ld;iBkP`Ed=lPfZQ+BqZhMeGpVGsW{Ws@_j$wv)e8rQ_<2eMB(wG;3(^HYHCsdo zRB@B_?}KMOW90ZbL875=&~wb@5;YkTA7cyW&uEa(93mV{~I0NInU-=Ji7lSZI712dN6G*R`Rk8Zi@sGoV0UX2{$f)R12 zIZHJ1@VzYsn5=48x(cQ3`&_QPDc({3A7l-Q0$d(eM{wo=_v7Sk!VSmkubUqO=m3q$ zY$y$h-+U$(-)38A&TLfMQAP$dQ*KY#FvW9zr3oc=0a|@^U_Fr0^Red<-0DVDM}mX_ zAXZVDI`L&|A=^1{m2hgfO$}=0MxaOZ(&;$G)vqSl;LF4N(sSHt9kNa<3dpR`?!$gI zcogZseS(ojz+m%+C$~*q+nVxyr9vaEeWsR43ba#y`{f?8kNJ{8sgGR-);OzzhdN=Y zk>x##U4FxZxd8H3fsq2GzjazG9?JZGMkSo9G+2!Hlv{BTe_2Tjd{S#;=+@kwqf?P_t+$Y3r4?r#ARSMI-? z`dN|iF9YkY0-YU5@Qz&#a8x>MIi~ca>-VXwqeL8$vn{mH*QS?u^JRLG5Mkl@uf1xLx zp4X6RBVw|7d=%R>m{j6_RQvj(g;ra;`MCbkKT%%ZkuHUQ#d3q1#~e7(eMHsRVru(K z74%n-C$OrW(+{#$wX`769`-YdK(-w%8cPnB`hTryjn-|AI0QX@KWHza7%zy4XPi{pKU+Z5O26@6?hg8}FgHH{JM_w4EzUM)`PR zrX&dTEfa4)kywO!{{{90^={47|AJX3%hwQ({3L@~&Nl0=F+lSIGvWU%Q$;RmZsj{W z*)xlSUvV`=1~VMZ6))Slcsf`E6yWL(NOTbB^tOPNy@EllR9pD@6A&l>nK8wUVdg6i z08+Bylfp#@rWBS08cbmQu2fcZVwSKo<+9GN0lI8S1JwVJ!r83&(z5PAxzio@Tro?> zzsYmXB4F>u6Mc)yMdFJ1f59hZoqAVvE@n-ca|;9XG46pXw$pgGFBWC-I z;|?&(D6KhAG8E2@p;yvyuh%Pte!90nq~YXWw0KER6SZfemZ-{*U2rOF0L5w=PgX_RL;|jl!gFIw)~E1WGRvU_NDz$znj%o zaF8# z^$1H$P<&DO$y?IWGsIwiUZqdn`-@c|lTr>mc~qko_kT%OCq}}-Wz&07CRll|dlD${ zKzW2GfQp*CQCTf5WZ)peRL&Vj{XZ-NN?Sa+)?S(qav?FR32}F3agk;I|MkXb&V4!Q z>De!#q(-xuzqf~vUmK+&@%Q6e>xElFtb>8o_VR|tMW8JO)QDA5y*wctsq%q+r%yp2 z1sH5y_a-lsJx#eRCnrd5RpY)=3hs6Jy*?fe{Rl)No4SYXKox{uNy~ibmQRqY znJ|-dWZBhcqLJB>Pq>ke5@^Fo)M3=SdeY(whu@b4X-lUHNZe#iJuE0&wl1aHUmjz= z06L!U+k2+^ZNEECe&C9}7d;27=?gx$ZHAjMXFvy)xRJdRo`15XXzaO-@G7lG1*KDV zHxkFoB+|@_0R7OFsm&kS%qHGdy!Q!U?>QRi<1{~XT=f>iJ}RK6M$5U%6{x$%4izZN zx+lmbm;@oX3XzNfweDHyh?S| zz>9)ER&|1E`tE7G=NlV^UNwK?FCM*?DQCpL*rC z^1PxT*Ot{zM4({2OQb@|q)BqCVk}Q_GwJ5jIZx*vC89MT!?OFmG&2V906fC5gI?>0_5AF5f}9Or&5# zf!M|5x}K6Uyxrs0Q0YmnIWLd&x!^qTzU;l+Xp0~4J|8*|y0BiL(R*@G1Q`DFK5C0T zMLvSeyXXfdGMKmt^Nk=>Ag(how||@zZ2>Ca!c#HYKZ@h6z9aW3ZCZwE3DWxB13m(ZsrfkLhK)?s~hXT)S?PAgCzQQ|ar^49eVL<}a^bCK@H3)(7H zNlrXI>__{P)c{1r-HONs>s8Y3)jRY1Ynp>TaZ9uM>cf!(&uIxb1B@5X+l9$FFm1^F zW(n-Z6-_#EWu9ZPQ>T1s!PlWHf_P}*r=*BQI%xWoE_wH3eSa2Qg~>g}B<1gy z->1=EJR^C&CE9j$+f=`0$5SI%m}6hLczJnhHSjy2H*1{q$wKu>ULG;a*8R#dXC`T3 zyracSr>QfNBgGJCdi90L(c$g8uMMwwX!0JK^2*}lvdNLSo7EnlFS`OWL&VW9uP1Cq z;ldNvD~t0^^wEMH=o`IiIw_DiKUfF(FDlQC{+!^og+IIVjduRVfT^$XI^oqgzBl^| zs$x1Q#g7W;f^_`SH39e4IGr=akA!gYw)Yx*zyOYmRO!-b-P3s1fB}t5&fgNVNr605 z?t96CX*Jo4P++E_OYbm7vwo@2a<1yf!i^+N4vqdzap9IIColo1SxXo*?y>+Fq z_CDy)b1RH5^0CpzJ$E}@)|Sfk6Z15O)d!W~y8ilsWi7eW7eHoOJ{huq2SXZI}`v*y^7Yq&eKP<9eBYl`wi`3 zXA4&~Ip9;Tg}c18tK9i%q!plg5v9DH;(sxB`JEiGq=5KYDq(rqb>Mlvljc@I7v(tJ zUCrG&o;n7^U2%lNvf%zfQwPQ=DhOmebu>~+sRXEh^?m2bTRGl`cR-hqmYQaH^QHY) zZV-qiMs+K!dI`A0J1#><8Y193*utx1GL!NZli+kUzk`tA*$oRksbv{{3To~{R4K)E>Q&_VPvq2oiECc;Oo zYYu5IRRv2&7dvao@;!)_#=IONADPyUd+&#KpsR7~y`Nk_#-G-6xQJN7qD|JVa~=Yz#w+R>#Y!^7``hMv$jz*Cg-;@~8NyZF~1PY{Y6 zC)cgV*kqycEZseSFLlM}$JQEM$L0#hx`_*sjJZ|ZMCo@Y^Hab8vn?wgQ-dIVcO{=`nY_X%qS;$#Fg|E^jTWr3rT zZxv5bQg>+}O=B8alPAaZU)@N%Rl8(9s-ySf(rHt*0Id=U^^UHA9P#_+xDfpLhS)~X zl@$;AEh8k-UvL{}gxj5Zx!f&LLh$yz0KWuLKq9to$5qIG)fq(>F0l68j6;tbB5h zTY9>4ku2bhfTRW4WojR8bwWG)uz3H~;7Qg?Q-(2##I5bKw>c|plKnQ+2t%FrpTjSX z3!fkAEd)HAE~XC&_>%LzoKX{PkaEa#7G3yth2)cq-vy26%o>Bu{A~>RCuwXV3k$!{ zc;7tDseDu-ut`ct-0c?lpWf9sBo`Q#F%vTtqc6Bk+y( z3)!bTh?{;_@>9333ms22ker59CTxW6+3^}+#Xnzb8uK^DOjs{&(l#3QY9%CE@F z8z_I{Dp zn`}Bsh}!73bFbNlyM2l>)qaW+Ef6;p4zzLZ2JPIv58Ak&n*3tC`L1{%A<>=_9KEk` za%_~}c_FiIO@HFmTZ@~H=QRA%_H4AAH0^3M=XQzCr_U>-bK&+c9=(tS-zfFf^C-Q# z_%LPgbw3e^PWzcNrq>6$j=S{{+J_}bcJ$fv{H_auKAWg_UAr1>Ou|>u3zxeS;1jFk z$4L@TskMdbz&+nU3m6B={0DvvIUj;N$jCmj-~f$Pqbwp(UX}>k2%BV!6)7!LsVmjj zvGvb%A8JdZ9=q@v=8t*t_>y1%Q<)rd!MK3WSzmfO-DD$wiEbQ`{^j%$hXP@lZuG-0A}a- zzS?V|3;g_VMnl0j!SxHz93BFtrnuD^=QB##*P6g*zv1=|q6M}R>i{3;8N~(k{KKkx zpnzdb@Jv!A5g+ssbFqXK1QMXw`NDV7_5j2#g%asih+EOPTRx!gJ;EzQcQyV)s*~5l zd$?4#P|Vg-)u+@ZM$kN+>Q4Wzw=?5-gPF(2mq*8^S%H*QMpr8x&$%31ORd0ptCd_= zCdQFSm_|6efWCS-nn~siN&j1X23x#CbxcpTUPurj%p{?z;&q97W@)PO+)lo~&-)b@ z5?yBt71Go1PS74NcHV_O0?UHqIjQX#-Ii`suXd_{iv>1<*7l=0S#WqAQl5GJ8 zM~SgY@RI!Qq7*nP{pP0eYT|2R&y7HVk2BIh-w{qX(DPZ{|GuQJdMb6W#dsbtRjJv_@;mc)Ar7P-E)<&PRfdwQtO7{+SBixv5kbhohC2<4$VqvGLlP zRd!ZR)${w~98CthJxc;zlkJ%tym5kC_>LW& zO6|Aud>J!iUHiPO2ouL!iVAzv0y-0N+_?v)cV37#r8kvdpTDx@;_2Rf!`xlA@S!6} z#bu7Mg1RnWUU+gB%IS5Hn^9Y&#@NFbaI;OWhlp3WYaoQxsp+$p2kmx}HXJT^BGzvA zdD*-VPWm508gBw2ch^`nH{2sla>FxNH2c(eVCAJ8rX!xC0B{K6*_2;qBg`ABuTOTX zHmlKjDaWuTWO$Yzq%4E#eV&TlJuOg0y|xl{98T3hZLUG2NqAN8rLH1*;j-ks@Dj?= zm9{l0kWt&TTglr{qGmZ?GP_`&{!gc}Rd?V34FT*pm&aaSh+lrOpnXat3~&PL@G z+%eb3>-d+U@TJ zDW3AO=eS#(A$Wcmq4iqOdQC*-x(VgQuzPtW z5sQF5jc?hW&teM$?Xdf*T(BDU(>m$ucF*nnRPU9>n}o>5hLiUBq{6!?@|!5~+qgnc z$5l;Yk1{o!k+a&L$&p#*_||+og3?9bW5OqIOtImGRcxsa-rA4SibjvXkyi23Q~IzQ zd9ry#-GG$xvd;B|$(k+Ko8|)H+bFFC*Ho*NvocSgRQMprfR-aq-H;STsjZfTrKUyo z`|h=D?;GXY&DX$R5ucZ7jWOVw(fIf)2L{=csK*i+gp zFshXMHhiODx5N81a81s3XRmInFU?K&u6t|Xb}irbJgp>8$4z9iqo_5UBR0C?|IqXm zKyfuq*GochhY;K)1Pc({-Q6L$ySpqFAh^4`J1njNLU5PG-Q5@1kLUgCpWUfD+f#R| zZq1!D(>>j%3p?&sxkWocl9KCc2fuC@3NMTq!sqO$3u&!3A{*PQ+291*@Vhs>j=xeJ zkfx60e9BzC1$aNVJNwc6dAdI!x$4&XH(1=Q)ei0SFK1@jGp0+G)#f3+AgZ-Iot_JD zwVYHfzWsbGzrG}2y|Fs$Y;?y8-+mRSbIr3rlAyPtVa|DNGc2|nz22cdBfoTD^AJ_1 z67Nd{F1GL&5Gg!qu01ek-ZlX4pY_~FHZBTy#LS|7#@W})=J zx8)7U>R@GV*WWiE;^*9=u8pHEje1hC+V$Wp-O2W8_ZMXU&BxH2U;MsHe~yAd$Ma4J zQ{+zB&YRTb`BB~6et#)%jZ@cqlGX*=U!}Axd|kfIXiYeI{ATyTG<_!xC2;nq>ue~- zWwd{D$8P%*D@fatU7udH;V)vb>g>O`^im?c#Uz1l`>pvrOZH(vRH7rGla>vPRKehSY9(#0Ng+LFKf6?JbIrN#Xf zwU^uNxOc9`;u1)Hp7AEQM@fWDe6oA~T)X1l?|h!@>`_zxP^iZH^wv67{~iGlO*$vz znZPR|&x4i@%1&D7avQpFiXTvKL+kylx>rHJ?ipEYzw_$wPPDTBu0vE{F z*IeY>)v_+;+}#OYDcp%0RJ}d&-hSy;?%IlmlAfRbvnY72%>}#{X>kRy8WF=FCE1U# z?`Gux6>xO66sh@|Ty7)cxUwb1u}C{PjWZ8tz5*1bN@+8|XuUxlp8>XVTpuE!!gjAy6&n4hmc zjd8n}haRJ4L~Xcx^_<5EUc~j-CfW#yD3bvIrR}ofG)&}JxhfUQnhaFsGirN^>X2l( z^Ub<9~(M)_M@ln?wGEfwKG;wz{4 zu<*zm9b=Nc`_}4dYvu>xB2m>61sx5U`{0B@`Vu7t+Uy_Z-|QH&oce3M*(>#d1E|bB zm%h`J%yc>4&kmr~mqnGa%eH)Am;cL#49kFD-+b4E*ZJAQ5dYl^cC6ykEAZ3R05s|t z6~G(}T%!Z7?Y$oCK}bByY-*9;I-E|5Vi#yinD^bVAz%ad&*Eql_HKN2@O19itHi1ensO2&NMwF30QY zaHp$d(USTx+8L$y#YvFd2rehELfALW&CFPx4DF9dZGr8@XqqM1+b`Gz(sinnznMAn zuDRT-NzPK|st<%zI1dc*B81|j#_H_IP*vm{=Hl&NiUtz5L%$q_CsC+4DL>e$^#U;4 zcKDrnKDbGXeVckAMx&xIM-ylJLiBPpDtEL5kvj@hZ>ez_!{N<*zoDMIaUbbL4taSIq6c2SY3a%?bj zjRfB=nHi`4aY2uxjX0AW?V7ZxkxWn(AQyV`!etv_j<|F*oOd`0_Z(HpJc89iBQtn- zSy*0$!h)P?P+X0TZT+-F;{+#R6oZE85>O$3<``aqO~(cEJLFFcM!s4ON>_zx2=N3b zT@WbJ*j~X2xFJzHu6>(2;hy?AkN7xJBx zN~pmABZ#D=E>j=?BaC;krOOkA4wD&nlg^&TGcKZ$nhas)vI$l!o>Z&=fz{Kl-SKOS zId14Q`Hue254{h%?((mmi@CaPofm=d7e1HMk6XZrOZOM0M(d&FE+!>gVrvoq-$BU- zDEV6K1Y5C>QV1CFQ=;7L1Z7{6Ob?(cDi+o9d*{O*Q6frx)C)p!w2Mp2cX+xgPGJ(8Kcz1*H2+Y~M&qPrH?Yy} z)WL9s{i_H&fluj;} z8`sqUk;G6v?(8LCd508*!Dvvzm3_k>AJSpk8QE-^t&uFB^iRfHbkR`!6Q)~^+U<;z z(#HuPS_v#@Nb>`gK2+i39$)8{29&5V%k{-AHI(!)gkXLR&sDJDZhf}^|5Z@Jg1hIN zTp))eXK%07`6Xn65^05pkc*S9f<6FP2D3lFdJ096{f0rfNdzF`N+Bvn*N-V8mbv$x z9xoWu$gj^J#tv%_*=azZj>G)*CabyaS6ld@qhDX#2RF0wM>%ZWY`!f!&N>9|H=mS{ zp%@`kU>%F#;nGs5^HFSpAW9Y^r-CfmPp7>d=(EmWYs}b0Q%W{GeDn}Un{98JIHtuq zx{?AVd(Gr2rNhTer;r?6k`{RE=WS#M07TAiq(*MWh2aoHyB2G)?F`H!T^>r#F-K-K ziOdMUOfMFkQ$fAgq;d+H{J^4%Y&~u6Tf_9UZ{;Kgr-f^`bShL+?wDC!i&#Zf3pk)z zZ-LSmqmTDBM1w^#*Q;?7_&?g8R*7h+5C{*ygL41v6V0q-S4GmEnnuMjVYzTh1Qubg z2L3`t!l?V#uQkh!Gq4DJ8P>J~(~9tZp$nlS#H2&JPLD1=+AdPlfsq{{`Y4+)CZlLr z`AgQkumdb>hEf-sEQ7U{zk)`RLyL^GogW`-pzVK_NJ!o*xeLty<-~kG((l=s_kE%- zEm9!sbv_~)@#4?$Rkcpe`rfIMA>X-Er_j*ORnSI=*H1b1y!fxdWPx~_fxo63VLD&$ z6eEGF<=a{Qo@Y0){0unGef42|mNVbs97mT`=#)z&6NUIlQq8#v>K-F6;5RsS*QXUt zO+9<=+BUa6Qa(j(WmSF7Q28#Lb|IM@7D7h;l_rGZB5g{IF&tJo>eg{mE(;dJTRCet z2K&!M*X1jfFP54IjG2@ZTcGF&nh~!Kt!>2A$FVBWw9sPcY^nO;v}k}@+DGzko^$$T znxOHGn4oN~%N}I*AmrrlRke_(kU2Aum_pt=%{cF>W#E@>3k+PUDB~duBEweN;FMbu!gM39sZWoQX`)^`Jm5(%NaZLf zA*BGQL_enUm#1YG?{cxprofIcQ2VH8--b84B*aJuQL&|OePBx@#;?1#a%Qaf<#YiG zdQZ|t`KVa&d`myUDz%z;)k;hK1qY{rF#76!%v4KX_@!guUYXkR<-^!S0-Y3{g~^AJ z_bz(s*$uD_o6hhs7Mq7fKsc|vgM#Nxil-hUs53WjH$b1&I04B8C^!$O z^&0+MB?BQepugVwwF4d#;n5@isytu@&~Z0}H>Ur|(c;0=JWC zKcy@Zq)079&-DK2Q?V1h_G*{;>@GT!bDr{T;k_^hr&Spx!c1ItC0fYR(Q=(O=Xd^7 zwys2;Jr`9Z9bZ0LxUjatkd-)CXBinV%%F-YF*oxVwH^{REt=)#sY@I2ek-?@Zks7w zWw~w&LvhG0*U-$(lF5CM!k+Y^Q3^twsjnsCSXK5k72%q}ER zmIDaH*sT-p6w*$vgd*;00VSnL>%WY#gjs zf<-vZ$-_ox(1za@Uc%Gn$~=r|NW~CtV4%XCdy%RqpweGZtlll^D~*_(WkL+*AZ&bI z8k8C?ew|MT6Em@gtdgEK8h1()GkjmyC|Ji>$qF?ty>f?w#ll3}BX{fV`eq*I?6Tb? zS+bXg0ozlJ#&iTrfoiQb#40UNN&FLKYkr_++|B%~ z`0|D+W`AJCoy%Wle__yc%?TdoFb@OAGr}M+roGxh8_H0u%Qldx(r`)T6Z8uwh)P=8 zP{=#MWC;B4qi8(n-?T5*3>r3G=t91%=<{r>kG`;xQ38xcUe!BuMtTAKN)j|;|s=xA3$c-Z!_4sv_56)9tDTw=GQ)SJ=h6o_!KYMtU|1} z!q4x1*$KAcbp;8c7C6RcnT;mpG?_E*o875I^zf3!x+UmcVZr*`FmDJt~zej>TEIp~7z@z2XHB0jeEu9m&=fOpg+v1ViUBz5n zp#v`c_aB-5fVv?oqRlXcDi9#6*xPl7f}dr~MA2+w?%MQ`qA_?FJ(s;095$IVL-rU@ zkfZ-18P|kuLS}C7VBk5MJPYaK+plW>W_tFgJM}uGIGBK~g}MFdxbNZv;5?_!R7v!5 zXps=zZ*14|UN8q(#KzceHZ_G$v(w@H1>F{p%%iszYM0@BT1Jc4o9prgRp1o^F0CiS zO(IuQ-oG?P&-KO%zA|N^(`@hcZ20D8=YqGfWx{Iwv~j{`KkOK z58EU$Jb=(!MrVy|$5?mOI>ZBQl#MQQME=7M!?45 zMsfY6rG^+d(ZFV*zfvOH(BU(_OkSnyI`SD0Vg(7cie)&u60qnVEx zbXb41Kd~US*BKrG4sUZh5DihTx9#qpMKX6pNHW_SfJ2(>G5$VXSDNcTU4J|vNfkMC zj4Ns1^lf<>TV(8hsYs8?F~Rk)-2L{?fVqA5A3n3c-xT2;-Aa}#<7HYx`_(q&pK z)^~S;c;aa~76d?@o16Y3wVpY;<%woScbmx;{o-oB$9VTj+h;s)48RLlmps#Y+7!r& z_3G;uQtyh_!QJrA=%n@OYW@rJaMtS&L4I$w(iH$^QPLkOyqtXsM0rA$KjAR3+%)0B zDiLXMPKuQu4fnoP9$di2t1Qe{u#IRi-p<3oalEAUSU&NLx-2ACZg$jm=6c{N58%Vk z*DPF$=?;#O1$|*&x>bEs)OGiLep>v#7U>3roPjpfR)Doy2RsVgTQI}I0) znce*!)&VFodSaV9;iJnmcUhaW{_PQM~{y3iI zXuN2D@DsL#J;@X)>@8aH)fy*aNE4XrnR4p%THc}Tzp0||2UO^YjMQ@aMy*ds7N^r( z^23Vte4CgAYO7W%`lnsGi^=NYK6B%NSF3|=XmwAoya&;J!5?Q{Smm<2Hm0J3DjX1j ziT@xNbe*irdBhz2wEoazw+QHTpGgzfwZCvgfWhN9IU9`uwb|14FGJHFrBd6M8cruv zol9KPyscaocq((yjo*&D(7N=GulpM#C#uGEQ#SloK685rv|p|i3V&$59<25G0n`09 z9AHE8@^VJ2yYTUScRKpZ1?J_X!!G+|?t!|)btc39-Esg7Md|SWn-9IX!d-b0qngXY zMYMcptfAH>)bD;8nnu|~p&&PokoSJT`coxCl?uGtC$x}?H0im5yz8$B z0T?*41#ytyz@Lsb1GE}wmMFFc-=8YpkacVM3Rw{ICb8*x*!$0mxzW+GS6!b22I62l zQe*t;pE6ApxnT(r{*pZ3Cx=l0U{6qNh)DEGMq8MgIeB(2pPta)j9YApRrk3-qZzVE?3=(6}M z>dvoKQ6b4+$Go2+E~$+GWs7eOoKRH25;*`D=SK8$HflC^JC*d@jcBTAhY)(Ml{94} zEh4!3{IcPrImvfcuPh2)bd7G$T*pi1e=Fi$CtNFmIs5r?+^eepJZfVC`EhqAF+9ld z{nPnwmLVZ%k6B^0$)v$-n9KtC!|y3wxZVy<1p_q0^9=q{qM!82B87wH^NSH^<7_V{ zLRKi;^tFcMFLDU*AiTC~ZL{>p{bWLiecla1$5zu=Z44F`Z0Qey^WLP=4B(I@vPx40IVbX^W>ruk6A?>i9ODp~h zYL!#~7L#aL^0l}F?;JSk3H9+F(w1{?%>VGeFD4B97Y`q_90cHkr2~4gRKD3*I*K<} zTqzzCL&WbyX`?#80>=HV9bqWIIR1+$I|G|#qAzTd47JG^Si91mXh!htrvTPf=Wik| znevtdki`uuXba3I-M05>!ay{UB)Ql!Ke(n^Il>#%lT4_>=~8jhO(KqWAX8r&Gti8{|cgFZ_FcypJfTXLfn#`S$*?ZZ{ zMbs4%cP9V+VkTxjh|&QMV79NC^e6N=xMqU@J200249WYk)NZwb1aPVYsa15yc_Yi_ z^gG+fEhRw8TL*nhQ&S$2~Nk5j;MW# zzZeji7(Q1#=7ug^YzQ!j&#O`-gD?I8G5bO!b3oftZt9??a^kC_1;&EUqZn<%o8Q#guw1D6Fa~Nks?Asz#kIkvY3pAxY}l@&Sjy;ywu~aTuDt< zP(Qg(w9=07Y_JXHW`~4>?oI6#<9i0W2oBV61h*A~r%7rZ+ck|5|C#+p)XoyMlRCOf zMZ{0?UIx-4zikQ9l;HxZ1$`g;KE*2b#r+mMJ=E&3H@-imZ5(tJq_q$L&)1DGvnLve z?;p7fC_aF7SkzxzO0gs?vGAO}`S3mWX-Bs3P<+xXFK$S4DU|LoP)W7O7QN zm_ZUK2k%A_gdN0?lwVKcbL;T)c-;QYiZ2v)9lF2cXb^mvl|WTd-SejI@;jg-sIGNM z5VY7WJeKEo+-d94->?Da2>{$*v4$rrpAMKG4{9G5n_osl4S)}j2O+Oh8;z4j^-?mx zCPbUl)y7K%6U7OEllL7cF~jHQe9h?%-wmpdsn*aJNYP6eOke z))}TtJl{31yrxTh7bhd~l)L6X$6X!6Q#!AVe(-XamDL9R9c~Hf&-88*sE|A<^lr*& z6+U^QlB2|=n$yKF|E^rSQ@uF(P8D72SDu<+Q`v2g9h7x0|I2W62%l}`L7=?*-UmdP z%t&Z4#?`fmcsIwxd6?8+BcQwxb_exOzTms!YTjoA&W=4WIrzLx+r2y0ETneWYLpQC z@+SWFM~hjFD4#wBmJSN=E0^5%e&R*U*8r!BU%iD4zOT?Zx7!xFA$k0=jSjpI$N2g`C@9 z_}j(JPmL%6bIWTR+RX|b z(ny$*zqO)_gN%8jHPm;jT-@;H0Jw+#dgFI!b09vt9Ah&ijpO7U3R-9+TbH#V;|cfrSfaMN6RCSb{e^ zlb4-W1wX$h4p2bm2IQvfeSdoFaeOig8iF0{_S=c^FRh4EX6ufz(!@d#uGfp)IP@59 z&&F}7H4)3Jjy%V6yDBeadb=sRiuA{&pjlu(2Cfu1h|3{-2*GZ6>YB~z6XoEA@{+{ZRSS>HKjkexoDc`qx7R2T&63(#Qf|?3<=1yvl(vo zGh1GOcFo#9^45+E_KaWNtf0KNXbGheD0CnrUbN_EKG##-pxSi>pOk1k9``L03i3ZW zW|W~(daaUE|7-Z&?bOqvANgFzb=SU$-Ok=}h(71=i4D5GpA%-kw<|1ZferD-V$jTW z^S`&6g4~me^a#cWL8*`yk{QrlT(^nf9XNr_t<_{a;nVVXjMcjBW|m^lh^9EW@$|mW zgm#h;?CrR*5DZ!G_J$usVEIsIs=uKDy0`MP$<+j68BaEV9f%tZIpZ-fc)z?9Do&(= ze{*zu%U)=3KG?g>9{%1aJ2G8)9!%4~E|vH1)*K})t$uRyt|VO7mnEd#@VwEII1fH( z$!h&!5MFJtpToEN!ZE;X>jP>1<#XF@9-wo(R~HGJNgk8|W2#u;X5`I=sMxRu)sjiE zO)+InBPSCJeTy-v*OFjJAr}k90Ql2k0gPENBL}4rFtJ(4Swk>H!nLBl;$jy>SgGMt zq>vi}w#DChxWl8g!Z@b<1vUvg(O1DGJYSY7wFJ5u$JqXS9zzD<@`FHFSB+t zRWBVo{@Kh^p&{CAU8bS_`cyEq6)TWb&H4_L&wn=Fm@RfK?{22U8hW@69kCk;D%5u> z=9QaySSur|j>|N%E7V1s8I<|yH5d~s%pQluf+g3$uuBrXRm05o=eQMT+@{T@Y)Ohl_T^w$ zK<>-kgdza22t64=&UEwg{-et|{=9WJM7lc8+3kLZ`A2f~YB13Quyj30nVtLk_)N=G zrr3LZps{*+Tw&wh$-28A8Oj%ioTGoorH}7?Ge&Bmubvq2WWp)%{ozU({^Hs8aqS`M z$=Z4SYCpe2aCGAJ_y~UeL=E|I>nx?s0qWKNX*{SF7T}-eegzILQQ(r0eO{<$T!#zD z%EBK%rAO-gmrbbQYU>MQ6^(E0+5hNdMuP5rg8=A0MqLyT^1c??s8a8t_G|Te@RGN| z_rinK;f1c~I!&H-wxHH+&1aD}>gLGj*;TqQuX#Sa3-1D(Zzg+g6H`Vf00B<3R}$-B z`TDEoEb`QGhqhCc&il=ejA8PGE?jj!N8u1!rcT;YZWww4E$&NFS$M;(T^l&&9?v8E z<}V5)JT(s?#TGyM&&?=FwL(H+r&gX8(FDBvXXpuGz+V))X&mm5O=19bhxPIvUAdW} zl{f8*89hv(i_a#*vuC1Se|0rm^$|K!qX~Mv`_~-Y%8L8l88Y}z>(^ub+$AUhHU|c- zPrH=nsFsE7R68?!-%O9aCwOgWSMO>iZO*iAkDEdAf;Rifb}zBqQ{4z*cTcWgvw3o8 zW6xZO>fD;UJM7=wL}N%myAcw-F~4dP(TPm{zb^n95y;z^L%-E{miQuC-u2T`+u?lH zRo9Kc*&IS|`=>7kEKlL-ALUxw{7!utO%6cx)7!RY7Av>jG0xwuppRYL#O-LEj1F%r z!_OSWXO)6_-#dL2KE43t2;N_3c}qD#Ifq0a@NUV)?JDP z&Zt%#=&Bn%m#EFnKKIS!dDmzvQ?Wa;&F`5R+*%-OVsJ@0q5HP$RdLrs^12_?LdhE# zaBy?E8$nB0n+`68!pr*TgY8e=^Ve)a1biFxKH8@7JuaZ@c)0yj09+2d=%%1%I5Waj zH>4_Rcbz0DG|#Vn@*+HkT$aZ_I*%<+`m!D#-DJY_{`tw*wtZx>FmdL0RYlDYm*cG0 z17Xr{aWYFC>hyVSDqch-kh-B=W4$jZ)yP@H>kt^luLsDF6{ZM)wih%t^$pMkJ5d9U z(qJa}gHIf`J1q44T6Y~bteR{+``WG(0?mDr#*=0Glkbz+j}@1a%MQ z;vdg74V&?_+DC%l3VukmMrlbTYkgjWTi!6AuT(y0F+vZ?3=59RaAP&bukra1Xe_X% z0W+5-@erbYhfe6GsgH?oJ}>yAP^Ls1sWK8jaxgAlSe?~)-X<;p080snQU8wSaMFN3 z;nZ^9vJdT=75S#Y-f-7jX07C0W$n=n0J>;+!eFgGMfRci-*s~}%D;&@Tcd?EupgwY z8_4+kQ?E6v~>KmcLso99ZO(7Sdg z$oGzefQ$!0Y}IR!W&ayQofe=4J$gmy&foK+8E)ZSr~;<+eIYecROa>vr*0fvM?2)G zqoZU^Jsk-EeF&o%PfEL7hEyMDjco1|d+{#xa~$6qE+#gfrwjFB-?pM1CT);DeD_`8 zO+DeZHFKAEKSbM^X5uw);4>Zi0tS<+3@_UZ3K-eF?YqSC!dm*D_un1Zzj}(~mQMxC z{(RbAwL9LC zJjO313Es$>D(LoBdaHovVM3|G(!7W{li^tWQw_|y0)?${pPJMVI1NY_GVdgkW_cL% z!`0c0T=HJz6kl-AW*|y_6w1E0(39N(F2!&l-W{O3tzlrdIvsVOkoZR!L}VB8qUQc`;@@9X z{c~#azIi9kQ)VPUT$CAu9d z3gGG-{7%rYJKQaAW0%(LyV+YAND70JHPgld<11E5tC+)OchEwwh{pnN(mqk$(U`>w*dd+++z~*mwSVDqhHsUqQj-n%{G9|zl|Lx z6Z_egCD($LEWPrXXa(gP4#b`^HzkYHl=KT(^Q~_lE&{EG39EW1w2WtuYCS_JO4aVc zOeGJ^&ZCw-(D20L<^Fc;u`#VKbBbWd2FG*=amU$q%H5m}bMs}S+(y44T{4i%MLY*u;-shJH(SSD(T!pN$UkC4v;?LB z0@=uf@5wN-e(_rv#ZJ^ADOC??FU@}PQS%6v%hN%H<0JbR-uM@=Ef+^dhK7M1fJezh z4lp$h53Z;Tl%nYWVgIG0!g>uq_DrYE`Qd=x!-oYBJ?X`1#blUL1kt6`P-Lem{nEDG8zX^p4k2 zgFm1T%*niC|7G5Y=0rfLb`(|dzT0_5GF!q!S?;gD^G53Bp)Ay8@t-O!gPm@r34nFmMvxKQ$4xF_YV0?)6LA(i}p+h&$~$M z<1GkC;U9aft)Cb_rwizBi$alsdI>8&N>lemVWpyz6a|;+%T7~Dn}L8Iv`m3LTJ6~Z zjv(8cBzmp$)4UYW*%l~7MZ9|UKGK6=q_{bg_C*sWwnm#7Dsj8 z{v(v-{;^%*I9lO{9^n|E#*d$K^IwNsDV=I74$%uDU?3Fk)_lE-9Va`QEgyU<~ z4Idcc`i)W;jYEJM7C@NNIk>5-`#Os2KbXN3ow2OQb5-0r9-fZw5HAn%f7X-rHus+> zi~sXf;Xzj3as{_}YF*W$qG7B>OENjD$PMgoP(a0eC`uxF;5zr3scRVa?omnM>3;uB zl^IRC`mw8M-7O1`AspxP*Ap*|W&(BNpQZc4f>4c3l!x15M^_Ee`L~2x*nTpAI%|cg zT6sczymGU3itg*gSgo!>L{m012hm6M3N_*63jB2SM(cU(D%R!fE}E6(mGc$qH)NF7c^||M@ySo4hD$ncCImTs zL9^HZfu(h+S1*SfWe1=KR{%58o9Qvq*e-As%}*+Ygz#skKJ2#k=DtC0(=iijgZ(FP}L1d4P?kQtO@e&mERdmc*24Nn_^20`oP+ zru)IV27V9Q`4_f^d+cSUc6`4JCvsd@BtJU%?#L=OB%KPg&JFn+3fWQa61$woF~!Om zG%f3b9^FXXHdfga_iNIBc#Qukp9BpQ8dL=jGvqf$%X-QH%Db_Tq>rQ z)>``{Yc)`;P$PE9my#1fv-h0p0?o;0dva(!m}b7-i+R~wz3LpWmYsxHuic<%l+XQ0 zUdhB@SiV`h$@@o5{T*6Td{Ug$c{6*kv7bc~eVdfL`y7_*H*pP-0M@f#Qt(mEcsMkV zye~g}Jr{Izb+m*{tHHw+tbe=oXk}9s zvQOvjAay`spI6TBi3Q|&5cF7IcH0Z9G%H+Z{DPWZ@+Z*-3c1X}&CVn#(#7;?CLj`b zNvYb{9(iG=U2o~%9ZI|De`(G!bpZFH8*J*+lAK6Gi>dTIQCi1?mu;3>zR2T2Cssnf zc-TTXHz2YQ^iEGT92(k2-z~;4DSZ~2I)v; zJxzhtn;nOx8&@y+YLdn4n3~y8eSx!EM8;SS5RLrLx$eS`1)hWA{MxH=diB*d@%l-~FCKtVT&&LA*5n z&($^RQj%13#Ynel)Gn+47A~_0dG-aoPnH%Q?zz;ih23L{Qr*E`YrzN9jqi1{n z($mvdRy@CpG|V;3lfTtRX)#c;(N|i}S5>GtHdL6aS66Jm-#-4Yq9RVc*;-@XTKm1I zSE`R!WF)Jz(~tgK3VCNvZD^=4HC4w54i~xa}$-j+?<6d2_gsB{wgR_N+-WKcan`EB9F}2cv1W8l`XQ(na+F<^ITpTv-?y{Qmfg3 z`nArf9i7$byS1=M;!jPj-cpg`xtSck?vd=8QQnvUov4iI{Cs6ZdCCV}UQyP!xvhHK zMLq80;>Ox%h~td>ZR_kXT6Vn4URml~aM-oDgS|Vg zNjdv&ChLhPGbi>J_RG7O^sOoKP)4&#mV8?@)JCFWZz3Supq-0<1{&_Ixc~FAM z7BUHTW=I>W8&U{mVe4B;btM}1G>eXV3*D@{`AFU$oLlXm!|f|0X$SMW*ug~8b&#-G-%$-0od)m>zRJSx%|N~ac+ccY5}bJw}O&bJzw9SAQqSGrE` zCA&#)EgR&i>iqgn7H#=d&+-z;8hW}-hx<9FO>adqlsw8;bj?UAKy>=qVT$f^Bcz{L$2KE5L0s){BNtAGxk1idV|H$j-q1RQbv86WNK`Sl){(DtS=cZ=!8r#j15%DHQ z8Uubm(E#*MqgHs>zLkC{k=tmxALR#gf`hn&;M;g`2%@TLD$UG85<}K?jk`+ntbgrq zFfH5T3Rdp%Sl1_i%XUtr4AM#6$>Kj^UWAL@LC~5z#OIBTM-aNyWiiLvG#Tpkip(!@520oIoo9xi+RbL^sHhekcR5U@Q z+F&N+*%b8ai{#lalHQ*fsh|8CN=0c101QkiCGEe`q!Y#b|Ol=Mf`|Ajvf1+ZJ;KD-MVhKiGYbZVLi=3p-HqEjR zEl+Q2f`b#M{%S>IL?DwOY025tOS44=$1zEI|CG$Er=*Je2ZoFZCgszwoDx%&>7^Pi zG&|t_cab`e(ga-EDHGZrWg=gEtl@DZDZ@1j^vQGf`)TVO1_boaOQfN&5htoB!rDh8 zsu~`O-&RsohWM)$-+eFDnyO1@Zcho*PM1Gfuj{1g3G)}~(raRwccI*YUkp;;gCWoM zUJ2$ZWLhc_V+)A58SiMY+GZ*G$u$NQt3}?k13&oTjEeX0l9n4Y{=9qjcoKxau!dm` z65e&h2V_}sC~z09qX7yh%o@!yB~Gk$0iG(cw0I(l<_Ix?u!tkaA=tRPwUvlmN>r{@ zMvlsq&w7a$ZKu*oDM;i{HW-*by&9a|_QUnVCDW^0EXm9Abnk^Q1$+P{bH|R<%X$6C;^a!b1PR#u8VFeH$((70 zh6E?731`7DF(mcSu1ZVkw~uA(CsD+ZGqV>JX%RPZQWSZj1D@7exP>ADv!OWxxA*g{ zdl_E{q56j~WCb740hKMnXtJ4pd~*I%%VcHXU+q)3-fL9iLOi6(NJXMxpOlSwPIEN4 zPVWuO^@}UO8Fz}&VgyE<3^$XN13E_zjLOhw7Q*WoA66zaz8ac};v{c9w3FZ zoSdl|DGRUHn>T$=`YPD7mPR8rCVq0V{549(A}+23fUL4Wue^8Kq7kCe^fNqPAoH`R*g}Dh(k~o170W@XbMwTOduX?8Q5Zia zB4TfgPr&dB3JWjRavSf4Aqct&?(DBLGo_}TOkx)%C<;8M^eQGF z)co>Tuen{!pQ~reUwV_B^nJ4HUtL;=^m*zKFDj@Yq$cJiS*T>koXh9)HweiI#zWi( zu59l9YzF1+?R3*Ux|XOxKi9$FY+n_=mHJCszL9$NLsxT{$YBQl`&$(p&m2<@T<4t< zCi%&-DT zO?yR#2hA2sd6%pA{-*Eh$VH0&;cX1aSLW z)Dp98IL(>CH=zu$?djOWEgK)(W`c}Oi-!I90z>h{Ka+blqs&IXi#KnoG%lKw4QlWt zrP#pR(n3Bb=#oe-(bk%`9#?gZ!CER8soauR-JKevbQb|P_v1KqA74C!^z`*FU@67^ z+!?2v0$t&kaopb?kt9KsL4?3m2h-7Am{X<^z50%!>pqg(e*yetr`p zV}ADDr2YOowp6~d`RL=*Wz`39ZF>mDXlusi_qY8vU7m^}jEmP}G=(YlXLW&5yqOI# z$RF@alAosxL+`t0aGlK}Qum8wFk}}%Rafc(TGh1I!=D(oE}WUQiC>N$f_31!kbb)G z#p~!hJdvURO@(|0mu+`%D`$%1#L}!jK74*;Q1HKY<Upe1kmNPhS~ zxzDwSp*Xm7|Hsr@$JOyWZNmp>(E`Pbx41)bDemqrg%)=^I7N#~ad&rjx8iQ+pvB#- zKq>Fi@9+M+&%c{Vb~Bk=bIl~1SddJdvGeeKXDG47ldbWq8mYja#cFYo6@hHV@XyIw(jS}ctj(l9HR5NDGP-WNQrsBCWc>C47E{23mV$UD){C|dGHleunx0b@^Uw`z!C)aLwaAzV>d&zP@d0*B-Owq1 zuhjIDtc8Rh-QS{+xaMGe8bndC(%5w0Jp?*^0WZZO)tjL1#pzU%wecuue3bA;Hane^ z<1?8d4iODlXdX{h#rHKa5nl~cYG55de-mA+a|o(tryh{G<MxfJ{sB2cJ>l{RxLqc^h)(8OXh>>-WZyUSM5ny$e}5`8iy3=Cs-A1F(;Fu zym)>sHi9iz&H3q(v6{8BClsU26e;)l2l@8+6dyy8ScBnH5>LDM7rdJ(mUC*9-FwPI z)KA#P)LbyGWNv}Z$n8>G`KN^NMg{f9{9Xw-Gz-Kw|KNJUc|8_E$}HLDyA z7cVU&8iq(A|<<&P$wfJZ`ab#+OIF+IDLECN0fPs9>s) zQQ9L>dghWfzBMerNu2gn;$a%=to>b@v@qW3zc)T*4c71L|VF#-8U$j8`eqR&O8!Nxl%c!m8msqkTJEAcda zwW1D;G#2Tg6qc~PMCVMETx?2D86>u4$vkIe9_ki4I`b^yo}XF$u-mE4!_;4!!(59W z-$*#sBJuNJP;MR@XR~kSr}%u4&+j}a{$u@jW>Qfv*>+yWHR_XtkdOk-5^YGgV%o$u zeiS;y-QovokztAs%YdICOfwWM2Y*iN&$?2;&T)tfw1SE_18z)#Bd+W$%KDY8; zRwx2jYoJ-XCdJkrIF0{T2*zo3F|Z*!VW^i&^n1lNlO=h(H#b3#kDk0`)O4PlkuDu{ zXA|(8k6c{t#3m-HzY;IMEj9Z|rI>a#zOs0$vVw>~CKmGcL+{!b)*Q1cgHVZ>SE$Pz z$cY)Kj3R;m3V(q3Lc5Vny`0*24dmn{0O6N{kvBx=iB5@Niyv36|H-{IdM4Wk?OH+b zX*XY*{3nGVopch~?>5~J{!d6L%CO@`TqvfIpi$curv&=n+ePmEuO*02*FYM5oP;Gy z&HsBE=;*81GhxXH+%cJlqxZju;{Iz)BjHD4cpWk^TX9g}_IKVF0vZjJ}sy;HxQ!7DQ1BMigr z@RcGOUM~UDi+T1*>`t|@LrBTcQj zNjN!UEX=`P+hg>04s;;vU|V+UUDi+Qe|<&qZ!`|fbe-jr>gbz`A7M-=EVbjyRz7Rs z=d9?;Y9lJ0=8_~s*h{FvJ$efeZU^-wL2fgIdgi@)rn>s0=v4!>w`vCbe85-W5Q|Cw zjfdrwZ*_P}Wjl6a4NHKQ&cnrLH(6LMA-8}@dTCZ*G|)h^Se<2HVFBtMHBkywjxKOAhwcjtcqbBtwjncsv|zxJNZCoH;M9vU07*xz?oy(o`b z`u>xBJ=wIjHrRrvwSg~?7}`4u+WDJ9QtaW>P?SXKDR-tJrX+>A|{>cA}jTwKYo$?O6@1F z6!`I_|0zGu3X0V5g1pine3!y?KWLB5pfz%>``dKXbiPT;D|rm$tZG5NK$T|Tc01B z``4?FF1M}IbKeM|S^h6=qx<}XzULzxxm`7%l6C^GOtd&D63m5!gtV5Y{w_yrH~E5Y zLe+)wR4XgFSsR#9!`YAq!)7)94Li)VMizx~$=*#+$iZbZaqGcW9J9e(tv-wqHm2Cb zPlkeyZazsJX3GAT97*z_L0sIA)iNiVdQGOi-Jm>|2@^B~_*#mq<@7IQ*SO(`-LT*`$VAcMLr;qg*8S> zzQEIf2rHJWIE!8qabW7*hqrtRX0Lv{2exJi`}{^a{y{B%;3=YkE#~nuhGc4T=2d(j zLPB2A>flyxjvrPZBQmMP+`;s$f0z)M^3o<3D}EQ!S&m2<#6k39a+=IO8eI#;{vaE1 zhwt@w%|Ga1!Sn%b+~VIjRv7Bd?~%qWTB0OO;Po9{g$z2`--`<2->UVVq!$sS*)zI9qW(Rsd?>Z77Intza|g~j^VConYK(}xfYlSXxO zoDw(7R^Z;DCge+L_Bw~D;F6QPL4r@EZWI$|8HIoI7|=2{`Y6<7cp;4{a$2W`XQ(fD z$=`YQL0zcJY_=f_FT7p-ki~ipz&kwoi7Us}ZHuxt�mDcJ(LD2aVq|uZ61`(OiDI zprs}E#L_OMIt%8J#WXo?hjIh`oe|%0jG-sV5h!K%tkCv=J3n9hMf+lyb+c{+w^v`L z`;K{|g5V^LCsTRNu&!axCqU`5d@%2KVvGu4$=)KtV<458TJ_?BK4SgdH`pvqh_?-* z4AEcPw()*PCt#+TOTvQLz@QW=CT`I-l;FXo{v}Z1k!Ji#5LUsg^C5MH;*?CN=<&^+ zv+Y*c+7J)#7=KWk_4`2Ez24#}7v>8=c17J{PL)>tQ}Bo*)mhj$G@*DvA~*3hT}*L7 zl*(D*E&KvzW;36$_WK0sPrj&SW;f<*+}z?eMU`>zxUb`u3#Iu>rVlZelnhcu{pa3a zCB63@>a@lP$^9GesT%TDgeS)J_1=q)VM?>eHbHf&eK?VS^=Qh1Pw9mrJ$sJUWU}8&z{VOPWOzm@*7*Sl5%?%8Ab48M*LIb z-gM#?;Byh*mjL(OO8K!G z@kH=wd<7l7BU?Xim+|-_Rms+D#2KgR$q7@v& z3J&ZLe*K_y2X(3tad3HE3fcTW{0dQWq``C8ao%kUB}84m!-#f~zlSrl8*T&SUOz$ZKFcAipDS}F%{IA+i6yZwBKS!IvBKO$XrVjj-AtgD@gm^_ z85*F0hf)40+Wc*r^G53!GqaKgC zLmpusZ+=+kXyLzF$SC1QCmdV2VOUD77s)-2u3wgvB=Hg8`*MniL8Qin*Romj9K9%a z^vOElda|#wJJ=X2yBTsK94W1L!mRMNKW1H}G(5>6m_~ zN4L~mEkG!75c0$I@bAPQgI-#I1RK+*HGRFG@J(5P2ie!BxgF%P3#ug~Sou`CNx6S( zOh}|5s&z##{V|{z_Fn@xAhGXNf9iqCuY!%+`aYC?>v#BErE{?|Xa%EUmm?Y8SJ}$r zx%$ZbJS~7!ioMsXLDQ>%9e|kbUxziTqZU{z7NS(5r1PY{vww%ifUUnL=DeN7oPOCG zcjn!QWZJk<)uF>_>yoP!#u>vh(lk<#o5D>7D*j=xIn40Y;-o}nTfy>$Z=Vka36zd% zw}|^^`_vXX4hoTc5Sd0KZm~&nOK>Kw4{0F>h^a+~tBxm`796~-5}0WNZRM1`StiL|HGjKsU7-2^5lmP(*TmM$SLOfLX-v3YU~GVpSh>2ztk-cZlRu9)8>>_znG96+)Ay$q z|F2n5NDdV{6Jy?#hcM*-bEX)#@G_Aue}e!MWCy>?VNgz$^u+0SV6*H8oWG-W>Kt1| z#u#AmElEYzfoPL!gDWG*QG?o>8>FC*flHi}hu38BoVTHM`gd;mE-Livd1HW9l#l@e zO;=l&b9=nzW6o_~XyB0%F>%KyqF3>kldz~b3)WC9f;cDQhof#n$K*$&(wDhz5|K}S zrt(<1$IpTI#CfZ;T0E+H1%LWjqM3mAO6Zj*ri?)Ul`{ao@odsrjTloti)lh86PZa{Bof3^ z2`4aQ{L~e9bq&;7iYinW?mTmp=ymWMwMbmAv#OsB+b4RRARc8Z7#04EHfojV;Aiej z;DmI9qRQ|p2=Z()y)q%dxyi+t94$nz8kYXd8d-w?rf&WFj|DYLmF&c)_d?g4Y%gHr z$J>=ESxypf<^;UTRlN&{DORj~&{f7pE!g+-TOL@BpQND14=gS^Z7O9quQ;zU(qm!) z`Vo%aFxTERg6`Q;5q3qbR}-q!EU&c&%p=|-fCue_%g6oPHi=e}gH~I0k+^>)(qFQ- zo4G2o$rin4`aC&w^zkBb;#+(_QEZH;2zjT%iIL2sboUO2FVWhRuDFX4C+FZFIkI6SSX_lp$gZ>j zpd2nK2 zCQ1|D{gA?=F1?TU>x4G>6XR%|n}x?5XB}?u8>*d^a7pL?-Ybp9oy#CmGK&2Fla*D( znZ!joIZ2ew!$DksK>v?Bq)7jI5-%&WZj%q^y>FK@U+0DcHFBL1El<>&81L#iB?mki zb(Z*g#DwDT(Ep1MeO{soARuvt%6e|l%G5t<+$)gd#Kfkl_0=u({k5&>#829v zh?Nubz?rInGRO_`h6TIrBTPOoem))+@eNBnS%tf{ojh{&5~4h!h%s)}HpFV8?0p&V z4^EW5Z;rp0HU=F&qQ^b%LB?btKc*P|PYer4LD(h0ETXRHqR16%F8?3WDgIDP$9_yp zC=e#N%bGk?8P`bd-ArE;2M>R$kq%cg>h9&0#$$($=qay{E9QH}L;Tk+}TmexCuKITZdTC%Q6JWEU#)x0#2r zoCf_MCq3?!@b<6v_x6r0Huo{JBCjy4$p-X}zvd-*E^#7#3?0nGUuL^=p5Kht7j${r zKRtYyZqU5B%ey)~sywXJY4ALISXlEsX@FdX@Yil-`?Wellp5|-xt6Q;(GXRagj~@Sg=}h1m%7!Jq^a0hpXgw7b zv>({4zWbSdboxF{Ep{9>k+kDo)~7LRx!hRXLfBzySf{s4G79ggpF{Mfvms9+ZAaYf zgrLQt`jJF9u1G}^od77b=Q63u>EYMO_3!)3JUj=P=sd}2`JYj}k?xrT)U^-47NC7j zkkEQO@j(lJmcC$)W8wi!vrqw;hai_lhxwmyQ?i>H&{7@dsw@d;4KrncbYIP%{nyjF zXGz3@>m$bl!}{C=&ztPndjkUp3`F22RfoaQddVAw781@FWv$*t4FT)hWQ2`Bw=i+i z(~!Kt2ovK;ZAlVyPNm2?#xjBw;Wi0XU$GX3l$3k7%ipF>-^%l@_LSi(Ft_$}@jrKv zW}fc<8D<~D=4_2nZ(+f4wQ?KF)Skf+=c^;jNWpW4bR73GMBZDE=z_ib!cQS|o=kj~ z#*!OEG?TI2bDT=XbS9&_@&jijDgqrO-b&bt7a7oB%bYim4C@2t*49o(MN*Q6jPjj>va zcE(~>TufDyQFdAV5A2;DN1UIQejiRaZ%Ur&MMmdUt?GAhXSO$SuQLj|igP2I;8ykT zM*EC5b^W=|dK~V$dwxYBMj^Hi{&TbbO#0_y+04gcP`GH|b=E|f>%m)V+fU5L8W~Ji ztI4<&dL^cWYJ})Q@~N$#IegaPmLYn(V}HiiZ-SqH0$apzxVq>*}4 zy&;~c;nD#UUdFxQ8T1SA=ZV*1!|bG|>{vU@S&R#3`Gj_zU1kC!$+FQK$B;_Id=y4B z(K}U;O;w{qSZd)CblG{tN332%om5gl$F8d!;9tU+Qw+$5*zOTM_z%|fhYo%H65S3# zs^G1;dxGA?CN7#Se{H&pj?f__m_GhQsqS_4k$uP@=r`Ja=S7(90t*gE(vWQOE3?5* z2{DaJ^xF{r+fU4B-x~SCQ4|!vcC}|rQV${&K~p-x8%N0TpO-t@0{g(gEqv*IP~*Sn zZog8*QZ;^I$KeF>mtq`RyFWSOGI>VhmPIn1RsM|ccZ35ET~DJtUJ!P+Y4;{bvdmlY zfI!$i8zW4>37W|1UkV%L&z8fn>`uo2~^}wDj@?^aMy7^Q3E2EDXhSQp^{gQ0)NPr^My7(x!h{M&3-bK0oeTDh? zClk>fjj4tHK8O(6jG-%6g;=}z$>0;mSZgY((Dr`X3ruR{yb#Z^jkoS#)(urO?eet3 z$cELFt)jNkOC}sS3p4+MCN7!JaEk!GD*2tW4ddo0-4J1&`}(uk0+~%sD|z#c}AK z=*P^`oT_u*8`XG_(lME4*Pj03CTt%>utrNx7j(<&y-uNSU`_3CkN>tja>fsg8dLVD zxGg<#{vtyHI$y4rfOS%wFkefrk$Y(HV=mIE{yTkBqVZawHq01BEO;AQ4sDB? zv70)hyG?x3*h{S_MC+bg*v|@2zmST2ZsnvFz4wBgQVpBRCT(@oif(=7G{hzQa3PXa zm+{Sax?re48wqdk?Q608;+#Z6M@5s43LY6dABHX+>>n8puTKO=_K02^`~If%KZneJSDqj4o!mzxP&&QdL1QsWImkx81k!C_Up@nX`|^WUH5J4t@lTo&x@Cfd5qT` z(LR$!QHqxb97pAcBYg1vam(3)^(0`gqcPWl4W)S`1rP{9ynHBA@Ec;JB7%q*7bmNebo|H3AJ8)e2cHAN4`lzx|W9CS@me@Z<2FKOOK|a{ZL2$S8fV>k3Cv_-4fV4QivI zdA!4dAvAh{x97%0KYf57V4f}88F8(%Xz!P~MZTAmdxv~xdZqijF{tlefJ0ZA*tdjn zL%B_@gb(b`jAqMBF~$2mG)-T z>tLXwJYpl6s*93sL?j$&g~A|EK3+~`@V*)_$r$f88EWi>8#!hP7L5>emKcB#~@2)#r@r(=4pli%J_W9l=+*;R90DC}Je zEj{JbM@6kU&}{Y8`9-)cd17SKOx}@ElSc9Ts=gZoJd)2W%G>fOEQ#bEdhV%^u ztul^qtrc39>$LxA62|*=TkrHCBVV@mOdr)2r9uK+QL;0gG}&9(HfG!#xy8{Q&bda8 zwi^G2c-^%EPHPP{1VcK|X*YI|wDe7NsD)vyE#{(ru#K6p745-0CI4CnQw+?0VK@*s zOqwxdOm16TyCwEIl|*tDa-$H}kEK{}10NhB@ic4B2Ff-|t^~i!h-YtmdA%1+HIEjw*n=sn*mRm(%mi-Gx^=o?N1!KcDv z8j#Z>{K9-;{-a&Od}g%040?Rs4JJh8D1=fjJ<>uX0IvyH8_<)uhGhC-w{1$@;)UGG zWQzV23FeErl|kT=&j0QR7@saWQPSos42I2TBW~agfB`-EZpA~UaihQ7IYjeMUVW-s z(3-t`V3@csnU?iB`r1a!h%)&*L5bS$@C`i3oLaid!lF@9jBFdh?+l@n^tazDvIGxk zczC@Ob*I@mCW6JBboNWLrASg5!f&6x_n7mOA&YhXQGaeaePZs?@xCuB^As%phACUH zK~@>%&3joKCj^FvbDi2DL(uy*?|ojd-tv5@sqy(CfZJAdr%O9IkM#5u9QVOvs2aK72qA=;^}}!NVQQWkRQL+V|M65LPf7qx5>V$}Q$lIm+1H zfwIvsE&>c2kTt%YkKpB)qb*BCyDLWa^Uk8gH>3PdKZkEIJsCL%psj&r?m=)V(y?9L4Fh$-17jrXpjmoBVi4<RfAeUTdQ~>CB;qN8~P3noa&%*VM2ZLv<9Ss@wZL@%43&*mQUEhX_hr zwH0%Pd6)A`mrR{tn;dHUkp&lZRvL?I{F*M6xB#RG9f`Wt7C2ktclLvG72RqeB8pQp zPw0tyoe}VZEj||ix4AuY+WY2wLb8NLjQ(pw*t}9g8x1oSkPtBmMghX`cp7q3X5JOG zYHG%pP6Bp+UL-Z3uv^>l+pp(GJ925pz zb-R}jHs23g;%Cc6xc7(h{*~SO1~8&#NFb=BW$5Y@3R$!ljpfe$Z)2SW3RGmQOq;K(Dmtts648Hz_*R?_9GRr?SB-9@PQ) zT5SWtB=51(6n$MYcZPCw#)M3iCLWrD-EUpjA0mzXFvTe6E%dEwN=XeM(47>xw!% zTMB1Uorrt|XSV+H(axj_O=KJ4R5iJxm63s-Mo+sDlP=0_023b1FA9go%EZTo@Nk1S zq08+1lxsu6G6DwHr0en*`2(F(yXYoO&d&sgt&U%X>j{$;rqwA1D?a-?USM{JA15p}U^TG6W`-kLk4 z268F-ZLnbjX`;_r)K0vZ&&d4XusB4cx24+42Oe4Nqs3ugwbHRmP+fop&Bc`WReFM13I!SkouzEPj)B#AlDc|C?Rq;_?fhT8aNY=whj4FCEvYIV>{Mz zJ1<-P!PQqfJ#&>z!ZDRJtT?`5+qQ7u-K)#cqoSF1?(Z=$rl;?nz{;v z;g+&bAuQrN;|tQYVD@iKG~r8~3*HIkaPD0fPi4)Chcc!AEEC!O^m{`&{Zc_GesgqX z(BZBQd9FW>HfCE!)nl@8Le;O<+uBpBBHk$*L0x6Ax-lIH9BMjN>#ra1;uxHQ;WFOd z9TLT!=;KA>&un%q*Gc6#o|&`|@AwzOfIt`+X&)Ry|AOp|1~kbbaL1+xw{30LId^TW z0^nT|YynWVz&#kUkePZHvbmD_(QI+lV-Uf!K(jUm>nz@JZ!60+vND1S0C(bJcq0nEZ9!jwJJ2czLd;v>CL%0qnD7SLB9qp*k3DisthMjAI>)39^@v zl9u@J*o~Ds_aN>n32!hC{A8DnU{+Lrw5j6bLHxwv4(c{#7-S`fh)|6E++#pv=;X^A zotk7Y@*sEQVFhjpP-041H?yY+>&bE?Z+C09(B+> z*_w}--p+sZa>by*-z$T3)?$jBcFfxim)mkpaB9o0HaG5#$e| zHt3Gq<{9d?=KhqosrpX>Rtdqgl{dA|_SgaJ?j3Y)8Z5%RI;Ex;h06!zwPUZVc@(s@ z?x%q=+=mqLG3vp$CkC^ET@X{A@XWKpP`1EXZS_uY0mj|_uC!f@}hoQ*K(ig zBZ#icAuu3XNAh*?9BF!)yG+rn3Lc`O_sln7}_#tgYdY<%lOII$G~w^mqh{Y!AWUF3?+-`GsC7l3Kp}; z!*20U2X!ZNRInZKYzL0@((;8;V4?`T~zS(hesMs$8hWF~v7t z^4yDgzPypaR|E%8?uxKcWg`lJw)Fi@m_F8-tN^(FPUI2WsIr$A*!9PS3bwLa(q}@W zHg*ZYL()MEKtaglFrc>X+w9*za=AxPBUy+u1e2~LqF&vK@8YhjNiv>Z-H3{)4H-?2 z5c!G*hf+*iTM@e)lU1ft*rP1?xJKiCK8h`FPRvYj7knXpE941($a|J~_Mw~pO<(SF z8b&ua-7X>Ja9!@{mp(^`>}r;hd#wN^Tbv0knIF;nH|2Z8(b)T|?aK-a4eQ)E2|uq! zh75662tJuh=P49TJQ8rt_Hj-_lMdWF{V=_S zy7G?_NvwxUK?bU3jk*Iw_R?eO%|1NdbWR|&XsM(;LK_+&KCmI7=oo9odnM)~lsMLEw>X!o zJuB9yp?b7(eRZ`CZuM5cIo@R|CofDqFys4TiI4ryocL6|iXxN1(y@hQSM!kYaQ~Vc z;PX41Tf>vAaTx0i47yHYbyUv?O0|I_i01`$c8ot%;v5GtmGc$ao|v_LJ=DMkV1+-H zGfh8Oety8iLHTW2fBDRs5&!k&L%BJf7mzmtPCOJ;+nnARuYW&&yV)_Ez8klNhU*(( zc}+VK9ES2@cHM7+2dmylUq(}zYVS%9a;57U>;*Lj4GdfaR-W1xrksqT3ntHQNlFji zZwzy1nR+_Y;=6#sqk~?`>lo2)xI z{MLHn38ia0`U?(Ktkdqdlc|T7iR*kKn8ZWO9h9r>ye?VXov!yCOt84B!Rd_8etl4t zAj`pzSv6)_`fazDy4GB7c*nFWn3I6&&>Q2SvF<420z&P(yJeC|WG;(t9^_=G^3*_1 z5zpHD0wec3mrPlcZ+o6wkU-=@s}CcX2(i0TNKg1R_u?=~&~ju`3Nc&-W}a*dAJUao z=l&Q8=USmmvDy3y*4yUrkSzO zjqWgZl_?=6>P}hjlv`sE9693JM?XcUts=kJ3kyPC>3R#8qq?33t1$-jE4l{V-X3+6^w;IC?skV zCYLm^F6^f|x~LbbE)!@@{Y2V&W%FLDYKyxPdjIWex3Y9}Q6)Kv@|k<{lJXj7 zr4TK^9+?k~MoyZ+A?|G(F2H2PuGISNz=rAL-XoHt%YyfvH?1U%iJ7hf;f;@+cO*_} z{-$?n&BHk5eWpPE8f~?|Y#t8lj4xr8RRmo1=sV?zGL;a|wtmu>#k10dygVc)axF2F zOA4!_gKLjk^SGGu!GWqdog<<$sMOr|!-NU6;e+lk(hbPLSRxk}ho?RmJR$|BgS*dj z5z%t|~m@%2Nb zmY-_vQ8mnd7`TK}_8Y(8@FALu4{z7UZy655QOwlOxw?8xmY|2=kYpaqP}6$C&kHyY zVQg9Y%ogt6E-sPj^M)uKdt#o|@U+tQDJW#S@e-{IlknN=`SAUrgeOLOtTvrMX5MVj zERZ`lTR;6U^i*cU*PV)>g|GRz0A0xEM{%$Xt;;s$>Aa7nfq`HKMr75g*lFcYG2>02 zXbS;%JLSiHL-c*e?cu!o=O%Z(4^a}GigBEIqq6I->zf#+kYWZ?en`>H;A1(|mzN#( z07NLXP;til09bW9dRI=OkE$L+t~mK8g>71n?P|qSm%l+3e9~AvT`RPXLDoo?fn-t( zPI-11NYH;7%DSQwo}=o;3f^QH#uwcw{vG?i(Z?IQ*kJ`eseY+-RV*W`>^#{R zuGuKF*)%wVK-7_`nGS<+ySd#?@b3EQ*h=8mE=)E?X!?X0P3E(Om$oLAR~T!9gxZrp z&NP?hDxJ;Xj*>o48GKX8U#zEgG7*j3XrtQY1H#@+?(@)(rl;~q#)+(Hcu}KkylN4+ z*51|j&oz1csW#eDe;q(9G4|MJ41X$kPK|;U%vJb)xDj!`wh#=d=b#g})Gst79#)=~ zB8E(w3(Ko=X(gj0s$$hMOnGh=(>gp|4CNng<|7z9orj}Lh$-Yi4~)V&2`pu4=pa;W z8jMyh-l})FUFR6ZwETT8Zg=Lp53}3Awm7dWN|-jH`NJeUyy6t z`SSLL(4jOM@IJ;0vxKh{riHWG`z^kH!o{&F-~^iY_#st+;jvKLO;TMdn>!&YTLoR~ z;tLO-#m5-mQZmD+Q;qsGjm8ue2F$>rxr*0q>ch8GZYT48Kbdn-RdwmiUi8#kPpVOG zPtR`gB)~c37qoO)nDEApU)dN|59Fm)g}f#Ql|9Te!53cim0@Yj-36c8M+ATL^wO`Y_wZ;6@}`J zk!hM%f>JWc%tYiyR7R*1aj_GUCtJfeo;(vj(Vo(SzMCvwu`&JZi+0{@hY@UR4r%ih zu-7vswWQTW1~MN| zqJeW;#xf&ppT^6b8xN63zTNa!G-L1bmL5H7qQ0^}I#x?Eg)^LDqNY361n5H4TV$7x zPx?Uvb@&+ac1)5l>>zG<8SKhImCCO>$ByO8^dhUFV!><-x|NvgGtHGKlqj@|>TTC& z|8^8f&g*gAeEOkht$Rg_5miwwl(sk=s@g z(ko;&Mb+6qHct9i&{8wa`Nbwp<&?Cc!8a?F?kLaI`i?@JAbN_8l6DI6htacARpa?C zG^@c#fW;rT7#^87l7q9yD4nei6#`(Q;^{z-6iMi964o=o0sNcumBVrs`y=_^F`x+rQeFJqj~Mi)86dR0N+_`F*zf>Y5I`oogGq z$C3%ytrf;w)D=dIw@!aNQNUJ7XR#A9qOgltYHRA_;t`dChk#XcFGuSyS;SQ5CN`lH zC@x3UHVyBsJoD_`x~^2lt8;$nvw_*d0LOzrdJth%dVBeBFeWA&Gju=Job!_3u_V_1 zXkN^?A<}beSjypq#1wBC1pa=UT>@f9WW!=}ryV@6PjX`%2dD*gs(^H~54k<^KAS!9 zIvhWZG2n&qWZOOR+<+CgRDStLpWu$uKGbwr4|Ki3J0WyreBV-vZ=2!de9$vwrw zxO;2IF)T8&R7vLA4qH$VljQdor5Mz5aA-}c9@Xfx;cI`CzDb|+9 zlHu&kyb?~zp=r-g$1n6@X@$5~w%nb&wPZnGx6Uj}E5}nyM@320a(`2kNbqSBXa`lK z|FnY%JEd*iZ#3j$sGD$w!I}4is1177T)LOE6^pa&n)zGbWqR3TM~6h*ajTC#)-?aB z&|@HAApr$Ls>fOpPL)qT`#<8sPH{{B!e)-K0SPgBRAUZ%i#xB2fDU6S*81j{KCHRt zOW);lfC!885RN`AVsCT?C%x2pPs{9JiYY?+Xg|G8GA|H05YH5}>nzm&x zs2P{u_PhbrQgj@l#!Qsfy4kT7sg=jS#7w(!cer~YnXn#W9O_f_)X;o`Y28I8gj7@y zk-1;V!{69#?4`Ue#wd!HR+xzIXsry>|3+9>p8+xN_Vw!3dA$G^W3dSkXGc1D=h z2M;PQKp5><0qQ@1sGp;)oC5s$fovXo7Ll&93NDbD09NJ4m4PNsHkzq51?|^G=@gCV zu#=d38ZaeBVbzD`Q>pf zOd7YJe%?(kApe?kWF9=Cn-XDw+!q(LIRW{JH7WP7XmqG(IwEQV2N5%bm24y16fd!~ z<9z9Fldd>}DvX{kD_VDyah;dj^ll+A&6$vbD;7Z3KO16}!N#*GS}G@hDVyy+fGDNE zgpxYm5`tQLy?JPlbCyioe2`9c5rs%NpS3s^WzWjBixy2zMH-nvoJNuoPUBhhvrPtf zOSEZMFV(HIunr2*1C3s-q^_a9eR(Bo>TDis-E)8LX0r5d6F#_d}k;bYca4JK&5FQK_DNXSHEkP1CSfRrQ!4@JXs??$#}lDmKG^ zP30?0jTx?VyDEYGC`m&ar8Mjoa0$=Arl)w*BFo*fJ6Hhbxpk}OP0O1|oCH%>RZ1F- ze6|W(1rN~BqS9H=PxNn6yEiwTCB&e{`eH!#dmwWQbR6M*WG4py;=m)qHl8w&TUa_< zM>P>Vgal@^H4{No^p|BdR%_!4GX6GokF_0TrcE~JAWqcXJ`x~X!Rg8k5`vFRt(e%2 zRm2IaL^P+unPE6`-mRubHz!WwZ}IIJ3a#waXYflATbh_@jxpEHrjy$qSTi%IN2>P+ zlBwm?nk4$Kml;kh39;eeWTN8V}f$FuVgG0nIX(^AfBGWu~8D&bQ^Tv@|cv_O7Dpcxa{9+8v z%2dA}Hn?%VB(*ZOxmQ@sUZ{&Allbd4QdJJ7yOHWyN@sPLQj135KNr11=m&?~1FY@C zT47NeBtV8s)sw|q_b(=IIcNz5zu1rGPk42E{}FGfAh6oi@!MRQT#6H`sPgF_6jf7J0c>I_^4b}AN zMe_y#4%n^Ru2J0q32@vUIX&B?Li}Up=C;jua}may->AX#bWAxB|Hi9C!A048 zCTuc%XhGfgg-WW4zt$a`OO26p!TE$B3tqLZQ7yD(G;@`EU23r;OO*d#UzRIM_$m?{ z>(o&62ld$+5JnGu%P8=L+WjlqYMK$vO2$#dc;UJM=dlvbK8Aajm+m*39h}ko>9e!V zYtZwZRyJm2Wvqj-=(!ewd>9I}6Yu3|)CPY~lq=LuYO1`^6T z2$rn_7_Sk9lJKT8e3d8&4LHdxG)%Ue&Snacmic0rW7!}rasUEq4u1JaWS--}AMpE$ z$GpcbzV0)BG%<2VA%T!mLI=Xi?*_3qfZM|8v^{a85eEAiJhHQFkAPk86yUaOnfeeaaUNk6o zK)QmA7r(m_t*`?06UVoJGNxHAHrFJ-TJd#GOUB3B^_%9hg8CjAoS=jvod?&`@}M0H zN>;$(UZpbY!`SH})x-}E!6J)49>YM`#x3geY0>20VUoDasd@}@t97a1uMai4m43b9 z6D(Eas`3R4F*!4y)x<@U-W?ts^K_Bv*Hn^;u*Z_>1Gm2xW_Y>+D?9^{Xk7M?klfL5 z_;zU=2aA6zF}Mgeg_IG3UWyPH3(FyEVZY!3zGrqVnc+L%NEnc>0*02fIz&4*w?Jfv z%yZw@q_m#x-GzZCRMZD#aWVCU4;#VnSio|&VH47!(+h`otOeLW`}#?7Jv8`!9@B8I zG(M`Y6%eW0XjE3OT0uX#;?g|R?>JjGczh_JyrY+a^P?y|)s~}p+cAI& z;6*Tnr*L4b<+TS5ikosV+Dwo2wn#iP{Bc2QVS$KwP3ghw3j-RM{QKYN8mF&hmOr|~ zpF$T%RyVzO4eqd@Edb*~WFRgaSFt!7RHRk5mi)l=?J3?CXG_@&|r&Fn!rNqX!B7v7P8v;LDH=7Eg#Ms1FP-pz;V+l$Mb}cx+Zwc){F*b#JbK z?qBzh-vxTQb8(cNz+YG7{+<~JI12-rRcgU0;Z-2&`Ce{t|G=Ou)kB7Wx{ObNO^?$gDJl)-`*x23ioKn>p zj3z&{{`XBD;7$ZPd^WvUHt8oksAZE$((YapeW)1~YiYo(E#vzM#_in!1w%Kp-A#P` zXC6+%Ez|j#lyhNCO&p~^9S@vuNEc?PdFP#D5@u?n3*>||K7^0EH%6DQ%3D(aCD#8; z42tHY+AlPgqsdP7N}ohlRI}sI3UR7T0BSU28U_s{xqvA$xX@_5WvQ^9s4=ZH>(%}X z^*V;~1d|vArs)+C>j|@){6$n3;lRiV&J;-yVT+fTP)3c00g0zgkSZH0 zHglDZj+&?P+90=v#_+8Go{d6$HUkjRV`c&(_>M(nK~kg@0f`%(0EEA7Mt9Nbw^HO) zJK8ipf8r(kDW(P_N8%Iw)J!_BFN4AJ=IIi3G)u5lue(yO{a--Bk%bh6TVhKIr_B4gA1VgzyVn3ZaVI@K)^ls8Z# z#s+3G1Rb?+fHM;4+$ghp1?*0_LBU~#d>YHyC{TVwQ69{zOC+9(MLWAyLiagPAUm}& zkKbQ#*KU0{O3)N2{sbL0P*bgZqy!(gAikdkfgIH3n(o*)jL4L1!)oNO`;_pa{Zz0N$s4N+9;~;lYaSInphWN{Y+BzT4WIM>z?$Hcvuz-ba|a4o=884Z zHlhLtO(&MgbWr~Wz`k;@!KjR*$&+o&cwW{O92h7diEBy)~sW#vF5}yxM@-0 z!F-`M^lUB&!gPT=v*ZxtpLocS;0!rgb8@n-e#<~rJi zE%y4chA%$q@GTN5tmShidwWo@LL^Q<5N!~ZhLQTk@MS$yRV|C_N@?%875~?KEv}X- zBoi4Hly)VR`X(dWu8TK>$o0K?`SN6f(E|V4D@UFy8X4w)jv%v=LzrNx9XXlPGcOzo zjm}t{$@0TL^1QFnHUMz88PM5O3X+Mebz8g-T?^r~JXK>|t_U_n{S{GBU^+Z}>e_CxIhG zo=`TOGF_h!YRuFMwIw91Fj0C359Hhq>?m5$1!51# zhAM+VfaP-jVoz#;8XX4v)|1V0yI4v<0f9=qe*G;1|9^WBJg@){Ad4rVxXK0*2M?zhWpcg8$HpaND>+(j^!)`W2mOK^%H1AFpGPtJTZtEkyl=A z&keT!wW4|zumyaDkCaC-yLbWc+!1ev;II6DPj)!5V3$<`SUdcvO2yVvo|GDtYN-D^ zHt5PcSv@>mI^S#CvT#tZ$rS4|<$sRDgXjzN1-?G5X3u7<#xgjoCBI+oIi>zb3j*;g zx4E|GORs@e!rfNJ2kl3-ctM~P=-OSA{9zSqCAH%)xx`s4P&|N#_Zzy!jW5|8qu}l|*2H5@5kjfv$$p4)Yun5UTY%WF-xilFV>9 z+BnO?#Bo_P3J*0jqJRoQtoEI&hJ1X~**X-6gBw3pwH1=JhU>FO!ht|O6LpkfR$&p* z$7??~DLXc{3rwu0%%IisJb>5BS^-J#Tn3Fle_Anu^$zXIW0bW2o3Fn)JPc>oJ*C`+ zwF*etgb?F>7wP|J`+>4WeLl}hPPZQhg2xnC^_@zEHF?cJZ^C*O6PF>@Qn}k%B0d?1eMsip!;i6)E(y= zzip#vQFpRf!x7(<>$(Hpp(Y++yBuKTlvo&gS}O?15K=KIFAL^sb_PXC(*GwQF-p^b z>!b!ndnq3kE=~Q64-IGm7MN-Hu5ZNH`1%#^*FYeXx%S>cG_(|PW|1^72{1ars4TXO zzkl`%CJE$wZ|eiazYp^4N^bT1J3nCh18o=^4sLNA>~#SNqd}s|#cININx>!-=*p4= zbQ-7j|E9;pLRMAPWS(Vq#ZP;+2=+Aov7n#FvU9FanvsQ}U;g82CH14BSzsbT3b8J1 z#*p=aEbN0Xx@;IO`C zL}{Fa7Yj==mnR`@J^w#PzyU_4bO}mxEtvj-^~x;Y`8{Ry(F`XD1bX)qJXHGQ2o>m@ zZ1E$G%FxO+wecZFhk*_$__DpE8oqy<_457LYSl65X6bO7aPA?Nws3U zWBNttLceH6hYZ!Cw&$r>nYZxfcf5U_MiC2>%K72~R0t*Iz(G5NMS73`+X+$T4)^~U zHaw*beaBi6ihTS){HzT(B@!0^C6P?V%LPXQhpnR<2?a92c^aRF6Az0j85w1xsY zA{x*Ghh94WNjZQPsRXjUF-j~Lxiir3X_25W;!F?*URh3P{;#lWap4(RiSsm=pv1yT zY$HfeV8hz2u>kX1;s}`)WEL?x%ZwQQ)#Rxc7Rq-8XoYy0^C*nJyfihgym-ic?|mU^&TWJ3nDjg z-!eVSfKZly8{+*)=$Jg zg7#bK&Zl}U^Q&_YS1adp*_ytOb4jvthI+8T3EYy0?z9cr-rKR)rs#eE21Yi4T%yKH zBAp5Yq$fTJ9fvt%3Um@CEYnsWUx=prZ9N*mM?Ba?GTbnX?`-`~-Tx^1&tTGXrfRh? zZ&NM_+EY?q0ATZwv!`CC&}c6keM6w09Q)f4>!99CW?2~%#8O}xQdw*lZ~f6bbM^Dq z-3SIXri=)9|3-K3U0%}Px3I$Z0*hn>KtEnXb5XMb=>0&<>W>3^Ngc6M3AequZV7pxeIoqIqkPi<{b$V4|b~#q42k<=7&F%Cne4;)X-2yx=Mk`LD6@N*_^J5_F(CpfkOyV1pG9gYAjlipS8E^=nq}d0n9C6 zPK2?s=ZB1Ho>SSFjElS8Uw8-$6XM&;?5P6>BSYy%kL>rKtcZlpWquQ5(@|#q50c~C z@R|%97vDnkTX~(h)2ZrrZzKhqlJ{IJ@$*=|;c4gjID7=o;l)4rXb(s4d1fgw|V6drYkjljxwd`crTG>(VRzq1DB>ciU-c7w%V6y`m>l zgUS!UtH_X|9n#EO=siA;r!eg7bzcj~gl_ z3>aS9fYVI|Kp~0BwYu3NeK(s(nrF3x`zWn6#11D@U^C681AcYFrIbpCNU54?3sUFr zCLzdChx0{2z}h9VUR#1M6;8RY3q?n&0VgA>FZq3!*>yq3>%!PrT-2ve*noCRR`c8@ zNilmvxAk-?)QEFQXp@(ORnFwG+&W~BTn=FzRCLq7(WMNmYjwL!If7A2WfR@Y_8m?p zz#gS!xnimbIy4-xhFmB{MA@O{L=LI4vROC6~nYjk@`76>z*LvXBH}f>5RTT`Vb3d*AYDq-Wy7dP$d4I=(;qIiLyOQVZz3A)&e7Ef za3GYOI9Ejtt^98Sz1QC|;&#IM-ED_U1!h3Jn6^8!p-)aSRMyJ#4&PspDzb_LxQ(;$ zd(Kl!=|S2iVlG%eKBd;vL61MR@Y*db{Jz)x{{3FlYx|MpQ!H=|XTG(Wc1;7kI@3l* z`GhTLpD+x$@M=&=g!3NAxj6iU2~Zdi=4bI(Ll zx=v{|bAk?cx9$(|gKm}~+ddg<#U{7Elek9_30{tsac%%bjP&Q+M6f32T$!Ah zP2Er+cifUG7nk4j_RTW6|G#C?`_6=(*Mte3%og32OA9Gr$pzR4&q2KV1Wn@)@4cO=}}s!T9?+d;?Keg7c$nfWh8L8gD|PH7N@ zozBVgUN*%p=paq&kfS=}!7@Opfc(NU#Y7$l$Y18jU*^RgVsUF4UeAIKyF{N>XVEi7 zZtq(Xf~NZV=&)|P2R>uKADY4d7qN0!B&=Q;K~|RGtCr=X5QM$YP42fPmLmX*1d2r0 z51EP>CiB}2t9uc=2%x+ac4GJ679nuAA%FWuR2PGk_kK!KVaq^t2(ZCtiG4Rgp@5GF z;vfDA%SYUOD=wY!<4X8a_?F^7_d*W$3o$7t4ptMN33loEbXNcF+ig}5T%yh?vWCe@ zZ`mWW&_)1T0_q$!GISWhri;Hr{Lepfj{Z)_fI)p6kZr;cl>zI#B0+byy$*R)qk8+Qns?cF8;om(;*gCN2XfQ5rn9 zW^V|%p5Lz>R){EdRuU`#gF5rh#>*>(xxotgT`*byc&v2OyxR)US6`S}@4Y$C){sFU z8|?U;X|w5>+xlrpXFVD?bc0?4H~ z0O+BQN6sR0Y2d%dV^uvQD)YQ1IQl5H0(a49A5zvwkY90(SF@GMxUIZz62$(};Y!nS zD*Xj6Thvt}L_r@VSeBpUT^r9jB5!0>9Y-V@CFkx`)BM+^8M-l9dLSF*^Thm1xrxaG zl9M~y1tf=BZ~S)|Y3zNaJ2S2i>={@>2PY9ak2dRo#O+^KiF?OBU z&4Ci3KZi$YZk^3btv%GNN~|`!kMu-9t-*&hkvUl+0Ys4CrzUg&sA2L6Kn1FEssz4) zfmAp3SMoW8rlTJHMccN1#U_A>Z-508hys9jh5u>XV;E!;6%*4FZW8tP;)z#rb$=BW z1_OM~y@v<&4wSD6N;Fd|e}cc;{^2QQPyfd7HA=ap0RSu*KaJ$p+6?Iet9=w$qzjCJ zb$bbZjb=>diu4$zJxO@+|F1#lLr1+WKBVZ;QZ*sdZ_`a$x=E93o8UHEgHt%b4S)dp zy6IgnSv^vx%*_eum?JM%FEHc{KYq62W0M2iLC5|PW>Hr{E>D5&Ibx@{STU?)k5+b@ zD#Ap5yg-*SrZx980JNBFh~MnUDPTSYxNYarmF^$Xgy*c@`onQ(cxulwa+pTTK3o8X zICG2ksuoB+-_}m8^K=b9*^g_kNV^sJxgr=_%O=~ip_-3Qu20dV-|u8eIjr$?Ds`TI zKYWL3^Y`oOOZUD?^A}lk=-~Nq0a5xnu>CeJ2)j^XB|{;A;3SRocGgo&h98qSK4cTm zgX8nuRI20NpAVyl{-!D1Mcc7Hyd-uTwch*UTD@>EYaLbPu1JE%^vUU!gOh8$;BIfpw2W83I5%%6Zy};> zp@iU$nLNx=AyxkWEO z*?QT^QB13`{lzk`@yM-WecW&7!i5(5XVOVMlwiR(SA+by4sy#T_KHLP>L&I)pa1YD z|8)ujavf{@GQBKz;{YdO4~nvJ&+IghuRB%nGqKLxq?XItq&6=W$}w}#{QVs$v>o^* zGPR22XFf2;)j77t<@0%$WPj)km5Fd*-#vWx>Hh5RardgPuhRTS?Zm63nu;=O6IXD9 zF7Tm4Durphk#6l?C`|+raiT9P~FIvXKAy+$Hw3 z8$|Yqc8tZE)*_=v{N|>w(`~Gg*9gQKjnc$vJonV@{*PW*{Y+0K2vb26T;8%DzHK$1wt|IV1z( zpME1Z?GhjP7kjuf@TJ6nzije=dLosrv!ZFVz||%wqXQD=0Cu0Xi?T%jZp5`%H(JjR?EmCQBxnLsFwshz2|ojVx0k$`rUI#*eue{MHve%eNBzR|x9biG zgjRIX*iwR_UT|2pZ2i3k40Tp(5No(#Fq~5CqYuTTid*c`R+nLzedN*T{+ zz-x_Elc9Id0!B_d0WgA;rq~B2;=N-ba=l}(-(EuSQCIKeh0%rI(VD&cj6N2VkS|SW zauQ?}5dJM3GdimHZ{RO0&XF*U9FjR$7>mU7EsBDEIwbn2SL$y+Sdqf6n%Hp~!cXWj zlXt&yFp_P>IAFRN&6-=?3R}_M@`r%OPVXn@Mn;wyl1R7(dB@U653uqw;}Qp{^XPEX z*g5n|2=X|m(5a=N8W3aaF`ot{jVMUI;YR_VZ`M5r;==FQDBfL!ulO&M$bnw-QfBht@X2|5PN^e zmDS`9d;F!^GUyi(okLmcl1+Zn)A&-5`(IM&?)hcvm_~f|=rJhGZ5Q@!lm6G>m-h&= zH6q9*BZrR9%^w;v2%utkSZYhYhr;QuvNnsb{Bq$zze$Y>4-Jkp8Pgy|<{gnCK6Wf$ z#nqKl8vd?Ahrn&j%_u94UBMuiMWoOsApS@f>yb5xklAg95=}iz(LkNeGPUP}J;95@ z)nIMt@%#-7$w8cXIHVr&X|N$&gysMQLNfj!EuqCo{NZ*S1yAosRNF(L+BF^ZlIF*2 zCW|W5Od6)_hFZma1zt}Y|ydHIly#(T5xRXhx`G0nAuVA#br`3{yH8LEQnTcZvwN}k)V)!& zdpK}Y2VHv{7{a$J=C?nF;ml}}sLunoFrdW{{jtOlL;J7e{|!cYtogHOEZ;9<{!z;d z=rtZc&O0@pJI1R!wQRu-qIp$-&X1C&rogfyM2$k=K93TiH8o2Z$1z3XKWD&1hQ>}5 zheq0w!+ei@3wW_k+h{9S@ML~@d<3ZQVf91P>boY16qtqQm?5ws@|dt8_Y&ejhK<1o zQ{*Q*P7_~2$XFN@Mg;fy590eF(`}zu6N=5?p7%a5@twCYm+;bI;@!dUl3`E5XD@#O z*xNDS>z)UCP){wr0baUgd(wBduvAnX&QEZ8Y+>T?Pz^^xiuA{ngM&u*%vgvePO<8? zPSt(4*2pIg&%3h5ilW*J+arNX6D01_ET5=myL^X-uTqgJO1Yl@ zC49J(ri|Unnym3x+l6=RaDH@NK!tsWXRgh)=T7^gYfJ3 z7?w$gq{6s^^}#7h$tmpg7EG6RCQQ?vJ@e+9yOqljhf-RLW@%({Y~tcuDKp~XFPM<) z2TuCAt#TvhB^(&J&~Zr;%!gs-O$BfIX9Zz&_&v19y{C|~rn5xVW=h?}dugTw{{;Uk zUmsICjg=KT$q@Nx>rJASRvJ#ps4v5lnT%$gbGY&=CFs!TgGGclJaTB18#IZ|{?Ty; zSzX=ru+$a{S)qrYC86Yui-Vz&ql8Uoae!quuCQjW24`HZN$CG9hf%QO6HIslX;aK_ z9a>X2bbZX^zi#X%#@-a0&hjvnrngZr2|fK+;UX6q88-65CWMF>0YtEzh!)P|-gOq< zY+*VB=XvmVoX?eF?dc)pz+j%+)+dFq!C;~PxS}C};oJC3i7uTq`0gYxqxVnsdT%Qc zUXx!*?cGIS|1fb1L*GzmoVCzTY_IjHCMvh*2ahp~Ld`PK`C}1Zhb>m$DHa_pWM2sx z!}NBWNrQRv$AGPSxu9)?hutk<|MTdrn=h%)gF8-nfn&r$C;RxW7)kofxJbwdwY#yX zL3xL5U#-p>C0VgWsXsX-H*l(mP+QJ4SNQehg$~Z9Y#$7PJNbyrD*KJj-U&@OG2eae z)oP5FyK}s9!D1_b!g(U`9;|~-ST!d?tT|mJZ|p1VH_zYCvz2MS{BiZ;&W5J|Pn}{| zq8}>r)r0?+itJRV+5&wFuYP@Ud{RZI5-z69(Cl0-#jn?5wjB4is4u$VG+AbR=93?t za>MBn{V+(RNl{E^zkWsdV;C3C5Yi1_dM#Sh~8Z+s@I^q2?1y3n^7FTo;Kvv=^qdm(b%)IQ?EsKZy5hm-y3z;yGb z*{m|TSBR(!9SC6mG`=lLP#fwj{5z`?-9s>nT<_QJpNdE9jf`Z>I~ zxmMd6{4}GrdN!?LST+i>EW_H@40ET(z-?C4+B>g~0|WfN{diAW59Sg1tZbV?sViC8 znR^i;Rb&i7dn|G<%aAWl&xdDIefOz&L6y{(l%=7+3?qek{ zoHcd3@)Z)P;<*PXU{ztZbNGRNl)U883HpH4h*-+zP;@4>o8KcG5?wAF$=G+x3I1wec5}zjnx57EUGrQBIv^GeeC?6z zd$NOdGJY7Gef?KQe2MWQ7xawrLcB#D^nD<* z!|>$eerG$*_=cdzaZ6Wcfh|>I7(LwiXpi6f#f$wPaQ)AmrghwTw+G&@LPFpa-}h-G zWfp>P_}wjJ=kuz>(aWE_;k&Fe{JA=eOR6We8;W5xOtkL(^|?1QNE901=_UMrD5Fym z;o`y?tJ_7OxEfSKCzvZ)`OJL7wrcpdFl%08!Mwq^Rns&!zSC-5#j9qchUFs86M0q8 zE?USfT4Q?wMsuAji4-#q)?(B84yT4~4&!yb@9{6>cS67gQ`J+@Dw zla5iq1NCz$WOB{2r~V{*vhJ)TiO_=EHSZePEWBDX6L);{AdhXDiJa$IUtHUh_&RrXeD9f6 z-;00lMpR{9yJeV{z;o+tn$Xem$jXkE}V1fk{tJ^LM=IvL=kgFeWp zNY_f5gsLgRzykT5|9;+sZefDIiZ*~iZ`(WIe_l?m7Hkfd7Ph8rwhpG&mOOl{&W_g6 zYASMQ$V6|Kp?#2-)&PN^zX2OH;#*FN_Ul&*;1|4^qMS4c^7bj{DSN9WAUVtHx`9CG z!*3f@D$`qe;(tp)dFOxwd`xn+Gw;p>?mY3BQ!H1wS?F=g!Gg#?(o=SdQ3)^WJ z&EVv)WAY~`1vPNg>H}etzQz<3lHz^mRVbN*BE)kJhK8$lz*MtU3~6j05174raar=} zQgm(N`Dx-SbVX58hWBEHz`wyL?zxVve6V0?0q zTK{!9jPCudvBl^V(yV|{E{t0Qe!BF80O4n&r0BydoN?5d3gdC_E1ZgLfnDX=awfA+ z`plWs@-KzV7~!}g4+BUkQf6U81elZTafGsES1lD9Y34*)PjuTvl7w{~9yC?&N~OIeShr!Kx}xNt}L87DGRD7KBy7az-7lLsk8iH^Iz}(=#EtGjw7cH2rvXOs)9x6 zNVF*wzk)}Y1P(M6ZZy()l9I&NP)^zjnM)M)h~#dlTXgD?M@_^TUoGVE`7(4BNEuFW z`#b$n#T6FsSKGPdaT=z%6mPJZmA@0($7G~L&|#GeVro9F`=B|)qMOP8LD#Pi=&tjBDoQ2OH&)m*!Ni-1UIA)m#fIi zhy;QL75~hqz>hXfJC>vYAwErs!-A-9nAoYzl!9KW%e8!~op!HZ(EB|0>w>zD@zaeT zzr6M&lpWDuPR^n|zmBCFUX+BzJM_MU^gWdDyf}4#b4g@`kI}|IH2q%bW>kmAmUoo< zVuOQLWiJ#9$EzfMEK^EiD0g}X2Yy~7=m`bbhJigFmTuW%W2SX;k>>KCJ;a7X}*Y^4&I> zpvko$$$gTnA8CV5j1rPp{p8|J7!jV5q>Ekk2fb-RxXF&n#0rs5X*{w*883zKtmUrU zPrvZG>3C*AYV&?**sPPn_4QxSKY7^}T<<~3<*iK0;lgP~xK!(X&hs_jtk`G!l( z^j$Fz8qfAG2u=Aw&iBja(%SJ~i%;H#c!E-p)hnW>-wd-12}VW+QXZmcT%X3Isp4dq zJZiXeYDv-H8bK6szVs!rl3A73!d!}zS*T*J^en&kVswdKmsU+$_sR@b4#otN@}HnT z!x_mPqS3Cvs-|e^akxZS2)C@HtIRAfv_f%FCo)rxPkl?G8rNvFNSo5&l#tf@%+aI$ zrMHtgVYqwXacZ*CRClo>)8)HHdo;L!*OoIzE_K^``EzkV+PE6;lLfxU-FfPfu&DEg zQrjp>F>D!Bfy_z#&qibuy$XSMs6?ufwed|&{c1(rzv2>IDH~IRmFNmSD6=cl!OD28 zsduq+A(@S991rAhj2uA)6Va^w39bw&?jroyQ_Wpny@`lf!5S{Fj)IkZpmB(<+n>~R zyF1rPW`qfg$$^tdQQ{|_Ao9tr!;Unf)l}|Gdg5^#MKcIf)!yC#(WO!4Ww#OvhCY>Y zW76VRh>%NZTRo8L^c@1B++M-ZcXr@LE+4~*vw-|mV(fBj?i9a4p030Ue- zd42OA58RiWNEtK2nI@T|mc|{P6S_`Gn?2l`4Q@G2=D0(f5Uz*u%jO#g`gy__flC4< z!5O%WlDV%AWO(}ezjzG5xW=|A2E0Q$pG!ZkCen)BB^({_(;|{8_@>m_B^;@_Gxjp~ zd>vt!hzZxGUB$plt~eY0RxQXRe?Y$@KM^IsnEAdgMT1j@nOe@byYTX83Lf2vrs`u0 zbW*b+@3&)0(?=rJbrsHJ%fn_tz*$)?|7KGu_}8a4?Q)`cXU;RLX;P9PHLzgN;L)`T|csIJ6IJ#!{D<>Mrp zdC1Ii)VAQ-9Dd9ykCrc&9+0%0`6|80ZeXbuTu{hon2A~J4)s3V)?IHg9@n7?75jtK zU*F$_UA8F-u6{ub>l#%-8iR}GITkns^fD#%MD(eT2nx|^ka@qq<`^~OkGw=~o7{Ib zaaU$oTnZ)F7}t{;6$^dJAevxAxL}YeB^x%i8i=x<-Iq5wzvk&lWVXBDx!WP1(3+%P zXAMp^If5ftepA?lmN!TNrLPDp7-UqfTe3| zrE{yk+6LLls*MKPM}|JD<}z((%9lD`i;fBr%`SJQd08iiHj4~d6B}aC3eor?%#qa? zMW}_t#^M2`^13uN4+cj_IAbF$?1CWi`{pks!D>siuFWjrq>e`)0{+B_!598&{r6G| zl^K*oQbRJ1@Aym}r-7TQkeJfl(?{-tks#7+^}w=h?N1OUV;%7P!#v@x7axjVCg};G zotvV~$y}&NiJ}0Yx6vqXE)jhfy8y=AMAN{1Y0R?X`pMe()=*{DD?(wS$S(A|vpF`O zAYXq8l)yH(Jt%0s`R2v?`6T@{z!t0DQAl|_597y2tsAA5-~(H!6)j9^L^!DTKYsEe zg(^93? zD*}qRM7|P&F6~+%4L2b94O1(IT85+|PYPO6p65xKld6Q8ahCrn?@t^wHgi?}bTzf` z%x$v+=%Ov_hxs)LIVOQud$`spSEEiu()Q?E&CHrG6Re}UZRdAeSwye zLJ|8SBi@HpWKVRobpo@qRoa|z^$#o%!@btHvX&q!0YH!sdFkVg;9p;TUHv1g>AWP}SE@W4t2FUuxfjkH4hrkhp)*g-H zv#r(}nyvz7Yzk*6Op_9asu3GFb3QfCFMP8(-G|i)Oc6$blQ*}7{e?}UuLqgQifm4n z!4f$o+KS&`KWV_$NGq@QvK()nTB~uMHB5d6;ZCO5ZL(%pF+&1g{P6KUpfDmbBI0rf zC1YYz6j}Ibi!26wyvY7l*SIS9!uxO5rOMI_Kj^D2KUJT7Km$z^e-+oZs$x_8P*SM{ z8v>(b+m!wojWXz93ik%vO|Jig6S!j?`dfbe)ovWNaAYyJaOS}c~crtJTsME%#{3=R2);&rE<0C?ql^7!;Fd|mBii= zgTrU1wrE>Y5%n~KnHh#S)#b&iwHBt;Xw-u~**uI~XGh6~@_Al&9brf4V}?I?{0&FPY>wgXFUoRNzQ_h{g{Xqgd?zXsasgrPVX zWWb7Nz90?y>&7N~Wlw25<~VRUPqB^wJIo01Q=xD*UFo3u(tk;(<6kt}i|9?U+bo&o zRzRozfqYDHrG~s`7YnPU-oM2t5EQy=jAMq<@Oe}A1Kn(>wHW4M`+-H>-@I`3>64$>Ou=}IzOrpH>$ z_wmLs&5WADTB342A4kq(*Asiq)+pFpUkOW-EAXDE%Meptx|lKh$2Gz4s1IwL);|_S zIHhzu6tPmn>18x9@#GPcLMi{$1eiF`YQ4m5QvB6QiX%#U$#-!e0Hsp$w5Px19j!bD{ecq+`h8v71YTbh>lo?8NJ(-hkV#}l zbH9!z&!RbHma1S<!KUYpLAOqK%9&!f|uRr7l-^f977BbWJ8bJ1P+MN*i=!vt6FZlX%&BWKR z4hl+q3&Yy@*#rK3R_EpQx$PfP@P*B+3*DB*j^Cut*~8xY?E=o!%KeWLrzfJ$+Fo!t zq3_&kk=K;iiyUoiu2W9 zw!IO^O>YnX_!I;B>htg-F>Oo}z(Vkv8^=2_xXNv+7Lv6s1qV!iga>2F}!1 z(28dzjg|fORtoKIcuJtkDT*gAJCj4fe$X+>3$x{wfJGVM|LTyB! z@G_;|wIrG*cmD#!G4pa^&CtjhfAACEFxq0C7(Dcb(sk`ywDNmj>?vpWuUfFD3a`ii2JMuI$xd_U@mWRZz^+=KmwqIwgS_E=h zYrHeK-#6`l;u&DwewSFGK;JTMG&_MWPIiYA^2N~lH0?7*ja{AJ?%hS&U?li0JphX2D$hx0_oy?{fF4!>ae~r>-XBcw1u7ax0cf1 z<=+sS=*?d8-E%9*;cjWvIRv^LQI{G~5{q6B@Au?FD`68yfKxVXumi;Vpkr)#Js(v% zB1us^`aL0*G;9pDf@egwgwWaLGgr`bN(2qqHS8nTJ84L;^fhO?k+>}iJa1vp?vjoI zSHYOB-D+rNCoN_7zpN)#-zTxTH%XjT7lX{rpRMJB9O&-MW|cI1<~+0SOTSi+9%SZS zTYS6IV7bDvVkkOwjvC%IBp1l-z4=0N7TKZuHNq6;==kLq>K4%z2|kBMHzfP za}TiGtX=VjSSL6_23#h${GyDY%=9RB=Zw2s9=fi2-8LZH|3a-H*ByL)XM?lGKB|)^ zP|%w}yN?Gj1VOK}Zlc~JQf;h4_I&JNd}6LTY{8JnleAGoD_1BJMCh4gU;kGq?>~2c z+X9~F{a)^~q~Nd$(oo93w_$ro+<{G?UtM?0X7rIkPLY_HjBce}IMVz^SU%M!TGBRg z9~)@wJZCAOmcE%pvz{d*fwVBSq5xVe3Y7kt@ntGo9dvM5IX!(SMFF+tpAm>|z)kMs zJSH9rHO&W!L~2UQKCC25YI)pG>>N|Nj7T?peSEyg=-n@OiyUp2S%nT#zgBZn##Y%q z=qA&Q@T`;BK3V*-Ze=u}vZm|tsorrYsF5Di{^@D7#<4jeZAadP&wG*asEq}#9`1PH zB3s1Rkrpqq9R-$2gr6Gb$xfno3eB7b3PqV{n8n0W$$OT6T8!0F*TgY)eE2BOC(C~VR_yV zc{U2tl{Oe}(E6j*3wY_RTE{|U`IvCsEjhF7Ki>4@NAw55jKHV34k=F}_g}~^u3I6nrKhySf`N#3J zpy|B6)z*EtZMY!>e?EAY7T~qnR`=w(%W7hhK-Js*2f;XIL>xA7Xnj-8_;LN6s68#B z_n(XXAOrt({D+10Jnvg&r&Xy~Y3mH@?tL8Vo$Da`KOJ3b%=HbTnMt1-z>pB9Yya&L zvA_ejKFSPM6}kO)CE}#%JDj9KJhZH;i6y@?W>dL+h9w@^X`C7d&Q^n$$$GAt#0It; zg&y^IlJM;MkVO1u`$TSgQHY#+Ws$K%VUsbXu_eXtKNEOZnrA#(-7I>uPA)Pf)G>Md zskn1l`}l~qs*_2rOa`S7@v;Bs#@jtZCGkfaGx59ra4`q)V*7IwT}n1S?b4)uFGq&2vIFZtfR6$3aJ0%aA0FU83oJf%nr66I&$7_L{TdS zbtyAT%CO5)PF0tdymb7FYT=wN=A)7qpH7p&!d8dnrK|PES^pZPHD*%gWUz)+74bEy z1amF4jwmEo)tvrRF~)2%jm3w25LbzPVOU^_jHU}-)%o~@ehJ)uxg*V;rtA>5_}P34 zF)IodDRfRudlU&42|LjEc(;uU!`r(oK&ZC+)5uofMJnS_JQJH^-@O8e&R*AAWUSKw zX*yEU!^+vtWQL!k=PJ8fOi84U@NeGp@z^`jWnac%d}D?``z_CxL(i8*&&RvZ6OTG= zO&@SPU2+*p<5dtjpV2_7H~#(urcXKkE227^H`Nr_30}Fb_h@aK&0B**vpr5YJ?y& zW2~oKU+HD|OOrnM=G)T18R1vWnkv!z@7d%x_rX&u2~(o3hL{o*Ywdqp*Aql6PaTVU zD<8L|n{9_;*0($-zH@yk#q1iNhNXj!_PF~!l`nQ3H}PD5F`mjaEBd${Q6zRZmYU#* zCvCA;Jec*>hJ&$?vjmigDT#^HZi_fV5i`3mVW;Ryfe3}o7&jK=Hj(Yv?W7rUxc{`y zDtzM?R5YCs0Mr-e(LW3QJHMS@BM-`hbqIW}irjKvpXSRAlzuvrGq}DQgA)l{CX_RB zA5G+g*fwEaPrTr>9JN23##5!|xa=iy#dklvP7fk~{Dyh|^iR(4nf1o&N(?*!4@m$O zLfbw`{HYTIcOC%?){PzhN?iR~py(h+wics_c{>09@br}darI2wi$kHf7N2 z^9_!7;jWcA={aqJm6mP0?UMySe;3Uqdnbx5E`l8a_kysMTnA8Q2s6$7Bn^l2J&26F zM43zlT@)Mndk{Jtd4wqTcYrb-G5`)n1s&2*`BMVA{--=`Y&9CQCv#RHTajX(O(ODa zahQ!73-E(Nb`0&T&6QgYUv{zLuFWh9uE8{H+Q*QhPT`Jv%pIx?(Q>gMk{4{9XDy znHpV(Rx$?3WmxX`5$dj~@` zU#{jn8I~h|vpB6bkvweNleXrZ^WAs+Xm)=QBV8p0Fg@dH-U@gjlC+uhcuV1agBL%k9ooq#1=D!X10uCv4`I3`h58a2MCCLS>(JBD6!FbhKu}qd86>W z=}ar+KZ|e&cj0^a%?KtyAy%LFB4ks@hd8c@>P> z&KQY{iSdp8*k4Ie!pgMV<=jrScVa8T3!pPf!SfeVT<4zuel@aLZ5-BpFU1KCI zzVe+Ry%JKjpfHt{gwV~?REg1`QNYm?=Bsq8zv&IqIh^nia%oX2MH98!lF1E;bl8c&UbT)iAFee&aJ3;Uy2K!GqPE#je!Nn8_`QargGzO>SKAyla8-x@VG_4!N2ATHEy{vgcys zUT@F_?20F_K0?~|tKXofoBYjcxpcD?C(7#0^?9%1`3E2H z`nVdrd2vK4FE{va%w@j5K@oY^~0^@4Y7!a$U_hh{~w)3mD=S^1ULw z2avXJ<-AAcy7%|nj;%C@fNUe&)0O9Fwa<0?;j!)K?~Q+6yfR-GJNOEcd4qd?=zEWp zHNJW86a9KiS%7hb3fMkn=t;X^Tuq&jY*|+>`q@Hhp-FUr!}8tSzx^?M4dp{nsSplf z!!e`9@Ulf(y6!T$3ht)X-l;f%D^yFH$+FKW0@Of7G=tJTV*g2HUh;TnRRYP9Mby0b z0bOo|kQl#gLC)}W4U`9T4@5tz4dyV(vb6)oa^L3(^`n`;3m@Gd2WP9^)!D1h+rfr#5zVx*>XE{q<35-vWzX z6`t&OJkl>tCt_$0(eD73Z)0br_<-9U$^xBTK=4u%^>MfRdDxYMAY zqgnT?BG_pv{Gf2W?C8X zzCuTqGDQMbS~Y0u=^?%c!0mGMYMNUCs#RXfP~c@4rW$&y%DyYtpPQdw3Gq6jyYGt# zzwO&or1-cu<-mrp(1du3h0;J~CJkBLA6M@M{WG4WuX5E%%YfC}2yH zOn_?<8<^L1Hc3gQP5uE`xHq-#)Pf15RWo95k#6hsC{8t8ufnm24gBtucVn#=t08y- z3D!c4bB=nJ`X|K`An~)Du(r)l9u~OrvBA;?`wenejG`wex?1ucrM}xoQcgobHHI^Z= zrsvRhra^0%4BcG~8dp6p3@rKT>o$0j^SBx47n61q_2Kb^0Glo8eF>BNlO}%i2qqUd zCzP=z(m3C~Dxd4C(#D?~0t5mKA}@RT?1qQIT?bEw&SxQ-?K;BqFTO+V>9Lzm;GI>c zne>GFwYLVf3*A58KX2sTMe!EF)QpK(k;J-^cvUoR3&V3&wcUbt6+7(VulL&~+n`b# zNt!zH ztciVfzV<~8$yM{C3^T>E+;~e;;_kRz*v$U2;c)*a;IrqWqfo<-2$O5a*Igq$Qturx z-;3&$P^bR=AUSKrxbgT-fSfG6T(+1RA>fxt_NC4GO$$5D_Yu3-BQNycig&F{PF}dz zLXer$zFWfpq_WyhFGTM=E1WSW{pA@HjG*pQpKj3FND*qQG+NK7=`FBJ`!RCRGwZcKk;K zl(~JybSa(%ZtPyOC4pwK7%h+)kQp#Fxk?(TZQ;^;@Iu)*ka=%>y)#*XaM3Qqlac(ZB`;MXZQV1?vh1dxx?p!saeOC_LK2M#c6ivRD3fzwPUAV99V0^>pO?*54hq%k;zZQsqK`6u|PS?7)9>=0ii%8D(^UESvp|{&u{mY5L z;cP29h^(SwsN*Fl1k-`dl#ZWo;+tT)Wk{dyp5I1@GU);riM*#nV+4;@Njt>`?u#ZjFE{eD zKpnTQR7Q^pKDRlO{s^w0pT|5&S=D4ECOxF3W`?CIUE{;5y;XQ`<$utE!AA>?pOcD# zdkHa3NVzDbdOG{^_G0XOf2z28&cUCvb_{dfG{_~5crRRcmAa(wG^EQ4ZO-f1N~sfd zm`AlQ)O0Q_$>m{7(m`XIm1(^OXHG#K9q$aU#48;4+|-dVr|^D1os7t=&S=}LRve^6 zo5V20moF8XZs7x^EU9?YeI_hN4c;Sv_nCtQL+^o%*b@zd92oavK!xTMGCw~HJ-Lnf zPCl&Rb=FjNy^VWjUuF>a-l6s1o5qtEP)12gdpS=6Sb(Diix+~f8+!YnHkUbh8E>(p z_2e_z9vh!IPwzoZ$N{J88@4xOfS;cVd~QOm;IlmBTtUYjw~(&`B8rv@>n77FZZuTB zDSh3jIUeF>>O2p9d+CNJY%KpYd+)uAh4%TOa`P3g=sGm~yx)NP#b@jspt$Bfo2}>Z zqv@pRLZJC%+mYw=i1A@)|8RuH-}SKz_k106&#DGVJK9jqw_ZV3qCFMqg?ujVY(Orq zuTA8;bE<`uOZg--n9?@+{Cg6wMNH*}jEp|*W#pBmpPGtujNT6T5kOKfFlFYmbD!g9Dq*Dw6z8*$ zVW2DE%>c{%L~7E_`?py#lPJOl?gLaKg;~_;os0bwTP_SU{aFDwkWIjEKK`#c*Ps2S z-yJm8o|KJ!u(Hm(ZJssIDz7$7T1r`H?Pj6IUD7bu-lpe_|jKNJ{-6E78?w1o&t zu^KQ`{CfAtX{|{}l_K4bLg^}9CG9Kkg25Awl;z>F^x>=_^oHUZ!~tr_zXbD$xtEk2 zYFx!tS`of*QDG^b;CZJUeyD(1Hf*%hkrN*85`4!YQAd5@UE1eel7vm@F@BS7?ut)K zCo!(@CC%GT+Fb?|Ezd}Of66g+=W1gcY4~m5=G;;vV_k8=Fgo0B^*o4~5C#So)6z6E zTwC<8pdnhg9uI$`ak(H#J@L@!^>t@Y>h*5g6})1WdPKsVsq!s3)(@=Kn3&OkHyj!D zvPe*?o*(C`x#RuWR`PMmQ*h~iuU?NG2u0f)b8rpO(b7=wHV5e6%ZUU}!(7o{bDp?` z8P9LE<1jGZ!HzJ5y^|-ic%u1?vAg-4JWs-Ny)2MS*&RmV7wjYOvsSypw@_ zFdC}b&Cj6P?9l#F7ROB>N;rb?{(~Lat7Su!i8-DYr&=8IyxFtF)q&7qJnTN<5g&dw zmVh*%-7ag6%`i~mzI)n}=a6-#YanUv^n>l3{4TH@-?IjfjGv~KXN?*fe}(HKZ_g=@ z-mm@xdm~0p%g;EPb){Ik6ZH+i%1IXY*?b_mbe)BcX=(La#Q2U=3c8PbeTS)PHGjQ_ zd$;~tsbYY!r6u{{bf<#dk2Qt{D5Sd>fbR};&tY8=Qd**Fz(X&Gk{`FOz*;>B&1*ei z`exUtN9!1fQp;>>HoX5Lt|#X%{;C&4bB-{{CpVd2Y!2F`cIJuoPsu%@%W4!yp4;#> zAfrQUey-_2=DuAf2ET4wR6y&{d>PCnEH-NGwJ^j##%i8iI8{K>8|gA?EJ4vr9)y zFc9168tZ#xKj3nrO;8mtX4DS;KWo9}fzu&HFf?+vGifaONR8bdJyOUyRbD zG~j3g)~?7)=&-r@KRQq@Qj*IHHX!$&7DmFlG8dBpdgpWoVn(}=nHt&xca3+eYzEkC z%Ez_eA!tl2m&M)bYv@VNMw$LzQ5m!<8(#KDIm!?zwM@q1icDX=hku}UwxbL0uu2W^ zGlj=0pFgm-UmHEFM7_p{LPQTjPJmSzscGaDVaO@GQkW}FV+i`a6YfrHzQjHKkk(=A zxb`ATqBm&KXr8D-s884`sA{Fq5R%r&J(iFXVAcd&Q4BHh{8W3_=kI?SAo9jG9p`<7 zGwa89K*TI7>oamvAb7UcLPe~4!EOaP9V%Cvnjn#o3?i0r5uOI^N$d393NEuHID;fZ zve}Qe+-fU&A3A}VG7;ffUhJdVil1E}>5Vu|!Z_RZ?y;L8dVj9zW{ zTnKH=&9VFppf8|PjqrE%{+v4F1gCSsNwCH*4c#Ko*%c6%vtEY|Ev6-Xs!lAm3?k&5 zubxH~ed2j=I9z-yjUF1oxXXKr6im^j{NS{-0wKTULg;Q`dP?Aenl_HklZVJ1Zi%eZKgX~PD37rJR#3^5)9R*5l~5|WJd zk=8*id*#|Zj=!PyPRJf#u&t<+QFFL$Eb|NZq-94S=WG;g_;IzWDdif=Co(Cgo=hUX zn}t(`=czJ9=d$&cqEPu}WwR(he_pPTy5?PF<4#~-tBS1McaB^1!=DVP-|ekTFlHO% z39G(V9I_9xKnmVn59Kx<-TYGgTz=J%o&NrFV)Dt4or*7l{7uSWF&B2j7_Ixk>?G68 zPlux?^W0M1gQWG-76x4@Cd%`YE|zuj7S@E8gWnaBRV}vqWnIKpE$tc?t~DkZi9_km zQa%F7wcM(fX)VbYb8l+u$<_|kIEnWal}r(HPmszrlqyiUtV;5Gg85E~RO@!_`&YZj zedbkfbPhp}!k&#t8vGN>BqFU!)(2(AS)XvksI4-UEd{bafcIl?cCsp!VTUEtKeyh3 z$PPu)>ly<%{KV$@ppjHhP=!@>1Ww6@;qFFZ3d()Uu9b8IIhm=U%MG)}2Wj$8pi^RZ zi)h|(ZtA64shd?=q7eZ5Y5Hx#o2~q)3urS%<=<+;r`%4t)O4FH#cg?juD^Di>}{{B z_vqG{@4oa=!P8U+4^UJUtR}hI!W945CC!rrTe4RfYktEiloXrPV3)#R*DG6iyoYD? zZ!rtIJzpLr9`gT%!%pmolNHUQ1eu>K*6rHHEuOEd0hW7}d=zceS@E1dvK1`8ZJ&-e z*(f2kIuGxh){S^Mmi;^v=#8Rf;q8h4IdJ-5w{^;P^Z+?=l4R^4Hz#D(N8kBa8uQ+a zqRuZMX9mRDjC*9OVxMMXM(uiDQl{<$&nK~p0$DV2jV%l-Ys#dL!gZe)p|eoboq*jM zWFv8dKGH(@Nrj>JkJ|>;&E(F5I0BG#=QV?w5K-1Q>B^gzyNh6L!BRL+x)^snnNTUZ zv9R?xLR!{Epx;XKr=mlIR z-vkpZ*~PZMyAupQ;#i%Svqrrv`ZC?u zk~xp+OdK)=`yLmTr|8ND&XjLQaA&U23tFud>hO|NpC9Z&Lzt3@o^>Wm91S+~OcF{n z;mpKV+v2930^3A9+r`jp+@>^2mZjq;mN?Dn<(f7RZTdSSdp9-naS|Ri<|3b}-1gyi z>qrD7mgAecn#Ws8yoQrGirzga%z9jk@2w85cYi)f1JQ|hml~yKMUP*;D)Y1zwYO9( z2h&TYvLeNYk$PZwJ}Mc|=87xEPl2v`iwCj!xa}1oY1fnpXSoQEBz-M&25yCG=26Jl zk(u5r)hmtk*OYMz$Jx%Jv(^i_=+pLKGR*&K?wziuOV{%(Qq)n2QY0fwKo`xPhA+82 z=uL;Xk(G+-<0yPs%pfGnTN!3c{2kgshV=1XG*A$H*qkz%&~@gH{j~w2lN7+}%9;Qi z0#=i>aQaY<6xM&J%I(RmIvmU^xAy*cHtPeaX-#=yzp+)VCQW%dyURpJDa-uFX|6hY zuPoR2frS)JzdYxdL4*@LbNncU{r4JrinB#_SpAqZgwP8)1QoHC^}6L8M12*X7PO{_ zaRSM2z0Iga_0aE@hEIZVXz1r>utT$dD|i63#Y&jr?%t-;T}YWZ5y!UenXTntEqpb& zQA;vFXAiyaCJdorm6VxaJ`faSARSb%pchRjuR*Kf6fXJvIGLp#)v<~XGW7vXxMrCQ z`#(le9foQ6;=^@_Ub4T_qO#JHAPk3{AyzY#ZTx67S#?Ekr3;TKv*+T`TM6ph%$PH4+ndeBs9uPh{0(?w^5#*4#p*S;54vWLMG{q#QO z7MEGdE@eyxon0i((hfRI2CqMY8#?9Bk^=ALROBW z_6LV*&3+ZcZd)t8Mwys<@h8x`%&dfIHXW)AITQ8ghp%Td<>ca;u4NQcTL@@k$a=4y zmiX0#0VbgjEF&jnGwjGANSMdzf_`hy+Sui(=e%6#P77+2`*M=L?zan34D$gnDPy~l zbsWAcpAv631+UQX?^vgI3sDRl=B#FzV7Rlp926-4r$qCqS`f3n;ST>tOB(=q4lS48Zi?pbV_@rHwVIpjI%JeE4sk!lE zzm1tTc4)Vdu!{ASvZ8T5d{8y`d|)tf!E;HRQ7=fv50cf7jw({3`(r$ied6zKR(S*m z`>&v2Y{DoSHnRvu=BzCYY@ip8CqxDOS6cg4U$z;=J_3CB`G=?6a0dVU?}3SwsGY|L zP}36Gf5q5stG=ddU+ck+hj#U=@W0aismDH(md+A)1GSsQnHc?VVTl-~GNsQ8R;{cY>{|#IwP3$Hq0VT5~;{s4O zhss3@LUUdEUx(rS#6}W5328JEFzChs-wnBiB6Ls?{}tt$%&N$s^zKCSa2aV_OjQFG zzOrTH|DHjvrp@Kmmvk3GOWDfukDDO;V`mgCVxc^8%sXS~NOFS_A=c@|j({%>_k)J_ zAS{gOpz}_Q5e4EzdeUV7%y2#&4;G6f;C)v&BJyW$sb6sHnBG;&awh>^wD1HXzk+Cx z6J+Z}IXJ^T8RmYJ8PhNSHs@pv9c|<@#wRoO(k0G<4(8lx{MnRkt!bw;URiI$)7lp> zdU#?etdO0b9m(Uf`a(1z_>=t7pYlrJPorBfx0rvlhb_o3TD$=^kI3=Gmc*9ns~( zPof?6qL=O1e(*`d=PxFXHmuA+{LOS!hb|9`o@k6NcIly9TP}LR#=hXFHvv!Bnvtw0 z*>)N2jTB90d2qeStCw^j;r%;G)i8|Vqv5zu_TdsH?qEin;JW3m_VSD}7YzYbMb;NS zp~QQ*bw9{E87EhRsdt%Y3v{Rl&XoNj z9ZiPx!WwcP1%LraWRY7dPCMCE!p0zl5&qiUC9#Z7&f-MOKf0{tMKkk9+FM~ZU}|AO zQxd&)Pad;2Yp#Un1{5iE-c^jL-am3z zbajQmb*3W>5_ICOiy`Fm+*l@qdW7Y4<_sS)W6iVKFV&L^+44%2^KBiveqATRVdViE z-_jU6DA_1+BWHOYh3f3w6|%LLuV4X72g8XM?e~)h?i)Ua2b18Fhh^{Vrn?uvu>ylT zEC4Gy25T^7p;Ks|OgRJ~asmQC-=o91qluTfmc;Q)k_g#}3kcJFGD)b0cz+fb(`?sx z_*pWwO=|dr#~3`H>#wXMls8ZwwsB=kB@s5zPtJGy$j^$(2X5%Q5_tGZC$@x51b7 ztB2D`c&&KPD5vhRP!TC*9(@Qbza9t8ThborsT<{&*>^QYmN?G4%=hAP<(a(ZS(0h! zokh8xUZdjbG`4~i?NQ`aqG5O@GO}_Q(*SXlKURj@2quTl;i_b2ZX3lz~}|TCL_`CRL8=YQe}cIvV~UN1`vyo5mBv&>q&9s=eMvXv)U6NDiBNES=Fw5# zW^4oM32MvfEVv~RVjN<8g;3Oi)QO6Z6jiFrm-J+bT*r}Z#Xg^~VOUTUF*aU1SBNx+ z(YQZkL_#8U{-Hg<8BuOobh(QPCk<9iT4Fx1n!azTjxX~MPJHXYZ3DQ>!LH;eY^Ggn z(wl^P>I`BQ4$^Li+km$$4&yaZ9d0dbN=#g|=?O#d+XSP+#Mi19*ixN{oLXsRwnxM2 zy}9$;YH{Xc$B=dnqy5@7Ep~mQ$#SENStKr4CBASate+phymyRC$-O#pI}XMu`;3Kl z^s)EWfeDG6ycblJv9*8Mz&pw<^Ejt2l=3~CsW2y$ewlz9tF2CM$k%bUX1z0AH?Hw; ze6qvjG=~H*5xMWno>8=?`BqEs^~DjlXtUOW75TVKvXVCDOK@X>j=}fRvJ_N1DtXhm zTgcbS?qw4;x90Fz)JAnO9^>jc>~VgM{=x55WO~OfC+E)KVcI6s^z=|m<8H0IpbZ#Fk*C#KMUv7ouCQpxBc#V!e!*;Tut(77M=xD~<+zyhsC2$1>OJ zhH8^6O^$Uq)$BBbA7(t86&w>JshQ4STw0mVKH4c=8>?1C}gf+|W;da!1+;0K8+lEXUwP$r4mxHj&yW>7qWF1i2RbEE5S;?r9D?Wf3Ui9tWXS3yp_fG1jLe(d32e zQU%$ubvxsir;t5yYL;s+;eNYJ03s|>kEM_v96@##{67pJ@5N%JpG}KzjE=<`pVLQ@ zy!Jn=#iJZlKQCm@f^?+ju3Ym!m_xt{W}paIY#3c6yS@Cua@&Ff$IYTW+=UDkc)vvvHS2+3LMiG}T- z_5T4j6*!Df?#j(Iu1ggYd;g6A4Lt~p+2kGwHG(+$zqZ=nJUL4Dt?PFfls*3It%TzG z=X72xn%;{Nbd*zu*Z;-{8lOm~oLgXoR)z&YC-Nt8RABvM6(YXGQu6k=&n>}e5A9Re zzUb-y@Zxlk(1<)i_xs@4V%|%~f4vBITL%zSaN3M5Nj#?vx4-`nQ{i*Qt%OZvWN@OG zV9C@Y^T*vGe(Plr7Z&dJg0ZSHLoFfYV1001dIB-!>xVM4&>?DkCL=Q@A}=BM2rwEv z)*(}z*=D%}0Q}aG!*Jd1HO|^>yGVRi!&iLS^=D(u@F4ZWc@a@|I=3LTkbugip>*^z z(eD&m-N6ZZx}P9V>11t0!>vsN)&ngI-1yuP5WUe&_Bghun{0VkR%*Uza5Ahd`kh}% zEH-k?(VjufzV!zh16fD@3EfU>7<&6d-C6Zq_NcKk8uG19jWOT3Suadcg<)nF9eMGV z+XkkS%ARL&?CF^I(6FU~i|6{zel~b%IGL_sD0(O}#5H#WZ~3B&rd6>8*|GbpF&1ou`zdpiR@o4B#9cXF4A*t748mt znXjz+q9vGp?6%BCdtag~TKs;Pesvdf)mzQ@07-Ba`N>$>*zOP4DauzpJeYAyCeBaG zW<W zRXME);mi9Hza0(~@$_tqUt3CEy+^WgJ+1c7612KZ0F7^NdR6H{H3o$*sf|R103EN` zigTkC&!HtrGpYjz2Mi`i%prI8jWr9) z^?x-?2J?$EGXUeeto@wElfb%^yW>)=+D1PT{chcw@qdi; z0MM_kmIW&d+E$W%Q?4toxlN*VfyhY?Xr5lfnUG(z$(;#KQpQ0{C8-?6*8@kR+}U|? zM&~bGLR(JWgtWo!sx*OkeNRDsTI3l?k zD)c*2GUm$ntKQSsQ&%037!w0MRl)0G6WP+Y_O_g-{nv5I%EvXBlq|;j0YJhOKY9ud3`Z&;b37dCK-(sn3YRbi6G03&;x$2sDNPqqv zKJJ61qu4mK0}L0tFV;E~7P?<~%DuI3rq1KqDZ%6iejbxZ`fs;(^^0#Q&efo+<`<^|v79C+{PN#_9MF=kq* zxTfyoo9JEWJTJ_iV5%azC*hY^T-_)r1_y4FISwqlo7oAE6wNBM=U4lRB+{)uH40h^ z>Oy9OgeotoLY?v&&*ZU1uAXn+gs3N}=QmJ@WtiS&*VHlI&(Sv#bOlk*QVq*jBf)vQ zXoxv+<>$Zs zR@ZDlhY$}m(2xh>;=sU|u2^W;Ie115ooH<}z2_&$nB8Z3VROfB^g;xhgy zOg#nLX1D1wVmj)t&99Y?wwZ2+R9SNF$&AY8n!Hln+?czS^?eM!!mrA}kur=Y)YV*} z1Gy=tu7_|G{YufM5@N8{w|75s)@y{e{XU-u$BUC`SbrgMLgKwO_*nps-H7v|dma4R zZoE_9tEV;Zickkl97ZCm`XN|xsr!}sgiVDa^)DHb}TocYV7GXfFEVp@Mk7fU3u zGR*N;6tS0BQv&)D5l#LobQcVM|N3g*Quce;77cOqX;g%T$nF>5(gNiUsBI{&D9M*dFVka6$ml^~9vnQs(!<9M=x;J!P<8Kz zVYpvjX}LTlIfw&8G~5E0j) zGlj}Wyjt?X@6y=#A8mbz6q>pmh1H9c`8uJrr_KTW?d~1C{1=KR|Bys{z`6y{(*z5k zy4s2_QcS`;tZy-RtM6BIUZojZ&Z~cd^*6}$&MEXep$}7U1*%m?Exq#nk|YWJqVr`> zFY5VWSj#_X^^WNuE8L+mq^&LF$vS1%Rz}l@c#ZCt1^c(R#{Ug=iQHH=t~0#uw7w(Z;;@n=4AXT6XqZEs}Csg#+a^vy@TEhZ3nC$yz z-2JRkTx&Rg=34w}uKG75KlHecr7@C84Bu>UB`TE#H3i8~st2cs)2{V_i8B5{NHk>d z@bAu5tI-Jfs^~$d_0;w=2+`lty+V0TE1Eh=>mh3vFXd{n`M)eLLH1d-Im&uZkJYB< zvszk;1(;e(_R**K)tRVR`LTmQ+x_YDt)W@jl|-FziY zL%}9@O|Z`%T}L!_QmGyzAG_V;8qnZr2hG*sj%VQ!qNL-t1KRkc|4?ic3gmxfc!Tom zA5nJ;OSP?)#qK&6#vRf4VLd^R%W3g5HD~cVW@;Vhz{!<@`BlYIV*S9%zw=K`AYS2thr#0Usjc=Kfv}_RAmqLabFby$UlFN|%HZw+=gdZN(rSGL zwc^hx}1E9GsUg(?IT&YMa-7;`!=4Ie_*xSU?B*2Jgd2SvTvUjBk zTmLCo#OkZ)8e&I0jyIk~grv#NBL7?(a#TJ%j&6pZc{zt{R;h2sn8RmUfdi}A;11-9G(IZk5|x)BIkk`|6HpM;_AiHUES$fJ&oi88{Jn!p9rk^ z|AnNHVJ#l1FT|a(=Ocs6uyI4WXvl70U&%`5;E@{shNhLZqC(dP-Qh8Cf-~wtYD=9V zKyfz7>Lnr!^UQv`UvpP_U1c`}e_09Wz8S}g08K=&cPJCR5^;@V&>=-W!VV~_Z%5!> ziT}ZJG;NEKa)eKkLcbj*8|M9aUX%J29}M3vVMS(gZ+sn0W#3c`3@dZ0i97h{2K*R8 zb{sDf=PJA|0;n~Fa&SMSI5k;X!3Xc|71WzRr7jx?TEilH|68jmkYS1%lpk4^Hij5r z>(+A7q{iq{dvg5WM!wnWg#dJht@Q&OWoGsI+cBvJz+Y>Fg@0_ViW!13 zPQ(R;Uhq0cYmMcpxA;5nPyd~G_6+J@jg#)K!n{xK(Q}hLCgUI>l}bcKTg$88#ueEh z-@^(3^(Cxei2e6k#ynf+4^w*0%CLc9@5F;jgyltzjyP9zh>0on*2%a`v{IvD+B4e3 zJenObT0#HU>gPGSxP*zP!_hlUb$exW$}l(;kzl{2kKd0O_e`jCAzl-95O$A}0u#Zt%M)v2Q z{R`stf4@SH3jn;M6s|yA<(JD!k|7Gx&i>A2a!`Zt^-(H2q54>(ChqS(!RgdgdB2In z4CR}Uy)Ys+EKbx1Ay(FmNGa-Z&TJEzvoP{7A9M6QBIU1X&ozGdiOo}kPWiU6vhXlv z{K0EOJPqH2tAPFJ;(~05E~q8kVLzMfkn+v?sxa~P#Z_Hr9v<=opUl$k+~$)4ZP$j1 zbN=mu#37j3Qw5y8kl2!Py$gy6dIt^HBhp8LRbpA~k+$@A9+oi3!`^)lI@=lf(T7{$ z;c?{f`O}ga99H*#@3z&a+j&+mI(ZX;eN>Mm+QdGp@v%;#xq6B5Z9HX*jwhZe>MK9&C_bsP&-#RAU zn`ntYe$-?UV%Rg&YUd{kDv^R00ry2CNy`-Ejya$zk^?>+s`Z}+#vpaT7Xm{rt(x9D9cQRcD=WjlN^6wi04nTHP%&U^)u|D+m%9@mPO*cq{oQudwD!N2+*+qH|W-*x8YsWknHT zvuf#!o%<4M$d`ndOiTQqZYsMjg-0(yKQ+vx4GPAbY(mL#u~h2|ST$U;e!!=}y>hOv zbNuu1e?s6HC)E#XVxsfYy*Oek`t2;YXl-pzbjA<`6+A2d*T4<(COx6>$TB6gRLYUM zQd^rE)$qR7ik;5?oz%2pvN*D~tSGbR8l5_9dHH^0r>zrWD3j{HL7wi1U~?vk_>M}s zTW}CyWQjxqCjOLJ;w3)GC5b&l@{YQ4!^0JK9CoQkgMM&Tw&5=?1(t57un=BgrX!gh zH=k_ZBCBt@9!Bq^WdRZt?K4KY*W)Q85*g}0X(i~+TTYhP!tX)c?s+ZrN74#*tz1rW zFjK3F^|;1;qbVWNBU@>b-pG%Ttj<^}+6C-vhAw4P03q)lc*vsl@$mk5S$K$Er- ziy`wsr2D@i9F}`PvGOFu$%An^?mWfDWKrKWh5i$}rD@3K-p>ecRqph%=?(rM?+V<6 z7VMG0geb~;v?TRvhPg+pAZ2BQaAek%#~aAvtEGMQ{}4ut{$>Fg1!~W6p*gB*y0ULA=_vx;Sd;j zDsU81wGS@T*{k;lD#@=C<|{K)gwWc;liqd4LN8~wuNj_|nS}8@11@qFbj+5{(L+@# zJ>8PH{fci-!^sjMLU0-R7i_d!ch(Pa5wYM2j%gKo;#D3-O%%tN#G#|y(aHb-xnyBU zJ`;^OuKVi^7~JgIX|#vnA|L0wQ(hgZ?~B_X&28uTc_hEc`ii2255oVa@Vf|*NYYON z`m*#B5@a%pAN3PJ1F~F20%OqGXRjbB9#Nm1uZ*?YYp|_h z*R{5!a+c(GD?|@j|K{y4{SSoj+ziv?g+#w?ZmbUS)D_pDn?EMyo1BLD&@bB4+< z)$e_?q~Gx=NMOaW!~vihP%F+FeG=s}q8fE!XB_H03)g+EicUsCefZtMrKTFShB|MX zXRBf)B$_x%cqc}aW8R8h)EOJ7XuN=*L2e;vLmVeG#AuX3L-E+xlSinY&FP& zGw58!OZ`Ve^)fivu6Tw3X?tD{Bb{*RMCLuU8`O`ivs25$+vIm4t@tcpoS&YK^8Orr z42ml)zF*0{w=O20Tk{%f)VoCdfMsmyC(c~;2ye1xZs8iLpO~!|xs@^0r$SYbKcPoL zac4EoDiz}l-w=az&7&a|?X-tb+iRXATwoALO`bi)*HN2zAS@>0x zgJ0;)vZ)S8WdsO&-xQ6jiTPT2_4LJA;S5ws9II1mB!EwYtg4cV z-7YF7t;D}Q4(2!kCnq+>5!9EnywPJ1WsDGQU;x7VOS9E5thVILx8!NWv`SqhcSqT% zGImz(AxZ~5?hR$JL`4$TvPIoHkSx?wPQmCgeXAW6pscY<>*dtdJqvKqIC#-P|Luzc zSTv1O6ohBOKiUn3q@gxdNd$+5!8VGQ|H4+purXWe@HM00e*=&7V~M&+$&D7k6O_C& zAwOHXUW`}O!^b~1?dJLR$LY+TqB^D7HyMb;U6viRk)&njn{B&_(`!9Q zua_`6-8_*`_ZowRpj&Q5czp#~yafV96V%A?oiBT|uS1lujc(rzK#zzqROB?~HUa0V zANy`0xmvVpOeW^>NzHY0%qDUZwfV6gMt{S;nayR= z6SAeodZ(}&#~+utk8l=85h4b4un;uL@YrV2+$3(K=9Gbr%l(&Q0v-ztqj~G~ZGZ#eW%3ZtyIZY_0|avpJ?8u1ij2S1Anhv+#nL63a?!DmZR^Qk)!81nFQ z*uuKt;N+8W4u)C*5;AU`K|HL29yTh@fOtWb%&x^zXk*5I+mo4Lq z?0ss+tzN<1sHc!|<)q0}7RrRdtGr!hH$9ft&ztnG57aWQypjZWOt7paKi`3bMDRNk zkAe%7o-Lgy7-q|yh*9W~UnaVMz`I)W6L;-g9gQ)QD;uxR-g zKgbRc=(kS^KD|Q^IkKv(#~?hoxs;>SnHvUWZXhht_(xp?HrC{4NnU8&6fpQbFy46Y zgcIQksWM_~bklFlp71p}+&B>+SIM#CCKM4yBsF_*iBIs&ZH;WI4bp`pxeTpHioZ%% zxk#rz^&XYxXP6X_&L|J2+~j@dUSqnl=}4symSH9NVdmjK@KuO(uSNUaNuSrX-bl*z=9systWz%YiuL$$o?<1IF3u!3cc(?ik)8sD0WPc@hdFR&y4=1tElNLNgy3VH%YItfT+#2%w*lE4G811g?-lGi5pO?Y7B$+&1Xjn75jq=ypMB6Rb|PuFg)4?k!^*F8aAAj zD)9D{!QMV@^iXGESfau+R$D8=-ilF1P2z^oU&^aJ*_6fJc5ij# z!yC@x8NFL|+BtNxYXSByk>FSBwnfLs#_Akd*l^2;X1xgmad{93Ce|X+ZMTea1!aV@ zw0g3`>(v_P+?6m3ejvqpCCya1ytheYE;HNHLbi&861cCkF8Ek_^J&cCDxRfP+N_;A zsA80xi~Baq=`_7y$=|QBtB9XWzBF&)k*e2bL9Ju@d(sjh14Jw)56RF?_);MoHmUh| zfo}=d*BqY+g<4f*#Y!@#QSk5uCtk|XB~K{hcF(dQ6A`!3MB_oZFz6c9>elVCeXfq2 zC$F5ZVt`qrSloi{#SO6@a!W^gh?w;KU$>&E7JP73@q8oQ?iERCZ7+7C=?HUVw9AL& zBS@jRq6p>`)|p7dAbU?1raDum{IXzoo{8A-X?s#&WeE9O80E80-IQhe$%)mqwcKU_ zQ^>Stg3joH`40WlWMD?Q&t*P9YoU(ky2HBcoxTVY8GCuv=kc5AqAA7P*-sGLs48#onW-$_zdY&bv$^p3QBRHpQ4=yv2cS;GeTR2sZcO zFSosNIvzdm%Gk?Ta3{^r=MbA;fU%&>_M`?083HqfwE20*R3Mpuww|j_+LT?X!ssU4 zknj_)3b4v%g@N_xGjcN%3w3w)SODG|rKZo~*Ffhjkv0`a5nDArf=`+|mP;vIu&F@L z*)_zfeu_3`(@it9lqehc2spjl%H*uyKXi7f!!-4TVfF4$+w%-ZyCnW*MigS@7QpFA zIZ6X33>yvTROPd^(-f|&rTZgVm}SjE_q)Li=rKTrJ3dei@!DY_eWtLeU?%~0t}={@ zaWY8{DK)C+=!zsZ#rRhQCfaKg?z#u~AMXI0^WKlxcKnrQP7^bG6JoKu!wpkgs^FA= zFHx?VQ}`@Hf?K(~Z3AS!6-{!x!Oqb51X-Gg{MKOvA;KZn)c&e7-mY`?s%N9MXHa8t z{QcE`lH|{!!!Lm>6og$o3;K~&CssnmUdQv2p;1e7caJZfz>~Nm?x^9N6=PG8$e6>;Q&v3?5TRHi-onc!7}T($xr}#Dtgbb_Lc~z-F4T0!JPXjEM-}z z@F^*F&rkx*#%zwVg#O0>trC&7L&Nj5$1=#DxBn*;FhfF-)#3A4+tv;Dr*MB#W}MhB zItOCm4-exFb1uvv(EC`DXHfq*urHrZg_S85N5rj33VXi=AKF=4Rm-z+2&8PGh1**# zaDIv@nZ-YbGyjos!rz;Z2~tE`wAP=2Cl+)%*!!4U-X~`hC0NgOuWR7b7 z=DFtRj}3&I()!Th+~&@37JD#<5fC86;07Cg@UWjG%oA!qLVJe>-+?SK2{eKw!8`md z&~$_}dUhGehIjCf5$d)%2m3wjSl_%E`+`>En$6>&BGe z6g{xIOtgXRN8hUod9ktqEvfnfWo1j(-E4w=9mXO_z>^hbuA>V}dFW0{OG><1tg)S6 zw6awBTFpS5M?*t|oWpA#4~I{Tb^>lTUT$BshB>Xt*Ir#N+&;UM zqhqy({yDafz??6mN7<1nzNK~8g~5b*2U11#(w&%%=;g%x^|!P1%=`WjNzn7Fk~l}CgkrP4o?y&b+r8LxEL<(1l?|4gDN|o zHh_1ZAMQll98v_xw7qSqT7p$12YI~OllO);B_Xu0K`lnI1al|WXER2{7%mZJ_H+T)YS%S1L24uUifYBM>Q@QDfMyDc6Go56j`U-+ z<@0Otj&?>y?)1TH9v1B#8>-C5($$&4tg;l2!J08>CTig*R>L>%L8_1&x=CQM9ll^%*!TVna!ELYg^{m%2y_hq@VetmuHx$6>;&lw%|W*TZ4r7QEdKJ zdvI^YfBK}#Q~HrzC#IImg`wwwKfnzFblGK1Uk`7Sek$@70#7+yXU|KUO}b}l_54{w z8$EMHnrjJHQO{4Yr1y8<0{MiZAX_)mnJxCRi_!w@0WRm*pG(&97cAaxI8GyhlYE|2 zP}Y~dyS;goGYE>7vd~G^?iF=GczlXsVBOCd6d}C_oF=Ha09|+BTtDx6rEA8F9}P1H zMPU}R9%$7hW|=!OM;XdsT9wvSQC&i&(Ql4KrF_Q`N>x)6X_xXYc%48;TAuHy= z?xvvh!r|IDW2KWb8HN}9z20}7<(<$1{s0YXvrhL(f(g%BT-uYRy|F|m_kN@R zz^gHL=|EhP2b^mxYLdNM-SjQjzipjU&OY?V4Ik(&ghiCBep0&x2#CwmPefiA5Y(06 zvuck|h9^SBHXEF29F%eHDE>s)PIWy^Kednk*;KojobsUSUwC8yu2U5)6u)2CdTsUO zE}btNC?}Uk1TJ{Mp*QC~1|Baq*wZ*TezdeOZ}*J(hP^a|`dxwRqd9``7|R!x)@Nl$ zu6TSlkWl%cVpXZqfwe*#-NhKETs&F0(#dgw$IMc_T4@c<&8NdhAA6{W>`aaFW0sK1 zGAC1pKP1rgtRjRF1zu>~4&#z4M|GqsU*^zh>M^W1A{--PAD=R1m9* z4yNjvrWhG5fJ$3*hg0r<2h!Tq5nX&`B~A`bp3?i~p|Wd%8DwfFZFd6C=$1T!C=zp5 zI)iFK^10qrE;9~39(hwJ*6CQ`=TY_L!5_5aZk$6)fBR9q?Tw|nj4td`$RuVamSxq- z%E(N9hCFDgz* zfG#jMw2y7KsHwIJUN3HJ$c<6jjgi_7)^PjmOsL;0u-M0B&|>f-kL^L1X8b5G3vMPF z3px>IFUZ8J9Zh77;AJ&3ILd9rUo(~=>R|%zr7xeK_DN52mn7()GIPte=x|Ip=%Yip z=fVsugO(PO^AUs?03?M?uX%APt)h<@jz>?QzP5Nr?R_~Zv9?Itx2OG)rIV;t9`~); z2_+f)`bk~6hA>vc9Dz^JOHl4f!3OXFXv}jm-_^d~8Ct0&93Mjv9{%yMXULlGWt`iq zct10q z$}(-@4-_zZzL9L|HOHl+@W}dwdH5tu26w#KOgmHUn+46?<+?8AqJ#*3ea{kM^G)Z( z$dJoX_uOnbsr?a^I6=ZqbFHQZ1G$_K#>XLH)=<~n^NRJyLp|x-J8Ud3&}}y7&d8wF z+=B?5swpl3690x*zxVc#W&xTeEL3y2Wce z{!kYW9?Q0MOJU>j&O)EYiwe027oorfX#p{A$m#y{AjQ)1_gQxBv36=!kH`N9DMqog zmnR}i&|h3cExSKOEZKdZMmdhEQ-Qg?81#7$=QNG{WT$(pH2nc6QuN0sQZxh~$#~!#`yC&6P9;)HqRNPP#M^u>*h? zAuXOZC&$YjxG0l#4`i2lEWPqp+_%(^avLKT%bldmvM;cYBCIMoc=nME`S;d|?XDHE zVEURplX9|c5BZIyTlvZ29fa-HOcQ8Uak{1+qKFTchYTYfojPzECW^D8Zj<)DE zUX+9ej9OpQnk-3S+QlH#^GX|x4Kr-)(|}l~Jp5MC#I~Pb@hcK8V5Ytl)yvPj6B||< z9b$o)VQO*xWmvJQ6&=;7=49q#O>1h$j=RjHU^5m1rYWu3bKD8O%%6RH#E14?wc2l& zk#^!w^x9Ii3NZiG$S^h_0g-Jupnu;mMHZ}Mm;PJYhlt(Ku_e4ToFuB zaRG_B5P3!?{ja&Hvkdj74i%74f+B6I$+1K9p6Q$!3&+4Gsn`HyO(HU8y@-pKUpd3R z2!SKFk+1Jizs~p>DSqHBgxhoLZOiGfaGor=tNa}_yz%k;fRb*7U?K*mJA384h0r2T&aDj+A)4^kt{>XKQUIIY2bwP%^!JnQ3Lm?EQxu(9&A6?;`U~rGd|05qb zQ}9FZe1{f7m*xW8ua-4*JVx>pwF&X{0=;kp4$!QakFVGMjGiAnYq?$<*t>qux_2k}lw}@!L^<{pc{h6Q z7v!B}J9M(+ z9?@cy*B1X3cF}z@Yr>#{BlLC0v%4E{!kwhWEU)y^<$?%Yk9ZY+9fdqdt-P{)R+CrkFkgZtu9FB;nNJ>FOBKJ$4|?s20(KZCI16#sG#ytS%E<4=)}6NrA^z z{%Zc0W2l&>^Jkk?P?ed7k_^8_AT(6EKC~` zZmRZ%434%iMB9K6BXndkQK*NkSkP)`wlN&mQ7iF3_j5@+_SK3j&A!}#R}qczK*)GD z-$vHyDzWF$di!ZRTq`OyH=}#Y?7vdw$rjJlFPMAojR-vIx~1bS4D|v5OfL~!LmY|T z&F}-CuS^@LM#(C_9lL%uCV-=3fu7b?QwH-NjRGG^ypO8jIC9l~+n&C12MJ1Y6aQFS z-u@g$qr-%8#Es}M=E;T!`pQ(-CbP0C^Sz8xB)GQM#g!D~kxdqX#~VMiH=mM4aKhAx zvG{tS-RAlZr1QhP;cTwAz6$aq>M&*u*1+hGtvFw0RdgSIDi#Y*h42YmQb{QYqS#bb zo+11j2h3nYIO6%5SiST2Lvj18eHLpa)}Z_NOtws1@mOb~C6JG#b*Bqjw@SYJH4u=} z(Fvvpn?F}ElvhmbQ*=Zw!Q4U=LvRF%I#)}T##pWo;k}qpkt{zJ`J69Aok=+*`DBkXU+!fO%WOu zf{mQI5f&~Tvn@7QQD(29GwlbKZTS2Xt!n7~T`rEhcPz5$3DT-iS8@^Qo7w7OPkl#5 zmT0}GTkZVYAbdK2s;+L~f3ugo9i;d7#s=uOG#lR+^06DPcwhLAuTs#u0XWurtjAO! zn`h;hL4*FtcY#jqIVh!Kbc)+%F zpar+5+sQtR0ub9vhSNh%tf4id{gTy3&G{#fUK^X!<@U3Z>)Qv`se2!&xEFe*`5zUy z57Sw=@VMXgi8Uy6sULSB z=kRJPCx3bGV+~VUkW)7u$%Mphnd)bnz0D}$yaH?`@v))FhQuRT$JRhK!m@)4OAdj15Sny9IR6Ak(aX%HmP!8ZZC$*WugE$j%HW zqxTaY)~}a{BRj9Ve(y^`vJrynFkmGtKj=93{2h=IkF=Wq zTV_(BK~yeE@`2!mEl24gW8Z?{Y5kn#p!UksMJzbj&!mR)%Jk7}8a~x|eFJsPpov*rgdw6qe?t%#hOa6+zV}xjD zj9!XZcThQhADl)ip0eguOlGga2bfWOKR9xjf!PuHQ_t(Go7SyVnRI;*<}qWdA8>V& z-wUJH-V@{Zm!mZuJ+JQ9=GWOL!P~g+tn~plIiJ)y>5jX%&!@Hf;%pFU8lOpHw8Ouh zSzY*AN%gvTfr1Lz9Iie*DMWb>q8$&7oDKQCwElX%S<}^f8NEDoC7OqJ7PjMRktbXw zp?Uh1ZAOcli2+`!T70~VNee)jUhM%&L&3=CyHb9f1NmmtX2d0l;pi-McJ*tOg;bi z_z`^ecV6KYnws94{Rcsdq>J9Yi}z-`NEH(7OO&MWh(PwQ8qWxo3fIe0{5F_F`UO}U zv8_@5&wS-y0Oydy3zuU4`(fqFN!$kGVvP-)3)n%Y7CGKoYZ#hTJ7UeMN4anDo``+swDnr2E))#+tjd;QKJ;*}SLNxhW5#UqiMU z+VQV_YuCY$AKiPzj0Kql*f|AAOfgB$)2KS9cy2p4OePD3o91Xu6B(0F`K%j)Q|6`Z zaU8KaPsf7IxeuW%2c0EkOzh+N4&WL20swYZqdw20n_8qCBgf2O?ogYkgRE;>JIUDL zM$=m;790ALAndbxCamzY_+De9#F_7fg(e~Bx4bnL5hP=>1K>@M(@Se|<#R?za*~qZ z3gTnx7dZpOTB$;SW;CgxB|V9LIkp4j$KGv(DO2&E?a#4wO9M;hWpTu}J(V4ZD@L!!iQ|DQs)M2@(A$YqNi! zm=jEEa}-nWpCZ;~zCfooTZ0GlLhL7H_&`LiAE-Y!7#Y@j5XNnKETpkqiGS>?lLkD4 zwv?%&qr_qeAHPeTZyU_1(=7*Oye%d+6eBt=p9<@B+gz#NGYXEBD9ESvN)&Zfs9am% z4wC9Zs3sM|>#0Wo;Idzg`F^-ok$L!z9;)XOXMX%nG0 z_-g|4?jenLn=k5_rZbd|if5ul(zNGwoLz^QivXZvRgUa7l12l>dXy9%qG_L0a9)L@KB1zAk-~U;u@cx(=o~ zidrn(*>A^xaF4<=~`?F_eEo!PM$wqer3=%WcbrjX5>4DyrI`?MHl~I?c5QxC1BTpm!0Ghz!^XGEVnUGKx*Ey zrxbjya21k?0J|lL>LouJFQLXLein|?9wZ_ibh`b7S8fJ5M}#@ta|Y|J@!?v)LHxw> z1#-eK(bV9(sH<^^qx)74t0xcPJ*|IX4kv;F8&bUf!7{hpucWWb)OLr*oXrs0h=t;a zrZSNi&$seX=4K)(j^?(Wsh=LwV%nGG8>8d#bI%qR6o1@2XMXh_Xl$mvz7vsA0jCzs za)fHfS!gHi2*`!TITp2Tfm zBfZ)Zsg~11!_PH1Taw99sBE$D-KkDeO1}kqd3Z1k@9&dA7g75@$fROEl-_C7HGAaF zsby~(vn&&W!C5&=XT5q=Pq4ka2a;0;h1@g*Zv?jG*eFLy&78TQkR)%cbo%6a)wz?l zd3{evu+)4K#0H;SxbE5Tz$#irqykjn>@jUrR~Lhiw9cYaeIj11iWPUKheRhDtlKZ= zFFbrK1kz=TtsN>rTs;F;%uJKt!U?HC@Q*ssG|9@|7u`l2&qB((%of?|7T$| zrPx_)#jdw%*TAw7H7jvY2CIvVJDP{Vzzjl>3}3S(Y!F;NBvnrw_8flUnY--=*6YEy{#ln0gvg?-ebi;ir z;AT;zE=g9lx{er1ZI@}gQ8wxOTJL5&0Gb2WknAYp$=UD+Mie#3U?^B9I`TF(l9YJ|fmS3PRX2GU7Pu!j!&o1$aFf#Wa~1qFqE1=?c{ixJT{#NS6=Lf#=B!F-Z$ zRk|rv7UPdGjq6BI1_F)fmlLXmHVV|YNs8$gKx9g5LvOznS04Y4u(Ilyya=UwD69C? zR@usDXj2ZIsW{=*p=-vTDX@;;m=~{rV<7IcDHe_;1h3x-bX9L=LLd};{0&SpfP z=4&`vRM=9^{A?c$m9$U`jfDwyFjIX@2$WDHm!7}^`6+p?`&3I&YJv(Zh~eV%7gZ~Z zoFq50WYr7~`2}SP+d<<@E%gtNsOcQ%(GbyaT`sh4P8=EjxJy#^HF0jRSQ$NPn4j%2jMn)Zap6AMl1xf?wG?P zhQXA=h*)a@L&Ue9nhjX7^uZ#cDgw z55|hr160C4ie)R!lXr@Gtw(7pc6+W*{1!zNQgUOk4|6-CyLiNszhL-dLO4LIvJ^nskF=)$9>t|2|Byl0d$-{LKamOF4|Hf z1esI)I{ch9KXJ`;LhF6(+O=F_^XTIMJ*^LSyJ&Q+%2WYrVycVDIZ(WRhR)}WA)~`@ z>vgOc_$^;*S%=_Lwu!*AXmRD{WsCXFqs z*^g;KpEie0`bc>IpA^Q2A`+jRM+%;4m;#S5PI<2THZIW@5E=uq()x z_HaRj0AOqG#h;>{IgO#t!Ks`mDmy||08rsS8ypL;ELaC>i zs!7h&mU#FrC*xm4>!s#jQY88OZT^O>sgz~(w`r>zKFwU6K-R=TM(QGPJUB18N?Bdn zA$-;-^w5O=Bi#)OY=>7+K)M*_F2tOT)zu^cx`X>~=1)O+H4!kJlB17<=G*{p%G%N7 zWiJK6BN!I$paFMKmIMi$$PGhcNEt!dJID==Y`Gahg$@eh$$S&u6Xz|sbWr5+-nEBVgw!sK*I<=jhK^0#2cEIfeLyWjsKzpvs3)zkh>au@^ z5$^F*OuZIjO8k%nG2ehgz~9f~c@(3M9_-2{JO*JKxk{>4d=X|VN0UXTr35A zgYUBh{8~t*>2AAt3pRJfX(HXlXL?7vTf>1VG4?JXvHd!Y2H6xCyUkgoTLrL`Fke4CT1xpp^*<0OH`fg`4;-hE zoTAXVsOPSOfV+&Q7d>QSM{G)OBDrTnPPN6?UFMd5l35m$T#zoaWLgKAlu`?(C=b~S zNCI0l>E_%vOnka(J<#{ggSc401TE1nwe6Jh6mIi4cm~{xM=?aoe5{I!Q=voHjK%oxs1|Fn?JzWYhCO|sZ?eSdBTS= z`||SO@QZy!B9zQ5oe)Q?veeJtJ<W360&BjyRtL{(JpI+9b_%j77*3;Brezx6?Y71N zl2N?v-2fghw;u9f*!Sq9qk;I-_fsBb0?84Htc*McXxgL<9t~m8W2b`c`^b|cG_sZ- zmGa!jsKMVpro^&U3`zLT-V&GA%h!2}4hX+k#Fft<`Xn4IgD-@w*a__0403=qrSOAmD7KWlIDcyk_1+0_>t$Fd;d=JEfZASdPz0pky3 zvVD|qy=pgz=7W{uo>JIwi7AEFkdA-C1-`D_==AJu8p!;xp}*w+lwVEqeW%;1lPhU* zQV74(v|;&3XOp-8Wb-0ivNEMB?ZGEFF&FxRypxf`HRw9gU#@$fqsTy!Z%)xN3a`eRS1u-6UOs$qYem|V*TF`xGL#%t#8Ou1H3w#@5 zSEi!~8z8v__*d&JK`<&Hok8P%Ot1*(fPTu)6+n6ckj%0V0Bu&u68OsrqVnRqA>HNaV-!XH#EN z%|&1;*82tNuAS?slHbY4sxF!Q4gi;gvn_BmsKTuzn+^`V@nf4C43&e!#wg%O9r7l> z`Oi+0Q1bxaqLn~_Fn_Rw)#7aiqC0+Ok}pBL@|_~R6d~bV4lPI9{_(9*wR%`3ns^K3ZxShd5LrwcPQNln-C{ zLhG&p-66XJctO|^7AOygnY?A4C&R@56Eo4*RH8-#u(wnNzO6$F*mSrvQ=VX$KtT?0 zsgC#3Dk)#I7|8!z^bR4D|CG&?kxP{-H}*N&try8~TI}1$9^-~a_>}vWn6nI{1E(!^ z{Ms+3-jbp_omRsdCS%03md7Y>Ip1q4pId<}l2yj(wVG?$zQCEXg~{;^OE;g zP9btyYa}7E&oYyGuQ}1_WvX=ya!*g!%vq0d6OEglWeeGy`NBmXYKCF~+n)gO1Z4Ks zpSbxu$iZ3uP&-gQ!8$6iK*|c%lriNN-G#F~e@JWB=jY7)jdbKFPc-BnVkMCjfnsf} z-PHU9auQQST!3Rl?xB}E?5SE=m>)D=iqK6fjkd)yyB&H-*_g3>m*l1#OA(I}(+*QG zkyjvk>3c>-0xhRx3j&=NIyYNp@CB}<)qo#84t^y2yIFk;*9hT(d1T^-rG; zmdsQ=X`7af)25(wC?T`k@^$HsU|VDKlM_miCGIayj5v=88wWB`x>U&hQxy5EKr z>^S+_j$XX{X%@;shINI`-$>J1|-T~ia?(6wc! z&6PQ^a_^Rguqp2vt66YC>juozst#Cxi6}S1+xtVb6yV=kXNesd`J*arPU(3J|6mc% zO!!*=EQ)a9-A}wYT7Vx`3IYgUeVO!RoBpOcQ;kGA30-rSUgo|+H1c?yBk#F-D7ToN zVHW=&d>^PO5(ldcZn)~g#KSiUwi;cvkXXuZ2^>zCZDgg-|-LxFgq_(Es2$2tu*n6I}-y1nhJio{Q9-f zc|qjlRX$%0a73fYOGaeu)KQmY9333t2hqz11K;tm!j1Bq+ z!>lzY$u5`lpR(YCO})4k+jaS{=|i9>`)}XR`p0c~Me&*?_mKX?P7U(K&r=Gd3Q>j``(cQLw{^|xe zE?viGG#f#tAw|2X<-F|}85D~sSuU}oeu-?-p_u*hNX_Z~rpXZRcc9j@%?C9g=a@4S zS5-@0IP{nmJQ}`bjQp8@xC}N9P`_?v*zaSrxGHqTPr*jjQ^~U!Jk~CWh2sz8@x)84%q`j;E*#Lj zZk4bk6vRJ-86_nYh2FJ=#YV{-KbIhr-Z{Juwq>c~0 z5cnq|Mv0cRVuzb1^UKC1sY>_>32Tct;2jW&%l6E7Gy@B*!I znX%!EF&avoq^s}=K%^s2l%0`>+?k270TGo(jFY1VTXT+)Pch?vzV;r=ujFHga zXUWuS!3uV*$fu=uCAKG zb~`66%=ENu${oT~m*k8wrhtFfkRmcI-X&naidwMnv`mZsZOpejY>M)IzHw4*!)X3-{ev$Ch9EU--N2o1{uq>~Gu_5hS`8eef(Hi`htxRF^$%o`0 ze}S9g)?!I6oKleOZN zmDSH}x*lf<5f)FrnZkkbcF|C?-YUTdx%(#bgSlqJieZO?$BnKfG{-d9Y^O z)pS>uN*1asK(QrV^HtOOiRH^fCVm5uMY)C><*yRIrFd$C>Fwk-7O<}Q=R2B)4MuEw zOVn%H!`X!`l0=RcR$4@clnGdI%hTo#&5C_QXo+Onm{{-*nT{lEqeu@YS|#riVd^=Q zjsJT|;dRJ220MTtXKVW2_{H<)Ke2apMB_z`1v4|N7ADwQYZwz;H;03qvT9Z$>HI-*aELVP$EA3txt@hu$ zB*er-+@yZn(`MKJzG!OP2;w`ydYN=5_72ZaYx`S@%;7 zAfr`A=#}jXx8V05 zK8P~51A*p)0FnCnJv)lh|K;3aSj1?AC-Nr@u~*pH+S<~Yn$q544nvy0uOE%A%}f>< zFSuj_HV#SodjRdO{J=JL&K_8Lv$%qCYD?lTq7t6Y@)C{s`z(U);=ioyW*VT5uJ?_+ z|7Gjt5&_zE^+N6R(M>{5>lIC)ttKnWOki>_kj5drw-sNgrNGAv#PVY#XLT+lyrmdY zk&5OIClgcEU9s&*0{&&6U(;Irf4-%xiNjpk0d!DD!WfMIA$Y{&z^P~d^E-@|Yd6UhO0^{{bMZSM z)0enxykJsq%{`qSj7qoE)nH3^6u3}>+SJ2p0&LUf9a<3yxAQv|UHseC(d`enAA}HR zZ>GKUyE4B0-hgbs>8a)#Tz#Yy-&&pUdsB@0(j(-ZH1*KSzzEBVz$`Mp&w_PUU7_pEbdF;CP74-C&I9WtG^BgGf$=)IO8=PpGz$$ z`kZpVws8@CXPSN!1aWT_1=rpO^;(++fiX2Ex)@6MB5d@J0xMCYXCr`FAq&-4C%ZFR z(G4l83#3i9*5Ii=}zC`NvLx8A_(x$GXo#`5;XYx-87+aKp>xK zDvjN~Nh1;p`|j5$@f-&T6}@k`KSy#R?PMW@@3aBW^R~^=kF%ycHAOeXzsQ3jYl(nwRyP0ii(vc& zG%$37%5^D+bT=32VM~lI7*eb9;TBh0E1p@Hmc1jXIqf)TRh9@-B2;1EeZ4Cf{hHE{;Tpni6 z@OwW5;BBf9oHEPaWaYQS;TRLR?_)>bK8tI3`i)}YlD>m5V=c)J)YkI-94GJ(MF^t# zZ1dFAL#_A!9k>ww@uQq*mGA`7sp9{RV9*(7!}B8$(n12lX%H2pu*k%5L$&@FJ1qM` zAdOlr_oqudkuX`9a&Q2`!uz*IB{vt(s;=un{@3;rNpE`?4yx2Z_r^bf1N4I$!f zE;#X_HAN3vkx0(jCIR&C>XU@O@}DWMaR4 za`_@m2c+2xu~+3UYLIIJm0$0sg8z4RhH&P6KreY`pv_0vcedgG*&dwjaE5v4E*E=K ziJaaABk*k}Q0P3CG1dZpszK$yTUtU~!)IDe5OC-~;q1LKF<68pMOT%wVFQ{6oDX>}apum@!6r za|^S8P7+am;3ZD&x^mnNIgIANTGDm`(%RgqgcAY%2s1B7+^O4M@`wyQjw!u~AY3$I zbiR6YxYkiin_7JSg2Lh9vKxS68wJ_YQzg6}3?L+O(`m3%W(ISo>w$0wn zLz%7bRAS-sJGfRJ%l6D<3X_MQ(0_Y@1m-&{055_SP(;&u=tp$s)l#b8;x;I8fmO44 z`+H2S{vu=(0EG)(c_?CFs{RAgmnO<-nl7xKkcfw+%*bi)06j4duJ~Vvj_Pi-!rTgr z^f&Xr@Z~AsCT_xk@bkqX2!xy?B_^y2@T^arel05XrQnQ;SWr)Pk&62)R+NHu#Qg9e z9V$RmYU^e4?d;no2ocu*F$n?eeHYQ3i|1zX$w>hKk#YQgG<^kB8_(Bv(Bj(SG&seI zLxJM%EwpGMP`tQ>qQTvYJH-kVE$;4K+=IKjCU5%te_wL;oY|e3WGC6HbMJFQm=P)5 z&lZRjZbSfH$Vn?Rl(N?$U9ecE$tOp!ScWCd&NTh z=Z0>?9)#TPp;bkp-PelyxzD_DmDDzcbm?8-%1l-pW(pyJl}2YJ1j>PO>%e!{5xZA8 zU;S6od5HgdeErT5J3rUxoOVA(silY@XS|?q3|wZB;CM};qWnH`Gakv{TUl)*2ZGLGIa^sO6t03YYu=~Ww=7p3ZO@=AP?%x|Oo~myL9~h6coqShkPcN}>pM2Kbzd*yuVK?fkSw z!HM&kIQjd38i1H1B9wWg3LOA&2qmjNu%?@zM%b#Ht=DC9@vsqsEW|_r9ukZ1F zZ|7S}LP%-nZgtM$h<^6N75v;2`uL-FJN5E%2Gsb}Dt>Jb$EDlow%`R$bleB<@>cZa zd%ckK(Aw-+doY^kHR5%{l11%*_tl2`$O?npB4c$S2QNi*=O&i_+>0q!{CpR3)qW3z zTkZC@FW;YYA_A&l8-=g~PT1`ADHN91KT}f~(N+H4gIVX?1>E-bG!!pv;@<)vH%ZQ^ z*^UWKB8=4~=ihB!jm3_g(e3eFW9x2sF%fal>UENV6APWURZd>1rz>6YfXQy2x#Xj4 z==w;yvtlRy{Vendupz!cT+!^PnYnZX=J|$IbRefmi1Bz#=%3z73rw}sWgSE!7b4yX zT=aLBml%7UMBY*LfP{as1^xcxso4=A6t&Pz3}MQM=V6gxb70a2mQIu_FL$!;{v7IR z>A+^q+VKZv0K2n*|L${~IAis(+8|@$+wtzwrWaF{$=e%~8OE_F{jW~{QzIwXk^;Vatdy!cC5&AVgU z@xTD@Kf4tVy#xwb3}MFO=u`8uksQIIj1NZZS7XtmUIg57qaxX1d-2)Nf7_oa+r6LW zU~0GhkcF(MDEE1p1dHCOUsL3UHah{j(CCgU3%`GV&OIS_9ofxD$9^XHzeF%ZZgfkH zR0Xbhc2KNxa74Y>^*-b&5&BdN@|KjT+kO`Gxr=%37k}mj!D~Tl=t78;NPzDJp_JD} zwfKXx_-!@lp&4|JsOp7n0l%;ioBEFZkAREbspKYfS?%1d8wwRVnVIXqJ#!;Apnh-6h;*UgG8W+ zW;3xp>G7M2OpVtKRk(pIBI?=PO4ZT{9_z;hknlht=8RbDEdG?bI#~$!c0J}-T%G-y zK6UM-#&lur(8B@DlwW8d zkJlCBE_(hb!kNm*u>J-O+Gs*r-8OA9JIX=o*5OVKyMf2U88UZ{oLMpBIK1;Dx@Dk}SA}zY?h_h(E z&Jcg+^lIajTkHl*B@cIE5ib}f)z7uPKs1bFoBTq$01Sxsg~u5woBj$S68A!816EJeVfRU750uoU4SfVyx4n(9u6a3gM3 zQ}GpAJDLyF5RWr*mTrF}mSInrfB5m<^>cIPoo8f>Nu5Zv&-H$^3BvZi2BpQ)TB@AK zEKn8zxWVhK=Xa*DM+hlwSM7Z3vtfHerD4l?;ybY&VOtvC^B%GEK+b_CBk5Af!2v}J z^lCY<3Sv(lL+JI%8XNdS1@B^>qx8cR#*xX1s&*ER5Hj(BsG9qTBKRZb27d9?}!+^@N?+Xivt{-dq0o?|BQAyB4k?tZB3 zXsnzJF!miYCcunXr%YL*Q8Ll-DWkeAUHKmfPu$x|yy$=#;*6pP^15Ufp>z%uM8QD$ z3-4mJ{(Kqg>Zb+-MB1It%9^~Q*N7Om+mG;Rxx*~!18&b244Z$O^UQx0ktGIc_Hm{$ z1n+H@{lqs$vi!`Ih$De_pwV zxA(7pIuJ~$*kN(5>WW#Ych8Gq+($fn6xO6+u_&9E(3H{G#Yk|!$(OE=Z z=s#uzKW1yc*KB|2vVI5y!g?SVQ{v9o*6kgUbO?+OfP^Ckt=Rnn@VPPjc_I7R6Xdvb zH`jJXpM5`KVPyP|&F};MA9FCMTt`PJBmh?V^w5+6JZ)^11BAu^P?9IhLS?sMNd2eF z&Y*Jtk4+W%O$Fia4AH&2VOets7ooX|Bu|+lZpZTNI(e>Ztpash$G)m+D zzSb);d?oz*KV=_)md9FUt%^X+LW}&bi>Ro}77;as=ao??}-4HpGqL-)y=D97R>w695?7Voc*her*1Cm_B%2mgsqas-&tn;PT#f6n`SN= zEoMEOJ1veH0!1TmnU<_BG{tu!FzcIlZ%y$ND2Db0iLT!t-waVEbvWjWhOW&woll5j zxI2g2I?Y2fqwoW8o8JxxZz?+65AG{l`0Rq7F0-F++{CAsmSjxP`ZuiMbU05#AqY zNm-!QH73|Q6^$Nk!QQvWD;TcK9|bFO`g7W8kU7cQL4B%>O%Sk{zX#s}0o>50T^}}3 z;S2Y7sF0WOi=kqrl~Sm{+RcPH?@k(dH7~xAIU|tmAq=5bpKk+q-!s!;ZiBj&#f+iI zQ=e%j_QZ_gJ;re0?1Su=W|K@O_o2@hQIN-GpwBk^$-A}n`C*o_9TC32dd>`+ysj6o zOot5$!q2k3F7c&d2RVWgG7N!yt9@dBzojS~O1BL=t^$1$HwQSiuU3zDCQP`Z)1l(4 zECoRKj82!;=H~Hey!A&O_(Enkzn2WHcU(s(H*Y!$cd3o)O2lI_aq#WH%2skBI4S!e znb>?5ZAr}h77!_4dOTY-&6I;x2b-0UDsqeM6D31`|J|K9c+8YSZ|X-1T-dQZ{shFe z+N=EBRoN(HnvK+Xljq4U3I<`_)B`bSLsPb4C(TF6Em;@M{*M>Yp)+}tAJP|q6B9B< zOtexjM6=A5Zw3AGFb}uezui%-lMf#NGoGO;Npqcak0bT-?rRxbBQ|ixlu(XgZAbI3 zRT&j!kJq2u8cy1dT4nX-b1ahJ$9yf;yUo(8KbM10`_;wA;>FM9eXiS|A1m~Lwylm& z(vZVl_@yVaI6+%=(dI~`Ogflz#l{QttyZn-wzV!c*n3*oHv1hz(Uupk<;4BI!-_SQ>&j9;O5w8LB0 zXEJ}xL10a%pf${S%`f`}x@5yYO1^dk~CNTpjqBS2n8;*=pu2tAOXh zVbD8L2+bXAtC>$%m1X|?q!K%KPK4L zJRwhyH{bLFNcg7VO5n^XGEKxomhZiv68)QyF;=K85lA;vP%&H9Nwns_4&Rp`O=B z6E8HU!rYg+P*dzL0^3?c)Z>61*e)q;C!OOvuOG8saycrAji^HoUich9A9yR^3-E_M zZ1KyB7ixQ(5EZYD%)*NH%f|``+|3Yj4D@~iA41{j@W0QHTj=of&zEt~uE17l!55~N z%<0~z`9&gC-na3ij(zQy1J_)kSCxKFn%V0~)pA&whsl9n;LJ(Q0?M{xyo%7%(7*mh zWxWzk@hW7mKW?3o3BEoh8QQm6rl17XHTNvJ+@#e^Rg`gu0ZP#iZE0Oyr z#>m@MdsawFiObEYkNW-Qs}MT1DJgr3L+&GPjN9y2t(V?{3Exek<=M1z6T!QlN@AlM z)cbEyxLGPzpLX|e(l^S~9Uk*GX8U0f@u&!aWqps0e}YO;R!yc{%EYNWkBdd|ZyK(mf(!zC z5jhrdFkt)>%uJDy|9rUUUzO!$0PuhBpRI-Qh%1;53cAh+bGzr?ft1LGhmeB*LsR^o zab)1;`KCht5u+5KJD7Ms`Kj8hf3H>S;8>ww5<`gJL)S7 zqT};r?fJM*$KO#khcQ#CKJgp-qVDGtiGrYHlVh4dDXx!U7_PW+XCz4!B`&3RuWo=^ zg}H76-qO1ySG8Z|!#t*b>r&OOTt>uFp)neoab=B0~p!K6T(Ye*V z;!`mL8LzY*Y%Q~uI-cCDho_ZasOmTJBtk!zOnJ1|OMVJ)u74H4dfDrI)&7^EkvDWF z^A+c72|FVV4W;muGfDtqZ%JkXCSYiYr7J;sbRP6krURA zZOz@?j?=!jEb_Xj7suLPQvP{A$HHP2d>h~fb=`farQ|7V{D z<#g1^gr0RbtBqJzUS0*r-+cR`Mea}unbKy_g$zaROk)xAOorIf*IhVZEc$}Xvpou~ zZbLw{sWe2z=O$gV_V59bO2*oPnARWj z_{1Dyp9ee^w%hl%Ji`pSzL>hH7veNg`TnH?l{ACMI9S6dae>HtgUJ zjY7pXT2gykQh`ClU3fb;ghs&xO=X`{sFk0k8}_zPp!Zk9>SFMdh*Pc3GK-pP;zG8@ zofk_rw&ydq)@^ro*ST@0)p;GZ%i(71=#{GJB&m~=z4mRFQ@QF$`3e@Xvx7oqdH@1c z39M`3p;11j&pb3p67$yR$N-vRdp~ldy#2A`0F|BUIAEF$^tzGM&}$n~-3Jn>vnhE^ zqc)taZQOae*$18YBi~tlnG|?E{2bQ6k@HTy15An~0$i{|-Eepct^Ks+7N{QIZ;1uz z>mU6d{bx(pafAHZqQG*|2@$u>Tn7ou5g43CQJnGBT?F^TRf-y>4v~p34tL=vs*vK0 z&Q%8qh0CJb3RnU8rbHeLf_|o1d9M+g8(}eaDnG-bBzs16M_3Me zcj*EZLDY^+F#Rq=_simzcQ?2tFOj5`Oosrd!RfrQ;nj>Z3ffT^LhamR3=qm&*G13K!RBL& zUDVBUn*K~o@eyE7#!DLS`i_}Sn5IXReN0v7>ze&>7Fe{<1l8GTdLf0Mv_5Afob`~A zZ%X^=7Ttwv#WRd9wWO^it_P#1jbTZ$AP0qmt-9b_!w8LP$(uI5sx;-91G-m}O@xlP z3*E&9W{$&4+)kl{A!8HA;OMo}I=B4VYKC6RrCoFDbTJlPDH+p0k~|-^z4v0&>5YDw z9Axp5hE>&4{G4yYd)2A5WJe^EF7hiJVb|jRpjWxoLEYwlWzj6^) zA;K}QlIpH4yVwg}TTJuG5iI*D5rxkD9Km@bD$zmX{{bq-jYPGF97{qnLxt2eg3GZ$ zxxq}UOBA5+L5J1YoJ&f_IM`O!1s5rJMlzT~St~(OhdPCJdY|rObZ^PT)SqVeu#Pa5 zt$zVP!)vB7q+-S5o3NpVgv=vB5!(YmB_O-k_m>rFl$CYBEc&G-{lBOXELG-S+zVhw|0-7Lopmg0a@$9|nSoB+ltRKU34Yv-;e_<{YXgNIOkRmC}w=dRJ7w|V(#MV?(Mn78!CXj*1faqaOezTJ*K*yY@jH?L3Rloj_(Pp8W5fJ-@27ffuC)b8SDv$t9`qd4@b+=}M33jUp?pLV`cu$1m?3>=mwtd8K2uxK=SGlm8TVbomVgXai@K9NdX9tKbH zB#W60Io1aaGwUMrq^d9>GC+7Jhj>D73f(JOo)(_awi!+*%dE!(@WV)u%_KX_C{3B- zS)Nr>^jY?-qUgrud{H$d03>o_=x585r@KDQYK#Z91`(SgcJb86^oreYIyfwpC8`>S zVmzfE@gKw zejk<)Jbu`ZTx6#f!%L;qDAA|JoYjzcvr8@qUh0|*!d#!f%>3ZYR{UHwKg438QQhzJ zDViZN>5tS_WWxJ`lJz~HIq4vmT)hpb@pXQ;7CwuJ*Q4W*x=(Jwv64W>NfDMI1~?B|~jt2QFd- zj7eR;)Wq+YTGMY4h@@=uNEop*OKgiI{t0y*L(dEYNk#0$Pjxx$v$)iM`f(#$!oL#% zB$#5&QfXpajHPwi7cDMHRUi+vTYZCt8TIz#tAD5hR5}XGGFaj%eN0N)m^u`eSbpMs zyN(NbJ*nH9`gkn-*b}cVq>kR1F8*{BOw}rlotP;-gDSl)$7pA2=gVtW#hy@!Xub(Cd~ z!F+ppU#>a&)sK#D98!#G3Zl!YCYpN&0@!jsN)K9To4P4)9W zoR-m<^ZL`8B>$#opy(UG8u;y*@K=bIg4vMH_~O&a9talqIhraifVJTx427uKye0G9 zB%De$c&R++q(^4#w@FuI^-$ce{p7IvxVI(qe6{ai45cP!J!ompY1r-jpmDpVv5*A3 z=^PlCB_}sUW?@V=Gi72NM*cB~%3vCc`6d>5KtXHDhNZ(V@T(1PscJ|HOBBhrGB9Xx3B+Op#MD{S#tSCBktE0tw7g zHFTbXQHfDae_kzm7%S_=C!Z}iTyHJZjDlAvxjdW@b%SRkrb?auUgAq?gmp>jqw!j? z@iR%DG}QtE-f$h2xB383rqO9pmX4$#@u?HDNDC+wCs#&w`Q{yt;@wj0{os?EULeFo)o{*}7@Ab+YZFX& zIbN(i$X%N!wr$!Vhu5r|eGKBA#-Y*dlO#w;>f)os=3*%3j_lHCl5Ur3Ckgab6WeZK zfi!*&!V$U+7w0SV;ZRIU>N;7h0X-D;2WAc`&i|MVmmu#6qLwwjZNo>AIODaL zrLDezPT5&v=4+&-*BYrN5V483wHayrQJb;eD53YT=g?{u-cNzN6oY8T)UBJak_E(b zI{SP%|A7anG+#Y)Hhc%;+{Cvko8)l6N~pe@)kZ(YDNS`-aMvC|21K@9CrXO&CcmF@ zoo;1v>_owj6d}8O+iv9YW6)+=)p^WD9&8fek>wKrQaSb5_QqNBO$Rl8hjSnybFd3v z1v0DnJVLLAdSBQSG$v|!@xj)X?mC+ z)+{yEel&pe_6xphbG%dDeKJ*)z_+!Z z4zG^8(Q!a_@7lxSyuQCGEG$K`zmLz8J1dxaVY8dR`Eo<&vTxe??Y)8lewxSd-%Nm) z$fd6c@S_!;$YD-8*g7*&X}9sNR`Ufc9f=A&8$fJRV-MPMpUd0%VIk&t`7v{P`vJea z>HHVG_%P2d)y=3m-)8fb>z}*Ysj-gHAA!a_{La}eYxl45m**Q3^_v^j4IRkko*$=M zwOhs3RF<#gvXc-4&YZq*Z%(%^0hA<(c3v7ZfBbU#TSkgFB%hAc{qo4!VMY1H(U#1e z)5G=ViTKxL#94yQV1YfJ5Gke`TYibsnJ#~W9%zT?ad^;iCN4zH{es%n8zux1wW3^m zgu~7&AcD7Whs}cBV`ym=+Wph0^Z4Vpc}-?l>pUMgA3Rv()CUdVvHX4C{gHplaSYB0 zSc@^S09Mi?vlJw-MZ~yYWdkP8k3z6TY7<5@9E5vEVn?C?T76qIN$jZ#u^8`+%J2l) z9Q#Vkzbt}FC$EAvYnyE5;*hErZEa2HDLW)S5LGozppI8QYO-MHaJaKMe))#$Zh37% z+Kw_Pr9ZdTW}IoQnYnx?dBWB##!6+)`G#btv3GpwL$zwnCfU(D4r_&wJ}&e7e>j^6n4_M?ViO~CJ4>AM z6uaJCnP%=Dk%D~69%X&M{zv+?$IrX9B%Sllh5$97=)*6e05CenJMW9aXJP+jF>v1m zCQz;2B)bk3x#H=n_A6lA8&UeAY)K-e&1+FQo9Zv2HMHqy@{$vJvM+L@0ZouliZ%6B zuri-+`tk7T?0%E<30j7;Mngx0Y;!D|b7k^k)pN55MZc*FXjV&4DarXe&7VGPAr#P| zdn!Qypp{9;6S{%guQt?l+n(Zl!#BL_+muFcYnu~!QSV_gmMhW^%Tsq=ONX4g_2)VF ze_2HYm+Q3dL@@{BJvyA#gvq;gr3q${d2}>uw>rqV>3#QXXR-ex?DgP#jC3{>Ba_ zk4LGU^6WkPCAWP=d#Dag1$BCG!(ta%|s^o|eU@=8ibxg#0gaA`;J{V^g_ z?`@{YRtwzc;uhxl^&Djvewz@|NB#G_Fs34#54I4kskRud#qn@htlsW9mU>GC71n9I zTIXeM=iQmsyivo(LoGzS(foK$Xw8Q(Xc@4H;*fcDHQ}{X=4Dh;qKyT%*Jb@tgQ|Fo zs3UJ~Lg!0uOAMyXN#4}R8CZUf)`$xUx3AUw@=BjV!vd4vrQ`xrUb>v5SM%Fwx`Ji7 zfS!lq?<6xxxsr;+*l${^Qw8mxEa|nhlEOGFlFg7gjFZ#!)dX4Crjjfv+n%OJhk~sW z8>aUCC7Or?giNS033Q~Cs!!HfaX*h}FMC`;Sl9;B+-OcR`Iy37 z9#8S(n^T*GHha*>gAc!(of(>@Ily|=YY#z4E$~GYeg96|+s2!Ct2tp0<=z15TcCoV zck@oP_ac|Ct8$k2WtWBhPht!9d*h1ddM9gXiQ(rl(I~YiJKWQ4oQXOHt%@>>&E^bP zN9ojDtLR1e!bElrJ$`dQW7<$UQ7WnNH0sN@z4HAQ;ekO=wK%CSDa?KLX>*m`-1etG z%k@s{Ai$Pd4>Z?3@15<3ljxP;scy!01dV)daW4IGS8oi&%K|TPXCgV2tXil*C;>_0 z_w|B!z>7IQVf96)+u>i-bC8Y@Mtk6L+a>LkNXc4KGgY-<7O0&>q(+L!=~||2=B488 z!T{D*4gNx+Y+~^T97R1pML_H%-i3naAWyh}05J#Il@Lik{_0_+94A=Ot>q_ox+RPeH=J!9_~efWTw;Rr@(aulCLlcKXAK z+3%D@%vTd$rO$>8Ua`KTg}dACe>^_#6hRcJbkLTx{4?j<_RjuZo0(tV8$NZKCAj6c zxrE9?zvx2te)B1konzQE@Pl>VRw%d90z0ZCD+v>mt>;%oZQPXKU$oZhhL`#hl&9*V z3s}Ak&qi<8wa%jEsUTcbi*eSdc4l$r?2cFH*1skqzd#u+x%DdAh%s%uw@bdOt*5ZeMRRJxWF0am~*KJYxITWfwr92lMN_Fu|DDhz0?5%Qwe60>J{UT5OK; z{XYv7s0@t-?TP$>n*gu)3EC8X;lXcYBrHO;0zmHn-idxi3yn{G1hxL^9U9 zxZ*kEcFb1`$30>(UXlbm>Y^(R&L873iDYa&G9ln|_ucocT#;4+%4FDXRo68BKVLD* z%8EW7ugb+PO#X^1eZ#_fu;6wp;NO*8c3Zt~K}^WuZOs~UQWtSR#-O%50gIsUNww@ zS?_b&n{P8oGOQz)&8d$ud+qR0*rPbCla*G%>pcHKC>IW+H-G!l@e_#fa7Szv{(F2j zj)utk+BG~>g3Yk~n<@NR{ss!!LP&gCrN41=55TiUQYl-zmkg*J?#JVzAh?E?c*$I5 z3{p&{(808|A!n2MmBFRYXLR5p)XS+OrT0*Q(jVjDKJSlqw$H>&A<*S||AqMVImI7X zSs`cBSFvzl^Ij}>wYYk!W${Z)UlKJSZ;{c+Pk-*}WGuB*_2aNo@$NM-9tII?JT3&8n5$=tG&qbr z+r!ys*&Ev(M%KEx1F-v-;j`oZfj>_zNTbQU_EI`S#6%&gN}-^g7@)}A#Ge3sY7tLe zCH8c|y9swtSOUS=b(MPnex{%&;#)&t-mrt|hkBULY>vseu*;F|zbh2fnjw*(rYyP& zp2O4RQ;=LChdu^TAe!41&~w(-1T?xa)*7Nt9FG};FHa2rJ_$<1OcE&UlV@N595Yk}NBpjB+B}OfC7o18{mIA$e zZMTA{a2v+zqhFW#~8%PLCjk0?mCF)=Z+}1O=qKf-eAtLXG`T z2#*ND9+k@1WFe9YeTn!n=*)iRN}f)RVFCogRMqHui}@z4{=UOky_AW6&o`FGx*9crJlbvTrO%9~+mZc2 zbTF9{^I3I8rRO?oZt=gmS1nf5{5FZIdLcXY^eO)Rw+!aAtsJYY0cHB%ziQ&wK6L$> zpH3m~c!=C{f1Cy-Cy!*f*isrjb0Wc?Fo(20Rwf020H}UHrrDL#kNDOxHeO}7T($dz zfZA}4X^m&MVwlArc0{lGDtSZ3pDxoaTmin6%$xVS&}HffpcweB&27B78Ku(Wq>}eE z<#I1-smvJ=_t@${@yKl21W{k};D2UgC`tl)%*}w83O8Et- z?l#l;^oXE@x!Z@b+(8mBvAs733qpwz+0Sazh98!n*hW!7#?P6dD1cVGe@eN&pRdqv zrl5QX&S|4rOYiq>!QMSS2etxANX}VcKe+^y?H9CdJPB~t6T6ZP0F*JjK*?_B`t$uN z%0%*=Q3o4-QmJsm=kyOuW&mZVSGc@EJ+=uy61?#;q5Nd{z8e@dVUKOR8!+K)Ob;RU zJ6n{^i$MqAJU>47pMv*R=;4lzf9GQAIVt){#lR2I9npDW4fZd6Ut!w`J;Ag|p`KqT z0jKKsdr$IEanI3d#b)Wjv z)erq!U!PU=)9AE@v+_f@s}c6vA-SlXw-3BI`Z$u^OVp&p*+SIS;)O+1!^5>jMSmkc za6azcYtQQ#Mz1>`4&$a&wOUv@>7S(qj&4jA6k863wt@d23!r}@7rJLp(&}}8+z*9~ zMMozzz*_&tldOosvRl(j-dL}Gzq$~KZhy{{UPRHkx(Gvgy>u=f(3Eah`b!m=!9|nu zdNTs9=Q4K(S)TS9rHsLA+*-JeKzG$XS@US{>z#OZbExz9UIQZ=*ON%w({FbDZq?H~)<<678no-PiD1t0 zyBo9Orav6iF{*=HXNV&_L36s}>0xb8kE8LHXWkVqc477w)L!HIK@hGCZf915ryjN? z@AIqA+M;a@bFP{CX@W24x}J)&aoSE3kvOzDns)ExUqdd3BJgPdnx}b~oa*zKP!j43 z%R(07x2vyoYWK2;&3&$p{x%%0GS(a3-yw~DeuSKljK((^KHa^meyE(T%kg&oeT{&u zhyZ3+Qzy0g^zDHKN60IAD{n@bIomwXMZ3@LVmalXoVyIQ8Z-6n;2Wu)g$CdMnluwt z8bE~vZ_s@0Bd|`rH_HB!Qct|Ms3IE}nI6?KhZ->?Ii4v3%5>Xb8a&o8Nnp_GU>O(A zfe(PMf+Lxfb=gu69=GBmVv$3%V)dt$P~`y*{F8T2FqnO*fNZ__?Bt zVpKd^mN;%LIfRRhNyj1JOjC=MNrl^Zv5-WBQw`UjQ(w^G<(+twsV4ZXXYst@#vB*< zBHhqw;qJmvWs^f=Uv8|K26?jh9~YC^cgeD4bnP5n`r-J+W3lBZ+Dnz-RY z|1Cky_OD7Y`N$0ii3Dpe4F_If)pEM)XlbSTQJSt}s!F<5el`_|T@vSm1PdsL_Ue_nx zXU~%X6m?_(j=R?&untuVc~9`9%3lBg7TK3j0X0ey-XM0N>qLCbPSuRgDzgOBaBg&Y zzu&(^&;C33`nqcAAPBnLEB%_y5)EL0*YrHVGLG`JxyuXMb6%QxtKWPb_G$cMI*LKG z&vA90b{o(B{7RdT>H1$KHlK6n@ux;*gS60`-S-kL#>>*x+RO%4yTZFVKm^w#p5oMQDudm+MC>Us~zrI&{5LH)JHY zHqbm$OVhL1-Q41g<(Ndar`o|EMqd)q;0%RAulC^EiG6LK>q*G@1EinI0&99V#I+x6 zN9fH68sBp~>}oCtE(jfYlz<>tr4dUj_p7hVjDZ`qPHihS(TzwvojQSsB zIkWkU7G`7vmO}Q)ELWd*&dEe??m151{o?h#&K|$}dAq_~r>!XL*1mJLYxr=~bD}So zopxvO z5IJCWB+~=7z4#V?g$j+Ps_iqC>r{3<3L+Oteti`-7_rH=Jx_^cBdAX~xj@KA-9pMKW4T5EDVsxw!uXkS6Z|Lrb=H)&e^<0l~*6YcO^hNXCRN!gL z&7v6TGx2TKokz)rn8=cx`o|Y zqgn#`pmPoMjtK#B`z<9F94%PQ^^jYUl(u>zszRC3hbg^7Gsc-WnNm}Isyu$i%t&wM zvi03~uK6#5GEaiz5}VIZeKm^Zl=#NRhq0x@09*FW*mWzt-n#3%@sErJno*Pc?|&pG z+pR{9G#Tmv0{Lh{UqK2rXdEbrUY0+<`f5O11LDn>h)SmpcMZ}h1SX?X2%69UCMAMp zDF!OPeJ}-R#J`o3lS1f1y(FrdbYcaSsS5|ezsVzNQ>U9^#Ps0j@`nL0eeoa^>Hf;@gW7N~)@UK5(&B)gp#~g% z`_=g{xTVI1gN@D6uzJJ$?fbT%=A7D5NelG@!K=T?o-yJ&-Y-wUI%Qs8SNFG)<;TVE zezDhThKnS3-!E?W^1Ag|V81px z!?akoj}WTZ>QNK%BY$_Db1#3CE6z~&%1Ao54=nRI&jqcFdQ)Ia_RPbO9{%o_cxNcm zOtXTbe^>m$XKwb+L+&le>KXN(ALuP`ts(u*AvMDS;x7O-2UVbKV~D%iU+Ry>-jAZ3dF`Wj-&{{u zx_kF!BY-AQ9kje+cfWob=Kj{l@mRARS12C?cF6&J zxkR;=>-@3nG#?=3H6_=2;NnnU<@>RDQOB6AK^-N!<$POAr2Ck1^oGLiuOOOsrk@=> z%ze?&wo()R_XPqqI`ShK*LGjq4|GTDVw6;0Y)+3-ICzZmtKG^zoC(fVw8r`pr^)ln zZj!>xW@X+bE}b7o1DEtCT`<9V_&xj&C*H zxnvb{M3`bbfWLFDZj4fPQ0_0knZpPw$_Iyc*k5`dJ} zrq&0~^^nZ0M<-8!eYqvp_MhQYq@mE-M7@L9S@Z=Q$_G7Q5KSs$J@l5f=`v+k%*0l* zpWRJ#%_hxZUo+b&RA31h&Jy#o!ZZn?!XH+V0`Rtyj$@8)AGYV(tNpKkS1!1FX$5+SMcPxKcYKta!3-#h@#PWF&F*#853pD z&!%~|hJ5A7Csb`b=>9VsMd;q_z3PU(y@`}qa88YdrT@wW9U z7J)MMD5k@6s@S&Cv;b7UAMb~xi$aDp@sAJ?1niPD1*rL3G>AQ0(I31-zj09pHAofB zMtNdcqjBD0yrU-{L2{-sqbW$Bs>IPbAP<<1P|>LRB7D6wm~3!9Alh&;8>4-GkO*|j zHmS28^m{t0X2EHtLepwYwMt6ZkyYkGslfNVbxw+#YvbM4ZL^sJe?yDVty{=BivfOt z9Qr4EJgXeU9kz2?T&3LY8_XH5T3}N)99+wfQOus)xZy1d#W6h0nb#9@=7p$xZe;>p z2X-}q?z{4hmxR)u?RUx5h290NI_#`sRvpfwr_0tB-mOPNx`n4x0uES4@cf=S`Bv}a znGncbdr(#PU(a^OL2;-7Eu(THqDV1lx%uZM30SnEH|h9nLtj~2p>ZRAFxd;ky!Gqt z1_)%pkh*;^2YDR?((6E;6Z8tV{5^7v~7XKESKK7%*QG+^Y8FE_6=y%e3 zW1pObuP$!VzTuWs_Q62-;z8*jfAHr$p<4RW=#h8=9U6ZP6os_=ED3NHiuA%?mJ}bB zHGlDC&c3tZS8m)2SOT4R81?@e6**~!4#$id5Gfcwt`l>v`GZA%D$XH6dII8sUe>L4 z@Nsdkqm^v4`3?`Muk!DAB%&}M-nBc_y*O@qXBTQsSEL@BamS?ZeGn7Y!$oWCdelQ> zY`b)$f;MQ*6+%~@t- zL*I#4e9V)JLbw$SeX_77I{zDcNg+7KOP(hF4CO*${_L~)^zeBUIj>-V3uFUmcch{_VY_6Y^%Q9D)9D6nL7)%kgfqq)X(^HIcF1XXt0Eg|kof$<&0S{O@!T15+V~2E z!_&~f;n?rF0+E>Z{_5w)fXy~ywN`amYS+sQ$mw!S+8N=q)n7g#3%;&I$s%v1E{VLqab^@T9LysqcK{$j;IjQLVG%2 z7K!nEoK);zxrc$v9PVO`iC?Hw-yd<%w;yodd>0|Ij5ZcP=&4rdKXE@#Jf4|#d%k}G z2*Ju#x~pZ=!+7#ThU`zRVa|PR9_v7BL&&*34o>q}1K<4PL2h?j;}*(V zz%cBLlN!8m26?htv4uRW=eyzA0m0%mK!?MG8+Dw0Pj@m~WlWd0r_A-{W49&6`a`4I zQ*51E7!=mq5$FRvpbWviKU6h{q-ldav-PWg(68a7hN+x#`1%oZwtmeIdvAGA_E?kH zqQoD*rRE88pO3_R7DK(EaM?F>7Ei*#G^eVY%k`swKz;IdD zdOCmD!dw3RsR0>W+%t9xvq2@jLfTdEqwheu7vZ*>ksKX<$G%6zH(FhtT@Yx3QQRnu+*wi?@aqyJ;-8w2ZVqIORj+l|xMwr$&Xa)QRT zZ8f%SHEfI~jcubzWA&c&{l0te{5^B_%qt;6l&A+Vlk#Bz5~THJkA%5>taA~$FJ4dYr~S~9^c=1cG-DYprWyR`!yU{-{1dl zg#$Q1;q9!Qf35oExKny7SKu-tu2dTI+VI^E5O3&JjmG>9 zug8G(Jdk@e|WM_tb!J zgzmTEnoRH&<6h`Io2PWut6nL~g|j*TL+1o$R#V;vIBF%E(1+i$oMU%QG z#{0~BUFknOd$E5v#PMl(JUCO3>3J7T7SR3sJbh|meGtbceoB&Bh=KE^q(Io!i6C~7 z0!`#{W4YvyA*hYp6b%cdBY5LYBdaRjki8f0F%LQ}JA5mgBqev3GYQ9_!)=3o#k_xw zrRtsF8SRvQ{`A~qhjXY0eUnX!zPIYHVy7R3=r1MypbJprXNEk_-zHv~rKHdmbM+tL z2*H1U<1EeT>Sj7>J;@$xQqMUMC_9uI6+9AcH24YnxTNFhphyDwtOL?glXy}V@%r9C z;~_?ntDwI(+wZL%vTQ@ZZ7EH=jpRVLWj|2RfBEQ&@?xPi+r!@6Bwbzjplhp=966`) zX7sN`S5So$a&1pL;8V%23DPI+wAote2^L{(iL^AxlFWQM^c0JrxyJlvHdPAlWY}?* zad9kY8FiC%PsHk39FfoQ=`5`jXTP%xzW-KY#GJ7hv|!e1GP1(2aQ8e$7_)zvEozh5 z!|yATI%3d!R@jOv zX_VS54z&*+1dz+hB*PFzhTI2?Bxw`83n%Hld7DW^B8ZF~G*IvEeOm;FZk&V~0o_6W z+;eoA*r*zAYW4_ua@OKt$n11}&Qt_`_5EoaT=#1VYt!(Q?XFt1^y*HztF&}MOTAgE zz7Tx7BTbultOk8SW1^%bC#d+e2LiM?Sf5^6V#$H!-~z#vCd1#yTS7|8{XF=C1a(Mi zr}s**uA@WS2Shr*zl-VbE^qCxjYQ~~!YU!T7qW{R?Bi1_m@}sc06(p-f?n&(ZqfPk zcVih!GMUB@fpqj$kM%oFpyB{t3+1_B)vxb4&h7%dOq8tZm<#7<9hWP#XW!UJ%_&G@ zc^zA*KAQ#Q)4{m3rwB_}1bwAV84Eto`em;Wvy-7cYaynMuxK5*^98Br+v$}?L(7_U zOtT$l47dH*)M~4MV{`=05FLb8g-|H>OEky}Fnu2ZgA;;)NlFS;Vo;u16b>Wvy*WJE zsvUcIoN%7zbFEs`9g^=GDDm#{x=>@683=*-qFn}=2r~ox@1+je27z0~MtN zLRvUTTBe17pU*ZHU0@|!)C`GO9U20GDIM~;`^susJ2-3bg*a6#Oq|HAvjqK%1nsg% zUe;xF-|cR)6q_dmyZS6lZRUZmJ9wa@aD6rdag!TCYM-_d5Im|RII8t1v|N{ z=LvqlzvMmKPNCMcXXG@q-G9Vm%h@_`i0d(lbA?HUtn>ChR5y*82y=$sT;tdOEH(|0 zp=zW{P7tmyzzxx#a;q5v?&dsn11-(4zT+a-qNwkj3)$=?$w@$g&O)EaEvx)fLuw%G zUC&FKXeJ95ho(o1)@{``0&vFh@8O`)M`)%ZXTp>hdLZIynW7v;*8+GlWTWHA=8+i8 z<4b*0K8?@9WrT9GhzaQi10Adeo*C3l$~R%}Pj0TT(q8k)UCA5K1Mf;DO(84~ytuGx zW%#;7cSYsxvZ5&+FUN*`%G zZ@sy{mCFznNMIQO!tJT?iHmSQpjv=ajj$>_JMHPABTgI!73&Rvi=s<3DM9UwM!-mL z{an+or(Hd6)~<9iA2U|C6B=E_kjd1(gWmus-_|o$kUMa~b~#M1hDe;HMpN~(Q2LUS zO3OrBetWH2=S`g(kVG5awRFF^q0ta7X`-MRn*|O*kFiVd>aYf|4$uQA)+IPn2u^w; zmgarEJ17|r(s|{?s)FEhKfjsSq&W;A(i_vVAhpw>Tdg9QQIOVn z5J+jKCCZ>67vD<{;7`*uSvIY_@kw9CP(&uB;b}7h*RVB!hy=B_K1`KHn2Ol(n#0=3 z7TQ%(lzZ3;rM!rHgtsDZDLc>pTRK#m``V5xvW$Y$ST_}kZ zE|vJeg;B8)#7Hrxa#~&ayf+3XbIfR6*l8qG^~jN#f+z~sr^aR|7`lQP@`O*+VLGvi zNzw@kDQM#_@oLey_Z#~(+9aTy_4=}kJ{^2qyv%um72DF+;^0(Gl%(1zCKi&gElj+F zrl;kUS6c}kQ)-+v@SVME84JZi6Lpn8roNYiT!nW*1;D{$ZB|@fKnQx=KJ)>Va4WuH zX2^lg16fb23~{v{!-0CUeWHQd6EP1kk+=hU!6eO$MfSK(`O{&-0KIY+Z|jQ$ucsUV z2DRAJbC?s*4l%A#HW#~hJh?IIS9@r2H6A8rzR!Vq>JD4G*;uvM5s}i7?RcYHLL!S& z=XDGMSvn-xSr6XoNe10RG~2^6!L>S^<{bgv%13b*^?j`jv{V`Sy>S-7d)tHAis>w;eV=Z)Le03rP>d;qP z!$+0XlQJ!+$ct4_vDJGU07^7oPI!`C?vd=@V4a|rfAW9TSR1a(*;<(^PgYkEVA}fn z*^bi8Jkd?ng4~(Vj&Rtb0CQVN8~&3V$|M;z3egyKA%dgK%MUW=NjmQ633cn%b4TnTNSLv?pX{n+xDj7e(J7#@Um#$_U6BqTmbU6QMR9| z%p}w+MAc;osm-}rqp0kvrm5w*B;Q+-X-+624-+4a4@xiA*=6Qm)qesolaxi8;nwD3 zg;sIjaRL|opjGT1*}NI={HS|&Wa42PNQU7rY_?q@vxyDv zLdi^>$bNF1CnU+Q*%&Q}CRvD-J9FGU6NWO(2{FO18G*U#Wy~d@qr&%bi|Xbvi$GA6 zqq`K75l{XuGc#mofWP<}n>ypXSQb+8EwSO8na#|KFf2{3MD9*n#uUK;Z-o1H(weOX zuU=e+$gRze`sVX(&wBR7_wP)#FQ{a6)<^s2Y%~jjdy=px=-rb$kYwCMFeXW45ueO~ zLKY3e@-ZU(3Mn;By&aFo$r$3Rx;yfj?6xcG)h+`ZB5Jg?_So{NxabQOI8%!}K^=7+ z23_LHnF)6zKxYfysX&1Xg+}V`T)l5sW0}V%)Tp|58Yz|X$V(gZ6;4tM4fitkO1v=# zGMd6i5tCixSyE(VQ!<+TWGYJ8XqCe2m_uWo)jF4nGwhoYaT)Xr=};T4=oz~12cw#% zFCMkj!f|s4?Ra10X{?G*n~gD_6@KtHzsgnqnReP_+wwMYr>nBuP+vp9NH4 z^~S~^kyuY(LCE?>1Urqv3c*0Ad?BKk>Nm7#%Mg$s!fXkJIkU$ySoMs z6u#du{)rW_C9ip#{;$z>37jH7EC zHX=yZ4&2|G&>4?dX%cxJE-F*_L}VRlC*i<j$IeFGFGZY1=*yJ@jGx>MY zz_cP+Qng7AZHcQqH-_tkmd6P+P&*_H%}SK~ zjA>-_HXrd?p&o2g{`Xq|zgo)_R$R>r6!myaYB!|H*1+*C*h~c=_gaZ(oDaZWBk|O^ zV@e+^Q(W_Eyw1JElbPG(ho>ffLQeRLui6b_`b&uxcfS`()2`TYF@;xmcoyH%?+i7o zGSl+ZjfmWA1ZGLAH32pZo&v2Ymq^>yRx|Ty7-EfFSz(PNiW;9l@vaq`r=T}Ji^{SDWf~OZ|0IW8g%DHH&V#P-CpUWK>i&dFq>^*2Mwv{^ zW7PHfh`LckqsA<|noikRc>VgW5Cz~jaP=olk$ zn1WCyD~8g;7FDOJ9#^DibZ#T4e5$Hc2*W2>~hz*Z(H{%}0IeW?_is`9Rrfh?~& zpO|SFzR;+^V}H4^3GgDwY|3alEHY((8OC{w=PCRh-*n`Q3$KV$lyz8^2U?cAPCzwh z*VE(Qmmjxp}lBGBc5XxDX=9H=tq;_05{smE{{Jj~2Z{#(G-CgK7e+JxpBDjA*{ISD|816oJ!BJDII%!%%o(A6?j~w+O(#D{ zlW*DM#| zxk$C6!^$7JB7cl{d1U38UlRHDR={OtjCi{25Y!^QL_9#ft+BGm`IGD$OY6tOMoQzv z%7Dbi$%s>KYaNM7d`WPW#zXi``4|5Y) zWoT#gs-sz6`|ih7W%cFk~2YFHb$AXdJ0CHOq(Rwt-OsDssg;8cez(rULt}@%L&jnqHhuKc?_hd$z z^6*by9v-%OYKkmXmY(*>RK?*E$NH=;eVEtn(xlPoB$9(?kchGa44#f&s7h?j{Nnj| zC1x_c_5AP@40#9y4PX6!U>MTRA89WA?)@ER$hd{euBgt>_KNl%w}aPfK}ERYXVu2N zXkA*GWe#66B5whdRp(1uRTT8>K++fR^fT6XbZdkm5JdLg)A`hl#}XZ`c5nZb$p0aF zKT0XR+nQ8v$?HjJUrI(sP(B%-{Zktqy|8c>h)pkU9aMy_AVN@`m*K)M!uYs6ycFjQ0xs5~laK_;p8j(DaYkSc+fhy%e>ilRc-|d_=65iufy^t=P({ ze;wh+$U>GWy#)$laL1(cx|{&tb(_Cx`(lpeUhSNAL%?Vt8+6Hn|C>mNh=0(?E~4(y zHK=%rht(1-xp=TyODEGRVTpnGaHjQd5+c+p+v@AWXPMIMys1SbktB+-+Llb*e z@3udMaNpwD>nE?0Hl5wh{#zcQ^5WZkQJS))L&4)_fw+*eH?EBcNNFP>(bE+#mkbo) zvvc$y(LJA1{EYYYM)c>QvTJs54K18?XdDcJMuv9o&w{J`_4d^>2d7(mK#oR=07a6z8r^s`gJ5r68!%Yle6gV z?9vZX_#;Jw=}Bh^IT{z~?%e4?q{RA~=o)vGeJ;=W!H;2D6jWQ~>P4f?Blv<+yPG-O zquno_94o5gN_byA>bdMoxnaVex4;0S!rat^$;*d~CsJqn*PuWR8?OuFAHT7y;XFvO z_IP%I9j)BFOS4NGJTxZuOAUC3jPw-`f9i3H+rJHlR)+X4_i9p+4-Yehes~=Us4B+I z2y-P{#QZdF-s|HtvH2Iz<<=g%2}%B(6CuVhkl}iO=neZcu?W{Pwt{$a48*#RK!2!4 zFF4jtAVMR9Nc^pT>y9jl(DA!w=R*{A$v~nAW|x>=AoAhynI7laHJ@#?*itcJ7V7^K z79x6D(^*W-4!*D5V$Dvqm5Ar?M+q1AEE52Ygq z8`UN+eq`N5mzac9M#myjOH$MO56$KXDo1fu>X3J%>2Ekb;!O_(xo?Ye5;79?hB55~<@@>~BG5N+Ao&r~te>szMRX@~v= zA`awb)4HN?y(2ENE`ymtx0y#JS@lm!YxQ^9beqf-AG`_T?04FOpa`~?j8 zb;9{GA95BzSPX-kW=bcrX)bZ8Z&yrF?evw)As%<||L$!dYnz>I-u!_Mj!3Cs*yw7TFMXs2>9M*#QL^g870w)RH&Dk1-`R3(EUQ8UhBnxd}=bl6N%EcW!m z&6f5&mmyGqDxYEgo~;%v+D>liy5MMAGYum_R!KX^l)P2b86dk8XO$?LTX#@IZvn=+-EACGPS#By&A< zMLQ>6x$_}((?FzFi`1nk`-Zc-B5(IrnvxF+F@CP5!kUO;6f{|!KD-~&`_N#Apt9{t zx>XPJh}Q+0#>ufH$K@0#z=63aU+e@ZvCn6x1nu)hV5hL`6XxI8|yI! z!Xsdy$fLP71EzlVoeI~>!BHOW@?Y3j)}+eFFt=W?AFVdSqdSt&&$2`f?3b$#w~F#e zIaM_K;P^QQN30t`mpZTLf9#n;t!~$`yJ87)X%Cw^{V7jxqbWN50TfXFJQtSOU&;OW zFqpxjMj~%9tSm%5As#j)%ANqb_|0mPRYV+i6RX+c0*PKjGlpH2whvP*1(4iCKNI4? z2T9E~Tm*}(iQr4%`D=&nr2@p3q(lakS3zC;*Q2n(8T;fO2Bz? z0QJxN*xC-Ya#RVr%BYiBOZVHX%vkEwcP8ITmMi-fj0iXCzz@ZQ5Xe1bnPG7%8?>$j~dcDxs51KWLoOa zlOs@T^K3nTcKFXbQ&ZL}AdOK35vlxzbEZirwne?Xt@L6ockVol32<{coH@1GUWN!O z@Cx}aAhOY+cgsXg6RL}K1qGcp0SUe&)wFDq9Dc)i{)vpXz=6S-F`CU)M@6WuS(fRc zhKvZrUS0kt8mNR|Tuv`Azx2W;N&Ae!`V~TN`g}$glqFEI04R(ld@F)87fUJ@)d`e!wFSd6EDz#Ok4FNeUI`t+9z7l@Bg~3mqJEE$=nmkNEn2Z=%A$QY2 ze~HfYW2<3t=V0@H9PJA1ad_f_BAq3ah~+;qnIK`Mpli8@o6(wcaa-C*Ob=3YiFd6w z^IKaqsGyb8rgU@lltV$@m!o^g8vVl+pr z{9|)%P^3iNmi;Ilp-R)_M^re4Z)gF`jJP87KB@>rXUN1R zA#qe%M=E5iAsb4!yM(@Zkgu$J;@$)Wm@N3$O&Vlm#F6?*2%G_^z!jHFs$3q)1oapa@CL4e!s0dD4x?M@kIL*5#b}O zz#-D7gjvd^QM8cF|H_Rv@it9mzdtUw-5AC{Sn4)x9bC=a+_$ScHW2 zAYJSgz(>lh-LVkj6a-=0Omb|yr+!E{l0Lwa5Ws*7n1%7}w zKE5vAn%>%oI|67fNkV|oz7#_bvMvgl5Yc^>9tZe8upMjmXmR~}IRb>~nwK#4_{kBi z)~-`nj>ztPE_SY8!t*k`J=ly;h)ZIo#oAqIQ|dEYg6Cp2ML<@_Bg%dDGq;CknTkgylowl>X#ko`xq)eKI)HNFg1Z8`b)GI zg24n_t`@fs(}>oD2A$2Ge3!GJK%mqF9T>}_;o@LY16n=*$8XynWudUz3(h*VU9yPD zexd~dgC^1R??P>Hh-o#{hY}lurpW>BQx^@&{W-6vcM^a=&_zTgf4FBcdE=#e@fPly zjRa*JAt^9b7G>@uxcM6LI}h%EKk}2#{>Y%Ti1!laK>X8^ZAE^`-DMywvqRrJ zy!L9yt00XEmay<33zu&;{`8*BfE+(wkZs*yc?K1{l?-b@vO&S9fGkzZVmQGz4O&;2 zph|kSfCMDJM6@CN%84o%2T+xz?FTl51^l}u+?CH8h%@B_4~SS<_Nrvj)9n4tP)nNr z4@yv$1G#JF1Z7n5B?v7IRbH8#E=8=!(em!tmA)wCF3+nrdGbG9Bd_qXNNn4$}`7_ z_dk8Unq(4Rz#w_0xUTOVVKX(=hw4LX{3O^HHUQU{ONQnu9*x}%P~51ueG2sg>qH#u zV=#FVhNTmfqxBkYChdc@Qx4o`=7zap`-LRWNX9Z;+b*~{?UM8A=%BvwJS$k)*?Fe1 z@G!XZ{j&1(RJW|^s%@s@C|7o60$)B32`Z$RRf%(vPT#~(4PWbr#X;ubXA(%ry#yaUygN^;62Z zc1}4b&L8*tnJ8xr-0xn?)p<$WHPNFPg*m=0wL^D;UX)*Z>^|{3MLa61`OCf`gnE-2 zwxVuvjIG5=M2Rauvepx@*GiychFV{(% z&eZhVPO$zR*Fh$Qq>sD5@Jh4RBZ2cspUSpC06W!i;Qg3r@!kU$#;U@y?$Y24FX`5x zMsC|9w1vg*uX7G9xxUk?=O;zbriED*GpyV^*h=19e*;eTRHfLoLOplvM_IL``fsYW zbc=U{(lH%6TRL`I(p^g5fyKEcWv*3{!TsCY$7#2DzP0lDy+JZp8njc9ALNuwL}cg1 zuDv|4vSX+TqGOxRX;-}WFy{^It~vVTC@{_`9ozI7IAwPDSy0L9Y0^)fdNe;fiGV1G zmkJ*k5fkf4R5fWoph(Sjp z#LwJ6DKfLILlS7>2fbpE>oVFoYodE(ETdRr&U5l&t>s>@NaR(RZ#P7PES7@tUuY0a zH3?LU?Ub#?cjX3SYrphYGu)$1;%+jSz^bcB$1ALD%1~&vBUB>wnci!8jxv?dJbdMR z?xr!Rz>}{K$Av?Tp>srP92%P-!XhCVJ9Rm~Xp0=aca1qJcYXWP3bHjWu+4-M(3N+Z80Ezmo*Zsh*(4ODTlP@Ugf zQX&8@H@eM=aG6VC3oKqySyEd|Ef88W!)yu~>$-!D4)oAIGN+ zqh!90Zm+jkO27N}NlX$OlwUvxgZFU<-{@|!^}n~_f@vqOHSa%uyR^xMQSx)|1_#1v zD#kq;{obB!2LHj3TeBG5`kl4P`R<%6t6oBT{TSe2relB{GR9F z_i`opOn<}jNAON`CIK$8_uA}!Ve1L$gwF9j5%0^i%lpZ(oBKMU0d`b1n;v=i#_6ol zS2qQSeunJWV^wR>btPbOceOGJCl68fVa?Ss)-A_6g;AEzp9h1#lz*45%CmkNA9Xnh z5c7x0J8}PlX6~pxo8})OnVuOI>nW~K4-Q8!4pGN+W>`E;{v=yi)w)Ti1k}^4t<{^$DXAK%FM^g935{A2>EflZxw@LYovrW! zjL&rMbYc3Uw9{Y~-jc`=X^?v#s+v;pdkLqZ}`X^ZW@mmAdyH#wIr5g_lD zOnbTW97(R{9Qg;^B^5-tzqTl?d#P$9mI{@DCk}(kef^--INK^D?l*9MtX#nAz|37Q zVVN#1>Jq!yf&8?`kziBF=45;(c{5pZ6UAnobBHy>=osydlk&;f_y+5Y1%kKCEP2Sw zGJ{p0<8)t+RCawR+fENNk)q@mj)2)DCqyVInIEh>{qk|WP5+!)9nVQKvb|qkDvgEi zG;MdO)C*Nhm__iwwd#c0LDO$gNtql^9-jSx!C9A@rofu~#xC`l;&-8(?R2fTAG8)& z%av-6ZA`sH@A}zq5`G3E;sc3}Q0GFP%YL7~wV7yge7M`o<#m?J%bQ>qcIp26K#`^R zp|9@ECaoKU_Y!|-Q+_As)>7U0OdmlLflJKcpi5gp-Zjfzx{hGzM3_1aK?gg6f={pu zt9Kv%ac858oR{MdTRb5&vU1iPYki%jCT35rh|-`lo08!0WWOr*hft&F{0R3csVpvw z0-bQN=L0*jGEzhM7_;D@h|Ztf(}Pg0pVGaE7begQDZAF%BpMnCFs*NZv33>Gk8=QC z7;87VdhS11BI@v0mxQ2;{kvTo%*vq9vBw=K*&0NdnA)hpNT5SWQ?&S9p^mhqX&zF+vn$k z@rKBXIo;fK%pToTh2Ef>jr_~<25gcWN(c5=OKuq1(3Wo~$axwu)wsNL274ZwIX>iH664HL$`! zgoKLy9lQ1O*{xt6#m<5N8gr>dF#gzTYCaxI!%y6-Xb(nzparV7YR%Df8bhSQ%d(qk zfESu>4e+9p+GuYdD@KIV%p{VXPTP90O(KkgF6t42dJ7N`1EIY;NtRN;BeZ*?N96G8 zBg{Jwxi20#?ZQAu&9A|cjtij8V3pg5APmm_gvWG7W1QdVq_rzoH<;9g#)Bv%K*x}s zMXGh zJUW^%eI$m$n1LD@_Mp8nlecec;jiN`IS%94n^PAhSs&M&QaG8GPlo75m^;kpM2De? z=QP3gqhyl66wNY3vnM6F1y@`E?-(YgD#)ie`lP+jRX7N^Q8-d z0GMQB?MgT@Z`%A{fRs3>lWQ9b4w`ODZuKfgCtSc?%m020Fj1}=#pS_+g1p60kycU} z#wuThLCRXuqd>}!jv-zBY$a;vnxUucex!5caCcy0I5MF4MX>_%XjS4T;;hYt%7RE4 zX5Ck{+`VUg!Qbp)8mMw-PV-Zl&$2x3*T|$?NS131KM|=9>1EY%a!S=I%pz_8MtH`Q zYt`h_A_Ez->M+OD@B?aRrzdPRxp!|-xEO;uFabRtgdB+|+>;ES{{mbG9_lN?c;vB5 zp!!T++4J~<4%oFLL|Rn)S_4#7Ay5+yoFR`*q#J}Lvm@tUg9s@DlMw?Tzy3BPrLp%| zmLnU|s)JYi_SjvGklaN_ydh#=VUs)L{L=<@jx|vI*jnF9MUyTPUo9!hRkWg1X(V|< zBX8XtwgO8}pJD+uT_+?%Ja=Zj?^LOz4wi~sL`>L-PvfMz^YRWCKHD~lWH){h#~3j! zjYc;?rqrO_#VMWKY~EUDtV%);kq#hQ5{hOO0&2BvMkOgOm_<{8p+py9QI~OJXVaQv zlcQ5c?fS#Phqccn=$j6vdbm^H>Y#;NL`a18j~}cBlxC*W?8``zCF7H2w7HZlNp`T> zF5l|8paH35xM-FZB*c_2$mKn69JB2`y={JbHsCjoOGE~hF^d`B%p-N`N`669K;@5% zEe;w`o}9nh$~F8D#Q5FWFOi{HS?vPaWsq!-HceVC?6`u`x0DF6kWB1_=~hw4OV@@C zC5BxaB;`8KfloDw`eoLtDu|IRfz(2YWDM{9oA-C$tEfCRaHG_LI*Lu`M}TwMV_T6xL5$A!+s>pYio#A-Qei{J;Tp!+6yk*|sBVlt{3NT<0vXiCORG zzh*bUl)XKOotSOWQI)IwnQecydpjhFo(XqEQZ;wTrA6L!FKnt*wTy3J%=%Y&hPnzn zl)F0SE5K0UZk13(#TfIFiHMM8mjrWz0OsAL%QrDqf73t1@`cx(^0m0)BZF<3u(rcJ zq)qiCtc_7l70zwLIP&pXG3 zYf(m&zO8l*mK6t1uDkNPi^1Y3<+D5_bRV%YKuZDz{ULceWZBh9!s*Ap)8~GBx69kk zy+A`Q^K*VB19#sFpqiaQ!PVpBNy*+ynyL-R*(rU-zxrbA6sZ?(sST++H6(Bn%5kRv zAwEroJvPaet1XZw~>U3@9l553z4(03Yw_16fk6z5l}DC?oE>2m(K8H%QJ`?o_iD%u>KI=nXuDc4LP zIKp~3Of)Q#^kvskSE*QI%Z$a64E%<%S+cscpjRngZSq{ARuT&l?Oir{ym>EiU^U)b zsS`vWGpLlZ4Ptena3v+lO<1kv3M8)vSE$w3KJe-VbG(Yqf}z=CP~{)GRK?G_q~XV$ zsbf`PVqiw(a$<4mjF&7OldOlCI$>vpJ;-+icT7_H1Q8|p8QKl8n$6W zn}$j9Z={8AK-37~7)iQzP8y`O-`6*NR1Y}Vf0R(1yivxKn|vo+xupAqyZHG%84m#8cbKrVNpo%24*dw`}s zJ&_ume@fGF*gS#5HS%YR^c7c+VI2PRvDyBBh~W)=K}o%md_*LhJU06kY&X9Ap7v?! zZiSU@tWul4?zT0gQg3+-r^Y5F%!)9vOrgR6_2XhziX~%5k6}JjwCP>rVD1djrOyba zl%1^=w^@A9{LXB=SPO>XeCic6Dm4Kh0nj5=R8rdjvO)>csk1=XdP2p9uczu5v(tt4 zkk*l}X_Bnb{jK5XheI3pD|Yya!5Kw~YhxAp0st^^oiwesfZ;~qmKlnISw(V9R=04Z zHS)vNH+92lI8(cLGW{Z^mSb)l0KlWvDwCZxB0$Sy?wVu`*S8Rn>Q0)}jo@*TGnD1byIrvkSmdWZo!7Zy z))7a7&-}2wRned$&fsiH1PHu-Q|xI)CtrYPnUK*3=gUhfq>%aq4bTz|j?juVZaS+! z=MvEddLRGj^g3em1sx6+b)liw$G zUok5nNzgiGL~7wH))0hybk3d=JVH z5gOp@HgsCVYVonyK~2J2t>f;00f0Ik0(Xv!!o0S*E|DhUNO`AuXoWa*!02b8V$hW)bc6RnVl%dC(L(}Lj6PpMP>~@?>Fxs0caoOgXs3tDBPvq zBFb%s`6C8tk8wzmygJpaRQE0}?)jA^5$Qgqb3cbSyp!*A5Esc*zN!t)?H1u(S6Yvq z+qjHV)I$N>`qAXh<}!E2do0}WF@H{fUHsDoI&>&3r?-}Wl{ti`EsH$a!5@_#;TL5S7@PSgxP^7kHHfmj>%i?Kt_N_>k7p2NsYA45dH>SX3kFNb(6jl1_-wE`g zK4Cv17=-G=g7+0=(WN-9$>R6)L{LgJPxGwLhlJKgtl2a2NZ*R0UeG?rADu;-{iaaf z2oXKwlU8Vv$Znh{Z(LlI^C4tI;7k~FJy!J*>K0yEpS_i;=XMG|LY%@1#3G;%w@~C9 z1>N(+0*RFtRS3CZQV+Mg6zFVUPkE%(}8Udaz$n8hmA4;F;IuzioN?o(8 zO8MdNfI6pw1K?p8t4<2|Z4GOdsIhoEmI#t7QwzCIP>nC*pBq*pbt6K+0jEOM$P3Bs zuNaQu_~Y1Ud31C6CCspLX7-6BcjS(>9z0SvPGZW?pt~f219KLXKYo;13I}d zX*mJDWFs-oD?LqJ+7qzzHt8H~B9>q`-;Wf$^?H8msX+yP*gzPp%I^Sr807>P37!)< z^GM5-bBiM_kT*1y1>wOFYpkX0I3&+VJw-`(=!+d+-$RYR#g>vbYZ_4XNAxo-JWp<- z=E%WCsvLprfcoH&D5^LET~$o9CFW~ajWZj!IC7#EttuuSL`IScm#|C$FQ(Eg&LHQj zi#A}=>LFtV_e_t0;j}871-f$^3P^DR$nYs{M0Qs@6fo{DW>4!%|9~=~+tPoArw}lR)8I24w> zp4+1am;dOUwlhg;jBeUiZG(i|=cY`^(NOzs*Q00^r}G7rDjXYiZW!{H975ItMpK$_ z=W_3=jHJ)s8ny^cJNK#>)-+{HnrCME+sH0AO#l7W|Jk-b?N;~mL#7cegoOhNDmw2u zOk$;TUQ62J(@I7;fA=VpeNGza% zH*OXIUgTW4FC%wdw;|p8U)y<^k9(fsRx()wIniJlc@W~dtv+-a=*ZWxXu1@)c!j{m z>+Z$IHR|2Xb6u0`TT6i3C?JSuNjqc0jXK4_Ng;C+qz_E;7vX}c0Rs>rdJ($Scb3wW zB+*|sv~3|R$ggP4;jn`qv3F^wPiGENu2HpIa!C#j@U^9FOoC&?3fF1aozV~RrEuk5 z?bj=yYQnpj%kXq<$jfX_$DSNBQHiXAqEJQG#N;G&nJx}DBZ6vhn_+ZwlJQpnpgt!9 ziSw1taUr;InwEy|q`Z4j z6RM#t+Xbqz$)wU!ejYcn?n9gBakT;;N^arGuuG&xUsUUV6gNF5)_M2HaH{2Du>R-u z7k3kCU;1 zlZ5ZxKo_)jK;!n)uUxq*Sp5~6vViUgDwoR!$C96u{d?;HAPV{{zQ(}OASH_0cuvK5 z@e>dXQyOb}5pp;mJLItb@Hxg@8rM6McUA*N%NBte5@%+RQXpAltzDDsWYXr$?pwJx zRrxQ6&GEFvrT$Hi93rpfY}P1coTG~U)Mt_q1YJDrHdE>b)`NaRGpF5vCeh@gI>n zF%!nBP0s$ygzgUUbg8zc^ekNwk^`KN1|5i9qBUUU@P6-KXAvuSH*dZfZ}IHe=z~&? zptmAG%d~b}g_%DwPX}5rPv%*R=j-1PTA=bd9#5n|(fbmVbb0w(Xd}aHOWccKgD6C^ zt@^3T3MEmKHx!{_*hU|+zQvqvNoOwK$tD((Q0`x7#gM62NH5&6bDI?1Hq%7@)f1+Z zmH(f&{KR2td*V>SiOkDZLz}9j7lAjSAaQk!+k1 z>d@ZSEjtdYtX&LI;6|th3us~Mh6WW}sZV+RG^G)5up|WX6@3~>hsI5rE)-`qi;(9; z;f5F>Ex##$~g1yo*s}Glg z36d(Ioscs|zj*KeQ1umXRdn0ihnAKSq(M5RJ4CuArBgbjkq+qw=>`eu5RmRJ>6Xqz zcb{*L_rCA{e&YOK=FHhMv-gT;J!|dR>-=vqc4Afg7HBrs8M)D|Yyk*KwkCmy9-Gj~bSu(KeCmzICy zW6eWK*ZILF{p2w|A~(0A5p2!weTjxV-WxzA*w>5R-~n)T>UY8Dx0^5nl>$nnx{6j$ z0GNEDcoD|oskQOC$T(enlwoKQ#qw%V7g#Tqsqdq@YS*xFf?lg03Zr9x`~_JrQ9_JPMNh@!$;!+ouQ_91=|1#n07y6q%1PUI4QetD@fm$iYSu-7@o{xT+aaJcWQ#xlM6r~2YB4K2eI|{ z_y9MtwoavET}~Mj$)Wwe{OLwh(e>3|V8PxYv#FY8So>x~wroxZ27W~1ZXxJX7+?-S zIcinig*Mim8bM=%m;yxqqOm;dAD4D@?AdkNrW)W-&+Ns)U_eAkzpwcR7+%15qI%s9 zTVvmWoj)DT>#$-hiF5LvCiGxV-|Ml~&suxz5B65iTIYE9f-_N8ltDnKVx2;cfQcJ( z7UkSxE-(JwDohGPEAxNQmaE1q*4NK_b$1O6Y&V1}vC#0w8f1t>47nn%aP9*u9Rq-> zpmq$IL8^0R^d%bLZyh(($z5ht`<<#5$og2yEV)&k^{OLJFrl6R+t_37aF5offJ0qG zV$yRV;Y}-PvPWzvUa3oBa-J_UFx2zhlG1`q^Us&ok%rVcWl8k=s29ILbgY0D2Cc2S z#R*ic+q#I0pUBM(B1JgYF|=rFZn=%TYVS*b5zMifto5I#0-{ykpF=4IGL=ccLKmC* z(E0gfKOVhtc=It49bGSh*E**)&!PmY@QPZlS zV&-OU(gu^2D!kfDGp>wFEZaoycjD?>7n9ss&=v}n?7G_yVC~JS*3H@D*f5teJTs3- zZLcJ-!Lf?bLn4?0D!9%;L~}bZHqP&%hyxg;Fj$0*$~&x!ss)0LvE%nNbBf54zdEgK z7F#8GOo3tVAOy|(Ip#)fb6r{K@vkt^WyHI@I~@Fw$Jr2qp9J4qiW;yE0x2_Jg6cP^ zqK!&PMVv$do0HRDrQ{*rih~swVU!Nlf;w$IvDvVYBG*dbRzb>ayaQJzLMw}8-Pbqe zcceV_oHJYC&TeEZE`ghnKb!FZVt;@>tw$xwpF<|CcdePz)pt7mEH>?R&8JjQ6hj(0 z$E$bb=ZWqo1eHs~kmW&PiNg7Kq%5w>p1 zky;?r+PJWRFkbunKu%8RuS~lJTEq7Z!GJ)wdwJi9nQ|9ScRxjhPM*UqX~J+5VER%& zP8jY1_N)X2Y4UKm#)Oo-Mp0B=Q-R)Bog>h;v2}P=3ZY}PUGsDbSR9%`j!GgUlvr;q za^A=ZO(2i}D5*eZbbBld5;n#o;Nv}KjhB=c`3kS1IUZs zJ?A6kYJYHhW@xDCsO3CY{|2Xnlk*I|GkNBkRO!|omoqu~ z!;mci%7Ppoud2fGhOOhPjWz2Nl%iAaK6C1|RS(h83M86UejQ@xfB@JJ1j3_LV-tK4 zX5Tlp^dBV%+W?ztqESyWP*rexTDl9?O;Ah%V~jM<7-=lu<4TG2^;r+y9_ug=rq^lA zwRv;WEV>ASZo=R^=EJRP1**qTITiJ+Vk@c2fc{8`3+9i~+vbEtU^MKw3sW1ijz zbE|yzf1i7p;|u~|9&#HAF$)`NY&PC;jP&F zu&)6ZONaY4;N1s!w=4=+MGKLOrs}gH)35d&s2WAOS3T)!|A>`Q0Qppy*=ZZ1tCx+nW+f2$c4uK`nfWaV_&oY^3*k!Wx zR$#2@0i@8+v2*0`D??^y>Jn3&1DINodl|qrAU48bOf9@6puQwvhSs?}Z3wOov4b$> zb>MvmsUupLW@w9Qk3;~B4Wv>u7TM;n;?pQw8{)MYMx3p>oX#FY*-e1lGhU0Yt6oc4>zfsTWQGxU*)Mk(8a)d=R}a1ExLIiQR83X?E3$w zX;zoMVNFvafIzWfqP0%AhZnUDEt6V6%>4K#x2vNS2uP}4s#eY6Mna+UnjPJ9dF%00 ztD5~zbd>-eg0DUf+SfZ4L4r@B0dXr<=oIJ^$cNv{ZH>e8rrwzcY-Q>FOc-u~uP zhPEX38y`{AdA_rh0g&tYmn6F{sg#|kk-Jc;;g!w8NK%0}%{;rmVd<)p^<(hjlD+Cr zv>)e9n%TZHUe}GT1FAqguL=}PIDWKo_PW1y#*^~0CSO4VLbx_6_jxTm9X!R{PJfK7 zLtWos-%ESdrY?G5jQ{-d)QRy>0!lEUWfJor#)an!JN;=F67pA$f4SAH4AF!AbUA>Y zr5~*3v=m#%HQ(LQY`d>>{@-Z68&#xkME;$WGhuJY*R0^`UC}vpo;$2wbDq}!UkbKvGW(&GmFu@H6W&kLz&lZJ^qJ9R@{n$*fEyB?Wc#lhQux|K36xFV$2`}Y-AyV+yEe-N4f(9) zuR<{8*3DUoy!83~qW%h8Beuo2AI*#Z)B@DM7tiz2NWX}w&2WZ>1h%d0g##Spf}1C$ zMmEGiKMg1{;ey2l#VE9_aXp`LE6m#<56{P^=D7>NhoXo9-)m1nu85<6l^SQpJZP!_ zH<8^9gq%Pg$G@r7VqqfX*g-upTFCQ60Q0kNP4k=wa`aMlf$%r&akJV5n`>{f=e6;t z@@$q&Gse1|WOi>)^`z80&C8!G|6q{-TtP!T*{a_3-*t+4zkrAUoJY$qx2y&(EiDBa zSjY6O^1ZpBp0rtQ(9c;IUa{toYq9v(x49ZwMDH3!xaZG(@zL9~@^*p#yUNA%K3Top zhwNM!+&V^|)Uh~G@ia|KA&M-)0@+lM=z=9(lNI`qNRBc0uiiJU~CcOgSs6ku7yHwn2FTH5G#CkkD^~1MHuZl#L zp6?)M!y+E1Z$=(94Gte^eXm8v_DSmfD;F-NJw6B$9|JL@AD0m&rIfgC{BWvg!Nwf8 z!h;Z3!1HQG)4T4u&fuvad*65a;NYMgauR(Q{04 z2sSX(GZ)iMk;hz36i~SEpRgIloQB+pB(sszsW!vfu~L8rup8%- zzL#qvkNLirN==&W4{y`XGFdQ^^1YO>uu{?sMCR zdDM1)aN@J~e%13x`^|Vn6^_md)QEoi&gS%KXA-PbQNibB8&b)WF`TM9#+}D`(|*q3 zTk?eed}}W9B(ieCD#CBCR>r#EpF%dLFX$X~U2D`P+4>e3Afo=%>tl+$1d*AN1 zIqAlw{yq^&^}Y#v=)<|WYA`<;S$3;nNB#hChWOp})dfN=v72AOZtAbVEB}WQa0Qj= zCRk0n@v!3>SXSIphy) z<^i@=lnNP%19epJ002CrDhnxx zIOClip3nSQ<;doSmSFpj>)8%%>i-jm;rxwX*%KE%w^BkvS!cA4C;!&Sc-kA=sOr0k z_sS_E5Ig>BEQLOk&&p$UYDi0BHZL?zhTr06?t(~t19g=#6XRFP9)U}S64vs z6Z9=qPsAVDY=Nf*eeaHm;t8djdtqP7s?sq;x>0_~~GWPzE-JbVhaN&xjyt z1gKhW5n{8xvGgfZ>-!fPK*I|SqZizEqlM7(!NFRIer<$N;uSdIC>N8S+TT=q&G6j~#KE<0D!_CM2 z(4F~Q^Iyz_7`lm{&eBBT(tjr6zbuTRREvZZlHdO&lM_jtO2@p1`2Gz;1GIa8yo|{s zQc;3+aJ{^rw<(LujQ%dsl$N=fKso^kPT9xkPom9AD`7DS{&yf>nTISm+_owmwd~%H zHCG-9dXFwRxYHIy0HicKSr7IIBGSZ=Idu{C-yve(IOJ{VerziuJn^>LZJi@J@h)+& z?YHE$+%bPh9P^+x&T$-L%7`u3+7Z^Af#N%5$qbSZA`IU(y}4CLh4t!1MdpoAofBa2 zPRfprN@dM~z@)Q^R)5oD1vk4tH1i60k3x{fIxqiz*;!kW>z^CvP0uVVU3*@o zqcWCxAgfFXtx538#z=0sxpA~Q)}U{HI}Z1+Z$O^_#caO)VX1f0)OL{t7C7;|U%VpO z^+4&IO&qiM{4%wV3&^;e{``}v$g!Vz4ZH*fkPap>d{T7Q${*bNtLsHXW2$o*MU{N$ zAw=}?W1-sKdS9JC8;*5pSgnxie|4IW1)X;TMhI7tDoo6C5;#i$7}MSR=*{ohAwoqj zEKkI@=3P$!l?GMe)>Zt7-wM_~?KYyMFv2zqp-&7v`cOjoy;NXgT#l2YB@b>1&Vr4#5RAkkr?Is3E^6i;KtAFqdtSYGV1#R+=pxmkQnSxYeiJ{m&?)jnk$l6`% z+ftPO2CzVKiw!~Nt1g8M>s-Pcb(v+RSoSZxsFm8OT4nexVZJ{HeF{Wga+1R%)Po7NS6_G9`sMeOdl6;dN@Zd;48V9Dw$+`Oq^& zJE@SG>I^w*6-kw%DyV%fBquMK)2+gsCJ`hNtF}MQB6NS?Aog1f)ZRd8Z<2&26wpuJ zao;q_!!K~^uj%}7$yqofaF@v67=Q=Tqkr=OV(UvVX?jf2Y`V;SzM4{e6N7a<>IVxM zi7hC7bCv}Q5j7Z>>ymFR+%4ndT+@M++8V~xXfT; z95stLl@=mH%T^8c40a41XM4{jH7}491(kK<(*kcmkm$jSi}XL!Ft}u53A{e-+R)x; zGc)dm81S0VRnfl1u$^2=4 zZIPA({;2<|ue>3OAzopKp6V!#&{NZ%qz%@;{=&uG|4dRhhw(WGU8#$vWa1KvIktN# zCL^4&K4fOv0DB!`kJBYNNxYmyz)n@*Z`rwn4;Dg)hX}oZ3OVNRz-z=+wV08dB2|I! zyv6^8`GDl)*7Q(cuQrjha$wEa-v0x@KpiymxZ9GMGlX~RK#M~Ge8GBfqZka|fgR8% zG1Pilp3)#QAbkg-Hq8pr`!w2TMF#Ryhi1|J)@UM4!`}B*-uhqaXLbYC^-9RbY!?3xnR(2KcMob=PE zAW$gO&Cxm|-IuyJd@N_ATY4!eP}Oq>(D) zBUYFb2BK7Ue`wf(f#ncOt=JpVLo4O=nZM;FR$M~*$_k%x%Z3p-@;?URZ-5gw`91Fm z+;u#;zjvG?)Us-c4Xs+8Byu}Zs38T6|3c?DzVgdK9{u9a;keI%j`w?=DRzG>?umf< zCjcQ2x)K1ltc({q`CWc19-((^@xik*0Vw4Hlb9Lqgj6Ou^o_js>6(X>*v$LtRrTFh z4)t-bqWUdv+_rIr?ah=@Zud0|-YxJNfq_h9VK=29YbO~f$D#%yqv5V(WZu^@^g0?-c+Xe8E!YI{TJ|afVuR znlNpDFZRv?`_Hf2_)^Q4o5#v2l0S})j9vrvrWo;ZyqYar)2_&4K$RxB(Wb7o+LZFt z#JZi^vH+HgUTgIiqq%d)w=6g>`x+56f5P;?$25N>_P z-)9%J^76!m$MQbp$bRsQdETaNZoeHoW-V@?im*3$Fy#2zLK7GI3(uhv+z7w>cNQaR zCE2-_VN?kr!1N{kHf=YQX-Lz4^EnlFv(_n3Tl+l+$qLD3@E=y)R@-%I%{lUfkie~t zv8z_0a4B(0j%tO@>sgo&aEt2XPuLlsie~Urd8obpxvY$e2fO_pa_j2*p!24_!|B8OI1QG>0=A6GGHfUd4V1ggEKZk-`*;e+~UgJjVa`$tAF zVz{M>R^Mno)r!)C@Qi_pL~sY0;>KNE-xv5agwFTh3Gy^a$^(?sFEUtdZ#H8mV6Li> z=W;6#{Z9qaA9W&C3eP`T&crtK-zA<~U;ptDFapO@^D+*@TC1%9GLWkRHhj_0H~X6t z$Z^;bE|Vx&TLJ|p$1O8RuM8a3(XsQtY!+T8TDyDB`;VMeJrSDQZ7*AAs^_N&N3-VY zF~0hkUlW{0dRiR3<~F;z*rpaaN?6s?%V;B{f}YznaigHbW{mOUrf0$qq@Eo#mK z=TEdiMESc!F6kBz`AmCE&r`9D;OwU}CGYdPhCjT|efGq@o7tu97blPD_&#}Z1=%6x zW(Xd&@T2`RwEI^0AM@jbn+WRhb!Aq{u-N)#Vn$F)Gr7?6IHr^J9J$c*hIruBg9m=f zWZK72lIO*E?>M!emKJ5-p0z)Ok&$_C^h^1kije*IGT&whx!AOStlhNty1FGY5Q2;~ z=--AZ;=wN!Q>xSo(BGBTb`Z{RO!vOE^kP8xGw{?>q$VN_TM(rQg+bKWm%1h84 zT^YjM$t#f2P~x(vv_nxQQod|Dn~PDAYu@U_A_r9i?3zs?_|pg#ui~fcDaHV z2M}OEuW+ua^jb^sY25se*p832-$*2}^KAf>>z)R184C8uqnB8v&K!<2Fv`|d6eAL@ zKo$@ROBue;m$!w6Ug}8jz=M<>y;)w0rJ6L6W`5zi-hkL#f(&DB&;iz?p zI)+d#bQ<6rxG@mn&g&)fIs@Sh_-LfG2Lkl;v)c^kWXop#IB5mnjFp)k$%3a% zCYbSiLyxgW7EUEs$sPEV8WW~Co8><0(g8ZL`j8kb2W=o4PVR@vRZf??jc~zK|IqI2 zwGbO3dEd%XK7F|v^~xdN8~iZOBF2w4qvQB~9=UTfkyM#sdouGSTd#wwJ6{1!JK3sl-W7^Yv^*H}{vxrhr5*fv@@mOU(^ry3-7=bZ#yXa)iH5jees&x(%EK zs+K8VaL>b=O==B%(#7N2SUJePUHtCp#hTV+sL8TNaie=C>8PoIgc(CAo;|jZudZA@ zE!)TVo^?c&A%gkI3#J$gIdM$fb0y^~`e8R}>%E1PT#?BGmg$>Ipn+)gfw(~->gj{I z$hiZ-w{Lsz%FZ1-XcMV?GxBA*g@BVMNMZ1yAzs`eDE4(V7xS z=SF>4m1q`hq0Le>vk~4Bj1ag;r0(rU(2|6LSR$xX>f7U5S6W2hRCb!+Hid><#A15ok_Pt~E zxnG4uz8BZ8=AgjVe1t6k`SHmELN%^54pem1v6+7KTtc^xAt0id12Gx$H?6dOp$wgb z1=Y)RUzF?FqrN#o^9urQSN$pA=RM_99uW*kTHJG9EYE3z0H}!ofj)-3vN2<2V0n)H zYYT01vC@A_K#R6O9l(nA^y@OZzyF44l$Ta|9zQCSuYqbPfQ6*Ua5iIV*HZR`?#24C z1&^AREdv=x5Gdlbze{2EQ^ql?Cs3)4e%J9A4$GLC4_uz{zk7gsx%0q|sn2D69<1p-RaQ zoJVIKrR?f?c2I^kp7Sv!HL!~=$}ofnkH`cX%=p>z_VrlfVTWiyzcY))tRRbBw%l6{ z;s$t#XM_3F*+FdAzpxzJjHciLrvEU*CYgetom%Sa1mXO04-2`(T`jdV)zy z+FdV6_0CnNh`F?ND!#Vzac4m%HCDW_Q%=#R@|%6i#_3(ij@L|StH<33#tieB;6iJa z!eN7p5`cTM^bMc0xe!+Lmi`Ggn6w|mJSl9GO?{wZbW)5zA$m=Fib?=}s-#6&t>%osu@zU(GF9V1lOF;vyQx-Z>O zxM{L1ZFhY2UbW(|vMqWHHLPW79{m`pbadC*nyU@1*34rK%VfS=?d@44UW|RIB+sK~ zR$zi7Pw1!jN1;@_~Jk3$>I}t_IkWA`PC(Zf~zh8}4xpKqR@^cn3QmN3d`e{Z48Q1Uz3!WtvLDOxnex6#uXStX^1MgCS%DttZxzNd-#L#Y&IdL3C2rZ* z_f+uDZ};&>o+2f9l~9X(6$?0e@{^%*CIsC00t&`abi2;v53%yhW|2FzKGw2NtZ$>& zPoL~cD$hPjU#hlFEcI3gCcf<-+q{o?;^C1u{Yh))bg^;Ch|R)=TNzIJR+A4O^;&GI za+WNZsAZ4q`9^r%4zmgVsm?hneWtlCkhOKy{6(YbM;^y4+=j@WXjv=s%XEB56SJVN zjoc*`^$O|Pn}oJ6$V$9M56h}Vnl<91*dpNHKK3JOL<7#P%L4}^!3YT=-+RU+@|s6z z?YjOTn5$QwEn@#+4t|~dl1KkBX|e&F!OhebmqhnW>wEeha_W1Blswj)>3b8?@?ifw zn*G#?>8-M${}lEsYgWcW;5E_U!#r%=t0%2+i_uGc=}r>}e8sPdP`A&g8V94TmE}I= ztbb%1gLE}@&k823k-|b5?M?$?O&=g1n9a?u(*`LIQO3XOEjs*Ik3X+^g5=u&K$IwRwWgB0&OMlMq3>etHWT1!SgcfCQm z3UtD%-INy|MOosJ+`Bkyi@a~#{Mw!!|I7{P((Me76hPF7fbR}0ID=i@FGifH(Tz_aO9 zx!faUdqUxH2K$sehl_Exo0X&i*Kt-_5LChV=VdoWwkaDM1ElHSL8P zy}BQqS3Zu=VdLGnBwV?TeUoPw=rSzzFnpBW{Qc4SH0e;Hz7=2gwBsUjbS>C5b2`Rog$_U^J+|U}FJ9|^hbv=5{oyrEnSwqQ^PP+;kLZ26iKK^+SK}aiC z*z#q0_Kj@NU#l7Av7fBvyYXURG<(vf`P!d=A?qUuDL!I{Y`DyoR!+wANrgoXOxFxB zr{b)0_*mU^i`+FTHA8k9+Ae!pb$!+_Cm)1|L?BM1s}Ez_Jnb%bF}_bgu0>Vk&fuwz z?4i0nCpzoq1C!l$jYIZ)8{cL-Dv$K7$TK$^X57HpL~@!`jf!3JJl=Q%%`2m1;xqPc z7yH_jE$h`0`toZLN&j`Ib#uB(bo9J5w>+oc{-}wsr0?l{U02!eb~VM)lB{uw z^y#cRj+FOKS!5t{I$A=6Lhww(sp*>_7@pHnSIGJ37q&|ozV1-)0Awc$Ns0SR*z)7~ zpCB&g?U?kaxFT}gJ3e!oJN(=FKkVDp^*Zia58?I@Lgs&&ol_E^%W z?-JjzKEUXN8p>Xx_`|k9{8>ksJ*JVn@csBAw+JKfZY` zUGL??xoP-D(H%DoR71?wVZ?Vq@^G zaFgYpfPUOmcZ<+-fVz9Fi~KcT3LpORbN1Ba5=7!zYiajuY8jb@ty2Mvt(<>qZmL3t z4Gbbd85igxDbsBeiN?b$Wv%+F4KIY{4JX?N0Z1~KF$Ifk9|tk-u!%zxbG4ZKPFG}oGfFz)Eu|xLhZ9&Ln~@hQd4idg6nTi5^Pk;WKbJqDP@Yr6ri9|spCr5x7f+fV;3GuRkcCke ze{L7%uZaT{#!wB>>~2xq2z5DURlreaV;mAtgfmx_?SINN<^IObMu!tl>>nbn_AN%* zjL2v}U_gzIuaVAUI5ND(yV$$*Wft;@uuo^EPQ$7bWbC0q!XHM|liN zr_fu(vUyP1&Q1l4`Tp-wN~4j-^yu#z4=dgRSzHk6RdC~3zevk-K3QWGHv}HG=1G4S-0`nLP1;6AVy~6(9{*3rAbILa_^`~ zriL{O=8h9TZmYdfOQv*$9LlN*j48^Qa}@LaqF7mQWC@g3b>TJ~qF`~l&`GT#1UZf3 z#s-_sqM6N($eXr%>l|q9NIqh{+B?z0{W5rs^1&>8liha3Tt`AAEcB?OsDci`QJG;o z7%rqKaDo>GGVzv&DbH8{|8A`t4n`N-=}=9n{(LzpB)m&`QK$3c5C?^nDV*6$w)gLe zq~4ns8Zk)ZPNpJ@fB!iv{vC!=HU$sMnmZh&c0YtUkZnoKNO6K&0HNp8Y@aP zHtR=efnS8E=CBD1Lcgx-=w!QIYtjg=-zq20e?RA}0N3G-Db)6yJId<2&W7)M86UxV zr*`D0sb(#3oIay3bj($``gs>_z@P7<&pZmul6M@XUl{s(Rf3Sbyl;0u@?gx(_P&A7 ze?$s9QImL_2Cz2laqOIjsElWwZe))fmxiT|drbQ0&j)`xAM$f$bDwqoS(FlmZ8twx zvbXrf6~-IE+LnIGscNPjZpqPtm?Bp?=&I|x+?xV&CtWFhKiKlckVq3`-_3U^_Bk}e z+O=l0gvhnC8C7P5Jy9Q0UdtPr_(UcQ%;>Xmq0L0RX=?gOvbzf5j9TV4+@;v$qYgO{ z<8_Vh2P+^eCm|tWwCITXzAg&Dmc{e@Q=vgdai5pMAyRWf)G{FP;rP&{U02Ov7jdfn z^|ND!f~l?85JTy2LRqY(td1m%IL96|%E^&%X&rtZWJ^lpadn&G=-QvQd38_4M=xG% z-TTm1KAeWV*a~==lNyHmWs&M7_FFdksnlN`rnN}j(<4UC@_zzp9nCo8DOTNIqiNW^ zd|y!}UzrywuUikirKHT{EEa6DqTI(NA=GIQPlYg(jVP6o8C?Tv;x4YMKt}@=6CA6N zle3A0!O&eKpqbaoMr^$kg{2W~oaQpT!mPKk{ccW^Z&e$;Y|S;xMYc4~BT{wQqiW`R zT`NEek#os`T%$g3KeZpMVo7EeeAbTIpOZ%n#eIi`rM0LbF8d?=wHJeXf})4`{)>qx zCc6EaOQLfp8F_l20&FGvY$MayoeVV|>o&&BLLPA|7UH{w35&~U5*L`lu8eb=(Vggg zp?;1O#<<>;C%R4^1bn0~r8VQhL{j9T3AE}W6-snaTcC zkLXlz?(Y}_M^Ce6&`B&!5TW&dCbhpnuUPe^*!->1A5u@C@N ztrnub;81Zm?}|cImb(-!C++Q<-W+1l;UEpH`<}Gdscmamm2~EG(MPs?1zrME{X8AO zC-Lr*N#(Vc30U;2n6ZLWV!RpKo3&HHR~LoDBZpxuGKaezYsFl4guLk+XS`m$h#Fsl z2;2yN9)_zP_5o$AED?4HnOlq2K2_$%YnK;}e(vGg);Vs1c$;Tm#L2ZQm(OPT91*QP zt{6NGUVX@QNdcYh1$WBERbqB`;!#S7qu|A=h=-Sm%f$VwX8JFcGJQs)L9M0H0;-4sl0?hpQQ88}95et>AapB=0KYXUVfGhz zBK&>m>@ENyA)pjtK-oGbC9d5GM~d6E`O-10rK~KG>m^$Hkrq(ks5A{^Fx7gRq`H%W z6LW6bEV4f*XJAU__tAbL{#fbwU*-2aQM`?8=AORKO4Dizs@w}_iz>v-^u2{vB)0ga zy-~Q*z;uM5!G*cexI!Yow<_L_t=}(H<`22A4QQhUojA^GIDc=xX`;T-)%Va^97A49 zw1MC;ZYyjC*Djz<%zM^{;aCU5QqWB~z_8V-Fob90A>=ZFrG6e2P!=h8_OZjk8EE%O z+j**`e-ERxSVB{bbXK$usZC}a4fZIXSJZy_ZIqQ02aA#B;}WYi2YXdMCilYnfY_J@ zmK0N%qX83#mCX4iM<5nsQ5a20QpOO0)fkczww@ez`CY2NcHfO&dz<%DL&ZQJmeIb> zIPbwsf5DVE^Mv5rfx353BU6V0Utlxp^^N0cFc7cTbOK zb~6OU?G8v)Uq=9?{EzJ)#WmC#@a3H&Vf7HJFvXuG>dwr$+Ff|%j6HZ!+Fe{5X=bz9 zSa7CHo*8U-Oh|?P9i%*;=Z9CvBD&gAQ0>EsQpMsLa9LL*t=iN@)fWG0W!>xjl#J z19=rJ?!3iPAHlI^-fO+bPo52|-r(24xpTf?6bPCjASUh$e~tp1Ndt9aO#1NOl_GLV z!+!uA8GO<6JZ@kp-}l5oPPuPy`l}p9;@HzPe>L7NG~U+ZpsD&JyxA|~CyIJOS>Ym5 zj`pq~y1Q?&@k{PgfnuABiLZYk~4azxpjpvg8kBozm}NF6L*s-0&Y zMyRGuUyd#DP1)FkDgQ|yKp6a=yRz)^jYlZ zl(}``U$~^luJuDTiKj>wkE?ENyWCph$ER9_-(CDhGV1=Ihzl&{CtiR&@v@XAQ&(o7 z%&B#Hy%~OZ!K}A(s$L66xVXYklnDO42k29*ZXh_ zfvlzI-7Z@%*B3^saHk1BMur?J9f#)!&Ty)U_7|yLKok?oL)zz~%9ImjkMl#ElI=rG z(^({Bx8Q?VijnbXKgwZG zTb1Dmz0G;D`iy{3j;@fVe)F|TczOMscVX=;VA)`z7o8UAFABk(omIsHQ}rBybCLNP zi#T86_o!qX5*af~m}`pLLz^4YU5~frj^>5jj-6JQbg$hFl`&^;_hHKQtMuv9%;uZK z)IVL?+!%a{T4#{`;Q3z%oe|>1<1z(|kPcM*hG^cF=8XXELiSsQMG19No|;58(TpWWW?xwyGt%gHPLAq&62BAd zp{o+&b0L_5<{Jvf2BOKPL_VzaU>R%2asE){4x%{F)uJ~;OM+k-3cbd1L=X=Q9c`Qw z9lOal$-?FD)|Rq#cxAlpcJk9(@?VrC-Y|%|imHfiyI3xbIq=T(mX2-BCudfapJVYN zj<-1OIE43Wr|#RbezdwK^odHls{#7-EG^fTeb|_Ck;V}Yq0*IuGbN)_I8w||v$&BJ zEBqse|H4Q(PI~Vod;{aikg3M(OUAi3aXiv~FlaQYdz5L27o146csrUJeDzV9(aQQ;at?1Vw9T`R5|Lc8eBg>TY_E>Z>bW z0yew)csQGlWmpl?A-AihU#qE(iPoW|y-*1!MQ&q_ee)IF;%KKzl^mq*$jte%MP*W) z69dFs1}+7~9&Rj}6bn7BLVN~EMJ4=k2V#G2?;p8&ofeQma?xEz(hR&$=gmt)c)X3z z8Wda3!t-||aFzL|xmZJHQ}3H%7Cd%GPrM&){yavh_m6T3A8UCI>D)#%wC|D|?v9$b zZI*#SAhNrSqm$I}d5=;56P+X2Z1*emY(5MTp$kqhQb&jgr1XY(s{mui-pp{R-7VvR z5Ak$p9I|1cU&jg>bu)mRS5!9MK3_XEv_TRdx-{kk8+>m+C7)|PAI0~2E@~Y$dqxXy z6Yk!TwVgjCWTE=}x~bvudPrP-?#gRbaKya!zEl?xy4$&F@gfW6X|!)U>zOO(fr)9| zz`<|zaHV$6k6H0JmcY0Be4f3!a#8U#8KlkoMtL#!&gk9q%4}t}+pBD+r{?S7UbAPK zw3%)m-v=^?y#euo?JDm@&#p%5FEKP@4P7=4A?-lioRoL2oT}s>2y{4kqMdRbKcFSn z8wn6Qc5|4W9LkC4i|H1^zH-v>*Lh)ptC~s3C|eaxWpp^FYl=Qp*;uXaA#cpL6l_f; zYx+)c_-hk&((%4ZL|<#7K+BL*eL6A*$Go^{s&d?tBHqHxQBLYg3F(y8{L)}t(b4=* zi+=1w%k(@6E0$pmEn4p8dK--ql$Y~^iZoxjD0;+kld5QKt{Btb`8{H=Abw*jDPr0( zGcVD~so4AwI`_U~>3G#=II|sd8=T}QR9nuvpg#UhC$nyMBrrO3w=InBHSr$g;#x%H z=f!Lr^Bs!!{eIDCrH*ec_3S`^r@>IBXkDj&zt7E5|M9~VnSJ9A*q6DmYLRTZxv&*t zn#khCurpN@0&A%YBq?Xa+3Vyn6lHw)`RvbAf*VGMe zw-NeFvLq)qzh8_{TZfYc5#M_Hy=2!snU`Vv|@O*twh$mIq62R|5|LNAnexoaRIeZZ1P6@u_(k-lnjW>-~F6<-9oYujL6jM&`WDR-2B2ohh|2 z#OYamJ_nYgO7^`S-Ga9-5lO{uA1aDQO#L$RC~65uxfoT#JDm5x!anD{BJQW}Mx6d1 zSziGZR}*xLyM*8_3GQwoKyZR@Zjzi+;x$+$@l+N@71fN zYPYz3r_apv^y%q4cc#hm?YXncqpk9!EP-E8i?KABUqFUw1ds0wNB=eElIcP|}@*qP{*jKLSbl;aIx@Dif{t~26F*Vl@{OP>Ztj33G z`N6W)!qHq5I5kSeupnnaC(ome$C<#v>^x|q%3uSxaHv$BMt*j(qT{2hgK>MUeBMqG zfr57MeC_zN<8XT4lIFthaGz6s^VhZL?HioSqiR%h?EH&3#wU-7U*O8rN@|h zX>PsQLm3Q(cYT;arsuqa=ltr^jL6f@TxpI;DvYc}`h16)y+knM9K?HE0Q#hnp1kgr zR@5^A#dRW?p8fICz1#1HT=e*TKj?$=Ra9c!!fVmHThW6EZofKm$-Hofrx3Tr*KfH` znv4uL8^G0Zi(O*+s;9|!2vQ54PBB#Hk{O-hrg2oF!>$@mPLu*0i|Wg)iGT#mGB zTp?Wp&w?b`wljS|dQx;=YG2P>^#h_)(I>vR&|i4fXg@cas4WAT#w2w?n5d{}Q2}SVIon|~L2B;B;}e)7lQ(nsyRjrrJ#MIR zj^c*_(U{5rBwKK87_K`^J=W`J4=Oe4yHvh7rLLbqv01x`fJ)HKR8l5~zMHKZ6}n%ZHEeYBF)%qe9Vt2I=s$`62PizR?Y z6ED&+tBO%OZSEybGbF{_$lLT8zQodrpV!1`obcQwnf|`qcaRxcX2qS=eSfb>ZfsEQ ztM%2DdTQlyW?Sx!pbHXUbmM@V)0eJEAZSG}e?jWs8n)xCtpbs zmcocUzIs3${LV#7b9{PSB2M9|!N<1_Px}ttF}Yb6DfsIUiS>iG`rlnp8aT~-NWIde zXVXE18LWJmMI1avhY|Ie7dAqGk*Rr@eULe`9l`LEh5UXdtus!a{C4*8@>$t%5Jsu3 zcE3J#6h5G)t7^Lf#&Ocpzs{$N^K{L7wUp2BI$b&7eAs=p6>xOhFEbvk1c$tR*YYIn z|L5C&5GcU0Z{N^gg5^%tfK5gTCdumsG2s&tOzqZ^zxQ;| zHe2_Gu%*8LYYWy(F7`$Gy4T$+HJRh)9=jomF~lI1%va|uioL_h0j9fa>lS~#1CmS8 z_IQl%AOJz@*t`UH2UJWL)@=qtUz^B8;WubM`Igyrp6^Qm>2D)6ye|X4ZoiW6{q%k! z+^=pws*iu2sB;N`bbH@hc0pQR9|t5%l*GA^c+{?c?FsueUncL57G{7n`qE$4nF;VM zSREW~%?*-M7@d=x3*jhtyWY`LiV#BNLpipzBGR89#h5ZD?Byfi0<-AR=0X}zS|yjO zQy(tf07@lXLD5nDYWZ%;wq^ahsgXSNpY)sj{+JPR74f!cFbt!pykVUmXt#z`fu6 zA=?#SN7s&yT|~8Xb$&E1dTUn9e)mER>y5-yEf&JOeM6*oKYb^-5rnQiAL%&o5m}>R znk!DTxK*v#dUm)0fV0SWh-TdErpY8uUcG~~7JZGCyG7HvJ$udJ$_wgg0C-JAj9Kl+!g3)u6dwA2c4wrzanjfYG(6wco^9a07B>+;+=efbr{|`|q020_bxT=KQYa z;du=z>hxgoZmf>UE4Rli$=eX1HnQyR_weyYAB@uTPsG6qM8^d^qgV%f|3B9fFdK#1 z9aoMpdVYSK!4qFx>qb_i-E&^TM~I(Fo}XEn!cPPsT@&X~H_+PxLbHv$PAul(JkIat z{azQ?eH%ln)XDiv^$EK+;~?v`&jZR7?mu#0j$ZgbP{Pz+B9pGQC3I54DRn#^Rm6E; zXTVQ98m{-rQ1Z`*$9;Sp!~S@`w0|-pa6Gg8;&IrQsg-@5`?1RX)%&%~#andQZ7KVX zEpvADr*B(A(f3a2D?VJh)B?kUt?k6S^mbInPL5f87e?`?_QbU2O2* zT7aXU0^pZ^wwW{u-ihd!`n8P$G->=ra|iY-`v-O2`LedvtDU@ z?k34g#{e4(%xkVQA7S>$+#X2}F#UaZT;gh5*6)HTR%Tqj=86j4*2HiA7W{hn>4%a1 z$D?X@|D&dW1~t#ndW!mNmSW1Ij@xb$Vo6n5`%Qy)m+roGXZDd1eLaI^lD+q7ZGU_l zzJ)oA$E`U}&c(Ng7wqbc*Vjdd)`#sU4SJQ~(I%Ol@+<QeI_8(wA^cfO~F*O6_-*8B zC6(ncpYT~b-QxO3NrBQ#obf9%O$ID3ps zoPTLK4bp;KBI|*+1YFie$HV=G=sPXq7bZHkwR{d{S`0k5>naE`zdxlz8tCQ;2?kdeMrs2x!zhAXmTR;8T0fM z@*z02WB1B1M6bE?rnVb)gCP3>7H0*^uDQ?=(yQ>UZu#lrPu0H9#uK4|$2J&yL*Rlc z+PfB3z{B)u^AOuNLfhx+G}Ogu-JQTMjCHL0Pe7;dnxgcF-G{Vi5MrDyg2&{b|I=ye zNn$k$LUdLa1lwp6S6gJl{U}D3ZP_LCoAL_Vl>oh1+BVEA-PUvRhmTofVHs6nvw6Zt zD|5iFKbZN_A(|+97A>LqtPr^lV zvyevXX)9gtCZHE2OJoRDh1SIeEorNqOQ?m;B3>CbUv0ruA5-AS{sX4WN4e5x1fIs`)hZyZ1 z{hID|?wg*-Ss^1e_mh1XzIVy5j(c~oR-I=(HQpzRXV2#ol#SdBdq%yL#NK3&DP~R= zHT;=F`N(ITx9w(zU@PT;K2aT~Aw_IDj4H~G{iP$vpAC17+=3=A1Cu%FXc_K1qP{z& zuRbS~t~NpRCNG(ZUAN`2XD@@cr(BVABpB~MjtuNmm*%)X4R$|ILmvn~AKP@DtGC#7 z?pf;9JS@)HLbG_O+uyppp{$g+l3jZeH9jh64FDFv^>vtzjgrJaJ!N5Mz4l_;e*lV( zWe85{Pv4%VOS<&Jyqgr76ymg~-!1>l{wj9IU-Kh0_kIkt_VByrA#MJwg`VE)N<^FE z6J|Rxi*~%wXac9b&~`JcF1M)H5&rt_RgUm_b%sgj-3vWv)o+sCADrEU^%~PCSCANT zGiP)S)!vKMy2$x?qC|wglDDpTzm#fnm)vGC`uZ}Vl07Q-soRIF_-kn&zGnCq`U5(|#a%U}47H{qyzmhFss?-Zmec08dUWm#=S|n{WSq zpx+C6%Z=8v*2y--P`O9feSuD2U2i?Tzw*%Qe7J4T^Y)ZWr7bNJRt~w7YjbORhG{4j zv$xjeRaL;bEbE5-#<2`u-`mP&ordMTQTtqOFz`03S;u7wFqXq-8Q;9tPlyT1JJQ~j{pNx2=Ti3u0CPr*vv$CxcS4+rzU2dB@sJKGaq>K=jGRmTr2 z!w{@jS?%wrGE=8nygwgnR*&P&l-6$7`nr)}=-IpX8lUZQdoeO@rm(yA7tCsWAe(f} zgnpHG+3c&x0pup<5_gqGO^z1>>7&6JeQ)uxB;JEY43B?*ix~6yGV_JYAKl9UEmruI ziBKKBRG>^>gZ6X0+1OCI&M|_^u+sghDJ@v`ZtQ!I8?WvqvhIv#OEg#F)ciI>G~$R% zf~T`?4t9>F^^tYI6mO27x&xa~l7FWMitGtWS@3rZfns9h8y zbUDu(_GFhh%x||>?&&VnD{|&L*!351UoyglOL(e)^g2Lcq3oIKk7(xn=G?~sTXpC= z2Fs!^SWlX`9v9erK|WAdHrb#GFSb&xQhLwx&@n$BBO2n>a_Fdmf608KA8~? zesIj!bvjN2mL&%wdp0g2eCM@e>wbFEyWh3(l6`;FH$-{%d?B;0(Pp->$ZiKYI`i-^ z){s(_>R~~w)JPJ^OF9P9Gj#_gA3c@l0&g+h_s5vmE;?I$R>`7FN2t|tBIvyuh6F*^ z_LCDce&9c5@Ev1W>iL2{x5g%8#C}jyDEpB~^$HbDP=_TQOwbb<;u^c1B_N;BMq+W_ zMLv@8vR!=>@_K6aZ!_OMV(ZvgSR4y+L)@vJlq_f~abw-oEkMStwiZ#D4vwTyaAn;L z%%E_bXbQ2_&4hp(!ML>ancn4v^7uS~kKa-ss~`m%#T7)iqTE52S_Q=w#qXQc0Q(EP z_^KRvv+?z+QEpF3)L`!_u?}g*6tMH=odHEH%LQElssT}{fA1I#c*tB-2EF1W@d{T9 zrEOPxSY)~H*H#+(!LV{`YwkyMy0=t{3Qkte-kci)v4+uVs-^=fN^I}|785Q@cSiwi zx{&3OZ*Dx$#o#OHHA1erHBb9)%cl<~xWbe%m-v_;vpN`=lsP>P2S=@w?=2}Lc8~WR zAP-9J9ce@Popw{^a*Ub0YLb4GT3M)s`0#!YU#@Y*mhke4{T@Uzm5kRd$3E;lgm+&) zO*{dX$049&xQ#}kkNdGQUpO#jderl+ikKZ_j_e0)qVZY;j8H?vseetBl5VNg1(X=@D!btPWN1yED+Ne>c zm_lQOhw~t-W#`@VJaWyTuf-T`wzuPOrrDrabzGboI+2V{AU3YgqiwT+9q5vQWH%iR zlhDC7QL8pa=k9vpQ@B8Of|QiTHM%i|O@L=@39<^|K>`R#T)5D;mpAq&M+-n=A~>?z zI{Uq@?VN6DOe}HHV;LN$dJs=3r8H;i={#%f&|QJG{5g4A*;{AydLP!eY88XiI44~3+KtN?2mRYzC6Xjh&7st zC%)515R_4sNfI8%?|V;{<`eSM_WiAw?Tx%8U-jsc+uD~`sgdU4Jq(sGt<@_81zfh| z1(-fm04r*L(PY_`8`C!{?(Fe6PvKEE7G(1;Og9IkVGU4H`qcxE-o0Ko^Ph-7fa!Iz zhNN-fL{c?qwgXa$*2|cD=f!6Bb4^s)UgwsFl7`cmG~5A$uWQfy&>oCR$y^Mzu8kfy zO+f=uzzEn^i}*CToW6r$^T6z*SOhqkLxN%6awnsidY4pc<;jPR3N}h=P=oq-a#e(s z$EY*8B^F{b_H=P-b|ArUHhg611&8N!b3Z!md5$cMIu1*Xt~oh_aVcE;$W9^`zE*4d z_2Hb4Zg$Vbdv2l%ZE2WI)~|Mnn9F`Wc&?(H4zzODOIr}!Qc2c8ePX%d8Q6qa4S95uSl9igMGodQ~&VeT@jFju7D81eCi~Evc`f{j0 zVSkkY7BY;XPt#CFN=r=_be_dWFKN&}`kd>2=HSr%B-0%|c!S5wpGnaXIhcl$H(KIm z5!bAO&xLVd@gm#|yv2mOhYe z|6+9KB1O#1PsZ+?^v!?gyM#$a1Xy5ESeN|*k83paFeIw&I`-Iq49y4WxL(w~Ibs1{luD>da&nzy;${R7s#~Si&2Rm1N2ME!$M05U~NQj>#JT;ZE|gRUUQ7UXNLhEjC1DWcOql<$?N2Zjg+4C! zDF4o#%X&1F(QS3{5_W<4$MH2VPe{J)OP_%EQHyg4^qKeY?qv6kFIeRBurz#b<3q05 zAIE$hj#^6r;k`@gtP}LAycKlso!GAQOL%iIEY(Tyo0G<&klIeI4^tDvL%Z=e zUoX>`Dw9UVd07bZU2`>`)#AqDLjK6+e`3V3sNNa9{G_F@%cd>6=k7Ynz2ci8t?e|6 zDakzJlhDzu==7=UodieNAeR)#*&n7H(i5<3CnamW{EJ;K7$~}=UVr6aU|0G%Dy?a` zj(nBMw6kut%Knj)8^&oa+;Ki468q=RqSYb92sVgm7}onWS8S9AmM`@G=>kiiw&euRPO|(s-gl2NC03{wBmaN26qG zi|JLCJGaYe>)s%5`}_gPK5otfF`cGg$Y&5>x)2|z??~D?N4CN$BeVocq9{oaY!n$h zReb}Q=4yWEI1aD)F8`fLp@N8C3xT2fjV)*=8)o#j*1r44Z{21wKy=db!KSt|F{qL@ zrES$P?lCmCDzdV_ECP8^%3dI|(^DUOV`car00Qr=JaCj@A|myhzkSbm>MD5o=T#*? z{*!s8Rkooh;S7i$kJG8g+De>=iT`5GjGfS_9Kvv;y@526HEHGoq$ag^*X5uQIwl}P zK?VemvqcFDd!e!=k-H|B;C4D9kUchXIAjUBk)iAt;{0mb;fb~sT=r9RBo_ktQ>f-2aL`)pWg0Puu~0iS*AjEOL#Gw&B!b6Imcl^L#e?45`ENhbvT)au zd4ThGr zC(nQTdNZ6`%g-A8fKy&(9B=-{061az=n7XRcq~hot2e)~MIB--2iPb|$8Q9fYA_X{ zqS_+%EgmZ{h!6fy+4#)N;leX2r|K*e;EnGiX_WphhO>(r1 zlB(izyG~JshNL&~X7|`FH7`}^z=dTr7ltpit9<9ef2-FOx82K6eAfuHY+6)u0E-l6 zk?<@O^Mpn&Xc_(9Oy!b78KGsZS8!*IM@8)Pdk)Z%XHMpQ#VmntmIEYoZ?o&~%lP2J zFX+Ymt;&$%1QNu=a=G5Y&^29`>tjI7aA-F2ez;S1f_h1LIF`6R{Ck?XX!_NjI{dI# z7SJfrY>CfTp%Z8&GdZ}Stopj3fyWMKFqv{c`U&}mR+A$- zzQE*ZIT~mgW~2NERu2nu$+33X3ym4wr;;BuM#SZyDsBu9-!C$PID_C<@Tv~V^@c2> zA?sd3L9tE!FwNA{nBAOAoxAx_HWwZdfg2(1S0<0J2c=R*myE#d^D-tFeW=R>m?47R zYn#mBPhnIs!g8u0zKxZvn}c$$(-@oHG%AsC)fgJ^3OlkcHr$l8JouY>-E>Jh-pUv< zh-wo%7G5l4aYiH0vELzHG#wV;XT*GXy|=IMDN5Hv z|H7i->De%?QeSlBXM?#rE9Y*dD|mA_QtO+=HP1eW_zs-QL59FslzSNK(d{-rFj@f2PKcVo*& z)Z6#k%c;oLq#1)aUAr89Lkim7TzhZ@yB#f!;XeSx_ED{*}^IPrNA##C4s9R1LV4A3R&TmUfNG=h2E+|2)?A*sr?=8zXu?W;_ zq8U`&sC09^R4R#a@|_*AF{(QK34=jiJj*pO0IOr*#^!JJ3ftZm8c~hF<)=GR zK)J8w@2x5rkdi)0scJr?%fT3jh9nC%%4$c5?+v?pPsd5eew{HU@X<8xV#ro$9k=Az z6wg)*Ro7I}7ge22d28+wqvT!RhY?pEt4^zm;owgr%)z!lr$8!g$jvq+CnPgA#n)?} zYcTTgh%|!NMn@vJ-&YLK~h^cl}T8pNr>9d@AcaiFMU|yaB&08&W^`HRity6~2C} zMFyvLxnGiRGG^jVFT#|(kl`nCYJDF>t z^wy#0K$pdh3zqGuZ3uKHos=*7@0S#}E`Lxb#wwHP8CJP2Z*;*XH&qB{Y}uf2*CPv8 zxQipJ@D+4e9F~*Hh#Qpp`nFGx&^i6R7^4QhCbI^u2J?)Tc=0D7euD)T%nIz__|l2+ zmn$v|VVZ`9utk_`t7>b3Wq}pB5KzF|oiS9cJzcS7>GD=d{kZTI>H$<<+HuFNp+ag* zY~{EhX+AsH47%yCrX_~+2pd*>)#>rR$SQG-o3Idx2qdu*)P9i<#cS%S>TK zzNIR1*1+yJjEee>(S?eCzcY#}@-Vs)>;4pZve&^8`Hd?wGrsexcHi!?C(L2(w;q$B z{IHjE*b6Ph{V6coFR6C?6rqiF62HJEv_z9bak7!AN%MP^JP^A0zzPg-{b@H)WGu?( zdW-3h&R=*CvY1T=xRod@@#HY6>f>?oqvC#Hc8Z}TgEPXE`Bu+?X!E6_qQDq|6Nx5P zH3^(Am}-M-_HCG17`=R;6R!OjbOnT?64t_IgZU z@P!ajK+mRw!H(gI2JYWI(&Q$dg0Shq>QE_Y8I2@6+O(X#)kuhV3SXmxSfPc&iC26z zHJgp0|4#=P*&=gHV@F(8_pinvCs_ApnLNPfg$pDvYWsg8y3v2G$w!7Yuk; z&s(V(uuX|HJZyrIm=*KKsHLcAVI?z2yZSiO7O2Qa5t!$e*J~6S!iwb7b1MDXPTS~l zV>Or-?|iehx~5uV$TGvh^hdzNnh?hL=BD$2zjHp*%g}SJK5msINsJ>U@0ziQX`2Py zj*tk~xq6j)m(+2j(`Cw!Yc+An+X?3F8H(f@xb^Xs-#;agqaqS^JpJW}|7uRxQv5l| zPQ2ldem~aoTn3igF5Oup^^~WY^md-xZH?ZiI74mrI73g;KPpv6ovTVsr@G*==-y1N zr8|)${;=50Pp&DNc$ieIa9%tj*o+Zd#bNC@@ul0jn2fnCoR84*evf<=VQ0M z=u)@6oV48E-$R1(%faqds|4|czuThts}zLi6)g~GW~3%A`}vlti|JiqI#-kA>G=xg zQ%zjolSO^d;h`0uxO}K9osEVMEuJ3s813P1CWc8Ty7Up*8JNSEs;@HaFqg9-u)Nty z_@RQPLiIg<=A#`GM<}`*x-_xU?#*GTDk#>e-E1+e(Z0(>2ia?$vZs1c2pb83$Gn!o;#wz4=rI2aPJTg#B| zE`!5EiRzJ>D3h{O82xFAO&G&h`F5u1)_E{FyTXoLci_j|@2>LcKcC%hst1030d_Vu zlxbw0?%2In2!&@n4J#gST&VP>j_C}19<0C8f?M=ldgO}H=*=J5{%y|tfFLwc|Bf5R z z>By`cG9{Mk*YieT)rCEwpgGx+V+UQEG8=!rLl&F#s2SF z06n?K=4<|M|Miq7kGi50oKys97?7}7mK&5)6F$F?A;yN=-$vpLi-usqac3x#1w_q! z=G-bUL?3{EoM&}HsC8Cv^r#?qC96jf<3`gg)DY4xCRhKwC7)pEnquh2Pd1ZkBJehj zMp{j=Pil0*vx@+Q4xZs=(53lPBUUU`iyP_yOq{qn)4<%=0Eup;&teNRKjt9Z$#J#F z$i7~3gV`byTiSadQ?lK{WOl5pMdI!Q&otDycxdgED8g|x)x}mg?2>LIuVXp^icrXt z3)1)!%wmCgWLcScN~?1g@vQhL(!`)|?7Fwxgh;F+`G)L!d(X#9B>)_Se(Bv9WBlHv zp2qk1md7^$fMpfA=5h%;sZ4ztQ2NHgiYlKQ0sI{@UuC5qbF<4hz)``dQsY2mB4Nng zqgBK9yC!^TAxu-=jU(%yaU2}A<{ug&E<=6Q~c z=$^AvxP+E)emlGLU;nfvLA8+t!CC5IX7-A5ebjxQVO(F}qB%g8trLUKPIT8wx3yW?h03xzbPX91nvJ~lnw>Z5wFNm!2bHQJH(>%js!n5fHwNp z`wr56ws_t&8sz++b2dYx5jw|rc#Ll{YCWCfIDXz&H*!4BkM5PTG_P4T*YTkHMNWiEKpb}}7OD+dCh{&n`hookKU z_V&uE!W1O|w?h875&!YZDu%oWhqFu~pyQtyl@;vMliLN*fWSGg^`8W5u&C6BU0uaa zSG~H>8pOZMVugR~$+)-3%Mx*XzOr;lMnKG?W)g7zae{(;d9f zZq#m04_6qLHx-7Y($7?Qlg&Fl}zsK^-7Co80=NuF`L9YWh zBFxGMWVD=!LDWGg!&nl*NGJA3rp=b65mj!N)DCRvu1HC77W-8{50AVDwKcZU)bsFT z@=k@6hd7$goAR2BZ(Yf{G$a-jq82(*6%7)xv#Qleyx&DN5d0;-aXTVWnYq!Vk2A|B zteJXYIX3e_!5s1_!_|n$u+K*+EC;8CTg5Ej1nY;9<~z(-lKk!IUMBla9T0KLiOq?G z`{q?+_hL^&lWlY6q#mx?n5-B~CvorsV9kUs*Q+!80BTflj0tH!>8T4eLkkVMp>8Kt zi5fa;YOQw<`&T=mO=T)LXWxJ{wRZY2LI^b71KL6ez~kjDnFMBu)_MCt!!9p|PuDeI zSGV~oTps;)al46& zh=lv+p_TX|7;fWg1U+1F8C09bW>CwzN(YjNMW^FH86Z)@JKc=}IpZWcPXtB6**sDf zykZ>~!57it@UtBK>NwSJ`U{lDUvSRw)bQ4@yWRFgCmTjc>C2LZVpL&@DTunGW1WMuw2!$&%u-IYbM?>_U>kzUVxDxw$Ks=4S-3K7V%`;69UWsj6LZee(g}i z(OG>|!=f)L?C*&UWf=Hpy~iyv@^BWLH$Xu0v~1F$kSeRtd)e&7#j-f-ruyG?7&qGv z1h{$l3ITu(VzB#|b8Dam7W4)Z(~~5#d#JKw6kT4aLO_KHE~CZGSqdrxk%Y>O^4T8K zDYSbY3Yv5ZjaDY?zsyZ4%&$1_m?H&@YuZ(UkTHvw!U;eR%LMUO0Cs7(fG6A^oyp&tIdD=F$WrDDmK>R zDXbFXI6znrOqo2faA?&FY3 zYnPS#&0OcI-_(?XsV-ducZOtR>jb;_p?-fRfez_rG5TCJ86czI7BrHZDfM+UyQ1S~ zG-PGRu5KIJ(F%X?zv!kl^>PujHa6lbnCKDWN_ZBwiE&`5 zxXSVlxvpyj^T7Aa!1vf~z}4kel`yS97pIV=(-2wy`O+Mi+N6sjUO_!3#zC9^Yg}DI z&mMGV5=;aW$Z8#(^50}(#CTz8v4dD_)}_HIx$ozHPMozvj*J6+0tJM%eAY>j*lH|m zH750|uf4Ms!!o19LR|w+ET>YCO7l+zA*2^CQYoyj{*EAh5_B8!{=jJ+Y>wt zj+9*UhK#mo z-|$4w>4)h1dDpFkufA2d2Tv>J3R!_-rkvD3md!KUPZ3|D_S5}M4p+ zc6&7St&hhh$YkqxCh?~Kp+}MYjlnhVY*9UbO;#??zOXXwT@PQC zR|xqJ6MoX-xRiCGfbl9rmMdMFykX-0wvjblwXBSG_`K@UiHW-i91`+o=@h{(nASVRN2f)M-55$4M?&0KQ z{b|?NPMK}j40{oB^4bD9J({c2ZxCV=cZRPPqk^I8>@i2cA-^ByuX#NreGVxqG9`&ycGaN*i+=)+&Gc|?bL_QryJ0nl{1O$0*&>>**+17Wds`Y z)VaA#3@e7}eHtJ~F_!lE7zH*=%&RhxveM(Qry`_Ar-GVa)SvaK`KFCZtu9=b@Oic;%}yPeTQb zEOxHC9t2(Jw}Y|k2PC0ELRc_#w(?_Y#8Uzp8ak(oc0&>_Z1Lj>!olHxycES^^~S2o zp40xt97%=HxYu2J?7k~?f{k0db`@TdAOa1R9ji5hc)bJ^={Rve?0`4^lphF(7eePx~%obf-}qwxN)c^^_}o-ke1 zw@bO#TkYgNuCvc1XrcXAwwNJ{`{bmg-}kohRxvtd!l=Gl)D6wf;cjcy4YS8leDQPJ zQvtUNXG9h)+uu1qYVeEO=RNj`+>N#F)2Uf#(5Yil<1$;4+~}crRM_C#c3;|&_C$}b-M!X9k| zY!>FmM1D+F+ODVgxyBj2^T67J8)LZB{BimNu(j$d2Q@=zeQDFS2-MZg>8jM1+hGz+ zozbVvvAkzErO|p&3dwEG>7MzowbmsTmz}ed8m1J^ijqYBxR3EQ`xOHspx^b*MWU!+sw>vZ)}ILwG@q;IN*O&huNRh~Y%YGO8{5E&v2YWFy1= zy5}G#7&ArdpoZvu1>qFnhJ_i`oINZKqZwL!^$u5vV$=^imTgn}w||Q~;!JLF`wG5# zCsZ(V(pSx3Dt5H;5%{lGx`8FU$8sn%3{puYJ4`Td@NnRZMpZ50dO~{cKitW4fS@%{ zKzyUxulsW|HCTI7(*cQeDd$@saSuZ1^{P6i+IA2l+@-r)oo3N<0XGNEqJwzXzpPQ? zTXkKxM!mKL=jP$+x5$CSDnI?Y|0hoGiNI1yM{u0CSrP_APpx2zN~;2hNPYfq_*}qB zeQ$l9fAL7-2nSN6g;xI$?Lg-ai$}aB$qp_LB`mmv3h#eqY?dLFU6civ*`2y&*1AC1 zD-SR21i0YLS7r<+{&@P|RYoY6_+e#s;ICx-9D}|e3fbNMH|kMzgRCf<)r+4ei|}cX z;EUu^BGCWMc;w&YZxLiNw$w1Mgk!#ecYX-}Z*~#d6uMkEzT#g2%1+OuHFgPz`uG1J zf!_CKbV%l7=NiE?_cJ{ja};AsTvr?PB|5(^T~AM zPyZJ@`K&yR0U8P{B~(IF<^Fn{zf&{gm4FqpW^f&P#Kc=<9QcIEihsJQ!h&|Kons7m zKNzYG>reGl6-y5OHJZRY3zaA)eC5TI*4VHy04d*yDfhqb9e{lzr=+;uz@zzQTZ@Q` zQxEVc7q`*pz!y7>!+yn0%IS;KE<{DZg`09$=9P^_FF|2gGtV|~1-x+V*s1+3qLED9 zMIsgUt4KT#TZrQWa*U$>xZ+=oJpw;w*1{F#RRI?1qMx&1prOD&jN7nLy^0365!_e3 z)zaMBZm4E|o7MPjq5tYz-TLb8S<@tHF4x3eU=Y0>OcaJuqJk+p-J6nC^F~k zYMr%d8{)%Y6a=-s+J==~%CFr7zv$jz;QlXowQCUj>CvH06W)zDM~hoOqkndP{c?6&WJEKYU!^P|EYi5w^+y2X=ytgZm_1)tY@h z2fKHTQS5AVWQ5hrCB-#MuJX((7*Y&Gf^XW1EJe!oXurKz4~`cV`Oe#CwGc0w`1EIu z+_A;qmAu`ZxgQTD3{Hpp!z>jq+b?KMFKk?^#)PJ}x|)_fbdY~9D_*409CGgc3(!A^J6zQNRm2ztGSstki%j8S1lxTduvqm?^&ffdL90IW z6eKbWZ6$-%CQ#WD z^1@i{K{sXLt)}&&njEOrxT#tE@-q~=kRF7a)*D!)7Z4RVwz|hG(vJq}I)4a;VT(Z{XFwn&{;NH-CU?S|)g?RD{0pO5z-w1d?1KN9oH$dG@%}GELdsUk_sV}DX7y8+}`y{sW|{vDX=2#k5WrKR!bB4#Bjis4LFXS7cp0G{B5z=5o&#G+sC)|S>alfC5f}eee zkRsOXm1mgwcboJ8YmHMKhMgY2vP1;qQ*ohY&KQ_~=}Myh=%olFI8Ko~B1)!ObI9Ve z+Qy`~BGGI9;hzoDaZ3+O!`&YQUw@|sV=pgKX0&{At=<}+yiM=j5&lnv`hx?CL_AX3 zBKs>hZTYBJglz1vow!4bf!SQQJu0UAo-UOYg}P^ytxYexC9sJK4tcV45F=)$NX+gn zJ--;qUaB#m!JE%P>a`tz#Jlo{15k|^RKnR`+FC*d4G7UgN(Zs#h_D)l##=lQsYEo$ zZ(E!09%o^+>~&`syPbTo1FE6Eb9ssF*TFi}iEt3B)O&hWs$~wBB-K_WeUM}RLbCs3 z<{e{ha;fVQuGD1HbqJQ=(_bu|EH} zsW5q1`o3BQ5&r9)IC2t1i$kW6FBMd$>^Lzr)m>qIc(3dc-j$B4Ynk30?p`U9yF*jv zefE=lGyftyRCqz#%Kl&F^XD!Le&xpR58eL8g(r*a2Da=*x3A0KfEn( zjtx$czvvhaDA*^(2TILp5#Cm&kXGJCv2Tq06wgq%mc2EVkoEWa(pAF*&n+EN^_JowY9Sky&nB;PoGMm z=TcA198?=+@8cNg>zbSV;hC{+{Xb;=1ymeO)HMnZA%O&Umjrirm%%N#ySuvvcR~oR zf#B{ANpN>}cNyHd&GWwZ`@g$>ShHaDR99D5*Rg$e*OAi^4IvOj1s|C~9MWtd-zT@K zN~I7|dp}wgtr(;?!9+R7rj(+t6U#aEeQ%A!CKPj6iyDiY5xyNf%A3^>)9y1$p zfP{=A5wdn&Hos_#A$SmQBsgbO&(Cvo29JQ}Sns{5S9i_G&15$G_E;wnN2=GFW+st9 zU4N0dtr|D1EY9o1MTx@XoD7{tBVcKhU{yDVvsK!z3ZEcC=Q5dk*-Lo`yc2ae@8v$5gbU@TVR1c5BRart7{vu2K~Esxt)9y^w*7r@!`>@W_W zxfJBV`lasSoZ)bYfwgqTdYr z1T0T6wC}&I6rIW;>~xtnEyWK**6;p&-hn*`2BvRCKC@W57z$aCAo>yBh64Mw2&ERd zJP4szQ5a8}TK^x`R3Moce*KaHB+R^QR&^J{&{Gby&-?xWy+rMw8xc_#>}r@dAvI5N z{~Cj6&0n1OEIVEeJ#^5+$J$`G(fxZF+F6t5yY=y>kOiH{L8;}MezXQdocJnT4nJd0 zIWF$ECy&0vW!09hW}%^8Fmdd4I$voLQ`wpV%&xVv@r68f_`*gvb#%D(9fiRI23PUl z8!6l}JZChH%t zIwf{n;n30pbVW^7X0AD)6t@@V9y-Y+VmoK@Za zA<>TW`L0!Kd@hR)XB}ZQjC~30;p4VJm1qhV&<&x^Mja{c4i#$qTyOWS5nH&oBOc@u zhu~?YM4m}*7L5WH{C^gKm-43`a_uGa05*zeg!69OzckjpY|-bOep( zc?8RMvEYv@;{Lkh^HB52dd`V4g9cfA>=lPDvI;?C&Fqn&#R@DQ0p+BTux9)@&*{@7 zF{3o+*%B2L9A}PZc9F3R$qTd#`4~e$9Q!M-Oa2p2=0H43;!#(g+@eK$=;FrW3LN)T zaO4Pn$06BCeFKXcTCE?C^S*`jhI$C1Zk?=j3{I1=X|Y8(;^ zAu>&A3T1@!%bKey4E5wELZV$g6(RGdB#JXgAj%&|V+5+p4sa<4bf_taJ<8;yw-#>v zg?F;%M$Z-ZuK6Kd?IUapEJ*8Jh)rfY|1LijVgf_{N@m?XrMkJ(315Rjka-~6y)g4z zq|os{DO?(rDTMd3J?C7<{B7)U#nt5=>0hJJ~qra(%%3I zd)66le;iU0mMfV3mPxPZX)VJ6K@{z({8H_jjxxynu+n4wQRN>j8*Ve1uqJp8&G^f6 z$<^J&lm7D3hzc$Xlo0iAk$c5nT3t+I8V81ReB|xW4OeDScV3N@{Hl%J@Pip1HOo3e zm;Pdz+PTm|}QM=xlH~W297505VQq$}Dz-H<7#l0k!Y3Ue|IJm@d zer9k1XqiKwMo*qMkN8z<{-VUU!TPdCM^=mlVw__^m9$aC6BFe>ou=j-!E@nPns?D0 z%a*f=m(#V}GvBf3G|IiEw_rSynLCoN0f~HaWe4maAnnFM>a#l%m{mi146gZ@hclt$ zDPLPI?$-_D9@NQBNywmGlD%7NW-H}L&`gIPk<;K8geB-uZvj=1DJIv>ni*r}?vr$X zuCh2)k{r&{qNKW0b&xQXHI-Ni{&?2C_CdlZ+O?7ttuDBE+ic2`OXT9PtXjH_-6e61 zrlfLOqtB3*r-4qp?V{PB%YjgJYJYV`I(#-K1kheCz^0F3(;W97qn^<8NMgDZ5_>|G zj6WSwBqGI-za)kie4x!vx5cp&#RCa(0`|BJJXJ1k6k{pZUS^DKdrw?WZe!1Cx@FLd zK{5eb{wqh9|6^v(w8oL4Ojz$!vMCfuzGq3ck7H)MT{_w#wn789=<8vu&P|K~x-y?P z!EMY5%7hO-g2&ouL_gqrm?CQmUw?K9R5C6PJ3)yZGzU>JreN|mv#Ty>Yu8mI5GTes zh*XrE}1sZX}PDnH&O<%5b|NF7xpqKQ5qtYsR zcK3&QM0XDfOCZG4Cs|L2TKmHNd|GPmN6BHBZP&mAtZ!%-3^$VEsu`Yr_%-K$78AzI zxjD0T0RI+u0V$rUEKhuROs?m_O_d-kh@*ceqe0aFhGw-(TlV3QMb><|O zFODHj>Tp7Yx9xF8p5}k)=8A2cKHGZ2SH0r>I{K^B+>rZWb24{^K0opgJNPJv#IFU? zza(4gvL)TUbv6AvKTdY{s9p?QD&>&dlVSeCbcDntz@f<;G8;RK;=n0af z;&Dnm_8R$tx$0%klhRAdAF^5Pg)hV_%xa+QTA9k7+w|1M*(7n)-8j1H_?gZzp*2Un$_RnOt+K)qX z3lQv-c1MI~g!P?&yWP-}h`fj~n{yhG=4i+~$JRWokl&jAy=qp10}uO^_6ir6t2+mR zQl!~F2YF__0iD55T_Ts|9Uc3IpVGzrlHk_kkYjD^DtXKZfNCR^BA>k3 zTC;d>Xf=6H7$`~;V$`K&vvXOWa0k3DE*KcfAC^9XKn6I2$yHKUV-(!wx7#md&hahq zJwMb3W61B@yPv65HSX>-@)oX_vt+RtzvjSz0uq>$OPW?=nPsq(lWY_!{kl*NT-4eL zwO!)VbEbg0aVo0iQws-oE9I25(u}k04VjZNb`-B}r1v)W30t;$)MhRpic~2(#&S@d ze7I;-BeK6Y%Z|k0splp))ih{t$(rxGz##5--{P`~#EL$K$C@p17Y7*(prjnWuW&42 zb>RV?$X}M^3`SQ%S=pq2;Uw-wp|7&nT5tY_eCemfQlOl8OKhEC6vc5!I=8DvbF5CJ z;PN;}$&kJ%LFOpn!L?M>8O}w2h?!f&eg$f<;KWu@EKjSFk8XB8a?ydY=mm$95Uydq*T!;8gnlzz$&3X$8bUfFRSVYqYRXS7WP+A>ZN0TiNSPnAOk` zrB3of3i`jgRSt;^eMGFh%@PArdcZ}rDjIgzRW9Q~i=~cIw%=;#)cG*)+74 zRuz*}b(B;Urk6$gq8ftOYLfX`A+(pq@z#xesjAUA_ddya)ZIFY;4!B3Oc!bEq~FqU z4duCzTon^pTe*Zrq$E*Czd}^jP9>=G>#Wli$ z&Aau+9~LO5TBh2FB-RvFePY4=h~%A zgWzB`sq;XiGjn-r5ghieHbQskB0?+r0m_%YM;a>a%l;FQLYBwPNs^Y=^_d$O+#%~E z#Kqko>6?u}JToRul%F=J`oZhBwtn63|NmK~p14)*uq=dI$Xi&tZmoW{y3}DOjer>_ zmg04Fn_fKsfPzNIsO>bLrlg9hq)MQq`V~F_EUDV|i|0sA^HE+As%9+JIL=zDoHj2Q zsEnAS@D+~^Er=JhP=S&?87Lo9466y_)s7&UVXz@MM59ZyvMMyI2_W;*+7zQ*><@>B|cc5q3;_l+kGsR1r ze*2P%u9-Qdb2>X)jQ#o!v|r!dO+C?Ei1HgBOK=4yzP}VaHiRa2if3kuKXU3})0;9; zOB)jwMkJKI@k=;%?n^jO<=t+^qZHOMB=e7#5-WbDOxxz10kGs62p&~4DSO*>BL)Vc z-v6gFJ$%6k`+A0px>PWh&F~z}$#Qi|rSc607v26_$_X{n%&j+?3*d_BW(+vcp8&F? z+GE+^*mDl$nG`E~=h~WCd(%3mnd%{Ei&;I;{!%efYnd-)xTqE zFaZdsMmAGkjhU1U-e+svF4uH)%RqDsgn~hR#lVJfN*XQuX%*XVuI86gtK$iVvtPSQ zBofld&Y%OcqJ^#2$SlaEEWR?kiqJPHEwyS=4SwVodP zl&15o`XKY%X<&?PpVk>%@AK8Oh!?EQUo4xyNvrl>Mv>hw<=bU-*fdueuI&ao1F$dd za?;R$kLH)u_WwAZBx6aIz&=EGr=JOPJ;+G3Wow0ZKCt5;x!{-@h%CE4B}>E}=ZCfX z^UMAF7AzssB&w!D{V)DUhfl3*8W-Pq3>tS3Jk!-1f-DfZrB?$)&A;>|)>yUimiv5q z+*D#$^#DwtfbfFrf5w{KO`%c`$WyCvoIUfZHaZW>B7uZlOblC`OA@Ox|Bul_a>S-v zHGhWuo!}BK>@AkMj+*(djs$3B{_&xIbxQYWH~)9oSxjqc^@hak?X8xJp{@ao2rH3T z39D28FR=bWgyUzxDIsV#Ks1582YGXH>iul3WYY(?f)cW_was6z913dPuxg+{FxFfl zmiZUtHfW~WKM+e29ur(bTAJ#@)i|pk>;dD;B5aP6F}9>di1hWNF+%%ynEWa3ECNVI zHTn2V=jHTp{vjzd;7%-1Core!j@g=<#-+*u<%nNp@;~w5qADOCUBEAVTp$0k((We8 zojD5WzT35^BQl7&6<)!gHD%ydkZt8yQ#tKVU< zp@4$zfl3enj75Ezo3hYmzis^Oogu8!hgY?uvdBIufYjQnxd57Mxk(HySecxvO){k{EkmUs+HUO%)#(SxVgkJ zX}P!iU_(Yv&(ND&tZE;jU7GOxW1=B{i^f=<1q=;@7pN(+f#X-mnn{{ctA13X)n8$$ z#t~pcSjrqUDF1znN>-Fwi#M~_f_PSStIP&unOVXNjc7IKSSKrLdhO05vs`9nJplu< zkbgicSPuNhw!g(dL0i%|m8!xoGDNLh)e8$^Lpn0L7P|F{n4?=fpnH-`<`KnC#)=Oj z+5q5zzsuPXAwj5Fts-pxE|g~JGNZ|^9l}&x%Ugxo*bvw198R`T z7nt#Y(`DZvA~7d|BO_t-nxw-L$NGv%t4c(Wq$nfg*T4V-oX~{^*c4Gfpko<#HP`yym}7M z=kiC+_3xB~h4EYCY9($P)j&M)6ry>NGT0+{_yD(G1`PA)36bmfw!%>iL6}uwl~>8A z>a3S~MN%rWQM86eMeNTiO~jb_MBuIsgqVz}G6GstfaoFP@8r2yRp<7CLX;AaIQDBwjTBNWDi_%!H4 zsl-^t{!36Ok{Y*YnoOLnS+)MNDf?IuePSn5$^ilh=?@$MsHf`6X%1L(A1pv`@`#t* zv87-$f%A4pEY}!nn&+Y_;>?k5f>V<-!@5;KNJC=J+CyjV@UF?NQFwN9%5~bCw9oJ} zPK4g3?9cktRSp~XzZA4iL_`BiZ8e0=uI$3YF#GM@DiIdhp~`TBkptyFUQOy&cowtD zl{Iu?IxZ(P+P=$y{r;Hw#iuLY=Qen^k^t@lV9i9qvtE6G&s1d14*}(5bZ<_93fCDZ z4j^5pfdf!F8TOUO)!`Wc;%eLpAnU%yyo(Y{p6SH|1Ut^h5QuPkJe5w=YnURp?!O8( zb^(7ww6_&z((WUGhF%B~@;8K7T6}LzWf5z-;ozjTepZVO;7HaMlusWz@nJWNmQ#B$ zA8}g?j~`yTyIQ^|kNeI{DeY8HTSC8ZOU$P^jb*&Dyo4G52ESB+##th6EF&2O5FOzD zKNhR{;WSESsPYK0fOA4%U8B2oUee52vm-5)If$8*2fMOYZ*w<_yIk!?gJ2l|4ao57 zP4{7npdS#jQ))UJogfEkP9L~ey(MI^?HRZ!N!)*VFsLaV+n6#^`UhYu0A??yE%7r6 znkp(FW12^qp`HsMmi0wnyc10yJm9>DRQ@3Xk-8xY%Tx;TuzMqUK)xgetpQ{w(`w51 z;`}jD@gKvzD&P*>(OrH4xyZ&trZjx;tR|Zi7XTr#Hsvk-6jfiMeKcoQyyb{n&W*YU z)=8?;JQf5oS)_1cEato!s7WQ8a$^+rWec~ypfocQw7h)jSr+F}E@s?nT+$Qg2mqrG zI0Y8v%|~&TWPTwVUGuZ9_E<0`pyw?$OQKK*7!A+mrn#qZDdeH{sk$vK(xq+Z0Z+DE zBjI{02%r|lpNhBxZ~T*NMyJpjBs^&y>gb`P7ydbLtw=0YofNHIMCL~N5N$T++~-Gb zPUnc7pn4FxEuxkH6lkChzp?HO%%O*F=%}QjkpDI%lD&b(qkH`Z=Siz>0+1+$_b`sJ zjg$VKL%u~&GwE8jQ#|hrbu#7OuQsK*p%Ka?)-i`|o=`Yx@_m*#Isbrjlx8#tEM+TP z9URXEChoPLNZc3xjF3QaH(5{29}E)*QWQi?u{lPz8YCnNj%jld(}6HTxDXxC{t{Tl z_tQhWr#2C)G2J=8!a!+vHEO(ezokILHhe09$a|;FJ1!j20cVrVMYmpW6H!U*w5Fzj zqWmRhmftb*5H#9FidrBa^i5iUHfdhTqy#-c9_4z2FnXcJtr-o=uaUL1d&$SB4N(2X zjfKQ6^01x5iDU&&2)Wk|gHxhIj{C7WU8-za+DEzrA>ug3!v+(o)$9rxXi^ZDt@y@N zD@$jrsj6sO^NybGZ4}l&0$swxNPb9PfY~14|AzMLP z`}>p>yc;L8w+US_w{&mdn}N(+WB6-0UY7~EC$CaC{k)Q+%zcD%8hTksxiMsPdtd?w zuudb=Sg+5c=DGNbkSKR^oRQTEdaaf1HPHFbDa9PhRzn0oU`e?KSu`N z4|(+uX&f9a6>IKjWmd!};-3lyc8}(oYV12zImAU#PF&s*CB#H0F zuY!pP*xI~>`V8)n7+cCGa@9kIQ6Iw6ckbB6F6d!RFTUB%58kXZjUE=vt^V9dnl1C8 zy0qL#+MZvy(weuQ#C)C>e6)+D{n=WVCS3T;8j`w%U$1r_3BbQHIw_BevoZpWyb`uR zA3hL!qE>0vjajnq{-$9a3O+vg4x#% z@!fVpzi@l#objxJ_*v^b{ha%Hn>3IB-GgC10WJ*9 z4qmu?yCRvP&M|J?j$au`dt4U5dYh=x;hCk4&@N!!&M}MJ3I$$gf*gtoW}V^yT>&lY zGh(E1=I|-d*KCbHv#fad1_mgFP&opBF~yY&YYjY^*)&A;2{LN1Pk<)r>+jGfQGjR4 z#?icB6_|p^|2^e`wa8y2113N@oIYRXH>ts!|BgY&K!G*OSND!0fT8{d7s<%&9Nn?S zai1KiE6LDD!^TsGoAX(-8{Iqb{~)^p{iG43NOVL%y5UcSiB59)Y1J_=H}(czDDY8jq43+b|gBZeFj>@wuU1*TV?l)!IInTH_-Sh zIeGb-*QX=a^OuW_!+&!5e}lXk7ipw(!HXH_hURTp`jJ6<=p2MiU3F&nMC8*38lSab7otxdEnNFF69495)s62 zfD-WlxndjmkSf!W8Ks|SZ8)T70cKmvwIh&+7qbF=eBaX->k=X_Picn|zea|^=V+6S z)QP)z^nh~EwM*qzur=MaG!eu@ zK4Fd{cDO3a=os#Z9XYE8Snb=IvZnT$z7-rZ-|uUonL0i2Ir!jgLyY1u==Sa}-*sqN z=6(JP-83h3?Dk@xd-)v~OBDNz1r3~yz|pAHlizq-C>lf*P8|Tc+i#ftRPb^C@|bS4 zt=5^6ZT0G-JCZIxe5o5F10d-wntiwPuXVWp4IUmjB1;g%gZH+Sv#>8eU4ra|I?V5z|=9JkSEV! zSPM{I8-9|~{5Lxhd}6D&AU|&>L}q+vRpSsbjO|R9fVlJ4lr2b4Pnn#cHaL?w7PBx#n+-DKvM zM+;j#Rx&*gj?M%3EX|H=ty{HLeIb7E zBJ7KlP(t6QND{;UKS@A4gjxYf7#l3csrB4Xl;}S5O|J>R0BA%kRYsN9oiQo`NNKEH zGuPn36>tXW(4nR0W&g<=T-ayjW9x@(P-&B|YHQ7Q-FT*3Hl338d8L)BLX;nb-VlYg9_@!oA|EHzPg z;MS%FoB)!4DyAR@1eFNNetGkn*>3~z)D?v}ge^ay{wNOKqMcC(g@->TsHo69hA;d( zf&4?{Xg2EjsTZvgHi?tV4*C=CQNkEE%3*VPy-1QfL$*&QpoyxeAYLZ=iLwZ~Z{>FU zbDtqscg>t|AFt?My$di;t*$PMuGZ~G{r}c;<_6MACn8)dzHc!JZHoF6`R3%U)+Fc6 zY;YBUU;_@nrvGqYz^lr0C=Qtn#1)4E(TEh*23H{hAn}B|*YXGBXt9T1!U~4{SRkSD z%_x7SA5q3zp)j%EcpN~W_Q^Tbpgw(vRav%<2m-#U2nZ>B6k#9m2Ie?H|*X$Bs2^*s zOaG835q~a8dN~7cvvzEN(TMXq85jF1LH| zY91u-F-zjv7*eZSl(bT)90h>TLjA8^V-Hdu-M#C?>we5>XGD1$L&(5@Sx#OPq6*;fw@xOvP<+T7eNrYVr0l6DY=QbO!zMrgD?P7C zL`={#izI83M9%d=e3O|1<1C*DyK-X92oS=qZ+7FK4F8xNQ~?0-`1c>=$5Ape)$9OA zOf^)eDMAsaaw2qvk)J^iS}0DH%8(a1ZUY(!W(qLa>3AHaO(Nu`MSyG-c1%`hosrxu zkk=Z~PZ`NC`mM4f!iALn6dq%+LP-Ujj7>;1n`rqz86&{aw}SQL2) zbq_=HoRrS!%&`~%pe^Dr4WMk~GtO=w+oM+y3*k$IA$Xt`yKz(N8O-H#SUvPTAL6S) z(LbTFI9KXk-+>upJ};IMql(P}kv@>ET|U1=oN@0xPEjJc;Hp5p`q%b=Budx#dty&g z7Ero#$DTsQM_T|<1f8J$ta>Ige{3(pwP#WM`Zp(X4g~5##SLrU^HF##! z^>EjHTZDF&WrzhVtId`3zaS8%trQqQ_{N{&4N&f*tWR$r3!nX76>qTLrfPJZH^piU|H-XUW<_DUh9P%LQWZg=*OejEzMU7bqpN(d|62Zd&T$k`@BA5ACPVa|r zsnxZ$&JV#j#-WaGZm|I?Rs`j90{cv$D}7Zxb@dfhWvRU&}5{EUJ0#?Nhr z6t)!)IZBEUW@!}$@H-CU-UXmlHja7p7lTHPIspPePvs!|N2``KR&)s&=fN96fnY9r1KbPWfj7II6?Phw{=w2{-f94|y&twjQEH?nqXW<@m8#fp_SCNnRUQ50H(j&4Hu%}L|}pfI>^ zlkIzOSIY;8+?mbhrVrI1Rec?8>o2hGLu+4-7VPSENcy7A0thP4s^oS&UIccs2Dbqa zwnvHBaT+}{yI_kov!6=>5Hox^ zbYSg&`@aD&aU_6qP`VikIM`>DZ&vtbhT|jK2};aVgyVcPP6DZyHbyz-TZ;blQevq7 zvX_8!y~mxap+5u|&Q3pM^ZQoM?Syi_+y9Ubx;&hSS5E(<@VVlUy)jYjSMn`;k(mH| zUvt8pm%o?lWB+DZcmRE)<7hhJw-dmKFU2DR>5@C`tfV!-T?!!D{ozdFgdMqO6chzq zS3Z#<6Nfpn(gnQ~t*`)E@3#bK&%G7^E_!({focBK4lJ3^Lt8<4^NTI=>-SH%ionJo ztU;1kRi==%YAj4ei7|bxy0p75OF&R!-f<#+CIDPyGKC<7P|bS?phoUFB`&zJBLPo` zH!YS@){QpBo_7)#U^L)4I$BQnT3OGPm}zohyQ0)~xmKFi+3Dgt47CC&XQ3r7jgoK0Jb-Hq0DfJmqebnP0O1yd z!3L}#!pFo6x*lCwwb_UI1)DVK@61b*E6RQ!EcuQ*1F@QlH*8z4&z(}S?F%fdoz_L)VpDPbZlLfU~l*`p0H zokS*pEuQ0fIV3~MjTgBuM0l+keg+&euKb?|6Lg;o;XmUAky%`0f1uQxAyii$4(AD zyjo-1`HagO#3P!XM+f5Q7JUBJL-&rr^JA~R`<0`if+?s%BZgMZg->_@GgfskRE?OF zN?pR(tp>4GkQpDw%w)IhBQ*aW14X$m(DfydX6@xDcjwO*A0i&dWC)+!k~ar2eOxu; zi6|@h$j_O!;@F|Be6~~t6a)T%TJ_vvR?etZ>J6fOKon8<+!wYxPjCw`Q{{9C8=*}* zw*X%3*iuzjbGH<8St+z`_ew}EY*nj4jbPJ0C)bJx#O=t!o5Mv0LJ;Q1#nOjb&WpST z5!EocMpnglqXp1rt3R=g%@NZfsY55r0D}m;3x5yaY;RL&oiGVSn7K9XDY4ho=ow2;A4^k+_{WXouscxyd`W0OYbGo2eHEe@T7GZ>^-KP!@GG!P~*gSQ&sM zGQyWbHo1>3NPL*Q+%SDdYF>T|(+_Spc|^~wv>eka_zKa5#a6S@biZa!wP+p_9&K|HE(HuJUqc{*-+7O%LE6> zJyd31F3~-b;Gu|~XJ*|pWm6kK2dpNL+u;6M()$Pawm4J^2XxHy03{oghMvmP^F8Dc zphkh?@tlDp7D0F2)Br990+nOH*eI6lhA#sDpO8Ykk!U%CZGo;h;@i7TGsIKgyySd` zO^jG0c0fVk7s1$usBZe1a*+V^a-ky};fy4~yf{GYa|ok9b3|Fh0N@X3Tm&ZK>j(~M z=r`S*T?UQmf3{4hF>TF_sq&n9vt1mt$tr-zMOQ;tmhnpD_Ay>~6Q043qo@*a1nzOg zH{oToNR9iQ238NyG+458d(fYuyZ`NNNVu*V;rXcol9Y^Fy5P+mAg0n5jc!bhG~i!z zT62>JV=yrJ(*TNg^nQ}>pjD)y#rbzX1X3Izu%+{Y9+*1n0l@uW@G1V%7ZU6CC>@lM z{O|<;{K>C+ai|WTO%6-khv(Go#49yIZiH2hzrcie4XB8jUQrz$%2fBcY<*~rz!7 zztKL&58rLj$z0b&s}#Tfw3wV^9KI7pFI0rs-28Hq*P1Psv=Ml@J0RQhfs5r5g2*Zo zboQTph%H;@^kgxL_KwSLr-B}lq63tf?q|xbXOKn|-U>UG zqy4;Oy*@`HbtA~CW-;E#>2_?yP;>pNqaSD9h}?F_W@62uu%nrZC4ANhuga*@5D#X= zPi$^KJt~?*ht+!|b7{>FHQuQ92l1-n2Wmu&kG}y+Ng9R{roYmHIf>{H@J$j?Yq;{+ zV_U!f332yGLsNl`hd~ZlXNL@mFSLNgG{dk*w+E6nJ793`J$yoVzYnuIKV1rqs|Y}x z4F_}b^#-c{j|Ky9^qGUyMW7%Y}*?0$V@bq;L33Sn-#{I|GP`#=5@7vZIbkL zefn8!RSGZzaM@ZYi<7_n;&<3l>%IslTr{jLnUF zolmpPhhhDm!KdhWo6w!6CN>*mtcC|;;AdJKf$wgUphgCpGwv+7KU^TE8ht$2K?7Up zM_Xk65&JV*BvmT`3H-N<{9G8$R_d0IVlh7Kn97M(CG`5^N<=i2o_$$xI}l~q2vbdc zu`|_+*Y&ceMBV8wI;nW9#wO6s~k2*YYZn+N?7Q4ocx;3A5mgJB(jy1`i! z#O=(9!`Lf27DSO0OJj)jh-zNq>lD(Gk?no;9H4ceL84@L{m%JJ)PCX*rhKuy;C1tah+&u{Ii$NFEF3XIyN5{y)hFCn40+3_9y)iv@FpRNdnx?8`b==kN zRx&Mj_oU__<5Zn!ke(5>{WQR*Vt3&rF9!J?Dh38#A6Tl%9BnaTYmMThA8y1YJ~&Rm z;x%vX197F*q^9|f)s`~)-w*kpt-X3xP3gZ*Wj}5zyk7ag+-GkcL`;B?E{}%yv?pdM zi64=F1+|U1JUPT5ye}d&wqd(3_P>aGok-4jC9-)^_rDB#8Ag6Vk)F@V6bztHThpiu z!>fx2Qp0)Gq?{mvBnIZ}q1PG*TRDukpBX}AjKtk2O|;!SQ)2G z$}G_MKj0-C8y?i0J`1<7A!s4vz)IqhZb1F=fPic;2;?HKG*oXvqD#QHe{6u>etg46LE}&?2CNi?N*mo$FTj@p%0qB}3_oehKKi6h1APQ& zi5D+O9s}Qi=m8@EwgwK(^27;lM>88COaM%T98|uWY=>qBfTb8d`_^g$))e6gFtGce z_ixq+iEGRgDeo-+)*`{HGG)J?>%6||^1r#v(8CrSL@i&%Z6%ts%UVn)UOKN>feWtE55uU zhlLs0Ygtr6qgJeEo4@SG`CQ|#$=eH3O6w8%oizHLN%;FbVCz4T&!l5LcfnK8zA*Q9 zyd&V!xjN7&7rG1R@!#2)qN^8el5_psvt&Y+|JAFs_)&m7l<3r#( z%bQy+CY#F2HlruawdZb z_86U2Md-wW;NEyl{pn+Dh>6uqJlUl-&RA?4t(;fTp|aPy^oD=Mb|T+Ar59nWZu^#} zMD-CLa>Z+NUpz6wMW;`-wI9i>iAm%uR%Btq9AhG|t^V+q&|9x_Y?~CPDZLUb>U#|uQJ_}M9$GP5Zjrv@ZeSVPV9=rb#@UD1-M`+`A zP)^+OWPid%W%d4+LDqF-uN#Mw1glgZRroU`%hTV7&5ih_m)ITcS)A!1V$6R{@O6Q4 z!u?rzD`Cv%27hh!_3&ox`95k4%ft6d@Mq%MeNV(4<3;GsepMzt;aAUd88R(c+%E1l zSk3+}QYsd%J$jYnWM?!WrxjSDf=Ccxhod0S9 z!(b0?x5B=5%dm`EO_XYG60*RXFP<`~kS|`zCw4kEyT+Qvp)d7n)L@bxJq(kk=C}QZ z75>s`gT)=|wfFF}L;SR=|Ee%L*LffByJtT7G9LFD3^^EEei`zI82kG?Vf$@|bv%s3 z=|AuGJ3O4 z@(XF}jOg>+Hc>;khlQ~-?=t-R+z z677Daa#NWKqgJzSr3@sP^jrUL__QH~;5+7CxOQ(czP{M92Ud6(zH05ee88zCkywv+ zALFZe4LpX|J#7zjvR-wkzlij3>qgG!36?G1OgT9E&7xb~Sm9u-SdvTWimEmnBjK;` zgjSBPV5dM7Oc`73k&>yD)Gjm2{b;=Qc+d&i6YqRpYj`~;etNd|KUJt1dojET()W2R zuY8{6d>MOvTJ*n1?mR=^vVYC&d{pl^SFc@V@jENoqtPxmQEh_@>?1C5H;L%Og&lg< zFy+@=KO5+PirukD47ABRq!ml%H;RV`C-R~KrER4)L<#QoB>dZCPI20?rI)F;SEdLe z(Bqc>nz#8*h#t)EfWv0*sTn-WNcEB&)s?`V!O$IJixz>e)^#itV`kTlys z^Yr|7k(J}t&NzW<-7CWEmsbiScDgwfX2#L|$_($>)2l#PYK!OlG5tGomv9Nyb$h*FYZB@pP{ci=kV^{=gW?NPt1FZ@)S1g$clsPY#lrK!k_X{q})Mq(uS@_5T!!^~gB(^~}%} zOMJbZ_Fc&gCbNO^`)2_Q6~WvTlS5(!`_4tkVVY_ykSQSvY>H90v>yF2I!8#N4;PnG zQVS&+x3{UPKq6=b*zO%yI2uPtQtQKe5wx4%kE=YLg7T^>EkoK~GCY|N6xn`fE82}W z+H218nI*Z;WB2y$CkNXHBTrAW+Y6KlYb$W@y?24VJpUl0=fD5`E-%ylWx#&fM2i73 zP8wPHRi{e4Dh8(?IkD?IJSf1B$aP9TW$|txDz^J4zvZHUMON&tCFV2GS1RSTvv%05 zpS_pN&eoo5rso6fAaVYrzOj6(=|D`;LvM?O!$3U@>sNA@0n^>dBONT27l&QV(l<=XyY|u&-ae8WZ1lwTFqD1?K!;f^KhquZ3sqK zP3@bJ2VY#Wn+0#McAUYcYmo~DJ}H}(Kl)3>)p=QHDjR(Z8Z+um2I}=YOZZyiHzO-6 zxE@Jm`k4Mz`fhfa`yL4PGX0xak4{i{TD&gp1ZrWv-c;)Q?J|l&gzdYpo+A<>{p@Hv z&!^YNDw@xolk4iUAN=vNbR3VoIzN@VV1`;-lDrGT0EN^ogoBb!Wk4#-^3oCDTq6y; zFH}lSQA6Bxh}xqlGZsNy-i>TVaUXoOt}No@1R_`!m>;271-~;Tm`dIZCe~0dy<=vB z4uDCoOHGw~a+2}0u4-_!v=y<0VNKCwko>LnW2&tE$=oiL>MsJ*kA!#}>>f^4kSrT17_tgjVf4G;(o#tB!$b2=|8=JR|9Zn~T3-I0PlIfzta1-I!0oR5fuetIBdV z=!@nJXf&wtgsVeg%CEL2{x0ijwsHrO@%BwW<1Vj`pXCy+gHqiWNy!9Ze$7V?G=MiJ z5J5&cw^DHbri6^8XnNiojYyvcVp5wq{FBB_G7$e)hJniZG3{3>CiMrH z9Mfs_?%~)5bTjg0T6-?kZ=b$`FW}J8HQyzjih^%kDOk`z;W?=hlIh7Pi@iZVvB|_) zLTejGT|3 zTucsuo!X$@{d_8$tkZsmDgiOIzqH!w5BCFGGeLL_-Iy{w&ky;ztd^gIrEjfQ9J zV0$UeqaD~4RIo3utM7a+XnpyKj`xJ;y2h_K=%f1n9rcHIiexP0wDE@@rSnxzoE!3u zC_g;R$iJ6a)l)UU4-liMQe3bzOzoX(Z{uK#nDq#IMh&f14-r}^M{q{J=PC6D?}^ii zPXBI?@4n%iEWWUcO8HUYgjYnh5bK^v^s9bH{fiSNF3un)L8erXz-f_Y&EDbU)XRp_ z*t9gRYPz?lap({qYYwhf?d&j}Jsf43rsBWhw0bFtR2?M>BEf$T(hc6u?7?J#>7QW$t%BZ9XC80s^N##qN^5=#mhcFKO zkmH@vZl;^X`yuN3BXIG-6|3 zz9xw=96WsF4l2ju*sgwqH`2y9Y7T^#o=0-Q>wXQO|9Ny)o=;Olz}DKHN1*xfAZ?|R zUizPj1vrT-+rCPQ4XFzqde9{MFLTK#zNhbiy6`}#C z+!EL`=RXo)Ea$^-@!s<%#}n1-@K^VruI==VhwdLx^*#8x3Hs#Wqz#qIKd`W_)G?`x zc#c*+MOX(n$MT@ReH}1P(RWm~f=%mdf^{SPqs9$%+^!IK&b48S?(cm|KAdf{kcm6a z4yrDa1Px3{qBMq06ZgZjwV83ust6yKO|*jYuKf&If>PV)2`ET@d=mn8kXqre#DAU9 z!}oMbIb>ZJEs4h5O}cD2q1GBqUIwPjHjQRclLmP3l zR3|er$D;-(PfgD#F|i;y>Y~YEkY52>C;`W|U}25iCwIby7b1uI`Lk^`42TE`PL@!9 zMkm|mJtaSkKFC5}MjHBFPxhy5plY~di3xu|WV&Py8=}Kl38bpZM?(OQ9aW1Kk{H%` z|7#p2w0|l}6O6LzR8@I(lv^ zV`((>8o$DE;`wZm5iQI2vy{-OOGZ&pNa4||k3#x~k76`h9h$A@2z$CY6_slUGK4Jm z`4^XV-s5;R?shmlYSG-xd|Pg@uj?2y?rO8Oi2r*8I-yf4i+o6Ca+Z&$-l}TdBuTBt zU{>M(6v_`P(N{5_3bS3qlYN}X?kbZI-~pz30hVfK(C5VK4rSt2n@Hu&P^4g__IQkO7ECGy6 zfe+$wc%#R1@vK(Fb4s#3RYcr&V9?p`DyyK;X*K!^j{a`6?IJp!vK&w^pG6@QbP zR-A(Hd>?{2P`8j_e(#sTF`hQ3`+@w8hS986RQP+`=Kb+HL`th9$ zo~fB!T!c~hfRgVv%$F;P-87Wd9GvWoCFwZ{*?OErjlsnf7DBcS6>X^^G@ed~bWVu0 z^68&+>f#7ZpQeddlpg&i9L7;QF!zeB_B_45uAG8&lSE zUO2&&`gxVl_74@F1*`W0=Z!fLok{x1*2-K%nHJT!N-n?ZOLbj}J(5+k_tVqA;Z|oT zmC5$AWq{%mslr7;8S_^cO1UIL!|xl6EwyZsewY=FFZbfBjn3$CCkY)m^JV-XmSu>q z+W1W5wuoo1>f88Pc*(+olVY*xm^i13OKNC!C1o*>;8N2v<3~-dl|^WC_Bg=G7FsDF zk7{|!N68PMLykc0%c!#DOk-MUSkR}ZHl*pVpL!Qi;@%3>W#P%U+ZxOFh@eKP|Os8uFeLE z9U`Q{H9cU`bDAtw#*7{QPm?$i41W91Z?{1&F)2(ru-U22{3-`mMbBQy)ndPqispE$ zP?K>B1rb+KYL;HCdb_Vym60&L8bNQO!>Uu{dytD{!sk$mE8IN(Fb=Q0G6(s5vCnW% zu&oiwOXDgLrNTF!eDY4Q2&p2=JgKKoInq(XyEr((-HTD#xpNALY+o_1;6XYwxZcOD-<58iXTDFG!!L zmQXqFwwOfbil6X_wSqcHbKD2+U?Doutw(`^1LjZ`cHYUr@w3)?ndUs>7{D-(U_%!X zN>9S-{27{RCZ0auRHdj-5)VJ*M*MNwkVsKAs%c>py&uh7`(329o}@*yfdX^}^o_D) ziRdKbQ+Kbl0neIFB-TgYP6A!}MC@>6NOAMt1md?Vd;49UEdi?lPQPQO?YhYUISxL; zNA#==Kx)4BytH;LBZYF)f<7lEKY9n223u?sPaIl3>Ub8&@iDa}~wpdLg z%DXUh?;5MSkt9wd2gt_l!Slm zupmdq?j(b14Q3jVhJnS(h6{e#$5Oh7?IUPojUQ;s2pm=*xpuu@6@A?uQzjLcnY7Xf zvD?lh5K-#qs55cK6K2%J@y8|PWl-j@G|gpVbwTLb`d4;J9AWH+x6GlFGxTmcB%YNG zF2p%HyAA!Fne-}!*jiIUdkF5V-%t<3@IXsV@tR7!Nm0=qF?SVD5M*iYggBr3U)Efk ze>18Q%EfW!aml6KUve6-!a*=HP^~SqEg2f8ngA;FqY?Fm&LitgZjeIGAaPZ)YEBA% zP3gu>t-qv3`;Tn0f~lrIO3J%ek|m0TcK|b2sw&@AClv+8SiwAxfQI}Xnc-hF>`>0iCl0gOp?U3+8aPn5x!3L z*YkcbhZ1)_7?^l1&X(Et*T0S1HmT$gk<20twM}hsFbcW++jAopdSKTqKF zeb%eW>sBTwruzqHX+<9VubO;kFFxG1W0^14S@0w^MxHzqZTF$93}D#wV9CZ6|HleW zk%oz$+ZU&xyD$kxd^TGebGn5pN^`n#)vA<|!$G=!_dVD=0ddykGU>gRuKLukgw&BK z#^UueGh%w-kQwkk%M0CJ3t9q$M#J+`1u~tF)clri1A|u4sUCO08@B+JMTv8v|HMR6 zY^5aM+0T;Os5!Lc=n!S8n^~sF2#pom+rgjB>Yv=u*cvY+5zpmA?{r3geJT%7yYgSr zE_D(Naw(y!pV+qEgeo!jDSG&6{?%3#7~;&(=MBs`dRlai9%9<*OW^u#Ff2u+>i8*b z3IAJ$nL-qLynXvtu4pU4DE9>z{csbwrvDd*OKAfXFJYWffFLf!#dnsb6z{n5Q0alW z1Fr;tf*q3bylVWW;zv7PkTw`Ikk5bLl$}1V%?7>9lApFR!+yhpNg(XQr*KAS7yl@Z z@PiNkEf|`pI^8!|0k#)B^kMlaBBW_8q<_L}NDML+1J3|MOf>f)^O&*QL`!_zA2_#>(Wz4Q{q?Mu zhyL8H?(^$cK~E>4^TSKy$C~({8wHS{J`C){(**g3C*hgcWXFcrpS2eMYwkv5fJ66f zSqrQ#_gSRHZ7#K*HhlKWcq}UBz=EL2Ljq>tRWHfwvz8^i7ULgvc->k*y%-oF=j)Bv z=K(ZR5vizTlD})P;owS^*CPYqgVwks34sED&C?Yzf28LmK3i{d8xlbgtR<;7lFoEo zQa_os;nyd;Koz*by5Tk-Q)KdsB3UW4aednZ9eLcoqq`ZpQIxO-(d>OS zPyzXO27_2z2%Q?=bFdc0h+;3W^DW;zlyKM%x`L5gZmc_uOAut`rlAZC=Ru~P>1A8_ z8Q-ui!%R1d8adBt#5wS5KAWg-LpATSFtd=671Oi`e>9J5S+n`iPRDbJCic1zllx4z0`zeF52AY3=7P%bBE@K0KweH1j2 zIPY0E)_!#%SH*1C2Hl(tjG#v;TEnX?+7D%VM<|v2*ln!>nTBk;idl10-_%P!UZ%HUJ8PQRwq?5oBVMI)30YVRDNE^JN_KI{e+vaZFe|XyRYXw zKA$$RL4pSHJuV4)dLb}u*G3aPiUm$d#oPY`0omaUP9IOm_NuzGl^#XsfbjJ)+a=+nxl_59#msi(xSlv^Xp!SvS z(a|dXx+Y;XV7u&$P==hyq2qTOOrO7{)Sy27`^^hm==tY@fa)Q90tz~J z8Ak5quRb>%KBMg@@OyUygSA-&TqEYJTT~O0#mVLl2=1J1XuEThhD{FD`~hu%Mm}QG z92`!eSfXL3;qV0Wm_hp+<@)HlaR}dV)hUHM7jh~%5aMQJ6dwI912$@;F2kT=j)k*Ksy84ztjBe&j~PwQT>< z|3=p)IFKCQWN{$Jn(cA18>ayfdiIamTex)V+1d-7WL=${bn-Uq;EgHUanUG{{CH?@ zy>k9%otn1$A|E%NZ$B|lxaQm3Gb1#<_3z_`(0-VY!pUk_bqlMo*?I^qMDQ%k2e{UT z0$->UkSDs?iyOyx)=!DixebiR4%t6%&Oyqh(-BC^Uh+A74~q?6?QVKbK?3(&XRHJ5Qv+i(wzTL59+v?yhcw4vnQ$t-D&Wxo1jjZj5Lsrb;6mThG&5$m?sP zr?DWoByW34Wu*1BTK*_Jh=N#j!5{7hc<-JljcFzwR=j7GfTZ^q%e8{9K~67g+SCF~ zsM*9HleuMwkCI2?i$ORX(fd@{9LjJP1CGAPbcJ+G4Go)e`}WgKev{Xq+$N%d6U#$APvn8lCe-b(K-!7t zB^0;Xw#yNkl3bI=5jU2$8?eG|uHWXWn@YCd@rqJIstQ9Ca{SX7ex6O*>!OIAT_oOT zQXKpQ^{fwvkJH&;{@H4Y!iMLe%sbh?RIZOKyDw#QZT;U9VnGO_Yn6fIAEuL+!Ye{L zS+rz(w9PH4H|#UqJj?wJwGPVyzm)K{S?5^II8a3j1Jo7;oFpbA4=BwRxP1ie%2cjN#x;{;l~6%s*?ATlmS?>PxhRk!;^P{G9Sui z=}R>6)HK!9BpE0We!so?PvMoz7bhp~(W^%#tIJ15YZhxt;$dqQ{=ks}Y-R$m=<&;C z5esF@qtv7DWbic^?BqF1xhu=Z(`OVlvWje(?d(uXl}qSnr#NCW%g&Q+(>d@p%FO@b z-S;@IM0Y#8lu538te0GZMgQ4cT%rk9#$BGS~jt!cJr8hCJ7w7PNH9HgI*p@Ubl!S8vwVt<4iq;oR) zt%OsV@Ad9b58!+&v(l;surmANj6f0koO=bpSy(Lw7Hv)3Wb@eNo^o{s`mp8u}CjjQ)IoY&I! z^b5|G1x1$wPNOED_nA3EB6>t`FUULpm~8MPd4{8zmdJ|wY&Zo@-pO>(L9X&K}mAHufmTbK-Xn(SVI zw)}SGKX*$1%*`+7AGu_yG>C@3@uF2yaVxziCZj%fR4}BDKwpvm(JGUdR@$S6fX|Fe zvv^d#G#JFrtoncqCDXfD0o&^^e-R;)aVf!Tte;_&%4{ZN&jF7^1~XPw!jK`>wHicC zLX>T5<;nQj%d3t*DB7F9GuPX%n=d-HMLK-H=H#sarz&ZoD}fj@Gz;Z5%K@I+(3f(^ z(&JX%-5&ArG?!Z*o!zLGlhpou&2lc7jQ1H08=v!DAQ!~g%4?_j^3+cHaTEh;Uo#n| zKg>o#@I2s$8*1n{Iz(}?@RL`4e4`aya@Q}kSJ2kBYe)-POyg}?>R_9Ae0kXMDrK`= zYBryavr6ew#tMiq7?%~CXYzj2lXbDxooD!+EECHBasx#4?oGVV2L4U?A{!a==5+QsAJ|>8baK8KCZbV)C57r3n_o z8Z^M);{SK3=e4#cpiR>I_@J>CAvj6IW2>h}Qqh#J{4$);xT}`RtKsS`7Vp1UfZKkj ziJ)f(?c^KuFE6)GbTgjwX)kRKtVOpHWS+ZwqAv|9d81BGGpundd9r4Q$9qrDZ42zj z$d2WzUxVWV?mUnHNS!YM@ZAqDxR@b<7vCxC|7Migup%@C90$mpnwT9uKTw~R_W1ZS z8h;`S;d#E7sdRzr3huY;sVkz~Z19i3R5Pk1 z6BtE<30wF>Tn$f3%}rx;=VG`!qVruu=ctovZAB$In_(nFihQG;V+|x-d7-ST5Fn1A z+W%`q4IWk}|8x1qvWxc#pU~a_&oiHp7gMg=10q{a2>cHKd*wSU&d;I2gbfHx>DVAT zKuXk#g}xN`&LuK(IZ%GnXBVzl!{zEq_*Uo=>X$1=0YJ+0*6?v5GB;u$w+4QQe`yh% z6xJCC%;XJB(=DcgR1y)Z_5-dIE$_Wdb-beYuo+;dtT<) zA3I#x2-5{mahoo}Hyi_J>;3MVPy|(A_5)TX-WXIiF1u4|@3dqXPmFG@5Lx{v(~Nk6 z>d%|_Sz$QOLO{IP?sWDn>fq^Ad`U@JFNww=btE!Y%a!A0zEGS53QfsC9h(|4;j`F* zy^F7}ZW|_(za%ztFI`Gg-(@1pkas#M;HH)VF+Y{c=FLW@&AT$)VAsVfZ+Fm+RCYAvvXtDoA_2MtLGoZqx=U z3k5ET|ASQsQ8k;c0u?lV&a}-YqOKEPZxYPe_O<%835C-x16-eFMve z21+uhKQ6|${>H-Me)9I3==oI^lIU2eGiKj{rk4tSgKK3dk3n&U^MVArwYeZR5}pE- zsLaK|&E{_s(f4N^gHk1@DDO$4+1!m?9vZhj-b{_627+1ZPm2QJ1^^c~w-$p^$`6ia zEBWq#wK4Uq#zx_e@)=1b=9FD}X3kp*l5X(^(7WW#D4ZOFBo1g<@b8T3%iq61KwliV z;D+edBZaXP=9aH8#&u^X4SVLmQj3as; znOo0Ju3dM|AA_8?*vlrM(e(#F1(vpBm+`5myJyi(>{=mHR-Q7g(a;se4S?$l{-p2t zhRNAw(A^&i>nsqbRpP6z~0a5L66{fJ&@|Veg)4h1=+cg*F zyw|USJpOxe=o@VoeJxJy57&3APUOKn5&Evbvg?!yBYDOEO>K0MzqE3ecQque>!|i3 zm#>qWcO~WFm6wj(+ove#b3i%M^olWo~sW$4rJ_ec5amoC^ z(v%#J(x=c2mPZ)J=hBJ!t)~{&-MAnU7F7s5?Y!u@@8pkYhq2iRjdSXG-%t0!3`x%5vf z5TKg?v4nzjb4DJ|c?gkfg%j~iDaP`X3Fq?A&)+gF-E5Cj{FQ!wCg(E*#~rsZgp;-iPdOwD!qn&ra@+wfxf;zWHL21bvHHD`kqq9Ak#oUGb@X6 zJVjnJGV`rSX;bm5!M2l|!cBYs^2|RXB=y1zWn~`MDCKJ5;?>g6)O6FhydqNKwB}LC z6R{e++CAXR1Wwpw@E7?ELf&?=$|h|x+klrb!dcdkDoFY=M}V)!_3QXo#*~9u#y7RM z$d-(H;OrGq%A01{qa`k!$KO$2KP}pRlYkiIfhDzO#9YVf$HSkMQB}4k)$L^`~Dvz!PvlhL6a}wH3BPzJKdbRsZv~-vrWIT19 znKX$AAPqX^6=7TK^fM9qlguhVh5B+`gE`LiKu-8Ot?QX{sOKizsq5hJG!JyaGZ^>e20S=Y#?&4{kw?Q`2K`{Vz(FVD(FY0(ifJa zcF*Z!^3H9@sgU>Z%hP&ITs%{2J8(_M_r-gEqkBcJt)fI+=^aBMy;4*G13+gknZ_BH zKEF**sT?rG?7t7`6GaA~ik|oNWRZQsj!-Jhka?NabMm=dTxV3+I;)s`zPegGM(Xu0 z{~h_*<9EMm;gmBdv^}DA#1H;HR1ArhBCkT5$Y0?;z@08t;HBh z2Mp*3+iN^mU7U_F=?tR$pR0El@_PI+n`u1eIWM2G$nlQ0J!hTDIovpO1-j5n6g3{& znW|7iBiB~JKYrb$V{v+!(@yDuw$35Lr0Z5Z9tn#OMF~b&TN>W7lWeM0Y-8)Y8|H0m z6%7Dd`(XjC$lXbjsM`wy6e(i;I!?p-Xib2SmLKQ@%^>5%1EO7|&&)jOJf7aCE|S{A zsj|CEe91uP@{qrT^khEkIQciO)!;iDv@igE&>h!s5&OU#@u-T--k@U zo51;kT7PfU4}Ki?TX3RX`$p3%d%!NomC_9iGA#NEx&~-=!dm`ZE0RLStj5AKY3nVU zsCsG|&n?s;s-b1fTMiBFuE_Kz%jKW6)}=R$z%h%-{y&OZEHpqBXRyuVT6s)%+r)0{ zwRonxoAt4OV8f0q<#kklu4I25YK?5?R5`tPQeo-4Oi8~QXSc5uEx|vnQ^#TQ7o1^- z;nN}6wu4D6uYE{?cM~9%fI~=_MQlNs#kd5Dd9_6>-yfBYiZiQJ?C-rBq?wF6=gqbC_R3|ndH(2WF6ph6}n>FlX zB9s)lt%GtNQhL%obD!kZCJP$7R*B^Fb*(XrJk&2>1}`Ddtyyi` zA)dCBTc&NyM{kv&k+^q^=fyP|3Wx>h5uMtpDCak6nJ$|BB;b5{T0YjF&8rLjWPlpo zDQVC39^Ld+xRlKIu9G*w_r5DA@NWV$^y$+JC2h~e@4mg1+P+-|qnl|_r?s<)JTwQD zqXKIU+yy|Bb>g!cOk&Ee{e))>o^A+ou@Vu-wH#Xj^P_-v>37t=ZsXJrYUdL&h?Yx*-r zj3DQ#&*gtPv|F?|5eS9Dw!?9u5!HM?s(SJVckNp?x0m^)_=R!*u$T}(?KvYjZjYmHt ziK0=wW}DR}R0jR`)uYLDQC#%mh4$6@*c;ylt1>J>?0{l)7e>|=Q)ww|JS__R5PUv!WlK)O**JlPlOOR- zb*{>3!n#Rci{JWkWsNXnuG!E(-JZ$G(G`IoIve&X zKb9QZH&N$|BGyUoa#@*aA0k^v3{@#)-kaNGRpIC8$!aF)d0O$vS&miH93CWm0uy`} zJV5nCNIMRZFKjsFH8|x-Y|b?8bx>AzJV=AB$H#a%+t$%L$ zMX)n`ujH_73VMWXz%~#|)@n8q(&7{Jn|B&+VvkZOF{`{zhE3WzUEK0FLl}MdrP=U_ z<2+JWD5;p!%Q9|}N{Z>R7(_FkOoc};|E=(wY?kSTY;IDu%|TTEiL0lgTXs%mUb#%b zj-X6PM4~&Y&MR3R(X9#oELOw9Ohe_CSbW7Sh~B}ktwHhhWQ7(YE!Ad&`m<_aiF&W$ zXc-!S%I0&v6O}yEL(n)9U2SL=HC33hFs1bFZIVn%O$tO&0$B*%l^b98EN=LWnxLcR zo5vgEG0v{fX+8t6ltDTtBbgCOKQpbeh?P8)?0e`J1F;>3#ln&a_O*VpzvP@Ig`$(= zY+-C=;!~d?9LI>Iq9=42a^xM)*SB~skSJDutgc9OALRr^JUqC|NG>m2J6Y{#&)iF$ z`ki1)1*XZDBxPF_d{V!{@V7|@qdGZ9Hf#Vu`uBaOrOhA8NvuRnVnga)D)e zt#7x^i!U#B6L8CfYRq|mMYTmk0{7K#GNJGk$quUydE}V2I)#h#fJDg(qICj{Imyu}sO3K~!+Im|D>{P;R=Q6ve_!V`# z(`#bwyp6{|Ai+v#EmU}7EXL_*x*_8$+oFcU61AG8&FK$}vLV3^>(O7`GkNRh0x2r< zA0mKu{Vf&IpPAxhb(+Gn|4676XX5ln;ngEbffEPbp)=Po4|Yo1?`VpJ&M+mJk)zMZ zawRR0(tg85qw$q}i_?>%sQ%Nrj2_*QVISYqyg+JT(P{KCB2s<4yurg1ClzFouhVg2DXe-)Nss}X8fKhlt1E>!_1 zlOhT?rEWo~ftFl{qGp&T$kgFh(G-2WKeLxfB%$9iC9yt$4Kz-X`+1Pe*6BOby%>aW zrc+oMF~U7NT?v0nGHV=z8)pF$o+VY1%F1z{lYSs4!=HN#M*M<*W5XazXd2~`}I##^<@*!*Y2b3x(%-2p=h5%>QS(AoQ=i=3y;Vi zlz(VB5K-QY`ZI3(#2@mS9s!5RJ$uCA>6Yc?oRre^{ABf&?+v1yFy&^fLEY|o)4a$> zopYp-zAAQ%#oi6^hrsM=W^iZL1vj*NKPd}5TW!A+Qs`qbZ0$pK4 z65$(S*<##OCFRl7C;afxKqp z8HWg%>ArGE%sc8>)&*o7#z4`}vpMCg+K{h@ye!uR2za*Kv;}Fuo_7k3{6U3-mFh1v zjf_cB`^8~Pu%4D^m?Ue~cC;I6RjB1SLsgcKsR2o>pDa2aEW|S7sC3YXm9N4Eooi>% zC7@*a6stO|SB^-?Wk2a?XMNc);EQ8}TdB4_Lzqj9;2E|Um=4{W3Nr_C&&gJT z)`u;TXZ&BjBLtFThIq;M`ivdduF04z7Dn4SCne+ir@Jl?L9@O`ve9_tQa1t)wOs0p z9(+e_KT%Lh?r*<19z$%ck|=Ch^pd9I>X)m=D05ra<2-rtwm%(Q^Hm~1688B^ysXPc zjae^csC9LuEJ#~^1XZEjljYDCuk3HbtpChxRW-%2Oa8fIlFraRc=TAxPRo^!y@han zuDgO+@4~tnMcRp`Z~VwNrqI2lwE~H%j$@eVZP_{ zn8FDnPLUg;Unn1ditLlH&A7sbx6J&u1?RL#fxi>A5@WCFVpEiUla;dhLagcgBQiXZ zYC)}vpTiFswxLV^izF^*5=B&#dgR**NiJ8K@P&`#6h#T<6ax%j)IXMF$bu4g=H6Zy zahWUIepgIuf5&yP$1VFJqhIsah@aU(uJtdahv)hn^*oka$6~AVn6M!a)1wpY;+DN1 zkgrgdMSRbE7xP(prBaXoCboq%0mVdPif+~Yi*G_3NXtV$j8Md3&rLsdt3AA=3)_mpfCY34s`NOd9G-d5gN->8O=1Lc3xbFkK3bf=_NO$Bw~ zhjv%Q!UA>J;}?J1L&dUrJmPFFow_y}eB@b)DC{a%=(rw@DtVOp%ISYS`zJ@N*0;26lQuxacvUkwWblW$-f7PGY}uHS`l zWk+-3QY1aDel&e7H1drU_|8BhMsKJ7gU&AM2YsRZ*G$GaLp6LWNuJA@(LhVrRQLqJ zhZ!5fa;?5`K>GA&&P_>@pi`=4kz%AROEzWm<*bFHy}vrT%Y?>a1$ps=TC?Ye?6<~? zkqy#d;;qHOTtaKZ?xnOKf!AMLQ?MDlKMJlu3s=r+I_-p7;(g<4*A4SgEk^~KH5JTJ zn#UH(v0nm&{|su3qE}nm&;(3=u)88^Z0P$_`9WK zOfr4kfyY7_!stT9Y>|&MR|=_6;bu|YC1+~8db(+SZNVfsO~$%0z!c3t9jdJDC<$ss z;YA(|WCR{Ea2Z~&3`>7;5i6ahk);RhOw^E#S|y# z=Qr7mwfk?`*A$gB-;pQYLcFDf@eYq&ga~P&5s7^4f;Ao0(v{{Ax=J2Tn?5dqU-49S zT%-9GsjIq!yhq7H^l(LS_Qm(aKEFzsO(JYB7zT$gINoz_h>^xpY3Q$Z268fJMp|mR z@b=pRne3bloXry&6_EYx8rx4&UqqkwSEel)KK?7F@OOyLGjg;9v?fu4IrqC;kp-U+ z;s24N4`+)m!`bZ}B~Q+M1~NEU{|ei#v$4HnGaf*t4?~mezeDWb|JcLrtWi~P#FGD4 zs!k%o2oBMS)kVG*;opXw%)cUtY26V`3WAQ$&yJhH{wJO+*|pxj zBX&yzT}p8OJJhMcc}a8b{uUSapX9(feNKDUTwmCQS7nPv`p;H>O9Hb{RhOQbM$G@6 zOQ4}~evs+|-r;|0C~&9F^>%JcJf>p*N-w-PzuAA<@JE{4DrXpBWLUv3ETe^$Z#)mA z`+BWKNu)aI0)|VR-`kSkS5p0>MPH%YR*CJ&7KL>5fpA|>mMh5T4pdX3zt!AtN)NdQLRMJlLTQpK?{sd)M&=ftUK9D1Mxuz0_Jd^~QX+w&<+ zl_yU(Fe9=~IjWD&`pvcp>#1d(0km~z7$aoRy>6fz`$%x`2*O3iO2FlA-S~CB4bl;K z*w4`*U{bNivnAy*8l{Q{1pD~z>dXx9{3eBwX|dUZM0$*Pyt;MT(-nCC)dSP|uC{S< zmyy7%h(1n@orJ}dLA5!@fffT6))Q%%WY^@pvp+I4j;xM^V#sF4*{xbCsD5E!3{B_8 z6Y`7 zx6k;Yg2uD9Z+znzOJq~N!$JV5*c#-?+K$FaFKkYm!wF+Wvg!&NeXheBFQqH)(YKoy z6YJgY&Ha1CC)k4_*qV!Q#8XGJFn3+yasIcnj1OS1dur`eNfLZHsh!aePW@YTnT(BM zsLWIgYzj(>RV&XXI-ZZOo5mwyvKEdpfPsUhL635;dh$E@x2YE`8ZP77{E8~Gz$u|<54ZOLLKPNohNOk{Iu0lsM3w!eeV6UCJn=`)k&?{ z56xEJ5n{1L{=VdBFy6dCH~S!H+Va`J>y2fqFknZzNYzi@WrPcCWjfRo9x&E93DXi* zDKt`unwr7JQ|@^a>$`=WrJ@ltS61m6)yGuY_^i{I6>sv7okXOcNq%WZB~wsfeF6z# zBB#&U7IGw$Zth>Qv2tct?Zinr)9P=z)VN?Wv#9=KUGGUq1ODPbtVWfYzxdBw)c>HI?OttHH8rm< zH&_`6CyaVI#Qc9})hEO}Crw^Wa1(_W6asQjZ*X_OG4g5)uG9T@YdD48cQVvneGtWT zo1|rjH3;CL!_!mx|6m;pSrGu_ktxRle1~-zq!J0C6Z}u@7S;fK!v}Rx8ZFc#!T;~z zN7J(22{kyT%ei06;!8&hW)=i{hbX*AZ{DWPFLY=>ES#-XiH2*Pkx=m?O0MV=T*u2j zxy7|F7X}4!Kw)2O@z1m7(D_ya-^!oS7V4k+q-?%Uy(>cD39MG-wTQJC;-6RU;Q+9F6+B8pZ`3jqHYt5@j~Pd@9pW4e+>W9xr+eM!ApR$u?keE z?qR_DkJAtoB>C5u&YLN1zCD|fmBHuJTs6U>_qSgBaJQj-D$M~CKYQQ2%~vBMRHHd7 z6rcCkS9a%xPD@@JheM)>moOrP0M7IgoW@V~=5$!guNJAMy^fJ<5H`Ng*!rJLv!|i# z9e)*F-;gyRXKc^w+9Drli=^$y<$3W^vrKmRknXcJ>T${3cI`Foe-#<&xBL)ib}T78 z<+glrBZVrNb!gP>I4#XSkw(om)#yG?!CrRj!P2AXYUo?99|;-~Exm*(mlLwGwAyXL z*HzNJ{##63$pjaj%!C21JPoH=GcNzRLg(=HCb_LoSJd%5wgtN-qD(oO>=VDCRSR z%4o)Hd;iBcv1OPd30)#SY^=9BqWz~%hB{Mn4@ksP9d%e89l{D^!o|gdTO}f|p%wG< zEOAUP_3-ug3T>Blv&)BU$M|e^Vav0T!Bg*G1o1h%0&X@3#w=M#08^d~Tm3IAhc)wW zp2ulOy$E{a6+2=(T7qJwsw9pX7}Y5!&rov zc4Q$VS7X(o7I~c88Fw~v)@yuL9nG#d_|XP?Xu%V5OO3uXfaPsY@v%uzcR4%0uz=3`%ZP22m~hi8XO*Qw~f;*(i*B*1&uxgX6oK=}q>T^Z{<{{haL z*v+fmB_;10uW^(01G0|kcJG1F8-WO;lK2`>t=F%i6ATxoG5YDzfZ~WCc=#BMpQ!&D z3*dZQGi4&cKoe@k$f0eyPtzx;b+lADeyO?NH>kIedfEZV_uK4q1m!vN-xF$o^_=*BM7?!D z6y5tiyfjEjcT2Z)g96ee-6bI1-3`*+EZwkl3(^QIB^}ZoA|)m7;Pd%?-~DT+&YU^t zzOU=9nPVBfI^J@yVZwazVg*OVHi$@7!p^V0T`iLiIzh=GImKFl6Oq?q)#W6o*HaYq zoSpq_rrwop;pR^Hk1V2MOb)*n>c!WG`~AwfS-&O;G;wkO#^Ex}34DyW(Ux_}nGKGa zC6d9a;5f$v7=uG+!&8tiUqrVF_!_M}2H3US18V*}F-C=?53Ja0$eDdE>Jy7WVD6cT z{5@~|(=E28HvI(z!u*1@Zz;<(;u$Sl*$mUjvrquw-F)0VEMzEl%FKC(^96s0iNk{nr1rI=Y7Eh8l^25^pNVY%xVQ@jt%}DVtBR3VcYA4P0gS8 z9}=Gkt8@Tu^v25O>>@_Qe*7PUy+z(jVN)BZkR=7Z#`?^$#MSlxJP&H~Iee}MpspZs_-8Yz;v=LuH-}8({#$XUSlzu zzKU=|h#~$a=Jg`fy=_HT!Y6df31kE)3?2F_|W)NK*&R8-($Q(hgtm?6Ez;!e8eA95o8;WSj#0jII$ zES7n?zR40K{ycH$Z)HdCVY(I~G0GNUQ=y)yc@}3&N3JyRVqavu**H-%pgsw_gdojV zA5E;iI}VmQ?XH?f1KF*ah&A26ep*`URwPNHvGpNGZtwkvNS*womhn`2MSEV0C9S%c znLzmi$=ikd&OLSqqb5p-hen%SU$@)hJiij1E5L_pW{ew?4+T&@300R__vS^2 z~N?#BZ*})mV-CHsbV;ujMZ1i<%pwZL(|%m+C1m@MCtK z%!^Ncg5HxYcBsByeP?r5oxwVYf(GldarB}=vcaoe&5k#V8HTz9?8n7-sQcRM&2(qH zpfBleGrqwtxaa3tYcOU{+#HxVBTng5~(7J&`^XHF{o8TKjm|5Rx5o-uXlHT}!T0Aphr z^qL5dBr_KpGs(Y{3w2jI`=6MDTzZj~q!zhr!WBm~{PC?GK`X}6;MXlS>f0M>G2aY*GFo}gS zL6Iq+Y<+YIGLyS-8OBYJVzB?G2OtAi)ivfKaUaY5jyowq40^+OloQddLd!9h7S1Rf z?G}N?vY`J00?QkyY`=)I*g7KF+lOoW@*m^p&%byn|2jDd~ zIZj@tb`*Aa$qYIV3T!$1>P04B1^pNSbRDhn3xEA@2A!?}M(QM1SugH~q#KXv$K9~1 zQcaw%&r(-hiB`1-0jyp; z`IbxRPS5WgsB!!{?lQUmcv^YY!KB@q&K5b_edh_Cor&zv+W(Up0DmbgTitFa^uBg! z`2$lo414y*wn`ocBz5DdDCMq~x~b}}=TQ`XHuT>6;JoneSkvBB{vOuyMTCBQs6h8! zLutMu>#Cr3!c!bX=b~YH!db*y&jX(EZ-r7rk6r9;sgj#4zUZjlgS0<=8}qnm46F zrY<{%TW_=1I{o1gz0=$Yk4MTaYF|KUu{rwC=a#vNrErJk9YrF>%12c0Fx(6>OQ&FcgdqomJ{&@7p7S@%w* zScL&B6PVEWoq-d<7XkJ`$Nq)d1jNge6rbmZxQcv7TK%Q4+8>?^u&~5PIty<;7kFZr)Y`PN)URw$&8Ady5R z`n|$o>XuP}4DsbX5Y@7e~8Uu%+a{vIw2GS5N#mFhlfpK2h5<_r^&ntYIx zil&y5iQ#JlpcK~E4^L8j?C|mT1?EIs+04c3+;u^{FbKz z!~m)r7jhA1fAWZlSh~HX{P50Az_V?0_%#oF7~-8jd>2$l=rNA*Gr)!tPM(WcaME{P zi*O?8tdlwP)AQXc8bdjnoLI>n zQUG!SWX@q-aJj=+)#tpDC#Zf*oZ}%Z*}wxm03+M#N1bN?!Ke7sWysf7j~|^;fLQ7}J>M0ZiqHGK$*jr;oK7YvMsICspm_`Qd= z^4$AQfnA9W-#FHBuSI6MJKbZv6jzg_VrQ==tZ}&8B{e@{t;17?euAF=!^MkNtKH5Cd5``Y6wuk| zilK)Rh9iAOw?03yx{%raV~GH&x$*=#W{RX~?2oq~7fGKYY`Csnc?Dw@tY*IsdXJd2F( ze{yKMQsg4=ltY3%y0AoLP+(wU`?c~e$2tLp0KjLSuo_e-Hj9|mCFyMxW`d;$BAHAN{0Gku&G#VEF0ddP$Z ztf$pP#zK4Isn_R8kHv9lLOM2%d07GC;Ge$fF_?erYpeb9%i}tqPJReLhosgDIq_b) z0wtsx?ujJtbHA#Oc?5j8`GYK{C^Vn8F|(F9ilFe;N;=2tF8@s_y~fUvO9%?qXN$n_ zq^VI@=`b?kw`ViunyN*0y~{P?pQ;wZ!xDEBq{~d=wc`qM&E*LtoMB)lOV9P46ZV&jh`uA{;6@jII+dJTAsf{X#SbrxZiBju;(UT z>~XFa-Q(}!z0s4?@ny(s^oOv5oxC1lV7V}up1s~foYRyE;MwcnRqPFK*I}i}p=`6Q zU?mREOTPITjyDY9l7)9@@%NlOle1zM5_P&bae#;pR{Ho58CZGPe^&gvB~JY8Dzt;r@KDH)QcJd9<8y0YOMcIZp|0QxE_ow zHf=Y?I2&*GQ(H(xJi)Tk*?8WFj=TN7d7uT_;OLafTU`2;ZOM-0l|uziLc+QA;%(Qi zmxysKMj9NguQy$AvsOF~nvDf!2B}z$7I$isB+YfwO0&u7BoI}~?W})Z<0`cr|B+XD zYdit(90R1wC)JGJkpJY(^QQo^AO<3arTUsPX!w`HXYTG6^S^@~nG{I+ES7d`)scs7 z5aCa#8L&s=3h@6vpXS;`vaES80RM) z4vw;tuglHv{>rh+N{u-;9gXJ7qvvhETi1n8b4R)w*L9XPmLkfBJL6t&C7lC&UeRXk z2#k&T^PgSQM*f_4!x7@9XDEyhIqY}0kH?QA(AAHo^l#bCIoFJ*QNGAQAeq+mMAH|Y zu$7}JUZmpl6}r9gyk0I;xvw>*!qTZL@@g)UiS7>Y`0zLH!NVi_ZeC;h z+tn#k8aWG=a+{LU@Ndh+*Xla^f*Uyjl+cn*raJkY;?3M(Es_}`mw&>2dx^HVP>3)gOQ5rhsRLbJxZ1mv}2)Ttx#{ zIUxj=g}&$mNBT&A-ypS`<-nq5e>pynBqPIXjz^pwYk%kuH*87UR4{Ra0};RJtk)a5 zR}geXSoYc&{+>GRwA!y`AQdk~vQ%d@0o7Dn;KK?#{T*=#mJzGI_LlNEzk&Mc3Z6ba zd=T_0_~2veR!c0MgL5gBy=szHG%$f0c$Edh6@Q3ymR?E6AnNq45Er^6tG{wGsKB38 zDp98=Yl@GoKVFzUEFm1Dqc$P!R8oZYU2Zl&_p_InTV3XLVrGURQIUx3><4EPPi8W8 zNbKxG-x7298q070Yzz{$i!8s4XtkK6&OR~nxXrV-;JhE2xiTCj{kwOMoo}~s#QY)! z$Icq+^_qu@tt{Oll$Zpbv7}mQCL4r)WJQJ+;n%p&!b}^t=Qd97xZZM*B{Z)>mm-(m zlsf52N}99Yxql0{m6qI|vsUtmh^FZ30x!jA3N0;@DNwj`6Lok7EDX=Oc<% zr#INM6cTz^GkB_JxZm~noialWGQ=?|lokyZa8NK?p$Y3LG4;y6w?=<2dOV&m{r`$# znZ*!dJ*{r}h~AAVBOLND<^(pruC#KizjFs)_R0(MeaG5$KGTY-0e2R)RfP)nZb~3p z59NDND*jZ9F(LSBlRM~`=A{jC1>V+-h>BBT0T<%gI^uJfP-?wTsl{9Vpb_D77s zpkf76r6mNK@3Gjffm+=8=z*)Ai8liDra7JU{UtJ%F{*Q-r;hZ?7$R4&g*6)YccQYxFWO)8e}63ZSnrj%1Fc>% zxI954BN3K5B7@rvKq-Z5hFij<=A9z1$O_hKz$kp-<&r;(b??3w!dY@Q?5|KNm5sDG zWe-}r;};EI1ffv`Ms{`n=|{SKhd$9?O6_dNdMB~Lhp`-9y~L_&m5`Vx!$aFucfjcV z{Fn2{OgKZ-9Hr@$MY_q)r=X0OOnULhCZB`Y9a0&T-T{FUVJU|0vm7^w5_&mH$BJ&| zX{8=LRd4iD^d5y%LW$aNYxk2L`OMG(4@cfr3LzmPqI6+2W1;xN*G!a>?|VY*gV+8~ zM`v5CGkg{iVKFB(*jTc=?o7gXD>}$MTqr*9(}<;sDIL*SBMbfjNOG`vzvyzv!HFVdZh~YpP!_y!c{v+y z)s@sKggDz;#i{z2fOE2aMr1VhjtmPS&lSW8n;M$hc;}ly8H0m*ju3W!#Dk- zC-1in!xjCrNfE#8dGLqGgp)A0yysra8g8v$4Q!R<<{4##sDiVWEes%iE|jmC}Pq_VEVzf!7Y&7Kt7rP18 zr*CpE8;W=O*XtZk?=)YTTCjRBXLakIM~$>&ZWZY4yLkHoD~)mavp6ZD-~I7F&syI8 zk`A|UB3;~==R_IpmX8ulC#I{O6h-b(Phx-=+Wml$_e{M>Y2g~_LboMcvpWrrw`=J{Hn#7a+U ztDjomHeMnDhccNGG<6tkF6{7qwstqi=MIABoZZF*>AXE2b(DteVe~S*wPO~<)LYQz zJz#{CNx(mQgAAx?DO#-O{QZt^{omK1;^fW`M&CxFzDqvm7^|fr9q)(9Ma0_rcqH*O zlINH8GY1%&FB&sDz=x!A5?3C&je3H0_k(0ho6c!#L!P|*!uh!e4+7MZP%VMOeNh@U;_VRt(MT?Rj2>5U{tUfVtCkEma6e1->7ZGX zL=W|khW*l9wA&Ap2O&gyR#0Lhy(V?04N-?vA#+am%mgz^O3ok8WklNkob8SE+8c~z z)jUX|NieV*@ZnF4fKw^e0VP<2fOP{4>D*A3$Q3BsC{AJ`CHvS$YA%Y!;!;0KsPT}n zeWL>x;5AIl1MPw-G)CHsKO2NOTqi704lL_$<*s{O+Px9Wz1ZLlf~!fuj(B@n?JeUL zuvAB%C{FTlJzx|Vvp}2(n{}8o{|T8z+BamKElTXm_Nl#YZoT9)cB#zPz}AAavjF2| z!}xtkGrMfSAJ>>rfzA<61DF_@<0dxj#6xv+JBUg~Q=x;!w2nWK1&T+2Y{P`P9D056 zI;|7GYMM=dx^?}0)6cm-NmmidPmpYqJF%Ki@%xv zOCu`1NTr=tA2@Q-URMl*H+_cO5~1SKixcQQ9dbr$;j;_rmz$^e&3MEQO=+t$Zt&ug z-})bA6b?)c*}YI`9_~KVbd7IOro_^v7_45<0x$v^=@fQ8$8D&D`2|S>u%l{VUB$d> zUOvI_qZRM7N?SRgPSZ=M+=^kyKW*EK^!}bW%yP>XWrLO8)x2&Oerv;9ZOz3v+n($6 zvpT%(+S^UYcUvKyewxQ#Fo8@zzIhY1Wr5ysb%0!feZO(q%E>TH!jAP~Zi%GP7L;P_GMfNc=&OLv1LrZM)~QmFR(H30x=vDBEDVyw!Jx;NbUhy*F=@$Qhd9c^h`kMC#S1wZ}x1E22)@-dQ>PMu9xO=K?xK~uir{5%D`SrW{pud1=zus?`* zD0z|iv>`jbOES5FvND-PhdlBe03nWQDik3hC5Viu4UwfT+nWFM+=mlBjG#q&73+{N z;RI6y5~oKtO(q}Bv)Daz0PG%=QDzlW9F z$r3YMkzzS9RkUUWniHaT^Hv;agR$G%NI6J}&5k?6s6fQpscN8`Xh{<$KX-mUvj;vM z_-+hviH5Q}JycHMIDY0}ASf}WW3A{q*ILn2TL#s?n!;8qm3$z<|AiN>F!$*08UdBZx)Q z4OJILU7;AWs|BJE?YkI~PGI)19%bu(?4AKfi*gAm;brxT&+jIT99<~<3>b;b=UfNq z%eG&CTW7r)Pt3DR?r57GU5CLKBT?~$8Y^mr3R2wsGZOzJH7vpLk5QsmaY>rE17AG` zI#a4<0LRhk13c)hALp{Dpt%Y0@K8GfHwCd$?`K3h*%0p2*^*>IVY>#S@WB-&8 zBOGq<_Bz5%lzye8Bqz+QKT{Yj+>zdQ=O7w5*sT)W&-8zl=_!PBZ znn<6CUi)K{BUK5c@-~d>I?MY;_XGspV4oAQO=;z*?me0MY;)1R5onO~4OD8y@^?d+ zK-`TwzECx9Zuxd13LZQd*NY4?oFLkFqazw#Ye;odU9SvJ=dXxaBQ8!^Tm4nVOpW~v zs}i>%EsDWJ48zSBR_$SoNd}_OAczKn8?o4 zTC|)Q=Ogd$X%P`V?}=PUKJ?#wvOig@*j8{`jh^J##}%=)w2)IJ8L%9*s6!LTiJg>%&m9l(CnFYdX)Jayg=KLScilAdzr^8nb&w> zFup>Nl=iP6sG+dU`^r7)d;v#e2>;b5iJGX#n|II)OS0iB@|2`qZ_n34!#7z6QT2K& z5;T{U*&N5&{HX4-TIQB z`IO<5h;NnsO-N9#nUBHF_4(Xy;%QFhy%eiYcx2oY@{fDrmsL|(-I+2=vRD?^H+l7A zwNVF5TOpbVe{CfGtQvBDe=@@v(-O>`+lmBv2Mfp4ygpG|SbA)@TZHfks-+2}*lvv= z(1}!E+Sh%Nj$0`SDMiAsc}{;TonwSD;hw&_ihQZ%x4DbER~+(cMfa_J9ic|`Qj*>2 z_VUv1m7r`T<2*RQ4veJ*aZ{ic5Fo=5`T8??uFbqPxOhLMcDKW7r)`bjDvfaC`dLj& zskT->_r~s6PNcjJPnxx-!&H59yp{=S7p%Pr?+T|lHRjp&f(YDK>{_b zG2&gL#}MytqBV#h{aG{v(U%QtWx&@)w?qkiT^Jzk9RqK$(c)qze8Xw|3&?l5& z)zGuvRSXnpZ^fh&jY=1O+%S!^nhW`?cIxa$w(wa(vY=qeiE^%&5Y|VKk(&{;!GS2} zmLxMqQvTEfUXp~bKt$}zfV36OcKlX;=ZJ4>KI=O+3D^;u4k4VjQ#=aEMZ5lXI4Ko2z&C>I4zPK*zh`v`dtxWi@K+|7td0ZP#g9qMHS zwKXlv=Y&Os4PaKNS8j(4f2Wm5ZK#m1(vzUM$h7_KEW=}kb%2d@|G7?SK&lq8N^t8J z-rb2qa_8cFOR%(>p&#WO*i8}^Sf{n{2iVsctP)(Vjs|72VjPzI7Rkd+5?K0cj@TI% zq~iR;6#)bqu(#(xCk7?N(J!+6*1~}X-?5N(e}V&JIVJKsu4a=gL2gcMRmgK>rz~*e zX&Cji+Ix#D##?=5QF(RF6Go~qo5sWhwlqtxuQ^~^q24}B>nGLm;4 z$;6G|UHP@|SUP?br*lkX2wVo`9K6BwD<#GQGN$7@{tie?L|gODqwtC6-e)_`oAWc? z?Kvp(H!|$uNPZQ#iZgQl5^yVrXnX9b<$X5S_d~B!0qFJqQv7%w6{LdM0GYo z#@vD_`1?jm@9=3BOFza3ye$^Y<@Jur_7#P(3WU6+koW44vv}qQK*CPWE3}Mi9cfPw z%_uvbEm!7yze%uq@`c|*=9e>~sbjx6Y594R|=p zNrYa`gRGb=oQ_e>sn6|8#531CvPY&PL|g$;Z=KRQf88&K5~mrx1F1`|9#)T{DhcfC zX3Q^H8dGqyY>^m8jmkGv*VKrf?1k6X(S(CPTaJ&@USLEeXpkxEScvD2u?K~Q6c+FH zyDv~ob#Qb4i5Twc``nYaqhtSny2~! zto}r)`i*VcZ<|FM8?{U&3b1`hIGJjTxK&7YJ7KbqWOlT)8Z5@F*JS*@2ST+$x=L60 zn(#`T`)u*I2_c#)Lt;8NAm!iKb+`pfU!7Z3D-rg9k8eM)fvAI+$re#()LGa!^QIQMpR8bcKeO;VI`p>XDC- ztNWpmVJS9|Xk7{mhO! z%OQQ<->;J@k>YZ?mli!bC^;(5q%o;rV1FM! z@v@1k@M3T*2sx)gpozdrEL?Byhgg4yuO1++9IuoiVG8L1i=tnD;;gOg95r)v4wuoF zpdt>LepUbY{G;OyFf?eAhqQ*{BQ4N<^OeSeMIRt8w}D}edWcvfoylLts-`%VM=0yX z@7Mw2NP`$7^{+^Aujrm>#`p30c6ketP5pIM*#5ExhaJ$A^T*1HxfmD%`qyHtjP>gv zQ26Uch&;N<2W)Mce7E!Abo%|IpFg|odS=m*iDt^v%|G4T`-Z|f#KWQFQL zM!l6KAFe}D@Z;9sgDyYo*WAr%OwMIx*&~1g-CbX`{Nh{@7Mb-YdzAw_Vb6u-!PPIp z_eX;I%mSzgd+i$arS$@P(gI%TkhsAzb4GrZVG7;<^&RdDyn|wBU)yd{0n3!e^fKmB zp26FL-;MP`l<5ERhRh-aPM25j%UI3K1jqI=vX-%4Hk*Uz8Nu5yf%D&@A~Vu8xFQK_ zIlJj#%bG}H)eN!&-u_@f$RPy@!qDuAD!J|TOK+s46|Pm*D%KQ8%K^gUirN|=ocCCS zhMY6=c6kwoEl`&^NF8p9hmgiFC=6X!vZ^EtEX(Pr3pybFsz>B9+!$ZP{Cz7r2^I7d__-P4SAXN_zifN58Ojl32XB{X4b#(+#6!}6i?k0P zXhPGqPe@c zaKPGhzWV_K!bnOnYy?dzlN8?Vx{5d55>PwJ^>dqQ9J}&kt}IbLbjs^>0PC$1VFgdX z*0B9m`#<97A3FN8 za#Nz=0G*mlg!^Ef4@4OSjE>lF|GfD$ag?E+ELYM|xg?9Th^&SVN|1SN+m=o&D=ghw z_fuNdZBu&->AFn}R`YNAJpMEpNCi(VgX@*zG1Heu;~35s$16OPw<;^#IAYPn^E`w`zJyx>;xun z2Qc>TZMB){Yk0KCK!Kz1lfK0Z+*yCjYcv^LI|7{Z(T@cKgn&z}M1;M_TjJuJkb*us zPmg-d9a^JT)JCKk3WGpF>~nvuT3(-Q46*Sj5X;xen#X6LPb(F&URJtID>t9H#KVHX z9Kv2`D@N+t4N`@e#C5?Z3lG=k{40^6l*sgXiM4V(*UC-zcU3ST;$Ovo9Ia;F6+S&S zQ4!az%K=}K`D(C+Zkb(XNsa98a9Ci1UV#Wo3BszU84`2kjA6yMb`=y7AfvCA;7BE( zKRu7+-G0G8DLFN&ahYMR1^^;)(m`R{BHS0oqgeT&1KA9XnYJwn@%Rax`gVRj zzs~c{sz4oec?Ezq_A1E{oYfOs10Y+bcv-`TGY+sI=K1<*86tzb8sRS`QQFQoW(WtP zlklL7kbPq4CzAUSqmQ_j-!K{+qfM0*{Rm-M7VirE2@7kN=i;+Ov5Zh^S>b0D-ku;#rHEp;7Gtz^e2kFNL$j za^n2i6YxgRhf{_{La1*-#I)`T-rXgce^&5>Z=G%6d`nB~^z;l7ni5@a?b~ z;)u#ALNvpG9;p|&%nR>>cJ+^l{emB<=lgL=- z3Wnz*VX**pt^2n}<&5g-b=nw|bHQw*dg=bCAnNvOXu=Wh2H+aYZzh?J-Ttcox@m3sP1>D1uiV*WO}z4x zHAl4#|6IaR$VM;{c(B~wXrZr`<>SKWVTRS^m4bS<@mM%Qv2Ljwb(uoWT!#@1V3KYo z_DH^=e>VO~l$Wd$T{|%zFNe<|D#EB@ugbp^K;g zxXcaVY^(QmR+9A}`fQLcOknK>@eDD-3fUMhn~WU$XZN<&Vx=a&*%npt8kht4&xbsy zG^BmUZX6$B`U|`LHWF{qO49j3pevl%U;ugx;Q20eYtBTg+vY6*?wGUtKwVWDJL_^CegD!)ELWKMF^#EZHfAw^G|q(_^+g4; zW6n3GlosYIw;2DDB4lWY*R_gxz7e46<8$ACa^R&0h)v4~i!Tq;_mI<{4*#rsNh7{IG& z$|+~`W2s}RSej3Ah+50bi>&?CxoP_z$WNPsI=N+;tWtneV_|`(9F7#s#gmO>HDPV1 z6$Nz8SGSf!JVgRQ@wLp$7^;hpjJP9Y``DB>S-{0+Scp7ih!K#2K)NxNAqpZj%&it< zSRWINKH^AMxG_^#!+^vsHzWt5a5$Bdc*cP|HT{`Yb1yk(utj92_Xnegi1K zxrBuI6Z}@i!fCbYT6Tio+4Im*Ke%_Z8;zdf^0IcS@NtjJ@4PV*uS81q_A0{fewqu#f`mk@Y_mV zmpMSVM7O^;P{`-V=2;;?p7@J{Cu~P7{_>4q$qg)ge$TzKnCAro9SAgpu?nU3jn{@m zzT>M}A}%3Tt^U`O&Ztkjf=arHL_onpgMQ6@lv*~)wC$-Tk82-1@LWvw@Mm9AVGpd2>4F>;J1!N*K87j2g9&0sD zcs3{7S^?LHV7z1!nqIsw|vWg*0HtbRc8Q;$DS(cE#m;sT&AAS((P0b0YaIw_H@uXMiE>`5{na19WV-DmT@p?2il6?~tuo18c)~ z3kxZNbsZPPY5LTn86Wfg*%Aq|RPys!s6b5bk$DMnH)A@xw`fa4QeIi(XA$rk+OePU zHZ1{J-xXsn)0=|Uz>ss23v_F}K70Fv`}>WqBSf1>TJ2z3;&k!8AZdNn2e^HO`NKk9 zcUes_s0J8OIIqW=h)vT`kXl?i#`L?iD2p~b}4O*xfg*fR_ zqrxFA2J+ugi+@T3Uq66=s61ew(T2m13$!CX$RU=j{G)GA7cSWyZhQd{h$(&vmJ3QA zYTOmT`2;Zav%b+UN70iZYcoiURRj=?>f|A!*fqhj7QD+$&H;`9pt zfi&&&!Ra{L3&VguI`QamVs>i%8?PqVpNA}@^-W0sZ3RKnJ?s9BtQFZ4wylhtNUzw^ z3wpZ7d`0Fh?oa~b{HN?PN|swUXZkr@FHHiK1qwfSkeu9IXe?)gU*_ci6qL?SZ<_0f zyRW77ua{)~ihrp#$mAYj0Dl2AMGM3SK?js;2bG_NfZ@@NIl6H}Ai*dRr)kUi*X1e` z7UD@32qa{Mq*VauwK1r{7PX8^tFV(Z{M6@#LqKHWGVW8fY;NFYy{3YBV25t(3>wC45f%MuVvAdF1~z-qb_!}}un~ELs2NQNfE}Q$ck`d0UASk6&}@M% zu+x@(Q30D%s}?C8F9Xv5s4?3lM*EE*Ba1DVLSO3Nuyu13EDkWN(<+_G@NRoDzX;N} zcwR(J&O89kfJ~Xxo7nQ*eb}IY0){BChZ_^;*+r{0eiX+_EP?;(Mb4}edb{={THAio z{*~~IDAFQLLHZv64|14(Eoy5$k!hylCP{&<^ZR$pHP3f7zp-D|1p&wdbcqNtfXl|Z zTk2R1051W%#4kC9BKe)9$6W;9i@rQcujDF>ZJoTn!f_JmAfQm7DF*6sB6?_X`@CEk z7f9~^#!R2WY4q@uc(Cr>@9!27cP&|9w(g(S=u-VN(~2DHF2FoyO){NX=icVhcck5k#VwQy-l zd}1D3jmd$Es8#tV%cmM=jhnFR5X}*_@A-koQC ze4Rgb{@*ho-H|~)704p7LnFz5o{!3r&)e_N5`;_DcN`+rs8ri~|JTSN$05%4nU)rW zh>N;v&tHTH%6pc6VZFaHpZQG~ALtvIc-O;d79C)RCXy7N3627_&8zz+f{S(Zo8pWQ zxAE|GPQY1D{U@9!KwT^65{+`hi|3c=fF%hClejYSxK;l!1Zg&cOfj6s;>&rY7oc}w zG5Ap)zi)ff*Lxg*KmU0)6=(yLHF(1I(irewI{d%cL3sU7su9W&I&oYwpCp%Mz-#%&X3WnmQwl*dv}V^|@p#MHh5Qn>N#h8U3}FH!hgrCGcqdLYhPKfUcMYTrTkG}zuc zT(y9Yh4o*3P7&=L1hpaH`2b0hq>I15dm5LW%_B#wOVqA|Tx3Z1 z_al|RM9IlQD=#%~a12nlc{TvlAcqB|CY2!kh;1bFB2xxa-5jHs^%K>&Bf}s#Z@=Pw zI}Vz%yEz^mA+KBSTeeRD*za;Jnj;+Dc|%GFmBn_m>%gCLZc5XKr2n?TaOxFZLKPlx zx}&tz@1H^H(QBw7hqOZw2|;~4S9P9nyGq^UMioyIA=JJ55Y(SzquvyNLpR(g;nmOz zTOKD|18S~)wTcRsRDNXU z>$%N0ckb9CsG!{Gn)LW1G}i{M-Uc`RGJ6L+rXwAwBDC7ZsIds2*K8cJLm~O5G-<}V zHTOf>OL^(Ly-UD3J@NUl%6JpW$=i^a@Db-u59Wa0lKJrmV8-w^QeA#qtUv@hH1FK% zP0Be$NCJhnc!t2QO~C->zQB29aZ%7mK)?dedMmDj z{hTYKy-@Oh0jdDd@Hc>8z;gQE>^}vxjqM!@`~fC-QD5;M?cb3X5YtFBHz7G-tThFy zWl4!Cy@8Y$ozvX^f81MzWSaFHy9|i)ea-B4eviZdMKvK4`3K_vwSb3>V=Em~u9!Gj zvuiJP#yvYt11rf5_kYJzH-VQ0qr^LtDQJw{&AR_}+8E$%6=u70>=&38M2<)QH2f}k zUh^OP7gO7`6w2pFw7eipKeB0*4^hL)t}~!vAXg%#H#5V-c2E%E+ei~BUxOKtx) z8q4wS{`7hS`$2@gSl`CbfIl4MQYj4tkSj z0|-Kh=E9J_2$reHPv`j4oJcD!AB{$HJ$b0WzI@euQLuTXeIm>5b|nZ*#P76~1G}A> z{Mxo%E62q&Bh>)s#YP6Q&AC_NO=<5M`5O5!5S}8wgsmEpyB4zNcs^T~e-Y6>^N{NB z34Ne7BTIE=JUWxFA2jd2<->1Q#sK!=;^Jd>m( zRlIkofu7E(BUS~q=sS#cRb>AEX!;7UCcpn}N&*%Q+z0BRKpQ$i9BScdtJHJO%5cfBX zv8ee|-Zy-jYx0f(7%^zO4Y2@uIyHZIFo*R^+=0!XZjd(>bWbE6lP;gA{_{_u)MEJs zT#mdwV`TBLU(3~P+y(_1w4Xzg6yr zHz5%sz1vIf$gYPrfnuY=sQ*=(iuq=u-&xAmxJ zX~TZ5r)wJ0##49q0&ey>z01S%j(h%&Ryus~Pp|rMaTZ-q-X!xi%pRNk*- z_=G<;>GC*Da|r=2)(K}_>-AOnOC37zIXJ3&=x6o9g6K+BGpQRVr>!r5rtxO*+x85~ z7^8MVx_ct#=bvJ+ra;7(EnUJ&KmD{qPmju=s;r}ODy-eDlUd0yI95pp`tp6bSY`O1N&95xosb@tHw|wSU#c|79S4 zAh2f9YG)~8lvB91H2vIjxTPm!aK1xRn9}uqeLT!#X>&VXQ&X$=UzKj(9^3L;x4j>! zRas{`j2U!HD>k~xrJvck4b9TdaN^PcTw#T{`qP1ez8Gi}4JhaA>5^NK)kTOp~&;4glpv!Aa;+Gm}`?ziw{F3R(J~JO# z+#bLA45NKBe`~CthQb7E%}3uw0&RC5SeSBBzD&fO&@m~RLhLDzp8LL6B(_Yevy&gu z;Rqxr{djTXA0T!I&ZruB+wk-6KU-0XsH#eK#=eu}vp>yDuE}fEc|Mv$%ZqspP z;ZbeYsl@N?K0_gjhgBcu492q;&V%x{Hsw<%$WZp|z(5jq?t|%@^4FzeWGuAwI#m~r zS$f5?CG#q@RXV|QdMSfHw5qZ^*c>{V|sNz*hs$S=)A ze{UBP%@31Zzpp7m?3yDaz|B|BV09tObg+h_BTeKn#0`s8h@=h@)JtI3kR~ogS01$YF+6{Ur=NWzG*F$&QrE{g zu;dNyJHbH{CHT*Kh8Fq~Wh5GuGgD_g{10#vJo`UY1LN%?>eG9CTs+}`|Dk39G5Y5n z(XvhdT{3i$>WKYDp4rPX0aW_z~4D4mFfKW8Kbj-RXg%et;qx5Hn%&@ zz>ghKMSuK6kX9X}N%vvNM%pWjE#w+)!e?+|9|j3o@D16!qWir-L-s7K3k!@e2E*)n z?_j-WFtGXO_>VlEf?tZkQGDrg z=kkDqLHu!_k-s!Vl&RCWpClLA9+mW@uVkHajD3#9=yb8YYhGDfUPT0>eiwYqHAru5 zFD^g&AY1wt2QdeJvJ0b}M<9bfRNv37KRs=`hL|DL`-^t+;z6QrX+vhS?MQIYB%7*| z5sj-(+s_gwEvU(+X?mW(%cVYj`_te|BvYOHE0h89MmQfP4@*Um~N4{vpqoi`0*HLakscJNYk%z$`d4 z_sIgH6R*{=^HSn|`4^6A$Ddymsi)?1H+=?P89GwGJx=Sibg#o!&@OvuLS6=M#45V| zG`Ks8y8pgvKIMO$k?0AYY7n_8c^;MYGh{HL^`eliaz0&T+zaVe_@Q35bg1=0(?j9n z21K(Tdt*phV&3p>_s8N3w;cyIsVo0$2goaTZbSmNevao>fUe|u3~LY{Y#e;(1l}@7 zK7sEKRC}KeoO&OYLmpW`TM$B-!t2?zm*vu1L}!JT<@6G~Lk1?`*sOh*5t;Kp#?Od* zJ@l``K=4$teL5?r-Fs5yvd+l$XRv03M=_`Q;_!pmdkA|^7$YPrdp-et|QORa*PItj5nx>?|y zy_haOCw>U2ZoB(J#;U8;^L7AcJM*qR>M3Iox-l5d#u&lt8QargbXV#5QB1(j87r-S}W6pQ2*up-J-O*w~)}b7Vza`}DRS3FCv^uRv$)%l+xM(^;7r0m9gG8P2{ zhw1UVot`rqcCk+O0j88|w2Kh`p>d-nCW!pE)RV82pI$QM-kq&jm$Huv62O)!8yxe zFD3Lk9|2C}kjrL^j9!>}0N{_d{U52pFOm5`60$0@sgW1r^!i{mt~a3jb%TGbu@QOE36w z-YyiqWl~`0lPT92?U{vZ)E7o$*JtuWu*6i5=U8HL$3Ct#n(@&m{_O~ga2*s&?0cL@-I`+(EjWH znKFD`J#2V@wl)ryJPtrhJ6l0MZZ{XZm`@stgwJ39cNw9wk{l|i2O}BP8FBxUUd-|F zHmEmjD^*1~G~|D;Z$0H{s6BXYN`{_jXhehmb@U7lB9tKgzXVCY{NtWL3sd*e&f~Uvold~%_IOxK%wZNlxhLyzmm?Jjm^_AF<+K1M z2~MWr0`MK?5XZC-5AEFx!hjoBi@p*0j1AzIit);5HefJdSvQl5%#u2;ohyy!{fS%-T$9>OoyT937Ml2}=Rb!^)_SFx%*pamEHH;?Y#!6j zc0*?@M^W_7xJK{A)K32)hep&so}r?iuJ&kM&uAHc4on;K$31`WI80{$!;6tLewle2 zUO0u8BGC=r=jye2#jW6+yR2YO0%jhg)lvXsZg`Py0`DEJtuZx|bvdHck&T6J9GL45 zDN9=o-Z!Ls+KB4CJ3(|~wZ1WjJt9Mni|KNHVevd95rfV-kn7~k?LvNMTOi~RPi^nU z4_6bfO??s9AfKQl20kZ!H=TJ+sUb}%>D#U^O{m96>-L)0>_M69lM689HEmaR)`vBk z%QZ48?suUdPJi$AoO71HnzET4mGmP>{1MQ?j+s8(oIpO|)ul{KvP zZ4awl;WHLJ0Dzt6j0Ug=kj0?aOfm=u!^kWq39iiZIl~NhP<5Z%oCRy3JdGTbVWpvZ z7L(2%mT3eNuB}wRec|k6DW&32*k%vjiM$4Q>@QE9id2W%*Jv-!P=Fs#v}csSp`7W; zV@kZbG)JCOBIe{X689iNdXG&x#tSi`3vLs1*45QLp9~?d=%*B|ABq1eqgIS+oYYQ; zO{;Vs!!b8rQ_VTbkFGeaUVR8L2XqLJMxOGg@%#5!KCXVrG5qac56EP;NZS-046%_z z6Zmq>r93Q1d-*EoIFvZHkAR+;ArX#`Mh;~LxENZ-^nH4cMZfEk!jaf0W2ij)>|6RI zv=x{~kd@9);+!~!)HA5VEplc7_*$kvx+F9_cEc3wWnZvFRJQ0WWM$sXMWs_EK zl5U_%9c*2IY?#zZ$9VqO;-ZuY;wGl+6zx-LEIU+W%oZ&agB%TIBALAKb|kP9XCp)# zGZlD&j^yvXLabs)kS_Km*sRt@CY7S zH!qlOo1}qhs9*Na?iUz*vQPz!!<^_>oHdNKKb(y$~I#zj0 z%nUZmGgZbWte8q*GWgX(N9*fyI-WL>O?Z*6OZCTy40B@avY1CqK%hCnMa(z^x|k_J zqo_if37(AjZo@4`KNlS#2#gUUn#ncAVlh~8;`eG~m#owvUy;hdwY$C2=&rGm>N0Q5 zCct(AYU`%dC{C)mQ<;*TM^s{Cs1HRlz;%e68kkHE71Y~QN5NNER_)RY^0xwVnOthk z&W6r(hAgmOiACx}-cs`Zd`Gndc#S_xy~aL)jTB-^Vzd}IUR1Y!l8??!9S!4l{rvuz zn0Wx|PJfAwx3~H*aY7Ncvd@CdH7?ezaq)+Y=)Dq8!GFGi+1#0gL%PCYGL@g*_oX11}!gi}z)5TCJ0^PCnN>@KpG# zEx?KNcTu#9K2*(alS#lgcx@B5r%FUu0AOn0IWfCsZ%hECB6J>Sd^K5TgC7AJ`=Xt?T34H@FM+#PBTcd^k`;@;%ls4b`QiQ`^)w0g#3N_8|VdQ={ zjZxFww{zZ*R-cs#&DJW8%8iBv`}KTW(T;na&S;U;K^Bwq#X0qi%-2+g)8TP$(4nQ| zwVi%x=OE^dr;l)Q371R%?BS~iJatAZu3pW(LbZ~YDf`39@kNUstuY%4a3vJ|#0;6V zM^V58Y|npIhcw}{>gzpQoH91;X$mOCm; zl^HJB{0A|0+J7?KYrJip3Eo59%D=ulBmI!ZRsdHH#jf&tZRV&TzC)#JERp=@pfYbH?pm|D5aPp**dS&G#)@)i;Qkk(x>=!kdpvo4t^_BC;C0Q*VjU zoKE2xSKl-u(+s?r1Wq!c;`GOQX8YfLIZpL%rZkV%*&*1g^_st|CTq;o`)!oHd~4{Q zfeY^1D*3mRkzTbjYO6+V!wUV=3P_|+Y);JPpb&ndaiDQXq@T}aD2Gc-?KyI8dnf35 z*Cw?x328D#Lw|XdIYdZ|LLK&m%Z3c9RE7nMSIO=4DT)05D*QOp1 z4r@kFw(hla6$Rt{sMQPB3%I)e^OM%B)<4N6G;1818XA1EmaQ?S>=E{xV3fc5I^e@- zWGS$9QyoyIBE5g!zX6@Z&-2`Oaa27 z=GE|hLSjk4R(HTz!Fn?iY$N+NS8x#RRMdFjfR=YD8Jj&LHnDpX*9~4%Ootp~fk>ZK z?NVjfY50vVhukjUFu!T;BuRp6GRu>vXl3SQ{7AKQl25D;UYcSqdOiZL-#!}xB?_eQ zi&R~G6#rApD25*P$)TcN7 zY%(oAV-oX|)Ir`PCOey<80a*6a%hxK*w^Cm@t9PH#WPT7W41NfE2GRfqN#^S+)1@A zuBnG!uNV@f>zA5ekT_(PnONq?v?X7oygYZAnOOW-yrr64y)6gdS&!B}AM(&`JXd&2 z%BUyxwVcPVxB-hvY)N4y!~oIAqd9I9yO^NnT>hBr3KceK9H6iV9)ivo~BteVK z&ZsY+Ofn>id9GATNS2~!g?(2pjZXOW)tAZZoJOE3K2VlTgs7ENfSmrS54Hz=T%#l=y_i@vTl(K+& zW2{|+NRD=;{$bTM;D{0;1tzd)gC<-Ay{EVtgsbwWq8O~c;WE*eMn|i}l7BCG1I)wa z^R&~}0D*;M>@<)Y`ED$n!*tMaPnTXxy+vlK{@IG2Co(VQDI>Eo`Y;BM_YHQyJNPdf z!40;piPz3UCNF5jzZ2kthGa2L8k@Rz$wY@COoz*OhZhc)baj8}_30TY2H+M*#S?_M z@?tIr35uvNok02MLP?*#QqI{(2gM|s7*F*c^SP0LK}^5H*9*H;RM1t;1e_7r)R53+ z+`*_$i{5oVx45+LJj$xk9cwbzYmz9@B^U;LXSXkxJguth@Na^NhdlAG1<0nK_fZxg zmtEzwkFA2o8ONC6%u_50G-hZ0E;Q(qB^s-_tUz8oOiJP;F@PbVdU{0{>WBD^d?eH! z7Fgjwv3ewQrCnk*tp0#ijwAb7Z5d6JpDeeUT>e;TK^M#6^Q8K7teH>@%<7g#VK*ut z`?|c4Tj<54rlf7$@mf_kA)_-f>6UIPGB32eDCY*X!Xc6ptq-H+eE!ZMmxow1B!wY9 z^Y;RpxV`E}qtrGda1pDPR6Zuiz=tf8o@Y{4$_Xc1o}Rwc5D z;`c&tWkK$g#a$NuPxyx}NJi?qa?QxG`L3cGD!405z>pUf<3?{%s2oqsNjJ2v_lEBl zT{|U_Z0@)eeY!@z=1#X=lvmGxRo-Lp#e(d_b*~eq3ZdSEqF--Vi)(O7OB)6 z5wqD)L35+y``$X#WF44L`liWmZN0a9=BCSO5N_u9DVao|!m%ta8*

    Dz0HaXJ81I|SEOHg!N zvVPz|;^c&A&YblS2R9B?kF6dG6VlX;bcVNIXE6E31`>~MMisw#Qf#THOh779@dXo^ ztBS6`5|V38NdTC&TPKef+r7k-+pxS-!WqM$wHMxE5_y`F-kR(aao_Ig@0wPYc)I0z zBbhi3v*d=kmqLx0LWXt#Xfh7TEOYl6LY`ey?iei!Tt&4%y;cK#4z*6~a)@}&Ztq1S zt%kG^Y&b`ewv#tK&PXA%jtF&3dX3sj0z!m&xje%Gq9?-C++BuB$6XcdU4=9zXN?%6h+vXpz zyly7x?O$|4tUmB?F$mkhq^o+?_IpE}I78dmnqd(a^Dhwz+V}f$je=I4-!i>8{}{U% zKP8Ll4l~uUUqMhw;dfVhZ=B%1`UTvpf{fAQrjXwqR64u)`wq78m(}|xEXtF1oQpnb zEcomPV9LPf1eA%*NxsVB6A;b2ZXAgp_A$ zIGk^#4|%ClTh7uFV7^PweZC&c7`V4a^>31wCqL zGuqW^JDw!$zC$T|35%2)x1A8UIrxk<`bmF5mrk$aPwog*_Wi;pT?GM;tlslgLc*I} zAL3f4=XDF1-s+vq%VGaJfctFx*gM!%g6JCAFa-vQsL`@grBa*Q{w`W@;QZ~439$J1 z5)$*OAYV@_Y9z_*^KuY-{PyeWeQe2v=*~+BPng}O%qN*CD4|I~lRq6rP8fAZb0Zb*HX(6Mk5kP6 zIsVsZ1=kZQrE?SbmaCVU+)^OHyw7IYtTlviD@_Yg#zkGx$aRbVe&g z>j_nya8(eE0PdIOCFQw7y|K%tL{^Cr$3V$V$<~ylvf}_e|ZSAM&Ho)ne**QZ+2!rgg!9A znGOW15JkWo4r9+XD5N%!foNl@X_tgd9eI%Cb+ht?RQM*{u2YKuV;LtbA2vvB6)s>&TerD>%xC({0gu6&uC9(?u;vjT#g`gY6p#UusqOlJ!x^c$a6bUDu||_l zD4knJf<7)}6)n|W%UOjjCfDe%_9m#RqhsIqd&u-;#VY@RN)T|rS6}7hsr`DC+E?_) z5w2`^i{1+dE;4ttRHv1fLzjuxFkSBLP&QM>bQcjlQ07NY_a>Y5JJ&6a($1IDX>j(1X{@beKfyzO=g_5HeTl$Upl(5U;?##4WCZxc zgIbrgr>!Wh{ft&gB*E=7Y`cr=_um3gL@%uIg&?U4+P|PyW9O`Gg>2LGRj5od9+t|l4s+O zMKu8asmE?-^D>4Xfw!tw$Akqu)jEk z^Sje~fq8TDc;c-7C<%^A*X`BcJjK@bsiyLc@3N(_NT$u!4r?!lXzjkGWvwvspy&wT zz9SsdP@e@BFWzE`hHx#*i&`fbTb5xSt@YDa&SljiUR(|IL3Snl8Cx;`wx$V)>f&?f#JM zz{e;hRFc2th6_q^S(|eG)Awm5aX2b~>wBe|UdXnMr$wvH!%nq6*BD+69*V-msho$! zl{p}}a>Y+&jsnhyO75rvn|E}l`#5ag3({6fn z;Y@HVguh-?)J5h$a{+qCdf-udOf6;DbfS%kF%HTKh^}I@cze!{W)pbb@qfAYo(xjt zeML3~-vve1h^HZr7U7o8!k%t;70c7gKBZ@g%g2wrt$xgnK)@lbBfu>qrRkY^G@z6R zK-8VaHq_IOe5tdRqew6bmG?EG0WU#VJu9@X*O{TGGF6mb1pkc=P9HeeM;4Mt)Bd}H zWZ!N{5G-@d`Cu|H@!uMhxG+XOQzmR$CG#4w;kl6J6cw}iF3%?oF-ul{iiny5IZ1t<-fJ>E8zH%J z*r}<2<6PqQB;d9hL#Ag{^!cPw%NbR(D`Iq=0gm6@FqRG?$q)Y z@Njhe?Ww(zeb0!|w2)dqSkVe*G$$`8|=scU5R#ee+#9USYtjS!N~H@zs%gtz~_KcQK zlHlvukIMCuR@zI7>q^2mf0R)S!@kamA9hP}onB@?D#S~_Hnms&(5{uo!fTk=+<$ei zEb|#_)n;~hwgFUK?ZPppzvMHfSj+Bg$86+4O&T`pAwQ(^Jl}#OtDX2usM3p?0s<=e zj22|ORv#q>Uj3tAJt?e_0K}S43a>M%*Ehy_vcl)LeZz6Dt=JSoOHTsX^&1GbdS072 zuR{$Z7)$}$BoC3+|u40%4J!6o5O}60ExHF@GK8dxDSs_g9q?sJ^x1GyYE$P zjm$^e@bFPC+I6Z#D1Fk9v?@|PTSYrqx|amqaQ>_!`0cPT;Nsj^`fh3Xm!IdmV9ZrX z(fKd$yT!YoGY8#j0wqUSTFb!CtQm?A$7@V#1d~jK-DfvmbOYV{^4y27wdaBcWs<(~ z>uo_XnT2K#&mKC}Giy$??MXmdaJ1}BP%JpoLjK*(NpZV5!3-T9MQIwj#xE_a%xcy z57%Vzp%6oZ4#N7zLV#Cqoy$OikBj&Nml=JdR)z0_&9Z`|-Z1j{g&m&6+e$xKjRpo1 z3-O(v)wcyE&=+6m7XmI135;1Wi>q3GE->d(_Agq=!Q#wrs>2|tr~Vp*CLSkA4Y4~5^|Z%ROruJZL<=$o;xhp zT}Sgjj-L_<7II;>u|#!+5O|cynw&j{Sk+Rb`b{b6Js!@xFQVIcAj&@*K`ve@YW(ta z>kb@oPQRFp(-LdO2lgPwHDOksi?MV(&wGbFr-}BgHVB9WSzTd|j}~{I*Rm85=!VYmRdy}v^M6z)OY%;%I1@3`B@5YzpQ3Vx3nHoXeq)N>mElg=X}(rS?h6?~Uqr#4TUo+*G% zAT@^I?p1h0$Jytu!Yyw=O;r+RNIy@%2xJA`+7Oo9H&vQ4lm+RkDrJ2_k9)L4Fi;svfj^h_y)W zX%CR!;o5s0Aw+M-xk#$upue|Ao{9xyyw{&|kQxBY_X+flYI%&(Myesizhgm&HA+PT zz)HLdn$;DSm8vPE_XJvBlWn*UY;6w{;z5UmJKOuGcV^DLXZqt;9U@*YLsm?g^pkC0 zFH>uYAVi0Cy^!!9Cmblpp8eCDxXsCr8pfD>BI(|q5v6I;I@P%y<^{-H4u;jQDr+me z-yCQ(fTlQ}8AQN!Ov}*@!P=H9q+^6EX>!(lJ+(ieC93GbSm@|TOkwhhf{Jsh2EKlK-w6UIH^f9qTv};6LdUx`9tG4@x|rcG|bu7 z_2TT^6X)eyXWqT*-h?UtMI5cq#g3F7ax31@&R|vuhq1nd8M1KZS7r&32 zLmK=}>-#6mZp&{&Z3c&UZ37o$tyPKVjBOz~D*=gu+&k09R7ja>_fxECF)>7VoVQsc zmU1|CVUD`8uNrq-WDESY+XAm#EH0)zKCpf`zXUdgY;;)C310^?cNHNKlQY^Z z6=p4iT?vxtBv#>4hg#|H&9Jjlxf3r2US4ELj>WmJAgL(ePbLB$p*e>w157 z)6IrO<4bZ`e9p%WLwi~`%l7*&9qJ9Q(R^$oyHlL;gI`P=q88_ykM-V;8nU&Om@hoM zI$vOke4^w9yQ$^jYw`JW$QH>H8czSaSnW5&c|D}xCX4Qp>|#N zdSdWd{_Oj7e0ySndOZ=}y;<29els!=JOJP3-~>0K7)k!Q?Mw* z+x|e7_TaI8g0QHNd``skjPJYWZtV5h#&Nd7%8{DFhWI_vkGGwGS8v`UY7eldCMda6 z{SN#g5U_*#nS*pZxz?xqXMrxN^~RvUEn>%&q9d_%;D^Zj%E|QPx+>ObP%|A5nPr7O+KC8_O zS&rvR_d4Ep5*~W)>cuikJK<@unBM7OWBcqz@Yeh7ztvyOTnuT22<`^6y`Y`b6feRr?NhUZU*eZ3*zk8cFg`9ctmhjLc4-YG@T zG2q1e5hx9wB#qC-^`)Bkdk)NiPGth`+n+CMM#zgSj@;Vck`-|?5b@Vqm3J{N|9n^b5ZD~9K35{|LWY%IOMN1UL>em~nX{kz!aGf(nS zG2w~Dx=C|dpEv=ZvelI3dl#6YF@`LguKrK}d(t;IjT8pD2K=^4-Uwy9>$w}hWj{*t z%+rM+)bP=(UP!mnXT^y~-yq<~>zwXjvR8AT4?M;ia zP57iPnU4I~Wg2FEGEN}0*B$T1|2=6D0S5VIx{rCi5A3}`br3)uIp zI*%0P+U`}OA@+icU2sXkEyD?!&I=BOx!Qb}Z8<@>Cr>u>Qaq^ozP@20uxPr>#HCks zvOua1ABXj|AybGHYfu}RebGSdteUz1bw#?fUdSY+9Ll%drqj1CLI{=k?(Y1KZE zLDC|eg=@<(jX32M&I-Oo^_R5utAT?QHmbCM-|oh34|}qi@_Ju;e%~C25^y~~tyE*I zKF^|ZJ4w2RCChiVTCE@E^KtKPr?e} zXIE8}62l{?&+AsUXu%;8V?g0M#<|pV&Ityorgyo_N96O+C#5!B8?)Sb-mqdyrpUL7 z1G{|_`NOlxbE;LIs~jdheKx}yT@r>EYcVH4(}tKNM}|5L9@~$YPE5`0vYW!lXeH((&}2HUTo<$1D#KxV`C^Xq zcpTc`t!aU(Us^5pmh`l;qQy+gkwT)Xc_^{>Jr;_jd|<|Q?;OiENSRh=Vxdh+QTzR6 zO^w=y;AImT=kYpEe|e%rLj@y&p?3JuFBpg{Qz7%sIth05&C+~-K~yllZ4{;D&!qhC z8~5w)RzZ@yoL#BCc@~T^tvs$!`~^Ofhy)-q*h7;N4d(Dm;UGKyzG=qdwp0mC6#AEZIvzFU78qQl}S+?GWfO2oa+c4A0Q+( z1e}8>96K`9uN@1VCd+6B>t9H@RGh{)>0+~-MEW!X!<7l3HVbA9G_l|)i4e95bCSL) zP>&wJ^e>Q%+c(MkV)(tz`%(ORR-D6<@ZjpWm!8xqtE&ADfpkS8jG}bFkS8uk?blxf zJhw7g=?3OnL>*mEpvb7u^4bdfnPoq08J`@xw&X=+*A{!T*1X*@eoQTk))P)z4n|>` zD?d-hA}g?xsT>=jmvaqw+7Y7$qpoSQ7{ry!F9NhJeHJ&lb=_5dhHueU8y$(z9Ts|z zxZBiUj4f37TtJ|o&GbBi8Cok~`oqIGJl79GJ3UH>XHjI2nMs&3QI@czGpJqLP$0O3 zqsS}wDMMpehS0)C5R0FwesQX|HkTT@Vv@Kuv3xXfc3Ycl&&ID`&F=|mG`18>$q}U# z@1?R)Z)hW;i8}D@b6e_7N5B&%4R=w77$e4qw1Yw$?wiY6jFac>lZewtIO(;Yb=3{e zA5*_43$5>}C#$b#8c)TyByssw6_HoxYpDhe&d)|*$2fVfPuJs`(5$QUN&sF%g9Xm| zwM)H5cXMyKU|zHE08st&*QI2bbzzzejjp-E@`ULbsxGO|Y#jIDaUsrTQmDofN4zB? zFxwP)xEM6TGNrTwd=0BT-%e?ZBii(I0c#|kI9Eq-QBZx)!0EopaN_A|$(ZDbc5H3W zbPYLuuCdVoc(q8hossTTvvDeN-|hF|l}~o`qT#0U&des$p>T#GEWWidxbrS6r#;p> z1&flmyVku=SIS-VX{oiNqyA~+4$(In0V0x4{G2E-Dm)PVStgzt+z=o;8*C^Ev=gNG zBoU#)c**ZF!}{zvxJFL6!IE9c1h@EsaujV|bmG&aR`V8`KF-Y=ExLE(U@3hDZ5SyG zPv24Qq9<_oQ`D!37)V+qFZ;95AT_KCkOn9=ns@q2I%`@Sov~lCooN*8| zxCv8Gi|xocpX76?8RVB~T~RfUly1n@9)M zIVH;8RicQHNNI;ooR`(*hXaJkih&xqQDxxKv%m-qITcFs@da8 zucT6nZnHN3SyuCqY^K~?wN@{K{UyKf5gg_onvE3tH(^~aCpev6LBtA&+1V|LFu>~! zR&scdBg;ZjEzC;p6UA*sw>BN7ADJnYJyycm59WJ3yji^)NB{ew_u=w18cW$m{(yJlJ78tED3MKdWO##oV9VjF{T zNknvhxM65aKXe=tXp!PL)o&qUDAz%Z)NJz+Ci2m}nGaJ{uXOa_&IEZD8dfY3>F}zE z(SYmQ;m(34rO^AHOp)s<#wy*Fv#1G~nZOFoO$Am$l<)qv-wyE}_b?-eY=|Sla#Qj9 zO~qcX^N_tYcdO(&FIWnsRGB|*!nxc_M&|pH!^FXmqr^eaiiOrhv_gnAn4v{| zlEa~(jYx*JhP&Gnc!u?g$CLEe~rWpaG@Qk+9x-=^UD_ zDOXMDs~7LO)Sgcc(ky&iltClPh|4PuImW@+Z?u}+OzhK~^`PmB_-w?6nq<;b0iQ_8 z07j!h1oQLWrKBTB7Ay(B94=(Vz$sDUxQ~ZV&@a$v&?ISe$!&=ek_K78s>S54=4NZ( zEIdNMCUW1inmF99G;x`3@-_3Gb7Pp#oa+*o?T(0SA26;hfafhFT3S*Gv6p;HuIPA=) z(d!uMT+1Sg)6W(M)%UKCzz}!svDNpBEk$ZFG(6#jbNCrI=`XPj2+H>4KSSpqMe|Sz ziwp}vqaec}$Bi!0z*4|Llpge41_i|>hU;x6kte;HyON;#3MbQ$=9_3UXh{st6|W>S zi}X8%ss4Zk;e>6WG*9TLLveJZ6E>4}k)wBz95b4*utLVE6bs{VWSc{!qkdkuVdpwq zCXFMFuxmI*GuAV32}FJ6+h9qj8gQVW_1yxlpXPsx+uL8Xq8$^X*+D7G$Uo0__3E?o zf_YD5l!57j>(q5*wus4!+l%?RW~nI&bSCh#eWU zTD*)dX^!wL*4um6f$Stvgsdr&l(KxvAT&Q&9*lC7%&3BxKQ76&Xa781`cqqF<&KBe zz0PK<)H(MIfAi$UJk*st19{+67l4KXd;FmI&rVo8pQQ!Gl9pQDvz)$hJcVfa4x2P0 zxWdo*8;F+Gn{aRk2ld`rtn{#7mL%2#n6AH~GQ6IW_qb)q^TpYaYtjFVM;wc~edC!% z_~n*`;FdlP37-tlscM_yD#_`aJ|XJ*l))?9ho1j7f+M9q91V}-D72$gZ$D&uEa|gd zXyP4IULh1lmCH?pNpjMpESHnUY?Ph%a{9dio&qVNTlR->*TNT6h7Fp-h)qy^I36rG zJ!(I(26MUFi5TV32CaZvxc>T6jYD-Sxm-^2F`+gPzQNXM!p(Da&O~HV`F!ki3OiaY zDp)lv^v#oe?L@ke>@P`J=e?uhxydANoZts>RZ?;%?qG^uB!1kXk;Wm_otlx1(JR%v zmtx+Y{NC|%T3y;#ik!gWzPh`%OJLri(2Nlld@m{D?gQj}p`S)LusIs>^bDs?)cf;7 zE8#tHumMNu+$9KH5qqrxft-zR>kVm%^YY?-8`Z9a)lC&T96s^n9dyluOd*BTLp{sT z_)4)2uz10+r_ek3BI15ZlJd<4}jfT?^@ zy|FxYLF{VB{82*TiH@Q`$K9KOO;y~W-V6Fmi`h5K2T=;h2Oixi|E> z{XOqmhddRuq0#O;R-fb1aCh-h%(%GOPf}Yx`@4ALb_C}Zmynr005fF%lNUh#3ZEq} z=WE+1CZvxNV=K6-^mXpa!(t-sI5_B9fj@&lres$4mV@2#?WS*Z^pnS*MFB(>tjnvv z&wjx4A9KS$g31jf$Tpv}QLp=1Vexw&h7f_RqM|(A`#2RAAhesfH0NYkG|#oayZKQr z%fT}O+UTv}7AA7rPquH_ELp1bK6gm;Bp}Uy_G}>h8nm2t+t>b&4mzyuCcvEJNu~p> z<%ca7hE6^z6_iF6UzA5y>hihMufXje$vx@x_kwTbK@Jj>4WMS~o4)}t8Hz>MUO*aY zVX)*wvZ8hCeln80yaXY9{?DU>?9O_jQQF--tPykdVu~}nM{944*lGJ$dE1BOB|JV9 zYV{5J9L`=JNsi`LcceiK_&zDMidAti#m&>T9u<2E!O0Xl2PhijBfg{aL}b6ZWUUVsYtU+f6QnQ?Wo5>gV=( zGJ~jN$^JFGC+MjjV98_1fob(p3$av&$5RPf&IztLwtR{#FUu~MlPkey>u9k#;cmBT z>o761p1YZ$n~F>ck#MiZ#1)UDK3*H?F%%W62THbZvq)(IU>(Z{#vn zi%hF`byqq4s)8+g9Np2J$S> z-G_?#P%Oi>z6Z?Qj>3sWzuHsbwDbThhGGZAHFhy&Jy9=0{QA@}xxzH)KX$ zrE!`+R)jO(I}N7(X?;`$!P*9kr!6U<75U9Ix$A?`(&1u`SK`{ae=-}JTs~T|!srfX zX_WJ+nwVpgtJJn6sODkr$vTf7({DT$-Xg?fR%FeT55p$Jq$!C@4Bf1LQ{V|gv#N=} zoZalQSKxE&>3+Q2RlqPbq3F|yNA?iWi~!5~7#>h8=J_SZ|Q zyM*KLt$(++zNcrimy;G)feHfLrLr~1 z0q>?e5D)f}rv-GO z+MLTI*`lT3F4xa@}1f`<*||Q zs3Peuxx0r9$NT_uhB!cC`H#mqCzyl36iz!*M%eOJDmM}_$G>eQDf%N75+^nt_tL;K zMB&fT@l$%QbmhvOz{#R1H9pey1i%yGfzE5HG4dO*Y`bmEEm(gU z3Hqt#%fQAK`>wEUSD*=zR$~ z!W{!*{6|ROTMe<+w_IDFH>O!_42}P3wcX^Am1y-hPAOKssiu8a&=VESu^IYRi39X2 zopJ=hD))oQl3T+<<#~AmEj4}*%%3uQ?2f$v2e*a}BoBMzGU#M6`ncNOynBCFa^lRM zJN8pxM4F;BgE(#!_A9HTD;ljR%uz1Gr?dXk(2AtR#?o4}YgGP&0qL%GF{sPsvuRwk zQKiv`Mm;?gzS*k!Wz?)(2w0K&-lo&+#s@8*6ttbFS|LFVqvtjDw1a7jIMTRg++hrF zw??x6VvqtVm=KRMG*A4T9zZFy}o*LqAS*4AqT958pKY2Rc42 zgN#aP)MYY!ljE9kadNA}P`ui7W6{nRgGc(S@t!;ap{J^g2U>d$yP1TQb;`59F?PzE zm_w_aXDO{Gn5gNW0GSWtK85q`9c7;EWk#T;p60}<@RT9+13DVPHpXmbbUg^#cUpc^ zELpn~arSJQ01)-zu0!x&pZVZC?#;tC=V;kl5@&zRqmT7~nIE8i_*3cRw9WO3-!RQx zyX)l*t+K3OJ1PX@kj>0<6^wtVhyf)xRhBvPv!T@XWJC`zQw@H$eS?kUkiR^WIBeeq zt9pLEcpEm2u;rPNMJkI8eIXN}lAlP5QRAuCVtB-m*V-g`g|k_PtS(`BbfTxLE<6?u zN>9&URFMQb5l$%g|3IhG0m~zux}S(h(MrzeC~V!LePu|$9JiGt)B0*PL&|e*O}#)% zN?r9|6In7PT{{?Ijw0Fqn$Ud6T)9?AEuM+CPFeXTwcQuzmGux=Ut-cKV&ubC_MlrO zt?G975Bu1hG6|)31Fjz7V5A;re3id8bG_IX6`~Y(Cm-q@!5Ef`LlS3S2 zi$w-^u8&tB#oU7I#lJPJ=0CLF2#y&}fu>aE0X-w>vC*b0_x7T{Km-}uouYbGa zxYYv3#0nwdX)yb*Nx2V0!A!2zGF;Pm9o2N&cS1b@wu~1MXRT%$QAedfy0XSlkYekr z%QB_phYx;$=yX*BH3BO!2M~27!8A`Tw%c}%5RriJR6aNC(wBNUS1&q-%kDvRcbH^` zaDbpAB5Oj&<{);Z`WL$Y+qTFk%(6g%lnxR5oEyD~yp`d+htgrD-h)v} zl}9~${kMc2;YY#4rY+h*0EgA}SaZJDN83F$bhy_C)9w71ecBd7I8@_UY*Meq&6)lE z0Z>Lz(2~AC`Qy|Of2@v4Ntsh$#I2BG?! zg5val%XndiwOGD*RHREGCw7!*@3idt9M%Xz^1p)br)B&=yU;?}4brXC5Ziw$OnPKV zy=r)>op?$Z8Go=yn_`4kl4fyR>0DSM>)v)Zr>lSvPbOgdwnr zBO_$#>F8jz%uTQlWT<2dtl>+hpQy9dHMrmX8l+fKsaNAGebV#?L|1Ae4~u5`K_bIA z2^>NSEn7yYw#Cl%fC=%=V-^TQBE>+T6{K$A-Ay8XWC9+RvvI6Ut@8i z+gl|`*UZIj0^s~ZGkRfqkHqZJ=JS%`;t{7JHc2TA^1JR5{yW4eXf)rQESIJjC1@bo z(CSvAViA8i`hKB0yhIlLfkOYo+sr;ERr`WCsS_{jt|9;U264Y67#dt-`>TA8Pck3oM3sxFj(1fzg#)gS3xJM zEM1l4gT)WooI&?EXYSNIg}p!Z<`(?*RubyS*u3 zRewAZc#)`sI&V!#@xQ{?r)A7N8O8cv^bJUOdjiPvbN?9nDWa1dEXtC-CZ<#)W^8;Y zF!=t31=SEeMiuAz4CV8L1_kCp0lPR=L(Nf_9`H zD(VRVVUQg@{X@WkV0hS~8kF^Uh&*>C?x@qwIaP@dIf5e+L*pP{$^J!w3p2x5e%_#~ zaa6Uv?_V^)(y%N zp*bJGhY%FqWe?VnY@*iDBoM-ui@#nmlx(4&>i5k*;4N9?HZ!|n1>kJ6%wX+c7w&XD zP?#94+9JF5LDmdKp-_a8{Y1w(9TxX?6o>EvgHJc(O!7Cuhk-qw&FU_ZTBl+&uyI=Z zz`O4;ir*?dw6rMrC`>5+m7@^IMfj~@TbtJWLzd^!LWu*P)UtjW06&!=;KlNO^Z4>`3P4G{ z-2gIUzyF{#9zAv2HLrVe6Mr>(UNpmPqz-y1no?#vqvVhQ$p4iD+lV_u%nWTodQvjB zrAIne@^gY&DvN({p}>*4UY-OdyMegqknS;3b-X?#LH%8p=KqnDBQy}07e|ta7SUr` zBbb^ja4>c--vC(+=o>n#CBebtKRQy=(oB)?R|ZJ-NOg}fs$+tHEblob>2F8D1zrqU z1ehubn6RUpBkVY6yW8f;LJzkT$f58YEK=>AfW1Sl0c8My7RZGv@c8OGcq&!>creB% z^#2mcI@nO+S!c@}#uL&-uSF5+b}ggj4a#-q?W5(R!N0{}>K*cPzU4hc z7_X4Yd%K&Lr=qxp1=AlU4+&SlECWpvDkd%_$E$R`;x4P{;azmAG%&9cL!^Y_pj$^Q zP=EmV0K!`-uK$Fxe_7YRW`uq8pkR%`H8X2M)WCWJ8$Wuw2#f{6^QsejQpC58t!Mug zOaId$X$V>NJEfhvqqj!|2aRxUtC21zzI0Gm(82wfCnLb+=LV3buPs5PbH(Wojl=ONU*u%|v`YnZi`(Fb!-;m@`M9dU9 zpQ}C>yBAHbE3lY&I;}0*YpzsO;^5*=M7Wl#{d(5VCnPK&LD193HM+Q1{FWoLb%duE_UUfyemL(JbI`@^J=h0yZTc>r#qEQE~ilydXnR9bg~yodtFUdh*J1 z=r@qN@$nIf%LaML0<#CLxguQAfnDv(RMge@*}~ z)MV5NF!IWm)G!jPXLk^LA55%TAZHwP0yYjMam6HILOtTyQ{2MGvTwk-b<#cCZ*N#Wn@H+=21Lj1uk$bt-9asKVDHb4r;0v1(r z$SCbe0jF-s50F9si>Lx27+I3KLp3A@HMa9061dIbUnc^FD~_8sjuO)aavRFV+g#c> z{EZLD1die$2#Mj4(5r+*j7z>VkCePvT#`=~^m>>7Gs<)w)HW0?0t98#nzWjekB~X@P8Y`6c0By7eVu#tL z`L2arjoFD`5MTK{q>Mj???8&vJJfX&H27+Pn=5ubiQ?KA$p7a-|9Vt@-pZ=)Pj)N+ zmKV|H!`j}UpYT)e#W6=~JATQI^-WuYdms%kL-A}}N=E(}SskKP z<~sl6H%fcyG-UMF4f)N4fnATTz7;s)cud{;(Z0aI2kZ*&4A z4+>g*4Kd-m92V+9>9g~*e>wf;rUGl|&lquqHrk)rl38-4$(iL0hVmMp+NJnaWjmc@ zAU=j7OAjMVqb@y9H>W`J_0yRVSb<}LRaIz^dsJF&rc1=hiaZX9BjmHM^8>r zr3D7#u}oB3^-G#p{6E8zBV^Ro{_)G~OEy!o@j(FT5~3LL#)gZ{+zsyJW<&B{EG7rX zMQEik>7q2RXg=nIM=^8hw#l3JW`;RmCjaTL-mrQirHE{09<+NhF5#jgjxV^17sn;Q z%0|k{x^1%e&c!jOarrpWgmT~8e81}8B#u##nABFso@clh&{6+qx6f{IZ9_Aoe9ba< zSnea^dMsE%^x}OKkDw81px+w|9a1gc4}p_oD;iXYABW6!`u9`C4NSnS?*J<#-GK6sW-fwUN4V_T=aB&?rV?BzNjBQFfj#-wL=ZX+DV`l&Gxj$KfqJr z%?84uEHjz`zL~mt0oPp&RCZhs9mfcG-)70{Lgd6oqrM*`ly$yF3H~%|sqheN(K~$L zvULf4LXzLGlqc(nT4*l_Q%bI#j0X1<2@YWWNzxyO>IYwC^7cdUWq#quJ0r?r8hhuJ z{JTBrRoLP7Lc+$I$NOYH586|;;Ozh{L8sHr&jo_J*5_3U(p>!;l2a#Jgyo)Sj~eN% z!2l>6&gek^OLQW%kuS&f{ri-}`^b6QHv!0j@{T$JYZOQMXhM}tq zA7-|=whuqZpz7Ik*wQhBnV^<@vgZcYrYg2B>e8XHw6~%+ z#L`mM$cj^!3)tSXa`O$pdl-kHM2KWI-2a#Y6aA|r(SC19f#IrMx;o@gdSm}&RRyaZ zdTcKY2Keod5oi4?g>8k8t-Y{fIJs^)T&Ys+1GQfM5gVgMGi?3PTgOj~06 zdd?w-Icf4uZzY3e53`T5>iz7hs_ z{#V3dRYk#yrn9ZPEb#D~u^AO#v`(l}0^>@6Y~UdWNHG+aL4@`s@Chu04Kh@7+E+Ad zNjEejJ)?|)u|ofCM3cm%CMFea0#(1{&$Mvkl)-Re|+BFamviTud zt?=VEMXciBa0k;+{UX(cwsD=qZVFWIaCL3iou7Apah=pVcU%0{?4slwy9@#bI=QvKz&P5Xcwy zeedb12&iNQ?Guh_LSEPgRuV8Z>s@xBq=QtnRuHv*?8dD~A`%=$#`;fF^C*$Vg5U;+ z{aR`%4qj>zAK*P3&Go6e71wHAP*ZGbxRF#}N!eZHmaFOVutxyJ z2{PsKXUT|g2++Z~^z#=;A4D5`u0v#q{#XMyhWKqUsGf>zdhG7TLVg5KNL0V|xjb(m z0CDPK%eY>&C8Uk%5-Dz1*K#rexW~j#Io9T0iq=AQAY7RII$Z70c&!=-g9Bdq7Bo6Y z!5CIwU`D`ypujqlmfcx)|NDDOW28&pOTGYD)&FDbEx@X3+V1gV04kl*-5}jamo!LA z*P*)`B@f-*jkJ`sbc1w*ba#Wme;*&8_xs-O_rLV=LfvPdJu~;*v(~!T?0L!1h1HPt z45Sx3LCzo=Pk*&@lO^9TW5V;i%*QwD6d%7Bg`~3w73a@opVNTu1u>xDSuVou_e8%z zg$~j`oeq+XsvB&rRemb>6gdzbU?rg7e*h2?3UD|^qyG6I3-cA1WlQ^bZdE-70T$s? z25g803K4KhY8D~awP69W$L=IeP@y3yZYE*Q0&u<|NIk*KeEbfZ;9Mv(@GYa6r+XVO zoAf;#()oVj;U zE;Az%-a9XKHO%5p{_68Wh9&@8lDa+^#0?pUAZ&x8)e+ZgUJC_zlN@+D`l@&;CTQgiF{Q3TlZP=J#Qybf2d(tf*aRSxO!O9@lrOLv(|x z*Kv%cv+?MvXyy25pUml~Wnw&izQ@sq$X({GxHB*z)L-=LYm1Uk5gc4WGSWkHxCO13 zj}%O7Z!IlYV$JVmM5kX_THpZpQ$Qw7JA;jtT^q#Bm>y&0PPyH_iaPrmp82pp{QCI< z3@hidCeVD4GcIL}zr6Z(W%&}xriz*cro>_~qS5SkJsRzQ6HU>Qo;+&-Q+0pNx9~2G zCVQg)80tM5ZFf@tGqW=UL)?UUOL}xWGR7mLO2D-$iyx?_n~K^7;*!lRz}Ub7^QWyZ9(-I zGtmW^pO154la0m-@Ru}X2I+F>`{L`q7!|NuRi(bMzy_9DrDJ-Qo5O3^^wrqyb=P!4 zI&slSe(wG5i2F2^eHe7-&nf>59_WC>jFAVZW}H@xLvu&ql9$ETNN6%LJ&R{3aJrD` zIva%q1Cav>?itNQ*c~a`bv;V0=k2k}tRArX{|Rc@7~E+J@;j=AI(*>!2}t*dx>|n1 zd6DiREL*5?&EH%Aw?0n&V4E_e$Zrzg^lu&z3?rj>j`ITsLy@-W2CXI{Lo)3kEcn7- zJ0CrLH(LLGN&lFBUQM1VX6tvi>k%!`U_H$b9FQ5kI!%dDBdPq-ye*VOzw;N)whUHo z!0BCVGSDdDHW)r(4o91*`}9@*QIYe{#J?oUh;V9iOyI5m3Y&?pwaU zPU{PM9oo^QDS_Bc=YQ%^WYT_7bMOV?0s24FlF)FVs#A#4G&2NrPf9e zUNpkN^}4|GOtK=ec)U5}-cLz!^WZ_}pl1U@RfWY0ZF@7waHV-kazj>wW5?3aRc%Oq z54sd6pciYc4Kne!tPBt8KL=3d^unjc3v4vLAGcIJp8~8V~cLvOozGaJI1!5qJ zB+2a4UUg0v-6GZ?T)Gv%amVn#arRFFsZ`~9TEPu+f<9W2Pvzmm6!2X?LiBm5iZzsT z+X)GXF3dRn{$vw(eYpa(NWOzl;C<*M5k%ZbG7>QH3rT45BDMc$r3Ug9vnD(ym;~1K zek-&JaFs;wkS8_;R(d@O3OD-6>p#QN{;@IZpNt)DK-g2-UVa_;-K{A$MFt-GzaQ+^ z^M1-xscCn|p$UyfU@9FI)b9Xm$m;i_cA{@6r$I7fHlzbD&!7vs(+`;#L>^7jy;3jx z>C`5nx>ocS4cvxn%Y(ba^TCOi&IqsfF;s)N}Vzk%aR zD=#P29loH6CN}rzYXjHxr_R|s9xQTMK2R#IjOkSirGHnTYRr1}UA%>zidx3HpxSu& zYKJS8Euf6>=rI4w@V_|e&t?BKPgY+bh#kxm`Y}C!7lDDm5~Cv7%t&z6aqVB+g|hwu zNcN^*YG{)6E9t~S1rAgB52^_jk7YzR?0;rMaec>XT7baDO)tG<*D182m$^mDHF+-9 zwHLqkA16>zfk8vg8BL8uf{*msCsMZnE~$;NiB&PGxXeoh?+x!=H9a|sPP%XF80Gf@ z8HbL@lI)f?F~tZ9a+5?3&^{@y4UV@ikd2>Pn1_1(7`k5~Q9QQxxb1vV$@&k91v#e- zkrh$bEn7Y)=XjBt@TE`7a0Xbon=BAHU}Y~^&|=AMQ*-CS&wi+bux;2S7 zJ{oAPpgx+Y1wM?Jc|4mmZBpPe12+r|M9bIXN zP4`V$6y+0;#FatFe<7Rjc6?2v%mV#2+(iJ+fP8r?A2%0##F^KoK4}9ih|1{$zz0Br z<}t|eIuHgl;O8tM0MsA~ndBNyNS6s57!r4JDVa#V6Oqc!`DEgoL8RkhQmsoIq}4*!QO=+%{n^xbz5*$m4I3)NMndUYn>-{aRQ&8Li zsH^7|Mxc209NPk<_2W-o16A(ZuEk1~b+9(lS9z2r9~$xg2mZeMw-0eUY0pjhEw^?j z&6G2j2m!#h;(3(bFWFSE&hgr(Z*G({CYX!P_rC)%g;>gwW0-=lqRP^F>0)HVKjQY} z;w%|&!nl|5>s0Hv=FHhaj@8%KJeyVkpXz!3)M}SN6vX$Ix9tW}qvr7q?UxuP2qeX9 z6%eqg!+op9H5U|a0CYSEmueKZ1gPrks}5f3_2P6R%lESJ1DZJjqa7Q_8TGAB`k&B% z^yt%lC2<A$7&trm$No^vu4rOQV-KK8RK@$h zdBe2dkQdgc?@GSb@89_P2NGnFpj~y(NIRa~*!Q#R0!-8$IpUM3Qe>mkKGIm_8M8Jy z66!WGHzq@dIC6)07C=pW0dgOEHtu~jyg-oi*eQBnf7)oXq9sfUG^?^irp(>||H>Yb zp)41!<*0IHX`2BR6)_iiejgY)kf6}FEiPc*ekA((lOL6Pp91T0#EADS^;spqRxos^ zKuzI!?!^zTZx{i$N$aAad7;$YyKx8ScLwprn^GVgqygW+zr?c(qLh^6HfN_z9Enrh zP2hGy48{NdEMdQ%gVhtq&-F`84Gw6N;%Itvc`mJ9Bw<3+2)pRo@_||0_i@RQgfO&~ z)nMBt!iWd~;OU&m;@n2E)Hh{3z^5gco1{5(A$xGHon8^7S5ARFb=$kq%<6#kMJAHB1fLl(XrGl?_zw1{seGsyg^!XIR*S~Qkf0uUy4PdIf}E?(7FDD zB#u-cP4`O+(+SN5b!iGWMFsMGsf1`t_2EJ1$QN5Epr8}3@|W5OKN(1bFvjw|{w{vq z_^_N6o6!yrVj_C${^n0iDrWeHbZ}ButRU#DysGee{r+`wM@mG+c4w=r#>8sf>%UMb z5Pr#@!IaqKk4QjGksWj5&~9P_Td@rNm<}sMZKnF`b|7bzj4kY=1_Z#vh@>5ZxFFY*tz_GG1| zl@h(4t~``Er@Q+3^d=JzNyFJ_5}8%tWm*?OhSNF0z;O5k;3j`qoGDVoxd%0=eoV{B zUHHk~@UP3%_7cA28C7%OMN;r(dzK{UNR zUkiyx^r0}96b@U!howe%a-J&DZvxlb`TXWKmSm}cUEAf{ zxwjc^NMq{dX`1%ywPKEQSm?|FVc|c0JH13pS4@Mbiy~iqbxk;bYnW5$#d7tjX(@ey zla9a=&}7nuYHWZr)!%;RE>RV;j?;Lrsph`L0DN4J+w&pv>J?^yOlh!k{AAu?6W`u- z)BSuDl)thRE7$BY3`0eMmg-zAoXiIucVKU^q4}tW%4TUmut?XfNQSrEr=8;Ah$V|~ z=WonYlu6-#)w^v;8OUKO1<##AP3AkTT_LMXEu@j_rpEibQ^nApdfv$fmt@l|hTytO zJoZtwffBjd<7TieG|p`mVA=i=O{V3IN(wnNJ!Xd*=~9P7z8bnI7S{ffmy7HxTW!DsigSm92d%=3;Wu~QN-EBRoG^HF)CL!TPF>7B%zpldAR5n9R|ArXTP7&v}X)_0gY7+nLtxYH}IT}7ZT}Qn_Gu+I(?kP{-HoePzOoM z@*H+fzhelelmpTaNbt=>&@g^vM?|`%Lb{ts6|=)z^}nJyXf}z^LZ1&qQ%s~PQ8GP; z`#r$~KvYj0n_Uab$b4dCsqFG}0uk{3=$(HxR)wCg)R@B+#cSmG`8WjC5nQ3JZp`@3 z*Dk~0LdrRrC|(D(T&|CdBCvhkP$m7>b8j|;)b62&_AYvr<@KII1+@5gexTWx}($4Qr!ktwU)>tOaI&L^kxQFC%CZUzC|>|B?MA-sKcaXp`Cv^q`LV zmyLlnw`9Ia#@SXd(*czRUwT&hN|tK#6lQHH8BS*yKd*D=prR+Hu}7=sqcYjF80kf{ zjJjzWd{bmN;HY;}x6Tr;mN3lFStMr|k#QdPpZiGn07pYZ9b>x7YB@?bP$C`iP5mDA z8Jbf;sjlv_Vj+?=iXlmK`~`>T(bYNz0MB7T*W?v^U)#4QS5;Z=K>iE;kG%RN|1WVD zvMAve|c^_<==qYP70LP%%}1VZw54z6esl!z3%>=}yrm3-9p7zGC7Nmn{gea5kF6TFhu~k~ z(x0p0FAZkM3fmu+k)o1Y{YvP3FA84$^`qR0iLuy~L#mmCY9ZPkheeR#PXQ$G!-l*f z*qWicgIp1=u_#{kBo?|wm?&S^1W}VCa^+}q=Sm%FqbRfoim_i9Z59<^)R~iu2$)&~g z)=?=HC-71f3R~tN|F2E}y*-gcUi&EJFY@u3TL->shR%7G$J0f+Npvh950D~@UFvEl zEashg9^cbR&}6U!y<_~r(J*zc(b3SgXnlm%eKvR9kAGL$WT`9U@tH)nsV25h0?X)N z0nL;ghx<1`b1pB8UY<&I`-|aad=)y82*8|`awnRx9?K!=`5)PG~hiA&~l=h zeN~8c;=BJtyS@EJHa3Mrb~`HosBM#jAjKz{)m)%hZ}N_LNZ+> z4uZ7A>?BB#0oPggm~zvIa-aqQ)X4-E%U?ID3T4CDT*|IRynl*%X8))D!zS|WPL1b2 z`KV=@qshqpBcJ3{ZSr|$Wxdpl3FnNFPg5|Nt*5afv3q|3@M9KurJPBt4ikxua8D-#j-xY> z3{7Xf*mzRp_Q!bKot@j^9*$~kJO*j_VLs6A<3KZmubb!12~ysK!Ft z=s<^qvka&v?ublz^p24Cv{kX%^?=Ou-;0UwRwa0U9NAdVT-d#iVcj9o@JdEIl`UxI zlkL0xWU@;ZBVR3O@d+lm%#NLmpKZM?)7?4rNY9 z5pt83`8d~v#<2{&DE$|Re@eztPSQWX6@()X zA|A7BBuJOa+QTccOz)e3|}7-Ro zA1Kbwe{z9M>{n-tBEI@sqHe)82LN-{q-L-p5eHlsW?D0jgk0O`wADAC4xN zD_Sh+6zgirQz?C^jx)+t+!!;}_RJ9d?6ZTL zlW+Y}=)E)x!V$&LbeXC@uDC`z-?4d~_d>*RrE_GS7m7?PDp|+ZU+pSWfSoHcZs8!_#NIlB0nh z0M!LK9ul!b(1S4XIspxHXH_$D!rO6wXHFwBI8Z+0II3H21m@%PsGP=*Fd;_)>>STu zap6Y~=ed4puw?Q_tXS#aBW2BC8#M<=(~r`cADAYC<(fSypAqm(|CW<|D_HaWyU;!c zyQR$ZrNNCJwdfoeZC|OsJ?eMfxD7&x3jHTYWMW+>J+$p9ElCeWC&IMWC@<)JC>fa| zZ`wtL0Zcrr$Tb#SMr{t8$knScHU9*6aj_X;YFCa6YF?H(=T0g`GVIO}<=1NhKR_ z6bJS~N#!$Z2VOyv6t%Dbs#ns`wSG{1NyN>_<$0@2I}cWqO@rU8k!tl&cio9clLcp5vf<>6su`l#{$~!i(kt6i$Brqe|O8$FumqvhR1_@h79B=QV*1V)6d8G&RHJJQA;fi4JB4!fI4Bc!m?e&>Jdt zr9jQtcetyNx?O{fShJUuv)C-Os;P=@2q|W-h2hY|FappnXR*1aejiE71Ij+at+~jWwv`Zu^0%y^ zLxDpB+$CE1^Zs){M^>AS1Xs9FJV^va0A#=xkNu&KJa7BawDAt8g&2KI8{bJn9)U|F zCAEjv4RN-(OYjSzpQLA(;^kNX0v5k#RAbt7ijSXf@fgVgOW**Q)s&-VfH|NSE>c{A z>ad{%Kj-S@I>(@RWNf?!O!hhesL5$BT{;ohbJrgj5E(|@i#OM|e{yZtm^Ob5xT}G9TgJ#zXo7_m43Fv`_Kmrqe^Fd9QgO z-n#(j-CMF6)vc|X)t-0ijkC_7x0ANw2>VpY3#^RE4c2q@R z4X^O9g#t{8cj+4WtlupeKW(zv{n$=vsyXyGCEZ+?Q=3RW{BTo3_8;q$H^vHVqO z6~h#R3unSoWbn|93f@?r(yv(s^8aM7LsChkk@f2GKg4_YovifBKv~`V|k| zQtj*M0Dz*MYqh_v|I`t_sl#++5y2NY2dq`>If!*g5rwgWjARA znxf`1UJL>7Wm4AK!)3ga(k@@oQz_~eT|te0PGR&NJxkA;4zotx4{wC8>%n0w8{PdGbi2p2Z9-^w`JLHU|dhK_#?-)&< zkIfI)kxfPY+twd21?Tz_b|&9R7Afj&7Ia!YmFF+|Scja)2tjNyKsm)p=FqB;=?wBg zz5++Xq9%xU0AJTFBBso#p7WCiH7qSFC#d6ZL63N3`{e`veWi6&Koj46ZXU2#gk^0iy+@JUrcGP!Om$1C)w(R=TUwH zsj8i0XDk`2$srz1DFfPnD-0oo?!#RJ5yz*w@nfoKzwt2gnr(JI1gIy5eYusb9!ja5 zK=Pp{vE?2-{E+=GCmB9r1K#j+s#%=HD)#`d8cc?)qs?L;oA7oz>b$PH^t9Zlfq(`B zWj(NPVB=pez&|aHLEuRR^PsoH(QSW$RkpL831lfzd0$`Bqzt<4sLc;|5gJUF0`~ZW z5Yb@L14z5TqzA=8??{IRjznLonEswGdkoKxdX~YAV0rs_X)630e~^HRHE0+X#PwV$ ziL=xqChs@_XbD?wfaHK)$i(^@62jAn_wiK% zIH77F!3>?U`9rE(Z5Mq*PgB%p1c8M~n&m$ZydNWI+h|mD&h7PTEYW&bkxo@dZzkIl=!*m3`x=)lI9D0erJ$CAW5lRu(-FnNmQUQ66xIb#zCJCmDLyAyDJM=e zTJow1p6h%T_SSfCGB+dRzYT>&qn@P@dkch~=iU@gg+ScyHM`brg5ijT_RLF{ybF5* zr#w$Q*WWp?+$R@3mAVDKhHL7*!h^lm>n5M0v}1{=?bmHQG+SR@uY(e7M)z@6F%thqlSQw^$DaYFDUExBnF#w}G?mcS5!N}7{NQn

    240n4RG{rSSHFF=PS;$!_AUZJ)dmp9XQ*GZ`BfMq%nZQT6 zK>DH-btL(B=eOx0U_bkeFB$T(l+jTA${eD3d{x*(Mk||90eL^>_k%tzwme3IRHE23 zz>HT)q|MkRyXG$V)??sh2xk$3C0=+0QHf<+XpR3{oW+c$IT^iqMaV*_RdCvO89JV1_S|k)+MDNxb0F`H&D7^mfsHaCK=1R7B4*m88a12VpbRSDGjJeF_Y~e9FQ6#Gz`tP z&i5Z8of%mww$wHIV?JGq#RgCzo~(uK=Oer?<()MyH8D<+)_TgtsQ#E?pi2|jt^*G> zL-!cqSlE1$H!GSR(iun?ty~ipNMAgdF(K4nw#;MBx2%+&UfR7!KX@(!ReNYCGw0L> z3^xyb+aq+_;2E%Czl4!T^r>@OxXjV9Ri|zeZCEOJbX;AWrq^DWrmZOE*v-1*TI$kd z##h7@CTUz-yZ||8+-Y5Dz@^3ewwwjmu9cb;B#@R4j8{y0!C6R*1`W3sddlAt?#r0i zRy_kzsE-)GCA}kV`0dwVQqupk(eNg{@}j%!UcOV1&2O};r*qm(GTxwvi5F^`WtHU) zUnVk=aZP@KHTCT_&}TToTcR;6&0i9EpL7jR>hN|R+}Q@3rLPt2rCAt=FLLR7qA1=IACvomS*vDgrGC1&ZKxuhoueHtA{$ zd-chr@IjT;lcvTq2ltbY-b|f98TaIQB?kA~ITKQYE56!o8a|j{!Wn2im1cTT&#!LG zs+SFNygS#3K?lxYmIp{6$VFq}{@F5uYIti$va(5t;~K`Of3Sqm8Z|Nqw=>`~F4VLp zqd!gpKA_w5*r+-)=tNQt`yZDH=U?mE4;WA22%nG^(~NTMlZy5G*7i^R|7izQ)B>vH z*%~?e+EQ*IeDm?a)jh`^0GZ@+9DZHBgb|XIJgc-(byaBwhYz(?|F9dcQ%{yLk#e&n z9nmX?mUU(n=J`EB$o!USNI}koZ!<*xi1rxhtks3;^+EfDmhZn>{Ob~06%Gsd$McQw z6QTdP+TEy`2iH-M)9QcO_W{LZzEE`tEXvUgwPO8vjkaFr7|Z3>)3gj>)`tE|AXDuC zHn=QH4da2ksj(aBSN+qgFgXPEG><-=wmLKy>>y?~Mra&3QAt9s9wiOT05`{rIn88&2 zya6<;e@6L4oU$d|P6pj*!4*v8Gym&)1+ct2W@wnZm=|gk7JgAtS6Qch%ch5^`Z>O{ zD?}1)o!#?6@q?)ReO2-BdS_^&XmkK!8y8i|T=-$1DKpYSw#4`>MRt7VQIybxPHAjXVR~UB?sO-$}-2e+RvXI^w+Epoy9gcF1utUdBt()vY;b1n9v-IxioH07^m=y$)C=ja#%G7AVp1<$znkvc#S{olP%voM{N@8=ovow1%QrEC2 z$vueg;V@YU9aoQsosk6w)?v~o+!!6RoJFq zmZ>Efan+Nj61{K_pGI}$dTuUk+jtMscTobXmn*LZ6%WkAB5t#Y22C3kg2f{n-5@qI z6ovpP&nd~~HmlI=+)27_a#`ce_4)ZDe2hQ(C7@vM@fESw)eJn$?GsH}Rl^U?9>>(q zebphrQkKHwsyGFox7_RAKG=BOB|h$-AI*3luiPI$9zXr!^mzh~-c{UQc_(NDEPu&1Lb+3)9CEk;*^JW0b z&b!pV53pvudq;LCg2bp(t|?w~x!dV&gEFPb{!zVW$IQn%Vrj|(>clu$^e}1E&_ONJ z5jRMj2=dxXpPHRi_-)?Yw{AtdP;uEpCH`MxT zFGyb{YaH%aKz@lU7C86$CJ4AYTj)w%`8xHj?!vhXvS@K#rH8dU(6N{sFW8LB^^M zjTEghvC zc)rtx>rWhKqVVbRTvk_0QMN)MRv`PSJ5*{koM#e#LUm2N&N$#i#Y?xp=q*~JI4ZngQ zDFSKdArvl=F1SWLm`r6+PA|WS=hI>Dvl$wIf;V}jH z!U5u(t`GIGb+6fr6vc(KzK6TKGOU#R5G)+cgdsVS)Z&KmKf|hz19)fs_?=YQ02>fa z?z%F|8@^gMD|SU@oB|>KJ?@A=<|!BbH#*@mBMCee;$yw!R?)aLsQZhT*Sd*Oz>7jD zb12JucDQaIx!gbboGcjN7q8VN%aq=1w>`lzJhnyp93*=0_j>Qvd;d=KzK8zM`pEnA z3(ot@#0=2Q_fLJtZUpZgYJvVHGuf{l>pv8Pw1j09%#LjRacz-vhHqqj;qn}myo&1tWarR?1hh{Ybs>bd^t3pp0LuCqG zuYnp_wlU_EL$a_&a=Y`oIYtY{wC$qGVvcdfG$!R1HFYOp>f*1dN~6-FlnrGmi*jKX zloYGV+w+yD7c0MeI2+qeUDi6D2A>S}w^yEit#LjjSUPt8*$`&Nbe`yaQ|P@~@l>mO zGtVgo7Xa_|Akc8{CvaghmE#2kFhAe3B5-K^K^hbWe(7Q2gQJFkv;gw0jh2z+v4F0) zpcE>Wk)2McOOC@gu00UCFAMbj)%!n?NCVg*hN}#{ldmU>>@pK{ne!baH`yO32Yvzx z`sE!k|8pe;*QtEi_+Z=@!#|%7uu8>5N5xAm!(gSa-w%u6CS_JR+tsg`&7gL96gqfO z8Vw%h&lH;(Yy8d1=wzRIa9uO9+M!aUihrfEOBN=N48Q2V5HeWLIctf*jGp|}@26jj z#zkgCP9#+IMx>p?>M6W#I(2GxD2dnNBpHgO+dVTPShu(3go>&reV7u29_5H+8_Dp2Mf}6|zt9SbN5(XX!-Wv2OdH zw_3GU0!G0N+$&@j3G9D1DP0{AtEIXEVmb1rwDh)4I{_ zD@^MUj*>;_vSl|>c}_hAh&3r?8m4JYVXf|EGAlxvpAd!EXZn)R<8wLqI&I0c<;?TZm%?*JG41(Z+l;kj6UwE zd2gwWGPc!Td%Ytt>9JWpS-xoD^mOV}3K@%SdA-=^6ePoWb<@p_>SVq0O%-smgje?r zHf36QPRV5gXUBZE(`@RQWLDaap*}+*qtYeH2OMkKM+e=NbZx7)Nk#CZx?vCi9hcc; zw*_9ADd{@bRZfpp`)kXwo$OJD-6mPFXs?KJ+H7mA6el$u4t<@~c)MTHV_|}o+=}_} z-O+?XP)8EFMA@UF^av@i&K$gLFp*Hs(pqZ@l?sv9At3wKmmcLI&`aMu7qYS}W+M&S zYL8Y_%`oV`xC(EnziO_(`pxMnPorvzxdN(bKM)|;MLGZ+mez7=J=*!vb7pOvI||lQ zCA`G)^T6J>5#+afe0^nemZ4S$mw*qGVpQjq;aCpr#$+bjVdpW?PJ+Za`^RH~OL)yM zK>0PVO9paa?YJ5~6g($34fGXtBT}z&tqnJi-F~`9Lj|rF%}0ibrjopyizys_H+}}U zp2bdvM&MD!ppP1ojZs~AbI$pDv~AVLdemc3jj*~fO2PQWPw$1>35gyZ6T0k?L*R9@ zwfYG~p=F+?$CCzBhfc}WZ`=75u12{L7-5zdXT%7f| z4}7}9d(0^G4C`5bS#!^Na2*u4fRb8@6E>01&eoa&Zu(t5p&^QOKQ`eo(8`Lz?a^Y? z2zS0z{icI-n{i5zm#1zmc!)#8h7Z#W+#54$8b2Hr#og8?(|6@4c5YP(GZ-KRsh48b z4DKFPPhN8w!|n35@^cWtMZSl(Ir3T^=Ci81j+;OKrEl|m+QX|6Z?fjsB{Hc4no~#t zft}J+(#ZC=&Q3?oEN_!aB<-66=4egaxty4!f`#wSnek0I&6Te5OM7zyNsXR8CvtDa z-sLVm7_qtJ6uLV$XQE57&ggY)YGC8#d3uo9XqXmy%c zzsvNFWEvSXdYIS=+Mi;D&0g(Szi$P~><6T&?gbOoZ>?M^;F`!%-Xy}K#$&GVrV@U4 z;Q*9Thn|qQh88sj*aKJ@QO|ukfs1e(&vl>QZTt;L9VNugDgIB3*KLke@ag zLq1HP0o!$Q0x$YdlH07Blmkw8S0B6mWRFG4b`1c=KJ+`E=r*+NWaeqUv%-f}=ce{) zhsyf|&ZjSra_M{$uk||N*y|{8+anCv&y7p5ckqF&aSL&lp&LME`lr|)AYaX!Eh6w$ zQgU;YSN;`KDZH<^S!N#&MdL-HGc^D?n_Na-zWWBUq~>R3MW?%hV3hcZ(VV?U*ngg- z58c_rPFUe|VadzWu-D22vU~+7O-hz%sB~BAZhel>g`VvdI>kzr>;xw(&Tw!DFSm2MzyNn9?|e|DX-NiC9(Sl0UGO5y|mXB*OW@-8qN zdbhNf>wk9WAcA0_oYgi`X4$`{9gMICrM-(U2%(9I09bD@6ZxU9@wq^X<+{>9fJFQrQ#dS{SJ63<*+dtfc}^$m2`}hD?`%R|H1};WWSA?^H?Zb3-haWQx-{{|<$YDDphwJmM^-JYv0Sg&`Z% z2hHGu3c;bS(jmC~_r|CX*((vE!J?wnyGr@$2tSLnMi+(;K z-w?dvxhQ|0??ag*oUOq1Q@2VuR0qm6$y9+TSb;}C-{ScelN^#9QdKjemYRM`w>9pztl2{LA?^#x--$PR+ z=+!c-(_zQLZHLs1l~fob21QYjg`}~-wgaCD-k}da zQ228Zq=zkH+L0Ms}H3fCF87f+L)NjH_hp)#D@v^2N<0j3``9-`){*bR5(3hLM0cuB1vA>-0HCfV=UH>YTYDfIc-~HQ(kik3!TGy?{N{{xd?ZPF4t4 zD#V`^PzK2JY~5AmS~>Ebl1}+d=65HB?2-A&tU8DMl9Vu)E&5%e40svYCLP`xTs6{v zr>?dbIH($@qHE0A2ozf`azIw>i<*buS~NSq(mYDM=#_VSl#5&Q~S+DbXTAAC@96v)}m$Pq-6WsF#&_aRy>2{USrPGU1NY{@bN z)(>RDTkr8(L`1DQm_0%s@H{*`9>e)oRu&e{fph1tuRQaWH{_(TL;Urr^|3?xF2beA z$=^smfBhnQ2E%*c3@0FyrR9oCkNvcn80F4#%?H=D;!8_p#e;mgjpy~i)5cwo2|6PR zlBBFKQa5fNRo74>@w)L9uhwfnzUx4vg$oKI){%voMOqldt4UjO3`!lbfZz{iO2Zq> zhqu4$j$52WS~fjwj@+QXZ}!6ZY(|xU8dDyhnON6*FNa{6STk0A@KxN~Y({NI6D439 z4YrK#W^nKq1wG$1sKUY2dNQD*7*1H zlU^wr47+s9F8iMC)6X+nW#slhK8VWW4dj@AvWZnEtdDyWdaHDxayrKCrs*K3&33;w zQnvZHk=S}u|8)O!^{Hj^DOuor^f6rbcejbatets;Y>Z zawZN*;>LI_{Ko%<;>zn|R*yR;26St|6_`yw7R5nIw`?ZX3|h8FzY-?1O2?`V zH3rb=XTfXi2jqoHd;oxLb@0lQ+w^sH;=AU3uyvH13QeS&c*hMyp>7xq9t2Aa)6K<< ziwWq~Ep-@&c()T)1t+sV))bbZRHsZ2HIz9yY|!(-$q!G59kZ@iI>;qz#H%ws7=D`B z#T67y)YFQHJ{P_^`|dvJOj|uT5b2uSTQAdZpKvsnvznibgijR%L6>^HGjIm3jbPOy5}ei z^3}?Kw0pWfVV9HbT6lRT%*On6uAwn!l8e|7JfXZSyK(6yezjVi4#$l9>O#hlnGiiW z$u`!&0_|ZaJy(%ibU1mz3~hBs<1kve^U(q(y7ZNLbzY*+R3EqU?;gYCLn(2NZ7m9< znA(DdZvA5vzLLQr?HZc_@Tfa{GA{VR6E8Jg$qkF^^uQ%LO^vTp{^7iy0U#f_@)f(G zHXheU58cNP8KZo6qfc9z<`1Vt57`1~8?c2wU<9qk)v-kNqOjI25ExWB5s#p3O9B7aa)cVw<xZfL z$KcEsk4KTH`WH&ySTGEkMIJ=Z0x@E!!TBrY>Opvw$27(ruuhIRbnFkkq7*v|oDn?4 z-z@AStSb}}4X|OeWxo8Hayq%=arGk5f>{;)@RZa+D)s*Xu0T=0T}+j<)@&Xbo_vm>`!o`t$MN-UE&kJvj>W)L+F~oi>qBd|NB-++qo2Ub$rcTnvA!-k|4wYA1ral)H zZ0<pZeaP`-wmO$;;pV;Qjyf`ip;(KL029mw)+he(PJ``oll`!~f}j{oj3-zw%fA z{eSD<{8t4XnwOU?~f;B7dwHg{utAxq+Zw`;RmyQFNtReMb>cU+%YZ`x7K7x&%k z&fn?&aZ9+Z$9j2+%igq|CJczJZ+3^3(G!wH9q{(+g-{?I3WvghkPb96t@OFaBZ?ZS zD5}d-uWM@|Wz|wkqg9LcPLQb*@*EkC3yDpa2Qf2gW2{U!HgmLP>JZ8Jl=S178`Y%m zqPSB#3?&G|Ae11KP$U!*qA)KSGx0qN7R$^cU)Dy?xHr=a78Y4ew^#gVR@iTe?Pe}s z;_{|i)(*8)oKL>~wMYNi-}va$>+3J< z)93#L-}pTL#&7)kx4->I-~OX-|H1eVKKkgRZ~mRXSKv6MuHUTcch*4`n&-qq+XYG3 z>=}m8x)&w0)LxZ#yY<;3yJm%NC))UV+7T|Xdz2?5FCZbuMq8xHBYu014YOkQ6vw~y61_pjVCNkxake~Z z5}9nFFbo5cAe0~s!%$*tExM;B|1<@dcPT1WhK&_^;S)P_Th6`uYt>olWb0E{)0sB6 zMqBhOUcdcM(%#$j_CLXUpQF7u|9{MD1h}zPnJNGP002ovPDHLkV1iIf0|W{H00000 z001EXAHD|gB+dW;B+dW;761SMcW-iJFKuOHX<;vEZDD6+HZU%5ZfA*5PDc$28VUda z01Zhch3P?vqTm~nu5NQ_e7ExwgkioEOAT6K*fw0Jyez(r= zkJ|68d*AI&ch>q4lKbk`a%%t7sdKAn)-m7Vryt{|AC*r&DxZ8r-Z6wCDB_j}*YK0D zLBSh;C2jNqPA0~g`SAqXoXfc+Z<}+L%dt*h2I2trP6jdoA~nEFg4O9)$t3pAsZOS z#w`@wxabsl757yVZ@Y9u)R{EbDS`2Loh%XRfbx&U_~Si27DLG^inx_L6-SAP1XS>6 z5-N$D0SX7MxNOQHE=`$WJ8rkt(MKP1**BNwBU(57=U2Y^;p2~+zzDzgu@4>n#S14e z!gay>7an}^kCvbJ<%_<2{`pTl`poF|dt=7-fNb(pkMUEFwQl^@XFhw@{6pV*^T;D# zAHJ&?UQaVQXdb0r5SxZ#{IUOwa?L^eC~~tg=1Dll8Gh1eB{QE9m zR8HtHW_aFRX{lVecW`0hx!3|KREnP*#|d`#vZH(QAVG5krd zRwD~qOhLRc(~7c5Hl9Sq5~Sv2Ul~aoU!|14@H4vL8VlHrA36@UKh*;fSwHS?{oq^( zWWyH!_9L`{Qei-=YMNByJ{G!^^H;Ai7RcIIhRF66Ss5AUnrY3ZQktrM5oa*@E>+dE z+*o8rDLpJ27du+U{??w0Z=nZgE+!P0xI#p5Je$?=0JeBI{Hsmyx{ZP&c`B(|BTJ#3 za?VQ-pYBzjo6qq4K1W2FE!r+=UU1-(Z6u__IZ{E6n{fV}86s3N_E{%Q?8531ga8(# z6C&kE`n`^v*t!G}3OyQ`{{TP;0YDf}!VFvhgn1;Bw4%)oVRM}GYRcoz+i%layY?@? z{rx}hx*b5n!}~NCJRRG)w{vWB@=CP}4s%GRDjo z&CXh_J4YUzvCF(4Uv=&E*A1R=`f075U(L)-eriqj#~+=3=I8c&{lQn=e1DPO7IW{M z1%bWFb`1$&fKCT4Fe$3- zN$rOJ{MhI-`dra@|M-(vKsEj0HmIp0k8m=ZB4uV|QqM_}_2MLxk_jZiAO@sr`A|wg zD$ZD>M@QBJX;GR2%2X2o2*ec0Q6Y2@!St_2>sU$Tf_twufy>W7F)=D~&^By|&%8L! zsa)bVaWY%JtGbf@sUGy-Fn@#CtZ~`Tpdk#}1G&FpYhT4|M<17Nd1muNRIv~WGPKWm zSmJF$Q9h%w<~>H#m6;r`A%ZLScvPXtu~aLYT0W*wNs<@L)hx4`Y+Ri(GZAvlz}7W0 zNWgOCu&EH4sW#VgN+jmuqkZcSft5TsmvbA0xKR70V$|=&eyzIn^KMQSLuSd(OfZbc z()JQzKS%7pXG0ExO-y1YHNttzS3B+6M6ufg8-poSK=ubJ=B1RAQ_}b3q4v9ODTy+YHml;NC{}~rbmz^cv3O| zAxw!#5J7^WnW8NuR~(vocnp}GJFHZGh`<{lW7;C;O_#QxY>7|Xlr!c`^5`fLGDUL< z8Kk1W5)cHhSRf+t`VRTIR(ctco)%6KUuMCE0n1j_k__O!2Ojs((ECD7}PyPU$Nk zq;&MtQ0F}B^>x@*`QaJe8F+w{kgOKMdKDozeQblYfl~SZHnglBFjgGvKzXh(dELMOl$m6np5W7X3BjO=P)k!gC~qQDNCa z%-2RF?E=SU&GrCYDNfxUasv~i;jhqDV21R3M}WtG^|FV}xMCTwAR7xL^Z=sfNg-ev zFo-09Br7!@GYb&F88Z05nl$F$!L5PG0{I+dYa%?i)G73^*<|Cy>ou|bIv>O zk*6PSj^2CAM|wYY)2c_}Ij$tWsx2v%z99QkEBWm!p9kl&rJHzJ8P?BWiUt2RQ%X+4#)FQn=QI%(rq+O(YwKp4s= zeomjwUa{yGN`YzOY}kS;a@MG>*RQDp>qQP6dGhk>MX2PL%<7>fWtMTqoMo)2a3)z0 zNfw!8DW#MwC4&V>8cEgo5?j&MpN~v`tE+6Q6SG+|>X?1MZHPfTrc+9x%ft%PbH98x zTA6F>u{6bYF=&C+R0MCz3tkmfxjCt!r$VxGYMvv zo+od83#$_{WL3vt7%(#{u90KFl8wri2%bI|fRrFj$gB>SG`)gWOA;Ui6a#klonQt8 zAk`kc@Ha|~l3USawHHBJe@w*61cF&{I|7igB#;m~YAF?KwwqnLg=d+3cCF)cx>)?` z^eR@Dc39Q^uU0E-WpcFDdUkXamhmw__@7@6-?`$}vbqH@civvF{kP5_QpRYj#iP&4 zR;#u483D8a658Ow7<8ZsNT2~^U;#yc0pQ0gAGq=Fk10Q|d;T_Wo%7ruuYBOfzdvqV zwtefI=K^dD8hPGnpZZmC^V&|Lj^8NG?C3Advz}v|FKnJ3?!;fmjTRYk9B)88s@W%X-ctHR|%?FUnc>0x;#vu^^S9CY8L zeBboKcvDW;k^LPoQ~Tu8Vl&A(Ia%9Uz>Ev7`%9}oW~~DTA(L8XtQ0ObLIFLi*Nz6>8F#L@b=lc{QaTF zj(E%4Klk}_ngDj%W`@6&;FnCU4Hh-Nmh2KBgl4_!Zy_MmgHZ!VCfxI)3tN*3nKRtFSjZ@%(RS*~6*9XHG@>-r~B7<-H z5XxXO;?r;)RhX)a)C!azwrr@9qP5cq1*|v5wz%X+_3SK}B_qo?%Q%x+ONvZ#E0awj zT2hV*DKZk7Y>^b1P(zjyDihpbA*Ix`l7#d#t%NSs-?X2%?Bd&Z3H0^3*kaDbSZ(Jo zHCu>ALdH-kO7!6dmHIp=NHHHa?wWrCZ+9=AY$5ik`!KjgK)c3y;< zI0~Oi$2`Ua=SBwJ&Ot z^)~buem(27+K3)F+tp@SgDmQRO&84Tfc-G4_Kas!=Me@BJyiSVSK5ZbqxNd7Fe_~W zhzUh22xuz^36L2>q+eAmg=s6Wro9X%5`wK(SQ;B*Y1p$@aHKXap?3LM8(pZ;O6sy@ z0M9%-`oxn@*)@P)k@-R+zs6iS`JSHMcB^NeUHj~_YoGY%Q(oxOp(ckXo_s1WH6lFy z%(J7>P+ip$G{I7U+ zXGMG)L=7Ptf`rh@V5$)h3Q6^(78O$$ke5MP~ly{ODyVgu48AP`0HA8WONP>r3rs=B!m9c37?s_s3hvJlLnLb^}3?Am&`v3!Pe+pwE&45D6ky=4ZtQ6N<#aFI4BcqELds1zK%# zT~_!tijbhKR@;b|qrXN3{k?Blt5Dv3BhlDyR89x%7;sDn%+{x#PR*D}Zg$gM-U&m- z5W;apwJk^{q|)eVX|y2(q}1<=RuIDIKlE7*%z}uNO$D(b&>&+3oMj*))qa!>12Yjr z2+CM1k}YAEdi|$`WoBgp0X>d^fmW-v_SsRNtC>>r3NsjLa|GCi0)SR4Q$~YpjefMq z(-s|mOwPqpQWeS%(aJJzwOD3y?OLhNa{vScqy(lAKu{|S#dm#6-$Qn2vXnmkwF10y z+r}X~Op&9bT9K?ibO%}hl$`@pOA#rPGbdFxK%qAUTwOQZV+idSq;n z3&>Ups(-R^gc?cJJ2hG=g|SiD`eUNra$!w-$q{8oJc%6#h2}42!#D4)y1MD%MrTWo zk-I6MG|>}=vv@4lny#5_koT%&wsoes6gpc8>p)k5Z=+G+l^L0YWNt}n2ySH56x_SGr({h&Ut8Br)qDPgv69&0WP=If|;O+HCrH*(aUD%F`c;?VEC2u@pWt z0Y_l*jw`xyv<0xzo7GisWA z5m*6gQn2#eloW1zN)+U$<`9@KncyrEi~1QVv?wY*R@2`?Y;BH4@qK$`UyDyFrjlRS zc+Wol%{2_QCm^X{B^tpp|8laJ`dCmyz(ftho$e!fZ<7hp6<##`~Ezlsc<_+pkL#)2}Q?EYj zIvr}iFaP1x{dcBEe);(~U4G!tFM8FEVH)Ka+uRfMIrp^Y*T=v2CyTy)?g85?=eq{p zayWnarlWQP*8KXoBR+fu0N~SKzUiph%y)mc*}e)zh}zc_CP#ROKbICK9S5B^opt9JBk zE|?kj|8TFfZ@=hsr|$n8;fjEP$A5p)r%$`u$p4An^ruHWzwo*cdi9;>zUdotzkl|dUk32sfBN$CgX6jnJo4-3K5ykG&OPf|Q*d8A z>iE}AWs)qK4PDyY05c>rlaMT>()J3$?6l{>{6yY}=+?>J< zLKSj^P(?rc84IG*eA%0_2nr0C@?O;Y{MLV@W=h*lwFJsP2_24$Mh~^JQ=cn`^tVK& zd^?H}Ca=L5j_Z>5+kjwJt7REoI4S=nCxJz!gO;)G^0LB{B8ud;fal^$mas4WI!Ca6_O0ZbCK*B+vw!Mll>j zzTNJa`2w2+fM*`K|B*ZIwm%ujG`po1xW$l+3?c(%5-kX8_)E{(?$N*98!e5d7aN=a z;n-@Yl(nN0*^}IQ46QX7eF$qGdg7_pwgBnl9UuroZ2%An;0@>h{*?W9rn{CN_U>2w z===9A+EHm*Nci!W@$MY+E*o=9ZwNCGJSod@A&fbWYQ+NLu7M*z%%@*_@2hqM-!*Xd z4G*5O-_8vJPP+Pv_wHfiTtmS8Z+_$KuI>1tn?Cu<-tWEPhwqu|^sM^WzuT9;{*X(% zzJAe-o!jA|n?LoM_x7H8_HX{kHvza9ec z!+Rg;+)lZ$5Wu?!?mBP|9{b-DKYsLy&tG=_JR$%>2tn#oPo+eM5CGJ-tH3?qI_}uB z0pN`!h#KUkBW2!%{VzK6)cv0YzX&ww@&cEKh5P}+B%@u3r zi9hsy_VjB2U=L~t0%+H_-m>Ja+V>NG=>6<{NA0;iJ$5(ny8k@sG=s%}d9ENoV_CFRN$m;Nz7^Td z#qE505{^MqJ-|n;Tr|h^Y{|_sr zuaKZjA_Hl|Uxv)`=R8<6!=I)_8{|xWpMFO2GxuQa!#w&B);@^V>L;JpIVUnIUx3J% z!l=4=*;_t)&>7c0^dNQ|+fW-Nz8v-8J{gUB1Q^EN%dRFLeefne@SQK-5di3=J)e9D zn^3l2dJG8=wA1c~9f~Xdz6Nt=k?v}$gFSZRS1#@P`o(8;ZU+E6z5L9(|LaUJOVdG_ z0Dkdn-%DrxeGTukJpep@*AISs!WC!Y%|HF~gM06=6Rb@G0Pwc2KK5|DZ#$Qr zV4Pq;uN0YgKk}>B9QpX~K6c90x~o_(W>E_fyM4e-sjx#dL+`ebR}kJXgJ1|_@4YQ3 zlw;%6wo_FYpA#8Wve8x3z{&IgqKv^{ipg}wC^jh4n+ZPM+c8CO% z1Q8lUl9&WR5|J>rKt_h>W~eJgBR6tRIa238l}z$xFe;&e#lk3@M_bAss;5RjY*9H? zGFb-ka`3xdQZc#oQ{9dFe8RaGIts7iloBMU$K1Yik=@#zZiJsSx!~S;5hmtbx?|v| zE(fJ-pzyM$GO-Xz;Z2E6S(Wf(qQ9PJ)d7{cQIy0K$C^lNaP2=PML-+JM%3ex7U*x# zV6>#Rk(h6ka`ab_VA3a{+kh2zIAcUr_p4I<1~C-7lqQ4aVOT8_tGIV@M%9h3f;Z>- zvXiBn{sLgNU8DPEE+6?OVgEG-Z;k=`{@EHY+B4BCchIH|dV_%3FkoY`Km|Ks&h)Wm z>Ps}w3PRIm0g~ouUd3b$qbJU!5JY4TM}xL)0A9KWmq0hAw&JS-Ge>hEez4KX}YR z`|NViKD(TC!-Ik#?z-gQeJ=UYWxF1<&oRGSjYofdta__{5`iB6#aa9AdeFYR9<=YS zpS$59K_uv*-+yA)gZJI_;C*&ItM}N0dxzE#5z(3(KGePMuHF0Y+P&{3t2_e?Q_-aB z1o~n7{XTrmb?<-QcW&1{g}r^yV^^k#i2yuw&y`oc;jno-C_Oi{o?FoBRm+#Z?y$YK zClb)5O@KB7(W#PH`9I&`Q}=qY5^43w;LqOkin%ZP*Z=qX!P_3!x^mrPog5}A`^W4K zs7SOPSgYDW0I5uP_9qYo5Il2~yMDP~-Zy{$a6{0Oe>mx*hg|k|@$emAnD^0z^FF$8 z-p3a9-tjn*Sbh81^S=3$%Pw6w?_&$+eeB0~5#4qDp?iP)(7nHP)5Aj0KX2;&_&Jwd zfA-!dE!_L0g?nFi)5GdZM@jGw%pZR;w-cgXtn$5kgCH=~*xa>BBDLH?73!aNKg2F$(C*5U>KJril zpYvV{F9s@o<1wDn6vMRJCtL{RH?%O#wkZa_%y36kCmd6uz?~E>QVwT7`;(0goccTZ zKx%zxwhkk~y%mTtoG7GQI)t_@koe0n_#QKY)^411B87Ib4!I%|bM$R_xWbFlc1?cZ zf}e^~BiBh$?E7k*R!zy{0lo)s#tI#^L$G&=Vu4385d(XF3ZWul;sp`DE`M8H*Ay4T zPqqj)@7lB@R~^jyPaSBo=enmCkRwYDR^6F(kN5o>H??51BLK{uq1s)t2AJ1(Rx1Di zAOJ~3K~$MZO4gUBGMi^+b=9Z}C6z}=hVr29U}FC|QpxU>iAOmqNy31fN&Tg|P0k$i z&kPn24IvthMx!AbLNps10G_G@fM%o7Y&3LmA)1W_iH2x2h=j0lHiYs9pj8O~CUGNC zqd`J&qlsoyOrMIGQ^ky_m_C(eOl{1ZCT2{-j2Se2CZ^4#sWW-{OiY`B=`%26y83hL z*1LS+bG<6^zEjTL>zRM_opQGN`GwE*-n#WJ#^(&on8DL$V){%>ohhcxq!}}5#th7u zCT31+%$Q2kr-~U{KT+JtBz2CMhYw_MdUo@j~J{(s+jdezAC{?BX=Jn>YO&7c`MJOf;K~dC@3Qaz>0;b)?7KenllT1T zs5t;|`h~dmx@Bv5cx$OQ=y%bpei_aZ! z+HZe;@s3yj>#2O%<+mKLJ#PEqz6V}^;Nb*3@~dOtecUT9y5*wX%a*R;hdKm+_I%qP zufe|@w4ndc&t7-ot9CR}pVz(cJOJ45%fCNmznuZ#x(~en6#(#tFaPcnuiqJfWUKc8 zu=;O5$4lS8GXT(S%U`$fQU-9y$yZ$PFFOFhW$&MJ833I6g&RKjB9;7~uRQM;r=EE_ z2(Nw5@K;AxckZ(T+mFhaftCMrIX-#%9MB^G2G4)zTt6$X=(f3VpDK{eCFx~0*-T%5 z>?f}W037qf3*P>+11>!Igb)4f{{PzT>eKL{?;W`-c$ZUGd>H^%-*#5#MMFoQ|MndS zxcO^0AM@Q6A6)aT6OVt#M=!zKzOv$ceCx#HfA+Vlj(iRQzdCo-nZxIQa>vJif6{56 z{=)6wJ#P=Cl@R>I?@n5B$AzE$*?!vq_y1_`B|m=6m)`cWXr1Jm-TnW!fn zV}5=7xxWU0JwAE$oLMy5BFA&#^66Hrq--JB4Al&K*m(W}3!Adi=p;g+E65W?e$fi=9XG+A*=@i?|H-We?vte99DoxaQB(+cIh0Cdx+K8jW z7LvAujP5KI-zUWriu$L#(#x-SJIakkMT>laYW~99N zwNIv4An|_EE*&>k#kNuaw<8@18QVRun*&--nBML5xJrI$&H*U22WDjuCE;m^&1z~) z#^9y78wbpeV@Y&DTZ$=wt6H#{PyD)zMjmy}o934$;cZV)!7&O3)I{g2fz?dlHgbLC zy^7QlT)hOcZd#3MXAL$dJiz8cNo913EPmO|-u2|{?^*lCrdI|YJ`xvge>LrGa8srUk+W{lh`X|p z*=jjk8ee>Mql$IB;Ulj&1ORaCf8YO_oq*K< z4n6CX1GWcY?&1H2%U3^i^c)ay`o%}?31H=K&tUK|d!KG1e8r=8uDpoBi*~utIPLMs zZTBtVW50jE_5iSF=T{E9@W)_&aOF>~c;i>jh!fvfUp8H4&$s>YzPGOa#TVwk@V@Wg z`_`8N08YAk`TO=ThCu)U^S^oNIR`xY-HsD~dg~*v-+7jez#C!iTKynivNL1PLwCj~`qwV`H{mX(`zx>ZPFTV9JAAI490mjHppXU>P`XYdN?%d-CPy6{D-*}g1 zhu>TL((eI4_eXzl{;v9~#_kjU`%8Omuimfz(`Wblja}gCf(Nrbyu$k*hL64R;?HY) zUoe2(jy&b)z0Q6&{^iW!J!dh1Cw_O*srGxgJxtU`AHC-+VAgBi2H-0zI(G-w?Dlf} z_^~y34g>pN_>NcX2w2EV%I)4wuhz5hdxW9~MQDhaXX zhHEc5=r!N=K7@S31*e>}-wgTC9sLKMbMJRQe$X6UkNN{w%2#TTfZ;%76ccPO#Pg>B zJ-C@3Uv-Rt^KPGmtoXu2A|Vv)P6EG`L;u)%iQlmhT1}#j8zCSn~B-_~?znu}yH7&9Ub|hjKB7IU7@$k``Z}(fS7w#jiGu zu%Izfv$pF2ih3^oiU?5E#7oSC%ZaF|ak6!dppj^Ee`5g*TpotxJDhgqm*UX3cW>*#y$T+b#*5%pv`)4yKAfaxGkOKrnR3yf%av zjsct0LsMXDAEkmpFOT%#5n;dpv0=bce@Q8Y4gx{y++Y1En`t>phbx5ox{ieqoG}qu z2CQs;Z9vio1``0$m^!6_nKNdzTAAU#x^2^QU#jzKHju&Iv;8|LRBAM*D2?s3sna}X z0xs#E=08QWe06gA>$8{o2VEWb!WIz*Wv1kG~`>#D1lU0o{%A13>dv>qag%A2B+>tpp)*q_Sz%& zbgp+^0-S#FEl2I{oNoJ}^I>F`{&svW1Oy4OWOo~<7o36A~^)0Vwi)+FTf4Ig7F z53l^HSxOj2Wdy~x(Jpaa;2djcC2g@zew(dBSL`GE0V~#0BvPG6GK?HO>W! zHjI4LD;KG1+1(lM=r6OTIpIynh9YsUwUlP9P4>$}#a;l+S_Qx*fyP09l?N0H5`Zgv z|0R2YYz?-_qif1ka4f(hCN5(x92xp+#JBN~4eT>uRok$YRb;^SNMP;31#iQE!K}~m zwW?ozn1izK5-J9>KPd!BsXkJ17bB~afK@;t$ec|90Mn+=oYtgS+id;Mr=GQ$6+-9N zKiAB%URzLP?0i(QDA%dYDb41TX0thC`t+cBO6+*TqBSlarcRkkQ>HbiPM@~Tc4Xc* zi50;Wf}28Vf+Y!k!v)A(8BlD;<)0ISz` zXqxE4+!#F8YFvKB6;Dg?v=jiYSubYDh{U@$ZoIt488NfWv{;f?JqOAe90S*p#zWk)*G%q!VqHGahHSe zsY`zGZ~X_%y8V)WKkf<~^iIh;?f&M&u0Q_M{~H{jrn|znFMH=3apWKG=$ZXe01y57 zCs*wM=F_)jUj6IiF5=Tax!=y<2k-jH71-za?HFrJNKGY8(PYdLJHGq_pFZ=wKfU|6 zi)VYZSTeupO-o<*#s4^FujSu+_a3?&z>+yr-@8dE89Zm<$GTqslN%2?ZpRzH$Dcf7 z=!3hexF5d$qD4pD_U8{ge~vDT7JE!qsxp+BzVTQ^$e9+=v=l}r0p?6{W-C;Q2LRe# z0XV)qlPA znm51eyqW4!7DmR_W^467hOfg*J~)%nGQ3}jB`u+0W`-`C|0hxI23SLhWAT{q zvGKW-GpMc|9C=nfn|Z#XF~&oOa#Q|=eiuu&e3pt+qw(=qU#@WwXwSRdo`#Qt2}P-YKxTwqgDTGm`*ItfL#pAN-EEQ! zq`#h*X;Y^(r%e%4r%v5^8xRDf{y0iN9eLIy2(S?9lN^TP!Q~ZQ5#6+zXYLfBp6kf+Rz8eZSryYg|{5_swLMRv+sfbz7K#ykM2G6YqtQvto<(hYTpZwd(*A}fX{s8 z|Bl+-*2j(qobvtC7ryI-UsFF%x_bG3I|JD64QI?h`Ck`)7yxkKrI)^UFYW)l?!(Sg zPp5t94?WvzYDAKOmmK#0=D+Hs@4kN7zwg23ata1vht7}udijg@Tlnu^Hih-!D^J+o zD1bp3GqBUV_nrF1#h?3X=T&^%Pj}JuAH4k=yN{zYZ@S}v-SsG-Ih=$g*eZ3^LA4)E zg^2*Z`_dDSI|l%8^{2Xlqkr&4&%Tx!_|=Du1;W8cUGUc5o^bA4E?DurS$NY?A3E=S z`<`@V|4H}m{h5U}fDyo47iW);Rt2h-S=jHOdp^APPXOSc#g`rVJnNaU)hj=_c)zYo zj@Vnpx6kQAN4&zVNS^q^N&1X4Eb1LFZ}0ipzzuyLJK3!?n1SD%u;e!YfY+RV?7=UV znN+%P>3xx)h_Eq*0y)!KR{-#q`MTu=Q=l@hf;H^Zi`&A%zYe9ml#F|kG+IWbQ}cgD z;J$vL8 z9zDt{{x$uj+=S@pFXhg~^A;d+b!jwfwVQoA{~_@&6i{iyDn0(A;FV+Tk4kIM*cLEQ z&mbfq%C_^C`wiYY2CPOCW2XSGUVIbQfB~C?1OH03Z+i{EN^z?ji(Wt$8E~f8#@@NV zIxt8r2#8rSL0@PlK#;nyR9I*e2;z)#CJ;(<{J*!|yZAkCKlQXvKf8AAyWa7(ncM96 z>}W=AWYQ(?W!doFkpAW{efrdn=Wl<&YxeN`dcouR-`JRBoMud$y3MW~yS{FJ0gx$P zeZR2)fTobvB_35S;(`w~-{@^;M#e%ZT(yF)Id%0jYyY@%kY@rI`_EeQt2NsL*nid|H$1lee%n6s&0A*e`{I4>UxNo8&i?x6 zU!L)f#x2i2cb{nw+?hRJ=nIXh*>Iojllg>S-3Tb!X3@)7o!1Pk`So${`^loq&OKmz z?{!YU!JH3;oM+$Ne!vE8UZ7rC1uz@B564acW5lB#*!Z(LU^n*|b*+spc<>atRxoJ< zG7&g&4UtkZbIv{fPci2e@ME(b8F=CkeP{jrEvJ5Bzvr}%qWx@M^dP1B))iSMTasIu zY-K!}N&Tm#AJ(?AwJq6_Jlc{iDO;J85}Ep1R^4OFkwjdz7D_-HM+S9JSxnXMVs8ts zT>8U0l}@OY$roQ%*LXbbb}1E#u-3e8XO(u*m!%cj_IW>@iJSe~eamlmw@L5+v6(Ld zZ+?V19-RB2y>xDGo1ub-(z5pEtzww4gO;Y^k6l&r#hq&sH9auaqJMtO>+Ct+H%eN& zZvf5SIN<&5?z=IYOgTRi91Pt-ii|QF>%7$E8IM(W+b&qL0I2T7vDzw3749lzoI7cGM|P?kppv%{8HRf5CPK{OfL)T=s)|@4n-y#~!xAlNlvE8;4-*3fZuI z#Q<$JeM+uK+)KY?Yd}T2=imOgCbKR8kve%yXGaK~Ep;0e?9nsfqR0G@w%9G{Qk_io zL8Sl#ls-)T1z_i`X72vtJzm>;*3EzZ`@Ii74i9}t95Cmldo|-DD|=4ftH0m(=skb= z#ptuy=%~us3}vyPcCOXw(3w={+5xPOXjO8%?&g`%gjnZ@W zeQ@By{##2q*lZR{(>))(@x#aW{>;VFb;%b`@7&IiE&U&Bbtzl@t|QHc7Mlo+64y>; zP9ig$x{)%MLrbQ^0xHrvmtVAPOmZuendDI^ zTg)vP{>hL@WSKMv$3U_xS36=c5H%qv-JLXkJsq$sISz7InaNtsJ4dYw^Ntp#?ch_0 zcie{(xXAqFaOs3oNW5eYj)gUfp<>T2k(%HZG=D)1I_ZE6Gsp^4LPc7=_vf4MpXd45c&LI{9MaPz0 zr>scY)L=<#8jJlyp#6oZ!H8@nvFT+Ou{JRXnRKor+kBc1tQ50>XEt?eBvk&{8at># zR*4?!fT3=|P>w=xc@u;(0wxe=+L!@kEXh^Uia=!yBDRNB+GBw4{@bHdr`~te`w!oF z)>b)+Mjq+)M=0;#Aoux2y)F+EwB9HbQwq1A_G)wK_HkE7bi>W}-21@eQBT30#+sFR zynp{$k0=lOZTkp-PaeY17u0FIeENe>JJd#BrgUl%TnTx-)|_xt3u(X#T}!3q}p2 zjta9Ik~K4SR|Q$!ffI=Rj0G&-W6AOIGVw%0msCQ#I#4CLRx((w%}Thh61=)qMoueo z$RsQEZ6>)TwbD0}JetXtR{ip5CR;2s=1d}!n)R}+H4h#M&U4G$u4TZ6y{6{52c4bW z%u#m|BO=ZVm=_jBt{GoW_|s>^N8YNyDM#B$Tf%7FQlg&!_Qm41UhDezz2xi@^iO@C zMb7rOJZ2qdoGaTF5+vk(+f*A6Nz~%vh+JnShXrYBPiYnOl)>U-jS} zs~%F{w^-Xe!DaQw?ya|k@KxZhxZQ8Bx#UQ(u1h~u z-4Tw$rc(@98dHw!C4?YAr){xftn!%T7!YHqamy0@FF6ZCZhO+m`?fruIc zf=HO#9c+CRh?b^EZFN-D8}vmUXP0UrZw&wS$ZkMAHTz`mtzp2>mw>bJ%$o9gd>1g! zT6bU^^@n3@zXSwJ4utWQxa{Scb43ucUYD(am$_Hb!V6}if`_&m335hLQH*s44;zMr z`clwW{kAf0NjaKH_0Y=ntCr+UN|`~jw4VT0Hz&!A&?Ex60`_+;IsY~yda((XWUVa4 zQZKb)s-&}COYnZzo>3wmWAwL5k`lihJlF6ParTBn4u9J5J($eQ9;Mx}Bs-v67xQ=A z3L;3?4jdISM{_XN3B3ed)$rV#+`H=afGg0-Cf{DPb`7CMF;%>2uQX+yg_7`YKFD`` zt@iUqXX|c8dNumP4E8~sQGGAV3PXr7*+1mH#)8Jz%9X=Z`IL|k6&=;fv*0>P9X)r{ zPo6nhw*sTc$5Z4nK7T6^DfZt5i7Fbyekf(v>*BCu3N%yHyA(p7fu*jb0@Q&FdP`ib z*2&OQB5&AIb`e5ob5VQy78%nB8yk5ni_D4jq>q3A>HChfVD;%Q3|G!E;9?7~3j}zj z;gu@~-r|K{3j1kBS=jdU*F*%*<{|gO|KB;Q7$mc>mw+-$27@GVL#XfcSTJQEAt;j& zf#nL+(x$-8ydUM|(3TcQ2ZNm9ncw%=#_7=l>HV-f=l&>X#zT(^8@9^E{EKz50Bnz9 zFcLB{!;j%9h50P)g%qy%yevZ+RWnXx=Us19h)W zOR`j#+;|G$Ome0km|K}N9w61}y-a37Rh0`t#0`S3PCY02S}~;uYM%u?y!yM(B@;tw z&Z{M*{Fh19>aGSkvLD9DXv~455SA`SB(;NJ z`=&Cc_EgpsW03@IR30iiTbEY{!|3ixKd@^T57~LlC!&0WI?tlTSW*=615Gk7u z4<$3~2Aa|WM~(!xRuC$z$}DTk2Pl0lktP`=l8nG6o}C1#Mi=$KeaMUM5M z5Q3Olp9`VBk<-^<=5>3Q9bYS)?$wk^VbS2} z$MtH*A0fTq-tJ>=Gp%%{HKfxu=E7(UR50LJ8s>~MFE7#Hrq&?Ml_*5&Dhm+65<;JQ zhz7A>M|sUUhE!_{btO*dTw1=LQr(zQkQ(9HkIjrR}ZOsP}>QG)NErHb$NHfV;Yt+oJUN9uWA(35C=knvLGlSfQg{hlvY`cy9!jHUc z>ym?Q#U(>J%A0egFUc&`k!|LJM@4@#iA+kX50;WMX0_gsdK@wZ<9b+JGH>L}_u{yO zmQneoY8q<^L5pUt;HxsQS&G)v(^isW3JRl5swIL1!N+pqL5(GWzm|%KSiW#}6PTN` z?A%tQzuwQ>gWe)6gfefvm|eQ1O}tcK{jz4kQ~1nfE7#*J;;ww*L)V;hZa+qP}r)Ay(Q$G!XX zdHUp>@6OK7&dz*xcFzt*{uz?|oQ48cWYRlWs;63mQy6vw{Cu{45E2K}>2-{8r%k3@ zG^m95B)p1*v|C%A(-ay%xu6FR>Zd#8Ix%po-i@AnoVfvby(TY*iWJ zh10|$;MEDuxBuj&2{bHBpZh36pq2KZa-!Z~(pBMJ&vRk9qXuF&8Q?l_@#v)}X^qZ7>pnKkSj&!zoYoP>US!ftx% zLuTKug6009N|3}Vab~)?m}q=l;nLXDM&tUz_oAgG75Ia7V(yLMf|aO< z_=7L8>`x5|hKx`$j6ZdkT{YsrmMEzc+BNi~B3TmCxZ;Wbs1I1(R6(bsGi%(^KT%$^ zX89z|qoAOnicpPkSdSDns`uw1Y0gbWJlz{_zxd0&Wj5I!+&2+F`&;%;KRHr^xfJR2 zI!5MAn8;caJ+!ivTkZLoC%E|xAI@8L0@akU4i5YWhnAbu`f zxy^T~%~7%Nlh21~ed1Ro2W7z)ICf`I`3(z?evI;sHrdOF4PON(7Y>P~xE@Zdh3(3@ zO<}HhW_}S<`x}{nG$<|*0qaDA9@OKVo=6xQq4Xh%jci1ekJjLy* zeAQ#e0-0t|<~*YMGJj@LreYrE+IHA6jal;gsj6yF<|(%h5Kj#?p#}5WOls0Us&|c% zADlG(E-?1HRQt5rpt0EFqKcKshxxh2>UzUU%sQAoD1VOEyTb@kik~TPljhjsj*5Mb z^P4A!MxAQTAI&iG3qbeKJviEMT8W3!NITmu!H|@tZrJMC9A*Q_ee5=N2PnEdzHk(8 zzYn4D3qPd{nc5mA}na8SOYC$?nLH7jTouF$_xn$1^2@=Yfzvs$I3 zO;u52rGZ?$jU#;i`b#d(CxE!#v^@V>+3=4C2QrzhWp6z}r|==Y>qbA;b7`}$!&t-` zX7}J3Cen{X`eTLZMY%%Jy%c9YZ#kM)lpGXIh7>A7f`jC(ZnGRz*v0Q!7ca_fc-s|q z%2Ul&=ZKPSgF0su$g7ue1GwPx%&?uODpW20goF@$qx1W|&cC}A z($3Zgc3>}o@L6B>BWOhi-kuL)RGqDf)gc8`%tVch6-&>vp{k%nq_DI?8AN57dZ5lu z*^IdClfs}I^Mhib^A9MT1m?09^xA;C{p%Cs>3Xsh_qq2+ak?kuQmi?~Z3Om9E$d$9 z+=B7C=YfRKLX?IA^gXzIlT*+olssOn7z<7otejl;*!nlT9T&~4Sh=<|+D=Z~PUJB& zx}QB?rrR2DTKGAX=9Mzv!N@R%Q@!=+!J{FeG=9rA$pQPbwCj?kp=C;8i?M5xj#JR0 zeu4u!+4=`JUr9CvQX~mmsAx+uv1n?tx|M=5YF|~3*^8WN_V==<>2Rq_f0_zRKw6ii zFpI7WD|UoTY6meBFD!KIEhz7AJJggCKjQq*!ckX#=7PevezmU`WIXz$=s5KCAq<<= zov)aAU?3Y96a?c*EnZ%=Jz*9Rt8mqiz}i+Yt$2&Wrz2}wUf1Un*jCskwVOCNjj#H4s|ysZ zFJo)2`|&}R&g1a(yx-BMZ!)PK2l{3TYI{vI)&&_E<#AK5_DuAMY&!SK!bJ;T6}Tg- zvh~QbNZ^C0S1>K>&XWpz4L1s<#zhe5Q#|fr_hk8|;?6oyDvq@6MXY{+sJEQH^NcZn5(Tb}0R)YT^g` zSwmuanr-oI6&)xefh9L2$2!_3dcScfTBmxW1HcfElWs0D=i=_9$c?O9{di?#rzE+c zKL{{uPC~aNcF*k#nN(7wD?w{a;P<+EgJ+R_sSXMn3X4PsQn1D6>YSl3^hB2J7soRJ+l~K_H zV5;)<$(dZqFW|rB&VR&55S@-DwVNgKh~$Nh4i>e6MnddAMMdVaoo>t37V;`Z5z{#|ry{p($IoP8ikVmJQVt`znZ z{X*)ydq3u9rT;azm@L=&P0+--Cn6>28%?{XUrg!!F)h77g$NL~q2NABqkK?l2LO!S{|1NC0nC8Kge-=DX z5~c5@{?qG48r>u784e`IX=UsGb&i%h4cfCA_|l&I&icP($-_~YsQuW}KfC^?ve=>p z5y%7>v8nt2TG9RlxW?aCoufmW>_ob8y@S(`3X$zw2(&xT{@yCk|s1!D&icEb7qK_najj|Lh%|iPJH| zu{t^SXy7MzFmL5JSos%03FLtAb#XCOn|+E(H|&p8JQA>HD%4i1yLyLps}2?;6W=~R zK=xr|b(rrMomt9R-~;_sXR2$foK;qnCGLQMN#ksWRT7n4|J8 z*!DcPiT7Y3JN1LHb(NuKJv(`Iq+-Qk=t5+k8xZO|g`XhqXs&ZV7BX}449s6b%t0?X z^Buy*Cn)R~_h&ymnWs?Dbm{)Q-q$9z-k5SLiZiVqnBG3OltBplFL&l=^m_gBf*L3U zIn!8NS(k4~Pkb_?{xxEbaO95R$--f_he&Dm6B z5eIZ54L-~XA?O7K@}W5&oB#!dO4m88YwH|B6FG@3Uu{e-04M*eo`bmBS@wat4<=v?1(Af zK1f|HDZZ+iS)sd*V$<7zm3@n)pVyfq9o0G37vaN;;n?o#g;dkTD1&H?hSAwr^AZwj zWe|{NjIj$$Z2|qkKzHOnLx0BYIoY)BCIGb0p8MLo z_#)>CuXAu(A5F97Wuw#~W^w&tb2IDS*dx1R#P$+AJI&EQBWdsMr&r!NFtt#)SoOhoS)H7zO?adR+4Qhp5yKHEb8rC+r z6jW*O!e#!HnC9ct&e*9TM`Wo!yp6n?JYvHSU&~L8!*SV_Bu#xV zU4GJm?!rE=g~#+nqq|ST4Eq!ZnP%d~MIx>I(@rUCuG_q2w<=-J&n4VDJnx&LI5Fe_q*D2vzm6Te4BiauXW<64?G%D^2!wU?jVZx3M$P)z|HxhGNY|; zzeycje&jR3KA>f;TRIEl_;ByEQgqhbTbTxE8)hmOpDY&f9evX9T< zSmgah&B~SaycP4BtMSwiPT@-%99N|N$8~$CbrD(4C>#7OS}K|^-_ z(!N1xSy_yZ9k6s9@6cJ za}h;UmDm&Y+C0*AdIUcA+dES87fSxIiVpiap1MVx325wfLqSoyczv`RM?JK!YfT0! zYmw6vBlf|M9_UKOfNAw`zgNBf(9L$ES(J$Sc@NX_w#FnQ7tWfbi7WPK?0;lJ(;1?2 zbL_tML9f$#a&P)L)Ng zBZK{Ki<_TI8Lr3Au};r3F~@3Hi|O*z=nL;_U}V_PY@e=7*(8UaG{3$b*V43N(}u`? z>$HqGqlhP&r}VtW`KYlQ9n1CnXXH_lKH+w(5LaGGB_aZbkPFvw(3Aw2RA?T|vpiK{ zBQj)Z&UTwE&XnG}d;{C1up5MTpXX{y%cw$k7CM`?anmL0+;z~j>%=}jNqb}Bl+*&o z%OBkQL@46ef0A2U;?;TujK3S3HY_Gi$Ks44K-5c9m8&#x)t2aFl6!fd7_b4gK5gyY zxgB+La9VZ?VQKWQeVP{Qw5!fZi0P9L2j=Ywb)A5XHmt%3n&aShk{>`%So-VK$3TQ` zUp+s+-cMJ)K1^8ufnAed=l$rjKY+Q|VTWQQ3j|zlH#)qtR#|OERezSF%rf8OJui5m zvMNQ06`ZL5dUq5yaHQ5;e4+e>za9BkkwU?pIbZ|5J4(~*{bbE8{XcL(sypFCctOal zyMEMxdiFoa0k2cv{?2G5^`WW2oDOv3U!`iOtHdF6)jI#d&>5r`3W?@Fpo&QMC*Qpl z98~)H0;Sjg#R_x`=R^cd9H?+5(Bwwm`~TYLF-%k5qBmS?b z`0*vmi`uY5$Ny{L#>czcpL4cr%@m%}(?$>Q<^L{e+@FvPM&0b)v^`51$=d#hhW0`J zC}Y*uS~9q4t9V*BZvqPOucFHg>d!yueIf$#X*8?%|3XHdG3{fEGgr;lYhPXz*)=Rc zmi~>*fd9yGB|)ld%}l`VYv6tzU)BnFQ9#GXAOD*PsL>Gx>NHiJ@X7DTs?7^?MaM` z&4&vqvTi&~wwG802~i9vVN|PfFz6YK2gz#2zHOQHX9I(Oh!s3$!NK}!X52_Wr`)}m z{oS6#kFbV<=hMUYHRJTn+>dmYK?`im^RzYQkaePVGuwfnL^4oJ4JXa)g9wcV3md_~ zUr2feM_@U0@YP+Dt(i-qGM1!b^>GZUvI`BqODdVLCl$PQ68A+oL?J&uB#EKiqon-D zllhIyHtu$82psQnokNlwDi$2rrOKfFE6&f)iJ$PAtd?|~ogeZj+NpM0@;)T-MH2B> zm@)4Y#>q;dnrCE{gKCzOBh-EX&2TWdX%b&BK<7Txvp2^+ICuAh?+^YS61wQ*d(fGH z?8(P}EibNPQqE!y;q5tzekb2Eq&aR( zZMzdAIl}3&59ydaFwb)<(7;P?`xPz#I7{ntJTKde(dm}cK_Y=cy3K_?`P|fQJpRi4 zgx8)09ln3D&v7fK>|MFOj3=P1{6RWWH?_lq>zyeUQKsR0E_?&WQj%NCOxSK}02hQag}5t6|7xi1>aAdF@9mIhiKd?m;~tD!$!ZD~ zMZyD(JmbAWqglu4Z?{T>JlHuMb_XvmuYqfz2>}1a>lQ3I=17NithqsKB_xZzfg6AC z>}NZHcP3RaGl&lEj?*1izot^?go4tK=osYBu=8W4k@=JOUW*nZ5o}Sl2osw`=s1~R z+pJ^PVw$uNf~Jn$~$*-(>FS;i^QF_U4Er=`@I=r>X`wS;`& z`nnc;MY0CRJp1vCY+(92`!Q4OA>KAw1~4q6=SOM`&f&GeIHIK!ciBT{?Emm{Tf~~1 z->x2YZzIW4=eH?cb=3nv<0-G?D}Jboh>YY{3KQJ?9WFly;&k>q@)q3d5HJ4 znKwF7qr}qAr)0a6O$J5IRfVMkDf(;n16jsjf@2d*+dfCXOS4_wO*I+J@v%R*Oz&33 zX4~u1KPMrI7FiFx3a@1&A6;IL4Q=acTpnHI;n~l-3Y?y%#^xW~rd5_r4=M>sFL0UO zHhBJR67iY(VAEjH=Y`2v$n`M*A>_`p(b{Jm6$&i3VQt@uIv+ht#t;JPqLBi{4$eQP z<0SGCOl)}Lk1SsPq9b_|xFg-Eu(z_Z&`D`KQT-k3YC}H3%_f1R5h7O_JRk~_td@=u zUKy)K>wk1rIP9VzmNvL3wuf|T<4=8D3& zJt22g5FNlJTqE(Yv)#(O)pi4-K(j{e58Y~ax|2sQ$vBvt7@TgWy>*yzMV&?8R#o^;e&5ok-xzK5Fp8rW zp6$w0+jC`XaO5{Rfz-S$_igIAH8Xsfp9r`r9VfGhjw1jZSX_l89!}6p zh!MSd-LTR`38WQ^RRR{V_Zke`SXAT@$RrXIM;Dpy-QDX7 zB>DoxpJ3A1LIP~$YbHE_un}nI;P4>RlD2qh?IX1G;phto5pP#C4NqZ*b7u#F>kWi` z?+>qEbf=*hUVnX+pL>@_TnKEWeieHq>xCwwZz^O{(CG_4xeFdCI zg*y5P_F-~IQH%4r6-l5wt%B_XLYlW`8)Q9tY2o6%tJlFo^khMe;fn5GM_=VW^%^xE z*mkJ>{j}pJ89KeWzk6###ixD65!+F!(+vy%0MhnproMSY`uhPq}#Ov>bxuFmrkA&lR<`VC1Xuag( zM4fSlE(sIE=!<0J7nDi_*(t80|u&)0I;-kmG5-=!!>3gJhhHjQ8bz{rG?9T>l=>a ztBPOSt!|x>n|`Ywe)nw=s-E3f|HTu}z?-VF3M>}!eRUvatzmzk zIit>&l~pVFb=&A?#=jurVko>JJxz`FErVq{yrkP1Q)?Yj`5LfNZ)oDc z4!(9s?v52~%=u38OcfA<^n0l9)MzC^RY! zOuAfmordjj6v~fG>Ds@1(x`Lzjo-DmV~K9iGHki{A5z0zr+#JIanVd&cpmn50FYWCv*ML*>b&V2Nnd;W% zTN33DG_IVwS?*2~9~0{}#ju!* zbD0?Q90i*#q&hXjv#d5-7|QxIOWUK9Y`wa3X_Wy)a$|E9^`(f2@IBi_64RK9Q1D;{ z%6USp#fgbKM>SLTrInSGjM7719~XvD4?G&v z#FhUP4S-eT3vz$Vr0aUxqvGgntl$bKcv8)N*LOPr?>WoASM^4peydP=ov}`|MRb zQd*(K#kq@oJ6DV>qus4KrQ&yVG;jsvZiDebuIuCrns@LYDGsbrjZYvKChZLyzwm_28v_i>uaFiT{AoJMTN#hbcU*TMa}tbkt@SNr?m zhFSu2kPxvAowTB;fpHzmT^bkXRlQL(dYxO-Nc3m&93hZC8z;2>te=5C+DJsJ)hmlv z?k$-{5O4Fu<|=4S3+^84#d+Ncw1~HPxeUbnPspKqp%|W>$pdw3HT>F?gJk$FFf%ZC zA!6fvNb5!ZE#ZwjiyjH$y^qIn9ZMM<9UkcYj9~+1y4uG3XIVlvPB0}E)}+k@sk`ae z#dG*HCU>WA@wW*#pLa*iaK|hD3=z&QI`e%_!TKq*S(_u-fz{*Y#ujNDSHvx(l1sFv&T~XJdL#7evI~0UAzI1%5GnZ59CfKhiYq}JMAT{tZ>&622GRn@rYd~%X_eUC zE{*PqE1gGMCN6{b7rAY(Rm023!vW54^X>~co|TceYo^oK?@X!OyWazaZG|_SSkgEX z=Kk^|38QAj6Vu2uWo)LE*5B}n!)qS}Y9tkt1$16@_*M1V~f5g8U5;NnZI? zArD8c-R4|c&-JSw1`+%~AkBUg+b9V1I7cX@PC0Hzn%P9~Jt~R&J2!t+sY+8aG~5q~>La(a z-||2eh9c+I_=$n3^!bJ@3OkWRW8;P)8n8~$SG_?=uDD0YsgMX=yzz>hTwQ^cpMnM} zu7yF<%4|_`K)IsJiXA8HMg@6gfRd^#eds8n8C zFOa(!Tp=+d_`S7f3kJ^Fgw-xg7axIleOjnJzp&Fhh9lI@ViP(J*Ruc;3@9R_H?Pfo zqu~oI=majKm9O)fB)(XubeK48E-uuHmFiM-Fx15kx9U*kJVea#io{yo zWAF~lQkVC3O~A%ory2p5d9m$uy}e(1uuypCHk_P@OB$6cy(i@@XYY`0(1jG7sBcx$ zt@{N^PDqD_m^gPC^f31j^%Im80(K5={eu2?xyh9d&AR1&T$y`S%ep-1~&hFtkWPTieM`x#Z=-Ico7Tns3j zeowb9I5~J1(I*JChGe4cP!#>6gZkI1bWNaT>oq8g!V|1}Q-%Wh-7#>QWP13Cu*dOf ziIePVtDVeb0byf;kX$Dxg&g5Q5HMW%BnImu@iEK%{%+}A7)`)i@rw7+RX^e2>CPI* z8#R}^to>abSxUlM9lg4z9UC!}7{i!9E!tx1TZx|c zSIa_&K>!w9gZFs#`%_t7F=uyC-JW+|Qgfa;udX zC;_hc&@lBWv=mkZR^x;%;mGUgDaL2lZuuD<4NP#-Go`557MOvdo@JFZ~KDP*kt{3y5wlmgxn<&~Zs8jk0ic(V~u;C=c;|mUS zOJqwXK4~twpndg2sw0K~8qp`4dlUZBq?Xsm^DnUd%S-=^C1?aA@);phMrfd}CER`? zpMLf`WE9hT)(_16w6w@CU_V|KgrhoV3u`1-I@-yJx}_%y?3VqoSvCY@#If4F@ATq! zVDNcWCXbh1^7F0htLdiL{z`>ja&V(608%dgz_%K8pW@kY*2;=p2fJr!&Z#=J*IxFF z4l`|#Im1JGVpm)~>0*LiuDKl08S$@f&Wx!P`%{+t7s2(NA~%s8cUz}VZq2E^({S;F zA&ze7P`~F_1;CqsoTu@**i*=fR6iV~z?_5(68x3|5-EP07v6wbnZM5hn6SZ#KHTj^ zmDcXx_S!&=c8$n*MDDtL;hb>@eDMMdzQDXF^H|hP6nQ&waJXB` zEKeSh)#w}HL2!^iI|pCYEuI=r3jY2kRp(1Skl@`7`W+frEpE97-$Qmf<>ZY4uY58X zh($6f<|;zW)FDQMqM(Cfpe=RqiT+mO<6;mY4)*6AiNq9UMC^Tyfi_{bB+SG6`!0+1 zbrR~znb4N!8m_$>bpn;XGWy!t*;gq0?^}@JK{REcbCfV8L)YPqPIlV}($Y{A6cp>? zWq%-V3OlZ}(Elv{wZ59{e{=AFbfVk!&Anf9E0vhBGAh46=Z6RWR=$2=`XE3?>GBH+ zX|HP0DK^vn`%{oC@~7?L%3}`A4ZCrUgB3{Ra`J)_Z6XVveMqpR?q;jr*L(q7=cQp- zz(=5_q@suKn1lbV=OYjXv@sWsFr|l+2#-f^y&xa}9>&8T7UhfvS21ni`%<<-+ zm@j;7-yvh7_@@$OuB^tHwl?ZiTZ^FU*3nYDiTzEGN%Bqo_$6jWI>R=5a&= z8I*Dy_Cm6^wMGuwql^AA(@;|!`i?zJz=DRbEmS_RMD<$tzp^vycs;S9w^4*`d+L|| z!y!lvVd?_&PYl6-6S7WKWEzD6k{XFn|gXuEBE0to0nOONsKbq9{1}Sz5Hd1q4o)2 zNnB>Etoi$>LXDSYQ0>79)s)e9lrXy*;+#Gw4lCmaMcvUjB(MeGE0m+NEu_{*P;vWz zIOKx@OwXAcaIC?isdzZ)(bxNSO8w*RzB4o~`NV1SRr~FIh44q}Ti1%ima%g|E| zumJ<&ld>yi&21i;H()PvCsa8s(|&X7gra$&lHXSk3))iq>$9<=#%?v!JNFW92c^ zOx4td4vTAIb?O-VZ5A5kS&W6m%7y)yI}KNsCay(3UxYaOFq;#p~F| zkuqiS)&0}V1!=aY_r-_%%Sgu+JqN`&hwp; zA>SzaUvb_EpF=`kqx9yTF-a@K4L)<$sFmi>C#iui4;863k=MUiNxdnT|CmGg%DEeo zfA+CGT{|!gZZ;@0#uA7i@3HDM4P)qJ_Fk`sM)OR9yU2eTO6k;vJK0t-xffa3S1cTx zQXj28Q!(P%yO^c{#=Jb#vg~Q%LY*;*vn3(LwcB`U*%}UOvZ9Z-Rho?@#WBxt*Uj#& zt;X=@fGZF+iR_$E1=9g3ppw?X6-bb_m-;(E6`BIE$03Y83S6DQvuPF>f>g2OQzMGO zx=Et5hbE$23o+*Dx}_><&aTDG3;g|&4VO`HkRRgdc4RUgdVwV;u!@b!H=fFP)47yp z1J*Dp{mt_*OtcPSFP>I|lsMB7ES7A50s;&~c6smj8=RT*Vd7SWUB*jjmSq|b1VK@ z@RN-7dRFnzmt5j0O%J)r>_`^zo>Tt7S7m#8_5 z?WQ;aAvGhS9hb7d6_T_Vqs8Mg)U!6@#V!FEt!b`Qt^67{7O?K%hH&I!3chkH{ea|+=Q2Z5`|K7_00;Ri z*g+bDpAf`Hdb3!SVDJL&nji>$0}OVXDg2yT5gTe08ga~gvU1Quy`IpI55xv`=nmaf zTY}y?O3rax?dinhIZ@{XZ%Pb4!>z1Y9D9sKd6Zj@Fk?*Yo6C=^-vQHlIECNr$zBcp$MX@C~=I!YC^8JFKSt zbwGSX(m9vXAnfAPn`Ny#qICQq*r5hx!D009F?Z5KV18%kLKhvyOZKW8ZDYsrbUKE= zfq^`OowwahegUqWhtxY&*oqKTE3z~>|HjCVI_9VkU$Wp5hI)mM*LFD?&A|ri3=KGY zQp1@wg{D7WZIk9#LOiF7S%d59qi);gnVhn0sb3wO>M0=XjJ(iiRtJ72ath3* zfuqy#4Pf%iF)^WgQ%`78GrA=h5kElBTvUeHbcy(-IO*1<{8%xn%a@X^NM5<>V8Myn zo}yWr_LDM!chPO~YxxQL{Y0m@f#&ihr~_m5@Uy)+HU`AqKEZr>-KcB?4nGJ8QlqDB zh0pScOQaS3TSAR9uChS*%Wx-hby}xMS3K6NI=7_ZxccKgD1ff=S|r_Tqn?ZZD7JW( zx+f(-BpxpM4XNc%z=wn|>f!IC=QavId?BM6q2T6`mBa)ADale#{=0|7BzzcqE*~UU%N)&9vjQr2`4*qNXNe%>X99-UBP>@byGmWV}9-+Yv^4WyE_U8mo zCa*Yb)&X$^7{dl|ubI4S?#;zhk}d1h?{6MZXf_5v2uABdwUUc_g|XFAsVK0&P6bf~ zp+)gMflA#L@;4btMDWu`smsRZ?XbsgES&PGoD{z?)2zs!_QIToq|hyjG0f1>Fx0-n zQ&#WG9i*PqO?~Bb=grz%t{jzYz$-0?0d|Bt==Jdh2srs1nx)MBH^Pd#0ixU_bKtPmb?YgLu zh-kSC9rZ&FPuNj8{Ro+4uyKEUb}`f6d+K zd*5sYc}I1vP-z0A|H%Tx6gOoWnmOT|OkZ~>9sGxy@wG{b<8Z1)v49TwA(`CVwuy@8 z84jtdNr&9pWPj|~&M$UmBw`+R70n)84qrUR8AzOBG-jz}8~L8mWpOPywwx9M$?qn> z#U}<5Xkg5~ti7-8KcyHO@o@+@bW!$}P#_l_GWDarT;vWmnlraCN2h0w9!0K%PzDMiQgm zwNP1RRR=f082i-AT)WXUSZ>ubCE(!C#c= z*@VK+<}4`DBa#{bpm)4ik?>|bufu$Ok4WQ_LPe`6KRxO;1qs8c;EO3WV$=IG8K$gj zp`BRk&q{&9?$}t6iJQ|`T5Mo-EChg8T2>+=?~z;WaL?5S(DG0cBkb?_GUB-9Vr;o= zT5MC@NcD0Zii{pCivRUNg2WSo-UhwzcdW=jT;sqky*y`LM2>@Q+(U`67AUM-NsEr+SD-IAn#5-#Yc1Xdfe zQm1woCYlYy21*5#Y6R?xI^c#S-t`)c*-%hyFu>R-LwIeZo52UwHo2m@(}NNH==_n~j<+s%h%HcKJf}VGAsYs@=n1mwt-YTt^%R*T1f9Ki%b&jx?yY)8S0t za3+#k@n$rL&irC2s7FdvQtPgP9b9P;O3&P{6MaBo$BMbQ(@nRZFVySDx>;sA=qM&? zRlY0muBnv22ZU#6LG#E{SsdJpUyIwu`f%7Si!xgGS(GL)C95z`RH4MOOQkY>tLFu= zP^fh1DgWYm4G7HPm{w0zsi*w^5Sw#`AX-=y-Lf8hyhJ zZ#=Oep93tv4PFd{g~H20$s%ocpb?4+t%%qGHHApt3SbU)@xE1gK|wH9Za6W$^{U=0 z|GFXR3f9ReX}Xo4wW^J?zfihTIqY5c(Joikx9HWc(s?Q2B5{^ zuFH^lylH>hy$6I{`Ylmd5Hia9>r%AFD9I!L6t@59$t{jJ*vs;QeuVwGgf`^{L?52s zaiyrJ^k#_>Y@xO5LM73;I!4ehodV5odgL7XrnJmbZT$QCizaNy21xczLSEX)XF7{T zX`uAn0g`77qCquHDVELFfSpHsrr>lJ;Ne$Q51PmC&4uE)er1unKOA8UMe(c zMo<8hv%JFON;!ueSVejjG39=|{OmYZ2Z^DuXI_X;+Btv+0g@Z~U&|3g4_iRIA*uhUxTZPR*qhnA6sxDuI zkm=8F9`;9tmuGh{8hvT%!;;lqw?;2af8Owhe{@Qw+4M^O)G3Y%l|2?NBmp-IPjOP2 zif@&t#<~H~tI`+8hwl$SZIl$K4q9LRWrRJ61p;DTWUG9r`-d{!38_DP8R=$#zd@Y74hRZqlA`J%--kJRCo zveQ8DfV_HjgzDMywYoAbR=&}>Z-_stTL$M^sgzI?v~*-N^dQXGOcBmuHn4;Fv_Qc7 z`m8t`=!ybJ3Mocepdddh_YWd3xjFEuE9IP0?L>39mpn3@^w^eyh>o)Oto0e7wWm~A zyM6|=wrbw!d&$9v6w0$_PZb5lCqZ$$@8?sB>=;rMHnw$EFW>Akm~{8`;Og{@9-t$< znA3tAzS=b2?`2uiNruzTLyujOGVzn|B$2#r2H1Qymx523Z6lj#1H)V)K$5~l z-u|Gzu%`{Y7K@%kJF3(}|65DRV1)!v4C!>@sS)^iN8(Zm~+zU?`}}qs4}sSibGj9^oM8? z40Ui!Kwx3K4@n2PPvlrDgnq;YCo2V@h|@OD&|5y~Kbv7xq82YYZbxXy(_>nlHU}L` zKG+iN3$JcdJ=wYatpe%m_k-Q16zJa1OIw-BuT%AUpY!<V_jM{SEdLzN?Rh2at7NUfjxCg4m zjmf?SDMMPBaL~*+QTYgtFo!cugpk~5gmU&xgI^WCiOd1zXmO~Odh=TWo<7-xU#dJl z*B#@?*rBFV)0JI|%HHm?BEuZ5zmO%IvVygW>AC?ED>cg1pFq``xmYSswXs=Si6ShF zmpmZjL*juZhu!2a=EP;){i)ilKPi^a$;=PQ>%!i<7eEvVns~`S;8!Yo$~U!zNFXp2 zb{iR69WKgq?fJV=$$xsG*nlot|0Hcr8-3Moc+&6k&N<#u!ejz(MRQU(?Lk2FvzlH1 zPxDcl?{Eq!#d8C=RyT+9DC0(Pj+Zu0ea4*5gc?CYUre=4W2r9%-e&H$Vm}>^Ny;QT zy)E0Bmhg=`eziB*(;z>;i#HmL$VH%k4x+%dL=_!{$nr__dN=i&wwt|3)5;+Yl!)Ha zSbg>9M#SIQ&BJHVx(bIP|H2SMnb?$tpca)&>-|J$(|o%tM+lNN;E=Z5lvPFGKHZdw zluvEathJFg0au$|9PK#>fJoSaW^rbJH+P(gtjQtR6m#N|Z4-0KbdL<1|{Z`h)xic?Bp4Ga4#R53(Lqa>TMTJ)8RRGF;sI z=9Zs|lzx!QbkrpBtojMWJP(Xy+i1CA!4pOxsitOlc-tS>B@{DlCv}FI0Chh|=XoYf z6Qd#b)u}m@0xXl_&pPB)P(v5)G&i7=zGZGb4L|(cxOjZSQNxNYFe~K8sE`^(6NtA> z0Mwx{@cTr`ufTq7TC0tJdnbaIAN-od+{i`nxqK;J5;-_PZ_R$zbH!jMBp1?i>rlq9 z<5aGat{23|PRNW@bEO+*4(I!{*#~x#&8^v*qW+Ys2gByQ4!YE81A^}*utllEUA>G> zBWutl`Uh^)iPYN26ZQrd_NC&7ML4IiKJCnR~q#=ITcl;tN&ok-|^&-C-MH5QEO80 zY&Zkrj%!}f0S+gYI@+yljj?{&vg%Sxsd1Hiru`~+ z1!ucKPD3r8zS)yEsFUcPQeU`JX9eR&SH}f~PoW$Y19_kYz?cNEzbJR)POIk}TZqGc zGu5}YFC{jd4O&bMS4KPJ&j-WJHw<~`G z=c)4BNMu-TvO6ji97>N;q2MK&eH1TJqjRa@zJTuhGMIfY2)XeS%(7roMfEl*7S(^orfXVexr@);coA{t@0z*e%KLe_!S2`b%w7!zS=N-dR{^sd7w z^lk#Lj7i!lD=@kLhpo2&tD@`PhmUl(bT1$YUjT{m;Hlp3ZzT&jbRIxDqLpP0Zp2AHa zTu)b+P6>UfX9QOtI2hU1=h1N#}F@ti-6F<^B%WP=D7z4&s6 z%N%V8%Q3uEZ*6&a=dnOhcTg_ zkSov2s81%DW+JepO*A9;XOU@lq>AH;_Ejv}(OCLf?qGXe8^!@g=n4RWbe!2zcPusN6O z9)tj+qb+|AO1;kuVV7j@wXQuc#TiMKTr-je_!nh1{F_R>5eXp~8`t3pTJzrGw4^No zO0BYP(UVZw24!v5?&rgip1eOBzt%9V;XR7*+D}@0DO=7sfIA{2_`F=la)qM!G#a79 z5DPMu^Zw89L5kQ+0yuQHRDg{&(;9f+Acrb zAK?nl$2`Cc+1eM*l3SjR{Fd9H(RYHiY~r?+$$UApR_hPdN+;1qHQLCX!Y#*w6#d1@ zkfjD`O@NsA4FiBpI3|CEG$rsS;UwcsKpM4Usm*$ffs|l@<{k+?_n2*P3blt!TAS<1 z_(!u(3mwzZyRoP|Kv0eP?=dj*O@Nr#_;slGR!dVSBU@Q=wK=;L{j`&XWa4zY!k>!d zoUkprjaDbAsd4(;s`F%OkC5OrQr&J}S2F#OEH%vUT3hS3=FJ?e*#tM8=7K z_(Q~qk(+aoWx182#-;HF+pc6%fKRP!I(;bYfW^7=Ng!%nU4p@iHNFwy8POH%|b1&A9wM77CczLnQ((~Uiz{( ziDF}*+_;L4Ee|oXjVYfkYQ$!>FkuHF2ZjVi-*rN7h4^uZ>^gv21@AAAg$Aozja8(M zV;<4$?Z(#eq6zOeQmK3R(ZP^xk$4I+cOQ#B2@ymad<9MsZiSMitQe1K)vYvIUqwT# z{I7o4C~;IQYeIU~(=&4zE;$=hV8h!+p=L!s|7QnqP4&2$7!gY3xL$<2f>8K~XB2tj zFGvQxW+Q2)nf^lLK!^_bpNYt^9G;3l2rCdWz~3BqPvyQi-;tp{?DG<~BozHRCs#nx zqH=|<-VZp#hwtJ6^B5KEp%4!U=k5%4c#ueS9CTv#32|8Pzo>Xst{(idvOA3f`%uw6 zG-bqH=*H%8;vigr!Nj)-kT9q)62rxR<*4n`ud+`ei>sL<0L%>-dBPr<;e@??`wXV`&i#%konigTsmcKa zB$x7^rifIMVhu@Om|0I%4p!Hs*q536Vk<)Ee>%zn>6}T1uqn&+TIukH0?^Y#6z1%NSjSx5%3f3T_wsviz zWby@mXvj4x9Lyv1U*n1Y(e&J3%u`|LAjNR)`^lZD-+2(oM9CrMb3@|=1oyyf-3IQD zlaQVRb}X03y3P|nc&dutD5@$>w)R{l(+wZ9M;u`K(rL8(4l!C?cYf=5*BG`lGz;kE zjx%O29UBZiYJR_iyE|FtnqT9MJPLFKsHRU+Y(WY#d(jBMYBQ*S9A%m@uq`@#Jt3vkmdF&7UD7vpCN^kLr+o9o&J&@eGMfb^G=NSPtoh_0dsiE7~ zkxa7ClRPRj4JXnhxBq$~w%9^qF!~#;(YF@-YqEfLwj`A<`9{ET?*02HZL!;d^A&H-Llo~-1%7gx)H?&BLr~WYuB72E5X5OLJtgpRkyB+t1ga8u2IZx^Fd?F`?^l`*>_dfM|82nsx zc7?|P@{)Zj zfGh@>+0m>oJugv7xLfBO+Xu2DQoqac#l@@L@A`4j_jiM=c1Pyo-jcn@vX8`;f2o;^q1> z%RApBAN}IhBcW!)n#5KdwjX(zcn@)F)pSG8HDD0t=?<8t>`uE2$Vo#N22_p`eo`F^ z^-X~sO`*$w#`GcTAy~g%cUHTzlMs3>mrxdarr%os?&gUJMKRCnpSb_# zun_Dx=t2TuhCEQ&N`DL>K*D&x`9_*__kN5`LNI3pu`>aQWXLQkk8YbU?T?L7Aa72* zIMgkQAz{)qQ{dV6iaKL=E*2(Ezlz&Q-%bY`*^R4k>{Ig@d<4>Da8Pw5=7 zzQi7GofnpchJ4xn(1bIV1+fhGV!_y`NHC*EHj{N>IU$60LNZ&Uz%b;pX|OJMMW0tD z@r89JPODAx_uJj6gy!C}h=3W-KL;OslO3vqYmds6#{|@T>3~1OEOyT}T=95?o}VZ} zmEvqi@D;~GzOTM6TR()yprK99%0Jl~YyN({!pmWTlFaXiMYIptaKo%wE794#moo#1 zFYt7(uPVyE=q{KNKoVDsnK6Enq3>_z?YeNF^w|Ow0D9{FMbp_`3ysnlr_MtC@WeNL zx|J2_bE<|;lvz{$-P%Lu8xwCYVZLVUgtuikaK|cF^paoY0~v01Q8|K6wu{;%ulf}3 zBYT7z)-@x6>hgO=xK=5UExZ^5V{FRX#Jg@5;v{tih5XiBU33@zWY(TrLbp-#HUJQz z9~Dy^lnd^C%;zV!X#Z*&ED`?@4ia&OpgTabWI3b+3>= z(~FKa^umgiS>JTi{R0ya#G%1GHN8sTUoA^8sqnDF9?HMSL zqxr%1eM&?L?s~u0M9@V_59TXsa@4CS!D&_*IOUU3^zJqS81J*w4iQ$<*`w5kAN_aP z@j9e9AhjWY8h=L}xB2#!wulX$z(9wWUw&8N9R5!K;8oL?SHGI3SCOtpTGQ-W44~Ba zNiXN%K%)^f*LfeX94O4)EHZ0ArhOKm$R`!>p1mj(M=#uNC7cj*rw)0qcy1zz%GF8E zy*P;NA$PYa*x@jnZ0Q<4aQV?~FAOUp;uq*gE-fUYtAj3O>h62bsVKqcGmM7iaUq09 z$L_pkAt{(_Vd}StUm9Y-gJ|=L(>=*>`_a@mO=xsgWt^z{!4D}CgS5FazIRP-A91ao z!U@x1LC7}|D`~@B^~BM8=hMHM%xKk$F0P)U_dq1{jZ@gXtdee*`yNRQAg){~>=7!2 zcv`$zGc|@2)V*Ua*y4V)&>?Z3BFoG&&7v6%9KS9*Mh|$;8L=RAzy$;IG5Sr$(+XXm zanM4_oD~O?S{BMFG}=CN;Cj1;Q%p|RZc!vP3}zJoMIE3|ADU=CU!G;hCQR3?nQjZ%iag zk)4ioJTyvk%aTSfyxSO2VvhG~3(Kv7gfoGqXdJccBLbKrrQLfUcs$LqY;heSg&mpr zB-*_!3gaS0+J^XAq1K8!S?8h+?Ak)qDE^!{vO1*O0$Kg@l&pr&Z&P6nlw><8Eds9n zCw`;+Na;3j9$QhG0KaH^y(|N6IO6KT=6nVM=iaH!|KgY}OqMFB{SNPLHcPdjvLuE1 zeaOy;QB7{<{ktNq*3=}VD;4c&tLEP?KlvC!2c;}MPniLW#w!nfwaEWbJ|6i|n8Tk% z>6?g8kfv&@0=rlq;$r0XUL0oU4{t0;$V(W^4N4KX#HqNTK72~v{M@|ekwmx1xy3U= zlo|kx{nG_kI$=-sJc)R5{aEppwXX8weXLtrxMF zrXa*8HweUppi#pAipIu&8YdUlMe^rNg&U&+=e3IwtP5UeCoyD!{p3ARDOayY(=OZe zH*g~vWLf_DDRoKKVoB;7t&1*?6gp6}^?zU=z>g?$OGtYt|0zGCU4aASNuTfI=2R>T zsK5Xz0>DcQyr_RL|I7x}yD$DOoVQ-S{R~r_D^*wnD;ns`f$cx^lDrW8oDKl$En&2n zEjMVk9wiH!c`qoSDH-1iMs|9%Y!iQ?@aF>^x(JQxU0P;PtS-il@0ZKgwI3r8kec+( zu(8A=m}f&!X*6-hsv1q^lY1X*rmNo-%&pqCnrqXhKS1YSlnw+bE{=D^X-}sBaaSK$ ze(LI(Eo^{;?dl6Yv(NX;rv!YM3L0Ypj$F+D?3fX2?}`n;mH@jbAEGCH4W6n@ zrcEJX)2Qn$&AP2}%UWiQ;0mWXJb`29T{iidN`zXJx)tR#-Cb2p?=ddl*6eJetbw|JqM3N5a;!BN2h9Wa1!2 zRxeYv+wZTD0r)7O8M$~Q>v%%mUj7X-?QHT#?tZ1;hBq!)oe zr1W&IbW;TaB%)eSxBdW>wS$xtbZoilx}!YIf8AQ>J5H^FT?EUHXoKhfeTx!aYUuw3d2CTB!SY2EDb7l>ZUtWm3#Z@!{P9o)OVnLL zg%Nq~KhJ4xpN#b51x-rX$GWPgR~SbE-eq*b7QGQueBK@q^4XjB+82CAd8%~qrUp<= z=c1BosA@Ov+7U;5ikxw!3a5dMmn->5W^FR1&l9lo#-StV>~(R7##KtuT}oJoI3}d) zECv;iJr#hGwY%bhY5tU*0rNrolwp9%gRG(3&hIg$Pr|MLd4GJDI5_u6ol+|BbRkdy z_umXSNE~ZgXxI4{sPg&PT-Zx+X^UXi5%#Eq^l1Kvoiai9h&Ke|&nwnnjhv)Rstr)4 zZhSiY{TijYub5ORP0zB%To)XkfXvEjZ={F+-T(jR5lHyrQ1#Bd=rIO&ywgyz-TuM^ zkJz;t)cqCjz!6+b|AlfCvKL+>!Y^mk72Mk2|KhvijNKDi4HpojX~^BK1$CnfZ(bqb z@tZSqg(rMisG?!1ebI^NwsV1wy(%Uyo^o}QxceCRgGLkAvK^N%Rfd29+v2+vN=A>& z+KS2?u>1CFRDlQ^0$|s^Jkr090tVJkek*=*xbR?8td`}j`e>LhF4zOc@nrL_bQa6X zrB0>>7VL#yH@=hd6@OY|<`oUDVzh;<+i%^WM6`<+YB(4Ni!?9z5wYH8W$3=@(c&}x z{D0_SbqEdl8>)iGK!-F08h&N-UYd{3!IURItlN*IS$hBdLvpV7MB%u2PnfueU!QxR zEatPw%UXb<7hu8ue=0a}8|N=cs-_oUbm+FT6yi2_D9HU&6cN(+*~|5{I<_3eqEsFt z#nX}n6fbCwny$*3Ap0s1D8T#uxj0tkm2x6bC&%+i9J$y3W5Q*20%5N1hboeN+jXRC!l-e|ucBi7RPe{ryWAiKY>el8Xc zjx|=3xdPwewGv(~u1dqe0nFnyjsE}y#!-4L{n~HDR}noyyXGbIyh#R)a(B+EP~pw~=%;c&Q!$WPt;eK8nYNT0ff6e_fHO zNOvq`EB?)PSzbwgexOQ;2&9Oj-W{)6t(XqD37A?2xWV=qne`F9LWhbMS<|3b!Na>1 zq+kyPm9(7A{ag#q`Dex&JxVh31k?iOY6fp2RP?NL0>by;4EX-)V1X!jUjGRwkev-Z zU+ed>^~&&DUOt!6CD>`4wbBMCOtn`mc^`s{=ClQm`;d)^B~Ci)+2VQNjA4Y)Orpdk z>VV`TwePk~nACe5;fg~MyptPA0?>^Km4D?V;Oo;kYZ3tKMxcNTw|KV)#z>Fr8OWGj z2LX5f1553W!|e~lK`}}sJ1e+0{32tLt;QC&%EdQ8RRCG%?DNfe3CmeW@Bp_;-Qi~A z5#ync!4DFUFr7m!(Ih$WM65niq0E1KW&!OIRved7`9w%P&Wi00K;Fh{Mjy8nH$*=J zihK*cG7)k3ZtI=2E(oo?&=y|G_+`gG$@n>Am-fFdM%ew*`zvrmy-TQ&NlR-8O!Q#G z?kCe;Vor3&_1Y*hF;~1qGonZ!6YRqccLce|tJC{I(gS$_4En{etf>}oH5p=Sjn=6Y zd}J7(*I+>z$ce6xYBfMu={ozKb4)5%QW?!UCXCm6JZDs@*FnPnsu1etDBu8&)ILvA5Keq!uTg>9e=nn!@2Y;T?hCliv2 z+IlcwHwtO{6l=o!Xf5Bg9tH=C%j;tQxjA1FO+#FwY{7>_#wG^+C+nf+$8f(46e`&+ z*+4_TB6i(qc>lF|#}0V^@hL{7>QALE>o!|Awfdm2D`2bk=(j9pd4Ep#$}gV$H1s2X z`z1tyLs&0&q!nB;YF`6D*^9_%9b={E~kd2AET)6ryLF7Ox(1=0w7JtDDdNB6Yu(LXvE5 z+c0gemiK%p#5=0W=2fB>-~lIf+KDqfs}r|gE>m64n0n49UnkZLL!aeNkip{Fe{vHQ zfzPn*vO4EsMMyCy$S`c69}aFIO=0~-yF7_fbquy{P}!(a7Bl+kUr!g9C?^Z^MN8I7 zuvxen?9NAuVT0Lh!s(ac5#dLIC1dLtN|N&kb}qr$DdBVpHJ^nw9(BGoyxA*oiksDz z{WNjrHs&PgCL?%+{NCUAt#TFd$izm)4hbB51{4@Z7*0WuRL>kThkuJj%Lkm}w6H8i z5i(-p(qt`Nu0)QcscDMeI=(mPj$N6$u4M4uy2!O^?^i%eWEQZp^@PK(%D+C_Oy#rl zuVZB+_PiaKz}uVuU;$^ zn#`WJnmI9MP-DcEWJV06!1?2Ay(YJT_hUWd-g87{ntet0Pw^dzm}4t|tox#2+F;)9 zWirS^@78ZlA`~H%Z~8MwKCIL%BFrc0#MjHm6&jBHz*m^K|6b0ck}_9ebM`Lx7rkzL zCRk#oA9%s+a&fKLF^knh!9-*4F|7IIHobD*=c35@r*be}7j(AWJoAh@4PB+n%Ax((iI_g6j zR%LJ0glb^ELVE3Q9I-Fs@m#US)BfU|bF)oKcM}_s zowH^^X=`0#TY2ia1VDj|MtKMEKKiMquk{^VkAO1#>Y3y9%PsuKNU&SLa6-f!`)ZlmhDlrD1If<)dmi#UfHQEcv!FEDtty!oAY>2uQQL(%7QO`Piuut*Y)eec%8%I3ydx0U*XRo=6*h{WH4wLZ|#Ju}T6 zZ_n;r=!+^up}!m3s~n$d$(M8tU6|be`kr8F5WJoJB`Qw7r5D|kILV=r&h)YPQndfO zfcrISCnEKl4+Woy?XZNfK{m!D!1)J~;;ggU75zo219f#d5>~#anOfT(s~G8M8wQtt zMGQdC1J~R7TPyB^w4$lOY!gLyN3LX6Xb8H9={xNpJhi!dCDrEM_x80RiacA6VGg(Q zMf>$uO}K<7F2uxGfiB5l`dWprtAA{lZr_OB`=)&jHj(CgWsYV@(VNCD*^F4lNuvKJ zglRuAsvBH>1bd1<$hGYGd&;!dgMsHf16^r~N{SU&yvjd%^F*(XRtK>*>Gus)@J^$S zS8J!nqDCNx&^&rReoPXq=mM+uhQphVE0dRTD@3yOy>&jY9n-R+Q}a$@FT8_D)`sIU zxf%s??y}3itqOsezQ}g{h)-~2*lnt<9ux8Tji)n{cs==$f<@4njmCI*L%v8JOyTx| z<^xsxxw1z~PbMZ8_F~<2uA7*ftB*2b85;83_Sf?$0kO!FLF3qF$Jpq;nsQOAQ-ut> zhEo@dmug}dAOqzGO)6d{YZbJ#h}85Fj-rTOG&Xw`{B|*6X=rtsbyZ& z@DI@m96hZ&o!vn#F?q0Ff9Eo#Rx3C$U5|fz-{ffhi}^c%94?({1M!V9=hnp*FyRBLk;Ei{vVhfXIe2=ac$mxRZi!o zneSB9seV;1_4s?E7>T_IAVo=eQ=eNk2Erxt>*vM~h*N~TE=F!=OxsmKgLTE7q$tCwGvsCY9 zEkEc%kQC#0@P5pBne11NtG?IBbWXX)-w^-gNIMoBtxbMjON`gc0y5BhGXA#^Ld-Mfa5$BoP~ zNSS1rd#n6SL+rEia{;%wi=sSicB|8Qs1t**-tkp#tr$n^j3>b9oTsa!X`0p_qFfO@ zb9Pz`K$qs?xc5+b=R!t?dWDkO_d)AsB|Ke|-w}{-vYOkG=(HYI%1^e1=|Ny zr1C_Tv+l0$>OuIr=A}>WX(yNpaBF0Dm<5zM*U8n&K)CeXsfJbKccf$n`k9VKT?KQ>Gj0h#|!B=zY51r)< z1mv2_TT*eq%R&S$tV!o)ACjEPCKP z6}|(MJ8#?+VH1D097*x<`i*g0x0R057lfDl((p{&{P@TpZ#AVs^yuH?7V;D(VQ|W2 z-*L5ox2GW0$`o5Za6s8|r#2V%I_q7>y92s|4bvI6G9IsIFQBSKE(o408_O2D!|!gR zgc#h4cDf4&pM6xw+1PvO$jRW@_}t@3B-@55=iKjDztghp{LkDdv*KPMRC95V>oK_EUVT&Y_ZiYxgeg zh2|Y|ua#1@T!6eTnQ?8;Se|oSo~l*(4heR)Wa~HWIw)*lx-N=f&J22{A%P0X#K%#S zZEgCE;+k1BbW*Ftj$gIEkdNci*@58a8-qex;;$1)_FxPPb^ZD?zYLZihen08m?{$H zi!aBEjrLzU48ZG-%)3XFb5&-I^9&$CH^}D0WW;o6no31WnpNkqA1Jvf{<27 z5WGkx0Yw1QJJrC6y7xAFnqzThyGAi598L0gd`;k>}Uvwb>LOU7(nOs zum2t*i=o&Cifx;Q+%w@ec(RIkE%kDvPy4fxwtztJeaNJ?y0A+~kb1JdgRBRQmtdfA z>e4fLUEadYEhpMTgs02@pc)^zzj*Gv)#WXqpSKF6Yl&9D*I@nV#gYrfKVQ3qmhh{ z;EJqSJ_XiWLXVsT^o9ty8;tr`lXfQx44!&?Rd6lN*XQt>`SowlU_c*zv${Z&3`|W3 zN>m0952PJv)qda(f@O4o<<+);>TTXZYQo~I&+irAzFkZ*;9qVnWfPTm%KcB0;FFA; z{e=KW29U<0{BccuSx836KKymFogM%-o4BjErOHvo-T^hs0M5>(Zl2aO9sSIyOSYHj zk{?X8`f`eMzo<+zMPB!tf*!zhDH{|QX9Hjs`UdxB6;X^ER3#huc)Ybq`t57Mz17Uu z;gj#c1Pa;YLK~LrcmE#qIJ2_iPC@a-(kyJ+jcW9p*m> z**XK*_f#5|SN0{g*?e2isG5N#g<*T)yO<&2SQC=^b1=%4kCe~gwhd$Ogl|)L)azz? zT705vf_`4_*oomX1zYL;Gv+IG#h+))4GTp1%}|>DC_`rZ+IaT>))@ma1xb&TdkSqb zb@&lZTFxQ6({n%jmN{XtS^n!$SY)6($cpx9?*b|)ns{uA-`-Pqm|ui+5eMiaU^m<_ zwq5A~5ZX-}AyAe<{}aWHz!+Zj4H_-pdmiO(cIvcM0ep(M#&L<=ikt%0OU65=_*VHV z;a~KSAY~pBNfQw56}2eU?8rt1v~rA`j^g>8+=G+_5AGMDlOh+?lq7^`VWh!I)v?Eu3Tm8ON6+p>Z_i`yOo5ryWEHC{QFn1GCm`ROshYmA(Kq<<`1kXwt>;%14|AJdw-(S73h>#9$bF4& z%iW$Jl${jogytZGkYPo_k$@ag%W;YbwB@RPtjtyf%*cclwm zrkO*hC-!#Avc6TwBwYKCesM_iz{NiCjt9Us0qAg~h~fzhw-5$~HP=A{-!c-X*yXz* z<*cc-TYCzYxqk|o?Sl56lA9HwuftyQ58+{^-JrIzod}H>gtL2f#2@Xr0Q4bBpon>G zz)8u-t#VJP1JFvqXLY-73#HRb%%jzY@Qh^RdMCpvj*t!aXeNyHK)DFe^? z?3YwoIr!S%>XkC3rvAcq5_b$y{OO!zQg-0X=R%>4%ai>-uRd>n`b1IA`(t+!^PGDkRWgqYal9I>@ zvJ43bva(k}$hS)Sudv3NbZ^I19~R3!_j^6}Ezjddh9LGl55?1Ut>8_;z|&z0w~OoP zhwfPbC;5ZewL7cob)Rx@pHge4>-DiyQ{h~$E=XLpD2EleoY!&R;(_^@I?+acaGw91 zC;sJ+F>>x=N`p3D?HoSm1nUU@SJnzH(HX<#hNR}59JI=g@i%L9HdJ@KRX*ff#r*+D zdpE$foSAr?9y^GfJEW(8*Bz?LFXt|XDXz!bgyMZFVlo?x64~@H(HMZ3bp5W zT?>EeOmb3hSM=2n&FR}4XV;-_)7Es3C%zlc>RN9&FqX6=5T7^`aNU~I-`I0YCLNjV z#ZOF{-I?*Rh{(k*JfAl(xF*oN?Jx|;&FT*MR&{X^8|ao1MNiQ?4e`3Tt`c#(nx$yD z{S$SkRR9)lZ4&Acib8Mx*6!_^wh2GLy8Qp?xxm@s;nt-;zz?+4z3jsO7F5NY_C5pb zMlYON**Sg`7a{`f8cOVVM5dwsVwkm*p&9Pxcd+ zHZ;(DhMp7Pw1{5i#bvS@?*qNs7P3|OIi)Pwl?ge71ta8QD#ypYfmVCya?=#y*%J7( ze4Z5m`MLx9)XN7^V2oPk8@i`M74pM=Zqm@{8#cKz@AS6tEG}bm*Kl^{&F_MKQC@$B z8D8HH*MV2ohJnlc9;sR6bE%NLBo#3=V`d)+?WULMmIw|8h@}^+6H%qF9K5dXJ-(HC zfLUIhJj$6nUFt$vLk_2^pY_$mX7`OHZIXFq?#+M+b5?iuX}d*81i&SBdtV&#z-jyg zVAYrFZ=5fV|J7FF0@49JQDg3$%A_@YufM?yF`83(Kvqh72@S~IH|Jj;RVsL{7^L5J z2?Brnzqj`b`mI`WYi@&^lGDJFwOHEoM|_% zik3ZNy|bNms^Y5fI-}k`1zuPdbd1SEoi#O}&A>X=YkMwDnv=bx)V-!5D-8NX%@3B? z)~7yh23j;O3Z`GL0ViGSeSKFL<#j#5;Ig0EY>)}%-EK^{wW!rk>CZfr6P~Xe`jFKI zi`#T^x;SY6v+lweK}0X7bCP0cC`>i;a<4V%8DKLEiz0eUqk>)fB3EiVdhXU64o?GH zXFb>|Zc%?D$n?taXHNtDLgSL%^!$?SA~g)t`#FTtR;CRWLtN~Sj}*W=tLgV^y&}Mc zfUmzX9Q>|i-Js$$7Nn`2r!L`i1v(2zo(wsHQ?MYv)QPD??0DNuf4zRM`BQT;@;qlby&sEwZ3Kd zxN|~{&xMIEVuNkIvh_MAx{@*v4w4Qf5`9X1_j$|kw(twzv&cSj8Cavl^|P8@NdbUvzpc^!)B z-UWGWrr-X$xL-=ADL%fLORD3i<&1!E({KJNd{;7RBlAs?RCiQ{^IHz4HuIn?dRi{L z`j^1MUm6;UrCs=#to*XjQ`+ zYzolu(XD#?ndU1x4Egu;Uw%>((4pTKD#XHM9u$fM&JkOY3Fs!!bj;(A^vx77ew2*ZsNInV;A7 z4aBC65ZmC-nm@MEq1RvQejUMR)*iwhy&aAlEyaS>6b?{fpSD;meSW+8X3b5!E12-# z@8*No*sziJNIb{i`TZTP7%9@ksx!y>sT1bg{L@$7+`;}PZ=2bo4{wf_p3+?)5Q|uR zLs~T+%u~$;Xhw|D`r8p?`)|Guw8g7b4U7ALFh_9w*QJ;VX0bN#)CGXS$B!Q3j~_tV zSi0li&8HNS>L;@}p3w7@#{?zd@kny$lOz2*SYEQ3P0GpOX^S3q{~W$-3_xCd`fr;6 zAM)M+Oh3tO-EQDB5DQR1G;BD`cA?E%$bU0{N@v_RKdT*#(Ky32V|ye&;)E7d^cs+A zDd5wGv&S?8{!oT5kVOOfGt^pgQq*J|aQy(B!0f9U_W8o*`HOYz1{aqC!|d-ffCQ(G z49MYp4%d+`;XzzL`j);pb>!1GNDqYpVN>XFYaU#Ii(>eq#p{%9%O0k|-V z?;?{UHX7k^7nUyIL5zA{S1ec%$j_Bj2Z;71s_F<1W}lzbeUidT?ibKi2sqF?GDr>R z`vXq9yxh`pCdedl=cEX6MzBcJ-S0REw&`LCosF&e4p1W`7H~=_Zpqc8m+k!XbR6wW|O5@$;9=@+{KR>10t4DoA-sUgao^Sfcx^GG3X9- zW+m5lx!_QI=W|ZP2AjJ!@ayaLb%SC^=PZq`&qDK&%eF=R_BCu}(h=e=6TrHFPXj3m7|<2SAi1)X-M;a+ikaH zhO7_}^poKi| z>7~cjjulg>i_NSr>=oeg;~@c_o2f(pU+cf4E+is3fyT5iF8K|B(qoI$J9FA8HCFwX z`*-WE1vL4)nr4x@G>(p8d3kyLW*$jW!2QmMq}=eq4v<*L09bYCK(!TPss~UgvS!j0 zw)*^eQJ3sT@nL~w<*m+=&i&2?3VPdO$6ew^3036@Q&ONJoiS<@qE(=SF9~$xdqYEg zBp70ZcKGf7eF$6+rhhtnUd+VEY*fsVv~b>!6Y_>#T1(H2o1fW5nm=QplLlldZ|5Tr zLEf?)G_Jzioc`A^pjhnT#!!hFN%iuMB;{yDlwEDOcQ9E_KmUxX&VPRKEc){oP736> z_-moT*P4YTHn|nBx;I8so_vjD5(^*VZ}Z4^XIL~ftc8H8U7&}hl{m{Ngyp3N&?6qi zWzsx|Nd`1?@7;Zi;;l%F_+r~NSL(2H_N0bwT=KZ9l(JIn_$0Xr`FBR~JBZ~ur!*YC zkvx^)xnZ^kD%|W?&%(YJD|@!mv|OC6Pabrlqaq%<7hb-|A`p5 zi&F1;xGN6oZy4_DbZ>PZZlPW@AK4hLF0%HF-Q%73+mDCeqP$iZAlI#zk=pXAB4=W{w<{MxHLUfg|LAs>E}+@jZz?7- zGN7-hdxBl>q2l6P!Obm*^5R{I2LzAw4}iw>65+lTvb5es1^ydAfA>Fvh+g94)%~?A z#d^^z=qun{SL?5U9()||A~Aht8a3c0E!)%oD^dW?z2V{I4bPe%|Ns zm+1+rNYwj9V$!eQ`!ockhM@mQkO5RUb51pz=-;V&=St5dup{X{ZO~))n-LTT7Te>; zJ-XWFOwsOuCJw-dg;M#Ko7D8v@1P8mwJnV`K$|{( z%0PR6chPz__t)0c!&LvheA|Gx?IvisFQ4}FmJpxgO+~w4^Lp58Jp+4%Zuy-`&BjV& zDjA_(*_iLqSlIdb;|raPtTJzw>QpfmmYWTZwaXl^F7l7DF#wzwi32`t_8y{WsUX~q zR-uP(VF9co*nHUhx>UYLCc^M`8=r|IrNFC)ZX&zTd&-_K)u<1x;<8*lHqZy%g&Kb? z`;W^9AECXpoMYZuv>CL;SgZE$Mx_I+I6gJQ@rIJ6)ui~^bshV$bkDV84 zWTv{WU~sYQy|S&ZZKxmRD$@tb%)*KOZEDKrl!fnMXr&)ohepvU{Qq$J zgG32MkyejUo<#)O2RsYF3INfczKLPS5|w6ri_)1c;23aLZFEpLgTkHHuaye?XD{&dyzP|!;X5|DV9G3c7?;3W+5AT6zbbXamR<(*%Omg z45d`P%nZ!S6mMJ{;C1Oi*LP>UG}j2T(k0MPCS=jZE)1(jAR6yXd&B%fJ2A zCWKIINXxgcv#r(D@%mfOm^kRUoex(q62E1PbtrX*p-%6OQFqa`J`-*@ilG|2MR~R> zpJ4)%a%Harx37wQQKBIT&tW`yG$i*qd)Tw^Oc05|#rS@*wM}E`Ht|?QWrP}ziTPr6 zUQM1d*tq!|mz?ny*e2$4*-C6WO+Gas>QJjh3^kG~82jsWW9J>Lyp*e}$0_AQy% z>GHV=!5ySnc3D(+I9l1b@KxD547jbk0mX34H;E&?145Lvs;gB3-=+9D$#K?>G?ayB z;L?7^Tu0;k6o)h($+S5_xAhiB{y?Ueyp+Y#i9>H%GXaiGD6H>S1-Wv8iWPdLn8u^u z8?PHdE{PEfq<_**HbUwPzc^YCm{IJ?i%5uy5hi@hOxKp$gtD<)5e+XdLMOiW;?~DW zir{Fnm7uoz3@*oAl2CQREjx}C)K{zBC6_3Oa->RN{T8gh_EaghYrgJJ2;q-tF1Pgbr662vIjI19bsf4cF3(B6S!hS^Yy;W_d`i&E@St&k?ez= zZG6O!%2)9b9ek5ATqp)+TF9R#9e7Y+34<)ekY2XgP`BxBl3t@?7A(oHDf;nS7yOZp zfuu0~AiE)*_H99=5KA>|O${HJ6yO-^I9R5;WTpz|cL}20wO354dcE<$9)k28_k2XX z^kkFcN2CwKg|$dpd`AyErF1t!$FlX04>wNxae74e=ZdEM#cpAZpJYzY_VYz3PLIW# zG4n-8UcGt_LR%c^T_=i9a3Pkx6QKNjSqGJZsaK7DoGf1aKLD~oO}_@SS(7-W zNivB`w5_sAUvMnEpX4H!h!{6@q%m%&c2@K&ejRZv39-hl8xCl_uU!=QQ>I&ocKv;p&Rcc{( zj22K-zEZZJmMbj%T+`s)?{T~eIrmhX_LB%yy5OfMjHOx{QBt5n6;Ytmre)Ky>1dQx zLg8?nbsqzDz}NW4&cGU~3keHd3^;tm1%nAH1~}N?JoYzg-ADTft^b%bU<(0^z!=$V zWGk{aW-HPl#+Fr8T8mA`Go_6;mb2@*G=#)&>rrpSyQXsyUypQ+1HS$dh9MtWF(BRK z7KFfc4?>2}S`QujBVvjtQG}$6CwHRldN4X{?xirZ&KzRao0PO23vtxv1y$?4AB@}J zBwue<;JI-6DkDn24m0BwIP#oK@tdp>d%?ogS;jE2B7nvQKGAW<^=;PP_{QFz4w|MY!^YGKx z%#{az{e$m(@fsyWcbbEorjnqhKK&%;m&Rt zBfaOT*SofhNyCnw#CFCe7+vtBgoVN*pmdvt3GO!jBdt!GRyUnG?AruH*bs&=xBYtJo@c3Rk%4xV4N`8^tDOl$%iEc)G_BRZVXfuu*I*gG6j# zb~Jl2d(&Kk*;4$+V$-SVD6K>Ax^1~_xovgVa@%s(a(AZNmb)|EopFDryEEON>AvOe z4Er-)YPoN*Yk8^Fean5veT!Y^KJ?$#sZFnKP}nFMjUYP!d-xj;>2+ZN{QG5;*86as zR;SZl|A<$geOYk{O08m={m_0S=E{_rwj7ldRLZ5u#QAawWGPWD>UGeBgTi@X%UG>R zGYX5Bl1cOxIUY?9RPK4??K62%?*ReON4!FLvMD5PB}yH~o!K|9cWt6-$vmFVHgQyt zyJrIQbJv@_54cJQSM{Jc`IR9bR0gE?1P5B*$V(j9^-4282r^GOX$;GRy*0^gsKdg< zMW0AUt=lp^_@@zFu8F>&r+ng(cRqLRs$T!&SDycJ``}}E;34_o^WS~*=BsyJ{`ajH ze|LE!UwH0|*FOE3)q2cqE)^BS+TfIV$&h}Mcv&RMwPO&6MR5CMciv`sj z+{rw^=*W92#-)^?uob?0v?CNxDVe*N+=Gh&%%gDIy`0K+SPgI$B3$bn%_$CE>v^!4 zT_Wqe(|#dfUG3QCxWl+spEyul}&T zeY5@Vtv9a!tNqWdJAePvtmu2hAI^FJb@^p~+bJKYx28X1PTBE00000 z03iUo3XRW)r2qhjr2qgH0001YZ*pWWZDnL>VJ~TIVP|DEHZE{(XNgcwM-2)Z3IG5A z4M|8uQUCw~kN^MzBnSck001V8jAQ@+00v@9M??Vs0RI60puMM)00009a7bBm000ie z000ie0hKEb8vpgicvnTRn`tQqa!chQPJ0yDi*6^x@Wnbk*GroXZ}M61Jl`^67 zQK-@TTsIdzH7Q1y!sMubpLM?VtrKs!ep1(?HlqLf?_Zq!z3;5T1b=nfcfNJ`FIHiK zD?`T}u>Uo;-97QYes$%~uUPul^6G}WV%-hEI_CEl%LhxAP5;$-7yNX;gTDII>+k;d z@2?OvL5MU#6P8D)C@fc~0u@44p=$JO5rg6YDKVH15=4L!5F-|jgd!kj#6posEQpvQ z5hYN9h=l|sqQqmlL#7;X6;9xs4x7Oit{2HfEKb2E6T(;qhCN>r%gchKzz}grC;}D$ z!Y+VjYmg9#1X*)X81dB?Kzv*gF%T zEHENoW1EA7Ey;qQ1F~I~>nR^Q`=a(&y{I+6C6k%t6U`J%T>pwN0G7abk$tY4c`ay( z)C4UW=LHe-sSxG3yygD>y?OBe+6TA?@}H0oCXkwRYBNG(Dym)ZvHr}jO{L2SpNW;q z8?Ny)f=a<-nxAX5OgiDGTtw5TBI#EbUreTM{t_IMAtFG`OP{3eBnSZId&q^SwAVmH zB$?i{>_ORJE?-j+lOTvlSd>bInXFON7Kufa84n_+UP?hE)#$!6>T{3JdGq=C3tw5V z1RyiKYh{|O$RQvy{}j?j{d&H(aLFqR-ktO6!r~Cwl$%Op8?N6osZ?Hk^q=p|ejY$X zHtWca1Bn3u3Qz#RDzGXSQcl7$Y?}c<`DXz%01&4f5?ZkCrv~XHnf=OJ>u$R9?RVdM z|Ma`hKlkj)CVOIC#Cqvlm52Ut{slkXVebR~^1P|M5P8I81+n&UGSBu80A+ecL;zBD zn6d3P5ilYW5JVf4VuG3FY*-tJB@#O`2|_G+<+}l=GualscTFpW@zNh*3i*VC7Pkqy zfs_tjNx2e>`Iih}GsG+xh!7kk$B|9VA!8tyh(&ADnqo6@L4_Qg8L>tPP=qKVB8ei2 zBWjBziX~QNrh$|fCJ2DmNQA11R1?t}l`1M#sZ=Flut=f|t{X8&1WMRQ6fD93gCziL z5n<*8Adq5-05-7AW@wWFAXa*_lZBaU+Bw@_zRJGya?scUM@|z+-!uwc_c!MTjO2o) z!i@kB%_5?VtivK!PO@^DLCy?vXE=x*NI@2qo$2-JP!KWyt6oeIi?!y#{|m#l2`&H` zTruK^`Rap_G|0h}gc|oiv+vEKhrwD5n~9b7OZwI|OEA$XO_@AfNb|G&!bZ#>ciN;b zG+Ev%0d(2rDgp@!fy~Gua-y%{Dr9E`S&7QY_e4a{0!1KGZX$BQ6j@sui4cfHlp?Xh z7KANY6N0`ZB0Hrm0H@V~nb;&wnlSaX)l_zDFdMWr@tk05;yae$r*mkU@tN4hAqsQP zQGJf$D4Sx<>zd$NM6)DS0<^(qf(9GRW(!ne(Y^Fp&@$oHp_W z6e&P#qbf7vlo8`17=cY$9n=ggJ0^v}0u6u#3}P6j5Lt6@Sz1b=wTSf-5U2Q>9|6yxkVB>IiPZ2` z0Na+qni1i8Ry=H5;Uj=;czk4oW9Fqm89my;w)sk?djwDf5iKAhWf_PNAcp6x7Q8ulpCrPG zPwF4fzIynVztU^s#6=%0h?l?o`1l{3_T=kJ?MEjIniXpzQLt#Oz$r4@L8geH>?@`0 z$WjVQ$SB+jWUL6zvLIlv2niJ1!bc2dD8N8VU>>)F8X29t{>&`q=?+apN2?4_7pLg- zY|4zPGznKIVT-I@KlYd_0R%~E-wxqGd>EDhswFM3lVKrb$1ec{j$?@;D229&+hS>p zr7cDjAyQCI&xUdOV`xF5DM>ids3ch4rj{?q^4KWck}zu~)<%(10&R@l0w!jG1~dG> z!bTPq0?@`@wlGjlZ31O`Q-TpIp?pb!NE7x_=1DS98f(~6^N{DiU4d4y&=BSHYyh{t^zXmDvBZSgeUm$1240+^s-1KU@IcI$pKr?J@x6k@G4Hcz1d#%)jz>fi#4HLQoL z+Hi(17nKMgC{mH)wir<)Z85b+61Sl}mNyisLS=Y2|A+SgsVUb-9S=_$HxL{&2}S zn9XY2E{BYk7{YcgL{`2b!)Cp~PYl{YoGn>gwM;wPK>#a5*k5ec#Ss|d2wFs$#SF2Q zanp^;SUe3Mv8;?-AAyZ1z(UztGLx;klePWor*A9U#iBNG!C}gz0zrC@<=XltWCvuYfW5N63n*%@D$7B^iwduI@kBHN`0ZFP{&D877x0W7r z@K-PV*(EW60X;i%QZ>O~C6iIF$u46n1%tx`kRk;TDMe5)AgusWN+}SOQ}aj>5s@M& z2f)S>ZkUF_2ysh(2F~qR4d9tzVJz)Fsd=dR;a`S4*H5%`5{d+$Yf_?`h-p%RTFg$` z^g;#)lNY{HfiF#{Nt++kGNe)HIhVg)huSSS&}eNtwl6h|1u^BvkH5r}{Sw+t(?NZ55zQGez8t&S0-;9XHFU5Qj1igT}QUpv6&L|ZFGqB+s3syWdV zktm{snY3tPK!F8{J!aR>I;SxQ4QREVLWr&d^HwcujM>F#U0@-1kQRQmV3aO<7uU%F zRf8HA2{6UUHJ~Dyrk0A+wU9^7A`qGlf~YmxHieI=EFa1=J_I>@LkingB@n|o!bJpU zC9|JAMtBugtWcK98RVu55yNWj7KaHCaqG*rR?5S6u-r_5a`GA3RdA<>TQNMf6Bws6 zHx!)A=Q)>FAV>r#h|#uO+-M}9@7I3VktZ62zU2?s_-6oz9eLvC z`?V+UFEzLzMOrn37!W3H&>HAizD!q^hs9%&0e#m45a-*%v>*wQd^Ud9y^b>>Yv64` z`(i~ZQW1d^DW#MmWuRJ-GHwmZcs7e)+9Zd~7WIThz)t`6Xf38$IIypV{Jut_E(CDO zaULlSTm#`*KX8|oWj`sL2#FJK#Uc%KTArrHxe-kPMx#HV}6Rn9EIzpll6UU0$h^vaL8cBpii`EQg5r(j^CTO?eULYDq zwz4BxgbAdK8QefMBL>AxF(?x8W1fPF_(ta1mapx^@Oy!hUDSQ8eXDPpDgF>hSV3{D zZq1w+v`#qDT+yr&iWDiuAdm)G_Y?*oI)#Axi`jL`7O?Tg0c#@~%=T^QZR2oIjT-H_ z0J+JDoUSP8S2$~I&Uvk%YV~D{24A~I*_Nsor2h91vw;HG&THE(!!`wxiF}$~Y(fyr ziVwz8i4eAh(h@>QEEhFdvcR~oc$l>g!mzB?xT8YEteQC}PYs90r%c-gEg^wY$NmrV4C_LBODWhdPhCMC(em3M+Tyo7~C^sa_v!K*;wU0npkmH&rSL>d;|Fo|t>% zakNrRaw#W?7M%!du2k52gDWU718o4z;x9QxB#8W#4cdh{#B5)HUHisg*`S@PRc~`O z4+$(EWI|Yn?NRd&&d0>v%hMp5bW%%GE@cRaotK zOB6*BMWj>&QYwm^R;{dVO-9vr1JdfyPC^%fh-gt>1sAdEINTx+!K*srJv-BBC!xD% z=853>Obyj~7Qu_ZWTzcF>r`qL7r;uCVkHKWVM-NU5+No9L=3ZZ9WyDAv5niMAJ;OqtsXVtmT3=WFuqBQqSsw# z{RN_)d6e8M1K3(5)|4ozYKj$AHL1i1sv+kw6O%-s*a~)yJgKaX)u8Y>6}$zg%jTC+ zg)GTnEM(^+o2Udz|;(K zx2SEWF$^g77&@;R`s-Pvjpz!^sc~U?7aeI z9G3)&tmmvT+8HyrGtqnG&S*HUoD>=i60IxM3q^Ch7eEw@O;KlyOEq%G$UX|14mRFJNFIzMovfNf3U8NhaH*fpa*&b5Y>v zi*_4evH>hIrT$eS?0kv$^gEq?IZ$KQVV^_PBmeN&AW zu08Zfx$KE=4g$UN(6_&F(i8x|d6)n5n*)J)H*NZZPS;5L-tg;7hU1|VPdNEb*Fxt_ z{O30ZiCYp1&{qWWZ`$n4D*)h&mp}gf-3JH&JU4Z>5jVQXUzqsVNxKiQ%#+`G^6bxF zhU>4mU}ztk&U1g>^DBRFfsdH{^1fR_-ky2QS8w^!|NhtZ{h*X6TKLR4yFYZ$!>8`q zzb%$HlD1ePMRAPz*Ka%KiED1ZdhdR2@*7WsMKewrb?j7^>W{9ObNpryh$v7*s8%Hs zu7a7gh!I=eerwYM-gqWfoHMgY5HTX5SkNXEGukl!mNQR{PPzT-8@m(k0{&J5hS`Dm z?>lz9YWCIR#|`Nz0^r|McDm|1Ga|>Gbn7vn@DbkAJbe&lOE{L2xa-N60)Pjdty9rye54%nKR6>+rq;ak6V+H3%H$`RKb z-diA%u#ny2b}QLodfA6maSV;^X+~(a zo}IhSSaCtk#x%5-ORcc{7FtFS1 zU?u?8$4Km!Jd+N4TnV&oa{5HL`-{w8TmVFxQy(2=k)9M;2O9%esULltqTnA0vv z6bZme2^f_sL%%P{5+sXJU5LuUr5_}H0AmAJ#s+RyuazRguwUHqlf4IE_8;~-^q`yn z^vF>gDgv3HrUv3R7sB{l0RXYt3WG=>3Q7pZey$*5?CRF3(WF7C8jWevr^OrYv=?}bc?WGSb7&l}i1>p4Qw;i*cZ0$Cyt60FJrgm62OP z=1e-~>*qdw=hZuIKmcU%a}Uk{aPzB+hV|`dCJZUyKd+m+-nMa+Ay$YKMRTs-_n?ab-~ck7ejsncAqC*TU*B={-u(p3(9Bf@iO6gl zCuU*|PP8OuAEHv)oRk8)XWk)?ZE_{nFc2wY5~oNgQc$7@ph&66>hP(iRiAYNFaLJ@ zsS^NT4^l)C5wP&R&2GNvw!y&c2M;;?zwi3O&kh=F!oK-zCxB_s&e`+RTh~o6LpAw^ znzJH+l%jAU{mm&m8(CooMNvcmu=uTwE_>pqgMfKA{^$o^dt}FdesMFxE5E<+jLWti zH+Ad|>+5+pUH+}TcK`8Tx7}DpN;o2B(nOJ>NGTT4ij)Wm5leI6Y4DvayUV!Hw+dvb z89t|EJ3Po>b`UMUZ@cy(@YJyExHhEEuF-mSlj^JhW;aL*MV5|?$RM@5h9nG`z7nTY zrYdFz!72Pz(g4W(;2#58LEl*%U;?zD^Bw*114Yu(qwpu2MTIw=t3%sCNmI z7O~roML^KTVNJOmKE{n)1VoxMmIUQ{JhY%flEiDnVjAAaZSBjJHuVv!R;o?|v6LiQ zCz_cnRh@Q_8-!Kov9)aOzrv*a`%0pb9f3IwJM9_UKEhxo3s@OPSptCjH`wagbvM3Z z;@LinD<+gg8<^ImVyaY<#o%*>uohGLLr=m4-&4IB9(U$cg7Mx3+hZbxPZ`8wcr z0DQQNW!YR*-j?b@R2Cq4>-`TC0LrXY6CyI3zKpYi+3rQO?S7pjuefXB+t|>SK-n#J zPAIbqmwl_OEmxd{T(MzyAmh1aoYSqaZqeGqw&XNW#xFAq@ERr~`4wo9`UGZC?QHY!m^OJbdME_WA8KKO5E;0`%YcqF4UM4Ir-; z(UxC28b5hs5q9hc0Pnu=$45??dI3gGnX_PrFAlH*fD?*)@AkbTalpS9VTXRE_)eCx zGfEWM<5Lug+UB?!FCV|;{!2C57O5;20H zmBSfUUNZVJ2|x~gOwU_!lax0bQP7C>f!ek87RO$4$FWNvJN?3Yp^TJ){@d=-9{@0T ztIzex=by7a@4;rI_Rz0o%{ULsz-wL z_t<8A0KlLx8~}h2MK3;l#%0@$|MMX`tgl(*Q(rq}@{yH<6HSVgGJ7Y;%nKMPM7z~Q zqB;xM8R{Z3Q95?&MkG5=JZ8h`!Cu1)F&o)n*$1DDgNtB2n*tQChuIJ`tYgim^hLuu zc9{xSC&+^y0%eyBc7}Z?;TZR*TA*#aU#ZTFRF;KZkq+b-k+9{{P!hnle`Q2Ci^z_z zhR$p3c%>o|w$g!EBe`3Gb^?dpk?9gPeA%R>83y|`vr)YS>0WN55NQ@gB*LL;>zcsB zu7o3Y@#4izyGhJaddgxb{FD=_3~ElecziAukEXtZGGK4kamna+4q9L=8SIY+tEKz< zZSic+Pfoaayh(rD_=`=}6D}SS`+_d032kN%2VLA!=ZM*03l!#;14)c zR<%Np?~Yi;>O-avS@oMV<=qbwygy4S3#9rslDAP^^5Jqjs>nEo+tq7tF0k*Nzc>hZ z^{%sazi2vu;lG;p)4luCted`c2u>b<`IQ%cx%2)@w|@SNQ78Td0I=Vsf9?EYf0DQE zzhLk0%m4uFef5K9@3oQO?MF`E?MHtGfW7uR;C>u_)5PKZK#Lyy?or>d_U)^l`sU`& zAY|A*g_{fjMd-KZDPvCF=eQfE-{JIW-%vyjp&afIh_GPp9e3_=@P++CA)E-ZaNd+V zcR%QYe&lAqb?PJ^gb0}P(C={eMOzu8!ovA?-F5WwR}aM5k6i!kF}n@z125g0V%V|m z3NJ>tRzYc$5@pt;iIm&sLF5u};mj-LHee{szIE_H&s=lg_}%+1`rDbuoxI(}5A5~U z1&4S3)wIFx-@oy+&-7jV%*Ee+Xq#g&>Bh$ajQQC$2V?rEAKnb?a^BV7+@;^UkN^CP z>D&AVuDkU?0NDAwJC5IVBd=jA;Emh1pLnfF@XXWiI(8G_-A8|L{&{}}fHAjr9x~Vu zT2p1aFHli-E7E(G}|K#Rbw!Y|r8;<|pQ|5Wd z)#r>G(rfVpHynTaz|oj8`5pi}opayOyYvU}=9C>Tp9}yy?y(=RbClJvO@S1F6h(?M z(`DYHchT5WKTY)Zg4eL$XFuIvnbY~~R8RjU0x2SP9z6!O6=~%c#8y`j!>)l7 z0ip#;!Kv&fZy~W-J;QA1wXkiimI5+j0icN7IyV3zJ9UMOS26)278rf2=Q^E1o-Z`}BcFS>9nfQv31d)ALT_geP4Ps1828Orxc;1X!q zgKCeVvOLL+m{7wuBSZY&YXD0VwcBOC`*7a;yE@P92Q2+S%lprvx`^}=(H{WN+H|}# zhr@2tCIt&5N@3ybyYAlSpdW8Ym;+3|;$K(Z^};1||M;(rx#z_fj^0WUF!4(IpTEuC zTAu&i9w+Ybo98dy67=@{<467MueV*k(Y-^zv)!MbI&W*@w;now?+YKDam5DHcK;Es z{o^yk`eD|sI~;ibzW<@X?>u?sd?WANd3oO$)AyN|r@Q#YL~Kfdd*L8xqc&YjnDBC_bo3r@J=uZLWFNG}2&pET$D zH~j9z#dm+}lpmfr2}fLc6f3v&J7XH{`ck`J6%2* zpmC?&cFe{AFP;Ak?YL)OC?*CJlOw>&<^eRh-8NRJWrNsC3iqIA@~)3N#$H()pqV64 zi1sNeWbM_VV|nHosatsX)hkkKxitK#W2E()9n^SnNn z7bAj@>DvspB2enXl$;N1R+gY<+O|)cY|<7KGO(Ry&u-ls1YsevZVCSM6(V8=ARe}j zleqIPH$Oo__B0h+Z85ChoQWphrQDsm&=$vS?d=Y)+%^dU*6H>AAN-`aX8-_d-Cj}L z7B&bG#VU$bq=@3SwzP%Kpy@NjEVz1nW^v#(t$-@RqX21o>34ZHd)zxb0Ty!qm7ckXrdkGHU^Eda>5GFmTd zN~f{IMF80L;D5bw@WOj9*=Lj2|MW}9>?4;e`LRzR~~TOvoDO-<*EY1LvK!XD`$Gg`CuLyv>j8oN_EM z`~HJ=7(3(_=bkyF*P>aEJ-GkpzttZ=?@u4H#%6Gky~SWWY9ukHfwu4hc&MVO6L zqIAIwo3E#NHfVqn$N;=n!!gNHS8MjEl8+y&0$POzxaAp&mz*F?y| zHd5rao2kU%w8wi3+o;vHEuQv1#2Tj(b3$YstM%56qIMKfM#CnEfJvCh zT632q(YsGQwe;zymg)$==KJ4Smv)=j_UkN&q9jex+~1hhIHn z@TS55zV_=m`)(iIdRHM76z~FxtVsK zfo9SC!mZysOMdYCo44=FuiSd%d9JH=*|fKKo+^@dptvb!{HPpPG19iF@=iaw|JYso zr&uDu=Et44?+?y9;5(s7+<%npgDd~wJ+B;h$M@&Hiy{2-ZBOE!Cy)Je8ttX=gY8l` z0K9Sg@X7RxbM6?@3$yPZb$F0ErTyu*A7q(o0}U(lZqV0HJE8N6*Wdonoj?B-Ir9F0 z?SJSFeMRgs%7#os*?oqj+ybKIpy?$jRF}WEN zMCjXRz4zX)_)7XdA(gt-xe*dNMT*nFQl+*nZf}d*q9|UcM+(>}@YIpu!bi%^n)bGK zYVU~Kdvx^f>)H>oIi<=RRHcm0&7|BFUSv;w3Uf-rn#x+i|}L~nEINCUUdHrr%rG(i}{n5%3R{& z``7)M{lc%Y!^Ztsw*Jgn`#k%z{r*1Bvat7_{PDkDH8Pd&1K6PhvjxIj>XqRlp0^fL z3N?*F*a_?xS971bl5)0u1@BYg&B-Pq!3ehELQ)#OIKfnGuUAeA1NlGss??946Bz>B49hAz`+AvK?bFr|kk{uR<^dV1{KA0s-E5`@K(XG5GFjQ+M2I(*Yaw zUU%Jfdi3bg(W9fiM|*pZ_8vWYw70kS=+V)mM@Nr!dbD@6cl2oQ=+V*9(Qf~=ceJ;g z=MML8M@M^GTU#8*aeI45hmG8$W1SxD9UUD#%wPYuM~{vk9sZB|zrCZqW1aMMM|)e` z(Wctl+k5tI>(#rxXU`tJdbaoM)!w^TNAF(ky?VFz?A_k8S6lBs?Y;W6_39n>>fO<^ zXIsynZ9RL&J$uIP*}hq?XM6Tdy9w5-cYCkiaj!mYJ$uDHd$srM-QKHrNAF%ediIKY z_Uh5M?|K_;(*H9%%~`m3+s}N~jD+0W3C}MRko7}WW;d7Mb2r`^hEA$_`%irOt@rT8 z2l)3Jk6|-^T(m#34$f;Yl^4a`M3#y_{yV`Rc|t_8&DVbO!^@97<4FFz$k8}1pbJv4U1_11P{dLD|W0w^t?tjQc z6ZD+R|2d`)+{hPTt5HAPXV-Bzed!Nh+t#xk5kbGbPWk)YTkbaUsGqyWI_1uj`mw$8 zLs%F`v$eV3MiisXKe$=n z%AqHpamK-0T`>Lh^Irby4@Ra#fz4f1=AiVHJ&@NO1;8Fd=AN?up8#O^H*Y+8V`ta^ zRL@<1c*2mqCx87jChCso-G5ZSJI9}5juhDc8^4|S2`kVE0L=aE`0q~u0NiuoC}8w0 z7wxt1rsKY2&+n%*PWjW2^%gzw*hBm8GN!*jhkT1&oK>(|?IZQ&1gl0>A+2Q z-%|nPcG=lurW63giv63y9CJNgo0k=6U~8#G8BZkJ9C7*d__#qidd;6R+UIq2WvgAeOW|$v*qi(x$fePKUn|zr`F$T z%N<`|jQ@LEzcS~q=l@6a?)o3}UcByy{VK|wNeWWRUht^gxun*o5ai7rj&-@e=|2GM z%@QdG3srIh7=eWP_5(jY{I&!B*g0fJo z%n_vT{`2SO+`HeoXYAe+9YP&~HjrX*jvB5VvK<%>+-&cnhNSL~`oS7fhBdYlTN?b* zEG%q~XHU4QIni8AIMKX3;i~3p!d1vm>2eXS>C|eCF zey$%qn_=-+%5uAuWmu0D_pjSf>zwWoKEQu6N_}b(NST>q(>AYS*lySWEmNaDZJK4B z@9F5y6ujY>4nI-=Nai;(Ukke^Y|K=gp#U=cBCuE$iM*fzw_zkyoj|@%VJ~(fTPd>x z+XXRJA#vSnqu3LX9nPCC%86(L2duZ}_8U+BpWElpdG7ti3&qN)e(QOr=>k)KohAVY zShph%AiZGBQ23wJe#pPr?)AqP`_0b;*lVs_HSJa>z}`{m4O*^ceOdx|_p#t7JjeG| zP#9~b{RhB?>#h6gt+v~3+(l2mwBXf+?}ddN`?Vok4BkEtvM^inMUlAkQlRX#7xz)=8I0AYc}ygxxhU0tS=w>o=h1n@&P*A?}TZE%tN4LYepoBqHI7 z93l+S%GWx7TMoPC z=RXEQmty8Bs$TFvHp5VL{i@GSFDX!BauK= zw1B0ONQI2zZLaRK55B`CgF$)KGR>d?6?3_IVHzP&y)R8xHj5&%2s5;>zo9E(NkpnF ziDv(&swL5)HCRZCTVJVTcCM@X83t81RxWVidUpMkrGCB*3zpNfbF0*;P9V;s#_~-A z@j-xs!qh2(&A9k?Ym{Z)wXD3TK#dY}trxCmr_-*rqIt2u&hBlOenu)2?=c=OmwHVh z_39^ryGWaSV5^J+_E;2gb`HCoY*l1m4idKmTTIqoXLt9G5JQZTO(qSpnu+QC`3v7` zf8njsM;|tz&pN(tfq#Rfb#Pf`8zLAP6VY9)otuN9LT3k#4*?ZKyC zd1b-ULdiAG#3!?%%bCQ1Pc83ZzI@{S^#Ppq6@fjn%~J1o)&sySAXcPU1key+Aq9Jg zgtlAG$qox-Saqmq7%3yzu9DGRy=EGMx5<&EYSd+ySO&HOZ97DCav=ej?X;#PD0^|W z6A{Fz$w1F9Tyow07u%AUV(I18e3`uxo-QX@AWRi&u@^;~i#3d|p9a|@b;P-QvWO6v z%|bpiF+>!z(o7MnHfb{puTd0{ij>ldqLgz8L|7+UbD|TSB-LuNyjodatuEI|MLQDF zIe`P|OmgA`MGPf~su~cfYOX+-(p`yxZk`3t07Y_$B|d09ssW1zVVcjOx>7=*_BSJ= zB^$ujnyXr>nl*DJ;lyd!70roe&20P&#QLVWoC>J{6G%;!H9>M9?dQ3FX)(JXY6Ftc zw>f-YbH-V%Z9Esil`Gv3R+yl#K%;WjMefYohSWN2cLB5E8a{>XIHfC#+-Tp3s-DhQHa?NgT*GJ}96(=A~n;q}E%Hxi{3Ttkt&Ey3&bRxC(sg zQ7}`2rmUr`_8$hWJ3OQ?yB6}wBob86Q|w2aJLyKe)7dNQR3nurXhlNAL~I?e0V8A) zDTl)ZC-Q)T!~*4REVFWX23WFC zm^oHce1PzGj->9Fx&d2}0P0M(tT<5^#%S1V0GpkX9T>)qdaaqOnl+2oq6I=^tl?oU zDfDE)`;uXC&6tIlk1r_$W0cK}&3Gf>d?kmeB2=UKNtL#fz`*sz=cC!TQ zG^}J3ZWJ{8wHUSm*wea!tU_;Djbv9D0z{{v?;L#E!+vanVl*0ZH*~qaRAkteBJvC>3dQH=k3r?b$5$q(yP1F|5@lMP{p*sh(X^cSAxTB1-waVelG+Iam#@naB+` z=O+PIIiHblC81PKLH2!SoYexY2^q@3>9gz2LdqqTvA)#Lt00}MIO~=H%!MBWYY%ry zwmV1*{nYBCqcOX+`Ckn79Yx_ z;V#t>dlav-I8CHTMWhrF8^pFbgGGxLt(mom_FX|r#c^8{M^Uvcieg0(DN-u3#z&BV zm|5$pPPFD~l2nsQrCO~d$?_zrGBaz|q7g!ggklo`$_PDzHUXH3p@bA85sH~Kh**?Z zhYSVR2EJQD9-aa0n$cPKHXSiF-*WRJ_}h>QFgrW^>Sqb-2P-U+FtZjdqOFoG3A5HI zkUL%6xW1b8o1DT}s6gj1J4{F5Hs)rLkKAtEkRM5U zL}oERty`~<8en46$W(8nwIT=95qf|;RIJ=72>p;jtAKBFGFi5Wg zGmOiP5VM!bUK*BOMP)3XAuwB&P`O*W)5f#g4D(GY;UTZCnOn!~df}}gR690n;-WQG z+fRhpzcXi?5m=Fsy`|BfR%Q&^ZXOANL>c+X7eI)>qD@aJv!~Cj*-L7o@H^iF1={07 zRk0UV|dEaz2lDa#I{gs4B8wd=P}!7W5gX!6=ZTdZUXOOgOU&ta=>e?;ttC> zQ$j(o&z7w$!7dF8+w35n&2Tf~t##OoR76U}N{LdDxkbfqQG|fCPP9(6#cVMa(-Sw`+19u{Jq5cwy@O?*BejY|nLcCtX zP3}S>jl|(>QbgF#x0R-KU}*R3BI8m=IM%)gu2jQp=_;71cu(_3&2~ztQTM}#>yc>g>|R^uWT_?e|BlTE(wCJa7qG zQRMqh00hpq-E!sc(M?)A+OEURHU!U;k_Ild0gs&cA%k11$gq%$Ti>jVco2b$st&Op zMri_HFm$P`$-+4e@yn_fOMQ(ae7CCc6NQa9?H9d*vCj9zg{F!;(M-~w(vIzLOFpK< z!r}J_lU;8s$8ZR{&WiZi+{@aa@_MYol6#H*n4&s-lW*xhHe+OT{V;r4IRdV>yGr zX9qLX9;!f4g>x8VB5BvwDYfg7-Imw`EgnVbV%jjI1PCRYgNDJWlDD^Gc{wf|0Y8o`@J*K7JpqL0{&pwYsO0~Tv!4u}uXPt}!FStE#v z@%SxZyAW23SJRdmkHcLVvyGDge3@Y?k~wMXU$5E!YaJaN49@;VIsjxBK?&#hT z_ro{&*r>06J{S`ZmTgzR9oMF(dSd}o)D@LPg|awGzl0pKNS6B* zda=|bw+;6xty$l7R9LZ4Bf40b#7zjJ7%J!+ayj1{eDAw(4S$NkM8+squ;J*2eNtFd zeSCXr`=?|YDGwE>MKTXFY&W{c#f`UL`_`>2S4&JB$DFDiKR#!UOa+j0@<;tF#u=bi ziqe(Kx=7V{KJnzz!nz%a;iA4zzb!TI%*iFxU6b$mTrM zle01Gf>$sc?i3qRMwge%UT=gg0`Y`?g)GG(|Co-_11MqKu~Y&cJLFmJvyPiN^~d!A z2^1u1cahdmNAG1XwKz5Ekg+PfruYb^g9vrE?VqhgnHDqQj+fy=>O>zkq-uu5Qpo?w2+Di(T5ohzQOU@O>w6W>+7D#Tf>1SOe~`TU6pd)E+km;Cm$^wNRf z@eq%V_*$o>k7XjJV<0#O$vw)kaa{KgwSsu^@t={2`Dka8OSe zl&_9qRhE#uWV>DiYNEnL%+`{Kg~%@lpTq=0Bs{8fbn(AWtLZJJ=?5??OIEzGEcHcX zC1fGb+F;O`JgoFoN6+dGq%Hm_V|w?Kn=nnl`WwF*kx29SRvs?L_Z&0l?8cp#{el@R z`O=LvjI6)2pE7YH5qA!8-~PCdf_}61SmQfMM{}+tF#*hq55udpK$RxyE?!{xoWVkt9-V8ypsPL$hDxO@w}a zhH@z75hs3wBAo)=gl3?*R7hZ0@({GV%hmQ&$>yT7;TWEBX!nlsruK7~4)Skp=^;<< zdMzwFT#Hq8nMShM}Vety0Ck~@FAP;=s1tPtJlQ~AFq9%>`A zL++4~7`Bt0E4E4^4F9=WU4B)zac$ehI_xoiVb6n83)<`TA;AAUv2ojy7(RT~ql9z! zM+vD+`M(z&(gk*9(v>SRMlOx!DeC?A9Gc32I&y=0L&Yp}%MO~A3eybQ^Z$l>_;&Q| z&K^6&$O4N&iW*8YBkKQNF1hzp<0Vnt!7?C+bTOG@;p_V{(~N%wQRh`ZS+cC<&)`z` zB7~3-8wuq7C!+eT`YEN#Zk0NwG#1pZ$npQ?%zfB?`6i`AE}D{3deneI%Wm<%F*ndA zL)p-WsH?%kebw?pbNo-l&kc6NKG6_i!#&?U?lh}}B1$5DpJ&-5#XQZUwBW%BgU^;9 zpx)8njJuZqFu1lmxwK!gF&rti4c=FM+iI7+Ml*Y2sFOjI;quvg^arT~GkAVksV{2J z^CTw`=3cK-SWAz4rb8b7;N#`R!duUs?s$isNAfZIIs1G&T z(ebIeN3hcrwF%cP zFEl|nx)h>uqoU1auz}(wZ9H4G;8`|OA#hANQ!HGy_AI@YL4>sta>__1EGOX|7TBXi zPIMu0u6S0w5tyrk>nX6Q6qlQYG7Jun=7JrmN~we1^}7$%PmORa^fTk-xpsLB5odv{ ztaHw5mY45P)37;n(reQ7PSW<^Z1}=@yME|A>Rc1+m zNn}-qvU#lDV8#>cTv}PBnl;Qmwx%@CavNr5PvlrW?z?y%G5EfC0?j+Os~c+tO-FIHCEfmjx)%HEBJIZ z4jTTZz1U`3(F;;;uV^8uq)DFa4u8Wq!@$fdmPeua4eiKkec53Gwp@N~OSh|naY_SC zajjz$rM>C>5O=;dOKUA>?@)-$j~wd-n1+6fx|s?qFn87-&sCIfed{wU!&_%=$?pTb z3rUV?v`iio6rh}Aw+;Wq?yFU>;Bi5;_xQ`Lprb$UfQ-JwJs9B(sH3R$%MZNjT1o_e z+Dz8L@AMf)k~KMjIzEmp4RVBONzRjnq=VWwTfXyx?csfC6KQKNumy*1F9yH}1sSr( zRU4kGdi%QCp~yUpf$ZBUzSAgU8QT-4t8RsFwHZ(@TU+yve#xB7Ew{Y;XllmAY?}83 zEORNG4Nq7$*ZaIJ?yO4g9=oDBr0LK3cIp>ZUdmopUX{9bAvh7$Cy%~D#kN6JY+2(u zwdS%r*fv5FGaS1{7CDt`uw{->0x&I3n>knJoOlg;Z-SJ)`2Va8LH|7E3hK-f4&$Qa zC|??6>(b`W^Za}~Ivn=JGdEK^Z4k_MWbfr^*I#Vh)|l}Hdwg-YQY&7V^FyvJce;K> zW223yvh#*WWIW=G+Y)Khq-={wT3KNUF4K#`o=D&W^9;zOzc|$)pvsf^ey@2QAwk5Q z=}o4S{mi&V?Di-f`&F^phO=I;mW(IzRGOZ{*Tih?!f$%aKB-l%*d&q|1SoNNrs;3n z)|f;(VIq1bl{}2pP4cgG=XWWTVLU#M-0|k+&D5D5C6Af?hBA*eUM%VTY|+7dIcG)n z>AJS?Gi_OI6l1$brAg(3+Ou7CBJ;gvlGa`tAF#g{&Mu98;l;pto|ld?pq~x8?xB1T zhx}(7qOo(R=FA1Hq2Ekqke+qKK<#`ET!W>HYJ<~+-o3_36mrJ^ohAFbc&?yJ4<8d5Y{Vos{>$>G#-)_Pm#liXVz9EW5#9CF#y zJfbfmy5=^A`8*_=8a!9)V;H0yA{P))Pt=j@#&Zl)ly!bQ!89+fNxhqr%tcVWb-LH3 z*|vkT*%h$7)>yDQ8cLM7{lnyW#*-Q(l1*y8$}JA9Cy&>bEgzGQyVAsBj?|2I-iTQD zmuCVGZl|@r!vBcM%n@CW1G;IVAplc9p4;V0b1b8h`}?)L6WqA1c@xiH&A^mU}!wUtNu zsO& zXIJJ+RtD``^hHrMt9yb-2?`{RVmQwP7^9CO?o+!B8$N7#2OBp2n6Dw#wLyw#+g6X) zj>{Qvo2SOm1{*EIg%(c~)z{-y>x>b~Fls%U2#+pfal#LnoHqxpNSH2nEN%1s+Vf8J zmL|549@3h@@)E54fDP=q@)82ZrB>SozI2Yi>9#;zi-@%>ic$%=KdeLpVU?yICHRaiF9-ySzKE?;r}r^pXg3*o@)ht>SjUO1F~gP{b~|Z5 zZ$U?Lxm?XY7=2JC;x+7co5(r4{d6DU>6sj8`8wt*rymE&pPeXG4;&1k^n%SQEJhF# zo-Jv+NZYifjwQB?d@8d(1zhc9e5xzMqlR#a(dN)rjM(#-&bw=cokjzR&m z4u9T0D6xR(rgqE@F|M}l=tr}vHsk_Ci%Yir9X6hjQOoHTOCw1K%POOkO*c>#!6+$7 zx8t=6t76MYWWVvd?B23KrYr(IrEHT)`gqO>!})de*0#T4N4PO7>VA=cB2*}%or*3pph`Pwd@nuzc$HR7Cj}~N8U)k(? zQ$|-^e0+lFyHH_nAjfeH%;XUmwRrq;t=>d;Wt2uNw|*2xxMbvHGjSE zT6{YIUUg`bs0@?VfQOCgST`ol`+OLqZzZz7Hj*WK*0{?f_#yS z)LdPSLv-GTf2kNUeKjYx*<+vy>bFK$wD#gb96k;F2kQwE-s3F!%hEmLe<|LqBQ+(? z${FV4W9zsx$AV+})p>~oUHlhp3me|Fl7ERS^u=;xp93h0*+cLRez`$L;otMG!A0Lj zf1k2Q0W@wF87+^T!?XlCt>Fe++ysLZ*V{wkxXCc}?{UEY*rNQZi@@Ny)GctT7{xRg9KGk&6%951_x5fW^;lglet+#+ikT5qKgISRv_i@&?%_8T`VGbcA zkx+C0&0klpikZAZQS%DnsP6yx`FwyI?HMW_<72}78_v6@kqnR0=2DD2Hgku~6Kl@1 zLsX|X1Oldmi`lVG|9S}TY)`16$)PcktM1fJlS!;ngQg61g2oF1#u~=wZgQMCzk*`+ zyRXLWn6>|-yOlC^)?ulLK684z&=pVtTUn6dzm{2qM0^k9wfE&FW9~JI|M(scnMqm& z0|&EWphbm3P>33EFeJOT_H@Y}9DW=|9{DA$@OD**zZF^+_5YlUHWf3p?Ncvhj78WZ z=gRpQ##(^&$%hU)IOl=)NWI1iBhYvMN5y$CgNI4It*Y;${t7SkcvYQ3mK*PRsMOkp zNLlP)Y7|$?W|n?VcjtPH6|(D0kQnMr7!emI{i9b}O81OJ?Q%5xPf_1(yNd%h)cv^1 zk}4SdIUVN>eo|aLW#mKIrPuC*vm-DgcQe`wd~8J`=DR2SE#X-(D?6v#J3;oIS5B-y z^+-D*C^g!$#x!srvR2S4EpQcnl*~U!yCFotsBIEs2A1gXQr!OZM<-6!t;-j**9#V0 z+JnTgwd8*xlJ59-#S(ERNSYPqMFB~dc2k?R-_J9r2nWn&|Kzk^9CZAIwiqkya+PKN zE&jgAF)eF5!ZRV$<*l+8u=huD%=L|ZH|9!cf z*T1yc<0G115>n#)kjKyRCm1U$*wnrl8;5~F7*de>)dYi|>ah({xg|+Ao)g9%+VOZh zJG~|(;#2HA2T+!KE8sYN8`NHxf9Kr4!v^5}QhoV^f?oZj-#p~^7YTa?DPaWGjrz#- zkAsV4zO$X-i0$=GR8TME)d0iRq`S9J`v~CKX6zSiDdfI?75j?4h#8zq$8lZk$iWIT zcGHsO^6sv|*IEx|(3-y+EZ|bmC!^GE`S8i)dFN$e?Qwvw?)cWf`*8ELb$`trcL`sm z@I%|qM{^6NL<;iOAQ~v>VGA-j$3oD^GTViMh{F~d4uJ)2aBgnB&uEC015K=jdD5^X z)_&qbZHNu~-x|;X$QS8~u7(!;bJ|2sHfeKsVXAXK*AIM(+J2$7IyV=%6u30Ex{d+g z-e*?ZUb<+w{`~h)r<*7qXz+AIpOK>-r_F0hr%lqihOsAI`*ks(dH@ z{Yw!?D+jTrqo*xj%FgqgtP}Nhmg=3AiiaKvHIC9nzN4CxPbK4dTdy4r8U~jfzKXJf zrv*Med?2yC)J94;6g3uD``Fy^cy}pfn=2xq3&EbpP=*te z#;=;%nR-)~c+BJ!T!^mA4y2(sl^)UnQ|XI6W4NgKM}fxgNJ%=OB>be5C^8)AM^K2) zSF40cEEuuD9Rt@sHzqwLguXs1!Pama#KImi`rh<(w03g|DTi10d)C$mP?=cwE>vd* z!j%#H&coIZVs)N1T!Wsh1DCe#*aNe|un0%1PNWgTJlqG>PvvoQZs#9svT$)N_9B-y zE&E&Oe#eD{jm3)+#SoETs0Rm(!T7Rb{O&}Ro2fpGNK+2%67gODL1O%TdAR60Kj5BB z4s6-yKvhyz>^$d=adrslt9-_WRNeK=x#bNr z6i8qGcPG*RasBa@^?B&!q1)ltZJwwsIS4cxJL+B(qPFGtnf+$+Wvu&(H>3N(`}ww8 zwW&loaF_M(Q&GJroqM#P2IS5TSco9xTEmSPN9DM*6K=HRrZjihJSd>227kW8X4z$g zJ=A`GG-G>^N9Ma-j^C)huansYtimS)PbxQ4f;e|Gg}3U~ml&-Zv2dy7K}|CuE;Cr- zXTbC!EJw@5o3RN#C~bgEIn78U(0avY<^NTx;2TQ18d6iQbWcoIZ%m%O8sLq;`<=Ki zN;oxmT^!zeJ-k;p16xdG&ARXv0%Nq1|K(xDEjxS_-IH05u5U7IP@F4ORX?b=a3c2? z24o|sWhLP56?XN6Gw33qBrOB_Za9A1QnJqV z3qamIz7JoNok?7261Zm}Z|fs4&mCq%4YX5#^rzgC%Y%OU$(amj05IU6iolv>+;@`l z)c2URskEX*t+8#v7h%gt87wbFe2gSiIz#jFz&i46(5x2pV^j?b{1u zjNQg7@(%MknfxzG!X{2kA>!jV;bSM<(zArzp3uOFvSO0I6Ij7?lSYORR_}7mBST}L z&+9r1v6(4^#d(l`Hj{|sweSLAemjAJhl(Ts!|O;-0TO3 zrO&3;H%(-51f0d>?cMyOD9wC;PAFM;dweT-F6IBlZn`V;vp$$>FlJ%U#}o#LVwldQ5T+h3wZYoJ@4Gx z6=tC4F3?VhSs{j#ShA}J8l?mD=4WmCeVf_=O^yM;W4cNZbr8W38QNvb)zRvkhC!NDhW98!89(t5F^IWK2Umc>D zn-_4nclO9|8-YfiViTsU1TSg$l}l!dRb#FT0js3lM(C2a%MQ?|5qp#maZ$4;+ym_i zA0%G~2v{3#Ox%hkApJ`B@?FyV(}*FIGoF&~z{zZ}TQf_FzGqJh0GCOaW%D7F+>bZQ zB>8!G?!e)X2+`R5dt4*HRqyfDqk)z#h$&LOT8-&6Biw>_=kvW$sC|IO2r-P-v6%Ib z)ERS6fn`eT$H@!a|J{O?g~d}3)OLsUHIj-PZU7clJ4a_9Kw$(E1|QQar13?MoWv|^ zi%{0o9BR*EUFrXKSCF8li(R#_VWuAT``h!G&8?F`ji#*Hy}@W~OlzlO!enBP!47ud z6E{HVimmX==B1=o&j&o%2}ZvES+(Q(fSNJ+IFKhnl_}>o*uTZ1UnV@(wn92ou5~go zu8S{-%DS+P=U1w>9}#(^p?>*GT|0jH&A#YTH)y-YK|UmDs;6{pm2& zjJA{oF6N4r2t55oRj=P^fSOV5cyKbgpy7UDhy9W@;ZRd}&}O?1bf5`Jr!3Li5v*ST z5X?(Yy;iP$S!t`?+gV8c6m{GVzoIHm^ zk+x1ANrh^suU|*J$}>=iMEv7M?14#*4`%mrGmDxKwP10jaYZ)Ya&3~)_dHqaWVdaT zsUZXg3~!1MEQr^{tC0JNL6Py-F#tGnWddcDlvm3+Xd>Ag0yQRZX@#&f^kvTSPj7Ub zg#=9@<2;c(ec)CtuVMMmMLrl#th`=$JoiSW;p|of5j~61Ju0Yz16c<1(gI9BX(=f$ zALjjQ+goF*eEb~MFC6{|iPb1 z*pVj|K|%5%dXTJ)(e+9Zy!w@%w)3D4o2o>pk@v&d)9A$(x{lpb)l zI3`z(a_)U$sf(i%4~Jl04f$KXpew~QZ7Lppeh~)NRb&wXI-1J2lL+d1c%7*om9mOyfTf zr>KjHy`p#1VDa=*X11!4A4iG9$dJ_nHu02H#1ABVy`Fq(VPWE5o*s=8kO7z0lhn)z z;OqPG$G?;iT~OR~bn1qZ6&L65$Y(Rz=v0>4f3_P@ifW1gfKXwGJgs$i-8a7Movl7o)GK~};avY~ z-TlbwwW1(V1*iNJ;<5wG6(d>E z$J5^(@%J~)O&={~t2}?Z6I@UB9__POB<(Us;-shJw=XihitF^3)= zDH&WDFnrF(A8^1G`0t7Jc`ybSqfI?j;!?4<``I$-xEWk2!O__JnWL{zAFHlSg7$6Z zD#v~fTPBws%XA|E1yUAl=?BQd1+bO@k8_TGw63fHr*>V@W2vn;z~d>CAF02T)u7S; zl%du9HN9{h;2^KO6Gpx5hm#!P)&9}t2xkGUvsLJT$3&l3ZxuVGnt`(Nq0=+Pv;7V) z(;G;g=4y;y$p4YmVZ-mpB31Q-(q9W2u2c6<0B)Y5n)>K|N_{6HOpN!aqZ7{c<+C;G zWWZt<&1);LAhdmkfM4?&1p-RmPrg38x3Pk)qrTYne?&WwQDp|BQQ_$<{gkDPYxQ3n zdsQC%|FDdF5>UDzo&56tZw8jiGABu=P zo-bhv3UzqxqJ~RZS9*smXtuZP_M{Sr>HK?-Z0if`TON>Dy{%0`y;l!^_qzTK%Kqc= z8_a!=?)^CSSp7Km@);%hP)!)nGRPZ^jo#Z(;%ia(|7rnz0=r+H%5UQcw;(I}xnU-O ziFZ2`wlRW`oUIoCj%yf34{=oHn+^_ih~D3q;^ zhV%<~Ma$+2|4*pg>VIrIQqykKs3v6Y_R7J=XdTNFL&p(RrR46WQAE(Y+{D-1BB{j; z+ZGZ_`R}?0DgVFJg`EcyrtOUN>uXbLag>tvc(MKd< zyIyf{(+xt`R@P!$VjlP2z&b{}b!6!zdneR~GvqSHMc}BY@)YL`TdgllM0V zId8GAX!q?;t1j%`t_`uMNRgg51}y5sf5RR`mC^0qpQ)#K&)9bd2>Cq?R|Ibn7s9}_ z>(FM3SpFdE{aAfgaeMoS;ioum{Y`ZCq)}dKuixkCy_~Hlq)EWs0jHTZpqa>0_*D}N z`Ntp2O?5v_-e;Vh1zv4F|8x7TU#z~iXCkA@1wWYIxIonxGrKbjDKhFiuOX^gBk9i9 zFB)dD(Ek`n5SF>K>)6-H?yi@ozkmOEh-skn`6CmaS0K1ZF8|20*|(K|#TYV!1>n4$ zijgDb568Uin*!FzFV|ueTrM2PQU4n16DgzHe9uKc6+f`(i_6P2@Nwo;Xo72V^XU#x zuB_GVX}tVCz7tN*!BP^fGw)@;BKCFZYpuAN`K{L@qTda|7R2dNt_B|ML4GY-+zMyHBCzRIMx!IIGOJ0Qjin zD9KJ5Nr}{XWS=xSq@tGgfl0Xoj$iQie+jKVJ-vDA^QT4e<1}}uQ9}mq<8;FlK*em? z+drh;0mVZ3`OucOH7hE3zV-$Y^W(c^s^eh-Gskv)>VDbkydGG1e4VD6W)7qqr)xKH zE(0gP^@@~|nk{h7kbGzBwUl>wnqX}H+WAAQ{tw|2{JsU|%fs5kq0`H5PP)NG29{lwn%!SWJ78qA0mMVCfhfLBQ<_Mbg8d^4iy$)BwZ zr?*uCSR2A&)Ppclt{k<>eNFS)y1w!1+1ZVd#?%rprNhlREsmbw6iUsE*54ttw8jW% z>7j!u3#osEK@QG5Y*jlILWIloQQrT`OhLsiDdb_}kop5mv&1*iD3TK0c~ftIM+v$r zIGeR~!&aQOm} zh<%t2ljaV3WNDd7Myew!9(z>&8vy49frJQlsE5w!n3a_S-(vo4%vu_&{sH$-v;mX_ z&W<_4^0pN8o62hUPmi${O*#}iBm?k8thBzA5)Kl8XC7DL9Sw1?`tnQ2z-bewn)jpT z$a27YV8sC}M z!ugZ!%Rk;QH5>A~I?V6Mi35=M&hSXJgVlCktJBce<~7Vzg-dW1eO|vsv#_Sk*dU8B z!X{uZ!{C#qS80H6=VH*2y}TIPMfZ=&{bcpWzpX&qu z>QHL}TthH>#A3mC+Opp<+;#!aeR)qK!ZJGGh!abEiT%KzY-!G-hQemH_fJsmE$B30 z5j;k6RIR1tM`w@LNc_K(kx7hsRW4&|>?=8tovfUJyULxbp1`28kCcelPR-+(|0C4B_!gKu-$#?0{c z;rE%0dBi4f7C}K0m{tuxCZ06b?xr|FAWToxLDa#nY5paB06EvT;*yi4Yb4WrTUH_* z*Wv8oDLpUMl$FU>mNJ7X( z9Aq`aZ(3nqL-uml6X|#K_j%`Z?csO-$B!wiy0+~uhBJ)w-n(y7ljwxNaiDWU9oa%e^)r}Dc&@#OF4$9_lf;ix8ww)rdVdOf1 zRh`$<(dX~+dTwN+kMR6x@yaP8XkY+WLDJ@|tjqr1k3tW^HZjN@Ay>Y!{0nvV2snoQY3Tf~>tQ=viXFca_~ z>V8azedAgmd^`mm~c&P3YMBaVos>!gICL$gNw=p+QNTt~WKAxP$qd`>U4{eSCS+1nnq)SBP)C z7sjwVFYw}jANne=JrhtWa@l(SxX;s*_kh)joXgKU#CS20HehZr0 z`mhK-BJq|L7q@;5qb$kl{>u{DTfZIpjkv-*BFhIC1`re-wuG$KfwG8 zupQ<#c#Kw`_9=c!;3zB*J)WxFFEOmonhsW>aJX+g_SkdV6Ty9luY6I?Sr%!p4QdKX z`Dqi2ZxHG`)S6#|#(PG}7Qk-iKPXl^dCi_Z9A$Yl?RF>vXBvKAAfCp{am|1=N39jj zny$IkEYl8LI82r(G(CfIValBR=mnQko76lrRp2f%xmHKAf0$s*x_(7l&0`Lm{~20l zT*w7H##voYsv981+b)V&B|POM^pzz4pkh(qf>ZGrOH`ORBJFK{#i@t@e#A#qaaI4< zxQBWX7Dcny-G|a`HS$xX$ZiyxEXA!zJ~i)I`tv6a(k^|SQD*V+BmLU}z;Jq(JA{-^ zgy5=$r1UCkGB*9B8tX%z0DI+<3tSN>aAfpjxE7|mE5}g zl)PDsb`te|iNn{-MH#=36@ve(3+Qs+LH7On?m$gfyeaFNcF!Xo$)S+cQVA>aEoaWD zok%bmh}_M500@D^v8St6l7h)R=LTi~qHlR8aVYn2d6Ggays6Z!_wLI&FcjVHIZ|V% z3`uLaB@=c-s%hP56AmVf@LQwrJV#_A>1YOig^e{ot2wwCZl4Ntn*bY?0QKZ0=|!8C z1|$-|IC0irw7ox-;m|iGr8iix5vHS2e5JWIn*CLQ`uiAn2+(CI&uElJa973ANSYkq z5628{^9o*e1`8}AP!iHj$kHT~g75ol8c<h*+&~zFWy`tbN5x^RzIrSZwar1M; zO15SFa#L72hbDHua~o;RSrJ-1cWh-N1X3RGj21k_7D|J15&EiLh{Fwsjs{=I{*lRH zu-I9s&t$sblD?)2r6F81y|!%?57+v`qa1Dod@zC-*(Y;xS%%uqEhfrB5|A2s*Gbd& z@$t2-;Sc9>nH>J zVy8xx;%`HAov|zfVP44?DgwUhkZiP09r%Y^?mlVGpD*>wOY)3l5j4kl0dI5Q5i zFMW(N7si;ezRzL{{n!_uTuaTaY$dF;K7&#dq2MiT)7POOwtu+DLyA64VCC;7>Fa=x zr>^w*5iRXEMS)Sx2hy8PmY3(JqsBrYrx3}gdoo0zQAud4D>q_BC=735aUGOmaecI$ zhdI@zD&~cmkUgHHfK&A+RP8Lr1niU6R_A?~$^N9Gf|NvsbZ%BC|ABaexVt=~)$$MS zFhY=_>%?zp&b;Zp&xpvzew=w(0IUl|!hQaK&7WgrYcC0^0E((Tpl|CckN~k$iNxYW{8z*t9si2^v3Py1CHKzb8DB;e_u&qw1loV8!=6OQ1QI zdBj;0L`XILk#}xNmL^VSwR|Wps7wwInH4RRu={fAOSDAJ{14S@tr$bXoO~t)l4y}q z4FtpF=RF}&5o7y*&4^HfcxEMnpg^7jw;clnxVd~Kf?Ye1T{Q+mmS(w3Xg$^VSyDjm zHq5sB$TK?P)$@{+->7D*h-@_Jk;~Wl+RFy*YcPdEPh)K^enI4!sF%rLv*!w{gUJTy zg|{}$U1G2@7JLCNEP=-%#ST`-{vlN>ZB_F*ynr3M?Rwqv#}EpdciCBJ1)w7>&7ti)arPWzaVx!*BE5O z-AVC6HUCE@P(hSmb1|~2qI2HUpjnNfdStY_yAaYSPSJ0@8 z-eO&UMmE>(lPBU{@eqM|1s&@8rdy5`>CNdXaVnUs6=@jQt_>gCqrZ3hwq~*jx5o!@ zh_x{6vQ-mL`QeVb!}wwZG4Z)C7Tb8aTw>^QG6M$_hinru)I(in!op$%UbFK+I?^JoWwLiqr9Z3LjrPIaJ8+^rCltyY%Bi}KwpcRp zHCg%%e-RBe$ovggoiq~3HYg1~wzh_OpYF5X<7LTJE;-u}zmdXL8jwB8tV+JXA&I1Z z{u42f4cF7b4I1iOOH|a2XNH9klNlXEx%=YrP*keeVJBl}-*gllF807W^dQrV%iG8& zId~FjQUHLZ_{?5H=uPM-mQXNigrf)q0<; zWm;ql^CTA#*1(}qhXx56Az+dL8lvjv|qmx$j z84VW@G<<|u#3k=80`Nx`ha81DsR%^JC^}o0-ml}WLF`jY@%@b}&uPd6S-r~NJG*ra zCYaFl64<*RtHxF9|L|NH%31WQax}b<5~K3N2nusySeDuu^C(@M*IK0j0CP51s2<-P zpdD9L&T4!F?2^fPxYZv3rQLv0D8q)J9SMU{D6OkoMSnAC)-!$;U1u3d&>=P`Gdf+h zOQY6d0LlKe)}7h`6RGhVq|Ee51N{sdG(feo`D>Wg>{U!R#l}u@Vq)vy!8b)cBA@MY z^u|QV)X~HU?>O^ZDd&2%xpFv0nm$OL$TJ~lL*Ye+eT~tM)8lQqO@STR7nXJh1eH5J zrhh&z{sI^{RJdf|Y+&a-=<@b8AUKk>psrG8hlHC^p z>!O}KHMaUrwS}61+St@Q2*X0a9$F=+g=#)G&C)QJ&$>S|7p$TTMBSz+%c3tbp~Z}r zd2B1Ou&IsZ{em#6wcroqAGDV7c$$lS94Qn?KyM^9lRnYJLlu@S3RJFqNHB@@7nf7! z%tveWS+Hp=TD1#PqAN@wiK4Qv1^R0GBng3rD1?5;u^0H{9jrmd35c1}LLl}tueRJ1 zA=T8!#_o&;HDyv>1Ca7#%h!2|Xbrw*KKw^h4ceZyN+T8kewp_nC5trmz+y#O0HMGO zp0}Dvw0)Yt4mCpkRN+U)D%+5~Cn4QkTBBv4BrorM zeLFy8^Y}`5*;kFBwRu5AF!ErK2T{<)A3BxI=csxm80|ptz3(AIb``g7IGUJK;Vw|& z@_xStW$D{khKMv(?Z3czF_p5$$Z%Cb)2YMsYG(w%tYB@U-bE*~Eu63%t5RV@d~-=_ zo@&U9pCyn=2|DJo@v2OIG#$fgMb}p{hZvocG)F1rhB%4>I38pWR@tW=3XW0Cm1rOk zYY_k2bL@$wV3>pkVjIS@qnJxi&E|67!b#>I0KWA+XTF9OQ!N|?f%0lY!F=nG*qYYQ z_M*ptKUEh|E*Q{B^2&6=x$uJC1trlTG;xFOksK-|-TaiTtCgLSE!mUBX~vjt4wl%q zNU2rI_z?|9BnADd>35v~CLtyzzM1a6c(3F2nh)imo5Xp!wF2r$?u%+dWgiJ68~JgulGr|@84<3nvsB)CyN4nWbPPgWMU^p8+t z2?n~X^?NQBG8MLvqtf$&qzi%Y(Xs964&y|Jeg^B1F1;45h~y#J8)={CKVHyfRd|3_ zlicXoS__yf74vP!^sI8R5o!}6AfPuwchQ0_f|ab52Ud+zQwIp>(na(5Y=}0Sh0Sjg zAN+nNBF0BOVBQ(MO|F|b;=#ziS3cpneG3vng^-;_W6|00s3Cc)gpE4JQ4i%8{)qlV z_0b7(u*@*ZxCUN>AqP=eUSf~W|GtyjGk6I6Oh0g>gJtG3OZ_x9pb?g2~_R;-zK?*lX1 zpf8C)g%qT+`OMZtf`Y)cOi`uH4Su%{X3Hh9P(_|4N3CK=-|Y-Hn2IvTSpt{U57`?C zL2CFbv&CL@X~)qTJkI!1T!xd6uQdc%k6w-$l3xcP%I{C$v|MK8R;l0%!`tjoGXC%k z@$cWpG`HS@{+K2?lDpQya9pBk&CvP#t+N2d04pV@MVC+Uu(;cav&?pfZKUL2e!z%< zs7WnJ@#z+r^RH=J+m};w{DnNCy?-{pk)#Q%QfM_3ZKUr}l>C{Gt@d`R$QW|$ zWfx*9;gPALM{+p(e%EplFQbCKliu89Cn&CLS!m@RIB=Q+f#P&`@cqN5Unuz76LDyG zGu)zTXgJWRGMAX&>6LALu+W=}$#e4J*I+8cMgld%!Y3RvS{&cLNAF4ZI{OD8)70g> zfijCtRXWPU|H?qLV@vI=UAyH*sappvZ^B z`jV|q^9I5FR)dQsUvPlPkJYz%I2Q^!ENlxTp{5=u%!cOTt*MGJsPr zwL*xu{WuH-64)ZWx3E(`2hvHS0!}B|toW4r$lf87QUrRL@g$+vm>*I+SK8<5qxlU) z&c4~P$SK5e3iS;djPS?g#hZLDqIerUwF$BaCrl7_bX~Yjn-~V_yI%7OPJ7X2Rv zvoN~GkbdqmG(xKxlS9%>>+F}D&Su`#eGZY99fIvd6O#zJjjlt_8LMDe8vOklu(D9` zjk~5TeN_B;n6P=}K%o9Z#V)eo{@U$#pf=)9XjsNV>ISK&({w(GfZ`h$l>vWauhxYh zH)V3QfzmZ}u>x)<3JNFIX=)~ER8vf-POJx830C?lF~6>^_H(Ph<$pa8cth%isCu;s zL{dhqQ$DWw1Ode?Ei^ku@J;K|R@B$&WJSU&!X;dF^`u#p662c83^&zkV~vmL?|)UK z+)<#SnM#sSe_Jj) zQY+TncZowOL%$w1qkZHfzd{WfCjj#pCg|Z8F8Kf@c%^$gStl!N|G$rm_PDlWWh-^%flw3>TK0zwaiyp<1H$?K;A8UZUQY@dyKDfA{ zFd+q`I&!Itfo-6#xFaN)`SIX4`HuL6O2x{Tv1-XND4^s|0BljhVWMSk9=mvU-gEI? zkDQE1pwItLFV979c9p`L)r5S6jW=;ov4OCpl+GqC*j}kXT{%#fyG4ZfgIWTS(A+n^ zLgZ4<@b)vRr?L*x$z^^ld)SKwd?yeulvf^QR;_!tLS88`YScgcT_(;R7K2(h)+VZag!+YL$`3S*yA&~H4UQdUVMs~jH^HccFHGcoA|F{svaXLc7IHD zq${y%wAB8-rhWIH5%8VaubbdPPn*wUjT`RZjXNw)|3bEq_4m7#_ke#muVuwyA-7Bi zp&R91Ls5qsZGOv&hza5QkG3zW&JO#!Rq0+__$GStl5Z@vIMR1U60lMrh?%fB!OdR= zC(=hzvI19WbpBmhh4F4;=)IW*8lXNd2UDKjx;0WjAW4SK0P6^AQcX&}gH%D*;1o)t zIVVOy!+}Pc$^%;b(oCK1-su8>2bAlKv&dh=h8Y|~Eu&OSa@ptQDuh-A8Qnl%N$+|a zSrQ`uT#Zf%{a-DB4wqx1>p<#|sSeullA>M%3QO%T3_%QM5leRRF_2_924&?pgP=WS zJp))-h?W%y$q+K9U+~jQx`=TOG_gx9bfdO9dBO!w5hP#+jei7-8ENwkhaI0e?>qAD z0H8aynUE^ydxhKYNqt4_VZjJ^gIk8ENMihBtkU0l%EvQa*ywdw@1^w9=xsa#liDyz zr`E1YwjjSXpg}iW!e!-+IB?T+R8U70rI^kf-(F@Wy9DAl#ky%0rvr}i9SBgz6>}BCKYQdh0#keS(g>J%T4@x@ZC@urIBrOAMS`{pJmjFeehYm?x9u|n{ zNBmpNmmPg7j^iO>Dqm0b>m6C4iF9AqwRW6;M@FMS0a5dhrr@wA_BYfK@G!K^vW(AV z*oFe-_NNfz&s!UwUvo8L+j;&qm?tvZB5!#F_Ji;Q{sc1KBFJA8BOHU8 zoZMDprItR*DQZ6w6E0&)_)2r44_vdT?}H0M%<;;ncwSF2iSV$F=cG(j2DmkE-EWvO z5b0xId+~ldfFnMY&o+S9I@H(z9XV-zXXyf?LzGs^AFif1tDhkZZtNCBEu+VtH<`9q zc{fLVvT@?~pgLg~_Wm*eCic!?)!{po-$QY&dEo0-*oAzwR zMem%;T5!g`A*S#s-8v2tz)8`5ip0q9e#Iv!VX{e}F-CdU@`{Y8X`Kn5)R*=d6;(2a zRp4vfw2=uFV~-kh{Jbmk@6i9RI@#(-D;Thd^esy|>@|!9Aon$hgp$MF!|zYmd%t)H9F$9JjLv zs3@dihh(*&V-u1JSH)!4-|@#zv8D6e-j~|J4HcV(t@3qs^gaA3F_sHnY{J*X?OPzU z_--lq+g{YU|6b3VIk_hfQd<;Q*)rb$PY5)-1t@`luD;>R#=J610kQe#BTL2yyCZ{a z=5bU2a{6HqZ{V=a_qOm_(^<1m?X^}~!Us4a08YSjg_6AB)tirvx{5tO6Mz%|9p^>; z-Tw0KmvY@Fn(p>F9Q^n`f!#~$(fyWvxC2B0O-FO4_w5Y*?!gUX?@@t= z41SMs0pL}0-|Ho9Yk=E|0;r^sXggXXa&v%w`9p^8kG7fyLDTw3Cq~8M;Rlumfc<(O z{Y;?;`pB?7WR0w`!3`g?v_>%JGTCm?6#n_)PKL5xge= ze%lymofwVrQ*9f4<)=DA8>U&1TXCIpStvH^jhniXKySRVWy7${-a!)T6;RJlpkB_ zYHtj0Re}i8Lv#@&TY{_1!TFQS+^9U+vD~P{{Ot?e0Orff*REP(?14uF>+D$=IA|v`S=BUEsf^GV*xS{r0yqsJf3tSHe-Gdw? zS6gJ)2Th%wtPT+9GJ|b z52$4p zd*$u(a8qCH=ggDO$d}X3W}JXk317rr=?-Vr$=7ajHAgF}yu7y)!(z_R>}JwDK$v8( z9p`VHR~|=ooe&RmcsQod!gQF|qbDE{+V_e&yZhes;S+Ur?Qdq%2O9W-GB#tvdc@_P zSNm~rYhl&dfrOj0*+m-`RU;uTG4jd|B`J~+n`*m8QNDad?5DLawN`=Os8B~?W&6Ec z2(!X5{lLX{UavQBue)%*;9{@e1^vlVP|9!rC~VLc>wTk&4|1&4&aq_yYF-O0SQi8g z&Xj8yPTKhV{KmmcS5;?+InzFSQr6KHDo457Ymo!zO_n28@*fb7H}|w%zN0O9bsj@x zoI<6K9id)5AGLq&Q}Z+fe)QSx^=8gFL#JIq2=b9IU?;~rWTm>k^fwJ+*AMTuu)FZu zANV}qf#^8hcVCP5dD_k$tKpMM=5N2hP6fRl!S*e= zA{L~GhM=dWNqW?Nb>Qxxh|;P{Q)_hL6KfwTdvU-UizuvN)o_#HHmuB@2NC1#{B!dv zWosoywiKgQB`(CmUa@{de`39*6s#tAAv3ZCQaM43icWe5oEs^P6!0LBXit(Kb`OI! zk{q{EyoV04)tlyzX!}`V z)*W!Wu%kVlX=Dooh0z{5l37QhlsRGb9dMbH}WAfB0n%8 z2i%Fw>l`TnE@D%(qPE&9ILX z1V}l;8E8|lFPRsbj1vEh2( zL@7hM&{~jdO-(&0Nc$N+yT1f+2x#1}Yp|XxKAK zH>^j*5@lVqeyb)+H3d9ijoZWutiWVrtztP(0L=2Jq2crUQC5T#)(RZLu!%Sb>`HIO zRAuXiu7kYxg1;PfOqOv!#?V|i{$2NCNU{WgF+}ZG3iEjV-#s~Br>{D=644$p5hqNCsZ zFLP7EZP<`3Zy_6GHRo?5HpM@V+iyG zJa&iUudTMSviSY4yrZmS`x4ZRI6#N~29v0$Hk)&R!SQB3w7nqSLhL6-Nh#!PW$;19 z(DBuLs)v{ILgZr!`p8`%x|rs|cc01C0r{{T+T(Y^Mg9?+t(bl%!AdWw*_T5-$tL?> zkO^z4To-drX3wbT&NGCIknZzRWiP-JzXK52^d!dP5b4eGVpI7 za&%0hRB;PZyHZfAXTQ3I-}mDG!yGJIT;>79sZjhUS%r{N-3XZ}DYSW`uf7Rx$%isi zw;j7jbJur)AHwjHQ%CZ6Z1%WL75fwYk1SZY6Kn(+*zls-BOk&txH@q!n#{SHWRSbnwDFndB4TF2JTjS(6rsD++ie?fJOuKNnlQAHPP7g4TQ{y zSJr}zc=;rnZ}X-F&G3w-=+?-)D>-jsO*7O^ELGCxr2OwG2|Iv@kIb=1>I-pjn1^JHIU-mEkrMal5 zNV2=E`X|o*5$LbPdszutG2mU(4~ply75ABjgATCnC8)+DluO@gF$Ik~-@VI0$haqQ3C+Tk|j7H1x%d;`N!+Lw!3soow z;63qv1mDeML8I9zkab6);<$2|7tM)L!lLqF^%1fnnX^w|!n-EYP7s6|_#mN8|3;p$ z&Le~8ri0)cIflH!R`U78+H5U|2Avlm4XFi9ScxO`4 z6nQt}Ya?n0T?}V4R@=PlOgDnV*n{Mfmr`T?B4V&_M{)kx@ErNZv8;q!6k24V_UzlAnQm0V@Fu zY=~U7`rSq0Z|HA&94239axXc13dsN&sKdI8TALpvCRY(csLeA&Ym*1pjcf;WWyZV? z@C=CDJQyZp#!uwK##rC>R(ZB!&r>L*dEpklozpfQ$MhF=5kJj@#l{b(6nMpzCF_5(@eR5tt2hrQN^kO|niWJS*yZq1kIH zNgR3PUS@vV1Y5Gq5F|ykwSNfA#$Yzb;dT~ZJvE`PV7&F;a2Kp==q_H|Y78_D0&XR= z+9+9lWy+lx>S8}J!WClnByBY@!ZMRp?(a5w! zxhy1DD9F3yfY31?SQ{N?5r@Cdw`$uRgRmxr8RMluRmeMwuasQM9WCL$0hdt$chrHu zO*Sz40cDG`AHPATnwH*?`j-JwVY8HJQeugV!cT~B?-eAfTL|p@jCn;lHgk4P5XGK0 zX`_AmzI^p@0tu?&MpzA7?~U$bmY2qr0|b%~v+NLjkhk^i&3>|L($Z|PdsbB0-hh*j8$ zp@fOna|3deigW?n@BBY7przqglYpN5;>N5g@3~o-tAEKCJH%l-v}gCdPbP{35P}pa zM;xZz!(`&^B5*Y3u2&Zoy>lUez?>>uuQ}!N|5`f)L>kn$dfPWwV3GIruS2VZYdo{2 z1*>ibk}2%TAL$t~yjC8pOP_*;xwYzQin<^f= zSoAKMzYFTn&be%2-Y8ha#@kd)wXunONc35GYtHK(7`6hLb7!>l0iqOVY#Km*KdLe+ zGcwKi^kdME#hVvl*0=o^qo>G1X;3IIHUELg{N@-F%u*S-dPKhxAN*0b-ZNs;~sb~oR$BA(8) zj6^fK{6Cq1<`N)=%qrgXL^BC_dJFc(nou=3*Za$qvYvp&9ahb9Y;x7IPrOll0PviF zKp8>6rR@5i!ojgGx))g9xQh&f&K9bBUtXP{m*%C;#IK8YTIDKh zh!$PlQmsw5iCGX`T^vEtQEI*|;F|Gjz7<}q5VuY3b0Mwlcq~M0lw{V`f?8g*Pjnia z-%r%-6HBkwT$Ws504(kql`X*fc|Mf>Tj_9f$rId%-U;nRl0MHiTb6IBXVNqhTKvG}|@`_qsb zue<(_j7?*SK&A#Al-|nE+Fr=rnKCPj>n$0LJ3`jYr8`vbhFTyN)oN&rZ`J~6*s!l% zjR~XW9QnJhe9@&rR!otfI>M}&0Lxc`muh|JxmLJU6)iBL`@vcFt2G9eeRA@4*P2GE z)x^z7OvIC?MMYj)r?qlC^my?IC?BLy4iqdZ)K*nMHvHl7_ubb^aRmTOxaI!SS zal1PrQfqq%AV@#|bm6me)UEaPC21JipYDR@b!pxyOAo<{2>Vku*jW9mE+!YqC&xW9 z#d81$T;8>3M*Cm|8&yKfLfYMs3a9OLaRPYQBfdQ)TozmZX_)6-X!1Q8e;%`Yo6~#c z0aJ@Tu0Jg1-lO{Ns=ao<-Ez45Oeeh?S=fS^ZxaQcaCM)lnRK5=*ONlPuZK*&=U(fH z5y~I)CV^f2eOYM%k<7c=PPbe2@;y}o2oS{Lu+RK=?W2oTw>*>70-iC@L5QV+Nb&oX zFB{+H;xS9G^xsub#kPk9!6*=*pA_C+vLIFiW_^5PQ=qAi&=B{sMC69{ zhuuJIRIoZJK`1k6-AlMh3jdqM>%?)hn{}088?1fY4+ScNV|2)40(|IPpUAI9dGZ(d zt7-?L&aeQnC%ZZtdU_(U(}|P(_j%J)H~_}m)O82OcXqV7QdF5W7)efc(SaFAuoMrv z0hVAI5Zt}?pY26TdQOB~d0)7S%n<1SdiB`cM;6H%%K7v~_U6~U5qT!o0h;uLdz(S3QRI;s zsH-MG=Hm>e*5JECEK_mixjKzE=MG4U@*%e49sCuY%4>4SLCE45NEPmF1;iTt&f|=z zM_!1W-|js`toRQx(Qk6U_3C2$GFM8-kn2^tVFBf7Lk1!{5gr6HWRP9&Ta~Id-io^W zXCE%rJ4`jr({7iI9xpqSNR9xGhdmRd!Az|0EFJ<-pdpwDW&b(&$&Y|U1G&>IOh+cx zF<5!Y)p}W1r`Q%!ZX89W;iaE(Rx4*PGpXIQ#}^iq^n-k1kQ25;b~yDwnD+7CuE+3K7U&7a32gheAVK5>82*~YwP0c~*VqYxg1 zu+$wrR)+yY^*o>FHp!#7ji6cv$b(5>}V5xY*)g-9i1iNw=C>u$ z*v-SYFT}qP=pT8{ES}dzN0O9(UVmzpq<~)bYHhB2T1%K$=#wCS6V}6gmXJNJQ5GPX z-tLxJ{@uj8W%G8?lk3CFmY^*H_xmG1D*6Kt$5HZfX@Sj;2Ra_Mz>eH|LdD!-4aviR zeD?Wp3<@fAJ0fnPI}&!SC*d=V%4dq#?VO>4(UmLJ`{^Cvx4hWBuDwZ&HBql0t?=F7 z&%e&ST_5lWcwN0zaqj_4y+n)>s}lD+Iw!>K&R z@in;4K5wnyD+!-{t4e~++((k=R&EQ6<|jq>5IAd`xtwtxreNdQx~D&3(4xy4cN|N< zQy7A9oZ|zsVH`_|3aK1yqT}E^s0I6w;q2??E8S@5k}H+9Jj1r^CtUe5kP#7idX9O_ zP@eLC6zyL1beOfKzl>=bVe0FQ+1)xR$YK^>sn~w`qc!@{7S3D*pRdedm@{+d77i80 zhtubZNKHnWZ9=MS|vv`a^q>sL(nCAGNdgv%ZJQCMmHwQpqO$_!|19M)^hv%<(UPbYsumWh32xd}&KG~um}s>}Y_B_BoMZWo)TNQ!grRHD=) zxt6{)RAcvbKPF+k;zFbc%yvKh_MrD>b$#LXBhl{Ve*gRqd`D>KcX7gVY4`6%HhnXz zd?lNpvJ!5VTWY@8N^4~?k(l;Th}2Ag^3i>>%t!xV(5o|OoLxiy;DY#%i*I09kNVB% z9F$|9bLO6lo5rL_o+BDDErYLzt8W^*qJWBq4u0dhTR&BsL1=d$s!=F!F?Rv;o}Hk& z08N#SNGNAh1y>sjuk?vzL&di-I1`xt1p}oDO`d?eETd5G!#@HTVFDw4a^(w9;Cr5+ z45H6RTey23<(D~uEq0C}69!)vxbI}5&I+2%gOi8|z07uA5+GyC%HDcCh@FhnX>-x< z{5Q=TOL}*7^w;@s2eQW(Z@cuKL;N;Teecd+|4F!A|4U4?dtCu{3%r`my}kI|R6UOz zGQIZPb-oq0oxdH7*&yEOWw?Ivs1=Z}NcmUuRk2}V`l=dnNUxjXRemMmnK1#>nRKVniYLE$bz}?f6 zu%V?!Jzi)G?HXc0FE&hJR}+?fsMk7%fZR8w2|Bs4?}e%gU{u33sQw0q`j)d{*MzwZC`z;#2*p``ok8OU>seXs! zt8d`90kgLYy_bIjV+YFu-LLm`^K+j=(U1lmahmhL2qFchTH9OA+d zmRg$8Aob8*T$v&|ro9@5pHJI4)JC}V#lYa#gO9mjv{G0Gg5H~7 z_pFm_4}C1L$Jg8@PmCTi1c(3{Nq^GtKr~)7URZ4SV@A@W&y13wb4)DNXV0I7$B`cx zCvz(Y0s~2#iNg;V(NM*46dbsA#09AeV9_Kwokp*po(fyNTFs~iN8;js3y@!{r~wZ* zftNWg+&_8`(5WAHDLkU3Z&AUw2}zAM=qQMUmH`xek-h!&91)H|5Y;OKLILO>N%)n_ zEkCvnk_ilrYdCwr=PIQ6eU8LOIkpKuC@&7nE1#LtRwY4SWkz|_k*l`{_dXZ=qeTz- zY5alI-zF?nW_O?W{9&~%WZXQY{Nb!khOv`#snB=zrdPvazu&$UezEo9Nn}7qweqcd z{@Pkv($Qg(jFHRLCF3}Ke_gBdY@m=@ria)x1!>qOkTk(9-k3SD6BiT&by1<&OUA?t zXQx^Cg@xt%Elq=}3rTRAgAKn7s+#I81RXSbUuxmGl<_SI>d=Y+YN89tJi|0cbDH%^ zaBfF8i# z=z)RN)ohdQaW6z}*!IU*FrK`OWwfz2FT2R?Cs@EzT}T456yiD38WCJlo5Zu3hMJbx z$B7bLAZsbV1`|v6Gg38bmoQGZIu9cS>08bwz) z;zOn{LS7dq-&9X%*|d-aWMiRS=J7G>^Z(q19{e3wWJpCW+fR|glt*d^JLn@Ch({{)lbQ7%CXpPv zP8^y_C@@U}?T}3POCnm|2z_urn(&u+w4coJxl(^sA~Z0C1tJ`1`-lIOM}@rh9a7bJ zn2E?5=dQy=1ux3bp{=_I->hcn8G-faXiWtn($pcI`yfH2e{mKwO1`kOg1)s%e|;tu zICd;ePI+J(d#m`To*3M;$AIT{CyIOi<~x-n^%T3f22Izm78D@~k0BbV0G&r8j7A$7 zN5YKg%>pSONa=SQ*4NnUPG7Ijz&0~Y)mUU=T2^SvuRfBIE88&XoGHfvH@f5UG+C{H z48@{PXlYGcER$22EFL&go(@|j=3$^7BCZrLLYQuh(#OiUp7iOeP@k4;blg|=>WM8^ zkM7EfKNmbwmHhC`4_4g+)=|k$vo>my=W|SG?j&3Mx-ec^d&|pE|C`GAxksfoX!k35 z1rk4FsJDv!&m2}YM+_PAeC#R57=zxPulz~=-oI)8b)_Np^&83KIGBa1uui$8;L!^b zsN;NO#+2%gYo-39UR^}{31pg&Kt&Uno=^9g<(QozPf945)O5AqShmQhJyUdqey8CJ z)XCkG%&_+tQ3{1m#xu_hTa>+9I?@*D;PMeQ%_9~!2H&@!AUNL-pX;wYozLBpm%jPv%*N$aNp#%i#0+x#J-?Ggr->F6soAk z%Tlt%vKc|EFjX7;j1`3cfjd?ZH}|_PSt-t;!s2B5nLk%mbC2ojNoL5~#N;*MtDi-> zJleyvW@#)`?r~(rPr>XMdM3AB!=G9RjWa#8E2S72>cO{G*5Z^ST1o~#rIi`ixeT!R z+lUNU%IQhOzaE1g8CP$*q1hXMVLiT-tCb^1B}j#S3HXU8?LtXDx07rxjE4Dve6FjH zpbqVmiJFlt{1+Akr8LPnQo}gX?uqN4F9hhpXb>0J!Wk(@SlFpJ#C$?UnBBJ1FlE{7 z-7}FqFB!SWo{h8;jdE@F#k<&ZZFF7dA~mB6u-IjbGw)fD`5q68~z`HS{%>ugExEbC_|IL9vd z2HLNXsl7Nd3$??NDz732FX-%aN;z_!Uo-mo!Qh$VC?l!Ts^*zu8k0y;vXbVRf%3o3 z&%O-S@tW{jddR zDUKt-CY-tLf#($9tRL-jTph8-a}qDQmX0%Eh8*$i^|yT(gwtW7H2fm`jroBJM;P>tfTd<4J57Izb<|m5NQ+WX zA1gKKqkx03>8PcOCQ(wrS5oq>UkVl)8W!p2_k)S1i)?V9756J0Qz4&!Rr3&8oQlT8 zXP+4_Qj=4N1sFjgdGUK3-(+OnG=xEJ^)l`+5BN+SFH1k)GT}Em?gSRE9un4b7fVid z5MZB4ktgtc#qsl)Ex!47scH83f<0olwzW55F6xLp6UVBPv?%@{q+5oemv4e`i`xh zwbiRxl1JXY9P2&7MISC+|2+#KVSrjf{dn~x{sew99&`guY`TGuzu%sVwIKO3J*}2} zAb=SWhc)U=eOpP4jq>%=lCEp+%~XALyK?ncu54!GqYMbZ6sUN(EN%>XY;a;mvD0|D zNjV+iwA0_?l8v#xch^~}{+-cmZ+Py;lYHe>Z&6P7#b~)GIong4xcHb-`nF2_0Z2*n zPb?Mn7$?lXPi8P^clSf9^|8$1YJJ7`*sF{sJ$`V}gSWTgDV&zyQ6DN z7MhUwcmr*@f)LsQ8 zs0||N>?mEoU(*|TZCZ)1_a0m92aA>tuJB&Q2fy#dt4s41Mxwxi}T; zSC0&0PHYKbrbb;8Sj#+h`^n1n1Va2cJjA?~^2Guh*Jxu|;gz-^&e{SkW1WfpGa#6Q@7-e^8wCv#py0D- z7BP1T!)xrOp2?)gOkAVzm)F!YrnA<0WOZlgB{FPWCYhAeMuJ%I`K2{9i~_AMOrs;z z(R==4b#dA^+c({*r3(oC#3FeyAFH2;>To#8Ew%Vy0hgMRLQK!;xU+CU;`ccF9PBJ@ zsivah{4ccw&To-UBr-A*bh4Of$9=zr`l_m}pzv>7E@T5zdxNw4VnREZQ}|;ZUa?lX zqvF`G{1BEWGQoXr$W;~hHPp9cXlZF+7DuPDqAAqy= zuFi)xOx)+!f?AT-rkAh}urc4bUvK7erBPolt)^X9pLAy=eE<1`f%RGpDeUJcd#fy9 z(GdRZT7GXY`nhvd%bv<%BMONIDK3wa;9`H3JheXlS9c2DFr^a??Y%2Mvr@V{_9c9(%N!?O~FihdLpF0Igk|Y=lvTl>9UQ^=>M@5f!^u^e?zfx#rD4 z-1P_j;}Zor~0%VbqpcMYCPmj@yV7rlJ=QkMX`KTNksiZ$w2Bf%vUI!XW~-9dt1(l$T!N|k=)Utn`1X3h;05=C z*zE>Cihtcjw)m}b!G158=lps6*l%%hmt3P%92H9L0@gX`xM0K1EUT`v; zjZD@aB0QK%Wv7Xqdog&bJ^jh2vX@Tvgvq6WZ#z)zm^Bxi=}ebP`9fQ3D5bwqJZ{Rg zu;zR~&7zdC!~FH@V-Xd$&iYZC57P5l;N}QTp1j&PH_D!tGLxR0B$mhPI*;I!LpG}4 z)AFfNr8SZ^v(4Y0L~6G;FR5{!9Cku~6OqWOJot^;DWj~6h4A#2-E+RoJMRn4+c1wi zXPC2>jTgdk7=>$=?XpxouvYrh(gy+8?>t$XkU{v-${Fr+*5KCOmLPteMAj>Y^wUhe z=f~&gyEQMDX&pD0CHDP4&nXnR;AMAZU0t=&3T8VE?qgBF3hrcUS$1mDOyVcQ#{vQN zxr&w7m>zK@-zFT}W7?xT&-7WPJO!C|1vT+E>yJlcW?rGv31~On_2Eq9$W}>@mXouzsgchQ-(UVo1OJ+F?9f{ zLDnVg`Wdx;x%$KzLBQ%0G=i+Ta1%#58_rK=1ffVOfr$(SZ3M>2=N~M_g#~EARI)T& zVsE+$2Dj=N2kRz8Q_ZFAROGCO&iS*&7PM9!YS{kG_t0wFQ~(-A>mQ{~ z)*P+_iI@kk8g7z(PLQMHR*#){!DkLeH@g`w3) z#DwCG4JmBl7l@M7Kl-#YZR9&&634egz~)z9>x7= z;(xURKfz{J0;o^#pP})WrIx3r$}_jSv^fI)H`C2opQ_kmBSLTLkbH&mCOwKylXWk< z#g{z^t$~;`+P3@pmYv5syN@;Z&y>BblvX1dCyHY$j|uB7YDmw%PGjXasLwYqnPVVL z@XJUBNdpRjTbt>~ccQNHhbXobWLg4mg1UZwzdRzXX>|bf*pBoeU^UGx3J9QB*3Iyn zcL|bd#Qql>CIh?9T4sMC^ERt)RBt==x2lGU&_LZ4XWvJw^Ivi7QWA;Z=He3j94kXa z$*zXl%c1t64EV2tm653#z5q^ixXXI9r-;nE%gmN3p$o%^6)ZR-%1@&|SWB*PTLB&d^Wk*m1d%c5CRM4;TbN zFj$bRG|^+~DQ!RZ|3KaDk<6u;pi-vsb064j_LRg7PEg5avPQ~>N5$GL)oW}73H7H6 zf@x$*4?3)x6%&CAs$W(!hxVs5B8^~{zi>G`ydjLH7zs-tYTq~C=;t4tR04(Hf{L06 zay@QQL#UOOa&)=^lvI;~_b`du&)aMSGHL70$q7tWl03Ib#_?DS)T68%#P5Paq<9+b z&K(-(+R<;bXS`%FNW%#lIE#I*IQc}#^L@_8E+93v4S&}qa^;U|*kroMS=C+C#j;oE z)zMZaJ`FjSKRItdvJuV$>RR6IExzFtI|0{i7g^u$kGH3962J5p)pFRVC;5NLvY6WU za51jk?e6D#5#F`Fl%0*3Yq;JQ#`0fWKE&$!)#$4>mM_(Awv8TdbKhE@M#>y5b#f(e zr>49vG>&p*^!rA$?f&4WkoY+C^3RWOp4h_8_O0@ib?-jKj3d^q;lypZ{PR%7jxP^2NkZ41+RkqWzqz6P7@@FHmOGGE1Z2V&soU@8na;pZZ^qA7#1He~!%NJB z6sRswAH+c;;L+}I5Tp*1Z0~|2SH^=o44--9hkEOp7W^U=IqR3@j08m}&s^-ztR14s zh5h-V=hrDEzld=?B~4Y8EjmV8I>sC9*w?3<945*ZAJYZm%p9h zVk~L|P9rw_BA2H6w1~$e>v&K_!&uZaz+FF6E^pf$G{jf>osMe-Ty(|J436Jz{=(OG z^D5#=e++2Zm*G32#bS<9dQXjeV@Ri#k$#CCC}9c3G5Uxh{J=al%}nDfXg%Y7ik0Q zb_QUO{OaPs`pABCrD8rIp=MRieC$U!W&UF|K|C+0+x<^NQC8I$PlqT&}a?*p$@UscO zU%EU8O@rVV`KNnX*2-VxE%obN2YDNXhBMN94JB4n*jfDUYT*MDGrN&x^SjL)!co63 zc?tP~d#K4n5_$uwW}Z1z@#rs! zrqJjYHQWpZff&_X{nxJji2lR(16(Ss?*Bv6SBJInd|wB5C=`mjLveR4?hxGF-Mz(& zySuwP6nA$I#oZkWy!m|J=Qn@k$tKy^o!!Zud(J(3ufKV&0gb;qtr``(%V29nx#_Yh ztQ$4*x$K{c!r_rfndqb;4)A1v7TKajZdkDecFWKYh}q@=_=F9>KW7yZ+HC)+ zI)a@QvxP$scy_6=SVr3lycIe=Kal=ZxYcMxF@luw$sF6j4MPcmR2i zUv*tLC-Ri<@a4&&)|xixKY6yRHkO^~d)TyAol~OKgxiWt(~u6f>Agf6?o!UFDbqNj z|KTCsPDry%D#B?E(?bjJf9qs^MzZG^b?t5#;;@q*C}Fc6hkex_a5U{PFd03WyO*B- zH@`#E$`Kh&yR?vyVvZcc4#SeSK5T2X{4}gWi&hiM>SCF{VGIqU89C{nHCfa||NiQV zbAI>s?*I7maI(yviA@qki3#yoC~7cwi?$G*Id0%9drNxMr2fa4RozU2PJq455xxce zNB*OvTnH`?deKaY!WYA{hoRRp$u}hI{o>%c3=>;CuHWCC%Ue|&S?a<}TS?chvh&gD zkuePYY}>N zCYp3COSxat@opAWb>|w;uq+6)#(4FSm{YYP=+JRgd`*eDTIk-DZNqYMMIL@DSknc@ z9nbyD3uAA@Pq?R5v)}jF5}_7Ag~ehK30dXzSu3kpZ%|wD(`~AXM4C#j($p}*AXB>uBctK~L?4cW-C@0pawo--Zq2uT-{0L2X z<3LG`t{Nd?`3_dbnK;4DIpkT-HtH-@uPy<1G4N!guODJd}xe1FE=+g$*3bc zZ&u^n`uSgQGyDmWY9%LAa58%d-ck}mzz{_jO!==fsL-+H0Cj8`b7K>czj)(m|9y7R zzbFH-=o{wr-^r{;2-g zsMgEhfUwu;_=hXshj);wTv5OkDKG)old2S@-9uylW@{lTLg7&ka<=yK85Nj_9tIoM z-B=`uMZia=r6^5U#LDKCzJzW*lM9{9rI7{EU zX2mW?0`OBzH>n;6JTAcIRAlQlJ7cL=5g1knJumeVv3KFz>u-j#Ca65} zAe2Z8q8|V0)2L>c$u3=A_U4&Ut!#;@>*-0rD}zN23*F0_VBwE#xHPYeO@z*GM_ms? z%ZMs>hYA-ipSuHAVnUyu5=Ru|t}DCowY~#gUE83mM!25cXx6aAl*Xe^0YibY{g@yj z48L@62l$7kvHpHPRw?d4-gZQ+<}t(|9@p)fp$&tV!`WNu=a0fvi2$D=2@o5?v*nly z0JNFax3)%TpEfZ$L3Es%DDdh)tl7MQuSQZx{5h*U{)(jY$g>O}*>sq2Dr2`NHFO{4_+4#(>;8p5)?|%N?N}1jE;+o(;NAE7e+g zMaa!mWO*cB(d_Qu7n3;2_R(=kg4P)u?ou}`4+}qQ)|G)k?9VH(TF0OUuB%ZE2n0S9 z!>F`$T?w^0YrL%(5atFm7s>lE3LspbQ9+EU=HllDFM{8}A>IZ)7}!I_c^yRqV7L5y z@ant{#&M7a^DhT7bfdnMIflA~c~8av`YL>8swbC#&jsP0-L%Y(w1RTN?McgQ#Z%ku zZX7cIH+!>SMpAfK?uvZiLZPoo9pQkW(EM>Gr*R#R)#!4aq#C)P?HD?caN9TOeM-_> zY7C+G&D{Ob8eku~s2X+SwivB&4_wJTsuuk*rBHaEA{kIC)dHQkJ}O6lDzM40_J=mVr0(kZ~> zBH$;f3zZZ#F^&gM(r!Z*=$Bc_IMnO`q-Z;E0>KbMd^h-GKD#RG?vugZF!J=D&#K`kDDXTz!sdlM_Jv^f1Iz`t6DvTL^my`h zd-{Z&>@%d@p#um&@g|eIVg4p`STb&pbl?)oS_-FZ0p=2?7h2+4tcF@8h=yHeuZ#T# z-JO9ScAY=c*#Y;sLPql!ObUb^CyP$3h6%4neLuI#k0jJdP#+Mro>1i))%$i^P~CEa zK>_3AbSGvgctz8o1tvG}ML*`-Wo$)u6B7I!D&a#d)aXPC!>+Q+ZG2{C-aX9x_Hp)J zQ>_aKjh&FOTij5|SLizUSp^C+D)g((OAB)FBB}Rity36~kvh#vPF`wuP<*Kzc&6OW z?Ka%u;tSl*|4Jl>CeKo@r>?HPjV{n%oXpEeU#Wa04v->DOI`vstO4y6OfH3Fx9YH^ zE_rwQ;#s}+L{&=Hkf1Hq)NBPd^YulRIl^~!n%-{07(N|#S^?P`j4$P-IUVm$*gR}m zeB9jZn&HPksr4NxTM}hO!hc;zgtdG@tqC-|LM(Yh%@VDJ zjjppuU3EACHi<`Y(j-qR3vU@kvv2j$6Y9-K{^wnZCpqyjvi*~{N*>ZuxMp2M)`$Dg zixqNw0ecNI>pv)x1lSni;wnGPu2!i}dog&WPtYn(0Dq^7V{*+Z;)%7QW0eT$2Py)i z@aSM(m49(C1ESBIhxjly?c26~=FSBi+^%$S*oR&n@B}Hf*{>yZ)q42mZZ=;9k+c2U z!yQgClE7m0q_r3^x+iqfkeI>5{qZS-eKeEVal-#pTUk#()X3uJIrA@C*1+Idp6Tg$ z=aQKocM+bbc4Y6NO?B&1&EsAYyVmExyyKpTtIp{}#=z!kcc^ndQ~}4#Cm+dWNzq3R zH#y<&l-@oe`zDI#iuXUiO$O|)q{cnR9)#08irz-c6pI0Uo1fU1kNcAh$v)LmcLsPL z_^CCvIdju{FU}M3i`xQRbd>qC86_O%a%QTGw>!U=;^?v-=l_}cm`{v|opkt(#0-#M zX3Vn<38FO|u$-Mg9LL6OJk6D!^=vnL+y~Q23TAhBrm}ohky3G1nAxuZTbb*pG*&vA zi*=uYOSX?-p1U^nS9MNrDDV#)KI;{W(!0H0U_XCU2`qETQsF_s3ijG zo4@2}nE&%Y0(k1b6sg_F+1D599IigHIXia;9&JZH!eTuKub5Yo(jn~owQkf_oPwsd z4^IxVPTdUzT>HzCpjQ`~hN`qD$9PP7+1iI{PtZ_hl4C~<16DTFo+5gB{*cjRJg^|~ zi%Kr{+Qw0luv2z_6B07Vfv~IJ0%@AGpgTB_uMy zMFyF`GoY*#1@G~V8YaVJP5WrI&}d;pi;|9yL1yle5f>j(T+m3`qC%`TPKeeCqlurA#M9R@Jq*-dl{P8es@cgF1|w zZne5V1>X|G#dul5gWM%fz!{M&Wv7)h#+OIcc<&=zxUl!ehe3@uZ~gR#okJ+qZ?1CB z1XdpM$`1o~=JGFZAfCo0FUg!#Nx9df>0L#lv4LdLD~tKBOw+J=<_eF&-ao3WAeYlF z%WA4c^VvOEB=vrJnJ<+98;R?oo9uO``^8#DqORBmf^sK!3!uEoT8b3D!A-T=9)L$# z9V(UkEvRgVfze#BQQgAq0JGw>fF&ref(T%_E!*8vu-b{;{cx?})!lA*JYlj<$`5n~moVP$f@3Whb`48q#GZHcv_kKKYoegO9{cJL9p#H|LI?dJ+Wb zCkC6leWcEHRohwklr@2+}yO(AueOPzHuEEpVyA7ykQ($1F z<;RB>p$~-6#9*Q#cqEuYdLvM6y5PzIVLoHrN(av^XBr!b-rF>d}waQIUR03lGoxN&Dx= zn}Cq5*Fm8J#Ob`?%NTVoUVvUM?|O=&xLZwaN|2bm3$M5CC{{@24KxrDUEp~T>1K=& z{)_lWkd7VzXVN)AM$*)H0Q7{?T=J%4H@wb-Rk}RUfS6dZwE9-Ot47?|AHdIfAY9lo z^a9f}<+uDa1=&oRWR%4G^WjpYp${M0k|Vp4H*)Q1iqshLUByOKr5R7QXR(6h1azd| z_)o5<2>k2)FTo_7>Z9n)VeHGL>JI-c(W;`vJv4Bvh}>rf;sad~1L5IiJ#fN19i;4Q zI&Kk173qlrSXr+xw;o_9r^W)EARIGkC46>p{`5Cca{Dr0!pqUf{?H8+1(vTcP8+zm zq<$FRfXlgMgTY(%uc)PNx5$M1dLEAK+S9{8I03cy87htr6QqDFmeTDq9dAe}srLQ7 z?8+KBX~6Yt9iw>C84P$)olu^CXqSaWOXoOyiMRt)Wpc%bvo38iTfDT& z^)ah;x3l(( zJbO%y9u0YHJjT^*^+Z8T4FEc`urXzO0&B2sEV`RKH**Szb2|z@@sp!qogE$Fe?p_j zlQc{cVd5O>F)cQ9SvLbAHrfg+{ivJAHD9$z4Ohl@^!TVqYJsePB2<+T)HBgY47=j?)NdVfZQAaMNzE%V{U6; zU-p*$%$I^<09E=6e3n_inhq@IzoY#ZatK#h+>Oaj_Jg%P8C;lk zD1cciPB(A4<5f(|QAImyYWeaQRqpiToUQVxyAvI}LJm)U=zX(o#<#}Lxe{#^d?38? za%X2EuM8>`<=<$1leGn6}?rZuw11a&>Xh4yA} z@N4RB!7;B49#H3C_V@b_YFo*tSG`0A1E|sMHdjzbf64_Pik|}-_WAgD#_E`|^nW*( zY%K@s%r^-|l&a9aw>}~6W3Zz7YuMcAkZ{jI*MeT#rQO+weyiMAnzJ%eM$_h-jsG{t z5M;rCebpI-lHuT}bha%(9Pe=yafIbD7%#vnTBq}~8;O{l21TXA$ihOk{kt6$B($1N zLr`S}<-88rK|wTi8_En@zkl~yflQ%DfYn{HL`Bcv#?epydA~7T924A>4$6*E;N=#F z6AAA{KEll1^q)b~(f@qbF_+=vd%2-*95zVR=Yz#Rap4Y453MDzKKe2Y_R4y$9|)6k z)Y>kYn0)&RhVqd zyllX6WT&c<6ft2t%P%w{dFxB3dR-UQ zC#~|dGLoXNNNfe%HSYe+8RjQ07}Ka@pxpCDtmWx{eBA8pQcueLmxY*LY6%~xP=fm?{Bi$_#NPl!+hGjXjX~BO|>jKX$gIACA_*WbByPSv_ zp*z>vnuJPo=DSt*Z4{qve8!@65_nN&s1YZYXqAiy%NW>J;fR#!J9ux&?IiNTAl7b=bf;~ZP0-}y+e_o z&%e3Yi+CHUqEL?jCy|lqP`!#`Hq+-XxiJ2oE>^vVU?yaOX>>XV8(vW+z;*sU`3!N# z%PX_iz|CT;uP^^_^mti$TgG;d*HWXB0w5)0ujeoIAo6N}S>`=aZT)zIb(zC$J6b{b z(|&#elo_xQhBTiDcxp-_&-G$(+FC$NO6I93JxTlu3v{RfVRh?G3v2mZRBY;gMY=iPqr(eBZI_k@sAWmp=ck(Nc|2N0 ze33T2ZzUK*#T(hU%3GV|GPSuKp&ndxknnI&6upM3d^sVU4(VnIGiAD8n5g*`lwyz) zE6r|dX6Ce{+*}S(*1y>1Zc%HkS~=C)41T?ZwwVxXV4=UZ*miD5|My7Mbez-TI;6eD zx=D>%wC-_mfDHxKD!bpGC1B!VL>h`CiajZb=9)+6!DEQh?7AWq`zhN_j8Nb;G&V+* zRd|!A+bK%aoD#`4w-=f%>Dw;pTiG#kEnY@OAGAzUPnPy3g$k(op=Qjo3?dL3JRcRc zI^eX|e7TmJRwPKX-sX6VMgw$lx?D`Ycu<9e4*F{)3kMd!i-@8_F0TbaF9{PqP9}-n zt$d5QiVM#B{{vgPUFq%1&-u#Ewo^T4S?QzQx9-Kmb84*nyzWv6z&vuudJSHT{KlZ9|2_*&9>L~nz-c5GF z^Pf6RQ8;NFM^xpN=IqoLfmQ%m$mBIV3K#TE012fWHJl`P_7k=pz@r!nc)nlk;_D3i zEcYt-Aa_&hTZdYXl}7gDCjtVu>|6OViVq3@Mw$IihE)qw{2bZnaADr^HeB`xp?L`yKS+O|GY&PF$0!BM#wjT*&W&tBhqWLNe_h&Vm=~y;sICt!#DX)lC9V#pYOfI!?1f$&~8364LZIkuUKR#egs3 zBn=*D1-#`+3YD!vV&9?HVp}UX(o(g<1xxWD0%a9&D1rff#fxJVtqZ4wY|Spo`Rj^X z+7ML84Ra(W(i1v3CLML7MpDu!}Z=o(H0IYf&H z_LHWHNdS2wy(-6Is2XkfKD`Tif3PR&)POsntOx+hE z^LY;Edy|+f>qGuDd{ABnM$VI(6C_7PFO()s|4q*jV}wN43{jr$8jf3d;x#_`tAylu zK7#k7f-H}|U}BSW)Cx?baCbw?n=P+jtj0FObuZgt$^1Ys*_hAY`TI;`QaJ9Ll-Y2h zH@E}-7J99d;FS(k12OB?BK=Ffk>A1<8k2~wz z;fiu&(N10^8K8SkCG})%%7!5v@Y+umJe#cQZ!7$Zr`9+es7H z#s$7Iqn$ESTk(p7W&OCAKFv~Y=dRI46S$w@%vF+I_sR_hCIJ6sf@1KYA+z-3+=zRI zp;6_2lMco2_}&l@D4;Ct9N+({!e$1Tr@hk@%kU1HiVggC6FrHG-9Wlwj*H1W%c3k` z7VAYLdmvqa=D&-aAx{T*2#piraO{dpRt>sSp8gPe0#^jNYWi3y-YY4157A=7E)P;6 z=TQQwbt)AoxT870D)VNk%e5Aoh%V#ufBM#(=Wg2c)n&%9+)W7C{qer0Pv>Xg*xie6 zCN8VVNc@ijOLj5p)W5#e4tU-X+MewSj$fwB?>`nH?&Y--)qoEMYJ+3~Lr0-vbseJF~ywJG}0v-?yYa5lwQc)n zt@kXy@`s%FZ&qmvBQAfNSaF!9Km`PGF-v~j-IS{%GyH>Si&J5Ar#b817rq>P2T!+; z>DXf4`IRe`X(kxiVQQc!awChEQl8Hj{MX~-A~C2DTm{u0O?EKZxYGG_9YX+=hX(9B zZ2r_c!jg3S-e~toqDoAdZmY@tP7{=_7>`_9p3dPyU|cY!@8JGO0N`0$Gyhw3V4!hY zm;|&nH*cAA)bFI(tUjEC2_!#r2{>td?Jl+E6?^z9N$FPL%EwEm6^2tZZ4S(Sm|x-I z=Wf{TaA*G3ITs@QNwP>5$y(l6Q6aojMappL=dK`sG@SoI24}_xJoi?xzS_sunXOKV zllGxIleDUKSgQmzOHfn3(1X(PK0zKQbAGS{1Z1Mx@zZ(d+9CSMaztS6^zRcWvvOJ= zrD%)8Oikt&WiN(`AgJoo$LBb>3KU^3)l+6#+@jtM0WbhRMVFL%>0;XOYWYP_#)?g* z=s**+7>B<1OjC*A*1vGkcocP{Yt3S6*Ow5e?(I^(2M)Q&&U48TJ>m%Fu#9I`x)b;s zqbbTh9Ft;EoeOM!pjDceu~<~W@@9dlwMiWfoac)vaOeSe1YUl7=V6%2D>_CS@q0fr z=24QL+#&gi%ILBr$GG2^T5@Y zk--KiNtqqKko%(L!*gqr7>u-UUMm}heJNmi`NGh1knHEmVp-Yz2nl9b$E6u=&A0rx zcW%cMKy}8T-M6=Q(Cm%wnOa{15I z%{NF7%m~@e2IEb8HRb^&b#;;uIu=|xpNqwi1b8j2S9kXows1NX(WB>bzcTA3etQ5v zktcsL{~<@3A?5I7&PAtV{!8WGQ3w|wjlRCepPq2;M}1omfD}g0lgz1`@{0_h`{AOK zmKKy9>D&v=Tp94RL;#LA+OK+Hb%nL`^DWDtyrH3?jaMrLTmia7!+s|Fx~_gq%Y=#{ zmbNdCo^_xayTHN1te&6>_c8XNpFaHCOYW#D(vox@2 z-SBsRxLZZ6qVglQIz38h+}NXX^BLbshLha+i@GkZ(j9V&w%dP?28>x8?uN0}Zhc^% zl5O3B33nSJFoUPW?=kC!@JkaRR>em3_|+Dz`Npf6&_gYM{8T~JDr^$*C1Ra+y!zR^ z%swtEub#kNTe`aG!(xNkjiicsG6*P*rJV%K(N3mL%eJ!-`aZqQ{qPV1h}(4Qx3eSm zv0baIRe-76d0}kS>CR;P6C2fX?vQ@B;CvV*1?l+I#-a+!+S6mNY+CWuddqRXOOw@4 z<(n94JPsMD&27T7V(aGfQ0%OEYx9su9@UGV`9Cedc6MmEgy8jL>PE~&F4v>Asl$Wd zMNU)Gw`v*49&L{peM$(^fCu2ChJl%xS$Sz%=DBT}-_rn{a+A3JUQLs|39cF-iQLXe z5nDa4+Wxn9Nx~ApWYNo5iz+}fi@!PHw<{=W ztTy`YR)8lq3BdIz(5jeg!Bp!iD3gFH?Lr%#VPnnBb};*|Ib@HI0%8^HZVx9(fdf5D zX}!R+=gRfPsw-VDGNQ*QBiWLVhc9KemeHAel^26J1-7_v%DWkKu8fkY--C*DFgFP=E1?y z$X|)_8&3*@>VV!Ga_acy@`RjJi0_HUUl3q(Kh}aog)mWfB3`1AeGHZIUW%jYWVANQ zCVwY+W2(~xMFqQrRZ@AV{p(~GhTTOUycWZZfXcQio>sIPf;AJvS8;F z1VvY%@u^Sgr~L)6|BtY@=zw6(H)(ipry)3tD&qW{=%e&d0`4Ua?FTZq&Eep$7YtAS zpHIzQIZ(~20_6C47dOXrxQ}E79J^VUux^-ck3Db2hgGnEd*@i9%bI)mOrnndP<8t3 ztpPqA|4?6=f?+K-YU^?Onp@ps^-g*MSCLh+b@~L)k;iUV!8w9;)FsFfBH>)+4TWv`@-3S2SUNGNs94vN zdn+>ti@gix-X10D{z}5MA(S+th^Tqmavx%E{Cr7Wv+q@nNe$HiQ`ha z>|uU}aa(nIFhDS`@Dr3d^NUy=Zi?~Wi6**t)Q|-!K!E*`r{|9&l-`4gkXlb>)*75j zk8hCiGm+>`ZJI@+hyh^VB(w?itU4YoK%Z%_n(waCO^55u+Dn$5uNVL5v#7C^^R&4< z$COiT?-9F@G9=}s)=;zaXRp4EFK4^Xc>nrb){1vMR;z`KBV#YfF9{u?#KL(!@B|R5 zASLS*{bw(%87$O5pOUUjJO5v!!yi3Xs@5FgM8h$RfgywZYaWW&>NY9RkR@n<3KTvx z5J(5i+EB+v?_B4_B*q`_|2eu!^FNv}sP{0(` zpRA_n!4*rQe+iM-A&^y^5unyu8hUr4M0`E10t8M)+y8cvb(0;9k9_q#LSIWnsGhHL zSW$ef?Lu40wp?PVSm0a4E0gG)#^`GtD{MFgo%V$x$HIxfGRxd4R@)Z3{28xTcA3e1 zn)+`DeGK82qg7=Z!QtgTO7qVesa~v~a^>4l&prx0C&U8y3+I-o95YrA%6P|QF1-Wz z0xh)UQ!N+TvE)hheUltT$qgIr9x1#&Oq@@4(tHV}hgZH$30^D;^~97aa8nP+8Tb?N z;6UvfdIDF)Y7$B^gh!f`n+OfzDHVvTvGHL#X^%15_K`$yxmYQq^7jw2N6^^f9GAyM zl(I8jBnnigTu#efqyF4M8=cdz_lh$l$`%9A%>-K3O6P(@>uYU4(2xL+Ea!vW&~1HI zvatcS1SOl5PGH@h*Ze6joXY-Dt^{HM0#Nw2AH^xU5ZV%cTLp{+V={Avfez5m7fbRi zpRO)1kaeOG?>o&I9!tzKXT4fCxn|X}fZfbw36Fz$Pnll8(cc_e);d3?*1f{2LbZGu z?b0u;HCO|0{HyyAbm<%o7{5~3Dy+bc5}&6{#^*KPc1{&Hnf{k2;nrXX$A)? zwLzt?=Cmh=MOTK&gp_>^byw?HKE%$=@mIn1Wl)A9cN~x-(l>owjdG%on;o+YeB?E) z3xaEfQ@QafaT>e9#k8;dLpnVN1Vh1Ts1G=q;lKr6gFfT)ze*67z%E4LDxial;CLCW zZ{a84;+1dYJYZnsgw&%_puOkbX(S0I46n4p*G`2P>cNDEMf;&TbX2!7nx80k#EPd% zbu>mqovzw@qYhm8LK&^JKf98}bIru$=_9H6$)kezc(jfs2d~xx1QAuV zrsYflD}@#I0>^=Hr&dV}X9V`sY=4y)Thy;$6hCjwSXc}ElVIzkCfi-Gh&}zu5{O;~ zLU;-rU4~5=WTOSK!a5Xs<2Lu5w$GQvxV)_M+?By%6h3xj#-Unq`Srbq6qFEGZoR>_ z4z7?hN!)w|Z)(+%6DcBI(n=4q|6=UPL_o9c{BO$Tu`1paQ0poaC}T=hF%uR4!=qCV z3ep#@MsHAr_Rp$deMcl{(%#!`xmOMFPWGj?w*y3Bu^44u(KZn2(tr)cy+f3I86&uj z+WhM`@#fzfCb#}Leun=rdqu^vl6+E3$^FN_JzQt?-}zROuU!it+l?cVe@hlCw}&+y z?ylfNeH2ansRH&ESFj7XKeLbEX7BMHm3bGcfIKP$Q2N=t7E;>voI>dfrF`t)5fv`i zZ%#V;-@w$SZ_feTxwQ_#PChhr>|{h5+Q*}*`}A%ZYPn#R)pEr*oyZ$1tjvb93UL`x z>_o?=hQ7JVfX|etCo89(8=v{xfRXu~&9qeJgpO7ZRySR*_iQaKtuehfuyBdI1DS7; z>X&a4r65_i&_I}0=pE@BC7DeN`IVh-s&BD`aAeBg5{V5`e5nQ_SS3|Q0ZjU-8iPtgFwnuqn! zOOA_W^rp?bD0XWu=WmyldNt-%1l?AD)$aGo@8cCBK!fuAon{Q<8?H!VXY-8Oh@_)T zn6~&ea>BzZxfbo*jQzs3bszDtbR_@%f z(|lUKj@U$cZEmLzM?*<_@U)XtUH10#z3M)H1fFuhCwr`$ePk_s{J8fsBU7Y-b5G7r zDzHwC|S_pW)tAEW|Td?pA=;FezDvdPou~++jBKdu@TEUaI$8IFa&nE*d zV1H*vK)Fq4%D*kpr&a3qTN|ss?{3O%!ntCs(8P=&5kIX2<$@73dXUnkj^pR<#$io1 z3!T8L33=&t<2es@4Fitb{n}(mW+=W*INxBX9ftInZ{g`I`I+lciGotT)k&G@L)_C? zi2)dqLj_u}cK_LRc2la@tiN1H?dje@=?Uz23HBcTtE@q2llLFr3&%kK-R} z86>sv!bXl?sWGT~ zOmf^^b(=pqFM$LpGz3Y2xY>?{ldQO@!nrSebD2(X& zZX-7=SG$?Rw_{|I*f=crn~pHil1=vt;=E^DxSX-eSL!=tV(@ z2arA~Oq0azL7aL0yvPpl#awE?&SmQq4MfDxgJ0Z~llihy5j;zWQERI$E&7n4c~))6 z9G@q3vjmM1xdcjo7{S74o?EU+S{0^gd9;QojnWCvjqi=TvoUe&eERY(WX9ZoW^FCqBIhpaXe1oyBM^rs8GOVSxuREY_n3_zscVy~ z&tmgZv}Z?rpx^{aknU1lnSWT*6-rz8BsCL04sih6qxnS?_bO_i^T|k5sUw#Wv|0y^}2shBYmMX}?*;}{!OHU!~I z@24G@HE>p7dJXkjy-dH0+ZD8#O#WT_z=W6_LI88I?SYXb;TQ#Ac7ARE%~S4=HFLj+ zy!CW>W3aeMX^|iMRVRH1I8Em0pYlL|x^%nYRBFFh^)O>S?&<8mQ$*BLMu)5hUTLwE z+%)~rr9TOW+Bm<%%sCe|%3^0>;ow5Y{BxF}Ee@+x%Pu#%(B@3nYYtM8IYBjuX0#AE zqYY!&pu~!UL@0v95YFZ^wsGB!yIcB60&9Z%a%QtLb`)?((>2oQhd`Q+Kgw+}sER6l z6TrCXx$vu-2vB~xn%3S`9@M7GC@Qrsct_e0Qa^VQnFafZMQ$JToR6LKJrg!zk=tWV zZ~BWEFRUsYZCbrD@7YP_rw6t0<=Px&$lQaRL8LlG_*n2}eJm5rf5&~9+WOdSg;y-HME!A#)zLy6u9SMSeh zHeQG;!jslyf75&5+^$>0jyr#&YR2r&hcK5=T-vu~N%+|F&}wD>x>82ai~s?E!~_JI zEK6gAWY6niAIFQslgj3-Vz}*@KqDE+8PU>8|5g^q=L`qt4`TkYbfRn!$r>AHugla4 z?wT;42-_@irvwN_t28P|d`t1|_IZDM>YAB%lX5HaQnP8~t}?V1d-~0)8qXmGO@VM+ z>qox6O9{;wI|ZOelyMQ~3`gs5<;GBb?CH5#a>IX^XZVQlA?~psyU%TKHve1Y!R7mA z&(+21)(@ozKtNBTB{;iqncK)(4J9cNW|}Z1<=*vitOvn*Z{zN{82R0GEOBuHggqAY zHeyhH5IcM%VrL=_2U#e9Cf##vOjzJuih6YiTUA2QeJ@2O#jQpKMwK7r&Z-tJCfUcB zUTo#x8)6VY1}Q05uVS#Y1GD-^FmxGd+{c29kt4Z^_L0ot!`H1=YC}7QzEHB5hc(P% zU8jb)o1xe(Nh%V&-Bes3?M3?35xHqo5m%$g;p? z;=`_t@uPH9(8Q6OI*@)>LK-G9Y|);dOme0kiZ9p43k@KA`44#Tf*ao=85LN+p)TSq zs{pbxpCOqcRmLb6Hld6t;LX@ip=ibQ$A9F=?qZ|zE>865z@VV@BaN1)x4jHus832X~zmSkq28OsbwY6~y>Zn&O%j2SVJHNPvV zCi(Rc9{r%4CPD#3+g_|WcGE{ZNbtmz+1gj@8uL@rAvc1xt}QJ-cf8SlC*kJl-|ltd z1fX|IUDbKpVM}RRa_$f(5t58`aJH;`_2PI2zdQqlt3(P8kDGfjCZcmGbWvR$EYM2pqcoS#O6h4wbadDZ^P& ziE`e6o|YEQBb}hag#5kO=@KtXORO?oEbvR-&QwzVf)NEjaq)rmVO>!O=`8@a%=xR% zch|XsUv2PC=$z{GK$*cGY5KU0A`v(;(vQa{jX5OsgT78IGJfvppEVxPVV}1QyFwxIYRQ6pQc+9D0=R1{ybO0RFDi5_Fo=e_@yNK(}R6W_1XNKG@1rMG= zhabFoio{<<!?rWsc)uVxjE>X zXJs~p>(G>(@0%0VWnjg7a8?MyLZ4&y4H+l)#Zuc=jyu;DsQ!4rRNP9-1h#fc|J(Bz zq!UDqmPLW=+yK|s!v&OZTF)`b)yhe33s0KiauqSi&wmugB~z;>|5#T)@uRm|rcsh9 z>l@8l(T%+92>1%Ht)Qi(u!uPGdLqHg*0-fXz};&3lAtrMOQ`42Q8d0Pj;n*=mkJ$0 zIG=K)SHm`4^?sMpfnuv5oEkgN9n=16_I;jAbToED5lM7H@@Q5VS1O#2i&$3d>mNd_ zv4w|kl=1HtujH8u+CQA7B1cP=hOQ~vw+9dPl9u@*2MK{jiN~iPCHHMjE{@d~cg%?0 z0C5c%D#b|^cvbln5a}HLxU9UPC)~SiMo*l)($Qu8rnjV9W=ig zH3~3PI?kk~@kaHo1UKJa7bYrG@YlzLXhRRNF+WlbEpF%9tK;K_gJZp^fl~x}$@tl4 zXdMtCqLGaX+EXkMv-jiso~>FaGxH9qgtg!7H}5O}e^G5Sw0U;|T0yp($*jy%+L}J_ z28vb~F&@;4Q&~x#XJ|0CnD_@KuE<&Bgb{-uPj9#G9O0SP>W>hUoqwLghOWGO)AHCe z1>g}x!sGDinFsxoGRTXTewdPhEjIZUvR5j~wt+VJ`eWCg9cJs*%hY)omts_1WbSmC z#Nn5VuVJeNRN|v3V$I4_c0E3$MHI5l%SHiBrF6DcLG#QXBThf!??ZMp?xs)3^*X)1O6 z!v1w-nfv&EiM++7DHzFkP10N7Zb*MKC+W+48)@|Tn!d6R5qMdGNWL5S{LYfEY#uce zqKHN~`>@_Xx4^_oE$-}Gr@ttVY?q|{&B^XNUr6()>6m219G`^KcDtke5Q7j5AWtio zxFWa1dAhGTBz}CPVI(uKw#EbVhl{tOdw>4)cIV?ieLdEVbn{=VO)Oi#1cmDp5;Dk5 zZIN0i7^F!lakZtOGQJP&e3Wweu*q6YV+*wTf+l|iaQ|tEL+eour;AcX-a(E?RJy8{ z_wegkV)5v@xZ}ZUHq(&%{e*ymQE<;m{!(Bciaf?(McLYfU@C=x+Z|+G65BP=@W@bw zd2|Z^%%`N93w2S>mvI4}yC#A#p70XW?2OIoZ3h0Grj#)zk& z<{Z+&NyV=GL&wnO(p5A(u?vN98^cj)%a4O0L~UUvWyOIk@DNR#S->4}ap(d{I%}#a zh0LxKd@5gox?_Eha+V{5PhYkG>}T@^n|?6QGkk(wS;ksS$4M6s}yp0KKo~}mXMK5-|65K zI^_W2!v$VC7Rz*$Hh!GFjLOeTbVvBd$HzPk!l2FQ(^Lg&fjk~p2Q#)Wi2b#4er~aY zgL)c@M=#!Imz?!pT*8<0z=K3q!y_cc3m#Xxnf9_tEk!E<&vpEj=;*`idg|a(3QdPV zKJ_9wu%xaa;4Y-4gqmfmHdi2VfaZ`VO>~ni8mkA0>JYD3eeS9+7h`e={7zbM*O_c z

    ni4J6X|EM3 zi6Vkq);(j6%i*c4TJn1?oK%_yZcT1tB24Nq#aAicv(H1X!f0wwMUPxnYGQsi@3whf z!)t*-MeIqUtg6lDlI^3gyfm3E+T$>=F$7)a7d$Q@jD9i7^-(gA@NKLC705o4Ul|RH zwW?9|FbC@QGi72l4C=Ul+;r~8^qRVg@pUoe4>|H=O|vt#r|UC0m3d}E!-ZOgF{jvr zY{iS=V(abg(d$nYa&L4E6a$>qBwXE|J*)Xbg?3EN%UKXeOxI?N>2%`RO1439H8y-Q z|801*dr(m(wqg{7IkJU8j5-%P52CGRvqvUEpi2LR8lCs;6m0_~ zyPzm{w=x0m_J)Dbyz>05AGD6)_IY-N1jsM6#3zMV1Et(-qkS%6*lYZeszp(%8mpp` zk*-G$m1hiqtupIJwi>x9YcAia}-m)g}>xF@;Z zk83Kj9R7Dif?FOaB=pWXc4%@}ZsfL;+saCqZdIk3{Z}nsysR-i+&%<<*Z)}ZJ;jgt{IZ3={WZgG#G|DOlqE+X- z#WunI{oK78*p(7<8#Fnx*h3{}Q?0K8(2cL8N#QFe%g*rT^wmT6iLKA{rytQbkNIIY z%%LRwDu*=!|8D=D#+q^I6-m6ZWGsEn@Q}5Y=QM5L#1vgy&#sNH?}43+$L99b1}6_& zEWIh!K5OjIkOd4_k0G1(IgV{AtouXnhvBK`BwVOjf|>P{gm?I~QEtW;CGMja;7l;Z zWQe=0t}h`ap}cq~<{V`(P|NR}F_spW)dIpt`@zz2DauY=_t;PAi(QSL&)WNm+T~$_ zW6IRFNPO=Hm|Mz+=Vs*3Lmh1TD5UF{qHB0yda205!$!iLvVV+BzBeEDHq#JeR_*z_(%TPB1FZNt+XF^-e_C57(TcQ1=+S$@5DXC=Z5t|)yT zQ^nW=xm{bFJGLQ772xr^zI?C?&Om=UdL|O`bRgAdvBKv!;l7@AZ3Yb-P&Dshi5H=o zUw`V*4~~F=FCXSRZo5nbn$N@Oly}-pJ@$XV`>8>`hsrXr1-jtfZ>DOI)Go-G1`*Cj zc!lDLWfacXb2lV}__SyHs0exOw9l+Q9p4oKdNQuFKodPacG3{@NSYM!1|gh7kiL&E zCp^2U1$@3%Ht{&jddmbMDWZs6Q(BXJ{+lHYReR~#rJ#3$ z2N|g+p6Q8bB zf4dfiaGO1us#_&#S`v-5EBbj6t267|vi}s`sTj>}eRLXlkBAapI|n&wossnkKqRe0 z*3R36LawfVon2#NGxuK%FRa|&2P5x?3Bf%5OFcDwCf~8RWwY>NKVgq)Ji7}I0PH_x z-(X}t3$>#S*huM`hjPZVf6PqfcpvedibMx1R*>B#GVg=u9xz~IZDom7m2W#Uk6k8k zeP^*<;hIsOR(AJueBJQkZKtQ0ar%loPCB>phUGmgX5t>k=fz{u?~Su$$X+6mRH_=mv0R6zp(7WK$G!+dCQ`O_?$5S zqmG%w0ycKObW!%;CczKMR_UGw!B0EC!eVe)Q?$nHlW(m#+4{K35wJUH#HJ@zU&H(% zM28l0gRrd#HqX%+@;E0#*Vnz7cvXwo|9l38{p{s2x6OuBaY$4>>+7D4JDFkpW# z@i1Er)2DTRXC88j$McNF?N}4(Tfs+H?qqQu9+TyR<>&|I+0wePt6K;zd-tREmvtqa^{+kEBoVgou+ z<+yAi!{8HBPUht?Zy|L@Tg4yfJu_LAvy^Wd_vHw}(93dWvE|icRQI7XrjTcr^|#l= z#kSZq+IO>Y+g9zL+!++A%!M`6c}i4FOV!yk6OGKO{f5IO==LYCLnj=UpZ&4$1?qed zCW}!c*roymjj0*8D0meACL>E(>@ijF;mhU+_*Y=O^LqhZrH+568))3^a2U;=VL#!x zi1nQSO&uc5_dRLx-cP>MIM1z=RQ_{G3vHV5MIhSHa81Eej<*Qx&g9;p6hp+`4pkZ3 zTky78lYxNw8HSU+y2ZA4kzWzoIc(L;W4W3#=;kY=le0IV-%iGVPptaJNo4H=cbWYU zW2ca;tiz`g68~`1s7PS8U@?CSQ+Y#Ch{Bb?5pQeC@PhTRrH-)VLo-{4t$pgQ@qAXl zS`*Fr5He%{3N}UZo)j7cZUpal6c~nt?f(Unn#b!`qK(RGSnd_4e8~H4_gxvf;Nfwf4_j+xM?8qBU#?s*ts`!WA=)UA!%mdB+GA$u zJ(D6huJ?YUSkzgc_r9SkBw%~ERvd@r>GCv+2jp`k*oa?zR~NM@#4QSu zSbJKE)95(RFP9A2rYd@95p*=v#an7e7{We#3g9*TCOg-wKo>c|IRvdj4?>a^&QCJw$qi82X!|r1L{YN zzI5h?Dv=bIL_?+VU4g}Ue%7s(uRl1W5?3hY1gjUQW1+%;xT9dl&|Wkm`FLL@jc z;;prFHt(Xk^|p0NaDRX>%4$fO4W}{@Q)p=5b#LS{;A}Q<&5#*h*fb?zcvtAF2Ql17 z_d8*@*!v#yuC>5a_tTFUXj{xveznor&fBb1+qtr&=I!R~Ld3?FVy6b$`MoxUWJhFC zcS2EjSW$0Wk!wuKeuEQ#^yZpDoXx$uEU z*jFUptY^zqk+yxEr08LMOoCSAkag4q;MhZDocwi{1ueDrYhGl1T~0K)6*@VW-*3t# z5Mo;3%r8BiUaN$By7R2a{pk)-@l!Cs@D6VsHb4>OUF2qe7qjXs9b1lgtSBTSJ`%ft zAsMyuYP*gTq@#ncMeOqgzZ6UAYk+vM;V`kg@z5+YX6a2`6xje0_ z9_k$RB1r)Xb_115;cO?rat}%>WMMTmRl255uSrzXou3kQbxs?hhezh}jqNf_!Jyc4polYAD=A?s>5#v~y>W(pXnoY^`dcr$S00-(f^ zs8VOlqe3Hhb+#b)9Y_~`;jAmw#FUc5lvRU5rl#$Q-&&xg(~m>B#|HHEob^~E5$(Xl z{!gEFwUjGTwMw;=GgM0(*)w$U`m}}6znO4nj5Ens+8~;GCz-S=IhKtc`^%4e%$7C%>J$3)b79x z$&blV--7^~?!@lmR+%qQ>qO!pCn{h{9P%WI+S4|7o-U(^jO^uiojWiveTazvs|$eF7|`9miuZYp`qZ?8uVVtbKm6pK$f zgPLoJ7mBO_@x|q6aw+kurNp+yqp9I+zaEYC;s3%#IN_APfPEQRD^ERiE02Vox6Qsm z_p#u06pBXggJxOGZPegwO{q#q2MsQ`8s5@xOgm`??mvKgQ0x?7&}tXu)6N%7IyC3@ zy_JX}*tjdWVY!Y7`37{>Xl&MozkVB+1x66p$x!u`p{~1AOzOVhv%OkXOnqo2UFZ68 zZ_9$XSrFYKWHEDl+7D?$p>pMJ{I&BTe6)@1IG2B708KQ5o3%SI23lh8dD*G;ZK!>z zGmZr{?LC*-W3N;WdUeO6?#a3(iXh7D;U?=$1FaWX_^^%>iWI+lygReYJ(toqbDOlA zdcYtvyP4WV(gc^>{4urmr-~0m+*>0ckQ3s7@X-Fcg62LDP_egv+RwTAs(m%@n`L3( z-)H9H`xB7vtG7Ytc9gvjrM0w-8fO&EPaGURUEAHQs%wF)W>+^&btVDG2Yh{aDZB?3 zcsRNt`!hD0$nS(ggbp9g7qOYZV(O_q+_iq+hWs`F{w4D-cw6-gp_4PSFLLwm?1N`j zK++1$VttwKv>5ow{Vb*nquq8RbIKLD&K7iXrzr*Bn+Er^K0`~Vuc3q9E3QmM`M@_; zOhwFKaY;RA`hkd`%`aVpn5=9?BCo@=u)0Qn)J+cwZR&qJP)d(aot|V9SyZK0WKvyg zdDKo6FnVJa9H*`1Ug>5$cg*)CwIGw1>R&B?+ir#PlCnGtPlL(3lD{qC)e(3Mub>{q zyK`nAcP30n27PD@o1T~+^KBR90Bci$E`Xs)JL)Trjt^|gF4*zXK!7D~itti>Lx;e7VL9fd1mfydN_?zrMKwEDmez!Ty>!=$cQ|1b=u7Og z0%N;WyV#jsJAZe}#EL|>@r5csPv#e^2yFEd%7vpAqB7eLj}CN&0*^YI{Z$#bd9V;^ ze!~^5z?cB3D;{eFY1WuvvB{EyFbTQA2Nd_A3KO=WcYDbeOTs4{UE$6*#FfrLHD*aF zVni{*R^^87?r1e9u|8I;dQ3THToPG*RO%{Xjv9hZ-L|HUdsuzeo!8d~BYVa!P#rdO zzpaX&$V+g7u2(7jHeyFH*CVFmbUUgD7wx`JlUCA^*a9<@Y)b6Ny9>j>ZN}-MIN`_= z7Y17Qd>h&#QaHJhL>th`=r&j;fegV5TW`H%B5mGC(Og*{r+d0M^0CAwdTNW)Y~Oj# zON)R}==bhz@l4#QY{urC7*-Eqpy3qWFTgZbM6YGyZhMfIFpVHK%)T7(6{koe{V*b1(Xq@d$5INDwomuT>=9Vigiwsy;(Hn&^A(~ByYBHi%x zEBHjijD`+&p-&_%u)bLTn7?4cV<4=SgK zofJSv|0#av^&b}3pp8Kvw5Sl5!>^`joPNLg?yrUj?V+on)4o#IMf_Lm4|8=vIKjxG zByLH!EV;%xq5OYlJ<2v+015MKcKa!3RdKwe>`gYW+w$vQY$^(l&YQ%1%F4~*j7lyf zTXusn?na&AWO^TNV8;E>(P1*Yx!+AKKZY1;@v^4#?sqb2Y_&h$kf&lw&yrR;E10S~ z?yG6I)lC!Tp7?Aj%?Jy`0avnHtnECSpgFB%Lo*3tnz)U5-)XXMoQ-EVjLSw7x0h{5#H;rmCfr%n zIl06en0}8`JOVU+ITK5>=Gj@f($v~Sx z-c=>zU^l!3;U_}R58_a`W8v74olR(3i^zxcrrOAV?8`-h1kban-usuu(bOvleAt|l zEsPSXF&O>?IAIo+8&8rBA_F6U5`jqg&`=nZkNGB z8{6wwLRk}Z$c7zT7{+VS4&>>=88N`V6;_%3EBCDbW&U=$DHPtjDyKU4u;yxl*i&5# zm|dDfGT%%RY}9vjDRFfGeJ!f8Bl3V;p({UwuhgZ?Pi3xTLLN?g{0DN^H%K38sm3j!#VT9EZ_c)47&dS0wVj8O!;@IJ7vb)gd|HWo~O62L?@U$JDdP9a}Y1>40-vIMZWon7y3Bo*P`KL#%Lj`!$)l4`pz%a2ZjIknJ2;P!D3o;L$LPrrKtG4H__J?for>m^!#r4^#r zv`oZ>7Wn4-0vqS!GmEFn*5qZ3t@q{W_YO)GeW#)2pgUnyo_n=_TaS5?Do+o9;oDjF zb$XH+UgUh>l*~oA6Dl}5;fPRk39AKLV2=j%oOZjN^v%V~idryp-{oU@)7-R|0J=Ya zSdcEs5t0dl@YD^y3p|;4!)HP4@}a~Uk6|*`7xYk31lwk*Gq97q6q>lrN!g?9JvFX- zJgF#$pA%7z)Z6JB49n~t$Pa@WPvZ1Vkea~@gfcsjAcXH7!P9Bsm(4)zka-Y!uNO?} zP0s93L485R>V&5hsy~i$uT#{>8 zl`WR4Torx7y*}}#7Ex+JFzM4x}d}Se5z+9dKGN@03&{$9>>vnk)i_gjtWlZk0(KuUi(m#ca>nb zwaZa!lvh;aonBi_5ZeceWn3Gai9bW?&l+#O0*(O8@cOjaiEaL(8j~!0>@K53u)zMw zh;v&3#=^ww!x*3^$4qt0!wzuChjdj?9k>rx|9oZ)_6Jk;*!&)=B9_{S2s{?|-K#De zDnqp)sszFW^#oKCczrByt!*u9{a-_EvlEeJWsyTeL)esntyh8**`K+y#!IoOO}|pV ze$50eD=TA8)77@N)|TD6C>x3_8&dG?s;FqNROoPzbj+US4V;P>^P~nqTyh1vEN@pL zJ3L?SPdQ`@v{~NfM?yUT6RRDTQ&R$a6I_s-WzoRfcxaQ|M4@S+R2Sz0cgZ`dnflq| z%VX#+YLNfVf%*>}i|s-^UjraO)FAGsD`f?MEZ^K!LDw~nz>^->hp1KfIRlTxf!l(` z(=D0P;wWULHJ70msV(DUD=B_&Zq~esCwWeec<3`f|5)T=NHz8H*7iH99(nWffOHMe zzviKouKnl!aZ*7uq;${suChu)>>xqrF$k$#C$lz%n;$$qNhjKPCt}J2f(H^|x&_(Y zU0{k}_H|olnlAR7v6z9AVth8&rT=WDt^qCYcJ06qCorPyBD<%@{o&)^sPm-3=hX~r z*Y0S2KhCbfSMOniSww^Z~y)wR&E#fo|fbRRjrk6ci+A^YhQD=TsCLnx^w)xpQ z^M@^K@ip)7HjfQeGM!a4S-g40g14eO>Bz@_F!23NYt=)s{wbHn(_(20yx40>-Rb32 zTNp3$Eif~MP~g?`PYRgAun}Wh?-O5$Bs>T^v>)P)Mt6Vs%vJpTj_Af>oXfFUP(9lc z9_4DM1?7R_s&N|rCZ;T&kEslu+kxG>+b*Tq9ot5-b{BES?aTV(=L3sJ_v_ttuG2Fj zP-h}b`ysQshoyJrg+cQo=EyZyZl=5u)g;8;@8a^pr$bkiu7X%9*YsnvE_Sd-EKxF8 zmKX}4$enUndMdZ`&JgUOl%TCx+1n3H{0tNV;U2{zvxlNwCgkblz`@S!BHe!|%Z=!v z%i?SaOGVLd_mQy!>d}JMf|-u(YySRkgKU#sku=wQS&-ehnpx>Wp|Z|Wf@ z#bcWL9<$eU^*g(|u)s;@XTk6ABu_4ejs;sRh$V_y4#S{WFfkh7+h;9 zGOts33ToxoRMnk6`MJ?DQwVC4gz#JvUWwe9Ps___w+!THsv)Wo!mXz0t4_9lC*rWy zzK6I2Z%-CI9NQJqP)i(gxh^^EOBK;*7Gi95lrTC@!kmNe7(B(ADlEa2$DQXH_{S0# z|EA(HP{nwx`SUES2UdcOZ-Z|d5M}_C%px>a4#K10e3iF!Ik;t8@Z!1*!)i(@v2jA` zLMqtu(zLG3!|CBTH*#Q-L5tp%IL9y$yi>UB+Ocy7iYlekcQ$LkdUO&#LATiKzLCxI zam{PnTy8t|Sd1g?L4KBO=6f7o1;d_IAo^Uh>uN3|-*6>F#5> zbtWH0HZL&nZC#0&_HrgY$h!OF;1#f7Ra@<+b>+f~+=cu!>nY8cV#(fSjP77oM)1qU zBxM&z4>Op?c*$Sgx6>wF8!)|2`f(9UoAje0_F;58<0t8bUy1DoB)@u-U91d0lf`oG zbPQe3QaBMwSP3<4E z-!`YSB;+7b@LtNnPJ2X5;BAJD3x|g#70IPo;Fg)XnaMBSshF-GaHaA-m*~D~Wn2lN zms@@?cXL{6MJ8T?{WRwc_MwMET7FDurk+gcT0TVO-aIH1GPyV7liM^2##sZ+7B}8Q z(?5+WD%j*3sgGuO_p45HvizfQ>E42e$F~nUmZ>8l^A%>8i=O3%JOQI$>i&t{?FG_y z`oaO`2dBQhK1fU=cG$qP9JNt+FJ52R9ni=ZBD4)r*!Gca&zU#jR1sv8%bl3Oe&wuz z!xy0ndaFzAagrn^&rTwc&5_GNYYh97b2bLaPBSG9EQ*cG6}03FRR=xYvjpl5Ru@c!(*c2y3%URQJTXD+Sd(jM1=!s56>9 zc_CJt>0QiK0P{JkQ|JwaHQi1i^xAB~>ZBC4a0ZaHM3MN>Ow$pYhcM~)u`TD@ql`;) zSs`@hU8zDo?0b40*{4)JyH-K3D2H`EcqU*ny~vx+E(6P z3)yX}v4DaHaN%M+ayxW&ZsAYIXo^8u1JfrceyQlp-UP8b21~uSw@o9AV|i_Hrd4|u z4-J9%vrX70bN@wKW663=!y)n3FpW{N7!d#|0qcI%XUH+057AP z_1w-+gR0l_sTFTYlkQg41-Bxu=JVoO{g2Rt9z`Qp8z;9i)QK^o<98R1@24!vqTA(I zsmebv(|eAj29LQmksZyMx%sG>OrtTxw)0c9-uekrxIFL!nhcB+D?H{uQ-)aIf8^cJ zD2cf@Op;#J*60CH(J=C-cEe3pMlD=|HUyf>r9D0hzt625ACn^04faiDfC7H(!Iy&PyHPI~ingepXx%ut-=KRzYOB#YHIq^0XMZv<3-XB(27-Va9#-MM_) zs@%U-cQfXE1)noaAh=l8e-Zf8@OfrAwA`%xPuJVD9D~Z_AVSh{W73!UA>w7!3jTEy zxuT?J)1T!X)ix9i4u@x>!FG3J!Hn~kP7R~kHg*1-w-J%egd#+Z!xqcALexw3fEhUw zSrU0UCT96+!H&BWcJm=t2|g`}Pr@`eEv{e;$=af+giQTBHfo_4P2Y-LZtZ6n6sA*c z8IKOqfn~yCVu>6n)e6)0{`2284yVyBEPv)W#q~>U&O%k1ntnAQAiBnR%eW_1>ASXY^5AoP?q)$HoWVNDC zTq;`g-EqR;^OV#Q#~dVfLOGIz>&1xs2j6AgNA|qII-{@ozvf1v8q*5wVJjhasj}sc zBiqh*m^a-&@qBHH|K%4vSAFuT(EB`INiHKjK2r|N(vYez6_Lm)g}(u>G#Q zZ+yk)<1#aS6LZAiz%OSX>_~d|XTD9VR+qY=!T{Q5<+@dV_?m$V(W@^KPW+eO#tL#g z+t(#xX4bRn6TwNaADC1ln4cJWB06#$j?6WDs)M6H$7E8}an9_^c|0G|O%BMUO}E8L z4&dXDaPBR;k0@Ky`Pbu-+5|salroEGg5zkx+WpJD9R|Z5^8sp^^V!D$?_8>-d^rL= zfG3?+e6)c>HdhsUid6YH?de`@uFMv}gBvww{}_V2!l|mMrbE z%WM;xETflpkuSe`&QjD85VTz@d8U3B3S_`=P;>9)7fgPCMQZ{j1AZ7xAl~y}x|`8h z(B)@rOBK+O`7Ew$rExyLx~D?153ijR%j^7+umtp5T1l11F{&nS@n-k+)WWJA**^{- zm*=Tfm6AHB?T0G43BSz)h{_a~D7d(mke1{psWH~(aeFHDGTW)H{9Rm$eWzlfm5oXX z+r^5!@S->7eg1Zr`bU+`=ddPEpG*LWR(O>uKYmRikL8iC(<0g+Ty!0`z$ zk1i+Z+TgL2%YLoYQeqb`J^jpaf#2lYSY5}ia=*)x7fsW#^FC-BE3-nF9LFt85k> z8{TzH&*T>hy4um`y=* zmb9Jt_)TtL!VEB&{yJrAcTKb6uu#kCY!nu1Dow8FV~+9RNbPz4-^g8(a?Pg2ENfkZ zMZSh~F^A##`MEwo+2(Y^PHFJcZHf1Q150Q2?exfW~0ORur#0 zPmTok2!2{H;ddeZY(r0ZCr`;%!(Iw`@k`E4z(sapNBTo;dlf*7}-)fHE z+6@(QS(^>2R@uf0#z`9;G!SA$5O zN@28ewO>RM@s$Ol5#h)8Lv=2bYZolPpgx1iiBV^X^+wEof+q(+q?C%#aZl7FE&K- z^erPQGqRKQG2t&_ic=-aKljmyYIl$I&({N1Se}eLbqF(nPS@o8;%Ou?!$k$ihkd2x}KQqk+#J)8MPUbjv9Ee5d?wT~4} zZdMOL>+a97Q7z(^7HT%J)jCMOXDr#C28aGh7FJQM4dS6`YpLMC2fsgd{0jDPg6((* zqqHw0jGDz*&nCV$v6qll#y#3ZcHz&#a2Hg}SwT_P%Kqf0m~uLCrS|wbRj*^asGDxj zkv^}eh{lO}AAgL1MjKbVrF|k)#n~*iZ8Vt8uT@LY3Xg4oS%1#&*nUKN=Ig~5>xq5X zlI5FcPF(G98GccqW5?aCgVY~naMlw?N^wZrxF6W-Em1auJak7VO2*V6RW9>}vYdTR zvv#&jL>_{S0+>p%Ra?C_WWk7&92qQrVQ_Q|$jcY4@h7&k4tGnxLn{~AFeZdm+%$cb zTl~XgUaD%<>^eS2Ih1$jrJ07wCf7A6&fSB1|FEYxg)Rl$X=Pj84N%X;@bkU<&7x#$4>~KWL1g!R*UG zp>B0I$YBIFVKkTTNn%}IwcOHop#JPljoQ9Yrp6})df=g5i%c;YwLLsOb(rkupgGol z*}f_m4*fotMR7}0m+X_$vMoc{D0sD#<8L_#4zYZ0Sx)WUTi3p=keKwnrwQ!2ppRm$ zWnSmWcc?t7qT=B7w&dj~6PkO{hS!~ar8_Ub#2C+NWd)vjj#Q=+{kdHii$x((GUoN5 z>|AjUf!Mw^U58;~UB#YSAF5cXO7_phtvJuw;(|HF9H-B`uLiu=nUEXAI-Ss{MKr!& z=1n!3b6d>sNx^(mo7ImO4O&NF(F(OSE#?mG=wFBCn-&#%QMC9$(W=C8_58LG z>@4akc*DScMhGFvw6?jOrcK!wE0rSPrA&q~^ag~NwHm%&xjY|L#}*%BD+=rb_RiA- zG}Ij&4uP96`py~;Eluklsz{h5HZn?vc|?O>n)pcNI;-PrFACDz=f04yxR7U~b7u>e z;`SNkusQrpBvGe;iQW-MGLosF&{v*!@L`58L@KRkO`H>VRJiW|kM^f(s7LkBqS=I2 z9`X|5nu|I)U;BlgdrfAI(EcY2Xx zBGYy$_p44ad1!U4CHB-alEFF2$9WnBs0U^*eJ1ab3bfMMe;}Hg3+DWK7PLz%$2Sv7 zQ@B^6q$t`=D5x!<#Cdd|n}Nrf<=eplJd;Th zs1PGi?pd zqG3bw4r&>M!-le7rb6Lv1bobaY>komab!92>)4cjE9MI19C-g)#U3A}nu_$ooGVJ6 zV+?N1+~s@7-@`)UnIUdi`mk;q24H5754j&pslftlL028EGa0-;V%*^1 zsts&D(kU}pJ7(B){g}7Lw z&Jg{T)c`0;FO~Zf-IwTIH)FW)z8~VUhA%<+oxxVtwin#7n!cBfPDGC+7BR;_mFAInYFg)@t>(dG<^Sw&bO+(K+mg zW<&+H`UIUg)OVYCs};N^BKlgrf;sWvXToJO0!XJOKCevwkaXZITz-ulXc~#^RpUs! z(S`fT#ex0L@bszfoY(G6-P#JD*gS%y39Q$sH}23Rd*vs1S#73@ser+g3k?y6!i9@F zqSd5<9V}ahyr3XDNHHBXws#{9#Q-o0oS-mcmV;TqKNo&DGSgL5Lc9_dgU;C$HL&S7 z3@A8^Yp7Dn48G51kTmwQ&6}L{t8jlYwwNDA4P?iBAKCYfYypyu|a(&Fy!VY)t16SJDj;kKqHx}7!edSTp7N=I9oqi+ZnTg-}>Uc%U8J8O}OVpCzC zj9Kn73;NY3$|k&_ptkx};M_Ndz2b}7VgHwE$v9$gXT~deFS)fK@)G7AGsSNQMV-O@ z_zoJhnVcl>@Fg#7e7>jGr!Icf3gc!}o(io%hzUC>NX-G~j8>?5^H^n1l$iY#!UlKd z>NZjWFTDKsUVuLQpR4H=RJl2P7(#VlVyp)`lkUrBovgS=cf*o4vdXv| zP$|F_rdB_TAGN7be=`8L>JN!VGxp-_zDpm$XydPPY0uH7tAL_fV?ARa-I{5Go_NZT zS`7n(luBGcks{A>@L!_8*w*Y)7dp9RaH_GbYH zj5UGh?PBg6jmpOeRCDmjr(pKb6*rYX(u1^+RY z;3l`N=_G4b;5ddhew0Md?rTc3%IT%i6`|EP0CB*&DJxBdzBK`xb$n{#TI`{r_(xiu zQK`0gx^4jmX}qE0{HXt>zs76%4G*+w2AxlgmU2YZS_0gTJY)XT2CzA5#>n=dNI}Ur>Fa{vB(bWOw5+4ofp-VBxjiY zvkCvL0}fLK1!B^n6x^33i$fLz3HT;FuLi`Q*Zf=`LC)I*{ah`^K3#3{} zj03!0#2jtgR`m=e*otLk{y0(<_yeEp11Os}N<7w=1W8P$7uLkSFJef#vUX~vuay6x)+|LqYy<&NV0Pm z-}A)MIHd?d!+?QN#?$g??NJnIg@$YQtGmOezgL5d$8$#SJ$@?7Wf7VkibwB4-EUDw z)(J`=rNl@y(eN=J-lzyZhZMe-^D0c&aFSFS9@4aAzsXp1Oy&SGh0=-z{?3m?DP-?A_QVKZm$7sR zI1&N7QBs=_=^C zl=`d+wi+#iN!kwuU+K#cWR+j!W`4~VX-C%;DHHWD)eHfL&lIL+7o#ddot?blRG}DU z2t80k`ZvG`ItpY8rM2lVZN|1Ew-Ys6+-|Yb@YUO&7zujy&$U6n@T{cl&!!q7*m(Wu zD8(DR&t&e&B4T-aqvF+s1dcF*D}mn|b7-=Co4IK#&}Ck|_4O}~dcT;}Yv+;1+5vY` zI|vz+p#ys&v=H`*1Rg8OXdK!eZ8WjSVkt-#s7NECGZ zo0^%6vFREMOv$Vs@JFs@Ox-pQXp=yLOkrWb@Qb+@`-EIh9{b;LZ%YMj>vQBn7$x18 z$(G)(Bh0UPU)(r%tY?Eq;=iAyfs4CU20c$|yB*7)rF3 z2?rkX;SXisouMQtxMcU%$-kSbDJ5Nwk3767W1{47R)tLw68=qnCdzzg_LY<3@5ZU) zVuRjqK$>>D|H{G{^q-e#4)?49e4QKr*d^ouJ~WDdz8dvh#rCJ{m|SR+kK6~ZK`$yT zEdU6UBtV8Q-I^O>0c8+1cFZUO69%r0h>Qu8i>_*j7CMNjOPQYtIOr43(bAa+APVRV zcxVT-THP^dRCCc53WPZ9BsjRCmKN97czl_B#66UvU!W7hS|4khLuOlk*M{k6;gqWo zXjYKFJddV0sbcl1lI<*gv#>(U-7S%%*Khm`v~6z#73BW;)LL?axrlsCYiHt=mSYRfa&mroNb~BeX)jcLhCLo1U53#5kG2In}zeG7#x= zBdu-9^J9_?d1CZFprncPsngAAdMrn7{R5`Rfo6W{72SfHiDWmxc$SXGKasn&+P?rM zaWoCV(1r(!p>qsx#f1$kykh_pNBW9oQ3RKC45=TcdW>0ki+Z}|6lKQzmik0kj8U-l zFWTv4vvo|#a=x1Nn~X;1->H5nT+EIQhFz6LSz6DFL?n(1XKH9Ef=l%Pjy+T zbAiT8r<~zsbXi`)OqLk;tvGL*=qyP`e;t4!vbr^{ej}C_L=6uM0Oij4GEs{+jg@eN zJ3Hz;VpJ!quw3AH896e`ZgU;8e|9+UErXDi6=Jl`{m0z3vZUrG$0qKY^WaT4LP?Ra#p< zAJ%yK4{Rr-Fq4%`d$&f*Ir!Vyv zGXtBPxqYf%7)T~t+~D}|mOlU3c#Y+yNp_{oTHlrjz;qy_GJGDx&BejtbP6r$3lP~p z?c?U{Nb?E5Tf9cgw zCMGkKfzOS#_jwiL-mOYjv!I zr=dFO)V15c58e@&8D9UxFDImS=5p8C-}JeCHV-c5P}1}JW?vNYe)OAvYCJcKQty;A zMqa;_EGGY1j8*&jmU&Al7<*L`pQRmJ&Rmw`TBSWvNCDt6MB#mj5RE2X8iC)Ea3RL} zs-UVoWWq^POJH`%Q>xL2;gASW!!Ple{>!Ck&&u%Y+|gq`34tpePsE#W=m|WF>Yr$E z`5~=QrTImQESz6i2o)jz|4s@>;zRSaqKwG|Vd8 z{qigDMngiYeMq#Nx-sF0`y%+5L&IG2!erROL8g-?{ zxj1#(5wj;z-r^WFKO9a?=K)&4ncLKLQgC}#xi?|``}}|$pKfvHyVu#2M}&1L zRzzudlG9PN@>Wd#uWerR4}iL-cT+&KO^nBRgGOwzWaYMl`s$Sxv!uO`ln{l?LiI#0 zg-DyXmqAX<$UAt98#OXK$79E(A^>z5mvZ4&N!H`>#8xDo0s&n#VlcZMD7-Z!TbVm* z%$nY7NN%?9!YkgdM#jB~ zhgX7HrJJKrY@@Wv<9XDzt7pTz;fkVe7`{Th77!6SZ$fb>1Lz3*4}ip+Zd#%U7V&h| zjU`9QrYm_UIBAOq%^*~olf87yDARHECJXt*kxAr;6#!ft25}yeaPu7|35ccE;85TB z4>dOSSwfE9NfuK7u3T=inHlM+ZesQHSx}O?Y`8;TavDC1>AHTLF*H{lH{mcko_7#1gmReb#=`?`eIerSz$&ZP5^>LMFF;AEwI&N-Q>ap zAPcd)ZW^t}VA6=V3bYzhv>LPmAgO0$QtU!GgerYN5joOB`&3|>`QtjYQT)_e-J~eY z-2^b0GjRP0S>aUzcq#0iQqonOPl(<$2*GxXaCv-+b!+I3Ao zlXJ#$oy`%NF!`&vs<8_S;o-jn=Gvi6P$U4b++8-~Ig0HMOL#%XP8KcI%+uDtj|06j z7XXCKj7UK8e@ja3H-1*)@5ggSpi)nr1{XAa#)_*l;w}J5uFlE?vh!Z)blc4svozR5 z1y~~UM#m_vO0FzoaNl5o6Cu}+No!P-=7xVo7R)v#R{@>ixIeX<{wVlsQGS{v6HagPIcP?_1j?%Xe*AoV$B z{rns(5 zf)ZdO`2S3Wu=jF|ee;w8vh|MG#~N1e#ub?Ob3|^;g)82paXx7wAU@Ee@?kXI?>>~+ zL8W3^iq)v7nD&sr{1b|k=!rtV!Zvjb(vClGIkUNK(^6=`LXH#iN0AYCsFXBBvCW$W zsHu>i*{1F0x>3o>_hjSXv1>C>Vkc$GYcuqq(Z)%@F;}Sd5)-J=5NKDhbbAyLz!`${ z9h{zf;a16KmsuJ2FWNzSXhg#qHg0tOA3_i;i26obVBxJ|3kt!L!2K2z7oi+l`w!7e zP|pV$3$3W#D4LSD>rk1LGK8^lyw|Jnp8^NIiBGPiqBC`VUU9{d#(4tv=6_2EFA3B% z(6(MVr+MLm-UIq>xdkom_b>4R;ffe)`RCykWdNb<3s=dnfDfpqzl`KYVp`Kd`gCjo ze$%n}fA|d^{t&6>#oU)DEk`^)%|)xpdG0nZHApEA(oO+4B0)iD)M)vR>5Wul&<3Y8BrXn-;?p_J_3xu!!h+k-@_X=qU~rS%Rn{ztH5 zNNX_-XgQ`YSNG|FaG9aUTJPzed=nfT_INeaV^RnyZ&h%M0A5y=m_hdi5|Ude>wAnw z^~9$O`vRL_L|L@xwY{JvZCvFUm~cVq%@rh=GEx^$Qj=pV_`ev~{}ppnTun<$WZ$FZ z?TQIy!xf_>oF4F__(hHU>m2!&@Pd@hp==C;FQLu4lQFK^lTJieoThI1eyJ-5ZPNKh8@B|bn z)D?QS>~R|dwICdvm&Gx{N7g^9HVkyL>0%8e09IvBV`V35ZT}TI>@gXt7dV^9(2@03FR^ zY;F9`iVWDXno0w4`$ zXr9stq%H`Bic^8N6)ZoVTTCnMsB%Y9QmZ8N#!E!pSP}&$l?*i`hwZM-a1OU9)QD)6%?ZEF`+rVb5)IU&H>vfwbyg^Auyjf zd*d=d-mZv?OJaQGm|5SoyyrJ)7*L?R@xc+~CV zpZ3Bz;({iSVaQh{;59!de5Gy0#gt#|s*1&0bI?1}V&qu>+b}S(VS+t!LG6h#M(D!G zViK9^NC?&9@r~ad#4*D*w5ll$QNkvK-FcFmg5P+n))s&oz0d9yS*VG>4W&*xpr z0s$JB6MMLSYv;YS_0rsye+U8x`eCxS{D)FuoK-*6g^vces75G$d>0HT;iEWkMeb2fS43b%x6Yd2H;@xBx918l1pkeEj{XQ zt{%ry?^@!qE>@Rwc>8U%#FaBLCVH(|{k~G$HV>Ima1tjgBl8jboAWMd!Rx{qH3ndF zTnK&cf#Z35Y>9t<_aIXoAzM?iZZ_Nw2)J8j3)oR(T!5ac!firj&qZ5iW76?U2fOs2h-IQe2= z`iD+8??=`ZOGr zLG=SZB$OvSg_!*pS@)j0c~R1Hp@3r_Qd{^c0T;&3EfDD|bC>KMo29>#rDh|UsvKK4 z-i_Ji^KbZ-t=MYbLZ)FtVOg_ga=g2ITJPMw+}%GpOCDzbYaIR}+Va}M_k&hNp*(ML zJdJB`z0a{@rwbXHxTUo25tC_wL;b$$E=-3l!Wab}v8@6O2NSp$f|v?t#Zid-5JY?3 zEY@hb$-OyuJQ)E$C3u7yaDVqjILH_3MGS?1$at-3Sd&%{m!B|u1!2h&31*_c`$Z!d z6zDE;Bv=eA{Jsi%6+NQRkAkt(J1qo}sFc4vF? zx%#PlQ;%>%bfR}%eY5K)-=Gm*)#0_2)pCI>bvOr9LyT?I0N;WNzEbnF+s%Vg-J+4( zl((fE=GZJ>n@|F`LA!{8E^Z zA!iL7jlMz)@D5DQWw5^fRnBhzPL|~DM6x=!a5Oq-USnkissfEX4P;Lq-Da>>o%}eM zQoo$5TxdaqP3y!8+`3Q^7l#+);X!BEOt!j2W?$o7O6MqpR5hu8iYF%A*_x74Wa&fl zYi&qiGH$1UChS#4a>l#a**UKNGu1%XsN8-1i%N}ALVsJa7$QLN!^x#`<%BDc?Rv1X z6Up=X8>byR5y;TGk#{pAe-QIZBT`aDOD<%L+QD~!?%(d6!3&$v>I)Vpdi^PD1Sg&S zMF``a`W6lBv;MFoNfy@I&WW`NS=8NnuQOdoR@<7|f@@bFgO32+2-ZEg(wRG)AZH#5 zWABn+lzZGcvP5HAmrn5Bu8{zUD}%(X?n`mqCUk!(EXHCdRs#wDt&tAqg6%kh9!Ah- z>J`E&1Qlk7(xh)x24#CzM;J#T+xPs4{<}B{%CnAvD{3IY&GML-vJYa1&GIuB{OWnD z_DRe28z-Zd?z}MlAX-)sI~5F1S2+%Mp>4qXQ<);&D>9Q}e7 z*{6vU*O`WV?pe__y?UtGyTQ6#3&jxLe>j{;G+#&p!|8oK^&%V7-mft2eE0jhyFGYg zmCV;;uJt}O&jaAOT7RDEkimb=YDRX=IgKfD_u6z z;M3hKzOF9)ul-m<`N!Ko>hO>!p&Z1?4Ll0Nt+20`IZP^FJi}K~GX6ILy=V`kHKv_j zryIw7Yn1_yM|Z!jI{d@q2{GoC46)uSHd^W*!?Md{%G*4{drP@n3ZOYp^f}eveKT-# zRhd>}I`LZ<;nZn8_-ZitD&j*t1(Rb@pM1C109wN-$noO6N6nv&-7K-&`>U57?|$zt z{QW{BGwjw8=9>9^bX!F9f^@l=X}bcTipynj>A=*N9oOq)SMjIo!P{SRHO-5xQKoiFA`#Y!P2LYNaTvI3!yS5Lw{E5OnxhugmU5_#N5Q(|W?B>%B*Kk5^;C z=ML6(O=;dD_<6iNn8cZ7bw$@LQ|`t7(oO@b6^SDcMub&L52myn;bI(`9hDNa;;^y| zf4%&k(=^z$hW{g4h{lT%WJz_@A*Xf=Emb`BFFRp$6MA z(DU1~e#&#$Kszy0!rVL=WeyWqJ4b4u!Ty%*4vE_&T`x5ISw0a!X!#^z^oPV4@}y7j z<6RN?Zr76Ohqok>w6{&c|2QfECYr4bh3$g5^m>5oE>QCE4N!G(mc-R~>VIZ_?;tBw zs;Ma-GK>t#lY{=~w31owgvm@GUu*P~=6;9|QrxTa6$V~)N>RfQyO1o3E!3i?`wm?F ze6lasIM4OXjf!DW!kE?3?O?*LBhZuYMQ8!{Bfj6gFpfB&v!odEhad42CVZ0p>m5nlIrk|cq`Ca$ZKJ{O{%qRmD(~JJ?)!eZC;poukC*mGOzHIC2i_Y4!ZZTp5sF;X zLOz1UPSSCbyaaY>6e3ma#qZFKbDhclg|=*ztPk}Q z&e(mD`u)9+mch|IA{}Rg*W3DQIB=CatdE;g{Q{E$`@IcLB|=76sxHrk9#-cVI-K{% z4*=LH(EQw`?JZ6chz$D@>M;@Ro9n^kzp>YKit)uUpMVfOq?7Y3o1gv$s{_Eu!+wvg zVQ7f;w;x<)3$*ke7{I4S^%sPI>W*e-nYMM9`J~E@y$K$n<1Nv-IOs!Fs^7> zcH<=q5y6dPj?EfmHxJ%^+{g(CYeqqF!NkJqxMD?3?%YC2JA6hgykf^r!y%AX+=EFN zX|*rcl*G>Y1ihQ&z9-!t>m6dgH;+B-Hz=noLi}eP2sQUzq8)OWA37ArC`n7tIww~C zYB8oIcRwfB{{*qU!mh<>H_*&=|A)2a^{$(f-@p~HkaNjq<)9?xNvo{{Sou8OKyZ?6 zYKWnrOaMQ%?1E`R?rZvT%oMZZ0cEW-EbQ9k?CjEJTlba$MTk#Y2NDUZ{~o*qLK8rVFsqY`EW%>ceg zgn-b*ykWx9e-nk9!&N2Q0~kZ(+~AFotX7}X?p11YKo&o77w3rM>Of`IvRe2nFGDM` z6@|YNpPd6+82DI#!$xP|B$@A;NR5AQ0=-JPMa|@CFDWn$4c(w?`6fM7CP#s@>{1{e zR755*vG~oRPB>1g1QVh9#80>$8(jaX|BW}|Siir^roGi@y?;gpoOYlh;lV3ti{ zZked0HKs;AW<4&Fo0%&g)p90S`)3 zfhsQz0K~Jch`aeM(=Lw5&52;KTLlf@`+9pklH5=?-IAdOjuJ-~N;)a?{FlLnUj)(S z-F&kxRWd)vg9TKlEYKP<5AbRF3tB5zNo|a`S<+2CU>Y3&FBvl5fBM~_{Wl0XDP;5`%Sd2QmnKs|j+)aDH(2J!xacBO(T2 zHGde{TYi(_ye;G5XA3*6>LgLAA6zA((5qdq_Tj~D=cyfr^Obl5PJt(JIy_e-i#_lE zebo%o3Jl-Bw*5nKCT3`8tW5L*SI4uOY?3|L;#IVV?6$n?>5oH|tG!Fe`RHX@kFXVc zaY!TY{6>TUb+IzhB69Ozt!@F7@dC|zDnY*f9`y9G+tEf8?b6t{i!Ai!mgEf$pu{wC z&*u}_8qEX3!ky72N=c9^Izt22xA#T2MVS+WhgrejP3&n|!?_bQNB3Fq9&C zj{w_wa0nvV(*rY5dl z#&3wCTnZk%IJ=ZlL*;NWB)K8eR++*@2ej50?xP|H$#(A|QOru42h4>b~tw z#l#12kuZsIpy0|Sx;Z-MqJj1>6$m1g4oMj=_UO^($ILL!LrlrZU9~?g5#ULW6vQrv z(621%;31GP)ubjavDE#`3bn}5I0gqx*7LcriOd91A>mGSptkb&U-|0M|CA#2jmjN9 z+JGK-lI)w&Q89=IT2}E({sUK#1%vwjr?QH=^_TD6GrqJG(@iG@|uyk;3c$gcy&ePH&k#bNh56ezoDjOa}l_I1tV=@mIglT*I*3jl9( zdTl+uBA26$|{gUX<{i35^w8LlV zmVhnH@b4%l34ociMXkZ5-;A1=W97S(Bx2D(a|5V`MN9sxk7wE~GS@-+`X*e=HcGPV>TvPC#htJ6=&#WbBMrK<U z7^1zEuklsA@4GqdG;AN{ZApFdIPfKU=gB2EpN;w#RgN%*l%vSs}Hh5=&Cmnoq(ODTl^PjYz z+sy(@H#d2!qsGjM#jBAmi%crKIPvA1VkdTNC!XTu*x*Zx%=*CK(+U940dt~^)`R29 zZj0b5jBI3Lw5=o$F|5~RhAT&TFi&YY>P29m-PxK&3%}V^p`sD6%Yu#F{hhTpgD=0~ zL6B-TJV@LFa8tj3=WrC4YPpp?RkuROQTPa_n`9MEuIgM{ZPs*lK7Ge+!i~A7C=d_~ z-HD!-y<&Tm@P|ZXV|p_Cfei7ua>8ZniozC;W*7VDb*XV%g%ePsUz)}Y|2Q0hgm(vw znx)u2DI|sA|A~O4EX5A_Cu1aj%{U%UQAXFtKc(f}f+**carIQGH0~x=5d06(6I;mR z@LX;iKgo~dp!yG>FDoM_B6Mq19QMomavRbL{CM3)%quxLg|*+0O7!Q42tfJEM4q_T zf-xOZ5%ZoC&I6Y#0{eK|QxF$mHW`WjfI<|wJ9fP6w?1u9ycN>6tl3qp^Tj*=>0qTf zNFtqt>1b*b)v{AUmzr!^D;mbKI{&7Ehov0w_8xw%X#<@BC|ymxu46(Qsy^hqU0<67 zIFDWw8bFb#y$@hqW#Z@mHooi|;fuip+2|qJ=ZmA$T2qi2vlC+0R7^)zEj@ZMPl;ZY zQhQNgCqYm8v2O>S!g5B%qviJpsg>!uDEOIhRB!w`XBg^2S*AC(pOeRHBx$AjUjOOV zNkRot;(125TfLc}gZb*5e^V9gQ0uf~=_j`Wg5=4U97*UE_|1?>L(Wt2+~;` zE7+MuW;EbMra=0lHK*vpz=I`{bvHycZ?V_gdH&(77Qt!Pc}Hht#?JqX%w zf9MwJ0VI%3ICUtuhs^>INPU@EcN0_3!ZAVICFkW(4pr$QM{q2b<6nooTEmt5p-8T&H}8jcZ3vQ7T)*`Qi>bxJz^a zGHBVmwA-zpnQpx&OfB&BY@%6l)hDbGJvDu??UmD3zeXBH)9tySWsMXX%=;!}FK8RE zPmMkPv1_B%9-iroJ}i|f9nH57Po$=aP9b{2^tllLi{prfKFsZjuRfUiKrIGfjP!`o zaW=ZMmC6y`em{w5s{>#b{`Co4Fu*r}O{9lErXS=@Mn1*5>;97&@_`m$lajQjbqgjmnP`Vw zvDAS(eTeSGnoBOm3aw%wd3VgIgTdLb^0{NcxcjwGN zsaLr1R@cNackk0YMJWx+9u$!6&r~Bwc7IEN2MIA{)Q3fDYDwj28t!`abTG2N5}B_$ zvNJ<2^@Te|t%$tZin;x50qmtbQh@7As+U&f(bZ5#1M3 z*B0)N4B};i;oZy;Y1jH`I}(eJd^iNsP&ukP5*%b?ejy;45&wBQ8y69z_(At5CL(LV z)_dByY0#`(ov--VNOH!kX)W}|868dXumfPFf{=(pwB;S?Ht(<=VJ+t3K~O~9s$>iT;7u^x#AJy0QFB606X zW7bW|L!$=3%qbrby5|Y`+A~HS+#6Y6Bbx3GFWMzgFLvJ-epH#hg7k$gLN)LF#-Gk+ zV{-3&k&WPT_}0bjpx&HV|8^YCELuAJc+2E`Lzu0h-;Bb5L}Sx8M|s~dtmwo2?V6M6 zRbrDqQ1q#ZQ?m-B-M&A$8s2CECe!*A*l`Q?n=xyy=%!loKT8Q82%APd<19Z;Pnmo0 zCu3GQL0a}?(VVW=7AJVP;XtW0lQo1%m;H<*KQnCtzN%fAIRMjlRs7N1VT<=#wRzVo zazOw-bx6JBU-YL2BCt0R z7QWco)#0;hz*hX!bTTx(6c33ndpApcjw5#Yk;I}L`q8>G&N zA8Kk=niL>HOsV&XIr87%eYk#xNe6{Z`l>WZm} z4qKd8np_>ZsybqrH;0G-%SQiqiF7!8(w7mf`K#Ya@d=rXhajwBesbF2)CJzfcc*Pw zuPV*u$d~}7&5&PkE9_`G_igFwq@nQz&KrzC7!VqOw1+5i^O zpu3k(z`Pe_dn6j73{Vl3Q3+xj1}2>q8gJrJM-Wv|af+M@CYpFSC*`K(Y>w=TNAeG# z>oHPzmM{f*x)W{p`^4Kz@U=8LD#s%MsZr{MgaXn21(~I@Y#x%MKy&vdh^_w&*wYNJ zs85Z*V@1w754HS_vT)r410{KTmndIlR{F2KylGZH)tb+xxThu8&aZ1birK@Vz9`^+ zODF7)Y5nS6gp=PQp6LxD^-XBBkBb+oxRw^GWD6en<=uXJ!}7KF@pbfP!{|ub*Yd3L z6eCSIswuR00V9igv9XnQY-1DZ;Vhd;jV3Wy%BZ)1S4|_awJtW|~ z#wv(F4q0<+%^Eo}mt_oia5G2n*UeT_c@;)QCihdTkgHXzFTu^ePRDC`i=Zo&mrNpT zoe&6y|ETL+seLzT{M_SS&#e;Aiiakdm(vlKVRKE<^igD|#GwxaMoQm4#Y zI8Zx%Zl;#D=d{2?+RWp&NWU{+3*baCInHe$NVxc}PuH2>G;rRKOtGm5qoNEd6AI4?4j0LN{C2G3ns!RS}N7lg6?m|3W_@~c4Bd(=iX zD@)UURH56X7oIXr&I@!)pJ=K3Dt8>S#!bE|kM1}qBT>B@9ix7? z89iGOvV8uxQWz=Q28f6)6lN(lquZ^&;yB{tNSg<1XUhmKPUST~uZL0#E0vY;r6eu9 zUH$mTKwQUsCF62@ydw@>42mxm*#N8r;4dUEb`%M?iEsW9+ZT81rk!hjh4BV~V#n+S zyc!S*SEmV!!`W5b%<{>#Ntu7XiIkWa2X$4HL${GJ58Pm?kKvw#7S8GoQE`-_Ixx4p zGgq(ppXFMV^0R-*M`t}G7OekuXw|Ph?jvdjY9oQa=@m6Xb1uW_$?WH(5PCF)T(Q-V zf%(j_SwN83MR2A2_{{js{lU(`Ltqy>k_72HO4utIv#=K?s1K#PNu`y^^>_`r2*)fN zQ+H){sy6!3uzR49UBh=%g%Kx>rjUrygl(e~h?c29m>6eg^)o#lQ@5WmMZ>th^Zm0? z;!+dk!KikAp|nGjYE)y4k65d2U$&7P5o=(&C}_cuHj}t?x3zgC_k0~i{$(RFcl`m~ zU)B!ZZx|guX}ckkmq2W{0fJ}Od5L@Vc&m>lNkSG+8&JuK6)I2C$u|{^Z}!cEJp70p zzmJE5OpC)%-E`WBMx}W4%bH@4%9B3T`MV|H?xZs>wtd_ok{(|kk zTt|E*?OHqe^$rvqwq4sF{s+M@%M0>IGaA1cZrr=&Z3I-E1|q+Xdmhz#KFswQoOn>^ zAbZ%0Zj)v=%Y8_>=EO-Um9qCFdmAcbq||^4cw`8mZ05+}SW$RNAzFxFGrXOB8^yo{BE8s8JSBkI=Z34~ zsp)SgKgrh%8W;9C{Euo8ruspb>7md>hR)Qvj~bs$P7YnY@c-IeUJ%|`S(ae!j*0$Z zi*~q@^VLS4rvmS%M6zD)TMkzt*oc_;T7Jv1)K+xB(VNs!QraUeK~e;^RZ+a7;f61U z%GJLi+$2?uVRGnl!aL2K)z+ zjas)3kt8b(MG9T}FR1F_ zu+<^0*rk2GG9loTRO^6*9RNUJCMWq(KjO%ky$+O0x9?)Ek|Ta|Hq`@`=i!+j-k5ai=tx}Z)0sOa%6&@ zt~~$uvarrzc{#`9e8a*XAZ|T1cgO|g-9P)JDOs|s53;Q1t%aohd_{pZ^~GwJMPc4= znN+d@9q@%kfH4s^YSXRYe>gk~c=mQg8X3UnN@?Y_mvr8U#%mP&b9cKl?o~Ni7ULvb zO|i?lycLIQmjI{;gyHz%sU)>yKs{93fOdZ`PJeLr@j_x!d~wJOFSMw`Bp)Kz=iy z(0LYd*}oVQs)&LO2qL(@eBo8qpOe!ue?P6pgH2&X&%@Or_MtKTS=%>Dx>^@^vKI_> z={QHS)ce^Z@}KLRIL10K`}cOfI=ar(bR##PX` zfA7lG`yGsw4c;0q4`%L<%-C?jEfy?gsi`kEpcYqqALmqG)&AMTu$rSPy*Xn*dYi0` zzbwEY-FFTNOPTB^u}4aV#wlI|ga75!fz!Q#m_=@yOpE}++i#>EQMZlrImrCsfjMTO zw>Z&%x6v@N7jjF&3rEs{VP>BHIkx5<=OmCs(om|kwsv9l=1Zo)N@U{sLiBkJN$RLy z5>SfyFB$T@K(@@w^k&dHaXRp6ZE{$P45cGW03yiHp15mDl@s`dK6OZy!&?Q?4Lss1 z3f*Ve9Qnsd9ts$VWDajeM9hA#7|#JF$NLAGu`vJhdZtt|oO)2mAm2HH&$B#fe>c@E zztqAzUk_xp`AyalkHy&L59$7cPXuA}@Y$!+>KsZ8Mfktb1!}Un2~s^TF2Y)5H>B){ zqe8=&IjR2jOSK7^wz+&B_SAWaXRZ>@i!R?|`1CQ>6rOJ#&B`i8KVMBacC4G|^w#2e zSl_>#@N&G8&ua2wGDQ+(goWiNVs}TwpYxF|BvLq@-^g1)Y991>LUk3m3iKs z)%DfDmSu=zNw{X$v)sHN_Ge_-fz4;dJa5-MJnc)=$HFn1}`i~aYx?@ zm|80%{E?)+ORG&K5;w`p+lHGN$<mAXRm&ZeSo;DhykOa^KS{H;mb!hRs$F|l2 z9A&cqN6GF9QuFZe!W>;YN&4}I)W+Y2m30yZIP>p68J}tI|K8U-zP}zKQyBcALH~&> z6PHOx$PeDwu{j6*;kIgK1<7?nuz>g~mcX=&am++hocD*zGqS;nzgm330v*XEyA$(T zLa&gT(_7Od?yL)6x|{$mv-tu;q9I&a&2SBgQ4^~jE{J_D{Y6jjhe@af%yfy=v`Fz2 z&=xrbm|JY9Nen0TWjUD-YoL2=D-+CBcF0ILl{xZTOXz$S4Z9V=D_n@&?E2(<}4CNbh8To3xwSw`Z!<{ z&T#kTsC#*&hZcKxiRym8=Vq)2rqFX$6DSPsWA3?+VE|sM1KaipPsi)*0e~CH0+*G1 z^MCM!m0Zl7jU@8{f7<#{r~Uzz4oQhKAs+w`UM9;)RjzRBmx%P{a!O%4|9jp;`R`Y> z!u^R|8|9(nB1}j)WXrA}i1AQ0MZO3I65f1p0YSR|Ug-+(g52{nBzw%@qK&TMkcd<` zm!wCf_G-&l>tgRnG@ZflJR)=qYmUROYRepJ<5{h??0hfQU*+G4OZ`YiL)Gnk`#gc; z&0qK3?;Pqe>~YxcF6;Iv^Ug?doRIGZDH|v??KEYS?xt&yv*HrkpN0DR(NnwKyCwxi zkXD>yBds#Q)&dX$I+G7K)wz9R8-nY1uTrWX%c=vCD(@}f$ zUyq~n0SSWm^~B2f$j>=lvS@B%$rg6X{;IEyo(uXRvF)7yr#BnGkKM0{eTwfWBd5cG z|BCwkP?&=YM3vldtl=<@LrU7(y6w$vU!m&juflCPBS@?wnLGI>1WHO%b$X?Bo8JYh zq=3W>uk`@$)Mn|F7Q#hUQQlm$M$p;KS7x0Q;yq?*w~8ozLmiuKX*k3mB0>tN4_m4y z`4OeL(xNko=aUI~@WF;CS%YYXFhS6@JxUPfQ0*l7U&z20isU*~;FYy8c;nN}QQ_Z# zt!&(1OjkUqc2bhT1w!XtCR}2Ae*TXYbI)q$knMl4L1MK3l1Uoifd!Zr8;a}BW!_gH z&nLu6u^iyfR4;JSF&xvEtt|8HyJmg)rQ!0v;+b7UDOH%Y8U_dH>|j{eg6lm+ z)!R5{Y~^dcbL2mq+O=ORKCdk=+)!KYta0G^7&|{};xQB$|KHL&r@W z005!l81=S<&Mhnepf^}U&664_LBq}R$Eq*^fM$;5*z|oI06@L}=w_u6xn3GpF;g ztEtE2(=%41SBR#Em?*}gyl(*Ql=eK%jKMCxM&9jTBOVd=a0o0cG4U4RW~G_xb20^+ z58hGK%En+{Ot0|bnsy+mfTK7DF!Nt~+CH5UK~uf-W-&{89E*D#l3^d4n(g}{T6hwc zj0)P~Bz<(oPIRuPpg?)LoHfP{y<-kf+?9@C>&j+_^MykZ^R8I3>H|091-i)qoeMHA z>Wm}H>8(+Aqw=-Ma;b@AtruY&KgZr=PmAig8Qh9Dd-|t`V$8hnc7`fDLaQ#U$G4Xa8X6qt zDjGJ~Ksj6r&36e52G9+L)pQ3jUH?Pe(~(lh9l=BxM_F437ykL>slxmbi3siGzVfd$ zke3_&oC)dN73s<^JNA2#eX9}yZ)4tTBZdYkp14omaU`cZBW!ICG|4MzZKVdyW3=!r z@1}y&m&Gv&xuN~@Db|O+++CYaLZ8>Y#RK@wh zn(kJPg(`XY4>0L`FtTpIXmkYWQs%PSAcmAXwqZ9ZH%nqpVYbMER|0O-Ltt$QI$};r zfrxEdAgVGP|J&^7IDf$gLyJ#4nOuZ^{mfKldqK^9Ik4g`Q~l#+VxW#ztuVSXv=I0p z(Q}TR@;BXnznzUklp8-KgRbDYcS^0x@~B3E&XcGa0mkKUA(p@zSno_FyZzNcx0)`w zTC0)VVW$yKW$RK8SJMHvwh;ZNLg}i#_omzx>0J=1gvsYsj(vs-g?blXP=u`R+ue4QRij@4UUVR`%b&H|($zZgVKg(+%9 z`4GJ}i~oW^pT-NGdvj3*qYD2P0__`B{1XK@5yQT*mNYHl?(~_qt0_+(!eAq&$~|T^ z>+jj4T4OY}m$oarO}0TJr@#1>`?({HUJJ$8$_R3oX61TdJA>4#IzTC< zM2dmESX9KFX7Eiys|+miMqexroO)k&gZhOEhO%oqwZeo#C{a~Ypf)63#mgD@Zrh$# z`({%{ZvL{)JHf<~!AbR?IHBFbi6OT_udG-%e@~I)WM0K%P?U5(f;8}i1S;^I{yv%K zI>8if1SbHeR-d;N-ho^h(&(qoHX!cnpp9Qqzp121Z(WMqJz?|xary`NKRH_DLVB*;f%nT);GV}P{xS1E8>Ger zf%dDzV-IX8DRp{Rg(rvYN5LC2TGd2sKkKBJ=`xE!vkCHs7EtX!z8%|B+H(G`o?)xT zSu9Tq*+dMJ+NYmQyAHNDNZCHOPu55oqeatOv)-jw_3@`4-)wsK@?7$;|*U^RI>9xebGg1?jl~P2;C>ngu#^xeoSp592!LXthS} zwytq{4ff4ZbEk0AHbnK~4*ua9h1V%Lf-3yw2f6vwSbb!+1;|M$NmhR{306@+eU8kh z|9!j%ObPk|Cer}_JxGwpyqw)EI2<;uAHo- z8UXMN>Fsz%i}?(Bgg!Rb0{Mh)rXV8;K>Yj6>ncq|9(my+tLqK`;QjjdKuKmnZf5tt zyFq$q9d-ExQAjlb;esB{T3>6Qzapi7A4yOs)?E5b*_w0o7ogxbuGC;`bYwJ_#F{9Y zD;)!2~#%9|`aGuFd`5Im{NwLfBL0=gD2%v^`z^E2?sM}}91u*ilTBh{fHzHoMyu8r-H*fSPPNS$<9Phy@YYFY+qBmnC+;+PrahV&h)>`p+=g38 zS9U8f(*Z;C0f2%3#o<{Z`0pieEX?QLy z#~gL~NZUL(>dhqmmm>!UBaTDe>)2;a5#KMqFfZ}rCRa3bGIxx=P`s~7tALr;a5<~4 z7&1SqGI4CTjl(i}c9(9uk=n2aeaxHr- z?(qU2dQgy?AcT`A9 z`cOrNJXSN+KY>j*!Tyfyr{csGHA|Ge2ChpSabzZY4$P*UR^#ciNAC9#A?yw-4LFv; z#S(UoA;XZ+sK|6WJv{ZM^hrLT9yhAc=j=XKe#2-SzrU~AUc_UQqGKH*mL$V2ewP>t zMms|LK;Y_Adqoj(BtXs+0nQ#R6DxnSvdG)N^QGF(y=t9S=+cHMR}9RO2FNb>16Qbc(_H4Tz28Z*CaP*f_TSo zwN-z=SKg2&QQJQ5fIh;aY0+OUmTiGdiX#mO*|nnqTFniNx$ju&wNH&MMDe9pQ-PLS-fEh5Pm_UdB4%@M}8}83%dPL598~{H-ID_3S3TPl-j-EB`XrJKF{cJdc}QzKbCbbnCmPqFO>Q0;Hbi2S(Ud5x*FK0cQ%v0moIhbF4ZQ z?3mBZ!m+vwcu+hQN1O4I0@B_Ja`_G3BS&V;2HFQTd}@wSGWGirnDPxA+#M5gIjaW# zZ$7SROzC-Rw3%@N*wZ+}9|Q)C7jTI$irx|7ykLC0V>@3mh+g~4;D@J)c{73C5R9;t zEjm_Dh!9VGBOML1p{ZSrA z<^|>)1w@i@-L-$!q?fxO1rW%=qaw$P68cTJXwJ5;3(f9|o|XM95_}*0Ccat~=$Hs< z`rezgZ(dDUL9e2GL>#h>H+*4vFxJdws)V(@{lT=Mk8$~i3-Xy;r5V`gmgvj}_+W2q zP!!qZw>*TZBD?tRZ&NYTf=#5Z9~AA~k1xttMUErv>G$;9It}aE;bbA0MX%Do24PMq zK|c!-jYk9M$&Jvh7^%lU|CmpEEpHbK2%dFlHBd-;_mU?>HYDofbKI9;Oy`0GXIo($ zajtZ&W~U~NBsLGuluQC%;Zxjp;tu>Vobq(6#;VHZt?8I7;dEv{I@7)9#UFzR2gVuS z6HLqo)i-^Ve4{dR9hKyGE;Jlp+q9)HuQ&hcO$Iw1-8kR`6`k1un4$fLK7;uc!iRs$j@(Amg1w9xs%0?2fs9et=Mg? z#xn#bf2KECjsMYO&@%tH|12SWX8_NutRH&909KJr*&M-bdI$QOOr+&|_9FeK&IT^} z$vP)dXqMY<&5ThM4JX-(#A_k-viKpR_i0oaVW32FHA7A!Y zalWfxuT+{7!`Ns_F3f#6ufKQz(Xq1jZLZm5qwDk=1seMyJuy``G*&9qhSGA(bBOHsWEhx@4U3wj>a zGwE@!!!3uX#KU0~=6)e;6*eL=SMMW%#l$QLBjl=1rv{nos6;Lwk57e93X&@QP}<{f zI^1iTTy7t!<*cnxskatJ8|fHk!*ilUSjZ`x8mj^ZzFgE1?2mkw8TPW40y`8r&ifCX zCD%8y(N=}R!X|mSCA}PrErQ78({F}x=&i=(>kGzzIF(dM>%SwiaTM8JtapVQJ5){&b2W%M2_s)9{8CBp>S{XM zdP3NClG_4Iv@jclE{KeAD;n#u*Luv!UlKCDFTqm3;s@M;l?}Y*>U0)7HV#+sdU|>w zni|D;miCI>#6+?w{7KYOMUhFL&QhO|Fi2^M;uWbg9`?;VxJL`sgAKR4)?DQ^4>b&# zno}5z(5(^lrTx#h#*Y$f4~I?IWjU2WDCYeyPHw`)kG$0Q1@cU1Q>X=rQQyWyTxHRl za){_x+}vCBmRZ&(#U~_OJ`43oOg}6lNMY-|aL7(Wd?{#4a$%aJt5TrTl;?@3cZteN zBMP?K`&D!h*~bE0ld@xAjL0%1a6;aG**})o1v4E!q^r{?wcmz@;FUV>Yy}7N&ohQp zwCq1@JMd%SNkrFhfAzh7;nKg#ne;+ahNf4vNzG2sx^P1Niy#)M%3Evl6#{DQUqZzV zUu_Ms#8aBdZWy2_x+Me_i$C)n0Vb8^(s}YG;<^=l4;J|@-p9oxlR6hR2ZE+r&$&oT zQdlw8ATp_QGw>n9sodIYw1j0y0@01yt)ozbvjx1gu&fe+!OZbb9x zbr()RSB$KAh@+@f0a?0zbm13ffU#sF@h$lbATnurt3N_3tFC*0>yzs{i__=_eL zU6v=y#H=%+_1qHoHLQ~Zqv_E_)}t(8WQmjwS()|K(r_l$Z&sF9Ij5sG!^+Mfv94*+ zwI*jFAv(d@YFReJ&?=({xzaF)`!T1^I$yWP6lsRfg?M|OES(0m;v2dCpm21opS*eB;JD(9 z({)5qFR^Bg(k9}YLoO`KM7f2mu}I`snwm5;CBpKhWSJ`aJ8kTd6;+vE`ni{I2)0!u zHe7P6Ht#r?H~PlueHe)TJ2QsgTdkSA&2KQwIF{oqQgqarJ|-wEyo)WkNHUD3;*dT$ zQ|o9Rt(#e}IH=3#qdeK1G(4TREs<|Q8WhsxC|q0{BRESrYWJtBIjh&L%Cgg%Q5co? z4N3z$9vUs{rbu0AGxnl9!Mnp%dWKKn1;!U^?P>X<=t0PSKk+}3yOsM(MSab?Jk5Kg zA@()|Q(27ncEm75`S{Jk{d^*H@1S>LC};S~E<)2t?h9IkpOBh=kIPlEc> zK`he!;_?%CgTLO9C`6(QF<_)T7ahusd>i#3C(&E}{Wkl@0ihY5^C*S+haKPGmUr$W zZ7>W1SF&{U1fL2KU6xgsva!k=R`Oj=&wG<}EZX`eD|Wi}BpcJiPX)xb#b5Fz^8y+F6$=T{d|O|%M8(X?GmEf#W~ z<*=g}gVGlo^|C@Vv$?(m`nZ)tf9tG%DXeDo7JashM$a)_GPc7zua#lKzUjbk=)TdK z+`Q~trEZg1fG&lD9$HHoYqe0zRL6JVGT-D-%3$35 zA3<6%{|M{fu~j8IjE^7E2$=|a!K19}zjBN2RVO=TE` zsXytU^yu4}5u*h|6bTLFks{k*Xm)BO|J4PR_{itmVKI*|lV5(|0$;ae~JiH<W zzM^QE*pyRO4swIIh!QO?F*CG~!P;ef@7&gK(Pd3lC(M>9^vs0qdv@M%nSdh^H+Dk(OfqyUF+c*WA$;eiLV=>7jRk5_V$9T z=0+%Tr>Z?KR%=!V&kN=+za*1g zoWcrDv1*~!8P{xYn&;9j=il>g{^MliBx%GF#4UMTG~SsRD?VPo9FMAJdW#QLkuC~< zHUEe6YZv{}RC8Jh3*iEZ9}iJ#c-nXUM1CpopI^VkYzMZ%nedw$W7s-g@M5kbA%}=R zm8YoDvHJLm;&BJ(z`2~Q%Oxtl*jY^kDBv)AKMoV1EP9;;gI(wHg$F=Zdpyj2>BUF> ztQC4K!}p#*9j9|Wi~vbS0Gjw$Y%DYvf_B+=p9mQB2tRCHPCLH)w6~YudN5G=9D5;d+V8FCgwv#5eJV6ks-Hdz z-f}zFX9hoHCK!B-=SHCF5KJ!{>-*4yI-S?f?$Gj&pY?WyjTrG zWk9#_6MrXse|vElQCApqZN10hqHai_CFE)LKMb+{i4tV~Y6MT6Ux+a2+4r`iU`?6R z9LmA@D%*~QdMw^|ujOH+!y*!Vp=tmuG|k~DkqDup?3SFzHpmhtAV#w;kI<(5w8MC> zgx}cnFN%B1%42b2_wA*`>RfxR&bul(mZ@k$MKr0ff+=uRI5o85$D9EZ*hb~2h%1@a zH{0JIXs({OtGB7MD>+E0N;7mQrfIsT&h1)9~CkF9_wen#t_s^&~VLkfr%1K0P*m*?imzcZIg(sDurAh<0A^F}yiFHYqET-hf=) zi;rZ->adx*gT~wPZ_^_|ALsCFd9WD{%*F9@5d2>Ob|O>nC$!$XtK-lKr(Anwk&9SAzo zfF(ND5h*I*jz(^fcQ zza;cO+`W@uqy(wSD_Jq5%2M@_a6J2asU(8XBweb#{s^|tynJ*I_aJ*?sw}sc3jt{8!Wor)oQJ1r@`3Dkk@&>lq4(fUJE-!D7ss)7NjM({j`D5=M zBgX}OqUSok8FhDLOF1)q8|O7PntUUnmWPDe4YxLZU##0=&1dTv30n`FZYL4-@^X>s zl4h=j>InO9ybCsh!r9#%itK&QU1#~*UK@$2-Itfhl}UKw(TpNV8XMuu;h%D2(i|=C z3~%;DtwYo<1!)`?f1~P1G(>lFDbnE7Q%n$>(poJpd^=e5P+ooWX|Pp4j#R3}LPFY{ zMqJp5UI4;ub*G*8{O8Xqff3RVjf(Op;0elcotlyUW;L92<&FnZbs_C<(%@Q&#`0(x zN}r;K-B-z9UGuEax$McSG}>VFKihWt-G6vdaWP%;Qu+r{)A4bKcYfY@j;q!;?(%k! z<5q0%W;v$`c@izW+MPYAXwJY}X-<$dcyBvyDU;hXV=~^Ne2Mib{e`g|AHgR}XO%N5 z&c`dyteXsm)ehMDcOrnugXD`i=dB^<-J#PhhSMDeK49Az-Y6%LkQ}QEq4@7lA5-*$ zdW;e9?FcdJ`+P{-SxHs2?DAhfSiUH*{UT^Pq8ky1KlwdVDYf(>F>)^-J`+LV0yD*U z3z|nEU1>~?jBI{7f9q#Gvp-a$*OM(v;MjA2MT9537CL|@uzr?o@#S1xs@Aq$6-yAK%!&H-8rvxSTEARYgzhjK;NqN%b{OJ^Ym# z8jT&x_L~gk?lt);)nO=V)KbwW_uEksfrqmZNd-gBqK`l40v~g)&I}O&I=lAxhyKT= zh78&6x1MTOXUq0@h#L>>fJcvr+^6;dNcV|T@k#gowaic7Cj#xK{q^7i2KbkWikRy5 z{Q?@TE_kG74RB)=DEc$$gZeuu`Ssj63fBqp?;^XnGC7ywry@EoDYzARNp1AKuW1vg zdsBjM1lHPGH=~9=qb)jOmfYPu=7|@`m+?TkQG=h3lBOOqHKjdCPfF7v_lQ`r$x+d) zdwb(Aq73guDiS&_*sVDZee&HvN>aMk=wM6@mM;hQE(Pp8`cIm3rp%%@j_uM1nuOG& zpreJ?OJVQb-no>T`<1%Ud{t1M|Iw9dU`cCE=U1f8!epB6c*)Id{na+|Gx*iYbV>Or zIdU;1&b-LXtd3^0$uKt?UfMjyAMl%>ytL0huf^_C`;dVNr;5^Ss_3vYbd9EQdOM3H z5_K5M%sztSHS<*%NwB!y0K5yB0k5#b%<}WVd#a4Du;iIE8GoqBmzyC^c!gE*t`Cq@ z@hpfUlJ*VV{l+JP!Ga7?B6sTwLGBNJ^yBHeX~GKQ>0yHIHa7;~3a{9PE*GpdrAIUbm~BEmD}Sx!;R?$m6x1P|dR1WaxBf;0Pm~alj zTel6W2N%gldk&+(mFv_;sr8se<@VQr@9kS&hBBuZ0RC>jZ3VzuSq#W;R`pT7lWWWj zFn@EKySe6dgc0Pjs|?=^b><4PGz4~Dt=^ynv8)E1B?DYetl_8AsG$mcRbAdsZKPQk zYjn;}gT$!#J+LspM;|`a`K!!R(-|KOLebB?*T(*1*QV)seocykEbOf;q+|q`JwltE znw7}U4eIPynf4R+_|4R zp5FgvJDm^Q*0t_#y0jNKPtb37wcJgg>$!+b-b6(T!0B zxpW5>qBfeBQjidr2TvzaxA?K+4rNOp_ls{|JM=OlSBO~tG8?wHu=fnsPD_bdGMryv{%mD9RcL3NNrE7q23u)XyP*GwVfft(1aDiUB82soYn_M z+5~5<-KtvY$m9Lgj$SziIzf`gM%>F<# zQk&dth{o`{lIH_C#Kw$=od`fpxEd_~^(Q~E6@5b;DHGFD;4A1EJ(~7A$KCcpGgoO> z^hH9ZIbo~QoAtQB`UQrp2ETlP0mSpjvUgt;c?tzkt7}F`7tP^qREO1s>#;tU*5I`C zHeJS7ttv%igZ+O!X}A=o(Zpx3vC&94n4Z5<`^1g{3!dUj-N2S#G^%bX(75tSh&XF( zJ3&L6UGScy2{+UHLr6oMjj|RCmETr(ha1l2c<%KlqUw9DcrMw4)eV7OdH#3B8fYogk#pe=tB@}Ny%)4_Zf3TxosG1qH}#n4&^Vu~pOFn{%k z{TlWa)Y1Ffeg38c@j#5;vkx_{Yas#p51}r@aw_ANW5@)ywv9#BS%A-KJ^seki0;JX z>e$#%l1RD@lsjb~>_lYUMLa5b+dO4xQ=Ro{-jeCv+pOZRw9li_Q+Hn2i{{!co-d<9 z^!y$>zS}L2#b^h;_CWP=4sd~fd<-USL0shAL?BM5h!CWn>35D@UM;6jF=Iw^u8&=( zzBkmIo89_iL#2o_LBQq4V5u<({>|&Anv==sX=T?K7r?8fbN_$507C(L2N2*GcqmSI zvxBtDghS3{@i^D^sfiIT4ugGo1s;>0eRmr>q64JP6(V)ULwREZEc z-_L!=&b40XlfYl{Ms@05PpoMm6S6y0dfO??{Izy%>+kCMsj<+LG(e#K*rapK_R``| zf}+-_!fpx&aApvQ3&3as(dq zs9U2XQ<~jVT6D9r1U&4-7p3Kp73I<_QPbkOaU!YWQ&a3#{|C{H2B$OSjV?qZE(HP%+!U*}ffNenTzlqTaV zP1jkl?t1ETPJ6_z8DjTA`Q=M>;_=UQoP|1BGb3iw}al)Y$Ct$2&en!WKok165QHiZCCxOC9GV^zb zM8i|wv{0Fbn|xW7S;TkIQ5fO2I8g*JS$Cb={@q_Mnlk?CyOb^JTaS@bh?sBBr;kj* zvwEy>+^9DDBKAM`e?6RmzpOV-DA!&(#`Br^)Q(wat)O(PH78f5^ z&N{78asEvtJ1@k0EA$K_gpd(@CH6sL8m^V-W|3;Isizpu8O(sM+J&q znUO!mOZOy}P zDl7Nvc&OfAubLL$j;WT=%fl>JH^fC@F=e<)lR4{} zTeF~~CG8{|dT&1-%R;MLAi$?nky=eRb;nCE2u z?5DZH@?n)VT{m)7In!9Z%2c}VZWSa()~dIPc41Gmr8mM~ZbF=NQqzh3CIE}>Wl3BI z1mhE>KMV!p>0X=k5$sN88b9^Oz>jI;zmN&+SyFsiB3l(ZXm6n~J)yb@2rQDGVoz=xkQE49-Zng1HXmxve39^=jjskXehP|BVV~^ z^?6)34%{9;?buvVzXAT>{dKJ^4tc}Q4EX8MZ!#X`DQQ(9Z=a|}$Xff!KcACuJc{OY zT-)+q8nwzQ{S0?u^)<rk^#c|;&-|%vSb9V0}c^K^jyvq}a&ELCU%n<;~fqLrQ}n zopq^<5kG1WIp}Gw0(}hHB=H^Fy2JaBVQxKC8LcwMi=k@fWv0_KMc9t}$ z$Pdh|PX8vQ>x#q%_fk7zf75HG=VC9@E#=u-@hYGE5yF$_z|Zi^zUr5Jj4NVR24CQ8 ztqG_*cXKee60jN)2Nc}nZ@YIFL=_ZRJ9=g8r#JLdm)mM0O_h@Qbrw9ii`km>NnN?f8PGOfb-i;v6~XB}XMqTH-|{`PffRBeKJB7ViJbsmc#cpB zlL%~X1uO{F2q8QeTGD8yfeXm7<_#+6X_@j{zY~HQAQ9kf)cGpQKk|L3LP}MuWN@Iv zxU<%Y=~x*u#_k&80`@B^jXh^FbMOy8l#s)pjI- z8HnIS$Wy-`(EXm};qD3OU7|ty+V5$|^>o16xvSD6KT2sBET0hMib3K}PLgV2WsdF) zpVg&Gpi9inxn(igo>{Kpwg3GypR9F17Td!0S&i>49RqwF9P=FkV}r~S4dp!aDJTU@ zMu1$_BM_c-5yuhVQL-fRyga+pW@$hV`IQirMSx!taj{ zqcpV5r0}_GXVGbe#kdvUld#-26oAV`+iGuuJE*>3yV_pqahL)S6as;*$K;Gl(9OE7 zm5|&%yP0RVI>w`Js+#C^=NrY?R@rk+&a5QIFJPvERfz}Nxp`I#En7Y(zD$$DEK{DQ zbf3Trj-|352>aQUbDTRH3v?FNrVkmeVWAFkH}b>{e_=5lna;PVKug~B+_Jva*qUHD z-H_?_+ayaBpx{VmTSK4WLM+i@jaXRlCgaisKW)_ak)guyx7)8Ilj(U zo0^k_OSoao(;<`X8($z}`rALJC!L68hTN;Vxa<~tmor6YfqmP{n`K@dES{C>n`bpl zwt|bs7%f(i3}`)KWvJW2RS1uid2Hi^z}lQEjoW^Q65`}@GX|F!!3hU+xXZ+j#>jUF z6B9D-9=()CJr3;)O+G5+(Ql3BZu$Rc`s%o-y6@|elx7HNgh9Hy1XNPG8>AUZx+O&z zT97X39=c1qK|+S^k}m1+y?&qHd;glxoqJF0v(H-V#N9`X-|L_qS@7Yf;LoOw)*p8l zFL)6lEMda;FWpY48jYSVTBo^@JEv|J9p?mMgLKALoqHO*6?RW<`W<}RZ?Z|mPM<$r zs=BO-{q^jk!2A(lwo14AvEAX6Z2V87swyh5=S9^v=8cY&C2!6-Uzyn85iEA;AxI;j zZR3E1yol)#3DuN0?X%mhTfi#@ySPkxRr?MaSUTzsuGl9LDHNJMg2;jJ=b* zf2p;K1%z|`p&$JPIHi*%k(#@wbqDXR^^YB`$)4X%jBmoN9cRcs^5#IzFXr0mq#jw1 zhHUvAq3rO5*Ozy$tjCxGBfLB~)K_sKapNY3Qt#4eW+e&6^1ZgHZKu~)rQH)P#v(ZU`eXGRw*0_G zuhZ}X)_eBl7mVO2nD9ZPR_?xsx^gc7sY?G{P|{AX{S#>J#Kslx)A7ZJh0A7%)%&$a zgRzz-sTJ?@5fZTzRDQ9{g8j9Z*N&^7PJV`Y&`b8yE>Y^qDyF>m8p@h8L*ce!itme8 zMS0tzm2{bzf!kBTGKKdI#pIvKa~Q3j3q`H|A+0!_cCB$|HQjT+cN~8h6h8RWR(W%t z7W;RA`jn@b(MJ%Z`|;|Bq`v!)?k$sPH*Z(;pn{i)i8@a&m2nPl(hWE*2X7&JqLLWd z-o^Q0>OnR0C44NQ5*7;KlvDhgQ{g)~Qprm}M%}9zcs3kl9b;Ky<8~bL$*Ev z9!^ej1%kr?qCu_NHQo>p>FU{!mcE=*Z!5|P%O~>_wnW@0 zEtX$KQV`bQD(I~^PjP`^gywAw(W_g57S;{*47{P++W6LXo`rq%kwS0iAPkT(aujv> z$IF+o;~BR)=>ZbD=EvTw8C#=ob@-g2R9I}H4XxA8=d+PUg^YdV zt@CtBBKJS%WL;JCtR>)0QCP^h9!s4Yo)fWyS>}9J-Uz`|aq(!2mvxP8x;g)DWS?hg zU%bn+c=Ls)P{h;RNf#cbX;n7G$E_vhI88xnc4x`Io9ghLOca@^0}?;lkXla+aOj zwwg%;^XpC+qFF7n%;Q$`c$-?uUGfd7$vbQ|_s%c}hOh6L20!R2ZGS_ZY53wXsdgtb zo?l^{`v)9R8|_9>d=pco^(!$-q3F)XW8WOXz4!b@=fy=zvT?zseM;;xqE_kW7#}qT zlfp8WyrXNCmhyp1pUYw=r9*YE`KR<78G|HF(LfX=w|T*$@>*x4@-iNk#eAZ=YH9QL zMsbHvn4=SIiK#gbmLxw4pt&kZDKU+lJ&qt%M!>(4c!&re=TdSQYr&c4dY!nbrn4?Xb0t(+-n!W6OP#{w*U2Ho9> zuo=q>&DercqAZCRg@NxhZJ!OfP40n;|H-e{(Yg{g?+ofas!q+^+ z*;(YcADI506BCq!@q%}>FL-y|w?zowZfhs#B#7jWMRLGO&CC+_)8;+J148qU`Z%QT z2eCnkzcy1zQBdR?4-;CKUmI5wl2vXATq6_wsWi|gl>d55N;$8`Qg317Xt|{4!`=cR zVI1mk@VZr;Plg#{+t;R<+3k*u+OEWzIn5HuwEh7*p3ySC>`W0z{|C|qYOJ$&wB4xf)$+hHh=vgAoXJ`Y`yeti;(_ICm69)M7YH4 zFwUrq<-WkDdPX#?m6+2%|{LFqRo)nlpe=E?gCuTu-Q{IB@hXoYhT+5Td%Gq7AaN!@1-097LZ! zk9G@08W7KEv?1X%8%a#aJo^siU_z3!oBJlB$G0`bo!~4mKI+j!N~WeiqDDU|HIe(h zv0~o7;Opaf=-!uF$;&1RKFLJkFPcV?wd+4MU5M@SD!95WeyBy%8jTv_S&v9p!AH<4 zGK)hXSKzjlSO^YuauQXfqT&jY;=CcNJG!VV!@~BScVE>O|34hX}VC)3;MjS+&$OiDZ6HpHPL|CBph9%uHLHzhGGxN!Yh;%8&nBSKF!h#mr&pKGWTEJq;HN z>sRh7iB0|R8lrs~y^wlwf^p>^nfIt;kLSfh-UA9lU2@aFG1ppu+g^)oGoBzq*yrPJ!!10-1KPd%YQS@lG>{suot~jHfU>*&y~7B}$6Y4V;}B zs}7m`n@;%R&6{q0X6J%;;Z}iI^7LuaV-@_Y6s=bHZ|xv8-8tX4J1u2Ge`oub7iaF} zCq<>U7msP5;*jJSP0JZsFiIZt-cCZK+ik|j+Zf(eG#?0yrkKoh&AZg5V5loErm8JX zrctT3aYxygAY7(ObDXBH6*Jye4h<#Hj<5NDoE4ZV|4EAKh#I|ACx$cYggne@Zg&K6 z>#n1xqm$?v?1-^Th3D{4=rAs@>&&;yyyND;3-@R+VL+uTGWg4~{;4}LXuX2BkFRec zb(I(&^T3-w9o|(V>;3FPsP)~i+whSkxz-xkPcmomygomyR$--^<(@Np-Hgm5W#9+` z!C@k91(wvK1qOkhW34SlMla_TCRO3|+xx1=wKtbu7ZpUegT{3kVr&Oz8NW(Z%XjTH zKgJUF%!l%@I0=|Y3oz*rr^Z%%!HT|y7C}vU5Id=-r4g1NxcJoPX5lmz>D=mgh6A)U zU#bNXD4~7xO-K9^k{^y22nZ=on0j~IlwXw-#|hVr^vY~pDjo}QvO;VL<>vIqr(Q_P zY+u-$3-s?|503UHj7BVg?7bCdk&9+FW%7&}Y-?2*$L60syN`_6Kg+N)2wqwl3$3M> z^tbxDVegBsMP8d+bumTy;%mFFbzKE`Va@YBt`;Jv#Q4&JH`B7yVt1*hW8Dg13mZ zY@fESr!b!7hfpje8os{`;aZ^qOsOUPMg0A%hh79ynK-EdqMtG_%~*P0WVqi%KS*&T zzFoCFAfRNv;9TpsnKm_%HAO*^d$Slc)f#{4)iE#ZS_LArpRHiC$dmtpBV=HfuUN8g zwP6aKt(`BGa+z8EqgOUIUo5}KP-ALAs}iLwR<21xJpI+xICCNi(P6>hP|^pcbJ%tI zWUIDRkdehu$YXvxB2CRD&tlIt>!xQJ?3rLCL&#b-vfr8x?VkEL-z^ZHOmv{OG+eAr z|FK`IU=Yno*(gdyLvQN^dvK_lB$O4Ao@qe?N+aD!_`;6ETkAS+Rf?VD(^ibL8?78_ zxagVrdT6Uvi+vpTUZ@*W*5C8$T>-e>L4c)f;3D17!yq}tuWzI1XJ)Ezn~t7j3ARMf zkjw|V4VFz=VRWaJS}xs*{t+f%yakXYt&FIN?K6@EzwEg%hS+HN?hr|=DSjQVO4hl;aG0w{9Uzu(ntOc`$ zl1`O6Tw*Kq*Kd0qe3%Lkahed;dYGnpjH_7X!p#Bf)8HjBRR;C@%6bWb0H%wjk5Vow zpPAO1u}e$@YKbi9w0PtnBR2n>n*p7_}- zlTk9c{Yl7i_N9QP*Lz(wHNv=ka$Ia=QYL;gYR!}M z|JXxNboJt#I|fMJm&N+I3tR8vUoEA6IWhFy{NUK;l6(FF{J+ce)M1UkQV*9VkHRy= zf&ZL2bE{X03G&}HjBWVZx@a8FvXjRX$Inmde^+l)w}Tp3onzRYsDSQ&&ynNglrH+D zg~R@LLGcqDZr{n!Q~#F%cQXx)CetWgSuZ?x*JJFzXJ9_Gt%;KF7hgivj|uqx%gihn z-1POirycWV8S60Ozn5{)f6fm#NT^{`Ja8#z}j_ z#U5LBUF3f^bGbXa-hKgrtG?9J~J4?saQrH1*Lw~b|_6y34^ zaO9y<`IY$kQDGsGlmARuY#9(uJnPZ?86ee5BpVT_b;U8DQAL-A^O$ToxRBfG@W3n@ ziQpd{ZTo0BB2`2Q26J0>melg&OzoQT=E}Uz-Q%jVK?Y^FTVom6@7bV(+$xXoK9l=7 z#!M~Q1mDAL{q#-(b@0$RTV~%iceIX)4{0&$C<{J+$#NOSJvms8y7jw;H9zb7-v=1) z?fU{U@iMjOF5h$Qul1S)^;pE#@|6;9jWb3-X3GvENd>>o#KY6R02_9wLo(nrxs9)Bku1d$0h2k`l^f15>nuAE z)Bk$nSVvq?1-7>kupKfcVEan=xLm2Z}9}Nv(5^??{M`)<@Z|NYr#KoFr69> zGQ?hTQu^S1^)OmsyU%~_xXS(ZuAf3Sb9VVzOABFy`?nX8KK5l+@eP~lf70OggKYkD`^8T>l%Uv@h`tl}B^U(?k(vj9nI zbe^ob9FMk5l7SOwkA{Yfq;v<_^S?q5Q_h#Rv zAAgdph$}Kc?}qE$-j>Dr96ih`y0DFW``#^-4|K&6uH4%DpG%qdqq{4v_ungjuWlhV zaC-NPD*ydm_}!0HggF{k9Pz|qdw{m!+aRTq2cU;J62xaGXXMAS>mL7sU{iY8%G3Gh z7e6L|^M!<%|366abO{TrA^4fSrG=U${ttt`A+b*M{r|lHApkjqW_+n-9{xW>`i5og zyyHmRvn$mra_%lAl?gTKX|t-~1zw)apbOHg5$Z{bgdg zjCBrXFr+5?FLN_>FjG%-v4hrzRBwNz*Ve&*kT`@w_MM67a1B%W0D`ag)B67xDmXCA zRrvrDc_Lq79=UxaV_?_I$@pLDy>21I6}(06w_!w-^}@`*PjXSI6cCH%UWc@o|Ghl@ z+%n#E-%II*D zsF%nK%Ts#;g(3Jsuvx%**`dzo?1h!p%GBo=)VSLJu~Q)#sR`1vjLYxcC`?@34Cxim z>aGn<$64(4yrm6$V*Xbo4;p-Kka|q@5xGF;vuG8LBsNS$6$$$@0ekW{b}P<3M32QX zfB`hoVxg(LxbV&BwAC+%9qe2hp;d6lsk33jcHO2XzZA!)a$ymCwWu7hS;`;mUQ%*K zG)OmN=kCCcCVS{tb=EKBI43bY7ho;bS{*`K!5&CZZX`!ZDf+46^~Gk;ie>Rln z5ROOggy$Fzvj}C=dRoWO@JL7y5e;IEC826;m$8OVJQZ-b1JTw+7!3Lr-KU}4fNUFZ zot**QYWG@*McjgV{fR=9&A0<%arjifoH>$={&V@3uxp)gB~vyV zj*DCBWRrw9ik9C?v+bsRFRYBG(iXpr6eH>w53rJ}crz(L8Kp=Mfv2IsxrRWis9&V4M z%4gY?=0V)P`xlE*<+~?d!^~GN=E;qD|R86)nxDIcDF5v~67@r2-_%BJ`_;@q85ZTG76d%zB zzAyu9Mu<(5hcA8HZcf9u&&N=)mkO{zCw~!~WAgy99rNkFHOgpiC)$r|{f^Vs%+sgQ z?SA76{yx9$F{W?d`9^YjQR?7b>q7r090TRc(|~6ndFR}0YsOZqJtN-BHN_Pz6Qf^o zRYfF)7x==Vuo+#6Ts<%0!UmH}Zt%;nJsE(Ee;=?WR~pRfN_#GbX0hAp)0Pd(T(^7N zzVLk|eUNsk5aj|)yo=R#ql@9Nx->>?_i|Evb+9NSxsDp3<~@teJq(%yL4WvNuX@e) ze_y$wP-3AiP!oEPj$FCT;(eO?o7ex+Pv+!-69O^Y0MEBjZdRL#ZGd?I7>LkUw%$t( zqYBVEDUi77%dFDgcu?DOC>7_5Oc$@aR}>p9}1 zX4I%y0d2#&V*Zki5sK1U>g)WsY3|Q7*GgWQ0-98j_Sa^BTiS2)qN@n^-loq9K=g&0 zu{2ON(|uKB29%pFOuam^g>OhNIz?CU8?8$lxU5=a->@YM*PZlQS5`BOve%NWH@aFV z0tHl_9sUfmBgIW341@#jb|Zx_f~v{OXvotra)DUPoP)Q7*1|Fx^8vk_B@EEum>3N} zboV32!KokyvylK$-J+Wn#cV+3@#ov;Xh6~`Yf>Q0nrl{p0sw8RCHeRyH9yC)>uXoo z?c2Tz=Gk`=9LdY|D+J+pmT#`V1YiP(hbiityacry73u*D9EcGUz5SAYLm-v6B`SmJ zAFG)uas?M0Ff2y#eKCp_;OVX{D=C|$)}<;QKM;K->ifsNCvfYJ9j?(geGCI|Ed!HT zjJ+5Rcr1MYrJ9_VG&M(W`j_eSbHpZ`j_gwZ{Wbqw_fjxG>aFDg+iBXKa#t+~pcYsy zcY4S5?w%Eb$sDilS_J>tue)pEEoKl2#pWj^CO!o7@Caz!@R_w_+k_4dNduTOy~Oq! z6G8ag*P~wI&PO-QqBXCQ0_&KPcs3>CDO}wo(EZgv@~!UXvp6UOms62H(S=&;i2iYB z%f@wG?l1$v*+GD|Zoa4%)zR|xi>D1Uq1fah9cw&SSg7G`dlXIW^MIPOP?&`vOH?Hh zg#GZ0>87f?Yc4R5FxK;56jH_zE6#5#0bt)) zgFaWg`J;m_I-3-V6_1E>Fli?Ejr?0X0fTDrd*2q*VVt<=aNX$Oy;?UaopQQ<3=|{- zYwN4R^H}Kz2I59{puSO{>9L9Ox7y`&X)mNkONeuG)nFtA6=)=%U_eL^acY{vQe6fu9UdD3~$22h@_SGjQ9lBBS2rZ z%jZI(QcHMMZDguCrEH@Ai$CYB-ym2@fWixl%Au@}2zc~H&-#E6^ zOeE#Y0Pz8AC=l9$VS=gYsZC!YHI|*-8??8z%?tDc78BqJ*@ll$i`W_tQIO~_%~^4Y z#g|F#<(?YK`o?=lDl@nrRuf#Gu8QASER7Cx-t(1%*$dflu zI_T;Z@5Pj^+#PkRzogFAEg)B=HvX}PmUX2r&#qxw?Ocwp3;m;#I2O zMu>*44AvU|_X9}j39+@U+UJ*@PTXBjmMJ~0y%%K6@%+ck+X}CNtb(~$?8WvPd?!1~ z&+w_+`?_o!M2AJLL5C65TEY?(8*Xh=Wypet)3eRP7BoU8qKxB{!H3m`$4n%i`pFRD z@w|Sft~1%!$ySQ^tWJttRHe>H76(K1%XUazKBKbIB@t)$jzrI6YZ}yVg3}nC6R85l z0A{?YwVaHXul%?&H{0Q5D&`!6Yq69Md^-(NrXROJR6E#Z@@y*eW-0Juz=(wyQp9KG z64FkAo>_EItm^^tcr5OoAY(IJT4{8?ce`m#9AtoVrnEq{Yfqz0mS5ZZX}S7W$`1;IM1`K+^OgTDKNG3^VCJ?DFqS6n zQjJR{R#Ue5(4F%FwQ`_vEUWHHHtNq$cT}FswR?zF?%Lu%R}!ad)5?AW*NzX;n|7MT zK}Mu9QhbDIGi+@bs0V>Xdk%E&f)rthGpWmc`dn*j|L)ihzuV}>hr~JER~ar#k>6b> zX#10enCV>=;xDTHsc1Ha6gXoPdzyLQ0v(VgJ9?s* zk2elFY-=wrS<3(}r&AFWjnX0V0xy>JhIfscfF^&lK_Ey_k^lWWqO}TELYG#xqVw24 z#RGwu1H(J*ACi@osevMrqbXTI1-4NSnABA$VAO`f*6Z2_@X@IT`-6Cm>aYRC3XYFu z)Wu{0&}`<>R%Qq9FJL_C1M|#=(mN7i-{v0#skpKXGQ*;sg|1r&U~|mj=stjF0B?G?JmkUKjl{UQ;AgL){WvPzi7d2IX>c1naXLs^P`#c z))7}&G|Z3LptcL4XxYM70vXeP)XgC4Sw_sPN;@q7HvBmUP6=aDavyN>{o;FQx{80v9Je3b1sW(FWP-iNOmiY|DtT0aR-)KqEnJ*}3 zo@lX&Sf@l5hTuOw;4oZ@iN5mpVya&{{864)>G~+*>wkGSemukR!nfkGyYFb-eYJn= z%?d`EO;cXe0BVFPex}#3Gv-$E`IxWQr=!^_gH1CJson%>-fDMbHTPo^k!`OQu&WR- zLU*uP zS^uyepaZc^6ftZ1H{*vTP+?}Z!!CBj|4wD?cE%jD07k?NvGg{W=eMWN7u(6s9`9Oj_4Rl{$PkrS=kO%3F(EDOZ!KG4N~@5@57a2$danI)DpsD=F)X4hnj22$YxCyDXO)NUB zSQS6nYS@{F{q@>B#YxBR%j?IPXnxWi-Jp&vWI<=-%ig(FJ(8?ZZ8=Y zugJmNXDL$(v(c=&g8eL)FxkN!D*gLb=;a3cfp*O9xvP?9r7^?@0cKped0dfLzEEk- zd#(_x`{z&6E?HvJWLWF6FWuzfW#!SoIT4htg%&FX7146z9C2Vs8#sPRY0~BqA}yup zsc6*Tk*8^nfk<3}$taSmS16(T=y=9fI$x&*+0*Gfqa$Je!1|Tx&s<0*8(_rQj+=-f z1qq@Xb`qm87^=_>{^ru+D& zE~*TYJ#$-I&EL-EzM=2P&cj0pWpn(gJnE0X)X05D2T23r3?j6MLU9_$TDUb=!CKt( zkJf~0KrGJMS}XqhD%y^pDa#C%;8znqGAh2FvL8Gt3X-xHeaE42(U>45iir-3BOcoW zUQU%O+nzsfE;#g*m(l&JUXArEP^#ZEIY);cunnnVa1Nk!SPmk0xXu zQUTq&S4=ztMeY#csFJ%`N|k+rH4jh_GX(<~(8_?LH{oclWU4lNsqrujpA!>*o9& zVKGr*&T&56gppZ-IA$9fayPUz6cq;6AnG0&zS6h3k#_xXWyu@W(q<~|Hj+!<8LET~ zg?Bz|Pj`ATu7rECEWam9%ZwFSP3sl448H8$DN2$P+q=|wRNgu)!IIYG>*yVNBqsI- zB8r`Q&i%%V!5eijgT<6E4u2XcNu;N@Ztl3oEr>!uEs;EcYTj+#2;t+J4x*mHn`L_gmO< z39Myp9xPMQFC&1(`B^JKC0`@q_vx$L92#}Lq4k&kI25443?wtg20CgFk>p0CM~ZtB zTr3B@Iuz2-)jvsz2Ms3kNR7PqUdBpvG7(U)2m^G^HshVu`nPPfpQmn8QplZhbK`#q z0_p9|RR*7Y@|S&kfCJ?m1P|9&HY(k8i{cvoO>4=fd;$>hg@)yxPi|(e6!4iK@@EtK zE{qlIHl{yHQir-}Q$|I`x+>P^w*MvytkirXnm$Iupzjog8)7u6z|TM~9t=H;;XquZ z0w-&6aRQ81_pziboDKeh_T7j?c2eD?m@DGRqxVw1ukzyNecquS$jyK?P%JDDCMwFI z-&F+;<-Sf@$!-JSX_0$|GX@aZp;()h*PX+$S#bR+80_9d;6CSZwEohVmjB$r2&_S( zF^J(omzPso-Gwt&`W#`d7uF29Tx3eOKu*7wRaC*x$u2iY_$6-NZ24r_ix7RB5aQ!4 zm=v0sTT_@N%t4D?IDwU5W1@g&6L_^ZumwW5zQy+eN@vo%wCb`+)qQIZW)*bix`Wfb zEDoF-P1MjN8Od@6gE2?QSRI@Zm(yv<@`0b{%MB$ye$Iss@Y{Kw%Wf85?gtt8eb=9l zfsyL)@fgUKQake1479^Ua#9uEn+3$x*`NldhJ}X8zqbKGld&Y$A?UQiuRYZ``p-c4 zp7Fa)1^B>v%S4LR`uZN~<)2@sr(>|kaDsv-JC0tpY78!+ghQ`Sv*V2DFa6AB^HdJy z>q1F0ad2@~{$Afdb8Xvs_S1$;4GVy41VXGqFD8XaQFu(=+{~q{ntQBUmPU70D=aUr z)LbJLYR~2L6B+MO_byUQev6N=R9seA~6sFpl9wO zZq=ksh1U_4Lj4tp=t+Yr4E^>z|BbEY6$uteBl5BXp{?5sF!$J`YN%CDJ!e@o;7HTd z4Xkm_84yNOUQmIIt$^?Zu(_X0xdWIzCFLgv7_hu}VeVKO)vLD-Ju-j@%NLOB2pS+q zIyXF$$=~*vbo$}37z|D16xMq_Y&zwYkPZUo5)p_Q`RA@)m+?Y+`%tZ@*ax>UsGGnS z@Vt*A*Vw$zAI;1=GTp8cjCT>qfS>?wxt{B}^@`G!J8o35@p_ zN}YeR05>f%T#t2*cr*een~dz?x_R&!05fyF{0q_tB3D`i$FJo9mug<~ZLjf6AkCbA zoHzH@*Lh8le+It4N-;4kbDqK(Tf)42{+KLH!t}2Pdd3DuN1hujg|TXxAV~Kh4b>te zx$V{?X$Y`1DHu!(MQIQqBPG)kmCA~N72}OItj-@7(IBj(XoMjKlg}I7|Br&XfCV*? zSzca1CCL6;;WJP83xn;!Lah$=(G_I>*}a$PK*b7Y@#GM)G0A4esrL)Qq1iHfg$xBI z#bew5H7hE^7r5OG8p*cTj>KCaf*mZb`-<}1NPc|Y?HQ?sjW3Z^_Oji5P*MRan*tuN zB=?7t8qDpYn5%d59B-LrRbTATjd8Vs1CskJ2UOL>fRmXSEj9SjXaxgS#%p>g0MVbA zM0ewGq*^qTjpF||lSq1Dn;}(u8poy|8%L4=MIr-(gW+$R#2!Awo^2QVNaaZ#kQ?La zw|nIjcUS7sgn7DG#0psB#0p8pU_AZ3I%Y@2vA1L0TqpXC8}iW7ftl4))|PF8J!GiP zzJ@1Y;Twp&TiJ(2x;@_*C9HXQm($EtGxHW(QLt$5 zZX0N;mmqdp0D?eD?p6}3P~5wAL#VzlBMlPR*248B}5T7#cy!C%Bd!%*Wo83LhBW4HE^ zmXx*^0>lw>jmlwCSEqlp>t&xiMeS3-JteR(cL>l`HKndPaF26emXiz;3VQ9XUd$9I zNnPDoRF2sB{H(6E7Q$reluzL7fBev!Xx=^PXQUquHKMldD|F4P%34r-oT2A5s}3HDtE*SK3gI0+C`+XY)%I%-uSv9zPy3l%83)=01n6XH1w)btU1J z$*fPOiA<^d%BnTlz2uoaMDQLPbY=Z>Qe?W`;Q0&)eM?DYI7vStvW?Ao#+M)^t*-NU z%+Ahd{KY{HCn!4_ml#fn4(G-Z>g)>tuGn8rSHJxP=lE@=R-15ag1<=poyH1Tijqs8 zA|VT{jeyh}bwX_A*z+x_W8)Y0?iEl2QRM97#lfvAXH^M1;}%CGwEwiZdp8CS04T#~u+ zadxyP#8Gjayz5iA!~z}K{1%ZdMhg^iCfPFMH-QW2uULVv?c3H!Jskg-yjw3B|AmzP z4Lz@HZ%C-*5y!~_ml7U_f;)k-LfX*Shq+w1fcPT1f43|0b5u|-BIA0t(wG2ecUG5_ zB4&j;*WFCeOY$ARI?c0`2PoBhk!i8@QuDUoiq;X%9lUHYMxMGKa|q@mor@;*C8XO- z;ZhrQ+#=L}dIDo1Ak_GtcE=Ej=~UcBseI19P`Y528Ulkz=UJQea2&hXYAtrMcS4{; z9VjS070ET6aF3$N5X*OUW0wYWSvOthbYY)2$R;XJssVl0u1#V9QGO6PEc8zW7v+FG zMBE&px^$W^xhu7$wm$M%y&zyv=v8yfU+wOvz^bD2jYa?t#J*;PknaBIiqs&j&FnOfbt zQKIsEksK{rJMrv06F+lk^^sMbw(&fPl{~Qxq~ubD`KlZ5LPf}KNWr2 zmzFMthSDF^5?K|dV@$Tny@ZDqW1|J4tly&=#WU^389D8^N)3@Y2NU^BF9pmY zL?EU&mD7DIbyh*C<1jgRc*(IhtOrX^jCwIl94)Zhg9v^p{$;C209yw+kgWA@EawwA zh5t+BRRqPZ5UVXe)oAGgNoU8AfPTQ>pI^%nsyGws_RV6e$DR^G$xVHu_Ea4XN_EDs z)0B2D)^lQ!v!jfp?F!oc*5rah%y<2fA*-mYb;4Yz`f4IN8MpS;g_j$L_SNI9k${`0 z>|C$1Ium{U*DroosukF*uVmMM8q9$%8_NZuoCbTi)mL;%ZLH+yethO|MACgwzbKQF&J+J&@OUop3amj8Hd7<+`Ve$yP4ss`lKiRT3HOHv<7+ zpGTW{-Lp{@mOQ+Y{RfS;vN=zV%lqRZsl#`Dyo;^z_ZIeqzzV6*>+qD`lh5pPHQ(8d z7h6vKgL4*Q5v{MS>}>{;;QX|Fk)Ffbj~m8_g2g4v{wm)*^l#N-6yHx%U@-gZ1=+ro`<10qyplb4H(UVv0;;FJt?;^tyypt7iW$H5;^2EE8)J^r zw*s0C0g%tn;Zu&wjf5|h&0a=y0;GgdhcnZSqB`sf^o-rt^ zRe7P;XrZ;JH+r?USD|<~MzVo=#@|SlI8T2%%;(M_?OCSU%+n z;_3GdAcGuwRs#4GR1}Aeb~yB?He%A^1^#yEOm{^Mrt2llkG)C9`O1gOuI40DTQsT& zLx5BRNn%^?RF3gWXoYsvORVpAG7YjdNIc+Pbt{s^0$CQD3eM$U6Q{hoFyxjM8e8^# z$F&E3uycX+sl!q?v7O1U^5pbyG#D1ldqmDrqTw~bnbh8;AaKLtyC1PDh8r*9r0v0B zRwQ9`L7W~fQLgzR5zap+Tcq*f&!Sp_wCi(|7en%bS$HDhnd>d2JvnK>AK6HUoKIcH z0l?4Ta~z|8P1riANAe3Bf*(i4~39X(_<`_-h>N(|Dp;YaZA>p9Q^2u$#oe z1r5An-YbVb_}|(p{rMy#Vq9h=sC^K;GbiqL6l#0-rs~fN&>;xj|BRJHfn@~aWHqz6 zKmzS!8{+cFr$>uld6#=%Lr*?@ zFmYFc!g_NK=2GJDc|)H(kpYi;=1;e11RpUV3mIXXnV~QmWIFqq*=cK(_=fns0pXaL zf?Y2bcAqXrg6aDvjtViiDug3c@UjCZ@Wg{&H7Y#ZO2ze;ACpWm@`)>Ka2YK~&3b@1kMo(Na?acUdlct64S3$v zRJdFwjf+H*k5~S@x4gnq4R+pB4A~dyG28&jXjz3zd&X~7I}5qlXg=HFI& ztY^aLA%t+BAUYG1wZkUUMw%oKgaL=4YQ>taHZN;v6pvl zfZ6DKM+3Sk(3?IawbuPWG2afze*1L?MZqj*mZ`t<9Q|g&N)U$ZBq1*7C>yyUnMT`8 z2M~}D{+ZN>Ibkp+${L z6;75lQsZPONB(!b#Be&5Vj7@fj`lDkg^BVAU;Jg#FS-0#Q0adV&0(SG#5v*PoBE{4 zUkNUyK-b#7NeB(TKA59zj~eq( z(b}8oG@Y$V>Lo6p2IRZ4HZ3G6#H$te)6kvL=2>xok+BOD0m0Mlg z2t-K8X~UZ&p+L1+FhPzWMUkCz*gQo0^SqNLxrTJ8BtNRohR^TokeBl25!EZIp#bsF zZNNU=AMIR5Us!Fnxl@J>GN1c#SHky%4a!+1e2V3HO9y>q?QG?_k>2p?QGjKC8&o=W zJbGN58SGw0=e_gV{%H}bf?u1{;hsT{BmqqH zz%tY@7lu&8Id;r{db~`JHU9DV`*N|7!uvqz_S(nY=HRj_uck7r9T0@5+E{z5-|=__ zMsf-iC-ns@!EggiUVjj&UJPA~Qu?N0ibtfRoo_W8DXA;-wN|0!Op&nA&x?M;FW zGl$j(I-IU!xL;_HMaWFg;I7v%+R_D8*Tv{mut|wwrzeYNZ6Kvqu|SS zkAJoSs<;T)y>{rw$ja}okZz64%qRy)+G|oHC6)g7M<*67-yZ!X{&u|)cQ1!%)jhq5 zn$+(w9FVNoY&c)DGYX%S5C- z+IPDI`S08u-Du+(&#z=iAP|6BkjwwNTM(#^0&KiCsQ2oXlweHT{NMq_?xNs$G~Jh) zUe9a*0$xrXs>$azImaj6_*E5<8N}z-3+@(E!0p^d=YrYY7vj|k-%ambRtd(~Q#Lzi zG*Vd8)i8?_6^Yccw#Kx0-Yefx^}h0dX>Ze+lmLBHtvpg|HSbTNvOj|;Da91&8K~R7 zgNi7?fFsIdic{EQB-7uyew*@fF1#2uyt;X%GhwVGyoB1}f63!nLB8dA^Uc}(ozVSc z3mEr96g*H48NW};7|UQOm5Qq920ONFfQ9+fUgj#h*22xE7Q*PyNmxs#&NN|u_(@+- z*iGVcNxa3wH&2wkX0G)s=tQ>wQSUuif(1OR%jN@-iWTZ$xi{sid_1(`83&rUP4b$nrWZXJ_Mtb`! zomuWWlU_rA*K;?z zqsj=yJv2rF4EWKc5R4C`N){8Nevn_AkctUn`6jF{SPdL=Tcwf1ZO<`N)R@M@YxNZR zN=0wL1|X0?&3-vbB@tHcc)tTTIkKd-&?I>ku#STrr&VjLD&Q2LPvuX9a5>gdf*&n) z%x#nn)?x6Eimo59;)u@Va&H>4oB{-4h`^=xDOJ`6Ey0cwJx3n2W!A3IR+b^%I$UkK zePOMO7Su_fus$zE)lmArWVN7BGhBWf>}RdT|0vMC^|RkXK;2bV)uhcj_+RniYwvXu z35!4>Tj2S4iM{ zST-Z&@Y_^GUryRGG?_x!_6)sc==9gt4 z)qhxJ;zDyPw&{Hfz#DW;9i{4OP7lA^)@c50;1NI`8o<+?s^dp+kEy2db^zVth`P+8 z5zbzWaEhU|%EhDET=(A?>XGRWHxzt4qKPxDX~g52ZAj=k zDjX+Xjsspd?DQ8`5OX^?wgx5|n(tNC1oxV3vylsjUAtS{ ze5H=gT>hE5>YyXdUUZUMoucnlYs~a9NgN+A^Z6xoSoI`BhKcJ|%WD++1@m{z@$GaC z559nMsXZ-c9F>aQ6%0Vb1KoLAwTZt6TT7NIwREf{|9Ia2&N{8h?aDd z4Fz9?t%l%9szK1wI;@4KuyL{5!N-E-e%dg@{yZmYFv9wjKuz1^;4&FBvv0d|sGZ6RX+;kVr@(dhLr+Joq- z06l6R@Oq%Og0?<TtTXj*!Lir(_>brTQ;PjU;(;AqeH3){f zc81Dgf%!R?xS9@6-h#k6zM2QI@x+LEb6pC7!cs^eNJr8*Rv&*N%}QeMVCXp_U=1oI2_7VP;x4j}d zf~}>Ua)iQYm<54Og#8~{CrMuA1s=uN@TRG@NEHM#4> zg<0)5Kzc;P%FkPH7P-4bO0aC*H8ix)+?N9wDQNNN`J*rXLu-uASt+&HMD&S7esO#$ zzk}^0pCOYsB`vi`G}XX?`RO{C!%<|;{@1chtaOe(^{~PeeAIq-oQdS4wL+izcWv#9 z(UVj|Hw*4yKkMv=&x^A_fJ$I|3zv0XdOOH`5!Uz?oYG45A|1z_G1FsTth=zn8YNpk ze9vv}vGKQ8U9V={%&f@MVMVB?-M$ZRks(BV3LCnT*2FaV{VY;4j z-2j4FB)Jp~C|Rraqq&VH(p=?LXNbBPS@(t~bBQp_=`^!SVsU;#C~9ZbM?(4ZYA))75r9g90f2E~;jy@~cH0GmSx<*xa~=6N^HZ|)yzmOh za1@X$#Uaq8{y+0Jr-5S3fL8^oN{3>?uqq)eHZ}h9 zKic1&rtoUu8v(--13K$x$5O|1!egvy3`)TSpXi2gH7Z_}s6ytI-Q{qzSQ zVRCboM8vj|q84-q_&iZ7Ia1AnkA~Nxe%PI()?!&U)h$np3m0kK;63>G;Ya3xe2li0 z1S;QU=A{78jr|QF{VYji4Af?54x+wFQ)V)`GBt&nUx7F`k~~M00bvKk|JqN{bxD6* zMkvzmTQxiOBZ16upiG5J)952aPzeJ}t6SPknzXD^Cton8G6qfsuso1CA30ASrlrV& zZ85XBGK;1ca%CP0fQgWcyHGH3_EsscY&2xjgd)89*iJ<8_q>)e45zt91sB8={n~;J zD*&e;$yKIVTS?lUob*It@R@r9wPVMtlIyEi5`shM;;b(|9sz#>VUK&mu3Mo9w^sA zI51UMn6-8^#-RMM%YwrfwZpxfy;WT{6yQnVDBO~yHwggc2K{?@=-9ITIYCSu&!klR z5zU0%Y%{7F&o;7ok*mbaGScfv>Te>I|bzBG0 z*JQHk&$-#Lv{3xE`Dvul2FKm8Ryk!TGWGl4dZWtsnTgX^PxqI}5|#8tnU&*`_!(8f zmlQ$h>USioJ*Kw=ruWU-Pr&P#frWC!$Ewv>X5abS>5eS^lyxmmu>uNtE;d*$s%{A) z`O9(I#7naO&N=#d6kT%4_ta_Y?)rnM%~c0`6LI*Im!D`Kj>jCvMI$8?x&DZ-8c zTKbAner>*J?tsJl_KAoV8*R_(YP$bfBLSuWOQx+Bvj@c7TA&x^K}-BBde2|(5+pCmMx4FzXeMkDonEval#TO17 zKD9y3Kk!_9+NvTKIdfHx3jzY6&;lsey^)yM%_;1em#H2LYn9G{UbC$W?;j{eB@NIa znL&PRSJl0DY>%T>nzpM$IOS?e>(t*1KBW$Y^jEh+gZz>&v3jG&$g19JQqw+FGJ-*s z<|iYi@eVCW4&YHusU8eLO_414z;kmsd`eis$=*Mn;k$QSN=BQREi$*HOBzOX%1WD~ z_`g71XT`X>!u^gNB{jb{a<^=R7c{j;+;;H7g2@mhXr9s z=;|hjvsNwD{Z)7M4+ZiUXdORHLdSu#2KdNEa4LBY;9x-Jwc-uM-JXlo-r9}zOVl$x zo&Ud0f5~2_c3HI9{uP8J!vgSdkU0;ZDSX_gMd?24Lq?m4F3psAT%J^9KnJ<3>y;Z| zLy`Ha4~DEqsfl&^83yEMq;GD37Wb(ZlNk%YulUWwdbny>5t7O*TQVOAEmO9DJ0YAk z(Rq_L8?%m6ACvBH?F)mIaxE%#Y8Y^Y|8J(6zz$C2$Vdh3SFiU`wNk7aQm^*}8=DMN z^0ZlL{pXcF+^MsM+F%`5vWbH=LN#7{*yIGJl_vefguR5CU-W!X`ohPtSnu+5c3^&%z4iw z(}l*gSkP$kxW6C`$a%@|9DfKP#y|w5_C#=ai_dexc$)uf4frn2(!ECFLZj{KLP6&G zuN_S#1!(;dvYDtIf#m=f&fB($xJuDR%V)*IVLxUolWq*{zu2aRV?4BQG}IO-2-y zr8D|LP6x>}^V21*l`ksBfU*mchq`;mKy@o)wku|CN^Qk-19GSR%W$tw9fm3Aixjc~ znj9d|4r=+6i+FTH&0|)ytr^xF9~LM5%Rv)tQP93O4FJJFed^SX<%DasLxyz~hB{lh zhvuhHtAc=;fItFoCOY_gh)xTJ#i(e%0FH*oqNC!J8MT>n^u5w6ABUfZ2mk|vZ+yww zafu~HEqvOBTj-6vDRyie#kp&%5x;@?3JxgK9}HLnD4WfSE;5xlOwQsE8PCiwg;OR@ z@oY>Y(loQxC1|&a0`jetqM$|mEV6ZjBlW*TN9q+-=Oc15nRV^3+P!nQJZVT_C!^&f zh`)gVP&9&O!Mzu$%`vE*&Ku5zhh{;ulH;=kh zH`6Af<;)MBs8Dtz=C7t+w+(XpkSz!8*iOa12MACo#1`BH2HVbp31^Pk-443xA=0h|F>6_7*67vMh;1?q*P51NN z=-*vRCkV#vIZW)a4tzW;_gc@H=3fXa`H5he$V39Z4TlnnT z(sG%OQ$~R0{jS0uK+Pi@lu%!&NJf#-uf>lm()tvjSF&}i-}C(?DMXGdE2 zbhLlRX{YIGmc-d3C~}-`WyAPL&VGa*O;mHi*p zLJLo|AExamNJGpzo7Pzo(Xt3?qG%^{wV55bVkS*D@uivR0R!dYNy#MS|Ke2A*&@Xo zml-wf;E13JwTY3_L}?hOU<4in3($cIUdy`s=u9^5BE$hGTtqqi*NzO;{ zy8ZEy3C_9ikohRih&8|ap)&j@Jyha_*QCikYm*oir&V@CZbn2qiNN5IHtziHPt318 zt$=>@kZp^Db(Ar0?dO;yxH3 z-JeVrw8x?JZ0E*OZ%nkC0_Fxgg;)mc4y8YGGM@t^jPps;T3BU5c z($qTa2p~=MKEC=i!gQEHRc#A?cn0NBtx72_8qD&Si+qD(_SV?rM}`^`j;`bgh3f9k zr+vkXI2EcToam3+V$7iZI>3?8kR%QJ_K_r}=BR-%BIkRiQzs>`_9CR)0;dc~i$ee* zFQ_o9Ytbb8%3yU;SBY2Fo-&1*lBGla2aRh1+6yxJU3v*|oFTPpN~~RJ-X0>tAJ;T7d;L(< zcNiDq>iLg4pnnp_WRBy;Fa5NhS?}H9S>^brdbeG!!RK;p-Zy-LKZD0om$^+{3hu*% z%Kqf}4vnHVtEbM*X?wKwskCQ*m&aMNZTETa_=@u38+O<_G6)-b#O}n1Xz_px_GD(t z-%iVFw*V)n*DMSwb;oTjMB?EIgb8<5QX3>MHnRS`e&muXRuw9g}90${2V)#tSz=<`u2 zt_th^?~@L9W_m-Ji^W*h<{(NXoQkoCe55>@dS!XijfsxsP5Sj-2%5+C-+Hj)Mquql zq3s#)UPAIpW1aK^7;a!ey-hfffnfSLokn#tyu&=}y{_u5Me`vYc#Fg6zrg(dU*tS~ z+T&KQ$N<*_Ek@9xwAfe`_n;-*O^Qr3+m`(@H**gb;f=*a1cAIvOH0R71Bdd6Q(RcJ z(f}v22=%!W5TMTJEkCbtX3NV+jOr+9Ubj{XE&N9jDj=ctz#^4XI9ilKmCnFU_D0un z*5}PNeYo>LAZ!5%VF6_s;KTrcO8~FHU@n3!_r2vit#-R|4Q}T6k3qP&l#pNkWNqZr z#X9)Ba4!ZR6h9qFOJ3JCy}%cJZ**GgaJOIzp^vGIr%HKvB3{>rruHCiu1i9Tr=Rm7 zr51v_UZhvCg;+At?Z>5Cxsv|BwtdJ4t%YjG`TQle@6BXJW)E?~R)QEBDCi_0e;;NATF)(fLAwH;c!X$k>}Zi+^?5=gDu z)#_axZ_F0xL%7l8&2UJ%6{Y0R*@H%6|<6$s4fm+gO$2Q zkElE=K~E=O5+;3Q+%Bw=s#ZwO4q7CNIyNwss&MifXO`K$y8vWT!+iu)gEN&Us5^T5AR|Vke4<;ZCA2FR;9Hl=(#*I&{vbl zk@c1*0*q|~Dv&w-Hrj!h;k>7j5a2>i9K6R0xP41_1L*D{{9a7AOQf{{TZO4;ospot zV-9U`r4K{}aCFi2ErRGL6bEIg=Ug!rfAiL~6+k3o14bDR80C}bbdI3DEGcc_ckjjC zGU?yUcptvu%gD^71|G_w174gAyyoJen$w54#lL+p+KT6JbHLhI5@chk`@wGjiffdl ztE+@J*cEYvVMk*WOa(M6{X;<(M%O{mqOYdfft>HPb#I^F5$Xc^?zr-Q;ZPzGh%upm zClI3P%aKc;LR_YcxZM#J`8v?L3Gn}gc3||ej4)y)ZI+9gnNbJNHQc_EKcO-fJmEhe z8;gdTi!b+9EG#3ugVYm%s>4h{peam14MlNa6Bh32n^ri3o>p^e8Mh)$2LtgZ)Si7c zBhRlodcC8FaQh`|@#)%9$KO0^kCnfk(5?FW*x)*`&$rg{g(F8i@_S!l1WRL>`6436 zjD^s7kN@ksd#{vnh^^T%%ir4~%%PJPl$o8u8wQUg7gyT>n=c2#1nw zZMEc)K}oVHew%HVr11F~_AvoY{{Yf7alX)37|bEtFORV**B=!jAk6_sqk0lg)fwmz zu4;f`gK|x1u6`k5DZFmO*y&amS7g!7ubfvs_Ywf)F&8108cN@|6tnSwj8(*J9FJkA zviQ3@XBQ?)+-}yTL~$xm^NIQ&zWC-3WbR3-rB);6%hX=v^-=*|WzFFW>T7BDwjzw56cl87N2y@+ky4VT}et@HHROV0bQlPmT>`lNop{6>tY@1+3f zXUF6xu|5h7)w4v=97nQci}2bsjd7YaGDy@cYtBn{}s^(v?%0# zXMX`=iQ7%b_XvAJl0igR_23CjgP>$$O zlIX9)yvl?p9rtexEXDwvoZYc~XApw`f#k80k6v8y9JJ3!sbQu8GPt)!y_mkwn)QRizvNpO0YPJEU$$ zAzRWOdkP5!>Tv-dFv)@c!+ZR5IPD*}5lgOA9JYLMW-a;&*?~Lb(ixs)G;VcW%Hc6p zrLSY{hM!X~!fRvawjG>Z%@U0x4rnf;VoA8v+V6C>T2lT&PI@{F1lvauj~o4uUYc`1 zm-B)CrfBICjZFaxi6fJ&%ebC{bZSOFzivZ0u=;s_i*i`ip{*|rk7!U2t!?0=8Nvt4mPRFjj4%3>fRc)KXnB_$nyj} zgo(yKYaNQ2rG{GL&O}=gUGUfTp#44r-2^FSNYo6pQ+UVo%@KLhE?62+b3YUGkmQ21 z+3ldQ-%JFz3gQ!g`?_egGk-W$!|DPjD;`2jD{OWlll&%5BUx9oelYw)yk0DVHJp(m zN!?W235;xsE;*FUxT8qUb_WgjDNyJfwN_HJoG~jSze2A+Wh%H`zVNZ4_yD?VH4#uv!_|RKwuE}tN5!Q- z`^#=;7V+ags4k&gAv~?h>H+nRlr!I*1?wG%IDtWbeb&X|h-=-Ol0p+>R0aCmxHiv1 z3Mdk^-BH4Qx(Vjpz4#T%)w3pqr(^m**N%O-mmL=Y&($VkNv87kgC2Tn*8Ma+b;^OV zTvDw-KCi2N-*Y!$gTAf@yK{9rz9o-qiQ{p-=RAU^nUuH92)(!4bUAmxw5FKGURnsA z4}G65HhcBnZ0J9|&-b?JJ;V_lwi+$wG!)jyO?-?zeyJNgE?{v(CEa7V9%dvzNM1x~ z#9DC$KkTz4t_l`@T6Dby#dOfHNtye33I;d|;;jx^BO<~qM%WPF9}xJsJXf^Ul2}oU z#_<86ws&5%0=J-L>M*firZmIz{ShsEPTJuo-m0*)Ju%QIA9ln zW301e#Hg5tLXJo861l{99{Lp{~d!2gkazZ zj8SOM+K^4aJP`Z%UkO`21MP@TrQHL>Etv0#(3&z!gujcc-EuAlj$-n9UICR8Py2%R zlCv?9+jLn=KL&xi$S6rM{!d19RX31>qRnye3wLM41#1JZ|I>8w*Z4oVXw@)AZuunu ztVu)W(b$^ciSnPgwUvPp9`~9tRW_i;59twSKkX9}JFfHn15*V^Chl0MIY-xg^}Q!A z>8Fl=g04D}m7Z8fpMpNueEXAakEFS1ayzL4Tc6V*4@NV?j(sG<=9-;hd*zut&JImL zV16vxM)vbL^rXl4tiE4mD?$sXo)%`&c#2rR7nR!+0!qGKWi;+h-QVo(EdRMTw;P_r z&6UTzSWt$`8w@td{+gYlEe$$9ALcfEZP@DwS~q=P8+p^re-=M*z0-BPScA<{Cj0Rf z^%K#lgkXqer|;*=TO>sJ&w;nF?lk|0{$0;OibpZC*UFfB1MEyL~w3j+uzdastP z{l8-l@DpsKJ8OnUWhfIXy`*S{Pq-P@oH+2lNHQv8KDqRrW2|l3`()`p6zeG5R3h2R z_+&VBVfOM~wIdDZz$g)6Z&2Mw$4vs;Pe}VXgwP7Vbwyp_dw&Ht*e-XzOE$YCRn2n~#bETezdT+p}Wc%Y-&>N4~|&{nIGA zfL|k6B-A=hAUNg0$a{*`J~s)mt0liQ56M3$U5OdakeM`Vp0&PwtA}UsqSpA;8@|uQ zT&q(1IYh|Y{)yY!^V`Zb_3kKUHz7md_}GzM1UQwcxh~drPO;eSoAb zacWk`3X*8N$hAV3Tw&f8UkqedUn^(9YuO+5%Ta04A95Jep5Wqhh#ou*+m`PP*W$+e zo_I&CmhKcJmN)O*dR{!ly@d;RQ!8{$ussDaYV|rb0ewoi_nx4gkF<`yx@RM=auV1) zdAuRUjcPs~<$5+ftEKe+tK?DLfgu)P$ta0GJFGA$hF zl29AIwtJxD|HpgB+bOp&i`Nb11OCW!yU7S9AzX-$K#IG@dXQYOJN_8|$7pWbQL!IZ zwJ&u`sm%TK*<%g>>Vx8VGM4^$9f$_1RflBDh8Q$&xmb}ytm$y#KG1T#dUnWg-nkOi zl1Pu*$kP9~pO2(h4IyT)@Ks52tb&*xLb4CULFtqdeB)}S>;Yfy8_R> zXx4E8gZlx}BQ%L8u<{0VagZ=JW)FcXTJB{9wIt&A%d;nb;M->5Ijv*bm_Tau6m3Ky zHwC(nvl@Mf1p>WyS?;-xGqAs7Ot{2D)>OeSi=2>?8{MYch=uCUMq&q1cI9Ap)mQ`H z7NjS+aT%^}%Hr#w81#uFmg*R0HB5r9j|)%ax&#VklFxLMZ1dL-h*x2-eve;}av6#p zUA%cvg0Z{rIv=!zT$^aR>Df7>jPFFX|NHL6{h6;?ElgYFYnPMb=DjG^dNyz?it}H* zwO(>T={)5lB>ptU4MsX&QoO`zwhJ@&Nkot*EFv=6fGooFS8Ce+vgTr zs!3ewZ@Fc_IQoTc!@FL(-SNJ+bzO7wU29pkON5%g^ln_&zaL2XUL4CoVtEKaeJqU_ zg*nBZ(UMVt7>NpeI@j0#p2~$UmClty)V;}g{o$Q_&-Q)Ja$ZNyOKFL(GW4Fl={@vd zP4xuhYjwGs+R3cid}=npJUVfyCJ6xQra(|c`n|H10B&JO} z?IQ-mpt|BYZY{hwcw`68qI00JjZ0q4E-y8<4#zb?mA-CYm+e*xMhxj_>P zxb5HIg=NwI@I=-Fzw0uvX3HG-AE1*c#?vw6nyxp`>jb{Hg5p7(JNeVk7V%AOi#8tF z+_T=_JQ>sU0w1G2nrywu!|ax$4ys1ImBaB%HZiag-o+#M%7x!(MIyUYA0Ve+i_TcC znUh}}Rqs0Y<1|%@co}Zw$Vgvu@Mo&Ivf-1Aum<#$&Ql)gxIG@1TrFGGM%*%#?rDYj zF1Puf8tvMnH~x|lQ@m_G|9ro`jOlW7b-n-9^i}zGH{qCeb>Gc-)X5~YS1X5zX8@yo zan`bB_0|F?fJnxFqK`q#)(JG^;ewkpG_+~y5WMW93foB9!P+{T_kOA%OYL&R%5yg` zegL;0u}RzZSdUpwmTy%#2(mq%bF$k%fGBvr;)AemE%0crz325MFq+4|04x5PJa%3Q z?D-OCm;)3z2nfED@{A^D$jBwR?hox39e5}g&xYpXPYi=`KZ5B!4;*iJ-}?6A28Fh= zpZi=b_}p$}{Wznje&1O+3a);+Wbe8f++g8RXy{1Z9^>e>V(pO1yYs&E1FYQuSOtp~ z_W9iX0V?%;SNwo%@I2e6AQ#UFGU3S@zwBIn{mDQTLqk^i#CLrgxKv;MG}aB7x%VQAb#&RLs$)yJ1gT=rwN zy1>n{eEsV=`DIu2AGyx^v4Q$v_qEi#CL|lfXm5h%@837~b|_@Iudn$AHpk&m1|+?! z9w21-?w2+mkh-4cpBipU&)?y@9Pq&;TGoyK29o48YZFOE$w|FJKt^|l*; zF~y?n{dX3AGF|g4lUw|ixs}s%0JCiM7416;iUY7oRac2q`VbF^8`_%EpUYoPNc~-` zzsslm$*@X7-y{rq&6d_FrM+=88*rP4-rqc9^vMn1g?jui`k&-p8>ietv)w)1*lr^O zk2>7tR+4|-Y~&_pornxnw?C-pk`uh_p1-GbU0mPbZ`io-Uh5EaIQYEtz3+MX(&5!J zXKotLEcZ1A%o#p?O}eS+NI_jYOdy^2#}N|cSS**x%ZSfu8PnP$sOPeieV*!wG=_p6rO;o78g=P~^o!qbgg$3v0tYsy(>=4&6)`|u#U z-tz%wyvZ>{-Bm<+c(vgSZ(T^jXB5hoRx>^O^2@Y#RXP1W zCZSo*hw_bYC#(ng)d4*`C1>M#h@kC+PbhF=Y>-GK>$N7Hrz^ja;>J4g;pF08C4@SB zapc6pjT8+Qe-v=)*9boitSM0_^6dEEv&^&03QxzgbPn|Sq$j3q`L4&Gqb>Pww6m*5 zO6cg}L>CkPiBTdoRr>95+Hd{NgV0&^&j*~K+{S=AK|k;Ox~v#43}r7Q!}q?aBr4~< zbMkF1=jmnT*4O(%?(H&z@Ac=+ug;YBu?^q4$0s$r&L^?zt}8v>>#E!Pw?C8Z@6B&b zhg7Z$23gkhlPz6X$x?j@{ ztDrUx7YWjA8P>mTu8UZ?Zf}1U%TY7LUY|*YU-P}kNW*>$&B+RWW5ZWowi(WFD_eCU z|IWo$@%1;=O0@6k#`{RuQ@`HBQ}cS~ry<@(rs&Aa%;@&x^d9K1`OHe1yj}(Xc zt;6ie?tVjXa|f*zt@0FmUEgu@ikh>pMq6FA~#=V(lCV`6M!KyP7VU}nO>MrUtp7A7w% zhVbdj$7Ki-;=+m`5O^%`A%z8^Du_HX(ir#wZ73xs40`|g&h7Y>033m{7uRqC!f4;e z2Q29uA`o#2K_5vC_skO=4}F#X+qa2!v49aoORIju+DEA%B1jTMR|u( zD`G_qtiGtO9>`ee(}I@KfD@0P!ue-f@0w+>MzuvYI<@xt}HZ;+u6SuG~ zM1Oin+0iDok$j>cGOUG^c*Tg2_OKYh%e)9ult;uHWpI`iC)?bRX>;K^+(|flnI)*z zb(lT3dmFd-RW%4{$Nij`P}OC^L;jnN_(hfAa}rAsrooQsGjPweBE`#aje#{>lp}mn}jseqO^`TOrFqUl=3V3t82gyUGJQ&5*|yFg=*h^ zW!b-%pl9M>38PLvr#@=Vuofi!0&*_bP4tWW}EB%D&cci@G-~+8_a!w;>#Q5fzvls_b_(#T1}y5g%p+ z9~&x5(6J$9*Zw}>mDBz{96wY;RQtuqS?-em=zfou=26`ECeEs}}<_U>e03;}nLl*q=Cy*a$B33F2 z1KWC;TzkQQ^YY#w66_nVmriaoYx6fh0ldO?~WC-G7gw<{(a?_Re4BT@Wg z(yc{|9M+*@G~(>G|bJ#EAuS(lBmMMm|@Rv)-V+_9=llAx~?5*B#~ zJoglzH|Wr&lELp6aiFio^+!66VgIRV!}lOn#jO8=D{NH?N=^7qQt;YmJ}euixBRqu z0#4wtuGJJ;uSFvx2$UouY~IAsPEtxH#WCU$%HSrAmBmR7BacasjiC~*wU8}_;!S6w zHrWZ*+DGP}61_Q2Z%l_9vB#oBhNf-@75-4!FV;=#$r06`+5SxY8ia}>-Uy+%Yvd($ zD}chhqyYI7aCCkWMPd~Y$bNnrut^PDj>!Cq6F^s~P zphLryH7zAxHCzB8Sh<QZy*F-2&j(?0m|?86e<034grY(XS8%B)-m z51t}9M~)^G6f?{1#F=NjcLBpUWbFgi1J7pdz$?{#hy*-1#zhA4s z^Gh}FbGWWKY?!;z6}^a-$wgN5i&*``LRs~wi-o&s5~BwrvFn+bg<$ zj#g*ZJX8WX&i;)YmWV0+4^g7g-<<%;e&WMk>boV(zeDjP4xMg3zbOf236Jpc|BTe+Oos#5D7NLMp7C0K$btt=UENOA61+7PF1?chT zjI(EGnSNTU=nRdOU%M+r;nxt1uX)X}!qv*8(FXxV0v7F-0alndB4} zL?mR%=DIG9R$rdd)+1JoyJWh1FfRJ;rfk__dJ` zCJr9Xpl5hZ$GFt^^+#Y{c(C=np~82MVMRyTy1adU$uxLlCBmQld*Ep(0(6AL5@4iG zgtrg!lH)34yBjfpnq5)F@rm2d8&dh94TFZVu<-{c@a; z#5Sl(EQE3T9Ahm0MHDV7Oqh!8g2QGhMBMSBW; zNIE(&HXr~`fw0k%h%9vRDAc@@Qj%3JmQFpIb2lj9>FtvPTO>cD4Y%k@=1vCo;+J8R zBAZjFz-zV&ixmz_TJ?@pg{&k?+!@#P?<~1F!}A@w|DgS37|h{Yo-~69OQknV9W_(y z>M$KePMPpT%`^NpnBhTI^DI?QM^-xX)2L1GOV%oVoLVsOuWD{F5Rtkm`z{wYijP4Sbd=xF93(y>U-xu-L})vQvfNdI9Vf z9gXQ`)0LxrZ{2JR;sg{N0i4m*iJyw2YfvGNc+1i$^6}872_v|$q>%Ni3H%s&tm>~@ z-}ORLx4Bxktzc475ZQ0wLZ+jFI4zmjlMThnC)5=iUMm}mt%!m3B%ii~1Fu)8L=l-I z7KOB*n=%6OEQM#>bi<;YU9nMS{}mjzn8Klp{+UOUCB}@I`3}~I>f6i|-t>@fK$7r; z7=>j|msw$q2%fCC2W~q8#YyGVBF%?BZtoR(=#O8iM&MRh_{@k=%n%E~f*m1T2c z{j|1wr49S&5_J`s$Ii4XHb+=f-W*X$vx<&n~O6@AF0J1&ZAX98ql%+r#h>(!5C|@GL zPo;cwLO13l&V)*5q6z$Dot3%H3})$XA;uSe)b1g$DO3BAQbg5H7Grx%uniL5tHVrf z6l%Vzq~;+&bdNzr8HZc+xte77xRW}2I2a{Zk6a#!QuzQ&gXPJEGz8KjhhXEzW06TA zO&V=7PYhWwcuMK%9vV4wY$Y7V@T3J%r$f<6EK^iSqVY7paD0YQ!?lN1&Y;Aekk|Yr z%p_anDLWFM*ua;>L`{5RvBbbc$=?ab6&4S?WB}odO0kheOZ1r$haRGz1_u?__tQm~ zOiGlWBJDpu7jiGH69+cvFm3qUr*hZUvg3Zw^pJbv(h^*WM-itY+Xqh@msgVA3mh{R zCNHRP^j9bejZ=~#?v0KAX&)5%P0&GQ<&w6>bCs(A zL?~2TBBVIc5REiER)IhudQ~vCrEE17*1@BxSeB|}mlm!E&DW5tNhkq2Sa2%b#zS?N zIIe+kjBkH?efXYRq8`Rbe4Ec?=Kon=4MF*ju{t6{MnzF`&aYLIy7@O7^imE^h0+E3 ziAM2y4A?AC{$ixaYW6bwGM!{>L~_y)qyr=C`52SkK^~6kDhn-Om@paa0X~GQ8DHx7 z3}vI|!VQ9a-(Hp6N&fD5zpIm1Tq_We$V&@p(l?_@`_fCN5a$%igYXaLnpoz?Ixr$7zlsak`+>(&aTsAG3e_=J5l{{V}uN zSBD24WdG(eiLVDn)9L%{WXDt+BHMO4L&UP5i8h&G5|7JQ^tSlvmzvYuQgGLq^V>O2 zcXmP!uhFCo7(r5(Dzn{jm9U(oO4kF=s=fJ&` zXXt)yVy(H!X~ut!`QxVDVdQojMCai>0`|V_JD;lK71S5%X8L|r(p4JjrN>w5c|L*I zU-jcLAS@w==_<$L>@~y=Wm7tExkW1)?$x!Awuu1#v+eKq9{3##U)~e1JQV!-5rV6i z@D`-Z*Oi5&^UYcEw+4E@$!u)iQ(X+BA(Td}yYuuE&WpL1;f0Nd$hX?(U9+6;B}y#a zW^!NcSK1OLcs=AP*1}Udxlb?N&%Dp`xNpV9>7F`8YH!w75WDutPA)RM@+CU%w}yXx zp8y5pG46tYyEci`!dg-`0h4Yw!evXe79QnnL=BSXRTWi&$;nx z+fI9Ry?-4o+p^xPK0RG6&r|*)@O|T#y&-ftHv^jsFHOE`WHWU^z8qWGDau@Kht9k| z4z465%Q+7FEJAMLnMkN&&tLa5nX?T*KSSg=p1tt@#B(P2r;QlY?0h~x)g=woh1KCN zoKd#v4G!~ajMD6JP$Mm_bhRhjJ^ro1S2>YxDr>spLgR1f>c}pUC7#)ItyUxft!`;E zBrN~b%z{+abSmvXn4^+x>G^l2Y5B>dIRvZ_vn_6E7eh-3(Tq{E#1aC2<9%nzqdJb& zF9UU`>gBV{#!iZl`l1PL-ZSPIY-VVH_G~^9@9V)V{rm0t!kVXiW{2mka z_ilQodEIG)j3F@-!tpa4Bn`McVH}AOu9^J4?I_TFmaum+SZ;c+Ka%Zk^uZaylycLyqn+ zrarUiQjE+h*o!#pOd#XG=5fNofmdiCe#pzSoI&Mlk#~2i=Im~6H*Mzq(eytVpTK>t z@4KSbC&+6u{qkmu^|%UgJAdqMd0Ty5J@(hL+4li~Qa5~@--XT=&y%%szRn=%wL5C; zDqv;0%_$AqiV*%gu&7qKg}_|*7#mjWav3A| ze17x`C=}L9&v&WC%Z<_H3+9(qgV;+}AzdK2P2(tkBF2=$su(gBo~NE=)Z)PIrnshC zw49j@xrbIA>o^}v*gt!?S=ZU)?Xq{gJ@s;h=Jo!uNPFMmd`9(?YhT4d6yzn%d!NX| zZM2!mNTK)sw?QiS-U-6GwwI&zyugkrKLgdK->bT#VWUdycEmLEUPf3!_T{Ki>&(Mq z^*2t4&!meEXV&xf8y22p zKUaQ-Zu{kbZ!!O|CD+7^4V<#2-$vj5*M+3l&YuWIXN}5eRb%f z0~`IUq^c+@uL?`09xlzV2#XrulLbC(lw``e5+<+TkTA9sG`n}ux*M>0-C!9_Cn2={ zl>t4^2HHxA{X~?O4q4je&jY3VzU(Itr9_JM}JD=`JtH>j9IOZd-YKXYXTDom^QO-^1yjltX3A-m$rhf z=<76A?N3F_vbe(_IE{x_?EfBL#LQG`h|3eA_>o%l%ztr3&E&KmEYsIo@n1=4%j?ph z^|&Qwq1!B`pL*bQ)O$P6z;jlbO-5At1Mp z2degPjhqh+_eu1Nl=|E5xAu4X=UZ^>#l7FxO||~x)N==B5(h1}q14}>mag<{ekHm* z(^k4WEaN|~IUe^vyF&c*I%RTr<3S_&D-OEHcShH_9{zN)3IS53dl_6!IL{F-c)vWu z;y#^**Z(9U)V$`ylaBcA+&>4=MjdCg#gXhRn6g%dSHRb0)AY>xdb(}0SeasCc>5H9 z2hFzoPyLtl0xG^c`O+YX={L6~Ese9ly8gI5A1g?;J2vPhY(_8mIThy>(**%{k0r(0 zx!mbrhmg&So9M0kKj(g(E{(goLR)T^5~3cw_tsM%zqRc6{@vJg8BqN{Y<*=^T}_kj z!QI{6-7Po)f(Ca8?iSqL-JJxt;O@cQ-GjTk-$UN_o0&Cpd+~!UXYa1+s;8dr-Cf

    *+!?*k?s|Vdx^1B0Eo5s)!=&Y?hyd_>oF=~`x>&neE8KpZy!Z`1If^{dZnU$r zgc74-l&@Qe6qv7k$zJA~vP$mn4~6IpYegpK!8r@mO&r+*&gvzs*(|%0@%E!r_gyP6 zaVP-Cjw5mPV6jd`v-go2*g4k)Iqobd0A|FLT3`6k1CQe>B2F0O8cXtx98EKrFePQ(e%-Afwic8qqPr8%mww5xd8cOQWooDXrK*)D z*7TZ@qZn>yVa_j`f#s9Yj#jS4wI!^RcDys3JnMTF)Ua2MFUXgw_{}Sd=`o8xk+aQsqr!si3$x-Hhxj=#jXirb%iUlQLNDF@u1O{xKxb zr$o5T|0QHSux(e#=zXd>m~7^%Y54?$yOUz>;iCx|kNR}eUbn1GA^R>fE@}jg8x?>D zd%ywP3-3c_dDMVR7CggD)qyv%1CVh?!6nm|+hEjGZ!CY%#nkO=!Xsf?%$O-FtIqo{ z4P`=-dp#2&*IwtkS_0J79bQNB2(n*?OVey!UET1r%?OPIl>|Uy87}#GE#9t^c9H-D zeRFf}LzrHn3J9lXKWDP3^6)Us*^zVB12-6D$q=J7Xn$KfzqEr+y8|)p%woHGSKZu5 zin;bs*BaxS1bvw>00Me?R(SYF+s=>0cwS6Gev3u>23nwM*dRuH4MX?!fs;Zvk_!&4 z%?66O#O%(uSnG=x?mTP9*nr9yQaffl#-r>F&lIz4N3SUS^ z=)KpbzF5o}ML`L1EWLB1S4uYi%{hSlJy7l!5;c@uR5TQTSdFmdVur;_-i7;e&Ejq3 ztCUo0UQ6_+uv8wOQjun4N;umlOLTJsPTzgXaUJR2hM;Y)v%6Xe72M2?KYGeDdE}s-vn1 zp;Pcp=|wGC?Z0@j)p>53kj3S_<`^$oz>W9O!ry>Vmt9tO@XHyzQ_z3Q+;x}il)C{PEB8)fc8_uxZ~eZpncqC77sBQOwfJLO1(zhaPO`@?6$e?PsZNq2Fc`gc zGJt ze@w{NGyHI~$xWTGD79DO*#*l_E!sU*zFf1_Al(J;3I=U zcMWIB^nJ_1e63SxZgR+Z=AE5eqeNTlj%_(MTwPCBUI z*U2o6;}uNux5ZE@)2GUH!uUK?hdq+54lw~iYo6aS-uVFBzr-V4ejGdM{hgo;1ufaH zfu9zrmFy!cM#bUX0LYK3@-_ylauftoK-1-QVtTv6g~1CnYBUK{3G)#@khs+TpNC&? z-=DX8Yb7yZP5iaGIo=+iJY~3+G68TQ9mSejI-D5%kqP-_cHZS@Mx3JQm3XPVM z2KY`d-~rwRSe9CdktFx%bt>4{AX=s%NKa>rr^1%I>skEt&~WDXG^*sf+=lW=_5%IwfE=rCt0Yz8cQt>?16tZlzet# zU;no!Xzz_W3-2%>I|{)h$%~7a%Zrob-Nh5`f<}Sk-a02qruI9d*d8t>n>Tf`Z0-#b zS{%}}+ufZy(|ATv2DYoy=tA?Ojv&u3VB&|}^x1lBJvx?ftxKn-dA|Vfz zcQ^?z&CH4Ov>K8sH?Bh7zrjCpdb>8YEU5argE2|xDdoH7ovhnIRYvV7qM-Ptaj>L> z8PjVqwBy;RbDIy9dxRI&jI}78AAkD%m+Cobcq&?O?dwM<>SG*Ehf)m z)fr5hm;W_J^!9z<Uahn}HN8gf!J`;T`cgTD;?{k7Vz#Aq z;$!SnhYaP!xX7M)csv$yDaD))C#PW&B7VBQ6uxx5Wnq`oMLw9o;)}WRH}1u-1~F>~ z#o(CFdkPX=NIS0NDMeH?P-0(|=(>}R&BeDsn2X(RM_Qy?glhpZi0vMd??l<}_7A?P z0lQX(oO#NYPD1ifB5QM0=fXZ`K_W72=9@G3@mk*VMkZJK%za`i^o7>`+Gmg&{l1}6 zQRf9u>dY(3r+J;mumS20o{w%nu{;3vN^0zd+gex$`#yjMPSBz4*+hcXO$XnX;Wb38 zV)qrANsy5KI8xG!VM~VLw3@A*>Je$@G(WeOTJ;>Ay|Deo1@AtsiEZ_LWbOGY#(2m0 zto_cA8^#hF!5Y>V#SGZqlBF;1%s{w?!z2~YO&6TCq^t}M0I4M4s_Y6`#e4L2Yq@0m zU551b{}T4dJ`UTshN(;rFyJpnE<~e?{mLLz+fIl91?VfGH2?sB&(RX`KBVsbmiS+r zJdL=>rDSnIhkc1z{}6TNU1UZXM~IrOA)U&jr^Wv@903v3EIk4&H>FjFXIMYDW#8pR z%*7vM)54Sr)6V&);$&Ia^p%D^nKEJsQ_{H|_1MgXKk)Wp)sK<`|Bw$qg-?j(>-vWF z1!r65rj!NI460LYYUBDrfY`wg9tdP2%Q}*+n}@*{jEeMQ&rb9idSAeeyM3F+S32kM7dvNrmMh@6vHv=GIlWrGEY%&?lf&j;D*ce# zE%J@D^G|xdf?rX2rUDQy6jSv`(b{)Un*A@7n5YeUlS&4aiEOx_l~T4YSIEBzI_)>J zZU@(1g^TI4)8j@o@Z9tDV7LFZoxQhDJc;)E29A>uI9|^w5VNnbW+x8(^4e|__|gBT zBo17WkzS@b1Y-&M{e>sVkX88h_Xseco^0Y?k6i$ga;;Yt(~~I0VL{+9db($a`DyMs z(83!>b2Y!!>F(Ur?czAaAF%WMdg+xal$_juw18Usj3RP^2t;icO@MM~P0TU{RKt4p z0bN#S*S+W%1r=`DQ_o-l*2n+or!iO_pBTVX$?951KPbc-umJ#GXm%+60`OVct(DYW zu0o#F@y>G|W3nnM&uCFn(#kzI0z~tL9DNKMUHr>$vN~EvDebxXVf064dP^bYQK)vZ z<>M~jA+_Z}8Q7_7{)0D&eW@nGaMax8bZ;sXzgtL0>uLN;2 zT>${2yXpy)O)PY#?k?JO1sh2RxZ$;en;+YfZ$qtW2v|EG8VzeXWpy89V|)q1AbMebt^LenQ)aBP zZciA^LnZ_3qv)F6ZqM#JW^sg`dtJR3O~+)5!&to2z2QJ|*LV_vaQXk5Jkl$}Rz>FZ zTYV={E+TvpF2i*t1?Gc}ZHno)oJ@=#kJ7$lw;;$2zv+CifV`G$ zo&_37P1mu{xa1u-TlIsRo(B!h&1+Rhm*7T@)Z8;bP^8Yh$)u;(%$EZ+I}OSjH~eDI z(ruz5g=|upc&{M&JTO^Iqg_@#`ELG24m2@8>RcTI-jEf@MisUg`TzN+(4j+{G=_nf z$zpb?+P{BpV*?0zT3Wx3jDtV?nS#j>Pdnk&XVsyBkrwepz73tegEz%Q0d059xxzX= z2d%K8dG$q=pYnm(U~L%%!g1ep~az*K}U$tW!$ zqKMgP^_^(u7npZvDm=P31<`2l&5Y=2Eh#Y=On$KRP8ToS!w<|M46P2)o0->azlCB+ zsrE|-+kj-bFh`|Y%SGz9W68otb23lqs#a7wfEx{PhR;=@bN7@UcK1Ei2?C}3f1`SEr3*RrSNU0J>@7aL@< z8lcam&*dZ`ZpgV^KQuvtUV4T!kb)gded0>8}+kG{}1tNJ?~k zGRn#skljBOC{#_*d%hnYga7~+UeN|M$IBmi>rWrJB1HEzp_r1&e|qw-E&oY(>$tjd zLhgEQe|6&lc=47i+){xE2x2J^BH@W!^V%GHD8mN2MrHC@!NgH=Ghci=atVs{!B~~c zX+!+AC50JX2fh+09kczVG^gJ}^6Zu3-+3D;OdNkm2VBl{t}w&&>>eDz9R(%+AE8$b zBg~EB37)Jra$mTmpUAQ0oXj}+@|zPF7sOu_f*OPeX{`{54`p50g#L!%n9*x(6F0)x z&e4&1$n@RS%Hfr9_HQAT=K;&GN}fpDRVFR%gw(M+|Gw92K`B+RHpq21a*EC9eKMFB ze_S3U0KT3SxNsxf%oe)!v?$8lM=T!mj$4fIGDoLr5y3>+Pos!JE3l@R7{WiRu1FxR zuNnOQCKEol?gH1jbtpnqj3jngDDUVeBqM++7KE9JMyFv;U66EBxUSjhk_-pYUO}7o z%&CmCXpzWbh;Ur=@R)JRwi?1?D-`Y2w3p@wj;eY<3PfzAia$Oaqa!ZA|6s*6nj)H^ znsukgQ~5xCDi9N)XD(?&P@!IIU&MqZr%_cUwND=Klok5KNkk2oL}hX*P`v|!Jt9W< zEj1&B1OU|V7#vg5;cUXn1*@`e)>Z0+^5%g`uFH6CK@x$ou%fu`#bny%=;YjD^yEwO zjojWdYS^L)WN&YDIuSh5ywI?nTgQ?cte|xvCxU19JQ@Vb*BQQ_NQJB5(R*w2nFx>ogQSJ;BS zj=~|20cNCZ&>jRX zQO6pKW~!(L8C<%D*nqy0z&96EbA6Uiu_U%zi^0Z#R3W5T2gabPwV4Y@+$xGmbx0S& zHz6haHOG>vS#F#HF^LW|<0!^EfC~DB2a->f5GBB)H?flitlTT2xGNzHpZGA=9Lnxs z`AGQK)k6Eh{J|_S!>p~$s*hU9&e|WKh7^1)H-F-PCmTQpWL&tU~ zboV=7gIDR=W29WQe|Ut%FJHPOT%8>iPyuF8?*94|9c*yPORgyl^5~?~H00-S%b9{L zoq4)~>0Nrs%<1K6n^JEWyK_lMLOs9U0sRbf2GOUBfBf}+aKwh_hV@`(lwh*s(9-vP ztmKLYsHXz|N&%jpg?v4aq7wJ58gVOkl!x=K^OMMHCtRF}C@I;!auuM5dGf_MndT=< zF`ylHy^eH1J6%+PHg1tMHK;g>R{ z*yJ>>V^7ebe;a%gFdFK`OdEl^H^Ak! zFn*$q9Hth-q*6qEqUv0(EpwcekPe$6tn1Mzqtm%W-%=`TV_Go11@u)jE-NzYakN(j zxaz#$ynbnbp$kaCMf}}`SlAd)Id8E1gk#b2Xip1@@q(D7e-r_{E;aaMW_7grbc|TP zGw!|!)V;K)LIM6LR`#4%TKVd&-n<8{?TvI$PsAa3_Bg-I!AS}NL@xP8h;e@Y!2(pE z`mf{BkJe*m^A7tw=A7SU#>eJKVE!&Jm+uh6t(~!C;a}cZK+|Y)_*1bFmy>Sdc_#eq z=rXm%tUE2|;S@ijL-IB5$bqn2gS8mFl~{B|?UZ|u=X2OYDvLieZB#PiTc zk(UUH@NtBASgY4)?)YQGZBkE^5VzqbOT%JHqLrHeEXtUQSec9%A0d~% z$541>0H2Eof9Pc9(q8DVJ!W=2zy8aPBPHKZwLw!vDg)49sv0fQF+p-CS|V|?8$tqT zENL;2ptt#49%oOmxc2o^WD1-|oWcE+1P>jddt7p;a^+Ct`}YOf?}@Eq&^G=qM^QXJ zQQiP&=C%V}ui#8Gp)H@6`c1rQgC(CO9Jx!QfM)nlnxCLV4hGuoTI3=fmEG&u9L0W= zfxm)wyVgDLvLW7?*ddn(Z3mm?UN(jUSf#Bu2vcli)F#ZYVBL%_C-Cv<(DE=N_%r3c zUF-6|;UPD`dh1R1{C{qVpR-lF@o+#c_^;<+i#;+OF6K|5m83lwlA ze6&Zfn9$+9ruD&CNGC8mSx4AiSc*b0+!9@|lKTDpZdNvT?Z?x1DEa`9d}7fjMy+wJ z%|RG|xxB8Snr4Rw>DMQzU_En^|ICdsz{p5$()Ww_P35rZZWTe6_q)h(+Yana)XLrG zs~?gz8O*xBL#!@KCeq^##ZR9lco+mjF_D24Tr{Liv=k8UyYcZ+kILd^Au?vS5POY~ zkdhrG+$;2YT za-xuIhj`R`c+`=OVO-bkuoNno#QYGOx(XPh#eAbJ4wCN8J{W1XFW?b0YyrMj>G6~4}>_DQ9L--MDaFkHs zUc@BjB51J_DvLjxH0TP?mawxsyoxB3v++JSgpa64kPB)CJw2t5Z0EB(GSH=>NrAMxQ1O~62$(D6 z=}vvUKmGbE7)4eGahEp^rhBj*`y`edNQE`g^Y5H-B&iVa2(ExXph`k5<6H6z;nSTX z10~6rrWvg2Z*NrT?Q9ftq~A(X6z?gwBFS2*ZFRLQa6qJDvO?r!$~*&A9#?6U>(JIKd^ zVO%|lN(C2ZjR96PfocG~FTAT?E`OOZ@HUg9nB}E4@ap<|t>2cM1@OL5U;)emwS!oX z<@zJre5D-=-x-ocAuXH8k}@mfhCS{n?u#MXQmw^yI0HCH6-cj~2ST%e0u-|YQc{}7 zu#weQ4L7wnvEP2tSt-|KbfmwOXGK>(WT&6}f`QZ76kC_gh60w$^8p>$o4+4Bvyjlt zo3O9YH>*t&aNlu7s3?)|pntaZSc!dGegQ{z2>p4u<(a^^VnX$&rDR0K*_&nW85Vh+ z=_`-;`C#`)L@#-U7Gq7{;LCB_C|tm8a<2}*$sQH&b9>9mw+$)bw=0;q z&a!Q}`0pilz(R_C8%id zGTcZ%gXr&70R&wl78()^c0b0V0B{6lH1g?b^GFK0XKJw76I;CY$mR^=AXObrFdeDA zK#TmV@`EWl5__@X>O~66zto@EsnU?w{XCW-f6M?J$Tcsz4Y>n~0zwR4Qk%icn%{gn z!9)LOhUfo=wl?LJERFf;WD@^rPbJ}g@&?>5{$+LfkoA0NtMEqy`G6OiA?dEfZtDUM z*@niA9fOHdnvZ|vLlG7LDDos2;^|dsetIYke0&+@F!I}44!oJb&wZ<`J=%EQ zy1i+?ZP5Cqv0Jd&z+Q|S#O^eKDv;^|<+aQD+NScr5@@sX5A|YT_W{zsh#`Iuv2@u5 z0-2~Vl3a@-J@rYvlt?-61-OykOi_Z?B*p1dnOOO@1`4}r5*BAGp`jdlc+Q4vwEu zM!dhdG1}>zB9F&Bsae?GgFzwH5Icb_zM+S?KR-^+gi=zpt}o6-)|7SEL;XjGe^YQw z+TwhKrd|4!A+qCzh${uMJ>vT6g``~JI|C@|X@hdkdZA*7UXb0yAtd7`zluV5&muQM zCGU}ofdAnKr8O9y zg32j4xv;93Rq!+v!ptc!$_m)W)ZY;nP(aWr{$L9NbD%i^ogSkaH`BPf4kOIHYXc6B z7(M_1O(H8HsxEKNlGrV==+X@^git&y6rO6fM1mt4q&YX#O7(a|T2XLy&RF=}$NVFX zq)4fVZ2kLwfk<*Te@gtKr(=N#8Wp(qn(_Td)UdkAe>@s`JMotQ*kC>B_Z~lM7Xo+r zY+59Oo!66QF0j*HAU40qT!u2T^A0qPU?c_hDjqfQE%sl)!WE8WLInoXY>xi<8-(}M zlu1`KP!0jDXCy@C`@qX6*Y|JB@V)wPf$qKMDW_5}4`^$OV6V3{EUf^KyKt%cR3e2X zq1K1LqiW|);Pz9};ar{8kEGhb!fi&5egJ14T0pD@@e&d_tbOPTpJ^+W7-FgV{%jaH z)E0!%t*!oLRM{8R4-~}pu^jXw{P%^W$k*p>$yUhyok95$0QTxpl82SSt^o5j!<@ub zok+h-HV?1#CYS4>g0PW^i;3Yf<@o?{70Ut-p~;2f?hR1eFa1g_E!J4n zYO7F%=$O=LBYNAY09DZrln`7*pivIJpH?fEsoV?g<3_KG-7OAR&#W89K6~zG5X;|B;r( z7FzGi`jd$BI=~n1dMKi{uZ$(ce+7(SEy`;X^q6W1fGo0-iV`(q#=**RFtEt~6+jkp z0K3*yLouJ*^V!Kf8$Czp27`7Y(5<0i5#Z`6+k%jzjDr~|qa!K! zYx2m%bYbTQ^Wt`*zCuk<}<94yhvn(J?0PP`tHI#i3^(@e#LOU>B&xy^U>P5HG zoqx3eHR#sBaIml?pG_doj?q0IY+Vs0=m)G@)N6_ zwRFkEJ(uN|x>>goRE`iN*r@S*hmUjud*^Dgx@06b8L0V6Y_X>SU4MTXA< zzyWmATdXrw7y>K=Ht50WKZpS`orwtqd}bSrG>1A5|BO-{?r)Yi*ugcOmtF5_xou@F zM|yyw@uk1Z-#Sj_P}rIU`y;*Bpx#1$b+vlnee4HOd#d@q_Ry0!Q_$CS-O3vgELknLFjeD=)gEOqp6ymaI?qn+mO*Z4lN0jtSsa;A zIV%rjq2>zvE4J|;9f{>s=J{_jcu|iTVW?2Z`KEDf)N##)rd{e|dcLE0y_5`(&hQ<) zHNTF-(N(Y8Y-Eg%BobGoQMt{6yB#k(raux(hN?QXjLwTYtveZXQ#T2+A`BFyU)b?} zqK@MoZgLby%P#kL*X#u07^U$g85hKf%R45J*ZEE?kmDv=dI@z6NQg{T;U?nEirQ-v z91?P*mm(Hbbxldk9P$rxV-8vyy5w`FiG+vfH17Il`V0JB!PjrMTtuaXubWraCmOmZ zmCEDxF*kVqUQ)Lvy}uNz`=cvC1M91mb!-(p8PA6NNIsgCok*fewsCLEnEP=JbHGDk zS<6_GX>FhR_Y$ZbC#Bl9>tj48zs3CAr-kC&uDiz78idl2>DpsLj>9LL`A^_$uNIh& zFQ+dhL{?o_GE%G@;=J_8Vuh*wP;*j%!qCJ7p!!@2jX}m-=$tyWZgF0yC?OE%hm16w zD@^yRn!Uxe2)T8=!`}E%XYtQ5@v``StgwB1wRrs#C%EtZ$Md3caW~@3F^q)4*f@6@ z3N;IHqMQB>;6ZNNnTGxuL;l<8e`!V}`z-M5OBrs}T$IaM9Ck~F@+KAv4P6F+0?gzm}QV?iZUg&zkdF^u7%uT;DV+vIF2 zJu(k5rv+_ztzN(Wz^<-AN>y&%T-{BL&LaF@Zmt-#4V_8nlG;A1O~c!&J3Gr)+gk?X3|-Ov82Hpk2wJY)k>jSw!zdGsYU} zNs*H(onTwr7`~Rn|S(ILZ=~EgXr=zcZz`ap_;NTXl9G znsM$EYh-IUkHk9EN9DD>6{O&}gmT=#PNbG|-Hr1*GWrH|iYSYPA{%#|3U~iyAzqo% znGC@F`X(bvDAUKM%_l_EHyQnLeM+m9#`^QDezW(iQSTj(SAlQ}aKWbsld)+K4&U%~ z{`;5Z*;-QXH<+WG$Ik&d z{TCLLwjU*NuqZ2Sr5~`tk^M@d)-c}1A~!P<61kONW&ZQ9@0B}CDf>Lx@SAgpR7C#C zJ1fi2YKeJ`H}$6Re8v<{w0Y|$Mnr@TZR%MLslh1{YAXVZ3^#@HB^|}|C7@dlN8(iT zF~LYIdLELoz&tdp%3R(qFEPE9h6%9)5510flX8Qen`dE6*flF`*@*G$*G1lCyy;J) zKVkg;FnB~$6)d@QiD`a~=Oq$FtRptVb`n`vcf1?3*J^b&NIwl8qS7VER}wIFT=!o& zV2)y%X$iywHlfj8C&X{q^mDs=V=H378y{xw(zXJu8F648h=^nUu0=~rk#m!xHfF@6 zX>F!$WOrw$6Y@cGU=Bm|EGhAxA`ViiJdbgYXOq=bxWCuQW2Dl*WFKCb=zyFcZcXUrRDZmscqDz!_~Ezpk>0O+0ZL!sRFCF<{`394>JsX5$v_PS zMjxs__BrQUYVmjJ3iy(K6aD9VDZ(p7dj!gafj0=)9%tmrqnM_xJ~7h&VjxrO(-u>{ zR*Kbt2M3#AXL%^NoPMb9_Uq*9a&uOL{vt?`le&E>g8nDP6xXsgBWBam*vTq$3#;F{ zR@y+USb8B@EFLEZ>#^#UWf}1U%rK@lek6BEZW%6~k=$AEpL8#;LBI;bxE3W&9b^;M1>fqiPfBN)~(<7c}jAfhksf+XNiYFl+3Pn!D z#n~3ESRtF?SViX2S$*-5`0OHM0hf!IzrTPXi5qBs=AV}*g>kA%WF+M6SJ#y5DA>(X z8x|asjl)%qMH(l+HF`*Kl(@PM{UBL2#?}{7_uVblaDE2tY{C}2IJP3x>T-DAXXG#1 zg=_Y-G59>L4~^j)xlY<=I^UnvH*2t1h>KTh_3V(0xmrjP!*Q>*u!RdKaXLJ`?pzlt z@*jL1oZ$%o>w*dTWJ|L=uAWp@qZtWU;}-9Ao8fJOxDMjhq-u4tF{&dus?xpI0*Hea z4kt&A$xhWu<#msDJtcHA##S@fTTDKJBeLt)+0b>jDX1 z?D^B@k~Q7Phr&FWQCmU{574ZJQHSO2s>3*?H9M^8#27VWYvSH&HOUXO9V-bTg2myj zxT={1JG1iY9j6hRWLG#QNx| z&3ZFy=fb%an%RS8ahITD?BByEw)D>h8n6`BXiiS8IQUWhTTzas1-lYRl10^OI+zAA zlY$e<0`;g@{($c_Kf~EmHN+P5-s^A!<7o&P2UEY2#5!iF1?h@ykD;jz1TwN2NdRCC6(O&{=LiGL~GdyFc4q(a~S zSLwRJZRTkj@@v~BPG&~h#MPQ)!8FP(Yl_)2w=FU~J^5dG#7K8(M|ScJPt`|-Sdb}$ z3k}jPBn{HxRY0cJ#>OIz>3+6pBmS(rC}JE@X=2Czpy~#LE~Qzv?Gzq0vW{Zp9u=)* zQA3@67)RX_KRG=1>7%2x7&8}Q|B4ku_)!~y{>)3fq(pqPbQ|9B!cS|;FOFDM)K-PD zbJYqD8)cV<6OhPmeY4KR~V*3#-gH{ z&IgLfeO04EC?tU7NDY^E&Rwnf8!~En=U4nM6&`U1%oag(%Vg4X;qNES4z)^p^y2{* z7Wz`46jWR`-m)9{D*dlhdSA=ddd4_c1z*X#AUe9ai`7_LqhUG8P{bg19!r1ZKOEZq*;WT(R zCbG}1H|sga%@GdZcY_khYX)sL>SgHpLHu~7!sB-yMfoq)YWk_Kn%NG2`s17c$Bfh| z*XqxXmyt_9{^!2To~v~X;szAJPX6=HyMS>xpTU&JZg7G@mQ?52M?9$?b>Mq+>Vv%# z(ammd?{nK_M;~pV|Ml!E^z_%ZhfpGn_TvhAfea!!@Y^WQd&Q#`$5xx%R{_?m-wLn( z4?j-7xw$;H45|Ek_MLuzl6Lai{^rv^z1{e;mfS*^b;RxzE}hCTVg?zl%;y>nKWFf0 z%X94_Uvc1$I7o2$chT|ec8==}2`b?AeluVJbe%!3fD7|yFAuND6uzFjk)>*cmsay0 z?{N)3voNW#NjKZR>`U6j^m zZelG;(OW1G@tsSvl3iaq)Qp#ExbTKS>y#{B&-%kIUyXQ%)Z(;AE z5Q(K&cmB{KT&Lr!Fr--OM>YLIR>`vt8YQTecTAJTa$SPGX>uT*Qs>-DHy|f`PWYKY zRtTLy@C#qK{wy`n=QoPamKIsy4c2>-UakQgm*={Byq47Bn8b)}^N`Y4|C?j0!1rP4 zO=sMWv6ID0g%u<4bz<7;8zf}jK4m?xh=h*AzvnQFny2;s!1w!2B#}^9nHV;Ga;VZ7 z`X7k&3E^<7`ASt=jw~_jo3v2I_i9StUjOZtRg!suvY-gWIb6$#L3ZW=;hCcA_TY`= zcr6Wh$xw$aW#%TA1vDt*vXaE!kyT{#aTUF&{9;Cr0Q_ z$BLKXd)$TA`&GS~rzW63ZL&H!(uha}+D*QrMZDjAJ{XU0%xK3R7q(rZUpp9tCIw(D z_&ZzM{Yb3uca&Vaj`TLNY`J}VS2gIV0r=*A6u<2e6o1VJ9rv-cG4AWxH@9u{l%ccD zclJk(R&7@Su%Exa?R>@)|8~gr_@y4^*T-&Qt^W}MOV1t;hanW^)rAwd*~@6B{`;lR zBQ4ndRLiIv2WrRaOUDsDz|rSzmC|cPN(Lc54E5x z)gapb@f$tW7!cia-9wOT32>^Pf;0SP5w6;&cWCJ8^5}Uzhef-=+KFLFv5t}E0rWU~ z!j6`Ykg@;(Rj_%Ku71Ek6{UU?Jo+o3_}VWWzs_RxcFxHB^j5^;Z#nG%I@ISlhytmW z?+L18q~qcwQ?T19obk?s98Gm^Zv}_0W^X-yYv!k>Br`Sy6b3QH%D~- zSwlGVa_Ay>ZXssK*I8(7o#B6?r0!opa!m%sXwjW( zu#Up*xY+nuSc8pTinF}ZniF8gW?S5(8biXk3n>$hzE}TpTQC4oSeB&bI2}`Rn{SL4 ziVBUp6`EiyGCa)Hv`1IszxUj9%+~FDaW30)+Ba4)+7i&fLEBk7&|pO|Rw(4Q`3}E- zA#Q!euk9M4y&hs@;lC75ZCLs#e47?sv13uPTDA-fag7zEu&*`wdEzS5&67@ooP8UD z)b7(svOiO)X=m8|S$x{rfj&G(s^x4*gTOfJeUvpaG86<2Ced5E0w*{>x;iS~;^^4`5gw+4$n*h|r-53FBK(W%Q z!~R~Q$tJVs)@!xXkkUu}+XBoV$}!lwJuNN&+mX}Scl&8{Rmtj|9TKN5E>42w9j0rF&$z!r~F8{v-1LQ)Xx=o_(M<>p6(&@dt>lUfK^pL#s z3@E4E`QDf4`P|+|82kyI{a}`s?;H*&2*-32x&nL=RgYp^nd;W$iP84g`Kl+}y{t)m z*KR1_yKyr`|H}_xeGc#aZytm1;C)h`RS*dsPYtssr!40|5w@wFUdUx;97}teIiK%t zg$At0KEjFAF1v#k>il_v>7eoCPGtkXABSgo^ic1oZ&Rw&O%s_!hnb-+K<*P>BD5Ha z*pep7shXXAeg|LPED}6pCWvQ7X|G~nhzv!+9vd*6j-DbOb~fY{IimD6VcUJk_fNZ4 z@UEvmTa!WnYNOMajXlN|{y42w2jHwBqo?B9>csg!<06Yfrq5p3aHqkFmV|m(A#N?> z6EV@opJAYauv-PcRwzT#vUaJ2b-bud$Un5wx02{a;Nri-u43JujkA1}++STdc7%(o z2a@ParWa^ZStsbAYFH`*ye{i5L-a2BUT;to-Wr*^HmHOkAFT|$`GN*hS&$_oIcycq z$Evz0cxJ*05;}SgQ?m$Q@WZko;ZSaS3?~E~7t`l+vadA()4ibGp|H2Tkhi_Tt`n62 zn`;P_2d;K732(*tG$oRbE&4d6{o&~?-6_4xcN(hG!1Ym0B2T(Tz~`o!XR~fyC3(8d zi+~B7%MqW^bvm2uCFFBM@W>2<^)J2io7;}#Fmc;D8^XoIG5EVKRz%K+!}gb9#nsyt zdf$MO%PO3#Gyw>8maCUPp+gCfKgXhJ?L0ItcK32BUi^;(6v>JTZ0#Uv}QzatWEq|BvFutFP?vH9Ve;oOuZ4De0S+5REpMfVy zjRN26Uvs_AK1koLDWkqT=awf=U1qxvI;GM}vbEx5DJm}U2DxW06X+6-3&UeCkd?oael|o3{aeV zFd2*Id5pED-S&VgzjE-tZbySXJ(#bcYs=Hc&!{ic>5R5NirXW-O^c1nGIwBy>2-6~ z*Ep*Y&D?~U1c7c{En3Doc{zWgj2gE(nAWVeO<6aR1b0tW?Q(N9tS+vVMS7Ccax}JV z<#VT5wrz^xmP@3YkjbhiRY;Um$*KZaxZr}AQ;K9W%BU2Q)Qiire<;XM1Isy8B2^<* z%ONYEp#)$&KntWc&s7CECs8OYrm1}90mhOHnMuvAsEoGF+MZd*kjR<+F}dR<fa7-|uzt$MQV0GxyBgy?1oft5~a{C#qdnO}W0=N+c<$ z;6~6&EfVl~Zq;BTYXXii^&r5MfxGUo&t6IAM4(p0Hr5kHe>GYGNJH#e+3RsdnwBk# z-lq$BH&ai-+da+a+ansbNAhFw1H;j#yBFe-#dLt4Hy`n%$y$Jx`_T`J=Htc?!vz%g z>tmi}-#LAW+m2&|uvX{uxU5D?{EEXe#g)f1ua}4UjP2HKQ}0e3>V2|NoMqm;n`2Yu zFJpr*I}*!|*EZ!ItHoYiphCr#9R#UW*<0beTZ!ceO`5A(A^YarG8@Cz91M}2-HjbU z+i%0WPME?0=bzR3&@6%C?{|NG@_>yI3SZlko%d-mLbJuf0`M!$UgQ>P&+TtTvg~?g z;|lLjvCOxI45;4)zlfLyjyqF7^dCal?}zeeDbGicG_k}d!B6gp%qZl3chfhw8(E7e z?!;|JhQh`tf+yuCW(Va1eWu98t#f%h+N|g~ zgZD*KYMq!z@7@BS{^6Vkn&oi|F%)exv)}UB8TH*wQ}n$~0tPVo zdbb_YH19>d2uFnf_)hKDc7XjbchxF-kuZ6kv*UZ$x?%z%KQn)=PiBuwPs$MKbcBgM zOt?baXk=P5y$Bq@CyIk84p*10A8GAa6KwSri7`O#*BT*~IjA9C3`(=nOSQ#(&>vF= zlWH>!rR|GeSG}IK;6y$)>95Ds#QStW?ceppdHeUrV@p%GkfnK_zbm|NJ%!`q% zYx!Sds^7gTbbf^Z_t8UTfuAT(%GX&{clx8AUNulaq;SObW{ zL9TZE!74Hi>BI#J^V8E?!}H5_h6~mZ=h4<&g=QvQVDdMYxiL&r9>s*$>JjjHRwR#s z_Wr1z5BlQgXF^JJhx5M4)y2i25AhE1Uo_KfYicS#q|v}M7cMU+c*NH(3+YrT5*w#Le)@6;*>U0T%cLeT*Ag>8Ne!871U; zRp-wSS%dfhj;5cZPs=o++!Ab`GX-Uq=^z zkQWoFLcW$*FPzSXc(%jOM^@h85-+jx&Ch~z-fQ)%US)ub1^cvnfTQp5q0b5~Il?V?cILmt*<9VMh zd?A2@ILOV}MyB>@_wori{mA{M4!Izf=JvdLlG^)Q56d-zfBTC508RbVmVXZ%iudYu z+{@#deWuCXF{D80ksUzkwmhuaJhc5#@9g)O$ZYN!m@Iw@GaDxufNP0~^?3AA{Ea&X zzA&X*yc5>;WbMJgV{YM&FZpS|jS8;k;wJM(Xl-v%0D%l(hc=JwI! zE9=GT^|{G9IEPyorWRuhzyh`C1)}hC(axjuU}n9k_;IG+*%EtZXO<^*LTydMywwX& zneVg}ldluCzv;Cf!S#ZVyeVb)!9pte(0dX)M@Ledt~psw`mb8K7a$zjAI3A`9>vDz59y47Lx;o17CkF*qq5eRL- zAKRwPpOd4;1+vGgmnT<4c3`kc8<)3gE?-B{X?n4IZGJ!2UrkE#Fiw=9R6uTBQkIsyw-v4|Q|%r(y74kZ`|9;<3=e#Ummr|CU-l!IU@J!qc*%--qw9 z^+D9QHe!&~B<%|z?9@mN4%U!%0NR}E3|2^Nj*inHSU0r`jB%|RNo{1X{pz*c; z;%24weDtP#hydV4^)T5O-=UEs0@sta9ziO&&C+_inC>>Ikj64lvl7WN6y6hUs=M8R zx5Rzoz0=Y1}CH86YAA!9KgW<)G-Q&>m=Qi8|`ipOl0cRNfo8B+II#(7)*YO zjq~t2{4gv+?bxGkFLGq#)_mtIUvc1LT;aH8aAx270?jhuImukf^0Pc0GdJ(pM38tt zyK=uXi7jN}rAd=CuCFHA^6(^}_gLna<<(Z6-wKZ-achSB$>%272kF`AbW?!?h37QZ zo>kn_P=x(<$Wma6N2C{#gS&oe$S+nyJT*XeLAXu?m#F76!BO^s#I;K1-IF{vX&jSX z+NDr2-`X?>#fj;5-*g~GDw;Y`-F7j@Q`Y2ih3fCHw*Kc09ErW&o2*|dgCx(}KSiqQ zj=s9RWvV;USL0R{F3ow>-#O_j_O|AW|6=~86_~@W zEt34_}(Hz4Nj$!0@pIkPlCpV`jdfC;>$vXvK zS6$aJIS?M-@{8*OAuc{IB1wXgA)V^ix^P7+%cFc)8;#edbu*@QOLpm{P%)z9-h-tX z3r^CUw!dh1W8dtOs8L)E@6dZ5!T3#MFl=V?<@}tfZnB2x&tP=Ti0s5fN`DZtm6DJa z3-=5jaFLO6G8m_A*}gtldG~IOB1_oOFS+~)CqqFVbT$0W@A(8JEs(%<@j}b{aNh7z z?{1rl#P?|vyt9!~CvD$)a@I`avr-V-aG;2CQj$UlHhF{0HF^Ee`ZRodBf&0e+VO0} z`ZPE!A#@4Mnx}T(&IGsgBzxah=#zfpXxw5F+?_oc$;MSbn)PN zKkatAk-W(BWX2d`fl?;^EQTX~zbtlbhE=gGIzNy;jBn+IXFF2-72CpAFvn;FAZT%< zaXME!Gvq&0lJO1Wxz%3J_bLS3Qa74$QhzzR@-Q)&^puGsVSID+`>I2}+zhn0iNNm| z2sdNvdTlNs9|9SDToNIsZV}K}b~_sOUJJW6X+{N9FFVHN6g;10k2XEGwm7uievS!+ zUVxl|^d9@Qs=jAEmqodIz-}zdn_F25S!A9)g#jMeSy|#U(CWQuML{@I zmAWLUPcb)CFS{Uj$P4*l1C|_&+y5Avn-QYd*%(WaCV=cb>GVnbVm;XBy0zKw8Lv09 zVmHFVKqtWpxMJnRWT2u#9k+@8P(XXcB^ReG@8XhYCG2@=>ExohzWshb*3JRR1A$cR zt&+T3QJG3k?flGPvdK@|JR=Q{ykNwVpN_9hNYBgcHmpf+Y`e#3M~>RlBHN?Y=n*Df zE6K$z+;4e_ReZaHLur}Ul+@!Xy0MBB{}X({^tl`X4kVR_J?ErDZ==F>AV zhuhPr7_bqS^cWW(LYAHiclxmDnY^?5VC%V&3og6s>$b?KIN;l!M{2F#s7Cm7JDxWS za@ZW#Oi|3Lzi!{NZ#usQ7f`yL69RfO#ST)6Uvj1HV(p(7YiOSREU1Lg0H;5SPy9|~ zIDdr`o=o|)XnPtPuMj}P5h5>KixbIu~IFV|ujJgBbjgHtz?46R{nLQLav9cen_t#hCH-(+k%fWRdb5ST>my&>k+=a3-$nG? z$*tVVXbbe_Hun=HMW3`62`LAJY-!d^0m0q*Wc@~|5eeW~@G@%!X=oPXtC&8J5Pmup z7!|8o>2e!maBF?I5<%#znHl=@ys2)OVKK4qb>oIjm3%PdS>#Sb>}9T5ma(s2N-8kP zeZVL%xRyrNf6&pP`L2`m2!$o|rqf|?HL=0=CZNx9-g_ol2Z?#cHsC`PDCRv{8K^M! zO>ZbL8O+k1!!HCmK9iI=)}@$G`W6T3(5LyOg2@GZm@hk*ti5A){80eB(U_X7MKiab z80oqc=a||jMuEkJVCx~jGR!x->okb&N>G=M^ z?bh#s`m)PO^y=gDZ13}fDihE#KjmEkKz z)b_gR3Y^Q8ziWDYi=Kxj}KO-JaMg_QE6ak{su=c?#U`n7%O`y+3}7oaJGa8 z-Iemgs+y7xbVh1e4OItuN^P_a289M|WAeD6UfeDgL*0)4M0cRDq>-7NyFHz} zF~2b&vRA*^+t231nK?x&itbY}1w)8%lC9=_<5Ud!e@4R6>f}Ew5``U$GO%APsV0uppF9H2oaH%#IzWF<7Ky8fO06;hFfRhw# zvo4tzU;ww;V3_569G1QJm|5=k9G?jUekLf0;fj2V8Q*qFpL(bTwo{7Mrdc-NNG5AM(%EgT)PbR zZ?vAO-RyT#0FvRlm{fL0f0ng|5b5rj)A8s;{J zsL!Q@NNHtD=5+elfSsU9izzp9z3cVDR#B0sDFV0oYc-~R*`NB|6^SnTWes159P|`I zEXeij0``r7qD{mDZqbIzFSEVLWhFO>2t>7vSIV9S{B3`@G=jKk#GNQR?dHtSyt&c+ z&6U!~&~u}gURz|mvv}{cPFbR0lem5Dz-5nvLLN=@=Eh+I(q>fJW~9`I3AEu99CT6A z<>xK|@!-cq|KP+gbtXNR`&`4P`ngIaMRQWNboOg}4#o!d^LdS%ZWxyrOWhQb-}^j> zI_U4GOqeK(dS!on0+-l;x`gfp-GkeW3t z`=eIu9RVO4G}Z!BJ^GPU zXOmJF<-XzLY2*Dy&s7&gwy1{XUlBaga(&@8U1Yy&uPE5>`zf5h+Jx#MrV*87mXa1# ze%IX&HBnAcS4RIh?-376@B5M23{)qcty3hE)W^%>G5 zp3P9qtv`fs#$2uJM8tn%*tu#GNP(*!M-b~M8WI`^!&4K|0sJg_hGrhrvq@8Wgqyvz)O)L1z_nbw0s-{(G?EXsA*KN0=wK*!pDbZ0RPXdwg zxze0d>IOdHP8H^&C#tr2Uj@Po*#AsiRf&$Do<#y;%cK4vJOuRnv9Si0SG#EL#KAex zZ`+xZa(soTC(IK4ZbYA7JN(1hG6u`VPBORheHC22Xl1}WyQlvlM97e1Sl0l}%=W{A zQ7AXcS;aIWFF}gwa$dzuRDT(?7Fnk?KCPMxkvD;i49Zp);{=?>N)S1s+*x(yXW($- zS-9e?MP}8fpgTWt<<;HokzGMeT5QH>W-FO(Di%!ljv>;RAlNr8wC>`5a#j(I76yV< z=(lYp>}kvbaDml!1>)YivWaFlxkx+-jJV*5pEj@41UJ0jGrTL|F}X;1XOq3C{E9@a z?@wH9Y{u;`IR5<_X*p85DNG9jYf1Cs5$gnVr+H{I(Jv=u=omkf5Wd{N=QP#fNapeR z3O=jJ;lpQ7egQlE1kInn=Y&%{8cz!}bmidYsN+~0H%vTMjOOUVyJkyhT5NCaN|8$<#r5gl?X`eo-igbeN*mz!UHJ@a5tU)Dl$M32dY-Of=5287~&f z2WFJnQN0hv9Ynoi=(P9SdfCs7#>}8-B=*-XG=gOWE7y*7)iPLhuREG6=b4ZA>5h;P zG{KHx%$POo^G=;=)hR#R6r_F#)ddlRu+zeQS^sGiOX%>h`eV;%drE?lUpzQX+h)XR zir1oo0BT;l(C<2r-Q3la2EXBpIy}}TJW!)eW#r1Ilzq1m4o;6Az(Y|(EH`J7z!WH0 zK#mB-{L+`3<;(Ip)`Q7qZEioHg`G#q>9YnLx#lM#E=_%#+pl{%7ux&TXjG2B|7?S2 zKTKKj6ays|Bf)FSv-dmDv=EBEPi7&Ij|{-{ zt?M`&-PxtHlj~FwIwDwvH|x)r78cGYh+qS~T37OH-QZkdO8uS=m-e0M=T;#e4l^bk zUkJG%{nv`uyOcjMWvfiEkhjSF2Yy&;3`NMrJEu9rEAz!u!ag2!u_K!%g1L2rwuT%A z+fsf!G{QA;1BYsS+#>z)(`7QzJ47x3|oZVHKOFFog@gJtm;6d-PrWCA(gENGy3eJ7v@L4qXhw}i8*aEb( zO3$fV-JN)R3n4~IofN#wt8?)>LeRh|15n6n;yGd87^JFa-yk+VxiMRN3> zt3hCeRh_^o`=hg5A#+t@jdaZSATTEtrulGwLVKY(xzPaG&m?*|63P*2%p6H5&=UM_~uXlflFRN`q>9MY-q zd8~k5gb4G3gl~4{?ZHLBEk|r~Qob}Ea5fGo2&TG0S$k(|sRWTyC$}J=66JAmlop6k zYO@e|Ohf0ZWqf-(y%D)?$Tarel&bwCL@7I3Q1E@atg0)d_KeQ2vq0O7Fk&*s39UM< z*iQQw|2Bh8*Q)bwAh7|bH8}MTp&d)*Y-?@h%x=VzCdC|;W(iRmTve@o6-T6_hEs9t zD!=G7C&2>$2S4fB8&+5v&Ir+nWm>o`>Fv{axE7dhqKtDsnq+gz70^>W2Z9@rBAHD) zLgsL|c6+A}>v>w7*EOdhk2T%s3Zj~>ho}$Fh13?!+ZRZuV8EiSglxTd8*WM$Hi!rk zrm`$1ew`q4SGJOleGE->e)I5d;Ov{x0r6@Fjei7`TVUrG=)1~Sl9~wTOJ3((4bMhy z{OmpSNGboS1IVvMc)N{1=4JjtYSNs&HMh`gl@6y0NUsXoz(+C*?iReO-_lFOEbwJ_ z1EP^_SRtrUH9Ge9cHiG4{0tP7iVaVcmi~&mZ2Wp=it_5#bx_aH2Z&^Ycfk3s z`l_*-$_gxr6$v3GvmA0o5(;`$f2nh4cA|~ysn}J045#53L@w7YdIY4Otf$Q6M6Z*6scl zF@(c}uFw%7okpu5s5F)c?QBx#4FiTJz?J^y+X|=<8vMTFxHtP_K&lxh-C= zE1r&~3jaE(lo<(sHoTfYW}5Ns&$2a~lTPo(G^`o6IpeQpZ20HWN1jqq$8&as2i_hj z3MHyZ6cSC#^FB{5zZm~WrT5qI2mT)Ssu-~(-Nhc921_fk7|aV3H2Jzfi! z4$kukDnO2RTaUsdQdg8)5a9zPX>m*By(t8b>#f!xssf_M4@b;>x)Nz0nbH2e)jA2E zd6!h6sHO$B%%?9sSwaTWp#OVgiNH`gNBL|Vvu5Yha9RVK2o*6yYJ60}`}(1)p>#fD z&s@llruK$~_=}$(ebMla|tyj1Q z$_3-UuhO=Ct`&$#5Hnkp1daULEcB<*$MxfCoK~r#LTI28e9%Sy7dS9-=+$EzD;-^$ zuziIrJg`@UlLdQ``#A=X9)?U7aY8&k{;`}z4+5MC!9@*?sBlE@R%0Wt{k1`wBFpP2 z=XbUa%3K3qdv>li6;1IJ@K_0Sw3P_Tt6ry$HI$$t24Y1`Iq`VRo;DH)A_d08wR@;i zsBVBVixQHCvX+qrTt>|^o5e3`er(uNG&?U8;|54pH25FbE)ATd!>4>g|3T0oIfjR+ zx21Nl+@J_G?O!x-uJP+pN09u=?e?J#4A51z3h5WFs?wZSRn%}NF?U#2D?b_Ca};>1 zw2s8`ZL75C0(s-Bjy5K_tRQC;sAomO)MPRoecBQi&-?d~<7@F&1oo~ekDx>n-K1tp z8k^AnjRk1=vp+nKwco-w!>(vEM+x8F1J8w?OGQ(z@R`dQ12Lnc4Hz0a;JFdJcR^(_ z+5iN!1@Dnurj~1xKJz|Ki`=AHyEq$Z*qWVWaaDeGrU41me9QCe=~^2~kfYqsDrd_4 z(&6k$o*?4|OJ9$4fgjo{ifZ+fi^CfCnouDi*VpSUDRW*bcS#BzhpjD#?3io$;9=9+ zoBG0v`wcZHiW&g8)c^bml9^4T#fu790+U?ANxnpzK=NF=H z^;HaUf#xo%=&yfcghsD2dyRm6d4Jn{LTh#&-D4Lg&o-%T(%d_rfuG^T-D=x8>Jh;p zT$BBA>JzMu2+y_zTz%A5T(gmv-v4N+|oly}fun_&* z^+aP?xFh5>yI-?ILAYmjrj6L)`b9TsYLvg8f_HS>gG4$d+tn8s$66g639H;D3=RZ3 zYC;rWeQ5)>m%`;J_+pUEiWM(^Tj$~NhFt2H7Y%RYqVm&;qB!T;K4{xGK@#5D5Rsq? zhoC)tgj;3Ik2*C!a;J24UOp)FkSp8s!7!nz8>Vqlw&?t#CxG2(L2@8^dyR%jkFD1| zH?U$#i-_Ao{0)C;GP-IShHX-#k&p5B`7U9_nusp-F+!7C9(qljRh|nRJ{U8xqacvV zXJsJBCa&uoAbl%N^X3bfFvc0C6P9%TzVm1ONX z2HbCyFiiLAaZgxcxw%P~E}57x*Jw7ao~c-LIIcMoj!{9ZZ6%-x-=2@fZ)Y(ioYM8g zzD_#|g>g;c*yA}OjPiTpu8Z=3GLjS1 z$?txWK8gh48nIl=ZRx7%V)W%0OW>AA@E>!=wME1or!Mzes4IV1S3*RTMD^boqr>h1KLKQM^}dxj*&~slxlSvx_=+T7))SRkt-yJ^o=urG6b8^ z%{KWz!GqmSQ?fU_;ft+1cW`Zq`|3YIAdKK=&B%Nn4dX~?8}#h#7XJw)bR%p#3%N>H zCO=%Rz7dOmLWp*k_t8q9dGTirI3z0YKiHU5YJ$k-gly?@w86F@y8qx^6M|N8!7cAa z3r&=Ul>R5II8l=_j&3R@$!0?c{)!~YF}UvqTNM++Aq(&G3N{5{CtZHWsBgN41fBf7JQ^$Z- z^RBPgY}=7TFtq~lFz~dHfOOvo1q_IBUH}clWBg7%h=JI~Fy8*wbVjmRK7WLQRn(@% z)JUV)LV&MC@eIX$eB0nrjua#?P4s7tD8MKvaA=$wF|SEmuYtazXxE)FnvGOwHvd@FxTo) zx0DTKJy3b2+77UrIeby@snE;3LxpLrM??V8Y`h>`qMhOgIGwl^_c&50rD_z>D2O-< zUF3ZU6XraTSV=#0k5*O7g?vc)bnTByl5j1#4_UlAlOZ#I8D zMi?0raaaH?D|jVl(WFfC6x`(IV0wLmT6}o9FJSGQ0q_GX%HN%#>?kp$2_iTr3j)15 z3H^dhMxsMVI2YoPN7&UcltAMv{i5h{bVJuUxq&I<90%tzZ2L7vrpEfb`TSYH(%733 z{V(OLIR8#3-VQ(zD_rE(14IBrASfha{>+n+uV4!trA~^tMZ_7ED>Of0kRV*myZNBa z=Noj+JYUR-J!AJHavE-qn;1CuhSCa&f?PR=c<@lB?{|?E(lynNA*buOV?i!G-etR-VKIJe{bk=n6oou4_V_^ya&6ek zW?y;-sF=+)VAacV#6Yyc`tpHGWQ4IzBm)mGAO$WQ#t=BemkLuGYMts_^_bXH zvp&lOr8Zwf0X%cmQ6!OTx)lm-f5v8h4>bc~E2LyT4~p~(4Koy%HhZ|<25TsL zA)jwf_p8J5RBC;G0`VqRBwOh%Ob=DobCO2t&um*~KfovnMF8)|Rk2VaYPIOPO=KA*AYmZVQ)KueA*rLj#?MIzUgud$)(MMI z#Z5F2^xZHPQo|@PE1CHkux33$4R6}+s zvry}!%;q-x+y8{jDHmt41@=9$?GTcmEbg!H@HZ+Bx)Hiq3m$Piyny{aej>mSnp6tp ztCZp1JxsTaN~c$bT0}na{+;^Ft_^DQg=2e>zv4IeEex_iHvFKAvRzjFPN0h%;ul{5 zpE~S?edyO~<-L@^B{9gbeiVvbdQb(Ni7`u8+txo3g-L**IlOyv$yj4YV!()A;L_j% z{RI{BR=tVjoI&Sl_}r}Dx^SlTPgGuW37$j>p+Yv?us{58N`QtotKMd)J_fRzlCFH^ z;*1g&ZTL5ijUdQv85-Aul(A9~H^h}TbhuNov_@lFP?ov@ZsHdrwQzJBf(P)JJxS`f zxqpFRY9q43z^5lx(wre{Y5C=qvy~6m2Xo@9Ro^v9ln$2caz`NwjE4lu)f|@!j#v2o z7Lq~*aMtg_{p#kuZv5%6baQOjODg=}-pfOKm;7ko66Yq05dWfqzOWwhv@2$X0E!dw z{=UH9y)$PIk~V@5PbJG05bL0ZnE`2~Oq4EP?2QLt#O!;ibg25t- zF8GdSt=o`;>l^=7tfrBL>Pkse>oFO0Dyr4p*l&_-ItKNNYdYA$AX#@tHZw1REIln$ z?C+(*tcHkgr44hel!d>99@0E_A<0+zpY=)@6typwEsQ`1c0?yETxG!4Y6zKA#`&fb zdXT9<)DFWB4^J?P4)R|lg^>|I)mtuKvw^bpK$W5;N`6#YtQpKup(@1+v+NDVnpo4| zS%1RTN$uU&a_(mWOt|6UrOBY0NUsFJRP(P!1iTUd7Uj&A^r!1CJjL(L|B6rYcVeT> z4)$%jH(z`i(zs`vO@M;B_MX1$fmcX#0&=vZmEULmcmkdAEeM;s$iDL0lKwf~JWC72 z!bR~Rr8`S7$480;CyIEuVHMRlljFI;!oZO03roj(rif1AjA4ctR`gu<^T~8fSq7>i^L{B{_Gj?}1%dKv-09+jSTjYnb2P z{YZ{Uy+I3ry|neF)Z9;*NMkg4-0=bO8plr0W@hI18=bh+hjQy98W zz7Zn^*8U2dOmz{#5Xo@-T%oYo^`C-?O8Pli2JdjcEIwIqRUOz@_20<~qd7IYR69my zw1@6EGFJYF8)HJaQVl}3t+*n#Ad}}5uZ~$=&aXVi0Y+Va4+%*o_osRl^EG~$X3?;i zWc0c&=cWtQns3LKM`erO2{1fyhJza@f+`QnMeeF8wYDhEt5qPG2FGdt9Uw((iP1$1 z^P$suHRT^QZPzQA`^#59GXG=11yYD#?C@$IfOU*D*N)DB9aPTnxXp`y4xNgKpm2O5 zM?Qb(9xDiy8(z(J&FU|5*jCYk9V53k9d1z`9%ORA(wwnTtuwyGjn?WrXl?KhCq$BP zIAOpRNABp7;!s+y7T>d=={80N^1X+6&T>b;V9UHYy?~4RrpVgx6r^>3mrXjH{ zB3)A!fNy^v+Vq@`ff}OUWt{AS#NjA2i=@l?_pV{|?)RF+?{%^dPtcNJo@Ad@eJ}m) z6pj#%*K5;YfyTew07m8=cBx<152xHCm=KW!F6wu+QubomPnDE^NfhfU`sjA6HCXTjrDn_oDqD=ydZGfa}UFc=0K z)*`Y6;Vt>V&=#YN%xCF2dH}bd#Q)sgn8M%tZv)Nb^>yf}t>xc|WQ%}}WQ_iQct~J} zRlBjp+i1&J^`BAtjc}aN9I1mbaI&GZi1y#vpbEp&eHln;n^UcYZ;RG*E`x<*%r-Hn zL?fGz!~9u9nr!=a{0$6$vA5kEX$G_-3@f_f3~Mqx5E%fv3*noKdUuCmbDn5({<~>1 zSPZ5WD0j>5dl((#|Bo>go|3+ZKPAQb2EIK!Il`)7R(JuU~#Fb*J7f4vdA#W1OPNzaO~z}79;169@}{;ehyG- z51i1BK3&Sq`#&TietEh}_p9miHs4m@pusW4_j7#nasIz3NO9}sxOEYv@mV5t zDb=n>ouTMp?|%1>#KY0cl|}2tgW;2e;Y-xOL_MWj7_TmyT*T3VfB?0ArdtP=1qr*7 zA&0;Te4mL&YRI8x2BQDb^G%lTg}_TM&C|@u^P2tBG0k)G%bonnqu86)e0z9zZ*1PZI--t#1!>v89?i{l0 z7?>KpAj|a_06^PEX(U+wN&vx86lxB*XP@yTI@iLCdNsvGlgbt{l`W2+gQhcd8qFDI61>HaA4?7=~<$7{lk8C0%Y zl7+~yzN)6{zpO;{N?D##J`^of5(o$Ba`pLkgz9^IO%S9L002l|>ENVOna7)smV_J6 z$k_~{ECHaH1+A|HFWi`}NeD#rJf7|mOJZh%r37Y@wflUh6$KA84#uer@;ZvF8`X;2`V&9%e)b zq%o2Ii{|~_9 z>rs9`Pk|by-KpiHI}D154m zd6MK}r&+3AX}U2cJ}Y8QsAL{WrWY5w{0+MG z3J=etougl;&T3*jty-{jwl)TJSx}!1hRQzaV0-6f3Q1&Jc8i{$%QE3i8_;_2c=ob@ z@rmWT*CQpa_U`E0=0%__GvX>k7kq##T~5_=h&tb)Otttb#Zo#d7xVKsFc8QyYO9X| z06;%r3rCgz(61p3hYuex6xHukyF_QZr zes9jc=l?KHUsnhIMMY>hGj;vK{fNo9XVHz0*IEisOn*+-V7w(7&Izuf=r$sArS}+? z|FFY-da(KnFG@m~JRIb-0GiG!Hwi_wK;xripe_ye={T`lrZQ3aqm19`*r;P*{_26> zVr9E2J>p8r?5z<-q+k4lPrlQyIVaftiRdoPu!|O`UzIM2uCrD)$KTgs{U4o!wVLu> zPvtM!*za9NsAyU!4Ndt^Kuvot=+ zFxXNE+c8mhSX4s>7{&j}O@@PjcVSZOTb;4LthQP5ClmC9|?J$vadY z7gv{8@!`Tjn&4G8!BU6qBrJiz1rLtf-v=!e*nf##UAmfIN39b(`6&CH$@S%x)5L+8 z@BYN;-w&lLi|#Uv9F=o~dlcMu^vhqtK~m=GBA)}|L~x{4VC@CPr37E4*}rs4b;9IKpRWxbA%dO6It`^D|H3l zc6X=RqPOm0i_v9|!&5P)AuX?WEInltf=VFN;$+{H7(-u*lH@ z;3XoLM@i5O=P$Ib=w}I=G-V<7qR$Z&$Y;x7FMg);ZR@QlFS<*%|)z0^Y#_+-( zWAgA4%5MpU#!S9Ab%!pz00M3IdjSQl&h4a5U>HpeHV%{&s9`gcS(ZxByyxX68oT#< z>6~ui{BQwugKSxhHu9##7z{eJ^|P+mwk@1fQ~nfLk5%*e!%5BfZ>pe8wo!3XrRj>T zQa!e?1-4!xTd8!*NS@&d z&H?#01b94ky2^uVu2Gvl(2#W(r=Nm7nQ%YL94vcjJpiUfU_MKH3%fdyd}$IngMquO z?YnGV9_@t$v%6muUYpYuXfPl`Cs!<;@_DR<7F|KaBEYcJqTT(pc1nxh-`%B>+)=24Myp=Dr~)rS;!|V zPD4KVr^9-&4SoW;5mI56Lfgkgz^FNCE&cvlP>q=e5T*ab1^UkCOr{)R8?9pq`02^f zMWy(jW>DPL`Um;9>q2*$YZW%bPgd2aWv-qH-Inuy&7ez9nS;A17}F?ns}azSu77b7 zDx6Eilcbt*{w`_^5>@*Y63;m#n$@sm+-#zd9-**2(>>)>xFv{9KyutE9)GnUl0A5+ zZ*M2s*c8hiIKr++{>P{V?(H1lD!}plbLCY!#i-ByTXcqTwt<>)#u^=xIx0I6<@D5W zY^{e4LE)f-@ro513AD7X2UT)5&vv_;^^abM9}RJ2{fdEQ zTDs!9$cL4)f*w!C3@w&RzpRXNtg=qbSzZY{UCv=|{8m<6nwfU3?|v-Ys{UHfejcMg zS{_?hmQUG85{;}iTHffb+B!%>PphNr+iwEA7KlrjrE%>mrX)SV`P7EI+p#i`(fmav zkH?)4QdEK?vZMIg{viG$UKkj*pyxg`*V*h=Ef)+shffsW@>>&O%IH#Frh`Wd7v3H# zV`Rm*-=SR#3wNYadD%u2EM4yfK6!M5w;f02T>3{8lI8Mbc%X z>`tqwEvbXNotHfzOY6rHx4Dp1`ZS{XV#S|ZM{>xZgoC4=f)WDYnKD1PT%TqOaF1#B zHrDc{oc6^4e9(#Db=m5;u|lhqljzjBIV<22gA$6buV0Aaph3Ub-&Z@W)wL8T!E)>{ z?CPdF%CqL z-q+=*G^tJ->r+@a;WxiP5q{b`D(pyY{6`D0gtD;z=9pFKtE56ZF4hcLTMwMwl9$2F z=A$^@RpWh4w?aW;W{n`X!p>Y7rK1R5r1p-!V1mj(nHm@xwr~yhup)lzTtC3ccnKZS zMRiaNXeU$MxN+9rw{COL4cg(+Xm|4+WHb9-ENW__)!Mk+bhDHL(|3rs8+#G!)Jtj4 zv$e<{Qoul<-=F2smx-0${28L%h+RmSlw%{_ZINTXfC-Q{+)U-wU;~fbo#wv~{DXz3@YM30@vJ#F=oZOUYLX0CLKmQ=7kV7P zS;5}`Olbh%Y0S;&)!LmAt&nu0W}X+)+kG)VEBzDjWxpTw8V4^CJE!|&0Q1(zV^^0- z!{(%c6T=tj=yKI!^Xzp|h)6pr_g!2o(ks$okmgPaLchVgwv7=Z>>)@Hs5+@so?Fsf zZ4CU;g?@tDyd-KtBKA-hvJ)K0ahz*J@sw-lthA1GtCw;%nF_0tgfa$Y{HfZ#9UR*3 z`@`WL7s{kX-ye;#f{>+sdWYs(W~CPU$PC6~ zl64ZK(KV@bO8g(lpC>H!r-qd^d@ZCME5^ePgC$TR@BKi!K!)lY6jGuD%g%00EmD+r zaJG$ewIOi_o*9|-9)P0+tQ4Aa)p=1`ngPJ_6N+SI>+>aYt&KcsZHF*w!(75 z&8_z!UoL$Nva4}(Iv(a2)}$=Yy%xi_(J&x*ScLdB6pgdgMnt(6F5vj6f%S{Zr4#iK zLm=`207hMWO5-*F2AB?Av>eTxy-o6bz0Qnwd)tfVd!kf+{UM;%;0EltMNWmT-N&6(n`SS-u~D``EzrS*wf zVAyXF$bTvHr#L66DQEscAm>?HcQOeK$LrsEtN1%}z_TbpMDzp|?@>72jUFbsOl)!o zQiQ+45mWH0wP#jTGdd$=Gl06(Ii3+nPWcKKB~8e1yLwfp*NbnBcXF!ke1%|a4{fpp>PE=MRh@JGkLRq$^qNe`{lmh1$|=rM zk9RrenXwka2c&eSrLKn;`a(i1>UfKzc<|sRxw=M2j&XN-%wZnA*2r}Wmu0s1(Y3_} z#;lA&R;c^ofDZ-rLf|g~j#5HXTj3%|%h>n?NFJIWL^!<`N0?lKlfr-F7%xYYTmt!9 z>yr3Ma|Auk1AyBX;We$GYO}PU53IFOLU=^wab)41ReT3 zt*TkLYl?8WYN%S(za1As>`QUaV|8;pj`O*>Md^@rUJxt;vec^hb{S^AXhQe*2!N^}9 zEl+Wm0<=OYj+gU>wVNdcqEG&o^*_|waAI|-#5T891?ypBCC<&cp~&`kmsjNH8gGxL zYgfULYzCb@t%q|c76*wxv>I;i0KZnfZKyGQkk~_NHAH(b_UF4frOaxuR-L9Wy1CKw zjkHo8H}GVy8ZD$-g2>D(8qor5$=6|m6AqQ7fzJTlBbZ?OK&Ycn%s-+nZ^IdOCLDRai#O@R9s znYK!MsA|OQ&(@Rg#$~3`i2#xzbwX2nm0kx7!4?$&>eTPiJjLzxWB0@D3rENIde z#=e_Far_Y^RA2BWp>Tn0;`9Kc~UI-v= zBi`rbg+mSqQAMrK3k!b#9T9viIIf#JX5*Z$eT%xZ6ln#dGoZAMEB?aq-|j+FAv7ep z+dsIkOdYkPN2*{K1?hiKo4d(i#>4ts|7|g{FGb z%GVE2F+<%VU>t1!68RIgwyHW`G>c+a~O9B_D+d0uv( z3LwNX`>%C`;TgXcfp~5+<)@_=Ax{5dCp*UFG;!D4z8g4V4g`j-%Gib>)A%1DCtdW) zgNe5ht#wMaRX@_F`U<`z&H;q>-&PU1V;UDs$RYj&VAt8b>+$>TZ`1*?dXtfVcgGu^ zVyUUJu+>O{o%8$2px(>ZYOBCpU83%COrbEfp!S8m(dr)$AuG#$w|yqu@|MF)rXjZS zkdcru+!d623`hjT0k}dE`PV`MlQ_>}Z6|R5{Zx%+^;8zy)s7*cRLzt=6PI&* zu(3vJZ&Fq7@dKb-nExWM$ZJHtV_5`=1Kw4UffltP)Q_BBzcpMsJ+{Oft!NK92k=TS zxy^lI0pR`N`|y<_TL@WZ$Lk|@E_-u!f8xI**AUVe8J)S;{mpFQO2I7#M{#RJ0fFcu z=$CE854>+|$GFUc0hb1jui){0#f6^aQ`0_ED{4k{>+@4-Hp#%qP_sC30Vkb}APT7&C5 zE2Is+d2o&!!uMW_7kriAtu@=`T7c^=pB8?@R`hPYNh7G!h`_}&c+uOvR->2zex_gt z;WS-`Ahzv*)uzGnA8a@E$7`{Nas#U2*bAr^lr&T+RkY5RIW0l{mjQlN$m@H5ujxu` zSpZ-tg!cXFkuM}97k)YiZR!igDP=~Ra5h~37~zL4)Aj{#PrvEsYYM@SUu&fD0+Hji zv8gMd9gZkhfq`Nx4)B0In589qU7-p%4G=$rEbOk0H}vsApeTtsl$9xrB}K#Mi&XB| z92`1;|Fy;Gp3UDtwnLG2Ys|APj7Jz4$s_Aa+7%`F5IvqzZ zD>u*)I)dvmr@t6OQwWR6I)s)T7@v{;Tz^GRtlHMsTJAHpZ=g@@(8ds}J?|-P^o~;W z?$G@&A7g4C|06w#1&@xL(YjRVL6_xOr#S2%XblT%vFKf`2s{b)M(-BLk=pcB(#VZC z0mzU$6{k%d%8KpY00xX0J+j0p()4}F#?VJUPt;shO6Sx2QSw|femwtQS*S5U-G-KU zBXY930NDF?@s;iogoYXP_sYRiwEn0;Dbz>yllZrW87 zG$IT6!66|>J3=<;+b$C0nDtIC>y7eB?cy-!;UaZOb38}x6l2kO!a|0@aqg>G0k*Ke zEtE?xdf>X!6tAtW0UNw)azckMtuitQLkc8lZ%GEbc!iNtT434M;LcA@u|Q{?1+clJ zwuIK<(fXDZ?(^C=6ea?tT;AyPaErLwgpQ<0-C{MHdS~JMrlNswi!(;VQLSuB>?vk-_$cM$1J=eD{3!f_G$LmGe%{8v{F1)DDwN_N!S@ z7)A{hl+z+=>jnyqmIS4VPTmy!t6W=u;x(?0okS->oAP~1G+?7!`mZjZyXXW%)C+bY zG^Pu@qJYq3y7qni_uOd3iYt|fRQvX$K->?VtIEpjCpGgYXSJ=a+EMJ8ar)JW3XRkq zG_Rw0R_EDKx}o10cON;EN86;$_^vU$Jn*L-{?P5~07xp&+HC$lif*MTU*ZwpX`I1g zS``;#F)F?Ci<4g2Q;6WL6TaQ#(!*G!$XfNt=tq^+%p0{s{j(FodZ^BJ?xQ)JcVFf} zpwvE?ligU}#SUc7TWA}XJ^_=AZmSQ^D$FW$EneJv$W8?OP6jFhfWJ({o!TcfyJPsn z4*E>SO1|)L{L5}o?o?)N9-S?8B+R+y3%1zc4$xxR zpc5IXf7Q`ioms!4`k4ytjV_kVfc|f_L~C*v&<_| z7&yz^fSgL=A-uH;Gkb{c^S-HEQ|NfHRDS8AUq~oK4b@_>7meCTxb9Gl){$$ev37+K zUz4eUWdGvHHPYW1sEh23D5|%ym0B5UN0qtmsIb424M|^qIfUR6B9BbkhyJ&c)?d|G z_WKH}k=KB;?Mb^i@vu{tqiiubJW%%6o^jENEBHbR^d6)_3f^)~Pu|XHuBt;e8F;+) zljlEsQsAJUgF-c2-_br)>n+g~+ah@IcE-Ah1-I#83gFu3azOq716h6uUy4#Mm$=hw zON{INz)`JUqOKwB$V8IcB6VWis*Zpr`~ixiKt1E7TJ0gv-jDCdc8yKWQFY+rI{s%y zMg6z4_962f`Cg1x7OiI}Dm>OO=9PctqdDT&{LjSX4+D*%ArLUAc#hiPXN11XR7SoU zj0r7sIyNK!DonrukU8pbFYEdGzr0wB`sT>r@gJZ*{c2~XPMQ%^EeU~{&Um@eV zNGKpwa3h~h=)6zyAY>0DYZ4kuU96{oT;Z>ML^5~+Z@oQ@N9@vw>Xc697~CM2BR9Ri zhi}94#T3dn%$CHksTY6ac_COzN`0o}7pmpSV6B7s05C`Dny!`5T;!&GOxDFY^Cf7r zdahN9Ok}K9)_-CvY(0SjDQakWrlEYeW-2EmC8V6bmM&VAZTFYq1`yyeoee)Ao%GV{ za`N>LYl4Igoh?-^ay`Z%RIL3yCyRBRVj@G{L&CmeD+^T&33+els&Vro!qaLS`m>#b zmO2nLU#tOKU8?S}59eM)O0r=+JzoldaYgJuO)FFdBj`qc5qu01xPU$bHK1o^JY+L3 zg-RK^#bJLYB}*MbCFcAUqD*9*=Y;*6WoxPAowMz!lP#umPN)Ll&`~}TIvNyJ_-~cS zUePHtRNbs3jsH-xeZZxIU95H2;?edewryEfGse%GYF%tq)l=e2PMcp#w%TA{SH<29 zMN=#vxyJ%BTT{-l>nGS>3$pweiE0V(vFo%HIXz}1L0shPlclzGIgAS z3EXaxE>7P{!OMewiy+(YwfavxdM+VXvdlwOd8FJG+mp7&#=ui$mWDiUzS?shO$kCA zTHH|B=gOb%Ads+u(x>M!0#Pk4A^RU6ijYZ4kVc4EoqotFWY&BMmaNVAfzS#VuY_C% zE+`u|rT63$dhu8i)@d}3Y%jehqi?zh&x;wSd3*}8P~TDYCL^=Lw>OSlVhc!^8?0*Q zBZm|ZAS5zqA|f-ypOXDNkMvc982aSFE?a)IeHKJdDJ7aVFDTTVg*M+@Xi(o2&{|76w(GHLO*>iP|qJS|A;hRbh?Cjr59~Wp)!ZZ;J?jUr+f1Og9yFtaqAT6isGv9 zpt#Zo2ZA-Ac39u}SEUVZj_f7n){pP52lEALqYbm76b;h$x~j-a8)lZ< zuFsCb>&nZYULE(-ruE0;Ht>AQy_T`WJNF63z=^2d<%(CD@MrxM_5&fo6f7dY@C z2u}*RcEwK=+M9vzL6PIsbGKcFu=qKX0G+$M@d{wgKzLNCnX@s>u^pF$?YD&OXoT%~ z6L+&0x5au;7WOD|mfG?x{tNLL%nE;4j0XZ2;G+Xk z$0WlRwG{pv=BJW|1pbzJ7CC*I=kC1Lu7{{Wey@B;LgE&e^g*c=phVQ9&B4TV|E-en z6ENwx)UM|XnTP5Yg`U=2 z_@DWnSfidylCxTv_@BUAstdsgvXCd^WF8)91!x5R+V~qfqMj9yL-n=8~STpMK z1~?9uIMPZX#L@LrDfgA%{SYRp&0^%gnXQ)DTVNL!e_}9?=bZrulQP}Rw|b33`^E@4 z%9Q(y{=v950+;!M{)Zy~jgsh(-+fabx$}jG0W?V!Ka_~otT{RrJKxIuZ_E{Ut8LA@ zTgbl@G4bgxTu>0*qb*60c2kn3Q39u*X)DrzwDtJ+ohq#n+w3DnE5k!HCYnDdj4r1?Q_qOH_Aqs`(ng+fYh@-&|S zU2$hYo2A&>1L}r5$EZ&7s^Tgpx`t7Ecy-xc3{JGN+0b%8M4@DPhm8{B^7{FMrAB8v z>GE`BdxP4?XV4qB#pEI3T~K!yvkCUO4=Js=V9~bCc7 zdK~9=4`+ZhIWqnACiiku`J*kT)IPfmoTA2zev1)Sow^ zDoLq{A{StKfKKhJYArv;LJD=M=kx4&bT{(>hV_Y9r5~L;L;w>OG^ZyL#j(lA zVgZIbh0|p`R(XdLujuQGXGh|9R{m@Ly|d^lB}l4~6EexJ6(#w7Q787FB4ZBO*{+oF z-;5kuxbnuw^2CUBYGr&!;;dUU48uEZ?4LjCrZIZJcICiR)!o1jR3m}&dHLcM>w%{$ zD|KUisRY5txKw@x(=dH~$1-NN9AKfr{IvnKi)@Kp43`+k((bpHR0F~QNEaL^kWv{R z>D_0iSwau!LZ!cawJ=Cdv9jdRVwWVRTe`|r)i%_~^hÒ^DI!P!{!E;JFdsl+IZ z5Pe-aHn?|LyEyWn`iQW|VHR0WOtT68-nX!hMfZ!8RRtB{>2JU&gM1MvRm6m`m25$b znqRxVcF$W<;yC*6Sol8Fc#dZ5%l0;Y#yiH`Y(Nl}X&;g~ z^Fz^%{>Ngq?nrbsCKkg!fqa#atB(gFzQcobAs~)+dK}Y$72ExMe-VX3d;M0&1Wj_h zX>*c3cA!)Ptt)8b)mHIF#r!R?0)egI?c264GzX)x{*Q-5u9hk2`h)hUoDI+(YFCVt z1AWFtbqxyGD1hG!Ne&4`Q;5zD(xMhJ1%X5j)S9FEErDvZCQ|FeS~(4>?%$LnyR2fB z1C69`U;r}Z^ZdM-E1R@R<;JvelL*vv!TQ` z4#-f8S<#CF3c$Eqh8tVG-~rN0s!UlOr`o^{=S}ozPPGPYY0))rv6y&mrk70R+wd2` zCZIQ&;$+*R&L@raPl*O1CSvYD2EBStAEQVL?KAm5=c>;5+0w}|Pqwx?BnY$@JSoIJ z-KJa|M-R(e)aXkMu*7#XcHzeW6pK2!-7Cc6l~DSn+sO%K_wFnHMn$|!i(vos>H3hn zcR!D|a(Y;`J$@9U#W2`RTNdIzC0+bjV--QId42@#MTJl@b^)nvL*n z&+JTYsZ;SsL_q<{8~~TzT+SxdVC44g{TmCjg7fnNV26=|#e@VD=>Up-&Mf;VIRmpg z@$!>066k6YfM7J*H85ikR?HR$v zhTYL1*nj*+<&r^jbK{x)8K05s`731ySk%)CgAQW*)OB{2#WS=w&z zzCVA-1m2>Qh7t{uRNC|K+K^G;50IEwlS38S9-(rH1gqB9P_~^7HU|J&dGak*ZnyZT&F)BiFTHB0GY{IY*i?Z>N4E$E!Fm#(0_U%l%5S&+$>y z4uWb_-MC{~Sa-QgS6{5`uh0zWMUt9UxpHkkhc_8v`;_2XeKnR_;x@nHbB|ksYE(0K z8$ADu*?Oal59iK{V}3grM&Hq>Qc*b#B=Z_rorEB-E_=Ol#bP_eE0Z`=tUloWu-TE~{5 ze~+3Da1ox6zQ=H>tg>DhMbpgdOgy`{A$Yik#3Isye;`9lSXizKTS$EjkWm$zMw{0x1p+_Q7R zo>ZT?^TMvJHF=pj);lUlG)Y<*JB=i-M1zw3^Sss zSo@9c0!K$#x<(Y8$MiRJ6~lUONh}I&ZH>QjLe8;pY4T-a@{|fsa?NH%$v=NCsXNog z$2|Vd-P>s4p0KtRi)>S(M-?G0RLI}vwAK}79O$v=p09c;dmU%eyr*`VaVZJtn@2?iuSx}P9`(GLPA(gorJ76=S*&0QdYu7R^p zz?X5pApG^W6^Zy5MP{ldP`Uuo1mXY@%ohx~8n7pLU*ET5_yRKMz%{F1v+qB@dE$b( zYLo)t(*uE!EqhJGeiGJ!VDNZj&K;gjqx#o7iT4SYf`|9$%s|z;{kaAt+mS7XX9vXK zY>Ha_S~N=&RLMS5Y$z%T8g2uXR*Skjb4SVcVZ*5wJ%i9I?*?~g{ zdkSX*Hyd`XdL=8UlfSh^|9GM@%=)d=t$mkn)+yR_QD22`usp%jV~^L)`V^r%FSzBF!GH6bC%sIN^&2-xmB4ryh>A z;>DbV=<30{fT?Q=j9>Ax)$=F;IqzDW+Dr0fU?La`d=<80 z8zKRgVg{hR@|@O~sNzuGlo7H-uQK||wVNdOXE31B$=9pcH&PZs7W|}tDTtr_>|};_ z)JS1U8K$MH^*qQvSG5mu8Qidq;y@}ltfghA%Ss=_-2*f?Ag& z;iL{|7OuqgXbf3Y9;e6t2+&Yt5fE@2wt;K=fIwuXzvh6G1?@}elQ#ZZI&ij)55b)K z7Wy-T?#lUeO=!I#mU?Hu zI`OhPvF@|464>>b1yonQtMcpd5GSHd8_-vNISold1C8~KuD{-A-EYO|JpHNi3KX5I z*7@6za)J;hiGb-mYbORH(O;YuM|Mum3K>Bhs`=p>itL6v5^#i)z7C48p*(&KNNWhSperRwZp1Yo2zNyvot1#IP{;M4)*}A zvnxip$%!fOdXGpKEe3h?W5C@(md{-c;r)gm1Iee?;nIdv*|_zp+N?{{nuVBQDW!`X z5$pD!{7-93G&i9MF`duRHS3g~sw6k-asvvtB=)b1*J6)6cCVD7;M&=snDZ6A!KHK6 z17dC^caF`bz3ARUse2ng(bMGzEnxOG8=Hmk)a|QdfoU`OP@!-AvE83RpQB5khe(+e zH8!tcr(HG_6mF7``O&BK*R#W{*U+*uN*@(I!74k20~fEEaZa&91+q*Xdl=0rR73Li z)yCeV`%h5$<}(T-&xwT2OMPx0O?b|`AuY!o%~hFcpVVrNG6Zm82W_jxTF50Cf`l)w zrga>G58-26oo$cKN|r-g8>nP>RAk&7Q%^39mU*3_YZOotFjt(R7u|vi^Zq!iI0-`#f>8DGInU6{rjfZG{-b9NT z4$=wKE>N=v(%h!6#$3mrK~M}+QO`| z_ej^1lSh+Ql=*C6R`z{2P58$tVa3t!vF@FsJ4g>8kOiTgXUT{AZ@m_hyf+ut8#;RL z8wsCsbY2R4&Tr{ox!$i&5v9Y)@2V=kD}aiFLrK>mx#NuqHe{>KYv?dbGR^P`(e)Rf zM4Tqn*EVZCx8>Htwsd!v&UE2jBp|*C2p)Ft5Z$)ODhs=N$%so(+q3aPS9*7{PL!gd z8d5Gu=L%cbEB*ETH}Ft@Gbqdh%5(RcPfQ7!Pw|#R;fbYZPFH_uVwTU)w+cjvFy8VJV8>W5-8~6maQe#QvH=2J5SM6}EPErV7O@<*h%%OAG zvQXjgK<;=b{mu|@8g4o%uR2;*^!?21I;YeX89m}*PF{A$qK3$oA&^0^8B_Vb)!ek| zv8Z+=eb1f59Ue*{I!H#==j%G;!=ukGl+SjOPiV(;71#LS`g5er^ZMi13S}08firSN z?{~=|8Cqv>RUXA~TMM4hRt`_4lPxF2V_d}d1#n#%@&%P@Yz4Fl^+$ARY^OAv``cNV zt@w7);VGNxEdr~cUbCI z{lK=WcH_3Eb?-8{rxG`$rESU8&Yv8=uE9iVR9Al1=xhPY0i^%d6~U?t-P@1Oe17qH zmeF~f=YH7RoOgNIlbLCH-DZE?(RuAd%6OfP_BoO1xCUPLCFUoH%U}Og4c7QHu*GG6 zMv>zV&c3TW?r)+Iw{N6ek5M!o51GHOihba2=4@&=o9&OvW?Rk^B2Tyf#!P!l8Szriv5H&@GEvHCaR4I#El^ghIvgZ_Wj?FQ`!f9X z36t-cHfy`{$?K_o!soho;pOg`@b%@f_4VmoWSsw{==G>5>t%FjVNBfS?s}qiRk=0V z$4g-iZfj>pl|eO3fwE|Hfm>`DPBT9K#a&2`GxPh+_IxoR>@a|Zv{n$GdjeBQ4P_Z31k zq2cwrYoFUH?`<9LV~tb3=Sqi%@zcC$zMW2{m!=o?j)#pj9j{xTg%|eDovN1=>HRU! z&~{X%(pAiIzEo>Tfs&yzqADft$-+*T)~2kI0}Lum;eGdNK9B-s8UeZPgVjP z0`_eK@Q)aD#x+T}1L$ksUI2RnaDWUw+aG}B`+v(hs$V&SB>wKfTrl@>vO#d-T0 zf|#fffJs0=<_#i%2EYPne4HE=c!SiJ5D@~szWrpk7sUZvU~EOz901X7-`fi;fff;f zIq!nrs1ec7f;fIrTs^FT_0u+7L@AjfG6`%KGL6xS*k5e7mWCJ?d!C9EBh+y|%9R_x?B9<^V{-sOyL;_{+( z_x=S$;`gh7YPggt%*-!D_ckpp&EwR*nPsI!ykMGWr1tvx`5AcJc&Lzm%qB;kCOurl zFJOIfPAqtDWQZJn+5|nUbRuXYVL4?K6wB_Y=;%{$5JtE#1BqWnYP`Igz5PY_!XYmd z=#Wu}EM8tM(P)`oUH#tE`yGfeZEU=rWn_q|pmyc>g_D;z!@?|4ue6jtKrn}_m$9%S zHMNivhPbe_G{^ZD>PLd;sxzLd!fG*@ zl$1j6h$fP#d4NzcgmWgUu(i@Sn1 zh~2Dtq75u5O5IRjf7Q4GCh!r%qo%3pwqA<`-v9F6Go_}c#s)Zkr+mrkAC7TRGSqM_ zy^M&NnHg@x;5;0}U>!m{JRW1UMs1n|NV;xh6lWKgEHDt{yKm9CRE0L~=IkB)+uPgh z0m#fak=DyW=&*sUy}iA=!NI}N)~U}>HN&!7A;ZZ4efWQB8LW)|&ocg>W&Gc08G%8f z!z(2q(A(>O7c*En{`Z#g?mOWB$)JHq1EPqCFa+NI|HTX<&|A!KO+WH-^UP36dA;Sl zbw>Yaq#z(w^X@$j^xh9ZsA4BSyaPY{qpKLER<(&3?5Vl>2Z&R|f9G zpsi+;EeBlS|Mm_-!lQNnUUxUY0$zXf>cJDcDyShYOCLL(2BGl8Q!)Xbb~Y)EM<-4r zs%F<=n#oDMCmtD!u`yy6dM3Npj&yo$`HH3$FC>L~`Y7WE4;1rG{I&yboRrK3T-w)@ zhjYX_@hpzk%P*8!ECOZ=q3MPL3`XP6Y9jVdwZxA|Y7EWenHFc6muafzu6;_VJ7+R> z1Q$FQ3ElasaQA_9QHzi%5zfl#&F2s(AR5=Amk(|4<)+f?1hm!#rbcKu(~1R7<2R~4 zewC9Mrfp^1;!QbKf0ek=x~^5=>Um1qT8n#aA$ncf5#j8V*P}iqJmRuB5#e_~V0~Rv zsQ8dK$lh^pL-@M5zlpVxkj3|$r}Nrm7h!90HZk(@va;~Ye#mIO<7nFFSDW6*PwQa) z@o`^ zY_PA;zH*wistbN-JnvPUyO>Dc=&J~MLD(SrWI-;l7$#ewA#MgGWL5UJcphRC?IALk zE4{F;=_lRlD}{KjSGJyN!7wOH;qiTA<%a!y?EnIKEnE~Z%h2SIbj<$s9flJAgQk4UI~xc7)TbJR0^wga$#k`~1>o+3 z1iKd3%5Vdr+g+d-g_W{ zPF9CNgOON^FEam7-M|3R7;3yFsAswx=Vjw9Ydqh>F#atGVT9W|X~X3@NV6?OlCn=v zr3kC}V>~YPMO>HxSiE>xS^O;eX^W{9Te6y9%qQ@$66|~*ELgVaYR_FaXEm06W{_FD zabgFAB{u7B+EGw^O0M}Ky+W)qzeFZghV3Fe0+|GF_P6`@qC=X~QW|p+Qp>DUsbL|} zpYx`qw-nQIi%Y$*FiM$O$6{1(t5bsn=7o1NLoCbWyt1RZ(F#xO90@191+5`8e9r5P zY=3zdZcdGJ24EL!vX<$6K>rXW@$PGBRYz#o(VQupx91^%-=?dH0n6O1;4+156Mo&t3%G`^FeR6 zuW2uUfG%IcCz{Ld0*MvlF`+>K3lLZOHyS|s*1MC6GW*BJrmq=0jMH=~M@;HZGLm8~ zm@LZhCg~UKkI$@{u3CO3r+uy|W?)e9kW4Pv8ioc7-PnPUw`+uexH^-F>YNndn4N+iQx>NAX+(p84!YEm;=q8;m zZgXvhHNj@qJ3|h+cxy^h|L3g!Aodo!24AR}J=s?HreLhQOmyfrfIE&*Rh=`Tc)2>l=L3gvSCWdwNk^h1S^>`w-sT&?VSWBX`&&X zYRz|6ROqbt2g&5fYvbbEUIJz8Mwg9tz)BiD(VsJ2$ZgUU@~#AZq!Nz4WwIZvWUUST=D%95Mumqw9uFw-XS*yO-@P4gBs;kF`EWZv6qmgDvAS z!R`EpYFM{nCt^n-PYR)sZjL>Qq)u2bl_zfUhof~b;hn_+f;-IE>dOZ$)pQoCUUL^k-BQCTKt6CDopa7a|soL*;yX>U`@IWb;qbl$6;Go_Ya!2LeuD zVU2;Mw)!hb&?JfCEAtgHINNk`^%a9oWUPl}XDw=sKVpB_8$Y zAxjX7Ql#nCODB4A|9umDs*|Bm02z*``LyGLw*gEYmoGW{SzQk7!2p~64mk$`S@-za z$j>m|7vf_?Cc^KQ2A}4`P^sYw4Q-~=yFi9c>tmghhdR3@gSB%w9mG7bUaT%U6N%5Y zZX@467s$tm{n@=&xkd8&6PLwx+aocuJsdvxwCVABm^oM$|NSW^tY!t7DBDdPx_=B= zF#dxETy4Pdl=FZjD8ECf^1;Y{nc?13zTfArP5Ma*xp>`&R-lBe!nwzbz^^$pzvwaoPB(p~h?&aBDKBa(!9$ z`~>=W)d!m#gLTL*0sT(n0UcCF6dNW-M_rq%@qG$05T!XDq8k*jX=a7Y_K7GXeJUm; z#W8PgCm=@rq9;+WV!wHVelg-ET~*M1oK;5!RjouZe~YfSw`AGNPQS3!=sxH-Pa$n>)f~}EI5O@qff5W~1;PYluhrJzkS0(posTuagB2H>WXgUR* zD6;rXRd%d9ZF`ahCe9{C-K6`OBE6DU#*IUP9!U>o?vODa^^Kwj}mCRC-#HtnW(M zntDb3g8~T4S+NBqN8%)CLkR(B)U=^^Vtt~*iS;ExG%zT3f?~oAh8r9!18Pdtw0mdF zYknu~+81?g=%y=cTiE5f@LBob);B!6OA`vfl0ickwuy-Moa^Ig6s@Z#C(UNB z-S?avhwY{5?7PeSpjk|4x2}mH?8ibfYFKnAjzSlUQoc71d9Rj2&T$9Tzo&V8~p5^`6?D#uZrQ9-l*P9o&js9i^OKfku zk+Yp$ZRpb4j>d-jX3QP|Fzv-pE?fP(w7tCy*532ZIkKq*i|q~ zPSG@9$m?hE!1lh@zZP3~(dFk7nWvAqx^}u$v8!}ESJj77#UYpllgLy*!K2%6)n`H; zAAHob{_-FXEu_D;P#T(^MEzd#6J==pXo8SkBVI{}xL6npb%^*ozx)Ges+i9(MrvZo zXktR{`(iP$375}1h>{Awnp5cM5#>O?s!9*e^c(P9vgJ+aHZpgY(~nzj+Rg-uZrSaA!lST28i$&Od7Kp9Z) zAM!p5+F~)F$x;qhjxPy@bw7i$rxUA=SN4`?MS|p!4y-k+Q*2@F{rH8HEcQK$nN`|o zE|+u!e&$#hvl1SRzOjHZ$4)|G`MgU6_R{q|X@a4vYhTzv$K|6@7EzlQ#?pgeESbDG z_4e7Bs5bt)E*Q$pR9GW7M_0o>ic;AUvUEjN3VT;oIw~{}1VlcBF^C9SwE?FG&SQ3* znKOpZWCgxWPy4=D%Xl~jrL4A$5FJ!*)|%^KzwzOOjEUmhv1AxJMm=-6(~SLi+;q+C z+1kgwlU}>0m()JLhXGN-?sr)2w%NB@VoSZdw9$h)a~d{MMwXsvdRci$4D=m>%v!Q=jDsZSSAp*eil}*oxm0FeT-4!g?a|$?~_v#gtLy#88QU zC=v^heZ7*EL2ye^x|v1NFZmd_RdreB|0yixBMbpBoP9o%yVPHxHW@8vLQY1ChG zxF&A6FLz9zu(U`)zmG|6)2j?F(5*@Q49(O7UlM2Y%pfh};*AgbSWH@Z;>Zr&(9IG9 z>*kAwT99Xjig0SN4p<$^jO|it4n^r<%H%C_YT5GZhC|oSm1Bj*^i~-BBSLtaxAvBD z7>;Gd@^MzvI4#kz!Mh5j++Tj&6H3?XL3%%s9`ePe-Yb*(4ntFl0kCSurVjKaRz7@; zFPVS+zE0$Z=y@R7m1-9}BHd`tgjF|wek?*a9G67`_CX|?+*vgELe(?job z^TEt~*9U$0MhEFJN74QKSJ&MVX0I367t_Aj|LCsY{jsd;wnXMo+5L#<@WBJTy}#XJ zQSA0RvUCu9k)$koe0Vb+5jjBaZoLWq^d3`W)bC`IhPj$QK}6{|y}Y#Y+G9kjGOoDT zz5ZP7KFy8p+_Fnkj$xo0~Oo zKR=x8zxjOI9&2bqa|r|E6a5<0ZPn8SIH+i*`%-dlu5jY5KKdvedsi$%+yb6%#z zIjbX^FDdQ8(dng4-faW_QxFjrc_kpB;QZw`k$9WU%Q%SzTPv%MvjJ3QIRmGkbl8td zQ!1OV)h*=lZ|Q57Hl*^mCaVCML~;+Vivk7 zXcoe)d3H_Va@3<--XJHripldEr>4+#1t(pg=IB6y-`gpHyWr8CML|$x2~6Go3N03y z#U-(upL|3^!su1IApi4|VGi*0bMfgS;?mIjTKwK)>2mSOGym|Twi^yCxRCXxg#-2N zT+z?_tlBU+S2NSvv{eXRFO(h=Di10#8sWn7WFYI|&${L^Iaue@5>>XZN0yHnv9h;Z zDHv9$895p}b$sbEo;}QY>l~Zn8;c~i8C=H;j>Bu!4*D<9D+>@YCzDt-^>{xxq`S=> z(moMv5XcO_N|wD8IJILcko4SqR}5Rf+8g>b*5o&9I=zsqKxRv#KsN&>N10S@BF0Jp z97>VC2THZpiVduLN#)C-K+i;#i zzpeYop2DAf?(5U&boj(z2^vp<--UJXbv|8?e0#dz9*qj zV+*IEOmllI)RQu#fKb9vLpTW$om%#u(#G+WR z7ec!Vc|#ir-PG39-hQz{tBi3^c4_+MDhw_`xnkt4iuEY9-^NwOrrzvq8y4qNjt6+>$bv6DFUzW2)WMZouEAiIyNYrq5=V@>k!9k(AG~zw)22$5S6j zFLUhB#0a5cW+E02%oJ z(+EJni4YXtiuC*B!-Hqv#7TQ`z?J|eEquN2q2@=ulwr$uyI3QA zkwawzi=rfMnvY?F7S$5%8~k&$O%0myI9S#MBuZ>=g+7YCE#@Y%oMmCgC5v4MAEjl> z=ojUPIe8m;*m1Ehu>ARrZtXIXM2hZbE zN}Zzp6@xRsN6QHHWlTOSuFz$ziQ|09{gzu}AI-_38>>umef2K&?&_7o!d^z6z6F#b0G zVHr`j5yHKp@P1nYR81jl9h!xFY`u!1f{ynnv|I_$)OVlAmL%{v*-)G*=2hf9>ETZ% zXdSADRP1`CffM3$eI0;3Z#&E7Pa$YL6sLu&>OQRGj}@?*DnMPm-JP6^x#;vELr3R# z9y%WC^qn#_=sskr>9$c4Dtnf=s5Q(SL2?s#!#uB0_?UhqVwGJPkxMO4Zy4Lp&AOUz z&#?DAWr=hrf#YqEA?D-on3H$le(~2IFGM;137$cXPW<7x^!V%y+nEeUepHsHYyaHy z?ZKAk&bhm7KcE|3O_pSNUbq>(w-MXvq=~so63+O}0YW&AxWQkDi9m@01GMc<0>ytb zW?s{Akc~_sJhd_R<6vg#ErgTLd*+lUM)}i~?+q!bKU5Ovx!uI2=XG8O>q_V~tEhUt9;qP^K+kp-EtY>@_XltpY{TmUvYU3spo*hC`unAbxLp8 z5}Gp#Z|#VVy=7X8iv9JkZN+w-OGr6%0gf4 zMD8})h3D#yUp5CmhGaKLo6(X9LYYStoQi*w-)_Into6S+y(xy9uk}ejwQH(3FguCe zn-65JI2GlWN%q8om130@!jLWvpk+zmfg3l|js085z9u59!Wy)Y7cpy}qy~$~D(y&m z|A6c&6gZmisn#Y>J_bcg%tm#PX?8BTnp|0`oG3#be166IiA``E0x8XY6=%aN+C@!zq|^<&0|b*II`2#|@u9Ig3sr z%ddv#s`U^wEx*t59D>{G215l8wASlUubTJXcgNhZkb~j@e?IgL*!R zw4JBBx$emUspa+{zs2LB3E?;~f>;giKV|q-(X3ff{fx?`=k$6AbO8_Fy!rTW5O}!b zMOoK&m{B$4Sp0Yidpdjef>eam`gtsPcCNXWSJlj(O}X!yZQqnQoAmkGIK>1F=6xr~ zP9@>4%V{fQQLpbjdli;)2zI(wXT}>Xleh+;7+`Y<(S@#3t z0kjP`gYZ<#M2-^DMWd;)e6l;vB^sta=(>3oZLdizVVT%yG$`OuhkO95|v+$=qYkicW`>oAGpYd!`8aWZ#L(tJwWGa}CoTt}W+0lN9$q0Kw zXYeRd!~;Vz=aq+F^yrsR?i~kohSi6dz^rt6wh4M5{CnAC_VM=d7URc7oX0n>6F!}U zlhV4Oo}3VB=I2@zF$UsneWY zMjyNz@ft#?4><)zm&^N>LOI=S2Pm~YjjbGSeIEH$X}~=mo(m7dy1!Kq%ZQ`CsCFsS z{^Aw=jcb7v zKT-IR{UG>|Jruj)_^O%Gd2>zleyk-PX}RgS0sF87OuVGf^gG-o<9y#<$N?JP54I4p zY@LV_4hYoyzAJlO!koF!>x;^AA?dZB4K0%2^p?e$@F1{)m^k78K~b5(Gv6Q8aX4q0>GOGk6)nN+GCikg<99IV5sR zIZhzxT{AaPc)S^XYo-G}eQrLer~(WeoepUtyI;UNziW)@g5qxe>kIJl7Vv%$B%I;r zb$~O;fjD<|=kqH0n1Q-^d>I4jxZ>lmg}B_hB;0!8@J(?QyvKNp=Oa!Z{LJHsW@wjR zQJ}9K%;V%*y=8Y&m+AXrzw`3T#L#(1fp6(%(M6Zx5U<1M09n}iXYqDId3h1mjq82C z6C8~8MOkF4(=sGb)y9vr(}&lsoVNjK!bAR$*v$S_gN^?*$M-LHgxR~d9xBqWgK<%) z_I%p7M_Ne@S2J}U9a>&u105a|#>0 z2zE|4UX37v?4zHUY~p6=!94CEa$M%V4ZIr)`yzoP!Y}J^8k{_SCc1Df*54|pL>F#Z zZA^53u+^oZQ#GMxBE5rACs`)T@>xEdk;lt0uL2o_yv{B)gX7z?wL+-y>6}RuWz1=l zMvG=E)7ZKY$iNy5>QD{pV$q4;aGiEpsZ+*4lY+(B;^z>-a3u{LqJJwAM!(IgYZ(+o z3W>24fe<2Ri&4WbICifvvf4K2jFDEO2NWc7A-vLBYDg?fiU$NCPitazawvZ%?M^d$ z>2Wc_PHsR^^YC`xni|dfIq;Qp%WvzT5Xz{gyPJj!JG5>u^`P+Nu`1>LqO#AODQTXS z+AZ7Jgc&iLN3)9Wr{Ce;PKEz1W4GdU`=6ktXT1SVn8zje+0e9{8lTYER8;2L>yeJ< z;m4DZm2%;$I)bLXF8GR_BSL0w;L{if#3bI7fx3M_;wDk z;bC~`gnF4iE_qO7R6^@Pi#-QhE?NIz=bYN8m2HWh9P$+S7~=e6l;e>pJ(jB4YlDLF zNw{V`#7B9}rIYsVvFzComCt=aI_%=4&B9jVGw$HKv$+;qNgW=Uaa_6sHKo@Wo|0y_ z_Ll4#T`J3r)_2~i5pRgLhRMwQ9Wc;}LptHkcoNCDLN6=JQsKExG5o1h8CE5$7-*T+dxF^B%CxYCO~|9OQFSYEb1ImJ-rriqi&mtIy;`3dKBDWK7V7A65+DCsZ5!Tu^k3m)-GWU^-3Fu5 z*hbl8itwB*rclT)zP1VCk3T29;95+kO0!ueSx#o(&t?r5s!(G4gCX{s3qw!~|7O36%QgZaG?uBn%tUhm zi3bo>z*=4RAolB6evUw3#X4uE#x zi`{JaTjJoo`{dI!TsLKW-e~sxh|+yr_%6@rzOg5j>Aqm+aO!#Z7FNS|Y|6E*e;MDo zW*ftQ5VN22xuw44+gGha-F$r6c+?fPSLj8=U1aS5rdZweG1wQw?U$YS?SiiW_Ry8E znfLZZP|uIdpv9Z;Rsw9h|1ZJ|oV`LS#pS~bYR+pCs$Ta6*SWk~6a@2=x-9VZpvLd0 zae%JdZ`U^+(DR#HS+Yx30awf8t|ZoD?%tiyXRzA+9oFyR&CvI+`ibf0RivMn`x<1d zw?}LUJ-9`h)L8I~8zT+3a*NqXQgG(-H=*ceL*vkNX@o(9I35)RKvU(b!IFB`=S|nr zy4#H=;oByK7vM<{|KlQMYEMkyO$v2-@Ymm9b=pdbGS=M7uRFm3yi={OGoM~-5CGs| z`L~(tGRov2P^gg<&Cc85*U9du-b-KCt!Lqk`*tLHTzqN{D&;1v9PL*A$e$f5Mw`LyL zqzbQ51Wsee8#%2o2^fseMuz!K5wDX_%mEmY(>YXEyPULC7Zsf~HEg;TJKS8?%u|q< zGm{<{Nxhv(-O<-Ezx*V2B@8F`|3v}^Pb10`a8+`jVc4}K!1Y)K5V%?1`uy?k%oMep z=a$@1HN5U2_4$ze4&DHIpOv$f8B;7K)6??VSs}5fyo3ila{54;cC^7FJdMrbqLwTi zs*q=14lc1rj5-G__`HNP+D+*4GO4UE@*Ze%u=DX(mxaoJerhW1$Wj>`?whA_y zGYKbOqd|ULqL1Pq6AH{|WP$&3%do=1@b%U2E&b*tWmzX+*zb0=nr&};IyD6gO6 zGU}(bU@JI+@nLf8R?|(BgZ@i^tb9IE_r58w=vNjgnA){nRNsqJqPA^ahL)?F3`2OS zCQQ@Ag93q2#EYLtS%?dvo+^-E?{!fHhOd5eQ;4-IW_p}2bBm;7S&D1Rc`?NB zg&Q=Tr@V0@1-(wa+)jAARb}xnUpH?Ccw@R?0G7n!Vx;PLzw~0Avk&96nL4hU7 zd@NrkArRG4>Ctepx4+4E2Iv+6C0c^Iq?E=BwgI4JJmZ{*`q6+ic=9_tB8kP>;Kl=N z6YJ9?FwT#x<|->*me+nYq9Hfwd>e)nGxnw>S*xmGh>u>Lp+w7-2NfdoNZn@+}r2p_lMt8Ygiwz^d#}-Dtfbg>G$J9F!_SecOZ}L)7$Sx#*5UtO)PL7yvRl>AI9F( zps>_C^ObF@LOq3Z^QWgHHG&A;k8NH-1Qh<-r5xVLTig9)zJNx z!1MWVUYKgG25SQ%m{jg6Ndm!gX)SR=Z<7m;4|l&T%e#3@L9uQD>l@IFrmD zzBmS<(EyB4ur<7fgI$bOmi&>0Uh0D7q${kyd{E)!c0Hv|*b!1cIX>P>EEnH*9^x5BhQn!B@T=6)bRWaxq=f8tA=%==lGMu5 zd=N!GG~-{AJ_Q`5aFu+zVmLQ+#{jsmbAbF>1z*zHm#e_?qntL|=Mo+VHv?TyChnS_ z*=c+aWgAXy$fw~N4wYsZ)(?KA{+zO*YXoVhB!OuM90q#I04GL$#S`Bgo#h#GPf0d6 z+;}7!N!k&(auWQCFHi9Y2OiF%OX0v0S^n}!p}$i37tqR>$g_=3SU+`8%LhtVlM@lt zIZD9K7p`}*ueuSqD#zB0XGAS#+0!rF0eTGorbo0IeJKzpqNfaVj|tAG0D zQ(x1=`(vL0>_R}I{N4)~UWA%N61Kt6A@D2a)S$$Gu!+vFG4tF=Q0Ur-XhS!vWt|v;CS&2t4C|#dSPpkYUMyhFW3N&WvQ)}KLi%0|0*SnzqWHH_FZr)< zEnMVp$&GJev~XIS1f`_+{dN>=a8eB+Ls?)ytSoOdHP*C6U#-|Gfe~#Eoo8#1DKOcX z+?9ij_)jjQEmOPxgi;L~Bjyn4OK$WBuuIUp#4Vd4B+NfxOq`w_KP~?1Dj`~@bNwVx zz@-nPbCOlaU1!dG#S}96vLB(=;ySVuL1|qi9jo@&5#(Wnd4S*yVMp%HdcFEdttlNH z9qoUDS;%2pR4J*Flry$sAk`-b-QsmjIN|7a)Ju_;cH$Npb}Q|gSTQxcm$lBNzR_8y zY(-FtrJjAcnwga{rZaS5rg{S>T$XeO-=w31y{ce;`YVm!d^NUrD*HnoP@d&2n-QaY zbbBdR#0<72Ro(uT)7;Ne=~XD>btm7!?sQQ?{;gkRH#&GxQX4st7%ik zs^>kJg7^$PdyeR;^D7y@CeI3k)#9gRIj4&4?4Ki;Kn@OQx|^o#Z{J~J2ZA7P9i~Iq zU#F##t4g+KqQ*C1bB2Zl)*o$4@xcC3qfMxruUUr3U(Y8rx%H(u?c`Co7CPOJnc=8I1%Q~T}W1VCe%BdYRZq9#3uIbevzTY;xPW4 zO^-arr%Or{c`b6i&{z_8b{go?8$@cOZU7^GjRkO9v?cZ!MnDysJh`srVeQ4^RzA3L zp{2LnIQ!x%UZ2SKoBY>bbkXJHHcT4H@%M~b{Nr3Ey4!vwvz-ZF{5A%bZe$I-2{UL- zGPPmI%~_IDl3I&~=bcB%V#v{k=!}HHAY#rxnNj8wdu>>}?E&%&txg%L$PQ(zyFDC& zeb0)nEvs+I%(OICzT@P2ycjJJ8)OH}WM`kvJS|H#A*;x1)e*?BrP(3!-IcLWR0Tr` zOMkzN8;ciCGEmi*#Nv6ilIXZfhF_cV2_@9ZCGH*pb1z78be(=w+L&nLp#|+)Oo0U}EV^hJ)4hdX)eQ#-)M4-NbZ^e;2aCp zRQ6JKHnYbzr(N?e?9VAaEO$w{DiB6_e~y9_cc}Fd6=v9^vskn&1GipA+-)wU^ogqk<1i3zzA~ zDw`TmD-rU7j6kx(@o{TfPG=J|dZH(&qBI)Nu9nNzsY-F~d*w_Fm;tzlnyZY(&sNc~ zA=!oh&T5$a-I&89idO@$P($p&8av?ARISI4Zt;ET#_i1 z>F-$&nR)5Fa;35PDaxF-W#zs?w8j^M;T3Mt&rJFlnW%y&>f3ys@xLcjcY8^tGWUxq zd-*Kd%3ibjd12)PW{T)42&gz=@CED~C<_CpdcAZ4QG+8E^+9RyHjwefY#gO*?caM{ zIjiHEPo22V%B`{4YN}93HN`H7xKSh)MXE2M5HCuy)OjLgkU;xV)7Pj?+;t%b&7bFTz~o5u%58P zq}s_0Kh}{Qi+}SQ07R&I)#*~>vY5b*A$AquNRlCF$qL}?J?ARGA31dL63-SO5Km~O z3(hg=*)~`yYTSdFgkwydGhx!rUSGb=iEsMgdS6VjT=WC)G!B>6N}qT-(K9J>ruuFE z2cC=tk*0`49Cr@Zxw(RX!_x9?AFH5L)LkDniWEabl|M?{O&U7trT3!l<=o)RudN(b zvaY#GhK&O)O%pcnaFCcjVW4>C(mw?9em%`&RZ3(3p0b5X@4Y5B}9BenW zq1b{!-@?o~LT zAm-))jc$ITt8KYrZCYhk%|)}8R6u!HXG0St;{ z?lU{!W2Z4eQ-vv)ntr4s2J94VsS4vGz z{;@Q`x2_!nuUF&>)g85mJ7e2y+%sH?iCrX1q(_SVz>I>BJ7*R1vc$**DznELA_ftn zOdN7Sr|#eSDrqyZWpK+_Fvo-o_;)>J?mE#VDM_AMB&WR~zbULg06o_@y--wypx5^A zhx&8UJMS4EhRZQ!sj20^e-Q*NF+{xlYRt|P8jMYARcDH%Zn{vGP}iv*SfQ-K4|10& zQ2A`dGwBu``!&t$7@fDY_3&&6GA<&hx20~Q9Z@X%7Stjd&JoQZo;Yw%uCuqU=Bg)Gj@R13 z&}NJg-P71am)F0S!y)J`JG_PjEwQ!2`-0VS$eqzHx{2iH6=go40rOW$c_v}V*T{B2)z z6Y3b&t<*Fk&o5EBWX0*(C$hAPR=tuLY^Q)^-vd63D43KJZa$}4d}UW;9fF^X)H|tW zdh;bwoXI-M^ZGuz=-%uBcxfk9On~JX?4M($5@&Z)<3ne2k`Xch*3elwQAj}FY@bhbT3ti$sD&Z=Gy z13S8(hmR{bX+f&~eb^VXey0pen;u?O_y;DSbLemF)7RmpMlQ^RX=K6C)Ep33vz0lb zT|&5`jJ8m?US-Zlmfk1s>}39R;v9_p@BRHOHmrLyup^2ta=<}_WmDwL7#lk6pX((^2jgg< ze!Q;g))4xHlKxkk5tbk%8FZ6fL2=KU*=`U_RUZFWGYIELV`VcdBmdX(0O5c4zD6Xj z0@wj4heu@Al4Ac9_OAk#k>k1|Hafij(d5S)Y5gg7gmx}G1qCMiCpH<0JG6EiiXi%b zB>`bz2>3zY>HhqBMfTq#l*k7P;KXVLAwMG8UH|3UpBPkRDZbo$Y!%=BAJNx{%)RSO z>CAEX{r@qF7Eg}Z$Zr^)|L1;p=_)qGjXGzE53~Q4P}@yJ^Cda4l0A;d=Z~LQQ(MDYeK(e9TckCp*{=^` z)dJs+*s*42E|=TeBGb~Sf`L@*A3&^%P|EMW>~IqpFuAbDb34pUcm$TR8;)!R?Rd`s zL!kjkX_RA0Fr|49I#9` z=W#%Na&^ssk$&Lqki`ZAFK9H?(pW;_rC}$ z`}2raLGl_M909iBf@fxcxh9NZv&xqxy*=F;gHn8lpR;ZhN1qCIuTlqZ#d@&I(S~w(Gfl0jD{`vb!)d6UoIwqUo8r|>sRpyRX;y(STE{M?-Ut} z9y}=p=+gq7X+J7!-T?diRm0qS3@vB|^c;xVT7#Z}mIfeMU?+A+BzMtc!PY3AHJPb& zY*zFJPkLNj!d29i8{KA@v_JHPJ8c%vj@QJTK+Ldm)O|-Uxm}!57JpKY(7{^B7)=FE zC&s?bmutA*KP1roJ$X*8bkkkt?0ZaWmkvSfQU^to+4AfPQ9)UGvrhSOT&Yr8!ZMF; zdQY!j|n^qN@ICBz`MgT3Q6le31+hw`?#WuOru=m)sO#5bkUv`m_=0yXBOBdszJ5Hgnx{wVHLbN7D7Y)%&L**rx>Z~!*ln@cLmSZa{S?k1yxm+y?Q$>h+JUbC9xt)7StuQwkrQ>*SyD1g z`o~7P09X|jeHoD1V*F2KNwuxGfmRRJ!2kIIH2Az&+2|g-4}5i-P~SMG;!+JTwXXnW z=CW$xwzA>XjT~jS=w>SaX#NnvV`sXw4lzh#X|xe10&}6aeIQ#~ousALTNpG_QmZQX z7>}gMl~7yQ=d&k%(8$@p=p(!=vLtw?TT5T7#w9RUBrzLQ^t4*=x#m>Ga6otcfZ7a( z$+5C>ldVw>%+LO%1!tmyl-v+am!9GZCiFPbRUUb!wb)cCTD0ut%oTU?V+a+w(zZ)v zNtRu=U=0~YjR8l^*;!MIV<)2T#6dE;n1ae`kPzO20UM`0+AQLQh0 zM5~gLe(GK##+mofOkx|Xcy#O?c^v~avhw_cxU2@zl0~iSQG(G$;&d?D8^o~paQz_n z*N)v&i}Tr~%}r!Ey_~irS34z#SN2u!FT&b$Xls3`$40xv}*Oj&Kof9S~--f{aQ#%@>TvAG7f&sk3AlQ@3CCXw(JLzaP zAR@nPLF)UV>B!c-itbYZhDCIHHQvvO1AWWD()Wok>iQecsZVaaz3P@u%G{ zpphvbMW~o@)8IC*P{hCIs`;v2E&~p2yX#y~PIJft(L)$U-*MjJ_r2=0eGXXu*$_D? zrQ5rsktx3oU!;NcwIX?AzM1uln(b7sWruUQMlVK0adT1`?d1_skbI*}?m@L$1Hx_i zL3J)1!FySHjrw5q{GsyzJjdHGlpFPThCwxITV^l8l`jswcq0fDUBtOkuD3JU9 zxw4(iUKG#d1Hk^7FQIEznC^l`kM6yz(I8#ji!)y`a6OLrfCcM9csonj{8$yQ8LP&y z^tZ;x$r6uZJIns&?zsP#VFN%8!{~6CaRA~YW-K8lXARn+-Tp{tm0wQe43+$oU0-V( zf2Kp#)oSDU*bSM*P%#l26ka9v#X_u~GvJG5$_65Hzye}=kMvo1mAEqwDx=QV%`Y6$ z=b~RH^w-yq_~gF*!xn&O)HEDbAIu;m29;cx%4>p9P-aKb!oh=yj;;!#9M_MY6zlge zwnt}AMCA0qUun?M|&y!0*(e1 z0EMX~mf-Op95&tlzMRviQPKYkSHxcmgIqcD|9XlW&TgCFp4w{QBGFHb-7mtxW2=Py zKV04eQ26eQV~}E8z4oOaic&cIwf28t9M1HV(gD4d`@6WJenDZ2D+g`t8aeeS9Vw{^ zFO2j2^&rth{}=aXSZhm4;r#wUp?*?~X=?N}TQRZzhhL?2a%kRdpk&iT&BV0mm|Ad@ zO6dl3KR zi|saZ*C}GQM|TkJ=Jh17L~@x8#G*o~|6??DlFZ`tAaoe`Fz`M;zTVyH)B8a3$Rb@+ z^M2Eq)3vIRPOUSuT0qvA0z|FS35Y?d)N1l!8Ha+i=>Qb1LBOH?MM32H+ALs@DJ;`< zV1=<&%rf7RSZeMnDOutCt+lP=KA1utEIsA1(QS)wx^&zQ688vjd~wwBPLRG@ePn$O zY(-fhGoS0}nb@e}AIks-n;7G%^*q0$N~x2sX(}+iKN^gOOljE*-XFt0L|b+l1U2mi zY8qyFE5Obd9s*Oyh-ChZV<>16l;M=mEAHq1jrgRw)wvD5LFvnMaY&@Ccfz8_#awJt zy81Z-pKj?jS1v_Xk##@hNT#3r4{to29+r!iKxVJ?y^$wvSSRYM1+$90;yc%7m$~69gafOm zu$SSL8w4~5hwiZ(B1HHw0F--04vcxw5l#pW`^U_dTV$R(-3!m;BILyZqlVsTrG>n# zLg~xKx4t!Uq&4*vcsa3@wAg=XUha=XS3DgE{n?}&UDkk{+xdB$MGT-3(FAOH%EjN& zgGMly5%N*#a$uu4o|Az)5BMBm2j@n(Iw=>HiYq*z!GqPSG?b-{rF*2R3ME4US08#k zXu*~*Og$fmgvnraN!M7))l_wMd1Rkfcwd}c!r&Z>_@Fbt+G3&4FL3@>#2Lr7A@JNb zOWwHD{W#F=4oQK#p+KbuJgVe3Kg{t@1v|~V%4&I_XobdIFFTvg^k$eqQ$DSwh=r%g z8#ISGNCe1E{F(eb1N1yWJSl1!!(@hvbWd3Yf;m~@#$l(iFBRSkF&&hq9C5p6*BjtD zmZG>v;|2aFzts$i-2|l$6J8wFP1a?OIhwM%KoTEYQj-<2KFLEU4=){|PdR|k2(D8C zNq@~20E*t`W{M8hUoz&*6@pww z58=xSwCdlCnPd2xQGS*y^KNdE?y|MfP2v-9>>xod*hN&3NP~%XmB{b-#!Z=jcK?WQ zwf%48J35&5>{%Rt@{Z?Qq?nOmN3L<7g&M6xaWv^3KOoz|Tr+iIkIETfc#dgGGk=Me zlp|wzw>EW^ZOM`x7gt>y{TNt$>(X+VuInuWDF7qorvt`sjpj{hNNX@t>ed&#y_g#G zwZ;7d@2jQL^UY4RmQBqp78LR6twgPzT}*mHjnN~<0Njc@z|(%3v@WWBP(D#%eB{8l z&};O0w^f-I=s2E$#BqDTeyi%7?dMgGPYd7E6;k{-wYo)e!T^&4&$*$1+bPG=&>rV0 z6uP*!xR@9qC!ApWDKPxu``;s?JG}?PZf~g^^2zVFK4A>&?sdR7QM8oc*#>E4&;N9| zm}u@Kx%~P4(!3riMt`6bnr+3;e)d77i|4+Xuh<~-!a|X2{|5#Wmz>=;1uFotH*mh0 zu|t*D<(pBNC4Q8&Ug`Y~$WdK}%=CYj1p!Lqg{=ftfd&&1oJ2^3 ziP8a}@Sna_1)>ucL9}{(s`@94>gg9_2-YM@*htBjRmRZTAN`6yJ=_@BVg)jv9 zFn$Y;{4V+$)lCg-3{J$-FOQ5T4N?PYLSrEtR5!=yij_r*yY`0P;cUwZ(6moo>Yx=7 znXInGugx1r6ni1-UW3KgA-j8#=VzSP*Fz63c^+aMXo>q7T6Wv@!SY~vVj?-DD9(aX z{bE7LikQsRLr|_QHQc;I*&6TJ8{zDOF8o)Vu6a+bre5vx-XgUddenre>pyIRh7}3&$mNF30y>zkg;c)?VfndmymM#4%AO zyIskg?F|R>tXz9x$rxH%hf+!*iHE-6yE6E zxS(~})5W_c#&*&}al;N$GB7KCW4H-!-}F_DhnhU>6PVe)iuRdhvaE^w%BI_mMn@Kn zN&*pQXB=l7{{V${59RjZ1i#z8Cw)Cm$|zy~Y}GX^ep$s+f>B#P!cdK>BT+*lS1
    jNw3m7Kfr@x)E=yar+XG*Z?Jd!s9Edov(SY+q(4 z#y{Lm=<#AeEik!kV2_!@43NZ$kem=r-8xeN)mU7_OPQ z2%j#p)N611?gau(oH1qd;0my4GlXG;?|YX9zH>E%8nF;AgMx1xfn6Iu%TN{=7RkIe z%m1QGbY#c?spXK7D+L}%DLCODZQ5dD{NW&Rh>6LOOX;8Yiv6*kHs{D-kRk}83^uuy zT3e$94ZFnJd_Ngz!htkNfKtPfO*^=V)l$7rmAYMhm;*>*{ZrT>+~`skYNauodA8+J zRdIIzZ^4yJ_`pKmtG772k5ZWw4gNFrI@}IT{h}+o)yugh%qwy)WEa%81UO#ZbHiL3 z`k#n5AhbW5ot^3rs$cSo{71`BqE*Hq;ROCknC$H9qw$DHwfMJo?*D2x#h3n8FEw65 zl?ev!;y>ICJZ)w0Zd@>c)Wtu44gLG1#wVQB>vtCA#$ZK6weCkxh|7sA&PQyJ-U0Fd ziqzC8XSaPLxBJqlV&Z{gD{(+bmgq=z*R6BK6sp2DNAiztuWtBQ=xVcj*jz6!Zvz%> zM^r5~Tkn2Wglvoau+%A~SpElX|9}7&NflKcKPURrMX4-ECH5uY=bz6t8}=ssnTGae zeQ&FU2mzNC4}_xjkSW1~F#|+SUoMiH{!dNBvVZ$RN{MG?rIXfk-^_T)z}Fs=$zR1% z{dk~o`hSu_1`i(|BC@69 zl&cU-67rGUDDkx z-8GbiAPqxG=g<<;Eh*AScY}mvGuf+2SViy?O%*wpnh3_Bv{+X8yi^vrz&V(JcCR)OZh% zQ>bt58fdvfzxDb?CMYOL-Eo|hHhs7gZuSfJSzRLF{M+&az<>E_AL*MHUY4Xh1^{X| zESvFCnnVE7cbUE5Rj6%o_+y)ld@Z{_A};?a(g%it6D$prVG|%+J*hLej)$+W~1O2 zoEgHM59~Pi`DM{Y@9Scl3clH26f`O4MuJ}(`j)aL1 zYOfX!3o_u+OAc@pZ*HXj%~|+-E;G*qUz16qc%&$R){V0Ge0rkc;M(r2f)S+<8%~wk z;W2K^aiVw)_@nBs{{-y{bq=mg{A*p-);Zt4Nv?uI09&zuUa+K>9|=T>OMEEr%bu~2 zd;nq@nie^P@-+jEp#OBHpx|dL!3ILZrb3K>0F<(|uUAd#{Du{)>-u}-`+pKjDctdJ?mw8yvA6-SN2}z1A)3IB6=Y?jHd{T)}l%XO6U3jT+U^ann3) z!%ABYg6o=rG=TGxSmFHvDi>%IPe3aBvc9q8X+CHX^VR4&E}-azhxtk+xN)CskutLR z8$XqR)y(C{Ds$h zb@cq7rGRv&z=tt4{(;m{@ftl-1Y?Q5iodF(HkIl?%Cv>p3dB_0?tO{Gb^pE-HLmCQBjU z=GKZVV3gfCSzDmHioPOslK6w!NGg1Ki+YZ+FLe0yQj%*SCkZ~I*ICPA_{L2{|8;}& zUfmXQv@uY3{O!innLEc>jsi?d@bVd_s05{?)W*5F_xscU2RgHCqxbl}LjQJH+xOLn zg7j3l7Oyw@cFkk^3&7)+QZM2UXR4%k+p<=cE63y~IF-aohWWmX{ zaxP$zW~g0{JL$jNsmwNI4(%$`Mi(Bm8%E@PV8CPcpX=g5PqI#u9~p44DL@ShR-}T+ zbKz)c;>V3x0SLqDe{)Glp7_x}5GBzp4Wv+xl-;boV@dLkXZ@@F^QzCHfi%b1pGp0k z^4J6IwEq?tG%r?nUi$6BBC^Z35|aX+q+EpNRk9q4sh56AI$M$IovjuEEJH zQVwS|4CUT5zBmrxaeKFUp@fE~fQ9qfl&GjLzsu7*zZr-#LXAWRASb|vYcr1&+QEl@ zU;6%%GM^1+5|U0FcNP?8qf3a2BE%V;D#nci!h4fhdCQNMqzaGHz&? z4mvP4rVN#8(_0x_N^2yF-pHhOkt)e3rC=(m5-x@_Y85D%D$UmWRSx9_G0!YK1cq9# z1qiMYe^x{3jAp+5{4_B8sK{y1Ow8TilTMRLnvt}Prb2J8Jb$s%4`xW*b{St( zLOTYR@iDrlM+sqdwnS!g;Z5x%ep^*2ew7?Ulu2FY!Y`e;)~ZlkjKJq9L#AOFc|}af z-RM2+pb`FLGp7G+7k5L+?@y4QI2q3AG0}OOGt>DV9wU*6D3iz_b%O}&`mcSSn2v^l zK^+&Bn(4C*$`uZ3Au zs@iQLhRDXz$w)I`g3>@JEApfy(k7U4Q}c5%$+0p;yCOSm;jdaJXK*Re<$L|Y$6hU0 z%fo%;iAXxxqSL>=&5et8g2530pK!j4t=DkDk`O%G=v>!X4X-Zte z0zhusG_1!xLjJ;*v7CG>Y2_0d+lzz_6#~PJ~#bPs&M_NcT<{aDKy1mD&^2_TY9B&3S6l10Hz?_-7whwOWwj*VZ> zWkt;=iz$IBNP^tUGIcmWuiR2-jJI-d;9tAt5LTn8R0EgB2kr{HPjpS9_Ib_t> z`gOK(5?i+^#rU<$u!cTh|2Xz#@-w&kxWYy?h)pP~}eNUzjdHv6Vo@3#`3|Niz zSX6*rUk=11yXI_YvYMl;ZGobH1lJwt?P^*jmmr2Qr|J4(*f&4@l6;;IZx>r!lmv@4 zSFQuGYc9@;DIYxDv4K1H!yh|UKiH%RF5kSmX5RBTpFXrAV|@yGUb_of#vr5eov4s3 zgWHeGQ+?`Vd>R(|kXYLWV+XqJ*f7kXGORw!#6*5Afx{AUe7}UYmvfm-`#D0#TBH(> zXT>qihGXvocO0$?KYSaWa(^9XXn-q*gA1AyV;|Drt8;$t#JU3BP|H=R$kZRZfBK{ zV$yHh>)cR$c$Ub_33OAvx`B@SjQi-v*zx~m81OCuKRTjR&{&4Tq;EzmoYdY5!_WJ{ zxM9{Y>gYr^snEaG(fj;YbwXC=sNyJE6(OE1&1Vcd*Sucjrd${4bAnYK86kIMcw_tZGuW< z8GB9N*wKp0GwtGqHNIFvVS}D(C4>`flg)S!8MmNR6rqlfD`<*JR>q!Axm_ulAO0lQ z|G5?;JBtn$v(zue%uWaGb|5|RmN7C@x~%pSw)XD-)dKh)|7|52)hb>cS5_!;5nzie z(1r*M@6e}klw@B78qEj|?zz^M*w@2=CEWG~T+QB@U(S|)GY+%2(589_27Q9+U*HIx zs@JoS`Zkh*RFgd+1Pe>D&Lvd+nTyRMDW06&c1i1J+a4$LaB9Y;prCNiF#eoDFK>-;imSe@qy8h-d!+Tp zg-i|7BRX0SxTeDDSt?otL{D#88vGt2Eacaq$)b;aH#ntkB#Z;4NCKopTLk${MzAtNJ;h(-B!&yY0Q8(V1FH3^1W?^vm2?F z0Y|kr6n+jpe@Y;)z!D*5Eo=!mdyliRr@_08#{>aQ-@Z257P7V_>r5Cd1Y@|tlkHXJ=pUv{9QZSg{9}59HOLU zLHd3gxm!;I9=|_l(C|a{G+L?P* z5%v2tj=ld&ZHx54C;BnYq?x&VbGLJt+E3%aGYMUPc5frf#n>ZCq1)MVY(zslXcexfkfvpPSPPSC?{8d%%!);w{V!Y56R}%3mNxt0b^z?DdUnTA*9-JS=9OfpKVR9%*5m@p8##j>AKt ze*5273_sf#qIsn9%nQYT$5ml{=XEL)xOYww81V40@!{_9X-)6!tgG{SeFN_szWH+U zGtCC}@z0SjqAv4nTa@h6*I(x5Q#4;?!RV2LLKXb5gsA$Cfr)tO;_bKAr>7e64_~*> zTv7BFyGnE~Aqd&dHl_=_KG@)3SKFsyzs3(q*GJvTn8{9b^(OKCt%yNuo}%NT34xC% zYY)leokoFYVe1>d;keCK+7^3f>vtCsY<~jyu+B^O^7@R<{VVosG ze}!|BLB+4gIyX>ta&J@%~m*3vG8?6-^;)RXCwX7L%2! z6Xhkq?m&|z<1AkHHQqnCrINGX^jiE9Z2UImPQ(2DYSGcTwRejue&yU!JTDp${XP5t zim3Lr4n|@5<`CRQo#_(5h4cnAa@DVCaQh?(wNlaME9;JIbh)!nW*$= zQP`W{J1zt>MU+A^7!K5pp54QbImo}T>8b1vENO|}Mbxd!CS3ye;act=BFC(ihYIdp zYNo=Z<;U;3&vOHxV{MpOjJ%bqgbu@Z`wGdxiT=!YuS6=Rq84$Sp4L%{Dw=8h!RQUw+)K^)u@Z>%MP87$3l zrwR={*yRO*1|~n7A@KYaL_9@t`=qa{BqG6&^1$Vue8JA-06J;&ZDa=xV8TNonegMc zeu5a7@0Rd_Vt=9+Gy&IHEer>uRRtPmUciGgBDEKv^G67o4-r?Y*czAHOs!;KZ4@2e z5MiF`K6CYA{qXrltSdg|-tp1OFvaKb7$O$53r`2umUIs80g4@dgvY#lS7oFhd6JYn zE)>Csl%T4&R}O`2rR1A~>nlw0z#r&%^Gxu!waW8LGnLo2qLL{f%kfpcY#wsCxp7hB z6qJsN=BS-YmO{c0x1+eF3~`VKxwU$B1AM$(6KC6gGiQ~3dzvsn!_|nItzld#&^w_?4SxM2JP0iQcJ1LI3DfRjG2`Vip-xGi)QM<;`%RR|%4wmFk z%ZOkUR}J;SC?q>nC11E5mUvj%5*^xQ#!}#J_hCUi3Rm$;OvgR%cU-OsA3R&%jy6Y( zSI1@42$x6vg6VH`1w*U+bb%0J7yLWzi0;ubTy0r(lBg`Pn4Z-1{L3)bLX}5Eh2f(a zN2{N5Jj3~-5wJh9WQfArw{9vdLa-%mt?dPccv}5RjawvYk2XCHNtX?Ib4p@oj%})* z)4uh8`)NmP3D~z}Ers{*G|utz*}GK|aj0rU?~*i)0;BxMnozS}>6LVj<$L>pWg&YC zThDiAQ(N|YEvS_2f!8hlmJ1p|mTVTVddVe*8kE$#naRtNP9Q1p@9{fspyCkO{db2MN(nhm9?_*d) zw}hfU92cEBr+@rJEcO3ZrUU?nY({`?!RmcA zYm*!`;LAcOb+VdK9xRkbiLuOYF8Qg@5^{h1J6mRUTpQ&-t8Morx`$}B#kN7?2h06? zPVu0<-B_4mqpit z`5KP*Sy;fVH9gsU6`uz(M>KJoaVSlXD(_6kx*D80m{1&4h6`5mlDYVeetGSATTJbq z_e;DWkJq}nsyP?5D0e;JI5&&kMDDQyTP(Q<^e;l3wwjF5Z6F#416uKSBiDEW#nK-4flF3%13>$cKZU&}_UnNxNA;UlG z9@x$eeXa%77wfmSbs@0A%?m6_achPSNARwsgQwHRTZF=1P?X-%P1?cLnbAQ`FtJR7 z443mgK3knphRYcYf#g0BN7&jS)dT8@iH(_Likwf$C!c*BQ1A;dI|_K1UFW3 z2F)kn(H#V8e+*o*_sK;p0OgxEbI<4HxC#L5Y0Q&zwI;Tio$hGhFfBPMoR!B>Tri(#jD)g~o&G1z(RxIjw<*SB&HISZD`gvp> zcxQ=HrrwGG72CP{6ioZv_6v*=L}wo}3v3`|jcBM^Bo3R`Tc8c>_H`hVULj#18+p_5 zj^V{8~8yhvFPr74&c&w@>;QPvxjw*Pe;``y;&HkjFz^jm0^FFLwJzZewFMfZ( zW_tMJaB>z&hVWo++gs=MV;gIbO{X*OX~l*>$P!ar((B-O`@o*hB1jUO|O$^WwGW3$cwLu;ot=9(w6Vn${>FOx3k~)dPbx#QL>tJx6<|8+ymW{>j+>p{a+rN7(G4d>cf3gD%L&?UV3)s%8XA zga(qQ+@7kFG}HOyuW_2r*6E;~Sa?lFCRg-(*|X{w@Q@9rO(CZN#Ohz(<-3O@mVE;A znT=bEBrfyyT3@D}m?pny)MN`D=I5AnD&UhMU1ZLLwew~+lwZquH}N@R zO(wRsu30<^G4CRG_&G?k$a_SqB6(Xusqoihvj)RQKD`)SN!jG3tO=BjE- zza>K8Cx_10zJHE$8ZmTS|Nh#&^PKh@# z?XkpW4@5mw%hBMUZVI#o5_oEuxF(q=rfQDu$U0j7$M~k`^W)bga5s zqU5ggW7y=3-dyKf6`KWtNY;-<&F?r;_1hRg#5AovRh5ZjsRVUVU{HMOqRM34Is*;9 z6~AGTJ8AhhTKwElb!b+wFO;S{mw5yx@)#Z|^TwDmAgoKeZT;r<NWh8{c*Po)nDFZ>ZGgh}iw^4Yp8gT?5vdaA~;DmQlwW7+Acs%%um4 z_@$?oka){(TY0+|QT=@+MKzuL0905RC~YPG_|e znXq!KzZtqr2s^+CLKGq)rIT9T|7 zaFy;^3{kzEQOSI5@%@g%X#Op{Xnk}H#~P_xR%5{Oa?cf3{MzSu$o4C)&@iJH&iLwE z&HKX7nyk2A`<_FN73Yls_A6yX@quBAE>(ft609(KR=V$`<*+XUS~?R-O7cJh5ONlkH5!(-?>RqQy;@avBA@C2a0pg0>^w+i>ubvxk(YkDl20m7vKD>mixWqt~@*y%J zX;>C)`jG)+d`NQmZfBI2D28BZ1KE*%JftE0MNkVd`3z^lU)g_2g(Pgb9w{{9+=ziCCQ<#d&JL@uYmDI>mXCp3wBv+z_9Lata z)d`mF?^1|FVY4r9;G8}HZ}mO{fo4_RfkcSP3_t{@{Vw!1d{+!U)|VX2P?;Mj?8(sV z$9g1O?l3`O5pSRDd~v>>JdFt>w!a4@2m6{Z*JX4qQ$MiWM#5$AI3Ojo|Xv_R0cC|)-yzBah6&C1I3%q4NhD`2J`FQ z9`;_JftBU)s~i9Y<4@?R!CM;a8m;|GE+>V{;+)+rC{;+E1jR#UGFTMO-d->DXIi){ z*8JZLf6uw}eY>~SCwRNyJY3dL{TB;2CM{U zUqgIb<;Z(Tj8SRy+eMu}uR&#aVcD&ac}|zsCA4_7cSQ6oPUl4QTb0C6G^SV5%A(!P z+`)cvPCB+YF0^K}(>-al=TEgt8xnJSq6qm?J3k7k`D+qr&5NJ3mVe44?ba$xEe(%} z?^uZ({Z>aUf1mlYe@Z;@? zPDC~Sa(oEicXMbuaN%S6xa>w?ZdtD2djETcU{ogivHoNea5@}_FuNpfvxEFa@2YzoTr zTu4pquOsaN7QKz-ODFz4i2`zF5Ll2dY?6L_b~FWP2BfXrNLL+Y#F`r$5lv%RD2=b2?+5KbRV{X zNQ~;$?PL|@Ba-ejI~1|(g4EaaN}YLfsT)5<+4fb5EF?V&10gj8TuhGXVk4m9x(SDY z&ynF%!mWx6!N&07le7f=)&irJd`{x9C*wj`rS~}XR-w?BO#Ub z&IZ;ri!#1(@kjOoU6j@vn}}C<-1QzjacB*y@z;$v{r~0Cu(*4&4=l>G27uJu$NJnK zMf1slBSP6xDcZS(d2~RI$J*T0_BmAHt}^8FLMEpNDy#C*mUgyMg%=>^z0DdhTUoBl zoo^OspS$e0^W~<9Y6+zunew}^AQ3+tt7!6@eU$arPrmarWIEyiBNGhpYjNlPvK6-M zg{!Kmwr}whF?jeK^TyK~og>%;HlwpSYS*S-2U_)s=XbS#$+2YfFVU7k z{W;x1aeO`WQugpYAusf+tGS0-)`F=<&E3s)NK{ESKm&H?viiDA04ZZ?>$}kaKvILH*f9ENK7kj_~69pD~AOEYQQ9sCFfulMkDzwQZU^%n;%r*W?()9+qv9Tzzw$Fu6&JWwW;CyQB3-?u7Wj@7y z!3M4mIGh1b?yE&>OHr~3E^J3v%!C4`pkPZCKx(ql9K|thw$D(tZCP0U_fiOyPscVd zH;yY$DKlvGDluTeGq0Y{4waTnLN*9Y>er;?}0(L#9764U7VhnO0EWJ7bB^2V2Pg{M34mUfx{sqO>;l~J^Ox>R5wzk}fSY}Q)0!X7ltV+Sr> zyQ5g`4W7C%rZH2dLBA}^Egnc)z7pkvd5pc&2D53|N7HvzjCHf55H0tg(}apu(OQuz zyZT4^eUgJdtSZ#nUL-O9g_IeQHm^m8NrUf#$3SL(YRlJZe7U79Q2-8P#)>ElYcu)g zod${ytDZT5`eNs~mbeG~I%wD-0y^0wzt4yBxo|75*vx`a2MxuV$Smzcu zAE4uB+ZWrlO*zHBlIYiNPp0FD_RdOWX4h|g9h3#Ry)&!wszuKh04InfVA*PW;%Cb< zIKwdkG@x-teNL*-)rXX-tUcVZ{Ix}}iH!=xEo0~#!jx8XvS0?2}@CtZ#8#EmJ zte(G|Eqfg~$cIu6^KTv+l_DQc_g0qf_iB3sWM?>C?prf~oW5qm7Ef(*iDi`~+^`&{ zGYov|EbL+HR9&)i(ACPn@o;o(9%`&0^Y&(rX(; z|C+co*Yw+%C|2Xv84&>4){%J}5J)O^sHpJpn6DWLW-y|rHWVr@P`ZWB2Lh229F~~A zhN2zPX7th}d?j$2(~12qU3VLqL~AXK)BaI}R9jtVPo2KgEjb;uX(JaUIjm^;(;L1C ztAy@4`Lmn7?VinVD?zHlesx(F3<4P*Lop(4ZKIYl@xg+M3<2eph`9m@8+*rGt~^%G zqO5Khp`EjFQxVXd10iF)T9AkxBhd)Da)q2lv$YK06aAyFSjaSf zAy_I}CaYhuwzMNHw;Gj1cb1Fq)ao*8MP-aFCO_U z#r-xX8ptJiA7Ce*!D3t{ZT;bUb%DJn$E|O9^XE<-y2(n<9QWq3?B_hZ^^^}?+wUPw(kRroEH4tF2|!8TpmbEa*gH;AKR+YlHh;TENd5hi zI5Tuc^Q5Waa5+FN3vH70#ga@+=3cR|?7@XS=&=d9pru`$T|7rmU2L~n% z`|Z~Y-7CF}k>M;xi*-zy!lefPLG>B*@4UyapXer+`sr)^w@bAQQByk@DJg)8f!AOO zEy6V(F1)Ni-mU?0`1IlcEa90dCCkjx{_qog5&dp$ra^QFc<}U*8@FL|Aiam5!$IR~*Ex;p~Q==GlQn8Av- z7gu*tiTAA0slJ-Wi*3NKc!H_6Vt*VseIok$t^UpJE*D!i9tZ06_wo2@s#G5ALKw2) zuAilJzj6=)!b?egKfNG!$PXBh1gFK}5@wCEOQTVQL`-N9B`>4iZiu-hEO*q&n04^j z>(TC2-X+drSJFf~326~Y`$+kAIlWD>dLt8tK9nwrWnIzrsreqf(VO zBayr3zmZq@(Mg#oK+m+SpFpE#p!P?7SwZtu8Zd#2t>5fl@2FuzAf%3D=~BUs zDwc7HtdMeNJ@-OE@9jouHzZ*xagXvUrPYBIf)_oMf4Z|P6Z-{08MSrE1uI!HNRm$C z+N)URjnln#reAPg$+UpuR~5|o^Ous>o+Ch|pWwaoyML8Wv{g$lA~M#C3(+MeWzXn@ zAB2m^S{6BfReiBd^+D)z!F;5ad~3ho9Esjn z**1GQH-1gvgo+D_gvP41lqP5nz{EjoRgMe~Rhboo%;ZJL|K`s>Yk*3Wbt-%q>OlT(Ja}iz6kjwan#`J6D0!+ja8;(6jnR5O$X(n?oZ23; zTD(H!y(@%xn%B8#hXFH5_cC(M6b7(0ayw?JEj1M}6soJ+%0hE{p{$yj-xrNdG&w>T zLnIwBi%F}SUdFvdH(MHl?M2Q_BsvbsxM02iIKbdXx4pxp?T+ecRgG(Ih(O|uuf7Zv zpJ5Nnk5VxudZ zjw7L}EaWsN43PusKiK0psmotNRBP72BE6KtQtm(z`%Pc+rHlgF&jCh>W!j@KiU)SwgL%hU=GoS?PJofnI?T&vQ998q$a7Ex9zPnu#3k=u!_b1c1 zO4@hPitcHT`>q$u1+=scB@K>D)Qn}6C+azraF4^rnfy+)7s@J(BrofcM)z<0G+m||CDDO&T zatXo!rlQ))9Tc6o6u9-t6aZr@8o~S^UN*##RRA4JIC^W%dZ=pb30k}5I-(>Sc2s(G z8Hv7&P2=an|1<24o878|?tkDPif}om{azbIrl>Fc@5;h_uK35e9mamhHI1DknR_0_ zecK5!8JQdjZLZ8owDUqgdD543dR)O7d$6E5*^az9fS8 zFnW4{D#Ave&Nctj-E)&I@>`JvkJG>G3GrB_f0uN@fB9SQBXf^2tWyaF{4~i`b`}Yd z!O8;wK)q0*zD&)^Z(u#OSMV^Xrcrh9{872gn7wT>0#wHW6>;^Ws&a)zfGCPFV#LhC z#Eu1r-|QA1*|zM5BK#n25Dz1r?TFwmf25gF>7w`yrw#lh2w9Ve?ecc=E&KVP* zCjUXq%<`on;Wf@NA&4eTOlDbf8P}(t!&xkw9$h`bs_oiFqi6U4AdD9}A1^F~o9Vk0 zrfygeLE)zyA$pa1EgjX?cV(HmJ=GjyLQr#zmw)m`Y?K2}>l z)o03+XMp;y9#8VC6l!1+ue{H0WAmj8l#E@XpfRFa3o4`LM-^le&<-&9K-T=muE~ZwT%ocn$?Mf+ zn+Z$2(-$IXsR;>Q`A{JsA6GTtc^dF+hbwptZ0DKC&j4zK`Ej(0Vq<=J`MmB-%g@7P~^5@a^Lkj7kKFZ+Y=>!v#3<)So}v_X`d zkz)|>xX8GO1-Wfu@z497jPqw1HW_}`LvkL7(7L1%EC5D?EH)Ddg~_2lk2~=|0g51A zbG_G+8x}6px$RA*IzlQeNx$+kI$V8_K3{5c1uV!b-0!*j%3#5OzO0?a<|&Ks93K~)6E zggqRSoHf+k+rGP;a5-3KU30An=~ggtz2y?$RIWl_}!+ofwoYVDCc6Is%f)QJZE zO{+Ir1d)Q4mn8t)4JvQge1lLmiG}=-Cf52{O>C0B9gft<9v0Z-w9ac* zGd%gl|3PcEuAZC4!JGhPXhQiVr$#y$@7UgU)DiT$UcAUPbQ$s*!cBF^F+f=4PY)Ed&{M1l-|ws|wDh)-iAaU4_SJu~ zkby|4CbXdNNRq|?%As{~*QUuopob1a=$dSFyfo?PGp@DVa|s)YAh< z2j4n>z1ujiaXm`hl_$0bQ|25FTYiCgRI7E^%Z#VLI+RxjNrI0YSa4HZwo zspeS3NXmk#MOa18M;DTj$?4N%nxZtwzbGOEb&FK0 zvM)U`Ky@Vsf0Ks>sQZ$zshR@nxrY8~TC-UCS7Yv<5_z?%VNcQtUR%dNd5dvRbjfh8 z`zkWHUaLjGg^k4W$2VlMlkfP~1mu(6Z{yK@?mik%rRjPiGmb^a^bBfC(JFK;IT8Q-yQ;~JOl{_^~=6f;#Dn5_CJD7 zlgPRYE$vkNl_U!lDr{~HWexey65iB;k6MGe_hF8q&BmMQYI3XUo<5Rb$%H<)V? zhm@jTT*5qbltwPDhnU~8pooS+^L$M5~`Dn;()(c(k$sm;(I7@|}L9c&X1GPlC12fAqdN;ngn=!?q~ zW6FDJmQb=KAG)z{=*t_pRnzo%r>a?JRUau>Qr0MMG^(X0LGE&@_r#=RiVeLz-g%)e z&h|d#rUK7!YTSv832zY7oj8N99!j4or=za zF#W`meP zA7sLrd%$;fh_7##?{c6H_V17ImQUCCd>D4^RICjf?$d@&i8UXGQCmADEwx=%AC8-} zsP~YNd$khP$DTcW>S-PeKg35ZT>ytD!i_U07TV9xFa$usJ+G ze5z+xH;K9@SL8P4c*J^4{l+G}m}tfz_D!LtzZ=Z$unmDbIXkLS3XemgRMPw_y;;;f z+><7YF=6Ul1_&9xE@g@FC4N%j&5hBb!FXn+)ef3f=f!kCU;x{OhD*iXA znDC`yz_?QtqBg%)`93Ur4pNbCRQ6wRt)Bp6^3E z;BCA*XnZq1yow@a{K#+M;rxd7>b;@)jR#-NW>{`uNh}ru#VcapFAPQ*PwlD&L}^v; zArx;88NPF~7e(9Kl@}LORnfO=X%MXuD&1~r@=esT(0pd+!q1g6Vwl8pSB<4=6EwiS z7uvf>w+ye3ujin$b{k*(W!{&ZuHq5;OXmcx%czp$&T>ND)bu8HvEe5dt#$k1Iu+Mv|0G{f^3c`G0R;d8in`OBDUU+H94o7 z=1n)Lci3U*2bA8LQ%^K!(0mR*TX41Uc(HlqgJOpvxbchVi1}1cZ7JR#AxP{qQnNRJfR69T=VyL`LMVhOnt_l%x47-Pdk(SOD zZheFniqdkIVei}c&~UlYLI*nG`jYQPxxdJ#3@um!>HUF+IOFMBK7zF8McJdI<4A2VPO9kFuDSRXX)1{D{eRMuVee9Mt{QAg!8QM8@NxZ z#+92xnrmZER&ocbV5>;W>D;f3hUJQQ+*h{fu(Ao1NQgc``Z4>a5wBs;kyj*nR`fn1 z#xM+6EQT8gK*-0+h$Q8 z;~#HS65WfkOKV%W`98FF0EhRw1oN(-b4$Y{UEPFPtBv%rZ1yX)Vw9?~pR-v;%OV;a zjhjAc7Bv!T)N@orXa|gX*}`A*J^lu($CL)p%4Qu}$J#gfaDOow)2}XJ(;GW|`Xf-% zZ+%pJVw}_-?Yq?JuQY?Emw}Na=M0=wLPTFtCg^SU^2SZ%8{!G?{Ks0^2Ss0w2=f1b zJbeRnB+d8s#OB5u+qS*2jg6gbY;J7Zwz;u4wvCOsu`~bK_jkT;=Je_6TU9+hGgWoF z?|q(o7ydzIws>)6-+zz(71#66v2OBRYExVME5Go|x!aBmru?Bv| zIHzn&xE=BSqEeu$p90}EFUJBwz8?AS_QydY-YJ!kYi|fBf4q+(;T6so9)f-?G%vq3A$OxfqlIzBpV4S7<*|!&?J;^CJzX60=mIUz16xn^&d1&0 zMvJp9coXuZ)Di4B0fecDbb%U%Nu82vn;Ez3?fH}U2dJ;L5#g2~Vje!#qPzXO3okCR z1xiS#59oQ%vIF;^M*V@=INEV0twFY8VZ+YBw}sLRg9+qv{T2j)B83)AN}hmZpstmI z^{UVLykygwm9GM;Owsh(c$kjRqTtCX7Ua8%B^E;wf5$w&WoF! z*5qYteK;~Iqao4LjK((K2BD?0yZ(C`+0Uy{Ih|~9qD~#^(3WDXm6HbxJ!G$FsMCc9 zkQdoX-hwOpDI8?#I(cG}Dr$mp_H%Zddm6@Ju=h}@;ew0mHWIJEYCU}#1>+9Equ6|; zQkE)SLoPo^SW}c52jzogPh8=y;K-BkKf#q1aEiN}@ELJ(`|7@vkgSa~;f2Kr2|!hb zTdG|;AG;V$R@x{aNPL#~5bJ9S$3l@yFeRaioDLNFb5E}GQl?2?p$y!>9%Gf5^osh1?ZvHJ1f@+ZPzcp90xhKe+ zbE@lVBLZdHg)sVj+;IT_z(RYE&cex@l~(@Bxn2I*g@bmQ-k*7un(*-QClG?a+qW$V z3S=4u8KRpt$w2K}L56wprhHg3=BpMEJQ+@xWkB%w$A_g}N@>mD6^Ko{k~HGim<)2# zop*c8i4K;WR4JzGRkjkYx*=L=;#?71lbkFjX=6Dhe|UcIEvT5VrvJ04|Xgm_j@EkWiwqsXnEb)kk>! zkrn*Wi4JP7N332lBp42zoE2`x=m-)3o|%6aYvO~R@&Ev4Y?GjARudpr_C`kSnZ`H> zR2;l9KYVUiAU@9M9l@(h9ji#HmpaPp_;{6MnL#g((d}w%XOhMpks7hG$>=CItPpb9 z2kO1%P(ahH#F#-cx|8~&W_d$2qOkKq;@q}?JMl7VjQ6`~7Pt4Kbh82$>H0s~bgk`) zOn14F7s9c#*lsn00Uyo)+Gye4PzBo`3U zNPcGf6!S%*{5%FY?d6CU8t(U*M);BDf7#~kzt8mWIpojq`FZsKbOxf_Gc?x^V`YyA zK7t%u8+>U;MttXrAPiV^KDz87h&178`XctLKQjjX;dffZ<>iMDJZI#eCeSi2m)7rG zXkebly|IGeON)SDRsaIZozE4`4DyEQ&qz9|xm6vXZO^wxnV?(2Z^W~gSgAEZS@40F zK4lDlo3v{KF3&?q!?w^bHR7mjID7+B_AfxCW}jQn+b^9%|I`SXmv2EHLW?X`!qCmT z2$P-l3a2ARD^npCQo_=Hvy=*wuBDNI!Eo7rICbL8qQYjp>;)NJX{~Ll6ePq0)%hu< zM@OT2Ht5gLQJ@T6rTRz5U$&q54&S>sm3W|6?%N29CHDA!@f+7Me3Yw>tQMjQ1c*k! z;SWtwvunx~%WF-F`kV3KL_(W&}|m zcNty6vJskB^~S!UlaMX6sPzB?kmStW@xAPFGA5jKZ`!S*-LA}7F8*>`&XVc44L;{*iJq50u@vux4U5$?5e_lcTi zm*R}iD{-HNv(EfBF3&b$*>nyaX08@L7}XNE)iiBDJtoM>`C&007w#-# z0igso{zD&49@!U3SUY${@7L_gdCP0+cFzXdB?!ZV;k5z^1yKmP)8o8GiAm+UeG@;| zv{zBD@i$eX0ghhES+3@jf|kS@s<^vyTi|4xiPw_`Pug?A@cAYy7+^jeG6!U{Rmwdb z1VfwK-BWu?4gVMaAtD@0Y>)5JZnN#$X?=B}><=ND^7Y-fBHM5Crx{KMD6rdu005kj zw77`cV@q9aP{d7t(qZ_c&F3PU>UBSlGVx+G^C7Y@+^^}qtq8(=UnIcj^vQ+G%!U9+ zHQJOZquL2oR6mu&-18ZP3 zho7^pv(?KvhyW$5$2F$+y?^uO<@)`V&)+L+q4$AK=&1}i>HilrbqpNn$D#9~+^V8J zmsG{IARMBZe}l9KFy-1G__hP2>pjJGe9h~5Ub^U)l2nJw5hu6*P#{h9?K>(C4eE^ILL7q&Ohw?RfxtTeLyVsx1eKQLUtmB7Iw8)v z4({%Ta{sy=#h0cvR3m^&^??7)baCVFH$UbdLzDiy2(ViEoij>71mFk`_$;VZK8%5jUf|T0(3>LAsiNuV4KEIR@g_;{tuZ(6paH1qP^mJ)N$D_`H(?O8*_&|UxRm|) zm&u&>a61TIU1sM==RWta9p8HfwWm%iQ_@QUFU+neaXCpc{5icGx2;)X$si71(jxWU z{I!CWU>rsNu3CMH4xOq{=#j4X-CO9D^F=!?{HiN_{QVO6HsXJg*Za%knd#siSN@@y zL;icP5BO=^H1mPF^TX31N1gRc!K4L)T3qGGfNyUF5x}F~Kl`(a=3#>?oqU>tKuXW9 zW$~;y`D_tZ6(t;4*)#6V$c^Ghxqq|%q*l%+(kfl`#-loodH2nFD@i*t{RnBn-yN8-G&9d@oj9bN*;u~ot&@9d4=LdN1M)Hn zN)cm-JaThcSz5(LuS@sv^=L2a36zBV(*E;&S7Y2QcQ|yv zAMErw8@>J0-`-_f@cL&&+YD! zE6}2jvTMz84~o8ek9RYF%?X$C?FL~g=m(b7-7^yu}pftnO;ZtB1 z4fXMD)F#6C;DThWy2Ilr3RPaM>W<^@`Jre7;!@Zw(f1&O_YuFxx=$3~R@gLEPTVVS z(ct|KI5*goC;w(0nx+1-;a}f1WWCm3SMEQD(r9x&D3tsT^>Io{WQoW8R*q9rKT@S* z=leGexe%NDqZ3b;+_Juz8XgOkheOd1!*2isSvtQ${atsQxwJ~?X(U07pl_+JsVgRL zJ7wXjPp@&LC%rw-L8gJ;*@fM#nh{4VsZ2A>#HUaX2z3ajNQ-!*A(%o9Gn98cw1C1= zz}J3zUWm~q*_KY)b3kTYzXJTY_;fW!&^04V` zM5vS=1NsL8wZ*u)S|^{$XIjRs1duLdWUIJR%Ab51`1QvA{cDi_t*Ekl$+c!1rcE`A z{nH0_i%0ItnZ&ERv>bbr` ziHu#3Ut+qGAF47G$|H~_+PTL>*O4g zz76dZ>9s(loDm=)FX%xXHfPi+-D->6^w64MRA3UHo>d1!Simz$iA-=Ww9|d_n6k4}{& zQsa@(qvgHh-S|r&K)$70%HwsNz>*`M9Vj~)9(ep#uRj3)TDOD?f2bCLM`b`$>?-xL zo6>b|!qn(`D)f#3oUQwi^*^`*zGuyR4hp?}TFjhu3XOd3`M(L>^}PBEz3&1$-Y$DT z*FL7}K01NhMgErtI|fZoZ8Id=vN_~;4Nx$Tr8HV~-9IXmZx0^ob_@TG0y8OfpH=!* z-+*;Twzt5_(7NVZ3Wd})M~$0nLSCEUGRD{B1e^_&oY56(J%5KK6h6n`;hg>=HJ0In zaX*A}BG%?uttr{5pH@i40A?*4(kvaep5y6H7|KEukP@D{2_1Bntrv|4#sVkpP4r>K3Izu*-iN7D(c5?_|nkXJ%?;#AIb>WMRh6 z#pv+EB0@>w8xlO;zivp=)tykq-1 z?(FK6$4P`#`sA7lacgO*uBxi4_hGwAb7}GR3OlG5AMvwG;^4ZYQgH^0VHzL|027TT zwhV+!KrKd(005#vyenBueL?bvw?;W;KhrUQnf< zI_;f0*&Ed>EDuWjolq-<$}`Pj_u}4wsG`}*wB51GmD-UNa~)0$lV)Ad?)x1bHw(Ow z{l;eH$689aBou|yb`2<;pYMn3XG32jl29t8yXfE%A){dQ{vdXaM&ie{S|vXvB^`Bb#*8jdo+QO5@7}B8}MCeEj632-zrlD0^`~G)#%NyQ5i@|({a4 zSU2-P&&3YjU}o7Gbatbjrqo+;$YL&qo~tKK;4dIEk0oCqP9Y69%eHs(FLslQUv@%= zMS9}lytkL*u>^cXYwz8X#DUPLt3}oTVkxlLQi`k<+<4;9_y9=6020IiFfr1->P1C# zJmQvXhC<>$zjx9~QEniS-|0b#ZG`?@qV#Sd1+XKDi^9ssAKiF#>*!^-{nQ-tWtrp$qfNOvfrc!?SGfiU^y zVwb}wZQ~mK#y6%X5h2PkFFm|7(WId`Z-x;bG~Bt5eh$C$$480)$vsD0z9$LYDnm^I*bZuC#v20Q8`BvOLP%fCD0aAjXB4} zhrr2&6QRHYgMX8QjghApV~EBB;Gm_^#nH*bamb||DR4}sCX$=KJBm;;;8l7uhflVt zqYl{S|JAKuBr_lJ)y>cEUv7sL!cZSZE|`zE#c3=~2SYM6MgnC;${+uts>ZEMOGqNt zZAKi_PYe-X0!HJh_?a*W7s0me;Xb+bMc~_tKd03|u+Lh&IO-9H)WYbWxvuYVE9VhW zcSD}+_7GEIXVU57G}LPH=4BQs6ZG&|id#ONlU(Ub(gm&i)xWe_p~5oxbW^5MDJ_qg zTSUtZq@c+!Frp-Dniy&kz4z#S`&0z_Lkm@LBIz(|Sjc5**5XxUsE3tVzs|=anwJ>q zh|{E`!f^(M21}HOviHx!Hj>Z~cY_V8T9YS_hnDn*ig+O5Qtc_f){tm7n9lA7kOZkf z2TCeA%_?DQgs2ze7VM5F{k_QK;wmg3uZDUkHqN!JNX36#HIar>baeV!Z9KF{2PT{z zH&H6FG`aXiV`IJ|HY8$CYh&*#3x@c&g_ufATGgUvJd2?i?o5yJZP9t^WaV^s(>Lw( zNjyr8SJ>j=&YrNZ2#Ml&kU_#jkfEr= zq{gJE;Zo@7BFr4BaCci=n0kSb;wP?@gP*MuPz?+P)k7sM9^SKf1u@(_JS{RhSLk@ym1VT7IVC2RW*28~dhR&Z6lDSp({2GO@ zp>@OM$GX-)p+w)i8TCA3YAWsBp_KBju&BxoVGh4e{>dvE+4i$_8mW;wO=hW8=3kFy z?l`LHKQ|s6b+haufyA&fV{H+MeSxI+qkoqVmU z2OS~71tE>a)5~4CFPdoCHTse_8$Hxdw{2=Tpf>h1)X-j-qBy9#E{;M+>ipAE}i#hrJA= z9jnDazA-L8F*Krk9ID3PD-p?zQ)s}XA66T1iOsOCn5SlV<0d8vPbY>94*oq9$N|Pl z4A}tqlCEwPAq;NX(;%netz3z27^(hXw|*i~(l7QcN{*0)Zd4^`b>Dr}y_PmUN>)Y| zyx$-eYt7=m_xXLtz+GMZ!NB|Da*Oe`W{WvyAHAsf*TG*SFxWuJYA`}!a6B!*`2AQnA*;>Eq@>tFsg*&`=GgWi5h5_88J)u>8g+imG1vK-kqyG zcDqNVCYdIaYLahV&NW!K>;(wJDH*3$jne*DKt4twC0!o%B7`);wccyP+DiJ?{nM?{ zY+9GM@WlaRXDv7TZ_l<0DhYk0+HVB5=J*cWLQVM75+i2a9EpTwSKG^ZCmWrPVpC+9 zRP@l~(0&nf8ngH{Q#mu;jab?9G+g==j%gJhexx96(oqcdE|F8D(dT?Q*inxl0rX5$ z`7I4$Jg^|yK*_#c?l@)qWF6ti{Kde=U_?r|pcJoR(u-Eo=QBh=RyWn zDa82bAck93!dC1OI6Li4m>4aQ3$*4E2R@PJ4TSbxMyGNu;hz|4*BZBau|e`umeyqF$l-*K1K~ z7#M^?u`I#dmR$tY=^oCzan2GVxsT?V=RIjhbKTZXr$cwQO72)%wYVHHf#`8E2bYb_ zI+?eJ^W?xHA>ap*P;91$h)Vwx(BsrMf2%x#4Bh|rJw-bYB3fZ(%S(DUMe_(8@Oix) zHm%4^kYi|$>ic?ifW*iAy!^&jJannuda`wB1LpGUF}ME`?`OHgAK>?$bgz-w$M1$S zks)U%!?<5MsR;DAADR%@!Z;%S49Mrz-ewCCGbHrW`@MLLBTS^X|EX`#Y>xR7dayfp zNi^x_&qhpP;PN4GJOnpLhBOvRZl0P*K3FJgT#_kTPeOr!Gf7wh#a>7Gr7@sQ1PYZ&bI`eoK zhsVcU_A95+k2!s-f5*Ds-+cgle(NA!qWK##MjN+>!vxRMSu>lx;&fTYcZeYu{l_n-%D}J-s+RHLZ7d`OQCT<1p7I zi?g1HG@A*9jt#()&N}d_Q8CPS#K`BATj#8b@$r74S_LEIvzHauyM0$M_5q?V`87Vx z9hl8f>bKlYGXi3N zVb#2opH^mPWz{KMyV$1@nU`=5q}lhrz2B7#LQl%r1^dzoDRkVfouePS3AtbFUpET+ zy$T&~`r0jc2sWCXjzsADr{zNaox9BIojYH)U<5_Ro!0L0IX|?5gZ>)k?u&Pl?Rkw^ zLm@i|%L;>pn~cvsiFQNGCYv}pIi!*fv6`8jNJ6e<-oao3rVh9Nnw|8X-BeMW|7u1@FkEi z=X#vVH!*0_1$YU59~yC>-e#!aP=r2b61d}8KbhzKQL4*Pw=f8jf9Pi{eSp_SQLDfj z-zHIsY_~#(Lxq5rWre{E&)|qpMudiwGLA#74uyci88S4!g-t~)XmCQd5j~B91S6FS zCB~_i(?K^3C@xup9YYjU`aAJR^i)BLKul#(&H>{XlFn+_jU2Z9q ze!5*VON|G=?JnbH8=G)mjp@Ie#u(`^Po$x&GK3 zTd8v%w?O#*dA0#@{NXlP;;UO_ZVdHa&)TZf`j;MPqzJrY^0;xjFhCkPiL%z&Ug&hQ z#%E@rBwcU2?RF=8dG8(M1+cpg`vfe52jqv2^$s&7!gAl5c%`W~rG8p`y{j{ zCLG+T07pFA*{fZF*q95O0ilaZ zh&DGMCT3+Z<>N84-fyHFwa_M5Qu zrcTF4g5J42PqVEg&Dv=n_l4T0PnL(D{)k>j39TDD*Dg={TzvlZZ{x>TiW`q%%kG?c z8=lWyJGMSGZ@M&AHU|3s({WD>?^jp7f<6Uz66`H{6U(?PdskL8m)G6r5B~ga9030L zwo9^K`&;s=>kxPT{y*SrJuDW4-kR0g5OOJ=NLtTRTu>A?!@>T3Ty)BlebC_E?TG(#8lm0xvJwlxPn!YZMX+Ep#UV#JmuuZVh z;Bc>aU3)dJW+Ig+8m{erp9Ljs&}A+)Q6O-<`2&d&}{oed5^H?{%l?I+usWTWsYsFqqhGZ{+;dVl(Xe z^QP>HOMt8Ei&gTh_3lG&`!P{l&(>+eOyU;_$ABe0fJ&|BaLTgx{^D6WfYLk`Q-0SY zSc5H2p-jqmk_G>myHC!xsuoR8JJvQ#FRKJ~Or5s(5M6AP)W{q?uo|b1^*XljFynY+ z^2c&!M=U5nhY4Q+eS?G+uOWt`E*DNWF4&U9m+-aX#rO_{zUJI9JR*16A={jpf%)bo zKuo+iISCY6dI>7H3Ovbbd?xeAXgUQ#KO#w=O8ZYJ$OcmpR5@t2F9=2gqE$(zedjkr zp8JNwns{(ApAL$MF{}mh$K3Y#08$Tu?{TG8QTu+eSGafku=mLc?WKd)i*%X1@4;PH^>l-fSLlbCA00==^CD`g|>|75IIG-I9LKWfuJ5 zdD^gZ^Z^S0-Q)3@;jCc_bkv=A%gxDtK6TGx`mF@bV` z=TC?6y(vqfbYZ)^U)`=7&$@5~*T1xPqZZ;0zZ8^RTa)l(=PsF={DdZ*6)|~BJY)-+ z#L3P?g@iQODNDlUG~l%I8{qPqaV=vwU#x7XBo0flli(lrI~_${s$?~;;16#e6w{38 zPtn-<9#IusUL4IvZ^aw~{QwyrY|RQ8Y09n@5~Dz6!Gt>KzALB9AV@#k&0ibcC9YK( z{{z>FESLbXqOw)uM|$$T%>;^uqll<4jgEt%Dw&bY6vdHPR7B-HEM?^WL)DV)laHL zN*wWG(u&6vFALytZ!b=6-WR{lniuu?_+g3uuU?iT$QO;d_1ce3bp&~yo(SN7(jVB> zHOnd!UtHFjL7t5E5`>`mx5cl63Y}+Re4XH{EI>tf!EVa~Rq5{9EawTEq>fGI_l6ZL z{hL*X&J6Z*&hfiF@FPZ{+L!ytZ`aaL+aDgwu4yp}i^%?1^tU=W=`lkZX@{G=r!#dv zAJ0SEm25x!hZzVqTs-&obDnbip$C`Ye|@ABjdb~k`VR+!usjF1@12=HHxxU}`nhiT zkD~1TEGKyYT7+iMARh$b>ck=ZZzTH&FY0?S?IeO z9GfP+Awu)7Hd+W3off!;_l`x2T5znv0;FUr!((Ud+S;8IRQ(rKsN< zu`<>_d8sr-=K@XYIpz`D2-R?)es^(Yg%@GY!JhX_${_J6J<4aTO_oW`@eri)@nzy= zn3FbO;+dK$ACyyTlw<@kB}QloO951LoF#EotfCSl(j#!`liL|GpqdJfUYOCuSkWNA zh{3Wh=GJ#I-g3%lH=h(;`N9C3f!L?z)(gK|*MAaIC}IL4BH(Tuk-8imBapuG@w~WWRmX?yUUDu0WgpDNa2FGilBo5~oy~PY7P6!)g9yRpHK$H{~wayJ*(6yuC zUoKQX2k%q>W2hZFeR|)E-6TT!l0Z31He^*;JRI(LS=ZTP@|(c>HYyQ>UCd{;TKFB) z!x#f05%x8AJ5&^!1wFInJRTipiLoWPiRlWz4$N`PqBJKqv}Pk`>6h-xGTqVS_x6js z6eQm7ADvMrckUXDZ$5{O&whVG4SKAuvR%WjahI4C&xKCh+lDUv{kQ$o2qik3n-m}d zLNB|YPj{{vR#%?~MnH6ySz3qPl2d#81HuJ+U=8+Pzn2^AiL@FW!kx?gWh8Wk>n$1y zo9&Wf7u7H~iz;cDaM_nFBKtLgHv@z;&^`29*E!Qk-(-YEN#5M-M(dMVRjTjC!_TU> z7MbKph8czLDLcFG8WBhv%|c|#Q$I|xZZ2Q538>ODzOu{Pr5zX@y}_y&|C7Y^6!+{K)xL2289a1_{e87a!dOq{ ze6g6j&-?YI8@)S_zl>wQuJ^UzG;XIx{*teFA!7xe>Og1_?CHsLaBMRl7x$j4Fnn9pb;jI|9kRLfHDZL;%Z$e>)Ww{Lyr$LG(S8M!r6?x7z~ z1MTNT{%G~^r`qFBa77~HS^rt>-<^9Gd-3-BbhHShj3Zp1kbtQXdK+5x*Go3|^^j$N zOu+B(tYk#2gvxviA?eq*N|gKt;bai-lzN*BxMUp8Rk?6`|FA77j}a*8DpR|n<9JNP zdy|d+DCvI>XgL0xK$f|(aM~6Yn^BN_JIiRjSbBG4zuePdorZdVIZzeBHcYZsZl=O4 z#CSMqChH`$W{5$AAT>4*^I=iHCZ zy4*>Jw18Ljwzzz|^VEf}S?bMnE(7qketgs(@07E~dAkk{iY-i8(V4T5f0Z}G ziP-c<6mB{b@moe5O{##+j!+0yIxua5=n$FLan*m%-u(c}P`=9vLuKj-1v86GSB>78 zyHMD6t$Hr9UaXN}CSy!n;rQoCpPcM@lvJ#~D^@#CqqacsM+Z-_7Ms@qVLWQR{@PLV z54OON@caaT$d`fa0IFcr;)<7D;yB9WVVdyj265QN(o_Txov0@Bp07>axND>*ikX6i zwsH98NZfunzzUYnS^R-uWNAY(^3C{9E`c}lni<@M9--iw{469CKT;9|41XqS@5QPA zXGWU7;qNPE?gFc?99;2mDw#6B8o}^g(QkHhO@nfFxFC)+5?d$5y7X?)Dk@YIlxmP8^^1VV#DU#ybS@K7^+uu#j2g1RcD z;;|a0H(X=s2a`l1jlGcLD8I_$wwkI}+joYJTQ!<-BMna1;u&we8%>pDN2kOS(yA3h zN?y2#Z<}hT#iCov7N6*~R@ihy;%Byqx84Faep*2v(kZK;_d#M=3&yFLu$qTsCaI-1 zV~|filN@$p1g0-R;=oeY2e2c8j2YF&)Da?C{=CgEWn$t-7=i&999gM7#71Z8rnFjs zNuKjFzcJPYv6wJ=O|j>N`h66#O}11CqTF`+p^IrUK3;Y1ICXK@c*z4a(i1y1^y?U# z-6ejVY)W={Sm*gpT!j+Tbb=&yq9Er{^nzC0(y%oeN&_^&Pz%9&7Fzv*R0ZtfZ4tVt zDyo=9ilG@v@R|7PynJTU^E7;2(!8mnjXH_9CrJyE2C_8FPg3J(@sv!SYQ~zxgg*ta z6Pu)g0AlU>dnrnYc|&9=GU^y%C8r5L0>n$H3PdSwS~Fr;F;Z$YHAG7(v2kIgsp}(Q zC1{E?$Y@nP_TvAC1yC6)0prm828|?Tbv99%Foc&EvyRgJqX9*tAX6l23rlgif67;Td!4>mK%woxtx{IsXUu#c-;ZC4sR74f}R zv@uuVf0d1v0lsbDqBTMNzH-jl6Del5i`iv)gKV@n&{?vZp;oA}a<%lcF7#cMW;uFs%7ntTKriMDGXL)ZQA>osB0Os)IiY zXflPcR%m<3%s}{6AZk;bh--+OY$|0X1&PRrgd;MTy-dJf+>Re=M4L{TBx5CoGr26EIn$t`hx>{>r>m*I z7bz+gsro(G_6|%ll#y;!Y}qDi_A-e$W-WYL5BWG%H^90)l~r6DPYsv0HHb0i0d-%) zMrvl7yuBHd3gOgDHlH!NCMeFP7+R{j#@%&9Ez&+6DAwEUwg-UVo$?0a+U1r@|+@lPAIK32|HRbyZz5d}|EYcU}nY>Vjl z0zT<}q45QFPH1a!tB4V>R;Q)i#FwD3m$YnJGH~_Dh>dBgsuR_?h!Ww}0`TUX=_SEn zsfiR~jqIoM^FlSlVFRz`x*-_LOpEY}LjgJo!_kl{u$50};-*qDxFV?{rwm9=%JEU) z)X1d7XlgcXEQrz|Z%)veVk$IfK0ucsLa!Mjf(_0`){tuJ#(r;|)a;t{_}hq_ zjEymd&)K%pQEP=6dMe(aMJi`ojUJX{jbWe38~L%nsvn|sfLa1Tuh!fkDJBJqmaMXN zaD|^VU*!L-{Au@fTG>ol1;5Q=fsPEL*jPw7YBg9LjTT<2LQph5*pvnm%({mGhh9s* zLVW;A7!j;|Rjx#XCBv(1Us?mc*i)PXy~#>v!gBqm4St~)G8AW@hQX2+6zN;k-%9nh z)l3}As#LegKLx8pmMee(w&4Cn>XbZ1RGl2G73S$A)Z>UJOG1+1CH*i=YDp3XyP5SS zNzDt3W1n){ognE*EV^}_jtnLhHd1&N4DEB-j0BeDD(hMogb4(zwcR5hCT9>D!6Y@H z^j^k1_PHh5fGvM*Us@MiwS+xlzEY@u(4vxEMtDKWvyX#w#9|+!->?FW8m^E#KqUxq z8SylQn7Kkb;%7dh6fP_d$S;aWLjhCLj#_&9tz{rclu2J)@q9DF$M9k^@=S_{R+EC7 zbUYP>EZR~uTCf)}hSsU-B7uT?Bl;sBA3_h`SJnur>B1VGZ>a%u>*?EQxbiv(OX-wK zGBk&fF+*p}P2*Cb)ON~GQd(=eA?W6sx+5dlI3ii?JbM4C zT8f!u%0qo=X)8O`%&sR(0RP}qa2qym-5ZRdEHM4nq^Ru2Yr)|lJ{(`(FkI zRwzOWCEU+em2nO2RlT|uy{0+6Wo+1(gK~w?nx}C*tTu{1k|}NWEXF;p)#Pf)@=O>W zTL;txlC^kNYO~p0l^_UcmLztnGW0B)^eTQ^oFgZ@#G>Ce;{*b+)svNUESTB)W^7DjZx+BrfLc40MSK)J`rIk>&pS0#jRmEFX%*=>)YmvP;rHF3>3VtV|S}Lzr0g_HD=WN<)B;_pOf=(S-L~fdS+YZ zk^IBlPh1W*4z>5;#YJDp%FJbNAS5a&^5Wtme2#6Q7K_*h>@Iy95gXK(yTlL$0Dk1a zkWa~Ejc27S#`W)nj+OmrkBar|GR{gGS}gbfiDZH%+o|CxS#%1H7?nF5_6DE=>YpWz zBv>oPa;aLh{<{v@KBEM&f*DJlhCnK;tfPSt1ndXE^eHQ+GTsqPgK1y9S@!WiVHv(? z(KcYRrK_0UHDVqlU>q>=_s_3)A@LS>W7*pX{||1{O15)20-MdB4067^M2&G8iuhGgA*mfC0n0=hUuIQdp zWRE!xlw&MX_s8c&T`X|A*Do=7IlAe5Z-ol-b`*{uSNrK{IQcV%=0}AbGbqwv^I@i+ z6wZKT(q*F)Ol((DQr@c09_|^>)E@>L1J7&i(}*GMO%=d}kJ>KQ3uDiyI%V+FYD8bR zXmrdU6DJ!&y?;C#WX`T-7mZFlTvfN~+U;9&9kI~R^zWWG&JKnQ<)VB zQf|fT<_ez#CcDfvj+UW#>OQVJor(_`ayQSfpkNlld|3Uh-^l4)&jS;fs*S(TTdb_C zK^Tly8N(6j4Sf1<{^=SGZvN>kVQ>DO&E|RXVvdO^2BV$(xFLh?@2UY2y)5XYUk$WU zdJjZ=1fJUG4Bp)Yu02rG-{wRCo>8EH0v2rqf>9aRTMK+t-uFA(&Q9*%#Y3X~Ok*dK z9|(OlB!@fiPy-)6Kb1f}X?5Vau-|aM%@*2W@jXuPWttj&1Wg~yU=NQIzleu}a$%Ez{ zAMB`QdOiaLTnp(V9LTS@>aRQ;Z_`fdzRyV0c-!12OvRQU?HW^^1bw*?g_>Pc)T{e z>riSst@EWn1&x}K7v6B8vVE=UD3gZb+s`h|rY22*6w$o-N?@J)-uX`}HZTBN6U>!e z($m~8hqE84wsxh#oM3=&vXNlya^Wxm&qFS|4mbU?d$eldQLkX$3@$bTGFgmd*qH9h z26K<|3UzCD~<4~~PC-J{Z%yiZ`abrajqSH%N%pV``<+beqT$hGU6LFq=O8oWR78zI10sc!FA&kYD9QO3n_8#Xl6G zJoOiKi?`X_Ci^ZrbtyKH04GhsdD0NGJqUkY{0k?woe3dx{T{Kr9#fqTFMMo{^Z?wy zXsGx$d#bB7H8+@#1zyM01sav6W&5*r* zoYzpKcovNbn0?FK@TFaP8qJ#F+;lv>;r_YRkO9+I-=JNA zMfsU@Kv(DGU>1?&S8d_#VuA85(D#oO#Xgzyi)4ikT2X_2C%iVT@OqVNJ zh3Wtuq@|MD1^<>rx9F;SBwo&v=Ur$EP^Se!_$@hjgwWSTd?xh@{`jAYFcT4f68w}2 zV&lz{&A!$#VuhLV{ih{54R1*Ju&!J^|6BQOQF-pa#SxRT_Oc(bmi#*_KuMA-fn!D2 zvFMwY!Hna-^I|ibOig9*5X!?ALK8ArO2v#4O#WA~8c7BQ87EncM&Z$-B9e)kIg$MD zGr)}R5Ly6(f0lw#7pbRpjd5-Wr>Y_%r|Vp2T?ICB%`QL+aXq-Yx|)}FAujkdpS-UK z4qZIvPq(88+BK$Qrdwl_JAZk#2y~YJ-{cJCA^fOvn@cI!4*#G0| zoueafqHf_%CKF7IiEZ1q&50(qZ6_1kwl%Rav2Ap0+sW0}K{UMmN-$fKCR6PF)#c`5)#v}Hjz5FS$yp3bZlf3hRjUK)Pf z=yH5jl zOaa}$a*3;Xt)!+dT|wIp-;Vjvn5+&h1Yt_d42T6F=LeAU2JZ5q>FI^f9R*EetW`TQ zXmB31abR4e#cOqXJ?_J64M%6P<8>ZBhHq+#*T_^RQOQJ8Pi6CY{8K0N85vOGo2*JH zY4{)OnjYT-J{}cMuX1n~nY*v6j~v!)(@moAG&d$m)0-UmlW&=NE7S z{BXkXX>>X$sa4^A>~`BHG|RF1EDmkgn`0@rugjU|SFy`YY8kS-zh#@u&Ti1R%7pXL zq4w__d<8jDO`DHlOUhyRU5UaKzpakt02y7ewQ~s&zfES@q0VoJqLMciBjz-{C?|w$ zKD|M!a{VfFi(qx5B5n zU%2w}WKTuE0MW})&J%*<_XxM1c)poq_ryz{*QeA}ag&WU&&>R@*BZO-6`1`g-`3@2 ze%)#7JMr4l$I>Q*YTeT9Dg)b@?GE^79CBx-i-IbtEf$bnZ9>A$LFG{P#?s3|_^e)1iiY|oiB+s>ZPeD(H;yS#Jh&u^-I zf5XvTM*QGdxK5yWE)+BQx)b0ydyOl}gf#6zeh6s(%dTTf13#|$r4N~f3U;0Lg-kj^ zf^<~w6~slPngF4uUDFtBbC=^`{8jZ-)6}DEuTtxj@V7;!U4YvzaWhk3_Mw^z&#UD- zzuvszs49WKgWcrI*?!aUFZuLaes}JVzwCQW39Vh)ONN4$#kNJ;Yk_(!SHwOWP~YZ5jbELB zo7tbvH&3yXS$*H__)5=s*h^X4aC;-Z-iWX8F#dTS`hojA8yC@ob-ik8q1fYto zvWMAgIeAIV$Gy2|%@&o?|ET-sq)E_h&1tz>c}~M)b|iQrI#{n>=@l@!9~ zJR~hrlZTAPIcRfl{7LdXgf$5Qh30Z|v%v(X)3)8#(n5b2d*f{DYnFnZ8MezUTMo`F z_fE1?Kl9~#Yp|ZGSo@_3+|3Fo75GQezDfmi18-y|clscjyVcp~F*Q+H>rrfe-18{s zO+)vIT7)>dFx(Wvk3~6wmo;Pcj<96$x>pM(m|J=2QFCzH)0K+z5Rm3X zP3=m<#|Shb)4@t0?q+K7R?~4*&qm_vZyHXcfg&EL#gsZNy^7jXgfU^=TnaV~=WtYTzB} z46@+5gWcd37t_;NYTsLO-yqi0q(%Ia<8-&L-?8NqdxEQtudM^H3|8E2wAn^8AyH3(?d3qNjK<^ueWFX<>ar;unOIA2jl-e1DO| zvcDQ1_ka%GuqEczx(zTEb;4x7D{JAFhh*r-p>PbTjL_Y3;1gk}ogYe=B%mUmFWe zS2UHWTk2k>F&*|wp@K1p^Pb!9(l)xKW4~C<`bP83p2x74$`SDCA z@|BI@>ONhM;M`xd*txe!bh4s>re#RzqIc60BDmA+LIWTy7scYy438S@s6(YBq*(O(M=IR5Myu+sov>GIt< z-{>o`S%dd*gTk<$9K+t4GLgcdkAbDG;x+c9x!ixfD5{G1ffbOFy3y2magPAg_!Bd+ z$^6r$yg`E#q2-v_VJ2dWbUsMtmK;Ia=jbkfDPX~?#x_niiQjmH5g^%a^V0LGd<&1+ zSh8JM7Fh%r?ne{gX)x0m7z+uW{X;;q*vu~d{nz0&#d`w)fT6chq=7w&o5*P4^?79mgK{Qv{{1;1Jn<`t5Z~!QKj26o3 z9VHYNKa6(R`OMJcm`U$|)S8h^E-|V*1!9$u2)L@9UMIz=6S-YG>5a^(b0ALz7BqL~ z90Y_732;?wo_fHci-zE&{@M{j(^5P(HgJ9P;@4ef;eL>&H_~a1AqrRTmJ@}k#`iUp z;gmr?L?~fg$RMNCZMDxw5|7Baz5C3-WP6AOMBofODe<>f9P2eTjZ06Cje&1-V9den z^i@^C;&srN9@A|1iSY$rxu<#xv=RD4^zQ5kO$A&hhG)-rl*s3#wG=z~=z~^5M-|}{ zX5q_1eI0~c|tg>jpjb^cJyaWTY@$e|fzV1mlhcl9ckkkk`FBq(bx*LV=W^y;HFR;@`WO4vwbPnL1nJNF<~=n>w3Mqi zvz)0Ex~-gKithRbE1%sqJmcK=lm9x)k}`DihFBZ=OBk0{B9ekGC$J&D((>;nKSb71 z_d3cZFEJ2k?vK{F_OxB+A8cn)3Y2P7xg2*2a)Po6bY(2jyDjbS9&N_C7s$xisEf(f zsOOJeYb0R2MmkD{om{P*Ys~fR&9`pCcTPnfq$^}cS2n+=^_6f4M!i(6H##=JRcX%(Hd3Pi$CfkCI^4--!=@IZVw;)|B ztZeSzE?kSS{PsZXm6>0X^}1^=I!?l-!3Y2q4~gYS;`${lsvUp#Q=25Z4oCDTWuA4X zr7o15+=Pd3^8A;{rv7mh>rY0*Iy!Iq0c8|oz!f{ay7+loF#YYuvN3QMT)OtcpoW^* zSR_gokVY1U&=@knjsktFF~^EN&Cn*(x>5Js9b&^ztbTZ^c}GN^iqmP->ttCz(YzK(Mg!Ao4{TSG+Fu&6BMBPgQ#=wYhw%Bsg07c z?kvS-%!laqD<~$EAz4PVO=`uWK+jX2L8`TjdJx|_%Y#vxfUN&wIvb?ugK zT|s!ERn+5D5ET&r*E#f~6lQx-V}4%FAN#0niypidB+RKc~);#82w?!+Re< zI=2!L1l4?I7XO%~cGR%gMd(=}uWf6|Q+OUiJg5~RT6Ka8cSmRpAfe0D1@Zzadyt8} z6D}b%FiU2GVS?BGLJ&j{fEz1X$&>$Nj3#{Qn7KMnq#&>q{ZSV))0p+TTxcBvknC~L zpRr;SvjLqft~zXb2pZ`BX9hDN@f<5kpfKzcw;~6tGzPu=51j&D7eZ0Wp$+T_CV>JK zH&xKPpa8_gxl0Kq;f{oQ8Wl7*2-Ek!=cpN^hSOUJW{laR~{fFSuYzhk7&YP-$1I_Pv` z^*{gWtm{^tzBiB=jDtDCzj{!HhJZ_-^U-sao(?T16NC>CqC&)_BSvcA1$||wK)v5& zR0Se5HidTm{#)4h*`L+$G}~ENMSVd!^Xs6wTnykibJc17ha!6p#|cIHjb15-`1mTdUD|2BRhK7?z!PI9#5jT-nV)&nBAoA_p{RJTO~-jDWRLnXuK{A__nTY z4<5vIZ=$6@8I3h@jsn`rJqYZ_EBbOORH4h%TuU2l8xkkPaGzG8J_V-im?3 z@hObd@YSf$&1G?mLf3XT&F0T2OWc~+TX)5&jia<5Mj;!^YHpJkl4!Q`PNrZ~BFtA8 zSoxm^bW3Jc|1ovW3X@KffAPxfxAmX*uW=Jq_;Tk-{AzRbR`KF5z&CCDY=O(Wn@VYU zbr^Z9R$33j)`4W%>NL0~ZFj2zAf^R6^z zOuMQSp0_=ywCHs*$?^LUp0(5BZTYLi&j@{sBsfXN-Z^Job&eEzZTHc^po#2j`9elF z*Qvm2!OCbW;6}UO@~aw6G;Y_&W_tJI0dsfF-hj_3GK#!sSXQJ~Bz!wg*{?lHoqCS^ zVjz02e^cUB29ufGv_scIyx3K@$9z_cCplO*6`dYIVyIH6$*>rYcnSFRX7=q=qTq|@ z>PLd>cZPj*;Lq|Bb?643dq4y=8R#%BtL>XNil|KN4MSuTN5CBp$D9Jx3qNhnwOi z?*LnQ@tXhuPwAEeXstH4*T0C>QMXWK>b*j^{2_@hjPA6L-NO%?IP1&QO$$nA z98SU&QY~3p)ei7q`MqO0v!k69F{jCgcmLSiv$I8;pa)PonKUchgu81y;yHXl}^=qUUI7J4wtdnEF+#RH)^P-N0cegh($R$ za^+QZHohrQi{z+&wOoGU0CKU@&_q^Z$=G5iSlAxQbqF}6B)@N`Rf!D~(eI*Xov5uH zGB=Np>+R?zGi%hc!cI|OKC))73u>-b{KX@C7c~|~o34AYvgrZyEezxZ!K5-#wdLlE z#NSbA4A!J$%@3iccyb zVq?w3t_rb!;ve&13LEz|35{dCY&@}dKm~~AUg(Qkh+;9ctLNa<+H3JB!$SUQFeNV` zQF$OOu*>&${OTL1LNt-7#ru9;fT5QKr@yI!XUgiuGyJIZNw+t7pOwB$3f5|Lo)%s^ zHId2D)%eEQRJ1>EHmq}9&;5)19V9C5pF(L6`e*@DY*cDE&CYQO#~w9MW}^{7kBIy% zmG*S8>>kdKf2Wo_OS)WCmF^kWdOFF7ch-7aslNx9_FFD&h-(-m}mE8(==xiMxxM%xLRJzf-wZ%wj zv+whr;6aDOz%6lHB_K$m`^4qwJ}`EO?1f^2N`b&Nqg1eogqTx0Z>eRI0;hFmmCro#BwI3CqFT@OhxACqwWdrGorYX*qwFvQjKt zv{l?A@cM1MXl)FND=GP6^L*w9n%TX`9j!Iw;j!9`+Q%m&$xw8B8JMj1ZNMnQ8MpHJ zN?u4L`U5^EBbAHbzYHHPu2=A^r@6#Jz&-B6KDO-CtV`ZbU%IDQAZ!eq^?V^r_cs78 zmowbS1@-UP1Yzf6CGDk9ORF5p#MjhCi`FuSUsuhw?cdcAD?%?tRpD6UM&J2Zilu880Mbn$zRCLKU{bOpfI=}Xp%1!2F8pAzLu zNEOHhvUu!?GX&+M?4%9= zw7-cX-l<*O&m38T0oWSxO->g{R4%fQ<@Y$Z>x&{+6h9??!uysQ{Tn{3oclXI$Cqv2 z9@{XcsG+++ObS2q0H(%6#u|KT!17lVoH6yP8rGg|3{{9P>+B-R-dUVq{mMRibN~JG zFGsQWm1W4Bq8!t=Cj552uf^JvE13_C0m)j&-Zn>NNU()JCQH;XsbmTe4-sUGS!a3% z!ud6YRru|=88m*L$@3?gx%kqwitG;PW+WZERf{lNw|lCe(2RxYd0`2f%uoPB_SW6+ z!9Ot0xH{V3hSV0v+;$4E4JzY$F0;<4pJq&$jPL>krmtik)R;>JruF0@r*;$bl`>Wi zb2-L)rht=g&t=`6j@V@Bk%j;O2{aPtFRXd5WsFr=gyL8nSKdLFon6tLd*LOnBsR+2 zZ1|>6SGqf&m%H~5v&W+<%;JJ`MiZ_|y_C!O@zj#Hdp+Gk*8gc4fYaPQnZIo=Qg@Fr zN(qIc1vAC+=Q`D`6K``MLZ`)*<0`C9;+Ju6s~sZ~AOay5RH5v9r6JJ&Sa9-XKH4jq z48{BYq=Z*`I%!vkEr%I0o?iR$l~UNlu$wl-H&*w1GqsNn9DoG} z!XKU{uO7EZ-T-u2$@dy^Py!?_GopQ|^dO=MI6cod8p0Vwv*qEo`n?r3gK9%oCu~#K zymv;h42Ho$<^3-<9%xv#q71DXKsi~w$T>oIIA)&YZ*uK+?lZZ4c;;vBVbc<^gaP6R zhDi?w>1#sqKPXB=n_ud1edawV4N;V^%A#`0ZWlaKfjg}~lB z5e#o@qTKrX5QofgM72Pg7thf?zDEyJqnq{${c8UFlM3P?F{Cke>Jv=W_ zZ7SW>Fz97hB87pyD`x_lv+>Ci)rL}L#{~>O`E{R;UOspP=HE1Rj@4bl4jRS;RN%-NF$} zU1tyME)Y>_7&#voY}KCe`<*)#SSUFxQL!p*f=*u1KMzUP zC?|_q(ghmyCD9SM)wbt>_G6vDC7FD8tg=N+lbTJHO<2yoa!O^Lr4fVl7HFMoOpVoj zFuTzEw^CngB?)eatE$H5LuGLn8!8OA5eljn>^UC%umOzi8k9g@A4$h_vjsGr6kg;k zU3MBS9bU)fq) zl8RP8h22$UtLW7d6xWd|`G01lNtUHb_+b+&c`s~bEo#*Xp;mLy{?n&iiA28!4_}MY zLbCY=R`nBRvV`|%h2)YJp&;|o%ihG)llbIBUUS{S{hQ6%CZG_4|aN%s}pB4 zi7IA;?!KDl_@~|M(ueQ*!-N0$YEY*iiK{PWW}-LdM-AWRW|~sWCUIA#r+8 zxzjIFh#Yl_pJd9LBGv3HFRo4_#ZIv6-~h->Akf0e`W9N8Jix7cQ?k@EhbD(i*GJ_+ zAlE6^rSz^57~?l#k6jL)z>2bv-Y?=eM;`heFmSv?Wdv0&nTGkN`L^!VjC)pKGZ2t1(vS= zF6e1JTS3%KvRzwndzRmPh(T8!MH9mljB!_zl`QSYB8)Uu8{M&oWhGppTyQM7IeYm1 z)a%D*kzQ(nF3!NN--~IKFaRJe8I-cKaAaX~)`^n|lYqU*BY_bGMLH1OVk6vL&+GT*W7K&i|j-r`J=sQbSBBF;K6oy&KsSrNWiL!&D!af)DlTl#UPbFCriSfax6KWFkmFL z7{w1R;yLxbh$5Yd5S@r^{halxt=anVLbK`h#P-_-7^r6fy-YL)jVDGKFq(gKQ$?Hb zYV6v>t{>~_Ik&uUeGbmi(d04e;BRG?!)G)kk}4jPM=I$4Oi_1(-U`v{j#f-w3@3S+ zq9S5NqKhI$6!=WZ!haSkPQ(0iS5G8ud zbWXSEw(53Njs=Pt5rnm#rcYK@EyPM>lTtzs|8B5WApm(VOn|a0SC`1G|jFN}s+6PL^4dd7!&Ez9en39YGM zaAWe)baYqYZeR7?tq;rgY;3AKao(rR^!Bq_S+h*O5Jj;Q=e{=gVy2k051uk`q>vP$ z{s1gvBrZHMIP0%*3W8doq&kgAykR0=*;T)Sz-t2i=0lGk-kn}$=1f5pVg#%sT>uSt zqE<4f%l&6K|5z(=Grir~%hgGhA5`1*YA6i_m9OYDzt&T4K)6RD!efqdow389>h*bH z&ESW%XY=N!9gWv}_nF8~P1#GIFg|BHePy`n6Gl$;3gk@th*&R4LX9#Oj*Z20=#0zn~w$_{P ztdlrMo#3Vu@QbR!r-FciRA9Mu=A6Z_KzIf6dXmO6pzAn_oGmHz(j*bMcw{ZsYuN5? z4Tk|bKFvQynU{o5eEo59b(z?V^ZSqV_K&kdlnm8jsw7r9X>fSKj35n+i&PM5I{ePC zTRr8vt`d+lfQBMA^V`2`73bQa9Ca$KG@(Xw<`;X)|Nc!t2VLNp0cmDcSh%-Z{37$_ zBKIC-9-v^JD0M=TY@y$#Zpgo>TKcr7Afd1q`FMl++Vd{EIzP{FU_3sqSr~hM7S#Xk zYBT*KwdPZk|8k2Aelic+_W)g&-csh|z2ezgbDQFLMVZ!Hn7 zDB#p;jbpQ^YvSj!i8q;9KXL;6aeixQm_v;R4f}WY#=R>G@8eh->8rKOTGwVPg)=u0M&e++$*wfgciw$t{VNtlF#>xRecq;^b zq>=7k8!Qh-NjWZ64ZADRJHEcPNKT{V+qT|y`^PfC&aIYKB~nCN*Tbi@Q%A#Br1T3t z|MgGur6R^T?T;Gohb{ve&9?hdmJ0Q3rA0?^lkp1~KU1TLK7ZWQArxlktY|FbLSoCx zj>5zGxkc%QudH-8Yx>!Z3*egrqO8i&!cr4G@fSA{uQ>C!j1^07Unx5g9PN$rsII>W zb<$TENB6TbEnay@k1&;<(zzXyT;~y$GCHyRP40&_i3qOV83L;?f3I%Gb>t##smwFr z)}J0?YhbX{kAD$DHw0NPr>$oJ3L6rjX2@ z=A3{T%wM{pB{JXuL15cUMbo(hYGZB%q#84LI=8X*jSMmQfbWw6{p1um;J*NSbN~*Z z)v7PLoRx55=(w2da*`+T;Sto-_#y|S>C_q5b_E!t0?f}&-GXW7m2j%nkpO=g3E>36 z&yZF~|1$qI=Ss#i`@W^U@%E}6=OxGVCcNM~>tKe5_Z-LI+S3EfajN+ABr%wci{S0` zN`_R7AM@L-N;q*lQ~u#)KxPzG*EQCgSRz4i5ZTt0iD?vNb4&K&z6WoOxP3l|n#_NIID@!g#Uv#DDsh^d_57(KEJR(M6egm@oOUuz1oaAVAcW*p$AF0 za>+ZW!@uz*gemb33w#;A(AICXh?zYSexycGS8G>|-2c9skdchRmm>YqzV)(?%kj2i z->m&j&dyClUlfHXnAY36YnB_6$Vn|BR7$)w;n1;>Y?g#8D{ZT71wCzdQ3n6}5r&l4 z#?UkeVN#6v(-`yB%Egpt8TuO5+4~vG^b=MsWC8qTeAHTstcirS|6O{kWD@@9if4lu z@_lfqsDIoFtO;Bt#vOR#a>LBW4s318;Ryog5u=FQRZy%>oBi7Ki?ivrwKIp$lPgCj zvq@i97XT)6n22P^lLmE-vS`0dR4Mou3q?AR@Wg>@(3aV(-9Dt%1iNUjCtfq zE9o-XBu?+r^zyd;HtvPT5Z+kwkQsIg@x{9@rH6MvRX)FUJ^_}wbd@*Rj$clx z9D-fuFIQJr6|UZ{kMo>#X_`nztT(X5vumQ38Z1AlT$lm=@;?Y?%BszZ)jJcEd<{Ph zJkpsg7$OUFuo>8;E9njwBRvAztKL-okqVsu#MNed0AnuvYP=ro0E+IfD_i_c=Mvvh zRXWu&sdRy-aDr5E@L|gKZST#L3@AiM9~i=>N=s5;{;kk6nBM)CM;Xd$q-|-t2V}vj z^ggE-3d4?f^}A8uAZeum{@*&-Yu!C?0D`_Rb7R6;JLHeoH|!Ca%;MCegTzT5KYvUA z(T*8QIkq9Do|`(#=I=44m5ojEBZwc^NuAx>@%uz`2z{92@_srDts z>n)6fDi>p3gQPkT+3NOHMc?xe7$16o1go^c0l7;FqJ@1EundPZF$wKXF}SX04BuhE zV@YGne@cbnRt+b|_uGsXL8+i%FzE{4sv-!92`9R(we{ZWU@Z8o+v_RcnZ zzmW7+;B=r1AZs-D8vqz~!2xo1n~NvI0`ja)zU(YrG;m-D(T!R>XozHCxy9Oj$|ZH} zIuyy`A$C9Sn)&$t4mT;SqRdK2g`Gw#YbJ4TBq{z{9iSGOG%924SVnekMWMXuP3dw<3K zm6-SO%#ofurw&g;8U{BA=%4vzCk$=m>vU*t?NlmCKIW{?5wb~t!6aBWnHlHKm`s|$ zi`&$Q4v3n(l%qwjiD~Z(+JFyUm^u1$P$=7{ibQV85dtGm*Gx)OPlV-^FKf)Ge_E6f z1%oM(&V{u2)t&*25eM!UaZ8x!zm@o0u@5PUi$v_(6;*4S(*UN62#~?`&8u3vf|VV7Z~#$b+4ALckP?B&hAB8E z?=JUP+VDuF8kGv;LWXgmCsZ}nWy1?#Q1noMd#{cPN6zs^q* z{mD_@vCJd(+M%LKCUQi21miU)PQay_bR;2KN}90d?C0L8FN3PvU=Ct#TpG!rZYNOq zVT4K2OTQTx?!}4omh6iis;9oEI~(G|QR>i#U1FxDXXxV=b5U{nsXlFp-5=Oo*;toE zhG0bEXK^siaSgmd!I^SO2p3Y4@bS33)f*j{J9S++c3q5>DRCSZvQj+$^!vr&h0xNa zLD$&ht(X6&!8_UxZEPh!Mc&DUEn!jXpHl&* z>Kzf=PI;+@*eL`B!7Fxo=b$3~oC~XwEObP`eUs{0D#JJ7bQdjt?>aM#huPgFJ!!4F z%m@Ommt*VeSIY21(UEWpYzgg*=*=bASIWuox009fN`@&gfIgSrg@?mf!W0b+g&*PW8y^KAf$~A`O2k#Pjb#b10AY<^`SHI8WUnqEHntPS{DsFUx0wv(<~fCZHlg;5rTi4Qc<0DgWZ!&3~a<2ybvwnoy|-CdY2wP3r9 zUt~>)zvSQQ);<5#0UgAwb%Bj{Tl1P<2#z}qh?RdNydG!Up%7#zGM)cEB}I@$(v)~U zhSvCbu_Fiqfk+GQrwzuG*N-N6!P-%Sy4=($>?ckZrAWUd2- zQkOTC%%P?q*(Pzk01>pB8bIAlSjNk>`pHmU0F(LTFiOt(um^Q`Sw1E9NdxH7@ zkHoGwzL$;fRi$(}qJHsAmrO@X2u{$59m$($UP9HT=U^Pg3`_?17g=vf`i;d+MFgaobjO0 z>s#0Zm`4F5_n){5y?!CAA+&*bR_l*Z?l&1P>fhpP;e47OMge{&zjujSJ zB_dCnm};unse~bSaU0UVJ4J)zQIwnas!`>Ygnhby8&$ewxN3u<=1Dx$E!d61^~=Xv z!_O?f{?bmjqs6y?d+B#aIMWbzc05hq54Y0O=sMlQ{P?I*mOu+G4ZOIl`ti=bemA9f z<#=wj7uiI$#a7?yS=z_~^Y&VvpA}5+HV1IH*9f{EhS?NX8}qSvhwFTy0^|4`LR_>0 z>yBkxUSoB2iBA8NguT{>o0X+=r_0+tY#%wHVgEPr$4j#lLt_|yCOkK>Os~Ja%yQ8Y zOj*2KcTaX5rEJkcgTpGAb+r!^oJtNi{6~+IoW{@A0%^~{0B~8wutNIXk?+)(sWRW6 zkDVdHX$^R)%>XOUk1Z={v`-Gl7ata*>Rj`=^<{pkHfPBC*c}&w<=y6# z-l5kxE!4Oy)O3C1gu(|y;d$>cyiM z^}zhy$uE<6Y@YRP_(^`XH@1rWOT034!jWQcYq+~`!kGO}b+Yh!1l2IDZS8V3wX~i; z)~Bnx4-UI96u4J-nhaq8I;v`SlQ@UV7r8cW1Z~f+gYnX?wl}edPHxV}r*!OuNt&ex z{i|D#uR5?je)7H&uFotB#<}DV;|L+$J_IpS8Pz@D00)^38n-n{lhADBiOw=V)1>_l z=mh66+n;0L%}FWXfE5Z3o0TGujQ~xA5t8gOT*5dn&z=jdWibrCz2V2P!qGY_}@k$ ztk|*%=#>2*M3RB_QCnZ383<3EhK_ddd|!GOiq1y+{!WYa%LTGK`{6=F!2r=r5gjH{ zAMt}VX9Ow@S;^C)0Wn3&_^5w3k;$;On+no)?S))kLr#hdqqcL*%o3y2m6o2F(gX!b zl0bV5h`eRRZn0;gURz0{WC;2s;=yv0LNK2s@$|!&YGaidE)m+d2ZQ|F&r2#zr+j^;cgC+g ze!pu*2RIh|`&HXAH=L~m5iC_8O`INV6hH_8D;$-D7POa(CIWR?Dy?hw+#|7 zAd`X0mlPw7)m1jaL=-l7t8BXl#w2DHHdw!75Zrn4K=>mwtF*_OZUNcg4AjK0>g4*5dw?7APlpajd>4a)_!4-?u;rM;$`|=ilRT#Vd!+x z68xv+&=z>KQaYloI?x0p;r!C1{r2*s>B-B4uDTwtQM}*)#jO)im4PVV*-dqEqv`M> z`@qGfCcK71g0)6R$Dk;y^`97F7+R4RJ7F|fLRrEeA%bFqgtrB@o*9pW)bAlj+4D;* zHBgS0Wh}c?yru~NFipw_`0<;@4XxMO6C3M?8?s47`=`uYg>(k`nlSIxU_q)@9imqo zLYoFKhZ(ALfFc=uf5_Z{BiX^}ZZ?k=7{S&5NgJ7si%|Y`#u;9{fD%ufi4_|3|SPXq6o7R&p6-huIkVFZVFnz z;26*y*|9TP_|=puw%ZM759F^z_F7CvAR4D(0Oe})`{tG%;QxMGoE)M#t078JKpANH zdLlUI>~2_9A|smo-_Ti5a}`gaOa7OQdr*tnUmRPm&mS_(BN?sqfk)$-vur!H|IDJ)q` z!p(>@ylb)9m3o@T&Y<_8lCs-WeE%iqB0cNB5Jx&GmeL~6luXPYWb9q>6aAZl&_pU) zuiND*rT1Bqy^6hU|1s&FYXMmIP(ismqv?C)(obbW1<%!lyfN|d04MQky+ z)f6FRtm(gOU5WjW*m=&v@Jj%{p-!*Ob8N3#PXMWF4xtui==9X9`P#4uzifz(k- z?bWYLEhCp$vXkRf=l|gohT#3~qYI$Gby)P)zxQ1`<2XZ1Cg$5jTg82kjKFoT%MeSJ zRng!2a5Z);9*)PNY&w_ZoklAqk-Mffq)3&alD!Ug>rfz8xf87DUk5Dvw z8(GafVP&UE+Bu816YlF&3^K3Gi+4s+-DNAO z!CMzz^u)&~+VBwmue(-QKt;&olCjBvq(mtxXzTfad@OOnJ4wj&X^NqCy+f$-OR+YV z*{%OKBw+Uyz0T_^Ko^{-IPUHP*weE+qp8?fv|JR_jkY)*J6I{oFpO4J+$hm|z9-V+2 zGXr;3$wz)%Mx_l;euTC64?(e0j^>0B#X1R3GeOEkQm`2tzl|U_$ zAG};1fp1MpWbi=_poRH54(N7k8P8AruQXca*Yh+2*v~~D$}*lX<2kkT^a9$mU4a4O ze3A$|a1s(t>EH!Ri%tXyKTbAS3(8BPg_F z@{&@jd-x+k%!1qaRFBL~Y=-<-`YbiuthUOe$wrpH!%lt;t`8>nS_^F?JYm{DE)->s z6@1Ci;8J)Sr6w?;ozo`XLEbE24&({Xlg5VpZzp*@mY4F+*}QwZJm!&#SVbh)@vFXB zCzJ#}*;43IBKLz5NtSyI=+t=Uc28b|AnoZF$YIanZ)@!#&3yrgIeOPKvzZJ|q#fK$ zkY;T{ar-;}l?^_c(JZFJz^KTQvVJP~IY0dwk{YcMx0Y%G+T1GrR+BS_Q*X#OHJe-`z8SZ8{LoOkR6w4rL(WzNO*XB%J8COQ4342L_0>#+eLjL-d|J&G*UB+;-!yU42G_2a`lD9X zHQEsJYIEq&l{ zh{6A6Z(@5vPHy&z=l=3?aP)s@`UR&h1^gP~2s=UE#e+xCME9Iiu6r z_sOU}9Y|zN$xr1o$*j#s5y)RG4Eq>k;e=z%R!Xn0ZhZ}hU4P-;DNmL3I5y(uX;-R*Na=Q4iTW$ z^I`mFTIQ2bLAQzFY@)rplYu`-7~`&@qgn8ypymIh4>%&h`cO@Kp<4=GMH596d9vad z@?&amufD)bN``B<{(2I=Aq*%C9I7t-d&a_{t@y78 zxS66D=&G46;63N@pKi-F0sKJ#Coo4*?d#e@F#8G5&guWe0MY3T*yqZ9SE!Jan4lN`A7d~R(;e=#?Fk7&DMXTSDZqyLLhLMx z4&LEi7L0|@jU9+cBS3$pSCU1jn_%+neZF-90G<%aSyo!7f)*?Hq|7K_577(u*21SL zvSK0Ozc?T)0r~u%?#7Km&`UZ7>lY}1OGe{Iea-k~r<=UBR81PdIS7=y{iCXk--2UL zLf(M7;1*!IKs15>>#5JX(`?=`J;T@bBCpaa;nf*~W2j%k+anfB!8KkoOnVt!&I z6{6Xt&xpd3#?s%Z7-APeXb;+l*Q);UUdZ}`-Yv=<8ns8sS&Nv4;+UQO6Ks21Dum^n zi8_#7$j`!fGyBGJr$RVHBqQb^L=27J}e(j_n< zCbdkd5-6>|Y{!Hcw6dz$H52d9pb%FvG}iLS4vcWVt!$7&6(B zZ@w-#5pOpr8AQk`jFn9+-v^H zF`X?zxFP!xS{(Dsb%;ByJq>}CTE)-uNO_h;lLVBo6A3H@Qu&+;j+{$*misVvmZ-rB zZyE8$7kaIn8Kq^wiUcinml!rYvZa;T@+@(pNg4{Qc*%I)-X_RdpslybTM#Fk302%9 zwf(bYl&nG&0;KI$?|D#fzK)x7^hnt9m~%|u#igdny@?fbC3sisXqYWiBor6wBxFco zQqxvR3kT+I<1_puf%E|>*Ns0UY>jq8p=A{85CS1V$so5P(pmBcdFUm8FLe?b~~a%%3~T=>+?8& z%oB2R{7|Oq8k{qFFRK-;%+kHhqT6 zZz)TfTe~9Q9EH*?on@Zf8H5Kk50NBD5THT$5cQ148HG8Kn94*smw^>NmrW zHeA=bEMxVAL-maS9T77e9isWD=(al zb*<ZlzD!9q6#;F4bl_eoVxYlU-G<3&5sG z6%DjVbspUkN2IV&_(}!{fdDGh6>KMB4t6?Q|DZokpiH(0nOYSm_?`sCo#{E$WbKpj z9FM%+<$50?2E25z>jLja!{V8QK>gPj%_>gojX#T9#n!GN_PB36d%Y-#6cM#+q_Vxc zUgb2~l>9Cxcy$a$y;^I#UBJ|=?pK1dowv(3hO>`-P=wBAHt20rx>b4A#|b2z#HRxR z50WuU!Q@o*G|?1$H#{AXF6n`@iX!>FHVLwfg&en?#=ZsXbld+FWWiO>2t}JC#W6oJ z@R}>-uaAzqTqSRK>b*a0ijDLFWS{G$u)aNp`|hyp`O_-(20cWbaepS#_l)n-9_tay zn#!Dnt8lYrXJs3$L1+qkGc)Q0+|djLQlGND!^OjA}_jZ@s(N zx@zbEMsVgqcVRx#vV5dNLZmHGGQ zUk{GTEOHFalL`J9@LY1xBL0Wr1Jfxuj?m8~_Smg($4_w!13H z1gG&JT2K^cLn_2HHReE{iDul4As-qZ8+U)u^j~$BaL6Nxib(U2pfHhLhFR8SKqmwi z=ZrNeqlz`rBSDE&N)tDXPxQJ?uUhr3zHg%>t;MbA#6er)pzt|3ZgahxhaUd04-I~Wt z3ccU2%ZU$-?QJjsy_G(-;LQK3mko;Lo`$Qz*}Sh?@K_KC>|ERTx`17M`V7C*psVas z@>|p2F0@9kQ?G@Yb6$Xf-0>og!2_T(=emT0iZnJ}d{M=pV>}zqa>|7MlVzp5KaRyj za|{cN`KyWMnATKxt*QzgxhFT~B4jkiDtbyDseit`agB%&xF<=6_cme=-|&q!=esh$)qRd1H50F-Nh61t$#Ec< zS)3dj9!iE74%qRr;b}*06ezP6Os4kURM_T+Oh-JVp#spzIG#XI(Adr;BOG9LUEwD^ z*`HoATABtw#GxiE3Fe4|R=qF(?P_h*DUr%f5LS5AkP9#Tm#0^oeNi$Bp#b_i-R;#$ z;>A*FNs*Z35edz@vTMvdOb}&81P86X5I}6%=Hcz~p+K?t7ri{UBqr|X?L^MMR!zEJ zv{9N&7Kr4@o%n0{lR$*NtXBOsk$7~2>C@v1X5 zGR?Y}7(XM<%Bb}ru=!Y}NQRjv<3b)fYsjjT8VW2+nL)H9s&3R)Vsy_s=8Oxi^Ug}x zniU^ufMhiKySvm43qdd^a;>tV><8vc!yC!e-2#>b;y1)5%*JobpCxLwA>>jsYSxCC zw*)!MgPdVQb`&OUzt>7%s7{qEXwc*x{n7jd*I{}Xsu`eKb2c-8Y&GB%&l)e;jriKHU%ExplH7XI@9wCC)Vr}aO= z>n+7VLYRllMU*#8_WcrWnGK+nrICZQJ?(Ge}H*NBw+yPn0AQOJRgXV|L&hTY#^FOn} zGlIuxLtp=lD=ijA10MFz|0)@p#U^&r{vqzfW4&^HzRdaq+PP+3zCuZ9IQDm1Vr_hL z`XupqPX@y`i7$AOQ9FkbC_cvLEMy5rfOv@U*7xg&?Yc~X1^{3nan{5&!C8p_B)c1| zrO21cyWqJcya!{8;=;B8=M};1zm@4h_LJU>JGd3}rL4sj%~ReHejQhC5tyEJh&MqZ zlpC@lU7F`Kx|jq|MP9F4sRI~5P%^BB0$7J?XbK+lnwFjh!LD>C&a@cyhLa@Zc408s z>^ZPmkNGq7XB5bLPgVOJi)ZRL)^e)$R8{ISa~`*Snd3d;Mz-2=Emr&gR!G~PA=ZrA zwOvEgj47kbLn!Nj4k5V!U%+esaQ>5|Y*LYsm)Z5|&0uJHI1C-U3aSE~GCCT%{N~>b z>MLsOf4MU4Jd}hS#c*<30HO+}(72iGrwKGRlx#3NBO==sqWO;g40Q7S<--!)k7gl8 zwnZ&XiBr}EiXGjc?>Kw2FWVghB*SL_%xBCR75tCXOt&!N%J%B0uXN@g4Yfr*3>8?x z35J@Dpr&BpIVV!mW(R%M%-*r$Bs!iG3Gz za7M5G?o?G|)b_?8TGZohL~1Y*FqLp+N)E*akFD`>G|omlL6qb6{nnoA9ObsYiqv2< z@ksLG-WsN1)Zz&_Se zpn&bH@HKq<^ZkVQDJ+l1~h#8K* zc1>%{Zth0y`Y&_8ggAvYxX}TcB4H^-v>vh*-^p@9x`|&au&^6NvqOt}R70iVGRUrb z;6&VDGmLk|%o9<&ovz2ZpTkdphVjq&{yP|=DE!k5gZ&7@7%qP#Vhj*GkB}%5UfMCC zckp@r9y`Y0_eLQ`t&o6&@3@l2Bmyrh-s2xGs;CA~^nnk%%_#s8-#S}$2cRQVwk;?|BoLiL z?u;#uh-twd(B_I}}@agZ1SW8NN+ z#=z3dCF^~CSD?P3`~)#ivcKWX`1RuUXsVyk{d2-po9=kP%n-cpC7djJVoi15yo+aR zX*mtvh!YZBVyd?d7t(zyed6CcI~!pkhG&7`fen@$LK1Bh3UUya?-M$n(k>by05GZw z2fs-*@q9>=R+gsRAU+w;ZgNe89Zk&E#Kg|BV_J)n*yS^t^5c7FkaD5h=a*LkHnVdu zR5N-L*BmxyHAD#mke61Ls+TYcQ~e49i~L^#KsIVbNcRAsO-QhS9N^8q%1Qyi z|1CdyE7Kt-RZYcG#b1z6IGivR%6`mz`_ONmcY- zviwQ%gmw0SBL+H9FV4c#4+8g}j-OTX)Q;%L7Lr9rR77}uHae`^bauRhoYG%eMb9z0C8G z`<&3bdsd=Z1l6EzW&Ycdz4P;VZkzG*%ADv&R_HoZ!$8YpWTD2Aib$H!%gOGHj^SI= z*Cf%ShyKf*uJ$LRvNM(yr~GhmGZMLUeWGfa1Cw-)7%h38S5bMigRywU0m~~s!<>b| zA))_on&I6casvKre!R_(qJ_U3VCfIt4PZo0Et!p@dpVTj*U+5e9Ho2*D0uu@Zou95 z0`CI^T0g7o-KGc!8q@&CF#o1lhk@rzys^%+D%ky@y$t^Adk4{qSLRse4DJyrqH8j=^ELN=KBE`o8#^pAbP?0ZLWsqhCazITcWm z3~_q_JfwIM9`Y!xhoLD#KgXwt`_fo@YFS{xlfeN|48{?MM$2htB+FS5nf@01tx3<{ zMejG25Z4@76i(C!&IuFzyhNh1>CPL1tSisR!>0oUK(5ei9Rsmt+VosgpMmBq8fdF1o>ZyJ zzLqD=EJ`=Sz7vngYF2Rv9FAMo`qHAYF&6`s_4IIVs*FcbFwwul=lP(( z^K87#C1!$nFT2AqPzKoU=b9?*x0~OiKMdi9>EVjs6nOz9C_%JkKKtH|D}2i_Pu;mitaT*!W&gfcz;N zFheeFgcYU*{~OWV%(I{=IfDCqe2j%O9TAF9YPvq!+l(DwvE3~vCV&-IEcMFCAqUEp zGvtUvC%m5M@rv>T1*W>nPW{87QV*UC?FgF@Esd>J#t~D@tTQJ?jA(W_gwh7D5?<5w z02+Yy*fuc8{H;yJ5!#2=hCX|69;1GSo(3DrHD4nxqDPbV*6Z%g+)hYpautv)i8uBJMOKe%E2F z9VeW}x6$fzh1dH<)0Z`|Idgu0LrYhqEN>@6yx4t~Jz6WX6S19ESE^6eeZ8Op;p`n5 z7Tg<``e8QQY=|j}e|Gi|y&W*YhPxb3pD+zE1%$2ywV*;c&;HQbclHl`78b4D)QvHsA zfZn4o7EDkXhOL0>zg@3QM)6vb%_-V^Mbz_KTJ7@Ov)@3|6$ro3Pw?TEuVmpUG09l- zhfo1)qj2CmdaBz9D&^nlI5~X*UL;#evpFq?s-%`y$C9@9stZKK!`C3X2GDgZ;$ax( zkDOQ>-*swCY&Ld=g`Ca-ix!08#c5Ly#qDr9H!Ds>iX9&URBb0r$@*HwhLRXXgZ3p$ zqFVEtlrx7d)iG{q;X&gxYPh8$c-j1dq-MY`o~pKbG*mzp{-q{4IlE{q6#ZQ~s&$J( z{GqrQG_6?IBDcu{M!SP!nKf;xT}#rYJ@+y<*~T2NC?wpihE?!miy$fZtLG2!Bg)6o zd;h;3ESZ9G7rn&O6-D?M9C0ix-F0m#g`aT*0gOKB%6?L(i1Y8v^ry}DM7QqpiVQ*J z*eVP~rWPs3`I@};eM|)vyi#^7#4l^}Hup&+o=_D-`L_-;$4RBa@sbKFxqE(li2Sdb>$o-FsN$Gkuxzm^c6ECzl^1Iux2-9K zvt@Z!PmayQ0yXAl<;UKaIM_!?60oTNN;?R>*OvgN)v*~Dk11!ig}tlU($KQsb7~zB zQ%mdEL+juZZ~E8D>Z?qn5UIj8hDhwzF8RESfBS1TfvAljpmC=H1(8$T^>!!`MfK~w zSRLu;*y6z?i#{i5cw5=`lR-U4lg95i?ssEkn-IM88FlORZ#iVKPLUb%}a{ADpxhMuE_~GX9Lsy!uP1;5*@;a}OUuFbO`TC?oRW zB`I;saU4P_(7|_LN>^1?x;Q|r<{KU41y0P>MmnS3%aze`S91SSoV$z^%Ec9)Jyq zJ@%7*6f_0>f-4kzi#lUm5iVRY^OWP< zm?~pwtH0+@;@iz4s9+m@#jbnF3Dp~WGVJdQeDA3LJ%(j^sz1l~Z)v=ILF&uA5ZmuI z@%QP4b3tF|{B}bqJ1?j3OtN?=fKwM3t7!jkN8zCSZGUi}keBa8sDBQWmDEzZ!@H;z zbv@qE`j2|Fp+`T|u_Cgd{fh=;zlll_4LCMuuWpLyRlb8t@67?!Vl`|gOkM3L%4$aG zkZRRPIR?$l>XC>#xg(D!F)FzFQF{LzvUp43Xrpamer}qhLaOk5`5wLxIYZ@0GyKSP z;V9=dUUR-LgoMZ@bub+{HsN2k(wwBmP%kvufr6^GjXwT#<77gO2wZ? zKdYK)v|;N8r(@f}cCpH>)mk23iuHzY>zGDx6ZM9;_j9e5^{`+pnEmq&Crr~>UQY5< z#q*-gdxxyPIlZI5cW3elnH2TF&17m>bm^SY6QW=+}=K9<@i)PA$iR7-MqW9=MoGaE`Z^ zdzBYwyWu&SlvDt^%3UY~49E-cbu;Lf=W8DiHE$c-= zR=YW&gLH)fjQVFvyRmddleMlse%hdc1(hXu_`;w!r2ZewYUGX3IIA`rWB8XkB?N|V zmi`^AfoB9!#Vf&Q$Y4|x2$}e-ZC`|UlZNXjn~&j%*T8eh!PGLilK6u-Rp?;mI{%Vm za@~peD7I;|BTN<^fr_Y|!|6)#U39$WA7Eq+gTO^AX? z_{~TvU--B9t1&K44c+@@eC>*m`O#T)&L^}=tuv__y%PIaLQOq}I&A3-RWm>4QpBo= z>6DCw_s|TYC$9SU-)s?zQwJ3ERj2fKUZkKg&!+RB^>HrwXHS8(dj{;55ESz?iY%$r zrry5$!wmsE>K$0%dIrgi4@em&S=Lvo9BCf2hPJ>!{&%f=@8VuJ?9`goXv0FgQera& z51F&ya+qnGit!3hXR+hVAb=FdcHe}e$}XeM`Ny_ zV`HbCIkb1pV;c2*?x#9V+8g|@JAN`_qjyzExOCsXVlUd&eiCN;@owh=2Umxtl&kd= z(I~RHml0UevJC0jppw?z*BS0A&ISh?t9~!EbB3=ZlxnYk@=ZITmUqo$DyaU_T-6`b z-I3>YdGz&SRoMH|eP_eq(Z@s;WBK_Ms?Mm>OduD-CN^CvnEhUK!#2c1hSXC&!a_z7i)BnN9e|<)3qzquP0SqmG5l zP`-^qM!iin&94$o=_aBjTh4;9+O{tUGi6+yP3g#T?_~7Sy+>Tx2#`SVe9a+EGJrV{b z=DsvT+Vm#3*pXw(jB=gU4F;~ki<2ume^4Yr!bGR4ixn&G8)xX+blj)B(Z8@AOw*GV z+RK*iI$Z#&?i z2~siXP@LZ>tw*O9-T~L;WZ+^n&*@y_!0T1(nrPlYvzrd(o}0MRV`&^!fkkfC=;fT( zU&(8Jz?rK+(9`x?qSp8fx5%Zg|D^tNd`CZ!+yppd-FHxX1^|$~>|b2v%&q#(gkI@i zKo|KuXch6JiwfUyogoZFi-K#Oh!4xrkDaYdHu}BuLHzL7lXKvGW1}`!z>K#s__n^G z>-po+y`vAD2^!K~4etnkw#>TK`M5|M^QZQK_yMznF@DY%Mnwd4Dc)fA4;r8nybM&0QMi4F-{cosEhAIqvY?jR3WC zIwerev<=ufh4sR5eq@V#acPjN;p=npCb<{8si9`Jn+g)U4RcyuoqrWIk}#-%{_L(F zs*h-lqftP}q|lf|ZF;_9V1YK-(AA{nr)b8%5oJ%UU?HwN74eJa`{k*6{8(?MV9%s` zdma)x=c<%Nj%wa#gCk=YSIO})s2bN%8S)jn{n)O+q@EKJC-SJT{@obb_eZg zWX#nGW!eaCiV-QC?~Qa04@`ODA#dm`@EPpYmCT1$*44T{>JQXnRwM^DE_Z^a3i>gQ z&c3?|x74w&Y0YKm7qkJV!;@lweX;Ze#3$gpM^Vw%yXC$wFUWzfr&PvgQSGY()Vy8&`ZPV6e!44cI_RNio_tC!#JPhIdSENHNoO)ct#p^Cd}jr5aC^XQPC&(FG}#WU;2LN^7=E=6a7lnqd>fa7$FpONL zTX3P6f_>fv@rKY^y@xoS4215d?vjLnxuyN!q+$BkBz%)!pnhYw+g}F_uam5JSCP>{ zo*!SgJ!Ydty*F;rp`ormo`&K+K(rZ zL_#D5U9(-r-{5M%u5j8UzwX3^YNK9gBj^); zSjqr@mq_5`Ay_^0kCWCdd^|gy31M2q0bcN(=v+HQaGh3mqaurkpoRGAb1p*}^I?TQce?f@ z3vOg$oMRz;`Uqi3Z(22?So2wGl>G?2y?lle0AJCgt|C!h$X*cv9syxyI7!fn(SwXw zv48J4ntRWOq5%2RG90T}Sng7-o#0$z)seaT90S#H?w8kM%} z-h_3isNt5Bv{fxhm5QiK|6yv)*KK#;7CxBW0!5rxI2QEJc1Fc{bYNKM855pV$`Mpw zIc*VAP(sl{IK$1P9yj1|awZaVJ1XjPEk5nuW{rLAruu5HGB5WzD6GRohBzoB*DUsr zT?sv+&tb9gt-N#Kr4TfJGz)mQcrBykG66|3+xyyHW%TKzCmkaXg^VHm=C{g9t>A~f zaj(aX5x}PiFZf^b&WmQgBzy?4|CZ}@6(;#Q^$u_>8~kM4ksml*?lI|o6?iRu_xM0# zIvJeYFMM}#?;X7M5{Y+i>F=%YKnz5*!rjX+6#Rtv4{Rngk{h& zak@X#@Psq^D-G;~jzmWl3(X{A%JvA{jf2L|6-$U4I_Q6$tjOwryzdo5dTWP~E{mBl zlPQmB#htvcL}GBGz3B}0zB5NlHDgwIxJrbnyd`@cO+Yx<7M+?o+(bdYV6>i`{zlXM z53kP8ek6&-C8?z}B%(7%Dn^2D%D|K~UW%TK+M+k&6`$P^A@pC)dP^+U`K5xtg+eWp z|E!F`hsAMhrdr#K%5b7rLzd1+q8o8V2WKnV_@=4f22L}D2`EAr#E zc=LC8)N#aZy92lic1;$Eq6&>T*DkP8@UjbIIBC z7MGpOMDE8nORdk0MrBd6`O8lLsef~nVV>`bv+v5*+oJH>;c{i6X%;}vGH0bn-AOW> zVHxB<%V#_PK}XUArV;f`LG+l*q+@-(_3jTEkdL2z9`zD(yNgRtS_PL;J&K;ja0WGz zNd1U*ev9y21E&?eX)(}0>^g4ES{@P5)xFJA!Ah_CLh>8C3{0@{?H=M8bj{ejcxgxP zs(9bj6|p^KKNZ{zd-uH)c{5m3sJ5?8v-7sMb#G^iZGf-e&ys>Ju>3Vb!qi&>&pcOp zCp)`K9z!#;k$Uwq%3C^GEk~SGL zNp7;V>z>bzN!s{+&o|xAGzfZ7nYUC7^l;M0JICAUcmWT18%%LtTV9uIbjAwPcj z(FK9GLoF&sKC=@*r)_x!;hq-_l!n*KCF3(aALW%H_db7&d12l!{BQ4u(Z&z)7jY-C z8xWmUQO|3I3hBp3{jQCrwp1MH^LB}Q7IDyJ+VGsA+kXh zUXR}(^J-$Pg*;K;tYVHPjwNBHeQ(Z~%)ID|G*I6{O$g4lOoAsV@;6RB^2lx*g>@+7 zjO3v8fxg{Gn{!%>tm%zd*MNJ|A5WtSbz6nY5H{Ia$+MXZJP0_VLH>E#cIKYr3Y z?!2Qa6Dh3bPmv~tNUC5O3?TP9n4 z@~Ud}_B^d>^(HVtNEZ)~U`(X&(@r{vJ|;t5^QUHp?s=`IGy|aR7r-PyJ44-qOpc*m zQ?0K0)G>Rl!m8EOk7&lGX4*lAbDiBBUa2VdF=vq{y>f2ko*&wL`A!IDn_rqJzpTO2;r;-9nchz^?5Gf z-uWfHVfKC0^&J5B>#vAihm`1g;Rce5YM()z#sShhM+lioMR$y#A&BWhvgdlFUMu+N zhRo1)Q7G$9i;hJX4lrK(vIIANjsg%3SP?Xa1;{qMEWOBH*-xPc$$|d76E&IS%%@#_ ze0)_g8V4wMH3FNnreQ)F`sxm9050>^!A${u?3dgATa`RU_ctD718&%JVNjd0p1%v zpmBda*nc7HfTe#|(Appv+=2d4gmIIzb1W;H@I0U2fy2kKtMvG%w+1N!^+ zA8~hjKt-foujjbVd?4hWz1!~okeWH8roB+Ie4ac+Uc+A(X?cCu#et-t(Jnlr=bzo+ z12D<)i2oZNu>RLsb250Y$vp(r@BeJw2kHR7j!Bv-i*vwpso(!T77S{?%>+)D=6Y!k z=X~riea5x?;_PB?VVL=y!7anB6q@X)kBW{=7!RZn$+oW@lk@&6#+Wzfq!0rgnoozk z9MO8wDYa3b^>XWJrCh-g79TgNUhJu2|8w*xE0&8+!k{ha#2k;KjJrdVeiBg?^UKN% zSI;Or?)2=boid3k;TNho`wbpOK_`k1p4sYd2OjHm+=)mIk?DV5l0XL;?Mgfm#>N-n z?ycFIF{W#IW_QA&2|Ny;Tcr`IQ#hT{H@Y38X30yl1XB~e(B0P5OgNj__2P9K;T_|f z^y)Ng9FPC-MjX_nPH&%`yNhb;=?=86`D@iIRrw)B4aMT9l?$LfV&dyRFFf(@hN0-J z#JY@$AZXSsa3pD!cdD1$E={&rVXZOzLpEvm)M6ATsXv6@j=x7Q+NbP2Sh{EP;Px79 zvGSXXD{d2B*5v$DQ%&1~-+=6Wf7*Jgkdt{@(T$=_p@W%Z$!S$2>v{C^!!dcs7f98H z970#9xEyr10>f=s)1(iD^I&sMQhP9CP0|Gmp^=T?pcj#WVSw`c2;BG_oXe`daiX(R z@X5U-V7FAK=gtM79~8tMKKIR|X=*FpyYM4=ir}r{{rwAL^aUTNZ|*wo0a7d^vcTBy z!g2-L=lW?S2)xP~*cwr%LBd;UfY-N|1lnnQA5$Uq9w_=a``{HK12oCUx!pyxI?F`G3@vcNCiM-BWh&-(G_VM-L=a!`;8AT8`R8;`P|%% zM+SSI52g%wnkT88vD#f_+V)r!0UQ&1z7n0H1qU9wCpC8LJcW~PF1n`{i3&V6B=7y< zPyHt`VC*DvR_`5r))vyD?i<-m+FZa~PIlJw*iT3xr6%XJXGnGH9oTf`6dN-tLrM_k(yIv@UO&FdWT8FhRETE>buz@IZ3%zdj%&Azb zLsd(%i$(AmI$cl|P8o)+RcRjSD0CDC7(L{=#uFX4y8dLHsZ)J{yHBvNVbATz%GcEH zY8QN|R{TT#=<{pbN%Dhko%T=lx+(=wYkQS8(ry<*F94yJTz~7>8Gq5r4k>f8)visc ztxd~%jPhS+9XoAC4pl9dsFkT^ z-n|&~hm--qYLN>k#7;}t-l~mb#(L6?Cq!(u(ZD`|!pSC5);@Fmvght*XY<8J9m?g; z1h`LW(D$IJ=5t=v+a_f< zX<=wm$NRs1!K9vBy8hRJc@S)g1w6XG2TR@ihqG7DZKrS`Tb4$5Sg;ci)bMhxzuo6G zKbQ56c6kXB3eV~}x-*K?V8q{Y#AHaR#~0l0A+xi^)RN|km9@_m!(eE;Kd0KljiCM zlHy+bT!41oU;kOZ?c2d!nY3RJQBs+j?r+DGMCrluLM zD?_4GcQMkZkjVsHzp;G&mLj;7M|uvXibemOkN4ryw#knA?#m5*@V!k5;LQXWaCa4j zfYI})0)lyVY$h{lsQ%;iLH+9;$!i~?1>PE5X@BaVm0T!ZTT6YBHB`(hYz%72feW=d z0rvkx{pB;N<=y1H=ZlaZG1c%qKa3jqlnHh@euA>;y&7!rzfih*zn&v&<)lA09;zkq zCw~2I?t0U}n>SI6aMkGF`JntOn!UI$H)f{ zVK@mniq7Qn&l@Z}Ugk)-4*{s=1?C0VEt`+3zp{eGo_HGuB8#49ytZHdG`wW5Ty@aV z`P~WYut}i(B4E}@7MM<9cM>>g|Dwk!>UV~_b97fIxKp2N+WYiD=d~3yPZ!)>(1s39 zXq7KXk9b%%zK7I4gx<5h-JyAP zbd@i3{fZf_702C7F%)P18fo!e%-H8gA`TYCkN7aMhYHEHE|=2wus8bUNjSE2s}?{+ zzDZEoR6XbPwBxXfKM}7Z$kB$@JuckJO=I2!67kpY-V}LrbH|)Jj@}cG0sr|fiB7Pv zdpD}Ea2UgPwx`!>E}OqM@b$j^@zl}r0z$|tMcX2Ey}gh%(9a)q|M>XWetO|}acRAA z|JdIC_}>CKuIg{J+Ai5<+Lc4{y?OxodIRZaWInww|e;EnML7SN41)U9g&~pUvIku~*(W=U)I$=ZM&Qc`l!y z`d{*&t%2qQ-y)wxTHW`sSfg|rsFcbGZI$YSWA(1$`)@8f_m<()rRVs4K%abe<=>7% zH(bcSaWYnjr=J>S?wMaO;+L&Cz#wJ?N^cpoCSmSM?%X+(bw2lged?Hc>*jszvEMrb zpOxw`3-29jjh*hZz8~Lb)o=TZp(sB`Qvve*{GNUqLt?}{3cTL32JVJDk@olBJUV+9 z1~n#oZ{GmHKv@;vJ1AowQJs(LSMx_pletn+FSDoA%6vEg-_5_8ou)tNAtL^_Ka04H zL~k4VgXV}EETP|eRt$ailb|efW#f2V6C8 z2mtNTw&MlWJ{7QTA%u{aUQ0efoG7^5jO9#+=MH1zqDxYHO&Oj4NsE~Y__p|sBN)Zc z5IIp0%!sD}Q_1(!K$GTcviZzJweC5r`=s*or5R1P+|x`|m?yX1ErQ;nR!2NX`rnlU z`gpi0*%V(ly+VvaE!#8OQEBeNAPr|0fsEi@A4Ite#Gm0+sC?xF2oHqqj2g6;wOt!q zs4`BIIXUva53HH)NoZ-0ciuVf6r1uEhZxN_(BE>S1uMAf9O-l&1qBKg??sR;cr7^3 zt?V@lgT~v{`Yv1+aXXr-IoN~Vqc19ZU#>(v=A(-U@C{z0G_0>4@@9*$LT{hxgtn(nE+Lci8j|l zi%?&PV}Qlf-DU6DBa>4P zT_yuG%=k>8$3l`Y6mua+?rK(8@X7Dc-uv=l2-vs#QSf{=JVAE#ej~f1*=4@F#_9k% zyYdMx*OXS19%P2A)yxq7k#X)w$Jig1dG=Oa$;hu6{XmUAuTZ#}S~2y2eBQl+i)Y zpupySGCX0K_{*GJbpPzo{`pbfts`YLx6@|MRGL1WOIgg9LOlbS01wvpQS%l@Xcae? z$oEk&UEc7A`Q*pF$I$NUm+2SK+SD`n3}&l=|I=Z#Bw5{7m<5JF0L6C%J9EIV8=r4B zzkf#uPQM53@&WrT(8570nPUn5r6Q~AjRUGmrc-y0p@YxwcQD^^{h9p6ru4^y22IGi z@?6dASd*T5#9Np2)8>Rhx{z!`n7h+3vw7#k?`6d5VIQ+enoKW;v2>GRp{ke|6I4P; zt*@9k-cQy|dN$x|I^z9Q6m$Z6>v;8=D6NOv6_HTh%vf=8)mv0UG%J6Pnj%C+g5y{) zg0MioPajwG0I(S(Ivp5ZWtsV2+j>d6I4YW`;HeabO(lS{m_mXr`C^$ldh{XBQs$B@ zr4-uU3Zw;wB0uUb5nC85qbIM?#RRCVk( zZss%_$NFUR$A_~p5WZS1{@iE&^ciVFah90Vq2%Dj+;m!I-fpnvx~+k$C{Bkqv9)b& zg9>38)?IHE-BP8TkJouehL_=ExovsP2z7={nc;^fxxE8Ur#W1ThP+IkmHDPX6pSGX z3g0^0(|518O+4p<&$g+xQu-t@p@ibqDAq&b@s?}o+?RzWc1w+vnVy&CCt~{Z=+qqk z!>^ma51}g``y zk?ezBpb&X2Z9>Cc~vE}bMrtOyQ z^(bG@(bLU%L{|=ez(t}(H|cpXTb17#k6kOVR2WEPT^k(nkXT-wQd^!-yrxIg@m4ym zPQ6$h=&+a>aF(S3sG5xAl%^ge+ePn_I5A37FE)%yB=)5B)yjppF%|lU;MxJZm(e zMW8KQvC%Lxr&^wBsCp6c+}cDW|NT3g;;y|lVLaT4-%IgGuW3g`T}phq)`+sK1c)mo zfRODdC$ZZ+!f{PEe?2-Fd$>XO=6MWFm%6@`gocVX;4*{zgP7jn#P4jkpZ50MFOuDn z!*{q`Jn7^e;ln9NITJ;$W-(2Qcpn7P8nnzs$^Zx&&Ec16)$Hf>I&F3;f_~>c zwm;i_=hH6uWlRD#yWuh0q#XL(3a z`MJBK*9VDFrv3>YaJ@e@z)l^QBo2HDo7dJ^AFTy56&kWAn7v1~gb!H~JJ@RtlEz}t zrWfa8zo*g(j^m0@PK|7z&dasUv>zT#aK^Bzj9$dH;-5;8OPQydXF45MmHcDk)oAW` zGg@=%yn7{F!0GkO`i^T9ps}+@dmt>Zb6J!yy|4Z&%w{F5Qbex^I%J(zTDPy?|7EjqBBya^Gs+ zw+h1f`|^97tubG=QgU#c{(M|N*S5a|YLc-TBNGcici7Y>MZMMumB^-8Gqfr24dr>@ z+w+Fepqftgk8{&wqx;|P;;vH|DiS7yxtQ>CU9#1FE5}U61RY7`iqK=3Rqah&i>S-) zvuH>ixVcPltox)%XgDsSi!m;E$96QyIf`_>69tA0vx|eB`~YRoz5Z)9;!>7tBdpSa zwx3s3>Tc}yY>K}`q%^M8l5J2Lch+uH+C8yx034S>9hSqwF$V?;Hb&vYSe}hT*dN)6 zLj)2M&j#OfV;CR-DYOsHtR4h(%1LFCbv1r!em4HW8-9yUkiqXlxhTQ$$yUafxUW$m zLY-+!7MUitP_*MX#S ziFBP=l7AJPKwcEf*C052q4f57p1tX@<1DniM5cs6ww#bh9geQ*tu=Tr6EJaKW7pj? zqunF~icDBL-qvs;0$0!^wQlIgJOyW0hF1)hh9N@4?Re8WJ#^deEcD-l!0iX?kHAuN zc!WVy?DzB+E_~NVuZp?fL`>5yGW9uSu~3@rBpcAjFpxXcHsiCpgXd*!L<1+! zS3|(i!-HNNx!58!OdK`DIctJ&bvkWwt2W=nT+qs+BeA47=>3GVs;?9um5e}SM%2>I z9$U~GW0fY0cm-sl^+wk;W-n)ayyz}1Wft{%U=-Hqr<%UgfzIhZxxke2ok`JV>nv~W zPz6~^gSHA%@ftwJstg6l$ky=vkTY32;o%;|tuKr~XU+*}B`1D=FFbECgVf(dNSyM0 z^j-SJH@Bo~ojxb4az57fwx(V~p*-y7#tt%IN?(H(v}zXUNr(P2I;-kfZpn$Xc?1Si zyH!QdS+64AWEwW*EU&E;I8NSo^x4)JQV`kD zMHAJ9mZS)OPQ5u$fgSVAur>H|V5DzBsdvn3ASf4YgC1q%dW~4#{@cUF& zY~*}MXwFAM=fG)TnN+`xu;IWRbZa;=s90eoxfH3&n46(+m@4F33dD10B5SWNt-8&t z=d{5ZPNX=Dd_n9{Z*)M#MT+T?uI77~Df1<%{W^ z)4pb2mNEczp&=7w0uO$#VYGxdhgM1dhD{M3J6f!E3Cg*SlPo&($b^QKlPI<~nBle2 zp~lQ*f!|eX=ZjKt*C!Fdl-romNQb~*PLZdacF$F9>klXGS)|PeUUg^XLq2}%@~2e9 zYRm0t3={)}Kk;B5bl*yL1bx86RI>Y_`jY13)b*UZ6WNEdk7^}UuQg7S<%B|(Ww%EJ zF&^XPp+|pw{bg6~U687Ss>!74;ZZ-YSXXfBYlXhQDD7sUEhxB#zG~e69#Ee{0GwQK zb&}_{rwcl)jAdNAk>HHawXOc*#a%l!mR%6xE|`{z%u_7-Hmp%c6vOQ_na`4RiNOvv z4t9fga5Y0{Dv3+h&Ct97`To7eS~8*~N!l=0*FMm9R93@_{QxF!zoWS!v*&-d;M3~+`r|)!IK|E|ab>oZZ;X6|Wbx3|Y;^>P{){?hQ;Hs`*jGMQr`>FtKz9Ks?w-3E~pC^ zirC`Sn_&Rf-waQ!o(pK+u%ii3*Vl(Y0GSq5mb`1c>(W7Bf9$UIWG-UDs)VRm;ecGn>T5+^C69^beCaP%y>%kQ~lwU!m4*6L84&@LPf}f zf*%VvRc_Zj;NJD9^;paE4Ngkz{p<%z=^SVa z`Vt_)!F)AjpxS&r!`IU!fale*>Y%fsyP<~p_ZbN?BM-hesevlcR?t2gi1##T*!rpv z;BjT+A_JJAox%v0#~GU}Mt%6tMmwTe`lRZfu$1;+ivf;r+?phFKwnm_5Im{u{x#8# zJh~+tA5**0br3H6hbthd*Pz8%i8GXW{l6X~-;y1qrAbY zgaQs1BMx}4rnJq4UlMGD>yLB?G1ivSFkJU(e>PCfc_>Tl=D6Nh>xjhYYp}-XdypI{ zR-Sfl$TwbSw@*g)rK_(#2%hqUl$;c?yI?8PKVcuQ&3zleUpviXp0FC)(=iC)x4$Ve zIE3({D`YXHeW$!v&FV(j*O^!u^wyhOxwhy^*pW^7C>Fj@&Y6mbg@$vXt2{n3+r&a^ zWZ9dN+bm#`bD{OA+wSvfx1F?v^xvOH`DE4t-6}WmzY)x|M(|Y13M|W+!BH=WPhSsm zuT~X)Z~=5~B*=W=&Rb44a(Pc0@llJDMtJ)Av9@?I5;nMSe$0KMm!pXYkV<&%Ex0$d zgf>@Kso!BLZG~@sw-ei=h@wbY@@?Uh4FfP3)fH8ONPhqBq*w_Y?bv1l32CtFGSWiy zTxR+yJhOQIoM5FJ@`u@nwkm*Va!QT9u-lH|H_7q?rRS+>mHj3Z?q}t5-R{n#*aW&N zQf{WxOEZ&rHue_PlX2ijWYn1kC^j8AmN({mH4IL#ZC{wzikuWNhF7TI4c4-%Pq~}o zdL%5&pid)=^4e^s$#j>(;37rzicgn{o6AlN7-JGdaaUk3G~PQ6CuWx0uxbzWEX{P4 z%^!Vny{j4;(X{PstS?o~xY)CKE$0tSdl{2E23{%lB~NM%eHpI1QHOzetUj?vsrKcL z@6MQVJ;L!%*S+Ha81-!9+??m(Y7O0+B=szd+S^R_n&sUjBo1PLH%+AA>E0&vc~91U z(R86D03#2f$Ro>?rXn%}$*R@9TwmS<_Uj3fr^<~heZX6uN2v7Rb&k`sZZ<=1uYb0d%CFnr?Z%|F=>eoGNmTFydh(A+`jCQXJr{>d@ttG$9t8!B%3Y zHz;sszz2QF3|r*%-)uX1`lv&&Ps_}Xa5YXU4esScE~IrxLL4Y+`KtUHg=8vUc4T7p zU6S-&c}N$Mjd-zRs3nx;`o$+!Ji73aXkqE@hMk*48Ze?Mn_ZEI05QTU3`0wkL&Vw@ z-jHTS9`s?D^Rp_!@k5=&dJ_l&OUip&hD4i{+01Acv-tf-&UvVFanjhxlZRrdsR*qD zZ4&OpZlgLua!|;#D-w93j6z>?NHfxNzSYGRP}EWY{OGMqhhqLriUEQ^ZcjXM{vFN-lhy86Qr@ z;_n3dtghcNE(6mddw*WQ#5RZW*x00w{Iiw-wMHBOW3Gdq-uIdPllJ>G!@4|YwIR|> zttdQJiVH{w*JKNH-LDi0p1@3NvDqr;+U?9{X%*Qr9X~2GPn3jNQhDQ^*g0co>^{0_ zww9Li9kgAW0(Y!VbQ5LDwXog|v7~g{Evz_og(}J16_AKP*S`>{Ll%6>C3xz8_+#Gf z*{t({7%$zQCi33v;koT6Y=T0~e~D-R^sUjLOr^DUvA3TmvRO#{^8Kj7H?i&T(4~P@SSp6 z{uk9on`uIN0M0n!5_lu$kIdq5FSsr^dAk9 z2U~aJy^Y!;4byG;4^q%f&&)+bcPB6d(S-4%EL+5`n}fj9T3j*IUgCda@S(!Fk(&WXfaf*x@#wHh}lF zpPbd`%n|*2ryI=Ip0CcyKonX6!c;z+pOjwhv~YVkct~)u+s_3Os*MK+*5#`4U#a26 z#hiR2a`TpAi6y?VCii9Ojwjo$_3(*su%w8I)|&%LeeWsi;%@U}1-|Bx zry%{I0NBH8TdGM&hn^XeaBorp=W7`E1h}H$SZ|Wo9zR z1meNywPY{L27Vp76J%64CZ%D651l#Vd%cUO$Nx)y zQ#OR3C6^`=J}s=BGpFl>WLYf-1OjD}#;V{E-~2vJVmiLi-zjAJ&Q~{vu-sw7l;CGa z`)9WQ!X6%{jL4Kwpnq8@`XKruIMF(5N&NAqmBE6}coqv6df6`j^^dCbevmRH41H|M zzz3>4wcvccZfMv^mZyU5ni|XflfjKn=u{c=E!ov0%xzvgjuY4#AJ|$y zC*=sg^VjYg#fA`KDC<6i7X zfSs`7ou&iAVXU4g@?J5H4PXmsv3QtHM>;Na8~+03^y6F7ztF$e?{2d`*UAL&%WJNh z$))sS2_0%#w-Xnn8;AWxKUTcKbRxE2+O7x!2#zn`rg=-Gvbr#d_5Vs2Io0WXZ-Ibi z@?fuv$tw15U3s*we`);zcFY1LT~L0fSpyR)l9md1^hfPp$r52Tjyya8s(ab7CngkOo7|GiXZ zJft+nvaxQa7VU1=9v>$MPu3r_Mbz##>D2O76$APKV&n4!lV4C{XGq#y;`yL*BOH3O zyPrwObcCXc3kp9E7%rg8^O)DDm2a>v#hFz9B|jX$ zDFAsEjelA@@{Z)$s~Xdp+T+&#_zQZyL;zd0W3L#3IA$rI4c++OkUmR+U~6n@?RsTr zV`{@kYe?PA#Cuvm{+K59={cCuj$c6wQtutCCgs&mfN6Q{bf!e-?3rAnb*_4};y6Ox z?AhwK`;-M$nQ{$vc(Mtg8OJ{53Ik^!gNSMY=#tEdw{ndKb=k|-ZlZfL-h&H2y1er9c`8`Pt1ZL>3X z>B=&O5_Q7ZDjjT(@!`?l=B4zHUfR)*qk#5`FM^`0V!M?uUU9Bwmn3 zSWKA<<||;1L{{SM?AL1Vo8~2-?GS@MvoCNagWrP@$=XI%`f}F?nlhaK3+>juVJj=g zD@Hm5IHDf;twKNyMHeZqQI{X8ft;|t3$VR5TQIfRl|>Be(8DRDsnmq#N19DvlN+^> zgv+TWg@81$2Qu5_%EU??k!a7PYfm(0Y&>&mnflO(s7lRx`8eG3q<)~ggQimL@7>+A0bMlAua|QUpB2t zkfTw=c?}_}p&z%5WD#L$?{w!)!G18p6fktYzX|{GuWQ~wLEb^l-Zup-uMQ|JhSWwY z8bm+4(qo5@sP_)+SnW_$c0QdMA(H-hF#2ZvA9^IQ88r4~C$p;MThc12)Kr=d(S&&Exs`kC%NP8wHkq6HLhS`D^p@#pzP5ZaqJXuoG;R5G8=Jv)2?3i|p4J zPxb2w0net#X8;U+pXD&w>eY+5dcQhAQ`Pz}dCP(dFz3j+Ik3b)8p)4eF1Bz1fOI08 zuZFt9EF$s3}7JCc6vaA1Ko5E2N@R(j^fJwy?q(mC~W_jBx(HQqP; z(Du+HPdTAzoyp45-zonzM?yYS_qs_;{_0AeX5mmVWjPqjbSXMBTiK1NdtPRy%KbOm zC|V5dnXQs1d{KIFIJ`a+4I2|HKJ>@aOc15wV zf7sb@MelVGhJ0y#$>VTl3(KHk`J3}22mW#Wa=<#By|vkWF}Da6omytq&WlBf4eoM3 z>(t7dD)rcZC~u9)eT+#Ic4jFRkX>(~e+a-8rdO7U7NGf04t*RukbUN<`YF9p2A&CE zsqd?RW_#gIRuR-DsF?99!u=px1b|@fv1bR1^Ix6V3sh=LZgj@u@ZY=$a4UU0&NWzH zHEy9lS=gqV?WOnc46yI06d<7<+UDM8|Aj}2etI-Ku{|B zn_fd@+0~P8$deVX)ymSOV9#8I^^YW9ml%V0?idF!lXMSiJr_Nooedvps2f7ZOOvvL zucB;9TdA_v28cCwLY*_k@LFJ#K61^e*Q&4{;u?n{Qr&NnzI_v~Vr!M|hB$gyqmUMU?4EH@U z^FM5A25ya}NQtktofT4wMGS2So5KkE$TIbp8t%ms6L3Ox-C^aKR#zXn!_r!(JM^pB zdVU?o`B=jQ>wQouI;&26OYL_?jwGxh{C_ncHtKly!!ldzTJKL-Sj-nB%RH7zLReu^ z^vV#Q6%e1GRCvhW@EqU>Fp;wisE<696-ct(GBcrEvU`I?Z-VlzYL7igE~3YVY1h~e z`)`-0Y>CaTaqTzn`12Od`>W`Tg-+K$+5Q`q_SYh=GifAhI`M>}JqEyATrAjv2_B;om9^Y7cBD2Wo7q*&~pwW_|A`>V*rw-B3YS-VLCKxps4{RV(Ege?(nGn#7bCp`Z#`{b68it4&-=Uoc0H1I zfCWX9O5yL>0z7I2*aGRKFw}n;kIdWL9sG3q=4!_EQ1rL3PLHAgWf#GX!E5we|n z%+z!mLudbpf4>jF|B58@X6SuZTV-TUn9#)84`g#xS_IR{OVz-IUkkmeOXQQQ>^EB< z%E}L_Q`bN+rn9MrBL5dWnT#COA!>3Ad1L}(g~2+kzp0twy8k+9Q+q9H*fcgG7HsTn z`9E8gAp!fAPEmSXAN7^Sbms;s3&n>2I?dM{GsOr7JOxNnOLWL2h=hCGnB(8_4!wCH zqaeTE!lnLhT?3DURR?k}6SmR?;t5^EV7}rcWc9~ra zMg!U~O&i@9ld<$m1I6bjy#Jv*+ zHoFc!x2;3WeP?8#b&|i9=JJ}o*tqq&8WxQgU<+S8)zvq(QsalrF#d(Vc--HoEay62 z>gMHx7D!IzW2$1~;KUZ{>+)ge;@p49EbwZ!+iviwFxmd7r$x{1Kp5QK=)qkRq&L6% zJjX8j{_p0K4&CG$C&(NotHjSI0_GPrn%jtuqX^}BEDK%l{v;Aw^`cCO}jcEt5>x_^kQUqn8lxK@>`~Cg@ujw=R#Wq*v7r^VuWn>w)i3tbF?%|8lfR=FsftLe}QSIEafB0;9$8agmaXWdu6XD=U}EN&dN=uEsTYEyS5M zxtnCewGg$5@`<&-Tv2V%X4_xqSY|iBgqZ#7kF8$-N9bq2S3yIh=h5E1dqi?)gE!s3 z{2`U!mHv^}0d(l2F9Cv!&{@*kXauM4?@pc(xCO%_ulwjT#bCx?z1667*W&EAP9GV=?6OZ%rtZq{4W?Su4$Dco1x)38VkWX%e zQQK;sp7dYap`=URe8L5=IDlTt!c|4%NjW=Iqk2~j(Hsbd9;AoX9{5c`f+vpPLk1AE z&JNRv@7ZFqhkMmaL z!7Hom@1F^~LVRWd^78w3rO%OJhao~UHRoL05mI;||7}n=V^d=A^g-pe#9I+55%WeV!c|6?Z#G!WYI`^{FXzXbsWF|o+!rI;V0lOce1%=9gH z&yLDNI(~gS?1bk_;a2{!_9(qewmzf+>bzR*V9w()E3{gYLaU~sVsByeH@muJL;M9B zF`2@{b?6;74TV87P2kx!o`Mdj`Nzk`DDrK1w4kxHYpQo<*7e*i;GBUU#^@?0)CwmlMg{wCPWIX$f?!h2}7xc z3#>49CBLf+S<}j7;_e{}=mB>NQlPr;O%h1&x#>3FnL)v%KRO^(5TD%Wk}W`L@uOH7 zEgOb-fRvgB0&L7)Y8z$2p?`;T1_T#lG~9fb{7)pYzV-jt_B%fxk-Kh^LSzpb=o%i2 zBE#6yn-p)hCMG$b^qQQuCi1ze;>$u&diVzcZRmS)kXo40|d{ytNIj7H9XGW)YXFovGRT)V@7| z|C&&Jv_}&ChL8ebedVAjn-B_SHyxZKQ-j zoGl(ki&`iUvcdkqBSd_VYzV6N;a--E&uN^tf8GQTicBS+>2Et&V*&2lgNQ+UX*eAX3%BW25%&MUrUhVM^Y|LVeX$PYbhR)hQ3wf42Q zT3s(JTiq%guQm?#j^QJ;bjReZv%*8grZjNa6-gu&_Ytf+lM(hXbA{^!8d%35@7xNH zTy}7M_(8yfIP`G^k1Yf&qM}$-Jyy8hMII10MsNBt`zIl!i#BQQ@r%q)UA)Cv3The} znJ1o4zV{a|#pUJY(+kH{2APLgdb--CMn{|rmMwC+qQRt}vBXY6R}N{mSFv-uHRaN1 zsY6IsB^!q6EeMg$F)5WeQ)W7jb0mv$*Dqsi$wp*NL?deso;~ASVH$ccF z0xj#nWrs>f9L=4SJKi~?c4dXTJ7`jDnd8xme)9lC1NySOO<9Y+#Y1IgIhvSH7?4r$LLO# z!qz}R-8rB_V}s7Z!ko7#SMf(Dsg2DMWdT0<=b!CXlnd?_OoSa5Vd2k=OD9X(kaqtY zi*PZM9`ebmL$Me^kd2MNHfyOe^sQ8jue?6E_8gfr>gzMM)n|_78bv7f{QImEKV6Cn z^=EaRx-y5kCz~@^<Nm>|5n z>duEQdl31ygK^*~+DG@y=_~cBkAgz^5ZCgx8lSS(0lsS8cYl6u#h%e*Eo` zw(9`Lwsz`EvLh>J2OgFgWV@u-10aW-KT^p#>^L$(~Cr*Sjd#(`|*(gC=PX z-G~PFG%=4bSghmP>S{-7ScXhludbIrGgTvhSdK>JIhwyG)xa1=`5u*6{7uPsk!u!_ zzZBM|Z#PA^dYmBrONX`+{J1qt59L1MaS(L+Hsmu)WlG;*ekP52Mzx_OcrAHb4>b=! z8&VP`mZ3N3!=Dd$FHX|9rf?N%Ua_QhfNSI-2RIUdJH{zf?*o&Q_aknGdXdrdmyY~k z5v}VbjLWhU(A38PJR#Kwfv1ihzc4PD{{FQ!^AZfvjTn<&uN%Q`G9rwt(c|_t@sQ)? z`@8Zu`@B{i>FO4m8bz~bo);_CrqR{yDbU%qRx!Djrw@Z{570-2S^uIne8S}|?Y);K zsvvg$==r;UxXe;mA~_0j;MANIGdw{{UANR;F>9cQoqmiajt4mUHh?Eb6o^&u+@o7& zw<}RE@JYbO*a}OhvizhoYR|UlIPr7MFGN6w?h-pm(8K)@U?uSilVP2ayjfXPO|`Hd(DOjHG4L2|A6(w-v>s1Il_af)cEbfSG*v zAo+fFk{KnU++QEv)xEQR=R|{G0TxI@60jv!!Pp#`gOZH+0i~0GoHS~VjGoJ!VJ&LV z2Xp>i(a)b}*rM26zE}q52iOH8MUzs*|yF6~1%jF@Sq+j_H(j#xum zuN15Qwr~(aNzmY*c%qtd+-F_JaO#h z2=~dK8`bz;-%d(iPWw&KN7xdBr}na!d+Lv{w;@#B(+GvyRkK2HGi*l$2s0SH{Fbl0iur8>UXsrE4F`*c|Lc$+3hSf@vbRK3uXNOoCVMkE7#E&Ci!)0L=r_5 z#V}}tZb>$I(FgR>umlpKiFNvf;M`5PlHM4qahEmj&V2Evtdr5T0cjQ=~{J~;`^ZwF`3NFn=I74igTS7ZgVt^12l#eUK<|`$Pqb=n+D@+J%A1NwnZ0tGAb`6Jc zsb>)@b93|rkuq}@G*6AbgbvLoo4o$3nFHupQ}6^@xzr#!It^9v6p7Ie zqMk52yJ1wzryFx<+@rp`X&^ILbZrvicCY3)fJrBU_(bD(>Fd>Qy+~EZL+`G+tF5Az z4!)a*4-8VX2V8l0C+q9d>s-5CE=VtbFFOgf?H`>*^a%+?;KNYb1QFYZ-SPZmOazc~ zYi9i@$paAtBaQ>q)cwQT%Z5oX(}gaw*@$E4T3hDk5vN$}-f7mD4DF!X+EWGTp8AJP-CNlUCV4K0D#rpm+Q2=Zt(Yek4fx~$>^ie!9XcG zey7AU&<2o1W(U`9mNcSb)E;bhZDc-8W2(*%wc4YLuU764O;-s?C_eKx$**d2?Pz z84Y=406>VGEm&H)L8-mTO>bl1q}!~teZZ7~=?~*OV~L@g{h<8KhG-(hk;Tk*`x#ii zPo(?h1L0vAp~IJ7AGY-+Bd()C%TALr+)bI61X?Fm^1BNKo1ij6R76F_TO#OO{c<3^ za7i+|eJRAVuJiSFkZ02$)g43b7rCkI>N+w)P8au0LfQI;8DnEt%?~1lzBW=Vg6zfF zo+WV4s3maDLR%gmtsx_uoyYM)H0pVM&B9Xow1xx#7!r;p*GS(^)ACh5?EQJ~9M^_A z_+4Wxn&z={;5WUR=C5Cx`H;KyELnV3#T*2He>_`qS<7Y&+ZTf5BpZcl-~PA9F6y0R zIxcbPIrBsSfT~*MJmmP-M&$=a8P+APrp&o7cC@eHcaJuY@w>MA^dJ}b615Lq(>Yj9 z-n19vOV09&vl}+jkqjoC^d6m7>{;N0S%aK>h-vDyjVj7GhY0rYw`CK(yV{{`v zug`FojT?xPW==sBTw7Ix(Q*`g^ztgfEA$N(!k8M`^#wJWsh#d;9_GW+PMIH57L{Fy zbRldZUYEkcG5v;xUg61Agw;OZ3H&*A+o9Xw6KSSZ|5S0Yp5|^1OQFMe0;mV>AZ&(A zDtFTq(=zw!)i@-w43l#Rv`UUj>qCubS2Z1Msos1GDV07=*@K7vCU4(naiKs`^1_qW z;|&x=2PLhwO+R;XhVvo{=mKW9CYMF;C?1BNYB)6iUFOuu0HOGl(Ayf54~1t$%5F)h zIxTNpNSv}0j6`BEhkFDvgA+HS!b`l#{i^0l<5V(fv`#mq83)V%5Iw!W@Ny|E+cC11 zQ4^O^bCgmOW|qaKQVT|JH_fC}2pM8sH_w>>($CXkW;LaMO`TSyi9HDn-n`^iQ zr&s&EA0hxiSE1I7A>I;Mdv3w^{psft?>rG!T-ap(A?t6t^G?6w50Asfa`IxpYD{C&zudn`#)sh0rZ*h2 zPRK~IM0)%yz@m) zhyOg5{myx`*_o{}wFHIWKnHCgWEHI)=lCtv@G}FQ&dtcVNHP2K&Kz~y>(=5u0@1j2 z68h@F_w=1+Xg)J7LtdCRrUvg>pkvTb@c+*${p^EUmt`>uBpPDCAT{yyM zskDGAcwzMt{w+2ctB%u3nz9;}vKpzfnj&hvn3P&aF8`^V*0a3Qo4V;#lW*4Am5lj8 z=ul@>P$Xu;4ivyER`|e`%nNlhjIll!0jR{-u&}emAGe}|9(GiF@LU1h5kIN+_Xm>N zcL#E9%0)7xY*3Z@NB@LzL3u*MM0e`Q)YeUjx#CtCqJ6k&b#?y{FhEU=%45P6U1z%z zVQ5prlU(4c&J9f}o0kZRRI>Db@^*XqKwS98X0&Lk?A4n}R^Bgi6~91i%cP&u%`s zhd-G(TAA~@7fVZ}1g|iFqsD;&`q|dvw*@57M=TNIM#{ye$FapPh(Tr~lNatbLn*WM zjM1T?7HF*E}AyRfss~vgpU|YIL-A-%GTa9J2!atrEC4d#BYA z{LwCqZRS0jGe0zW{rth_a>vB94$W?%sbJu6DfGfPWzDvuw5q+oQj@CO>TH(fXYRoo zwWJIttin%!=9K{E74{NlEtA>-n(yYF72%wR20bPdG}BS-wM+9w&!3_ByS=4yt-e0j zyq5EW#u(f3ML@Leu=Y=sq2IT^MLZF0dhu;~lQ!+CrZC-ZZk9|3gwm{`o~mqKKIA}j^W(`!@+($);sMkiR5 zFLUZ@;Majg1G!=JgYX8)k{Ju1f^0kY5A~n!``NJXT7~aQI#BANsBRVB)(2(>R$hH7 zQBHI>!G~v!Kub!~t3&+l0Qw9GUM@>NQTwv`4Be z)w%s`$jaFQ$K+#o>10LewFNRuEhv`Mb}MWEmYHR2u;^A}jt#P+W_NDrKvosix6-Q$uD})Ik zDvoz|Fe<*|lSfo?W zryJ^3_#O?`R6%1R_2IVCaIG=TnN{||sx>UYum*?@0l3;;VdB-os7sHgOwH#v zaswzUpLw=oKads2?aru|fwya+`NT`G)^*C*;OCPkl%onL%+nWi-hw@a(`eFAtAHBM zvMIGCPmQXiR5s%%P0gy9gc>dM=#@n1s11dHCUhD8?J3agA>-y;_nDon3~V&j8nVc3 zrYf%%p8RdebpZh&G@a{6EI-nzr^TB6O^S1+%5I|w#|8I%+`1^C3LW78M{bZ?>RXgWqOc(}B#1-N2M%Gyp~q3MpW)=GJK$>T~cGfWP~Z zIJs+A!Dg25?}*s%aMiUgMO7u(BEX;L=N2dQYM?0%wLQlmleq&-3%FT$X=mPb!Ry_y z5hY=`{*G)yW9lZijax4*qZ2v#=vqe|S*t6T@C3rq|Dx(GpyFu4ZP7sj1cJLK5EuyV zE(sRg-QC@t0Kp}M5L|-0yC=9qaCetsaG%%t&$;j22dmf2>aLcluKHx}-Tig+szq95 zhpD0tM-5echndx{@-JmosA}oOc3w_twSSWr59qcCNJv+{&u#Q=qXNPQz?+GQ&-n}h zF;lUv5EPV?(YrMbD%xPCJ%sk01rNdLWjI!y)I?+eh^uKAfUNtQ3M@&ndZ(9=k?p#k zK%pPg6X^7!Vd2Vr`hO}lxP$|ZasG`kvkpID9NZ$1XrM9F+Ui?VD!WAU4L1*i?XyN) z5O=b!h(h|vsUMedjJ(E!<(S8MM8fFu-POuPMf^85u#8J#T`AMzEv2CL41wwD$})b! zKlr5@G|3)$V;#jJjP8W`|MOTi4`3!g1qwL8;N*+ST;`3bA~ z4Yu~8`6@JSw8&Nf(BM5ugZTkcF~Y-}?3CKBCKu>on#(J`HD4(?LPuskFqP*oFJ=vu z6FYMja9|LjBH;F7+mqf>;izK+b4>d~(ZQsqXQ-Mai}^aRndtzPR4cYV8vd5UW)R58hJFKL_OLN7_V<05Wf(j?E zKxU5Jb)1)txQ3Ye)HM>o=!4FHL3x8B$(}4EYNu}r>FJ0Q#|P}ZwRUMV_7IElx%>>@ zG%>9L+yPy$wN<)|{Q?llR%j(&Z-)TVqJ*3TR9i7Aj7Eu1I!Ag2xVS~#hwhb0 zW$J&$>XtD1FkZ!2%)1T*&{#4$6DF!3hV6XPNCXNr&_~?Z_6O%MAvAVYeV|qNGW{ug z6Ng{_`X8JpqrL?|qO`uFM5cBwhWkzhRv|6a>oqP30x$H*;NMDiWw~LIs#LbINA2El zL}>~G)n+5Q$B{Dj@UTZTF3j zKzAbA;&jt*FxWy@kvOZZEu^h@iJcR2jyeL3_fTUODujHIQDpeJpkh{v8>E1By-6Ok zSnJV(LlDr!QP#WcXVMOs{*tC5N;d`MuF<6Tg->sCubqac#YUVD;&OV_Idyc8^@qMn z5}A$~O{v##DQ4hEL*2F$no@17T?wYEW9%(E`+9eqEdtz@H|AB8tvhz(5un3YKGa7FJl?bK< z6=&J|NYyml@~;)9(D9w2DI&l-jmZ$ep2sb7Ntd9}o|Z&oYn4not2^tU^B-3jK;)*s z@+TtVl2wf-lL83AaP1Bem7x{%3Q}y^YzpE!2shgyVw_!Zgs}K@UYd+A870X2rW6E3 zIpU9;5&?}}tynpbnY`{}qi;t7hDRTqoUN5>?-*oPCBO=i@@WA)q%CL!Rq(gME7>M} z_(23pH`KCMucb!AD2_jqdI+iEqXWJ+Z?PeR?`y0*_=!gSh4@0|kAxxiv4@1}c9dBC8&Xa`S)1seliA*48+wzo~phe@)o{zAr zy+<;Q8Q9)r|Jnc>a)B=ZM*^#aZKK;&L89(=VtwIg9uwx=J%bF0}#09!0 zta2+A1zgE;Xs6ipN`mx-b!;J&7?W%f(;%g6t?oGv5>g{0tRlD^;ota@szr51-fWy& zVuoZHwS=cYlk^RE+`m}BJ>}$XS+ogGK^OX#a=}p?_$dP^NHv0~KsKM+=wJMf$H+`e zFeg|KPaDMCa6^n?;&G1a-0FNlgVB>`Pu55@w##z<$_~_^Y`1_**ulqc;duNKB%=cKbg`-mIGp#<|GFEJ9<;4l>i& zup>f_TCO50!T3@A=FKPg)Bi8Wiz=n4UX_?4fo%E0&%h&;z`bQ0 z_g_=a5Ca2M8g6HqhH8LzQz~D5`)%3_l=CoCa|hv*u=!t9@CT!@pg+ z*(F-n)U;E(&Rsw2sI6k>(D)Wi!*22cAd?@*8sFnTuWd$(QngKNfG})642pIo$zNQI|7#JjojB@T)%~8 zSmG}L8j(nqRTuDNiH-y)jrD7`S`ySko)A4oobd&I+0lWY0LnAVe;PIf-PVCG-P0-YFex76gndrU{x4C(2 zLsbw_y;=zk%EGMgUTagCnWht;Eb)Hkn*T2EUl5n68pNi^2tI+|F zc*@gf<&|lS#KW(TipGNkAkm7g=s?!*(WcvBNO52Ioj{{Cs z+5O>mzgq47olGk%W@^Z4wY4fV;}%aRkH&rDe>=Kc&QiR_%I|EzhQQ8o`|w|UGi?o` z^!W+b{W@n_JNU$nU@oeu=JoROO8MUL0?5%yhE!%2sH)vhFBCcgaU)pyLq=J;`l_ty z>KK?2^=m>!n(m!wWTC-aAkh#L8av6}r%xWX&5m}K0kMmJ(`LT!*?@xH34p02&8q(j zjgQjo%XUOYIT0q#`i;m_RW;rQ*`2bebM#N5St|h-PL``7SPai&CdEPUl6O;Y?3b&0NI#@FR6ol_@q}GH_cW{wi{*TVvag>g!bPyE!57Aj*!aBF)zs%#@-csgJ7HDu8 zWb`|*FEo9$8A;w7O5}QfT7`fd^o7X5T0mojm|yc`U`Z8>0Zw{y12h)M+ts*$ID?lT z4)fDP2<7Nc0CEAM_Zr(qlm$Pardc>??G0RRgtlsNQF`S`Y>A4|^?zICto;`WRjvsgt zLPswjcA|0`cI9>l!AuR{oGq#&g6WjQbd zFowIM@B@nKtT?!JYJFvh)4d0zR`Vv#fieH9e$XtfHafK_H4d=IXF8;nd6y}~k^5$p zob|@H${OCS)2Xo&M?lMWzx9hH&0ElZlGJjgt=@BJu#7Q_ABW}uuL3YGD_jEvFIHer zHf?(D+M#D3!Z(X5=yf;TRs8rB^!ymU6V{Y-vD7xVSZQT&If{Uwh5k>2);_c%rgzUp z!1IL1!32C8OU}%UUqRzoQ;jb0fW{0|5}QOJNN&k)BU-Lsv)_+A{aNq~U!fxy43{2PvQ+teRRk0VZM37l+B$ z#@!Z&)c`;|`RzN+NwlnN4HuvhQxDT?j#MV9nhING5n?t#5RF%-GZw&%-$VeCnL<1+ zMt)}*vq<@wPXJp*7@O5qZz4Yj@LFSrDPsl2`D(kLcrntSB4UkJ!F0gRgya-+N!I_v zAn|EOX)TIX<}KPMTvtnLh+-|>{}PzA^a3si0sBon^QDPvi*8~Dp1I3<#o?$6;)v}9 zt5)8RRYEa3gY7zg&Ozsh#GV@5|J7|A;a7$;QQZWvYkf+}y3+Ld2J{%)d5N?HU0fE3`r-Zh&}HkTI_lx-&G_kwIcv<7uM5#_RurTk9${icUk01RxxuGamafBR(#3osa1fR{1p9gnF~9KU}V z;uYW+$Ewzil9HJnU55uviiDgQ6+cYx+UTE*8tq&5za(;u$6j)5CtfBNzKO$*U5uEE zVY~W7f(L{y5it~Q3voQY4_{Ji>grq{LWxYnoIO0^f>v$FD&~d%Bj_+f@ZI=17VZ}p z!TbH5860Ynz*Byv0KM^JhdG6F)k_{s`;|>bjaeL?+q8cXXq8Q58S~DlNvmF%46su< zZ~l|j$py9op(a|>As)R%kB1h`_~1q_dI%9m3?~Ne2tY1) zChpQlHq45^)e=tN!Ro$D7ms%+!I-|H|A>k`FjEDnKpdmRX+0&Ee@{rt>;q zh`HN-3cB6Q+N+)Wq?IOLRKliBbNDW~I(#+6E#ljDP9lK+a06m9TTLrtmnG%gLHsq8 zYbmmv17~rV9iXUKwb8|A z6QDDR#%a{kPmH)Zjamc@2H$P6V;}Ka#Sn!jo5lRhkp{GSptF7B1=(|C{oV1RLxUdG zKr|$XtO`;szw7lPyqh(=1Awr7lH4tZkl=T^rOlhn!7hzWE!qG)*i_5R<0F%sIc_4d z{9Dgu9Aa_78E4@*{}VvWNab;XvH#`&2EZgS0L?+!Ru~XqL%{#M@XahY3g;~y5_ zLJUzNwT~`d1^z#Z{_Ij}q~WrkjAx_Ilecm3D{wixgV3#S+kLlFs)HW?BRc5ua-m#3 z`%l8>PW1kt62)<~z`7rk6~Onkr#uCO`sq*xx5^`en3|l&)5*V_0#1B60TZB0?sT($ zt^?sx5XIhiS1K36sC|==XyCjGNwk?nY*AHixMes+g$M@uQlNd$Ismxn7q|qv`E>^{ zWZsT!hvY3RwJL1fKM^YfF9zWV`Akr44o#~ez*m-KV5$bFZjMGr0v;O+>d#ewBK7*ZSs{t^R<1`=my>nVR5+xb!pZC*lmthyfe zD)V{=eNv~9Hh^*#UFOA%7Y_&}urG-%EQ-mw8}&BZ!iySnn`;aLJc-i6|IM`k5q#9i?zjX5w;()DU<8prCS@@8>C0)%Jv1!ZrOA9_TmJ0EPn}!%7!KH~ z17l`S+uDB-678*d7)le|WpdjMX-zBw%R#jf?IL&OZ}<9Z9)toYYS)&C-xko#Py z5JUi&r{4z8-|aN(VF}nWL$4s2yK4`sE$LPBfOyuP|DzHh$T7Eb5y{q-FG5u4?Lbeb z9V2AYqrm0_0L9=h9UT+SUEG2sb*AuJUfHWPkaXMSC2;u zr{RiBnA@}$Uy}gJSoQrd4N7V{O(|24TJ$y%Hc})Dv%PW@1fhLq+6sN((3b$s+Rt6# zDU>ZaLOF@g9PxKs!4kxZvSz^_Szd@D#FMt_+^MSyS*`|(0l&hoe(toWV9_b_1u;CJ ze^Puq5WcrSb_*y|<@L#%5X`%_0bT6Ga&=EjuQXeE8G?TA>epQ4>NcZVk>&#)-c>KC z$FY?!x0@`KEIfdheE_>c0COEGre$`GsZQ#_0HDn_-EmDVkuzUYM^0A&1(En3+C5r} zqg|10;$JxO%QeuI>2c#_uLr>9 zfi?U(o9nIIkE8Sqg(YNkY`*^aw zPKJCj0CX7WE`C5jB%Khc8k{68sKX8vDpN8#rCN}My#1&X$6>`^058z@TPz4^6opR}3#1ioRlp4W< zO2<{)9ykmmGpNiKR})9lXz*&`greE-oFCG4Z;3jQ@uk z==10Jkbb!XA-$hbpg4u+uo^XK= z^%+u=Fu$TZI+Cp!aNB;>7R4hgI4Ygglsf$IYJeizk_wYrfF37TnB#uJg6zY7zIkSp z`0!;SiAcZOWifv`aS@L)SH)=CRaumoOhW0Q8%dOf=ZW4<>uj*-sC14jExXI9j*>!#2b<-3P(bIi8M}VEsutt-OU0|2y7-Hx@ z=d<6%{98nB>(z_%%tXE+_(r{5A|K~%!sy*5qwIBUj9Lloht=P|ETeZ~xJAlPyPIDw z3OaKopY4QS?hfDY`=Q41ibCa-$+`w1uj0yAc)Zz7B9%^(6TzTe>?x}YRS_6v;P$2A z3KA^fI?(@FHT&_)px##K1y}Ds_DNiGLUPEGnOXJYCxiYoi@a*RaXv-;d4NcIrO8dK zekS4-B{l@k^n|FoL!eDq0+kNz#|L@I1_RC}nkLXS?Glo)vz@rek(P!v=K!9(G5MXZ zTS>J?ADu1KtkJT@1k}c*NBHq0e-QEo7|?w+j>x@=Cd+itwKB4a&YiTQT@-xc= zvnwv1dykeFG3dvpDa4ra!Tl2;oQ)9Y5$q4v?BA02viMISw}vHq7DwlVW8u_g_;0n}_Atfjxd0upw)uahuXMoyop+VyrCay@nrsc z%_3SEoUX)k;)4;wIW@SGp-x(aqTk!23XZv+aiZwj$f(f1TomLY@wCymqDaL0ap9{b z*_1LFPO4CR0DBK)q3%Lekt5Bu4J9Dz7qE@;rzHKE9!BZLFp!lw+1jhHkt+K70VwlY zV!Id9F+~WixyTZhvXgN=fV!dDlEv@NOCmWcI~PV%mB`>p^oeO-lIj&Pynny1Nx5o6)`Qhi(_;$yyb zt2q2YGR)ZEB#`p3_?U31&$WOdC(*Gc_ia{^GM##vG$U42czoTl_j$3-C&|?CVR?fu zs?NM6r6HkaU;X04nC@e*0+#Cqi5*qtVT-9-l+MO|pqj&li-H6+KTJX# zczj^FHgmkygtIN0hiSBlnDX!>kwCz*WdOvRR-2mUKT%i45_mrn2w8{uR8Jeirn4Wn z6k%6^FZbEohmlhtjLYNEech=!Fy$lWuaNdJw7=_)F zX5eM`%P8gxmdrv^BQ1gJueloLVkHBi3?B(&weo+CsGdx=q ziNn?rfd2x(AmwE=Cle|%WLcL?a29Ct5AYC<9Y1!?fR#u12!g0-a1~`~FJON8K>!;J z0=bF02?34(WJRwQ2?SbhLHtH}-Ty4|2fBYrqFd0HKb(Nwe*A}zf+peEjW}qFR5p91 zUx1B4sw1e~#;6g*kzFQ$?0xl>D?lyUpFLhy z>>5q1fST-i>w7Z%sphxQlgf86%F9^-?G{J0wtfa zl1E{hF!CqPJz;NNFPim=yYW)}q$&nA>t0t1d|$~L*@PhZ_mbAtgWyEhC0Cp&AH^2K zKcgIaZ|NwX$)Lf~k&Xg)QSI?)rsBPrNbxJAL0759y)JRY!ije$JATYjUwJ6xt+psC z22;nLMqEU8YA)0Ghxk~S40HI7Y7-y5-<-V-neL0kA#~iu7lNw!kZMwdK8BkZ7e+kS znkWd~GkW7k`=z;v4Qh5lp4I8`?ju& z^saPgR_74PF{{ca5Y2e2&Fy(x(Thz%(?vPCX}q?dR$B4G{skd3MJ=l;aRS-k9&9`! zd<^b|#W{53#=7ukU`Qx=mPr# z6`>5=a9zK447^Y7^nbD5u1gL)vJBjl6?u^oPG4xqfj2xlSR2ZWOUG2_lGKCp4WpxM z2@v?9?{Ed~=M8$TmF3ZY@_F zYJKg*eQ)xeQ8I94dI0?5%mVX&j12V4jra9g8u{drz>(&>pSPBH54#!`ek($28t;C$ zJ??k?{_TST-^Bf^Ao!9oe$ma_VR=dC(}O8DwYB?OW;yq<{azw46+xLH_Q$u-Ebl-+ zP7lhLeo9ZAXGzwF$ceyp5!fQjl;`uu?ZgSc8`AYP*wM}U^L_LLftUZ4$d9D;`@YCK zmW#06gX&BsawYF`+4nlg#65iL$l8NF)O75;`%G&0<#H>(^@H{E!kM2+SMscdMfV1N zji&FeS*WWBs^hPheujd#-7~h>mSMN=16-CU@9+k(Ql7_npPr-CPw?C3BmC^6U!X_H zgDR81jzt}6b9diWE@UNsKmXM%jzl=T(}oP|m1Q5dnJUxXB4P>1ei)@rEoje2{`juTj({)DXaC`8m-1=N5T-aj-*unhzi&DIG8qpG zg&t0}wO#}U&2m^M)J0Hg44WIW0p5{5C0)2+_1@q>1HwrhLH5L@qltP!il+-Kl z4x*PX%!K&z4%9`}X|gIYH3O>tzN2oN6?>lFp=gZw~r5qmT zv+LJ1RXUj}m*#@qu{Gvmr2-Y7a4JX@9TX`-!Eq&CDVZuiJ7nkh9!=LD54)iIl3ma1 zjj(gdr)S5&GsW787vq}{L%+w0s^>YLmkHR@Qs6yi7X)|P5tiBYsM&e0S+~X>04d%7 zpj%<4-i{hPKw0W(7CAtSJo2n%E~LEy8R~?K+qFsxw#z$WkVqCXNk9`%62JyZ+e&YW zk=+|e1-8qc5p@vCtkCVOPLoCA#;^RgZ1O~9Zjjc!@^BUZ+sZ97iJ^wq&>PcHyyzsUD6?ygxjMjw9V7AG}1MqtwX$b}K z%1=hYO0o!usQ*>~fA2sjWqJb#fII!S5CCgD9bL>=?9I)rjajVijV;Z&IhdUsEF+Z^ zq|i}G{_Tb?{aIWE1cDm@mLQaWDXctftqb@-GLe-M2f_aR=X4Y$0&8A7ebxptJdECd z3tSQd2H>dwr%0?<#!05P5&rD;K-c~_0zBROV#W_R?@^){X3%Gl2;VRp%{H1SD?dqB zsDJ!rGrK2YJNpT(K_~fpl+3XXzRn1hO#P<{jTI-jU}^DJ%F;^jmeYL$0#{PKFAWTC zl6R0Mie}n9*GDrsJS{q1_f~u-l#-phB(HhePxE4iC&u}qgK*D}zs5Fa3QD5WRUO-r z6gpDR;q{8jYfz8NN)qBX<++>VuN|rN#7hY6+>d7$W%5SylL+Ps8#z}c3#jauQ8Z_) zTzSxPk>cJJtdY??qx%G@dvsFA7oYuU_E$rfkVV+->=WKhnKn2Hkv4VLKfQrX)fVFjxx4?uNQ92= z)>8#pAicCttty>djaCQeCOMSM&jKEMjB&lwZm@WvH9- zd;(24TOF#cRFC)XX2pN&K+$4R+%bX;KmYzYnsiV#C@$_?LrsN+5=2E6e2Xc*rb#7A z5C56o(KQM$p{ZSE*iM0-DhMS`CBNNfOsarRYXmR2-9@7J%>a}E+K4Vu4?8#5e>zxE zY_t9p?4eG&3N*uaX| zz(OH|!`lEMRs`$d%%h_cPlCkQHsG1N-x7j0Y~0pad?n%?e7b+DvQ%{31xq`0QByx% zTM7xoAl^J8wRa-N%9wad$`|p)o}hN>UGkxz>Lvn_b(K=fYC!k(oj3^NL+l7zo#D~Q zTaZl6 zOh{Ob+yRc~q3m?AJURC`I13vb-bl8lF>%(Xt!b&Im2;z&W%~Art92h%`qBC2J2lvN z=xVPsVm3*RSU%VI`K8`T{O!Fatt(=?{9g81IeK5r377E~l7q-=+Bs(;T$&8r&_7jN zdKI3uDW4Q=o})t}h~z+DUgyKH;?>;uMP#-FXoqx}T5NKMt4%e&iDIVbw@8?6{?DOToQc?a`l`n^YwZnN z=@i76%zjr})*Mt%hiTgL6Hk6p9fT@Q18Og)3iJhdWD+t7d1^{$-nH(Gvb@Ac^cxRZ zOWPRuylx)%ts%{F_bL{gvUU5SHV_U3))yw*?Z{6d+Q_YkE%hKRUu1e|p4jCwf8*IK zM~Yh~Y{tWpe9hONM&3CvJh{rbZas&Dlp#ev96_9lLsLz4Y{%F%=lk_EUF{hOq7QZE zD=KE$=4VIw&n=GYU80Ia6i>G(Nv86e1=RP8&ZA-l$H9?y2YI(82B)&tYScKxv2#EF z=&k3|4*TcvNAsU1nk0S8@7LEcR1x~fb%d8eh)1CF4V?WZHz#sPU;tmP#rfOQgq(PJ z1C`18DOdWm`>^{HThPGS>T!2@R-m_I-M!zh<`*&v@f|uBGJNMjXSH6saw@3=c103APoY2XQ{AtJ zpc3EfxpoFcH}Rus|9KAfZCzW>{!s(fnymVy!#{s&%Ea0Y}VCPvDI=_hBHvidM?13vEpt829@1^wmjAN@CULd-3|z z-ZWIwnlxt}8#Fy9N^oCsej0rX)8-tC+i5^4IjXYU{K55gqPtgD^iNBw&W7JW#b&_~ z$s}IOn-U?K`oL|@K5tBVi@T=$HX}W@#OK9oiM2%ex6$Rq9}h%BVl7nkevDaOn7-=o zxE7!DRig=#C#U`19i@jZkw0o)<%TtBWC4_$rBbmgrL{;-Qjy!ivQ^oUwl`Oo@8c1G zryQSlhCETj%GS?b;5$5z4b;^;>S`a-9p!%n2`^q9s>ZJyHaSl`L+iyl2{Gqy)+&6< zYiq+AoCm2T{U%R)e#i29QakvV8;})_jjCQiQ4=jvYYO z+m#QLdZM=MRLcdWDg!15NFd$LVqUY}FW6Wf$7@^*uRtLjZ25{Z$v@#!fZe)aga*lU2Y)AuM=7J^c4yoH*UgNI#5bw?#Vxh6E@$uz`O^h2dQRn9*O zFCsO`gzl9n@$F(g>laSEj||(Id8Mtu?eTnY-VC)e%QYok$A(u|pI4jj|4>%iwWw?j zyn)ALZ{IagkjaWOuVwvg;gAwRO?|$(VU|mM7DOh>KzD$W^E&NGiSZ*GtjV$exhvCm zUhMYyAlx!-=?r$dGJ@n$wc64{hDI0xH|j*(0J1fo;nq+ct0X0BsMM!Qz(dYBf09&O zQ6SE}dD!s-&2qJtN@~tp4SUn(s`V--L>z6=Nzo77n#nT?HejY7$;b+R4bIDST5`#Z zW;<62;Tk(U!+(W&*I9Sa@+*pX$2#M}H#23Ct##yuI$+~3yz}Y|wCas(;+!N*4jnq+ zvA+2g)q!MlP*P82`{p?GySVpjE~DCG5(g^qUOySj`?Kas=ZS{7{tm7q5^8yLgCqKk z#UCj^c{CZO;aF6Sttk4kl8GPuH6ewLVEt&Svnn3%3dyDSmGktO+IJ%15(J&>B->*x z>IBdsc=+RY9gwh909OUgQ);Xl`Zl`iSJ@bd&LElmF?6tB1OG5*jg@(A! z@#%6C!b0HP7cmS$teE|5|D_)@bN%f%$a?d$H7UB=o_h?{hfAn`-oBHE1+ehn4oss` z-Z2H0BtM&|7#7&tEF`|Q5@F0CCYkK~W5Ywh>sMHbhnnv6`HS#l_LL{gx%i%JHvQ%0 zpko*j^+yz)N~z1K{Qz@}9C6)#Q(4#2^Utzz20_=eS1cjK zc!XAH@_9;EVGyMBbneeW$!|}!dYdev?R#~|zfl}nM4|n#6M-yS7_(3|0N1h)xxHs{ zeQDS?UexFAs()D!*o#}KYb%kzjN1yQ^zj}T5b}L97%_9=x{=?5vG_7L>*^umf;YV0 z_fbUPITWG!ri^Aj<7Rf~HY;#%^Nrutf@5~s0SBwfh4bkG8W`Pw>-%GTC+z2D2l2wq z6Gwce+uVd8Wy@Aapx{gQh)sp4iopI0YMaTFCaT;y| z`^?)&lHp|$y5^f_Tc9kCZm<%9=on!Y9uv#h!Pg2yzknG`3*NqHLoe8}!MdLY#{*aj zb3tfMqHVO2GQ(ZJf}EGxS%{Di9PpXR!Fa#gxv89g>+;D7QdXnEh#m)UL>@EFL(7FGlBadrX!u>~Az5djs{a}(*V-}l@U=)L#?qtvD z%)WpVQF?Ph4T;|2$X1+SmwKl_Er{grnZz^%G zfAi*}5P1#v?Z>X!d%4ZD+T)JNf2NT-+j_6BwMnxez=A_@`2!v$|1+B$$l4bww%X-+ z?cEZxU})2ONC@-l&3aRLmk}2GJQVMOoJ8q0wuRaGw04V33~Sh{Q=h60fwUZ6tQl0R zBP>6nlXIPcli8{a114mW1j;W)nzG4n=Px~AgeBCYk-S?oB`qP19bRX|h6-LQZ)}xO z_XO1txhW?9&}hYn@|l?Pj17p4b5N-fcT25UjPlnP*!S~8lsj=R*ulJQzB^teDXDt1N zYI~FtusRzeO}&KN3hnM}fA?st zEj@Z>kr`}jsk7kt{JE_>Hg81K-JL5)AXoF1Z7Pn49*UPHRXPJ`r%ypN?KvI$u>$5Y zHwkC?e3y?arKzdOVh9~>PK?*Byq2914)}B*)*Wl!O$jUcBqaeR&Rz;H$c}@EoMptX z2eirlru0<%;RIo6w%{-^gcQ$cBO>PUJfWbrB+*drlC9)1826ZBt|m6@8dh!hdu!eb z?$@^|+%MLM07-6NeAPmS=lrmIpV)X;C9HP6E9#@Z(oe3Z@21F4rZ1+tx5H<;k6W^w z*IAdCcjuenwdD>^&5b)sIU&Iwv>Y#Gr^}Ve{RL9rRp;C7f`N>Hk85Z8T5yo(!~B5-o1x3 z`sD^R?0FpcM_c^rcNvWcsjtaw^rOFu1OkUB2(Ki~QMh{w*&SKwqAT#JfDu7-_a}Kk zJ__Qrsi=}n0!+LR#k@+WZfn{=%mpk?u=+A}ULv&aSI&F6qN=!X-!;Fsd_NSHX<8*@ zJ+K|$o*%!^v>#?qiAhndyJLGhHe8eZvXQ?2v}rgHOF>q$@bJ@lxr+uz~1){spwYhTkZNFb6?7&mEyrKxcPFl}et4rq*p9;JP_P#ie z*QWas^<#K4$LxJ5P_3lE>%1uI^y^V^-C}Q!ofw5j``M4K`7W_YTh3N7cLFPenOyHx zvv=W~?z8*>npc6Af$?;|!n)x_e)d5z7)7XL5vP^ybN!rIo!wjQ$(#STf;m*@qa1Q-8ORtAzsWl|GhrFkJA2# ziYsU zn)II>z%zF7_RB4aQ+X4=z!@DZOgEayqp?agddBgvZp&GY_ zJlcHM1Z#6W0ec6+hK&77oA4^U9^QclTkdv*7kmawOfSRUcw3weokHPlp zA*R``ioDy!t5Efc=zzOj>p(;$=*!>vpB)?ag-4-K5s}jLuBnNiS@jhVF{ztE9yk@K z6@fQ46NDRUUI#JDQcGRshCM9aHIot{0sX^Pb@Hl_d9lFG+bL{?AGoMY-O?g6v)N(( zklwW8mO7mt+v#UN0OzN2*pEL{+~_dy?NVh^^|U4K2r;K7}kzY z<$Q`na&l=6CMFV5{)STY&6O4sQQe4Azq!Pah{`|X3K(62hSPp^SEBLmIDYvt&4hC} zwc56TPmd*BQK%?Fr&-7llQWnyCqPXdVAtkxND%3ExWq-Br;F)W#O~AnZ0&AE*-qL| z5h4|;xLv8=%D38DCiH-X1=mVP_bGG%jw+5=GY9`8+`ciIfdPt(%> z`j`Oq=p>2Gz0l_vQ;6RoVcsKu+?@Jo5I2H^fA-332H!@rb61MrET#*b(Y};!*8MH< z#0zw=Qz+<^VLhP!VC*~8*HW;^=NgdFrjuKJYkxj5!N>n$uI~-fMqIV%(zJ zC4}J2*VX}>_N*f2@Z^cD+bn^_{oGvB)A-|HVp?jH@(tCOVD<;UGz5` zXus9tOwegvT0K}8m?(I29Pj4^hz!7;`)}`f5Kym!Uropp6R);HmsL`ERm3vJ? zwo)yUFlhp;cDtomrG5s{ZJ{`aZeX?2c|_oU#KvqMtqxg zza3?9OD-=jKizx(_N~%FJ_5jySc1slKy>@hc(uY$J9Wm$0hfyymg}o-tnG%6S?SzU zZyXU538Am~9oZFAAfrSc{f=-(e-X;^Ftb@V%c(&-^8QbjXoU8Zu1AYq6RAGx0?sBLR2vjgBY^CA0|79^0L~`s{@m_Mi0I_yg|yk zTfEH%DYP6o?o(LpG)i?vb}_fz8r(Lg%isDZ2Y^>!x;ter6H+HUF~yc zfXr<+Z#$m<+><9GG5{=><*fdGPs94Omiv|zeXe}+4KxJK4-VP<&JLREkDMN5R%FfKcb*Do5B7uGz^z~1Hd=0Z6 zA$4W?HImELM80%h^B>x87B?0g-csvmQ$Cm`h#Wp>tUZ_!zbD0eE%XSz;j|sC;1X%6 zX#bXzODws5Ye*G9vy$jl!l+k?lD=K`J@@x~zLDC`a@~_2n4jqn4$r;ohVP~%J#I)1 zR4rKbF^eIqf#vu=^lKJR*MH=AkV*iZtk_ohhhb=fzC><-WIke(8W;3u1-I|fa2$dv zX+4HU1w`|Yk+bcemk|Qnoo+%3jzyw%CmSZZzh6UE+q~qJIC&FAJ|G9Z(_ZMpWV$zN zmVKV9TK5`TP&8Qo>u%)uQrl|VtE^8w{15hV#^b{%x!W+iLuR-y1_$h(tKe4|T-xo< zs`g{ZcwOBje?GFtjEzI>yx%Ts|57~pD^h**g;4|6Z}jtOCQ*KJ)h)QDgjKj^j**Ol zlJrBoE2wF!;<%WhB(2!s2+uQ+V3Hzn!v~@?`rFqPoAIYchO2)&Aacu4?+g{7&gRgcV8HOzTl@ zJ(>O@4Ecc`EqDj1aDLu77ty&zCBJR+l0b zW1)A(2)6>;H^>@YsuyG9Hg%wJQ1cW1I+dZ8q(cOqAISRS@ zOqe+mMTBS6cdT4u5=wl&9cS6So_~uVT2a<;JU7#7ynCT3H>qc+6p~N{l@MGsWpzEB zrxa?s^S&H;F%9tB=r%ZE$SbPrO!K+d6Z}0J`C%0Fcsi<_fHFaPt)Sm}Zay}|zYy=$X>YESho4g>hIu-HhOz#hhgJ%e`13xRxSMto~~LLMX{9RsmwIxoGQY|Bcjp z@?E9ZiHkvk)*KGbr~n^VpfDOGs`~VpJlen@-LoGPu+*Od29usLIM??4#ru^XI)nV$IlQ+GAM|wFQCsDy_R8YzNl)QbLOUn6c+>{3 z3^pGkhb{LO-GDN7;9U83gV|q#=A8SH_xbg))+|O^E~(nJtM=91v=2YJZ}5+} zlb8XtR~~0$GF$5frJ_H@pUSnj*CN*2hxUto$tcQ;eLvy6x&$+&>l@WBZlp6h*i5)NfWw&=f0iTFI zu8J!1zB;qoXG(j++hGF!Z%yriYDK{-37jJN7Dj@|#1Ly4p0>Z;xL4bAYO2p)P?qK3 zRM0YeZ@@x6rBOn4V3zVz`QQ`WU!Z_8Jxmw&*Ax>r=11%gD9YLFWv)Dz553ihEM`r5l?JCNwtxf7H$(;3OIUn_S^V;Ew zYM+=q$86pTzRrL#ycDY9`h%6S_Ks?%K@>5B@XdIiZPMn<=w9+h>;%4l!zl#WGxgLF z?~gPjY}>`3n&fq+f0A)3E)g0-#Og=-3;4sFDSV23@=T7%PEbqv*9W5?}I<^92@}fDj-(*)soN6H=k#3Wo^tH1+2^iF1fd{_1f40 zLfBftgHdvpEYmR*pTD`-AGizzEY9@iCk7{f ziaE_M8n#@SU}MrD&hDS|r(NBN78V1swM$>eJI>b6op>PhFXeV~2>+2qPqXJ79ecFj0GIs*h)mIYzUFGNG{V>@qtuzTzA>7kflW3 z#L!w|aYgjZ4Syhv*5338zJb9rI8V?`_^9HErw{*Vz6B;`Cb?`K))|6&PyYRlO!njfsA>6Ng>ysl_2o3VjZvck4sQ|&h_ zP*Rp=vPcT<;cFXck&iaJl&(0g3{#LtHuc2%)1@x+)B}58Yx9(NraC#;7S#h_KvFAP^KqwZfr?RJIGT8@&@j46de*b z$bZ@4kzSWp#u4wa+N*LPR^v=p^AMfJ!1+ER7&5YQwLIC=SH zWn?TCj-mxoA`2oQARPO8m^TUr!(wq;LEeKlx3?t=Cfyq3vElQ;YRbxMu6JynRxTr0 zgIO@Z4x)@}lqQ-~R5if+y*EbvFj4KOL6mi|C!3*R?5-%lw@h8THgr{ul*mEfG;q&x zrN0XUMAdki^FzGl zLptiS_ug6O$X3xS%hYP?gteYx+t&>zdc|MPyXj3N^;lW-*(?tI!gF2`)yL)=n{e=M zrJfUpM-^uZp?t)v9PY3a#bjQP;$g|@M3dwt zLm{`bV>G=u9^G7lOkmxQH~F33e30JctK~x$dolK;s6jxg)L#RlvG10x!?Zd2(&B3Q z!!RDn@9z55`mtkJT7Me|rVqW!a#Yb5=@QGp9a>p9$+7jEU3HZL?juq;zF6mUq-#4t z+3o&~((H%q9W!!;>EpgCX!`sd$rB;Cn3+E78{CLzC5Q8-D|_Hf8R~FAzBU%{xc7(q zVm$}80PdCNf%k3AE^y!6C!W&i(p>|O?Volt(Sq&@rmH^h`)0CpJ+yXQOy%4U6XA=i zk#RelJxLUZ0eMSWaFJ5Q58=MZk`&{Mi6xDrX37x5PPI7?9UBo#Cf&wVIAZ^$0p?jQ z_0QZT~ znEMqP^;1zOO-|HjcOETfezJiit{B+k5Y1G&nzi%WkJ912I6}zxOz#DEn~t^vDjg z*3{8qlj3tRXh9R#O5B<2Y)7W+Fr==;EabbA8EEl2>p-)n^P8oBu=V;_ZA-%wSF@=iRpD93aovcTYlXe54gk{PTm zqxBckXS>V49e?oLr~G8=XS*?&szJeZyHXnLWRd#dFxMcblzp?X%>c4^?O&*Ub;BOV zRxjV?K93c9`{g~(CvW&A9C2;#PLOy-iOzd&DT)vR>bJMd(%gT=j~F@@L@j85Vv9%PnVNYgw7G%>@2;V z*+@<_u%w=Y%2O@Eq~no&1|zwIYtViju(Zv?tIfivUne74UQppNZUh0mh^4@`09cq+XLwjnSR6O@yhB%wb8VQoYQ% zsjW$bGMG*I7QeFqbdYdg|8A>PfFNG60Vf;y6@b zl-D~Shc*xC?#<%_)sSH3|7whVZoa9XYG@P%klgkSm8{2anEG%cK2IoB;>r)>QK2Yz zQyAg-$Sgj@3yXpK5cEz+tLNhEzD5D{JC(rQ~bAhR9B{Oqe~o5HnRrBS(3JesglA0jC;Uk$2k zwHmvakIV39_xFt2>ACAcTga5Mznxs(zaz3EO;c%pxIBZZA;R!j97AWTN;{=(MxNzP zOR>mjmUx|=oyl%Eg@ig3H0>QnV>DKVW^|kEtka7)!#JD0GG0R^ty;{jii}>#?46Yz z-*{_01NV<%aBE@Z1=sfkGC-oo?@s+@AA6&>mul0PTiE?g`?o{gTfHS+KA-P1Gd^4f z!`XlN(w#e{?Q&bFfn||@GFSc!i_hO|J)v=7C7dZIXUEn{JHp_i|1BsW^R}pT){48a zxvA3_scS(J3}J1!4`>)^Xjm;cyY-Biby|5igJ|4JzCK$yv8LBf0q{^)OMUM_S51I$ zR%~!&!i|i^tOxejS@B19b0NRcL)yx;$KDZxm3+elC%6TV8e749O6Pst@pQ*|zsZ5Y zk sbMrx+JcROl9Vxi%EkMXre_gPxtzNn`S}j~dK{CjckUYWAj8pal2anYR04gz zQz|M_UPs9S-2p*Ej%|KTof`Aj(x2rHJ~!$;W}#wuEBv3i9O-Z-qeHEOfa?G~?OF6+ zKi13KWgDU^b3}c$-0dyXoh5wpH73ccpuSa;0(mrq$&SOig{Pbo-Hl>`L-@~vzia7@ zlhw+}jhd@@PH@e|Fe-@HX~q6~(?iTkN0vTv($mrCdvn2oM+17$T2wjCh|gAlzC=uV zR+EMPgPg>=((&${I7%wf^@FJb0RyVP*Ka24;U-hiQ<9U%Q99p5p^cO>VM>rBpZ3`X0t{?04lQTsn$Ct;X$Ab7fsJ5pur5Iy*9 z$WxizcDARSP`NbS&>}k?DE6Zpe85ON5&D8Np7LGJ>JHwdYlq)SC>w}}^4UElEvhj+B5L^pNLt2 zMUjAF8hey;D|%u)d`NMXZ=CyMk*J3)@STaER*P@93UL2ODROTO-t_qn3LIDp4fa+d zca+gCbNBKeKYkP_NXOKNbwT02(5E3SyB+K!5#p!W%N_e#J}x)DN>CMR)y(3vo)1|-Kb9)8IzaO=Mn?F(CxL&hl+Q^gRdGx{(0mfwTU6Z|{=30Kr|kqY zxnmC-G=>x@A$@Xo?9m3={1ka`_tyC{bkW{Rrfwl7Z7hDC$;gVCXYuB`upoUd{#2+PD z(2({H`3N1Se(eL;%(^~3vinpU?l|V!{Mf6|MvJO>zxbox{oxMA?A<;b3nm)K@Lwv8 z3RH}9ldcI#g!SzvRCxzPu;GUXGn+SCy!Gg)rpvzOmdFj3nd^p(o_(Evey{B014NWtyDNjy!VvWh{?3#XD?$C)3 zEcTUOe2PZm@5Cpko)FmD>BbhkLxnjYzz^a z<~9je^jEUYVRl1Kmf^V$`t1W2f5$%CTF>>he-d}qE8aEeR4EutR*45&%E=d z$Q@H)13KkQ10$?HSRcORac_}Ki#}J&f49~ji2~}EC}2ku%t;a=q4PByq2CeEeVTyi z9y9p-)l`$Jce>6%O*^d?7w+{BMh`Sw>0%D8XE3iYnw$AsU3yt_iT=7>YBF^_NC4~v zLKoW3wE=b3{J!?A!=KL()cMT%ix0HfrtGH8jV|PDL&M;;2_mp2oce(VlK<|ozR`yT zSD=}qpYVzH+ec=v)84$gU&NjARW`$6t2>{a&I8aXy+3nAMsh}!CE01|@$am?2jLY{ zz|Dz~|kf^ES!76I`w9tW{tU6rv8ZF_gPhao>c6!(!&~A1Z$9 z-62!*Y-CqJUxV~2Yx;VDWOCWN;EVHZ3QXLR-$OOGv*fe2NS({^k)AVfMe6l$IN@!P zMuD@wC97Erj30jB!UxC!3mnMwFiq{Dsz~DP_;8!?d{9PJreH7qvHMCD^Ela5N(^>T zaHdYKows>vx%YLuf29$n#c_FtA3>Yx(wm0TFl24C>W0ae7^L)O?-SS@CTaQh0I8~l zegP-L4r@Py)BCc@ufx0J5r!^*NNF`9j+!!}8>*vKW(*-kY-wQ*9fM^b`Hs}P1NbLO zFKW;?F2tj5OdB}t0Too~5v&6Va|z>&h*9WwO5|6t!3tksS%luhL=LF1`Lxf^l~+R+ z0Q>kx|BlIQ9sOLE+1{zEo5Y>4KEGkjRtKe*b~4QTL!C{!jrMxgBex4@p!qnqnz(p2 z?ZIfedi(Nd-KT0I>(CLM9!kf#6cvsGnTHAV#v!lsDhbgudWA&1C`OFm%DRrFQXt%h#H|e;&3^z_Fxw;Ut%r$Gy*)acLkd@*31h>=b zuq|}#aUH$;YXl(oJ50=&UliNkkUL-1wTdBqCzVZ=>JZ$#6GJk!dGFh;r@vKJqe1o2vX4v+L4jXykrsi;S2;ES&)4p)x5|ax z*iVu=SgvfwucUIK*%M#7*>R9&P3+W{YfA`AtQV5SWxS5rhVopVb))85YCxLT)tF!N zxUZb4f+WDZ6@hB`le-J`N*vAeBX6WOD^`?M>TjzM#x-;E9j0Pth@=YCBy+qxjU>*( z7*Ky(RFDZ$leXQgtS)2!`L^u(JD8;vYb{>$2`oheS~?jpnY6qpdKN^@eaUXlnnkP1(r#oqEba}``hWPZ+mG}FUI*VP!bX(Mg5Zj(_Bl!nC2s%cG!V5H{U<*o>6yqQP(58?HB_Y zF3CcCZsed(apcHq7b@?QmOye4gXgF-{^>=LP8tn;ftuQM5@gkpIA{fj##EoU(CdS2( zqSSPE{D_1#SL@onta&YUMKF99T3olSUsJvt`(X75MocQdTSXx%S<*OtbQec51$Cy3 zwj?j*9F%yKY6))bd)FdTbZy~5+kf~^g|T5ZAH~ldX(~~COKvjD@w*QFNtW0{`@FjU zTc2BGb4mJ|e$w)Eo2g~lVRfW{nFng$k^al=1V=l5v@B4@Ro)6@R_s9U53!jKtM}Kt zeN7yEch$b#OvWO(Ww;34)DWUZ5p9{6Hy?#={Nc8ClXTJVcnpJ4j%del__)stGXM3&Cugvi?EcwJ&Kj*4 z#L=9`+fh7c#~5QJSV%4r;3S_EAS{j}B|)yn%mLR#ivk;IzT7&(xje}-+E#?@VKM)6 zO5;ys&F&U=Be#{9OyLqV&-1t0Z0bQS#>pnfhB*1}DBRA?a5KU-OXif{Mn^uc8zHPd zno3{-M;GviyXK6 zO&AjMprcOu$6<*J zx6V^2uwSL>aYU`~7QN%;^d9=2_xo={v5lpt%U$de0vMb+y|#E|rsOmG{{448hr5JQ z{;1j&{lRc1-Fo{K*QO>~%q9<@uz){0L>iU6l_)rvuHFlF&RErn5!R<-`a#J8gF`M6 zDk4Bg`xeq)kEJ!&7M5VU#pRUvLH`FH|#GqOd&E&2O+2^>F>7! z(i2?xgmkR%R13pu%Y{@I3@P6LS$X8P&SB|bHdyFmri@D$=W<;W_!js)k>uztB zBMA0ze8+Lqr@cC z8o_+_UtEr3@;$04suE~Fyd*pG7hAp}Z7tdi&UY6ycUWB!80)YJ3l+5KSyw!_uA|dA zNl4yXhR>VX^cU(dEN>G$bpLkeGe_pk_JZ~lG=R!Lj0k_pB514)`8t0<(WL5M2qE0naAj*?-r-rP?Aw~@RL(p%;` zgt?)ZA-0&)%y9*u9+;4TmVG|8opG)r5W3bm^%r`mJC{VkR`B~CB#!b<_9QC~7x@S! zz+lC19L&<*WVw|Q6}9qYcHy?)FuPV!L{a{<#?E@Ro9qas)^u&A3)IdHKt21|(e@rU zb9O5i)77-3oCOW$6qkc+ctKO-`0ptie zQSr32&*EK~%o2X0VtF6u%J(3}M)eTZIbY$>v7kY$GW9DyBJ!XH{r%qP3?qVQCt-@)=a#7ls6<)W@4`7@Z~Q8% zz@pRf>q|kD?>0h_TQ#Y=a~vnSTd`JcZBjJ1#$E6Q)Ly>nPQ7xde()1&G|0m5B*<1%t#$-!$jQq6Ohl%N()DiYJrTxx-?XHG&t2^uh=o1xlO(xa! zA0Ot>R1r&u;a|r(&LBiW4-g-Looc%yfxo%Nqun*m z-*R#&SV&#Yvb}A%DdYq{rwiN#xN*q%^yFUjQFUk?gio9%eD|5n%CC~@!Pk68ECh|n~i^A(L&wr)Lbn`gMhUM~S^0BBHd zg5kx9kgfmi$eos*FRFXL}DMDRq%ns_sXzK~31PLJ@PtkCe9No_a!>p$*I5P`}VCq3G0?kr`7p%2K28~Tl?8#Q*Q6E3pK$t#mH zG8iqspJerAJ^*s`E8DLVHvFN~$1{3dLuG*COe+!bqX98P!1~{0;7~AE)S~y=D1y@H zY1`x+!RqM3|DPh?r`_m3Bv_23jDVs*W7;1G>`E$gqN+}J+VHDtw0}EX*19L_CAG%- zG2tm4uNyVe8ys6xGHnbT!}iy-PLJU=3;{11I=l{p3M?RAaNvC{rvv!BsBV1HZBcOf zZr#8Qmk741@wUON=kLG?^25x2yZ_+OOD}IcQ3m|OqjwK0gX&+&0w+?@%Da3gYq?Ap z7=z2$R3CE8mY`d9KK0S7xqP&O8sNaMutSepT`)uI315a;KM~lc$qaSxja7eO=BE}a z2x{6(sa3al!U{Q57w_yvF-NxQB+_P)6^@jS7~vwzSpEQrIGG_l<)U zaXCs3qzo46|25+8KFCtSz6`A(RRC?dxcJo83!E|h7%SHfNDAr`(fY3>)S(1uGz5+z z&48B)KN?a?`hR}-QqDj}w`(aDVvaW?x7KC{5K0kgth`B`fPV&?RAn7GaM#*79;Y{m zk|UrMrAB>@KW6!V5{L8rZ=1c5V^9XI#XQprBkWLuDY2|co&55bPQ5*Sh2$5%YjaLX zl>vtU#2z8PWBJ`zNcojaJ?5VESAnyD)$65-HkW1u>W)?G!T&F79^k`#L8nMcOgR+) z{h~V7W<#~eGa#K;15cZ)mx$0rqXkWX+PiT(71E~F?^1(;X6T2ccKkF68VVGC5LwT> zc+|_WQDUeqRY6?t>Qb5hG>s|ssYO{@i=TnX)%{z|)%bmal|fsRY;r#T14l8kgb7{5 z2MJrVH-?UOOd^&@y=}X#H@8N75LCbd_2NU8bQC7$m(*Jsh?>fHBGj8~EeiVP4z;!T z9)Yv{W3X@6wZWqfrm0dTbrwmTI{z;whyO~E#O>gUZ!~|toY}j*ZTm|N2iCPurbO

    mBxPgObOKeIQI7l^|F%=;)LH3r1dr>>zld4v&(RUqTkbpFQ{2QlcS0 zwZPvHbMD;uJ>|96w@P07YXgL(ZQbUzt1ezy4T20U1F|R^KGFPF1Kj5d6jOtQ9Di9+ z88s>EwoAux?jg;m^?Zqy>skUOrqQO;E_u)+((AB~rNDqlmc3!E8`UZKz-F#!DF2q~ z_V#e6Vqm-AjYt%*@bP2bq^tjN(*S(!5H)0FdM0|Ta^$t|UAaM0>}hpy_)eaO1p)9B zUnmF@nm81QQAFIWp$xkaHFDq5}!Ax3sEATp9E>VJ4z zmE!01G@ZULaiY*kB705|u+ce94(VDOl(t{SI8{CzLMF8?FE$$3m4UdgCVDEA*9xyds-Rrsyx93y z(wxeq6Crgo*^b$YoeYT0yaJ~@@3}380u8^dCjt16CK03czFXoseNOB$fO^9pIyXj%*b;b~_hC`c2g z?y|)kP^-7zSu;a^eh1pC!NjgX&|Afq$1W^|eK)p;8?zi*&9!9pFEAql>Ck8nClEF$Ibxbo z89Cq_J>f-ui1B;Sp)NAmXlPm6zA#(+kZ+2}E0#>CPb?*~mBIfK>6Qc4-A~`~B3{;z z;lETJl0&jX-pK--#_cz}$gaaaT{%w;AWQzo7P> z`C!G&qz1C+Z$pcImOLCfVmU*B1YNls=C@7tyo`Tje6*}~wl86)g;~Ogk0ruUi&2Rs&rHi(0pN3o&}MvIv~_2?0W8J^1|Y5zMrX2_ zDrz#;%)i2e&l8g&#bV^3$RL2|EdEQ_LdT+3r)O$3kZlA0nV=V5ftg@F>Se}OB!>_5C1EN0GcBOWj3(DKv1K9=W?u1a|U6CS+C90Fy)TX=;Dy=t+tN=$Xe zU$1O6EP}q8`ovKpU*;h*$1f_VyA;^!S%!~| z(Jy1rO3D^+^7do7=n){>kXn*|^G-s>_W}PDoy9FtQS>!KzM?cosqIxqDi`Ia$JPQ} zHcAbEON+r44q=Whn~(XSBY_)kiwHmt{2PQ7Wmr0PeuxUW!0_NU3WaNes{jZWPa$$=@9afzkfYeYh9If-LmQ_peIq1^yg^r%MghqLhtQH z0CLOw1o$4mue%R>?(M%;Hpe%dB`p(E1IQ)J+eM^Wr@SZVKc?YXhy%+lv&poYYQ_-KfBkmHi^isy~qkY@$djDMt znF_5cq>&Yt{fMqn`1Mox0(BwAf2sDOq#urXP6QJ@XGNq&cmP^GSCqRJ1CA61(K|)M zF**jBzZs=Q7G>Z!Q$D$C#21M$<{*mbX#fH7OdKV|#UvlTFv&PfRnj6<59Z%gNk!{T z7Iy2B4oDvKlyv_ zP#8$KZa}93o{8pRAKcs2up?5X1*lqW%!g~yDhH8HB_m`8!8l4>M3CV(K7(# z1>4%n+DhW;%DXAjL4`-ZRA#EC0O17h9sc{@X=(TO z+xkxSY+XATRZD3f*_{QQw@28=`JJ~jYc#mBPk=PcUg-I{g7xM;1obb5dnPk1dJjBU zr1+*9VSNW}sxjyJUW53-S2XnWD_*$k9rZWvmqJ=!kCmL^w=Tspt(un!>J#xdUc2bD z{RaJ}J3!R*1|{g*E4H-|6m%-Q&1r7E_9NZl@ljged(pwh?zLH-@{0#HzZztCDyqb_ zRfx_%Ki^!1CfJ8|{U#(7*416qLc=)|yVo0BbxAAt_uYHRL8GOXc*>zkpyFO5G*LV0 zAWG9Pm@0wyIG>%@r4lD0Ve2{HL``tT%xi!+W!mF3!ay=+U_cseh@FQmijRr_lUs)7 z>N;j%&-Eu%nH8S$4`N$-wshKPgJ*x}$E%d_?H=em3YnEJ67d}6VfoU$^`gw5RB@ur z=HN)~+0`|rF0uPxaacS(KsB46ZT(r`)MynSpuww81$)yEgn&9xMu7H->V=aV}Mn^VkhvmI*^KO^xTnCHMd{#b@*9G zcWgJiwc9o^Gd2nNT^PBNb8-JcEcNTQijJdT2`$%JXyEOFq52pD%;Vd>`hqZaiFeo1 z0A6ft#Bi4Nz!{sM_1ME4i2K~%b^sH!O8bdes28Jjee|9k_Q3hUN96A6++91y&(nI(OWReQAXZfARh_@szw>ogl5$pi`%@IuG>`knG&71?2*7tr#Qef}{) zN({@tv=KRHHQs|>;Hy-~fkx2CHIq5!=1`vf_vb4%N@^#|2Qp0v!4nk0DwLz0olcCV$e=@ScmM z&1(>iPNbPT8`@UAKbF|Hj7yp93FF2&?)~S8V$~Gm8a`sHJ3?^V~`0zB&Kg z6u!aKb(t82{8S=%hcm?exnYwOXptns?{G77^9=1kbu0FA{gHO|a>3ktSk_>0Z* zbHYq=9{pWr=X>!UzoL};E{As%O&IqBY2G_Mc7h2~3pj+s(yHNR@A_1yM9GYxZ~2$I ze|3MHb)-nqj!~cpix&&W+eSo;vN2LJ=|73*a)-1NxOwd`-=M<^2cj|iZ6#~!BU8LN z`G_}qEa2h4_SXXc+KqI+#kME*H3*qw1?*!)UCmhM^f=P6W0#Ep^3AY+ygHTgci;;c zU{_$OTCS$9<1xc>@+N{G2wn63x*Ilw^?a8F;DWjSr|XA}kJaY%nRA0^so{j?O4+V` zArWL3n`O_ZiTjM~9x$pkz&ywC_*#Epd<_=vDrbaCOsx-NUVrkfyF^OWjB5q~u9}|* z2W`&bl2iJCKe_9=+`v;u{Q-Nz!MfVWg$>}w!~}I&mp)nn1i@xJ;=ty{MtjvDa76(; zzlIo9n0si$AtG!UR9mos%~{oC_$)LL1{CiuM%Dmp!P&3`eNW$3?Ex*7DP`+!5tR~h z9Sm*WsBx4D6$6eVu{L3-YJI|j+e|Zurw|T4v3yjV_)3Gsh zXD%fs@{{nE{+(WJudL90ngTVnhlD)Cl7D0pBg?W ziz;A}Sbvh7=cR8wufbwT*Y?uurvG*_Q;vy7*N|pwXd}q$@!UC|%HovmQ(RWM{$7U2 zz)O9z4a>pwIb;Z71^3Xe#D$Pc4EiyV)DAC*b{%s7>?|UB#7(FsLXy6 zLvco0JsM64d3uX9d9R@~1*xK7PKy}*=KWfxKx9){YRV^8R8Dq(;cWJ@C8PZ`l>8_$ zs`BXaSHNK{UpBD9sYAa#e{ZUQA_*EB@j01RP1R#|=%>(4qBb=?KCNbqECk}eN!iKH zg0XVCE5vrLRP{5n<*-yWC0!ZWYfX&mUF`N~byljL$$AfB@w?_vYU3HnOektJ3Vny3 zgP46mVA-puH)2rFcQJ^G<1%)uDFqW7GQJt9kmuFsZKB4cs~Cl!4G505^Jd(i-MuXz z!Pk$2{*})y{tS5y+ew?A?BWhh_T!(}%0Dc8%9?vKMdIw+^K>UjQi z&hJCbQzsg>vaz?u9)6pQpq0^axRU>DgEHCCy@iv8XAkzv28l{}A7$d(R((vz zA&}){#WZ%>7 ztueBVlVU_ei(@|SR5tx@Ws=mx`oP&Kr#yE)>oh*&mxZ5Lu;AIy-G0H)$ zx>ZeGDoL^+I#!{O)wY?$w1mwuUXJAUWF>{1np`3_f2eXgh1~*oR?{<^sWc37lb?&?rq(d zrJT1}=FZQCpC9`9K;t~l8*z}T3?Y;Bi#p)?6lFT`x`#2>@$gHF+8g7w5QLoq=10!i zxz;_P48)^AiA@r4ZWQP@jnHSu2m9fLg}?2T{@SC14vO|T4h24T)8}XOz#`(jHNq!h z5vEiGI8!%$w?n4Z@@3Sbcb=*|zt<~ZfhT2VEYCU&Y}Xz|%B7Ho$*gN0u-#q|SqQb0 z_ZsB5sq?*n10eTCBfp}W(12J~^u;~yD;6L6dVTX^rcTNE zg!E391s=|1LtBqq>!i9|T|-$&_ZQ8uT56ohN>(6-aId)fN8lHpfRQS-(|=n$0NygS zWR?aQb`*bWtZ7-qj3GjY5c10t!O${l=zR_uem6AdI1aSyeaGkT&9iE|uW#!2tI{RC zR^^eEot>pp@+Q@mr7f#*C4TaBXgX^OHFQ}@mEfY?~k&};B+esdh&SmomS37fTVvv80sqWi7-uB7EC3c5L4{^^%G#8*8yX<%gSD8944!lU_ZCyR(5N6Ao}B zoE<~g_GYb}=AmwBYK8Cj(W>1g80&8XiRc{i;UjI$`$o`jcMXY)nLq!6^)Op)iMM!a ze|7Vh(ZwDTPcbu9W;Pt$WhiH2D0VNV|3_Fs7aQHK4Z2a7WwYu{MQme*ZfHV>50mY0 zs_uF|$rl7{`uEDK`8a~Rm2=f&L-40P7Dog8aXa;de#d_NPT+|Fmk)_0fLH}TC)5nEOnTn-GUE@8J?(!jIQ9A@^=tY+KWn< zFX=&9*2>d=YD-~+dx|@(1837T{2Qm`KIMKGX=R@a@yLH zy?0w!nEKu{PG8kg9;WbE$=b%+bWpy+88BAki~;mGlbuhAw&Zev;24AP78sWmQ&$B} z%Q^fjuQDeT8&v1&!QnUhu=9~R*XqSBaZ}#Yk1*d3L_r`l)0cJ4juj=fbF%Cqg-ruustKWJIkTC1d|4Wi zf48pB&1S?O&K{*v-HT*!2XQMKarA@DU%3dG$8fIzt6Q^KrylCWsamN?$fCEyj@**Zrxk=-shhR)sGDLm_O=>Q(2etIqa17{55?% zDGmx45g4uQhgl+O5T5qOmkW>X>-%+I({4C1@>&1Th6(Lmi^$q{6>a~sM}EE^b;TjbMlM|ZE9L$>#OusK|dpE^pMv%wirkHREp1#@q_oE(|hsIVE(X5118IcH?!)OMH>wMa;*X9`CUy~ z2D2K*+{QZnOb@JpiysXyrUk6M3rHeH&&qHbO-F^LklAx z@h09q^5v16?Rns&W{rb2;!h6EzpF^sT{lrZ>pIb&{-?L<*85?ai(|-LMjMbca zE57ezjNwg~mMiOadrIf9!U)|H7N@_``MSNX`Wd-1;fjLSN~XJeLP|uGpQIeMW?G~C zY=yr16;Fg@Ag+!&!fD{6MPG`l%IzDR?rirPx{%{yBv|Pu^81yM?X_#P9M3{NX^dd% zw37TNG$MeyNOA!ifj$O|oyjhpbqOD`;6zJSgcaHZlC;uDPWL~D4l-jfBX`6q6BBHb z|FmuH6X(ti;+CNxkp50Xe8sIV9_U#IlBUBHg6L#JBOrNxf_)j3@c(gFcd;5XwF*rG@ZZssqxg$;FAP{s{a`x1VNP zG3?2?eA2$TPT>_7=VqFTj!a$`-`#GU2#$TKUurakPfKz)`QeRM1aN-t!2@@0>DLjn za!inBnr*+SrCry6kFsy=CnaMWYpkA_xUH;=y1l)PigKA`1Mx;1fzAr-M!9L$ zHLC42l>5SYWqb$vev5>p;x!=>gcqztHgck}$0Mis;nIIOjqwsQM$?J)8$maD)L?AL z)b0GO7QT{1$Foxcr4fix!5*rK7BR!4A+MxkubP;KpCol5V{5Qtz;4o}HGyt2$Hg+& z=rGsNNLE)%*3?MWPSw`1$Vjai+ym*Qy0qq_CapEeMA4vr#E(Wo99BRaiOVMB<-#S1 zxsf4YrGmyyzBEX3W<~4f#RM8seH6=65i|P){0tQ`H8$r%%9v73%o+2SF&FT-Kvul| zoSQ^nR$Qg#`*N`W2b_k4x{QcPXY5|cWGKpf!vUs2Q73OW5m<0W&ymnMpVVBnsy8uzmS}Da?o@HDGaowWi0@Mw$!x!l)QQBw; z)|si+8fvME+1$IPmh$OJ>e|}s+6E2@#w<;ZJovFl5=Ef?(3oh=z;aIJmVEzKVLC+3 zz^m*a!AM_eG_*pfb~qYdEe4U2&>uA>{4!_t@|z8dAgUmiA02vdeE+O0aWyqEq;_U4co1^62Wj`^RaUO{AqOZK~9a5hx_Uj z886`_9VCJ%TO&ZLfq+M+5!+SJGxc!X z@NWAr^$MT3JPw7{@K$XjT_kLlcNIW z+1z%Omg-1@+R|GjjzqWKl2F{Iywi!+l8f5N{Fe;QDtwY=6%K-vYD5*}*|Y>1S(IR|a3P_ht^Bb>G7Ch6rlr!I`yE@(Rycth zqpbF=)aYEw=GcpK5%&ZkOJ6fgMRO-cl1ugQ7M`iXh+T(-La#)e)<>wrny|S@xQYv0JC4 zMwLSQSRvYW?64%da?K}nVycZxBG;qKRF#-{Sllb&=B`6ExDbpBjb5M0y7KTOk&aE- z>sCzWo@$hDJg&P#10+mFi9h7#-F`dW$qRbOHV~iAl7?iAvv9wZc)eE|d#r~>mk3jq zl?J5iQ!-35*G&V{{3C6=*y--DqD`)7i%|^(wTQLTC_CE6|wvh{3&txJvR|1gsKV z1g*hwC_^Xk<4ESl5 z4JpQDgEOl(*C!{&tgWybwFQk7z0MXP170bzmRH98NAsPksxo%9pDMJ?K8@riMMXFA#YJ zCY@~A;mTjxScn!3=K(j?d!y1k3cp69Ry7F!Vrz&5VUauTr`~AfEoXXZ{Zk$LP}88b zxEk*6b+O=R#ER~S25+S~TvV^`$~A{6>(;P_7vgfJ667K>SN}rD#Z_dwqZ|tZ5q14P zxWRBa!u5B40s#L#|F7I&9RHuV!Th`eF^3<%ju)o}TwuF)!0777$cS;Fij-NdcEIEc zcl^XLF)@-H(V-+Lf#rV*9tbcZ^N-kqAi=kA{w+F1u8Kg_)sxY|GF(;XlhSns_7Sr` z_y?$YD9$!Cu{SmG^?(L9{i=4~&F!Jgu*bVD>UO3l;{2(QYo)_~nGz>^u1%375D!_L zs2$uH-FcvC8Z(j9?}FB$v9a{izV;7QEp=+oDW8hwn4rA-^_7o*Mlc4kL|zFbtscCK zw6yXU#drb(7H5+FVM(aOP;P$uSCVuRjcs8_dQ_XbW{&UtuW30D^;hrHR)%GEg2)Jw z?)N96pS~6;RHDI5t;QcP+rGL$i%pBw58Si)zmqV)-PfLDl$krB=YuE@uFFlsh%q^m zl)P%PMHDi!H#G6jD7ERhr(7Z^C;kK;g%!;rg+_HiRs`2@y<49V^lF6rXE|gw@@lF= zxOPd(6o5i5<%cXZX$hoQC87~+Mg}E2gi2 zJ4xOK&eMl^0ooYLvcepGQuu+eeQ043MCDZ^0WXW3K2K6@@>9U2rbUzIecx)r8q1Ymtg=xUPnf zr91tUQFA8$7^dC$P*G2r%=I$hMUGY)>wpV$$>yrX#y$WNpT-uU#mS&o!c-MmRORAa zPc6R);fxq4!pQLqEp3}dc-e+Ciqk!MR|+ar3>xx8`$DSGG=&cni!53-3GsymnJz+$ zI4Aa|aaJ^*q7(@W=m8a#(3HrBT=F zc7P@dThJR7WxubsJVqXW$~p(fb7gi>kYtj*mLq29O5=?fafV+tQVC&wp7!`vdNwgn z=0rBE=kS)aQs47EzUdKTqbb zIx@yYH%t>0hfGrKm4`$LL$;Er%!H^t{|uCz>NeUaFAOK9ESqXtel&&wx%=jeg2L5Z ztZ!^uw6-b&{1zgjDaF!D4tSK9>$`Fy8zJZvQapAv*ipIvqBE?#4 z%~n>XGI~*dzGVBJjUUJ0n+pvo(NGYa6L42^Xi&kX$1nimR~1Nih9{VpeH%b2n~QvM zSE|-G;(L{V%=Ch?nY;|z@C*ZJtrF!0BC>Eh>kto|`aZdSue1it-}U^aIRgyeTX||( zy69F@z)-=BJo!aYy+Z$ahmDeV6YoC2CRqv`G(f|l)!!LfYJPj8)rRBdMUeW6QP{s| zotwxpRg*OKEo>VolwQd!Dv21-;Ah;6i+Q!LEllz{yXnynt108x>tVcp%o8w&cJ`c8wt6 z!^-5Lc}4XxEHX}Hhub=7DV24c3rcs>s;`r0Ra7L`-Oe zZvgC6L4wvX%|%8uDr`}wbVdTmNMUr;#PrDgdsT~i7?3pbdAe*{{o5L^RRbn98ns~@ zfA!)9bB;n>z5aFy=H~y_I-3`8bn_hHJiOSJ?LCsAp>a0H2)xAPpBl-5zJ6OH`TQmpu5VkBST3QcbHp65bFs0lNbm^f4%b8Uv`9xi+4Do?_OvI(7i zs;Y)Xmf9sou}N7+pPg%#*`?e~W_9xXUWrvmh(1?PKUrqQC7%mut|aM0|M*6;qJ?s+WRAB_$8>{HA?Fg#e3MOo57k9vmsdmPBfd-u=Kp5t%Lw z9{g)DXMvOBVm(0EkM+XG#isT#XYC8MytlUC+k$6)@9z2s%tA@{h@{&`RFz|cuB7u- z8w~QARKP7V2;L-;gq;_;P^&htssL=W9zLwl8K)eXoXzx3=xs-jaZ{ zKS3X7)5s9t0`ZI`$@^4jT9G&xnh@6&YgBWWZ9R~xZs77MNfs(2I6j+$$y>i*h5bUR zZGXEVsoeXFoEPxNm#OBCo}(GWkCMw1X{=6~M!ehz%%7oWd#b@?JpfqD- z3*hJH2~B@Zk?C0{70OaFVl9e2{vi%DtFUQ)&P?ymjb!aB)NX9nR}}ZP7(QfkVMYsE za>kkaj=iii-#h5ZXh8WJHf+!aQ3Ra$Z{tYm5q_#Mt$=)i7DimGR$P-;yvYm|dR>W? z3SZ1AF6~$j<|+n1RAmeFKDO>eB<_#j3_MI=q~FMnz+IJym7Q}IE}9hq2?gzxu-^*1 zGkG$!)AyxIV%X$dGv!XZ!Ii{o(aUdoL1@T;H{eSRhl;L}-U5h9$^i5;lo$m^{P@rZ zAFykQd@fLGFJKi<&5u;7GTlRngCh8tU_3)jZxa;vS!>@~L4r+f2Y{zPIupqPY&Mgnfbwi?mwCSTD z7+9k?+|$=)x4!&o$H=|J09jpys}j@shrajJDTnEP$Blj?>u^OwM`Vh7Jpit_qmhZzwtcX z$T#Ze`bkpPbE3u~=;wX}wDozoQ}e^V-E?xhX%fnHJu-Z!zBe*@s*27P2zY0dHFQ{c znGevocy!;^lq!2SdiSc#x_;aFq~5yVd`>5pLcw!=|2>FtvZ}8CXiaqGvV?#Ve zPQgwa0L$%N|1wq-Rv+<+{6K3wATBKz`vdD2ecX~+(c;QN2TK(hCsbJnX)EcZjt!Cp zDWz(*eSd2Yuh859F2Y(EyEJRr@U#+!+}SV{o0Oe61*I@*zEk=y`E3Z!=7?nR--+pv zXg<=R<7Rrsoy@;!V>4eZerJx6rGLccA5aRzqH!I&QiMRFVK~-&?!|g6R}rYWuk8DH z@V+sWG`7T}H** z(~E(M!Qqjk;N}?^YDW7zq3`2hufsTBN#kN*nFU+Qate3*G*>kH-9#2NmoMy3 zkkQ3${3ppn0dWG?uT{Ovm!V$*mXlY}()ye~pyoQuHi>q2l%lfPo3vik%Fu%I3B_?i z=cT<9)SZZLFIdNqP2SWBbUmL@7(VRnkM#KOA63jkZ2_0RPwRYdAO2lGY1$n1GjDnC zG$mOoe#y*^<@;SL4-Yc6KUx?~Mggk}uTdPHUqgm*rhu>Y=HO+lL9ofcznBrfbDmWnF;2{$LC7_3-#rLMLXZ-i_353rk&oQQn2y= zJO$>@v9{`ePhp}5%1_X+^3spyxR%OKFvQVbnvEBpP5(Y6%qR-rG7pLxcQ{SVSllZ9 zmoNvM@0ahP0tqLNdDi!~DH3E4#?j)=mq)E3d&}mNA>vZdR3MogONx# z^Na5Xfx-FrhF8Vau>juI*^^13x1Esg#?i-R4d>aqc4HV(pC^*!2((a^X{twl@-P(W zkPwBdCAgK>4UG7wcN=Y}ZO;AU&Dx&(+2gP0sY%~$zr(QGLGPcu&o4_Nnw$Oy6H?m} zU;LldJI}wi&)=@SX8qiT0tX2+Yet5&moXi^_l9FPeSU&V#$-L`_%@wuNwR}S!UH{? zj02v}5f&|z4SbBB_+bY|%n=N<)*pQK9WRjWy!JD2geLDi-=6)Qnn_JqU=4x5+Mgh| zBC^-l!S9A&PWugFGkkvBmzBN&<9}V1{`SoB;2;#nUPA_Ooprz7ey*Q8+X=!_2p4{? z$8z5dF^R+0`gs|+2?mB3UbU6V!Wo%}e$13?^7%yo9_-OVXSa0U^O%tdv|JKA#;>cw zH&*O7*;Al2V|XmT0=CzkcJ3xZdMl2v1Kj)1eb*ZF+b*`a>K#32}%ff3o}gdI<$S?^rSe-+z`djT${^B5mh!I4Bh~-GL|u2v{4J-wb{I(ovCK z1YnF^H-qLKyh>dQOX7c%-on~&M2N`3L@k?{{zmEwJoQM*j;o2czdghB;1CIeOJ2oX z{F`dkP|=rdg}$U~UC5J?`b(OQDcR22OJNXP!mqcwuHAJHL41nPqND=$yt`z+@;YB_ zoT6G5szTw%#I)Q8St=@I#e1VXLfsy@N*%b!X(uTQ9GC{wHwG-#`a}4UA$ibdXO+C$ zz%iGH8k(#yHcQanP7nVtscu#4q1WBzItFq4=>7w2-ExxU%(L5Bx83mhjs5lX_1=Sf zBZ|O4w1QXeU}pj;ik6l^gX|<%EIA~gs}qx$@~{!BE}-4zkagE@vKaE8d75Y_N)vu| zqzEDyIwErxQv;b0$pcKGnbSRFmeGy+n9tttzis~QoG4l!SE(tEp#%i01*zz0Rc$G- zj@#@}hx~<&9S@jiiS`N0) zcAA|x@kx9g{%kKB@<-Y#ZgiaN1R=Rz^WT)VNfO%X;$1KmAF-<+pZJ{;0Y|PD@4nuj zk=i!FcZwUn>p7b+L)!%H&-NU3ZR}6Fi2xldLfF0GDaWM@ht(fzK6$ zOJ9+D#yD|2FE=u6c|WHYr=C}u-a2zvT<0}CdURfnqoeRVKWDCm;tTUWE)AvJwvaJ% z{O4k+u>xPRG;stjn+umN5#L|q9Ithq!u-O6z$^`1`ZGoWJ2EIWInMo$bF&6dIR+1g zwchq~-~gK3pZ?$6b6g4>@0~{(y??Hsw#D)9-4O}B9k-Pn@1@HDzXsWn#eTG9)qZ+k zkOLMS^lq-AzS18S{eaESF*6!P7g~bePYGYo4vIQ3E1Q^02s_-+V`c%i?~X{a7!_)B z(&D~zVH^-|DT;;El62M%X4}nhWEvrE*h@dXW_EQSIkn#ki(0a`TPf&jPKSr9+ZDz6 ze6%T7Mxg#qOkn5n{#+Y_S#%IUFIHnI8RzxuD)z2PNvqhb zFzG&VesOc;cDBGH1dO(ccz>@Y03u4{LQMGx*!-iNsaWgoo>}OKF7sdp=NHZmB&9I~ zuY&=<2*QK}(~D-l8NmRAyF;TrPgBEkQ<7vG;%XF+2WQCVWRDNR%6NwTyFb}oUH)@| zI>-ay90os`guc!^&aHxXAc2lluId6SQ1TozeiN)hq9;#CHiDLu9(lSl6nyZJ@)Tgx zV`iLQ^)F|jd^%y@d#_l2_uc3KJR2>h$!UD;WC&&Zi)$LqRzA%3e2O^9Z_h+)Ivk>H z<%U4puc|S|99OMMoZ;*?*?7g`EPz~m?9`t@m=&lsK~<6 znrmgg@;33i>ls0B_Uy%e3K2TT;1@hS`H<^tSA~%^KKRs_91Wfrm zuO@!t+;4m-3>G>blQy@_$_4lb3{73B7`%3=Q+{N86N4#%l%o|hW|5=ip;%PII|J&q z*bTQmO#!>Bl8w(pP*WL7qQH$VR>wA_ZZkdHvEsD}R$lLb3{M*G9|?XcY$yVimRgNw z>J#A32pagHVQ!E4-cu8T#5wP01FJnXyhn1Cvr9!6?mB4Ssy0}z8( zWj^Yj(XXnai|2WbT3ezyoykZ*$nZ;A(hTwq|mE zhXTC31d=|Y`@j;5<_1P+p+Yv0#^q`@*|e;~1Coq9DZ{|(ihqmaj*%-G zJO$U88yMFOFmoqP+G0~A7YwL*DSR%=0m8umHtj&+UFvlpuFGEUtj$56!I3<9)1}J9 z6vJv}vq^f~>{19b?v3T_W|;vO0-)CWqQ&Qv>o%%t7TReS>FafT!}7_12$T)~s?Oc|p{#)1`=h)YqV3q-J|QXoZvN{WR+O)c^}G++_ftz#z|Ps7 zDEbtv9I`GJ7_3~r<9=6L+KkxOxrLxXWGtW)5#M!pV$$O4-55Z<`FfBdh5+W<=yKXs zmkM!cOFa4usKxylgF)Q;q(bO6;|6^1_>Ni2{-RF@jgl3y z50`KN*O+br;Erx)Q<5K`Fta|6OJdBBt=f{XWfIjsVcT7`NY>`kj^D50U`2**Fo4mR zQ<3F7P&7GCm};Pcs+zW6a_4GhOKQXtDZ$*VKcx~jIy4`yCo)~hW;M0W#7~|JRI|gO z*M)#2E%D0LPIQ4MrTPYP6Ka6?VmtTHG;m%;k;+*&nttY!G;!L>api~3*Ij=9t3Y=a zFomYv=GfqDSH-8`>obHliYVBB??VYI3@cGhXOmjQt~wyPg2*eZg)XP!4D-)@?RmI1 zEWq!6MEmR2rKeId2I!y8MaYyPOkKKvD8Ohv$cfj;{eIr{vcsW}a;t}LlU0o%O?NMjgtpfHM}8Y9 zE#U|cMiWxagH}@-kON$-8;gPzo&GJQ@W@|1IZUqT|J(rdC*H72b40*+$s?Sy(bnrc z@Mz2;E4>~e%!susxqMoEb4v}Tl@64K4R+z6bk!kx%!jtXY3}*E@@~qkOs3tKtkU6@ z`v>^dzCG*pRCMNu!d2c4BlPu$_3znO=8oba^+xbX4^ffy1A$|Yq`_a~I7EFL^< z9D)oj1p*3OJSK5JvH5tM-ygycx{=qx3G=#`uX50)Vm->n~5~YF% z@#S@dc$#Il?vWFT6qb7~DR69y@T%&~L~bpAB!d_3K3cXcfi;{SQ2q*Se1(U5 zOm~117jN-Fd4H>k6~Ybh0vXWIo2Q$o4A=7rd~5_nzsxqh7jTB&@r0>`Duc-L z2#-si4QCz|@`dU?%-(uK9yA&tbtC*PUO3|b)UDIPHco}rjbBL_h4eo5fP($~#BOi{TTCW~41B3#YwXdnZz>0x-ujqm42u?CsSgf2ymha>kY~ z4QMLhyQK?UaLgNM_3bUe(n}6S_L5T%ju^VNMiqsO2BNKt{_3A9_-%(6K|t`INn4CY zZyVRf3U-l`i;FA#{C~dF%0#5cNX13t0(;<6x1UlTaI}IqFP<^UzF_$r%r)VOE8I;YsEva=d36ScxBzTv>r*E0WgoZYs2{6hMb;pj`eR)UVFf70Wrui>M?~wulnMh*h0TVXkn| zSmO%V@0iF{e;_i_^}xhC6Km$QP}tbjnGW@2krY%t6dF=XCu4i}xTEA8^<8`U8BKJh z#)neds^<$(m2EGSMU%e(WYj+-VlS&oW!IYpCkX{6Ev(Tk#H%05YmoCn1fjp1J42;n z(`w2gOJ>ohgaKTq@nDCj2)0Bt=)uWJLAM7cGKpjR1=4_e7X%CqII0)AZHPuqcBN89 z` zP2$y%r30`skUm7Ld{y=q$uS_HlOL2_dEZ;v)^#~^Ze?lEnAFlOCTEqx22+9*QxL11 zPC=VcT|%`Db!5D=$!%%Tv1naZRR5CIZEC?=66rEtXEIvCqTQ(EsU#|Lm=GDXLur`* zwp5CoDLs?=6pR>AtWzqSp*NUV5@Yqa;cE;q0$!eZ{QQ|lo*)(~9|P&mYW>@8;N6`k zl9rlwoEM#1b>r7X+N{O;eW-oq&nhn>cr^CJMl&|ojt?htN+mn+w?yxTsg5?m|HBP7 zez6u+N3NZo4romaVB^RE7-AIc!V8dNsZfGFRElB2Tuxd%U->+t=`yu-q^i-04D+jF&*z!CF7Mr-ezO78u>xAnBvJM z2wZ-cV>*P{<3B@<`b$4$hlVW5anUMBp%2F>872Bu?9{ar$%zR_VWpz$FJ+BYT#8Ta zqneMBXwj^B6(t2_xw52en__4Jw7_wXbNuzvX1p5WhZDX%+H+d+(x~WWZ{hP`J!QJ; zrR}cBO|?p_lzKm`FS#>P{>7f=nv>M%a;I@lNJgHpj9_84sZbB~GyUaITEQ11k+@t< z%kjm=SnZc|uZ%*o-$s@+N>A&^yrZ>W*1V-I}9^b=sKmwvBl1;Q>l zW5_z9>vK2!m~&p!hT*aK#+Oi&Bc&ikh;@+{nK4FoSLsG(;_Xfq-NAQE&7$#qvhH*g z)6;{C9{YwRL?eCw!8Yso{8Q>7&hes384U&^o(ZwL)#S5@nR;xEPP%25D}xE@Rz^LQ zi-ERgkF7Q}Ge0zSQwqL=y)Iu}VxI~nku1uLotD&|!Wh_EPWJa~UHF0vit>Hc7yRp< zFT0`;cj+AMF3-=)X*NVKuWlIJ#>&cyP=|(|{>}66@Mb)&Rg*)gvAtOE>@hncIn2B@ zs2Y@!DkY_#Z81Z^f+tlPWH&A%7oCptBxjHQk>$wA0V-_5YC}P{Vq+N$_@Hu0l$us{ zs}z}eI)6}EP*5=EveG-UhFk@Do4~nJdrHSP(TMJJ;D`h&u`$LY4@C6<2dQIfs6sy7_G(6|gWDNifo^_d2ojgb)~T{wXOUMV^*E)(r0)fr#2 z%Upo+8ZBvT1_^cAnxGETUxd6zYN{~Ay2=E!Uh~o*3KagWC2$7!Yr-WajyY(h*SgD(O&3_7K&A-QYdf|aij-Vi>VbjerPb!y5OVJrD3kVo=z!`L>Yk>NXj4FTF04gBOWnETY_md-s%I$D)=UR!c4^^|;}%Tt*1KiO*Suq$x0g?)b-enX%5KR_8NGZWg@WeXz`;5bde1 z#(1mIGti5>p)ow8DpirN!Q!(J$F{-!>LR1>KA?MWDusC(GIi6ppGf^^tatmv);8TX zmq-(lwB5orMqD65U-M<6TfA|phdW{7sE(HS=^{g7wKE`A48NKSJsELbHs4JvwpDbl zb*IV{8Xbx7t}SiL-GHX&^mP|%X0TBN3J@ikwy73_vZWIdOQH^j%Xuab2=OhF1yd93 zmWaKGj?fqC2GDT3>NThf3uj;?3ltbVhl)T+hrUl9-K{~X(xvICx7L%bf3I>r`Q}~V zPxQBB4j$L(6YhiMZaE2D_Xk4XUlcvbkWnF`l_)o$kKJc0Xqw#88FU%RCbH21Ygq#p zeR~LckeP+sW?le~B-Idsoe(Jir43FY)o-@+*!UwG5@3MASv-WDzbyo8jB;Y+;I_+* z5uhcIppL2U_rhJBAynC}begcd^#&TOQ15%m%jK?yOV~Wt&aq~HuCR&IK@CVS$SXoF zKaU%p zZQh1rsP9w9>}!&_~54 z|I?n3etDzDr&BWXEXs*kY~8m*9LHW`!gp#Veus(B-8J!i5U|CG90^8FwSuy0;~Gu; zLhf?-s4{uQHWjrWUKtRru9>3%Vcwhq+Nwn=EM~(Xdb(@z;H!q?4VZBMzcPdN-Bim- zYD6FhRao5K;vZp2=3svh9h4s}H7#`v?17+8bojElz8}?82=G1J(4>na{uBdl&vuBu zG&`$e59KK^soYip5|>vKFUIS*))RTAwv@9<)UT_;R&`sn8?)q!v?=Vg0Kjg`BmJga z^?=fk*Y5)|ogE_fFN??eB#=s7ZfDgJ$En#l4q$?L%;W07?d{4{cBYQi0p0YTFfZMC z21c~%)r*?f_AH5WPB{dqNjw|+5%iCviulF3feMeIYqW08f1R#nEv0C_uB+YvgtAYj z-#^gS@fFg7q!$*bRa z!`}qE~qby7S1HdMyZ2Gv)twgP@b(mW3 zJ>S@f?T`Zc(m4_%q2u%5A+L&+|5~P1xU|j?tq;}qUxE{MfqzE}qOr8G>w@a??3Y?r zaBkONX@3jq#KYNgKTXVw3t+M$uFZKnNzAH5_V?b7m-=Lc%>yl#>>ZUuGLDnXFY}|! z7J&dE&{QRK9uJv%pX?O?|2MsJ8&Ud9jRN>L9=@NuN94$Wzxc_W$`BpsLWrsaQ|xaY zwfN_cGzk78?%+`6gJ`bFT(`$@0DQQi(9S=5;kn&y zCaS`9VnaOr4LF>5I${51lV-W!r0AIDlq^KX4^MnQ+O>%gAi+DZzp?7k<8FKi>*9nP ze~v$&BBsBmRXBG48+ZeFKk+$iG^y*Uo<1oG2zjS9qb%D)Dd{#Cr4a^$!0!MkmeFxB zVd_!FfwiQtqvg0B1xiY^6g^mq^d0!SHYdxy#>nXj!d}8`oJ)nnd#hq_1f1LN7HRaa zu;@+pPAZv^$IW-ssB%Mfq(B_Y4VKG!&c0^4UhMK(zmiDej+cVBGQCfuKubiuyW4WU zQAKV}`uPL+Bj0aeuu@AAZco@SLBf43F=EY6wuHA%ZnMm|y~$~7Qcc)Z+Y;>QmRi&i zis{1`7GN!|U|$$jQaG#QFbrEJiEo<#z}+8@Hgy-ijjTj4RCaoVAX9tBVgD(cq(QANCWI(R0?gz`Y>sE z&G6ol2(AtJy4oBi7to)6@zg8I31p0>=ld{b)MT7)B!c|kHGdGZXt5R4ogq2KwGzVi zKx;+?(jub;%e00&j6+G_DTqTHeoMww72)3xaFG8dRSA4LJj0=bpB4!B9-}*>U?d&5 z-74WHyN}A-M!qTvnGl9kYin53RB0as`93>H;lr5^@g%fqI^0CCi+DebWl#@Ytb^SV zh>8lF%ZuCx>#m7zl4Jzk)Vwc;k$}$+;o@M8SO{g3nDb{H9x-`V!;@Sgwp4m82bDrl z_C&4TwewCOo~W~qkerBeVxja%tFr<4uF$@m=K4bHKKOkwtP}!DMAY`ANUML(>pCmA zpqMIHV&jpYtCpPF#YpxM(|}qmM4~NO)TRMB=zu-tw}-}g3^LmzoO}EzbHinDXRt=a zUc<2|>aZ^YNPw@pXCoH#Iw3qVv)jV=r!o{b@75?=x-R>=anWYk+5$>c=4jD*4n}2Qb6U0*f8^1YBm21uA0% zGIRxw*F&x!B&6JOZUB}u`Sj^=dHDy|CcDhusfnQ?(wN>T)_!VxdxD`7kP`Tw8w;Ur ze)I{c6JFj(l!2Wrme2=Q?Em2W`TpE5&QWo(Sbke5-EDL`4_9(Kb*xbSI5m{LsDK@M-SGgqZcrF0M=kW zrPD3JSli}#gKd#}4E*E8+3tlDj_iVYn$WLWuQH zJz0m`?c#L7bM}XJDnS5&z55A7d^swsW1v;4t%0Ktw>0-pIi2|?aJxM!H*rtrDDe=Qo8VR0JT9qyyx z`Q3pT9mid%$G<66T~xNvQ*Az$4FnCgTWpX}KZ;yN$+Y$Su{7Gw=^FXCX%&Q`7HB8E zUtcf1XJlCMnonW<+9fBne~PrwZ+!{wZ;7yVGt;FGenwvl!;wz^&Q*n6>?8QmSa&{- zjk6XRdi^rT0%%iU1%@08SREq$7MX#SmHAn3_JVPs)%pniy~-3MYV1)sYbY5gmu@Lh zXUsb|Rl>6HmRcG+G+0hh6Xg@8%eCo)NsX1^+6vs3x0)fz(1Q!fkV7?$_z3mn%s`7} z4LJ)B+~c#vB0b895nd1tnB{>FTbo~aoL6CN!Q}h(OV}oZYN~S`1`xFULw_Z>vkBT3 z%3+ikrk?BHM2;Fr#e$aXv)ae^lj!BDWmR8L-@Mu9jPGsJA^P$3b&`y5#eF>pW1AaL zzQ%qK@*^t{O*Li?sxR(gk~rYz@~`i*;T}QgTGXLj)%M!GNZmKfO>cV&lk*Z_t!MYd z2K!CzTb*A`A@(2wc=QqUl6|yH2WP#Nh*1u2hyQApfNcDx-IVT2>(js*+#tdk9kyU| zapN|Hsf%(}YZ#nF(E!h1a|ti&@I@zt@+r5TgpUi+3KglzFw21KIH2p~;PCfN+hK?U z6hapn^V8IvCkLOxi`Z+%JWJd~*HHylmRa17Dk#O-ELO*}YvT4H50uAlp|{icRHj^W z`A&8x`-)k*i;yd+4K1_JtGAqaH~^}r`CKdB9b(G7tk%czm+nJ^(3Flb=vpQ3v)jed z)GdLv^!v};%RvNGy_-L$B+oXrn+BeiftD-gZD@pQXB%a5IZn36b7(Mlq^PjX?!Gpp zxUi5A(^T}jDIGbWHgdZk+8>$jj%AjZvqJ*IZm2Y{K}CKXVdvdlK&rsQ$$FMM z1i3hbP2fp7^Y&%iGG2It|KIO|ZyTLud?@XNeO9JhRz|yf<%n6!7eqMlQ~vH!H&dNB z0he72bbZxG!lK$n_C!nl9S1Y@Ov_hf`wA79jdFDg52G@{e4f=Jl>q5$kR?yq%kMi_r;4+4yQ@s$v! zm(2?{*}5Ke>oP2aG(ogJYe4{PEemw-*}kD&&gZ|@m%ErSAAg*R=70ZcyHGe7RqLEp zuQK=nBVyWJlN?6&A+Rnd^}&(-WHMZ_agn9TN@ds;{%MFb4J}+{uSW{9^HySJpcXt! z0JT)yN9$6FmUu|`JpQb0zbL(_Z*J9u8~b*>^&IDRy~?II^d0t`l@W|&5^?eYh31at zg6*?N^wF}NjvmA&{W+}H@dUQZNCesFVT{d}*qFs3&lajc$-(mYyKKnWUrD@HzBafn zk3cR|SvE&U{hoXhs#HAd3+bs#6?4#kl$&ZrRh64OaGT=rexe6K&f#Qjae0VRh**@T zN%A_m;`$(BI*y?H+s{yQtpe#HMhH#PN|jBuf{@OV_Sj=oHKCm(@eyop#ja<_vaWC9_X z62>z84)L8CpR~MA&r~p@v*%w>y)Wx&b%L$th+XzZ;NgCS7dbGtQ;~HQ`=kEsPNxT8 ze$=>re`}3q-|ApqOJ?fpQU#o!lhyE2BfC?P<;30PanKrU-L#e^37aW<=w|6S|7lt# zR+ZOsdUS#|+l$EOq6uW>>)g%@nQt}=TVNXHRc8ib2TAK_xQZ!`avL7KCE= z?BNo{pG?@>(jhrdu4A`@l>BN)VEp5A0(0y`js-_MdMza#)X--bu_ctJc*m*ud) z<){Ur^ncOzmO*tzO}pShg1bv_cMBdYNN@=5!QI`0yF+kycXxN!gF|qK5Q5v?dEf8O z)Sa67IaE<_&bB4Jp6=EC>~4K6-mgB3lXOhF+5+Fz_e| zUEaRd2upBszOzmAjlEXVQ-;-HV)8WnTK}Mm3P*`b(#MZ(17fC!zcQa+C)&K%5~c`rE%W!_R-Y8;JqT>9?kL~gwt<#Qh~=?T1c!$LEf zF_B4{n?Z8-!QrV$$Y=O9!$$FGV0|BpPaKmjQ>G8FJ`qWL6 zWB41)dq1eVFI&Svo}%@BFpH7tX*S`0XYvVP$kri*s5$v&EE1VPW^<(hL!mD+9 z@L_YFfdOrGWy*yezl z;SsQhT6l37@Ywf%%4N9bxUP*&lUucP_ne0`Jg0vB@H0j2mg5j#`B3m1=VjNBx`gT{ zAw#@ zYzDi5JA~ga9iuHStZl=`FJ)=f%AuJ8`sb;CJDVmGm{7v2Xg!N3{(#HZ>)!H4+}3Wa zEvHt=%yeCCPTbJaP6!`e6OwHUlXf6tPtEula62njddbg^Y&L1v>P2 zPkh(14WgwmpOdC?CK=3sRW>DaOQ;0IOw_VjsaXUHyT*ePMy9Xb32T+w?KuXB1I!}~ zd~bVVf80kkh>*_uZfg*)ic4H9Bq6F?oo!nE0p*%IKQ@}kY#|?tg*Asd;Y7Yp`hfqY zvmp)SiiIhZCHu1s}p;4;1`!_NBld?MQ$tZUH>3#D*J+d&{X0@9# zZOr-L!LD2#?Ux5evQ`cBv)Ytb#$qfs$VkVfr=$Bu@syg>aPjvVm3EBcthazFy7?dC zuk8r4G5W(1lY!uN#{5}CmT0~^^Qyiw9=jM%W$TXp>_AAHv+6&9tVeO1XV``2KpK!r zmy^p{AA9lfjhMKF5wGqVcUk>`<>^ADwb^i@46_o4q^B$Ty!O+iR)w)M`BJ zfk*yfj$x1Em#l$ve| z(T7yQ*~CVCxU2s2>1@|XNXY_8wPKOW8uEp@vZ3g+w78STIN{S z3yO-5aLk*8G2R951Kg_Rp%USbs^pP*P_fQS6COq#P;n*(YXon;NX;?8_ZNIC$ z%o2$o&i#gONQOi#fdmZeNS~)r@c|f|ixuK?&m=Z0=bQ+k*QYj{P?xR8(~67kdPUThRz~a8G26Nqrh|T}tXKCmV zhl3w1B=EZB27|I!et**b)%3!1-)&^Noe%9{X2dJP=l44NZH+?LMR+>qjn`$T_h~0M z^$%I3e3D46^3~fj%3@FVTf_3QZ}Zy%ORS9-QF5E<1tdtAoZHCMc81S7bWU6KC_GJW zp3g#?yusD=(301SvNZR^1)iM1#P}ApaP$4((;lSk`}-e@WTW>0x)z$;05R;kf|oxJ zo<#i`e3jT4`Von|7|k$#UL;R9R#(;!GyH@T+pqh}!*)z|OnIG6j(gRrtlp3u9Cm4+ za~}sU;OJv=FIozx$&n@y=?^M!;Q+}Oa(-xXJSe0YC%{^b@NTe<)BjuD#GY=Dma+Gf?4d7@Mkht|f1;jFSE2z4J5oZ&Q%B?i!RYx0 zHf^GW$?Nzeix%&5{=?Wm@5N*E-psJy4GYn?$G$@%kl;o;N^j+mc50f(@GkJjW2H8?0~+3N8M&(q{scoyjJr|a3c|a1_G{NcO`L{jzJPi$zTN(+v=gh?-fT+ems7dL zZb7-(2*VxK@w%}{UtW6U@g$rsNA&tdf#Ls=Y1mf;Bg10pV{cV}oj ziZ0(r_2uW1@Aelc_#vkNZLL84F;k^m^^&buH@ljb)+Yv5Pvw;z!*8yi z-t}1`m)0(;r^rogYXq*l^A9@epFN-w(ZHu6j z;$g#C_=^32pGAgx##k@W?GQapVa2i@;t%cTikuj!K!Z|LGfSvs(i&QR< zq+M(-KIrYeR>Wx^d@@+_7v}ID%uJ=0mW~_W&oD^6ZQhDrSEbz_M_E@Xy8IYp{t4Ns zdBRi!_Ae|470_UWDqg_#sXmn(gyZqOu#|h%QoRAA9C{q(Y%)7Ps7j7a?a}rxanpfA zNp}r8Eab}RQ8Ef57+sex{}!o6zDP9~%J}&E!A;*0ho5nI4&TX58nxu}g-eX8(Kr&c z${75(6gpdZ{_`(B&n5E~MFG0}fp(XtRTo9VUgH$KhI8|S8}YEox4iON_{ESP=0fkq z<>1Rk0)jHXQJ)NG5IE=3IZk(kv7{iWOVWsosmjEp*h=MdssY}m%eVPi^LIrun8|a? z1XVWOwq!_9l;1b@+@M!eZ4*XSQZ&Vla>MF+;Yv#o@%JxM@Gm|Oue2;~@I~$3A1-ww z<3N|F=8NVCEeP-T`eo0@+{0-F|5Tu!ht5^q+G*!_R-;BRL<4BjYa;56tR=6cc_|e zb&mI*-uS}-#zKh7f1RWomQ=ImUlj@B=E=#LkvOtwDKMZ$;K5Zb^n{{?do0*u> z-HNF*o)5t)&E!u)Qc+RiKM9pGnwb24#)MY1Xho9Bwm+@lEUf<=I8zd6x=z&@rX{bU zY>lPzpq8*&mCEX>?J_mHXwJZK=~Ty8h-Q}^F5+#h(_cYX4bGio>k~d-)3Vhi;iBmn z#e<+gL!xX!UHNNSQElN=QPtS5WLoc>QN3wj%k)781N5D$70^Cu~ zh1P;QC}yX5hEW@lH5Dy8m488jvKxq)AY4{$k)fl#I)5tfDSieAt_0)923ge=Z%wSV zy6maLg6%o1x$GyM`-ZUA4*_pcnR^dGNM0fsNM-d&nj1+uaDEtEj4tZxDrt{2lbD!# zIE`1;uqtlSq*OX5tv?c5dTX$0Noj6Hd$qh@VYbQ_ynUrG!=Agy)Fb42lpsnh$MjaD zZ&h}wsiG!YAf>SdZEBw4Xt2zo%ayPW8#YQ@Uu4s*h_C&A;Z}9P?884u8R^Sgz_1vr z*2UB%Suf$b6P9iQ$WJZS3MJtHUP%0yE%P{gt)*(lBm91xfsv(rcYDi%#Qa*u&?iJ9 zaA`az8pwUA$8->44=whD9Wvx8KFDBVe0<&uHLHP@==wwR6^jplwR=xd(0Lj1903tF z+q1Jv@4XNcE$mA1=SE2X-qLRc($doB98=G6bW5D37Zt8>N5ve?EI(ctf4)-q#C|}I z7DdAuXt#%I)zMeIEvH1OEs%)*;`~YE=5IN5lcNZS<~3=|eSq|(OpbK0t)9YKG(VYT zqgiUls2@nA`a;vDVFV)S+n8U%!_A!!^hs50lCr1xldHzTmazg~8Hx0J%r;pb(+4Y= z)}MNtFLLu?p-x#}yowRU_ScG<)<}1SHT5w)&4IRcxy{^tc6^OQ7xJ)G*syAa213)h zuf2D;icw_bxT(71HEn?gcxi)H@onibhyd^_(^FT3$YvO9;wwUJiG%>;B9RIv}Xl_|94TR%q6wgr6Krt%@PMjmE&$~iE zy%|MYyx{@`CadSuXg~D5yrSafdE&8Tz~rx^>nLAnpwAOuYC4o(Mu4%QnjM9#@D7L)KCMP64DHfS9Dgc#t(3aXy*XwIHV{wmmPf}daS7#)Oe;qe`b637aL-_u#bfNqAY z(D^PSEu9FtZtYsS1Yg2zHlJTmxh8O=-c44V&x`08;vORBV z68QwE^kzr={m0d&g9!`B`*POj-QzlkTi0EBU10jO%_!0~TWhEw5{Q-7{{D+v&f|}= zP9VTI49nFu3dvBMo7BIut{|2wu`W`R_R9xtF4jl$?y2|{32p8nFDnxrwykym*pBpl zP(Ix9=`z6U@pgXvQ{K#hUi!mOpNU`Js%A=bPS1n49(VW>34xToWJ*i&e?pJ5t{TzF zfn;eHMew^9wKlT#9|mY9Jx#v=;SG?6YL|4?7yTi@4@y&IlQo*@)edVK4IK?pRy2t~ z4EWQ4Wh0&`Yf6!4xTq5yq!&IDwocqugyyRKBmy+~Y59eD(Y7seGzv&QcYs*>vlXmE zkL1yI`s_8}UZA!Opc8#wqK$?$?QFYo5 z-%$Q3Y2x*L6;qRd0DoXAqDKOw5tWDwaCOs$s3KSs+yQQibn?;SLdOA}WGg6tU<7o| zmufQg9GQY8%4@yiC9|soMa1z-m-(q`WDiu5VjP5-JWQVT574Sj*#1d)=+Y<-Bhf?! z%17dQB7FLBKZ&Bsl2VVVMEpKAUEPmOg#g2&ofIul7(*T?G=9mE!CA^%{Z~;fxt-kd z%C|Hx&p|Tqe3lu`iWk!ADi9?agPBZv3Nj=8hcL2xl1cBC+rV2WdMnq@s@Q7a9f)ZH6KPDyW@Y6fON$Gs zL1@pJBT{EN57Dzml>z7PM|h$NEbXITJa$zvQuWjW1m-@zqQS>Quz-b8<$N8d4jdgB zog#)kA=gHSrHfX;{=t1<8Vu)RLulc(8FbRFT4NX&n{LnT%lNFt%)2{=5s;?5AY1ssj#CnVrND~{`+ zNa!t?URyPUG|HD?ibhqwDjct|tP1|NR}N@9JYOqHMJJr};`I7hUMt5OwEBXKRU2Q_ zW)r6LzjkMx%$xVHx@gqD0UW_fLk$w|DH^$b(E3JaO2v-Whz~Hc0Qjs9ljRL?y-Qad z)aD!DnSK)SDpUu!Kis{h8mD3OjQ`yEa~}t&>rrVhmX54U^e_pz)t4)jMz9)Us1ZQQeO8k;)8@77U)}BB;8D{ z{^vn!hCX_hW2eS#(kN%_hr=@mN0Ks2PPk4=H{n$207FIz4eM=b@2S?ETb2GS870t6Zn*|OJD2AZUmy8$Ac>}5QB668 zx{cE8m)7K=e{2!U&?WO8G-0jgelND|SI300ba zjOWGkjc%1x1d_)|XmwHN0g-JhQr(c-s>3D02Q?=owP!8S_Nd&$))&l-jOzM+<0PDn zv>&}wPv z393qgK)+rW>uJtmt?e+Tox=6Am&Ej6hVf#RIz@EYvcEn~GSwion*L$q`{$)_6`Za4 z*-@rXw=E1BTeW`bLyqWSOOJ_?&9!G?4W>;y6bb^nfUhluhP{kWeTJSP&>+#`rb2?> z-vEzqH&=k%FjVeqB$2&O%FI`J_K&HA*2pLGUrF&K9by<5wEJ5%8|?iwZ65gsnStyn@9Kjl^hnRx>SL|Q0pM+V3V?Me}j0UhHlZqQDtN*Aku6 zZvR#HaHw1kH6v&nH3wCU6$#2mpsxr(BLc-Y)zg-Xsw8l~)|ueb@`MqL>2Z}RKte5A zz~NJP*$&NN$u_}jAW1vzdb?f@q)WkytXDM|+t5cAeKf{r9oIJ=!YfU|1n5Zi{eM5! zx^r`EHR*-la%^oyWSz+fUSp*RS;zeO-%He z3zFsSSN}!MNYU&|hW;}=74zneEVKsJO&E0a>2*^iL%2Xy|3W& z)g;Y6`b0#CPi^{S=r3=@Zs(Wg_Dqrg;_7M4(bfZNd!$`d&5#t~mq?8vpP9t}a1YL+ z1pkZ2!yU<{NT!(~w%?sLc{r56)iz-xPN^U=U`!ezf8IF`?3haIaKpa)%q|#Cw1CYK zCevRcUos&~n%i#-^}BB;?_iR6uMj^&;9Io30sF*O|C-Ak~oG3(ZQ_qWB4&s&IX+TFz z`>*O8g$|Z2l#B=tD~XA>Ql}ZWwllE!B?P#b}wKhN0uIvM2T3dddc(OQWbD1 znZc2Kz2H7C+Y2EL9|B!QD~9SO-gZg+Xwq=tVm#y z!UkD{$~l!++$G;IuYMl#J<${e+4o?+y+r0fYm2m2=2b?aX(Dh%+BfhO18dxgXF2qP z(!r_=$x=?Ud$PkSa5`3Ww#(-q#MVTQ^3mHMj@>O{kkG$jWw&V zI+l9}+^S;4y3}TLyUu?5uVS-DlConk;;diqXpuVskOY`C)&mBias^h%seF4SJ zAX6c44v9(c6Ooh}$b#=50eV!k|4-|W-OwkDa=$wEW0t(Xx(-=lw`%Cl&(0pF{t6pT zf75Gd(w2ig#_l_pPJ$l4;=6fy!`YWZ;6`=V?U-%)hrT4GF+AoywJs|vn@z>?j9FcU z7$C)v167H$s`*{vQ^0=APvYLPcj|GodFc7?1qspsMC<)(Y>VJgl9R7L6ZC9&du!tK z{vG-JRsS|pMoYB&JfOGQ+v*=LRS^386;+wNA56Tmd6l{IVf4!DRjvqNLsv2D%Lp6y z)*Q70r>$Y3kVi-G%vSrIeCbdC*zT167NJF-R$SIU55R%EwrV!I%E0y7w;B5}S!fh+ z(4dExZndhxsmq_$y2opPjWt7OVNAGn%v-JE?z;XGHq=#Ld2R!`T(#nYY%{W6 z(wqcvsft6F-~x?0rMM%*%~gHLQZ6wG|M%IwIDj*uwRb$nVQLzI(ctPY0BQcyr(Lw2 z;MOoGb#{q0bXYNn#v!d*=9Ym&t)M}BfbmwB)Y}wbK^Y=m$Td*h9W09yCo(8vHRI4m z@;`yw)KMLVR0&5Omz5Ypx>*W0K$*IczPiA#A+GIb)NmpKGe}vh{!7hwt>%pv@ZKtNkMmyZw6K-dY_||CZ(P z;xWBJ+TAGSEkY~vb9CxdNjRvgb*!4&CRovCcK%KoO_ov9JVnipRYk|mjrxmQlSH10 z1unM;eWh!Ybnl&LSaUc_t+iEvma}R=o2F|di)3}BO5z6ZzY2f+_gigtV_9A^lr!o< zZBC|#FQ!0=KeKG7X(y0%!)WiZ#X-Q~p^loqNp%c5bi7+7-+3up9j~}4B109IMKHvp zL3pJ;gZQCr*hwfA>F0pP5Lqn)VIK|hb+MTRljpDWgQ?X)3Z`z{&TbVmkmhj9`-Zf* zBKsI=+frhV`P%KqjnyE!5oZ^-z+wyCk31v;b&X-)5QkL$GRMPh46??xZOHJyeAhA{ zy+@|%4A@-2DjSeKr;Ni*BayTSeV1WC+V9Q_!eu++`R$2WeycC3BSa2oSc%S=!R_h1 zQdtb)rxvZn9eqd+_l0~CZUZL!Q*A(Js`||GD}2BxmurE3voqO^`73A7=*ADFH5jV@ z=@B}I0xrQjdI5|DVPYXRjIlv@JSKjZ$uL#e1DtVFZJAlT$YQx;K`^N!@@?oXGusb% zO5`TaC{1HWDDv@hT2cwv{NLQ%+(+7Q@zmxn5!ep!Xo{yE?SH(TSVkCp&gksSWp~vtU}%zU>aVpJSryq&HN4SHXDN560%-hA`21ar{eb+kbgm|4ui@s?BK2%jD^x2P z(JsV@$UHN99*Jb2!X7gkNOPlnL%HedcQpoxHvRP&lUwLkL;VE@{1KMTXNIzg%qxZT z*)f09s2#1St>f0oy(5;@ZB1b8uE5C6YYes@a}aOt8uPX0O~HIPOJS<@rp(SxKvAnn zOjR{oHK2-9!j!WrFw<%JzTAbgN+eXSBi#~eeNUa{Cv>lBk`oGnvFQ0R+1Wjtwj@K8 z6AGyvU4kYd8OU#_r8WVqrZF%VCQfsMj7Y#HoeY$ zU(sPF=$rxXr=<2-yc%8{N%ANcuiZ&RiSgV)H}-A18Uf!QXY>>9&;ax@}0*dzF*7FvXo4A%i(f^9#P2nM)H zvkN-N?OH+xmksIv5>U-PH3cd}prY^&&UJyQKtORH=kmTbw5kVOfMke;!M8>ykCACE z?m%dg40de|izX=sq|%dwQ344OcE-xi3r-N}br@7y{9Ocaz}Tj}5FK_4(&qgsDwV}i zlmaEJ4k?=FH?sthTB-*A_iaZ}*Bnwf*h#I5gHY@kja7yQnEq-h{Y~TM+IdSrH2=*E zd7V-Fpu1KLo+df=JOR5!uz#hGMt_IceJItLG#YfgfcYXLFh^WT5giKnL6GXm`Xrc`elfO0^*WPh_c!PEYDL=Ka?uHk2gan%)Al=6c|}mC^YyD8nex zgY5#bdvLyKHB#Q?PiT?B0w-qAH}U8ba(3~<%b)XHwEsF@E@_NvKwy32d>|uPOd3#r zs2v0w*DN9h-~bLFQ(NaU!ay}@&bc|nsb97GkyA*21~7ocum~~{`jMy;yyIs|i8y}- zP@n*G@_-Ms#>7k!*7FiEj%d7;2fotOAV(DQfb2XBO`^6X1Ntc4X<$%9v_MrtZ02ww7QQ zSp#n19yrjK5rtl3hJ(K&QcUL!GXaA}%s_eb^L@iXky5wN%Wc+o@9B+!ujBg}HFoSfHBd;U#!x=R&Z5 zkU6Pa6-q-ZkI$*KDSAn4^27%kcUx zKpgaj>uY%l=2aUW!0D|?do)vvjcJ!=**}g4qDjMeW;2Ts@uCxn;Mp_OEueJ&spZQG z8Ta^?+fXVUi8bM6V3F0=0y;;+TLUWH1VFQsI&~ER6N7`mkUC809njkD!1$STB5~Sl z?Yz%#Kp2mcq>RzUg!SvX)#(sZ{|jO2fN4Q`&7gc3DM2aX4j(rmFjWa0K@+ph{d0w% z&);32ibYOQx`7ED4{doufd0RMXB1V&n9xZU7gF)(^6?ifQ9uL6t)R-dV|`y_8Qb1g zc>*d9XVG$ue_RH@5RD>qm5~8|H7fr9ga^ajfkSqcb93QCSf&3PHSnz^5?9rwt#m8~ zA=r}hG>tnWSq@t=C6XmRq8Z_Td&tPhxM2#CB%u(iR1GaMecB;y*h~R$(g7`a4#Cia zg6O3=6cgM3IC#A3UGWEtT_|q8oxcbh#&KJ*KQMQPN_ckYbG1quUpU!|?@F z{~7^B?Vtr@f42ZyTL431h$li4TEfHnL2yc+b~~XHdMZc~O$-C?3!a1dN5YRIUp}}; z?9evNW7xKa}1e)-lN1*CW~<6gc253#42VLtFOf;cXEj$4f{+kOD75~ zrh=8TdqWpRR?vpdA^d-sr5Ur@gH*!e27Jq7oiWt^eE@*0n*L4<-I1v1=>BvFr=xi6 zo}rk~B2l2m53?9aYQ}J~21xkgER_F79Gzo)aGwo98IRqVwuD4_P1AT^g(~j9YI>KD zzKWHcxT7Q-f}ET-BA-?^zKO%X(Ww3Zc?vI}IE|2a$&J|8)B*F%&fv)~I+;0`F7s>= zpaa5@^OFh}7DciRV~H(Koz00~c ze&^&)trQl>Y5#LQI{Ksd-|!DGaLn2(MTD0v|3Ej4T{DXa1j5q!R~sz&7wo(0u4OeK zWo=|@0R*-XA;7cPLb$&21!M`l>@$M=QUp&Qx2MvJt90A+4fYsDzPf8lB%~+A>)@!ftid^v>|9WH!eL@-1hW}O^gAwTGpvN0 z+#GEZ%(S_!+ny9^#xKu4Ep`~~T>?oCd@t6D8n!PN)ok82kJN3zhe^Y> zYh9*0)e~+u8UzjLdRNd8e@P`#$(i9dZZZaP!m70*1xucTs!U{eGCABNK4MMjl}~Xc z1DHI1$ZdCpufw-)Jx5?(p&a{WodE-a`ig>$t4HVyO|Jnh;vOn#44K1PN*jQef9A6S z>-&P~Ym;ktFJZ$Ck}X?KPDy5L-)PC#TaXt0nvF8`!+r0w`Uf;yR%Pn96sxeKz{21mNMr(yrjzg9ExA4&x`pKbwg*`^f0J^IA z0`_-}PKWcn`%&SV-$^Gj(Hxg8EKd)Y{h4(OEbZVCaRwFx#Y$OLW}U0)xkYO!)0lWe zLQL0u-N6{tFK_DAl8&yb=c0lXz1yWBP7b1<=W9rHZSl#4zwxBd82JA)mOXIh)v+N` ziuo9$D9sk@F%d%%o}sQrUtp+HeDAV;j&M6S3Cu1%4a#^OGCfC>mwz7ld-b981b@G? zqKvCn;9EjnZ=05zlhv%GCGw$UYEp;5SOU7#sU@V}#kY+1Kq|TuagLt>O>Ys*6k|U; zOuL7(9Hr}Vp6<&*a<3aF8ZK*o~j_{}9~P;JY$t^vG^N~Sdh-AcRs=2<;8IR{8z z>ep8Ia#hB|feU7j_kB4h0n}V;FhYJnTn^lZ7m3&YAq{bsF0`V{b|Gpu3biDkyTbN> z!e8Oiv#bUhCKd?VEVtj;-62${?YN`8WcSCEG9i+u4;DB5x>u^L#WejVZ|m>vR9TUx zl)+o?8FE5Zkbd(XfeIThlb74=RaHJi%b;KD$W8>wpYfcf>l?EcSvJ>wzte$KezY_d z?*)t6b(Atm?bId6u9BauIAvUUHh{14si8(N4rsM0Kiu2C{{BOEc}6Y~WRI8{{~b?s zRMfiaK1SF6_T%1!S-v1yDyao{gYe7O?NHP$KC>5RE97&b^Xy=kQ2`63DYr#k!c!+h z1K96p6;em}_)_8xM;SR?EUzO2LvM(iU^RA&&mh^CpA-7;JGsgUMK-2WhS&c5vv(IE zG3h;-f^*_FQV6k3QlmIhLL0YW3Zd!XU^%4~L*vkxZdBIaXIanRZ7qZc{{%;0R#1dM z1h8drgCh8>v&rr6k%?PgJ?}?_^C|IOe(4_jcClDqiPGqB)S8A#v8}&B$ z^!Q3KaVtXLwje>1YR`2A-#*^=7Q*2a7VixivXfy9BoLY+o2iH~FPuJJY|n~bQ95fA zjHj(6PPLhDFFgwa*t^-TD}v1opXMQXzljrNoIry&I|=^RI2~OrSgn ziE(C5Pr^E1lqTeBwp&Xjv>6cvf$}h~RlO+SKN^dUEuJtV%BZ^dH#BzUJSc8a z+Yl!_U$q^Jl4AEISZv##0HXP@pbEmYSuS&#`pq*D8C~U+_4bbl3bjqtwOu30&~;tg zNQh_c%?}tR*jy#-Bv`oh`SLEh`0>R0f5BQp*X=HtHQFtf(ILvrS!?SH4L7qlaNdqP z;zEx*A-p-S91)FxksMDK)=FuA1sK-o@!xUe5TDV+?KFZT*>oSxPk>Upcu8TJ#-MK^ zAQ%tp^M9Xh9wxJ)5kOyy_lt@E1#gJeS4HKupQ1Afm}Ssxz$QI?BYXgzY;=IN@h94a!U!|vm954!@_V)`zEso~Or8{~kj2>%+Oj1%(SZncm=|Du%eYG8ywxy|! zWv-3C#-8HL1y}jBnpUkc2bf0{#FBR+U@qk$OZB5#a38rE_Whj$EEZjrxiG? zQ1J?-0BlUB90*cDZVJu$>wJ)1GVV;H-R9&8THNU}HT)h_j`@U9c;R|TS zMo)9i{tuU`Dpb?OlKXu@jh1%z)A6Rp=57sgsaxgm7L}Tfmyg1~y^yufR8)bmSt73V zS@vflUi;tI!3P;A$K~Z)r6j%MwhXbVPo>M z^KXYlr?EIGw?4NaJ=plVFT*nvxPruvd~$iehq2vC{k42$ZpWv3x^}5=|Iq!aLH52$ zj|8jdyI59OcB4ZdTOg{m`1Nq*ZmGDci^3N6y_MX3Os}YJy{0!Wd)wKHC}IO zVft{~+I*^gR9>#7Ugu>r@so^a-bW~zOIFV_qrBV&n~8II6W`$=QxJ#6`e=<`D>q+W z)lS<}PKLAjR&i9-uvG*6H^E{7=KW#h`^#I=h_CPO)s`)tMnexhLo1J#$GfED4uaNP-us>KmsCT8^Pko*op^JNxe_|8yRQ`$6@Ka9TRtVzvZiKS1`7P!jFbt~H*l`QD~VUXNUCH&<{&YJ z1Qn>{+FeEPnSIky8)DuPmN?!nC>#kA1`IF!_Bwap=7lP*b{GZh3r^fwJ-w zCiWgeCsWVWKckv9YJxfWh6UOCDkJ!?rhm2qQAkMO@DmZ%@Bub2CrZh1j!_X7jsghJ zKy}VnGp)|qz+uB%>kV-vgEuQfdZn{>yFw8GRCC^iow051vp*}u__i_Hh;D>!yJ$d% z&}UCu{x%*|@bwv#Zu?m7E+}*?)Y^fH!zqw!(IWd^$TIZiFxh5I@b}{FOINXKmZhz& z&s&i~W#I(1JdAl;i%qYi9LkI58R5~gV7=Tzqc(L=fp)d&R2PK)cAr38?p){9LvB)5 zjr77PgJFGx@}HubM+Ly!J^x8A@YllBRLR>_(0~O(Fw5T%*_<+Juv_QWcjvK20?>My zfI#)9(3@3dp9n=!rx9$EwgnupIBTp2Q8c z?)&C&J3{LBkp6>q&x0kk`6UMR3Kwi5k|y!HXhjjI2APqwzMa} zd48mTnxq?@#9`KTHz-2@yvXrPm3);|q7Wj$zsQs5up58Sdo!RLDaeNtBu2pbppE}1N<0Vsx598Vz@aA*G8OR@g&hVb z`(k1H?`QhwCt&}5WkjG!LLh_=8u&~=cpILIqR&q&2}&m z-f22|r_GR%Vjk(}aI5{8u{d(iuP&H}`6#ns8e3Pr{}_DQ~_JCyrue&*t|?~CP$1Q^AG z7ipFgi~S+G2<+X@C!ZD4O2f~H)Af%U$5TYVBokjm8SB{Zh|k``o|V+};`-d)hayZ9 z2^F5v2njlgtKR0Q`$9lKF!3`a&$`Ny+os#9Z^)(x+64=5YNtb; ziNP+qN1{5*E&`QKx<`D=!EH+nsI$JqfVMVojN`1iV!OT(GCuQSaEv*%o#y`5V{OHH|GnohBs9hjdQfn8%bP_&yugLcz z3w5YpT>Pl}-bcu%tNQdHd(WolWoexxn_U`4>!%k*zUD~Nqq&WXhD$U% z2^z``nXV8fSO}ib*Ej!6RCI^K;Pt2dgRBM#LTIS7KWn!^bw&^GQG0D~J28r=Mrd9w zdtuJ4)Wdn~z>&|#x4$EvJ8?d0sn0y>{U0GnF?`~oKw$(9Jf5_*CiWNV48ieo%l*_u z)#z;=skwjp+2&*|=2|%WoJM|@d@XXEbqIh+M=VX2Q(Ql*g?oU{e{Ixm$E^-I_VG*X#R8OByFjwyr@?Ge7X?w0qy*YQI z6l3L{7rpLY>f|WjN6OXoR<{Dhk%I3&uF8pEtAV-xwF~n^HR7&b7h3{#5Qw=l+(O62 z$v-1!_%LR}hxUkNcZIW9z}cOd2lTSga#W-BtwzV|bt6_jIEll07~5$&2;UH505TYx zl~Mn=;XS&PR2dB$Mlb{+zhBXyl$3T-6CQ)GF&u*5 zHS^I&5UXXgguovd$N_P`OpfUvd?eh3IW7`H{F6f@B(SEzY9LmGR!wP}V9w^XIC$3q z?iW+xMka#|zMIhNL6p7U=5KY>rV8{Fj?rk!`=Qrfyd(=6()R=-IX~vB;ztg%?cW~v zS@2XvxzJ0 zyjQgnLwM(D>veU#rOG$;C0i=;G95;J6$89%*4EO8&JRx1LhD;khwCJJ#Z33e-S2%j zES(SAUt^n^Y_bH6Bo=M!ItbHk{*b!P=@@}&hThxj=Itj=H~y@o+x;A!=+z5k--_sk zkP8LvWjZMGa1+<2b{cIhjBPrEFPh2E8x2w)I+$)3stP^#P++I(zfYnNs>_T&z~R$N zI{bbxKKmA?73MRM@jfUJ<@&CDPNp0wl~2E3cte!bg%sj7h{bvBUh(T;^V6S+)$SWy zCMG5l9NGRG!99kzzmKdz9A+;T*CjJm9S7P{&LwK-U3oub7LE*Bs@m(Us~dUc0h&sP zhd7GtQIwN7ca(L)xRz-OofQt(chiOVAVWv&0`@x4eS;)7lN8g?iT39Pop~ywhHRU9 z74mr=X|NS{g5G~p4k8Iny7Ir$xU^>Ake?x|JRzRoc}-7 zM9uQh$6mS}={f4gg^T=+fhHmj3GI+Ku2crO_7xkhD&ScOJwP$#yNw)uW3wfP!=ox9 z&W4YzSl+L-a^WUn9e35fDriNqAbmY(2<|_M{)~2)kFO49K-%v5P*(qEI!?RG$*%j! zF1P7SUZ+bUX+qsz)omk%*4MWz+)RN^^_qfSbM_{)1Fbi%Ru%abTbRt+r1H)|zP&pK zrsstDU5r%S6BiOKSeK>s&JYXRhGv3n%*MAmeY#M>TD75vqN& z;ojTN0lQ$aL}^#?YNb}{))5(#NKxt_ThTy*g3!dojCE7L#L<62gNGo;5ECR52J4YG zMSk@DQpz4qDp?98iH05~RZ1y63U|AV1Cpi{8T3PwHpMWmKv8_h?9lT*8Cvhzhz?qS zj(1`RdoMVSUp2YvE{Dg}X@BnMx|ERVwxf(%q~K_`_WI#46O#q;04Mev0{RXL5{)zf ztL%!8?PA0a8ZQ6>lNACc4FpooA8^pDagi)Bl27C6qQ5VnXj`@y^6hEZTPD%DI|`Oj z|3R?aQ{7SSltHfXLsm>sM2zx08`SYNyg+jAQ<1j67Cm;%d_xjKL*hB}2tCEvxzmNR zFO#mt36mMgh;w6sq0La?V%*R5`PyXLdKG$pZjj72-$<_@MNv8v=QvV=5?>1xUDZN# znbor`D5UWqqJu_?hvr~K%uki2hX>}uw(5>A=wd3`v8^>k{3YYNNH8UgXCT$Yc`qet z7b%Q*fmcubz+mUmGUEkLT>z^uyoV&5J@%BxQ46;?vP5h zsdDMt^{=dbg2EUTe9%RX|35Ys^Q{5UF&S4aX=d^d7d0Z^bLB4s< zz2|{h}@f4=2GxT3r(jnUk)vw@(RL)}ds3UFc5EzWk%9N=fp} zK%NF=rx&aHHOE zGV#R4KP>C4rQ+7UJ}<=i<7_5_lN`xOm@r2p7wEQ-*^r(YP0dnjpUQ$58oj6`TVmy2 zDY$Y^P!YlGOXtd%$b`d%515q`O3<0CCRen)2ZSI5^4^~kNpcE0#+s0 zVC(t3^LwG?g|5fJvtCY@(Br|?CXdL`(aJz*Ro9z&zR+H*lj-wyn_TkB+tyf(sP&@V zWXRc!plEw=Ft3vJuO}qLMeHj$u^z<#lAb|N#T_m9tFiF-sr`4`Xtsb3nc@yQ?8e|iGB(`C{g7F|Szg@+8i%8rS>&f{AC7?shG zV}I^+kGMjTH>_=&YqkEMCp3LWq;xoHFWxYe!u0QfYZ0;rDA6KHHFh7zid*9#uUhgH zgCu-Fn4On!^DYr6+4*e;$pBRj0&AjWi`|2@J+n+th&}{_RYu#7|5g}%PWyG+j;>Kf z9ivta#(<7C)t>(8uh5|&vc-bXTUp{ef|9(o2<=%1gQ#7;(vR3?7Wu6_#Ebu(t~}D0 zD`|bv!yb{cwq^jGS#VDA4ILVJhE&`DaqJ`QKscil!x{#JY)XWR*yy_!KTzvR@lY`= z(mwp4POH?;Kw+Uyq5o8h^QR0yEF;x6B${<4tv9UN*6?r{X+#=P)><3p0dmr`nsC?F zdaARZeoYi!SxHyvPy}VJ3R>(i<#q7%)H>~Y06FC9XbRm&210YsDk>}as;VlhDgh4w zCTePu52#56<9hIjt`qf#39p`KFX)tAH%Zr8cK=nHhCF{S*@~WIOW>PDjQobvLo0PE zp4ZmMs*ELBWt%wnj!PgOFtndbsE29&tFKA`?RgN$Ku1Su`dp?PHrZ$=_OGEoOqc4! zHXB~pP#0Xnbf>yHtA(pAzYfN0#f*~@aEaAc*OnUdS;Rye_y64uu1g>a*`}&XsB>sC zuE#(z3`HAq{ed5E;x*I5!cvVU>`_$cY*_0YJ74ECArz{r*s3?x$mX4!=4_1q(~g~D$cJCp|bO)vC=BSAeuYS zacCzeEt3FEYI1NpmS;=2RkMh@f`9IYb4!Tf2<`fxFB9ynwZEzBQZ!I{F=&8Nh$Z;& z<9~kr!oX!%lw;sVS7Kn1qM5P9ld?0=yEz{rowmLQ%N z5x;<5W|B3o89yxH^BnX1ZUIM0pBV)?uW?GxB{$O-YiGB;gr`R6RrO5%>g7W3n(*S_ z_UlYJVa;+&wdPRX=`$}_t@SxYGEt^G+vAVj=Qaz3+;1=JlOlNzUB+IsZ5>mO-OQ5| zV7**+3oPR&Js zoRYv)r+fe7w|S-cm}O6H`^koB+|P`Q*TpG4-RVU*J5~GJuG-5$RNaU#+9sFAo+0ud zPwL{<_m#l`(&czRXZeDKLs$93wFpB36SSX3+BhpH>Gg847Sn4JP^6_$cDLS#b*;4j z?ynFDO-icK^8I;%|BM*k`66Jdu4WROOgATI`Z7IrmmR>2U&R4x);<4#0 zK?s4!#o8Byi1;=OA8|G51UIf(L-njVcn#;h~X@I08^oQ&V8i-8G_Ruk0X*G` zdW{Pfe2A3_%|CUe~8Fy4XTzt~j)&`vM1s(5bFr{%Ppg>L|M|`KtHROe` ztsMDJg1JEcxxq_I;$&Z74?ZuiSWb~>vsiz<^boK9Xbt5k?aQEVFdI^=&#Se3Ig*?C zXwG5G-?hIOD`wg)R(%l)PUJd!;?+HuzUcr%ts}Te9h0+A@YhUr(nNo23K!fgA-xej z9BsVqicdT`mB&s6nvLI^w>P; z(J+wCL8nVWld99Ar|ieu>SCJ`DTlkoS;e8EaVR1+a0q+!d1S)aM*Ml|;v&a1Ua$`v zUQEC1;s-BfY4vC6?_aZ2vKR{d%dVB6mSlm$cPqH52*@ zeI0^!eOx0N7xzEEM&H=!9r9YeI^BPXKRem5tf|IO6@H8CUTtxlBMA)j?|R;eoDK54 zbOT&=O_>HgW_leC6>J?JHI%6y*f1O^1A`fS#{pcFFzZY- z4L@lV3lvmB3|d@ABuWlco7sK5GKJB3iMsVrg)nMD7Wt6OKw8#`e48aJX@J<{O+!|e zHEOy3(^7L|Baf#$;??8xk!hB=%I=oeX*yAN=Bn819R=_wH9#z%%I-A4SSUFJ8z&?| zix{yAeZX$IR>+2&e)npNU)=Assd(Z%U8w@soYI`1@%?vV_z%QE%~BRJenORZg5ds3 zKA@s?NLT!m8o7Yuv7F&-i1xXQ?%H1LPxdz=Q0?%` zEhjYi=C*C>JWq^3z+-f0HD+H`?@3MRCf}Q!3tAdn5m!j`t&%CgtLIq-uc02gW6XZK z)^d6IoLm;n0rF<-aqlzWMRmuJlx;z`S&eboFuC|kmwa900duu~|M$|?IB1!lXtndQ zt6uH_=0kp)cX0Ls%@DT1AoYCZ+%jbk82s*kPt5U6d2%E{c|`mWG)B@neSey2T)$sZ zYfI?j`_SnKc>spijP4Z19; z@^EV5dV1dJ;}jQ+$V~LV&+5(t2d;|Oi10SpF9e(TAD#n#<@$RecRfunPH#Wm2iu+P z_g~50E_Q7%Gj>f0q7NDQ?D_U5^qft$r3XQ;p#W(y{ma)Fe&E?su+8KfhKq|gWO9qM z!(YVLAOvEd8}I2^;h%q-p>XNOfvF*R>7}z432_+`LRvPwocy5|2K|kE(DermSdJ)F zgatJI(3(dN?AIiobi1o&KKN~3lF~_dy$ab>rK|!8o$9yZ2aaYSF51+u={HA)=%a8H zz(0l)IGM@JDatcgSbsy4M^3rdk+IarHq^iY5{tm05=w`CKvYN*lMEq91t4>x(`d=F zWm3~Dmqy1^2z`3XjCokqkIT*eG#s=-50qS^2ZLus0Kd{8ll%8AY7Y5%>tA@kMBY(| zEq^%`Gv$5lxF_4WYbq&iB03d*;NnKTct3-P*sFH(?pX}ijH-kh<>y+EgFC*On?j;>V%-G6kIok*X5oqv0f)AxbmNc=RJ zM}^_bP`QBa?RUL8A3rj&vm@B9Qe^oKCI(Suryd;+2I-glwArfx%f{vU?z&83!}q*S zd4X>rZS3oB+msZc!=s*4ueQcM0kwCrx{jNPcE$}2Esme|E!DmSq!$I=uNTU7F9{zV z+yuf%t-l@@tuHI4FYVWA2@}K`zJK2Nm-5i-fl`v-k~1?CMBgTsZlGH&@z8-`%emtU zlip3(sZi**Au@K73{*|Uv@%#O)KkBw8^&{gw}F{$n4vnjc9F&`pG#$!)p_-@U)ho}`>7Z)sKqwMw%755|DY<;fVTmiyD?pXM(soIQ5N?Y9Ci zWu~f>3#=3XJrJsvE|8tgWbgcbC&OGWyKHsHy_T z=Yg;MeeeFN`*S?@AQOAZR}_C_k?8bt*Pp%KfXDx z3OASV@udd;*i5$ydr2z7W%woA)i@dIVr5`MeeG{k=l9yo3v>v8D@cBO#SMX-nnDv( zrM8^Cqd-u54jRJlvh0vA{Y>I@^HGnhBqfYu1F@dBwfASw@1cQnRRI@5fYIgf%HT6M zqmcl<#N?c94HT-hk(=rcGQ1ww*p-}Cli@b=*n;rz`O86N4TkC7U%`Zg_J{p) zK+o-z_y@@bphRE&Mjn*OrKx? zuxN#>%v8)Ur_Qf(jJ8<+eDW?2Ib`hoRd+7WhL(Qa@9U@`_GZeo=I$t?+&Gh}zst!+ z4RkZu`BKzpjTq4SeDWKSJ3C1wBE?Zr#~X#5;)Oc+B;cm)YJG_75;Y`#X?v*C>vi?5 zji_gYU(A1`01%=w@D|kVLw_-NB~cN==Nn&30)grIJAm$g%D!Jp_g#OVm{FYuZL4*hbV=E z@XK+6q#@w_hj70*+Bs%+Nfv#ag0htNDTC(Bk~o)NhO9*0H%!^v9*VAmylgyGFdZFc z1HI0MtOeSW{#IB<(lFi&pDj|3c$0?-clf`9TlC&Z9KsNg1W4-)*Wuv&3DZLYMH~2Y zo%JfgV`L=hC1rU7f;-f_0&eGuv6b7rgC6%N>g`vo$qk!*w?D^jcyrxPl~ivi0+!aK z-<-RwSJXHTe@|q$ygJ|9-FrPizwNqI&iuy~-B3q?fa=$pDsraP*xmIV-3Z0 zde0`kbZ6q8^sADmauc4A`LGPn<@q8}^VP?MK3HSs6y?xr!Oh%8RzJe2+SRln)*m9A z@i2?h;Ls8xn&1BjEK<;ob`ajYY=5e1In!UIdCQ{muBp9U&Cq~kaKQ+^c^JW$mGxU+ zpP(98vt(-A(EX{syRxiu8OF@cf0^a6o=ZXHbgfYEv|Gq$E_21dt;jWaM!)1N^vqtz zYycVS%H@&>yxM-Yk0U$0&2!bb6T;RkQ?H~u(gvaSwMyL^-!mVFSueQk;^EZg{T(sr z0jR6$z-dfNe~Qhrv10Y6J|V!E3rCVfe9-z529qf=Tk9HZ$*0Y?)PldABP5)lxP-3c z5_DJ(%~cxq;}%*%z3OLwx}dd0$Ru5fIIlop}m#q=cMFyK|nngW^tD&x9mDviQ_xgUu=iAq^RNIMqs~-cdc)!f1%=`p>tL;pd`l&T%p}devH~mz#Qm4duV$b>a zNM{gJ+a2@ktk&n|*Ut`3{KqxFz3c?;TEsFnTlAijC7$s-l&9MHt5MDFuxU{wKd~pG zP2ty_>Vr;=KtKsxMB81~+a$%Mx({<QLY~6%3SSfpaba?))G6w^IeTD z&P`PKFe5a1y|AR?0H^H5TPcAqCP!>^T&bpcmFa3v%WgbHrLV79wS4W*bqXyO%w;*5 zr;Gd+T=bc^VtBk#2FcdZ;j<}je2%QT<<()UPjgE@nIensCA9cy_3s< zgh}+oY1K}(pS~`WYAUWgH}TdsS)_sE(;8K5{I%hPF;?;FsVpN4U_s~eja;b5N4z6 zB3^jYT%?&X36-HRH-N*LspqF3Dr-_qJ27~hOTnl!C{nYNx>c%JT}-Ob0PW7!ks~^? z|2bN0XjW~>8gF#aQhT#s2CNhfY*6MT$6&5x9QQcwl=w`gY*o6YYOI)F%KUynwwX;S zvtnu!vabwzr)lsWsd@G@tyi%skl&M40gb~>jsj}r(vzeNU3SngWcpEYTd~AeNTb+H z6FI;yzuGUl0ns;FQuntg>OZ3_NhA5{7BgVt-a^y40S ztoJ<(pIH@l|B#^osGH2txT`!d=a{(|P;ip*rR1AU{^H^MIK-1esYAsDC|OveRcUvX z%mDuYG5An%^t3;mE^-YCG^Iu~Jz*q!{y+ttdzJK2lYVD4V%iCQV%O{ioXGk$I4;2Dz$DDmwe( zcO-&YsV8OIt$Xs*;%+T7TK@KHUK(rns7%%Kt*0yMogFH^A{OZx*+QpF?OqT|l&X#v z&mc@~F)M5w>RuQ1gb%k`1x4sb-fs|1*!;AZTFcg%vv#@%@LnQ8UH2q$ptmT8X}xV+$KE2A#!0V5yapL&Bx^;00cVux{$pyCsTyMi!YhkWZ8J>3B4DQ;zPhXfQg$0%ta56kFkC|~Kh zYsXN>k$Dn|3gyeHbVH>|Kl`|H8J8@onrU;35pH72`Sz%*vGcR|2OCh9XqJ@dTXDsJ zfn5pElXCs$+BuL_KiDm@T+Cn}S4{2Q4gju(F{F_g;P6KJ2>?{WE`q&~L zF!!6;>OQRQ(OMwoe{#VS_g`b2dVtP~5>7sF`YTVC&3kkUuTI4Hdx>KM*j+oJvn7l8 zbO~mi|02ePw9H`#0xp~V4P00+3~#5P$=t_WG&IQCEC09*ph0=N;R zeKm3k9`4nvTRSXo7EFg~a}QVRX>zH6hm%}seI=#piFtH1JFBxuVP@Cr`0EFA(>Oa+evrAh^RBz`Qt5>s4;EU;J z3Mb|Kp*txrpZ#`I)$wunBm2C$|sy__C5_3HTj8+fzQ=s69PIxKiurSluq4&s(tb|RV$C_`+|JAWZ72kwD6^oN%`Cg2~m;Zvg*$U3iJzE)Br&S;o3F$>-W}C+B8xoR|(IP0QF-cJD!K9be&f*okv<3r~ibo&8Zum5PnqX|5)m9fi5R z{+#HWSy-_P|D8-rOH-YRBTEd#*J`Hy5~Zo7E+?BlSQ_ryj(--DfGl>LvOaz724^#3B4QGg+i>vJGuYk^Btd z5DBukU+RQ1B#NiMW<^2+(Qt>`EEQNA05njeUo8DLDr_9#WNS^98B8v6veGj=u1wh2^U~ zwSQPL;gbEhF^ZMyF!WTN;ybL9Womqv-_1HAj;*cdt$pQ?GdI49^Bh#)i1$X~Ed2(8 zBf}lwd#(OqQFFaPIDJwrSQ9KB@^e(2GtqbP&t$=;>ny(h`jee<5y&C`fT`SR?1ADK zDZv}89tKp@4kx1|W98z+LLoC>c}OQhd+%`c#Ngg5l`g&#G8l7hJ-OHGK#z%17*`lFp!TI4b|0MB^vnKcKpz5h5f-l7F0YY+XXEa z#%P%I)|RrF7A5I4xbhC}Y{hg8W3OBku@IL@{TfOnRl6@%#>5fpKECCtE5$6fb3`pg zFBN%Z4y8J+U;LfH1t7$aw4Op%%3cD7;e0?SQzczwdq2`u8cbYMiQ=ZRy2yv!W@zbS zxgv~_tftUi>JwtVM=d5hggf+Rh1gmP|3P$6uL+lbke$b6BFT3f^X8VV$?{|lk$L3T z-d)RfeIX?CcFy*57>yOm`z!jm^2T91Q}pZ~pL-o?Mi(xCQsSsb`!vDY0HZQ&n+{sC zx304Rnsr4+fU8TH1IUm>qnuv4I`7<0YMd`}5eWl}x$7ApPE@T{dPAZ+aL9 z5RQiKlAXuf^#PZOR85mXRf`G{3jy$RHBp+!%t8z&OQF~$&+zx?k^xUwS}k%5>Rh^Y zs9qx^6n$O@Gt4d!;JCbaPO|<8*_w7z zAHp3jRZESar^S8e196Nk5L0lkEB*V`AeE2f1c8y=*QyV1fv7@1d&3#(cvu=Jd^5&m z{4#TV>AW;MB>?l&JkSnocR>KPztx3DIS1S{J#4{f!f${>ij@O?$jBi_%!GiM4;UK` zy1Uk!M*DsW`HzndhmRf~HX4Mqf1LvuT&RwxbijSO`P^dSW6m1l42G)sbp2#jL`S=t ziuZmBY;x@0Dj?&i1(f3#S^bu@HSq|1QEJ^?xf9Ik$%>mYECKA;td zTqzQ+@xPo2U$M0_|7m!t3G%%ek4{!~dT)nCDV|Ii;|tX}IM`vKnSe}jFF}r32%pWCLH$KTNbgrTnQBr^mwRH_ zh$A*7u_NBeX!z*=@YUhNzANL81T)abi-!Q`(Y5th5-)b)!F1ezxp0@q}F!36s%i_%Ot|EFx~S(=Y@0%m+gkZmVRAFUeEs zz2jGX?7PsII-Y-fGl*$vEWr=#0W0d#G)FGQ#V@JM5hK{P_4QfRuizpjCQsnsE7_y- z0n5Jlw0#D%WS6~{=394PiE?oNZqK|Qb6x4uYHeAG3Zjp_vP8D?omRmsU%a+H-n>#s zX9M39)>-za5iy}JWSwi9@brMAuc8s6qOOQi1?agrR>jn}vZ5D%H^Dw$4F!uKD*dJ>xYMi}GQk0IV>44s0 z5*RfX!K$O9plsx4_oFMcy_lPpe5@7UuI2{z^WB0PR`djoaw%hdQL~KQ9sW(|H^2hcz-+(R-}9}UrR;u)PRY*ck|5DNdTYW* zXc<0$VTTpyblEAW)Xc$s4Wx$^*Uw>`XW-3=D$d{CRm1;SY}gFz1D?K{!;&gm?4@#_ zsKnOZmE3x3&oyy@MQ%o4FN^2O3^OQ=x&OjA5Qb2H$O+stM$z8C&0X)mCTS|O#PG9} zCYR-HzEuctfJFIy-l=gEYWRPlE3b|1!5yLwV?pjiYZC0ikw*O=*V?MCsi-m&wS((R z6V{z>6yJpy3k#=o+S^yoGTCFy?KZoK>s7Q7K9D?Zcj?|b6OTHa*mpXj@?E>vvhZ3tqbK;2lk9^;0LGv6K{jJ^cf&|OH3m-dIbxhJG91hGknyDog zO@(k&vo4xU$hBG*hl%gz!eO49HB@Pm1LgpZE9Z03c@B3q;xtaNM~_rA7c5?EvW$H zBwTfTOeR4sN+DP09oDMH2v%{%f|idr?><-4Da00tdPm~6^Jj-7-e*fPXJ)nm&AyE( zpGGEnZw#2*?8WddBsdqWH`+j&=dR#Y!lT0L;4NNI^DmupqpD|OdIt9O>g@xcu%8@9 zWOMYJVCX89>*41}>p|)T&`gIpst5)=6|Af~f^^9w0WeS-!>_aYx)@W~{Wh|~oc3em zu@Rq`yz}VUEVuw!H? zL@XUODBdCNe~yBme5$+q`CaF_-^NxNk`5OLC4Vv^?GW8&SV{ z_5+wB@Vp$sW;V4jO4ihwx;6MN4^pBHsFUw|IR=$CfDecf$u z40E&XIL0OLUnH}QDDT0mb(`q#bK~Nq^l$q2lj~H%)@9haR)Eb+9%p5e1k9-tbMLrH zb$>dUZD@0MRUdJ?GlTVwUdLWVpDq<&kSP2V()V%z%Eb7?H|3={r-dn2vGuRHi=42; zzU&GG5PE7H$tXy+o9h|oqv-}0*A&OkXMaNHuj#1Ne?_^^eo<1)Xj<_Y2}IK@w5&*7 zZn$~4v^O+5df8qVz&1O3?GJy~@LyZP?Eh+W+N7WnX@)ss5@}Yg?(d$q1Giy?7G&^u zJh);E^V@lyf4*>`r5{6xCc7v%3ZV7i1gkc@&iB?Euc)wXsykH_IzmJTP<@$~37pG9 zNEH^>+J6}5W+#EAMv&Po;R*%n8(p4i^y`5H?=Y8*$1t8 z7r;H5gcU9ts9r3HVYmF?l3K+Oa8H3$ALlFRi@wl`r;D$gS)Zi)AHE_VYv4FPOC2|= zXJDKk$Wz}NCHd&{`hy&{xYEGk9@QEQKY`dRVK`j&r*a!rQ8%+Nkr7G+_2zVo)Su)r zrcY&cKi{{k+xem*h8nuLh4ISxrn6H#_9iL8Z*Hv`5+?Yc5Z;gkeT&Riq9u;0Mp8>r z^?BU{>Lke&PxB;;iIaT$Gj3F@Nr+Q{^{(c5Y~pk1m6J>Vi&0sb4sgM?Vm|)j0YYk46Ii($FHStB(m!d=Kwpz@`^j%%;q-fdJr( zvD7e?E})1f^sN-^p$26=#}p&uPW^u&Uk$LV&;9kMf?A(5i8fyF?{>mqVP=iqR!c`y zX@%6!W9nZ6t}Tt$nbEiV;?lb`-q=F-{h|(Wp_cjvR9bqMnqxnmx={8m+JV6_@pfO0 zTCL0C3U%&woCfpg;d8nO#Vcoad(znSz})}7i~>^JE{1MLNrK2HBS zm4-)Xe<@XMmK|bCw08kQy9PSuovI{gJdUJHSG^gTgPUJpD0Dk14c|+sBqMRX+k3f- z0l-lAi%0qyvg}SJs!p_~0TB_&adYAIWR_p|vBt%IEO*f3qD*c6JqTn@M<2V##_Fl4 zY79%Wd9j?M$r4A-#@7X%o+!Uj^j6->rD6-d8Sp+8>_QHl{L2;Av%a zSGhh-afJB~8JpsN(KJvS&RzDOT;1Xb`KxTOAPmb?jY*bQdv65)61f9h$E{d>)Y`0i z4+D3trS_HPJMqNcfnPq<7s*dQ{8UpL=KWcLy#bXg4+nbr=LZDRh5T^oo@Iskiy1ut z&57T9&q)BA7RBdPlKmVE-=OYZ#iS%Vcsq23orv{KO#!gs{g3xVBwM&K5@bd(J80A0 z9S@?%0F0$~QOUXzvS$-YJftoO;ziir3hrCH9Zg8cJHZRsK7~H`>wxf|qN=060RNepn&q9Wzord-Jcp{D^Q?nEAhw z^>mGKsKar@u2A7@jp0qn9(9p4)shtqmvn~IF3ymq;TM_}|WTNk$Yi^>e zn=Pq9yjH(&^VUkd4?=72bdk$gnUBGKU5Uc(J%56w0k>_Rw?~{_)Xt-a&uUNl=Z8$w z#XY)Vh~&%jIQKnSM7==cys?$l@$zo+)PbE760Eu5G?UeiF|XN{IIVomaFM3Jhqq$~ zHuPS$FQM=n$sRiEZOVgD+~^R=_Wq=L)g?Vw@b`Ns44eR%()}=3jWNB3gv4Lr;y z`b5U{Mqm^t8Z6ofk0AkbLUVkNTzX@;9ISC+p!8RZD<-!ZN#dzVZ%>hhO1wj2XeVm2 zuKTJK;&mUa*)Q%|+WMjxU%`)hUk1lDZIsPzu%iI2XSXl3w@D{5(NcGNty6>1`@jp*M^8Nxn3-k(VKAcaQ0+6RpA67bC*HU`N z@SnymuGkhCoRyPK(8Q+OPC#(0Q*X+Yz#?G{AAknSyifySLPhYQkmo;=z`+CuqsBCC z_r37W4J^zLy7+HpWATv6)yK`XgfsW`1}98b6Ji7YiyL$p*MwBhZ;YV!FsBTA!U=LR z;VsIsGgOX1ZFYL3TM>9K)-lQlu4fw`mqQYIxyll$Hs>Y9-m=E@C)UW0c-c0_#u7dK z)`a6dV#u7+)D#sh@3V$o1*7&%1~VO~Elj08ph${^sZ$AEaIF8-zA2FZzsqaM-cG?2 z-lolK)cmO!NYULIG=Svw<`gp@K>*}16kGm!cjP91W#etn9=hi$>yIiT<75(M_&WHf-}&?Tea}vD{`J^vhV+} z5>sf9fUIB>CdI|3K)1U!ertWh&x{lL$SkApLSR9x>ui1C^OMc#D&?6^1*fg!R8pk# z<4`l*^10vb{K-3$ZqI|7t>^B}K8k(<@t2jr{d?^2*toVr`2ynt$NAu?tSl|>%9v)h zF7KSuhdHVF<#=_zOcY7=A$HL)bkeSr`iN~WZ7zO2_|M6yU$R8B+ny#Sj zvbXV|H4uGh>}{MP{uUAt2+{xjx87V*>en@z@~obSzog&)`wM8JPZ_n8}x!BT*>tj9)Kb21W#>&|;@fs8K5dr$W|E8YQa_5*uMLbr^ zP&ch-+dm~Hbr0p<@JPD`V@L$~xrmomG6kllW+C{S5&-9B@Q%bFP#%zI`JrU6MybN`>k z@qM+5_Lq{cB3}mUc56yzoDU4sd0>)C1q+$i0-bjzT4TqWZ-7MLsR>y(4XxoCR zC8D1njk|prLlT;65IAf{2yJZgnyg?&p7{RYP7Lh8qW50EQT^tjW5Dk3G4AD;y1EbW zT4^j?Nm>eKJy9p9Q|WFpc9N1o-3Z%h1k!ykxonG7M9o>A53hZXa_dd@HRiuGwXBg6)w(u`Nnmky2+>8Vzqoh#_v%#_zi#mcQ3%x zq~Nt(9<1g6Q1q4H&~Zuu3AQAJewt_J9S-UHvNAy&>fxtw3@sM8@7g6gRWkiG4-RLi zWY^3-`qUa%e^cOEOuHVY7`>)`3YW-5YSl94PP???elAq!AXa|OtvihGb9;jR+47=juLDBk*&cb!klgEuQ|)G2(~@H9&kueD==&v#Qq0;;dKdm5Nz2h5WkOjUSLQV zC*x+Qvpt1v>+aZx?J2q8TndeT9K@;7Q$kLd6B9t`!^&c<5J7GSB4c%DnR2b;a z^Vi7A;vHkCdUHQk&c(dJo-}RxM8moN6eb(!rVJBrM537J;l}UMaR{7F1}A{sk$UVV zK?9rrVSR@FyWsi$UjP6@(@~}2rXQZmWY#V0lf>@8IW@Z1yMD7*w=fqsQ}_CvRd)NL zEMYub!!9f0oxf&uNvfk^Z&m`JhtEKizvO@9Y+9r4)#JV+|C0Zp8z7B~pnihyKJa_~ zE9^)=mdLTj4bbeO&M}Wbd6qBg9z~C|IqpzLhT|a76@JPjIgbG2Ke92*ZW$TT|2;7r zR3-hEz~#K{0q;w(sVPEMKbq*j6~gh8ag3W4g*1X=H%lFC*eFDi-c7tA|16tVS0wZj zIgv~&tKQZJpTh#E`H~28MwwHuS+k=aV@}T%;aAc~+ggSH<+6F4Pz@7e=0=?0J?RfP z9OGoSnT&)+@@Xgf5BQC<`f*^rvAs&K9XY8~MH&=eT*30n|Hl#W8#@uzvfs`yTmaYa z{}=MB81}!ark7rpTAiFcfBzVKj*XQ%ZiWN&)e^E1-~0=ve7V&xd~DbUzL}%w0!wGn z&=^WtRLu;$9BYs!Ew@kMH24N_Bc(+4HgO2xr!{z(RqBY%m_NxJ!VSkcA zSVw3A&E{Jd)Q(Av)##|?CkmfQf0xMl(nxIjy|^0EM>L{E@kV(IF|NzorB4L z<~}xwgU*A+ecqls(%=P-cPvfbY^UcM)a)g^VG5M3vMCl|I8(RY(O?@4DrCY-XVK#t zTK>eIrBUb98-O6;JN*DW{66ZVqZ2mQL_#F(WOnHqSLXY5dl`x|O~AkU`oy?VH4*!+ zoS&1@>&q*?5*S`jEKu>aNOnx4tI5CHynaG#|J!-9+zZP}BRO|a;`{+FO#U4-{D`@- zm@pBMZ}@1p9>cXu{n0S-{%~}^FAgXG+M96cxO1hyAxWml$Z#R{<)4gZGxAWXOWdVU z7J(w}|G#O$TGWY1mGjo!oc@pMn)Dw%N*p=I{voT9BbEK*AGq%EjTuB;M>^|y6Zi@9 zpLe)E`Bv+87zQJU375@4Pr+ol57b{IE?Lo5qSS8v0Sf%er5#0 zL9c6;utCy2*4`Vh@(Ego`^Ac6Z=e(->}y^KsmuCIAevouIy9V!(bmuujh zEsZrPf4%FjwRD<0bEOO0_qupQ3Ph)LjJUX-=RK!Uc=WV-`HImlPdf|PC zD=Ar_NoJyc#`}U?%ScK$%5wc%B*fjS7I-L@&NCNyeBJxw^>6M@8ypzBKV4N=e>#<` z9?dU>Ys96)2z!wa2bvQFWq+a5sr0SNKGD)Xsb`8=tWzrLOBbE|53bJ7=-=4Zw}3)z z(0f(&*!jV@Iz+pSsM@mWfPvp8WNkq)J2CS;R(9UeeP!wBFM=oKSzgunw40k}&ol>% zTeiEaX}W`!5Wt?zmCc0)@n4(H>|9AXr|ENZN1AN>Ni0UD${%-Z*&4f!cuMqnE-UJ0 z*dV~b0H@oZ20J$ZmikGY{{pM;{GzLr`~0FJxhv4(s!!26PS^x^`-t?;xf~Z@sRclT z{lxA5FL3!xwll9gjKd(Q4Rd_nqepH^`D%kU&9HuCioLJ70=6&HnxG&+=$Jo_P*{vb zweR$_dcDsUMos?`er-F8_A=wk7Kn)WKKT};e_%Ym zcaAxG|5thl_x?d#w@EG%2a?VRav=a9Lef0so zV02ewlG85u!EySlTdo-5{uHw2JPSgMQ=p?`lg@V2ckRCXXUhoKVc`xOVZDj0{o-e{ zr3Xw}-e#pTzN6hKk}3itb5<`}3t!Db52cZ4z3r0;<@5=H!6k81P&*pe!OoU$_I&ZC zH%B||Rx9)FE<5&k(HS*NaN8|9FNz_ zMTof@M|x6cYU5Ju2KP0X-ga~CXG+ubvWZ(D)ex;)BGsT>$jYGf=mD;xCv4_#`Mp2) z2K(uv8Z7+a*Y`WGU7!8Du$C!tJ|eP|5Qw3Ss5V*s`6t*7i?yVnW5lf`%KDjs+eJ!m zF(JSPX`cWv_H)Qwj#y==z7EsG=Ia+Oj6b{(leuA8h&w)Ehv8f6wT|<8jUKb5XK9C_ z?E8Z3J>t(Gf-(v(GyNiqAeK*Z&>Q{lg|aa_j02k+Z7 zfhA^^57N$m_t4h~v^A;*ApbmEBAnVQQ2Y=;Y<_fbdy zxwB&MC9)oecL!a%#Jn};5{QiLn0+ZMb{=0K_(XBIeyndiB--5c#@fzm74dGw_Gwis zaQayNO3~&-pU4>z5fFrrm$yd9S5C(!Cj{1l9&0Mib?eOt91isE_wx!lk;g531g!&^ zkO94y!bu`v#Wam$m*nI)Ab{C{y0czODCLRS>N%~M3R^F0`rLG-BgD3(38|2H@x7ba z+kUpQ8q#~eN3WXy{xV@($nMTU)M%kJro~^_1lq8|x^S4Eh|llK&dMfO%fyFkWauSG zzbl>msUYX{Y)H`JOzQ7q+~(45uKPMn#FnDXnjsYZEQ+v^p0 ze0wAV{Z?RzIr#B2l;0#*gvb@#Q7xk6UtqoWuZE#zIV4Q37yaRbeLt$Tz^1cyfB!#w zSdr;ft>%mj;IH!ygo4tHI!!@_uc#7rop;sfOVCt!wXb;d|4}_I!eGawKYnwK+TLn* zW;b{BcECIw^Gj&Nhg|=pZ&FilC?1FU@iL>Qnex%bslHF4En$rs>(zc(oPZgw9 zOq0)EX36(o2}))qpX`Xo#)r&wc}VcnTxn|su<2t?ZI*CV(f`=LmeoncPm9Y(mu?O- z-ymM0Ss$6rFjsNm%#Qb)4#d0z*2_EB)z=0)8H7cP2!nn`JgzAf+)uF=nX-4Rjwuv5 zr(}I&lF;nxEx!(Uh5G+=QxrKlL$8h&^lqDw1qhJ{ zR7JVc5>4LjE4O3Hu^Cvfo2!t+#s7z0I#6qz{P{v4UTe_^Z0(VrEudKdUMv zgjl`+PicGmGx5b5#CCl)myOK9eey(_&hh^GGRH-sNBV-I+IyQ!#jDN9AUEgMy2Jg( z`B!zUwm8W)$B~{ha%gL94K=CiFgTkKtktHXrT}IEG3Q6Yjkgz|o-W8RpK|<@D_vi-EzPXh}LXLBFpDvJ@I)8l!2?ySqFzh7hg*# zPdhzp@^wg01+9@G^|r5I#x}?#{HvT$={^%#L+u$cj+^ye*NRsgFK4A@!t2rQRC>4N zmN&rGo)(bvs8!Al&Qu}>zwGLsYQumn`e~dASy|`$reDH$^;YWyB*3m+ZU;O8>Iz1F zP_O!>#92OvsREms>BciY#573Ot!hFBhnhXlQ!MXOnm+G2wF4FVYdi_kO-VBn%UIMt0>AnIEB-4jI2(m!7j$Y_ztNMD_`#YNT@BzY9_ z7SuRwwBt+3UMLvZg+3mAxKLq#*Az>K|kLOZlJjTSs-EA+O(hd-aU^VhYF2c zGrK8=6VY!dr(+p{O;ZW13DC*tf;44oaf=da=Bo9;w-)n#pL^3~gh>{oo42kEXiGyc z;#D*FD31F&%bi~`Rd)m%?X1e^yHLTokeJ9`4iZJKo2QHQ7nf9=-9>F+XLeRITpcU2 z0kSNL_VMU`KuROp*GT#>m|Z_Oy=Nbw9ZwBgrN;iNDFeXsk!xq)ni*M{`g)?L^L$e> z&$9b?s$%4aQSqU7>c7iQ0p)qd=iT$mT_VTU{VUE-3Pm$SIdM8@04wC$NAWoL8Tads zDJ@y;6*gKi^Ismm)hC!L1*G%pC)Abac2Q!cNL^-63&u!( zOo>w6Lfbnyet)#vT5pgDi}G5v`Z(P|p5f)8soV@D#ATgSgBW6%;(gGc7A@#-`n{#O zBZC|@k6#eC!p=H`v$)CcIkq2barg*F_XmuEq*|gGhAlNr?AdCK8MW06Tqcx|OH!mE zqGYG@Ua{fTEs$}ghPH)tDJ*b=h_yPqv)JpNQ>~TY>8{IVu6S{HwYC_FkvJ@`%H#;6 z5IR<~Vy+>Rueu&_{@=BM5837aBGK0O?7CQu(uUv|!4+n$-R)_b+^k^(Lz1r8!HnWd z5{k8+CW|38SEEUtxjHMy`cZbI8zkvh*KSHeckZ2ov)ri1SNEGUh3of3KHS3Q;deKG zOJilcn%-dGOC;V$g^88<5^~5R`IVy0tZFh6i zf9ux;;GZaLTwn65`?}7>Ot#kAY(^JvJWpIhHqiN7Oj8=0$)CiP%K~2i#aAF8Xsr|h zTy9>o-ra{hy?{Ldg$&x7K&eb0i$gP|%zp#tNmML(>+5~?_HgHnN{NBba_jjQvd{952Peu+2(jR>%;O7UJBt^0YY-IfLqDli< z_PAmcZH#c^e$2rNHL?Kc@a*_>!*JBKnkQvCaHxlKI=aaE8kTs2`L5ljfEpdfc!a4i zcRLL|d_Pk^x5t7ZaMqXxg^PP{{1xbwX}x& z<;dvn^!<`>MAyCG=V%5^d!gD|I(P`u7s{^1Es+3=#>FWf!KD9ez<`8v!2!_G*kn%1 zCfDn0sxdr(r>hy#Lc{2H>|-Iz!*n$Ia&12`9xVkur(k?Pf~{PU!N`5vJ{~(QNN_`O zX=iYfqamDIJhr?dh00nRu}4X`fslHdNtQX*1E`VX8dW0Eh~IOA8CHW{R71CXXRlnt zGkr0u$q_=0yF?pvU|m_<)f_;zbqfbz++-yK`jU98ZBYn=t zUz2P1HZ*iWt`^}R*$MPZm`K|w0Ay~s5r%9*mAm$Rh;~SlB$`%dF6G7{iU?aRmnHnHqMFg7Q@ocTdnI zhdU{pCO2YV`wB`X$z`Qd#b6Q%TcvZ0Bbuhd2E#{woC08UuKnW4Q>*+~) zz~j=AxHP3vaDRY55K1Ass>ghX~-%K8^!AzvFh#9jcd;wM-Q)sZ~gV+4j<) z+lW~ybi?iXQN-5ShDS4B%_k49euf<1mpX#CKO?`YyEZ%R=F@&jCt)T+RZysfSR#5!+6SUn z0n=>oi|XtdHmm}+Cl{p8C`XFu_17PNg|?wR;kBSm9Zu6jx&4W}oEsWaBOREdyjkU- zLE`H0ZPY?=&|4eIvN*<)$qeTrM1boq+glgas#|UQ(D=`0%{9pQ-d=X8S`t)lxbclK z&pNPeC_3^YZ6KHTPLmCXq%$-}8PEyNL7p zyjs2cKGBZO7%i;T6zIu*jssLfDXhKHfE`ha4|zd&^{sw|CD&$=9c^*;SJXvi33-{< zVVbH9ccG7FgV{U{79fwmdwE@(_z8Wc`*p-nT}Gk%P`bjGCr;-3AX#q+jDcp2jqfpT z$S90L=05kF=~Op2Q>MYeqGdX#$Hc^m;1%ODgJAPVAFnMQ%ZgP!-aF^*-%yr> zFqDJqHROgr1)YBS7$WzZL=x!5-0K98)tJo-;AuWPV*Rj*MGVIvk1Ut*Fm{?0D1zd7 zr}<~%;l_0PZCl?Z8k?Bd8Bn^v)nsxTK9Vcwv>v4T_5Vjj7XMd8rb(7%ikR3+Aq^F> zSHDbXC?1|(QEFe9pa&FDD`lPg$;D7Ct^V|F6Xa8hU1iN?D5R^oL-rxj9bL&_2>P=3 z2NI|tK-mh`oS`$>Y#rV1&&P>h`~di$eN4tfygqWu%Wh@7-cT(Ob+cbj1l%*=u{xOm z4~p1-UYDrS+3zPw>%B7hCVuxg zeO133xLGL@Rv3xo=h7>u?uVMf)ZV2w3DRPnS@B6v)gKKeg9cD5oyKC;n~^RxXe0M$ zj4V*dla8!%bL=lX^$%}OSA!f5Cb#}fcmsNS7WRRa`!C_N44ZxRqs;X?OkwD#>3VUZ z8?!6N|3ZYvfb*F?qZlq%L-BnN@Y{4Yldq+!xvvyeWUiHF%^4HA{AKCU5!JkAuqADJ zQ{|`%c~!`*5lUUH!995IiurXmy+Zoe{RYt(E?A?R4i$;OFN4eVnK5;e{@slz+VKav zDvYg9hVk`QiR{g4-2HH)@*9ov88G)eJWxYNtrX-=%Hbh{e)Psu zTJQc>oeGX6WJmH(w2o1+L=50fjBB(Z4eHv_;{h_;n9et`rZE28& z^u-OZNl(JL9YltD@X4UYgjV$4$9cO#B@4onI*EiK2@0=gPo&fq=*0~w#f*TSENhLT zzn4wZtXGmChCVum^tWH8Yh`N9uisqKUq!-Zk#g78(j>w}n)qD*i1$#70U69ZPzjF~C20C7)kKC~QSH!L5lEXJ5>QLrRF;#I{zD@B@yABH8>7xM5P%XtWVl?Jy4B`IfK)({SqE(@%ywiPSUdfQCofL?HyAMr)%LRNO)@(H+t8T6jH{Y4F zwlWI)-O}NA7WcNpr5p{trFM9 z7Ao`5(v&m`@Uo;B-5{(9m!y!Sg!BvveGzPYgOTE8yv1X znzlN8kcHe|tr{_Zbu>ltTP7h?+tV10i?~9-BYZ728;6W}GEX#h4rH}gXABubl!<}X z=x^Dz%aH+r2qqxb5*?_vD@mi>M=DF+NXY$>iZyPDwb`yEG#!$K7~xo=Iq zW1dK#rgAj9a{15BNYU`sK;R03AS<>8647Zn-CrY|n{z)De>0ZM|5qbU`l}HyDoBoz zNPa4i#!ruLLzds8X#}U?yPQ?y@a;E1Bok216}Cr?V|V5YLPJJYO2y%UZ&v8=T*A>7 z_}SHIm&vAPQ%>Z?b9w!pEh+#pp2pI8muAZm03fFSTN71&+QgnL+2*8Opbr5Fs8JM# z3k_#)b@+^g|9Gwq(-hO)cAyZjuDLsV{=#d}m;b=4s+;E+ z>hz&}k4c{L6pz#W`8mO-w;$w^6Dbc@#hp6(Ker_Z|N&L(|HHX04cT%S$6Viy867;av6+h=ebk1<8*Aj?IK5`elkXZ=4aT%c)auMPPrl`<}U5VD0 z8r5hV%oARdpCTk25W&N%$EO|he-%wwOn+f$vW1|%uoz`yWPCOa%UYIP^@kipAq_Je zT?#+KiRi}3YQ)UOl%_h%g6$d53M7+{yP_YP-&Jzf4z#A~o7 zQWU!_9D)blqcs1#|@l6?xtfr#(w$lR`OG=wM z0WpR_5iz;Xipf!dWi)j%N1(du(ZUxjUESK>R$754W!8{l*c!L! zLLE{k^jf<^AqW_tv6e-(PAiw>l(NBbnH=loG{uqFC_`LW;PU#9`5L7FcsV(2S=#N- zQCGjoAPpdkY_Qlswmd!fNz|BndXO#5aO_WB2xa8oiV{-TW!S!b0#YTxn=Y3{(>MyZ z0$B?{rhjsI+W6xU`x^~`BBcE@TQZ95x|3|;xI3nDiHT&(X=5FCX6J~%t8A=T647$& z>X=hY(`=_H4Bh>ZS;88!D+@nU+oqud#9B`C2I8j(V$dlJ*S>UTErOJLqXEiazJF4I zLKiZ@C6$83gFe^ej@Q!siZK5{j-riCmGTm62_9hkW(TM@dwlGMk>~3!Xe!Gtm9SdS za2jFSZbhb{pJO5;{J1IPTPQv%7T_%M5Z@W}ROSg&{wZV>yPxQiMdeLo$Oa^%q>&Pazl3H;F*_FlQ@zXVh17U0O1hBppp#V<&mcGDmx_K z&ZjhjV03kT<9o6BtOE0gZFDk^lS!4^iKHCr$dm@#3QUZT+{=}by42#4=;$f0_KN7kR|+$ zpUSgQlSRYp^6To^P>3lBD0=&DlRy|_p}@6_*Pq<8BwqySgkXay3hKiNV z-hEHMGNvh1!ubCsK`scxARA553%E>pNp>wvBNmQ-#SL_wiy#n4+z-s!Nl#qC})#%6sND$@Bi*%VQIkUdyX zXWvfI&)XP8z*)bTlPVaYCR}YiXos(SJD>zCO+*(KgB31alD1f0RZgGv+QS79@_OQ? za9D~QLx}_Yj6;MIx2v|PkK`4;lu;Cye`mBqRBr_??K(5UX>f5_e0-7oa0ffHu41ZZ z`*jB=BNwdzi!L2$_V`Z%QC2A=AHVdj;J2mujn{{t+7x>$jk|9iw?5gW&(4}@tQ{ts zMJVYY03h##0q-W47nLFH8^H<{l>l%|)eJGUK1D*5L#iBKLig43l}{oArk9iU_U6ML zbZaoaJh?F@NnWsx8-Mo&6d*=}$t7oK%@&}fHWng&cKzJUfKBUlB5-#{T=FbmkIAy9 zAV3u&=#UMcgso?l=2G-AAn|902@*}x9%qsedRhPg>5<37rOQ%wQP@12wH8dCk8W8f zD`lxZ&pxYfJSSrb6q=(EsBu(8r;XY5aeOn4JCUAK47g0Jh&D~^MbR@^4q41LApqGo z_bcweW;_h&_$2PDCf|RwSeXa z7{aO;*w|CYt?8)m0~-6Y63q1L%6psW8xu@0sSG?(;fU{n9&NvvPA~fj5n33Po$t8g zJ=@wjUpeSVr+I$=A+9)1@wijr*LHUIL@o*}BBwO_W8JeLd=K!%7x@vVf<10e)&knJ(pzuAnGO3jgb5G%=A%V|VZ z>64INS7FeKnSk7pI+2o;Ys&F=K9mz*@*~fum5@dM?J}r(GgT`a`=S<;x7LaEk)l*J zM%FeFd&#!1;B)?C3EDsL@V5|^L^npvjXI~Ycr#7Q;ZG@XqhcWJav2h6T?|PNxeJRL z$R4e}+-vZ8Of#s-&aLSc zM+h#;O1MOG%@?dG`Q3UOp%)M}t@aDdnoGiGX3)yDL(S_#seB!!-Q4c$tKU(3@QB|o zJKcQUR#S=R>%~L;7OZy)>bw8Up4wJXNRemq|H_ zzS1c5+KxBFqIXi`$W7|Lrr@Mwn_V8e|!*!=znw~IsFF^{&)nk8EyHr?BI94aMRqu^@UAKOPrrG+8< z!hgAZ2U=1{BmuniO7RkBwx#lo?raXrfG0i&X(yAVlf=YOynqL6IMz~in8NT;d5!3r z0BF;hF|CE2eWpiD9fWT%Ginv2XoUPuV`BF=K~nQk=e!y7N2&VfA>Oy+-a@4NqTf|< z+;xLTk{-*j?uUp|HNa`OzK)P*#y_w`(NRMuoh?US@NgdSm#R+4 z8S5}3N;#~y-^|*_J=N_CPI_v|Kf`r>@)G1kNyl4ja&fA9Jfzc}y_~0~`ZB|oZy#LZ zdj!n0M>Ms8T&^{Sw~YTiff@@wAEU=4;pR!n5Z;)_<2tmZFK9Xn&aK{V@Xu@?z3dzu z(@>*;U7)@0D@c^zDNMvwt3f- zoUTHb*@)Eya9M$d&F%B>E>a#IhzzG497a2VYPtXzt9ysRuj|+=RBwMuwWnpGWM~;I ztrY5MpGG=~s)>4*oftZHuJ`8XlK@a6vwI(&qE({ zf#lzf3mTGiS~)Q9a|;3}7tVJTL&WgPNQ3aIL@KenNamQKlOR|aUP^Q{u$unw5~f_^)6t!evJUIpA1i>{V0G- zUu)pd`21i5?IzwtkB!EWAe%*MrO*f*?1Rf6j`BSWn7UZ!f$OPku2`@8^}M4Lo@5NX zn*etALjxLg`0l3se7@oI0=6}#&mx;UH(8pTSxn1_gpNa^tbGorvp?w@<)(;Sz1C#e zR%T>xN89=BIk9fsXCL8AM4$UH&R2uZ2fz%5ot356`@SAK zS}Z3t7Ow{DKIi2R(PP@OWD1`8Ax!!Lbfrcr*@5N{jN6&fXPvj>^DY?3VRw82P6z6~ zj&`H$)=?W3@2#KRIvYG;Fyyk9)Qo0R2oc1#JUA-C>5~&1487302wprdXLwUxZ_mym zd7pnnQ7YHsLCc_%+p6P@D0+oFW34p(={m2xXUtZVo^=Gu0fZXN^U?e8-0t3%$e!Sv z&aci2yVOMylge^`KOj{QT=?loKkh!}Q%!qSIDdpyhClzBOc3yemU}@}aDU+*N`E-R z(X&Vwt9W5Jli$X=Z$wD*zqdaB`c z&6|rIQRl-xPfj;Qp9!@_Sx8m-F3k3es#c*7!F6YriqJE`s*}lqS$(+o(t^htAV zeRU?-)Vz9M~==Axw&IO7gaUzb|N|atc8TP1X;OA(Hs< zhas+6%C=TT$T#B|coOKl0n|Z`+JvyfQ${fWVECy?o{B6_285DIL@_77(4vx{QgdfN zmboL5cgK`x7qqr7x2Z99=$SpjQTqVg!oRKo+ele||m5{DzD=@3;86>z9Z7^Fm6-Ts%zOxh%lGM~4P-Bll8bD9;bfA-*zulwz~ zaQF|h3g#o9H+jS>tKwLGwz9VVzk_4o$W;68}kPdZ?*r@o-~3H^S?EE+8qt zEeAw=A>|hDL!jos!~46-Vj+%^%e-6j9qH=L;N!db4^z#g+u5Zzc7bBYy;_g> z3$NZKMD{>Y@oRi&-kr>bq>J8iUge43iR=OVotaNLKs3)3DU zWA4SR9-!m7s6H(T#_R=`!#3vdj^?G0mFXY8@s%aO!*otAbL@J)&0)>NWv z!P~<}rks&ffZ0t7YADMo*HqU*phKqpcUf`TVS022q}V6xg6wX$TvN@!jcHSl>Fi@} zBhAW#(+#G_{VLp9cb&;lc~?&M~s}_zdNPSAuuHw?K zlo8M?YMThWK;5xN(OG>sA{ISM_nmwD_Bk`7umO+DB|=|s4${O}a>eo@vtHSOn?(y58pN!>#ms*k3LFi$8z_n0O-`07?6tvUz8)UwvJ>%(%m31Vx>dxwX zm({C**m7#~448_y<}8ag;hRmjd@P2p3OuH_rIrtiFeR@K3ub`M^mnsT^nJrMUsn^| zvhfVx-Vdj3K;3S}-0S7LE-$9@xg?I|rq^JJX4u_!<2N_n-#{ho~ya$hmzClNNLx%=!IC zl^L%&CvDz%tu?<%I&VyGS^-eIZiflS(raFts;9L!#KfGpkmSMP7cR9v`!*Yy=C^{v zVon!cxsCPDNPbS=fHM3|6}UICNcvp{qYqGi$TR`dx<2uZ1%_7>%wlp=*X?$!#_d+0 z{)*7GeZddr^mA7XOl$y*z?MP0Ht1n=JcN!Tu3LD}V^ z8>f`JZZ;%&cLEo4R8y69mYqk()1|aLw~e7c4uNZW_cSN^Zc?+u$rE;b&cN4WDl#z7 zl}o91u*8s#vBpg*#dOnjJ_W)#PnQwSahYCa(ItTMXC4~tw0jMbnhhwA23;TZ(G9{9)-ju(-uW6}RGUFBr8G$oTJ;EsQ zh{aUsrAjOD8poD2AR{Z2R6&$e+2PsaT)PsQD@unZf}O+t3#za^-72-*iwLnAW(~R;69}^0KW-p34>C?R})|00ZjjG7$p|bkyS?l zAaFSr2-{VjhIn9 zV$#E}C)vMI%Ll`6i2B~nw|%K~nF-aQZ+meQa)mWn4;PTf@WII;Gw=}{DOy(spu~q_ z+g%uxz44DPSvsMheT#dGVe?|yNXQi*dz)!EDDEyJT%#2a9oyei z8K$r$D9ea=HoY{yBVu2Jl6hMOq~cRIJN`l(FXBCz3s{kIc*5Jg+;4yLu1t%~{jRR> zGsq<2%S3|qN#MFPWaua|8>WB)Teuw3(s)M?vkD)Eu=H(o`JJ?o91hBANzQ|$Fn>>( z8?$it7Un3NLHII(b6rbyj*-is6&{X)5``yM*b*5z>Om-q&{+a`BsP$RZ95`{si5H0 z&N|6$k&!ybyF>qzUGwfcLyL^~fNyLER@|7pZ_gZGNUev9yv3+9|2b^<+QEQS=4DCo6T9?H7z`s*ZNQYqo-*Dy*u;TKxI{P50%@j@j;uiDK z%9vD*VcA(>Wl&ZfTJaj0vOpUEa!U2b(iT6mKYVef<2CWtS^jwS%X3!N+lAoMo}V~c zY%vJ%1qM;QP-INF(29r~o(nTj2~`?dno9{4bqt~>)=H_e+y*>s{NhJkQP)?}!&edd z3Zb4vDFx6%RT9be6ev9QgvdNYaDhWPY=ocx^cqb1v;JyfHR{20S;yl(j35*PH$Y~g zq)6+tXY*DqM{S|c3HHm}q4QD$Hz0(sbBXzvtq@y}MV)ptB|6m7B_5>FD@PhGG#fhG$2juyGyh zJWF;3pch!o!~e}BwL=${)2!OWhp03QuY}lGzdPX9x7GL;V-q2~;c$_plaVdrxDEj=9c zOG@wzEhuEV?Y-^>I?jw^o@g1*HA)bDS)@)>BLct@aYeCij|fYmez`p+rh^!E08s00 z96$JV%2lo2zQsoc?Z)iR%nhJWo=}3#DcXmtkqL2P9(n@Ed6fomWf}T7ac%{zKz8aJ_UrMY(jx=uvgbuKk zolxhg2qNoUedvzDq)bXWUuDrz1W6Y0QfFf-rDS}c`?Z*8K1M}^GXa@cq+Ni+s9qX+ zOi-Hjv*R3P@OAY1kPa=f`Q4Z|p!vLEHJ(x6;?G(1+xG3dfPDEm(C?yC^u6oE&92+y zQXf>A?s?t{_?1nrKi&S3dHwCg?=m{M_O(}13-uAtUs|CYyjRT~z573g{Na%9Ne2-q zx`;~@y`&gwBiadF+PMaQNDZGrmNIuX;Ue!{o@nf9P_t-K{V44qO`8)lpg-)-lD`cS z<0XHq9lb}W%n7CCHs@L!on3$}UQ9t%eEArT9d@9%YU9R;GnPGx$6 zsEMmI+pIN(&PE^Vy=AzH42`RMnSJn_z7ACE_v}9~_VRddNS~Wa%`H|I2#}W;LgBZv z?NwmV=1znpmzQeB;M z11AwZtRK-IHv3L|mGa%jA`ej;0KTNe<;AK*3<4Bopr8@|Hh?cu098y}=0h6*@b~o* z+~Q{EXu@b?YGP@~XlY|;Zpy*IU~g;wLs4E51rh)6*HEOsiYWmAkl@4JkYJ4o++tKW zk_7$(Ya}Bn26+Gb$muMO2e%;Df7NsX08j`1z9155Q3?L%Fu!}oX{JX8_F&^f_abWr z1G2?>qOg!o*f($d!C)DcARHLE264sKJ9nM$LI40Dw#@&l74bf zGcTXAR}aVmzV5dQ9*3i_0D*@RJUF@b5-}C*Oo&1uYEFp{Rh0t>Y&kBzJNPJFuD+79 zY(H*Rxi7T4UEGyU9=ubUgj%VK^IL-3sH?Pbr^AV}=54({GoB?86fUhI%>VFq?7G;q zY~HxPIXMLqqdd6s(CRJA3w~jpfGXU5X&{&uKwG6(A3lRW*^xY}?NeGkIQYeq*H!Z* z`T2?cm{kx%eYiC4alj!w0;RCxMlBCFco-#QcK)ChwQN;?qU$1>1vZW8jyM*0`1xh|*^Saz=LOcPC`X!)i~ zv!!-5hkGAM1i?R{k0~L%3>U=6Fg(_8E2(I^tj3##dL8}DXj{HPgg7`%1A?$WUopQv zPCvPR;wLsO{Ok~O-*4C~%nMa>x&J6DaL)$-b#{{$20?lhn&_U6KGc5at-tH_0xajh zM*&ncMDxhTM3wOfz5GK(b|kxHJf1>!xd%RmdJFA}cRLAdpw0-F9qL>jUo`8pqg6a4 zk9uB+;w`U@1SwDRhDyKoo&f&%J!faU25JK|ULKHaZ4f(A5IZRn@SbR%EYTdFLw>-S zrRYD2_I6yy2Ym22_=*kaXR>iAq+h4duZo@7{d_Yk@6jZrbxK<1@)oTT_2=f7CW|tK z-l~WL9b21=6jo9npOG-b2qOasW6%2g^tp^=OYO12o=j#|s4B)*T#%3c=OAGs6g~19 zDj2zTdfQgl%_snFlIgt>Nk$Q3NSBMthT!?KeYfD#)`n}3*yAP9B<1YXP1ZP9n)M;ncDeYUXHPSkW!0nTu&Rpm^ueATh_ z&jrKpETz$&Jcs!!?MRCx;O1UNwIVtw5ArfmyNuE=`R>scA?EHY>c!8RcgLU$$r&y2 zfc)x2a-Apo%2}_Y%I0+UZa-qc$8|@79rGj-_<+C91hGQjS1Ev*9#1?c=ZB{;T9W(K zG9~R}RjI^w$>2gWv~F*j4sYzP$~cBUv#ASYzlnnVthGrW(|EP}_tIF92I>{4j$_Jh zBl2)iWvnpbZN^wrwe;(4J0~vKuu4EQvCZYP&Xa4kAi65S2YKJsBjaKnn~5!SAg^ej zQ6I;$O+#ZSPdHA246EGdDovfNHRdKMK0i<4igNpEC*%D>{O;w z?CG#5eL_CV97CemCYL-&&(>)<@HkfTrgyzURv2e`a-eXUg@25DnI{??onmn)+#Kea zN#))!1L9TwSta^8M66Z#Oim~I$Aa%>H_BB0UR`} z6Pi8g#wcvP7!Kyw=RV$=u7~b8?8JUdQe=|0@2Z^K+nQUI0G4yx+S<5SwYbWWyZAjh z_147^Iv z-{JQN2f6~bIj1{5W)gQU0R&jB-QdSq@A%_oqBO=!zUzpv;_1aTB_)k0m3>DOV8LH- zdqT^pQ%aY}beiI()3{T)`Xrr`v8&-ilvYaH;ohSbB4QjYX&Q_(z}jbmJAK0^she&@ zKk;6 zn4^W&B6$2G5j_FRfO6%wrv8mzalb!Q<s)M$~hOaW@Qz(5% zB~m9)(6of7o6uXAG>nT(PxH74L~-DgbeH`j^+NuxlRzc7=}+_wQDdphN^HZ%G6P5K zySMk6-T1x}-Tkhr=Nrs*bIRy+h#^@dpyRe#%V`v9KlPq~Y_4vwEwgUu(neB8sO;hp9k)fF>*(PAq5+g-DHP9{V&b|h zM<-VYT7#O9@X>1JAkum79;qn!;7`o{Q zPw=FBsA!L~?&E?7W$(${U+$<2r(<>0VwFKlAZfePw6E?jd>+jo&BcD#e~-qOBgl|_>B{@$ zir|mI|Biy5uHcnkQhXN15}QRL8yZ`QS0@Wi))2pK3b!(>I*1b5<_c|SG--l2D8hnP zYGx+oG{5_gk99+$PtpD)Jf_>JC-=kW9r0?TVD^DunJa&22AnqjG+&O&@g##-Q1&3& zIO%Q8a_)HCWg#ceqQMjC?FC_5K{S(6a&zdBToa@NT+v}VW9LHS2RlD`;?E<~US>e- z(g`^5W`wPaEax%IQKaF28R}?RjEC{lsqTwU?BD2~BVNeH_I}ewXol}2I=b<~cLtNm zUYn?{iVS+M`ipiUE=DFl!xdWO49&A-PC;boq;$;b)PlMfURmx@LCD`T&Am!>UCm>f z$vN6irP^zw^2GR@&(6*TnTIs?-Q;Q{-v~&LSBz%Du1dDgR3EHvW{4Sh4i9mAND9Smn;>y6V!p zbzk|3O_`ofAbZz)_nB5_TDP zytMd#MCvFFo1}p0=Wh?#0BtPgLfpeRBVl*8noB@^ei`t0KB~HY*)RefxjNNcZ7E+fc@-5#=Q0Y~G$xE|_tRj2-W&p2cYJzcg*PfPm)ihEZOKqgLGl03ODpy^5%kl+PV znN7Qt0Z?anXyojG8oaq~TDgCD(~|()a;+Kkc|3^#t~zdbQY#8r9sWoh6;Ws>ZDf9U z^6m4wmlwNh2yW{e(D}=;Zos9`5r3-NC5sgEeP=rpn!!eP0FQyKk={J0$4!#-wh}Qs zzJ%FFG}08T#g@Slnd|t}3N1*3ldd(KzXG^0q~Ze@ZG~~Zdh1epNBU~5dfdxK2^jGK z;)|bp0wCTUWB!nt1S4w4X}!G2##C|;nI}AkfCqZN?VvZkiYYIFw*q^gDEwU@N-fH? z*sbOPhFLNQV>;dslcsBO)6xwlm{h!QmJ2Xv=Bu!r+IaY>vjm|pU))KFwjTOE!D?a) zJy4Ihc979_QZ2!TcXO8pcI{4VH&a=l)(`Id7$tvg;c8{wejY=#s*SmGI6&)`G8-j! zYNz$hsy2+UKajp$5Lbn#_M0cQuDQ!~Xo;TzJmqpTh+B(3U$&0?8wAEc9xs%&`jSy7 z6^*f2VmGYx1u_qLUV)#_2G*YO)o3trd5!Dac27mRC;55S7oem3PBTqvAj{Oj8cvNj zj~Ddi=SShYWH-wPwQ_d}H>)Py!Sju`;9yR`1N5ps&CMmXUFaN0YJiJF!(Q#o3zBvc^2RA$cI$1|s-7mzS{jZ;a>zYQ;XL?C)jhVVNR37;URw;#F!jwUZ1 zUI2(G!2(4~%(us_26Zk^wK?4S5{JLq-YAokY;X4C$FF%c%Xfk{ZsjdWjN~Y3@J`Ij zJW0ppmf)+?dIb~g3I)|;TF7}+`{{Q=yD{_Xhlh@%n3mguA`$1kKvW0zVV0vw8?`@i`7LcjSlxrTNp2Bc407W(k-y zgTtKE{I+-rA3saMU-ZDS!x-D#{P4_!wq3n^jPaXB*ksL_6A{oztogE zRWMoaFdb=q@kpQ89*zufDL5-EKo1hn7&_xgx_*NhSH#HWPpeciZ;>N;^r1S}{$MHD z>g}ZBpnLqs93Di+k4C1Uxw}-jdYiQ5xjV|+VEj05eu@(O>Oq1s5t_ikhX)vBkz6eF zHfa0c)A2WOwhUEitA(hAAYFMWNoeJdkaw*8{-q&F6tbK&O?3#q3xePMZx zysM$7MMrbW!zg{=qgwOVU+ucYZmC$`jxYK67!V=1*~s0DqDR^Qb9&frzcQqYM^W5UDBTlJ^0aSL-%O;N8Qk$< zOK6z>nN1(9)zWt?n3}Tn5WzNEJ0du!?q;E4!ZlD8Uxw&}UDV%_ouoE6*f3)Gqs~Y* zc!`i`RAWZlclY_yH5ukiX`b$W0O5uIpiD~Tz5aI6x+MZ|AstVVEiW_O+qOlhkXj*q z>N8MQZw)SbLkO_DOuu0}y|F#7JcvdZzZ<74!16)p*xrCR4wI{cA6!mQNQZL@GXR;) z;@q4CZe_m&w}^W)<@JWf=5%m7$lpi*c!0{I8srZ(>_Zq^gZMM{`X^%B%!d&5ye@A5 z%W!FCI{F&`1#G|dCkEuad;6Fs@^tJRue~cXQ|MIS@eA%Vi0Yoy=`BEt6vwty3!!6k z$p>3jGPXY>Zkmnu}xyzr3}3EM3YmGo5rO+-lJPd4SBbU;m}*L&>dEDvVcAG0PlV z7y}FQ4K0tT@5{W8cO1(~$LULkL?Bd`z10Z^i^a7N@P>I-|%}e1+>0fK~ zSZ&O^D3-)(f@+P$ZzjmCc5>|(ag?9M!HO*!>sZJl5C^JvwJ*|S2fm_2kQ7sXs(Vrv zC`}<8qZ9E>u93Q^-tskOIbkcEr^K;xT_2*`2@2)wx;m!8L&uaE=J%05%JmX9Wl*G} z!iF;2;wS9OhxFuln_S5gW(AdMUZo5PJuX+3uqrAlVzfqBDObXxzA(>z@pw(E3)BuU z5=G$mZE2nHrD#SI-JEQay1hZdtx!Kff-Qk<@713De=iNnl15>W;Rl6$(%Dq7IF?3Q zzdFVmC6DQOO8<9ACGtA(k2!>o(40K7=gvi&3N4c7XX4Z2TLUXt^mBKTB)J=h6sWkA zG;*fC&QS@*e~ZQN>=HZ`03%#|K%{ilMe4{P>f0{VM=&^zB!?a=pBk(L5hAljLm!xd zC?PcR^6ovp-NRg&%17H_>C**UXQuG{;vVPsv%yS#AyyDh*zAo<*94kx=uHXc=hSB(VeFBuH zU!aXW22LDswx6@$E_*w^oCr~od-d+8t+yAckvuVG$9OaJV(5)2)24lM>kvr)37b4Z zxKn)jo}JWpQ4w&|!{?IfK>#>?s^7oQgN}I3`7+#N;k=J5^muswAVJO@ICmIP=e}ao zzB54QSefzp;g8&e(re#*K3HuW|LjHThKp9E33QIr^f>BBJN1vuf#FM&=_Uoctdg*6 zeJGzg73NgIr-gX!C~3GRMfBTzrUFscw|OmPX>bKg^2FI-W0le==QO!+KJ&#o7;u*` zeoC(GyJMYT`BGcRr#W#wg*@{7YIO%Gt=10Y_od@%=U$SzKj@>$3!*+*=SM-s7Hus{ zAKi>_$;=VE1%5#dJ%*xJgW9eGu5dOuI1jZzoA?XqA+}ca)Ot873Z1L10(UouEq<-+Z&;8lWALV2>1JyK{(`i112#=4OBZqb)*p_I1tw1t`3wHcU6I!pu-TGeHcAb43A0ZRa zkZM#`WH!r6j>QLzT{2G2`FojF$WEZp?TBAQsR1864qQI?6vbe8g7wUROS=tM;z|_pby}W%-HyodQl{v6fEW6XFhnB|oBB)0!%MD(O_X{2lymN_$+SANFHMQh`)6$-`eGR<2htn3$qj!LGH*-$? z)(sy3o%-^?GVbQn`^I}e^Wv{tluRYX=ZXZQ%5Vr$OWRXBU{CoRmH7t&5B9P3iJu<- zdj#M5?Dj!uyTQ;(Zu!h-{a7Te*%VqbXJ?s$<+Y@1d7&TW=2Z_J*sX4jwEZ3Rk%N!9 zNKsn_WI(cqgj+ti&oWIL7e7XjZrtz!QVdgGF|ah(c+MWlJgz=o^;}Dvx!bsKqPr}K zw+iO1wC?@(-3tEBy8+5mC$k}?b1BKq)sx%!h(l$CUyMn4Za||y*x6KhJoCIc3|_P$ zU1B;*z84pfzC|s3IXgDZ^P!Xcj<2?0(uV`JkuK04@vTwVJ3hiwkD$qk2X1)_r*&v= z@!4P3vg2*<^jm~oSXWmljn|jE|GwE@q2XJ#4>)Op31Y8!1{Q z)hGCQ&@PqmFBdB@{ahdPUKO#0rQkX}jH{-<#jE>A{8#u8h01m=nBeL)FzSjV2_ve~ zJ4N&B|C;VQW3?%`nThLm+>Lp?!0YsW-SSOZYhtK6&V3vC_kI$F(iBXer2}VJ{Xs*@ zS(`ltAb*q#O1);FMri^ihx9-q!X_iyJ4!ya?d>+ZKL?(BxkRx#>YdFPmS7PK<0e-n znXu!cu3wTPdZoBuK@nKKiuF>&uBE0#ZH+t&ah&`LA4QB>^Yv2a2ywjOsHWJeLQ&Fr?vuRt-^~7sL3V;!h zGzvGq@e@g!nS2aMZWDz2PbJ^C3x|gBZND`tdtUwq3%d4N$w0W3S`qVOb!Bcxz_}}8 zWd-saQ22N(e4bxPYJ;?H7hhu5T&0vW-DycZ7I`}gy<%5YQ}m6OZJzBAT}-@?!Ky`& z!?A$jhb3t9+}tYgPf78KE9R=rU46HlNN{IKHk0xYXsgtt>Q2WU0+s=zyDSvTUVMM zH~_R>zBPB+mO%bBvO25suGmKl6t`0*RX875$~m#Abo{dMKR466`(_96B8Wgk+#Ce$o}&>Q>} z99(HYa=0x;&Ym#a8bVIQ^J-2p&RnF75JW9#a@~pJcsA5DHQC=nosMC+y0zgPPB>=n zH?%5nv#1SNzAMgfe3IWqs@UzFTi(6;&=8Gk?q*Llw*rfvMhwAW3u?J6qxG0)I-d=e z(c|pWmOCB`X9hRMtP$PQ`TCar=|loju3DU!Ses~USecmL|GE^wZyfxN6ZL~1vOU8~ zWqBaSgdpqtOdZbUgY5@n4d`RXARtNpJ7J#3(Z4y1Gb2e38J4N2Hf>X^AL|>W(SXl1MBVbQ6Fp{Bv zpCX$YIa6)|qq?1)b9x&) z;!N!HX+BLx$(s2?5Y`Xk{-R+y~RfvV`wlS;ZRwR zz80HAemfd=DZ9y}Xjp7UiZfC;vK0F;izq>SSvAgGU&zJe1}~g9yN~2kn<~ENw)u!Qw}WAhGsg~N zsuG$wRPqQE7m%;(P3h~|^u`ZYC`^~Yzod)cU-=A?*F!n$bXI9Jt6k$?VLTQ343;-* z1|#0qj1V>lg#!HjUOoQZGo&kXnG|x1MUKk8;ki&vuFkk}zS)W==$fmN}o?l)hV0^bYKS^Ri&COXa(O+6>8a=C1 zqcP~3Hto_Y8vUp0OE;<(L*l@@gjX2yP71EM-^xz+G^ojjvarfT*owb2k8P(pjD{r* z^Z(XPp@HYQv2ge2dDv^MlIBw)b8uS`Ff z+5;N`BFz}1Sf9vrt!ezOBau$V*RorYqM)>&gnJjQFbz{SvkT4mRzn&;&13iL5!ak} zZ(;1L_N%dNOhW+U&8}2o^W?~>N1e(nI z(NcelW-2ag?t1WT3}C^ube2i0QBJL8dz*}&2CfL56!};c*Rw<^w%U1%ND40vopr~Owl;q9vTA#B#L(76_ z9F*3~v%`Guz4mwwaEF>1;*f|3wYJT9!$(vvJ3kbb=ry z8%OriOT5)Y13Yrkm@FaN4Poo5TM7Q0-ujl8mFYsKJU7iXKq;SIeEtS>KvW~#hUvYL z8=l^Kpn@)uCBbp*mD88L2)L)KLQxzj@-%s#F$t<3Tiss!i!TJ zWu>jJkq|qXW$}m@KA&56vh&RcxAQ6mXWQkg-Sc^LE2HX23PXMRK~%JQfp0R?%MWw zld2vmN<*~5zOh9LWK$npa(BVvP>BgRVS^uwf?Z&oM&ilQjRUO`IZ7G0q{agZB`P+$ z(AkQMGuqEh@HKf`8@W^Xhhwgga@f*H(QtB%M_yI+s}J)AnHk|eP2F0xZ_3TD#}Ta6 z=5%)&(2f+GR#**LVn4na%C#6x*!kt9Ie!ETNh)rXSZ-+kFPG7Y^ssl-@%W~D@TfYD z*RSXWKxv|xs@NPE=}?Kb&z<;ou~(7Erp>1h3Jo>)Y-ItIZWci}>Q`ELSZSpU-jU?+ z02lA@#nW%OFvwDP{N~r2?oLfW!g!8U`yVj{njsgP^9Rq)RF{4yTKON5BmVFHgOi^p zzoN3)lWzV>EfXN|1@wTwIKDF{t(Dwys=3L_fDK9%fil$aeJ~2mPee5eN`H>AD-%qc zH=^a14A&5RhbGTB)J>Ofsdki^jz98Ma0Y8NYjwF*UuzKVp)Ka}*m6f&W8UDAjM@d& zqxP2+mhvsUpKD$mWho=ut?N8Na$PkdVr@H7TnwZYjP6la%qouKRLlEKCo`>rY z>LC^m_%dz0gG(kYZ95BdeuQy}8*m#E4;*IvMWj_+GeH_u-jT!Z;8|+BXTI1Sm(5_d zef}_@5p$e1J`@ccYm0K#tkj*XiD56U3g~je`2?!FW{ga;=Y6L|Ll#-AHao_Z*QS^< zF30ahpPtQI%^4g;x{l)go**}^U-Bq$<=~k@1l+jf5^OWQX3wV%+W+i;TN95qd)3|8 z0yjD2(Nmu~Q44mN2tp1xlm84nICFn@qVu;Ta>IzTQps>O;isUbi3N8}-81sa$O*FpL}k&8$H$T;tlx+%(KM?Ngt9vc89BZA znA!a}-WZlbDE5WPx%R6mp?FMD!m6A42UR$8Cli$~uzqc8|HdEoRvu_Zch#%yWR_AR zjX%g!i#;pV-uh*ftZERd%V55E?vT)^YB z-)0at->B12EvrFZT49`)V@H&4PtJdRD~lPs2p>PkGg^tm;_*I=LUb((K8)pHW}ob@ z9E(Q%g`xeA==UYoh4XiEchUY@K8Hju(*=FxkJ+l9V|-IXjGZb<)1ooAn>7#+_k3tf zod>Uud2F51ViXCOMz_@b9ay7bYgci6qaiIMm&z%n08d}Ia7d&Jg|iH?a{`|ao6hZ6 zMnT}+G*NvIxH5kY~k zzuDey-m(d>7#Xc3D*_u6UqvV%; ztz&bH3YW>~iR>m`O+mzCU@2F-ctUJ(Ubzx^ z{Lfz(eJU>PDn>PpXwooU<-!wd@Ch99>w}{;ze3EY+D#Wqymrv&=X>X$AJ{4CNTi$c zB!W777OK#`7tQ9j&Pz->JrfQ1+`KP@_Wmz7Eg^z!Y?Aw?82Y>+6nuL55s(ZttyYo# z=l;xBP0!9=969DAjJwWtM(y*f`T@(Xu~7Q0xRwMt|AUDh?`msn$849Z6@So>B+GyN zC+VGIz<3tV`}^NDcj%&;Dg-*BpNGEv+t~~}CP{NOu#=sq6*Ypm8vUm*&xz)`%u$+_ z)e!5SYjzYj_2&P1+jT7orsDH`6G``4`9BMbvWN19{m+cTdp?0RnriBnSG{WA{DagU zq>C}HU<4Dtu>Wgo5qX)E_VFHH{#hS78=BI8j1cP$1&YZ0&k}@L7K;Ya!j~k5a`lRW znxF!tQkvCpm4tdkdkWjc=?!SN6YTyx#EBQj?8;&B90VSpy zF-fx1vX2}9N5b;eSDbjrhRvT}qu08aafYG(cY)z52uk_ZVK3zb<3SIX(8}vdQ%xkT z!@af3&~5`bqDGtFnot8<*j&wzETaQ8_uV~@AMDP8c)K&~wm(JjSy0|j*(S{)t8wJc zIUiK2C3n-r)O?wPC{05!yJkm>MqmCE?iQp-YP86RKodz*DwfMzh`V6ZC&Fz#37XJvv9HI7&> z5c+{>v;V?gOvAmA@ulB{uG_6gNdZHvT?rhE<;Xye#A@uhPr7<~G_+h6a&h}$b=DlC zX^9TNIx;UNR4%1HJM5zZ0NV{&B^d#;?kRQlT#us)o;8cBg0`kk%ahv3B zJj=12tQcf+(r5DhA($v!`Jr^qvA@Ud4RGs%Fx+L>uNz|0u>q~RYlBN{an8!-R@%_D z!-r85I7du1yREL7!J;qQycM{aIeXHM_^%?gz;tm=0O^oXO+_gnxVshS&< zED)^L>mFVF_^F#fXFxxL&0feO?_-#-%aP*5`S^%NACipv^E*FP+lRna!}W@8UI^V; zL1=e}=0{!Jj!H`_fqwgWaT0aLA7=%$fE<-MX`%3s`9uMCaL!?L#!Z>9+?R)I&!L9? zE1$?GSKhw)yp@MpE(wL zpS-h5k4T&%?(WM%qX?(dyAY)kxD09JEsbXW@}?9@{-m&CHZRS-V$~WZ{Rdl+vw%9- zIoZx}sxR2#gf;_6eOw4#=ATP4>c`PmU~yR*!^+$z1I$(?M4MCrB8r2puF1)YIuB%U z(K1i0MjH-10H$Og6+o|0^(#Kg5yIS6K-z{=pqbOF^xs@|ewm+#aEr9aIFJGF8 z7pY^5tme$v6m)s?0Ar`dHappzLTK<+lzsuBKqiVBIr?18lnNA)*G;jsoWdqofa-^> z>kP?E`pQ1ehy%kde!)4^loky^)623x*~K6 zp@6s@D_Cs(fLD$R>N+l_!`;py*P;R z|Em>MPDSo5{Sx)v67-iJeHA+p?q4CU-wWS|Pk8^}X`SsK<@*1pjiAGCIxpQ7|9zDxrVj$#Y7g!NrM%Ofry{h>)b*?0;B$o~PGpQbhA_9;i^w!U9?V2`TF9P&gu;0THd# zR3$G4k`N{QnpNc=DvFDe<`oV7AKBo!zL7nf)3d1NWaxW3CQm@L>(}=gwH0#C!nwMSgd{*%P`zU21LS`hdE@F#DEVzw}#M%BvzwTyOg`T zyXlI>MJ<4(rRBvK4I~Ku8TKXa=32uhi$mM7v3JZhXSoKZ?b&EZto?WSq~%0c(`FHV zoV$GH`nI%w1arcQ#asHd$J^Yf;Q`znNI7sVrk;O?|4PQ~Os*`H=@Bj>8_FQvKy1m*HpWDF4rL@P? zQPXBl-&~dY>#5xa0+Sm>qWU_n`QE`yOIck|-}LX%9(eqe)CRV;G9Dq`?i-~qln1QcSOav;k-rvk2}QqS#l4if zU*kAtt_fHdbf48+ezi*^BZ_9hCY_6c6uq9bCfJQjP5u^zG4)&)0M38TsrZZPR`~P= zu*!dg%-6o08PlK8hTCDkg=?}AQH(HeHda6A#0AP?*`N;6;$g4AKp>-tc*iZH$}M>grGr?(eU*>RpLKtx^%i-d_Buo9*xA zwNUIg@f9=W{mwvGP(9l+NxtQ)^uD)(jP{ce^A<83gRe#Ql-?dZ{syyh7H9>P?cb%) zrHm?RYtuWHARBsqbdR>p!z~T9X0eUr9pl#IMqsh+`pTrk2M)R10vH$M*InNO7|Oj< zyXV$WJ7QzeF20?HF1NVZ|MsEAo>l8!DC|d6Xg1*Orj|3C`THF(qGZ%at+7>ccu9MS zq14V{i)h5GGc*zcTpJm4QY}VFoR5kAlV<)8ECo8)yZ)_|HC_rvX_i4>xiYR^7+C&f znrNLUmyFUaf$fh);RkdMUJL;h+LlE7B%YPg2F~pzgj}CXhl^? zW%y^7%hcx(J>v@tEqj!;G$C9+{V~CqiF|zwzx0fa#c<04+=PLVS=`FQS4LgwTtoyH z0s#7(cI?MH_E&3;1b~d$Y7<3S^|u27LzNY@+I}jEnWDDz$`s9kXF&|i@3VBfSbwa1 z&FYvZMtJ*UI9};RF9KJJAb%72R>ixVZB3{`*7f&2H6qK#U-wjxOx_hjH`n7~07Ds> zs4$=p>1-X$Txsin6eUERF0aXXAb|P|ukS3kba^~81AO5mAQ~0p&bhxrRt}x&Qxj2s z?r30iBCG=xzW!g9jk*kjUxPP0{w-FWM5{^EyE^YC@o;tJSSTKwPNemH;1Rk}Uk}N^ zne8NVjsnTw$`zk^)AX&udr!wYP=#ig$74jH*LjyZfX9{ZsOt0y0Bp(jm!N?TjCo`D z;h}Yhqg379C^NH`d3*uL(%Wn>`UYaS9a#EY`%)snbnZ7a&8o|2zfJF}E{mFt@0pX; zsnLD>>Y+!3r6|`ofMt6BcevbjeUfH>EI-?r?c8gC;{F#HOrja1i|Sx&D{OT&*MznL znc3Qfg?7`3w?`*kqX2Le#1vj_%|)8BM_U@KRJbDW3l6hAEwTS8rdR0H-t)gDi0O^V07JpPk*p$ z-*RUE!|)0pVgQ9DzF*iAhmyL)QE1W0L|XOUq z>OjEV7Y6FOj$p(B8|^GOQXHS9v(NmMdfoO51OgReJUoP2DD2UG*^!H`BAkBtVw5-e zfTO1j-svkED{nXHtnS`fEw!P4APU{&&ua>#nH+N_(!L1d?iVf^*Bb5$JoaO9y)kUQ z{HO;+`dtcf;R6kFs$-D$gR)#o>8g_mF~X&W6^x!M^x zI%~Zk%~|S~hYzech}UZWvdTcxTrC9JwU?-iqHn6vC-IjwEyO4>|A{Yq+5hF9+N$j9-ej&?0Nv_jdCdk`c5^*d`}pCl*tZ_ zsrVE^&1`D*y*{tmO*`9u6TV0Z}{MZPiCP3waHXY$lo0J=@f-l>?$)Ocwwc z0)NfkqpjYlg_|9V<4MP{R*eYtT;~&xWyiodmY7!RgdKQ7g{^zB6xKB4^O_uY@{VJz z$5K!@t6HsQ0w7rx=UU?KE(U@7 z?n#6LFYwjRR`y|l+nr@R_)08Nz+X<`r>E!a7<<2k{@r8$5OKpfJ>wC&tFL(@roC57 z_ImcaQK*-Lynw2kG6OtQ`BQD?rZ94$>hwYWhwebZx}UNsz!m2E+jmSF zmUYHD9Pip3C-4Cra>P64-0b>|0px;bt}vr%+J{nCc7Q(ltMQ~c!rddD)wCNiz%J>G z-|P&Bpyzvl6jNLBpp{{2=_?bQe_X?#3e;nI^FvslWfkG#M1ov` z5+$_zn+IM1BYJ?Yp|+F259LRjRUT_liTaobeF*(5IuK?;B=%9S4#~+NNgSz-;p#64 z#%8}M2w>1_0mJh3RU1xFYV%cr+75UCNb$#*9p{Jg_xta8`PxH`X1)s9hFE(L`o$MZ z!D_SYql|7?`f-AzpUy*Sm)MEbqLc09Nn=~oTC;~P4=F6;_vE&68 zDnJrTy%4kRR`~E}=KwHlJ%yFmV)RIo{YC*BjuJTqT%9p?(*YG^m~{0${p^F}z5l)D zQBDXDLxa{Eb>y`HN($SfBk|fc1Mv^Sn-KbHTDfX#7{l}5ZCpzJPo^^2GN(vW<@nJ_ z5LniGeP^8o`pMiRSJG35v2yoW@W#B960h#4;4`}DJu>ymVdD8p4#EyS@H7tFZ(i@Nq6+n_GrM>CJAF4rOa6kR$N?l zw7@L{>pRTz!EPTC2M=ZLPRnu@gUjFZ1a{YIzGgosgjP$9M>Q2D+Ce{v&BG$=e^$uM zXCD{<%35+G$#vOQYRnDrZI4>{0o*y$2lIxz3qF(24A5&|EwD11yEnpF+Iv%nY4?7F zvu1MOX7a}n_KFKP5T!BN;J3g4pmk^!z?6s?aHRQ(Ti&p50<=UOn3 z7H&LV0&hm`_gUW3t>ke^Iv0-_hzhmP@ja8j0`kEBh=8K*pGiYQ5bFUO0w-?H-b74CrMDM>Tuy4!vmhxOD{aR>Nf>u~DCvdc&o^29`x*I`W7H4$8L$ z8twT63`UEK2ZF#c!*`LLl?~_rQ8b5o@hQ5otLY=WJ&PA2@+xsi4v8FQf2a|La=BhJ zC-L7CN^IpQYHJ@R-3MByj20DsI|}?WYTPUiBic!ntxZ4@hozGH+-@+@+k(Vul$LNW zUY&lHrBBLyhxe1LG>(rTH!9ahW{y55`wFD>CMQjTa(sTlZHXmMUoh_CtR)b2QW;ae z&|GMHwkmBStUsY*vyy7$;i_DjOAc34tX6!Uy{p3 zAw!8Hy1Md}Q>i#*y^zf^#P@lUL;iSoY8^LL?nl3c<7i<9)2dZ1UZBhO1wLx!G*&E& zgK9t;7s!mw^rP$$!SYKa#DitYhEd%_fxg5mi#y@@%=~9m16tJoQq0CYe7g}j3?RBH zmA{y;qT+bELIJ2Dg_w*XtzV8P7~lcu3G{k5XYScJ`A3aW1X`z$N>}Q%DZ>db=3v-mYU$ZJeGVsa*{*>s0t(zu49X*VZnmXq`7 zk-wF0eL8B48N^@s^cAyfH;X>MFiu9ZSy%ANY;{%Go3gd2GGDPWQ|Q*2qPqPK%e2IU z)Q`3!;yX0OEg3~+F4-D8`c^&oDpucQogr2ZGIn;!Rz0&;N?C3)IK2W;5G&i}5o~@e z#mTs%fB!_UDV(iA!bv4#-jSXwx3P^n+R&#-{Y+W5-Eig7WG9vO@v_lDa6wTXWgoR_ zDONt|Ze|s7wNMUV0k6dll9J?>WpMr`l;gS>KmjqE+N>Y|jO(vU-G3S$&_XWuV|BzS z|KoEWzqX(_R-L0;{gc;URoGcD@(cwVdKLW;0xVF;SCKTBoV=WF13&WNKAb$iu+-}+ z^<>#Wb)-`W#9=890$_1}$a=>`=DJ!IaSQ!sQakw?Ju#*6Kj(ilIjjcUW%qkbiRp|_(N~5jU_|Q8>h$VA4 zT>gna@=ri_OS7Ikzpa25P_%B#$(6Lt<8ZZNPiHf+ z<0%z8v&o{HW2eXBXktIu9azxzn;7K#U6EtU&MXHTG;oanZC-y=#Mu%WoOip7gkcjaQL(uN&X`@hZCv zhN~y0VRk$w!&7y9Q2-$3+jMsQHwOPxN5oGLmKxgL;km@z&AcQz$en2bzQTvqBj)1~ z$}r&548+mfpsUSo-TK77N+(~gFVH)!DQWO95x`PZl&*PTdFa|4zxww}t~5!sG_C10 zQKfr*Cz@pQgq!sLs3@5y+`Ppuh`Ol%Mcg$^>7MngN9`@)(jav` zTh99CB|SnkLL+t3Q&On;av}>AtOYPH;Y%df<)iymA6)C(m{DlGtIl~Q2~z~<#3Njj zVSGJ?=2u-0AP5u+VRt}wBM!YDgOB^T&64hpIRIR(Z6Ex&uUmr1$%GO8XhI@)A+TzW zldBJa){vE9eRa8C)rEXSe)P8PDZKh^asHlMDNfjjjSrK|nmfrTe9bu8qZx^_NGu1b zukLVLb;Cz=UjiJ%ltXVevw@GQbRX#dPSB_wfb;u?sCnwuUkToK!p)C$(%AcTg30~?W zTjNOXl-6LgIPsH(pPEP*cEopv9lOV-!me}}zQz8m5QlW$0X7`y= z=O?!NdGn zkvzdiK*2azW(t(85tDuKH3p3*p<>_);P)lcmyfZPg~Lyo?~%iIjkA^6snc-3s+uB{ zGkKEwdDs00G`f7VK-?~^^@R>y$)q;0QxgmSKE=`Os_FDZWT9#{tDolHY^8C}S+(k( zpF!MytgWv)yez|~pu}^@C4__koBr#$1YX;z8;1PNjcSbyN1QB~epg5Cu|2emXjIWw z*(O6cA3+>z+ZWZ{XXPk&<+)u;(1hY1vlaJS9{|-mjjX-Bm>^0pV7jSm(WK?~3Mv-t_-U$+H{zfY8$CwwKnrU{TE1mg zds18P`#nlaC4pZ`zi&(i6|l$i1K)=ia_!RIgwYfDgitg+0K>q4eZSZ5`|o0}HEYexz09fo?C05MAIR<8>`%8s8hshJQ#EiFi(ldR0nQY} zYY-sdu}#VhR<%B@rqsS=fv_Lfknt7=b$eKEl4w5@IdKJb@wLSk^!$d(bz8?T5A~*| ztBP^oFWvsu7(^W+1=LQ7@pni8i&`){+TwaK6sCDz`)EiItxK)xqvqRV@CSKAJPKl# zQ@XDmrn4omLiT6fr9j8F!?s=H`XE>T^#I`sYb;v#U_2QqiW@w3pL(&;+mkUElo!Cqb>o3D=w@r<5v%8b09`8u8KQs1B zDOt7l^=vbe1jT%XO@cwhq_3HNd+Si1Mu_<<`PFcXEzeZ6Ik=aSUcQzN-j|n(rWg)5 zp(n|Ui2PR!du32s8S8)dM`zCKAEe}Exs{#8#g8^d3#FnsS0_~TtcZ-jOKH22E4AG& zQf=V^2A2WE^=>_UbXW{TFruVPnYjMp2E`oM>5O4GuH#5KSrSyo!?f zFWRIbUcHZUiIw%~G;MWPVk=kfX>AY%H}$XPn2_M$VY#|ed_&ZX3>NggkL8{k)wSVERZC`_ zp8r1+9?@5cbHae#uI)@Wm^U2?XhLj+C77;pP)xJ;ZSKfq`oN!HdVx|#eh+3a(}fHO zDC-jft~e=pt0;}^Xccca-ctq#D$lcz%H%+;Mdt`&_D(DyvH`bL%1l2-R$b6 zjj@ZIuF!e+pqQUkwN>FKiQIkt?@Kv?>pS;p23PXf#(sIR&x?32(5ue8-~FGmNHcCb z`JHa@G&Ki#O~t2z)kHRn6>{7v{f;l&{b41>VG%Ae$@W9<>G`IZjmGLkVQW=(6;YRt z5PO=%T{)COvzJQASZ;dyWgVKihArM4+G@?o*7uqtlnYV8hf z8;4fTYYCKd%)k%FdtIq~S}ui)%HO?h43gpHa=>q| zRFsOUKUCXMtlm5=#H!!Ycj1?D6fU$7#&1pF zvgi1u!=w825pT;85=4J(rqYe9!tD{G%SQ5Pi(uO%?3-HS_S_85W4e1^PWapen^YSS z{AzNdZ0R&=Mab)vtrgs1Tyv)I8sc2-o|9GmFg-7yV7^=tu6I|U3{!%VKDzS5)_7kdbx}^b0Gc6GywGI&_Q252-cELU zR{C+!C2h5ot@lv6!~kO0G-vy`q1+E`b1Q+6IX{CIAmL~I68s8a_cJ6=7$?b@ERJ1t zt1Q##IHi2l@0z>v*WbHkiP~Xim|9QSypl>KMMcFt>vRyzO2eJ&BR|`_N5u)sd0h9# zDv8|g+-lgfDZv8A7DPmx$f36jUI^M}ikrvihC(tqcf<>*r8pxzGdO0(i5uNs;`FLa z^0^?-5ck!L>T&mntM!(>ey+)Hcj_E?^go(?}Mc3_mzJ)?Y zWfRP4f9VK6I(@^PQcm`euI9uI{bb!l)p8saKHz*D0GoUH=bP20m;2B2zzD3jN!1^| zOrJ*pmuf%W9HkeqH!Y_2ZmcR_5&XESFS>72y2rcb#2)@67U`Ext{Qt8agx|4d%Y-> zn;CSrxoNT>b$tv9Ts%V^lNluyELTijqY+-&Gfrket%U5>B?TvA;de}F>t4j#hq+C* z=X7%^%EKyZ$w$dFZO&Vw3No)hzbH|P*`rsrH2=kG9Z@_O{(}C|D3nf91Gm{C-t`+@ zPwo8>Pah*Dd53g`#2{TP^X=uA#%{tkYp#&~?{h{V-^n3MNNJ zM(ee)WBkoTLIVBWT<{alCI>zX)jo#=0^Rece`+holwc$6xm+dc6iY@!m2Y;$`(i;^qcGB zAA-cM2LpVOg-PSOysxAO4sAI>nHMuyGy1K>A@Ayf654z(7u+sUjG)CgY{5VEWox(* zYppziS1w6J{plYmKFDG2O_(GQFT6avwG+V(qLqY12#4ShtM}J|+Shy~E7*kgd0h5&GM8*A{+^8J>E9+P|YjhJEm}*W&uP zJ9*q9=@ms6q;2pXgM`ded4hJZ2^ z;?^%+tk9+jW;GC^cW(N37+AIO`2LqBIW8Hma%;UtKiM|4#AeMsD6cjKH-uGv$Rg_H zp)arZB72tjq_m!kXPRWu>i z96m=Qau;~pZ^uezT8E5w;P&qWar79^T%xy;;-Jp7l z;WM@4`#yzcBrARu+S#bE)66DjKd6yDG=qyP0O1Qqw>p(xEBe54KI;@u1lL|3xX~9Pa-CntLu8$W1U*TKvpTlWt%Ecc6eE^JGlvdt)j{v1K3}5qUvTDgjihN%i4M`LCJRUI+@sLOs$BY{ zIg2koCg8g<;R8DO9^9HkarhJz#u@y5xgdFo;PZuv?rYe@788q%)5bU`aEBF*z=XOSeYtUe-ndD`G>6+hS8?@>{X06zBY2>E ziy*GfJuQ->m9Sl=f1w9IJn5mm*#U9z#aNn08=MMs4Cgy&iS6Cr%I{A-Kn7p&gYn$rv;C+-Sl@0>w!?hkav7R9Um%INX#x= zK-~2_>pwkwj!S9Smn@;KsO>@wZAcTT*1;ERwJTRw6vuhDzKipfY=KI8b1RpaTzfWG zHa_#zAte%}8VU!~(CO+cCObPd4>(Uso=@i7T4Zx+c{h$0vxc|q&DG)X@6AgD-qYum z_@Pf0Oa?Sh_)KsD%kFZy#tLr2uG6Nah~xGOUTha_Sq9H&a?+w5BE0LOo5xW=e<8!U zVZMziM8<{D26a8H{q3?P!`DVrkkd{NOFikyhrT75DRKLJ6fF?hhm3<}pCkJFOJ?R} zujO7@B;~Y)jnfwm`DwrzY&xPIi2H2^`SyR@$654}Xo-6#r%q_ZYvNRYd^s3sewu^r zI^ONP$cseiVdj-V*F)UjsOZ~*KlozqG-csuSFf5Sb(4XIr05DO_A6h-Sg4)WG8N3M zbbH4BxV!mO*p4*s&$3_Bml-tVN__CHu&qO^4UJiyryaV!$kRoCDqZL`(!W;uY=jhj zS-)x0`*0;(uJV0pxL8#_-R7iz*Mbj<2S{!Rm0JcAL9dTI)LsFnPgqq#@@>T6ZxXIf ztsH642;vS;1O5`lm{|$z5VNxxQNr7Z*RDR50#Pi=%F3hrO^^pLj^WyYD5T%9H%Z-C zN8@f=@T2l{o3I#xt4Xp5^dHvdokg20`v(uItx zrYr6VVzchu$p;K8@9h2gH)%AgPF63xae7L$YERxg@R+xgwZa4-AWC*Je!wE;S*~Qm z0a;0=?9W4Sh4Qcf7mu0>v*qjAQ(KMH3MG#%JHf+Kh#23}DNYlJ;7qoUe6gHCt>iLu zu_bmg$G9f3sqN~{4`*Y z9j+a6B+tkNh97cdTUV1sWjEp={BvBXQ8Q{=x0?~)#^U&5XJc&j=|beYsA;R8 z!l96isEkVZtVNTrX&G&EP$=E-@u=DAT!K#KK1Ln6A;~K!#Swg^3luasn%QK!$p=8t z{h!iIO=dGLjh1=l%3�vIcrSwzW8z%aBVR7N|WQ5A^LrJ0mmIVaL`#P-v5>u#5JV zD+`Ov@&%2lD(eq%Ui*LNlTGDFmP}f+Ggn=#cJ+h|i%GZrrUE?$+U?Viy$|jZ67Q9T zUiYoRBmwBJIr-$NVga?-xn!IrM@UTUG4ngZ8po~@$C^#-7sPY?Vth1@`RxT?SGOkY zzD^bQTsE-HNPXm#7LRIn8LAbw9(JjtbdEfECmu(|7WD_hIa10Gh3unC7P%5y=@U!9 zGJJfT9HGL`e@)EcJ%*RX2hi@JrOk5DP`~p0`z9Sq>+EqWCudLCL(9_RSuou^;oehl zS@{`VgflzT>On@AHy2DvF)!m|2#w%Eak?}MP+^ARegM9xa0Jig)DnbGjG!m^Ai2z1L*X@Y)R(9ge|Hh=3-CRcWQ8*<>3s z>oVpPxC^mV2?Tu+r5auG-9qOLq>%OFET>cQg+s~3Qzgq8xreSFTFI5vQe7N)pr3_` zAv2n6#MO_j=(`O?6y0sPFkTqy^bGO1u}8{?k9HyA+0xfVa6wn4OreA_PGn1 zu^n9JyAY9bXNeLAC~O4= zI!9>h$&c@k>Ik2yf4TKIq2Tcc(!|!0&%mejORBhj*Y9>X)#f1m?4KHy8RWfmAYmJ2 zd}XRN5>6*74J{%j>VT{J?r34Z*nA1t;a@*r!*{=^Ukd*7S)0M%n2cWp|8Yf%Sb3@=`~0lqlgdbm2I}awO>2{5_~BCENCge zZzb%4-!`wo8D`yQ;%2ieiY=uYf)v_M!EY}~zL_`}G}VY6HJ}%9o5-{V&Wl&XCkU*t zDEF?kj{T9jEHg5B#iTCf$P!m%W5}|&R&=G}138A0A93PWCj=mTE$JTE7t!4USUkz3 z^Ky?)AyZFrE@<|INgs9@9|x+mJ-zh|(d{yOjs-HUMtT4dQcdfOnc}7C{da`u1z%bl z7SXmHinu}Tt%~0J`QPR5;CeU@>hyS+JZp@LURD2haH!ef3T7oUHuY{x>*z;IAX9G` zKzz>q8^U@aci8r7dARd2&{@Y}=8 zSH594aO}0-3K^~tZ(lIJekgX0Ar2~n#p4{3VNFR#L!(aEW=6Xse_y#LU2c1-GdX$+ z+jEnqzodC%Xq2<+mg_*x!!mk*{Unt;4vW$69Q+ME)v_5ji8%@eEpi1{C4+f`Mfg)M zo{)2C9D&V)J9hiAXk)t%Z4P(9aA%PDB-})eJT@mre!hXr&RyK7oo#IGZ!UlUtJumy z&Okh|9;x=l)fvqP_SZBDOGNpz&t;HpeiU@CgM(yoG)apac@P`upnhc80kTm(MxZe) zx~7M=V|*V#n1O3Xasy6d^s4`vgeO>5yt*;cT`Osa4pO1Lb#BYA;$*dA=6@#N94KU8 zg)_0|-j>>1t5P73XNV$rJ4Y{ft6Q5b9`i$G;U|skC3}kVjo1}B{_Z#WZ0{5D&&IsE zys2X&QI|%n&nZQ|-GQ75>BuN8DNvj`=U z5EN=#+^lIi`*s-XP9;z`etXqZfX-~vU-%x`0>(b=+Ze5<+*d$hx34S)16 znCjKD$Y3`^nxj&-v0%CJAQWWzlBW=-(iVLg=tIcwb|=KgxsmLqeeOc8O;rxY>f5E! zq@&5vz?$IIx$G4`W|thHDkXts1^t<3i~DLRI#&&xGl*icZW7wBgt-uv2Jc6YtCZyg z$aPioSLj zt72myW)2UzFS=J|6l$~IwUx3bG8gq=)XcMdd&=7Uhg09Qo)wPb$D$7WkFNM1xA4_> z2}OEWu<1q`cuBJy69c_?Lo&q)DDZ)Jn%!gOX=q+ZfstQ!p+x+xuO4&n_c;b>NXk5?i1!<2Mr?mbqc-;j~`^MwV{&(31qNxsg1)uk~L%1CE zvDyAH7=Ojw8aJ`R5B{ID$?0i)I^w!7timmqnnh`RRG3wiVKcMC-;|l7JL9Cqxbp5M zrdQ{1@OybMYj*J27XKJBrvYi>a4-ej3CVY?bKPaLon$L2i09tNPG*O!)rXCj2=P}Pl>>?K(LJ8JWD1R zG1WT9^p52bq~QazPdJbMiHq!YLbJM8RpJlDZKTVM{0f#Jnc|Gy{T3B0qgdX;-S*s! zXn`uG;caQv{;UEg4LIivL*!@;B{@(@*Wz`t+jjOePmbiL2&%5iAGB~~;An`5fx<_l zZ-Nlr@9`*xT=tcW_HhPrdJ-=kz~toVH@YsehA`cO{X{XG-C#E$}ts9L7&Tho~Q@}cQT>`*{3tR(;< zB}(2Kt~2$g1xAzp%-rximL`3K8j9}AonlKl3igb0piJ_y^AjN#%}$f-R87mKmirKg zF$g~|rXyQ7%P28${8mCi@1zIng(n%vM=6{glHt2$hGpP08LZF6lxVt&u4RVp#dls9 zr?bn1eWsS57?!W{xF0Lvn_c*blZ8d-^S@*8C%5nBg+O};S@1hC=#k49Nd+c973bh1 zA4ULddZXSxs{;b-J;0#hiKMMOz4s6IdCBW~p#WEgyKa4K5*r zGAP^zq?~<;_Uo5;=wmIHDe%whx|tRi7=uHek_I^7FQ5*g!L4Kpl8WC~=p`PRHz|9I z2~*cO!ROL?k<(>;dYnyd8+5!$d>kRdLoh2y{V%yQV(ByD@Q}$&neUE6*^3hdwEhC` zKC%+)#d$(N_GtNOJtjhaMY>A$wwTy_9|SN$>zNiV<6&ro9tgp-!-Ttq^C&6YFs4W% z;Xj?!1qpO#3OO-oluo}Ahlwn==Ob}k=OUJDLe?g6Dmmg!7-o7;ug5^M08%(luq$0k zt|+PWS^0WTCSMb3w+d_{%Z%CqQ0j@7*bA$sAFf9a^Nc>04F~R5BXyBF53~z(q0AQD zIdRyo7roK1&bIWiT_+Q(C9sWmOj3unIMGwCyXi>bcWTv~2H8_VEc02k_w~?=RtTGianduu$no5bD&D40+ zy?AZZx}P6T7lvTmcutwmn!uU84ZSpuUM;o6T9wI}$886@81)@?w2`&!N8O~9;9d$=G6b8vE~cl zq?ln~e}zT?;6UB*?XG*?*VQQ!l;pjCe+LjJZ40TxIjnf^6-GeBpwWM9q@!)PKO_~) z_zF#5KKp$k=u-6hY^=`BDP_2IchLvoeb5vWZ1+k;BAc&{EH5B~vuxZc1A|aTi3Mb* z%leR`W_E1-0l+gSm+^-y*+r8mXwcgDKhg4UEjkM<+nd}ADCibC4X&$A>`6?#g!B$V z_~(a?W#_8kum!#O@SqtNOsyf5S?NgMsP7;#+;5CYFI6yRskWk=*ZRCu&ZeWMG^C;C zvG`9a^&29POYq`Mv)>fr#RZY6S0@wBL1+h=t6TK2w17Xw&BcujVSC?8n(w_T4Ynr_ zK-&|LWd=MZZeuzyFrk^pzRw2NwA_-(xvm5hxp<1Bbk73bUKix9%;v7iE z<~*|j9P~Gc>fm%Dk+ngP6XushJ(oZ5nnfVzCG)`QXyvix-X52w)$-mPXKjd`4XO!*3%I_w8@A;^F1(% zE?LuBp^Ov!ft@NbD5XU?)!}ij{rTrWWmZ=2g(I9lwpaAK?l3ZP#ckP_o-f`cQWfQJ zSKg3a*yNt7O{&O%vxka+%4}zilH#QnkLmA!gA%o5O7Gm~y%L74*eMm}D_^g&VY*ID zq>u0hKRO82>H2&Gnl0H-Vv>Y(20`t3ZJ9bIVr=CM(-$8rChv*%o4erf1+4ybQPI{r zJ@^0lN$J8reo~=tZ9s=_uTMB@i%25F!-Q8XXLO-n$NCu9#tl4AAJ8^6Zf!;4*3`gRVT~?$r$Fml+Ta6=ZF#?h_EIfi; zuBZD!xFPs$nB)OCJ8J?vvLPY7ez}uxJ&L9+O`EZATS5wm!2%a@uHTH(P)d6z?8fSL zgU?1Qa-aT&&mrB)AuqkFFA_@n_DBJ=GN88-Qt3yoS&p@eE9ZCiD(GmZI&kqWkM%n3e(HZtXZvmH}2O+azCyi;CI|?NH=rsI5w4yEM|6Ltlw{oSXE*D*P$AM>>U&^_Xeqnnr0qQSyp7DdcDivFq3|Mim}c)qIPGiwgzCWQN5+0x+f zx5@xfX9no}9)GjDR2ywMDCq&pHM@x_asIW++NYEEJGb`Ki_G%7;v}cbNk6}(Bj422 zEUnZmCtvL}_VtJ14o>r6;h3R0LBsn5zMoViJTF7XRlGQipbWT=CF7Nk?JrYHDw{$~ z=5Mj6r*C9-FOT|V*}uiju2m{~OAXgT9qKTjTi(~B#{+xLVEbkBmWhFX zndk=;@}f>F$r%>rX%IJ!%mzrQb9&Q8bw+)~^-!N|(N0H<^w1j$0er2WKXYkd_P!+e z9G|0`@FOYpb7H79MOsEoao&iU`Y0(*=l0U8ieub3A$5Tl&M64`hPqf4xvCE)X0o7mSZwOhYanLOgXhPOy%0D6g7Ns< zn!NTq-X3OQYhB%~`?jM~Piv!8`TmNwNpbR@PHvJ2ope8;309G%!S4GxXI1@J2R0Je z7vTY|MC~~X?ri(bVp7-_!`)`Y?b|^dMqfP+gAKbCPxz{*G9ob)#7;_DPg#U14PTKzQsG2H?yZW{DCi@Potn)BBw3#;Wg z9D*Lq+Vtn#sb*gH0bBYueg5JMvKW)vmLg<&ZAeG;l1btaCoc2+aYv4f+Yvfb`~qW- zB3DW@l&6ds@=85~+FpFiyPPg4&wVOfSh%;^;7!!J9o;r(nsB*aA#>6i^*<7iCqy_e zcnxe>dDGv0pK-x#`4Gcq+Qgmll+o}kBlBWv<&V)jtUcl&{qghheC^iFff0D}5HOLz zsiaV3rPY!INga+ORM+6x`z z?cOHT5G;y@cm`|lilN&F!m2DSJ*M|x9OFHes*QtCYdERe!)! zG5mBn2y9ZA(NY1NT7wwQes!?V7lB1e@B4nCHUAPT+S2qmTFu<+CI_0b-QPwqU~M`i zFu}`!w`eB!%%WoK`yZBxICxnY#2Jnf)=&@=baNF05%IN@f1h9j#88QWO{od&gQ;m5 zr{hf4=>|Zy;sNat>S;Cby;O-B5CYSm2eC)&e0;j&?@at+VXJ#6QUiWE@3^gJc&L)+ z)kRx=Jr|FCu;>%CTM~D%M zOKS+v{$jmdt=Y@vQ%P5Uvth9(=bsiEy-4C>+zXzsPYQr9^d0KDUQs?ngx_4Se)B)J z{$mjTL6#(N2D+@Y2d)mDULy(U+_2l-zI-g;ldce(7OCnZ=uC(PwH>R}O0ZO1bf$t_ z7ff>2E{}9R%>Ges6j`7rOd*8&Xt$Mxy|}oi?Yd8n++))}dUM(jGT@&y;hyf9 z_q9yc46ujU8@8G}eM0zW6*zq*#e#o}>tWh1?>Ilw%Ld;nd7Yp)K^bj9bGO!IwID(NsxYVzP#ZBnhLym4wp)%;6lSIFHx-q(BGG@c&w+K z;rhmRa5r&%DuN!}Cf_8^i28uw5AQ|`mN|sTe%y3E z^3S0p{*eibJ?Q2sXlJuMaUiS&6_pRhCQN@LuEp!*o&S)JnVzWdI$d(kvm9b9ZjzZ> zvV-{3oMg4mGJpSB$rp+^`{)BCmiS>4Yg$GYiF*0!aqvm27DHIXNwRxG%D$KXlQ2t* ze$CFN(EUl}`zk8QoRFf}lxZ(m?n51coCwdjH->mKzvJaU_10wy&eD{%zKPabXwU9& z^S=1r5m0Y&sx(`9`8Ck{0ZZqSUvJ)bhi6p2LK*0(!P#&Am>Ng1HCaKy(Z~*Ray7)p zodV9Uy$IbA8PF^hgG1%1G)NQ|+yskIh6F|_u}aDOER%J+TmU#Ci>(ydIsbC-V0cYc zZWemO&lFIM$Bc)Zb46uYBm`@N{|aNHUnCN`eHUit2@*{3rE2Lx73wO?y9A-veSBfg z^odFLTrU^usSxbKnkx63FvgR7nB603zAUnIr;30OklhEpJWWYT`RqjwB*yz_e2Gu+ zcY0QoDtZ0IJo_z?=WIW~XX|SR>pup61(=!lHp>>D)`ISIpdC|S7i;&59Pwv zU+Z1T4TBD<2r^}tSy(QL`ccykJEn|p-WP*ono7SFeXo!3)B(7W-Noc;HlksR-X9+I zen0bQnx-MQy1p^@1=q3YD0&^w8Jc`405@RnbGVFgao(6y7{Fmq6d`3QafA4C0 zA5@7zNd%0Z<&mwr+L9JnfBJ07JvR-0RwOqAVN$q6Y*)ah@l5unH|6Ny z3;f3kdR771g^qeS{@RM`L#E!u{8QXUSuWH8_icG^L_lzqIag>^l>l?Pt(C5l!|jna zf40vFcyuqVk^y$b-bpNEC*Nb&ueZM%D{oAUp=b~)Ja{yFD<7qhCnLz3u!~OXy!v5D zhF$qup`EJZbfzhQjqX+~i%fxYtP?;a;`EsE7QM0JePA_hIsrkAeeOkJewfucnVX!T z9zSsTO8{>EqVFMGfbQ6X&g7_J!J}t;rjg2u{xMnn1e*kTJKrDPp9~*iV0A}3-Y!3avXgw zZJ;rB6=l6E(s^~mwW>Znc<=vC7>7qrK8pecSyUo2D#71rqKAB#+@GdkVDYydbCX*7 z^sGDbz8=4z?=E>#J__)bWVPFBE95=RLI8J{Mcs|)eFGgz>*5-pDsj4%#FE7E|M*3& zo#r)X?|FAI3LZ#CdVn|HY_$+G0rp#Sv2N|}hq{Pv4f?+iasmn zO`ZqYgwoX|)|+G%Ovc7dw3fF?Hx$pX=vmEdx0cVaTnO4WJE;*L^t@52zYLBk1nY6j z;D?~EPpIdQrrFw!d1cADQk?M@hspLWp4-d-jP;0r|JZriq^UENVSbH=>y;f~vCvZnlg-&HLY*UWr;URmW18 zUCU;)eZbA;3U(R)&;;WeQ5AUTyQAQhn;>fE1XuRvgHAoX2eOO@c#}{F}^D`d74RU*yWo0ASLElR!k;&Jg9% zde$$yWRPahJHNfdB5fhwz&VqJUzF%go*qrgW4&>hYNq9mtP^Xt%L2gcD_(2gt#dJ~ z^PjuHw>Y#d&#B~coC7cwyr4z0E2wcTmzo!uCjIKfE~@>aO)$D8QdJxFNP{EdD6B=; zSNO|j^hLrRn<#N|>NZ@yrg-)j54R5gBNm>BzmbYpSAWXSKZE1y=ZzS-*~ynSO_%-Y z)7W#9rdD#kAWUu5J{tHtG&XL_JilD~`D+6%9kzD3k$Lv4`l4_AaGguP+vkM?Dzic1Q|h@rmM_mG+RbQ7b;pNE__?OnRcgKsvY4GHFyyf zLHpgyr3>h)^M#6Q*Yy<0ipR{gaHVn8Pxv8l7&jzvUs~eSOfie>~P$9I~V7Ezv5c?MnJN{i7a}(WB=w?o%-3CR& zRQr`8AFJ0v>?73ad{O2vOp{0GMVD9z1;)XOHn2HAqIr{t3UGviJQwnXwfP1By;Dt(n z_9c>>U|a*lI2~Xhky5S=VvyFFhZ3S=a`qbslW*cU6V5z(PTCye%B`Vaycr(lWOwOa z3LM~Tmb@(jDElVi)8~q_@D)?gnFpVZF6L|v6w_74XH5`2<>7lt)KbU8K0k4kjAKVK z{uU4}a|JL%@RQpeVbJ?nU!T4g+wr=dnr_!}@wEJTxf#;BU-)=+W5aF%is#8d)0?_3 z|4#~#I^aM531>+3zNk5`{H&&f?hp?jU+z`7*=r#iL2o~c;@Ucl`OFgT6y5c@ESetT zz0D|^wzaAEFg_;6bMLdHV$L6B?_ns(_z~6FEvc#DXi&ZTae%~4Q`1GEM=()H^pMG~ zh7S8Tno!)w38wEo1@3O*h<<%5Ty)Yu{?V}ON2}xJN7i~I9f$l8jZ=|T-(b$10N z{C_g5l?wBWfhVogISJ^86beVp^61#vmrt%4EjfR-iUlIwN6fe4q~S-hn+3azM(4nL&TqgSVQWIY!I*)xJ@3EAYyoNF|+{pU8c)d3r$cD*V zn){mz-~(yB3vw|E)xTL0^F5UddRHWb&&o1tV4~zLcUJyY_odfha{7~h%$9LDgEooOz59evRxQuba)N5%-{${ywzgV zQ>lL!6RTHTWg__X;a0R)-f07MIyj)Xrfz_~=d4W8Re+24`W`5i*Ym7uWy}dX#cW@n zX*}zNn+dn%LT94Hq+8}@%`RR7#vqXdfw#iSnv8t%#9P*iHq1WXy8_VWtjdX(CCE?Dm9wzk3L$zQl%A(JBNvV5iM5o_YryC&3bNgVHf8LsW2ABV2~m4U5v zrbHiE2;Ss$o28S_IA2nOat|4r2j-!N`yTb~r0RTaBq694N0DgvDWiFR`ycfKSwlW< z!qSt@_Asb17AMTY-H|EHIGsW1x#Z=P`Y!aOfx7oi3pa2UF!PLHlXb5|zat|WNS6O2>3Iv#WTPH} zCY=cCUjwRuUx>?)nx77_0G2({vPT*>=94iJ+Kn z_BOK}t-OB+qh)s&zXeb2T>PcAY@QL%d~7$zDA%l8C+)wWMv1}cfh=)5T-?S8>HUc) zR+1Vx$K6dMpu98(Di#m+eLVewp1DLZopU#6MU++yPg!N`yTNB~s3(y_PO3P+zyL>pKrgA8Qpst5a5Bmf?00FS{!+&uW@%SDjQ#$W;LOE4GA#M#Y%&L~l^ zYY`o!4~_eONj{i;02Qqc3(iOiV{ZyDb^|PsTgQyJTPj|Bg2vrCiq8BSuQ5Iu`-)dt z+l}M;PMl2-ZH`hp-DbT?fB&Os{ufU=tq5VYx0>Ul)d(HRXRl0$ZuXq7H)j{H7r%PY z3~Z(EBkqA*H|#^$npbePv0QV?VSMJP$#Q0`_s!Q12D0UV+9>zRDwBVRNEqjt&+4o) ztA;NF{3m34Y@Z5|g4Q!QWldglm&m#n%DE-t{Q+Uxt@MD2fr$AXNgI~DFEYsdHV8R) zU>f9$@@n4g#R1XJSGTMoW8rjr65Bx_?^|5=r~9VmRN=db*6hAkP)KKKwz_`vy*T)5 zYVe-iC*xa%L=SdDwTm?qW%*x*N2U)XRs;STWKYEwQZu{k*@Kt3$0_ohaxef?yj|DB zou4`&?os&HTi=V3Umqbmy0a3lg}>MynHEg!g1u-PQn!oS&#R@(!J6iGf3SE3B<+zh z94=PzZEn9MoCbQhGVU^QyzvfbB22E?x6`x}xWMIgMr8IkP^G(XTJgiv=iJ8N;0CvqpejIH2wCSV|eRv3Yw9+>jE*sv#k zScarMmt)D(XRM0Pt^31hop6BH9!L~O zC-X`EXm``SujCzfD`CDd<6vU$_viF;aj~-FdiyM~ZKSE|o)Wh>>Z{eu$lZX4GM-ZT z;m)>5f%Cqc*)IL-RZ+aU+1@y2bCo-HoNg%hTMo7ZFVDiyPj<;P(N`9a#E`xSuZEDS=f~&44wyLIopH3MxE?h?K z=nbP|&bE8DF~gQ^YGG66;SaYad*O8gNKBt)TkKv%n;zJ*vAn85)ukk;E7mPVQ2Kyi z^6GGMEc{zN^Q*ptRw=m-FRmm+WXmYt{V7)&5Hi%~sKyNKpPRuN4~KaVSAf)-avtSq zLzorw?)gCEI9wc`=%)E4oPHV%eZMNXh3AoFXzJQ1N1$XS2*f=LX_V}8=c~m7qJL*9 zgoJs&X;*o#X}8OX)1njaYax3?_NO$UzKApyg?6QP@zO+ioX56;nh_Hx`VY304qPUl zuOu+NDJAj+!hyx(YgzW9@^B%ygt?|Ok4@`TSHLuyN*_iEA2!K*mPfOudhF_zm1?J80hH0m4c@?H*p(0#pjbG~-~f(cClc^I|IC zbYQD>{Q8T5XX~Gbn=r{wuW6N1A(Xa=Hlx0VWyO^&a4fw4$9b!aPW_Q%{+l}rp8O%( zM;6D8zi0`jv1pPGx}s2@ay>YtM^#72gcsgykIzu+?y~Z-B=JeTwb79LP3?=dWMEL= zwah!iIrd6Ynl;W+dRX_%S5-2)Oi`aK59fd-33cDS-@`{x9r8ryMRanCcny}-om-*m zwoQlT)qOh;``}VKcOH#`r^T^vCvcn9a}h+8pfUqb2!?|=9(^u0c{qe)u25M8H}#^a zO0EF%43Q&tvYI!ehEtu1=mz+<6^AxycDPwNb@Yp`S7&3Evsx+!Rd;L=HmB z;tk`NrJYo$h8-c3>a_h=O+7!2M~f7j|5ZdsL4xH?kr6%g04@`>0+^RJUjN6j)*A57 zT_*YLnZl=PitGBKkY4~}`o>C=Hmos?DniG$b7TS-Mpn6?QS0g}{stB)g15p6HR_A& zk0)Id5d!sJEO({;JEr$=5KMh*f}dp*lmIBaY`5J2A0*qRi&oG{G^r_Aj{WHdPwSFl z$VTSphIP>@tEkv|&DA2O{x}h`0^X2;rfBV)XJ97sbSkkYgl~nPz^D+<2G~eVT61^| z>QY|;;6+ciEA5pSRR0flr2VE870asJnaIN8VNUbjn;q@f!MJ2_S48RKLm@es-E4h1 z;x({O&apuu@xrEEJb2&X->ngO0I>KyITKM*8LgZP?i@+sr2cyolBdW3g z27!3h3!m7{q9atDw}5fWCq$zI1H|?$$t_ah#$tOT`?5sU#H)L*>yJO}5ac=7(&+-d z-)r*jEuE?kg0m=npk+rigY0&4D));&J^oje6BNfNG%m+_+l6c|0)3DBrZMvYz9TeprWhM&N6y6t zSa~WKgSi^)TRLMZjOcmsmieBR2X8yPs{Xd7VHS_b8P7W_&}5d$DzyY4O@CEM6umb< zZQW$%({KxkUD>*~?COM+^7H;)OA?%S^lKLscuuqT8Rp2Q0FjX=PrMhkVhGwC2(O_+ zB$$*bJK!)3y_Fp*5qW$m4&)-ba6F6Zp`Y5|*ZWuO)-5S>I>!zRR(D>%<$&_JF>5J| z3r^PUZd1F1d)2#AC~y^(V+-(Ba+_{um&Y!L`EobZOczrxxgC}+AWW(=IHN#OBL~BD zV5zK@O&T2Kj?Gp;XZ;^zUl|ogvqd{N!7aGE1b26Lg1fuBy9al72?Te7ySuwXa0#w& zlJ9=^{&{b$H%u|Bo9Usurca$yr}p0G-R!VV@5SYRSo6Qm{qW~j*=%Mdt`*(U29VxT zU)h;glKj?m!za^NnSI0?`^H6sRRY0!!MdtMAOS4fuuQnFKk4}dL@EY=K`mcBbwO>1 zxclpIe-r~=&#Qo>fu$)Z&(gM!ltwE+%T-E;wG7FCQAG!zq`_IMlbZC@QByDyvIUJ1 z6Y7i&%o_bm2I5Na8f*Upg_H>82r(eIc zCch^qJh4k1Zk4Zjj;+AzjRKpd+ofVCIXV+dt-WrHq=>PYH$QVN{e5BqHV`sGUjOa6 zyC}p*37F;n9}X%h$^+jhXXuKj)FEMxV`S=@1oDvz>=mu=Bm2_G+Isg>ntNcQG<-9k zbCwo?l;$mvywOK7xxIsGb_MBHu$N!$bV%P3!|ZqL^4qZm2;tmiYj-`oO8ztY>n2hX8PCxf5$W6XV49xH+A5 zwljkrXBh|hEKfhxe>y5ltrl1T8C+y*t^rq|y|oI_1Eo7TO3kQoK%}A*+E9zfnbJtR zfaABhhPz`h{@sRIdCtn)xeHkXw>Vh?9HWeTPE_ESq9fWQ{hKJW-ieU6`u-k>(*fc( z{p|mBT|xJ-!sAo$q@S1Q`$Geim~PZh7OBq=>dFwKc_JmmS0a)82?-H)Swc3u1;6Ux*>Qzn=eiP_=5o zrrO8l+S(`168v3{74kjegj~Ug%mAgE)N@z|n^D=IGWL+dk)?szJHe3s5{k)2ErqY* z5Uk9lV=cqlSZA-||0YWmM-*sB*+ORpB7n~TkUjybRts?8#1hYAN6mzuC)!W}Yl)Brl(I%)Mh2!LN|x67%9x=Y ziY#QasBl5Ybu8qP24MZyuy9EU`m;%Bg5`+DwYM??L{5uNM_jI&#v+Qe9J454vd2GZ z|3?9{jP7Slk{YqeV~LwLON|2FE+RkU6DR-D{%%xgvK&mr2%#XQ;FeYSiuX$ZeL|{scWtc|Iqw-l8BrNn9J`qcg$buAwOJLl*8KW`5F@qR$ zl$fZA7U9)h=lz?cJX!3mYPybqC;M92y9iyh`iLeY-{>08d3+39(rWaG6BNKDwXi|W zV2Q3=R4}!7y4rFe=a1~I#%~lT6 zaRE7)H!8rD|2R554h9B+5lksDk~jsN0G2@@n(^ax7CHXi0M-&14YXO~5TIuCqR%gL zz6057|4a8mZWOteC9$AT#CVyKWsG+EZ&#H9Fgv$FzvCWYECT8IFN-?hs3T2;-UJl8 z(g1Z1<(&Yi?WV3*TmVLPoBpWJ_xP6Z+bBm)Nh*+j2l8k$kX)i=7TCeGPAEmFN8 zHXasC$aO&7`~k>*zaU_e1?NOABiw=-rlSkfP#ZIMKsV|FX|V|HAjM zWWM5sve-mRsuoLjo&gzY`6hs~==w@(a)ftQ@f@u*-w(u(xTx~Zb5us|AAUZ3@LyVQ zY+Y?|GiIukJJh~l7gNS`@+=9)v3zbWfbPoD?gK*7YEF$#x#$wA1#t+mWq?px@+u%U z{{;#NrMZCA-zi=KvHzISRCqcos|K~->!slMv(|VG$8iY^fuehdB* z*2st?YLSN<6Jo*I^ehr7ae9_#Sn;35XL3}5)s$T_%TpsaE66q025Vm7u|-s1Lg@fu z)8`x#*h0sRRJX18isBSIL#dC{ zn#8)Q^{N({sK{hFqH4W|O7w-@J?_PQ`ul(B=+XC#OK+>y+#OrT7fZgSoqsSu2TxiX zc0Y#ZQr=dTU6DweBY(Fmo^u}U-8DIN-7TFELeEP8(=3(&hW8h0ue$}9+uH$PuLC_@ zAPJmtNAMlE{!>0D_1aAw$GOWYsFO4=0HDJvcEV3&C9I0^s z<^|yv#mHnUce!G+A$N5$dhvbn08kgJljX zUDbeX(BG7L9~VC!_m6a!jtkL|kH1X)h!$8?W>e5rmYZ7^wK*ptrY-+$u$02Y!a?gL zL;uAj?F)a4^_#0}rQ0Q99U{(8!dAB>cX8lwSM{*paA;8hv8ct#pwhcF>{OLLMsN}V%`tybMi?1nPQDtuvND=$l#8z!%gl|~H z|Hh@B)l^8~%J4xQlD1zgCzQlKLuJFE#@T1SUrHi=lzII@DzpBYba2*sDC#K!l>m+> z+mMQrS>4OAjQNUMz_2QCPIUd>6f&zEfkco25H)*t8$1u>Di7EN?8}<9fTughb#vvp23v>GJ?&4Igi5WKP+g%I&6ubf`zgs4~as+HKg@{BufmW zM94TY9Eps8RSDw&j~umjR|1F<;Ces^aJcp!wnW1E!yhUoiGM4a2IfTA8x6!o!~Vcs zXA=Y;a5Af6qDPdCF|z-zG`)ZR(Pb)Hbflt{RBUCeCQdf?ZPe#$yv^DJB`~U>*lW0E zl!W1K#W~w9Qd(}*SM=!@DXLz!(!^X0l<3B}XR;5L(i1`oA$Z9%!NBtBm0w|aiDAAUb zj}{adxjWtJnl#q98RrnCCs*b5R@a~Zm&W1z7qUxBwcz=TDODV>Zz?7C)jdbONHt-~oq&pMxh|vLR26z4~;Y zUFavn8jhCC8AM3cA`$+f`=z6?$&p+)gv7p^f4$S~F&8Q4aIVU{dXo`#J)>x)LCwgK zF$w}+fd>s%!UvEQZ`o`~F9EL<8IJZ1N1a=5$Tv#^NXCYt{&z}}^obCDB;1H;g`?GC zw>DfNfK|Om)W%1o{}?P?8K`b;89+*Q7eHFpsS4rh@JkybZ1N6mx237y0I8_Vx=jdP z0Eo`_Rj)7pLr3^GBqXEIkR5^JU>6>l7o+%Q{TIl{7{z#kqXw`<(Zl6hV%~m{#BR$N zb)~8CG60`7U9{%cLmnB*TVr6e*#OhWiEw+u9sYkf!qQHN?mIJU!+fA_tnfnaUDa9^ zu*xga*V=OeG>%A#9d}(D{31rAAq(s_4D4@13oPwbTg3IoS$^3I=8zlWNm+opB-7?L zmOr$|?l#pBYtD@Jg5*BHP|I-%-iXnnP1q$c^PF4dOG6PDEkNrJWWrg@$IdRA7+5n# zpMRzz9?1JQf7|06Ji|eCX3TiDe_<xm~LdRB6O}Y8?GF5tqKE%V{GWL)QYAXXSRiZ2(6G- zWj1@`UKJ3D9n*tmyW6$^bX`w8zym=gM6x{pJue`Jr!%Sf3?8UB)s)EE2fNe#$=?D@ zQnr&09pW>Pvbs?~*qzOO2^qD4FK`0%o?sND%Kw>%GX3&3Vk&0qFfw291nj!=;;xO% zTCoA_-Mukrf^JxR@+ap0!~|f_iG8ess8~ zgcgMIBBr}ivWgRyo}jB0jp~d}dwIg}q{lnQ!?@2yx|gY$tC>gq<&f1uj#KW#R_o={ z#HE|=&xcM8=fz`Q!a2Vux$h&*IwIOFx#H{ii4ISQMeDaNdZnkg&DwsG)}7CAMeE}& zq@7)mKi1D)p_Hn&#Gg)-V;o^yO`$Yx^WPMt&yT!!IxD_WwecSeDt^zErfTl!;Jw7X zQ98)1UN_vr^4XwKww>hl)Ao4E*7C94Btd{p&h)9~f5T0+yU#@`Xde!t4Mq}zCX(un z;@Xpet$8aeeNFo`s37(gN5q<0H zh@FKqj3oBL=CXbh&_i6pTa!oY?=BA)$T^uI@w&6I+c$s+#U87yyN{e9x~vZnMc zfbHRux!Peh7#5`E`+G&foB*xb#&(KFEatB0$-0Q+K-0D`?OdjImP1d905A6%h`G)J z0vwdS=bRhUgXq&p3Qo5Q`*_4CZKgiIBE=Yw1#unzfi*2X3!cCL{U^DW${g48iGi9I0FBM9W4N_wf z$(Oy~m;ToIYHtx9&<-}QGb^H__tN>vA(#-O>CeRlQ$~D&Evo0zd_k_|Z=%;6u+b6!MYq@TX!TSp+5X^^h(D9l!kmb!c!oBjm^`mDZ7gOh2#Ys+oK_Bt>5Y>BVY6A?tb5($@PutITqb(SNR#C{ z559k~9hq?eE*uxTft(IxcXl@7Jyk5rNXaF0oe7zOKxhx9X4jYFS(eG-^VmR^1%V|J zz?muW2%lUvipe%$7`yi}G`u3{AuPRpp8L2WyA_^xzEV&1A_c}l9Yv9_?`zJNd>9YR z@`M*x5c~7b(iZDig5-}{scrNR$n}@o(puF;CE+advug0jA%&xfwwg*_Oa=jZBsYcyhCfiMTK9uD8C=1zsFK6t@Kxj8auU$b%5A9YpPrp zsK(v^6ve6Z@HRI1I^J8%L%ey4MfZPLY$2`1i= z969ZMz5uVc!atwHjfZv7zKy=nCkC6jL?nt4Frv}wz$?Y6E!^84nmanJ zaGKZo7KUoMwXkTB^Y@W5WBJ=~Xe_~fR}sP;#N5-uW`$DvW4=O3Vj=+z?|zGKcq!z= zIlR;LVPQ97?lIXq#YG;d?upqtHHBV?+&>@oCtAHOGiR*1Rp)*lI%qEOOcpy$?KGxx zd7Kwd65|j@7UWfAuM^)~IC&?LpEflj&NbZ|u)Q1OFZh=5enw=YZwxW#eOd$OXn9k+wWjSZ%!2dT}>-apP#&=AkmB*ec>9lvEf{)g;ki`;M(5 zezD@ONoYjU*iQ$O6tm-jTM+-wh3x;_jy!3seBbQd!!jAdTaNv%pZ4vcjfWGF`+eWM zY40!&_vmojrBSxf^rQ=np`)ABUXfUZ0zK|-glv>c=4(<#+p7Cp&~HFX6Xfu_0r9BR zc@63}-+QJkPtO{`uQ@EGKg($EcrZ}=T7|>ZR2b>fqc+R2p}M~t5L`(Ry3xka5J1T< z8VpArKJBFF3J*#y3c3H+e-QhUI3RpoazQ|>Ev0Cw2+VQ2Y2k$_0$E-=FLgplz;Hvp zR&hO-`6%G!x0_rjoD5#p>onZn9|ejgq-Gut==2m*j4{Y=)m?bH(>6D8g)LWBriwUr zSryl_VXQieB#p-4rhoo@c77bg#kMyGZba#WDWG@>%jk{^&=9_G6BdjOMIx3pQC5_B zsjS5C#H3D8F#@za4MwatAAACoXuGnVYXMb?pEFFGJLHfpey#VPHWmV!$)+ySZ9ke* zv}}(uKG}MOBimUM*RFRolx#Y%Id2XZ>-Y=?Eqmy0>RdQ~YmHb^Zza~4 zRE61=W-gs}{Fb;PYIJloOp!|ie-Kf|PBYm<4X}PAMFD^>v}&<6 zO|#vj`_Tac6#zzL1>J??ts$>b``KS@6+=HX7(;}@xS0msJA zmXa8Q2h$yk{^38zf1%n=RRBaryV!3%klDLD~_{P~lJr16)ycg|%<2CS_{ z@8!R4pO|zr#DcO=F zE(jhgtdaEsk%39+@99D#T7>;QynvK??wbh!&Z4<7zhL*fdD`D|LNeAMq@kwX$mPW5 z7=6R4>_d-{9T8(A!(kjWe$QBK0;{oG61zWN9X7w*Y-p+iNm(8NHAo>Pb zN!P4&;J{#R7QmQ(O&5$5#+Cf;8%v&sVnH2K&M=%>UM@RBJZP@Qc4H*!O~ zpIChbDIu=mg50^$|Au*TdRkUpee|T34eK=(V|#!03-Y9_GGukt{B=@xB>a^7+}D{- zV#tC_LiVb^j)YadGvCGZkf@R06BO6YMi>bnY(6hc!0T!x z2BL)=x5d6XO5+>}K{Fz?Cz`{lo5eK@>KAiHf@XOPdDJ4hn~>GRLhMc{Jc^UhhU>Otd(WDIH@n(@t_D%~JW?C> zg3Sl4%uSyyK^(u$j^l^mpYDvh_HpM0SboV&YoA|uIq82&E4?gnIW`2KI9*JP&Rws0 zbxx(%r!xH>Jq6)7UB+nfIyMGWm3u@1Wtof!5Cz^+r%d`{2?||3Q2|>V52Usk#y3qC zPSYhB%bPGSckWrHTW?cpicaTkg4`&|=Pr>eug}%>PXny;XmL2*1um!>EKZaUtXTxd z_0HMjMVWx*PHSo>il#cp%pXJJG}YVn940TlSbo_fZKhkc7dh7M`atEQ9Bn^7D{^?S zZ45hk!uT|p?#X+on}!-cp6P48h~U$`(o5TeCgX$>DjNT@Yvj6}_eN5bPbk@$Am**7 zmSX%4AOH+K-Y^?}$IU8MBr7U&byYg_kDJ-_6Xp6DQ08DIYKNt!HNyLY|So z3caTGPx5VXJKQdCQCteOGgF!wj$_0CO}ZL$vAW1Y;hpjS9h%5CiLnFc%qs5ISB3f+ zUxfgJF0ui(8UKz}2^pN5o&2VEWF{PE+p}9f*!~+3r2;>M1gi zxm+VhnD={k&hw5#KlSQgDs2HjFZ71DtfhyvC+cILs8WAh#?~)J|CW{Et*-M9(gJlB z+;vSDp^7UD8){cQYbQK9grr-k0ka$e)TFxqSeTQyhN{|I%%ug@jwMZfVqER8O6_Z? zo)0h!$h!B#H&YK_#^jKgOXkRCc(^+a- z=L^d6waSth1ohZaQFH9=!vLu{Xk5xGCPPVu9|Li}OW$jymSAR|Nf>D>ElgS1qmQsN z<~MHz%BupatLTvE6`3lsdj)wteThT;aE2T)PPpAIoiJrWwbKO=sH;kR0EOKj>+(We zwKKDver%11HXyijzM8c(BlFwN5pOv=lNTNR_0x}NTAbkgGtZb$9lMt$sd@lE|*m0Q#VYnEE%0|@PumQLx`Ly ztLtcRSf1K`Qq(jQ2xCI7>E-x21|Su$~~OGdhqWpL9_zw{F&3BAMK{ zpS?PEu95(~x<4^R-(qxkDd)TVF~5g?)Be&W4t^oltkhz1AYzD7mUBa83Z9C{^G3)J z0(3)wlBSCNpR^Y%%Uy34-`)70*EE3=s}1P-GCj{(zM~WY#joXktz=e%ynUd1==|21 znfj-ZKie$`JRL9qD)oa31i=H17Sh_8FbwZ=M*2bZpFb@2JWHJE0Npa1gDJ)dRZYbE zZ1-7Nd|=I^9+uy0LRVt9GSIf2r1^PNtd$u5H2mTU%c*)SaJ)<#Tf_<*i< zHy;al-sO3pkW>4y>C{ax3jViA48X6~gO2sjA{N;EknZdW6+hGXEM@#$FRnk2X#=$l zT8b7%F5|1J53&~tgMmnt&F@2)^75o7y$H2E1o?Ve;h2+LcDM}{#9=Ps!3us#yW;Yr>%{145Qe=Q^e6|X;m};R0F^b2Lx8ul)oY zCA->w#J#!v5oNd~c1g$S^OcfZM!BLhnLnoO7b>xv#5^TVf7 z0XbgQS7gr16c@T`P{*K#vy#L6^dD%lKi2Q%^eO__Cv(U8i{23Fy7Vl@WdxW`4(&oYN(7Q}aBUi*fv0PI4Q7^*AB9)b(nLaEL0@P1@$nA;dy+s>fG=>SC zK7rrC88?VYJttMz7$;TSd{Mi}#`h=T!=bz)KD1}sd8$X60M$$_1brPpxP2P@-zaXl zr3QZIaA(jz`9KlcVVF7C!6^Z%4F&i3zNbbcuqZfkbg{ea(MkK9T(|*48b=FMUb%0=^gW@8Dx9 z@f`VI*F4Qk*2YorFic4h?76lzn;vMhSld7qomf zretdCN6=Y>qhA*&m0;{3dduy@Dc5)@jzC6QyZHe{^07Nh@VzJPZIYT-XXS^ci0=WW zsHj@Iegnv2VeW`i;)*x>Xu?Z(JvU&_qb4`sSH2LZy-ECsa;W1dlL`ZQER##mNNJQk z#z!O62SdiFQOqi0_wT8Xl*mXUz@vRv@k_@8$m3o_A}04SZ2GFY5lN(}SSv9cVxMEO zphQR{5mm(pw)(9Isd5kh7rofHlruR#rWyw^I!nt;zS)lu~)kB@->Cxe+y$ zKAF=_M^7d{qJG?luNg)Z8~(r*M;-h;r>4J2NzR8EPA3-SY?DvF!K3%eDX%l*lOccn zMLi!B;-PRouxG$Hjo0^uxuovf_-MD+uX=(HhV1A;*s2Zwokm8;#L0oNamUynqV3)f!GC|z=! zlnrMUZjHT9q&~E#KBeJ%QsDVz{p2)2D_KgM zTUd2GZD{_9Hk?k@j$H0A18wns*6Jbb`t^4UNs8nYF;*>13Gluh;9p!FKe~NeXE6rq z1Lq{*>#lWw&lpw55Qa6jD-T5U%6{LlqLC=hGP&;Cl)5jCIef7AVPpy2C69+%#2LD& zzu5ggKNEM*OLsUV^{zMgG`BCWOj)_4#;925SNv%E-a_EF=#*b#{nPI2%1q$xOx^W< zybk{U=9v7oD(ttOG(%cdU=I!zq-1+^X8Nd8y!4{k1W{JSIy%y%4NleD9~v|~y0dxt zYh*H`6I}@zt1;So)ped^hYgb)Xw(-NZRG}{cHnHar-fBcw@_JV3gtj?D#^u@kg8A? z@*JSUQR{!2co{#cXG<0cV8p7u@?c`nwKkF=)qQ5d!`GyEbI-q#_mp_omWsM|WI;Uge)pcwUPg@rLT%cN(U{ zz`&sKCH9&o^>0QQrb(R-B@lmBBy>6w)>Kj_JdovTKrUv?&b87$#AmC=LtgYeuHQ<{ zhh1HruFQg|@(NNB@1W{?-|PmKXnADt+0aUNko8;ElC0(ped}o-dfRjvRZY-sHm>Z! z7OrqT>ME|gB0xdCjz*K%1J>)?Jr25srS;0gs>Wy2p%45C=^%USr*1`Zu`>RCPkxZ# zo|ETIAIEd~a;B~iLnSej+SIry&99eWNJW@yIIOzVXDzGf@$$xj1mmis_lD3y0{^^) zJZN0j%jWy#=iBI2ugxZ-RvwGproav(lFvu!Rs`d3LKyUH{9n2}dhx@mm>ss!^Z5#! zU|7Mvs!dT(cPgsZj9}h*&xE{UbvgrV+G#9*6`iQX=eAH%P$z8kg4qv~|5uXG{M0+VMIC%Rye+K+`e-~@5 z`6tI=kw(@`TLZA`>PY=)K8FCfeyFj3OfN!q1Ibla1w$6q4sA z!Vcz#qn~2aQeR-87&du7)N(#0gxDTVhab28EW4`8R$;90RP|jsz_05c{y9t_HXuS{ zX&|E=V^YyaG$QV^_pYQZ{Wij9=Nbf*FV;Xe`g&WKCTwpFoGo#6yFgF)c`&p#|L&i- zCO(*`Y?btwH;Ip(6dp%{fRO5WC1b9D6lUMRs9|{G% z+6jB%G#aM>;du8`nRQ<=5!^jXHEPmKk$u%d?cc4e-c1DY<*$$N{XEqfm4o`b+5%KD6SoX)d=>3)u&@G`0*vreML zaLLqsndd_RZ+H>J2aa%V_6tDD=MHy+*q;!|r@)EJqKKCj_&~rttK)4Q{NG{eo!_;g z5x)H-g&qKWNQ%mdR0-(^DoBHY!~EF+d=LQ~9+=lvzyN?h4IQ}0&Cb!7-p0h(!hqhw z#=y*km6^`o)+|CnP8=Qv`_EzUk`f|Hz*kgYqlAV8{>DA;DFD7e8cK_c06zZw~K(1RMYW6i6%(RF;USOfrx_HNYIo<(^^-f{np(B9I#ijb>zN zQnU^u2S-Nc0L6Lii8EYoCKOa4LZXI7c{PQDKNHRizzPp1G#>S0Ov?{x+`-%nw7@}? zH;!JrIG-C}TVHX-Z?}JVCGh3>_!#5$XN2r9^YnZcR8w1`K$+ZLSzi8?M@j8R&Jc_= z^_yqbhA~^N9^jvvl45%rN=rw#2?EF(F~;0rLl$b^u>I&^7!R;bBZSt?IYI{b)2Z|2 zmI~!hvwkk2sh*gSr2uSaXX9}Xs&5%X6Xh7Bfn`ph&)A?6^?UK;(3471|1=ob0TVb+ zCrgxs1#B-YEZ|sHnl8V-zUm~9!X}W;0Jk!si8?zvd@@UpNg7LFRTI=IYqaUipu_rX ztCwh!pd0tepaY=*_FvH3l(nlZm;`~9?CPJ~fH9ADvn(rpAYlz1=3p8JmA6X82`Ng1 zDWLoG^c3$vb0Lu^`0@GKbLHGMY^<@|Adt{KTkdEnG&HorR(+ryP(F6{`1r^ps(7=$ zzTS~|n}8^)2u-^TEb!|B=q{jiq&OyH3+mC=x3W5oOc^LCA&=i{(aT^XlPu6kk!{ni zvM>JB*4D=V{Pw;gmH6R>g@@-e$RGm=xVpKysk{*bepup2Qbt;ud&MVdQj`g?LPl;* z&ZptahpC^ygYy*#zu^?ln9~5Z6)2rmP#4$MUM6?!y;DunBSnZ)Pft#64%pe4nVq)G zSxlW;*IOeQT(Z%$V8KBJGbir9rkF@o!o$I}U!0x2R=BK9Z*6^)l$IX(I4GitPUl3C{6a&cqMmt9sdfppcFsklP* z)K*V#Yi&+HLo2A{xG+9G9-~%${KTH4)1nIXG4}KR?UlQ!w^6>)@H8>dE zSSc~E-wTns+7K5{ZdfnzYL0WKp5JMXqgUion)k_59(72&PmAQH51x7;z8~AB3sF8jq)clr zsj`KqvO>>OuB%41tKIikQ|?5TCfC7jj6AN}nLCBy7hzn**Si>-KJ2}ga`}%2DWv<) zX4x&`Q8I)MQ4!!p3H=rioEp-l9hAlCw+n(jcP?6!rUsyKUpMzaZU}}m!$6Xp6RszK zN<5sF`wgW(d824xb}e|ahra8OLC}S&q$Z8C1aR6aJq-woG}(M5ZklgiH;%K47VTux z^N|Wa>$*R_cQVEGd;O&LmPf%JPck^L^%gtzdMaszxqa~AI(rRN6lR38XL)=~c+hdZ zgU8TyUJ>1Tx(`i-0@gtxm}{n3GRqOzO3l>cJMUj_uKre+EUz= z)i5LGO>|!qi4hQpV|24Bx~Y)9Us#@)-@>YChovdiHdXW4Oou{fmykF{GM*V>*|$!X zAB-zKT!J~EU2hU{pn?@_dKDZnp>Nu>!_3SgTpwx*U*ltide(uHYmL7O=$ES`{VBM3h^U#|*WC;Y0iiy_TBE{-tKnN}&+5>x7z#pcXv&_#h#cNM zPL36+-4F^LEqyOIC|v6xFJj##oDN(tGFpxMrqOyRX1ji0rc`A?9hsS2z)^o#n~su{ zlp8i!c9-w-{2lDl`&Y!v%hLN@+0k!`3O4#DJICvC8#BK5+vhHxj`#eoiizx+eHk_s z#ZsTMmWhhd?d@E(rXh`)w8`;305X=S zUayAG0(rumrxT7d$M4%N9a|WPwDm{r-#ZM-%&w@+YYr=7MxBXx84;jES1}RcoNxW$ z-6Ltzm}HxyyDbb-E<7iP)M(>WeG&&${k6HHbyrb8K?@r#;K}pa4#EbfUzf3&=mFH;{`OBTG6^G<7 z*j%O)9EgnU+;nb^O)nR#s9~N!R8R0D=dxsO>p)2d%S3<>?-v^kKZWTL!)6{E(CG}$ zNVp)9*$P%G(@J%#m~JsE0n=3xYw~Yp0;hRVhUC(4NBiYO=E;4;5f$unLSVjkq~{P{ zgfa%4IB`H2)yS%ah$|8$5_d@3$w%n7y_A2%tq<8oDkrTPTs!F+qcu-?Ptry8Ff?7# z?g-!_Sm4T!ZJRjJ>^XL0ln}4Pv9xRB$ShgYga_RwS2dCcLZYHs(XeQV>$AxYxCwxQ zQa2KzCb|Y6q)omS>IXZdf6L zYVl7zpUP8;=q|&SBspe$AFvhs%(a+IROw=3k0h{y6cdoL7%CP`%XQ5HLacJ*(9^vTQfJ*;!Bz% z2ac_n$u6PRyQ!Sn$+#a1m8b%^Xc6dyWS&OZ=96L0m|IFZ<`XITfxtt?+(j=W9v=)P zi)+fR&I4b{4^CIK=fHytLU9YtyIYGcW`!FIBU2hKZg#ox(8c&8O&bZmsQCDB1l2wS zY4-@nZ9*)%L=*KV9!j{F-zOink}%)INOlPQp3zbh?)qcW(pgU_XX6hgoX}dS?1~x< zBh{@cS57{48;gOv?ghlQ@-fm6V1k%YD5V$088Euxf`uR^vYd%M`PYB#1kH)*Ds@bw zXGb@2#iXiEu60*RyiI}5_YbW{Elq1W{pO4LRDPUr*3VsC#t_I9JA|`j9C#&cvG%KY zrx@pBP*x@?xZDP;1~m5gdfz-V9jkw}oOYrpCf}eXF?}U`M)m$qM}bIn5c4N1ry_$B zfWByr)of1@IZb2bwyh^@S*a0cKYiy=AZDx*!`#$y4*e8vd_0+Qm1SQNx>KD}F>1t- zzG)e=TqIcnQH45)e7t+-^2OHoYI8vpALOicDzLc`|72EQu}so?{Us}w$r?Ab!cMI4%&7O z(8yOhOw56`JAYBa%)PdGLCHOx9Zm9Gav$7G50ZRb3wJ$sQIzjbA4b292ajt;A6XO+ z53fimj_^f%;?6tYZH*HypDW5T13x{h?oZ1wIpu)lAAl{82_{f-^jH79C&A>3s#KS# z&6!t4%8Rqf=q**IZDo^f+01m_Ucb1XxWmEA$PLZ9X1a(2-Rm2QY~MhWNC=L1$S9|- z&RcsF)!Rnx6HLtBr`UKH4ljQyaVp_NHk%wy6R!&F9n=;f!ioNh6?AOoubPu!bF1nXIxYalyOCm*nHKc2r$b$ zFD!c-$x>Ax?cuwj3EIDFwkEVC$w~-o%^vVIR;I6IvxJuJMru9QQ9y~9-jQYI_Fk7c zsp^evGvVqIXtqm`JD(eu8c;1JiYRSyFH5cN8D`l ze43&gyWX?EWu!QJxOW4eSpj(1htmjq&WYXAjDmwo)$r)l?oW)CVMTqc<)~j8@jR!Y zIx9c*&C!R*BW!uZL{R5h1{T_vqPQ`!cPA6^vY?@X@ji`*#^T-eROh$}Vs*PRmj)3>XQK7Yuz6U8oIn$g9|wqjiTmKNyB$k@3T&2Oa2~9b zb9PuOYnPtHRKXIv6Ec@r$f-7h;INKuoMfp#ee|V1?@V-qGztn;C~87(`L({v>aFiv z9#02ey)yYli)8YBKkpd(+9dZPLJv+%+dpvl2K zt|24bM(E`DLMF?J5ok2vMIGkD>lf#UCkGkKxo`1UkmY}-{Jh~<^G=I&vSIh#J00Ri zJefqZ$Zn9WwX>5mqJUYnWW7kr+4-bdfAgCkwb+#3!2XbNa59`Fla=gyTGL3VIHBP{ zKK6Ra_!ny$X*L-dsex=ws~?i^%cS_HY&O{ISGzR!+00`jJE)NarJXCy)z%r;qa{7j znUL)5w^9xaAjEjyxi3g}cwE#Q<$~1#mx-*E`V8gwfR;MF8{@hSUDe#gs)am>}l8Qp}RiY~@q0i$u_t}jw-@?F%!+dDqk~S)s z&v`|aKV1@mS-G3ak+LdhI0b^*_=|mbY^>6L4kphz#jkGSL$HW z0;wWatBIf>VFxU72cWGM<+$Usc2W+j6{9#P8{i%H2%cB=d`4@4ECCSKXXsb-BUkAX zG}*vf;W;+RcWWIcA+A-4BEoybZ+Mph^rhE6Gv`@;hFw=QR@qHQ$3tz(v?Rs7?Wiey z8(ilyJ4cB1>whg5;o&F>qi%Ol_~Db1$}3M(w-v2l`MpR$&O_IPqt->|3Wf8lRd>VV zuD~7$$thh<$KZ58b6RHp29kkZXqkc7h>}rz&)`gRu2d$}emhP%c~X?o-ne}4hWX^^ zJY_eo1}rp*g5{ijMfB_CY|Rk*f!}kxk;5< z2r)GW`s3Dq;m_qF72#4+RI@OjKeOPN8rEk|e8;K~h%<9UrYQ5rLHQ)@SmT$hJ2eRz zFD;OcIVa0PNjbS=jhcxUZ`4}PZ50!$P~9&TzsSFkleTr3;C}`Av>L+=*R!m= zgFCtv0ijT(Tp%0tSxu<(yWyma#aK2?5q`!{vVQa?oC1>;sj2;bz@xyIbV3+ zff98E15Qc!xWP-cU>W}Ut*c`zlD$>GC`WDlV`^+5m@u4;K8&lIF2MwDQPgw=Og3Ej zpH6V|MD{-_5VU!nE-?@}rtmUduSEU0-tf4~&0gr-ALJ1`j_aDO3D8uceUY7PV)}6L zN1mS6X(@bfGW?$3A;N5pa`@(d2lyS@ZQhkVMIG7k9w(M+!vZ)?Gu?bG@e4mFs(J4+ z>C!~`+h5y-kKJ;b8&zr@gLr ze`vdZOy7kiZgm#wfc2~bi}o(s?RstTJ?J>;2OmP&dLQlZyD<8gujFpkC_sS#p{xqbUT^5lio8Ef-GmOrAN~P`NmPY&x zUsUtAu;1&j_$!uIo6miQ@WZMm4RvY~l{)u~fnl6!ad<=n=(1!%$gD!L1ACah_RmD^ zuU`IB28hA2%P|pXulHHTP#5-+Yu{E~#Zt47_HoJ}#?-~$Klz%PHQxPp;I${ss7L6D z(7Qrx_xHcDNbXLQ_t%z&a4)D}`kY_GtD1@B9^%BJCV5d{H+f3!UB^_g&NNS~GQW10d8HQYpa95vSw`u4{Bb_TnNJB!XF!Fq6r{G);U^z4G@u7rvA1idgVj45d}Kv%gkRl%yWl#H zQ=92i^WIK-t9q)Yc%QjxsIF)UhefJ!vE9lK{@O28>|qE`90e*KuT+aB3a*5xcTHb< zmCnxR+l|m2#JkmUcRVTVstm(%H>l@rYzM461ODY_-O+2vn*OE?W;1 ze40s++&6rhD?n>rtEU=m>uD>JDX(@e`Jev}PhTC^X7{^Ye8AA5!`+4!cQ#4ucWWs!+}-`{_I!WuAACy7k&u&)^2(4sLc)%r zV#d<7Y=`}R0*d*!o1sE%2QQ0G?EWLyo#`4U51s5Q575{S3n4wCUO63toKUZ%Mfq6? z4U~TNt`8jfUx6Li8ReK#06Dp&;KgA!Y5T^5+Kcvc763RzF7g$g4dXk(ZLxMyr-E`x zVWPdCGAZ(TJT{7P)YG5Tiu1IAQj&62Fi=8eK?SE_QIMI!mKBsK=sP|RlC-(!K99xE zR^!eTFD3D$@%pXhOs?qU0xxJg!}~LReL;|jr_5@Y&R<+W`C>%yhN+3LX-%twyP;x8 zK-K%ebWc{wL}g{MSC##bm3ihEYiO;5tHV=#iO@j3w0GIzD6z*vvR0*D0yn$!L-L0z zfhbGO@%yMQL-=}VIC0gKSL<2^^_YL6B`*m2$I~69)rGuR`~> z^iwxA7l!L%0ioSuI0gnr{^p4s9<1bN9XV;S`GM8o-U^?{bwJaEft+a`?V+=+A{yfS zWO}DL>q+99^yr>d`7F%pWNKZ4}C-?|D_y|?qVm;sDP@@yWwQlQqC(wl6* znZ-hDP%0;F>gE;=%gkJ6B$OkhYdocChyL6FkMhr5o##17v=({|Kxk>msc*UHBV`{% zoWk|+T3!p=SY*g~I5m{kZn)4rz36D!3=4byGhM;H^tB7THfD72GEtHC{N|%vMF8~U z-V#GjhxzIeQ71aq%fwOP(y4~%VS3p7@kKq^dSfbT>P3CRGx5jAC&;&z+UPPzA-(Hw zphINqZ3v3LT@jPYVbufb?VVB1-DVI}U~23JtK>G4;g2k8XPo^x)uH&hR+p;q!1-wD zp-O(-AwIGj=57C-*2a+C^+U{0uUrctIX+HqFP=?qp=zEsCzHiH(j!6iDjj3a)g^d; zp7HC8gtw*X=b_sEZ#k`YdWjqJXVp8nvh?T1=cv7&uctk_U$e$6PkEH%%NppEU<@SO zeMOMU%(~(BA_?!%h)*LF{hriW0{SGygk@QX)YS*fNbDu;z@S6B;m>FA+`n=bwOXk> zs5_oWC-tG>BSTvqmW67b)89JKM`GKwXqNHxEQa@OP{ZY6+muE1d9_wzAamN$JR<5f z9dZzJroaMY^ZIHrQkl4`F&*iNk#>WG!)_BIT6O8hN+>lbzj4-a>1)Qb$<1Hed1M73 zpJxxOydlT1i>rpm8C;+a`Vqa9G7ZkyzdfpNS>|)wDZiNDSo6$wX^&_=cmxVg@KbaO z<$!1%r&j{>uZF=(32)wvt|MXd!fRm{sSG9syNDglIPjlUYQ-3x+dtp{4859yQ|3?Q zZ_ebgPFb+dMq=BlnH-ZgcP{b5WF^nem=FO02O`gvejbAMIa%W!TQ*X8k{RChkS&5ezjPG$Y$bo(tzLk z02X7#P?&tJA}`azdpw+}#ewpc;~z9DwOOiEsn?2>KHF6X<)DW(^m;e)LE@p7Z6xZ+ zoPZaz=jq^u4{_8!mVdq;i1~CHUaXwwL!BB=LOF`A(VM=c8s;T(l?}}oa8B_V$(4V{ zF9WT?9X58SS{f9WU+lRV`Y?oPoE7H1E;*U?aOjh&X^#$R4saT}6?`9I7*B)crue#+OL69Rq z+M1IY9%CaHOJMMU@Q`St;4TNQw7)(kZoN{hbDna8dkNZH3^7aL13w_ckta7ugG^>%rxiH!I1GYlxJpDu;b~ z4?>1xieYQpYV+?x%2p>Ods$JN(!K#Nkh^p~Ld>+e^~US-9DD7_KE6$RT6|rGF%vHU zA0)9z+$Cw*Lkko5Wdb?RL&{Nlg$r2Z(tYU_EN=^WK3Xg~4h}hvIjJ;Xy(w=vUri@z zI3G7Kr37BQ=@WB`oLrHbY?`uK{W~o8jc|fe!$zBEh5{f?PZdvSps4ZoNmBIHm&q&ngKh`2vzY`#K7Ag{G=I%(N$IJv`yn^<;T9}sPOp}Wyi` z3IGheJPJ{O&DK1XUk*D~PJ5NNS8pvcPjfdskUgHe_niPCX2F&Mc*&G*es+!$>l*cPRF8t4;Y>vnQqs2D9@E3 z<%L$m)|v}FyLQk#PuM8@^Yw^d$JI!{uFng(R7kN}@6<60YsW=ddhYJeRli%B4$;l# zo5MCmIkOFDkp>hyamI}PQ$x_~rk=PhX0}<1h9Z%ht1Y$+Pghy;?JoXoc`ihi=*)9C zsb*-%eC0Tb%c{7OC(>C!II2xs=H0lKqAbr|ZKwCPOC94yCX|}_T$3*8%94_5&a0!S zKOTSgeF~K#3Uz&vS4J`=2m4B(nH}=T_@0Atc{5z9Vb8q&l6^8|iHcPUeqkyAfaJ-Y zZp3Edfl^!vWMZgHDub&>bGFk*R^yNy-&7WNd+X}S{}#?36CTLcww)Qolz*P+ivB@J z0y0dW%6m|gBi107|9h|IQxRztfKml^4_WfVhqnkgGV_q&y~eMNZq+=K0EMFv6FG0W zeG}QF#!m%IThp4rh(qDuh}hb2`M4pa?UkGB=SjEy!-5nWBrFFjMGL>wVsa!8D(7CG zNWkerLlI0FHR(Ll9UwWeycX$ds9Oymi6t(+LF<6ubt>d5USB#j?qu(<&;i)nNv|F+ zl|%3iiW+%v*c0>uBDQ@GtgeM{0jEVT{^y-!fmQ(0vn1e38*89QtT%&yvtt?6q1*FQ zBOkoi<#i3w;~rnu5j^0Be;kYp>yTq%2fl+!t!IZRK*>1f?Vtz0}!b0)Ow!_Vkowl!b&l4 z-o4K`JioKk6a!8Egi>ao-3LERx0as>g*_22VLw)}JPEg zWcdK^z3h@T&~ZjW(UmcA1hvx(JnJSa^oNiX9BmPlL1S0#NQ^TY+9^8wZrbg%PHS3@ zzm*ty9fQ*Vn0Gh1m|*hGQUpWmrqEa6KpC9hsEIkOfDt7xEfcTR@u0 z0|v;w{b9R340Gk7Y>y3JP?_4G!JP;`A!}=P2(tGXGo-s3M@3i=gvzdOsdWB%duGot z0fovH#P~5mDVOVTiI*-LyQU1gAaqf-psnCMA0@Qt0N~HYU5?P?Y?PrZC%*+t; zBmQ~a%1C*Z+Qf7lp)IlgZt_j7BAY_J&v|P7o3Hfq+oK1g%LMFi*o>q46@4;MGdN95 z#C76%2ZR_ccpacT2wRJIaU$8XIX1=iGr6xQEkWnJfFGZ-)!0n#Yi(5Xo;b-1e%l>r0Rh-K;rN~uH5e8*Pl{< zNNmgSG$0yGsQ`v8>gJ;2Z6(M}bAbWopTL?6T5{}5ZWCWYClKr;z~O!Sf$Immn%cTCQRy zC^kJ?h{HffPXhN{?j>UWlig(wrlp$06JFjeo>{(IX#?a7H4A0(M&D45J5syC$Ut$* z2M!1niwAYafS1R%k1H2GBwsuhIbN1~2hNT(c*_aj=>?dU3q5DN$vgh!Ls|$G2cCkH zj6~6Mnr*KPp?{pT*c&G`=GrSDZ10q3uGdDmRpla-k*@^~w#~4>Y+FK%wYMcg>{+$* zU0L*~M-^mL;;$`{taIn(G5z-{54r}yuYR|S>jFOw3(_WR>5pUj3O>tbGm^hE3;FZ< z>kQ^PBT#<%3{~$gPf+0iNHRDm0Ntuh$IHfGo^W>^na-Pc!md2xfJiS%FqWeRYC~sKQ^EHZo|XwNq&Aw7gQ#PRveN}A zOrbJ0)R9EyDVPq4*9z)(+{frMXCgsqdIe5AbzdB|?XT8HLdF%AoK9jodP51{dFCg# zk5(|L>lP#yCd#Q7C}$9Ck|tW3DhXp*>N0tnD2ZvaP0MM={cH^p@;25-E%b1ViaAAv6WKrzGFK4g%8SEQ6dQv%S$RdG zzsFJC%LUkI;UijS^u!on0H5&FV#$jjVdrvE*4o`r93lg%vfaF{9e6`zsc7oV6KF9L zb%&CzXzyqqFVQ<`G!kB-&%&BN1 zaPpZWb*LB%A8nd1<$?122v744^AmHKKM@0snbCW1586e`T-Xu%y}%knulMFGRUCb= ztmOR|4Bn8!X*&)N5V|aZH793!Iz934HWIvPi1mNrgZ;o>PxepRkc`?+sK{($0B+eH zeP44ia%^~4-Sft>GI-&V!fB#+UQU}{ZuWuo` zIF^?3-N#3bmoB5{`=^QXi-|`HOaa?M0l{f3;aLQ5Pg@roA_n4J^>uXP)r_a;aJu&s znU?;ynC0!3;#ug?oPu5ICk<{ba59NPV3dqq4WJ`>YnoX{6UO?O zSxA_Jicb7noR=g%ujjk=Su5^U=xTlBy}_cU3u*lvzXG}77+S+-=3AYI7-$t#WL8!{ zw=6gY_OL3G@u__Rh6mS%W6Ai{3+G%*MCjm}0Ve+FK8z{*SnH|-h&^vn{PoDBq;3Y) zBAc%L!Gq+YPdu3o6QhLS3)x~}DTI+vZt$Y|P(<(Pe%K#9e5X;F<;-DvtUmz(Cu zsE)ejgiRWc)o>{Umi}Hio+*(3r$X4xQvO_aL=!jyv`V%bb4(Ly5eAJXrqv7sVKXzA zx$LfIAvFbKnHt#wc8i&14L);AN2`q|J<4J&3nVueWz>>C7#Xe^>L0f2USgjaJ{u56 z613jCPqcapaS5zDyS3F|1iuKPja;Dh=)lYoQ2G-GSuXO)jx0 z_>!?y2zi{`yc}j`W3dV@mA}gLJ6j&;$hWh2$RH$ZU=O58_8_e~bOh91QKk45y6sG` zEkgJo#&bk@RtrHbAB6lpu2Etj-f4H<`_Ucz<{y#kMQ@irD6gLURtEsSl^?>25Igj| zY(I$JDsEhkEPMLe)-zxQ8U<|beZ%BGVnBJ?3A?!laipO_*&at7SPTOu*JFJLqt?VDld!F%kR_eBwTe^nR`>(&iHOvhw zi3T&zwzr(83$@RpU;5`B`I1}}`n#;Df@ljm8!|s%uWc_pBpdq9Qixqd)3E72?U%V& zKgg~MUJp+gfYx@N?+e`8kfCH=-;6uNz=pWC`??7Hw`~YH&>KO3*9k*=z+nk^8Dju! z+c6{NGTG8`Gen|j?Id_nfOXQ*rmWmrhCblC_Mm;*XY@2P&oaJOOBWNXf0f4P!1t-@ z#+M^u+biBmiL8N`Vg1WCJ+R`cPNU|Bn>9^-b&Xr z==2+dAZ*8z)?1!q2{^;iCN94oSiQE!(aIkbq!(deQf;BHXW=y5tNgBQbpH{@j1c04BI(D0p} zXqR+_BqX$hX?JOR@6txy17ZXHu-a^OC~9zPvUcx0{i}Z9vWT_D2zbKd6c8qoo(O1w zq~jqlvS55)^*3<4PH{Ib#X9;?j8nz6;|gKb-%7UP#eCk2dro@s+ZsxFzHIQkd3fEM z+Y{B)BIf!6Ya6y4I6)*N)aNGysIDT=wnx z{Ip`?&UkOUs|lr6xJtL9AN<1ftJ)PMG2N|i=yos9a-bN?5#KqtNONt~WT6hC2u+(bP*1L#&GR1#gyqcGa zkBDl9J}hzHL#w^ZG5NV^6JMb4+j!wkUyG8^%l1vql*{R;y^Qx-V}Ki*B2RUT<)_0? z3Li#OH^IFEDv?i9um|*!mw!~awWmJlVrhJ)i~LH>yOX;Y*QF66;!8L* zkS&*$`&h3jB58In5kW=&ytlg)kUsa38qEmFXni~DJRDD%$P=|#HatK8wLGJy1o6uf z;oSRj0z5avDy@r*gL-E{wWa!*J@!=et@?pR?wPN*dqx6n%NoCB4NcwNwH$rw|MHH< z$%U}T3m(Pvq905JLH!|wOJqKw3U_#hHGVt8F4dwwVgG^qXwqO!ssd_r-R1Fsudwy5B3;)JGpA+4b~KR@M-xg!4WftzP&)`V2h8|oU!@Fx1O zLAXTZ;7Ly;O>B=TWvk)L)0d4%ZKT&FMI00Wk0smwgO$n~sNi_ZLtNo=vj+nFXWz}N zmZP)&NxZQuE6*-*?3S_Vgjlf`aE=rCA|3_=VXXipFkPo^d$={u-Y`GNs>$vq!O6!r^To6kw`rCe3^N~4-oL4n>L<>?KAZ~NvY87@t zbw_tcdUH|y-s9JXdT}Y*28JQgS(1oyLWQ`i&r~a&gI;dh)gc&}^}@!N13pdkl0)y5HF!oFm#Rm-_2IZ|XdNobKdMX5>0%jDy~e-jMQ$20MktYh zlyW1=rqFMUXiZ+at4Pd_gys5+lVV#_(ZT5emH`#Uytp)P(T=70t4l_U+ATLFW^_em zV9q=D9o=TUb1Mt^EYN8`H^JE+RoWh{q+N6zlO#XoYgRwd?~%BvOut`onsRBM?Sh{~ zeAtEDK}*@WO+80&Ew}{7KIwPc_78te_Vq(sj0R(RqOX{}7e61v&B8Lr)q=8x6X@Ry zdwX^f2MvlD^F`A%^xC9<7bqX?&8=HTwe&Dk&jdj~MIltDIP`!MRedEG0308fKs=}! zW>kltXZ#o>)04W>gRICOM+8~Yg(66$r5oNi>C|~aNohlSjP+ zBOh5#ce&kArv7^HPx08(r=>?pKV3Z#qf3uBs*}e(p1N>p0d(dhv=sszK0okN#uj_yzWM=!NO_ zpRoBVb|bbJ9f8-Zc%^<$Xn7`j=RwEg{$>p;PHLqNRt>7&Xg5e(Ed681-KMZy-Y*S7 zRZ6?Rfb!1XU-a??U00m-RYD!rPS#y{S!VDZjt{F-Ot1uOK)-)QZyp&!lI*SKem!yj zE?x|L(^0%xMCn;~krX9jZKokj-`2Y;yHk)lS(h7bwf-fsb zA>EGe`y$%`R!wup<`0d-wrpfwcgkY7#B++ZFKi1Mw=|R{azbOmgVB6b&ZY0j71Y2{ ztFUuQ%UXeAv29A7G}eJ9HH4$|ICYC|TV7tzZuF-VYP;#CJ`tY>Ye;0g8nRn7o39kK zF(Qh&joY#ZWL64?Ds}aI`7Fajn$Oxv-UP`;K_!dkEi%$C+0lreFSHR2;hWb2?Hx+)y#gCAb2oHABs(N zwuV} z6F#a=mJ_HumWk#j`-@&`T%*3P#!xBM;(Uv5?dFi{B&3AegE(J0l->A2JR-GL>>ZGb z01*j)hw6;uibjV^7DXUSj$w!kUr)|HY7badCV+{?dDr*(I5`uc#$li$xgr?vcDMG3 z0q$E3L}_$#+o#S;dablqo#n}Y`p$FBP$Vv2cw>oKITuH^jnO zAh^%*aQr*?e)LFWX7Q1mx(<@CUB91yMe5G<320>3Tz2=_>$lMUY;(0%R8KS+oX8H! zzWHzMJf*$m+PQ&k;RTk@OLKWThJY$f9bP_}w{GHaK*hvG_ely1v1xEkmv>c=j zPHf3T9nNJ8^$;S2u4bNtNd%lKkAaFtN4wOSY-e$g?wy!TlZ_SnQ1Ia>Z^|7rG*gCn z<*M)}|nnRzj`3|eCV-}{_n5@3bp%NrT{Sfis`WnX`h&YaZsG2|$*xro3gQb(S1c6Vca>H>u9DqR$ zYam8NO>MoU`S!JH-xv=S=jLZ}%+bvF2c+2|)qHE{4z#-otI)Qe)&@qSuhB9~y>8KH{fgdr~WHCR* z3?4-wq9P~%+;{6qPDHNlo#{+wL5?Wi%#)o@4hfH1CWe)*p$v4cv7)#&W6bSo)^N-s zNv;%yNz7fxI*+#9F|vR}AV9 zWS)->OWZ}^mayq0Ppxne%(5D|de%;B1mNOjq^doHUi`qrwMb3{5M4ChBd+u3N>t7j zGyndnn|XxxW-*ak&qfbr6=D_HreS2;EDnGQec<15r%a-(bRJZovQr5Lk-RcC3rZhV z9rQjs#fzd}BOHKKO^EXyw|}CNL8}O7k?}Cd%*xi79d$ffAhvQ;t&~$JiZ9K%zTi$N z+8W(2ayM$~Y-D1xwIcCcdV1#uU84l;{7fjsmitxds{RfY9Jj2n2WIm`9wzcin{A$b zjUuds@~7%@{>-L{&}({yFwL7>!INmAESGf-Cd#!AXzjHA0*=M`V1_g3RlL7KLm z5NhQwUO)hDaT<#@lDKOqRUORhmvcA-xe)7a!DJ` zXsZi;A5GvEdS&<1P}I@B=>a9cPj!~i$Y!o zNWN#Fxaheuf2K5?yfT*!+5v-wD2?Rmcf5w)t^{5DnZX^WeG}8O)ab2jTb;Cku%7|G zr_jhOl;=JKKSREepg2AD^yo~a3AKh}E;>LpUO+vua(Kuu~ z-M>him<{2{Ey=4DKWq*VQ3^qe_k1@i!rnYGy6Hfz+Dxp9J-CT18FQm*BjJnhH>!5g zd)%SgSYG%N*+>dmoFW>C=T z)5<%mfd==u8Q#%Uwfiae67r_AFdDf?aZ2o0h{16iA3IItlg)D&Xzk_3mk)FoV2OP2 zLE;?JuWsz}l7HjgAfQRWz7-rKK1nMRG4}iikCH=#I3E)6-}EV(O;{>Z>^#?}zpKG_ zrBV%;3us2XL3Q|Vj@Kre3PaR*@36wZ-H=1pf%5MK1d}U6%aCAeQd;xJGra1r{6a>- zC*&fF`)}*-A(wIXfOu%LE7`yIl&LDtYBY}izoT+H|FZ z%aW9=^@50x&)iD2*Gx$-L9|4Oufh^z`5#rKO*ks;U3kI$reIj@c~c4`{bIL+A_6s= zav*w|^mMqKePlPgB$)$~fyjK8+v%zPuResSy)m{3N^V+9%^H_R^);dUMbsu^Q z9Kb>3i6wcQB!y^DnzMY@u<@?`n@gu8K1k!z9e2#>L{a#_kUtwyu+pB>;$peY*%T$Z zfbnt4*ch^|(05fokrSAvtd3`}Q7zV=%1xX`nTIOi@VUPzfZ?rQRynVbW}p4?V&CZK z#{1QcxBe&RNeCOHeU?!XYzba$sS-EcXFn$zMXaWv{=Y_d_9a*8kov%F&g)_K5ho*x zNl#Nh)`%gQ{U(+ih5UMSD|}vC%@s3>7DAdXT6XJF?c`ja%JZ0oe|nysbfX&HyeG8G z&Zhm@S1OX;aCPYxu0aL}T;Yk`viw=jAN+2Ufl@41z)9#qt(Z9{Q*>vr|GS!2{zh3+ z9{kA_A*hb4sAT0E4i*7fiLc1jO>LUh*;27(*L-xl5}$+&Hx`sPm><0aArvWIRiqiE zNwg-E!b~zWqFB+QQKVM$<*k=FPoOzxbNWHMD2~0$!w~Bxe}2%%6Ng`mWf%G?j~gjZ zlrhY8syF;Vf-CJd>3w-M7tYODgSsEKufsN8DbFyCXIEVuE0?d{Uaf?+x370qRCt{p zu*@$#gPWHL16~7S#SSOu=4U8kGuNEc-3cB?yB|hfOoRujzQn4pSs83Gu&_Hw#RA7& zfjD2(fC-`Ar30XCcRl3*iFP|$0U5QboBPN%&9vF_8(ZggV2qYKZApb~*EV0@=OYG$ zVegDcV25BaVK}Qgp`3p2UakA*PfU-@I%SdjiWZV0+*{OQ^~D+nZBLs7u2-KGKDDsg zXGD+rtN!jGF8G=ir^-;YziYt3wu7u;#!o5+NNstE&p5fgC~OI^d0~6p>RipqsJ^m$ zZPIaGhmV!saiLk-^i*Yaood~U*`L@7&qRGV8bV8w@6|h}bMGnWYot6ck>rw6Qd?oG zYTlzDB2!2eUXU$3exPHl4sebCB=L1J8Lc6LwV?9HaeoSZX*#y zODtp^M&I3g(A_;TuWUf07TsK~q0R$Ub3y$%X;OBrUN*KvYe5Zl!02|AydJR3B$kl2 zogX}nPdsVL{(;u)@3-Fd8(@6=EboYh+9H%wx!~*2htME)JxcyfEHZ-jkhYpeS^_IV zo=vqLBEc=tI=dTmR}nUq9p z>COJ{8Jn_xpkViS3K$Ko+A`=%Vy5+1vXbe~h6-RB=Fv>t5tig%ondpyXd`U+l4I+| znu8HxcNaIvbfJ}>-!(2>*1#s`y%MBd{jSdG{DMv{8tyi`e`@5 z(YT@W(qutI@p!q|b1}#-=hY8s@^7u6yl<22Pk0%9n&>r{C!xPv6e9Qi6gaMEL`lY`9lfNdtRv~)kCENA4$leZFMdOkiVxR`Iv{}3)F6XycuC(WaK zNL-xd28!|J^->H4g@+xf&FM`%{OA3;EE5ts!vzE2ob=mb`QEkUM}Ic{Z6#bPs~?5x zR?jJQ5RVDiZTE)^Z?ypglRvZWad5J=w3En0ubPD+&)4x>U{H_E@6z_?4LxsvkDD(y zhmHdwq@LI+&fG;!*CD8s>Dt|n2YY;Olww81NER(FTqOfU*{lJ=CM4SRUiMa6Y!MLx zKXD@Bfg_XupJ6*a&AZwf8aXONmVPVfs-9_4c*)C?Z5*ZY@*+yaT$<4XyzI`n=K z#B+OuKg62AlkjO7Bsr%>*vtqPKXCwy72@?rDh zi+3)NMiGbupbzYv1&@feGIFaifmWvRho)hIg!S38>bHim4wutj3z)t)kh>N{>y@8X(!P1y|Hap!I(Yj()2+BzBMA)m3U5{VQ?p4 zz|<2rS)9R#_V2C0cU4mHz*DEg%mRhMbJmvM&0Sbwz+qO!>V@Jk_y;jE!^lQ-awSr3 z=&IWr3VoZy@PV<{MY5BgvY->%iS=FyG<8aABL1eIBb2;?z)?l(FG-EYQELuytz`*3 z<>^ZsPDVT3bB;Yh#);p%@m{@+!Lv#k6GOD4R=Rdue?w0sU+dxWlKm}#PfF3BPTh{M zfmaYC0a+~-UIG{hVd)?<0e-;23+j}lHc>`~F)}!XR}cqYLOr+cTT{tY1UBOLw-H^v ziA$Ca8tWc(B?~Hsq>S*x&KWGUr0V@Su37Pr~QE60D z=#^w-qBo^uc7Z`m>{o9Qs2Kzvmi1nh_7e9F@Ag<==>0>Z^y1g`Y=BZ@3p?A%tMtEc z6#JE$%<8-pA|oRQQ=m4j{eRPu#(_`u&}O`!h}aTw^qhik{=(89E~m+Bn~HsK_$-~M zk&TiH#&lm;|57Ls@`vtl^ewLhlV)B-Z52LYQsaMM6CUTTNA>YTfHNA)dVH`NAmTq< z8r&a5{2IP#qzNG21Zs{lj>d%m<^F+VY;I)D1qaO64HLuW4Q4gej2-wbaYLE3l&b15 zX?9&Lp}wy4!<~=OSCB_PPp}f<`6*{}rMhrKCRb8^nC;jzu1OH|`>M zIdjA_={zNl&#|Q)P=; zk`>aZo{x>P-VKubpbJwd@_qS<Ccq z?)~AG{tIv;e0Lesye&oGfxHMKDmueI{((gKb*Vlk@J#+PZz&#jG^v6qNFqEfm;|23 zm;3LVK|7*&QEy&Z$`jHMRN;3bx;dla{Z!DzB~+jvwR0dtQhxnT&pv7AC;dW+=L4u% z<~_oQ(&y$$4gXs*Whru;)PeXK3cVR<{Z9Ga35=1~g2&I~uRjbeFEmXu@u#DI#yryz zPRPu#5a??IeoJIF&eq)tgA-&WhqFD5J{2b)-c`Rlyhd;c4u=tI2wt9d z+q0x}h-HsNo6No1B%jUyL$2*1(O{PcJ2HdS_&&=oy>C4_OEER%r}0P2LG_`lpatQt zKR#yMkT)%Rz&}(2I6fA97ttc+&|H_!W5Y?LmXeDaM?}SwlZlDiZnz<^o!wzIsDcUf z8X~bYDEoR;#OF4yjQ(->y!-&!|F+6m!Y5{q7s=aQ{=1Ap9{QKep%id0avEnO6jR(7`vog0cHg2jOflQ z(=&v%IbK8QwyH#TT-Xv1pvBi_6K)<`!f^Amq@^Z&*RQ?`rvGwlvgaH#a%*mAyBR#H ze*;Zv_^k4{a|x>!>M1J$XAzi~CdR}2GZUp3UY&Q3okh#+qo%9~?9Z>e{vY z&Yj4nKSHV=b>_`;k(|9U)y82GQ#1JvWmNC;XT4UMa%oO@B5e;-w;G=i43sD~}RCBv>Q4m9`Y$rv4h zN5oC`{!D#zQhC26QKOrTadYeJG*DRc9AS;6U=NnoU^rK^?C0GqCQ*a@4qY3}7p-7C zU0tl(_t~i{E9|f%H{KlODRdGgkAN%iy zUh66!+hm+b2f>uv1(bbHZ!rn#;6{Pgj~*mS>TGFIyZpEy=DWIFLhk>gRE157HQzdx zY{&2ZBB$vXMJy$O=OY4jJUlGwqDN_dNrDk>ef%8ulDG5A=y4ma)Ag$8#rM<^^iJh# zzq}+}D6WJ;?|*@lcZbt*=atS#95_r|4Drm=bj)Y0cmf{@l({x^VP*>~EDq>2{xFqX zJ+f_-56kGTf_2u^w9=!7DV#2OlB`#MO&b6)e=wWn=kis$G=ibpHkZBIV&mY#KSRj< z3Nf%#IuN-D#53ZLp~vJF!ynet{x=RpiLJm-bp1y)poKoM$u2VxcNC3x=!qELpMQ}d-J1vPPn%@ab&sHY!TIAyc00HGI4&laN}NAf9*cq?YJ{Y z+MdbJ`5HI3 zMm9Xo=bPK*nwa}6KTE$eXdhWA;Qv;Ir^B_Q1 zuO+nwaOpmc1S+TzKI5~GS#Hy#>3)UA;Z=J%o!!U4Mlxs@0Eeu}b|U4(?v65{iTTbz z&XjAY`%v{ zNy3fjA!k3qXNv1vWBLC(RJhY(XSu@g!*Owl_l(KxEc7KPBVX-P}>2U+el$P)5>-$-fYGi>qpO-dc#fVBpSpR;+jtOb_q z|Co@cTU|m);f#;rK0aO_KhLnYon6X1J$74k+;>~>iMD$@B{~?&|D_dc33P&>j2S5Y z8r!hu>Y5?v-f09>Zr(Kc8IQ6FN0SoUKJNRJ6F23rCKS>$qt%YvW+*xQC=S!*9u_Ho zzzvc`$7c*LJ?^Qn|H7)`*sV!vFA=wS)2HFUwL?}cSBk$;P;Qh#(uD3;7+oXV--6#a zdQ05;pu=SQFDz9=a7*L|Cbk&>!C_=1`9tI7obVA>VB zbcpQ$a3|YoncKSZ=g+^(Vn&k(CJ+(mz#zmDseF*6qY>e|0G4Vs9sqm-2+Fw5YjxZ! z6zl`t*&%c`VxSvuaFiY=_y>hK6{>ezXm?7lBf{c-$E`8Pi#hnUSJ3mY1u&}h0T3OZ=_4;ud*35PBs6B+fKK7gXJZ+rw_#Gjy3Ct zh9J?ck2I|w6T)BziI|$8q!G{?hLfXaE2w#gn(|+G-_v_KX!>_SGLf_d+qXf+3j}v# z2E!dlfC9^w+uW1;<6z(^uJVPq!Qat(g8OvnZXTyY-{`3ouL6m#;jssXhgt33$Urpg zxyN+Y{j$(o;sm(~Id)bp*UGE^BK;sh5B0adM#F8lAc(RB75c{2RWGIL&<^)O)UC*Q zpqO0!aC@WPF))Fimw;W_UXlHrr z9tjFSaQ~iJ0?{34XrC6{EPZ}ekd281=Mk6pZrLEFG9qXj66GLypi7u{Q||rR`2>Yr z2V+*dzud~sILm5&A)xjtnc#FYO{I=J-t%hc`Sz&PU{!$ ztcq^%Pl=CHeb2?kIldoeZf=@67t1;ED)5Zv8)~51CO?#`&b7e}Ck`!Y>g@+80!zvb zeB055+sU`LFh@jGtGuqH17&`#dk#ZG|1V8HbW{}xP?c=Bh#-rkmfJ}y7DP=M#2y+y z;&45#9)77gZMic2<^HTBj?Si-6Q(T{JX4@7lBcNC2ruZ(m$MtmGA>E<}C#__9Z?QTsDP$iT0&|e9M zJt&!?d@tL#03u3+3uM&*!Wp+P{PQm1C1}LE+Vl;>*`PgrPh}MLpSGhFe*fE0k1PCl z-jaLzczOzNf!#bjV~PgB)CzAw@~1lb0B@C{GT4t#!d`&4a=m9p|2x!bp4~5`k!Mg9VEllP=_MOK2^y&ln zYfX}n!qRaMvV;U@D!np|teLAevr>${IM=lA_b6@>TAC{q(L1ki;c|3Hf#QdnrEfIX z9qIJuEC0hcL^7(fkfQ}=;l0<_d1~-pxJsY?vYQg@D}IKWhpNOzQ)SI+{y&e~L|G8H z+QVb7oz&P=Adjhp^G`nFDw)rWNeD}m8kf_LJj~E__&Dju;zR#GsrBaAGEDh+Nq9_2 z{OO604hDwsPM?^O=BU2rjv@b#qkkW<$Y4wK*?~#3KO<9fj5rwl!$8~!htIAb7M(TM zB?GDZjHyj4anE%BN>gyZ1QV>72YwDQDl8;r1O&#Z8ojdmkKIH>EH0KF1nU45%o{gv z^z*NI|1=dm8~}STOE|q2w*gukky)Tm)MCSFQ=lFn2Rrh=e1*iD?1Cv6vN;65N!eri zqordd^slJ>JMX`I)Z-dFu2cH%0)hO%0jL*u&;3Usu4KNN7Z(~FBgjXoxI47&Kfb;` z6t#~Gpyp4X^&O5_|8FD_Ug;A^ZoJe4;s0^l%_I?0@!$mXBl{3#ZNt8{`*6;&cjqXkvg|@t@2<(M$#= zaUjPuMM|1|UGPJGyJ?EhD$i&?Wt9)%pwoDPG7&Kf%O zpY(;xqniOjmtu2hvCz>^+w{8^7$5m5E-aCxy_b8DRE z>lQPm$?X4?A31^F(TuE;D=XyhQ|OabC0^LmN}$2{?`Gfgmk&XW zq3Zs3Oj?a>=D@LQrp&3q3huD?hT#&?kl_FC=V!3*bEyjeb zXp){s&kr#FA#M<(ki;jWaB+Qr1Nnbt=mW@+DHRO(7(thF=|8y|4U~wB2^9YL?}Lnj zApPmCi2sqFln;l;Y{azxPU^HSoFZVqMMP#6IUI#x-qlE@i}s2Hqv%2oa<$WH4ZPrT zMoT0GpD#`_>uuuyw%rQj8Ch~d<=2tLsIo)IiDmvwW~3sw5k`{}I&#wgR77=?&WgkY zs-sGly7=b5eJ^IgIfJtz6uLsB0jb!x_SS}o7=6{N$BcpU47>5xeXVm}{Xh3-N*sD& zTCCoc49&3YjtRVk#ZKn>s(R{wLlhHwwDHS2il>OeZ$}nIv*gjOZpFjPKCA1xpzGCC z;yA!WXaop!(SK07f z$op_Rz8^xFv7x|H_I`%-O12}iR6q|GW#anc0VA2no46iK*c?1?XQfdT zdZ_Xv#VLyKXpQo~xa)T960*FND+^(?fNRy~Rz*AOG4<%ug%79@j6Lky z!4@6SX}Ar0g0sZFOcF|8wiKn?+Ac%-WP>yvbnagLLQ^4u!JPEhe$0P1vM>Sem-cXF zCraUqYI?m40Pp<)d|8{CBEmRz8u|Q_BFK(Jm%Mvxb#wY+ATvT{Avierc|#az2sAUs ztqaSVJY;iI7)#n-$i9fZG8x~I0lom?GSU0m+%*ZK1$H!DTA9f4=V@W-&FQQB_z<`N z1y==+wMF3&oMq@b8d^$WyRkSHki}cpbfyCg9ckH{xLiK!<7b)r$>_$w=^C&YF9*#l z%lBTN7^!`Qrc~=}sV4<(1WqiK1rs@e`A)3nK)zsr%WZ6*WOq;x7;SNiIy{yx?mrWat%N$)9{;)7Jz8uGhs6KZ2nn?mbKJ=9 zL9!^j_0YDI=A>1NH*?Y%yV0XHY9IVRvE)>AKdGw^nA-sWmXW)>u8hRW5s5DhwIn&z;ZPT5YFc z2qz}8o)fzH!|eDd6&Nkf*6k&2UG_l?`_1#eiZy;d?EK7VMGM+8l$jf8h6jNm(4m9+}KxfJOvy2LCZp!KgSU1_XfElv@ zJGn~0l_bH0?Qq=waJ@B3kNEHGPOf;0vvjVNjI2NE+N#Cc>gwv6h2=Rr&o=Dx->;NH z1->??S`1@;5spEa99NyC47X@rEFU%)<@30sP=xC{g(gzhMkGEfyxDr9=6O-Fk*i1= zf15Vh!dXDfd@29=-2Zle{(9Md;#|5t8Pnf((f!ly_GEGWk;bbn-nu`Z?vt^W?4r(S z76JkS@$8Y2gG5FJs_#yR>e98pQTWSp`<=j>o!9O7b5r|66xG3R&l?4=zjx0WUgOK= z_xStkPg}Q7=a#0|#ee|)%LQnEdp)~aZfSvEH!r@{gOA`@Am11Y+rW%=)DVB6KhsZ(3y%Nl0Gx|fqv%Vq<*mSQ%s31tp< zpf(|AnM;^Iv6#4|L!$_Mco6?xqO{Fg>_;wox@F@C;+E(mBgZ}Q8_Sawo969jjwSDT`-<(>_T@kA%V_JR6j=OnEwCUEa8%>m=TMrSHaSjwkf4a|M8j{BqU7wEP0Dl2 z?sN8M4*r&x+x_$QtFtqn^Ru?b)jusIwiRO2K3~ef7=w#@Oe<=R_(~o&Kix?4EUHdr zuvox@vWSkdJ{Qd+8~i!5SN3h#bnkw6f0D8NhV|Fy+vUtwFR%Xf)x^J*!tr}4@bDmO z;GXMKIlr82s+P7?Eep4_KlqzApd}Hb?gv9*U{cRkW1QTFqoNL0SM%ew@AA`R4dmmp zu3YDgSgMI7@x14)7X338&}o>4o*mmz~Gz_Z!2Sa6G4 zTfg`&VI&g&x5CFoEzatbaHy^ZTf+>x6Aqw%%b3UrbzX0@J?$?3jy|Benoy*N$$t$W zYFqvbPZ?!XPaG4d^g971HyB(SsmA8;i#m;3Afz`qIh)GST{<^gmKM8?BFsUe>_azxh*By1Dn(|sx2PeqQsMVQ2?lac)$Gd!vE3k(g%#v^F z2o!HfH4ZjoTo>>KJWRmB_(8%}FbPl{5H3e)wN~>W&as;WSyoRR*w(~@mKXAaM&PVy^h)0uw(5GWsonBMh0RaX#xT5Wt z9;XIe8?aIboQ5Vj%x=oolMn6YbZ<{f6O$JHd>}k@OfMN!s1LEiwG>mdfI#yx&|DO~ zx3y_Lts(b23?P$*vq)7o>Z~msyU+5x7bE)Ev5~(|L7LQK;$?3TavHXj!^zgHQ5;~r zk~Dx*cDlFaC%UXCmp&n4LTFj4Ld)rU66XfbBCplcuU{s!j|};uEb`~R>+^bHo z$SJXYSp@nw?!1)A822ep zVM{{|9Vc5+q+o!Tlw1p~+P-ynV3-PTPSNw34U|O^(K0Vq*+0lGtCniVJpj&7us_nC)8dc2|AR|1~P z1?6)G{${7^-R&{uGY9UB`HMfRKW8sDJeA|+ezj`J%iU|ZLv2(_aONvD%?E5`THh2L z?(O90e&+zSsJ3PxPdam*maYG}lyI&Dv>7&v5XG~}xfvmW*QsRx&!_MEIf#*wQ41IH ziw)b0$LR8Ro7;kU1~p)y+F>RO)ClOlD~d?sBHUzy=R!&vhv|)rZhD7v0mk~%F=Rdb zsF#kQ{&P!?pDXyS?W^wAJF7gOH+Aj^B23s*Zz!YguQ#{BBD#)>w!iY}!9#T@q9}@| zUr1|;I7HS(GXF7>Lrt=p7pX8JyHRt*z|1U@4BB@Y(Yu~SjBJ1Gyg+n6ykEcnd%t!u z*(&oZ+W8+pjgbqQ3OVH7J0$-DNF&>YlBZK=w(rAJ!JRQ}{_6p>D;;-To;@acy5!si z))nvVBy{>6zNcG*i&w+L#=uinyf&)5)sWkkf|GM+&@TIj`VOob%I<8KAoJk#v$}30 zGWT*D5*_g`(W}=5`23_cYI*}QuG6UxyMyBPKilyfO+47MI=3(FR479OKCvD{vz!A608%3_=6gR6?*hFk2X)haq@U?nTxqW6^?7D6d6))}AGBZDn)x9(}1 zxd8t22(N0J*_W;)KdTrUq+U7Q$}W1!^fyhorU&Muho2*o#^3MBQG9b;y8T~I{1A99 zRSKkb;{h9jeXI@*Y7DH`DjLi<`666HG@Au>y~|(XR=wqVCz5~_C6RuHH@IZf%RzOy z@G|)+e;z_mwq@1q>IZfTWJjAS!`N|I4;`QR@5PLM-YtRzT4@-NToujNX2bd!8oERM z{fa~QBpj8_n*@eok2zKYgRjs1U8%lIpShmCS`9tSh@^I40QPy&Rk-Wk`ry0znU=Bu z>65e2V9d9VAAMi#-XZLjHDraN3nQHHTacHM!9^6>*Xh-PtQqOrhA<}+noJY z$Cp7;VFZVx?7OYq`{3a7kbbCW6eCY4@iDrJmvyN00zFSHb0WKbUox-%-bya235;t6;yNz^y^k0{-f@d%tXS>DfZY}H9nvZhFbq{eUIT7GXQ_ZHq^MFw`7j4MXoLM3HS&PNnBj&zeNbH#hJ8QnD&k(nF>GGh zQ%wCd8L?&QIG7Hw>7AQcTcK{6!`LR-jEkEZYUOez#O!pMHB!JcDZQpxJ64{!~Yh88FM{;(A_P72x(tT zOulpFIqu~eN}Ua6dx%!_0hWIx+WpG7O7_>i#B-Gr<&)reaBpp2boxMP4O!lkUtB*O zig{n5sq3?=4gJ-~hv&&pBFj{BJHkqN9)R^9;JRz>z#imCMIDjl+9x&1Mz%uVBDugoCw{hnFtu=JZcn6;n2(Cd7;N<984~neSB2Wh+Lj?F-!BBAR&P=SY=}ANwK4DZ7db2>^H~ma23@d^_NZGi|Q@LlZ~b+WUJxu zD(P9Zt(hlh{^W>f)y&?@9jL1)x4ec=D2#neF`bjT!gvl9dBn>!%*N0v%2|;`BWms@ zT;IyraKh>tljxJsDEA5%|x~wEO-606`nZmt@2<5?+Dp@ynPU8-MBy!aX!ZItF zxeVZ^idm*$)bzx+3yE!h&!I<|J30SG8+CTGyr1@3->;siB>zOOp59R~ zXBiA6{sz@STVMoU?4UFxSjmxgA2<}BJE^Q&qG!ki@@6`cdRuF~YLtYh#I5x`rper5 zQA)%RdO1ZRoa=Q#BY*~>^_)82w{aIEwhq973=Vs|R+%T=FbvOim!$Ye(`}Nm*i%zIf0L)xn&Cn?E~%rUjZA zj|?wALe&u^w&@GT#hQccAl6NCYhB->45&Py0;~M_JUPg<`UCp}@2V0TR&V>ksu+Nc z#tQfzgd}^b%|QzRvyoZDy|Nqn;7Kvln(%uZ7t}PpXogoG#0)$(1+GIV*yu(9 zS7RVfqA7_n$EJCcBL>e8AR@JY5tzI!;rEc^A6+wTp`od~;Pds;QHf=2Xmz?IghGVy z)*75;As$8b6PB*=U0-OXimg~N&tf9hcYLfZoOxvcQ{f5ee5h<1sVU)p2>LiFISRz^ z*m|V`%NOW!;lNJfHWlX{Y?2TT#}Kf&4$lSlS0_p|C3$PnXaduKi! z(oEyht9F)8ww>VIow`a~pVv}tUyV^7X12*=M+KLSzl++U3D~F=fLUkc!hO&3Kkl{5 z?tIQ~q$+NxOCcW%X)J_N%B$OaPD!#ViR1$Bu)W>?$gcM2_C}U zDJh_>En+=1ttQp90Ps6Wt|f~HqHm67JV2Og?n7+ru8beZ%5-6{ZPXJlx!Opa?@eqt zK#p2Ft?-L6)lAm>dE0IHkGq1`L)-^WKk?9a0fN)CRMp@s(a<#CP{~d?rq)0 zk2^Xq060$Y9>?%SqQg79S2bw~>@fxKRZu0eNIMvnkWAG90>c*H$m$cK?YW-UE`Mt! z6*aQz1>=GAmBVO%U=2D~BM7TQzj^T%cL%oZQQtMipS zBp{-p;2OoD3I3G2mFz`lxZyI_i$(WSg{y#L-uN*8ouze1i<6Uj(#*xo(ko*W6%_{a zZj;I)!_}{OrsRBU7*W~aSRra`jD>j-!YT<_0A_RYB=-0?O|#HWR#kZc0Cd^(4ZrzR zC8r>}1G+KkCABS^J%3slRVBmhGX^nZ_BNk+?*O5B=BX+P7$v-U3zudbSO!^ z7~8AL#f_{1T*&-JSiUE9M63C*1(6U@w-xCfd?UO$T4&*;n$n91b$3Z(k+wI+p9P(y zuIK`2=bh26VS8Z>qB=Zyqdq7Siv#;wgvHR^#1Z!|xH^!JR{R zqq#gO)Qw#yI&>&S(<2PU%F^yg&DD=9qQf75y z_7B==AGp&g>rzkE!1Vp>ZRApDtAZ1k%P2OdMbi=0BZ9WeE7AHE%Hd!+D%YcH*^MFn znEE7sF$Lw3Y_7l;)xU-BKm;y`0ak?w3%ZZ6b*!}5!m#;pr?TAQ;iBnd%lbH`nHs|w zqQUn_k4d14>?P3uyfqS{<5Yl@>xtrogN%}Kr$d6QgC$#LLy2;0GcWSoG}gJbvF-9@ zagghG5O!_w^W^#Iu{RzO96~AO5yIK86U@ZIl+!_STp3*w^NR*%j)DIrKrr=Y-2gw_ zJ0;@^0t7C;yTFy068&ls{;m56WQ>}o;C_inpdXUtHUePO@x^VSs$3m9Sx^O8({*4k zP>ykI6fGkQdjLkZ6g0}UZap^4ZwYv)A~pL}{APy^>Kyx@KurTbpL=2=O@kN(N)fzW zk$aU*bA>O775F6o@VIjm09Pe{!bL`oA#@+$+yAs64TRYEjQ-SjV6bbBr~z_VOx0`A z?kdh=wcM?C?nwcG@!)}teE=r38=7Z89I2iRM<3*1vqj6!Eg z5pYom^A)+t3~=kyW2Tx6>#@J%0P4KJ$S=J{ZZ`mRUn6oECa%|D3LBEzNaWAS4xz8e zC}ts>wLkBq)t75rP_!t35J}av{Zd=$A`EUnb~YtT>;JF~z{)OrlfFOH!CmWo@`8Vq zw+-g9IIz}Bal>ka9r?+laM?bkn4@}gBM}!E!F`7ZE%drx=~HRLU$9Da30zS<9Oq&Ozi%!JX`B}ofny^X7olSSk09J; zXq^(8oCMsBDa__2$7*OX;KvHZ1-^TaMU(Q3j}a{YBvbx@wpxG@)gkg=qsT&ZOE#fi z?r!D9POQD>27-YoxY~kUJe$5G2k5}3H4rV_bJ=zrO+UsBxLLYB^5-FrfPs_wg8 zX&La$ufAQ>SwgnCUj3%_yn2Vb9bb^pp%bf8u8s8R55s+N5Y-UfP@m)7zBmNQ_U}Yx zP+gqQ?&$9TzMgSpT3&m|0s!)}&d7m4a!6NhR2Sg%Fa;0~o9HnNn4T&}wAyn5Qdg)Bf{^@EW*^$LY_WDf9nEln`pf7E*%&f8wJ!Gow)0tYLvW+o zEhE?%)&0od%iss~*OlvG$cgEc;y-)vAxW>1eU#PV4pOHWMm@~H(*X|g3#mW1lwXu0 zcbF{L2lHIE`IlF?&7q)`r;&55?eG)$(`QYSpk+^C+YiDBDHH8`lVE5Bj$d+ZtbJe$ zCG>ZdK;=H#oSaCFm)YIEMyize_>pYZq4uB^jceT2dB<3X@6oPMY7(3cdx>4t06J!w z{W#s|4+es-)JiLW)=9z%!vDby`_++&O%iXMOPhgbx*fZG-4Cj0y8}w(5Sf&WCf$Z) zwp)oc^_#%05~^dHO59_LPmw^luJr6mF&ZP;_)5~AeY3Ik4bphut@$Uu;A4xz&KK+h6Z6+pW?2!mh zybVXo3}$|;ESgb}`=b$_G`;pXN|V{+);H=d$m-V0JYj2%#ftMHc7_7VdUr{)hZ_tH z3*x!)L)i)hE1Rr=jd4+m2Vf9fR+#Vv0w>>roahleG<3IT&U%(X79}q0xAzbrShi3e zzb>uuy7Ga-UCQz^9~#4YxgY22c97XB;>^4kFy)faJh_+3iKigpU9j zAT<{`NME`=$QXg$13sLv#9Q!IjP#}N&0yl$Hw86Hj4ej-xt7$NWm(b(absALjq?Ts z(XEH08Zse#$pENucx^7|_b?iOUt<<}m-b&$cz`wc_kokiUGs}k52PCPluRaaf*O3) zVdq+E{&e@SK?qI47%Q<2$=E}n9TOpYg2#6tQ=_~6C8wnu)-ps*Va43ZX2IY2T3s*r zNOs;Nub#}o1P?$oR@lgp8B8MLPS3C;@s4x z@I~iOAf=dKLVMrPywt2mRmjmq2}5MSF%{t9qEv6L>dY8miNd%>#v&=3PDX$@iCK%k zD!NB=XOyhAhLJT)OK6+`TqqXR1UhkkR1@RZgWe&z79VgGjF+`f87DGvkx4+BcZUBY zbdetjwVOZV!W3ZjrMM4xr-K(s5WdupMOOpjh7?#!^kuD@?3iuBbC`~mtWMIAARRc$o&>F*||`D6rL&Q@NerPKWnB^kg=5O~zC z$KW=O=M5MfSUYgS>FHLNf=x58jOeyraoDbW2vlZ}UP`rX!|TV0NFo;t2j`*wkv!sB z1O-wF1*-XBu}Q}eMQVh3W53Ylx}wHY(7lvO$GiHdG~hd>9kNB?I7+Ai zt$Qm(5RB`&*;_8P&41bVJ*4AJ^m3f>ISJvTrRZ_xX=vR*+tt3@xP5=&G$oBG>Z;GRTVW4g zrABNzBxkK!X{jHX`ei~a2~7 zxeHKA8nZedkawG2N&wF!Biy~oevTt=QENliF81ad&Db1zt0Dx8xA&g7+11!@RgH%Y z&%2L?fgoS-R?wwLrPGjgBhZgpp60i-sM%v|!H zHj@Oka31$IQ6->kMad8?NmnVPb~`McNl_Y3`Ma&UB3z3~A4^S_f4s%O9y=rlPq@g* zD4mh^>ql%6JGT3pC&6WbwcRu1rdWbWnkn+wtj|SJZFq*bdG&5E^;0TYY{IK~3R11} z@9gMr8CgVN=|2k%!%4Ika#5}=kBMh^9(+MIFN4EH*;8YnJ0>^*aMY<;0$$IB1j~ls zk1O~Og^>m!3PnK;#&geNgN(=0R(na5Ig7`$we!QzTNx7t8iAB4=W52#Q=uZTiu;_y z@`gi0M^3mOivGNFQAnqw&nATTA3znBRrQJ@=uyD{47xM$oJ)d}d`F zGnkbB<|1M-IImd+Tlp3>4^81~{beK)6d@^E-8c>~spU>mDO9vMjZK3s3FaG5G~%2F zHTI6>T239ZqAgiUVakL|#=Ko+seGI5qJB^Mxk|hSd?H_~j*eY7 z2*3Ee-;a|^{IsIScXsm%U-Sv9T6ro&FT|axEc2AYG7TAZ0I%kPt!%vqreI=9yi+zx z|CNaHm!%U@P#v5Jrqc1uo@#P`&G@~gS-BgKB@NOOXOX{1_c=Q?kkH6yOPZrUqDdo> zNTeuZCv=<}(M&F*5%sJB(BrYh9;Po@Et)ewIRorq0(Fxz5#3rj&&R{r;6QOit8hqc ztoQ>!8!G!JMkP*BJCDF=Gt2nrzqVRy04z)bN-l#1Y2!boB9O&ML#6Yh`BshEdjHt% zqCQIIBMFV_UK8df zWpB9<>BaH|n+s1V&Xfd8LoZ!0#l>1qvVgh-)e*eX3WXj`cSErE`KHpNEy6FUP*~Ja ztpJOmAg>;iaF+(Q!1^IbIshS&=x}6f$S`X)x0RfVV?oAezQrG|;5bb%7cpa2q-5?w zm3Fwh%Vq(WAb@U&YZ36Wq^pC9DmpiPe=t|3YDb!kCFueDDZ4SNJ@Ct~3`$~-Na27Z zyNO1ylZ6f?VFUu*P2B14Q%fm*PJpXTgT8C&@jHSr7M!r-%g;xO}%W;BI zKPeZIy6Xb^p3jjq8{3%NAsj3C)Tp4ATrwP1_B*6mDE#>y(wvHha`ZK6=0vs;n`H%v z8fhfKo_6KAVI_X5NeLmF#^3fz(g#V~p?QCwS9?AMyxd93#t_=Z}wi z2MV1IMLZlr~cpQx^u(R2u<#VE-?;Z0}68@7dz zE5%QlaT#hHY9=Wp#pC!w)vClHswO$=rE~4O+p8_JLH;=slfu%xe329_^2fDclrHvx5BATy7RN1Qic%EVD`?G zbZ<&R28oS9g{;iKD6B(DU21!be!M{i78R`+*<%meEa+^hCeSqAUAPNYeK&f+Mt;W+ zKG$PUg9}>;h&P{ zFKI}tynVl2Vjv8cVMbVeJk3jq@?_kd0TMo{t4O!hr~*f^FD>(&q)J(=8F@ynwEVS8 zftW%KMR4=asYIyok8wjRtG+he%bQ|bFl-*nleaNRt1 z5y!O7T3kk_Q{0C`0~b*5`mjw1Fe1jXCy?%dgPZQddrW4cS5m&b(ZvROH1$9`BD_{4@G6>{xoeBrhVPRb@q-bjfQ$|5anzByY zzw4v~tT91UXb6pjQC_+AFI26B&P9`J$-7tZRqo@4B-X6?&110QBCy<4d@2*!B@qjG z;@OE4rRc8;J=col+%}4)nR?u5i0VpYWpb(ZH)=cnW?Oen-FNfK+`aAYsqxzY!2LX2 zlcamaVYf8N00uIKJw%vfB(N-m;}nCd5Big`1@$el5lD}dlgY4ps-41_n}X1O7|3r<g9NSlAHKY#!eJUqF4r!09p%UFca-iwW}RPM z@%m~AvR|>Sx;^WP>i2#Hv!`xe8O@Yfp$I#vuO16srft-8i_H5Ygz02_i_b5oK<)&Z zN%rA!X#NMgCd1e^u4a3y{axNCP_#ss%lDQNvya}W$Z!570-IkT`qIe?@{_wJ@TOIh z>M&naF_0N}uv z(cNl^{;8b{`2_*?H%KnpJ%!{z+M*dCFR&fpyDre$m-|gFkc&$X5aVm3!b6M9I4f$| zp)vRD*;EC&h#f7oQap}cja8tpf7c8=c_8V@+r{bIOCICa%6OEFw^068!BU*x4-S!q zW3ZlAn$t|2*a&Pqs0p$5B7GNmz@!0zHBXUSqzRj(#`DKXdK-7YzpV#`n5}0VS3XUz zj@HTA6r;D@4yX>S^O|Llz27=5rAC>`I^xGps3bKCZ^Zn2B(0u0U+Af4XIlWv68`NN zw9^;+i`9o|is?InbOSnkWj$0XkAb(rj|@F-+`1|3eIMPVb_F0I)>&9GPZO(<2L!^W zjVc?As(y9VX1`S+<8e>Ib_^&A=2y(`4Qm#y+mLlN_Y4pDa8N@gCvDSM^-86@ctFcO zZl{du%_SBIruIYLWx?jhgP%!Hn^kTq$*PW}Wh$s=T}huRh9P_16x#5@evODwX?TZH zP?$)!kptOvKJ4#aP7e5i=G01RgpIX=zL6h8tnLFjtB6>&no$An6W_(B?%d<|{81i! z)o5!U_M%WT2lu3=bl_KITn-Vp)=#75H{XHj{`j77x}d(-28s2=PM$^5TGz**_o&L{ z&CJMvfr7%+9z-Am{SE|A4(%*b2G_=IguR1qkC0yAtb+%haP{)S0QoU z^`2~#>b+-`$Zo}Gas(;R-4a+ea914eS7mT*|C=ohWMeN@n9yJwRZ)Z6l@T=3jDrfL zo8~D_bCTF;#jsmM;5;mf<6^{%%V~R>;;DZL;c!^hc?90{I8&g9~7x{?s zv>YTuZr_w0{@&{(iI1E~h`i3$h48slJ38-ZDob&yORF$?-8q{y4oR|o>qRWh0XQ-B zSlJ%Ws>fP{UD$)7bLPozQ9kFV;WL`Aa7jvI5gZ;_0Q(n)bTFGJgzC`*4;dv%tL~tU zBHK1W;l#ewM?DKFw}i~KbU9Wv5n7{4TfkXl3q3&BRTIk%-)!PTsY3-~O6gMeO#KKm zUC5=;gn1=2_m;pf8krrY2QC31x{5c&8L%h!P`H_wy7r95-tHHu_P9%y-N#Y$*3yVZTx9?zt_7b6kempKg4DnG;V zV4+dVx4c=DTS{MinJ<;+pBhq_9Q&ir?kBZw5kQr=7T2i=zbHITnkf<2ceE!m* zroexW`{Vxy9^c~N;A-@1rWOBVxYsrI+d*Qa)u9$?88{KdnFEV{0wy`fg-DpC*vXC{Lr^R_j?}$38jHL9Lx&%R4md_Bk)p)5&2|FW}z( z?hlq2ZxM#`g})V2nVv*;HPkJFZ6% z=-|`W0d6U4+)`5H^NDF0p1a0}nm6Wd@q+t~I~|d`|1L5riuZhA_$McD`(g6wU+~_E zu|SDYso+Id>i|FI${hxLriZ(W$;k_3e8MU>0teo?3u_A>5AUJPCp|Y8`7fY9j@A}_ z&y1Qr)|1Mk0QspEVfAXEHD?ZnT`wFcz%+i>GK)0oLt#(^>~?QwNC2!qG}>f|dzt}drNmW2U7+8Ewu64GWPTwk<(7B~&+ z3~9k!oOrZ;G5X7lsW=b8$zo5RPEG}mcYU0q7MjPbo6zVi(GNjz^n+mBTT9^vf;;w+ zmTg=a+?6iv^Tq?MWl5#$)CuKP5EQhLpK!jgNZP?FKJw&Vu$8~_I@=1ZwebeBVQeXZ z*|$$zg@kZpQ2BrTgI>-Oy>2u3-DKCjWY0OC`83Qycn15*oG;5h{W=yPd9$0jZ|0rDrVgUslKo-aZ?@*_`ef#Ii<@njX zQG@;PAqGKx8K=i;zw4z2yGSog-B=1zjkqE9*Z}_^%f#>};mZje;oFa49&nylJwER3 zzwex`UnAF6F9GhlUl6=h+>O8OQmbXM`*z*!I(;-DM4yl+FETa2$X?zs@^iyGfh}|( zXVe;&W}JYH&k+_u3*Xl59OlL|*G?2!v<|kHU~E!S_ZIiV3l8%S%G_a1;k{u1845A} z`MlJrmV3V#ZTi*P^#j0pQ`vfxtNcAxzG2*E5SA(D#!VV>X37SVG0a_>l%$CW3p6H` zrN_z6V+%Y%*ZfG4!%B@%UbfNP5Yapq%zlwdg#qGNQeI7w9F`aMH`F783>G(GHx2QF zGLCT5#N2~218WczLKj36XUn-?A;k8L=m!-d7TzE*svK|l7=nKadsyV|?8^ap^X0&> zK$+o_VI4y9!d0E_@-Bk?i0;ZvPF@A(P#QBZo_FQ~}XU69zOl2A=!rj)T>tldYr zu%bQ4jRv1J#!$FYs1@&wR80L*eb(Gp#t&b=^_Aev!a>FV-1Jf-2XUEcWvFc7QpILC zn(hGJrt)55cs$t882;1j(r<{ExwM$QXlNwgQ!EU_jzl+W6=QKO5@9?Bk!Elx%V zvH>LXKZri=<}Ql@rG=W@FFcdV7F9pMgF2|f!2?i#BjV1849{{;vRFu8pjv+zK9-OWj z3X>od#TMckkwHTn4)S{f{}|%;K|i9|@q6#App%jgGh0Hb=%kf3k#rtfs58rj_Yic&yi*VvaKZlwNkGB znk7z=hAdQ>t|x$9X^7f&(?Vq`9wK$#dcbNMYXKgJMndz8Hw37@JxID#<_i zGxn=yX21PSsJHwUF;AIIHCd%m;Aq9sZ`wt+ALg(-E0}iO`a{y`M#dsPp10)Z%n%D2j`toC!^LKl zN^-QdVm)g7@f*9JUrHBBJ7cyKVoN9VwrSU6(iQF)*ZwecPFy&6l3m@L&L3;bty`LH zm82=d#7NtqX`KK2YEk>u zc7dEEd(EEf7QmZhTjfrmrQ`tl0^NTXY3f6-r1Yk zaka01N}bN?^U1W9a<%Owx3-QsD%@SI+i~gttyU{uF@+YJW1T%L(SY|JZrCQ=Vh@IEe*h`Ne zhbUdsG+ZAXrCTj8W-p_KOQv9VAvKR$6mMG$eottRVR?KxQJ|jM{BkSRq=T|PD^^Ke zG|H>jUPV{f@VJ(#VVKD*J;s9|e6+6S*AhtVOPeq&BO6PARz4~-U+E>y1WDS*%j98v z52}}{yp#G?(rEcxL^av2&H|UVZoSmdECuuD0CtYiqvls!Dd#~GL>?L_?__pR2ZS2> z_-?wuGCHmmWa6jW!$og;1NnN*Zldw>N!KxfCE(W3Fo7y=$>+(0Ho9fLcSQ%Ipw%l za{zBwc4Py}4TGdgSbNz!f!$!W$I7h}&NSDawypu!jn%uw`xz^#73cv(WD=9FvJfQw z4w|27Wz@ZYhBSpET{Yefocan945jVl4`#9eUV5kJ8Z@2~)Jsq2C1|rv)-5yT%!S$Y zRjZxE)5+^impKd}4Z7NlE$E~FJcuP8`h;BA*QhW4OfQj!q6{aI9-*JA$<(8(Mz?S) zoum{#n=3F)Yd=)@UYWNOm88Myd{RQ^IFvZ+e`EBU_+pORKzsmz6=msdhoWzmC1J*b zwU^?&Y=@&~{nNt<{5b|o&v*EyQZKQFnUEtghi2%4;HrK_dG36DtFZF$VtmW{yAPDZ zHF!RG-F}srVRT3aGD=XFA2u~K_%B+P4K4S;ZG3;AuCRPw)Y3^Zu2QI{Iz{k8#5s>A zCLXS8>|hRuQL0*u-sQA$gJ?7mudXX!Ben6@VA!=nz^(QQJ~&=?e-?Q2`+4{plX?0Y z)Bf4h^YHQK>eDFY=}jeF2E7HxzqGPW7PcO)oaSy=0$hCLQJ?KZy4B5qt@cmPC1xb^ za53-osoO4pm8g=q3B$G5-<&+EBX0;Gl8Cci4m0HmqsPypX z3ufmW+wthxuo%KyIx$Ye0f1riy1OWeEcWM@!UDrlGO-Bjam~IF2OXn-aIPCZEDoos z_%xnYB4=d~u$Hrozv6%_(N>Y`qAaCKODDk1;_}1@7T@CxuqizIyX(FIu!nIh6ilG5 zlBQ7l;fb-|=Kdi0eqki(i)A6LSFQxo$SHYqfW*KVMF8xl0JX0#9b-#h$TEvr-P%-I z3<1UxZ;5!ddSLFsnio+zJ2bpJ?tU$?k5+%dsPz;Qu1SS9YJjSc@6GbHeF6PehJ48< z9_$C8#+TV_SV;ZLR=V{VR<-BV5amw{DSqq+k(#z8i=%Mj7VCbb*5rUjz2Ke4p{P4$ z$uyQ8u_c-XN7*DL6zKPnJh9;9N*=Zt44cMM858FZx2`*kAYo4-K6?0F2xAJ*!$~N6 z0E|y6gt{I@VF+MrU%Z-;aKKkVVuXb@IN{Y}9b<;SCbWYQVM}?Fug7)-_`_R8IlAZM+qO}ypCkwj>g}jwo(B- z09rr{ud496x)^^R8GpWBe+~e+6zgwAgl~NuZIf&K=0KAUQRcm2f9>}Qb_7u8yCNy| zD|j~l$PT>P03rR;gj?l^6av6%K-QptKG!CNW_f^qZ@?+_K(Dr%@a1d5Hvt=4-h1{yAy&# zu;A{xxCSS|J-9>g5Zs+jaCf)G-Q9Ng+xK_t{&&Bsd$y+L%$zf`yH)ed^z=O4T@Kvi z9hgS?J8OLVVCSrgRURY<2u6{&7&P|mpAWk)DnK)Pt9;Y{vGmkEAl7ipJGhh};|+IN5DI3vHt8Bp(QmV! zVr<*Dry=0C9di334LwxA9ZoaoCYf1PvNAB2Ygi0(MBFsRrL7LLl!Et+3TNrS<&C1c za~&FexPBiWZUIi?#Tu|S+JYQ#dNpg79{Ky_^6CRP%fq*{vdx!mPxz4JB0!XC%4=_O zjT>&6^xf2iypRz1JJ>iTx|h1UBG< zR_(M8)~6dJv*VxEYwCAmW^6qxR_GeXRzJHnbEp6SY;u4S+-6H{JnN4WP0?*bVC?~X z@==xk?<9X(U$WR3%7s54eSZ1b-fK%x0uapmqpHUAE#Pn!wV4LE`^$ZoTi$uu}Xr9W3YZTILIYDhC{J$L5 zw`54V>1p8SgmPF%%Bdi%{n4lUx#pp&1xHMP8sL69;Wa+!ItFxkHQ7bzvlDxm09nF@ z3`^XBA#i-CzUTQ4Fva+fyF9O9srzQijl{wPRtLK-3wkb-fRKa!N{?mFf?>Pxkmzwi zV2t|lU*iDXF*vtMBFISy@Jj~CXg*ig00A)63+DyinhxVCqHO+*LduRhk|cA$0DMyQ z{`TDfKRCqVVVCL~Cwx2un!mHU!n3~!bK(w^(EsoTs6Z2Q(E3fi0>2G5>H|h8mB=>n z{PzyKrF;%P##~nK{{WdK#nEegT;o!M0Dq5ut8aFr0oD7z)xS2PvVQZ~%t-Bj9W!&j z`wyeFiPD;#Z=C=49KZU@RO)RlH5gw1srRsNNvQ_#KNx1wD20hZ$Z-CX7XH!~o5~@M zqr3eN$0+rE@UH=&9`*&sbS%ae9RCl{$gcnBRixpD)8`V;*ntkC-ioqgG2!c2$omb7 z1G`W5N6v@cdVeT7x>KGW>a}(3OUk0(T66k3xSxSqTkJj8FLs;PRZQAV0}(N9#^eO_X+lxB;MN| zd6{8lryA%f(%<4F@&PgvSB`WIJ@WlBxs9jp>^;90Fbs7q$M?%*0XFG4z{7V6rV(&81~#>J!!gBTItrE+G6{) zW1M5dd`ZBct~a!)K3~I@O1_XKN0BUc3R;3bxInCEx(n6g$M8FsFCX6;bUMh40FTVI17bx7(S7x&tufAVm!!P@UDY#4IvxB?%LRxO7| z1r4LrpFc(8Pm(AZGCk8y^md*8z)!qiIv0$}dSPk5D~@lcnY#&XO7{s)z6fF& z_mCu@Qxjhpnuo-aaBcTV>Fwt<1W!p>Z*NU_4d|LXTmK8BVcR?Akhbp?OepuHvnG$$ zekaheb@b44h7A*)q@8$Tf8&i$$+ySG_{y3#Xq?bjXBFE+JCSn18Qq<+miU@xp2y35 zVZjV*YD|_`d+~<7fNqJG(}NnkZ&Rrr&pXCzpi~kPk7ppe!E<-EmHN+hO*j6M9q4&4 zh$9{Sx!K&$eF^-jb!~4iu%d{&Sh?1pdNP1E%pZ#dHSPs%Sozu|#YKDN%<3Iu!yX*m zfd63rqZDcL8IGeq@$*T_(Uu0Qy3xxS=1PZogl+sSHQ7N*td8IA(;r?&Isz`x?V@C) zQY2*ZNt3^_&Ha>taUbn}{dU}Qp(tirjKcf1BVL|Ab5Q&@HuVwLfVNtSh^_VUKSHot zD|%5`=}&9tpa*5!X0>g`*aBOx+8+c*wuvgxCO^BMuw(335zzf8>{0-(w|x*7em;DF z5Wn`;KrVvLYF-CHH@kzdzXDLuq*D;&rA4}&Mer(!GP=B}eIbpu*iOF6`*|Ubc%>n8 z)_4m=vBJ}=uw|mNqgth1gHu%rQ;1Jbku0WUVZo z*x@Cn1k%ED+re2GK{R_!FB@lrPO)o|Sbm=xTO!>&s8aRCVEotW!!XjG;N}^PoFzY! z=XZsxbyDQjlbxR=dp@+9%l)R=TI_+8coVO~3c%!y95F=w#rpms!=6RXAKB*DTUKc` zvhLigwRh>9Brd+ku)Y&ZFm&W&_#oQz&ygaKLBGjeH8?Wh^$BI;FS^h zX_X`-SD^BZFMu6<=|IfV)YpeQp@4-O`Tm91ADJb4#(DHFnMgy)^y{%mU9-p+#+2Tjai3qdc77u_#40$|u;3s@fzRlq$TU805$xy?&RL?B@#UXDrO z$Cn!a-1C62?rVd?$I;WrQJ6&ODnaCwZuL+2Y6eh{QIW3xZ2Ch@=?&7`|0>`YHNf?O zXH5&f691RryLf=NvzsM{qm`wd8Hb&tnT-`6FT0DAO_Z979M)U1|C(Vb$V-2P=lJl% zi1wd6`~K`-Av{AdSCW$k!2bLE>MBcy*Py$|>$$^a>c0OHLMqFDYct~Af3vQ9R8@+Z zJiZypV7|yCe+WiAxjU80aCjUSZ?n2X1U(Wit{@`$VRy5Z1Isvh%}^9ADKkZuR_Zwx54(*^9E%<>8eoP!t9m6$|D<>9X7ZA*@E1qBWxnPQqu#}}{d|a6Uu$h}nAu^x~wnU@OGs}3B zJx(<3h)><;Cz{7Wr@-89*1z@U(^=-nWCaYs=KTCTxqX%O((CK1Q4$?S65TYsl#NE+ z-PIM4U3x^@REnXUq*GOE$Zmrc(d$&R$dZEAwEGe52P(jYm8e70u*QyC5~tI;;mKP` zNy)H9nUCYghgx=$feb+=f33=6I=m=rz~7UT6N)|k`DE(Q$LD9?RJ}wS@Lj7Rz}9RN^~VUym8qgE)gN2r=g37$#!_-0<{k@FH~w=js#~3@a@wI|y)9Cy<#i<$TS|%JTia0RJz|5#iy+_C1Buwm?xzkS;ssyLa8& zf+}Oy4FkQsy%x-osZ$j*ZL`t_1_$#iD=XKK0G%L^b2WN6S9o1rT^Z|W zX+%UszCqQ(`fQ+pvU(ETiY0eRrS^%Fi3xah)-=l?r1YpLF)@+2PIv6sMX=kh8vikY zaQEg(oR^>fT#q%aYt|Qr$j9UjsTEKBZ%6rm0V0d|mJV(v0PtV>{{kZK{{@JMaBw5i zq5bD}jy^Wl5}y741LFVV7U^5gX@F0TkxVM=VJ=`jH~P`)|SeJtkXo(l1j#se3I8kM*56* zU;MHm43bdMT5lgU@KqAdeWuS3yjVAAxi7ZOFVeiJsmM7#k61PZd08o3%w8 zj*0I}5wlwnx6O;+w6Y8?>{k$cy6-Y3mmi9iR+`hT(aTFvSC(0LFT5b@5|Hc9= z>4W4NPe&|Lqu+K5?D{2wR75%l_eDC+W98h2Jp%Q}ZWFYN*R%wbw&XNf4mX*A{)o0GZb#Qt3%<}Q4RZF>1Z?-(1RO~WaP~}Z#wM%2uH03C zzV&Ot?rTf}_c^4lB%S+iAyLWEfle%-%el?T>b6Vw^v0(A=OFStL)Q~u5PF3NVK~r^ z1~G&H5Z1UH2}nCv0%&rnC`L&an(I1IGk$f885Ls1GMK=bw+#{WYvDCdKn~EqwM|eK zkK$3~dO_fk_{o`UC4WDXTFD@P}qfE;m z7>ykP%YnQ!J#&}~N2)a~4c_bPe^TX}L^a#;ymmexW(if_SA0mFkB>TOQe1C5LE5UH zNj)f*S3z>Csp~M90U^-fs0*)^5De|7877*24P-|Am6CL+h|7ey)F-XBVWF6anTJ>P z6)AX$j#(iSfEW2`f0jV{hmb+MDX#0}ZX{;qex5)TCq&L_g zo1J8A(fYeBhWue|1FVA5iI^^M-Yn(%>sqg>_`_6@!CBL_cRLAjs%NyGpGsT{w)pLd zUtSmN0YGC=m*|tl0stUO1Ae6vNRUUx=tie$2$4*^jg2j(Rx%Zp~yTljTJ>^u9$p( z{ZINW=2vOcuSm^Cap<9p^$G188p;m%D>lt|%(#gZ8>0~#Fh|QEkIgJcj zo7+=}a`IhBruPahodin3QuJ`M^!9WzdT+Iw1F8lJsn=o_0%x6-YjEhjE>B3KGW+z; z%@vD1XM-VopUedjiFsYg z8^BinfD}>9^=l2hP}w<3c31u^_GCY?)5whB-<>+mt{-+XNdIMoO=jr%JeiLxp8p_Z zvUcfFBuz7w?WrWd)t|tqu2IJe=LWyQC1Y`0|LP>G;|NkV}$5m2#6`Kl`~C-_H7-)FY9rIWK*WrR-_cd zD&|-;uU0n=i?HkEMGBwOFjy=GM>j9DqKIX9UqaQnys-%cDeZu!;FG)#u zN-`qwK3Ab%{QS3G{lW3fEOhJZOJOLwKY7aj{~R9DGz*_GNm*pxppA8bEJ@0fx`1w-Y*r*JbmVWJ_9}hBdoXtf zN;0#WHD?mBlC1%do`x;DJQjGZF-olbK}HcsZ(c$Gpc&FYVjM4)Z?LBCo&A)Q@iV?T zOfQbik&mkGm~;gtlF5voc!=1Jfa{B8)O?%gW*^!C0X{v$Us6!bzRa@VI}<9`*Co$u3FAF#82;2CIs zHo#D!te3GhvG7Lf)~>gL1}t-}!vvh<>M@s&MjJul;R8BQH(wjl*j4%{<%(_zPC5hF zZ&3_@<(4*}Isf4RV+9`}3nH(7+^=-7p)iksZtYABCmxg-`kq33#J!4dWDS+eDcLzz zYFWREdyQ1QMpy?o#qne1%Z?hS>N}}eA*S~>BD%ldQs=XA+WjL8$+P8*>HC`{G@WC+ zkcB_a1*|HP2KG-$qc?<3ll38SwwZCys*0VJO|$~@@B9qegVNfVh-t`wM~d2Xytl$* zPY9dQBlL1kJ>ggwDT%?}Prj)?|EM*PvTTz&+c=Wh@fIsRz4X-BXLC)>uqm)2@)OpO zhBnGbsZLf>u4gq~zPg@KQc^)m^mU`-fRNH^q0}4B1q*AmUWIdBg6|6Wl9F~+2tZQQ zH}WKkGdel8M6^N(`albPIoVYrJ^6p~fokDSB_=`vQ5n*?oG6Z?C1aJ9J{rOVTo_sm zV@aW%Pd(%4A$?QPn!xnXrHVPh=@8c>=X^x$WSBx*4AZt?l!X|kxSi-shJJvAEOJMeA*zakrYH9SvS&dhaqwfb`)hgMs*2A+ z2k4<9j$T8rA?ytgfzJ*F>9S%UdkN!L>1Y}n83LxSBV&C-r?DEXj!o8cB%p4dFDli< znWC15LW@g#M0nl}`yGxiTJ-lbk;^R(wH>3zU2S$23CE|vb4KN|sOJ<`7sZ5+JC&{5 z%wPpaFWBVBas!e5gMZN&f4(~HXvD-g1_D}*)SDQN~Ww$-nmwj#oQp9 zB{rkc5CZufKNs7(dR2WPa89*AwwsltZhG1(ZXPa{l8oHM96cV=hTviv3sJlJKW%B^^j^*= zjLs+wiW$^84#eu^?;LGc#honGnt3@&Vs|WG?h9CPMF=NChkv_;rSVn`Vt!EZ$f3)s z3$SG*-reXpH}+glEs0~)^;k)wU5y`Ya?ha?73{nExzQb$`;-N!aFqMxz-vup(b{Zu zO^ogA%ET`07!|)`B7Pqmv^Ph5!8Yxqsa#9o#9n{dLf|Yv=&H{;uw!8IZ4u1c{)myT z132xFb01*Ue(%&}?`}*ua$q5om;@q7j3!{BDfw`Ym*`m(Jo{@l=TYG)JTVEO$0p>f zbyaw~q}xtPnPQrWTw4A6W#TuFZoxZJgWuDXH9mWR1-s0jHfC!b^-0CZo3ZP(R;`Tt zn7~ukbKZEtwEFoK5QpbKUIlAU!dDHs5uM5UDb^~ygIN|;_{y$5b)~wl#hxi@Ifoe; zk@!`a%4PC>oSDG*B)V`3VCMYowQ?T0=nzr8v89$B>Tk26@#VjS>LW9He959mE`piA z$>f<6D#4PZ?u!HtYQ7DUVoMelJT!|%XJomRyfTApE2)e5#5bCjnZK*^tSmyBa>fBx zcB>V_iWrs`aEl_iY9IomH?z`?C!KYrenFqI@V*r}uWfL~KT^d^G)a2({?GiSl(Fon=+?WmNBQDa4pi@b_n(Nb=h-CI zUqMydU&AI~b&kHH&1X`paM|o;jXz(Ftgm6R>nFZIi?TE6+Wluy!Pc`(n_MZq!cV5i zjJ39_xZg!pd8hkLKo==8Wo)?N{|$+Akzn|}kUf}5YEq20f4ftg4W{s>l8LL3x5WXR zhUxU6RGs;-3M8wf)hxYU`{uD$Sw_wZGg`fm39U+11fdnlh0mcE|8e)+Vi{V2u?6}3 zfLrAz+Et6@r}LIb&=DF>zJ5!!_+Ckoca{_Xl)TfBaxHix>NmMcw=^SKFQ6<{n&P}O zbClj#nDhQaot}5IL#WThgr)jH^aX~(QI=Qy|qE%Y&Z`2A2?MevM zKU*WsjWK`SmK+>-?hAZi>nbOxCW`jwt0eN&>^gWX$5DunssiH4 zGl?)IsV7#9yDuhFxDh5&bNu<3tU2!U=4c@%$sMFb!;Nqvk2vpa;3TQFQKmW1G72!v zCkE@HtTK^vxJa(1nSIWfZ>;>HPo97@=uY-w+K}{%T6E*WHdY^|x%S&AYdvX;CIh9_ z8DJ!B$r9;#CUy5;Sp)ucohY0SzMaInOi8%mXk*1q2NNifw+;^b{5!%{0X%+Zth=?7 z{R-TIBrjOmnSiuk+Vis7H7qnLjSKob*g{wxI8M`cN^Uyu6W+b+&y*ukNcs@3$KdOt z_I|{2KKaMO=VZ%;PlS+O)fMNrK)7Tz`d8gg0OSZ_^0ggO*tq_P@;AKM!Y98;k?>qP zMj_`@bp!g_P^@p&R*%EUJVuUV;D;j!^i|xzL{zXi!hD1O_dJUZQ(^Si#LvYzGHF#} zj@gl^f{7w0&CHIG9)I03Yh^t9lHLwt#iH9K496nmnHmOvGb}ED=BSxO?2cobk8L1@ zo0kkAkNV+^of>V~#dZGL#WJu8if`{|)=%>*16- z`DK|^E1d+l?NSN_y>9Mf7T$Q`jQVH7aVbSP^f??&bGbNOAeOfNt-UgLD3{>_Tgc=L zle-SNS4F)mS+350eP3r5lWHNZ)|BW0vIj>b#z`mvaH%mtQ&}K6I;JD`@z3iRnk-*p zyw6jQHShLuW@TdeXS{iQDp?O`Zaq#o5J7HLYsYLyj^4RCfDY>v?vS|i)H;g~sFXWE zR+*xfn@Sk9<==y@f~(q?Vcgi-BQw%>YMUKQH~m3c(bdy&Rj@p!H7J+rGqcGVL zJ~n*2z1j@*{1?jNb4YU=y=Ac9)mw2r^egL#h>0jIdA;ihjxG;g2}u_S?(Brv1LX5| z9_{*6H*Rxd9*~$5N&cpORSS*8DOY~*-@nT@vB(qNX8}(7-5^Zw=Lc>roe-_HZx2BX zecM8FZS;Nn-5h?C@D!$b3hkH1?0I+}aXX%_^X*zkCepzvX;h9)TOUs%~cZp_Q&-zt+oLKdBD zB?vmpFTkoso?~}9oo*&(MarP3Q*tL~&}a~VD+2_O$T zFO)BQL6i+sh3#bVV0%!y$bR7`4AT_6g!=H=jb=gbvXRKEjlB3L+MYrQ$PQ&ZXu(Wm)~JUp{Xt{&k(uAot!LIMy3peb;ESuLvnX*X z^q-hWj;oLsy!==45Iu*P67yX}=6;qnDnet0;bGuk(^qPDOwNXDX_PC)kVl=79_sP{ z^;`cH?NVovAlDMcx`|!u?Nw#A-Y=ehn#bB-ga>&t^#uZRPhS_^Vg_0FdJ}m!4TfY$ z)tso)mk1*>&6J|C5**rh@+4Y`NBFLru}-#a*7c9^c$LAx1S#Xp0_4x4yn>hM$_Y*@ z&lR57dq~QF)n>=!eD7+%sf3XZC@PpG6YXmAzU<;OLfu8h8T&1kVw)?NaKRs z{`tdaOkGQ_Ocz-G-~WV(UQ=%^~Qa8WU7?w za3dS~+?Ti0eRT&D@p2ZuI=L}^sZI#GR|1OYBOp$^PEdipNG?B3c7VON)?57V_!`gv zj@=JsEr_~&mr)iEc^~z(k#eBpaTwVB3nJpriP(X+f5~AGElVUVmaVTyx;1`!u?V6r zcVHN#AJbG^COU=ucpWjkxq=;bYGCuMHSR=CtOVfnazptw3_4H9(c9h~i=YYCl2#wi zU_C3To6H9L^@=Uf1%f%i?(?xlCPYjsyfV`0k`GMMA~c1Jpj_`Ro(GmInXq4g3u zhw8urs-MgTadu;j>VlA9Et=ske{DJk*=$xxhU`~Y-sP1W>ki=)2U)pmsH}$bqkWwD z%enF|p?+76jd27cYM#f4r@v=DhqQO)G`f+EeuFzko?7q;pGekj0!7K9?wTlS*^s`B zFm`$DDLYY50_%yh+uBry?v{OpKf7cjZFC$*zRz^;%N3<#nYfjgzEPv2dg*W_uFeD% zmb63V!%D{9Y~~ZvfQ1TA$d|xM8vDhj`fpK#)kHbiZm*{c?c(MkQc)U?$O?tYx(xc* z@38bDeh^HkbRShiXHKLB=<=H7ljdvJDNvMpZEclh3z?sTpdJ_L)!Dv((?Q?5m9|Gs zL}59qf$xNUPSPSw(N`b1XIYP%W`0T2UZJhpFKJ6Z_^MF!h&zGDc<(V*d7W2-|1tO+ zqGO83f17pZ==&<__9e%yUN<-MUC@gRgW>HC17(@sDSCwvZd`x&pansqYm=&3jsAEf8Fw=ps{ig1oc@hIP~#`=+Mi6; z9O}7@&!8a~u+06Kt3kN8G1M3)rDUr*S_? z|IK!P%HkW-*!A);z45j2V53jhVbSzaE~|VroHIzFLD7Z(+I*Pjr0RytaZ;Cp-A#D1 ztA%CBFW!`-CJyV~PJ4aBE9TxOkR~<~h(U`2Hfww!+cCqM(q}kdX~@U*1Ll^2sC(fW z)V|U^GE%8u+bD)BS%H**sy9P&G(M zOvC6Q$HKQ9=5x>OGt!QZbnw_eP?KH2J8aIeLpLE^oMP^X?7`E9xj#2)*yva#6wn4} z5F|6r#p4l;BOPKL3QshT9dNi;sf(!{9}^s^yr5C!g~vOK0?>`&;w}j{;pY5tl$+8- zYaF+>w;WAlE2&E7N3c|4_o2U;A!GXjT_Gc0IPJdeG!)$k^|s8KqQYU);)_}vtK}`@ zugDzb?ax2=yll7QIPSg`jRKu?Dt$aUSDHK#zW9pM<#~c4vgW&5Rm;=FGQ>{r^??rs z-?II8pIZC1NPkK~qs5T|M~>(9e!K=i6yhIyuyErJ+BpcE+uU%^f1&%>3l7;s)a+$Y~wq_n8;K)%HGU;KE%%Rbt7ox3&(xZe-2nsQO|7tFY@)hnNhQ=U|1f4NMgBYna>a~~T_e|@}t2s$yAQM2x9#pRnRvAs8USSVjmczz*re_3(vU*Gn5 zbs_Ji;Av4*d$|#sk8R?1I-36e<+@}r*AJ{=Tkg<)u`Of*`^RS@5je3t2!bDnx|n=y zhuJVpK$g(mYuavx=}YoVUWVP-+wPl{_VfI<*W6We{LWUC>(f-3qtOyxFA4K)(_xF^ z_V!T(lJD^d6TfCtp1e%wGz-mENfp*Z2D2XJkLlcA*!Q7jjBR~C6XSr$BkL7`RFu;x zOW}XMcd~2AgS5>pKY|@H-Mz~F4Yf|n0)LbUv{~m`%{bCUB~>o`$sec(e;Q3)W2xf6 z6K0Hya13ImGmwv~%p4i8%O|ugLvJ07jNz(@4$iF)908h@} zipWux!-LXk5~ypct4lM}AaBCA{!;|yip42O2TWh1Q@$!j#b_35N)zB}75>JP0c>Xh zaF__ow z@p>|sHvhI`o1U}InyD=1x6p5}ul^*H$!;a0U!pIN{wI)L+xc;(#bim)<>ngW9sw=_ zY#p5UPgyJGZSVR36wGb)$WT7i)=>}3l%T1;-VaLnuA(2DVFOz2`klLpPA0x9 z5j8=!>v|l>!5BKG<5}SG{s5K)ljjwdpq6c%sr`I5pGjh;uJagJO%U|O1llDh;Vx(~ ztIF>5a+({UGjSXMj~|o0SS8}*y!Ha2C0g_9@dG$OmuEnbOQ24r!PSgrXl+f}LzHqo{48Cl~_apf`od1*$dpywtxZJ(y*PsO7fLfa^nnmyaVwvc=L-+Dg zF9)!pyU}r~V_-k+EHjkLzZ{_cgCHp9rUIbFBj2qy|E5SqQK?Ub_nPcqIgV`JIc$ny z6#%dSe;c=RCo+bp+T{4`6bZa{3n1p`xVm^3MUuYukdHY~+A$e4yBF|a^pY2lO|TGn zckT`f0?W1dTU>2>`#(y!tc=|0Y?0e|uDu>s*-U8ubxe1HPb?;o(?C_o@fuvNJ^;I{ zryuASTrP`9EC*afPeKmac)mw~Bp$A*I=4)~La1Khn5HH25iO48Eo;fKQevH6ck^S8&m!Dn=Qb#6a z!>3<7EngZ4;$l;KMq8!OyIyH_&|&)_PAcbGLeNk*!y=Q_M8cKZJU%v%xuzP5HfCL; zLE0!v+qPbwLYT9>=JcDUz3C@gox_ItqElOxmiUIFlt{knza{B$hCG2Sg=2Yt&y zl`WL}A0lWkmOM@l62uNw!2ypH=7bloS8QdIR^WI3Jx$e-FI=Nn3ZES!Td_<{3FO2i6}XVfZY{i|M!%6E8nc=uNj)W@J52yQm=uyT{tI~t0_!gBX=5*NYBOdgqe-4!C&(uQ@|-%HC*CU8-(n>#faon(|7n zR;N*4Ch35|3ds_JKpmE=yG2^pghqmg%`Ix7qC2v${%DHeba@-$hhKZOMXz2i_^8!^ z(e&7eg}*<;i7V>v8Y6qxL){UbZzDQKoYiXnRA6x$Mlq)3<)NwM`q2y1u_Cs zqgO2SW%%}P(9p_l6t{i$-~82Zy}cEC5WQLT%Tu5Mpyq$m@Np$IH{u$%wxLXbwunrM z><7yaTSkcFBbL-8mv5<7JzbHym+T>Ic2~d`4H6kcmx~8?bu~q!{%_-mdsJer$b)BC zfX=i77r?5rC{De*%u3*qPqZ4_oYBh+p!G@I>+_W z;l@dlA##D=cnuG`6gXSw_tc0kqKa@BurdLeumRt6r`9}b$+4UpJy@Y|_)n%A@dwpi zH41Sc@LYZe3gmb&Ir|1qU%WTL z^)am};r!gOn3IvEDvKI6=R)oYGq&r^x|mqlz1doZ>H z&|^f9FwWog)%%c-GF}aQN2Tf3Wc1UOe8XQ6nrF%JrW}*YGi|7R;6{a}^B3b{ReDrj zw|MO?M*`=b?($;|?}QOpsypu#!i|IG{UrR~kYqiG>^iG-ozdn)=65dXt;b?VjUzxW zY^|5)cW!%EFF`IlTxAohF?B~aO6+ZCuH#d$j}VDY+!|3+4*oK&k&u-yV1OHxaME`i zY;t)M^tdHuoekvCO0f+bMqli-8_x`SIP>EZG*f9TAgvjy#1^w!{xKPFaggxwVcnH2 z9~LIU?|%@F1#YwGZENYe-qw(j7!C z-z7KgODiI&ES-8NnBGNHNZfJ29``mVJtq#%H$G2_`Vi+|P6(l@HR!`$g3K6s<$mL6 zN{>hD(`W`OB99aD>cnp9sfTtqEQp6j7usBOUW1-Gg(BJ!Y{4P%&Y%~b^w)C*_vVP^ zwi)iCG~2GNi46f`F7IYuqOrh|=0%d7?-|D#jb0S)kC%S#cjR~H2N(0>s=`7dv8U=j zDu2XuIch8eSdZrE?T_sD=V5P_D7(>=T$XEAYCnDwlYbM&5j*O&a|~e>@{i zGG=Mh(3ILe##(Dzh1d2pwQ`D6ct)$A&CvKoBg8?}dd^aIn?CvM5_r&T^(v35kU_mN zX5%hQCZ#0Xl$pAU4u6Q1S4f17eG-JCB|LKS{~CRa1WXB`i*1QIkmBOJog#o>*#vbQ=rXtx)?}G3Qg6?yiyN+Hi@`2Z^lcyrE zwWh8Jie+du$FlU~k(f=I9x--WK*59GJZXN{>1|B6|JwNLm4UJO;;tFESwlhv)_A{x zkIgkAZ$3w3#_Hp)VL?Xz_F?51TPMHi5f3HUK>SI2vq-@B>0D@H|1aik(C-T6AMB^? zUejk(ox5WfqThy~uN&3z39PN{HtRaR&~Jy}?iGc$KP8`)-!j8}B1RW519aw6=w0xc zezoZ-mjedb{13-^CC~sE5?8&TYzk`J2<5^|Iq0mOv(L@q28+_p<)2B&?d{?j>fdkW zn^7+yzo#_|=iC9&-C?a$q2|cbZCRW|q{slBb+bbU7j*(+r1rh>>K{Tk@=dOb9Xc!w zB`Ayb%REkPSV-OpIJg~W{Ikf*nP~M&J^p-CA}znG!xaJbWq$L+A4^P%C$;&s7Gr50 z->p*G-4VFy;&qJ5W|IE;xAu6gs3#P=oz8Eb3#HDcA~@aknsqMccIVa=?!qehqVe3$ zT8SPKwZ7K;yXQUwhsWETVM-6Ub2T>fe#462GjVb3ixdl@9lb!=c@EtguCevwJ=?Ce zss;eF{iJ|F{P8?l!X1jdiW;$T7q4M`x-Lw@AY|jbnn}S!V1s#`F*Eb3^K$W&w)o!R zjT)DS)Q?OoUQflFF;Esn$JxJOy_(R)poJOmoAIogm&^y@lwaM9uF`Tndzr3erqgb9 z(+Jz~H6PaboRdfOdJ&M2YU#D|JwoiVqeJI)7wX?RhG8w%Wj*@^0M7$XN;3z?eV?=Z z?gQrwYW%-pQ2KE{?YxobIy9PIIk4$+S}6s;qrhSM!&twXleqqCt`$`&b5>&k^1k(f zQ{rn{I{(9}V|0DX=r;vS%*P_r`)pV9P(Jq3dls8fi^;yNFIw#MHmWYowlC}Du{muM z`*C-lvpn3b&-?@H_vC5sqWkis`)V<&3|t%J9m2RaBoqW|y6q$E)<6M}Lb&n<^|fV+!S&7bO3r@bH_|2t9Wp zXa!|>&OO|+^|a_`cW$y5*Y1JS@N(KPBy{<-hfF=TB*($Qiz)WSV*H3*#{IJn8SMuf znvUY(>cvZE+%f2kW!bNF%|;|OyLX#q*V_T5?*kqKbzl$5Yb{sgk~uxG_wk9-f7=lT?_YZr}HIcAuqNFhM_vp+?aOdxbz_R{7ASwkJEP*GYL zAcbj*16HdNnwIbLN42>1;>#!LSuk%*z|Z9z)E|tZRBXfv$|+`WCdFQ+NN*ZBof`qHF>~k0`%HW8{C=vd0OS%8@{py}_Yhb6gHVUGo(0s^ z{Eakx$>KM<6=}))XC2JdJ0qB=@y#E@=vt&&=bOjX%?c;|41UqwH_9#?ZR~7ovv(F- z6%jTowuzSL*}kY|w^Xe^-hx37xi1snOyWa^foR@?8cpuXsgC)G9~TL0AtcA&fqeqp zckTZUE;?a#5iOmj=_J-D#iC{hvQ^0Uuh>FpyR!^jV`+{kHDC*#U|pbf^e+Hu9n&-c z(~LB_M)A5`cAIF~D&Ee)@$$uQBMqNlp7=`wps3wWUdOS$qANlzp|!W9zrX zfOqDm2}Rv*XOplvM*y5H8gh@&k{sr@us7D`W$oeQOrl!8GMdskXLldKSK{#ckgC7r zzKEbn@*$d+>2sk&l|C*wa-cHP637K8#&TuhXfc(Q!6ne5A^c7#Xs%+(V>lZxym0b#YO||YrH5bGLy3M zgGGPZzsCu=_w~q$Gus(U@OWb*tMeB_-xhAZ2I$ zLB)rXGl#~Hxg#jGvirPNX4)rc))9l1N?A|lw%L`0xq9-N$$DN^{0f$%RrDuEiPX)+ zKSho(ypYq+zAF~iUkDgn@Fz88nf`TDQE@s-N30`!2faMhz!rZ_(OTAES6k2oh#={? z&do(|G5@UKwrmV~L9E9$_>`j6WF)F3DB?HoJk-b)ty*GMahHOaymzs<<8OvM^4z0Y zPtAQ5B_^6&%;Rktzep#;`ce#}A5WnpU{Z`MjFitdy_U~QuChIf?mKt$`r@9GTajNb z7qBNH_dO!X149Q!QA_$@LO6?4zc5o@vGXb6&n%G1(XXxk%fZGKYPeYFE89VTOH=i zJjq=6o#V;`rYn{t=U5d`f4zO@Z=2GL;p`Gs4+a4BpL#D!n<&f4t;9{@Moda_uxiXk z2hQ}TpEdO3Uo)sTVpbYzaLDqh3mh=X_n98hO7iwNSAMAJlyWAcXgVbOW5pPXAi!F zVeEE#Ppn_H@f!#yT8XZQh)s;fI-gG0XNGYuYB(-^RJXLf`2DVIP^80pq^El(f8$Cx zRdt>+!p6R@{-8OzV}bj~7k8sm?h8PONbu~N*4e^u%7^okv8&L!-I>k z?BrQ~lw}2o*qcjndI*TE%%C@iVe?XCwA!UQK>AA_ghWGE5IN7uNYXtzb1#$L_rSB# z`8b1ES16;W))iGOq@uIdT(U?KC1$B7!m{kVwQrqs8)B|*+GlO;hL23PCyXYxLNqud zY$rn;8>XhsO7BsshbIXik6^+d+HCcouF!s@YBg--Y=Nfz7)2|c=(q}Sf2z)QmYCiS z9L-EjvCTl{LK00_lyX#X3uu$@J^)wLTA8TyX`3b(!!2BYs9IpmjuZ^BOJt0=eaLJH z<#L{-Es-9haCA>+f0CLZUhETBM~wF=%2OlQmo1#d?wmm zodvIp5wCApPv=r640ENbvBS{ijO|x8+b%KQUL>u!&Mh~GstcDqaJ6eNGh7eB#)=Fk zPus6J8ntz_WfpJsBt7O}Q{4nlsvn@g- zu8ZYx}rlAK~_6PVM8u1E)Wi-Vv@81gKFB&0Ft67HIp<1zcOOeW!YjMKABOv zz1j1fFZmPLW(B)B4gwz4qouY5Oz3pbdIh2XMXu(LbMrv~ti!0@PHgZJULns*;s=7_k&-^z{m( zz8Uk#(dH5Kk_1-sy&r6E^&6Y*%3Fx(CjxakE;I)5nH2~HI-!FgAigrkU2*?!sha^IF@<>+_t#=nNMYRE23ecxWREymS|fd zy78*7SGj`pGUvX_AfmFa>juSSWv)b~u8sT~7+$C5; z#DlxtU_;xA{}aCGH-Sf9Esy0kHx~%FX|@SAZgnE7TUhW+aq2X{#+I!xyuQ6)=CH;n z%bAmD+N5^vMCb}hJ}<_&73x{q z@(e55QPwDJ>dJgY=gh;e&;cVJM}5yu-GW{^o~H|5b(Dfp)0wF-hpSTe8J(}+_E&~w zY;VwNx5u=&i2(bvJM8MdOR&9AnIfmmvDFdQANBQmL*d7iF7gZ%bDeqSO`oWsj2`EA zzREGg60XPIMmhVvnHJ0N^oP zrf&ctHk11FF^%}$(#<*d53|+8R{2iS{nfD&Vmp(8wcK!#*DrkYu=#>DpYEMk?me{h zdx_u449{vkv@R!gU3}7Qs^dt~y|h+Oi3%0p9n+b@XtZ%)44scvjXpqh_DUo4&H!8f z^1nm~|IWnPufkyHOL^tC(^WYwn>Xt!V68sG=1I?CU5fj)YNk$upHuUQioNIl_ha{K z7Z%ZVHuj@2mSpMmczrXdGQ1l_5P2$$&HkK~&*Wi!LO#ko zKM_3^m6(W_%#%cmpN{quKhYq<|1B4k-&Z{+ih4nnzdeSH6>zct6|N%>GZ(iGe1OI< zrY^;Qm$=h+UEmJ4=<9e=sQ$YP_%_274$=LMr*bpGzsBG%#Ik$SYeT51YalTHiYS&H z=smgf#_aOatR?J!#gDV7IUs1#X>GJ$4etLg_37~5G2Zw<=f(Y3is9U)bN}dWuN=W^ za=l0TPu36{BFkt^&%wnutp96Eq_u5%jGhwz{J&}_aMvC!PTp$*7E=Gp5WI}A<$tx| zFLVzyzGKEvU`M=gPLmHivA6T zr-l-%Vyhs+>&TK=a0D=90K>ouw>iVa5rruWhnBjO^P-IN?d0iAL8W~(JiMye{Wo@> ztpP7<`Ag^XqXF>6A+(Q46t774$ z_{zO}cH>kHU`=>(c{yupFi4ZDDe%!CEI$#bo;1vC2bB$MHxJPtMc?*-F-3NMG6?hL zo{Wf?M7Ygg54}4A&OVenAYF7$1iKlB&Z!Rib$xh#kJ2Cj-GCSM{<|gq&Ep3)_SFtw zGWluJ*~ab#KQH^ISYIr=pUrJ^M{Gov^|QZzZuH%Kt0Lk6vO|U3s9dhCpw~|hE+nB)Zfh8H76|e zY_ltqvJn>Jt3$qFC15fXgn){icko?!L)2`^aaDR8bB$s?XhIAim(qkh*9>Z#^T*+J zI0u`lQZ&{v8u6V!`m5dZPeET^N^0n2sO0QINOTZWw7Uf1LIB9P^7Wz4_vWmxS_t4` zaBb&aPZn`Erv35TCFs`U9%_emjC;2*UEyf4qLZ|!YV7g-J#U{(pa`L$ZYW*Hlg7$F=HFT1{R@eI_4YOCZ{n2kL zOf&y0CkeSU*%!T}Y+71u8fP&q(+ zbKj-()9eh|asSCo_(^a013x)qJM`%&zd#Nzw|k7-P)x%^m%Z0_H@P=wd%dg@)tUYZ zaTndI^gbfMdPSb{{SS21<+ZH!B&3m2ME*lx+6dGl(;Iiq`KJHyjuFwT$OT!{7Z*#} zPilx>)>zQ{2N*01t-NnBh1UrSQ1(49wfP_D`AigWxI+jbzH40Ied*7b$bZY)6ELL6 zJid4vqp<2f=v4*a7lRXumJE0P4+;UTI$z!Dj6Qq)gs(n(Y4YII{43qiRb(r{>S&5i zgJp=!=MuF4pq%ST>qs-_<8VoYx;>mY+TA$E|5`O7#=0TT-pufpgclXF=U@274}xP8 z)Dzui{_oXr%L0BXF!T@4sOC9jL0q?H0KY(fe)9i=b!=o+fW3f1EjAz>)^m(rB9dA3 zziK~VjXNKOHeA)F$_&W}{<}zRQ9T6Kf@8n?`UN7hcClh}&YB8UWK8(?ts_(@D0 zSGO7?-!>buDm6-pjGY6@DXSdR-j3aHj_TWdasQEYIsk6@El;v`&S+dT#HhBn!|;pu3Ix8h zrmf10#qGvUEys+U$*wDwY*H}rHBu|X<9P}F|NjTwycebXL_j(@89>)ALnoZi?qJ@N z5$e+g)A(NB+kXR7)qh{vXNIyefs01kt*67w$tTDt*N4yUXLaCzjHznS&S|!icqsVe z`XVG*c7P0>uh+M)y!KHNLql)10@e>)$SM7)EMAO`T}P2#rExL7e`Ltd?O zEQZ_?w`RD6q;ZUBEQ%I3xIt&CUQlEWEuKF1f3PmKcSO>2%)GCSD+Sneo6Bwu&JpA(ti!vJCT$A>QPG9KFA2r%UfnKrwknp?P#}D>h zFb<}`nk|FYrT2h!uo=XRX)C#u3uJ9(UeH;7wHO1q_cK{|lYjU334Id}dsHge$E!vg z{UeP_Bx(&QO8>mfPYe0Uk8?V`v~mMN(Qoi$2f+1xN96U>%G;ymM1kXrqx1GVOr#k;mOjh8dLd8y(84AQV^K(w+19aIM`4fG5yuac;APTQ!=R>H~lwm zt}&k!;$&nZy5A-~Y}73;bEdMtw7|DKsr1|dmmud{mjql+F_5LihTgGdDAkKdECdf%QqhVQzjj!Dp73p1E6Hly*>(+&~WZ9lD|HPEG3*> z+76eD>x&=_gG;@!@q_5Z(LZCLiy=?$v+}Gjo))NZVC+nEco8{HTv?e7y-SXKY87T1 zKj1oSjalzC<+)phBtG1}w{LdIteX1@IOrc zW8;~RJxEj%bNM5mCOA$|LuvnW@M@YZl2K!)O96G5Az9>e;D24hGxf+i=ibRvYk5>d zauuW24b`+@(QruxjCG_1s1O;s5gUkB?t9~8*4M_{q9d(2RaAFc(*t{MEfD#G0b^|x zJHU#Tx?M(Us0pjwYkF#7;d${R@>2#QFJl zukFbfsg@}wD9l5i0+3>z>>hSX`_G5$e}yf@x%Xdi33iDqid+C{7`zft*n%?P1Asmk zORXD1qp)6VK)=7h*_5((f3&6+@aR8lzI{poTIdZJoq80BH?2%-a&GqjGJb{W$v(}p zFcn%69}W+njQJVupRfSl=Pe6%B209#Zp>n)uBTihqGmT6jmwv&rxW8A2bWgvd>Z@k z2;?MfjE&yH#H)VZJ0dP6?B7{Turh4$L;DxpW=CC?q0Nx@ApCqhE=NBn0M$v4OR=aj zZz&{P;vdObqEgyM-l1FxlvkE7!qR(N(P03`e zCK9l;#7d>u2kVRN}x};39>8J^1TNAYoxz+#xzE4IF4m~z?g8YNJJ0v47VArVifY6ZzE+*r}+!?sdSkG_mCqaJa&3Qk04g5#v*I{>NZE$Vb_n+9S0}mZdkmikCHSXxTAUtVm!oy~xp8X9&hAN~yjcgQ(;{V|^Si&8z zt@A2{ZK0*z9w7BPdm858%H(gg6)io<8Sh-Ho1u4=>cU8=KJqud$fMu6&^D#Lh`0kH ztu&m?ZpoZS$zAr>ub=~5w=5;we_{WDK>F3lGU;4`DUo}I{vi@bh}=Gn#<=__aILb- z2rC~t{eg^U^%v;qjk|d}HPHWEx9gXF-?bGXbw=6w7C8BMZi$IE7P82VT>0FaS|VE? zdM%T^kGbPxUC`J42)g@~)IgA7Nn$(L!i!XUXxu}L0jr@3AETEyV?j9Hu}764QM>^mp?=754r!kxdr+z`>t4(vBs(p z7U*I{YR(q?i(;);3wu+>`Kcj~V-y7))_dpduLmhbZT59|Jg()L849J*(@ARH?^pi)|ujZ2zIrsR`I$*7G1RP73bdsr?X@-)s96j&a;!xzj;Ly)icd26h zSWsrqv~xFXE9%yH)JJQJtz0VD{(=~{&wvo>^Q_4yaI^myc!6kP^kyv|#Z+kD)a?5PkH^M@j$)Oa;_ni6YzwrAo zw*J!c&9WP=w0en@Bng;0cvu7#vgXI{EYp}d z+SR;dG4hs*&ga_>6wjk=&pX1G<=^t!{r|+>j}JwkpGjzL_Ei4Yq)JyY3kMkZg(!ne zGwH4B>4!b@a7EI)Uo2x{VUDqEyHf_HECY>McrT}`qioCIVfAJmgUfeFF-7Af@!E~b4(LA4$}pKrp~Za56SmgKi?0|)f0CYdlM3UYf?T`59;Y9}WjX~}6a zI}ub8OEdndc0f{xff`vd?7P2YN9$jl|I8(M5&I4UUJhTb4!4$BJA*%UqZm8{pZ~c; z6Pg2PXj?5tSo+2 zz%@AWT#mUSriGP$PX?!=`;OpYu)#*CBEqAX3$AgX84Q)grbHQ9Fd`R}RN8T~`RZH> zc*D1B)~}kfW1Kv`dkm-1$Wt5Oze!DA)dCKsshYcEkLLO3De@hy`Fc}w=~;le+C4ca z-Ls+O1hqML=r+*37FxmAb^MVn(^6c|v00}67~z2A%QmOXhBAuZet2Br{r5^T{0p>7_Q>*g?svKXC%%b~z(8p1=w&M6vZRGc%Pi;imNzofj|N@8 zlXVYjYeTowUh2PdW1)dnTpG^Wu0nLL-_I8QzGKZ~ngnDRYXp0gxmo)(Hf8Xz8+7a^ zKB)8nW$0;z0k!c8Bq%SIOcf?Ts`*dmYA+n@ndRQv zZs<$XjbaMO_iko*Q<0OpRQlkkF}7{I-}}SI_^sXmL#A0KA%&a2qgsO=Zs1!CY(O}u z%?HyMB^FQqig9~oc5^kq=PQH=thez8c+Q$Y*EXDHM=72=Pu%*@w1Em^9i{EI4HM+I zd&ae@&ZK`Z?7{&q-*W~mGH#V8(OBe;bJkI>0Eg46WK*1v zU+x2=)6&?ttP-P)B%d@J#mB3Pjft9%Mi2F!Jf)};EU7=7aB%ByYS^c3kdUB3b3AJ- zem{#C`m&Yd2{fW3{rhkv6j5McQik_{ci?DKMNKwpF`sK$g z=}L|D+bP%?E&`0d1Tf)nom!Gl&tTov0=R@09tTZVctTtZzPT$=O-l%9un@<#CWNa(MbkU&Zw9V9Yxj1;^1Y zA}(`&5>`HzLX78Xu|`j;ym@H7QOdS{H7+*eFkQadGR+|MQ?ZQ-v9uQq3;=QeAfG5s zG5?30bDYE4oQuXUs`bSmJ4XXZUH9VMPrKD!DaY^n6;Kp_+)j7HU4yA$a-nLc~jbA#rn5*4{Nh~ESohS4~T6XnJk8_=gbBl z(eeSt5ghXdEMfzvY+`{ zQuo7R7Tzlv`nh~g+nk>An?Okz74$2Jskm8{iQXbQ;hor(pP${zZIlPAD%lr1$bpM4 z^0+f1`~@vD?qupG!k5>}V&??*t)SJ9{3Ka#Ihmj&D0E8cXBEdqQ;-E0M_fBrJYS50 zY$uy&5py;40;FT!N_Lo;QPhm*^rm?pChQ$V9#dfq<5I1PRqOptttiAAlSo3lamvUl zQ#M|Nr=cF={dhZEH(givZrRuHT}R#7>wf4DpHU>IuDDk_0s4xZi*1d7W4wp zO(bSrl<6wgX!^ICncQ}vKk|{;>FGYFZhL{Bp!L=+Pr-jKj#{;s1Gz$LwuR3VCPE>; z&6RYH3~c_PH2sVor{$KGl#Y$1JboQiW`C#%l))FTxomGMidYw4_0PlIDp+1GdKk4< zKddukV~I)>xN>xP2am+@qIy}0{&);{STEE3)nq|~W7u3C*io*S)F1Az@KW;Z?_c<| z@^0bt{UvJ-B|DBrx4QcHt$hZzuHmuBPEj~DxN?`ZS*56Aw>V0lY|$B(D0w@7C{l02 z>LRB_h;0!J3slBc{Y9~}DJfeKB(8l$AM;awMre+c3M_E{GfbmB{FV9IXKm_^U?Y&X zeB{0;n#jH^1Y_jP1nGqysmr#X1wls|;?i`_^KhJ5XU?vwr7s+SlpfS# zJoZaf#0OzLaA$n#!-D7Lu(qjOnj9IV*?bnPr@bnO6MK0Ze_E<2+3*k~=YRbO4mA?F z{PV0J68uRa*vhwwRK5uBPOfm%GN*iG7A@kw0Dv#`oZuzDk&8(J3aXV7y`yNk_cW~~ zoKvsVWujfs&c{BDoqe!r==Eu*SQIa0<^}iZzkd!q%CPkicehm^?2}QTjfTL!Tk@*ec*~gO% zO%R#BYHcy@7^`rw_l;L)6@JB$>!O=$75!R}5K~Ur=(hy3V9`_Dws7F{gNq`)V-pNX zfY4WY8q3Psa6I{aj&qTh-CuT6_m5Aa>gy|oB!d|RIUO7DhL!~~~s4!y4Q6B|oG<=yo$B15~< zh)!c41F6-%X(w9}4LBE%dgKHe0DPdUHRBW0*mPWEd&r@8H$(51sw-sr{Odg9=6Imx zz4LrO>=w7nSRUJc-*+3A<88*WCqi{Qz)0d+vy%AYLo#zTys}>eoGW@2R>-;!L&3=4 zuLHsBnkAAq5RUE9ye0rXjp-*kW!g zBRw6lmRo9#ZggLae8FKKX_n%|^sq`q5*F3Zc&sAO3w~rQN60t{PD@DWUYH#oqqcAC z-sc~4S^&-Z{*k9o)ElQQL#kz?jinzZh84|_YdK@vEQUd7Z{XM59)zZT*Z6M_Nk0KL z@0h*+fD;lBAiW7uJ*I%{vMsYcF>)J_I4Z@bt;SLm!MGaPZxu#Q17&db+^xqO)aum} zot}lGPJV>t<2RA$R1pb%pr6A?KV&dwhpTA4TsfYkcLXul;~F3wS`O(MC5rqEea$B< zL9Z{|XVzkQ5;iF9m+bQGp~0W3Nh##lzU~UTOFki0gPGhBs1YE^jE>5D0BZ2v5+etO zb%29z(tL~gH;G>;+|uf_W_yRW#*~X=C;VI`_u0h6h=}rKNi1bj&ja}=l~YHeZ$=-& z{+wOyaV!ej#m6RJ(Ba}J9s03~5o{PD5Avb}!!ICKWn}jz6-+QA)JgwHZ!{#QjK|N4 z^0_AS@DkY;6F+X~ytDI*bD7Rh6pVrPAN%t|W8p0Qt=WfJEEpf8w^Z3kOy<7M%I%*T zHTg?+Y0}oG$a84ZV?R&7Zz-%>Jl4Ebg4$5d-BOPTSvZv2E}6k?fJdqK{!lhj8KIJo%*k_Jh>zm$PiSL04CH5)5>sYAAuDl? z%JWQWaRShOQmRc(xny6PsG42ky;jwp62o{|vZy39$8phMlu&RoHxM@s8Smr3{PJfu^dI+^|Ew8_Axzg4j~~+YRyTA*CW;dl89O<92zZ(e0&dNq0{he=!G8k@!uH%&7-BAY+I$0HB{XR9@=jZ zr_AV^_;Gr)IV#T`dQ+*%Se}3%>Ji_7tqd88MknIL4nC(bsLPJ5Wdu|avP~QPGSra6 zOwU^4PSF?bQ-2^m;iIOVToRoqKU5N`5E0Bsy{dR^zplp;G(^s{uEudi6wV327Or$K zmfIVqHE~IkPRFCpq6W;LM%jqDPc1ba76m^63A_rsS%IJ*=aU}tz$45dW*%2I5iH|X z1A!A3V6`;-YY@PcmVv6%X*n$P{72Z^Ml`(QmC>Xh31~7|*Id(0bmTL`FvW;Cdpc** ze=dMH1uF;~;UI#=TLdZvDTkG9*F z@0#FnHJ1aO1&rfr=U%jEizKZf%`3~}QL(;6oW~bwWK7fZUe1s0eL&*Ah@*J)>DwLX z8d?w|EzSDPyIbu;H|ki;+yLQOLY*dk(bIcS*#041aZgXD^pc{E=lmSXV!X^AP|#xjLtBcxGXBBI~Za34IK3lvmJa#*)N9Z z_GC$8!;`V!_10XEV^shM2?4d#SV-99UJTK?aGDfexdHj5EV8mI=gWBsF5i}hQUZ@g zQ#kZaGU?JyT}Oh2GUDMhs|*3@PJp_jgfd276bPj%RX5c|a)Rs^&WXmG3dz(DI?~$w zWSpNFOFt2`&aOb)Ev0%l(Np1Q8teX$zDhl^Zn9Ur9eC$TFIjxEBM=GKn2sCIbJq~0 z=o=1cX3CHvdwv)(k4Ro6&44X9En2ZfW|t3%-sVh{e7}F`W>nlF`-)qoxHq!5D(@xC za@RWZtFq&bQut4wyvqzns!kBHkdBXsO5x@jU%1H|(0|1*{#0*11ABI2cv#`dRwte>Uc|59S+S1C8`O z;D~fDvz9!W-IU#`dD969Q%_T>S-(#TG2-6fVi81OdZfpHzQ1*OJe$oL1UNM&*5Feq z=<$xd2g|NCo5yN9M-7iyXEK*(Yc^olAJSi&1~P}NC&`dnAmcD8^DXeT~8 z{E{P->Y^pGO)`NpRuPFCP8;zOWf=%JPg(KIf99jNr`O5ll|h!Q6iv^X~8p^pPYxxd;zEB>Ui7WE!YX5 z_Y`8-la<{#vQM#}@DMXFD8F;CEuEhjBTdDsMNCOghf*9@xbSg^3f=txV>-Uy{lu%; z+C*p0M&KFZol1=MDbb&I3CXAwOsiw@&M>uzF#M_g*jm~W&~0E=Fy%B`azF%?HostH z4+6mlIxf*jqF(Jc4o`$hhF2k z2i#d;;Jx@09&Z($B0lp{tFWSBQ+e68J$Fl`_xQ5{E-3w z5m0vhB6Q&BsQ?e)@tA*QYi%L4Y_d~sC*;z@NYc7Huer19M0qanq5a2cb3KWj%5QAb zlf~jpc^=|@C73ok72bOfgamR|K@xi2u4~zc0g^H+pgStbA5GGX)kS)a+*%^3EVe3B zAIh>sabL_w1JnDV!M`7;39_tyx5Ys0oFP(;YlGk)?8eI}btaw`+E#KsUyy~Mpqf5R zJNYXKb{H-tQoZm8f!0YQFO`s_!SKjO+-nlfdHo`-qd!)``@9VF!mY9)5$atyVZI2n zh=+;iH(E9wou4lxN=Hv-j1wZwW=W2H8A-;sT0i(|ZP&%+3e_fWkyd1HZGNw3qs4uN z)lA)ym%!w>7+Y$kRG^`dXR_A9W9?7w+aRKUEKQ?|!8v}hTQ0hsr@^iJ^jgY(usPXrH0Mo{LsJIRSLp zgkH4hbrv+06CWS^mc*M(VffM3?P9HVU)6UrX^!g{U)ko z0mEAV)5pNjw?U)4h{q#q1g77*x4y3GPnjFZ8}8e+3#A9opPzqWU`t(&8z-HI%X$e& zyW2k@6l-@KWPW`t7=(XaIF;aoM9Q?fH9wE(k#|`g498+_HAV+f?kq&>DbpS6Ipoc| z=r=lZ`<)sY`GyYb7M@&#ns!zrDRBe6C9A%-b&1LpzvhqMuJM`p)_Hx{A=;BH9W8$z zlK7lcyW#An*d*k}QPB9i%NXgfZuo|j&-lr`BcR~&EdRE2m7zDI84v$%35?Yv3t36z?}#d3Fog#Hgx)8jF5f z{*XR*ziTtAh)UtmxzglhUN@>A<}0Uvkh0=TIgI#+*2|u!n6T5^9dAL1P^Qz*=}w64 zlKGNEaPtj)bY!u0u<60W_3|z00=LFdwu3DJ1>da7@1wZ8`gxrGd_{;7j@`p!Ny~Io z;tA_sv>w8Xv-HnRGw!KB)_BwUBE`#l34ov|vE)YV3++|N@7AX^Ais!qj&Qci-UI@p zc*C7r^LzQ!jmqdMB*MnmTpsx%bCg-X+|5noJN?kzL;RzPXw(fO9=B%VcMXtC*USBN z$l<++QXR`mX}W7Ejy}*=l~!1o0#AJ4Th?;7O;=RKady*Tufsw2mXJdZ@y^4mw!V5( zlS%QT>$$RcO*4T!$6&9O?(R$zE7&zjH}?&B1oId7$>$^EH7k_d!2=tvP*5)!*sRf9 zV2cS;YPg-jG@krh`6AFnDYlE5&;Y|8B?7xFTs|ln-gGZa@k5zyu!MaZO`)6~|1JZj z6dp0>a>mPLdMpNRgl;sWFzOMSLT0#TuANnM)%+gAwuow$Qx8E%@#8y%RDXF*xg?YFWjZ@nsSeB0j@p-Ap%kl*(z2gEK|HCKhlpW=MOgS)06ScW%D$P3 z(_}S&21_Bb@U@7DU-E$6@VzzJWRqOYGdDLIrncUD@v$RVwYqit(c@DL(jQuDRqBnU>2C5}ZoL%w9dJ%?k$yQgtB=SvA=ZoReJ6Oj zaL)p*t#n4oYnz2qFPHkt!d62m`)g^4SE*)HjV?Nv)q!PP_HzP1A6Z1z_hnKqSb(P2 zS04lbV8qRh3xgDpp31bweyfiMj(TDz@3)03#qrD#@YpOQg8&~dT{J0+l;-X5)96@? z^?QaYYG=Aal+XkWuhS>$vD&94h4=KT?s1#X<}=`P_Yw-CQakDi?r8_%7y=XFEVz<& z>q5xaqdYTORLHzSZWy}wa?sJMI7B|(1DdOE2g-DbnAcTRTJKGZ{{$XhjC| zhA{%c1r4Z0UusJ2o~D_HMjLqi6_xQFbO ztX&Em!|AOvPocto&#H+P1k!TPTE>JVHxE5&s)UnU&#B%bF-g~iqg-f8bK6`fz*D}R z#f;g3?&v4e55u}yM}&SUXl4hc!HM&YC}tz)A#IqK2xF`JYI9@l;7muahDH(*$Xp|i zSL1e^?Y^lCfagwUBeHNFH7HUyx?~7ff=Z!_H7pIQD)$aDR)PUZPDl{gMzZuJ zlBszJna(9lAy}AyJx(Jw3QzZU0>&j^{i-dWKU}`w84J9w1RFt(~opKX7xIoqa(%pjHArjZES| zuTc&xc5aVEuMe+15Yoj5ex)<32@>A$L>|u^(Dz^KF{C->G5}rq&C`ZSGSGhJM%qy5Yb!wqI)`a22@Lp!PB={J!v(Pb5f!+xt& z^Syk0KjX*yzBmq+9B4ZOSYbmu-$mS^Ncp7}G)b{OKh#4IoiLo}7VXd9;H=Pmg`WOI zt@W96A#|VJ02i%VGZ7m5ka4p%mGfzm9fDvA&lC^z^;_+xowgK1ry{@x03-E#LOpnO z?qklhAL-G0nq!iNj{uEZ+-CewkO8kQtvZAw=;qtc8~{L|rBVhM)v?nFeZvr#ky2|w zjdn9>q^6YG3`rsHSCKUf$~M~rL?k<4sgaHa^^w}Lc6Im6vrA2x*88K9f+8+iX~ ztiB5UqFaTMJsg`Y-pGJ<42{Z26 zY07R!rz4SzT7}z*93(>*5gQ;`x^bkA^Tx}~9`Kc9)W{U({+x6kns4hTKji=$0w;qs zWS<{mPzY1E-vaI&O&Xt;-_0!-6u2P(BK&+%JHK;ph>0(SQJ@yV&bsm9`11}+3;vX* zy|RPO2*dVCeBX70J7)*4eoESEpTDTG$vlq{hW&*97v2HM4A?HaG-i+7$wMr~)K~Cs zr83h)Ky{`Uf#@ZKh=rPlV?~F>#i*1a7LIC;yAGSu6_(O{n243ni3xeR?|2i4o4ETK zVXNE8QnXDA!+E|kBNUMXL}2KSB-DM6hUIs%bIP{rn$#LU$ty#R#|Nz|T&(1GIXZID zBG3973}=K9Tcj@BJU=m=S!67Rk!*csL8%hAhY{d}bikOzd%P{JoNa0^)%ZE9*KEPq zCy`9fxI%Ua59y&>5?1decZG0)0-#BtoyUu+cFy{~%_5n*)8n21g-3J4rtt#5CQVYKHtE+r z-cl1PKuSGEd@N-6BCkDv>2Cr7L+p#R8?-|Kr7}X%AlAl(FaOZrPQZrS!Z%trsA&ai zh0uI)28Jl%^U0cVHA}WoP4X2&(^(H%`|rD~zW-mFQF;@kcLGRnQBbOifPjD$DIzt}krwIlBE5qU2)!qi5J*Vw#`inlne)xLGvB>) z=Kgat*)v&d@4faaPx(D%ue4JDA=l8+%(59tW3Ko}qc@urnTsIUJ9ae|5h|53;sIWE zpY0FM8<$MO+m;$$_pXO~WzlcQ!xg|=9hDRVcx&Fj_oRNM=QY?JFuLYUUsx8IY@rAM zuOvoEjx`rI=Q_ou9&u?QG;QNP(GNb(5!);B8PuuXei3&D$iArIe#bA;y?B{zV__viG_bOC5Y9|cwRO&Ti^Bt zBPVL#Doq^UC|PHUa1r~XA?a)aKuehWQ&r8#f@F_k? zOp30Yx;|P83L=%u9g42Gtfv|eGCgAQeg5^^LD&3nKNNWB?XlS`g#VG_7k%2PX;7?5 z6s!GW`LpTz42+g(@0H51{06lk!MW?cx|cAIl?59FY^YYd`_BTO!dJNZ?6{AA zS?aMmv@le7#3U(wQpT*dZ-Gv%)OEv$LZfL>_|c?4PydKip95YlKi@6jXMg4>eyZ{9 z8w1^>p2aJpU8G020Koa>5AyBh$?2tr_Ki=WViloGgTX!Ys|-6g?o}#?j{YTCN4l>b zXT~q3NisQb_fP^WJydT90OyTc z#}`)73G?kIoW@s|&BUbZ(o6SL0=Me2JDb{K#G*g4A2LgrSFC9XD7_$bA`p7GU7qFM zW43>!o0_j_CUGO;It6#{v8)d#3Z7L7xWqrYBoKKmKT6fq;?E}JX=m{>!`O+PW8cGA z?K!SSS^mIB5{uaeOsKgz=6q`ZS6)+f0?LlPh%$6a^i!X{iuRDL^V|dXM=xs0e?QC2 z5Yvj5-hb*E+bVk~J?LM(0D9EYV4!2ImTTA^*V%2{4x-8s-mjDnOrEz;NVtG}(5(le zcNJQDm8=o_XMJBJ$_~qK%FK$l@1Tv0wzjs<0p8rp^678Xkq# z`u*uW8%u8rCQcDpPGwF9{Z~eXG`bVI=>yr%cZ&*N6peL5sDM?0W;#OXU3A=3tGK`v z7$kKLtWf(bbAyr+_T-0*n!p=&Db5Gg_pRDNXfZMStQ%VNGc`{zV z*vkCE11YE5CB0u(KzZsYrTE0XSyz+*v{sD;G7{JkwMKQ3g)%0 z9Ik)6p`U^%PZ!Htm8}DBGn$ljNID;nR1**)KX2yD zOneek*84l|A^S~br5jJ&pUSR)22HjP{}}dyY7qsX#BZw&c{9$s##{TZ=eFnEaT_7E zj6Zs;(1&>j&jtWbUOuQPvj)?9=1Rcv&{bHN-_V&C??-{@|g6lW$#Z-s38n;hLu^r4*}Yoz|pi`7gI__}tW^ zXv=8|nTtQ9%TJL7fPI#CVW8;!a#jXwTDq-V>=ShIElCQtz(@hSj9Go=IK(il+g9Hs z!3p+B$U}bPyqo^%Y5=wc47AfGqK-5glJo){%valNce1%D^6Jmc{iaZHdD@Q{6Pfsu z?ZCVz_6WuUdj3o*-z7D%X56glo1t{3SBZV9S@XEXm;GTiFT(dGqI%xNcjF_%hwU5y zFdAL57O{q-%!P=5vb;1`p>zFLg%^+`eN{+ zeY8*X9qWz+mvhD|FDl%Es$^GsKu2)eyH5&vO3>PeNpw;A%#L5}Rg35;K&zta^S2uz zq6p!_$*}}j^h{=ER2imW-c=QhPg?^GlA6MfAHhrCodHML6(yg+rWqw>CH6y58RWTO z)3Tc?AMa9WUwm*nhx#hNe)&?R2f2K!vZs9a$zF-@3CeL908HN&g+Ed%6{)rFVbc3x zsmF4^&_{%?gaS};m{V(yX1S%4AoUxJQwwc7R{!L^6=t83!)9MRKS~L_be{v$Z}z^w z3FX**%EVIZ*f{0ccjPX0jgR2lBw^XT&61@x^DesQt(AFx00@7*!$4o`1u>iU7d4-X^bQX>-y0ky_l2m9<0b zxU0=*JsYUifNYm`iytgseZEMP-hZ2>CB~0b6*$Gez&GkQ!<_B)_QZ*~$7I2Bh~j4*}Sk`*I)J|ncw>l+sB<$C8sAc0{~!EuHucDLQ?DRvhb*T zGR2cz`CLy+{`RCH+HOhyv1vRfn6OY`UV0p@o6bGxx@9Qk-Fg-rR~3hyecZy&kM`w^ zsUGZ`Bt^YAKb%<5-2|1f!m(9=8bs|LYHE)TEO|G<#HL%)Pb0Lzu%h+BFT)b5-hp@L zK@)S}DXYA>vSi_dBDsni>rU*HWe)d&Q*wD5!4z%bdB2@dmL(DQWZm8RNV{fzS0PL{_Lzav<}?8hliA5b5e zRT|4=Q=`|TcPH%=pTYkLdjZ;VO>tm!=GVNzjZY=u{m(l7W(B047q)m*bGTtt z+3R1O=;{dGqr`9;NvJxtzI6K4ZkG3a_$Wnd2$H0C`oJaM7GnqTzo4A<4KK)8*Pd@& z;jJDShvnvRk-D$FGz7A3UW;zxR}?>gejmL#xF~t)+bo!=C#|+H%rb=xVuif4f1BV; z@$XW2)4}P|FYzji@&LQLDgZDgk}4ideN8!z>N+$c=o2Eb3G2UYs5!>m^R z2{k^Ce|&jOB~f0@Rk$6>IG#RaLg^ztZVRnSq^}VE_>L zMlxdS@wzpWCiOf1pqD~_X>V1!`Hh&`)E1kBl{4u7zU8H@X4;m%HJ&)XS>iy0L?>38 zei`^53#6Jk*71+_Mof%UJVvEqm~W~teKKOT#PwF^DFXfYN!+oFbOph;xUQ;fh z(!hZlJ~g>2HbdR?)9%<%asbE+0N35n9b99(6zj&H>8C~>GNy$gJ0FDuKqG0Tc(l&^ zWa`YBSWu8($@y;4Q{Jv^hYXd<9oTHAq=SOO|Uvb{j7153$Dq}0ls=PG0 z=O(1orl5$Zf0Cz|&3Q_OZ3oONpQB_Q&@Z0u41rUK9FZ$^0Xx=JoRQ>GfPW#p8;%}+ z=4^3qeEg$4q8`hYY|f|rNiQo@Jf0)%Nmi!lRX|wvyfjC~{M&{mwBXn9j~ATT(>SCp z+$6T8t0uvy@AUIK*0?XVFT;1ZvGmSnt?urt$H#Mx>*rje1dYQ4xl&YGU)?vSB~Y$B z8e7Ye_SLj@hSE3JD0)0BUNHbC!11%qh4hhpvCZ>+Veec6oPEilpBMnH_m|78Ur!(B zqG}ii9Ss2R@yf{ImRv?War{A(yFn)+Q%fqx_^&d2?-}gR^5NxFO9M(*?B(N6rwY=y zEvnAe`i{K)tQR(=2c>db)9PoC_~~K^w^n{PS(RXIxb(#3l#sA&N1xCE^}F5G7)ole z;^nnE?knn<-3ZY6xd-weaFaruUO#fz3KX*C$)6>pMoYxJW$EhJ=dxVSI8p)f_vZxr zY#=I^Co3PV2{N1~b=&`CnzQBYROfWs-9Oc_$g+a%sC3+fChCl|E}K#&`cnQL2MJ<8 z_O2-QiWDE~G-!N+GS$i4662w~+39R^8T6U}!2Nka@=Mbom7*R>vhBZ8gs&SKSUUZ| z`I(B)qko08AbEA`xA>`s0rWhjOl~nY82z2EsxzoH(aYsk)c=-VeNXX6{GC}xo)c!* z2R=$ap_8Z5)BA1ndFj0R$Js3ZGW&za4rtuA`R6;QO@f&Pk4B`ZJ$+yBI}C@NuFER$ zDn(YvI>Uo?#mMMyFL~OuNmu819ug@)djS{_1pR}+>Xn(*A}0lKdQ9K0<9w*N8S+*5 z>puVOa

    tSHI}@@8Q$jwQ^vup92-Hv;}vJavE+$Yz3X_5P(PJf$xBzxKDPqS=E;@ zu)_4+5T)Q}i%J%DX|Ocld+F8%>N|SI6CMT>g0J8eG}&xm#~$6TnR(yTrFd!sWx$rw!cHmEp|ASBbwL_X3MQ=@!3~@-v^4QsBE`#Q|0TY4^sQ z$S)*^IO$x$Qnn}BJ@<>aXRXoYYtq-L|3fvVTfH?FkiQ}7nhh~m|2u6>H@{4@U!N6x zy!}9W!C&N*kbbLVMwWga14T1PQ�xt};g&bC5m|h=Mhej4b3AMzwL>ERN6*viqlW z=J?@f@oZdy0z*41u4sJ<%6{qYPUs86QKmB;P1gT`XHSAvDtk9Oqhvkr|9&B_s(d<>pK5<7ToGF4k2Vr6cYq89 z3|!~?%_-EE_hal~!5!e?f6kdX#It*Cv#xvn<@>NQuD^8WY(AYvm4S}A<@#s?BwTf!RZ!l@qT?u>eI>xY);`8X??r}>m%oT0NoNc)si zfN$yFGu)09!3^QAl^o$;L0%1~OmfE7o4)%>lrIFB`b`8X#@!Waa z^4(x=^Pd$f`3Z#3yvhy2Vcc1SCwSFK+vcrJFt7F2B)?9@spXdnV^RZ&Nk!-UZ^yQ- z@6^MQJlYZb_OUxr0U+OHL(g_gg|sXW9xUGk?Rlr+B(M!2tz%RCv@!6#^s|3ghw9>A zs;2rz)xh#1^+avzLH3Mn-x;epZd)WS2b;^r)d9cu<*Le6c^4~%*ue$oE;&?Rcz{(l z4fxi>q_$B`mu&3(rfUyq?gmM7qwO7|!1P$YK?cY3Pu`YY07JNO5*7?mzfQgIhmVKZ z)`dVnYx&?pu(EsowUdq?wOz&I>`YAm=2uRaF`XNxhU*G*omtEkJo-*s0Vl6gt8q8V zwlxj1N{IV?hBhj@)$=NKn(h*>hThHJ9Iut;lMZ_e=521bgE`1=UL_^uQ;oc*g7od*zJGkdz#aKZ-Vgc#%=}2rGV>X$Zdi1sdO~w#YK07?sxEu^=P;}iV{;E2rpGm) z@O6ocWo0hAw9W7Dix4$|uL(oWwHX@8r|G5lmiIv8bTdff&kbDEE$NE*4|*&|W)!PJ z4kE-65XMMXUfpY%C_D#tXw0iN@bazBOWb{ZHU8mej-vC&CHtzb@$tEI%Q4B(cGP3n zG%$CHtXyi@P1Xu4j2o4i7Hy zgt_)H-QP2(Ld+oE){1-eMwvC3Eqj^kN+1~Wy5>3hKhFm~;T{y*VJ-mue9fs%UaBmz zu}?pwo*y~)pDnO4v$)=W`%OE(qjbq#eOq#PkpGODB;|jePnri`7K~PDNQCe|_qA#I z+v(?^-hLwDw!?fXrsdDa(c5+1OB^%&EB^ENTxxQ(KHsf5l`w7Rt)qiDE2fvcKn?@E zIUfrwPF8-W{Bc@RX~Rsc@bgX9{Vh~}V>`nC3MPBAhVZO+(NsY96zTZ70 z#e+~CTV}|J9SIl6s(O;1P0O>-`lF4&2w$irjrS9`Esu^Y2`vhTNK4`Y`JfO&Wb*2D zf5Lehp8(Bb_3`r}>C0y1+%Es>JzVS@8_Q&ih(^=3=Bx=r&+~;WS9E(lJQvEHYhRld z!eh*<@$YG%l3rYFE{U-Z<(xDN_$p-KM_Azkb1JzDzh{bT%J*n`TUhO__aIgH? z!*pQ4E^3wgK6Jm5Op<9{nDQhy9MzJK;KAEH&D-fjFfeFP@A~8_XlL=|fck4SEphnM zgSxo#$h9lqL0MY9lJ)|YNVa`pu!KFac>1xy>&2n?*ded->xqG8?aka2NK<<6wS58h zuE#~A&yVNaF9m##Gg1JxR8@15FKbZ!Gsc)Zxkc$n>C$f>6O+A#`K0=FL(^F8mOQ2d zF1vrsv31;5_s{Fvx*Zd@yP2pnMLNmVe|>$n+3(>9_sg*t?cD}z{?-?tGwf;U#5Gc< z*8U9SsW@oQUKj$MF^{&Gm$u~m1LB|0-e{BCK!bD+jzHM2bINz z#`_L|Y3*SKw5`VSt9NFf*Em?on5Jf;rv@*)=&Ei?Y9ITdBh3L*`TmyRH8sERR!2v- zdA-=+=kkr|D;~=^3B@Tp`T|K1!9TVJAM&3HiJE1Y`7PfkRL9VdvddI`RL|F!*eQIH3=t6+ zv3;fR5Tc^5)lsSzw||dSefr(4*~+^4v|U4zpj*j8(FuLWs58>5*GNm^zs6ee-BIJ7Pve;2bo9J>!fzJPpB)s$BrLu< zcu>HVFUKOp%cozAbxtwNRm~fF$Xl!*GHMv#o}*iw;w4;RBz2Psv_7ZUedJw0ZK>+- zXw|G;mzStxy81aknL@=OI_fq-6@@R&A}v{x6p&SWR0KrmG=xyTv7tlW?Dsf(U5W|O zAKc7l6SD2MBjR`!j2q#-qtBfMF4}CKvJ)ej6i3d5?`1ZAK$90EktaGKyNO_A)6<=1 z_H5b{xQ!vB)N{U5NB6t;e?T2{MQhJ9nCa$am+o3tuJdnvX6$jGC!|tL1115eL`w{G z4N_&(8*BBYXd9hbwYnMdbBh{~r8|wD0WaA>CsDhag|@)jDd41|`q$Jrb7cZ7snDLM zkq-Qen(xT*UHB2DT6ua)CpN+P+-3D^-d3Tf2=V#(3VR#6Q=D~^12j6q=>N4JS&aW} zLS>f`JoPj9lgPwh)AQ#=v^e_pUwroS=E!~Tu;*>)Q+@I1%-=^p=Zm+%F1+pqYe1`| z!oGk;y7l8}*CMhnZuXxb8R5rzsJr|8@k`wcQ|1;KE_j7Q;{eyl1VPLum4K_Ubsc%2 z%>3xqg19GjTh5}aMgZ-5xGti<(%@*yR@pl>S1|dTY5Y9q$obpap)G+)Zn|_r?3r1V zo%$eWsM}c1?v~lHgT3&}l?my#@~W!dR}Q&jxc+_Mw{QFJ6+(aLxL@e<9;9QOhlMJ! z;VhD5h9o#N9}=2(2uRDPZ|_OGkPJW06!t6V$Sk4CY;fvYRD1iWN_${qP9mv+@6&!{ z0DQ42C;#G8T;|)?E_Z5>6{U^Gd2EK?n5Qo2mX7rea# z#Zkf2;GtEFKvq>Stm~l9X)5G5mV3c7f;I|yyQAaQ{1?6zFDYN%)fZj6awDOIC048c zHtnCMpJi#43tS5VSKDcOe1DDbFmNOco`0e^apU-bq4J)pORAagrX0lJoKNW`8>_uH zA>g=9{(%J>&MwD(j#~YsjH4!vB8d*+9AhMM@ZA#pD2hm2fQ4F+v|F+k)8E2nJrX-D zhU>`4;NBZr4@`Mr`nBKkTy!VR=bwE{zr#ND)5vi%AP=NJ6SCNf`WtDl ze7iqnb5-^;`cDK6L;T8tqAyFQDL;zxdLxTobq?{?2{r-StnL3^z}#p};uSXGo`X~k z(%M1&)tXz%$z&SwdB6T!-5-nW3i#<(YONmwt!xR~mZJwhjlGlfl{&n(5xNHZ;eUYL zCZ16CkhvHQk8j3@8x`3)3Qt=K+neZS%SOl;|W>&$s- zxmgS0yfd{doptNomN9QT@_ipU$$xT`A9cB5llsU1l7cl&`ZX~|hG%E14^jq~uBSL8 z6ce^xq=b$=o>T8!9L&Wq9)*_F9=>9^ZlK$ArHx=WbhR#$nAAQw*B*64;N>lB0xS4- zGH;{kmTvMGUV-$}FZe`#JjNo9kjQ?x4}o?JQ_M*0%sF&j5B*ZKF?f(C z{ouCQr{jGdf4QV3xx1A=#{ECT=ZN7?JkVvNL^7^O{zFmfum?mTQif&8UQDjk^47ja zwQ$e5AJyh8KOX+ZMJ;d|Z2dGW3LjlPN%fvqlTQ^^2)w7^zWZgtPd>#kf7LPO5@w)N zz~^;g+^34qEJF85BF{FjE;jA(2+P$Aw+Y7Y1K7}j&K}b#!G87Zgsm`+C+w4bnpM}{ zmgfx%LdBLGnsqB@1TCC26PU=KcdN*ID3VVqxk`ZfKLfV2a#H_Mj@jTC8*HD zS~}#R0`jC5iRtJMos%U(zF$!Ikm;G~@6P26bT3IzS^U#)4>-~)MpgTR; zQe5IK&*%=F(SF%$ku|aI{fA#>#pBV4GV0#$lBUZ643;#JeMXP%V1d@^K0;zf-6Wr~ zifcn!F^U=aA*s{h>WL8x0 zqGrpwn1vPUpjk*rp1sLb)_BY}EpS;;KB{!R`C5$mokusQ6{p_t@?1?p26EFjA8j=6 zMwYhh5T_)bktgCp_p4EX`_#}DWuHCVq4J(t7CDQ&1&1G_LON~{HsA{|(oajGR^ZMt z-Lif><#Hf&z}WfiYg)doH~5!qf^i(>1GN_)swUr%af6y7GQuMNQ4x0=^8WqXQT9PJ zpRV7iZ;qGI%`9YSSpq*wR^42BpDokDE|Xr%$Z*9cqp(Dmn(o*>CgrM&?<8L+X@zvu zPaM$+#nD<4SL28@IH|1X5P~d0oRCGDb%5>-u7nc&NCZ-De+bSm^u#FoIy}pcW+d5b z@AbN!ey<_}j!*L5n8Qno>fSqxPo9bW!@Khw7WqoR3`RwJCoj*G`|b{{Iz55gGn&0f z?M2FjhUEzjt~{?pw0yXuy^K=*J=x8s{($X_9U!-SXVxXnH$bOND zg_VtsjgFDy5z-V(?%#L!F$e9(NIy*u+r1gv;IH+kbeS9=P5?d(oj>L{rym!0sDB4`aI1ATJVDEi@+HQO3E{5DNlP1UL69S2hK84 zF<-rP_Z-VpD{4MZ*4wY*zntg4SKh*=JBSguW9=12bAg@X5+|47HKFS_ge9e@8Ia<{KDJE*Uvv7F#PqKh{&kun1sZSNy#anQqyvB z^YXtId@C%fsI024sjd4_-`dvR(b@H@`=6oVkgug?%y*wsTY0kZ-F|hR z^;jVWg4olc{T}P4ML8_6*Z&zF=FvMIh)x2;$=jH!;6q%Og!gALR z{SFfX*bToo{oaFnKJ~lvglbA;fuG<-)EKFXCVFNQ&yV_Kyrz9hYp?YMXQiX?}4Kl^Iy9mFn6n&U=GWA|- zItV7wSN9$&vwf7{iXv?R#yO2WXlN%jhOxarGL((fLomkL9)7RxPp#ZUI#fF~?_k}h z&5=K0amPDdI<$C+_T*5O+VVl46l9#<=XH_hjxYAczFlM51o)gJ#dei}cT;WrATwHy zhvcJk3m%|rZrg+(^8(K$A}GQMz)^Vh3`Y46v{7k2lu7M=Lngy;mq8d_Rgs zl8&-zS@lD$wFIIPg4Yfcq82qn7c=eqn^c&e8Z0)}){uc`o|oY*gl_gM+^5{S2Nn;A zxT7)1ot11F$1(>^EJLkKtfGcPp(DoFQCe98=Ua&D@U5Tyk>~~QQ7YXXSLgYy+b!TE z;Ep+2)KvB+1A#9Ea*DeHU~IoVn%bT2oJ`mzuE6p1%(G_G@G@|A7fu$_l}&+ib)&kb z+Vb}@KkD9}h1c(DRy1y)BRe5@BVHxE!#rxUzgFU{kEZudRY1COcLn1eKY~8RTGdl^ zfc5{g!-ATi7do7lwb^f#?ff)YX++VkVBJsa`M7jS{PYor_(Y8KKUqi>-XnDzf4F(w zNTXbV<%YB+CeG5_G;erq_>V|au3L}D%_B26qjAN6+||tUql)@4{)Qn*f(cA8ZC2ge zNBz&V=}UPokuFsF4`07KGUi{XP=-cC;JUk==RG?aQ zSWjEd$}u@9&>a!mbPHX{@Z-w~t$wk^q;>X1K>U%!q2=!*h!1!nNCbKcC0_Tpk^HWS zzMVyZWyr6NOr2B7UmU*X5@T^c3}i^&6uIgexKGV}2}kiqVyCwXH#L_Rpe)Qyrk&aM zX3WSyX@nfxEc7t>rTA0x!*{_hU-3d3jg8HXHShgP?S6z!1-*_gm}saebNPId)hvSS zVhj)E!1k<>fk}yysUwulp3ITIJtT-kslpqr&iaJnzj>VL`YVW<+v84LeXujOPjNh~ zPfZj4E1j{uSc&5w| z=XJ_Ci3`C}NQ_R~kKh0dE$&q<9LQrvnfYsUBxp!yG3ll)khOJZ z!eq9e?d>iZ2*}o$w8&b}3A3Qal7Y53yoyg2h6UZmd?1G7BWD?8(UD5 zQh+)$5jH^v7*GuxN8=EzCGI}n0E=iZ$47QpaBu|nr!4jaIC+XS^m7pRQhKbGB?u#2 zFS0~~MR>2pKqjT9JEl648w#gU_%ODSO&_Wez68O_44aeVTZU6eF%Njuw2MkX7HFj7ahnQ_-VqXL1Q`|gsu%X0f5^dD$rsYxK?W)Ehk z73&`&*-O2-HopoJtJ>L*hI^z0H4hRkrME^nvoh;pKN;!$ElD&z^T-&SmxTtFo_E|J z+=8GQl0!G+x@%BLLclQN141n%7W^JT4?on8E^Rk5tY?g<>fcln(QVw#nN~F0mf+WI zTQ-rMv3%G~fa2M8!f|APHcNvH#9W(|j1ZIAqCYgKMf5lL%_2UL0T<{Sc zf+ zH^$-CI$>OKKl{UPJDGN7xaF+NXBPUDNXI+zYq5V$sO^R|o@~WF6YA)nRG5$KJn==D zVPTQV<0b7`_N2k8y5u2;SW-a4{Wh-w`{3qdqliWcY!=S49Fr2et>`e{AhN?GSX1u# z0vGupSt5-s5uYqkU%l7WPTO>WFgG6Cs6IyqA~>3_R_|?ZKgTzrQOq4qg`8uS2Ol)r zq{j&5Mr$W2n`B^)UVfoPZxZi5J50LRo-D>7>nA)VT3Dfzg0Dc%B4irKKv+=l`4RV> zYw0bSt{m=rQjxgVpt{tw+<6cWn<~9qAUAg$*`bA;4DaHi?g+71H;ZE=s^SA!X0<(= z612UhMlGnwKv`nQ)bSnMHGDuJQ4vp>rw#5hPhy5&?3al0v4rmA9f~1gL@Jjzcrt)7 zGQbz2ArX-CqKcf0!D1L9E-im0+P-eKyu-P{uv3aKokihiG{)2!uTif2V0b(KoWoBp zzn@52qVvf&q|;ik8SEP3T#5^f=UvtNX)!zhOGiC>@RDapv4CqSnA%6fa4Q%!(IiB} zpaGu*LvyRb(40GVK_8=Gib=JGGo<1k%LdE*G-xY=&XHFD>k#EC*>bKBosl)Q7x0d7 z5?v0TIdWknarVrU0itj$G!imlL%O&Tkbo9}R6)CidzOn~GYvaWF0Zshs`FAfZikLV zr6k;KX1qWKisO-fKdfdfA{Q86g>s#ICdrX{Q%L8vdS#xB?BowgnJm=7@M%Jme(rUo zJ$6Kaq6t9`Pubbkft=!%MW8_Ek&Q`U_$+8x}5Aov5lh z=1;|5_LALYlO_W{i`NvgBBW7VNEgP}T=4cd5lePZ;OLT$XSw5~hmO}Qci15t9Qfi@ zI0vbX44hN+S)fI-IFsn!Yv04!reUwtC5r_8;K1icU*b2)>%tVbG5O>AJ3ZDs3!=m% zk(>VFy7$%JkNfV3>1_`<^#u!I|M=?|<4+cP==tYob~@kLXjatLHr9;$e5*Qvv|TSJ zmbV}wJ4W0DiH-5&od~#nM^j_M++?u&nCskotwd=2nQ3BqNmhGtR&w(!KAvznm>*xg zK+~v$)}aeH?rnEWNoWZWtDpHsC>HK)u`PvAk^UhAbcz(bk&KZPrgZW`ruv%vyC;!<_#WL;qJy{ePlda-!GH6&k}&uv_#{I2j?ykO3c!UKK7j z%O@jZlGAYcU9^H4>7+efB$=zT39TC7_H`}6@kvPgNVNp=+79{w5?|C%fEOQ=6WjJN z5g7M5k6hZ_A)xmAp!HP%p7>NeKM2N2GSX*TBI0Lwpu~#?LTzcc({j*g;b*2`rlVL?JQ)`PUGL~pO69jy+zyI!;qc& z)|bjbC%KB$AQ!}-YO-4BS=vE5nU<%kzgFNi7V2=UNZ|0=?wU14SD_;7IU*VZ2Fr}p0maJoyZ%&-v zdJapzyU(%;<;ymqepn|DgFUB8zXE z8Q#P$-`GFVXh=@uV_Aj@WHS;Flrp8CkQxTv6mF(O@w`E%iI$2<59A zT*hOHPclVD()zZK@26}k8}tYt(GsPWNoTRMv2#0<{FXIiijV^TwS%4LsfZ+-+zlg$ zLq)>UcAkhp1tiJ9cYGE4ibw@ceZ;Y1no)#zT~&tCc7CIa3;f6OKhujaJd2TFNoXI0 z-UmtH%uCmdiO7IPNFcIwGkO^a0WH1KGG6Ji;EFft6N*cUabRz2CnP%s+>^Wb8Pl{#u?l zdLcv2bb9)y&B@|eyv%WL?}uJv6ssZ)0&j-9`U5lDRN~Z1i;Nm8ba0z*(%bS_GxX}q zS}p&Fv8VC{vHH-j13C%fkIsf3t$t2_-G0-iYV8jeJcH)bNhK}aVX?9uZ%xwhS8bu$>ZBC=B@i7BTwZAjrNDHxA!4MVRWdQ5H{mwx7E;w? z2eh)KjanXs;z=&7ma9Eye!;yp09;cb{D6b6xxm_lKM_bsXY71S}*5&L9-(I2i8_i)hFX4kD`i?rwh z&W$_h^HBS*CdU6=SroougLuEO`G5?Jby@O^sY9#=)!7QK{#OG>zxtW(xa!c3lt{N? ztjGh4Wj_*{Z>eZ2z;8>{3SJ!Am&LrfkGw;;?{;pddlIzrMxRipuUbNUV5~%5%u2hM zRy+Ib+2LSqbgaL(PiFrXuYKn3kw+_Pf5@$&7S7-jHBJVcp_iSSg<|?R#omfxJrxBj zd&s~iIB|~*Y!)Zso4%PiqskdK=RFJPjBA?a-=#ytU1PX@NU)zeFLwJ$eN<4K>93Ik zcx+Z}b1FtcW0<(53+0|g`8RK9Cp${6S!;1$DzHsfhK^}+%z%$;szg(7d17kkGgERb z{KMNJwuvUMBt$odW~MfN!H*oVjHyN^>-fY@4)$ZApM(&15>!HKC{*d$tc7_ur2DK^ zfb<&oNm>>bqm8E_z+me9D%|!iiQZ8DQNcF}av#ls2p z0Wx40YG?`&SUR$*y4obD{B7EJ1x6K(>_B*+&aeK}x$qhx;FCBRXd(j?WjCO(xG-kC z^MWb31bw%Y_fAqbL;HoM{on!52?Y2QB6a^+5Q&2$0%>QWcz2$ghifv}FMx4kvouXa zAwNdQt}f;pp}Zk@bf5YaQ7FHg01ws~u^o1sT~oaAHK!Nks*vwwAQLqderMu2etu3Q z?hTfxro*y^!bIKToYr6yhM z$7_ostBD{Y4M53EDxORSXF<0EvNp%xnUH~&yZeln{1?!u@T(1p;1Wz2KK6DC)D{Qd z#b)7L&Vh$$+UL`%+ z^pk2TLGJaLXmoQM_3^S`c_PD+PVkq0@=bpN^#c*D-@HqecXt*wwNHF0v z4ZpL2Vj|7J=@aKtVo6ueZ`j}vH^=Y?PgBElg{@22rZJFPp@GC!NePO>DC z(an4#Xv{%zj@h#|MR(-dw2UU*g-|ExNtcym%3hu+n*Ue2g#co71tIF0{rai?5 zdrQK4BMfa61?hlLgX{%i!NWV_S1mX&ziGa%A0OmrP3zqo3GLx>2T5T1&{0yEgt6RG z!YrU6FAtC$tIhl|Awp`ezK#s3IhKhU82R-x9VHj}tK#bLMhm4Z?ObCi=mz+vHWjnk z*28s~m{}=!LnQ2!JrPloJmO;R{kZp7?b`O@{+I-rSDAf#?b7wSQ%;pVW3prVu-ON( z7G2l{)hY~XvjKAkyB{EgfksMcgZS0*dsWSBp?!JqkS65NpxHkA_c8yx<2x66;8Yg=}7^3NV+m;gM!iVS`x#j?hb~%01MyT%btL@c46$A!wzdI?qYh{0+oBf%^}^U9a5Vead4I=mm}ApVI)~eD66vE zw12H}<#6zgxgYyjs^0|b2YkshncBUi15FGWz>VNFuy@)yxUNN`gV(ReNj{mG?t$U* z)O!LzojeBr>9P!sY8I--G(~Qy7ya?qMRh)*AxhP>ZeI)Xwy!>Nzt;78umI(}M~jG& z?}|k_=}fMHT4$C69|?0R6UncABkAellphhtZ3^3wIlL~Z{CWU7muuyV?if-`- zMF)Q+1IfRm4{Z<;%D4Rs)GF{C1a16nw|lc-9zD?dGenCZv27lbx^s0}8nr!M;?Iwk z2y3P!ji4?`D2tezt-{beP@NxxQtwQlgWDyB^rbE=5cCX@m12MAEz~J40t7F}NJX7e z|B8PY8SxQ1LXSrhv@w0tej)Sv&77e_yfi1-RZXG&^QdUPkia48-!i^Ctl#ehm;WAw z_AYHB!W1RuYU=O-1bH(TE~Sph$ZA+jZSApr5}Z2}-9hYnW1@4|d=O#~UUvHL@PF+1wiwSB z7u3C!6S9)ke*L5AnxGl-O^Eno zA`}NBEEnp`Z`oL6kb!C+%ZjxV_Ac%CL=s8su-HLkaI=b5c5{E)e@jdc&!0`_5~Zkx z=+sq+B1$nH4!d=9qE4t>RJAZQ>3M%bzRsdfMDW`V@%bsF#(`#ef1~y+Mn%;H7tL+R-2sQD2<$A%CD*i)rUroxnZobjtTA81Z3u=Fmcdkm zjas0Y_9iyJAN1i$rhV4!D42PST4$$9S>B^Gw8+9HNW8YBQocpxA62}8F5bCp?p!}U zS+XfvXs;DjmYOM-tkbZx1xu@tQvQN1*eb`g{fzh5AsFr%fb5{54bzMmejH$zd2YJe zH}1%3FJuY>ozlV8j|ZzRNJNBQ#HeM;W3=O<#Oy|4QrwJmC%Jn5T}*8}jaggpl2Z8V zW|mR6W@u=ypNzbEyN44QxG=@JZCmU1L1(G8!36oHcu4ui8dt{nRzF5hH{zeAeS#ac zvF7%|yT&}5C1S}4g$?NB3XR8DPpoDNfMTXyhxuBx3kMDnlZzQvLeBK3id^G3*{Yt# z6L6m}5-&p`czDM+$DwIW23jLp(kz4>wdEHWE5BrTDP<>UydA=>e8oliI+n3Bgc_Z( z(%vogsi3X~gM3XCgNYjIO;&_%YyWDn1>L$n-pw?XW6ca;vQ(0?po<0fXf+RYYrXn* zdWo^A$(@Go_+O~%S62z+T7r~=@1zXP+ zoM3QYfK!(^guQa0+QDjugD>6PwEw!N`qBT zQixXh{(-YvTk4_x0l4$Zeho343&{`0PnJxN`q467#f($jUC7Fs^m)b${$H<4LRm~L zob{fq>2|>EYOd)BenQNe0ysDqX>gCI6o-2~l4$$`YfGZldf}Emy=Dfj%zPjtu>)Po z**;1|Ml?G>t5EImGo(Hy|AduJ%Zms7%=r4{o=4Sg=P$?+FjR-Eky@O`b^7HGBk(1LWA}5rPdeVU(gp&v@o+bT;Qi*O=ZFD0_ed6d9 zaf6+Gm?F2CAMi*J;^`1%hGh`r`L>;Gl!Yh7(?=TO<|n8eXqeWT3+8HnYWE7(e!gGcjT z9Xc=}^2@y5@zy{Ni)JqTs&^VQFw*azH9%a)lofmlegx9`mJ(X$vOjeP3iHP0_-i`f zTKrmHeP&1OQl=~zM4Ml|qx=;gLeOt zWMHAX&mV#-1ied02gdXM3mwYWo3O$4e|nv4q#_cREY>TJN{TNVhU1GnNPz!NX9|kd z0fUH8^h8TUBk3S*wJ<-Ks4Dx~5aB23ZeL9PiMy3n$4G%UYKPM`Glcd)m<}xIH;kqv z!ghQF#`eF7rfzTP&M!XLZbUTg4mgHXW01HEOiBk07?)m4%O8$oIA$Zt?z5d_~dOZ8KpNE*50S`x?ZuVN|`B{fOYuj$vRzs{X)Fpdl^l|c6f$`d_qN|Kpf;vm8AE?n%$Y((8I>+Qqz&U z|J7js-<1Em(a6(KKIQj+@%H9XO`UJsC~d7)DWalKK}ahoT7>+n3?dkt7kj-X8WDI$a^MP^9YtrH?b3RF@-hzf|zMTQ83q{<{BMrM-$F$oYELK21yB-wmV z-*b>9b zu+jLM&l^n%J$o$9#Ug%xU%a5o=1d*EkZ{!BSAps2{Ijykon2i zKzcq!NHTu#1iO>aOfJl$EH?Z2R-%I^eYT!jOG>fmFB-zsQ$3!09$nR&T%4PoTGiwC zwmf6V6!**gbx#*Pp0_k}>fRNO`6~bg73K5($*%`W-^cU}T#dBX>}7WM(jSCVCM2*} zNr*&YN&;p!^GB!SyiNMZya%>JlQ@;}*wEvndfN(&Z$0I?MarfXQH+ypqmt&*++O7a zXuQgF&*yXn`4J;~aZau)8wl*3tX7`Z?i&i=w{bnIX|DGU`Tt>jM!UenMwS6c$Y_Zh z&e-}HE$H!d?xE-pz68ZD7g*zs*T>G-K^%mwukrit$cVymOkFrVV7C~AyWy}c4^q4p#m_-UTn#QF7aF) z9aq1*8$fo}p&EpfvSQ;@&nvW9;k&UVGUmi0{@vY6!KO#DDGG(etNJN$a^9U8KYlgS z`6I*t`jH>E*QtV!HNPmF5@QF%%`enJc^(OziPO5N4v+GLjm9ToTJM6*)nth)byP?w?2lrl^Z%@c(vO$^RdZFkIM@MOS?|x z3x9FkKtJP9|EHH?UmjZ#&o_Bs+Ss|O7p!UU@aZ3)c{d-nnYgxbxMo{}hF4)9?hUHv zu*jL=g-;99zr7@FQF)eXjZ}%31Yu@r$ceP^sRbBf#YWo@bHTz-tY|IjDe8Ij`CU{q zs#$N(|6ku!RzF5NO4^;^lsuE#%1SM?BwsBAmF z;xa;eUN6QeFXL%GQIX$sM{)_UD+ArN7@x_3&b-t#%PiCnrRsbPxN@%yAsvvKAp3jW zqW=b{M#;ft8~%awgQp$$jX)SGJVPF;zR~k&<3;Vp=7x?|_8p?t(9=}0?-kupGsOEr z$@+M{pT}zp+xkn}j$d|?2PqToIsf||`VVyeydmR^@5P8Y(0@&Q=0_fcx8j9a&pvm( zx{zFkc^)&3Y8mnDA0@BqJ+D!+#$ibaAt}b^ByC#>>p?9>T*`-(|+G*myU z0M$=co7Vr|6>vpw|7R_*h!_S6x&QV3|NQy?%U93>`G+4J`H%&~B$-T?%Dd<`ptn2o z^W8n*k^lEzhBQnFIZDFZlVFH#k{_!ORP9_DUKW#g5NGgdg`PVt!dc+i zk(!TCy`ze!%dH+z++o1IDuL`Bv92o)Pz!^O#aU8#TQ%{V9DB!Mua#~hH_b#_3$M4a zJbPmZg^*wFbhC?K5QGGK982sMikaSo)J4PJf3m83k%P@x;-_062dfLv!J5eS4AxlH zaVd)9G&%}&QnOv!Saz3Ssp&;_SeUadGDr<`5OA+<=Kbfch8@qbt>~Qzte#c98g8a5 zvSW)|Eo_y*V&fRJhzdkF+?#ojDikSIQl%Q$ZqU%f;#xtAz5e9LZ`2^ZT==2+(carn&)R zBy$YJI$23^*uI9ri&}(CM`c&~`KfM0D^N}n#CLdPVOXL{60W#?hfA|S4c6qq7e4qA zahe&rJqs-E&9SX#obrY1?$-Mw;k;0n$(n?m3-3v0rE`s$J#Gy+(S#P&WUfY#ii)W zE3YLUARUqW(Z=&N*r0Gfry@vVoZRXO~G^s<< zx>T)+&@kP*mQIa&oNx)fJVBc+1qsYy&H^E$rD{K0$5}E*ALPS6qo6PVMCN!lwKLdR zbKnhQ9T1(o^G8By=sgKFnxpW7Pbj82BkU0<1q`FCA53UZ$Qk))kS{{C_qhp0ow<3t zXe&YOzu>fveY%xJ*XT}DX&TzoU5GOzKnriU~!pt^n$LzY{1XfV?S61P>ouf|&@yX%D5^a%)5r6;PN2*>An%I?WI zSUg&;NU=(^v#hHd0C#TLP%T;qN>=h22WOSmL}cqBu2cO6s7M7%80d?TRccR1?0~{m zkA*Eb&7F~_At~$Rc61`^!VAhP0FBvZo-O0e=}>CGmRgE#KStt=Nt>To40u3A85T~+ z0F##ZoS1H5!_ldv-@BoZkc9c-kFdN1PKnyNAg_nvsWYtcaZ3m zVdsHv!mw{16pg>96tLi?s<7AChTj%R*zq>UC%up3S37ibp}J|F+5n*7d!%7*wZ-aPs^0`53|Fggj4LGQ8X2 zGKd3bx-3Ce^IGl=e)qJg!tQc9;*Lx0**V-ByK_A1s zKLEONt#*6FV(IOrZ}@QQlNuwLKmFb=6~An{nR*N5ib#EYoUV?Wp0vV`;}jKzm1<|w z7{z=2&B8+t!RwEq-#HC&;Q}@WJg>VB2JUAGCOb*(;3Tt?N9rX2ZZbHi8Ej^ zHM!M>Z-?Hd3b<&M7lAxE$Rum5=;^`m4ZLeuQt&;DAnqrD)G*<)xXm>AmDGrkch~A< zIbSY&lY&q#iykZe|X3T1bu;w6-$P-_c*RG~Czz>EP?Z|K66r zG*UzLx4y0YvdkmVq68{WEW8Gl)#qG}AWGeodG!;h>gXFo_AWLNXGBNpR1ZWz)U=8B zR8eHC2exWg7!2_xtVuSdqGahY0-6q zM8U<%QhaGSuyJq(sA-9sW5ue+0*w9)e&ce6m$@Cc>r_2hnTf;&w1gKQ<$sk@1lFsQ zpw)JK!J}1C)(SFET$9@1JLh-nKyov&)p~p^xaR3}MDEH0UAqSq6?@Kx%cNn9N22)OdSk+VZhWPoaYTjndfi2BUz)*CK#V=&| zRAdof0oldlSi}X)w3j{0keL>2{Q>pUu416kycDk)T-9Sfv)>1^Q|#sY@C|EHzG;%* zZm6C%eBu#p+gQ4LRnP8xsOAiFi>}ZT{H~zZmVcg}IX`8GkGJi_&GA# zEgOR-HhoE#_gc$3>$j&>&hCBMVQMXvMxs4JASPeyi7g7@bFzpJw7Q@1g~>E2K#oSo z?w2sIl6V?p&`gTa%GlaEoFdGtVbkfOTlM}=zH0vyk=4|KSo4qk|Ke71Dv&D`-`aZm z$1nezFT}r62C0UKPQ%+8%NGUXBd55z@;Vk!Tei{PFXQd7sjpUgwTsXW`E%&d66D>qrw=FF4bYdek!%#8B5gmc8I1rqaT-aSd5b5RPiELcbAyd zHU-xmGGgymRzJsZ0MG`i*mhBei3{eg8E(wWRosa)=R;kox3qUKx5Qaz%DNLp89taL z+7@3z^{U=N=T}NbOo!Csw_q7dz`7;kCz}7EK`-)O*Jx)E=j8mG3?r+Y1dQK6Hc{9o z%F$WiR;J37J}+F@hSOBEPgv5e`4*jYzvwc=-D{vjIRqOi<@g3f8XkT?KMO83s z!rU`>R(ioF^1dZ;Ub4OFwHBLfOnc6LMg7aCls(a9S_-@Pue+^9ma5#}xfnR|l~QF5 zX0lSEn>MYtv(z|I75T5{j8spvk3JgsT`ZD6O^e>eaH4J@(90IAoaFWR15j*6Ty7GE zTB05Za8p=m2HfB>6Wz?ja+*DEE2q08WMxO;fkHeJ4tQNelqRNX8t^Ycg7i!3pxtDC z7fO>`J#hNK^VLqrRDfNy(5;(%^e%eB$<9GP!$;IDOQBld35L`p3hX)nz{%}YSs_xQ zPxkI;PF2honY?R6EJ)XB*S2J!T@Sok+3`!8d1HF%QSD}JnqNwpe6t;?UDgf}<257M zq%3RgSHlmp_KRH%Hzj2DgI>UXp{wH>O_^1`&AVlGnrVTg>x0%Q7`~-6JM%(q1b>ky zTFyAr??I`bHBHr89l8sZ18K+5PZ#40ty-8MWK(R7CN2aPJskP{6WmuiZIbP&U`t$& z!pm=I8r!psOrcn}n_$@jG0QHB#S9WFEJs>dtsw-q)pg zQLn}b@jH@N^)lUSf`#jHbQ@p2b9G-vh&^zi*Wun&r1EID*q=k5pdPY&NZZMv&H6(e zpJf9>caUda%{rS~HulGZ?aQF)!ulr=&K)5@z3f2Q3TxWotG7yZ%eS4;@uAD+b^~pN z>-)9&Ux{vL*jggI=>26i=>qjkPWSs5wF3Y%v>w*j5n4gC>94p=zS5!CZiiq^#-&RO zM-kc$^(Ks@-H+u!L${y&VEOn2H2;%kL}#;6Bs|uztFzap?OHf&mcObuW<@JV9D4{1 z%ZZNs%L8~7s)Y>u45i;$_V+lKlTsEHAErG3eTly2nliMI z#b<1c+$w4iYHD0igytzVuzz6pFNzT}0R@~B&YC*k?cgyRc2JNE?XTZ>+!PUpd$IDg z&X3hjF-E67?%H@iu?h;sAG*ke7v~Q^Cfc?2NC*9e1}Q9(a=+Um+lD-CO1GW2olt9Ay*yX-7T*ce zyDjiP2 zm7{(XXrBLeVGO+hT`SI+%i_&xj%2+C?=nBr>%4)6e6YJ48G)I7ct27okT6>FO6DL* zw{q6bZONpr~hNSBIDB5-uHk!EL7KG4jd+j@&bcGeIBx=$A z(cD|2jzomE?nr!vNprIF#=HZ5OTtFs6ujW#QBfa5U<$EXhuyWo#3u;>F7~>KukNHf zL@ABqqe%K0bMsc&Goq`n1HrvK;C))8PpJz@@^4^E%@w=ZDueh-0?miQI6J6$Z--2x z4g9D{2al=#7T8*c#Pg`1gqSs5yYCBm&UQ;%K{YT6b?JseYb~0RMJzx(=WQ&DE}rI| zK(sc|DX=eHHk3{=P|?q1^MSjkETSSIX>UK#rRRf&IzQrYadAlOP-GbF@%y3+WXMm5 zWS?UU)@%O!*a98W2R;14z1vu~@}5gXZddr4CJ7!+)K25QuvT~u6qsl$ohxum-0z*Q zYWoPK+Qn#k-PxyJ$drE+Mq43J7-etp!4scuvdtKP)deu;a3&6D=K+W+8nUM^NaiDo zvpu|VxuH|bo`L5FuJDVx5ozJH2~7|SERK1JLv4v_(fxV9DD}*X9JeEyZWOdD+Wb2i z@m#|I6xM4ImQVQ((RQZTO?%A|$d!O9zi!DBJu@}$>3y2g(@fPJrH^aAhvc4GAQ<@j z!_JXay>K$(OoC*51l~M7Rriw?fmvZIE9Pgu?gTQoXV?Fm%+3Fm`T6oceLmzg#L9&Kj@_zAbRSD&-X$A^y=`l(v=E*!$Kc$NDnv; z_6(?IahA}SJAjWjiMW0YIr@N`XP3Ez7ee6`q`Ay!m2)3creD?PT77y*X3~>1`JITkg%wbLS%X@ZcAt* z7nOwL+A-hOg@OZv%1JF@Galr?6SA>~al^(@JZ|Y2yru>L(n{x%0V3*jiPg1G@4se{ z`*}XtMfJ&+vV{}uhdDSEIEz&yA$A%ornRR&U;z#{{ZOYe{MhS=s~^WkSNU6y=fQ#k zC#dE81aLbnwU;yZQ@NU4?C={?F5t?I(xqC`M4 z;lrQnjtU}t4)ruV9fbNBd|_~VdItV5y{XUMM)s4WDhjh* zf)>Q*)yQ+IwDOt0?%=QEhD~EIR;ONCy!kM=uYb=(-jti=Z$?vz7*6#`p)1DsMW)%o z2_T(cdoy<>$*6v27Cury}3RkHw@Cqn7yonaOjdN$jW4tKwY?oQ!Y zhrko@Pz8#`hj3d-7eG$1A6t7+D!mM#B4oYtrwwJ$Rx%%n=9G{6g?Y1;q;5q zv^U@eKbP26TixdAHe=EzH20g##Sem?n49%K6lr!IM(Jgx*7 z$vPPnYR$?m;Z+%DMYvQHGFTC@mM@v7?JT(oX&j=jkrL%QSUZ7b@D5T$nXk%Aelfk6G*X?p%TMusJ_ zdY;XrzxDkv3iidej{3A!y@2x;)1{2qY?8?!vT6dSa&)moXxfF6V&_gCdT3F1|AO)63( zW8WqHL<~wwgHy|0nLWv%hElBBp1MKt5RR2;07PApzN-YoIb^jtizU`n57 zFR}vrU!H%}Mw|WXj~e5m;4qJ(nPjZihJ4vKLn<_IfjJz91Z4-?nAL{dHl4I{M#&_EqciloZU_FQ*S#X?yFDc!a( znKcF?7xv!SF3|X$*X}YXEPC2n`kLw#2U+*%z~UJ>4d}~tq6`o5Uoui0g%!LK^r}>= ze^)f`fZ2u*&3jtm&{^<={Y#ocI(GrAFl(L`9XK3)Q{2;yJT3TP>v!&~;l0jIX2;lq z`$`we4gx}!YONqSDU#+JNSbd4sx0|-QXo|GdakvW8J-%5v~#fa_8TZ2k~X5G<}Kkz z@hv-``H@7xoP0uWk+pVKln@qvdN%g5wK@`=h@WKl`r&yFtwaxcQ=`22nu}IrJ4aPQ zb0bB^D9#_*o4YrXGuSGx_}WqE^|gbmdMz-e*5)i$g{C^0m>jCECB|juZ?mKXQ%`qQ z?|PT204Sv1&E;uV6J??jGE`yQ`)w!UhaJr54;;g@h0VdKw1tQ7yADfUFB$yIhC$B` z8}UdTuk_Mvz68*f?IqRoF==f2!Lzzx{uOvKScNz|pmnNrOUMowDe@}l ztyB+)B_VQMPN1}q$g1_ad#Yf453RO<(8;ju9-T%xfi3-2{HxZpXY%-SRD5gR6alTx zXql|B0cqwQDyn!I3QxU|39nNRzY=1kP(#3D&Cdy0C}$bW_H4>NxUYt$`<^ht(UeT) zF^Ml!F9kLa&@V3uJx%AG&rag%zYni*dANM(i%*97T9QmkHK(U7we;$rf}L5De`NRv zxA&fPAAvW8<%Aq6j!*um4sdpACGksVDAB>DP~~l;G6*Ee=Ta1AADu=Rh&7z!IKj)9 z8}OQjKg8eO)ZhGx_;Cz5XM~;jaas&6^r8Z_hR*vG1~zF(cwbW(CA#OrlN|av5hmur!Hy!g!xYbuuuuu#}wiLapk)l{f}#@ z8*?;%A=3sdjuX&;UxWUhop)COE~z8WH|4{M#cOQ_Z2Us^miAJ^)qLKt|NjdEnK5R$ zcBCs-VfCLzhMknZK0UcR_md~J31uz)!`xDZV@ray#(Smn-oIc|Jxv#OB!<1^qOQ(;a9=}M zuo^vZ>6hoFx}^tIJ816OCEY#L#g8_4E?#(!Z)h*U3Y5P}NKV^&M{dXdIeA-1=zCB& zy)%wnUePsPoeG;7iOw+%s3K4LZ}xl9>v#2}h$To}tzt7Wcf>bEs_~8YIy{N~^n~Fe zz<2fV@9^s}?S^0OYNcx}xw|PPp+2#5$qWv&{~n)FqX*D!Br+{K;Vd@4t?--o4aiM1 z(587UA}knnuhz{JInT*g`D%uqQ5et3-&a3==0j*)@EgYw2^)0NrCFz)L04wv4P>~g zN8sOKu2oTlthL%--Y?mhRUK$Mqblc}mN6(+$S`B6vu_F-cxmEwrSQMBNva~v0g#za z3y~WVf{y|fp+~P{GX8mh`$|EjL9E$J%bGE@sxtLWO5y2%AbD4(g|#YCb^s65V{^94 z{>knGx$`zItfoUxhjV~dxGun2Si_52lHR51#gKQt8J`7$vrXaIi>Dabj{JxzZC1pp zUL);I!{+68>#Dx7XjlLdQL$o1lsD{9 zfp%#h$E@2%;+(Pw=s>n2O}d$5Nib0bj#wen~VMnZO{LjNPx9UL%ahqwla)nOvu71Lat=5OfzF|_q&2O11AYa_FafKy!I#i2COj~3Q)RvTXS2Z^jAgs-G3LU-jp zlGrChoaL(Z=yj@4-(F>2XG0Z)$RR2*?rkc1DOeX6`J!NKD!-(=BA_Jq5$w_3I@VZI z73%gZL5kNYDiVVP72cZ0VNHOK-b}a_`8dQ_GiOge)G=o6#P6PJO^F6l4XmiIz*mWbhMtnn1rF&*BEq9Oa~w` z4QO!$bi9s$``uME;9!_x;?3WkUo_(c(4<9sWirK7^+fzOkFc-a2ERhkj8x-J$#2cm ziI%-qS%1@BBDyasO`o{!AUJgWNgFMCNV?rwW?u5{F^HLYnJs|LT^hK8SH7->fL!8^ zeZd)5;!m1wB|{}Ooa#zTHA;n6>Xwg+)9oazzWNVZwqn+fuQ@q|bJn(k1|o}Pc`D=r zXeT{QD8o#$mrORn?Ig5kLM@gTxfy zrt?A~B}!xN2@oIbh7l;1a!4=nJ}Y$|$>?sFrObT*xRe?KCqmM^(f3+Jd_}h@5aDy0 zeMlJ)gaG07GarSafeL|pZ^@59P_+@!@w?SwGf62<($g$TwC4c?dwNlmyIpHKx7LY7ljn$ZB_@ zahj8$w~lR6(4V@nLY~-9SU7x%sLL<4*49#_EWrJV;lpU0*hZBjVOlZhgABLC9m>;C zd0qXg-g$Gk!~~_Iym)^iQR@aER?$E0ZD%WvlF|HLgTe=EJh~OfF)V9-_VYt0Tqp** zr_Lzp0hlvfN+moYX!uHE-Q;ad!8jd-6zII$E$|9g)(6`Zk>3~yQQ!=A#(Q}CCwSxH zKc2ZRT%m7%6K2VDc2O)hG?t*+x@;GMB_hJrcwk&{Vvcm@`ScMnF(zrxBbUf^m z=JZB#F)6h@y*1L~4hccrvFR|(I>XZBL(>IOaS+JU;TlNlP<0w!8iAtW&+DTfTssME z?{||QZnv;nG{V+V+PHWv(5Qiq_*jh-V?bgxgytmfns13^rKqiRBcLK*Tl>q1Q&uko z*J6gOplg+hgh0)wz|5@5Z-csv_zBlN;VW^u)ik+eO)?_l!hjZGdoO=(PDE2Vjgpq% z6JE_Am;RtH7)k2~bZ@$b(7Op<{p5Vj&mN$5DReZ}OfRgHy;Y+e`CKzZ4_LC6iGUAe z$XY2Jk;el|HAYA8YVwb}%+!_?pR(tgu=BfFgx=RjzhE^@Vab2VjnP25TV zC1OXu707s%7dfhHQ*!2)AHDC^!HKAFLX6T7fh zH+VnRMA}~{0vFuj78N8=M~GrFE3q<<3pvu++&-4>KxVx?*eBeP)Ct|YrXX0%QTBEJ zOYz>>C2glBc*TiYi@AP$#wEF{G5g4Z=mUrV?^=K6A0BzKARq^x1VaLLRRTMmuj&a8 zn7Q_j0|rF%B>_xZ)-EUY=@#OCdd8Y)+%1mw=6EZ-xdAbhL zhvHh;rX;8Q_UsVC)Uh;Ttk~&+Zm1G6zQ`L@1uU3Q*gDO;yHcjjnM^$^{$a&|Q9)KwwJ^XZ*nin?ihGrM8%YiS}D8q{DhLM+Zbod9g zHZy`$r6Hvd$yeb*21L1Beoz4js2x+@CPmtRzh@wYJv|W~9Eu6SLHSRp1%66AUB_tNYMkYpogB8I3#&(HjpuH3k93(`nomPT= zzDt_fn?(*3(=SqmrP5xl1mCgOkPo+G42AD2Bm2y+X7ZIF7S1&+U2T%FUKLvPEqgjH zuzLm?4q9+$xXxx*(gUzU!yTlbbq^(?ekL11VHzJv`x+lYAurzrLkL)m3cR!T7hVMc z2_7fAxToLB>Rx&n&Qa^9SgvDgD3`axf+|D)-1s8rj4Zb{Sx~_jXm)j~SW?cLVf-B+ zPsXnqzc|gr&=>8~S@_plApze(w7Gt$d`vg? zw87rhuq(h=Mk0s|5E@^P7a2-aR0ShU$FX_$P<*nc_94Ff!!qIDm+)Vr@C_Lvt0puL zS6f>;lcu9Z=7ndCO%Fij3vdh%tKB*5-CP`>JAO6aNhz5Cu_JRNLxt}sM5u!0(TCrY zc11;7-&&?+RnEilwG5(K4EJ~sZtheZ4tg8)w^SQ7{QJXT*$&k`w59%@w$1B|`w6c0 z$p>;(ZWg5`lB}YqC5ejGLgN<;2tYE&L)*w@cr&ei;S8R480%4^4itpl#3|!PINQoz z{ihQd@A{9X>Kjyau-xnwenX1!(Ne4^B5By)efIoN5uf;UTJG4HPn7>aY_9)o$#&ZU zvK=xd5p~p@6Y|tFt#>Kuger!5`fyFD;>?Hf>290y#J)r*@q8XLLk4w#(K?!Q^0f~h zhkiak`%{5!!PPd4ZK7tWgdn50u?&p5xRf*$LF(NUBR~LdiQ#YViWit8;Ga!)a?j@uv0AK-f@{@FTHdx0 zN7sagq+o_qEUaJk{u1gFp-h)7d0r+giH|1iN~48G?4-==W+dp{DPxGW=q;)@qF3YJ z$*=YX^eOyHs{Wv_52LB)UblGt>Z-UauK`>R&~m-P-||{9XQ!dO%^x0`q$+a%l=FI= zxF1*bo+fVvxUE>GlmyD!Ixy>FDQQ0VJMfUe+-zddE`|MlPbeSxrtkik_S|Q4_TH%^ zCtU+LbJAka9)*rg0u` zv`zDR_mKpeE_aG~Ojiuda$w8~$w**m5mLBCUO?CGv;F?fxjKN{6C>c^D!4S!|K8wd z3WIHe02^Hu%0Lz<5MOtI(oBJ?Hr6%y@w9K4sOPVh-z8{phCQ>sW6p?O*9LMMV>U!+%$CRDgi+x(NvJL^gbyGsk*?y_C zz9P`IqheM0r3|r*7~hqL8p~DKwsDJrjT5}(@x_R>=}px~%nfB z>LlE^EpYGF+-vPr-xTE^^N)RgbsfIDfaHz{EgEF`iWoWT9?B_dhv|4upqSf>3j5wN z5-)H_72&u_f$}9~L&DF*J3dN|!x+)yt~|na-{gy2&)3W=g+9nPEziCf52>+`b%E92 z(s>BFiL|E}b;U*qdw=#vo`CAynL%%MPu*HzwGfpRHA84SmG4ni2JvH9FK!ODdeJ{Q zY|IY~_c)jzcATyB`qkxon^#PW6fSEW`uhY8ya~(}tFl|3iubsZOt^e^nkr4Sn{6n= zNor&_Nm%GJu%tb$wYxUY?4N$l$#=%)>?cbWBDfXskX~}hwncg>hRFJjX)7;a-L~g% zS2y1p1k;ro^E~$Uk0;{H0`F5J$VUIAq(lEd`z@L+|49a9VL!y2J{o%5`wf2w$w_{r z4N(sUL6`_w*FmB;yXYy1>$AJW96U4dnuzIzcW+zv-1-?f^M-hXZ-llX5t~%^<#D8t?Y<^YhLAw1~TmK3%l7rLDz=y|7rWO=$e z9a8f{=^~0{4JSpYQzYa*A%EM&1j{y`+pT5fqB&ENMGXH6Jvj~VvCq?TL*GAd@|fLY zcZvV}oVUMR5>ZNPx%jn8+0I%A|3KQLS}srM5g4W}Ax%Pj;IvCc?1;*7UBR5sP#o4e zqQ{T;ip{YWHl`Jm4nUhZ)9i|A%oefyWTk?-car>|j|IAw`YIcs+S{fQ|0J_AB{9Dp zil{FhL_Qgau=qH)I3FZDIHG%6#T~@<(m+fJCIcqiT9byU00v7`0h{Hb|6#MXkL3n|vq{CfIt+T>?| zjt_2wHV|^1y!I2u&6}_eyL$m$JPx$9_+H7_F4~q?Pjodj{Uu&t#CyP8X&bHGwptoz0{k9;j2jMny zUfM1%4^(#qJ@8gWjePikuK)MS`yE}NN&--|jsFd4qwc;v^fi7uZlv&E{f`(i1GirN zS$w}V`v?UrwXoRa$kgcM*doGWs2AbVGmj0fL-p5)$9LH*+DR3_DFfU;fyjF?Sosar z#aIub>bO^r=4icC9j1uTpxDZIuipP{wB^MWP`CElgRb@XI-Fn;9jf>K$zSuNpW=5l z#*A4^%@YNnW8OCa?4_3UVJS1Q+IDU;yyPfX*MLqHC9PQtf=q?4f{R+@!k$v!T!q{h`}`ZxZsc{}7XXw%8^4tP-6juM>>Df!LXkXsVeJL*g$h)IX)W+A{$w zJXsQpsGpo{rFY_P6Qh;ro@anpVtO?>JEXJ5cveweJNU_}F&oP>9fhgHspE?fKbB^d zcfS5wc&3|O&OA%z)t;hHU$oMkEVF1=E8KR46OvNW0<8$aQ=w-|Wj`VEf3$$C=wAKD zX~EfKP>X2tL%VJ->GQYyxkVT}%r_DfkrOpn29_{eX7JI6>3`kOC>KcoA@94WwQe3P z=9h(;V3s=vlx{xPwiiOceahGDlMJM$wE=SmAn%&<%*9?S^1UueR`f6ud7Jc|cNV zB|q9R3JM^DzjCgefBfJRY^D0`NdjKCeclo*n%mr07}`>Gz@qSKZL~$N5jN9sg)}(( zZrSionj&!@(2#T6f?wAlRyZ~m!0FoeT1nmF#uA@fbQ-?;@b;?S9S4tA_r-U^%RT8$ zMzDXC6^D3XA)#(=JgA|ewV`gkq!K+|$rpO*mlma5aVXWbT{L)or|C%~9k z!W0x1nuF0M`=lu0m9DWzSm(#xx{|0}Z}*egYE=alae08$#bRVl{8OI(Lx;s1gXw3> z_^sVcBC>55-(gVtZUJHpOJpwUg zB+ZhdabMJI7*U1Kp%eX~>5>riVTQc4-Sa?OihsdFh&Y6pxXb0wTY{E?w=m7lp$W|q zdLCxSc+Nik0F~pE<%N&ScV#?`CY zMRjy(0+(xsTYe4%tMxan|5b3|u*eY%$B9WlI5j+Pc^xwk?YN&>qAEHyEG5y_eUj_$ z|6?0EOIg+Xsk*HVHj#;M!|!G4_{9#maS9smxo}N&ql4)<=$Jq}Oz|9G3IqJLX*+8) z4t*O=X@a-;9ho70nNInF*M$I%>4x-l^=79A`U7zE323@I5#^WP;FpMBCj@x30wGy0 zZ%eD?sk*zJF3DjuyOr6?iA?4w}kLTqD?w%l#EI7WVW;N;i(*OqL?W)%=Pc z^+|$Iq{9_MY#NOlV<~NZ zW}j-Mg3&LEfr%#x+jVsZuWov%YqN9J7b19;@k930-@;ZkC+Pii#dQ>Ndp?lZF{%Tc z?TXb#s+smU(}z^E@#7yUaGu-qCUNS71{?l^#lV~&o1wDarg$tqEHv;sxJ%8k1P{>L z+a9_NAjoot9mm0gqg2;HCEY+d223IYlR7b{+KL7@jijqY?ac368JS{tS!+9uGXN{X zC^?hF`xWVt?};!yT=xyYFbkh^M3En#5!#rd%4h2P4IT?>#~ZJ>ZeFmDa(Gi z^2+Yu(Wm0mf8BiETEDiQ3N4!C$U*R zYPYJF4}TFrSI}N0@HvI*$E8}AsEnp*ZZ1NJO*&>(ks0*ZZ#eQxE^ z7%LOgbY3)UyM~5JxysIBH8nE$uU1m%Wnr5?92VkCUM{$lawpViU>S%rhS#+WF9A+b z_D9&j-_qJb{aYF!MfvQ>wxR>h0wD6m4{7a{CO&SYQL!3*>@~(D6gYi!^S6Vvi=#-_d+X}Bup8QA9 zzPlwlDk^+Me5dF*OI$Fsswa2gp;+9*g`1rp=O=Gqp z($t_;J-19j{OcCb(QnjoR|ep1+oo6b^3sG-?bmpCC!0O%EN$Wy|1 z5$P=14;a;5jNohlfJTSq@$gz}U>*CBa)1&UO@6V+44`!7sjGo7%S zZtKxUhG`fAi%SHNtRDZXA^38$`DTif9DlFShPZT`H>Yr9hBE3rzEgXLR$YS{G9L>O zoC95HRjQNY9&FVG*d!hNO^fJi&4$Xj5rYBvVnfQW1TLCZydK?F%DWH=utG5X0v$fT ztD~TGgevy!!u+8bd7I%I2qlJnM|%j>Lv3H7Hzc$ueo6I}qsuirSs#~K9sKLCmF&xg_N1+*4K>;HfB9CwMh8L5frzn3VCdRm`B_0} zXU#hJ9dm;UyXLG)baHr!$KU;mJ-0A@>POl%Iz0c_7+wm}9htT80HdmW6$4-ksw4{We=g(Cj)k}0x---dc zSY|B_=w`ln2&Q!4Z{Nhwt#3%cgqlhRTdZKJiD<+vz2EvuX#N47u6d~Smh(PNvb07s zY(dM*2%>z;JN@K!eO3bsf9}lQL+XJacmT1n@nxpf>BP#5qu`P6&RrkDd{3JV^!9Tc zuE~;M{>?WY=Wr5;?SKxHk~}`TBp2uTu3vfvT$E{MNxa_p7j?*<9}y?>J;tyCZ;m|& zmGQIa$U+1N@o(N=!pLW|uSY)+mApS^aU(g5a{fUC{`w@>q>2h`B^gh4Q&Q?-mM0WtLGBg(6Me^b&&7m}ZC& z+2*zePV)Beyzq1=S8y5LcC}{EtkxwfKy~E&*Oa*y z$HV}94_(s|vN8H&jVb)T@GI4<#y`OTWl(7l$#avX-eG87i-J;P8XuhZA~M>Dy#X$d zNWZ9DDxjCB%PPWC9?xHUoY|oHvN6qq2IsEibT5qBfEwpFFh89Z@tDwf>_9{*ho|;! zO#J2h@G)hhNHh4_-gZAX=0z&*`SlRyQ80tRA2SwF|CxGHMB9*%ep((ZF%irne$bwx z>DTWG;wZ=Zpkx3oD~7Gx^x3yk4#^E)x;pYi_<-BSgNc7PgW;AdnjL9@QM-B@Zap+XDxY2-JI#mJ?AaLo z3i|j6S_nn}GGfjI(4bz-P!&yHD0+oAMmaxf6XG{$t*#^2Ow;$P+PwR+=auKYa4O|> z?3tD`tfO`j0wz6sdr@WrUTT#kb+1Y+BCJrUiXMFzmW>Wii>#^BjlN$u8T=Br0eU4= zt<(H86Y$NjU2JP|8@!J$_qtWi4sXovMeUtZ7oGyps`WhVvxHwerlKgSRO^AWC#ZH{ zfj${_VLO==3~67^!4cooBHP8ndZ{gMr>U& zl=y68^ny1|)mN(BE5qF02b*Y*_cI{DEcw{D8U8lxB3ocqt*Nr(+io|SyaF$$G;~;Y z?}(JEBc~Uwm8NA+Z#~66Be&YO?2$rZ@!YH!;sY&9hMwbpHH`HCY3OKxr;yDJe92rd zZx7fqSk)jN8WVad^0o~&f+#(vo7v4>&fD`vClt=w8p>R+qoOTmx!bhOku`xOExZ6< zE#-?y{DUyDueqg=CefEmI|EFfs~V~j%-UAGQ|oQI{C7Jf1|(LU&yPIL%T?#gYO2sE zEfOGs5m|Ca;kq!e_&Rc34}U`YCLZjbUq>*qnvbShdlgN{{>H9mmr^lBeLBs$ zn(fNOa=u+qMgob+^X)QBhX(pa`-{q1_FUYKb{YEjP(1>$__CYq=zqsm@rvitp6#Cp z4eVPye{rWYowmt=eUIDKW?<&8N+Uc`ZF$pgJ%rj;qH8%dNZfToO^tXF0j8bYZS4Zn zDlJ3#Uo9K1pB_K(qCXZ=otTn07F3mFw{ZO!RXe*t%>~AWI8iWHkj679`|9NM>#)s? z#h3DqVd}S2> zE@aOsO}q-vhQCNK)4WNMDsRQO30!dkj3oV|tD~|*8DKpav#OVx$KcC;PsqhH$3qJS zz)i{x3uppmbS6udp|u^Dl2=z$1SA}2FB5tc;Jgf?qRMfLkzS+x77f2`+TXAp&w2IF z;Wq~vVNki7d5w1G2>cE0kO+S_<=ff6W_}Dbpwvj)e!mgsh!x`Iz(QZ!EP?`e^B?HVNGRk->8nG zjKeS}IH0ts1aL%PMkxv*+YS*iRyySGSO5_-NQaPZ14ITggb_wiVxg!srT2`qh=`Fc zErA3GEhHh3LXtga`8;3V>zwyF?}zj0eDD%4f$U_jwby;$zsCPnc&C#K=tYLY$bSZ6 zZoGiQ$0t1-&J;FgAG?;Z<5CoNZ`^=*8=3Pt;CJjkS%)anxf^U0%f3n)cvKOChA~aM z2UiH{o^kaaDOWN{5pPN+s;u3HyS%ar+TmnGUzLXa#WK$k;yn@}S}0)T7^U!wZR+)}{Owq-nvcE&nOodk zEm#OIjCwKd^oLTLLrco4PQu_gwVawJ(RwAkGx}uF+m;Rdw9-zc_1alfIirQSNw)5t zLW$?5xHG((ipvo1Cob2D3-?;iOq>Cxf{!qfq80|~2R_z8X+`s?trvk1A92*q#pnnh z+=i!!PY_D=JGE)1cL8*F74r@@VCLW-zk`j;aT;7WgA1k4l^105z_v2Hf3~s@V{F_| z)uAJ(D&dRF?Gze^9s$9;2AG-Se^Oo;Ab%gVo9SVjB}p&vy_R#JMhx{=KCe*!fv+06 z>f7a~DYD`+9*}Huuc0fDhHQ53zcT!}qBMR9(4$JL$Xm$o zn+#=We|QX}okZE5tMg>VJ4t^t1@gg1oAh7}WSj24e3hq*T-J6GT! z*sXoyc7!E=rp)=5kM;E7r=Q!wknC1CL5n=P6g5mVib`ld(4Y~-=?I&ThC`?JG3xOk zzyWIW^Ym97BVCt0F#ym%W`&e0Mcs(f^36F(C5{de8dfAeV9YyR zc|~OP4|#7lsDK`YznIBD3}66gvIf7#JjNq>Q;Y+=oKL4-#XxU2r*U0sR~y#)sKkQ`N{mB4o4k1F(9xm-lqx+ z?UX+AQL(cH?jxDH8LLK_CS6m^%%GqRa?8sIXymlr|CTw8TZ0jol%siHbdCBUE9dT& zXQq!ui%UK17xF~G)kZJp9%l(8(5l>vL7-G4!@d`w>xYJI{NdHej4_BMMxU+^It*=f zeWf3kc)GVJQprbkg;*&XGwL-hFpW8c4yV6p;!n2@#3sk?DnU2Ufg(12F)q9FA$Xhg zfJzhEeQWcr67N9iCNtH(9zY!9n7@2}>sP+g^Gc}HxDkvzGtL$O5E`n`BGeK?|6N0# zo7%GWlNHYqoLhC)GQ_bW8NwA*;VhRp@HJriuTGl!O{o}y*#qD=1RZ{`Mh;6T!p6Zr$krt5H(Abn?S;C#g4E-PA>AUp z3FJ%>r=6NUInX7GXd+_zLiP?0$wxk;eweN*PhAar+lO^Z|1GY+=xbqlQuHm=Iq9`$ zAhgoLE0jjBV>zObP4%(*jV6N~+f|VW&!t`?S(BpR=d2ww&^b>H_u&B%RN$ zX%JsZ)kUBuw2yh8uty5heR_&Z(Xm}e&I}ab$EkQKn9|(q-g9ZlKX1g#0WcegRg+-JJY;|0;!Qg6Z zjOCMm*Bl(%>nH$N#jbT-XklDK1`;-$8<9$bzVMM)P*dG{z{i+9o7+4hC>PSfJ;$&1 zeH9@o`e!!JAU_B#=)-4OAG$e;Uc4AAt0$M{P}?kSTpD^FAk`}ey-Xn1neL_b=~9P~ zeOhGtOnQgc#lw)#BC%t`;|F+;av| zJxTlo-f_Qs^?4z4>f zsl*kTbhWF9t<*!Rd5wLG@IP5)ix^yFEK+}3@$VY5bYPwQBZtL4tH=REiq$~rtlpC0 z(VRVHRlP_TaDlqGp$iG4VanX?Oxng4LK=RRrvgshZb)`i*-4Sl0!JPvH?(MdQ+5b| z6wLRp1p5(I%AKU!K?8A4I`=K_`>W7>YgvVJ%bYvyGG5L#$esd*{cd}f>6@aeSkBk^ zVCxz6(hzT)coe93>XkMFQP2d&{yOdYz$DVs7b(b?=JLP;d#s4A71cA}n$^~xG@gCH zXch`}eG1k;7Hp}4(92x8w8|GH@Tlvolip03Ysx`;DIs-40$$OFLL93Thw->K- z6ZDzo0(R}BVnuLqNfuX=v%z>D?MvFIUle~Q7=>p1ejWd4KCutG%eyn$R56Ib>(-gVonm)rDJ;~Vg|-x5Bs8s%@J9|j$o8RBXnx8c;Ssuj42JeUuxMJ8L7vj z6BXG9wzH+w1K60pUZv)%4g+#{>z{BeUkm;z#w>B!;nj8S(e(E)C%f~d^5Sc6nJLRI z>wrzrtEOXBsnE*9$$^hMe!Ov{|3&7h0{T8w3$m^zmCG0VMW+>X&=*a@vmD!Lq3AzH z{G1{&(EQm0cJlDf8AMlPm0Dt4+gF0_39DArorhr{S_jwwtf_RUqD~=Q{{g$n5vzPS z-v80;v{Wc3?f8av|MGyvb*?K4FXlzcbMR?eZ^8X{9}SA!%$6m3)X)?IpGj%t%08c{ z9**PyR31hjg_%>MIcI?-Qya^9aIcT+>$yz5OqGL^;$_gMC+CI}P?M3F0DOWbEU*sh zf#~`$*9RFi2yyhuc_rE_kvRT2D;hQ~=u#DcXGqxt&Wfw6vN4Hh_#9G#^{=M&<<8_%`pp!#xCEJ|$* zafl+Wy`voH`>=r>dP1 z5?eP1*0sONSG_B}-I(L%>RvZkMfUi3EsR@lgLuQDTp&W9`dd1T=H z%~5}HgfARY-I*JcwuMG6nJMaBW6XwDe7!i342Qv)jJ<|C;|ms_sebi34F8As#7dx_ z5h4TPIiKIbGoj8US3aby%y7R}5G~qiK4do%1z+f^iW{V|Cso(>uV|>_sMh7Z3&nQ- zt}#fHm#+4u&1J<49__uBb6Hb*7NP=1?7>yKIMcX6bnIg+zX3G~>ovAMc=+3rxV`RV zNL^rzwHRQ|d!WFgS}U96zbDxtrpyW4?y2_7m&b^PlY>THJLBFXDg&|gYNOQ@y0>X3 z!B0kYRrBlS_Jn_nrv^pawV5f3J>Vaed^<+Yu5Kv$E!ySpbnt{3fJSyU4PbF-#WezW zz!gz=^1>q7UHSws)tau|;vX8>i0ujwCZaygvD>_w{V_9O!ha;2j|x;^r7*QY(3+#3 z!CA6%iQXQjU>d;l=0nE7-a)jJC9*CZ8#|gktWQbf7R6~Yz`cE;upZ11G1cW3)9&3D z_xiclU2m&_C(6HJ#uif0CG(n2p{JBJFW0M;Hg8jbuHQR5m^5X?EsGTEj*)?g9 zdk4rC_%%`5|E&5lC^qVGJ3A3A$KP1vCK;(Yhk>8P-(YcrKOsRu60wN)05KqUvi9~j z7+wjr%zyLU<)(5#lst92X$2G*fa(?P|Bg1KXl0lAr(k|6in2P|*eE1CsF=3^{_h3} zguTIbr$)Sdpot*%UHkk>E`9TiAUgQUhH^E*&iK=D&vBY#?E3H+LMj}9zh8H%-2a)( zeLTOM(|FN(K6dN^z2ZL=Wp6VsfL=K~=j0x$mBI$p)*C8-c%q!^)C}p&qcm5D-+Kn+ zXf%Enq+b|m+St#%FsoA0EkXf)aIYcqCGy#;k$oSd$%XIJHK%%udk^-K%!*VGdNzW3 zu6j7)m*9`=);>MMgh~Z@I1u_CbAa=OwDvVS$cvKX-CXTwaAz8-@M2jC9ugKiq-3u_ z;UK>_B(OB<#UWXyP76A6D4f1r_cB%S9@Q*fKvv>(MUfM<2Mvc5UV(^dFX;fWXy%RV`+wKC zvH|_V=&UcMcxt2*Sy_YH2nRuWO6LaQ*b3vF>s7`(za42<21j4RZCJj;X$qaQeOV)1B{eOdV1%VqMh2H^bpxp3U}772 zQ}P7dOwm{B3tH7%%(S0OhP+?Td z1z+gGo0=qx@!H7CS8Cbf-K8kUHE}Ln&0)c@DxunK8~VDL%pAvohMSs_4RzTg{+S zY~?pTIPJ1B#?*`G_fkp z4ZO+~zsjN}GF}Tkdp&?Qr}L z%_+ZqK;D_zMmL16!--`5TM>qA{j4MpAq)#@legB_9_YY7RZIBwxAWsoCL|H%`ApHWuRf2ZT91g}n=1 z6GXSMB^m>7Xmd?H*~dYg!G^@oz~C=Pvl#%Pb9%GAHX2u~WxAccVf7JN)3Z%;PI{Dc ze)<#4VRqX9q(#~>VRfIawt`yI!kI59?;+;)2bX}3sG2;aWjk8QM*6b|lyJgrBeQZ@ zphYX$;?br<5}ccPA_W$>nL^Ah?9w>zekCOZ)K=kR+T#VO%la1Teh+vagG$e$ z%CVM`G5XvXvr~DpZ(GhgP30E-)|iCb97ubX@NM{*OS6$)pXHvFlxvR1zx5c{7P0SW z;&i&|_40nKqs$2UBPPE=B7Jj^rU@L?EUQhJtI!v(Xj{f4%mifqdopj~-F7{@1#c0d zIWlYgME}g^jRKfJxaa8hlg>ZY2u~z4jfETH-nTn}O5hZgITS^mY8!GYfc1@dn zHz-_#LtCYpX*OwhI*DDul$C7BAf2>Hc)T7U{pB0zx)sq+7VWgAz?TwU-Mv4R_B(&0hV9BO=ZJTA8IH6;ID?ykN;Ahe3-FUeB zJZfKPXk|?BmbELvAg=g-o1@|JKla&Nc8S8iWR@a z2#TzW%1-vAFdV!Qc~L@KrKnf(yh^4ftA@Y@cyq#p5)I)=;h)qB$Crbqhx`A z)XDdu#Y5K>^q)w-mCJyPW_h`fQ}#gN(O~p*RjkWan(WL&nEZj>LfEb(%AzL(I;8!w zp`vT6mm`OBXrj2_;u3V4H1{0l=iP|8Z^ARhFC-hlw$>GiUAsxB;2=$4&8U<2qQxKu zNe&a@>W;~qRyHKgI?Pp_8Hy|CM{qit_>8P3cZh$%(W%YLloFOPxY|U!7;d%t(!U|q z43?g+B$;t2TLK5zLKi_|NK*l7*s|CnTTI7+T984x$l)DvP3Q<3s7hdv4P^ar@eUG)%#TAqcDO&(B2V?u`&AM zzyTh`!q`e!Dspc`T7gREkg%`~wQ1SBlk&rCo$e!IsM@^-hu57iO(_oM(KKtCbu6fX z4x-#xb2?eU4ViYCI+Cha()^rbM}b*O>91fe$LNAu=|%vj$k6$1Vo#W}O~t@?gXhI3 zm*aB0UVfeF0p$3)y1CVTxB~T#kkGWZfjTnLUMm^toQI(g$!8mq+!rKEdpQlZutp%E z+@C=l#*R$kIVBZrKAVE`kd@fz!7@N2t=V(AjMFjqh!PR>aNr9Z8!bjw8Q?{j5nQ9SE zxaCL#$!kWL6ND5aHKD#YBP58EtUt0cNdA&UyjIl-a<4#0SP+RI>nI?Z%MNg$`)=I~ zj)R3!{~{?{KYj?yo^YRZpQg8Hegm}Gtx%a}V#5`)M-zM}SCLw_W=^;2RmR-$R2_%J z5B*@69Ssk@g8KT4}-(K4#m7Ld#4^LKgc(pOKGsNVP+xmGHFMOw&Vd%3kif zRkQmPw#zofV);BsmJf#;s;I=3P(22je6QOR69 zgP<*lTQl;P2TrG^5yOrB;!g?kVEO=5f{2nHfKh){_u zDe&=u>lLaS9%1u_x~GF?Dqh;YQlPSceOBhFgMib=zMkjOyU>>S1QQt+qy z!s6_ECyMWO!eC0r82#QiVWwPpL5!y~=&`?VfP~cymcEQopmfaQdi0vU6`jnnRQSDp z&Ou6pm=ijgSwd_bFa_q zqrlChieD)o6QMY)R|>1ByIlOc`W+#rFSxOjeWcB3I7I(UT&6kjlDRtO326J+Epu7b zeAEPV$9CB0E{C>JcH~{v(rk{A$gma@s zKFRA?d^|0&5^Ub~JKhh)79@$h$(3zEzOA$XTraCTIl7<_3w>9I@xrF@FkM9La$;JO zc%R;y8G5yKYi|>4IR4KvLgURFx*wLoSSBJr{Y*tdY?R+3>p%(AXZ)c)|0^}RU!E?4 znqykMq{%?x5p2uxc2>G_&WnCbj+6En?!6F{bO{V+o0s))FsFcQ7w-7MNUA& zN1B`V$|eBvkl=RncosczM|HHNAIBoo)so-cT3>y`m2N}6OmY^sVs&L^6YvAFmdu|x zaln!oOk5VAuK8JtD@UfI;Q^aBa&K5L{%>$l83ALx9W4UZF9Z)KTI>F3j3T?wb+j*(X$N2&vCym91}CCT;0moZh=ynF9> z9qZL(V{_pm6dsXL`T<%?+A2C;DhzF={j|qe=#nwnh}$R>kHhgz7GxH@Z3W)u0bd`BA}V(B@Ci8m4|gJ}&rJtwAYB_siDQ4c*(puy zz8h@6Kiu|L3{xq?{hkCyN{j8}tHoLW6(FM4NvpilTE*7IZc}C9j3X=iv`O${ai}B* zh5ME=?PS*RHmFAR919Q$_3{b&h^2AG-39wZL9T)p9%T8+(OhwOf0!%kOn*V7LLypt zfL8+u_?g=G&05L&{ZjZdU?wK(J0((6CC|k*%i)4e2a|PzQ-x!(c$Ls zGEt53pA_VE@F~11qY=Wt?X~{yg^q2+>Uns%*`5c$c0FwN%ebszhbLYu(9|C&`?Hh# zc)u<~cUOzN5>zg&v>HG@b2R+x3x{V;;J0rbb!sTECwsJp=R z>$Vo6lb2i|!qYB?pmSGG7QhXh%_Nh#ia*gam}IFkh6Z%@c2!~_@* z>8e(~TKOAYi?q|XvU$JU2g^e%qAHh>S7#IUIp{9q6*y)~;n&ww&Ds>+0w<#O%daFl3|0$Kzr zIWR3;B0W6CVG*n@V=o5+=`r)*w#~9TR%0#x1s&@Ea5;!_^r%)GTWRme6>B4pR3BkmN`t}GT`gONb+FabM<)0`O3$SM^K~Xd(b#n`^zqNxdT>JTN47O> zXWV2V5Z-{hvThU2_4 zIXF=Kfsgb@=t$FoBK}=7(}N3KSHPwS22rTn$^#STNtW07%FbB=soD6aiqJn{Nd+oiP79KAj8r2wW7>jZP?gZm>q}sF=aX*7NIxG`0r)`6Rs~e)f(RbG!!X5 zA`|Y6o&hB<5V<@f{eQ zMA>=}1=Zd?>JfG0lZyszCkuyqKaX^Ur^#+GT&n@1)M~exDS;LI5mlCzjqARDn*8p* z7-3*R_le%bKwjG-Vw;N$iHkn7Do6_s3IfF+|1Z?y;9YzA`#8frkT@H}gFY)BB6fq? z0eA}H<)nJ~R5}o;*C(f#yOyUROjX`%NZI781R&anK|4Uo@nel%Pr&a}&>2$$j#I65 z#~MQYqSKinOUHth;a&TxHci^tXq-FUmrGGy&W0#5utAvv=!)K8>0EV=SDY$MNjXYJ ziEb1dNgF7K%kVP&ex}Sl=BKU(;wvAYxj}kd$z@Px23YT1hV{JXLpp+=M-e+=fEV=r z*KVgWT|^ekX{z#8YTQF)rRouJ%1pK5O^u@t@9+7YDK5w6L|^KGa5{CXvPN4r`BH$fyK;%xxQMQ& zAyJHj+eCAj)wUvF(}F`LY2?CLNu=&xTod#wG@BO&^j61+l1KDzTeA-UfdYnUy;BVe zqa^>(LSML(UU1{SCfqR zZ`nHw9!-Ds(10e+jEvwUG;P@(o)?JZ2!h8<*5F=8i4T{hUmA64L>6oTKy-5{s!VXU zCXHXwcy&<|aQ?#e{4yt0+NV>4?VPG8{-O>esVb-l+*Yc@8QfjxrR~ThY_cW_Ff$fb zJd`2NM(4bIKkDGZd8d|ukLrSvwd~!M+-uZmmTupTg(eQmyS=P+CG+Jq9V)|klm-8T zC75h_y z!!91oO?9PsYel^{EHY`$2o02oRVsD>MN!!`Dnq@?8l{_g5~a2VhXWYx{x?^iPu1veJxxA~K7&n42n3`Qrc8TH~!uRns? z>pJTORRAXG4F^iaT!t6FxQ;AA)ht;Att4$zo#r6wvbUIXipzmFG9q>KF*d*dk-2#R z*{ukDHQj_4=6&!(z98BSE^wJ6i!Yghk~{;e zzu(rll}0_kg~?{n$_87k0FCcQYk1u}Sw9t=N!h5ARTU5U!`%-<>g33b%{=G%WBklux5g6rQ9qeGD-pM6ygS(0W$~Bi~xF6 zx68MMO6S=GuPL%7(t%QMT7NAjA#Z%_8yEeq!-EUDRA#gVgQl~9h(BKP>o~S1%IY?B zk$#u(BX&E3YoXSB(|g`+QS2p`mUj{Zn9{6WPaasfh>Rs>Ku_+^phnSKk*!pLPtBK1 ztMv<_W8swg>F2+=m4<_Nr|zqYM}ClHHj}ps0f#UFO~VO4+HIOWUGmJnVdFkQ`m`HJ zCJb$6m$^5y)kqeD2x`{Pz!up$csJ$L0n00ai`8(<*^&7#0Z%oJWTgr-= zdP%&`-S^m<-@OvwK^x{+dqigU1rjGR|J}Zg)V5 zm790U*{P8!pvssGQVo=zlnp8NksMUdGF`CyyU}#oNehWXz4xQw8^%nQujtQ_p#GOn zHGl2_g^*RkDyn4+^-jkKr7%mhPC2XLH_SS~hKDCIyKqLXBiYl)N=)UJ(`qI!Nmj!4 zJQ2!SwDKuiUsiacETjFC%$Z$(2j5Un=KIU6#xw6?*5yY%XB_Q*QC%*wSs2bJ{DHc! zNc^ED9Z2F>-3L(?nle*(L81ZbJ+)Ds0XqaeaO25;4O~TsLUhtD(q{pn! zEY^cJM%(v(tgMj$WY9{R2`k{(+pc$mHW|b+TcTGilG?%e#5YYz4<~yq?0WhmpvZm$ z#xbeISY~lxhLk;)-8r-eUaXO4ytO7K%uoDmjC9u2)R!fzE>uW=NX@2?pke`&0I;?? zy?k6P1b=2VwxxWaGlOA0EI7RNACw1!GR5MrOjIE9sV|K!#ci061Oxj|k#23%G~z37 zxt*=(6K#}QPJg?&kjKtv;lMg&K4CL;mFt_9KC3+-o$J#g3>#0-C8dc|HL2znM?M@K z`8{>ST^2O3N9h^3C)SALXovjWp(s!Vy=#JG%nLnOJLUe^>jA@ehWrYiKupb#g;K9K zm_uCk6f(Y?!19|Xtn^MkxaBDIkUg5{(!$eDr}Ejd?de@{?D){tf;M0Gv(TX;!4)f|nVkEqwA*vm2gCA#$BLO1ULHy*P(u*` z3Me)td*oD8p#E zxyPBu%G94ZJ2dw}c-f;DoiA}0p9e{xaHCBDkFUwGgs~o&(U3sZ3YZ_=Tz698#Xc+p^$l}q5s5{Gz&{45z zg3AyOZjjz2MizISYtzhUG)@jFgQne&{<0+7p%1!`BizR&H)BwVO8-5Xnx)q=gopNC zcMb-X%Ft_9=pAAp9BY?dQuy}Ll_aKOa7;GfS1U60M5pW!qv6`J+PF}kdNxXcNyIl$ z-HV;}(3FiBpX2_TZ(^>#;(ptE=}V>&K>_mH{NSRfW~r3M7mWC*cz;;zX~MI7$6TZY zP=cSP3eHxi26bQ(*^Tg6X{_eGc&IFD{~uvI;btJ7)r}l9I)S5u_B$V*8!jAamtrrm zJJ6{#hEzKox8yTNy}rc7b7Mw@v^$HI$jaPOjj9Dk?Qs13XKR%s9~{w4lrS%=313M&gI6rlRBlpx2waI7&L0!8?yIJ_jRg5^eq}@Out_#noKrE2}YXVPkw_g5q!_v4bZQlUu z0d~78-z7z@1yvIZ%jBSdpQNaUJ4H^ZHk8c_Bc_Zh3r2WC7yCgqv->7hnF|9U48uZj z#gIJE4?QQ&S=oL1b}cbFFjtuo(qY_%G)?25OkRU}Y@#OdV~q9ZdY9{C1JQk@XzG4j zqH5}#;))=d^gb+V@=XskRm>B0ApEOgSz19Et2dq*CS(&0kt!MkaAVR{bG3Q1kr9K` zYv+8N;6jxo3tx*;?5@Ng5w1qTlT~0?j-iorMH^~XPln`T2~1_!+RvUWOjWFaOI?fv z_b*$kY|*BZvJc!#hH+87L-N=O_GRo<20mLg2TbsZ7ap)U(@RVHci_PSyn4$L7ZSJy zp8d5$4BnnSbw6u_m#|-X40WjCv=V>0*4HV^Hnz`bH0zfE zbp4R@Iv;!V#pCaRo1ClB@Y4QsANxz_3Hm4A0*1@R#QWG-4J^Cmv@7t=EkPnj5Plfy zQm?f-ETaZS3}1ucPWgOxL%)sV3CEnv6cvwp%eY#IO}YZY>|8o9N5Yj@pFh&vJ@e+W zuBH*ohCeylK=IoZOKxC@Eh~OO;Zx&QKlfXQRZ(IYQ^WMJX!KL{Ox+w}ruD!QP6gc1 z65htfO)aGEAH#|}e3Uu+yZ2m99kR3}@{n)u*nb8r%~T9-+Vx`I$gC}1>bHo`xrL^< z^a)C!P;^LvbgtN+kbKrN|Rja`WL5b zK9`W4%2VOhS;IBaSQ^)LFJ9WqV|(er4=kn>nHg+|S-$9g1_W)K5F2NKSSjn*Av0tH zDp$4d2<5#Zn=9Y7E^7eeoO7ivI>);XfSl>!R~Rq-I-?~)iu>cp{9wpyl7lcKk7zbj zyl8=1JSyr?UT6VHw*weMbWT{v+yK;KC(7GroF{CYbcd?U?kXQ)x^grh+5xnuaIXBb zdn@W2<-sgA|8`!%YBk^uH1CD~DddYkpEYQHuq%K2|DmS;Kh^yI_y7NY>jD11n*3s~ zt8$ISSXOt)b`S+mX69J*S%!I_cuT>SwlLe}sG}I9 zK5~6}Dl`r|hkG-z^OyJuY+f9D@j>bVOe9A${ZRL0#T`Op^eZJz#*Z=099NmY`<3y7 zy(2iwS^fW^km$nQ(<^wrsJq^M=>M9j8Q*jS4W5HD5-GxP)WEbME|E{S89&)~nq#Zrzbi{Ns z&^FWFRe>|JU02sme-Ea%TN_^dcTJ;T%ANz$18x7ViJG<1i0qUrnPo6a0IGr2#1w1A z7YUjcgqH`|Np))D&b4L$UZ&zyUWfs){I?dvo6@X=g3`IoE&l$KUJG$-e=vm!mqFHd34)e8pF&zyRvB=84qt{>eVF(DMw+Aq$K)$421KgHgky!(*_ z@XykNz00;4u78d!+*Pc6_MC~-^6m(oQc*ux<+vBsL-+OElWguU#~I&;y5mJouP$tDqb_n7n(w#G(hu;Xo@H?b?WVI*4H)qrCVuv zxxD8^y07SaQ$~U&?Gjw+l`qV?3vg|Ih&NDJ=DkIGwZI31&He-LICjLAO z4HD+kSVgLH=VOEJFOO-lTwTr|Rn0k_Uv@OwCBP09;UuavfI&8lf3m$OMZ*1&;>?Ef ztCy5KRuh3uy=6W!YL;2fM?s@(-wl})k$p`r0bC#@co0O%DT<>U7KV`{szVHO0TFr+ zJOxUOe}Yi0Iok(G!6AlK6rx!|gEeiQh?bk=+_JS{ZVL3%sG+z<8`JyQstZpFm|}Mb zkip4?ob2}kCDyB4=lh{{cH#EY) zY*gNaV{X}4th_HSM!GH*FfLxBy_1?-;^>V%AW=j80K6$EHHKoV8-EqmzZ0f25G~^9fs8j*3sLY z*ZQMqno?;!M?$12gM> zOrgKM7M;iu%LaMPQ+QJ{95)nMn%)6Im^O z@zT=O&kI%dFtctTju)?7UkI0U^PjRoN5dUDXcTF}lT^TgRs9wPu>5jb$AuM~P0%i+ zM~X80J4wOhj`<#cCA9iSYOCN^CXeZWI`MoOP!eRzddG7Lz)ZiqB`>O65y<9w2cqRO z>z)c7>y9Y`qT+f!IXGoD->i>@1@43XPfPD(H_jQE)T-WEI}o);JTde(zZ++YoEm^2!OFQCe_Kp9)FcN`_`ub&}BV5a?iTgP9kQC;^Lz<8`|x zR0Tu(MO*KmRydt03DO&De+bZ43(HR%ZOQW=<+koL#&{$CtV=9YTUN$n;%N&5sGTp&dC6t5>I5vo6PwejkZWlS2%%PhcPqg35YU zofk=s>GZK$vF!y1$`;RKOC}8EI>8_WqEFxor|;o^&Ng~^;8b_p3RCYP`);}7`q1@_ z$d+n30<0Vd@@^xc;1?oC`Yo}$T`XENK99)%+zFQex@S$?rFLyU7S2wR8v?TIs5P;a ztwDO%LxzSJ1~W8=JO)_4O@$C(_Kzed<)=ERW%Gt0(6^8Vi+^z36_?(TV;PR^|FneH z36$8AJAq3<+P`b=3I?#xIGrgca27?AOXEXgM}Njsmr$bF6G=3ba<_3ulP>{t zs)q&WAIZ@lOABUaO&BAVm#I$p6+eH`;2Drc6n*m~IOHpiDnJX#%I#6wN&cRUtPvX` zyhpy@=Ade*;>(a|>g(xhJ#Sd?^4~RKjB<*sS1<~7O~Y!^po(6lSx7886xM@LiVM%4 z$*exg+0sBMfI$3`z>d-wB>;aq1faWv$@kluH#ruWYK1Dy>?Y_N^ZrPC?j)(5Z|GH8 z>13lL?F$yiu#+}~^P;Qq1D z$7qr&P%AFAL#nKjsJoo??WHIQ@!ks+V>I)uBJDVRVbDtTDi?@rC{9Qbj{uQUfnE_BE7pLHG>Y(#V2-mgzF@jRu|6GK0AqCIY#_3|<^gUG zM&p^PBuuXFk-i8wRII(pVdI5t`jW z3jILIT`{JT@A{?z7XA$&DwQ5vq3!|-D8c(m6Z*Yni*?doCskfJz}QN#a8?BXGd=p1 zT{)LGnTd;!uMbIZa0|Caw0;>DS$tN4@f|I@ z?k(!pqK(yF;-+~maN|z~BS%Z9+|v(samAII7Ert~wYKrd`OJ@Bs3h7l>z2I+))Cbb zAw&MPc+lz+yc&4W z5FO)~n?VlmVq_#Kf9jgg)B+DFr%-=`o1RCM;Ra;QMk)($)d6QysR&H+`6e!oeRs?0j-YA^DS z1ktO(OOb1e%i%VU9w+>FYT*ZvfAC_~OgHOEV?E$geU!iUb_~Tgr5p0iKmt5wRE z^a*rN6HoH>>!%tg%ppZ69;|^*qC)N@nFclFA$9QOLA@<*@PGXi%3w>Eaw+F4G8cWE z4(jfDeKSbsj0zkA;Kd%IK=RjRx_A>9h|&LA`|OxI<@A4jpVNp1NS~XwU-R~uJIH=i zDj80a_yVQU>7dT8*YJoAK`ck9lrI!#I}sQ(o#1D0J}6MVEdax>N$_5Zyho3P8p$qy zC9Qn^_OCO?{ug`G|NYnhljF#-pTu_UntH&IfF5WLB_L}>YfTFJlVBwHp{%VVc%=n$oOCa3HX%!fzqmgw4#FWm7WcJv%^97GCuK9wpK@71!kMV zO}R$|#tIEMPMmgI#GsLpaGK3`JmEa`V5^;};Ng?w0-45|82(RF?Dc?^K}!I8U`wV@ zhH6cl8+3!_`IFUD)_FI?%JP^-)teQ~k$vOS=^{&LjgPEn2y;S;^PkMCDAqc~j<9`f z*~J#_ULzUaRk{&axi1n8{gkIgS0*JANL^_WZkrtpWw5R<4VTQ!lRpCOmpyKM1u8v}sDwur?MrA?o5t17R_ko@_`dHgp)U<+F1 z+ZXp)1zXfJXmul(&j0}CWw#%Yyrc#Ncx_@;xdaYkDgrZPCkvn)UpUO3tXXu#cm4qQS?mI?Uu zFlrpak5S?iJ=Vm{^Ew%lLGi30ChI|Gy~@bOjbM2k5yuTrV>gg{w6C#$!0wPSIM{-M z**gCOlFQ3L`t?-kXXDEF%uenT@OzJT`*{mvC26u)#o?j3yZ>O(lyh}ucy^m(!<)_x zf;yJZ1O4FBswYiWbI@i!=FC$Wb^o}i;9j^>PvyNkj%j#hh|h8QSk%nAF9D@{Wz`C2 z(gB%nWMD9tsCDd_ukUc<5hT{;`=BrjSlC|sb4vWd} zFG@3xk$!sm<5!P&aMP=Fo1tXC{WU^h&P51*74&9tC|DBxo2MjB@blQ=j;|JfK+rRB zf!FqvEL<}Q6a`xi4=q>qQa`!XB z>m0vMZ#GTEujGLll*Qr=%-=WAHJ~5#R{pdSeM)3k_ ztxZeVvr)Bu({mAr00ZqjA#Oa^x>1s}ql)T6 zaZrKX`E9rX91Qf#s7@!ijwbF3>iIAK(?_pfNA+;M#kPU)45;<39s#(3Yj<{T?-9lO zZY10pR60+>HqQ_Ot5df$$a@9RAp->xr~iw$Hw|m@T-$|hwOVT}6|A%fq{?JPV5uOA zkhD&S6r-Zdkfo?0AY?_x0LjxjfJh+)3KWn;1VqLtQ<$Ry#>fzvWlDfB$Ph9?29iAP zo3-|L9N+PM``z#UwSTB2CgI8b+{1O9*Lj`i2XgoPEZFq{B28n z0eyB?<8x2u^s3FCc{>`l8j~H>Dj!hnte;dx!u@G3F+>Z?3fM&g6_3IlZf|Il$HL9o zwqvA?}$e;k(a|MKxor@qN`m6zW5}H zm2H^t9Y?r_k!r14oV}a@Z_9L|knT_a%S_{#ogCyEm`FsB|abR?u9Oq{s7E1 zcTl0-sJ@sF4`v(Yl{~EvjokhR{Oj6fg3=Eo4;nWfv_{__@rgF2U}epxku$l>?i8@o z4@?b|3$&s$5NTrzKERl8lJ_~+FDee^!=|s`b^eBfiwFA6NKWzZz zwjc+8u9JpNFf64z8E_xd!jaP#+zj)kwl(|lr> zyN(Pc0dRb45b0Ug$gbA zL!w8dr$<-Dk8s}Bpi_;L%K~8Cy5>~poGhg3{pR=)tJq&uf2A$WgZ@fXat*3-MWf9V z*rm5cWE86nvE8eN#bp3XJvv#-Q2FKCvUeT?(9ZykP&nE_G%TF@0Xe?zK74fD%pO=@ zUD!lmmBs!l-ILSV6T6SLz+^gvID+>>&J@Szl#ZJC>C0s*&bPi}K;YOK-uaBr$m{@v zFJ9YVX=z$d(O^~Ke!P>7{d6Q`=?LWpg*x{3b*O&j)%}i)$eyZaej9rhI^<&hN(Phq z)Ts-XNN)i;{qqh*{^d&1uPLn{aMH0L!h%OT0Q>ZcAFnl1x6*M6@x9ZmFG*2m1Z#EY zi?|d3`i)O#3e84W>&dHKflhdW1#8r5*(k|YE&N&6c)%(=O6Kio0vc~d=tNUm!7xz7 zrUI@ZgcUctf)nsH;M1u#-^I&5Z4mmf<@?c!6H~SQM)iZs$f0mK;EyK!{2jk(Q0=73 z`4WWnw`f8aGhTTY>SctVZog4jva^cLlx3M;;#_!mR?b{j)6(DuH(%C6L#HDr5vtw% z$KQY`K2uH&Bm03oyaJ@QpF62&Rp8*cwUA4t%8}U7RV~X+Y0IF>IJe4qnC+HeoE>r( zYg+S+$yPDz4fH3%wLM2W@Vm#@vwLF~XGw1t)5Kfax=@{}%{f>?>3Nz|C@plti+JrV z$E&0@f=doZz^Bi214!Xv1&}WXVq&nNC$O;xWd)6p8!HKZ{0*=SQ%6pLnhi;xY*+~+ znpMOKSsY6K-yziS<|Crog*IU4^oix~$d zxL%*-Nk^UFin9PB;MgTg(T&Z?=oO-Eb11k8+V&UAVc?@c%K*0)*anwofG2mZ?t^0z zEr2gr>3i(4m+yO58hKUl8p?9hdPZ?=s@t4K-A%FRgQJ~1Z%3h~c9rAxZQ*^%M-d7m zMp^U82~9I4>&OefmeI9X9^8d=`au=2J7o;mRyVUUfP*iVSMGx3_Ra~m&Jt5Pq@^r? zL60nzj)ol z-gBbtY}2t2*}7ms@7(n8OZP8Qi`u}yVURcrN}M= ze-?jRR6dY}^pqPOc<9x+-8u1IMkxzB!)_^NJv(h2u1_^~#sRVD3tMn_vvdO|8RbwD zjMj&~2*8o|IcINJMD|={tKM-a9t^3GX2zp#0OUb;elu1fMgrTip>+Hu9ANGMA)cml z@4pE-t8Q4bH~X~VN4g5MbJrOT>pz{w~TSUZ8`GEOO{9y3}vd zKvLx+h>L$}s({%E^kH-|q1U3DHd$_dvDeDx_p3MQGo$-0=d%$?9HX4n^K5=FyE(T# zSJM<3ap@^LxQG%B1ca)eCLAcAsXD^J?;iPUc)AHP$)6qL?H>Xs(>K6J5db5?lBmOPc;8vYI+Q>G zW1b5wTGgVZOAGiY=`v>jiJaja)xa7HeBPFie%i^Wd#oK$XPjDyr|(yuWNHM7ztUd9 zdi6s_gR>$y-L#q(0XrXU=>Z${k>$t7+TO3sJ_ptpSGSEh8GA*)P6PN+dBl!j@Q=X# z4XuiM4cz0vC`s2_mrL(hZEiy_R;?~|X$&Xz`4J|dJ6@>YV$u9W)wZnbz4pFg47r`o z8|IBW5iV6{X{$quXB($54)m~556HiTsv|aBgSfh>@p7QzG-Vj(eOTQ_` z#GlR-luyN2eKYLs>Boz;tn)}6v`LI*23)5Ul3dN=!-|8;$}zuIrEb%8tW8{+uicDk zc*|^kNK@JMshkC%6N{k=;g|`KUdk4XZzHqu=TKU@E%YtZm*4y|<-IuhdUg0^}9O=Ty=zBFHXB`c<`nq+7i28UyAl(mrRYe-<6ravr zVpehUN(!el3=Mn9)?q1ln{k)UnIEXoc1Msyjz ze^zP+Ps0Y)V4R+n(GT$Z4)CiQBXI(te{i{z7ZVL+Hi0(p6z{hq@MbYyfX9~4BXor1 zJ&H8+`x{O-d&4}+!xRGAa+%~!o+q=Rh8Md@+m}27RbQE*bBgu?V?=<|2+VhRuN%ka zH=!mSbY5R@`sQx_{MsRBX{CpE+3`_Ld7=;F6+q8{{CAh`Wkz*V-9U|j_r=W1{Wadr zE#YGl2KN>ePQLP3E1MaJ(pBibq}4KBk=&=WhVy$|PchG0hVZ3V8TA$t5ZbG+5a$w_ z=!vkQro2XYw?|3+zTY~=d|%OX%DabaYbISCr}Bkl;mkNDAc`^Jm&k__qs@|STn*$h zw@gAIbb}L;=G|R&B=U$5n12@rj6m@#iY4pOZKNY?q@cMVNZU;PMZiW-(1x^;yVRFO zv?buPdk+@^AFUo*8Gc+_T_vfo9*rVfA;DFz;sf&$?Z18L~T* zBRKVgfyj4c=@Hb!-%uv@W&~gupujq~zM`TOF9=T-QUWt~=`rpK?2m66$>CZr@fxn> z3}?0Ak2IIcir(8;-KXue)>t_vPw~$x2A&K@p)OF-tHneeN9|6YV0Q$)slr}svNY+o zLkM1L{!-w)96w!|C_u=iAq&iyLXU+@-pwMrEq|A5m3&NXC4nm9T4FN>yiaImKo$ z?`F&9yRBW3yEV*QQFD7Ma(v67<)zh#dvN~MV<)u-WH^4 zZZw>`y+r9mwfh~LoVP}Q6BWwG#=&N>03*D2_;OC0SGfuA;b<#~Y_8|PAvAv*0= z#^}hQacKF<#X=8Ipkh7KB=c0KUEg_gEMj?9s>T-CNb}D>F#VfB-X0G-7XoPEfBqBz zB_b-NkmN?I1d%yzKF z(W;15PNJTYT9nW6B&f`mCacLuWV>2Ly-Ds|mdrg;g&jc+fE40p%Y!tZ>W5NxtrSIC zuMsQvA4e&&z|;+OnzrX1Cqm@rvNJlP-G^s`{u2L7A-uY^HO2YwWJ!1L$nlu%N1Tw* zYSnsh5e*5E==v&ul(;zrN7kyVPqmIiTe4xPGJMc!GO9Y~0T;njqDQDKvY#gU_iOZ7lkG-oUBwhuE?f2-uMGJN9NK~~RIkqHU)dVVLk^EmaDJd;OW z!MSbkS+m5m!u3j{E*2QgOkJmjceQule}dQadaKjU*L=)aBef(HvA%LLrk*1y7u$1j zovV5A_YZgStHf4qAEuqbrjYuPA|dmq(-+VW5MQco%GGB5_S;JqbYFZ-Em{*Ej%_S` zHel~b2qnmZ_oHfygo;suBWpmgZt`bf(w{Rhrl34K^NF`oI- z0O1qgs#nO7MLeCCm4YE!ttged+0f7SuExJ$q*#waRsw`%1Wk1Z#l{k62Sd4A8c9t9 zYNsV@tVC=2CYGKLEP*EDQ2dI+&waIC$s06tYuGW68XbUV0;1A9-pB5q8J>T^E|0no zqfJq(7eNZ@84(@-P#s*fRG*64Hm^ha0MzV!_YNd-me5-RZhL+p3n6ZfV!T-IFTr$W zk0sDHO+Z!GOe;aKG6Ndz%CEAG6r&!gGwQc;jc}r@8TGEdNjaSwQ>4`GRKkHPiKy-E zlNw7GXTLg%Qw<=ePCx!?4G}k0Nr?uSSBiO#*s(3?#H_@@_VqYnAlnv1w5DwbMGmWj8dZtF(%uReoIm=(6ZHIfkX-=I)%)8~u&1$#6(P zn0rnJ$hl6k#vxU01TbA1LJ`XX4UPMapNqzs!w1r)GcT29`_XPpHd0ms__T|vR8V|r zS=eB+%>mus5E~jr<*RJZs>B}PJT6axMoRVkl(ztbzx1fU`XdJ30z#T+t6vKEebY>4 z-G>J>OOO&7K~)|y!a~bI3LAXus<3crbIqovDXmC84eG06>;o{zK%?#KERW{ zey+9^@z8xC$l(&UX?b}gkT*_SHre2a1;Oyn*i*^2gT@q>ULNc*s;2B6T2Jb>e}p$s zG@l={E#g8gtHn|_-lX~514jkUHGc-bInIGxS01}dqs;X~)hEbjHJ;%QRjMU(n zK&QeH9N0f_P5nr=B$i{J-a4${w;LV;s;#05ia{Y=><1b0gzlbsWR48Rj@qM3d=~mN zpEj7H>lH*)4zzq` zS%}D;GPpe($pa-kmxKm}v50mTxqFmdY{JZvg(;ubDHrd8>a%GjDPQH^j$mfa1qFe* zFhExw2)f2QSt&JAUB4ZOR$CRbXVtuA&B)5t-?L^p2Y-*B(i%y9=Y;Gk#6>ow_h~)^ zTfl%WC@yMG!Y@fr=FNLqq-o^Lv=|VFhwC+<$GyFUX9Zvh-GE^{K=p0!R$Hokw+lUC*W;3S<|fY zTj<7Fzaav+<=;o;|J=i`jXTP}Gmga6z^gpXfJOXuVZOK_YcjK@5CMtV(fY;7B#3}S~(+^{!r2%gM!~b!@i;a z#TU0O%CieQ53==4R-RWnX=Vb~Dwzgq2uO(RMsHV0+p;esHzn|^`$P6{GaGFM>2bnF z&(D#GVl!5Ui;+*=bC^?~wge27D*2ix2SA$kw{Lqag8<&H+Xr|kxRxJ=(Z>PXH4~*t zvQpc7pMkaRXJ8aNK%>f#ZDku|ceFXfT$!>;VhRr85bD>3cmQHehTYf zIWi~A7c|AbmSi2+$u|=QkdVx#7!Q8I@rR%}7!gl!{G8P9%!A+56n<4bBV-@;y3j_d zHzj$Nkl$w`6H0tMHPl&02I-Ggnwj9ILWq+qgpXtPfqd-riut^8_S_^gmv9_V^7)@O zyePQ@z4}Fs`n2H`?L5F~De#;6`h$q>Kh`g@NA?9%u%i&;=RHbFo<$v#fs2T4r0k5! z1LpOrB)5R+ls#xb7``I%WvX{t0i(e)^CH@LM>Jmr_I-aZ21?|5z1~S1v*Gl9l*nNY zJm>q5`+iQL>?1*6UORT9%a~+^5d4G#3%N1dNK;^e`luUZyl1Esm|gi!BnbwNm-mze*#SjhhYsD_s=ACeuVE7w~10?KFVvzc$ad@_L;erg|^ z^hY|IOYTeY7<1B+kvek_H$kgg(9Bz);!q@$v1dkOk3Jkn)f+5xG#Qlz02oNd9bz}b zy2DNy;R?88)sOaT5{x`scXSv!MbrEoRbHoc*C$qih$g_{N`rPq2hB$w)Z_tSV=z>c zd_6Obc88VvOMsOJ)Pj#ons;;G(G@Ied3Q`l(Yrn?^3!&xKXwdXW9B0A5ZbV{x7wb; zsE?X%jEVnHY!L0ZG$cMq-lsrcU^){mkeu-8rBtS+6}a9)Q6OQdUJ;46gT8W#0SChk zIta5Ta(Vg|EyrRHi#HbrPkv}}FnIc8PryIZpezY#VJJ0LtsXJ3PbVtpEVN2L=668n z>=`Q+X+J-qSZMZ1c)h=Uwf^_|gAM=tr=EaU{^!rG|Csv9jG;w;dh+64%5wmH_5b<* zD(C%w+Y|mzA8(wdj2=d-@a>d1+$=H10*?Xo2D+IT9N9Zljo7M$7I~(bXsDVzc$*06 zB6lx=d3*zm!EjJwU0P?qQEeQjBNr(b4{@)jO}DB!9O=iPPaF)M*8_f8z)EawKkgG}kaj zZ0L3_sm(=WcbYGum%Od4ZZw5*bjOKCNvW-uWoy=)Kn*Es^bEbo|+;o1B~=u^Y5osE^QGx0LoBs>y)6Fg-JdImYgM6 zCMa73Y4KqwOf+~NU#&3me>P-)6$h3=9tc(nxy-RR6t&*r62B|?ce4wRWfg~HToiP7vEW5`WFN;sNBp63Tn>0nP{lS5s9+d+e zJG#a~trc0muxpL}kd7R(i(SO((;Ciw=visjdD#$~fSq|Ols^UK5c)-ynT)~HyawPL z0FEtf5@UiO)9$0|Ehn*#p0|T^b$cCU0n@oW;T4YJ%*^0)k_Gdw!bp`eWW`4tdPSL{ zpX2;|$Ax29ii)@Ne#(%xx*klv z{pkB^_qo3pas$1}nQ9kHI6Q{J{2VkG)L7blS#cdW3RparG6%=lKkJXr<&*{@ZdOq` zen&1H?9a^1hVFw%sLwc=x;UsfNF3q435tvlXCsPX`nExasf8+0fPJ_^r-%5@R*+Qi=2 zbeiU|9Q85cHZhI)mTs`YhtY5H5N$V$c96wBXMr|9EWTKAw}Xcm2KQr*H(hLv+Spu8 zXa*fbYSpMpauFD4WMl`kWFeqR2XdJ-IrIt$#)f4?M4SC)U2lnBHsU5UQ;A5h;^@Z* z>@TkCJ6{;af?CqJ)v`H=EfT%-PWzfA84;4RLTN{+887;MllW%Z)8V&5<1{cYyksfDvqOrk z0#!}?v%nNbtTA`bfH9*%sV>(>r65!-{#scj$5HX{kBY3BmQpjdk(aS0)h!2S*p>n% z0&%XgA8**Tbbc5>TFqyhWd=_Qt1wM$iJz0?6fM_(KH4{fL6m9Sq!+~&OFYTs)!laF zINWmXE^;0azE-GQo z5M2>_b||<4`RcKP%$ z*Cy%A@n(e3U_o6|bzf|CHaZs^m-P;zQ^rRwvcDq!3#B;>rd9YX`A0>9HO=^-QmFZ~ z;ZXAuax?bsgU%nLpT6KblWaQyXB;3B9Vn(xEKSEIF(+XM*!C<3kV3g^D4kUiX!v7O z8g|*@DwI8^0EuYDU4bqJtTVCFm>kK5$73$MKCvayK5Q0j%A1RB6e;^0O}KJZ3LCUE z0pVnv-x;AXjmPsfrA;=Ubgu)wz{b=~u$I-0unc%3#GFw=;}U)aHOlp9{r(|)7_A-H zaATJ9LW!%o)}Ilv7RNx0;MH~G2=cqtMCiWQM=kYc@9y&61#Mf(Pqii*E0OXnu&J2S z7Q-Hgo!sb_H%<7s#x2CkfIBrhO>mG^*|1&9xvsWvx>mA`1zUDTuY0w(0^gZ@^wL>A zdJU%;`M?l8y2P3;Y_A4;uj#u<>eVj||2hP=s)Hch_}ol|7N94g6{xB~;l;m=(uC6) zU&NN@4UZ0!N2t5wcpXZ6vwtPcfOHyj#eL4B9#|pMBFO3Y;!O>|mFzyf)BV_oeKtxw zAFVI}9TZM{htMlIEWPqZ9>&L~!LbN0kyqJ}3k-ugSDD|A&bREV>ZQTR8r{ry09hUU z3pgb|($LinL-1$HArRwk$`{4bpsCHJ2u*8=6KW!jtPN{D(4)iKN>}_fH+(cJgdzNk zLNy)S)ZYl2YuH)RoLZay+O6lUP`vR@eJ3v5Je72fE1Lvh^o(Y1vo}UMx5g;=Fl*r~OTeXzW{&U4fz@;v+ zZ3owZkyXi^7vyxpl0la2?%;*{`>E=^>z}eY9s3~f*om@RgCEsnY4Fx#lNUiR%|>tq zL9j_b*nB2ZVQm<6l>K`IQk~;63K%KOWSWW93a~OF8x%KC;02h6*xH}q>53GuHSD&SASKd8G7~aLD<~1N;GoMj{s1r z1bStrwnB`FXaD^nbnr{)qRgCWX4`f*TZo30g_9pU?e6dy7c_p_@Y=HoFnhODJiJ_d z9r`_}&Fj& z!%4NxS|VZZ&6aP$mraD&=M@$lbqh^nSR+$^7vDO>+4s5-8T3=5^OXVh&#iDP?22s!yML;S12>@VMxh8I4)A5<~cVbc=tz{#C` z&1r-(jP7<_8AoeKozPsDmRbj`PNtQxlr(PCkoq7`5CkTrC8RcVy68t{BWi+^n$mpK z=%^pj&DPXCDLYVhYu;^8wN)D`&aRym7wd}43vB4Odzz&0m7KHl`6vfR`q%pxlB|vc z4>~jp#VTy<>HZnfP#b6C>EIBHV6|CL*)O*v@lt@}y&K^zsjDG+Jx#611EYllAtA{P z)d@@IoN2>4GI}k8_*6j^ouD0W0%NjcR{=%#i>9o?-w~aF-)q}RM?5edS@aW#Ar?>D z-el6n|Fz+9B%=SZ7=6#ivn*s~H!*l*Feb)V;<&ew`FEkW(A}YsJV4&_{5hr7@Q3=I zCDf$$`|9cp1N6C;=1kYDC8Nxaq{qsus!=lD3pF&xfnzU#)d{xrx5!e&EJU2SM1G5^ zNv{S?#@bwKOfD7ut<#HL51{Lak(OC&U`fLPmz4~zHD$16Q4Bq>1bR+(QFlG+`mKs(fy#fU4kVu8Ee~<@iq<7d<7r>1kyNcg>)>;Xt=zBsR?UUm+4+7LU*<9> z5E1PUXn%J@)mZ$$8mKoQ>q`c!8MF3NDERTD2|~mImH?Wa^)5k&`a4WWZgi_MNR+F-;5wnCj?tRi3bSX@p?uxK(ie&2L(%H{Acl>@5@ z6)TNhCv>U&h*6IWt<{(ab!R_VSpWZVnZSrxw3=d+b1SEouC>-am;Rb-F zSE$c2Nr%xR5>1*<3N2$4amgIgUvL(@=*?YNffYM(Q`iLZ(aI)jFlLVZ-5-Gsja-t;7S7G$0(2)m^4|7f!FqTf$f0fpkfpik`lKOmg{cdv;Z zQl0(?NY#)5S${8SrLx~3uz;+U;V})^B?d!chcLu$)bu3sha&k>xRxfP#>P3Sn#c1| z67oU$xGl$g{N%{u2gPb+U3r^%h*!IAepO{g0MMB1=h#2`4aVmc_--27fl zb@(2U0wf&pMFLUnUnBOK5D(L&Z&$B=gTB4P+P=f(2#-`9v38>b>T^i&VanQt50LM( zFQJ&ZhW~s{EQ%k>ZMU#2QEriKSNSIaxV8+s#|baFQH2sCmbs zDZlyq5`243_B87$+o%;WD#QpeW1x&+tFoaG2r;ETx3bZx6(E0Z)NoZ43#7^{(-Zzt zd@~(X1zv#Huj(r8|6crCV4QZ+<;XFEX-OYecr*3+ipD^F5!8c@pek`Z$?CtGope<% z2Jev(%>#5J=HN1_2m1KkdRqGXl_Xc6jFDppmIUg?%Ss@{yKlq5ffazfkD2D^r<%zD zaS5bq^-4?7e>IIh)Vl@#sy<(n-?{EX?gT0uv+fu1H#1Q4wn!g{`}iBkS=7Wh0*3x* z4=TALFnczAB8NmV8xh`IM}#$NoI&J|K0&vg3ZvZ7Qk`XI$n0%O|9WMCHW|Rro;|y2 z;VA5Y%-}oKpBd2Nmeo$ik?{W1Q+I{0Kqd%Gk{Z}H_W;4t<`MbC-q;pj_fH#~hu~>| z&8yQ5rg2X-)Gnjcm~tBVw|~Ga3yzTLWLp?vxJ{(rz*xJ{nflA;kUq`Cy^hh_WCA84 zE=ZS((Hw_3=YXKW_d(FkusT7R#d56GhK# z3n1%ck6wU#2aS`LSK%epD+8Z?8=%MN1Im*a)nA_#m-u<%j))5mvbM;tQkES(0RJ(D zMiUr9x#}Hk&xnZI3x3!&w!xE*1!F;kg7bwq_=yU`ZgOPvo%X*Xb zsdIDxzsvnBXFo(jL_9H zO(+`u=mcO5W>cy|>f3VZf%K6m{N(6pAY!Cpl_jf@Yphi%gP4c*I1s~bJrIf9T_xRt zdM~UX&ol+{!gDn5KE@%^cv&oa461%(wTRi;Y<@P?x=A7wl2txqu|hBE(KPRt8K2k_`X<~{Whs&=wdjfJZ!P{yCb!e7}?v`wmSJ4E+Cmln&y?6d10xT?IU zcwmBq7X1~mHqICc4-RQp3*?C7Z<&%FV#OV4+b*|32?ppt;)un~u3#Oxm3xql#W$KF zB6Y2Z1_fG(PB{XCm2{(?RcEH<6ryU(DQKrk;JR#|Vk;T~mF9o^4uG;S&aZWf((gJ6 znmg!&eXz$6%J2nH{d3x3-*HL>rp@P^W(Ih;36gX-pcQ9?H~RR_N7WP| zP_CtW%P-htxI>C=t;-A-qosM};?)l=gUbU4BXa6y_3tUy7T|a|S{i5F}Ua+G;8cRj+mikhdY4+-ZE;K+!&{`}EvH&%?t8PrpX3p|3=RfoDQO`XAXZ_EgegDHo(-v1n0-vTc8tWsPGP`4Ce0HvG zRMoEmgG>xs;AR0-I4+)093^dC`wJyr^p{a=;V*m!uI^8f8xQ3PZv5Tgajr7g<0tMR zui6IU55QC}`98PXyg9Z@wGX6r-fy~v@VjRv z@*MyTww-#gdVE~#LRD`KdMWqP<>4=Y8q2J5J7_);oY4PsIriz^u+o9Kd?#1t=}6_6 zlJ*L!-CQ)a{p6cW`0)Ex!R}M(>fCLPlr!lw$zTVxF!|F;>|Wvx4^p>C_#m6afFMnD z8U=`Zevwn?FVw-6ViQ_Cjejq+aP=>Sg{^F-Qx#UES?DBb$ta2ZGbs}qt0{vn`0ljH zY|)hN`zLW+aMI6ZL(%6P81?h!dV{ZT-#!lo+IRH%FEv|E@h(*{n&OTbIp1^2>{KFx zLVdW6Q@n3I7PL=dCt|wJZBjA*;nN0^T)X)LveP*I!#<=ZVJ?4w7JR_+sc=-$l{il{ z6$*S6pSvH?UQjf>%ru&#-)lK0w(|x_iui<|kD08HwbuA|rau(XTy(OjabTrx84nC# za_CdF)YFj^NeTIL(fD9OaG425-4u9etQ}r-zc}p>I{DMNo%tNIr}0&7-#2_;c6ly7 z@B4-3X`V9c(+2BHR}ypHmN!*rpXC!7eO4x?b zN(y}$W0UyP4x9T#s8@GcP=4_H2k+yL&E3el;q!)GdC#wF-16OAiI0=@ZRo}6H+j}> z68nQn>66%Eu#1`VW4P2?zm3?4S1w<=m$w*#Uvxf69V;*JogmM#wpebeCZhA~NUb*a^i zj{Wi?=y5MUW7N5-7Gm!FG6|NH6S;55gRZmDr3g=Zj@Igzmt@~E?P()@r)L3bA-Jge zWr4X#t*ejxUc}9>P&B$J5A^o3EB3ws?Df8@=rWeMp570}PXc(s$wGaaL_b+{ ztEHYHTKbrZR{vVcSRN_>s|G`f^(Fv~KO~SY`Zfb>Vu9$TnMRc>q~)fJ7@{m9zJ`zD z8VW+8*DF%4x#vv{FaFv(S>mgTg;iW=sB;hO*m?V;&>{3CRBd)2Hjc`0&^cE%RKA>R zFd$qh4xUm%^ZDh`*kNwVaZQ%mQ~Y}Fjh+Fgt@$>3Dd~n~3oCzo*rNH(hnA&O|7E~X zCjE|$N_Dq4KgpFuShro>|9<+B>`_RIjCrEHy@~0c#!fzFHmsr_UJjviFr$sIwg+q! zs|VIAmHTcRU9fRRLs<@%4h=F-wY*PZwX}ele~02jDw?9b0#Q>DPg7B|wgp5oZ{fd~ zjjo`nFBO8ff@nW|gN5p6%S@jBHR0eo%1N>4#?9Rk!r+UHTbUc*zZ z=<2=-dzWIOcChM_QQ1Gd8LHzsp`@QIk%tuYHot>nWZDE~^Jvsvv}mT+le=KMMj74} zlh*m?%f{Wa4@d&;fHLJ{Ogl|+gY)^A0>bpx>|1q-2qsL%2;5!!Z`Ac0 zvwKTI}^jUWQrG2espN`lMFI0S<6m!myyCwP{-RW(ZomnD3jicxVK zSe1<;?zQZq`1S{zHQw<(Gx*Yk$sH%`Z!71h2A=72X{tj}mi-G_fmgLxAgT-nq>h%#fL`-=224}R}9s<^NT zvjc@SFn?o<*s>B8ra~!B$8LXCu1FS!cBvj5`9&L~ShK-hK*MM8nV9)fu#sga9`ciV ziDcCxQYy*0wc%dvAZH0)vo@@e^h@@dLBWf8m;OjXl_38o4}8a)#CURGgn8<4U< zvY??6+M4TEnAemi>lkm>uJr`@zwFB1dEvAFrnBL{`~NK*nx3W217-jy?LP4yMaNhq zEs%lP#a@Qk?H+(CgyBi90;bw*!D88_($|;*S~ttCXp}Tm1X>jn0=<#d32R=q7rK({}v& zAR7p-b9S#+!AS0D3sh^;IhSm1Js|=x;NEDZ?oVrltus4SHusw%{&WcH4vn#zvtxcA zlua$vhejBPfA%pSzV6fD)muw5!H)F%429hn48IDbiEM$amd%&Ts}QY2x?^7|9}T3x zxUpB{jd_{vsfhNsgnc*yVw!P&UY`rb?!x5f9Yf z_}#oQ$4P+^9QDdfh*?*(99BTD0b2ann{5mVhp8#WnFK8G+Vq6irchcqyn2TkY}dRi z22@I66s98zBF}>uqd>Jh5b7b`dwSNsmzaYT)cB8iKBY^?G#qB7-G)?&#Mci5K~2e9 zR0D>zJk3+^;3bV^;=>rUSh@vj`etI3$nCgdO6Uftdp#CvIY1q0gnb)bFARaZp`U3h zAyU*wdWLj~hUI*^<*Wp~G=2;|T?-#Gzm489OqNKmqzTrVnBnV$jqzd-R@VTB>IIPh zt+xnja`1*Z!HCRFAn6O!BPYu%&j=B3)30@NJ6zHTOuOoLj2MKMSO`1k>p4V*sB@(9M$b z%N(p;-X11Wjm0x_BXfy!9@kYgc^B@jPTQtT!ygqjGf$wl%vNBDC2knDgxjQ|7zp(WzF4r=_R~8+4nUL(+1wVL=8#Q-VkdxxQW;{MZvO zF?7Lk_$63{)#ZVjean{N9{f84zzV{XCGUYo%9H#rFkS$GNh|C$4oH849Dy`P(LI&M z){IGuxY4csHd;Frqn(bDi5gy&JY8_QGGa^%#(2X)85>jXnT`W=`e)!H|?JpV# z%l$hmqKEHWy)b%`fpHhKNt>Re+X*8EK>pq7oo4$pu_?v%W&ZfuM?j(EaX)K-pN&t3{B3!EOi6wOyXGv5PBr) zZ>^d+S3l8wt*_ly_uJul`N0B=L`pDhODzimR`AWW^%_R`*t#nA-oiH8-eAD6&!_O? zvP`C<-S1V$BmtFZ7ufG@X?JPjBaT~!_P2Ig-^SYZtDW$A-a)Cje?YpKi0;+%oLBG; zg)i1*rfV7sL^s>C<%};{T?RdmnNwTsbGlBR7p+s5J;qXfRJRR-MtshrW7|>` zR;^xt-NrMLH^ElpLm(IY5{loO)?HgAoj|8Fy{pF(A`j%CBEO)^r;Cv+f{bFy(a0np ztq;Qn^U=FkQam69?%gXxQB5GWwQmWvE9l07e-$TU6I+;#Dg-)a-R}X8BZi zD!)Bx)*V$5l-=G5a*!K7p5CAn7gNJxDzBA-7{5clx)miJNk(gddeY`RGmXmYBWzaR zCHHyvm(q;$j;f;K`P=>5d(=+7vn1E^O6$gZ7|Ze6;IT&L!{(E%WE=4p)ikk9Q)S&< z?7KhD08ph0B;Hzaa@`@ss1}hhH#*X^pJpX?D^mZs7QZa>^MUv^9A~YgCtPQ_?#RR= zos$m>PwdS5A`pj)yi)3*gC25qOLd?vnm@1N%?xEJ(683+SA!(C+R}gBqNzHq8)!Y& z*AG}4-Py_IHM&y3)12O6=`=1;oelBgv?ieTm=y7 z8_GkfLA?T7c7pn2bMEY^)A36xRH9~N!QMuExK-ZZm-#iAUfT9M_L>a?eGI&+hO_$6 zZ}4*c;E;po^xx0^nV&eFQC{lpVpHE6)q0tcHeJt1oyi@@mK7*%H% zbg%;VF6wr2c($79ERqY{Bzpn6g zr)o!=6{<@05F>izG~%4M=jbn03Vw36ks?9WEHqnQOa##j-Zd3PmCV7Ka-ci1Jj->) z(Jk#0T>VMBsq#HvLWfjk#KVt@gxvyVuA|xt{SApVcz`LK8oWF?~j0U(RGIz;Opajhc37|IwmV%8X-+2S`a_2FR)$ zE{zZY`%6Eu<%Qa*%*SsrJK7_VHe9s?@rY!6haWmmz43*pHqStFzkMn4f`-!wl;w60 z+z@|}O#-~&lYp+&?DMr5CTG+WuQaGGax;Vw^mc*7e z&d^VZxb`{GoOIOb z2p^@{>-hE>Qb)isjKW`jkF<}{VXfVy5sE#1Je?<#+;*RpH|;pLXzh+z?J}m!f{uW6 zRD8?lJ__{Inc^t}oi}T5azF_ae16zM7$qaQrjaLVlhRlkPZ=&IEO$I zFhr|(kht_%fGBpadpi7tutl>Gh%xsZC%g+wM4>6r2^C^-gUv^VOPgso#?>gB&!un&iao@GtmSNqsTU_7zfDs#bVR=;Gmnfq0 z-*`<$)$&<8Mp-v38H8^rMI>4f%YU~rpcjfEj}M6A>OoRv*>CS;N?oJB>Vr&aVVN1^ z>$k~M;i^iDK)?(cP&)&jb|prg;JB91hFJlZo^}ekJ}Bkz=ds%m8#xqVh*94%&1Z1g zCTermt+zdZRv%%A=F)eIHz!Rc*-lU>YHXQP%tTkvl-5IQc}#$@q+(@p7j<_O|0eu{ zJ@enGotB%}N~1jt?nNkwu22(Cq_G!8g<$2xUJ(T>+HGIvAiE*d^&D^WzU}f1%Bs!- z)JFu!;U18#Wl9Zc;?g$5JqiM03NSjNbt$X4*w*cvDYm2B89%urj^31I0r%=E_{z-4 z@p8&T*n9~7%JvU?n@I{{!EQMX=U;$vw9&M=>*`&uTrmGSr8>{C;{fz}Kxz{&2%WSz zJ~>-F5rY|C=(YN4A*6DA{^i(GR{S_N7OZAgaTs%C^tBh_w{YkSkZ4p56f)z&<9W|K z?%w7FUe(N5fOFO`Uvp~8YHiD>4eTel_1j3US(gUW$A6u|fyZv+=`?8K@fP@?IjEYi zzOmBi)rgs|L8WB2Z{kf7GG&5uCpF-Rc9$%{BGox7lFiuNay!UMb_XCmcY}C($ekdn zs26?RU{m|}K~hvKCvAIUb4-@*rn%}+AIrVv+fLa0I69lmezZ#1S#KglfH3uy-TLgd z*98G9w1zyl=CMN0h9+_`5}e^SaN0372outQXm^$vrKY^#t;&kvzq%j(-%E3@a}cW=`<|d;R}YoF}z-(6!BwISbDgTyH#wT8P-D` z_kQEv>fJ<}paK;~KSsOK=FpP*fAIF^QB9q1yRfZVYZarYU_nTg$%;T#5M{`=P6!m^ z$Sl+WnZ$@pVal#m8KjT`1u6&;5doQG1_?JNzIER9 zz3W@wI{%zMTrQ0W$=>_9@B6y1L6ax>I4m zkG*jo>8MLY{DKhGZT}Sl@p+6SJXrbf8l%xWdW_{~>Y)C-{h6bUSCY(5^c}&i5`o?4 zJhCyQe7pl>?NpN%&15$<%9+a*1d(U9W8(IYX{WIAnF};ra4BF-Mrqk7n z6Xd%y^+LG<6Zixg0$s${&o;LJ@7_1{B?i0}qpSb{RdHk^B;G$TXl5c#;J$v{pfFNw z8%#=yPs1|pxxlj6_Xe;YHxp5%T(I}G8#xfo1owTv!{H{J?C|Hm8Bg1+d+YOi@Stv-HnqjdO`~(1?ks~6oXzOe)z%n#Ngf0 znAx8_G*ibt8TQrKgOWj1=wQ(lKHVB=dH3HFM694 zy>;0M@&0W7P*I}9c{M%vyDNjSs*eOuu(AS_PTeYw(}|TOj@@DfNt@BOgat&*wB{`0!}T%V}vmdo&bD?K0z}&hiK(* zLlqQ;Aanc=({|KLlZkDN0L_Mm)S@RM6Mo;)QFOsE>JFyY!1b=pZjq#K-Hv+1@=AsVbX0pcxpMSsfcYd9c5!L zxUxj$wxQS#YD#6y&jxjmTI%9bQgU$m>C=D??v<)Rir5j2>2(|WXmr^9SlGVZxgFGa z8y(zqfXlXbB-rP+KS94=aGTS#s($Q`LKX^$EaZVI-+(hhi--b(PFq?}Mu_LC+3pxD zR&)ifJ0-t(6oLE5GlNf&!-J3Z#U|tddfY}?Lx&YD*HeZb8UD+X`05wwK3 zhZUx#VRM}}*NVU?cXdN&Fj`f^a(~f}m|vB>#2U5fqSL_48|ROlDvP~=71|}3>VbB( z)D!8hvy+#JJCDGe!S0^Wx7)3fPjWUq5Rc&(2qV0!PD=()w+R}t5;wxq5Fx(;&!K@^ zl88gc*G?;>mat6)bz#`()#=I7UCO^hsp1mv>kQCQqtSxMjQCgh2k*3SS!%g7$OH1F(;*i$?yd_Se;?v zuw)CJ$LzrHVa?iga<;NljEdkJDWkJVj0`5wDq@20guX{7aNx#R80V12Od z7xg7YcZ~_saECuu5U`2aw)7Rt_*zA-J9wgB!UmqixA0aQ4Rz&R$@^X~HewZP zJ6NR;F9Xh4SZrR@ck=E3M5KBmBYEgY(9lWNv5Vf)hE*f=XFY%gc4=!tT_h!+rLZ?M zMR&<37%e|626lrXlzr`P9x&<(y~g4nONlup|G{S*AMhiF8)it#kIfO#macR~8i@9{ zr`d)o%od({4Ri_DlP~y1kQSUDkwy?YT9N36=r{O>TGOTbfjL|j4*ZS#J;EH%m+y2| zSwe6~SJ>{)r7pZENAb}ULosnrr#A>|PAVeas_tnA9-YqRIF;;%Ax1^b$$obIr&<-D zh7^|BBbC7SSoawzc$OQj57c!6Q66!)=n`r-=8b*xN(N`_RQNVem28%lH8t?pz1^O? znC$gMPmqd&^y3Xlh}%%SvbIzgw}1rO?WsIQr#%NggyQn|;-ttMa!zrz?S9thVc$Il2$%kg+ODJu50|oDgqUI1(8Q6hvdIQ&53oKMjfD16|PQ zAnD-V6kEYmuXj!eXss`ot1>{%#Q+pu%J)M)RDm*Y4TCv1LU-WCXi}H_;l=;`m$k4D zAOg{IsQ_VUCI%ejpPo|w^Z)UBjeepg6E=h2*BROtlc|4y=RM*KiKaoBB@7YgOF$!Tdkp7!b^U6|E=wGev18f zjoy5ODz*eDtqwct(3Y%xIi(|H~!k|~O ziV4!LQ>sx|-39pXjRPOh1I>9Is(e+>bGOctS>h^p?M~TIF;!hw zFH&Lb&97R^@`>A@2fF^DInj2#@{}&!|tIMz1_U)RHp?oCc*m&cs4*3TlSjS1DqtM6#JK|w@xBtsY#L4eX>1^bfedXu7|h-j^@`_lFeFI z-Zkil;Nv*+e;Q5HuU>>NTCpuJ>Jg{hr+0tWREjG8zHqcCf%y4Y%cjy>3peo zM+i7o4$PJHFYL{PtiIO^MO2Y6u$Sd~1D^4i){D%Q6L4`&0|-}943?lDo0#WVEf4P%tO8s0h`dYH1rR{Mt4hO}2PUpmd`uaWw zDxR2#?TDWTCrSJ83%r?Y^RQUPqxN$9;F&)_I<%~;0`#~2gxe5f1-!sy;DRSk)q;4eB_wK6fI-W` z%?>LZI3Gtu4WzqtP^MYHxDZg_he}D2xkA2j_UjdOaDFsA! zL`{Is&&!d%X$ESlSFUDu*U_B&%(-ISy7Ax53CWrWyzH@iL09<}r^rQR!4)!G3Pu(M4XOPRrBL zN3{{&!TAqD$fOLH0SoN5Suan_E|3{^zn@11|CJ!4tou6&f>u~Q34y2nnUTiOo3uc3 zR*DVeqsYM>zS;tA-Xj?$M!$(=2&^%u9x#kWccGqCn+$l+p8IP7-DeSPgX+ldR%@mf zYyhyWGuEjp)M0|ekJiWVtax)?j!l&?f*y+y80)wSpC16MXHC~z7)b*@7lqy$rh zuJ~K}JoZD1({+gin};<4A$hq#8Y#Q~(!-9+u+x16jVsJk%e*ZWCQ|n@&p@Jtc+92~ z11@73n9^IpClE|i`v?bO*>Rj{he~u?^Mty+VPBoSK9=>mS>BI)&1^faW0+s&Ay13! zv)5Kh&T>KG6Afibk_6%oN2>&80{$!Hrt^@(A{pbPG3zTQ^om}PB%fmH?yXK|%uMM@ zN3Aw8Ykz!K_`SfWhEBDo>GKN4&A;HcmgTDFmeGKsxd79xJ`>+*WF0z_y*a|F2IQ2E z@W*a|{qw85{9^pViftwVt=Ma=k}qidcEnt^Z0(QfF0os3TsnQ4`mkU6CnAEGs)@V6 z?Eye%Nbgc?UhJwk<3qaQBpVmUO@^xZ+_RK$75LzNQl-D7X3Xpdbl$ic$s|X5p$PpUk8+cNpG27_|i;gu-&Ri*=vqD=Dt94 z+Ff07gZ|xx^r@sMUIro-iM+6`n2zr=r>*hk<`u5OK&JR@?evQAQ zsw}$)|MgkSD%Fq@cSfR>7EoK|%4T~Y-RoXG0E1c3?iq|VI790~ z9qDzWf)Q%hh{$AX`^CzI6ZQ`c!_a;KY1Z`pHT>z4n93uyT#IRQ4%t4yI*Dk^6=6Ue zd0BM#38sC6sM1ug_JLx_zM2f+FkRc;J;M0=9|AL@wU(7kF;N0PZkp}cs<11)-+KLE zKlh2Gko1y^}+_XDqmL`c87@v(slqjo)y8L6& zu61+yB|5Y$w}>pX&=~+P%d^X1YN~@eu(~p%R^bd)4Y*~?(%avVIwf6ar7v?emEbb? z14${a4c4`oP=`<>vy=_Oyz*D>u5wG4G`HK)P4Hu`FA0_vEBbx>*y6-1@6=^FkNwO;OESQ4???X;967$OLapo34R z=X?6BAEr?@uM*#U5e-r+Zbb#H*am)yhDQrn)51A*c+wgcS}YOyEkeE1vMk}I$z|Sy zV1w~(-haDslhb)3mm$j7Z?ku53G}+hR znnsnJ%6{dpuO_KnWQ1p)^jSmFFtU zg2W>{dKdT9k`>J9vnAY$rgdsT{0t6p8y&2=zabWMmH5MBxI&{xx0Q!uE!riWP&x=E z`d#ipP4d~O@R1F-YevPju=u7|9UW_jNe)SGhmh|n+3eYMqz`Gh`sZ>7W=DO?2a&{O zF_-qondYG4xlyO4H;T{|joeqAxFULRbHv}DDoZcU!PT@!b+9H7%Zvr&?fsM=U0Lt> zW#vq%NlWs8qK0R$4w^_{0E**GC)-?^#KtvfQ6GfbhfQ4bP1M@OA7wqeKc?<9Wz=oh zfvm68eIOwUzbSZ$2k3{cP&c0Ktrhr2B+8^?`{sE(MS3BNKOd)d1nH&@sa_ofq019|-0~G>AayrEZ+6AE9lHyEQx-Mc zrn@$mU)WbU8QwVH{;j$j_|zLCA(&fvnykvQ(TS|U_bu65tnXKPgX1jp?1IPqMMsLI zefdZ691hfBre)L~ z8}ZhKpxalA{?2`j;o&wLey=MyjPlm{Ws2SABPxD#38`N5F~mBeda#V$sv^x3OZ_!0 z`6$Mcl4&9tCXXr27FD$b<2Y@|#O4xM)9%1F%I*gt-hl8L*Z~I#Q0{m~iHQ(sJZMuR z{u1ZRyWmKon}=She8Hm2b$+GJ%|qhiCxgh2mW|ZO-2c~v=+X@>o}Uaq`US_^b;*BACbNM?4XG3|z)OnIOkKL;X#i%wyI@B-;41Ob)lg+s#bx zD1C#AOj};ex}@Df2K%QL%9T!<69F@n^+<0fqOKy@cyLIGUV4pr!{GW?UfbDCqnkg@ z`sGiL_5uMM=G=$^;T6MV4~0(5b|Dn^)hCKE-sqRdqF*A}H~mxLp%F)=hmZS`U<>}_ zJFlNqe<&e#E6aK;X<`H0X*j74`Zm%@l2oiA%sbobpd5<;AZWD(<{ufP@WP*DOPY)Q zpb^5}#rQ;%ATO0Uykn-@KR7Iax-@D4MFu|Tg(hF1w}dr@Hp^@*Is0OcMTBPFlcjOa z1Q)qEbl2Rjxl;k15OSGy5kRN_?UuQ;B6~ry`((?8OL3rg8xG~wMmOF0;bzK^1!7Vz za`quTTK<+g`Ilz4i^P^Lsgzu^1o}gDfb9BB-X-lF6bQ?9sFMb>MA0ODY2Bi zON=#kl;&r=F4YDF@aHEhC{4cgB+FN5%7g0x=jAO0Xn$)jy(<=IX7Fg{p2`nkD|(p^ z1w!j)G3&s6k_7QLHQK~R?~F_JU*{mz4UFZ_HOr1D2SqM?^kON^os?|z{UQHtc2GyT zC3bQ8kNjGO(7g+HAjF)8Tda-dl%s$1{@S7oH;Qv!TpoN{ue(m>jzhO$ZU$9x2QW7Q zp{v62xNa*O8YBHf*e$%u%Qehk2MV^#NWE`Tgvlv?iTosKaibrGH>rjc-Clqx4-E9; zl7(o_qlS2;O9<|TKS}NSka?=VQRh0qWf2O|3XedZ2X@^!C|DFd*(J^fSyvc4e84o{ zdo$iQLSk6DqhH{r2fukWM!{vaM6;!BEgr{(=yz)S=_d!A%Bih6CP&t7v!!*b^OuzW zK=`ho^Z68QRgoCAW<-|mCB!D!oG$hB!)*Rkch$vdDTCkNlcWlTELUi^|Y$4V;Uxw1dd)Bb)PLCzHJ)FMI{in4&SLYOWvrPSllHc#uK*xuCLH0 z2#32wdfr*QF>fbiz)P3hBs7};Csc)DhxRM4-CR=TP2`%~@Nfny>Df=;OcSX%RJ_+$ zLa&Awm|V8Wy{@0blU#>GgMO?qR~@+k24>!0@XlzXx0Q)jF7M3Z320&7!>nyHR_$p2 zdV9`@>BJZzK!!#%#=UFI-U|L;en)nh)QP@29A-V?wbXU7Ka>+(G`H>Q9b^48z>lYM zDqq3ZqQjvo=3Ci8uC*UY`i__O;80dFd-%VCEM z!V-NSA`k|>T7hVr@Kiq%n!%Kj5R-b+WG>|KJNB?@+fHtJXcx#$eh{-?)*Yt!5r63& z^sUlmciJy)%R98l$f`J(If_jPWOOxIj_$uF~*ZpLZuxQ`X4p_G{$OqsRuHVCAEoGGu zPPXw8ZdKZ3gMOE^!zS=ZZl!-icKIXFGs89FShJg@O;>K*Xv&fWG9Z6wovh%v>UkaW zp_leGbR1%X^@l_D!yk|3!(z#p(u0%o8+4q2#=je5o81>f+ucSzT}Ni?OCr?j#L))H z-n^?_SJj;R#fn%xY|ZOBVpo0bqdke+WjkF02D1m=@2l7XZ<5VAKGCs>2-32yA3)x@ ze5OhzMA<1Nn3PUVH6Y)DW{yskOk4~to_6^S#bt5?59;s)0DfI+94bJ;E*K`JFue>_a)h;c_`ED^Z}r4 z33Oc*_}@Rgv)ARF<;E&@>d7YnYH1PTn0|GLugtY{Q~*XNV9Xe)M8|cEo&>(6=?~{! zeSwC1NPvktQPvFa_6!)-#m0eQ&C$1$0yP4huF7|Dp^tZzCvn#W%f^0MY(->&53D?9((;{=A>7w@;fA6~I729wgz;z;hrquX4w28rx<3bdT zP>Mh1)N@X|mSIjL_p_UdvWz*sgb6)U))I1l7+1iABPD0ii09mKeXv|JIZ)2+5B-cV zG4yOdWa_Tuo^5T~FR1{DzWupU$Fp%zee~F#nv|o{a4L189Hk~hT^givMzPgDD=*nE zo&UzRgMGK}Z0ahcNybV3)D(LTh(ukoyTVtVm-gAI)sfTSZ{Bk%pU0_h#ayp24MW{s1P9Sx zg6yl7NIm72)s;p^aArAJ2U z<8C0yTsf&71eU&8efl(+TP?bE^i&6*pW8}nJ%P$a09wA4c} zg}-0fjL`*tqb*Gh$^WhyvN9Sk$JR`A=qhsFb3zp*Xz42~AGKjD5~ph7-3Dmbwju8X zo1a;ghox4J+DQNl3|da@v)i4e-dVkbh2TY4#}4FyyE0-@JJG6x#bTgLKRrd0pf=6E zNiUj!Yv#+lqKVt)mh2>`uV{e86VgLX2j)I6eS0*b2>GS7C4cGR0?W=l_tR`RXn|gR%f1f(9#3VkEmO$mn{^>(3s51d4X79TKZfOm|Rj)fJCkwSo)Z zj~xL@fU}?G%z>$u8(h*WR@t>vmj&nrs-WO9Ukt0uiq4DbT29z%I%4H_Un`c(6u%f> zWOi)y!2wk`PL=ZwJyRPmaWTSi9ElSJ<1ieNrL!gqC^(e{&+VyBef(zt$;<3l3RVWY zh+Ez5cmxrEpste_n3pqGI5&IWgIY6HXCKTPXWYh`n!~AZ z?m3wlG$_mu(w1TclO<3U@ZG$voFmn^8!08}TqF#*F|b>_AYgcB-R4}aoU>@pyWI>6 zvfGA0AOX%qd9ut)RxmBkCvua-W&g}Ttm}Ahr*vP*!|aSSz#H5!Ql z=x&yz5~=TDa_x$_vIrK88uu9gazsdrB8gTBNqYh26sj7n(v3G8)sN0e;Ml=gUC(VZ z4+3Mg;3DalwI{GiSs;pRq*4se@54-w-sUj3Bi`X9;8VF~@)0=e4q%1@m0q4XbI@hs znT(*RLS7ZlW;?tNR#@DN$kNqJ;UM~!TFDQnjOb0V5)l8caI8kC8T}H1lNtVVZe8ZA}RDocN!^vDOwl;ybBwT5|0t)jJr z*EYU)mlP13am!up8Q)5cW+_o`U`bl!{0?yRrhvxe%|8i5U zA8&w~XTwE@*Kh`OT_py-osxtKORyeosVpT~FB9QBU(y_@8jhn@33P0(ahi@8ji?uMah^{w7PYY}FSseIF|tYZ1Oeyprv^|=h%VPy^z}1&TlzTtq0vYA z2QEnE2UiVBLKHvyA-xWJ9Db6rwo1QSaw`PIdbCdMt)pvH$5eRR)1H|7ul!fAiGW&F z;x^{pDwSYGg^}Jwj5hufqE25wzo>fZC#`JKBdW5+P8gPfT(`_KHjl@iU>xP9ndKQF z9OtmR!b(Z>ov5Z;K?z;2L~rjo^o>wny~AWpsy3Y>E6(KZCAii5?ldbI9Gx z29yso5BHqg{b%BobNe~6e73VwJ_|tY?HJ8D^fvu|rjw9Y2i*Ir^$H9@H8zpLQDnNS z>Z#Jjr})f_F#TObNMRY+p(eEe_z|?g9o}an6Q_o3ra>AnbuKxQ#J5??&#zJ@t zv~gNyfc!3hK3W8V!X(- z$=G=F7RV`UIvQuO#}MTOt6_^p z?aAHV8*nzhVV07sgF_9Ko`G8(uie@k=voMB9C%v8-*{^)_x3BpN@#Eh8?}9=B2|t# zmsE-M(Nv7-{n}i-HoBE@us+k-yh&nO`dGH{;^$f8fn{p53Sc))HzO(>+LZU$JgQwl^%Ei`UHxiY#WnO`%J2 z-6bB)DR7JalK`Q&uJUVPp`={6AH8u->m2F1^3?D813n-(uGYV=%2j1Imh(+vraK0{1cuDbijzTs=zFQAi*8qfG;h>OYcPUow%XyhcTlTHg zAW>`4XooLAQK}Q`|HnUE*#cfj9omFYz|rTJxRdaG)DCc{{SU_R|39#I5!n&D707ic zey@SG@>ihLd+5YOcwe{sPlQCSxbn zVD^=UHu{$F7^}se%CH-+=n|S^6ZAz+Up<0B}Z#QIYt2OShE}Iua&n$JjM)qzR&LNV}-|!(wMfHOT(?+iv!t$ zHnRflom&H^^I{ZmOFiYFEMIXcCTwv9Pwa3vyKiIiLbl;l+QmO* z1s9I2l#91n3iQuPlbfk=4HR7&ub&;yj|WHfE?1hq#+&K4wbaMoW0V2XKf>#79-jMN z|12d!#h`Q2fUOU$1;P`RVWKR4Dm$>Nn4qIHd!6U#hS@V0Sm^D9W+L=cBGW4#vIw&- zH$cnb|5zNOCnUuo+hZ)M7r6v|tBBE2+zzkU^k1rKu&J8itT$MR-`d##<2I@fJZgq$ zO5>K_hZ#p3qjt(}DHN8j@xL^BBpGGB>Rfj}<;!Rd)elSbGFv1jD~~O5SmF15*ysfJ zarIe9cqHpXRaH&Wl)r(`uT0Cuq31s>n|%%+VspIvYvDw~Auv4Lw>cRR99AlG9%38C zMda`@Ze)A{&O`Hcu_%_=CII#>)@QN!8qE3ZGfx6C!#@$_zUrnLM-YC19p+gOe!+nE)zQ0a>JT+9&VAIpSV2}@Z z*(t8{vd+n5?KXzCaA3~oIpa$fCbT~5Tr)e4?+Ana zQTT6|3S^*K#a!{B(v8xnWba&RGqQXYyxDH%?|DWbfVNNx)sq)_xfPTmVa}EM-$79b zS6O*8EORx!l~WlN1!q+?2nL_Tq9tGq{HZ7#W3%6s7SW;EPw7!}VPWgZB(mT3h{Z~2 z@s>-1wb6G>_3K3((V%55=DJ`Ec-I6P^-&?JANps>k*^o zw96EvCu8JAG9jor4SE8iSdcBMmlT5-BULsbsl5ETo+R96uw#=g4!=OEn-y#R#brQF5XrMka!VoD0INw}M0sf=*WZk?g_XJH$Q{G);{);Y-qV^07#58c>%fJ-JXiN{>i5ijlt<%LWL@Go!lX2$4} zqo$+DNog;QDsvfXgf;wUfKv~lAu_o1Hk@I~1yqmJpYy#$G}4{4v!T(}IZ^~|3Z)|} z1=vMW!m`|kkGovo7b>7~N8$3)%&4jPsF?6@=9fi1C18EFIqRkKtL+a1RwQEe>02=X z;x4sCq>hh_$)%ucHnUX6MU9h%>l&ahLrn4rz}jbXDJ03?K#Wz+VX9U>A@si5Z@Ena z6&SiT7>MtkUmtC2%H|!F*tut}K$6=zhD2^uTRJUMdMGyMR6`R`+u*uNOy-q#<%r@+ zqr#w4SsjO>9@j7f{u|FdZ^ui)47K^7Qtas&sQW|Ou}T3{4FYLTDx(7&ZBY)36SUE5 zMEV=RH6~dPc{LS#%thomb{dV=$8_qfx$VaAL$n)4Ueb8yz%;E4JIAJ<7oKj%nWrjA zVNgmk`Xv5E3T`>|Io##Yq$)YkfWFnsSE^1USZkTyv#*(Nqcr0<04=_#;t~M>9YfCp z9_~Xn7jQbcB&9K{e_l(SQs$I?2O@$-8GSM5YNWLdK+Hd5e>PmE4Nbv++ zdmv!~#83ra(Je5D{C7@NlYMY!AbtGca#CcN*?1A%S}Aaiii;0BkU9eH1)>tG+{w>|TWgOX zp?$z^Sek}aWj3p!{t0)6?lHR%zQ4`e9b51|8G(vv`il2kn7>adzh|!!Bj1VXD5X*6 zSeI&i)y`2fOFH-YfYMC$9>KCI;C9khbJbop`>l5LnCc9ZyYy>)5J@_SZ~S943>A$^ zKS6q@<^7OdpLXJx*XL3nQTBOx7?4OlCC`6J z|M@=H}wlh9luo4B$-Z?Mm&M0=F6Y`!*&f zZ@ctZ59++opzx18?1-`fJ6RT;L`yr1(28j2TqWV^?EtOZ;RJnAnT@7?R;4sgz;$9u z2k+qFR>n^)4a^ezBEJ&lMt@zYD$w+#R|u(petFYaG7+8nbqsiLMk`S44S$$|O}bWO zc>jd8vQjF!Q~69!77-Y-I}zk|S%Nk%TKYI~#l(dy)12(~01o8wj&h!&#$FFMaqjNl zC+^x1up4KV+{VV|wBjYT(yftWdh)&C=dU$UM*6?-R~(q<5M`Q*#0xSU3uys;IzG}w zNvn+&>XSqt3doDmGDqnsZKNEaBw_~Oe|O*XLoa3qMD)(bFF*{C1N91!?m(cl;${v; z5eYL&Gr`aOriBbV7iVBFh~^CghzPOv&{)w{ zjzIb@Bm$h)j~2>0?Ag8d$xAanq;Aj%z?QO0y}N3b>v6Nno9K(@S7UIs2(5 zZD9VA4xkE(2@xn~kCJHz?}cZlIo<*Q%cD~LOW`H&V<_iV>Jf7x09Btzy1`cRd? z#z-SQI2cyrW(W1fj+E>x0gH_{82~wGpq!mc2chJl_pI!9<18msQ`^_Z z%dWi&7&YR<1>>_9I?G-#bQ)F54`Iv%GcuFH?6c@nBaC-ni_{r~HRxp0qLy5b6_>Yy z`XS&;0Uv~f4b8Bj6mnW1Uw(pV$&%L=` zH11S&6+RWv%&Oew?`6`!yb)|DRt)vO>vbSWJ}L)`lgEc2%z~4wefm6B0Itf)&gj;o zm3hlaH01LDG}pYEF~?#R!OlTU5e!!e4<%T zMyIN}%&rVxAF`wsed7i4DXL0`nd2HR-J~CO9b|)nFEg#?ZV5RdIv*V{EwI>-S;`1R z8TiodB0hoNelN;h-!i@MrJ*tBqkK-6d3mWK+_^nkU-6gLiCd4}6_b2{2kHZPhDi(Q z37UQdp#fHC^_F`R@16;@XzAx+nf*MtpB@YqNvu^Xyyb5h(6$jofVkQQ+Oe~q=@`5# z;a$*uJ;Wq9(222j!5f}{N;8(KJb91rNDu@JQm{F*2SbN zg2#a?8mbi_d}5$VKN!fD9Rb>SY+n(Qs^|KP$~H;mdBwm^bEWZ>gYw}@f$@n&B!|_w zu%~aHUFFzZM9wtvr?!E~I{k(zO?B;ar8^X>(F8;DiXkN&tP}6UKrO*ky7&Jx;W&7 zVIt~$-wOj32l$k}W*tMa=!P7y4=Y4$qgL;obBHnUEjqw2NE>dApoG@~_qQucn)3wj zE|nmglJ>k>hn^6M9Z9E2tmwZj81|cxbB);*rR->uI75EG(0}tqSYpA9@lfT0x0*<* zg%ZQ!Q;ypFSgy2bTx_L^F!%*8XCJwhw6dtU{1hQdX`*_9(Z@&HXtNwi574O4=3I4& z{(w!iVHdH^t(_Tl6eE2)=Y2M2i_D4by)NdSjL*J$anw52tRt$huqWO8UTMvX@Uidz zhEd&K%cs{6e#O%zKglX9LAIa6AZ3@Imz5A$g-&z_a#VrsCiT`XxCws4#1hD!UK;KN z5HI`>T??UiTjMq|hW=MJFVe~JyPaq=WjT`j!#o^g?XYjKhSB~UM%o@k!#%U-gU*qjO@V&o zgda}DnIr7ViD#%h$d|cJ#$nmD5qAW*jKEwx?; zR%b9(j_OoHFhPQr>Z1=0J;xkVrILL(Dql_nUynWE(k6+je7tkMJjviF@yU~9xB+Qedfj{PJvgV}O7Nu2hmcwFCqHn%`mq?ZUZen{h97!b) z_MYF+I!c;{*vY;fOieO;O%l77eF=NX?>04v%lEXK+8_IVZhmFoPWmIVk>Wti$v%j6RaJy-AS$%kDf#SZy0}Ar zz(-`$1Sz!U5M2U2&jNJs^T$Ao7AMUNpJBJSS>*fPHoek|^d3moq$5MKD;&MPKZp*W zVx~J16$kJw zamS!ZFOT8gmAKrX(iy3SW~Ol5eO#~Yz@b>0v!d$)$mB_hFKWG3QP7cyY_T$yg)y!3CD_PBE~B7PFD(@4D5p0^bN8* zJ&r+^h>?2|Fh$!1gkaXzNu;zfuy9Z0mgtighvT@SI^%@tmQy2Knuwg??bxey;rMYJ zbKrTMZA<|Tsc%*@W-;THmb>9wL^?@UX(|y+$cA3ue>!)ZEmqyQD$Jm*Q0H?u$RNtx z)thg4j{wU^I=pQZq!22WoZsd9?#v+nNhX1DhYrba4YtmJmQgIL+h}H(GVR;~H(M}! za)8uVeC@2z*WEY7m+fdgfw9gxW<$4L7`6qf;VYu`wHQy(Cr8dsQHa3??fz48954c( z&C8F>$KMfk4lSchZ_1T_b9~{xW;pC5XF%l34^;g5iI(0bjjE%K;`BxO*k;i0t&O~y zGR5bn&ebk@H9eb?EID1n8Fd2Bd8Y3ZIoPFxa;P;s`jGVNph<1FHR7fpEPy4Y$9Ovl z-<}%!{w8L;LId8?H+oFhRauM8WjIW8g|tT|FVeK3!xvlPxqd-FTV9g5WpW#Uuzc-AeB~C|3Fe|3M0m-aowv7Aq?>#I3A z@uj{QgVPfXo6qUIei6mh(gK#$&k6iJib{i!C|Wz}8@$IfdC(*+LeU9~5_l`|Z7K*7 zVuW!85eRJ*<3MX1u=#OPAYbn<85SrndBzAl`=9pweOzD$`R($No9k?mUR*^&G!y1TTAILwSDqc# zs}(wROmU%EXeuj9H7l}3V>8D*(=^k&mI$zPj{lQQdYfXpmD9vZkfK}_Iz@>DnyL^t zt;$t?$-@e+#NMFgVUY2q+vW;+Cvf}nuO8tPHu}3W8)sCoK8V4;Vyf3FaeF~*E z7`;zp*c-jiDV;vJ^$){XjCxqWnV)RezD0fj6!0#`2I^TLESJw9-C-IlQH};7h<2}- z8HZ>lTO?mR`a}G*Z@Pln;Ynx`o@~eb*qAoEv};N8@#n(^xa#F3<64JAE~$8|}J335^m>mVYEuQ5d>G3^C7b=c{8jmOeLv zB~QqmAi=^Z!cetLM2`w6u&F&0jL)K;RmYLXKibSGhXtKRD|FN3o8u)%|@>LKZ-1CA4PSoQB31@AYjq;5zWtDW8c`>z`K#Nj3M=edFaR%EzK)Gwary`j^4o!0Ddmt-C^~Zbq8o62OB9WKkqjxe zPetl6md>xc7xT;FKKZdxaysCD5%(TYO>f`2Xsn=sbWj9>(v%hz5NU~01VjWuq=O<#7wIh! zl@3A#1Ox=6gEWyQHPVbolP)#VJA@VjDZZ8cKj(~d?zrcT``*28Jom^(8Tpm9)-2!r z=3H|LCSJD`_$A8Z>`JN4M{&rxiCGAuzL3R15n-1LoWtkSzTVeb?T$y<5qv{RKbq8C zrptVPs9#Jopq%sprVF%$_e<3KY zTIe{8fEz$Po2#U4EUYe?9p4YnZ5-1gm|Z$ozIbm5LtOXZL9LVU67~dZ(DoIcnACK~ zclAWtRIjv4cg?<)x2HGCenzQjHi~pDDY-#t|Q7A0N&l_`lW zYai6KIyM|BI^FotLTrUPa6dw7a>fug|BX1gk7?8(qziU#Ft4pxKJ6vyQ^lgF)@&$T zdln)nPz?0t3eMQya&$DN6p%&p$grdt3AxyskOA$lgQ>moKkIicIydRQ4RjuFdI*kr zz&Km6u9|wcQm!*FA7?)2)3m-=T|pg7$1qn>_;`D(QI|q^p)EleC1RFQ340f}F!D<+*b^6)C#odT36CYnt+bJYv{cc{|6WOPj^0Wda=4G7wR> zlP5K!c+}z0oF@UCIXaal=G$l9EV3JmYW!-Hj1;33PP^Ia!vtchK zDvP33T)3C-kD5&e#DEzq?L$~eRc^vB5)JPCTCa-AV71q?PeQH0gc@|koZPoTBW9~H zPGr-pRYCvGjo(x#F%gFO1Z11`46q_46CI22LJ`2FQ&(wEDWY>6~M-QsGl}N9Wq6|G0VMj8m%Z)Hrn=N_)lT^x*CSbHNoX-e8T+8^6+wJJC`;&x_y2J=@tI+J} zBQAw2JZe4jQc|4f&U+bR>aDbwa8((tP&Tq|{5L;T#Cra4;;?wI2Wq0XvHHLcx6|Jk z9_JppyS*X!ecq?QddY3)HmOAR7wUelZtcMcC7I+4pcN&FLaqXpIfx2`3*rD&2>@M9 z#7tXd)fY@!Vh+auCbtL!1P2O#4-Jlr>?vF89mi5pYnaXXGNQph-*Q2*mH^S*AY zf3C9n*Hs#8n1=u1s{7#4KL6>_6wZYhfK1J-C=4LvBEqQj{?JY7og$JnVGFd_Ai+on zj#LiRv%o0?uxd|%`I1DnVAOrHQxL;|R#hP*s6dcj^J7U}hR|p*WD@zSF&I0U)-# z-3Y~0?>HL-%9C0!Iu)@g(mf7KTOXE&qD_q%72a74JRmqOz@AbTe6VX__zDxE9Gj)qf#Y1PfIc%63)nl-Z=Co69!2 zV;_V$cUIwWbNh!lKKQw&a*$@iJRU?00oM8Y(5I~xt~f1G0zAy$3+#32{GCx^Z?_jXwLhv>YN+l+(I7i1 zr*sbmKJen39XrEqe*DQoDB%WwcB=1ybn?z*MhnHi{VG;2LRME2vDh8kXrRDDH z3kdV-&F#_g@8fKZJGyvEOe${#BPw7Yle{yS@ta`z3>5leF(j%5|L@M<=^E3DQPHL| z(|eNq3(f2leXaeuBA)!$d&+lajH-vFWZv^32C+OtK(@@Iv<9UlWOSJ)Rz~i_yFsH1 zxrbI{NnM@}C^^dOA&B#0X6_7(CAXgOO6Mker5tw?8cC|5y7UZ~Yhe}&Wlt%|W|_NS z1|>gc5Yx4|8ZykcM8jnreJ>0)+~*61wljsep}>Nbn(WPyy50cd;oY%~*~O28%d*T|=GxFhK1_1O z#<24D^1==m(KOx{F0@_wT7(F=f4BY(Im(i=APH<==mZuW9!uKX1L&q#QT5QQ$xvuDQo_2e;qXK}T{! z?j8x_O>)&J-w>?SJ+$T1umyBchtNozdCxLA@Y&CG39_6wZ-!8yH7f8S`KIx)ezGMUj%df8W_kb zgm;C;z=kJmqrtVN_ipcp+WFOfE$E>VnvS+NJ3XNsZ}ouMJtW(G(h&t)+`;%#hn_A6 zp5IC@+cw9F#6O{Qh=0Umg4fCH#af?mE9p<_oLnlA8Itz&yaS&!d~=sgb=nu+r39k_ z7F;%)>k5|xp#unCcLKU{cW0%)SJ+8x)vh0`toN>t(JeP4gKl%%zN;2$e%VVIOmhwRfDb68Gpl5j ztb>Lt$3v175@6rg=u@Dnwn9LAdaCHgMehT!RIJg~hNsxof2S-8~nQiyY?Ffuk*phdOnw0P#FpLeppnE#?S!^LFQqYCX-OifT z8<>gTmrF-(?q8@u`*%>gee>-@@|Rt;!4BXXR5cVh(Dr&sw2Cr9Ck9c|F^`!renQ$d zj7F%Ac*3qh%dyj|M!?O;#JMEaD9KF+KwG`z?xsJ>^~=~EL!}3)q$h#eZ>d}t9+PF) zrE2h4m>f#6L*FO9#h#@mWqW(kB8|F_7xMgN>65*FO^e|mgV6JNQ$|@=f4l#@uhak$ z_4=jI0Qu&jbAy)`5Aubu7Js=vtV1RiivgW`3N~eYJv2dw#y#x-;p@m=p{S1{i+|djDDd zS1ZcNocPwm$zC#wnEgZdVD>S8FWIm1n7dxhfD9V8o|K431#Tu0dcuHgxvfX3YoIv!i9k6@B^uV+O_lIuY<>=GX+bskOzs zt|EUjMK=~GoZcW!c9<( zgc&dX_KP~W6_(6bIR;Ol{`5`2uEaTdE6ly^&Rrfpg+Z1bPX#tSWeFw)LscqmmILfD zS!y{0%KK`BLbnlLTnRX4-7+sY{>FG!vV_|W^bBnrRq7VXfXb~G!oY(4$-h!T6=GSks))iOJs0M`Xj zlF-|LteU6F;H|KjBSZtEEhezVg?g^zX`X50L?KR60sza{~($@UWN zPKlC*Mp<6MTl7Z4FE1U+h0YCLN7>qY@wkmm_*x*BKck|E56eNdT}^uiohNf-V*a#k zr01ln-qzEp+`Qb7I!fGzs4+nlOxj`22|H zFt!m#^)uN4N^V$(stp2^!8T}?uDM&6${LVPY_$1)7j&8X5>OWqphK9++!u4PXavUrkruDq===hUXU@Ig&lLm(C_g{DQoEW z?>e8H!5UDz`q!)EKMsnZuA7xr=x$dNa67PWE0;%yeL<@?-TAMQM2Xi>Cy-8yP#<^+^TG9Ir!8R)T^6?fT2$tPn*~`7^7vElrJ=VaY&AlPyGcsqlYaqm3yw+JfO!pA|<%!0=OttIg{(wJzh+gda_P$E}{2c{Xjs zfuvtW_KLkjvW}3S&YoBHa|v^^hjR?VFPb_sOxJ$}Dyv={+MN}*ZQQhS@C7+8zQH&6 zJo~MDZ<;9Hqlt-9YGt8&R6Ah0(WQ0x(8I4ZIlpbocmk`4*eu_H{lxh-MP@|~-uhoS zaOeNS^KgA^+oQV0z**)X2T|_oa^jQm3KUd%yKhK(#UeGqj!enY3%@+I9c#ii1L72B z!B$L^&X(vpGrngWD8vhU$ zy-7mn2R5|!SL2D9TinL@6HV!dRciew&*QB{atlqQsDacrhcLpUn3?fEQ?Vz8=4y7- zWm{ys{z9ZXBFq*X_Dm4|&|dSAmt;QsKg?$|a?H%Nl&&gOxPUgR>vdnw%~EBETeD0e zn=|SQshP|D_Wbl7J4jNfmPQmTPN zq;e5LUQ{jf^nRmAoAy%$jN$n&B4)Xb>QG7h=Z&C}w(2Cs<@?Kl5}y@vzxT2%dmTO~ zn=kwExxK>em)%q34I*v^#)iC!r$&_8fnE_!7y1y@Yjc&gwm$I94V$0QLmRS-e$eIs zg!-0k$llzblw|;&1{E90O^U(5x^Vm5e!>nm$c`Cs>PdWC%4=28#0&?IQ9j!a+rkz7 z+dIA)>%vA`LMb7ek+QmlHN=kv(6q;cHYGMh9MMRGEBPc0fWW_u3 zmrd`w1?1~hzt)}6f>UfeihcDpC<(Uyg(z>@3BwEMKNPm_GxAMXkz4?>`LMla+=+he z-Pm~MB>N{|kI@tKQ;01%v&+#hAtU~Jrpt5zB8oU)tmv=I1_;z-DOrGEFy4YRN9|}p zWsxCij6L^czKR1ikVT0EzlW&{PUv3UL;IU-C?{=aTWT1u*IRIslMmG|MlnFujFcFt zirJdbda$Xa8ApDLod*Uo-BWZ-Hfjk-tBWW}=7`k;BC0^UKm%i59nA-~$wC}kzK%ob z#ciObx2f}5B1uxIq;(^`7&+=(Mj+S^C4~S@n&Dt3P+JH7Y%djbnU}o?{Vu5>Fx$ow z=SregjVr5nM5xRMv!Xu|x<{7|*Vi$dP3>90(Teu$g^32OQ~SVv9t*cc12rl=RjmXv zI0U~aq_4%4k?f72C?G*}LkC!s>>2f@OxfU!(K=JbY#mYDMAe|ry`8(&@oPK}lXy|0 zT~w>XpZS>`1wPu}xq0+8=9kAZdN9r9n836iRXoo9Zn!`3~w$q}@wu8MVm)YJ3cNI9Ku*1+AXxdDG z0cF(=t~PF(1Z7i_#e3H!1h$g&$);)PEYl6a3$#$&_gw$wK#NV*ddh%{Fe z8|Vnv7$^_A_Ao?gKNyu8EupH7Q}^uXK5CTuIBLb{?uKt}U}{}kag)%fz)V1BDa8C`(9i98lKYHVA!@OoRxn+{^hA5h z_!`d~?;)zo)KEN4|C5z;*k)vtm4r^gxkqq%&nG~*QIh9nm~4!D0D z5CRR+ws^E!^)~3V7wd~QNS-RW2AsMO*ADMQL=K>PP?9uW$Z!8caA zQc`AS)(5D*<5e1>Z5kwvLuk;R8Q??7RS^i&L9h)cQ4`l$9Yn&}emV@P?{sb4kg~y% zSt&o2|6JLGU()72%s4WEy%;bTH|?0ZB@8x->!>JZ5Y_kizkXKYxBO%&3K=IqSzkRL3)V@{s`{%b8ABsRoe`3TlCR^zwFeRT&- zT7A_2=I6)`-THmLwhT@4=p;~HQRy&XoNqCsR>-YB+E2{krifLvefFw3ZZ z_VLiA4Huef#6pTE>ldgEP0e*PFFsW!W*yZ)i@fz4OZ z>jn6Ifdu$t$t4Kv=JlOA1Xa=ph?qU?}*zWV1LrcoK;$t!dy6Q{`T*quRF^4+Zu zmS#KV!5NB?UJpfd3xmOH0q6VTj%Yt6>+gwv9~qg=&Ej?8vJWm7o2` zsi%YvmSiq>%xLV$(aOy$=6$I1Tz(#MQ?fQ%Rifqr-dmM~z2;od#)q>DJKeRFmEvkl}{9X*QrenIbhMP){ zXAmqJ1eZ!PyU!>$dTKzGduL5z@7&jz8&INPTrEXq_HKC`LS#w{1a7$y^ZvD6l6W|7 z%}p1v1ro7`6VzW{x94!AO4PwVDWP+8CFA)HtKc?Oha^;@t>`~0F^hvH-{cbd8fhgd z5)V*cDQM!G@su}1DbRM`5k3R%J}_5{iQiu$DZQt9m!izKPG*)YZyj94=8YmIec>8$ zFBN`}jX>x2*~RTS4=_Sh;O9Nv@O_?|2pRtjK;1qYHS49;&5}wiji6z`)e8+ca7$w- zS4vx3spkhIbEdXB6xVRnSdl~dt^;P{A-K$PEIHB3%?h(WOG*e6ZNssxY@@PGu=aHL zVI`Cu=`GgzD3FgLE&}RVoHErW4uv9$-+M79Pf^iP)!BN6{xs#lc8}@@5=j$dLn|pE zjb-5y8pR zpQb#L^$`Sz?-@|CPzut^U1QEd`&dqyWfG$H(%o%eg#Wo64p0xN!w+RcO4ke_dw0h* zG>l?u!CCXfz;W$?%}v=;vf|4hHNb%*-eouO6JA?BFg^T!II>n?ph;&tpyMKG{1YOC zDuEBIA#}^N4!hkV=*IT|`#+4T8=Bkp$2RsnUD{9io?}C81KAA1z216v6!2!l!GXuV z#O1g6Z=r*GC=hVE6=ypY4oCedHMAN zz~;YVM<|;tbJSsen)CcpwJ8!kZ%)B_7Ngj-vh1r}4-gpCKl@m~iDMZ+Wi$xy+;np7 zw(o5PtfpdW)iI&#7v8%;msXN3~pa9*JxlvO7;>stMel2o0x9Jg!+7)2J|hc zGDpOGIaXP-rDp24t2mo5`RS4I0h9pRV%(wRYgT_USORAYI_=6k#7xcYyHT7KXU*XRyoO zAOkih82ST+A$3NULD5S0=MRRb7`FHGaXWH(L#6Rl*7}GiJ0+DwGR+(%2)RyD(r3ob z3BJN@9JuMx$>QbAEl`B|z76$^-!|Y@mH|MDs+yXn_;kRTOF`NJf`qodX&-_j(R6wr zfd0j@Dh-2MA42=oISXD#Uix_S|KR5Yn&RZSH5m}`FHij=drbkH$0u|tD-!a*`#Hc7 za)?Z`%u#jN5LuT~4k?}?!!b#x#2oyqLG{tTW0wqS^vSGL?EKo0(mCMS0%zncn@0a( zpuRw_Ze7nLNs|KxbEc@5@Ll%gE8|!(Ve=~yel4_0*2H10_U*4fT;~OHz%gS93uR%T5Y4zyezbmMPx0>C=JMuH4sgt?I zBs7TnX4kt?ac$|qe7N11FZ=Q$z^-}kqdYnSGo3`0JxF(7v(5V)3?dnEAq!a5SwNR9+Z!zfqx-yloTo5u?L0sN2y&Xp7n;tLu|09 z2UUJHVRc>SUjz(Ll4%XH{|>^v*yq}Du*b)1d(aztgbJTTbu~}Z<49Xr$$(dN(SvSu z@>?jfv@O;O1C)|3#2XZR$lIX_F2pU4SPWT+pEKST@9Q=)c7s-5`->NgwZiv;tRBJ_ z;Dla!koMZ`F-23)ZO)c~L9?K#qn%bZ|2`Q|dr;9tRbH;)_fWtF3xQ@ryp@j7W5A3? zKiA#O;PNrD-4}>?aEC4W%6ut}$$O>i+)*NWn+V(Ji2Hu4bUOoisP}|a3 zVi!mq1Ya+s5#GLT$6jeE&A*V#+v%BjG~wk?@mzH(c-2_gk7a_dT|d|a9ndETn)jkl zY8(x~Nllp^*8DRw1L?Qc9+UGsOtH|QSL zxd@<7nXlvW8M}pw#rJL+2fAsSGKjHz3sY)3PnubPI`DdJkHk*|c0&1Fs&yU6~C(uHl*KtmOjEDgmnA2R-Hww!3Q6|@K! zM}w~|a+9%27b-~U=2dPuf;Vy1nZIpV=>kx^|0L_7Rl1|Pv*{(ii#juC#_#C;%ozFm z;wrs_C&ckQP!k3An9(D~W2P+j2ze`V_kZv%es>G(LGe9DVibYWr23cQ$O3 zo%E!I&4q-kPi*S`cU~D@LuB3>9#f9^Z79JjiZ*DlH~sV>-p1k-_YTvqTjUHoLu0V1VseaVXak^Og6 zPy5*M(~y7txd5qxobYC*hd^i_F7Qil7dIQ2^HUr9$1r>6$F@(e-;jFo+%`h*o(9ut z9@=G0TAFJ5;HM1uNYkGL|Nk8zZUBCqwAR*8gZ!oa_pvcQ9{lFi3r!Pu2;@u~?Qgsx0W?bZXkS3{=GdIqEC0ylM9uxy$~j~v*&J0-Cqaa+iaRq?2Su-GN(@uwBy zL5_W1pJEQPAEa4dh*~vnhbA;DjAgZQU5$TrZZub$<>~SpR*}~nm+TIVuQKWV3ce|n zdUHdWashklvL@S$&BGq0_*8e?PWoc)VtVaj)21+s%4gnCmW%vKK5rjbT2f8Cz4z%J z77byaRrvPquP!di3CDM=c(0G`Mc)-EvMRT3U;6U)z3>;I-Ti%y%N&s^<;F@7$PacQ zAt5D+OP7cZxw-TCUiE2J9PnUKX`5@wL_^Eu-|}mOtB563&%Ama6oeHM7e}NeCqIT6hD#SeEb{jCJ%DRG zE-x>)K=Uh)eU^A#X}bRX^XJcxd6mS)wPmkg=W3Wx`S4hV=R|F7?NcA~>#52H4<77> zEic>0U|+wxlRJUMF8cH07rImZan&rggTuplilw8fVP`0#&bK(!V?#nhPV=e>u$(=A z{=5Oo?&?_`9i5INM~<++*EKX8f|+xv4ai&o)9}?@Pw!V$dU|@*-H7I24prwVWU}Q^ z$jp{cUcPR|?K+`?%F11OuGYmJY-(yMdoov0=EI_=V5E?jZ0zi*i)Om+RIn5~Cyu^i zg|OUW@laK5y`HCjLp4*6V}>DcWw6lQh2vdPlF{1A%#+i!mG)d6MmIn8tS zEQ`Od?>V8)I_}5Ql>G_&#&7TB{zHANc_ae(u zGcz+|M<9GkK6n`Y1%b_p+W1gh^tEf(93}%Zt$+6q4E#L<`3M$MAejD3O^w{ijEPG7 z_(XY!^ijh4I8fDHKZ=z1rpCRG6V0SKuDnGiyf#rusA;F=c)Fcy!bTeb)-}I21C=^O2;(Yl}?>-{3 z>C_*?>yh2lFP>eBwDx^>?J(BZ$!QI9gSUqf0!i(DHhu)M&>7n(K0G>l+1}n>Yi`Sj zUFhMnD`#K77g;Dg7ybR_OQX(Ej?*D92qazEzdF*yH2s{;fY1UzKR^6#Wc$n}1QHq+ z)>`tgh`C~SqGoz}`bBE@0uw}lD+(i+ot1SGVrj^XA8gdl>$9u=GuxdiCl`PD@@1W` z(^HN92;1NxwzZAP`f)}l=dpa_n0Jgu zo_-8Yhx#3_ z2A~+CUj>F1(Pe^LKwIM!_>=-CH(E}ms#`L%xm4| z<%}62AHRJ0G7*C0W>guFaU~PC5Yqx%TU#Z`$;mZ*(iE5Tx3llRjgQ|EUVuQBw&y#; zaD$7{N9QIt=U7=Y=^z|u&)VsUCAb;EOYs~sI_yJ3Lr{f>xKSrUm$fw) zXK-JC{}=noI?uEiBZvKsNh?`dSz%cI6)>{8x;nmV$#>UpJbdur0p?-ReatqZB7yqUQ;J zOiR3GQ)C_a6`3V~f-cU_bBZV2@pW<8B=z*tY5ZRIdZ?@0I~Exkx%LDbW8o$-`XnbW z?>ZbwywYqD$R7~>v|_ZuP;3Y*EG&#QH8W#h*qL^#g$c81~^+RT<83qMYBG>7dJjEudS_}HX7;p()$ZZ zQytnp$HvBT*4Nk1kByJZF)}i$$&*-*zp}Qr_M4rVp`L?6|7rrWua(<>{R74P6NS0o z{bY2W1qKTIIYdkSo?5BOqu2ixLY%k#)MH8qfzUqxQwSmd-$00~;Feeafe`K=Zt;SD z{I5ZXlZXEXA(EZ%8W^3$_O73Yah}!}&h9ttTRM4$^U$&W6F8gl$R-Ot@Knji1s-OhEV zcB6IYh~M8{3gz^Ex_br#i^|JLzk}`hmWhdpu3x`?d1d$g_?$n|(7M03cj^qE!Y*HG z_wW%23j|^TGk;1mMGM4Ie(-V5X;Ey4b3ysEE0D?;e~4a?PC1&d$@s{Zu&@>Osld zv**rj{pjuO#cyq$6KZv@o#56l+zq~+ZDNzodOE}n`9>x4w`Owio!o6@w>iz}*C!aL zBCRm1CbAYVq(6zouSK~|1_lNk@P|TdvR(CRwzjr8*D zqQp6YR+#x${8KM4LPuui1s8v+B&*8Dyu90QNE_odWe)d*1|4K!f`Wp$$w>?CP%B_c z2jb%5f)vtXoMB2*U{Q>#oklYt5ViaPoq&LV*CyH?pxevQtf? zf7vY?3kH@n_GVbcD8WK zlR!S$@pg){b8?#CKYRAK)=ArP7jD2Z=30mD?(Vuc$A!nlG(A4E zIX!(f4%jls)tW0KxdY3;&87BFKp^F#PLp{2=On`j(*9=I_oGVux+OynlLas3%07Jf zAkih1a7WiT0XX~Lzke6q@Sq&-p$ige%l^$<9ZZ_hlP6DH$ksHw@ zt8dj09zJ|{=Gjjm8lS~pu^f$!jqScMI5t)n;&3YZcEykO_NPZ7FB=*g!$d?x%!}^; z+phK~qM)Eagtefs8i4tg0+ z9@~j#qrdQCeXI&y-WJ2B7?@*v6nHo`t#i*l6%^cfWO!6X^Zlkiuv1415`DJkI^1}o zub+V26gMhG+AJT;Auc4}tv;_E-af-ad+bdKu8~K1ok_6GFJh0cB`=9TEcRi9+?3&Q z{!~*lf_6Byb3*>orGof|PLoc@G`hBkm^uDX7HeoYr!0jm6T znt=grocf~cpXHpLb=*3&y0S9!EN*>y*+e*2^CwUSkq-Q=Tes4d50)xwYvudT);cBTUuJS+W7FJ^WmN=gGMo9H+vL-vVP@L-98`( z+S)FT*bs+`jBsV2K8@v%teV8UtT6+MQEX99@Yd!Arp63a=Q?|P7uoHxe%i>$Nc7PQ z;3>xHy*KwOe3^9$gZu1kicKmOp8NS7)=(&v%^o?WQWWH^C+CqZjqT9?-WyL|w&F~_ z41v%-|1)nacjdqF#=GF2#s7HYyW6j9{+GS60EFg^eLk$Gc|YJ7!F}J9V$imYwan2h zczyPG+v&*DJVHlLdvU1gyFQu3qqtB+Y9FN$5v61W&Cpq?Z7bh-Ys zB8mD~WYY#!uv^ctFTd#C^KGq5X}0>H#8q=Qt_<2t}s782?O9&FJ;#2A8zOwffTDk`eR z$KRiBac=IcceSL)4*l^N>2v4KEo^LT*s7_i88^Ht&dxS?G4~^u351lDW$VZMF0zDY zGRAl0Sblx+I5Q!^(A2iw!QY=`cIworiW|IVYQ;&a3D%mLEW67CqE&C-zD+<;5AwYY z4HMX0(<&=HW&ubR1V-_gr>7^*+Y$SDQ;)t)??~$veFujXH95H&yVD{4M|{%11NNa7 z#K@LIgM&h&15a-13LU-r8vq1WW(I~G8Clux87Av%$z85)ZgnXiJ}7a5JGh`jA}2I8 zDLGkL7uP?2{AdV#g!szp>eGnTxw$!q#)bwJqY_ijoXpJoW43f50sATfC)vR=Y)myO zcK7vdos3Xxf%LMEc6CWeU%TdJVrG_VhvJ3$ofKdRdiDMLZLkRU4nR;nw{^1o^XC^N zfLx^Dfn*<~6-N=~q?nuFg*_FZz5~pRjJwM23teCG@ua<0^UuB_(`Z zEG&QWOG+rOQ``f25?Ov;(I< z0b(RUx^dB@sG~fumfjHvUenr1Qr)RazHWEGs+pOM=YZ&}`*Fpn%I8M5TeM|64hW*l zA)%pu0P&QF!C*$hrSWgy+PQjrqk#islDT%x?^x%o(Fsz_>znvvf8TU?-ZM7-%7<5q z2J5+l=2NVWX@2zM8{t6mFC0UJ$?!%#>Prfk&&i9ZLSr5ZX|I3ViI6!3;{#uMFb*C zN=u)^U04_x7;0dql}lvc!>}y`d6thC<>J19N$tfC78*DLQJ63@H5Ce9ePC$V8GuB- z{zpJ^avq%MoPEha;5+eZ>5S8Lv!%nmRRoBNL|)xXvALHbv;6q(-8YW@{`FU!%C7t~ z($gSZbPGGfcW45_`uB3-?QLzQM#aXgDL^VtkBd6dmZIr9%^>aL@$}rBoX)dMHqOrL z%$UDaQXaVV2JwcN{L3&n+wadnQq%iF-})w6$H( zNWXV@c<7>=u2h>>UVi^{wb3m|-I2CmIUpbhg5?HqsELRROT4B~7f{CUX^P%?%!wk& zlvAOPg^+hlmY%VwM#aUkMOy_P%)k8b!JNrOp!4U?Vdtra13d8Om5)grLZ3c;;sDOe z`%S0%k?6CKD~y7Z_1-R#@$mzOz*tN(*%%lM6oUYX699~v&y9d03yn>bvfz<*7%V7` zi8*uHLp8iv+rS{+22i2BKVk)~c1~UmQCWWB=^5=y#7_%7DBh4C2kd6hVqryvy9Dj) z8i9dL8(@*pceJ(T@F%}yWmyjaifaE|LPB9P;quZ41<#*JK0yt>I}3N0@>qh7oe5LD zr>Xf~7MO_ChFgq~KLDl@mJfCoxtSKy?;XnmQaF$y-mB)zCz;^XPl21d+Y1I=$y z2CVV7^KBO|UM$YlPP+Zn#^!x1LH@nwojYGRLC83LzzYmTSXt2XGZ)?ilXn)-vBx8T zkq2*8S9gd7zUi+iZ~>6<#YckD(gSz(^}n3zT?O0{RHQWQIm?9`9v&Wg*1&1x-%WNa ztFW$$j_#%aWc>9HPK`C76GQ_TK$I4@?D#MD=iYDNjQpi@k(jZv;&1|m`diW(#tfTh zvUYXd;sW;Wk5QRr@;C5ymw_3%&{HT2#3Q(;E?h+}@{bkZ`MLmX>(wiKAmSphy0pZ> zEAM8b8W5n&RNdQrCaC%CRbb*Zn9?8PV&a)=EbML z`z-=TT7=)ZC?wQI6PlqR=gd@%UD&_5t#vFE)i5>sX9uu=$*iobon~fc?T`G`Uo_8m zCM~k{g4G)A-*949J`zsN1WE@OV}quXCr|pO?Rl7fe$?EKMMKdV?GDrn^76i7Vh^`w{S^lG?m!nzqHBk*uJ_}#k)f-VB$;^IbY0OA|@`qrLy$_W3vP4ht!i%tW1 zI+%SM#4q;OOUl4vU4p}>9)EvxE+Q>JkslFAo&}~y>QTAz#m|iwsY$P2ALX--?-ABc z{II_49k>*6Yxe`q1_Am!uubIEjR#^0waA0*@UE`A(!b%XR(V-jD!y&utRY0-RC)J> z?y0WBBg(hJH~t5o$HT)TO!Ijv`2+KhNovTn(9o01Ag0F%5zcL{2k-o14_V>?#8L~0 zKvLvRHXSB2 zwv4R-sLP37~pD(~mr?rWsp`i$VToNfP{pN9QB$;?W0E87J4i1h_zQ;^% z-wrK*+!`tf{I&vklAi{!U(8@Vaj3r(RVygKZDC?SW`L;{=}lAI{{p;Ws@&V?=xBEk zl{NaCtw#J|E;X;6QE}?`UFbTuPrY$wH~5U~f8#@eA#v7=?`m#s^xw~8Sycf%azia9 zMt#Pu7E*nKH|7@*t1uLq=;~u{UwE7LdHOW>T2iO5YpppORS}tdSLDg*)2BUzg>%Jd zA3(<5q5V`>Z+8IZ`F#l_38F^gO8XAz@KNG}Nk-%31gHL5m z)W~TX0kJuzrn>r`y@Nv>;12*@%zuiW{7>IWixi~qiWJE==XNPM{fPn^SuIjX)AXTKTa#~k+w>0q9 ziPcqA5iNm{0*C1|8J?lP0^}M#g5yk~qzHgZ0uOhWe7`p_lC!z%#}bE_D2x&t6`4j{@Ez`cfQ8yd{_95MO&g%ZljjYvVkY&iu5g%F?y zxwOy9%F0uqNqf2LU(KZ=?&XVv41gVo8Xagq7Zw*+=jZ3o0X{|ywf-I$VpE5m_JEB4ZHr(xcw%jBPB*jh<|Q+TPVS{C$eu&|rQr>_FBSo1-fxqW?H3jn zxF$y%Fd)F+B$LTUL5j^*Mov!qn}oF&@Ozexeox&1OR#t5%$cp0mX`H~Krl(m^}s%i zCR{dmaB!HTQK{~>WvoCNoIzIav5ARE-e=gAwr|bjIR-j9CB->8YEJ}|cYRuId(%xk zhW~;YuI?EhS0n;U#7;cmE3d0Fod&St{2QQoJ_8>M3XFl{E^ny#SqUfvB;ey%rNqR> zzSpOL0Kad#HB1iWJYm!J=XmRtevr#K7UB9UNk^gnPL13nU{Yv+tHaE(C^y&812`AY z*AJgWJwAI`QnK4&s=+tONBdl8XsAn8cJ?G-*44AYPm#Ot@dXvud%&q|0@vDFjW3&5H z#Thn0ZtBopA~`9^7BVh(R0@E?skXYTuV258es1ts)}T!gfWH{khL4619{g+tAp7L3 z!DU57|9Af=m+q5*07{MMy${5~%*~OE%S;8KbLK<#ZF9tkU%lo?`oYiv2ksCOSi|U(bT8@@+e89*k{f6s|=*$Ucd;8?{ zv^3?@)yuDhgoU5>e~&(YEc_NAtSJyfB$Kmc6H?w3V1gqU5x}Co2!@KiQlyB6KF+}f zlAK{%7YTcN%Che;x!*yY_RFr)PYH1w%}-%FvG*$ngn-A(rR-^ndytFv%m1tN;?Fl& zTM`*W7|*A}>Y1Ikx3?Jqiy4V;I4AwA%UuSs{VNN&ldbyACV#ZmF)uH#nge^ExxWWk zz{RA6Hv_jfU;9~Sn;j%rc-kJj(@+>Xf|n_ITHazXyV{vYr>q zze_18O&qJf6$ofvHIOpPKHe*eKwu!h(^)7CKn-YNL$gEws3Fzj&x;##SD$=W!ZMXv zVW^kHo}rRIeBgaD^Yyp)#zgX&arP|KBcN5KrKMMiwGRyqDQ#sH9@Kgk8lXgHU3Hyl zdl2Z`v1l9qL=B`N4GHaEf6`NrwqA)VE8DzGRvNIYJfz+4cT>~xKW?=Ga&jY@nwsG{ zBJuJxC)@Mm$CWVWyDT)+G&AFN0x@b<^L#IC{ZwDg+GPE{9B_!hzeapk4q*B=@74^G zRQG1`0IyWja$Q(+aA>F_5};TJ-j|2x!IyJN!NI{kTiP^_Yb=o%UR>pWLu zPW6xQZv!9D1%bT0oqZJuM%szDb&}VT-*jgn5Iiq?RoMWu^8OnkcrXA&O7`R9z%4jes_=T~5ICnXs|3NrF(9ahzFy z1Z0Z~Xf6RzyjU>8^mNNWkcMFfI^X@daZil{dF$;IJMlgU{M~?>XCEOV!@}0-md63x zwYIUr5Ae1O69fX%mSVurt^=I11TK4EL%s*HADoX;S#4OOM%!lO*iez3^KrvvRwxM( zk?%||d*fk3A|hj_4r>Kzalui@&47SL2`A~-#US|8L7M!6MP>?saKj3K=mT~@b4NyA zo1LAtO@04G$X9ACDSuo@8&(QJ{OGAw-klwb6=Myc*4Fd;<~;!fICJ zYd8StTs&o|h>o5feqlku)^BAyRgNS4&^N-DY1hyqUiPRrXu0GBdUs%<4Ss zIe?V@%`GU<)K*u|O18u#+t_9*Wes0^5n?JK*|LrpCfSmh>|0C*$ueffGBeEL`ONRS?&Z0z z*YkSr=f3aP{m-N3RTyK=^Zb0?%W)j%`yes4h5!h!N$=?Pclr7D)XCK3_ItZCt)o;mnuI3*e84(XbG{}*+g0f;A?8BAYnNw<@IhTrj z(9_qaA>c4`3?HDPHX@rQ{+8Fc^-v073M59;K%MX-g64Vf&kDZzNw*NgQ#KCP*;IWU z`?&p{rM#w{pE6nTMnyFTmXPeg>1FGJ8~ySsyuyfbI9d*ML9gVv#-6Q zLwzgx0I?SL(dL9-sw99uvO!$;gF)PN?D)d^_cJSk1N~RicQorfGlJWn0(u~KE{hft zW%VuofWgx0wf%%T(0qOC?bY5T@>vPAL@FY1<9jxyLCA>*OANfW`t6XX zXVb9%WM_K=)@CD>Q|Uy+Fh7B%FEJ$kM-s5&&(8x)3qVE)sa_&(Lr{D^=&~br8k7pj z7XUQ)L#zn7x_f)43b(-7S6X{TJ_9zlBoT|JTo7kvZG~tr$KdPd@B=FtIA$|Jw1m32U!y=?AwS>yzbx6kOhgPjqYp} z2r4b=-m$sr!^B(`^8v+z!sIKO!QFfY4Y3x`z`FP#^dmE2+3jcOI3Z*dgyp#KfgUHG{MOZ_2hM2H+yf&svvyZ``LrR> z?3-Q%;qZ{c>OULL@9Ya|PdYLKBq%k2@fTKccv#RWz%|uvuhz$2$BXG)2kBu66jpfO z>2E2Y%*@Ps8}|MrCM70%05MA;;GFM+knJfWFOQZ5|2kI;|5IJ9S2i$U%@jUBXT9Gr ztK`S{xK>XJ|3hJ6nt`EVtMD;AGz0^*RMB|u9*@_65;0TM_l7+JrRgfjHJX}Z06}YN z&&$gj{#egUUe|pced74>?odF&a)kA=>%DuoKzk79?ctI5hwOac(^DSctoHz91F!h_ z@$1L(^57Fu6^9OPddT?Ih^qD;3kEdM`x__JPoC`V8W}MZt%hQIAB*agf>0oAK2JMc z(9+Q8D<~*P%G^p7cVk0~rN_v9hvD?ALPhV}S0a10KS!7@Ba>eJl4!L*c{I2g(m( zC*>}H_X~Pat@)z*M#90wOD{om8YywC3jpk}-vcx^x~-+9^QfNjZgFwu(<}sUm*1A{ zg0~=`#0;72jl7uC-vO#CP~2uly)P(83Df)>DWPaB)KQYUUKvbw-Tv!d?c|Yv)r)2` z0QSO#gV)$yd077nD9PUwL)ceIpqG@*2RI8ruz$SE%~b@zqJr=QXliJj0^KiO9aMac zEZDVj&}R!_(0d|qd9*wLb%DU|WLHbe5tg}Cp&n?ZK-)ZU5OmS1Cr*6h0{}A>6xw%* zBtQV)2SIZOI3}97g+*sl=^92zYrQi|wgjL%C=)^fCG@X^zOKNOXl%&Ywe`x;WFfKR zFAQJ8mR+LO_Qe5sC`O38Eti^4ru*Nh1dy;G;Yg@IL6lf95%U+>5P8*D&` zp}9Ld`{DuT(9GK_Eq#}aM{JZrS4Y&fv<6h+YmSbN&Oi1b9k%s6Zj43F@ED zF$roZvq=)c%lhY^dqzX!v%*eP{0t@Gww<+gUNwlhC?oZ3@MaB;XlZ%tWv78nnmtrO z9vILQ*PUH3{2{R-23Q3ZAxm?%=t`p$*g{H10Si__Q1tcdgLuH?7A`G4N&$PR3}DWe z0TllcAPQMvvz!K8R7j){t`_3+S)$d^(d~r{#=``#|E>>tEbe6V#OCI@1cPCF;6P7< zg315OGw}q&oeM%BPlz+LZMeC*rbYwQK=RMFb-?c*0?OWRh#({TW5T@l*D|^$} z85C2Pw#LuyTUlMD04TA<8^of84rdn^mvqosN0?o{tS5!%J%ukSz~c{qEw%eXNC;8# z@uyE~+SDKw5M=?}9pDer!0nmn*TNSRiZu)XG8M-WJp_d!C3oytnx*f23-m9Ypy%Jg zybEgKxY@;-{n$gtj(rtFwgDmO;O;&jHl0H92N_0`s1)+z#fwMaQ}h-i)K>97+k&@% z(2WM|q9pV1EnxzE^6Ia6P+R~Ats#|D?LK(4Pk81GjeygGLVCIR{nWB9eU;?mN5062GKcT7J8(!2?HT(r z*K5T;$APG1dkazzoGT%#dguW%B_-u@bE9%maWQ1OodgE(5vqb`@2(wF`WT_!`qzsK zuNa`Dud1l1i@RS>+U>W+_>gcVo_q;ZR51B!wFBU)pFi+7rN3YI;*Zu(Benj8h(*-p z%O8ZaNKHx=9FLX|GKt3D z!Ybp|K!gnDxM>1X_mDfKU>@)o918%E(u<>`%>n>%qNRZVJx)gR*-cqlSzOTqrNqp`8Bs)dHCi-@?Gaz))cDm$C7fbSfU~ zC|T;uSsahqc5x`E84Zp}>41_FT7>aQ{j%?-R3P}*6lwwR2d_-TfV!@=^*0>53Fx-a ziVu)u&s*+B@2RsAUh&UG6(EqGY*nW{d;Wa1`}_M1(b^{^Nq_(S*G|&=&6_v#ZgXc( z2ys?S!8ri$T-`(A3zvj2PDQ6!0k(t(1Rl1VBk$aiA_I?WXdHOLB>=`laukWKc{uUq++A&ZaH7k6CR-6gv}#+AskwP<4Pf232>$W* z@{$eD(&veQS84>bh63sF*5c}YV(5qG4k!MFO*ea&FN6laXB!*Eb1DH+=*?iWDI=he zgI|OH1XRthHj>|L4{T`di=^-{c1cJ8!Eg<@GDPuFbL64aQ$olHoElAl9tkm=p!}a8 zzZ8uCc)a9^J1YYO(^yC#Ioo*j&Wt!hWb8A+9WXX6Vkh=YojG>mM9&v!gRHvsvoEY( z8yy{;OQrUN#g|~Y8lC(IveCYOp>X&oj`sFOyF^!TPrQHGgKbR>;k^^TD|z%VNB@Sc z?Qm`5K=SQ@!%C?jRExx_tX5WU@6bSQr0>l6a5KI5}l^DGmWHdciFD zs4-By|4IdTY5d~i$7{kC=V-jSE1U-3 zMh;l2qvTfx%W@+4nfoKu*rK<#wwA`dcrm^Y z)Goq0A4HFZ>p2(e!T0Xp2OxwNxIaWlXjy~uC>cn#UE5tNfF|eQp+nuE4!m>6-TkHh z$K#V$AQy-31o%9-xhC-2KgZd(LuNIF5|Ll{{BOd7`wn-%JJ>b4TfoL>jaTCCWx%RJ zo__c+mp?W-8@mH&0(TfYK;K{axCJG5x8jA=bsS0@lb@jr0fYjokKxs_` z%Bj&aYx1BDKLcp_Qy_iF^jT`T>@c2@Y0~n6Bw&}sXz7?v^&)x9^MQCTb_RM;elnVUy?863)hTZNW zB7XrPgcU&Pe}Z;;%cwc}Ik|T$xamkCZd310#ASfzpGP90DDZ$(%b%6qU;PB_0W$0- z5fKKE#pn(>1s8t#a!x7K7Q_$bJo$Hx$DfG*DK9_eFBfa_oR+Wu?fdrw;n2*C4A-WW zr#h#P>@o2c5dpB;J0J(Y13F__07TpnUO0fuoO|;TXv1O_Xf(7sC|rR;Eg}(=qv=;# zzur4_(cw404mz;P7Kjx>rK6jt+3dh4;@|)Py!!E>pWln{*?hooeXtZZ6+rn31UUOn zq>N<0eCh6X`!)m6*o18#`G@>1FxQql;x2-~?TEo}cKn1;#416JTMX2xKrxa6CW^eu zdA-d~h!1hfi;KNZU4dRQmj8FcC*n>hvsM^MuJSVJ_A#3n1|ncr>Ze@JEf*?30Lbon zJ7lf|WIHQmcyARF;;PcRr?xoveA{{o3eXh)iP{h|N1c z@_k_weKC? z27;Aen(%9(Fjv5gxnh;RMV|gndu8BT@+P`}&z4Of`A>lJF%M{Ddq8t@Z`j*&w~%h? zC;>iwi}H6NEm~Do)pR@L+%5@_o5h6`=<*Di6eSiXgt%TNCryGrWGO;IG5%MBh{#VN zN*YevdD8E(_v?IN-U7^$1MHy?d;!Q<{+A^XMO6sGBWk`42cpX0p|xlG?7%5e1dX69 z5cGRbZUWrfM*wCm&Mh8Gsy_nQ;Ir4Sm+fGm&9zK_3Og=x?jblg1mSOeb3PKA2g(}E znNASbT!n=x4pIlQ=hMIpu&(-%LdsLp2({gL|Ciz4d8_?BjIp;1j!= zzDg>?K1PGaFe)z2fA+yXz&gJGJ2}h}6ra8BIuRh{nF3PH4}hKzgv2Qj{9)X^ST+LZJ)Ruq?(Y6iyn^mre*!{)X=-nu z1zi+qM!6Tx%@s#nI3oj8%5EG`!sj6I@B;8jA>b{|;-YG5Fok7hOi!n6P2ZI+g`+ma z$Z5MmdV5ZQxc2{aYXzahQ+djLlZfyk51#cO@6OaesdfLMi`&M~#xIdQmoJ)K6agf^ z$ZhaPWMfq1ya>n{!oT2SEBGtAT~u`IR?!_|V%xUw+OccbPQU<5?3Ugmv0G~Q&YgSY z_DIQqL@v8aQhuM@-hI-0W%mkSWYZS#Gh0Q)MMcH;O6-&XIs5Lz7zzrpvM8UfizTtoW*t8kE$8BQU#dqukPpH}>vU$^%Et|J)5x#5i z>@e_sk*!jq(uYo--6nJWj@V(Jy{DcezS*vFuB=hkvYVl*efQB*@f~vV`}QjwIjVN- z_z4|dJ^j-LhUYJsTr|C8cG>F2O>3K5wsy|G|G2wA-+8hWTTcoy%9y+;A z`s{VFJ3capPd(Yb_gvzevPN+gZA*si-ACO!%TAKe69y-UlScspH$&K;+ghUM)Q1L^S1Z<Mfg?_Z_tR2Kc~~$=yyA?K1hB|ByflS7 zWgN}M^GD*%M?=uiu9|p+{^DBF1B!qqa_cRzgNkSsV@NiWBeAlA4(=`HJ@&^ca(cxA z$*szxfzI?Ebs&94C#=)kkUKfh=2WZ5TH4 zi8BW0P}4^=$VbiVp%@7$2fKH@v%Npn>vOz1)c;zu_p%v;1?Bw7-rf(pfmW&O(c#*n zk7SIS`1zas9JPCFsGy#~31o_yangU)OE#|qD{z-WTN9jgP;9;QO-favl{s^FN^ytJ z?#zN=N`2izme-=}up+ZOHceF*)USjlzUb*E2xo&h+IkA0e@G%LCV`fx2a#rHcB+O@1Q%m#yc zM8O@4ZgUyG@o#PU`Idc}3trfntiZ!>u~oh_Df6wqL5XWnHtPEt#2-8nECMT|qDL1O zNh%ML16n@>myq(@rCLW)-?-)F@M2k?Zt4sCHszR@vR*cHC9Nf{X$pVzM14b9KE=tw zcJ#j7@|Zmsv=Ct+JC0zdKGwSKz>W*`%;Tt;5{V7O>Ud1C%crL!A9rjfR65o|A;Ij4C_8;5w3%Vmzm&8CeeF_a? z>|{M5;6&a@Q|vLOElH+&_}%nZqZRT<6>gnf#UakTTBIsRpL@m0L#;_!ad5?+BEgC8 z>N;wE>&ST(`^$y=fh0s~LtNj6$Zf=v;PFx)9O5ajvJOwv963`{2!?3F@AdxDCb@25f-6v^Va%h`m0_m_n;VWe zYI7Aj53YG@<^)1Q=s{KMrodB4tbKA!rZwShBbe)>9GhRAmQUF{^mJ%LWH+U5er*uK zM6oV%ZZb=o%Q%rOPV(}>%)F@$k;k2=HvtyCCM1oxa*AiCO+0@$cO$+bh{d+Sk_#OGQDkDmbUMWrW+(ojH7n^W z(YS|cAr0L;lpd{bKR&w_{aI21gA#~$Opsz&kDN@I63T-&!=1S2!`|*1d$4q~LQslk z4E|7S6v%LvxmKJWGPStb#=2HAqLRE|tZqqMdOHfUUxcbyHvP6eJ%+m6&P8zKkl`#~ z^@leF^V^S(>qKbk(-nZ2~r89$0d&QWWBz5-_(F#EM)(Exq-kXhoFW~bAqS0;KXk~ zoG1r5*+z3_W%FMS6)ID&}&pk_hc+BA*uPsMbOrHkycRshYb_2c8(wC@4p!amq>KrTTTi*C8Zyd!IM`Xl7&f19|Ud-AL9mkS@(o z^h=58k>a!Y2EW!LTg*wr;cW_HEn!Y`_6d@_^PC`=aSNaNB#TEQ{Z67_uwio8$htP` zC?}|Z2jgscXF-K%3#4&-$j~T%6oUSatw}=jL_ME#z*Jb9o16kFBm%Ns1GaxERFlDD zW#rC8yVi`CwcM|>Zq?@h1|3af5U%v%?x4kZwqd3>>o_TBs^WPxbwAxDDsEjVh=C zH>L@7^9uur9wji{yuxeAP``uV<)?gHnBf&YvGV=?v6593%-wlfhSl1O>5oUJXUeL55vJK`xxsxPwU$86Q z;vDN<2J>J|s(Q#Lc}{NhJ{6mHZH&SuDGZC;`f%1KKT1=Fw1CmFyl4_X7(mywTKwVB z6{^Pki9z1t@FzPYR3^sgt#Qs~Uoxe%Y)FwRNj9tc(8R85K#kyPZap!LpX_q3$OAkEsb z_uRr0t&R7JA)BwG#CACRR{gIlctyGT*^upqP9|m z!@I7P8-m`QmjBZcWD(6$)v>*oNDGVH{$)4bUaVk%JRuf7nXx!74rvWO{{a?L@~52F zNoIS_UtT7~LMkXtcem4CF@Hf~3)q(s)rM-YR!4!qMnmCul(jT57qmj|0>_i;6} z>x*7=O5-HISFybCUr^g;N7^EF?Y(x47@u!SMc&DE;EmF5qf>J1J~=byn^NJ&24SY# z61_79>bF{tWX&+gOr&XXD8c6bzsZkzHaVD(i8h{0K$AVk)+P5ACfTM(Co1%8!Jl%` znx&tnGnGqf-$^v9$h{7%^U91d;*-{fV4ti!?4;+*F$X$}>b>NWT+;Elxx zCeNQq6_6&$2$tYbHDl(PMv<5Ql)JwXI-Q!O$O$Fft@DI@1};#f#?lDEu?nVGBvI1s zPT??|Yrt!F;i~BKmTm6JJ)VK72*jBTwZ>X{cq#nQyuz&k*tKl+zKpKL^^0i>@S7bc z)^_rAe+#xU$76rdhgDG3129NFW_FbxJra@PoHK6&aVt-nUVNvnS`JCM88G+<@q{M| zPJP5WEW;+kuck7~crlmg=?O-QejA-ab7X9e6k)p{68@x3_my`wFe0)L5ztb+W%lRA z5$`O5&S=9@_1v~lABJfoJAhI}6iD{_m2SnL&6$v==sSIWkVv)>Z49JR!$kyft--no zDS2P{1T!LWf;_BvP0%eE?1o*}FzjE+B$!Qf1T4Q!{ytlcN;2g7PT&_v48pJ91i8`) zNwHz~k=ipX3Od2}XOI^=C2Od{TK@|!e7!o6*-OPWlcY_(_-~3kl zbMk(SCE2dN%HnS)rEZ6dq_JhG@Edlx1qx&E5<`g;uEB%kt3}Z0X;zMiU9+r|2Ssh1 z^ai_KYn_nih^<6f2I^`}B_lr4D_5~9mKJ#YQ*P}&)M`>0w-a?r&^xZy1D5nL(jfKF||Gx3eMZM>ZvIu}Oa$Xp;W#uf|S|MakXHh@#1oO!?oQyB%pp&d@#eBepG z3tV>x%qenXhF58X7Svkcc;Yn4Z#hR@1J97NThJwox;v@%>lm9`_G*^U{mca579h3p zs+2TWFoXZ`j{`G}*iDSKrqUQaM5TTV_Ai|CoRe-9m=S-vm}vg6Kr6*_FX~Un=C3%v zVnJt^BJkZ4PG(Cs;-EnJ4JJNzm)n?5l7=OJ(VNNgWGY?;BYCyIYBXV$eF}|2pdp44 zBNWDo6_gmp$b=ylv9ci|iNPTgE_Xk0Uh*oU38p;3x$y>=$A$mVR#pQy?_3%`zW}B< z4z!_^223D#!2HyLL;tbKxl!e4Ie5N@4xA-mvFewceg_Juho?W#f&yvh@8AltU3lq* z6_PghqSrQh`!MM8`mc#){y{Rz>?3%r__V5d3 zrN^s|fZOdEH3*#H5eGaP)MC2!YrfEA`oNA<0C%&OINmaFpD#?|)W5gAPbrgJnDEKp zb*s95A}$jV{vbx-6I4zJUM!IXU82Cg_G{lNE*4K{NM}GzdwDcVgyJ{_(=cz5>aH_; z*IaR5{=HN=3cz*AETKe*$ok#RgEqBR!xJR8E) zi+1*X!$}G=&|0Xn{|i57X|sk!@q!=2`#9~~bM69ZekRO}Y1*XlJhj3_?$xqK+Fxc3 z$7gU!M}XBsoC6VGMGwdB;rM>ZK(s()T46z2S!lgNuRGp7^+hF_>A5#HM69cpW||Uq z+0R3^VdZ(JKK50`-EC__?3wPL`qWpsTE4vCrAW@WG_eckt75V=Kxvb(q)epIY$y5V zUw{GGfe^i03B-Ywage%j6uWW0Aiej9blvVp-HZGt% zFi|ndyI*jW8}w3ZL!=%IrYt#*Kqowv=G>nI7L(7qPNgpM(-*L0wb4La&}}XkH&U9u z;us>3myaO1*uu_EC@LuohXw{o4lNXCs2kjY4wsUcz$i92M zUgNW{<9Tm8!LADX2!;bwdcw7bZgVDnsV6*V@-84{W+{xwQ$dsw0eX>CN8r;aS|c4C z1otw}m@|813ciQA)n>374`b;|Rn>n1!;qIKzeffA*kDd?lVLNy>}r}`;*pm4gtwtL z`n3GTi!}t@tXpzR78OCL=CY~)$nMI_(kPsAiND3pN!^(iV8%Sk(YLIQwd(P6A(U4x z-*t)E?{*P*9M}E6`C76xhhGlg-Odyf>>+b3G)PrEP>}{v^oL>m(NH{MF$ljf7-tKd zL(i^A?!!z{DdC6elEEbyvcBr)6>Onp`>|bS|L<(X#IV|!VATgFAu#00bR%3KTSE;7 ziNIwGcGH`c;Xl(_ywI~?R*nv@S9(=AL%Cd52?tk?tY5@tXdMH)^Zky3895H@bOsNw)j#!nNlqQi3s@MDnk+SiwP#vt^ji%HAc^)g*E0 z2{rVp`iZdVxKYjr`WO1B{^tfwK3<0u-Eg>%%2+LYYwy?u^Cr!X>YMG_f%QNPk2)P^ zdYUH9u>R)fEi8D!+DjYuo}q1(T87oRqPTNJG}R^w(gG0!+Y2JY!L=s-agt|z7tfnp zU(LmjTAk~|b|`p*B{0f%*MSQdD4H>2k_vgeN|OK6pb`_NcHv20U(W^i5{;WSfn=$* z)DM{RtQwBZWU)-M!ay3e4!2+-Ds4}@Jf|Nsu8XUSL<_fPX_StVmZmqE70hS{C zvQS{n$iCU&`uh92$^?pbmN7VK-1^3A0wpv0(`l%68R-_NXy0+b9F){VLK{GfM@sCP zSTh{;0?q(p*C?iI=w}CF_-(_|@Pm74`KbiNqnd<0p`o1fOzpOjmbP%-AxMj{{bfeP z8<^l=w=)I3OBuxrA34jj1eS;m`#4R^kef{0!t(1O+?O_nOT$xkb@^FFM^iAoBTm!W zYt${h!JUPZxpp9O7V%VYS_iQgZZL`=+^XmeJ^t&{3RCnu_wJ>`sbkp|oq|;}Fhrcy z$1!DUH_Iy=ji!dq9ZS%;Ha6OUX1z1%2m(2I0QcGRHzKM*t%^|}Ni+HI6Jtqfy(Z4n zt^TrjG{n!fYR&s-+xPB#%Khb?r7?zWu_O=V@GQtW~nfDX(+mk}|+g z`E!^#7rN*WmQFu3sz+HIEW)Tzp-&sO2>K}dpm22u`#)%^5(4?DTQ|-Y(Y;t?Em7<# z1EG%b_HJ6Czd(2-M1bOj6bVBXW6HltN^&BQYFGP`EPydsVA#ZshW*$cWpV!N%6cq$ zf)af=EVxJPyM6$D??>&>vhUr9&gsR{r!eTR>KaZE*U;Wm!MG(dvI-qTAgsHl;1sdc z7GB$PTO_+-HSA`P3mQ;0qME(A)r9!{T0Bu`_8&aXtF5CpT)Q9P3MPVUhdMF#5)`V4 z*6?H9P?v81j?)6F)45UGG=3VlW3}{VY08F(^D|F;ETl5Kz-vR~pnbyrB0b8_q+74A z>rpteVb|@V{#Pfn|KEQ8{Z!&%;IujYHf$#8(>(cr$&v5YBgR>+we%&O0X&l~#$5^< z5t;RryumC<&--ciAjvH3y&CV+5SE4J{w_dH(43vJ!2EiDRQW7luFWD5SdE*r3*Ah+ z7b0@_l<=)8;E9q&y@Bq8))>RBBDtF#a2EJ8dOG^Y= zI`md|gBs@qRc;g(V1^FdMQW;gv$o%p_@luPW7CY6gq@%CG+Tt6{oz(0!5pV}=Gaw; zSC=xwMmTiVT}EEGGuL_u6)M_IGzV?k^VnQ6z;JakURk!}k6oqA$%&@@UfyEugl8r} zpP@wICwVIUu;bK1`T>XgwS&V&3pxd^=20c-*#@b|x@j6Zqg)sMhM7+*V>EqE#2~rW z%QwMxFttFNMf6?`a>?E{S{0D6=CK?$!a$55S+#?q=O>{N*gcF3*@g^@geXmyezdNl z>mCQ2J|r&!ojr+%CqgNv#6%gI`(056k1?#tl_lvzBGEs zU^7Gxe$W$sj49a~CPvMgX>QkjnO{>4Y;Sp*Xbo$t;d1Pv#n-xf0M_;QYY?v(XxPm= z$xneF@pMw`uTm2GQfso9S#-u;d`tc6eZ2%>K#LON0DryEQUZzpYSmM6r!j zQJpy@@fF zdObR8kEqDLqz|Pdrr$2ErIR8W+z^$NX53~$mlP&xrWLhkl`PGv{oQe;ir7a~m#uF| zQRgjndOYW|rq`Uu*oA#io?0;o;Wk{)?|va;8M(Q&w@AaIe0Ba7NUdNs5VD_#C>$4j zM~G_BD(Blvi~SQMV65)eF2)D1u}`>2P~suE`aG+r1CEf-!R#2KJr%caZX~Rgw6#H_ zI}KSE-+AN~i|EP5qU#*)@-ezWu#qa^=L=oPTmX~tCK z0gPA+h4I{TJuma{Y~pNJZFWoSboOaLqD}nKhUam@xR&k|8R$$eFz=m&?(ACkBd`Jm zhks=EjAIgU0~ectwM11H2Er-;=n~0Iayw?S1%9la8Cv_Z)5BReB6-?ru41jI@PKtV zr?5pJf}yvjQTDnqN+V!CRA@A57o>@R4%CmTbR~qHxR&Yl#`asn$&4DwO&ptM+^&Y* zz$8Fw6(uomGXi}|_g5WQd9RVaNVA-ny0l0vtzY`#9#+L5v9cIxE#iQemd&o1s1Iyn zgymcPAfC_H&0W~zMNXf_6RUo&<9K_~6HYn1@i^ry>K~qdh@owQw1c~49)4@d=*@dC z@pPO06MRe5h!_jc#5I@hm{o`)h5MCmad20;Sz8{0quHki!iQ4&v>y}!Cp9a(G=aET z{-5Za@%G}pXiv~@P%89C^n>Pb{rtII-jg<- zCMi4$6u+n)T1CM*&k8{1Uf_laa3g{IEZhL-DUfW^NZ~)%w)y_CbLmWJc~vd<$nG0A zmyk3TV5A&)sylF^SlzOMP)+PvD4~HY-hbY>yw+4Om$K%0F-D}2pXKWE6kRqNNwD}x zO09c?V&Uqp&1FM+sv04z)HJt(AXFeNU>=$#SX?dMacpzNY;^)FY#@Nna=ODG!Orl> zi#=^_Xr=FI$G3VI9c|6*SR1q9e<(8%v5vi3Rb8DlqG*np2pgS<*S!!%33&w4^EHoP zx%9WDhdpY;vNIBvYwhfd;BM1)d#`N^#VYsY^dlu`@Zw09EHA0$lCfUl#6Hw=;M zG$%#*IU8Uj-yJrZuGv40c5kojaYV&~;i)y87G;rE;Qo3S4SK#;=Tf$k zHnO7kx*)*Z+&>y302UgJ4a&=EIF9K`Jpg2iaAj>=G9Xky4RYKx_g34?LInX?d9)pr z>?Ffdh(5b;_wSA`aK-Gdv6V2ym1R^{%pEs{3rPtq7R|aOFQ2M-MS&-#;r29>lvTxTJ)4cZ>t_Cm965A7V12(0o}8w_uRnJ zpQYI+jiJ&Ui+r98C+N}38L@c#p+IgUyIpeD%v*3St~0Mtl3 zy{b;pzS(zOPh${=NE6J3^_PTqyxwig+g)4LQcsRTtM=zb&e-4M_t)Y^PqInBZuX3h zHhJ!S*mU6G;jq4hsmsa#{Tcd~cT#y(oTa_3*8<>QgWfxY^$GT(sEO}48@n!r6d=m| zW?^-M7Ck@1Hblxx*`#p+&D|r|&+aN-HkXuMhM38x;MgA|pyrX6;w|v79#R&pCu~ij z@;@u!a=!l;r>14d08q&Nx6l8}*Z*Js1r&%79~~S@{5RK*q8NA+(A!y_``=(PC5cD4 zhxyPNj$tHCKQS*BP81(rA6T6UJBm6!mW)nw!cmbDf7S`9vy(_=6xo~m3swLiS68tL?}tH{cU#T0 zyoerD4;>_F#^F9(5-wW223G;W0ws|@Wc$%4Cay_@4mW5t)~uwnh5KY>na zzK!QkZkt&7RFmZCX`l&pSrZIH1fBf3ADfLOTgpxA;fFD#4q(IwF2`Tw!f*=%t!er7@px6e0G|(yN{@i^L!0j0ZAXV^eJGYNz85!4YW5%rH(I-vfHN@1T#NBu&}B@ zS}GM4z2MBP0>fxA(6WYE>Kbr(@{^k8GZmaC0E%RhsLu8fMiKA2*8$uE&KqhSk{dOc z=Z+O)Y7x++TQvz^Kxs@?w5S`ejm1SeNtY$?Pa$Xqi0H+sWvBEsm}K@810ZQZ<>**t z^g}4Fis%)O_%+el0^iXU&bF7ve2agO$?S*{Fs23xAua;^7G{6@rY5m7lg` zi?s&=CDq;JdkATmg&G@2b-vyir^2{@qWI>JJth3HaS#mHXDPlSpPtWhP?cE+)eQA0jxadl$q3%Qh9z z)qG{zfahLUU|Bpe*VMluXk@fKU!eusBUc$~_Y>`)?A)Yx6`b8^gZKx`Bh&Sxr19Pd z2w!*n0u7>V$vR6*z^_W2ZeVS) za9NI%t!joB^lBftcTtrP>m~?C8G8o1y+BL^oSmRcV(!i~DTI8X%XnnOs9ya*VKTm9 zQ5*?bw;czFz?R|^Pu5|;_xW*?M<(sdW~SbQKl^|1punR$T6(56TYm}he6qd}XnvW> zrOd;|(&V;m?f7<$(Am%q3O-Mh6s*KIykEyi-OFC{ezJQJu0e%25fB?XY@ziNhA?<(VP z*bbhh&07yFWN8Ia5te;=RX+S4L4ac7g6ll4>IhE%q&A=Phl}4@Yd{W@9m_!NdX|$& zJqER($^N~_4yn`UUaZuDA)w(87J6GqQZTef$isxXg|uP~`@;AAFnJ(Aqexb3iYvXnsc>D1YTyzJ2E{r4a8#7fssyy&8dU{57cCW@+D`}0iU8@8uGYGu|r;P^sIJzd}fc2_BQLj0^ zWM0oIs0SG+;M1DKA%iY4klf@odFH>e9$DyL;51S_>)tm6L{P!Yx|X2MGuxuQKz5+M zW6s3VlmrU{?7CjB;I`)NE2VowFC~Z76NbGsfzb}GO&u3p1NfoQ(Xcm%;>|Pz7i>TY z=HH2UG5Z9C?AINoQ|v>pFm=b$e!3-G9|8`Lo$e0yoYL=c3t&q(U=Rs>y>~SXR3tQq z!oq0GEv_Q*S+(YzDL?b{G(c(0=&AY*ly8mOwR*nOXv5mhC# zl5fp@HLLTFZir~zywA04kmhHrfagw>X;N+y;>TxsMm~a4fn6xjTQ`gj`lA-Y;ATk( zIQo+)f!V3XXsz5IT{M3@uSG$PPWOhJyW<)tJPXqtcgk=gI-SQqhsqAY(?R7Zb1@~C zXi5vj6Z;hDVEi$eSAk@CT37A)U$nITPkwD>|5lNemVsDfuM`?+yEiNn$d%qb|DSN; z{*ShIkiW2fX_Amu$q24WP1g9}wUJb21qrAvn+QKvQCg;vU)DQ$%eVu~a-87`DJJ`1 zZ>T=^T&NDQAAPv8io5%DwjW5BYo2ZnoVAJfq{*i5{dkV$&Vb@r#xt!*B?_)B@;NUG@q8xHvY!k^6-b30UefRN3sE;ku6eO3tFMhG z-xK+{T8qwv2y#u;iYwhREKki-LI*QXMSHs3D$BPh{(P6 zYlbOpcu(G6AOj-Uo?WZ$u(Mu8xG(B&?@K?ZLmHH-fy?DAhOFn=zlR(`IrM9k_$P3( z=H(lX^;ywx*?Fg^pciTTi@)+rL*($~Gpu4>2~a>{8{-V3l^DX zY$90wj^}Dx5#y;d{G%Q!b-0FtTg>)pCsWDcsVr6~rLK5qM~8(TrJWdmNiB_UX?<6t zja5^*hM=MjgaE7A%cX8qv1I=4FI~o$S0OXzNWgVm{*=QpZ&p5)95$6^sPzhen24Wu z#0}f6N=RM?dG^b^fs#sfPaxR7L_FWKX9{A_;ttfyx(Ry)+-8C6^L+klgaJJ8{;HBz zZ&S8-4=;23WH^`1LkpH|L`y<%rCBDo|L|MW1;q@$gEV#lpXICY7`exu-tXV8>&A_{ zb7#o}!rM_PPYgc#h6yxur^3=#FHPYV&vFO(>bobY7pso6cB(f$dLU5D+z=U4#b*VL zy|Ns32-2h6?L~25bzuU#{@AEhNAnxW*aDwGPo6eT6#mFKvCkpYoOvKANZ+tEC6B~b zS>x4`1r$L~O`=w)j~c&jRM&UO-N)32v>>wY6wl?S_j>k5s9O@&cJfDz^10 znQ*G1PyN=E`ALHGSLxI2>E_xdhR8eV9hyA+e*OTJm896`y2Q3jo-trpEm%z|)h!Wdam6IHh88V4@X%`=Z=jW14CyjQNb)sgv9rX7FB%aQ)G^W9yj z)h6Bw&2IIGFBMwgy?W?({)Lr-kb5-OIl;JS9I~a5yMt)tj+gX&0rV z&a9~lpg-?FE48kEN{%qT@GjY2Pn;h$3U%9FQi5ar${;nTn>W=7iVswtFSGh7QNcXe z%fI=-PUTopgP(?Ckh4#My40)6!e^)s+~!UNuBI50DDPls+cC~jq(#?2lxpi+pP7V< ztSALZjrEJ--VnCOqtrEr^Td?y>$i963%eJYH# zh8llvmx|Q^6RLDDOtm+_(mEts!2Bw}ebc$~j$p*zdii@$4U9san!%82lZHeg3lPuw z8=plL&v1{SS{fKs#D^grOsDF=j8oY>;O==AUQSNnnh_{l= zKR6J-&$9q-oq$rTqg6de*(Y8~75@}QnWHc`MNiPdW1p|H4VwY03t)~@CLU<#0f;IZ zv|%iY7s89P-8}KRA=4}F0cZO!@`}1psbRE9RUivYjs>x8bqTz5^hKXA<Z2TdaBq}efa>8D*;u0&9Xaoc6!0x^CY#qF;8=ZF|OJT z$=uaIF!1V=>F^h=uw>LJvUq$L**r5{^Q#(#TV*TC7iPcf`2X8A;X>hLY<5yK93<~P zDB=59IVtu5)@63kA>+K@WtLTi@T%@hRuDBXIEkF|4sb#|1<)ODeDp=@VP#NP$yobN zI0DfTk1Ok zO70(mvweMi&iO-coSv4hmTT)4dTY^3VT$AwsAlnI(AZG`AFq?}eYoVPr_KgY|ItrU zUMtIpT=ZUbEE4wbVn&0@wG-_$OMXXa^9sIYC^($r@(jd%5WB5F4^e*q)wIIIyf#;G zFxuE!(Y9aH>E?m}hNb~XSYWgOogRbV5>n5_B;dK$%=a}Rmy={=Nll@%Zpi`1q+|DE zhx8*yxTRyrH*^#@Ryq#%lQ1Vs%rA#{KA%PJ8}W8tQXX%5ws?$vKL-zQ7MxazNgev~ z8TE-z&H#rSe5!$UCwdOxYsa0VD*Y_R^AY|7JE-aGByc;dG?9TQQ>?ZHz0J$W7@Q~5;;89G+m*xx3Wo3MIG$}cWiG-8s3*ASslg!#>n7iNeO2LzleW2 zwgaf74Anhu_lGt)WL$71g$tX9>9|^&M3cY%0BAvcU4=darUFOO!TA~Lrg{WSn z$Ed&xfdu(SOG{>CUX)dlf^szJnFS9pikF(eK7uk_0^o1ovk< zA%jCJu2!|~Xq9XKWFlJ`Xz2NrOyWD{rbg~8sql3!51}PL$=()-==v$H->8Gmx&2P}($}bqI`z8yp}K9m0Q~bPk*eHe+iKN+cHm zRD>*6?^;p^ti%fuSWelfZ>T3*k<^8YrY%%Pu9`fQxkiQu1<74DgA3nX6_X==7IG0c zAY+>Po(5w86%#$o_Qy;YQWknk0Sp!kmC>8kmQqp57p=aSCTbm^yK{#Z!|q_}uV9hI?;YNVADlKXNjHWi` z*F6Q(vb7ITs?8%qMikrt9Rl@hhr!vaIH@y<)%|n<`=igNQLrwyw%4Y90e7*Q%#=3A zWG8JKKvz!UVOO(HU?q1mDjWmkq&%PA1)K7o%Z^k9syqBM@68|${E1T%#8*uWG{tEg z=F1eQt+uSOQnk53H0VM2a<3?Ei&1YH=_zQTl%1CJD=9D`6-g;`WOgTljzgkq@UN#y zzw}4*QnO&kl?;We0*!5B>r0d(&_nh-UzYSslWc9Crl72|BxI;2`SV2;%_@HMawx#& z7Zc>yB1wiLujL0TB$G=QTpGn5s&22da;D@(_7W?g@AcU?t+cu4|Iqb|fvA3yF=Z0vNA5cqtdf&|4jC{dVj;q0(^m3pKYG5N`+b!YpVDQ8B(uiA&gFdjbSG&1E~t0t6c#;cDSew~ z7YkW*Yry0gJ_+c{b;1lc(Q|21ER_|s8u+GEt(_)Zu*Gd9gycUdx9xcFnEhv}Trz(S z%rJ`)H8x-<>bj`A3w@Hm_xqoYvW9-Pw=?{m&A+2?pc)ZT(i97MlASzZp)N`FV}GR? z&sqY6Y924t7E;|4{Snr-R-V57rGt`sjKsJp>=tQDM|lZx@zBxtE}ep6wv%|(eG6I3HIi$jma5o*dwlb6ncC4 z;1{hXgj#KR+8M^?*=^f)sH&P2n^~~cj2e`8va@Q(hZH$LA+@d!PdXc@lNFFIj62$A zH5oT#Ysk2FAS_$Z7?eU=y#KM&N&I$M=QlP2dUnp?50!BW57p-L09{#~hhL0IV$u(u z)&%h`B2z&y%Bf#%SK&&|_8%)sDlpGUJ`dNlZ5ua-?~zJ^WtyA-Ng;_HoyNX*qo=pEsXJXvv=@V$~TI_8xrRF{DwTi3yx^Cb97X~tY+)DLuXN=tZe~b*K)aRccrw#mFf!;(G zwPN)O55}-I5xs2|pM1_n7A@mq01KYDVT{fO_N=wwlh);la~`A8{J$H-kRDUlGCs{O zmmg>%Tc|u&J8u6MG0;+VIuA#)w|Hr4jt=ap3k_0Y`_KRRqExeduhNKiRK2XZjq#eW zByb6WGdx`zu`^$BMVw@}wP*Nd%-yM*0%GsI!Wq-pO+kqjQISC=!)VoQKmC_VeRr2R@;*n|F&>i)+*Uc1H_CZN}Y6EeY|C znNMuyF#B%vn(0~q-A15Ov&pBO3t9_*_*jSDGz)E7P@_VFFt@8+4bTgm0@z12_>|iG zB6)Y!qo>})`bFPyJc+nLGgF#%(jIhWhTlQDU$lt4TgClV z$Vq84)f^qFFR}NbV1bt=PE(5fSDgSCsrG}D>7)R?fgE%Ms0iJ94kQv@_#a(;P@xlJ z_}Yv;=9t@tG#?ay7XbYL|cdNPy)w8Az176ST6 zbsU`G^hmst={ zTc+XU2^ISL)*^BmTIVy}yzmS*1ik9l{{BYFLNBYy*ZDdydFW>7$c_s6q+1ixZx!iv z8T#OlIht0^L_Qj`lejJu{#;rrbWp z)e2+(P23h`KhG`3v|D~pcPzu_i1*Mf9GFGq_nDg&_u&c79_BXkNu)I0SEa64I8CJfHPN zt9UjW8YvE;34bxMkg-|`(tnbYVPe>7iacaT?nALnBE(s#T#sD`hxqg;@;mA(Ayf`Y zfjim?GfKg{z{!^QW77pCUFH5IxepPyu9mTSdS!^~Q?i7hk(b8@^2`xd zHTqGozG~hk`B3|qu^q2#x`h%2q#Djb`c0^=y)$*i@6KqAPeY9?Vz6 z7&|^*nHriuRCy?Qa_NA@j8_7VYD3rQnw;@RW$MskiP$&|5&yTNu-{fUW1A;$XF<`d z9YB*NZ54@B1NgD%eLitdttDZVs2Z-qpOD>HV35pu%(Gt6UZc9a6b6r7jfl3LcWI+V z_mggRJTor&@CfXg`I$|C&0X%lNKm}3f`DA&md%4xj-+2zTT2E@=$xtwGbIMbDl{uc zMCsOIR&VVmHCsMs%~Ktp#@nk~Km(D*GCL7`4z!b=kW29lmiupR4Cuk5Y{+<1i?y+qax^u9=QE zONWqazidzFs3sM2M*TxPvpPd)4(5=BX2};6X7iF}*9vFBaQ|e6mENU$Pc%vjNl65( z$^aSSo7}LjHWqPKQ2L>NGU2KSoRAmyxlU|AXw`V2(PD)@_ZZk8tcOq-mSRvV{thc; z0o~kHH%FcS1aN6yFcJ?*@<%_aQE}y620(<*Y4lFYfFKmuUcd5|>*~NL{6{lhI4Vya z9u>D!8A_7{wd?4$#%!OkiX!wK16!2h4va(s3L0?B2E%`Uh&l*q!}xQu zZxY9G^FCfVpxLqrn#s1GpdgsQkD+l%*4Q}2A=U1k*efBWExjee?N$B z3ZR(>k+Bdsr^8f`#J2JzvOEk$Az#-<-Mf4o+TQ0Xb80g&U($1~p|)}fYM@aA9q}=` zU30(Kd=Sft-?7jX!=fn7HN&7HUt9g>uw7OUgjC}O&7sQ`@x%bt=YY(tiXQ{Jig@I! z?#RX1+$x$({7oV%{9L~pWp%q?eqKm}?M9PUJ`&%|qL=?+Eb2*W`!(-62eCVe9(~CL zs^8o|?NWF^Up2G1PWoPnIl$u@qPoG9HH!y)V6(J^$`QKVGgIP34?Gs@S|Z$6u_@-8 zAaL5#1+bQ_Ntr79gjf4{VFyJ3ZZ<_ddvCV zF0!f%w|iQ>E^^zo+JpR|J;KbyhA}}is5Vd5K-y4j6WbukuAnVDm^l4=Dk(-}cTY1| z0qJ{9ts?M28IW5|2w5%+3yqz52%gDs{q^=6~73$(z&T_Wf}7 zQE4POz7WydruPcW0QL`7%QPMJ`S74X0c!1x0`&78QVriNaiHivAsm`Qd$SsJ%SM&# z)P~a)e5{D*HNKR|Q-Hm2zHa$agOv5A(7boW{lFr-yT9(B33rxjZ+J1?-&vq*l=PeC zzF64DWTU7|{llr>5rV17D`_BvfYn@1u=iZ!@xY(#cD$2&^1Za?wVUpIUhOo?aZCy2 zju@HbNzuR6zsxx$&8<%4m-G0l9UU-B!g)7DxCP|Ngm1>ZW|%m}l1(~mrBR+`7&fA| z+zs}dLkl)4b_#9#a#K3{o7wDO|DPb*d>>RcrWt!uXXB{b>8~$MA_{d-Dj&C(8465f zd2^_SWBK8}=s3OlKB4T>3h|Hggl{o~x(uOt19k*oU0phxs-Z>Xhh>e;^h0HfNc4!a z+H}aXu{bVw{8E9PLOcofj?CcGmAh z+#z=gd>{ErqK+K;`+ktr2)>Oq)85s(d7XYA(a|Pxe=h85Qo2o?RrI7JUfxou|8fxp zNai?bYw|OKq1vW!mN4Sv>_%4x@I$ZT6>-Cyt4k29Iz_^+nw2TW9u%_A5WNw$~NSo_to)z(FH8)T3~(&XhFlcl7pJxi00!O?jq zo#>_VQy{Cp%d#xKHy(;Vo6pRULhT@0M|DQF_THnAuNUTiePC7h%_0YrN6tMnr`}Wf zi*fi?VWUJ$lrmabI(nU4YAS~Mom-;ygKycKskp|%pS>+I558F--E(*4OSnz^lr)MS zAON>S^EP+J@r_Z)Z`(|{XLAQxP3A|yvuY)*Y+a0Hs6v7%xFL#(#hac#L%hQk>EdPg z3&ds75%P{yT3EO#bwM*L#_ptyq1Ixz!0&`_#($Ds>hbTD`;}Dw!&o0mQ_jC_^0?wC zPm|FBmjkq1ZwNO$R*l)I7*FH-hotm>? z-h^AoAm7+oN|K$X4$)P6$@<7nttRM9K&RcY^DY{3 z+v0cra?&&7*t*lGI^8Qwlh2f$LrI>(rMMCS+D|Y zciWFBnS3YXypv(lJ_Yy6#g`uH76+Hf<2H?tjEuIb-tIh1rfG7gnZIj_fmsg3tR(62 zbxnc`x5yqa)O)OUzdKU{kb8VMGE|9_#{1nK_)4y`mG5tk49D=T+ZK!&kG2w!q-~7R zZ!EH!NQ!d$Al4f8IRa;pCPI7g^N9J&zNsO7UO<@J!Gcg1w!-6z!*0trOcM&1wGO+R ztU@+{Y_Uq~mFYOQi;2VwX)}3}cnb?t4ZYm?vAx#k znFFW#-;!`W$j+@R?%#j42!QrAo*vdRiPQk!kwyK|n`HPcE2RqK81Ohak4DUmc?ta9 z=8MU^CPnCbz#IUwGk65Lv4z4uz=dw+@Vh_AA!)v*MuS%EEnUK}ERck7B}JUvE8uPQ zBAc~(-)wo7Tr_WxWD?E0$Vf~DeC&(V+>nni8rY3_ z$ljz)@JboEo3ER)jNTUPjijD0Vux3ZYaYyd55_uMgm?Rr-mp0qg8J0rr2Wul&J4SJ z2De2dJ6<8r`*|w)UM~xDE45)upxWCCi++`w8zeD*91O259zZ|t4>y^ZUs?zh930j> zspJkg_t3ze5|kVu2onDkUpek56 zxwZ{!B)!80WmKsu-!m~Key4RGo(y2BBYO0OK)t0`Q z=$UYBq`m6sJUdGJ-CfoDLADx%E>J9Hc(shb)QL|49Us&RZ6M~_dF&&O8#g$=bpOn2 ze!!Y4kD#-jCkMY?sYrRBq_b`Qo($K4tLeOj=!fS2o)Q4e(GoFzeMq)%@?+i^jXGNy zw|A*7ww^nWXsgZOf@Gmv#_2ZN2JChw)-EB#gNf%iNWk;9)pVQc?b z{b$z_M-lC?w*oHD@u6M()Q?JTA>W)sb3>GE^R}!mt%_ z9zFk;XiKkEP`CEjfUfoUIy`>~8>02`@$-eGU*mSvM~|6IFOc}4W8T{j?4@RmAqg|S z%4&WyvV1_Mq=QZsC5#Gq=Yrdk*s_?x6C1-APs z;FXvj4feL_tg#XE$W9|(B0OekcB;KFg*5H51o2{M=J{u9FNbBiTIVdVq#kV)ZN`$h z>i9F0Hl^HkM;I}Ik{V!644Mu(T`K(*Rq%@mWX|yDbD;%gCxco{RzXX`0^COtlD(|CA^G*)OY*Vq8-nI0*NljAuFBQsI@PKKd8K6p5^gdm| zrz1us%h9C|Lo40s4SI-Qr8$RmZjoFwKOR_D*HTx! zeu=?BzG!Jyyg}1)MSFyd^pq-7)u&w-p+nh@y2n6FEO8nN4avc&6TK-4WVLhbp|ky? zE=@_~j`#bL*-E%P4|SnGsgu>5HTiFO`Y#<8rw`K4RtVpBF-hpwAws)O>4!zAd2q%= z4-R@vrtlPd5fzf?s+hUF{R8wi9=g8V5=T&i9_EO9e|=bJ0c)iWP#3Ug32~cA^!TN^ zgfChS?r}?xp(YPo_N{yi@K_)FHP#CF{54Smct>Cl8BR5$s*WzHHVngI^VoPlXr?3> z>(neOZFAq>O7VMeA0iE+CeygQ1vAi6@D!w4+csc10(U2NwENtXPf!_NQC9e4=g9@ckKs%iGL{cI1M^Bjg^W2wG8HQv+YnoT%>oOo6|jI@Oe}vhCe)LKU>t_wa1ex9QY1Bb_MV zn667tS8leeW86c)?@JoCBgrnjBP^4?Bm29x03liK$d(qf6E$fa4vC>O>(#jn@l3+# z*x@|X>n~a+shYRQQSnWq#h_cMgx1xYkCICytbXBh+CuzZ^$Hul<|aF`@XTb z9ED{u12mPH_7wT)Gj=)F1X#jHR&rjeVje4@AGn`zIfhw`*z+UfOhD z(`xOgEkKQ!#SPlb{D_#-k1_h@i)*OKZ3RGL*IeaqZ(Xd^gJ;`f4esX|j=M}yk$l$| z4Wg7um2=o$lm2;Mb~9|TRsKliB+&6VxI@V?0|V&kX#?E^5M(98nq%w6Q7CJmk}jYe z116FFDUFCzWllpHhSOnT8*_I{bEfF1w55&4=||+D)SM~Oo$~ZiB!Iy~PCp;Opel~Y zujBQ7yI4s4P9iYtA5+B+o8*;PH zqt0+m_0Ah#V^{L+4>$l`-wU68uatFy9$5ra-9M_uM+NrQ3^j6?)_N{BvVB*Ub%eQc z4u@=YWTh-CZPUXqC_EZ(7z>uH?b^*eT|tqv$%|b2My@FIYbpMsb(yg52)+O=XXxIV zr2f=?t91#G4q0&P>&5meqUV9$PV)$fHbnwcR($d6$22q~z5^T@W|g`oKpn+wFlMNC zY#}~-vQwU@ePeu)rLK9p!qx_60a${@5Cv#cQlo6t`ioWpvc{hwr@bWeIEBhbrD_M4 z=9X+=e}cxL?n5(XFA@!tsgYAG#oUKwMboeQ6F=<_~ud7Zihy)sAW#Ssn3Wuz|ppSNhKCo24eM*bxlLdfK!zI6WaeuQeCKhLj|NLUp?MhwBMdD zQg_-3*;oFpm!L>_TmR(8Iy_6R(Z|1V0}_#os=+S!+AC-)Wjkl2XM$wnJ6Hc)qjF3b z3sgd!^NO<0HeH?Z&ooC`I_AirJ(A{Wx6MxtK(V)={Kx^BT-Vq!s0fPcI^DaZ9smfAf!I|(QI#v4)} zZ6?y46H=MGC?8n>3w}jkOGcg7y}k5avX7c0SHi3?Qy@tEmk8IsK z^F=E^RUlD+M?g%QpQ(c?)h@pWJ?ixby}}Lo3M37c&XVrM!D%@DX@3BXoMdsxS_@zu z`-OUho(%<4^=KTCJYSm9VHNQ~Abe%l_#Jcm5L$eJNORBWSvr634uxdJN^23}VW0TG zxNlp@l6E_yo@6lstrsAKeI~1>UHZ;VI%nEBtGX;kAL^#!h%7D%>}0isE4tvn>y6hb zb~3{4LQB%J%gDU^05hby#_cDiXGrB`s4nx70L9tgnOX@SA9rKJ=a6mb;AfhIm*^WR zVuyA55wAMR6(Sc)D_)OnEgd-*0kA?4;~WDyyQBR<%W$5^rxW*&YWRJIPXH7j`V;Lw zR13BK2fKmXB>ywTM}~bifnNhB9?mAUljthZ0*KP<<{2+1TAAWFSNl4+4u)rB5&5@rWo4#N zkzGkrk&s25dp4>L>PM^3^Lf{SDKtY&Q=2A`Ze|P54WXt9hg^*}g1U!CA0%2m&g!Gkfz?ei&TX;$j5;4G0%>ffa3)-fmf$zkS?UEAc} z`RfflOj}scJz(jD^xxv7*nUbn1ClKP@L40Tk+HAz;ox7amy-{?jtCblK4K1-=Iwu< z-XXb@73Vp^?R?dO^MptEY?Nbrb8I7)8dD4fBxhjmVMLxwI2pG|#+q1Rwezkb=F)HL z+7iAusH0~y{_9iq78?ky1fa$qg3vW5*=c@h2Yns#fw=*8{^m3+JU+BM!rS?VJ-;|} z;uqQsHmu6VXm~gc3bCA@(@J=XCzq8{eSy7xm<-9mN1Knu03gU-b_kG}M zL)h^l%S#QJV<$zQnkZpsdGqCHyXeX}gHSd@Eac6%%r0m~2 z0uURU@XVkpomAm93Wj`V?)q@%N7`I~r|*FwdX^aX2Ty;T!y%K}039eva+`2SEY9~? zzx))qC{qm+Mtb62)}Xt8K^-q}8*}D+a%?!5jNgQZ7sJ68|L)^?oNQM8b{Le(7E+N~ zubTk-(Lo@l`c(Bk&Uo;m7gPee+j~^`bFo;7#+E(^3*F8MZ~maJJ^bkz^0v&=K>uD0 zCU5_YJc_+LEWU8eYm%@~bKwfsuowFy83z(DHuC}Tmvs6iqu<7l#2>#C{xF0gQ`XPy z@g41GNvaR;^2b+%;!OSBd zgTN0r7GC?6a!N?sKu$j?3leYR&!P6JPtde$cLj13W4%x!fR^P$7OmRs8 zMuddh&F3q)AqQ%Rh1+ZU#E+4l+#Skh`MIp349Z;6;A)U@^WM>}%YQo?i5Huhgb%Yg zZkfFC04*SLM^D|2``gfpCs)T#@{n(KZH#&YO+17agHV8snBN9yP!DDZOp_G~-w^aM z_77VHgbix*tLSfL82jK>&))0>#TgGgthnlYs_7K#h;=xh$;jSblu0H?%(Em%E8~lZ zt9g0yZfysarG`L@px0|w|}Zj`aZ>a%+= zKTj(QPXK7uau)GkCafKUsq#vAJ#h8}R`*XbhMS#=p*N0?M=W@mAGkZ>&*FGlh0H#< zN6Pk*Nm?~dt>c?yMwG9a1Mf*#vD=BLwG^XZ6P=Gam+lpD zOKM3LyewAQ@13&!C)SD9wYo63!gBUReF{+1Q9H&>hsAY<9?zw@_ew_gG@czG%wc$A zpp;eK$O@&d-K@(fLZ*zES+YL>I`ID#M*9C2I_mE(U~>arGuO-7{I?8L)`wbxj1}UZ}{&*i1kZYs(}Z{@Y%_b(Lhp z)>Y4xTFXwqowo7*@s(!_B3wptl?76IB^IMb10*mkO>8e*7Ye2vUED;dNv`SUO{(9; zfz@+m7$>Dq7^rPvnt=U-HGPLdKArbuhIJ|1k?G9&aZwQgBqlGmOL6Tg=m+(mu)Xw! zs155d_{U%^3b6Rn>+GmMVk<|A=To2VTL2C08zX+A4oNy~lP&u;x3g8p&<{=}K8Clv z>$4cdY%S3=ofshPIHt@Ce;E$aPSRRBL0Y9*2=6~Dy6b1g_rL6mf#74)vib*=CD~0} z-{wlwPEd1!*bqA^?jl-$ma?Zt#<+@D&YFBHYahznSRl|j+Sg%`er}OD-?Lfiaa2cl zyA0P(%P6#jEu~S%2k3Q#o8vY^NtX)^X(tQW^NMXAg{Q+_k_}bwC=$huXji@?o{tl! zPdFY>v@85A2BN=crQ|pBq<@oh3C!`32mRnB<%aqjfJcpC2#@KoWP}1 z_B#nP{C(z}`%GndH%=|!m2uft+1}2`B=18*WdO3CElh^^?X1>0FbWA3h3oncK$n7L zGbc=)t7}mCtvWloB=KJ9)ovk>7a2?AUJWHg6hSc)lU~gy%UcSLgyjAdKo;&x9$MN? z5qu2(6T2VolEu07f`wu|P)7q>6)BX9VeTGYA!vIgH=WA}%u9-WUd6As@!4>2w3;SQ|5{vX@jv6DUNvUK;TRq|Yz=9z6oVqj`M7`HWPItDr&fk}3OE z4VlIttEg^WE6$>Kt8KoTLDh7&vNyqNUaQo2VTNa?H?#5u;`6{Qq_TXU^=JM`5Gr^N z6DMo!M13d5I;hb!--ad`xWs3PY`PF1>+8DqA>tc~()^jt{M7ZvqO{( zn$VP{&BZE*-{^D;h@vRhV~T02KO zFP|6LB% zvKyQ6XTaqR(J)uVZ|`h9$8?x|o@D0^5(Inoj{X&EE&lw%<-hNnSlovnI{-;`C5Ett zGP+3Sl1#`qJM5cvLIqvXbMa8r)c(#UJh;FC*Y58Xq&kum20t(Yt$)lx%1@)9+ZBjentUQE&FT*PQ-9%;*NukdQG zt6xIsv0U(e_%|^pi$efd;-fSCO{KI}o!^!8QfcLlM$)xJN%jvxD%mq2%D-ao_$#tg zovbNe(baa6t?`G09&*V}M~5UfmHRc(QQeA1z8YSE#B(HXTkfh!-j1Frc3x=cTBY?x z1Qc?5o_AsA2^&ChDFnK=WFgt_@(Zs8KH7O-wy@a8D^jLNF12{O^ts4!k}Y-nFbFQw z#CV_xRQ))vZ4k5?mpg_VUot<@6#5(P2lr=&(J3eTE8^5*R8J&Y)sow!YlUekBy>6d zLtFZA#Xd1TaaWajGYdFka~6^dy6=F;WChplpxv^u{6X$RRBW=)?C%4@F@fdN$5-}> z)n0*73bPhKdFGxf1x;vN?G{1&`$=K;CO@uh2UCFh z4*Yoeg)}V@c!lNzxX(TVkYtje_H!jwg>1t?t%~Q+u&e36-*g##(}HbA#Lu`Wfb90- z<`#FG4cYR9VA%7(60Y|A^@vvB$au(QjRt!VH&+5!gsD^UjWo521M!ByZwUP@O-l*M zsnV9=+Z3B5o9Fp1V!ipsYm&_05o4BB3=`ZlMVfYIesEyP7tBe>&La3V6!`@Ci2822 zz9w@ux_SWXoO2<0u;O1}c}(_Awo7W67ZJD8Dk@jRuNiklA)A^K4IOEm1f9~Z#pZ0g zu78{L)1c=HtyiChNh*K;P=m@TiTto#U&}!6+rE*pS3Qdrp@gF$CcDzSaQ!P8&Zn~w zk!1UpIvbY0&nM;IpNO)~LrGxSB8^uZF9`)t$^nWqF+pY9K#hvUuqx=BjC9KyY~+10 z=~i}{^yCjKt#gHYS{iDoAF|!RI>9OC3SKrZ1!QhRa1UtjOFm$o%5!}CD(U8lJx(Ww zO7Rof_-w$^T<_fzzzHfD@pb^p1`;~4By!b1B~GBt-uYpC8d?=C4Mze=wQ)y*QB(*c z7x>lM^0ollP0_RWhd6@{hQQVQ#$=YBO15yclr+&05n*2NK0Ce_3;}JlYN?fiLi%zp zQALqUl4|ht=FiA?QY#ks)cCtzfvO+B1g6!4 zfLYXbtB3&3<6wnB4X9;^SQnP}x(@+eQr-#K&PRr`jcwT$JeBcv%2}W{YfQCL+fKOQ z3f(N%A^!;&VIEzAHj!IB2EeCv9X9JbiD(|Ad;m{8=*bwefdRFd577=m-BY6lyp>A( z_YJuF5-Y^qpXUQC;I!67m((v>XgjF!=%m`UVnwnJnbA9E;-7B)1A z^bN#Ga;JqNuwjo?u(pu<=GyYxJ5nbK>`i8HQI4X~v<;tc>^cpz4^)|+R{R)UXejl+ z!*{@e;DI^#NscJq64jQEN=*uglwWK{UibCG6Uqhi@`j&7}-rclmV3@3@Z(ZfaD`O?54L0$ll@@k&7|)~)NuI>Z9dVRr_|q&Kno zq^@w3N+)V+xN`ovbO}Qby+yZfi;FWDXOUC|_CN9z+4k6kfqu2_vo0e_Oxxd3qIe6m zHNhff+2L83@NmvsNKnxIRDHh82i`eumv3(y`iyy`J`=ZcXL9KMPa7kg28;5Jm$LSw zT9Gv`Glk+M|M;xZF4n@1n0&_$T9oJ2Z%%Z^TM+fWUea!HVSDYGGdI#%_=w<4;oj$U_7 z^Ds_uQjI>3lKcTq(1w=N9fhcY;tVUgt+6YjO0N1{31Fn{%x1Mink94y`OxjY$jV$e zDp={k0roLCW6vJpFbQH2P1sW>CED5RPD)8_n~9Ab&z@+CkR8LpdH;37&}I$c+&Xiq z%XT{H3 zfP-Bzt~Y;YRR!1 zAwy>e>XV1Fd6SxugDX1PuGuy<{qvP}U$l&}l=Rhstl9h58Xv+T(GL~%1}5;ACMOS^MnajB#6SY#tH!Db2cocG{}6%A+Y$J zyr)M<#*@P)-loZK5slH3&1wsJ%DkUxO7MrX-Pif|3j1Qd!DolY+qGM$D$hY1)ndEO z!d<<%_-b>vyE$No8N!X2GKa9P=Bf|^*x)LtB4v36e2v8yW!kXxT7#nETChDa;Uv_D zSzf#Mn;^_*!04L$7MG3v9ZGi zTtjM>up(Kv6O3(<%4RrM#@1F^O?&p9-@nlXWs%<9Qmk2GFKcio((Fw>xMJ~5Y7@WM ze3NHSeLISD%uiKxF-IhS#%@Zwda8PEwqdi?fu!?*$0MtESa+Jxjw0oyYU(|Fl8+ z&Y#Y+ZlHbz+0ySn8xyuCU4rWb)SEz2X?3IYW|CPMI1^3|U^YHmn|hv{D>Ku6w*5&~ zv4dwHvxlBV+3zaT<154|=Vf}WgpIZ+V{#zoC(WH?%{_D1JrNPbP!2Rsl3V`hyjA6n z^xEORXI-QjY%ZB)el4S=tcVW)#v}+-YA$t`8n4qOW=d~6?-jNYGI(eqOIQH91!@QQ ze3|;#kQx_AI?!NMGVhV)75}X9AaLRp2OF~S}D3!HP-9fxdLVG9oCEk z6Ob*aZJ#MS29umB$=JTB&3#tC-mU$!LFs+i@6Klv9Ee%Qao0_VIxHRNHx<~;AFI^1 zwwX7IcyBAqc>ep;@6S>Ic8J=aKn#NJJ z@m>UFV769}(T7`Fq=dBEIV+I=Zgi8dFWm0L;y=j^amiC-4_1K9jDBSWN~P5VwV^k_ z6rMO?sI;W{K&*2SUwA^_>eqnOT4^ufc(v7TWq1Hp8I0Lmyvvh2w^R@e> z&e#4wWnnu7hB_Wxv^Px9XL$&^J_=?Muq5GjtYTTqH1!(&tLR8NKzaAMWh)m#J104RIF(8+c2*=_p67WH+HMS8}9Y zy6!Jq)|$_Gg^okbmv!Z9uLYR4?wNho=#fR6%D8~+7FB-H3U7Tv-Y@WF?w0Bo@j-I4 z;c-6?MXO!hE?etH^b`$j@z7aI=QSXVp7;jrQWeD53emN zP`vqe)ri6K<|t{WfYj-L&*W{k)%|K5_80j{L*Rg4rBjn-3dXrR7vqhc$5bE<7a~%* z{lWtbsU=>vHdR{SCACg}HhVxfl#Z?Y+SgU@#f#3VqWJV_DJvs+ctR)2N4D;oO^b6| zAqs5DKHm8{iu}`~C7m1}q|xHt;1Um9M$yzhZl%d=c6|76lgdN3Ge?s}UOjesx0?k= zo|ge`33-IsR^Kz~~ zUP^OrOmtvx_Zn@Z{V(d?GpwofT_4r4jl&=c3JOAIhUSRCZ zBB+EU>wVYzJokM+_r35WufjQmZGZfCjTyfKV7xP{m97ungcC`6$?sQ7D<;JgN=#Zz~C=PqX`h9 z3%c`t*6P=+WI7#v;q{T(v-7kCXI=7nKfOuj2)lI<(j@#iY59P?X$7^Wd1|qsq8Fbx z5L^m6A}VQE(`K}ajSOVt$Pu_Z2BsCVK=T%o`Qxp>N-%C_iDa1XW&%Yt(Ccy9vMUpF z530y1ptgz_)0!wqUDh*K^LsewF{Jb?t{Q7D9iuOdF*}r}`gi5N*HCWPYl%&`GX-hQ z*Nx9*8e7(ouuE+z&5@$11Z>WVI~ms-5+rfJH|XWcvpYXvZYaL?5lAe4i0@Jg0el}y$wX{g7pwuu}nqyg(bn|(mrk$UPZ-{aMW7v3@OQ-@v+ zaIKQ|1zUfc?x7nsJZp=qKZgt;W`hk{3LC<)A;KX;Mu}&jW@nH!eLSTO#K5`HzLjwl zXo9f-_a1eZc2H0<_jsxi@7-$MUu=hsf#Rt9&<^woT%ZXVWLA~{n$O5*bg9b6wuJakh*-$A%sAp>JH%gg;!5tTk8nLt~~@)aF7PDX4KAq*}OXiNe&la>YU`Xm5qt>_6yZ#hlv&3$f90E56zLy4J`#_Lia|b1x)GuDky42ZCy6&Ab&q! zr}G#ew&{L@{hN;0CS-fF7>X6eDh|{@hf!|h3)8o6)W5BGX>=%H` zF*>0Zx&h!RGPN&H?h8L*T{$?>;CbokRbsB!>#vv|V2*F9nOQ!7D^c%p3AFtU>8#1N zS_!LT5r#e{pKC~RUy_LSPc_)U>Vdcle+GU8&6@mIdY{5{a%$X*^{b%|?0=ec-9t>N zmrA-f%^Opatcn&D$!fvpx)vmsE184R@5IiCC}He8Yr%%P|Mc5YXL}Z{{j8Cjh@~h| zjVOnNs3!J$!Y-M)z<-K)+Ztnzm@d?%KAOGpZb4&T9cL_9;dAR1ht7A5OI(sqsYAzv zIBv+$>ix*1z^S03$D|$;wuNQ6iU%j$cBFvhHG`~4T#CUafu1)bG-xVWkF_#H`kaKn zQQZM@uRusx5CJD^FCdu74oyK1+4tyqfbT60PpI4kF91xhdPz0r1hg}SQoUG7!Jg?4C))K*mfY)r0ZPXh{mwVxONH{H7)x%@Wq;QI z38;*5JsGY*>6p#&=regIJe6yq@OxM2Y<8`IbxBmcqF7$LI)jhH6Y+E2qs|UL*Y4t^ z`5sgZY+!(Oq>r{&JU#bO%~X-K-{;LS;O0@yt&)!kQB&iE3d`tw9PIo0A45%Ea^j}@ z3EPa|P`$InEHmIGbA8Mc$oA3O7qY2b)FgD*X2js$6lJsQ==*BXe6E4eqR4_07-5ed zF4gIf=cV7ChE7ZmRw{xH@=fSe7thE%cg@qZ^Y1_ke3t9L&4}bnj`1^%%X<}G-k#bQ zN1>4&^0G3*p}|W2upj^LRcVq{5LXkMT!BKzGd-I@PMBk2XFM|3^8l@m7e=$7KM^M83*6 zTbU3S?Z+EGR0{PQeyo4>RT@1Y&k#aQu`OQGWH8|oY%}G3Lg_knLAWKEDDBnXe=#WO z3IJ+9RShXovShrl=%RtcQ0a=9zTpJ>?zP^s(qN8iDYp5gk@y(BrF}QfeC-FKEO&2@ zg*9%ef6z*9jgpH~MUX9`;*I%5O+q6_n`rxGlYn_haJzLpo1XY1HO9hk$~?=}g4@$l zPYrRUTa&I5P6%4iIx^Eq_#sJC=8vB|WPuOHFY{41{4B&(tl1cN(E6?18y1@IGiiwe zaua!T0Hun})tDlhHAgb1zyhzX<0U`kb>m#uGxvR@bFDW%NgRJC%W}@Rkm2fzJ56*V ztvrcR1KfBctI&er`ttLbDtpnrZ=!CzaJsRnhzCVPW|n<~))ICKkCzF;nkYN=848>e z8eBpnw87fcv~;)_p?Yq_x8!Sk&}L^9w2Q>e0`UYKPctWt!@E}CT^{hwv1q*Fr#Wl_ zM(^X@Nb337V0EN(BO!6@Pd8hoN!_c_m?zToh(KdDhvq{asLv>IE7w5^5Ebbe4r-<-H}lM1G!v z5)ow4B2C8*N@oCR{l#Xu7g*g81S>i8mY{d-Yx0>evkbp%F5}XxC9GcDz3A|9BK` zvJQ@Ur|gViBfiCkY~SPLiI@m8cp1Nm@gFJ3o8Z$}Rc0fEeb;C8?MrQ&$khw*a+BR0 zAlr4(Ij@P?Blb_dR-l>RQFiC156u0t4BcBT_DWE>v`}h*_{`DdYp*Cu`D*2Fa3jiA&(iwCaz88&tCRy`hgM{XXsWUP z;=~(?%t>>@&&Z%_%JzLk&6J{j^Z+c0KfImqaOv7Le?wNFR144tA~9?t1wR->$!N)L z%im3&8C7M$$_lwwa0E)YPXY13lpH_{MTAGEr^a!XSJ77k!RRsb@UCsLyOv|k{sryp z0C72la`d1ooL1V}^Tb-nW7WsnH=gsWCKQQ6@qr87lTu*t>aLeB!`f)-?9oZ?7U}sk zV7|^o$m)9zhduc@M;A`$`^2`Q{6w5C0)saIy9FPgTm?2hb0=Em(Sz(-7#XDm3b(ui zgY?!-P>R*1A zmVj07?HI0GkmRsSa0{yN@MJhHDwBf)#UHuIK%}-bEhzGzHD7u$f$Iv`Wd0Bebw_z< z(k#j1CRf=pk0VfRQM9a;(!b78pqkK&CA_dt^H8-pKmAZ?@bsNATRAie<|u1b&KLTY zvHJsVaw_lo%Nyu)<14azjLolDA1I6Zef)Mm|2IL|3Hhe{GKU(}oY(3;6C6`W`6c<2 z9KG(f(7)wGe)aJ8xz0>P^;>Mhb8~K+ycCKAw9c(}eCrOF`z@Ew0eS=u3h8t=U;a8g z4d=Bh^#%+TkCwwUXWf{_{&R;=oBk6b=;hYU-g7%e)jcQ||>pccFBu z1N1!q6BtK11l4`@=4{kzLe^1JyAG9Epu54fe$?r{?Ym8``;5KjEWu^i+)w56d$26=Zo%ca(*Ck^$Vpgv7;2F6LaqKKb^mnvmtM;I=PS{tzW-5}qYIHyZ9StN(IH(f>Xe_xF{lrVNM}TvEQH}o z1&mUQ?KY+aR&ZIWY)fm`1Ao)}?!9C&(4hM?+R8xQ*dSu-OALvN9=4BUOtlnhSckmQ_Nf|(h#O9{|%(1`6>a4 z_HoD-h;sbKM{g!z4=Cu2nL)>ymO7_~Fu#}#W~j(1SQ*iIpnB`HwYB>BGyQpF)zut` zECU;qIcQYb7c5<%=6VrTX-e`j5=t0SVjyiGA1TMm^ahwR_t+hs4fsMIpM@bhvGgh^ zGXt#lFT=Xti=pkoFQV}sFyIUN|GnGOnJz-}Iz8l1;znJJ?>kf^Xy*)l-mY#^GJUg)FL#5ZJU}kZB63XkHSfvmZl)eu3um z!@<0j6JGL|-eY6>5in4|Fs*NOA6DcGci=3b^xHOuV6nvLHH6AhVg6a(2G<|w z$?=ltiDL@dwXi6VTpa%?QtWD+8NZ(WQ^DieuO1rEvo_CK7|jO_def z4SheyJOn&e9iJGk1uVk#JO3B=pY3PX{@3?DQO(eOL|1n7Qqf5C^)8na5x&Pc?zNsq z{_HTb>&Iv7b^o6^IWIsq&j0XdEhx>t+N|R)J0sP0GG6%}#TFp)!+bUO`l+V+A@ZN8 zPLFI(lEsEa?p@kA!D;&KYP&f}FCXj9 z1**9O?CpCoL-Y4YvNk(AB_*?w0(G_nnKu`b|QMx?68^l=sG#uxNn zQVVJm=@%Idrxi_U&e9Bu`nE74?9yvypd^2{xF~p>?*$)x9ViXlrFC2~nULCr=Pj3Y$R@Tsh_-)d<}OtS*gG zTeBOrAFi1sSt_>)@QgAbJB2vGroha>Gc$l5-Q%*pNO@vD!E1)3fwZI4Xd7vP0{Mwz?L|fj0F46DdwxEAtaLhL~-SS>^xs^qLcc|zuh*-&Y^oL zrw>_N3*=GZ*mJDK&jHUg3}j^rQ{{fyK%R`$-0EdSReS!cB-k#=NBIvatH)Vpo=KbD)QcE}Qlyftz88DSG9i$p8J0%-d93a@M zo@cqB5B3<*DW}XO_VwP6gF_6N3_&86!~Jb*NPgLEFw=zUJApUWlvU}nxYw};)9AWl#DOtrrS+sGaO`c< z4WUd2jhl+-l{`WlfKPnWl=KLa*V3M6TYyCN8vw_omY|s>ftgbFSWd_AKA2Y{&wOWv zPgtD%*%0Zdsi`kdR$Z)=exI5{XQASNk^rc-I=p;b&G~<1H@2pHq%(tIT{Jkn^&VCP zgEGbZ&n#3R($$~FmSQ$8MghRSE6S~PmVz(zmfPA0yC|dS74&z!rF{0QaST|e%%^Oo zj&cJ{)V=8;;e5X)Zp3hsE-6c#sYx|6Kl$g;vyDVsMpVBjMU!1{|qb>4RyP`l9 z^qvOEm=}A|w#tKXHv>lQ4*L~6g_s(jilkm|9e(AgrI4@{xN*Nl+)Cf{!`qHh5830% zPE9Q3Oe&Wx`yr!~$c_(NEok+1KSu>pxM0dKG(XF8Iz|Q)V;ZLSXKF=bTy7<(=_jQN zu1A~ksK?U_*}sbm#;^xsL%s^8sQuP0{Uy^x_Y1WH1@Ht_)k}KBWXUqlKNPtH8+6$p zgX?Eu;YEWilY(c?3jRBcNheTh|FdTCtiiiC3+Ldx`8cVHT@J6zKPW8rxlyjnN{;~r zSDch$e7;+0yYHNj!?+JTR>G|G@=!{_G!!04PSTV~et4mlbVRzg(7pP1DE;@d&83} zF)u{G8~#;kFMDD<=@mml*}9;ky9jboMvUZU9%r8@Q-7ZNQR4uFl|6ph@fvgKMPQU2 zVAGptRGnF}JQ6-({TQy!W8mEVqL9_11 z{w0$As0X@_qnszDw_;I=O8Fy=Y`zXpr2cP5q8gFB-7joA3UHP14 zfK!0{Hb1yHx=AXfaQQ4B)!gsq`)Js4-!T^{4wT?$()s78sX^@yiR?yrtSnCBemqnj zeen12Il(qCJgXBmWN;Eg2krMOcwwZ7)h0z>VYeHlQW#RL2#m;QA^oO^gXP4I3MhAZ z7Nl+|6l%n#VbH5X`Me{WGTIM)VhY9+1BtIO2N)*pRArj-(L6{}qk^@IOc6)A1>;%U zsi<0D)DFilc3Y_&x!{Oqq6GQTH4Q!!ak5k2qld`_UnG7gYC1|D0D8TdOQVFtnR6Eq zMt3m6CQufy1Hb2pLXO5dUm5j6g-cNT5AQ(C6GJ*(+I&<10|U%2pryP(ec0Qs#aBsV z!7@20;HSx|kq)7A zsx^5V!+a~uZ#*Q&IobOw%j|(*FFEdI%XoFYHoL5}qClfw|M^C@)g=R|TgzX6T zdU&>GQ08jLbNz%IygpJ*VE}DRhH9ZUe?BU5DE-EHA7{8oCCSFtq7-|putx=}(eQLN z0LvXHq&(rqn$=UGd1xF{8NRmLbKIdij?YQwMS<&=qgl?g?jRok*OFmaTyLK|c9MM+ zeVu{LQ7r%yeEh|S<5ROD(ZL_FU;$pgZGj05+z!wG(k=#X&o2GoIBPE9pz=OQE>Vrl za+N1m$67KCc2;C~)nU_0{pFfpQI=h7pV64{e+?Sd4@+-y(Z^ms`3|_rxf+a!4xaxs zP)bkGJNXVMTs9{@K*y=0+0AEMfp=~x62(He;ixNpR%);;Juq_Q1`Kz|7jqg0tQ}7} z=3XVM=F)E)QU&OwYaq(8pqoo~dQ&h247~|p(T1>Q^ouEYHS(?8>l0Q z^gLCTl9xY{-GG?v2@PGvZjOp~Tg{JX6zMN^-79g;(eG*TkSH9M}C=Y2O^% zOBa4s<#(&Wwm_jMsi0F_Iv~g9&7DDD(}%UXYoOHytkFnWK2egzd_U%^>M^&_UlQH#~G< z5Nfs+<{vQ37c@@0L)E7Dl#d-cb2T2>0=B1Up`zQp1@(>ca5kHJC%<5o3UmWa`{BQf zxZ>_}yPF>FdG*8pP}BcUHUIzp-~Zowfd8*1zv!E)JVPKhL6plBNd;|_=NpVW_h-MHiy^g z5T{wO4BsZ%3xlV#a?SfK!aY!PqF@UfnC)`RQ4CTaIX=CW>PJpQcr($9SGWo6IU<|) zF!hi_)RacXuRYV1cX5p|g-VKy8*7p^p)z~_3*&n`M{t&p5Bvw2Ko{(tUBT)`-}CM_ zs_4GSQEbP)E93pAC)>?`{j;Vk)U5^n0dArYPmbGDb}j1ID$pxcc{x9^aK9jZlnOW= z`4P-9V!s>3Tzc*O0ytvrj#IWGqM;#OgRFhA1TtI<2Y%o;(!njM>bZot*PC2fF#IfB z?(l^pU!*QP5jYG_&23g5hwd%YWlqSh`B?QQl&cE$hu%(eDxiZ`3}n4j0$=`vd~37h zr(RN6Sqbbu28quNfxUzOtUXW`KH4418Xd*VVP-y1-Ya*^AJy1$^kc3e+o*y{tyVF! z6!(EL7N7#}FY>IDUGTsBv!)h!$oVpoe(W{MKuorQ*=EZ7YH((@>FC(%?Q^K@(SmvZ ztZDR1*>`Amu=Src(eu{oQ5|w6vm8e8K{c?Nm|~^)EHR=4VdX)#Qteve`Ibze%T%1s z58aKgxZJFNOPZZfP`0qG+24QKYl+DA2PmXq@5<}RAEK*5`)sY5y8|Tbfb0>@Czw|D z)hyJ#TG%;@i4=i+7{O2dnIt`zAZWP*`lUzu<|6PAx;%F#RWE>(I>fKs?~bpQhk7w_0cD zSu^jIIPQ@3&0{}AP71`7wo6|~YW1}lU2zYl?|m8v{AbzWzGa(C*FRWG_Y^DLo?oIg zz1zcPROufrbKQ&Up$EF|N!AaRi3S+ca0P!oY)qIn)aPmxG|wpGq3zKxPYF(iHY?hB z6i|7G_LDR~m7YTIE_E)%$z!km`LiM!FQqs7w$kq`6TiV&^S8Exkd7d-Dzid~nR20P z4=+`uV>P0Ep&0~912V5jT4bq-b6-!Bo{qu4dXyGdD|%mM_zJ%>VI*i!uE143e$QvY z#ecJi67C z14W)J5)a}zOAWmWOrD1t)1;}8A@aCCmP8IEnhw9Bij;HXG#oqqwi#>GG^>J(f=1cC z8?z>(`e`l!9571oFo>L6Oe7x>gp(qvq56412)z%U0VT%YL8zA8ABG6Qq59QiylFy% z6=e}`Bsb2zZDY;c8tA89Lw1cZqz|xF7oQd|#qJOggOiG;az5~t7fnA~P0OeHf~P-= z;6`r)J!%hdnl~C`&ugiq4K?za*s_?Z#Qsv-VHU$-v+@=kd)wN400a^2aJWUOHKS-+T(l9uc$9 z5vWlFe*}?!Ci};S!)fT18TRN)tiaB%o!;toKl@KGmSYwKh$gJG=vLR%ly@{YL%JD+ zsUjz9Lkm<1j$&dqqzF8$t7}jgI9W5Tu%QHhW2zLBVZ`wQ&*9RW#am$9_F!+Vf~*^u zhB2XBM24E*Ch$fqmLtoZi=3Hc__0C1{C?AiN4J=NuNqh8p0abS2ADgAoO}Bq_$|?-5$qvr zEPzs#%!|{qq)7#Z9%GaQ(w$q08T88(#`0VVRLc-|G!_3ou=JD6EFNSupTZYY9F zd$`ZoprhdoA2x_Go|9C8_nr_v{ zz1|7T?n(3=+wjB8cztnBexEVAP7+96D(gvQ#sDf z_UeA3DF#+y@oY&#foCoj>F%a%Y|skbZKLZG`)E;_Ge_>sic*Q)k%QjzQno%?zq!!a zD6_2KhF&@(bt@hIvZ|eA1P_A_<_^HTz=#sCh&W!iXHr!#d{DUa!5M|~+0r20v9?Em zZ8f*(+H6Bw{3N$=r!XcOvFBXkm|C*(IVP5}G>G~s1mQ;L0JdTu#gUP3{}ZDz>jDeMocPrAbFxSwBl2$ zeF^YoHf5JWK0=ds#98>2x5r^hgc%d~XQ5=uhJK^^Mr1oxjsPpi!TdW&7yfaAmX6W!RWA_(|eLe#$Us@3a zl>Myaq*tl-n{wucA<(xFhDyG7+(XQ0&$Wm^4|IvJ+JO=~QU`D;Nc(5aJ^mp2`BX>B zNsM{%v}j^j?C8&U<`RZCeJY88QqEDW;;d9tMx-mioa#}5(H2t7r?P_id1D64;%d4x zcE!(MICK`I5yjj(1rGVjV+znhj_36%Z6$wAN7ab+k-5jd>vK^x>Ef%9aOUgjYPG0e z`TCzV;fxBhtdBnmb4pa3U(`EbyhB4Nz=4F7Hbecr=~9id<_Y5c zEvLmtg=H4+R#>p zlHl*ZR53=g&MDH4)0c)URfTzA_y<#xC$`ojuTVuqxmo+1?4GfLJa5?p|KKm=xC!5`xu@& zp-edh^?Sfey>9no=N|9Q)YcXP8+uT}Y2MxsJkWrH2)7uDf|OOY8T@u+<$UjQbXghH zlb6n$XCrI9fb@vB68C^V+o0Hx0bT%Olyxo;`Jv_^W}k!lb5&`$T+bte2RBr%y*0(g z3fRiu?e2r2zQ`sh*Atqs!o*DBG%*!l)3hdadr`<`cUUN-sI$tSYo0iI7p`2TJbBF_nDJHx01hFF;YL zblD0u7f?X)KU5jh?=PFLllD2Q@*@DpR*HtRD*>75F`(?sy}H$O?8KslOQ#torlf6%8X%yV$4K6@YNI#Szdux0}tyP#X9C?k|H`8nMukWor_tT z;3nl9=D+)v=TT+EZjwf0`Z(6KH62`lE1~+A77TQR`qaPXWAxcf@lkLY_xz_;pZq{ziJ12LL{iswjoF(xEN~QB*?LBW`mNrf- zN2!!A73Vq-7&M*WXKy_$P`xVv;MX*GFU8)YPGJVJt6xPc-Ru86>-4|aoBr<~|96ff zPCLZ5Z5q13k$@g(1|=YCg`~s@mXUxi8I{^qKa%i&q4mrJme=oo_X~w;`5pztK;{NaM&xmc_gPYz zoy&GVw=qCC?26>El-B*qovM7AKB@cY1?)FLU<+ElvMcGg3^uQ4Q0iD$&jJGGb&nqy zc}Wx8;!Gtf&H9D;bfvKY{8>q{z?m^Y#Y`fN<$&nDIX@Fs)w0HYs1nse|4!*F+)$l1 z$u${rB^vBpn#r6xo^1}A@S@R9AOr64v*+MavW>x~=dfuCwKk8P!vou~m& zEdAhwu;6}#b8prCyN+pCWvI__`dIXrb)N&u_RFY>6NE!Dov6TI4qnsgxv%d?j4e-l-|bQ zF#ani>B`{LHkpMp*^jMP_SsV_&R@Z{1cLm!7Y*}ZHbWcxjSScJbLsJMlu&=5G2v0n zjP2?LG5SMR$QV1ehQ5n52CY|a;2ct#m&nG=h<@V{)io!$Gnspg@RR8m&Lsoa#WR~4 zdT^HD#xCItaJQjAOAVz}Lp|zBV--6B)^8|Zs?EX=za(E)eq_;BA`wXS4!uojDZ8Tq zoa8xbM5sl*%0LTm*18TF^E7rEMk&9$?fB*)*igx+DoPXm&T1nqi({$9$YYOrsp`JH zQk^;ZDk&#qM$|u47*N+)_P{F6@njno-6h#xd*^O2TdQBJ}dD%Xh<32gIOE`JRU9{{}&8;Hzx#-&d*@eh$;JMpe!N57+|z(QyGw~rkLL6$O<#LE8#Wt}oRtb6 zKz7znDx#474A;0AbBj{MRRkBZkPf#t%H*L4vv%82V(EHfvJxd7h&84sa*fFCwW)_t zyqjgF+a5^Z0Lfb!94I*%Nka8m0qrD!BIc#J5Zx==AZZ7a|06ZsO0hV5Arn!{!jOsa z)4!Q2g*EctLYa8Vgd!+-FU^)vL6gVw4j-pNi}aKnYhPHWQUGy5IwX2`Aa#jQd3= zARNTR7LJ)_(Xi4W%8+#@wyj4#l%*NqW%AD&K(_@sUKz)z%0dl_$}sxl&nOY-=`(Hy z&!^NH{W#NdHt8eBap&RDAqR|hTD~fq)lpfMth(^akdATVAl08XC;iQk&o&P63zTG^ zCL4FXGtIJMFFZ#8fp9%9qZtnFc;U`j!#>t`-$Y{LD6Zx z$odn-= zejauqJHI7&R3%PdC{{4H`i=sFV=H9)YYsK51AO?x)io9tCbeXhzaqkqeYC#63=La2 z!%u_4oO}B^6sOoVchHg9Q?>N1gcI<7SF`sLgxIG{UpPnn0MO~f+hi{uOelH7z!5taXboY1VdHsl0yY6XonqrXyyTxX ze4lpdUaaiMRCT{$?H~_56d?ur(WJvWI1PhJj3Vb-P}bk1@Lf&WC7saUk$yV;hT*9$ ziZZ(7vDrE1nTIE&be@uufz-MAG9DUWY>uK7dYorlKoy@Q%?&5{fj+zxw6@=16qE{Z z@Z4N@nwu*{`?FRwEY@f60LwVH!hD$RmSmJ2a?jtS>NUMxL9f-{JrSYl$?CxCjkeGJ zL|B|9ept*9Zffa-J}EZl_=gsqril6Cd<%Vps zm#4bSD7kuM^FAaN<9RC@n$j-8@3uwuq#i`c45`J9M<-N`8Yg z9%W8^S1=!G=hW~ufP3UH<)^%DOU0ev+e4Z`v19b7mjJv{ewZ^u^x}MkW!rznBJmfd z1%A{Lii{GSjN z89$$!h=Nzz)WE+mq&XtuT&0ALm+vaWhvedz&Yyd0>d6L15h&%pV=p!);$8>BqopAn zmz+;8*lpyna~O_G9Gdh_B0Y|7U30&VdExG@y%uFl1Jl?7N*e^zR>R(}S)S_PkTS!l-!M=xHpVVEF?`IY< z{Ab!}g^bruMiIMnja&kOS@fArfq2tL`WOj$e*=Qu4Q~htB<*p@UbBeqIoq!I$RvAE z#fGXGkD39{2i?7Gq(F__Xvu~j;m-vEwjrI|C_JhF#avkq_vP$HzR~&SIzAqI<-luCKftlT$} zhj7;r9xIM2HwnuAMtu(BXp<-LTrK~o0>@7U=lYH7h>Dk}n8iO-6(H;c{>++8>NW48 zOqQ6P?X|SNbLo273~R5&d^SoRNG&1uyq+J-ZhYGMRMij_dG1wvZ~-|M7zkCqO4?U4 zQ(?oz>y7+5Jlz1BuzB3#1mN>}1=&i`NBUL`-hmbNFp9FZ!Mz|la`7Y4_BgN#{?^!M zU)27#m$Reny+hz++5&PE0WiXU6MdkKy~C2=_y!Ib^<1E7R0@{PE#RZYJlx(RIm0=M zfmH^0zD-~JG*g{=tQ?`^7+Q=|eECtjikp0j@;9PeJ7hRGD?lEZR8k@lmxHt(aHF>2 zJv-FWy*&FCL|yTQK;-b#J3oj9&)V_(rs-^MmWTkBk<#A;e#) zEOM=nAolr%PQZ7)pxXp2Ct0EP_-e0%Z#Y$Ir`1Nkb~nx(g&@R z3G{%gbvis4CrebEQB)OIEMWFJ#cxU#r47M(vP$(uE6(=MFn2KdgXHr?T6sj9Z`> z$@)B{a8@Z`VEvR^~a`80AXM z?0Y{VWgLvK{Jwc62Kus(E8Yu#S3w;4By@VZM6Vcs{w9Aq)4-sYWHss+o^Q-$^#N{5|#r7;! zNwN?1JwVTa{dcF%1!`qO%|MmD_t~rq{Z-zLw1`m=b^InALAv-%Bb$B$(vj)>O{u27 zC%R8*48QC-e~f;@B7`HpM6ER!fzn=iF=j5Qp)46OP?c2i@Ab%YclKMwne8cfOaAz9 zb=A1DG>+||jiCb1^K75TClHuJ|VH0J;2jSoO0V8nY zvTVtUrAD-AM{^tVf;3H)8v@n=LL1gZYb!4ZC`%w`_kLgqa{cd zId+7j3hvB*a@NIE@kzVv^Sqngf7EEZWlHW&jsz+n3`Bh-iEW^Vw;^K((@+o?AoF)T z|2`Lzy$gM@kaitMfrBxl@eiCuR&XZSGd!jE%BeJ;RiCg8a5ZlS12s@Sv0$eJ((})q)g_^#*gdmdKx=R=-1&^H$g`(P13_1jLj8 zFv9x>F66X$B}#JdnZ)lH8xwtG*QRgQcWJMeMGh_avhOq;BKltn40{$hq+J)suSjq? z_|)73W?HjEJ#V6QnzLt%@P!Lr8y^u1TYlLwGw|eACrbJ4L*OS)nZ(|;^2P%bPLu5R zxHq5YDc?~)(;7o4H~v}U_1p`r*aX)STnt7}9;YRR$6(&Yv-uu?pklmMrLq-H=RbNg z%?WHvMLkV2(s+0m{YoR~+Y=F&d;l%{pN|57T>(>}&sVL7M813e>wy{YZ2aHEizABx+n#Srl;M=alK56K>br5lEsc3|7bz@*0F<65k) z1G7PY3V)OFFKup4bNMS()YUs;AE$1ELBlH*UyF-an2*NRR$PIEjUj;~jhfnYs|2h? zJ0g}x3}PmuD{~%^l_zfxsQwj|i>4K?f=H|d#KJ={J zn?(oY5fhhxVf0)Q7!#qU`R(A!2P!W=E4V(ZhuPb<$8;}3k|R0u6wK2N)Vn?m{*vWUc) zezbsnfcjQxU7|GYcTj(`p!4oadci9H0HMC<^?-wCXjrHucrR2%7rH7p`ykKpGo!?J z(`2`PIFXB508WQK=bvbJJ=(?mASxT?PmE>#t&j3aY}UJPGD`!Cq>KPfE_)r;KuvD84sm*H< zKLa;A-=7AOnM>Hs0k=Fqllbs>j%=(@_fPJ0d5;C~Hcf&mtET0kSeXHXb|shE4P`8k z^cm#`sfs^Q+z5TFZIDl=#}&wRKFN_A%gK;>>!ixU)y1!djHv?R)ahs6t)dd9%E_?+ z^GY+z5jwY|9GMk4+BTh4(Zc1X*EVlj1@&4kQ|o3s1$Fw77mty z!7o{#J;BVM2gw!ST)npsf_oaHP!{5nR2t%-I*wnd>W!fUQ`xfwAQeCRfAIF^VNIUf zyRfZot+j3xt+WWl%49{LDu^;9bwps(s3=&R^$`4hb3FJnu8Cd#!uj_wc;0mj)#` za83as_^vR-w`l?hQa2$7^OKrM-E@-uA1E4TBXZetv$Jx6Gn~g| z$;e2Fx~J?qF!)Q3a!o!E&`l81JX!sc%kJaQ>2>e#QH=l+X(Lt6;=qNLgOm>V)m0&P zPz$65>TRVFm7VsKrLgTvx)Tdh+3M$gCL8IhZptFiH$6j*$)iDIZb&W$QUX%}I3#0+ zsgz;EQ=YFTo{+eucJz6PwqwtnMQu0K>(xJwusynT0AN926}rg<1O!zVCcFyBuKE)q ztkUb_2JbO98!_>4C$b!~#x+4cA8pqN_Oy}g+o)x~ma%49)0A2y;Xr*=;Byb=7?jQm zI%YkWWC8S~Dn+2+gm~0BwUw*_1`*MK%!($EmepcW2T`~BV8>judmS9! z;xp91;8M?+TLV}`GAgeQ`h*}q;bF`61|v0e#?Pj3#25At-==!y5tmjZ5-12WD@_*`K*Tx=Y-x|jf zYS2}dazQ9Z60`0yUuSt#$4d-?PfA~ucj`bhWtiY^I4(@e^wWb*juo_svc98MQ|XtK zfEPZCctqTZ4o808^_F~U9z21s%IU%(ssCc`fMBS#>v9c!^zg}WN@oba=4CXM=k&gr z@{PdxUX*z+#jplz<*^`qU*bRH|ev z9~}Ug_LoO{G%XO`uGR-U6yKKbhVd4_cFn*k6O9#?Zf8)HyXge!c4$-?GOKJu%#Svw z8_1GZW9Zz2z8J;JW&d7F+;p4ZX9}_Sq((C1*KDy3;d82VUrW*s)W#zNg_Mxkw3rBA zU~wOsgE4V|)}O}o+p*ABHHBYQ&+s}9yPj){sn?5fc}jklg^hpe?xM_{wWh`VzDm{S z{!oZ8b9kr)VISbJ(<=t^I$3j5*qlHMpyabZZg~Fm0`lUx0{3ylDeBLVr=_5;>gx|; zx_@84$R6?Mbnf;-f~VVPOwugwm>4c1vXQbgA`i^#<%y2hILY7RfiQfD??G4WGzO!= zGxL1v&(?Uh9QJ)LR~nA*aJAk>m9XLTejMLw4xaP)@vf&$aK{n^6dpHDo66WJa>`1)|wMzOQi9wV|_qW|Y&5wCkt z4KGT+{n77%OU!c{^f95r) zI24J+9W$fRNAHj0>NS^{%Jj+tNDL(T9_naD)rM`9ycM`()erV7|eCQm$LeIhEVN_8QH-#mQRv*D>jEZ|-tQl#&G$c4k-Y3PMquY@T zvCL4;QVQM37_PUF?-#gKFAXP}BVXA>!NK5N0b%xJ4okzZmZ9>6-kSGDbFDF)&IwTDd+uv+Y|mzA8+JPMi1lV#CA%o?<^_G zkVpV}LxsKoj_jQ&+8y%v7Di^3%}Kdrm{cYfSWO5O)yCz=>QtW=pMf$Va>FL_5bILluRf*C)S zQe%lLk~s$QWLSKr!4*4@*H`ey|E4H{qSHiw{qD}pZ=L$yfvw%QvI6tLW99|guB9W; z&4^uMv-EjTO1kuQAdiF_FO?&zz8U5-%{8SR#NA|#!HC1(W71ZRecS-c;Nk~E*iRZF$Ko(x%D_JyU8 z2f<3=1br+Pms@Xjf!&p4k#mJDnHQC3W1xyto0g$h@B5gcTNB5_&Cf|E>Sd?gl^q zTocg^ol{TOFrdLy2W6&U9xtWZaK$3#$b?;IhxV;aAUE$4t{z*$uGj7h`Ib}N3x^Ey z6lx{FvU|AkqTqB(yiQo8Zd3T$?@aXZQ3>R+BWny5D&b`dyVff1S73+CqZfTNs13I7 zdsdov{M`^8?=$n7CwUCzkc#sReKC!tdS#(85t6gg|@-KOLEX$3Omy4-$z zQ8{`P4F`C1zGI5k-_+Q3gZ=uHY{>c+z8)sue*E3FyAwAHC;VK?=n8uyG&G7r{}dVw zYK%<3EWZkl0)`Jo^ue)?pESnjvP=9hzf@5=Z(^4Y_Ge^dA$K7X>eESzaX?*M7@|Rs zSH*$F;H5i7Ib;n#s^L#+FuL&!b&|f6K&hs$#SF31gS{#zf*p^!*^@+n!6> z1N6trtDK>-MHKsQK@NqWN70#Ji5g~JmDC%ZMpZtP;68)}ky7ceD>OH_)B1Jqv39jn6TeB^~ zRl<%j8zht-If{H1N^q7I=eGyy=B8;xrg0mW(ntE{gu^WhRmj#2HhEI0HwL~=4-=l{ zi8_PzS&{FW1iz#{9)8W!NridgDo*B|9g=1i$ZO)B_$6EW=uCV+phIhrDaurF$ryQy zmrCYS3tSw!N18d)QlhWWcGWS;b|kGFZt+xG)lr?sak)o0o8GLkhX1t3~}o2y2EbtaJMki$FB z@u+hzPi#uC44H*Z`HLd&B3Ylc?u101+yO03Ae`*$d4{J$WwAW;s8h`+o$8<$SSR;0 zRK?gkBpuy|&}U@GxR70*8{u%Ye*cgqidXe(@SbHpm-$v*=}!+^i=|;kh>EEfD! z0&-X2t`NC(?Cx^gg=|^MPcb3s$gq-3*i;Otiy;p~PHuF};{<+Kn<(@VgF7`om3xp; z*|1f`uCBI^Q!8Bdfh{||*Qwe~N_?Ai^uk#-e$7`o@}9C_|xcl@@r(^H;naYT4yi^xDC~VkP!I!cb>Sc{Ag1dWzbrDf0 zsWK%OX!*ZgrEeRZZ`oJXOGU9YY8h`JvpV=EI3+(&Rwx>V&`)GT5aWK9&yS`e(_fTe zl&w!~aFeNIRaE7kdIh?rWW`JA?XFx293nn1R8+uC{Vh;=#b-8VPN7=y(y`|?Pq6V) z;tn289O_Jise+ec2|4Hk#Z(*hWm~5TSJGp64 zj~ou!j3UeLKW;d^!v)IDp{mFWJq2d{;idJ5MwX-{XMZ|DxpI@6iyPsRKt3H1BDbMvCqu;?<;bUkT<$ z6|Ej$zhApT@l};_=*7PW;ftnKlD1QR7^G5#$P0aiF=k9K`|l5_fG?@wXJm8eZCf49 z5UP(jl>E?Ucc=R}xAEhKmo7!X?A=s;|6=jage`LT1>ebisW}LL9_m#6}d=)IOC_4OFrN0vWH?m`ehI zLmPFA;+u%*Od%e`Mz+(Cz3h;MKT}p4P>?Q?_ z3`RwH2(9-v(*G)S<2hLsk_X7&KYK=L)%vc!X9+i@`mVYw?zs8neW)afN1@dcLOaQQGnbt0zD`5h}+Kfeaj}5RohosD9%uZ!G@*8>m-+`jTKZ6V`qR zhW|aOi{UfC5kj<$+N+*Kmx7E_ z1tAxtULSOKp7;FWGEgf18~Vh~{{zDL|L!%>L-NxffK-iWk~Q|mtW@@E`W28>(w#ZL zF3}tkScPDA<2X~;?}{W#p(@Js8dJN7Y8J~~7MKs^eCI=vr6be;9D%#yb8ll*j%;V%)jfMj=^ft*1=Wdd_FH3c=yUcGfP(jw8FS zlPa-62S?uZG~v7pNYr7+ut7MnqB<#896g^;cX}KVK_(pdB7V5`uQ7XdNr$PT*Q=NR zfe+elV%cebgcVaAw&wj5>9dM=r;FQp_ptA>E~YrUwxYBPbrkshwV~7}XOrDysyv(I z;ezrs%o>10Qi<_8CM!c{yID)=Ho^l3m2a3-*+2fefCkNpA7?)9&~C+y@(4V_7?csr zsk1ea=_1x$_Y8e5G&Wua6$J7eo2F>z;k&0s+!F5uf@N(I;kh^j~vtF z2>X0^zoa}{QEDpALp|sSuF{t!T>W>mlbZbb;2koid7wg@KDdnQK|Xx54oh!dN_22f zA31hliK}S5C<7_peH#W2tU%^{OfOp_MPCBMC4g%6G9&1};@}VUZbHAR&sXNZUH2ik zfy&0L(|O`A>9~0_tUEIC@E?dBzlnAPhW=;|E~(rvYc_2%JBFe^!uw@CBdlCw4r2GX z`v=(+MmXU`JC^Mb{nyF;>y-uS)HQb2?AcXAYhEX!kKU^OM3Wl3tgz7uNB5_ky3Kn5 zNDxet8ahnx0KwAq0r|w<=oSyBj~ncUP!8ng6=|9r-^a?_F71@4GAjAEA5n%Olb35_ zRv4zWg|E>-Tl0RKa{N<7gR1LPN9%3Ug^B3vua-+tS|ChY5H$GKAK4jF$1OEnjy9fp zLKXqGS@~onqH5YZDH%GX72nOU7M(CUl7otQfPmkS(2U7O{AQ$}i8|ui#ESIAP9u%3 z>XuoV-%Ij)k1O<+dEvs!h#k&ebzcOKWH zABa$VJrE{wvRuoeBidnlv$5$uPR@?y;STiaZ>Ea#>;%?#HoCRhv(CPoAw;Lo6*|9L zTB;sB+RNm%boC*-fnl3Cu^<+}$Ui#1-ei5swn7OxkqPVk4@Y1xaixr<&!H~5AQLiZ z+G)6#MJ^1SJ-HwI-Ya!3r4HE$4wZ{xYU+CNMWY{VAgw`fO0i0LT_!q^HWERc8Xfh+ zj5Mq=#5EG7i9C6baNp7wV%W_G!m+!nMB8!ic;)1oCO=kaw(`w~SWGG_lVM4~)o-lk z(_5Pj&Zd|&33)uS+gVVSEdwI-RdB#$o^-dVsVINR^2@Zxoa*FOmOi0Kf~6>X(OQlH`*0k3C7|zUD!h^ zza?thm?rRE^pA z@04>LmMxRb_(M=>{_!Rx%0ig`tdo{}^EOa<3xBW=bsoZLJqOi4o9&jJr{pkgKE0SM z_3RzNRTt9J;o)b9u)6^-J;U?vW7{27PAlF~2J$?I!bz%cHkbtd9maR4X0vHAOR6K=Td^x*K38#wH+R67jH&C-Pnz9* zPmCLnWDJ>Z#hqyF?j zF52`7<@C@_L8y;7>HXy&9H6~+lD@TbIvZC#;VbmDz+7q7XN|h47v15m*x}4aChTO8 zYxzC&3Tt{(>c#{e^jQ|+=TF?-6?2c^ ztpDkgZ@=59*Ww_JXH$2KM!WN;^=}#LoSmy1mG>)QkV*av6Pb_|j*SZ}ju5r3{fQGS zdWk7!=;!VOm-i=2bcXV{-hVYX+g9c{|1fdLwYGuu9hmARJug|%vIja1FXS3BH%t1a z5Axt`TKg*btT>*j8`Es5_MXVx?Nv7qee>k0WIJSo&8F|IT8yiltLm-6FXddgIQ%)N zvCPW0Lh}jtgvKAs(U13rlnl(}+c?lqhs(xf)E7wY7e&)sPrk}P55HUG?mm^K$k}2| zIg>V%1UsOi?jObir>Ab{VD2U%8_*;Hf;9eV91!93|D*`G7y3{x-`%ZA->Yp@2 zGx1KFDj&Xb;cbkHn3BLglRT+3p4RL_Z*z2Ki>B4yJ&K)xlYTA>iL|w%)z2HK555cv z`Wf-F?CkSeYBri?U8tfp#U9hPyJM5_R)+BpcAsdRW^Hp`P(A508P#R`nVj~cdmDgU z^Z5hf)4m#q-D4hw*#8bK_`vchx0YAPd|mLlh~JC2oc);gf+Ef`U3;$LPRlWYxf_5K z!3j@yeQ_aUt?{o6FC?tF=wwslz)IaR5e#6mE2e96Plr>4PsyM1#|PsBN_ClvCci^t z?dYP@d5%@^)DN~h^O^dOHHC1PwWs_P? z+u#zPTAdJfo~3lt>ymm^WL(Q^)h5a`uMMM;82opXX~GZNP4AMBUbSUz*}-q`y^A|G z=bh>8{;Hz#j%U}n(VMxa?lvYt$n(>$@=P3smIq~`N72Qw?t$I2GXim|69&}S8N{=e z3xW)q{bG{#_fc~e`&#Ab*zxE74}00^qjpub2z}?5iKwuQH1Uc& z=r9{uf^o5As;qu_LA;G_Nge4sJquY2?s@s~1^QX``d;KyPnH`QGQi zUhlh%A1^1q{J5d!@!bI86r>ky3>BwiDoz$%Z>gv8mp-K675^-uEe{pIsv%IK-2y@5 z4-3*o+tOhZ^TRLAG|C+i6-Qav5M>ebHG0&yp&%G}xgwe{aQQ{aio3E-miVfCVbwP{ z*sce)ej9X>XBGT6Qmua%)rm;A+F@HYRJNR>Ilx;f4w#l9^Z8|wKEo3&7RpS8i{Rzl zD|Jm~TXPV8Dbd@gg^@o#Y}owjealjc*D^4aV{ZCHq&Qg`oSYDbnY3Nr|BmxO{NP55 zn0}(Yy@~FX+L3fje^_2|c=<*JlQ7zdsyd_E(dw{Xb0^+xso-v$QBsxzL_>r0Q!Ve3 z87(a^^KVhyV~VD!FCc0vVkygO);2*T^BVn=-sk{LEwASsIC=ZsOB`z!VhY*J-?CKN zRCc*Yp9VO1zN=Y`v5=c_v;I+HnBQ@ofTWM&MxGM*osiU^+%{4iR3-MaTo&XAobITT`$q;R(y3|xutzENi{%zLA&%vH=5icJ2>VC zBkUn*MVseA0XB7#@Wp7vZ9IRb*JWbCY>hI!D=PKvAAdLQp1l{tofwcMe~4=q(sVJ_KL%(-jzh+**yF=Y>AyK=RxleFYsfsPZ-qUA8ZA`gg$oBaj zU)MymtdtoTsPpA$kK+lJ(QbLo(!pgRn(VF2 z1NXO;G35hKG$yF>LlH*(3o7Kbp?D)=$b3je_2NjWBSB7&^257F&Qx6oyO0{P$G~WW1*10iFu+aU0HTh{l=6Ia z@dTcId1ufvK`wJ)?ZoPI@+a_H-i#n4D@wd`!p}_&s@LswlijX&q1_9we^KP_==0|P znfqPJF`ZuTO8-rXGrxr2%<$T(By&mRM!Al3i`x#!W!;!RGSm=l?y>qft(58i4Y&Fr z>HL9(L{WgJL3R($w;Av7uIZxi!(e23o-bQ_%73@!p{b_fY0)M1ur-4l3WEY=cC<|y z*sD)c)&(;M^Cp$PrPBj9Wa$gtmqZU)=sU+z>ABAc+i^ac2CvL8n^q!1gUIr%j7q;B3fuFuI~zN0=%#%3OXyfP>+lU?v!@G`=wTYC z+6oxTz_^ba&XmQdMh$hd_~(peCKVdU(6`8n-w?eO5t_e1hTbFdfqN@jjZaVkPowtQ zfTtz@!P695SrNJ!rm9~2BwY@XMvu^`mr)qd22vJS1~N24U32(~@RIUqJ;&R%YaJl} zw_Vx)MaBBR>1_CaRIdMGpqUa6$)Pi;j_GTzEf?>2?~VddW)9A!LbPXE?FE4NSs8KGhR)knYovQJ4= zY%a-w9qHx_rK2wZec?ytn}MvB>6go^2(?qReP0S257J*BG_Y`i#-K;U|DXume@j{4L6J<5YZ!itP&6u348fb18)pgw6WSx0K%zKss&hTv{!WS9v_6vdIAAvKa#8N0%0R)}93 zKZc&JMUNQ-;WrJFg`!KT+_ffp=sICzycojj8gQsy0Q|S!BB;zJYGnstGCl*)7otv1 zl2o4IVP27MAcPgN2|=8#GBt1()WNE>9Oemw(Pc3)P1g2^ysu2IK+qUybwRk*P2 zjK3Ij8!n`Z)1QNJl~L)jABj7-P2md}>_ZOQ#IAAN0k8 z6@ef)%0^**HU9LSFao=5e^MURe!)5%E*0E_SabC;2n4rX6JKBueE{Jyo+22@BF?$7 z57oN%aRafRPEu^~Axb7nr1@t-YKzOkZykgDRJ>ZIgk5T7{CChWDOX1@GdD7qFz0+# zPL*`|zTVOHS%%ggY0bJdW2`1L=*Xgf?}{3@~NB z{WCtr_%KI=n>59@nOh|;7i$%y2P&Upl5bpHFAjd_i4$ts`!d;2eWb=02Ws{$8-+Tv zZw-JIgbPE`gN&3VdYz*^2Z2drAC50be*;E{nWLzkO6^dNiHas7Tl-B_wo6CfS_>y@ zSXGiV?uEaV^-B?^!79%;f@^`b_y#4=heXoMpQmtY0Naw!(r2=b6<^dvG1dJe6)D&> zV&G?()?frS-N}PPmjn4Y+ku)bQSwY3w4Y|5V4{ksNW!w-SM{uV=yT{j?8ZvGjPwi& zBK&<2zGbbD=FeF!+tx5~eW=>_g6o~gwAnnJ4185^hZYpB6!wumitht-k-q(WHk^|m~6_^$DD?MLYZCvKal z*%)74OH2Nq!VHx&J-l;4Y!B0c`GdOBT?zu@yF53iFzuhcd1 z5*{!e(^a>bt89xl>sQzi)!qD4e1AmLGBDk%KQmvT+oc{px-(rI#1G$W+Lk@OXnYZR z9y6vlTV{8i{F%R+s^mPA&5WXg(kNUkd1s#ymK7|{@snXitPVP4Xv?)oxqtp}=Cce; z^=F=Yn&g{eEsdiPoI=4Ao<5TYH7T`q^~#n36W&%=2!XBTL&c`}d%KcHI|42fHE*3( zY-b3a%zQvVivY90Me8-tw~GYtH133Bwi@bybd5@asV3|!@rLNBVr}54nj|24qbEfy zpS5|8Pbpn$r{#hhwM`MVsg5z^9~5oF(1_1`aBNGm)VS64&mbZ#=`+-Ld7Fe5h$kUF_mKB2b067=6vL?Z21*%m->Ra^rQWh ze_R@FWSsD?q{l5M_+R8gU+Jb;1utioU(-rct`anr-zf6*~qjuL%6r z;*}i}&7~EavSh)|y^t8CnQoF_r3zM!B}lXD`I+TY-6`z$#91d?xqnvsTfiXR?k;Z7 ziA$(q&}COjAja>MtZv2$Mw0L zy|Xb6Kg&!S?+}c}YXim_>GzvYwvtT+pI1`_rcIS~w|(CHaR!nqRRFwIVkK%rm{Ao{ z;N0j)(|)S4z_CcNXDx17?CFlMYnXN_M^8A+PB>u`j=Y_^UwC3?-sgV4xbRCQRy*)R z4vr~S)J215RjiqzOey}w+TCgZxz$Eq>lRJbsokLUSYJP2qj#IdTsVI{`B#1dC%vr1 z&EB-WH=^|-EtOMGOPa#f>qfBJvaM9-F7jb?y+;*UMO`xtg@ylnQ_5zLMEkhmdpoLJ zT=Qa4Yg4}^1fADY?5W{z6R)*hp7OLzO;I=t6)(#@oN`qo^$X=C>X;FAaw=)g&1Lj> zm6V-Stu2k0H}mwD7ZV_QAv&bsa)ooKvJ7-bmS-pId@GDB;~l(WSkq% zbnMarWq-}=_02wMsDvn5O?c`EArc(Zr)RN7y*!UhCIausgU+tq9`9cUa4a z9gMYKsDZ^U?k;vyiH^I^N}9IYE}A%DR=ad4v(OQchKpbxK1Y1#VJq z1Tp3w3-WV28KppBBk*F74-QxoA1f@LZ6EhVb^8=nyGjBvBYSU#$ug=;kR^kF@>cO* zQbI|zmo(64Dq#Pz+vb^p6?tapzBjy@r0)hDGcPK6jS~N93LI50>}oJu7^Gck{5$V; zx&1VeEU-h~!OGMD5kv=6t74k4rkes+V2kVjc`wAeh$8Fz)%%3EF$U8yMr`pf{EGP1 zh|sQ+?IVoeR~z?TscjinTf08tQGad36kS*z<$5OYbJ?$4rz2|FjP0WgZzEdZKPW{p zRDXuoZrQb7B#Jyfz>lp5P-WC_X``3BR`H?_(W8cBq?4}(k*7oDm4<%63>i?^0Z+S< zpoq6#i*F;Wz@?|2!mbZW8Tx7T7R*K_g?B@{Z<*>oxNI8nMdtO_JwU4u)51?w>=t~H zIGt!VNuelwN^PPhyZonB?wd%WuIUKNR~C2W?v7ypf_`U7|2MQ#aTFLURfpkT1VeO% zn|vgSKF=?Nl@oo5e{Iox>oODDjo_|kyBYLtm84Tvcih8$zyOB37jq>;q(v2!v}t`W z4Gf$HMn|L?Wi`jAb?X-tv(bqePl>f}MN_6B+N&mI%QC{p%P99zgCX=Qv)?UErzn^O z^W{`uuL6R#sj|&UP5ol!g2C6x)p^#P2auNoBGWi-@RXs&)NJu&6k&Lw*Z8Z28P?5=po6v&>P&HqDWvo=M5zt>krDV2m@>L=> zd6Ic6<=PR|E^)kJid|-S2W@vtkiW6`7G!#E`?J)sJ0Ys5=YQQ`TKn)`Vnj4Eb!%gD zRHoWzbJfA_MtjS)oG{%pI-At-U^Q@Oy)F*}Vd@L>_1SHy1_3LwhP7RDUa81JCUXcv zU#%^0+R>F5-IxQBP7DD~L3z$v6&Im@cHjTM2a3Bf)tVefoF-Yz-jqIqoA!7D$&|=C zs~{_)Q=N>H>VtNAz|c2_)=Oo4c62gB-FM`6Rfqcwm1r%6OUdCK$X{h*T|Gd z(c-W`#m5c$BR8}sRv)Uu`SbEPdv}C_YJ8&i2yvYV?7HZdg{9_2*y1egt5Tv^)Ae;S z)@nIf*ZEq3Opf)>#0^3e@#({_ zn?bv`p|)6ewpl;Jk4Kju*^FD+-#=h%xN?v4>={k2FW)|pkPw%GXW4K-ve?H9q{od# zbO{IQzShGBqF6BR`)uFWvDDJzXBc!IDO4{{=R7IHSbuH*df}CX7Ejxsd^J*#MZ81r z*I$z}CzF0VV(G$8G<(tFYCmfe0y7XI*shKua0{swucbdHiMMWN%~Vl1BsJyJMd zz|B@DNa6Q?l94BKGRvO8ttbcUvS1E#5 zz9qXu$qFc)TF=?`C)R{)YkoO(_e84@4@A%(oqY2;0=@GYTW1)VA?pq&@`2GWk?-ez zCik&2Dbp%jTg#x;YQZT3H++pMnA6BMqscFIE#_jP<_&o!yN^yr;ZycScV)x8IoZ|H zq+H3piUHbSm~hm(*-+6%Wq48sraE}bB$jiIjZ8HHA0wt}45cIgqAr_divAO#zYhf| zUE#F7?IN;l$y_}MoZ1Pu;fXO=0TF3BWVNVlin*^PomUu)E^^<@S<@XR<69^E)M&Ki zqD+yJDc)~&q1%m`%tGY{l*eA)f_BW{gy)?Fk8AxqbS{+e3cZHVFf3Zr&t~S zIt1JH^AD4L%6ct4$oFuEsMjN4)v}c{;oGH}in<=SvlPYl!I*Y>QbqJ}-I}}2HL*!a z*+iYxIiQ1kChww#?~KCsxD3A4KkRxebe~2}J3Y=)lQ`$+wEYzo@xJa$*6HJ2XVTOlp7g^E_PU6E`nXoV^c>UMp-rG zTF{4@ct{`P^;@+tDS&xnebG~;Fj z_NLn_qY=yG;aLxRq3(n2ygIztg)AH-=aomW889U&L`+=uoLpjtSeDb5hxDJGo-FxR z@mC0arI>JK0wQV*hDS<^dm3^3l{ztFYYsy^_<$~_(@)jyC`6QVjtc`3xhZ_CN}_$({tnps@6 zJjWGQ^kYQVo$?adX6dHSE7#_WbHLJt+Wc@!R&09u!H&bSUlG!>K?bEg7t`l8Oe(d( zDG%PV0_y|C?miQ{*R%Adx`K-ekE-tw!$ z5SGe<8N!uC83eH|3IbLF3#qXn;M5>d-ES41;_iMLlagZn#ha;BrYiKR$gifDM`vq4 z{3`rV#GqXwC4cxjep0mG0#S`%o*LA)=7Tss2~1R|*Zkjqot zV@c7cWP7~FBK&^9azgc}c`?~MhVW7+NmsPLEyXHCZoK@!v%gdDdDHo8;nZcvyVPNn ziIK; zos@^aR0i$#KRTDgwlCH|a1-TKC;O&r-&HGt8d6wlgI0jM|Ios4meWE~A0g z-&Y)CG9G~r;Y!)-l?0NPjQyn2YQOWc<Fmk`-^Jhmai%q4mWwWg48hSjfUl zxYy7(&*7N2Kmg~4YxR4LBy`H|T=;*VtVX;ca0A8?9@H-|yIx5IbYcZPKC(#Z>gq z%TCe@EBlcb=5$W){}gs2!fUzzCG2#3fd9BbdnsHQQw*I}hi(5a#+``fiao9kSFO_e zWvKDtrDE@>BaqUf5cz}U&r98gZ8-C_VS^Zb#WRYJ@F_t(E>nI&VTw0~jU%3%r+C_( zS2%V$aL#=c&by@KVx}@_de%mZ$a=A!2ECN=ge>Vir5r(2oj`wY40O0Vw3ziSk?pV2 z9=W|*D=*f-tT3b>He#74<^N3PQNT6BoB{^OMR&`@V3C!Lk$@ulB9`qg*mO@j(PZ~A zlTL!{!6Na3i_Wl0=JWj)Rz}Nn;5-W}CheiRdhGMB)8*J6EhtG{ zii#rLAS=iOd1#(8Hob?J-FX{asIu2pKi@B?y1aKs{5>H_==N@tuTSBKvn&{xLBOC3 zBJYvj^i}35vmd#16faQLxobB{kFL;FrL`g@*2cucLYhZW2A74aW1(VWi_?2~l%0vL z^de=DmwK{M#ZF3m;vZxkJYCX(8(#M#0aL&wEW`WpurjN=`{*A0WRlgNF?k$HcZ8w? zqNC=y1n{K+a^oQ|rU2u$^=bn3Dql$*AsSg$BUA~MY};B_HxM15C5`UVKYmL7aYG3wdEXN%kcWCALOFsen0hF)=#e2(vqw| zUpbnd8soE&>li=N%*pl1hWj=bIl~#$9pt1g^#D5cV+gK>tKWD&)qF!ZjbHk3BiV@l zzI^1FcxQ9#{X`-W7yUk!9Si5{>uB7Q@$s1UxFy(0+J*`ujGY^YR;07^9!@VZ|2w!t zOIzF3o$e~kiWca@XiRD4UaPJqWMP1Qzj!g%WYEOz^=w>gke{p0Ys%-G@UL=zS>XE| zQ&xSLvXgyn<NeHMH^m>wuN2`ROz@G3hn`%E^eobfBW_jX#tbQHvX`B*83G5l z`nq9pRE(a=qzD_Hf3B%npc6RizL>FF6P;vTlaN%rmY;!uE*l#vn8WrAUS~uRVr_4 zqE5m^tjN8wMSemTq}wH`=Er7zmi`q&Io!--u=1zq(H{)-m%!Dcf&{+uXi0MF&Th;U;$`ZryD86O=Bl1LPT1jsZSi zRpD-RTSD#WOu7$mKPUGne>PsT`N7ED>Tp6}-tFKfYMN8ODSrEcr#tpr@C>`zH%o_) z;-!^#eI-UQa$W|+K3(u(zeTalv3u0>V9Av~s2 zC9~47-;MFeR~`C3ix``fM{b#Km|3=j#J1*Whq6$U7FP-c;7jsm2}Z(?8L7`xU@~5! z9y2vP z`&|n@GIEcofGU0$T@$p9&RFS^wf5@W=z`5p--ZSGN76dBK1f}XPh9;Id1+Rrd}I~{ z6wPIXY5tz_YFEagGg)7Un^%EP=`eTH3+m5LbMu}=EU#ImlQHtW7E0OjuHTNBNLMX< zv0cU1LObE<)AT!il0Q%p!cva^3Th9KIzxMeF}X48%^7b}WfFxWX{75l*kj7P{5v(Z~6Ro#AZ3UAM>15ok%hi1bXkst!fo zxCjn?=X`#AbpMBYgjY?(a|3%5+SGPUTn+Mw7LjlaT4>aFoT#CWEYLFf$}RfWCYu`Q z1Wb6z`oNW>J3@780u`P7+&NQ2xSpI?R6XnCoPex@^7MeyqG zbi7WSZIj%sT|`?R#^v}$R8F()-|>u>Od4~35$_BKvH`D~^|EF$_@z%bQ^oO)GVNL& z{l~#0Dk>95z3VP9sN4$HtrMgbe`_68KD5M<*!EGcK+GLq+)@dDjJ&9}Jto!uCV82a z&2uVui;k9NuXn|tg;-3MStUwBz`|)@j|2w)gt2^TUIf=eb%P;QyIEMCs4yChXmxS^S38OH@ zwN|WsZ3C@)UF#cQ;1o_{9%})6XibP6vu1=hOz#{P8E$L4P_cZ%=8j${=9*uM1#^ED zcdj_P;z%{ebk2m`WaDR%Kr!HmuwX}C8r5}zWkVBH7-?7EmJ4kvn;;#gW!3Y&AnxWH z|MV#JRRwE>B1Z1lFLZB{TbJB?aphni=gw|0DQh&yeNNPd+Mk-L?&V==zHNVj@cQbO zC`bj@Yh*7l#Bn@>vr(u*#hg}?cPz@eW-+f=lab*Po`DfKLgHn0VHHqQ4Xz!pCDnf+ zn5STLZO2+<8{=I7dwZx4{=$N{OwAmg)bX?ajlQI@^9x`>I8&7)6B&LaKnV zBBUxv6-cZ~5h=!z8Bzyi5+gDt5VGpPB!vhRs31f|L_|PjmXL^m5fLJ@1V~K6AVWw( zAOlHO_v8DW^PTVP?>c8+`;YyHmzR>TvR2l5p8NjYzhP7lix`?_=tv97o_TqwY~3?F zuf#S$cU)^8A2=}n1-OPPREQGF$6Y_#d^Zm**90=8wGAeDwl_464^0c1!!~xI>0~B| zN)xd4gBZHqWBrjS)R&%)3YvI;B1U2N+@GB7>an|>!C3p1_!a=`)0zoOTI`ZT$d_1% zQ^=o`&gem(?I5YmJXO>rHFZ?xNY{K`oVXQcKC%J-x93=D=7h|BfHC~XbWaJbXDovv z`dY9bII&Uf^a}2-%`GofdlD&J7N4cD+}Ycl!IU4(edcARE3a7OVLKX?A+ID|OyNw0 z2}h~ZVn~UX%-}#$iT`sykI_S%+qEw{?caSYwAe+<#y0tl*y|M1k~S#Wv-8l^Cpp@z zNfHfp7yn_nPCK2!Zq7YNO^Zb6A3FF8hB`dxLG5}(k;oySpA0Nh6)cSl``nA-uDYZ{sHQ}rWib!ApN)S$_+MoN3 zOQOAYRG5Lw{Mym>^QuY3vowE51ITTgp%ML1B;#LX4o>j zD=zj8#i2Vo_~37$n`}S&IPPP;a$to(q>yfFF$aNf(%xTykPi7d@+NMje%@}ZZB|VU zvI_cQGpGa=wIm>6!57o4CtnJQyI>jP`zy>ZYHXytHebp z`)m&gT^0hMLiXtqw4#-R_S?yt6opSLSq$< zbZw5kF{zx`Gw*D(vR8u#%UQ&+Iq%uiE)3hCY%Kq-DuVqz<-N%YX))kd*NV@aj<>R} z5II=&NFP@AM_HMwe{+Ff{$Vc{3bAcyLsV;A^c#1INl!KMJFj7`x94=!^^UMe#v8jQ zX-;eRYekJEv|58ZSpI(Ptwr2=Ep3)s8l-P4LU89bJWKf?eOQB*Xsam}2}W2;`!irn zy9rmXyb%iH0pT^I4GI+_yofGxODWKJu*Qdi>tajyPBGn9o)j|IVD5#V$O( z*AH)MTFv~N|37tz?wwf438u;#2Z-mxJeZon$ab)}iUP)OayyvO_s_DPze}L+FiD}C zPT{Qs|92>SKJ3=f6EnXm34%uT0sE9;*X`3pa~wUba-W5}t4~hbCle^1Vx3?XeQ&|L z?=0@#C_Ui;;&0~X0$z1=vV9QWa$hsF5p8u<6A)Hx)%1AUJ>x3e-#b26rg1eG4W44G zguAn0JuS`NTS!axGp#Qe1mAzf`OTdyw)LHy-|l+17K))rw|WE!uNb6ztBuJUrPzdT zJ~AwbsNe3$ej^Dk1*Jm+LoOO`f3JD*I^vPHem`md)L;e8e7oV4Q5}KnU`h>k70Fee z@>E}1aIE{dW;hyvpf7DOua#J}AMuDl-uN^SJ4D$oNldm3_0w8Io2EL0!Xks2^Bi+5 zDdbi+_VZ)py2$#7My0*2a3}ddbVT-bWrpzAuwu{SomE$=u9jmDOUHOM(Lktx-KunN zhPQ)c_s>l_XA(f|HW)Ec9oumAhf8S#Hn3%x%*~$`zqpF|`7eW9cew*wULikQAxBhU z^Cq;V(M!yxLr5a2#Ef#?MV*?b09*-<>M4asS)SulV1Y#_nWrU9O^Q$E(zqvo_Dt=0 zkGx2ckcXooeNK0c@*APn{q2&|o!^y%QEP}{LY-_)KuEa8Mrx3} z_|LKpnr%{@<+hP5hT^I!ZPF^ z_z5sP+|r z%OaH`)!rc!-nbPbV8ddVD$fXYlpT?Rs6MNQ__f4??Sv6BC(Gj(OrXq>JsI%h>WtU`lhPNZRB!qK@<27A2 zc*QDY43R`xKX|noox0j2`Duronn>Ar(@bqdkq&mqOz}Ar!+2M?&(DP3AVtl-j?iKR z5xtu8m*%wvqxqH>z1@IHdivwHlT;=Fk?8l0)UWO_CSPEAz2ldt6pz7(&>zdKwfj$j zhI!&IXmc#;O-1rS_qXUo3Q}5dJ7>ex!B%8Yt+Q~*YIK+qtVF{4Bls%x8}XmK@96HI zjbnWWBke~0<~vUJMhL@-XEyj=wJ^&7{CKvo;u&;4HVRwGd!yVlW*10Pyq(CnwKpdf zx{6C=Af%XwMdrmxHEPQp5Xxh)+I5$A)4twg05@jDIACJM8yN_sU}Y9JUWDkAD}<3L8}R7oiRi$M0AyqMuSAl2ku8q$td8=55Y zD~6fPhCsPt?Yc|RQm|LT%_%>T&A}x_infTV)l*2V*YiYxk+i&OLV>AtHR3k?%xAnl zu`;0HMK9elGB%*J4KisD^#^!`#};V8P*W*|Qtkbv>oxYdpx&izvJcsxUlCN7TNV#$ zW~gc*4t=S#;oQZG4LQmXE;b0eLRol7`>2L@+t27cG6A;71wrAvpbrNgLJRU?jkhrE z59}cdlK6I5fWEPS-RQ~j@fez}Es55xS%@`H#ZUNl`0Bd#E~w*7aaAvBs2#P{@!OI& zDmS|a_viM#+gZL2TBDqHxo2!29cpM-+XugO|HM?tsmh}o&?y}muY*^CVm|Go4$1Kv zBuQ4P;lvI=BSwQFxe(rfHHJQ_0YrM!9P|m*-%KD)G|v8f0+ptVMw`ulR&Smrs25R5 znC&}?2*^*?S~sz}Vtn>EpJ5Xe!%db7UvDHPwnlN@@25qNL9Hd*j~OW$zLSwIPl>nM zVrrO~0naIXz)qdb+8BB%IM9bkcx%9$vOU-aT45UO!ICj}Z%U@*@YzVj@Lh9DA1NbkVr;a6CJWZSLJ=P1e9(l8ZKuqw~Sc^jkwCL9{2NsWtpa@R?QUBN zoh*Kr_4oJJ{o?9Q0=Q0Q##2~az^>tPRfKSLJvJ=}bM%q0)o@21Y3!4yma&L&oX14` z`n)Op`E`ftjNj4$5`E=Ug|Sb4 zzaHnnwyLzBC!uuaXcze(~vRqg!e#e|0n0P2)-Qn7W z5cawz%Ty4+TtM2ner-Dnc>Lm&D@lw>X(le^Lv3&9+@*UM(q(n>SFJ!de_l4ehjbhI zd(MWc@8}Qah5(5Mp@RxNkR-9mrPR-PtbKe46m{hppf~l9vg9MQAZD7g5JaNRJDn40 zPAYnwbZh7t(6{e|6^|11)?+S|TSX$SNx(w1UG0<^YL?eKM~AK-UtH5^g4YL~;-^e+ z6)o@j%rp5k(pIbzN9tIXn2sA{&XBbK^hX5LAT_=W{YJmFo; zOknQwB%n(_hVrnKH6NtdR|u-;m*`3;yTXJ9}O6yry;%8}>0 zc+|c)Mp?WF>b6!%U$lv9d_iH^LCCm?(faRM!gW_m^E$Ql9@c!E_;U%i68LUj(ag}Q zyigi><`^6a+!zE+epq05XV>EPQZr-IT5zQi66dxIfItF*rRKLGP3W#Rej zDJ=g25$~EAAitfPHK>ukNTsRVC=UgQ^~7Su!F7o{?$F{YY_I@XArDY;o&~wtX6#6Q z2-N#zCL`%LzhXG=poy)D*Zxn_c5(c2VIr0j)wu?9B^mI%a&4&;p-XmZ3 zOIa~A*;hi+c7QoWXgQT8iD-^lY+jPk3Cihs!ta1ZIIgPyD!~jC{2yqYh^lUcob_nGVWD+;cZOSd3EmKXU{*3?Z30L>?k@|1-qJT zlfD#4XNB|Fs(gEpI6XR16Zfwe_f$VWlstY?y^#sW`+gsT;Zkz%u?_6a%-hk)Hj2Cq z)hVbX?Pt(6rj^WW7*=K;p?A*_tSo6=_bX-;Jx6%q=(IEdFuWJ$F`P#mYwGk;PFU(MY8dIXwKdGi#mPL?tIc7 zP}ebA{PtH>RShgC#h1 z!WwewNe$Y2Fj$8_)`880>VBTjUO82;u1DA#5&N@f_bG*H&sT$zaP=>NaQE?T$A41r z*DJo8_bdXNHK#`Rjf+Q2+jvyV{Vwv2XF*H2WI(Md@f^lCE95v?5eZMl7!l9FdhC_6 z67Bs!MMZ-tRhzruis759OrHD16-)?5xj&C(pbJp2&@J+sv_c+xHKyTmXi~>B*_-Rf zdxjX#-ePh-Yu6m5t54(=4te;Z+8JC2s(04bJbLG%Iph7*?QJKv-c25NYdt|%O}DqJ zrU9tE5o0ie++fzrbCpii0QbI^riDAeZfvQ5V(4rS?R|~A|I=Tmq?vD{!;7AS8EQ%s zfFD5#+=f3!N**6@nAD^iLfUIF+t!gfx)W>e380tw7H0A*vzWwW42oFg#Vinwg0&8T zA0epMdNUT7Z+dKECzI{JM!7p>y7q?(nJ@FiN6byYcx1eZmFIaP=|o-iy$LDY1>Uti z6LzczGkl?YJG0LA#scnNnj=a({|8gjPrq0_xO|DK<^~UP2Q#eCNp&=vb~$AVpyp7( za#?~FVg`pKRwh~Y^M5@wimkyej3hZt8A7FL^sAFXoj>XBf>Fp-q7%O$3UHB(FHJ3F z$;+NPJSd23EJ_=`L}Es5hFy@R?L zTkB(85Txq&R%fZg7FaKx;EKs|7ePg92jVtY|CV?E5B0BVvzG>%PxoHcD)gQQgHdF4 z{}@NyiZj+6X^_JClDUzf9Ixo)D|83_x@++D?T<>iBP6GBm2GHw9pF6Uo@oMC~&yw}r;NtVz_6bx23`FswOsaL`6#^m!{@hhQHNX)E{bAE>MF30d!Q z{_^$^k0P+gfu}X<72Zg*y;l=i!h*sDh>cU_=_<^LlnR``fqK~V_r|BoW1G2qddblb zS*25m>+;i$+qLCg-tI#9-n*y$GHM$l1-l8Y!AlXRB>O9igZ#EC1Jj|vDR;M^-LFOp zoH*tru}*R#(Ih97^py7|jV;gjl6yC%K}}}&f~9y9&A+5Y@-pcz zygiT!#_(0$3}51Gai^V{$b9g44ev#9r=H zuLFC8^Z#wi{9pdYF5djZICJV(ToHLK1RlXu+-F@#aIUU}y>5hjP|{TqdGQ%r&T?rG z+=0*$t7&{700cvJWDUOc9c)EhenQH-u^?L0jNbt8v^Tcl0pXK=uVME*!%@vJ1(air zo`}De-V97|r;xKfPS@_Jy)TxMTc*woHsd9Ix#AYIj%SNR%%4czQ6fMl$FLHaRi~X# zp|bo53#o0)0lT>A1t<}!!KaeZLhM%J5g`HGjymoi$p_(GH-#1?k%;fm&pjdT?d2CIRh+K^1}Xz?p;2v@Lti-CV*<2`z}(*zDZizx z5ms=*-_j6d3qBTsy-hZK%4sQ?u~q0j<{quIsLL)CJ9{N9l|NGdh7AN`U1WY0lsQ3G zLrt}eJ<5mbGvr9g5|P^Gg}z~L`BpJhwqP{Dia(=jF72DyVs?xXt>v|iv9 zL)hdOm-$;|6)xQ%ivJ2H4_rPSY|+B>hd5~1K#{QcF47{_0ri%faXb8~m!2v)M+gy?p0iX*wIR zd+Q{FJ^gpzU7+6?AKeCo|0&~;m16*Cte{vY56`GTDWhlRMN3UNVKQg-(Mm1)fWx!ooLyuD_p^X{XdmxGhUZ;J+Fejt5 zxeS9LWkO4fJLRC%(*=ug;65Dpj7$B2Cr=sjWw?DkyK&51#!mM?gRCZe$W(f>Y>z;!b-0| zSyp3!>XH7-Lq8ddb~WQzM66w&0!CV4GvTE|oP?INsInIk&erxsh?!#?sH`+QW_&h= z92Ld;A~Dqf)@O^GX{P9<^FF|egb#jPwE%#)GcD2SBSXU~1*n?Qwt9q^5xR6m9rnur zk3Iyj_UU{EP5w6!W0eVc+NF;$yQg~9SVLbqhHVEL;_D|@#yVIDCVrMXd1WtQWR*>l%RChR{)BIjeChgVpEi)#eqNmk9{wA$>IP-+1J6B~bx-sI_}E z3qC#}CO>2xs1Rdcf0sbed_I$cAH#HOVpj}RZH5f;-QK^?~%v?aUike9nf z8m%LYvs0Qr_!sX@j6s4Bpv9-PV^jb@li3Bp!+pU16u~&3ra2w~HGtYIqk6XnG48yT zQ^w-VWzH2#-0-PDjon5foafIFg<$jX4i8go)N(|CTVB;wngkzt02ZSJk+t)F4=2!r zse#YB2g=r5)&R!Lhg9HN z{WV)R9g6nLMy@_c3pmo&dhsEmro_03mPj#i1`;Mf3{{KNonmv+Kg*IZX2!>5?Jw%U zo&7z?3JI<(_X#!_G_r!k^)u_Rx-)tmM#Eq{S*9BPP*K{#=O0G33-)XdVUO%tOd&<0 zM~c~Y8nH)ALSp3Z^dWFBP&GKsW>GHGT)iKT=mB=aiVU1KyHOYMI?4@uo!0@2g6!XH zT1WKH3QW8YtY(vFpggiwbIsG zYqtvoZ;WDxwZHPl=6|mZr78M}^?!0A5wVEO!?d@C_}hZojGxb^9iOpDwzU4Vu%LDt z8EX8HQ7ED3#4vJU2Pp%j)*! zFS=(f;qEXflrYY=<>tXLAmWC+Mlw()a7n!YWA{!A#r7HGtcIt=mzK6p^gP!L2j^MJ z!XAy-gd@{lYzBc_m+Jaxtp?1YXe0xOrd{(&Q!)$4iACZ!TPK5%w>8KI-m0I5hgsv$ z>zQ>zfzFNDaQ&RuHZG0E7{2Ja5Kw!HZAEA%BbBSI{ z)Fg{A&iqVmQH6zcWj-^WvD44noJR96dGuTI1Y{s}8*gg$Tc<23q7NGFuK9caao}9o zPZ0%^FG=p#?T?D#0%uCR2eV@w+-CGGEj&!YM#X_H#7U`n(VqplAx$0b^YhpgR>m=y zRm?)>Ybd@~f(`Qrlgwn#?G4OwDij6cF;||V|0)q`=Kj=F$18Cz4lL2E4l+?_L#&SY zh0}Ux7uO7@QjzKZB7+BqQ;rbm{AmRy>4v1J-cdVEg+hL{;(@6$IwX8+GRW<+1!Z2W z;!g6Cr8`||@VV0)IFKj0s3z1^&ZdOX6W9Jee9fMMTRk=JIXp6Bm?*DStS1edsl?LkMQ%V9KZUS{Wkz}c1RmVxqXtMW(bV;nzMZsYWl>wAwfeZNG zotFZUlI-B=mV3N1 zz^t}goNxg1K7(BIVAHH<(M}8`L)I{IZ>88CrJorV2I-FFhW5k_m6?44(q}ZkJo99q z&FV{BfE?5@j?H9(Q1XcD2c5SPY)7@@8f9=a0F@_1eYT5N4D| z%4YC-Y&vu)Bc10-#vDkWO{Yl=Ri^xef+d_N`Qb2@hg;nNv=*mc!= zW_7q?20UInHzlK5D{gsXCl$bfx-1Sm;ZQ@)RELcKS2RR3K=>AbDt%9gNVy+q<8eL3 zaJs3-Z(4^GtXU8?SmkKQoOW-_y{oJ;mSwW>sV=+D75)28WRgcq|+%m77 z57w3iw0H$1nfFfgT@f^9;$FFQINgPw<`X^jYXbkDSfKAz!|->@|J^i0OF{$CG%xL7 zM1gVQ4G5?uc-nVgZL6AqZIvCct>QpSr#4e`zMKU=2Pkj*BO)3GtH1&|YoT%q4^XQA zF5E2x(_*Jj;wAN&f0iA;P^8(pw5|G-Bf0y*DaTFAD#0F{#;~iXH2se@*>h7|qT?pF z$ML{Ua^-*h1Mauy;NQqC97-pAFh#yanJyV{#qeM~QNXFb^4%gvPowb;y6mC~un)^+ z0#q}8^9*bOe2aFA3Nr?qqZv`v!2RvqyumC5-=P)fGBO^$G-fA7;D$0;@`LO@=63X2 z((^3@<)wmH+Cr9U_l}^ory;owkL<0@2dA1$tHvfrCZ_#t|6`fPzFyMIlwpW-es2D% zgNlmcr)5VeF&azlJ&YNVWN*ZGq1{3vA{z7c6+YJ1c;Ug$LwJY3dC}*k<1=94%2R=8g5%{M}K|@{@35z9eJ3f`YI`AMs741G~*p*tW%yFUj zMtZx%IpJR6cEkn=xf$DFeXs1U_s09X)`SGolYTgwU=0f@Mjs#wumQXkN+I8=g}N!& zy)!Ke17=XK2E{L{omye6e;`2p(%C0Kv>~!YiIta2kSTNoCbg8Ps@`%1O*bm> z(`I>j{P=`#L`*w6=EJR|``@2u-G;?UPSV3w)8_$3aotMWg7n~s$ zt3#S&7TmEE^HeB&Cvv`1rS313@<373hWpcNvIVV5VADA5uW z*-=x1CQqA(0avWfb;I4eQw`Yg!1R*PwC7Li@sH%mwq*5g;)KjidLuU0?pP$@w!R(HEc6k zF?{PJr8P=n2-Boz1RGi7Q(S9ld_Q~-*h=meoJ%->{p{yG*u9jHA6h!4&^O4Ij(Clj zw(Q;;$8uA5oC29VX^F+n=Zn3Z&R@KmvR412Q>E!Sc=IW*RVs!2ZiXD4iqwUhk@v8l zfSLTt5G!``QW=<6HPoq)llZ;ml-}GY#gECClmYv*0zjf_O_L)|Q9EE#QluP(D$jns@EE~$cbmRD>A;$y@LFAU-u4jo5we5lGlcP-9o9zTMNg^?WfAE z&^-0LyK~_*O+p>;ycBFnOVHW(g_xFEJR| znW=V-PgHJJXc*2-usG-JLSx+F376D#RkFq;0FL+irUa#Ni2$p2pztO_^?UjNIVQfX z^KEP9Sfbc0vVp*lZlK0#3LGn>uI5f*0=ACwYL`o>EsXL?0j6l*10k55T?#E@7!2H# z$4boTlEH*AS&c=~WYf{1F_w&;g?H)JxC;Y?E_u+b@dlol1=lv}TJU*^8r!YVWh$Gd ztgw=cN0kFFZrqxe`pTQx#6;&IHFp&_uOenb&% zQ&*UW$FN!v-x9qi>HU@&(du?!lrXWB*rLT^r5I^KVKmI*V2-ou`|N-GELN=yk`IbC zXMD(FpWgdje;*Q~v4P+FtE`RJDNcVyLR1zhAYentGoIG-#~*ROAH=<9VHG3Gh1pZeB4bDPXb?Jq&x}mR|Aam6BC58(T(Bl zik*||4o~EKW^VPHN#}+bWS<&3f&rVV69KLShIG`ePS3vN82S|jgc*90rq;e-A(uM) zsbR&$9Pi$_9ep*7lpP zR%J|Zeg;DXn^FAPOxKSQ%sSM&46ZZkU0&(rp7nq3h{Nbb2LJk# z!}2%q4}b#R;Znyu2889RDY!FIe<{YrJRCOaUf?Cb2B|iwr+@w-aWWuN&1>_aG)RxM zVt%a87=BY5_9+O-dN!&70Ma*|ByOL)DSg@?-D7Hx_Q||=$Wd66;f{Jrz9t#3yBGS1 zl-u6}t=ORXig`G+aq}$4GK0P1=Nb=^Me<}L|EtiOAcAp0hg~eu7IfE z;*#qJu#jH~F-$ANYNWFLj;B3=^INiP=!<+ny>Xmm%AG&C;yU>^NniSG_d?vSYDmg5 z_HP&9^g6)%^msa|APqJoJ>-J0)nG&W)}L5NwVzL{1$Gktm=W|i^TUHxvy1GcXxjpp zp)a+_W(JPdQ3iaa!*eMuro~tPbMKEKYZE1ruFApU-gK0L$9J z!DEUh9>$qn<0;=v034;5*pHQafvttVyeHBki5q(6RHF(8-Mhu(K`?BF0#s~3c~Y7J z-ON(Lz0j?9JJn791{wd>#~`NUxlW?=qM;#G!BIa$(C2&ZP^kOmPp3l!;&_AX99}IY zTYjCCRG^<_3&?)27~RIM-(ENJjA11#XrT_ZKlAS?#bxSPHdf(5?k{l+HqGAe_rph& zZfKacp%~g^dwrL$DfCif0Z4=&2$)U8XNr^c4KD4!yCfU;+rMKt68IIQcaKdAvKYt> z_Gnv_-z3Hq0VqXV0G6Qn5xWU=^P<(@(1VU8mM}tDj#ec(|FaCzZ$J*C<-A_#@>um( zVPS2la9EL4)WmU?d+*#*IeFp>Qz?otghXn|?jZREVEc;6&S4xU&8*DlviA`>>lFCt z$Y>}?V9yYysQ2dFD?>Fi*ZT~&ujSm%LyDni;2ptDlg(JY4wKeCGXPSi1EtR(*+N^y z*g_8OpR;DJB);SUpJ%?TD8Y!-E%eJ{5^vUj4;OhcVs1zQT!%1-(Ayi z@2O;~QNcO%_-o~;g4yIGFEH(xL(ES5`LmU$;aw^41wDw@_6U26vJ3cf-KHs|At4^x zryA4~4LV1#+cv!}zSpI`FOQx1zEQS4l!3cT2_0s*ftUwoD1O6?S9FVZ{~E*!#1=vXg1-g@oR-;lVQ&|h&%<$taT@S~)_xKOp)6F|tj5l71{JZ!J4CP| z&7i)DdJ?jMSu5Xks2}HCp4;URAV34j?qeu8*bC0TSZpRjaIRWy-uOW`0S_#?MD|WO zBgmn@=|ta_lR8&4*Q1DO(%uyP)wrNEgZZ`~SLHso;bO z0_xItVAH+}wFZ<>H1ip_x4#|( zd?RHe?UR_29RN#*XTBb#6xOe}1+MuD_K`#R7vKhd%b4 zt|C?(cik(F9rkGwT*(XI4#Ohk*W-L%N=5HW&*b|xX$&9#$0vV;jbEC@%Qj^KAq}{@ zhgnjCHyKL6#knN?HXl@_3hfHUM+Q#2c#O7zZm}aVs0>uRjz#&~r{urH$y?_i6Xxa$ z)rTu`M$li+!H9NyX_oe%zfOh|#j4H7IAt>URSAXsZwMvRhDW=`t*kb0F^W3JY{a{K z;nmPuka`+i=IaI3URh zDu{~gs+eUDvtVeJDITv-p85Cd31}7kpKtT&?!^E5UHJcam(whh{y)9z6gV{TzZ_b- zc_Ix|rrvn%8qjhn(eSERqv|1GcZ-OpUxLB~N`Ge)l5_-dQBo*dj z2LP;kSc8SZjdat5rT(CqhCgWO&?MXe!(QOVbN+gk5I9K~Ja6%oB$<;nR8|4UDm zNM&)LD(&1cI^4BILvsM;*hH^mthUr?Bp1ZFr_>1)Z zm;O{QkF^K?^6fn<51BywYbS`T*+fZ|r_xrU(_*qos*|1DcIP+QW4)_Kc@_Y(OpV1J z5gj{#GJg8~TURn>pTU`*TKn4ul+(`b!}J=PKMy#(esss;{{JR_;y;6~{|l$$|M&ke zSG139R!8tsX=^8H|5=8Y`yL@^=WEzp@6nL!gn3Q70<<~DXD}F_AUB>dW(%VdjG36{ z`>_20b>83qOggQf;f#`F5@Vx))}`YUt?W{8I6!l$Bcy`g_CiRp-zyhrl`m^6pyLjT zt9#sE5D9OV$hi*ron1Lw4NgC@FF`4uO;mkOMdH(}>2)$wV9T?A;6@jbp390~aJHYx zKf*3Rf4*5cCQYa;As3i{$Yhjcq}^}IUqXBH>PkVxL1Xa2#qF|z))VVkf(}jntJIY`12kNyi#2P5Go=#RUvmleg#wg0UXZ=ftUF zdJDcKXTlfr)CL@g46MdMRLhQ3eg{q8Ih;fSfO)NWerWjZuwIi4C()+mZB1Sa#VMHg zWPP+xa=*)f=*wcNVPBI^9iIxE_;x9&UIPB2rO8C|M(t^5#aO9f@y$ht;{x~E0W0gj zjj??!!+vmY`J_1aS?#vQAx5SLPhmQN(S@xWUSo+fY)5KRqTE2AmnJyg%emLGE~>yl z8I`-@y4he(9Zcxz^>JoSl-R7cw|V44VD?!)peYNS_31PpDJsb(gtV=Xe#-bZvQ0Ps zIs~Fvs5#+syU{3uc;s0B{fVep(;*wgpYWC*(@ZrIMuDgIJMTHLQ-@?`3Y@5s%!1*T zD2`=?Mh-3$NHIHeMvdvTXbF1_yq7^zP;X762xB{7vueQu+hCUB8J=ji+R7eovkxRlc)4857%i`e$41mrzqR zkS}zA6&;hV7B7P8hP`76P&j);HfU8)c*(&yvDHC#<`K0)J6JX~=|J=mW*$Y8WI#bq z+r25GjmjTX7MNp;y2p8n?sgsZb@IYDiCc5RoGRx`t8q&K#!dkME^0R$%<$=&(oinH z7wy*AMsKB=Q7%A~;}uVd>%8+iC9JJ^u&n!?4%)m8SRbVptL|b)U~Qn&GrzX2*TCE~ zGW=v!@9bk>6-7_$#!P~1d=o5?HQ4AXr{1|p^c+2`j{O_^e#7`ok27+~o~rXzn_ZAq zDZ!tGJNs=qzYT%VlQJd=?)RUf7)c8%=6zT@GB0Y|Egndiw?&$b&z+y~rVB2eTOBpF9quF*2gMgpg}DF)@Xzp32n5>h zFH1e_fOSp7*0ql_M?5a7=g*~Lj|@hl_aZA<{26z!%~)p;vg_<^`EkgW=#1YAE*Hhn z<~dNot-}R5fctG#L@@N63j0zE4vV&h?AlKgGv5TQugjgEpY+X#6%w<^kAB2L(O%~@ zDw@3Oh1l8wcY40Zh-B5Pgl_&})~h+R6iSbZG9+I!cQ&bvMYmh0vzWlS=c(A56mbkV zG%mWtneQjF%~BYt>tu%;(wwU5oBE5@1+GnvK#stu{kS4sTXz~XZsE$1i@1*(Ub^Nz zD-EZoeRM38jyB1qDlRwH`vX&MaXb`;wp<(!5_bqO_Hxl~+bmFh1J-Ky27wn;@z7A1L%%xvLhuWwclog_a?*{ER zKAF<}SK*P0K-aji2|!6;)5$gCu(brwVt%7M<1W<&5*K(&yZ;lfrjZhzTmDgz=hUUi z7Bif*V?D>@Sh3z8m~d^14Kl@Vr^J_i2lL~XCEJ9tzWq=@P?X_y&IrkuJoN%fQMy$E zwq0EtO(zm@C%c#*a3^x~$VsU`x9CYx{3~t79Lhs(TR=Idu37ZmeAh>bY6WmhbXu8a z&u#?xydvK-Cnd$nSJ8TdA&%<`i|i-kG^H)P1wAtqau@sBkIQq-Gz3Xt&^6ow0JnJMS$($Fv3FE8C0 z0SS_$THa@MKeJG2_m=UUvKK<#vfow~mvTlL%MHG!OmwNuX1&YN#*Nn~mOlNnZ0HW7 z>)*frj|t4SMy0pZg3oGZuT-`)7i`Rs32YN0Q!gNA4LD_y7vmyrxuLukb@CS}8%zv^ z=;a~IRg1<}4o;_g7DB%ju+G3AdPFq`9`x;i_Ip=U;pS`QJQ=zZPxyVQ`_{~%aFac1 zlyWb$l5AQ3qOoe=%BA`NG{HVUhP#Fo)nP^Pc&NIV%8a*YUH~PX;R3XbVyW2=CFWGl zxEqePwUv!UrE6)YtFxC5xOe;o_1bG{e=cU+N=)#_Aw!utHW?MOHIeop0!JHX! zaLl(;%Tbs98>H9yKt3Wxd=3@m0LU%ajk{jD)-Zd?5Rx-Y_>i3N4^yw1m4f(<~A+5Qh2k zcZ}{8_>10=jCl;W)Ax|syZ$0?7}WR+jT~YKiPwWLoBA-@y+YRT8|%R%>sXu6`6y%F zgE6goNglSCGw!=uc=rH1A0>%k=xWRHzPNw6#POR5EdxstG3ED)TcsW&EIX{YQigud zi(%Y(bf@o^|BoP@{~EOOe=rZ17|@o|xeH{OgBe6+7-8izk7*=ed56zgMx~RF0Y#=| z`L>UdE+KV^;<${1LLkM2T%{-xLee!19*Vi4-H|#&s1bFk?@IXLXWYM1s0*DIuDCg; znja5^+iBOyM6Vq3**RuLy>rfrnM~zFsey-NC8J;oe`ArhrKvS_;z{N>h3_QYFW)>6 z7!%K^C>-K?f^_w>PRZcwFZ=F-{d@H08PH>*o_hz@F0pT1&AhOqsKnC>rogSiiSpmm z1jC=X=_~uk>ST^KZ)`sNvus~`viC&rq9-;M$@UriLt`BD8L`gkvA2)2{T}-&0OJilT{HivO2+;kd+g@i%;>bp$QP2eQl>*gljrCI`uMN zY7P`~X0B_?op{(heR=$~nkhr}YwbR-9{2|jO!2j3p@I7=C`V!BjP<~XdQG$4L)tk23XPR9vm-7!$7G0`7*iq07G;7jCo0Z2W`Y|XuS1eHw- zjuPoy>plVtlmyW%| z>A`AqU)or-7f*Tpc0I26WbI9yz!{?rXn#&R?WD~Lh%JGlza|V%P(N$+-U<#dSUZY9 zk!{RkdmCiOv~{vF5jjB@fyU?})qhz4$m|OFAH=-}P!wyoHadtB1SAP4l0iT~P)QO; zf+7+XkSu~o4w57@5+q4bkSs}1K(Zi67D~JBD>WNEpJg_Y?N%xaX}2vU&E7}+;AQd65ew9*jOLAx{Xmq z%{9rpQAe*^W+6eQxNr>%znX{DYR`og!ZXs`$7CyIE7Td3g)>THU$QPdP_Sz=_G23j}pUDrG z(3|3OmqE+=^UCrTv@4Gt8ID@g_f&pCy2{`1=j=D^B6kLX~^Sm>t=Np-r2Dk=y4`XwHo7-D5nP`Brbe0j+%~-iPluzfdIkA|1{sVb^)$ zvpAyIlJwy?^cN2EI~${Jt=kX%wYj$)x!jJ~->QfbW5-lSX``n}M$`!1?2qZk(VsKk zi^grbTXpI>B|0+H)CFy~>#~;=ZT|6_*q_FUFI?Rg!+c(qZo$<^gJSeW2P9zH-JT!2 zJ-8LPYzta&pg4!{Pi;JHj&$d0bs$W(+Qdw^8-6iwrSAGbZmB(S9STy=VPH9P@|3s6 z@sfqK{D@v0GnJ(9I@}VCS0!@ADQm2(6mZVk#{#vfmfe_^CNcq)eiucdF@jmq!Xasu zmE!@cIe4B-*1o=G6r;#Q2c#fCFxoL@g3tPEAC9^v%wgP`KJ$6V@xfC3!nGYm zVKOE4$YVB@6Vzx#nGl*}R9|s7DfI>sqqKQdZj{^fy6+?wE*{Xvx{?@($B%n^&$<^`D9O& zHtfSn!I>Hz*LPF>jdN?k4wd2F;ys#{3q=cdRhRj}`cH|{@{FW)GrAikA=-a+&iR1u z$HA_TR;2lQq4n|^^nF+cOP@FSF*KKg{e&ln_3;|*|Ubn;UlzO zQ|fS>I5oA>hjSnKqQKRtfK@nT_TSM5J@n{H2wLwKT!s^SccQ(_A3I_G>F{M$yF<+? zzv;vg<#C(TpKEK<+)8wZsd%F;Y~C|blh#Qam*GNj6h+q?v2J%)~NjMWii*lIUvno0-f1NZ{j8OO7OF__v1F z%3P~{YMEKup?%{-U=n&ZPc$1k?~cASEWT;qI49wmP{>~Nx%{|0+McuR$1kj0z2j|% zKgW!4@m2VWhSg=enM3W4agq)6t0%q7%iCiQZf;jOZ)zQV!RG4Iw=}&9c)Hr|w9_ zb2hb+Jh+x4va77RuawtlZEOYN!mIxWj?Hj^Svq%Gt-Nk@)As7`HOzz%Ju}p^269{v z^Y$b3Hdy=AMg~6JIQ$KP2FSWT{_r4OcsyVJNL6)Z+}@sO`#|*xN_~F;WbzV~<5A)x zr4oAux?;h#brf;GF5TFhPZ7*5RiAnRj#Wqh#9cDVR1A7(zuI10@`Sa*D_prHYGsqbp$_(rS5@&xV;=b>1~0l7}Uw9vwvquA$;Ms<7B*q9)$ z#tEv$O-zPvizVUufF#BO`?|&U6s(V2+FguUloZZ13WM3_Red%ib}XwRr?O!d`DxsW zN)_h;M$+hT|6=0Hn!;ed)vE;<%<0zRI(LKG^z^2wWTvU1naJ)Kk=wWit;nFmm!pZ8 zUE8_1-CVj&-Dx=LN{e?o!Jao}5~bpTwy~Z!y}DV^{XUz;GkvoIJ9pQp#I7>+s%)qn zS?V!U3VGHj$xV<(d4C#rPI!RcwQ5dfKH^C9dhVn!W2l6mS@5lfixOE=- zAyt@|sk{Ws`@OoiM-&vaBP!ro^ZPy{N_}fkzRW`j_*{~y@&@XX(>ptbXouUl`jxxJy(Or=L2QZcWGn<|*HC<2V_Y#{kO>vFj zX6&kVS2Er&>UkGJZj z7{zf|q}CNAYNk02G^#S={j$WEmX(L|O~X^yX5e1?)jfUM<(r^AgPF*FS)=6V4#^O^ z>v0P_AEZ-5z3+(H*a7otk@8yz^C;X;H!s)mR&N}7M3T9Y-sp%`yy>q$S#sy-9H4cPpld3 zq!I0?F<9O|ury~}h43FOjmRk95AmjpBb6rXH^r?bKrb3|IQ3qN$~(;Rfy45r!@%qm zmapTxd+5powCm<&l+#`+weZa&P;&y9e_-mc?V*Ltk&^dk4+h3bHuth7wnRVn7ewPI zt3sY^<(KXsA?YZF!(r?=Woq~$yYIy6fulO1@VcmhA!fI#XZ3dKpegL?kvFWOFSWJf zj4JTVC4VJv_T9#wNw-~zeZ9#&0R3}?UlcTC-UasDrpfjTw?#gx(P z{C1w z6I7U_#Bt}FgPi+AxDE{cN_EX)O8}QMPHZ}6X+`Bf1Q-aCNrfZNEwodf+l|w3jnDJV zU#`q}IO#D=NBtzx1a_n4s<&@t_%BC7u?@_Tpm~c?9RwxeOIK+45VMHfwcp=3|EBJU zgNY{EeBIsg_wY@mzxF3XON-HZH@JFecfbkVL|}Vucj-mqF0M@%!bwv^;)dFdO#d|) z%$Cs6gp*n*XL1&A3E+U62{DvfGvh-V4YyObfN!3& z-4pI6vInO>?y90YR?^F@Hqvx>E`TFkdJzs~=wFA@{19p3Zqc`|C~%XTgOhX|cv<(Y zF7o+=lg_$1GA)n(btJ5q?~(i1-ADXVf0wyr$5LL^Y15Byw_PfEw{m_Tnm_qU9FSd2p{kisUhMrFAZbAOLC#Wl%De3Ex zyD$3lX3CP_P~QmrSlD&9=!J`*y?fZ<=Dm>w3a7j$_{a4Q%l{dfz7&~dMPwFWk92lN&{*E5?X=i4%|Dq_ccBD9&d~YFhyv}0FkQ#??^sGmh-eCXJ^sf2- zk`w3NZ%NioOkedE<|9Go7V<;V{}?SBWVHO}qVq@iGpj)h|nVusVYos$yR1gxCTD)^*{<`?T|bzl zdpNoa++-D8CvXLNSkZsIJ!_KiTV${vSF;kDe!pAuryXl??}t8C<77x(3IFt2)PMY8MSVe?aU~~0p^%Lh ze(7rOXewa))YQ^gz|z*({Hf>-{%3aPA?m6MWM}D-kC7?fm45)QLa+%E5y1Zky?Hg@ zg}_8fK^}F2{Fhdf6%D^3es)*a357b>h-`QKa2Aeb!XI zw@}?Zg?C`_mY8pm?+%9rrNk+X%RJnIBTq|s{jGbRe~LKF&`dUAeYK?1#2iyEKK#Cc z_IkAM#i0*M6i*kzC^`Mkb6XtfTqjfi8E}gu>DH>$F>4F)mAh2W)(*QQqm!H_wo>LQ z=29x=YS%7P$QCgKQm`>ey1mwX^a!Wx>bghxFt@+Oti-*0Z)t8$^m26TqU*}=PPj5> zu2Hc`)BNYx@s~eyZ13$UTsa>qTdX6ALj9oT;NXztv>i3m-EsAT!N-I z685#Uw3uV!;xNxoaL1`)DNl-Z&d0TTU!e-Yl{n7cGgMc9EyF?)hK~x1j3l{p=gxNm zLPB;0fWz^fW|+A_+4S|MT5oJE9}f@D`qoyGW70c`#Ves~G-q$8mzS6KZ=A*M?|TWv zwa1j(PjtPDk0(mAOw{3{Rp|?OR2ccy=lD=S+&(sX+k&VN?4YiVwKdQjRkEt>E1<9yQXk zJTYZczJC7xEj+xu=;VY1V*#yT!MumLuI}y!(hA1K#l?n^Oj5%|e14^RE6qhkMaB%0 zyu3=nA|kZaqq6Ueh3L;zR8%~5GZ0CV($Li04q8~SjA-$Dd+)<&OUs-m!}{OOB+rR5 z3iDqB10N*{hU9|I9S_;coWK3%<;$068RS_gE?l~FNdseX{ep^$N-G{79(BB$mR7%j z0j+$W5GxGBS0{D#pRZC^la_RW!=+P8m;6U@ErGobshaQOHm@%gHr}e7t>AE?xcn6p7E` zuN)`)^Kawgw3ipBo}5Ky+GS|~^EhQ^XUB5uEd7NG6rS$xLnze2;h~Q(q=sLkKlj*OS`0u4D;e1$84Mqta<6tKy*F zk$7e$39nqKTU%RIoK7c8dG7A%yuSCL%_K1|_onyZ_Qj*0Em*}{M85KD3n&!F`Ln5Y zBqjbmJw2@T)b|Yyk6C4j{%lOQSU;QY$xu*==Um{QnwlEMLorIatqTybvaF3(L`}<-hAtYc6;FY zvo8fus1zyBvQS;Ul#42T9DkXZn530Mo2J%KsKB70hWv-Q&yqU-lA%~= zU)8Z^ynj!CdZb0Z{;NjmV~<7IpXtsdQPJotSFWghogA<6M4JcnQ!THKRgJ7Wn3eU4e$>muuE4%97G)vgH?3eMHA(s|(~zH5ZS#|Jsm%`KjLtNEv2XbYMa>v;J? zs67^$78DXX-?iOuL@FgEWxer$GDKe7AlhT)+24+YzH1WRgy$IcdHVwB8sN08u1#3~ zE;v40UibXk1yWy0rtZ@vx*FO`*Ok-K(~U3DmRR+Fl4%j|XK2aQF2vDG*bRN2#f@-V zT&0ndlbcLWPiK#x3%?|~E0K~qt$hFdLcCdLclU{(C0^Ij0}YK!*Xv44OFcs0|2T7o zHQ-NcG*>Poi82ih&5$xlJ@=I>VxjIKO;f%HR#jWit06GBzOpBErsU-3tC;I4KYcoz zbz0`9TeyJcU)^ipUXsxH1l=yy;q$b#T%i2eXi(ueE2=|^O8flz^XN-2I#Ss_A%~;= z4fG_-#>Pf|LPA10qu{aqr8^n-Uq?r8UH*$g&2P@O2TlB%3&*oeV}XLcnqJ^0t4` z;j2wKdp)Uhw70jH{rdImC(pykP!^EqMLD^+jt#?ScmL?+Kc7w%wq}wb=Ys&9o1LZM zjk)J;Z@-4^>LyeeTzURbO|5%4G&FSiNlS#GBj3=I%#R;Mq`mg9)f@USd51qO8LHOe z>2JAw`ErY%zCQKetx3lUfy-2iS#@=FL&amJH#Vv&D+hG>V)yWpWKDCulS)?pVxh5Jsz<12w$=iAQq(sd1GMLWAT(cY_AZP>!|IO#qYmktTs8dx{mBxbCOk-C?0-QC^m8ygon8k{Od z=^o^42i(cfHBF&B`_j=XOg4S+ZbHDl51UesGj}Kb&XC|Z8w8AMj}#%1w(akK&HZ4b zp`meJ`XL9Ea7UHAxw*NztnBwQ1pdYx4M8tojzI*6izX;W!%g{C(XgzrPIl_U#+`#~(O} zXsVFRWvENM=38{hiHYwIuvpjWDkK;_iN!$KUIi3lsT9k1k)=Vv;OqL+=g)Ur)6-e) zJ#kklWz#->yc3399VsugQsww%B`m4d0&+1e0_V)JERdR;A9W77P)kU?M(*IaTPUc2}O?i!H^1`RQJY~P`n5d`+;_Spk ztPV>9`Q*3R?)!guCCthBvG&Usmse8y`1)3kj=do*(>WV1yGI9Gt~OB?Ha4S77cLAc z5||h39A;)_ZW59+Rj=KB<_MYbgGu1__O`ukRB%K@t?{|F$;s%CG(Y(6=yX zz`u6}g(@Dh8Czd3iqi_g?yVIzpOR!!%kQ@u%YGqR`0m|1z7CF2Xk*a zA0O^SX2&Aa{>}9^44U?nCr|8;Oz>ohO3TZGOhVSz*F_YJzLjY{eE9I3SsN^kA|79g zQ*Yk9>Ad-Cc)0SV6><2Tk{?Y?Pfwvyr&l z@e3UZf<`(qFww@w#;(t@Gcwo%tU`Q!eJ{K9%x)cYlM>)>g;No+K3f_75?S0B!6@OA zsdox09F^ilvrpOCHy>-AlD!+h_5kwKsq9#{&6!q5`f!mms9U_+1zx5L2Qz5a1m&_z zO2JK2^vKuV;-mfj_+xvVz}jaX;~NR{ybtr-NKvYE<--@Z9%3kkv7Fn{i_n{KQ zJr$L!@AXclV+4LURv1`lLALw;bYrRsgNJ&Zo4a(={gM3b)>%i^*x;}*n=)kR+}+(3 z9Oeg$pG>G<#bf0Vu^C(^F|)F_C;!5e4ihCMDR~El3T~JTi-?GD%%;sLER3wD0)*%C z5E)5`SfgomSogI3NGycdi@V8`(bF?A?S5aQ`f9NHYN7c}L_u-!_44=c-)l;zo^%{3 zI{z*(jI*_R9UJ@bg&$DMgxda6TJKurJTd zWJYI9R#jCUM@L1qT@8;wvP>Mm;jq7gf{3UJg5ir7l<_4j3|#Z75z`S|$MIEmd7qz@;B>G6b8S@)(sLHXn4H(z|3v9U2+ z->kXw=f=iHtI=wRN4PRxHR}mfAcpfqr@c+x&IJj2Y|r;p*VoH1TYH;1_Xd$O*D6q) zK8;Fy@!~~6PR^BKn?FH;fz@y`S2Yh0k6N|{K$V})l8{8|Bt7f+XF8{+tv86578j?? zqE;3bbT7ZT+XlhF*}5(xBa=)g@aV|7QsJjq43zo$zxZa>(~Lx{>5zO9yURMPN6KtP z0pPRG9n%yY%$HPDi1qef=Zp?{q_2Oe4#28W>mO2rhWPk+9q+aA8gerdyYj}Bk#bRE z7TAU8iH(=n=$Fz`p{DNc!Z^~kzkfwyVII;RF~0S5Kjg$8d!VKeaGSL3lOMl=amP$*>kZ>zD;zp2LCu+O}Is zuj&7GHD*B})!6ObO0uiw`QH=GYy2ci=5HQl-p%&AaJunq=vjJ>Q)i!_msbxX3%}l6 zpd-6XlpcCD&BQnDeHt4N+j|zaP?p=7SD!9a6-i)m#++-WnC$H;l0C6Gr><|y9g=%p zUgoQ#6)ziS9r38BqW&x%WA`c-78YV((FxSv3bZ94CeFcrzZQnnP~8%<&dQvuthhRW zS2Y&`-zd%#hX-)nG`V)66j;hEq_J9Hmg0>r<#uCa>87vD;I;diAQ@&C`=`Zf53!YuQ!jEuzy?f)_7d{JXlk zYA!D?uT$-tmyx0IZ05%sGN6>Dg)8_TY!t!iq|vRJkG?)LPLGMv(lc+e^7O>&6B84c z++;Xc!HboPF}Zt}Vtb*F>&xrcuVXN{gDh7qtr#kYZTs*=-?B)al=tpUq8tL z!@%r8z(V2g+uVEyCPDQ8NcGGHL2*&hGb|t%erca0H!q{}xpf3Qj_j;EvJk#~4LU~IH@fx$&cs1L5Q1U{Y^q9Bs-?=&N6YH5+^h`-KG>Abn( z2K*xOKX|Jj7;dp z4G;YGY3(!E2)|qF_$OhlE~+{@Um4dW!(l$RA{iyhBI+Oi__lj+HSN+Zmd8B<1Dqba z%R`rGX=%IN{Nv@>jL}Ey4HK}wKd)J-arvNVD&7RXYin!!1?19OR#x_5?}GE0DRKJn zWkOiAhP9VUN|y%F2&m#$Las7-?#nZSyB2&%;(J{=MZ3i^cx|5^#{g zbH6t+@oBjX#f=lnohTfl#|*yuEJs@pUS=YqVjyS5U9ghBgV9^$$>I+CwK zL-pEBZ{!r!?9%-tW1*;d38&70_VLOuD6o^ZrywCADHqTyoj-ya*7AK&?VmF}3v|&j=p5srF3|dT(cq@WMm_C39m+&l6=z4d zY>=s_ZAKE(-ugNb9Sx1`G?}Tb?FxC_2@d-ac5Phby-9+cLUoZ2-<$b)i*jOWPRYeQ z9Vt+DBmg&*9OP$FqhIhez23hAD3S-5`J?*!dTHeEjV=!!JWzp*ao>6%PwYcs;mNsJ zg<860iL)ja{>B#;fR<0w@*B9Nm!zm39v<4OrAStMEH1u(woF?FRf*U5GZP3oEG$RB zp}L&*6w!A%Iv^OElOj8nF#F=&I|DL%miD%` z0o(EFgLSCqrN-Fv9G^aYIuFImHLU$MUibynHB$DmDp&i^=;%HzNEVZ1rWzW3c|ee8 z0ANfN)qq46_$HR$kY3p8S9V@R#JRK1a>4aV8XD22Acc1Sc*AbAMR5J4?7}k_mvHy} z^+^uRyj8IgP&fVOa!N{^_>i|N`1sVW!X!oBQ&JLLC;0sSy-7bvRC{k@Vsh$tugt#_ zcWH}r^RIT_`l~$uk-{JUT#%gV-MjI^kRp<*Wk^wf0H*FP9Bj?ek^N0k#aD#+j~<()TDq60=l@WHKy-Z2av~BO4oA-Up?)J5Nnb;~RFx;_u$O_n8JLbrn9rNx(O7GEae2p!V;4&;o+UffQ-NXnUJUSZU;6{2SRDy_btzb-VgVyX+nRh zuyYBVZ~2UVbx^C_?qsUeJ&mb1 zDVFCq_*(R{t&Jxi4z8x=I3HQUgfjGAk6v3^TT_22F0P22t4mLxOe%Dtduex}p4sbg zThXN@g0U**?OPsqe;qx&N@IYJEuf-h5su8M`#};GlaOek;=QD#q!fg)y)^%kavjMs ziHYJpot;+`Wz(Hu{NB8|zq-(ur46yB_F7~~Pd@y$UY&0XJOdtr zeE(k7y)l^b<-U88nA6|R@s2}0DVgBa|69$Yr>DP+)I8a&zFA|eyjOByAi)A~`Z|u? zi)$+ZTR*8^&eMai^c@&TqNw}k%-gQeekkZFwa-_E8GiLCUVD5aLDQsA7$4uiIx&&H zVtkd(<2!{>)~8SR942bLM}GbK)#m1}BP;vfz5kO|R#mSbQ9Zh7$R@o4?k>Kn8r@ZJ zO3ER)OHoa&+~BimtL~IJDTATm*b!j8{3q8g+$i#9t0aU}#>||`0_Xp`&?s^__gGGi zW$FZo@pkhkarq}&%$HhI|&2!rU=Y;=F4TVHvs~+7^ z-%#VZ_mN^r7Ift5in@r~Q;rp=vYQMMKVew~VUG44+$=3~?jYOKryp*_wO@9qFrdOo zcqJ%vJ~?~#tn=l|A9#=r#Mpbt>+Rc3R**g(x?MT=4CKqj&(H7S%b+078y86F9g?f7 zy*k@sc;&pHRzkwZQN}7{*8T==URPdLrfO+r6$SbM$i+;=L_~w~Y;O*^)(H;nv~+cI z&ePF}dIE!$7#kgZuMkcjGd2{jC3PDH?Yd=eW)Scl30fMOFG5^gEf)sLbs<56%~h7{ z?=R-B%P%=Z<+&SMLz2=Tng8KjGQ!vP-{FfF)<*VS`B+a4(voVSzP!c`UJrngr5z) z3te9)Bv}6a`(rJcqjXsK(=|Bd7#B=gytm`2PL- zO0^FR(n1yFhoP7&23A&9Gl-PxWL`)KtHBmrJ!4&6-H$~A*BZaok7R17sO0BmX39Td zk=k}^Fz-&$bsji@5iaW*8IjnBOhmnZz*t;asW%C*;!+qyo?Bm9cD4=_?&9i_wo;G~ zyg-km9(@(XM7egtQ4}p<~)L3pY$&a z3R1Ya*7>RA92JP0D#$@3#KoDTMnq5X11KDCtbG6V>(`;8YUc$7WPkwv*2z_;X=!S< zH2}yanAW%=A>sM;6!NZ6FVKt6$jN!5w1aCdtK$R}?O6abkFUfr zSDD%mfN}x|rV*3EYDZksetm zlF$Bp6KIS(0)}BX8B|4Xv$?rR3Myvkdi6y?vkoUA^ybg^P);_g)@nT?jqsm8e_noI z={9q6&;nXaa&SGAz1fN)l}&0eSm+y#oe&fjnX1bD{sctbw>Ja@+c|3eHb*+%ogA25AGx(+p%LUBw2VSvzvdaK?cEu7(>XE$fAKWUb1 zAuBYh!*TPNVG`cGV|X(4buJlK$0yG>u)h;XMGu0<6Vu3b5j?6W96MD{mWTYLJCV+D(-=F?w`F}up&&2M7qpVY`vSx(RdyeiAlthXtUilLQl8HlY|z2u zZ-7lE3}$YDl34d`_m|c;SRp6h!aPM z3hO0g9~BKt=_^o&gr}xAF8Z(JOR!D5vIAd!VSDHG2gn3r0vRu8`4E^2AY$n+V0ITg z)VJ^7+1N!y25!sCXEK(RuZDg%Db7ZrSorux@kYW}lpuH6KF55(UQ!aM_S-zz9+g>Yd6)UM^# zRVKjOLS!fu*p@tyXjcHI%)`etO^;N;{h)cAL}^O-YN&BalnN8tJ{vVqXoTV86q-7o?WeLxK|cWCI1>FH_n zr1dxOT36WWr{!X!6J7np*_a)hgnIPZT(i6}&uDGQBR3WQ}jIf`L|3dihBMK&PcI zOhUJIbunFLXK(mcxb?;QHxqN%DfBR`Jd^j8`b)i&X(t4m7aXa z&c3U3`}PM0v>FL5-`ATuRTa3ZYjEUs>!&?I!fO!WB+AUn(w~}+jczqPmq;6Ql3h^n z@MnL2XG`G<5SNLI9sc6DD&W2>`Jgcnqy9wQ<={h5zm3z8G7v8n1%)hBo%-(D#0jsB zTJTBl;2`%?JG&I$RCXt)tuWBPt_;>5MxPwXYEM=+ynX}eDYtT==?+uqj;~Yy4(nkv9b!SOt3n9H@1pj{94cr&_hxBnK%WVW=`(uCuSzvcpJcBjbA{fLr zchoPIR{{BI>+2IFMSWugO2m$mR#V^m+j&WDaGc^~7E(?GEHT(O?_*CtnK+-fDJgc~ z+MLAhmp-a?+o*u0Pc}$APY$m5OF7WAKr%v8_Elp}aQSlX_Y8ez0V+hxgEaV)tC62T zD6ahs!bBU}2#y$^g7O>$G2Ho>D^tM2&Mp=S0hxFF=TYCl%`Lb!ZM(%)_^9RvYuCte zpBg&(LYs@!*f@#)70lECK@EAq#AxQ{5(>0 za46<1K0gcSN=hdQ&?=MduijoZ@F2f>AiS;G*Vf7^kp>D$%i0qSS3p`*)6cO15&UPezZu^;%-aY*=1Na}l9SQ@ydS9B8%yP^9xz!Q!_1jzL*5kQ`E zaw|*iar4p1k1yQ02g1ph^76Xdd6tc=Z|)8T5K}XO`D?ENzh}&54zW$d*~Kjw0KcNW2Ifd+!2`~y~p@pnYL`bNk;Xd44M+lNh=%8%`pQ0s_a8&3?T4dRteQ2#jddqK$;2VyhV)UECm$eFarWhphBFZ%Uuw z%#sV9vlXOlYic?=dm4CsQZn?mtW2bMVBp~fvH`QcD4tyKb9|h?H|F?LZf=~IxOg+N z4Gj)Tf-RLd{(-_W4J;AGOQLp?jsQ(}pw?WyItB__L+i(nABT!+Hlh!O(?WQzT5m$0(nJzM`%Z&YSC z<^eWPwk8kn_3J%d!^7fd$^?A+UYrpsgj9f#&zq0r`T6*M<>chN$?97`RMJf-Rt*4( z8sn8ea=&VN|9QyfY>50+XmD_;Mvf+J%)O^D7Q$D!xqmt!qAVFH={S(7zZWlDs74r# zZ`4;AHvTvzkG<7o9}|=JV*s18e*ga64ylws{LYgft*!mf19NgL%RrvAH9CYgiuLvF zZBoKNTa7P3-Aw==!Z}|c^18)o?B&|rXEzx>v-nKY%ER#j7v*2dtEn$%d2=@&veR&Z zVbybRhn;Qgu^}x@O`V(~Qs;R{n>^GGc5MTYSr21#z*@z5kijtiD9s_Vc2wt}R27S3sfSVg5Xs_?)Kv9&T4qaT3i z4luzBETMl2`XT)WS$%B=>1k!oXvElYLDCmO*~uz(!x*H!+z{P$*%zPC=VAvwy{Va5 z;-sa>jT>#=u!_E>EN9i!816%W4Imnt#givaso*&@9-XJ6GU-l5pA-u04D<5y4{%5y z7#bQr`AMN>h+pZ8<3OX0ToFkV@K5I$*;L_113CIA`R!X%iNWy&gozU0nuvU?_weDz zGRV0`61*vJuws|_`Rznf;vh&<21~jJ21JO37na3;l5G=$tH6%9G%|V0^^_1oj1te6 zH4srWEsZ4=oZQ^aO~)9BrDD*W?|~Fw1d2j31j|kEqCA5Txf;>ulh2fegtX?auRn`~ z_`5%7xk|F$`|87oryg*#Jvh;u0GM392M|Y!lPn`b9-=d}oS2)L#fE@tKt4}!2>w1R zboREP-6iz7xw$p%K{7G|gF{vAl^rzt^g`Gf$}+4_n*$aFUf?4|_59HD74rSiYdzH% zl5^~x2g0+;JfDDrdURI`-q%# zLh8N#eDgJWOyln4-c3b(4MJLilq#fq%N>+#Sk zwecM?NAT5NAKby5T#=MZ5UjzTD;gh18;+M27HW6}1cF4uG#@;Oy6W(QTTrm1!#9tM zk^|0%ACXK#QgwWoFb9w!J@(D7f~m`DF_E(bKE}QZNTh4|At8#-!8qaPLj%W2Y?Q%E zPELMu=78E5153gca*V&oqa+(^>!ilD+e09uf1RfL1L=Zkv&!hvymKYA2_375iHV8h z#I8w6jZwv>LPXI_#V=rvHd^isx;NUxIWaOYGTNioD|qiY;l)D3|5cD*L3CEP99fWeR4FEoktKoTsgM{Aa7&J$!9({{U@DB`)n;#`DEwS-c86mU zfMcS8@*}@tUyaxRP>nvrz!FaFZ9-mP9`x~OLv%+;!|!X#&QOvEvh?8DA-dy*c$Y8FHYx|T_Ci7Cd>BbnoojaW)>n1cBDv2MC_M>QfRln zw>L2iKu%g+dK9dhKP`363%!zq2j9t&(;y`ygNEU+Ff-M}BT8zlu{RLO2!`e=s7Hu~ zrmvV?yHlh_jOU2asIhP57U0-45%N&X+~Vfp>HRKHOT+sx z;QMZ$wvdp}-9r8H)p%I064#5M8eRBDg-i7{)Yq3FJ+qDRwfmzFVLjz}lu2wt&dIhf zs;R3xR9QdJllJwiP9Fg6FxR)xk#?~ek+#kQ`QF*N4o!tzX)kaBKgqmaL0j2}eZ{3E z-?IetQ+oz7`6Tu<;9k zT@aiP*<<;B#+@4YH!CX;A^73?5X8`W2=FKxTD8qu%}SsrhlQ232XLUVv4usvXwj8v z4XDLlB%sg3#Wk*NZ?Eh<_FTA%w21sk&1ypcw=wpj1w@T7J_JT{1S9tRy5tv6zfYeQ zv*x-}BYl(kef(||l}E0Iw3>z@dNcmI`=L6V4KE<)<~QsLwIIAdJ=Sm+%FN8k(Vd!` z+Y3rfonQt9EK$^c{M`;LdSV0xPq#!iOw?ftU!mRWI1rzJmp3;Hlv<1cbXr$K=hVop z13JLrx4@Ra0r?ZmD&83A5aYH%*U$je1M!z0zPs(>pwHub;FFtzi6fKyF#qiLlizTa zf`O)HW^!t3A=H3%LtWhj4=1M*j+e5=)&N2~69nfDgDKgi(-xl9^3|TRK%uTdBZLO1 z^rJwh@kf;GUv~GMhKr8q!}0n^(Dy*kms3*{FoKP_j82B;VwtbKB~;i76lxvXVuS}D zdE|coF3aep3;BcTBVA_w6<^}{&!2C&(7w9;awSW&t)qj%Umz(l(X3(HPw3`liraQ5 z6v%3s&<<`4%$Np*2u)<-K$nqCFM{5%(B+jCdtLyp(4iLi2HtZN~O3|2mA3h_UA0V<@KlWTKfNH0~B<*$c zB6RMChL$2H1)7pC&@?D{M;~T!I=?5d3bh1gWAi;3M$+z^rr+!6=$B)!8cvo^_>7Qz zJ5h7Rhs2nZovq${46RY--*){kRIlGIp411QK;s1%^TH_9J85r^opL?ujU-t)xtjG^ z@ZA-VQT_oaf;vYq(z8G>dNzt*_E9hs6Xp%V0{q)I) zs&q1l(vQ#?f2^sYft`VT5z)KhJt1vv_byj2aiLzcs|lL25kRtXjzfOuC20oEn3)e_ zThPspm3LxJ1?eIE6!>^h{3l^NmcT~V2b&wKsjrX4uhSA@1V0_0sROY^zkK=9@Yqw9 zlniP!F=Byk&2`rW6NV!aSA2BTH1LqkK(b2_e`-;vQA8#6Um>~f{K76R3#nV+EEz~X zL&O(Q#H0oJ(P>V&*zh5%Cxa}`uiKi5Q9SN&>; z`oB(192@76m4! zmEnZ{>7C%`=hqIF;pFEZpMvU%^x`GdFoxAYWkigb-p=4x+>;7_9wp$x&)ZSeU^sco1ud98*`uES}7df##s9tNLXOrA0+< z&G1yhX<{|?T<9XL#@($Bn^yT-JbMNY@-&fFNxr<`Al)uADLJ^xe zQRCu+(M;D4JKrp|C{C|I>N2g=ocj0+&KmBbjGg;>0CX~r-w4L~AStTup+)hS0Nwk9&3fMU$ zYBDUyGU72agsL55`*cVmt4q-Oap8l%T=e3y$aUEy2EY^$HZdu{xKKriQfVtIrZ7(^ zw0|2l-ERAOZ`D0&%f6Y-3B9FX>1OfVR!hAS4Op3qf2u-MzYRT>XV3M0ydie3=~Pqr zQkychs)Ux6)VLb!-cUtsRQSg}wG*%+68Gea)~emc?>Xj-GtT_lwToN$>kyy%%;)~| z-Dhvb2)}Ut*=KzGb6YXOEy3Gn9sl|7|M;p;e&Lg!{P>17L$&>mz}WG`dHVEYdgBKE zY} zna*{V)$+{!>B8XU2oJsaUettX=VPowH`mTC>(#Yn?MQYn_`1Hovr~0M^i8XlO8N zWkd16U{}LhYuiTd zTa`LzE|0sWB7=!Y1#ITocN}J|g9KQcN@E|FPu4YExe?2$pxD+;&^W3FQ`M%t+=Pmn z2j_4$R568VIEkrqBPxunRw2Y7B9>9#I4Yvhk0_DEhx@lGNEpx*S~O4Xka0Uxzox+( zIyZS`pUS+)mcMMN^_JSY;nY+Ppa4KC6m*sK;BxuEfCd2No*BpifV6!DX5@^q z|2i?xvU>&}8T;H9{NTqwzxl==f8>&jYtKHG8R=7x>EGRuUwYZ4#~gp`?GN5*ibu9T zfQ`5&t!0LJcH$%x6qvPq_HKTyY)>a5LwIbxJF;T;B>d0tqr2l=H^{nRHjH~2(sQ6T zE>cM_)U$UgORI%pT7@wfwuT}il_Y7JCMxMtiAs`0QIaHSiLjNX98g3#DWxa_h?t0& zHESklxH*j0=36sA6-W~+^HnRQh_wcTND+fgIKys++6&geP40EQ0`+|5xTDj7u_ylIL<@`@0z}1%q~Fo+@Ik3R&leOifS) z(KW6B^AvoY3^GG7$y^!km9J7eCNR5DAoHLkAQcBfGZ+M~TCy=!7Nu=8s>8-D-ZWD( z_Atq!n~AA35ZgWp+h>>y%xy*~dA9CsYZR`sO-ck}V$-Uu&4^(mWE%;ED{JO+H6)*F zC~_4@3`5VRbs%3L5m|mDps#$6REHIiVZ5Ls)2NqPoosD7z@`;4(!*PGqgrl1CSeTCS=ftvo)XyT6kIm zs#TvZz178MH_RHgW>&)J&{>{o0C@1>$G&~jV=p=E<(FJ~>4z`9JlpTcbp1m^qth|3 zJ^94jA6!9}nCxVUnaT7KH)XbyZYEZ?qcTV(c9v!cC!8h@|B&M-R<(zA+Su3rXDM-#+9af%1gZa8)~TxwUcY??6S zXJe2E&Fl(hSxZrnl4oC`bpn`jW+EsPBQY4p#qhMU0yDs*6tfwVWM)8C#Q4(gx#;Y zYTZ*0r}y9a#0BTSe{kL3$WpDDas$%&9IcUz@WhH0Z0ArQ*Qu0!@H!$=PMPDXhygeH zOZ5py$iSnG*yUWs4?8){^QjjA*|B)|)d%sEWO`ql0e1mm64HmPT1k`f^a}U=;!qvrX0eV%H+&dMiuW zAzWJougqjXYpoetbEes>1mv1?&EmqOSZ7)@G?UACGvT$7m}!G_!r3;(2DD98C2cP= zb$-yEw<2c)#I1$Xde$_|>Nptkp*hZG$HV}vGSCmicBo*_*7cm-po~q5=@_dO8Zkh# zm|IM1>R)+nH;Y?9*FrFbDh1$z1+?w;5H1GtF+gj>h(g<<)o_$VhC>Zq6A_?=@0Dc0 zj%f@6DFuc$3UWizhBy`3`L41YZx%S1H33A5g=q}CFcGvUNr_o0vI)773Xm_v6gjL= zCt-7*>!DhPI#e@l=~bPlT9#$Gu4S2xGw|@6ft&8Rb4BA=G4-%%FYS4yG=Z(UT9$Kd zNM~6#v{6Z-2|!lP27oSt1`;5LQG!~5^82g)aqB}?+kf=4_dIFxGwWR-k~BmC?l@Zm zn&mA+16h{oJP%9t>pLHK&wI}Q@D*35LqmI<{KivmfACJYbt?Fovz;B;87i^S6e|!w zB21fKM2f&fiiiw}dt+)gBrcj5a40y3Z0*-_{R(%X3wWaUoMK5XAnqV?6#N$4Segaw z6DdUDgOZ(xkRnA&30o^tiBd|b#3(0B6>F_?KocoY4oZkJAR*+rvMbY^ieM^IEfq8h zPTy^kx69LP8rv$Kg)fbC4F+o_Myff{NHn@NM&}r%F^Z{6bIO!xPGtqf^K_x;?5n?0 zm&NRp6y^>p)q4w9KMHROp4l{?A#Bc>bG0{V4!~Z0wr3D}ht2*Fv7gm$8S|rCq zAy3zHHr%AY-6Axugz}ip6<(Uarq+T#7_X{dCo&M&T4woMt16J0z}$QfEthx09Ll~t=M<# zLyx%>XPOB|68-+Ehn9F+2spU z0DF$v!^pz&aT36y*fvU9+eH)z%6^z++1VImks`asYnV-mtqK_~4{F}cPDN+eh4rtij zRK%=^l**XdQZ^V~nJ;=|E>uWBg^r;Mx(TO$w#&UxniV6}oNDUQ7_HHrW0Xb;q#8<_ zDWk}Wu7ZoTC5y_%q0RmXxVj`Ihs_o=QUOJ(hWRdJ>6$amdCr;ESx%YeG^bj|inLP5 za?WxPIL~!v)|a%&cC}<_&7_z(SUM^CKwFF1-gDs}ltPwcYA)QjnIsD7G!NW_kgDLQ z0BxEU5@blSWr=GC^)s0zABeRI-Lp>YLB^& zvy0vfy18I{5atSehEo>tOm=?Ys=_TUkn3B*k>SEMJ0Z&OF0*L9jlgZbe+si3E>Q=> z4|W2*Z7)mPa33f!kwVUzEHBuZvB`iUJ206!gJvV*Lu6(f8VF$1P;JALPuEqx zEql3zNa#GMVW*-c(9;{oKD}vZGhv?&j4nhdgf8%y0a%YFkn_8>!oT9(g15R zdRGQUZQ7U*Z3;`JnfKl68E{5$1aB;A#&iPqcyvr#r3W_dlM|F8QbbA-ks`LNZI~N{ z4^^nv6OwV{!kapeo>c?B@lE9EIHYQ>dtdy)_VeQ~<$$(Bm`R9{s>#xILZnD35`7^X z9)$uY3LqrJpcF|?IoYab&DMU)%~2R|mRrI9owa>oT>xO##DTPJqf?ATBV{XLcjp+z z=+;OX%Dgp0N?-vWL@Hxxld$X`PmFTO>6@!I6+v#YcaP)+9oGG$SN3sf(?P4+yJH_%+TqgHjTtAsR33`4zU+wkkxt$ zxdUKUQvJrX3|6U2%&e5NRkP|)ndsVyfHDeFqev&pHHRymFvd6J7D-5JR$_Z09iFl* zAF7EoT-9K%Qrx5QSh=*4=eZGlhDs845cBL)&n$&tO zm!(ezu~9v+GM}ho)}#TYG_y0p12d4oOVFmANziB<)Q+nvZ8Y1=oPe3c8a!oAHFYKE z(nvHCcY=zxpSKC^Z4{iYE=(?Hupk>+GH72XZjCc&o-o@LtS?W>c*r&9%&Fo`Q%&iF zC?Q3Z6A_UPJ`K%KoN)rpOxg~u;ikeOTFRZ9!P#C23gh)-c8l1Y@X;{0l`o3XlC$M( zlvYq@Ey@?v5rvLGUE5W$930=2nA>nO`9Abcwv z1r`N5m+a9blCU?}mjym%5~;&-u?X1^WtA*un*qtwHbd5~Wi4D8ik0PUGp%&CW-c$@ zB+ZgOv=z>+WNd%hZ_3{i#u)dJxd6wt7F06|?Z;w4@*N=NnIn_ln@ZE1Z_gYq7P0w?!vl{1lJ~RZ| zxL|7s0PXS;OjJU3#>_nwa+-bWnM=NKrHOFP85bV8JI&lv>7gOGU0co$9Gnk^1+k8 zd%|}=_Og9U(0i_*ehM#MaoYaib+>%z4QJm30C>;hJ5Svoyy|PmzVk{6{hGdSEjpTh zdGQL_ zj^10FiIG}&+eL4_43{ps?8v=fzSR4Fc-%Q(k(5sV@(*8o0P))2fBd8yr+aBZ^wQlq)zrn@r76|udh~bmKKOy3NUR^2 z|Fd^IE3C)j)F))>A{)sInM5$7u*n+0{a=0mxp>e2oc=5X(OS=?(R0ncS5E)xl%#1JPE@+6Ip4>_X z^^tU3{}QH?{b0>G8{y2QO4K%9f(mg7%e>uZs-CuOq~YY=(l+_A%dJx|oUQ`Ff`awN zc5T8ayhuiA(X$X3rL}Dq!*AJTYcpwiS~6wL$RV^1W{@HXN&9*-@f)qURiM}^v!pJ2 zhrqyJAAI;%f4B!$#5cRkGyrXSzr@*jHgx}k5C8q2Yj6G2J;kO0 zfQ=hBnxD7+@t&~$1NW7Mb|K{1(Bmubdi=q^J#g#I2|$DdNMJRk2{<+Ty9g@j5PQF{bKk8F4<+Y?YwDzWBfN|80E24;NeXA57sFYf-v zkuzsp*MG<9`w{`9jDeb;P|13S5n>r$iu66Uu!>{87gt%brUKJrsX*=^N{C>#UYXW5 zvk*neJ>QyrHWm)t`qF)Yd#=CamUSOFZoDGk!mkdTexR$WbwoJ+s-=sL-Un-cJMYA~ zUps2x^aIHcKc1OB2d!Rm2|Oe_fmiP{=d!nA^^N1Q7TnPfrO=BC5rHh#UH)+6?+(M7>ji& z6FU=N7WIl7WD8a_zHh*>JHhR1u#KbuAW@VA1i_`iz=qr2`_Yg51ON`EG$De@@Biw@ zFUP-q{ty4U`bK3k(zQwYeK1{jV8gWW(mzxspjJ%|1^rBu`*tmAbghbzsjZz!dT%$sW?Ju6mp)A zykb4OP?oR|Rg75(WBzs8qQHMUG~R%-VS6ldaHdMr))CcYNn)%lNMY-?^At7#9E)qa zLM>4myKeagLS0QSmd*5{bpDNvl zvaHZpbrN>aGE52t*3g=aDx$EX+W5SA+<|wEeb&`ieaIzo^;I7_@4f%US|7LeKG(>h zm6>KEUMmgCHS&P4t%O~*S0V*q6)CWfA!+Zvt~>Po^hV7a@5j(uu04XGhmoy$@@cae zpsb3RNRe6cFh_$afau_vpL%WI5B{+h` zE0JV6X!*PG!&IH}l-50bCm%oSp#1;_rkwhbDXtN`X2CTHDIy+!&`Gbt_a9z+`T_gc ziLyE10PAjE{K?}#@x6~9Jx=SK_dcrcw>Mp>&9P+wtX=$pFPuxC{rjUIJYpX(c>TRU z{nfdjyBcSI>)!Q;zjW_X!|e5v)83AA{=ObB+S_EqsxF9y_Yf4_Sf5h+5VILTr5l#!CY?ha^h6B?55$H_gRP$Uw79SvRo31(VutReV{wH=Bj zVicp@bRej|z`BVYZWJ<+q9}0PEMUudm5MQy4OF zRb~F#f!^(8@-VE~cg6ck@i;aOI$Sv3`GrpNE!cJ=5VYB%Om(vZ25uQQ`L5lb(|5)D zO#JiTcZEs1?~3=$f8P}Vj$6OVClZFVs&?gfN4u$8D7*)O>;ZHX=y##WvFhk|_2R4( zo<3vNy16F;c>JjhPp;%A@8T!#=BMxFr|y4xlkHVxNm`K=p$TFmo+w*XrHFvR|C#r~ ze?9Dl|9aSh5w-3Y7alR`1xHSL;gORr{Pn|15z(4o zePHt8FP?n(izgp`(J$5#ky7h^bKa3JJ@Ckv9(d#j-}Ans&;9i}Qi|02n?LZfDM!70 z%26+$^8Z%Z!q}VuB*yF}7oyDRNZ2$XbprK7siQC(?wSJIuP-Kk0yDNw3Z zswg3sfAjSaC8U(1gp{I{%V!+$<^NrqD0=dL-*fJ3uKfqCx#zNj&O82~^Nyc#{_*Fn zTu+MDto-PduYB*?ul7#4pm)l9zju$KmAA~C`resSzjoUirSRl!=e_sxYkzsg!SiMv zJa5*)U;D#ar6^GZP@+gF{No3QUijK+7oIrn!V|yt581AskpIsZ>B%(26k90*?J@Bn z-1+q5WO|}(Jb z@4LeMy!^6xckT8Z@i_)##_;H|7(EuIp?rtw_iSm@yIXV|B}92Z@qHg8(woBe`?vP zW5(m2>kc^W=e@53(b``um^JsXuibZr=(5EWDmV#8)YxP{IUIQE-Cw7J-*W82S6zAY ze;>WCRL~Xwe(V(hF#QYtm%U;f^VESb@e&ogb0Kgait>+5>aQ3JEclIPRQ@wBC(x0Do^+!Q?(VU-OcmMfE z9llR-Q^;R#zZPeF>;TX@BHVoGYhN9H;m4iS)s=QLpta8OoV3oNl_EeXl@h1mgph!Y zfC>!ESug+qc-IY|ed8go`r<|Je&-MW{_XwyKY(|A>mAP_Jm=#3J_Udux$D1PcFn-M zK5@!80DrpXk7s`Ko_9QY?YU>Y{`}A5q|e=RHLgAH>>FPFleg~<;N~k& z@6NsWLzk`mni5lX001BWNklXdABwt=hlu*b0{No!z98eUH^8K(0u<`gV#>>6@zB)4v3aJI4Q+Bh7ZMb$ji`9 zSa%6EuK_ev1~f&zoGrbiUaT&P*45&89YVR^j3ZSY$wcLZ@v?~RvRLS3!Sc5AX>wm* z$u0qMxfZP;YqkfIy3NpD+Lj&CCIW9<208VNT@5ONHius;u$7KEw<>gIKoQw9RW$6m zX<)5cDcBjFYY0YHnxPnMm>_%jlsLd`|1tbZBtT>$19dCAMw$`P1 zXtwq^{RpzuyX0%}jIq8rfYx?IBZgv?ShHG6-T7!;qm@csk;0yvTEF%~vK~xR0(eX( zPY@BHjli{~BWx86t-yZ$eh6!z;i<2DX_)7`&&)0$sh ze9TM!_Wj?UIu!)q{n!2K?FY(-Mj)W~6F>OG%hz9f)Z4#z?|Y6rdLNngiungKaMwQ{ zdBcI@fXS!)>6a%za_eO?e$3|RaNwQS-E`7EzrEu4_uqcs8zvsW0RDR0HGJOZCIXr# z9d_=`=l$%o@13^4$>*0(pZR3~IQF6+UNq6x<|{7w@rPf$UssxRCCTIeJMY!~Nq3rz z0+1_Bl-Kf1BR8TrC;=3aVpf3Jaz>c`rM?gM><+*j@HzQE-v6%2m%kA&y8PCI_W>A> z|L#2(ePEfbsY9fLoOSjgMi)3f1?~#*EfA>4C{LGx60>DdOeGsNS zV^5&sSfpxjc`RdC8hZd$NqIo@UoHeQi#><&NW?mUy>(z4a=I#ssY zZyhi~`4VlLa}CHIg~m$k#ubq^R88LzwM*E6nud3gwzOcOBqZOi)p)ceVsZ}{*r`^d*- z^11)>=hJ7tfA^Y~A3e^xFoR*0L;#q_9kt-Pvrl~U(!+lDhDlg;$JGoz>-AT=g#L8@ zsgovx*&3a}%9JiAR==Gnl_UgG-AURF5NQq6G%JlvkpdDT)4>v=#CAM8r&8t=95Wc( zkBkWnUiIaRK7cc?zweN7c`>zJH6o2TTVZ6y!T(? z5BC2W<=rz+yyM~%bguc)+va~pPde75K%%;HeI&Rurs^cMpy66_cA-oyoc-&1F|308 zTM3ZTW`3hTEqFdRmBE3)oE-|ZTB5?^nG-SOoPD!%osgpx9)`Z-gCDno*eR3 z?ixy_BLJ&n4>84bob5b!b#-;6X_BU6Mvo5bxsm3E>Yk|B!rfh6)IBQg9zAN0y+~3? z$())3r8rea=GLU_S>m9=w%by2<*AtK#S8#SHgPEptwqRX0+5W^O^?}Q&ppP%t}qm0 zPJKTCz$7+)wu3*GCD;G(hfizuv{nFqx_+Vwmeum1P5DXBdx)MrnjhNeS9DzLHVf8r z4D711AY2Ix17IdhIr>8CeZ$vZcIUqzEM5;e>b>;F)0P}{+ngz)eHu661f2VsU%uwk zFW=|x>rVKOpW%cPna3S;%Bz1qr|(z4Uih;8gd`=UeGWeHRXF$eEB|fs6aZ`Q{qBv^ zPdR@d*6VJ*=;M6;rLP#zSiACjH{ykF8wXzJXSwVu(GoEBdC3{)UwHCQ|8m!9`^$mn zW8$zvqSsw~$GxwA-T`KhhPkf_pq!B?S#@GIRsabIM2S*eiYQmCnUu=N*06#~kSn%l ztSM1?DETbFV7=-~|NXfSF8J1@pS~Gm#pz~Md9SlmvvPJrwrfV)a6@2A@@~-d zMPWMpQFM^eut4HLoa6^C%Q&8LTEOcqIEd2-7(p()|DbQm7YsKf0lxBOh6FR@+I_k# zUa4BzhMYS}fl)I`+1~7F61H-`4GXhK`p~*3{&oK;Kko0J z{+id{_u$&6p03HNdVwx{L4p?~b0aCbt%cFuU0rEcnx@^OMwR=D$l}zf8^FJI7}edC zj_Oj~-QBzG0fK@yhhZrNv&$D?k z=?~98=EN6&(!}xpuix^D@eJ&J+utYoeY2>q`l9JKk&!J2OmDC_bREZ3%;;myzQ7`rLp&m-hSqP zz4fzKzVa46_cIgRRC(MHr~D`8-}cuNCR=K>^X1?S2f*keNU1~tq|!9$CQ`(#S?PPe z`uf>d003@$*U`Ya-@EorhY*=dKhs1JmcMPDJw12UIZNL3>vvvu$`}9o>~Z|+v*z@j z`sH~)`Q&>aIPj9=eM7r5Z#5Il>Wz#WEE^JVZ13uKAN)T6(EA_Xc-u3*NjU9xyqdefx4zx5yQ{xbmJp!q*}!E?Em zv+RHHHZKNR+v8$PX6l67B55_}NU{_nr7MicO#@OeGic_an3%1C%^>au*{DmtJauTP zpRb6*bisxeRn?r`Xx~@aKLFt@LIY8?F>SjX2ISqK0U9=8;Z6Odrx8mxi{6q-c|E&f z=<;3`AzB0hLZQ%0+ooaNXvz&~n_>6ckUN8=g0@ZD$sgElT_zbb{3s&IL11$Yu%~S~ z;EXMcgIEqFHNu5V1#Y|NpYJ&Bbr*f;;!T@|-gwIEpRw0|L$$)GAg&eyMNYZC>ifc& z(cKfCwf8GuG8I-i;OnxX31P8T%Mp(1-s8Cwo_qAM3LsJa+G9!;0HjJgm#PRFr{(fS zV0VZLBWGn68gi5GuI@D(hyM7N)i-|otLI#E{Vlf-nrOn0k)C_dgu8BE@w>r4m6V?Z zbpJCS`WFR8_rrSAernXi`r148e!&6H|NDCUb8Y^>eZTm~8xnfIVAf82BU7g+m?_sv>*;txOhvhg5U8B3Z#-vFXQED{gnt3SChH6%kE#V;1OVikbFH<8x$wiD zOPX_*>!D27vV17hwOkKndMMLbu4_4Gd0xwH5FK7c5+q+pusI}r<2*JiBv(0>pToq8 zuiDFB=WmOBsq+|wwTd6DA2_UjlEA?;ICvJV8!VX>+(D(ty#}r>tyXAKy2i!khChl9 zna;D?PGR^SXVH4KhRC%{QpmQZNuKkcSzNrm@q?Ku8kFSKRG%)whwAcLRGQ zYv4(+rk-TSN;!-=_ONFyx$XypfBEy1k3M1v#?i2!waG+{ zUH1!WB`h5p4bq-Ki5E_t(I=X5vXl6 zD@+?Ub}jr=z7;koirVg{mzz=2dsil7nZO4Rt_*Q8ql&iMK=bANcA{z`XSa$Xc3wQnfZA z-FiYURkxWxl*qn$oK4W~1hSo|n!f$zoewwmW6dvqQ+XR_7=;Q3e4STCUwG&Jk1W@Gg-v?s!P zNA@|g4y9ZIAWAqF!$X;lev`8(MR&OMER_ioy)8P)$QQL-SC^4GFt$>ckvI=LdItv8FbJ&9z*ci#5$d zEwg{KT<5vH8{2I&4WbI0kb)%JLdo>WxV0K;3u8)wvsB(z{XICGnF#V#Uba zMpR>xlSwr*Dctk7b@x8FUJe*HH!DDz*B;JeJ`1;sN@1yG0%@LIEjg`#Fn(E)OF}%Q z7NNk0lkY1VEp#kIUjNZG2vrV8_R1B1=1i#W)|$-)nMS7}`V7cV8@)Cag5W+%d227}DhS_o<+Pu!y}L6} zNf$GlQ*2cRq?~9CPKf}eZCnY1bK90iIpyy5M5alU$$C?!hiZCLme(?;+}B<)FEvv) z{uRgaLl>TV2(T%CqUc`Hfw>S@QMqAj$X>5$dD@ECnP!(~qYtRDy?;|{*hAj9F3v(O zJ0nH&>03rA$~0|-E!Pn>&KyY+?PSl4H!TUKE;*+Kbwz5<*{IOZLYAnDp1CAp2Wfhn zvP#;nXZm`+mkEveWZR_eE#&M*OdPliN3_!`WDbr%PO0)%;lilj1_o0f6;ZjNQ25QV ze!a9U>&vjl;f1wrVnQxkv`yg9%FLaW2C~As+w{fS9~>{V4Pq!|`-LKcUjsBBCFS-~ zP7PLOcINw@?D=;6176f8TO6xPbiT@+J)DBG*r^oOENrEQGc3F4Uf)K}v7m5j+6%%^ zD0gFWUr=4JpxLV8No7(amw%MgDV9x^o)kpSV*iy%K5MvnmP~F)l*}aeT{8gRhM}5U zbC|5KGF!80JGBh;tU4rc2^8L1DPk<_N92Zh8>z4LaM%f|fI``tExl<53vGj0=di~G zS&t@1tR07ICtb5}wx3oAfxCv4q?05yM}%cLG`gU=k<^&FH1aO{(U3->nV5))$(%80 z+!+i7P|iBjJd|Tojcd8yRLeIG<(9DR>;qc+8I=E@Yx}S_RQ#y-S$yMXVt%^hd^m~O zsOaUAO-s_b*0tQq-#Hsu9AZIWuNZ9xGsc9{eP`%^vr$jmCiP(MSf9Oymv_}?qn*4| z>*3p$v&9!sY~aSMX|i7@MnfLL#6*s%;%t))!k-Pw(iq!7&Tf1=4k5!n9(i_fJTxi?ej4j)Kh``G5 zt~kL;&sIZjlzK|pqgw2V<)tH0$y@@s&sHhE(&1a}f_*=cnXYBwBJ>ih2aiRUg)JHrkkshN+iNIzvz>Hw^pkXW1oO%9vA-hJqr>&1F{3j6_<UoytmPZCeA7_Av6gSDWwktK z<~(PUdkF*o|1y;XvngAj<%f#CR(NDn?w~p3SVUOD&NXt)na=ZEROQBowe2f~ z&e#GiMeWLg+YiPK!nReno+s>;@9?=Vm*l2~#uL zmaW?`YuIGZ11I)^l{vPWMT>5(ArVQMA#AN-G~{IS>onv5K<4gF5OU^3L_!&-U8}HF zjI$KXFX-5z(M{~kIp>8t?#V_NsC>vt{vpxA#$8rVi($Prk>{c;?knDn1tp@bBzf!8 zR=evXCC>IPO}|?ACY6*b6zU|-L0;Xr&Zc@@rdXr^Vh;9n7$MwF=)#1Blb!0wy6V7z zIg~rCXdMXBmgLz<*rBxTxnDb?XE|)c3-4xMmMaAZT`3U9MKE^O;knifMy@ri!JD?` z%9gaOJ2C4zwP#TJrV$IO3n4w7) zfqBmK$vW=ee&fFAO&nvV-5%@@<)= z3n6t-vnGz9ZkdhIxM66kv3ExnYqlyFcHN-KKwLt5L%-|uHj{OtRGTRJZV^`2@3s*=<#M zQ%~~JwLt4a)CDdJ+`^$8WZaI=L0whTcDQd|oK zH!#B+t2;;3aW+tx*Lb2WBBbVU!rFwhUAk4AU2-XSs_ZDKt>toR;cSq7P1>!&wtUu| z7;=dg;N(LBwA4P6^f31eWasM))ezywh z1#wYXODu3l+y`WAmC5G4QPLU}x#4CO&ej@^jbP7HVJ)(KphUOX3g;7~B+#$_O98p`rbId97HO+)!po3bZ2h% zLs?eK*ssOgPFF?P@GVw&;*zH-6gg6J!QR~0xUE_{>CzgxtT(XX=^$rrtnvE-+m*u_ z%gXQ{i$!l9GJ z{5wclRB~2~C>n|v_i&du+dc=fh)bw>`5O~+=bT+~Y{cnp&*-X#;wFLptFpk&ftR4u zA{B1~b`N%ew%Ls91hZF0TM>}ioXLr(BF`ZKEHYaR8Zu!dnCnP`FO`5?9<|tXq)5fPR54*y? z=0V;HeaR?YU=rEI>?qxGGD4#+<5PR~ho2Z|4sy;6AlE(x_b6=P!We3EJE1H+v+OT2 z3)Xgp+cC6VqBZW~i@`9Vv@bTCU7A!2sZ@25$`h3`k~A4oNiE50D#=xnQI;!nk1CWo zY1H1Us=*qyTtA)ZjkSE!Q1;YN{=}y2$&IxqH`O-QvY||8Sw58IS_iC%Vhc#a6na3= zv3%EPLD=PgEd3T^vn>%av{aFAsBp?=(2A$aqoC77HRR6b5w#kUo8(965~wC-0+^bR zdcj|N%+QFL!sR}nIk&b@oV57&ox*dlNXgc{5UFhL61$;F&hDhtrA*fa5z(P(Y<0!2 zudvF{jq@lHky)~B*aaGAsrU`r?kLsj3Aj|ffPB)nhJ&y^59|eYN84bS(c2I=%ObZN zf)?1LX&K~=`8V9vnG9oiY;D@uZbyP8b~A?{BRw;eqD*T=_Ea@DvN(mmEv?KOG}{Qx z_+_k}{d~k7^;RWSJ6fS4C39V8uM~6(oGn8`!zhXkSfcHE&2~lTAQNU=7sy?A!T|8E z5h!9Yf*W{qPfr zFcv>SkXeAAF(90Ul!SW*{7?T+F+UajNFaM1Bvg_lX*#Ma8I`2nY0{k}X`;H4Bvq6c zt(E!DYL(e619#=QuH{_I^DJlckmuGUn`IJHPPtg)b1Wob`(wg|99?`>@14Vd?oa3vFlHTV6ez7OIh5Zta49ESc+tR9 zfyE1XFR;B=2yn3&j`-^e?tl5YMZ+u+k-aclB`QtRQEA%Um5efktyEW{x|B*RTN5#p zIW$x=a?L}zuH`z*bWPji!?NIXGt1aMUyVkfHb#o(LUwi8T14Ecwb~7{IjHYv9i`Oy zOrT?QK6U6c^44|G6kEivbzN~w%1IrSrK7fMi?che$Oc}wq{nUcw7Ye-w^9$>3iH$! z1IFgeuR5F~b>zE6K*n26IsP@TdQE||0r=}RgHNnWrOTGz_=7Khb8~YL5fKp)5fQPO z_&RXHtXcK$vaQS6kANZkT_JTvL_|bHL_};egyx(jEq*FCXLeab>;ksgno&eVL_|bH zL=(u;dWo~G(HTIYF1?M76A=*+5fKp)+YSW3iwFQxG1ha(7(n(*MnptJL_|akBiw#J zhLNzHseaKIJ|ZF_A|fJU7+|c)N>=2>v&8MY$kq`N5fKp)!v(W|ZJs=Dr}EMs^4Kuz z001BWNklE~h=_=Y?Fz2{q2!oX`4gA1BO)RqA|i$x^@l#E@?iI2+heKY8g@iPL_|cy zu)#>s{_IhNR^nXeH6kJ+A|fJUnBX^I8%p*Pwil|ScpVWD5fKqF{4kf6T2Wgy^0XZ@ z6cG^-5fKsLK$XwREnCZOu1M7pTNwlMsR}cf3~ok5^9Qy?7Mmp4NlrWUUn)_@!OIw2 zGII;7cyqCp3(_26F^g#wDq!=wibT^^4BNP{5fN~_to(11|15t;L~K*^&z;!8C^xud zCQVz_MuJIru~wQ2g7-sro~;EhZBoA`~0*vX-UnM)FO zBABThwP^bGui-7MhmO#{@_zSx|H{bM z5hDf6;LsMFP>`?#eR!nnh^>#_#jDw4_2ORRyy%7j@26U&848b!ribdshAL2}ryLL; zGnWi{s;ra`-aOoJ3HrkV+p;wHwtn#ac)^A zJE8b$1nDvRUKT9MnI4TBD7M|3 zhHTG0mLWsyFHIHl88{o-{vUVrz(keW5I>{MT1eFgyBeE_kB)z-CJNPdxKAwP+1B%x zq_?vuiK|YCmLedPBylpdRbpd&gWRW4x*-@i8|geAONWxL`LFoQM|fE{M~s|2;Hp;< zMDaB_S;$z=p3&uHQ`ZNGvZPN6@Z0Lg&}WZI1Vd162_#9KTp~~>ir^tJ>o4%!5hee95yXu-f=E@}D=U-X4+Z5W$28KIV?J zt30RbkezcIS;gCdK4hqx4_lO6a>V;_CMfx%%%`n+Jw`9w??Nwy_wBd&=nv%sPRCpogzpdO`Ean;Vb!{sAWzXZfX4}XK6TFe=vszb}TV^xUTEK zWv*?;(t3SFS~Vz*GQ0e(_7roBji z`NcEQCh_8Gy96x3EPf>U%gv`?eX#Dga9hx#+I)NO#P{PK%)x1s$Yt}bT-?i6qBl)q zd<+)b3~LUgU&1bL8KCkGxCUbd!pX5Oj*r7o9#$a@j%oIMr8V)P5BaRAdrS<5r-_Lf zF=A^<;a!XjwIY^QqkXzhhU_i-6Ppi~a@4K~=`%L<&54`*y+xef^$*EuHO@$q+hA!a zG83HZ50(L;FjiJM=wMO9%sziR&7{WyM7Hi1o?lNxIThzQrU=RN;sk@1YL z2!l*+hkRTB7xFtLkji28J9>8XYD1$??}u^oq}pN$s7M4z9*a|}-5KHJqze_KG2qW6Q-cf-4V99=-RJ6?z@r#)FmzpFBT7)9uxD$gT2{|3DLaPmXDE_)P% z*BvI3+wnt(H1!sF9}iVjKHlC9(_Mzl?CKunCKX(b8l{CI9%9H=-ar`O_oR077dXQC_Z5xDbET zkYF+XF{ldH$$;NkFD_7od)b7b%J(2@Gg%9FL*10$xuJziN^qBeQv|w+o^p-s>L`pJ zxsKKwG8rE77fU*L3;1tDOT0zms)4I!v_9YFZ$PZi4u=_TT!Te8SeL9*WB z3M#kpFRniPrKQs$f`emuKj^`R?fCvzK8u=A)k0kzJvGR0)dokgiPq5j9fqriv2QR2M=D_P5#Ewo^028X zV$b@mC6Z)@A7N@alN*p|vg@(W!XR^n~9NE@Mz~(A_VI)i2 zhF>5Jx@8OjH6Q~9BVmt&k^0^tUf$UjqeAHk%!t;XrxHt^%Z%!hLnB!=y?>6#-~Xh} zzMdgC#ujWN%d({)CgvHhOwc&t&RV15LEA2UkU2(on))rSst4?CG+`<)?uqTJClt{n zQ_(*bp7s5`^+1i7-0z)CS9xq^Fx;yi83LmvlR4~7ODg+o!P5?%E{xY>oZ-|WNG#i5%B`1`NaZ`p~wZOeLg_UDmwT`FM z*zn)Z*9ti%WV`{_U**3K(Z35X1hIW6&;y)}37G~&=R(^Uj<%DV%9k1yHFoEZKp4(@ zFZ5@lw>Iew@P&Br)A-LzPD~DdY^)Z0z)Q`n5YPI`2RC>PE>H59j|fEj85tvy`DQ;S z+;}cC3@1cIa6J4vXENU)R#zM$r+?G`Vgq+X*TWoIewn?S!b>C&O6Rso{caCsH&%l9 zFxC2iNsL2xwD6YZHQLwbb8mcqhRe3p*r@zT6;M}`kY&6DID|*;7T3{|)F**89i@h( zEkwrzN`c)1SLXGzV#cnmtq1ePjSNQQZ|G-hu>?)W5m|etv&*29G#svVtt~pAUC6?# za-jIIb80W}@|PQ(ztDA50m&8WoDYZPm;B3(QTZz z8doQ2g|i}@=0H?NYXGCtY0>d#d%kJAapOX#ng=# zOu{R=oamZ!_5{jk)lQX_Q3ZRI~yNQ*C+KXSt_3Q%)H5e#=R|_n&#r z?@vo;zw66_mSTxYOaEcW=zF6agAu6fveL^6;X;2JxqLHV6L2`M`xv7PHsZZV{De@H z|0Dn{jmBjpJ7C;Y zWN?5|M!c8%L@5wQh58>4s->y7JC*B#66V01-`m9~Rg2%CzWPga*?CqhaQ zg%zLjUjvCX12mi=S^Iu&A+o8FBTefo>~mK(;_bt9NsQDzt5DBU0K2q=jA`)UP8exf z@Ng61{9m3#F>VQAn-|T7`8KH6Wd=z0N3*9Rgc$FlXR5;;DM2O`lmHM~xTR)&$-z~0 z#>jg|WXGXu*wXvK=lqLH5mnycKflwum038Ac~8O{*vTq(pVaPc{*uyZ;$Il1m$`2{ zQSiYLBG*i3XsUJ>@S*_w%}10}fR0BUsczHv8cS!lhg%8fH9UjMmCcK|wjj;E+Y4F^ zPo!%tj3D(NYItjEZGj~o0f_fdL^`x6ml=2kk)4?@f3K#m)VEABb0(TqVsYL3`cBS9 zDSrOo%RRH%No-F5JXCX@r3acqqa+6pR{wzuVFY1}FByw8Yw_@+M|=vZ6A-)t8%N%GK>d+)g3<&51=;8Wzs(g zwOcPlh}Ex^H4yoG1y>KJ_n|O8CeLTNZ`65E=JWZ{<@kS$C;|et1LUJ{?NXRZdwPCR zoIY2oNc_g!@=>yzXDs-cqQe1uUB?20RMo&BjX2AP5inb{?>8eR~ys=hElOGPE0b3vf7R~2^n4% zw5ha*JA8*nzqIcJ(rT@s9GQ`PyQsxw8@f}_G_DEGo@8q2bVEVBtRo}vKU|iSLPM)P zzHY%B@fozN2?Z%$e(QoqW%&HAA&Il4j}H+2ms_i6Me$I?^Yjen>~(N<;Z2qD&e#mV zL#qlX-U$77laL3IuD=s-pflEQ=AAdA{CNR~sv*V(o}44xSRc=iOE74^meWhuGXnSE z@la9n%#^cYG;BtD~?6k#FGLa(6899js8)o=^ ze1xLx4v6TPc;ex#JC-m~nNaQVR;I)WYeU?Db0MO|eYJxLp!rr#nSwskEA|+2QF?3S zWthSb(?wnjTG?zBsuA-oP|iLi+AO*YZy53L`5qWm1&%(vt=Uj4cLETvnqQ#xRBSj6 zkqwHkQbk;xB*;|H=1wKCCGwKiJi#&3gwW7#PAS zPEy0Na3{il`t z!Z@dv68hqu73{f5TP=9aTI$W5eSwW8>W=Z%fkv0Qx$?-I&avNxd?eA0d|qF^NiKBZ4BanhB=PVQC_ z0ZHCn^gCQVQSyaDSM&zbxVwutG;T~*)v6lXZ8(E6T_Pj|M8MIo3ysML9@_4BrPh;5 zWrXi_Nx}74Su$oPkzbf9u?to$jE}78TN|v|^X!3b#tw(p{__TsZru=}mkm<+wSVwU zBx6r19|iopjtH?^wyQG{r%ugPbLPlPtWKWhzsej*ynZWW{`>o`-Vt9#X%Ng{@xg;R zk2llJDhlP^4`WcOik!?`?1p>B%dg+NpifDg>fVV)o{gNWW-TV5H#Z%OM}B)mqzKjM z`)~icsIV5|fbbZxdRV^f)Hr?S0G%zTzdWSB+Nii1|9&+hf0|ml9JXoDGDG9&gSyxiu34%>jjOI28ZOfSDq1%|bjbx3T%CsTi$(KwP z_#J}p`DSLG6y5JYuEortM*rF^w>WR9%XU$NvOBg;*eUzE%~f94LGibGjc{M2a6k~{ zMy^#sxKygFO}(i|>lEZzrJ7|$DCDb2GpPCTusYwDMN1>I^^1Y0M^l?_Hr3RWv`=aV zrR0-<(P=Z=b}ZH`UCT3zA>+>2)b99I$@pCKY}mDOfbq!Qw#DtXsS$u>u!wK1N`SQc z#{8d5aif`zXEIe(FT^IsghqEON%h0~3?nIFzzipzH|p-9g4 zQ(W?c9&@9e`2pYdfH=M!zq72q(&_#{xP}p|YjLwCjKiV7mZ^cNnNyykj;YuT62bU! zLnr2U@`#f)mNWDIp!qcT#k^szG_>VYE2+Csv#gBe$zj;X-ow@PmG0jU3MS*t-5>w@ z(tWUV<6J24!|jxd<+x4&_x`XZk16~Onz3soaC zXv669_iua4FtP-#Eca3iT2LR#ibCJ+6K^^qL0TC8@E95 zQS(!%k)er-tYx$C9^9mryL-ze*=03x_c{XWK=mm|gw98~I5)=^={dRdoLN73#mG;Q z6A$It+qMZ^2W<95f0}y9x)%y<288Fbc!=JRAo{a=FWuBSzdbpm3VM~pQr*le zYq`H4Fl`?qSl2Q*L2I(qH|t_Ln~-3gKJ}Cu`E}hvpMbLgPX;sEXI7#V5nNEn-&uC{w1P^fF-_Iqz!!k*flt{AH-N&J>BU^RV>p5?X2CB_}WL6 zKB8iC>ds2I=e1+?x@;6br;v&iUW`-GR4-ete^fMqA8!VXE2V+ds&y^0ziB=3^A|z% zPaXoxD z&b0gS>*~`25ER}WJE~*{a<2oWiyCkcN?1XCT#G+*og}l6R~o5(=jCYin;Zd0lNmw} zmK~PM8%~3gO9BPzrTvkT*;F|ziTdPDHOez!cFjE5L_P2t2PU;`ft>8NKmEN*q1{T( z?;|^41S-3^1$lu>5e}|6NuO^t9pbDr!V++8Ba_*tdTFIpFP#y-m-EsPdVT7-a}5Xp zne)h2$e@=*t3V>jSU9ivwc785y6vym4wi(?vESac@~-lKQj*R?O6Y7?*q&FmEf66s ztqf%uI8&FN|6LotXrlMGI9u1*@@yfCAAu+D1zdR^K$is*DZ)jyw&E797kYi}o!SSG zQNuOKclJ(=OZ1rZPsSP(*P>F13j_l1J&RucoAUkW>~^K1;d@rVikn4J<@YmSDtf~O zt#oAWWc+i9Q$O)O(#nd8A!*9z(;7PuB|u|YYjcXTjh}7tX-bwaPS0*ugaVaWo5VN# zB)l0>!svPA&F+~qeu2y;V}W=;&CQyie4DrkZ6yh_2A}G;hb%f+&%qVTOXac%J`C+> zSQXhAIAC8d@c8r;*BM3cUmehtT<0U2=@Fsc(^|lTiKZT-vVFyYqTqCnHpku-s@txs zyBLPwtnFNQ!k0Iin$^{C875kzp24s{`j@uDymXROyQB+a4B$aHO38>XsuYP5RcASv zx*B`gIWUb;G7$>k_?ZrtqWimzr%)eNIC7!f3T_2QqRux+yhJlMzm@d3KY!BWWIg_K zZB8CBl4vXgea6&eVJst)G1Zt+JnVj>5~XJ2F`eb~12i_dHm5x+YULUhVTc7I27euC z)%y5T?>EB_H`=ky$1`=l)1ftK0ve&TmAdZ92SdpTH#&dZanQEx8DD|3ZlwVyf=Y?=A_cR6PwG2)LnYe8#yn&e|5s&jwI)6R!f0*lAujq}GP$s1uMhi z%2DbOg(Ry|BuX#c>rc^77vMJ&mFBg>=RYtxkotU@0?rz5xgCuhFHPb4VoLK;9dh?} zSh_V>wO(Px3uBFEX0I$%J*;KXty){&mQf$+kMZbVMnP5Te*1oV>pH~?*2X8$Q38?v zWU4h+-ZSRv;T0Bh0TzDzh3!AGm5aHUwf)tzUw8U0WKq$414lk7g29eQJbw62(waQ_ z(**1&@ZY)sTjmWQTmt=_{F8vV`@;8WOG%6)$E}VxlVvTR`1XHP0o?Q4xqm>4abZeN%BpHyNd<|dD&Y2c&NAdRPZvpw;-v5(Kue)1B>0l#bZJj5@T#z3?u zPAq|32QO@nbc;=~Z5i_fg6?NBO2;N%pfBaOktWa<)Wu?~Z=LqWV_Pye_xH>~DV!eNh3;sc6myuqOVB28 zXR$876 z`!n91OHc|NxNTwI&tnaw>gU@?(@KMn|X;9VrefPW2TLWn8^Z0q4bzZUWA2&oEW;5*ezUX z*F1XBY(rXMBlPMcz5xt{QLB-A>y;Pn#yY07-s=ALH|VVk8myr-#`m%XFQK%{mez;Ka8A*h&y| zk#KbnUn4H5a;OVtGkE62&8tD?Ot)n^yDa8`zdWYv(HE*IZL8FO%?C zD!YEMpMXSubFAFFm#XkY2o^qRag`RyCKIRCQ{-UPdqG~=-JMJBpbUE=_|6X?&)`2D zmRbmcx2$@oRk>xXBQuVRtacvFhyaNFTt6ELVRAzHPZfH%q)BAP+SIhS#$mk-wZ(r{ zVJoB-SX84mucPWBa0}_e@!oLHJK^y5h~++%i$Wm>}5A6I1ud zOVsVrtPcl^61IJHMTLr+dj^j+S9Z+MLBjJ#F3GU~{MJ;;TjZeI?Ix%@6O>qEJ2ahu z=f^}%XH15()nsvMsNv4&IrP%`u*0*BKeN0iCP1oiZ#JV<l{{xi(lep1 zJy8!X+W-oThvYF$UVJAkU_haWu`4d_;k+j};J0f%cV5^;T|l z*j;#;tl=;iNkO9aw-MT^e`&KQ_`Dgo^IYGv@91?wUq^P z93-{r>gx80a>xbERr0XU(@$OWHP@Yu3xP+Q1lb?uH{9LJ;z zS~hLmE(ibAuWwCa_^WwTG{O&B%^_eJ8Rg0n=IN7V(6lcPfdds6KXD!BH`w3{M^|FF zY$!0|AN}k+WXd#Wz%nT=fbIS9lw@U%nTtP1+wS}XY?d!0qsZbKKV`X_sBtZ+E8c^e2X6qLYXpPBk!|xsGQ?)$>KOtshIKpKkKUhBJb( zW`vsXjaZBFn(b0UgoLOCT)*{=&hF~Vva_^Jn^=}nR_QB|C+s`ERH^oEwMon^Q$ z{KMjpAe?z;L?IJ}Zwi;}l%s5ez<9 zmpLh7_ysj=dC$+g1D|O9945X;`dZ^@ufq?c`}rOo{Zj+>@9v&Xjk?wZG$vZN-mN3k z6MeL_1uTtS=FtQcr}3NJ)%(GD!iN(&89EGLn+_n54@;Cm9VPZ}hMlf*Y%1oNLL$zZ z##{UniIR{h^yz`m9;fjq}UfRde3zr z0ffvBGnGQ~oXYIvuM^_*1hbUM^8*qN9i@=mnNZ{dm5HPmh^@$z5g!B$d;kx<}}-nJCk0DbJW?&@6B?5VTQ zD;74ggrc86X>fxF)B&f$EI8dACRke$w}oBp+Akv zJ##xyC(W`*jiKrH=o`Bj{lS@I%(kJKGm)y*T^J`ULJL#5bQdix4%zKZ_opmZ>0c+P zMVXG_Qoz^SfOEl~r=$;Nd|ObynO^PXQwv7G;^zrbnJWf7Ke%f@<`-K%@D=BHHeTk4 zec4q&^9>Wf6x0q4S+Q*qX@H@gACusgSjTnhDV4d*sOkUcS$p&9Cf`&amjCAk`?*=24|Cd2Z~!hc~Dx-ynsI?g^=TXbrZZG%?K>RGXoC@iN{9V&Uy3yPBj{k+;4gt=lV?$oYLxs@lM20 zrJky1|9ejwFO!#Q%;NSd2ks_w8bQwwz#FxEG*k7CAF}n~L9(bBew6Kb1V^@};&;)A z86~@xz5Mpsy5_>2mX${Rg~%D^+#9&)9q@hZ7o9mvmbHie|MTlhy#U;nr^>cy z1?;hoT^bpLTEuR)q|ZIdG(Wp@(M&rbFgbUNL6rNRgnQmG;7A+f@}8-3-ufsG;9EX3 zE(^Yz(aEn`X4N%IAyqJesZ`RcOQm8!Gvf^y9rPIzHe-FXD+9%FTzl2C;<#y$o*CKo z$V#Qft%d01__(VCFVMw-V@bed^f&rlS8_;c=_@!h_(=)oq((2B3bdtmzS2?TsCcPi z*Dwyy+r(bI_qNT+9QKz(;Jj0?AitFaAxr3;fnrp*Usvq&qi<0O{UVq~hP1uWk9Vs9 zhOJjKXRj`?l$i*hPcR0(am8H6t24V)nt{T1=(m$*y#icCiQ?Ng6|3G3^<}C%7G+1# z&dkYXq`l)OIwy7IdyiGIlilnVX=<9vU=bVZ)!1AZ>-kmskpsmFq}|8CDh*WxX73_S~Dh;;7Uh-s>kZz2s?G2tR)I}NaH?q5bRdOEd zeS?6S#^}cFCys7Rzmr$n5fX-T${~QPHGf*2@$F_Z>Hy5OtNBX878v0OrAq@NbPzm| z@6e-Vr0HmzeZqtg^y=Doru2NG*cth0>DTNtt123}G%$AcA9Pp2(cdRh3DmMb`|sVw z6T4+o29sg>7!~Mg&D6F&YvG%10xl#0$8J)dL99+1|936?JdcFWr8o+lIWoJJn(;0( z47tLY>~ZLS1Y(kgwp80|BQLC5Ht+}4Y8t>3H_>fs4mx@Nx zt^0)JtPy5ZGfrMSx0QKGJ+QO2v%9ag{VKi=(Ae&Z+fwoEKw1ib8-^79(i`B;t0*2* zu>mUCS;<0mA@`?onO~UzO2q#*T8qT1^UK>GRb!2E%ZVJgwRhwy)GmFU}4aOANFm}-~T!fIVsX$AGvmKV9i*) z%5etVfm}7@;3`}x|9R?Au*sqpzq@~E&7A+XRIWvWmW$UzPZ|rTv$5I&8j@D#Se560 zRc0au79E`8&LLjj#Sxd6-sq=eR2UXB=U-4@R;z1^`T~3CI$?nfdb6vh+WHYa?PXfd zKNTK`DD1v}W`xeJ_HUmq7lqm4W4xK0)?An)(PkrG`h-YwE;&E`11~Pz8lukmzq^M;ssf zBu_dw4N92A%6O+Jo}UH0$JamwTT|+{`|`s2 z?W5ab3kaC@jP;?)m(RaCwlksrCdUsnpXYfnhi0n)?}C?W4w)<2Jys7zePs}|FHZ%A zWQ*B)HIc!;TmOj9S!8(X>Z95(+*rWqB3iE}i=o(Pxc*|}f^}sqy-2yw2+JJsk;GC|z zWzC!9I|Gqe+K`9l&b!G0o-I%s>L_FeWgUOh40_L-+_sf=dXe^vrEJWy|WoAAzE6m+Bs>R9Y3HR61NLB+xC5~WLPQue;-iLRZlFnE5iTpK~A2LA}0VQ_`j(11A)hO%6yMYhUq z)4``B${=^<@1aC7fe|29R@E5=c-to^5Z1riz=XFwA`LiZPL8^`V9q8 zP)X)oK{SJQLivWxwH+&NnB2=zcU9n7%gRnFyJJzi&(Nln|gvAUI*fRbIWpIk<|KHW zpj&0TINA+=D3J=}$karbR_Xfe}z<6?l4gEe173gFmXUrr+1& zRqMVWE6^Q-iWzTabjm<4cBC5t3SrDttc z4RA>64E7OlKl@gaTCytN&wJYj8c!PXkfcRMPwue#K|6uW5b}g0p~_*W#{olytR^!5L>5U_R1F>)zeT zuc$+MS2}cB84E zesQpo$(~Jire7+ z0IqNuGK^2{H@CeHH zb~&VL@koexe!f8hF7ORs8q~dg;@ff>hQ6j50r<2Vcaw|KTFX)TY#YGgcYoV%_1abS ziP(!P187Q{<=}nZ5Tw;@tU+6PcgYwoV)_kd-fC;jk)gPk!J=QwendBg2|BUV{?E`swsU z4?~8e8C#jkIpDNL}ED~Y1zc^ zLE=qYIiPgjPk7jmod|@RE`#lSB*k*mb=$@HpVN@Ki;;AXi=Y;ByaV*`bm@71ydr}0 z&FR13_U)0?i6ovoXbL~Lg23roo)fAZ4p~sDTs}? zV{^6q@(*{a=4IWZc}suPTMPpSF1+AzC{cMXphLB()AK0M(bMbid%;he+SXXhxs!}? z&2Nk`f_x+Uv+;?gWfliAjT+oaL3QJX(c=gBOX(1xz^O3l?Xo`F62090)Z0@Cz5S!k ztS}qZUVR6w*^cSN=Sq<;HEH3os4ZI#dGJSL%scVgB9`tvYU0iktV0})jPs&t4cFe0 zD7(=e5y0_Yrc}>Ywm8{@lMri$---1k(o&h@yng`3&NO3%24up%zYqOeOH&%}7!5{R z=cC?m0acS;4f$}bhetLAQ=q!0RG*$l7aw;>fa7!R?4bGEZ3?ACtxQHFnPXWJs-dJ4 z5`V%|^=Pv(>@H%OCmvO3g_Cydy%f#7pkWRtza|6|WjvF@TZMOsz)9yb~- z881l<78t8@sUli0R2vJSc^(82ep>5Nt_AL+=cLtmoF_U1ylI1xTGw{({-O>o>^&q) zg>C7Nw}fQ2*=YYLCXx3ijjwFzzZ@C`BVZ_BxGZ#xXPd{V3ebUpZTPH(T6e9Sa1lQx zE3inxWHn~LTZw=KPJ0VQ44?}W1LDiC9`G66$FS59EoD=pA6k-kfpVhD z@{qQ)`Rr8BX}a3PhQlP^A(zC>!E9vw9~1E81~v+guY>wS1pxOd@yIgPdk!unAN<0S zLat3rDe;F?TqD#9;9RNz=NkA&yKIT!nX4Y9J}7 ze{H_!4R;Z$WOm!cNOf9-tA2Oi)urG~#kHKv@8469&P@^n(;$0amtJ_@<~8qLAL1`Gx*n7Q+tgS^f)%&8mpngss~5 z-2StTNJSm|&+Jb=voq~Fd@}h{V*kF)$w#mXzL}QxF2}I!Rdi(xJg-4qcU4sq@XAi& zRGH2T(}N%&%E3SIl{_nmQJn??xA0SND2b=PV;K*?wc5=0dCyldo4m?tqpM~n3TDb0 z0H50s9elZXNN1QYFl-Gt&7I%qvQeOr03ZguSF-2IK<~w=`;Ip=PAZRP3@Eem9TpD> ze61M&8Boj6t1WnN0Dq=&|D(+vmoA;=sY*Sm&GU~CKx-0$9T*Ya3d<W;j;rSTMdAp}V=0D3V0gU4!D#5h(h=wNpCJyYrVETwc~trE``U{(xa?v)S5#h88~ znk5n^j`gj)!(%Q5Jo7t0^%mvP3a(awx7)@fuj$W3NVai$lE63Ai%w;1)TV3x*SM%2 z%@T64(Je(kxf^1D1tJt{j@Z$Y zV{}#Jhdil7UaIqyo~ItBzlz?gNg|=T0zyuZft7lO1^mZ)>gmI|0P6Je(%AnBnmgxG zD(tAqPo$`XKQ~4Vu?j-(C5>uSbRws1Ie?l6_Rs&=R-$JM)HAB)?5(gg5%$+%N0vNv!iX{J{`Cg>T_luC$!Z#?h z0w%^&b6f}bPPV845NARNnq_Fo7h8pZQD6NGt)h*Iikwq_hwO$ybJZl_O!VST4msy=Dk|e0Q6*JgN4E zV{=G5b`|x4zmts7%!9{B|M!(9A zQ6Z+}S~zbZe@o0G|0CH7EpCEPrhF!ii-AGqp(yi4#}{!l$XP3_I=xFK1m64YJp*u| zNxQ*~*LVtKv=MN$Blbu>(3r5~ZW7sR_@}D{_Z?fL2G$w<5gwb?Y3i0xtVfa1bRi>t zDb83}JvkA{N^^E`n@XcmAFlh>r>jxNxUhHEL#vGUccJ8&|D^bJv$2+TxR3e&;9hcm z&vT5ybFbY1m=kbmtyqQXOg;!P*=-S&-2sStPQQEQgdwo>&EA2-GhoikyxK%|RG-;t zy}s>t4>B4LplGa|6>7a&cYc39cqxv@uT{Kl4)o+MZmx!=HQ#eLHPCn-p$F+=A<*_L zMj$i>+_z3Foebizz}_*R1uYiO5M+!sMVQ?cL&EP^JC6cyhMlAOvh(wWs~_PwsP^&^ zM~42!Ptn^?5{UbMF~(J+KZ#Wk%SX8L_I*lHRAS{3#07{c2MQS%drA5nS>M%~QLAa? zP&#;6Kr>~$aVkQ%;lYm?##?wL7m!;QlArjwz)PX=yKJK{$Jp4ZDXGgIYavtP36JZ1 zfgm_+_!}RWnGq(7e9Yg&j;%*dqy_rG+_&8dz5OilOo?4&`4`&MXV{V;y+S$s>lJEU&D!YjFs2>oN>YqCeT=RhTTqz}$X(U!-IChb9aX3!15a1?5M zE1+5TSp)B^s%yc+9|Cd1ucpF|rFfdW+iK^Fi~I$Uf-~CjjsCr*nQ89w4fbDon_Ym2 zn_NqlnID~wN&T`Dqzg#3QT%U#8NE{IKd*j;1ul4i!p-kqjEq1h7hBdQM~A1X@T(yD zZa$omkU%;YSi2b~>e*{7Bi*s^MbCD{VW7)xDdUa9tG!yA5o#kkp(dlH!n`|OUie>G zZe_uwZ$zCHET%OOJCs!M<8bb{tNy zLZ#P+MnE3WADDR+YLi2ksKtOH!~_knn$%TnraApcMLcWpG<0_YTeLlI)gwj{0Y3ui(jOU zFgoxV{o;opNScC`aOK;lnV7IH&a3BAZ3K2!69V?Ina5_)eY|P+9f%L$`(s-J?|>>> zOV5>7!Qrl5FV`lXQwRlmyN68E!J)rj-t{W)J5Z}m_XVGWFm;Ao$i@Ex3i_yf%u|Be zKab7gu6Q;pu{_^dVvkXAcJKv>MZZG3v|)mTW20^T`@YTMXt1-DGycZJbs!e0v{jWb z>DO{+{+G%=vuaw{ws;EB*tZb~Lg-;wL+a5_GYPpHqMkJbvHfM~2K5E0%GU_yO;Jix z`y3VVi<^-fUxnB%$_!P;Y*>)Fd@T|@A#pa_AD}7n?*_>6HGpVdpr?gK*AyHup&baS zHyc@D!x)vpTxRrgc1NGm%eN=u>WHfv#QUcn+?83eV-fvm-KNGqpZ{(G46{icA+5q~^_GW{)az&}cg1eWMy z>m z^${+b%-A)?wsGl=cdUIoy;sVAIY_1|Mcepc)7W&T)?uzfW}bk+JVsC%0>x$^v{Y^m z5wLA!evS425%m>NZFJGr!J$ZzQoJ~Yq6Lb6xD zgZIn--zaVzg3QS;^>88rF-Inz=AREYpk~#Nlj-1_jWT}XLz{(#B^-cFRyKnDgdjTa zZ4lLo0}+(nX@oFxQ87Scq|DBY2k@ia4Ee4{aW!<7=pqB5V8}5((~gMLT;Kg#g6wR3 zu}=SgHg*}cgfQdR@K3C!|AJ<(!3M_NM)FSPJa>zMcZ!<`Bqw;Be4Y&?|JBfoX3X%* z=C2?2x4$|}?Vfi=0E2lplY`4b|7S(x7{>(MNx)2fIx)gGSz=ZfG}ZJfx{QJIj(+>J zLhm0Fbf{`*!Ox5TZC&)ZcsuzUm1?O{b)-ld(t3~GzIOavt-!nGcM$|C`68nQiv5QS+Gv7p!Y zKzsmTPX0$&jZEx43IK3S_mxrQ2Rh(K#PMQ8-i&LJz4gufT?X}!Jq8Y2xmHqy)u=9i zBpD;)El;S7Sf&gk!Z>plWNUJ+wAh>`{6Fo_*!q4pFU0y4n@>QZ_6Cg9|7%Njk3|?r z37_}93u`RMa$ekNf77KS6cruA#7c-JmamtGaGdDclcq6@AO4EL7O9^b3ZQ8(lTVG1 zo4?fXs!jM7XLMBUPXrkg{m!-)(RxGF_h4}YECxD4ImQ`wBLS`IxnDEkZ(=V?6JVX+ zr5SV@e=l_~5T#7`AY3CgGP^fokl7pfS&rBv34DVR+rCIU%J`;vAov>1jAz8V-YLeOQ`9;ZXXYJNmqyZ|7B23 z0GqnwcO|VndmYt*ZE_2Y0(b%7yd2$WP{{oYd28ke{x8;5+&2|+dyURYKU^ovH$s}T!TXhdmV#L??0A`lAmSRzu@^9Eb{C3 zuR~?Q-2-|dJk&Gnecu8W3Pxx;CU98ZHs@BD5Vtj(J+E^N6N4QE>b>dzazrwaxJDZr z{n`k3NZ%TZbdNRna!)WMPIwc0DB@YwD^vY3%#q*a-z3G(`cxmr&eoSja)j_XL;K&f zF3jwu(#ki~pI^=>6537haDMsUTbD)22E3mn5K01{E-ru_oR@)~sNp^EySitHG3Y^f zA(a&XFyT*CFM$6ncv)HOx!Yb0?5jLqpc8{Pi(L_ky%3GFnW6xu99NzPt>(JA$pJy& zH!+i`^@s@rKt{|-kD?t6JA!|QLE^n-f)s$DY_*=i-_-TZ7sdcUz1PTnTj9yS7W5k= zma&%x>;Zspu`1R80IxWM$!sbvptnb6$9WLW(1&Q+H^$iLh6_P)i3qGQzW>x0zeg<< z4Kw~1$vw93QSgcyiE;66Pw<;V;Fex%O?|9ebuQ$6VOt=2Xbo)v!%k(i?n;ma(nl?k53 z6PS?+w15gT6ufqc#)oCN8j%V`J_io$a<*>r-lD30^Lic3V`<(Ii6{1gIa|uEhDQK> zQhm7{d)iNY3J0CMAcQ`x8_>0njHmSoY`RjdHUbf1?cvVG?xmMo2sSuwp+L>PQn@46 zL|u)~*Zq}U0c%9b2v_M`Yb@d(_>Vo~%c(S?;a^*)&O2MWv8sK?k*nZUK0+5ECiO{~ zCkfQ!OBIk~sEWVzd}~Yd>Fj_ba(z6SdQEF419EoOf3H&y(me#U24pCgk3^_?dD=4W zl-u0rz#-h1A06WWDfl z`Xr`twVv7%n1NfakbBve#c5Q_m;d@>B$c^PBlz^D=3{w;?cqV}l6E5wItpy-)b8+> zVf{cq2Js!Kq@-_Y6OI&i*UKUy6W!OLKoQ}1Yl?hA0{%t(WLz0<;{m*Z6NY`Quh?#X z&sA021~zs>*<;0Qi$Jm^mG9+VP~rE{r{7jHJoNd9ZeYBdma9Kgn!sm)(GNGKJHnET zgBB14a4&{F0c`$c{$Iq>`(bxme4wiX&q&HZ%wEw*NFmSS$^S$*S=2VGmQ5{Q0J z7o`(egRpDk`vvA&)br_It+9{N*<%xaA58^Z?p2mKG~pe&4?>eAo2xy$ZD(>>4+fxW zLs-sQYW~c=24k<+;dE%M2(>!-nB!aXXkI3UN(1soU4m8rtHUGBe*&$Ga}k0pQQ$Es zqA|cRxe4uqRGN2?@FfeA5zOz0XJp39T`Quuw0scjX{~w3+gK32_kR>onX^BS0>cfX zoNpk#gUhB%!`^whED?r=f@gk=LNHiI4)>{pD&6O{pH4UX177*cP|Gv5U3b>{DwSU= z&XogL)N5PY&*y(`X!EYVn=Xnjw!|M+nUY87mWSD9)45(aF1DY20xqg$Pd1;+|LYq9 zD&5xx)VuE1Ms{gBrf)Z!4*qoZD%RMuLRnh1CVghkPrgriAAW*9()%KOVW+E~Hy5eL z9n>kQ{3aRe(OrD%JXkTi!OLB(Q(RfyQNoh%*;9;ilODDWyUFc8crUlUx~saGXlgjp zj3#jrvH=GPZ_7(!c*pH(nK{kRP5E6))O zAh3v!l(E3*#vS-%(GDw~F0n^I@Cq?yyi^fp@l7O!*b-TZ6KLg}qq`91H$%Xf|KZC{ z_`TL3cAc3g7@8Ekp5Iey)D>V$x?DxoaE9)5Uwgk{SXZ|iF$wWvO=_HZ%N)88Twk*R zPv(4?;e08E|FwpOa5&ZxAw`V_TaI^wmF@jI!q<(zUUoAaO2;9lXLsy=r zGHN+v_~(S|xd@H=vbYm7TVjqzE+_a}D0tjqG#-JVTzh_}+R;Q+NPr3g;-@see^~ih zrUf5?t`)@WE|3k`OEf}~IV3=D{+E7)H7e`A8~od_W^_g63IU!SmxK27Rulk01qQz; z#q`;LBf@Y6$Ba(%*_$DN8dCJklLuYcr!ztUsBt1#l7JsbT}FSa18@Q24rp)T_2w;Q z>XiQiOo)+Di3C_G4il%$7O(`fB0evHnel@_mfq)Fo0?|rzO0Eb${R|e|+hVtoJL&DoB=D>irE>ux66E*VfWbIl z4mv>xxbDYonUI9n^Ao{zXf1iTWX5`a$b9%h@rCn5O-@p_SDnBmAJu^e= zNWBxU^SrP&C4RqjtM4f_pcyz^xX)71zt$+LixFE2!)5V07DnPnJH0Izr)ehIczgdD zuZ!_x?!Yr=ciYkr>48h+QutrB1>vs7W;k^z|5F1*h}87-*%wLJxrVi-8J25g2Zvl( zz0;RIX@=KK7^Dhw4QzxOVW{gujq_8xCajN#g5R$@*zZuz@4NK|-Vk&HmtE%;WNE{9WUVZr=;MhiGi427iO`<$=+gE78<*LReb3!5FY;O3i5 zP)^DrNi-bBe6a%_-s=*vbo34GrG!Irj%~J42L{=|%@1OnCt29<&<;iRy8i^0 zuGBRI{F*V2efdig@DTXyCwBkGd$MizIW!RF^b#)yxp;Ow_`cAfli|l(JJ1y6e{*Yn zdk6HHkv%zEH8-w0J1Kogj(lyl^X^wbQOr|`aMZ3U3lv+&!znKb*GVKPj8OJECw2Zt zicEp*uRBVEa40hYdxUyKVXFGwcZ9Y^ngy(eI8-l^PSqaSNMmlu=Sq!vfu_>$Czh<| z_I8&n>etnTG%TzLy*pvyPZD0vpLwxcS~tJcIeF-AYTEo;D%HZ9SWZOWaKp$C5=K=1 zb7=H$8u45kw;9MAkU#IKwYAWf7PhlSM1NG`b^0N_Vq|3(h0W5IK30?zYxqur) z_`)M!#s^O}5vB895;tM%j!m8y*Xw?f15Q2c5{>yqD=%N#C(hOe32tun{rIJSZltKW zPPp(8WZ0H2MMp8Ly=Ds3Bw&eQh#o$ObvP2M*(wyKoxa~5A>j=jv>JS0u2wD0(t!Ny zm9b{gKnLa7$vp1C!V9h?^Hrq7#Z8g1n5c5|FM}`Vxb2=CDh}%)gM-Q&;F{XmzP@K0 z`zyH<{E?L+^tHy$=IEk zXROyt;P-ydJE=sF?m7s%Kotr0w0KR1$Mh)kH$ZX3kb5mb@cvg}ro)A_-kxQhtW-4N zbkBbSz#4T0oP&3I(l4ih*Ra5od9jCy&jmwyuM;+4!(!b57m;r_AF^QZ?RAX6TSRu! z=~bua997AAmY0q=XDY?U!~03^XCJTI2CsPvv2UYpAI{HmVyv?+I$9{T$gc{rip6)% zoSo1Js2Ml9iy@u&%=hm`Pg( z`A3quy|Km9l3dQXaCT$X>{5joT|{v6E#lg1s?1HDXORWe8HhMWVs3)Yv8#!e&Lg*f zBW*sHfk<<6Q9o?6mbGhaCK+2QUza3e=gCf!$fzn?NA@XiOZxI!37an8r#eX;Ha!33 z1a7;*=L;V1o#4MY{U6fc=i{#nM#|w-5UJvWlZybmXZRB~6!dbh3bK1jgFk|xvw{1Q zOu&=F282@KJQaID>$4I!tnp}IaToUByQ~SSw=OMsq5$ce)r{{uY?Ck$XSP!JmH{oj zHAe0Sm>mBAWonaSN?$4r^T8_O>!k81UcswI>iq;~3lX|seHqQOGX`{$WjR*GZ{dEN z0e6897w`oy(Z}6!>lef4qs^*we|_K`=&9pn1K#h}ugL$s z4Od=HS{(pDYC~*JmAM zgc0$7qFC?T(>y=_H}lJbfs zj!tMhH2jdZvupmLrlw!xYD*kqvw%&|OtXc{Fhr+?9~_p`el~IQ;$mfG&7ad97WVbd zA3|g`Io3Wg#xvhi z-Jy2J80Jq^x;>x60hSd{uiNdj(ZM9rO|jYA~1;a(6)ZQ={UBBGRb9CRSWL6l18QV`Jz+CR0f)q!OW7WL!8XL8kS6 zOz2V(T;L#6E0$Sa&QK3V9xxY9%gv{;?~O_kPm5jeaQJW{aQHcse`XSY%q2#Rlx7m9 zpqV4T*5P8tHYe3S!j)p8TF(DM@kt>Q2XFm%iKV}PE(xK)DbHI-UX8~@t>LZ##f}~E zO^8}Q)&kwJ7q|9TSAU{YNup)W?>h=b`n3C_mibJuJ^IF;Pa&A75;P%QUonwsh7>q& zzlYHv+eyCA(P0uwS z?Bu44h(h|rq7v}l;3a!RO0sX^+tF%87yqZ)!W)%d1-V>tN`3w=rOv=0m4&PLH3Buw zwB9t9iABqze=LH`21{?BMll+UDbKILroR}ro1K;KV;^JtYfha>pM-+464!vy>c)vV zVp+jLM}XlVw{e!sgbN1`JtTsFHv}C67tAGKLTc}v*~So5Ty(Z7W3nFeMHtX^&(hOJYq$-O^vXv2VTsmg*hT=k{^<*bFDR=H;xMr_{-C!S$$Y6zT=3l?8bTKix+7 z(##g$rqbq3KiP%F*kOO}e1%uK^vZo`#O7Fxxv)y0^yjQOt-9_2I0e!=%~3!$$w{r($UNT=(+(0O40r5MGd75DU7z6lIp~g z_@U9XsF`Gvq+{7o6iK6A98-KER7_N<7)80CePhyWVfY~-5lFN{fZ%W@96g$JatXLt00{koL_-=h`ZzGeYP|aRjIl`t;A${l$gqs8*&$M${O?bFlN<{xF3nKc z6pp424+fe4<=}|O84riRfl@|nRV{1}g01Zs{FnaDO9KZKX| zYrp2G6nW`R^v~x9nV6v=>&(25c~1PoI}I8kVNFVSwjs3Z<8QpsmCm^4zI%FBj920Q z@*7Lwf|)@XB0G*T<-ti)VGjQF3WsWBNGFyi)*`1Q%-142^=|X%A&Mhds{6U8q(BnMXA=@*grpWhlZKd zYeK}O?T7F}B~Y#2N{hO>C4^_hW}a0QVuKVsC#% zHIBBHHkAMkKw>KDQ!g56kSrSjiD@gRQEDUd{Cx4EX)sW%)9?I;UoG_aXx)?F1-Wq= ztBImK${W-Wbv14>aed41FGS)(fYY^K@b}LX&PW1fh7{JpD#Ilj+%iUX+3`Z)-Bqh&IikySCH-a`Q%mf8> zxjPa7J?BXTaIP;AmLw5etr}=p#vM&+uumNp|4mxdtE{YYP zIUhQQ=cQIve$dr01Rf>oA@eNs1YQ(`$lC_9>{(f(tEJ+=G}x0=Cd1@77M)%IChQoi-BdJ$I$(_m0|xp0q-= z>m<P&*Q(w60qp)qQdlF0)E4YIOHF2uK1#Cnsy6_jWRXptVt_ z(*j4loJ{VM?^=QDcT^M5-^%YjlvX>h*1h-x`g)^D5~(uh@!~>P7rUOvqv>5$-;TjV z4GgcLOkDTlIZMBuUsT`Lo$;)!bKr`-Tol(e1w5EOD0nf zFIDjlzPZb_HN0&GhBUHMCSY+jx##vfMMn>!qOKPY`J{@*#&=61sosl>C7L7rm#C zoS-_ZFP|6Mh|ns(KDLzOL!P>KpZokg_ zx#E*y5s9Uy{qAnRd*r1S^YUfFu$`Vw!{xIuph2q*Dz0;KA;C;9M@Z}za@c%OX#3gx z;`;Tealq@X^}uf5;ydtms7ciz6)GAjk}Tj2mz@5G*+!MxpB2*OQ#aqR6$CagQhW)K z`e>*Z?MQVlB%p^ZvW6Imoyjho6bBaGii)OkQ7M#|=JpMs6QM zS-swLw-m$uCk1o54r-Q8J0IgXwCkQC`6CP)?_Vs<-#5WW$GwbSPK_&jm<9KXj(qa? zR4DIZpN(I@SZ8f>I!*ra%IEEg?=mJL`D%{5`{veKoHl{62YsOR>t(x(TT0+j14k`F z*?V)VfswbCob}~ySp?LM``++wO5BS)=au>1#(jtglX1X?e0`HxRRJQ$hkWNtvnbgZ zpa*6)+7KF$LPikjY;zL$VPcfpbFH;*jqf}%i!*@dETVP#`5?bP!C}b+6=$4FAkzvJ z_m_DsS~vmuCiXfKj3aXOF;_Y^CD)|JL(6RCt1iQGfs)!+I)=h;b~T0CGzY|2ie`2h z+s`{omaj-Qg9HHt?_zV=DYPrqY}?a4Z81`$W>XUp2{4WHZSg})xKCZ&_;x?`%F1=V z3Bs{PL2VIQkHEM1ma1+0NkSqNEqK{PA_O(eo`4qBB!SZ89#K;Q-n!r|WSfTZcCtXP zGpn}e$mlqUwo2R3u)Ewo5ZWhY9C$;ecip7(XPB6n*stf=YO-~6h#9dDXgOQ56#L5XdtN!n^J*)u>_n&-kM{GCkE_;p0PW(9?5y7v6)2d04P6{@uxTiyTNY9DON_poU z4k9z;ib*QaQ8eO>Z|*F&n{VrD@^qx2QBgyqTzKLpyy<;#;LVybz&=^0<;0r_j|Zt@ z$_}@3tCAXS*z5^UOaiTX%t=rFD{6VV!IgOPL0sumLYu>a-hjaJRbEt__Ph%%k zM$kw~=QkEM{kOaLAz`xmNpb+$fi{n@rthvaEyq@@|K0gH+$qw}MAM7X?b*})O`#Gp zq#Nj%yZRk9gNgO#Pe(SO40YEllOe8%SAe1RlPA?#Cw{FVvdVW$=|YFkBDM*yqNb#w-SuwPWS|{S2`V-G7J~cJESpIs!h|nuiqusNlg(l?FC?N*i9wF2pKIwu z$muSTc&FDz!a~Y5`A_fcTIG;kZ=5K6O!TVC%6G75r!!_PEv@>}M(D#Un`}8no}E!0 ztrz0LeW=dji+O;Xo0ism|G~=!`}>1NMOPhkM$oTiYmBLK_C;;^%rZmnrVTJ35 zglSa9P}cMw-orvMPT-HNhhG81dl%~SUX;w(+KYg)?FH@HXgSSuAJ|zk(Ya_DD(jtl z8|;_|o8;x>Mwnyc(tEmPPu17h|1^AUb0e$S{I?b;@IF~%W5ut*YfXOD`s-t$VgBjO zYAXzMZ39Ycm+J9tJ50Ukw(H5i%o#>GB^joCM|U(VBhAYu7Pu@!GT!5Ox8530L-!wW zFHM#HJ`v%dX$-pH=YLER27BG>87hCLncje`a*}b2Dxdn8FEL_2r2dRGIuqA*U;QD| zwzbWlFPfYMGU~9tSkAlV5ZH&}7Hu-_NBY1gbX*Roxv`i79{!juGoh3jtL`H}L}9fX zi>bdekQ~ktM6v($v2~W((a-#LveMTmKx)5X=p^7g|216bX5B$UxX$qQ_FluxV=#%R$ia~6Z^t=FML{9NuIv~~Ym zCNZpwA^WWj+&OVs*n88cC%eF=(t@R^BzZVXcEUqM%UV3781o=w8m~Hm68S>f$T9T9 zep6~W7zQ!qI=h~6mmBLRXU16KDw!uN^OQ3|2^r$b#H8faO_IPzW+=||43NUaw;Mwb z&BR&8j>Naf3|Dn4Ep4`CmCJN;-qbMl_upXz0mvL%A{NlgWfG{yK2r~w>x8!f;S z>-$fXIGLmNLfi~F@80IyU%Z3!O-AbBJIgAzq4TluJuc}*QTklOjo?|%KF%5YsM zzuh8_0P`-*X)Stzs(w(&v)VskI%6>IW%9e;Su2lhLKls2@!ydh(T(4|lM|HSG1ve| zai0>Et7TE<yI=_zf0zLT7^K9rmgGA$9V0H+=B@Y^*!nx-OgvIm0IeA+1Uz|M$d6zvL zyv#aV7yVuI>U!v77Q6x+@leJ{VFw=1J$^^js!mUkI={e|ej?${ID?Lg^*?8;kK|Hh z5BAVpFd5lv_O3h9oxr%l*JE(QMfaEOP|(vLSO0(D8dGOzLEqEtD#_P?7kL`exK775 z;B<@K#d*~DMR%j);C4bJ|IY4cCiEfay@z1W`kr{=M}G2$3XQ$jV*-#@O}%228p{9F9A8tSCws@- zKRm<8@*mrm_`2GY9VS|g7@{#22FH{S(%gG4F)Lx;V+!91`z?N%pS)x(O@AL4DYU(P zB-o^xuHwQF7-9iheMgBAC8KsXu&jAwk+I1u`bvT_bw|d;EOgk!M*SBfU*;zX?$2){ zroJB8{#`N`LdOj)sZ;8_OI=nD=pW~(xb2GgDMZNJ?I6rvqpYv554)opL%6k^6#@^u zeU{XcAoMlL!aALI4jrEJ0Fnk-XM#>tUU8yo0z`Qs4jD-410G!4(9ed~6RQ0FceidQuihCvjVAPB-TX%#Fuoku17_;*9^FkxI>0fZ!HK7l zvB(aRt;WJM!<9`PoFjOH+OCU=`-*!eGbD~2C1U@Z*IKl38ui4nr#e|=lZUe1;?J#w zRnd)GDz++<15Y_>ABVg7MNdi>Ez7C-_8l_65gtCL75DvNe|w4z!)-dd2qJ<~uXC5{ z2HP?bCB=&XPZbIzPfJQKb*AzHXR}sw-vjqm-6rpyj@M$!!oQzqgLPpSs*AvfqmCvd zorM3aS7ZKizBUBz%ItS_YhZU8Eg+!#VqPF9zG)nOrP~2%UsA@#Vqp1k!~L<}{to7HT2|$-W5R<+|t~ z>H&`oQoMA+cQpcieP4&RkGrfVI#hXxm|vE~mx|Q3-^Pu3M)Z-r_gHiPG0u`VyXr0i zUE&2N_3X{vwe^Ug3fR=2WLEF2*hz%OkF2w1^w5R$Q5Dp^_B@;YS)({{3Ee!fYYk|B zIpG{N)x_y=^u93ai|^?U3!6R4#JCLZx${_Vz_OmVT*fX=-HXzexZb-$KFm>$8I zHjh{`@*E$9Srk3z^oEwAd65h6MMlV4s&P#xBCj;uEA_ria2tFmoF_`@pFfU~Tf!V( zomwJ{?&R&BNLsX>_Q! zDp6$Tk!n{0f7m0k0fB56BR=4r%RnSFsTs&h|6RU&9GbM4LyOUNOrt}ExEcm}`McG3 z-Hq`&brE$0`A-kIxl`{0ZLc44S0{RB)fF&)NlS_VeolXLE4Ad&b`9qZIlr^5ulo2`jv2uO?LngZrW)( zP|;Oga2A!Gz=#KrIEb}xzt+^f0SG)nsYNTZx!kv+zpRvNmn*ywamAS=RoNlWBNbN) zscBI?G*osp3aRO7X?&rosKnD;M6E=T0BIhWU{ znT>z<9zB_`Ftm}vcN)Kc(P#ha zk|=Z*WU_@yM=}K&6o>B{i_fBF-Q1dtBfXb!e`L`EV-!pm8X9zJmVN0v1{%mnhWUF1 zB-EJWf%vLNnn5@XV&Tn1m@vZ=@a=Z_YR`*f;^8u}dEeJhtwa`uYbFxY0cq4(= z^P#J4w&M3+?nC(n^qiRM%(3+b4x+23)WsuCn`>X)HdKAzopf!a2rpp7OV#}}jVIUF z7Ge>q@rk^{NZ1>&9*wh^(6CU{%&xN1)zJ@`Nh!X5OzLcBC(A>g2>{e|NUue#farV3 zK8aPoaCmD^I#SV-S8$MGqJ~I-E7E6O5#HTT5-c37i2v@V;BRi~#io-j)jWkAv3k}e z6IP(IsY4{waOgsTub)1+NNzO-o7HK3(w=y&Lg)!-2M_aIo?OZ zRaDKb1g8}YPnNTp3Nz(GmYCrMGginZ(aeOM;p4|>`Qgmtxo-d`-0#gqHNVgYE*}>@ z5fEz9?oH2}lI|1Yqc3HDvI(=Ir(PDoMWr4P* z=+F8EPDmhqwKt|t!u9m^7rluD4u7NGl9BVqiBCO&I+%2+Fc;SFAYS`iV1gY|3|!tv$c2` zbw_)Pf2yOB$*f*gi^~un+n>R7-3jLDBH8=mrW_J3U=vP+1erH*-YI_nd+d z8`Zc^%yxO$es-r`D~*W)$bxTX-~32_HN24O&`X#QQEIHeQe<0-9WB{gDAIq~`+iiYZ)Q0IOH-&m75PWUJRTnDjVR19B+wk~R`Ae6)qV$D zf#3Yqk5?^pihd(gCOVNm!ZfZdi7(|_lH*Hhup?<9XgGo|rGnOKeaa=jJUkW>9iA&Q zL5^*;5SHY4JmaVFA$BHs(1fYTWQu!?TuE}t=n-8>M5o97np^{QG=*oGJYSCmud1#l zS=b=4CYcBQmqd$lW|qYC07npM2)Bg+y#WB90*7yihA!#{ZE4AWdrf-b-Ew#=x&|;a z7>xyQdJL^3-OLOtyP^8Z>v0;e{?-`R;wx9rQrz}8Nh0`8nU#zbcXW0w>cf;c3L{30Yb)&l#O5b5y@7gUNzg{~s5C(id2SZ!46L57H=f zW=adH<{c%~8?iZZ>q3@}Rr#_a@WHcl$aHHd`^wBVI~psl)G(^^|mIX9_na z%66W+$d^*6g|op!o^^n{y8-W1hRsA#C$hzc%Ak^tZM1k<%Q};GUvQL`m%)b3#eRj= zpuKU}+yF@S|j_6vlLwI;v0oUM}FT%&UGZi*avW>Ou zSv2a(+6YQs5HqzJ8=^m$SAiamvG#Mccb=L+`(D9lv1XZnsSaHRzHE18Y*x%~xj60< zbbY{0(Khd{#7zp2BIw2(?oMr(aj5_BNAWOvm(=7+G(nv z7w!*^vge2qh)Yc&oCIo&Q2l;Ql**x;bAL@CI7sQdft(whNkF|Vm0PB zw|0nw7|l>B3X0#Z0y_Wpf9JnK(e1SQ@a9!G9Zq>-6C<;rKV6t)p<2m* zE!A;z%xRgL%x_*%u&}aA$ScSqE|XzUFV*B5Nsn|Q|57l$T2pZHR)v-hSW4X+V|`AS zy|2oa_e8ta@lReF;EC0PF1yj0Du^*LF{Au_m-hL8DqT%bsVLbAWjaZLG-3W@ zsMIwi4a?}l;QC-1SSV&-puqt=lC(T$8fAVV)vw{!>!RN>z4!ZI090T zW!Pd0ZI<8Ec%zVN)K$RJiGA-=O(Fk@2&-BzSROvAg3x8F*$qUwP<#Up1zh%P_I)59 zl1f|;WG|jlu<{3LH$?Asbk>Z%!Pgr4PS!7nUvf)-4bBr6=d)|~I9k+gvr-~4-gJXL ztb#0$PD{S4^Q!ji{O10I(7oa$6or2g^isU6VHQVxnfMBvBgvZk$^6~pB68eG>U4Zz3T zz9ap4Y2ul(M}hubt88io)11{yn5=c!9IZ{gw9swe`AZcq=t9&t;A8IeN~{KjXy1b#(c(=gES3AX}!hLR&{F|R+nkaZRUU|6&(AU z2i=gm3Z9ccAGlGh(O^DnuqqXNo^_g)gdL}A(BfORvqbeN`kM2c+IVS?caz2`x;X9J5;O7~Yz zA2**D#dL+5Gu!PaqEa^hdkO=tyBw%m?)!kK93%aq%X|P0>b!&VJkyqqZ!abj>twwn z{gK__qvy;ke@-u;XBwgJAoJ_TF>e8^Vj~MmP`eXF=bfrpbSr?fvDc`j?#G>9hVfbE zz6(iTQ^(-5hb+GG_aDcq4=f`mv;(01Y`Gq1THk${5e2z+WkOZ9O zEF0V&cF#DGb~pV$1$7y`KL8YT!vmy<{yKgH6(A=)? zGERbX^PDDUAtZN*wY46nzaE)bdJ);*Q)>gmi;fIGE#A+rve5D72%oc%5N487PGKC% z0$Y6|p4Dayg}^xIpGTttG|J6RYhY|@KBV`XQRmhl%W$KMUDnfpT6xRgjz6S2-EXW9 zYO|JF2Zc5{egWwODQhdk^5lGBlv{%%z`|LwENf)ODlwOe#634^#U^#wsHdV-&Eg4U zf)fcZtc741X-n@;UHRMSi#+{hdHs{xvyP*-q3*2k(b}=>c?R3_BoQ z*NU&aU>RH7o(?mh!S$mXSJcdd-Wf*v+DS5-GL#`e;B>hh38j@w{Lolrb$_E zUnGuQqFCP@WAAp|>XGqq=I>mwdEdra{ONf!j$wy^W`$?`1|^7Fy~RezL-bwdeAT4R z3%lY)rhsYN{T-_7W`r4i_l**gsEM7oR3KgV%jQ7`woK@Kx7UFsw1S%CXDw`uomc{<7XaPqS{K=4WDdEDhf5 zkQsmPH0@==p?CXNh$8pjAv{%Z=fv{wlv-_j=NQS|=!X;H`Jzq+j(1&z08;-w_H+HC zxU9qBcUJHbN-gK|TiEd7*_}66Ti{#3eP;BKV@_H^)J{K$#G3OGX=t2tsk7SIZGZV_ zD6=V7RsVJ_dmIMXjr%~#&jlVUJzM4uUQ~?5CV2qRSkD1>&}Dbi^5-{qu5g_1@#@Z0 z7dbB3Skb1ahVqC1v#9L}z)14Z@5@_UT$sQ0sk#|FZd^DN6)&*pc(FJ*T8*Irb9P!> zR<oL?I3SJV|{nV%8#0V9&rhttk7=d8B%tFQ9UR0P#)vA(!mp&BzC4c#lj+?hT(~NFCO~!p|mb0H7V}+p2s)E&R9tG-Bej zGMeL6(ofm!5cLj?4{xFyfZ!MspqNpUzj{sD&XP zooiPS_%Rq-W!-_a*)*-;Ik+@c)=;qqExHGPrpke{`MW}f<7t?Q*~#73n9N?$OU3(^ z<2drWi`)jLJQPqUisiVQTrV|4mhj8E+QwOktUD|}THzI{#w42PkQHo}!`urtb>Iw? z_Fu1hsKpV#?{UNsVc9&6xc=~8?`Q0(!AUOHG1AZxbcoJPV6qB%h z+c}q}0_SOxvt=Jf3>>vs$aGx@ zj7cHT`d(zUX%W#n&oB>+avburTaIQ>)gvjhN*XYI3j)Y4PJ?8&uS z@xvs{TSRtcQBu#QerOBrKK-_6z{P{AzS-VV0B|!_HB%+Epyk-Hr_*@h)J@)7lY*i` z{jiFsJOz&*HQA#v&3jz8{Q*9J(+;o0m=U!HgrMom$caO!u5dD8)Gj5ZU2O}kpV?sh z2xO$nF4FSK^QgU}R_I9{vnA21G-&15vxeTa>_HSo!wiBusEtbz%8rt1Rwq>$CFMIW zwC1j~(qx7tcQr0?R~4%yK$)qmlMWB{QQR&Cfx3r40+#*UK82_bAsskX&hPk%(kpoO zqA+81g~28;IN9u91rY}>zLcrowEL^wJ~mHYv!-bls{b79;dxQBi-lyRBDjmMyDjj( znC_AcmE4d$DHado(BseZ*va4`m$gbmcbt5?7zy6mV4n6IqzMN?eiN+hC5#2$M(4jb9^W6(^}rLDWsk`{{g?G4$W*p0JFneL%b&oE<)S7ixp zR#Y^g%i2oGthygX5lkE5h`NlSl`Eu}@3c@HYdE2PoKrn4s)R`0Z z3t!AAu8CQOFigGjyVUg0VLV4k+5>9ynso{_ElbQx!p8@-@El(GHNXC)1iG@*rFh*% zLRmD${K-94$C@#1*%+Okkt6{{$&Hmc#g@_5P#(4XCr#|v@mwNqzaOpr(%uka$;HG* z!|m%9T=J0+NCHBUO6l5?r}o}Z092(1{QfEn&);L12I+8(=69RW)IN_)@X8lIvcZGP z1q{4|Wg-!N=)X^hlzFf74pgmgcNF z^Yx?Kx%iWO;UCtB|0ax({mmhD_pKlry~^ySP3n$;;@jKR%RI>?pI7Bn&^@Q`n`P{y za!da0A62COv#g{PDl74LKo`F-GPQj1Sog_}#^=+l#R~U0s_mfJjywCh4h^Mh1+b=} zW{Ec}hZ50{GroFf46gWR;9{mDZEz2FTOQ0qF+e!vH0as-lx?59`ZwS$oQ<7ECrsf^ zsqzZ1EiAaHuT6NtfM76SoTqkI!iXT3PCn*wps^W{nHu zQ*nd8?)t8YMyrM(E$p|Zs(QLN9WFYh|2~XjOuRNj&J3klzM(@&DGA(7wU08BJre=s zY)s-!`SD zOFrW|9b|8(FSW*YQX)u(uguwBY4?8q>|3A(oD=h&k`qmIxfsr~G!gy|hKia;)x)d%UL<_D*_iTN9`7BD%jE=dVPm6aD-{I=mDjul@~7U00hm-p*R` z_?cP-XOX2>q*9Npal}hL?GP{XQk|cY;1NsHD%&@jo%dLg4_sniC+e*IrhISl_zJLf!4~H&$H<3icvp(F-#EC9!)dbU) z#vxp4+IR7JjKFE^oHwIO&uG8vaQ*;I9yo5eu}TgT$PB8kMEC+BUJ?K5Uuvw2&)DhL zEyfDUYG96<+*4Y@j{4{6SU;LYg|-?XfY+RGyz$vyq`Uh(Q5{7y{x(ipTpJHSFR=J( zs{3*>p_9%~tQDk9FD0Jq;v%D-d4F36cCUL^u$oc9p#zO7k?JSl# zW^Us?>mh$9GQibLe&v1O?O9zAYH;vYC_g74@=fLX!(-4`REw6{weoJ(SHqj((!@Ur z3)Hua!51Du-McpwD0~X>gy<-&oJ{aIie+>Td4HNO=FYMcsNphja4?K$=F^OAx!xX~zLDC+2nDce z6+142CdYJg9aWM>NN=YQX%WN5XIizoMyZjqv{2IVswfa{=( zP3AQ&4RVXm#rCP_va_b>GM2*{PO4Ihhzc~fy@$;5)La=fT!sR>Yc2U79_9pu6cx+t z*Wds1Pa%KlA}(yQ1<|OeVdB_kIWXSKpyldu>6Rt4fvIe)48n{(|Ao=P5UFRlJ+F=_Ni;g+qJnwX}>!THmZp%?T)T+-eYJ zfXlOFyiRNvA8lReM|_#K5#P5ketB2~(Hx`;b{Rmgsyh!_R04*Di6Zf5Sv!nguD;d` z48VxTV|L`2?O9x1I+Y4B=MXPEBH5(e&Jnly{y3UEhhxQl ztZYZ;%|~Ku4+(;YtdnqS(~1q}TvcjeX};ZCD765O5NhGM8$~|S{FOUegZjes*43^a zm|)1kSJ%S2_2rbq5_jEe(Ws**Zt~q;*F`QaEx})O?A}lnSQ#ghS+}c{>&2ff{l!D>kO18_d{-M2g7KL;J;y}y3GWT;T{dZ7pW1s#>yf&* z7-uLN=)}%RyVc33rnCH@ct!6m!c9!c^|D#Bl96V*MC5jsgz&!Qd@KZ~+W2idjtV=~ zhi@MbM3+1UI9gryAMw3onh$(Dj0u{QCuj<51<|DFJ9c|t?%4_1Ti-uBPhKS+^3J2Q zrm%+6b8?z0;$iyWAZ@vt8k2t!|3Y{yOcoxI<=Ow1GgiL0LOq&oA25D zj0qPKlVi&f+X!rF1cg{n6^TR27m=u@@Lpz|5AjNc)fd*BTu~+$HMT`#ZhJfltv>$7 zDAImmxox5TpuU$9-L5v57^)#0eBeb!0x&!C-wyjUt48X%j@EzL;czGoBOMEQcy78; z=^W2}oyB{2C%$H+MpvVNSpoa4=2o4*tci1+C4e<=QagtSdY9s3eh-d+5h|AXU}Sex z1Bn%FAZ}O77;3_g$5&$Fyj1MW%gMukGoGX{v9gPr)#V;*wbtj?t6qJPyk=EPV6+pc@XMQPq9i94&us&d|_eEzhP~@%~tt?!gd`x6E zcZBel-LNIr8TqPsBGz+^STC~#iPlZl?WsJ@jzUO`C>D73^LY`6IV^V_WC5;nL_be1 z{g}2BGPmmTrurd8y7iiqa!aIgUyIF(QwJP-`vlYC8?vUo4$j|;D}l99 zuq=z&C&tN$=zQlnS)xR@DCj75t_UJj>hj}fUaq!@T14(36cV1)8C`jPr)LXD9-OYm z-5#T1E8;5wiyj&^VKESK_xapyj4AZ`@*%zmsF(Y_Awfchxk3ov+&j8Ru?15om)Y(70S7(_Y9B zlNR(=T)=$KIl{76f``x9l2S(9?@PP*&5WL=R`dRl5qAsl#Me*`rT4y6e~1O0fNyFF z&})(-y0}J4nK+UMrY)4T_O$28f)^+P==CnlO$4vLpZEI_MZDS_J73SOF5vr>T|iQ5 zxH_KkVnDB#vZ@zLb3(?f=-!@x)^;>%kPaxZ{P6$R0^CgA?}r}*$n{*D&)8`?D@C_= zUypwhRg|@zd5evSrVC6|HL-%DusBW6x2gJ>RydghfwL?)8s*Gw)1$xSwe+??4=3un zt>Qp!A}Tx=?g26{?0`KiD*g83yE;3LXE-^}%Q0Ns7{6Owa)}D4esI6Q_orh$=p5YB zC80g%gLj@QF{e1pj5^LA-)N@3J5jw}yt^5mReqy*0!vSx$VP1!wgdfGp@Ov*4wDM0 zdi_ZN-5X*kia)2m1U^ouC3YeFDdJT%giY>Ua0!dnW__%38bMsYpM7m2d~qAUZf>+D z4)K~%6bwzc!4!uy+;;{M6UoIYTge_^493+Gq9PJS8_id!<_Mz@Wyv=svBhc78R z9hXuw#%zdvc&Oh{m%O<-}caEk>9>1F_ubC3kEYD-d*zR56slh zdtK0EmW}t9N5rX3c;{Tv<_l&$*&dg(XWxQUvHw8y1e_n_yS-g}JBC)BJ(+zB+uVw~ zosAfIm^ip7AbLedzBk;76Yk6=Ux=d&@rEiC=9`F1>Jk|52xA7z#IP~jv0FOsz+k{> zkb|zs8x--5vpZ*!f-JZIy7^6m$(CH%j>3U{Qb5HxJ^MdjD=9On+eb@MGoO#XL73NJd#ze!d0OKRUC&H&0g!8sk!4On)vl=>s4%N7Zo|s@%Ayfi^^#c{lyg5A zC){mrrdUDR?aU?oJUB=Wn}7oTMEBh%`j!(mafn^plUdZo#o(u^7=IE;Lo{f8zT8_)+*}p)ehou zT+uO_s5yQ7wPsr&ba`c}^83TtKrG4a{DWnD;raEx*X~!u#J$JUyZe&kpPCgzgmSlK z(^JW4k25V^aa~n}f4dL%<}MGDRNvtG`DBu&(=sv|)Vt}@^UWTv$TqA3DdH<=9VHKK=kt^I8;Fuhj0O{$|8ZnO1Q1f#9T%l!ua@|t1uN@jISv+XtsrkgDP zNU&pA8w%s8D%hc=$J^u}e9t631oooz@wY*t`geQsPkqXl5xIxOORzHFJUn@ZC*(h2 zIu3FZmkT$3)swxmL0!7>zVhmmdRP;LsqvcA%HOOUI@aQUuQ^WO0=}@Z(@s}F8wF3A z$~NsajDE3D-q}hhDhj-3Seq_t)5>SrmV+iUOTx<|dY~?|MUCr6BGw|V%s^1JW@47G zJWl@P0y`uPX!H97S2Hr*`-tL8SzR|}txZCT!(qrv!pLO)R9?Q{A=fY&|3=t2-*($= zf@DGng`bHNA_H2@#n(Tc9XZb~V0`{WgK2W-H_0^!FWsjZk0374`ooW?hezKVl3kp2 zP3)i7wtTX5NS{t6#}%aB{9A_%@LPg81`u@lH=EV>c_oK4Gl)oB&=Nec*4V*_JMQ?Z z@yLPmHuH) zx$-sE+Qsb@vNjtAxc{5QJe(lUcI$-X28 zhf*+SC`)=OQ5^EO;fuDP3>-*N)BF_c+uZBD#!cCP3walzn)m5!dKK1W!%Yl%d`Nh# zHh;5(iJxtL+Y!6&-nMAf-d{STI4ZqqSb`A)qhw4sdHgK5cN41Cz$EQN^rhwj*I(bW zB#4dezEG=OCMCy5LW26)k8Zd2oM?o-{G_JY1^qtJq%iPt8U!f08<~7JHG|8p6kgg) z@Be5=ttzV?Cd1j?=V8SrXQ!AJ3ApT1sMq5gu+n7FS@4lC*smPgVR|w9Y`(dIag)9B zmMP3he`1QQ)A&q0MxfS&@43>TocY7Hw%pIK(}-nnZLHlAZ;XH0cJ{;x&e^Sb&z;#x zhl#1odMg`5&&gwvaPTKw0@B8veD?n(8ty#FP9gLMehrFh+3y-0zj3}D+gj`S;Zo0? zcgda#N9B8|SuN0f6-EGhzR=O8i|i#6V>@5TfwLnGefj4e{N`0Oj1%_uk5T6DKfRp?P|U7 z4J40!k98W4*M9z*7whtZ9l}P^+rr%luf5eB-QiP`*LouUCTyC=HzSqX)8YAd8;L-K zI&o-=^||L$vB~*REFKe%(Wf71unxGh{`nnfH9|v%6cngGF**Sz*2l{rY?-3lF(`PR zbJ~zziRTTU*0~z7dFHs>{&x8__vv%(Q)9lBn~V(k8qDU%^z58y%hA^(VN*LeNcTKEZf-M7F$h^zO;ZP>hSp2IDB_9SNJ(+3qvuc z!B-t$Z^9gs<^O&DhsH{Xz(5yj(gnwte=61B`12mwXG{2|dGHT-CQUE7?i6FVkxLmw zq>|_h*6e(RU(-#gtAHh|>4@9xpG@fLy2J-iuy6c!6|!};9nsF1z#115_V53B`ylpP zxvguy@O_cDFD;WT9a~J7H?=PuBU$xszq+E2_W`NmuB8t@1}G@$;8`f{7} zU4`k=kb54zhmF^l&V1$VC^pYnHV#v`BmUZWUt>$M6gDzpW*q2QuHO41a5B2|v_a!x zl+SbDqQ)Lg64aa3HfR~->hmtA6=EP+{iZ7x()9~{ghMq%c7npg(#t_}RVp&oDTHM% z<3X?_JF5CK#@XW$@saoFK3aFjP^*~{#6_cw6#9#G2mjEwk&*1^Q}GxnydDA-zR7`B@HRU}g0y>lpB`WAIsbZ7zOiu(4NSf0*hX(u zW#R)dGpH?G;{V!0b?I1xgD)W~kKva8($>V7o{+^=#IzE8w`EnLX);Z@nwy5AMrj!d{6LUTFHr@7_6(@| zESnA%YwIW7h?j9s9g)KXH({ENjT5@N`)~H365}HceRKP{eW^=8{l&<(!rH87c@4*p(#E~5Ow(C+n*NIer>EDT_%kzZ04vTbyM@8@i(Pkvx!H7~{t2P(Aqy$Ga5 z7(cF_0RGC*!OK!!|1L&_7d1@V7k&$(!rqIZ0rbjbhN7ERQv`(}t!x8~-eKwG2Az?=Z*V2kp+6{ozqL8+u&~=ffLA)QO z+MzB~VXIYb_NB(whCaWdp7lm{D-?3IzE6eE-W$-C(J$RsnV`h;4grgwrb2Y6BwGYs zHR6z!)5v_GlrUCsh=wd>5pv1cjY|4lUQp0A+l^0`Kp+8c6e zzaW{pHL=QD2&-YUsjEPE=B}EE09cY0v=)u+ccy>!afGW&ZU0p_qaXlgP{h97 zS4ccNpZNo5s)bLq?H1*5QshzsG1`4j0vh+FNxlZ2_>HBP zyxSiPP+1cI^gj)>G^VRvPyrcFpig>jNA+UT@obLQVUH{ncHx(0p`F`pi~ZE|0lx1& zdefpSU$sa`A15w`R;`nx(Tqvb2b^8i3X=vNxr=gjB#r+5zAr`u!S_)SzHbm|b_XWTP?<;=iS3!S5;aQG?IZzI%r8P%&)}`dib$pifLxa}ZPI%$2(E_Z^uRef)Br}L*!QMIxMt$cGR7>rtaDXP{*!`Ig$RXX^pvJ3<=>z)v(5mY~%~LYmfM! zCAFiZo$29SKQso6OOyh+_-pdpiUw#uDDcA{@n@xBYj4G}ef{P5DYs+Y_-45)6V@(1 z-HI))i0y!kr&BiuArrRav0UijRzotDP1G{jhY~7|eh_6C*n`o!BX}{_< zMJqbdde5;X56e~3_B8yar(F`hN#q5AI+l(nI3LUeE<49D_7<{)tvq*m_eA!DC-p>n z{tiQ=)%`7mPIST$$b@MEHpuU$OytF`7TT)3j04|Sj9Xsn^toAf)O31>&sxn^OrB1L z#M9)P#!>n2p$!MscIZ^D1?z%tmba3DMlKIh(s!@%!f;m4BHIg7vZ8#ux>&lPpT@N@ z04kaT$Pd{gAL4sD?!&!meYi_RtYR6LAUnU~k~AwC3`GJ0U1-3leJsv}+X9M2u35@& z`c7eT{4!if4)K~^ji5lhiE+%fX|hf1ulQ(yWaK!X7t=rs`D(6D%0O^((Fw`Cgk3ez z0Mf3+wNhR*#L7=|^xrhv(@6+N-&-@hl2G1U<7vUI2>%_W_S zfAsA_xTq?jr&4jcT4oVFDp2DxdeHyWca3uP?r+;k?|8D7yQyLuk_0C6EOHX5mRrfS z18{&3UsHK^?4Uhp{x=8JGRGXzyRaEv>_}J)H6gsik=%BF*&tSbxv2Bu$-2T!XpPZO z&4&4sI_cEsWND^KmURR%bCAzFhkb;oH*4$W&|QiUo)UsmoFru(P)9htD>`6?_<87S z1dpF|n}eTj2JlLPsnQx60z6(QL!qsV<7_>qNfeS;;1lltTWJ=?;6|;lg###sTKUQ(Ml)O&4^j#Pk z?|qSIID69f?>$ckM5@JCa9{GxmqHUa;IKl!9>eJ z1qsWl`uhm`<7Gpm5Tys0wis1t)%(i(xgVeO$Re*zbQ}IYCnrg!By_(sfgXiz%%gI~ z0>-xFqwkroRoRkD=+6#~I+!OC_Y6TAKQpOQDSg58JxEa>8yWqKlBogW?b@oj`du~N z19f+YwLK!R=ft1^*~X$WL`7{Bm9^)MvX*k(e#-f74<2<)Hr5ezcmI`jFzR|3oRVim`?{)HkB!0mZRh)4 znQiKAvtndYx1-#@YDE}g^B_6MeFUsv`@cAsJFxK5fCHxbsz;G3CiJ>(gI2;^>cFlz zj_#c7$U#~87Jhfd4YspaeBe!P<|Tsq`pp*xw+PHz*TkW1ucC+TFQk(V1yp@sXJwXF zM5CltrDXgy0)X*^&KXfSf+`#h;@4MCX1f-Yw)Z^D2FI5Ydx|!&5WtE@0!(}A^}y5t zlX;CpEmUj0(aB8|AY|)2f*0ed`je_Av4n-Gi5V9UflP41FJS%W8CEMvL2Hel-8#xU zou!i+gyti%qZ1FIGyZuHUv1j2L#C(dxVosOi9(Z;Q}h>h8E0iXH`=IfmSk-<)l>lB zZKo@nSzLWh+Ye+l`%iJ)mTZ$;#v9xHomEVGT7r>+^B}}Rk$~?=Vo%mMCN3xUzn}?D z?fv2yc$D~~V#QK_+s%V|#0d!*D!;e*2Oh*yCviM1m9*>q!ah*^%GbbvJNhXWQWxlO zuoe{+b>MSjtfl_N{nEFXicv$+oipkq^8WZ2pakD%#ZWzvo2lG=FA|rUNd;d3g~=Vp zHm1s4j&@eK2Dci|*`Rt<6V>=D2utSO2bV)6X63jfrewzCFB=%tf!_1(Y!k=;QvPQ5 zhr>}+%8CB{(GBxh#$;XmiSVeuQF%x{8KilY_&r{tiG%-SLb$(yOa#d#5f<&%% zw;G+uc%PfPhTx}%P==h|&`(G{a<^6q4|Tp7VM`38UfAuR*mW05WUOVXC?twduFYP* zT$-?RtHWZeH!YSymN811Llnw~eC#=HFz66q_ZbiPoFa_UbJ5ALDncM*@^`ct7;Vcj zydEkY7Dxy& zQJ8SZNzLlKLutnlZ~jDI>#Z0pb6Fo*#(zjb_^1IZa^TH(JyhIZIigAkGjOViuxQzx zvnnj|xzr@xJJVLzLpm$_vtf&S5Q-wF?U2m&p@- zXX3}xC z+FNAP_{K0?_1QEt0hs&3R`x|vj-=lF6NUk)i>pcGB`{u#8hhK; zQ7GAgUXLElg)lC&$aDSi#Ovk{Y950dA-u6O967?aC4C3jBu>6Z^YzaLGQ z1ZT23Z#A|v5<6`@?Db*WezSot9pq5K9(sBTMlYioy?l|s-2uO%b4P)cnOn~9zOFeC zN?|o~w<%}Be;0yW88ke>dUYoren`e|-kkp;5H^hqGX+Y^2C{VmkBf0>|%!`Pe!|m|s5_Tm$h( zpQo-)QDkZFF>IDhZ5+uw^E)j0TYO@riEHM>k zz^taP(;B}?9V7ag_077b6Gk?zpla$Uj&>+a5qIyi=M{#y;p8Q95kG#qp4E^Fj|@@T zxwun*IR( z=LyD-)(p+oa>LavFYGTH2mS7hS5$p0!EyV<1@gfVb=LQh@Zy8JA1vL;>7av{+>isj z9Z^RGdg0dtm@;+hazy_zw@8OM%U@#Dt_8oHNf)UwczQH~f#^&fFUL0UWu z3H&uf2*=kqA_mZgGan3E6JTK+wcK|N#pKB_0br60X4LpFr3r<_g!x|g(nf@ySyV7B zL+&f*BV0v04zs2Wiw3a%8u}MrE0>D10_XU#Jskzv`EL`;J>0p9u39c}0oTf)#VoUn zP5B%*cl?J9t?Wwmk91sslnxa08E*>Xne|-y({j zT63FB|9XPn%43(VbK4_G(8Nyz12-lejYm3hOe;8Mf$rLYpriADs z1S7mfSVg?1ZHMu7<*Cf5opz%bb~v_O(900MxOsf}3~EoboyYd_^wHs|Yh1e-%O^GC zN-asqyoh0&;ki=6EJ?0R1it7z#d0%w0r}uwJ^nZ6wZDcsosBiRl5=VSDe(^nJo8xE zBh>f}f8WrjhF^{+%ip&7Z?IH%DIZ5K6S@;8z%-S59YQM<;tVwk$uaVlfZnF?a4G}s zfO)np&kiF{jL{nPe8ct^3B;$N{H+G2S~0U9PLV42$REO8o2{R-7#GEBq)O{#};MAEe4=D9Bm1ZQ5Vqf)2ytGCYnm-P zb43uc#m1&~`ruW9Ep*xav=PAs&~2}-ZTA_!v3ZAv6>aZ3J0>6#Waj?E;>G(Xo+Z6l z4(S{0J?XG>@V}g33P7$Bu|vnC7}zv{#j}4${stWEVXf+YhDf zf+FLQmGRHGz$2!Fbs1WfOYX1etHENKvlmTVQp84G^VnBcb1ZOdOV~v`$rVnr%2Gi6 zJ<61vaD6i*cCPyCk%C^)pYxmr0ic;mUK*~){t-`oYC{1Huw)ty)I?Fmj4q7V%v*Xr zO<^)4*QkXbF?im$c{y~J$md~x&e8@}gcT!OYAmn);k7Ma7_fa?#o2rPXgNKL8XgvC$m(o)AWvLefJL30+6dTdz&g_j}%OkGZ5!bnCCglRKmi8?`H{ z&_HKFm6{^AxTW($``r6Eg~EXB>FxhmOBZRgb^gUwyJwBkq~CUg^XfpFmePc~Q;qVG zzMdoKo7~IKdeq>UeqmkY@2Dbw!)nWJe&95Vww#Lsf^$b=mE6quZl^Y!f5LT!bq4Tj zGJ9#8x;K#f1wp-pGlU zr*7t5#Nb97$#Wzwo2_&L4LbBU71*n)s>+Tfyguho;Euzj!AgspjHZOKQ+H3t^>u43 zuBZJfUa!foU%a)bhsv<-aGYi~SOVCAyKb8cNcTawZWlL0vp$|4=kV1Z%`HC z#Fy#zHU8OUsQ60f)>vpK4+tP}9&?(()<5dxuW+43(*I4v)-J(32^b|I13kh5jN-~k z#M0_cg|h6&^+OEw>o9Xx^=%eIpx}5Lzj`fYvBf30PA4$2#Ctee_Y3(?7c_{n{@b1V zunf7^yAYJ~Ce%<_+$;XBA68S0^rj&UGso~WC39853J$6idnBhDo+@=-LtAy>)JIqa z5pm#+b{5)v3uU#sn?ef)^qq=E2L@gd1D+Z4WhCmHWi@z$bZoaYb%MY-y2HO^3>Xo|B6V5l))~EQXE1zqCp>+-o&6)p& zHkK3<$Hpc5&Pfn`YLam1$4{8ZQ(Mle8mwCwMZ)C@d^Jf4|JV;seYi(mZl>5QHXw;Y z>^&g$8);OqFVzH=N&}8Da!)%@4~Vvzt5CH%`sT+RkpDYG?6$9AhoAx1HJy63g(WO& zX62wpD3_t=6#)7BK4qW6PvVnBhfvxg3H>A>5rTqJK9UuIYYWv-{nB0yUW(bOZvWxuyi?JpDOZ)xnhz-w7bd5x*^-$6Gz_JN@%kw9mPXZ)EuPm*nC# z6D{nW#F^!J7)WBiIX4uM1Eakp@$rbH5?o z#55TajMXNuMpDx1J8qZd)uhs5Mg<248#3M*Hoe;&lQeAkRa&b<2!tl$pJe{ow_S}C z@#S6lqL|%$G6GM(;0w2sgo)sQm%R<<9?uy}UIx~*b;_TjJ#^x-xCU6fzz9JF2lWX8 zOgiXr>VEzfx^HPr!5C^<{CkfsRU0_x^ou5!{|7c;ZoFDM&cYKbJRf1flEDoqdF6&H zk%x{*>V-K&K-53?{i7l@jG0+y$^Is7o~TIoI+IsGcw3TNiketQ$89iG9DqBpSOL7# zzz;)E--BIOvl&6((dV97FJ8zP?Ctu3ZLQ7Y^u$;8<5Z~ov10I?Ol{n(0=V%k{_>77E;e0c8B&~0IK#&}gMUn*wR?g6VH%=;w zs)0B9cW4n8xsawf4z2~Ll*e1SauWhFt$wRI`y<`F^QyM(StUvAaHNQ)@!N)AaNcpuaf3g|v8{Sa|tM5^fWMfXvTKLndWo|Kg-j zs52?zEWFWS^^fXzClQYqf@Y~5>bWUqUp&QLclX*oY?FX-!?>VjE#01iR}e${u^Kn2 z5_NjaoiRPb?4-lSp?aIr;-_9BGsiq*5zU}7GpPb$GXm5l7PP*^*3s}fV%xszPX$j1 zsBW&@@IW)y;^8#zP?vQ43>uWYl&6xrRr%W1oo!pNk+?pQZ^gtoXfJ}qZ5HrzIj(6(m8I!|s{Dp4 z_k<4k2KbmzT@z--bxz)0SRk5|e)trDiZT<;kZa(q4+yGm+&4@~u0C89ymp3AQ-=!g*#&>U5HhxjQAH6#fg(9hY0uYc3# z%SH=vbEzX}}j_a*xyg?&m(jQB)wiSmi=K4>3*OxUTst?(D``MPxFi zF|`VL&LZ@CUw62q@H!Y%dTHNKMYCVfR4+QS=Eaw4O`f;QE)vusvF%~GFzoucr^faCo@0Uw)%k+#VGDWtuLL(hUQz^-b9uo^wMp7`>>Xj9r$6Qx%P9p+pH$e(-y%n&Gf^i zggzJ-IheC8>QxjX5*Yv)8t^%)w>6w+R9|?bnar+SWqk+H`8Oq{2(A`*4m(647*G(lr}jaH;D4l| z8(%lJeFa;PPr=~h@5aP*#NLC?H0%MzRxUPJaPjwG%Nu-kQG zp?&a}Choqj=gj|dwhrE6`mF4^`*a$Q#AGq@oFD&&7A}cxBjPDl(FED`m_FqsyYUPV zBxoLB;T(c(YAmV+ILY{@qVkac*d~+f-`SS;51+sEW4cJz$)r250hyoPVF$V#7 zaWfwOhqki{Ypdx3b%IkY6sJ%eic65E&>}gQ*3>?3|1( zRJbL_Qh&T_w^2a}h$~84Lk_x81#aa-e85&LiA`1&)6O2J8=iaDKi}rXxBfXa;IJ?q z-AK)59XG}rDksA>VO{BJG&_lC?zdojZ|^rCVsVKZKgjvCSV;2?FC(vYTj1t3-(Lm^ zV5fc?A!xi=KMTSE_~w3?rb)|xAxDg(jOxJXp1wN{5@G4STc@BdhL<>hhBO{OjO*Lc zTc`c*w?fo}?Z$qCF}sj|%*cxS75k^HdHkAywCK2=%-c(Vnp(wRIla~YS8U@N`gv=1GqlCqIi5cu2&vOrn*}B8( zNo-#9gsSP%t9+zo^<)3<@Euyt+RA^Y0m+=6hokcP1J8%Q65r+(eEj|Cx!`N{&aKJ_ z&kw}HF?Sj?KsIR!t}Pr*Xd@XLumF2Ma~7}J4fjxJ*f=r)zVBF;75M%{x{d~z8$!P6 zDN^{m{BTVnu1dcwD+7wz4s;^ZIS6_&2#8)3+U@lJ*y}N8t!$XZya0H+YtWN zKRF*FhlRdhr?}gOIgz*Qj0gw$>gcK7AqH<067LfzluTEHJ)KxMpQG~fzX>v!&wm8= zs$Wh7SLu)I1gd=gO;?6pbBy53YuNB{Z^FhWdP2=#zQfvM98O~Xm@`vWUEOJATMWiG zYuBl{e>@M!Ig*7Ycg3FrD9d>i&T{!wYWnT zPw3RwZz#{@E@G)#AyJ20qfwKF!JoFL{2J{R1*8mW9T)kH(kVkFm7S>VtF|4Q#Q_uK zH$12#4qp1ef7MB>8B4vs6E3aQUaR(yg%9Q_l*PdeFJD_;-+|0H4OypOYYF93Xypm+ z0T2TCQ6rf^fIR2e)30n)FYKd5AIuJfD_eD}VVkWbba0@o1}4G&p8NWTSjOV0(T;A&ZxCaBRh!-4+>ls+%DTULx(S8oZKP= zRM)HSH+#&c|B`uYq;RXt8;)X}PYw<&+4Fj>zRQoFFdj3|c5GnH7A9yOH+VR#pmW-I z9nNu30XR3YR)iJ6GusyjP>-E5R^c{WLN#-Lx&u9iyMh!7f_L^tL=;Ts>fOH}4QhD} zypNmpur@1M$>jMuv+=4^ymOV=900lM(*2kXzmvQ8IeId*V6#&zyk<;zp=6x_kY?HC zwwJ5(p=Ft_VyKDP%Fu`e0QmI!biX&%vvec1497xo`;4W5wYs!a}}fiE9h8w1NcJ&t8s3mxHEb5 zZ#-*)y`I0SzKTonQz}I^A1GfdP&fZI3?y*3znA|?8_jTXL%yd^BQRR4s0jG%>4Y5I zV!Sfe;?Y%SdzLhOq^sESyreHn&UY$co!8(#j!Orv_*UwC$fTaa>u6|?9gK+%0h0?!_`Y5G&pvZ5L`VXRV!9V4nPM5MntMRX7Hf#+{Cr0*hPwso735~;cjo29!_QJ3yHjItN_Eh?+Cl1&%%;p!SUxb01} z2&w{VgB~Y*dSHIEe*0oEvhw{HizCqokjZ{}-fFwW{;ST*N>aYX%z>?AsUBq9GlQ%C ziJxn=KL-r|rGNhR-IFgFfPLzJeWFMjL>#L(wwh^}mfyl^^>59O;n&u2xKCl-hE(xz z>rD;M;=u0QHzIPgSW`FKAMR*dVBh4!bod&5QM1B^ivcvb59pzk5@Hf?(*qZw1dNIc zB-W_qf$MUkBtOu91D+x{QVig$`i{oCKiS7Tr4cS5W`Bwu@k4&Ja13<%!QVa>FN>bc z{w5B21-{eHLXTI zgiwLRZ;J~RPpC@wnZtnItTAFUN@hcu4KweCO)~}y1ql=`4iic+Jvix}6VrSLu%jge zR7HN0s6RHmIab5M7$OExA|ge^0TJCthlocoE$Gih`S6JG%;`C{Ua2|EgAZ@%rp8Ug z7ed_}=@VN&rITQIeofNF$v2pc_B}y2IG*CaFvQx&7(~d|^TNF%BRU4oyz18n$M&(| zU9ABVu#<_Ndu;D;tXrL=qc&yFe6$eFWj6jQa&c|#FXm_PeK$y=4!W9_%@RlY`cZ>2T!2MHoF4pFSteWbjU(|j zv|7aK6PjBdB(rig3@If+q*2V_cS}gnKzDmLomMZa9#2f&IBk0i6-~aSFP8qXRcInT zWg84jmknHKx$podWVN!COCvV9dK1EIkr`Vjwe#DlGBMyJA!Sg$eWjOpK!-o;X;q6L z>g8XoE`2dKn)$>k;}`$SpHDZp&v@lu=kvi=@Fa`~%AOikpd>R2qDKVcz@21pwjMIB za89S<$XZx-o=^pS`lQw1?HBYHYZSj)Ux$Mut$+Z9=b++lx8IxcKX2MpE=pqA$eizn zI6EueU^@OTG$(^@8RxICz8+*-VX!kZRGa#X%rsF(9zZbTG}9a`B^{CwO7o z(s5udt}VodDFS{8am6hi0VUmxqmB{vW4?ejE;qy>;eUDnK19f{qgXzHo+TF|g-e=6 zOAbbT@xqoTcpyt(Mh^v2l%r?9Ox=LrvP#`>IWfX0{LjZ~2fxMsz@_Y}7Jf|Diy5;^ z3&un;L5qqbYQy1|AS}21@u^_qG25-2J+>;KOxSivh`^?l&F{V7IG6S2;S>+WIPh~3 z=I0QT7r*Cxrh&~=z!}sv8o*N@EJ4CSVT5(rRW3sbxe*%>T@*pRGeSxan#1&?@G6+p zV#m6f%sPI}xNX<$8ZGHk+`vJ+TqPD_y{qBc!eT-5PJ12p57!_N>_KKr4c(en9JqU( zhpe@!K_^?i>U4Dw(Jh?rkC<<}D00Op@OFb%n_5b5n*q8fbZLh*#v3lrRsU95Q%mDs zAB@Y+k6Sihe-AlLw681O%vsC{#6xoqwePX;((cKU`4olOd7QYISuG%(Emcqkv$!^4 zCPu%n>58r+_1s=jOdor}YY}oy*CQz1!ML^Nc?z z7-obh2*JH#Htyeou=?RaArMe7vwbapaDd3L$UF6C_Fmwj=g#ZOUel!AwLtuCD6w-# zX41bSH@wE!{T{k22!cI&hEessb-s&M_bqT@+sCxaL;lQf%>Shl*1Lo7vdr3SPA|#vbNY=p;W0={9PaLcKq|GEks z{KNY~!zq!P{6^cn;W7uP@;?8Z72jp^7hC|bBuX!_twS1S5+jeeIiPorh*>1;BjRG| z!_wCB>FYSAS{Q~;O0dZ%d4xq@jxjr#aBR&YdavJm3?>dcxefT1?zgGeLYKCK5T30 zS^bfyP1yOtHmQ1-JGbg?P|bdx{-wE8QewHmb1obHajI7hBx}P6Z{GZz~8Gt5lKxrclfXPAva_K+^Fo&^qHH0D%7hOZvZ|2Z=8GH8tDX9=B!2 zT~J@?6ZZW072(4g5ywIO4)u$ru7oIByj;T*lA;3-gho z`pb|!f9u3c^G(Dc{no1E$NRFH&5`tKNFeO4CeRwBwXgDTSa8w-O{2#a4Xb41N zHAnJ881C2U&=9gd`LPvk%Mfb7Gj9yONJx?g6mP)-)2}{CNd>o&7J10cG+Oq1kH8r0K zTi#kH{O5xc8+o3zg4gkUs2gzWbT=VG8A?uBOHSE~LS2qP=At@0lm$%h1u+#O0E5MW zBsIm)j0rm=2iNNpt)4Nj+46Y)>yu5DJfbbD4+nQ7mmBw+UcZ;Ki*RYf?RCU?-_lYB zF%G5E79h_!2_E4@1cGGJEaRi$J9zs)3Fpr7#(#t8i!Frb#*_s%ht%Tl+QIb?V;zL<8VX!RGDWf&Oj9wA3u}Y>x`B zc<7KLp41OVydN^2IUp$sv>deVFH%UMHHsSMf$F#lsVIKoJxBwymewlvZ@4Ik-+Z&j z4pY_U2~Q90tcWdwe&z)lvZf8|VR5l=8){~1)kCA%sM6IW-}6Xe62ov&o8)*tbk_7B zF>1up+He-uPr@FafCcPoXE=9PqCu3P^U8ri%0{0staq*yAO9K<;;Ur#l_f|@FtX56 zE0_`$3la1=($E!tmPw^;G{WyBJ>GWqZj4F{;TN3cL!~+)R&L%utH>z1X(ugE=mJ|# zmAFW>LyJg16DTTt`BKZ6>@OA`Y`ZHa77Wm7k}(%64<1LUm5BvOje#g5n4)?SOe!up zDuZdYsfaXvz{_d_O(Ch#7XN>PCjeSuZgCbRTi=sGiuny??qEp|}dC=!E+K zP6U5^uGxf?;qbpAY;&s_Q=H%XM`AAl(oGP>&;Xvjr9F~Jowq-4CZRV7t-DvpXO%d_ zgU|H|>Od4^xorgkv|5?$?gw8TZP1yZntqcg`0RC}v8=*F*TCf$21S~5TLp@ugqeJY z@=|#1YWO<+v1g8Q(mI>H#8Qbw1!FSxaorTD%Ijiz7#uozXXjwRg`CqQims_TFU9_F zIrupjB(0*!MFLIk-=eChAAZu(2_tG^QAVwQS9KK9Ze)XBf>AhHgi(EHihMBBA8(n@ zedtu)RUaotxrI~S9ej9+dKeHQU|d+UVXS)wqw8w;Dn7`S*DDTUBvY>C_`gSpVviZA z$598YFgr6!6d*7j1hl;W2We8I;t|t?kpU{9pe+D8b;cnBYLuMCTPY32`K&~3>bDZJ z)DWt0D2BX5Fd|EvMrtJSmSoel-wip(DuINpLt{uZ3vz37b4|@gi`OR5CnOkSlEVMq zf+&(_uS9pv+4uAn8C+hCH8;O-vd#<;uf<&j2o@sn)&k5I{oJktZxOw6U1T@f^4W*sT_{4Gb8t@dS{slt7Rl zv~~42w@=g^g#acylhosmiVdqX$3Gk!Y`)vzMYu@yEUW9w`N=f;!Gd_r(k;62WwP2w zN@X$cr>P+)9#l^ym3|!f@(}}m^q17!9p5wHppdjCSC8g-m>qvZ(V=aB4LV6Y`Z7M} zRVrwPeylGlB=`^q>ChioAgZ>9F}HAkeM2O17cC|NF#x+Lcp%nSlFjre#jx?GG5<`F z)ocL0CnOccj;yP={Z(Z6R31=Kn`@SC`!**`p=5xPiU4P$bBfxd?&quY6+PBK((~*G zORNQNIT?;C*@Y6*Jb|%xhEYNJU3(rvo-Q2tYI&!SLqEEx=~+y|@`*!SqXlX*1lVUHV`#Ykf{1z@fpwVt;37w%8Bww<70}hQv9}tu zl{9UghYT?A{e>kX*>(MJ3C{=>wO&h%TWJr5bqBr%0+-O3Du9MfX+212CWrDT`9baz zsjt3{55}cH@9pv1pij+zZw+SyP;bGYBytBCz%gQl5|bw2d~wl*viBiRQMEyqq5rmL zHp0E;<3U*d`coCk(=}@I^VRxGD#hZb8Ty%%o0S3`)@S!TN&$;Ip8MsONkadPpqU}F zS!ylEZO5FSjTx~YXTz`^^d7o`hJuYC9~)0LVLI`xo?D!LeBIXzZ@1Et7vpSNo-c1j zK4Ae8MC0E7HGW#q0K`4T!bp<7%zPj*=st!}1P*K|)(GA&UFF#cSHy>_1M{1jNJdmWtYZYkj55Jbcr z=%X;wKPL}<|1B`n%T*vOq`i7nxZnv8%xS*AV^w-EMhq2)Kfb%-n<4`ydyIFM+>nG*HV4haG12n#=Wq7|^I$($TG+5o8 zEY(7YR-$ir>J!JT7P0R8(vQALj)JoilBNTUtk}4ND!6|Y3{^3a-yugZVQCc2X+lIj zK9ff^iB-5-ZzEwEc7*dbkFZ320-GMLl&D2hHECEb6un(Fzm-}fduFnisEv~Y zg=R&gOJGo;nQmno^1NdTnvuQKH>i$$`x5x&_X||^mZaD3E(#TnNxGjz64aKTWwWawUa)Kn- zhmF=X*0**#!|dq&LJ@>`KCJJg`uzm;CY0xh78xM=bMidwNohs{k`Yi3y8#JUQ#b%n z)FVVSxnwAN2X9FSu2-6@awk=gFzVL$g&&`IMr@5yvqM#R7mjY3v zGz-2{F33R&R(Bi}DN8~&LrFy8w%rrTuhrSYnoV)FCd*79Z>%FFGeD!XV`<%E{ti(8+QXIq9!XYo-#aJ* zuQPaFU#46RqPACxPWR^Rzz_Me-)O+LK}OfZHkqo!zhuoKf-*0A){bwOwx<#_dbU-~ zE`5nreWQGbcH5D!zqo;iwkZ|^yw>;;+xKB1E*8c+9g+WPddgQbz9O3i`B+Zx<_xk( zPhKQ;dmH%aKoFs7+WKPJh)^MIL?%=%l#1Ud@gK4c_H!swg?46#DQQMO3cZU*GW$%* z@9W>76lA(U10{vb7kCTLVl4D%pbC~t=z$2HquDv`v&l15@>>`2G z{^v3>(J%at;@>?|{zf%U`T2QK`$pX3VDeo0kL1w2BpEqGdtaA= z{JS7&)lGIcVh;bMlon(Dpgj}-kP>hwevK)bN>OZNAsP+X&g!&=Zal3oTbH@C%AHM8!e)@OYk{*m5?}b3Bm$ z;-t`XS9e%;rM~^Z65xeCwd^zBk2eby&3lDWglNhr@xx>v783KXpMo`guMeDUHwrbu zql!dJ}TRVH0hmKK_D-FMpPJKHa4CfQXt*~2}apsMW67w%giW?{R`N^ODwE@F! ztDYw#H8%t2eBJ--;MFM&3UhnvoqyG%cx0+cMO+OV(&$s%ELi49=6be4EMkjamza$;#^eRye?2 zC$2BO6fK!>7!>`(9K0i6>T;RXszGC+%$JO}@cj=l??*NyY1>Su29Q)$1K9jy9WM)# zC3Rou2M{Hd++mhIDIJ3;S`n0GlbGLtN^p6##VK(C1%XyBmi7B7(~yks;2H(m-2A-o zLrX^-zK4egz}_5eCBd5`rPXqzePoB&aA#>T}(gz+C4pJ196%pni3jv$^Kqw=$Ti6L{Vq1`~d8-B^cP zS@nNsB874C9;Vs$j92(ZzWqc_KE;VGFc*4&l7W*=w!UZ4FKF7?OHs#aQ?lsfl)81xJB zNhKn~1KzDQ>0IH#U&g~_GO1QdK$PRoj7`$cVhMY4BJ=I@-xajA8Wd{Zh$rzXQUL<4 z7+G0ag}cZ}QrYGoMAv zNm_R!K&Y+ghbrIrB2#h+OcjZ#P2$Xci09iQg4a1@D0tFvItx68oTXR3h>7x3yA;oz zg2+yn>isu*dd@yRJQp9|*AL3~DlS8p zf0@M+D*~XpC#|QXRw&y~gY3SKQz0=pFRQNuvT=j5yb(PQAb|0+$mu*|Uf-I>RZP4n zi{HTY?rzQ_LJMmkToVIqTL6;AS$>rc8=8rZ0?%LI!B3bR-vT@%aYP?I?<&gTnVxx% zmWlp~-SiW6AM|+i{ouEA>gbwWeD%NDt4ZC2Y<^L;*f|i2BRLYe8w?q%>gf`^`1F#@ zd0f=;vQaG@c)z)Q#`#W@^az^KbNlilYiW?h79R`%v*li#EpmPFjz1=@zOwqpneLvpJXai{p9~@-jKVbQxGHam0A+c?2_(-Af(|tq1e+y}FYdpN zL;y6t=6Aq%h`rrd>};FPPc%V8zk_-E!ktD^vhCQD$mi1L0|{qNs;Rg|`!d>mjK~mP{H}wMquOI* z01x{?YX;)LQtk+ox0ppKfG3t2d(XqP^k$e2DX)35_`8y}>6XPZR{z(q0N~@oP0#Y& zi78Lv!ux+XBULFavHW*l|GuWO3%2Aam)qtI&^)k6a};t}K_MrTJr+t72(^Ky9bkc% z(`V*KVB_^SNMfg!!12VG{OpV1ZjntFTf6n?D#hL=?+B<^v%uv~YD(~m*D7DZ?k3j` z(yj&bX7~Bp#ewNrW_K6@paD8!jPkMCZo>hO`Q?6hQ4>Z&iCWaLXYBh=nyAZdVQ^dZ z41V`#Y8P0se#uUvBXBp`H2Jz6OX8NHB80vFGU=zIDnW{YpnUR|vhs3)8I~-@RuOm={#;|PI`+zp*wf%M{sL%GqN-Tp>%VWG@ z31+&>4^9%GwuPAX&M~wl@=pjA&m$>woWRy`iOa#@MAe_<4qIFd$9 zu}giSeIpvT;l?wq@4ka?i5-{B+j#6epwtO|F9}Rr3~e{f`bfrXWFPXaq2l5YS)PNG zwL!&SV^T6{sbq#xdQRX?`~6$~F9kE$gncR+}&OQPWL`C5fGDoG;7x5aBTqHbi6S~~m zVa$PEhRaacjBi0uAX|D@PtDV%$IgLOe8)c7SxRE}y4UhAa%g{&+hos-QCI)Ao=1{j z{?aqCrSoIH=SFj9YyYat)-_RXUtCSM;aO)_dCFw#-b^1aK{HJB{$X^ohfVd2r_j&0 zqbjh>T|%ee;X!$M-ETxs5L!LEtZUqTDGGxbHMEz?8t)wlBQmudc`B5-KVDe<4eIbT zn`DlBZdXK2=Rf+ZvUwtZHd_+#a3L&M;wGl@uJ{UX;^RC@xyhpogV&L@CgfJ@C3pJ7 z>P*+--9mcB`h!JtOC?j~m}t$T>CeSir|rdgH5}}Gf0u%d5Ozh+d@u1#0t)|H#1mEF z02A26$;n{8yZ<0}`pIBkMvkM|e4v3}lYfBrp2NFQ6;kd$bB=mrxy#StnyNyU>w}8S z-He-=^S5^iHcV!>8C~Q@J-30HMi{}u$c=)v8y&#;xoJ9 zi9({jEN|`o*FtS|oFA0Ui!>TIMLv}tIG1h|jcL5%tb}u; z{1s^2T2!IP!VGkdUu$m=dPcZ!r>DA(l}l9=?~HBp>(>c{pD{WiolBt z&w}=@e6PDX^6p;8p3hBIuYt*g&Y0!Py3A)^s~!28j%FJEba=RJ=vDJ^-=5g&_kgEb zDjj}Kh?NQl-0Oy{go$YHL+Kn^XDWL{ zQEWL+9*eUcc&#QoGz;pipvr@L0r;BUp#)&Zd2ZVUv9<*J5 zFg@Jo$9YM_JKg^LKy$J z%a16k=Y)ePmBnBWL4f-CV$y)Q6AuQ-7v_ljHGkqJV-RYx@%_+;e+2|~yxR8Y*pek@ z>*cr>(}I=px8D^}4_BzHv3a0OXteu#&#w9WCCm1__sp`mp|c^On-*F6%vt(FHYbyG zM*(4vf?Q3Mys8M|NdzAESA1k-^^G#$$~fq!B!1}3IXgq!#5-h=i1kP|bx+=6wu5t? zmYyWS--eO?E0nz&C%*1Ud-*#leEoe}N!>II*b75>0@mE3`Uf@{>E~|4DsLAb5JZd% zC-yQiNVL-tp(9GrM!CA0FI>d-FSNuS==UtYzVMNN;BoAS^s<$1oo`5Ww|5v66TjHU z{Ym}C zjf6|WeFe)dK8g_Iwf`NYD=icVRgYtdv%hx^aA2~2!GQQLYH zE9`|ObdBk!_R!ZQF8%o_HDHAeSK&AT2Hh~)372_pI1R$j{HKIHOHSzR{K0Rm9z7`Z zL3^G^4H4M1L7~MO0Gy{#dj?kUr0~9d^HySo?khd$K=UMyQ>}|W;yGE5C*Xp5!MnqlY?pE+BwTzWJA{hNAy+*W7NC~3Vzj${r6bFm z71bT5a!D={-Ig(W?1UQ*2%;IAc6gBh2UyOxL>+?2bdSg))k_~fk)QoQK~>vk9Zv!& z!tomxl#O8Et={$RBSj1yBP}_Way`eaQvW^?Eg&7r6KO-=VzZJWmB$vwj30ji>izqj zy4*t|0`ZG)Nn1A+gD*j-d~q}DAA@M||4bQzKpv3VZww?_eiSVpkVy{|%2WxZin}2@ zR86;c_9^5FGo2`#Gk$a~j*22bvzgnLEh#K-`-Pp5>GlUQ7z1MWbw3Cr8X615zj3lg zPu7!8v?7Cu%GdSJIu^B=hZ!sTW?*tp2AKrVCv#qFfaGsU+S|)6nsePNd{#^dB`D4^ zMt_wUQ;UH{`Li^5%(dU~%?yIC{J##QkC~*5(pe~9snc{>X!Dbg2yK+tDX4|bxrO#s zm?TYMGwyeNSTdK#uJuRD)OS zUib|vzG)p1BpU&JbeQA9^jxrDWO8@F@2mWrvws>I8jtS*Ri;Iho++8=iHg{l`IyxW z1nOuzzzOnI*R|RUvIJK?3~ybPzcRk7FnQDFxLD;vc_(n-&Lv|+>iQJlq9Y+hqx@wVGL|IZ}jVDAa<*F#& ztxR4i*ZOkux#JKaH#;xglBiT}_XdZ`D)0Qq2;X{lxfdiZ0Rh4VKD2&`BHfk1CZuQt zXOAUEprW~V2^YQi{~1*n!G-0>|IF7JXYLy;nVgdI!Fbg6zJz zUoop*lW?wxCE?E2enuET5Pi;O!#QwGa-qGCR?^6Uei6Zf`O0~JSe1(YI%Qwyu()y9 zg&NP>n8Ti*o!7RrIuGk^5mE^B4PDC2KD~DW45!V`aq*lt^0f~QbPYt~6BZ4>C(MS9 z#8*3o@$;@3p)=Xy^7BaWgn-@_}t&*E00 zwh(f)dSCxYDL5)ky=`%4RD*C@98S z{@3k*=-BcO5W32}A9h{zO^%S|Q>_Vbs*SVXPfd}8gcbg($brV4OqIBZvvf|c)}&8@ zDU|=?ne={Y*ndO&La_rJQ@$$z#f(ucuDkvlFCOL-50A!~*;CVulZX6w!X(?mq?#6s zyhix&uX0F>*D(>rpZ_}*RPt>JPre&%p=D~Z($S){{+Ar%LT}!AzKK}%HcDMWO)RI)WZ5`jDlWG$o=HKR% z%*w)M84>ZNm+@PUOC~o|xPPvq4V$iI?`w=x9)d01B>5&J-i4UU;0j5xSd|m5AQ85o zId{Y^oGqy6PIwu6MRxRQ!9RHIQkPzD?(~=RY0fDGy_eJA%Pv2j8?fsB5Y@z7k7tr1 z(?&!^Xw!!|D^p3HTKq#w<>+qPqM_^PpEu9$qn}$=10wyt>{f+)){K32$wG?UeIQc8&F5E3Exw5=FtgD2;u_+uXGajJHNLegm z_U6HZ>d?)~!ohkinOz6`4gz~BAG4eB6#@?l2hr8KtLeO8&eoyk`xmRb@s0i&xJni< zbGVm~gp=JZSAIZ0Q%Zfi65$=LU^EFB={tBzhXPXX+l<9)=i$jovoSLVV>)jbZCD$wNHB+Z zL@L9rR%S)BqA&I@=Z~yeFXuv5XG#E)<>$TXtx2QKZ&W8$dryl*fUIMtT{=wxAb^SR z_1_`=ZhYePNK`&OO~-3zWSQCMErlaCihxy}o$Gs!`YPXFEVFfBTSA`A4Z(`?(O+zq zY@UXlt=2P_1>WO}!eC!zjxqq@5l{WHFp6&q0x8nBzqMn=;q?qpWV*SV6? z@7Cd~>uyhQmV38{T(aNH<|fzm7rQ`jFS>th-L4b;2705%FJ?r~;7$#C_w4#`4B0)v zEHfY5A^Kz&-YG20XvE<8&ro_09Eu>*xs9r7wd>;*k47IKV5boCa>(}C-_C`up=EDU z729_Suj?0U;}BuB=BYOn#^q=o|KGd;Cr2kAlor+3yZ|Mu_{b2B-ldW z?LYfmkNZ1DVcB> ztDlnTExnE@Rqn64$Zd|x@9F?Hyl!(M2!ToYv6E(bD*Ha>zmB1_U!N{V9RuO>c3Ztw zkF3ki=GswaWP0VsGxvT4+ua_<+^AajpTM`%Qp`MtR@h3XCRjGw2>dWm=WS49H29{E~& zUS$sY*A%bt%ZySY{d5AT&z_pv^BiIP@KN4$5q*yoge`OetHGFf)@iDsJJfkiHv3t zD^a`EoA%y z?7R~-U61)=;Zd%=^3S#Y7dv{p3=9p5iIeM^>!%gIy*54M*4_TkF*Env?n(KU^_AY% zmWTxCm5SFXKMphtvV2aqAd4fhvjh$6AZLT-{e|KC(|hIuXH?XYf~QABfXeA2dGHYw zY^eM7?_&6BlpY}Us~+VX`*=Eq8QQV#}s8eG9N1`%+AJ41gM#>Osqz0V36 zV^qBRzL;;&6v!8xJN*^U4cw%$f|W+{R94(*9fAtS2yF^;^3_w*)O0q@_6AZdXlWV( z23dBW+D5Wj#rC?twkSt6b}(J);2V^Tr3x*Z1#?+cZ6qmJaGKwp1qzzq%T}5f@vXUt zl2r!3#~kx{P8A0iz{~pQzB|oFD{OJA!bo^oo^EAZs2zVWGwe0pfi&@|u(-pZ7; ztESwo)gC|NJNQ2Z4nQQ!<+h0|m3cD?NkYaTWU;11qYB84RKcOP^ZZ{!R_~OIlM>T+ z>D2#}IS313zyw=gkn=wc9txy(Nad_Q5@HlnT8QBPuO9#~-w+$y_XVR>9c27Z`_GsR zz2{Ywi2L-z`r>agdL`eK%$93g)mH~upxojIM)$c@-|+R-$$(WxEF}S|v~T;~2zr;Z$QJO+?VL}sRO+L96(hyG-ExD_ z=x>NRN5iU+#hq}X@KJuxe$eb`ZVsR8n@lwrzs0Oeaz!! zWMw9?RL^;@3fy|{k`oa z1-`&J9ab%cX6REZmGw{R4tRAJh_3%`&cDDhmTXmdW6IoYo5{RD@{_->YC-VhWX=J|I{qy|#CWjhB{~IqLbJDNZJ~T0Kd= z2HtctKk{ia5++C`{YF46jNA6p_HQ|@z*#_es>B1Y2c@z*_euQnTaA9HvM8@TCaOLw1>K7kBU$0ZGF3zX* z94-4rmqc(gR=qdY4+h`!LkX#i+~S%SFv=O#W4LEHdFL<eUNGhz7Dp6lNJxutS@@w4J!IU7Bb-(7( z9i|#{JSek*A)9XRWj=#KObWuz*UqV0sA_(j*U$ZlNPS$m>>|rss=Q&X$=v~Lb(XlD zlmTpc1KO?*-8ypq;P+e{&O7yFCU zM4R;@IPAk_s`K(jO6U#43;mC3_ z=+AkxIxEMj4>859>!;scn@swCBx5HmMOyw1UzJg5by&$#cVj0P{Kc=6Tm)(B zYQPR?CE?dIJPLK`xOQ~iiTy6CAYKK#&Ik!@6wg~KzYk!Z}COjA_O_*yh+*Ki?&Y^J%o}`eIl1TgTuD# z;?4&A7~iirN@Qlr##PTSp{J#uBx?QCA!hVsj>1*{$gB_qSQ2Wf_l+&)9v9Q5LGhVn0xy+vK)~SnVf~4;^oVKh^%{+`5TBgHp|Mu$$fS*OApH$wy zbn5mCo=F5Mf?4S8k$|vkcv#IBo%m^yu!`u}kCjq!1HU$_%CY=g$O-PlHB+h{Pc?KIZJXp@O; zn~iPTZj#1#-v963FZcVIIp^%X_QJECv!0a1Oh&|>6IZ^R$tGU6%uv$cdD@Vii||jK zP=MB>SZGK-dU}{NxjZ-g-x<(F?44|^MW#p?A2N;G85dB(`|J>zKYq{E8Tym&(?Xw0 zJl7greL^NF6nWBj+}K`1^27rCBZEWt?tS2AC^g*D3b|stN6gfbLeyZ=P&5f>F_OL@ zu3g}T*4k-}`pJB#BnXIU?p`mIIp?AAL$2R-$lfzJG;D|a!_Wfk`;(fq^uN`?moTqSoRH!o`z9;~ zy9_kPq?CZ!+nm(t*k7PQ;?`d(+-hCbM4JfYDv#Csp{adG%hW)GW?YY$h31}hXom`b zFyHO^QhR<({y}V>&}nd*E9d6^70aFyISY}VrdE9ja;PUIABhq}n3d{mOxZ&01Vg|O zOQDa?fxRWlU-x5}8-}{F&{AXBIZelGU>71)~JU=KB6qmJyD|kF<%dZi`8Qd|pe)g#?XM)l7wCBIKT&312 zU`MD~3)``q`0Qu#IRrmj`lQ8frf3tn9$o6VBSB$U6AW+rx;-XWUb_xO5Az>O%%&z2((e{ujvxm{n@bKE zh$vBmm^DFd$2Dghci7w<)SHdH8pf6)m|bi)s78pb(j=IGhW6DpO4ONk*dDV9{-NA$ z-1O?0(0D(3fo$UnYZ4oM9r7g7c&m1gi3sjlOcVC?Yj&_Xcn9QHu&|d;>+8j}uBXY> zeskl_x-z_wh50Ixbs;p`X)R0AI@9?HeT4T2mHg#3E8{5$(F($ir;BWQas%T1@8J-h z?Oa+7XRaONU=3BTP@ch4oQxb+e>WiY(ckGZx9`6KtQM%J9_VrdcqlLz?CAgbO&ln$m?j!V zD2}QJuJ&aonjaOP-*--_S~E)MjM6!eckVn>_Z-Vi|2wyzNdyFs{zYhwJ3}w~9_2{l z@)y5`6bpY$gv{!A_QpWRSx5)OW zV`4;)Hj`ZJz3rZN*;cJBFEI@BiCl=B+bkuNEXlA;E;7tSO?R^;XU7y3o<3oHsss4y zY3^lL086LehCdT;7ym@FQi~Ry_WhJ-Z4oE*Ne~?~!>lDAMX7{#_!{xEgI5ECq*CX% zw_glxG|X-`fj?E79&<(+S1i*6n#qe|Pt+P(@>`Oi)YZ!c>l&_O9zJmahf*Q`nS7}r zPMXEU)3=de)MzOJT;MAt-E!G=tHr*j<%9U)rxUjLsHTIxe%Z- zzxG%&of}Zw#_dJiU08bk4+^a`L8pzv1J2{@nO@gIGtFXJvf7%FyWD)*NvPuVB7YA& z4h0oZ>t=eSam(>SI{RMe<|i9JBfHg`!6Krw=0%=ttu}pTdpUK*PuL(hD?`P}{y#XK zwWi!|Cy-PA<1A1}i58=3M63Jw04@w%oMuB72Cim4pe18d&in*$#L@~6RZR2c>15Z% z2UM-FROoBbeO&rntMEfX9fr9111`>Qupl5y;SUSYH8I@iSLt;SzD;><>#pz1KaWZx zLMDm6Iu+dn&x_u%U)UZ2o<{cJ&HK@(4{(Armq|O9!?~?ye;{7`M-|WRLc^|?B{dL|K?SJ} zc~TaW2gSyEO-Gc?6?OX5#6rBKU?syP2F;S;1)4od#yD{|EtD!%9Xg!{49s4DzSav9 zPBczeyvi>lMX>-_#~bU4`$mlvjg*B@*9>6wMt5EDo|bNy^T)Kw#gZ+Cj3pVJOscwo zoGr3xZy!496o0ulv(Yzcm9G|?o=e&-2#mwxTN7fmqq zpa7c-XJ_nuQ0q`7%Q{&irqq?mG%%rbH_2E;ijXaaUbOx?n40&$Sd_2Pb5LUsLD{Ou*mzDE0`nvKE3*ZoK>Cnx}nb zbn?y9kO8e56I!9S>w3I#M+^W`hn_&Ds5+C=^6ym{)7Jw8(73wNdVuY4cqj52FNivh z>-w6d!8|7u~TbESFe zrY}Z!o8Rpphw?C`sOfX#eoJMrYAtpoTxoCJV=R%x-fsvJMiwa`(6I|kJ^ar3Y^B=k*IDD4)Bw>@8B#5acj1}L<9A4E!O`9d}#^YVZ8P6U@I&$;JYtF40H#0K>!G^19 zAZ0L~p`U1iMl(vpxiCWq67%q)TTzHOVi;o0oRbT>2X@|MOiPe|vlS=f3GjvRaqzb zbYy~SQ#7|@#{jcPLJ@asD@9>fEh=uarbmE3Cba@Dsetb^+-Om`F~KYN=k8`0ke!S~ zP=6C6w6ji(B16b|@Tl)|H}0VYB{F%Omiv6hSu2pO2S5XMnKM%UNs7&arz|GKE1vyL z7qNl4kAKJN$1za{Ql%o^atmVU{a1yoKjf5^ReKe~oK*YmOs4R=q^NEDjNs#1aTW}+vcj#Uv~VqKQzDvK{4m=QL{!W zAc#AAt1jcR&WA-417&Z+l3fK@f*pH-w*$Om{B2VjxzrmqVm5oy6FkPMcT^M$QHTEJ z$>~NbC6T`(DRc-d7}snGLr>&rD;f!y+>>25lhy7v?DZX?vK2vX2_j|KEfkyw z$kC9NQb=u~j82Rb_xc8@L0v;B{;%SP4VSK`(xMN+tH0i{)Ms3loX`6T zaRT-jgq6gT28C7s(0>Dv(AE}Q2t-4$YSECD(aP^l1s@_-R+Sz9Wl%;)b#_lYFSF1R z5{ZWJ);?-a?`Jr^P;5xk(Zr~>85OJxh|h42nuE-bIxRemeCih!rtsco)jTNEuS=u} zT~tFDK66gYVBwVmcVswI8@YDBK3~lIKQ2JEN7O<9U-lxGoE_8@0I+@2vuEuVZ4TQ} zomR!dSe0$2OL}*HairLJ8g|1_rDX0XeVe}`CA(@A@@L#{KWBcX72GCEesiy=5T>0Am5CwY*qZ6L;BL0P;rH9YfXg2zc}NU%uvckIaw2nXvG8U+`jARiR?2@f_*BR zcL=KoyW*rGC(htbuQh?(AIhOF13d&pPjFQxpDB(z)809sW7(z0DQ8H5Agi~7kox!A zUImtb&9mkJyJ@*&KPSorteokm5ULU$o75vKU+`B*(Cq|O>2(Uy zbImRn9_4>=umy~b@S4W-Qx{4*5~M56u(KZGHcAZF&`s|nXN>dQ9(p#YM4P)(wzMk} z;)d`VQ_7@fyh-gA-X8RL0csArf8~iUnv6KAlT~DyF$KhhnOiwE@tHnZ$w@XCM4Kn~ z?WS0qIY!3yI=qKhLr1z z-^MQI>Fi^HtPo8pmw$JG+tpJqbv0St;!?q}vy0KEvb~eNUcf^Db|pN)5+-c0NDUQ& zU6NfC>)njWs=buc5$9+wNC8XtrDs9FQ z`ByqagnTL{JFgxphIxFXNvX|Vd}T;-QPFHQ->$qGxI-H{JSQJjF!x_cK5;52V^7$A z*0n#I@Br?dBws!FxBPJIR$m?PZ1&KV4#Q)mab$0JA*&b;Msvmr9ZZUVu{FACLO7wU zjAiJ!*?vlPNy?}FzNC=>Z99fTAElbE#L*FXkdJP`ZVBPU@-A!MfZdy(E^c8AdXZ-pX4- zz+|445&JQo13SfE;HQZC#ykiagJ{AsQ67!r(%Uywz!^oD-!=oMr|kgCEN4T(NyxX^ z{JcSO1uxL-UnEwwC;sitN*;3T)ueau1N1Xq6jA$}&donQ#$k-Q@r`cvpTH;>J289NeO}K& z7VnA)w(H$rZ}MU4qssI1<nOk+56aoi3Nb;=2Jvw9!tdEfKHyjy_Go73au>^|CM+^U%y*%*>^uIa(?8t zzO0Wd==(hd#pc2$Te=fPMujv2lzol?j+RG1+|=Y*BeJ9=_0Dh&ao4Q)6-K*w<8;o= z;~}uI>dlv<7N!QPad&$HQ%dJ`%4UjlYlo3FpcHbm$^4RjpI-j!`vZ;sV2WHx#5X`r zU5zz|bKStC4O78`^6(~V<>!i(eI0E>HN8efNG^QogE|l=@p7K+;9tdi7W9#O-xJ{Q zymYF@lD(Wjkvw`LvJ>1~31I6YH{YP`CXBjkx_0$SW2XY-Ok$ijr{?A zN9q9K*4?aEOaMSe9H@J8Azt$M`?L-YAqk%2F1T+7UhivMR~x9+PIO0RL*Z%vB$iEffY(ZECiyyP$p3Weco-mREDOx7F=z- z;Zs>2uvbW%>x|Ybv}%}@#^7)60oFcuuUDDPw^cR2A(RUsC}c4TJ88vdGM`G;d{q%m zz=-L}_c2=BqeFm%A|M$gTc1cgsfIbxEL|Q1vKaX)9bLD-^F%4kzLV`aBlsDA^)bJF z_)*_QeB>EU35PSBR@P|c2N|~N23%ek7zSuoeUUn>pyca5hq-!l#vp9V6SSili$@(h zYbu9ai2_OVI%FgzXJh^=P^tLhnL8#v`cGY)r)0kwfT&_bpxar!tpX^FWt}yy2rX|)9Ngb*yqgx(OQ%@5{=dz!szgj=g~U0uQ5tCG1l=B zF5eyyH^2Zuez!zYarT!g4v;pt&IrwSLSO_rlQvJCNv9mX_vi5|t_4wm@?W07lfvj- zOe(k!RJ?I07mUi)3O&&VqK4PMx0;4`Yh^MAz1c+-?Or=ga73dWAN#yf`^;uA*~v*O z$73B5a?mB&+gaqa^+X|H z;R9)oj4mVIXC)y?N%AZa*isc-C`1m+Sv^t0yo9VUof=2;-;JFYO&UB}5+1&Z*<;t& zz1grWWdGTAZgBgbTI`-ZNw4}XKOU1}Txk>m!}v4kG*>=|Vd=p`Y&Pi8 z!%`|sc54eXAUvks#QfvD0Anp=)O?rEXBTp-S_GHrHB(zu5%ZCO1tLvtEz%u*P5c!jSKC7^&Km}Bi<>m}x4hbp1ZAQCO6oG_tMu8q*oqF%Gw7Gtr227*O>#)-BcT zR8NudH+GtqqwR28%PN~niQVO6n!A{i;Yoj$QMb7|XH){RbOhnq)F7 z_$izVsQ=|Ihx&&y^sUx?UXHdy@Y8#t9qq(zt!je^fK7`_mM{9(b@_z%RcsJ+h|^Ob zlf-#tjxR~tp>O-fQ@4yJk=FuI$=Ysrx|dK4T3@H$?tOG4aII7B%hPh_!ydIqtO=`d>g4@%fVq>07+4#0Ip0ZK^D6Y7ylskag$I=Zm9KT{qa?f z;oz_)sPAcZ-Vh#J{{aI-YBfr@Jd4avT8dW{_Y-W)(K0%(@Egoj-4lb>WbyXsS!mHGIFlu6B@A?`793qLAzU+1JC_BrM_3J@ zN7AFHp^3WLPhBA)yt0hd52^C>Ew($uw$eDvjvgMuIb3Ih{6o|lZ4kmzGX{Vfi@q~n zXh}Q*3gRDERU1h6W4Sy!)jS)0XoI^bhBq9Wo2b%;@Oin{1y$C-4D1Egy`r`Sil79F zt;ioBP8SFKT90k$Tq6%Fbof`Vr#K-kuS*%zYGQ}TS=)gix!i;6@joo;nTvPRiE;nA z4p8justgzND9$Fwk0b+CiC+X)D=j}hcTmmSD(c)Pt#fh=t%pduP)i|NQ=_4+BL$OU zxB<1=>!CMX6lW%F+%L|S$><8N$Kt!P4Ee^OdU(sHZZ^%6xR49BMix{1#B4-P;}wes zlbnpN`06Tj!9Q>C+=zewi`A<3e`#Eo@8M?=M1TTr_I?5iG*Czqq<(R6xA(K))+aB?(xLi>&?$lv&E*aArE`&Mf+X z`sESgtcZ`#G`}R`vN{C6-0_TWXzHPrmfCawjNwgE+2hHXRBzv?HFSZQqmFka`M3_| zABO%ja%$5yTj?=HOXjq*v9Y%+>GBmbX{{$bZsgKH)6jqKl?58j>hbh-bA6a5ca0%c zb&pBqu(Cqu&|j=`{~3Li%hKolZFK2lvxV_y^D&v*(CK(+=|cbj00j%*vpf&;B>$nz`GJ(~+t6EkK_-kf1up z_woDPl5{A~Zi=$YRKW<1QdWSAz1UwF2}~psrpoK@kH6A#51Wx|P_rk6gje8rx)e`v z-#^y)UwUZETt0-SG7u${Wmz?jr~XKZH5$^VuhTCW7fp&H6<2!s^I&F z%ata>yh!RU4N23GyyaE;Klj)eWhhMp%~@z2i*mA=g@3h5$aN}3#Ohr91F}~(RyHUh z!s(B^zlwNV+zlr)(yp@avX2C$S9q%nhyYC$0Y1^W+UnL{#-w!oH?;1UOW%ab>xt~V ziyZ_M8hn)58(QE_#2w#c{;q|NIQT#J2Qa$WbIT|5T!m9vctu}9xHQumKAyAs1c6Mn z7V2%A>kXBDY7ZM-U++F2Aq3VHv_>8Z0ZRfz@M$=>!+(A+JvZ?KHmD#6nCi1MsjjZc zWzoR}x=jfXu87X2@Mx7JM}4cE!wWgjtomLgy8@P&EZpj_`AE zngz0+WkfIl0KsZf{Y~Tczs}N3`=qQ<>Z#e9VOLMYX(*@Jmq|@@OFHZ2=zw4i9$Pan zg|R)3fSZ@^h83(@dG`l=yzq~dBme9vQZ;02KqMAun#?||7SUQDI4Vml_32TTjWmSe3ulY)5HeYSxhh+#i9H*Y%`m1!UOo zlT-{gY}n<$vCRNQ8zBIINNT#22*2Mk4|I%G2xWud!JlYhyYAY?G{fs>zgS}i;J+yF zGNN&G4KB23TaWk{Y4DO;FEe>1C85QaH5kB7-2G=(&apq=%vY^1{kao48bo0|N+{%Y zUib2;9(+vVUMicZ+HRK&_N>AeGLk7N`v<=CA`n>QyP%^FjR46{+hlj@;$zjlRxO}o z05N9v8Lg3})-LSG?|xHz;?E#UhtAHjv<0fRJw88~lp|{Ff-==mOt2%RYU8(vFL{(??hX(a$1353KHhKaI7em~ssYAG>v)!Nd~#BoqyqHFynWPUHhLSj zR9wqnG7$(z(4w9aU~)Pcgod)^+FGJ0`jy;6-z|ki(o@73&@AEJJ*h zI@B6Dz-k`L&Ot+RxN!quYK-OWk0j%5cjAF;s|*&uft{Fak<`i@oP|ka9U5stb=>Bq z6d(bQ6oxQqU(_p`fC`&$QCIW6-_}Y?L$rNYcBC?YflQGOt$@$BO+pfVGO1MN?h7b_ zn)7}4+{mEGj%k0g&S4o}Q$q<}BAiEtJ)AWJJu=MRyFHUwyWWB195S~tS+xKm?`whJ z5HA6&O0X(^8neTFYs9BtX7xt;*MhWb*Fy><`hr)bWz%MzerC9lhG0s(5D9k*wwe56 z;Z@Xfqo;(YpO#8-gSF0cdJ2D|1&S=5JtehwXK{tUy@u0WwJ~}u&s1!uez?LyjKRZ?oB%24bf2`$H>Tj$H&Cp7e_EQPgfG7mPn zym2(V-&ubSeM3|Ugt!&+UD)t7u}39VPdd^zc4TChnrc*r(*JmO`u#ykAp0D&uNZe) zAVOO6`KBCioX>-chh)X)d^2|G*HhXDDtL(i3VV{rk&v#yP{z!?@LE;XGjn*7?o6oHAcdq=VGSaxd~y+#!A4<0~G#xMHj^Z{xlYyW`=B0spEw}c9^IDs^hvpT|8dPQ#g@;kV+m;&j?<8lHWOa_-o!_nN zt$usp8k|$tI?GFqVH55e7w_%<(Z-M~fUI#gR4kPK-;t4fMOtQt@aGTr@Xg`kh&rpV zf5q{^_1Jf-3>Q9`*8eg%!%_zOMlIqibC_Gp6Ckf=2EuEl@@ljh<}_j+7Y77twA<~R zUqw1j1_sGeSXe3w`L=!d^)uu^-_R!WYFCpsdG5&|CB?Tapx_%VyG>ZtBQv-CF7#35 z-q%#2+Gm#P+~ypu(T7a#aPNP=WQuEU_EeP+kQ1Hlp-3Ru*%S^gptP@NwN%ie2LS5m z$-QwA?j-rSBP-*cW|rQ9nbzmp_(+ODs$~xYBRU3dW$J}xYOzx%8FYvlE#l)9|Rp8+Dg0Pdgm4C{F~t~T`mWf zezz=3M)-uozqs6q_}5sg^S};1qFNWhpSBmmqg1{uHogTE^Xh1M8Xm&CK9U;EtqrK7 zokf3#cvB7RUJb0rW!q7fk4*upY_+DYhP_ShXE`9?H)Gcg!Q?eNA)=w5I^@pQ=Ss9_ z2t$G8RtLdPJ`W_^l;;~xcLzhF5tS^!uBQVWfSUc=797`*qqqvF$I#H@#0TNFC_%`qHRljB1yO4)Q$EL8&1 zObDzBK;93-i;11V=ueF z;akF&ygbiPZCqVV-9z@~RfrKTTWSMg>=nm0I?Wd*TRBhMf9RhkD`Y=Q?`4O5SRz{m z0JK|ft4cEfI&gFKN?pY2V%3Lgax=zAtWh$sV}>b&dro4^@fME&s~2rX0v2mkCWa`C zor|KcXmm!(pz8;sJ7@LJg#(Ohh~1SGOn1#$FnQ@!j0IS58QYk#ujhpQS5``2O#H@k zmA@4S;nQ)FfsSK~!!f5ijUA+ibGm&=09``B*|Dibme#)=fk&imb~<-&m1#olH*Jgn z?YlR*seHviRS7sYCB@a<`^2v~WThzN@Jcq*Qswy0L;~YeFZ_lA&O4?;=-fE5k!R&x zN8HXAEoM3gnMd5KQv4w0)MiDKgZIQh0f$sgAu7aoVxTo&4F_RM|T{<8gH0_E5){rTg+S zce`i_wO&)e=x`(Gw}#wi^F@grVf&irqwY%iMJS?I%St1qRIV`YTu&ld#i#yo^#aom zZ~4i0=_$|oB)$@K-!yBv`nl#ZBcgwm^CD6*j88*ZgA;`X&jHNOgiw9HXxvtJUBp3i za}XRA!EX%YC&xYF;(`@t{pP=R$cz9F3W-mQLO*3Yaug`m`D zO@|f!0Lf(zndR4bvTI|V6xh42P~UTfQ`h-)(Gqjkxswkc<_&O+;}qzXt|>dS1q(+`asel7dMNht=L@dT}K z9H(^((2q?qymR6K#3|VyUt6>#B-ukhS=fk|Isz~xLaGD<1Rs|ml6qLKb%NJpa3m=Mr&Js`ARLHBoP@r4wb=QS_jo< z>vDLVLWJ(JeAntX0034!oi=4e2M=Cassc?#owxNePO34-3-&HUb!(+buTC|m>wF6h z3{pYC5e0H}_Cs?;R2K|{Z?F6@%9$diXPX-9`R-5v5B zV0N#`d&sa*bhp~`g8^*i+@AY*?HHYFJ9R~{TnmJ=)*g@pa-!w=><&fD4;vy=Np zX|Bu~wbd#EII1NqD3OVrr^fV06)y!>pUyCeB3_EW_IfLva%g7ryLhNsUphu#a@Kxe zRkhbSv|DS9{>CpXeJ3oea&WQVdpCP(4tUgy=Q%QtUdPMtQgW>+x7RN(c`xN}JA?ysXA?9JQpwDAI?-CnUEdmm!(H0`CFX-W z=5!bbjI$Ea>GAlf37z=}37~$@OgDGgEa@FWq)eYx*jd@gGDTSFp>(fK=CSGN5U4+M zhN!NN(*nI;E6=nTADS9-fIwyhPOCUF^@MW;Hu(u!v=}Jx8~V(van?6(euQueLw``y zy4g2^G+b59`#M%?914HiA4T^UHsA*9a+~L`!K^akg{%gN^8IyLQvXzjaE~zcwyJ8^ ztgt5PAX;aK`iAeb23(l!UJP+<%IwAnfrk{2Z$tl&3m|nw=sjEueB2@*wa=CrRM{kC zhz?7EG?{Vt1h||OVG5~u>%YqV3ON0+Z{MLSZWU~$#J4mtN0I03G$6SM1oEev?x`xt z&5J!C&BBsB2JiQAJxvp604E0r{~2TDJb5vE-7wAHxZn;|S(1_ zQ^w=rEQllRB4737eXICPsFH;}fU<^3kovZVHrWmw%pib}`4S9#?2&ELV>}Qj$k|~n zReyQUS2Ecw!MRjr1w6b2MkG#jN0B7kA8P}bNTcOTa49RRhF?s z=K#4+!5Kwclgez%J;oJVD!?27DDqJz&qvG=sJmQzUdvs7J8%B7zJwrWVAOkVs{t7N zO9y8ylU`{T6bSZ+9Z+Tlj-5ZW_7~t}0KGZj{W;}eBY#KY|CdfSczkFW@&9u^y2%zu zF8*4;FjIn19J3;tAh%pLe5?GVz&uo*+=IYQ*HCAr0h!Hrxar-%6wu&Ax0>4xwzq)A zJZyRYw~I2sW%bXeh_kfd>n3ql2@#7;gdA@ui3O`3i4I@)2!}&nd4#6MW>@%Z*{F1L zm$2{XkCH)Lk;*xB=GO>Ta#qAdG|~b2*Wa_)jSYkI)=~wvmm`<8L?)D~t{`q2&H-rj zbN3y{*XfM5V8X}{g*%+eRh6b48sEmdMw+eGTWR0Am9kZO?PbDj_R|}XAp9I!CB2ZL zMW4t>d9t_F=To|$kk7+az_8bUA)SU_95m~mpsLB@^`}7#*6dh~1a;WI_IHmu=@f8m zg9~?e;@q6oLPu%2p3g<&i7<(zZ<{lWNL+#_MAxF}teHL~$=RzUD&btpo8k@WFBL`WIHN($Q&G%FE%`=?Fs zth@2h>(X{}>1My!=fO2&f(+1;r6l-rl;-^%NMSD`SW;%=>k{LhZEi?BcG)q{Hj#Ui zl&QmoaoJ_U^a;U&eSK7W%l@kFX6x9JrKs7CaqRVi>&Y!Uo42=yi_K@2l@7dX1=fG= zd(YHVgVf~Nxjs9;gx`1hr@9(F_tuoo-{-g;%9_?Lg2WwOkJpspIhlxZHLSdJT3zOe zpiAhcxU+==LOv$*CW)b6s@N`=5e7W@hum#pgA)OP+XI?D78%k+x;CR)7qfG=qYj&# z`f{#!_4{4VrO0PR%>Pd2;e!F7Fb1D5AgO5!=AShAyo@s6w)E9cJ@-p}j@CKvW!ARt ziWvYAA*xct)0KUQ8?B}Y(j!0+APJToN{4;!>|(XG_6;|%|E7t?qSnvmUS31P?MqU74^tDUAs*c>tw_(-^JfYO}$ z+1bu5MluhFx|}pdG%c0P#59i<*Qj|2wmYsVfcde!kSLw7JM%q#heHE zV|W)#H+yvq!cT;CTEMy>0y;Y-E=`_2K=LiM~Tg}f-VQ4pj)cNoK{-mW)rcz=Qp_{f~5 za6yaYc7R3iS^F!+%7GX9{|9QXn6RHn>UkZ^vKnQ}APFlPF$_}dvNGid)lf{R;ll9HSzE8bdZPku-!&>9o z`R`UK7_!7tV>+;DQ?+YQkl4*TI@8OuL3B0qfK*881OfG8PM){JmKM8>zcwe_(4wPv z(o^2??eidVAYjZjZqwCI{;1q?^15lW?rDg`>?1l8GcTG_(JzINC->`RR{b=9PT{jJQ%7~!&<2kSLAASS6 zs%orL)owli54DMw*;TEm7n|UEN^ALEd}A zvKNsJ`46nA*;66MkrNY{10?+3{413~nt5^u53pKOwcsLW)^07e-H17ewf_`QO-exX8GFRh*9kalqabUVHJDKG;E@&yL_wqy8<#CCKbiFUWmFf%%e@aX zZur)&lv||+PV^C--|k2J_sb({px~+*0=li$QA*JAZ@yx>lAz+nW1u6>9HCQmbTX5T z>Qjkxcm9VdfL`zZaxN8r#JE>Cr$kPQn>D|b#jd~5V1-la>d=P8vJXjM#3vn}{sfR> z!UiXh$;u?4ndWm?jh-H9nv7_iUBLr98_=WZFY=f8btQ}#lPYZWSQ-DrL0;`ZmLmPX z$zbQfpJZVpGk81ilNa5t=(#2{Ff~7m^+8~hd*mPyG=t|a-Q5rOd7O|!v1*d(^e7se zKJQU6^ZfVJC|bH$X(dMAqrdRjq4mAp=J)!W96t==m$c4$|*=N7WjYv^K@`K9_uD3 zHdq9pu*VCN$FRoe8EjbrS>M0;8MT{L_uo^GD*oX)xIH#4o^RbVSb2J3$NWr5fq+*y zT%+1^0ss8kO6y4g`Z;<{Wz>)C@RySN7xta}G!4qcKO%UIx?`%B;Bw8Bq`)u$GJ7wH~57+clyh8%FBa71hqAbT%)r{nfBoMn*3M)&$%@Sync5(50lO zqqSw2-~M9fmb>-r>e)9ay$67XqBLFgcW;z6g`Ls7)hbfR1zTxrr zC}k?-;^2Q8P(D2SiE#?<5x?{`--y8g&Hx{xi@jBy6>`)`(GW1A%Okj&{*w3yY&@TU zm6(g-j~*I;7JiBdg5=>D|I6aW+xMVs6q6$+?B-t25BLE9UA|{}B#DG3Wo@vU9wh64 zpEqT+K8h}PujPXS{LrX1GxPCMkceCRU-abfD7PROmuEg4Bw+jLahRU@DgSw=QSYic zUnnzs$GqjfSa{Xl#FoUYqWNBOIJ4#f6`m*^orH z?tS@qDng=*gx_Zh8z-YrL-HNNE|PBTHdw(S&22T4`Z8d~Yi z6(qr8u9=6tZr+^HsG%s9U&rBf*^Gd|iV-UqU*9^C9`zW+HTIX&Y$K4dpoq$W;1PfS z6bf{+O8%6=pYd~3HBI5>vX&>UnxEkTaxjxz<5^Y?7g*S%CN<_1>X5A=E~*gvt@Twu zC#w#bq%GgWzIhAY1i^ySKu=)_n#Y!{x(iY<7!r#?OxIDLKtY=Gap%8|#MUuxv`+#g zBKu64JuGgT_=KV?D%r?$uR8r>|24+XBUn2&WEatHXU;gxR-cWsG}=Nq{VE^MIQZ=D zlLoVnSn1gAl_>5{R8Rd2^}3gBoG#=N^9=xaqlt$Z&n9$79n&1f<$rp_Zr|`%f;<2B z2WxVY$INoa=c?=F(C8Uz`#a{y6!Fu|la8{H{g*Ma$4I_2k`En!FNMb@sWw!Ab9vthf}EE+R`3gV7$Xv_R2{Q-NulLN=l3<1 z+|9jn>kD8ll)CVSuB4XR+N7W_EdL_C(_|uwvGcs?d`oxh+j~ncYX++nDUOr-8#L|n&;&=xcL*L9dIG1GQZon{~*m#GdGQF48uzE1So4P zWL7#{VuAiT<3&Pp|7Z_~wFY;cb34#s(IwQdz4R>-m1kMP>p}5+hw>2X_h9qEO!^G+ zV{zPmD%+|Jp&1scQ7*Z$aBds~SXo3Va!?_NdOSxqp-X$^oK!{;`ski3q8__8s;YVr z5bC2mFXL~fa9&dffriiNM723bD_Y%O5DOh4-+r6`;mcGll}54KoVHPE2=9_v`L!|0 zAgkjkrZehLtV)}?3F!LK?vGH2i7*TGjTr*~pfK-4WM33h{I+-14QQ})? zGNBG+`jJaJCut9ECTpU_MB`FLy3ftkJ1}EnVb9ZU4$eh$df958{J&?ftxzs2%f#6H z%x)F~g~Eo4JL7r44y#kxU?M$J(BbtNa4pZsjD`RSDUg8!v~dO8H)Gq+#orKzwMKp3gjD|wCH-8+{F->ou>k^V^Ft@*ulx=%O$VrpRq$tYiFySii9r_{|9akoxc1%{q_w zsN?7NK}~WPltg!a9zt)1HJ+X!;_7$ufY8|4Oh`?TM8N@w75zx?k(pCOv3bi2nk3`7`)DO< z_~rObvx+6oh;#=cTA+LQ`7p-Xp1Wlub8Y?)VK>5&OI5qz`5fQc z4;Oxs_X}J4BFoGTx|ou~vQwPZ2NmHX?}l3RnUy5R zB95!iIgBSq^Zx(ctXe`l&lu)i5H$Jng?CgxTTHk4EGfk5C^hIcZ^SEs%YtVM@N(t! zSzT?ld_qNn6z}Bdi|S~Ty5r>})SW+Yko!~W?h7ZlyI)O3u>)1P@5AJ1)R&=~t_O0r zcc|%TJJ?HjG?eKe3(-la@A9{ZfK4u5!-Dn+-IQ$lV; zwsAv_RswwHD5uou9sM_67kde{1q;;(?AW5dMFpMrBeGw~jqe}*mJPUoHq-!l-bb+? z!f3@M+Z33o%5AH(8)XkMH=qqaX;fR1M?yk>j;la>i&YJOVcbEs--j}#EQ&8OYkx?Y0*`_NS?f<@uY)g_|bTNfKZNJg^u8h{l} zAM}4{`U-HW@s6))}%MS~Z2cXumVT#E*$xR&BxBsgE5_rLzlwaH{M zv%8tyk^9U&=M0=$TAQZz@9*xtht`3pfiH+L)-*%nNFa_qDQIi+JfGndf(Fyg6KHh@ z47D7GSRgtqv;>j%|2u~p`}q@91_I^0L23#&*P z5+KP?rq<~Y!<_lz?D6N1Walsgh!+ve4n>G~(kX+N4_Q#2rr%&Zm^Go_C5apn3-O?D zEBE1InP5e*9SR_xjGdtlZTX+4kLxT8CL)XU+8;ct=+9!rm0!|C>}-d6=XA&Pjq94> z09XmD3SN0mcejo8ovT{AWrRtX^hWHW+dn@DmHW(QVtzd<4aT}e*qAxsTnNFAk~ozc zV$1=*Ew0DKHBHx8KTD*adv8WuNK}L-3Nbh(9M*SM zb*Od0Wn{)iI6rz)?z3CF&iuX1wvH&pUi%gF0O=G;Cc8l)3x+bwv6$d{bH?|TH0Xhx z-?iQ>zy&*opd2xnx9=Z(^Y6nsngE7=>woK}-UesOFo2(YPHU-Gh8y>Zixs+RFiq)~ z#v5-#Q=~|swI)m?4XP~0DWYZ?1)31A$vJB81q?$w50736hE!*9Nz{qFFB12o_sLQ( zMdw2-Qa6;ng(0A7JZ%^E_Sff9UjCW(<$45x)z-(wZ2sr)e=YsW<9QPVHm2=!UdM~D z2U8f*roGAXu(aXa+}w1Q<3!k$(Kw2!kh5gdd`iMZ$aB(B^K2D0&d1Y#}EB_ z-xUQuw*8Bm9oxTKye4jsHUlqc`^vTxyU3enQ6-9?ps% zF2yqTuKw<1?7p6HKayJRyl)hFda=sQtyDX`qdhRra#^MDUs!XSU6MaG-jSwbzyW0o zyer|16>_SQvC|L0<=>W97xt|c17*YH&h?>ZgJA*kyTRc<_f9uGw@xb|=8kPO+CbxD z()Mg{?RU+|7fvpGY__W@8hGihQM}`qVk&?Rf2)CTeUmj0Pw=k#zFVe zAbPqOLuxU19Q$cu1eCYPJ^Pu}LQ)nQp4WXOD&LYAf~6Sc$D(Ai8Fp;(-~T9nw0lRj z%ujzw*q>Mtf-<}4dTvG&d$!Mra1Mmjoixp^!-s(2@=YR!+P`_J-*eHS1vc0WQh~Sk z5z#ZHP||=Txo z_v=Jn1H;iZ^oC-~%aRJaOMg+_^C3`#ex4|n@-47XKuzpu^}RzUU#lhkBpXs0UbvGC z)HN0>odbNkb85B4nl1T)Bb<9Np6+7ttla4U19?*wAKt@@_A57X9iqvuVv65~InQET zNJXo`%!ewEpKd?OcYDFx{%->}lqyr%;z7C)#j8NyP(&q4Nb`U~wcT?VJ!4^jN(e9t zT&B$CAL6D-i{eq0HBiio*Myj>DLC0+pi(%d84>n`d=U`R|6|hNnDE{ah7iJR*~uf8 zLn0pcuoPi0BiJne%K&}dA&;DmiwGM^5hpnT2-ii1G=LOc>c~?N*CfnGb9EWhc&N^3w{TP%OKcLy++NG2OO7 z4-G*I_{eHn*;}A+*C5m2bLj0S7Nm0KhSnWN>m^AFArxKTYU3p!=75=iV|kjUVr>k> z(qMp0e6JVDZJoLb_!-T78G&O4YQ{zhl%5osEE+XwVrT?4*@-rWC#ZuxMXy}XJx~4X zUnUg$IMLR-Y6!7@91{2k`nPNJ1_}31z(KPAVVVSLI=GF7rURbMIr9{2#WBT$<27x| zDJ0u_Uvs0qUvygFGfcVnvkO@Kt>)WDpY@Ec54AcrGJrveTh5J){k7-tHdXtM7oW{L zR??1!angt-xw@7K_JM&yV~|z;!X{uEp%160+jQ@j(+&K=gae0;ynyR?e=)z(VI)99 z0>ate>4MCz-$BqA2_%gOp5E_FGcCDiSzp`{?D;!<>F*`A1e%H)1DzW`ZW8k2%lW*H zMh#y?!*)7)q2}JQAd8Ry|4hXYf0xQ;dwza)tVTmW46-!b022jo*ZK7M`wMHYlcr^K z3ElGJvB3cV8^E{wM%O00$Z045%$S-r>le3Q-!`!*P+f=f?%4LqFrrEhc)b6 ztd!#q;4sU$MT?hS++jnb#wQ*kO<1Rpn!X%nHujxhlSR|=H_Iv=!d}gDtL0X)3jzbp z_t0zt$AaFRVwdZ8paFozm{@kxw_QJ9SrS|k|7tWq+V^%x^=|auoi1q77t&m@$HZSB z*c#}t_`{}Xy?l!J*QOy9Ot=L=EKis2t{BaOpTj>q@>oksl?8n$2MT&OpmwKCdnXss z``%yQCk}FRPtYLpM^!6E9z?A>ect=@e)4i{?UwVm$mNZWJ4WzxH<#Py80-)v83I>9 z=HSf=#6l=)0$wiD(`7i=F@BWwJtu#GEAm*Jyv~nt#PDwYdk%!cx^j8pR?B&qPWLDi zTgANcJGhbo1Oh)`0myyE8n7Hs|NfkHeq+KA)vQma`0BlvP%YQTUX)ru%N#wgl`il?DI(8L9uREBbEQaK2CwI0c?st z(-@!Ed>yeH1x-Yrk}6j=S|X}6k-tvw`E>O7s!pv`jO@-CpUq6NZ6=!r9c}F-49>%4 z43p5y!y@48fntP%$XWx;a7P9z z_+v&p{;RyyFaVf2Y2bh1xZq3IgeZV=YY!wD1!3W^;AyW=i9I94>IwQHFMb70@C@<2 zf*r=ev{uPt`Y#P;KZk?z5;G(SfObj>r{^#$lEc9M@?VZmz27%TtW}OnAqPfHlwhzmt?^uI? zF#8!Mk6E6UaR5venD;TBIUbcAd?ILU$s`IYR~Tpu)L>2(i#R*w+q{I27&2;@4}#7R zd@Nr0xRBhzA`)d5UlLBuy_LiaHE-Q~~D6;Y)RzVTo9ZAu-nYBb5IEE!+`mIETa zG;^4QT!)==;~#*iG2@KP^_G!o_8@Q`C5KrKm;k=u4CUCZ*Xq^t^)qS`6bB7pe9kpq z3YS@VRz=VZNITz`W! zRWl2Y0u^jB1+;Ar{J^GjM@1)Z2Z=aLMgP7$;x{t zYdOXU#^=yIfzqC#xZp_T)NI30%4{?&v++$p5tJK*Y+)pcV+kcR3N{2F1zTZ8j?V6y_Oc zxTjG44Ph8UEh})oF%oHTCz49-NCav!gijbCJV7*PT#}#M%e<_0yLR{st_3ssHLOH& z%*n0=$9J9jT!^qA$R}=(>qS1X$7{PH3I&a0=tQAqb;$nBjv~Rt^uWwgfS5TY@J=ZB|M~n{oen=U;euJd_)h1q+Sk6 zpkZMlB_Fu$k4_K~rAQ-6NH6hpRM=e>4;B|ws(75?k;6*UgaatRB(&00uo_eVSWF_R z4)`!-N%rUuH!L4vzAXg${V5#V(~X>Jzo9hWCb0}iM8pPAgabGvqv&N!ADmADj~*BL z+25c4<+`NJPUpLCCtLLU`!4dX>@4}XyN+Mr3B&iK+s!GC5?bU`3XR^D-H;^4g%teh zP2MKuo%KSMw^7biy0ThGUt%6JvghUZZ~%!2e6u&J`WV@b#tEbEC;aTCxW7QJkdl{7 zIl)EQrQXF0xsecXD3V9T1Lm03Q(9c|&Txj1^3^NzTdDEl#+IX5Qa+(2j1)*jnui}M z1IqF<_9!7BImE01O5pf|r^5X*WJ z$}mg81g4U73b3@2KNUj{y&X__MhPitq!u>CN1@Ecxd;_ulZ#Cf;S+Dd^y;2|17rzp z3u1V<-Ue?)?+Eq(7KIlH?`?1_1r;aY{lk4fLiGI^MVj7=A*Ek=d-=)p&#p0K(H?!W zUOx}vN%%HWhip4*_+(wBE+=Fq6Vhh_3($-0%~X{gF_nE0<>}PBuLNLRko$I_Cwdy~ z!%cH$=xDj|?eFoAE#T_QiWIraxA!A%o0&VYgQh|f{GaiS*auI%O`temAefZ<+QCfz z;icl=haIs;clP07SM^g}!gk6N0tKHfCNbarO9cr#=51acXD@W!jT(SLDw+}+`_Pm< z4)781Tps#kPvjLJBu4wlT}y)ROY$iM>UNzb844O3aQz&5voVPFXs$xW*Ff@ymq1~0|1Ji!(5BWEO?4!Z#qlwBwPIK4erSryo zG2ey9ni@k{5g%8-U?PjMcsb0GWc(~s}!TA^YCsm9ZnOR z1aPk!r;xzJg|Ip7a#o4!Zv{7zG05Y7*8L1UR3m0pIfesA+tn3=f*d+llUM6r9al$D z>t2J1Z5gbS#Jq>tY5n~6UUgYez?_YwARqaj5ij!FOAox#c-reHGhs06HeoK>D$@Db zF$ggw>=u#TLiS_Hv@(7t(Np)>r&~?^!}yK>AK@|AyF2NAT^KW!sBc1RSF#iLE(N1g zV4g1>|6AbesCKPR6c+9e-9tnTAR!bkw&m;L++RE!{5GzSjf0EzgC0dDVx*mb+Y8#v z*Fo+4n5mT}`i~<%qN7nQ)qv8UzWbwLGUcZA8;1^_bme7howj0`xDQ@cYNFsioBbJ! zUsm((%O*UbuZ0v}tpU=~i1x{hq#kAD@bPYhjP4A-;8qzJYKyML`9^uAy15o=Mp>-^ zOj$(hA6Zb3Zy;1_U8vuUT>5kxZ$a>{OkoB(1`##SkasIx9UT*nT2S32b2@Kuc5$

    d#;*OO}CPxgZ%!TrfdhVcm#Mva)Q@jliWe}jcNZ<|&A|U}YKzPVd!PEn5e@Qg) zRcTx{I&mp51bZ>D=FOqQ*P$RXJ&!8N?$jU$HC?Ux75LFNzbw2ASQ1T3{N5F=KugS8 zCgmoaB85l<)wQk(xwd6@C-L>`iKah4tTIALB*W*t8Cr^YqnPx!->}-^H*UEv1ExsS zSc5hnZL|oMybjl7D^vAB-cMEZaZ@)0cb3?2Y5fa!%+Dh=+rRA3L1!$cDTS3Av|rDq=c|Pz+{x4UcMJii|%l$;G zaW5d83MN&TP5?1VB`J=$K}xPJrgjfkK_7g|o>C@>7ECic zj_{;u|9Ut|@Lalu7?<7@fX`gI!l^`6zGV^fqCehg5Bj_=TrHxyF*fhIlM3`YXO@$$ChhFv5-}>BQ&7gQSdCrGrn-(hVrs zw|l17*!%}%DpOR!mcqv{eW-`w^!qOgn^WpaGL-TD#s4yvA&bPY{uQ`P^j+s8NB7Cz z*s^9rFWiLoa^}xpGSrdKo406C830qR4{{J7jSJWu$zbNC3*-i$fS589uOcBw-)_7N z10sGZMH{zo0@<-XDcRXtekAiV8V0Jcx;_!uzZhy)f9QT-9VrmH&2hF;issIs!U!{Y zAj^O9B(@deUC<~e1`S;*?dvp!LF3h6>d>d7;t!X>EA5P1nazB&@Yz}FcQl))^A{)>?yDM~Wtami-)HpNrC!@06=c?1T6Y@|}euuNLX&6M5@_k-K z?22ZV-NcvX@o*?9I$3FOfsyEZf0A8ubXZtdTZRC6uMr0m8;#)94x>~_MdS~E7T~YM zl8nVI-YY8>z1||rO@T0hf-egcLibRY3oe45>#`Z|EZwB|O`@UJW5XZi($3NOc%%>a z4w^1B8$v_r_L(N!%w}Z%19=!KvdpUR_8|oFYbtK}k@Q`u^JYYdAgj{d zP?pY`v1;*rQ%F@y(A!s-EyybsiMA9Xr`l8n5A5r$3uXFiU{?OX)?jbQH`XZVsi*q@O_+Ys6M~_sJiae9R)wOVQ zZ;iLZ+3B%s$xWjf0GOeCzNEr?UtexQtDTBd)GM53t7{px1U0o8n$=!%aw$P}9|Fid z>0{lhSF*E2Iv@QfJXUR%tf;*R;pLb63+7q@X00c%GJ|I9>_>kOHrxJ=W|W*h&MS=V z)f^CBJk|Y=?39=>nlFE?`C?pIzmL@un)O#{z3TZwe;v`_F6r0$3~Z zFhpWCnhXyGo7~A+c8ZAGUi)FO(#LqF6E}UL>Dl>CNU9j^5@6t)78Xk}&U0DO{&?9t z5SsN^`K#wP&tyA!Vj8sy$LP85$EN<_sGHl&xXEU_wS3JO-9I^d{;eJ{ju#C%J8?+1 zr)^8*`v9bTs^0iV9a?v4iCTosKD}I^AmNXzAmcMXn%SR=6E|{tkaYhj2`=;wVu8IP zvI=X%b&P#`4dary*p4JU>id+>L@CAY5Mh{@aMg zjK#c*N)nO?a{3^vzJfyqmX@N#2!q9oX0iS^=ztr$sN6%A5_K^pSy zK1>3&wzphU6t75*HcpDNMnl!!Qm!?v8#(;XXM0>78IA&BN`C5k=bh6A{3rv~srdv7 zmH-P&Kt;Y^s8+!J$ML(;_#bgpj|fngVz2Q$7y?r9_+`gmj9&~c#Uag2M)lUNGDhP6 z#Q{vynYZ7fHal@Pk3!LlP2R6@{6^80w@kV9LxT-0AJIOOnQ8L9smHW zc9_vZpqpK!E_#TUYcGJGyU9OPYH6DaKyO^9&R|EH56N<9EnJ;ukpcd=di&%ncJDty z#YBzjwGTxcs432Ep+L%SSdHO%7#1{Eb^bbKz5Sd=*`x**)OTcfdy_-{BG)xpH?T@ z_Ro3t+{Ho#r+J#}c$D+!)os0x@5AxO>+JLaHo7%0kGp|q2TKp9XEEXYH?x}=!nP#3 z`Iak3o<4SxNb7I+AyMgWC+#=KrB6#^aOuVK>W0%z1PSd&@$CUbNvEki&Y@CtqawNP zb9g^bHJI?Z;6oOkU+=V#AYDg`BP@mPA^oQZ9$ga@2e|^>CYZ81VZLgX)UA;v2lDPccs?_x?;eT{XKt&rR`QQMN{zlP|Eii$)#d|N)*!v(rZt}B( z!(ZZy>xmfO=2)c779ZCru1j)Nb+0bX2me9u`YWNf7^tFQgpA9jfXNMljE=6iF6!^Q z%jR8btwh}e0#$efiyfFxG}(FRz(2iMlH{GLV2ytwV{%^_kCmrbn3g@wtG!rHJM{jXxuC7p-yapKif`3 za@LxCc-W$E?emPgp~6lz%;jW1K`0%})9iM?!yKjUrtPYt1fQ&?-#J0k=d7Jw$zCo5 z=w4_-4cu66Xn|2@`XLo+pNS)#i!4{H%MZ7zUM^tKWUBCVtv(uae)j-L z*Xz(u>)$tadgbnBPA))=&|(InA#@&sNxo;@+g2xySOxsTkYheYs>E*sEsoY^twlN5 z%&%q#p#$n}Ra#S2=gpo2KuUwPt}%UMs#|T~KS3T}(39jhwN!m>xH@6CoDXz-Rp(PI z8Kay>)b;tY=(*LaEUL`zylX+Nf| zo;S~Ak$tB!KmtH;#R|#h!_LL#D{OaZfdDEqIEUT4K2nl)7?zKV$$P)NIH}X-K$ILG zjl9)vnZo`j_kxtq(VXa&aYvB=?J!;*kv;Zg4(Ee6hBQ-b?)<9Nd9sIcJdaH0UBHLh ztPf$7aD){b$i8_er1)*>5FH8dh00?uL6Ng` z?`znLijNFH6g4?iE(|X_D?K8VA|TjOcEtzs8s$U00$f*kLZXRbD}ia60IsIU4MiP-V zl}zj1lv;7mJZR(kQac+T^?X*hp?EPiMi_P&hY;dPAs`T!eJ)j~jtZ85P%U#Z9M{}z z@(CWe@6Yb(hDQb6T^6E(T_z)@h&AIHE`}DZ$o*{_p{EtYkP4bgq^uH)^@oO%Fd|lv zFloVeIw}iXf+6LDK-v2hSQMK?(&3MvxP0)w*}RBj-7q6Z$5z6$-f4u<(!s@vOc8x| zcFKvw11Hn&69L#=D9|{7M&oDF1Kx_M2)onLP^AM6gkUTmMEQ*!NV{-94-(Jk_G(UTMaq6bv3G>S58$9J)l9QtygjwtMo^;+9SI^{q z;~+ea)Jmifh!c80Qm`7fL?5787r<5ZIf{ROr8=R!e~f&0F{XWrj;}cVYI3&2J++cn zF?-|&Wn33p>q-pIUUzPzX2gTsJsllTj*UjL2T(ValzUUg&WD5#@oW@b-NYOiQYEa#{z zQnpPRY<-n2){3lzacBP&M&D|EmQhR9_LWlM6))FDflK0rt!HDymtgGhGl1; zLp~0WxRA$Ps9hqZ8WvEjFx6_HJ!DKVG#3+JOM@$s7X1gm)ii>*s`OoKKAnIe?}qrG z!c+~@o_os7{O|j(C_7HbNXz$fIajSjSl!k?-58YU{xp^cKd4^vkk{QXQ?8@RrHwYWUsU`=LNuu zqzR<^-}E8*z-P0-@eCtkqcl|C3i@$pl!uRD`6pgXi(CbcbVDt?X77SOnmSz^)g90&Uw9^}T z`5O`ZS@v*sr4W{o{AOl^H@WH|K!iHL@IEjer5>jy7^$9#G8#R!Hu!{bEM}8RG1h8X z$(8^u?w4PE{3jG0A;v#HcCa84uT-K3>tjOY2`~Fean`RswNLn@hoscKq--)RB4UL= zMHL`ooJepHreP7T4D$~UsWUZxL!jaPp<-H?D^VePk1w?HsXF>vRfEATQz$-@6~6KQ zyG@dkzagGh_-Oi5)N=i2D3%PG`nlpO6xgq%>yNPb$aQaW%SUu!lnjDGQAQ3v6D4aB!GlU~e&K@T1&gsc`P zvPT}0jb{{Lg@9H8q6+J}FG#x@(NDUvoV^av27cT%^Tac{oTIr zdB5|Ydv?#=+1)vdc`&mx&#%>rNStT5XesG>pG{z*NrXLGc^w$fQuMQ102zNZqCRCy zX$)Z&7ga+}yfhIhWY;-TZ+OHi?Prx-%-%y}byJ~4R32oDA|b6X>oJ}-!u2Td*e2Z9 zB#)NWOnezT=GCnylT}oZQl7GU>GC*Cd$vK3(TONM*P`}ORsRKOp~U|3331D)Z ztpET@(&7qYRU(FgO0p1;aQ`wui3BjPwe5!vYFGSQus}I(_Kv1Zwq~Z5MogBrMiyq= zEQ~+xEPg2|NFu`F{W}d&T1rd>003(NE%q?rpq%DJX^=AwfHIbq6a#$z`{i^NCxUWd ze@bbC_8|5DTfma&knsOEiQhfrOwYqmZT|jaG80x>h{6cHq9;fACk?4q{}w9-tP+R6 z1_K-#Wa9z@wc6=yDzH%NM{dJ=D+WCdt$H~Fi=-pFWwMJNgI;2LfiZxbCc+? zlgqxzl#<+(^3tbqd&0-<+vECUr_)sD<992kf!z}Re)Xi(`OVnp7jd>gbl4d5 z(%KM*sG6l~lg&M?XR-dn@VH^WeRWf$+TPyV^5UlW=Jc}pGfY-NmlaQsv6mz) zT}vI7pYbc7c1tJrk7T3cjk`+%Rs8G?*n$s0*(}73zIhi|K1_chu>|b!Jl#bhlu$S) z49r>*R=RB(#A6=bRuT#}wsN;dzrP4jIELc!ESL-SEHDwI=*$3dqaUbR$~Y%_sr7l( z<2Q_S2+VX=0ToBv!pShS;}z6!^}TR(<1Ypp7#uP53K|kd145yXjOoZ-GdX2SEHmoN+wBIeoh>PoAJTa+8{2eW{NdoMCFe7+_9M<2LkO|^)| zep|~p142eO5k@&=CU&e!ew6^qzz@5TX1Rl+&_t4qa9|2rAdEkX6=)s=RdZHCLuQue3!&;^94jRq?m_Qo0@e8tS-E3b;rZGRra z#(F3@xA84N(R^$Lzpj0{=|TA;vOL- zVOQiK-R0E3Rf1W3g?6*S4j)z6%SnChb&uY6k&?0o2Cpt^P1|)NVZy{{kTCdwI#^sO z&sb*W^bfW(5qmiPuhxQ~d85LW5#ws_`L~e;C~*=Xcs)Ysp6GxO32*HQLLoB{fSWA} zg!RYN$eAsaaRHR~Q|&q_Nd%6DvN|d$t7)izip+@ISplqqTi&77voLfhmqz(vg10z{S5L!ibHF ziR?-V(~II5k~E-5=UI_r(Yny8&>D|KMu3wtgJvURm=ClB*HpOBqG zoypW@@q=iA8r)2@n9Vh9m`k8PC>OO_p)5iHjTX6V0xW4A0}xTxCPQkLw525vFApM_ zmzKbS5tkg1k3=Y>Sy5J${eok2QVOM&iBo@oD=Vxk(ir8HMpV}fG8rxxSGT8wgT_Fj zl_Ac742%#&L4XYU@b6Fx1U-1A9#8B_$w)Q<Z0jaOoVlMjo(VqWFpbASuop* zT%_1Z&`UVUN|X1%wg7UH+`UD8`-@-{Z6#{8F-@QHs3ePbiY*i#oMRQ$VjSW==J19~ zN)~b|kzM}tM5ZLk85yyoNOJ4v4WYnI#O z))?dBt@4|TaQCKx4^To0h7&-ZB(~HjDbkZ*>m{({0@G9A)aIk^qSh_Y-X{&mu0sw< zVZw@m!Upc*GA;}Vi=98?Ul91D5^P#cTEX{axd@rZ7dG9Kp~;v`P{D6r4wjEw2f>r- zmV+~g&EaRvP%Z6^pWL{k@U&zx*L6iB$nR`K2rQ-YZ&3i^?WUb3R%^xgs_H{? zgS|F6tju9|GSQSqYOtawrDveFSLoghh$lmfmpygPhyX)NfI#~p zG)<&-^7fb4FK28;caJ z$o_04XFR`fC9SwQYPZJyC?;9@AD*yM*19P!ZUipQpZxdJx4#CSdASA)Wkorp>~W>l zg-h?j40oxu0t5gS#wuzXUwI6z-J^P#8en|4+J98ADd*D;NMkMb#)H~o%c$-nwEqcS|- z;@b&Y^n{$WWWmgH{9Q>~5e!fw`WKjR74-HdD5YNE9K|BI^`!Efap3ZOxhkqdhY(^>@a#`N z19Oi$)zlet=L)lu8v|;Jq(n5=8lHHqPj)>QCQ7aR%lg6mc>xP54pL#id4BA=Mbkv* z+w7{lTL(iT)5-{`m=bI0Vpo*HFP*-*dI>E_J$;#vCjv7U%8h%1@mWTck3EtU4gGd+ zWeppp+~?ea^W8EE3okrmAhI-30gbNiVZ*@Da5yQ# z`0@iqb8#4B{~kCY|K2iNH8ZW8qNazdcoQqs&OH~7`)obnU!D%1|9IL;PIuMCFe=y*3>=NH5NZt=Tq%(g*qW#3LcQWd)@v`@ z+}AX?t$j`XYHz3gq)fK=p%_**aTOy-Fu@#V8aZJl4ZX^|U<7bm)-%_8=+h}EgbwXo zlz<*hH~p1*S^p%%oQtCi`))qRm+UiFqvlA2_TidkD_7r^olbc%VEtCItO9(6_S4^I zu2^0kvJQNlcJYE{re`@rpfdXO>uTct>0XG)`S7`ZLF{7 zZOD2Z7{SKJw(e^C``PSQ*TH~^%g)c^lyUEil2w9pq$x#&%^acIxuDf=jW*@%Y0RGh{3;&@uZ?J6gj9xZgVM_ zFZZ?d+ZW_NE6tMnwnWire`n2_fYy_`I`1;}%x z_+0&hGv26^@($1BEHB~lPVZ3?aR(JJF5FO4l+`+%<4H!IX0ycWOQ_i61Ro=;SOmFG zl2$3qw0~ACbiMB65d8Ol!$a?XkG2v|swj&6EB>Q|(M3K4h91M%I6+PxE?&N*Nt&lY z6Obwd^n4ykgw6?l?aL8 zj*zdzcIeUbcZHqp&O zHqe`(I!1CA{e@+%&L%N@^ap*>N_ah*&}2rdbh^&XCE>zT$+{o6XL>DMy+PW_v+{3`8d zARsK~#$%D?cs$m-6=~ehU%JM>-=3dnx@8#XIBsiRz;8aCbe>KgmtfXjMjK7O$9^0Z zN!xz%K5vvC@Tm;m^*p-9zF2#@`4(dhzp~nL@%m{ydUBgMr)X?$__=CQUH0)FQU2--3_F<@bPtR% zz(NwxOB`c%4~s^;6=9ZJ|DlFA3u-CuoIYTGw8;Ny1P8>}=qj_7l;qsHF>QLxZKN_? zWcco`9{DzUU5war_u0WiV)A@VLI3ubcr_SgZ_+8ErzOQ%x-?c~R{-4uDlfhEVTWX}?JZXpQAAVwW`apQ~j6}HJ&cadV3@xUpI|_S2Sz2nWSmwb;+)!O5}~j)z_R*F+IrM#9Z2VS+Y&%qnf`J5f0$k-lc#R>1xaw}k_IMy@xqC5qxbyp%99r%EY?_!F zeDF0Hk;&%XaF0}Dw z5wVT9Az3w>5@NbF@qKRnm67l9&A=e4Y|1QUPBWV2Z&qT;B4bI3A|m(GF~0rg%}vyp z7uwIm4hw)yl81Trn+buD@z&DEoY&O*ITex3s^(99s%7zdMf{%-U-?v=iWgiEeKL-I zm_1uRyM1qW7{Py)#M;Yd6#VWOA&&y)y%ou^frOp0X!n>-7pu?ybRXL?JcxF!rl%xLSNcQ`lqw-yDLVc`GUq1(r%5jnM{D6D zYMZHHj4rc;!sAe-Mkax*-UngqWYP)5YQOrkQuu)zKtK_S?29gO_fr>Nj>H==3ag9) zW|1)$&22pXk3cB`&)+hsR_%UIAD5M zFK$8t7nj5f9AF%%MmazD>{je+;^(4kYkQt|sDG4};x?doI|d%Wq_68fS<7#=I%-B* zHvyc24A#TRA`o7r7A2x%7MdT^CwN-zX7DO#8GG(F-1Jg=<%cc{bn&Gj57`j&54U>g ze19m(dsWbhOnO~if4p_FVDfyvZO=?Mulz8d&-QCRD)mF~*vhi|rm26s*RJ^BdFWqn z`WD;t`B9AQ@+bZA^yc>Sy}#8A`_SH_<1C7wg2*o2{qQ$@!{Jn5Lobl-J4@-0XNr{Z zE~7~ww`g+k4_?==(pRH!%y^Q#jfW&%kd}k8z+2+4a_p5fyZ^(mdn^y;*R?xMEj8k z+#@`ueg39XuZs2e-GMm)LavhuT>G~QMM>?}8$mq-q@1IW)|9>9avtw1<!6=a8jN&LOtX!lZ z{Au*Hp++N2-z!$g^e|Hzqo`^VqNPnJDIR$#Wa#!F!Ey^biw3`OY{f2yGEwJXi%~f0 z3nc_%Dmi|YEWgQpjfMH2B{23ci3pb!+u&syaO%(T4>GerRWPB+C|Qa)5=iv$g7^5s zgA!&`Xbv-F060R;;IDC&{9uAV@FY2voR*0*Me^p!R*WQQ!!Pseu@aFM)|(t;Y_c-( zpky>w1FI{ME|)v<@bG%N;prtWM*BL_YP(`8g72s#0cF-y+iY)7wgkXmk|0hO@t>#( zu8S=3vfJneeAm`(?cAw{-gsg1r>j5z;RHvXPmAI&Poe<{K~6DgBRdq+bG3FBTAPx0 z!)&71Kw$E4dh za(mqkO~o;n$SK1c|7h!5EBB!UTxdOgq^xduuDsh{R=`6R%($~t-BN6~ zH_h!%Ut4xD+RrGKiyM6o`dA)$?*#`ozZkF3!$EneWKA$@~g7$5vRUK1@6K`F+ z6V*xP_IDat6MYy5ikf^*>|Br6ns$7tZp>BgXN8+?BfVK1PRV8U%qZHfa%n)C`o12? z(9Xt7>g;)8B)`y&$D2QI7j;8&+3wcIO%BL=Tjg$__ty_(#RTtg>yoTLPcpmDfE=e* zIfspj{>V;NzJ`O^5O81umq1n5r-Gx`BtjzZyELL6MZe#;hAw(b@wQCvO|Fj7d_ns; zIvjuNGPI4wv*T5u?OqJdDCMOiATXDNXKG>ObRl0{R#m<9oBFhYnAn^Oxq zRpz>#?I=jG0=b7@?zn>q3=&XsatQVlN#zqyAdzKNi%@1qr31B>&a`p!-leI&U}`Yr z*shW^rxPrd$S!bb&vV=apN-q-O8iUhP3HwmV!*0H4-#FW1#^g-o02 zqK;o|kjsE{L;PA|7(<+S#J)$sPZjg8C%zGvuszbLQF4D_n9Z0W6AfWPAW@X4`^<|U zT5-dyMavO-B=9MYr!4IC2J;p_ow$E|3cSwR>Q!k3%E-HHJ+-aV2X3? zxz#Rfm4ZPya^&S{?_h*D1@SDWtn(Lf0lYcvRl5zYF0NizHoZ4T zXJWCluj`d>Q#!czE|g#TonALgY%jYp_qx0U48HAYiWk$q9Y9xqIA3wt9$i6wvZ&xh zj3Nt%fKlY{Qn+oZT|a6Hrt@8UFQ>NYzunGNcUehyyH)YD=l2q*X&F(&xplhVF;B%I zW(&NJe_nj<`q}Y);dc2TBU1axG{{3{Pj~V|z;cm3=XJ=Ev*zcU*??*JLpdRmS{RfYvtgPt#R+KkC!hVZtCAIOsqE zHHr;&O94(E&=`+{2aqjQ!K#@GhX$-m2Ar!4lf)u*Xy)p-L zo>N5ic1SuDu>!`p;JhE@fq`uYFbSu0zf!efNO}N)5k-1|Vh1DTV;Ub%B8M@0(7^3( zK!Xv98XAJUx9qIVYLl&oxkfst?MkDyMFv4EyZ4bi6h^5NL>&AjGe=45fhHvc?lZq+U{s@eX- z(T0F1!)o%piO?lypwZN^w+^&v_Dbccw1-Er9j%w`?Mp1DMaFiA4e>%}m&f~1`eO63 z-$aRUQu)U7&XtR1<2nVDf%h?!jXE8FR%}_TWOEf2i|ELO<)NN^N|MLwL-+lS6NUuU zXTYMq?!~?nQHOaPqRs2s`xK}5+j1yp=SyZr7p6#QHXYJSlR?8MLgqDuZMB47Qm3Szp};_RFKznmU~^{n4q z?6XJU$VzHNQuQVsmi`KdzV8va@QhSZMz_W43rs2WQ_4u(e!Q`iL@KHnm0h`jyEN~JlLB+L?+fH zMH^g>tiMi#+P#PJ@E$TxcgYrK>8<*99ZcAFtvGWZRwyjHhP0lvi`t$x*?l_BaT(Z+ zo*gVTzwBpXaJTq4xzsqVsieCmSX@;lgXq;<9D0b zcB|4;<;Y%Gyumm~4(r87^^v6J`sd=!S>sg%jZkm0wrui?ODt@tmzLIYUpQvTu zqS{2Sh(y*&9*88?jjH}_o(cB5gdxBBF5RzBo^j^A41;Y8%6;@n16D|4XU2`**ALjFlM8t~&qwysW`fc>X|3(z>3OMbsK2^7BgUbnWDH0>6_OS@p zgYoOQhCG~&6vLMvXWqxkE?bwE*(7xII@Pkxs3W@e@XJtzI!m4}CcYJwaBc-cr+nus zXz$XL+%&S)+AFDAVL2!YzE4v6az~1gSUWh62Z&mo?;~fHnExCamlW`N3rdsLMBqb& zLIv7Y92w~x0Q?P=U?G#*gr+Z%7hWJZTmnvX{N(j=iWUs?uuIC}fnNe$0t}Uuqsk}y zP!B72O3IH=7=mzc!@jCRoRqWpn`~Icks~B_I~ezmaVwaewA0i_2>&*s5U0DoAMUwt zP=h?5uNEH*RCCc)Wfu(?gfGGGnGY5@+Pyq_-*QwLWHu}RP=g48v4z6cK@fI+z}1sP zxbRYOP1Z-iJ;~7&GcdJO!Wco}Q5pTiV40x`iyV7T*QJkJRa5q4IM-y~wT^Ao=3`JI z#`Cyo?J~mK)aYVEWsxG3W+rS)Dcl}w_7BcN*1m3z{u|WYNK%a18-_GDAcfigly-GWERkXEOl zK0zT{y__aSrCsEOX9$-MLm_2wFmYw)R8Z$Yboj^MfN8(yU^v0D!){VQ&FK8t_Zgm0 z4V3xpj<0P|2F7QxLOvq6L=KR~b7t$kTyQ4_}5iozylGyhPo3qG6`fY3c1vh zP0g>IUIL|IEYtSrH<6Mt)x2?ZdS?ec#%D#~-JX)XfmD*L$EQDKAg!+<3ow02>Hbv{OjEVN;Ya`_O_BR+bhYy9wEJ7s8Qrj4kTcnRYIuhsXR zZ41jHm$2Hc;fwgXr{>iOaisJ`gwGHrDrA^I`}_p3 z(L}aLDq6cTeYTCLAk|oQPt2h(?hOnShGF2g7@mJWIl~DP2}V;3$0_i~4A04X3OZ>L zNA)K*n!}i!4vM|k5@qV1ObwkW`dS7p;|h13BoJV#hNhmvPs>v`GlYzy<{yU+7cDfu z96JpRL&Jj$1FHOps?b!rP0i)1`)dbr9&m!pDU&o~Tq~@i-p#JmQRQIOjKDx%os^ST zg9bzUmlzuSuaMHr2Ru|zMa_XIbwL%m;R!2gR0lW4kKa^$w^G?c1<*hPc9Ox3oR$KV zARlc5aYEs9ZmF{Smy9OjJc`@(N@(PEU*Afw_}=VR>EobA%p$Ir)#x=6H& z77)_)g^%yjTg~Y1%)HvdktUhputimuhMFj zq!k)!sJV%r6f^_bQiJex%j);~$2rs2{)`4n8O?GSBxG@`K_Oqa=!lk9)Smc=9uQe< z$k?(igyG$g5l>*3!4asm|LR>))x=k?idGNo;tNlO9k+O+ZjN3r;%G7-WsWIV_X>5T z>67xKj<2SX^s{VC;W>-61ZDy65!wz)C{=!`>|-BsA$n6?p4fRsrQzkg7O}si0ngKQ zGDYTpZFQm8heG~p0^o@nTP?g`8!$-B8;j=E>E|k`RhHgKDEYV^LFtOl=fTUX6ay)w z*^zMl`lD34b)X@L*p-rS^7`4C=F|1~=cQ=55A-r8c;58+Ow7hR@^?b7eLLMwMgNF1 z-6@PY1OV~X#pz8OfmZnnPyT9;;Eq?7shGATuVlf@c33RI=qy^pV4X9ul~odD@%L#~ za-z8_R>39}o;ZTXZud3~C80m>vG7w!#P?dmuG2uh2nC9D!Ak~Vtgt~e_B%t-}d(j zUn-~wP{ePs;R(Dw)|}+Z|Da6^p!O0VTSsTV^6WJI`43|3E@Zo(cs{8(g53Q1Uje!5 zL5O47QKBHeB8a7h0&ZQ-#}Pd{OZIOc37q4H1d*p|2EWF?orVf=O<-JW5|*UyV|LvK z#uKVv<)3y{aL-Z|fL?bG+`qg}v3XuUd*_zM6>+RwZC$YuX&h51a5kwm-x;QfJIw6h zhB_6iW!P)&b!SjG=KB}D#YI7&mq(5=nVESUeiu~#Bfdmiy43eh>_-Yb4#6^o)x+2m zeow20?{<&CF2eaV1R6)Lrsq2u1-%A=)VxOeMJCcb@l&5cp{YBVT(2>_uie1%tgdDj zWcG=_1dd%;;=j$6=zLBk@A0nJ5|Hox#pebGkM5PZTeh<=?N*lMQn^S#7s{yJ!g>89 z(VD@Q+RS*m?3|SPT0X=FD{*hD+kzD`P&nRkm6q|v`j4i`hDSzy{6=P8no6~cH>DM1RqE4e^ey|Kz zEg854*bAL6y|i05n{T3RzGXU^o*&OXFXk83rCjqb;;MwI8erC8X!3e@E6#Z_KCiJC z@<5jEwJW`9E~iT(D(=SE_ancG6$JUpmZ#B~P7WW@GW>K+{z^+t=ZW1G-lklNLSeSd8#hVZJvLnE}wG*kJ_jA3{O)1Nf%7CNB0ndow#c;-hAz*>^^*vLwcb zNxxwOn{m-I=;eUUsr~g)DPO^bX+<4E>b~Idh>qz(Rt%Wm-9C=Lt}#$}TJW^tK^D-t z+LTYKPz}9vqzS&tp`5E;l8b2L4_v*{l z+Q;|(I>kw*uC$WJlhGG1Y5;Ndboto0F4dzLx>RSEUCUVGivpGZ2lggCQ3-BO8ka8f zbdhK*p_jMYl%B)m8s=y7UH%+2CWxe9H&4yL2wBs{I#_vQiK@qd@b6CE9L*0#Edg;{ zOte-IspZnN#lj3Fj*aj_`bI2l)vof8%rlK?%esG{4Rs1hk~&Ux^h!78yRHBdlebpt zqf8c6I+|ts`9%ppjiXtus2#n5qn%dz{3l zAu42{W-9X>l)*}=N@U=v%t$Rih*qQ1(D@D%^<5KF!RxPELtaaQ}F_p`y!2tRe!s$3PklW*Qj!B{ce3IN9;&nT~ghJzwwMF zG-E3Wt#ma;Fo&ZpY*c1MxP9~0~BSp=2h zr~5qxbzP)g%PXmnXDHIAE>7;cK3sB%vjLEBc_6j!7bKIe1Rf_>E@Jr|Z0B@HoXJT! z06nj9PUG}jS+5sAM8@Q3gE$nM!mlJ@B?zEFrpj)LbemiIXkVz&bJF2R!P*W2b|yM z>4h4zt5jSNFON22_OBBODk}r@w=0@FdUEk5#*-Im=zK*0AmK5OB|>S&yH3j^p$uOK zzb;3s#v9ouIuxdg$g*$+Gq1cF2Y$!)ESjsk?W1e*`KUB0Rs)pNl~b<8e=7tBcQ=JLpqfcx5IY(me3&%Ig~tJVo{< zpi6nMaK7*_tT*sj@*o_&bW_lK3@gmK^}PRbwPTST^^MEo*!yvCyw}O`%BTY9u)W$0 z2e>($bm)7H5a>ifx5!?E7xH)>`jQA`d;7Z@oHEPFL8Wj&d=j@dy?0Tl?GFRMKGo~* z${VR$z^?l#=C{w?5T||@pM^=hlQo~}+wqJvz4UBPB*K^R7Pq&tT2Bcskritt!>Y=3Z}$4p zLFyFxadOZbvA=kTw*PUbm>$z~x!cpowFyvLbJu4?jm}hYyt@Otb}r38(#uIbLB_M^ zo=k%RSTl`NoVau<{ASt5<8F1wW8O`U45zj~V>e8DT_nS^%7u)VQ^i4P|I%Tf{QGyu zv8|0df~|{qFGB`~?`v2qU_p=3WGmZ&&_4v@_su${hmPJDtx1ATM z-{E9qPfs?YbwosPTn2FUP_X_7y8rWIEJqbDD}>fJHi>y^nm4tA1?0o=OD;sO2M%?T zbfvRoBAKC|Ddk?-4-TsQZ#&tmwmkkH#g8_pjxLvM+@<4ShY=AsJcVBY!*t$1-v9s} z3tl}&go{N)A&q8V#+35zTRFh41=HEAZ_M|<+Zjr0=so_|-(4oxc*c+cK2Qd1lepU3 z57=vaj`O?#Zbn_r6CHi9oLAgQ7DnzDm&D9XmU^r8XQyOMfJewc@umBGJxhHX6c0)3 z%D1*7TwZflTG`R?*@uhVSM{`GDG3sn={o^knEXQKQ4 z$DN>%u=aij@{GHCT47>e6zz|S>rnxtXGTp^AJAN9)IkMod zLv^9%KbUJElCh6RDqIZiwj_ZC}M%Z%s+nHJXz_mFV=x|><`SX>j^Xt^NY$E5kagMX|Pj4MBL)*t*X1BO>{wz2G+DCUN zZbj{zY{Yb0R|RU{t1Uls`syS7y{t0;U~{Jx?$VJ!jWKOT`a7Iz0D0O-T zSikvaq}@lFOS#D*#|ZB7KL$1nG$21}SJBQAA%KQYujF5tM=#+aX#r}kgYvOs=6v^} za9Ge*4<*GNxiba%oo1ixv_7X`$?SAAF}K;9v*%L7^cG_rj9=dl^`C9_>y|fIAA95{ z%N#Zj6dteSiY+`ZlDCr*T{l>Y&ngDJ*5+Gh&lNy?Ng<*83x9$NgS+&Abcx&Xk6X$8 z$s?6xS8QAEr^x%dqBr3kuz6?$2^%(|MWKp<#Zh(Oz86875!5+ zjd55o*G9uMP}1my;z{O`Q;|1qYl8DWj$Q<7N**(Wj}X~nl2)tROE)}rhn*p?=Da_8 zJt(-a&flb85uNvYm%q4G3Ea=LM@}`UXTC&kZm`rT&rL`;%3TCaLxPXCuV1<#rvndD z&?EUe2{uL%yPwWQdfIPKTg^7Ehy46wLz1CJFhv~K$<18Pw6Euj{q%28aeNdmpW27M zwws9wj`ewr_MW@yDi&kR+UxOkv`!`Iu>eU->3pcS~Z`JF_@98Z#ASKdZ1yr-pS9^Jdh6nIH^)#rf zew=*iD9;vj^mSqwF`fV`d@F6!MxSVy|7Ot>9)IHTfG_Ay!c~o4v)*(YkV z`%io2kd&{wKR(%M18TeuDWlHPAvRZK7wpnFLc%>`vsU)LjG{IXqlpN)MF>0Adel$s zyJPXOJD>NrSK)!;-9lXIjE~Q68Z^E|Y%+Xwv_|}chMopBSAeDyXbAH2Kp*+WpKcU? zPKU`1`itz=9=1sf4pNM0CjEaJTBu$ zX86n(-%U)%HuFGg6UDk~?7#M*YCh=;5`gDRTCMN&bS`G|_{X4|UgAX^6>~gd0$K=G z5#iJlkng#AsJhkIV^jXqSK|F#x7)N-vXifdi>_YJ8BGC7dcdvqyR=!B+MB8MhIc9z zU6J$(b0KXauWeSEEsi{V*L`G_$Cf?F6akmd)AS3@FLOi>fUD$v{ny?-gBbovG~*^qKJsq{8ES6@RtfZJ z>f`1Ud^F^%p$icFA5X{ELO!QMh#5b}ROv*K&g$x{1!+BO6mb1<6(`a(x~|SBDP$&O zt9c)qMA>u$(|rH7f()%VcEe)GN%K(W?du20?0HW<`u2@#*eAj zddGORBK*^}a{Aiyt``K&Ubc@cigK=;F7YP`(k?fltlxNOo4sGwM&%=VJ&O1F-bzlB z1BsfqWcaOx8$l0T$CZf>b^UgA`JDGLVew-K%Zp^m&p9urN5Hb!LamtW{2k&pM ziOlu!?Lyp2Ss@L3;0yCAqe=aMxKZ<8t>itwa!;e|1HJ*=(_}h;p&mzlU|jlYM1Z9>n_`8cosr;R-}^*#ia0xklM2z$Ccha;xuC85Ej-Y&N%UnNp{4#Kt&%7Ng9cg3Up5v58806mmzRn( z-6)kwJr{W-&l=3~Yagj79!UP493G6qNfL~bMn=*@87yCd6f%q9$e@ge*e5@`P2a%! zr*IR^CNMZU80Ez@=DV7-rA2;Js97UO=z6b%ggDdV+OdRDZr%vm<(F(tWuy0nhmgmt zQhAwU_b2%h(!j)O;En2G)7PQi$3bvzll0|M(ZtJVNVi!A_!G7ctACr+Qn z&KPs~&1r;Q+i}+bCzU5hv#nwgK2yQ`zXyT^Nis|sJYi0zm;YOJ2y3H`bS5_!=!n__9KfY-z19Yf7OnRluExCWgTAv9BM~#j^>au2A4+|)3*T)5} zV9H=xHiuDF8hsth^dRSe1&zP!@eNBf5_R{^28jhaCvv`;{_vPlY_r2DHaWzDI5b3zN7!{zBTiK#yL8j^p`v#ZEu|5yoEqL zXx8c>Ip}Vq0wD)JHCglc;rJh$k&S zYY$7Vtz5;}9JX2ibI0&M)!{GSdos{W2qg1+jF%d_+iy=K&|6eCP-~!iQ2HgXtttaX z4BS8Osuu6F77z5DwI+lvMTVON;z|SgR_kJ%tQ0qg+Pk3b;)l!nj7eh!HF$6tS!3kp zX4}(y<)!b3o~-7S81o2-29f;jkAzC%-KtMlK2yi_NH1n~$JHR!d?VO5|2~cn4g;Sl z1gPS`%$xqp@n6u#9DT=PP95N-#5rH!M|#OE4hZ;E-t`AG0FW42`Gkx`)Q08?i0R)W z8h!^)CV`9~H<(m>CJ!JG4tCD1zQ((c1%j|iQ*TT}={jxq10>5VWm@(T7*ZneAe+jl~ z@Ojs6R=eGK^cw#%Wjm|WV|rv#O_ zjkeJBpAI%zc4k*)K*iZtZ3ig2r!~I8;G4aR9n(2s-xKGB`TfM5w%+6;J-PHA#?Q<< z+!LJq%EZLuPF*glYvXsiG^5X2@HxQcwdlJ}Zk)l)zKzf#9X=~UCpvbwngK@VQCP<2 z$Z*4J_T2USSjIPG$pdI}6(p+Ha8GZMVy#O4Eh$_wNrNAFIgv1V$?`4FZk$Fu^_7PS z#YZ-zxnl9$T2oU$aMWzmBAcntk=MDDw}mUUteJ0b$LX|07i8byoIY;e8oH~GPv~?* zI;iRZ#B}Y1SIb~T1oDC}l>WKdz0@i29Ae2aseHHP1F{`}ExJU;?e$34d4N#BD`?P- zDacF6aQhr+Y^&=5+jBlKY)ML5X5{T!1(>urWa`iw;Fo8PE>acANBN;Edi9pMy)Aks zdh%tdxmPgUw?zL~+l_hLIW1XkT-IancUq}r%M{XB?WjrDt4lX(B5Q!ADj&nmzU2OC zcP)E})$P2>cFD`wxv}r)K;V8D4S6$`DjNxZ-*H1V7(F$fRIUe*SyVsPUaJ@Y^@;M# zH1d-A@)vU9scaQZ-nu*eK$2$A`eE09+AP1CZPHbbe#_#RrTMPhXh&YtrlOw=K1ZA0 zaEE{CQFl5l*&gHGa2hUonQ@@PG1{+@e)+K&rH-EcQikpGc;CZz`$B$=xbf|;T=W9|o+_>AG$`pigicvz3<49dl^&yxVl}SYCoaiH@{AcMo z!BNFhdq_zn1FWv-v!V6`bJ7vUBP6OT*e$~9<1Rp{XXPVr9(x=l_^5+u)r)z=~$L z%@=XDEFassoMpQ7A)#Z1R8XratgDpeTBkV0AB$d!-K|@G;*r!cj~-71ev!1g#@)JJ zez(9}mIDUlrhx97z5sHK#>pHh=QybVu@hDdc8P|6&T?DFQ0IBUjLQ5zA*3P9gWe5v zHT2BWxzjYNuhjxo&XapPy?o<%D_(cNgG%ESQU}Q+%Q9{%`2TNIz;IGok4G|=$C@-M z={lQEACzyKxhykvkPFD}pp1$@PRD(Z>AMD@1(*2(s4eq^JJq!y$Hr3$cyT3kx~B#S zG84HnWk!H4oaJo< zXAZ(mF+fUzA57$mV*c;jlJBP2LDTP3Uydj=F?98BZuw#2@gA2r(sO47Q}zOHBLH}i+kkT zpH-`~Csbn@VBNkCjWu%=3-mZ#bp~@9^!qwxwQ*v&_Qu67!%M{fwMG13x;Uy=^V~?q zI9O;Ba*rZ3OZXsJKsh*Tju+Fe7CFvTU}5Q>^TxDcsKG+eu8FgQ>8yRI$$`?}&)BZo zS^Q+RkPYjFwrlJ88E)q$iN09vB65;sP8OmO^1rbFuV2#-$#HL`()5=Ov~^CFkF;Oj z+S6UFj0oW(FS~Ml9`ig2#0P)YV{yi+B5NLCv{-ci2@60!$k1$Ib_TBuks#r)Wsyg^ z{TU`rF5m2X+Ujw%)aY;RQdr!B3YV!MDyyV&qfRm9+%FFwjjT=njey|iydGo9X@Tf# zqMQZTbViLOKEXPJE-pM4UV!uI|D)}!!rE%W2Or$srMOFRcL?t8F2!AnQ>?fKcXudK z+}&MDad#;0u=)1Cm%EpHK^~GPXL4rF%xm+``)i47JHVMd=l(?nI8v~x)w>|fO>dVT zW9H3MTId2tK{qbhra34tQ`+)wsgl!dTm<2Gz(G24S>9>E1E|6iBfvjoa*Dz^bvy`w zE8;rLJw}OGG;)h7cN4F5>)FqV2+zZ?RXQ&Rqj&IT=}gZXk9=}!Uoq>_kL|GQh_&{q;|ewe8TTciv=1HdOVD z0IzfZ?nXSa^I}?pMkZCh%eTW`zGQDJb4;3WcR`La3=>bRp$!DbK5<)$jp@mgt&Uqy z?TnSBHX?@9z@x0}ZJ8OcEvz8QaF=NIh>-umD03O4#O06{1@4P{$|sKZlSKHYRWCU?GOQV&5 zRymp?)lE+Z)s?oDtKPg%ys@9}5SO=|$4uGOy3f1+=y3Fgreg!ilQk_~_d`Q=EW(Jh zcr?fF1Xn!b#B>yFlq$j>rH@^{;AQ;$0nqffDbC`WnSXZlQbj8)XuP@dXfvqY{ZF&m z8yHzhHq}V`0G%vl!1U{5pnMiBHq z(t7klE@^;g>I`75E;jirPal+o(Iqvtm1`guvWqVTLQ!h>nTYaH0dIR{BS3LI9>$?; z%$(&JJfo0pa3^zP+Ss1S;?iJXl_oZ|4cXtUfR99fw*tre^IpI9?0&ZgK_?97ps17- zne?H0Dwi4knD=NLL9;eUMCnIniVU|Gs|SxcioKp9#;y7a%6+UbzMl7 zb^%ujQ35~~UmuHPoUzum*cjM4vD9tWCJ_3(Sv=7)%UTTs209aqaM$Sxdbm67ksGh9 zfBdB4oS?fBLs2?-+GL`ChA8v+N}qv)n|oD#bc}#B@Y z&6mt~;cmM^UfAZ#h)(Qn_+Wu7VJT#>I=W{ov@m8Oq1jcBg`rp{V#p}n(45OzBL6>n zN?%36DPxV*%^|;tT=E)=&(}-$622_6O?jrTiSY{x9{yhIUtj{q`hhJTWoP%Et+tT= zRk<$Rm$LWGr@4c`fWRrCG%EGl)wxq4u-Kg?1LuX{yuUo3chFY!cm;NFIt|y>pt(EH z?fA!cr@!9S0C9Xq5BB7jh0YbK{|xh9PSHDeAQg&tSy~$PVsM0gds#5{;%*PVeY@@B z9$-wSUxZwD9OV=BubgVo(__W!v}}X=v26}yq?ZPOHG>#@M8%Kx&u0E{kn`?CTJv+*u%2L`C z>Tz*K{wLYhmK0NGv-`%eB9zbo3D`1egUV|y{;@Ek&p~K< zHW%-tK$-qO&y2#%$aRK8|Myu%5v|W9(O%4#IgZfq+E@(Xng+3($QBM-7i~L(iT6NH z;{zh6qNCpu-+O2afTp7-voKHRqD(pSzr+_Dka+^e)t>+AT+no;zH{^&c?)`%it7(` zC?(o9ZSOhWoMHVNjiap@*^7MK<%xJ``-AJ{RcOBWrw;%d-!+93zJt&@l3+gyNZ8=I zy1nvyCkg1<8mQZ<-yYxy-`IC;qgeS2E%GBw5J~(m8A8-(C1l)2^rW4^>afy-^2buj zO#^ni76DF2-#ifnKr#2*L?Hp;Sa8^$_(FFZnC!e%8%cTOec)l^veV?s)!F**@aFgr zxyBSxWM}_wv0RVKsk&jEPxYB*&zaBC)n)c2*wu-d&Um{F)P@iueVvHL^J^{XaT713 zcboPuYv6lfvH8+rIuzC=@j}vR%Q3T!}V9Y2^bBA(Td>56~$3 z9Q-98;z60Y?#>W;i1c9uaXg4CpmjI~Jv~V9aLC?$7HJKEIZU6HbMvui8d}zja zZ@2luMfCB!coTJrWq6C}zMr)?yT%4qe6GKnW;~(u=xUV;egaPnVkK#98Pvi8XDuvNM~W zHn%sW!sia)47#{w5eSTGCNH-bXrKS5d4P*4j`i0^O}CEo|AeH>Y~cksXqj5cpK?1~ zE+N*IyCf8|VFpd?Lg@hUL~T^@l-~J)~`i16+(LPQdu9-%f#kab$yag!u#vWwz{c zegLPLO#pu(pS=)$xprxVY!wFBF`r_#y6yak)2|gA5(8%;EnIlk{q1C&b0^gPI}qS1 zE+seOF|k>l!|yDP003v++~4d|F=PWKdy}lW^_44E8K=zW*&~ZjyshHQZ?fmd+~g+K zB`M|PiaEgQ#$a29j2>cVGlXvE{t%xvpqbyl$xu{htzrcazgWGQZ7^G_`|=%*VJEeWow-Y;}mCjyKElrQ>fYV)6|OOu_oP2Vqy zqP=KS+cA8*yhN6K%h?~ewXHLJ{Yj>o2PNFDG87a21?U^No}hcdle8>7mmKPf-m}f; zp1^O0*JJIT059IN?KIQ;TO3fUOfcr@z-b*J_KJCM2;tbF!lX`NAgwYHJUS-~RzHP@ z99s;mj1IpNUeA?iGSc$!5*2X z$l1(+Yo2uJD2cu^%xcNsJ%_Fa=QcX8{k9=K0n%Y0l{kGkk*qf%WN~*@g@Ix8Wt?ha z|IOW!S zOT{UI3KTZ&ktYP=5`zDP1FvG+Ozk{MeX*u~fa@8>&I|Y-SN{euFWd61^p&d#)0 zeU1!WWIPB1hvgzm1FpZcv^u)%5AQI77o9#(!F+XP;)KzgUEXug<&9Dh0NY0YnR<$o5gTlgs9luj z34e{8ASrD&=KHVnVH|`cepcdvp_q~05;ny1Q^iZ)!QpmytcAA2)|Zy?NOB@-YOl`p zFwXFEK3A6#u9s#LSo>Qh=6n0aK%XtaQ=^6LdNcA+#X~Boq|K8>y9?k-Cd_51e0@Sx z0+Z}wCm}e*S`jotLek+}^TFtp>s3{>1AH0I9(PrcE@4#p+?z(a!iJ2(x`&%QN-;E%bFff55ByPf>RVq7uV2&M*+{ z!Vn|it&-^pNy-%;%2Tg(Bb4>4t4|&V{pZGUxOL8?fvW%0%5)fo$N~o7;}jHZNYt|) z>*miq?Uw`F+i;|R*VT-2pMc< z))?ISI*h+gw;X+KwsIrOyy&F8ojCkmIXEphgY?vf(Ns}w21@PwsBHI;TIey z$Ve)3_B#(ya700Ei9LKbkGvc>`-yUCV95H}_`~N=XfHdqqO&3qmxj5hrC^wxdC(s7 z|4bYo3DT=&n48J${>~7ny3ee%v#oyoiGj95fpUny4U@F zS{B(~Bmiw(O2V4L_QDJN4`Yt0Q#y>NHh8Xv)-bJ@gZrik+1$*AeMb~(v#*S{Jz3Iv z{MSy0LBb~r&4;DZf0;Y%hz(0~(qqHHPf49^WG3Jw`v(U&!KioJ&XIJLqix^wc<(aQ z@X@FAF_WF~uJKpvVunEhZV+eFy-bV!*w=am0X8DAji1?UW`%-(MKb$mkbIQApHx%|g38gT7xG;Td8qS&M zE8jQ5qat~30`XE!Zq^Je*n0yf$T7Z+fZri-3{DjGgl9jxjLqBBaiR zyZJi@rQ%AFEY+n0UCodJB26Nv(9n6HQFp^omPQgQRB{3do4rZmKQ{C@$VY)05vcvQ zfFbS4&icEL;_();#O7ua90W|u_UH^=u%Pvc%5bxRD^T>I^{wRr{E5W*Wv2axi0}jW zX7(MNS@;>(?R@#9A}=hoNOUdv_<|#!~XFAl}mryn_TnsmjR& zY&A^E&N@XZJIan$lx8mP6qLREC6+I9FKa6=D;LU?a`-(A%=^fc$*%pG&D3jI_QEG?TGE{991V&yqBV^tCOubkTwK+aF0~r2+ zq@_9VH=#KbUvsyr>7p9$4*zzR4Wn_cn6tM!RlChGdzDwVAE!pFL4EKOiUnIdjeV*a!Nq7IIFO$wS>StOfJKHc&siz@-@TlTug z@)u0@Q`uxT5c8GFce(J$M7iYz{jWEMn05o#r9_r{r+>O(-chKTZEOu%plW9yckLW= zt`82nZfUef_?NCHiWW(}QngT*9nTRkYn0Z|B54KwP!K!GFgqNgrDoPZpNbB+YOoiD4>bvtBZ@) zM`Y>o(ey8Z?b-Q?d9;+%k%Qz*^DIstIs*iubb!euEFt` zm}zSw)9w48w$$|G*HFq|+5;};X>NP-+V^(o+oQN&W(JD9Ytec@-ScTEv~tnq77)7- z^HRBQ`7gjXb^pM+`M9GF{zaw5wfFa_DsVk0GyiFW@X{HF?DX|m(hbDl162S( zr4j+ezhSnt$8N>Yd=Lbo8)Y}8nu;88!Hd0S4o@kAw@Dz2NSD-BE&o9g6kMYbx3vmh z8uAayS^CI$={tXSxn1)t!h^gmls~^!^(qK+eLe`vG%Wchnkaxps#UjbOT22i7aB|K zE6?0c`n83+3m(>M#L##wE+&ukpJ&Z24wrhL?X zVgYMDgNHsr%egU)w)YLW-)*oew;xtDf&+#!)y_DOEGZ zA35!{wb}r(zxSurc?Y_BD_x@`r9#CX+Pmn+ZMHANaim{_QPI!d^eq1;suY_neI2}kVs zE0i9rrpJ6s?mtJZ#CmwMW|V$^#-S`myj6eK?Q|r}=7ukA!a)&^(W>oqLNT04StGot z#OdVfO4e<@AWZRhk!>b&5S*KM%8*RO<9V*Q*(*ZLjJL4#Tc2qeEPDb!Z zQEE%?UM5~cU_{j@ak}K#s@%SrBKy7nk8!+Hw2{kDM)dIB5mB1>SxP}Cp6Pgbi;E2L z)Yh+f(hamCyP5gN-79}yvsQyJwn!Cbh#;BIw4!&7@|rRg*GRN0Z*ZB}{|3SE-hJhz zEt%$XV&e=)QdR45Kb}3YA&6%|lFB>?escQ7tSC)*?&ax1ovrELj^=H>)p(@r{gB~` ze!70Nk35fBMssfAj*!?1R(5U6H0S4WO6(WoTmuwM^TP_;FK>?E49bU60W;w3tSlgzUKQ?V|5Fp)9H^B3I9APd;`noUatt{rr4+npGu9{gmX_O?z8NejPvaeyeb}PQw7b=>Rnzi0WTCV$j8#>!_0u6DZdJ8>O?ivjc z!QPRHV|zxAoz*Y^RkS0Vn1rM4R90md>7y0+nPGI+nf-%t_+F z1I;4n`E$sZ!z-ODQZ~G!WX1uMQ5+loDsiqslA`M*frLBb=UDpnSE~IV&EtEqF044@ zgoM?MVIA;tlqx1BAY$Ou-7>?0Rl~FxFj!Nhpr?2=_N}-POD+rrnC!KbPLV7ds#Hhj zUs{rg`a4{`agU##*w+7adJF$H>B>#F=!zE`Y$JzBlyZ|$96LV*Y`GAoZFZ_jrxUJv zc&A_aptIum8oqhI%q53Kq&@7l;dURmqMXP2T2bSz{g7xu{&(p>cgqebY#eo=UBH8Z z4$<9%FPRzcUnHoSmxvkw2$hQc(^1Jm<7pJ&LA$6(H~32A@koZuN-^6-e~V!#Y&j&L z2<(9ivL@p8D?1z>{ta`e54q!vuizHHGIRhy_jlF|3lEP{Wq212`%Ble>^%KOu%~^} z@w>{L2d}xdg^m0tc~V!~X8n=2_{7VQ8SOer7T3<1YLK(oYHBg~EPHV)C;G))LnY9= zk+Q=6(Btjyjh>PF3J%bEcPbhC&iutLxO7Jvh$artY68(zq8eUnAEp_9dMP&7JbTDN z6AG8=6&YC}?CmHwA0$w$H6$qrcIV~t+`AZ4E5~l{V7v)wF^n5w(VLz&2h_pb5IoW4tnhfs%gwDqPxdn?|Urwq^lEjfGL44N-~p z2gU?bCcC+kDfDbw=r55k@1pKS9ilWv` z6y`N^ui=2&t)T(X!=g+uiCZ$y4 z*DEiE1=1-)c!5xnQr&&6FEdyGx9_wj0nssc*u8ui{)%;GX`QT$!}=ab4v!4fh=Kg znO_3cp!MTV+)s8Nbmdl6H}g~fTjJJ5#L(e_$WakuR-tZJQ^+pNL-qIRv5lBb6PVku zOY>__qf!WfprCeNbO3-A7CNF?3(t-4+VWxSvCUd1&G+uT2n%iC@oO1Q!c@g>Rr^=~Iu>1aNg*ZRyQ`Jy2v#VE9yY1Q1>^wtwHaFq@vxZDmz5u?&OUH+J< z|IN>N$4Ad=w^ozY<^)Na#!txSDErr*?mgl3U!UTO`F!!ck`7#vRl4M&&C*zQGGclM zI?zb`<jPhZ{YkkmUfO(KPol+(@9d2TvU{ip_-N{v_*5J zYO8;sb{CgVg4^mH>zsAdVi$gur%i0bjs=oeWu1u8}U@m5xug*?U_MO)Atjy*cPZE9yLsL%Iq_^A=Wq{F?#8)E+8kOV;s>X z{z1+#Wd+lnO*FpAC}i(>yibdoy$5q|aS02tcaxA_aJF1jv`rBwObN%b0FRf9VwI)p z&GBK99Bd?dH2i4LDl&=t+i?KCp>JyUQEz#RfRIwO65spW3=UJ-yZLB`I)^@Mg!jYY74ciBfPeoO%I(ym1WqsdNA{r|o9=bGSPXH5)=eju zzVEY3dS7p3@&Qax4*`fGa=y{gW2#Ow62)F)Fdqr&HWS#gR5W7bco-QwR8-Pk)PRK3 zLT1~cAa`c3hvFA8Pg<6|+gWa@0#}edZAouz*mLP}GJZRT7bQQlszZs0wPwFT3^4`z2Fh zhwB`zb5g4!%LKwkc!<>LW9kKHj8VYYCPU290=6Y^Jh8qY zI4R(jg~(2uc(cXbT})ecT_O`^A?oN*V*M98GAkuP}!irRx?E>NG_T~9d@i_4N4 z3f+f_a+HXgd^!A2wI^ink7Fs1f!aMNxmOmaZo}8hi7j$*x;hF4YuB(+BJCACX;Sm2~BGmW;2mlbo%L2tTGApT{T4{|+eFS_? zgbnlJul}lVSUy`Wk}#OwwEOaz0q*hbsDB&ASO0*5TR^LXowHtiNofukU+=s~vfuyP zEIhw!p9Mu)iC9_55akWTQKy1)59AT7n!K>a#)c_XTJklf=(!v-I`q6YZsGVJ-(g)N zo*!yE)|`5l9wDi5Wg1-3a+lQaUzPQp_FQd_@55x*4y>eVL!Gp|Pz^wFoSWirDW}-p z=_c{f{me_MZjIrK=R`G8yISB>&Py*uP~n!k8J1+7Q*M8C@p2NMst04lF0M$|)PpAv zr2QF2))|DJZ&bQY^I~1kSpmmUwV<2QYlhojr;gVTvY^d0GSOf4@O$l}F&;1bg&th3 zU`cq|j;Oo%%E+_%bhWbBVjxn(-~0}$N?q%jH3z<9tSIAQ%?ZUUSP;P7C{3n{8AnhloJ%826}tK3W4;hi#haxVi!hYzWTM0NVV5b`P^8Pv z+54GCP`afr8qg%D&L=ZIb}rdKDtanv$D*Vo7Ttkic?Lp%dU#0Ak2IeCHZZ9o#3K_! z-Jd~hexIQtMtmP4co;Ux!)3UEf+72;Yu?Z7jQ&Z;%Ck$8YbfGGYr^=G`Zwymw)>K2 z`(}H|j(HSm)}=H(wroS2LCrwxfh=DPY4JW_tQue=H5nc*N36|#t3MZ4{GrPMhk@Y! zt~x5+5+M^wCDMQMEyu*j#)9xG<0|Hv2Raxx2!V`%p%UjK9~Gni4po&uiAC}Yh^;Z- zq;jpM(vHrN%b!oOW8jrX<)y)!N9F*M9Qd*@2B)G{KtS2QSb@V)H9~vO9h*;1OAs_w zLPj;z_w)CZ?!47&kYrFMEX!jCY}nUGc$V(t{&mYf+I!r4nJ&6u1Oh`RplEf(BUR%5 zNV|P;TNd}ox+0w%drt$=C1&UswKp!}X^i`ShYe@U^b7}grgRr7Gu!gEh;pll6KHz& zAlX<Zffc z(KfNQ);ddCiaQaWtpC!YiS@at4}|RA?9Gl!HKkyr-fzJ-O0EzB*z=mHq6m74lZmuf>~$A?xid2^jI1DscxOeB;GtIjS0{ zT$}NxIN3C<5w{S}lRTdZd`iQx!TbZ>q!{O~iN%Rl<1td|K#dHVEPd@j5HIBE=AqUj z*+8Tk1wD7l;{7GuLIqumu;y-3=@f1nHYv0f(~HTI>M3IBBAxtCX(}0EL8D2T!9~__ zHMN3`RJF0|CnUwNyU2}YRVNCOn2I(yV@=*GvO?SpcaIWM`nLGQrI1a7s*$$wgFK&T z+IQK+v44;cX3ge0HDM0s84N#O==SjrM*SJ5=1;;!ssCoS%i`P$n5jQ7>PbkDVBc=pDBt1}ktXFdXdYPwsQ=GpKAf&y_l(Ykr`1UM(2)Q_q z*R-6da733VN889Atmx-_w~$3iZ1y2W33>UOTizZj1GZDc)QA1vukDQ5+x{v!Mg?JDOCWpGa?bODOqh;FcNV^W zW*QC8y~W^*TBCbm**epuz@(Z3-utjdl&R?%w^#L z3ub=JPGY+U9CWMT1#Cnnsm*5_<~}Rq^EbkeKh4$9zd8{|3*^}_e#;X%`6ErMeZ{-@ z(XX$3A*d0!;Q+4Jlw9r9=H{WWrIo4Ip%$pQkLU`9-;zmwz4PP|H}_(}z__=Evc7Op zlY;0)nIPeF>Qmp{x_D$lg9KpQ*|@9iA;hMcEWR$7Z~B%BbekA(0XnBPQA$1-d^<2B zsd6eaZ|z!01pWM6J(ku2y|GSdK;xnn$>%`-63NwAl5ikGxr!Favy8L&r^I^M0D%95)6E zUU93->~mqpBaO{zh$_Hj>^$RtcL61L^UuZ_31pD-E0-p1VSsHJKz1kz;>7SOR7%f= z3B+nRmijU{860G|N zXf2PrQ2FCwX-a$j^PF@dhm`ij+pWj4?(yAgA{A@o`pzzvR3+=|cO*~Tt*U@x#=vM$ zP>_->XjX0qxQh0ht4#l4nzv)01W-cJWOBW33n(XaTT9~Gs5}4a6_9Q5*7iHKD>LyM zh?zES?_j09xPtBG9=_$lsip) zgdo66t8-x}JF4%i<*?GdjosR1ETm|4<6&kQ-ny%18^=D?5=!3l{=du+K>ajQ+R~=; z6v*}4D4XDmUf@U9>t-8$^UE~fAx2Nrf<`cKF!BZ2qahnrJRqZ<<8owX<1xKb3ZnUb z_D-d(QQc46tv1W_lF4_w7AL-fA?7C230>4yw(D6>x#x*7?c9GnqMNl@*AV?iUO*8- zME$iS%{ZXMVYHWV}f2n@={zhCBE;gwPSkB&`a@rL4xArw*GdE5CP zvDN=L7bIRprAV0@=)ws`zFs5HM-!gNi#e~JrGi^v#8n*&4FXZ}{YRKZ^0$fuCFRoS z#nZbF4_@mKnfW(n-e*45qM%Cmov?WL0?#nk3TG?0Db2o3b`}J5s${b?6gP-2Lgh%z z@&*B^YCt5VwXzrsQ)X+FZbWtK-M7zUOJFznU|n{n`l!XvO?VyKja~Y^#4&zWF^Zkr z;`2Mne@)zo0-!C%{IO9bP`|!>rKj|mGNU%}xR9@(X!>k@YzqNgUnGtu6BPm4)xz5; zaE&>zRxW~SkR%$@>;XYm1&K=O{^-54&}r2f8J*xn^ySEOSE_D1iPImPlZ#=H-<=cEynw;n7+`~B+*16buY=yhd~~P91GEA|XFd1e z%ZpEwb#+C1+u+`>w=$W|;nrIk<6rkjEQ3=}*T(B#o)wb|*V&v-$6*Z?{NMV|Qjmtl zFRD||tg`RF3tbYhE31O!p*{(0Uxr)&fIrt&%uWV{>wZfmzZ!OY*L(nGE8NpHIZK61 zU2UG01BImTxVs&-xwkbmlB%hjo%Im6!`}>^V~36md)&2{1q&;$??}OXZM_=KC5M2Q zID~tltdN!SzRg9On!JJ=6!MMUMZw& znc=HLAQH~x2j5pIzs}PXZWfxM+8p#m4umX0Ilm>epUG++2^S=4O*AkQI?pHhnL#oIFDz z7IESsdi%III#9m^%K(dK-^U%(Uxxx37GDNSaZGu6AAZk9Z9YQG7k=|Q6R0ZvS-4hT z;P|Y^Mf`gFO7yW684s{M$L2o!4VTx!!{z&Ve}URH$}#g|IE4!M^Y3r;?g;Hxl(7Xa z0a-KB_HR6%&IdC)yg5Aqz61?nHI-bwp*wUC$J zb?pU@Z<>+EZA_&3;KL}$So}h0O{#hW;_B)HcDLT`d#%Y-{ddqyZU}ra<52IByL^sow&ClQfPzG+N~_57tu8&zr7wmQ}*_SMgP*h_m9K+zmYdNe>TvP>YBuElXgEA zz;r@j*p=GX*tOpe*8zG(0zM#hR-H>4YAm%bDxcNC2MJ8`x&RNKvRA%kSlw5jOq=bj zp}YZ>7uC%IczvxfkDDAGmQdhd{N1Q`Y2eP++qa4ZyZd_&UbmqPudUniwrC9$AAlt` zDD8Q3zwsDejTip)%4nfbTxoW{|QC{e7CNt9yP81=-3P|CUFGX zrJZfy&oRNLo2FFpK+t3Cjhz?OL##YS!U+cOUhE9Cz%;5j{5K7aj5#Y%PW5@IH!Pl8#g7*%@fn>Y| zsvARi7vEt5nqQqim*plHEcldx1r-#mfN*>hd=qpF@T&zAeh}FJnHgCS1oUvw$z?Xh zSDF$OCIVk%2#ky&>D;?d2n_UurwN3J2rTD!_y`#9DUn?=bZ0VFr9B`pA0tCP2kS)s z`4s8J)dlL^9zdZa3dn|nfc!E1BgiEVy4;1zB%1>@20jv>mdXSO9|UbJC{-*t!+sT? zafIXQGpD#P)K>9f^r}dGC4^|m%CdHHvO3B;B1IUH@i_LGKgpk!2T_eI!}nqLY4%!2 zyVZ3e=+&`OlBed3!+Tp;B^}R)Zsx<;N`ao6IvC*n^*)YfZ6K75y|A7s%bueUIah{6eP7|CF~#q zFWyS96}uy+vFLWGMM5W*2&&JYMGUk95J zkINBQ2-*S{Cm(vHy?l(h7BNNMWwqQT9h7V9ii}u*>$OM{ za2Fd8kpIHwn8DG#B(Dtj81ds@PL`ykXv((ozp}sq(Tj5w^`2zZbG9#lFg#mT3I-MZ`g7jFbOtCjCg>5!Z?1uXm32`E;oATd~Q-Z}<8m?29Rp*S2W%s;3iB-UgJi8_eDIn6~8 zs~)T#d<&g89Er6O!C9pP4WNj1pBtN!kKjZZ{K9z+1>w94o=Fs2yc-d6Z9gy53^E)4wue)JO=Sm)-qOUVc;5fjuOD(bE`h z=po02v?T{4xKI$}ziNW|fTjo{ukAx~Du5_wUfsQY5l+c|WYWn#ItZi{y6?rLu639I z-$wOi<~!u7aj3Uk>11gj&!F?@d6K@&Nl42K6s;F}cwF4%nE z7Y!0TE8;}=UOt1SA!5Wpr$x=jU<(xifw`%nkh$)>$V31!tE%NFs!8@Bp3s zD*-ftc{!VfSUAK!#IWvojC{d6!W>O8$qP5v zE1Oi)QSKR%NV+xY5g&3KVM$TEJ}X0l-}CWN_`eCGXM6~;RSB7oNr#rUdc(tMPrp_4^aPJco}jG;%j&ksXj@E%3bbuU=MYrJC? zDLn{~~ac`-%Ei6Fz6^ z4V3=7H2-Vh-?sF6MocVYB&)mnxhECYi8^cRLj^A=E?WgTH7R4Z=Qeq*6$O~#b4PJo zf9}s@>^pH;N`Pp+JQ-nCz+kKC-=nGDAJDo$15XdCy`LaPH|_AgrU}1CxvIw@WmYbF zeXr@-n0qgqL%e}$p&AhZmHoa=w}iB!gHIFuud_Git_x350x9)*pXX(aq)Z0?=*)OB>i1|E>7GlHu02n_AR?&AuXkRU1ENIfSOdWN@8frbx)`pEu;}ztT z7lINW66o&hZ0LR=%Db(BB4lrqY~rw%)}FY7B$=W@tYws=k2yIKmDvxgUfw^?p`WwP z$S%*;heD=ZOb@;)xk@V0y+diymC(O$lWYWusD*?A052b=#JMkg`24${P{2Kzt>7$8 zWH8hD|ACRd9p82{`T+p^_xFFrNVETc!$|vKOFn#dXUfVz%0NcsQ-nZAMg?svV=R8r zKG4DW*PARqC#j7W(qGw8yKt@Jp(^(HPe%n?%gg29uLmD6q86yix1#xjObn!+pC1?ucL5#@y_hPxAqU2v{R*@J{l1!5%7XF&f@c0`Eir5=x33}jUmhEPXVys`1NTzvSB+| zFEiUGom+pBkjGgPBC0vD8z|vRITbNgP*On?WsabxcdmVN&T#PoO4e^$V1= z%1O;3ubx?opdOyCn^_8Cr&3Iv2dOn6XH2Sr-@c%UE0h+?HR_hwtJ+v;j30_|P=<1j z1(O$RaM~ua_L`&uG+^&)oFU5Jcrz_pqfOAUB-o`vWKhsD$q=a~n*7MWEDoJle&7e1 z-{=9!q@|m>g&I?VN3^@O90;^6f8OO|GSQR2*U%Aj2vWpxkPQp)o+j-HtK4hv%TrNS z>X^~u%qc8}72>^1Cm@oMivnM`L*T{XDKLZ3GetcNmdT+L8Wr`NFv!qDA|oP2s}U68 zDT0^+)GI1L&|+gIkd56t221*Ap#jNc`S%8^=P6(@G?*ZQ$nuTBvl#t{B2GWh1oK4? zgSXKHHj!+qrxF$m0uz{^m5X4}vvRpTKmlnH=%bnQMbe7WLQba*1uy3vUm6YqP-Ug3 zIvoUOVumI<2p!5aPVo)sPap#w-rQlGTia{?6v#8wHfTfc8_TvkKc`Lrhfz>O&+)N{VQk4cO zoI|pR? zq*iMX7qsFl=y_NwIs)a2=4|P8(Ao42W~w>0a?}}>$rq}T!!?xbJt}Rzr9b4ZBTPn- z!^Knj5^6%HU(Y5JCax1&SDLr{=6y?jahbY3cw=?X^hX|2JewStwcxTmp+S4dH!5(C$Y z51O?lkPkPxXAL2*Dab#RrRNf$XU04Y)6 z1A|?N#+PAgk?b4vlzVbk7_VeQ8U(BC@i-Q@_o-Tw3~S-YuPe!>yol7%N?mj&DK6@) zNpf{qMbwN2_CXx-MzvpL@W~Ph78Djeg1hEGbbZ5KGpr~w%Mr!0Wjv99i%ndS)FJ%P z;}JSkZHo4oT^a4JUppPkq#YLamSZoQ#d?qsOk@gUB=IIzYRqOL@6WXmNo|%&}^gk-SVnC0VQF_6_LJG~_yo zj2z>P!LMi}%Lgb&#wq!Rf^nj$2L~xBeX~C#EIm~}?g~FUOrMrCqn=)fM($g;DLOi* z8W0-`JIy{JAaJ44>hb(>uo+Y^eJrkn$LFm;tJ7*83j}h9v4J^qFZLzvn3nu6n%+99t>*h44pNGHad(OpD{jTTxVsg1 z3tB8V6nA%bcP;KNL5jOOym>y~--|AJ2%w^(lC3c_tY=J7Mw?Cjf>M_!GLcL|-)kd-pmU_!F`}$21(Z9I z{xk6-gM?#FPT|j`%>Cg^O#E#IM3t1rNS^Il|BDV4g)w~_IiM(kJj_r^J*|#{u9M^l z;~#4w8GKw4^DvD{!Sjxot16cIfK4Z9+g%MLS@Ey>H%@T*?~q9Jb!9@6e8otSXiQ4z7BmFrg74~aDRhGEcq%>m^Uflqz`tt9j#&S=KOGRfvI%*nt7QPBRH&?g+Im`O2AvV#3fW{m!4UKPFu0bZ8cbOc=t8Pm{Q zU>XkgZ-N|bu6#TrUYu~>C;=9{GFr}G=DzFjt>687I8zeXQC~w2d$7^eU;`ne+uOgV zZJ5IY*n$k}3fjl+MKyr?7d2{+ijol=0|Ocfwm(QSjsr>>-Jhyb1959|F0K3erIe-X zYIeZj06OJuQmC0x&)clMVQX8oLOwngIUWPHfNI1P+T4sfy@=V^AzZ`b4Dm;sB*iy{ zzvsDi7`ku2irvVQ%uBAPCoj4MJ&tbzq%8jg`~ruV*-siEY()|d87$OZgQt9!FMeCs zDVwNM9-=CswEV4NOp=e#ifhXS5rewkmX5=HaraEGbI<%<=k5vp7G8qlP^w?|1hyIo zX;Eas??)%~f}i~DG-BGgABP%(k>QvL-h`)I3dNxV!UQ^YHiZ1t29l#l)_BI+58`8R zvAqYkCPnS;++{3^X5|e!+H2pKU=*dHF5Zm?yM8$Xr(K!_Qk?~;|soGFbmReXAgxJmv3ZP>LebiJ-BIR}r{Ni5GC zhqXe$v%NO8nC0PHowSIHAcW8ObaATH4t3i)0&a|=S86HB(P~DTQ{jl$r1YhG@u!Mo z{oLdbO^*>_RW^5tEncQX1>!7vv`SXCDNqU9DzRuJ!Eev=?cb4-zG-|;N3v!N z8X1@M2H<6Lz3vaM>$AIVzQ$HfE{mD;xj>jjeqSeE+-hylKL5{fh0KJ&mH4@&4gJgG zVLgc#9Rw})20JsL+s9nTfXl2Wt{(VhHWs*2_72#xcQ)o9VfpOC1>nb(@V`c?X_IU&u|$%7!WOfvE@qsnm`Nc$%H;>gRe7@X zVeqlYB37}?6}|zfVX%x-Xi{Us+B3g{&WEI2(+gbWLw0^b>kx#K?Iju+V;0!xGR~(5 z*@Z!C_hSWo`a`b;PcafeR!Aa-r~?m(B$Y+8dH0QRYsYdNLA&U9{pErW_INPa{9ask zGCI1oIUD$bO0;?1Z&x>Z!C_EeS63$>PWXUrs~VG-m&ED_|(T^Z=l?vbw@{o4*eCMya-*aFbw?< z{Y>84N^f{hJ*bI8=0MVd2xz1nTp&}_aMRiG;jGp4+SBxW>T9LX^9qWv?H2 z_JRhj`TZbq_ToX8(@wd0deuGIp85H^>pxqINpBzKY4hbyp^FUd*UcLid&6_y*G-1@ z0_+Jt-}9xzw7E*N<_MO_k>@EP1D&^Sfen_nyW%&#Vvy9C;WSF zBYGt_*MA938}&Lt4HUyYF%01Jn{xNfwlb^~(vL0bqz?T(j{Ln(+*Al#{d{~DQ*Sr8 zvfZm*KH1-8B&9FrorxmfK*QR1;6?BGM-@Px@rfi05%4{Dv8;W;Cm9g0?o+OvX zNf;hJ;OBj8jaLKj-8W3^9 zoG%1DI+~OuEE<&O^Z?BRD0n#!-HMpV!^owCkN9!k5Hh2K&R3V6N{^T5=I~*(-52;v zBt{Cb$mL6qo5;>GRd5*>TKHZgYnD^Og30DohoJWGm+XKdWFgox@N0i^*&Dnb&NZn^ z-iYAa1*PbQF@R##no@l1-=gn6SLHs4^uq1Vytz2jknaR*JVvNo*m7|lJbU_d0V{{WtN$u8 z-&az>irTLWEwm)Z`8F|4vxe=Hp$=~Ye4E_0Qw8lGw>Fzoq5hK9ye~?~-sM|ia|j=&rNEgD8{FcEr)3$`O38i)x}TQyUZ-!ti{xa!M&XZJ;C;NPk}ML229Ic zC+kgI_Y>Y$0+a2koe|;gT>)O3c1V4o-DkfN*rSgfhw{%~V5iW=P{9u;Cv#FMz+VAo zF?vnNJsTg-{fhO_{U5$>mx$oY_O+&c1|QtB_sddR9N!zMwHUC6_lx~z%iG8du3e|q ztDZ*oH?Q{(xIISQ`;ieef!E8|V&B%Q(+IT$FvE5uFbpY^RkrYCv;`GoP`#R>-NT@%JMd&CmToP&a#~+gWO}kgMeU z&P^nXB#xc_MqO{rUb)Fi)te`jnNar?8khptQ|DVImV)2MY&$q3)7~&IY#za&g)%D* zKe#bnAww1bl48>gNVt+a$@Ry{3MHfJ$=H#XmX>dXk1+*C7`$FL&+Nte$}}e=sH)*X zG(PlWmMHn@=}Vj7nmV>33P~$UFc~W4LGuYUdWr=FKkHTP%he(7_!2-8_wNs^2T@3b z+vZmJ+&kRX=$5-q_uFxAAt_7?8|9}71prwO6*(Y=DoN&yrWf53U)8*i0EUwPmPV2o z&MmlOkkqH4e0HtN?7_3#?C-czNKt&IK_-;p?kR4T!NSg@yx&=d61*$ic*M5M%g0_FE-*nQ9rke%T^?cE<&*O18*1UiB zGI6s=ryGIsT8k_!z6W)llsE}kjb7Eey;~PrXSJ2pR~$0A@Nv~Z?E!s<5q+;)zZ4|& zcs|+e9vitWlbD-LW_3T(=${&I^;~<#BK?R6GIcobTR5=yIT-|3`0ZRVXMemu<;C0i zoDDVvMCo|dXX9sooHYj8YIk-ydC>R`KaP|$kXU9JnXwb(c$F}-mWxN*89s-pq5oPiI zt=#6bKl{tZ__%<=2;)~Ze6Wd~R+q6kdQXpnB{^q+A<^UWV4*?g?YygnRd<&aj?r*Z zJ(G44qvVTx4mF<-#{DmLJDWoIZ#t9TiAzGZiPQn*k*57Z`9oWr(iR9mYDcJP-iE#O zqAtP{cbAVS`DshP=9R8BDb-{VlA8t1^&3Su6mLl{_{7g={T%c7L=k6Im2}_x>x0;m zfJ&G>|9D_tk~+4O28M@2(d#@sO}F$w9xG`2&Oe6}dhMXU!s6!-x_*|3gn3n?tm%$c zOEv(xzYA&RzxqQ(1_3b)p}Dj|&rW*!&4hhRd^c$em+lrTR>_4w2?-qbK#BS$TLFJi zf@NGMG)WKTvS`JSW-_@8eu8>>Qq;6!Z90G~ibww24>@||UaFK}DySf;LXVDw)I_J6 z^{O`5a6F(6<=4|HxzxKUKjLqlYjZ4{>*rRMqt|uQm7P!1S;S3$!`0eRyD#3M&JZF+ zpJhQhEM)k!ql-*c&v%&{P?yKWV1m`_vdZp5REL=k@cYingFTSu=9O?i%I9pm-j3wC z9iJ50*9KmPYWhBdkRJ(`?ZC$1Z6>FKPZ6fO-Q~V98BOuw^n+V9>&N0r1!AhNQ+M(C z+U;Wl3u)@I3TMF_oIZFjlEL7l`E+vAHX$aX7x^BAi0w5y8Qc5acq{*9bHl^LdVel! zMCTc05;og?_s~c$Rcka5`Hb2EtKxNs##zegaM*Q%f#v#Gi`y`y)ZDkMkb&CT_hZ(+ zsYre;sQSD!9A4N*-5kqP7BG zS#*z&Km(F&pg(uL_nSBa1+PwIJAltrYbvqJ*L4g6y7UA^6=B$Uu0_Y$(X&exP~T6> z>~+2p%M{$neW?nvZH~tILI2xvo`aY&>-MSzQ$beSRJ#@oQ?}2fAZ-ke%w|Sc@8P^y zyO-?L9R>=&F=(yO_3t`vym8A;H+d~< zi^bZsx}^xy)T2|~no^mUjteHtcHHeyM*!~#Z~L>}6m9}Ye$(xiR`J+Gbor=hoponoxgP?_T$g^>@9qDr)4(TA*o#M2knQn|U#a4X%5Q0*>tddUD`o2=bAZ+Q zL|>e}SSR_Qg1Gr~LQDE_5N~dw>uhH5YH?3X>i2pyJi$!DcY2L-vtP0D5uuZg>&Z;= zSg%Cyg~Rx$(Mx`Q%2)XbV0SLNcjmmQ*OF_N4RO7ng+W`J-5uZEDYI`5vLED)3cRnj z4;a*a)ng%Bh5J&=%Bhn@nT!-YC8figC+t5CqX^0JcwHxF-7E}`9o+3}u{R1PN%+Ms zHtFX)dmUZnLiDF@Q;IKHkZO#I{GEHpm=`>>g@u{kPA43Ved26|8MEysh?+9@O;+Gs zvv7KGDPRN_OQHa?ed6YL0?7zfD%EZ~=cn|=%Jqh-l)de)-KvY#3Eh{?b6<@H1`qd1 zJJSr`$*0UUa}Vvz#VT<`%Do_GW~sYxUfP8tiG;q~jt3!%iadV54p41V{&+fpCX1VN zKi)g~Tp7?Bjy9{r!%eaMG*&yV{lrf+aHH932`4TA4ed+^_lky!GMG#HOr%W>-4mGlv%MxC7Mmwue5a{d zzG7nFVQ+4+4g+ZAnR#{=Cv(^F<)-$ov%*D-?Qyy}g1PI^m%4|EWrEbtOtSPK=VW1L zG0*W1t$-u7S9vN8wtpVU`4k~ZnN5x!TUI^IQY6*fsceM4=vG^0Z=_5(v_u`FaY5-* zl`hNggp^05)KB)cN`E(*H!zX zESibZ-f&=x~j@7TDpY(XmTO4nA}JiB%X3ObPNobD6R3cfFyVjTqI^8lU2(p7Wce zpP1`t0$_|9esPOAW^L3aTKF`Cob%O;u=$~~bPUn2)Zyui_fw~~S5;b_#RGx;qvwWX zPyA+Ho+&MaD9udPbC})34H{O*w_Q!gWYkR2=Ce4nFWd2}k84;_>D!Tf`7x)XeNfI^ zF|Hb@t2wS2?69naq8gFV#t?59R|Am>UEtc9vpp%)pZTROqY|H=C$vcQcQH?bzJG3P zB|#abPTogx_>YZ@q7?84jfRZ<&(R!u`J^I!6I8w_q7?;W&ZN)~jg{x?`&^vQ4009~ zEmJT6IePh##3JN0U3?CP`Oyq?4Op}31QB}qa_&>RV)IXv2$I$j)1OTkK#P@SLh}{z z4)swcnicw}K|F&``4XOG((H?P-ot+2_VcXbE}oz=-Bk24Dh;GsB9lva!Q{nb0%=UE zp;%>Re5QOlK_p5 zAx_ThqL}kUBAmB0Be0v7J|jh>GT3v7Yt5C5k(9>nXrO>knA_y=j89Bl*g0PCk{H7T zVLHtTGXqa9iB$~aH8zrH?MpVJ0d*8Bl(^M_H?Fa?oxxoBpBn5X6Vnr=mCI7UorUch zenaAH7WQM&jI^+yG%P2=5nomQt>Ue5XNEuP#;JoqanjDdwo)r$>ZTkgFn!WfczrEf z`W~!|*l4MgMkD)TV2u$io`}PK{3&94F9H~m8ygmT3pLt(WwPSy0zfGNvUIb?XvSLOeN<9G}C?EHto)Lq3Qqebn;HpKvwj z9XcHh#UT{ha@L_X+a;h^fBfaKxwQ)DE21&1F}WEFj|)?wAYW}-x0 zYAlIq^KGu5c(S$bZjj3}y*WI!_iqsT(?ljTCEHcX9=@H8X(M?ilGi>-U|7%W4gqM3 zcWfF3+9-1#L%|dZ=N~2HlpWx|bkR;-T!}~N_7=uARclxH3PRTStQ72~i#WGsbcB@A z3@bB(8mAX@k?LAXc?r{xv1#^S2n9*dC7io`#=jC>>u|FHYyk`_B3i39zpVXdo@pc< z%x-Bz5o`73v@b7Tmdj-CF`e2EZxzeEQ!CYqlF+v^6$}~f$F1Pvo!YcabGrf>=IWbE zrsXVTjSPC8U*#%fRORXN9WZf-k7~Jk;=;)1|EBU3bTW(=saMZ;S(3+#DyPMX0&$V& z<_S$o^ycRmt!A~sm7&Tq^k0;U)Zr$`^4H}`IYi0ntWNA;` z%-OX$t+L~d3QR|AWRe&IX+Befe%MU0TTH}Z*w>%VEYR9gb}3-T1n!W>F@|Q4grwYJ zfbvaBe!E2yaJ0aF=}2PI(F9WS-HkpvmX03C6HO`_dG;{g$E`B;o6-wfo#kwXNjwlQ zuG;GSjy0-AIE7OcS9c9u)}Gk4x!KlAS~Pa5qmjZi#7vMVJx4OCJjVFhP=*66U(H>R zEBsg`DAC3cvqCT7{9$e$;Bc8e-|7E#?J|iddZVWAtA`5-@gBmMp46g26Xohk)o6X& zOH&d|jetcUI*rVWlGD4mDaF_H3OA#A!Dy0zwaz?@S0 zu?8vN8`EL=&!a@$aY%fYU6B^+A}2>JeU7a}9wbNTgjP6_P=1(o&|i}vkv!0a*^Av{ zaR2w$vHAFQ)C1NE#FvPL#H7=d^0rg0aKkq(kLjgi?d$OE96!}WB{7#?${ANfc_4dys<^{ zi~-KShsr2!Gh7rt1(O5{0duj>VRqB4k(vN1c05V2yt@V+IE*f?RQRmZn3sO@WvnLHJ*S`EKC zdydrRDo4oM`~@7<6}3YdF;JIyWp(Opfil&qA7#Y!@*!zcl!;i}RHDi}L68+WHx^l% zor+U7Z8iaU@hdgE^;9&6yi|y#vQ&}!=zNYG(tlnU!ZQJoQSlRVC#zJ_~avb)j-SG?_3lh)kcr}g$Y=fz{|6ZK~Oka(uxuV z$0*K32PunQONXJ^T^NsA@g-V1Inf0Ewn*bm6;s=r>j=K_Lv}6OpySulx49W2(+m{n2Urf4@=u*>kPSN_w%(-an|g%gO;b2mCV&< z=dcbP?l5W74I*HTpb&B)R=xx(*g)Cin4TD*>pqbgh~7y-3=`yd(Y3<6;iMwj5Q?Gypma-KX`Vb{#=C$HT)T-k=NDN^)q9ZnG@30o?|QgM>Ek+s8A#y>mW{xS z(rxpU^CPyt&6s6<3xiW+5uo^!H;Bh;gyVn6VXdRi`-C96_H*e-iOn`su;pYLVdjY~ z5`o9If$D7-?97-teE75}TP12Maq^Ik8jgSY!{>UU}Pma=5EN=;FhH`jm_*pTcQ@sg$0fFWQdTc+|Wu(ow$YHhr=}D|e zTdB8b&M@~HgUUH<{p0(VRwZg+&_I%;?YNyN+OGW^qRh3(0vwsGI$WiFhXWL*Md%h(WkYm8rNwNWXf(Iq4WTmZn|meDlq-)FCq`9B+rPCX3Nd!lkr&Abn3GRE!zR&PZzU8M8z_=fqLpnFf)b z^9e|lt!e=8=4FsI!g#zA1_}`IYfD(33~#wCdtx z*h=swH`SR|asnwj&DqW5C57Qkd;oOa`|`VI$LkfMgv~AEGd+anwOdfNF(sgi@oc=- z#nQFb?6}m6@gRo?3%%}9>rD|WVEWV`B7EOKp-+T|Vz^(1xxe?8^E?)38Ca&yNgG~- z0{zTnVZOt| zXLyCW*Z3NM~W)wDH zNa+1~KqKks!}lejQ0aSZt4QW>7e}7OAaOF zfy>le+2iB!Z=6Gdv$vE&x0lwE^S$Y16cQ+>LM1{qzm7(k=zy+TBE!Sk9aVOf=-)9% zH~~3_OYcTg(7PAi?Wj!bBM5G%x5t(DBNE8qps=M00-igJbeblG?wd3|#NUHDGLSj# zD%p6uEp`%ld)VVvSqH$jVIH-MGzb~OAn9hRq(?AB9%v8UMd z{o8o9*o~J2B2GD+Ti4dLNKd#p!*z1>+M@j}Whd6|$SJvaBL^#O(n+55{F9d9bVDAl zRW31y)N)z=s?cB7?T)b0#LnuEgkUnX5!5ezF_Tabks-!~5m$72!?de&qgd z$R>T$RrVdNTi3Z43FcY8@M+fDyPzlTk9qP-^ec5;6@iOIeiZ)T6Dx375WRiuZ z%ai@2G1}ZGq3XcTbwQ~I3P`Z#f}ZMUu91Clq`!Sx6gYq0u7p^ zkCiH9P|I)8-~D2Wp|se;g(&ec+rpvGH{NlJn;(MB+(I5fcTzl6%{O0`jp)9lW?bC6Xl9 zJlUZtFg`+lb>Jr3Pr}*Rdg{0VK}zkq_L=Y36|R6HA&02zF5)$5qG6P9(!1&Q{eCI} zBySB^XySG)i@0aMmqny(JG%23a+J&NhRaHxY`b3@l^2gl!K}OKorQ9WCSm@4IJwRm2wM4tR$^tU#$KQ1Y05E1Nt{zg=ItTA?@nJRnO^towcwGnP zHzFwjOkHjchl34$=+Wk<3FsmrcG)AnoK|7qW`L~&{mXjZXn(R!PfVm_&!|@Ka&rsl z8X12pCbVvbs%+nj?$-J;QnLorWqwfh4{q~zO#NV=J7P4In6^zU9HX8tc7+-p92!fuiX_^&S}UY;oQaTOyEIWo-_${zenZrQ6tpK^Wv>!zv7D}SB0OTd0yv%x%j z&~p?k++!L13LhjZ+x-j_5a6qkeNj&HB$eAHj^vuq%Dl05y68X0v&cIW$t5Q?i3;s{ zwrPD<#?rOo3NJino;6G|b~5|De`9++ID&F$@hFhRAhzD}J)upes{A6lFKjH|N3F2j z!t4&8$60M86xKGG850I0%I|eA0jvG!ON3Ab@>ISJ1%Vk;jVo}e%$n$y;xh!MqL|C$ z$#n631?txybG`2}$zlcG{2ib= z{I)bKMvc1|wppMEcqk*I8FsAx4=`>+lgSn$TPK|RCj9Rsptev8Xe%EFPo|OW0>O|- zJ*^K^y@WiQc2@P1dXVe$%r$T5z6i8Y9YGp#5yR0CLUsG_j?moy1DrHyt_qb)dGZKr z+W%{oC#jgacFRhI3F_CSqW&weRKiMu4&Q>b9fv74$?nYE;fh{=GA?aAe-bi!g41Po z@zG|to%grW&^juvZ|}FT;da}ZE16bizUjhvGtTN#1WpxS)ojZIlcxwQMZj*0b~0%? z?;^|l+FwCMoTC$J>wC2ik9YP3=DpV?(vOv^?87F#r@-4(}> zv>sp*|7=@H;l+a3{`y}5T$yA%_9Wlq&ODbO_uXMWF6NEJJ|VXhu%n;rd+~{AHQ{^v zkWbxh_m{y>#2~zbQ-j;l3`MUeNz@y6s8Nk6AW+0;m~}`K{09L^?BCo4sFB=`qQ(1h zrTge(KuFMIfadzubM9uz&icQ3nofBS0%v3!`1hecop`;7I)5~p>uopvX_ZKJFv8wD zV0i%xf~T?wX2>g5&yeRIRviO@s@#1s+#u#?_LP1;c!c=W-;nSD4OP3sMNvf4fe_}` zrvdfABsrhgSn#)@+j>rUq*RzlNIm7dhslBGW?IG47N!7dDAW73Ru#Js^<9JH-2=X>_6F{2H0_S$uK^ahwp{e5)DAZTr+O45|1$!o3&wMe+RQP3Y8? z>js?O47q-1kW^K=1R{cpw&LrDcB*r8%x3`M8K|KiU*EG)M~ETM?()1+K8&|Oosj^I z?*;)-FpNK$|f}8euLyLn3Q}`g9PcNXLYlx2T zpEsMQrI?qgiV%5B)tK@Tw+@F7`!>NBZTk77@b{Ms7A|Cyw~)^FN0uX>eQL*xMBkSf zaV!JvLzr(x{rJu@GZavzdQ?2i+roDta^F+Yl0Y5$Gi++=LAr@-rAlvfH*_JJfa&em zH9Id*)|1WrT~7r9R}~?z-?dt~hTx6cE8c|8QVoVNpDUe0bJvpKuSkC=fb29->YUPq zuh*lE=6BhMTw<(7nH|D z-Y`z~VD4&kK=#irzj`A)>j` zc%<1*0bo?2>(f>#X!LpJ20)2gF+110`x$ugbqnL)m<;4(LdS2Ov-L1NX?RzKm8+ya zapL~B3Tb!>f{y_PeBw!1;UGh$-%F-a`{C$FI}o)DcTO2xCC%=`Gl);C@moFUq;hKh zo$J!b%O#O(QeB4XbD#(Kqu_uW_1OxfU)O{_+x|H40lm7Xl1RZzRU8FTUnL&JlTN)4FKX-Kt+qo#}G<@>pIYZ8D z+)JF#Dfnp34%2|ptGxL}>HH>R$)asMP6wzP7BHP?4@WI^{)J^WpUUGZ!1L=wZ%IJV zXb#bD2J<*0SdE$zXhF~#<2vqT!pM?a(OWKqb3ZBO5*qQVh4Cn_H0KwBD@lt7658cn z3`yESw$LYW*^-+CHEJZU>P(JXqw#Du3JEDaQQ_Fe;a0$Wf(*rce-=`qm){jA`4!*| zBeO}|=+bLJr`N^M*$+YI_C0CENMLVwwMcXbBfw$AnALgs4k^Cq4S3}OyGUcyc--sc zZ~C;m(`;q08-ZU~MUP2f{X_BYeG>wN2VA=aPx+bJfs(t|V zzE!xaZQ_wb9LTS}$A1h{3&~Yyieh3yZte4*PgiF4;{<^PEBZ|g;a`-S$zrE1RFUZN zs5+7<<(dlU&84Cn}xCW=m3y$gpYh0hVWDWSjG{yn`lRPWYI$D*hgYaQNMtBhTbVrd2 zVL#$v)Z8)%zi(%uS_*4lFl(8S+K9WUuZ3SuxaslcYN<+P_NUpP(p6&qwC+CXmkR3^ za6H>Xa$0=bHG6AcI0B7zt0r4(Opcu{(@02RV}duTo6^72yn9zFS1t74CHHC<>M9z~ zgKF)f_2k+M-q~0$th2Tm3&bP?&^NKMP@f;gQ@ep zMiKzy$!gA4O8FAbZQXiXD^ER{toZssS-`C$4P=DlpGGF~e=wUFjB{2|BBIZ~$4ZB6j z9(wh#*zf!K6lgb51PtiM+d>YdiBGvzE+(scRA%@C8~S{+|33;!G!VTY3#Ue`RDvOR*y89;I^f{oZV|nZK$x8i zltPEPL=*{_9;f^f7mVJw@HK{qfJ><@U9hDDPP(Ehjs%DV-FpJ56OWDd$A5{~r`=(D z2k%E|`G|CK!Mg$$VnD4ARaF10oy2d z(`2(Rt$0^Z>=E5;Bab?=lDYVWz=z$LeVI;#ELWGuilk6O*k8K{_(QqCOI)I?T#3Y* z!_LHW&c>XX;FG52NoOYsc~DNIxqdv4fSM^)p+u>v?RwA-1TIlQ_nPoI&-2SbEA!8f zGyM0K9@#JK1+`z>uapsZoF|<-Q$7yq5mqC`ym^Q!^c}Z;?t*N!185U~VWaP+zqGVg zg26Br_0GLGl*z~O8+j;1J0#y+3Dc9lLl_j?9(v`GgHcbFX2b40(<9Vf_A-bCApB$ZZX$-6I*92zI}%$5h0;aOeCH>Il>+q0*EKvsp}CmQ-BZCQ`37T5IDDW z;f;8ldzyGxN(gPP`x=$n9R7HdRilq8ORI6n07j0clo-OIo#WY&n`s@l^XxG6sZvbI zpkgFFf-WK1R1tKI><5pdIJj1I3s+0>$6%QAyx#3cjWM9aT!v(6(dW_+h;$n*yCMzB z@i0tQhJck`@7|w~Xo>9J6tVzG_-b^L7)UMz6ngFI`03-wBKl7>n9F~sN+*c&^{K7D z9?3W@mEl24I#2GWe_A4rdrl{DoVN2E1L5_nX$McP5TRn7%}|#fe2pQivf%&w&m{A9 zR@;d@KPQRYNz8Ui=Ac@v^KGUb{@u3L@?^B_ls_ z_1RPYwO?Xn5ESaC<|8ML3`qbC@&1nSZT=V#(?jmjgA8&=dT+iQKM&GRd2U<^nS41X zjvXGJs;JrEhys`+0WZqQaixmXe`!$!M>NFcRHYDBzJ;40RubO-3kxvu2Ns(=9DJ53 zF^~}O>gz|gH8lkS`(^BvA{L&vm8ryw&7zW=AP$oU?is`=bW<`oh|~B-cShFsLlF00 z9~;S+Nn$rU9;0QL2ecCm$^r%QLVi^eRWW*eeSpZ^dea4&tmhAHtBtOTDnmcoMt0L# zjJ=s&0rp~%e8&USVd_A>=1!i&drT9XqAxYi27bDpS0+fqZqVP%XYr8JF^H9$DX>XP zQr>1H0I&*3Asv7p%I7=|@P@)PALwk-l5LXY>Xhcv98e^VN(Ya?iMrGC;%-a4!Jful zlH(cjvvRe<_nFN3jeD@!KNzrN@Z*VU$Qy`Z>8(cZsfA^d!`31iR&((v{TNO9c-ct7 zjiDL|7X@l<@r?0xmVNYFpH~sbR^kW$rq!VaXXgA)IX9W=t(lk;8$~_g^je{A`bJ?;c`DV%oei_qndm_x4SP zu|CuwZHpoJQZH_TBE!KnLr5W(e8x08yrGo$f5MZ&O9UaTEPl=cQmX)^mp$J9#vh3m z=fhX-gH=`r3Y+PvjPa&Uq2)9U>Za(`Qj+IqgQ=Gru8?uiJXV6t5z2>Hlq_BZjnaVy zl$`D)5l+Rguo+K7lIu-_Nru;}yhXIQ`P$w8X2%ZQw@VF`ZqkfIaX^g+(hEQravVoK zP*I^97sA{_bm&l($nOx>Qu|j=^fDzPM4A6){nQI87(Ay_MtP}#5KN5TT7vp*}D{Vxp)0$!se)G

    ;5B0=!aEwQt@>-^KwfG!&i;3gQ2M z7GSDa(S?}T=q>shh|2+0Vr1v*8+YV@aMJd_sX`T0uNPvQ0Q(aKxHsACr}NEY|Er0Z z{XbOvjD>^q3U!8|`TU$PQAaa<{W!<}0yhNweZvc1{hBK*0a=UR35C4dp#W@NER0&N zv#Xw>#n?nJ(hEcZuaA<0s|SBqSIv~kS_>SNSbp7pb)H){m+w{oO4+%|ne!ItmnxOK z$@ZAw3$gnj<`+Cq)hLt4Ft_DgJe*dHGOh+I&vE6;Uo_O)c{lV5K&6O-aZ~r%zXi`CW-k7TqdMQmbtsguX-Os*E(v06 ztq}SHZdpt^nmUs0w`T$X00x+686gYLVD_izCoD4vJ$wA|>E!Xt>g-g0-&Y3EZP?(2 z7X;Zyg;= z;h3ImezVIX5oZS3<6uL3v4e{^gr2`X6}z?}tTe@ni(9-0qXm?ObgAo&nBgrs1Ulp3(7i++52Wg z&6Poz?R*!DKK}na2zg;cqs;KRNLwq-`meWmp5G{RpErn8gv=rX>6(E}K2Gcy7${j? zUjX+$>3O*#?F8z?9Fv-CwXIpm&?+f9;&NrCY7=3N2}W3+E?%4N9Q%6nBD^g zLCtWJ`<0FRL}Ja`JIRQy_sg3~Yx_=!CJ*`+_i`QgbUo#?{VkF`Q{;mjBO@s%m4-o5 zMH;(%YnQkCJPO+6cAS~}#$67g){V=(&sH(6FsKac+YJemVb5~_41R!jkQY8AsZaiZRfYw?cEa)UPGdHhv`{360#34TssMY zP{C@{cfPNmoOdiZh#07jT7{S~f6Sth#Na?c=v7X~rm~FKsif8orUU@b<>pa@D+aA1 z%k?JBhZ56_6U@o=a!N`JL}mku(G~pPrXXlfNE;S?sw*lla@BWL7kz*Tg3%{V8oZmjSlbgdvUvT^GAZl%+Iz)_3}q3id9) zZuxh1ei^R8#-rL;CX6HBAAhT9WGmLrZB`H(b_Y3sN4vh>9LePI8x4KNY7va>>DnD8 zf=oF`XdP#DxWE@a0-xG&Q7oabdecdA?aI%s4b;Rqxl!|aA%4f~vO$TTNp~)D3HP6G z<$6XQg5@K+3gumD2NJiqs6aixgFj7@f&JI*K;aR`;`2bsIBq41agL~HI>P_$2FMH} zk1kT8HqQyP8|+?E*`Mv~)wst|zXFBq`&&KVDU(0ADe-Zz z)Ej500_9vmLo<+QqbBy-s?cdE+R~fpfY0xqFK&l^cDa0rywRv~=~l?0yK#&4d<$sR zyfcK1T9#=GUlY5wZ@Ao36BjH@xqt0AWt|F*RuD;+^moNYB>&GA2x|{YhA=IC`y|+qMTXtnUzmepAFuh7a(CQt@kufHCbZ}L zbySYuiHQk-?9NKnB_G6-OI4b^V=^gYO;h8SS=Yv#N zoXAL|GbM{cIqgE2K9e&U@3Nhjbouh;+bvX0@>#JE;f`z%3>y%QG1*6y8q$w-`;A;RySWi^Bp%392K;A&Fd#@5UU@`W?S5YBV0At?lql zD!@vphGJV!!gj~QNQjs*_I%D2_z4-)Rh`7lt)NuW&ZkpK9R5^C-B7lX`w{WF+QmaLZ*P-FRc{E`a-Ra}<*RoeN|AeO--%aQ*I6^4Qq_O`V;6hqI8)_b=le-g)f5q|W8kX?@yDG^louU2vI?Kj{>M8*f~Sr>Oag>$|KH z7nl{KLE86SeMrkjJDusp*kq~oK2({={YeT2W2_^t8}*^?TF4oV*^rQvOQ+dmc-edjuxB;OfiG?Yw^q=C$OxeY-h zKDlj&1jIvZ!}(bwMBzpPoXkW78T{QIH1Hda6IqMvzdCS6^O}qP;tCBSR-ku7g|jV` zaqCp&xT%P05j}x4KK=^aP5q+4(7HWirTCno<5sC$B;m&owq~PHPM-c7fVOuO`5I2P zH``0%y@)@@xAqy)6>-lnuUD`67NfRR`_@!{*5#Id&X41OaB^0LyK-aye%ao{+` zCA}o2J^!OieUrOX7<|YN8PkF3ZDAShM{9NlwF(0MFcL`@C8xEp9@`XbwmCxoB9-F) zu2!?ji#Utj0%K?}nKm{BF%YX)_04Bp%2vO0tb3SJa0358X16qFIcUlRt4 zhIj8IFHVACmQ>jp2#Lr4SsoEilDHic!67nk81pRp&?3e#bS)6_VR<*ToTN8eMzIy; zHv_)A=(8dJ<$Uz>acYB&v6=VerE#|%j*UPxf%hcz=p5aY zQpVJpAdrB#H09_PB(WIDL}Q+>X*PAP+hUXf*O~T`S>`-lzr`CL@7uSPB%^){Xj+%lqu*(q{;G1g z964`Wp&9`zKHI~JXIXEp0EzfMd&2wGWI3dN_L4dupB9$vsYQBnt)6Y|a$>25>8>gO z8BlK4KLQ;&z0Lg82lr;&{#Q4c>HN!Kxz0G^B`<3U!-wX=Jld02n%-Q;DMoEO@)YGJ z`b_)DCG$7nx-PHn!R0Gb_kCo(P%0mEo6x3NN4}3 zOl&G;1~!YoQo8KgM(D%+jKb1y8C_jj6Clr={P=j75@wCQnfkc2aPK1%l>Oc`9IZ{| z3-0-1*oMd4p8Q)~tnDa)ZzdRXdc@AD~Z!EG!BMH_Vx@H^02GN=;|(Hc)j zr5R25_1h<^Q7PMk=(9O&r0+S0FC&vvQx}kB>OC{VPk-3#U^ypannPIV)=Oym@JZnJ z?m=s~hD|14&PvHbnD&NMp$hx=!cg!T2wpsuaS%*VA|M`JK?Wp)g$0pGsnD#<~1ML!$q}urw2Oh zRBlf#b(CBt5hcII+smpCBE*6^KbmaO4 zev_=H{|estYwuA9dYXf;iN*r(G#oP_ijk2ii_Tmz^7_~Rz8|BlE7}{D6AH+{80ozu z%9b6?!6$HPB>C|@E-`_}VD(W-f$rUE+4^(%aCHhrXb6ELvrON?H+ghv+>eKo!=Qdz z|MonUj@Da$zpwRN;i@TyQT~KaGS|f`3c@YVU?7Jm^^?z_DXia7ac>hfEsvC~g%!SlB7_U~N|RyKhM10k@=6mTlT z?+pQ+tLv32`WL3rDrozF44%&%s~$$~F9$U>)JER;`o{A5qL+o^`&pK(i;d?*ps*co=swN0Q7`B?SENVy2Ijd0lO!g5Z%H;(Sk?wc2qyxSjr zTosZhzA{CXI$Bn9rykV&ZC<{prB*#%h06C%b&xBXGEILHH7jW*8;&NVCOl$q<7@z7B!=Ut)MUNH3h)b(zy_HVh7wdX8t+sOklF z7%YcT+jLJ(fEEfwV6tl#6ZZOs4fBy3+&{rNpeJAjnVGg6vE%!hLYBknS@OZ;wnHAr zHr^-yy~*Zc8tLQe*xnUxid%3d$%G~=9xQC%bu=-s9ET)jNfrqJ%vO%q>+#Xly>@RU zCE#621bccfl;c0_nbh%Z|_&91-`vD9~n%v6>8uD2bWra=<$Y%qjs zvuoa>RQ=jb35V27Mh{Y5rGZyZ36%*z4NtwU)%TUdB*#VbZPbZ&r zQc7%ebKMbt`Zgk|f%SZD4Py{J5Q~VDFcp}q_FJiPftDR+yCF8b4RhcB%GDzvtAivT zPF%NJ-Z&8%FaFT$%NBo7IP#ABz_~lic>$B6f{sflMqnTjln&G=E7VVkEYyn&>$X@k z9woxvcm(br@~8~ST}Hz1;sVo){ACzo59n1c?Ybznc^lq`(IzWDf5H$)#w|$&19YKe z#3a3J{oYoH2Kv_s`PeMqK?7rh^^Dq)MX&%*`e=Hept(#M&||dZhJAImn=k8>R5U!E zbQIba?CK)yg$*z%|gej zDU;Gx?$w%o$$1x!i*-tCM>Nh_h-c6|LCzuli$Ly+AQINXSh~Hdh{Pu zxr;A3o3>pKmmxWj2JrQvW$h@n0&5$^CcO?g&aWPg{+%)`MsncpDa98#)|)tqMoE!$ zlKbP?=s!MJ>jxl4HYt8>=#IgT#4vAPg0n8#QbeJoa}19s0Il6I6R1XOqmb@Y5kqeO z!TGf%E?3ra;8UseNXH`AoV^NX=X7gHwQ>oSFx%Q4*QCMNDBOm<|5~+bgjLMIyucy3 zt#wsMYgVky>8%~zDp4mD{G-Q3SI@jETfuorNEW989bRalGS(d!IRzH@WNrEHxM14? z&L?nX*8$b=Y;i(Uc&0bv=xX@=df{-*1){vHq5t^!>LuZ1g0xk>()24}JzOX?NkDwL znN9ce%|F5&&R$3#(7xcl#;`iAZsQ>U4h4%40$>bRt60{58u@9HZ`slbwXaucV8J*b zY;K3`#_QBQ@zxdV$Ptv-s;|IdAUpFJmi6-XNu`>&{ke89SoMK*yj;a(j7m#re74v8 zDsX#Xo3xOdApT~=;k!m`!4O6mnZl67N7-xUR=9HbZWO>XVj#hm- z2NpnZq~%$-r2)tz?YdgIlw=lz(AB;E8DUxz&vxM5z_xY@bZFd)191Gk+LV4K}=VKKd{_^8q?(VHZS~P*tR=Y z2X*vFqUn3PTmY4tM8M-Qm!rtzA!W^U?s9-JYSI+}i-my**Wg5W;Y;EnSz%mb`A3qT z8VoF2O}*qUVq!4hpktm`4xejNTE9>FQ6!eZ-jy9DPO#@};kt}?Nbj9-==D?({`s#9 z{<{!p4{X2%TUP{65#3T1EBsU<@ zYpUG5;#agDTpPIkS7Rdw%m0urySfzrIjv4gO zIiocNA}a>&wrl5TW6?-!iAD_$Vd1(e66o;OF3)?cQ>%_(0<>0kWqzgh7vkX3NH4Limc1B1DuuUHchqrd_Yv}aztn1Avrlna!W2?t5YR-en(eMV>_}D} zugzRq7Oo^UA@VF6Mw1+}ECZBaz#>C~T3o$f_%Cwr(`@*TS2!M9O~ykU{Drphru|yJ zeVUMg0>ibhJMwM26G>4@w!x%dCKV9o9&+TxVgZmx_)h`(^~@O~Qe33GLBT57g#8)h z*+m#wj|Zq8SNo~q0Ea9ug=JU2K6r){fSm&YvOymA+3Sdx(WV5Ve` z0-$>p>0r02T*zQ8BFevO9mJ5nE~}{Un(PY#uGIL)58F$N^>YMhmWjaKb@H>flmA(k zJzUp|KQEy&-bv7bkmNkZQJMuDbT(lj6j~ z5fju)x)5@XwoaR;1Ajoe|A5}#0@serdR38p9zS$49()n9YnlyncKhy z1FEc}xI`(=I{^zhM6V3922+CATI$U@hfT(sHUr&#!KHK=3vj3uy)$$Pv?G_uH2SPd z5bQaR1NZdpc~@`kqQMq5mtRnwZ^Z%y)J|gc$vH@FUh2$?Yn*ULyy-&gzH%)6msuu( zoZ8F_Xga8L3viRi{F&q9N9vgTDH=aOIU5BKxYU4+Af4*+Qa!E@aHw9p4_8ZvBQ2q3 zR+pbE0ZQsw;m9#tYW_FIHb}sA(JCs~A}fxwo@YU3C5Z~>cj2!vTT2~tI4PnYDxRDk ztinlBZU!8E=QdxEm(oZi+6r%LjiW}R%yXLRFfS-7?E5+op{zM^`&#$FyJL@0fOI}a z+E^d$q48bLJOVWCb2Rl&+RPLUOh;J4y{0wCdXq-l)p1JH6m!rC^`BRI?h{|kwa977 zM*J}z4cdN&yB%jMvTvxWIJoTQp2&FBCt%O8Tp^$xpWD4AkjX?fjQU|Ez)m8aQG>0u z)FuhyUe+l4ng$Oi5m5X^(yJc72~TLRyJ&^&J@4O7h50Gs8>$}saQSe19JX=xL#2kj zBF;!o!a%xl9FN=_?4{q_M`Mm(CP5Wt$ASgK!slzf!neK0L~8;)W)r@<_&39%Uez-rt08Uo8z@WwYMBa+Tuu^ICB1ZKcAX-|3 zAhp)~Dr$35d7^ zljG;<2$nb1mmlR@y*dtE%c~!y#?}r@x84!XN-LPCd4IAK=4Qo?#ioZ9r}a_4{O5ugp1hUe5Ob&$!-vQEM#R&xU6d6enRgq`$5@;D{XPW%%9Bj;Pwnat7gg|J!_^H`TYZn`+TPaPolNpnk z_lD;_Y_u)O5tD7Y8G_0?4I4D1T_)#Q*o3wD^T)1yIT;Y`F=2+1Nc5QhYIQ7p4)IrO z5%5!fYGA2s%SysZ#cz4F={k1CVItWd&+?ke#h6bRYYXJvPpxWp%wurIvb2Aasfc6duO5P>qEu z1>*5g!9{n-s!)&v#gi$%L}mk_zBOWqj*SX67E*Ow#;IX+y6y=Nh)a5YJl+p{+F^*aIvKtR#-xk^_MIc+o7Bq6#vE$Z_QNbDLjMaUZ32QlU`OnV^+`j`*!kB!*raH zBT5HuSDz||QA)Je5Mh73ee5LA_kw{!Mu>C0@vc>bVcIYDh-&_Fyv23s0 z7i*S(mwCTlJ|);&F+$DEtOc%o?JNTAT+DSoXQb8XaB4PFDEW5`=s7r)Gq?<{OId;B zqLZK{avd3=-tD{JMsX}mYE%aj2p1$2jS@Mi^I8O)VyjgbABum;qu7P@BKY|q3RG-+ zU(+7?1S%DQve_OUOy5#U^j-iwINL(|3HN%{qFAz;Sd#Nu){4#UdyqULNuKo+^+11Q zCVd*4dwUw79+YlG?5r)SbbC2!rW)v<$66{w&p_aGG7|`rWxTjtle1FtvWnBhbnL#} z9On$@jQ+dGVKMbyv-GPaw|NmkZb=P;&S;Vc6bDq0`}@$A%L5|8+Pi>-SSlgNP3HS? zzi@~*eZjZfbb$#dLYdO^BL$1a}2j7|imyf;Q=K!kdjTT|g+pRM>sWlk2$ETkFU_51Ci>m49R+_DRKh0iF3RtA{Ij)_?srv3jgvc~ z5CkbP2KlEQU-_Ab6Epzyxm6iNx2}Sx<}gd$0I~fCfklO)w(y(RR~?y}96}4L0rmLv zm$@{xJe8R=?^}2*a+_JuKfozBFx1j~8XCbW7C-kfUfk&!mX{pEClmD7@8gywZ`T1c zf0h>?1f^B77;sC5JIAj>G;K;Z0!GT;zX3MRFJKnia%4%86G=^7RMyf*G~6R~_QM8e zB#n0QR?0ng5o1)6Yh8UE<{voZN*5pwg?H+u`nt4*R-P_8RsteKPzD2n3fKzZ?j??> z#v7=ae*y(Jc5saa)t9hUP!T^Hnsoh+@%-yda+WSSSuMetc8L3KsafTba!N>N!0UNC3kq`@O7EB;i~dVO zfY--4exso#J0qav%Ck5YZyAwX#oEj%gYNiOQLBm>kAyQ`ZZ&Yfj}M9W=X*p~tJ}l1 zn;9T*RXEpiVq=MNjxZLnG4qY~8&m13s+BVY#G5n_%`vH#Jg3*tlP2CDav^2-IQsN5 zi0k0-qM2NmoAjTLv|#T&a>FPMVQG$X?UYlfmB2E2LbeuNzFSDA+*^7keRxOiGJPU( z24iZEshAuMuSBy?X*rm!DQZjyk#m%A#70?ao?LlDpL~NifJ$?9TKIjEYzLG z&I5h`md5`JiYqQ96AG($o+|$&Od7%_rl!sXq&tPM_`ZI>SWn*!O9M=3Dx;7?)P8X> z8K;n#nfXt%vUgFog$G+bpo?rW@vI1bT78|w0+l8d-+;%LnVO`>cOw| z<47ft)+t@ky|``!di+mc-q-amNfnqW_b;XWzbwdITt3}K?hIq~f?F)SK046+WY6P_ z*gU_a1glJ@L#4@qTr#Lpxq3{5dT)QxF>2^V`3OR++#s3??SC6 zZcb5$Vz76b004^r7s2pQE&cnP;9DR~6~2$r@`Fd0U(OxUvB??K;lDFX^u%yKX{KbB z;`9I9nOcAoUKZ`D0zp~C)Y)zcDq)S3LTE)T1WWGj^17RzI;0mrpdub08M+^GUKyiu zw4rUdyWA3H(z4Dlk(fE+E$6N6!?XIyKyd%HZ&G3LHw!~pW!6%hk!Rt=1$eGAp|9q; zSkkVX(M_j#I3I?xcAGvvtQXNLLyM9{%+VX+K;=qY2u!irwURa@2$4WR5L`bGY)`?y@#9?hLoAHjb7g?Ft|MLRs^6^|twXsdeX%%~n9waXVR9@F*hd$F{BPidzhLd*p-hMG$ zHKLz-XgZ5}N$csoCCG_r5H)m4>5$=lWqS&d#D^Y*!Oz`iAV8TVukb-ES~^`v&M&QK zUeXUZl=eg5Zn4_z@KpIKT=7j?MOh%~koGun5KBu-j$+`}JH~>U=y;wI%Twz)$qc*6 zwc-@<6R2S^t51f*ne?lwL8qH{>s&%LMUyaZ!oHs8eDBD{JY7C#ntDsZoAX1H;(yhB0;(S0 zn@d3Ml_=B~pn4)n+6^a$6$eMECOyI77!5`%y96@p;&#!U$F1*(lu{;~G3#8kKrU@l zT>(|ZHLHB6GeJE2?@W#OU#AB1BCJin9_ zEHNNOIIA^3;rp9TLwlD#TV;KJGMnfv6y*AK;V0@8h%GFmRgH=i0}U3AMcin}(a&xd zxi%}WB>BtU;M*{apFvI$Oaq?&Gq_^~%9vt>R|%voflVs>VamBi z9=0T~^YkXsjjx&5Nm@BNM6oA$ONEn6_*hUywPvN!h+w`O>mIvF^j_R$Vi?x4paA=dr9i?TA|vTe zHOvC@-b^kS(#Pk_na?{nr2%)aC>!2Io$h0$JJ7vgH`$MvFI)5FSQZ^67%((Qh+0~Tbk93?QCfY((g$|7vrm{#DW&p?qquEQF+98 zOU)JWs__5mFGZh#P=S5(lp|?dzsi$h`@OpeV+SLn=gz}d zneG!N-j>YAW^1xg)n|@fZ$z=)|5a9me=!y(N?w%^=Zgk6f=0@ZJMggRako6(*Tgk=i)AJ>k@P}S&5%AB{9{>PtNXJb z<_%c=zA5rxc7idik+8I%gK4}Zv{N_W;3r^QptgSH^C&5)+1h64O*>tkyR)W{^fFUM z0+taTHQGB{V@wOKS@#prqyY6xl7e_Ezibz6){l(L$A|)S6dnuKMzj(#SPpZ5=-)J5 z)Y7wedGR9}aqQ~j--gAZ-32p+wb)Lb$(kNFf7*6t_pc8LSvi=5)Adl~!3SR;mr6zg zyAYkEK{OG6&fM#Mh7%1tDfJ{f`^bux4jAH-5Xo^IT)py zYf59gL%U~WRm~PyV^R$vK{}&Fa$-cW;G}X(fWVh=?JtrpoHdwfPlVF4A%6CSNMpV! zkcOOcp6JR)!p+{d1U5TqZG!+E z=GT);Ev&E@(>P^g7mP&&k%O2R~0tWk_tAxbBgSABnQEHbyg;f^44Dscq?Ck#x zgRkGDe318)VH(O#RovmW^S&aV3FZy>+l!MKD?z1%7poV*9y<4i?dK@v-Y*4Wz-L=G z4h2XxW6b2uXG3HoaoDL|*f_q4CXARwW0xO6!dJ6+!zZ9Z+z>r*+I#rcu@kI~)S5ND zwwn8w)2`zPJvhNlgi;NaD4ec{B=elXZd$jA7}5?m}p)10q35Q<2eu zKq1?r?N)w|FYycuLj0Wh0h(hQQ1D(`Ehc5o?1p{a_GS)WT5A;z~dem!RV-^@7*k2N=-iCQl?pZ*@V1}8Pt@V`ht z2Y!Bk%P(%hAUeTcXjPC;>W^G7ZfTyWo&R^6{r=Rn1qpmk>}yqKSc>R8HNKJict|o!iy`R znC>>ubZVd7x%$a7Ga)|nc(g?TvQ-*Rtj~>w++wvaTJLSuvqo1l*-La%=vs;h@b@=+ z=>wihU%$MT*4r#LNEYaZfh)4luzbt5{pDz0U|Q+d(|db+BpUL42{;%6zVe<SG{6rN-wiy)HYq!dw6Y^_C#PWNH*e^qcZ<8@Lq#dARDIf!i2+UV8f zb*7hJxgx!JeH^1JKrwGO(!6{%KWzzM5gyX$jFjHoeC|K(%=bNk07MUphOP?p6bwS) zCm0x@@}rVwN&;*9!8Yw7$g_}l#(54gf0^fcb)>;lx9aUbD1SE#Ka6&MTqWJbYC9~Y zmbEw79pzU8Yuqsr@HYM}C57UZ}&o*4N#5HH({QkLRQXZbdABoYB zVHY`-tp$`mJJa6iu@^U}r3P_q*j4pp3vex}6ytsrP`j943OIt8>zC@QYNp!{ZJ%|$ zepkC=z8Sopa!m6=L7I@r-pA$E=j#6_j2rh%2w><>K$5-fTDHG_v^oz?K@zy{lm>em zxvskbr*Rv8HMdCQ*awVbEv#0B|1+?^n@UIFN(tOca!xw+vQ|Fhc+WcHH`Lo|up$j@ zY}PW+lY}Ib<{3D)Xc-TUuzm>@d1aX_%nJHd!CIL?8r`d9%Cl5%dgjCF2- zBx>7}s5o#mu6^%|jRBjL)n}W(o=qkMOp*Ipb|iOQuul?stGzH0_{=rm&y-vbGq1yX z+ZaH&2HF>Fkf2yG`h>k4XohP=rT4TrWbkXAcHP5gb6tz)p?_^W*&IH>{rZ($7=W59 z1gFc{k0scT31l(8t7n)u8H)LLli<*1e~bH~@1y^X)a^+#gfub+&leS&(&KEt$e^Y1rF*eYq>dA7Ev7}lx86UZ@Rc3pu>~}ZUzjjg<5i;(O=n>^2i)9KP z9S|Xsuj_k7sCYG+c8{Yr8J{Kc#@>O2rm5pe@9aIMYu*pfJN>maw0P$CJB*`M?;jN& z7k1GdXsDw-TZq?1xkw8%b?9$fWL~LEWlr<^bk+<(RHtyaZLRVGN zT&RHmqKlKbFCy&Yk*1MP{N~9mT}ynMY!kZEeY zgQam??m(W5JY;cIUPe+94y;wZ{gZc~660DaLr{j%SSvS)VS>iN@BFv25bMY3r?$=9 zLuaPitl4j}e9!Q8?SH>|F@kI|?Q`9h$B`R7v~ni)GwomEOg2tK0D&7HD>r?di@~R5 zMJ+eNKS|(!ajQ==)mS+Tw&gds+|*iZ1_eB#wS1a}}ocKWmXGSGmFbV297}G;_F6fOPuO+b5l+~HfN zoMv~!>CvGO>e;f(R&?IEgA4TQ4L$(Xb@GDO8P>klGqn5h!SLcEj&g1;&+gmBVDFM& z{C;<`h{R4<1gTA(v**v`@tcvwE5*x-kF)2aNxFO)IWzTElBFw|HqVdSBCd+@CYBdB zFiT*qAO9eWX297;sjgXXC(%-CkEN%A)KuHR{!P#8WUZFZ9f>fe9*?*2d>40&Z0N9J zJ13l1)rd@V(_OUF@hVrX=X{+3tBp!Sn*jY8k@Up29p&QP&R#A*5-;1ekKc=d8x;f2 zfUTo(NEQah!p+ntcs}!k;>)B@*h(>O}(#Lh~@3%Im zV^x8G7fC2wGa#GU3ht5KEF0OQS(@(S`W!aGnPRR3(4%v`XTyhU{vH&qwPUv)&~|lG zRS9(wY@B}DjcJjxEFxWIM~m;qdTRht@20L0VNL4C*~)^N>WaQ_s=Su#1~*O7 zhj_&~Nz`qGuwJuUcgT0Anv$=-AJ@Z@hNZt`Laz4FHtmwH3Xkhw4?^L+fS1?YeMy#*Zjb%0`&NMlp(sfdEh;=&yScnJO{bi}W`n zgXA96Wc~#t#BoKDfk%>;Sh`9SF_GX~T&GYBiU4O~s1eL~3?gYBF`jrwSg!b8L>`J% z3}|#?dhEh-)Dj$MATF6Qy|-%dbRb5)T0SS4a*zr+#o|JdLi$2>iVLGgv~+aT?hY3hNQFGJ_{sPVXwj$uCQQWTH^ z6`6u~TD8j~zt7lO^vPxiPwe0qBy3q&%8iCaXR)1CgJqk*USEOuxR0Xy&YvqWC>|&) zI=-*rMEi(%{kd|H>38cWXTVfTG}aRzPo#7|PHut|j#%a)l0M^_n!@ai+l~B(L?n%f zIdX!notAb92Q5Aq%t|%mA|6B@l#7BW4kdavLWGQ12#tGBha2pzs+QxNYAGgJ zAo|I&z2y&j^3@iS!?y}9a)gu>8cgawBB|@0NZ%Ncaah09AWP(pObR`&oT+60;=m^? zw^O*D63ojZO9~tO%Y1r-@1JmNK2?t3e5%%GW*Js)xM^Z}!}cDgE7xUyR|?srXZk+V zfCL2u=YodVDAkh1xPrxL5rRYk`0wg{dBPvT*&gTTVR_viySt|W>zArkR&&uRDVdf3 z<={l=p!%^oFhgyG0T>9X&cp~|9aIHog=#6fSJ~tJ*jNJmH*q5SAH`n_S^LOXC|!|C zR#d;L(=C#}Qq9-X()sd(F&R7pXViCOWb~Yq_D7d_mLzbkD7oTMo0iYG?AvmhR@=6@ zRvn25%@4y@?FP=*SmUuHPF5w?K@j~G0eg{G>`)hRSDE}n=pYyI{)~d&W%BLG_TJ@! z-VE{v2?Au;DRiWuKu2aWSZG%njB*hes32(Q62z6PSzJ_ugd!m2z1%BlxqvliK_SkL zj-IF_(i6p?N=m`a_res1LV{J5cB+5fYHL?wM#Yd#;Z5VvI9tt^H9ES&Y6xG@1|f~svgUjb7kMK`^KT4=csTPE_R zJQJs+nG|rhX`j2I70_h&@9PJ<=gCA59oDd()BQEebPmdqReNNU%;>Ew#`22Fs}n5j zR;1Wz)V{9FIUG^0(TcMDx1@Y9VP)w~36=i%mLG9*NU@oW9Y`cUKVQr-M}=Nl8CjG) zXHe`o{6|(H;*a?)qY?`RW>h8wI7Dr?@m2XG(G9!;L1j@}OjSfEa>&&AeDPq@izxR^ zNc&}%uZKfhL_mj#2XP#Ra)^tE{I6x(3wpI@1#m3MEa9QIc#J6_nzm=zcIi1p_J>nV zP6H9kQ$*$r^{bF~euuVmfvodiMn8?*6GB897__{&h|P?eOVY|o}un8nvim**-AZ1Ba)eZP{SuH&0JUrWCyE`?~a!rSAu zgKH`U)-6MWRyQ#w3Ojv*^^KClI4~jq#yR1iO1p#@sl@fCGRquC(JTSu3|P{OdKU_v z1!ITYvz+3&Mhx$HWznA{{lBY6k(E;$QHLYO!T|ul)PEWQNk=^3v~w~R3FQv2T{;V075B6 zb!1giLU*ZNVleu{h;g@(Rk?bhMDuafFhoS*$QvaVibX~pHLB#*TvT-6cCmN0DlQn` zitRQbTF_Bl=BHu!?#cc&u|r-(@4{!@Y)L8(U2Tw>0c0f=C2GYCgO%lA zV3GeTfV{{7yE6$~)u8~ue=8oO#KXbal*P`>)XIp(%Ff8bjE95S(cU6TSy37d`SX99 zp~=cfr~m*^kbOcqAVNb*T9aj6ARq9?a?%ojkN=kZuCioE36i6XHslxd!T(mMR0j0_ z&%EH7eWvH-i=)0E*xDfuU4AS9TR6;#1&aw~q=w2ICx*yudx4AvlBxil2mgpjp#abqOJPzz^HaaJTLtt2dn(dkBKwWC8u z;N6WSYx=7-OczkPNIfoWZ+5~iGXofp`!~~ zaj5fIal&xJaKVAvuSSwKqDFAmA%%e}>KdIzM|AMZfIvFiyZq<@05p`j2sq1B&$A|D zbQ@iE&Y6NVrandzb8L21^6F;LmX$rCVk#}@hxoSfh^256apA9f<6PQwl5au5Okd&X z?^*vaSj%(j0^qSRc|t2AMJRB|DBeU>=aCF)NWKw9AqG-aP*cl7lVL`Ev~*C(l6|Kl zQ~@qQ%SvDb07O)%m5Exlr~oU3>V0R2*#alwME)BMO0FWOMp_Bt8Nua#t9v04l@|nQ zAITOG4e>_R{Rj$MqZv6JdGot7O2S%*67|rqKcQi@0KpWJMXp?HgvdeUbb-*Y0C+e6 zJTz3Z;KaMr>Yhm1?Xc3-rq@W#dpy2&>RV6q`uh`8!0X~m75B)mr4?aVt--Beswk0q z8RKkmZ>$^7h#AfD(Qkzh{~|Wah#vw&)n+sIx7f5WYP=^u3!hL_zzz+=z{BE-fpOln ziV-CAB*AyCacH>a<}p$!GX!$V_&C%UW9^0-oO2qyEHYW-Z)p3{bJ7ugAdwlC7hFjs zAXFF(l%&xE!eB;*sP#RtBQ_I9XCkT(nS87vozmJnr;NfRt0BgTqLO!kP)M+_(9y#Q%BOG!UX$Kw0ELV>m6o*JDICBH z3{<3Mm}jc;l{aQ2uc>b^6{Y=KrZqfcV8RkIY$P=x5J%hwof1?(oD>TH_8KY&7W{d} z2@6=?7o1@>)8EeWcy~`yUw-(TB29Byn-nNgEr%NHxhx}*1REnEVcH;r7d%9PDU+1n zz1<%=moKql*5@NthG0T-8Zc1x*;4XlIzQg}cS9}>4mXS*eYJ>%mXyf8+CnP-!itdw zPG9AuAuyQZD~T$lsA!5cwIq~_2xkebRuFU`t~qu26TA{et>g&|*89(y0EXxtO`d$< zd*IF^g715vaQ?s7XdXmhG(`vPN>m@oiZJoHzF6$w^O1@|Wbs70by3hPrPAjWcGYGb zaXvnFWnX>AsYNuSEhX_ub%FFt&MNP&1lkfY=H(^e{(>D+Ni}ek+q~GwqW@rz4u4qFDx-Bx^zP26cLeYIGj9TN|^G*f3zvHqDpq8_D{d}+gkn*yGX02FQ7%U zaF_aLw4P~ug-=vDEVefkT#HaaZ*b&Smq+!lf96PKJ{Q#`Cf{Aw5E@!6HN;ai@*txZ z(bC1VKrdM4uW%o-tVA^st5@vJl!ii5g(|pTLL$jfOvO!#Cb9<$r~aQT7C2BV8#?-X z7NM@XUgyVFB8DPrksOmasT7i~o}Q}eDZk@U{WCjx$H`5ML&tST{dU*(0mK+Q5{XKa zvRE$CVb=2$U{&XLqhB8uCMMQrTAZYCWWG6vewV)ih|NJ zX3D!TYG`UXbWQ&GR&^cU#rkkujN%O3{5T|3|6=3#jn}x5*@{pMOB@OSt{6aM`H)^} zc^7fB%kLO=Xwj<1>yb#JdMfAI!bYQ44*q0SEmv?Do)QK8T!|IV5a~9f%6QJchbrpF z@_M&IB`3^c!zW#DXxejC*84c-rFcx)|{!SY5B~`1`OdFiulJdDq)FsE<&l$dGtSYZ@App)>WAgPNbkw-`w@ugC{p}{N4v;_5vUq>Xq}N6a_%~;B z`%--5IyTvxneeXPO@bfy>ohhw`JvXObI}iB_*gT(^XkqWfbOl~_v`+yiiLk-{FlR< zMV{Xa35Pd&XW4}8i`?dW%nERypwA^(S{uMCRg`MO>pxI2O19^56kOMu|+E{nSpB)Ge~yE_C8 z?z*_U1owCI``1(Ne(0*1-P!5szSZ~4Ik)fCu}rl(HL0uv)`GI{HrgD9nR{uG^V`w8UMTCHbT*4po@Gt`7_>g?f@eJ#9LSC1h|^VXL_u8Vsr{| z;1^M>@4|sr`OK&AM7sc~0&$BC5$T_)B@t!pDjQUWIWwQD>ey#7i-;60Gj}AQw z%7XQcF0VOx!JB!uNys1fcjaAP50K0CE*(@fE*otP?M@{=8C;qGL<7n}5h=1}jLJ`R zB=E#o%>D^>txwtN@0Uyf0Ux(*4a8iW)ARz>*#?Y$Q1JZ$BuC_1+aTISKqN`T{p9G;7Z#9@u*A3EHmjI#v3H>D6ca0iQqE%>BN}|; zlfBYa!Kep50J!pURLQNNAcN5l6yS@(g18$B&-qe|pWE0)n%x`U(*ZX3Deuyzy!-(` z`!!vbI=418Ra*){Oe-_YNC$5h3iPK9cnhhOwpF8{ML;$icmiWR{)wDa!roNMc0FI| z2L=LzsygB}I6j>L)(T#l5C+&c$Fqp%;E+u&$s->fo#@B3X{CKN3g(;Yt_{|y z8WAHzX=x7FWUR@^vx8CxLqV0M%ZnyqU{9voJa;Eyf0X0eG zRi#gDC%tOUN?Dxc!%;#QNApgZ>V}tb{hwa#1|c6NyHeJj?bNn9uq#^BUS|(ZX4VCC zZb_YiXi4^Yo!sK%!MNDmjv7+E z7Dt%IM^0~vORaZ@@s!=<>5UZ1SFRvwWDzATS68ndBT^b9m`nYS-{J6=@@|>py_X+P zUsL@sru0DxQ^TaefG-VAsN-&)jRXLLr7-)x77QB*$!Yz#gHKUOJCjT56> zwCx>^LqsQl(1d?7yHs!)?Yrfql<3?0z7P^Kee>S-@7MRaX6RqMTvY_R`E`|*ujjc` zpymkfaCH;+yc_O5wY7jys$MsCK`*B@=WJ61R~d-#6w>j2n_P5)nuwVWGo`<&p#Vx9 zQ5{$S`C|uO?@ZpUq@DZAPGK>eFnTc@L}`pTtVVL{7Po<2eBDD9N3nI(R`*!sedDi+ ziq1XDMNw>)Gd6!dF@y_*TTCn!%nrr}A%9x+PYBLxxVQ-tLCUE{us=esq_&cTIgf`Q z7;4WmRh3g7c%VTL{qY61Cb`eQ_A8`VVQIG}P9#Hq03HIm23c4rg}u<-W9UkoSfM`y z36(gR5>_(BCoG(njKZT7q1iqIxLn;1SMkqZ$Z+yx(#i2o-YQ&|h~ehv=lO0@1dmj$ ztgHZ1CW>;2`T2unl$7u_iB?!7I7DB4>^F|5z2+}3s>{kWuTD<08X92r)0EF1{CX^W zr^vrG)j`*Js>jyevr<^Q+sCPP(AZpE6YcAP@KQIX2^EX9OG z_BdI}Pdc^meN4ag3-v~jOLT<>u&KYlf6v{^1~G|FMkXb^xEjb2uDr=TC8b2m_GP11 zcb>UiJpcJ73xYztIBo(!<-9-cv*C4`&Qy23*{C08zMg=S^r78BZ>_)MPzk2U2gMNe zT$7V3_&uQr^Glc9;&W|0{L$qydL?knjxYR*8x(JDM-LI(v-LElq>GsxO{8bta}lkq z4CbsO+^ResJV%lxXWt)&Zoa)UpC0tc<2Rj`f1^ec@R*UzfHC*`JHnMkwf@q9s_$rf z;>&_AB{EWe$<*;KpE%*w-ulV}&X^zJXg}wLNa*ywmKQa3iJJ!lw$wsA(Y*o6Iw_1? zH0gBc5%&a%wPu^~ABS5fd+Z3e((M6RXi4n($G(O|1!eJyt7HtL6p;mY2&4_WAxBBu zl;X?Cl7*)$aA|bbVV=7)Az!WhL=fsZXJ>Lz8_g`KSQuuAl{wub~r*48J)7gy! z$;$XuYKTR}lriYy#UQpRapPwDM#!Bd;OP;pdFe4J!o-ANgC2C_d)KJSsA!5?~QoRRo>D$QAMRXPE>H}}Cq!=`xo<|b)*l<01buy~M$ zvNFRbmX~I<1aZ<{GH50t$+G(eo(~v%Ik~6BdgK`IPK;g-V3mav0sx)_8pA*_6gy0H z9aYKk8?PgcJ1P8PEN!eS*V(Q1gU|Evq?Ywzf)|5c!6Otu7L5N~uoZO(0$}$rzs=5j z(|4~Pmu=P4zoMplAY0Al&9Z_HpyTvz0dp@cE9iGe;t%T3(QB71|LWlj5$mDeGP=-l ziGL{t!RU8!;#Pr@;&WwqxhVj2A7f*CO;R;@v_f^n)n*Nx*>0cmTm3upF>>kYyF}=2 zFyh5^2l&wx#d4Iy)6+8f0b1a&R!?sNV>95$o z-}iBu)x5kxt#`i+>$kY!wH)2KT938ds=&}i-d*-MFPmlDUz}6Z3bKXpJ>9brD!U(! zu0(M7-M?RMxEtPNO)(^Cr(J?H*Y%^mNhw?C(EQEw7Q*(}DPLj(Vxro6Nd)Rw>g_?< z?|&ZgHDd|nR^i<2Dhp)0v_YvoK{i@9gkIn;oTw80qH#BwB1&X2tKzgCyal+zVWyLL_+dCbcT{6zH%TY}_Yow#gJ>P~{aFVW}j1yhgUwV4=;3CZ2jRtw1J5OIbHVqnBaOF zYEg9B?RKbTLc5O7-CA%ClD9#stCRf+PXR-YPoaHG)@Icg_st;rablmkt8!V1mN*pe z-EU+8zv&_Suwn3kynAbcW^;lY>&z@YHMOX&lWo`I*44f>Fh~NMKVdZjt z36;IXelmlSg0(+3j;@)Sv12EJ*|?wmUem&+`rqO%4)sj|-^~s$K}8M4>FdHo|K>+( zz&7geyQ=Ahtb8_#0hwH;x{~cQ4kBthjRt_3OxXt+Rxa7?DpO&?C7h!sPP{1xs{I ze)*D!pDIYay-%Y5f~%XE-r5dBTJw@PM+b6lA_0XTvQMYj=G7z1T@g4WQ*jrh9K~C! z(lnOi2IezUv86FET?~Uig{Eo7Q%HBo!Xe0F(2gtpl@=cyo4gb}IwX8i`I($6huBoc zUDg0KTUrBlyR;*;z|}^}&F(G%NC}yR4{XC5tw?N2VjF89sCvDOkWz^rUz|$XgtS?M zB!J;ZWE5To##LbDcZgufNQz=We~D0?1}NM0Sz)99b4gD3Fs}EtM&-E;>YCr>5&_*U zVp8(Y#0tCSP5a%Ee%tbU?OFMYwqa|~<8I8M`OY4Nskuu%MVuLKZenBQxN`h_N)RPw zgT5;PyiJn}_nS(gNoKZ#(vt1x(-bBh^>$C6*_G(AmtDUP%^tJ6XAU4^>-z~}3;oL_ zDy&^+wQlf!yewnKf>zu3`TJiub5m!5u+K7}hDx2f{L3Gy7{-&4bAXQr70A}{XFlI3o1`z}k`T1H^yM@qLUb#!Rp`rbHyn1eQ8(VL&eb=@ ziPUfT=z239wH9ed7Uw(TdiMtzw8dy%15S3aO;MyudYDMZRE#e7iJfn_?miX-m{oBGhfvO+ag1}VY8+k z8#2E!zd4t^8Wc#;*y4m=xr@hTu1HOTs|+TMQq6F^0#Ah}PrfLMxt;iqt4Isl)6)2R z7I)RVQjxNPTno(t$d^$e&Z_kQ@CsXYPvZUShZkBC?AEv5e@*CWU@8BfZYUiue`{2t z+l%T)7i|!y(n6k3{3Xc~O8f`75&7~mZ~Ta=RAq5OVuc!ix%JK<_(foE-RY{=*DrUL zc==HI{wZnQcjNqUUEu7mVTr=(c0rav`PB@{`Nz4y>Tv;~*3P8X+3huBPW@cTS+%O` z3#8ZEXf)I>6lv-CqRsa})e~mo715CrGvLPK`3Hk;fhLqgbJSRuGq`z>1zJH7`w^51 z>?mXTUOg*M+FWY)e3(>#*)EOvN~_+sK{Ck6{u+lrwZBY)bdWDo5|UN;xhD+|r`v5h zwE%eGuD=@r1QR}$&{V7i&r3U-(K+;1djjpZ#bc8Q7RoA=8r*pK1y#$6m)LI_x^KYL zKF6an4pLEGbDI9&SfoXZ$vAf-Nq5ju!kjvvwLJ27Qn1RXlof?B6xnc-@Y8kQ4t)=y z5+}&MVu`4Kr(BH314c$Nc-PsE9q79z__|#_2~&>tFzFUpHHul%O4$+EsGJtIoB5i% zWKcv58s$+$n8Z<3h}TQSQgGx>Ns%djLMW2Iu6SO`kLr%_GGFP_H`1c>E8>FwFWu3b}S%bY!%s@QQl zr~l^Dz?<`B*6o}Ey#N*fCg;_`bnw;7pY(d}kP7g;tQyYD&kr;nf7L@(qX{3%SNRC>ONsQk{!h=B&G=qA= zqePE_<`MErURah46>@M1sOJSOq7L5JD$bEgV?e~?=s>s#H$1CviUm@@eKd)Q87Ruy zprY4P{#vBZ)ufY-D1{I{v@JbQndmKZ)!d~x7dq{hSNq-bECdZp9hoDZp@`9xgK_U| zw@`x^0byEQDPr2Rfv8HvvfeBeFRqkos7RArE3QNjAw3Jj;%+_Yn`3QaF2#E{S{>QH za8fNEE=;UEqPUAKp7F^-D_z2VwOPo(qT{4Aak$d1f*dJvyppK_-ZmxA!h0MhNf}oY zbSt?#x}{uf5YV0cP10+GVex=wq7vj)4mmR>2RMP#|#eMEz?DbvvaxWBAESYwGjNdR?5Gc zcOdJ+K@nylv%R{AK^cbq3HOHiH(A&Q4GG4eMyArE3#GJSbE!4eZv}kMw_;^e64d z)8eK_ZD*6Ll%C!AUhbhAN)zz8l7`}S9U@rlDseEslnE1fQxyA+QzwJPKFaqkH{q9_ z$kMt>+42wN85P#7PfgP7qGvk=Ww|G|Lggjm_W3gDfLk9%4VzH2AJ^V>PdH;YWJDD_hKhuKSVWdkVtZw>CRB?{jqxlw@_;Z(XL=2eZeZ8+CVko z`1s6`XfA|8xf~{ba5Emm*G-m`)vh2D^!UG?Q ztI^{b3C+H6Igkr z2avieUeO~W%g#hD{A9;I7eb>JU0)Ev)!Rl(b9q-2A%fB9Mr!!K%nMxvtD!KPeqWNu zDsRf4Wz^hU5I;>E;REsYX@?d8U>zHV4x;WiB^~{v;(1gb%)Ua0G8%MVCQd@02=Pv? z0IsIwBP%?5-|#`x^xAYk+(^H5I01)|a$YHec$SM7vc33Hm|$?E zjP4y4cH&8lOr?VN9=vV-hzBz)d7k_G?6cY;jnev7t>11K?<97dN(*0}n~&I(F^7g^ z!QGY2zVxD?mbaN$pNZ`-!qX$k(D# zu$)uIka<2PH1{bqXd!++Ij~r|$qr^X#w=}qFF>AC7}2ctnuQ%h2uQa^Sjb^w!Rl-z zzufeY`>=)1|2tO^(i}_&u3wpM=jWFed{GeVs798vZaxd)n#EGHwCaLk2en30VcY3g z$7vNsqwSX+@1hr&?doHN{8VgZUEJ&3j^Y%`bnh%k-x`isMKI7=(38xVnFl?eup*LGYMWP~fDGFT^#nGGp_qiWR@DsfAE} zi6-ywl4iqWQhop82i|S%kek6ud53E)5La642R@m~O`2zWMC*H`rj_gxas})z(*KU(0$2`oA_{_VrhuMK z;42*ZL_z5~lw$o$l%Kw5vm1gt1_8`-S>|&7p8nqvU^UzwKsxzlE9m~fJ^b>s54wQtSp*Z#K|k8Q;!* zXtAxoJt`Gzg-J7eepf{`KH#a|t3e%C>9(%!s#;S>3{iyAUIG5pxus28bTU82#MrCr zwFoxDQ5X~DnUfced=zu3WLKB1a%@_C^F>KPgV{qRFnh7e=@S3$rO5PmP>7n1fQovh z+l2nY)!&z%rzPss<}l-7qystG`gDanw?*}t+adr+tE{QTOokhLO=TsbYTzLLj2xTK8JZp2@lj5vj zx}f%ZfTT)cb{g3m(wP`-#=mOUmI%?H+nNSB<0U#%L5zpT zCyeH!Mtp+bK=LG!Ec+m#Dkz*2QY0pQ zC)yF+1zhTVq>_c%A`xF?Xq2GHX9_D{85|Bj6LmD7iNQq0?@sJEq&q|1@Vh1cuqs$K zj;*?|GCr-MxrQJm5T(R4gtj0eC!@5&1~W$+$=&wE!K&q#?7##^%NB3Gt@!?eVmhkm zy?xAv`35^FUHQi9AHA9~!X0Ov^+Uk)L;SY^XnsTV*DWDO*q5n}d%;Jg>p&*#o?Bnb z1ImIddFmVk8hShwp@MHvUuAFnGacm37#*Xbw%Bo4_ayR7SpCmnH(Yi z5b5P|aZhRvoPEwlHgIgqOWtsByaN0^aG&RlQ|{Bz)GBQ%Sj4bOry(DpW1#n! zpv>m+$j@KR6=qgcWG6$2`L`2oR^}l7OR2~ST9ZheG6ti>ZQj;jvaU!AYWJZ|9-?Rg z$b1F|jbC^>U&D&OBCkh&shGYWEJaXEOWV}b_%lA~z$2t*Y5GWcKR$w)GMk!6NSdwq z=VzZ1OMHTCYMY~c_E!zV-}Y}q%$XAy2PRU@I7U5w4J$^O^ zZ&R-?@8%nwA8A~~@4Gp7l#$c2sc>YJ#s(;A6MhZ@6dtMvQfA3c=g8$6Z~fM6Gl#{e z)Fu$MQ;%kzo-3n%HL7ei?I)f9Tx8gl3PReb0sJ?%A~0$n&~ zOxO#T0DviCLUMCRR6b`rHZ3zP+@Hh&EVd11k>Y|g(<~gwz2!N4ZLS?sBg9;N9DdSj zGDA56hZVTrPXrg6u8T8ca$w!D2;ZWIGRV-g;4cZpZd3#N3E(BwmZE#d zQP>T4yNR2J^k3 zP`A#FiF$fJr&&0&>c=w=z=uc2z>g{4O;G=w`b0^<(>6BHJZAKFjJ|Kz5MrV%9UG$tLca^!Z3({rwes2@% zWZHJ`5JS(R?){pcE+8?{8`_|u!-QwL>X0&uPalchiUuiE05aQ1Gunz4$ewN(RM5+E zJ9LrC^M|EbD0#o^A(Dt4vqq3(-I!kK-S{)BKJB3ns79D8w`x)D^Q-XQZ$ZCA(!ii*uZMGlz+8i-!kjj9Y8Dq|3D%GkbRn;8>>=>1hp z%9=$(R(jhihr>Jx*=XyTFyK(nBcLw-ZHV$AX6$!4cnl0XUT)%v2n5e^B*ZL54{Pw< zdiZD-oh%4$JHCaaFm%yI(VUMSE)vS0+YaBktsy0@FVaPYO2|1A3N+}`>y9RGpr@Dl z`i0sbeuvrc^Cbh1zPF^pHv}TdGvPYvk(TQ?T*S zy^DHRy;Kw$zBY+Dgg>y4RbY1lw|lJ>Rp|ceCkwh0na4)>c3{b=Tc;Yj|88J?{7SGb z;17|2%XdLQb2Ul{CX}Z+Kx*XZ+?n@jitGc# zI&5V30tDcmRNma|K?NXm0^Ra0i^COgKPHQqB|8Q%$v($B4(f6XX?;3p`zp(3&h+n! zry+5>uDPy2Y`~Y8u50g?sF&%7aTPDgF5wrXg8--fCXoN_1vKi~*JmEb&be&w01MkA zhKCZp>HcLuW4Fj7d@}Ij>|a$ecYG$0>!$H-C$h|+VHK`dVBpv$#~77Im!8FWJ8;(w zuVUV}4gDMx!kv}24ja_8i^oHBzZVJfx0FAn?e7HcJX~I;_d+EQt$tH>Y(wLAf9UoC zil|jA{_w4JDT1B=AldSzQY*=6UHqOm9W{H{o=uDp!H0ri!TNGz50oWwsPPPKc*t#t zR*yy97U(ngaGI_Ci0yxoR`R~jq!2~y*xlCO29J4Xbh>63m~y||XrkuCu{0r2XX7Yc zSTovTCam>QM|$sodHo4}{bBjLZ4PO-Y_fMPJ$>}-8diT$*secxf<&y3kz9^qQ4CLX z3q2L!Xwy)&Dp8H(=z{Zsi_0*7`%ikU&0NrdrPX*PrLhrRakH;+>MnYz2^l9`rLUT9 zi{eSnDSJQ7e@N9RnK08ZqKpdyqrqgd*Mk8#~-u2%Jv}cM6 zMUgyNJZV;rQ8j4IWZi1x7O&q{)jXRZ6HJJoDZOomw@74P62l-4~ zkZDhUKY95C^AG;*Bn~_s(8j`Fh${$ad*zDDZOG%jOAdt-GpR3xhgwr6VnX;+ufxpO zhA4MEue;oFu#s2sYjXxevtE&qHaRD}U0=S^88ZwaEEJ9cqFrKSntGQC16fS&*+%CM zbr+_}Gv5&gpxr|tgE)qwqEc}FV6>Z72kp4@Lqg}$HDy~U475JwFzR*b*HCQ(TK-w~ zvYFG}_+5Rc)2^G@YqvWSlBb2%1i!e9L&w2dN0QGLta^j&dY+G2KGTXAAmRBa=w0HA zdSVuG&725|vg#Rp# zOs-Q+vWdy@lZIdky`$g3bm`l$Num28iY$n;OlPtPeV1q=Lr_81u5pV>iySVulv4&0 zew2OY9o?L5nP}ak3WkHkgp&rUsi7IT! z%X-6R^`C6bxBi5CR5LT;+HtR{;)zMQO%fbM&dhhCq{uVrIo_T1zZZW;m>3$M{!DS3 z$Kg_QsIX#&K|*~#(X(UKb*aL2nTr@(fP06}cd98{NvV3^n_WQxT+r?jDKW;RsdK~F zD~$N<&v`i7R+a;mSD^s2zi?kIMR4|x0enK>QtA7ioGO)~)65^f{Tyy}e$T&uMzVvV*?7BVl@y#-wBvum? z1UwG6ZpP7msX<(eH|#P5hoPn7QbGuc_4u7>9w)L5Ocg?9uoF=JdNuA7<1ek&V1C2y zFR9Ca{H+a(QA|#ij$7z^DO{SU#u3%n#6$I+{S)nHV+>I{nbhc13tK6Sx_lz*$uE%H z(VU|S>Wn?FvwX&*&-->4M-CMyueY|z=D3i@{fI=&J=yd2++R?flFjo~`@7t$z0NsF zUb4%!^VG>IUi@cT4(@PhBMwKcTYksxq|r@*sQ%tg>2eZ_Va1AxNz`zCei*gTYc2Vn zy1$7flQ_li0kWJ^$xlRl&pb{S42YlwYFO^GCeRVU{p#O_Lp@$J22*clo-3z_vKhKC;Fsz~Zj}^4@1^nA z4m$u~I5P5$*dyQc&DH25tflLus`|00>*o5W4xk^lMB(E>3y_`fM|6_#x#|1>5SJ@S z2A59(DgBc_LqBi4W2wzVt-FqEgX8l4!~0dYpFMxAr$|?Z$zl0nCvF4im7xjw?|wom z>c0BPDMb@4-{=VWXX<%#R-h_4J(O98{*)(FU1brMY|P?bRlD0Qw5MT)m4ZU0uhC*d zDafR$WkPErq=#wZ9WOeFal6<_RX=p!3uX>A+WeMSVt<24iQ&&1{9~fNm#du|YKtL0 zdH}FRFpbs6J1jOw5dqS0zY%*M>zchU{YkVX-?-*%@jsad9o?x>uMZp4JuJ3?DqsX{ zh9UWjWMgbZeYLEHYw-`NBdESp0Q#2RS9pWm8K)ha9XjyeB%c!seqFkw)5*W>2C zU#~Nf;4zacY`SX>yxv&Oyg)`buO5W3#HSn_i^GHgJG}(uF%wNau%lGH+2cy7kvv(E zEawVcYpTEnu_{DW4kCxl9oyW;??4V0*vlSi@uhPNbNWsUS=#KnjfjoOm$1E-$xEN6 zb$MF{w*$t=%6pjhk2YX%f(j_Qs3j z9Od@?=q1&IWh)`%^2VT2v)%b7_ekLD1&Eu2KzS>Xaq8XpZ>RbuG~gjIe4g~)LX&BV zHtS|+ofA}+R-x6isg?GLnd zIkM)uork*!4geHnnuL3<{dLUo;E&}Pl}T7)-f@N4D3aujEVVGW2m;MhBjY|nPnL40 zu;Ilj&t2VcmYd!}gLp7YMufRss>Qj5t^x}>|J7sVeaVV=P@COwi<*Vr7pGH_e|!_# z4|Naa)~I-?2s~E9J~8@6vZhi+sd-;QWTb83La#2vyw*>d8KqERo^I{y7rP81ow21U z^wn?irfqlY7+9a}GNI`i3*ZjGq(RjBM|)|RybioA#yAftg14YR42lxh)$MxJF7K|ctm3U;;miCFN*QvWD(-= z6bUpjv>102iM`5~Vom#lP5M$Ua!q-tdbn1PA^-5MZf(xh=)<6bdNqY2)K@tM%1Pi$RE zMLYYmf#F zROJjziZ4mMVwO8%5W-3eQpR731|e$)XGPQxz@%yZort~MsizM{+=5Xs4s2mH80t;b z2&FPBGGQzv<1YEKG|U}G>c3q3FDuKDh4N2Q*6p@ot$9og)QLtkxqPA2O1YS(0Y5MJ zCN5ah1!GNeEV(|$-@_B+k7>IN59-}MI1vF`KDImSr&DK^54P{>9>0Q_1lPZj5Axd` zRJ#0P+#0nz>PyKXN{GYQ@PA+97=v1N6yP>rrIBm&9&m`jRJi7!6Z~_O38U~tOHS-- zVRHGWGMvzP%Gq3yfN!u~r*&ncsUjOgv)F^QteQZmMNx|a-hdVb{SeIP%|6FWfN84t zjrOahgkMt$!+=(&3+6+*oXLcak3*1t%6K|-FMqJ!)2$NE647GlSg=`PVzMZB-W$DJ zb*dlHion%pM42+wc#3n7h29grBQtT+_GyzlzB}C*m#lr8=P1i`I@f40m^DUhVa$ld z*E0(#_#BM+q6i5?KsjII6S1&4;m!!qcyW4}9gY9;=C&AQZXSjH>kD^m{054)pnzj* zgw(Ou2w}FWpg3nAlBUE@tzX|8sZu#d%>v!VI>s8#ODa4K4s$?l1*R^OXMt(N?ly19 zEQrWf;FLV8nSF|*>@EIa>v{}rp%AzN#x(+`G6C&{Gyh1a4_tPiqxh6`gq zuY!I8DtvT7AG-gNCM;Q1Qw#1pBbORI6XahRewSn(UV#0iyXitZ!_J4`n@9U6A;rXg zj_&@2ZY%v<9v+^roz_GjFH6Bi<0sro!FJry^o`pnchd(0|G z@bIn}obsHHWX8wW0D6@>`8z7ewURsbPPgqg%^!TZ@(JGF<`4j5DL%3M-mfc~=%(qa z?f!kgDy&e{7rs=Nn+8(?l73llK6{U8S2TM+`-nGW(;+l7dfWV-MIF9Zz?7KvZo{kP zcU&rZn+u)&%jji1S9Q2>xu<}a&kjtiLIL;SDR%Z!AxE95J1ewwtWuK553&z|$EJEI z_HLC4m$7XI1>_;i=@CwyDKDl_Ee~qklh8IvGaJ;q%v;+0uzG*d$M&slFCQ|8wy#}n z`CF1TKJob{Cc^M5C5l5Lhv8=hxT)qlf_}bY2L@i1g?iP%32qroYECnT751^KIq)np zMPx&pFsxv`cZwxia-Iq5yd5iK;KjoAPt6I$WB$-EMEOzSVT&2~?-hB*2;D#pygAnX zDuV}rhm`B$6RtRI%GQ6b#a|RGVY~UFVzZU@zHU+W~CAx4rJyeR!$67 zX)*w0;93mV)`IU_VvhpA)2xsTPH<-+Td^;Q3Pt(yS22d%EA?yy=DYgaNJbamhWKc4|flU5=MVgRYx@Sj8 zECe|fgN1D!K5U*M?-wg~Wwu(Ay^rev%K{r0DHTp>uy-ev`Y=W=UJ!h_#~Fjh)V*oh zk7U#O(wT9H7Ip44SP-%9S2rxWIwV9ranO0u?$p(m<2NT^*(VkeJTu79eY!5xHS`j9 z+Nh9rj{dm;QIWpq1cIy~`tv{oEsc`BX@l^gZvG?meg=5$9u&#(#9Xq=Z=BltEZF^& z4GZWTJOT4WU&|p#)Vo3GOr!)+?p3h3FGlGnv+$8(QCyMMJ^7bJ^Z2<_PnG^S7V^2z z-;=cuQ3yD%g+{6h)a3EGTRZaf@cO@R2H@;G|7#cNI2%96zrV;e4Ofr}XM zVOC=i);(HxZ@uGIUy2Opn%e7jH|J7fybj=DJ3lmAu7PzGiccUf!4Gd>rYR7A=P1mQ zYJrth69er3#Eg2cobmetPd3}QibOf>gZ$qXM%J0?p#W#NF2iSL>sqZmGnLPqEY_=F zr^tY~igL*OPJq~aTJm;2Hs}|-zvP-!)5)NpY|7)8>vQTq6WuymdTFzv!uD(WV+V51 z%HwBV((3AoIC#?945FmUA{c;g7cUMDTqmqp0M2$b2r#8HtL%Zn^2n3S;JO6wQ%G84NbCZcG=U|h#NDW(h%&P zD6mA5nZtS9jTo_J@`9tr9Dsy@FliyOm{b^WT6}1q)lb>czy#f)yVuPamRsxk^}M?Y zk3}ncOY?W`{~?4*g80#>sAB2fY`QVbvk6AUR|ooL(+G-Di$k_0&z65Uf@#AcvC4i; zB;TLH*b{17x540qzu?!zx|ZJzPGsv@^oCR_*wU%Apeso~t@z8)-oVbjs)D7N+OoS= zhkOxk-EnRyFc_VW*wVTTDNVefW%t8oZZnyS=k|Fy(-2L?+_ey70aH@^6?X+qpj9K% z(TA{$|BD3xBM%)o?KNFgbzU?3-&Z!{U*>@Wg^wdxVeM|*f-(bfG~^FWNE|Z%2Je@e zg|#)>KNtz`b0Zx^L-0x&swv9}mh|*CJx=Qy!KF#rhA*!pmTX1i;B-ff!2_5HCk0pI z#(i=qtKGvgr?1&qnFONgw~q|PfGba?%1GsAnda@<_&QKo6PNSzs`}}azaVNe;0P?y zWsEHii*_5w7+cAksJ&fOy~=sz=QUYN)Ww3K9V7c}8e7!|If1+()Vssv87SMkdLvwc z-?-M&GaPyt=I|npb{KvJDa;|TUzibh?P5S1EeVWG7b`w5MC~px@%WLTqa$l$)f^9d*Gv8(+g|klyUz zuk;k((_yKmTlUjks2g7?qhBj%s}pxD^=Xi=2m}@w0E^Y#J5N(8Nx%?t6byXGNofVr z`4W}YnzYCjrY?i;;GJDe=gSl59h0|`ITOxuV>5nsx~*O1PJ#pmrziM1y0??+ib~OR zpG=Q+Jibq*(};l=owqCBkLBG8802<1z*$>K3eZ(@%n_;G{#efMq0rgGb*>mp#X$Zc zaFtt`t?BfC(N_lDa^Eb&5tJ(~azQ)usXc$Mfs!ED&sE*saDUC?E&p?K@XOuj>w}c# z$_{gdbxrw6zoL>BOmx3m!u5wxby$H|{_5Xo(Vp^{MADi-xwoYBMc*7QnPi48^4f}W zUJbkJzP?OqyYooG3S8qGSVR-e?9`kd633H`%4t_rgq3?fPMf#)tI>SHPDd>2+l!T7 zY`6Lg9KQ+*8v%H_yw~K_G%t!L=2jEVmKTyMC-z^SRecKS_a3%K-~1V@7OTsxNT2~* z*{oJ^!Gf2tTXAwH4ZFGxBvl`cvK}G)wtX;JJimF|b!Li&k5yj=^4vD78|R}HmB>g4 z47~3MGmIy`>H2w)e`DWUe)PD#VqIM%i~=^04qp>-?JB#mpMQZ;j5**YN-5^hyWov3 z5NQ5tL-_ZHtC%u&Ma8PyM0mWat_$8#k}Z_KpCCs&h~97Hw4q;H<`T|k8CN~49(Z_m z>3etoz6;y+@%X!|rs~3R|6IN#p`gIq@s`t3#z{_6m=T&4T`~s`2*T!pm4vGz<5t*qvedAyu zc10N9uo?`AK545Y<3J{i#puZ(18ltvv<~xP+=!k_CPhD-H%&_JX+vRXX8N~O^6P1^jiJ(dE35G!sJ`Vuj*k}o2rbHaA}DQmVF zr*-`zDAR{H#&?CPQzel}fw3V6Ucuus4iyT_un77D`<9aqHIB<2KA2*JsqCIJItJ&ZGfdzZ-XVa-HE~cf_*!UT3B20!c zPG{wTgju`s%9f!4ZLuUwf;LvzBe(O*Ecrue*n7?vp(?0}j`U(-`p;oFQ^H}R@l^5} zc?Oj<7#N11xz71EaZ8gyVT)n0B_p-{9&5P!?1UmNzyLA$i3Z14am)_1G#&8b z@dfQ~o0b)tx@Ux`$J29oYuNmAu7V#y#6gL#4|UA$=vr92(f;bM-`gf%Og<7c@L+yN+RErFSb=zcHWl*7oX4`W!aoLrITy;_zPDZ zqGAiWvT57$+}Y12nIqwE43NXXnId@1Fc`3xIredh%p@7R@ik-o+;;mp#o7WFKb48A z#ij~_fd)^9dKAY{l*2F|yFXWvGlXs(OtU(^Yl;P$9q=82i)umthfx}2mw0Ec2>oK> zyuQ*0NpTqsP0%Ox!qkYJYw5gT`(!jN0za|Y3EI;z(xHUl{WGFZ)SRT zU+XfGKkY{MxWpdR-Rz!fdm`au)uStV(<{T9(+3cwu1?(>udP!UYb2 zy&e|~^3O5o6uQ=|V6b6nk*nlW^dohmxQE|NOOe{iX;Ivu`^|HV4l zVWQ6hNBX=5$x<9m9!k+oJCKZ)n%i7tabPUO{u($3=U`1GCi!8agA?7!yq*-cLe2baTGE}KQQ3YbUxz})aXUBt>Q zrl!gHxrvgxRx{JHCZ5uGd*@095CtRHcP{+mCR6N4E`37~RUeirnOmX81cbQe1t?UN zRo8_7ASP%EnqdphH_GjxWzA`wR=;c%%MUUvm?&;P!Cc--D*b1$(A%_B`DelfI*jU@ z*W%+kS{k({*IaJwm9D95B^Nv?z|grB0U6H%0d;Fg3+x<6X5L}#Qs6=mSe4_i{eXg& zH&6MeeyYChovx%r+VfhUz9!pDJ7I3$Rm=XW-5+(d6)P`kU4~jF_*w^#eH}SvDR88e zE@qjpO5WuaK#y4CR+lO0d}o?8Mm7I&Wa*9fnMg&DZ}2GvHLFMNWyPl#YRrlJsey;I zxRk*;-xDj=bY(kMn^&DIagu<<8q%-q>whBvS?gZi>6&2<>W*qK<-rF0sPiQsodo*3 zu)-zLgoOsc_%_~OiXQ6gYw#NB`aQ%tw!MVgw)mLYC2mDY?kE=eAE{$<*7KoEGYLbP z$jwWlgn^pG&T;)+L41r$-hc+(-wI^%j8FMa;Mmi)Y5e#N0}%g`{bmKRCvXH|Pfsuw zw*x{_v?4te(y-o!Fu7MF!k==B6!dTk7$#B&JZS1a|!Hf>0nH-ZdbV4KrwSM(_ z^BXiPV&qcneo`g#yJ=mnPLbE_ikdD3N>icxaR^%9_Usf7RC=;8aq&-_=Xt8fzdBy0 zpJMz3*2DOwYeq6R5zui$t#ty{%j5oAC04IbQoOEp9#(<>WHPVvaxMrV%yl**x1R&#>U(@nQUy^wr$(G^ZhRVxHHqwJWo|u zb#+(w>4Ue<+tGXM93qj(NjtE=m&oMgf#RR{%gpSsiTA)AC=CWXxj&nwP;LnXh-`#z$g%6n`hSpYzM2UPZep;Zkqr=3=Yn#;0Pc<_V%T-h^xtOG0d&Te(}Y5*0xd{>3@r|_{vWA*aK-LtECVLqj{ z`XQ^A;XH-C^Z>S2R>tL01EL4NO}uGd&cL;Y^FsR1N(q5=0i2eFR;3cnPTi%&y)Ot_ zbe2Jn5u<*r3d#E^GK4e^uJRS)&#|Te=@iP=!1bRBav!=+*FkiF%UMk;rg;_N z0*LQ77g~fjUW*6i)ioSvvszOsnV&|M(=uo_E{WkG;}`uk5YJF}6-tnDWFzHHjF+rq zsk-y%?WHL`7D) z41IrI|9=6d{~)4zAv_m;%!`DzvUGgUOH>-jpDkz6o@^smmhmTJ@sY1X{g0T*99?ND z&(er6d{=%u5*|vzj{=LyoNKZ#<98Vs9{T(YY2LG>kxe(9o$u$Q+GY=dP9Iq6yU@-D zLAeD%S@In_5xevfXj{&p&kT!tq0CHfH66l{fxOGIzDlo)wtPNq^?vh7(!(U_gOQmY z;XqjQlZ_1vQ=@#c;z_xr6)p8oC#&^+h_#2U*{l$5(oAmVa5mHpxiY4$p2&VAFFWDK z-dDbR^_l6%_=e4neV8phR-37@Q#)Mf)xYv;7*36l**o8h%r+f;K0`QNe|MdSj0P(R zD0Q~arrY?ppwzN|wcSZ2E*!1>Oy#?rcZ2BSFC=jZ>o7q#TtUU|!KSmLa zrKJZx8{IA(l~v6*KKYArv5DgejgX`0qTx}Z%iwaTa8S>e)w*;6>@9hLQ338>wFnZm z*ajNQ+JVc$ur7M`{=_9xZ4lwKQR$X{z9_Nk>h?-w7ktI*#+xna>XKdb_~cTXpHE3E zy*NIpsNmj=Mbs;{n=IuyEIs5q%skA@1!YBJ-LtsXncQ3pQTGu~>h8-P-?j)S1Y8#+ z1Fvt`O$QLvHH??5Sm#dQTX|GasEgf%$16$L0ZguxohuE_&^uc}Yi0)kY>oAM-0Px6!P`GR}cW zlU;8`FYPWoncJXZg1`vAVk8bfRa5REk?~03v7W2<7YYNnGArXRtWt}2K$#vzY6iB^ znv!3~4b>+n7AM(r2@YHa{A_SHK%3*>eWwKoq4SZ0kP}C(tW3qkwSk@u0O0e?>w-W> zB`{i;wExE;456^iVKaoLmgM9i8H3g}eOe$q zU#FEPuf+yHS5RbS*37tUHu}&Z?J4Vh!f~hXj_v9p^a*$6q`ah*F!i}oGIeTNd_;{2 zN^Vrd`m7>Hh4y$w+3HS#$+-bx;hawb1>MkHGf$~W5+wa*3<)aajJ|2gi$3puHMA{E9(CkZ z$8fh7KVbb8hUA1Fo!v9epQ!O13C&t{^cUL0t`cgOPx$8YojWIp{ZB7#(L#my)m`zY z^Fr->yA?#J@_;JEwu2Nb?j*4E3%Gp~v8Uo)psg3DT`f$}nE)XOm{TM%Bly;`v-RfJop#(9c(nP2$*#SB#E7h5=XK=C)h7Eu9@aP~xT^E`|LUBu0Q9 zXY>P7QU^%$xm?9e$=Y1nM?tUGfzjT_vU(L*r~oO1&4Nw|ujFuj8Arid5hb2!ybH`w zjTh}1{sDTeQBM7FjSDh`;|B=GxS}Z(2QgvT+|?3mQS&t|53wT(*|5%LDWyaH#`?`; z<1BQ|1h;=L%e+p#U(|V*tv&vrBM{|tiMA2>t2en_7#w0?~c~;hstHssk89D|n zP9}ZcyUow($+LNTaL)KSrK|bZr1l(pB2PCGkK@m)4J$^qv#+c={D*)eVeb%!&|MN? ztPv^Ifw+(NrVZ%(W!nxC{d3eWJ4SU6xu4iBy-|i0&sBkC=+cCaIvqC{u0zp?j7}$B zlSaBN%+}9cWzQp%J4XJoRPs|VHH_>Pce$e9T9gx~2hyD=E0?|-9z6B4-uG>*ElLs< zrZ9sFj9#S@+(eD3To5Eki&}wI?nO}?Q@RVGi(i`N2<-%Ie5`YYIC)&q8JnD^M zvAW#p>nhmy+qEKyJ{$7IVU;S4qg);BcORkFfow9wC%F+o^wdod)lncBCI&91_L*o1;Up(7#uEn*zJNOtJ9s(t6s! z^=xC|_KU$#D~>tXd>6J~YEIVoT%FopgI8A(%Wd%^j5c;Yg^#kgjglNEJ4jp*>@%B-gvAQ%R?0PJ6|*{I%G2ua<}hl-h=(n9hlaP4#_P@DX`%f2 zD=$S0LGm?VHqg&TjHipgOT8##N3$W(yv9P0=>t&`QqaiM0!38cRE7qwc8^9Q|C8i8 z7v)Wk!#N(-PJ>>R;)Xk0w;nt4{*dxmZRF}P(gS%d> z`o?mLdt6&G8Wzs!Rm9;|k+DGt;btrBcLmHnFQSGsH~W!v5iAccGI)*j>7u~=;_=f5 zJNC|qGhHUvrDcuFz0BKA`W*D5i>QKxt}r2>KrppHFtb^HD)d1G()+nRqfs9@rSFY( zURU;4EZ9~-+U`r=b~AC>LkWSm?Umb0_XozMci%`;`_t~&+Gb75-H)P1jMvD8L=Y)s zKcltTQbLyUxV9Vm4})rjMRHreHfsg*)(zgc;ask_%&F*DzDaIB@am8w%So4Grzlx` z{_(aqKS6hbX#FNZyq{^B01+i`0Wqbs(vdE*d!$jqFK>@+Zvuzjrz07)&7=dePY+yz ziX1i$ z;!lR2+iJ5KUa{j4<&>1g^?usggx)grpxMLq*VvqdI)0P6unE^J0j@yKX+bHqev6CR zGLZHH!|Pu(IW5-sFc3$>KLqR^@5_NfMMrO~gI;>gobE*^%Cq;gOHO_topX=@-wT-M z3o8ffTd*>eEm^gf0MmA!wMgz1)MVStetepR&o*cjQ`5I&NaxdG-NiHF;!(DU*Q18w z66-9OjotAYJ%B`J2Yo?gru94g&2BJwfXs z6m5nM_u<=6D6MEN=C#vnWS81NlCq_xCpCIHyZ04!eJ=E=o4J4{U@KxJSk%v9aO!fC z`R;YQ*##6E7S@Fx4DrqQpBItb-|SoQdb3|#@LL1409B4_gl@a}+AhEAp^wLTF-1Yw z+bEgrmYQdXr*}$xtqx}-v)h4MyHX1~0{dI(1QL<~ZRyZ#GPe=&jmN$>%UD4_B~f+~ zmsc3A-zVCx{4E6@!>qI{*omg^u^kv4PLBJ(TxQz8V~yLdI9O3q?38Rdvvak>>N7w# z9ku)*GX7@VHzeQ4>0fKU5Cpz%zpZIn1UWEVu2rB&K`rj*N#o@tJD2p2Yi*BGYI+~O zmAH68%3uoAzaY;x=V{4$4ypF7A+&W~bw5)wNP81{wEkg@s*jgiq!JKFe8T%K+X`U& zx}m0FYgc>5vwxFePKlXzZ-D&m*f?-2=Uw`AuNzNIjX>c2;>D1&(bH}H&#d^V+~uXN zxAlT(g94Yw(x#4J+j%gr-}PIT!pHHk6XQE2ubllKYMDGe!c16`+12qdvov$OEp?IH zjrd8`EydZ^sxc7s0cYXo1l(QGW0q*A-~UWRqx?L*bZ~eK{;P}^QnohUw_uS&_>@0g zWbMYK=hNP^G?KZKI&S<~mhO8l9D&r>!8c>S zSIyyN32J6)OCnQoKKozC9ek`g`i@#WC;6&+$oxk|t0{7NdgR`Tyz)(j&kcs^#o&Vz z51=DX*xY+coLUs5p6D^xyB5DyJOD1KrQO%}q{qTJcs=--UstD_H>h`mBYSXED)eh_ zPcjwE0YZiaj~=T`RPR_pB9%6;ahLjj`&z{kP907hVX%64u?c+w*_`w)W7&?E=JmjE z2DKD%CqX@pFac)bFzP5L?DETsYXwwOl3#vYZOkPTh7$UR33D^-U5CxoR!H=Aq3((}VI|Z(Ssa9^ z*eJFV4cj3(pX@S;QNuNT^!2sb8_FJ&ScKXOu1vVumRfbyNK3<$>QBgCuc^S4_t!z=sGx2VQK7MDumQ!57f3}tp#-I_6h*`__JBfg=eKnNv(b^ zWoimG^AGdNTF9T8^I1&z@+Vjy+J|KCqAjgRXs5Cc6`zOd zZQAGoT?!(CU+>Xoju{KX6EiwQ(qLuib1!8pWJ}8PVA&wkzab3Ygbmsb;bgB zB$cM&cq-)bh7CNehZ@%q$c|wUHQatE-7m>S;R9AXN%b5W!lw`-x$bJ^cVtVCg`I@grvAjFA6) z*yWOkv6z$ker6WOgPBP8c*JQdsW~6#Vm@!l_|Co_2@rsN>o|c!?Rvl@enIGWDN)Pi zhbB}I1G=E=^c?v`X?jnmPoMRi9`aK@12H(FLMjs|kK{%l!eb&%#6_wcmKv>p308a* zz1|UwNHvMFUalv?jDJa!8QDcXQiiwA1||E85=lq_WtAjhzCa>E^wRJD z2v~TI{{2NR_pV$qNU(E^&2w%*#;n9)pw(E!o(}vQw{daNaZJ!w{+x{F3b(IT?|D+Q zYX3`9(nss(WxLGfzT}o7Rxw_iN3gqT{}Y{iJ=MW?qPzZnZvbV+HP!p>g~#={S0>iP zEqE$;uxN@j-09cn@UpRhlM+%XuEy@j*szpK@RH$r@$(DK8!Vo21#u2Bl6|Mf$TA$7 zo;-zX_;bdOFGA3xzv>$fJS9$OK$vMdmExj!$z?HLY2r=(YN~4pheBgkajrp$5)g>y zq>=tsq=B}x$KU@57Sy|Y*GX>oo}335We{awF_tw#E{kio?$$6Hyq&$j5Cee8j8;nz z`&w---+f-Ey+EN!rddg-{bhx$rsMdBRV{SiZ;2zXI=8`<}{H zZxcQCs?gw$*0$RgFx;)hJPV@XdHFsH`Wehl0f?0)V&AV@PYQ$@7HO6EO3AkiVp#~v z^6rjy@2svSmS#>V{VwhFPUq+54PS2V^rppK_SXLs^-T5)i5Pf}zA1xTL3SdztWGxc zyO(uf?Y4n^7Q5Q!#_h_sC~5y>^=30o%XMY* zp6JYJ^#g{NbWUn2Gw=G;`=*l-5npEoi9?MqvKhR z=#QIoPUuBEnYiqmdHy2r!%0LmtgFp8@B$16_kQuS^#^hAdXLbQW%Rq)*!M$Dtbg3& zbs}z^pFcmlcZ&V4;uZpl%u~?9p@niqbTDgCkl{)2KcX}=%HqugM;Iup>qVEZ=I ze1y854_B4_`xM%0hhhe6>;s9cEZNyy17EoSO#DsF)!*_F0$CJueoC=UJcs`jwvjDJh>G7nxT&P;Igz#sqHhY-eTGp2fl zyg-LR<25uG&7#_}a6sMlvi_oeK3A5`a&Bd-|8j3C_`0nJ z*5wwbh}PH}8O8u8cWatu3)@`xq-LEYKrJm^7hg1kS;c6Sl*}c+&jW1aRSfL~mgkvT z0t}%UudA&+OI8_@scJk5mxHL!y4K5oHej|xKwdPFdek?w6%0#H^Ar0+m=?bFS>v0~ z4j?^i`iASu#`8euR`Di*fxN1~zSrbg<~2RHr{0W;a!b$c(>>#d&=+fS`44nc<{P#D zZ2c8=11TU|&Cl-hPb49mTbdRJ%dwi%;m_BHbQvhUoQ-E@k3bwT$r4GgFElG$tX#=q zMdLd4F55@kkChYK1M>*hvI>QMy6lIUw^_9kdk%%DMNjn;IBS>_D|Nk|3@NSpS|4+! z)i?81W|ZK4H2SC{Kbx#RMr=Aw7t=$mMz_I~#%1(S6s!cha075oMi1(kf!G~)&sw)0 z&Qf2PT)VAv_>_qp)g>o)DzsAszj4RRP&_wu=>~E-?enCHaVG5BW7YYr{LaPr{A=GY z@M^RLSk_KXgx+vAC*PyB6j@?_`FG{5Y(*gqK>#S9tql>yV(-eQf36nGJnH$P7*f`mMP! z^&n`l#&}1B$dt$IEf+*n`A?11*_4{^ZN?upo%yHI$u8Y_T&(`(KV(tHc91%m7*MU9 zeNFj=Hmh4TQABEGI;mz+XNUa^sgW+A(nUU^2Kq)#)mdzqyXixr5v2U!d5BP%EdTgQ z#cDKIM;EP;+^(mE`%FVPW)ZZi6c4$4n#I|s%_Gwzkrt0WTNAVyYvX^2K?Lw|Y&UYyM3dD*>W(?=C$riCBG{vc`CM}tbqOQ{ESwM zz=-p|Zck|pCxow34A^B%kjOF8@0)g4U`v2p;s+7oP^Fs+o)#&HNL$3A5w}qpcL=6Ahq3=grnUJL8>j$_v zjqG3j&EB3bax2Y1(u=!J@*swe|4)g!ito@Yhh!olI+a#}0sD*@Gi^2o%L;2%$3wG! zdSONt0FkpcOrrA1kd1vH22x}HqU-R47X&f4``Kxv-)^=SoS$UytEr<8=*NBjDoa#`=YCN|7+2gbMf_J0wxCq*L86<<8#I{P>IP z$W~w^s=%FI??W>4VvPEpq#F(zIbQ%eIBa-ZIJmDYqQ>ooYPMRuk zvfk7mjpSRSoiBf}#j0&@_0VFo7rVF*TMy~mZeyZaD+G?SEGNZS3jsQtJeL82;fV11 zM9!+}PL9mcfld|Nc1ka0+1}3q;223sh{vqp(zV-}$96BN=-@NNXUUZU&4S=#LoH;} z*GifZR2NAMf90&=goQ`+13KBI;wp;C09j3j>awR*++&ZKzH{15!O9^c#-bSFyCr z84l-e`S(!=}YyuvI})=?t?y3 z*gHK~0R|#AvUl|P-}9gQ4Vw#j2M3#W?&_|-tw8uw`!bCmjFqJQb#x1-4F|Nblk~>* z^VdXzU+6=lHKT1MU}A9Ne`>78i*_9cLRnJ#jwZn%L2U4Dg~?f#j7HdJ;qd-Cb6b6U zw|ni7^AgCqu3b^2>dPu{wdzkKSCSFAE6T9yuPl0oE8ooe<-M`*$PPkZaG&WTIcILc7 z-j6hTeecSeU49Y)5G{0}ng%e6Ga#yqGW+98>|}eOal~^xF$yTD$?l*Z6z(legq9sjv$HFzmyQv_T`OC*5BHt}Z z@+K(1qm5(&jq!IZs?dMFN2yc$Bm`d3@`*ND`a&CBmtK1iK@y{71t)A%Q9nE3A>V`& z9A_bLYkpf8{P-g=6Qq3ciqof$;0MB+h2l)|<&v*YK`mN?4b8+|Dlho}j6yO5l2Jnq zB3Q1bA{S(~iu-uXLf{S|IB`!Tl_X<->MDKuM&@@X<=u2PD)IydDsR#*-KBxHS}^k` z{x}v&a6j-dK}0ighY@W;8bLc06AKL|l2*5}r%cZNINupk0xR8x&A`Y#&S}vNj&%zL zFwo6S{L%csIjJ-zz}^xSFQ# zl0h{NaT0;H9!(3)G}dP5dEUA-L>kw0eN9Jq3%V;u4;=a~)I-{bRMdq7)AHH+(fv`= zz5fF6NCVrnoXAlpjk2CB^#1A0u=Zu*`{*`r=LeD7g#by8p*dr{PllDzVh(7XQrQ=c zV-S8H=cBi8%t&Y%7R1)Gs~Nb1f9ym=u9ds`Ckny@`eL4q#J`n|Bt(Or zQEC_^94K9ZLA|njG*d^{@6G*<{BwcVN$3Dtyfook=$%qBeqo8+*tMwMnCE}h@F>Pn z%*GXs%*+zIjun>53Ye&s+9QPOiR5ygjqX47Riz$0@toRO$HxL>d=gQ^$ruZqBe5u+ zw7}&$`LHP71G@H3-T0;8S(m>KVVu-e#{Zhnk_Q6kbKKSMv$2PZObE>QxzM(P?Mw+i z`CslrGT-|69EG{yi8X;g*TRo(F*|);+VJIer<$;d$*9rweOACn-{^%0nsl%^$rnIF z|HgKh;P&TQsDMW~`kNb&T1B?H;-SMUxDbG-VKuTt$3qui zpyb)!sAt4s`R^IE{FjVkUR)zf))z97VZ4Y0M1p+Am~Bbkm0i2LbPqKpX(H3%Z5$%g zZ^zFyR3lYKGI(O&4OspSZalWgh7+ohTv<}grq@!0V2{8n?x9Q#ince#br zxF4%kKF#4eirRchVVDuvf|p{6+t2Oek?7+QMPOOH^F);&4OaH8%0V!VdTys65;#S& z|L(IZFr1;{`5R2PM;;C#qB#yLm-6D3xS-m&>UFdpudmPM41a^lO)N^2#_pDo4!*?h zT&_|Z_I2RG=R;bVzPoEC(SM;t&gOPs~pY2U3b)^ ze5Gj7i(GwOnRzKSJ>Aul*P52%GRH;NEAyN`3HY8}PDYA@5f)a1h6o$Z!ai)AQz5g` zp!znacS#VoBI&5C^3o#M=Rq?PE1157%VGsQfzVQmt%?q#+QH_PIG_l854_E;w~2K= zs<~O_anlOTw#7=3>y&IT_{X^c_)9_l{9lB^w)CmARh|gHDt>2DI`51LgB-^(FygBJ z<8*%d09C58=-*pigp1chee`Y0kHQ@t*YnTLM=(FNJtg@j zq;|Q9@mv9lTnUwI$5})%Ls~UA4DjRup@mqHj++css+$VWV-pQbyYaynr+!V}N~kx} zwwGr8=Bk{DzCh4B3iU@jqf)n3Q;pPIz*E7cx-edn?8^^LzxQQWRd%Iou!EtjVr9*2 z*=1y(bCNLL*+GLkMi@#S_x4b*Q>ERAmWxK>WwFwIE5hDSl*5G_Jlx>0ikHTaMnPO+ z&(aCOYqWI#{*^D;=!#BW0Io{p;Eq@ho&I5R(US1MSUgpfMWb zu&7G;$J6HN#CyetQx$EEr>RLHvLDNZny*=r|ozmyeS_wda6k(Yie<+HO zf6tc6mT^H-zMF($RyFHG=5cj<4u(ed8;aL^Ve~5I_>a8l*#iunRKi`N`Kp7Ymf^2o z5(Z1v`%OpgbJ-EtF~yoCmR}FxNl03zs+aq}^a$G3phy~>W+)_S;Kv3M!Bg?-6}XqR z+yi>uO@PFIWrh8SUT7SW@?^8C1HoP#ESZEh*8eZk$IbH!x^T-kVK`jxf%fEv`JF|<&`0$?&O+|}|cQyG4 z+W!rUk@|aKF{E$S?aV1x*dM#Qf|5S1M^Eh{0bv};1~;mfolX2Q8f~mbhv^}#W79ex zAheh>ofg<*eh;+e zP=vbwKzN}FonEe0OFMgkV0VHBA*bYKRa?_cjul3#@3YD7W0-_N(>t?TG~m?jR+&&V ze98QMg4;TdyWYgc;oxqoMCYRUd1Fu&BXED|FS^BEX>rHx1n=j4iW|gv-!2Tl>*vm_ zJfGCW7+4szV=}WIX2rsUJ={O{3S6TEpp19}B#2-RYI4D^bD*-bcT^aF$dQRkSxFi! zZ*ULB@LAMfU6sti?znjL*r4Sh07`i(ye+kybU2ViY9>f_lOkAXYt44Hog6j1;D`wT z4T(&rR68%jc=||l4#lwGIglHVRx~vU^ zFGDqbc&S<3QGWs7B&osKw%?e%Z503AwR(%*wO)U=oCos@oz4H325(?e{8Fb~JFu^S3x5Lx4Q8vY z5DOJWNw3dSHeXxRd3%Omr0qNBU=RkM=P@DNb4qzkf!>mAtZcz_R%Ql`zI5{A(aaG{ z<+>$`6IZy>tUYrow|WKow5A`R}{_M8;KOo5-S@pXok^tPV|{eq z@NNp6lqZH?Lv3ChxViK&jiM95a@+jc*p^MQ5sy)sss#>!!q@R3Z@>Xc+3Sr)1AG4z7t4X#`Gde#;(Ovz7j+6p=jW;rm>yi3fVnY)3;XYo zV`8?+FWW16PE~Sr)4F(Z`ItOqTg_Xcb5&Mlx6$Hqz=qw%Z)zDrZC$UI>STF_ zukieqJXJqOX_?kM>}zL>0B21*vdnP#hVwe73ibT6V+96c8I!Q{pE+M3`3ohWvvC|fh!$$>V4t`j(dj{=pKXuV;TW#()*pFw zUbwY|wi`Szed4@fBwLW)viHT3W9&a9f)~-$Fv69Ba+?l%|D~DlPWbhI{9pABc1w zoccn&3(vO29%EiSo1-MChta$+H}3a-8-V&TMM;JsNm@=eF+ZPoAu^%51d(1-kFCAY zP^jaCnaQ3DY;Suxz3X>&j3R%;?}>}xytpgV?1H7|jrej?v-JRm4qP~yn`9%IkN-ff z<3=|(TRGCA3EzLxlbINB1%bbnzA(UE)c@)rN86wa7Lhv)-dm0ia*;$AM}`FF(h?G0 z)nW;fWTRis9u*%*TJMc=Uv zHfC_$G5b>&go7OKn(x2-_a*-rSIhr|`qw!8*aRp(LP6ZiqcAu8=)uCgL~#EB8*i9U z6Wqd3JY4pNeEK%SV5_B%ADQmd(`kThfXnz7I0p?$JelV&L#0GT^e69vA;2McxR7zC z*LFmJiEeI6NaH^A2p|ay71-pBPkrLTVs+v=L|?4C1jh_GIoqEn9^9G+xVgAsySfo* z*-C#-{6W1744y^Xg7y!>ENTjg;o>c#K6l(tEvmDY#{U+YhXSP{^bH#djtsKgJl%ey zREF3V_VR7%qQaEi<0m{rg^Vs#tmtgmU^lx%ycT3vKW;J*pA0fOEVQfNcsiCX2bU9i zALrL7{U_dqi5*Ng=|K1$Icpk;GS7F5yiI;u7QSf)H@D8(TNReGVP~dGBZGyRr55T- z8v~7bBWbD9|-{*mzPxgk6p`5rwMjI<{*92!jzE7Mx>M75rhRa02c+DjRX;r zv~QQMqB@4F-sLH#?vZTx=iQC?ueoA`??1WL(h9R6^9@a+Vfkrk-o zX3P&L9wrHtBY|}9nczqWOQ-pf91laG<%jAAOWu3oN;jl zSOehjGb2Y6DtLl9_QI`y=^2tZAX5$q6BosY)r@sv!+Y?mBvQwUwsGzv-Ch3RBrMG~ zdINKk?9rL{o(&VpkLKr(9e+icg_h-|h;K}6Np2o;)+R#5x!kFX5)_M`LhIX=PQP63 zr=)%l*Ah%ivrB6*JR|JO^c^rV!zt8y_*UK>V$U9?0GuW&i*h|354MhS)82CbJPdfg{g? zyhQBuwy{qK*UF=!*QV&TZz#{misC}<-RWQ7^cmPOb1LZ&25H^m2$pi}Ux*HR_t#_w zfgd4ZUCpI5X%#bEtPd23fl794ase=ekJqj_uCmiBD3^u>!n0gW13%zR5XFom#08jw z0cPkJ*;8`(JrR4jXp_;_eY>&+xY9DaTQ3GA4kQ+ands5jlsV!86X?ij4F$PWtOB*b zFAAVU-9>L*G<%IU=l72uJkpylqDmr_*TXFX$}2px@<6?nFUc@6J8!Zy4A%kj9Y1E~ zO*KM9Pu}Ug+(&*clxd=yiin*Ej{P&ADBAZ8SJ!~~@n>&Dv7UF`psCCpTPCqnrD!iax#9=R*DMj;*}u$$p$px0h+@{Tf&*;P z){YJnTx`m4QGa@x6pS5z_rSr2G{~1hL(5OWIR>-sS_6q^{yIim(f}H!y_I5Ts55wyNEkh?J=u;nv)uxW#i}4n&74e64jt4p#GtOb_s+m}lQ+;+bZ8A%Vb*l@4b8NXCp$rt*sw zVZlmxx`XqjC2hA(b(R;3vdX6kH zG6sO}U1OtDg2(ChUo$uB{bt_91h1kC1%o$cf(-)|(!Icl2NSsLux53q@r{(T>!tYTPzGU#+e$;x?yEve1&iOC+T1xj<7ZR; zc{aO-)u--T_d%b+%C)F#%%At5p%EAkKbw2gV?<3Fs4Y!BfVor(`ILuBgT6xtt5UE< zku8?K|1NuUc`-ijcw1cg{u!XOv*4w+F1Gw*39#hf9m6%|U(O(hlLeYpofeM*)d~U@ zEY*vU``0qw4f9uv2sz<7QeAqdTo%$?^f=)c5Ln=QnT%>usjDkwC(h*kWx2Rrqy*3HbK0V$)$I>!XoMt8 zi75nq)mOG`ktZ+qwV{qo6!zE#B$E%)=8Rfz9rd+Y_5A3;^7Gm?sjN1BpKC3;c&T21 zwfAKN07T+K!IKT#Lm`9q2zoC6^N2bR?fu z`*l{Bb80jlJs0a#l}nzeV9(6FO?nApH~ipqi9nF( zLrL&Oo#u`J2Fm&rg6Lwj)q2>GxC@ZekJQs8$e9H`5W&19d_HU!EhlOpGeoKpkd%&obaTT6!#z{=? z8Y>|wc6<$2so@^ZCjuwjBYHz>TE@8=73J}q75XpFFeAuOY?vV&AIrk8erpXlR;l8& z9710Z}mxz1E$n%-GW3&uqZ_%#&7o(~sK~pA%ff7$RO`Uf-RjAFO5KhytT`%{`-iH)nI%xRQ#H)6p z57(AqkWy8H5A_CT0gwL$N7j&0%Tqv|QaqMd;L~heu8V^%4eU7%9A-o9hCvCF!V*Dd zMiJ)BbA-qe29AZ)*{2Q@i^5eUMG>PCLW-_rh#=$0lBIUBxYY6>>6vSJgmyzCGpCNy z(mb9ETCDW@|0~aUwxX3g#0==dNKyk&g&-l9i7EO7?`sq-!>5a`yuRx`!n>biOID<( zSg^j9QnOzt0J>ZB45G~+!o3R;*$}cJi4bn%HB?3Z_;o4A+>MCk${^+QWnbf?-A%1z z224s+05JohM^yNrGaDbGcGmxmil-1z}QexsP7*IGw$b)n3p4G`|@MUpcso zQr<=w8`>t~4mM^dzMZD=j**A{wA6N17rIku14Y$08%b--MFpvFYBA@HaEgnGC*@;g zm1~1~0Z}7XlJ^#+vd?LpT`?x-GJQv9N9SBMzw>(r*R0R@B{q3N6QU^d@LKFt)g?eA zo~CLpV&Grl;BNR3qn2sCR%F1>l{V(^zIh2QTy6V#wut*U0(;-~;(-CSc_mS{bf5Ai zyoe$@wed{OFAh-#Ow-NP)z*?~tuEAhPQ+D~-IOty2+1RK3{%u;TAeXPjFGwE_d|Z7 zi~bLQ*^htPbvPpM6imX{AwPl)lQFDk`6&vtMu;I6mUmJ5=z^wPs{DyzzEW@q5&rmJ ze7$8 zm~-gr>Rna4tE-Ul2M1@}Mw#A`=n1-|qBDrkQdc>;K?Gu{%$bX+R9#@F}{YdbQ>tpYD?Tg^c)NC}UsYb*jfmw3a>@dc@*Nh{>gIq&<6ofjr zD^ZDD%los#ZaLjLd1@(#7wGl9?x$=8>e-9e_17J;>5E9@+6zCaa9u6`=g}aMC31M- z@b|l_oa0m^kuzSA+JNvzF@a{SDs=>@Nzw@1dR6B4v)tN>pyka)sJ#x80IS7EtS2k* zW`pgFVDIHY{JZwa`uqLDEH~h{#h)^$`FH&rRDjtbZ z$K_-%bX7M9EL^-<@8rnoc^!_Xa_FrS?&*@+q2qrsqXQcn_0vr$F$yjFd5TCeA z|2}HJI^jV#1AC85T93UDw!K8Y^6qh$6HrF6?BW2K-CPn004lAE}3Rn0G z?w80U$mj+Ey-_QX$q;XnL6lRUMZ#LrM{a}xEnAtJ{LsvtCnM}=_7B4BE!}*vow34Z zu^BvcDE?qSc}TF?g77SjRp0CvOCN|*<%Xfdlo#kPZ0e);p_}cm1MhL1UgOMKUdT19 zv`7_h-T-z<3s6e}Krl>(E9Q z5bB#1F*H@GP*I z{`$d8Hde4dl8y35r1-36W}>^lr*!)@!Mr{H7(;f=HG5aM`@D)4q+zZD5+GjI=i3Eh zyli9?xUyT+?(ZKgZGMlmwsW5w-o!(@=s<%8t}9z_>^{Q59pd{Vv5Pg?8t63njhSvSz*B zkda6bA(21t)Oh{8&vqS4;a!PVu8NZbKGQteR~WP4?}ZzZ@Z;Y;!Sm!sr-4#D?b!&F zF2wN7!pWg{ke3rArTUX1B0WMsVi1K>M4~`~rVlW6b%dY1(o+H&Z-Kt7Ch=RLR_{;4 zRNOANQSx(LV8PMsnyQKwO_0lGJX~}unEdm;Z@d@(-rinEtIKLvKsGWxD{F*S%7Wtd zdRIq5Q_)R!t&o&SFVYnH8e({Qg7^qPXkqUyo3m_-mD3XOLpWN{N%O%p^CMwH4T@B- zz05ayXmu-c=ve~rQ=W#gIyi;DzTicBhA|aZn_b)E;_7W)=21t>nQ^lRXE;j*aoiA! z5;ON{4M=)NDga|Pd4;#Jsr_ZaYVkhO(V*M!B+kV!mN>b?V@5+}*u9o8eP_M(OJ9Gr zSp4>*WZd-`{3HTSVMMLB;pWi?f0Bi2pQCXX1;2c+%O6n2eN0`8>OpY7+Z(-iYPv*4 z%QsUv)mjkPR%eu4MAc;?uvBav>d57owOi^hUJ;N&Y;MW7!b|f2YM(a8dBCcD;xvFg zVElN1$5Yn)5cNUsA9>vQh4m-X5Fnb)8!B5aYsn`7{MvTPa30X*vfuzFGtU$D8&e_- zWr~wYbF;;Ja$}(0+ucvom#g2$sv>X#$oSkP;Jo)$jg7nBU-NLPUAAhsy6^Wxy00ww z=>e{LB~J6eo@bGhhh#W3!cT%uhtxzO59hGt2RG~otsemPbGK{H2YDSn%gLlr1CUbP zr5h7|x6*QO>;$Bg@#v&SjCb(0ER>dVZpU6fhqOj5C}|Ao;{>+M|0oz&{EaC1o$=Da zlSX{gG{rG(X@kN)n&l&mVR4(wSz*!Y25Vi==;+Q$V0`o>46|V}f;@Y`3W*}?7)ZZ2$*()d2)2?(odKYdQOy)hkjO8dsIPhg#ijy zR@9a~bdSh#ElfZo|lDq`40`%PnpS{CC3l~s#L&KNt#`n{#Y+#?SWSTT(evim| z$`#o}QBgwz|0Fp&`#0WhcXep#QL)E@1Gx3)KLtPkg~BJFH6%m0X8Rp|bBKYM!p;-TR$FBzJUsQX)jT`TD`c$Sg$ZL8a4 z{5}tOK0h30v%kK2bh+W(wRt|YCGV0iczV*C-4*C_k?itoGa)F8Ig|}ZH5yNiG2@Fx z)9Kmw7}S0`v+9hmBK2_6R{0jyhsM%z$!9hMUaaZedPZ_NS=86*`0jfi?sS0K4Z;B% z`^}6Tv@fPSvRY$wars^-@=?_tekZp6_TFW49(=kT+PGg`nmqkMETqiwz@hDSdKu;$ z>4>QA7^m5jwoaz?s=Tu0-FM3Vs8X65AH=r(W!dS|i{H$OzhWwmA1mER1j%ckS?~O> zCaQ2YmB4LxVWoj>J2Q%;&pX}J$-2((RxS%+0MU}!R5#$T%aTCuO?QgCotKkrRPRMLa)ffG<~(kVkQg(4~q}} zk;t;e4JscR1D?I2_l5sZFS@LxM&1KH0cR`)(Wv=28T2Tl8`H2I+SseRq{8X{c35$X zDUFvj?R`!|+x()RROrjP!XhRW?)YF`=|V-`3pi1d5VHwKH#_>>w3gX`PXzldfrpL& zHWE369KQ+(x!^?5WXh#DO`|SfDc-~yxo8<1v1P6bOj!d>Dz{FR`9@^s#*f>k(z{Hb zIPKj+4E1pKi~(VaRMSgn^Lgj<=NJ8D+14Z*D8RQ?oMz`e@NaRQF5%#a3?W!3QVikB z=+fh5epcwVx(c6@v{>)%Yp7tPRiBwBx{>2{C@A<)q3{HkMu3#Hp+J%0JWKCSI^}WG zv(qRaMV+c8?LF|y+aKNqLX1}_I|J`VQqa6A?CM75eLtSQ#hb8T>7z~ws_eec@1 zUTgd~6mSln*u%U8O!n@6xtb$#?)-UQ^7v6O zuG{Z2Iy2vC-LHT>CR5Z@;NC3al;E0mnxlpD#d~@VVw%t5^8%Btg4{Zk$8K~CaGY}7 z$38RG~gZZYHQ=^m}K696A_D50TMTji8*J>lor{X0(JA$9P|2?%PLzDqgnaBZ@tGr3r7wA-p+VnRt(Mkbt>s#4kT znRNAzfAVNP#tyoHhtt5yZ?(y3y&d9fl7^%wP;5Z~VStfVx#!SYrhuc@iPO;I>-tat zd2%8>K86~sB>pFSj8GW#&tn%p<&wiOWQ?ep#yks4g z4|?2uO@n*TCjC76qOM&8k5@!--vnHvU8FW%hRBfL0`eX&z7~FwjYiv?j}__Q3F3Nq zx->=(JWrNB$P=NFd}$NWfE2UT1RhP8O&xkXq3Akh-v283zIc-?lEqRQf8;f^7p)rL z;IXMM$eEAZK7hASw)W3OJP3$}LFe^>{ZZ%-$ zVYg_&i~NBNSu)*;71qnyPnV1C@@iYFilq{L|6nB6C06-M(EQ}rclcKY=;E~I=8Z$L=o#{N^(lcLttq~VGvR;14ks6@YgK;k@24)! zb=znaRJ5YC;xN`IiE298t%F7wv7h5<)V7wX)X~@1k6Umn54LEelu_3>;mO>XXmN@^ zqa3+F7lI}wm+VzM#Xuh<#h-#U;#{R7XH9lam>MygC76drj&F5JcQ#EWnHc4F&fohB z*t)bN^?Y{X4QhBae11`Jl0HdHe`e_@2-u*;k&zj`qdlh|f4hoieIl_To+lJUTj3Ul zFPKnS?;x8WbNqN==|z^Xsu0|@JWRa!ebr-<@d5~^nyBUg4kFoChe2k5vU(Ot1<~DF4Jmh2h80roxu`? z_k|ynebqHFYB+7?&aYngHp>4Q5YLP3y#DxbS1lx)@AH(N?{pM6T9+)?vXCk0A$U9< zuwg>7+9dGQR%k#V(CAzzULAL|s>yaTk>_PB*m{W%dlC`o1HA0{R^zhzQtqadk6PUY zp~7Fl2PZ9#Zyw|O8v9qKMw#9cs;`Z|H#oyRp4wcONvCdJt4!lhl~g-&rkpxqJHbyk z4tt*m=0xU}E^ce$M6qknSAz7Wr${m$%UE)O#Muy%MsU-={%sgFAkKM*9l7R>{pBqw z$VSTsH>kebQ)OB>tk#h>;JqalC(&Yscpg+Cpn)?}Ntt+T-&J8yyRfH5!c#zF72sD% zGm~To_lXT?FPv?Us}8N!bso{-+#QvPGJqc9`~WUK?|Gdor%p^G ziMEelyO?ksp>NhppBcESwE|%Z0>ze7zi053BzZ3II1*`xt2Ytiq1cpLTfHaRGA8HB zaYgJ>3wj^Z-CQ{tMjNV!nbgNu-nq}m%j^Z#tW2jq$Bw;1e(W;O@A|2GI>&eqW?b*u zS#@$UnECk%Y`5=uteq7Ks|-w8y%Y5n&^=>(wVwO>Y6T2jGsXR$A`_FuVBykSFWBEv z`50k;TJdX&p}sK6OJ^pIVMU$VOAGS-sT*=_NTj`_ADcV>3vK>a4a0_U@p;X{y-WN+-om+mi7s&k z4|2DYQuY~1opbu)3B+HR*hn#1Mp`EgKkj`=TM@3WcJ%UK{MH94H!Zj+;Bh^F;L&Q| zvXES-(hS5{zEuQx&9xWmQgN!)?{v|(W;iEamk5b^U0m)z5PxvIoo7dW)^NNn;WG2o z;1sOVZ`QS$mh0^%I+@C`hNki>vNm%(pdIZ~j`!E#|GYHa@e}sDaI_T2S<0i3p+NT^ zvq_n%ohX^A4f%Q%b$nHEJXRs6-E4w0gEH_NrN(V0gTZZGCwYfD5|7!040qi5>-Qo=Xw?&3tDV zG@FkMm$ctWWR)8iTNW*W^?SrkMgdYY@BlM!d}z!0CE|N#Rj%RS_B%J}=kfu=A9%4!xWDM4B(sq=|r z6~~C>l$E#k#_>`f{G>wLRy()S%;%7nkAG@f2!F6JOY2`PSI*DRTUk9DG>>IK*fLPf z`DW18(4MK~{;mL4E%hyEUQ;705*@fIpR1**yHH4{eyy3_^o{2`7mZ+lX4NA-lQQ;v zN}RIn-r{U2OoEsee^#7A<1%(j0rsb=a`s(5;`m`l;rOZA&*vdk&RuDQVcg{r=+^n4 zdI{Z+ZVUuGfH}Lt>wP8GEovy&6DqWXnCZp!;ws9<*+l#f(HnQF3=Iqgez{Cs8+0snFIcLU1x9Vrtk<+%1oUO!n zS(44{=I5)(ib|DGV1u8Q?-X%@Kkqm_LaD+rzT;!8C#0SoGZ^c1QDJl$@OqR|6DY?*psL{{svfxrf4Yj7}1d@$lmDjuWdREsPr_^_pmaEY**N8DL z$qXxR#km0bO=ylH$z+5En+^iyyJ&W^I&o4=*m1XHv*5^&NV%C| z!PA^K4P=acRAo2DmbG@E$=eiujNTLK%HJ}69@Nl$l zY&{fr9Cblc)9KabTm9UYB3|ds0&IWD4Y#)gU<=NtH$#Q_iF=_G;(v5^S;)EN4=m zGUR@&oZdL=(Pz*7U2^){&&BZF3e7UJs)-8a2y97NsY@f?>*!9wL3D;usSqibC8;tu zn@PJ5qquJ~I)-G;-=3JNpcKC1>BQN+lWe4^%kjZzc!ZdTEUa1xU>@pOM{L2Wc;Pbt zzg&Rc*;&hmZi|^@Fqs1?g;#}?U6C|xWJ-inGkiD;ZC^cDeD2u7`cUQ%qU9XOav+at z)(qBTAoz2I+`w#M__6|NSDGWY*Hp2!q9ajtiPSzTlNJ6vQyil2LfxhkQo z*G*Ff5Bc%5n;w&UZ^;`BHL_w+DijH7FTa*jFTYDA%lnwW1kBgbVj2JW$+-R7d5e%g z1BScm6M-#=3GC0K%+}c2&iu_--)7Yx!&;r^su;qCwm<#+_7%Sc$^^A;;SfqQ%6Gw2bRmcYE&4F589hEadn zY9;qUHY5SrQqM--lRCz7?ctrC$K&f#lV`oNXAq=`PpH<9QPa zzpK-%+A1`eVcS&;hl!FrpCC%a5)ZsS~=1U62qN4x|EX&Nd1RHIvyWy62*zph;+-D!;dbBHd} z;k>=%b*FlT@I4Wina?Qxm&9zBzc{$AaX90y)a1Q$7Y8jC+d?@~Y63pVterw1Qm=-=pMrnaSpG)v!{GTLRAFmXV)!QUSjl zUq|tBUrtD+Qr>NUl3<#Ys3QlQJq>FBhQi`8XKHDun=PhtUmPg??1$ohb43k<5`Pn^ z#vWOO-{NmAriB&q5_xB`YX(=l%krNwcAkbSPBl?I&?>b|@u&tt-Xd_taEB=ypIP9v zq^@o#l2UDaNam_d_no-XxADVEYb|plD)+@trn#%{w%aQWPlXJqRE{d7&Ws8n{OSp_ zDK-6~$&V+}!a?>NKj&SX;V!l#6dmFRx{{ z7l#N~X8}Uj5{zTNUw)@?0Dj_;9a_NJ+T{6g%`~a`_v4J8Kdg_P;o)=(fh;d8r^7Ac zluhbnra)RC>pr`6_LDQ4@dnkm9kMU=S96O+6^NqG8w$w2`_}nF6y6>gButqpu?;r0 z-8E&;c3=C=3GVt|@u<8#1YP)peaSdDYxUU(f@3aj3zk)&7CN7%i+i`^<5RQf(?ode z*y?WbYisIvu$cq7H+eX)IKIRQb-g^_Vnvwk0Ui3qhT>2(tJVab208I+m<>Bzqs~Fa zySPui2M%@RE9Q=8-icGCJ! z8sTR|rd}T~Kfo*r0Dr|$DluEXvAu6quqt8}8MYkF3`d9O@Y0=M(N2%82M%Z=Bz;T} zc70j84maC7*-WuQ?QrsAS$GG}R|8tQpP#&teJ}j-32JTYr`3saaiPb$eFLZ=H_#d9 z+%fW;c6hlhsDE{66(e!n&_gEonI>ys7JqY9MHjpLHEG>D!jA?Xsl&&=PD zpw5nR>yVFFu=@7`j@02V;3=r7!fmUMR3UwN=@6c*-w+NDhF0jQwz+qKpmn1OQ!_d< zU3KV$(|V$L;&;GF-U&BlhNsEafbWhwhl7do4D^VVO?3q?BXj2Q%?KEAtHmwd*5I(O zKqK#{mf+y!n)RdW(;?EtYxTJ!L%)kj*D74E=yf=fz`W4jHMI-NN7V3E+ZEBk3y=P) zO&r`sn~9rFkHgH|G?5oeH~q_GG*)on3@cXT7yS0yR$gdD8=;I4iu8H>!p zJ-D#=2RzQor=9Gkoj60WS+5Pku16MRy0Taq6tc@EA~L-el=yl~O-{2#JfHar<0GSv zgZb>8p}qC8A-iX=UPqP&7EUWPYALnYxX^mj`P40vXL_nhPta0SFT*Etit9BQjo_XyxAz61300X zj0x&@y(FGs(fyLVyUbrvv`taQ?=X@slhB}>v+rSjqA;O-t>b>25wZshk-9BjTD2H` zW*25}5wn~L=(6+KL37@!YzuY5diqf0mC7^#%a+NHsM>>sx80rfZyPh~Yio(Un{W4{ zpUxy_I;AR?Cn5<>svXDv{5ZKRg=)N_)p`cnq&p!9L**>9!-*Znw*ORZ746Q#v)cK! zEi3B2-j!XOX{u^KqQX~#wUO~Uw*EHWI53`8TWQA^w%FNxZHajxy?cC`^rUy!<)e6Pa#?&AcDH`e%GuQ1yC9w9{`(r}GWJ_HA_z7+#TNZi_Y z3P$p7`m+w6&`oczx7<{k{tBMt z9!3GNp~Ke|?9s6x4+?WEk72khDj82rjF)D~G`8G_gNw_(i9Mh0y=XSu1E`J*hRVl8&FG~%#6M7Gq(<;3!$1M$$(mV zu_C0B8IYA=5(NFe7zO?^UhYnaA!AMQtR6)&iS4ME^QqdiX8)qH^r)5*ZDEn=+iZ4q zXsdU2SVuh(!d*Ne}KlgdrEBD^S7VP3f{=3Ts4$$@b6##ob4V92NCyEY_ zd~px^~q76 z>EhWUaz6JY6n^BftK3r#vW4=O7CSo}9d-e7-`Jg8AzD742flr;VpU|@dYJo_R&!)h z*9OzJJ2q|#JWB1(wOCXxcWYdSd!UU4BOFM6b)mWb-M&(~`c)->c9TbCWBXzGy2FD` z&u(2smHaOmQE+XL3Qe$K$;9c!wd(zOS+Mo{Mc2 zURpPT*x4%aFcQzlr||GLPF?I0u@TeFnDLQ%9aNO;YK_X}SZhEB&6Q_%b`;o%ynppD zg=)yC>8;Au=&;3miRt~1EPl*uc zO*+bKp*GWPsYIW#?fvXv0j%glceC|FUqPJ#J4!3Wf>&8u{*Pm5*LaH(0q5}mD;kYZ zo5hf(cM!KgU#|enAA>6C+VPd6Izm@|3I#ri|zS)TSEX;TZd=&;MBnJd{a zDFhx@K2vrw^(ePC23-|3LaM&b47yhFG|5=8Te?qepAc)c+}%@o3F`^qKJPE!7V9$^ zLH-082KwtK*&DkoTx8g6{T$fd?|v`n=Jrc1@t7Vy&uTg;z-joL`ZlpSMBLhUt|B{x z5)Tz?KhzOBkz=aNqNE&@PnnE7pEcx57QXRjWcBkpX^g_>@1m6KOFBwyC#y2}Cdprv z)&-7Ue-$G~&(NHh*xO`<$4*h6UeMax;*Q*sLj@jasz zTOC#&o~GoKl2qw3U5t}92g1|7=jUl@B5XEEKA;6n@&0`I&y#pQi*S7wP^R<8!hIN! zvR#SkpTnJ87+YXDm79xF92Um&e`aE?{dv70ADsjbOU|^8pG#ZFe+VW6PEJp@n=yDf z{>H6|&59=p6yfn=A%FDTmX{e^p3b2H#Tf`{<@x6c>P+xNrYASQ@;WsXZxufcJy9*0`24vw243!prg z;`zgtPS&X2E-oAFcYL$f$ouX5^!P*YZ!W~#H~SrpFLY83AUKjKuN*3XF5bNw-ERD| zLI<2K()qD@GKZzAALycn_RL`Ur{_@IY%V_%sle(zyNJD#!XOM~2viHR0tZloABbl4i3dSR49@}}`nSb7URlbMt9 z0`!^_IXBO*ECB!(9K)H0wx*?`;(||N@K7AI$Fcd?RLxw)4sM?92w@V;%o00p%@;K+ zJV$Vx$?kXL&~khZ+fh`6x*d;3%$)@YbcTXaBRMpkj$k@M?bVp=TZs@kcyXz?`VDMe zc%y$|nEaXIyWeYRsRT0gxR*0jM!@gXEJq0~5``Ift$I7kFVhU~&SyHZVzya-T$@?s zG_jI2KPHkx*+jTELt9||J;ppgu8FL{-IyOL!LX$O)0S-AKfa0tOC9! zO^8{IOXy1%uL-`4kZn9zzVvoxU1FIlM~T-B`yq+P9Og(wQ4!oT5VjdTP@zoLa_i16 zmohz_9F}ev(RyDsZN?o*Mn|);t7TY1TOP>|w)lOpFMzDFM4p?RKX)CxQGnBzA85t_ z=k_dtz8=|8gVEm9-!N|F5Z$lHF?B5BW>b}W6LlgqxDYCqxR~)wy{s^TYf4qf+OP0P zj>;|aUIK>;c2#+m6+W}F$doiFaZ?{{B=SRK|M$N`D;}b0-k3Z6s^~M?>)6hp=R4Ya zdMdA&k!kY;WXTd`eN2HF4ZoG6+UX4GA1Qn^I@@<|zKAOM#N}kS+wW`8us-fU`OQvU z#)ePVcoGLu`U%}cW{*SlfAEJhzwBkIFHHf z$>gi|{Ftyjl48{u+jSVKm9mR5SVicbg{+I`tvfw%Y`<-6>_{lyC|p)h8B#fI!h2Q| z(eW}^!CS>YU!`+y8{uBe81J!GX}k4h8%KF?Bw2OjjQ=PsC)b^b%~*{xlKk{c90nfK zdcd0j0~vPy!X2XbGhEEnn{%fTC8}9$WfnUg)L$V9)XS&Jcj&*CoDbb79RrQ8BIO4GGgE;3;H-7_$Jng4ssKK+pfI z3cK(ee+_twZ~yQmq_=9HPZz+l$X$bLlBkd{Of`}tB-i4H<@?P{j86HV{Q+PI=``}@ zaOMm=IiYU&IQDZcqcLUvnZwYj_u4j&?`%0Jdh6nK-0&F9o#vTMO-LfPBl(N19Kyh( zEa|gstjgrF{(k@g57*W=c7{pHBpyHxgP~95E)-HEy-eH{+A>ArdHJW9>Ocq`%b?}x z48c@L4`gY^^AB114*ME?N@|Z-H#pirZ5<%Sg32&&&w6=+{yD!`e3J=Z5rCDutf#-b zlO0tI8}v7HFRWHObxa5zX zE8Xt=4@U78Yf%1ED_RH7YcoWz5U*cUb@*PP4@-x>X%RC-wSpS1_X9HE%pC6F-Y!WJ zQVKpn_Aw-3_yZF7zp2ARCzlc2F{ZDiz_-x|kS8AqM@YfRDux#qd z6zazum%Dqv$3HX4cx>)RSs!~xxK9wjmJdPvXo>JeM&#flw70$XRvqE@{CG&gkx}EX zaFdDrq!hy^kpsL79p=ND7EeB`0m3cxMl)A!E0c?A+maNvgfD?y!@n`DZ3)--*M3bt z*ldXQ7up&0{T(wm;c)HccfhrroNKDcR;(2$HBPcaA33@85t6vWh&m$m@HyVFa=`QI z?BIAYJ2Aw?`+Pa%exA^$89i4vZ@7(HRNyGWHK{ciH6Z_bk6}Xn6P8Yn@gWG z$t(9{ygoJ%y6^h@vOaOiE1hh#5ga4sGvV>(jCUy+Z|19z%wd${#wm$XMik%0fY!Mu z=Le$u3hiEUsaD=&e6Ngt#?ZJ`5jUKM;J&!p7&`JV-tA0GXwvu#c#8Sr$kb;x>r_f@ zehKX2g5rcmlwwqbu#{$J3Z?5AMqu`Mp8%=bgCP7rKkisOW&2jIa$j$f*YZ`93xOq9 z?_%U@neVDAVFUwD`G-;I&T8kB1>}PeA<8{#K5y0PZnX6pWf(kLImC?#s z6tqKiixcdX8+F#jT69L$4v^O=!|MFf6pL+D8u!_0g>_%)Abv=H6CGG289LY*AC9pC zRYyx(OQ*HW@hJ2Q4?W>m$k;+5zd+L_WvUg@GZ~$L7CVZ^neMrNygqkEuHIak{acLi z{~2pcmlYfyi+ImXU2pA<*!i#F_oUNm0`L?sL!Z6{x{3I zX7K$ZSjwfJPGBLQj!ktQ^)R90^A_?mO-1`#(z*~ugGdNt9g<1Hi|=($4v0xaZ$g@hkD(Oss_ zuKu8o1BYaPWrnm>_2_)M|A-}A|8^fHs=(1<}WmznDMN zD~;0@uxsKv=L*_G7}R|XZHV_{fV^*8DvyEk_tU)9&K;D*d z|8%7Waz@7|9XH#9B$J9A`2#8$HMKC2)uP)ynlJkWT(#MyY^BLuNz7x@ZTW{RS*iQD ze?G$kH$7eFX8yi$^{j^_s+mqR!FLecyyAW@P{f}jNtBY0tXH@Rg?Mba$QGtzsfcMGv;m`F zt%eHtaSAr8a~(i+NXLEO3lednIWme?%vDapuIi$R|F6yATzVQH76htsd`sWE|6$S? z9D)!!GT2%Jd=(kvCCz5DcaGKnIxz0scIl-&=iJ6#2Es2!g^b{zZ8ev2lEpxgFAyze zb=lxy$wO2!srz;2+zsxsIlfbeOu+HqawG?s^vT!P$i`YU`z)_TY9R>i8F~)k>glpj zc$OBv$7TqR@FqvAG89Q55YT=&iOgL$obzLy+xU*gy4r}{js`g%X`Rhv zW+6}De>CfVW^bcO7=NqcW@PL*i^CsYkFg%w?=sn+Tk8ZmuAI3R=+SefH}-kN`W$o5 z&6PRP0y)eIA#HxiLfr5fiF22>qNrcna3Q}X3>3%JMFaCU&#wo5l7XY*V$fSrKB2nY zw77TY3$%d$W?R0{Y&w@%u0Jc=vsDW|i!i?Z)P0-ly2_u*zqO91NFQ_FXx0?Mfp9Xr z7de|s$ZQb44OQRd0AT_`2=jeW;iD<@n3Vfbr{~N9D8XIis}zyPo($&>WE?_ZLKAZc zE@RgIVU(0B`rX6N5Gtl)ubXAyEaBZ5WFceWpTdg=+u{U75oQIqJWEqq@Xs3pyxjf$3Kx&!Fwe^7?~w*b5*O06edS-O%(W6f{& z?9N|bYsKy)T>|$vn#nV|0I}&6jnI-?JY?aRrA?4F>Ymbpfd#(8QBEJ8CnTU48 zMY*U$2Lwm`cAOqU%(w0SoPCA*}R=8PRaj`8R%XCg6>qZx3FwUrvwiK8mznwiwd}>O74C~V4hmC=Og2J8bfhhgO zHjo(`6#`#TO~r|oY$kj4Cp(1@BwTKzsgQ!( zwz9lC8yA^nT1ftpZ%gG8DjhHTMuuSwmh~f)2ZXCx$oB?-O4o%vWQA(3)dk#Y)3k~> zV)bekc#|K`nvn!iv+D2xA>zpTH4Au}bl689Gu_pB{O`!KokV?5L*qHDAt<3XRf0?5 z>fAf8EWpCda~7a_^0gqSb04|;E{p$Gx35rSY;7jF$9al=>ou_T?#{KjakN-OL5_Ei z?e8AKnB{oQ;UuzhWe;8{#3|l9_dc)8`s8*0V|P7edEmoW>XROu{aUiP|K1O?T{RZ7J`#ukHRD03Hvj2+6>g60^XW3mE;lyq$)Q?r%1l# zvMOZ+m0L^_>*Uhm(1&gwpmm=wY+ObC>7Q}boRihBZ8;SoJHJo)Zl`K zXjYn@bY_ZtCckTcb7hH1RmFzqe@sl}#(zzWaJ^Omud^tEar<>5Qq76~?zv4u3ZOIX4&H)-|*ZFV32M65kbP#SQ@eBHII%$GD9>;~TNAbPFst>x0QYjbA zVU=O3E`Lk)6${S5*`q>@`rqWqjKHb7|79g!$uaK)VoZjWBu26FDkoQ+!6{DVgdJPc zZzV}85J=NN28Lf}^mtg#d3x`33p2Qrd-Kqw9e~_JVK@@HyvwXO=rL z)+HiaR_6XM#MWYV7rQoJ93erWFZ_0)jNH|+%CY%hE`Y<9;Gzqe>-^2^`y0`+EO0=2 zdmn2S((8A*=$i|@5wpJ^*4%M!j`2}PJ6oO8s>7kLUF$k4=3@(L_u!^be=!*QI%*)g zM7;dR{*IiFD#=_G_4?jgdTH1FeGl|9TG#DI&LGfMoHZs37+BAMiq`i-BV}?V@gi>p z*Xl}9JO#4f)$Z~wOa8}A@A_0pnz8AA>GpAsH{{<{rlJ|@y^9Zx-h6N2FOnxpX)G^x z^_=Q3c(|eQ3cp^eHlTYpr^m%pQloOmMjXNjnHP=}8|CqPw*EqVtGq^(B_kzOxR5qP zHcF--#l>anP__n{BDbXr9uGBCwH75tJ$Cq|z;BZvwR3`YjJICFNrQ_=D z*~IVEL@?JT!t0c`I&%0faHk$YG9M+#r>pjBQW48fH974<0~pDCh}eN@i*E0nelIsY;|AVt+q;a;*+WMDe-~o&X`+lZHo$`>`(6=o`qW-v z2*AySeO)948P7FEm@qPTE^oTZ|J#<0bLTBLc$mU-)?WiIv9<4vXB%DSFG^gH z^b6Puf^?4 zVmQ48i{9evpHnMMoo10hv4W*`lA$~e_l^RgN^jMZ-lashOK1=@v;z4AcZ9} z#aQ;we+XhXSj+vJ#a|zSSyi*s7uCMvM1^nfLuE$chL11_#XZs`^Dqw7#t^)f?)~Fr z;g!~c*0&hX97rjQV+fm8HQEFYjG6scJ~O|G1-nlYCsEv1j$df%GQCZPaIZXk1^jsR zQp&HCY+KyC2?62HQ`G!#sYotJ7Rh)_k$&4fUSAFfH=93>-&66??@QOuh4{_+|I!-( zFp9>A?&-Te=ayVncem5i%h$WgUqoU|s1Tn}J7yPS8vZ3dD1NpdeAu&3E;uN{If)1E zH){hRn>C=SP)6c1@eT;Yxo^z(m$Jqs^3RHA`m_Gbd83+iF4=*j$v`Ol4oSz5LOBDa zAeQ~z&?s`8av(fr9;avYU$@QLpS^ElF?Sg`Dy;I(Yrf!8kaM4urSGWYQC*4RqIGp9 z|Bn%tg~=)@egzWpeyewGY}i*yNqX8Z)S^Qb%re!C(wKokhq~ag)KXdIsNPC=Uv!du zkIRj30Cw|?E*3Sklk7R#(;MYpLl|I4~R|*sW08fN&FvN63Xs|szC47f^lXF0=UyJ*~ z(~Mm+<*SR7zcI+O|3}i}b*QG)Bqp^ssJ=pN?uS7agevi)s`|V!S~k|u8cGu{^ehmZ z#H#x-6tZ!8zP*nz)dhjRD5{7X;!Lb)cT1J7R=+mEoDN77@qccej+kFU@ZrBA44?>x*|kjh6e;zk(EVSOm22ZHiab})}9~XIJu1b5#t`{vF%>*xg&kJWt1{6l5}^ zQobtH7B#X*BsJ1?K+1uYbDgf)xIhIDBe7YUn~AwcmO)^V8IJ$WFIRk2W#c4YzsdhF z`|({E6;x+&II6e* zF-+|~V^sH>2Yed!cVB;22HgRzH+;qs0)BOBNJcYYiy}$l4MAQEj0h2}8B8m%MK)7BF*_M8Gs+(Q#f3bj5H)-|&Lo*x zOf-d2Y0DqlMCXiNS#LB#7CD9O=9=#hHq&miyW2KzhIrpz3rz-U(vaA=a2#+Uy`E^9 zT4_~s5BW5NaP;a*QZf}6nf?Un_Zs-7XH}4K= zsH{Cm+*B7a?$?C4%~YdijG}!0{|riwz7d~zNAt+y^Qx;)Ulz2f`}g0_Z6HY_I_#^~ zCgj*(%KYz{;guF?S#HS}vWWZk=o@WyCA1y)r_zc!P>^(*=1Ty;bR)#~Xjy+9LUJH% zYP3O|q%bpP-Ac703cGV&O)gf{`K1vnJTf0k#9(@hC-lS?rZsE{dTd$DX{;wZX6A1N zB2321KRmmrt)@|ngPerA9Un>FUwS$D*&c^PHwc~mpw?q6Ayme;AtD5?TF}v5)M6|K6ftsnhThLfDRWlPC=oj_La?_qMH7 zgTw*y0{=PZoS7R_D%jr==978!(&}$3cJ|i~=CeTqevv!xwp)TB{}0&!Ex%02G`l-v zJN?F@0{G3LqWCrMGuTb0N~`5ms<#~4eyx!!{MX#?W*YTuw7!y+(lJHsIv%7VdnOCK z1M_aOv}Br9{$H9#upg11fC>(Sj1w!dg7lt}6v=!EGrq;S;q3(>YFx3PD?O0I=5wWU=(T?j3q%>I(gHPQK7ZEx5{2*2C@p$56@r zq~|BQ<3o7VQNy+b#f+q1eDyJ=!@siANNX?g;0!W%&LUT7zSnQUGSEITS0>h$4?FVI z(BJ$w8Kwqup@RsjH)62Qvwhz0oF2Y=BswcR;3~|yttR(SrpV7Hfa2oEmb)0`P@*oy zMi?UpJTUiJO@{9dvt2E407r2-BK|s>kbg*z-rqpj?chpIVWxKUm#F-nXziC!F_Oh^ z#4>YwP%=%hNZ~XMoop@iIUOY>hV!=9u#2_k>UMI+9Z+HrwCN3k z+#l{v7z&N|8GO#&brmHBJ_HrJe^I>h)yS0L;^7g{%0*54%EZkamY$f2X>?46rM>dJ zcV2s%YZT)A$ky&oKe}{Ci4OOyr5P%Q24Wxn?J~z8zk%{^l!oyKByP}5ehHf%Ye%=; z(0`joeFbTIKtccNJ2lO7Y|`&I0@ODnKGl~?e{Y+F+6btB!gmjU@K$)po@qH>CuPXxcW{O9e=c zWpHVjvO7XE=?Fhr8FYY6j%;Ejr@Ee4M5lV|x~IqbA}P~}8B9;Nwcwir(@M`X|EM+( z)nn;qKtZ`fKxVD$zu@_BIQy3Sc`UZ{!ykd2pMLUMkPU_d=a%>MG}o?%3{IWGqg4sa z#2uzaPwhx7WCjTS_@Z|EN#`2%AT6 zLmL9lK2Hw~sab1EqL1%=SjTljn49BpS?+vPRVV+8-f8>13XjIZ;q!d8zo5Q6ve4{` zYnZ`x2N}uwCV_uCUK9|!PEydQw%i9-%nmN-uJ|7i0T?{&-`{MFU!DTe$E{rdWt?%a z*>IiC9+XqM2@qzakoku6#KZ3XXP<`W!AmxSzt&dpxA=>y82W!zIw&QObMxG@GxgK% z`l7I?tOnBex)PdF-&h_}Y>>NeDl*)^t;TdUnNnJR6(7XXVbdIi5u*Wn*#8|)M{F11)qNAd>#PlSm zX2r?R3{iQdvcm0r$)|P8%Vpa~vC=ExSwSlJm!;AwJ=PP=;z8PvA}CF(Gdx- zH<+Fuh7BBp%P7I{=Cx5 zc1p7i8YUv0izm*pn-%L8`B_|77$N~)?g?p;mwM~ob_IKINbv7cCh>YqiAV0X-~kbj zBZJkfQXx&WZayFSJeY)yH+)drQW1yF@=wiu_}Mr`%p%oHA<;C^qZiR`aG_fRzVZ;N zx8TalG3{5M&~VjkI~w5l94oQaTDo(Hr{y=bb8#Nnetr1`7~=BP5J774%KRi{n}h07 zLdHwOgu!;C%i>^(Y7RxDJIVjvG$V722sr5S)U$5RY!M|JA@I;%wk3hsah4X?I2I`_ z*_jeZ+$H2gT>$ZO{Ruuy)Y?uSVE|3hs_WOFw<1~dIyyTdzm%mCDuDPIn?leSZIYb% zQ7(`eNE+|Hf=9s87cm+9BJV2L1?9a=w zqv4J%vLv(Py^meG7ZWj#rEvBZ6!dy~#VQ}AF2>YVglo>>_FAPI<_r9ZtOKJm-HI#{ zFwhr^BVx+zg?<3Pe0;(^rh8Vz-UHchtH4aolP*)V?Cvp2E$FygteQDMc||zHXtqmz zk1HaQ^$S^2f|I=&AEn;=EMe35hchHj*fa9Q$ zk7w{>@zn2kPjY*(-^7V%i1gZ9;+=Y07N~PyJPR-=fOc~yatUZ zJa$(ZEyf0tC<3R!R(NqIu0r#9$B0C}WsX3Avh0iM{)115F?Bi8Qo1{S_QBT`XQa_X zBt^VW1D|`b9YB@=I@8D$MNgyTVu)23B6F+PSUl>N*{qy7R*-extQ@i(iXE<^ps9lNjS2piM2mDyL z?_A8ea%Tb{qVce%TG4eS5qVFynWTgi+uCc~(EEXXdJs<(K~drL7e|WAVc8b!ty=Vd zaUHv9@0X}bQfp(EySpe4+Xwdb@+xqTi9g=Dbks_v>$B-$`>^&r=v=i_vTW*SHeK2E z-@CF4CoK{4>e_GDt&seD9TytUDZh7~&aa$(xb8hFtH^YFyM>i)YwNW0(X~{jsBk3? zoYPL0D4TI|bS5}c-b&4Y-F_29R5<_Db?7rU#VrgbUB#XNp9=s?Rrs3r@$=JvU@n`3 z`C|)J@nl8y7u(wB^cP>??txNGU#dO-1Pr#Odiy#LHHicA4u|?Nu0<+Gvj}_jN2ed- znzlqSmezy!qEi!q<$84;HIo|w$(ruvOC@vmaraQjUmy#4UP+;=!QK=DqBLe|-N(*a zeGfMkl$nJxzX0sh61CEa;#cPU4+hXa!1uRXAb|M&z&dz@0_XmPu zUWQ^pRH+CuCu#VD(1n{*?)+ZTa$jqTCOXoPTIxr?`Esu(h}~h?y<7(cw9qY^X?|42 zPxzZFe2sS4i3StK<+wPL;GLoZ;q0sc&s4km3LZKXm-q;EC^86WW1a=W@`1KBjG_k7 zOnSqdNFhSh$I{LoVhq-QJ58tn z9p*_`R=S2nMgdD7@P{x8pOTZ2A|?9&WcJ#>C`4{YGXY{Hf|4Kwks}yI1O!0BXnqLh zy7ZWcF7PS$@82zTOM;*aO*lDx44bqekTB`;JLri}`ChvM?HiYm6!|l|+V&N9G%IMiLtNNfT~N)fn_k z_Nzz_2$hLIIhpW1qu2p#=Fpy7&Q#3uY~`Y>ZmItuS( zO$WYWsz>I3c9tr)P->k}dU?5d5CM};?my;-JMQB4C6@o`fFD z(G6fp*jRM|ukWyhg8A#HJe}$~w#pcX{}vWuQV1U8AVe*r`u5*2vuP!TN0SKuQR9^I z;Qg@p_cWln?z(TXq4OFGmP2MKJ!JfwNL1WK_^F7*E~$A0ULKPApS@zse&!w;%EA;8 z43Mya8#myTY}HXp7Eu$czM?fXrH}^Rhx20HtqEGv-8@?jmHtB#IsqlHFTgxc5TyERTj8@d}1E5fERo2|%L)hr>oKZjJ_15ft+>pz?t6w`Q$evHmf}VG4$AoX_VN1!iImwX6IMAt6 z0f&*_muw%K(LdOuk7jEZKK{>vFrBLx=-gepR(V|o0qc6;hK@t{ldM0lUB8+ zsu>mQikgs#4-1Gox{wDfg+PXzV>?6yIasa1isKd@Fr|5W;Xf`H*&D)^52~OIUI5;1 zp`fee_>lZE_I4fxw&Ubl@k^HajHSwYv>xqSVN?{~=eDrCLe6H!fiW#?;2*H5=!Q^) z_(Ma}nW5_$PmhtQP@uoAQ^6yL^kr~?;Ox8iT1oCZDnM6TulFPQmBqOeHjwx>oFIj72?sSacpECIcoSPD7_n%A9PoO9{St~gQ<2xJ$qJIBL0YR(%^DHEcse%)Y4`ih z)ho}{TUe1>ii;i+U9OH|5>kCvyp%hv)W=Xi0YmonSmUVFUm?(QpW*OJbrvz(eOYu=N! z^{*vmZ=uB90-wC~S`jX;p8}6wCY1H=e8hh@G|((X@DMyw5XQ(!(sV&m5alSUDvXM9 z4Vsp2J#`;sf+jb)BhjfwRYkeu{NU&e!{s^tYbKzts+d-~=lvIGY9ng5OvN`MZE{M1 z$2g{^B4@I`#Uj!AFHYcbPG|F@w77a(ns!v8vEE%qS1T|F3YR1^s%clX7uZyzf zw`ixqsd)!vW}haP9mIenS@SLK$IHvt3-sPp@5vCtRy$wMXGnnh$4LVL{0G^E#9P_Q zse(rWZD}}7^zxozTIMyEO@cwnOgsNQ9WFgPj{&$GjJ+%`uFGrF*iEDBLhi@w;)E~J zW^{OX^A}&V&7xb9`|72;1RI%k8WmsC>_4bU-Zv)^%bW`zNV-=_%PX=sUgKEFQ_E9e z0kd&L{uBAJTlY+dPcSSfC=QB(!FI?aC{yl9drq-z*-S`#A~P5E?;lO$%a?^=xQi6e zK_f>jGr7~pvTGaNz3dMU@htqiSsW|Z2;Y$0TFg^JUVCH-;-xMrzIym9_Qq^zHJdxW zIhC?f5N)y9*}TuV+!2H(Aa%OTW6nH>@XKxSeNbun=JM}0MBCtF2tYq;u5`B5dQtm6 zskp8o;cBMPj}s-`pPs+1mAdhJc}du3uzNY90MO$I7mf#bdX}D)+pa6Ok;~s&jcJ~Z z@F-(mpL3t>*tvQ=BouDrLpAYPnVtrl(WJ6FrH>hMG!Ouy6!57(Dz_gUe1j*y4iIbl z*och96BT1sX>bF6a!Qvz?l5TaVPu|C{y9jslA7t!vTJdC{B+g2>8rdf3gT(GfXm$Y zhLtCGEsJ%3lfPjb^-jkGXjGWO(!!UKmoWfzcwYxq7^8C(ELrL@}vLhv?ha zie^~-CDjeCCPQ6ACnZv3hvkK2m$1TtUGJAURebM#nfrU9)0j~}-ZlnruHMbxxdh)2 z1b+!+$az?DJSo%ZDU_HWk$WJ6$p8&$6P|Pi7d+DMmKq&o7S0OPk!2}qC4l@ef@O3u z7JTR@N6&Kj~>v)8j^Gp z?Z0%KWaaU6HhF}b%W;qc{ZQ>c$!XV$aX1|>x)%ch$Xf)S?h5w@-I;G3#UaGp@FI1X zfibPr3T+Ar)fWQ@_!z%H7D1DY9KF@cP94tt=W3`U$o(q41P9DN;Io(_kjAE$g7qbo zA3n6i=ms4sr4GemmB)ulng%sfUQBTL{wT^<4Q7cJXoGe*OQ5nuMw#TmXUWV}O8uqj zn2yzmTXZAF#HJ8&fvP7J?F48@)XCg`bupkm=54XuY1=IX#9DhHN@Hnryc(#eJlbV( z-G_vNs3KOqPOO_N=rbPfsYdjFxAQ2gTz;-q9xCazcAoc#Fz9%Hwz{B%|LSdo)88BF z1RHP)Ty#}dF0as3sjs-z;=f&J-R`+h?N)ZV7>j}*N$qtnQm?L9?J-@#Lveo$fsw*` zI|RwAETyY@v&G(-K8&jgj0{t0t^mh;tK$|I6>(c`V4}t^6XyRv+bn0^5Osn3Ptt=6!H>w7-S?+QS5z z4;|z!w3p$a&Xph3OKzWgJx5M|wrcbsSU*_FF_CG#ja0{#q zxnwd}oUp;E(AEyi%M|?@C8amDmeq!8PnQaTJBqg&ZksNjLnsu68#qrlM0S~7`onj6 z1RcHBr)LHOp1Mnm_aHIz$MJ>2k>HQqkumM}1*KB2PGx}l8UkSfg zq5A7+6j@Tu|Gw+K34 zmG8I!tF7-g41vG7-LYA1KS#dHz~>-^xVkYwReRb}JNs@$rXq%|=-sc4_QY7qNi>m7TMgkad=O8u2I#wIdS1xy6Z(G*;_}7nZA!p=0*#P z(a?le^YNKNSR{t_>vHf|t8fVCv{f1QtMS=1ppwSAs#4w33kv`2IFHkX%F7QkGsS{$1k zzwTBo$8aGzuwasOPXTnS9vy(J|1!4>7)kVpkWXU^Bo2qXI1x1OfI<1E;d_-4B%}Z; z>3_&U7D}^^cnl(9=*6%C;lP{dCbp(ix5wKnq98Kl?$CSzB(V{w-ELoVTUy%5^td7_ zq+pw1omLY5_z%$6)o@r&%9#_vO~f8CWYFcRj-74$zc$E#l0|X=I7H>>^q2qO3MQhO zq*e674ylxwFC++m{@{d%Peq%6OyZrs_NS|9Fo6{pxJW@{kyIG4wi6#M&`o9GF(J18 zesIHo+FkUk=eq#*=0CYEgiN`oP^ZASU7`=+RcL!_9!IP=w-|dsZ$B2jYkLRmK_81v zg*y^P;Z!pb#tdtIA;V=c%o?py1HcH(1URuGVD3x(I>BV?7>*W5qGb|hQd&&Lmb>fa z;Nr2@?i>|#UnklUm2lDwvuojf{Mlm68?h>;IWn+oqrEJQd39bokyou_1OJmN?m@Q( z0(>>BS(`du{&o^EeXg*y{2>I;!|6r4 z_F~g^pnqw?4Oqrz;lzc;PC3O$7`CY@&S=?mDE}=)Iey`ZedQA29$K2_=>}cwNSUtT z-f#w+Dp7GzE*qN)h)Wgn#**WvKRx)1kzI<+Gp|bdV#W#2D>F_-WD}8jN>e0->@^op z<|di=vW)5)c|2HczGi-n=7n95rbPEOFWd0BGL2_5ReCD2Q*lvhsbp8Oqp<0L;-2Zs zJE2AKD0i)klExDHjsT0#R;x-Zk5R;dU}v)~5h?paNIk8m+bf6f&X4nY>)Pk3Qy8zc z*XK4W3aD>C*yOmZB)GHbU7$S$1LExoEdwx$gq9H#0~~pT(c9tCEc}f&Hse}OS@Dm? z*h_5pjgxV)_5gV}ok7Ds*_^oFN7_+hnnw(=w2Z!0&!f&gG6;@PcvTs7g96MAVo z=`16#;7&M~kV`_KFlHMLS1KN10_E;=&xee=TXh|5Yng4sQJF4M1MbA|waUHc>0D$e zoD2^SW@vew>@h4AVLR=pK1wEyH{A!WgUPBMd0>vA5@Q{&>XK3l3vCQsrcoISml%yz zp`x{9Utc2nQ3%fbX&xzmD@<_6aX+)HNBXY`L!3id__AW=d` zV8qnNmRIK(8EOH~127~0{<8HAn%A(48d?trv|%?ytVP;tO43;rPiO zCnX(O8e8+p4Y}UJyri;s+e8)jRF7X3E2Nnnv!XTn91AX$SZ_3Z5Sx%z9W#2~!vBhX z^GU!Fa5@Q8ObOz(;5^J;CG@%yIk<5xyVK6O;>OAK?oneMOY#V9a;4Kul&5Uz;C|%U zxHnJ!4$xNGv>GV;aM99x+aH&1yE3Dl$>IW0V!g%@@i+Spj%0=+J^rk8(W%T>Z`**B zWbho7eS978t!yoQNLyOPM4V%FJ>oAAHMbvZ7%upXffk>c-x(8RYU9P!NBTm}YK`CC zp20Rgo$k!TE%q{5)ZDHy(GJn{zPZ32&ysuSp!f1ORy&^{)ov6@iSWQ1mcpf&;FF>| z8dXm6ZK=m=D&VN-Ov0G0u_f0jQ%#~c@kVw$Q%g^;*>Xv*Q!h+S7prZrvb$h@Ierl4 zvAw~33+YP6&F=~(v3xhlnBN*cQU6Oj&ytI><45_VVAoF_qr#Ld*SK)JEW812+$<-+ zpa8_&PBg?m{-vPOAae?=Bf0Sk<(d*V(UX-4I`JV7X|bd88{ax#W8sSJqX&*>DM635 z>~;m$V$NT&xpR+HC$Z&ir_+cBe4rYFzrgG#j8kpOfRRmrKFHhuzfg2hr@zif`v3s{ z-v396F6RG76kR$VS?I&}pFJ6CLBbk{3ejVLO5(4i2UKuhg$v-_0g+hH#%M9-%8(&> zH)(`%A`oyH?$FM#?&M-3NqvDG5GX?s$lnEHp+tTfxp6&a)I7cxc6fQ#{9gO5;hJ)J zZHCiPdG7vO=e}C)T191XkK+1jtMPoYdE0iiu2?J1N$z_+F8~?<&4N(J%`v+gjn-iq zh3Og}FAOt4gC-6>Tam<+{ABXZ@2 zx`$*jb6hSeRSGkjn#Y;r_bkbzRV*yy$w3uKk~B6(u{p9`0xBZK^D|=VKFMasxSN`T z|C}Hohm^*}D`1$2got8V{tm(E>9)U1H*=2CF;1TS+c?|HdHv~&^XYk^?P|L|mw$c= zTU@aO|L*#G-6xFp^Kq$VLbX)s?%~R2qxEX7(QH%>=7Z^cn+GXL(Is+0^yrIdZS-2qRmXLzh-e$Wj!5{q2 z#F2sa=MrYJmB5l@=*5X33yhAkpK}zF&;p8~?in^FQbBz&MgTer2*m+9yoC;!P{>AB zVRCZyGddjZARIakW|q849(@S`%{}miHU<#tGY<$~CvY{OYK~W{)!2%xq=UhxOsVFK z7{RLOM@qqz;Sv=hMJz?wM|0-0DD|C4mDDsOwe&1`u6`wI8A#_EA~I+f{o9@ry}PT> zG_V|G3aAiU&oytVWBxi9jS0$7Y?i&ti)m8^+olMdA<`{G5VL@zjRB1@1H%z?1c2c2 z$l(6S$mGGqq^NkyIWflxybO@4l_6LumX8h|$CdVapq|AltA+Xo` zyQCZ@IiF~Qwi8p^r8Xal*JjB)L9hOjL1RQ;0eyCfn$fL^d+o7(uD}+ zFU{r{j27u%zCz;NuOm<~qTfqImBy6jt;##(lH^6;h>`BK%z{a z$y&XofsMDG>FoTvl%B33wM=n7m5_g4#c~cgEd8Tm8!TvihLmImPNmnFnDTm=E-dW= zgUU>cI3z@j%s?k$FH*jmlPv=MOoj6YZ{tZqI`$7r7|HUns0e_h$kb2bgoHG5bPDEE zI-Ee*3LhqE(m+U*aFPfeXr#dO@U*3RL{d}IzydQMvw9p(AdW}{I7&PuS`bhO9Fl-| z=?z%n62C-(9g{(=&BK0QF42u8AfNiMIHoqf3!@sUD5bM9If-o#_TvKF*$_;?1r`>$ z*bqRVABwoJmM5*DP%gby|F{!idRja4tae3^`1|=8>T!#QrrRVFPG?{bChg0n@{V%c zkiYzNoVq`;w#W~$(LqLP6-JtnBMj>z2=ji;6vmk1JK2Xe(BwP6vkuH1QeMoG@4iwE}l9pzMO*D=%GjJw2a#Dzs zWX}9Gu81p&tyu&Ks&K{v}P5dqJ{oViY6!_sH5r^7d2OzQ!#ze zP)D$_gu!pD!3G8YaaH6E7^V0!$6#!SZ-^||U&F@NU6;z??&-)AG5V8+Qv?8vuY#SF zI5}||R))H9nC#!BhIG>97)GYob5yJiOXX9szmA*?u0HI2$&QJ!cN&8Bk5(N}9cQ$$oA2|5TPS&#*M+Uqjc%k>>UzC*m$ z>E-i9k(NwDBVSEbHHFX>EMW&+;HUqF=Li7I$#3;}T#f?Z>$Xg@jX}^5J8SNh#o8<} zoQyiRMm()A8ggcbn4)@N>#O~_W!8q25`|~mW-vGlvs4&XtWe*y2+tH0T~CjK5>E_{ z6BhxAvrnU_EHEOFL3c$anrA&vRQYHi#wa=Pq?eYB#sa^p7$Ra!X?k)&>Ub^@bcLEk zIW|qFJlj{YOlfmJKQ_SL)DS+oLnm5Tas?~g&yKESVHq+-BHLtB|#FoJfEYHK03vcdKz4R9FqC3 zRIw;CTKX|B)OD885oueoyBw(CHlYXE|(9$ONO94ch8c*id%v{|d z>?>yk9pIhpKeu*1x^Hy7;pNOgo+xtYX|S>$HG(4Z^H8yQ!kV&Oc)CtxGkRq(wXi0} z;F*t%&zK=AsM|bcJxZMfeUf15I<23R!?vx?l0l@fDQt5Uq1J2dQ?h+Iy^@wktDAxggJS5avnX4pd(m%Gf-)x!^jy^K%+$0l^hgu8Qm2lm z^dwM%Kj~Jg#i@#t@KY?F@|s^%iFk>dH64sah@+FI?8$zH)9Esbn+D3D0n*)Yqi79M z(@7~>MH#m#2Np!ku#PbcP{^(=V#}hP6 zy&siJ9|Ti8>-PTC5cTpnPb`YaQzC(J{~2sp+13*kcnGf-=2oTiJlgNsr=OML82O_3 zWqvwm?L=eE1O+NlP#9SZA!rf^AfTDj)0%<Wqj*Uzz+|b-8bI(oC_QdObF@A2o3M zGQE2LjA!RF^JCNHWXb1HtM;2A<&oZ(&dXFBcAW$$pL+eXlFPQ8P=`|d+#a{3ggDh| zsC}%U(VXpiD2On22A!toU-`XPStCt$_X&MxE>oPZ6*hi0438d0p=O&)6; zSA4y1qVUixL|boXlX?(;5Qtdw65)rUL3t6ll(#;>(_R2acBa8ks`{m1nd+q)mJCag zvR#`G>uK2I><#8X;V+q^@ph^{o~G9Uf;wlYnafpUC(E@Onq}vzS@h{e!Q=_}ilY@) z8zTY?OlfEO-{E3`%}&MHtX$}*(s^m=O73Mb8p3oqTZd_vEc05G$urngaoEC+u|_v_ zE``RF4cn0QiV%`t&?Q!i9rqbe>30pYNrH`afFyu?X;MYpeB7siRnZ|4MUD1gOOqdw zcLIUwV`HjJWw%@Y>NsC1c2G$&OOU6kqHT#`!KJ~Vuj%>f95(3LkU|8sebouS#`+3f z?XO3gMk37jxJ-6agh?S1uHEk2(h40P6~8`Q^7K2sMCf#YJ-rk@K3s0VR;ZkF74&z;{sTj}hdQ=kKw!|P!wS43`a85*NH5B)N{*n59cLTc@-fCB3F4nf3=P!J(H*>slwc}sIFc-xR5I<+}4z2jUU#ZFIZn-YGaG`b5dzA}2 zdH3#Ix*aL&Zhj6YW*B{@5;fyLVc8wMwrYF4CP5{tb$8@VmeFd$CfU5Y%QUhuocu~i zm-5qonb+Wm;mu9e{yS->``I!}Go7x`VHLk+vbUs*gcoV~RM_;nuIbnW*KD)YvHyB+ zfwrVM>8JTLH@!b+cAz)gIV9?ps^hRr>fC)qbQd?PZ+b$XLg&mOeMCG+Q9LuzjG4}l zXESd~3#Y?uZK2T2O~+WmY?h@|rPXk3qCgJ%O8^^pF>85C4Cjj_=R3Bj)?Z=MdWVC! zB5CQLZ3$vqHN3(Njt6M&&JYh{0vPUZLT`DSc2m2-VeNX8=Nubt>ZOv(D= z+!}Bd%$!o?-&qI#IGzBcfuyk1TWCY5p@pNrsQaO_g)GXzi&$tY(7`*%1re|vV38BR zF1~TKd5jX?w?%|UxpmzaFudez`@ND~wUm~PDk><{+kN)G!^Byy)o+{$al1}XfBW`Z zsm(xc7aBuRQxgtPf%#{PnVg1$!_5(qHYCRmbSbQCm^0b}tcCw1-IX8JL&isIm@;BF zefL4H(>Atz7c8bUI7T$F5^{kMDR2SjTW7Y0hAM16IxoP!G5<G1RH%ofnO`=vG2)zMDp&u!rS=KbFb%+mYrohH>>I&Y`T$5+oR z{=I@8stioAgevHxqQ**{*CvJ*tVgcW*+Hx*A1laJisC2|a!7T+X?3TI6=4!%^Wxsp zHC?;WjZ&&Bw9%WNF3cVD{m)DSKSV?+#-~3yvSwYZCeNdIu6oOr-5t56rCE=7o33Sl z2$u> z-c6p1v3)-K;l(y_K0SXTemEXHW9U_DzpB*kwzl#;^{e60KG^0GN;v16GTsR&k(I?a7F$zLL*VG5v z6zlcOn~)JZ|)MzV)dTF)e zlWX<_~q+zlsiU08` zXn!Nu2_luQ@HUrIy-H2F0?XWESeeV&{gLOc7W-2@%A0O=&2eG6yY$UwgyUm!`G>F9 zotxeF+sy+t1`k8+(Qojd*IUI5xgYa2BMKsU$F`gc_t9;O!+(2_0WS{GnTq^P9(?e@AJ_JO3P*aLMfz9IyO1 zA+K})+sx~*>tsds$c0kk?!~w5eA=hAXz}>Ab=);j%HPI02R?@9;Yiq}q}uHZ7sS!^ zad*|DG1xuIe@Ek~W3d_%+0qNWePTOb%xk}txuT=C{QSbR-h4#MqxaWoXEyHb@ik2LiSs%>moV$Tb96+z z?lRJ$RmbD4cl+Jc{xO8e$MN>y^(yysNauXEOQL=&0ci!H>(ti!@nZ0tYhF{rayr;}51QfzOst(W(Z+<4J_{HA^9zkU0rGc4&;+OA`pifmzVI)D#`UiGvW zgp?{?G-16#!u#!ahgW=x7|!XHYW1(V4JcQXL}}C=X483p|A(uIRI@JFo!bc;Ee=1P z=b$(+?Jc@5IHST}W+@)K0wO!x)lr{))<_*^55}sf9)Fh91 z4L@My2mp6PvYqC`whr#Q+qwX^p3?K2J`nF-S6RAm-Q|4(v05S^){<|-xK+x&A9)BrQg{Y@8{imRYZ+i$qPpg zTeozj^OA06?t7zfT3x~C!hux}b%e?qRTJ^iNhP^oZ;uSA8%Z%4mV@v1 z&d;pBcHT6!W-_E}l%d!e+liniq)8y34+$|Ao$+b_4_U*I1Je=IIPuPk6t`oH673BZ zsX+vzbQRIb))@@x5?{&u0cntu@hLf13vpKSLbzxH{-%Tu1*7g)N5MGQjqEWyrZ_lP zO--zBno(0nrq~&|F7ZB|+HHDcoU+oh&Ky=b^EKJ<_9&e|TfT32oR!F~?-;jXx=pX$+=3*wuM17znI8aK;sl8m~yeY`UdI}$=N<)0)g0S)QvPL5F zZtE4snRQY7X!Va4mAsitmpw1ZhGea}m=liqIL;d3iNkTtz zf`j*?)ldS`*Ml{F-}b$|2qU>U9r%=Pms8P|(ug2Ew;G-pYGBqiYVvK!5I?a$u% z`N-C?xW=>`E@Q=h$ouwL<3mRdRayEjH%kx?LYsm7$7$tC*Ubgh`nKBE0^G@;3!TXo zC#<8!+Kiux)B4NO>HXY|^h@h_%M^XouMYj$99LNle~&N|f*3Pve&6Ucz1$oVbv<-6 z)IJ!z=iKHSUDLlD=OCq1>=*54o*x~Mur*7Vy)_-_ycalFxfwq^{8^dmuoib-ph^9` z)XfGEXs~U8HpRZ1a$&0^W`*-VED3x5gC^+w8k5zIhBNMp8kS5)8R@}>K1nyqKF8j^ z@QcPs|-(c!#6vZ#rF<{Mzm?aI> zLFx^}67rf+>``}E*^736VtHYHdBYoQ6>~`dQL;66g$3@8rkNL678VvYo6HIKeYdk?TOF`ol}0ftDF0WWBUZE}Wc+IP!t%0>x=GD`mC<4T;W` zDOFZi{((eTq8v?$yxx_i(?CS)HoNO%0GZ_>Da+*TLZbNA0gi)BYv#xW9b5}v&FEG_ z)%~{Lc5hhbB(3%+ks0O;z^sXvjc2mDNg#ZR9?N;!o~g8%yIjf2)_1R*K`!(Qq2 z)cafFET7ypGkGb8YS-r)Rj%KMDSgBw^41ANbm_i)E7OUGX> zF5YgLIQr^xna9Y;FI2e;q7Es}tyf;>C*5}+?YB`FuROVIb!J%OSq_S+RZ~r9GdO=P zv9{elE-{X?=Cq}n9*ljI66ULY?xGVrnkMAWZHQ?Kg=-geh7j7cT)4|kGK`a~*Haw! zS_ar?S86qAkX!<&U-gu_!h1otU9vk)fiTN96&`YKJOlEZMTZe zw&^c3I<>ObdrWYh)^E%nW!xH_&Di#5m#@uRt==c}vN)=w!`P>?Ty7<^<+!dYDel;7 z-v8=vG|HN%Q{p7U_&)7abDd&LbJV=D-u<%m+WHt}Pu0C0JQhEo`L@AY3v?`|r*)|T zo?&oT(wrn{WLV0xri8mR8VeewSCLWI_{nj95ybZppFwB8q|=IWo!Tpu^DP zJs(dq5sMAOU{ zZ;|O?n{#29$OpnzJw+V48U#$0 zlh?2JyvbdyirYHT{3>%bQtKMB|32ZiRQfx=9$dk_A3L^} z3T-Q)Y^u??5pcRo6m@p!wS7tyJFLLC%C8XeuGHw>FUffs)I=r1NZD`Rc-!-95csZnE@WLaCr@?os;Ivc5q`t=J$Ioi(x$f zX+c%GZ<)3Drx7>#_aCCu)T~Xb6CH9J{y&975i%Prmf6X&xv;VVge$LfbvtCg3WG=S74^IqNq%V0t9&qJaWh>@Az>pV>r6k$Q9a0N)JTgM^WrD|s0%b&-5NM>>hHIIaAw(`gZL2(Dg&{#~ zvW{taP?bdK1lx*BiC1DrO0wGIE1Z@Nk1?MmCld&{`&ZBS3+F4=H|F1Uf5p8@@z0WR z6x3ok!>>lGKZP~9{KwKEn7Dh!#8cgSA5PtPIIijHS$*F}eqHHGA#~}5K}`xMm|t}ppqB&CyTexe^l%RZs}~C zL}I3=NiyTiP^%JJH@G;PPO@wSi~h*3#5a_)5<|>;Qkg0?Jo82rbnJGzIBa)*Ui2|hpf>aD^mYwAxXcI9dz!yz&$ z79=m63JDP-3fGJRej zXwhrZxjPJ3Z<`d0&vP9PXfi18j8!(_^;o|vUVA#3ZF0;8IA z5SRtMe{&2Lasdgn7A@2lFd?tczLdG|b@5f288)h_7F24PuS>>?T1xPz8K#hxyTQQJ zHSO<+v_{EQOSM`M!{ULa>pvHXt9FAqzbHEXM?h41KuMvf*u zZb?RJ$|fT{pHhDv2%xn!B*oE`9%O78nD3t`t%<}~aDMfV$PWr;{sLrsp#q@(5XpxU zo|>SkWsmqd;uAP<@fE+riM^Rg30`4|T%>q6E-c1_02bFk|4>8JhQSQ_|1Zns+-h0h zp?p?kP-1Kv+J3ZF);?t|17S31SI#+y+lNaFA2SZw0U1=Jj1D_4WFuxg1j|&C;YUwF zyC1d3u#e+l9&Ck>{*9N+d1{K-$)#maBXqbOA?jOiDd$p}t?43~ zbqA2_;&5GAy>Z(=CfmkBW=;67rP0S9HB&2i#RlUOMJbCkvZVqsomB3|4ogJ!Z$sta z3Y%ywJ;^E;eBT>lM}#?JMC%>X@Iu35?o-*FG_9G)L@O*SjHjd(dI&04;=E`{Dv+ch zL=K2_bhX73o}CTD%TPt)6sz6vDG~5&bb%JSKSqofxr9ehtzGnvP#qJUW9FSjS}Vj- z^5%M^T4G1MRUQnG)>H%6@1b7*2Tj))W=RjM&saOQZQHhXY}>YNYsbcpJv;V}ZQI(h zbWrzU5;uvPqBF)_Ft9E+K6SZDn-s8&n^DP6F7Yi$t;3eFr;}%rAfBrjG#sXAs*4+suv1YZ>65uq zWgk3rY!S~!vTY0x#I7`tf-YT?uDDG5QJ-qfgm7fUiKSd)1s=-M687sczN@=xcfu1xxH*aj3_?g%b8 zVreehuN-poO$<{fORhC79P`ue&{SDjSXsChi_t&Tao>Yj`F5F#n$?c&qzU^_LzGY{ z4#wvA6vn=)^6To~MgkC3_Xy;s@yu)4$kb{%9;V$}mQma+=IB~tl5u`X#iHCi7$Q7r zXAC{reCQh;FQ*5s5MYvj8l{qYy(TWt~c;m#ylwtd* z#LXT_+@-{+z32-l0;ZXvXK>NFPBupvx0klx5kI-rJ!2`&6&!vwb{3At2 zrpX3wwAemL_e);;H7|P7FZU&ZEPPnJ2#HwdHW*ZUsUc??8Jqukp|ySQTTL5^_l#o> zdRg`ofgyD%r%*C(u#U+(Avh5@K=o=#sw`QeA(sZK3fj2*7}1jQQ9F98_f>ni(Y#%C zl{Yx9EXZ?}37Vf(m5qXxe*(e9YR*hz*K8;xZ2(iRQT-v~J7f z2&vM62{V6nUMEK)Ln_an?&%bbt!T%~MqaTwINfyhYgHs^qa@baRb!bkI7jaj~8cQ(f zRwK`aa#vlb>Y^Q2Gep4(vTI~FEj&dX+-l^>h_weyB_JIy8pN@i!9P&qu(;3yQmcEu z&*7@OYW**#GD`E;Cv3K?47Xhdf5PeA#S`?l&5m-m287yv8fZ38qY#0H10pm3T-C#@ zcjOuo+W#pweZ+I9!v%%m8$K=a@w!%TMY$D06<%W85)KI>iJWIv;Xv_pW;4&@sPy>6 zZ1MXQ@E|(@JGIbva_sIuP^kb^A^7c}zDcRMX}@sJxK@e}qhjmg#goF4%r zc)i>4bzO(c*YIp2+0+8jH%6j^Yb&7h*HO~v}=jb`7H%xywC(9dv*>!ySz_GGo)_D(~*eDrMG^MflTXNjEDM^n_ zaBep?$hY1$X`th3MCW(B`Wns&?&zD9;P4H0u$eH`cY0Q>*bw z@Vmw2&1gun3O1-Q_ktn=$9Cf%=A@QhqxUrU41G)>I#?9N|NVv7+Q3l=SPjkaK7CoM zn$)2_g|gk$!MlaTw9&3piDLoY`_>`OsA*kWYD0_0u#J&mJ);M{#Vqh=XI(k&*JbaX}->w?ySSR_IJSvtP;!plkj!5txjK;-FAN2279wu zy;IMKZJ(cn0@UnpNlXCMD==x4!{u|80QZW3kI~ap!wke_)bOSYV*UP7Z?6N~M2FX% z7+OtlE$}QCzrSHlnH6{5sdCxO4s^~EWcH3$kiW(@(-e^{K$X|2#=`vA4!^Bu9(cuiJ8A-|V70FD(?zq}6bvu{IBLY_8<8S7M| zkIzmud*nS9<7B7wEjI4{ckkO?>m2q^!mW|6v>@8qYr+(twK@!jJb}^cYc^vJ){`B# zFW2wW-Y*OG`p3e~uX<3_Rwhijzr2Y2rWFV8D_zT8iM>O0z7zKnZll$&SKLxGsjQNk zo!u4RIS{eb5$Y%Imys1<3b;N7`Y|8$U3`oZIhT|SXSoobGq_ps0P^hbCg>Agk0i`M zN{cDfwH5~7zVc4LCJns>UbsF^xE%vaHY;_j zNjMyxfN6HR#_wDMlTSgfz6@8JxeL48=@YJ-f9Cp0RM&?g5ODvT(6Rq8lEb`S>8ZnbtW=Pb@>HzcX|tNE_?aGXJ4?_@^}f=~&1 z(&IIX|0d|&=`AU#G71C6P(3Hkg?jz`8f>3PLnooI6?N#T*wFtj*tn8d8ay(q*OxTE zx80S}QquHRn09nnnYD6%GTbGc5!C6_aY-~SmuJ=m1vf2&0a!7VwBr@oVm);1Qtak~ zy`Q`>JOVPF$LWaPLzgqDbgPeQPM<-WpbP}O*4v-aC+UURf96as^EW27-ff8VsWgr~ zkCPM_$RFJvTI$?ABNA|bHXD7nUK)6~j?(Eq&cQz57XJm4`Sp_jYPl2;gr`&V^EtlP z?JJiN*Mhw2t@Z2Zd271&B3zip(1tsap1XEy%4MWCqQ`m57x9rZX6^fUrwnW@q?Uh% zV1_p=zpiZ;Q3Yyy=U}1t&1V>maof{WvMW|&+E04JQt@g0QC#TVJd?{%pZ}nG8UPC`F!6fjl?@6J z6UfZZAXN2$x^B4L+)8kx9~11;jjI0XrY|%UaCaS3NBTV!vh8o%axFXoy|-IFxOtfa zQebz&>On{s;IFlJ|4r+AU6t!s*Ew}^-w+bsmjTVe>Pxqm^|P1Rw$eu?344L@unbF( z4L74LEN$Klm|t&j9|O*48jmzrekGgVznrGrao8|aT$S8(hUy1uxK|8~=S{2#t?~oE zc&c#(;~jM?_0!9mgXCtQo>#NJ82DoM z#y=-nPYTr5)x4UZ%fhfSrtvg%?=*yX9zd+m;gFBP$LThvK*w`f0)@Z>rbkwcE~wU& z9zfeP65}l1=XZZ%t6{Olo2}bsL;Caao<2b6cL2T4`(IfXwU;H6Yp}$nrHlK$k34+9 zkMG=>6sKAoe8i5uTHrD=1G<~r=x%h~PP^j4`+e@uOW{L8d9P{dHmKL*(&!`>TOv%W|LAViU&esX^Yboni}Em+#E=^o<~nt>FaR ziof{mcIxly3mO@%YcSB>5%0TaYs9F1xu|8$JkJwgyc4@zt~k&GU&6WZTi*VUN0_u6 z*Q5n@G0l>MbKV}d7nhFPqe@&+JPP8yp!)yB$0mtu9JrY%{$P#*fs+zZkyAof#@v^y z$|GYAOwQket|E--?@ zl_av@63-Z%bGSz!`MB39cWmJ4!@!{8uzs+cBnvxMC1iAh15m_Bwl$XVxg2*3tolD> zcm`{Fgcu^RhMy;KH97u6e870t91+`~iiD<=izk&i$?`#MK1He3{v$cU$Nxc4YEb1t zJ0@G3?y;wAU%7yXpq1sz1TX3v&-@AmB_79JqEe*kFcP%U;5LGX@nm__aCohrFUQFk z-gN%wzVJf3WZjbg0OKOMHSdqGL5}9E5%Ezz5qXu`->SKu`?hlO$DQ_ zgNFt;vQ6kW6j*5K|Z$qs?tI(!L3gEIAt zZR2;M!Q|vn)h`U&>KzoDc$z${HTP4uY+ahcmB1BV7T$-&<~#rpA^zIG%HpWR$W-m7 z;7>xoaGNRYiP=3z3+;f@dM3dmPEi)yvayvB?!4-W|I*T?w9Vx%6tGftyp+oc_!1U^bUXHq0f8=Z=Yg<#5%N0Wfwi?bl?)9fYGmOEflvjz1hBjx`uxW z%tN$>CzGK!jBQ`q$1`~*f^-cAC*ul>WI=*1@qc&PB|xLjm@zE1y(E^=3YpF1q6cQEN z9^P@S&5sCL8*upr<$%dk=u9+Vwn7uPhZ=}xn%cMYH$Sk-wN$D5;mLkhGuhUNHPCqgWHJ7>;ij&oJU_eFh zIkZ~8iydcH`x2j($0>GEkWgf5OU=d4PQfgMx=f0Y`ZD&eotR4d4Dxvz;YUB(;|mpQGGmTFcjpncc8=olM z-!PuMRHW_3Lg4Ls2DY1k=ozph=&?23XgcoNOhnZ@mDQ+(5^5)whja7(d1$-1*C%XD zMA9qxnk~QB5OV6c?GWJk5sKWpm5*l?j{%Jo44$+%-=Ie%(|~;3jlBEmmKZRqbh|EDHF>P* zk9L*rvN9r^uz?HU>v4&#l?W~K$$$#|ON^Tr$e#aihGa2CqA4X4DISjJc&pHy@Uy>_ zR*zt8Z;oN8|M8ywRG8lKk(jBy=y`uSA7e~7&s9?><#pWMJte(4zQ6YCcyCi*?KPj^ zMkSbjbhopNvIci<2L}j)!y=PMR^(lZ=~y7NTkjY3vl76;(Z4ndk4M@qi>R@! zrL~wYRBZ&LaK8TKBpqn-W;_ft&paBnPtQCIPJmSIvZG~lBTo5iuPvs&9E^TJgcP`9 z^FcwN|BP4dh@R}~Te@dkv#y!+a<|aDot{CNo9AtfqxkZBGh&`!Z^h5!<}85!NV+KW z5ls2rnCg+aQ}U#7d|qBKpx5g8SrFZ!+vyUTotmwi zUaOpOQSzI*yu);<+;cB#M0HOf-wA+~ZjJL_^EWsgnTm%iiYvXAXmWUhK5CQB76}1G zL{8Kf*v$D@f$v{DF4IsuT~B+Qb$%~bpI^O|cFW~G5?f1!wkJIFtpU4-J0qLe`d9W2 z{jds0Chz9D6}~wn#(#N%0bhauZ1ltVD>isYLD&L>z5+}peE_E70-+-~5>luZJcTm@ z8a1&tHT4!|wYFp}=_-;%wytSza6p{Y{X2V+&=p0_&Zyd_8t&e(W^s^ydTzZ}oEwM3 zEgulGd?mfJ$!B*u``Lx^btsBD2p=k|P&N6uGSty+G+KQA;=l0tW!vd=xg@DljJJTO zW|c)(PI;tpBhH7}HDy9GoLPxBLY&M1z6=zZk-1 zpn3_xAp0)ZtKDe23IJeG11E6Q8R`QWwusCM7m1|gh#g0ptj%yV5(y^ELcp>$v!eJTSBpSbAhMSZ)O0`p!am31NL3@cRIzfzC}?&QmKQ2Z8oWVXZIxob!8x>A z@6YR~7+}azM!UW>E;PD+O5}!gD`EW*EOQLm#Grn!3*6;~M?cb>itOggW*}$FHeL@T z5cFG54-DT2Uhg^05%C2pJuqM~ZMm(%Re zyb0glFUL0x4NGnGf^X7EXGom3>^ zp=2%!ek62yICnFi-7=je-m6)>?UvD^4(y%!pGyxAey?MD26;CB;X}0SN(_a7hkA_# zwi>GMK|no2z&Mx$$$*C0L=kO$9QI`da1mCdG`;x;mET_}a!20KM21C$5X?zSwQC)uOT*)H z`nH^s3vAUoy)$rtlMjC}O2ZvPz>VDAK4;!iGd=ElbH}38u3y1Hv_;Uu!bAls(x1N; zD=P}NzWV{)O@QlEKE^q65ECZF zXsD&hYuwR)bKrG7HvMyVPtKI!g<5e&c7ugah$fs=X0<<%Q^XHy6gJvs_Bl6 z^&~4u$i8q`2rz0_RToX3dwxMwQGdZTSx7C6piKC*B+u?|llx}g+UpTq_Edc7^WNQe zGMA)V)AS6^Mjt3Dp5Obp{J0XXHz_sq?|Fx>=H~D-|9TzdLnQ2pP)-lBR`YG47?9P< z%@WXY-0edJFn#p&eaf>kxwhFV?CSE{>D6`jT?>-WDjOQ-Hqz`gbmc!-95)>L2e#pH zy`%4I`8=vqCzt#BRzWJwSD?gLTr0SmzVLT*f)cjkn@pvb!x>d8vx%IL*#ox$>?F8N?LCLSSMt%jXmyYkEnAL^C?U;f{nYMsR`xB^ zrZ2!df~OacE;=<_%MQARAyT}LF2EI1tXpjgpzTvmho{#k6+Leviw{l=5*lr>!zM>9 zlL~von6EupMi{}8U1DN1U=%(sH`pd0+`#rmKjnZK^yhBz0`lz$?`ww$Wxdd3J9^6|KAs29>*J(utt9IqFZwU z|1h83_2bfF#``MZq=&iEBW}3`xFOV=lcAIXQ=#w zZ68fOM~(<@;t1CvcjLG6d+(PA-Z0jMD}`Srm1ly$uy$NxC3m0bG4Qz};gsLMgtJhm z+f1PUgxQ$g+o$Bm}Lm(Myf;?3Tr_$?AGzJgz$8;^D3pR41I49~Ho3H0rP2x}r#zmd*4lqQsoSv1oB!zj{G518=2)6L zv`sy)+I)0eal=&hJ7Gq~&D}vP!fCPwz9ar3ZK(5}6txzM#>q2-ZjKL)8!%BN;a0>C z&t=!@Z3*t{iaAkp`?zWQOFIvnERH9R@AKh`R1SLF(t$vbo7dzXn)-htG*KvH!zWd7 z*Biv+WstJDq1*}cy33lmD;p^(t#K{Vi`-m3OF&ZqDxCvRq1TYtW%C?1+3P1~bs%(| zI~XeVwm@fC<`E>=rQXikiU=tV=dnldR|QfFjjjkd)T76fMp9#9Qnvny7O)PP6-QR< zzHa)B6~-@@f<6c0jB5|)PdkV50=HA6H&fqQsh@pST7aMDo(N?OR5|;Pi*N3Di-grf zfzvWpQ1a-<+76{A&La7fFmmU<6N|HFKmgjU_ILWc(n=50hEOa#{ZcRVa)cFxs7VWM z_o4{J6DRw<3#R5#T_yM&-VN=J3aPDWxw9e|&<5|FYTeFBsi*~qDK~W3zO!9#WU1fD z`8%OtqRy`jshE$Qp1;Y5=2g2}AD3l0i$(WxrUZEo(=+KVig``_bLtuvX(B9iyls1g}yM{xPWXsIZYZl44W9<3oHp^1+Z%?BtYg) z>}sG2eO_ZX1oAyUX*NsbS8{pTz%sW#sfb(Lim(X4@!+o&zJ%O0ld*OL^1{E2j||!> z`H2P-hfkvoOhW-6j#AL5hVN=@?|`C!7A&3?eU(O1m@t=YDI0Z97H*R%1U;&*D|^X zq!T-DD#ISUyMW*Jso{7D0PYN?EksL4{liud$8+gq3XX`p&}ww5Mk~3i%fyA#z$e8? z(FVBuH@(9%&@uaFSTt9N{k}wfzS?27*c+^)_kAgzG1vP99yE28agS^CT(bRzhfmMlIZqx`Zx?$OI`Lg?5tc25 zo~gj++~wgdYD>w3HDN##F)8Bi-VYiul?8sV6)XViMygb&!!hru25t}8%%E*Z4Xm83 z*l*;Fo}THR-#I)Oa>h83diA57+C}#Ab zWGw1-g!o*d*Ay_t-q`uUiOQAKoh)-na@mCk*F3H0vklS-zREj|;XJU|lr?6>WP-1d zFX#4+)nSP;Q~cHsM@VK1pker#*~S?h zg?sBPjjB%6t}+pV&)i9sE*j8Twy8|JJh^hGG$H_~+>cXb)pHUmJ)W3zWedIYdwSh> zRNyHY`{F$COmMs=4w?L!St`_U&Y3ERW*kgYlE-}0bJWt1w~%a*KpL*Ny~@L8qRuMW z=F7jbh<5|jF78#cvfwUgXs1;^ypI9=PJ0_IqZ*>46g`X1xTTR?V7jYKsr zY?=XP1$nJe)j^+__2E31n=;O~d1pJnb*U;40SD6U&vym&DTE1ZGHC)BR0T*s(vQl+ zSQ%5PHuB0`g48vihimnpUE|o^2dhm=6oX$Ho$R|Xuv#(KPLy!dvz^p~Q$*&<(Wanu zFor8B>6`QaDs=)DnnJMW=Trm-D$=+sbcGYBamkzZuI(eICX~OW%bfXD9f9;G;bxhR zWX5CjdOUxV9tY%>d+)D<3WGVE!SNguczp*N#(a18{AwKPS~WInEE-e!N`vL86iNm! z{yKpYCr4W%>KGh+E-8F6mgRV%y^XgGha=dYsuVPl~PZC%q~qF@;IZadZQF~<#?QD zg_zi7Dz~Fdh?y$x=~YC3i;m1ZQK(Ts!2=$VnaN!23Ldv^O3X42KY$i4w3Y@XhK%Sj zmtMVlv8OH8p51-5{tz>o%JYKO1{}gZD^T9tb61Bgma6hDZImXMv z9Cb|T*<}7R-q~#&7cE4lJattC~11ZkGht zK>JiJj(HKH@kw?-6zRpzQDRx<^d5ha9n-Cd|SRi z+msKKgQ)P?#5MD)YP^(Z(Bg&MaGxP5kdfySm&lVeoZnHAA7_@V8Nx$MiS}mZmvOQ* zWH+Dj;emD!HYVuuC6wXhq4ft~4s?x#?mCMIteuUu_RIE|-(LPSM+lu52H&To-`?j& zwE5}ptpYyt5(L|B+bYHHy}E55>Izd~R)%cRpW2lu%6=&Q7j`#en`+RRB)pJ7UBTjE z%Tx)sNO%8PAr98hZt5!||Mlx8cW98ZYl9f|<}j!0wgs@u-njNL4J&uLgf3Lq)LE;k z4DD&nAO}YJsD+{iU13GU1IzbUU>Q_crqW zDN>dUcw+*6>AsJbMHH|WJCD54<^2NIROeA7?MSFi2y}a_rLD$ZJxbux_5hQ z0a_6g?DC!ET6@iit;@P7P;R0$)gC~*Rhn=K-AfD6c#4F;`nAJ>1WoaLs8M?LnWy^l zJ`64E&ogvdcXykH)>SSBTD!TH6fYwnok2I=bMyxfu(FxedHO4&mo`Su#t)WcATW(* z&2!i=7V$mM4!X)bfsn6Q5kDc5i^8?g zbIFh>Aci>*io!lhCOeW0!5XaZg;)Cq{lz+|QXhhkf;N4@G#M1oo5}Wxx$^yac=6?b z=N8awa%W;Ro%6Tmja!?*#%uX(3hsd7%5NxlYh;t-DWV78-R_M0LmyzqyTX5Kbkn2M zZ7}+5g&3zl*K&~%7S^O8|4cUh58)hiLd>r@ha1pE!1!9hfJ%eU#dQvSwV(r6#|fy; zV=bIHJp(X#O56@)H&sSvExE0C!d-y?&861GfWDOCqoc)IUnsZmBB_8Y3$A5oYlm^1 zhLU?~W+?cmoA#j=AOrcbTrc~rx_kc$bZp81Yt0GRA{|SrMkaZrY#}O3glCTHJkJd+ z3RA5uTWo0OKJG1xO_a!VJkfjEbh~%R>XyM>!UZ(%An;xd0|=hJ0(?#g3B}zQK2GE? zpl4--;7CZalc}@|(f-wBHBXhOLAUA)TlqkQLw_N4ijTLpJFD4Q7-A z*9id0@4<|mm$MaLqyW9OYY|#oY(0`ps@?|OlYHt5$jMw=TieObTw`53c^|W25z;IQi`0IuSfi;*%A8Z;au4KM$EpuFF;O6>@=qV68UopW@@zq*@ zTSN>U94X8oAcMvFJhi3MmY}S)@-#85{k!xIzUR^#E=pc%#kuwb;f)F|MsqOf2Z7(& z`<0zXcSkz&%kQ~-AFm;kCdve~5-Vg8K%f!goYP%u9p_c71FFNouP)g5J7`HZ(a`UW`D<3&H%6GPk55|SlnI$SP;LoXyn?#ybGGEtU>QtcrSOyv5<-v1d! z70U&HL8UYO`73UO#K}BGskWq26(vK+`hXOGQjFBpNHsW>YQMOiRS~yDED7;|9Q;D1 zjEb(j5QxMNWtJy}A%FInHp%e|%`Y`fQdPs8ot5&Vqw))%;U$=#&@4>u1QH*4(&0r; z$(fd=4q|9gJ&lsjLMC?Z^fQf(QDXRgfU+1TwzV%q1eVtd8rVlU1Xh<|S*%WFZ+W$)!Sv11)$Ozd zjPekakFpRk3PurgwHZ8Mwb;F4wr10D0)^(U{nvB@L|*-O#}f`25JOkLLWJWN7^7f& zPqtD!CMaPsiVG!&3(x0<1oz7GpU)EAYQP`5$uu$Z8vE@P<}NV%575e$AdMB)dW@mTG~l&5AT8Zn!112Y zC`(BrhkA6=o103sLyJtg97csEp220i^Q#M7N5%ach0H30*(OER<%?GcMH^>M1oZo* zb~QjVl+;P3wsB^c|GPQAR`|T6jnTAJ!|wb0zWwqZO`hd4ua#t`btA#h=80zjT~S#? zEA#*N&D0;(vp~8u&ZcfjKKH+xVV+$Nyk&kHgv;|Bc8cjWj&%U^y?I z)T!WE0zyK(-tVThkOw>NxiG9-&l9V z-d)?;c=cUf_;d6~HuT@p9W1wi@F^_}VBnn!S!2w}d|J~hTuIAT=FPu#cw$rgzUYFD zKIbPiaoS^hRFX%i{Wd6?|0rHz9T_mLez922NV2scrMOkB_r2x)2&Xmm6aUNc!ckm* zZ?5TO-@pig_iSTn=jYz|GsBmF$z@1qkEXz9DHnb81E~0%8d<6Fuo6jR!YFY(OV``G ziU)#L-zo#(RF|KAb@n9}`!0jb$04A`Yj{AOGzKJCg<=QUydmt+=p<2)_*GMbq5vp0W5P;#0XvKspKqmZ zA92e_eBM@O(Ms1QTaJrY71V8ojA6HLJ>`;*>a4d91N=wkV+z z*gH>$LdF5%h_oPq$wq@90$dmtDtBX$6vy64={4>VqZ37ug=2sMCUc$ZBL#DEV9X99 zc>|7z+$U5}e6;Pv!VqhPvHCnAsJL3e>f2UdiymOSLXF)?JWg!Bw|PN)Zl|f}t(EFk zzwf$d1K%rO{lI?e^=0~UE%f~fx0rJ}9Rxa1&6VXLtP5)$sQOc(O^e*LlHHrJB``yo zm}CQxE|Y{J#xB5H)z!@A$R7*yi-s{SP{87s=PPh`j?Zej3&zcFcex#OkC}J6{w}e( z#%XiUbZf)&g9yBpm<2Up%{zCnz_m-OV_qSR z7l97Sk?3wJF||D?qhCfJBBh+w1^}RcYPAmUctwiYZXd6PCdEmL5yL+$T4&9QI6L1e zxhtM37K(XFX+4N#Y-Lnrj~qu7#VtXF)qQL8yym-~Rl%gHErA(e-jb7><`VD+#@B zq>5%ZnUhFbp4bq{Xo^Ef{>&Gz;hJB3W+e9UBjGA2XCP$2$D=Qno7Lm<8FjFSqb7+% zpZi5~)avyk*l{X*M4_sZJzATK_@IDAO?vy%V3;KfDSuqj>WyRsmqDtT@H1hlDE5tt zb(&R0SsJ@Z{Z0G@`hvoUk|+W08LT%O3Y6H}i%n6NSH_enjZB%2@hR=i(&xp?Mn zf-cK<&FoFQ!Bt>Z=ZV7SOKwYyf6oupXA*8AfA#wZ+q!TBbU=&gP6$A%`^+1xFGJo3 z+eC*VEp>8hz?!nXl(ND6Cxa#l6*mbicEkW$e^c(r3)Ph4=$;x=b`;WJB)bb<1d{Pn zb4@f$3|67J_DoESTW#L4z5rZx<^i-Ztkr~F2}+s<(CJUiD)LszS+r3!tg6L#%mmEl zxJ`y(Eo7arw##S3Vm$aF9Hf5k;OnCHm3ZVx#94HaX8ZO=(PaT(469O!*5qB2obiS(7Cn394DiqWd4;xxPG&M&snK33$X$Z2L02jE8~OxFgQ|*AyRvYmp}`{j42`} zDXs`@G*N7mA}N8TY2Ubspwd&RJ%VB5<7rysY~ZXDQdhsecpLQ5dMYc%DGd_>g@t<` zu7dJKOQ9&GE-9EeqSoWKB)_Z0_niB@amwM^S6=`G%-D!=m1;mXT(5S!-3%ZKAmmJ1F3?v0_;C?qM0Ea}ZzX z*YNk4cKP7i$YO_Vq=Q1`5HORe<^I;YA#Bo;PL=R zYizw)+cZwtGwf@xI-Gw*=w|!O3bo{)zAW5Rinm7*_Eii_T_;H&QU9^lKJ`wY zH0ZUKb|ldH0{i;vfVc>bA3r4hC=C%CMpH%@S1o%*8ybJI1_UC&9?X4e%pRfePhb?pGjNubv|e=OhRH;r03jMF(7F~LzY&te(qM& z08T#4qgo{%B`_``p^-`lmwor4g{X$d|AFao1PTzGoE#I34WbJvdLiMN6SN8g;VJJm zrgSoouW}U6T!L5Pvzo5q#nihNUeWo;ZvL)8MQ+>KUHR%0U@jI*0tb&;B|Qd@|fgA-MJ{ZmO@ zN3BIotupmPZm}PF95e#tpkWMvbWuE6-#uheDu+(sdNcKV0yiXpcWgB%EP?-_z|X}q z;PcY!z3~l{Bxwerm^(0K+Ji!*PJLlghk^MPI0!QS&8Eq>_76%JM3eO*jSLV<3i)xg z&`H*dKJPYDtQgzejaWonN5OvYc0PZ;-%bqL+|;z(2jIlET@&4cV+hgAIy7g%MUKg{ zSRnoz$i}PzO(4+BNu)#sHFKPNo9jQ!=XSpfb}D_l18&a=VIW1_*RyaA=-;l)AE&Kr zQb8Fv&@zIWJgIL)!O4=0W9j2}FTOFs&|sW2O)9A>FD3?geB=i+cozajbCn~V0&z4l zHH8oND}+=*S8Jnznl}pI%< z={=i%&Nr*f!*@Y;t@QM~FWKy_YsXuiY%&M`t5x*m#2N2&t0^*`^Q z2pzU{o)}xHqm$dhHGekO=qNVP{7t{WSR!8~Z9YHl_-o;+o-7a*4_OmPASly_fOFt=1OR_ggFU7hn{3Kn^Ev&JyNa4wkfqEsuOOLCvBcMdOYIlXVw zN)Yfc84Y&>X8jyziZ^B$YI9X{Li8o&JkcElcX6e65<%Fws*P-sKpXrn0R~B0riw3a zYI<3Qe&bx@$qjMYe>64F5^{uW=&wg6^*Skv7f6{k-?oAeaHZS*#pt83GB8R~9qmxM zYA@&oNW`{FhE_zzh1Vu7v8aQgXFoMY+Xy7rTE{H#%!W~&@2aR+Q`s^TwWU;a)QZYt z)jbgOD@cg3fa(pfS`-?Ww_{OGadvVP}p3hy8c_p3(<&SPgv5O5Wsh{)mw z05%XjnKOzjX{2*yh<6Tud)?RC4*#AmMi}p6F#SR|;{ktGQkH=suB4g0^z1c>gB+Jp zf=sWkeN>={F8UaWje#acJ>pJP?(i-?AaVA5sFsC#W)6KJV?e$|kfAn_Lk^JW7HoK- zVwGuDXSuM4El}9BbI|7UiicGsp2;QdBq2x+J+}^&JApZbgPO<%YT;>2LoL@At;)uc zoJ@w`(0>;nrz3B|k5ZLs6uKgjoG&Viql>7ja7;Z)(DM0QvAl+fhCfgUQi=DWrLFcC zGl7#x&J&8SO6gh=jQWVxgV>X0jgwFOPG zJ4y9s)DEg8U%7PDhA+1?gowgjJhPEELIo>HPHCxH;&?&S?3S3G2>`$w`7cEm4b;)c z;*2nC9v;0+D5-x0@*QzWnHj-RMM@NK5GRxh7XPZW`};7K4rkQ<)^j3-q?;?4=t_Vdr)uU2#!t@}J~FEK>noN~o7EhX};=!lxiS zpek9gc7f7S^sv;VLd3Up(5}w%pe*HIiT9K03l*5bM1%q`oQiijeH7?1mCf8elIu55 zbnT{?ubOIEjn2YBNUr@0H03BX$9L~fptB+cjT3Ld{MstT-)l{a>u_OV}Mai`hzFR-=rZ`x0$J;FaM2+^B)z&JIG%R=h zQ6>y_BJvGLGTN?FrYD}U&?b?)z0yjW2&ga@)cKkpX^@S0@=KxrdIv&n#1$H$tl&eD zM9Nws>~MMh!~IgP4`KR|d!YM1%Y913UPTfDpx1QVG&1QdsyLcHoBx3lU5!+z9p8>F z=9ku#SbWWwRZ&Cb+KX!r1hTgN8X|3ln+hc)p< zf5L-Q1*8{2i8MiJf;0t*A_&TtE+8O8rGo*H-Vzl7=>h@*LJ*`&uhODak=~^x5}Ndc z8c0ZX+~4lL?|%3FW8ZzA-JK^F^2}sr&N*}MIp_1acka#U)B^+5mhV#F)Bec}BJpd4 z;Kh(rr+|xJZ~kgIsa-zDynWu1h5h4;@2w~4Uq3bM5n6)Kuxq@4Yko)&cG=I^xa(U< zzPZJUn^<@H)z~1hqaWeU%8JQFB^RFCinCsR{-|CuKC}7pqoP)I`#-XhQj4O=Ag6cH_U1y?!YZe9M`?yxId!bgSl76ZYrO0+4{Be+JJ z8A0kx-jTwTmPYk2G%sr(7^GKcw@TYH#0nhF&o3m$!okmB^Kn7t=oDZ z8S#g4BUMaS);N*o#{70sZ82|&ZO7MA)m2lEGH5^WL65Jfg1~b@0`_u`L|hbk{t@0x z&kT%V4#&b&N`-tzi;Y!E8@&jkW!CQl`~6a@?E!#3zbwvVMg2*6B)h1AOT|K4i)fILqsJD?m2H9Z5U{CVbwl*gRq(mj0_`zhtRFbdaa)<0`p$tbK*;>*&K-YuSK%UG z6Q|65F^+8O_k*#GF8hU3C3e#Hm*X_EyffrRD9@l*>FaJyrYCkI-eDbX}ut0NsK%Wa`QCr(=V-9u!zM!k4}{5eS#?Letog$d2LEu4ig_= zn17^w@!fDM6LzLyr*9Xhe!I$C7)zv&OLL5+0l2P?r~gvLJ`tm{0)aNS_>KMszqhj` zN}gJ}5^k#(-_jc{2Oioy8oq5%zmPa4h?g zxUWm*8b_)!B>>N&6i_%ZO*1nSXEx8SJ+eB6yJySm$8AfvnaxPDNUC7&drr*<-f%U> z`J=1+fW`ZmS4tx$=l%DdwdU!DNwru-v`OfnDOm3}F6LJ8&dYaMUi72+^j@Khdm~!) zwCLS=#;p0-2ML;P;xwKPSG!l8?tHp@|B7j?na?cja<4+Xdbj0k`cod!^5+ID6;n8S z7$>+L5kqdT+qqNpG(NF7yL`tM7+vJ;M#-=Bi-sB*E;Co_L_lBNF-kKpFEv2JQhq4h zZQy0^FiPPU8k0INe_sK4>k5KTGs_%p&u%m4!z0rS5E5&1cI6tsQ9_>ARPiJUy3b z+Bdl-6#|ZMm;YqFo7L$#Np87eFk3GAK-?Phu!8$dDEp~=eU}USyk*yWs-zooycx_o zgCok?xGlEe_xCkhMZO6}_gyQ#Xz(rMed4%|OWMa!|LFWzIRFMLd&lAa1Cer1RfoG~ zJOksax$H0fA>xca4t1)(Ef+ZY#>WG-;e59s;t`j>)K)94IDdMRDQL;iWn_Gy?_cp% zi|Jiq&faZn&Ufb_GRtqY%PtTf*Mn~=!PKeE994N`;w#3PZ=yyXMZ_g(Frf7|jwEUL zh2Id{4*t+GWxUQW7iDzFznYWCvM%R%HvWs&G3Oh>WKJ5OCr34{m4m>b5gt0HJXj=P zs{H`>_$LcxtewRvgvDJ2M5!V)!gRU`Vm$W}#W+qwqNj$exjve(g?k1M8{$oL-7OqT zBuyC~6Ti2-ve)_N+x5w`lT)8zx6Wke^d)||={Bp>(}XcI!${uWGoH?NQu>qq{9&&v zojUxpz~S{?g+{Yuy1O>#L(b%Cz14brE4xtDXbgIhKI$s!U9ZuZ($dDLJuPDq-@8Aq zX00h2Km-i<2IjC*&4)Ub;v)PkD{&(R6pce&&zx-E=PGk4reRk4>8PNWTw zHxbe1yxd02mhQ=cyQO2?i6s$HCc!eNZO=^Ie$sH>%Qeg_wg{K+5H;wK7uwMH%w;&W zrCv4x!zn1!6CF)MtI2=$Zbt@w)2q*|UodJ)>duaK#F^?Mc&2&zt0z`qJlys=d7<3{ zI}%M)lRd%rY36*maN%;>OL^7t(b2h4uNxy?$~etapNy{My&uUBojZ`3?iznT!fJh} ziX0)gb=Mxz)fZn0VFiq$=6#PAD;O4%Y>|2Q=UY6AjWwj24_o!h&IMoswIh#Z36`sJ zVz$ARq`j%6g25~e!Rvya#|eC{m-1pKWwIY&Lb^}%?JY;cDF*{6{(c!lpPGMX# zeY)6HICkd43!`Nu@D1ze`S9Gg1|?$VQ>#?Rs+;<>mJ=`zWB%azJftcSngj{(+7b1@ z)PBk(!`w}|!>)HX(jR^~v)X%qE{E6aj)gVrSdEW-7r$Bs>*L{94TD#r+WNk`=zxInOhU|ST1uQ7+DlIF(P;YB21f>I#ZEk2zUl&K7lP6zvm&6bm=L9 zhCDA_1-yORp0FaYr&WMQ3>A4?DHh+e+0PIEt_c8wwtO6SV=!-RIEdb;e(bk2jn`<{#Z*|MXb33ggBk>~jb` zp;U4rE-yXFR9DxnS5A{}8NS_mbth>bKL6G3KJfdUx0tiLq)?#c)WksOT+;n0wi7hl zryO<6?MUeL*B3<|KX~H3NoR^yAswYvPqzbB?caqb>H1ka^Wv#bhtr*43@@F`YfG(A z_F{~;**k)smMYp9rzf{&PJZ})*#@oxx4m0*u;fIk<^>wrwm#`^&H)$YjwlxK#`opE z5^OOlI_z{DbnCwizJ=~4|5Kcol;aVtV*swc@}mDslbbp?ojm(zK7SB@Xw5WO&FmAz z!Kq_P95wsG@rcG}7XYzei}Ifw8yy*MrD;6$n5sxGJNh6Om!-Qh@FU{6aT}=?hP+Yf zn>d&Dz5Kbz(e5oyVePMpjEB!`j@AqS$tL$#Ho6PSZ?QP}o-mfbJV%Vm&PV#4hkMVK zVmfoi^g>oDHzFp6ejP9A$G)GKEN%5Jt(7p~Q&+XJQS)Qz@Ys28bnP4~Ww+}m{JAk^sg>U;Hjj!si|*qV3u_Ydwqd-P-ow>Zcc8OFVI-xnjl`zb64n|P=H zv$tf8kM>f{EQ9?YX1MyZJBq^XNcRWv3T+x@!wb1{p!1APqVwa!1IlXp_|Kfwo27J74c#Vn-fPnZh~gVu8w4)#-| z&dZ@E#kfp9N}Z!DG8&e?qq(S>x1OAV{Y5VO+8HR=O#Rck0(0Rq`hlk$)?oQkb#15=hsB>qU8LlKp4%+3;Noxmw<@{h~~ zkJFGjfn7?doulA&{Cul@MzaHK(zv%tlq6G+{Uh}rQtF>3-_R}_86HadmoK(fRD^Yz8HVyRa3l2G}Hao^45638qbxhrXl zz4%REH&O!MpPDayUCwudwDTk%Tj2f3vPvIgqP*8^I_%fpeb**W+_W$9AMvEFvp2uC zaJ`B4t%5x%A>%GiByT*rS$h1HW201QA{o3N%LRp5(=?o}Hj8#%f*lv`<3U?W7D3Fg;Ye2 zoP=l2gm8wRB|K`Vd02M!*CHQdLfK+88}|ABvS$+v(N%{D6x;}Ovg`Tdb(2r#zJl=K zv$>)3BdP7(aolYD8StLkWhg25q+n^)`ZwZ8*5}q|_Q>R0Hg7?{mZF zDuP#Zy89mYJP#Tj_*U%O3^DPL&)EiGWaMSlX*)bKt zQ#znKT$aubV6&VlhX<3+r!hu9d^1*FanbYry*J#r`vTCK0j+=mmVk{3_)OWy8?_xT z1Q%7}6!PB9ZR*GG#DdKD{i`sAV;)W2IUK6~g4C05!0(I|#6KD;$0LWBpu?1vLm*V@ zzFwUMN<}*oT+#g$AxhyJ@bdN>`Nxm@+_b=Dmw}i3*SunII**K>rm2E!FALHDkAVbT zI{vE+ag)4v*y#w@=zvp?urO8w@w%4M``sRVTIj828^~-?tM_YH<3}@DSO99ub_2DxGtIBS7B$xY!L)td= z-@FUc-vq40FT>_~^ygeQ=Z$EE-@MPb&bcrks1!At;}@wU<^ zN@5z`wAE{=2-`Bs8UB3cAP+DtK=55u)XA!>%`q^3-x!srgl&a}Ze){|`)$4Y<6UX$ zY(=p*9vT<72D{o;Y{k!q9_;#3E8`wO%8Sjo^U6*wpFDr%#&`O5m8jJtmVJBd<8G^D zi{wW4?~VG{$)ro(kGO1~G-t9R$ z6Gqp)$vycOxX`yR!^4f%x7s5xSc>UPK$8UvABS+H-j8wCc*Gg_N0qZ2!kqiq#gjP~_U1gy5-kx}9}u@Mg14DiSeURuv>5w=nJX z>*7tjfp?$M@~%q@g2OE`RciX`WDc6Yi!;`-+E&wQgiw_=<7{^3>e!GxeSf%_aGZ_B z??<-Y5;J~xMg!)Q7d*fl40&l6Fxt(Ovq}t24klCy0IMGp-kUJBlofYJOItf($Q~8j zk*SD~V8YyZCvXwjg!?53a~T3|1=%leRrQv|_1{8#UN;5&{dNUimIOGFnCI6nX9~PN zGu`0g;XGau528=|mNTETf6w14lq9KtXPlm}flS?Fx}16ZD6^^z-ah+5EJ{4d{F!MS z^{)6E_1bGyWt*?EeHI*&58r>UD7oUacE*^p>J{CaV$P*moN7*nWGT( zG3+}F%h0@3H{IEQP^`0c{o@r=)6>FYsvcu=hkfUhC|8+q8Zq3kt6PWLEu^_*IDoIM z`c$rR)68!?>_a@~?RT%kR&s;4|FAQ#@CUmQyJ@`cAjH8&%)x6nmSJi8cM12m#U1<* z@#$oy*B60BW2z;M z;oypQ9ZxOZe^@vVHujWD;LtJfxaWsJ&Xqt>rq}kTu7FKV`Jk!7vAcV?_MDJnyU*15Ywc_^7W>P@sSxEk%(+M0 ziI3$}%B-hp9e4Gt9UD1;i*ML3(nX0C>4Gz5Up5lkXVyKT)uuh>0kP^no9;=}=UWL{ zFS+l%0a>UauE>w8ksm?06;ih{mXhGC)Zo#Y&;Y-ZGG|z&4opAph#X2i%9_ z{wJ9Y1J+ev=>aBrzsT0wkTKuXPL#q@pMTpk(pBA{2>uK%i0VOT z^~nlf41XKDrdTBRz0ZZZYmj%xhf-Iz`1lnsUader9(swOWu#*`VBTZar9Gw1DSYc9 z=M$$uZMXv&y(u1d)+Uji~Pu~`oFQ}Z+(>Rhf zv#z_}8xthk;}dOP0N)pS7MR!bv|Rht+b7T2^>$V2w84qAHyr8^CzNqCZ}sf(Gmj4z zDX+Z-FKfJ5(EF7U`_(pt(BEP+?D3dO@q4`@+AV!OW5Y?e0MA*=N@_{k`40rO7k~7vcuZ)V7T~WUz>jABYEB>dP9#zn zq_HFu#qQzQ0xrJMeRDNm5C|mMcOWQ>f!AK0q#XB(wKRL8Uv73grtGo@g)3<)UjC-Scd-I&)p9K7i2c3ct*uX{P;qzlXU*nu((3#${$~Z;d70c+kZbZb&tM~Pkfk)N+TDt zo~1ox?eW!@3u(Lg_6be?iGP({{`L=hSp#0ai<@zg!Hzw;nP!PV^UjW3s%!`u(#iMz zI$r`!ed{*^Z|yjrDm&!r;iOI4&oSl~W+`ds$CB;TLTPiviHR*1xt@P*`iO@CVuyEf?{3I)W$KozOEl?&YnxGqBCNG-6wBT6uB>%;^Yi9BT^WSMTAdLOT zx|n*ol%3lNA0B9Y=9akMk@o%ei-EAKzdush)Jrz5tiKQJ1HkQ`wt-fe=Hu5!dbD(B z{_X%bVc^5#ql~lF0Pwf)fqVQsUf9dQ9qe76$hp9uI60^&$+|vwaH9UA{s!3Z-@SJi zprQGjI6ejd>I`rPpgnc!?+4uIzz;nWJv|*A{TW6^1}2s>EG*1tn3-A6aGT<9@CUW*z$qG9+EaA2f29V09ReN) z=s4&(h2?KEa2Y>g6ah!Iyh`}QB&u2YoyTMtFLv$ei`S>m@bdAW6A-^7A$j?VqLQ+T z>h&9Uw6yQ)=-#_;`oPTG;-RILoxOvjle3Gfm$#3vpMOAL=$o+ch_{hZiAnF1Q&K;q zrRU^+&dV<-EGn+5uBol7Z}{5S*51+C)%~OA=g8>T_{8L|sp)y#!s62M%AeIW!p`pA z{=p&f==iT*Gyv^?sP*48`n*Gly_WFNGv;U^p|D)G5z(Pv{K0I0u z01BMw%aLCurmW zFYgXGLq8E_@|xLSbarbKE>c{4;7lL*LqW8Wcf zdIvLS+LMQijx$$~r%o`+a?7KoaiQJ zwcXZ6*u7E+A368~VqhBCQO-CuwN~x=&hln#3ppmiy}?_*tR0n{-i)%rQ-N5hGbHv{ zA{KFBjX;#s#^=AR^XgGpEr&n58p!{>fI6=E+Tsq3-A%fL))!a{O`0U5TVAc z5e6tL{KO~e^8B7_8<8tmo3`stSWg3=m>k(jCyNf9OM;%5(B+~D(SB~t!n!Grtj zN+11Lx=-fzf5Xmeh)8V0@H>X#7<&9*l$E}FR<| zBx@2RBDTG?hBtgQKFw!*7e#hV8r%zxytG10(WVG&Bbb8CnurBX3#ZGaMJjJdL@BW{ z$ca@4B+T?y+CQTLTo!$YkZN=X6?mOq-sZtmAGwEO|APUtWMr*b1vTCD;x~%wI=yxS z;+NswY4y`}h%>=KLzL6lV8fwc{ZGV3wchv(ZhZKg5#i;sxWv;=C$mw6E{o-Cw$B>Z zgYTryOMIsS{Qf_u2h>*gZr-rot9!R;VGnES^e+kaCl1fE(f{(N0$r_V@kvDHjRaSL zkLhPWsbQ@w8;e|0uJb+1;Hg)b3?i9+_gX+s>EO->-puS@8Yq|t$DTVK`0kM&OhgSET5|y-Lp)I$BdcKeY znktFII0(bc>cQ^nG4fSvX9X-Ew(;(@e!f)7_Ez;HCs6Jv6r@$k-?S}D#*mrFIoduw zD{qVZp}D?!ns)clcXO_;a=V$e_z$!O_Lfsnt+z#C^!J99qQ%U)k${o4g~K3pOPnig zit*qPekHt>hpa%jNk)iN5VTt}Jv?PHF_qqxIvUtCt6!~y#Iw^tOCI?dagxA>W9+yo z^^L-hcl$%(nn3AT$GYw;UtV#Dg!zuqBcoc_G>IiRNs5wx&^)Fo-vy7EBWl_N9^-!M z*vBo&3Ww$DV|NA*lW|aHq@#==PNFkDE)X02jC|+usQ*_=*Fk#Tc#P@yMV&|BpZ>>EQplV=9gukm6JpY{h(fl!1J*@eImKVN=+mZ;ZOkD-~s zV9cwBJe(TFW#IV^%*xyQrqAYfuasI0scV;zjfq7I@ll8~_|E0rycvIGIkwdagm8VT z0cEU7FRj4GEWs}z$Xp?^bY{!ScPulJ3d~P-U3Slzng1cZU8-0PeQ}g9 z*M%Hz9XtW6U>>v&voDsgp79cz)CioPzyv5HrkAA-VV))te zibwL|78OWoYTX2M7UX6Oy4$G$FM`{JSKv_~>UFSJULMJTTjX$yQC zPZJt7`2sP#6Rb!XjNiC7?@eHwY3|w$?rL-nMjs-qj&j=|)k@153&?ONE7{aewkW3^ zUv4y{6h!i$`FYPFOW|h~GKf^$M7lvl;_gP0EZ2B7G%6aJG=%W?|M<2_?oa`rFSqJv zerNcR_jYCuqfd^31H%|9AgC12=wIEApu?L-!f}ub{;$uuKaMbJa0}9ta&A58*eJGk z-%fSieVDG(2{sxHF2dQOZ1Np^T-N4Ef=}^kmN5QD=3b8g_w2->kW)VkYVN4jHJ6aA z6d#VPQ3WsiKTWdWrIOqHwu4U)r@R^Zts z1wyX~3m0OqAzVr(ycq3JPIt(0WuKZ^&*9(F(p#2Bz_t#y2ItCi_MveCkao7%X-egn zRfKqw;bhH)D{kk!sQ{a;4Y_2+-BP__Fa@hJ=L+m0Imy;d!%$~KMzWfX#%bx=O_4*B z#O*#0W#xK@>5~09+alQcU_D}GfhA&y3Y^xEya4H_7veykU90O?Y7O;~=}>5{+_1cO zdRcCcvKbEQV!j^@1K`mQMME+z7ht7iLN+Gc%vrHDa{U=6-OFp4<4= z|Ea<`_TYd2%^-4XXu)91c`CpcY(UUDzFGHa9?N#KEY{9ND0{(YMmKaT02x3TKD)hj zgp@trQnw^TbPBQK4^VzZ{&sgqd{{O8ICP5qU#mW@3wv;3^rs#4`oLUaDP`Z-aB9V* zA8di}aDw!NI<58g{}so~c{suGifNnN@~8 zao*mmZQij!Y%8<&ox0a^a#PCCn{;IHQ|dw9>8{h_Us^~(6;V+~z3C>tI|_=BX;&l{ z(NME#Bv`q=Rdm9m%$uZtLvU!KZwOh6+7t|U$(G@Zb@hvcI+M_}{w5=aoJ3z4E^rZw zn8s(yD#uaU4#HYz-OYcOAIE;tfH&0#e<*N414`v*{q4S0`Xf714zk4YjkXd8vHb~I zg2`V)cDJJY7(L+y+h$mf;Ik9urRowPU}hlOZ1(Bq46CU{mGy@$@NyY~9bYmmmTWQ* zTarVN1I7tH@s^DDQ~;HsqhW(gAZ0GTNP*QBw&Gh$JQYCgN zrZdEMCRumtd+WE)9I~;kTNRK+t6UKh74^gJk2!nA*dK*_dK$xdcjedhnaNYlyM{!* zBEz8hpccPQ)>6Z~wH3>+cJ>w0iOhacs-Lt};}kK1#QMj_lSl%j?NCDzFWd6zAq=F6 zT+Lrt<@MgR{yE#^_gq`TuD8!A#o+Vh$GDu2<(F*@dbJ&bT$<}z3nGaU3%-@=hzq0Y zO250ud~Aa5HxRgc0>0GE$cz1YtM=pbkrS%1rPZwb5fQpTLchguP{vzE8IpZ2%pSbZ zOce@tAHEOHwLuh2eId|?hqYPYbt08E4W=pAdDjgpN1uuKYgjwOb02@Im|a?w37fG- zo^EDG2of3Z;`dUK@T{MgcFV{uS-}GvJNM%K?C#Xx>X%v?cNtt8dNdhrh-uQl_w#Uc z?$ECOP8A3$*xsL!%z3F!>OcyS8Rst`wzbBUh^0zF`tdjGQ#OXTAC+y$1?Ex#*6a9D zO1Lf>F9f4pN}8`Hrx->f_xJOuz^Y7Osb$d;5TFG5jOZg$mpe zgAv)}z}(NaNE--%krh|k4Uf->P=Rj&NMbs4zCc3&In={Pq3xvt9h1ezw}dSIb-Q?? z%V0QaPeB`upJ3P^D6PFWVoU}jl|ir~75J1WM`lc=0+G2C0k8Rj6P5(zZ*??TKQND* z=6{gNtq%@S(;9Cv&+3E7E`0TX=H(rER#x-^8*V_wQ!!$qpFN8;i4N%S<|Z)Uo}-AYQvvp79UL30KLTqtB7t{&Rdz2Aw$6IWO0mdK zEa5w;n$!)$QGtB34H!4t>4Xc{+MM3GTv_g%T3(=+gSo)FDa<#apuAF_`a-1_yEKj2 ze-%O!_xE^}?~m%V;?#(An{RqQ>cceb{slffqPoZ+x(iRBIJA4+;!lOuBt_e(S>x*> zWos~!Ux!Nf*40RZB8t}QmX7A6g5K$pT@%ovhQzo_No}M4CO@H(keS}>ZpZXc<*bdz zB%NvX&5XJuWP80&;DzpQY^VE!@(k&l59C)<>-Z*8>Jpzt3jI`xqVLk!nqu|D@=+L1 zKOWmJXK~@1o@gp`Gj9ZQe*1BenwHuWNpfELz&(qf7Bggp;L=+c;=h4m+^W2jRjrfO zdT0SpDau~=a!#7L9dPi*H%=AXXEA-_D0wv*G)>iZTc-6q?6ptLWb?0mc+jK9iIuwa z!%eSS4%5X|_nQ?n>;&t`8LgW^+JJJDWTC>}%Kg7ugqxcq4C}I%ak{@>b2}wkYCO$^`2gCA3Y#Cr?zBmhGN{zOXsL_6sD zmzFo1zw11I`hb;oG43X6mnDAW%h)l)e=lC)7II;|-2Acz+UCXGU{~bimZ!T*14DvKNFp)p4gz^J{?8iXIZnCQPi`KE$C7P${L z+bIu`fZN}JZ&R^3WzeGsKC=Vuwxrf zn5ji4^h~gJAqbQN>MHZ}&Ijh9UM1=|W!?M{d$1n+r5AQf;x$DY1e=Lz1<2n~a+E7y z#`ayoM={SttfT_ka)wmkI}40#2Eo4xen@aT|*A-vE(d8<@_C=7bHsBAW~oaPb=dweux&t#7ZklDdJw9}XhFzIy0A72hc zQkb5C4zQ4R+`0S;6?h|x>ptObfl>iFc_iThvWy*s@Hl>&SYmE0>u574mP99yx7FTzXX?*PcdxQog3aH7>oK_9fWU zg&Sr+TCV;DqOM!Y`Q__$>(e2|vS2mhr+LGuY4yhVH~UR+*Aa;wC$|6%X9vo9xtZ&_ z)OHBclIwLc&91z$Z4wME4yP;P#PgGmM0C z$Tq_Zh&r8t`L&)tESzMmR`1y0Uwb{zCV!5O!H?=NdY8tjK!Gbj3XCGJf+R|Jxqxfn zQte>qKDrjOj$j#6603-}r2J|K`jHd6km&PEq^`lti3;e%y4it_f^W+^(`1yw;}O4) zVxNP)thF)Unc5OK;xf{XKa43WUm8F|x6p*20I9koOLSCSJa=~OxO350AOt-q)3>r@ zFrEiPHLgVO>wC3jsZ~}J9Ft4^AN#vX^=7bMvrK(BQ5nYO13Twt9;iB+IS#Yf-Ce>6t*ui^AaaK#69~ms z`S@vzZ|PBwFt>yF-l%IU+G_U}Z$*CbC5Of@92L^e{3dKilzFSxex8s9{p4~@)QS7& zB-a2=Do~t+ns;p~AV%wt?Z+D4uWOEj>--}hQpHWeA4Rv`#BR$3pI%TIRo5n|t))&+ z)IX<)jcc6ux3J7)$o{e0kw`iAkXD(4blQM1HrO+yBv@xc(FW3)n&|Jk&`IGLh38i^ zW0$QSS^gL)?nA2#)^EFKvsM2okG3Z)m*lv45xqJzq{f~h_+7GYvML ze#z}fW!0z& z?S=&OcHshy*y* zIv<}WO#xGuR|!ah+0n{hnu|!Q2vM>sbj#2mN_=)<8_>^pz#UA%cPb)o#kckH#mFIX z`gB2@Lm%cZDS^%vgq4#c@6XBC7;FCvusx`unFm`%JzG4PbpZ}(rwB~S6*%w9(7XFu zYje#>q`6}ek7t4h58Tp-mrK?mY_j`3wJ^qYHQ7z?!lyf8)yQ&RPU2Nl*v2J3(yo`IV zPSZ&3HuJi9O1-UszL4dYrRwAnv#*JUsncq3f=EgCM9H(p1LGLP0 zKI-I(VcJ0sI-57Ysn%unSwmnXYqFisS5IoLJfr9+N&3TVt3?lGkj&-~kcS3qCrv=gHhjK? z&)iT$tU80jF=4pbGycSU6tO(MljaNZNv-I(FJmX%V0@cwN9{pI(0Bzfgw`%3T#CH_ z3552QWv=hu=|G)U=K|{=_N^d=y@huU%=+VdiF=p8DEcB~1o;V%YMwjvLmu!PMr>?T z0dPMaOX-{gW2KhPtqUiAwd7%)OKv%7YWHICV^_gM`5zXM*IXq}<<%wGIXE4t1*!SV zSZ`Z*3lw`%`t=W-n+Mf;^-0R^Q@e1=rk*zN*cHJtvM&QMs)!p`9Ba|J`*jpKylk@` zySDnXzU4W{njoD>9t{39{_!RRhFn~!6{eS@JmB^xI}-j_=4(S3S6@OrCb_Ds#WAYd z^v39&(Pwsvf*~3h%sJ%5XQL}6RG`H~BiZ3nc50~$Ehgugb*R8mA$r@a@e0dZM7swS z&>);p0hO(C3}v6qgS#pq{=ED8P6@Kg71W~Oz$W@+U6*Z(T)yu{DIuY^hJ}(H_)q3O zp00PFODJ4Dbe-d-=?K;#g2D0hX6$G4^v&(?avAs5iPXSno*IWUl_?KD-@V7@ahN)i ziLajzi)f2IvtU@2g`)(`6nT`_GMBc($NS#6C)E9xJJc-o-7`y%{eSl*F<4v}w zBs!rG`iSV?gpjz*`E8b8M^~K>dHc3Tdu7Fw{M{FNsQ}vNa6G_o^Ewp}gLa^{z=ZD) zajjn$?T89H-u@o{8o`IRcoy{v$ zxB!zzOjb&x*foS`Jv_x`WLpQXg4IG-d`@TzWKJSTSeXz**jfLQ`A4=lh~0$yJ1e?G zi;@7VHO=ycw|Oc1d>gz@t~jGs8_S{rjCJQh$em!%9>y%x^yTvjAvwn|Wq6g#=7HDJ zj613K1WQJAc6jh~u4EoumNOP7IrIsdbRDzpL1$Oj7lZ4eUS7yQNQopcF=W{W^T443 z(oHhT@8k@U0@Wd3YXuvmCTinwCj`598O;AqfWXv^TQY-hG=!D%T9!)D1D{E<2>NynKm3zCox_5Z$LnRRS(I3iTJ({6Ytc^qw#Mc&|4>{(3>o?f<7$CoStQ9c zdU(iLMq-zbkYBa2-?#ZN{_Pab0EFCnc`4Wphja+Q{+f0i6z$*j-P}<=SyPG+rN|H% zQa$sraty)R!~l8_+c#mkTp9<;rr}Frm{>da3`Do5@=~H?0%h+qOmB$RIVURg zVosDK&G=4vbS;XTEJvKg>FG9KIB8;w-8ZaXwUA$v;_LOux9U`Atja{Mxq&IVGm_Ik z`u2$WWzbi-!`N)sruURNv3WHXXA=}n)!>%z3&_>rR5uzN{=FSp7l-!2{5?is?>H{@ zAiffPp#0%&){AFJOC)Ij&UkvF8;VEWVZH@oH144x*mGdbFSHE%Yb{sVWy+a7>{RaE z@xAi!DjPQ||54d}xXGb~-fhq254eWpJpDdsw3|h$8-x+e$p0Lsn}G~6YoMOgAE9aQ zc+F9+J_{Srz_Q?MA5?&uYd$VM`_T;f!B}k&e{C#8KSX&~XLMNTbh+@WvF7IyRKP+U z2(i}Y(R&1*l*t6M`6keDCY)2(DcdhAm~VA`xx~3WW<-T zMY6Fw3LiTQJ%(l-lppXV>Nc0~qeDn7dWR6D!9(OUnD$c!Pco^%;>%zaDp2VMUSq_0 zeQA*BbQ5}rBHW`4BB3Bo);oY%?SM(L><`fQ+$EqXOeiu)Glfk-PM9#@9lnF1CKd>k;aP#1M4dIxH;1QeNIXjyf{zq6i|VdU1U1 zUHCe5xy>Jncq>YGtVYJ#EbBnRlvcN%<0!^TSsxV;;>Kw>-EM;ik>+`I4M_ETs{mjvSO(#CtPCHHG5R=VTAX$EmI7+x?MGVOGH#cNk z^$n~mDtGg3R5!vtQZ$zM_$9c_;->OsmK&<3wPha8*KzDvS@6ePLw?9d&*qBd=N6yQ z73&YpzZ}D$6F+8?didY>tnUCdioyq_oRK< zbsUR#9>JgK?FPKVX*BQigo2#XG+!s=EJ9^91#@vUku}I1-}Z23^||e}KLo6DftZ`8 z`iZbPY&#hH{TAfuFif88bW&W43=9vvCg99tNck=asGQ%)<>yLdbgCW|iuJ#I7XW?BEiCYbTh}TMz?dm?W|K zV61tF?1bYUB};jh_}kqcKN}yy+ETM!Xn1jExu2IYx%OP$hDX}^I@3(w%vMt&P0e2n zw6?Q7?M2Z=MnY%nslYH{vT!mLF^bx`L%v5@LQ~?wG;QxsD-QY981v{PWgwuH3cQa4 zkwgDIzFEV=E3Af;+ZL#OFy-452)(v~WC(U8eqTT`IwM4@@hh)nHf!DZ%W+X5j-+6> zD;{RgtR~r<@P{3oL{w)wHma2~ScQNnDqUj^Iq3bWF-ftw+f_yFMRfw z=n^_lOwIQ%07YX3@hEg7#e&zX-Rb$nx)0iY4x^36PZm;vwss@6SAlql9Qq>W5o9A8fyR5^DeK7v&gaygS$H{`P_0#z7g^ zjELZTqior0@kPkbZr2*`QKA*q5W39BUe`Utf7#y~lpf6L|7Eq@f7{=No||Uye|)BY zo&3KZ!Q^eQGr^)GpjDpuhv>OHtj=yXystIZ+@x>5>$MrBHM2YOiVDbFvANTU;_;r- z*ddVl<}*|9>itXW3MXSW*xjEknnmjzGd;O$rvoGsTo0-~Z&LwvoCCa{3Iq=^MiOBQ zP8~4bwRA*=(_dR|*Jw@V>?);9Eh@GeVE17`K92~Us7|z?^MUW_dE}Xg>Q?!vqJR-M zg+^q~+#S!_N&xk+U9ehd#PX8>N>tW*70pxUE?HB0or~%2`d;x?}gN7+BBL5#1 z)_hDIPRKfF!(mBm-%c-g^`J?PB=kw+q^UOG&-Pk_dzJ|M9(XnuiI}xW<2MKx|uf?Z% z{E$I#$2CY*M40`HG2Wm|uK?ST)p1DI=Sfnk)=maHX7w+99?x4@XxV_CIU6IuuZ#>8bK39)pQ!-^b_)^n(GQ0XU4wiYe!Y%D)8mivJZ&kqN$WvvhIF+^% z=-V9^KQ7nf!HC+M@^hO$7Z`Ro4mq}M%9=~0q`L!*cy7y8cL{xlHNkuC zBijB2yE3^A=650Obx*8~{j0T-jBa?}XnB8}nlf?{rxq4aSB`;a)EhCrWSiohn87LK zt_pNj&LdAh^f!@VnA@|_>h#_`D9U@U*JABUxOhZ4a2qdeWgr@KYodoYHWsT!%l7E- zGc&g@@kkHbpDCeCZbOz!gt&;E^H>fdqZYxZ|D-i6Z>{p^-32S08p01glNdPugCg$C zNhA}MN1Q8iife^+-8AZe}g$PI@VID#fhLDhCaUS~ackhi5p9tLtE~SMhm}ib+o0Is)>YjGU+MDDWzUwcmhOni|wSG&8I7`eO z(<*~UMi&9H>6y#9(Dxxco%hX77nFCJtS>qbFEfz1%ta5to$NF2j#wEU-gKM5=*5T7 zy#98jr$m8mp|$k!Jvza5`vqAXe9yE7IkkB631z%8({Hn1n_o8@Fp*!~nf6Zpw&zOF zMJg-eif13+34pJjm{qTGe4TFeaC{AN$FGlT%zE^PJnYvip}tMD3QlXi)Hm7VouRsh zjlP0eN4R6-%fWv^c(zVEwA%o8>7B}_e0LV<@P=a-}`T5nYM?!>;%-TD$l96ng_5pqWQz!903b%9BzQpHOoK3* zsa~Vh657xKm_V+Icc^=M+GQSA!}WYmP);D zbLIpPeU#CP`}P12U}S=Xp>NPc4!~RSmQ~kdKhoDJGELS@s0Ul#pUxI*L+5{s9f2KZ zq$jzK+r!dGmHF=cD=TVxTSNe)Wh#ru4j|(Ur}#rvm8lIKdoD}+`>uD})!FEXn|O94 zWB+SIch<#eui2S;6t>@HC~l@HddE@w2zM50u`2RI1wQl(!DZ(3K#cyoG@6koLA6nn z9Bm!IYuz_<6mEIuI)3KRaMO#03$D^)5L0eDWm&!1lUe-5Kj3kv;25J}x{&h%w?5*^ z%=-_AH$kQC`wP9hgJX<$7lY$B)~8<(zW-p20THn0(xuW>BgnOKjY0|3sH0WE=ma;1 z`J^HH#1i5|g&WfX6r*&%_XdrynxxZ}Ex$MrW~KPfp~{W%NkiVdhd9M>r$0gP0#gQ4i9%6ORy(dqeC*~JdQ6!#x4LFhs z7VINPrGCp$`TG|q2fbc8VAc@7W}AguG^QV*(P{C-Tn05_#NAnzlu3S(PA-AuMwl3e z#0Fp?31dp7Gn}mI5{F5vIG?P<*Gbx15|k5VuOvkH$+xIIK>t}6oNg^D%ks>6mM$g* z8YGTen-x9b4}hI}q!VPDIc~nAr4&Jcn9!_~zUxh|#fgPy?ZfUDH4Iv+~898zp_#fR~^btr1P zPwy_;{dqUltsMD&TDxx7)4Mv~ix+z?3lU;r-3?HU+ z2duY*xXuMcWs{R{XyEUN=F_-oec3P6)rVX-;6D@afKsN|Gv?F_HQ$N!<#Ax%XQ(5v z5h@~pTtb!unqf7>eh7^@o;Bl2Emf755btyHfr{qbeXQbFP?$tX4#3rk02T3lQUr*` zHUb)Mu)!`Njuq@{#hl6Y-M4Q&DHXMOQZu|Pg?IF7mr+Kb=tR|w{mv|q;vM1DY@&Ne z#&LKaHxk-vHmQ0awehx5qB{-ldpPL1kmlcMyQ{k$x!Br1Eo05`8S=2cB}6%SQN<;9 z*OpT*e-iF(XV+t%C8-nTVXQx8%s&F`aKjSMx)* z2lV*ftUPN@*`CG?s-YyAz&6J>h-3FWU1huFfa%!?#2x?@+Y0Iin@`icRS`SH9op5Z?I@zLxU}KEC`tXQ?^H^M9 z#8Akk`5h)^>m0TMB+6g+ZYYYo-xf3Kffot}=uZZqErbYog!ksCAyFq)cUN^<|F9e7 zz;&Q!u%WifPqmTj(MZ#8pn)xI)gCbe`8hJ3s@<;>7lg1V;>@hmvm6@yCRj)qnM86>FGVI=XC}o1h91uCoRyrzpmX z95gV;L`4gvKx(_>j<<&cZvJ}m!{1|l*S62R0HJ4Fa~ZAyyiJ>Hsh?FndB$iGIX`Xz z-|1S_81W7QAOvvd9w3@NF+0hIhQ_RsAQwodEFrR;)FANEN6l?M#tCkS@ zhdwSLWLxGT#lGM2&1_C&KhJZ$Yf8lMm{P!2#*^o{4UENe!5&g@k2*J(5Yr~`UF_!( z@44IODfh4?a7ngzSpr(VE5Z<@`!{X`=m1V>b#=w8`4XbEFaJII2U4$6J);!+s-+d* z@HMbhpYhbJafVMR>5U8PQv3o=R>cT$@($Ox-QslQ&_7HN{8UyI)z0u*KoB>^73r0x z8)yWjavUF!_ba;9NJ7TRstU=Y!Pi%-9};%FXiML7CE>9y*DJXfh<{x~2hP)kAm{+~ zm#=dwF_c=ET_n9WBugw3RJlYbi*_Yb1~FUCyLpS=yPxkJKZCh}yFv6{DWgo8UGlG^W6^ z>aDAV=HFoz$X%g@#1ff>+`DUzdna9^408{*V#NOd&80bnA@|N2g!eDp&hLZBkD1*_R>{&aS|{J10DoAPvCghx%UiKjx1@`q=^x4S(GhI#Fhc<4fUJd1CzP9 z{4nhp8B6xQ%8Y9#8g!cJgblg%7`aj>Lu!5tDV&8*DDk+8fOcr^`=rTpGflVQ0~0qH zny`L9rIw`4+*Rx2R+v@xV)kO+r{qa==hw54N@%d$f#gJ#BxUxwNwcNdvw4`S5hdcwy|V)k8A zRrS_TGdG`IZf@+EAGq4IwDnOf9PaG9V~EAwvC^>mn~TsCOBD6eoW8A^l_8{4H)QXw z$g~d$%7Z63s%HKPdOn^`PEsg%AwTTAWSEDJMsBp$$dKEG$cfk?Kip;cUper4>P zXvLiPJ;atK{N4X#yf*lwr(tES2)r2^4*Uzx0;updM%UVk@7p&8@YDA=$P@Lw5r0v&zQ`56}VOD1!I>zWxLIU$=ou9hNZ-}OxL^<-k zHFm>}MdDBO`3RWMy>cVvvDPrfoSs+!)mXHP&1_RjJW=wUz;-jfY5|utMhvkCZ z+ySgOm98YQmpO3c;iA>#kKy|q_nL02z7dr7>ZzZTU`t7ZMenotD@jPaVV~cbGgJ6z zO|J$MErRZaw#~01wv{HHy4yVaRP>OM0^|uY?K8rhDAZnpTSNMeZuEev@GXGyyDNz( zjC}X8G*qi{QWXrMVr)eSyoLBJ`9#&%V<|ewPRHqpKFE-cj|?(NQK<7B{AH$9Gy__* zjJdE6M7K58>YbCD+$EQc_IX9=>}+p%OZQK$p*pDd%U(k<0PA`FEMH{buZBWOLhbNX zq-`ckh#f3u6#P|<2$v4#Sdnz@=lNLvREcB#8qDx>Y^II4nC}+UD0-!|L5q9WtUr6= zlPZqVNgDu-F5{sONTwParN!_4y1BjPJga;>S#jwAE(xmAZn;u3W%$Dj}qUh(e>bwMY;K+@8XniFenGeA=A@iTX_ z7q3f`wFXa_RC-&;UntTsmBr472cd1_SXJVV0s_gsTxOi`>>%6XfGT+y)If1`9iUHc zin9(HTnEY_%kWZhaOE>lzHbWm<$CsWhR?es<4x_5{qVl7u0@ktXkCQ9#Nm9$ya7IH zF>uDG_Y*?MX^e(3JH~6a`kf(NJTa;-aZMfNTjWgYSOKoF-@*yI;lqXA4^5$!ckK<& z)T$rB@3bjMqq~Y@P}YPwkS*xpPXU}V4*1qVYU^Q$$Jj1+ripZ3e3V-2=bRr)0dEhS z_`hp5PcdP%8UkTKI9dcE!yzJh+qGe zfB#S;6E1}Mi=GKyxt(QSPLaen1R8$W|Vr)!Xwia|_1;1P_Q%p^8$d6XIewYQ=9+?No zU=Dy(PZ6JrhDk+!;vZS^0M7x^#=49N^adkPS4)mkZsx=gxn84^L?Q43Ou*{V9K{r9UVJB|ft^dB^OR(l{Kpx@*;3hwuIg{1&n0`)cyZpL)h= zmDIBLlq~mGbKys!^=~*=d!Qy7jI~IGn*03PmC56rorbqnMK{0MK5^xTZ+#1yfSw zsatl?vljWu=Gn$(!4e`|4&}%{YadiRkssnof=CDxJ?4&CwJZLmccOK z!T%;oQGAM0gFdo>QymHwLz1I(P;9ngKT?JP{?r7_?p_=ZQhWxlg`JV|&|B7*Va>~p z*tswMZ=MGgD2Wl>0M+=%@XNK8{iC(xrZuk0W#pFbpe^Br@?#uZqEx8#F*~Z(wh0DUNC!2o0#|EyX+sDoKqZwxV1(L*0mpj=~X zYXCu`y$AJB#y^Fd{s=w&@$Y|yp_(Fg$+6WPbW1|XAr=wOQ|O;~K`l;gWWIv6;kMY% zf~0TJabv2<54HK?+S4>NxRDL!c=*(RUL_-J-Dr>tRN zv*L~G(Pf2z1CU!j=3%7j^Q6VOv?atL-}VB*Cg?S-0AfGoF0MPNyiN8kaB`|bFGYwx ze2=x9pC)DqAw_H`15P>*%&vzCqzHG>lg;S4-Fcb<`D0~($xfYN0XL9W3mP#jlQVOD z*SF6GzY<7SNfP14$H7a86Txa9*eb#>_+W${C{J_1Svwy$1e^Yiq^h7mLysg7+}H|` z13R{oP^p&YT6UXfbx)CQZ6#8}Vru|ZDbC*gYa;qBqe`(TkowVAe2Gl_w7QMgZhaI~ zxRNJ@AYH(F2r7is`drV2lKY6ABo=eAyLedxyvLE$K8-LanfSquCTqJvb4L!(hRNu!CiEt$_ zc4GuSW#kF|hvLJ*c*T=}^1yMpPHk$iwNgm!!-2(n3=LC%VdxrI$U!8eZxvA=KW=#1 zjeXyojqaPrZCYaid71ND3Vg1c2OnXC0P@9n)d;tgD5jxRN?V$#T5*C>-&C8jB%T{2 z{pq0D(QO4LjPX+R8^&R zsVk-ad%BQZAAS?hA6`P(3m@0#`q8G$2~Ir$NCEnz>8c6xN-H5r4w*n>ZPwes0&Ai{ z=i|whX0mdj5FniY*-U`_-P^PP$1A-eOEv;%S7fHV(oC{shik#MIzb0p@*|E7psu!0 zfq;62$yQ@{>M6zvBGj90bggkfYtbew4W5ynHD7DDm-Ugj5raehayPr}8j?ZIbo-=o@23A(+-y-x zgU)X3nlWszNsh1PbN5^^&Ro^}GFg0mkJ4>P2tW>3iSTgw*mAGge4aGwMY zKT`o7B)XwPD>{($p()#Vu6|RvAid@QtTBX~(XP!CD@;#w)jE3 zT#d4X(9T-Wpk&)3eKg}a>Gu{v(!t8mkOPdE3qNTHsFus`(9 z{DUO?!_QT-s?pUZJe=Dgw!TUbh5DvjZWE68yt+uePfxmRR=u#(<3DK?c8*17f;IA~a^?YWC*rQqqU}T71 z07+sDK=AS99>hQYbJZ|eSY=9Hv~u9ecLxGB8!-HB`(B1e{wEGa+BS&gjjJhB1ql?0z?rOBG391_Ti?}HN&I#s=H_UrmjcKY$t;4 z4n(Bcm#b2PiYrUI!4uCZ=Vp&D^cIBS=FclHwwj#9R?_zLv37ynW8(AMG-`aoa0QLp zzI$eBm~Mkpgd5pnLD8#%kITJ#~L)G{)l}zt-2T* z6M+>(Oe)?K8Skuc-#N1GUU&77pN+Nm@taoyVSCZ+3gEwqh;yMC~(?!-z8pGjFM%kIj*f_abp#Z;@OpLUThB5AtWjdp{^LK2j?r7`!;#a`1Equ%V4U_Fm$6Zm*7dCGH5jwWIkujqVt4DFC?EFi}Qc-R{b?T(ob=O(sPYk7kh_5e5u8VPDF2a%A0ofyeL;Rcr zY4;VMoip4Qu;yIlzE)NB4sdfSJ>Hc(58vLA7d&kbhmdTMadz0q#1{b8EKJ=!j{Joi z?44g}GBq$D+omI4LY!m;wO$`|F72k6`N`thn_F;jCJJ>f9$ikI1meJr!lr@8QMD~9 zmzo@^s?%#_XUkc-WtEAcuGBgyX*+g~`PK_x&-SxbTm46J?BBWCWx~uQeHZ(ZkQ+Jg z=;6&Fn95x6+M5NInJFMu;hN=~a1~1k=>)@g@Px>jWK7=^(NLCd!YHGa)^yM18%T{l z8V&1OzbIq1o|E8zB1D~H7II!k3*4u0X^4!O9p)Xm2a-Xx#UiN{r?r=+5eYX$gGYC$jqOS zG3Y5DHZ(UH;NH4h7sLrau5@<ds_t7u&;Rm;!tc?6i8{r^}?p8Ae?G_isge8(WU80S;V|GcMXTTD}@WIMV?G! z)VOMcd;wp&4!9g6`?QBF`x)GSI@y`H*N4 zJ@7dw7J+iwTUEYw0(4{DGK6a5phYwEC(wYS20+h2g|ypGZ zC@jH6ks0fd!b~n4k9kR!oUsKlDrh#H?47IWw$e9a8IjV!!JH~`;*N|oXDL3kLAwebO)vxlr!U{rdxf`*Zt@H}cHzd2L=uFz|z zGs5vY?Y=EkQC@fWMxP))d;588)Mb_V8d%YKnW_hikL!F!k-0;6UGdihFR zkzMX~TTT2V|A@b_V|0%vug~^^wC!S4k01fmND_wVwXu4i9W8l;GYyF0@uwHUQ~OTW zpm0r*MOYtm=O2IvdJ*2o>XTdnd^_1Jx7eXiBig&!A5Aqg(ow1?4Y6xg6h8Zw`AA*x zC^JLVT9IXPDP^F6o@F-Nn5}q{=PmAqqWQW#imXk(KO(0T-=POmku}>H4FI4Lv`7ws zCdM60k7PVuhkzG$} zYN}WQr^Y%=XQ8}jI>+E~UInri9ec~l*Wj)Y-=HvPSbRs#qLcFpVNUJmc2$?KamlLv zjQ#|72VIj&YEUwLM+fB^osG|RVdAR1$lE8Ht2%>^A=)yF`SMeloSMqR`R`9GXjR{P zFrf9eiPOhyJq?ngaRyGd3EOKUkjoTLtU2hO$%7hWMVLC|79yI*Sko(cs8v1%(827; zy=EHc_qV@kr=3v@7piU})M11c_sjr8z4}O}X^V4J+G|o+h;N0JEyDlQ`E)H&B#9Sp zY|wAM$lPAo?mpksmBq2O6ctE}D#P~k9}F>_oFK$FW?Ng%RJrYe5LJYWoL6>SwR#LHJb z@c{@&0v38Ai8>Y*SJRg=a#dp^2uWs7ayy_}CO{&!Kai!mp!;$RgeWpl6D?X*pl3jA zjA#3e5P@IId?HK(qga5s&3Ni~HDDL_A=fa3wk7~RIjO7$5>oUl@O*=>Lqp*DTA)J( zx(m)fJp|A`By8bMc_ea%W20*E@{JDQ&@UlmHE8TP5h$QuZDGhC9o+6LHv|%55R3bp z!Fr+P{&Zp|+{`1#szX=HNxc4~ruZUs$CVid?-Ju;;tk`ks!}9=lcWPYib75G9#^t6 z1=Lpt!+Z5A$|N;-bhJL)Uyj-SX2BvtHU7ygx@|}?x2}dh%8>!CB>OS%Z6&eSqb$f} zBz|hn-QhHPY_VWf+S~T|^>X@k^Lcl!+}-Y?_U5*&_{8xTL#VI312%EoVeex1wLy&_TZeQQ=^FjUUgXe{; zZmuNhUC`D~u;Wq?G!76&WRtEX1noTfbL)#w2+(;+6fRGG6D*mR)#RJWEK)Jh)YbXO z1e_iCR4Paw2ptOp@zuYLFKBdYM$oc)53BS|by=IC#rJa`c0*D=ZXe|}_a#>{Oul6_ zh@laW=xB<_w~01hpcY*#C>0t1x^O_s=n+Hve=8>q14gAy8PuTv$Jd%9ae-BV*;XZj zG9Hrj-=zQ9!cP6g1Q7vPVTl|haCX7^@KFFKRnDktO{RK9qx4)pjAJ*V2d*AWeGnU8 z5HUG~Hy>O;SDma5pIAKeRsymy+rtAE@aG_`4!r@7mB*0lA%)Z_5WDo))>b?%F3r2j zpJ;ZaTRaA6kvDHV6G4dtFgx~jsPJJmXK(;jrT;gupQzSeNUqen1r6I#j{l)L>b`21 z2Dd_MK>y@N%KhmxJScAJ)L;s(raC!n^Fnd>hrZM~uH^J0SD{7*1r@gi3EMsg{SVNe zt0(}ikC1vd59rXqaOCMC+|{=h>jpeT z$v^IaI$?TJIR&as=>{&KK*EJ#5T<900vM&JsMTp7P1e6B#MLbd>Qy)Naq(T$d}W9q zZ?d-0>UA6&GbwB&WOD38SivZRYApg27kgiLOWo4Z7cuW zc^KICZT1*$%PJ8vp04!XJ2aY>6dw;9AhB0ByNb#SLz57jW^pUUo$~^dH z>aJgJIPw! zr|8^rn%W!-{65M*(buEzXHm<9Id_e({m>PmWmA^FAr3dx61LA&uU2M0{U~cT35v~? zF^x<;xADP9!>&=3#3Zd@hih_Hm!ob z(7GpTVEohzkMpgy=;EW+;-G~2%ir{Sx5*j7iuk0(&p@M)##E571tZj`)v`()cs+;R zII-Csm2H|VGtTJ?GG~5GUs(IWxu$&u`1)UN;C1*P1bPlZUSz~!iUePuLK529ipuyA z^XM`Yv#mRmgp)J;K%<5r?h2fA7J0`Nb0??0+TNTxz=%yvnw?yzDze_4T5>*#D@S|% z`1dMw5^U24s*C1m0O@|@F+pSpo_xg-XMIJKkO|*olCTSt0I(eV1-d8)V9}EUgKWhj z8wfFm5kX|(bC4foT?QZA0AjX;gII~~VoTvGofU66G>y~G_eCO3f zk7R2s!t^|^An5kBA6Z)!1l71 z2J=@3#QBbl3H+S_y6aC4&(6Ep*%YKkMH)^SSLeIQ3Tp>zgIj5e4Wnp__u2gw!Nj!X z3N$-$O57b9U(@h&+d~c6)r!m=SV>}w+_D=aQpZ^gLZ7!%E5qA?RU>h^nCCvBp)un= zv1k+jfN?bqqJHUkq@UiDt1mApkMkdfU}mU%tVZZGk%WbizQOGse;XKmt_u0{m{TEklY<<8X(KJ zgJl!tp;sONY2I(}Hh?NV5>3JiKR^OsCrzOvp}F0}P|#ux_?{)i_KXcBu-bOy+_ebs z$yW_zz%^y9JWzy@sSc18YsfkbK{o?je$QVP95MNq%L}0xjy7h!{B$u5v#LjK!+kzh z0$qK7!OjwJb@yjWG;hPLp%}4U9e!~m3a}B}nqXjq?7PGhY*XwyxkE|RAz=<_pg4@b z^J-MRx%0#RX%~N#pm!_1Q*OFyp@2Mjevr6LmlxtQCTzeZH1CAdr1yKlX5kkDeM(TcinX|l+I z_st!Jt?P!Hz@$O_2k@w3T_;Eh5zc=pWdBa^?Vw7=MJGn#FPPix#eWMV>VNN3@xZ(3jFrE=V!LUJu&8y9Dfsw_Y8q?V` z2rS30%sbe>r@KgUL!2sFP22rA4@=OM9jJAUq;s~#owmGF(?lLAwYNy3DIE4MA;N+X z;Tvs=Gnp6tLYK6|e8)4%GN0`$))$i&gF$n!(w#m(nbg5eW)!RmyT0 za~DAq*JFoMXQ`{brB#1X1Nue&mGC=m7qzlNWzs(-+O<_%Jdr$n2O>>G{>QYZY=Qe+ znB%^6_kJh$YzpFMp&F07D+PjH;vd=8c+UaKro)+jNEJiVWq}~R>@e^Au*{!7xlneD zY$9J>YG#F$xa)w@G%HP{0p8KTkl(hG8qR~CmL27yw?(AjvN!Iw zPVXFBYj@_G2<6my+Fx#oeyaSTy8~~ynzN()0T1le?67>YlC(YgRRp^=xoUUoF3U0qpwiL2pwuyB^kAhdR{+6de}FrD0{0I^)kulQ>}n5gFT+`KtH;WSvXk zP-np$yK}y9)96W|qCV|mqg~gZ~yeuo?JrcndffO zn`@=Ky$aHhe^M^Ek1Qo(Rn17zsW{qC5jx({i(){IHk2)x1naJ|I(rps#3C~K z+my?p+A$$Tv7H;u5T=7fW@s&XAduh;Kfu>xB^VIaWq6OpkJtnJbNc{x@mt15Xut-<%hzhnE4~M^ zGnHSUvFv5Td}$znZ4PSV|6;zBts-s=u>UPYhmz_}VsMyf^`~8dXK}~iW*o=Q@)2n1Bva64?aX2T^j|}p1;3IL&dxfJ8j=4s4 z=KLxCi17qMHiMZjK6@R?Pf@&?4MF>;MtNKzi%vpA)nHb*oj!kua2ABWeX1ZOBrgvp zN6ayMuz%8%yGnz_*A!VW(wqF5wTV|qku>;gJL4glDPy)9Blhb=59Fe>pf->d>H%Zp zd4JOMyN1xY{@*o(FQ8=!;RwE0Nt`GN$tNO3+K$+IYtvQaqBNxd z=2BA@Ld;*m%^{F~5fWmJCAwmgB+OG($Gbn&JJRA;9!S{>GfkMqKt`n!>LoYR2RVW& zSm@u+5K2`WMhm;hDvU8SK&7sO+{cXaQSgAHESjb%;xhdL`X?e+mpjXDSGCQ9fn+Xtlamt>yGli8=@)>@ zLz;^YYi5cTZoW(c{#_aJGP>F1SfcYadwz}KHKJ`$VXx#m`pe#@3~#SHjsw;l3;&q~ z9OWq(jIb8lbJ(u)%MLxD(~dUNRz1@>H`Jlm718QD%9q70D9yJ5l z4Q>Rxx-w0hrw?2FJlEEetkbd~@uPf?*nc*@?;oQ^S0c3&W-FU3L2IMs?@g2)e}{1I ze)%VvrBnQ$J1cK}!~9QWl@$12bXs1`$?c-5Ih?#oN?R#dDaWsn#XqelKr2-!<>Ve& zorWeUN^Z9wW~OS?e{ZP}$T22QJCmKIDZ_xBWzMj1E5aKEB~cD}(v(R^Fp(oghg~aR zPEG%f0l!D5TLhGTpq^`02$D<9Y=Yr0!bppzXb{i1tw6kTXc|4%CI`L|GIeGCOT8sf z>fh5DgyU6f84I&Oxbnwym4L3#KMNv}D^+f{Owj|%LTP>gaz4Vqb2 zCOIi0%!_+_Ly%sbX;as6V17%Qo1~20PF{HydT{%~2f15kr!6h<$V0651wD0+X}^KI zdw<0AsIl9qi~+P?30=4yWl_#ir-W0fp1+`V1594%Vm+}tQ2Y(@t4v% z-U@cT&E)T7u!5}I7k)nPHAVlblLZa(`n=@yopP>8>uEiq&kL>BtDg)!50s*sv_UFc z15}osH^d=l0e4uOGUSP0^pPW9X{8j?%1g_ON%n9no;Fdr1!?i#?dEW|Y0l_%3dft# zaw~+vM+W$r)VUka;EwPl7kpD~%My5QhX65qesz|A>&0*|tUYt&`+o4l9MZNES{x!f zbw%tr&QLPN$K)=rR$Hc#}oUz3E*J?u?5i zwPh{Qp!5YTUm2=cu-Kq`BVNCj3q+9sulqcRtI)*UX8>t!0ry|)YE?`mhkMRwBWfUxZX8bu8Z6ls2x{G2p{Sn9-aPhkUP@> zjO+d+Yw|71P`PS*J{&^;aJ8pmCtIAE?LDl)U$w|BOYv6_2?4mUyD^)b<@=qPK{Op`Vx*2py6WBO=& zX4<>o$}9W`vvS{jC8+NhV&NEw;wmt!$l4@3O?3kys>!0*`{5+bd5t!;D!ceX>pJ|f zM)34ImMdvcgYUH~r;fC_UvAwV6mZOX%4Z*ZbI;Ya)xX2-0I15f;@_sBVc+VIO3BOx8u{Xr{m5g&qAUvx&2byP#`$9V)=5O!EsT(YZTb!f19!ncsiB>e*r|@ z2Ip8nGh!GNM~hj%fHm)yeT}zh##KAGW2P2(HD{WT%GMS|lfg(omdTf1>3E|v5k1=? z#uiU1XSV;7`tJX?wOtDxj85;Af16Es_-1mDp8rwbJ%SG&9N*N>?VckTcK=9klf|-d zle98qRtS1%Zjw090mlfWiiGkq)hRiBXH6e?p_v8WyDug9NTG@&S#lv2tI6_BR-y+CCBWI*Dgp8be3&<; z1OSeK>)s&O3esGFH=Cp7F`z(nM8XfUK>I@NRq){igSNkX4P3Qk5UJP#SVt)ml=K;@ zAUC|HZ&}|p1j$pNFEdbCkAWw+RP{-F=@Vg&UwPf zWO_9?7iCc6Kh8x-pjthm(2d+$c`Xe7UT}XlNdjXzazrs-lDP0QP6}f{VQ23)aRY<* zy5UKQclC=wp6C=%pNril5+dtUot`u5uE*D0PEjz$3(ae_!nU@ScJ%amr=Z-Q(nb{) zbr!&d0|Illw*dz2UN)n>CQrLARg*9xv*|3~hZn|^tB4eJp9zK$(0NNY$r&8Q2WaZt zH=Ym9wNL+01^3LJnwoRGJ~-{05Z>KRwE@3tJAFb*ZaBDImA?*WL#eCkH@C8KJ4a)i zy0r*Y`|U|n735R5jKrznqaE8Kg1|2>6F^qNMBZxhKzJ}u`!Tbz=I}rZy}Br{%2BhI ze+4wqlqkf~FB9m#y^0Ke!F0rCmo#_O=-1=bJI2tGT5iw#jLOgdn zUQHSy?R*>c@gbAavudwA~?C6S^|g)c~pLg%)E=+9Um5&+Q0&IYXHGzSs|{nPOlzpR>BxPw9v zZY~T))yphc#N(Sfv<>`nqVa05x1Ow(F+w>G`uKc>O^VN!B@FkCM!^iuQ-2-$f(XIL z4>(7n#|(HB`CdGjNCkvn)xdik!m2?74j_qYVCRGBs%JnO2y1|}xOSODUhBq$jk6?a zLXXjU%778JcCpXf!&vwPKh+|WaHjY2g4P&XtSdK-oyd~Vz_6KnaA)X391)EluxlR` z>5vEX>Aw&X&j_<0_D|ew|D17SxbYNxBvDY@D9Kn`3C6m9(UKt%ct}zTJ`gJAajS7^ zMD&1-<@dD69(W;1sj51$#Da4*4+3e6SNsioiL-FJufDfYpfSEUD&J+PXvs+vS2bUH zq(}M@9{n}03V!5_9KgnNzU(A!-X*wajYT$u>5Dwlvfb9rIk-E$S@Y=o?uE2&vsrYx z%&$#;QHG)2kz>`#xe}98)Hbp+t^G)j&2Z`IX1$IAgZ-{4v##15s%bdHfdSG~dw_5O zdj{^aX`QAFa2-iU}s=hhpyqxhvP9EIJFmWXnx7BIjxJ zPMvGglcjqDaAoIa`dWTg@aLaoMRc$e2!!j3Ja72Z9> z+E+xzG^A#y%(oTu{p%VeT}IYBmXq4){2Lj~+Z`=>2dcl=x&T2podvjz4P^`Bpz?}# zy5aeFe={A6_AlE91MpxDPMTqF-&_9(d<}SsEdWL2*a1hUX>Kj&0Ii*9Q-JXd0gL>k zYC?zj)nO$?s=G|r<#HM6=5Xk{D#Z)aR%Hi~frM1&ta*Zx)%z;K&?rdDue3bU2Yy#L z+BmG+qZ=_B+>bQF6hw5ZWDxw0)4PbeyPiGCokaHBJcY{l5(DQRSQ0WB#&|OWX<5b03??A>DN({P`QJfv_D!W#UPPFFl^-y|@ixV3f^Z&U-*6 z;i3TbVe$HYvp04n5$UdhLr zA2W=5Maa!Ci@uW;@d;tJ5v3(0CR>DFy|Y;K=(+Zh?#1>6Xnnla<6?b|H{i{3GU;KW z6uxWv>hem`Nnw4-?ifG3Ma-4Bb5!R}kF(D2UzFT6f8Tc_BuGCR@~cs`7oiGq7qd~> z8Qy0OZJ-v$z2Biu_sy68{O#=3_rqMT_x$WC(6R&z73SwzDPfMd4{z)bgGXw z!mXf#Hzwu9O7XAAr8&{1gHto(t?2}2a(^Oa`DjYGSkM^ zi8Vr>rR=`{yk%4MA~CU`RS60X^>n3zZW{1*ab@Q}kB|QEq&-8|R<(p%)WUnJtIHpB zbaU(JU#5aLWxbEifBwP$>g5IBQMoZU3WO1BfFIoL!@|bZ%tqvlA5d}u83`i}J(o9K z^MK2P?nW?`%e zwnqsIZ~1**)Z!P*ob??)EW9%X-ZEMTD2snPf`@nhU+leiR8!sBFNz{o5D^ds0i{b< zn$(~O2neY38XH|eq}QNG7Z4Co5JE?4=s{YfOYa~x5Tv(+8b}Ct^6v6&-@VV?-*?A2 z#O`C~0*Wv;nqdFGr?{XJD@`PkV3)95b=G+Cr~e^|rgfkYXU_AiR^kbj3+!QV(} z6k*Rb4*>)}@wZ7Fahhf&m*RDb)wp+K#Yc9_hv(5NW~q4Ock~4(*P(5-?vs{)XC+9C zT10db1UBkkM7P#~ELexKYb%)od zeqLF9;?mwwaj@WHUpdeTf^7=Q!e~`-7U44lnW25e&l&6kCa1+&sQ8U!Fp-|9%F<)h ztF+En(dVzB;19nIXgwSf4H7-@=@W?XX0#Sx8DjhhZ4iZeNW#GQD&S%DP;!79xxCZ# zZSXpl7+)5K02+yYF}^Cd+0yW_S!V-@FcfaBbz^u^YW^*3S|D}<-6#bQ-xgrfsVuG- z+zKLIp{O;!UD$9>XoVA zCvGMQ+Uj(yzZDCcJ|z3R;YQsc4OyWAq}-?lnbz`&IFpaUhy1I8zA~CKE#GVSbn%ii=O8EWLJh)h1-4S!MQ&R*+AszMO)fOMaBJPCcIW#2mznoxl$A#uL$+D{kq-?vs>A^Z#9EZ z6O?w@M-1v6brfcek?JI;`P5WI-@;=Bv1@QcHOwU&l zi%+B@bx5`5-_;?XS^rRnRCoVNpKAa!3^E7(IlSLg?N1m0+Kg0x;3maZM~nC>zlBybCmaGhiC*wRmIkv4P`OGWK#422syyMD%c6S=o@_wPysE+S+Sqt~d*U^`tny zSA_@pm|J_iy}sF1Ys3AbK$i}gLXR}4Vxf(0M5ul4WVciFQprJLuee<;yeoPQf!)cI zwjZHxD8l>9C@1I+Sd_)7*7m_W!iB0Fop%r-YcsD^O!t73ld?a|9D-MJf?P0c!MrFP zaJFQ7W50!PJ=XXVAYC=N4*2%R3hJ4EAW@u;hL%xbl zr@JkrO1B!Veh?~}p?Re|8)L9m;H92C?&gE>mR2q42YHe&Nt}llL%hw`BP<4IX_5{%kvm=@i7mfz=vEx*u?S94I+^F5F`OAbL`bMslp zP^<@wj3#cyfO{jKxUu@g{6)B#*krmJ7=9;sKB$0>ggPHnOeQb(Jlgwz@!N^$6 z^&mUP*gAiHb&t_}ysd&nV+wdN%7oNCntEpd>Qy%UvSkfJs7&mLyNH}1os6DExB%c$ ztgXe4dY^MuJ`5IQ@6(cNHELU8U~Ew5Kf?l|4XKbcIX(xOi~Fp zaL0RCH2+f9^`?>%5xA)y2VwLHMXQ;^%bA9G29&ii6?mk+x7DqlI1Cx?3My%}$leWD) zalpA@9oOv(vB}qE7EOD8MF+2jLBwcfRI|uQ18J2n% z-I6z9lkGjHRIpY~cn_7puBJ5s0BF{H(m=dvQMQ}CM%5r~1Cjw^6*XZ(+)APkS0Zil z9*p)30BiHe!#z0I%>B@WBb#j63xpx!#z8FPAH`+e?(lc);u^_ooi?x1OU=FXKEPj85a#D0?W>=K5sz3h-g4rein#w&qoa< zWbBnAc5Q~9N3@5Fk}xlG#XwTz;(y4FTwsK;2&bJ!zXMs4idwTxtC}pHXSVFF6`0vZ zDxt7KHS*_h3XP21{?(`QtWB>Y%d7g>-b{K*2Q%z0A57Z7@vb=9x+DRRFOi=pdyvSI zW^a>Ky(_*UNGNj?0fzswS)q30$!`SdG5lEFe)^<%H4;Z1x_w&QyOt!oBjt*7cj;w~ z(Sgv7`K3j7T7g$ghj1YVdaK&N{Cee6$ zXBJMZYfwZ4KhbC!PCMoXdxY$p?KcZpS0%ib(c}jf`EEC`m~uhK9^!9IB>?ssdafEW zJ)!HyjVkhwau=xE2xTzeb0lrMiUIY{F``kf+wL?ZaC_A%AFW;W=KY3Y%j~_Cg4P(5 z7W)Z={QqB<+?{OTM8dmCs(_IE9=Byyt65Qz#;{dl07 zH3PaN;lUZx+1Y_Bsop46?dTXog;bq^m;<>es)Y^WyJZ`(A+aw39BqKB7wY$=D(iXV z42J%zFId)aycO&i5t3@Pv%_dtgsGyEnh?JOV0HK!Lnuf~1^eMMJC0a6M2-=98MyF- z2-IV~utC#B|S#;x3cu-F`9ap$EUgl=F4e za=eVjwA8!V!DiYCN;{UQ<;9o3Hh^-PNz*jJ*tJQMeB5oU!67rofjKb9sr_r20M~}* zHvo>~`~m=Z+f`xgcU~l)g|mv*Xd2-qFzr+jB&usz_WiJ6PZHC0Kq zf#KBf1rxNZhH_clAV{(QJ_m%q7ntPBzF{JQSs1agah#;00)sopy$8al&0@v~Ma{Q5 z2D7tUiTVe_5pp!0)I=YkfmP&(R1ruDR>SIShh$Y786dk1{N0wfUNiavJFW|v)tbII zB#y96w$gK0sR%P0?Vr$OC6+{%r{)0NCh&zb{d|+MOG{Yg{_xs|>=c)a7 z87d#ZPp-(cC)}&3#WBEbH@QET8KjMuZM}dm0cHH_>Z1(xbdc#IXD6Tif(U!AwEPL{ z!X`)7)*a1~H3Diq-(%L&nzgug9skgW7HFBlkOBOFA-*|Dhy~1lqZJ%#^`}zTU0vN%vkXaI5e#l=>m;ZuGncnmVE@kYt=19b}Il_Xo1TUoF z2P2l3PS6#tk~lv|v>U>)nWf$PS7an*26<-GpH9ev;dTd7Cy-SHoz*(kbb5Z_ z1hZcSMNQfa7o*k6UaY-$OS$ISgmuRl zY%t$AxqhsyEPn^edtLFB2 z$R~IT$fq@%&eU=!7brWYs-##mimm^&vrU?|V{n-miy5Xz{{@2hw6@cleSu%$w9l>qD0q@j*FTJ_Pgooxx3{=V9$=%ljY}v2DdmK z7@jxIHl4KlvHQAW%30RxkqcImR5lkMu}U#bCHw_5YQiqEW2b5ANe!^aTG9# ztK411i}Y@G8;W!rZpPu)r%JJ5@SuP!j`FzIdl!_cs*8@D?RguqFVSxV!C5-x7M|ga|D!2xGw8R1$u8&V9y1{@Vq~$^V-b& zp-X<48c3rlYoJl^e0iah#e^sM*exFJSQWZk2WSj^D;|I|_{q3pj-^>irL}r{sV#L!lRmAfxJdFmnLwHitH~yluoYy1Lv+tzfBd{Xc zy~La8hL$CG>BdnPkbrk>WOAlE!1zas-6EnvMCQEweNeZ3ed?dlaUyVX&Titg`~DWuH&8p11N4Odvz{myYS@3#72tF>*CQf9TZw zL&iO_z3v^rOGMFN*Z-RLSipnA4gMYVp5;V8@SA{?RO7M&Z3XkU&heN9%;>yfzVgJR zt*#X1dPC?sTBa6hm{Jlkm{xdwrp_}(S(NRgtr$O$G@3Yfh;GL z0Oe8Bkdm^aA_zLHlDi68x;Gs`yjlkygN^xI$#nMtbrLXJ)pf8EO~_nI_2~cUDeIqK z>^Wugf3~`L(B>g4X~qniQH-W)@OF@1y(SdfNOJ6uZjgTKJDct3cO8&r=i5FV=$Z( zP*cf)@#(#X%_5z*h2bj)2G$k|cp+i%^XU;DZkr9axOV|A%^wp2w#8}eGAXc|5;iqN zO%g0FiX81V)*}jb2ST>w+`vap343yTQ+Kh zPu&@tmTk^;#DwXtc?R#?$%fV6YIQi(8HRc>QH8fj{-aNuq!8)=*k2k8nguvjIOq>J zgpT^-oRZx{6v8RxBJjnNBSfpbr5-lvvPAHrk)|>jnv7i5M)*ZBYW#gM>LUD1qoElh zX_3Cv=XC7!wXx>GXxC2D&!9i3>EEZd>TlEf2eI~?g5YSI7%EQ&PUE$j81wyCdhBCK z4GjXGJ2g2d4`Fmw+B7^w2vG_HDHoD>2Ay+_?#pRcVcV@XzN0;z9M%LlomjEea?Ies z6C-Z`2GVhJFhgmel{joaDTLb}%*D}S={W_kCtDaN5d~H|Rygv;$KI(C7Q3nON-8nWf)8>uNyd1mvI(@el74@2yf{eMRtqy~W~CRjb5={Vnp{=~Sc6sl37T;vS)I%{TDQRo5*2Y0O__XQWHw$c10_ zg1F}6L0$s!(TwIW=Yw)={%pGSS_oEreLFQ-vfhora6}$)c7pTR zp^~(*QQM6)z__})WPk)5gF~=-G2C;KH%SDTtf%25wi?eV$Qv)ksb4sg`Cv@{>Nb_5 zw#_!O-;PmRaWr@Lv!X{LnHQk2)5A>>d%JkR?f44?!0;gP*?!Y21r}fGB;U6ps?Wn2S}4gB;C&8kG1yWdp}(FHQD9zbC>Ca4n#<+-uJ%?r}G@!;);q1C$c=3p)+H2 z(AaVH%={RIB%Sb@!9_Q~FE~d8OIT?1m*pEZtY>lP(k$$k8akbmq@Fv--aP}GPwGqB zj-2WaOyb8IoT@)~#!6{|Pn~(tQ?M%N^l9yx%Bp?A3za03KDkLBC-VuY7Vj6T7Jd)7 z;ZvQL?_YW9I6BE%T5M-er}%59{fN!g>0GN=wwUkP1L+7y7DC)(>LEExQ^=fX+U4s_vzTOe48?vwl)CDw?dP|dJff+H*i8N0r>;FTk1RVr%Owa=gz-6?8BpY}e5=|9Es#|rF%x`V0gZ=61+X+vkI2 z#htY$PU0FV+Ht4BhgwY9SN$3XJbJCo805wM?b9f$h%NlKK42N5YsL<;4zdo(Ai6Nu z)hHB6TAtMgRxgwa>p9A5^4;wyh7U5$&MHF1RK^v*=;=?&b3c85NoI zm;OwHxjFcv88}`SLM5Y#ftMTHI_%0Fvkck!gBQZUop(n?2%! zoFxc8MLDf6s@4k(e9Q@GXP*@-BA>3c^RSdqMD=UJ_LWkhzybX4TCiz1wg^@8Zf;6tzTii5;z#?7!a-KkNoizNWrL3 z;Kp?ZhR-4E>myMRC3*#j3Dn2%F1?U%EQw&xrPURZqr#uvmyMG<*JGi%rji9tsKz0N zKfMi^er?UVrA~wbAPb;#ZPGQrcgv>@h`Xs31ognTTdQYxNib1;QmfDbQ5DJ1fTqXG zs<~-34tX^43X7tyEVg>3ktX$C0>y$B>`!$)0;g~EL%{SL0gn@pLrJ`)Vp0SM>IT#)sA zH=*Am)^&hGb0_?K^$mo+jfaab`@jm^yR^?(O(=Fkf~wOrMUm`(q-zHXW?$yNWafcs zAEm^DZCxrjWrPQe&q5O4kc><`B&f`2l@k+=+v?;s3QDsGexb8@iXdPR-_mj*zI%T_ zU>fY`#MWddC_YkcH)Jp#p2%{phbSrJzqOm7iCu{%5|TVaMZG6&yjK=4N|5e(?4o`m zHT(HtR_>4z+tLLZqJU@B%0+pg6Wg}ft*+v;KS-+9QozC*C%Dy+C9nV=uIN_u=0TdS zCg%C>;{yiLp5ZoXBx9tu@S#jC`gX7?%tDt1hMX% zi%mrWA_1Pj#!cl*Zb}~iK z-}386?E*B2XNwIzHr{J2K@B8!ig>s_*&M@{_ik6wL4e_ zpf3SIeMgmM{n0K)_P>lL95maP`p-rGT$5$k(F8KWrb58{rHUTSpVc2DMD~B=tK_XP z>k5)!J3$7&?QGz6(P_Rvq5FcOV};->iBJf7YcqYB$c=#tLMFX79oE|#uZV7%n6#(gK>-G`0(blXElcK4`|7O@||2Wk!X$4Ekf#4Ri~FKoWbNn2^UvzsKXOoUSJElxp*r>eoJPzr0fX9WfH)PF=zLr7oJEz4RtkT)mQV8lks zF5B$5NvnOX)w&fS>m{F{&o&v*bpKwTu^l2GKhzE+o4QVkMi2il_FnPBqxq#!F#!wh z@~~)+D&~%SsKW4PqA{K!gQz#?M5SwMZ-U)Hq+B7jz>-b9V_z6VzX+{5$a{Fw6(k<^ z;VHz2O?Mx2;~G;XO$^!!id{jJ{mk$*(r24lQ)=tz=sZ~3AOI{QL?dHhfQ+Q)Q=x!r ziLb^5DVI`CX4tytbnfJ;WtKv4+)^YZ=@P8in!T78uk*9jg8%xiMFcr%R}mR@;#V*{-r1~ z-P~RRAoV1Ul6oLCwZdMv)HUlFef-j@YtND<2Oy>IRxs}OeiV+aM0%mNFN*I>jMmWB z``pHzd_&;0B;6<}`Gz|cEI^c?$JEI!2V2Cob$6D0hD?b;Nmm#E?hZ>|sVuuL?!3R5 zMY^0H_fIhfy~;xKNaAOsgV-1_i=OdYC-Hje-1R@bDC`ARGefDO^cw_f8WbJQa*y*} z+d~TW0`ONg0(41AvtcYzV~)_^v6JtJFkBFqV6@F3s*pd(7%AA=rE+9x3L^myz##ml zt}VoBon`5!6{Buq)`Dw%a~9@aPwHU7R=$E}vD@Tu*JkXQBEd(W7kEe`>=6)|>c%N^)mag{C3kJ0%pg4;cqfS)Tn}Ng7fACl zys|6eJ-X(sInsZprfNWFMNHk|?vRkPyE6*8IGh(AM}4tzIij++7%^e}15A6hQ0mCS z@^rqYF}7?DZY$ttZK%Gi?BIN&xU`Qy5AC_zCli8hAl^=<6bgW_R-55Mnh*CbEGcWSfwC;*7@iL23qgmst`IxWWu&I7`01!K`b~!46SG^iyG!c zlHYJzc^=FOutyC}_K;fwk>^_KKPMC=pYNn5sVO%_5KfQ47O84n=vx+G8-{ZHu%Aj` zJGpPW4DxyY$>yBud&DFBkFI&rRaol}w+K>GuI2&DV2>UIJ44b?XoT$u7{V5IfbrDv z4~MINkjefgoBgl;rG|?__5@fjK~~t!KeR)VpI0oIE4;B&lhDuB8kdCuyT)VzON! ze@(>x-yIh@pW$i>9G?n4afZsGAs!&=FEWnr?B1+R`3eyDU&a>Ix0gM$-2ZcKE%q%VT^|`LXZ}># zsfxIXezvB+iJZ$76NVL&L}5Ky)0#vUFtyD*|5R}*h_eQ4`u{EVw~_w81M(-*`|l12 zAA4i`c9y>vBzxKLV+3;m+(ux0E%;j$he@Ze6qbt2&2d}idR@nI zhrRUSvPt5_`6oqZW;Dmqzq>SQyKL;;YA}+(QFD3I6YvHx4mMy`zgotTJaE#5GDGg0`lDOGq4}dF412645vfh8Dxt z0>=D=^`MvJj4Z7l78iujMprEeHgA&babVJBC5cr3zpf!Mx{@>gh1Q$MraMudp?p?zx)S*V=!*g@p z-tO~>d%BGXtmvAIy@-7#zKMJXjrZmFPkqZ{z2egsSntC=EbjJ9U9FyldBAq7#h|Zoh0VYYFOS5;t7s5SQK$)VVAK0`PFDq%BIN2up z-;TgI3O_Q%ETK>`RN!Tnb|)Rm-fru*TXf>{qqje_2tUo4iu9@>IK8@Be!y20mqO?l zM$5BzbgBu=VJnZ@e@RS4TiRF2Uq$>r^bx;*(*tP5W}&|m0^~Ou5L+sJcq-;kgaCM( z-)Uetr&pc@a8th#0tg!T2O2QV1>U%N|2tY^lZf{th?y*tPT*K#%y87rj+0QU;Y&SD zt~pJ=s;VF4&iTx*4OaoiFc$b&!lpt)t$QZD6mXkYX1vkQu><$aV9V9Mw)S``p8&6G zc*!)cOV~Eccrj90wviuP+HkhN%m0&q>1RP0Ni{<*zJ7Un z+3HenhbWwG)EbGd))_g@k<-~dNjTse07qY}j3?H$nK2*|XI~d@99sI$h`S1XIB*2U>$y|Hu3y`Fbxdi}!aQe5RzXSDMP>xNmh zzZJu)CwcA&C~)lEt5U@)ezk#IkzvLJ6OU!MxhnL-kRXG}PXpo@yf`Q`N^GVhu06p8 zU8RpY39(qefIp{?zv&AdU-GO`DhWMnkpiL3qV7ebC^PEJ;K7LI~$wl7Qd z#_Yy!U+{)LIjrm1X{Or=pvVwk|$4!?+(gp8@N%HVrztUG2lMr-$@8`hN>-u4$ zt!Fs*FHr3tIP~-d8T8ywDyO^7?oX$xJu3hBkxu&e)d=Mujzp;+cj>4ajEy298|j{1 zFt%06mti6ph(ENGZCz6i{CRU}b;sfG{mhy_e?*XDy@;=2$ZKK$cJq>@p3xXz2qxUsj4%!}vq+9OlvwZpU~qK(-WJ&Fac=%%|e339aEct@Vm z?>DwSvd{s&pSoA1Mtm{LMO{bV5oB>)-yXhp;ogVm8G83l6(WlGlO3K+Q3l?5L78H# z7-N+h>hb&)8}FMy5G0X<^QaX+x4_`crr8xcq9hW|-%OtBH?ek(XnH zF<0-W%07ferB~BO$($>o>9p4N?a^vvMW#m2o=3>q- z?`aQ{-M`=0eCRkvDpmisX$ zzmYt~{cAKu*>#sDc&ZI2)BG$;rSrr($N9*TEA`e+d*t}5Bed<6)gm53#__DNQ zNk&O(x+(1q|LPget?nvGb{&7t+t+#`Y%FiGHBHWaTTOS}I7h!jeYxQ()7@422#LEk zb#~O-mtG&(NGyidQa?Xf`T&a@0%wUNc)j*gxz9biY8p+e zLr&|?ZJSiNwW3AEV8w)Iady1CiM1KJL>cq>+skSt=T&PibYqEcRHtssT)fzdD!#Hb z!Ar!_nLL;2cH%^G{TIr-F-2}Bw~^q9p7wx5eq3>SbXfJvf!1bIaq(h-2WQT7kFtM6 zKpEXRdFVZjCtddS*bb-YPuR&w7gl>}3w{Z|NO7RuKuGi7s)XbTYV(`8*O;xWy!|8lFi|ru6!(NKaC3S?>Oqv%MGZpS@bqhsE7W?S?vT&?hc-47hfJ@w zAz&vtJR~RkeXlv&#zUy2A|tyTOh!ii_r1o+{iWF-JIz3%f#X;uy)Rn2|L}XS7U9E> zDCBL&MCtHo(a+|%urG60*shuHB~ZQ;XT$?> zZfjxT3}{@6)MO-zWL zAN_=jo9tsz#S|x0yIaxXK`5PSkY@Nm7XQR?4F}&FWM7)Lj1t z`HOD*gcXsQJ?2!SGc#Ov<~LJOj7>Kly%%CLuy}I!lM1sLuASOdQs{>aJ;&4S`cW7>y|7lv0%(Fdc(I&SFh)}SqnKdj=E)w9} zGpPxi>#prwiPcY-d+RC5)>JYQLw7YHeDP4%Rj&&D3*{M$CD^3+zRlXM3*W-ER$@x% zX=o0HzRf#6@BaB@`>?aF`TKb`?jXvW{lTg$8KDs}q&v|DoG$l2P2yJ@)a%@?NA=Dw zVCr9f>3v^gp>o%8IdCtEbBho)hgOY$i9Ez;gwj@_8HmWvEad+VX@GB4mC zo|2Lrc%wn>oLr*7yg+<-%ERF+`Hc=OmY~_-%jXByr=OBJv$oKLS%$O!?76DUpCTFl z@Q&lvNZ+~JSD8B<@HgXUUTK}k!W6Zi6R?1|xOqyr9$ubqnSgNM9d;wge8vyXpd+dv zD1yUomLp`1w6fYV0nfu3%MOOf1qrw3);%hps%~>vObd~t%!)KF)ShMx;65d5cw+Gd z+54`S=GRyrga+@|q7}41>_^PU9>wvN;evjTwaIN! z%uGLpNzdE4n^cQGr;~5ATYW^7xRarcBdeb9$8*0K)T8y|@DEc6_3*gi_m1M#()&gV z)=5!~x3hr}c~=Yg&IFqx`ahn0=6!zVS%_G*_`^@r8E@(-5tMZ1Zcm?#@P7=U6!?${ zu6l4ymcj!15>hDsdQlCJ3FJPG!K@mzq#uq>IJeDa2h^>8DysStbmlvDx;gK&l0^D7 zR|*3G_HViq;bnyPvRyVwGD^tn&81W~2C7ZJ1sNxs?|D?*Wh#AGS2j&?7C|NS(AUT1Y0w z%uz<}mFHibEEKSD(_b~uNbVH*L6-l(oyh)x(dV!t)t{%`hmxyi#;R@I>SFlq+_MGV zo#*$mZ>b^fx0e503ox{H;3dxy7YEIbu?bCv5^0}^r@I}pQA97_O?kT{ ze!9a@oPT%|*6-$)L+D7m#-{)siZO&~YngB|pO^58@A*yzXXCL6nZC1c@7pE*szG|} zyZ_RPvuazEq-Ki8=3Qsxod4Q77SoM&YYT0XqRRTtc=>^!nDD2w?v-5|w_Zfh3q1*> z7jlA;SH8zk=tpT)!|3?Wm{U@mGdlyWli(t!IA`rUt+$|GI32eLZo^BK`pGwZDbCGW z+zC9Cw{Yjz=YePyKJ>|al0tk?cXw|Dmk=a)>Dk4rc0olSQoOqE1~6G}gqZW0e!$$k zuwkpZe&3hkv3k`F{M||6dPi>>SF&{DG!1f%axuY=k*I$6!b}z2A1)O7G@Mp#?#X3k ztG;O*3Bv`ev|78aly>#%s?REaS=~LS3?DB}HI3ah{$%FysuD3=Jg@A6%u5}4T{3F_ zysKk^nK{b2Zt}ty?7Mg(e9-km8y4-JA7#^6S$e^>fWnVv0Z2qUK;t* zv2IgP$oieC6Mf6Z%VVV)s80^w*j!BgP~&Zf~Qqm;FB7p5+WPlx#WBG!`pCuf=^~J=5@t{eSwlH}MzT0e5#q=Lr%=mcLqw}vdaT`&6q5#FS$n8!@J-mLL z`762kS-TUw58qViCEq>!mq!=goY%g6tbu~}V+*);&uHJrf$PpG-h0X9^lUwE&eAN% z`=547_UKwo#F)N0d*d&E-UT%ddO64^-*qU>i@+DO-NQ6k17RA;8S|CiFzx$5N9*S?ZMiZF(u|* z<-z>dCHv@5Z2Ttcqvf!`mYm6jQ%^TPI+Wd8y`698ILJx!l@<;ys9MJsEt0cVzF6~r zIRD@nF&)97uO+$o+TG|PojbQllAYRHgLxIboiffkVYj{*CmrJ)df9{FSj1k-?L-{VIil2vC+Gf!TIX(@a}W?u&{z2a$zXS`UL8E_&m`_%a#8t+ly z@z}tHSqtmi-~Q{T>vin|WHa{GK^x*?_x3(BYPVWyDI6af_~0uh#^Lsv@d*)pXfiY4 ztDsh{&c}f4N0-VQ9ioNRE=XK6dRy`9WAU%bpoTFK-uR%Zh!3%D4%%r z(jPZFt(lw*@qf5cU;U5>dJLXwfEy<=+hOo=!f&^z{(%bX?7!byZLN*V2F!oE{izZA z9QX8nmE}8cJ=T6yG2c|fJzLDyz^Z{45VCCThl>W+yKJ-P#LWM?Y&0>K?d6&>b-PaG?Cz3sgFM`jmd%}U?P^%EBOx`Q6K z>>NB3kRD9vGTd$C9M2;dqCy{td23ooOo&+Iawq$Z4clb6g&7Yd32?OPCq#!O!<8Cwki&vF=gA0?IznZLJn}u(V2nURc_gv=Ic>alFc@e^Dzpi7AQ5Swv6`AuNyGX z>dYNRB~i4zJm{+99(vraZFOtVYEE;?Fe_hGM6ZxV*Q!NX)A&Bs!)PCit%CTDsNw$X z*4y?9>RHj1qxkIsr^y_yk^)zKdntl{%Xfx+>s$V_{n^=OI?rFHC^tjyWL8@0#DDH$ z*0$=O2{tq`i6Uwc4F{g>b7e!jhkx0q4n)tn=pemkwJvObCdrvSEm$ueSq+?A>OCdG zx@AK7`D*sv`#N$P1r6Ngs47N;y;c!@K5~!OP*-!z!hDt2IMLzfn$PG|?yv+?ovTwy z*HeSK-Nt^mbha7i8#%L|iFcN7y)i=W-|I^Gn0waw+gA?zMy=J4(AomCl11`h9qXUD zgEqB-mj!;+!?cjn((eOY%T;B^5)8{sV7$-+AjSQ&m`9wg&J#RFMy5tiMn?BHG0)ZP znbtpOmA>?L+SLnFl1&lPYZPLn)05vkRGhx0KI%S3{;n~DM#Z@4sXr1vb}YBie=Q0I zD^A?r`DL<070Dm)xFhr1k875q;wx&n?LBdW;P+8yl_V)2hKPLlX_o{avhA&3BY%vE z`&e}GE4Gr(SylZy=OSZu>J9M=_~QBn9gOX`8Ui!@^MUBT5@%IOS7ynV`Mt-+pYTC% zb}mm`Op2y#!frCTl@dNi}fZNHLueK0W~G(7-!glo!v^}Sol~4bMyMSE#{LaFIft4&Fu;Qd~xT| z~hUNVU8=DXOVV0a(`JlcIldZtNGj=+Qh4ohEb2_-%v05#)sw?U-WWxjpN7c^>abH zXnd1NXmK<@CRJEUs*NS>*-)E+Tw-QDfw@m@u%k{SG-HERME3K&lH|4 z6})#8ibzA}DDcMQeJya@y!_dh>e>r!idW)@opkEuTYHi|?}u3-_A_gr2It3Q3`qH- z$bucQme@s?3FbTg7Ywy}R}3J!(ib=TUo2&g7j%x@q@;;tJmJi;B;%5W)RXABoLSXq zR(-$kYt5(LeM{3T6Sb^U2`2kc29qVJTE2u|tLV)o?$#VaUR0+TnSzd~?jsi{IX_#e zBpxpPM&=uI@a$&dy-Cu$ggk!U?oh>NyqRsZ(PAac%8J<`9K}((ZI@r#3Z3<|h>97k znNV!*n%hTK6mov%xCF4|Lv^OX0drmi*&WZ4w6>8A@@J9#XqVo@nEznRLi zK7%2I3m>s~Qf%Q@CX>^8z$ryvUlxd+Fxk>>tf$=o^{W}BqnxIS^3 zll?+AZsug%crTA3!(%3i+fVAxF%B^HQ$2m@+7z~Tj7G0s2=khPV}9n=^N*g)lBOZ; zZKv9lgI32UV^aLv?>^2LIbnS5&H-tH{yN96S+XGcG<@FT6BHxzRp&les}(KBlYUXLaE!^C>d*P!?+oiQ+{wx#{)XN3rg9-EX7L4|X%Vjtu^eP~y?){Vq@(Ce~R_WMjL zMzwa#&ZUl5EHgM8XK2|1YJLt~s?@5c^zM{VZ;9B_Z}UM0vD@ia=Up2ji^j3b()iiY zD32GqUHKv0Q_lpJ;CjvO7l#InSr8f9-3RhPFMGbN1TkF_@)W+nOWC~cg?T5*sJPl? z#`b}0^2EEKQ}BhWN2Qa!FrIaI%@8YnDO$zuU$aXYj^aY>9Wt~ZjaDi@#wm1spmg(Q z2sE?A-HN(;^K1OP=YG-U4{gsW2;Th7zbdXiYw|kQOucpb*{;LqySz_?>s&=BJxziH zF}IS9nuP2 z_6sM;*u{p(;+*}9h2~_w(V`-z%+GmC zU5Fx9?{`zvYQ_0iHR^!-*5g-iNlKLdX?FUrR>?Kq332(_{3PeG7%!YMy!H0(%{m6F zvz}@6V1VD+$R}^~a*!ux9F@)gApi7hv%U4J?^m6{PrM&KdjVXpB4Wq~vQ2nG%YaI9+s|d`d!WpR8a^uIJ1Y(hk_hL?*x_}D|~LYMkhk(BWHp8hQ5O3q>I?;cToDb z&e5gaJ|iD!QV8hsW(k7s^ac2{YDfE*5l6r0d57E=zLUisQ>}cwpyH{B$d0J|^ofbh zsM~-d&RZ?r%;COV^qtd5G-R~n{e`qax`3jI3wMv`;l3ehi!kIl_l z6#Jru5E;{Fl1m|VdBQiS>n>yTLa<{=R~Lq+sIF%ScW>bHC~0zUu6T;Q%4GbRru%^X zSpON_wv(RBLpkAx>bq*E*cf)G9TAD;9U zwhWXFAHAPkIH$QgUdVVRNG18liRXtMd^r-hPI`$vrQ-#a(haZPszkou%A~Hs1PtEq z3Ax4mpin7ps*sD3Vf=PUKHkpw{k!QgIs+b%`vib!KmTwn1i3iD)_r9#S8 z&U>FuiJq9*WxDgj!N0i+h##+uvN`O{evG&(sm*6dCKhO`q^U*wqbGp=da# zfBFuWexk=8f9&{kpMXE}v4kn5Yn6T({P@Kn_mLiqY|eb|;i3B{smNpJPy4Drkepf+ zRGzRN8=>j^f7(0qu%5R5?|(}ZnUy3eq`}ZUn^h#qP)Q+@BAPU*jv-`-O3^4YktkC# zRpv1zW62yDOA&`mJ!>Cd=U8jKd!Fm}_w(zz_I;oGzRqiX-k&wR*Rc2g?#LTOMVc~Q ztfGfK`#HWOa_XB|#(PtrCNAhXTskVG-eu0;+c&+xWc~K_mKNhz*&BO(?>+wK(%FM* z7OJm~njYQZ=Thwj!}3&>jN4z38Z}B{k^A9yS&K&;{u!%ZCN;^>YL#fPo||Wb(e}`} zd-YaJZQs>By0Kxyr-bDsNa9edF@5xRf6QDE_BeP>$%~^t-wMB}k%cP1l+_%vuhESx za#hGyp_52XVrGEnxS)W*U_H;!;E(`6VJ)k^T}ncGtBCwd|9}7Gkxwt3(^ptgC*5Rq zIoW;Zn8RbrZ-)8ShGnXoD;BKrJ0YF1Q^PfMRnx-|wKqcpzDGTX{`}mcE+V+<#^J1C z#d%NdH1+HCrR+OrKMzVgozd93O%MH)tLyIC9g@mTU$W!l7ww{(*&dZa-ceSz>rZDM z8T0(xu1SW&;$F^ton+@TEa&8#<@>W&EA?}^V5jf1aOwN>Y5QWGB~9wgk5${`{Lne% zWb?B0L1}s1v&{Exi)4}y6xcr*J^1p61yQoA?9a89Hc#7nKxuQYf#=igZB6Ab-ExuJ zkefDCeNW(ySsTU|+g+OL=k$JqtL`Mbz%r|fL2X`k8JQ8R_H9ew8H*n`r8-2)IwU=^ z+>@c@8ESdU;l$3h_RGr7smKnfzW(*|=O21m2g~z*^pw9j^4MCr#?Sp^{?dE5yV&_m z+jCu%+y;%4-(~Xl?%9yU@Gcu4%yZ4w3jR8E;Ll4FcL%^OdBy+xi#d`aQDVzKc30j3 z{vl2tGkm>-9(g-?YQTMU(h^#=Lnb{qdNF>J-km*na}&c3ugUo)A@!_FNtE>Sw~yBy~1wp+lVe*-3*6a%gIiUJ~P~BSig`@mI~HQ zk8Ybe#cY^VRHb-yrT)e6Shv`s728)Yb^P1;M%?t9Uq5a0R&1Ya+bUAG$!Yi(|gp#kBm` z_7nfM7^rqpd49LepUvwA*teS=l##kj`~8jbvYg&2N#~Om_EZVW$~)IRy1}-r@#qn! z4g312pPAh5$pvZEnxYbj!)!-AmBg#uYJK~`%@0`tEq&!?`LAd_?cC{$ z`vO;N*1!1vR!~gW-dD?dX|MPBTGr>_{o=*mIfic(Y82jB6seeWdt>piTZNHt)sXj3 z)8)OF*7+)ZAGh?feEj(*m*sXpv1?U(Lw#i4%b!Ey2d-Pa-}uy%^EU@PIV`#0%gf`5 z8-sf~XsSJnuAE((R~#?zZ-07O`uuap*R>9^%G&rkIA(nPpyK`4SI_*|!TtNdRmql% zJ$BYxSNzDd-)g^6aeag7`Ng{je(hm0!g_zQQm^={uDy2cPu^Q>H8eCqzU5QhRWG&& zDqTGAA^fq;l1o35Y-hNrZmQb2>T%fF`8)1S*12JNtxC8#&YNXlv+QbR(lb92v+O{b zWkAqB9rJ&!^4AoxaeYb9Eq#UMpRd)o?YjSm(r&NQ>yNG1>|f@yB0=Wr0mtX}t*sZ^ z2HmU)m)o46HEhBRGp`dfbRO4j{wpM8(6R96t^J0n^tqt_CNm;>XnR-3gIz~V>s)^2 zzMS$Jo49lZ{n)>!Z(sA~(_V@3y%W27yY(qcSvt&NRNA^MkG%Ye$*$g)yPBKs=@s2~ zux-h~(2<2#6*N@}mhQXUV5Tg)X0GqN7t)>X=!_V7Wkbli>>K^$ZfmrV=@xC`s#ohZ zcAs=f$(lCXf`$jp`P|Cg`u>cOL%LQjIr⁣indFzJERxaO?ibz&p{cwkR&i>Uw); z-fhDy&FQOlT|E(%xL~N-@;Uv2T({m^*?8y9OM|bGwrZc6zJDDw-1ACzQSQEKJ5SZJ z0n*Vk^g8Sq?R&*Cy@lq=1}%vz(I+$t^X>Ha+=D*?oeds^u4a`L`e7U6Z)PaO zB}r;pdCGq)xp#VzR;XY0oq4ebBh}_Fn{m5j#g;Z+A$xqzjV+yo ziJM}M`GKh0qFKe8HSSvGd#PAAEz*)2UiRqj?sT)wW&xYqxCAV_;%;DFTQgYC#b)!i zWCx%7wGEeElsB4QpV4t*%V+)GHFUc8eRY%hvXxH;uGnedZSC=FaGm3a)L5H)&(y0{ zUrp(gBfrcxX+`|;{5u`@Z(5*Sra4j3rlh|AHs`F;ANFZuV^jCPUOXy!{f?q9w>J)a zKW}zm{RoZc^F4RF>ZHm{H)<6(`mAx}Q1^}lwd&O^W4~{&6lDw#4;yCVe%JYkdy5Q1 z^N&5{(l3uF+Iu(Sq4WW1sUd}CZmX?T8y>sKC{4{c^lkprd$tn35z@2MdtFW4dMoBu zf>*1fmFr?lc4aLYV-VANyZqVDi7sA+Dw(CCZkhVw>PF#x?X9Oz6Lov=WO?rirX#Hz zwFZB^ICX8&g1iN?O7{o9y{%T5uycFA{I`CEQ+127&L)m?%Dd9fQ|8GERh_hXGM_5j z-g&ucvHXtYv9|&;%_b>^JSzNle)i`^mG`Iqoe?A?`;$}k-;Zy04;sDt@F;H8yWP5zx`;$aw@Qe*{l}7jy4s}n z>nYSxZx)7iiD>d(qWvK_wt|FEdKcUea#85`dd5x5niZ1 zBP2gi;pWFcQhl*p^~X;a^S`U#6!Dd+=ejQ=d@{%D`Z2s2;s@u|=XZtG|1^Tp51W6{ zMeT!er26Ixqwv4FC;!xUCB?(e*Wz42qdly>7cmrVWC%Nt$(YF&5hQ!Q^Ug?RvNuQB zFZ{k`^%KI^^kmh`@1)|xu6Nh==YczfuI6avgA@&0e&U=3LvhV@E26Z+nrlk@wi(mq zrzsjL|3p?oSBdghobq+&DCMxt?b{DsSw`p=9KE`XqG6kDFdw!8D_`}HQVwfP-SF68 zOj|vnXsG<=-e-q!d;hGWl*6$$Ty{g0K-Y13x2~sXIMNC#3+!Sg(Maj~gHjG_O{UD| z1J3()6GcPi8xO3kxd?meTFD-NP7-jG?5f_cQ9_$1ScskkSt8E!@s@R=l{s(Auj8Q#96ISAMp)3`zYom-?1rw07taANSlo^qHjo zOoL7RwgZjBVcLIZvd-_+Y4Kkt)8b*xrRMr3V*H3ZjYIJ+dgEecVeWw*w0P(e(dI49 zzQNpg`O`QYs`4XdS7Y&If6?M$)g81?ocg=R(^a=-5sgFfpKRwn5+-!M-A68=#Y3l< zcSt4sE6hD1p2p#DRrgk#i*rAoL5qh~_u5!Z3g;fOnZ}{`^?e?#)qulYe;X|xy2ap- zTBR>A_hq>>4hO7vf3MD1eD+CNJgmB1lWvFHB+;dNu_MmAh{mD#g)SSfc89soDyGC6 zLaX~)W^W|mZrW`0!xc0R2ka5qbV;0hQ#CCfR-IH~e9d!``*hB%PQIdWEPnTd&WpOh z+)F>v;-Os}E|T*RwtIPf+1wRd^!#&n#7p?~)iXEYZL z4We-deoYRiVp~XYDv1-3eRgK_$ zpU*f!<8ZuRl)n^(#lOBpi-*w{NDMZ|c;;0ahtZ{v*v8;#!lQ&158bBEi{fhB?pc*I z4&CO-YfF1P-haHL#lz@s&(3|sxu1AL<1o5}f9_jhyz}iIR!fVAZgXBfut*E``3qlZ z9J)VKN@ewI>nmFuLXY=c%*E9Jh!Z@X_0W>OM3Mqt8=s@Q)<;G7kUC zjKYnf*M&abv$+TCHX7Dc?ie2utQnyKt1e_bjYG3Kxxng36cL}mi7#@e#Y235Y1>x< zE}Rb1Rp&RC#-ZETO3F>Zxpxbv#X~%9)`*+J*#kdC`Yxw&XjYx(L|1qb@u8gfbL(jF z81G=YK8)ahak$GC8i#IE9oV!UFO9zMrNu+sHfn5#Zm`{lAE$9>R%QMcs+(3r1bUWC)Y@l-~3FJK@8KdYZ2bqQV;)!fv~5;_y;C zB7ZFR%!Eo5!^4g@HsgG+g(SYPE~Voq$I<%n9)A9*)#V9<&*b>w8yFteU+Z>#mkDmo z=P$XN(GR=sh=bl8eMo%XH0<)I_@*%YHwl&Ts|dc5>w8tFX&g=#XY=Ae2-`7!+@+UL z>P;cu-}mcq;n}ntYzL za9YccyXg{|fBLN{#QmmD?I^4*`P>h;rExe}xE`)<9Y@4(Arn$Nv>IE}+G>oW4t+Z9ASzd-6djusE` z6H3<>uOxUnmwWLP8iym!{6}biVS&W=`6WKIc!+m9^07o%n)10{52JDDmnO4bvQ#p&rj1Q&(ktku(m?s{aS6-V2EM zeO$wxSV@bA_}G?RO@yuJ0S@;{qHuHQb)$M2+TrouWg8_P<8ohTHwj0Myw^?5rEzFh z7n3^3jv_d}uFWBb8h`BOnpsz`SvNU!ElGY4NuFNUYF?p|H!^~Dm7eUlU<2W^IllT1 z!$ZS)dc-wZn&{`(wfn1R{diq1x8=>~DI`9BhVs0Qif<09Z=II;J7HTA&b58OcN&M; zpAOes-JYoD$Glog?LTYZ9O8TILmTu6&ikEvXBvlfr~P=G3tpfU^b+I02CX^7oeNZ_ z3hP>aeG{Zl+^}qT|I78uc?>vYW5AmsW`u_c3?k;vT4$ay+NIOc{k413}cgTen z5AkHTz3YX&^b!ttpGo7;tfw3{Ho;!sejY6z;t~qe+F-vMv53Z@Sy!BsYb$s?pZktA zw0MYHMb5MjAUMCa81nANP61Lo^P}`owC<=|b-F zxrPfqMT>{{<2c`9;kcQvy6)E~+yZ)i7xnUN!L9f{f1!dBk8v4y?-bnbjny;`&1%-; z^CrR#9)6CW*g%Vi_{_MQWx|@CpX0wZ(Ks}#;;GlFgmXha_nobE{`5Kvh;L}KDh;n| zUn$c#G^=g}qN3%n;f866@n2qN0dez(_WHt^>2j{yd@`bOXjaxgkIuk8pF5Nm5Ao|c z12^NfUF{eehh~*ychOPsI{v2S$jP*Lh)3K#Hda{M@#lsOvuGTe)tLGtad>@`6+(-L zxIyipQas*km(VygtGpH|9feNIpBIl_ON)ni$kAErg>$Q|T)ThFpmAtcr|wp~ks^Jb z_qx4Vw0Ma78)@GW#yh{Zdvt`xp;^U~&&CN}#}C*6=Vq4jBge|Lt5 zp5?Umtc_rK{E>50A4Wgq4=dNtnM3%sT>g1x3=dsP!c28dC$Ztv`W>tp{g8j0WtjBa z@o7GBJi|lZ%5CUeD%{%@mi9FN)}7H0d5g0#FJ?eKaxTL|=PF-v#zqe2-#VPp5BdEO zYggg?t(P-A^scd?XO9ZgJ^!ZL=5>sI$eXA?vJ-AE^Zmzq3&TVADqLGUO?V$fFh9Ef zAMa)KL*Cf!vg7YrkLG2LGd%RKrd~T=3Xj7GYc-npxX9>-{Of5YUxaf!;W&uq|Gr7{ z_;s419}gem@t^mY){lA1xlUTYPqXOwZ)+GH`d2^Q4xz$vmN0kGywz7mKjb&>`Ya>( zzi_XV=AX;-rTotT`rq?&6{~+Q_-KAxCowPfKg?ISsrmLN<44%t()ZWhBZc8%``670>ng1MQn>z;wS&`*D7T6!}>37A$xE<%-``U!^8S_9vysLIOE{o6Te-~ z=!gFOKx>7n(0};xxAHl|L;oEoxaR;#r$vog#5mRpB#l7$Gm@p88SS~ zUnyf?lrPaQoN>|p_v#QvKja(wc&G^LPvI6K&3oH3JnTQGmS`Om`ai#ZP;q7SL;hoV z*=y{dBfS|O_CE_FxyeHR-NETk31;*|{$NF+g7C=3HjcN6qIvv^T2#>CxZek5bp1)k z(fTnTbZn-a32A?R{?y;V@X-Hl(q|nK9<}1L*$Z7pXlKuZYa5KQal<_R-=Rf`j@^2^Re;t`M z!$V>{v5WV-%dPoa1NL#RJby`V(6Kg0LG z6d#6%{`oe)ohn|x4+s2&!0*Y82yk> z%{2QVJlDROtG|#>l$wkfGOqd@cv2iA1`cgv>rW8Ot?{R6yzpMI3#Vf!C;UC|k@ z|4y8zcq1cN{{@l|++cWEe-2g7PX+(y>wm^$F)tqfc>kc$BmQF@`C&!{ zL$>~;YZxB-_dV+mpCn-YYka5l8{k{ZIg+B!hJ@$mKj)UZl>Zq)|IYj<(=~~u8-}ys+QpU*Lxc@Bd#l(mH{Y-eUbK z?v#EbW7z*{-8_C`zG6DX8yG?TF5}WhU_RNC;i3MmhVN8Gu>Vi+X7Y#Q-|zL;BwT+> zgBc!<|B@{-U4N4P&+os^L{WS*^Iy)*gvVove%^oT;us$K-^(sz+`p3e7CLPE`)7#x z-{TMF->>0RU*Y^Ef#cJ%7#`+7CTv)Uu>R)#|Naq5zX6{A53PP-CbXXc*MDWsF+9va z?23z{uzp?HkImn-jMk6iryT9@MOgo@;`ogZ86L*pI_qa3p8qA@GWy~8xp#kkcv}*m zAHO5MFg)~6$)W*rc>F|5>rwk}Jbrh+U#g7v55wfdym%8|E*6tGB{TJYfLns*^|)^^LM*=WIWE_qc_7t{i#J7r-Yw#BG2+L`c<_V z{m{RBPsBc~hxt31Fg*0HJCCnhVf`V)8U3*S=Gg}33gf>MH+~Il7#`~Xd*0%Exc^R` z!03nmVL5l5Pjfv!)u>-=h?UhyHWf@a%G|zhMWhAIGou zUZy9!^1}PK^g$**^sh~ZdxyM&`o|P8JRHCBX2<{i#S*&yyowq9F#oe&$0Kq7=~>F~ zP=C|I9Y1jYe_Y1shyLMFSoyA;O1sdNvC8 zpM^)!>H2f|Lh(k%kbl0?I{){tXVCn6DSc}GFoF4Z*<}_a{I-`S=Rf;p86M`ZYhKK$o5p%f#&%XvUDgA~Pkng|bSuE~9wcZqO zfL|7kj+{9GkKesM3=iYqmC2ca?;p>qglknbht#q%fThs|8o`8DDB{hx_G z!$be-FwjL4x4*+6MnB}oyN*x7^QZh!CO-6^!+kvu;r;8lF$@p=$NJ{S*;v278>1h_ zuhj|8$9&(Z3=iXX(&@KRxc|?$->Yeie&|0d_Z|L$+fUJt;i3P`&~LdD>(`BB^uzeY z#qp8YKi)22co@HX`iQ+a|2>Nt{m_35?DY@e{O`sxJoFz++m%1C{V zznqN>595z83u_`Kg|Ka0|ei(n()@3m` z|9J%r5961{YrhrtPkjH^Jw@wp=FPw_m2P^bpSs<`T7x~ANo&=@mF<)^Ap~`)oU0Y`j3X)qY=3Mtr{8qFn-)Y*EGya zd}nwVKR0gka(w^m)K5k~^dH^8H?G3@37>zxydiadX%78of#Enc+TYLHM4)&F^SO+;~Ujy zEynxr>5~~A#%~{Mql3@yySdZ)@!N9oXD^(15BvX&xeO2er{ML?X7;bk!fE|DzG6q` z!?^v2{>AVxewo^ax%m9`$3jLw^q*@TWgGDR&u|UHL;rc6IK>$E{|RY~ei+|9BQqA~ z-#&xkVf;lSO!wpcU&$s$KlGoUej3B@{HM5=;i3PW4c_(z=ilcTqaVf(kC^oD*Lvvj z`|1S4!}u%JAFfe`=hvBqjDF}pm+ZG}sfGRj-BpH%{?kA8TU*?I@)eAJ7(d!~K^f*R zS28?|pWAzRS3LfgKVV594o-U(yZdzy2%3 z!}zXM8LM&r<9<;34e|STwlQY!@c2(@W%TF#Z>SIb$Fa?-46Hw2NzDJ6|C@>bT6SJ9 z%m;U6co;wVR95E>u>b3KXY@n=S(2;0p$7Kwn;AI&S-FgU z7~lUvK_%uj4l+E9uYN0fC-%RmhiU!z{kaQwG^XM9*E+-S(0@J{AIru1ElX+rIKJ)R zVgG*Iho1jGmoYqyAJW%xEI$9qyT#~-{*z!aFRc!?|I;T75B;ZmS=A(*zvvyKAI8t? z>-Fzf`{?`&>lq%#|4=>g0KWej*}&+B{&Vxuq3wA6e@J9Z&3^{ae}>-DSv;4F-&|wX zzizb=^Wyo>0LEW;CCv`kpT7#j!}xwObvMmO{2+ZceqU9FhyGK3$nlIj;qy5C>-sW0 z^q)@yUS#6u@6|2D{IBzKLjxE;sN=M9JparZ!SFDC;K{nZc>Z1J$moauV<%&&kLS+; z6Pfss@2F7Wf&0%~Plkv7wQ$gjV~(W$M;Ni~7aPdvhkVM?gl3)}X}5^x@%ukRB9#99 zv?+w_0op&($VSEjn`Zl=#EIq*RFn-3+uFX6@wxf{I5BKR>$MDeqPShRTipPK3?zDdV z{!J$Z(?xjya!rllq5n)+GxHlhe_Pd)){o=2m|2*E@4pu6F+7Z)c>SU-Zom5j8U4_I z%#DZDV?J#N!$becFW(f1=YQwnjD8ru|Ff_nod3qL3=iWMpV-n?*#D8A_hO#^J28dP z5B(=XX-+O2`l z&yPRI@X-I#cB(ew_cvPSG5R4d9h-Nlg3Mq1{bRE;3=jS5XvD^&IR7D~jDE;#I(A%w z`R`>kkKg~WNbJ+h@2?!cMeE1>l!5EVWB>m7gyEroeXsXjh4rhxWAsB_XUSw^;rTay z{NJxuk$Yi|Kt68*91mCKT4;0{Qie=_$52xv*vnS|H;_M@X&vTRphJT{a^JSI)5C0(t5S&c>Huc%J4A0 zRPNA`IDh@~jDF}}InI~TF<*O;;od;r!X9H|t+_?=n1$ z-_yQu4PO8Mc*f|5{35`s;l9i1RmSDdxrdKOA4GuU0bl dm z9>$L}HoA%RFYd+YhyL~Af!Qw157cCM=s!mcdcDHW-!y77`eA$-1C^h6{0}f?co=_K zXj~E2?`lQs$M0YCiElL>^PNX9JoKMUtry+J&!6A2rS;?ZnW=$6c>GFCWa2~rXzlxX zA0EG_CNVtpkJI|W{@B0&n#|~j@hxS|SK{?=)@+7{@iW3Rm4x4a;McF0LmB+2QP~*c>U0{ zh2f!o581ENaQmy~F#4f?Jl)dnp>TfPnVbJB_cJ^kziw7-BJl5b$QLsDVg3Dmy~-Sq z|FKsY9_ruJ@zHghzh60{ANq$@7p?i2*Qum={Qkq7r~5YG{d4sLMn9~-7p1eZ@$(n$ z-!MGXf3m(;3#`B2XGTBtFNd*nOoWfh@a_Mqk>TO^S5+LjMfmY27y>u4}M9KX*D^~>@6Kf!>} z59_aK{uU?fpNj@FJk)>hI;Kr;Yo+&kjaE^pAAcy9v1ddheon{QkoG()sJK z|5ar%`eFU8@SD)g?}xO>XLzVzE_hNi>({>L82!*c&h(gc1?T_j0>i`coAz1H6W{;K zyiDuI^`{_nJ>ec1fBgCB^*am?^*fmNY-aybQN`$o{_*l$rZirECRZ~&9KS*JwY%~C zKgU;$epr7eTYkAFJb#qI`ESN2CO#bhifP(exczb^EvWeif1gQCtEmC=bEU<+c>XYl z<5$LKVkzde<(T-e{tlLwlnU#ouH5>ox)l>2j(?-bJ2Ub4*XhEL2?Lg|LU$x zd^mp9*X)(V`S0k?#E13wZTZP*!uczo|8#XGJ{4;=}suANBe&&i{!C6CaL$_YM`Q&9uK26Cc*!xM}mUn`wU=CO#a$ zW1j4KkMrMQOUK9cx1e~Yg>e58wEt)(KJ>5JBc1hd{LD#Ad{}?=tUu&m*HXlzEu}QSpTYUMn4??cV7)WhIyO67#@z_Gcm!M zc>b4M#OR0hHzjCeJG}nyzlPzV{*h-7#W$lrjnNOse|*BBrWY zxtEmwX6nzTYKJ7=|NZ@u;i3Nfi#qJb{@+>B^3U^cBYo%}9wD!kaQ)qsVt6=yCHs1| z!{dLgteF3G{%wT6|McML(gflBE0|mVolszSsK4Iby9d^PuLq+a`iDhpZwK7}Q#2SJ zj$fztnU8V*chX|?!}@bpe&^6i*gtalFEM6#s6St^+Z3Gt$zhCs=pSnDGM3`}!>t(} zj$b*=(>?L~C#EAA{jmP}+oTMA3)}xMCx(amPrew?%<~^99*lnI9}+cZEpYug&ZK$# z{(|n)nF_-1ukic-_OlrMu>RtIp3xpd+TUJ}J%1h&!thZ4CaH^Ku>OK2jDF}JT5X4X z!tEas&G69wYKj!|@$-LXD{1|>{_@9#eVYXH_f2AWs6Suh;5n@S<2FV=^bgy$CKncv z_RHdaKkv{^hKJ+#R7dUXRKn+Sy!%0hhvWCwFwnvT*LuS5_w)Tfb{50K`fu;A^%H;pPcD?v5654!>9SeE_~*w@?h=NF z<8Q-}j%$SW=fB?*8c*y0v;JF&e*N_j?aN*$(Xj=YJIJLd{(pb{*Y*rC@8>ns$3xG@ z&tsOCxo)8UtZ}0y$fr#dL^2{d@^AJKr5wqrdM_;!jZP)GS&*W8*Cn^7x@n0Da=jz32ZX~}XN-nw#1G9m@M&cit7+Ih) zybn!id6v9MBwTcDthvRPVemgIB1(1;C&LgGF)#VvOV#Bfk#NzOgbv_~Fw&h9=p}BH z|7xT8GA^Cw%P@vz#I0!AUdK=*5-wVY@`%A)DkiXuf(aRQ^<6|F;iAh33+Kx)g=I9~ zM>iz$WtgEVRXz3Tsyyl9!bQt?oWvJl06WLXM=mLNsHmp#W&A&jpk;Vw@I{an59sH5 z&M9^MNE*ULm$7FvC(eD3|8T$j<_07^5;m z!lHY;Bu}sl7po|9eFN6H56zF3i$>$w=kUWHoF2mDx2siS{%mT_7nDn`(6XAu6 zF5}n~PzLO$&6m+M4U_@<>3Fl+mRQFKPf!Nzr)Gu2{541(!bRs2=MBn$b=rIx)jpsM z*iR?;OP~kTu{czR&m!?5)Hydm+|5FNKOZNiW`)%!?R1DoTVa>aM5MtOta<6FotCq&Rlh*B!0Ui@ z+Pt4$m*vYKU%&!={b=!A)#tM%M8c&+)*%1=DQx4*Fg1f)K`R&MYjBwEv(!bR> zE*bJu@<52ntn5-ZS&>M%=rRI3f-+#GKGd0}n64ud2^U?)Pi4Lg@<=bx(R_szTY)kR z{)ZLveBXGkLd@Vy*L;O&9RX#)p4xnc94P>0z#if~+fG(GLnIO|x>A?E;L9+Dxt#uX z!RGw}kx01cGEOd;z}E*Hxe8u#1+gncBH^OTc=8jJ0UcH1_{zj&;>f~9m$7xZBd-H? zRL`;5Nh#aOnK`-WGJIM&@nyh{TH?{Q&Ysk#aM5KL;7X|B>XTr1vV9RQx{UJS6L}r5e>^K&Yr2oL ziEzb=Axbct#tH4kx01cGHUWb88DZ$>5Um} z4~s;?MLX(T!%3VDvp)|m|2x&5{>pyUhz`$R@rDcSFr9+DjEl!;miRQL*CI9RH0H}Qk A$N&HU literal 0 HcmV?d00001 From aaefea9549d85813283e177a12dc07462dab92df Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Mon, 6 May 2024 16:48:38 -0600 Subject: [PATCH 149/384] Removed CALCULATE_VALUES, added MEAN_GAMMAS, made phreeqc_rates.dat, updated CMakeLists, ran all examples, added test case ss_kinetics --- RELEASE.TXT | 143 +++++++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 142 insertions(+), 1 deletion(-) diff --git a/RELEASE.TXT b/RELEASE.TXT index 81c6aec8..b9310639 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,4 +1,145 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + ----------------- + May 3, 2024 + ----------------- + PHREEQC: The -dw identifier of SOLUTION_SPECIES now has up to 7 items. + + -dw Dw(25C) dw_T a a2 visc a3 a_v_dif + + where, + Dw(25C)Tracer diffusion coefficient for the species at 25 C, m 2 /s. + dw_TTemperature dependence for diffusion coefficient. + aDebye-Huckel ion size. + a2exponent. + ViscViscosity exponent. + a3Ionic strength exponent. + A_v_difExponent for (viscosity_0/viscosity). + + The diffusion coefficient is calculated as follows: + Dw = Dw(25C) * exp(dw_T / T - dw_T / 298.15) + ka = DH_B * a2 * I0.5/ (1 + a3) + av = (viscos_0/viscos)a_v_diff + ff = av * exp(-a * DH_A * z * I0.5 / (1 + ka)) + Dw = Dw * ff + Where T is temperature in Kelvin, DH_B is the Debye-Huckel B parameter, + I is ionic strength, viscos_0 is the viscosity of pure water at T, viscos is + the viscosity of the solution at T, DH_A is the Debye-Huckel A parameter, + and z is the charge on the species,the viscosity of the solution. + See Robinson and Stokes, 2002, Chpt 11 for examples. + The Dw and a_v_dif can be set in a USER_ program with + setdiff_c("name", Dw, a_v_dif), for example: + 10 print setdiff_c("H+", 9.31e-9, 1). + The diffusion coefficient of H+ is handled differently with + Falkenhagen equations. + + ----------------- + May 3, 2024 + ----------------- + PHREEQC: The ionic strength correction is for electromigration calculations + (Appelo, 2017, CCR 101, 102). The correction is applied when the 6th parameter + option is set to true for -multi_D in TRANSPORT: + + -multi_d true/false 1e-9 0.3 0.05 1.0 true/false # multicomponent diffusion + + true/false, multicomponent diffusion is used, + default tracer diffusion coefficient (used in case -dw is not defined for a species), + porosity (por = 0.3), + limiting porosity (0.05) below which diffusion stops, + exponent n (1.0) used in calculating the effect of tortuosity on the + porewater diffusion coefficient Dp = Dw * por^n, + true/false: correct Dw for ionic strength (false by default). + + ----------------- + May 3, 2024 + ----------------- + Database: Added new database phreeqc_rates.dat. The database augments + phreeqc.dat with rate parameters from Palandri and Kharaka (2004), + Sverdrup, Oelkers, Lampa, Belyazid, Kurz, and Akselsson (2019) (only + Albite and quartz), and Hermanska, Voigt, Marieni, Declercq, + and Oelkers (2023). Parameters are defined in data blocks + RATE_PARAMETERS_PK, RATE_PARAMETERS_SVD, and RATE_PARAMETERS_HERMANSKA. + All minerals with rate parameters have been added in a PHASES + data block. Example RATES definitions using the different RATE_PARAMETERS_ + parameters are provided for Albite and Quartz. + + ----------------- + April 27, 2024 + ----------------- + Databases: Added new keyword data block MEAN_GAMMAS. Each line + of the data block defines how to calculate the mean activity + coefficient for a salt with a series of pairs of + aqueous species and stoichiometric coefficient. Phreeqc.dat, + Amm.dat, pitzer.dat, and phreeqc_rates.dat have this data block. + + MEAN_GAMMAS + MgCl2 Mg+2 1 Cl 2 + + A new Basic function MEANG will calculate mean activity coefficients + for salts listed in the MEAN_GAMMAS data block. + + 10 g_MgCl2 = MEANG("MgCl2") + + + ----------------- + April 27, 2024 + ----------------- + PHREEQC: Added new keyword data blocks RATE_PARAMETERS_PK, RATE_PARAMETERS_SVD, + and RATE_PARAMETERS_HERMANSKA and Basic functions RATE_PK, RATE_SVD, and + RATE_HERMANSKA + + RATE_PARAMETERS_PK +# Acid Neutral Base +# log K E n(H+) log K E log K E n(OH-) +# ======== ======== ======== ======== ======== ======== ======== ======== +Quartz -30 0 0 -13.4 90.9 -30 0 0 # Table 4 +# Acid Neutral P_CO2 +# log K E n(H+) log K E log K E n(P_CO2) Table +# ======== ======== ======== ======== ======== ======== ======== ======== ======== +calcite -0.3 14.4 1 -5.81 23.5 -3.48 35.4 1 33 # specify Table number for P_CO2^n(P_CO2) +# Acid and Fe+3 Neutral and O2 Base +# log K E n(H+) n(Fe+3) log K E n(O2) log K E n(OH-) Table +# ======== ======== ======== ======== ======== ======== ======== ======== ======== ======== ======== +pyrite -7.52 56.9 -0.5 0.5 -4.55 56.9 0.5 -30 0 0 35 # specify Table number for Fe+3 and O2 + + Three rate equations from Palandri and Kharaka (2004) can be entered. Most minerals use + use the first form above with 8 parameters. Table 33 has a term for CO2 as in + the calcite example above; parameters from table 33 are identified with a 33 in the 9th + field following 8 parameters. Table 35 has additional terms and data from this table + is identified with 35 in field 11 following 10 rate parameters. The rates for the + the minerals listed in the data block can be calculated with the Basic function RATE_PK. + The calculated rate does not include factors for surface area or affinity. + + 10 rate = RATE_PK("Calcite") + + RATE_PARAMETERS_SVD +# Table 4: E's Table 3: H+-reaction H2O-reaction CO2-reaction Organic_acids OH--reaction Table 5 +# H+ H2O CO2 Org_acids OH- pkH nH yAl CAl xBC CBC pkH2O yAl CAl xBC CBC zSi CSi pkCO2 nCO2 pkOrg nOrg COrg pkOH- wOH- yAl CAl xBC CBC zSi CSi # Num Mineral Formula +# ====== ====== ====== ========= ====== ====== ====== ====== ====== ====== ====== ====== ====== ====== ====== ====== ====== ====== ====== ====== ====== ====== ===== ====== ====== ====== ====== ====== ====== ====== ====== ====== ====== ======= ====== +Albite 3350 2500 1680 1200 3100 14.6 0.5 0.4 0.4 0.4 0.5 16.8 0.15 4 0.15 200 3 900 16.05 0.6 14.7 0.5 5 15.4 0.3 0.1 12 0.5 5 3 900 # 1.6 Albite NaAlSi3O8 + + Rate parameters from Sverdrup, Oelkers, Lampa, Belyazid, Kurz, and Akselsson (2019) + can be specified with the RATE_PARAMETERS_SVD data block. A total of 31 parameters + are entered for each mineral. The rates for minerals minerals listed in the data + block can be calculated with the Basic function RATE_SVD. The calculated rate does + not include factors for surface area or affinity. + + 10 rate = RATE_SVD("Albite") + +RATE_PARAMETERS_HERMANSKA +# Acid mechanism Neutral mechanism Basic mechanism +# logk25 Aa Eaa n(H+) logk25 Ab Eab logk25 Ac Eac n(OH) # Formula +# ======== ========= ======== ======== ======== ========= ======== ======== ========= ======== ======== ========================================= +# Amphiboles +Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 0 0 0 0 + + Rate parameters from Hermanska, Voigt, Marieni, Declercq, and Oelkers (2023) can + be specified with the RATE_PARAMETERS_HERMANSKA data block. A total of 11 parameters + are entered for each mineral. The rates for minerals listed in the data block can + be calculated with the Basic function RATE_HERMANSKA. The calculated rate does not + include factors for surface area or affinity. + + 10 rate = RATE_HERMANSKA("Anthophyllite") + ----------------- April 21, 2024 @@ -1577,7 +1718,7 @@ Version 3.6.1: January 7, 2020 Eliminated prints of Total Carbon and Total CO2 in "Description of solution" when values are zero. - Pring and punch of cells in transport calculations with + Print and punch of cells in transport calculations with stagnant zones follows the order of the cell numbers. Enabled multicomponent diffusion among boundary and stagnant From 71e10f579d1213a98c64c9f1ceb27ebea2a5b0de Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Mon, 6 May 2024 16:48:38 -0600 Subject: [PATCH 150/384] Removed CALCULATE_VALUES, added MEAN_GAMMAS, made phreeqc_rates.dat, updated CMakeLists, ran all examples, added test case ss_kinetics --- Amm.dat | 200 +--- CMakeLists.txt | 2 + Makefile.am | 2 + kinetic_rates.dat | 152 --- phreeqc.dat | 199 +--- phreeqc_rates.dat | 2711 +++++++++++++++++++++++++++++++++++++++++++++ pitzer.dat | 45 +- 7 files changed, 2781 insertions(+), 530 deletions(-) delete mode 100644 kinetic_rates.dat create mode 100644 phreeqc_rates.dat diff --git a/Amm.dat b/Amm.dat index 06ac6b41..4f815c5b 100644 --- a/Amm.dat +++ b/Amm.dat @@ -1557,163 +1557,28 @@ SURFACE_SPECIES Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69 - -CALCULATE_VALUES - -#INCLUDE$ \phreeqc\database\kinetic_rates.dat -# Loads subroutines for calculating mineral dissolution rates compiled by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023. -# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters. - -# For an example file using the rates, see: kinetic_rates.phr from https://www.hydrochemistry.eu/exmpls/kin_silicates.html - -# References -# Palandri, J.L. and Kharaka, J.K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068. -# Sverdrup, H.U., Oelkers, E., Erlandsson Lampa, M., Belyazid, S., Kurz, D. and Akselsson, C. (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58. -# Hermansk, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2022. A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807 -# Hermansk, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2023. A comprehensive and consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chemical Geology, p.121632. -# Subroutines for calculating mineral dissolution rates from compilations by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023. -# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters. - # The data are entered in a KINETICS block with -parms. For example for the Albite rate of Palandri and Kharaka, Table 13: - - # KINETICS 1 - # Albite_PK - # -formula NaAlSi3O8 - - # # parms affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH - # # parm number 1 2 3, 4 5 6, 7 8, 9 10 11 - - # -parms 0 1 1, -10.16 65.0 0.457, -12.56 69.8, -15.60 71.0 -0.572 # parms 4-11 from TABLE 13 - - # In the RATES block, they are stored in memory, and retrieved by the subroutine calc_value("Palandri_rate"). - - # RATES - # Albite_PK # Palandri and Kharaka, 2004 - # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END - # 20 put(affinity, -99, 1) # store value in memory - # 30 for i = 2 to 11 : put(parm(i), -99, i) : next i - # 40 SAVE calc_value("Palandri_rate") - # -end - -Palandri_rate -# in KINETICS, define 11 parms: -# affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH -# parm number 1 2 3, 4 5 6, 7 8, 9 10 11 -10 affinity = get(-99, 1) # retrieve number from memory -20 -30 REM # specific area m2/mol, surface roughness -40 sp_area = get(-99, 2) : roughness = get(-99, 3) -50 -60 REM # temperature factor, gas constant -70 dif_temp = 1 / TK - 1 / 298 : R = 2.303 * 8.314e-3 : dT_R = dif_temp / R -80 -90 REM # rate by H+ -100 lgk_H = get(-99, 4) : e_H = get(-99, 5) : nH = get(-99, 6) -110 rate_H = 10^(lgk_H - e_H * dT_R) * ACT("H+")^nH -120 -130 REM # rate by hydrolysis -140 lgk_H2O = get(-99, 7) : e_H2O = get(-99, 8) -150 rate_H2O = 10^(lgk_H2O - e_H2O * dT_R) -160 -170 REM # rate by OH- -180 lgk_OH = get(-99, 9) : e_OH = get(-99, 10) : nOH = get(-99, 11) -190 rate_OH = 10^(lgk_OH - e_OH * dT_R) * ACT("H+")^nOH -200 -210 rate = rate_H + rate_H2O + rate_OH -220 area = sp_area * M0 * (M / M0)^0.67 -230 -240 rate = area * roughness * rate * affinity -250 SAVE rate * TIME --end - -Sverdrup_rate -# in KINETICS, define 34 parms: -# affinity m^2/mol roughness, temperature_factors (TABLE 4): e_H e_H2O e_CO2 e_OA e_OH,\ -# (TABLE 3): pkH nH yAl CAl xBC CBC, pKH2O yAl CAl xBC CBC zSi CSi, pKCO2 nCO2 pkOrg nOrg COrg, pkOH wOH yAl CAl xBC CBC zSi CSi -10 affinity = get(-99, 1) -20 -30 REM # specific area m2/mol, surface roughness -40 sp_area = get(-99, 2) : roughness = get(-99, 3) -50 -60 REM # temperature factors -70 dif_temp = 1 / TK - 1 / 281 -80 e_H = get(-99, 4) : e_H2O = get(-99, 5) : e_CO2 = get(-99, 6) : e_OA = get(-99, 7) : e_OH = get(-99, 8) -90 -100 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") -110 aAl = act("Al+3") -120 aSi = act("H4SiO4") -130 R = tot("OrganicMatter") -140 -150 REM # rate by H+ -160 pkH = get(-99, 9) : nH = get(-99, 10) : yAl = get(-99, 11) : CAl = get(-99, 12) : xBC = get(-99, 13) : CBC = get(-99, 14) -170 pk_H = pkH - 3 + e_H * dif_temp -180 CAl = CAl * 1e-6 -190 CBC = CBC * 1e-6 -200 rate_H = 10^-pk_H * ACT("H+")^nH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC) -210 -220 REM # rate by hydrolysis -230 pkH2O = get(-99, 15) : yAl = get(-99, 16) : CAl = get(-99, 17) : xBC = get(-99, 18) : CBC = get(-99, 19) : zSi = get(-99, 20) : CSi = get(-99, 21) -240 CAl = CAl * 1e-6 -250 CBC = CBC * 1e-6 -260 CSi = CSi * 1e-6 -270 pk_H2O = pkH2O - 3 + e_H2O * dif_temp -280 rate_H2O = 10^-pk_H2O / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi) -290 -300 REM # rate by CO2 -310 pKCO2 = get(-99, 22) : nCO2 = get(-99, 23) -320 pk_CO2 = pkCO2 - 3 + e_CO2 * dif_temp -330 rate_CO2 = 10^-pk_CO2 * SR("CO2(g)")^nCO2 -340 -350 REM # rate by Organic Acids -360 pkOrg = get(-99, 24) : nOrg = get(-99, 25) : COrg = get(-99, 26) -370 COrg = COrg * 1e-6 -380 pk_Org = pkOrg - 3 + e_OA * dif_temp -390 rate_Org = 10^-pk_Org * (R / (1 + R / COrg))^nOrg -400 -410 REM # rate by OH- -420 pkOH = get(-99, 27) : wOH = get(-99, 28) : yAl = get(-99, 29) : CAl = get(-99, 30) : xBC = get(-99, 31) : CBC = get(-99, 32) : zSi = get(-99, 33) : CSi = get(-99, 34) -430 CAl = CAl * 1e-6 -440 CBC = CBC * 1e-6 -450 CSi = CSi * 1e-6 -460 pk_OH = pkOH - 3 + e_OH * dif_temp -470 rate_OH = 10^-pk_OH * ACT("OH-")^wOH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi)# : print rate_OH -480 -490 rate = rate_H + rate_H2O + rate_CO2 + rate_Org + rate_OH -500 area = sp_area * M0 * (M / M0)^0.67 -510 -520 rate = roughness * area * rate * affinity -530 SAVE rate * TIME --end - -Hermanska_rate -# in KINETICS, define 14 parms: -# parms affinity m^2/mol roughness, (TABLE 2): (acid)logk25 Aa Ea na (neutral)logk25 Ab Eb (basic)logk25 Ac Ec nc -# (Note that logk25 values are not used, they were transformed to A's.) -10 affinity = get(-99, 1) # retrieve number from memory -20 -30 REM # specific area m2/mol, surface roughness -40 sp_area = get(-99, 2) : roughness = get(-99, 3) -50 -60 REM # gas constant * Tk, act("H+") -70 RT = 8.314e-3 * TK : aH = act("H+") -80 -90 REM # rate by H+ -100 lgk_H = get(-99, 4) : Aa = get(-99, 5) : e_H = get(-99, 6) : nH = get(-99, 7) -110 rate_H = Aa * exp(- e_H / RT) * aH^nH -120 -130 REM # rate by hydrolysis -140 lgk_H2O = get(-99, 8) : Ab = get(-99, 9) : e_H2O = get(-99, 10) -150 rate_H2O = Ab * exp(- e_H2O / RT) -160 -170 REM # rate by OH- -180 lgk_OH = get(-99, 11) : Ac = get(-99, 12) : e_OH = get(-99, 13) : nOH = get(-99, 14) -190 rate_OH = Ac * exp(- e_OH / RT) * aH^nOH -200 -210 rate = rate_H + rate_H2O + rate_OH -220 area = sp_area * M0 * (M / M0)^0.67 -230 -240 rate = area * roughness * rate * affinity -250 SAVE rate * TIME --end +MEAN_GAMMAS +CaCl2 Ca+2 1 Cl- 2 +CaSO4 Ca+2 1 SO4-2 1 +CaCO3 Ca+2 1 CO3-2 1 +Ca(OH)2 Ca+2 1 OH- 2 +MgCl2 Mg+2 1 Cl- 2 +MgSO4 Mg+2 1 SO4-2 1 +MgCO3 Mg+2 1 CO3-2 1 +Mg(OH)2 Mg+2 1 OH- 2 +NaCl Na+ 1 Cl- 1 +Na2SO4 Na+ 2 SO4-2 1 +NaHCO3 Na+ 1 HCO3- 1 +Na2CO3 Na+ 2 CO3-2 1 +NaOH Na+ 1 OH- 1 +KCl K+ 1 Cl- 1 +K2SO4 K+ 2 SO4-2 1 +HCO3 K+ 1 HCO3- 1 +K2CO3 K+ 2 CO3-2 1 +KOH K+ 1 OH- 1 +HCl H+ 1 Cl- 1 +H2SO4 H+ 2 SO4-2 1 +HBr H+ 1 Br- 1 RATES @@ -2018,27 +1883,6 @@ Pyrolusite 200 SAVE moles * SOLN_VOL -end -Albite_PK # Palandri and Kharaka, 2004 -10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END -20 put(affinity, -99, 1) # store value in memory -30 for i = 2 to 11 : put(parm(i), -99, i) : next i -40 SAVE calc_value("Palandri_rate") --end - -Albite_Svd # Sverdrup, 2019 -10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END -20 put(affinity, -99, 1) -30 for i = 2 to 34 : put(parm(i), -99, i) : next i -40 save calc_value("Sverdrup_rate") --end - -Albite_Hermanska # Hermanska et al., 2022, 2023 -10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END -20 put(affinity, -99, 1) # store value in memory -30 for i = 2 to 14 : put(parm(i), -99, i) : next i -40 SAVE calc_value("Hermanska_rate") --end -END # ============================================================================================= #(a) means amorphous. (d) means disordered, or less crystalline. #(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt), diff --git a/CMakeLists.txt b/CMakeLists.txt index 296e5384..f9556b98 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -5,9 +5,11 @@ set(phreeqc_DATABASE frezchem.dat iso.dat llnl.dat + kinec.v2.dat minteq.dat minteq.v4.dat phreeqc.dat + phreeqc_rates.dat PHREEQC_ThermoddemV1.10_15Dec2020.dat pitzer.dat sit.dat diff --git a/Makefile.am b/Makefile.am index 1c468a37..571bde55 100644 --- a/Makefile.am +++ b/Makefile.am @@ -12,11 +12,13 @@ DATABASE=\ core10.dat\ frezchem.dat\ iso.dat\ + kinec.v2.dat\ llnl.dat\ minteq.dat\ minteq.v4.dat\ PHREEQC_ThermoddemV1.10_15Dec2020.dat\ phreeqc.dat\ + phreeqc_rates.dat\ pitzer.dat\ sit.dat\ Tipping_Hurley.dat\ diff --git a/kinetic_rates.dat b/kinetic_rates.dat deleted file mode 100644 index 6f9ae3e6..00000000 --- a/kinetic_rates.dat +++ /dev/null @@ -1,152 +0,0 @@ -# Subroutines for calculating mineral dissolution rates from compilations by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023. -# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters. - # The data are entered in a KINETICS block with -parms. For example for the Albite rate of Palandri and Kharaka, Table 13: - - # KINETICS 1 - # Albite_PK - # -formula NaAlSi3O8 - - # # parms affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH - # # parm number 1 2 3, 4 5 6, 7 8, 9 10 11 - - # -parms 0 1 1, -10.16 65.0 0.457, -12.56 69.8, -15.60 71.0 -0.572 # parms 4-11 from TABLE 13 - - # In the RATES block, they are stored in memory, and retrieved by the subroutine calc_value("Palandri_rate"). - - # RATES - # Albite_PK # Palandri and Kharaka, 2004 - # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END - # 20 put(affinity, -99, 1) # store value in memory - # 30 for i = 2 to 11 : put(parm(i), -99, i) : next i - # 40 SAVE calc_value("Palandri_rate") - # -end - -# For an example file using the rates, see: kinetic_rates.phr in https://www.hydrochemistry.eu/exmpls/kin_silicates.html - -# References -# Palandri, J.L. and Kharaka, J.K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068. -# Sverdrup, H.U., Oelkers, E., Erlandsson Lampa, M., Belyazid, S., Kurz, D. and Akselsson, C. (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58. -# Hermansk, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2022. A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807 -# Hermansk, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2023. A comprehensive and consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chemical Geology, p.121632. - -CALCULATE_VALUES -Palandri_rate -# in KINETICS, define 11 parms: -# affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH -# parm number 1 2 3, 4 5 6, 7 8, 9 10 11 -10 affinity = get(-99, 1) # retrieve number from memory -20 -30 REM # specific area m2/mol, surface roughness -40 sp_area = get(-99, 2) : roughness = get(-99, 3) -50 -60 REM # temperature factor, gas constant -70 dif_temp = 1 / TK - 1 / 298 : R = 2.303 * 8.314e-3 : dT_R = dif_temp / R -80 -90 REM # rate by H+ -100 lgk_H = get(-99, 4) : e_H = get(-99, 5) : nH = get(-99, 6) -110 rate_H = 10^(lgk_H - e_H * dT_R) * ACT("H+")^nH -120 -130 REM # rate by hydrolysis -140 lgk_H2O = get(-99, 7) : e_H2O = get(-99, 8) -150 rate_H2O = 10^(lgk_H2O - e_H2O * dT_R) -160 -170 REM # rate by OH- -180 lgk_OH = get(-99, 9) : e_OH = get(-99, 10) : nOH = get(-99, 11) -190 rate_OH = 10^(lgk_OH - e_OH * dT_R) * ACT("H+")^nOH -200 -210 rate = rate_H + rate_H2O + rate_OH -220 area = sp_area * M0 * (M / M0)^0.67 -230 -240 rate = area * roughness * rate * affinity -250 SAVE rate * TIME --end - -Sverdrup_rate -# in KINETICS, define 34 parms: -# affinity m^2/mol roughness, temperature_factors (TABLE 4): e_H e_H2O e_CO2 e_OA e_OH,\ -# (TABLE 3): pkH nH yAl CAl xBC CBC, pKH2O yAl CAl xBC CBC zSi CSi, pKCO2 nCO2 pkOrg nOrg COrg, pkOH wOH yAl CAl xBC CBC zSi CSi -10 affinity = get(-99, 1) -20 -30 REM # specific area m2/mol, surface roughness -40 sp_area = get(-99, 2) : roughness = get(-99, 3) -50 -60 REM # temperature factors -70 dif_temp = 1 / TK - 1 / 281 -80 e_H = get(-99, 4) : e_H2O = get(-99, 5) : e_CO2 = get(-99, 6) : e_OA = get(-99, 7) : e_OH = get(-99, 8) -90 -100 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") -110 aAl = act("Al+3") -120 aSi = act("H4SiO4") -130 R = tot("OrganicMatter") -140 -150 REM # rate by H+ -160 pkH = get(-99, 9) : nH = get(-99, 10) : yAl = get(-99, 11) : CAl = get(-99, 12) : xBC = get(-99, 13) : CBC = get(-99, 14) -170 pk_H = pkH - 3 + e_H * dif_temp -180 CAl = CAl * 1e-6 -190 CBC = CBC * 1e-6 -200 rate_H = 10^-pk_H * ACT("H+")^nH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC) -210 -220 REM # rate by hydrolysis -230 pkH2O = get(-99, 15) : yAl = get(-99, 16) : CAl = get(-99, 17) : xBC = get(-99, 18) : CBC = get(-99, 19) : zSi = get(-99, 20) : CSi = get(-99, 21) -240 CAl = CAl * 1e-6 -250 CBC = CBC * 1e-6 -260 CSi = CSi * 1e-6 -270 pk_H2O = pkH2O - 3 + e_H2O * dif_temp -280 rate_H2O = 10^-pk_H2O / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi) -290 -300 REM # rate by CO2 -310 pKCO2 = get(-99, 22) : nCO2 = get(-99, 23) -320 pk_CO2 = pkCO2 - 3 + e_CO2 * dif_temp -330 rate_CO2 = 10^-pk_CO2 * SR("CO2(g)")^nCO2 -340 -350 REM # rate by Organic Acids -360 pkOrg = get(-99, 24) : nOrg = get(-99, 25) : COrg = get(-99, 26) -370 COrg = COrg * 1e-6 -380 pk_Org = pkOrg - 3 + e_OA * dif_temp -390 rate_Org = 10^-pk_Org * (R / (1 + R / COrg))^nOrg -400 -410 REM # rate by OH- -420 pkOH = get(-99, 27) : wOH = get(-99, 28) : yAl = get(-99, 29) : CAl = get(-99, 30) : xBC = get(-99, 31) : CBC = get(-99, 32) : zSi = get(-99, 33) : CSi = get(-99, 34) -430 CAl = CAl * 1e-6 -440 CBC = CBC * 1e-6 -450 CSi = CSi * 1e-6 -460 pk_OH = pkOH - 3 + e_OH * dif_temp -470 rate_OH = 10^-pk_OH * ACT("OH-")^wOH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi)# : print rate_OH -480 -490 rate = rate_H + rate_H2O + rate_CO2 + rate_Org + rate_OH -500 area = sp_area * M0 * (M / M0)^0.67 -510 -520 rate = roughness * area * rate * affinity -530 SAVE rate * TIME --end - -Hermanska_rate -# in KINETICS, define 14 parms: -# parms affinity m^2/mol roughness, (TABLE 2): (acid)logk25 Aa Ea na (neutral)logk25 Ab Eb (basic)logk25 Ac Ec nc -# (Note that logk25 values are not used, they were transformed to A's.) -10 affinity = get(-99, 1) # retrieve number from memory -20 -30 REM # specific area m2/mol, surface roughness -40 sp_area = get(-99, 2) : roughness = get(-99, 3) -50 -60 REM # gas constant * Tk, act("H+") -70 RT = 8.314e-3 * TK : aH = act("H+") -80 -90 REM # rate by H+ -100 lgk_H = get(-99, 4) : Aa = get(-99, 5) : e_H = get(-99, 6) : nH = get(-99, 7) -110 rate_H = Aa * exp(- e_H / RT) * aH^nH -120 -130 REM # rate by hydrolysis -140 lgk_H2O = get(-99, 8) : Ab = get(-99, 9) : e_H2O = get(-99, 10) -150 rate_H2O = Ab * exp(- e_H2O / RT) -160 -170 REM # rate by OH- -180 lgk_OH = get(-99, 11) : Ac = get(-99, 12) : e_OH = get(-99, 13) : nOH = get(-99, 14) -190 rate_OH = Ac * exp(- e_OH / RT) * aH^nOH -200 -210 rate = rate_H + rate_H2O + rate_OH -220 area = sp_area * M0 * (M / M0)^0.67 -230 -240 rate = area * roughness * rate * affinity -250 SAVE rate * TIME --end diff --git a/phreeqc.dat b/phreeqc.dat index eb6e2aa1..6bfc87cd 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -1570,163 +1570,28 @@ SURFACE_SPECIES Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69 - -CALCULATE_VALUES - -#INCLUDE$ \phreeqc\database\kinetic_rates.dat -# Loads subroutines for calculating mineral dissolution rates compiled by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023. -# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters. - -# For an example file using the rates, see: kinetic_rates.phr from https://www.hydrochemistry.eu/exmpls/kin_silicates.html - -# References -# Palandri, J.L. and Kharaka, J.K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068. -# Sverdrup, H.U., Oelkers, E., Erlandsson Lampa, M., Belyazid, S., Kurz, D. and Akselsson, C. (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58. -# Hermansk, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2022. A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807 -# Hermansk, M., Voigt, M.J., Marieni, C., Declercq, J. and Oelkers, E.H., 2023. A comprehensive and consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chemical Geology, p.121632. -# Subroutines for calculating mineral dissolution rates from compilations by Palandri and Kharaka (2004), Sverdrup et al. (2019), and Hermanska et al., 2022, 2023. -# Numbers can be copied from the tables in the publications; when unavailable enter -30 for log_k, 0 for exponents and 1 for other parameters. - # The data are entered in a KINETICS block with -parms. For example for the Albite rate of Palandri and Kharaka, Table 13: - - # KINETICS 1 - # Albite_PK - # -formula NaAlSi3O8 - - # # parms affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH - # # parm number 1 2 3, 4 5 6, 7 8, 9 10 11 - - # -parms 0 1 1, -10.16 65.0 0.457, -12.56 69.8, -15.60 71.0 -0.572 # parms 4-11 from TABLE 13 - - # In the RATES block, they are stored in memory, and retrieved by the subroutine calc_value("Palandri_rate"). - - # RATES - # Albite_PK # Palandri and Kharaka, 2004 - # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END - # 20 put(affinity, -99, 1) # store value in memory - # 30 for i = 2 to 11 : put(parm(i), -99, i) : next i - # 40 SAVE calc_value("Palandri_rate") - # -end - -Palandri_rate -# in KINETICS, define 11 parms: -# affinity_factor m^2/mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH -# parm number 1 2 3, 4 5 6, 7 8, 9 10 11 -10 affinity = get(-99, 1) # retrieve number from memory -20 -30 REM # specific area m2/mol, surface roughness -40 sp_area = get(-99, 2) : roughness = get(-99, 3) -50 -60 REM # temperature factor, gas constant -70 dif_temp = 1 / TK - 1 / 298 : R = 2.303 * 8.314e-3 : dT_R = dif_temp / R -80 -90 REM # rate by H+ -100 lgk_H = get(-99, 4) : e_H = get(-99, 5) : nH = get(-99, 6) -110 rate_H = 10^(lgk_H - e_H * dT_R) * ACT("H+")^nH -120 -130 REM # rate by hydrolysis -140 lgk_H2O = get(-99, 7) : e_H2O = get(-99, 8) -150 rate_H2O = 10^(lgk_H2O - e_H2O * dT_R) -160 -170 REM # rate by OH- -180 lgk_OH = get(-99, 9) : e_OH = get(-99, 10) : nOH = get(-99, 11) -190 rate_OH = 10^(lgk_OH - e_OH * dT_R) * ACT("H+")^nOH -200 -210 rate = rate_H + rate_H2O + rate_OH -220 area = sp_area * M0 * (M / M0)^0.67 -230 -240 rate = area * roughness * rate * affinity -250 SAVE rate * TIME --end - -Sverdrup_rate -# in KINETICS, define 34 parms: -# affinity m^2/mol roughness, temperature_factors (TABLE 4): e_H e_H2O e_CO2 e_OA e_OH,\ -# (TABLE 3): pkH nH yAl CAl xBC CBC, pKH2O yAl CAl xBC CBC zSi CSi, pKCO2 nCO2 pkOrg nOrg COrg, pkOH wOH yAl CAl xBC CBC zSi CSi -10 affinity = get(-99, 1) -20 -30 REM # specific area m2/mol, surface roughness -40 sp_area = get(-99, 2) : roughness = get(-99, 3) -50 -60 REM # temperature factors -70 dif_temp = 1 / TK - 1 / 281 -80 e_H = get(-99, 4) : e_H2O = get(-99, 5) : e_CO2 = get(-99, 6) : e_OA = get(-99, 7) : e_OH = get(-99, 8) -90 -100 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") -110 aAl = act("Al+3") -120 aSi = act("H4SiO4") -130 R = tot("OrganicMatter") -140 -150 REM # rate by H+ -160 pkH = get(-99, 9) : nH = get(-99, 10) : yAl = get(-99, 11) : CAl = get(-99, 12) : xBC = get(-99, 13) : CBC = get(-99, 14) -170 pk_H = pkH - 3 + e_H * dif_temp -180 CAl = CAl * 1e-6 -190 CBC = CBC * 1e-6 -200 rate_H = 10^-pk_H * ACT("H+")^nH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC) -210 -220 REM # rate by hydrolysis -230 pkH2O = get(-99, 15) : yAl = get(-99, 16) : CAl = get(-99, 17) : xBC = get(-99, 18) : CBC = get(-99, 19) : zSi = get(-99, 20) : CSi = get(-99, 21) -240 CAl = CAl * 1e-6 -250 CBC = CBC * 1e-6 -260 CSi = CSi * 1e-6 -270 pk_H2O = pkH2O - 3 + e_H2O * dif_temp -280 rate_H2O = 10^-pk_H2O / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi) -290 -300 REM # rate by CO2 -310 pKCO2 = get(-99, 22) : nCO2 = get(-99, 23) -320 pk_CO2 = pkCO2 - 3 + e_CO2 * dif_temp -330 rate_CO2 = 10^-pk_CO2 * SR("CO2(g)")^nCO2 -340 -350 REM # rate by Organic Acids -360 pkOrg = get(-99, 24) : nOrg = get(-99, 25) : COrg = get(-99, 26) -370 COrg = COrg * 1e-6 -380 pk_Org = pkOrg - 3 + e_OA * dif_temp -390 rate_Org = 10^-pk_Org * (R / (1 + R / COrg))^nOrg -400 -410 REM # rate by OH- -420 pkOH = get(-99, 27) : wOH = get(-99, 28) : yAl = get(-99, 29) : CAl = get(-99, 30) : xBC = get(-99, 31) : CBC = get(-99, 32) : zSi = get(-99, 33) : CSi = get(-99, 34) -430 CAl = CAl * 1e-6 -440 CBC = CBC * 1e-6 -450 CSi = CSi * 1e-6 -460 pk_OH = pkOH - 3 + e_OH * dif_temp -470 rate_OH = 10^-pk_OH * ACT("OH-")^wOH / ((1 + aAl / CAl)^yAl * (1 + BC / CBC)^xBC * (1 + aSi / CSi)^zSi)# : print rate_OH -480 -490 rate = rate_H + rate_H2O + rate_CO2 + rate_Org + rate_OH -500 area = sp_area * M0 * (M / M0)^0.67 -510 -520 rate = roughness * area * rate * affinity -530 SAVE rate * TIME --end - -Hermanska_rate -# in KINETICS, define 14 parms: -# parms affinity m^2/mol roughness, (TABLE 2): (acid)logk25 Aa Ea na (neutral)logk25 Ab Eb (basic)logk25 Ac Ec nc -# (Note that logk25 values are not used, they were transformed to A's.) -10 affinity = get(-99, 1) # retrieve number from memory -20 -30 REM # specific area m2/mol, surface roughness -40 sp_area = get(-99, 2) : roughness = get(-99, 3) -50 -60 REM # gas constant * Tk, act("H+") -70 RT = 8.314e-3 * TK : aH = act("H+") -80 -90 REM # rate by H+ -100 lgk_H = get(-99, 4) : Aa = get(-99, 5) : e_H = get(-99, 6) : nH = get(-99, 7) -110 rate_H = Aa * exp(- e_H / RT) * aH^nH -120 -130 REM # rate by hydrolysis -140 lgk_H2O = get(-99, 8) : Ab = get(-99, 9) : e_H2O = get(-99, 10) -150 rate_H2O = Ab * exp(- e_H2O / RT) -160 -170 REM # rate by OH- -180 lgk_OH = get(-99, 11) : Ac = get(-99, 12) : e_OH = get(-99, 13) : nOH = get(-99, 14) -190 rate_OH = Ac * exp(- e_OH / RT) * aH^nOH -200 -210 rate = rate_H + rate_H2O + rate_OH -220 area = sp_area * M0 * (M / M0)^0.67 -230 -240 rate = area * roughness * rate * affinity -250 SAVE rate * TIME --end +MEAN_GAMMAS +CaCl2 Ca+2 1 Cl- 2 +CaSO4 Ca+2 1 SO4-2 1 +CaCO3 Ca+2 1 CO3-2 1 +Ca(OH)2 Ca+2 1 OH- 2 +MgCl2 Mg+2 1 Cl- 2 +MgSO4 Mg+2 1 SO4-2 1 +MgCO3 Mg+2 1 CO3-2 1 +Mg(OH)2 Mg+2 1 OH- 2 +NaCl Na+ 1 Cl- 1 +Na2SO4 Na+ 2 SO4-2 1 +NaHCO3 Na+ 1 HCO3- 1 +Na2CO3 Na+ 2 CO3-2 1 +NaOH Na+ 1 OH- 1 +KCl K+ 1 Cl- 1 +K2SO4 K+ 2 SO4-2 1 +HCO3 K+ 1 HCO3- 1 +K2CO3 K+ 2 CO3-2 1 +KOH K+ 1 OH- 1 +HCl H+ 1 Cl- 1 +H2SO4 H+ 2 SO4-2 1 +HBr H+ 1 Br- 1 RATES @@ -2031,26 +1896,6 @@ Pyrolusite 200 SAVE moles * SOLN_VOL -end -Albite_PK # Palandri and Kharaka, 2004 -10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END -20 put(affinity, -99, 1) # store value in memory -30 for i = 2 to 11 : put(parm(i), -99, i) : next i -40 SAVE calc_value("Palandri_rate") --end - -Albite_Svd # Sverdrup, 2019 -10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END -20 put(affinity, -99, 1) -30 for i = 2 to 34 : put(parm(i), -99, i) : next i -40 save calc_value("Sverdrup_rate") --end - -Albite_Hermanska # Hermanska et al., 2022, 2023 -10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END -20 put(affinity, -99, 1) # store value in memory -30 for i = 2 to 14 : put(parm(i), -99, i) : next i -40 SAVE calc_value("Hermanska_rate") --end END # ============================================================================================= #(a) means amorphous. (d) means disordered, or less crystalline. diff --git a/phreeqc_rates.dat b/phreeqc_rates.dat new file mode 100644 index 00000000..97fb40f1 --- /dev/null +++ b/phreeqc_rates.dat @@ -0,0 +1,2711 @@ +# PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: +# diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. +# Details are given at the end of this file. + +SOLUTION_MASTER_SPECIES +# +#element species alk gfw_formula element_gfw +# +H H+ -1.0 H 1.008 +H(0) H2 0 H +H(1) H+ -1.0 H +E e- 0 0 0 +O H2O 0 O 16.0 +O(0) O2 0 O +O(-2) H2O 0 0 +Ca Ca+2 0 Ca 40.08 +Mg Mg+2 0 Mg 24.312 +Na Na+ 0 Na 22.9898 +K K+ 0 K 39.102 +Fe Fe+2 0 Fe 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2.0 Fe +Mn Mn+2 0 Mn 54.938 +Mn(+2) Mn+2 0 Mn +Mn(+3) Mn+3 0 Mn +Al Al+3 0 Al 26.9815 +Ba Ba+2 0 Ba 137.34 +Sr Sr+2 0 Sr 87.62 +Si H4SiO4 0 SiO2 28.0843 +Cl Cl- 0 Cl 35.453 +C CO3-2 2.0 HCO3 12.0111 +C(+4) CO3-2 2.0 HCO3 +C(-4) CH4 0 CH4 +Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05 +S SO4-2 0 SO4 32.064 +S(6) SO4-2 0 SO4 +S(-2) HS- 1.0 S +N NO3- 0 N 14.0067 +N(+5) NO3- 0 N +N(+3) NO2- 0 N +N(0) N2 0 N +N(-3) NH4+ 0 N 14.0067 +#Amm AmmH+ 0 AmmH 17.031 +B H3BO3 0 B 10.81 +P PO4-3 2.0 P 30.9738 +F F- 0 F 18.9984 +Li Li+ 0 Li 6.939 +Br Br- 0 Br 79.904 +Zn Zn+2 0 Zn 65.37 +Cd Cd+2 0 Cd 112.4 +Pb Pb+2 0 Pb 207.19 +Cu Cu+2 0 Cu 63.546 +Cu(+2) Cu+2 0 Cu +Cu(+1) Cu+1 0 Cu +# redox-uncoupled gases +Hdg Hdg 0 Hdg 2.016 # H2 gas +Oxg Oxg 0 Oxg 32 # O2 gas +Mtg Mtg 0 Mtg 16.032 # CH4 gas +Sg H2Sg 0.0 H2Sg 32.064 # H2S gas +Ntg Ntg 0 Ntg 28.0134 # N2 gas + +SOLUTION_SPECIES +H+ = H+ + -gamma 9.0 0 + -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 + -dw 9.31e-9 838 16.315 0 2.376 24.01 0 +# Dw(25 C) dw_T a a2 visc a3 a_v_dif +# Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc +# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif + +# For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 2.376 for H+) +# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Debye-Onsager eqn. (a2 = Vm = 0 for H+, the reference for Vm) +# a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10, not used in this database.) (a3 = 24.01 for H+, a flag.) +# -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database) + +# If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. +e- = e- +H2O = H2O + -dw 2.299e-9 -254 +# H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence +Li+ = Li+ + -gamma 6.0 0 # The apparent volume parameters are defined in ref. 1 & 2 + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 + -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl + -dw 1.03e-9 -14 4.03 0.8341 1.679 +Na+ = Na+ + -gamma 4.0 0.075 + -gamma 4.08 0.082 # halite solubility + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 + # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 # for densities (rho) when I > 3. + -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 + -dw 1.33e-9 75 3.627 0 0.7037 +K+ = K+ + -gamma 3.5 0.015 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 + -viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028 + -dw 1.96e-9 254 3.484 0 0.1964 +Mg+2 = Mg+2 + -gamma 5.5 0.20 + -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 + -dw 0.705e-9 -4 5.569 0 1.047 +Ca+2 = Ca+2 + -gamma 5.0 0.1650 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 + -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M + -dw 0.792e-9 34 5.411 0 1.046 +Sr+2 = Sr+2 + -gamma 5.260 0.121 + -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 + -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 + -dw 0.794e-9 160 0.680 0.767 1e-9 0.912 +Ba+2 = Ba+2 + -gamma 5.0 0 + -gamma 4.0 0.153 # Barite solubility + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 + -dw 0.848e-9 174 10.53 0 3.0 +Fe+2 = Fe+2 + -gamma 6.0 0 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -dw 0.719e-9 +Mn+2 = Mn+2 + -gamma 6.0 0 + -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 + -dw 0.688e-9 +Al+3 = Al+3 + -gamma 9.0 0 + -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353. + -dw 0.559e-9 +H4SiO4 = H4SiO4 + -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 + -dw 1.10e-9 +Cl- = Cl- + -gamma 3.5 0.015 + -gamma 3.63 0.017 # cf. pitzer.dat + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -viscosity 0 0 0 0 0 0 1 # the reference solute + -dw 2.033e-9 216 3.160 0.2071 0.7432 +CO3-2 = CO3-2 + -gamma 5.4 0 + -Vm 6.09 -2.78 -0.405 -5.30 5.02 0 0.169 101 -1.38e-2 0.9316 + -viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147 + -dw 0.955e-9 -103 2.246 7.13e-2 0.3686 +SO4-2 = SO4-2 + -gamma 5.0 -0.04 + -Vm -7.77 43.17 176 -51.45 3.794 0 42.99 -541 -0.145 0.45 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC + -viscosity -0.30 0.501 2.57e-3 0.195 3.14e-2 2.015 0.605 + -dw 1.07e-9 -114 17 6.02e-2 4.94e-2 +NO3- = NO3- + -gamma 3.0 0 + -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 + -viscosity 8.37e-2 -0.458 1.54e-2 0.340 1.79e-2 5.02e-2 0.7381 + -dw 1.90e-9 104 1.11 +#AmmH+ = AmmH+ +# -gamma 2.5 0 +# -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 +# -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 +# -dw 1.98e-9 178 3.747 0 1.220 +H3BO3 = H3BO3 + -Vm 7.0643 8.8547 3.5844 -3.1451 -0.20 # supcrt + -dw 1.1e-9 +PO4-3 = PO4-3 + -gamma 4.0 0 + -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 + -dw 0.612e-9 +F- = F- + -gamma 3.5 0 + -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 + -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 + -dw 1.46e-9 -36 4.352 +Br- = Br- + -gamma 3.0 0 + -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 + -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.820 + -dw 2.01e-9 139 2.94 0 1.304 +Zn+2 = Zn+2 + -gamma 5.0 0 + -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 + -dw 0.715e-9 +Cd+2 = Cd+2 + -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 + -dw 0.717e-9 +Pb+2 = Pb+2 + -Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt + -dw 0.945e-9 +Cu+2 = Cu+2 + -gamma 6.0 0 + -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 + -dw 0.733e-9 +# redox-uncoupled gases +Hdg = Hdg # H2 + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 +Oxg = Oxg # O2 + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 +Mtg = Mtg # CH4 + -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 +Ntg = Ntg # N2 + -Vm 7 # Pray et al., 1952, IEC 44. 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 +H2Sg = H2Sg # H2S + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 +# aqueous species +H2O = OH- + H+ + -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 + -gamma 3.5 0 + -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 + -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH + -dw 5.27e-9 478 0.8695 +2 H2O = O2 + 4 H+ + 4 e- + -log_k -86.08 + -delta_h 134.79 kcal + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 +2 H+ + 2 e- = H2 + -log_k -3.15 + -delta_h -1.759 kcal + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 +H+ + Cl- = HCl + -log_k -0.5 + -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50C + -gamma 0 0.4256 + -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 +CO3-2 + H+ = HCO3- + -log_k 10.329; -delta_h -3.561 kcal + -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 + -Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144 + -viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253 + -dw 1.18e-9 -190 11.386 +CO3-2 + 2 H+ = CO2 + H2O + -log_k 16.681 + -delta_h -5.738 kcal + -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 + -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 +2CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T + -log_k -1.8 + -analytical_expression 8.68 -0.0103 -2190 + -Vm 14.58 1.84 4.14 -2.46 -3.20 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 +CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O + -log_k 41.071 + -delta_h -61.039 kcal + -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 +SO4-2 + H+ = HSO4- + -log_k 1.988; -delta_h 3.85 kcal + -analytic -56.889 0.006473 2307.9 19.8858 + -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987 + -dw 1.22e-9 1000 15.0 2.861 +HS- = S-2 + H+ + -log_k -12.918 + -delta_h 12.1 kcal + -gamma 5.0 0 + -dw 0.731e-9 +SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O + -log_k 33.65 + -delta_h -60.140 kcal + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -dw 1.73e-9 +HS- + H+ = H2S + -log_k 6.994; -delta_h -5.30 kcal + -analytical -11.17 0.02386 3279.0 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 +2H2S = (H2S)2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 +H2Sg = HSg- + H+ + -log_k -6.994; -delta_h 5.30 kcal + -analytical_expression 11.17 -0.02386 -3279.0 + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt + -dw 1.73e-9 +2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 +NO3- + 2 H+ + 2 e- = NO2- + H2O + -log_k 28.570 + -delta_h -43.760 kcal + -gamma 3.0 0 + -Vm 5.5864 5.8590 3.4472 -3.0212 1.1847 # supcrt + -dw 1.91e-9 +2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O + -log_k 207.08 + -delta_h -312.130 kcal + -Vm 7 # Pray et al., 1952, IEC 44. 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 +NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O + -log_k 119.077 + -delta_h -187.055 kcal + -gamma 2.5 0 + -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 + -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -dw 1.98e-9 178 3.747 0 1.220 + +#AmmH+ = Amm + H+ +NH4+ = NH3 + H+ + -log_k -9.252 + -delta_h 12.48 kcal + -analytic 0.6322 -0.001225 -2835.76 + -Vm 6.69 2.8 3.58 -2.88 1.43 + -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -dw 2.28e-9 +#NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O +# -log_k 119.077 +# -delta_h -187.055 kcal +# -gamma 2.5 0 +# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 +#AmmH+ + SO4-2 = AmmHSO4- +NH4+ + SO4-2 = NH4SO4- + -gamma 6.54 -0.08 + -log_k 1.106; -delta_h 4.30 kcal + -Vm -3.23 0 -68.42 0 -14.27 0 68.51 0 -0.4099 0.2339 + -viscosity 0.24 0 0 3.3e-3 -0.10 0.528 0.748 + -dw 1.35e-9 500 12.50 3.0 -1 +H3BO3 = H2BO3- + H+ + -log_k -9.24 + -delta_h 3.224 kcal +H3BO3 + F- = BF(OH)3- + -log_k -0.4 + -delta_h 1.850 kcal +H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O + -log_k 7.63 + -delta_h 1.618 kcal +H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O + -log_k 13.67 + -delta_h -1.614 kcal +H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O + -log_k 20.28 + -delta_h -1.846 kcal +PO4-3 + H+ = HPO4-2 + -log_k 12.346 + -delta_h -3.530 kcal + -gamma 5.0 0 + -dw 0.69e-9 + -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 +PO4-3 + 2 H+ = H2PO4- + -log_k 19.553 + -delta_h -4.520 kcal + -gamma 5.4 0 + -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 + -dw 0.846e-9 +PO4-3 + 3H+ = H3PO4 + log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 + delta_h -10.1 kJ + -Vm 7.47 12.4 6.29 -3.29 0 +H+ + F- = HF + -log_k 3.18 + -delta_h 3.18 kcal + -analytic -2.033 0.012645 429.01 + -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt +H+ + 2 F- = HF2- + -log_k 3.76 + -delta_h 4.550 kcal + -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt +Ca+2 + H2O = CaOH+ + H+ + -log_k -12.78 +Ca+2 + CO3-2 = CaCO3 + -log_k 3.224; -delta_h 3.545 kcal + -analytic -1228.732 -0.299440 35512.75 485.818 + -dw 4.46e-10 # complexes: calc'd with the Pikal formula + -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt +Ca+2 + CO3-2 + H+ = CaHCO3+ + -log_k 10.91; -delta_h 4.38 kcal + -analytic -6.009 3.377e-2 2044 + -gamma 6.0 0 + -Vm 30.19 .010 5.75 -2.78 .308 5.4 + -dw 5.06e-10 +Ca+2 + SO4-2 = CaSO4 + -log_k 2.25 + -delta_h 1.325 kcal + -dw 4.71e-10 + -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # supcrt +Ca+2 + HSO4- = CaHSO4+ + -log_k 1.08 +Ca+2 + PO4-3 = CaPO4- + -log_k 6.459 + -delta_h 3.10 kcal + -gamma 5.4 0.0 +Ca+2 + HPO4-2 = CaHPO4 + -log_k 2.739 + -delta_h 3.3 kcal +Ca+2 + H2PO4- = CaH2PO4+ + -log_k 1.408 + -delta_h 3.4 kcal + -gamma 5.4 0.0 +# Ca+2 + F- = CaF+ + # -log_k 0.94 + # -delta_h 4.120 kcal + # -gamma 5.5 0.0 + # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt +Mg+2 + H2O = MgOH+ + H+ + -log_k -11.44 + -delta_h 15.952 kcal + -gamma 6.5 0 +Mg+2 + CO3-2 = MgCO3 + -log_k 2.98 + -delta_h 2.713 kcal + -analytic 0.9910 0.00667 + -Vm -0.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt + -dw 4.21e-10 +Mg+2 + H+ + CO3-2 = MgHCO3+ + -log_k 11.399 + -delta_h -2.771 kcal + -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 + -gamma 4.0 0 + -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt + -dw 4.78e-10 +Mg+2 + SO4-2 = MgSO4 + -gamma 0 0.20 + -log_k 2.42; -delta_h 19.0 kJ + -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm 8.65 -10.21 29.58 -18.60 1.061 + -viscosity 0.318 -5.4e-4 -3.42e-2 0.708 3.70e-3 0.696 + -dw 4.45e-10 +SO4-2 + MgSO4 = Mg(SO4)2-2 + -gamma 7 0.047 + -log_k 0.52; -delta_h -13.6 kJ + -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm -8.14 -62.20 -15.96 3.29 -3.01 0 150 0 0.153 3.79e-2 + -viscosity -0.169 5e-4 -5.69e-2 0.110 2.03e-3 2.027 -1e-3 + -dw 0.845e-9 -200 8.0 0 0.965 +Mg+2 + PO4-3 = MgPO4- + -log_k 6.589 + -delta_h 3.10 kcal + -gamma 5.4 0 +Mg+2 + HPO4-2 = MgHPO4 + -log_k 2.87 + -delta_h 3.3 kcal +Mg+2 + H2PO4- = MgH2PO4+ + -log_k 1.513 + -delta_h 3.4 kcal + -gamma 5.4 0 +Mg+2 + F- = MgF+ + -log_k 1.82 + -delta_h 3.20 kcal + -gamma 4.5 0 + -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt +Na+ + OH- = NaOH + -log_k -10 # remove this complex +Na+ + HCO3- = NaHCO3 + -log_k -0.06; -delta_h 21 kJ + -gamma 0 0.2 + -Vm 7.95 0 0 0 0.609 + -viscosity -4e-2 -2.717 1.67e-5 + -dw 6.73e-10 +Na+ + SO4-2 = NaSO4- + -gamma 5.5 0 + -log_k 0.6; -delta_h -14.4 kJ + -analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC + -Vm 1.99 -10.78 21.88 -12.70 1.601 5 32.38 501 1.565e-2 0.2325 + -viscosity 0.20 -5.93e-2 -4.0e-4 8.46e-3 1.78e-3 2.308 -0.208 + -dw 1.13e-9 -23 8.50 0.392 0.521 +Na+ + HPO4-2 = NaHPO4- + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 +Na+ + F- = NaF + -log_k -0.24 + -Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt +K+ + HCO3- = KHCO3 + -log_k -0.35; -delta_h 12 kJ + -gamma 0 9.4e-3 + -Vm 9.48 0 0 0 -0.542 + -viscosity 0.7 -1.289 9e-2 +K+ + SO4-2 = KSO4- + -gamma 5.4 0.19 + -log_k 0.6; -delta_h -10.4 kJ + -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC + -Vm 13.48 -18.03 61.74 -19.60 2.046 5.4 -17.32 0 0.1522 1.919 + -viscosity -1.0 1.06 1e-4 -0.464 3.78e-2 0.539 -0.690 + -dw 0.90e-9 63 8.48 0 1.80 +K+ + HPO4-2 = KHPO4- + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 +Fe+2 + H2O = FeOH+ + H+ + -log_k -9.5 + -delta_h 13.20 kcal + -gamma 5.0 0 +Fe+2 + 3H2O = Fe(OH)3- + 3H+ + -log_k -31.0 + -delta_h 30.3 kcal + -gamma 5.0 0 +Fe+2 + Cl- = FeCl+ + -log_k 0.14 +Fe+2 + CO3-2 = FeCO3 + -log_k 4.38 +Fe+2 + HCO3- = FeHCO3+ + -log_k 2.0 +Fe+2 + SO4-2 = FeSO4 + -log_k 2.25 + -delta_h 3.230 kcal + -Vm -13 0 123 +Fe+2 + HSO4- = FeHSO4+ + -log_k 1.08 +Fe+2 + 2HS- = Fe(HS)2 + -log_k 8.95 +Fe+2 + 3HS- = Fe(HS)3- + -log_k 10.987 +Fe+2 + HPO4-2 = FeHPO4 + -log_k 3.6 +Fe+2 + H2PO4- = FeH2PO4+ + -log_k 2.7 + -gamma 5.4 0 +Fe+2 + F- = FeF+ + -log_k 1.0 +Fe+2 = Fe+3 + e- + -log_k -13.02 + -delta_h 9.680 kcal + -gamma 9.0 0 +Fe+3 + H2O = FeOH+2 + H+ + -log_k -2.19 + -delta_h 10.4 kcal + -gamma 5.0 0 +Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ + -log_k -5.67 + -delta_h 17.1 kcal + -gamma 5.4 0 +Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ + -log_k -12.56 + -delta_h 24.8 kcal +Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ + -log_k -21.6 + -delta_h 31.9 kcal + -gamma 5.4 0 +Fe+2 + 2H2O = Fe(OH)2 + 2H+ + -log_k -20.57 + -delta_h 28.565 kcal +2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ + -log_k -2.95 + -delta_h 13.5 kcal +3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ + -log_k -6.3 + -delta_h 14.3 kcal +Fe+3 + Cl- = FeCl+2 + -log_k 1.48 + -delta_h 5.6 kcal + -gamma 5.0 0 +Fe+3 + 2 Cl- = FeCl2+ + -log_k 2.13 + -gamma 5.0 0 +Fe+3 + 3 Cl- = FeCl3 + -log_k 1.13 +Fe+3 + SO4-2 = FeSO4+ + -log_k 4.04 + -delta_h 3.91 kcal + -gamma 5.0 0 +Fe+3 + HSO4- = FeHSO4+2 + -log_k 2.48 +Fe+3 + 2 SO4-2 = Fe(SO4)2- + -log_k 5.38 + -delta_h 4.60 kcal +Fe+3 + HPO4-2 = FeHPO4+ + -log_k 5.43 + -delta_h 5.76 kcal + -gamma 5.0 0 +Fe+3 + H2PO4- = FeH2PO4+2 + -log_k 5.43 + -gamma 5.4 0 +Fe+3 + F- = FeF+2 + -log_k 6.2 + -delta_h 2.7 kcal + -gamma 5.0 0 +Fe+3 + 2 F- = FeF2+ + -log_k 10.8 + -delta_h 4.8 kcal + -gamma 5.0 0 +Fe+3 + 3 F- = FeF3 + -log_k 14.0 + -delta_h 5.4 kcal +Mn+2 + H2O = MnOH+ + H+ + -log_k -10.59 + -delta_h 14.40 kcal + -gamma 5.0 0 +Mn+2 + 3H2O = Mn(OH)3- + 3H+ + -log_k -34.8 + -gamma 5.0 0 +Mn+2 + Cl- = MnCl+ + -log_k 0.61 + -gamma 5.0 0 + -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 +Mn+2 + 2 Cl- = MnCl2 + -log_k 0.25 + -Vm 1e-5 0 144 +Mn+2 + 3 Cl- = MnCl3- + -log_k -0.31 + -gamma 5.0 0 + -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 +Mn+2 + CO3-2 = MnCO3 + -log_k 4.9 +Mn+2 + HCO3- = MnHCO3+ + -log_k 1.95 + -gamma 5.0 0 +Mn+2 + SO4-2 = MnSO4 + -log_k 2.25 + -delta_h 3.370 kcal + -Vm -1.31 -1.83 62.3 -2.7 +Mn+2 + 2 NO3- = Mn(NO3)2 + -log_k 0.6 + -delta_h -0.396 kcal + -Vm 6.16 0 29.4 0 0.9 +Mn+2 + F- = MnF+ + -log_k 0.84 + -gamma 5.0 0 +Mn+2 = Mn+3 + e- + -log_k -25.51 + -delta_h 25.80 kcal + -gamma 9.0 0 +Al+3 + H2O = AlOH+2 + H+ + -log_k -5.0 + -delta_h 11.49 kcal + -analytic -38.253 0.0 -656.27 14.327 + -gamma 5.4 0 + -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353. +Al+3 + 2 H2O = Al(OH)2+ + 2 H+ + -log_k -10.1 + -delta_h 26.90 kcal + -gamma 5.4 0 + -analytic 88.50 0.0 -9391.6 -27.121 +Al+3 + 3 H2O = Al(OH)3 + 3 H+ + -log_k -16.9 + -delta_h 39.89 kcal + -analytic 226.374 0.0 -18247.8 -73.597 +Al+3 + 4 H2O = Al(OH)4- + 4 H+ + -log_k -22.7 + -delta_h 42.30 kcal + -analytic 51.578 0.0 -11168.9 -14.865 + -gamma 4.5 0 + -dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959 +Al+3 + SO4-2 = AlSO4+ + -log_k 3.5 + -delta_h 2.29 kcal + -gamma 4.5 0 +Al+3 + 2SO4-2 = Al(SO4)2- + -log_k 5.0 + -delta_h 3.11 kcal + -gamma 4.5 0 +Al+3 + HSO4- = AlHSO4+2 + -log_k 0.46 +Al+3 + F- = AlF+2 + -log_k 7.0 + -delta_h 1.060 kcal + -gamma 5.4 0 +Al+3 + 2 F- = AlF2+ + -log_k 12.7 + -delta_h 1.980 kcal + -gamma 5.4 0 +Al+3 + 3 F- = AlF3 + -log_k 16.8 + -delta_h 2.160 kcal +Al+3 + 4 F- = AlF4- + -log_k 19.4 + -delta_h 2.20 kcal + -gamma 4.5 0 +# Al+3 + 5 F- = AlF5-2 + # log_k 20.6 + # delta_h 1.840 kcal +# Al+3 + 6 F- = AlF6-3 + # log_k 20.6 + # delta_h -1.670 kcal +H4SiO4 = H3SiO4- + H+ + -log_k -9.83 + -delta_h 6.12 kcal + -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 + -gamma 4 0 + -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 +H4SiO4 = H2SiO4-2 + 2 H+ + -log_k -23.0 + -delta_h 17.6 kcal + -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 + -gamma 5.4 0 +H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O + -log_k 30.18 + -delta_h -16.260 kcal + -gamma 5.0 0 + -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt +Ba+2 + H2O = BaOH+ + H+ + -log_k -13.47 + -gamma 5.0 0 +Ba+2 + CO3-2 = BaCO3 + -log_k 2.71 + -delta_h 3.55 kcal + -analytic 0.113 0.008721 + -Vm .2907 -7.0717 8.5295 -2.4867 -.0300 # supcrt +Ba+2 + HCO3- = BaHCO3+ + -log_k 0.982 + -delta_h 5.56 kcal + -analytic -3.0938 0.013669 +Ba+2 + SO4-2 = BaSO4 + -log_k 2.7 +Sr+2 + H2O = SrOH+ + H+ + -log_k -13.29 + -gamma 5.0 0 +Sr+2 + CO3-2 + H+ = SrHCO3+ + -log_k 11.509 + -delta_h 2.489 kcal + -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 +Sr+2 + CO3-2 = SrCO3 + -log_k 2.81 + -delta_h 5.22 kcal + -analytic -1.019 0.012826 + -Vm -.1787 -8.2177 8.9799 -2.4393 -.0300 # supcrt +Sr+2 + SO4-2 = SrSO4 + -log_k 2.29 + -delta_h 2.08 kcal + -Vm 6.7910 -.9666 6.1300 -2.7390 -.0010 # celestite solubility +Li+ + SO4-2 = LiSO4- + -log_k 0.64 + -gamma 5.0 0 +Cu+2 + e- = Cu+ + -log_k 2.72 + -delta_h 1.65 kcal + -gamma 2.5 0 +Cu+ + 2Cl- = CuCl2- + -log_k 5.50 + -delta_h -0.42 kcal + -gamma 4.0 0 +Cu+ + 3Cl- = CuCl3-2 + -log_k 5.70 + -delta_h 0.26 kcal + -gamma 5.0 0.0 +Cu+2 + CO3-2 = CuCO3 + -log_k 6.73 +Cu+2 + 2CO3-2 = Cu(CO3)2-2 + -log_k 9.83 +Cu+2 + HCO3- = CuHCO3+ + -log_k 2.7 +Cu+2 + Cl- = CuCl+ + -log_k 0.43 + -delta_h 8.65 kcal + -gamma 4.0 0 + -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 +Cu+2 + 2Cl- = CuCl2 + -log_k 0.16 + -delta_h 10.56 kcal + -Vm 26.8 0 -136 +Cu+2 + 3Cl- = CuCl3- + -log_k -2.29 + -delta_h 13.69 kcal + -gamma 4.0 0 +Cu+2 + 4Cl- = CuCl4-2 + -log_k -4.59 + -delta_h 17.78 kcal + -gamma 5.0 0 +Cu+2 + F- = CuF+ + -log_k 1.26 + -delta_h 1.62 kcal +Cu+2 + H2O = CuOH+ + H+ + -log_k -8.0 + -gamma 4.0 0 +Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ + -log_k -13.68 +Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ + -log_k -26.9 +Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ + -log_k -39.6 +2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ + -log_k -10.359 + -delta_h 17.539 kcal + -analytical 2.497 0.0 -3833.0 +Cu+2 + SO4-2 = CuSO4 + -log_k 2.31 + -delta_h 1.220 kcal + -Vm 5.21 0 -14.6 +Cu+2 + 3HS- = Cu(HS)3- + -log_k 25.9 +Zn+2 + H2O = ZnOH+ + H+ + -log_k -8.96 + -delta_h 13.4 kcal +Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ + -log_k -16.9 +Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ + -log_k -28.4 +Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ + -log_k -41.2 +Zn+2 + Cl- = ZnCl+ + -log_k 0.43 + -delta_h 7.79 kcal + -gamma 4.0 0 + -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 +Zn+2 + 2 Cl- = ZnCl2 + -log_k 0.45 + -delta_h 8.5 kcal + -Vm -10.1 4.57 241 -2.97 -1e-3 +Zn+2 + 3Cl- = ZnCl3- + -log_k 0.5 + -delta_h 9.56 kcal + -gamma 4.0 0 + -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 +Zn+2 + 4Cl- = ZnCl4-2 + -log_k 0.2 + -delta_h 10.96 kcal + -gamma 5.0 0 + -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 +Zn+2 + H2O + Cl- = ZnOHCl + H+ + -log_k -7.48 +Zn+2 + 2HS- = Zn(HS)2 + -log_k 14.94 +Zn+2 + 3HS- = Zn(HS)3- + -log_k 16.1 +Zn+2 + CO3-2 = ZnCO3 + -log_k 5.3 +Zn+2 + 2CO3-2 = Zn(CO3)2-2 + -log_k 9.63 +Zn+2 + HCO3- = ZnHCO3+ + -log_k 2.1 +Zn+2 + SO4-2 = ZnSO4 + -log_k 2.37 + -delta_h 1.36 kcal + -Vm 2.51 0 18.8 +Zn+2 + 2SO4-2 = Zn(SO4)2-2 + -log_k 3.28 + -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 +Zn+2 + Br- = ZnBr+ + -log_k -0.58 +Zn+2 + 2Br- = ZnBr2 + -log_k -0.98 +Zn+2 + F- = ZnF+ + -log_k 1.15 + -delta_h 2.22 kcal +Cd+2 + H2O = CdOH+ + H+ + -log_k -10.08 + -delta_h 13.1 kcal +Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ + -log_k -20.35 +Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ + -log_k -33.3 +Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ + -log_k -47.35 +2Cd+2 + H2O = Cd2OH+3 + H+ + -log_k -9.39 + -delta_h 10.9 kcal +Cd+2 + H2O + Cl- = CdOHCl + H+ + -log_k -7.404 + -delta_h 4.355 kcal +Cd+2 + NO3- = CdNO3+ + -log_k 0.4 + -delta_h -5.2 kcal + -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 +Cd+2 + Cl- = CdCl+ + -log_k 1.98 + -delta_h 0.59 kcal + -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 +Cd+2 + 2 Cl- = CdCl2 + -log_k 2.6 + -delta_h 1.24 kcal + -Vm 5.53 +Cd+2 + 3 Cl- = CdCl3- + -log_k 2.4 + -delta_h 3.9 kcal + -Vm 4.6 0 83.9 0 0 0 0 0 0 1 +Cd+2 + CO3-2 = CdCO3 + -log_k 2.9 +Cd+2 + 2CO3-2 = Cd(CO3)2-2 + -log_k 6.4 +Cd+2 + HCO3- = CdHCO3+ + -log_k 1.5 +Cd+2 + SO4-2 = CdSO4 + -log_k 2.46 + -delta_h 1.08 kcal + -Vm 10.4 0 57.9 +Cd+2 + 2SO4-2 = Cd(SO4)2-2 + -log_k 3.5 + -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 +Cd+2 + Br- = CdBr+ + -log_k 2.17 + -delta_h -0.81 kcal +Cd+2 + 2Br- = CdBr2 + -log_k 2.9 +Cd+2 + F- = CdF+ + -log_k 1.1 +Cd+2 + 2F- = CdF2 + -log_k 1.5 +Cd+2 + HS- = CdHS+ + -log_k 10.17 +Cd+2 + 2HS- = Cd(HS)2 + -log_k 16.53 +Cd+2 + 3HS- = Cd(HS)3- + -log_k 18.71 +Cd+2 + 4HS- = Cd(HS)4-2 + -log_k 20.9 +Pb+2 + H2O = PbOH+ + H+ + -log_k -7.71 +Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ + -log_k -17.12 +Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ + -log_k -28.06 +Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ + -log_k -39.7 +2 Pb+2 + H2O = Pb2OH+3 + H+ + -log_k -6.36 +Pb+2 + Cl- = PbCl+ + -log_k 1.6 + -delta_h 4.38 kcal + -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt +Pb+2 + 2 Cl- = PbCl2 + -log_k 1.8 + -delta_h 1.08 kcal + -Vm 6.5402 8.1879 2.5318 -3.1175 -.0300 # supcrt +Pb+2 + 3 Cl- = PbCl3- + -log_k 1.7 + -delta_h 2.17 kcal + -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt +Pb+2 + 4 Cl- = PbCl4-2 + -log_k 1.38 + -delta_h 3.53 kcal + -Vm 16.4150 32.2997 -6.9452 -4.1143 2.3118 # supcrt +Pb+2 + CO3-2 = PbCO3 + -log_k 7.24 +Pb+2 + 2 CO3-2 = Pb(CO3)2-2 + -log_k 10.64 +Pb+2 + HCO3- = PbHCO3+ + -log_k 2.9 +Pb+2 + SO4-2 = PbSO4 + -log_k 2.75 +Pb+2 + 2 SO4-2 = Pb(SO4)2-2 + -log_k 3.47 +Pb+2 + 2HS- = Pb(HS)2 + -log_k 15.27 +Pb+2 + 3HS- = Pb(HS)3- + -log_k 16.57 +3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ + -log_k -23.88 + -delta_h 26.5 kcal +Pb+2 + NO3- = PbNO3+ + -log_k 1.17 +Pb+2 + Br- = PbBr+ + -log_k 1.77 + -delta_h 2.88 kcal +Pb+2 + 2Br- = PbBr2 + -log_k 1.44 +Pb+2 + F- = PbF+ + -log_k 1.25 +Pb+2 + 2F- = PbF2 + -log_k 2.56 +Pb+2 + 3F- = PbF3- + -log_k 3.42 +Pb+2 + 4F- = PbF4-2 + -log_k 3.1 + +PHASES +Calcite + CaCO3 = CO3-2 + Ca+2 + -log_k -8.48 + -delta_h -2.297 kcal + -analytic 17.118 -0.046528 -3496 # 0 - 250C, Ellis, 1959, Plummer and Busenberg, 1982 + -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3) +Aragonite + CaCO3 = CO3-2 + Ca+2 + -log_k -8.336 + -delta_h -2.589 kcal + -analytic -171.9773 -0.077993 2903.293 71.595 + -Vm 34.04 +Dolomite + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + -log_k -17.09 + -delta_h -9.436 kcal + -analytic 31.283 -0.0898 -6438 # 25C: Hemingway and Robie, 1994; 50175C: Bnzeth et al., 2018, GCA 224, 262-275. + -Vm 64.5 +Siderite + FeCO3 = Fe+2 + CO3-2 + -log_k -10.89 + -delta_h -2.480 kcal + -Vm 29.2 +Rhodochrosite + MnCO3 = Mn+2 + CO3-2 + -log_k -11.13 + -delta_h -1.430 kcal + -Vm 31.1 +Strontianite + SrCO3 = Sr+2 + CO3-2 + -log_k -9.271 + -delta_h -0.400 kcal + -analytic 155.0305 0.0 -7239.594 -56.58638 + -Vm 39.69 +Witherite + BaCO3 = Ba+2 + CO3-2 + -log_k -8.562 + -delta_h 0.703 kcal + -analytic 607.642 0.121098 -20011.25 -236.4948 + -Vm 46 +Gypsum + CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O + -log_k -4.58 + -delta_h -0.109 kcal + -analytic 68.2401 0.0 -3221.51 -25.0627 + -analytical_expression 93.7 5.99E-03 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 + -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) +Anhydrite + CaSO4 = Ca+2 + SO4-2 + -log_k -4.36 + -delta_h -1.710 kcal + -analytic 84.90 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323. + -Vm 46.1 # 136.14 / 2.95 +Celestite + SrSO4 = Sr+2 + SO4-2 + -log_k -6.63 + -delta_h -4.037 kcal +# -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 + -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464. + -Vm 46.4 +Barite + BaSO4 = Ba+2 + SO4-2 + -log_k -9.97 + -delta_h 6.35 kcal + -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 + -Vm 52.9 +Arcanite + K2SO4 = SO4-2 + 2 K+ + log_k -1.776; -delta_h 5 kcal + -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 + # Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06 + -Vm 65.5 +Mirabilite + Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O + -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 + Vm 216 +Thenardite + Na2SO4 = 2 Na+ + SO4-2 + -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 + -Vm 52.9 +Epsomite + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -1.74; -delta_h 10.57 kJ + -analytical_expression -3.59 6.21e-3 + Vm 147 +Hexahydrite + MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O + log_k -1.57; -delta_h 2.35 kJ + -analytical_expression -1.978 1.38e-3 + Vm 132 +Kieserite + MgSO4:H2O = Mg+2 + SO4-2 + H2O + log_k -1.16; -delta_h 9.22 kJ + -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 + Vm 53.8 +Hydroxyapatite + Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 + -log_k -3.421 + -delta_h -36.155 kcal + -Vm 128.9 +Fluorite + CaF2 = Ca+2 + 2 F- + -log_k -10.6 + -delta_h 4.69 kcal + -analytic 66.348 0.0 -4298.2 -25.271 + -Vm 15.7 +SiO2(a) + SiO2 + 2 H2O = H4SiO4 + -log_k -2.71 + -delta_h 3.340 kcal + -analytic -0.26 0.0 -731.0 +Chalcedony + SiO2 + 2 H2O = H4SiO4 + -log_k -3.55 + -delta_h 4.720 kcal + -analytic -0.09 0.0 -1032.0 + -Vm 23.1 +Quartz + SiO2 + 2 H2O = H4SiO4 + -log_k -3.98 + -delta_h 5.990 kcal + -analytic 0.41 0.0 -1309.0 + -Vm 22.67 +Gibbsite + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + -log_k 8.11 + -delta_h -22.800 kcal + -Vm 32.22 +Al(OH)3(a) + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + -log_k 10.8 + -delta_h -26.500 kcal +Kaolinite + Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 + -log_k 7.435 + -delta_h -35.300 kcal + -Vm 99.35 +Albite + NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 + -log_k -18.002 + -delta_h 25.896 kcal + -Vm 101.31 +Anorthite + CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 + -log_k -19.714 + -delta_h 11.580 kcal + -Vm 105.05 +K-feldspar + KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 + -log_k -20.573 + -delta_h 30.820 kcal + -Vm 108.15 +K-mica + KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 + -log_k 12.703 + -delta_h -59.376 kcal +Chlorite(14A) + Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O + -log_k 68.38 + -delta_h -151.494 kcal +Ca-Montmorillonite + Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ + -log_k -45.027 + -delta_h 58.373 kcal + -Vm 156.16 +Talc + Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 + -log_k 21.399 + -delta_h -46.352 kcal + -Vm 68.34 +Illite + K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+ + -log_k -40.267 + -delta_h 54.684 kcal + -Vm 141.48 +Chrysotile + Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 + -log_k 32.2 + -delta_h -46.800 kcal + -analytic 13.248 0.0 10217.1 -6.1894 + -Vm 106.5808 # 277.11/2.60 +Sepiolite + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 + -log_k 15.760 + -delta_h -10.700 kcal + -Vm 143.765 +Sepiolite(d) + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 + -log_k 18.66 +Hematite + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + -log_k -4.008 + -delta_h -30.845 kcal + -Vm 30.39 +Goethite + FeOOH + 3 H+ = Fe+3 + 2 H2O + -log_k -1.0 + -delta_h -14.48 kcal + -Vm 20.84 +Fe(OH)3(a) + Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O + -log_k 4.891 +Pyrite + FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- + -log_k -18.479 + -delta_h 11.300 kcal + -Vm 23.48 +FeS(ppt) + FeS + H+ = Fe+2 + HS- + -log_k -3.915 +Mackinawite + FeS + H+ = Fe+2 + HS- + -log_k -4.648 + -Vm 20.45 +Sulfur + S + 2H+ + 2e- = H2S + -log_k 4.882 + -delta_h -9.5 kcal +Vivianite + Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O + -log_k -36.0 +Pyrolusite # H2O added for surface calc's + MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O + -log_k 41.38 + -delta_h -65.110 kcal +Hausmannite + Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O + -log_k 61.03 + -delta_h -100.640 kcal +Manganite + MnOOH + 3 H+ + e- = Mn+2 + 2 H2O + -log_k 25.34 +Pyrochroite + Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O + -log_k 15.2 +Halite + NaCl = Cl- + Na+ + log_k 1.570 + -delta_h 1.37 + #-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915. + -Vm 27.1 +Sylvite + KCl = K+ + Cl- + log_k 0.900 + -delta_h 8.5 + # -analytic 3.984 0.0 -919.55 + Vm 37.5 +# Gases... +CO2(g) + CO2 = CO2 + -log_k -1.468 + -delta_h -4.776 kcal + -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 + -T_c 304.2 # critical T, K + -P_c 72.86 # critical P, atm + -Omega 0.225 # acentric factor +H2O(g) + H2O = H2O + -log_k 1.506; delta_h -44.03 kJ + -T_c 647.3; -P_c 217.60; -Omega 0.344 + -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 +O2(g) + O2 = O2 + -log_k -2.8983 + -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 + -T_c 154.6; -P_c 49.80; -Omega 0.021 +H2(g) + H2 = H2 + -log_k -3.1050 + -delta_h -4.184 kJ + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + -T_c 33.2; -P_c 12.80; -Omega -0.225 +N2(g) + N2 = N2 + -log_k -3.1864 + -analytic -58.453 1.818e-3 3199 17.909 -27460 + -T_c 126.2; -P_c 33.50; -Omega 0.039 +H2S(g) + H2S = H+ + HS- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2; -P_c 88.20; -Omega 0.1 +CH4(g) + CH4 = CH4 + -log_k -2.8 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100C + -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 +#Amm(g) +# Amm = Amm +NH3(g) + NH3 = NH3 + -log_k 1.7966 + -analytic -18.758 3.3670e-4 2.5113e3 4.8619 39.192 + -T_c 405.6; -P_c 111.3; -Omega 0.25 +# redox-uncoupled gases +Oxg(g) + Oxg = Oxg + -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 + -T_c 154.6 ; -P_c 49.80 ; -Omega 0.021 +Hdg(g) + Hdg = Hdg + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + -T_c 33.2 ; -P_c 12.80 ; -Omega -0.225 +Ntg(g) + Ntg = Ntg + -analytic -58.453 1.81800e-3 3199 17.909 -27460 + T_c 126.2 ; -P_c 33.50 ; -Omega 0.039 +Mtg(g) + Mtg = Mtg + -log_k -2.8 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100C + -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 +H2Sg(g) + H2Sg = H+ + HSg- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2 ; -P_c 88.20 ; -Omega 0.1 +Melanterite + FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 + -log_k -2.209 + -delta_h 4.910 kcal + -analytic 1.447 -0.004153 0.0 0.0 -214949.0 +Alunite + KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6H2O + -log_k -1.4 + -delta_h -50.250 kcal +Jarosite-K + KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2 + -log_k -9.21 + -delta_h -31.280 kcal +Zn(OH)2(e) + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + -log_k 11.5 +Smithsonite + ZnCO3 = Zn+2 + CO3-2 + -log_k -10.0 + -delta_h -4.36 kcal +Sphalerite + ZnS + H+ = Zn+2 + HS- + -log_k -11.618 + -delta_h 8.250 kcal +Willemite 289 + Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4 + -log_k 15.33 + -delta_h -33.37 kcal +Cd(OH)2 + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + -log_k 13.65 +Otavite 315 + CdCO3 = Cd+2 + CO3-2 + -log_k -12.1 + -delta_h -0.019 kcal +CdSiO3 328 + CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4 + -log_k 9.06 + -delta_h -16.63 kcal +CdSO4 329 + CdSO4 = Cd+2 + SO4-2 + -log_k -0.1 + -delta_h -14.74 kcal +Cerussite 365 + PbCO3 = Pb+2 + CO3-2 + -log_k -13.13 + -delta_h 4.86 kcal +Anglesite 384 + PbSO4 = Pb+2 + SO4-2 + -log_k -7.79 + -delta_h 2.15 kcal +Pb(OH)2 389 + Pb(OH)2 + 2H+ = Pb+2 + 2H2O + -log_k 8.15 + -delta_h -13.99 kcal + +EXCHANGE_MASTER_SPECIES + X X- +EXCHANGE_SPECIES + X- = X- + -log_k 0.0 + + Na+ + X- = NaX + -log_k 0.0 + -gamma 4.08 0.082 + + K+ + X- = KX + -log_k 0.7 + -gamma 3.5 0.015 + -delta_h -4.3 # Jardine & Sparks, 1984 + + Li+ + X- = LiX + -log_k -0.08 + -gamma 6.0 0 + -delta_h 1.4 # Merriam & Thomas, 1956 + +# !!!!! +# H+ + X- = HX +# -log_k 1.0 +# -gamma 9.0 0 + +# AmmH+ + X- = AmmHX + NH4+ + X- = NH4X + -log_k 0.6 + -gamma 2.5 0 + -delta_h -2.4 # Laudelout et al., 1968 + + Ca+2 + 2X- = CaX2 + -log_k 0.8 + -gamma 5.0 0.165 + -delta_h 7.2 # Van Bladel & Gheyl, 1980 + + Mg+2 + 2X- = MgX2 + -log_k 0.6 + -gamma 5.5 0.2 + -delta_h 7.4 # Laudelout et al., 1968 + + Sr+2 + 2X- = SrX2 + -log_k 0.91 + -gamma 5.26 0.121 + -delta_h 5.5 # Laudelout et al., 1968 + + Ba+2 + 2X- = BaX2 + -log_k 0.91 + -gamma 4.0 0.153 + -delta_h 4.5 # Laudelout et al., 1968 + + Mn+2 + 2X- = MnX2 + -log_k 0.52 + -gamma 6.0 0 + + Fe+2 + 2X- = FeX2 + -log_k 0.44 + -gamma 6.0 0 + + Cu+2 + 2X- = CuX2 + -log_k 0.6 + -gamma 6.0 0 + + Zn+2 + 2X- = ZnX2 + -log_k 0.8 + -gamma 5.0 0 + + Cd+2 + 2X- = CdX2 + -log_k 0.8 + -gamma 0.0 0 + + Pb+2 + 2X- = PbX2 + -log_k 1.05 + -gamma 0.0 0 + + Al+3 + 3X- = AlX3 + -log_k 0.41 + -gamma 9.0 0 + + AlOH+2 + 2X- = AlOHX2 + -log_k 0.89 + -gamma 0.0 0 + +SURFACE_MASTER_SPECIES + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH +SURFACE_SPECIES +# All surface data from +# Dzombak and Morel, 1990 +# +# +# Acid-base data from table 5.7 +# +# strong binding site--Hfo_s, + + Hfo_sOH = Hfo_sOH + -log_k 0 + + Hfo_sOH + H+ = Hfo_sOH2+ + -log_k 7.29 # = pKa1,int + + Hfo_sOH = Hfo_sO- + H+ + -log_k -8.93 # = -pKa2,int + +# weak binding site--Hfo_w + + Hfo_wOH = Hfo_wOH + -log_k 0 + + Hfo_wOH + H+ = Hfo_wOH2+ + -log_k 7.29 # = pKa1,int + + Hfo_wOH = Hfo_wO- + H+ + -log_k -8.93 # = -pKa2,int +############################################### +# CATIONS # +############################################### +# +# Cations from table 10.1 or 10.5 +# +# Calcium + Hfo_sOH + Ca+2 = Hfo_sOHCa+2 + -log_k 4.97 + + Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ + -log_k -5.85 +# Strontium + Hfo_sOH + Sr+2 = Hfo_sOHSr+2 + -log_k 5.01 + + Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ + -log_k -6.58 + + Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+ + -log_k -17.6 +# Barium + Hfo_sOH + Ba+2 = Hfo_sOHBa+2 + -log_k 5.46 + + Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ + -log_k -7.2 # table 10.5 +# +# Cations from table 10.2 +# +# Cadmium + Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ + -log_k 0.47 + + Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ + -log_k -2.91 +# Zinc + Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ + -log_k 0.99 + + Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ + -log_k -1.99 +# Copper + Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ + -log_k 2.89 + + Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ + -log_k 0.6 # table 10.5 +# Lead + Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ + -log_k 4.65 + + Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ + -log_k 0.3 # table 10.5 +# +# Derived constants table 10.5 +# +# Magnesium + Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ + -log_k -4.6 +# Manganese + Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ + -log_k -0.4 # table 10.5 + + Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ + -log_k -3.5 # table 10.5 +# Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096 + Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ + -log_k -0.95 +# Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M + Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ + -log_k -2.98 + + Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+ + -log_k -11.55 +############################################### +# ANIONS # +############################################### +# +# Anions from table 10.6 +# +# Phosphate + Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O + -log_k 31.29 + + Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O + -log_k 25.39 + + Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O + -log_k 17.72 +# +# Anions from table 10.7 +# +# Borate + Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O + -log_k 0.62 +# +# Anions from table 10.8 +# +# Sulfate + Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O + -log_k 7.78 + + Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 + -log_k 0.79 +# +# Derived constants table 10.10 +# + Hfo_wOH + F- + H+ = Hfo_wF + H2O + -log_k 8.7 + + Hfo_wOH + F- = Hfo_wOHF- + -log_k 1.6 +# +# Carbonate: Van Geen et al., 1994 reoptimized for D&M model +# + Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O + -log_k 12.56 + + Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O + -log_k 20.62 +# +# Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422. +# + Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 + Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 + Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69 +MEAN_GAMMAS +CaCl2 Ca+2 1 Cl- 2 +CaSO4 Ca+2 1 SO4-2 1 +CaCO3 Ca+2 1 CO3-2 1 +Ca(OH)2 Ca+2 1 OH- 2 +MgCl2 Mg+2 1 Cl- 2 +MgSO4 Mg+2 1 SO4-2 1 +MgCO3 Mg+2 1 CO3-2 1 +Mg(OH)2 Mg+2 1 OH- 2 +NaCl Na+ 1 Cl- 1 +Na2SO4 Na+ 2 SO4-2 1 +NaHCO3 Na+ 1 HCO3- 1 +Na2CO3 Na+ 2 CO3-2 1 +NaOH Na+ 1 OH- 1 +KCl K+ 1 Cl- 1 +K2SO4 K+ 2 SO4-2 1 +HCO3 K+ 1 HCO3- 1 +K2CO3 K+ 2 CO3-2 1 +KOH K+ 1 OH- 1 +HCl H+ 1 Cl- 1 +H2SO4 H+ 2 SO4-2 1 +HBr H+ 1 Br- 1 + +RATES + +########### +#Quartz +########### +# +####### +# Example of quartz kinetic rates block: +# KINETICS +# Quartz +# -m0 158.8 # 90 % Qu +# -parms 0.146 1.5 +# -step 3.1536e8 in 10 +# -tol 1e-12 + +Quartz + -start +1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 +2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol +3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) +4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz +5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 + +10 dif_temp = 1/TK - 1/298 +20 pk_w = 13.7 + 4700.4 * dif_temp +40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) +# Integrate... +50 SAVE moles * TIME + -end + +########### +#K-feldspar +########### +# +# Sverdrup and Warfvinge, 1995, Estimating field weathering rates +# using laboratory kinetics: Reviews in mineralogy and geochemistry, +# vol. 31, p. 485-541. +# +# As described in: +# Appelo and Postma, 2005, Geochemistry, groundwater +# and pollution, 2nd Edition: A.A. Balkema Publishers, +# p. 162-163 and 395-399. +# +# Assume soil is 10% K-feldspar by mass in 1 mm spheres (radius 0.05 mm) +# Assume density of rock and Kspar is 2600 kg/m^3 = 2.6 kg/L +# GFW Kspar 0.278 kg/mol +# +# Moles of Kspar per liter pore space calculation: +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space +# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space +# +# Specific area calculation: +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere +# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Specific area of K-feldspar in sphere 3.14e-8/4.90e-9 = 6.41 m^2/mol Kspar +# +# +# Example of KINETICS data block for K-feldspar rate: +# KINETICS 1 +# K-feldspar +# -m0 2.18 # 10% Kspar, 0.1 mm cubes +# -m 2.18 # Moles per L pore space +# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 + +K-feldspar + -start +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM K-Feldspar parameters +10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 +100 REM Generic rate follows +110 dif_temp = 1/TK - 1/281 +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +130 REM rate by H+ +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +160 REM rate by hydrolysis +170 pk_H2O = pk_H2O + e_H2O * dif_temp +180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) +190 REM rate by OH- +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +220 REM rate by CO2 +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) +280 moles = rate * TIME +290 SAVE moles + -end + + +########### +#Albite +########### +# +# Sverdrup and Warfvinge, 1995, Estimating field weathering rates +# using laboratory kinetics: Reviews in mineralogy and geochemistry, +# vol. 31, p. 485-541. +# +# As described in: +# Appelo and Postma, 2005, Geochemistry, groundwater +# and pollution, 2nd Edition: A.A. Balkema Publishers, +# p. 162-163 and 395-399. +# +# Example of KINETICS data block for Albite rate: +# KINETICS 1 +# Albite +# -m0 0.46 # 2% Albite, 0.1 mm cubes +# -m 0.46 # Moles per L pore space +# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 +# +# Assume soil is 2% Albite by mass in 1 mm spheres (radius 0.05 mm) +# Assume density of rock and Albite is 2600 kg/m^3 = 2.6 kg/L +# GFW Albite 0.262 kg/mol +# +# Moles of Albite per liter pore space calculation: +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space +# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space +# +# Specific area calculation: +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere +# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite + +Albite + -start +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Albite m^2/mol Albite +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM Albite parameters +10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 +100 REM Generic rate follows +110 dif_temp = 1/TK - 1/281 +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +130 REM rate by H+ +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +160 REM rate by hydrolysis +170 pk_H2O = pk_H2O + e_H2O * dif_temp +180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) +190 REM rate by OH- +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +220 REM rate by CO2 +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("Albite")) +280 moles = rate * TIME +290 SAVE moles + -end + +######## +#Calcite +######## +# Example of KINETICS data block for calcite rate, +# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257. +# KINETICS 1 +# Calcite +# -tol 1e-8 +# -m0 3.e-3 +# -m 3.e-3 +# -parms 1.67e5 0.6 # cm^2/mol calcite, exp factor +# -time 1 day + +Calcite + -start +1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite +2 REM PARM(2) = exponent for M/M0 + +10 si_cc = SI("Calcite") +20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 +30 k1 = 10^(0.198 - 444.0 / TK ) +40 k2 = 10^(2.84 - 2177.0 /TK ) +50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317.0 / TK) +60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737.0 / TK ) +80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M +110 rate = area * (k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O")) +120 rate = rate * (1 - 10^(2/3*si_cc)) +130 moles = rate * 0.001 * TIME # convert from mmol to mol +200 SAVE moles + -end + +####### +#Pyrite +####### +# +# Williamson, M.A. and Rimstidt, J.D., 1994, +# Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454, +# rate equation is mol m^-2 s^-1. +# +# Example of KINETICS data block for pyrite rate: +# KINETICS 1 +# Pyrite +# -tol 1e-8 +# -m0 5.e-4 +# -m 5.e-4 +# -parms 0.3 0.67 .5 -0.11 +# -time 1 day in 10 +Pyrite + -start +1 REM Williamson and Rimstidt, 1994 +2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) +3 REM PARM(2) = exp for (M/M0) +4 REM PARM(3) = exp for O2 +5 REM PARM(4) = exp for H+ + +10 REM Dissolution in presence of DO +20 if (M <= 0) THEN GOTO 200 +30 if (SI("Pyrite") >= 0) THEN GOTO 200 +40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") +50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) +60 moles = 10^(log_area + log_rate) * TIME +200 SAVE moles + -end + +########## +#Organic_C +########## +# +# Example of KINETICS data block for SOC (sediment organic carbon): +# KINETICS 1 +# Organic_C +# -formula C +# -tol 1e-8 +# -m 5e-3 # SOC in mol +# -time 30 year in 15 +Organic_C + -start +1 REM Additive Monod kinetics for SOC (sediment organic carbon) +2 REM Electron acceptors: O2, NO3, and SO4 + +10 if (M <= 0) THEN GOTO 200 +20 mO2 = MOL("O2") +30 mNO3 = TOT("N(5)") +40 mSO4 = TOT("S(6)") +50 k_O2 = 1.57e-9 # 1/sec +60 k_NO3 = 1.67e-11 # 1/sec +70 k_SO4 = 1.e-13 # 1/sec +80 rate = k_O2 * mO2/(2.94e-4 + mO2) +90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) +100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) +110 moles = rate * M * (M/M0) * TIME +200 SAVE moles + -end + +########### +#Pyrolusite +########### +# +# Postma, D. and Appelo, C.A.J., 2000, GCA, vol. 64, pp. 1237-1247. +# Rate equation given as mol L^-1 s^-1 +# +# Example of KINETICS data block for Pyrolusite +# KINETICS 1-12 +# Pyrolusite +# -tol 1.e-7 +# -m0 0.1 +# -m 0.1 +# -time 0.5 day in 10 +Pyrolusite + -start +10 if (M <= 0) THEN GOTO 200 +20 sr_pl = SR("Pyrolusite") +30 if (sr_pl > 1) THEN GOTO 100 +40 REM sr_pl <= 1, undersaturated +50 Fe_t = TOT("Fe(2)") +60 if Fe_t < 1e-8 then goto 200 +70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) +80 GOTO 200 +100 REM sr_pl > 1, supersaturated +110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME +200 SAVE moles * SOLN_VOL + -end +# +# Additional definition of PHASES, RATE parameters, and RATES examples +# +# RATE_PARAMETERS_PK has parameters from Palandri and Kharaka (2004). +# +# RATE_PARAMETERS_SVD has two examples from Sverdrup, Oelkers, Lampa, +# Belyazid, Kurz, and Akselsson (2019). +# +# RATE_PARAMETERS_HERMANSKA has parameters from Hermanska, Voigt, Marieni, +# Declercq, and Oelkers (2023). +# +# Example RATES definitions include +# Albite_PK # Palandri and Kharaka +# Albite_Svd # Sverdrup +# Albite_Hermanska # +# Quartz_PK # Palandri and Kharaka +# Quartz_Svd # Sverdrup +# Quartz_Hermanska # +# Quartz_Rimstidt_Barnes +# +PHASES # defined for formulas and affinities of kinetic (mostly) dissolving minerals +Actinolite # Hornblende, Ferroactinolite +Ca2(Mg2.25Fe2.5Al0.25)(Si7.75Al0.25)O22(OH)2 + 15H+ + 7H2O = 0.500Al+3 + 2Ca+2 + 2.500Fe+2 + 2.250Mg+2 + 7.750H4SiO4 + log_k 7.128 + delta_h -181.662 #kJ/mol #19bla/lac + -analytic -5.0954182E+3 -6.949504E-1 3.0825312E+5 1.8133351E+3 -1.8767155E+7 +Almandine # (alpha) +Fe3Al2Si3O12 + 12H+ = 2Al+3 + 3Fe+2 + 3H4SiO4 + log_k 42.180 + delta_h -458.683 #kJ/mol #95rob/hem + -analytic -3.0848427E+3 -4.4981168E-1 1.9672956E+5 1.0990475E+3 -1.0509115E+7 +Analcime +Na0.99Al0.99Si2.01O6:H2O + 3.960H+ + 1.040H2O = 0.990Al+3 + 0.990Na+ + 2.010H4SiO4 + log_k 6.654 + delta_h -98 #kJ/mol #04neu/hov + -analytic -1.3403358E+3 -1.8135021E-1 8.3684586E+4 4.7527556E+2 -4.9476886E+6 +Andalusite +Al2SiO5 + 6H+ = 2Al+3 + 1H4SiO4 + 1H2O + log_k 16.206 + delta_h -244.610 #kJ/mol #Internal calculation + -analytic -1.339469E+3 -2.048042E-1 8.5279067E+4 4.7661954E+2 -4.3249835E+6 +Andesine # defined for elemental release +Na0.6Ca0.4Si2.6Al1.4O8 + 8 H2O = 0.6 Na+ + 0.4 Ca+2 + 2.6 H4SiO4 + 1.4 Al(OH)4- + +Andradite +Ca3Fe2Si3O12 + 12H+ = 3Ca+2 + 2Fe+3 + 3H4SiO4 + log_k 33.787 + delta_h -327.864 #kJ/mol #Internal calculation + -analytic -2.9077837E+3 -4.2372897E-1 1.7981493E+5 1.040602E+3 -9.7870213E+6 +Anglesite +PbSO4 = 1Pb+2 + 1SO4-2 + log_k -7.848 + delta_h 11.550 #kJ/mol #89cox/wag + -analytic -1.6531905E+3 -2.6395706E-1 9.1051907E+4 5.9877724E+2 -5.5987833E+6 +Annite +KFe3(AlSi3)O10(OH)2 + 10H+ = 1Al+3 + 3Fe+2 + 1K+ + 3H4SiO4 + log_k 32.771 + delta_h -306.153 #kJ/mol #92cir/nav + -analytic -2.6382558E+3 -3.7460641E-1 1.6621477E+5 9.4111433E+2 -9.2002058E+6 +Anorthite +Ca(Al2Si2)O8 + 8H+ = 2Al+3 + 1Ca+2 + 2H4SiO4 + log_k 24.235 + delta_h -303.522 #kJ/mol #95rob/hem + -analytic -1.9788284E+3 -2.9190197E-1 1.2612201E+5 7.0425974E+2 -6.7173266E+6 +Anthophyllite +Mg7Si8O22(OH)2 + 14H+ + 8H2O = 7Mg+2 + 8H4SiO4 + log_k 73.783 + delta_h -583.247 #kJ/mol #95rob/hem + -analytic -5.2321622E+3 -7.0079895E-1 3.3845592E+5 1.8579984E+3 -1.9360477E+7 +Antigorite +Mg48Si34O85(OH)62 + 96H+ = 48Mg+2 + 34H4SiO4 + 11H2O + log_k 500.080 + delta_h -3743.421 #kJ/mol #98hol/pow + -analytic -2.9383249E+4 -4.0195982E+0 1.8738549E+6 1.0481455E+4 -1.0123582E+8 +# As2S3 # Orpiment # no As in phreeqc.dat +# As2S3 + 6H2O = 2H2AsO3- + 3HS- + 5H+ + # log_k -65.110 + # delta_h 334.975 #kJ/mol #Internal calculation + # -analytic -2.5599772E+3 -4.2267991E-1 1.1988784E+5 9.3328822E+2 -8.0517057E+6 +Augite # Pyroxene(CaAl) +CaAl(AlSi)O6 + 8H+ = 2Al+3 + 1Ca+2 + 1H4SiO4 + 2H2O + log_k 36.234 + delta_h -370.792 #kJ/mol #Internal calculation + -analytic -1.5908243E+3 -2.4603865E-1 1.0453251E+5 5.681931E+2 -4.9909659E+6 +Biotite # defined for elemental release +KFe3(AlSi3)O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Fe+2 + 3 H4SiO4 + +Bronzite # defined for elemental release +Mg0.8Fe0.2SiO3 + 2 H+ + H2O = 0.8 Mg+2 + 0.2 Fe+2 + H4SiO4 + +Brucite +Mg(OH)2 + 2H+ = 1Mg+2 + 2H2O + log_k 17.112 + delta_h -114.518 #kJ/mol #08bla + -analytic -3.5641635E+2 -5.3167189E-2 2.4317829E+4 1.2873122E+2 -9.5286882E+5 +Bytownite # defined for elemental release +Na0.2Ca0.8Si2.2Al1.8O8 + 8 H2O = 0.2 Na+ + 0.8 Ca+2 + 2.2 H4SiO4 + 1.8 Al(OH)4- + +Chabazite +Ca(Al2Si4)O12:6H2O + 8H+ = 2Al+3 + 1Ca+2 + 4H4SiO4 + 2H2O + log_k 11.541 + delta_h -200.464 #kJ/mol #08bla + -analytic -2.5875779E+3 -3.5298441E-1 1.6180839E+5 9.1700928E+2 -9.5494778E+6 +Chamosite(Daphnite) +Fe5Al(AlSi3)O10(OH)8 + 16H+ = 2Al+3 + 5Fe+2 + 3H4SiO4 + 6H2O + log_k 47.603 + delta_h -497.518 #kJ/mol #01vid/par + -analytic -3.7422355E+3 -5.4789298E-1 2.3185338E+5 1.338448E+3 -1.2120616E+7 +Chrysotile +Mg3Si2O5(OH)4 + 6H+ = 3Mg+2 + 2H4SiO4 + 1H2O + log_k 33.182 + delta_h -244.552 #kJ/mol #04eva + -analytic -1.8039877E+3 -2.4743291E-1 1.1552931E+5 6.4375706E+2 -6.1763163E+6 +Clinochlore +Mg5Al(AlSi3)O10(OH)8 + 16H+ = 2Al+3 + 5Mg+2 + 3H4SiO4 + 6H2O + log_k 61.706 + delta_h -593.773 #kJ/mol #05vid/par + -analytic -3.933293E+3 -5.6860144E-1 2.4698841E+5 1.4055516E+3 -1.2607E+7 +Clinoptilolite(Ca) +Ca0.55(Si4.9Al1.1)O12:3.9H2O + 4.400H+ + 3.700H2O = 1.100Al+3 + 0.550Ca+2 + 4.900H4SiO4 + log_k -2.085 + delta_h -58.407 #kJ/mol #09bla + -analytic -2.3815518E+3 -3.0085981E-1 1.4942318E+5 8.390927E+2 -9.6254008E+6 +Clinoptilolite(K) +K1.1(Si4.9Al1.1)O12:2.7H2O + 4.400H+ + 4.900H2O = 1.100Al+3 + 1.100K+ + 4.900H4SiO4 + log_k -1.142 + delta_h -49.035 #kJ/mol #09bla + -analytic -2.3148616E+3 -2.905299E-1 1.4612903E+5 8.1530832E+2 -9.5298429E+6 +Clinoptilolite(Na) +Na1.1(Si4.9Al1.1)O12:3.5H2O + 4.400H+ + 4.100H2O = 1.100Al+3 + 1.100Na+ + 4.900H4SiO4 + log_k -0.113 + delta_h -50.769 #kJ/mol #09bla + -analytic -2.3846087E+3 -2.9645291E-1 1.4988094E+5 8.401942E+2 -9.6738611E+6 +Cordierite +Mg2Al3(AlSi5)O18 + 16H+ + 2H2O = 4Al+3 + 2Mg+2 + 5H4SiO4 + log_k 49.433 + delta_h -648.745 #kJ/mol #95rob/hem + -analytic -4.3696636E+3 -6.2958321E-1 2.8022776E+5 1.5507866E+3 -1.5147654E+7 +Cristobalite # (alpha) +SiO2 + 2H2O = 1H4SiO4 + log_k -3.158 + delta_h 18.829 #kJ/mol #04fab/sax + -analytic -3.544017E+2 -4.1702635E-2 2.2114271E+4 1.2427357E+2 -1.6001472E+6 +# Cristobalite(beta) +# SiO2 + 2H2O = 1H4SiO4 + # log_k -3.096 + # #delta_h 0 #kJ/mol + # -analytic -3.6088361E+2 -4.1957223E-2 2.2873339E+4 1.2628239E+2 -1.6799304E+6 +Dawsonite +NaAlCO3(OH)2 + 3H+ = 1Al+3 + 1HCO3- + 1Na+ + 2H2O + log_k 4.327 + delta_h -76.330 #kJ/mol #76fer/stu + -analytic -1.21599E+3 -1.9110794E-1 6.8919359E+4 4.3970018E+2 -3.7220307E+6 +Diaspore +AlO(OH) + 3H+ = 1Al+3 + 2H2O + log_k 6.866 + delta_h -108.760 #kJ/mol #95rob/hem + -analytic -4.8201662E+2 -7.7930965E-2 2.9964822E+4 1.7237439E+2 -1.3257386E+6 +Diopside +CaMg(SiO3)2 + 4H+ + 2H2O = 1Ca+2 + 1Mg+2 + 2H4SiO4 + log_k 21.743 + delta_h -153.574 #kJ/mol #Internal calculation + -analytic -1.332806E+3 -1.8198553E-1 8.603858E+4 4.749095E+2 -4.8802351E+6 +Dolomite(disordered) +CaMg(CO3)2 + 2H+ = 2HCO3- + 1Ca+2 + 1Mg+2 + log_k 4.299 + delta_h -73.162 #kJ/mol #78hel/del,92ajoh + -analytic -1.7814432E+3 -2.8852695E-1 9.9263747E+4 6.4714027E+2 -5.5533944E+6 +Edenite # (alpha) +Na(Ca2Mg5)(AlSi7)O22(OH)2 + 18H+ + 4H2O = 1Al+3 + 2Ca+2 + 5Mg+2 + 1Na+ + 7H4SiO4 + log_k 81.946 + delta_h -679.296 #kJ/mol #97got + -analytic -5.4623009E+3 -7.5241996E-1 3.5051336E+5 1.9444511E+3 -1.942E+7 +Enstatite # (alpha) +MgSiO3 + 2H+ + 1H2O = 1Mg+2 + 1H4SiO4 + log_k 11.844 + delta_h -93.265 #kJ/mol #78hel/del + -analytic -7.0139177E+2 -9.4618096E-2 4.5846726E+4 2.4912172E+2 -2.5565294E+6 +Epidote +Ca2FeAl2Si3O12(OH) + 13H+ = 2Al+3 + 2Ca+2 + 1Fe+3 + 3H4SiO4 + 1H2O + log_k 32.230 + delta_h -411.613 #kJ/mol #04got + -analytic -3.1567388E+3 -4.6487997E-1 1.9676775E+5 1.1260692E+3 -1.0558252E+7 +Fayalite +Fe2SiO4 + 4H+ = 2Fe+2 + 1H4SiO4 + log_k 19.030 + delta_h -157.157 #kJ/mol #Internal calculation + -analytic -1.0258478E+3 -1.4618015E-1 6.6129821E+4 3.6618221E+2 -3.5053712E+6 +Ferroactinolite # = Ferrotremolite +(Ca2Fe5)Si8O22(OH)2 + 14H+ + 8H2O = 2Ca+2 + 5Fe+2 + 8H4SiO4 + log_k 53.699 + delta_h -412.225 #kJ/mol #Internal calculation + -analytic -4.942592E+3 -6.6976495E-1 3.1400258E+5 1.7585882E+3 -1.8552107E+7 +Fluorapatite # (Natur) +Ca5(PO4)3F + 6H+ = 5Ca+2 + 1F- + 3H2PO4- + log_k -0.910 + delta_h -115.601 #kJ/mol #Internal calculation + -analytic -3.7675938E+3 -6.2227437E-1 2.0719593E+5 1.369906E+3 -1.1775417E+7 +Forsterite +Mg2SiO4 + 4H+ = 2Mg+2 + 1H4SiO4 + log_k 28.609 + delta_h -217.115 #kJ/mol #Internal calculation + -analytic -1.0983766E+3 -1.5385695E-1 7.321503E+4 3.91599E+2 -3.7061609E+6 +Glauconite +(K0.75Mg0.25Fe1.5Al0.25)(Al0.25Si3.75)O10(OH)2 + 7H+ + 3H2O = 0.500Al+3 + 1.250Fe+3 + 0.750K+ + 0.250Mg+2 + 3.750H4SiO4 + 0.250Fe+2 + log_k 1.873 + delta_h -120.903 #kJ/mol #15bla/vie + -analytic -2.3976207E+3 -3.2091227E-1 1.4807364E+5 8.4865741E+2 -9.0151175E+6 +Glaucophane +Na2(Mg3Al2)Si8O22(OH)2 + 14H+ + 8H2O = 2Al+3 + 3Mg+2 + 2Na+ + 8H4SiO4 + log_k 37.026 + delta_h -378.727 #kJ/mol #95rob/hem + -analytic -5.095188E+3 -6.8518568E-1 3.2040873E+5 1.8087612E+3 -1.9006796E+7 +Grossular +Ca3Al2Si3O12 + 12H+ = 2Al+3 + 3Ca+2 + 3H4SiO4 + log_k 49.372 + delta_h -442.383 #kJ/mol #95rob/hem + -analytic -2.9566754E+3 -4.3410622E-1 1.8868769E+5 1.057027E+3 -1.0038715E+7 +# Hornblende # see Actinolite, Edenite, Pargasite, Ferroactinolite + +Heulandite(Na) +Na2.14Al2.14Si6.86O18:6.17H2O + 8.560H+ + 3.270H2O = 2.140Al+3 + 2.140Na+ + 6.860H4SiO4 + log_k 2.797 + delta_h -126.775 #kJ/mol #09bla + -analytic -3.7890714E+3 -4.9720069E-1 2.3269508E+5 1.3423841E+3 -1.4400431E+7 +Heulandite(Ca) +Ca1.07Al2.14Si6.86O18:6.17H2O + 8.560H+ + 3.270H2O = 2.140Al+3 + 1.070Ca+2 + 6.860H4SiO4 + log_k 2.457 + delta_h -139.108 #kJ/mol #09bla + -analytic -3.7607701E+3 -5.0483789E-1 2.3083824E+5 1.3337643E+3 -1.4294418E+7 +# Ilmenite # Ti not in phreeqc.dat +# FeTiO3 + 2H+ + 1H2O = 1Fe+2 + 1Ti(OH)4 + # log_k 1.816 + # delta_h -87.445 #kJ/mol #Internal calculation + # -analytic -7.7719505E+2 -8.1479565E-2 4.34898E+4 2.7302259E+2 -1.612373E+6 +Jadeite +NaAl(SiO3)2 + 4H+ + 2H2O = 1Al+3 + 1Na+ + 2H4SiO4 + log_k 7.561 + delta_h -95.502 #kJ/mol #95rob/hem + -analytic -1.3237509E+3 -1.8118316E-1 8.2628986E+4 4.7016122E+2 -4.9060741E+6 +Kyanite +Al2SiO5 + 6H+ = 2Al+3 + 1H4SiO4 + 1H2O + log_k 15.936 + delta_h -240.322 #kJ/mol #Internal calculation + -analytic -1.3447799E+3 -2.0581745E-1 8.5324148E+4 4.7877192E+2 -4.3369481E+6 +Labradorite # defined for elemental release +Na0.4Ca0.6Si2.4Al1.6O8 + 8 H2O = 0.4 Na+ + 0.6 Ca+2 + 2.4 H4SiO4 + 1.6 Al(OH)4- + +Larnite(alpha) +Ca2SiO4 + 4H+ = 2Ca+2 + 1H4SiO4 + log_k 39.044 + delta_h -238.161 #kJ/mol #95rob/hem + -analytic -8.9908942E+2 -1.301379E-1 6.3335055E+4 3.2296168E+2 -3.0793446E+6 +Larnite(beta) +Ca2SiO4 + 4H+ = 2Ca+2 + 1H4SiO4 + log_k 39.322 + #delta_h 0 #kJ/mol + -analytic -9.0365527E+2 -1.3027777E-1 6.4015139E+4 3.243254E+2 -3.1477489E+6 +Larnite(gamma) +Ca2SiO4 + 4H+ = 2Ca+2 + 1H4SiO4 + log_k 41.444 + #delta_h 0 #kJ/mol + -analytic -8.7896206E+2 -1.2907359E-1 6.3430487E+4 3.1585123E+2 -3.1477489E+6 +Laumontite +Ca(Al2Si4)O12:4H2O + 8H+ = 2Al+3 + 1Ca+2 + 4H4SiO4 + log_k 11.695 + delta_h -204.244 #kJ/mol #96kis/nav + -analytic -2.6447429E+3 -3.6684244E-1 1.6419074E+5 9.3900001E+2 -9.6343473E+6 +Leonhardtite +MgSO4:4H2O = 1Mg+2 + 1SO4-2 + 4H2O + log_k -0.886 + delta_h -24.030 #kJ/mol #74nau/ryz + -analytic -1.8009396E+3 -2.6450971E-1 9.9216758E+4 6.5010323E+2 -5.5554353E+6 +Leucite # minteq.dat + KAlSi2O6 + 2H2O + 4H+ = 2H4SiO4 + Al+3 + K+ + log_k 6.423 + delta_h -22.085 kcal +Lizardite +Mg3Si2O5(OH)4 + 6H+ = 3Mg+2 + 2H4SiO4 + 1H2O + log_k 33.093 + delta_h -242.552 #kJ/mol #04eva + -analytic -1.8045338E+3 -2.475614E-1 1.1546724E+5 6.4405193E+2 -6.1786442E+6 +Magnetite +Fe3O4 + 8H+ = 2Fe+3 + 1Fe+2 + 4H2O + log_k 10.362 + delta_h -215.594 #kJ/mol #90hem + -analytic -1.3520774E+3 -2.1498134E-1 8.0017747E+4 4.8502632E+2 -3.7344997E+6 +Microcline +K(AlSi3)O8 + 4H+ + 4H2O = 1Al+3 + 1K+ + 3H4SiO4 + log_k 0.015 + delta_h -49.203 #kJ/mol #95rob/hem + -analytic -1.6018728E+3 -2.1339241E-1 9.9207574E+4 5.6723025E+2 -6.2943433E+6 +Montmorillonite(HcCa) +Ca0.3Mg0.6Al1.4Si4O10(OH)2 + 6H+ + 4H2O = 1.400Al+3 + 0.300Ca+2 + 0.600Mg+2 + 4H4SiO4 + log_k 6.903 + delta_h -154.564 #kJ/mol #15bla/vie + -analytic -2.3616529E+3 -3.1379357E-1 1.4899818E+5 8.3431323E+2 -9.0744862E+6 +Montmorillonite(HcK) +K0.6Mg0.6Al1.4Si4O10(OH)2 + 6H+ + 4H2O = 1.400Al+3 + 0.600K+ + 0.600Mg+2 + 4H4SiO4 + log_k 4.449 + delta_h -119.628 #kJ/mol #15bla/vie + -analytic -2.3324885E+3 -3.0832834E-1 1.4605682E+5 8.2462838E+2 -9.022722E+6 +Montmorillonite(HcMg) +Mg0.3Mg0.6Al1.4Si4O10(OH)2 + 6H+ + 4H2O = 1.400Al+3 + 0.900Mg+2 + 4H4SiO4 + log_k 5.996 + delta_h -156.964 #kJ/mol #15bla/vie + -analytic -2.3909331E+3 -3.1726069E-1 1.5070041E+5 8.4429278E+2 -9.163021E+6 +Montmorillonite(HcNa) +Na0.6Mg0.6Al1.4Si4O10(OH)2 + 6H+ + 4H2O = 1.400Al+3 + 0.600Mg+2 + 0.600Na+ + 4H4SiO4 + log_k 5.472 + delta_h -135.658 #kJ/mol #15bla/vie + -analytic -2.3671642E+3 -3.1193536E-1 1.486659E+5 8.3634354E+2 -9.1085654E+6 +Montmorillonite(MgCa) +Ca0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.170Ca+2 + 0.340Mg+2 + 4H4SiO4 + log_k 4.222 + delta_h -146.668 #kJ/mol #15bla/vie + -analytic -2.3648299E+3 -3.1580182E-1 1.4861699E+5 8.3532612E+2 -9.0862785E+6 +Montmorillonite(MgK) +K0.34Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.340K+ + 0.340Mg+2 + 4H4SiO4 + log_k 2.830 + delta_h -126.865 #kJ/mol #15bla/vie + -analytic -2.3483045E+3 -3.1270489E-1 1.4694997E+5 8.2983827E+2 -9.056946E+6 +Montmorillonite(MgMg) +Mg0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.510Mg+2 + 4H4SiO4 + log_k 3.708 + delta_h -148.028 #kJ/mol #15bla/vie + -analytic -2.3814282E+3 -3.1776702E-1 1.4958186E+5 8.4098328E+2 -9.1364559E+6 +Montmorillonite(MgNa) +Na0.34Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.340Mg+2 + 0.340Na+ + 4H4SiO4 + log_k 3.411 + delta_h -135.953 #kJ/mol #15bla/vie + -analytic -2.3679565E+3 -3.1474933E-1 1.4842879E+5 8.3647775E+2 -9.1055977E+6 +MordeniteB # (Ca) +Ca0.515Al1.03Si4.97O12:3.1H2O + 4.120H+ + 4.780H2O = 1.030Al+3 + 0.515Ca+2 + 4.970H4SiO4 + log_k -2.898 + delta_h -56.278 #kJ/mol #09bla + -analytic -2.3577543E+3 -2.9682032E-1 1.4847577E+5 8.2993876E+2 -9.6241393E+6 +MordeniteJ +Ca0.289Na0.362Al0.94Si5.06O12:3.468H2O + 3.760H+ + 4.772H2O = 0.940Al+3 + 0.289Ca+2 + 0.362Na+ + 5.060H4SiO4 + log_k -4.160 + delta_h -29.442 #kJ/mol #92joh/tas + -analytic -2.3112502E+3 -2.9430315E-1 1.4403365E+5 8.1541676E+2 -9.418252E+6 +Muscovite # (ordered) +KAl2(AlSi3)O10(OH)2 + 10H+ = 3Al+3 + 1K+ + 3H4SiO4 + log_k 11.353 + delta_h -253.923 #kJ/mol #06bla/pia + -analytic -2.5862792E+3 -3.7607072E-1 1.5907562E+5 9.2024545E+2 -8.9668534E+6 +Natrolite +Na2(Al2Si3)O10:2H2O + 8H+ = 2Al+3 + 2Na+ + 3H4SiO4 + log_k 19.326 + delta_h -215.463 #kJ/mol #83joh/flo + -analytic -2.303612E+3 -3.1993458E-1 1.4352482E+5 8.1980235E+2 -8.1431211E+6 +Nepheline +Na(AlSi)O4 + 4H+ = 1Al+3 + 1Na+ + 1H4SiO4 + log_k 14.077 + delta_h -144.506 #kJ/mol #Internal calculation + -analytic -9.7409139E+2 -1.3955693E-1 6.2423687E+4 3.467383E+2 -3.3400695E+6 +Oligoclase # defined for elemental release +Na0.8Ca0.2Si2.8Al1.2O8 + 8 H2O = 0.8 Na+ + 0.2 Ca+2 + 2.8 H4SiO4 + 1.2 Al(OH)4- + +Palygorskite # defined for elemental release +Mg2Al2Si8O20(OH)2:8H2O + 10 H+ + 2 H2O = 2 Mg+2 + 2 Al+3 + 8 H4SiO4 + +Paragonite +NaAl2(AlSi3)O10(OH)2 + 10H+ = 3Al+3 + 1Na+ + 3H4SiO4 + log_k 16.804 + delta_h -294.623 #kJ/mol #96rou/hov + -analytic -2.6452559E+3 -3.8247258E-1 1.64246E+5 9.4070011E+2 -9.1107641E+6 +Pargasite # Hornblende +Na(Ca2Mg4Al)(Al2Si6)O22(OH)2 + 22H+ = 3Al+3 + 2Ca+2 + 4Mg+2 + 1Na+ + 6H4SiO4 + log_k 104.557 + delta_h -940.614 #kJ/mol #Internal calculation + -analytic -5.7962939E+3 -8.2700886E-1 3.7555969E+5 2.0652064E+3 -1.9772394E+7 +Phlogopite +KMg3(AlSi3)O10(OH)2 + 10H+ = 1Al+3 + 1K+ + 3Mg+2 + 3H4SiO4 + log_k 41.098 + delta_h -353.123 #kJ/mol #92cir/nav + -analytic -2.7194067E+3 -3.8106546E-1 1.7318081E+5 9.69566E+2 -9.4102646E+6 +Prehnite +Ca2Al2Si3O10(OH)2 + 10H+ = 2Al+3 + 2Ca+2 + 3H4SiO4 + log_k 32.596 + delta_h -339.617 #kJ/mol #98cha/kru + -analytic -2.6255465E+3 -3.8041883E-1 1.6586587E+5 9.3642007E+2 -9.0549681E+6 +Pyrophyllite +Al2Si4O10(OH)2 + 6H+ + 4H2O = 2Al+3 + 4H4SiO4 + log_k -0.418 + delta_h -128.924 #kJ/mol #95rob/hem + -analytic -2.3595061E+3 -3.237303E-1 1.4585394E+5 8.3524091E+2 -8.9193526E+6 +Pyrrhotite(Hx) # Pyrrhotite +FeS + 1H+ = 1Fe+2 + 1HS- + log_k -3.679 + delta_h -10.009 #kJ/mol #05wal/pel + -analytic -1.1321823E+3 -1.8235764E-1 6.1304821E+4 4.1103628E+2 -3.5403537E+6 +Pyrrhotite(Mc) # Pyrrhotite +FeS + 1H+ = 1Fe+2 + 1HS- + log_k -3.679 + delta_h -10.009 #kJ/mol #05wal/pel + -analytic -1.1321823E+3 -1.8235764E-1 6.1304821E+4 4.1103628E+2 -3.5403537E+6 +Rhyolite # a mixture of minerals, defined for elemental release... +Na0.078K0.046Al0.26Si1.23O2.912 + 3.048 H2O = 0.136 H+ + 0.078 Na+ + 0.046 K+ + 0.26 Al(OH)4- + 1.23 H4SiO4 + +Riebeckite +Na2(Fe3Fe2)Si8O22(OH)2 + 14H+ + 8H2O = 3Fe+2 + 2Na+ + 8H4SiO4 + 2Fe+3 + log_k 9.199 + delta_h -197.377 #kJ/mol #98hol/pow + -analytic -5.0079102E+3 -6.7170777E-1 3.0608951E+5 1.7785742E+3 -1.8686839E+7 +Saponite(Ca) +Ca0.17Mg3Al0.34Si3.66O10(OH)2 + 7.360H+ + 2.640H2O = 0.340Al+3 + 0.170Ca+2 + 3Mg+2 + 3.660H4SiO4 + log_k 29.355 + delta_h -262.766 #kJ/mol #15bla/vie + -analytic -2.5667428E+3 -3.4039957E-1 1.6475488E+5 9.099285E+2 -9.472597E+6 +Saponite(FeCa) +Ca0.17Mg2FeAl0.34Si3.66O10(OH)2 + 7.360H+ + 2.640H2O = 0.340Al+3 + 0.170Ca+2 + 1Fe+2 + 2Mg+2 + 3.660H4SiO4 + log_k 26.569 + delta_h -250.636 #kJ/mol #15bla/vie + -analytic -2.5356344E+3 -3.373844E-1 1.6236385E+5 8.9871835E+2 -9.386812E+6 +Saponite(FeK) +K0.34Mg2FeAl0.34Si3.66O10(OH)2 + 7.360H+ + 2.640H2O = 0.340Al+3 + 1Fe+2 + 0.340K+ + 2Mg+2 + 3.660H4SiO4 + log_k 25.398 + delta_h -232.093 #kJ/mol #15bla/vie + -analytic -2.515955E+3 -3.3384661E-1 1.6058454E+5 8.9209651E+2 -9.3470003E+6 +Saponite(FeMg) +Mg0.17Mg2FeAl0.34Si3.66O10(OH)2 + 7.360H+ + 2.640H2O = 0.340Al+3 + 1Fe+2 + 2.170Mg+2 + 3.660H4SiO4 + log_k 26.022 + delta_h -251.806 #kJ/mol #15bla/vie + -analytic -2.5507675E+3 -3.3914471E-1 1.6323608E+5 9.0384868E+2 -9.4321235E+6 +Saponite(FeNa) +Na0.34Mg2FeAl0.34Si3.66O10(OH)2 + 7.360H+ + 2.640H2O = 0.340Al+3 + 1Fe+2 + 2Mg+2 + 0.340Na+ + 3.660H4SiO4 + log_k 25.896 + delta_h -240.711 #kJ/mol #15bla/vie + -analytic -2.5368817E+3 -3.3606965E-1 1.6211086E+5 8.9919435E+2 -9.3999007E+6 +Saponite(K) +K0.33Mg3Al0.33Si3.67O10(OH)2 + 7.320H+ + 2.680H2O = 0.330Al+3 + 0.330K+ + 3Mg+2 + 3.670H4SiO4 + log_k 27.430 + delta_h -239.483 #kJ/mol #15bla/vie + -analytic -2.544416E+3 -3.3629993E-1 1.6263915E+5 9.0231366E+2 -9.4312976E+6 +Saponite(Mg) +Mg0.17Mg3Al0.34Si3.66O10(OH)2 + 7.360H+ + 2.640H2O = 0.340Al+3 + 3.170Mg+2 + 3.660H4SiO4 + log_k 28.810 + delta_h -263.946 #kJ/mol #15bla/vie + -analytic -2.5818719E+3 -3.4215988E-1 1.6562747E+5 9.1505763E+2 -9.5179085E+6 +Saponite(Na) +Na0.33Mg3Al0.33Si3.67O10(OH)2 + 7.320H+ + 2.680H2O = 0.330Al+3 + 3Mg+2 + 0.330Na+ + 3.670H4SiO4 + log_k 27.971 + delta_h -248.219 #kJ/mol #15bla/vie + -analytic -2.5647603E+3 -3.3846001E-1 1.6414122E+5 9.0921188E+2 -9.482682E+6 +Saponite(SapCa) +(Na0.394K0.021Ca0.038)(Si3.569Al0.397)(Mg2.949Fe0.055)O10(OH)2 + 7.724H+ + 2.276H2O = 0.397Al+3 + 0.038Ca+2 + 0.034Fe+3 + 0.021K+ + 2.949Mg+2 + 0.394Na+ + 3.569H4SiO4 + 0.021Fe+2 + log_k 31.473 + delta_h -277.172 #kJ/mol #13gai/bla + -analytic -2.5790231E+3 -3.508959E-1 1.6429225E+5 9.168404E+2 -9.2969386E+6 +Scolecite +CaAl2Si3O10:3H2O + 8H+ = 2Al+3 + 1Ca+2 + 3H4SiO4 + 1H2O + log_k 16.647 + delta_h -233.213 #kJ/mol #83joh/flo + -analytic -2.3692738E+3 -3.4026162E-1 1.4623007E+5 8.4431312E+2 -8.2035956E+6 +Smectite # (MX80) +Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.208)O10(OH)2 + 7.048H+ + 2.952H2O = 1.860Al+3 + 0.009Ca+2 + 0.173Fe+3 + 0.024K+ + 0.214Mg+2 + 0.409Na+ + 3.738H4SiO4 + 0.035Fe+2 + log_k 5.278 + delta_h -175.308 #kJ/mol #12gai/bla + -analytic -2.4267042E+3 -3.3712249E-1 1.5038583E+5 8.6021197E+2 -8.9284687E+6 +Smectite(MX80:3.989H2O) +Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.208)O10(OH)2:3.989H2O + 7.048H+ = 1.860Al+3 + 0.009Ca+2 + 0.173Fe+3 + 0.024K+ + 0.214Mg+2 + 0.409Na+ + 3.738H4SiO4 + 0.035Fe+2 + 1.037H2O + log_k 1.774 + delta_h -148.524 #kJ/mol #12gai/bla + -analytic -2.3838609E+3 -3.2232449E-1 1.4844358E+5 8.4261556E+2 -8.9910004E+6 +Smectite(MX80:5.189H2O) +Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.208)O10(OH)2:5.189H2O + 7.048H+ = 1.860Al+3 + 0.009Ca+2 + 0.173Fe+3 + 0.024K+ + 0.214Mg+2 + 0.409Na+ + 3.738H4SiO4 + 0.035Fe+2 + 2.237H2O + log_k 1.435 + delta_h -140.430 #kJ/mol #12gai/bla + -analytic -2.3706061E+3 -3.2008903E-1 1.4737914E+5 8.3812012E+2 -8.9524821E+6 +Spodumene # from core10.dat + LiAlSi2O6 + 4 H+ + 2 H2O = Al+3 + Li+ + 2 H4SiO4 + log_k 6.9972 + -delta_H -89.1817 + -analytic -9.8111 2.1191e-3 9.6920e3 -3.0484 -7.8822e5 + -Vm 58.37 +Staurolite +Fe2Al9Si4O23(OH) + 31H+ = 9Al+3 + 2Fe+2 + 4H4SiO4 + 8H2O + log_k 216.340 + delta_h -1956.484 #kJ/mol #87woo/gar + -analytic -6.5297334E+3 -1.0061427E+0 4.5225123E+5 2.3281295E+3 -2.0588442E+7 +Stilbite +NaCa2(Al5Si13)O36:16H2O + 20H+ = 5Al+3 + 2Ca+2 + 1Na+ + 13H4SiO4 + log_k 23.044 + delta_h -403.823 #kJ/mol #01fri/neu + -analytic -7.4700792E+3 -1.0099722E+0 4.6170528E+5 2.6510812E+3 -2.7934606E+7 +Thomsonite # defined for elemental release +Na0.5CaAl2.5Si2.5O10:3H2O + 10H+ = 2.5 Al+3 + 0.5 Na+ + Ca+2 + 2.5 H4SiO4 + 3 H2O + +Tourmaline # defined for elemental release +NaFe1.5Mg1.5Al6B3Si6O27(OH)4 + 26 H2O + H+ = Na+ + 1.5 Fe+2 + 1.5 Mg+2 + 6 Al(OH)4- + 3 H3BO3 + 6 H4SiO4 + +Tremolite +(Ca2Mg5)Si8O22(OH)2 + 14H+ + 8H2O = 2Ca+2 + 5Mg+2 + 8H4SiO4 + log_k 67.281 + delta_h -502.247 #kJ/mol #95rob/hem + -analytic -5.0977019E+3 -6.8545317E-1 3.2680746E+5 1.8129659E+3 -1.8919407E+7 +# Uraninite +# UO2 + 4 H+ = U+4 + 2 H2O +# log_k -3.490 +# delta_h -18.630 kcal +Wollastonite +CaSiO3 + 2H+ + 1H2O = 1Ca+2 + 1H4SiO4 + log_k 14.047 + delta_h -85.986 #kJ/mol #78hel/del,92ajoh + -analytic -6.3184784E+2 -8.6944016E-2 4.1722732E+4 2.2563038E+2 -2.3494013E+6 +Zoisite +Ca2Al3Si3O12(OH) + 13H+ = 3Al+3 + 2Ca+2 + 3H4SiO4 + 1H2O + log_k 43.848 + delta_h -485.113 #kJ/mol #01sme/fra + -analytic -3.1722373E+3 -4.6912132E-1 2.0150433E+5 1.1315082E+3 -1.0643978E+7 + + +RATE_PARAMETERS_PK +# Acid Neutral Base +# log K E n(H+) log K E log K E n(OH-) +# ================================================================ +Quartz -30 0 0 -13.4 90.9 -30 0 0 # Table 4 +# +SiO2(a) -30 0 0 -12.31 76 -30 0 0 # Table 6 +Cristobalite -30 0 0 -12.31 65 -30 0 0 +# +Albite -10.16 65 0.317 -12.56 65 -15.6 66.5 -0.471 # Table 1 +Oligoclase -9.67 65 0.457 -11.84 69.8 -30 0 0 # Table 13 +Andesine -8.88 53.5 0.541 -11.47 57.4 -30 0 0 +Labradorite -7.87 42.1 0.626 -10.91 45.2 -30 0 0 +Bytownite -5.85 29.3 1.018 -9.82 31.5 -30 0 0 +Anorthite -3.5 16.6 1.411 -9.12 17.8 -30 0 0 +# +K-feldspar -10.06 51.7 0.5 -12.41 38 -21.2 94.1 -0.823 # Table 14 +# +Nepheline -2.73 62.9 1.13 -8.56 65.4 -10.76 37.8 -0.2 # Table 18 +Leucite -6 132.2 0.7 -9.2 75.5 -10.66 56.6 -0.2 +# +Forsterite -6.85 67.2 0.47 -10.64 79 -30 0 0 # Table 23 +Fayalite -4.8 94.4 0 -12.8 94.4 -30 0 0 +Almandine -5.2 94.4 1 -10.7 103.8 -13.71 37.8 -0.35 +Grossular -5.1 85 1 -10.7 103.8 -30 0 0 +Andradite -5.2 94.4 1 -10.7 103.8 -30 0 0 +Kyanite -10.17 -53.9 1.268 -17.44 53.9 -30 0 0 +Staurolite -6.9 18.9 1 -12.2 56.6 -14.9 47.2 -0.3 +Epidote -10.6 71.1 0.338 -11.99 70.7 -17.33 79.1 -0.556 +Zoisite -7.5 66.1 0.5 -11.2 66.1 -30 0 0 +# +Cordierite -3.8 113.3 1 -11.2 28.3 -30 0 0 # Table 25 +Tourmaline -6.5 75.5 1 -11.2 85 -30 0 0 +# +augite -6.82 78 0.7 -11.97 78 -30 0 0 # Table 26 +bronzite -8.3 47.2 0.65 -11.7 66.1 -30 0 0 +diopside -6.36 96.1 0.71 -11.11 40.6 -30 0 0 +enstatite -9.02 80 0.6 -12.72 80 -30 0 0 +jadeite -6 132.2 0.7 -9.5 94.4 -30 0 0 +spodumene -4.6 94.4 0.7 -9.3 66.1 -30 0 0 +wollastonite -5.37 54.7 0.4 -8.88 54.7 -30 0 0 +# +anthophyllite -11.94 51 0.44 -14.24 51 -30 0 0 # Table 27 +glaucophane -5.6 85 0.7 -10.1 94.4 -30 0 0 +hornblende -7 75.5 0.6 -10.3 94.4 -30 0 0 +riebeckite -7.7 56.6 0.7 -12.2 47.2 -30 0 0 +tremolite -8.4 18.9 0.7 -10.6 94.4 -30 0 0 +# +biotite -9.84 22 0.525 -12.55 22 -30 0 0 # Table 28 +glauconite -4.8 85 0.7 -9.1 85 -30 0 0 +muscovite -11.85 22 0.37 -13.55 22 -14.55 22 -0.22 +muscovite -30 0 0 -13 22 -30 0 0 +paragonite -30 0 0 -13 22 -30 0 0 +phlogopite -30 0 0 -12.4 29 -30 0 0 +pyrophyllite -30 0 0 -12.4 29 -30 0 0 +# +kaolinite -11.31 65.9 0.777 -13.18 22.2 -17.05 17.9 -0.472 # Table 29 +montmorillonite -12.71 48 0.22 -14.41 48 -14.41 48 -0.13 # Montmorillonite, K0.318(Si3.975Al0.025)(Al1.509Fe0.205Mg0.283)(OH)2. +smectite -10.98 23.6 0.34 -12.78 35 -16.52 58.9 -0.4 # Smectite, K0.04Ca0.5(Al2.8Fe0.53Mg0.7)(Si7.65Al0.35)O20(OH)4. +# +lizardite -5.7 75.5 0.8 -12.4 56.6 -30 0 0 # Table 30 +chrysotile -30 0 0 -12 73.5 -13.58 73.5 -0.23 +chlorite(14A) -11.11 88 0.5 -12.52 88 -30 0 0 +talc -30 0 0 -12 42 -30 0 0 +prehnite -10.66 80.5 0.256 -13.16 93.4 -14.86 93.4 -0.2 +# +goethite -30 0 0 -7.94 86.5 -30 0 0 # Table 31 +hematite -9.39 66.2 1 -14.6 66.2 -30 0 0 +magnetite -8.59 18.6 0.279 -10.78 18.6 -30 0 0 +ilmenite -8.35 37.9 0.421 -11.16 37.9 -30 0 0 +uraninite -30 0 0 -7.98 32 -30 0 0 +# +brucite -4.73 59 0.5 -8.24 42 -30 0 0 # Table 32 +gibbsite -7.65 47.5 0.992 -11.5 61.2 -16.65 80.1 -0.784 +diaspore -30 0 0 -13.33 47.5 -23.6 47.5 -1.503 +# +anglesite -5.58 31.3 0.298 -6.5 31.3 -30 0 0 # Table 34 +anhydrite -30 0 0 -3.19 14.3 -30 0 0 +gypsum -30 0 0 -2.79 0 -30 0 0 +barite -6.9 30.8 0.22 -7.9 30.8 -30 0 0 +celestite -5.66 23.8 0.109 -30 0 -30 0 0 +# +hydroxyapatite -4.29 250 0.171 -6 250 -30 0 0 # Table 36 +fluorapatite -3.73 250 0.613 -8 250 -30 0 0 +# +halite -30 0 0 -0.21 7.4 -30 0 0 # Table 37 +fluorite -7.14 73 1 -13.79 73 -30 0 0 +# +# Acid Neutral P_CO2 +# log K E n(H+) log K E log K E n(P_CO2) Table +# ================================================================================ +calcite -0.3 14.4 1 -5.81 23.5 -3.48 35.4 1 33 # specify Table number for P_CO2^n(P_CO2) +dawsonite -30 0 0 -7 62.8 -30 0 0 33 +dolomite(d) -3.19 36.1 0.5 -7.53 52.2 -5.11 34.8 0.5 33 +dolomite -3.76 56.7 0.5 -8.6 95.3 -5.37 45.7 0.5 33 +magnesite -6.38 14.4 1 -9.34 23.5 -5.22 62.8 1 33 +# +# Acid and Fe+3 Neutral and O2 Base +# log K E n(H+) n(Fe+3) log K E n(O2) log K E n(OH-) Table +# ========================================================================================= +pyrite -7.52 56.9 -0.5 0.5 -4.55 56.9 0.5 -30 0 0 35 # specify Table number for Fe+3 and O2 +pyrrhotite(Mc) -8.04 50.8 -0.597 0.355 -30 0 0 -30 0 0 35 +pyrrhotite(Hx) -6.79 63 -0.09 0.356 -30 0 0 -30 0 0 35 +As2S3(a) -30 0 0 0 -9.83 8.7 0.18 -17.39 8.7 -1.208 35 + +RATE_PARAMETERS_SVD +# Table 4: E's Table 3: H+-reaction H2O-reaction CO2-reaction Organic_acids OH--reaction Table 5 +# H+ H2O CO2 Organic acids OH- pkH nH yAl CAl xBC CBC pkH2O yAl CAl xBC CBC zSi CSi pkCO2 nCO2 pkOrg nOrg COrg pkOH- wOH- yAl CAl xBC CBC zSi CSi # Num Mineral Formula +# ================================================================================================================================================================================================================================================================================================= +Albite 3350 2500 1680 1200 3100 14.6 0.5 0.4 0.4 0.4 0.5 16.8 0.15 4 0.15 200 3 900 16.05 0.6 14.7 0.5 5 15.4 0.3 0.1 12 0.5 5 3 900 # 1.6 Albite NaAlSi3O8 +Quartz 3890 0 2200 2000 3320 18.4 0.3 0.3 5 0 500 17.8 0 5 0 5000 4 900 18 0.5 16.3 0.5 5 14.1 0.3 0.4 200 0 5000 1 900 # 8.3 Quartz SiO2 + + +RATE_PARAMETERS_HERMANSKA +# Acid mechanism Neutral mechanism Basic mechanism +# logk25 Aa Eaa n(H+) logk25 Ab Eab logk25 Ac Eac n(OH) # Formula +# ================================================================================================================================ +# Amphiboles +Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 0 0 0 0 +Ferroactinolite -11.3 3.00E-03 50 0.2 -13.1 2.00E-05 48 0 0 0 0 +Riebeckite -11.3 3.00E-03 50 0.2 -13.1 2.00E-05 48 0 0 0 0 +Tremolite -11.3 3.00E-03 50 0.2 -13.1 2.00E-05 48 0 0 0 0 +Glaucophane -6.1 2.20E+02 50 0.7 0 0 0 -12.8 1.00E-04 48 -0.1 # Na0.14K0.09Ca2Fe1.78Mg2Al2Si7O22(OH)2 +Hornblende -10.7 5.00E-03 50 0.2 0 0 0 -13.4 2.10E-05 48 -0.1 # Ca2Mg4Al0.75Fe0.25(Si7AlO22)(OH)2 +# Feldspars +Albite -10.32 0.7 58 0.3 -11.19 0.21 60 -13.58 1.50E-05 50 -0.3 +Andesine -7.99 147 58 0.7 -11.23 0.19 60 -13.58 1.50E-05 50 -0.3 +Anorthite -5.17 9.80E+04 58 1.2 -11.34 0.15 60 -13.58 1.50E-05 50 -0.3 +Bytownite -5.88 1.90E+04 58 1.1 -11.28 0.17 60 -13.58 1.50E-05 50 -0.3 +K-feldspar -10.36 5.00E-02 51.7 0.5 -12.48 1.10E-02 60 -20.78 1.20E-10 62 -0.8 # or Microcline +Labradorite -6.39 5.90E+03 58 1 -11.28 0.17 60 -13.58 1.50E-05 50 -0.3 +Oligoclase -9.33 6.8 58 0.4 -11.21 0.2 60 -13.58 1.50E-05 50 -0.3 +# Glass +Rhyolite -9.1 1.60E-03 36 0.5 0 0 0 -16.27 7.00E-08 52 -0.6 +# Mica # Also valid for +Annite -9.42 5.90E-07 18.2 0.5 -12.2 5.00E-09 22 -13.9 4.00E-10 25.5 -0.2 # Biotite, Phlogopite +Muscovite -11.1 1.26E-04 41.3 0.4 -12.1 6.31E-06 39 -14.5 3.16E-05 57 -0.2 +# Olivines +Fayalite -6.26 1.20E+06 70.4 0.4 0 0 0 -7.39 1.91E+03 60.9 0.2 +Forsterite -7.16 1.48E+05 70.4 0.4 0 0 0 -8.33 2.20E+02 60.9 0.2 +Larnite -3.61 5.25E+08 70.4 0.4 0 0 0 -4.75 8.25E+05 60.9 0.2 +# Pyroxenes +Augite -8.2 1.52E+06 81.8 0.7 -12.8 350 83 0 0 0 0 +Bronzite -9.8 9.50E-04 38.5 0.6 -11.7 7.60E-01 66.1 0 0 0 0 +Diopside -9.8 8.55E-05 32.7 0.3 -11.01 4.30E-05 43.9 0 0 0 0 +Enstatite -8.3 0.574 46.1 0.5 -11.9 6.30E+03 89.5 0 0 0 0 +# SiO2 polymorphs +Quartz -11.4 4.03E-04 45.6 0.3 0 0 0 -15 0.105 80 -0.4 # Cristobalite +SiO2(a) -10.6 4.56E-04 41.6 0.3 0 0 0 -14.2 3.53E-02 73 -0.4 + +# 2023, Table 1 Also valid for +Almandine -5.21 2.00E+05 60 1 -11.2 2.31E-04 43.2 -14.6 6.00E-08 42.3 -0.4 # Grossular +Analcime -3.3 5.00E+07 63 1 -11.3 1.00E-01 58.5 -14.3 7.50E-05 58 -0.4 # Nepheline +Andalusite -10.57 3.90E-01 60 0.15 -12.61 8.00E-03 43.2 -22.82 8.80E-15 42.3 -1.2 +Andradite -5.1 2.60E+05 60 1 -11.1 3.20E-04 43.2 0 0 0 0 +Antigorite -10.3 2.80E-06 27 0.25 -12.4 2.00E-08 27 0 0 0 0 # Chrysotile, Lizardite +Chabazite -6.56 2.21E-01 33.7 0.82 -11.55 1.56E-04 44.2 -12.05 4.94E-05 44.2 -0.2 # Laumontite, Leonhardite +Clinochlore -9.08 1.50E-04 30 0.74 -13 4.70E-11 15 -14.3 2.00E-12 15 -0.2 # Chamosite, Daphnite +Clinoptilolite -7.51 2.48E-02 33.7 0.82 -12.6 1.39E-05 44.2 -13.2 3.50E-06 44.2 -0.2 # Heulandite, Mordenite, Stilbite +Epidote -10.47 1.09 60 0.3 -11.9 5.13E-05 43.2 -16.3 1.40E-09 42.3 -0.4 # Zoisite +Glauconite -11.68 9.55E-07 32.3 0.37 -13.53 1.10E-07 37.5 0 0 0 0 +Illite -11.9 7.30E-04 50 0.55 -14.68 3.84E-03 70 -20.19 6.00E-08 74 -0.6 +Jadeite -6.68 25 46.1 0.5 -10.26 2.70E+05 89.5 0 0 0 0 +Kaolinite -12.3 2.85 73 0.45 -14.1 4.15E-03 67 -21.3 2.40E-11 61 -0.76 +Kyanite -11.1 1.15E-01 60 0.15 -13.5 1.00E-03 43.2 -21.6 1.50E-13 50 -1 +Mesolite -5.61 1.97E+00 33.7 0.82 -10.7 1.11E-03 44.2 -11 5.54E-04 44.2 -0.2 # Natrolite, Scolecite, Thomsonite +Montmorillonite -11.7 1.66E-03 50.8 0.55 -14.3 9.00E-10 30 -17.2 1.50E-09 48 -0.3 # Saponite, Smectite +Paragonite -11.9 7.30E-04 50 0.55 -14.68 3.84E-03 70 -20.19 6.00E-08 74 -0.6 +Prehnite -10.4 1.30E+03 77 0.35 -14 1 80 -12.8 15 80 -0.075 +Pyrophyllite -8.6 1.60E+04 73 0.7 -12.6 1.50E-01 67 -18.4 2.00E-08 61 -0.7 +Sepiolite -11 5.89E-03 50.2 0.25 -13.2 8.00E-07 40.7 0 0 0 0 # Palygorskite +Spodumene -5.38 4.90E+02 46.1 0.5 -8.95 5.40E+06 89.5 0 0 0 0 +Talc -11.1 4.42E-03 50.2 0.36 -12.9 1.56E-06 40.7 0 0 0 0 +Wollastonite -6.97 700 56 0.4 0 0 0 -7.81 200 52 0.15 +# +# Example RATES definitions for Albite +# +RATES +Albite_PK # Palandri and Kharaka, 2004 +5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END +20 rate = RATE_PK("Albite") +30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +40 SAVE area * rate * affinity * TIME +-end + +Albite_Svd # Sverdrup, 2019 +5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END +20 rate = RATE_SVD("Albite") +30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +40 SAVE area * rate * affinity * TIME +-end + +Albite_Hermanska # +5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END +20 rate = RATE_HERMANSKA("Albite") +30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +40 SAVE area * rate * affinity * TIME +-end +# +# Example RATES definitions for Quartz +# +RATES +Quartz_PK # Palandri and Kharaka, 2004 +5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END +20 rate = RATE_PK("Quartz") +30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +40 SAVE area * rate * affinity * TIME +-end + +Quartz_Svd # Sverdrup, 2019 +5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END +20 rate = RATE_SVD("Quartz") +30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +40 SAVE area * rate * affinity * TIME +-end + +Quartz_Hermanska # +5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END +20 rate = RATE_HERMANSKA("Quartz") +30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +40 SAVE area * rate * affinity * TIME +-end + +Quartz_Rimstidt_Barnes +#1 rem Specific rate k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol, Rimstidt and Barnes, 1980, GCA 44, 1683 +5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END +20 rate = 10^-(13.7 + 4700 * (1 / 298 - 1 / TK)) * (1 + 1500*tot("Na")) # salt correction, Dove and Rimstidt, MSA Rev. 29, 259 +30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +40 SAVE area * rate * affinity * TIME +-end + +END +# ============================================================================================= +#(a) means amorphous. (d) means disordered, or less crystalline. +#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt), +#precipitated, indicates an initial precipitate that is less crystalline. +#Zn(OH)2(e) indicates a specific crystal form, epsilon. +# ============================================================================================= +# For the reaction aA + bB = cC + dD, +# with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B), +# PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT). +# Vm(A) is volume of A, cm3/mol, P is pressure, atm, R is the gas constant, T is Kelvin. +# Gas-pressures and fugacity coefficients are calculated with Peng-Robinson's EOS. +# Binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are +# hard-coded in calc_PR(): +# kij CH4 CO2 H2S N2 +# H2O 0.49 0.19 0.19 0.49 +# ============================================================================================= +# The molar volumes of solids are entered with +# -Vm vm cm3/mol +# vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted. +# Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from +# Deer, Howie and Zussman, The rock-forming minerals, Longman. +# -------------------- +# Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich- +# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with +# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 +# The volume (cm3/mol) is +# Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) + +# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) +# + z^2 / 2 * Av * f(I^0.5) +# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 +# Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899). +# 41.84 transforms cal/bar/mol into cm3/mol. +# pb is pressure in bar. +# W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation, +# W is fitted on measured solution densities. +# z is charge of the solute species. +# Av is the Debye-Hckel limiting slope (DH_AV in PHREEQC basic). +# a0 is the ion-size parameter in the extended Debye-Hckel equation: +# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), +# a0 = -gamma x for cations, = 0 for anions. +# For details, consult ref. 1. +# ============================================================================================= +# The viscosity is calculated with a (modified) Jones-Dole equation: +# viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i) +# Parameters are for calculating the B and D terms: +# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 +# # b0 b1 b2 d1 d2 d3 tan +# z_i is absolute charge number, m_i is molality of i +# B_i = b0 + b1 exp(-b2 * tc) +# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions +# D_i = d1 + exp(-d2 tc) +# n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 m_i)d^3 / (2 + fI), fI is an ionic strength term. +# For details, consult ref. 4. +# +# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967. +# ref. 2: Procedures from ref. 1 using data compiled by Lalibert, 2009, J. Chem. Eng. Data 54, 1725. +# ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113. +# ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp +# +# ============================================================================================= +# It remains the responsibility of the user to check the calculated results, for example with +# measured solubilities as a function of (P, T). diff --git a/pitzer.dat b/pitzer.dat index 56a4c755..fa4ef2e8 100644 --- a/pitzer.dat +++ b/pitzer.dat @@ -946,29 +946,28 @@ SURFACE_SPECIES Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69 -END -MEAN GAM -CaCl2 -CaSO4 -CaCO3 -Ca(OH)2 -MgCl2 -MgSO4 -MgCO3 -Mg(OH)2 -NaCl -Na2SO4 -NaHCO3 -Na2CO3 -NaOH -KCl -K2SO4 -KHCO3 -K2CO3 -KOH -HCl -H2SO4 -HBr +MEAN_GAMMAS +CaCl2 Ca+2 1 Cl- 2 +CaSO4 Ca+2 1 SO4-2 1 +CaCO3 Ca+2 1 CO3-2 1 +Ca(OH)2 Ca+2 1 OH- 2 +MgCl2 Mg+2 1 Cl- 2 +MgSO4 Mg+2 1 SO4-2 1 +MgCO3 Mg+2 1 CO3-2 1 +Mg(OH)2 Mg+2 1 OH- 2 +NaCl Na+ 1 Cl- 1 +Na2SO4 Na+ 2 SO4-2 1 +NaHCO3 Na+ 1 HCO3- 1 +Na2CO3 Na+ 2 CO3-2 1 +NaOH Na+ 1 OH- 1 +KCl K+ 1 Cl- 1 +K2SO4 K+ 2 SO4-2 1 +HCO3 K+ 1 HCO3- 1 +K2CO3 K+ 2 CO3-2 1 +KOH K+ 1 OH- 1 +HCl H+ 1 Cl- 1 +H2SO4 H+ 2 SO4-2 1 +HBr H+ 1 Br- 1 END From 54237d62fcb0201e2c57889da9d284c6e3405431 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Tue, 7 May 2024 07:52:03 -0600 Subject: [PATCH 151/384] removed CALCULATE_VALUES description --- RELEASE.TXT | 9 --------- 1 file changed, 9 deletions(-) diff --git a/RELEASE.TXT b/RELEASE.TXT index b9310639..d7870b7e 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -180,15 +180,6 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 ----------------- March 25, 2024 ----------------- - DATABASES phreeqc.dat and Amm.dat: Three CALCULATE_VALUES definitions for - calculating the kinetic dissolution of silicate minerals have been defined - that can be invoked by copying a line of numbers from tables in Palandri - and Kharaka (2004), Sverdrup et al. (2019), or Hermansk et al. (2022, - 2023). The CALCULATE_VALUES definitions are included in the databases and - can be used in RATES definitions. Rate definitions Albite_PK, Albite_Svd, - and Albite_Hermanska in the databases use the CALCULATE_VALUES definitions. - More details are available at https://hydrochemistry.eu/ph3/release.html. - DATABASES phreeqc.dat, Amm.dat, and pitzer.dat: The calculation of the specific conductance can now be done with a Debye-Hckel-Onsager equation that has both the electrophoretic and the relaxation term. (The standard From 0d58080e75184dc9c9020204ae6a2c300d0c7f02 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Tue, 7 May 2024 13:18:27 -0600 Subject: [PATCH 152/384] fixed case of Kinec.v2.dat --- CMakeLists.txt | 2 +- Makefile.am | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index f9556b98..680d81f1 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -5,7 +5,7 @@ set(phreeqc_DATABASE frezchem.dat iso.dat llnl.dat - kinec.v2.dat + Kinec.v2.dat minteq.dat minteq.v4.dat phreeqc.dat diff --git a/Makefile.am b/Makefile.am index 571bde55..b16ff718 100644 --- a/Makefile.am +++ b/Makefile.am @@ -12,7 +12,7 @@ DATABASE=\ core10.dat\ frezchem.dat\ iso.dat\ - kinec.v2.dat\ + Kinec.v2.dat\ llnl.dat\ minteq.dat\ minteq.v4.dat\ From 4a24a89572cca75b5919dabde3ac798c175bf899 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Tue, 7 May 2024 22:41:18 +0000 Subject: [PATCH 153/384] Squashed 'phreeqcpp/' changes from 0243c90..60ccbf8 60ccbf8 Removed CALCULATE_VALUES, added MEAN_GAMMAS, made phreeqc_rates.dat, updated CMakeLists, ran all examples, added test case ss_kinetics baa0eee Added a little error checking to tokrate_pk 50d999b Tony added table numbers, kinetic_rates_plus has complete tables. bf054e3 Finished up mean_gammas keyword and test case. Tony has some new changes I need to add. 8c561f0 Implemented rate parameters PK, SVD, Hermanska 5998b71 Added Basic function RATE_PK and RATE_SVERDRUP c881283 added put$ and get$ Basic functions. Added test cases get_put_ to test get$ and put$. Added kinetic_rates_carbfix to use new database kinec.v2.dat. Fixed pad$ to use strexpr. git-subtree-dir: phreeqcpp git-subtree-split: 60ccbf83563b6f60011e37200b0357361e9e6379 --- PBasic.cpp | 558 ++++++++++++++++++++++++++++++++++- PBasic.h | 7 + Phreeqc.cpp | 7 + Phreeqc.h | 16 +- PhreeqcKeywords/Keywords.cpp | 8 + PhreeqcKeywords/Keywords.h | 4 + read.cpp | 323 ++++++++++++++++++++ structures.cpp | 1 + 8 files changed, 921 insertions(+), 3 deletions(-) diff --git a/PBasic.cpp b/PBasic.cpp index 058b63ed..62d11851 100644 --- a/PBasic.cpp +++ b/PBasic.cpp @@ -1346,6 +1346,9 @@ listtokens(FILE * f, tokenrec * l_buf) case tokget: output_msg("GET"); break; + case tokget_: + output_msg("GET$"); + break; case tokget_por: output_msg("GET_POR"); break; @@ -1452,6 +1455,18 @@ listtokens(FILE * f, tokenrec * l_buf) case tokparm: output_msg("PARM"); break; + case tokrate_pk: + output_msg("RATE_PK"); + break; + case tokrate_svd: + output_msg("RATE_SVD"); + break; + case tokrate_hermanska: + output_msg("RATE_HERMANSKA"); + break; + case tokmeang: + output_msg("MEANG"); + break; case tokpercent_error: output_msg("PERCENT_ERROR"); break; @@ -1488,6 +1503,9 @@ listtokens(FILE * f, tokenrec * l_buf) case tokput: output_msg("PUT"); break; + case tokput_: + output_msg("PUT$"); + break; case tokqbrn: output_msg("QBrn"); // Q_Born, d(eps_r)/d(P)/(eps_r^2) break; @@ -2660,6 +2678,51 @@ factor(struct LOC_exec * LINK) } break; + case tokget_: + { + std::ostringstream oss; + require(toklp, LINK); + + /* get first subscript */ + if (LINK->t != NULL && LINK->t->kind != tokrp) + { + i = intexpr(LINK); + oss << i << ","; + } + + /* get other subscripts */ + for (;;) + { + if (LINK->t != NULL && LINK->t->kind == tokcomma) + { + LINK->t = LINK->t->next; + j = intexpr(LINK); + oss << j << ","; + } + else + { + /* get right parentheses */ + require(tokrp, LINK); + break; + } + } + if (parse_all) + { + n.UU.val = 1; + } + else + { + n.stringval = true; + n.UU.sval = (char*)PhreeqcPtr->PHRQ_calloc(256, sizeof(char)); + if (n.UU.sval == NULL) + PhreeqcPtr->malloc_error(); + std::map::iterator it = PhreeqcPtr->save_strings.find(oss.str()); + n.UU.sval = (it == PhreeqcPtr->save_strings.end()) ? strcpy(n.UU.sval, "unknown") : + strcpy(n.UU.sval, it->second.c_str()); + } + break; + } + case tokget: { std::ostringstream oss; @@ -2699,7 +2762,6 @@ factor(struct LOC_exec * LINK) } break; } - case tokget_por: { i = intfactor(LINK); @@ -3151,7 +3213,7 @@ factor(struct LOC_exec * LINK) { n.stringval = true; require(toklp, LINK); - string1 = stringfactor(STR1, LINK); + string1 = strexpr(LINK); require(tokcomma, LINK); i = intexpr(LINK); require(tokrp, LINK); @@ -3177,6 +3239,456 @@ factor(struct LOC_exec * LINK) } break; + case tokrate_pk: + { + require(toklp, LINK); + char* min_name = strexpr(LINK); + require(tokrp, LINK); + if (parse_all) { + n.UU.val = 1; + break; + } + std::string min_string = min_name; + Utilities::str_tolower(min_string); + std::map >::const_iterator it = PhreeqcPtr->rate_parameters_pk.find(min_string); + if (it == PhreeqcPtr->rate_parameters_pk.end()) + { + std::ostringstream oss; + oss << "PK rate parameters not found for " << min_name << "\n"; + snerr(oss.str().c_str()); + } + //if (it->second.size() != 8) + //{ + // std::ostringstream oss; + // oss << "RATE_PK requires 8 rate parameters, " << it->second.size() << " were found for " << min_name << "\n"; + // snerr(oss.str().c_str()); + //} + // temperature factor, gas constant + double dif_temp = 1.0 / PhreeqcPtr->tk_x - 1.0 / 298.15; + double dT_R = dif_temp / (2.303 * 8.314e-3); + int Table = 0; + double rate_H = 0.0, rate_H2O = 0.0, rate_OH = 0.0; + double lgk_H = -30.0, lgk_H2O = -30.0, lgk_OH = -30.0; + if (it->second.size() > 8) + Table = (int) it->second.back(); + + switch (Table) + { + case 0: + if (it->second.size() != 8) + { + std::ostringstream oss; + oss << "Expected 8 rate parameters, " << it->second.size() << " were found for " << min_name << "\n"; + snerr(oss.str().c_str()); + } + break; + case 33: + if (it->second.size() != 9) + { + std::ostringstream oss; + oss << "Expected 8 rate parameters for table 33 mineral. " << it->second.size() - 1 << " were found for " << min_name << ".\n"; + snerr(oss.str().c_str()); + } + break; + case 35: + if (it->second.size() != 11) + { + std::ostringstream oss; + oss << "Expected 10 rate parameters for table 35 mineral. " << it->second.size() - 1 << " were found for " << min_name << ".\n"; + snerr(oss.str().c_str()); + } + break; + default: + { + std::ostringstream oss; + oss << "Unknown table value " << Table << " for " << min_name << "."; + snerr(oss.str().c_str()); + } + break; + } + switch (Table) + { + case 0: + // rate by H+ + if ((lgk_H = it->second[0]) > -30) + { + double e_H = it->second[1]; + double nH = it->second[2]; + rate_H = pow(10.0, lgk_H - e_H * dT_R) * pow(PhreeqcPtr->activity("H+"), nH); + } + // rate by hydrolysis + if ((lgk_H2O = it->second[3]) > -30) + { + double e_H2O = it->second[4]; + rate_H2O = pow(10.0, lgk_H2O - e_H2O * dT_R); + } + // rate by OH- + if ((lgk_OH = it->second[5]) > -30) + { + double e_OH = it->second[6]; + double n_OH = it->second[7]; + rate_OH = pow(10.0, lgk_OH - e_OH * dT_R) * pow(PhreeqcPtr->activity("H+"), n_OH); + } + break; + case 33: + // rate by H+ + if ((lgk_H = it->second[0]) > -30) + { + double e_H = it->second[1]; + double nH = it->second[2]; + rate_H = pow(10.0, lgk_H - e_H * dT_R) * pow(PhreeqcPtr->activity("H+"), nH); + } + // rate by hydrolysis + if ((lgk_H2O = it->second[3]) > -30) + { + double e_H2O = it->second[4]; + rate_H2O = pow(10.0, lgk_H2O - e_H2O * dT_R); + } + // rate by P_CO2 + if ((lgk_OH = it->second[5]) > -30) + { + double e_OH = it->second[6]; + double n_PCO2 = it->second[7]; + rate_OH = pow(10.0, lgk_OH - e_OH * dT_R) * pow(PhreeqcPtr->saturation_ratio("CO2(g)"), n_PCO2); + } + break; + case 35: + // rate by H+ and Fe+3 + if ((lgk_H = it->second[0]) > -30) + { + double e_H = it->second[1]; + double nH = it->second[2]; + double nFe = it->second[3]; + rate_H = pow(10.0, lgk_H - e_H * dT_R) * pow(PhreeqcPtr->activity("H+"), nH) * pow(PhreeqcPtr->activity("Fe+3"), nFe); + } + // rate by hydrolysis and O2 + if ((lgk_H2O = it->second[4]) > -30) + { + double e_H2O = it->second[5]; + double n_O2 = it->second[6]; + rate_H2O = pow(10.0, lgk_H2O - e_H2O * dT_R) * pow(PhreeqcPtr->activity("O2"), n_O2); + } + // rate by OH- + if ((lgk_OH = it->second[7]) > -30) + { + double e_OH = it->second[8]; + double n_OH = it->second[9]; + rate_OH = pow(10.0, lgk_OH - e_OH * dT_R) * pow(PhreeqcPtr->activity("H+"), n_OH); + } + break; + } + // sum rates + double rate = rate_H + rate_H2O + rate_OH; + n.UU.val = rate; + // # affinity_factor m ^ 2 / mol roughness, lgkH e_H nH, lgkH2O e_H2O, lgkOH e_OH nOH + // # parm number 1 2 3, 4 5 6, 7 8, 9 10 11 + // 10 affinity = get(-99, 1) # retrieve number from memory + // 20 + // 30 REM # specific area m2 / mol, surface roughness + // 40 sp_area = get(-99, 2) : roughness = get(-99, 3) + // 50 + // 60 REM # temperature factor, gas constant + // 70 dif_temp = 1 / TK - 1 / 298 : R = 2.303 * 8.314e-3 : dT_R = dif_temp / R + // 80 + // 90 REM # rate by H + + // 100 lgk_H = get(-99, 4) : e_H = get(-99, 5) : nH = get(-99, 6) + // 110 rate_H = 10 ^ (lgk_H - e_H * dT_R) * ACT("H+") ^ nH + // 120 + // 130 REM # rate by hydrolysis + // 140 lgk_H2O = get(-99, 7) : e_H2O = get(-99, 8) + // 150 rate_H2O = 10 ^ (lgk_H2O - e_H2O * dT_R) + // 160 + // 170 REM # rate by OH - + // 180 lgk_OH = get(-99, 9) : e_OH = get(-99, 10) : nOH = get(-99, 11) + // 190 rate_OH = 10 ^ (lgk_OH - e_OH * dT_R) * ACT("H+") ^ nOH + // 200 + // 210 rate = rate_H + rate_H2O + rate_OH + // 220 area = sp_area * M0 * (M / M0) ^ 0.67 + // 230 + // 240 rate = area * roughness * rate * affinity + // 250 SAVE rate * TIME + // -end + } + break; + case tokrate_svd: + { + require(toklp, LINK); + char* min_name = strexpr(LINK); + require(tokrp, LINK); + if (parse_all) { + n.UU.val = 1; + break; + } + std::string min_string = min_name; + Utilities::str_tolower(min_string); + std::map >::const_iterator it = PhreeqcPtr->rate_parameters_svd.find(min_string); + if (it == PhreeqcPtr->rate_parameters_svd.end()) + { + std::ostringstream oss; + oss << "SVD rate parameters not found for " << min_name << "\n"; + snerr(oss.str().c_str()); + } + if (it->second.size() != 31) + { + std::ostringstream oss; + oss << "RATE_SVD requires 31 rate parameters, " << it->second.size() << " were found for " << min_name << "\n"; + snerr(oss.str().c_str()); + } + + // temperature factor, gas constant + double dif_temp = 1.0 / PhreeqcPtr->tk_x - 1.0 / 281.0; + double e_H = it->second[0]; + double e_H2O = it->second[1]; + double e_CO2 = it->second[2]; + double e_OA = it->second[3]; + double e_OH = it->second[4]; + + double BC = PhreeqcPtr->activity("Na+") + PhreeqcPtr->activity("K+") + + PhreeqcPtr->activity("Mg+2") + PhreeqcPtr->activity("Ca+2"); + double aAl = PhreeqcPtr->activity("Al+3"); + double aSi = PhreeqcPtr->activity("H4SiO4") + PhreeqcPtr->activity("SiO2"); + double R = PhreeqcPtr->total("Organicmatter"); + // rate by H + + double pkH = it->second[5]; + double nH = it->second[6]; + double yAl = it->second[7]; + double CAl = it->second[8]; + double xBC = it->second[9]; + double CBC = it->second[10]; + double pk_H = pkH - 3.0 + e_H * dif_temp; + CAl *= 1e-6; + CBC *= 1e-6; + double rate_H = pow(10.0, -pk_H) * pow(PhreeqcPtr->activity("H+"), nH) / + (pow(1.0 + aAl / CAl, yAl) * pow(1.0 + BC / CBC, xBC)); + // rate by hydrolysis + double pkH2O = it->second[11]; + yAl = it->second[12]; + CAl = it->second[13]; + xBC = it->second[14]; + CBC = it->second[15]; + double zSi = it->second[16]; + double CSi = it->second[17]; + CAl *= 1e-6; + CBC *= 1e-6; + CSi *= 1e-6; + double pk_H2O = pkH2O - 3.0 + e_H2O * dif_temp; + double rate_H2O = pow(10.0, -pk_H2O) / (pow(1.0 + aAl / CAl, yAl) * pow(1.0 + BC / CBC, xBC) * pow(1.0 + aSi / CSi, zSi)); + // rate by CO2 + double pKCO2 = it->second[18]; + double nCO2 = it->second[19]; + double pk_CO2 = pKCO2 - 3.0 + e_CO2 * dif_temp; + double rate_CO2 = pow(10.0, -pk_CO2) * pow(PhreeqcPtr->saturation_ratio("CO2(g)"), nCO2); + // rate by Organic Acids + double pkOrg = it->second[20]; + double nOrg = it->second[21]; + double COrg = it->second[22]; + COrg *= 1e-6; + double pk_Org = pkOrg - 3.0 + e_OA * dif_temp; + double rate_Org = pow(10.0, -pkOrg) * pow(R / (1 + R / COrg), nOrg); + // rate by OH- + double pkOH = it->second[23]; + double wOH = it->second[24]; + yAl = it->second[25]; + CAl = it->second[26]; + xBC = it->second[27]; + CBC = it->second[28]; + zSi = it->second[29]; + CSi = it->second[30]; + CAl *= 1e-6; + CBC *= 1e-6; + CSi *= 1e-6; + double pk_OH = pkOH - 3.0 + e_OH * dif_temp; + double rate_OH = pow(10.0, -pk_OH) * pow(PhreeqcPtr->activity("OH-"), wOH) / + (pow(1.0 + aAl / CAl, yAl) * pow(1.0 + BC / CBC, xBC) * pow(1.0 + aSi / CSi, zSi)); + // sum rates + double rate = rate_H + rate_H2O + rate_CO2 + rate_Org + rate_OH; + n.UU.val = rate; + // Sverdrup_rate + // # in KINETICS, define 34 parms: + // # affinity m ^ 2 / mol roughness, temperature_factors(TABLE 4) : e_H e_H2O e_CO2 e_OA e_OH, \ + //# (TABLE 3): pkH nH yAl CAl xBC CBC, pKH2O yAl CAl xBC CBC zSi CSi, pKCO2 nCO2 pkOrg nOrg COrg, pkOH wOH yAl CAl xBC CBC zSi CSi + // 10 affinity = get(-99, 1) + // 20 + // 30 REM # specific area m2 / mol, surface roughness + // 40 sp_area = get(-99, 2) : roughness = get(-99, 3) + // 50 + // 60 REM # temperature factors + // 70 dif_temp = 1 / TK - 1 / 281 + // 80 e_H = get(-99, 4) : e_H2O = get(-99, 5) : e_CO2 = get(-99, 6) : e_OA = get(-99, 7) : e_OH = get(-99, 8) + // 90 + // 100 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") + // 110 aAl = act("Al+3") + // 120 aSi = act("H4SiO4") + // 130 R = tot("OrganicMatter") + // 140 + // 150 REM # rate by H + + // 160 pkH = get(-99, 9) : nH = get(-99, 10) : yAl = get(-99, 11) : CAl = get(-99, 12) : xBC = get(-99, 13) : CBC = get(-99, 14) + // 170 pk_H = pkH - 3 + e_H * dif_temp + // 180 CAl = CAl * 1e-6 + // 190 CBC = CBC * 1e-6 + // 200 rate_H = 10 ^ -pk_H * ACT("H+") ^ nH / ((1 + aAl / CAl) ^ yAl * (1 + BC / CBC) ^ xBC) + // 210 + // 220 REM # rate by hydrolysis + // 230 pkH2O = get(-99, 15) : yAl = get(-99, 16) : CAl = get(-99, 17) : xBC = get(-99, 18) : CBC = get(-99, 19) : zSi = get(-99, 20) : CSi = get(-99, 21) + // 240 CAl = CAl * 1e-6 + // 250 CBC = CBC * 1e-6 + // 260 CSi = CSi * 1e-6 + // 270 pk_H2O = pkH2O - 3 + e_H2O * dif_temp + // 280 rate_H2O = 10 ^ -pk_H2O / ((1 + aAl / CAl) ^ yAl * (1 + BC / CBC) ^ xBC * (1 + aSi / CSi) ^ zSi) + // 290 + // 300 REM # rate by CO2 + // 310 pKCO2 = get(-99, 22) : nCO2 = get(-99, 23) + // 320 pk_CO2 = pkCO2 - 3 + e_CO2 * dif_temp + // 330 rate_CO2 = 10 ^ -pk_CO2 * SR("CO2(g)") ^ nCO2 + // 340 + // 350 REM # rate by Organic Acids + // 360 pkOrg = get(-99, 24) : nOrg = get(-99, 25) : COrg = get(-99, 26) + // 370 COrg = COrg * 1e-6 + // 380 pk_Org = pkOrg - 3 + e_OA * dif_temp + // 390 rate_Org = 10 ^ -pk_Org * (R / (1 + R / COrg)) ^ nOrg + // 400 + // 410 REM # rate by OH - + // 420 pkOH = get(-99, 27) : wOH = get(-99, 28) : yAl = get(-99, 29) : CAl = get(-99, 30) : xBC = get(-99, 31) : CBC = get(-99, 32) : zSi = get(-99, 33) : CSi = get(-99, 34) + // 430 CAl = CAl * 1e-6 + // 440 CBC = CBC * 1e-6 + // 450 CSi = CSi * 1e-6 + // 460 pk_OH = pkOH - 3 + e_OH * dif_temp + // 470 rate_OH = 10 ^ -pk_OH * ACT("OH-") ^ wOH / ((1 + aAl / CAl) ^ yAl * (1 + BC / CBC) ^ xBC * (1 + aSi / CSi) ^ zSi)# : print rate_OH + // 480 + // 490 rate = rate_H + rate_H2O + rate_CO2 + rate_Org + rate_OH + // 500 area = sp_area * M0 * (M / M0) ^ 0.67 + // 510 + // 520 rate = roughness * area * rate * affinity + // 530 SAVE rate * TIME + // - end + } + break; + + case tokrate_hermanska: + { + require(toklp, LINK); + char* min_name = strexpr(LINK); + require(tokrp, LINK); + if (parse_all) { + n.UU.val = 1; + break; + } + std::string min_string = min_name; + Utilities::str_tolower(min_string); + std::map >::const_iterator it = PhreeqcPtr->rate_parameters_hermanska.find(min_string); + if (it == PhreeqcPtr->rate_parameters_hermanska.end()) + { + std::ostringstream oss; + oss << "Hermanska rate parameters not found for " << min_name << "\n"; + snerr(oss.str().c_str()); + } + if (it->second.size() != 11) + { + std::ostringstream oss; + oss << "RATE_HERMANSKA requires 11 rate parameters, " << it->second.size() << " were found for " << min_name << "\n"; + snerr(oss.str().c_str()); + } + // gas constant * Tk, act("H+") + double RT = 8.314e-3 * PhreeqcPtr->tk_x; + double aH = PhreeqcPtr->activity("H+"); + + // rate by H+ + double lgk_H = it->second[0]; + double Aa = it->second[1]; + double e_H = it->second[2]; + double nH = it->second[3]; + double rate_H = Aa * exp(-e_H / RT) * pow(aH, nH); + + // rate by hydrolysis + double rate_H2O = 0.0, lgk_H2O = it->second[4]; + if (lgk_H2O) + { + double Ab = it->second[5]; + double e_H2O = it->second[6]; + rate_H2O = Ab * exp(-e_H2O / RT); + } + + // rate by OH- + // 180 lgk_OH = get(-99, 11) : Ac = get(-99, 12) : e_OH = get(-99, 13) : nOH = get(-99, 14) + // 190 rate_OH = Ac * exp(-e_OH / RT) * aH ^ nOH + double rate_OH = 0.0, lgk_OH = it->second[7]; + if (lgk_OH) + { + double Ac = it->second[8]; + double e_OH = it->second[9]; + double nOH = it->second[10]; + rate_OH = Ac * exp(-e_OH / RT) * pow(aH, nOH); + } + // sum rates + double rate = rate_H + rate_H2O + rate_OH; + n.UU.val = rate; + +// Hermanska_rate +// # in KINETICS, define 14 parms: +// # parms affinity m ^ 2 / mol roughness, (TABLE 2) : (acid)logk25 Aa Ea na(neutral)logk25 Ab Eb(basic)logk25 Ac Ec nc +//# (Note that logk25 values are not used, they were transformed to A's.) +// 10 affinity = get(-99, 1) # retrieve number from memory +// 20 +// 30 REM # specific area m2 / mol, surface roughness +// 40 sp_area = get(-99, 2) : roughness = get(-99, 3) +// 50 +// 60 REM # gas constant * Tk, act("H+") +// 70 RT = 8.314e-3 * TK : aH = act("H+") +// 80 +// 90 REM # rate by H + +// 100 lgk_H = get(-99, 4) : Aa = get(-99, 5) : e_H = get(-99, 6) : nH = get(-99, 7) +// 110 rate_H = Aa * exp(-e_H / RT) * aH ^ nH +// 120 +// 130 REM # rate by hydrolysis +// 140 lgk_H2O = get(-99, 8) : Ab = get(-99, 9) : e_H2O = get(-99, 10) +// 150 rate_H2O = Ab * exp(-e_H2O / RT) +// 160 +// 170 REM # rate by OH - +// 180 lgk_OH = get(-99, 11) : Ac = get(-99, 12) : e_OH = get(-99, 13) : nOH = get(-99, 14) +// 190 rate_OH = Ac * exp(-e_OH / RT) * aH ^ nOH +// 200 +// 210 rate = rate_H + rate_H2O + rate_OH +// 220 area = sp_area * M0 * (M / M0) ^ 0.67 +// 230 +// 240 rate = area * roughness * rate * affinity +// 250 SAVE rate * TIME +// - end + + } + break; + + case tokmeang: + { + require(toklp, LINK); + char* min_name = strexpr(LINK); + require(tokrp, LINK); + if (parse_all) { + n.UU.val = 1; + break; + } + std::string min_string = min_name; + Utilities::str_tolower(min_string); + std::map::const_iterator it = PhreeqcPtr->mean_gammas.find(min_string); + if (it == PhreeqcPtr->mean_gammas.end() || it->second.size() == 0) + { + std::ostringstream oss; + oss << "No definition in MEAN_GAMMAS found for " << min_name << "\n"; + snerr(oss.str().c_str()); + } + + double mg = 1.0; + double sum = 0.0; + cxxNameDouble::const_iterator it_nd = it->second.begin(); + for (; it_nd != it->second.end(); it_nd++) + { + double g = PhreeqcPtr->activity_coefficient(it_nd->first.c_str()); + mg *= pow(g, it_nd->second); + sum += it_nd->second; + } + mg = pow(mg, 1.0 / sum); + n.UU.val = mg; + } + break; case tokpercent_error: { n.UU.val = (parse_all) ? 1 : 100 * PhreeqcPtr->cb_x / PhreeqcPtr->total_ions_x; @@ -4881,6 +5393,38 @@ cmdput(struct LOC_exec *LINK) } } +void PBasic:: +cmdput_(struct LOC_exec* LINK) +{ + int j; + std::ostringstream oss; + + /* get parentheses */ + require(toklp, LINK); + + /* get first argumen */ + std::string s_value = strexpr(LINK); + + for (;;) + { + if (LINK->t != NULL && LINK->t->kind == tokcomma) + { + LINK->t = LINK->t->next; + j = intexpr(LINK); + oss << j << ","; + } + else + { + /* get right parentheses */ + require(tokrp, LINK); + break; + } + } + if (!parse_all) + { + PhreeqcPtr->save_strings[oss.str()] = s_value; + } +} void PBasic:: cmdchange_por(struct LOC_exec *LINK) { @@ -6120,6 +6664,10 @@ exec(void) cmdput(&V); break; + case tokput_: + cmdput_(&V); + break; + case tokchange_por: cmdchange_por(&V); break; @@ -7454,6 +8002,7 @@ const std::map::value_type temp_tokens[] std::map::value_type("gas_p", PBasic::tokgas_p), std::map::value_type("gas_vm", PBasic::tokgas_vm), std::map::value_type("get", PBasic::tokget), + std::map::value_type("get$", PBasic::tokget_), std::map::value_type("get_por", PBasic::tokget_por), std::map::value_type("gfw", PBasic::tokgfw), #if defined (PHREEQ98) || defined (MULTICHART) @@ -7492,6 +8041,10 @@ const std::map::value_type temp_tokens[] std::map::value_type("pad", PBasic::tokpad), std::map::value_type("pad$", PBasic::tokpad_), std::map::value_type("parm", PBasic::tokparm), + std::map::value_type("rate_pk", PBasic::tokrate_pk), + std::map::value_type("rate_svd", PBasic::tokrate_svd), + std::map::value_type("rate_hermanska", PBasic::tokrate_hermanska), + std::map::value_type("meang", PBasic::tokmeang), std::map::value_type("percent_error", PBasic::tokpercent_error), std::map::value_type("phase_formula", PBasic::tokphase_formula), std::map::value_type("phase_formula$", PBasic::tokphase_formula_), @@ -7507,6 +8060,7 @@ const std::map::value_type temp_tokens[] std::map::value_type("print", PBasic::tokprint), std::map::value_type("punch", PBasic::tokpunch), std::map::value_type("put", PBasic::tokput), + std::map::value_type("put$", PBasic::tokput_), std::map::value_type("qbrn", PBasic::tokqbrn), std::map::value_type("rem", PBasic::tokrem), std::map::value_type("rho", PBasic::tokrho), diff --git a/PBasic.h b/PBasic.h index 3035ceb8..231bae56 100644 --- a/PBasic.h +++ b/PBasic.h @@ -254,6 +254,7 @@ public: tokgas_p, tokgas_vm, tokget, + tokget_, tokget_por, tokgfw, tokgraph_x, @@ -290,6 +291,10 @@ public: tokpad_, tokpad, tokparm, + tokrate_pk, + tokrate_svd, + tokrate_hermanska, + tokmeang, tokpercent_error, tokphase_formula, tokphase_formula_, @@ -302,6 +307,7 @@ public: tokprint, tokpunch, tokput, + tokput_, tokqbrn, tokrho, tokrho_0, @@ -443,6 +449,7 @@ public: void cmdrun(struct LOC_exec *LINK); void cmdsave(struct LOC_exec *LINK); void cmdput(struct LOC_exec *LINK); + void cmdput_(struct LOC_exec* LINK); void cmdchange_por(struct LOC_exec *LINK); void cmdchange_surf(struct LOC_exec *LINK); void cmdbye(void); diff --git a/Phreeqc.cpp b/Phreeqc.cpp index f67a2be5..d89c6dec 100644 --- a/Phreeqc.cpp +++ b/Phreeqc.cpp @@ -1201,6 +1201,7 @@ Phreeqc::InternalCopy(const Phreeqc* pSrc) Rxn_kinetics_map = pSrc->Rxn_kinetics_map; use_kinetics_limiter = pSrc->use_kinetics_limiter; save_values = pSrc->save_values; + save_strings = pSrc->save_strings; save = pSrc->save; //class copier copy_solution; //class copier copy_pp_assemblage; @@ -1216,6 +1217,12 @@ Phreeqc::InternalCopy(const Phreeqc* pSrc) // Inverse not implemented //std::vector inverse; count_inverse = 0; + /* rate parameters */ + rate_parameters_pk = pSrc->rate_parameters_pk; + rate_parameters_svd = pSrc->rate_parameters_svd; + rate_parameters_hermanska = pSrc->rate_parameters_hermanska; + // Mean gammas + mean_gammas = pSrc->mean_gammas; // Mix Rxn_mix_map = pSrc->Rxn_mix_map; Dispersion_mix_map = pSrc->Dispersion_mix_map; diff --git a/Phreeqc.h b/Phreeqc.h index fec912d7..225c52bd 100644 --- a/Phreeqc.h +++ b/Phreeqc.h @@ -694,6 +694,10 @@ public: bool read_vector_ints(const char** cptr, std::vector& v, int positive); bool read_vector_t_f(const char** ptr, std::vector& v); int read_master_species(void); + int read_rate_parameters_pk(void); + int read_rate_parameters_svd(void); + int read_rate_parameters_hermanska(void); + int read_mean_gammas(void); int read_mix(void); int read_entity_mix(std::map& mix_map); //int read_solution_mix(void); @@ -1155,6 +1159,7 @@ protected: * Save *---------------------------------------------------------------------- */ std::map save_values; + std::map save_strings; class save save; /*---------------------------------------------------------------------- @@ -1182,7 +1187,16 @@ protected: *---------------------------------------------------------------------- */ std::vector inverse; int count_inverse; - + /*---------------------------------------------------------------------- + * Rates + *---------------------------------------------------------------------- */ + std::map > rate_parameters_pk; + std::map > rate_parameters_svd; + std::map > rate_parameters_hermanska; + /*---------------------------------------------------------------------- + * Mean gammas + *---------------------------------------------------------------------- */ + std::map mean_gammas; /*---------------------------------------------------------------------- * Mix *---------------------------------------------------------------------- */ diff --git a/PhreeqcKeywords/Keywords.cpp b/PhreeqcKeywords/Keywords.cpp index c92bf0de..8d52bb26 100644 --- a/PhreeqcKeywords/Keywords.cpp +++ b/PhreeqcKeywords/Keywords.cpp @@ -130,6 +130,10 @@ std::map::value_type("reaction_pressure", std::map::value_type("reaction_pressures", Keywords::KEY_REACTION_PRESSURE), std::map::value_type("reaction_pressure_raw", Keywords::KEY_REACTION_PRESSURE_RAW), std::map::value_type("reaction_pressure_modify", Keywords::KEY_REACTION_PRESSURE_MODIFY), +std::map::value_type("rate_parameters_pk", Keywords::KEY_RATE_PARAMETERS_PK), +std::map::value_type("rate_parameters_svd", Keywords::KEY_RATE_PARAMETERS_SVD), +std::map::value_type("rate_parameters_hermanska", Keywords::KEY_RATE_PARAMETERS_HERMANSKA), +std::map::value_type("mean_gammas", Keywords::KEY_MEAN_GAMMAS), std::map::value_type("solution_mix", Keywords::KEY_SOLUTION_MIX), std::map::value_type("mix_solution", Keywords::KEY_SOLUTION_MIX), std::map::value_type("exchange_mix", Keywords::KEY_EXCHANGE_MIX), @@ -221,6 +225,10 @@ std::map::value_type(Keywords::KEY_REACTI std::map::value_type(Keywords::KEY_REACTION_PRESSURE, "REACTION_PRESSURE"), std::map::value_type(Keywords::KEY_REACTION_PRESSURE_RAW, "REACTION_PRESSURE_RAW"), std::map::value_type(Keywords::KEY_REACTION_PRESSURE_MODIFY, "REACTION_PRESSURE_MODIFY"), +std::map::value_type(Keywords::KEY_RATE_PARAMETERS_PK, "RATE_PARAMETERS_PK"), +std::map::value_type(Keywords::KEY_RATE_PARAMETERS_SVD, "RATE_PARAMETERS_SVD"), +std::map::value_type(Keywords::KEY_RATE_PARAMETERS_HERMANSKA, "RATE_PARAMETERS_HERMANSKA"), +std::map::value_type(Keywords::KEY_MEAN_GAMMAS, "RATE_MEAN_GAMMAS"), std::map::value_type(Keywords::KEY_SOLUTION_MIX, "SOLUTION_MIX"), std::map::value_type(Keywords::KEY_EXCHANGE_MIX, "EXCHANGE_MIX"), std::map::value_type(Keywords::KEY_GAS_PHASE_MIX, "GAS_PHASE_MIX"), diff --git a/PhreeqcKeywords/Keywords.h b/PhreeqcKeywords/Keywords.h index f812fb39..06de5596 100644 --- a/PhreeqcKeywords/Keywords.h +++ b/PhreeqcKeywords/Keywords.h @@ -76,6 +76,10 @@ public: KEY_REACTION_PRESSURE, KEY_REACTION_PRESSURE_RAW, KEY_REACTION_PRESSURE_MODIFY, + KEY_RATE_PARAMETERS_PK, + KEY_RATE_PARAMETERS_SVD, + KEY_RATE_PARAMETERS_HERMANSKA, + KEY_MEAN_GAMMAS, KEY_SOLUTION_MIX, KEY_EXCHANGE_MIX, KEY_GAS_PHASE_MIX, diff --git a/read.cpp b/read.cpp index 24f6c8c5..5a30d1c6 100644 --- a/read.cpp +++ b/read.cpp @@ -135,6 +135,18 @@ read_input(void) case Keywords::KEY_MIX: read_mix(); break; + case Keywords::KEY_RATE_PARAMETERS_PK: + read_rate_parameters_pk(); + break; + case Keywords::KEY_RATE_PARAMETERS_SVD: + read_rate_parameters_svd(); + break; + case Keywords::KEY_RATE_PARAMETERS_HERMANSKA: + read_rate_parameters_hermanska(); + break; + case Keywords::KEY_MEAN_GAMMAS: + read_mean_gammas(); + break; case Keywords::KEY_SOLUTION_MIX: //read_solution_mix(); read_entity_mix(Rxn_solution_mix_map); @@ -2357,6 +2369,317 @@ read_kinetics(void) return (return_value); } /* ---------------------------------------------------------------------- */ +int Phreeqc:: +read_rate_parameters_pk(void) +/* ---------------------------------------------------------------------- */ +{ + /* + * Reads kinetics data + * + * Arguments: + * none + * + * Returns: + * KEYWORD if keyword encountered, input_error may be incremented if + * a keyword is encountered in an unexpected position + * EOF if eof encountered while reading mass balance concentrations + * ERROR if error occurred reading data + * + */ + std::string token; + int return_value, opt; + const char* next_char; + const char* opt_list[] = { + "xxxx", /* 0 */ + }; + int count_opt_list = 0; + /* + * Read rate parameters + */ + return_value = UNKNOWN; + for (;;) + { + opt = get_option(opt_list, count_opt_list, &next_char); + switch (opt) + { + case OPTION_EOF: /* end of file */ + return_value = EOF; + break; + case OPTION_KEYWORD: /* keyword */ + return_value = KEYWORD; + break; + case OPTION_DEFAULT: /* add to rate_parameters_pk map */ + { + std::string min_name; + int j = copy_token(token, &next_char); + if (j != EMPTY) + { + min_name = token; + str_tolower(min_name); + } + std::vector v; + read_vector_doubles(&next_char, v); + rate_parameters_pk[min_name] = v; + } + break; + case OPTION_ERROR: + input_error++; + error_msg("Unknown input in KINETICS keyword.", CONTINUE); + error_msg(line_save, CONTINUE); + break; + } + if (return_value == EOF || return_value == KEYWORD) + break; + } + return (return_value); +} +/* ---------------------------------------------------------------------- */ +int Phreeqc:: +read_mean_gammas(void) +/* ---------------------------------------------------------------------- */ +{ + /* + * Reads kinetics data + * + * Arguments: + * none + * + * Returns: + * KEYWORD if keyword encountered, input_error may be incremented if + * a keyword is encountered in an unexpected position + * EOF if eof encountered while reading mass balance concentrations + * ERROR if error occurred reading data + * + */ + std::string token; + int return_value, opt; + const char* next_char; + const char* opt_list[] = { + "xxxx", /* 0 */ + }; + int count_opt_list = 0; + /* + * Read rate parameters + */ + return_value = UNKNOWN; + for (;;) + { + opt = get_option(opt_list, count_opt_list, &next_char); + switch (opt) + { + case OPTION_EOF: /* end of file */ + return_value = EOF; + break; + case OPTION_KEYWORD: /* keyword */ + return_value = KEYWORD; + break; + case OPTION_DEFAULT: /* add to mean_gammas map */ + { + std::string salt_name; + int j = copy_token(token, &next_char); + if (j != EMPTY) + { + salt_name = token; + str_tolower(salt_name); + } + cxxNameDouble nd; + + /* + * Store reactant name, default coefficient + */ + const char* cptr = next_char; + bool have_name = false; + std::string name; + LDBLE coef = 1; + while (copy_token(token, &cptr) != EMPTY) + { + coef = 1; + if (isalpha((int)token[0]) || (token[0] == '(') + || (token[0] == '[')) + { + if (have_name) + { + nd.add(name.c_str(), coef); + } + name = token; + have_name = true; + } + else + { + if (!have_name) + { + error_string = sformatf("No species name has been defined."); + error_msg(error_string, CONTINUE); + input_error++; + } + /* + * Store relative coefficient + */ + int j = sscanf(token.c_str(), SCANFORMAT, &coef); + + if (j == 1) + { + nd.add(name.c_str(), coef); + have_name = false; + } + else + { + error_msg("Reading relative coefficient of reactant.", CONTINUE); + error_msg(line_save, CONTINUE); + input_error++; + } + } + //if (have_name) + //{ + // nd.add(name.c_str(), coef); + //} + } + //read_vector_doubles(&next_char, v); + mean_gammas[salt_name] = nd; + } + break; + case OPTION_ERROR: + input_error++; + error_msg("Unknown input in KINETICS keyword.", CONTINUE); + error_msg(line_save, CONTINUE); + break; + } + if (return_value == EOF || return_value == KEYWORD) + break; + } + return (return_value); +} +/* ---------------------------------------------------------------------- */ +int Phreeqc:: +read_rate_parameters_svd(void) +/* ---------------------------------------------------------------------- */ +{ + /* + * Reads kinetics data + * + * Arguments: + * none + * + * Returns: + * KEYWORD if keyword encountered, input_error may be incremented if + * a keyword is encountered in an unexpected position + * EOF if eof encountered while reading mass balance concentrations + * ERROR if error occurred reading data + * + */ + std::string token; + int return_value, opt; + const char* next_char; + const char* opt_list[] = { + "xxxx", /* 0 */ + }; + int count_opt_list = 0; + /* + * Read rate parameters + */ + return_value = UNKNOWN; + for (;;) + { + opt = get_option(opt_list, count_opt_list, &next_char); + switch (opt) + { + case OPTION_EOF: /* end of file */ + return_value = EOF; + break; + case OPTION_KEYWORD: /* keyword */ + return_value = KEYWORD; + break; + case OPTION_DEFAULT: /* add to rate_parameters_svd map */ + { + std::string min_name; + int j = copy_token(token, &next_char); + if (j != EMPTY) + { + min_name = token; + str_tolower(min_name); + } + std::vector v; + read_vector_doubles(&next_char, v); + rate_parameters_svd[min_name] = v; + } + break; + case OPTION_ERROR: + input_error++; + error_msg("Unknown input in KINETICS keyword.", CONTINUE); + error_msg(line_save, CONTINUE); + break; + } + if (return_value == EOF || return_value == KEYWORD) + break; + } + return (return_value); +} +/* ---------------------------------------------------------------------- */ +int Phreeqc:: +read_rate_parameters_hermanska(void) +/* ---------------------------------------------------------------------- */ +{ + /* + * Reads kinetics data + * + * Arguments: + * none + * + * Returns: + * KEYWORD if keyword encountered, input_error may be incremented if + * a keyword is encountered in an unexpected position + * EOF if eof encountered while reading mass balance concentrations + * ERROR if error occurred reading data + * + */ + std::string token; + int return_value, opt; + const char* next_char; + const char* opt_list[] = { + "xxxx", /* 0 */ + }; + int count_opt_list = 0; + /* + * Read rate parameters + */ + return_value = UNKNOWN; + for (;;) + { + opt = get_option(opt_list, count_opt_list, &next_char); + switch (opt) + { + case OPTION_EOF: /* end of file */ + return_value = EOF; + break; + case OPTION_KEYWORD: /* keyword */ + return_value = KEYWORD; + break; + case OPTION_DEFAULT: /* add to rate_parameters_hermanska map */ + { + std::string min_name; + int j = copy_token(token, &next_char); + if (j != EMPTY) + { + min_name = token; + str_tolower(min_name); + } + std::vector v; + read_vector_doubles(&next_char, v); + rate_parameters_hermanska[min_name] = v; + } + break; + case OPTION_ERROR: + input_error++; + error_msg("Unknown input in KINETICS keyword.", CONTINUE); + error_msg(line_save, CONTINUE); + break; + } + if (return_value == EOF || return_value == KEYWORD) + break; + } + return (return_value); +} +/* ---------------------------------------------------------------------- */ bool Phreeqc:: read_vector_doubles(const char** cptr, std::vector& v) /* ---------------------------------------------------------------------- */ diff --git a/structures.cpp b/structures.cpp index 618df125..c6b83ec9 100644 --- a/structures.cpp +++ b/structures.cpp @@ -139,6 +139,7 @@ clean_up(void) } logk.clear(); save_values.clear(); + save_strings.clear(); /* working pe*/ pe_x.clear(); /*species_list*/ From ce6938682cc7cb1f3a72415505f393fb3ed017ab Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Wed, 8 May 2024 10:39:01 -0600 Subject: [PATCH 154/384] Tony's revisions to html files. Updated ex21. Only thing left may be revisions to RATES in phreeqc_rates.dat --- ex21 | 20 ++--- ex21.out | 246 ++++++++++++++++++++++++++++--------------------------- radial | 114 +++++++++++++------------- 3 files changed, 192 insertions(+), 188 deletions(-) diff --git a/ex21 b/ex21 index 8b043549..e255d814 100644 --- a/ex21 +++ b/ex21 @@ -12,13 +12,13 @@ SOLUTION_MASTER_SPECIES Cs Cs+ 0.0 132.905 132.905 SOLUTION_SPECIES # start with finding tortuosity from HTO - Hto = Hto; log_k 0; -gamma 1e5 0; -dw 2.3e-9 0 0 0 0 0 0.5 # diffusion coefficient is multiplied by (viscos_0 /viscos)^0.5 -# estimate f_free and f_DL_charge, increase tortuosity - Cl_tr- = Cl_tr-; log_k 0; -gamma 3.5 0.015; -dw 1.17e-9 0 0 0 0 0 0.5 # increase tortuosity for anions: 2.03e-9 / 1.73 + Hto = Hto; log_k 0; -gamma 1e5 0; -dw 2.3e-9 0 0 0 0 0 0.5 # diffusion coefficient is multiplied by (viscos_0 /viscos)^0.5, the viscosity of the DDL is calculated. +# estimate f_free and f_DL_charge, increase tortuosity + Cl_tr- = Cl_tr-; log_k 0; -gamma 3.5 0.015; -dw 1.35e-9 0 0 0 0 0 0.5 # increase tortuosity for anions: 2.03e-9 / 1.35e-9 = 1.5 # use erm_ddl to fit Na - Na_tr+ = Na_tr+; log_k 0; -gamma 4.0 0.075; -dw 1.33e-9 0 0 0 0 0 0.5 ; -erm_ddl 1.39 + Na_tr+ = Na_tr+; log_k 0; -gamma 4.0 0.075; -dw 1.33e-9 0 0 0 0 0 0.5 ; -erm_ddl 1.3 # use interlayer diffusion to fit Cs - Cs+ = Cs+; log_k 0; -gamma 3.5 0.015; -dw 2.07e-9 0 0 0 0 0 0.5 ; -erm_ddl 1.39 + Cs+ = Cs+; log_k 0; -gamma 3.5 0.015; -dw 2.07e-9 0 0 0 0 0 0.5 ; -erm_ddl 1.3 SURFACE_MASTER_SPECIES Su_fes Su_fes- # Frayed Edge Sites Su_ii Su_ii- # Type II sites of intermediate strength @@ -81,7 +81,7 @@ USER_PUNCH 130 rho_b_eps = 2.7 * (1 - por_clay) / por_clay # clay bulk density / porosity / (kg/L) # 140 CEC = 0.12 * rho_b_eps # CEC / (eq/L porewater) # adapted for the harmonic mean calc's in version 3.4.2 -140 CEC = 0.09 * rho_b_eps # CEC / (eq/L porewater) +140 CEC = 0.12 * rho_b_eps # CEC / (eq/L porewater) 150 A_por = 37e3 * rho_b_eps # pore surface area / (m²/L porewater) 151 correct_$ = ' false' # 152 correct_$ = ' true' # if 'true' correct the co-ion concentrations in the Donnan volume @@ -110,10 +110,10 @@ USER_PUNCH 360 nfilt1 = 1 # number of cells in filter 1 370 nfilt2 = 1 # number of cells in filter 2 380 nclay = 11 # number of clay cells -390 f_free = 0.02 # fraction of free pore water (0.01 - 1) -400 f_DL_charge = 0.45 # fraction of CEC charge in electrical double layer -# 400 f_free = 0.1 : f_DL_charge = 0.47 # higher f_free ===> higher f_DL_charge, found from Cl- and Na+ -410 tort_n = -0.975 # exponent in Archie's law, found from HTO +390 f_free = 0.11 # fraction of free pore water (0.01 - 1) +400 f_DL_charge = 0.48 # fraction of CEC charge in electrical double layer +# 400 f_free = 0.2 : f_DL_charge = 0.5 # higher f_free ===> higher f_DL_charge, found from Cl- and Na+ +410 tort_n = -1.00 # exponent in Archie's law, found from HTO 420 G_clay = por_clay^tort_n # geometrical factor 430 interlayer_D$ = 'true' # 'true' or 'false' for interlayer diffusion 440 G_IL = 1300 # geometrical factor for clay interlayers... the initial rise of Cs suggests stagnant water, see Appelo et al for the calculation diff --git a/ex21.out b/ex21.out index c2413c73..0d4c7f73 100644 --- a/ex21.out +++ b/ex21.out @@ -1,4 +1,4 @@ - Input file: ../examples/ex21 + Input file: ex21 Output file: ex21.out Database file: ../database/phreeqc.dat @@ -13,7 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES - CALCULATE_VALUES + MEAN_GAMMAS RATES END ------------------------------------ @@ -33,21 +33,21 @@ Reading input data for simulation 1. Hto = Hto log_k 0 gamma 1e5 0 - dw 2.3e-9 0 0 0 0 0 0.5 # diffusion coefficient is multiplied by (viscos_0 /viscos)^0.5 + dw 2.3e-9 0 0 0 0 0 0.5 # diffusion coefficient is multiplied by (viscos_0 /viscos)^0.5, the viscosity of the DDL is calculated. Cl_tr- = Cl_tr- log_k 0 gamma 3.5 0.015 - dw 1.17e-9 0 0 0 0 0 0.5 # increase tortuosity for anions: 2.03e-9 / 1.73 + dw 1.35e-9 0 0 0 0 0 0.5 # increase tortuosity for anions: 2.03e-9 / 1.35e-9 = 1.5 Na_tr+ = Na_tr+ log_k 0 gamma 4.0 0.075 - dw 1.33e-9 0 0 0 0 0 0.5 - erm_ddl 1.39 + dw 1.33e-9 0 0 0 0 0 0.5 + erm_ddl 1.3 Cs+ = Cs+ log_k 0 gamma 3.5 0.015 - dw 2.07e-9 0 0 0 0 0 0.5 - erm_ddl 1.39 + dw 2.07e-9 0 0 0 0 0 0.5 + erm_ddl 1.3 SURFACE_MASTER_SPECIES Su_fes Su_fes- # Frayed Edge Sites Su_ii Su_ii- # Type II sites of intermediate strength @@ -199,7 +199,7 @@ Reading input data for simulation 2. 110 thickn_clay = r_ext - r_int # clay thickness / m 120 por_clay = 0.159 130 rho_b_eps = 2.7 * (1 - por_clay) / por_clay # clay bulk density / porosity / (kg/L) - 140 CEC = 0.09 * rho_b_eps # CEC / (eq/L porewater) + 140 CEC = 0.12 * rho_b_eps # CEC / (eq/L porewater) 150 A_por = 37e3 * rho_b_eps # pore surface area / (m²/L porewater) 151 correct_$ = ' false' 160 DIM tracer$(4), exp_time(4), scale_y1$(4), scale_y2$(4), profile_y1$(4), profile_y2$(4) @@ -219,9 +219,9 @@ Reading input data for simulation 2. 360 nfilt1 = 1 # number of cells in filter 1 370 nfilt2 = 1 # number of cells in filter 2 380 nclay = 11 # number of clay cells - 390 f_free = 0.02 # fraction of free pore water (0.01 - 1) - 400 f_DL_charge = 0.45 # fraction of CEC charge in electrical double layer - 410 tort_n = -0.975 # exponent in Archie's law, found from HTO + 390 f_free = 0.11 # fraction of free pore water (0.01 - 1) + 400 f_DL_charge = 0.48 # fraction of CEC charge in electrical double layer + 410 tort_n = -1.00 # exponent in Archie's law, found from HTO 420 G_clay = por_clay^tort_n # geometrical factor 430 interlayer_D$ = 'true' # 'true' or 'false' for interlayer diffusion 440 G_IL = 1300 # geometrical factor for clay interlayers... the initial rise of Cs suggests stagnant water, see Appelo et al for the calculation @@ -436,15 +436,15 @@ WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. pH = 7.600 pe = 13.120 Equilibrium with O2(g) - Specific Conductance (µS/cm, 23°C) = 29068 + Specific Conductance (µS/cm, 23°C) = 29069 Density (g/cm³) = 1.01168 - Volume (L) = 0.20146 - Viscosity (mPa s) = 0.96933 + Volume (L) = 0.20147 + Viscosity (mPa s) = 0.96935 Activity of water = 0.990 Ionic strength (mol/kgw) = 3.633e-01 Mass of water (kg) = 2.000e-01 - Total carbon (mol/kg) = 4.808e-04 - Total CO2 (mol/kg) = 4.808e-04 + Total carbon (mol/kg) = 4.811e-04 + Total CO2 (mol/kg) = 4.811e-04 Temperature (°C) = 23.00 Electrical balance (eq) = -1.312e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.10 @@ -460,26 +460,26 @@ WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. OH- 5.188e-07 3.419e-07 -6.285 -6.466 -0.181 -3.26 H+ 3.237e-08 2.512e-08 -7.490 -7.600 -0.110 0.00 H2O 5.551e+01 9.899e-01 1.744 -0.004 0.000 18.06 -C(4) 4.808e-04 - HCO3- 3.732e-04 2.653e-04 -3.428 -3.576 -0.148 25.30 - NaHCO3 3.141e-05 3.713e-05 -4.503 -4.430 0.073 31.75 - CaHCO3+ 3.053e-05 2.211e-05 -4.515 -4.655 -0.140 9.84 - MgHCO3+ 2.162e-05 1.458e-05 -4.665 -4.836 -0.171 5.70 - CO2 1.470e-05 1.553e-05 -4.833 -4.809 0.024 34.33 - CaCO3 4.764e-06 5.180e-06 -5.322 -5.286 0.036 -14.61 - MgCO3 1.916e-06 2.083e-06 -5.718 -5.681 0.036 -17.09 - CO3-2 1.860e-06 4.753e-07 -5.731 -6.323 -0.593 -1.75 - SrHCO3+ 6.993e-07 4.972e-07 -6.155 -6.303 -0.148 (0) - KHCO3 1.203e-07 1.212e-07 -6.920 -6.916 0.003 41.01 - SrCO3 3.451e-08 3.752e-08 -7.462 -7.426 0.036 -14.14 - (CO2)2 3.810e-12 4.142e-12 -11.419 -11.383 0.036 68.67 +C(4) 4.811e-04 + HCO3- 3.911e-04 2.781e-04 -3.408 -3.556 -0.148 25.30 + NaHCO3 3.292e-05 3.892e-05 -4.483 -4.410 0.073 31.75 + MgHCO3+ 2.266e-05 1.528e-05 -4.645 -4.816 -0.171 5.70 + CO2 1.541e-05 1.628e-05 -4.812 -4.788 0.024 34.33 + CaHCO3+ 9.133e-06 6.615e-06 -5.039 -5.179 -0.140 122.80 + CaCO3 4.998e-06 5.434e-06 -5.301 -5.265 0.036 -14.61 + MgCO3 2.008e-06 2.184e-06 -5.697 -5.661 0.036 -17.09 + CO3-2 1.949e-06 4.981e-07 -5.710 -6.303 -0.593 -1.75 + SrHCO3+ 7.330e-07 5.211e-07 -6.135 -6.283 -0.148 (0) + KHCO3 1.261e-07 1.271e-07 -6.899 -6.896 0.003 41.01 + SrCO3 3.617e-08 3.932e-08 -7.442 -7.405 0.036 -14.14 + (CO2)2 4.185e-12 4.551e-12 -11.378 -11.342 0.036 68.67 Ca 2.580e-02 - Ca+2 2.427e-02 6.744e-03 -1.615 -2.171 -0.556 -17.03 - CaSO4 1.495e-03 1.625e-03 -2.825 -2.789 0.036 7.42 - CaHCO3+ 3.053e-05 2.211e-05 -4.515 -4.655 -0.140 9.84 - CaCO3 4.764e-06 5.180e-06 -5.322 -5.286 0.036 -14.61 - CaOH+ 6.029e-08 4.411e-08 -7.220 -7.355 -0.136 (0) - CaHSO4+ 3.566e-10 2.609e-10 -9.448 -9.584 -0.136 (0) + Ca+2 2.429e-02 6.749e-03 -1.615 -2.171 -0.556 -17.03 + CaSO4 1.496e-03 1.626e-03 -2.825 -2.789 0.036 7.42 + CaHCO3+ 9.133e-06 6.615e-06 -5.039 -5.179 -0.140 122.80 + CaCO3 4.998e-06 5.434e-06 -5.301 -5.265 0.036 -14.61 + CaOH+ 6.034e-08 4.414e-08 -7.219 -7.355 -0.136 (0) + CaHSO4+ 3.568e-10 2.610e-10 -9.448 -9.583 -0.136 (0) Cl 3.000e-01 Cl- 3.000e-01 2.018e-01 -0.523 -0.695 -0.172 18.53 HCl 1.239e-09 1.768e-09 -8.907 -8.752 0.155 (0) @@ -489,50 +489,50 @@ Hto 1.140e-09 Hto 1.140e-09 1.140e-09 -8.943 -8.943 0.000 (0) K 1.610e-03 K+ 1.584e-03 1.057e-03 -2.800 -2.976 -0.176 9.40 - KSO4- 2.634e-05 2.196e-05 -4.579 -4.658 -0.079 13.22 - KHCO3 1.203e-07 1.212e-07 -6.920 -6.916 0.003 41.01 + KSO4- 2.634e-05 2.195e-05 -4.579 -4.659 -0.079 13.22 + KHCO3 1.261e-07 1.271e-07 -6.899 -6.896 0.003 41.01 Mg 1.690e-02 - Mg+2 1.548e-02 4.737e-03 -1.810 -2.324 -0.514 -20.64 - MgSO4 1.371e-03 1.621e-03 -2.863 -2.790 0.073 -8.62 - Mg(SO4)2-2 2.393e-05 7.622e-06 -4.621 -5.118 -0.497 27.97 - MgHCO3+ 2.162e-05 1.458e-05 -4.665 -4.836 -0.171 5.70 - MgCO3 1.916e-06 2.083e-06 -5.718 -5.681 0.036 -17.09 - MgOH+ 7.695e-07 5.652e-07 -6.114 -6.248 -0.134 (0) + Mg+2 1.548e-02 4.737e-03 -1.810 -2.325 -0.514 -20.64 + MgSO4 1.371e-03 1.620e-03 -2.863 -2.790 0.073 -8.62 + Mg(SO4)2-2 2.392e-05 7.620e-06 -4.621 -5.118 -0.497 27.97 + MgHCO3+ 2.266e-05 1.528e-05 -4.645 -4.816 -0.171 5.70 + MgCO3 2.008e-06 2.184e-06 -5.697 -5.661 0.036 -17.09 + MgOH+ 7.694e-07 5.651e-07 -6.114 -6.248 -0.134 (0) Na 2.400e-01 Na+ 2.347e-01 1.701e-01 -0.629 -0.769 -0.140 -0.85 - NaSO4- 5.252e-03 3.746e-03 -2.280 -2.426 -0.147 2.97 - NaHCO3 3.141e-05 3.713e-05 -4.503 -4.430 0.073 31.75 + NaSO4- 5.251e-03 3.746e-03 -2.280 -2.426 -0.147 2.97 + NaHCO3 3.292e-05 3.892e-05 -4.483 -4.410 0.073 31.75 NaOH 5.351e-18 5.818e-18 -17.272 -17.235 0.036 (0) O(0) 2.438e-04 O2 1.219e-04 1.325e-04 -3.914 -3.878 0.036 30.24 S(6) 1.410e-02 - SO4-2 5.877e-03 1.376e-03 -2.231 -2.861 -0.631 32.28 - NaSO4- 5.252e-03 3.746e-03 -2.280 -2.426 -0.147 2.97 - CaSO4 1.495e-03 1.625e-03 -2.825 -2.789 0.036 7.42 - MgSO4 1.371e-03 1.621e-03 -2.863 -2.790 0.073 -8.62 - SrSO4 3.161e-05 3.437e-05 -4.500 -4.464 0.036 24.16 - KSO4- 2.634e-05 2.196e-05 -4.579 -4.658 -0.079 13.22 - Mg(SO4)2-2 2.393e-05 7.622e-06 -4.621 -5.118 -0.497 27.97 + SO4-2 5.877e-03 1.376e-03 -2.231 -2.862 -0.631 32.29 + NaSO4- 5.251e-03 3.746e-03 -2.280 -2.426 -0.147 2.97 + CaSO4 1.496e-03 1.626e-03 -2.825 -2.789 0.036 7.42 + MgSO4 1.371e-03 1.620e-03 -2.863 -2.790 0.073 -8.62 + SrSO4 3.160e-05 3.436e-05 -4.500 -4.464 0.036 24.16 + KSO4- 2.634e-05 2.195e-05 -4.579 -4.659 -0.079 13.22 + Mg(SO4)2-2 2.392e-05 7.620e-06 -4.621 -5.118 -0.497 27.97 HSO4- 4.398e-09 3.217e-09 -8.357 -8.493 -0.136 40.64 - CaHSO4+ 3.566e-10 2.609e-10 -9.448 -9.584 -0.136 (0) + CaHSO4+ 3.568e-10 2.610e-10 -9.448 -9.583 -0.136 (0) Sr 5.050e-04 - Sr+2 4.727e-04 1.312e-04 -3.325 -3.882 -0.557 -16.74 - SrSO4 3.161e-05 3.437e-05 -4.500 -4.464 0.036 24.16 - SrHCO3+ 6.993e-07 4.972e-07 -6.155 -6.303 -0.148 (0) - SrCO3 3.451e-08 3.752e-08 -7.462 -7.426 0.036 -14.14 - SrOH+ 3.781e-10 2.652e-10 -9.422 -9.576 -0.154 (0) + Sr+2 4.726e-04 1.312e-04 -3.325 -3.882 -0.557 -16.74 + SrSO4 3.160e-05 3.436e-05 -4.500 -4.464 0.036 24.16 + SrHCO3+ 7.330e-07 5.211e-07 -6.135 -6.283 -0.148 (0) + SrCO3 3.617e-08 3.932e-08 -7.442 -7.405 0.036 -14.14 + SrOH+ 3.780e-10 2.652e-10 -9.422 -9.576 -0.154 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(296 K, 1 atm) Anhydrite -0.78 -5.03 -4.26 CaSO4 - Aragonite -0.17 -8.49 -8.32 CaCO3 + Aragonite -0.15 -8.47 -8.32 CaCO3 Arcanite -6.91 -8.81 -1.91 K2SO4 - Calcite -0.03 -8.49 -8.47 CaCO3 + Calcite -0.01 -8.47 -8.47 CaCO3 Celestite -0.10 -6.74 -6.65 SrSO4 - CO2(g) -3.36 -4.81 -1.44 CO2 - Dolomite -0.09 -17.14 -17.05 CaMg(CO3)2 + CO2(g) -3.34 -4.79 -1.44 CO2 + Dolomite -0.05 -17.10 -17.05 CaMg(CO3)2 Epsomite -3.47 -5.22 -1.75 MgSO4:7H2O Gypsum -0.46 -5.04 -4.58 CaSO4:2H2O H2(g) -41.48 -44.58 -3.10 H2 @@ -542,7 +542,7 @@ Sr 5.050e-04 Kieserite -4.02 -5.19 -1.17 MgSO4:H2O Mirabilite -3.12 -4.44 -1.33 Na2SO4:10H2O O2(g) -1.00 -3.88 -2.88 O2 Pressure 0.1 atm, phi 1.000 - Strontianite -0.94 -10.21 -9.27 SrCO3 + Strontianite -0.92 -10.18 -9.27 SrCO3 Sylvite -4.56 -3.67 0.89 KCl Thenardite -4.11 -4.40 -0.29 Na2SO4 @@ -579,7 +579,7 @@ Reading input data for simulation 3. Fe(2) 0.0 Alkalinity 0.476 SOLUTION 5 - water 1.3217e-05 + water 7.2695e-05 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -594,15 +594,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 5 equilibrate 5 - Su_ 3.8224e-04 5.2840e+05 6.6087e-04 + Su_ 5.4363e-04 5.2840e+05 6.6087e-04 Su_ii 7.4371e-06 Su_fes 6.9841e-07 - donnan 1.8546e-09 viscosity calc correct false + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 5 equilibrate 5 - X 4.6718e-04 + X 5.8893e-04 SOLUTION 6 - water 1.6259e-05 + water 8.9423e-05 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -617,15 +617,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 6 equilibrate 6 - Su_ 4.7019e-04 5.2840e+05 8.1293e-04 + Su_ 6.6871e-04 5.2840e+05 8.1293e-04 Su_ii 9.1484e-06 Su_fes 8.5911e-07 - donnan 1.8546e-09 viscosity calc correct false + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 6 equilibrate 6 - X 5.7468e-04 + X 7.2444e-04 SOLUTION 7 - water 1.9300e-05 + water 1.0615e-04 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -640,15 +640,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 7 equilibrate 7 - Su_ 5.5814e-04 5.2840e+05 9.6500e-04 + Su_ 7.9380e-04 5.2840e+05 9.6500e-04 Su_ii 1.0860e-05 Su_fes 1.0198e-06 - donnan 1.8546e-09 viscosity calc correct false + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 7 equilibrate 7 - X 6.8218e-04 + X 8.5995e-04 SOLUTION 8 - water 2.2341e-05 + water 1.2288e-04 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -663,15 +663,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 8 equilibrate 8 - Su_ 6.4610e-04 5.2840e+05 1.1171e-03 + Su_ 9.1889e-04 5.2840e+05 1.1171e-03 Su_ii 1.2571e-05 Su_fes 1.1805e-06 - donnan 1.8546e-09 viscosity calc correct false + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 8 equilibrate 8 - X 7.8967e-04 + X 9.9547e-04 SOLUTION 9 - water 2.5383e-05 + water 1.3960e-04 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -686,15 +686,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 9 equilibrate 9 - Su_ 7.3405e-04 5.2840e+05 1.2691e-03 + Su_ 1.0440e-03 5.2840e+05 1.2691e-03 Su_ii 1.4282e-05 Su_fes 1.3412e-06 - donnan 1.8546e-09 viscosity calc correct false + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 9 equilibrate 9 - X 8.9717e-04 + X 1.1310e-03 SOLUTION 10 - water 2.8424e-05 + water 1.5633e-04 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -709,15 +709,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 10 equilibrate 10 - Su_ 8.2200e-04 5.2840e+05 1.4212e-03 + Su_ 1.1691e-03 5.2840e+05 1.4212e-03 Su_ii 1.5994e-05 Su_fes 1.5019e-06 - donnan 1.8546e-09 viscosity calc correct false + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 10 equilibrate 10 - X 1.0047e-03 + X 1.2665e-03 SOLUTION 11 - water 3.1465e-05 + water 1.7306e-04 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -732,15 +732,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 11 equilibrate 11 - Su_ 9.0996e-04 5.2840e+05 1.5733e-03 + Su_ 1.2942e-03 5.2840e+05 1.5733e-03 Su_ii 1.7705e-05 Su_fes 1.6626e-06 - donnan 1.8546e-09 viscosity calc correct false + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 11 equilibrate 11 - X 1.1122e-03 + X 1.4020e-03 SOLUTION 12 - water 3.4507e-05 + water 1.8979e-04 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -755,15 +755,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 12 equilibrate 12 - Su_ 9.9791e-04 5.2840e+05 1.7253e-03 + Su_ 1.4192e-03 5.2840e+05 1.7253e-03 Su_ii 1.9416e-05 Su_fes 1.8233e-06 - donnan 1.8546e-09 viscosity calc correct false + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 12 equilibrate 12 - X 1.2197e-03 + X 1.5375e-03 SOLUTION 13 - water 3.7548e-05 + water 2.0651e-04 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -778,15 +778,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 13 equilibrate 13 - Su_ 1.0859e-03 5.2840e+05 1.8774e-03 + Su_ 1.5443e-03 5.2840e+05 1.8774e-03 Su_ii 2.1127e-05 Su_fes 1.9840e-06 - donnan 1.8546e-09 viscosity calc correct false + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 13 equilibrate 13 - X 1.3272e-03 + X 1.6730e-03 SOLUTION 14 - water 4.0589e-05 + water 2.2324e-04 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -801,15 +801,15 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 14 equilibrate 14 - Su_ 1.1738e-03 5.2840e+05 2.0295e-03 + Su_ 1.6694e-03 5.2840e+05 2.0295e-03 Su_ii 2.2839e-05 Su_fes 2.1448e-06 - donnan 1.8546e-09 viscosity calc correct false + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 14 equilibrate 14 - X 1.4347e-03 + X 1.8085e-03 SOLUTION 15 - water 4.3631e-05 + water 2.3997e-04 pH 7.6 pe 14 O2(g) -1.0 temp 23 @@ -824,13 +824,13 @@ Reading input data for simulation 3. Alkalinity 0.476 SURFACE 15 equilibrate 15 - Su_ 1.2618e-03 5.2840e+05 2.1815e-03 + Su_ 1.7945e-03 5.2840e+05 2.1815e-03 Su_ii 2.4550e-05 Su_fes 2.3055e-06 - donnan 1.8546e-09 viscosity calc correct false + donnan 1.6843e-09 viscosity calc correct false EXCHANGE 15 equilibrate 15 - X 1.5422e-03 + X 1.9441e-03 SOLUTION 16 water 5.0266e-03 pH 7.6 @@ -879,29 +879,29 @@ Reading input data for simulation 3. MIX 3 4 6.6932e-04 MIX 4 - 5 2.0070e-04 + 5 1.9357e-04 MIX 5 - 6 1.6165e-04 + 6 1.5439e-04 MIX 6 - 7 1.9501e-04 + 7 1.8625e-04 MIX 7 - 8 2.2837e-04 + 8 2.1811e-04 MIX 8 - 9 2.6173e-04 + 9 2.4997e-04 MIX 9 - 10 2.9509e-04 + 10 2.8183e-04 MIX 10 - 11 3.2845e-04 + 11 3.1369e-04 MIX 11 - 12 3.6180e-04 + 12 3.4555e-04 MIX 12 - 13 3.9516e-04 + 13 3.7741e-04 MIX 13 - 14 4.2852e-04 + 14 4.0927e-04 MIX 14 - 15 4.6188e-04 + 15 4.4113e-04 MIX 15 - 16 7.9394e-04 + 16 7.6509e-04 MIX 16 17 4.2533e-03 END @@ -913,7 +913,7 @@ Reading input data for simulation 3. bcond 1 2 stagnant 15 timest 1.5429e+03 - multi_d true 2.5000e-09 1.5900e-01 0.0 9.7500e-01 + multi_d true 2.5000e-09 1.5900e-01 0.0 1 interlayer_d true 0.001 0.0 1300 punch_frequency 14 punch_cells 17 @@ -939,3 +939,7 @@ Calculating transport: 1 (mobile) cells, 1120 shifts, 1 mixruns... END +-------------------------------- +End of Run after 54.706 Seconds. +-------------------------------- + diff --git a/radial b/radial index dde9f8dc..813fce04 100644 --- a/radial +++ b/radial @@ -9,137 +9,137 @@ SOLUTION 4; -water 1.3963e-03 # cells in Opalinus Clay... -SOLUTION 5; -water 1.3217e-05 +SOLUTION 5; -water 7.2695e-05 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 5; -equil 5; - Su_ 3.8224e-04 5.2840e+05 6.6087e-04 + Su_ 5.4363e-04 5.2840e+05 6.6087e-04 Su_ii 7.4371e-06 Su_fes 6.9841e-07 - -Donnan 1.8546e-09 viscosity calc correct false + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 5; -equil 5; - X 4.6718e-04 + X 5.8893e-04 -SOLUTION 6; -water 1.6259e-05 +SOLUTION 6; -water 8.9423e-05 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 6; -equil 6; - Su_ 4.7019e-04 5.2840e+05 8.1293e-04 + Su_ 6.6871e-04 5.2840e+05 8.1293e-04 Su_ii 9.1484e-06 Su_fes 8.5911e-07 - -Donnan 1.8546e-09 viscosity calc correct false + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 6; -equil 6; - X 5.7468e-04 + X 7.2444e-04 -SOLUTION 7; -water 1.9300e-05 +SOLUTION 7; -water 1.0615e-04 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 7; -equil 7; - Su_ 5.5814e-04 5.2840e+05 9.6500e-04 + Su_ 7.9380e-04 5.2840e+05 9.6500e-04 Su_ii 1.0860e-05 Su_fes 1.0198e-06 - -Donnan 1.8546e-09 viscosity calc correct false + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 7; -equil 7; - X 6.8218e-04 + X 8.5995e-04 -SOLUTION 8; -water 2.2341e-05 +SOLUTION 8; -water 1.2288e-04 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 8; -equil 8; - Su_ 6.4610e-04 5.2840e+05 1.1171e-03 + Su_ 9.1889e-04 5.2840e+05 1.1171e-03 Su_ii 1.2571e-05 Su_fes 1.1805e-06 - -Donnan 1.8546e-09 viscosity calc correct false + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 8; -equil 8; - X 7.8967e-04 + X 9.9547e-04 -SOLUTION 9; -water 2.5383e-05 +SOLUTION 9; -water 1.3960e-04 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 9; -equil 9; - Su_ 7.3405e-04 5.2840e+05 1.2691e-03 + Su_ 1.0440e-03 5.2840e+05 1.2691e-03 Su_ii 1.4282e-05 Su_fes 1.3412e-06 - -Donnan 1.8546e-09 viscosity calc correct false + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 9; -equil 9; - X 8.9717e-04 + X 1.1310e-03 -SOLUTION 10; -water 2.8424e-05 +SOLUTION 10; -water 1.5633e-04 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 10; -equil 10; - Su_ 8.2200e-04 5.2840e+05 1.4212e-03 + Su_ 1.1691e-03 5.2840e+05 1.4212e-03 Su_ii 1.5994e-05 Su_fes 1.5019e-06 - -Donnan 1.8546e-09 viscosity calc correct false + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 10; -equil 10; - X 1.0047e-03 + X 1.2665e-03 -SOLUTION 11; -water 3.1465e-05 +SOLUTION 11; -water 1.7306e-04 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 11; -equil 11; - Su_ 9.0996e-04 5.2840e+05 1.5733e-03 + Su_ 1.2942e-03 5.2840e+05 1.5733e-03 Su_ii 1.7705e-05 Su_fes 1.6626e-06 - -Donnan 1.8546e-09 viscosity calc correct false + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 11; -equil 11; - X 1.1122e-03 + X 1.4020e-03 -SOLUTION 12; -water 3.4507e-05 +SOLUTION 12; -water 1.8979e-04 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 12; -equil 12; - Su_ 9.9791e-04 5.2840e+05 1.7253e-03 + Su_ 1.4192e-03 5.2840e+05 1.7253e-03 Su_ii 1.9416e-05 Su_fes 1.8233e-06 - -Donnan 1.8546e-09 viscosity calc correct false + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 12; -equil 12; - X 1.2197e-03 + X 1.5375e-03 -SOLUTION 13; -water 3.7548e-05 +SOLUTION 13; -water 2.0651e-04 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 13; -equil 13; - Su_ 1.0859e-03 5.2840e+05 1.8774e-03 + Su_ 1.5443e-03 5.2840e+05 1.8774e-03 Su_ii 2.1127e-05 Su_fes 1.9840e-06 - -Donnan 1.8546e-09 viscosity calc correct false + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 13; -equil 13; - X 1.3272e-03 + X 1.6730e-03 -SOLUTION 14; -water 4.0589e-05 +SOLUTION 14; -water 2.2324e-04 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 14; -equil 14; - Su_ 1.1738e-03 5.2840e+05 2.0295e-03 + Su_ 1.6694e-03 5.2840e+05 2.0295e-03 Su_ii 2.2839e-05 Su_fes 2.1448e-06 - -Donnan 1.8546e-09 viscosity calc correct false + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 14; -equil 14; - X 1.4347e-03 + X 1.8085e-03 -SOLUTION 15; -water 4.3631e-05 +SOLUTION 15; -water 2.3997e-04 pH 7.6; pe 14 O2(g) -1.0; temp 23 Na 240; K 1.61; Mg 16.9; Ca 25.8; Sr 0.505 Cl 300; S(6) 14.1; Fe(2) 0.0; Alkalinity 0.476 SURFACE 15; -equil 15; - Su_ 1.2618e-03 5.2840e+05 2.1815e-03 + Su_ 1.7945e-03 5.2840e+05 2.1815e-03 Su_ii 2.4550e-05 Su_fes 2.3055e-06 - -Donnan 1.8546e-09 viscosity calc correct false + -Donnan 1.6843e-09 viscosity calc correct false EXCHANGE 15; -equil 15; - X 1.5422e-03 + X 1.9441e-03 # tracer-out filter cells... @@ -170,18 +170,18 @@ END # mixing factors... MIX 3; 4 6.6932e-04 -MIX 4; 5 2.0070e-04 -MIX 5; 6 1.6165e-04 -MIX 6; 7 1.9501e-04 -MIX 7; 8 2.2837e-04 -MIX 8; 9 2.6173e-04 -MIX 9; 10 2.9509e-04 -MIX 10; 11 3.2845e-04 -MIX 11; 12 3.6180e-04 -MIX 12; 13 3.9516e-04 -MIX 13; 14 4.2852e-04 -MIX 14; 15 4.6188e-04 -MIX 15; 16 7.9394e-04 +MIX 4; 5 1.9357e-04 +MIX 5; 6 1.5439e-04 +MIX 6; 7 1.8625e-04 +MIX 7; 8 2.1811e-04 +MIX 8; 9 2.4997e-04 +MIX 9; 10 2.8183e-04 +MIX 10; 11 3.1369e-04 +MIX 11; 12 3.4555e-04 +MIX 12; 13 3.7741e-04 +MIX 13; 14 4.0927e-04 +MIX 14; 15 4.4113e-04 +MIX 15; 16 7.6509e-04 MIX 16; 17 4.2533e-03 END TRANSPORT @@ -189,7 +189,7 @@ TRANSPORT -shifts 1120 -flow diff; -cells 1; -bcon 1 2; -stag 15 -time 1.5429e+03 - -multi_D true 2.5000e-09 1.5900e-01 0.0 9.7500e-01 + -multi_D true 2.5000e-09 1.5900e-01 0.0 1 -interlayer_D true 0.001 0.0 1300 -punch_fr 14; -punch_c 17 USER_GRAPH 1 Example 21 From 017185a7b26a90c83deb7ed402f570c5d0f51f70 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Thu, 9 May 2024 12:35:17 -0600 Subject: [PATCH 155/384] Tony updates to phreeqc_rates.dat. Added albite_rates. Copy/paste error in read.cpp --- phreeqc_rates.dat | 355 ++++++++++++++++++++++++++++++++++++++++++++-- 1 file changed, 344 insertions(+), 11 deletions(-) diff --git a/phreeqc_rates.dat b/phreeqc_rates.dat index 97fb40f1..787c3083 100644 --- a/phreeqc_rates.dat +++ b/phreeqc_rates.dat @@ -1,4 +1,4 @@ -# PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: +# PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Augmented with kinetic rates for minerals from compilations. Based on: # diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. # Details are given at the end of this file. @@ -1897,24 +1897,27 @@ Pyrolusite # # Additional definition of PHASES, RATE parameters, and RATES examples # -# RATE_PARAMETERS_PK has parameters from Palandri and Kharaka (2004). +# RATE_PARAMETERS_PK has parameters from Palandri and Kharaka (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. USGS Open-File Report 2004-1068. # -# RATE_PARAMETERS_SVD has two examples from Sverdrup, Oelkers, Lampa, -# Belyazid, Kurz, and Akselsson (2019). +# RATE_PARAMETERS_SVD has two examples from Sverdrup, Oelkers, Lampa, Belyazid, Kurz, and Akselsson (2019). Reviews and Syntheses: weathering of silicate minerals in soils and watersheds: parameterization of the weathering kinetics module in the PROFILE and ForSAFE models. Biogeosciences Discuss. 1-58. # -# RATE_PARAMETERS_HERMANSKA has parameters from Hermanska, Voigt, Marieni, -# Declercq, and Oelkers (2023). +# RATE_PARAMETERS_HERMANSKA has parameters from Hermanska, Voigt, Marieni, Declercq, and Oelkers (2022, 2023). A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology, 597, p.120807, Part II: Secondary silicate minerals. Chemical Geology, p.121632. + # -# Example RATES definitions include +# Example RATES definitions and input files with KINETICS show the application in # Albite_PK # Palandri and Kharaka # Albite_Svd # Sverdrup -# Albite_Hermanska # +# Albite_Hermanska +# Calcite_PK # Palandri and Kharaka +# Calcite # Plummer, Wigley, Parkhurst 1978, AJS 278, 179-216. # Quartz_PK # Palandri and Kharaka # Quartz_Svd # Sverdrup # Quartz_Hermanska # # Quartz_Rimstidt_Barnes +# Montmorillonite # Na, K, Mg, Ca exchange, Hermanska rate for the TOT layer # PHASES # defined for formulas and affinities of kinetic (mostly) dissolving minerals +# Unless noted otherwise, data from ThermoddemV1.10_15Dec2020.dat. Actinolite # Hornblende, Ferroactinolite Ca2(Mg2.25Fe2.5Al0.25)(Si7.75Al0.25)O22(OH)2 + 15H+ + 7H2O = 0.500Al+3 + 2Ca+2 + 2.500Fe+2 + 2.250Mg+2 + 7.750H4SiO4 log_k 7.128 @@ -2610,9 +2613,18 @@ Albite_Hermanska # 40 SAVE area * rate * affinity * TIME -end # +# Example RATES definition for Calcite +# +Calcite_PK # Palandri and Kharaka, 2004 +5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("calcite") : if affinity < parm(1) then SAVE 0 : END +20 rate = RATE_PK("calcite") +30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +40 SAVE area * rate * affinity * TIME +-end +# # Example RATES definitions for Quartz # -RATES Quartz_PK # Palandri and Kharaka, 2004 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END @@ -2645,8 +2657,329 @@ Quartz_Rimstidt_Barnes 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 40 SAVE area * rate * affinity * TIME -end - +# +# Example RATES definition for Montmorillonite, a solid solution with exchangeable cations reacting fast; their ratios are related to the changing solution composition and their amounts are connected to the kinetic reacting TOT layer. +# +# The affinity is related to a solid soution member, given by the fraction of the exchangeable cation (here Na+). The exchange species are defined in the (example) input file, below. +# +Montmorillonite +5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +7 f_Na = (mol("Na0.34X_montm_mg") / tot("X_montm_mg")) +# 7 f_Na = (mol("NaX") / tot("X")) # when running with the default X exchange +10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgNa)") / f_Na +20 rate = RATE_HERMANSKA("Montmorillonite") / f_Na +30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +40 SAVE area * rate * affinity * TIME +-end END + +# Example input files for KINETICS calculations +# +# compare Albite kinetics using rates from the compilations +# ========================================================= + +# KINETICS 1 +# Albite_PK +# -formula NaAlSi3O8; -parms 0 1 1 0.67 +# -m0 1; -time 1 # default +# END + +# SOLUTION 1 +# PHASES + # Fix_pH; H+ = H+ + # LiBr; LiBr = Li+ + Br-; -log_k -20 # (very) unsoluble phase with base cation and acid anion, permits to use HBr or LiOH as reactant +# SELECTED_OUTPUT 1 + # -file kinetic_rates_pH.inc + # -reset false +# USER_PUNCH 1 # write out the pH's to equilibrate... + # 10 FOR i = 0 to 14 STEP 0.5 + # 20 punch EOL$ + 'USE solution 1' + # 30 punch EOL$ + 'EQUILIBRIUM_PHASES 1' + # 40 punch EOL$ + ' LiBr' + # 50 punch EOL$ + ' Fix_pH ' + TRIM(STR$(-i)) + ' LiOH 10' # ...or HBr as reactant + # 60 punch EOL$ + 'USE kinetics 1' + # 70 punch EOL$ + 'END' + # 80 NEXT i +# END + +# PRINT; -reset false +# SELECTED_OUTPUT 1; -active false +# USER_GRAPH 1; -headings pH Palandri +# -axis_titles pH "log10(initial rate / (mol / m2 / s))" +# -axis_scale x_axis 0 14 +# 10 graph_x -la("H+") +# 20 graph_sy log10(tot("Al")) +# INCLUDE$ kinetic_rates_pH.inc +# END + +# KINETICS 1 +# Albite_Svd +# -formula NaAlSi3O8; -parms 0 1 20 0.67 # roughness = 20 +# USER_GRAPH 1; -headings pH Sverdup*20 +# INCLUDE$ kinetic_rates_pH.inc +# END + +# KINETICS 1 +# Albite +# -formula NaAlSi3O8; -parms 1 20 # roughness = 20 +# USER_GRAPH 1; -headings pH Sverdup`95*20 +# INCLUDE$ kinetic_rates_pH.inc +# END + +# KINETICS 1 +# Albite_Hermanska +# -formula NaAlSi3O8; -parms 0 1 1 0.67 +# USER_GRAPH 1; -headings pH Hermanska +# INCLUDE$ kinetic_rates_pH.inc +# END + +# USE solution 1 +# REACTION_TEMPERATURE 1; 25 25 in 21 +# USER_GRAPH 1; -headings Albite_data +# 10 data 1.1, 2.05, 2.45, 2.9, 3, 3.5, 4.1, 5.1, 5.35, 5.47, 5.63, 5.63, 5.73, 7.73, 9.95, 9.95, 9.95, 10.6, 11.2, 11.55, 12.3 +# 20 data -10.25, -10.55, -10.82, -11.25, -11.1, -11.4, -11.47, -11.82, -11.75, -11.65, -11.83, -11.92, -11.92, -11.83, -10.97, -11.05, -11.13, -10.95, -10.55, -10.6, -10.38 # Chou, L., Wollast, R., 1985. Steady-state kinetics and dissolution mechanisms of albite. Am. J. Sci. 285, 963993. +# 30 restore 10 : dim ph(21) : for i = 1 to step_no : read ph(i) : next i +# 40 restore 20 : dim lk(21) : for i = 1 to step_no : read lk(i) : next i +# 50 i = step_no : plot_xy ph(i), lk(i), line_width = 0, color = Black, y_axis = 2, symbol_size = 10, symbol = Circle +# END + +# compare rates for calcite dissolution +# ===================================== + +# USER_GRAPH 1; -active false + +# SOLUTION 1 +# pH 7 charge; C(4) 1 CO2(g) -2.5 +# KINETICS 1 +# calcite_PK +# -formula CaCO3; -parms 0 1e-2 1 0.67 +# -time 0.1 10*1 hour +# INCREMENTAL_REACTIONS true +# USER_GRAPH 2; -headings h Palandri_SI(CO2_g).=.-2.5 +# -axis_titles "time / hours" "Calcite dissolved / (mmol/kgw)" +# 10 graph_x total_time / 3600 : graph_sy tot("Ca") * 1e3 +# END + +# USE solution 1 +# KINETICS 1 +# Calcite +# -parms 1e2 0.67 # cm^2/mol calcite, exp factor +# -time 0.1 10*1 hour +# USER_GRAPH 2; -headings h Plummer.Wigley.Parkhurst +# END + +# SOLUTION 1 +# pH 7 charge; C(4) 1 CO2(g) -1.5 +# KINETICS 1 +# calcite_PK +# -formula CaCO3 +# -parms 0 1e-2 1 0.67 +# -time 0.1 10*1 hour +# USER_GRAPH 2; -headings h Palandri_SI(CO2_g).=.-1.5 +# END + +# USE solution 1 +# KINETICS 1 +# Calcite +# -parms 1e2 0.67 +# -time 0.1 10*1 hour +# USER_GRAPH 2; -headings h Plummer.Wigley.Parkhurst +# END + +# compare rates for quartz dissolution +# ===================================== + +# USER_GRAPH 2; -active false +# SOLUTION 1 +# pH 7 charge +# KINETICS 1 +# Quartz_PK +# -formula SiO2 +# -parms 0 6 1 0.67 +# -time 0.1 10*1 year +# INCREMENTAL_REACTIONS true +# USER_GRAPH 3; -headings h Palandri +# -axis_titles "time / years" "Quartz dissolved / (mmol/kgw)" +# 10 graph_x total_time / 3.15e7 : graph_sy tot("Si") * 1e3 +# END + +# USE solution 1 +# KINETICS 1 +# Quartz_Hermanska +# -formula SiO2 +# -parms 0 6 1 0.67 +# -time 0.1 10*1 year +# USER_GRAPH 3 +# -headings H Hermanska +# END + +# USE solution 1 +# KINETICS 1 +# Quartz_Svd +# -formula SiO2 +# -parms 0 6 1 0.67 +# -time 0.1 10*1 year +# USER_GRAPH 3 +# -headings H Sverdup +# END + +# USE solution 1 +# KINETICS 1 +# Quartz_Rimstidt_Barnes +# -formula SiO2 +# -parms 0 6 1 0.67 +# -time 0.1 10*1 year +# USER_GRAPH 3 +# -headings H Rimstidt.et.al +# END + +# SOLUTION 1 +# pH 7 charge; Na 30; Cl 30 +# KINETICS 1 +# Quartz_Svd +# -formula SiO2 +# -parms 0 6 1 0.67 +# -time 0.1 10*1 year +# USER_GRAPH 3 +# -headings H Sverdup_NaCl +# END + +# USE solution 1 +# KINETICS 1 +# Quartz_Rimstidt_Barnes +# -formula SiO2 +# -parms 0 6 1 0.67 +# -time 0.1 10*1 year +# USER_GRAPH 3 +# -headings H Rimstidt.et.al._NaCl +# END + +# Example input file for calculating montmorillonite dissolution +# ============================================================== + +# USER_GRAPH 3; -active false + +# EXCHANGE_MASTER_SPECIES +# X_montm_mg X_montm_mg-0.34 +# EXCHANGE_SPECIES +# # The Gapon formulation is easiest... + # X_montm_mg-0.34 = X_montm_mg-0.34 +# 0.34 Na+ + X_montm_mg-0.34 = Na0.34X_montm_mg; log_k -3.411 # 0 # +# 0.34 K+ + X_montm_mg-0.34 = K0.34X_montm_mg; log_k -2.830 # 0.581 # +# 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -3.708 # -0.297 # +# 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -4.222 # -0.811 # + +# # # The divalent cations have rather low log_k, cf. A&P, p.254, log_k Ca0.5X ~ log_k KX +# # # uncomment the following lines to see the effect... +# # 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -2.73 +# # 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -2.83 +# # # also adapt the log_k`s of the solids... +# # PHASES +# # Montmorillonite(MgMg) +# # Mg0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.510Mg+2 + 4H4SiO4 + # # log_k 2.73 +# # Montmorillonite(MgCa) +# # Ca0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.170Ca+2 + 0.340Mg+2 + 4H4SiO4 + # # log_k 2.83 + +# # # The divalent cations can be defined with the Gaines-Thomas convention... +# # EXCHANGE_SPECIES +# # # undefine the previous set... +# # 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -3.708e10 +# # 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -4.222e10 +# # # write the Gaines-Thomas formulas... +# # 0.34 Mg+2 + 2 X_montm_mg-0.34 = Mg0.34X_montm_mg2 ; log_k -7.416 # -0.297 # +# # 0.34 Ca+2 + 2 X_montm_mg-0.34 = Ca0.34X_montm_mg2 ; log_k -8.444 # -0.811 # + +# # # The default exchanger X can be used, uncomment the follwing lines +# # # redefine f_Na in the rate... +# # RATES +# # Montmorillonite +# # 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +# # 7 f_Na = (mol("NaX") / tot("X")) # when running with the default X exchange +# # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgNa)") / f_Na +# # 20 rate = RATE_HERMANSKA("Montmorillonite") / f_Na +# # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +# # 40 SAVE area * rate * affinity * TIME +# # -end +# # # adapt log_k`s of the solids with default exchanger X: +# # PHASES +# # Montmorillonite(MgK) +# # K0.34Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.340K+ + 0.340Mg+2 + 4H4SiO4 + # # log_k 2.6 # 3.41 - 0.7 * 0.34 = 3.17 expected, but is fraction-dependent, A&P, problems p. 305 +# # Montmorillonite(MgMg) +# # Mg0.34(Mg0.34Al1.66Si4O10(OH)2)2 + 12 H+ + 8 H2O = 3.32 Al+3 + 1.02 Mg+2 + 8 H4SiO4 + # # log_k 6.27 # 3.41 * 2 - 0.6 * 0.34 = 6.62 +# # Montmorillonite(MgCa) +# # Ca0.34(Mg0.34Al1.66Si4O10(OH)2)2 + 12 H+ + 8 H2O = 3.32 Al+3 + 0.68 Mg+2 + 8 H4SiO4 + 0.34 Ca+2 + # # log_k 6.2 # 3.41 * 2 - 0.8 * 0.34 = 6.55 +# # # in EXCHANGE 1, comment X_montm_mg, uncomment X... +# END + +# SOLUTION 1 +# pH 7 charge; +# Na 1e-5 +# K 1e-5 +# Mg 1e-5 +# Ca 1e-5 +# END + +# # Give the solution composition for calculating the ininitial exchanger +# SOLUTION 99 +# pH 7 charge +# EQUILIBRIUM_PHASES 1 +# # solid solution of the end-members, SI = log10(fraction = 0.25) +# Montmorillonite(MgNa) -0.602 1e-2 +# Montmorillonite(MgCa) -0.602 1e-2 +# Montmorillonite(MgK) -0.602 1e-2 +# Montmorillonite(MgMg) -0.602 1e-2 +# Kaolinite 0 0 +# SAVE solution 99 +# END + +# # # with Gapon only, initial exchanger can be defined explicitly +# EXCHANGE 1 +# Na0.34X_montm_mg 1e-2 +# Ca0.17X_montm_mg 1e-2 +# K0.34X_montm_mg 1e-2 +# Mg0.17X_montm_mg 1e-2 +# END + +# USE solution 1 +# EQUILIBRIUM_PHASES 1 +# Kaolinite 0 0 +# # USE EXCHANGE 1 # with Gapon only, uncomment in KINETICS: # X_montm_mg -1 +# EXCHANGE 1 +# X_montm_mg Montmorillonite kin 1; -equil 99 # comment in KINETICS: # X_montm_mg -1 +# # X Montmorillonite kin 0.34; -equil 99 # default exchanger X, comment in KINETICS: # X_montm_mg -1 +# KINETICS 1 +# Montmorillonite +# -formula Mg0.34Al1.66Si4O10(OH)2 1 # X_montm_mg -1 +# -m 4e-2 +# -parms 0 2.5e5 1 0.67 +# -step 30 100 1e3 1e4 2e4 2e4 3e4 3e4 3e4 3e4 1e5 1e5 1e5 3e5 6e5 1e6 3e6 +# -cvode true +# INCREMENTAL_REACTIONS true +# USER_GRAPH 4 + # -headings time Na K Mg Ca + # -axis_titles "Time / days" "Molality" "Montmorillonite dissolved / (mmol/kgw)" + # -axis_scale x_axis auto auto auto auto log + # -axis_scale y_axis auto auto auto auto log +# 1 t = TOTAL_TIME / (3600 * 24) : put(t, 1) +# 10 GRAPH_X t +# 12 mg = tot("Mg") : if mg < 1e-24 then mg = 1e-24 +# 14 ca = tot("Ca") : if ca < 1e-24 then ca = 1e-24 +# 20 GRAPH_Y TOT("Na"), TOT("K"), mg, ca +# 30 GRAPH_SY (4e-2 - kin("Montmorillonite")) * 1e3 +# END +# USE solution 99; REACTION +# USER_GRAPH 4; -connect_simulations false; -headings Solution_99 +# 1 t = get(1) +# 10 plot_xy t, tot("Na"), symbol = Circle , symbol_size = 15, color = Red +# 20 plot_xy t, tot("K"), symbol = Circle , symbol_size = 15, color = Green +# 30 plot_xy t, tot("Mg"), symbol = Circle , symbol_size = 15, color = Blue +# 40 plot_xy t, tot("Ca"), symbol = Circle , symbol_size = 15, color = Orange + # ============================================================================================= #(a) means amorphous. (d) means disordered, or less crystalline. #(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt), @@ -2708,4 +3041,4 @@ END # # ============================================================================================= # It remains the responsibility of the user to check the calculated results, for example with -# measured solubilities as a function of (P, T). +# measured solubilities as a function of (P, T). \ No newline at end of file From bacfb0ea50c83434d21d3b0c8eda18543ee8b89a Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Thu, 9 May 2024 19:46:42 +0000 Subject: [PATCH 156/384] Squashed 'phreeqcpp/' changes from 60ccbf8..c035d9c c035d9c Tony updates to phreeqc_rates.dat. Added albite_rates. Copy/paste error in read.cpp fcec621 basicsubs.cpp fix from Tony e5b4b11 Fixed some HTML, still a problem with colors of links. git-subtree-dir: phreeqcpp git-subtree-split: c035d9c3b76f807db7d87066c235c9f6867e5497 --- basicsubs.cpp | 4 ++-- read.cpp | 4 ++-- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/basicsubs.cpp b/basicsubs.cpp index 3ef3d6c5..7b5a6f28 100644 --- a/basicsubs.cpp +++ b/basicsubs.cpp @@ -1759,7 +1759,7 @@ pr_pressure(const char* phase_name) class phase* phase_ptr_gas = phase_bsearch(gas_comp_ptr->Get_phase_name().c_str(), &j, FALSE); if (phase_ptr == phase_ptr_gas) { - if (gas_phase_ptr->Get_pr_in()) + if (gas_phase_ptr->Get_pr_in() && phase_ptr->moles_x) { return phase_ptr->pr_p; } @@ -1807,7 +1807,7 @@ pr_phi(const char* phase_name) class phase* phase_ptr_gas = phase_bsearch(gas_comp_ptr->Get_phase_name().c_str(), &j, FALSE); if (phase_ptr == phase_ptr_gas) { - if (gas_phase_ptr->Get_pr_in()) + if (gas_phase_ptr->Get_pr_in() && phase_ptr->moles_x) return phase_ptr->pr_phi; else return gas_comp_ptr->Get_phi(); diff --git a/read.cpp b/read.cpp index 5a30d1c6..f3a556b8 100644 --- a/read.cpp +++ b/read.cpp @@ -2439,7 +2439,7 @@ read_mean_gammas(void) /* ---------------------------------------------------------------------- */ { /* - * Reads kinetics data + * Reads MEAN_GAMMAS data * * Arguments: * none @@ -2540,7 +2540,7 @@ read_mean_gammas(void) break; case OPTION_ERROR: input_error++; - error_msg("Unknown input in KINETICS keyword.", CONTINUE); + error_msg("Unknown input in MEAN_GAMMAS keyword.", CONTINUE); error_msg(line_save, CONTINUE); break; } From 97a4237601d215dd712df5fee01399c9c2841ff8 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Fri, 10 May 2024 20:36:07 +0000 Subject: [PATCH 157/384] Squashed 'phreeqcpp/' changes from c035d9c..8f6cb45 8f6cb45 Pad needed a free. Ran all test cases. 56ba680 Freed result from strexpr git-subtree-dir: phreeqcpp git-subtree-split: 8f6cb45a04ca40ea253c0f3ca90f52427d99592d --- PBasic.cpp | 14 +++++++++++--- 1 file changed, 11 insertions(+), 3 deletions(-) diff --git a/PBasic.cpp b/PBasic.cpp index 62d11851..8701fde1 100644 --- a/PBasic.cpp +++ b/PBasic.cpp @@ -3211,13 +3211,15 @@ factor(struct LOC_exec * LINK) case tokpad_: case tokpad: { + char* str; n.stringval = true; require(toklp, LINK); - string1 = strexpr(LINK); + str = strexpr(LINK); require(tokcomma, LINK); i = intexpr(LINK); require(tokrp, LINK); - n.UU.sval = PhreeqcPtr->string_pad(string1, i); + n.UU.sval = PhreeqcPtr->string_pad(str, i); + PhreeqcPtr->PHRQ_free(str); } break; @@ -3249,6 +3251,7 @@ factor(struct LOC_exec * LINK) break; } std::string min_string = min_name; + PhreeqcPtr->PHRQ_free(min_name); Utilities::str_tolower(min_string); std::map >::const_iterator it = PhreeqcPtr->rate_parameters_pk.find(min_string); if (it == PhreeqcPtr->rate_parameters_pk.end()) @@ -3420,6 +3423,7 @@ factor(struct LOC_exec * LINK) break; } std::string min_string = min_name; + PhreeqcPtr->PHRQ_free(min_name); Utilities::str_tolower(min_string); std::map >::const_iterator it = PhreeqcPtr->rate_parameters_svd.find(min_string); if (it == PhreeqcPtr->rate_parameters_svd.end()) @@ -3574,6 +3578,7 @@ factor(struct LOC_exec * LINK) break; } std::string min_string = min_name; + PhreeqcPtr->PHRQ_free(min_name); Utilities::str_tolower(min_string); std::map >::const_iterator it = PhreeqcPtr->rate_parameters_hermanska.find(min_string); if (it == PhreeqcPtr->rate_parameters_hermanska.end()) @@ -3667,6 +3672,7 @@ factor(struct LOC_exec * LINK) break; } std::string min_string = min_name; + PhreeqcPtr->PHRQ_free(min_name); Utilities::str_tolower(min_string); std::map::const_iterator it = PhreeqcPtr->mean_gammas.find(min_string); if (it == PhreeqcPtr->mean_gammas.end() || it->second.size() == 0) @@ -5403,7 +5409,9 @@ cmdput_(struct LOC_exec* LINK) require(toklp, LINK); /* get first argumen */ - std::string s_value = strexpr(LINK); + char* str = strexpr(LINK); + std::string s_value = str; + PhreeqcPtr->PHRQ_free(str); for (;;) { From 1efeb356693a42a67a7d7ccf60982c06e882dfdf Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Mon, 13 May 2024 18:45:27 +0000 Subject: [PATCH 158/384] Squashed 'phreeqcpp/' changes from 8f6cb45..07c887a 07c887a [phreeqci] Removed assert since svn -r8264(3.1.0 -- 2013-11-27) fails opening ex6 git-subtree-dir: phreeqcpp git-subtree-split: 07c887a02026b1c0bfc6019d09b8ed45e22bb678 --- read.cpp | 3 --- 1 file changed, 3 deletions(-) diff --git a/read.cpp b/read.cpp index f3a556b8..9a60114c 100644 --- a/read.cpp +++ b/read.cpp @@ -4763,9 +4763,6 @@ read_selected_output(void) temp_selected_output.Set_percent_error ( so_ref.Get_percent_error() ); temp_selected_output.Set_have_punch_name ( so_ref.Get_have_punch_name() ); temp_selected_output.Set_file_name ( so_ref.Get_file_name() ); -#if PHREEQCI_GUI - assert(false); -#endif } else if (n_user == 1 && so == SelectedOutput_map.end()) { From ee42c30eeefcb8f2404f9026068668dfc3358025 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Mon, 13 May 2024 16:59:42 -0600 Subject: [PATCH 159/384] Updated GET$/PUT$ documentation --- RELEASE.TXT | 56 ++++++++++++++++++++++++++--------------------------- 1 file changed, 28 insertions(+), 28 deletions(-) diff --git a/RELEASE.TXT b/RELEASE.TXT index d7870b7e..92a3d4aa 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -7,13 +7,13 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ -dw Dw(25C) dw_T a a2 visc a3 a_v_dif where, - Dw(25C)Tracer diffusion coefficient for the species at 25 C, m 2 /s. - dw_TTemperature dependence for diffusion coefficient. - aDebye-Huckel ion size. - a2exponent. - ViscViscosity exponent. - a3Ionic strength exponent. - A_v_difExponent for (viscosity_0/viscosity). + Dw(25C)�Tracer diffusion coefficient for the species at 25 �C, m 2 /s. + dw_T�Temperature dependence for diffusion coefficient. + a�Debye-Huckel ion size. + a2�exponent. + Visc�Viscosity exponent. + a3�Ionic strength exponent. + A_v_dif�Exponent for (viscosity_0/viscosity). The diffusion coefficient is calculated as follows: Dw = Dw(25C) * exp(dw_T / T - dw_T / 298.15) @@ -145,9 +145,9 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 April 21, 2024 ----------------- PHREEQC: Added Basic functions GET$ and PUT$. They are are the same as - GET and PUT, except the first argument is a character string. You may - one or more indices as needed to identify the value that is put or - gotten. + GET and PUT, except the first argument for PUT$ is a character string, + and GET$ returns a character string. You may use one or more indices as + needed to identify the value that is saved (PUT$) or retrieved (GET$). PUT$("MgCl2", 1, 1, 1) x$ = GET$(1, 1, 1) @@ -181,11 +181,11 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 March 25, 2024 ----------------- DATABASES phreeqc.dat, Amm.dat, and pitzer.dat: The calculation of the - specific conductance can now be done with a Debye-Hckel-Onsager equation + specific conductance can now be done with a Debye-H�ckel-Onsager equation that has both the electrophoretic and the relaxation term. (The standard phreeqc calculation uses a simple electrophoretic term only.) For individual ions, the equation can be multiplied with the viscosity ratio of - the solvent and the solution, and the ion-size a in the Debye-Hckel term + the solvent and the solution, and the ion-size a in the Debye-H�ckel term kappa_a can be made a function of the apparent molar volume of the ion. The options are described and used in the databases. The additions extend the applicability of the DHO equation to concentrations in the molar range, @@ -270,7 +270,7 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 first viscosity parameter was set to 0. Defined -analytical_expression and -gamma for Na2SO4, K2SO4 and MgSO4 and Mg(SO4)2-2 species in - phreeqc.dat and Amm.dat, fitting the activities from pitzer.dat from 0-200 C, and the solubilities of + phreeqc.dat and Amm.dat, fitting the activities from pitzer.dat from 0-200 �C, and the solubilities of mirabilite/thenardite (Na2SO4), arcanite (K2SO4), and epsomite, hexahydrite, kieserite (MgSO4 and new species Mg(SO4)2-2). The parameters for calculating the apparent volume (-Vm) and the diffusion coefficients (-Dw) of the species were adapted using measured data of density and @@ -297,7 +297,7 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 where eta is the viscosity of the solution (mPa s), eta0 is viscosity of pure water at the temperature and pressure of the solution, mi is the molality of species i, made dimensionless - by dividing by 1 molal, and zi is the absolute charge number. A is derived from Debye-Hckel + by dividing by 1 molal, and zi is the absolute charge number. A is derived from Debye-H�ckel theory, and fan, B, D and n are coefficients that incorporate volume, ionic strength and temperature effects. @@ -305,8 +305,8 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 B = b0 + b1 exp(-b2 tC) - where b0, b1, and b2 are coefficients, and tC is the temperature in C. The temperature is - limited to 200C. + where b0, b1, and b2 are coefficients, and tC is the temperature in �C. The temperature is + limited to 200�C. fan = (2 - tan * Van / VCl-) @@ -361,8 +361,8 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 It will set Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc and Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |zi| * I 0.5 / (1 + DH_B * I 0.5 * 1e-10 / (1 + I 0.75))), - where viscos_0_25 is the viscosity of pure water at 25 C, viscos_0_tc is the viscosity of pure - water at the temperature of the solution. DH_A and DH_B are Debye-Hckel parameters, + where viscos_0_25 is the viscosity of pure water at 25 �C, viscos_0_tc is the viscosity of pure + water at the temperature of the solution. DH_A and DH_B are Debye-H�ckel parameters, retrievable with PHREEQC Basic. @@ -373,7 +373,7 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 The correction is applied when the option is set true in TRANSPORT, item -multi_D: -multi_d true 1e-9 0.3 0.05 1.0 true # multicomponent diffusion - # true/false, default tracer diffusion coefficient (Dw = 1e-9 m2/s) in water at 25 C (used in + # true/false, default tracer diffusion coefficient (Dw = 1e-9 m2/s) in water at 25 �C (used in case -dw is not defined for a species), porosity (por = 0.3), limiting porosity (0.05) below which diffusion stops, exponent n (1.0) used in calculating the porewater diffusion coefficient Dp = Dw * por^n, true/false: correct Dw for ionic strength (false by default). @@ -846,8 +846,8 @@ DH_BDOT("Na+") Debye-Huckel species-specific ionic strength coefficient. Busenberg (1982) used in pitzer.dat. Modified the -analytical_expression for dolomite in - phreeqc.dat and pitzer.dat, using data at 25C from Hemingway - and Robie (1994) and 50-175C from Bnzeth et al. (2018), GCA + phreeqc.dat and pitzer.dat, using data at 25�C from Hemingway + and Robie (1994) and 50-175�C from B�n�zeth et al. (2018), GCA 224, 262-275. ------------- @@ -1793,7 +1793,7 @@ Version 3.4.0: November 9, 2017 (svn 12927) where the first number is the diffusion coeficient at 25 C, and the second number is a damping factor for the temperature correction, as proposed by Smolyakov, according to Anderko and Lencka, - 1997, Ind. Chem. Eng. Res. 36, 19321943: + 1997, Ind. Chem. Eng. Res. 36, 1932�1943: Dw(TK) = 9.31e-9 * exp(763 / TK - 763 / 298.15) * TK * 0.89 / (298.15 * viscos). @@ -2041,7 +2041,7 @@ Version 3.3.8: September 13, 2016 (svn 11728) This function identifies all of the kinetic reactants in the current KINETICS definition and returns the sum of moles of all kinetic reactants. Count is number of kinetic - reactants. Name$ contains the kinetic reactant names. Type$ is kin. Moles contains the + reactants. Name$ contains the kinetic reactant names. Type$ is �kin�. Moles contains the moles of each kinetic reactant. The chemical formula used in the kinetic reaction can be determined by using a reaction name from Name$ as the first argument of the KINETICS_FORMULA$ Basic function. @@ -3252,11 +3252,11 @@ Version 3.0.0: February 1, 2013 reactions, the nonideal gas formulation of Peng and Robinson, and charting. All features of PHREEQC Version 3 are documented in U.S. Geological Survey - Techniques and Methods 6-A43, Description of input + Techniques and Methods 6-A43, �Description of input and examples for PHREEQC Version 3--A computer program for speciation, batch-reaction, one- dimensional transport, and inverse geochemical - calculations, available at + calculations�, available at http://pubs.usgs.gov/tm/06/a43/. Features not previously documented include Pitzer and SIT aqueous models, CD-MUSIC surface complexation, isotopic @@ -4283,12 +4283,12 @@ Version 2.17.0: February 25, 2010 log(K) of an exchange-half reaction depends on the equivalent fraction on the exchanger: - log(K) = log_k + a_f * (1 - _i) + log(K) = log_k + a_f * (1 - �_i) where log_k is the log of the equilibrium constant when all the sites are occupied by ion i, a_f is an empirical coefficient, and - _i is the equivalent fraction of i. + �_i is the equivalent fraction of i. a_f can be defined in EXCHANGE_SPECIES with -gamma after the WATEQ Debye-Hueckel parameters. @@ -4299,7 +4299,7 @@ Version 2.17.0: February 25, 2010 -gamma 4.0 0.075 0.50 The association constant for NaX becomes: - log(K) = -0.5 + 0.50 * (1 - _Na) + log(K) = -0.5 + 0.50 * (1 - �_Na) -------- svn 3453 From 0bcc9db07a7dd19664fca28f2498c8ab8ec61b99 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Wed, 15 May 2024 17:15:36 -0600 Subject: [PATCH 160/384] Tony tweaked phreeqc_rates.dat and added rate_xmpls test case. --- phreeqc_rates.dat | 849 +++++++++++++++++++++++++--------------------- 1 file changed, 470 insertions(+), 379 deletions(-) diff --git a/phreeqc_rates.dat b/phreeqc_rates.dat index 787c3083..d37b379d 100644 --- a/phreeqc_rates.dat +++ b/phreeqc_rates.dat @@ -1917,70 +1917,84 @@ Pyrolusite # Montmorillonite # Na, K, Mg, Ca exchange, Hermanska rate for the TOT layer # PHASES # defined for formulas and affinities of kinetic (mostly) dissolving minerals -# Unless noted otherwise, data from ThermoddemV1.10_15Dec2020.dat. +# Unless noted otherwise, data from ThermoddemV1.10_15Dec2020.dat, +# tidied with lsp.exe from https://phreeplot.org/lsp/lsp.html + Actinolite # Hornblende, Ferroactinolite -Ca2(Mg2.25Fe2.5Al0.25)(Si7.75Al0.25)O22(OH)2 + 15H+ + 7H2O = 0.500Al+3 + 2Ca+2 + 2.500Fe+2 + 2.250Mg+2 + 7.750H4SiO4 - log_k 7.128 - delta_h -181.662 #kJ/mol #19bla/lac - -analytic -5.0954182E+3 -6.949504E-1 3.0825312E+5 1.8133351E+3 -1.8767155E+7 +Ca2(Mg2.25Fe2.5Al0.25)(Si7.75Al0.25)O22(OH)2 + 15 H+ + 7 H2O = 0.5 Al+3 + 2 Ca+2 + 2.5 Fe+2 + 2.25 Mg+2 + 7.75 H4SiO4 + log_k 7.128 + delta_h -181.662 #kJ/mol #19bla/lac + -analytic -5.0954182E3 -6.949504E-1 3.0825312E5 1.8133351E3 -1.8767155E7 + Almandine # (alpha) -Fe3Al2Si3O12 + 12H+ = 2Al+3 + 3Fe+2 + 3H4SiO4 - log_k 42.180 - delta_h -458.683 #kJ/mol #95rob/hem - -analytic -3.0848427E+3 -4.4981168E-1 1.9672956E+5 1.0990475E+3 -1.0509115E+7 +Fe3Al2Si3O12 + 12 H+ = 2 Al+3 + 3 Fe+2 + 3 H4SiO4 + log_k 42.18 + delta_h -458.683 #kJ/mol #95rob/hem + -analytic -3.0848427E3 -4.4981168E-1 1.9672956E5 1.0990475E3 -1.0509115E7 + Analcime -Na0.99Al0.99Si2.01O6:H2O + 3.960H+ + 1.040H2O = 0.990Al+3 + 0.990Na+ + 2.010H4SiO4 - log_k 6.654 - delta_h -98 #kJ/mol #04neu/hov - -analytic -1.3403358E+3 -1.8135021E-1 8.3684586E+4 4.7527556E+2 -4.9476886E+6 +Na0.99Al0.99Si2.01O6:H2O + 3.96 H+ + 1.04 H2O = 0.99 Al+3 + 0.99 Na+ + 2.01 H4SiO4 + log_k 6.654 + delta_h -98 #kJ/mol #04neu/hov + -analytic -1.3403358E3 -1.8135021E-1 8.3684586E4 4.7527556E2 -4.9476886E6 + Andalusite -Al2SiO5 + 6H+ = 2Al+3 + 1H4SiO4 + 1H2O - log_k 16.206 - delta_h -244.610 #kJ/mol #Internal calculation - -analytic -1.339469E+3 -2.048042E-1 8.5279067E+4 4.7661954E+2 -4.3249835E+6 +Al2SiO5 + 6 H+ = 2 Al+3 + H4SiO4 + H2O + log_k 16.206 + delta_h -244.61 #kJ/mol #Internal calculation + -analytic -1.339469E3 -2.048042E-1 8.5279067E4 4.7661954E2 -4.3249835E6 + Andesine # defined for elemental release Na0.6Ca0.4Si2.6Al1.4O8 + 8 H2O = 0.6 Na+ + 0.4 Ca+2 + 2.6 H4SiO4 + 1.4 Al(OH)4- Andradite -Ca3Fe2Si3O12 + 12H+ = 3Ca+2 + 2Fe+3 + 3H4SiO4 - log_k 33.787 - delta_h -327.864 #kJ/mol #Internal calculation - -analytic -2.9077837E+3 -4.2372897E-1 1.7981493E+5 1.040602E+3 -9.7870213E+6 +Ca3Fe2Si3O12 + 12 H+ = 3 Ca+2 + 2 Fe+3 + 3 H4SiO4 + log_k 33.787 + delta_h -327.864 #kJ/mol #Internal calculation + -analytic -2.9077837E3 -4.2372897E-1 1.7981493E5 1.040602E3 -9.7870213E6 + Anglesite -PbSO4 = 1Pb+2 + 1SO4-2 - log_k -7.848 - delta_h 11.550 #kJ/mol #89cox/wag - -analytic -1.6531905E+3 -2.6395706E-1 9.1051907E+4 5.9877724E+2 -5.5987833E+6 +PbSO4 = Pb+2 + SO4-2 + log_k -7.848 + delta_h 11.55 #kJ/mol #89cox/wag + -analytic -1.6531905E3 -2.6395706E-1 9.1051907E4 5.9877724E2 -5.5987833E6 + Annite -KFe3(AlSi3)O10(OH)2 + 10H+ = 1Al+3 + 3Fe+2 + 1K+ + 3H4SiO4 - log_k 32.771 - delta_h -306.153 #kJ/mol #92cir/nav - -analytic -2.6382558E+3 -3.7460641E-1 1.6621477E+5 9.4111433E+2 -9.2002058E+6 +KFe3(AlSi3)O10(OH)2 + 10 H+ = Al+3 + 3 Fe+2 + K+ + 3 H4SiO4 + log_k 32.771 + delta_h -306.153 #kJ/mol #92cir/nav + -analytic -2.6382558E3 -3.7460641E-1 1.6621477E5 9.4111433E2 -9.2002058E6 + Anorthite -Ca(Al2Si2)O8 + 8H+ = 2Al+3 + 1Ca+2 + 2H4SiO4 - log_k 24.235 - delta_h -303.522 #kJ/mol #95rob/hem - -analytic -1.9788284E+3 -2.9190197E-1 1.2612201E+5 7.0425974E+2 -6.7173266E+6 +Ca(Al2Si2)O8 + 8 H+ = 2 Al+3 + Ca+2 + 2 H4SiO4 + log_k 24.235 + delta_h -303.522 #kJ/mol #95rob/hem + -analytic -1.9788284E3 -2.9190197E-1 1.2612201E5 7.0425974E2 -6.7173266E6 + Anthophyllite -Mg7Si8O22(OH)2 + 14H+ + 8H2O = 7Mg+2 + 8H4SiO4 - log_k 73.783 - delta_h -583.247 #kJ/mol #95rob/hem - -analytic -5.2321622E+3 -7.0079895E-1 3.3845592E+5 1.8579984E+3 -1.9360477E+7 +Mg7Si8O22(OH)2 + 14 H+ + 8 H2O = 7 Mg+2 + 8 H4SiO4 + log_k 73.783 + delta_h -583.247 #kJ/mol #95rob/hem + -analytic -5.2321622E3 -7.0079895E-1 3.3845592E5 1.8579984E3 -1.9360477E7 + Antigorite -Mg48Si34O85(OH)62 + 96H+ = 48Mg+2 + 34H4SiO4 + 11H2O - log_k 500.080 - delta_h -3743.421 #kJ/mol #98hol/pow - -analytic -2.9383249E+4 -4.0195982E+0 1.8738549E+6 1.0481455E+4 -1.0123582E+8 +Mg48Si34O85(OH)62 + 96 H+ = 48 Mg+2 + 34 H4SiO4 + 11 H2O + log_k 500.08 + delta_h -3743.421 #kJ/mol #98hol/pow + -analytic -2.9383249E4 -4.0195982 1.8738549E6 1.0481455E4 -1.0123582E8 + # As2S3 # Orpiment # no As in phreeqc.dat # As2S3 + 6H2O = 2H2AsO3- + 3HS- + 5H+ - # log_k -65.110 - # delta_h 334.975 #kJ/mol #Internal calculation - # -analytic -2.5599772E+3 -4.2267991E-1 1.1988784E+5 9.3328822E+2 -8.0517057E+6 +# log_k -65.110 +# delta_h 334.975 #kJ/mol #Internal calculation +# -analytic -2.5599772E+3 -4.2267991E-1 1.1988784E+5 9.3328822E+2 -8.0517057E+6 + Augite # Pyroxene(CaAl) -CaAl(AlSi)O6 + 8H+ = 2Al+3 + 1Ca+2 + 1H4SiO4 + 2H2O - log_k 36.234 - delta_h -370.792 #kJ/mol #Internal calculation - -analytic -1.5908243E+3 -2.4603865E-1 1.0453251E+5 5.681931E+2 -4.9909659E+6 +CaAl(AlSi)O6 + 8 H+ = 2 Al+3 + Ca+2 + H4SiO4 + 2 H2O + log_k 36.234 + delta_h -370.792 #kJ/mol #Internal calculation + -analytic -1.5908243E3 -2.4603865E-1 1.0453251E5 5.681931E2 -4.9909659E6 + Biotite # defined for elemental release KFe3(AlSi3)O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Fe+2 + 3 H4SiO4 @@ -1988,272 +2002,323 @@ Bronzite # defined for elemental release Mg0.8Fe0.2SiO3 + 2 H+ + H2O = 0.8 Mg+2 + 0.2 Fe+2 + H4SiO4 Brucite -Mg(OH)2 + 2H+ = 1Mg+2 + 2H2O - log_k 17.112 - delta_h -114.518 #kJ/mol #08bla - -analytic -3.5641635E+2 -5.3167189E-2 2.4317829E+4 1.2873122E+2 -9.5286882E+5 -Bytownite # defined for elemental release +Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O + log_k 17.112 + delta_h -114.518 #kJ/mol #08bla + -analytic -3.5641635E2 -5.3167189E-2 2.4317829E4 1.2873122E2 -9.5286882E5 + +Bytownite # defined for elemental release Na0.2Ca0.8Si2.2Al1.8O8 + 8 H2O = 0.2 Na+ + 0.8 Ca+2 + 2.2 H4SiO4 + 1.8 Al(OH)4- Chabazite -Ca(Al2Si4)O12:6H2O + 8H+ = 2Al+3 + 1Ca+2 + 4H4SiO4 + 2H2O - log_k 11.541 - delta_h -200.464 #kJ/mol #08bla - -analytic -2.5875779E+3 -3.5298441E-1 1.6180839E+5 9.1700928E+2 -9.5494778E+6 +Ca(Al2Si4)O12:6H2O + 8 H+ = 2 Al+3 + Ca+2 + 4 H4SiO4 + 2 H2O + log_k 11.541 + delta_h -200.464 #kJ/mol #08bla + -analytic -2.5875779E3 -3.5298441E-1 1.6180839E5 9.1700928E2 -9.5494778E6 + Chamosite(Daphnite) -Fe5Al(AlSi3)O10(OH)8 + 16H+ = 2Al+3 + 5Fe+2 + 3H4SiO4 + 6H2O - log_k 47.603 - delta_h -497.518 #kJ/mol #01vid/par - -analytic -3.7422355E+3 -5.4789298E-1 2.3185338E+5 1.338448E+3 -1.2120616E+7 +Fe5Al(AlSi3)O10(OH)8 + 16 H+ = 2 Al+3 + 5 Fe+2 + 3 H4SiO4 + 6 H2O + log_k 47.603 + delta_h -497.518 #kJ/mol #01vid/par + -analytic -3.7422355E3 -5.4789298E-1 2.3185338E5 1.338448E3 -1.2120616E7 + Chrysotile -Mg3Si2O5(OH)4 + 6H+ = 3Mg+2 + 2H4SiO4 + 1H2O - log_k 33.182 - delta_h -244.552 #kJ/mol #04eva - -analytic -1.8039877E+3 -2.4743291E-1 1.1552931E+5 6.4375706E+2 -6.1763163E+6 +Mg3Si2O5(OH)4 + 6 H+ = 3 Mg+2 + 2 H4SiO4 + H2O + log_k 33.182 + delta_h -244.552 #kJ/mol #04eva + -analytic -1.8039877E3 -2.4743291E-1 1.1552931E5 6.4375706E2 -6.1763163E6 + Clinochlore -Mg5Al(AlSi3)O10(OH)8 + 16H+ = 2Al+3 + 5Mg+2 + 3H4SiO4 + 6H2O - log_k 61.706 - delta_h -593.773 #kJ/mol #05vid/par - -analytic -3.933293E+3 -5.6860144E-1 2.4698841E+5 1.4055516E+3 -1.2607E+7 +Mg5Al(AlSi3)O10(OH)8 + 16 H+ = 2 Al+3 + 5 Mg+2 + 3 H4SiO4 + 6 H2O + log_k 61.706 + delta_h -593.773 #kJ/mol #05vid/par + -analytic -3.933293E3 -5.6860144E-1 2.4698841E5 1.4055516E3 -1.2607E7 + Clinoptilolite(Ca) -Ca0.55(Si4.9Al1.1)O12:3.9H2O + 4.400H+ + 3.700H2O = 1.100Al+3 + 0.550Ca+2 + 4.900H4SiO4 - log_k -2.085 - delta_h -58.407 #kJ/mol #09bla - -analytic -2.3815518E+3 -3.0085981E-1 1.4942318E+5 8.390927E+2 -9.6254008E+6 +Ca0.55(Si4.9Al1.1)O12:3.9H2O + 4.4 H+ + 3.7 H2O = 1.1 Al+3 + 0.55 Ca+2 + 4.9 H4SiO4 + log_k -2.085 + delta_h -58.407 #kJ/mol #09bla + -analytic -2.3815518E3 -3.0085981E-1 1.4942318E5 8.390927E2 -9.6254008E6 + Clinoptilolite(K) -K1.1(Si4.9Al1.1)O12:2.7H2O + 4.400H+ + 4.900H2O = 1.100Al+3 + 1.100K+ + 4.900H4SiO4 - log_k -1.142 - delta_h -49.035 #kJ/mol #09bla - -analytic -2.3148616E+3 -2.905299E-1 1.4612903E+5 8.1530832E+2 -9.5298429E+6 +K1.1(Si4.9Al1.1)O12:2.7H2O + 4.4 H+ + 4.9 H2O = 1.1 Al+3 + 1.1 K+ + 4.9 H4SiO4 + log_k -1.142 + delta_h -49.035 #kJ/mol #09bla + -analytic -2.3148616E3 -2.905299E-1 1.4612903E5 8.1530832E2 -9.5298429E6 + Clinoptilolite(Na) -Na1.1(Si4.9Al1.1)O12:3.5H2O + 4.400H+ + 4.100H2O = 1.100Al+3 + 1.100Na+ + 4.900H4SiO4 - log_k -0.113 - delta_h -50.769 #kJ/mol #09bla - -analytic -2.3846087E+3 -2.9645291E-1 1.4988094E+5 8.401942E+2 -9.6738611E+6 +Na1.1(Si4.9Al1.1)O12:3.5H2O + 4.4 H+ + 4.1 H2O = 1.1 Al+3 + 1.1 Na+ + 4.9 H4SiO4 + log_k -0.113 + delta_h -50.769 #kJ/mol #09bla + -analytic -2.3846087E3 -2.9645291E-1 1.4988094E5 8.401942E2 -9.6738611E6 + Cordierite -Mg2Al3(AlSi5)O18 + 16H+ + 2H2O = 4Al+3 + 2Mg+2 + 5H4SiO4 - log_k 49.433 - delta_h -648.745 #kJ/mol #95rob/hem - -analytic -4.3696636E+3 -6.2958321E-1 2.8022776E+5 1.5507866E+3 -1.5147654E+7 +Mg2Al3(AlSi5)O18 + 16 H+ + 2 H2O = 4 Al+3 + 2 Mg+2 + 5 H4SiO4 + log_k 49.433 + delta_h -648.745 #kJ/mol #95rob/hem + -analytic -4.3696636E3 -6.2958321E-1 2.8022776E5 1.5507866E3 -1.5147654E7 + Cristobalite # (alpha) -SiO2 + 2H2O = 1H4SiO4 - log_k -3.158 - delta_h 18.829 #kJ/mol #04fab/sax - -analytic -3.544017E+2 -4.1702635E-2 2.2114271E+4 1.2427357E+2 -1.6001472E+6 +SiO2 + 2 H2O = H4SiO4 + log_k -3.158 + delta_h 18.829 #kJ/mol #04fab/sax + -analytic -3.544017E2 -4.1702635E-2 2.2114271E4 1.2427357E2 -1.6001472E6 + # Cristobalite(beta) # SiO2 + 2H2O = 1H4SiO4 - # log_k -3.096 - # #delta_h 0 #kJ/mol - # -analytic -3.6088361E+2 -4.1957223E-2 2.2873339E+4 1.2628239E+2 -1.6799304E+6 +# log_k -3.096 +# #delta_h 0 #kJ/mol +# -analytic -3.6088361E+2 -4.1957223E-2 2.2873339E+4 1.2628239E+2 -1.6799304E+6 + Dawsonite -NaAlCO3(OH)2 + 3H+ = 1Al+3 + 1HCO3- + 1Na+ + 2H2O - log_k 4.327 - delta_h -76.330 #kJ/mol #76fer/stu - -analytic -1.21599E+3 -1.9110794E-1 6.8919359E+4 4.3970018E+2 -3.7220307E+6 +NaAlCO3(OH)2 + 3 H+ = Al+3 + HCO3- + Na+ + 2 H2O + log_k 4.327 + delta_h -76.33 #kJ/mol #76fer/stu + -analytic -1.21599E3 -1.9110794E-1 6.8919359E4 4.3970018E2 -3.7220307E6 + Diaspore -AlO(OH) + 3H+ = 1Al+3 + 2H2O - log_k 6.866 - delta_h -108.760 #kJ/mol #95rob/hem - -analytic -4.8201662E+2 -7.7930965E-2 2.9964822E+4 1.7237439E+2 -1.3257386E+6 +AlO(OH) + 3 H+ = Al+3 + 2 H2O + log_k 6.866 + delta_h -108.76 #kJ/mol #95rob/hem + -analytic -4.8201662E2 -7.7930965E-2 2.9964822E4 1.7237439E2 -1.3257386E6 + Diopside -CaMg(SiO3)2 + 4H+ + 2H2O = 1Ca+2 + 1Mg+2 + 2H4SiO4 - log_k 21.743 - delta_h -153.574 #kJ/mol #Internal calculation - -analytic -1.332806E+3 -1.8198553E-1 8.603858E+4 4.749095E+2 -4.8802351E+6 +CaMg(SiO3)2 + 4 H+ + 2 H2O = Ca+2 + Mg+2 + 2 H4SiO4 + log_k 21.743 + delta_h -153.574 #kJ/mol #Internal calculation + -analytic -1.332806E3 -1.8198553E-1 8.603858E4 4.749095E2 -4.8802351E6 + Dolomite(disordered) -CaMg(CO3)2 + 2H+ = 2HCO3- + 1Ca+2 + 1Mg+2 - log_k 4.299 - delta_h -73.162 #kJ/mol #78hel/del,92ajoh - -analytic -1.7814432E+3 -2.8852695E-1 9.9263747E+4 6.4714027E+2 -5.5533944E+6 +CaMg(CO3)2 + 2 H+ = 2 HCO3- + Ca+2 + Mg+2 + log_k 4.299 + delta_h -73.162 #kJ/mol #78hel/del,92ajoh + -analytic -1.7814432E3 -2.8852695E-1 9.9263747E4 6.4714027E2 -5.5533944E6 + Edenite # (alpha) -Na(Ca2Mg5)(AlSi7)O22(OH)2 + 18H+ + 4H2O = 1Al+3 + 2Ca+2 + 5Mg+2 + 1Na+ + 7H4SiO4 - log_k 81.946 - delta_h -679.296 #kJ/mol #97got - -analytic -5.4623009E+3 -7.5241996E-1 3.5051336E+5 1.9444511E+3 -1.942E+7 +Na(Ca2Mg5)(AlSi7)O22(OH)2 + 18 H+ + 4 H2O = Al+3 + 2 Ca+2 + 5 Mg+2 + Na+ + 7 H4SiO4 + log_k 81.946 + delta_h -679.296 #kJ/mol #97got + -analytic -5.4623009E3 -7.5241996E-1 3.5051336E5 1.9444511E3 -1.942E7 + Enstatite # (alpha) -MgSiO3 + 2H+ + 1H2O = 1Mg+2 + 1H4SiO4 - log_k 11.844 - delta_h -93.265 #kJ/mol #78hel/del - -analytic -7.0139177E+2 -9.4618096E-2 4.5846726E+4 2.4912172E+2 -2.5565294E+6 +MgSiO3 + 2 H+ + H2O = Mg+2 + H4SiO4 + log_k 11.844 + delta_h -93.265 #kJ/mol #78hel/del + -analytic -7.0139177E2 -9.4618096E-2 4.5846726E4 2.4912172E2 -2.5565294E6 + Epidote -Ca2FeAl2Si3O12(OH) + 13H+ = 2Al+3 + 2Ca+2 + 1Fe+3 + 3H4SiO4 + 1H2O - log_k 32.230 - delta_h -411.613 #kJ/mol #04got - -analytic -3.1567388E+3 -4.6487997E-1 1.9676775E+5 1.1260692E+3 -1.0558252E+7 +Ca2FeAl2Si3O12(OH) + 13 H+ = 2 Al+3 + 2 Ca+2 + Fe+3 + 3 H4SiO4 + H2O + log_k 32.23 + delta_h -411.613 #kJ/mol #04got + -analytic -3.1567388E3 -4.6487997E-1 1.9676775E5 1.1260692E3 -1.0558252E7 + Fayalite -Fe2SiO4 + 4H+ = 2Fe+2 + 1H4SiO4 - log_k 19.030 - delta_h -157.157 #kJ/mol #Internal calculation - -analytic -1.0258478E+3 -1.4618015E-1 6.6129821E+4 3.6618221E+2 -3.5053712E+6 +Fe2SiO4 + 4 H+ = 2 Fe+2 + H4SiO4 + log_k 19.03 + delta_h -157.157 #kJ/mol #Internal calculation + -analytic -1.0258478E3 -1.4618015E-1 6.6129821E4 3.6618221E2 -3.5053712E6 + Ferroactinolite # = Ferrotremolite -(Ca2Fe5)Si8O22(OH)2 + 14H+ + 8H2O = 2Ca+2 + 5Fe+2 + 8H4SiO4 - log_k 53.699 - delta_h -412.225 #kJ/mol #Internal calculation - -analytic -4.942592E+3 -6.6976495E-1 3.1400258E+5 1.7585882E+3 -1.8552107E+7 +(Ca2Fe5)Si8O22(OH)2 + 14 H+ + 8 H2O = 2 Ca+2 + 5 Fe+2 + 8 H4SiO4 + log_k 53.699 + delta_h -412.225 #kJ/mol #Internal calculation + -analytic -4.942592E3 -6.6976495E-1 3.1400258E5 1.7585882E3 -1.8552107E7 + Fluorapatite # (Natur) -Ca5(PO4)3F + 6H+ = 5Ca+2 + 1F- + 3H2PO4- - log_k -0.910 - delta_h -115.601 #kJ/mol #Internal calculation - -analytic -3.7675938E+3 -6.2227437E-1 2.0719593E+5 1.369906E+3 -1.1775417E+7 +Ca5(PO4)3F + 6 H+ = 5 Ca+2 + F- + 3 H2PO4- + log_k -0.91 + delta_h -115.601 #kJ/mol #Internal calculation + -analytic -3.7675938E3 -6.2227437E-1 2.0719593E5 1.369906E3 -1.1775417E7 + Forsterite -Mg2SiO4 + 4H+ = 2Mg+2 + 1H4SiO4 - log_k 28.609 - delta_h -217.115 #kJ/mol #Internal calculation - -analytic -1.0983766E+3 -1.5385695E-1 7.321503E+4 3.91599E+2 -3.7061609E+6 +Mg2SiO4 + 4 H+ = 2 Mg+2 + H4SiO4 + log_k 28.609 + delta_h -217.115 #kJ/mol #Internal calculation + -analytic -1.0983766E3 -1.5385695E-1 7.321503E4 3.91599E2 -3.7061609E6 + Glauconite -(K0.75Mg0.25Fe1.5Al0.25)(Al0.25Si3.75)O10(OH)2 + 7H+ + 3H2O = 0.500Al+3 + 1.250Fe+3 + 0.750K+ + 0.250Mg+2 + 3.750H4SiO4 + 0.250Fe+2 - log_k 1.873 - delta_h -120.903 #kJ/mol #15bla/vie - -analytic -2.3976207E+3 -3.2091227E-1 1.4807364E+5 8.4865741E+2 -9.0151175E+6 +(K0.75Mg0.25Fe1.5Al0.25)(Al0.25Si3.75)O10(OH)2 + 7 H+ + 3 H2O = 0.5 Al+3 + 1.25 Fe+3 + 0.75 K+ + 0.25 Mg+2 + 3.75 H4SiO4 + 0.25 Fe+2 + log_k 1.873 + delta_h -120.903 #kJ/mol #15bla/vie + -analytic -2.3976207E3 -3.2091227E-1 1.4807364E5 8.4865741E2 -9.0151175E6 + Glaucophane -Na2(Mg3Al2)Si8O22(OH)2 + 14H+ + 8H2O = 2Al+3 + 3Mg+2 + 2Na+ + 8H4SiO4 - log_k 37.026 - delta_h -378.727 #kJ/mol #95rob/hem - -analytic -5.095188E+3 -6.8518568E-1 3.2040873E+5 1.8087612E+3 -1.9006796E+7 +Na2(Mg3Al2)Si8O22(OH)2 + 14 H+ + 8 H2O = 2 Al+3 + 3 Mg+2 + 2 Na+ + 8 H4SiO4 + log_k 37.026 + delta_h -378.727 #kJ/mol #95rob/hem + -analytic -5.095188E3 -6.8518568E-1 3.2040873E5 1.8087612E3 -1.9006796E7 + Grossular -Ca3Al2Si3O12 + 12H+ = 2Al+3 + 3Ca+2 + 3H4SiO4 - log_k 49.372 - delta_h -442.383 #kJ/mol #95rob/hem - -analytic -2.9566754E+3 -4.3410622E-1 1.8868769E+5 1.057027E+3 -1.0038715E+7 +Ca3Al2Si3O12 + 12 H+ = 2 Al+3 + 3 Ca+2 + 3 H4SiO4 + log_k 49.372 + delta_h -442.383 #kJ/mol #95rob/hem + -analytic -2.9566754E3 -4.3410622E-1 1.8868769E5 1.057027E3 -1.0038715E7 # Hornblende # see Actinolite, Edenite, Pargasite, Ferroactinolite -Heulandite(Na) -Na2.14Al2.14Si6.86O18:6.17H2O + 8.560H+ + 3.270H2O = 2.140Al+3 + 2.140Na+ + 6.860H4SiO4 - log_k 2.797 - delta_h -126.775 #kJ/mol #09bla - -analytic -3.7890714E+3 -4.9720069E-1 2.3269508E+5 1.3423841E+3 -1.4400431E+7 Heulandite(Ca) -Ca1.07Al2.14Si6.86O18:6.17H2O + 8.560H+ + 3.270H2O = 2.140Al+3 + 1.070Ca+2 + 6.860H4SiO4 - log_k 2.457 - delta_h -139.108 #kJ/mol #09bla - -analytic -3.7607701E+3 -5.0483789E-1 2.3083824E+5 1.3337643E+3 -1.4294418E+7 +Ca1.07Al2.14Si6.86O18:6.17H2O + 8.56 H+ + 3.27 H2O = 2.14 Al+3 + 1.07 Ca+2 + 6.86 H4SiO4 + log_k 2.457 + delta_h -139.108 #kJ/mol #09bla + -analytic -3.7607701E3 -5.0483789E-1 2.3083824E5 1.3337643E3 -1.4294418E7 + # Ilmenite # Ti not in phreeqc.dat # FeTiO3 + 2H+ + 1H2O = 1Fe+2 + 1Ti(OH)4 - # log_k 1.816 - # delta_h -87.445 #kJ/mol #Internal calculation - # -analytic -7.7719505E+2 -8.1479565E-2 4.34898E+4 2.7302259E+2 -1.612373E+6 +# log_k 1.816 +# delta_h -87.445 #kJ/mol #Internal calculation +# -analytic -7.7719505E+2 -8.1479565E-2 4.34898E+4 2.7302259E+2 -1.612373E+6 + +Heulandite(Na) +Na2.14Al2.14Si6.86O18:6.17H2O + 8.56 H+ + 3.27 H2O = 2.14 Al+3 + 2.14 Na+ + 6.86 H4SiO4 + log_k 2.797 + delta_h -126.775 #kJ/mol #09bla + -analytic -3.7890714E3 -4.9720069E-1 2.3269508E5 1.3423841E3 -1.4400431E7 + Jadeite -NaAl(SiO3)2 + 4H+ + 2H2O = 1Al+3 + 1Na+ + 2H4SiO4 - log_k 7.561 - delta_h -95.502 #kJ/mol #95rob/hem - -analytic -1.3237509E+3 -1.8118316E-1 8.2628986E+4 4.7016122E+2 -4.9060741E+6 +NaAl(SiO3)2 + 4 H+ + 2 H2O = Al+3 + Na+ + 2 H4SiO4 + log_k 7.561 + delta_h -95.502 #kJ/mol #95rob/hem + -analytic -1.3237509E3 -1.8118316E-1 8.2628986E4 4.7016122E2 -4.9060741E6 + Kyanite -Al2SiO5 + 6H+ = 2Al+3 + 1H4SiO4 + 1H2O - log_k 15.936 - delta_h -240.322 #kJ/mol #Internal calculation - -analytic -1.3447799E+3 -2.0581745E-1 8.5324148E+4 4.7877192E+2 -4.3369481E+6 -Labradorite # defined for elemental release +Al2SiO5 + 6 H+ = 2 Al+3 + H4SiO4 + H2O + log_k 15.936 + delta_h -240.322 #kJ/mol #Internal calculation + -analytic -1.3447799E3 -2.0581745E-1 8.5324148E4 4.7877192E2 -4.3369481E6 + +Labradorite # defined for elemental release Na0.4Ca0.6Si2.4Al1.6O8 + 8 H2O = 0.4 Na+ + 0.6 Ca+2 + 2.4 H4SiO4 + 1.6 Al(OH)4- Larnite(alpha) -Ca2SiO4 + 4H+ = 2Ca+2 + 1H4SiO4 - log_k 39.044 - delta_h -238.161 #kJ/mol #95rob/hem - -analytic -8.9908942E+2 -1.301379E-1 6.3335055E+4 3.2296168E+2 -3.0793446E+6 +Ca2SiO4 + 4 H+ = 2 Ca+2 + H4SiO4 + log_k 39.044 + delta_h -238.161 #kJ/mol #95rob/hem + -analytic -8.9908942E2 -1.301379E-1 6.3335055E4 3.2296168E2 -3.0793446E6 + Larnite(beta) -Ca2SiO4 + 4H+ = 2Ca+2 + 1H4SiO4 - log_k 39.322 - #delta_h 0 #kJ/mol - -analytic -9.0365527E+2 -1.3027777E-1 6.4015139E+4 3.243254E+2 -3.1477489E+6 +Ca2SiO4 + 4 H+ = 2 Ca+2 + H4SiO4 + log_k 39.322 +#delta_h 0 #kJ/mol + -analytic -9.0365527E2 -1.3027777E-1 6.4015139E4 3.243254E2 -3.1477489E6 + Larnite(gamma) -Ca2SiO4 + 4H+ = 2Ca+2 + 1H4SiO4 - log_k 41.444 - #delta_h 0 #kJ/mol - -analytic -8.7896206E+2 -1.2907359E-1 6.3430487E+4 3.1585123E+2 -3.1477489E+6 +Ca2SiO4 + 4 H+ = 2 Ca+2 + H4SiO4 + log_k 41.444 +#delta_h 0 #kJ/mol + -analytic -8.7896206E2 -1.2907359E-1 6.3430487E4 3.1585123E2 -3.1477489E6 + Laumontite -Ca(Al2Si4)O12:4H2O + 8H+ = 2Al+3 + 1Ca+2 + 4H4SiO4 - log_k 11.695 - delta_h -204.244 #kJ/mol #96kis/nav - -analytic -2.6447429E+3 -3.6684244E-1 1.6419074E+5 9.3900001E+2 -9.6343473E+6 +Ca(Al2Si4)O12:4H2O + 8 H+ = 2 Al+3 + Ca+2 + 4 H4SiO4 + log_k 11.695 + delta_h -204.244 #kJ/mol #96kis/nav + -analytic -2.6447429E3 -3.6684244E-1 1.6419074E5 9.3900001E2 -9.6343473E6 + Leonhardtite -MgSO4:4H2O = 1Mg+2 + 1SO4-2 + 4H2O - log_k -0.886 - delta_h -24.030 #kJ/mol #74nau/ryz - -analytic -1.8009396E+3 -2.6450971E-1 9.9216758E+4 6.5010323E+2 -5.5554353E+6 +MgSO4:4H2O = Mg+2 + SO4-2 + 4 H2O + log_k -0.886 + delta_h -24.03 #kJ/mol #74nau/ryz + -analytic -1.8009396E3 -2.6450971E-1 9.9216758E4 6.5010323E2 -5.5554353E6 + Leucite # minteq.dat - KAlSi2O6 + 2H2O + 4H+ = 2H4SiO4 + Al+3 + K+ - log_k 6.423 - delta_h -22.085 kcal +KAlSi2O6 + 2 H2O + 4 H+ = 2 H4SiO4 + Al+3 + K+ + log_k 6.423 + delta_h -22.085 kcal + Lizardite -Mg3Si2O5(OH)4 + 6H+ = 3Mg+2 + 2H4SiO4 + 1H2O - log_k 33.093 - delta_h -242.552 #kJ/mol #04eva - -analytic -1.8045338E+3 -2.475614E-1 1.1546724E+5 6.4405193E+2 -6.1786442E+6 +Mg3Si2O5(OH)4 + 6 H+ = 3 Mg+2 + 2 H4SiO4 + H2O + log_k 33.093 + delta_h -242.552 #kJ/mol #04eva + -analytic -1.8045338E3 -2.475614E-1 1.1546724E5 6.4405193E2 -6.1786442E6 + Magnetite -Fe3O4 + 8H+ = 2Fe+3 + 1Fe+2 + 4H2O - log_k 10.362 - delta_h -215.594 #kJ/mol #90hem - -analytic -1.3520774E+3 -2.1498134E-1 8.0017747E+4 4.8502632E+2 -3.7344997E+6 +Fe3O4 + 8 H+ = 2 Fe+3 + Fe+2 + 4 H2O + log_k 10.362 + delta_h -215.594 #kJ/mol #90hem + -analytic -1.3520774E3 -2.1498134E-1 8.0017747E4 4.8502632E2 -3.7344997E6 + Microcline -K(AlSi3)O8 + 4H+ + 4H2O = 1Al+3 + 1K+ + 3H4SiO4 - log_k 0.015 - delta_h -49.203 #kJ/mol #95rob/hem - -analytic -1.6018728E+3 -2.1339241E-1 9.9207574E+4 5.6723025E+2 -6.2943433E+6 +K(AlSi3)O8 + 4 H+ + 4 H2O = Al+3 + K+ + 3 H4SiO4 + log_k 0.015 + delta_h -49.203 #kJ/mol #95rob/hem + -analytic -1.6018728E3 -2.1339241E-1 9.9207574E4 5.6723025E2 -6.2943433E6 + Montmorillonite(HcCa) -Ca0.3Mg0.6Al1.4Si4O10(OH)2 + 6H+ + 4H2O = 1.400Al+3 + 0.300Ca+2 + 0.600Mg+2 + 4H4SiO4 - log_k 6.903 - delta_h -154.564 #kJ/mol #15bla/vie - -analytic -2.3616529E+3 -3.1379357E-1 1.4899818E+5 8.3431323E+2 -9.0744862E+6 +Ca0.3Mg0.6Al1.4Si4O10(OH)2 + 6 H+ + 4 H2O = 1.4 Al+3 + 0.3 Ca+2 + 0.6 Mg+2 + 4 H4SiO4 + log_k 6.903 + delta_h -154.564 #kJ/mol #15bla/vie + -analytic -2.3616529E3 -3.1379357E-1 1.4899818E5 8.3431323E2 -9.0744862E6 + Montmorillonite(HcK) -K0.6Mg0.6Al1.4Si4O10(OH)2 + 6H+ + 4H2O = 1.400Al+3 + 0.600K+ + 0.600Mg+2 + 4H4SiO4 - log_k 4.449 - delta_h -119.628 #kJ/mol #15bla/vie - -analytic -2.3324885E+3 -3.0832834E-1 1.4605682E+5 8.2462838E+2 -9.022722E+6 +K0.6Mg0.6Al1.4Si4O10(OH)2 + 6 H+ + 4 H2O = 1.4 Al+3 + 0.6 K+ + 0.6 Mg+2 + 4 H4SiO4 + log_k 4.449 + delta_h -119.628 #kJ/mol #15bla/vie + -analytic -2.3324885E3 -3.0832834E-1 1.4605682E5 8.2462838E2 -9.022722E6 + Montmorillonite(HcMg) -Mg0.3Mg0.6Al1.4Si4O10(OH)2 + 6H+ + 4H2O = 1.400Al+3 + 0.900Mg+2 + 4H4SiO4 - log_k 5.996 - delta_h -156.964 #kJ/mol #15bla/vie - -analytic -2.3909331E+3 -3.1726069E-1 1.5070041E+5 8.4429278E+2 -9.163021E+6 +Mg0.3Mg0.6Al1.4Si4O10(OH)2 + 6 H+ + 4 H2O = 1.4 Al+3 + 0.9 Mg+2 + 4 H4SiO4 + log_k 5.996 + delta_h -156.964 #kJ/mol #15bla/vie + -analytic -2.3909331E3 -3.1726069E-1 1.5070041E5 8.4429278E2 -9.163021E6 + Montmorillonite(HcNa) -Na0.6Mg0.6Al1.4Si4O10(OH)2 + 6H+ + 4H2O = 1.400Al+3 + 0.600Mg+2 + 0.600Na+ + 4H4SiO4 - log_k 5.472 - delta_h -135.658 #kJ/mol #15bla/vie - -analytic -2.3671642E+3 -3.1193536E-1 1.486659E+5 8.3634354E+2 -9.1085654E+6 +Na0.6Mg0.6Al1.4Si4O10(OH)2 + 6 H+ + 4 H2O = 1.4 Al+3 + 0.6 Mg+2 + 0.6 Na+ + 4 H4SiO4 + log_k 5.472 + delta_h -135.658 #kJ/mol #15bla/vie + -analytic -2.3671642E3 -3.1193536E-1 1.486659E5 8.3634354E2 -9.1085654E6 + Montmorillonite(MgCa) -Ca0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.170Ca+2 + 0.340Mg+2 + 4H4SiO4 - log_k 4.222 - delta_h -146.668 #kJ/mol #15bla/vie - -analytic -2.3648299E+3 -3.1580182E-1 1.4861699E+5 8.3532612E+2 -9.0862785E+6 +Ca0.17Mg0.34Al1.66Si4O10(OH)2 + 6 H+ + 4 H2O = 1.66 Al+3 + 0.17 Ca+2 + 0.34 Mg+2 + 4 H4SiO4 + log_k 4.222 + delta_h -146.668 #kJ/mol #15bla/vie + -analytic -2.3648299E3 -3.1580182E-1 1.4861699E5 8.3532612E2 -9.0862785E6 + Montmorillonite(MgK) -K0.34Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.340K+ + 0.340Mg+2 + 4H4SiO4 - log_k 2.830 - delta_h -126.865 #kJ/mol #15bla/vie - -analytic -2.3483045E+3 -3.1270489E-1 1.4694997E+5 8.2983827E+2 -9.056946E+6 +K0.34Mg0.34Al1.66Si4O10(OH)2 + 6 H+ + 4 H2O = 1.66 Al+3 + 0.34 K+ + 0.34 Mg+2 + 4 H4SiO4 + log_k 2.83 + delta_h -126.865 #kJ/mol #15bla/vie + -analytic -2.3483045E3 -3.1270489E-1 1.4694997E5 8.2983827E2 -9.056946E6 + Montmorillonite(MgMg) -Mg0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.510Mg+2 + 4H4SiO4 - log_k 3.708 - delta_h -148.028 #kJ/mol #15bla/vie - -analytic -2.3814282E+3 -3.1776702E-1 1.4958186E+5 8.4098328E+2 -9.1364559E+6 +Mg0.17Mg0.34Al1.66Si4O10(OH)2 + 6 H+ + 4 H2O = 1.66 Al+3 + 0.51 Mg+2 + 4 H4SiO4 + log_k 3.708 + delta_h -148.028 #kJ/mol #15bla/vie + -analytic -2.3814282E3 -3.1776702E-1 1.4958186E5 8.4098328E2 -9.1364559E6 + Montmorillonite(MgNa) -Na0.34Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.340Mg+2 + 0.340Na+ + 4H4SiO4 - log_k 3.411 - delta_h -135.953 #kJ/mol #15bla/vie - -analytic -2.3679565E+3 -3.1474933E-1 1.4842879E+5 8.3647775E+2 -9.1055977E+6 +Na0.34Mg0.34Al1.66Si4O10(OH)2 + 6 H+ + 4 H2O = 1.66 Al+3 + 0.34 Mg+2 + 0.34 Na+ + 4 H4SiO4 + log_k 3.411 + delta_h -135.953 #kJ/mol #15bla/vie + -analytic -2.3679565E3 -3.1474933E-1 1.4842879E5 8.3647775E2 -9.1055977E6 + MordeniteB # (Ca) -Ca0.515Al1.03Si4.97O12:3.1H2O + 4.120H+ + 4.780H2O = 1.030Al+3 + 0.515Ca+2 + 4.970H4SiO4 - log_k -2.898 - delta_h -56.278 #kJ/mol #09bla - -analytic -2.3577543E+3 -2.9682032E-1 1.4847577E+5 8.2993876E+2 -9.6241393E+6 +Ca0.515Al1.03Si4.97O12:3.1H2O + 4.12 H+ + 4.78 H2O = 1.03 Al+3 + 0.515 Ca+2 + 4.97 H4SiO4 + log_k -2.898 + delta_h -56.278 #kJ/mol #09bla + -analytic -2.3577543E3 -2.9682032E-1 1.4847577E5 8.2993876E2 -9.6241393E6 + MordeniteJ -Ca0.289Na0.362Al0.94Si5.06O12:3.468H2O + 3.760H+ + 4.772H2O = 0.940Al+3 + 0.289Ca+2 + 0.362Na+ + 5.060H4SiO4 - log_k -4.160 - delta_h -29.442 #kJ/mol #92joh/tas - -analytic -2.3112502E+3 -2.9430315E-1 1.4403365E+5 8.1541676E+2 -9.418252E+6 +Ca0.289Na0.362Al0.94Si5.06O12:3.468H2O + 3.76 H+ + 4.772 H2O = 0.94 Al+3 + 0.289 Ca+2 + 0.362 Na+ + 5.06 H4SiO4 + log_k -4.16 + delta_h -29.442 #kJ/mol #92joh/tas + -analytic -2.3112502E3 -2.9430315E-1 1.4403365E5 8.1541676E2 -9.418252E6 + Muscovite # (ordered) -KAl2(AlSi3)O10(OH)2 + 10H+ = 3Al+3 + 1K+ + 3H4SiO4 - log_k 11.353 - delta_h -253.923 #kJ/mol #06bla/pia - -analytic -2.5862792E+3 -3.7607072E-1 1.5907562E+5 9.2024545E+2 -8.9668534E+6 +KAl2(AlSi3)O10(OH)2 + 10 H+ = 3 Al+3 + K+ + 3 H4SiO4 + log_k 11.353 + delta_h -253.923 #kJ/mol #06bla/pia + -analytic -2.5862792E3 -3.7607072E-1 1.5907562E5 9.2024545E2 -8.9668534E6 + Natrolite -Na2(Al2Si3)O10:2H2O + 8H+ = 2Al+3 + 2Na+ + 3H4SiO4 - log_k 19.326 - delta_h -215.463 #kJ/mol #83joh/flo - -analytic -2.303612E+3 -3.1993458E-1 1.4352482E+5 8.1980235E+2 -8.1431211E+6 +Na2(Al2Si3)O10:2H2O + 8 H+ = 2 Al+3 + 2 Na+ + 3 H4SiO4 + log_k 19.326 + delta_h -215.463 #kJ/mol #83joh/flo + -analytic -2.303612E3 -3.1993458E-1 1.4352482E5 8.1980235E2 -8.1431211E6 + Nepheline -Na(AlSi)O4 + 4H+ = 1Al+3 + 1Na+ + 1H4SiO4 - log_k 14.077 - delta_h -144.506 #kJ/mol #Internal calculation - -analytic -9.7409139E+2 -1.3955693E-1 6.2423687E+4 3.467383E+2 -3.3400695E+6 +Na(AlSi)O4 + 4 H+ = Al+3 + Na+ + H4SiO4 + log_k 14.077 + delta_h -144.506 #kJ/mol #Internal calculation + -analytic -9.7409139E2 -1.3955693E-1 6.2423687E4 3.467383E2 -3.3400695E6 + Oligoclase # defined for elemental release Na0.8Ca0.2Si2.8Al1.2O8 + 8 H2O = 0.8 Na+ + 0.2 Ca+2 + 2.8 H4SiO4 + 1.2 Al(OH)4- @@ -2261,155 +2326,181 @@ Palygorskite # defined for elemental release Mg2Al2Si8O20(OH)2:8H2O + 10 H+ + 2 H2O = 2 Mg+2 + 2 Al+3 + 8 H4SiO4 Paragonite -NaAl2(AlSi3)O10(OH)2 + 10H+ = 3Al+3 + 1Na+ + 3H4SiO4 - log_k 16.804 - delta_h -294.623 #kJ/mol #96rou/hov - -analytic -2.6452559E+3 -3.8247258E-1 1.64246E+5 9.4070011E+2 -9.1107641E+6 +NaAl2(AlSi3)O10(OH)2 + 10 H+ = 3 Al+3 + Na+ + 3 H4SiO4 + log_k 16.804 + delta_h -294.623 #kJ/mol #96rou/hov + -analytic -2.6452559E3 -3.8247258E-1 1.64246E5 9.4070011E2 -9.1107641E6 + Pargasite # Hornblende -Na(Ca2Mg4Al)(Al2Si6)O22(OH)2 + 22H+ = 3Al+3 + 2Ca+2 + 4Mg+2 + 1Na+ + 6H4SiO4 - log_k 104.557 - delta_h -940.614 #kJ/mol #Internal calculation - -analytic -5.7962939E+3 -8.2700886E-1 3.7555969E+5 2.0652064E+3 -1.9772394E+7 +Na(Ca2Mg4Al)(Al2Si6)O22(OH)2 + 22 H+ = 3 Al+3 + 2 Ca+2 + 4 Mg+2 + Na+ + 6 H4SiO4 + log_k 104.557 + delta_h -940.614 #kJ/mol #Internal calculation + -analytic -5.7962939E3 -8.2700886E-1 3.7555969E5 2.0652064E3 -1.9772394E7 + Phlogopite -KMg3(AlSi3)O10(OH)2 + 10H+ = 1Al+3 + 1K+ + 3Mg+2 + 3H4SiO4 - log_k 41.098 - delta_h -353.123 #kJ/mol #92cir/nav - -analytic -2.7194067E+3 -3.8106546E-1 1.7318081E+5 9.69566E+2 -9.4102646E+6 +KMg3(AlSi3)O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Mg+2 + 3 H4SiO4 + log_k 41.098 + delta_h -353.123 #kJ/mol #92cir/nav + -analytic -2.7194067E3 -3.8106546E-1 1.7318081E5 9.69566E2 -9.4102646E6 + Prehnite -Ca2Al2Si3O10(OH)2 + 10H+ = 2Al+3 + 2Ca+2 + 3H4SiO4 - log_k 32.596 - delta_h -339.617 #kJ/mol #98cha/kru - -analytic -2.6255465E+3 -3.8041883E-1 1.6586587E+5 9.3642007E+2 -9.0549681E+6 +Ca2Al2Si3O10(OH)2 + 10 H+ = 2 Al+3 + 2 Ca+2 + 3 H4SiO4 + log_k 32.596 + delta_h -339.617 #kJ/mol #98cha/kru + -analytic -2.6255465E3 -3.8041883E-1 1.6586587E5 9.3642007E2 -9.0549681E6 + Pyrophyllite -Al2Si4O10(OH)2 + 6H+ + 4H2O = 2Al+3 + 4H4SiO4 - log_k -0.418 - delta_h -128.924 #kJ/mol #95rob/hem - -analytic -2.3595061E+3 -3.237303E-1 1.4585394E+5 8.3524091E+2 -8.9193526E+6 +Al2Si4O10(OH)2 + 6 H+ + 4 H2O = 2 Al+3 + 4 H4SiO4 + log_k -0.418 + delta_h -128.924 #kJ/mol #95rob/hem + -analytic -2.3595061E3 -3.237303E-1 1.4585394E5 8.3524091E2 -8.9193526E6 + Pyrrhotite(Hx) # Pyrrhotite -FeS + 1H+ = 1Fe+2 + 1HS- - log_k -3.679 - delta_h -10.009 #kJ/mol #05wal/pel - -analytic -1.1321823E+3 -1.8235764E-1 6.1304821E+4 4.1103628E+2 -3.5403537E+6 +FeS + H+ = Fe+2 + HS- + log_k -3.679 + delta_h -10.009 #kJ/mol #05wal/pel + -analytic -1.1321823E3 -1.8235764E-1 6.1304821E4 4.1103628E2 -3.5403537E6 + Pyrrhotite(Mc) # Pyrrhotite -FeS + 1H+ = 1Fe+2 + 1HS- - log_k -3.679 - delta_h -10.009 #kJ/mol #05wal/pel - -analytic -1.1321823E+3 -1.8235764E-1 6.1304821E+4 4.1103628E+2 -3.5403537E+6 +FeS + H+ = Fe+2 + HS- + log_k -3.679 + delta_h -10.009 #kJ/mol #05wal/pel + -analytic -1.1321823E3 -1.8235764E-1 6.1304821E4 4.1103628E2 -3.5403537E6 + Rhyolite # a mixture of minerals, defined for elemental release... Na0.078K0.046Al0.26Si1.23O2.912 + 3.048 H2O = 0.136 H+ + 0.078 Na+ + 0.046 K+ + 0.26 Al(OH)4- + 1.23 H4SiO4 Riebeckite -Na2(Fe3Fe2)Si8O22(OH)2 + 14H+ + 8H2O = 3Fe+2 + 2Na+ + 8H4SiO4 + 2Fe+3 - log_k 9.199 - delta_h -197.377 #kJ/mol #98hol/pow - -analytic -5.0079102E+3 -6.7170777E-1 3.0608951E+5 1.7785742E+3 -1.8686839E+7 +Na2(Fe3Fe2)Si8O22(OH)2 + 14 H+ + 8 H2O = 3 Fe+2 + 2 Na+ + 8 H4SiO4 + 2 Fe+3 + log_k 9.199 + delta_h -197.377 #kJ/mol #98hol/pow + -analytic -5.0079102E3 -6.7170777E-1 3.0608951E5 1.7785742E3 -1.8686839E7 + Saponite(Ca) -Ca0.17Mg3Al0.34Si3.66O10(OH)2 + 7.360H+ + 2.640H2O = 0.340Al+3 + 0.170Ca+2 + 3Mg+2 + 3.660H4SiO4 - log_k 29.355 - delta_h -262.766 #kJ/mol #15bla/vie - -analytic -2.5667428E+3 -3.4039957E-1 1.6475488E+5 9.099285E+2 -9.472597E+6 +Ca0.17Mg3Al0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + 0.17 Ca+2 + 3 Mg+2 + 3.66 H4SiO4 + log_k 29.355 + delta_h -262.766 #kJ/mol #15bla/vie + -analytic -2.5667428E3 -3.4039957E-1 1.6475488E5 9.099285E2 -9.472597E6 + Saponite(FeCa) -Ca0.17Mg2FeAl0.34Si3.66O10(OH)2 + 7.360H+ + 2.640H2O = 0.340Al+3 + 0.170Ca+2 + 1Fe+2 + 2Mg+2 + 3.660H4SiO4 - log_k 26.569 - delta_h -250.636 #kJ/mol #15bla/vie - -analytic -2.5356344E+3 -3.373844E-1 1.6236385E+5 8.9871835E+2 -9.386812E+6 +Ca0.17Mg2FeAl0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + 0.17 Ca+2 + Fe+2 + 2 Mg+2 + 3.66 H4SiO4 + log_k 26.569 + delta_h -250.636 #kJ/mol #15bla/vie + -analytic -2.5356344E3 -3.373844E-1 1.6236385E5 8.9871835E2 -9.386812E6 + Saponite(FeK) -K0.34Mg2FeAl0.34Si3.66O10(OH)2 + 7.360H+ + 2.640H2O = 0.340Al+3 + 1Fe+2 + 0.340K+ + 2Mg+2 + 3.660H4SiO4 - log_k 25.398 - delta_h -232.093 #kJ/mol #15bla/vie - -analytic -2.515955E+3 -3.3384661E-1 1.6058454E+5 8.9209651E+2 -9.3470003E+6 +K0.34Mg2FeAl0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + Fe+2 + 0.34 K+ + 2 Mg+2 + 3.66 H4SiO4 + log_k 25.398 + delta_h -232.093 #kJ/mol #15bla/vie + -analytic -2.515955E3 -3.3384661E-1 1.6058454E5 8.9209651E2 -9.3470003E6 + Saponite(FeMg) -Mg0.17Mg2FeAl0.34Si3.66O10(OH)2 + 7.360H+ + 2.640H2O = 0.340Al+3 + 1Fe+2 + 2.170Mg+2 + 3.660H4SiO4 - log_k 26.022 - delta_h -251.806 #kJ/mol #15bla/vie - -analytic -2.5507675E+3 -3.3914471E-1 1.6323608E+5 9.0384868E+2 -9.4321235E+6 +Mg0.17Mg2FeAl0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + Fe+2 + 2.17 Mg+2 + 3.66 H4SiO4 + log_k 26.022 + delta_h -251.806 #kJ/mol #15bla/vie + -analytic -2.5507675E3 -3.3914471E-1 1.6323608E5 9.0384868E2 -9.4321235E6 + Saponite(FeNa) -Na0.34Mg2FeAl0.34Si3.66O10(OH)2 + 7.360H+ + 2.640H2O = 0.340Al+3 + 1Fe+2 + 2Mg+2 + 0.340Na+ + 3.660H4SiO4 - log_k 25.896 - delta_h -240.711 #kJ/mol #15bla/vie - -analytic -2.5368817E+3 -3.3606965E-1 1.6211086E+5 8.9919435E+2 -9.3999007E+6 +Na0.34Mg2FeAl0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + Fe+2 + 2 Mg+2 + 0.34 Na+ + 3.66 H4SiO4 + log_k 25.896 + delta_h -240.711 #kJ/mol #15bla/vie + -analytic -2.5368817E3 -3.3606965E-1 1.6211086E5 8.9919435E2 -9.3999007E6 + Saponite(K) -K0.33Mg3Al0.33Si3.67O10(OH)2 + 7.320H+ + 2.680H2O = 0.330Al+3 + 0.330K+ + 3Mg+2 + 3.670H4SiO4 - log_k 27.430 - delta_h -239.483 #kJ/mol #15bla/vie - -analytic -2.544416E+3 -3.3629993E-1 1.6263915E+5 9.0231366E+2 -9.4312976E+6 +K0.33Mg3Al0.33Si3.67O10(OH)2 + 7.32 H+ + 2.68 H2O = 0.33 Al+3 + 0.33 K+ + 3 Mg+2 + 3.67 H4SiO4 + log_k 27.43 + delta_h -239.483 #kJ/mol #15bla/vie + -analytic -2.544416E3 -3.3629993E-1 1.6263915E5 9.0231366E2 -9.4312976E6 + Saponite(Mg) -Mg0.17Mg3Al0.34Si3.66O10(OH)2 + 7.360H+ + 2.640H2O = 0.340Al+3 + 3.170Mg+2 + 3.660H4SiO4 - log_k 28.810 - delta_h -263.946 #kJ/mol #15bla/vie - -analytic -2.5818719E+3 -3.4215988E-1 1.6562747E+5 9.1505763E+2 -9.5179085E+6 +Mg0.17Mg3Al0.34Si3.66O10(OH)2 + 7.36 H+ + 2.64 H2O = 0.34 Al+3 + 3.17 Mg+2 + 3.66 H4SiO4 + log_k 28.81 + delta_h -263.946 #kJ/mol #15bla/vie + -analytic -2.5818719E3 -3.4215988E-1 1.6562747E5 9.1505763E2 -9.5179085E6 + Saponite(Na) -Na0.33Mg3Al0.33Si3.67O10(OH)2 + 7.320H+ + 2.680H2O = 0.330Al+3 + 3Mg+2 + 0.330Na+ + 3.670H4SiO4 - log_k 27.971 - delta_h -248.219 #kJ/mol #15bla/vie - -analytic -2.5647603E+3 -3.3846001E-1 1.6414122E+5 9.0921188E+2 -9.482682E+6 +Na0.33Mg3Al0.33Si3.67O10(OH)2 + 7.32 H+ + 2.68 H2O = 0.33 Al+3 + 3 Mg+2 + 0.33 Na+ + 3.67 H4SiO4 + log_k 27.971 + delta_h -248.219 #kJ/mol #15bla/vie + -analytic -2.5647603E3 -3.3846001E-1 1.6414122E5 9.0921188E2 -9.482682E6 + Saponite(SapCa) -(Na0.394K0.021Ca0.038)(Si3.569Al0.397)(Mg2.949Fe0.055)O10(OH)2 + 7.724H+ + 2.276H2O = 0.397Al+3 + 0.038Ca+2 + 0.034Fe+3 + 0.021K+ + 2.949Mg+2 + 0.394Na+ + 3.569H4SiO4 + 0.021Fe+2 - log_k 31.473 - delta_h -277.172 #kJ/mol #13gai/bla - -analytic -2.5790231E+3 -3.508959E-1 1.6429225E+5 9.168404E+2 -9.2969386E+6 +(Na0.394K0.021Ca0.038)(Si3.569Al0.397)(Mg2.949Fe0.055)O10(OH)2 + 7.724 H+ + 2.276 H2O = 0.397 Al+3 + 0.038 Ca+2 + 0.034 Fe+3 + 0.021 K+ + 2.949 Mg+2 + 0.394 Na+ + 3.569 H4SiO4 + 0.021 Fe+2 + log_k 31.473 + delta_h -277.172 #kJ/mol #13gai/bla + -analytic -2.5790231E3 -3.508959E-1 1.6429225E5 9.168404E2 -9.2969386E6 + Scolecite -CaAl2Si3O10:3H2O + 8H+ = 2Al+3 + 1Ca+2 + 3H4SiO4 + 1H2O - log_k 16.647 - delta_h -233.213 #kJ/mol #83joh/flo - -analytic -2.3692738E+3 -3.4026162E-1 1.4623007E+5 8.4431312E+2 -8.2035956E+6 +CaAl2Si3O10:3H2O + 8 H+ = 2 Al+3 + Ca+2 + 3 H4SiO4 + H2O + log_k 16.647 + delta_h -233.213 #kJ/mol #83joh/flo + -analytic -2.3692738E3 -3.4026162E-1 1.4623007E5 8.4431312E2 -8.2035956E6 + Smectite # (MX80) -Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.208)O10(OH)2 + 7.048H+ + 2.952H2O = 1.860Al+3 + 0.009Ca+2 + 0.173Fe+3 + 0.024K+ + 0.214Mg+2 + 0.409Na+ + 3.738H4SiO4 + 0.035Fe+2 - log_k 5.278 - delta_h -175.308 #kJ/mol #12gai/bla - -analytic -2.4267042E+3 -3.3712249E-1 1.5038583E+5 8.6021197E+2 -8.9284687E+6 +Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.208)O10(OH)2 + 7.048 H+ + 2.952 H2O = 1.86 Al+3 + 0.009 Ca+2 + 0.173 Fe+3 + 0.024 K+ + 0.214 Mg+2 + 0.409 Na+ + 3.738 H4SiO4 + 0.035 Fe+2 + log_k 5.278 + delta_h -175.308 #kJ/mol #12gai/bla + -analytic -2.4267042E3 -3.3712249E-1 1.5038583E5 8.6021197E2 -8.9284687E6 + Smectite(MX80:3.989H2O) -Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.208)O10(OH)2:3.989H2O + 7.048H+ = 1.860Al+3 + 0.009Ca+2 + 0.173Fe+3 + 0.024K+ + 0.214Mg+2 + 0.409Na+ + 3.738H4SiO4 + 0.035Fe+2 + 1.037H2O - log_k 1.774 - delta_h -148.524 #kJ/mol #12gai/bla - -analytic -2.3838609E+3 -3.2232449E-1 1.4844358E+5 8.4261556E+2 -8.9910004E+6 +Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.208)O10(OH)2:3.989H2O + 7.048 H+ = 1.86 Al+3 + 0.009 Ca+2 + 0.173 Fe+3 + 0.024 K+ + 0.214 Mg+2 + 0.409 Na+ + 3.738 H4SiO4 + 0.035 Fe+2 + 1.037 H2O + log_k 1.774 + delta_h -148.524 #kJ/mol #12gai/bla + -analytic -2.3838609E3 -3.2232449E-1 1.4844358E5 8.4261556E2 -8.9910004E6 + Smectite(MX80:5.189H2O) -Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.208)O10(OH)2:5.189H2O + 7.048H+ = 1.860Al+3 + 0.009Ca+2 + 0.173Fe+3 + 0.024K+ + 0.214Mg+2 + 0.409Na+ + 3.738H4SiO4 + 0.035Fe+2 + 2.237H2O - log_k 1.435 - delta_h -140.430 #kJ/mol #12gai/bla - -analytic -2.3706061E+3 -3.2008903E-1 1.4737914E+5 8.3812012E+2 -8.9524821E+6 +Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.208)O10(OH)2:5.189H2O + 7.048 H+ = 1.86 Al+3 + 0.009 Ca+2 + 0.173 Fe+3 + 0.024 K+ + 0.214 Mg+2 + 0.409 Na+ + 3.738 H4SiO4 + 0.035 Fe+2 + 2.237 H2O + log_k 1.435 + delta_h -140.43 #kJ/mol #12gai/bla + -analytic -2.3706061E3 -3.2008903E-1 1.4737914E5 8.3812012E2 -8.9524821E6 + Spodumene # from core10.dat - LiAlSi2O6 + 4 H+ + 2 H2O = Al+3 + Li+ + 2 H4SiO4 - log_k 6.9972 - -delta_H -89.1817 - -analytic -9.8111 2.1191e-3 9.6920e3 -3.0484 -7.8822e5 - -Vm 58.37 +LiAlSi2O6 + 4 H+ + 2 H2O = Al+3 + Li+ + 2 H4SiO4 + log_k 6.9972 + delta_h -89.1817 + -analytic -9.8111 2.1191e-3 9.692e3 -3.0484 -7.8822e5 + -Vm 58.37 + Staurolite -Fe2Al9Si4O23(OH) + 31H+ = 9Al+3 + 2Fe+2 + 4H4SiO4 + 8H2O - log_k 216.340 - delta_h -1956.484 #kJ/mol #87woo/gar - -analytic -6.5297334E+3 -1.0061427E+0 4.5225123E+5 2.3281295E+3 -2.0588442E+7 +Fe2Al9Si4O23(OH) + 31 H+ = 9 Al+3 + 2 Fe+2 + 4 H4SiO4 + 8 H2O + log_k 216.34 + delta_h -1956.484 #kJ/mol #87woo/gar + -analytic -6.5297334E3 -1.0061427 4.5225123E5 2.3281295E3 -2.0588442E7 + Stilbite -NaCa2(Al5Si13)O36:16H2O + 20H+ = 5Al+3 + 2Ca+2 + 1Na+ + 13H4SiO4 - log_k 23.044 - delta_h -403.823 #kJ/mol #01fri/neu - -analytic -7.4700792E+3 -1.0099722E+0 4.6170528E+5 2.6510812E+3 -2.7934606E+7 +NaCa2(Al5Si13)O36:16H2O + 20 H+ = 5 Al+3 + 2 Ca+2 + Na+ + 13 H4SiO4 + log_k 23.044 + delta_h -403.823 #kJ/mol #01fri/neu + -analytic -7.4700792E3 -1.0099722 4.6170528E5 2.6510812E3 -2.7934606E7 + Thomsonite # defined for elemental release -Na0.5CaAl2.5Si2.5O10:3H2O + 10H+ = 2.5 Al+3 + 0.5 Na+ + Ca+2 + 2.5 H4SiO4 + 3 H2O +Na0.5CaAl2.5Si2.5O10:3H2O + 10 H+ = 2.5 Al+3 + 0.5 Na+ + Ca+2 + 2.5 H4SiO4 + 3 H2O Tourmaline # defined for elemental release NaFe1.5Mg1.5Al6B3Si6O27(OH)4 + 26 H2O + H+ = Na+ + 1.5 Fe+2 + 1.5 Mg+2 + 6 Al(OH)4- + 3 H3BO3 + 6 H4SiO4 Tremolite -(Ca2Mg5)Si8O22(OH)2 + 14H+ + 8H2O = 2Ca+2 + 5Mg+2 + 8H4SiO4 - log_k 67.281 - delta_h -502.247 #kJ/mol #95rob/hem - -analytic -5.0977019E+3 -6.8545317E-1 3.2680746E+5 1.8129659E+3 -1.8919407E+7 +(Ca2Mg5)Si8O22(OH)2 + 14 H+ + 8 H2O = 2 Ca+2 + 5 Mg+2 + 8 H4SiO4 + log_k 67.281 + delta_h -502.247 #kJ/mol #95rob/hem + -analytic -5.0977019E3 -6.8545317E-1 3.2680746E5 1.8129659E3 -1.8919407E7 + # Uraninite # UO2 + 4 H+ = U+4 + 2 H2O # log_k -3.490 # delta_h -18.630 kcal -Wollastonite -CaSiO3 + 2H+ + 1H2O = 1Ca+2 + 1H4SiO4 - log_k 14.047 - delta_h -85.986 #kJ/mol #78hel/del,92ajoh - -analytic -6.3184784E+2 -8.6944016E-2 4.1722732E+4 2.2563038E+2 -2.3494013E+6 -Zoisite -Ca2Al3Si3O12(OH) + 13H+ = 3Al+3 + 2Ca+2 + 3H4SiO4 + 1H2O - log_k 43.848 - delta_h -485.113 #kJ/mol #01sme/fra - -analytic -3.1722373E+3 -4.6912132E-1 2.0150433E+5 1.1315082E+3 -1.0643978E+7 +Wollastonite +CaSiO3 + 2 H+ + H2O = Ca+2 + H4SiO4 + log_k 14.047 + delta_h -85.986 #kJ/mol #78hel/del,92ajoh + -analytic -6.3184784E2 -8.6944016E-2 4.1722732E4 2.2563038E2 -2.3494013E6 + +Zoisite +Ca2Al3Si3O12(OH) + 13 H+ = 3 Al+3 + 2 Ca+2 + 3 H4SiO4 + H2O + log_k 43.848 + delta_h -485.113 #kJ/mol #01sme/fra + -analytic -3.1722373E3 -4.6912132E-1 2.0150433E5 1.1315082E3 -1.0643978E7 RATE_PARAMETERS_PK # Acid Neutral Base @@ -2673,10 +2764,10 @@ Montmorillonite -end END -# Example input files for KINETICS calculations -# -# compare Albite kinetics using rates from the compilations -# ========================================================= +# # Example input files for KINETICS calculations +# # +# # compare Albite kinetics using rates from the compilations +# # ========================================================= # KINETICS 1 # Albite_PK @@ -2743,8 +2834,8 @@ END # 50 i = step_no : plot_xy ph(i), lk(i), line_width = 0, color = Black, y_axis = 2, symbol_size = 10, symbol = Circle # END -# compare rates for calcite dissolution -# ===================================== +# # compare rates for calcite dissolution +# # ===================================== # USER_GRAPH 1; -active false @@ -2786,8 +2877,8 @@ END # USER_GRAPH 2; -headings h Plummer.Wigley.Parkhurst # END -# compare rates for quartz dissolution -# ===================================== +# # compare rates for quartz dissolution +# # ===================================== # USER_GRAPH 2; -active false # SOLUTION 1 @@ -2854,8 +2945,8 @@ END # -headings H Rimstidt.et.al._NaCl # END -# Example input file for calculating montmorillonite dissolution -# ============================================================== +# # Example input file for calculating montmorillonite dissolution +# # ============================================================== # USER_GRAPH 3; -active false @@ -2961,7 +3052,7 @@ END # -cvode true # INCREMENTAL_REACTIONS true # USER_GRAPH 4 - # -headings time Na K Mg Ca + # -headings time Na K Mg Ca mm_diss # -axis_titles "Time / days" "Molality" "Montmorillonite dissolved / (mmol/kgw)" # -axis_scale x_axis auto auto auto auto log # -axis_scale y_axis auto auto auto auto log From 0b3f349ad3bb84d493fc4d54bb6537a1fcafbc15 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Thu, 16 May 2024 01:04:33 +0000 Subject: [PATCH 161/384] Squashed 'phreeqcpp/' changes from 07c887a..cb6d9f4 cb6d9f4 [phreeqci] Fixed phreeqci memory leaks 77df73c [phreeqci] Fixed memory leak for phreeqci 38a34f7 [phreeqci] Removed trailing whitespace git-subtree-dir: phreeqcpp git-subtree-split: cb6d9f49b0957bc431c0eca2c21711bfde4411e7 --- PBasic.cpp | 4 ++++ PhreeqcKeywords/Keywords.cpp | 12 ++++++------ 2 files changed, 10 insertions(+), 6 deletions(-) diff --git a/PBasic.cpp b/PBasic.cpp index 8701fde1..f0923558 100644 --- a/PBasic.cpp +++ b/PBasic.cpp @@ -3247,6 +3247,7 @@ factor(struct LOC_exec * LINK) char* min_name = strexpr(LINK); require(tokrp, LINK); if (parse_all) { + PhreeqcPtr->PHRQ_free(min_name); n.UU.val = 1; break; } @@ -3419,6 +3420,7 @@ factor(struct LOC_exec * LINK) char* min_name = strexpr(LINK); require(tokrp, LINK); if (parse_all) { + PhreeqcPtr->PHRQ_free(min_name); n.UU.val = 1; break; } @@ -3574,6 +3576,7 @@ factor(struct LOC_exec * LINK) char* min_name = strexpr(LINK); require(tokrp, LINK); if (parse_all) { + PhreeqcPtr->PHRQ_free(min_name); n.UU.val = 1; break; } @@ -3668,6 +3671,7 @@ factor(struct LOC_exec * LINK) char* min_name = strexpr(LINK); require(tokrp, LINK); if (parse_all) { + PhreeqcPtr->PHRQ_free(min_name); n.UU.val = 1; break; } diff --git a/PhreeqcKeywords/Keywords.cpp b/PhreeqcKeywords/Keywords.cpp index 8d52bb26..8b0e8c00 100644 --- a/PhreeqcKeywords/Keywords.cpp +++ b/PhreeqcKeywords/Keywords.cpp @@ -229,12 +229,12 @@ std::map::value_type(Keywords::KEY_RATE_P std::map::value_type(Keywords::KEY_RATE_PARAMETERS_SVD, "RATE_PARAMETERS_SVD"), std::map::value_type(Keywords::KEY_RATE_PARAMETERS_HERMANSKA, "RATE_PARAMETERS_HERMANSKA"), std::map::value_type(Keywords::KEY_MEAN_GAMMAS, "RATE_MEAN_GAMMAS"), -std::map::value_type(Keywords::KEY_SOLUTION_MIX, "SOLUTION_MIX"), -std::map::value_type(Keywords::KEY_EXCHANGE_MIX, "EXCHANGE_MIX"), -std::map::value_type(Keywords::KEY_GAS_PHASE_MIX, "GAS_PHASE_MIX"), -std::map::value_type(Keywords::KEY_KINETICS_MIX, "KINETICS_MIX"), +std::map::value_type(Keywords::KEY_SOLUTION_MIX, "SOLUTION_MIX"), +std::map::value_type(Keywords::KEY_EXCHANGE_MIX, "EXCHANGE_MIX"), +std::map::value_type(Keywords::KEY_GAS_PHASE_MIX, "GAS_PHASE_MIX"), +std::map::value_type(Keywords::KEY_KINETICS_MIX, "KINETICS_MIX"), std::map::value_type(Keywords::KEY_PPASSEMBLAGE_MIX, "EQUILIBRIUM_PHASES_MIX"), -std::map::value_type(Keywords::KEY_SSASSEMBLAGE_MIX, "SOLID_SOLUTIONS_MIX"), -std::map::value_type(Keywords::KEY_SURFACE_MIX, "SURFACE_MIX") +std::map::value_type(Keywords::KEY_SSASSEMBLAGE_MIX, "SOLID_SOLUTIONS_MIX"), +std::map::value_type(Keywords::KEY_SURFACE_MIX, "SURFACE_MIX") }; const std::map Keywords::phreeqc_keyword_names(temp_keyword_names, temp_keyword_names + sizeof temp_keyword_names / sizeof temp_keyword_names[0]); From 5faf092bf80d8cfa4561b05293506bc1469694a3 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Thu, 16 May 2024 09:32:24 -0600 Subject: [PATCH 162/384] Tony revisions to phreeqc_rates.dat and rate_xmpls --- phreeqc_rates.dat | 207 ++++++++++++++++++++++++++-------------------- 1 file changed, 116 insertions(+), 91 deletions(-) diff --git a/phreeqc_rates.dat b/phreeqc_rates.dat index d37b379d..6dfc1de9 100644 --- a/phreeqc_rates.dat +++ b/phreeqc_rates.dat @@ -1569,6 +1569,7 @@ SURFACE_SPECIES Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69 + MEAN_GAMMAS CaCl2 Ca+2 1 Cl- 2 CaSO4 Ca+2 1 SO4-2 1 @@ -1894,6 +1895,7 @@ Pyrolusite 110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME 200 SAVE moles * SOLN_VOL -end + # # Additional definition of PHASES, RATE parameters, and RATES examples # @@ -2676,98 +2678,21 @@ Sepiolite -11 5.89E-03 50.2 0.25 -13.2 8.00E-07 Spodumene -5.38 4.90E+02 46.1 0.5 -8.95 5.40E+06 89.5 0 0 0 0 Talc -11.1 4.42E-03 50.2 0.36 -12.9 1.56E-06 40.7 0 0 0 0 Wollastonite -6.97 700 56 0.4 0 0 0 -7.81 200 52 0.15 -# -# Example RATES definitions for Albite -# -RATES -Albite_PK # Palandri and Kharaka, 2004 -5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent -10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END -20 rate = RATE_PK("Albite") -30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 -40 SAVE area * rate * affinity * TIME --end -Albite_Svd # Sverdrup, 2019 -5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent -10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END -20 rate = RATE_SVD("Albite") -30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 -40 SAVE area * rate * affinity * TIME --end - -Albite_Hermanska # -5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent -10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END -20 rate = RATE_HERMANSKA("Albite") -30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 -40 SAVE area * rate * affinity * TIME --end -# -# Example RATES definition for Calcite -# -Calcite_PK # Palandri and Kharaka, 2004 -5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent -10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("calcite") : if affinity < parm(1) then SAVE 0 : END -20 rate = RATE_PK("calcite") -30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 -40 SAVE area * rate * affinity * TIME --end -# -# Example RATES definitions for Quartz -# -Quartz_PK # Palandri and Kharaka, 2004 -5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent -10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END -20 rate = RATE_PK("Quartz") -30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 -40 SAVE area * rate * affinity * TIME --end - -Quartz_Svd # Sverdrup, 2019 -5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent -10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END -20 rate = RATE_SVD("Quartz") -30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 -40 SAVE area * rate * affinity * TIME --end - -Quartz_Hermanska # -5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent -10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END -20 rate = RATE_HERMANSKA("Quartz") -30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 -40 SAVE area * rate * affinity * TIME --end - -Quartz_Rimstidt_Barnes -#1 rem Specific rate k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol, Rimstidt and Barnes, 1980, GCA 44, 1683 -5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent -10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END -20 rate = 10^-(13.7 + 4700 * (1 / 298 - 1 / TK)) * (1 + 1500*tot("Na")) # salt correction, Dove and Rimstidt, MSA Rev. 29, 259 -30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 -40 SAVE area * rate * affinity * TIME --end -# -# Example RATES definition for Montmorillonite, a solid solution with exchangeable cations reacting fast; their ratios are related to the changing solution composition and their amounts are connected to the kinetic reacting TOT layer. -# -# The affinity is related to a solid soution member, given by the fraction of the exchangeable cation (here Na+). The exchange species are defined in the (example) input file, below. -# -Montmorillonite -5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent -7 f_Na = (mol("Na0.34X_montm_mg") / tot("X_montm_mg")) -# 7 f_Na = (mol("NaX") / tot("X")) # when running with the default X exchange -10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgNa)") / f_Na -20 rate = RATE_HERMANSKA("Montmorillonite") / f_Na -30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 -40 SAVE area * rate * affinity * TIME --end -END - -# # Example input files for KINETICS calculations +# # Example input files with RATES for KINETICS calculations # # # # compare Albite kinetics using rates from the compilations + # # for the PARMS, see https://www.hydrochemistry.eu/exmpls/kin_silicates.html # # ========================================================= +# +# RATES +# Albite_PK # Palandri and Kharaka, 2004 +# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END +# 20 rate = RATE_PK("Albite") +# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +# 40 SAVE area * rate * affinity * TIME +# -end # KINETICS 1 # Albite_PK @@ -2803,6 +2728,15 @@ END # INCLUDE$ kinetic_rates_pH.inc # END +# RATES +# Albite_Svd # Sverdrup, 2019 +# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END +# 20 rate = RATE_SVD("Albite") +# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +# 40 SAVE area * rate * affinity * TIME +# -end + # KINETICS 1 # Albite_Svd # -formula NaAlSi3O8; -parms 0 1 20 0.67 # roughness = 20 @@ -2811,12 +2745,21 @@ END # END # KINETICS 1 -# Albite +# Albite # from Sverdrup and Warfvinge, 1995 # -formula NaAlSi3O8; -parms 1 20 # roughness = 20 # USER_GRAPH 1; -headings pH Sverdup`95*20 # INCLUDE$ kinetic_rates_pH.inc # END +# RATES +# Albite_Hermanska # 2022 +# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Albite") : if affinity < parm(1) then SAVE 0 : END +# 20 rate = RATE_HERMANSKA("Albite") +# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +# 40 SAVE area * rate * affinity * TIME +# -end + # KINETICS 1 # Albite_Hermanska # -formula NaAlSi3O8; -parms 0 1 1 0.67 @@ -2835,10 +2778,21 @@ END # END # # compare rates for calcite dissolution +# # of Palandri and Kharaka, 2004 and Plummer, Wigley and Parkhurst, 1978 +# # at different initial CO2 concentrations. # # ===================================== # USER_GRAPH 1; -active false +# RATES +# Calcite_PK # Palandri and Kharaka, 2004 +# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("calcite") : if affinity < parm(1) then SAVE 0 : END +# 20 rate = RATE_PK("calcite") +# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +# 40 SAVE area * rate * affinity * TIME +# -end + # SOLUTION 1 # pH 7 charge; C(4) 1 CO2(g) -2.5 # KINETICS 1 @@ -2878,9 +2832,20 @@ END # END # # compare rates for quartz dissolution +# # and the effect of NaCl # # ===================================== # USER_GRAPH 2; -active false + +# RATES +# Quartz_PK # Palandri and Kharaka, 2004 +# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END +# 20 rate = RATE_PK("Quartz") +# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +# 40 SAVE area * rate * affinity * TIME +# -end + # SOLUTION 1 # pH 7 charge # KINETICS 1 @@ -2894,6 +2859,15 @@ END # 10 graph_x total_time / 3.15e7 : graph_sy tot("Si") * 1e3 # END +# RATES +# Quartz_Hermanska # +# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END +# 20 rate = RATE_HERMANSKA("Quartz") +# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +# 40 SAVE area * rate * affinity * TIME +# -end + # USE solution 1 # KINETICS 1 # Quartz_Hermanska @@ -2904,6 +2878,15 @@ END # -headings H Hermanska # END +# RATES +# Quartz_Svd # Sverdrup, 2019 +# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END +# 20 rate = RATE_SVD("Quartz") +# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +# 40 SAVE area * rate * affinity * TIME +# -end + # USE solution 1 # KINETICS 1 # Quartz_Svd @@ -2914,6 +2897,16 @@ END # -headings H Sverdup # END +# RATES +# Quartz_Rimstidt_Barnes +# #1 rem Specific rate k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol, Rimstidt and Barnes, 1980, GCA 44, 1683 +# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END +# 20 rate = 10^-(13.7 + 4700 * (1 / 298 - 1 / TK)) * (1 + 1500*tot("Na")) # salt correction, Dove and Rimstidt, MSA Rev. 29, 259 +# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +# 40 SAVE area * rate * affinity * TIME +# -end + # USE solution 1 # KINETICS 1 # Quartz_Rimstidt_Barnes @@ -2945,11 +2938,43 @@ END # -headings H Rimstidt.et.al._NaCl # END -# # Example input file for calculating montmorillonite dissolution -# # ============================================================== +# # Example input file for calculating kinetic dissolution of Montmorillonite, +# # a solid solution with exchangeable cations reacting fast; +# # their ratios are related to the changing solution composition, +# # and their amounts are connected to the kinetic reacting TOT layer. +# # +# # The affinity is related to a solid solution member, given by the fraction of the +# # exchangeable cation (here Na+ or Ca+2). For the Gapon exchange formula, +# # the exchange species and their log_k`s are from the solid solution members in ThermoddemV1 +# # For the Gaines Thomas formula, the Mg+2 and Ca+2 species are redefined. +# # It also shows how the default X exchanger can be invkoed. +# # # ============================================================== # USER_GRAPH 3; -active false +# RATES +# Montmorillonite +# 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent +# # Gapon and Gaines-Tomas exchange formulas +# 7 f_Na = (mol("Na0.34X_montm_mg") / tot("X_montm_mg")) +# 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgNa)") / f_Na +# 20 rate = RATE_HERMANSKA("Montmorillonite") / f_Na + +# # # Gapon, with Ca as exchange species... +# # 7 f_Ca = (mol("Ca0.17X_montm_mg") / tot("X_montm_mg")) +# # # use SR("Montmorillonite(Mgca)") +# # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgCa)") / f_Ca +# # 20 rate = RATE_HERMANSKA("Montmorillonite") / f_Ca + +# # # Gaines-Thomas exchange formula, with Ca as exchange species, uncomment the Gaines-Thomas EXCHANGE_SPECIES +# # 7 f_Ca = (mol("Ca0.34X_montm_mg2") / 2 / tot("X_montm_mg")) : ex = 0.5 +# # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Montmorillonite(MgCa)") / f_Ca^ex +# # 20 rate = RATE_HERMANSKA("Montmorillonite") / f_Ca^ex + +# 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 +# 40 SAVE area * rate * affinity * TIME +# -end + # EXCHANGE_MASTER_SPECIES # X_montm_mg X_montm_mg-0.34 # EXCHANGE_SPECIES From 1693e0c18822f97cc1a2972b15c96f092f828849 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Sat, 18 May 2024 04:22:10 -0600 Subject: [PATCH 163/384] New version from Tony --- sit.dat | 27106 ++++++++++++++++++++++++++---------------------------- 1 file changed, 13039 insertions(+), 14067 deletions(-) diff --git a/sit.dat b/sit.dat index 596a0d32..adc5ecda 100644 --- a/sit.dat +++ b/sit.dat @@ -1,15343 +1,14315 @@ # PHREEQC database -# Thermodynamic database ANDRA/RWM - THERMOCHIMIE-TDB (www.thermochimie-tdb.com) -# Version 9b0 -# Nom : ThermoChimie project -# BDD Date: 10/8/2015 -# Comment: no comment - -# NAMED_EXPRESSIONS - -# -# formation of O2 from H2O -# 2H2O = O2 + 4H+ + 4e- -# -# Log_K_O2 -# log_k -85.980 -# delta_H 559.526 kJ/mol -# -# -analytic 1.20446E+1 0E+0 -2.9226E+4 0E+0 0E+0 +# Thermodynamic database ANDRA - NWS - ONDRAF THERMO_CHIMIE (www.thermochimie-tdb.com) +# Version 12a +# Name : ThermoChimie project +# Database date: 22/08/2023 0:00:00 +# Generated by XCheck Tool v5.2.0 +# Comment: SOLUTION_MASTER_SPECIES - -#element species alk gfw_formula element_gfw -E e- 0 0 0 -Acetate Acetate- 0 Acetate 59.01 -Adipate Adipate-2 0 Adipate 144.07 -Ag Ag+ 0 Ag 107.8682 -Al Al+3 0 Al 26.9815 -Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05 -Am Am+3 0 Am 243 -Am(+2) Am+2 0 Am 243 -Am(+3) Am+3 0 Am 243 -Am(+4) Am+4 0 Am 243 -Am(+5) AmO2+ 0 Am 243 -Am(+6) AmO2+2 0 Am 243 -As AsO4-3 0 As 74.9216 -As(+3) H3(AsO3) 0 As 74.9216 -As(+5) AsO4-3 2 As 74.9216 -B B(OH)4- 1 B 10.811 -Ba Ba+2 0 Ba 137.327 -Br Br- 0 Br 79.904 -C CO3-2 2 CO3 12.011 -C(+4) CO3-2 2 CO3 12.011 -C(-4) CH4 0 CH4 12.011 -Ca Ca+2 0 Ca 40.078 -Cd Cd+2 0 Cd 112.411 -Cit Cit-3 0 Cit 189.1013 -Cl Cl- 0 Cl 35.4527 -Cm Cm+3 0 Cm 247 -Cn Cn- 0 Cn 26.018 -Co Co+2 0 Co 58.9332 -Cr CrO4-2 0 CrO4 51.9961 -Cr(+2) Cr+2 0 Cr 51.9961 -Cr(+3) Cr+3 -1 Cr 51.9961 -Cr(+6) CrO4-2 1 CrO4 51.9961 -Cs Cs+ 0 Cs 132.9054 -Cu Cu+2 0 Cu 63.546 -Cu(+1) Cu+ 0 Cu 63.546 -Cu(+2) Cu+2 0 Cu 63.546 -Edta Edta-4 0 Edta 288.2134 -Eu Eu+3 0 Eu 151.965 -Eu(+2) Eu+2 0 Eu 151.965 -Eu(+3) Eu+3 0 Eu 151.965 -F F- 0 F 18.9984 -Fe Fe+2 0 Fe 55.847 -Fe(+2) Fe+2 0 Fe 55.847 -Fe(+3) Fe+3 0 Fe 55.847 -Glu HGlu- 0 Glu 195.1459 -H H+ -1 H 1.0079 -H(+1) H+ -1 H 1.0079 -H(0) H2 0 H 1.0079 -Hf Hf+4 -4 Hf 178.49 -Hg Hg+2 0 Hg 200.59 -Hg(+2) Hg+2 0 Hg 200.59 -Hg(+1) Hg2+2 0 Hg2 401.18 -Ho Ho+3 0 Ho 164.9303 -I I- 0 I 126.9045 -I(+5) IO3- 0 I 126.9045 -I(-1) I- 0 I 126.9045 -Isa HIsa- 0 HIsa 180.1548 -K K+ 0 K 39.0983 -Li Li+ 0 Li 6.941 -Malonate Malonate-2 0 Malonate 63.99 -Mg Mg+2 0 Mg 24.305 -Mn Mn+2 0 Mn 54.938 -Mo MoO4-2 0 Mo 95.94 -N NO3- 0 N 14.0067 -N(+5) NO3- 0 N 14.0067 -N(-3) NH3 1 N 14.0067 -Na Na+ 0 Na 22.9898 -Nb Nb(OH)6- 0 Nb 92.9064 -Ni Ni+2 0 Ni 58.69 -Np NpO2+2 0 Np 237.048 -Np(+3) Np+3 0 Np 237.048 -Np(+4) Np+4 0 Np 237.048 -Np(+5) NpO2+ 0 Np 237.048 -Np(+6) NpO2+2 0 Np 237.048 -Nta Nta-3 0 Nta 188.1165 -O H2O 0 O 15.999 -O(0) O2 0 O 15.9994 -O(-2) H2O 0 O 15.9994 -Ox Ox-2 0 Ox 88.0196 -P H2(PO4)- 1 P 30.9738 -Pa Pa+4 0 Pa 231.0359 -Pa(+4) Pa+4 0 Pa 231.0359 -Pa(+5) PaO2+ 0 Pa 231.0359 -Pb Pb+2 0 Pb 207.2 -Pd Pd+2 -2 Pd 106.42 -Phthalat Phthalat-2 0 Phthalat 164.084 -Pu PuO2+2 0 Pu 244 -Pu(+3) Pu+3 0 Pu 244 -Pu(+4) Pu+4 0 Pu 244 -Pu(+5) PuO2+ 0 Pu 244 -Pu(+6) PuO2+2 0 Pu 244 -Pyrophos Pyrophos-4 0 Pyrophos 173.95 -Ra Ra+2 0 Ra 226.025 -Rb Rb+ 0 Rb 85.4678 -S SO4-2 0 SO4 32.066 -S(+2) S2O3-2 0 S 32.066 -S(+3) S2O4-2 0 S2O4-2 128.128 -S(+4) SO3-2 0 S 32.066 -S(+6) SO4-2 0 SO4 32.066 -S(-2) HS- 1 S 32.066 -Sb Sb(OH)3 0 Sb 121.76 -Sb(+3) Sb(OH)3 0 Sb 121.76 -Sb(+5) Sb(OH)5 0 Sb 121.76 -Scn Scn- 0 Scn 58.084 -Se SeO4-2 0 Se 78.96 -Se(+4) SeO3-2 0 Se 78.96 -Se(+6) SeO4-2 0 Se 78.96 -Se(-2) HSe- 0 Se 78.96 -Si H4(SiO4) 0 Si 28.0855 -Sm Sm+3 0 Sm 150.36 -Sn Sn+2 -1 Sn 118.71 -Sn(+2) Sn+2 -1 Sn 118.71 -Sn(+4) Sn+4 -4 Sn 118.71 -Sr Sr+2 0 Sr 87.62 -Suberate Suberate-2 0 Suberate 170.16 -Succinat Succinat-2 0 Succinat 116.07 -Tc TcO(OH)2 0 Tc 98 -Tc(+4) TcO(OH)2 0 Tc 98 -Tc(+6) TcO4-2 0 Tc 98 -Tc(+7) TcO4- 0 Tc 98 -Th Th+4 -3 Th 232.0381 -U UO2+2 0 U 238.0289 -U(+3) U+3 0 U 238.0289 -U(+4) U+4 0 U 238.0289 -U(+5) UO2+ 0 U 238.0289 -U(+6) UO2+2 0 U 238.0289 -Zn Zn+2 0 Zn 65.39 -Zr Zr+4 -4 Zr 91.22 - +#element species alk gfw_formula element_gfw +E e- 0 0 0 +Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.0436 +Adipate Adipate-2 1 Adipate 144.0700 +Acetate Acetate- 1 Acetate 59.0100 +Ag Ag+ -2 Ag 107.8682 +Al Al+3 0 Al 26.9815 +Am Am+3 0 Am 243.0000 +Am(+3) Am+3 0 Am 243.0000 +Am(+2) Am+2 0 Am 243.0000 +Am(+4) Am+4 0 Am 243.0000 +Am(+5) AmO2+ 0 Am 243.0000 +Am(+6) AmO2+2 0 Am 243.0000 +As AsO4-3 2 As 74.9216 +As(+5) AsO4-3 2 As 74.9216 +As(+3) H3(AsO3) 0 As 74.9216 +B B(OH)4- 1 B 10.8110 +Ba Ba+2 0 Ba 137.3270 +Be Be+2 0 Be 9.0122 +Br Br- 0 Br 79.9040 +C CO3-2 2 C 12.0110 +C(+4) CO3-2 2 C 12.0110 +C(-4) CH4 0 C 12.0110 +Ca Ca+2 0 Ca 40.0780 +Cd Cd+2 -1 Cd 112.4110 +Cit Cit-3 1 Cit 189.1013 +Cl Cl- 0 Cl 35.4527 +Cm Cm+3 0 Cm 247.0000 +Co Co+2 0 Co 58.9332 +Cr CrO4-2 1 Cr 51.9961 +Cr(+6) CrO4-2 1 Cr 51.9961 +Cr(+2) Cr+2 -1 Cr 51.9961 +Cr(+3) Cr+3 2 Cr 51.9961 +Cs Cs+ 0 Cs 132.9054 +Cu Cu+2 0 Cu 63.5460 +Cu(+2) Cu+2 0 Cu 63.5460 +Cu(+1) Cu+ -2 Cu 63.5460 +Edta Edta-4 2 Edta 288.2134 +Eu Eu+3 0 Eu 151.9650 +Eu(+3) Eu+3 0 Eu 151.9650 +Eu(+2) Eu+2 0 Eu 151.9650 +F F- 0 F 18.9984 +Fe Fe+2 0 Fe 55.8470 +Fe(+2) Fe+2 0 Fe 55.8470 +Fe(+3) Fe+3 -2 Fe 55.8470 +Glu HGlu- 0 Glu 194.1380 +H H+ -1 H 1.0079 +H(+1) H+ -1 H 1.0079 +H(0) H2 0 H 1.0079 +Hf Hf+4 -4 Hf 178.4900 +Hg Hg+2 -2 Hg 200.5900 +Hg(+2) Hg+2 -2 Hg 200.5900 +Hg(+1) Hg2+2 0 Hg 200.5900 +Ho Ho+3 0 Ho 164.9303 +I I- 0 I 126.9045 +I(-1) I- 0 I 126.9045 +I(+5) IO3- 0 I 126.9045 +Isa HIsa- 0 Isa 178.1421 +K K+ 0 K 39.0983 +Li Li+ 0 Li 6.9410 +Malonate Malonate-2 1 Malonate 102.0464 +Mg Mg+2 0 Mg 24.3050 +Mn Mn+2 0 Mn 54.9380 +Mo MoO4-2 0 Mo 95.9400 +N NO3- 0 N 14.0067 +N(+5) NO3- 0 N 14.0067 +N(-3) NH3 1 N 14.0067 +Na Na+ 0 Na 22.9898 +Nb Nb(OH)6- 1 Nb 92.9064 +Ni Ni+2 0 Ni 58.6900 +Np NpO2+2 0 Np 237.0480 +Np(+6) NpO2+2 0 Np 237.0480 +Np(+3) Np+3 0 Np 237.0480 +Np(+4) Np+4 -3 Np 237.0480 +Np(+5) NpO2+ 0 Np 237.0480 +Nta Nta-3 1 Nta 188.1165 +O H2O 0 O 15.9994 +O(-2) H2O 0 O 15.9994 +O(0) O2 0 O 15.9994 +Ox Ox-2 0 Ox 88.0196 +P H2(PO4)- 0 P 30.9738 +Pa Pa+4 -3 Pa 231.0359 +Pa(+4) Pa+4 -3 Pa 231.0359 +Pa(+5) PaO2+ 0 Pa 231.0359 +Pb Pb+2 -1 Pb 207.2000 +Pd Pd+2 -4 Pd 106.4200 +Phthalat Phthalat-2 2 Phthalat 164.0840 +Pu PuO2+2 0 Pu 244.0000 +Pu(+6) PuO2+2 0 Pu 244.0000 +Pu(+3) Pu+3 0 Pu 244.0000 +Pu(+4) Pu+4 -3 Pu 244.0000 +Pu(+5) PuO2+ -1 Pu 244.0000 +Pyrophos Pyrophos-4 2 Pyrophos 173.9500 +Ra Ra+2 0 Ra 226.0250 +Rb Rb+ 0 Rb 85.4678 +S SO4-2 0 S 32.0660 +S(+6) SO4-2 0 S 32.0660 +S(-2) HS- 1 S 32.0660 +S(+2) S2O3-2 0 S 32.0660 +S(+3) S2O4-2 0 S 32.0660 +S(+4) SO3-2 1 S 32.0660 +Sb Sb(OH)3 0 Sb 121.7600 +Sb(+3) Sb(OH)3 0 Sb 121.7600 +Sb(+5) Sb(OH)5 -6 Sb 121.7600 +Se SeO4-2 0 Se 78.9600 +Se(+6) SeO4-2 0 Se 78.9600 +Se(-2) HSe- -1 Se 78.9600 +Se(+4) SeO3-2 1 Se 78.9600 +Si H4(SiO4) 0 Si 28.0855 +Sm Sm+3 0 Sm 150.3600 +Sn Sn+2 -2 Sn 118.7100 +Sn(+2) Sn+2 -2 Sn 118.7100 +Sn(+4) Sn+4 -4 Sn 118.7100 +Sr Sr+2 0 Sr 87.6200 +Succinat Succinat-2 1 Succinat 116.0700 +Suberate Suberate-2 1 Suberate 172.1804 +Tc TcO(OH)2 0 Tc 98.0000 +Tc(+4) TcO(OH)2 0 Tc 98.0000 +Tc(+7) TcO4- 0 Tc 98.0000 +Tc(+6) TcO4-2 0 Tc 98.0000 +Th Th+4 0 Th 232.0381 +U UO2+2 0 U 238.0289 +U(+6) UO2+2 0 U 238.0289 +U(+3) U+3 0 U 238.0289 +U(+4) U+4 -3 U 238.0289 +U(+5) UO2+ 0 U 238.0289 +Zn Zn+2 0 Zn 65.3900 +Zr Zr+4 -4 Zr 91.2200 SIT -epsilon -(NpO2)2(OH)2+2 Cl- -0.248 -(NpO2)2(OH)2+2 ClO4- 0.57 -(NpO2)2CO3(OH)3- Na+ 0 -(NpO2)3(CO3)6-6 Na+ -0.46 -(NpO2)3(OH)5+ Cl- -0.226 -(NpO2)3(OH)5+ ClO4- 0.45 -(PuO2)2(OH)2+2 Cl- -0.248 -(PuO2)3(CO3)6-6 Na+ -0.46 -(UO2)2(CO3)(OH)3- Na+ 0 -(UO2)2(NpO2)(CO3)6-6 Na+ 0.09 -(UO2)2(OH)2+2 Cl- 0.69 -(UO2)2(OH)2+2 ClO4- 0.57 -(UO2)2(OH)2+2 NO3- 0.49 -(UO2)3(CO3)6-6 Na+ 0.37 -(UO2)3(OH)4+2 Cl- 0.5 -(UO2)3(OH)5+ Cl- 0.81 -Ag(SeO3)- Na+ -0.024 -Ag+ Cl- 0.031 -Al(OH)+2 Cl- 0.09 -Al(OH)2+ Cl- 0.09 -Al+3 Cl- 0.33 -Am(CO3)+ Cl- 0.129 -Am(CO3)+ ClO4- 0.17 -Am(CO3)2- Na+ -0.14 -Am(CO3)3-3 Na+ -0.23 -Am(CO3)5-6 Na+ -0.3 -Am(Edta)- Na+ 0.01 -Am(H2PO4)+2 Cl- 0.191 -Am(H2PO4)+2 ClO4- 0.39 -Am(NO3)+2 Cl- 0.191 -Am(NO3)+2 ClO4- 0.39 -Am(OH)+2 Cl- -0.04 -Am(OH)+2 ClO4- 0.39 -Am(OH)2+ Cl- -0.29 -Am(OH)2+ ClO4- 0.17 -Am(Ox)+ ClO4- 0.08 -Am(Ox)2- Na+ -0.21 -Am(Ox)3-3 Na+ -0.23 -Am(SO4)+ Cl- 0.157 -Am(SO4)+ ClO4- 0.22 -Am(SO4)2- Na+ -0.05 -Am+3 Cl- 0.23 -Am+3 ClO4- 0.49 -AmCl+2 Cl- 0.191 -AmCl+2 ClO4- 0.39 -AmCl2+ Cl- 0.129 -AmF+2 Cl- 0.191 -AmF+2 ClO4- 0.39 -AmF2+ Cl- 0.129 -AmF2+ ClO4- 0.17 -AmO2(CO3)- Na+ -0.18 -AmO2(CO3)2-3 Na+ -0.33 -AmO2(CO3)3-5 Na+ -0.53 -AmO2+ Cl- 0.09 -AmO2+2 Cl- 0.39 -B(OH)4- Na+ -0.07 -Ba+2 Cl- 0.07 -Ba+2 ClO4- 0.15 -Ba+2 NO3- -0.28 -Br- Na+ 0.05 -CO3-2 Na+ -0.08 -Ca+2 Cl- 0.14 -Ca+2 ClO4- 0.27 -Ca+2 NO3- 0.02 -Ca4Th(OH)8+4 Cl- -0.01 -Ca4Th(OH)8+4 ClO4- 0.21 -Cd(HCO3)+ Cl- 0.2 -Cd+2 Cl- 0.16 -Cd+2 NO3- 0.09 -CdCl+ Cl- 0.127 -CdCl+ ClO4- 0.25 -CdI+ Cl- 0.136 -CdI+ ClO4- 0.27 -Cit-3 Na+ -0.076 -Cl- Na+ 0.03 -Cm(CO3)2- Na+ 0.34 -Cm(CO3)3-3 Na+ 0.16 -Cm(H2PO4)+2 Cl- 0.191 -Cm(H2PO4)+2 ClO4- 0.39 -Cm(OH)+2 Cl- -0.04 -Cm(OH)+2 ClO4- 0.39 -Cm(OH)2+ Cl- -0.27 -Cm(OH)2+ ClO4- 0.17 -Cm(SO4)2- Na+ -0.05 -Cm+3 Cl- 0.23 -Cm+3 ClO4- 0.49 -CmCO3+ Cl- 0.35 -CmCl+2 Cl- 0.191 -CmCl+2 ClO4- 0.39 -CmCl2+ Cl- 0.129 -CmF+2 ClO4- 0.39 -CmF2+ ClO4- 0.17 -CmNO3+2 ClO4- 0.39 -CmSO4+ Cl- 0.157 -CmSO4+ ClO4- 0.22 -Cn- Na+ 0.07 -Co+2 Cl- 0.16 -Co+2 ClO4- 0.34 -Co+2 NO3- 0.14 -Cr+3 Cl- 0.3 -Cr+3 NO3- 0.27 -Cu+ ClO4- 0.11 -Cu+2 Cl- 0.08 -Cu+2 ClO4- 0.32 -Cu+2 NO3- 0.11 -Edta-4 Na+ 0.32 -Eu(CO3)+ Cl- 0.129 -Eu(CO3)+ ClO4- 0.17 -Eu(CO3)2- Na+ -0.14 -Eu(CO3)3-3 Na+ -0.23 -Eu(H2PO4)+2 Cl- 0.191 -Eu(H2PO4)+2 ClO4- 0.39 -Eu(NO3)+2 Cl- 0.191 -Eu(NO3)+2 ClO4- 0.39 -Eu(OH)+2 Cl- -0.04 -Eu(OH)+2 ClO4- 0.39 -Eu(OH)2+ Cl- -0.29 -Eu(OH)2+ ClO4- 0.17 -Eu(SO4)+ Cl- 0.157 -Eu(SO4)+ ClO4- 0.22 -Eu(SO4)2- Na+ -0.05 -Eu+3 Cl- 0.23 -Eu+3 ClO4- 0.49 -EuCl+2 Cl- 0.191 -EuCl+2 ClO4- 0.39 -EuCl2+ Cl- 0.129 -EuF+2 Cl- 0.191 -EuF2+ Cl- 0.129 -F- Na+ 0.02 -Fe(OH)+2 Cl- 0.186 -Fe+3 ClO4- 0.56 -Fe+3 NO3- 0.42 -H(Cit)-2 Na+ -0.04 -H(Edta)-3 Na+ -0.1 -H(Ox)- Na+ -0.07 -H(SO4)- Na+ -0.01 -H(SeO3)- Na+ 0.02 -H(SeO4)- Na+ 0 -H+ Cl- 0.12 -H+ ClO4- 0.14 -H+ NO3- 0.07 -H2(Cit)- Na+ -0.05 -H2(Edta)-2 Na+ -0.37 -H2(PO4)- Na+ -0.08 -H2(SiO4)-2 Na+ -0.1 -H3(Edta)- Na+ -0.33 -H3(SiO4)- Na+ -0.08 -H5(Edta)+ Cl- -0.23 -H5(Edta)+ ClO4- -0.23 -H5(Edta)+ NO3- -0.23 -H6(Edta)+2 Cl- -0.2 -H6(Edta)+2 ClO4- -0.2 -H6(Edta)+2 NO3- -0.2 -HCO3- Na+ 0 -HGlu- Na+ -0.07 -HIsa- Na+ -0.07 -HMoO4- Na+ -0.099 -HPO4-2 Na+ -0.15 -Hf(NO3)2+2 ClO4- 0.84 -Hf(OH)+3 ClO4- 0.57 -Hf+4 Cl- 0.89 -Hf+4 ClO4- 0.89 -Hf+4 NO3- 0.89 -HfCl+3 ClO4- 0.87 -HfCl2+2 ClO4- 0.84 -HfF+3 ClO4- 0.63 -HfF2+2 ClO4- 0.47 -HfNO3+3 ClO4- 0.91 -Hg(SeO3)2-2 Na+ 0.008 -Hg+2 Cl- 0.168 -Hg2+2 Cl- 0.054 -Ho(CO3)+ Cl- 0.129 -Ho(CO3)+ ClO4- 0.17 -Ho(CO3)2- Na+ -0.14 -Ho(CO3)3-3 Na+ -0.23 -Ho(H2PO4)+2 Cl- 0.191 -Ho(H2PO4)+2 ClO4- 0.39 -Ho(NO3)+2 Cl- 0.191 -Ho(NO3)+2 ClO4- 0.39 -Ho(OH)+2 Cl- -0.04 -Ho(OH)+2 ClO4- 0.39 -Ho(OH)2+ Cl- -0.29 -Ho(OH)2+ ClO4- 0.17 -Ho(SO4)+ Cl- 0.157 -Ho(SO4)+ ClO4- 0.22 -Ho(SO4)2- Na+ -0.05 -Ho+3 Cl- 0.23 -Ho+3 ClO4- 0.49 -HoCl+2 Cl- 0.191 -HoCl+2 ClO4- 0.39 -HoCl2+ Cl- 0.129 -HoF+2 Cl- 0.191 -HoF+2 ClO4- 0.39 -HoF2+ Cl- 0.129 -HoF2+ ClO4- 0.17 -I- Na+ 0.08 -IO3- Na+ -0.06 -K+ Cl- 0 -K+ NO3- -0.11 -Li+ Cl- 0.1 -Li+ ClO4- 0.15 -Li+ NO3- 0.08 -Mg(Cit)- Na+ 0.03 -Mg(Edta)-2 Na+ -0.01 -Mg(HEdta)- Na+ 0.11 -Mg(Ox)2-2 Na+ -0.15 -Mg+2 Cl- 0.19 -Mg+2 ClO4- 0.33 -Mg+2 NO3- 0.17 -Mn+2 Cl- 0.13 -Mo7O21(OH)3-3 Na+ -1.455 -Mo7O22(OH)2-4 Na+ -1.346 -Mo7O23(OH)-5 Na+ -1.145 -Mo7O24-6 Na+ -1.265 -MoO4-2 Na+ 0.034 -NH4+ Cl- -0.01 -NH4+ ClO4- -0.08 -NH4+ NO3- -0.06 -NO3- Na+ -0.04 -Na+ ClO4- 0.01 -Ni(CO3)2-2 Na+ 0.003 -Ni(Cit)- Na+ 0.22 -Ni(Cn)4-2 Na+ 0.185 -Ni(Cn)5-3 Na+ 0.25 -Ni(HCO3)+ Cl- 0.085 -Ni(NO3)+ Cl- 0.06 -Ni(NO3)+ ClO4- 0.44 -Ni(OH)+ Cl- -0.01 -Ni(OH)+ ClO4- 0.14 -Ni(OH)3- Na+ 0.88 -Ni(SO4)2-2 Na+ -0.263 -Ni(Scn)+ Cl- 0.11 -Ni(Scn)+ ClO4- 0.31 -Ni(Scn)3- Na+ 0.66 -Ni+2 Cl- 0.17 -Ni+2 ClO4- 0.37 -Ni+2 NO3- 0.182 -Ni4(OH)4+4 ClO4- 1.08 -NiCl+ Cl- 0.1 -NiCl+ ClO4- 0.34 -NiF+ Cl- 0.065 -NiF+ ClO4- 0.34 -NiHS+ ClO4- -0.85 -Np(CO3)(OH)3- Na+ -0.11 -Np(CO3)+ Cl- 0.129 -Np(CO3)+ ClO4- 0.17 -Np(CO3)2- Na+ -0.14 -Np(CO3)3-3 Na+ -0.23 -Np(CO3)4-4 Na+ -0.09 -Np(CO3)5-6 Na+ 0 -Np(NO3)+3 ClO4- 0.71 -Np(OH)+2 Cl- -0.04 -Np(OH)+2 ClO4- 0.39 -Np(OH)+3 Cl- 0.2 -Np(OH)+3 ClO4- 0.5 -Np(OH)2+ Cl- -0.29 -Np(OH)2+ ClO4- 0.17 -Np(OH)2+2 Cl- 0.1 -Np(OH)3+ Cl- 0.05 -Np(OH)4(CO3)-2 Na+ -0.13 -Np(SO4)+ Cl- 0.157 -Np(SO4)+ ClO4- 0.22 -Np(SO4)+2 Cl- 0.232 -Np(SO4)+2 ClO4- 0.48 -Np(SO4)2- Na+ -0.05 -Np+3 Cl- 0.23 -Np+3 ClO4- 0.49 -Np+4 Cl- 0.4 -Np+4 ClO4- 0.84 -NpCl+3 ClO4- 0.81 -NpF+3 ClO4- 0.58 -NpF2+2 Cl- 0.186 -NpF2+2 ClO4- 0.38 -NpF3+ Cl- 0.1 -NpI+3 ClO4- 0.77 -NpO2(CO3)- Na+ -0.18 -NpO2(CO3)2-2 Na+ -0.02 -NpO2(CO3)2-3 Na+ -0.33 -NpO2(CO3)2OH-4 Na+ -0.4 -NpO2(CO3)3-4 Na+ -0.4 -NpO2(CO3)3-5 Na+ -0.53 -NpO2(Cit)-2 Na+ -0.06 -NpO2(Edta)-3 Na+ 0.2 -NpO2(HEdta)-2 Na+ 0.07 -NpO2(HPO4)2-2 Na+ -0.1 -NpO2(NO3)+ Cl- 0.22 -NpO2(NO3)+ ClO4- 0.33 -NpO2(OH)+ Cl- -0.003 -NpO2(OH)+ ClO4- -0.06 -NpO2(OH)2- Na+ -0.01 -NpO2(Ox)- Na+ -0.4 -NpO2(Ox)2-3 Na+ -0.3 -NpO2(SO4)- Na+ -0.74 -NpO2(SO4)2-2 Na+ -0.12 -NpO2+ Cl- 0.09 -NpO2+ ClO4- 0.25 -NpO2+2 Cl- 0.223 -NpO2+2 ClO4- 0.46 -NpO2Cl+ Cl- 0.318 -NpO2Cl+ ClO4- 0.5 -NpO2F+ Cl- 0.197 -NpO2F+ ClO4- 0.29 -OH- Na+ 0.04 -Ox-2 Na+ -0.08 -PO4-3 Na+ -0.25 -Pa+4 Cl- 0.3 -PaO(OH)+2 Cl- 0.13 -Pb(OH)3- Na+ 0.02 -Pb(SO4)2-2 Na+ -0.52 -Pb+2 Cl- 0.081 -Pb+2 ClO4- 0.15 -Pb+2 NO3- -0.2 -PbF+ Cl- 0.14 -Pd(SO4)2-2 Na+ -0.12 -Pd+2 Cl- 0.16 -PdBr+ Cl- 0.175 -PdBr3- Na+ 0 -PdBr4-2 Na+ 0.1 -PdCl+ Cl- 0.175 -PdCl3- Na+ 0 -PdCl4-2 Na+ 0.1 -Pu(CO3)+ Cl- 0.129 -Pu(CO3)+ ClO4- 0.17 -Pu(CO3)2- Na+ -0.14 -Pu(CO3)3-3 Na+ -0.23 -Pu(CO3)4-4 Na+ -0.09 -Pu(CO3)5-6 Na+ 0 -Pu(NO3)+2 Cl- 0.191 -Pu(NO3)+2 ClO4- 0.39 -Pu(NO3)+3 ClO4- 0.59 -Pu(OH)+2 Cl- -0.04 -Pu(OH)+2 ClO4- 0.39 -Pu(OH)+3 Cl- 0.2 -Pu(OH)+3 ClO4- 0.5 -Pu(OH)2+ Cl- -0.29 -Pu(OH)2+ ClO4- 0.17 -Pu(OH)2+2 Cl- 0.1 -Pu(OH)3+ Cl- 0.05 -Pu(SO4)+ Cl- 0.157 -Pu(SO4)+ ClO4- 0.22 -Pu(SO4)+2 Cl- 0.232 -Pu(SO4)+2 ClO4- 0.36 -Pu(SO4)2- Na+ -0.05 -Pu+3 Cl- 0.23 -Pu+3 ClO4- 0.49 -Pu+4 Cl- 0.37 -Pu+4 ClO4- 0.82 -PuBr+3 Cl- 0.1 -PuBr+3 ClO4- 0.58 -PuCl+3 Cl- 0.1 -PuCl+3 ClO4- 0.85 -PuF+3 Cl- 0.1 -PuF+3 ClO4- 0.56 -PuF2+2 Cl- 0.177 -PuF2+2 ClO4- 0.36 -PuF3+ Cl- 0.1 -PuI+2 Cl- 0.191 -PuI+2 ClO4- 0.39 -PuI+3 Cl- 0.1 -PuO2(CO3)2-2 Na+ -0.7 -PuO2(CO3)3-4 Na+ -0.2 -PuO2(CO3)3-5 Na+ -0.53 -PuO2(OH)+ Cl- -0.003 -PuO2(SO4)- Na+ -0.74 -PuO2(SO4)2-2 Na+ -0.12 -PuO2+ Cl- 0.129 -PuO2+ ClO4- 0.24 -PuO2+2 Cl- 0.223 -PuO2+2 ClO4- 0.46 -PuO2CO3- Na+ -0.18 -PuO2Cl+ Cl- 0.318 -PuO2Cl+ ClO4- 0.5 -PuO2F+ Cl- 0.197 -PuO2F+ ClO4- 0.29 -PuO2F3- Na+ 0 -PuO2NO3+ Cl- 0.22 -PuO2NO3+ ClO4- 0.33 -SO3-2 Na+ -0.08 -SO4-2 Na+ -0.12 -Scn- Na+ 0.05 -SeO3-2 Na+ -0.08 -SeO4-2 Na+ -0.12 -Si2O2(OH)5- Na+ -0.08 -Si2O3(OH)4-2 Na+ -0.15 -Si3O5(OH)5-3 Na+ -0.25 -Si3O6(OH)3-3 Na+ -0.25 -Si4O8(OH)4-4 Na+ -0.26 -Sm(CO3)+ Cl- 0.129 -Sm(CO3)+ ClO4- 0.17 -Sm(CO3)2- Na+ -0.14 -Sm(CO3)3-3 Na+ -0.23 -Sm(H2PO4)+2 Cl- 0.191 -Sm(H2PO4)+2 ClO4- 0.39 -Sm(NO3)+2 Cl- 0.191 -Sm(NO3)+2 ClO4- 0.39 -Sm(OH)+2 Cl- -0.04 -Sm(OH)+2 ClO4- 0.39 -Sm(OH)2+ Cl- -0.29 -Sm(OH)2+ ClO4- 0.17 -Sm(SO4)+ Cl- 0.157 -Sm(SO4)+ ClO4- 0.22 -Sm(SO4)2- Na+ -0.05 -Sm+3 Cl- 0.23 -Sm+3 ClO4- 0.49 -SmCl+2 Cl- 0.191 -SmCl+2 ClO4- 0.39 -SmF+2 Cl- 0.191 -SmF+2 ClO4- 0.39 -Sn(OH)+ ClO4- -0.07 -Sn(OH)3- Na+ 0.22 -Sn+2 Cl- 0.14 -Sn+2 ClO4- 0.19 -Sn+4 ClO4- 0.7 -Sn3(OH)4+2 ClO4- -0.02 -SnBr+ ClO4- 0.17 -SnBr3- Na+ 0.16 -SnCl+ ClO4- 0.08 -SnCl3- Na+ 0.04 -SnF+ ClO4- 0.14 -Th(CO3)5-6 Na+ -0.3 -Th(H2PO4)+3 ClO4- 0.5 -Th(H2PO4)2+2 ClO4- 0.4 -Th(H3PO4)(H2PO4)+3 ClO4- 0.5 -Th(H3PO4)+4 ClO4- 0.7 -Th(NO3)+3 ClO4- 0.56 -Th(NO3)+3 NO3- 0.56 -Th(NO3)2+2 ClO4- 0.43 -Th(NO3)2+2 NO3- 0.43 -Th(OH)(CO3)4-5 Na+ -0.22 -Th(OH)+3 Cl- 0.19 -Th(OH)+3 ClO4- 0.48 -Th(OH)+3 NO3- 0.2 -Th(OH)2(CO3)2-2 Na+ -0.1 -Th(OH)2+2 Cl- 0.13 -Th(OH)2+2 ClO4- 0.33 -Th(OH)2+2 NO3- 0.1 -Th(OH)3(CO3)- Na+ -0.05 -Th(OH)3+ Cl- 0.06 -Th(OH)3+ ClO4- 0.15 -Th(OH)3+ NO3- 0.05 -Th(OH)4(CO3)-2 Na+ -0.1 -Th(SO4)+2 Cl- 0.14 -Th(SO4)+2 ClO4- 0.3 -Th(SO4)3-2 Na+ -0.091 -Th+4 Cl- 0.7 -Th+4 ClO4- 0.7 -Th+4 NO3- 0.7 -Th2(OH)2+6 Cl- 0.4 -Th2(OH)2+6 ClO4- 1.22 -Th2(OH)2+6 NO3- 0.69 -Th2(OH)3+5 Cl- 0.29 -Th2(OH)3+5 ClO4- 0.91 -Th2(OH)3+5 NO3- 0.69 -Th4(OH)12+4 Cl- 0.25 -Th4(OH)12+4 ClO4- 0.56 -Th4(OH)12+4 NO3- 0.42 -Th4(OH)8+8 Cl- 0.7 -Th4(OH)8+8 ClO4- 1.69 -Th4(OH)8+8 NO3- 1.59 -Th6(OH)14+10 Cl- 0.83 -Th6(OH)14+10 ClO4- 2.2 -Th6(OH)14+10 NO3- 2.9 -Th6(OH)15+9 Cl- 0.72 -Th6(OH)15+9 ClO4- 1.85 -Th6(OH)15+9 NO3- 2.2 -ThCl+3 Cl- 0.62 -ThCl+3 ClO4- 0.62 -ThF+3 ClO4- 0.48 -ThF+3 NO3- 0.25 -ThF2+2 ClO4- 0.3 -ThF2+2 NO3- 0.15 -ThF3+ ClO4- 0.1 -ThF3+ NO3- 0 -U(CO3)4-4 Na+ -0.09 -U(CO3)5-6 Na+ -0.3 -U(NO3)+3 ClO4- 0.62 -U(NO3)2+2 Cl- 0.236 -U(NO3)2+2 ClO4- 0.49 -U(OH)+3 Cl- 0.2 -U(OH)+3 ClO4- 0.48 -U(OH)2+2 Cl- 0.1 -U(OH)3+ Cl- 0.05 -U(SO4)+2 Cl- 0.149 -U(SO4)+2 ClO4- 0.3 -U+3 Cl- 0.23 -U+3 ClO4- 0.49 -U+4 Cl- 0.36 -U+4 ClO4- 0.76 -UBr+3 ClO4- 0.52 -UCl+3 Cl- 0.1 -UCl+3 ClO4- 0.5 -UF+3 Cl- 0.1 -UF+3 ClO4- 0.48 -UF2+2 Cl- 0.149 -UF2+2 ClO4- 0.3 -UF3+ Cl- 0.1 -UF3+ ClO4- 0.1 -UI+3 ClO4- 0.55 -UI+3 NO3- 0.56 -UO2(CO3)2-2 Na+ -0.02 -UO2(CO3)3-4 Na+ -0.01 -UO2(CO3)3-5 Na+ -0.62 -UO2(Cit)- Na+ -0.11 -UO2(NO3)+ Cl- 0.22 -UO2(NO3)+ ClO4- 0.33 -UO2(OH)+ Cl- -0.003 -UO2(OH)+ ClO4- -0.06 -UO2(OH)+ NO3- 0.51 -UO2(OH)3- Na+ -0.09 -UO2(Ox)2-2 Na+ -0.18 -UO2(Ox)3-4 Na+ -0.01 -UO2(SO4)2-2 Na+ -0.12 -UO2+ Cl- 0.18 -UO2+ ClO4- 0.26 -UO2+2 Cl- 0.46 -UO2+2 ClO4- 0.46 -UO2+2 NO3- 0.46 -UO2Br+ Cl- 0.169 -UO2Br+ ClO4- 0.24 -UO2Cl+ Cl- 0.22 -UO2Cl+ ClO4- 0.33 -UO2F+ Cl- 0.04 -UO2F+ ClO4- 0.28 -UO2F3- Na+ -0.14 -UO2F4-2 Na+ -0.3 -Zn+2 Cl- 0.163 -Zn+2 ClO4- 0.33 -Zn+2 NO3- 0.16 -Zr(CO3)4-4 Na+ -0.09 -Zr(NO3)2+2 ClO4- 0.84 -Zr(OH)+3 ClO4- 0.57 -Zr(OH)2+2 ClO4- 0.62 -Zr(OH)6-2 Na+ -0.1 -Zr+4 Cl- 0.89 -Zr+4 ClO4- 0.89 -Zr+4 NO3- 0.89 -Zr4(OH)15+ ClO4- 0.09 -ZrCl+3 ClO4- 0.87 -ZrCl2+2 ClO4- 0.84 -ZrF+3 ClO4- 0.63 -ZrF2+2 ClO4- 0.47 -ZrF5- Na+ -0.14 -ZrF6-2 Na+ -0.15 -ZrNO3+3 ClO4- 0.88 - +(NpO2)2(OH)2+2 Cl- -0.248 +(NpO2)2(OH)2+2 ClO4- 0.570 +(NpO2)2CO3(OH)3- Na+ 0.000 +(NpO2)3(CO3)6-6 Na+ -0.460 +(NpO2)3(OH)5+ Cl- -0.226 +(NpO2)3(OH)5+ ClO4- 0.450 +(PuO2)2(OH)2+2 Cl- -0.248 +(PuO2)3(CO3)6-6 Na+ -0.460 +(UO2)2(Cit)(OH)2- Na+ 0.600 +(UO2)2(Cit)2(OH)2-4 Na+ 0.560 +(UO2)2(Cit)2(OH)-3 Na+ 0.700 +(UO2)2(Cit)2-2 Na+ -0.110 +(UO2)2(CO3)(OH)3- Na+ 0.000 +(UO2)2(NpO2)(CO3)6-6 Na+ 0.090 +(UO2)2(OH)2+2 Cl- 0.690 +(UO2)2(OH)2+2 ClO4- 0.570 +(UO2)2(OH)2+2 NO3- 0.490 +(UO2)3(CO3)6-6 Na+ 0.370 +(UO2)3(OH)4+2 Cl- 0.500 +(UO2)3(OH)4+2 ClO4- 0.890 +(UO2)3(OH)4+2 NO3- 0.720 +(UO2)3(OH)5+ Cl- 0.810 +(UO2)3(OH)5+ ClO4- 0.450 +(UO2)3(OH)5+ NO3- 0.410 +Ag(SeO3)- Na+ -0.024 +Ag+ Cl- 0.031 +Al(OH)+2 Cl- 0.090 +Al(OH)2+ Cl- 0.090 +Al+3 Cl- 0.330 +Am(CO3)+ Cl- 0.210 +Am(CO3)+ ClO4- 0.210 +Am(CO3)2- Na+ 0.060 +Am(CO3)3-3 Na+ 0.080 +Am(CO3)5-6 Na+ -0.300 +Am(Edta)- Na+ 0.010 +Am(H2PO4)+2 Cl- 0.191 +Am(H2PO4)+2 ClO4- 0.390 +Am(NO3)+2 ClO4- 0.390 +Am(OH)+2 Cl- -0.040 +Am(OH)+2 ClO4- 0.390 +Am(OH)2+ Cl- -0.290 +Am(OH)2+ ClO4- 0.170 +Am(Ox)+ ClO4- 0.080 +Am(Ox)2- Na+ -0.210 +Am(Ox)3-3 Na+ -0.230 +Am(SO4)+ Cl- 0.157 +Am(SO4)+ ClO4- 0.220 +Am(SO4)2- Na+ -0.050 +Am+3 Cl- 0.230 +Am+3 ClO4- 0.490 +AmCl+2 Cl- 0.191 +AmCl+2 ClO4- 0.390 +AmCl2+ Cl- 0.129 +AmF+2 Cl- 0.191 +AmF+2 ClO4- 0.390 +AmF2+ Cl- 0.129 +AmF2+ ClO4- 0.170 +AmO2(CO3)- Na+ -0.180 +AmO2(CO3)2-3 Na+ -0.330 +AmO2(CO3)3-5 Na+ -0.530 +AmO2+ Cl- 0.090 +AmO2+2 Cl- 0.390 +B(OH)4- Na+ -0.070 +Ba+2 Cl- 0.070 +Ba+2 ClO4- 0.150 +Ba+2 NO3- -0.280 +Be(OH)+ ClO4- 0.220 +Be(OH)3- Na+ 0.020 +Be(OH)4-2 Na+ 0.030 +Be+2 Cl- 0.100 +Be+2 ClO4- 0.300 +Be+2 NO3- 0.160 +Be2(OH)+3 Cl- 0.300 +Be2(OH)+3 ClO4- 0.500 +Be2(OH)+3 NO3- 0.270 +Be3(OH)(CO3)+3 ClO4- 0.510 +Be3(OH)3+3 Cl- 0.300 +Be3(OH)3+3 ClO4- 0.510 +Be3(OH)3+3 NO3- 0.290 +Be5(OH)4(CO3)+4 ClO4- 0.800 +Be5(OH)6+4 ClO4- 0.800 +Be6(OH)5(CO3)2+3 Cl- 0.510 +Be6(OH)8+4 ClO4- 0.600 +Be6(OH)8+4 NO3- 0.600 +BeCl+ Cl- 0.090 +Br- Na+ 0.050 +Ca(Am(OH)3)+2 Cl- 0.050 +Ca(Cm(OH)3)+2 Cl- 0.050 +Ca(NpO2(OH)2)+ Cl- -0.070 +Ca+2 Cl- 0.140 +Ca+2 ClO4- 0.270 +Ca+2 NO3- 0.020 +Ca2(Am(OH)4)+3 Cl- 0.290 +Ca2(Cm(OH)4)+3 Cl- 0.290 +Ca3(Am(OH)6)+3 Cl- 0.000 +Ca3(Cm(OH)6)+3 Cl- 0.000 +Ca3(NpO2(OH)5)+2 Cl- -0.200 +Ca4Pu(OH)8+4 Cl- 0.120 +Ca4Th(OH)8+4 Cl- -0.010 +Ca4Th(OH)8+4 ClO4- 0.210 +CaUO2(CO3)3-2 Na+ -0.020 +Cd(HCO3)+ Cl- 0.200 +Cd+2 Cl- 0.160 +Cd+2 NO3- 0.090 +CdCl+ Cl- 0.127 +CdCl+ ClO4- 0.250 +CdI+ Cl- 0.136 +CdI+ ClO4- 0.270 +Cit-3 Na+ -0.076 +Cl- Na+ 0.030 +Cm(CO3)+ Cl- 0.210 +Cm(CO3)+ ClO4- 0.210 +Cm(CO3)2- Na+ 0.060 +Cm(CO3)3-3 Na+ 0.080 +Cm(H2PO4)+2 Cl- 0.191 +Cm(H2PO4)+2 ClO4- 0.390 +Cm(NO3)+2 ClO4- 0.390 +Cm(OH)+2 Cl- -0.040 +Cm(OH)+2 ClO4- 0.390 +Cm(OH)2+ Cl- -0.270 +Cm(OH)2+ ClO4- 0.170 +Cm(SO4)+ Cl- 0.157 +Cm(SO4)+ ClO4- 0.220 +Cm(SO4)2- Na+ -0.050 +Cm+3 Cl- 0.230 +Cm+3 ClO4- 0.490 +CmCl+2 Cl- 0.191 +CmCl+2 ClO4- 0.390 +CmCl2+ Cl- 0.129 +CmF+2 ClO4- 0.390 +CmF2+ ClO4- 0.170 +Co+2 Cl- 0.160 +Co+2 ClO4- 0.340 +Co+2 NO3- 0.140 +CO3-2 Na+ -0.080 +Cr+3 Cl- 0.300 +Cr+3 NO3- 0.270 +Cu(OH)+ ClO4- -0.130 +Cu(OH)4-2 Na+ 0.190 +Cu+ ClO4- 0.110 +Cu+2 Cl- 0.080 +Cu+2 ClO4- 0.320 +Cu+2 NO3- 0.110 +Cu2(OH)+3 ClO4- 0.470 +Cu2(OH)2+2 ClO4- 0.330 +CuCl+ ClO4- 0.310 +CuCl2- Na+ 0.070 +CuCl3- Na+ 0.000 +CuCl3-2 Na+ 0.140 +CuCl4-2 Na+ -0.050 +Edta-4 Na+ 0.320 +Eu(CO3)+ Cl- 0.129 +Eu(CO3)+ ClO4- 0.170 +Eu(CO3)2- Na+ -0.140 +Eu(CO3)3-3 Na+ -0.230 +Eu(H2PO4)+2 Cl- 0.191 +Eu(H2PO4)+2 ClO4- 0.390 +Eu(NO3)+2 Cl- 0.191 +Eu(NO3)+2 ClO4- 0.390 +Eu(OH)+2 Cl- -0.040 +Eu(OH)+2 ClO4- 0.390 +Eu(OH)2+ Cl- -0.290 +Eu(OH)2+ ClO4- 0.170 +Eu(SO4)+ Cl- 0.157 +Eu(SO4)+ ClO4- 0.220 +Eu(SO4)2- Na+ -0.050 +Eu+3 Cl- 0.230 +Eu+3 ClO4- 0.490 +EuCl+2 Cl- 0.191 +EuCl+2 ClO4- 0.390 +EuCl2+ Cl- 0.129 +EuF+2 Cl- 0.191 +EuF2+ Cl- 0.129 +F- Na+ 0.020 +Fe(OH)+2 Cl- 0.186 +Fe(OH)+2 ClO4- 0.460 +Fe(OH)2+ ClO4- 0.370 +Fe+2 Cl- 0.170 +Fe+2 ClO4- 0.370 +Fe+3 Cl- 0.760 +Fe+3 ClO4- 0.730 +Fe+3 NO3- 0.420 +Fe2(OH)2+4 ClO4- 1.040 +FeCl+ Cl- 0.160 +FeCl+2 Cl- 0.640 +FeCl+2 ClO4- 0.630 +FeCl2+ ClO4- 0.520 +FeF+ ClO4- 0.340 +H(Cit)-2 Na+ -0.040 +H(Edta)-3 Na+ -0.100 +H(Ox)- Na+ -0.070 +H(SeO3)- Na+ 0.020 +H(SeO4)- Na+ 0.000 +H(SO4)- Na+ -0.010 +H+ Cl- 0.120 +H+ ClO4- 0.140 +H+ NO3- 0.070 +H2(Cit)- Na+ -0.050 +H2(Edta)-2 Na+ -0.370 +H2(PO4)- Na+ -0.080 +H2(SiO4)-2 Na+ -0.100 +H3(Edta)- Na+ -0.330 +H3(SiO4)- Na+ -0.080 +H5(Edta)+ Cl- -0.230 +H5(Edta)+ ClO4- -0.230 +H5(Edta)+ NO3- -0.230 +H6(Edta)+2 Cl- -0.200 +H6(Edta)+2 ClO4- -0.200 +H6(Edta)+2 NO3- -0.200 +HCO3- Na+ 0.000 +Hf(NO3)2+2 ClO4- 0.840 +Hf(OH)+3 ClO4- 0.570 +Hf+4 Cl- 0.890 +Hf+4 ClO4- 0.890 +Hf+4 NO3- 0.890 +HfCl+3 ClO4- 0.870 +HfCl2+2 ClO4- 0.840 +HfF+3 ClO4- 0.630 +HfF2+2 ClO4- 0.470 +HfNO3+3 ClO4- 0.910 +Hg(OH)+ ClO4- 0.060 +Hg+2 ClO4- 0.340 +Hg+2 NO3- -0.100 +Hg2+2 ClO4- 0.090 +Hg2+2 NO3- -0.200 +HgCl+ ClO4- 0.190 +HgCl3- Na+ 0.050 +HgCl4-2 Na+ 0.080 +HGlu- Na+ -0.070 +HIsa- Na+ -0.070 +HMoO4- Na+ -0.099 +Ho(CO3)+ Cl- 0.129 +Ho(CO3)+ ClO4- 0.170 +Ho(CO3)2- Na+ -0.140 +Ho(CO3)3-3 Na+ -0.230 +Ho(H2PO4)+2 Cl- 0.191 +Ho(H2PO4)+2 ClO4- 0.390 +Ho(NO3)+2 Cl- 0.191 +Ho(NO3)+2 ClO4- 0.390 +Ho(OH)+2 Cl- -0.040 +Ho(OH)+2 ClO4- 0.390 +Ho(OH)2+ Cl- -0.290 +Ho(OH)2+ ClO4- 0.170 +Ho(SO4)+ Cl- 0.157 +Ho(SO4)+ ClO4- 0.220 +Ho(SO4)2- Na+ -0.050 +Ho+3 Cl- 0.230 +Ho+3 ClO4- 0.490 +HoCl+2 Cl- 0.191 +HoCl+2 ClO4- 0.390 +HoCl2+ Cl- 0.129 +HoF+2 Cl- 0.191 +HoF+2 ClO4- 0.390 +HoF2+ Cl- 0.129 +HoF2+ ClO4- 0.170 +HPO4-2 Na+ -0.150 +I- Na+ 0.080 +IO3- Na+ -0.060 +K+ Cl- 0.000 +K+ NO3- -0.110 +Li+ Cl- 0.100 +Li+ ClO4- 0.150 +Li+ NO3- 0.080 +Mg(Cit)- Na+ 0.030 +Mg(Edta)-2 Na+ -0.010 +Mg(HEdta)- Na+ 0.110 +Mg(Ox)2-2 Na+ -0.150 +Mg+2 Cl- 0.190 +Mg+2 ClO4- 0.330 +Mg+2 NO3- 0.170 +MgUO2(CO3)3-2 Na+ -0.020 +Mn+2 Cl- 0.130 +Mo7O21(OH)3-3 Na+ -1.455 +Mo7O22(OH)2-4 Na+ -1.346 +Mo7O23(OH)-5 Na+ -1.145 +Mo7O24-6 Na+ -1.265 +MoO4-2 Na+ 0.034 +Na+ ClO4- 0.010 +NH4+ Cl- -0.010 +NH4+ ClO4- -0.080 +NH4+ NO3- -0.060 +Ni(Cit)- Na+ 0.220 +Ni(CO3)2-2 Na+ 0.003 +Ni(HCO3)+ Cl- 0.085 +Ni(NO3)+ Cl- 0.060 +Ni(NO3)+ ClO4- 0.440 +Ni(OH)+ Cl- -0.010 +Ni(OH)+ ClO4- 0.140 +Ni(SO4)2-2 Na+ -0.263 +Ni+2 Cl- 0.170 +Ni+2 ClO4- 0.370 +Ni+2 NO3- 0.182 +Ni4(OH)4+4 ClO4- 1.080 +NiCl+ Cl- 0.100 +NiCl+ ClO4- 0.470 +NiF+ Cl- 0.065 +NiF+ ClO4- 0.340 +NiHS+ ClO4- -0.850 +NO3- Na+ -0.040 +Np(CO3)+ Cl- 0.129 +Np(CO3)+ ClO4- 0.170 +Np(CO3)2- Na+ -0.140 +Np(CO3)3-3 Na+ -0.230 +Np(CO3)4-4 Na+ -0.090 +Np(CO3)5-6 Na+ 0.000 +Np(NO3)+3 ClO4- 0.710 +Np(OH)+2 Cl- -0.040 +Np(OH)+2 ClO4- 0.390 +Np(OH)+3 Cl- 0.200 +Np(OH)+3 ClO4- 0.500 +Np(OH)2+ Cl- -0.290 +Np(OH)2+ ClO4- 0.170 +Np(OH)2+2 Cl- 0.100 +Np(OH)3+ Cl- 0.050 +Np(SO4)+ Cl- 0.157 +Np(SO4)+ ClO4- 0.220 +Np(SO4)+2 Cl- 0.232 +Np(SO4)+2 ClO4- 0.480 +Np(SO4)2- Na+ -0.050 +Np+3 Cl- 0.230 +Np+3 ClO4- 0.490 +Np+4 Cl- 0.400 +Np+4 ClO4- 0.840 +NpCl+3 ClO4- 0.810 +NpF+3 ClO4- 0.580 +NpF2+2 Cl- 0.186 +NpF2+2 ClO4- 0.380 +NpF3+ Cl- 0.100 +NpI+3 ClO4- 0.770 +NpO2(Cit)-2 Na+ -0.060 +NpO2(CO3)- Na+ -0.180 +NpO2(CO3)2-2 Na+ -0.020 +NpO2(CO3)2-3 Na+ -0.330 +NpO2(CO3)2OH-4 Na+ -0.400 +NpO2(CO3)3-4 Na+ -0.400 +NpO2(CO3)3-5 Na+ -0.530 +NpO2(Edta)-3 Na+ 0.200 +NpO2(HEdta)-2 Na+ 0.070 +NpO2(HPO4)- Na+ -0.050 +NpO2(HPO4)2-2 Na+ -0.100 +NpO2(NO3)+ Cl- 0.220 +NpO2(NO3)+ ClO4- 0.330 +NpO2(OH)+ Cl- -0.003 +NpO2(OH)+ ClO4- -0.060 +NpO2(OH)2- Na+ -0.010 +NpO2(OH)3- Na+ -0.200 +NpO2(OH)4-2 Na+ -0.120 +NpO2(Ox)- Na+ -0.400 +NpO2(Ox)2-3 Na+ -0.300 +NpO2(SO4)- Na+ 0.070 +NpO2(SO4)2-2 Na+ -0.120 +NpO2+ Cl- 0.090 +NpO2+ ClO4- 0.250 +NpO2+2 Cl- 0.223 +NpO2+2 ClO4- 0.460 +NpO2Cl+ Cl- 0.318 +NpO2Cl+ ClO4- 0.500 +NpO2F+ Cl- 0.197 +NpO2F+ ClO4- 0.290 +OH- Na+ 0.040 +Ox-2 Na+ -0.080 +Pa+4 Cl- 0.300 +PaO(OH)+2 Cl- 0.130 +Pb(OH)3- Na+ 0.020 +Pb(SO4)2-2 Na+ -0.520 +Pb+2 Cl- 0.081 +Pb+2 ClO4- 0.150 +Pb+2 NO3- -0.200 +PbF+ Cl- 0.140 +Pd(OH)3- Na+ 0.110 +Pd(SO4)2-2 Na+ -0.120 +Pd+2 Cl- 0.160 +Pd+2 ClO4- 0.220 +PdBr+ Cl- 0.175 +PdBr3- Na+ 0.000 +PdBr4-2 Na+ 0.100 +PdCl+ Cl- 0.175 +PdCl+ ClO4- 0.250 +PdCl3- Na+ 0.030 +PdCl3(OH)-2 Na+ -0.044 +PdCl4-2 Na+ -0.044 +PO4-3 Na+ -0.250 +Pu(CO3)+ Cl- 0.129 +Pu(CO3)+ ClO4- 0.170 +Pu(CO3)2- Na+ -0.140 +Pu(CO3)3-3 Na+ -0.230 +Pu(CO3)4-4 Na+ -0.090 +Pu(CO3)5-6 Na+ 0.000 +Pu(NO3)+2 Cl- 0.191 +Pu(NO3)+2 ClO4- 0.390 +Pu(NO3)+3 ClO4- 0.590 +Pu(OH)+2 Cl- -0.040 +Pu(OH)+2 ClO4- 0.390 +Pu(OH)+3 Cl- 0.200 +Pu(OH)+3 ClO4- 0.500 +Pu(OH)2+ Cl- -0.290 +Pu(OH)2+ ClO4- 0.170 +Pu(OH)2+2 Cl- 0.100 +Pu(OH)3+ Cl- 0.050 +Pu(SO4)+ Cl- 0.157 +Pu(SO4)+ ClO4- 0.220 +Pu(SO4)+2 Cl- 0.232 +Pu(SO4)+2 ClO4- 0.360 +Pu(SO4)2- Na+ -0.050 +Pu+3 Cl- 0.230 +Pu+3 ClO4- 0.490 +Pu+4 ClO4- 0.820 +PuBr+3 Cl- 0.100 +PuBr+3 ClO4- 0.580 +PuCl+3 Cl- 0.100 +PuCl+3 ClO4- 0.850 +PuF+3 Cl- 0.100 +PuF+3 ClO4- 0.560 +PuF2+2 Cl- 0.177 +PuF2+2 ClO4- 0.360 +PuF3+ Cl- 0.100 +PuI+2 Cl- 0.191 +PuI+2 ClO4- 0.390 +PuI+3 Cl- 0.100 +PuO2(CO3)- Na+ -0.180 +PuO2(CO3)2-2 Na+ -0.700 +PuO2(CO3)3-4 Na+ -0.200 +PuO2(CO3)3-5 Na+ -0.530 +PuO2(OH)+ Cl- -0.003 +PuO2(SO4)- Na+ -0.070 +PuO2(SO4)2-2 Na+ -0.120 +PuO2+ Cl- 0.129 +PuO2+ ClO4- 0.240 +PuO2+2 Cl- 0.223 +PuO2+2 ClO4- 0.460 +PuO2Cl+ Cl- 0.318 +PuO2Cl+ ClO4- 0.500 +PuO2F+ Cl- 0.197 +PuO2F+ ClO4- 0.290 +PuO2F3- Na+ 0.000 +PuO2NO3+ Cl- 0.220 +PuO2NO3+ ClO4- 0.330 +SeO3-2 Na+ -0.080 +SeO4-2 Na+ -0.120 +Si2O2(OH)5- Na+ -0.080 +Si2O3(OH)4-2 Na+ -0.150 +Si3O5(OH)5-3 Na+ -0.250 +Si3O6(OH)3-3 Na+ -0.250 +Si4O8(OH)4-4 Na+ -0.260 +Sm(CO3)+ Cl- 0.129 +Sm(CO3)+ ClO4- 0.170 +Sm(CO3)2- Na+ -0.140 +Sm(CO3)3-3 Na+ -0.230 +Sm(H2PO4)+2 Cl- 0.191 +Sm(H2PO4)+2 ClO4- 0.390 +Sm(NO3)+2 Cl- 0.191 +Sm(NO3)+2 ClO4- 0.390 +Sm(OH)+2 Cl- -0.040 +Sm(OH)+2 ClO4- 0.390 +Sm(OH)2+ Cl- -0.290 +Sm(OH)2+ ClO4- 0.170 +Sm(SO4)+ Cl- 0.157 +Sm(SO4)+ ClO4- 0.220 +Sm(SO4)2- Na+ -0.050 +Sm+3 Cl- 0.230 +Sm+3 ClO4- 0.490 +SmCl+2 Cl- 0.191 +SmCl+2 ClO4- 0.390 +SmF+2 Cl- 0.191 +SmF+2 ClO4- 0.390 +Sn(OH)+ ClO4- -0.070 +Sn(OH)3- Na+ 0.220 +Sn+2 Cl- 0.140 +Sn+2 ClO4- 0.190 +Sn+4 ClO4- 0.700 +Sn3(OH)4+2 ClO4- -0.020 +SnBr+ ClO4- 0.150 +SnBr3- Na+ 0.160 +SnCl+ ClO4- 0.080 +SnCl3- Na+ 0.040 +SnF+ ClO4- 0.140 +SO3-2 Na+ -0.080 +SO4-2 Na+ -0.120 +Tc2O2(OH)2+2 Cl- -0.430 +TcO(OH)3- Na+ -0.080 +Th(CO3)5-6 Na+ -0.300 +Th(H2PO4)+3 ClO4- 0.500 +Th(H2PO4)2+2 ClO4- 0.400 +Th(H3PO4)(H2PO4)+3 ClO4- 0.500 +Th(H3PO4)+4 ClO4- 0.700 +Th(NO3)+3 ClO4- 0.560 +Th(NO3)+3 NO3- 0.560 +Th(NO3)2+2 ClO4- 0.430 +Th(NO3)2+2 NO3- 0.430 +Th(OH)(CO3)4-5 Na+ -0.220 +Th(OH)+3 Cl- 0.190 +Th(OH)+3 ClO4- 0.480 +Th(OH)+3 NO3- 0.200 +Th(OH)2(CO3)2-2 Na+ -0.100 +Th(OH)2+2 Cl- 0.130 +Th(OH)2+2 ClO4- 0.330 +Th(OH)2+2 NO3- 0.100 +Th(OH)3(CO3)- Na+ -0.050 +Th(OH)3+ Cl- 0.060 +Th(OH)3+ ClO4- 0.150 +Th(OH)3+ NO3- 0.050 +Th(OH)4(CO3)-2 Na+ -0.100 +Th(SO4)+2 Cl- 0.140 +Th(SO4)+2 ClO4- 0.300 +Th(SO4)3-2 Na+ -0.091 +Th+4 Cl- 0.250 +Th+4 ClO4- 0.700 +Th+4 NO3- 0.310 +Th2(OH)2+6 Cl- 0.400 +Th2(OH)2+6 ClO4- 1.220 +Th2(OH)2+6 NO3- 0.690 +Th2(OH)3+5 Cl- 0.290 +Th2(OH)3+5 ClO4- 0.910 +Th2(OH)3+5 NO3- 0.690 +Th4(OH)12+4 Cl- 0.250 +Th4(OH)12+4 ClO4- 0.560 +Th4(OH)12+4 NO3- 0.420 +Th4(OH)8+8 Cl- 0.700 +Th4(OH)8+8 ClO4- 1.690 +Th4(OH)8+8 NO3- 1.590 +Th6(OH)14+10 Cl- 0.830 +Th6(OH)14+10 ClO4- 2.200 +Th6(OH)14+10 NO3- 2.900 +Th6(OH)15+9 Cl- 0.720 +Th6(OH)15+9 ClO4- 1.850 +Th6(OH)15+9 NO3- 2.200 +ThCl+3 Cl- 0.620 +ThCl+3 ClO4- 0.620 +ThF+3 ClO4- 0.480 +ThF+3 NO3- 0.250 +ThF2+2 ClO4- 0.300 +ThF2+2 NO3- 0.150 +ThF3+ ClO4- 0.100 +ThF3+ NO3- 0.000 +U(CO3)4-4 Na+ -0.090 +U(CO3)5-6 Na+ -0.300 +U(NO3)+3 ClO4- 0.620 +U(NO3)2+2 Cl- 0.236 +U(NO3)2+2 ClO4- 0.490 +U(OH)+3 Cl- 0.200 +U(OH)+3 ClO4- 0.480 +U(OH)2+2 Cl- 0.100 +U(OH)3+ Cl- 0.050 +U(SO4)+2 Cl- 0.149 +U(SO4)+2 ClO4- 0.300 +U+3 Cl- 0.230 +U+3 ClO4- 0.490 +U+4 Cl- 0.360 +U+4 ClO4- 0.760 +UBr+3 ClO4- 0.520 +UCl+3 Cl- 0.100 +UCl+3 ClO4- 0.500 +UF+3 Cl- 0.100 +UF+3 ClO4- 0.480 +UF2+2 Cl- 0.149 +UF2+2 ClO4- 0.300 +UF3+ Cl- 0.100 +UF3+ ClO4- 0.100 +UI+3 ClO4- 0.550 +UI+3 NO3- 0.560 +UO2(Cit)- Na+ -0.110 +UO2(CO3)2-2 Na+ -0.020 +UO2(CO3)3-4 Na+ -0.010 +UO2(CO3)3-5 Na+ -0.620 +UO2(NO3)+ Cl- 0.220 +UO2(NO3)+ ClO4- 0.330 +UO2(OH)+ Cl- -0.003 +UO2(OH)+ ClO4- -0.060 +UO2(OH)+ NO3- 0.510 +UO2(OH)3- Na+ -0.240 +UO2(OH)4-2 Na+ 0.010 +UO2(Ox)2-2 Na+ -0.180 +UO2(Ox)3-4 Na+ -0.010 +UO2(SO4)2-2 Na+ -0.120 +UO2+ Cl- 0.180 +UO2+ ClO4- 0.260 +UO2+2 Cl- 0.460 +UO2+2 ClO4- 0.460 +UO2+2 NO3- 0.460 +UO2Br+ Cl- 0.169 +UO2Br+ ClO4- 0.240 +UO2Cl+ Cl- 0.220 +UO2Cl+ ClO4- 0.330 +UO2F+ Cl- 0.040 +UO2F+ ClO4- 0.280 +UO2F3- Na+ -0.140 +UO2F4-2 Na+ -0.300 +Zn+2 Cl- 0.163 +Zn+2 ClO4- 0.330 +Zn+2 NO3- 0.160 +Zr(CO3)4-4 Na+ -0.090 +Zr(NO3)2+2 ClO4- 0.840 +Zr(OH)+3 ClO4- 0.570 +Zr(OH)2+2 ClO4- 0.620 +Zr(OH)6-2 Na+ -0.100 +Zr+4 Cl- 0.890 +Zr+4 ClO4- 0.890 +Zr+4 NO3- 0.890 +Zr4(OH)15+ ClO4- 0.090 +ZrCl+3 ClO4- 0.870 +ZrCl2+2 ClO4- 0.840 +ZrF+3 ClO4- 0.630 +ZrF2+2 ClO4- 0.470 +ZrF5- Na+ -0.140 +ZrF6-2 Na+ -0.150 +ZrNO3+3 ClO4- 0.880 SOLUTION_SPECIES -1.000H2O = H2O - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H+ = H+ - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #89COX/WAG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000e- = e- - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #89COX/WAG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Acetate- = Acetate- - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -486.01 #kJ/mol #82WAG/EVA - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Adipate-2 = Adipate-2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ag+ = Ag+ - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: 105.79 #kJ/mol #95SIL/BID - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 = Al+3 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -538.4 #kJ/mol #95POK/HEL - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 = Am+3 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -616.7 #kJ/mol #95SIL/BID - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000AsO4-3 = AsO4-3 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -888.14 #kJ/mol #09RAN/FUG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000B(OH)4- = B(OH)4- - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -1345.116 #kJ/mol #99RAR/RAN - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ba+2 = Ba+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -534.8 #kJ/mol #95SIL/BID - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Br- = Br- - log_k 0.000 #95SIL/BID - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -121.41 #kJ/mol #95SIL/BID - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000CO3-2 = CO3-2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -675.23 #kJ/mol #89COX/WAG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 = Ca+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -543 #kJ/mol #89COX/WAG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 = Cd+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -75.92 #kJ/mol #89COX/WAG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cit-3 = Cit-3 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -1519.92 #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cl- = Cl- - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -167.08 #kJ/mol #89COX/WAG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cm+3 = Cm+3 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -615 #kJ/mol #01KON2 - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cn- = Cn- - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: 150.624 #kJ/mol #92JOH/OEL - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Co+2 = Co+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -57.6 #kJ/mol #98PLY/ZHA1 - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000CrO4-2 = CrO4-2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -879 #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cs+ = Cs+ - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -258 #kJ/mol #95SIL/BID - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cu+2 = Cu+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: 64.9 #kJ/mol #92GRE/FUG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Edta-4 = Edta-4 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -1704.8 #kJ/mol #05HUM/AND - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 = Eu+3 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -605.331 #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000F- = F- - log_k 0.000 #95SIL/BID - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -335.35 #kJ/mol #95SIL/BID - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 = Fe+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -90 #kJ/mol #98CHI - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H2(PO4)- = H2(PO4)- - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -1302.6 #kJ/mol #89COX/WAG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H4(SiO4) = H4(SiO4) - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -1461.194 #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000HGlu- = HGlu- - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000HIsa- = HIsa- - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Hf+4 = Hf+4 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -628.91 #kJ/mol #99VAS/LYT - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Hg+2 = Hg+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: 170.21 #kJ/mol #92GRE/FUG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ho+3 = Ho+3 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -707.042 #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000I- = I- - log_k 0.000 #92GRE/FUG - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -56.78 #kJ/mol #92GRE/FUG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000K+ = K+ - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -252.14 #kJ/mol #89COX/WAG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Li+ = Li+ - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Malonate-2 = Malonate-2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 = Mg+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -467 #kJ/mol #89COX/WAG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 = Mn+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -220.8 #kJ/mol #95ROB/HEM - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000MoO4-2 = MoO4-2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -997 #kJ/mol #74OHA - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NO3- = NO3- - log_k 0.000 #92GRE/FUG - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -206.85 #kJ/mol #92GRE/FUG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Na+ = Na+ - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -240.34 #kJ/mol #92GRE/FUG (89COX/WAG) - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Nb(OH)6- = Nb(OH)6- - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -1925.665 #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 = Ni+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -55.012 #kJ/mol #05GAM/BUG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+2 = NpO2+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -860.733 #kJ/mol #01LEM/FUG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Nta-3 = Nta-3 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ox-2 = Ox-2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -830.66 #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pa+4 = Pa+4 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -620 #kJ/mol #85BAR/PAR - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pb+2 = Pb+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: 0.92 #kJ/mol #89COX/WAG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pd+2 = Pd+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: 189.883 #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Phthalat-2 = Phthalat-2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 = PuO2+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -822.036 #kJ/mol #01LEM/FUG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pyrophos-4 = Pyrophos-4 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ra+2 = Ra+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -528.025 #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Rb+ = Rb+ - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -251.12 #kJ/mol #92GRE/FUG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000SO4-2 = SO4-2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -909.34 #kJ/mol #89COX/WAG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sb(OH)3 = Sb(OH)3 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -733.892 #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Scn- = Scn- - log_k 0.000 #92GRE/FUG - delta_h 0.000 #kJ/mol - # Enthalpy of formation: 76.4 #kJ/mol #92GRE/FUG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000SeO4-2 = SeO4-2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -603.5 #kJ/mol #05OLI/NOL - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sm+3 = Sm+3 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -691.199 #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 = Sn+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -9.617 #kJ/mol #12GAM/GAJ - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 = Sr+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -550.9 #kJ/mol #84BUS/PLUS - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Suberate-2 = Suberate-2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Succinat-2 = Succinat-2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000TcO(OH)2 = TcO(OH)2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -749.32 #kJ/mol - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 = Th+4 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -768.7 #kJ/mol #09RAN/FUG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 = UO2+2 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -1019 #kJ/mol #92GRE/FUG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Zn+2 = Zn+2 - log_k 0.000 #92GRE/FUG - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -153.39 #kJ/mol #92GRE/FUG - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Zr+4 = Zr+4 - log_k 0.000 - delta_h 0.000 #kJ/mol - # Enthalpy of formation: -608.5 #kJ/mol #05BRO/CUR - -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 - - -1.000Am+3 + 0.500H2O - 1.000H+ - 0.250O2 = Am+2 - log_k -60.375 #95SIL/BID - delta_h 401.958 #kJ/mol - # Enthalpy of formation: -354.624 #kJ/mol - -analytic 1.00448E+1 0E+0 -2.09957E+4 0E+0 0E+0 - -1.000Am+3 - 0.500H2O + 1.000H+ + 0.250O2 = Am+4 - log_k -22.715 - delta_h 70.819 #kJ/mol - # Enthalpy of formation: -406 #kJ/mol #95SIL/BID - -analytic -1.03081E+1 0E+0 -3.6991E+3 0E+0 0E+0 - -- 2.000H+ + 1.000Am+3 + 1.000H2O + 0.500O2 = AmO2+ - log_k -15.380 - delta_h 104.337 #kJ/mol #95SIL/BID - # Enthalpy of formation: -804.26 #kJ/mol - -analytic 2.89903E+0 0E+0 -5.44989E+3 0E+0 0E+0 - -- 1.000H+ + 1.000Am+3 + 0.500H2O + 0.750O2 = AmO2+2 - log_k -20.865 - delta_h 117.956 #kJ/mol #95SIL/BID - # Enthalpy of formation: -650.76 #kJ/mol - -analytic -2.00114E-1 0E+0 -6.16124E+3 0E+0 0E+0 - -2.000H+ + 1.000CO3-2 + 1.000H2O - 2.000O2 = CH4 - log_k -133.770 - delta_h 848.886 #kJ/mol - # Enthalpy of formation: -87.906 #kJ/mol #01SCH/SHO - -analytic 1.49482E+1 0E+0 -4.43403E+4 0E+0 0E+0 - -4.000H+ + 1.000CrO4-2 - 2.000H2O - 1.000O2 = Cr+2 - log_k -18.760 #04CHI - delta_h 137.587 #kJ/mol - # Enthalpy of formation: -157.62 #kJ/mol - -analytic 5.34417E+0 0E+0 -7.18666E+3 0E+0 0E+0 - -5.000H+ + 1.000CrO4-2 - 2.500H2O - 0.750O2 = Cr+3 - log_k 9.135 - delta_h -85.176 #kJ/mol - # Enthalpy of formation: -240.5 #kJ/mol #04CHI - -analytic -5.78709E+0 0E+0 4.44902E+3 0E+0 0E+0 - -1.000Cu+2 + 0.500H2O - 1.000H+ - 0.250O2 = Cu+ - log_k -18.855 - delta_h 146.652 #kJ/mol - # Enthalpy of formation: 71.67 #kJ/mol #82WAG/EVA - -analytic 6.8372E+0 0E+0 -7.66013E+3 0E+0 0E+0 - -1.000Eu+3 + 0.500H2O - 1.000H+ - 0.250O2 = Eu+2 - log_k -27.465 - delta_h 217.611 #kJ/mol - # Enthalpy of formation: -527.602 #kJ/mol #92JOH/OEL - -analytic 1.06587E+1 0E+0 -1.13666E+4 0E+0 0E+0 - -1.000Fe+2 - 0.500H2O + 1.000H+ + 0.250O2 = Fe+3 - log_k 8.485 - delta_h -98.882 #kJ/mol - # Enthalpy of formation: -49 #kJ/mol #98CHI - -analytic -8.83827E+0 0E+0 5.16493E+3 0E+0 0E+0 - -1.000H2O - 0.500O2 = H2 - log_k -46.070 - delta_h 275.563 #kJ/mol - # Enthalpy of formation: -4.2 #kJ/mol #82WAG/EVA - -analytic 2.20649E+0 0E+0 -1.43936E+4 0E+0 0E+0 - -3.000H+ + 1.000AsO4-3 - 0.500O2 = H3(AsO3) - log_k -2.960 - delta_h 139.873 #kJ/mol - # Enthalpy of formation: -742.2 #kJ/mol #09RAN/FUG - -analytic 2.15447E+1 0E+0 -7.30606E+3 0E+0 0E+0 - -1.000H+ + 1.000SO4-2 - 2.000O2 = HS- - log_k -138.270 - delta_h 868.772 #kJ/mol - # Enthalpy of formation: -16.3 #kJ/mol #89COX/WAG - -analytic 1.39321E+1 0E+0 -4.53791E+4 0E+0 0E+0 - -1.000H+ + 1.000SeO4-2 - 2.000O2 = HSe- - log_k -90.390 - delta_h 593.532 #kJ/mol - # Enthalpy of formation: 14.3 #kJ/mol #05OLI/NOL - -analytic 1.35922E+1 0E+0 -3.10023E+4 0E+0 0E+0 - -2.000Hg+2 + 1.000H2O - 2.000H+ - 0.500O2 = Hg2+2 - log_k -12.200 - delta_h 106.213 #kJ/mol - # Enthalpy of formation: 166.87 #kJ/mol #01LEM/FUG - -analytic 6.40769E+0 0E+0 -5.54788E+3 0E+0 0E+0 - -1.000I- + 1.500O2 = IO3- - log_k 17.410 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -219.7 #kJ/mol #92GRE/FUG - -analytic 1.741E+1 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000NO3- + 1.000H2O - 2.000O2 = NH3 - log_k -61.960 #95SIL/BID - delta_h 387.242 #kJ/mol - # Enthalpy of formation: -81.17 #kJ/mol #95SIL/BID - -analytic 5.88179E+0 0E+0 -2.0227E+4 0E+0 0E+0 - -1.000Np+4 + 0.500H2O - 1.000H+ - 0.250O2 = Np+3 - log_k -17.795 - delta_h 168.720 #kJ/mol - # Enthalpy of formation: -527.184 #kJ/mol #01LEM/FUG - -analytic 1.17633E+1 0E+0 -8.81282E+3 0E+0 0E+0 - -1.000NpO2+ + 3.000H+ - 1.500H2O - 0.250O2 = Np+4 - log_k -11.285 - delta_h -9.620 #kJ/mol - # Enthalpy of formation: -556.022 #kJ/mol #01LEM/FUG - -analytic -1.29703E+1 0E+0 5.02461E+2 0E+0 0E+0 - -1.000NpO2+2 + 0.500H2O - 1.000H+ - 0.250O2 = NpO2+ - log_k -1.905 - delta_h 22.434 #kJ/mol - # Enthalpy of formation: -978.181 #kJ/mol #01LEM/FUG - -analytic 2.02517E+0 0E+0 -1.17178E+3 0E+0 0E+0 - -- 4.000H+ - 4.000e- + 2.000H2O = O2 - log_k -85.980 #89COX/WAG - delta_h 559.526 #kJ/mol - # Enthalpy of formation: -12.134 #kJ/mol #01SCH/SHO - -analytic 1.20446E+1 0E+0 -2.9226E+4 0E+0 0E+0 - -- 3.000H+ + 1.000Pa+4 + 1.500H2O + 0.250O2 = PaO2+ - log_k 25.715 #85BAR/PAR, 76BAE/MES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.5715E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 + 0.500H2O - 1.000H+ - 0.250O2 = Pu+3 - log_k -3.805 - delta_h 87.987 #kJ/mol - # Enthalpy of formation: -591.79 #kJ/mol #01LEM/FUG - -analytic 1.16096E+1 0E+0 -4.59585E+3 0E+0 0E+0 - -1.000PuO2+ + 3.000H+ - 1.500H2O - 0.250O2 = Pu+4 - log_k -4.045 - delta_h -61.547 #kJ/mol - # Enthalpy of formation: -539.895 #kJ/mol #01LEM/FUG - -analytic -1.48275E+1 0E+0 3.21479E+3 0E+0 0E+0 - -1.000PuO2+2 + 0.500H2O - 1.000H+ - 0.250O2 = PuO2+ - log_k -5.675 - delta_h 51.791 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -910.127 #kJ/mol - -analytic 3.39829E+0 0E+0 -2.7052E+3 0E+0 0E+0 - -2.000H+ + 2.000SO4-2 - 1.000H2O - 2.000O2 = S2O3-2 - log_k -133.400 - delta_h 856.296 #kJ/mol - # Enthalpy of formation: -652.286 #kJ/mol #04CHI - -analytic 1.66164E+1 0E+0 -4.47274E+4 0E+0 0E+0 - -2.000H+ + 2.000SO4-2 - 1.000H2O - 1.500O2 = S2O4-2 - log_k -118.270 - delta_h 761.149 #kJ/mol - # Enthalpy of formation: -735.5 #kJ/mol #82WAG/EVA - -analytic 1.50774E+1 0E+0 -3.97575E+4 0E+0 0E+0 - -1.000SO4-2 - 0.500O2 = SO3-2 - log_k -46.610 - delta_h 272.213 #kJ/mol - # Enthalpy of formation: -631.06 #kJ/mol #85GOL/PAR - -analytic 1.0796E+0 0E+0 -1.42187E+4 0E+0 0E+0 - -1.000Sb(OH)3 + 1.000H2O + 0.500O2 = Sb(OH)5 - log_k 21.250 #99LOT/OCH recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.125E+1 0E+0 0E+0 0E+0 0E+0 - -1.000SeO4-2 - 0.500O2 = SeO3-2 - log_k -14.950 #05OLI/NOL - delta_h 90.273 #kJ/mol - # Enthalpy of formation: -507.16 #kJ/mol #05OLI/NOL - -analytic 8.65128E-1 0E+0 -4.71528E+3 0E+0 0E+0 - -1.000Sn+2 - 1.000H2O + 2.000H+ + 0.500O2 = Sn+4 - log_k 30.010 #12GAM/GAJ; E°=0.384V for Sn2+/Sn4+ reaction ( I=0) - delta_h -301.645 #kJ/mol - # Enthalpy of formation: -31.499 #kJ/mol - -analytic -2.28359E+1 0E+0 1.5756E+4 0E+0 0E+0 - -1.000TcO(OH)2 - 1.000H+ - 0.500H2O + 0.750O2 = TcO4- - log_k 35.055 - delta_h -113.895 #kJ/mol - # Enthalpy of formation: -729.4 #kJ/mol #99RAR/RAN - -analytic 1.51016E+1 0E+0 5.94912E+3 0E+0 0E+0 - -1.000TcO4- + 0.500H2O - 1.000H+ - 0.250O2 = TcO4-2 - log_k -32.295 #99RAR/RAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.2295E+1 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 + 0.500H2O - 1.000H+ - 0.250O2 = U+3 - log_k -30.845 #92GRE/FUG - delta_h 241.982 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -489.1 #kJ/mol - -analytic 1.15483E+1 0E+0 -1.26396E+4 0E+0 0E+0 - -1.000UO2+2 + 2.000H+ - 1.000H2O - 0.500O2 = U+4 - log_k -33.950 #92GRE/FUG - delta_h 135.903 #kJ/mol - # Enthalpy of formation: -591.2 #kJ/mol #92GRE/FUG - -analytic -1.01409E+1 0E+0 -7.0987E+3 0E+0 0E+0 - -1.000UO2+2 + 0.500H2O - 1.000H+ - 0.250O2 = UO2+ - log_k -20.015 - delta_h 133.755 #kJ/mol - # Enthalpy of formation: -1025.127 #kJ/mol - -analytic 3.41775E+0 0E+0 -6.98647E+3 0E+0 0E+0 - - -2.000NpO2+2 - 2.000H+ + 2.000H2O = (NpO2)2(OH)2+2 - log_k -6.270 #01LEM/FUG - delta_h 44.996 #kJ/mol - # Enthalpy of formation: -2248.13 #kJ/mol - -analytic 1.61295E+0 0E+0 -2.3503E+3 0E+0 0E+0 - -2.000NpO2+2 - 3.000H+ + 1.000CO3-2 + 3.000H2O = (NpO2)2CO3(OH)3- - log_k -2.870 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.87E+0 0E+0 0E+0 0E+0 0E+0 - -3.000NpO2+2 + 6.000CO3-2 = (NpO2)3(CO3)6-6 - log_k 49.840 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.984E+1 0E+0 0E+0 0E+0 0E+0 - -3.000NpO2+2 - 5.000H+ + 5.000H2O = (NpO2)3(OH)5+ - log_k -17.120 #01LEM/FUG - delta_h 110.667 #kJ/mol - # Enthalpy of formation: -3900.682 #kJ/mol - -analytic 2.268E+0 0E+0 -5.78053E+3 0E+0 0E+0 - -2.000PuO2+2 - 2.000H+ + 2.000H2O = (PuO2)2(OH)2+2 - log_k -7.500 #01LEM/FUG - delta_h 43.583 #kJ/mol - # Enthalpy of formation: -2172.149 #kJ/mol - -analytic 1.35403E-1 0E+0 -2.2765E+3 0E+0 0E+0 - -3.000PuO2+2 + 6.000CO3-2 = (PuO2)3(CO3)6-6 - log_k 46.020 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.602E+1 0E+0 0E+0 0E+0 0E+0 - -1.000TcO(OH)2 - 1.000H+ + 1.000H2O = (TcO)(OH)3- - log_k -10.800 - delta_h 39.030 #kJ/mol #97NGU/LAN - # Enthalpy of formation: -996.12 #kJ/mol - -analytic -3.96225E+0 0E+0 -2.03868E+3 0E+0 0E+0 - -2.000Th+4 - 2.000H+ + 2.000Edta-4 + 2.000H2O = (Th(OH)(Edta))2-2 - log_k 43.700 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.37E+1 0E+0 0E+0 0E+0 0E+0 - -2.000U+4 - 2.000H+ + 2.000Edta-4 + 2.000H2O = (U(OH)(Edta))2-2 - log_k 51.700 #63ERM/KRO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.17E+1 0E+0 0E+0 0E+0 0E+0 - -11.000UO2+2 - 12.000H+ + 6.000CO3-2 + 12.000H2O = (UO2)11(CO3)6(OH)12-2 - log_k 36.430 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.643E+1 0E+0 0E+0 0E+0 0E+0 - -2.000UO2+2 - 3.000H+ + 1.000CO3-2 + 3.000H2O = (UO2)2(CO3)(OH)3- - log_k -0.860 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -8.6E-1 0E+0 0E+0 0E+0 0E+0 - -2.000UO2+2 + 2.000Cit-3 = (UO2)2(Cit)2-2 - log_k 21.300 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.13E+1 0E+0 0E+0 0E+0 0E+0 - -2.000UO2+2 + 1.000Edta-4 = (UO2)2(Edta) - log_k 20.600 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.06E+1 0E+0 0E+0 0E+0 0E+0 - -2.000UO2+2 + 1.000NpO2+2 + 6.000CO3-2 = (UO2)2(NpO2)(CO3)6-6 - log_k 53.590 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.359E+1 0E+0 0E+0 0E+0 0E+0 - -2.000UO2+2 - 1.000H+ + 1.000H2O = (UO2)2(OH)+3 - log_k -2.700 #92GRE/FUG - delta_h 14.354 #kJ/mol - # Enthalpy of formation: -2309.476 #kJ/mol - -analytic -1.85291E-1 0E+0 -7.49761E+2 0E+0 0E+0 - -2.000UO2+2 - 2.000H+ + 2.000H2O = (UO2)2(OH)2+2 - log_k -5.620 #92GRE/FUG - delta_h 37.595 #kJ/mol - # Enthalpy of formation: -2572.065 #kJ/mol - -analytic 9.66352E-1 0E+0 -1.96372E+3 0E+0 0E+0 - -3.000UO2+2 - 3.000H+ + 1.000CO3-2 + 3.000H2O = (UO2)3(CO3)(OH)3+ - log_k 0.660 #92GRE/FUG - delta_h 81.159 #kJ/mol - # Enthalpy of formation: -4361.23 #kJ/mol - -analytic 1.48784E+1 0E+0 -4.23922E+3 0E+0 0E+0 - -3.000UO2+2 + 6.000CO3-2 = (UO2)3(CO3)6-6 - log_k 54.000 #92GRE/FUG - delta_h -62.700 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -7171.08 #kJ/mol - -analytic 4.30154E+1 0E+0 3.27504E+3 0E+0 0E+0 - -3.000UO2+2 - 4.000H+ + 4.000H2O = (UO2)3(OH)4+2 - log_k -11.900 #92GRE/FUG - delta_h 84.264 #kJ/mol - # Enthalpy of formation: -4251.906 #kJ/mol - -analytic 2.8624E+0 0E+0 -4.40141E+3 0E+0 0E+0 - -3.000UO2+2 - 5.000H+ + 5.000H2O = (UO2)3(OH)5+ - log_k -15.550 #92GRE/FUG - delta_h 97.063 #kJ/mol - # Enthalpy of formation: -4389.086 #kJ/mol - -analytic 1.45468E+0 0E+0 -5.06995E+3 0E+0 0E+0 - -3.000UO2+2 - 7.000H+ + 7.000H2O = (UO2)3(OH)7- - log_k -32.200 #92SAN/BRU - delta_h 229.868 #kJ/mol - # Enthalpy of formation: -4827.942 #kJ/mol - -analytic 8.07109E+0 0E+0 -1.20068E+4 0E+0 0E+0 - -4.000UO2+2 - 7.000H+ + 7.000H2O = (UO2)4(OH)7+ - log_k -21.900 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.19E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ag+ + 2.000CO3-2 = Ag(CO3)2-3 - log_k 2.160 #97SVE/SHO - delta_h -28.044 #kJ/mol - # Enthalpy of formation: -1272.714 #kJ/mol - -analytic -2.75309E+0 0E+0 1.46484E+3 0E+0 0E+0 - -1.000Ag+ + 1.000HS- = Ag(HS) - log_k 14.050 #74NAU/RYZ in 91BAL/NOR - delta_h -78.826 #kJ/mol - # Enthalpy of formation: 10.664 #kJ/mol - -analytic 2.40298E-1 0E+0 4.11736E+3 0E+0 0E+0 - -1.000Ag+ + 2.000HS- = Ag(HS)2- - log_k 18.450 #74NAU/RYZ in 91BAL/NOR - delta_h -105.805 #kJ/mol - # Enthalpy of formation: -32.615 #kJ/mol - -analytic -8.62131E-2 0E+0 5.52657E+3 0E+0 0E+0 - -1.000Ag+ - 1.000H+ + 1.000H2O = Ag(OH) - log_k -12.000 #76BAE/MES - delta_h 47.178 #kJ/mol - # Enthalpy of formation: -132.862 #kJ/mol - -analytic -3.73478E+0 0E+0 -2.46427E+3 0E+0 0E+0 - -1.000Ag+ - 2.000H+ + 2.000H2O = Ag(OH)2- - log_k -24.000 #76BAE/MES - delta_h 111.634 #kJ/mol - # Enthalpy of formation: -354.236 #kJ/mol - -analytic -4.44259E+0 0E+0 -5.83104E+3 0E+0 0E+0 - -1.000Ag+ + 1.000S2O3-2 = Ag(S2O3)- - log_k 9.230 #74BEL/MAR in 82HÖG - delta_h -58.994 #kJ/mol #74BEL/MAR in 82HÖG - # Enthalpy of formation: -601.724 #kJ/mol - -analytic -1.10529E+0 0E+0 3.08147E+3 0E+0 0E+0 - -1.000Ag+ + 2.000S2O3-2 = Ag(S2O3)2-3 - log_k 13.640 #72POU/RIG in 82HÖG - delta_h -94.450 #kJ/mol - # Enthalpy of formation: -1285.7 #kJ/mol #82WAG/EVA - -analytic -2.90691E+0 0E+0 4.93346E+3 0E+0 0E+0 - -1.000Ag+ + 1.000SO3-2 = Ag(SO3)- - log_k 5.210 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.21E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ag+ + 1.000SO4-2 = Ag(SO4)- - log_k 1.380 - delta_h 4.646 #kJ/mol - # Enthalpy of formation: -798.904 #kJ/mol - -analytic 2.19394E+0 0E+0 -2.42677E+2 0E+0 0E+0 - -1.000Ag+ + 3.000H+ + 3.000Cn- + 3.000HSe- - 3.000H2O + 1.500O2 = Ag(SeCn)3-2 - log_k 181.900 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.819E+2 0E+0 0E+0 0E+0 0E+0 - -1.000Ag+ + 1.000SeO3-2 = Ag(SeO3)- - log_k 3.200 #Data from 68MEH and 69MEH/GUB in 05OLI/NOL corrected to I=0 by DH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.2E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ag+ + 1.000Br- = AgBr - log_k 4.240 #91BAL/NOR, 68WAG - delta_h -23.129 #kJ/mol - # Enthalpy of formation: -38.749 #kJ/mol - -analytic 1.87979E-1 0E+0 1.20811E+3 0E+0 0E+0 - -1.000Ag+ + 2.000Br- = AgBr2- - log_k 7.280 #91BAL/NOR, 68WAG - delta_h -45.296 #kJ/mol - # Enthalpy of formation: -182.326 #kJ/mol - -analytic -6.55507E-1 0E+0 2.36597E+3 0E+0 0E+0 - -1.000Ag+ + 3.000Br- = AgBr3-2 - log_k 8.710 #91BAL/NOR, 68WAG - delta_h -66.741 #kJ/mol - # Enthalpy of formation: -325.181 #kJ/mol - -analytic -2.9825E+0 0E+0 3.48612E+3 0E+0 0E+0 - -1.000Ag+ + 1.000CO3-2 = AgCO3- - log_k 2.690 #97SVE/SHO - delta_h -22.832 #kJ/mol - # Enthalpy of formation: -592.272 #kJ/mol - -analytic -1.30999E+0 0E+0 1.1926E+3 0E+0 0E+0 - -1.000Ag+ + 1.000Cl- = AgCl - log_k 3.270 #91BAL/NOR - delta_h -17.099 #kJ/mol - # Enthalpy of formation: -78.389 #kJ/mol - -analytic 2.74388E-1 0E+0 8.93142E+2 0E+0 0E+0 - -1.000Ag+ + 2.000Cl- = AgCl2- - log_k 5.270 #91BAL/NOR - delta_h -28.752 #kJ/mol - # Enthalpy of formation: -257.122 #kJ/mol - -analytic 2.32873E-1 0E+0 1.50182E+3 0E+0 0E+0 - -1.000Ag+ + 3.000Cl- = AgCl3-2 - log_k 5.290 #91BAL/NOR - delta_h -29.163 #kJ/mol - # Enthalpy of formation: -424.613 #kJ/mol - -analytic 1.80869E-1 0E+0 1.52329E+3 0E+0 0E+0 - -1.000Ag+ + 4.000Cl- = AgCl4-3 - log_k 5.510 #91BAL/NOR - delta_h -26.094 #kJ/mol - # Enthalpy of formation: -588.624 #kJ/mol - -analytic 9.38534E-1 0E+0 1.36298E+3 0E+0 0E+0 - -1.000Ag+ + 1.000I- = AgI - log_k 6.580 #76SMI/MAR - delta_h -36.962 #kJ/mol - # Enthalpy of formation: 12.048 #kJ/mol - -analytic 1.04545E-1 0E+0 1.93066E+3 0E+0 0E+0 - -1.000Ag+ + 2.000I- = AgI2- - log_k 11.700 #76SMI/MAR - delta_h -76.578 #kJ/mol - # Enthalpy of formation: -84.348 #kJ/mol - -analytic -1.71587E+0 0E+0 3.99994E+3 0E+0 0E+0 - -1.000Ag+ + 3.000I- = AgI3-2 - log_k 13.280 - delta_h -114.911 #kJ/mol - # Enthalpy of formation: -179.461 #kJ/mol - -analytic -6.85151E+0 0E+0 6.00221E+3 0E+0 0E+0 - -1.000Ag+ + 1.000NO3- = AgNO3 - log_k -0.290 #91BAL/NOR, 68WAG - delta_h -0.740 #kJ/mol - # Enthalpy of formation: -101.8 #kJ/mol #82WAG/EVA - -analytic -4.19642E-1 0E+0 3.86528E+1 0E+0 0E+0 - -1.000Al+3 + 1.000Cit-3 = Al(Cit) - log_k 9.900 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 - 1.000H+ + 2.000Cit-3 + 1.000H2O = Al(Cit)2(OH)-4 - log_k 10.190 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.019E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 + 2.000Cit-3 = Al(Cit)2-3 - log_k 14.130 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.413E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 + 1.000Edta-4 = Al(Edta)- - log_k 19.080 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.908E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 + 1.000H+ + 1.000Cit-3 = Al(HCit)+ - log_k 12.900 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.29E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 + 1.000H+ + 1.000Edta-4 = Al(HEdta) - log_k 21.820 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.182E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 + 1.000H+ + 1.000Nta-3 = Al(HNta)+ - log_k 15.130 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.513E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 + 1.000H+ + 1.000Ox-2 = Al(HOx)+2 - log_k 7.500 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 + 1.000IO3- = Al(IO3)+2 - log_k 2.460 #estimation NEA87 08/2/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.46E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 + 2.000IO3- = Al(IO3)2+ - log_k 4.300 #estimation NEA87 08/2/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 + 1.000Nta-3 = Al(Nta) - log_k 13.230 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.323E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 - 2.000H+ + 1.000Nta-3 + 2.000H2O = Al(Nta)(OH)2-2 - log_k -0.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 + 2.000Nta-3 = Al(Nta)2-3 - log_k 20.800 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.08E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 - 1.000H+ + 1.000Cit-3 + 1.000H2O = Al(OH)(Cit)- - log_k 8.100 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.1E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 - 1.000H+ + 1.000Edta-4 + 1.000H2O = Al(OH)(Edta)-2 - log_k 13.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.3E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 - 1.000H+ + 1.000Nta-3 + 1.000H2O = Al(OH)(Nta)- - log_k 6.790 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.79E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 - 1.000H+ + 1.000H2O = Al(OH)+2 - log_k -4.950 #95POK/HEL - delta_h 49.760 #kJ/mol - # Enthalpy of formation: -774.47 #kJ/mol - -analytic 3.76756E+0 0E+0 -2.59914E+3 0E+0 0E+0 - -1.000Al+3 - 2.000H+ + 1.000Edta-4 + 2.000H2O = Al(OH)2(Edta)-3 - log_k 2.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 - 2.000H+ + 2.000H2O = Al(OH)2+ - log_k -10.580 - delta_h 98.264 #kJ/mol - # Enthalpy of formation: -1011.796 #kJ/mol #95POK/HEL - -analytic 6.63509E+0 0E+0 -5.13268E+3 0E+0 0E+0 - -1.000Al+3 - 2.000H+ + 1.000F- + 2.000H2O = Al(OH)2F - log_k -4.210 - delta_h 118.636 #kJ/mol - # Enthalpy of formation: -1326.774 #kJ/mol #01TAG/SCH - -analytic 1.65741E+1 0E+0 -6.19678E+3 0E+0 0E+0 - -1.000Al+3 - 2.000H+ + 2.000F- + 2.000H2O = Al(OH)2F2- - log_k -1.990 - delta_h 134.839 #kJ/mol - # Enthalpy of formation: -1645.921 #kJ/mol #01TAG/SCH - -analytic 2.16327E+1 0E+0 -7.04312E+3 0E+0 0E+0 - -1.000Al+3 - 3.000H+ + 3.000H2O = Al(OH)3 - log_k -16.420 - delta_h 144.686 #kJ/mol - # Enthalpy of formation: -1251.204 #kJ/mol #95POK/HEL - -analytic 8.92786E+0 0E+0 -7.55747E+3 0E+0 0E+0 - -1.000Al+3 - 4.000H+ + 4.000H2O = Al(OH)4- - log_k -22.870 - delta_h 180.881 #kJ/mol - # Enthalpy of formation: -1500.839 #kJ/mol #95POK/HEL - -analytic 8.81894E+0 0E+0 -9.44806E+3 0E+0 0E+0 - -1.000Al+3 + 1.000Ox-2 = Al(Ox)+ - log_k 9.400 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.4E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 + 2.000Ox-2 = Al(Ox)2- - log_k 15.390 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.539E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 + 3.000Ox-2 = Al(Ox)3-3 - log_k 18.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.83E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 + 1.000SO4-2 = Al(SO4)+ - log_k 3.170 #01TAG/SCH - delta_h 18.870 #kJ/mol - # Enthalpy of formation: -1428.87 #kJ/mol - -analytic 6.47588E+0 0E+0 -9.85647E+2 0E+0 0E+0 - -2.000Al+3 - 2.000H+ + 4.000Ox-2 + 2.000H2O = Al2(Ox)4(OH)2-4 - log_k -6.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6E+0 0E+0 0E+0 0E+0 0E+0 - -3.000Al+3 - 4.000H+ + 3.000Cit-3 + 4.000H2O = Al3(Cit)3(OH)4-4 - log_k 20.600 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.06E+1 0E+0 0E+0 0E+0 0E+0 - -3.000Al+3 - 3.000H+ + 3.000Ox-2 + 3.000H2O = Al3(Ox)3(OH)3 - log_k 16.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.6E+1 0E+0 0E+0 0E+0 0E+0 - -4.000Al+3 - 4.000H+ + 4.000Ox-2 + 4.000H2O = Al4(Ox)4(OH)4 - log_k 21.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.1E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Al+3 + 1.000F- = AlF+2 - log_k 6.980 #01TAG/SCH - delta_h -0.346 #kJ/mol - # Enthalpy of formation: -874.096 #kJ/mol - -analytic 6.91938E+0 0E+0 1.80728E+1 0E+0 0E+0 - -1.000Al+3 + 2.000F- = AlF2+ - log_k 12.500 #01TAG/SCH - delta_h 0.420 #kJ/mol - # Enthalpy of formation: -1208.68 #kJ/mol - -analytic 1.25736E+1 0E+0 -2.19381E+1 0E+0 0E+0 - -1.000Al+3 + 3.000F- = AlF3 - log_k 16.550 #01TAG/SCH - delta_h 0.615 #kJ/mol - # Enthalpy of formation: -1543.835 #kJ/mol - -analytic 1.66577E+1 0E+0 -3.21236E+1 0E+0 0E+0 - -1.000Al+3 + 4.000F- = AlF4- - log_k 18.930 #01TAG/SCH - delta_h 0.823 #kJ/mol - # Enthalpy of formation: -1878.977 #kJ/mol - -analytic 1.90742E+1 0E+0 -4.29882E+1 0E+0 0E+0 - -1.000Al+3 - 1.000H+ + 1.000H4(SiO4) = AlH3SiO4+2 - log_k -2.380 #01TAG/SCH - delta_h 77.389 #kJ/mol - # Enthalpy of formation: -1922.205 #kJ/mol - -analytic 1.1178E+1 0E+0 -4.0423E+3 0E+0 0E+0 - -1.000Al+3 - 1.000H+ + 2.000F- + 1.000H2O = AlOHF2 - log_k 0.210 - delta_h 139.337 #kJ/mol - # Enthalpy of formation: -1355.593 #kJ/mol #01TAG/SCH - -analytic 2.46208E+1 0E+0 -7.27807E+3 0E+0 0E+0 - -1.000Am+3 + 1.000Acetate- = Am(Acetate)+2 - log_k 2.940 #11RIC/GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.94E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 2.000Acetate- = Am(Acetate)2+ - log_k 5.070 #69MOS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.07E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 3.000Acetate- = Am(Acetate)3 - log_k 6.540 #69MOS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.54E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 1.000CO3-2 = Am(CO3)+ - log_k 7.900 #recalculated from 03GUI/FAN - delta_h 158.156 #kJ/mol - # Enthalpy of formation: -1133.774 #kJ/mol - -analytic 3.56077E+1 0E+0 -8.26105E+3 0E+0 0E+0 - -1.000Am+3 + 2.000CO3-2 = Am(CO3)2- - log_k 12.600 #recalculated from 03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.26E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 3.000CO3-2 = Am(CO3)3-3 - log_k 14.600 #Recalculated from 03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.46E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 5.000CO3-2 - 0.500H2O + 1.000H+ + 0.250O2 = Am(CO3)5-6 - log_k 16.395 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.6395E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 1.000Cit-3 = Am(Cit) - log_k 8.550 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.55E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 2.000Cit-3 = Am(Cit)2-3 - log_k 13.900 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.39E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 1.000Edta-4 = Am(Edta)- - log_k 19.670 #05HUM/AND - delta_h -10.600 #kJ/mol - # Enthalpy of formation: -2332.1 #kJ/mol - -analytic 1.7813E+1 0E+0 5.53676E+2 0E+0 0E+0 - -1.000Am+3 + 1.000H2(PO4)- = Am(H2PO4)+2 - log_k 3.000 #95SIL/BID - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000Am+3 + 1.000CO3-2 = Am(HCO3)+2 - log_k 13.430 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.343E+1 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000Am+3 + 1.000Cit-3 = Am(HCit)+ - log_k 12.860 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.286E+1 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 1.000Am+3 + 2.000Cit-3 = Am(HCit)2- - log_k 23.520 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.352E+1 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000Am+3 + 1.000Edta-4 = Am(HEdta) - log_k 21.840 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.184E+1 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000Am+3 + 1.000H2(PO4)- = Am(HPO4)+ - log_k -1.740 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.74E+0 0E+0 0E+0 0E+0 0E+0 - -- 2.000H+ + 1.000Am+3 + 2.000H2(PO4)- = Am(HPO4)2- - log_k -5.310 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.31E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 1.000NO3- = Am(NO3)+2 - log_k 1.330 #95SIL/BID - delta_h 1.800 #kJ/mol #09SKE/PAN - # Enthalpy of formation: -821.75 #kJ/mol - -analytic 1.64535E+0 0E+0 -9.40204E+1 0E+0 0E+0 - -1.000Am+3 + 1.000Nta-3 = Am(Nta) - log_k 13.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.3E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 2.000Nta-3 = Am(Nta)2-3 - log_k 22.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.2E+1 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000Am+3 + 1.000H2O = Am(OH)+2 - log_k -7.200 #03GUI/FAN, 88STA/KIM1, 94RUN/KIM, 83EDE/BUC, 83CAC/CHO, 92WIM/KLE - delta_h 78.411 #kJ/mol - # Enthalpy of formation: -824.119 #kJ/mol - -analytic 6.537E+0 0E+0 -4.09569E+3 0E+0 0E+0 - -- 2.000H+ + 1.000Am+3 + 2.000H2O = Am(OH)2+ - log_k -15.100 #03GUI/FAN, 88STA/KIM1, 94RUN/KIM, 83EDE/BUC, 83CAC/CHO, 92WIM/KLE - delta_h 143.704 #kJ/mol - # Enthalpy of formation: -1044.656 #kJ/mol - -analytic 1.00758E+1 0E+0 -7.50617E+3 0E+0 0E+0 - -- 3.000H+ + 1.000Am+3 + 3.000H2O = Am(OH)3 - log_k -26.200 #03GUI/FAN, 88STA/KIM1, 94RUN/KIM, 83EDE/BUC, 83CAC/CHO, 92WIM/KLE - delta_h 230.125 #kJ/mol - # Enthalpy of formation: -1244.065 #kJ/mol - -analytic 1.41161E+1 0E+0 -1.20202E+4 0E+0 0E+0 - -- 3.000H+ + 1.000Am+3 + 1.000HGlu- + 3.000H2O = Am(OH)3(HGlu)- - log_k -19.700 #05TIT/WIE - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.97E+1 0E+0 0E+0 0E+0 0E+0 - -- 3.000H+ + 1.000Am+3 + 1.000HIsa- + 3.000H2O = Am(OH)3(HIsa)- - log_k -21.500 #05TIT/WIE - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.15E+1 0E+0 0E+0 0E+0 0E+0 - -- 4.000H+ + 1.000Am+3 + 4.000H2O = Am(OH)4- - log_k -40.700 #07NEC/ALT2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.07E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 1.000Ox-2 = Am(Ox)+ - log_k 6.510 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.51E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 2.000Ox-2 = Am(Ox)2- - log_k 10.710 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.071E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 3.000Ox-2 = Am(Ox)3-3 - log_k 13.000 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.3E+1 0E+0 0E+0 0E+0 0E+0 - -- 4.000H+ + 1.000Am+3 + 2.000H2(PO4)- = Am(PO4)2-3 - log_k -19.430 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.943E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 1.000Phthalat-2 = Am(Phthalat)+ - log_k 4.930 #In analogy with Cm - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.93E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Am+3 + 1.000SO4-2 = Am(SO4)+ - log_k 3.450 #12GRI/GAR1 - delta_h 15.493 #kJ/mol - # Enthalpy of formation: -1510.547 #kJ/mol - -analytic 6.16425E+0 0E+0 -8.09255E+2 0E+0 0E+0 - -1.000Am+3 + 2.000SO4-2 = Am(SO4)2- - log_k 4.570 #12GRI/GAR1 - delta_h 20.927 #kJ/mol - # Enthalpy of formation: -2414.453 #kJ/mol - -analytic 8.23625E+0 0E+0 -1.09309E+3 0E+0 0E+0 - -1.000Am+3 + 1.000Cl- = AmCl+2 - log_k 0.240 #97KÖN/FAN - delta_h 25.106 #kJ/mol - # Enthalpy of formation: -758.674 #kJ/mol - -analytic 4.63838E+0 0E+0 -1.31138E+3 0E+0 0E+0 - -1.000Am+3 + 2.000Cl- = AmCl2+ - log_k -0.740 #97KÖN/FAN - delta_h 40.568 #kJ/mol - # Enthalpy of formation: -910.292 #kJ/mol - -analytic 6.3672E+0 0E+0 -2.11901E+3 0E+0 0E+0 - -1.000Am+3 + 1.000F- = AmF+2 - log_k 3.400 #03GUI/FAN - delta_h 27.134 #kJ/mol - # Enthalpy of formation: -924.916 #kJ/mol - -analytic 8.15367E+0 0E+0 -1.41731E+3 0E+0 0E+0 - -1.000Am+3 + 2.000F- = AmF2+ - log_k 5.800 #95SIL/BID - delta_h 22.320 #kJ/mol - # Enthalpy of formation: -1265.08 #kJ/mol - -analytic 9.71029E+0 0E+0 -1.16585E+3 0E+0 0E+0 - -1.000Am+3 + 3.000F- = AmF3 - log_k 10.820 #69AZI/LYL - delta_h -12.119 #kJ/mol - # Enthalpy of formation: -1634.869 #kJ/mol - -analytic 8.69685E+0 0E+0 6.33019E+2 0E+0 0E+0 - -1.000AmO2+ + 1.000CO3-2 = AmO2(CO3)- - log_k 5.100 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.1E+0 0E+0 0E+0 0E+0 0E+0 - -1.000AmO2+ + 2.000CO3-2 = AmO2(CO3)2-3 - log_k 6.700 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000AmO2+ + 3.000CO3-2 = AmO2(CO3)3-5 - log_k 5.100 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.1E+0 0E+0 0E+0 0E+0 0E+0 - -- 2.000H+ + 1.000AmO2+ + 2.000H2O = AmO2(OH)2- - log_k -23.600 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.36E+1 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000AmO2+ + 1.000H2O = AmO2OH - log_k -11.300 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.13E+1 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000Am+3 + 1.000H4(SiO4) = AmOSi(OH)3+2 - log_k -2.310 #Original data 07THA/SIN, 05PAN/KIM and 97STE/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.31E+0 0E+0 0E+0 0E+0 0E+0 - -- 2.000H+ + 1.000Am+3 + 1.000H2(PO4)- = AmPO4 - log_k -7.760 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.76E+0 0E+0 0E+0 0E+0 0E+0 - -- 3.000H+ + 1.000H3(AsO3) = AsO3-3 - log_k -38.590 #79IVA/VOR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.859E+1 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000B(OH)4- - 1.000H2O = B(OH)3 - log_k 9.240 - delta_h -13.514 #kJ/mol - # Enthalpy of formation: -1072.8 #kJ/mol #01LEM/FUG - -analytic 6.87245E+0 0E+0 7.05884E+2 0E+0 0E+0 - -2.000H+ + 3.000B(OH)4- - 7.000H2O = B3O5- - log_k 20.900 #97CRO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.09E+1 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 4.000B(OH)4- - 9.000H2O = B4O7-2 - log_k 21.900 #97CRO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.19E+1 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000F- + 1.000B(OH)4- - 1.000H2O = BF(OH)3- - log_k 8.940 #77NOR/JEN - delta_h -39.078 #kJ/mol #77NOR/JEN - # Enthalpy of formation: -1433.714 #kJ/mol - -analytic 2.09384E+0 0E+0 2.04118E+3 0E+0 0E+0 - -2.000H+ + 2.000F- + 1.000B(OH)4- - 2.000H2O = BF2(OH)2- - log_k 16.970 #77NOR/JEN - delta_h -38.702 #kJ/mol #77NOR/JEN - # Enthalpy of formation: -1482.858 #kJ/mol - -analytic 1.01897E+1 0E+0 2.02154E+3 0E+0 0E+0 - -3.000H+ + 3.000F- + 1.000B(OH)4- - 3.000H2O = BF3(OH)- - log_k 23.010 #77NOR/JEN - delta_h -38.326 #kJ/mol #77NOR/JEN - # Enthalpy of formation: -1532.002 #kJ/mol - -analytic 1.62956E+1 0E+0 2.0019E+3 0E+0 0E+0 - -4.000H+ + 4.000F- + 1.000B(OH)4- - 4.000H2O = BF4- - log_k 29.620 #77NOR/JEN - delta_h 73.680 #kJ/mol #77NOR/JEN - # Enthalpy of formation: -1616.876 #kJ/mol - -analytic 4.25282E+1 0E+0 -3.84857E+3 0E+0 0E+0 - -1.000Ba+2 + 1.000CO3-2 = Ba(CO3) - log_k 2.710 #86BUS/PLU - delta_h 14.841 #kJ/mol #86BUS/PLU - # Enthalpy of formation: -1195.189 #kJ/mol - -analytic 5.31003E+0 0E+0 -7.75198E+2 0E+0 0E+0 - -1.000Ba+2 + 1.000H+ + 1.000CO3-2 = Ba(HCO3)+ - log_k 11.310 #86BUS/PLU - delta_h 8.560 #kJ/mol #86BUS/PLU - # Enthalpy of formation: -1201.47 #kJ/mol - -analytic 1.28096E+1 0E+0 -4.47119E+2 0E+0 0E+0 - -1.000Ba+2 + 1.000NO3- = Ba(NO3)+ - log_k -0.310 - delta_h 6.819 #kJ/mol - # Enthalpy of formation: -734.831 #kJ/mol - -analytic 8.84636E-1 0E+0 -3.56181E+2 0E+0 0E+0 - -1.000Ba+2 - 1.000H+ + 1.000H2O = Ba(OH)+ - log_k -13.470 #76BAE/MES - delta_h 87.395 #kJ/mol - # Enthalpy of formation: -733.235 #kJ/mol - -analytic 1.84092E+0 0E+0 -4.56495E+3 0E+0 0E+0 - -1.000Ba+2 + 1.000SO4-2 = Ba(SO4) - log_k 2.700 #76SMI/MAR - delta_h 7.367 #kJ/mol - # Enthalpy of formation: -1436.773 #kJ/mol - -analytic 3.99064E+0 0E+0 -3.84805E+2 0E+0 0E+0 - -1.000Ba+2 + 1.000B(OH)4- = BaB(OH)4+ - log_k 1.490 #80BAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.49E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ba+2 + 1.000F- = BaF+ - log_k 0.400 - delta_h 6.697 #kJ/mol - # Enthalpy of formation: -863.452 #kJ/mol #97SVE/SHO - -analytic 1.57326E+0 0E+0 -3.49808E+2 0E+0 0E+0 - -2.000H+ + 1.000CO3-2 - 1.000H2O - 0.500O2 = CO - log_k -31.390 - delta_h 262.373 #kJ/mol - # Enthalpy of formation: -120.96 #kJ/mol #82WAG/EVA - -analytic 1.45757E+1 0E+0 -1.37047E+4 0E+0 0E+0 - -2.000H+ + 1.000CO3-2 - 1.000H2O = CO2 - log_k 16.680 - delta_h -23.860 #kJ/mol - # Enthalpy of formation: -413.26 #kJ/mol #89COX/WAG - -analytic 1.24999E+1 0E+0 1.24629E+3 0E+0 0E+0 - -1.000Ca+2 + 1.000Acetate- = Ca(Acetate)+ - log_k 1.120 #95DER/DIG - delta_h -19.338 #kJ/mol - # Enthalpy of formation: -1048.348 #kJ/mol - -analytic -2.26787E+0 0E+0 1.01009E+3 0E+0 0E+0 - -1.000Ca+2 + 1.000Adipate-2 = Ca(Adipate) - log_k 2.190 #04MAR/SMI from 40TOP/DAV - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.19E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 - 3.000H+ + 1.000Am+3 + 3.000H2O = Ca(Am(OH)3)+2 - log_k -26.300 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.63E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000AsO4-3 = Ca(AsO4)- - log_k 5.770 #10MAR/ACC - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.77E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000Cit-3 = Ca(Cit)- - log_k 4.800 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -2062.92 #kJ/mol - -analytic 4.8E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 - 3.000H+ + 1.000Cm+3 + 3.000H2O = Ca(Cm(OH)3)+2 - log_k -26.300 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.63E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000Edta-4 = Ca(Edta)-2 - log_k 12.690 #05HUM/AND - delta_h -22.200 #kJ/mol - # Enthalpy of formation: -2270 #kJ/mol - -analytic 8.80073E+0 0E+0 1.15959E+3 0E+0 0E+0 - -1.000Ca+2 + 1.000Eu+3 - 3.000H+ + 3.000H2O = Ca(Eu(OH)3)+2 - log_k -26.300 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.63E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 2.000H+ + 1.000AsO4-3 = Ca(H2AsO4)+ - log_k 19.870 #10MAR/ACC - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.987E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 2.000H+ + 1.000Cit-3 = Ca(H2Cit)+ - log_k 12.670 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.267E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000H2(PO4)- = Ca(H2PO4)+ - log_k 1.410 #68CHU/MAR - delta_h 14.226 #kJ/mol #68CHU/MAR - # Enthalpy of formation: -1831.374 #kJ/mol - -analytic 3.90228E+0 0E+0 -7.43075E+2 0E+0 0E+0 - -1.000Ca+2 - 1.000H+ + 1.000H4(SiO4) = Ca(H3SiO4)+ - log_k -8.830 #97SVE/SHO - delta_h 31.633 #kJ/mol - # Enthalpy of formation: -1972.561 #kJ/mol - -analytic -3.28814E+0 0E+0 -1.6523E+3 0E+0 0E+0 - -1.000Ca+2 + 1.000H+ + 1.000AsO4-3 = Ca(HAsO4) - log_k 13.900 #10MAR/ACC - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.39E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000H+ + 1.000CO3-2 = Ca(HCO3)+ - log_k 11.430 #96BOU1 - delta_h -23.597 #kJ/mol - # Enthalpy of formation: -1241.827 #kJ/mol - -analytic 7.29599E+0 0E+0 1.23256E+3 0E+0 0E+0 - -1.000Ca+2 + 1.000H+ + 1.000Cit-3 = Ca(HCit) - log_k 9.280 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.28E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000H+ + 1.000Edta-4 = Ca(HEdta)- - log_k 16.230 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.623E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000HGlu- = Ca(HGlu)+ - log_k 1.730 #52SCH/LIN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.73E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000HIsa- = Ca(HIsa)+ - log_k 1.700 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000H+ + 1.000Malonate-2 = Ca(HMalonate)+ - log_k 6.640 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.64E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000H+ + 1.000Nta-3 = Ca(HNta) - log_k 13.400 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.34E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 2.000H+ + 2.000Nta-3 = Ca(HNta)2-2 - log_k 23.630 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.363E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 - 1.000H+ + 1.000H2(PO4)- = Ca(HPO4) - log_k -4.470 #68CHU/MAR - delta_h 17.407 #kJ/mol #68CHU/MAR - # Enthalpy of formation: -1828.193 #kJ/mol - -analytic -1.42043E+0 0E+0 -9.0923E+2 0E+0 0E+0 - -1.000Ca+2 + 1.000H+ + 1.000Phthalat-2 = Ca(HPhthalat)+ - log_k 6.420 #85DAN/DER - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.42E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000H+ + 1.000Pyrophos-4 = Ca(HPyrophos)- - log_k 13.800 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.38E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000H+ + 1.000Succinat-2 = Ca(HSuccinat)+ - log_k 6.790 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.79E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 - 3.000H+ + 1.000Ho+3 + 3.000H2O = Ca(Ho(OH)3)+2 - log_k -26.300 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.63E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000IO3- = Ca(IO3)+ - log_k 0.400 #estimation NEA87 08/2/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 - 1.000H+ + 1.000HIsa- = Ca(Isa) - log_k -10.400 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.04E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000Malonate-2 = Ca(Malonate) - log_k 2.430 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.43E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000NH3 = Ca(NH3)+2 - log_k -0.100 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 2.000NH3 = Ca(NH3)2+2 - log_k -0.700 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 3.000NH3 = Ca(NH3)3+2 - log_k -1.500 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 4.000NH3 = Ca(NH3)4+2 - log_k -2.600 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.6E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000Nta-3 = Ca(Nta)- - log_k 7.730 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.73E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 - 1.000H+ + 1.000HGlu- + 1.000H2O = Ca(OH)(HGlu) - log_k -10.400 #02TIT/WIE - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.04E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 - 1.000H+ + 1.000H2O = Ca(OH)+ - log_k -12.780 #87GAR/PAR - delta_h 77.206 #kJ/mol - # Enthalpy of formation: -751.624 #kJ/mol - -analytic 7.45891E-1 0E+0 -4.03274E+3 0E+0 0E+0 - -1.000Ca+2 + 1.000Ox-2 = Ca(Ox) - log_k 3.190 #05HUM/AND - delta_h 6.807 #kJ/mol - # Enthalpy of formation: -1366.853 #kJ/mol - -analytic 4.38253E+0 0E+0 -3.55554E+2 0E+0 0E+0 - -1.000Ca+2 + 2.000Ox-2 = Ca(Ox)2-2 - log_k 4.020 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.02E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 - 2.000H+ + 1.000H2(PO4)- = Ca(PO4)- - log_k -13.100 #68CHU/MAR - delta_h 31.170 #kJ/mol - # Enthalpy of formation: -1814.43 #kJ/mol - -analytic -7.63926E+0 0E+0 -1.62812E+3 0E+0 0E+0 - -1.000Ca+2 + 1.000Phthalat-2 = Ca(Phthalat) - log_k 2.490 #85DAN/DER - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.49E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000Pyrophos-4 = Ca(Pyrophos)-2 - log_k 7.500 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000S2O3-2 = Ca(S2O3) - log_k 1.900 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 (provient de Hatches3.0) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -1191.5 #kJ/mol - -analytic 1.9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000SO4-2 = Ca(SO4) - log_k 2.310 #53BEL/GEO - delta_h 4.292 #kJ/mol - # Enthalpy of formation: -1448.048 #kJ/mol - -analytic 3.06193E+0 0E+0 -2.24186E+2 0E+0 0E+0 - -1.000Ca+2 + 1.000SeO4-2 = Ca(SeO4) - log_k 2.000 #05OLI/NOL - delta_h 1.475 #kJ/mol - # Enthalpy of formation: -1145.025 #kJ/mol - -analytic 2.25841E+0 0E+0 -7.70445E+1 0E+0 0E+0 - -1.000Ca+2 + 1.000Sm+3 - 3.000H+ + 3.000H2O = Ca(Sm(OH)3)+2 - log_k -26.300 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.63E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000Succinat-2 = Ca(Succinat) - log_k 2.340 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.34E+0 0E+0 0E+0 0E+0 0E+0 - -2.000Ca+2 - 4.000H+ + 1.000Am+3 + 4.000H2O = Ca2(Am(OH)4)+3 - log_k -37.200 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.72E+1 0E+0 0E+0 0E+0 0E+0 - -2.000Ca+2 - 4.000H+ + 1.000Cm+3 + 4.000H2O = Ca2(Cm(OH)4)+3 - log_k -37.200 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.72E+1 0E+0 0E+0 0E+0 0E+0 - -2.000Ca+2 + 1.000Eu+3 - 4.000H+ + 4.000H2O = Ca2(Eu(OH)4)+3 - log_k -37.200 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.72E+1 0E+0 0E+0 0E+0 0E+0 - -2.000Ca+2 - 4.000H+ + 1.000Ho+3 + 4.000H2O = Ca2(Ho(OH)4)+3 - log_k -37.200 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.72E+1 0E+0 0E+0 0E+0 0E+0 - -2.000Ca+2 + 1.000Sm+3 - 4.000H+ + 4.000H2O = Ca2(Sm(OH)4)+3 - log_k -37.200 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.72E+1 0E+0 0E+0 0E+0 0E+0 - -2.000Ca+2 + 3.000CO3-2 + 1.000UO2+2 = Ca2UO2(CO3)3 - log_k 30.700 #06DON/BRO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.07E+1 0E+0 0E+0 0E+0 0E+0 - -3.000Ca+2 - 6.000H+ + 1.000Am+3 + 6.000H2O = Ca3(Am(OH)6)+3 - log_k -60.700 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.07E+1 0E+0 0E+0 0E+0 0E+0 - -3.000Ca+2 - 6.000H+ + 1.000Cm+3 + 6.000H2O = Ca3(Cm(OH)6)+3 - log_k -60.700 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.07E+1 0E+0 0E+0 0E+0 0E+0 - -3.000Ca+2 + 1.000Eu+3 - 6.000H+ + 6.000H2O = Ca3(Eu(OH)6)+3 - log_k -60.700 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.07E+1 0E+0 0E+0 0E+0 0E+0 - -3.000Ca+2 - 6.000H+ + 1.000Ho+3 + 6.000H2O = Ca3(Ho(OH)6)+3 - log_k -60.700 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.07E+1 0E+0 0E+0 0E+0 0E+0 - -3.000Ca+2 + 1.000Sm+3 - 6.000H+ + 6.000H2O = Ca3(Sm(OH)6)+3 - log_k -60.700 #07RAB/ALT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.07E+1 0E+0 0E+0 0E+0 0E+0 - -4.000Ca+2 + 1.000Th+4 - 8.000H+ + 8.000H2O = Ca4Th(OH)8+4 - log_k -63.100 #08ALT/NEC - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.31E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000B(OH)4- = CaB(OH)4+ - log_k 1.800 #97CRO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.8E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000CO3-2 = CaCO3 - log_k 3.220 #96BOU1 - delta_h 14.830 #kJ/mol - # Enthalpy of formation: -1203.4 #kJ/mol #96BOU1 - -analytic 5.8181E+0 0E+0 -7.74624E+2 0E+0 0E+0 - -1.000Ca+2 + 1.000CrO4-2 = CaCrO4 - log_k 2.770 #00PER/PAL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.77E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000F- = CaF+ - log_k 0.940 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel - delta_h 17.238 #kJ/mol - # Enthalpy of formation: -861.112 #kJ/mol - -analytic 3.95996E+0 0E+0 -9.00402E+2 0E+0 0E+0 - -1.000Ca+2 + 1.000I- = CaI+ - log_k 0.140 #estimation NEA87 08/2/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.4E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 2.000I- = CaI2 - log_k -0.020 #estimation NEA87 08/2/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2E-2 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000Th+4 - 4.000H+ + 1.000HGlu- + 4.000H2O = CaTh(OH)4(HGlu)+ - log_k -9.000 #13COL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000Th+4 - 4.000H+ + 1.000HIsa- + 4.000H2O = CaTh(OH)4(HIsa)+ - log_k -9.000 #13COL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ca+2 + 1.000UO2+2 + 3.000CO3-2 = CaUO2(CO3)3-2 - log_k 27.180 #06DON/BRO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.718E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 1.000CO3-2 = Cd(CO3) - log_k 4.700 #91RAI/FEL1 - delta_h 4.299 #kJ/mol - # Enthalpy of formation: -746.851 #kJ/mol - -analytic 5.45315E+0 0E+0 -2.24552E+2 0E+0 0E+0 - -1.000Cd+2 + 2.000CO3-2 = Cd(CO3)2-2 - log_k 6.500 #91RAI/FEL1 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 1.000Cn- = Cd(Cn)+ - log_k 5.300 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 2.000Cn- = Cd(Cn)2 - log_k 10.340 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.034E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 3.000Cn- = Cd(Cn)3- - log_k 14.810 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.481E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 4.000Cn- = Cd(Cn)4-2 - log_k 18.250 - delta_h -98.480 #kJ/mol - # Enthalpy of formation: 428.096 #kJ/mol - -analytic 9.9707E-1 0E+0 5.14396E+3 0E+0 0E+0 - -1.000Cd+2 + 1.000H2(PO4)- = Cd(H2PO4)+ - log_k 1.800 #01AYA/MAD - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.8E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 1.000H+ + 1.000CO3-2 = Cd(HCO3)+ - log_k 11.830 #93STI/PAR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.183E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 2.000HS- = Cd(HS)2 - log_k 14.430 #99WAN/TES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.443E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 1.000NH3 = Cd(NH3)+2 - log_k 2.520 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.52E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 2.000NH3 = Cd(NH3)2+2 - log_k 4.870 - delta_h -27.965 #kJ/mol - # Enthalpy of formation: -266.225 #kJ/mol - -analytic -2.92505E-2 0E+0 1.46071E+3 0E+0 0E+0 - -1.000Cd+2 + 3.000NH3 = Cd(NH3)3+2 - log_k 5.930 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.93E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 4.000NH3 = Cd(NH3)4+2 - log_k 7.300 - delta_h -49.714 #kJ/mol - # Enthalpy of formation: -450.314 #kJ/mol - -analytic -1.40951E+0 0E+0 2.59674E+3 0E+0 0E+0 - -1.000Cd+2 + 1.000NO3- = Cd(NO3)+ - log_k 0.460 #74FED/ROB in 82HÖG - delta_h -21.757 #kJ/mol #74NAU/RYZ in 91BAL/NOR - # Enthalpy of formation: -304.527 #kJ/mol - -analytic -3.35166E+0 0E+0 1.13645E+3 0E+0 0E+0 - -1.000Cd+2 + 2.000NO3- = Cd(NO3)2 - log_k 0.170 #97CRO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.7E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 - 1.000H+ + 1.000H2O = Cd(OH)+ - log_k -10.080 #81BAE/MES - delta_h 54.810 #kJ/mol #81BAE/MES - # Enthalpy of formation: -306.94 #kJ/mol - -analytic -4.77714E-1 0E+0 -2.86292E+3 0E+0 0E+0 - -1.000Cd+2 - 2.000H+ + 2.000H2O = Cd(OH)2 - log_k -20.900 #91RAI/FEL1 - delta_h 114.900 #kJ/mol - # Enthalpy of formation: -532.68 #kJ/mol - -analytic -7.70414E-1 0E+0 -6.00164E+3 0E+0 0E+0 - -1.000Cd+2 - 3.000H+ + 3.000H2O = Cd(OH)3- - log_k -33.300 #81BAE/MES - delta_h 156.416 #kJ/mol - # Enthalpy of formation: -776.994 #kJ/mol - -analytic -5.89713E+0 0E+0 -8.17016E+3 0E+0 0E+0 - -1.000Cd+2 - 4.000H+ + 4.000H2O = Cd(OH)4-2 - log_k -47.480 #91RAI/FEL1 - delta_h 229.571 #kJ/mol - # Enthalpy of formation: -989.669 #kJ/mol - -analytic -7.26095E+0 0E+0 -1.19913E+4 0E+0 0E+0 - -1.000Cd+2 + 1.000Pyrophos-4 = Cd(Pyrophos)-2 - log_k 8.700 #92CLE/DER - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 1.000S2O3-2 = Cd(S2O3) - log_k 2.460 - delta_h 5.405 #kJ/mol - # Enthalpy of formation: -722.801 #kJ/mol #74NAU/RYZ - -analytic 3.40691E+0 0E+0 -2.82322E+2 0E+0 0E+0 - -1.000Cd+2 + 1.000SO4-2 = Cd(SO4) - log_k 2.370 #97MAR/SMI - delta_h 8.700 #kJ/mol #97MAR/SMI - # Enthalpy of formation: -976.56 #kJ/mol - -analytic 3.89417E+0 0E+0 -4.54432E+2 0E+0 0E+0 - -1.000Cd+2 + 2.000SO4-2 = Cd(SO4)2-2 - log_k 3.440 #76SMI/MAR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.44E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 1.000H+ + 1.000Cn- + 1.000HSe- - 1.000H2O + 0.500O2 = Cd(SeCn)+ - log_k 58.260 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.826E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 2.000H+ + 2.000Cn- + 2.000HSe- - 2.000H2O + 1.000O2 = Cd(SeCn)2 - log_k 115.370 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.1537E+2 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 3.000H+ + 3.000Cn- + 3.000HSe- - 3.000H2O + 1.500O2 = Cd(SeCn)3- - log_k 171.860 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.7186E+2 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 4.000H+ + 4.000Cn- + 4.000HSe- - 4.000H2O + 2.000O2 = Cd(SeCn)4-2 - log_k 228.670 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.2867E+2 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 1.000SeO4-2 = Cd(SeO4) - log_k 2.270 #05OLI/NOL - delta_h 8.300 #kJ/mol #05OLI/NOL - # Enthalpy of formation: -671.12 #kJ/mol - -analytic 3.7241E+0 0E+0 -4.33539E+2 0E+0 0E+0 - -4.000Cd+2 - 4.000H+ + 4.000H2O = Cd4(OH)4+4 - log_k -32.070 - delta_h 172.135 #kJ/mol - # Enthalpy of formation: -1274.865 #kJ/mol #99YUN/GLU - -analytic -1.91329E+0 0E+0 -8.99122E+3 0E+0 0E+0 - -1.000Cd+2 + 1.000Br- = CdBr+ - log_k 2.160 - delta_h -7.959 #kJ/mol - # Enthalpy of formation: -205.289 #kJ/mol - -analytic 7.65645E-1 0E+0 4.15727E+2 0E+0 0E+0 - -1.000Cd+2 + 2.000Br- = CdBr2 - log_k 2.920 - delta_h -15.742 #kJ/mol - # Enthalpy of formation: -334.482 #kJ/mol - -analytic 1.62124E-1 0E+0 8.22261E+2 0E+0 0E+0 - -1.000Cd+2 + 3.000Br- = CdBr3- - log_k 3.190 - delta_h -28.845 #kJ/mol - # Enthalpy of formation: -468.995 #kJ/mol - -analytic -1.86342E+0 0E+0 1.50668E+3 0E+0 0E+0 - -1.000Cd+2 + 1.000Cl- = CdCl+ - log_k 1.970 #76BAE/MES - delta_h -5.520 #kJ/mol - # Enthalpy of formation: -248.52 #kJ/mol - -analytic 1.00294E+0 0E+0 2.88329E+2 0E+0 0E+0 - -1.000Cd+2 + 2.000Cl- = CdCl2 - log_k 2.590 #76BAE/MES - delta_h -14.068 #kJ/mol - # Enthalpy of formation: -424.148 #kJ/mol - -analytic 1.25396E-1 0E+0 7.34822E+2 0E+0 0E+0 - -1.000Cd+2 + 3.000Cl- = CdCl3- - log_k 2.400 #76BAE/MES - delta_h -25.804 #kJ/mol - # Enthalpy of formation: -602.964 #kJ/mol - -analytic -2.12066E+0 0E+0 1.34783E+3 0E+0 0E+0 - -1.000Cd+2 + 4.000Cl- = CdCl4-2 - log_k 1.470 #76BAE/MES - delta_h -44.765 #kJ/mol - # Enthalpy of formation: -789.005 #kJ/mol - -analytic -6.37248E+0 0E+0 2.33824E+3 0E+0 0E+0 - -1.000Cd+2 - 1.000H+ + 1.000H2(PO4)- = CdHPO4 - log_k -2.380 #01AYA/MAD - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.38E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 1.000HS- = CdHS+ - log_k 7.380 #99WAN/TES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.38E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cd+2 + 1.000I- = CdI+ - log_k 2.090 - delta_h -8.739 #kJ/mol - # Enthalpy of formation: -141.439 #kJ/mol - -analytic 5.58995E-1 0E+0 4.56469E+2 0E+0 0E+0 - -1.000Cd+2 + 2.000I- = CdI2 - log_k 3.520 - delta_h -18.988 #kJ/mol - # Enthalpy of formation: -208.468 #kJ/mol - -analytic 1.9345E-1 0E+0 9.91811E+2 0E+0 0E+0 - -1.000Cd+2 + 3.000I- = CdI3- - log_k 4.640 - delta_h -38.647 #kJ/mol - # Enthalpy of formation: -284.907 #kJ/mol - -analytic -2.13065E+0 0E+0 2.01867E+3 0E+0 0E+0 - -1.000Cd+2 + 4.000I- = CdI4-2 - log_k 5.480 - delta_h -75.609 #kJ/mol - # Enthalpy of formation: -378.649 #kJ/mol - -analytic -7.76611E+0 0E+0 3.94933E+3 0E+0 0E+0 - -2.000Cl- - 1.000H2O + 2.000H+ + 0.500O2 = Cl2 - log_k -4.220 - delta_h 30.997 #kJ/mol - # Enthalpy of formation: -23.4 #kJ/mol #82WAG/EVA - -analytic 1.21043E+0 0E+0 -1.61908E+3 0E+0 0E+0 - -1.000Cl- + 2.000O2 = ClO4- - log_k -16.130 - delta_h 63.248 #kJ/mol - # Enthalpy of formation: -128.1 #kJ/mol #89COX/WAG - -analytic -5.04944E+0 0E+0 -3.30367E+3 0E+0 0E+0 - -1.000Cm+3 + 1.000Acetate- = Cm(Acetate)+2 - log_k 3.010 #11RIC/GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.01E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cm+3 + 2.000Acetate- = Cm(Acetate)2+ - log_k 4.960 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.96E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cm+3 + 3.000Acetate- = Cm(Acetate)3 - log_k 6.300 #69MOS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.3E+0 0E+0 0E+0 0E+0 0E+0 - -2.000CO3-2 + 1.000Cm+3 = Cm(CO3)2- - log_k 12.600 #06DUR/CER - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.26E+1 0E+0 0E+0 0E+0 0E+0 - -3.000CO3-2 + 1.000Cm+3 = Cm(CO3)3-3 - log_k 14.600 #06DUR/CER - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.46E+1 0E+0 0E+0 0E+0 0E+0 - -1.000H2(PO4)- + 1.000Cm+3 = Cm(H2PO4)+2 - log_k 2.400 #estimated by correlation with Ln(III) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.4E+0 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000H2(PO4)- + 1.000Cm+3 = Cm(HPO4)+ - log_k -1.700 #estimated by correlation with Ln(III) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.7E+0 0E+0 0E+0 0E+0 0E+0 - -- 2.000H+ + 2.000H2(PO4)- + 1.000Cm+3 = Cm(HPO4)2- - log_k -5.210 #estimated by correlation with Ln(III) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.21E+0 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000Cm+3 + 1.000H2O = Cm(OH)+2 - log_k -7.200 #03GUI/FAN - delta_h 79.365 #kJ/mol - # Enthalpy of formation: -821.465 #kJ/mol - -analytic 6.70413E+0 0E+0 -4.14552E+3 0E+0 0E+0 - -- 2.000H+ + 1.000Cm+3 + 2.000H2O = Cm(OH)2+ - log_k -15.100 #03GUI/FAN - delta_h 144.956 #kJ/mol - # Enthalpy of formation: -1041.704 #kJ/mol - -analytic 1.02952E+1 0E+0 -7.57157E+3 0E+0 0E+0 - -- 3.000H+ + 1.000Cm+3 + 3.000H2O = Cm(OH)3 - log_k -26.200 #03GUI/FAN - delta_h 231.675 #kJ/mol - # Enthalpy of formation: -1240.815 #kJ/mol - -analytic 1.43877E+1 0E+0 -1.21012E+4 0E+0 0E+0 - -- 4.000H+ + 1.000Cm+3 + 4.000H2O = Cm(OH)4- - log_k -40.700 #07NEC/ALT2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.07E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ox-2 + 1.000Cm+3 = Cm(Ox)+ - log_k 6.480 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.48E+0 0E+0 0E+0 0E+0 0E+0 - -2.000Ox-2 + 1.000Cm+3 = Cm(Ox)2- - log_k 10.400 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.04E+1 0E+0 0E+0 0E+0 0E+0 - -3.000Ox-2 + 1.000Cm+3 = Cm(Ox)3-3 - log_k 12.840 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.284E+1 0E+0 0E+0 0E+0 0E+0 - -- 4.000H+ + 2.000H2(PO4)- + 1.000Cm+3 = Cm(PO4)2-3 - log_k -19.230 #estimated by corrlation with Ln(III) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.923E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Cm+3 + 1.000Phthalat-2 = Cm(Phthalat)+ - log_k 4.930 #11GRI/COL3 from 95PAN/KLE - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.93E+0 0E+0 0E+0 0E+0 0E+0 - -2.000SO4-2 + 1.000Cm+3 = Cm(SO4)2- - log_k 4.570 #12SKE/PAN, same as Am, revised in the 2012 update. - delta_h 20.880 #kJ/mol - # Enthalpy of formation: -2412.8 #kJ/mol #estimated by analogy with Ln - -analytic 8.22801E+0 0E+0 -1.09064E+3 0E+0 0E+0 - -1.000CO3-2 + 1.000Cm+3 = CmCO3+ - log_k 7.900 #06DUR/CER - delta_h 153.982 #kJ/mol - # Enthalpy of formation: -1136.248 #kJ/mol - -analytic 3.48764E+1 0E+0 -8.04303E+3 0E+0 0E+0 - -1.000Cl- + 1.000Cm+3 = CmCl+2 - log_k 0.240 #03GUI/FAN, same as Am - delta_h 22.512 #kJ/mol - # Enthalpy of formation: -759.568 #kJ/mol - -analytic 4.18393E+0 0E+0 -1.17588E+3 0E+0 0E+0 - -2.000Cl- + 1.000Cm+3 = CmCl2+ - log_k -0.740 #03GUI/FAN, same as Am - delta_h 41.165 #kJ/mol - # Enthalpy of formation: -907.995 #kJ/mol - -analytic 6.47179E+0 0E+0 -2.15019E+3 0E+0 0E+0 - -1.000F- + 1.000Cm+3 = CmF+2 - log_k 3.400 #03GUI/FAN, same as Am - delta_h 25.613 #kJ/mol - # Enthalpy of formation: -924.737 #kJ/mol - -analytic 7.8872E+0 0E+0 -1.33786E+3 0E+0 0E+0 - -2.000F- + 1.000Cm+3 = CmF2+ - log_k 5.800 #03GUI/FAN, same as Am - delta_h 20.620 #kJ/mol - # Enthalpy of formation: -1265.08 #kJ/mol - -analytic 9.41246E+0 0E+0 -1.07706E+3 0E+0 0E+0 - -3.000F- + 1.000Cm+3 = CmF3 - log_k 11.180 #69AZI/LYL - delta_h -15.485 #kJ/mol - # Enthalpy of formation: -1636.535 #kJ/mol - -analytic 8.46715E+0 0E+0 8.08837E+2 0E+0 0E+0 - -1.000H+ + 1.000CO3-2 + 1.000Cm+3 = CmHCO3+2 - log_k 13.430 #03GUI/FAN, same as Am - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.343E+1 0E+0 0E+0 0E+0 0E+0 - -1.000NO3- + 1.000Cm+3 = CmNO3+2 - log_k 1.330 #95SIL/BID - delta_h 1.800 #kJ/mol #09SKE/PAN - # Enthalpy of formation: -819.926 #kJ/mol - -analytic 1.64535E+0 0E+0 -9.40204E+1 0E+0 0E+0 - -- 2.000H+ + 1.000H2(PO4)- + 1.000Cm+3 = CmPO4 - log_k -7.660 #estimated by correlation with Ln(III) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.66E+0 0E+0 0E+0 0E+0 0E+0 - -1.000SO4-2 + 1.000Cm+3 = CmSO4+ - log_k 3.450 #12SKE/PAN, same as Am, revised in the 2012 update. - delta_h 15.640 #kJ/mol - # Enthalpy of formation: -1508.7 #kJ/mol #estimated by analogy with Ln - -analytic 6.19001E+0 0E+0 -8.16933E+2 0E+0 0E+0 - -- 1.000H+ + 1.000H4(SiO4) + 1.000Cm+3 = CmSiO(OH)3+2 - log_k -2.310 #Original data 07THA/SIN, 05PAN/KIM and 97STE/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.31E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Co+2 + 2.000HS- = Co(HS)2 - log_k 8.770 #66KHO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.77E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Co+2 - 1.000H+ + 1.000H2O = Co(OH)+ - log_k -9.230 #98PLY/ZHA1 - delta_h 45.962 #kJ/mol - # Enthalpy of formation: -297.468 #kJ/mol - -analytic -1.17782E+0 0E+0 -2.40076E+3 0E+0 0E+0 - -1.000Co+2 - 2.000H+ + 2.000H2O = Co(OH)2 - log_k -18.600 #98PLY/ZHA1 - delta_h 105.707 #kJ/mol - # Enthalpy of formation: -523.553 #kJ/mol - -analytic -8.09557E-2 0E+0 -5.52145E+3 0E+0 0E+0 - -1.000Co+2 - 3.000H+ + 3.000H2O = Co(OH)3- - log_k -31.700 #98PLY/ZHA1 - delta_h 160.297 #kJ/mol - # Enthalpy of formation: -754.792 #kJ/mol - -analytic -3.61721E+0 0E+0 -8.37288E+3 0E+0 0E+0 - -1.000Co+2 - 4.000H+ + 4.000H2O = Co(OH)4-2 - log_k -46.420 #98PLY/ZHA1 - delta_h 214.483 #kJ/mol - # Enthalpy of formation: -986.436 #kJ/mol - -analytic -8.84425E+0 0E+0 -1.12032E+4 0E+0 0E+0 - -1.000Co+2 + 1.000H+ + 1.000Cn- + 1.000HSe- - 1.000H2O + 0.500O2 = Co(SeCn)+ - log_k 57.520 #75SAT/SAH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.752E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Co+2 + 1.000SeO4-2 = Co(SeO4) - log_k 2.700 #05OLI/NOL - delta_h -3.654 #kJ/mol - # Enthalpy of formation: -664.754 #kJ/mol - -analytic 2.05985E+0 0E+0 1.90861E+2 0E+0 0E+0 - -2.000Co+2 - 1.000H+ + 1.000H2O = Co2(OH)+3 - log_k -9.830 #98PLY/ZHA1 - delta_h 30.030 #kJ/mol - # Enthalpy of formation: -371 #kJ/mol #98PLY/ZHA1 - -analytic -4.56898E+0 0E+0 -1.56857E+3 0E+0 0E+0 - -4.000Co+2 - 4.000H+ + 4.000H2O = Co4(OH)4+4 - log_k -29.880 #98PLY/ZHA1 - delta_h 149.720 #kJ/mol - # Enthalpy of formation: -1224 #kJ/mol #98PLY/ZHA1 - -analytic -3.65022E+0 0E+0 -7.82041E+3 0E+0 0E+0 - -1.000Co+2 + 1.000CO3-2 = CoCO3 - log_k 4.230 #97MAR/SMI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.23E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Co+2 + 1.000Cl- = CoCl+ - log_k 0.570 #81TUR/WHI - delta_h -2.180 #kJ/mol - # Enthalpy of formation: -226.859 #kJ/mol - -analytic 1.88081E-1 0E+0 1.13869E+2 0E+0 0E+0 - -1.000Co+2 + 2.000Cl- = CoCl2 - log_k 0.020 #06BLA/IGN - delta_h 4.074 #kJ/mol #06BLA/IGN - # Enthalpy of formation: -387.686 #kJ/mol - -analytic 7.33733E-1 0E+0 -2.128E+2 0E+0 0E+0 - -1.000Co+2 + 3.000Cl- = CoCl3- - log_k -1.710 #06BLA/IGN - delta_h 6.688 #kJ/mol #06BLA/IGN - # Enthalpy of formation: -552.152 #kJ/mol - -analytic -5.38314E-1 0E+0 -3.49338E+2 0E+0 0E+0 - -1.000Co+2 + 4.000Cl- = CoCl4-2 - log_k -2.090 #06BLA/IGN - delta_h 22.570 #kJ/mol #06BLA/IGN - # Enthalpy of formation: -703.35 #kJ/mol - -analytic 1.86409E+0 0E+0 -1.17891E+3 0E+0 0E+0 - -1.000Co+2 + 1.000F- = CoF+ - log_k 1.500 #97MAR/SMI - delta_h -0.631 #kJ/mol - # Enthalpy of formation: -393.581 #kJ/mol - -analytic 1.38945E+0 0E+0 3.29594E+1 0E+0 0E+0 - -1.000Co+2 + 1.000H+ + 1.000CO3-2 = CoHCO3+ - log_k 12.220 #97MAR/SMI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.222E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Co+2 - 1.000H+ + 1.000H2(PO4)- = CoHPO4 - log_k -4.150 #97MAR/SMI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.15E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Co+2 + 1.000HS- = CoHS+ - log_k 5.670 #66KHO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.67E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Co+2 + 1.000S2O3-2 = CoS2O3 - log_k 2.050 #51DEN/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.05E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Co+2 + 1.000SO4-2 = CoSO4 - log_k 2.300 #97MAR/SMI - delta_h 2.092 #kJ/mol #74NAU/RYZ - # Enthalpy of formation: -964.848 #kJ/mol - -analytic 2.6665E+0 0E+0 -1.09273E+2 0E+0 0E+0 - -1.000H2(PO4)- + 1.000Cr+3 = Cr(H2PO4)+2 - log_k 2.560 #66LAH/ADI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.56E+0 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000H2(PO4)- + 1.000Cr+3 = Cr(HPO4)+ - log_k 2.250 #76ALE/MAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.25E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cr+3 + 2.000CO3-2 + 1.000H2O - 1.000H+ = Cr(OH)(CO3)2-2 - log_k 9.730 #07RAI/MOO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.73E+0 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000Cr+2 + 1.000H2O = Cr(OH)+ - log_k -5.300 #83MIC/DEB, 04CHI - delta_h 30.327 #kJ/mol - # Enthalpy of formation: -413.123 #kJ/mol - -analytic 1.30545E-2 0E+0 -1.58409E+3 0E+0 0E+0 - -- 1.000H+ + 1.000Cr+3 + 1.000H2O = Cr(OH)+2 - log_k -3.420 #04RAI/MOO - delta_h 37.165 #kJ/mol - # Enthalpy of formation: -489.164 #kJ/mol - -analytic 3.09102E+0 0E+0 -1.94126E+3 0E+0 0E+0 - -- 2.000H+ + 1.000Cr+3 + 2.000H2O = Cr(OH)2+ - log_k -8.900 #11GRI/COL4 - delta_h 93.201 #kJ/mol - # Enthalpy of formation: -718.958 #kJ/mol - -analytic 7.42809E+0 0E+0 -4.86822E+3 0E+0 0E+0 - -- 3.000H+ + 1.000Cr+3 + 3.000H2O = Cr(OH)3 - log_k -14.340 #04RAI/MOO - delta_h 143.689 #kJ/mol - # Enthalpy of formation: -954.3 #kJ/mol - -analytic 1.08332E+1 0E+0 -7.50539E+3 0E+0 0E+0 - -- 3.000H+ + 1.000H2(PO4)- + 1.000Cr+3 + 3.000H2O = Cr(OH)3(H2PO4)- - log_k -11.560 #04RAI/MOO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.156E+1 0E+0 0E+0 0E+0 0E+0 - -2.000H2(PO4)- + 1.000Cr+3 + 3.000H2O - 3.000H+ = Cr(OH)3(H2PO4)2-2 - log_k -10.860 #04RAI/MOO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.086E+1 0E+0 0E+0 0E+0 0E+0 - -- 4.000H+ + 1.000H2(PO4)- + 1.000Cr+3 + 3.000H2O = Cr(OH)3(HPO4)-2 - log_k -19.580 #04RAI/MOO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.958E+1 0E+0 0E+0 0E+0 0E+0 - -- 5.000H+ + 1.000H2(PO4)- + 1.000Cr+3 + 3.000H2O = Cr(OH)3(PO4)-3 - log_k -30.240 #98ZIE/JON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.024E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Cr+3 + 1.000CO3-2 + 4.000H2O - 4.000H+ = Cr(OH)4(CO3)-3 - log_k -25.690 #07RAI/MOO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.569E+1 0E+0 0E+0 0E+0 0E+0 - -- 5.000H+ + 2.000H2(PO4)- + 1.000Cr+3 + 4.000H2O = Cr(OH)4(HPO4)(H2PO4)-4 - log_k -28.760 #98ZIE/JON - delta_h 14.000 #kJ/mol #98ZIE/JON - # Enthalpy of formation: -3975.04 #kJ/mol - -analytic -2.63073E+1 0E+0 -7.3127E+2 0E+0 0E+0 - -- 4.000H+ + 1.000Cr+3 + 4.000H2O = Cr(OH)4- - log_k -25.860 #04RAI/MOO - delta_h 193.604 #kJ/mol - # Enthalpy of formation: -1190.214 #kJ/mol - -analytic 8.05792E+0 0E+0 -1.01126E+4 0E+0 0E+0 - -1.000Cr+3 + 1.000CO3-2 + 1.000H2O - 1.000H+ = Cr(OH)CO3 - log_k 4.000 #07RAI/MOO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4E+0 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 2.000Cl- + 1.000Cr+3 + 1.000H2O = Cr(OH)Cl2 - log_k -5.730 - delta_h 32.720 #kJ/mol - # Enthalpy of formation: -827.77 #kJ/mol #76DEL/HEP - -analytic 2.28952E-3 0E+0 -1.70908E+3 0E+0 0E+0 - -- 2.000H+ + 2.000Cr+3 + 2.000H2O = Cr2(OH)2+4 - log_k -4.000 #11GRI/COL4 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4E+0 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 2.000CrO4-2 - 1.000H2O = Cr2O7-2 - log_k 14.750 #87PAL/WES, 04CHI - delta_h -3.752 #kJ/mol - # Enthalpy of formation: -1475.923 #kJ/mol - -analytic 1.40927E+1 0E+0 1.9598E+2 0E+0 0E+0 - -- 4.000H+ + 3.000Cr+3 + 4.000H2O = Cr3(OH)4+5 - log_k -7.600 #11GRI/COL4 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.6E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Br- + 1.000Cr+3 = CrBr+2 - log_k -0.620 - delta_h 22.600 #kJ/mol - # Enthalpy of formation: -339.322 #kJ/mol #76DEL/HEP - -analytic 3.33934E+0 0E+0 -1.18048E+3 0E+0 0E+0 - -1.000Cl- + 1.000Cr+2 = CrCl+ - log_k 5.600 #91ALL/BRO - delta_h -20.200 #kJ/mol #91ALL/BRO - # Enthalpy of formation: -344.9 #kJ/mol - -analytic 2.06112E+0 0E+0 1.05512E+3 0E+0 0E+0 - -1.000Cl- + 1.000Cr+3 = CrCl+2 - log_k 0.620 #64SIL/MAR - delta_h 20.920 #kJ/mol #64SIL/MAR - # Enthalpy of formation: -386.66 #kJ/mol - -analytic 4.28502E+0 0E+0 -1.09273E+3 0E+0 0E+0 - -2.000Cl- + 1.000Cr+3 = CrCl2+ - log_k -0.710 #64SIL/MAR - delta_h 20.920 #kJ/mol #64SIL/MAR - # Enthalpy of formation: -553.74 #kJ/mol - -analytic 2.95502E+0 0E+0 -1.09273E+3 0E+0 0E+0 - -1.000F- + 1.000Cr+3 = CrF+2 - log_k 5.210 #81TUR/WHI - delta_h -2.510 #kJ/mol #53HEP/JOL - # Enthalpy of formation: -578.36 #kJ/mol - -analytic 4.77027E+0 0E+0 1.31106E+2 0E+0 0E+0 - -2.000F- + 1.000Cr+3 = CrF2+ - log_k 9.310 #81TUR/WHI - delta_h -0.418 #kJ/mol #53HEP/JOL - # Enthalpy of formation: -911.618 #kJ/mol - -analytic 9.23677E+0 0E+0 2.18336E+1 0E+0 0E+0 - -3.000F- + 1.000Cr+3 = CrF3 - log_k 11.910 #81TUR/WHI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.191E+1 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 1.000Cl- + 1.000CrO4-2 - 1.000H2O = CrO3Cl- - log_k 8.080 - delta_h 5.500 #kJ/mol - # Enthalpy of formation: -754.8 #kJ/mol #76DEL/HEP - -analytic 9.04356E+0 0E+0 -2.87285E+2 0E+0 0E+0 - -1.000SO4-2 + 1.000Cr+3 = CrSO4+ - log_k 4.610 #81TUR/WHI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.61E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cs+ + 1.000Cit-3 = Cs(Cit)-2 - log_k 0.980 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.8E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Cs+ + 1.000Edta-4 = Cs(Edta)-3 - log_k 1.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cs+ + 1.000Nta-3 = Cs(Nta)-2 - log_k 0.850 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.5E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Cs+ - 1.000H+ + 1.000H2O = Cs(OH) - log_k -15.640 - delta_h 65.736 #kJ/mol - # Enthalpy of formation: -478.094 #kJ/mol #97SHO/SAS2 - -analytic -4.12356E+0 0E+0 -3.43363E+3 0E+0 0E+0 - -1.000Cs+ + 1.000Br- = CsBr - log_k 0.090 - delta_h 5.922 #kJ/mol - # Enthalpy of formation: -373.488 #kJ/mol - -analytic 1.12749E+0 0E+0 -3.09327E+2 0E+0 0E+0 - -1.000Cs+ + 1.000Cl- = CsCl - log_k -0.090 - delta_h 7.523 #kJ/mol - # Enthalpy of formation: -417.557 #kJ/mol - -analytic 1.22797E+0 0E+0 -3.92953E+2 0E+0 0E+0 - -1.000Cs+ + 1.000F- = CsF - log_k -0.380 - delta_h 2.446 #kJ/mol - # Enthalpy of formation: -590.904 #kJ/mol - -analytic 4.85202E-2 0E+0 -1.27763E+2 0E+0 0E+0 - -1.000Cs+ + 1.000I- = CsI - log_k 1.050 - delta_h -0.055 #kJ/mol - # Enthalpy of formation: -314.835 #kJ/mol - -analytic 1.04036E+0 0E+0 2.87285E+0 0E+0 0E+0 - -1.000Cu+2 + 1.000B(OH)4- = Cu(B(OH)4)+ - log_k 7.130 #80BAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.13E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Cu+2 + 2.000B(OH)4- = Cu(B(OH)4)2 - log_k 12.450 #80BAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.245E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Cu+2 + 3.000B(OH)4- = Cu(B(OH)4)3- - log_k 15.170 #80BAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.517E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Cu+2 + 1.000SeO4-2 = Cu(SeO4) - log_k 2.200 #Upper value suggested in 05OLI/NOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.2E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 1.000Acetate- = Eu(Acetate)+2 - log_k 2.900 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 2.000Acetate- = Eu(Acetate)2+ - log_k 4.800 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.8E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 3.000Acetate- = Eu(Acetate)3 - log_k 5.600 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.6E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 1.000CO3-2 = Eu(CO3)+ - log_k 7.900 #95SPA/BRU - delta_h 167.549 #kJ/mol - # Enthalpy of formation: -1113.013 #kJ/mol - -analytic 3.72533E+1 0E+0 -8.75168E+3 0E+0 0E+0 - -1.000Eu+3 + 2.000CO3-2 = Eu(CO3)2- - log_k 12.900 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.29E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 3.000CO3-2 = Eu(CO3)3-3 - log_k 14.800 #05VER/VIT2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.48E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 1.000H2(PO4)- = Eu(H2PO4)+2 - log_k 2.400 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.4E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 1.000H+ + 1.000CO3-2 = Eu(HCO3)+2 - log_k 12.430 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.243E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 - 1.000H+ + 1.000H2(PO4)- = Eu(HPO4)+ - log_k -1.510 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.51E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 - 2.000H+ + 2.000H2(PO4)- = Eu(HPO4)2- - log_k -4.820 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.82E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 1.000Malonate-2 = Eu(Malonate)+ - log_k 5.430 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.43E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 2.000Malonate-2 = Eu(Malonate)2- - log_k 7.780 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.78E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 1.000NO3- = Eu(NO3)+2 - log_k 1.210 #09RAO/TIA1 (Calculated usig SIT) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 - 1.000H+ + 1.000H2O = Eu(OH)+2 - log_k -7.800 #95SPA/BRU - delta_h 79.824 #kJ/mol - # Enthalpy of formation: -811.337 #kJ/mol - -analytic 6.18454E+0 0E+0 -4.16949E+3 0E+0 0E+0 - -1.000Eu+3 - 2.000H+ + 2.000H2O = Eu(OH)2+ - log_k -15.700 #07NEC/ALT2 - delta_h 144.521 #kJ/mol - # Enthalpy of formation: -1032.471 #kJ/mol - -analytic 9.61896E+0 0E+0 -7.54885E+3 0E+0 0E+0 - -1.000Eu+3 - 3.000H+ + 3.000H2O = Eu(OH)3 - log_k -26.200 #07NEC/ALT2 - delta_h 226.860 #kJ/mol - # Enthalpy of formation: -1235.961 #kJ/mol - -analytic 1.35441E+1 0E+0 -1.18497E+4 0E+0 0E+0 - -1.000HIsa- + 1.000Eu+3 + 3.000H2O - 3.000H+ = Eu(OH)3(HIsa)- - log_k -20.900 #05TIT/WIE - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.09E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 - 4.000H+ + 4.000H2O = Eu(OH)4- - log_k -40.700 #07NEC/ALT2 - delta_h 296.791 #kJ/mol - # Enthalpy of formation: -1451.86 #kJ/mol - -analytic 1.12955E+1 0E+0 -1.55025E+4 0E+0 0E+0 - -1.000Eu+3 + 1.000Ox-2 = Eu(Ox)+ - log_k 6.550 #Richard et al. 2011. Extrapolation to I=0 from various data, specially using the constant reported in 01SCH/BYR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.55E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 2.000Ox-2 = Eu(Ox)2- - log_k 10.930 # Extrapolation to I=0 from various data, specially using the constant reported in 01SCH/BYR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.093E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 3.000Ox-2 = Eu(Ox)3-3 - log_k 12.480 #Richard et al. 2011. Extrapolation to I=0 from various data, specially using the constant reported in 01SCH/BYR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.248E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 - 2.000H+ + 1.000H2(PO4)- = Eu(PO4) - log_k -7.360 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.36E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 - 4.000H+ + 2.000H2(PO4)- = Eu(PO4)2-3 - log_k -18.460 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.846E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 1.000Phthalat-2 = Eu(Phthalat)+ - log_k 4.960 #11GRI/COL3 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.96E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 2.000Phthalat-2 = Eu(Phthalat)2- - log_k 7.340 #11GRI/COL3 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.34E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 1.000SO4-2 = Eu(SO4)+ - log_k 3.500 #95SPA/BRU - delta_h 15.577 #kJ/mol - # Enthalpy of formation: -1499.094 #kJ/mol - -analytic 6.22897E+0 0E+0 -8.13642E+2 0E+0 0E+0 - -1.000Eu+3 + 2.000SO4-2 = Eu(SO4)2- - log_k 5.200 #95SPA/BRU - delta_h 27.787 #kJ/mol - # Enthalpy of formation: -2396.224 #kJ/mol - -analytic 1.00681E+1 0E+0 -1.45141E+3 0E+0 0E+0 - -1.000Eu+3 + 1.000Succinat-2 = Eu(Succinat)+ - log_k 4.360 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.36E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 2.000Succinat-2 = Eu(Succinat)2- - log_k 6.500 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Eu+3 + 1.000Br- = EuBr+2 - log_k 0.250 #95SPA/BRU - delta_h 16.223 #kJ/mol - # Enthalpy of formation: -710.518 #kJ/mol - -analytic 3.09214E+0 0E+0 -8.47385E+2 0E+0 0E+0 - -1.000Eu+3 + 2.000Br- = EuBr2+ - log_k -0.090 #95SPA/BRU - delta_h 26.498 #kJ/mol - # Enthalpy of formation: -821.653 #kJ/mol - -analytic 4.55224E+0 0E+0 -1.38408E+3 0E+0 0E+0 - -1.000Eu+3 + 1.000Cl- = EuCl+2 - log_k 0.760 #Original data 01LUO/BYR and 04LUO/BYR - delta_h 21.929 #kJ/mol - # Enthalpy of formation: -750.482 #kJ/mol - -analytic 4.60179E+0 0E+0 -1.14543E+3 0E+0 0E+0 - -1.000Eu+3 + 2.000Cl- = EuCl2+ - log_k -0.050 #95SPA/BRU - delta_h 35.334 #kJ/mol - # Enthalpy of formation: -904.158 #kJ/mol - -analytic 6.14024E+0 0E+0 -1.84562E+3 0E+0 0E+0 - -1.000Eu+3 + 1.000F- = EuF+2 - log_k 4.330 #07LUO/BYR - delta_h 24.956 #kJ/mol - # Enthalpy of formation: -915.725 #kJ/mol - -analytic 8.7021E+0 0E+0 -1.30354E+3 0E+0 0E+0 - -1.000Eu+3 + 2.000F- = EuF2+ - log_k 6.550 #Original data from 99SCH/BYR and 04LUO/BYR - delta_h 21.483 #kJ/mol - # Enthalpy of formation: -1254.548 #kJ/mol - -analytic 1.03137E+1 0E+0 -1.12213E+3 0E+0 0E+0 - -1.000Eu+3 + 3.000F- = EuF3 - log_k 10.600 #95SPA/BRU - delta_h -8.343 #kJ/mol - # Enthalpy of formation: -1619.724 #kJ/mol - -analytic 9.13837E+0 0E+0 4.35785E+2 0E+0 0E+0 - -1.000Eu+3 - 1.000H+ + 1.000H4(SiO4) = EuSiO(OH)3+2 - log_k -2.620 #Original data 07THA/SIN and 96JEN/CHO1 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000B(OH)4- = Fe(B(OH)4)+2 - log_k 8.580 #80BAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.58E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 2.000B(OH)4- = Fe(B(OH)4)2+ - log_k 15.540 #80BAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.554E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000CO3-2 = Fe(CO3) - log_k 5.690 #99CHI3 - delta_h -5.764 #kJ/mol - # Enthalpy of formation: -770.994 #kJ/mol - -analytic 4.68019E+0 0E+0 3.01074E+2 0E+0 0E+0 - -1.000Fe+2 + 2.000CO3-2 = Fe(CO3)2-2 - log_k 7.450 #98KIN in 99CHI3 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.45E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 3.000CO3-2 = Fe(CO3)3-3 - log_k 24.240 #05GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.424E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000Cit-3 = Fe(Cit) - log_k 12.650 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.265E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 - 1.000H+ + 1.000Cit-3 + 1.000H2O = Fe(Cit)(OH)- - log_k 10.330 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.033E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000Cit-3 = Fe(Cit)- - log_k 6.100 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.1E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 - 2.000H+ + 2.000Cit-3 + 2.000H2O = Fe(Cit)2(OH)2-5 - log_k 3.440 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.44E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 2.000Cit-3 = Fe(Cit)2-3 - log_k 18.150 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.815E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 6.000Cn- = Fe(Cn)6-3 - log_k 43.600 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.36E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 6.000Cn- = Fe(Cn)6-4 - log_k 35.400 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.54E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000Edta-4 = Fe(Edta)- - log_k 27.700 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.77E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000Edta-4 = Fe(Edta)-2 - log_k 16.020 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.602E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 2.000H+ + 1.000Cit-3 = Fe(H2Cit)+ - log_k 24.700 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.47E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 2.000H+ + 1.000Cit-3 = Fe(H2Cit)+2 - log_k 30.400 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.04E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000H2(PO4)- = Fe(H2PO4)+ - log_k 2.690 #USGS original - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.69E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000H2(PO4)- = Fe(H2PO4)+2 - log_k 5.420 #USGS original - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.42E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 - 1.000H+ + 1.000H4(SiO4) = Fe(H3SiO4)+2 - log_k 0.360 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.6E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000H+ + 1.000Cit-3 = Fe(HCit) - log_k 10.020 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.002E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000H+ + 2.000Cit-3 = Fe(HCit)(Cit)-2 - log_k 19.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.93E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000H+ + 1.000Cit-3 = Fe(HCit)+ - log_k 13.560 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.356E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 2.000H+ + 2.000Cit-3 = Fe(HCit)2- - log_k 24.920 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.492E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000H+ + 1.000Edta-4 = Fe(HEdta) - log_k 29.200 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.92E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000H+ + 1.000Edta-4 = Fe(HEdta)- - log_k 18.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.83E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000H+ + 1.000Nta-3 = Fe(HNta) - log_k 12.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.23E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000H+ + 1.000Ox-2 = Fe(HOx)+2 - log_k 9.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 - 1.000H+ + 1.000H2(PO4)- = Fe(HPO4) - log_k -3.610 #USGS original - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.61E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 - 1.000H+ + 1.000H2(PO4)- = Fe(HPO4)+ - log_k 1.630 #96BOU4 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.63E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000HS- = Fe(HS)+ - log_k 4.340 #04CHI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.34E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 2.000HS- = Fe(HS)2 - log_k 6.450 #04CHI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.45E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000H+ + 1.000SO4-2 = Fe(HSO4)+ - log_k 3.070 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 (provient de la base 0391 MINEQL- PSY) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.07E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000H+ + 1.000SeO3-2 = Fe(HSeO3)+2 - log_k 12.350 #01SEB/POT2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.235E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000NH3 = Fe(NH3)+2 - log_k 1.300 #82SCH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 2.000NH3 = Fe(NH3)2+2 - log_k 2.100 #82SCH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.1E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 4.000NH3 = Fe(NH3)4+2 - log_k 3.600 #82SCH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.6E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000NO3- = Fe(NO3)+2 - log_k 0.950 #HATCHES 8.0 1996 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.5E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000Nta-3 = Fe(Nta) - log_k 18.600 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.86E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000Nta-3 = Fe(Nta)- - log_k 10.600 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.06E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 2.000Nta-3 = Fe(Nta)2-3 - log_k 27.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.7E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 2.000Nta-3 = Fe(Nta)2-4 - log_k 13.500 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.35E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 - 1.000H+ + 1.000Cit-3 + 1.000H2O = Fe(OH)(Cit)-2 - log_k 1.500 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 - 1.000H+ + 1.000Edta-4 + 1.000H2O = Fe(OH)(Edta)-2 - log_k 20.840 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.084E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 - 1.000H+ + 1.000Edta-4 + 1.000H2O = Fe(OH)(Edta)-3 - log_k 6.400 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.4E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 - 1.000H+ + 1.000Nta-3 + 1.000H2O = Fe(OH)(Nta)- - log_k 14.600 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.46E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 - 1.000H+ + 1.000Nta-3 + 1.000H2O = Fe(OH)(Nta)-2 - log_k -0.120 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.2E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 - 1.000H+ + 1.000H2O = Fe(OH)+ - log_k -9.500 #76BAE/MES in 99CHI3 - delta_h 55.304 #kJ/mol - # Enthalpy of formation: -320.526 #kJ/mol - -analytic 1.88831E-1 0E+0 -2.88872E+3 0E+0 0E+0 - -1.000Fe+3 - 1.000H+ + 1.000H2O = Fe(OH)+2 - log_k -2.190 #76BAE/MES in 98CHI - delta_h 43.514 #kJ/mol - # Enthalpy of formation: -291.316 #kJ/mol - -analytic 5.43331E+0 0E+0 -2.27289E+3 0E+0 0E+0 - -1.000Fe+2 - 2.000H+ + 2.000H2O = Fe(OH)2 - log_k -20.600 #76BAE/MES in 99CHI3 - delta_h 119.662 #kJ/mol - # Enthalpy of formation: -541.998 #kJ/mol - -analytic 3.63852E-1 0E+0 -6.25037E+3 0E+0 0E+0 - -1.000Fe+3 - 2.000H+ + 1.000Cit-3 + 2.000H2O = Fe(OH)2(Cit)-2 - log_k 2.900 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 - 2.000H+ + 1.000Edta-4 + 2.000H2O = Fe(OH)2(Edta)-3 - log_k 10.060 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.006E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 - 2.000H+ + 1.000Edta-4 + 2.000H2O = Fe(OH)2(Edta)-4 - log_k -4.400 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.4E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 - 2.000H+ + 1.000Nta-3 + 2.000H2O = Fe(OH)2(Nta)-2 - log_k 6.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 - 2.000H+ + 2.000H2O = Fe(OH)2+ - log_k -5.670 #76BAE/MES in 98CHI - delta_h 71.546 #kJ/mol - # Enthalpy of formation: -549.114 #kJ/mol - -analytic 6.8643E+0 0E+0 -3.7371E+3 0E+0 0E+0 - -1.000Fe+3 - 3.000H+ + 3.000H2O = Fe(OH)3 - log_k -12.560 #91PEA/BER in 98CHI - delta_h 103.764 #kJ/mol - # Enthalpy of formation: -802.726 #kJ/mol - -analytic 5.61865E+0 0E+0 -5.41996E+3 0E+0 0E+0 - -1.000Fe+3 - 3.000H+ + 1.000Edta-4 + 3.000H2O = Fe(OH)3(Edta)-4 - log_k 8.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 - 3.000H+ + 3.000H2O = Fe(OH)3- - log_k -31.900 #76BAE/MES in 99CHI3 - delta_h 138.072 #kJ/mol - # Enthalpy of formation: -809.418 #kJ/mol - -analytic -7.71086E+0 0E+0 -7.21199E+3 0E+0 0E+0 - -1.000Fe+3 - 4.000H+ + 4.000H2O = Fe(OH)4- - log_k -21.600 #76BAE/MES in 98CHI - delta_h 133.471 #kJ/mol - # Enthalpy of formation: -1058.849 #kJ/mol - -analytic 1.78308E+0 0E+0 -6.97167E+3 0E+0 0E+0 - -1.000Fe+2 - 4.000H+ + 4.000H2O = Fe(OH)4-2 - log_k -46.000 #76BAE/MES in 99CHI3 - delta_h 158.797 #kJ/mol - # Enthalpy of formation: -1074.523 #kJ/mol - -analytic -1.818E+1 0E+0 -8.29453E+3 0E+0 0E+0 - -1.000Fe+2 + 1.000Ox-2 = Fe(Ox) - log_k 4.100 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.1E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000Ox-2 = Fe(Ox)+ - log_k 9.530 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.53E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 2.000Ox-2 = Fe(Ox)2- - log_k 15.750 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.575E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 2.000Ox-2 = Fe(Ox)2-2 - log_k 6.200 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.2E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 3.000Ox-2 = Fe(Ox)3-3 - log_k 20.200 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.02E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 3.000Ox-2 = Fe(Ox)3-4 - log_k 5.220 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.22E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000SO4-2 = Fe(SO4) - log_k 2.200 #91PEA/BER in 98CHI - delta_h 13.514 #kJ/mol - # Enthalpy of formation: -985.826 #kJ/mol - -analytic 4.56755E+0 0E+0 -7.05884E+2 0E+0 0E+0 - -1.000Fe+3 + 1.000SO4-2 = Fe(SO4)+ - log_k 4.100 #95BOU in 98CHI - delta_h 16.359 #kJ/mol - # Enthalpy of formation: -941.981 #kJ/mol - -analytic 6.96597E+0 0E+0 -8.54489E+2 0E+0 0E+0 - -1.000Fe+3 + 2.000SO4-2 = Fe(SO4)2- - log_k 5.400 #91PEA/BER in 98CHI - delta_h 19.248 #kJ/mol - # Enthalpy of formation: -1848.432 #kJ/mol - -analytic 8.7721E+0 0E+0 -1.00539E+3 0E+0 0E+0 - -1.000Fe+3 + 1.000SeO3-2 = Fe(SeO3)+ - log_k 11.150 #05OLI/NOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.115E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000SeO4-2 = Fe(SeO4) - log_k 2.710 #01SEB/POT2 - delta_h -12.601 #kJ/mol - # Enthalpy of formation: -706.101 #kJ/mol - -analytic 5.02403E-1 0E+0 6.58195E+2 0E+0 0E+0 - -2.000Fe+3 - 2.000H+ + 2.000Cit-3 + 2.000H2O = Fe2(Cit)2(OH)2-2 - log_k 45.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.5E+1 0E+0 0E+0 0E+0 0E+0 - -2.000Fe+3 - 2.000H+ + 2.000Edta-4 + 2.000H2O = Fe2(OH)2(Edta)2-4 - log_k 68.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.8E+1 0E+0 0E+0 0E+0 0E+0 - -2.000Fe+3 - 2.000H+ + 2.000H2O = Fe2(OH)2+4 - log_k -2.950 #91PEA/BER in 98CHI - delta_h 56.484 #kJ/mol - # Enthalpy of formation: -613.175 #kJ/mol - -analytic 6.94556E+0 0E+0 -2.95036E+3 0E+0 0E+0 - -3.000Fe+3 - 4.000H+ + 4.000H2O = Fe3(OH)4+5 - log_k -6.300 #76BAE/MES in 98CHI - delta_h 59.831 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.18193E+0 0E+0 -3.12519E+3 0E+0 0E+0 - -1.000Fe+3 + 1.000Br- = FeBr+2 - log_k 0.700 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 2.000Br- = FeBr2+ - log_k 0.900 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 - 1.000H+ + 1.000CO3-2 + 1.000H2O = FeCO3OH - log_k 10.760 #05GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.076E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 - 1.000H+ + 1.000CO3-2 + 1.000H2O = FeCO3OH- - log_k -4.030 #98KIN in 99CHI3 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.03E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000Cl- = FeCl+ - log_k 0.140 #91PEA/BER in 98CHI - delta_h -0.078 #kJ/mol - # Enthalpy of formation: -257.158 #kJ/mol - -analytic 1.26335E-1 0E+0 4.07422E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000Cl- = FeCl+2 - log_k 1.400 #95BOU in 98CHI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.4E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 2.000Cl- = FeCl2 - log_k -0.520 #95CHI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.2E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 2.000Cl- = FeCl2+ - log_k 2.100 #95BOU in 98CHI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.1E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 3.000Cl- = FeCl3 - log_k 1.130 #90NOR/PLU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.13E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 3.000Cl- = FeCl3- - log_k 1.020 #95CHI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.02E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 4.000Cl- = FeCl4- - log_k -0.790 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.9E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000CrO4-2 = FeCrO4+ - log_k 7.800 #96BAR/PAL - delta_h 19.100 #kJ/mol #96BAR/PAL - # Enthalpy of formation: -908.9 #kJ/mol - -analytic 1.11462E+1 0E+0 -9.97661E+2 0E+0 0E+0 - -1.000Fe+2 + 1.000F- = FeF+ - log_k 1.000 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000F- = FeF+2 - log_k 6.130 #92PEA/BER in 98CHI - delta_h 11.297 #kJ/mol - # Enthalpy of formation: -373.053 #kJ/mol - -analytic 8.10915E+0 0E+0 -5.90083E+2 0E+0 0E+0 - -1.000Fe+3 + 2.000F- = FeF2+ - log_k 10.800 #92PEA/BER in 98CHI - delta_h 19.665 #kJ/mol - # Enthalpy of formation: -700.035 #kJ/mol - -analytic 1.42452E+1 0E+0 -1.02717E+3 0E+0 0E+0 - -1.000Fe+3 + 3.000F- = FeF3 - log_k 14.000 #92PEA/BER in 98CHI - delta_h 22.595 #kJ/mol - # Enthalpy of formation: -1032.455 #kJ/mol - -analytic 1.79585E+1 0E+0 -1.18022E+3 0E+0 0E+0 - -1.000Fe+3 + 2.000H+ + 1.000Pyrophos-4 = FeH2Pyrophos+ - log_k 26.000 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.6E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+2 + 1.000H+ + 1.000CO3-2 = FeHCO3+ - log_k 11.770 #95CHI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.177E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000H+ + 1.000SO4-2 = FeHSO4+2 - log_k 4.470 #90NOR/PLU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.47E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000I- = FeI+2 - log_k 2.100 #96BOU2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.1E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000S2O3-2 = FeS2O3+ - log_k 3.900 #82SCH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Fe+3 + 1.000Scn- = FeScn+2 - log_k 3.100 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.1E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000Adipate-2 = H(Adipate)- - log_k 5.450 #04MAR/SMI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.45E+0 0E+0 0E+0 0E+0 0E+0 - -- 2.000H+ + 1.000H3(AsO3) = H(AsO3)-2 - log_k -23.620 #79IVA/VOR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.362E+1 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000AsO4-3 = H(AsO4)-2 - log_k 11.600 - delta_h -18.200 #kJ/mol - # Enthalpy of formation: -906.34 #kJ/mol #09RAN/FUG - -analytic 8.4115E+0 0E+0 9.50651E+2 0E+0 0E+0 - -1.000H+ + 1.000Cit-3 = H(Cit)-2 - log_k 6.360 #05HUM/AND - delta_h 3.300 #kJ/mol - # Enthalpy of formation: -1516.62 #kJ/mol - -analytic 6.93813E+0 0E+0 -1.72371E+2 0E+0 0E+0 - -1.000H+ + 1.000Edta-4 = H(Edta)-3 - log_k 11.240 #05HUM/AND - delta_h -19.800 #kJ/mol - # Enthalpy of formation: -1724.6 #kJ/mol - -analytic 7.77119E+0 0E+0 1.03422E+3 0E+0 0E+0 - -1.000H+ + 1.000Malonate-2 = H(Malonate)- - log_k 5.710 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.71E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000Nta-3 = H(Nta)-2 - log_k 10.280 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.028E+1 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000Ox-2 = H(Ox)- - log_k 4.250 #05HUM/AND - delta_h 7.300 #kJ/mol - # Enthalpy of formation: -823.36 #kJ/mol - -analytic 5.5289E+0 0E+0 -3.81305E+2 0E+0 0E+0 - -1.000H+ + 1.000Pyrophos-4 = H(Pyrophos)-3 - log_k 9.400 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.4E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000S2O3-2 = H(S2O3)- - log_k 1.720 #04CHI - delta_h 8.253 #kJ/mol - # Enthalpy of formation: -644.033 #kJ/mol - -analytic 3.16586E+0 0E+0 -4.31084E+2 0E+0 0E+0 - -1.000H+ + 1.000SO3-2 = H(SO3)- - log_k 7.170 #85GOL/PAR - delta_h 3.668 #kJ/mol - # Enthalpy of formation: -627.392 #kJ/mol - -analytic 7.81261E+0 0E+0 -1.91593E+2 0E+0 0E+0 - -1.000H+ + 1.000SO4-2 = H(SO4)- - log_k 1.980 - delta_h 22.440 #kJ/mol - # Enthalpy of formation: -886.9 #kJ/mol - -analytic 5.91131E+0 0E+0 -1.17212E+3 0E+0 0E+0 - -1.000H+ + 1.000SeO3-2 = H(SeO3)- - log_k 8.360 #05OLI/NOL - delta_h -5.170 #kJ/mol - # Enthalpy of formation: -512.33 #kJ/mol #05OLI/NOL - -analytic 7.45426E+0 0E+0 2.70048E+2 0E+0 0E+0 - -1.000H+ + 1.000SeO4-2 = H(SeO4)- - log_k 1.750 #05OLI/NOL - delta_h 20.800 #kJ/mol #05OLI/NOL - # Enthalpy of formation: -582.7 #kJ/mol - -analytic 5.394E+0 0E+0 -1.08646E+3 0E+0 0E+0 - -1.000H+ + 1.000Suberate-2 = H(Suberate)- - log_k 5.400 #31GAN/ING - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.4E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000Succinat-2 = H(Succinat)- - log_k 5.710 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.71E+0 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 1.000Adipate-2 = H2(Adipate) - log_k 9.890 #04MAR/SMI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.89E+0 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000H3(AsO3) = H2(AsO3)- - log_k -9.220 - delta_h 27.410 #kJ/mol - # Enthalpy of formation: -714.79 #kJ/mol #10RAN/FUG - -analytic -4.41798E+0 0E+0 -1.43172E+3 0E+0 0E+0 - -2.000H+ + 1.000AsO4-3 = H2(AsO4)- - log_k 18.370 - delta_h -21.420 #kJ/mol - # Enthalpy of formation: -909.56 #kJ/mol #09RAN/FUG - -analytic 1.46174E+1 0E+0 1.11884E+3 0E+0 0E+0 - -2.000H+ + 1.000Cit-3 = H2(Cit)- - log_k 11.140 #05HUM/AND - delta_h 0.900 #kJ/mol - # Enthalpy of formation: -1519.02 #kJ/mol - -analytic 1.12977E+1 0E+0 -4.70102E+1 0E+0 0E+0 - -2.000H+ + 1.000Edta-4 = H2(Edta)-2 - log_k 18.040 #05HUM/AND - delta_h -35.000 #kJ/mol - # Enthalpy of formation: -1739.8 #kJ/mol - -analytic 1.19083E+1 0E+0 1.82817E+3 0E+0 0E+0 - -2.000H+ + 1.000Malonate-2 = H2(Malonate) - log_k 8.670 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.67E+0 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 1.000Nta-3 = H2(Nta)- - log_k 13.200 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.32E+1 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 1.000Ox-2 = H2(Ox) - log_k 5.650 #05HUM/AND - delta_h 10.600 #kJ/mol #05HUM/AND - # Enthalpy of formation: -820.06 #kJ/mol - -analytic 7.50704E+0 0E+0 -5.53676E+2 0E+0 0E+0 - -2.000H+ + 1.000Pyrophos-4 = H2(Pyrophos)-2 - log_k 16.050 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.605E+1 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 1.000S2O3-2 = H2(S2O3) - log_k 2.320 #04CHI - delta_h 22.917 #kJ/mol - # Enthalpy of formation: -629.369 #kJ/mol - -analytic 6.33488E+0 0E+0 -1.19704E+3 0E+0 0E+0 - -2.000H+ + 1.000SO3-2 = H2(SO3) - log_k 9.030 #85GOL/PAR - delta_h 21.453 #kJ/mol - # Enthalpy of formation: -609.607 #kJ/mol - -analytic 1.27884E+1 0E+0 -1.12057E+3 0E+0 0E+0 - -2.000H+ + 1.000SeO3-2 = H2(SeO3) - log_k 11.000 #05OLI/NOL - delta_h 1.840 #kJ/mol - # Enthalpy of formation: -505.32 #kJ/mol #05OLI/NOL - -analytic 1.13224E+1 0E+0 -9.61098E+1 0E+0 0E+0 - -- 2.000H+ + 1.000H4(SiO4) = H2(SiO4)-2 - log_k -23.140 #92GRE/FUG - delta_h 75.000 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -1386.194 #kJ/mol - -analytic -1.00006E+1 0E+0 -3.91752E+3 0E+0 0E+0 - -2.000H+ + 1.000Suberate-2 = H2(Suberate) - log_k 9.920 #31GAN/ING - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.92E+0 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 1.000Succinat-2 = H2(Succinat) - log_k 9.950 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.95E+0 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 1.000CrO4-2 = H2CrO4 - log_k 6.320 #76BAE/MES, 04CHI - delta_h 39.596 #kJ/mol - # Enthalpy of formation: -839.404 #kJ/mol - -analytic 1.32569E+1 0E+0 -2.06824E+3 0E+0 0E+0 - -2.000H+ + 1.000H2(PO4)- + 1.000CrO4-2 - 1.000H2O = H2CrPO7- - log_k 9.020 - delta_h -51.490 #kJ/mol - # Enthalpy of formation: -1947.26 #kJ/mol #76DEL/HAL - -analytic -6.47544E-4 0E+0 2.68951E+3 0E+0 0E+0 - -1.000H+ + 1.000HGlu- = H2Glu - log_k 3.900 #98ZUB/CAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000HIsa- = H2Isa - log_k 4.000 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4E+0 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 1.000MoO4-2 = H2MoO4 - log_k 8.150 #68SAS/SIL, 64AVE/ANA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.15E+0 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 1.000Phthalat-2 = H2Phthalat - log_k 8.320 #10RIC/SAB1 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.32E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000HS- = H2S - log_k 6.990 - delta_h -22.300 #kJ/mol - # Enthalpy of formation: -38.6 #kJ/mol #89COX/WAG - -analytic 3.08321E+0 0E+0 1.16481E+3 0E+0 0E+0 - -2.000H+ + 1.000S2O4-2 = H2S2O4 - log_k 2.800 #04CHI - delta_h 20.207 #kJ/mol - # Enthalpy of formation: -733.293 #kJ/mol - -analytic 6.34011E+0 0E+0 -1.05548E+3 0E+0 0E+0 - -1.000H+ + 1.000HSe- = H2Se - log_k 3.850 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: 14.3 #kJ/mol #05OLI/NOL - -analytic 3.85E+0 0E+0 0E+0 0E+0 0E+0 - -3.000H+ + 1.000AsO4-3 = H3(AsO4) - log_k 20.630 - delta_h -14.360 #kJ/mol - # Enthalpy of formation: -902.5 #kJ/mol #09RAN/FUG - -analytic 1.81142E+1 0E+0 7.50074E+2 0E+0 0E+0 - -3.000H+ + 1.000Cit-3 = H3(Cit) - log_k 14.270 #05HUM/AND - delta_h -3.600 #kJ/mol - # Enthalpy of formation: -1523.52 #kJ/mol - -analytic 1.36393E+1 0E+0 1.88041E+2 0E+0 0E+0 - -3.000H+ + 1.000Edta-4 = H3(Edta)- - log_k 21.190 #05HUM/AND - delta_h -27.900 #kJ/mol - # Enthalpy of formation: -1732.7 #kJ/mol - -analytic 1.63021E+1 0E+0 1.45732E+3 0E+0 0E+0 - -3.000H+ + 1.000Nta-3 = H3(Nta) - log_k 15.330 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.533E+1 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000H2(PO4)- = H3(PO4) - log_k 2.140 #92GRE/FUG - delta_h 8.480 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -1294.12 #kJ/mol - -analytic 3.62563E+0 0E+0 -4.42941E+2 0E+0 0E+0 - -3.000H+ + 1.000Pyrophos-4 = H3(Pyrophos)- - log_k 18.300 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.83E+1 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000H4(SiO4) = H3(SiO4)- - log_k -9.840 #06BLA/PIA - delta_h 29.363 #kJ/mol - # Enthalpy of formation: -1431.831 #kJ/mol - -analytic -4.69583E+0 0E+0 -1.53373E+3 0E+0 0E+0 - -4.000H+ + 1.000Edta-4 = H4(Edta) - log_k 23.420 #05HUM/AND - delta_h -26.000 #kJ/mol - # Enthalpy of formation: -1730.8 #kJ/mol - -analytic 1.8865E+1 0E+0 1.35807E+3 0E+0 0E+0 - -4.000H+ + 1.000Nta-3 = H4(Nta)+ - log_k 16.130 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.613E+1 0E+0 0E+0 0E+0 0E+0 - -4.000H+ + 1.000Pyrophos-4 = H4(Pyrophos) - log_k 19.300 #92GRE/FUG - delta_h 6.684 #kJ/mol - # Enthalpy of formation: -2280.21 #kJ/mol #92GRE/FUG - -analytic 2.0471E+1 0E+0 -3.49129E+2 0E+0 0E+0 - -5.000H+ + 1.000Edta-4 = H5(Edta)+ - log_k 24.720 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.472E+1 0E+0 0E+0 0E+0 0E+0 - -6.000H+ + 1.000Edta-4 = H6(Edta)+2 - log_k 24.220 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.422E+1 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000Acetate- = HAcetate - log_k 4.760 - delta_h 0.250 #kJ/mol - # Enthalpy of formation: -485.76 #kJ/mol #82WAG/EVA - -analytic 4.8038E+0 0E+0 -1.30584E+1 0E+0 0E+0 - -1.000H+ + 2.000B(OH)4- - 4.000H2O = HB2O4- - log_k 9.170 #97CRO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.17E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000CO3-2 = HCO3- - log_k 10.330 - delta_h -14.700 #kJ/mol - # Enthalpy of formation: -689.93 #kJ/mol #89COX/WAG - -analytic 7.75467E+0 0E+0 7.67833E+2 0E+0 0E+0 - -1.000H+ + 1.000Cl- = HCl - log_k -0.710 #97TAG/ZOT - delta_h -12.298 #kJ/mol - # Enthalpy of formation: -179.378 #kJ/mol - -analytic -2.86451E+0 0E+0 6.42368E+2 0E+0 0E+0 - -1.000H+ + 1.000CrO4-2 = HCrO4- - log_k 6.520 #87PAL/WES, 04CHI - delta_h 6.016 #kJ/mol - # Enthalpy of formation: -872.984 #kJ/mol - -analytic 7.57396E+0 0E+0 -3.14237E+2 0E+0 0E+0 - -1.000H+ + 1.000H2(PO4)- + 1.000CrO4-2 - 1.000H2O = HCrPO7-2 - log_k 6.370 - delta_h -36.390 #kJ/mol - # Enthalpy of formation: -1932.16 #kJ/mol #76DEL/HEP - -analytic -5.24498E-3 0E+0 1.90078E+3 0E+0 0E+0 - -1.000H+ + 1.000MoO4-2 = HMoO4- - log_k 4.110 #68SAS/SIL, 64AVE/ANA - delta_h 58.576 #kJ/mol #68ARN/SZI in 76BAE/MES - # Enthalpy of formation: -938.424 #kJ/mol - -analytic 1.43721E+1 0E+0 -3.05963E+3 0E+0 0E+0 - -- 1.000H+ + 1.000H2(PO4)- = HPO4-2 - log_k -7.210 - delta_h 3.600 #kJ/mol - # Enthalpy of formation: -1299 #kJ/mol #89COX/WAG - -analytic -6.57931E+0 0E+0 -1.88041E+2 0E+0 0E+0 - -1.000H+ + 1.000Phthalat-2 = HPhthalat- - log_k 5.340 #10RIC/SAB1 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.34E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000S2O4-2 = HS2O4- - log_k 2.500 #04CHI - delta_h 3.834 #kJ/mol - # Enthalpy of formation: -749.666 #kJ/mol - -analytic 3.17169E+0 0E+0 -2.00263E+2 0E+0 0E+0 - -1.000H+ + 1.000SO4-2 + 0.500O2 = HSO5- - log_k -17.220 - delta_h 139.777 #kJ/mol - # Enthalpy of formation: -775.63 #kJ/mol #88SHO/HEL - -analytic 7.26784E+0 0E+0 -7.30105E+3 0E+0 0E+0 - -4.000CO3-2 + 1.000Hf+4 = Hf(CO3)4-4 - log_k 42.900 #analogy with Zr - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.29E+1 0E+0 0E+0 0E+0 0E+0 - -2.000NO3- + 1.000Hf+4 = Hf(NO3)2+2 - log_k 2.490 #65DES/KHO recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.49E+0 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000Hf+4 + 1.000H2O = Hf(OH)+3 - log_k -0.200 #01RAI/XIA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2E-1 0E+0 0E+0 0E+0 0E+0 - -- 4.000H+ + 1.000Hf+4 + 4.000H2O = Hf(OH)4 - log_k -11.200 #01RAI/XIA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.12E+1 0E+0 0E+0 0E+0 0E+0 - -- 5.000H+ + 1.000Hf+4 + 5.000H2O = Hf(OH)5- - log_k -20.300 #01RAI/XIA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.03E+1 0E+0 0E+0 0E+0 0E+0 - -- 6.000H+ + 1.000Hf+4 + 6.000H2O = Hf(OH)6-2 - log_k -32.800 #01RAI/XIA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.28E+1 0E+0 0E+0 0E+0 0E+0 - -2.000SO4-2 + 1.000Hf+4 = Hf(SO4)2 - log_k 10.110 #65DES/KHO recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.011E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Br- + 1.000Hf+4 = HfBr+3 - log_k 0.380 #67HAL/POH recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.8E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Cl- + 1.000Hf+4 = HfCl+3 - log_k 2.200 #65DES/KHO and others recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.2E+0 0E+0 0E+0 0E+0 0E+0 - -2.000Cl- + 1.000Hf+4 = HfCl2+2 - log_k 2.050 #65DES/KHO and others recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.05E+0 0E+0 0E+0 0E+0 0E+0 - -1.000F- + 1.000Hf+4 = HfF+3 - log_k 9.290 #05SAW/THA and others recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.29E+0 0E+0 0E+0 0E+0 0E+0 - -2.000F- + 1.000Hf+4 = HfF2+2 - log_k 17.850 #05SAW/THA and others recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.785E+1 0E+0 0E+0 0E+0 0E+0 - -3.000F- + 1.000Hf+4 = HfF3+ - log_k 25.080 #05SAW/THA and others recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.508E+1 0E+0 0E+0 0E+0 0E+0 - -4.000F- + 1.000Hf+4 = HfF4 - log_k 31.410 #05SAW/THA and others recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.141E+1 0E+0 0E+0 0E+0 0E+0 - -1.000I- + 1.000Hf+4 = HfI+3 - log_k 0.020 #67HAL/POH recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2E-2 0E+0 0E+0 0E+0 0E+0 - -1.000NO3- + 1.000Hf+4 = HfNO3+3 - log_k 1.850 #65DES/KHO 69HAL/SMO recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.85E+0 0E+0 0E+0 0E+0 0E+0 - -1.000SO4-2 + 1.000Hf+4 = HfSO4+2 - log_k 6.060 #65DES/KHO recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.06E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Hg+2 + 2.000H+ + 2.000Cn- + 2.000HSe- - 2.000H2O + 1.000O2 = Hg(SeCn)2 - log_k 134.330 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.3433E+2 0E+0 0E+0 0E+0 0E+0 - -1.000Hg+2 + 3.000H+ + 3.000Cn- + 3.000HSe- - 3.000H2O + 1.500O2 = Hg(SeCn)3- - log_k 194.850 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.9485E+2 0E+0 0E+0 0E+0 0E+0 - -1.000Hg+2 + 4.000H+ + 4.000Cn- + 4.000HSe- - 4.000H2O + 2.000O2 = Hg(SeCn)4-2 - log_k 253.370 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.5337E+2 0E+0 0E+0 0E+0 0E+0 - -1.000Hg+2 + 2.000SeO3-2 = Hg(SeO3)2-2 - log_k 14.850 #05OLI/NOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.485E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Hg+2 - 1.000H+ + 1.000HSe- = HgSe - log_k 37.590 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.759E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Hg+2 - 2.000H+ + 2.000HSe- = HgSe2-2 - log_k 32.630 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.263E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ho+3 + 1.000CO3-2 = Ho(CO3)+ - log_k 8.000 #95SPA/BRU - delta_h 168.562 #kJ/mol - # Enthalpy of formation: -1213.71 #kJ/mol - -analytic 3.75308E+1 0E+0 -8.80459E+3 0E+0 0E+0 - -1.000Ho+3 + 2.000CO3-2 = Ho(CO3)2- - log_k 13.300 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.33E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ho+3 + 3.000CO3-2 = Ho(CO3)3-3 - log_k 14.800 #05VER/VIT2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.48E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ho+3 + 1.000H2(PO4)- = Ho(H2PO4)+2 - log_k 2.300 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000Ho+3 + 1.000CO3-2 = Ho(HCO3)+2 - log_k 12.500 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.25E+1 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000Ho+3 + 1.000H2(PO4)- = Ho(HPO4)+ - log_k -1.410 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.41E+0 0E+0 0E+0 0E+0 0E+0 - -- 2.000H+ + 1.000Ho+3 + 2.000H2(PO4)- = Ho(HPO4)2- - log_k -4.520 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.52E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ho+3 + 1.000NO3- = Ho(NO3)+2 - log_k 0.500 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5E-1 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000Ho+3 + 1.000H2O = Ho(OH)+2 - log_k -7.900 #95SPA/BRU - delta_h 79.900 #kJ/mol - # Enthalpy of formation: -912.972 #kJ/mol - -analytic 6.09786E+0 0E+0 -4.17346E+3 0E+0 0E+0 - -- 2.000H+ + 1.000Ho+3 + 2.000H2O = Ho(OH)2+ - log_k -15.700 #07NEC/ALT2 - delta_h 143.846 #kJ/mol - # Enthalpy of formation: -1134.856 #kJ/mol - -analytic 9.5007E+0 0E+0 -7.51359E+3 0E+0 0E+0 - -- 3.000H+ + 1.000Ho+3 + 3.000H2O = Ho(OH)3 - log_k -26.200 #07NEC/ALT2 - delta_h 226.067 #kJ/mol - # Enthalpy of formation: -1338.465 #kJ/mol - -analytic 1.34052E+1 0E+0 -1.18083E+4 0E+0 0E+0 - -- 4.000H+ + 1.000Ho+3 + 4.000H2O = Ho(OH)4- - log_k -40.700 #07NEC/ALT2 - delta_h 295.822 #kJ/mol - # Enthalpy of formation: -1554.54 #kJ/mol - -analytic 1.11257E+1 0E+0 -1.54518E+4 0E+0 0E+0 - -- 2.000H+ + 1.000Ho+3 + 1.000H2(PO4)- = Ho(PO4) - log_k -6.960 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.96E+0 0E+0 0E+0 0E+0 0E+0 - -- 4.000H+ + 1.000Ho+3 + 2.000H2(PO4)- = Ho(PO4)2-3 - log_k -17.820 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.782E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ho+3 + 1.000SO4-2 = Ho(SO4)+ - log_k 3.400 #95SPA/BRU - delta_h 15.387 #kJ/mol - # Enthalpy of formation: -1600.995 #kJ/mol - -analytic 6.09568E+0 0E+0 -8.03718E+2 0E+0 0E+0 - -1.000Ho+3 + 2.000SO4-2 = Ho(SO4)2- - log_k 4.900 #95SPA/BRU - delta_h 23.670 #kJ/mol - # Enthalpy of formation: -2502.052 #kJ/mol - -analytic 9.0468E+0 0E+0 -1.23637E+3 0E+0 0E+0 - -1.000Ho+3 + 1.000Cl- = HoCl+2 - log_k 0.740 #Original data from 01LUO/BYR and 04LUO/BYR - delta_h 22.013 #kJ/mol - # Enthalpy of formation: -852.109 #kJ/mol - -analytic 4.59651E+0 0E+0 -1.14982E+3 0E+0 0E+0 - -1.000Ho+3 + 2.000Cl- = HoCl2+ - log_k -0.290 #81TUR/WHI - delta_h 36.300 #kJ/mol - # Enthalpy of formation: -1004.902 #kJ/mol - -analytic 6.06948E+0 0E+0 -1.89608E+3 0E+0 0E+0 - -1.000Ho+3 + 1.000F- = HoF+2 - log_k 4.330 #07LUO/BYR - delta_h 25.761 #kJ/mol - # Enthalpy of formation: -1016.631 #kJ/mol - -analytic 8.84313E+0 0E+0 -1.34559E+3 0E+0 0E+0 - -1.000Ho+3 + 2.000F- = HoF2+ - log_k 6.520 #Original data from 99SCH/BYR and 04LUO/BYR - delta_h 21.110 #kJ/mol #04LUO/MIL - # Enthalpy of formation: -1356.632 #kJ/mol - -analytic 1.02183E+1 0E+0 -1.10265E+3 0E+0 0E+0 - -- 1.000H+ + 1.000Ho+3 + 1.000H4(SiO4) = HoSiO(OH)3+2 - log_k -2.620 #Original data from 07THA/SIN and 96JEN/CHO1 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0 - -3.000I- - 1.000H2O + 2.000H+ + 0.500O2 = I3- - log_k 24.820 - delta_h -160.886 #kJ/mol - # Enthalpy of formation: -51.463 #kJ/mol - -analytic -3.36598E+0 0E+0 8.40365E+3 0E+0 0E+0 - -2.000Cl- + 1.000I- - 1.000H2O + 2.000H+ + 0.500O2 = ICl2- - log_k 16.190 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.619E+1 0E+0 0E+0 0E+0 0E+0 - -1.000I- + 0.500O2 = IO- - log_k -1.010 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.01E+0 0E+0 0E+0 0E+0 0E+0 - -1.000I- + 2.000O2 = IO4- - log_k 6.980 - delta_h -70.413 #kJ/mol - # Enthalpy of formation: -151.461 #kJ/mol - -analytic -5.35581E+0 0E+0 3.67792E+3 0E+0 0E+0 - -1.000K+ + 1.000Edta-4 = K(Edta)-3 - log_k 1.800 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.8E+0 0E+0 0E+0 0E+0 0E+0 - -1.000K+ + 1.000H+ + 1.000Nta-3 = K(HNta)- - log_k 10.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.03E+1 0E+0 0E+0 0E+0 0E+0 - -1.000K+ - 1.000H+ + 1.000H2(PO4)- = K(HPO4)- - log_k -6.400 #97MAR/SMI - delta_h 31.589 #kJ/mol #97MAR/SMI - # Enthalpy of formation: -1523.151 #kJ/mol - -analytic -8.65853E-1 0E+0 -1.65001E+3 0E+0 0E+0 - -1.000K+ + 1.000IO3- = K(IO3) - log_k 0.020 #estimation NEA87 08/2/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2E-2 0E+0 0E+0 0E+0 0E+0 - -1.000K+ + 1.000Nta-3 = K(Nta)-2 - log_k 1.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000K+ + 1.000Pyrophos-4 = K(Pyrophos)-3 - log_k 2.100 #76MAR/SMI - delta_h 7.113 #kJ/mol #76MAR/SMI - # Enthalpy of formation: -2531.921 #kJ/mol - -analytic 3.34614E+0 0E+0 -3.71537E+2 0E+0 0E+0 - -1.000K+ + 1.000Al+3 - 4.000H+ + 4.000H2O = KAl(OH)4 - log_k -24.220 - delta_h 211.675 #kJ/mol - # Enthalpy of formation: -1722.185 #kJ/mol #97POK/HEL2 - -analytic 1.28638E+1 0E+0 -1.10565E+4 0E+0 0E+0 - -1.000K+ + 1.000H2(PO4)- = KH2PO4 - log_k 0.440 #97MAR/SMI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.4E-1 0E+0 0E+0 0E+0 0E+0 - -1.000K+ + 1.000I- = KI - log_k -1.570 #estimation NEA87 08/2/95 - delta_h 9.011 #kJ/mol - # Enthalpy of formation: -299.909 #kJ/mol - -analytic 8.65712E-3 0E+0 -4.70677E+2 0E+0 0E+0 - -1.000K+ - 2.000H+ + 1.000H2(PO4)- = KPO4-2 - log_k -18.260 #97MAR/SMI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.826E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 1.000CO3-2 = Mg(CO3) - log_k 2.980 #97SVE/SHO - delta_h 8.804 #kJ/mol - # Enthalpy of formation: -1133.426 #kJ/mol - -analytic 4.52239E+0 0E+0 -4.59864E+2 0E+0 0E+0 - -1.000Mg+2 + 1.000Cit-3 = Mg(Cit)- - log_k 4.810 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.81E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 1.000Edta-4 = Mg(Edta)-2 - log_k 10.900 #05HUM/AND - delta_h 19.800 #kJ/mol - # Enthalpy of formation: -2152 #kJ/mol - -analytic 1.43688E+1 0E+0 -1.03422E+3 0E+0 0E+0 - -1.000Mg+2 + 2.000H+ + 1.000Cit-3 = Mg(H2Cit)+ - log_k 12.450 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.245E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 1.000H2(PO4)- = Mg(H2PO4)+ - log_k 1.170 #81TUR/WHI - delta_h 13.514 #kJ/mol #96BOU1 - # Enthalpy of formation: -1756.086 #kJ/mol - -analytic 3.53755E+0 0E+0 -7.05884E+2 0E+0 0E+0 - -1.000Mg+2 - 1.000H+ + 1.000H4(SiO4) = Mg(H3SiO4)+ - log_k -8.580 #97SVE/SHO - delta_h 27.114 #kJ/mol - # Enthalpy of formation: -1901.08 #kJ/mol - -analytic -3.82984E+0 0E+0 -1.41626E+3 0E+0 0E+0 - -1.000Mg+2 + 1.000H+ + 1.000CO3-2 = Mg(HCO3)+ - log_k 11.370 #95SHO/KOR - delta_h -12.859 #kJ/mol - # Enthalpy of formation: -1155.089 #kJ/mol - -analytic 9.1172E+0 0E+0 6.71671E+2 0E+0 0E+0 - -1.000Mg+2 + 1.000H+ + 1.000Cit-3 = Mg(HCit) - log_k 8.960 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.96E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 1.000H+ + 1.000Edta-4 = Mg(HEdta)- - log_k 15.400 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.54E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 1.000H+ + 1.000Malonate-2 = Mg(HMalonate)+ - log_k 7.050 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.05E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 - 1.000H+ + 1.000H2(PO4)- = Mg(HPO4) - log_k -4.300 #76SMI/MAR - delta_h 16.152 #kJ/mol #76SMI/MAR - # Enthalpy of formation: -1753.448 #kJ/mol - -analytic -1.4703E+0 0E+0 -8.43676E+2 0E+0 0E+0 - -1.000Mg+2 + 1.000H+ + 1.000Succinat-2 = Mg(HSuccinat)+ - log_k 6.720 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.72E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 1.000IO3- = Mg(IO3)+ - log_k 0.700 #estimation NEA87 08/2/95 ; - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 1.000Malonate-2 = Mg(Malonate) - log_k 2.860 #76KLA/OST - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.86E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 1.000NH3 = Mg(NH3)+2 - log_k 0.100 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -548.148 #kJ/mol - -analytic 1E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 3.000NH3 = Mg(NH3)3+2 - log_k -0.300 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -710.444 #kJ/mol - -analytic -3E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 4.000NH3 = Mg(NH3)4+2 - log_k -1.000 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -791.592 #kJ/mol - -analytic -1E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 1.000Nta-3 = Mg(Nta)- - log_k 6.790 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.79E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 - 1.000H+ + 1.000H2O = Mg(OH)+ - log_k -11.680 #97SHO/SAS2 - delta_h 62.835 #kJ/mol - # Enthalpy of formation: -689.995 #kJ/mol - -analytic -6.71797E-1 0E+0 -3.2821E+3 0E+0 0E+0 - -1.000Mg+2 + 1.000Ox-2 = Mg(Ox) - log_k 3.560 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.56E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 2.000Ox-2 = Mg(Ox)2-2 - log_k 5.170 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.17E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 - 2.000H+ + 1.000H2(PO4)- = Mg(PO4)- - log_k -14.710 #81TUR/WHI - delta_h 31.170 #kJ/mol #96BOU1 - # Enthalpy of formation: -1738.43 #kJ/mol - -analytic -9.24926E+0 0E+0 -1.62812E+3 0E+0 0E+0 - -1.000Mg+2 + 1.000Pyrophos-4 = Mg(Pyrophos)-2 - log_k 7.200 #76SMI/MAR - delta_h 12.542 #kJ/mol - # Enthalpy of formation: -2741.352 #kJ/mol - -analytic 9.39726E+0 0E+0 -6.55113E+2 0E+0 0E+0 - -1.000Mg+2 + 1.000S2O3-2 = Mg(S2O3) - log_k 1.820 #76SMI/MAR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.82E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 1.000SO4-2 = Mg(SO4) - log_k 2.230 #76SMI/MAR - delta_h 5.858 #kJ/mol #76SMI/MAR - # Enthalpy of formation: -1370.482 #kJ/mol - -analytic 3.25628E+0 0E+0 -3.05984E+2 0E+0 0E+0 - -1.000Mg+2 + 1.000SeO4-2 = Mg(SeO4) - log_k 2.200 #05OLI/NOL - delta_h -6.614 #kJ/mol - # Enthalpy of formation: -1077.114 #kJ/mol - -analytic 1.04128E+0 0E+0 3.45473E+2 0E+0 0E+0 - -1.000Mg+2 + 1.000Succinat-2 = Mg(Succinat) - log_k 2.270 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.27E+0 0E+0 0E+0 0E+0 0E+0 - -4.000Mg+2 - 4.000H+ + 4.000H2O = Mg4(OH)4+4 - log_k -39.750 #76BAE/MES - delta_h 229.186 #kJ/mol - # Enthalpy of formation: -2782.134 #kJ/mol - -analytic 4.01605E-1 0E+0 -1.19712E+4 0E+0 0E+0 - -1.000Mg+2 + 1.000B(OH)4- = MgB(OH)4+ - log_k 1.600 #97CRO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.6E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 1.000Br- = MgBr+ - log_k -0.140 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.4E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 1.000Cl- = MgCl+ - log_k 0.350 #96BOU1 - delta_h -1.729 #kJ/mol - # Enthalpy of formation: -635.809 #kJ/mol - -analytic 4.70926E-2 0E+0 9.03118E+1 0E+0 0E+0 - -1.000Mg+2 + 1.000F- = MgF+ - log_k 1.800 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel - delta_h 13.389 #kJ/mol - # Enthalpy of formation: -788.961 #kJ/mol - -analytic 4.14565E+0 0E+0 -6.99355E+2 0E+0 0E+0 - -1.000Mg+2 + 1.000I- = MgI+ - log_k 0.180 #estimation NEA87 08/2/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.8E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mg+2 + 2.000I- = MgI2 - log_k 0.030 #estimation NEA87 08/2/95 ; - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3E-2 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 1.000CO3-2 = Mn(CO3) - log_k 6.500 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 1.000H+ + 1.000CO3-2 = Mn(HCO3)+ - log_k 11.610 #95CHI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.161E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 - 1.000H+ + 1.000H2(PO4)- = Mn(HPO4) - log_k -3.260 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.26E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 - 2.000H+ + 2.000H2(PO4)- = Mn(HPO4)2-2 - log_k -9.120 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -9.12E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 1.000IO3- = Mn(IO3)+ - log_k 0.840 #estimation NEA87 08/2/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.4E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 2.000IO3- = Mn(IO3)2 - log_k 0.130 #estimation NEA87 08/2/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.3E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 1.000NH3 = Mn(NH3)+2 - log_k 0.700 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 2.000NH3 = Mn(NH3)2+2 - log_k 1.200 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.2E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 1.000NO3- = Mn(NO3)+ - log_k 0.160 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.6E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 2.000NO3- = Mn(NO3)2 - log_k 0.500 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 - 1.000H+ + 1.000H2O = Mn(OH)+ - log_k -10.590 #95CHI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.059E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 - 2.000H+ + 2.000H2O = Mn(OH)2 - log_k -22.200 #95CHI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.22E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 - 3.000H+ + 3.000H2O = Mn(OH)3- - log_k -34.800 #95CHI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.48E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 - 4.000H+ + 4.000H2O = Mn(OH)4-2 - log_k -48.300 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/91PEA/BER 11891 EN ; Nagra TR 91-18 (mai 1992, Hatches 3.0) (provient de la base 0391 MINEQL- PSY) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.83E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 1.000Pyrophos-4 = Mn(Pyrophos)-2 - log_k 6.000 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 1.000S2O3-2 = Mn(S2O3) - log_k 1.900 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 1.000SO4-2 = Mn(SO4) - log_k 2.250 #95CHI - delta_h 14.100 #kJ/mol - # Enthalpy of formation: -1115.99 #kJ/mol - -analytic 4.72021E+0 0E+0 -7.36493E+2 0E+0 0E+0 - -1.000Mn+2 + 1.000Scn- = Mn(Scn)+ - log_k 1.400 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.4E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 1.000SeO4-2 = Mn(SeO4) - log_k 2.430 #05OLI/NOL - delta_h -1.282 #kJ/mol - # Enthalpy of formation: -825.582 #kJ/mol - -analytic 2.2054E+0 0E+0 6.69634E+1 0E+0 0E+0 - -1.000Mn+2 - 0.500H2O + 1.000H+ + 0.250O2 = Mn+3 - log_k -4.015 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.015E+0 0E+0 0E+0 0E+0 0E+0 - -2.000Mn+2 - 1.000H+ + 1.000H2O = Mn2(OH)+3 - log_k -10.100 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.01E+1 0E+0 0E+0 0E+0 0E+0 - -2.000Mn+2 - 3.000H+ + 3.000H2O = Mn2(OH)3+ - log_k -24.900 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.49E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 1.000Br- = MnBr+ - log_k 0.130 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.3E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 1.000Cl- = MnCl+ - log_k 0.300 - delta_h 18.466 #kJ/mol - # Enthalpy of formation: -369.364 #kJ/mol - -analytic 3.5351E+0 0E+0 -9.64545E+2 0E+0 0E+0 - -1.000Mn+2 + 2.000Cl- = MnCl2 - log_k 0.250 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 (provient de la base 0391 MINEQL- PSY) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.5E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 3.000Cl- = MnCl3- - log_k -0.310 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 (provient de la base 0391 MINEQL- PSY) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.1E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 1.000F- = MnF+ - log_k 0.850 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.5E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 2.000F- = MnF2 - log_k 9.040 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.04E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 3.000F- = MnF3- - log_k 11.640 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.164E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 4.000F- = MnF4-2 - log_k 13.400 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.34E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 5.000F- = MnF5-3 - log_k 14.700 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.47E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 6.000F- = MnF6-4 - log_k 15.500 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.55E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 + 1.000I- = MnI+ - log_k 0.230 #estimation NEA87 08/2/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.3E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Mn+2 - 3.000H+ + 1.500H2O + 1.250O2 = MnO4- - log_k -20.305 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 - delta_h 123.253 #kJ/mol - # Enthalpy of formation: -541.41 #kJ/mol - -analytic 1.28788E+0 0E+0 -6.43792E+3 0E+0 0E+0 - -1.000Mn+2 - 4.000H+ + 2.000H2O + 1.000O2 = MnO4-2 - log_k -32.420 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 - delta_h 151.840 #kJ/mol - # Enthalpy of formation: -652.704 #kJ/mol - -analytic -5.81881E+0 0E+0 -7.93114E+3 0E+0 0E+0 - -1.000Mn+2 - 5.000H+ + 2.500H2O + 0.750O2 = MnO4-3 - log_k -48.515 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.8515E+1 0E+0 0E+0 0E+0 0E+0 - -5.000H+ + 1.000MoO4-2 - 2.500H2O - 0.750O2 = Mo+3 - log_k -42.725 #68SAS/SIL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.2725E+1 0E+0 0E+0 0E+0 0E+0 - -34.000H+ + 19.000MoO4-2 - 17.000H2O = Mo19O59-4 - log_k 196.300 #68SAS/SIL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.963E+2 0E+0 0E+0 0E+0 0E+0 - -5.000H+ + 2.000MoO4-2 - 2.000H2O = Mo2O5(OH)+ - log_k 19.000 #68SAS/SIL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.9E+1 0E+0 0E+0 0E+0 0E+0 - -11.000H+ + 7.000MoO4-2 - 4.000H2O = Mo7O21(OH)3-3 - log_k 66.480 #68SAS/SIL, 64AVE/ANA - delta_h -222.589 #kJ/mol #68ARN/SZI in 76BAE/MES - # Enthalpy of formation: -6058.269 #kJ/mol - -analytic 2.74841E+1 0E+0 1.16266E+4 0E+0 0E+0 - -10.000H+ + 7.000MoO4-2 - 4.000H2O = Mo7O22(OH)2-4 - log_k 62.710 #68SAS/SIL, 64AVE/ANA - delta_h -220.079 #kJ/mol #68ARN/SZI in 76BAE/MES - # Enthalpy of formation: -6055.759 #kJ/mol - -analytic 2.41539E+1 0E+0 1.14955E+4 0E+0 0E+0 - -9.000H+ + 7.000MoO4-2 - 4.000H2O = Mo7O23(OH)-5 - log_k 57.210 #68SAS/SIL, 64AVE/ANA - delta_h -223.426 #kJ/mol #68ARN/SZI in 76BAE/MES - # Enthalpy of formation: -6059.106 #kJ/mol - -analytic 1.80675E+1 0E+0 1.16703E+4 0E+0 0E+0 - -8.000H+ + 7.000MoO4-2 - 4.000H2O = Mo7O24-6 - log_k 50.350 #68SAS/SIL, 64AVE/ANA - delta_h -234.304 #kJ/mol #68ARN/SZI in 76BAE/MES - # Enthalpy of formation: -6069.984 #kJ/mol - -analytic 9.30176E+0 0E+0 1.22385E+4 0E+0 0E+0 - -1.000H+ + 1.000NH3 = NH4+ - log_k 9.230 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -133.26 #kJ/mol #92GRE/FUG - -analytic 9.23E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Na+ + 1.000CO3-2 = Na(CO3)- - log_k 1.270 #90NOR/PLU - delta_h 37.279 #kJ/mol #90NOR/PLU - # Enthalpy of formation: -878.291 #kJ/mol - -analytic 7.80099E+0 0E+0 -1.94721E+3 0E+0 0E+0 - -1.000Na+ + 1.000Edta-4 = Na(Edta)-3 - log_k 2.800 #05HUM/AND - delta_h -4.000 #kJ/mol - # Enthalpy of formation: -1949.14 #kJ/mol - -analytic 2.09923E+0 0E+0 2.08934E+2 0E+0 0E+0 - -1.000Na+ + 1.000H+ + 1.000CO3-2 = Na(HCO3) - log_k 10.080 #90NOR/PLU - delta_h -26.127 #kJ/mol - # Enthalpy of formation: -941.697 #kJ/mol - -analytic 5.50275E+0 0E+0 1.36471E+3 0E+0 0E+0 - -1.000Na+ + 1.000H+ + 1.000Nta-3 = Na(HNta)- - log_k 10.320 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.032E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Na+ - 1.000H+ + 1.000H2(PO4)- = Na(HPO4)- - log_k -6.340 #97MAR/SMI - delta_h 34.936 #kJ/mol #97MAR/SMI - # Enthalpy of formation: -1508.004 #kJ/mol - -analytic -2.19485E-1 0E+0 -1.82483E+3 0E+0 0E+0 - -1.000Na+ + 1.000IO3- = Na(IO3) - log_k 0.060 #estimation NEA87 08/2/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6E-2 0E+0 0E+0 0E+0 0E+0 - -1.000Na+ + 1.000Nta-3 = Na(Nta)-2 - log_k 1.880 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.88E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Na+ + 1.000S2O3-2 = Na(S2O3)- - log_k 0.610 - delta_h 4.656 #kJ/mol - # Enthalpy of formation: -887.97 #kJ/mol #82WAG/EVA - -analytic 1.42569E+0 0E+0 -2.43199E+2 0E+0 0E+0 - -2.000Na+ + 1.000Pyrophos-4 = Na2(Pyrophos)-2 - log_k 2.290 #76SMI/MAR - delta_h 5.858 #kJ/mol #76SMI/MAR - # Enthalpy of formation: -2761.716 #kJ/mol - -analytic 3.31628E+0 0E+0 -3.05984E+2 0E+0 0E+0 - -1.000Na+ + 1.000Al+3 - 4.000H+ + 4.000H2O = NaAl(OH)4 - log_k -23.630 - delta_h 190.348 #kJ/mol - # Enthalpy of formation: -1731.712 #kJ/mol #95POK/HEL - -analytic 9.71749E+0 0E+0 -9.94255E+3 0E+0 0E+0 - -1.000Na+ + 1.000B(OH)4- = NaB(OH)4 - log_k -0.100 - delta_h 1.226 #kJ/mol - # Enthalpy of formation: -1584.23 #kJ/mol - -analytic 1.14786E-1 0E+0 -6.40383E+1 0E+0 0E+0 - -1.000Na+ + 1.000F- = NaF - log_k -0.450 #ANDRA, CRP OHEM 95.002, X. BOURBON, janvier1996; Sélection de données thermodynamiques afférentes aux corrections de Température sur les principaux équilibres chimiques en milieu naturel - delta_h -12.552 #kJ/mol - # Enthalpy of formation: -588.242 #kJ/mol - -analytic -2.64901E+0 0E+0 6.55636E+2 0E+0 0E+0 - -1.000Na+ + 1.000H2(PO4)- = NaH2PO4 - log_k 0.410 #97MAR/SMI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.1E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Na+ + 1.000I- = NaI - log_k -1.520 #estimation NEA87 08/2/95 - delta_h 7.252 #kJ/mol - # Enthalpy of formation: -289.868 #kJ/mol - -analytic -2.49506E-1 0E+0 -3.78798E+2 0E+0 0E+0 - -1.000Na+ - 2.000H+ + 1.000H2(PO4)- = NaPO4-2 - log_k -18.070 #97MAR/SMI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.807E+1 0E+0 0E+0 0E+0 0E+0 - -3.000H+ + 1.000Nb(OH)6- - 3.000H2O = Nb(OH)3+2 - log_k 7.500 #97PEI/NGU - delta_h -10.230 #kJ/mol #97PEI/NGU - # Enthalpy of formation: -1078.405 #kJ/mol - -analytic 5.70778E+0 0E+0 5.34349E+2 0E+0 0E+0 - -2.000H+ + 1.000Nb(OH)6- - 2.000H2O = Nb(OH)4+ - log_k 6.640 #97PEI/NGU - delta_h -35.350 #kJ/mol #97PEI/NGU - # Enthalpy of formation: -1389.355 #kJ/mol - -analytic 4.46955E-1 0E+0 1.84646E+3 0E+0 0E+0 - -1.000H+ + 1.000Nb(OH)6- - 1.000H2O = Nb(OH)5 - log_k 5.080 #97PEI/NGU - delta_h -13.390 #kJ/mol #97PEI/NGU - # Enthalpy of formation: -1653.225 #kJ/mol - -analytic 2.73418E+0 0E+0 6.99407E+2 0E+0 0E+0 - -- 1.000H+ + 1.000Nb(OH)6- + 1.000H2O = Nb(OH)7-2 - log_k -8.880 #97PEI/NGU - delta_h 10.170 #kJ/mol #97PEI/NGU - # Enthalpy of formation: -2201.325 #kJ/mol - -analytic -7.0983E+0 0E+0 -5.31215E+2 0E+0 0E+0 - -5.000H+ + 1.000Nb(OH)6- + 1.000Cit-3 - 4.000H2O = NbO2(H3Cit)+ - log_k 25.640 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.564E+1 0E+0 0E+0 0E+0 0E+0 - -3.000H+ + 1.000Nb(OH)6- + 1.000Ox-2 - 4.000H2O = NbO2(HOx) - log_k 13.700 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.37E+1 0E+0 0E+0 0E+0 0E+0 - -4.000H+ + 1.000Nb(OH)6- + 2.000Ox-2 - 4.000H2O = NbO2(HOx)2- - log_k 20.960 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.096E+1 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 1.000Nb(OH)6- + 1.000Ox-2 - 4.000H2O = NbO2(Ox)- - log_k 10.940 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.094E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000Acetate- = Ni(Acetate)+ - log_k 1.340 #11RIC/GRI - delta_h -28.257 #kJ/mol - # Enthalpy of formation: -569.279 #kJ/mol - -analytic -3.61041E+0 0E+0 1.47596E+3 0E+0 0E+0 - -1.000Ni+2 + 1.000CO3-2 = Ni(CO3) - log_k 4.200 #03BAE/BRA in 05GAM/BUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.2E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 2.000CO3-2 = Ni(CO3)2-2 - log_k 6.200 #03BAE/BRA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.2E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000Cit-3 = Ni(Cit)- - log_k 6.760 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.76E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 2.000Cit-3 = Ni(Cit)2-4 - log_k 8.500 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 4.000Cn- = Ni(Cn)4-2 - log_k 30.200 - delta_h -180.700 #kJ/mol #05GAM/BUG - # Enthalpy of formation: 353.688 #kJ/mol - -analytic -1.45723E+0 0E+0 9.4386E+3 0E+0 0E+0 - -1.000Ni+2 + 5.000Cn- = Ni(Cn)5-3 - log_k 28.500 - delta_h -191.100 #kJ/mol #05GAM/BUG - # Enthalpy of formation: 490.638 #kJ/mol - -analytic -4.97923E+0 0E+0 9.98183E+3 0E+0 0E+0 - -1.000Ni+2 + 1.000Edta-4 = Ni(Edta)-2 - log_k 20.540 #05HUM/AND - delta_h -26.100 #kJ/mol - # Enthalpy of formation: -1785.912 #kJ/mol - -analytic 1.59675E+1 0E+0 1.3633E+3 0E+0 0E+0 - -1.000Ni+2 + 2.000H+ + 1.000Cit-3 = Ni(H2Cit)+ - log_k 13.190 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.319E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000H+ + 1.000CO3-2 = Ni(HCO3)+ - log_k 11.730 #03BAE/BRA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.173E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000H+ + 1.000Cit-3 = Ni(HCit) - log_k 10.520 #05HUM/BER - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.052E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000H+ + 1.000Edta-4 = Ni(HEdta)- - log_k 24.200 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.42E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000HIsa- = Ni(HIsa)+ - log_k 2.800 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.8E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 - 1.000H+ + 1.000H2(PO4)- = Ni(HPO4) - log_k -4.160 #05GAM/BUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.16E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 2.000HS- = Ni(HS)2 - log_k 11.100 #02HUM/BER - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.11E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000Malonate-2 = Ni(Malonate) - log_k 4.390 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.39E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 2.000Malonate-2 = Ni(Malonate)2-2 - log_k 8.150 #98KHA/RAD - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.15E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000NH3 = Ni(NH3)+2 - log_k 2.610 #70LET - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.61E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 2.000NH3 = Ni(NH3)2+2 - log_k 4.760 #70LET - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.76E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 3.000NH3 = Ni(NH3)3+2 - log_k 6.790 #70LET - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.79E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 4.000NH3 = Ni(NH3)4+2 - log_k 8.340 #70LET - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.34E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000NO3- = Ni(NO3)+ - log_k 0.500 #05GAM/BUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 2.000NO3- = Ni(NO3)2 - log_k -0.600 #76SMI/MAR in 89BAE/McK - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000Nta-3 = Ni(Nta)- - log_k 12.750 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.275E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 2.000Nta-3 = Ni(Nta)2-4 - log_k 16.950 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.695E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 - 1.000H+ + 1.000Nta-3 + 1.000H2O = Ni(OH)(Nta)-2 - log_k 1.470 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.47E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 - 1.000H+ + 1.000H2O = Ni(OH)+ - log_k -9.540 #05GAM/BUG - delta_h 53.800 #kJ/mol #05GAM/BUG - # Enthalpy of formation: -287.042 #kJ/mol - -analytic -1.14658E-1 0E+0 -2.81017E+3 0E+0 0E+0 - -1.000Ni+2 - 2.000H+ + 2.000H2O = Ni(OH)2 - log_k -18.000 #49GAY/GAR reevaluated in 05GAM/BUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.8E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 - 3.000H+ + 1.000H2(PO4)- + 2.000H2O = Ni(OH)2(HPO4)-2 - log_k -23.240 #95LEM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.324E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000HIsa- + 3.000H2O - 3.000H+ = Ni(OH)3(HIsa)-2 - log_k -26.500 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.65E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 - 3.000H+ + 3.000H2O = Ni(OH)3- - log_k -29.380 #49GAY/GAR reevaluated in 05GAM/BUG - delta_h 121.200 #kJ/mol #05GAM/BUG - # Enthalpy of formation: -791.302 #kJ/mol - -analytic -8.1467E+0 0E+0 -6.33071E+3 0E+0 0E+0 - -1.000Ni+2 + 1.000Ox-2 = Ni(Ox) - log_k 5.190 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -885.672 #kJ/mol - -analytic 5.19E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 2.000Ox-2 = Ni(Ox)2-2 - log_k 7.640 #05HUM/AND - delta_h -7.800 #kJ/mol - # Enthalpy of formation: -1724.132 #kJ/mol - -analytic 6.2735E+0 0E+0 4.07422E+2 0E+0 0E+0 - -1.000Ni+2 + 1.000Phthalat-2 = Ni(Phthalat) - log_k 3.000 #11GRI/COL3 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000Pyrophos-4 = Ni(Pyrophos)-2 - log_k 8.730 #05GAM/BUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.73E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000S2O3-2 = Ni(S2O3) - log_k 2.060 #51DEU/HEI in 64SIL/MAR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.06E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000SO4-2 = Ni(SO4) - log_k 2.350 #05GAM/BUG - delta_h 5.660 #kJ/mol #05GAM/BUG - # Enthalpy of formation: -958.692 #kJ/mol - -analytic 3.34159E+0 0E+0 -2.95642E+2 0E+0 0E+0 - -1.000Ni+2 + 2.000SO4-2 = Ni(SO4)2-2 - log_k 3.010 #89BAE/McK - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.01E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000Scn- = Ni(Scn)+ - log_k 1.810 - delta_h -11.800 #kJ/mol #05GAM/BUG - # Enthalpy of formation: 9.588 #kJ/mol - -analytic -2.57268E-1 0E+0 6.16356E+2 0E+0 0E+0 - -1.000Ni+2 + 2.000Scn- = Ni(Scn)2 - log_k 2.690 - delta_h -21.000 #kJ/mol #05GAM/BUG - # Enthalpy of formation: 76.788 #kJ/mol - -analytic -9.89037E-1 0E+0 1.0969E+3 0E+0 0E+0 - -1.000Ni+2 + 3.000Scn- = Ni(Scn)3- - log_k 3.020 - delta_h -29.000 #kJ/mol #05GAM/BUG - # Enthalpy of formation: 145.188 #kJ/mol - -analytic -2.06057E+0 0E+0 1.51477E+3 0E+0 0E+0 - -1.000Ni+2 + 1.000H+ + 1.000Cn- + 1.000HSe- - 1.000H2O + 0.500O2 = Ni(SeCn)+ - log_k 57.790 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.779E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 2.000H+ + 2.000Cn- + 2.000HSe- - 2.000H2O + 1.000O2 = Ni(SeCn)2 - log_k 114.270 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.1427E+2 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000SeO4-2 = Ni(SeO4) - log_k 2.670 #05OLI/NOL - delta_h -0.675 #kJ/mol - # Enthalpy of formation: -659.187 #kJ/mol - -analytic 2.55175E+0 0E+0 3.52577E+1 0E+0 0E+0 - -2.000Ni+2 - 1.000H+ + 1.000H2O = Ni2(OH)+3 - log_k -10.600 #05GAM/BUG - delta_h 45.900 #kJ/mol #05GAM/BUG - # Enthalpy of formation: -349.954 #kJ/mol - -analytic -2.55868E+0 0E+0 -2.39752E+3 0E+0 0E+0 - -4.000Ni+2 - 4.000H+ + 4.000H2O = Ni4(OH)4+4 - log_k -27.520 #05GAM/BUG - delta_h 190.000 #kJ/mol #05GAM/BUG - # Enthalpy of formation: -1173.368 #kJ/mol - -analytic 5.76652E+0 0E+0 -9.92438E+3 0E+0 0E+0 - -1.000Ni+2 + 1.000Cl- = NiCl+ - log_k 0.080 #05GAM/BUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8E-2 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000F- = NiF+ - log_k 1.430 #05GAM/BUG - delta_h 9.500 #kJ/mol #05GAM/BUG - # Enthalpy of formation: -380.862 #kJ/mol - -analytic 3.09433E+0 0E+0 -4.96219E+2 0E+0 0E+0 - -1.000Ni+2 + 1.000H+ + 1.000AsO4-3 = NiHAsO4 - log_k 14.500 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.45E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000H+ + 1.000Pyrophos-4 = NiHPyrophos- - log_k 14.540 #05GAM/BUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.454E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Ni+2 + 1.000HS- = NiHS+ - log_k 5.500 #02HUM/BER - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 + 1.000Acetate- = Np(Acetate)+3 - log_k 5.830 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.83E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 + 2.000Acetate- = Np(Acetate)2+2 - log_k 10.000 #11RIC/GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 - 3.000H+ + 1.000CO3-2 + 3.000H2O = Np(CO3)(OH)3- - log_k 3.820 #93ERI/NDA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.82E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+3 + 1.000CO3-2 = Np(CO3)+ - log_k 7.670 #Estimated by correlation with An(III) in function of ionic radii - delta_h 156.370 #kJ/mol - # Enthalpy of formation: -1046.044 #kJ/mol - -analytic 3.50648E+1 0E+0 -8.16776E+3 0E+0 0E+0 - -1.000Np+3 + 2.000CO3-2 = Np(CO3)2- - log_k 12.600 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.26E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+3 + 3.000CO3-2 = Np(CO3)3-3 - log_k 15.660 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.566E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 + 4.000CO3-2 = Np(CO3)4-4 - log_k 36.680 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.668E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 + 5.000CO3-2 = Np(CO3)5-6 - log_k 35.610 #01LEM/FUG - delta_h -1.612 #kJ/mol - # Enthalpy of formation: -3933.784 #kJ/mol - -analytic 3.53276E+1 0E+0 8.42005E+1 0E+0 0E+0 - -1.000Np+4 + 1.000Edta-4 = Np(Edta) - log_k 31.200 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.12E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+3 + 1.000Edta-4 = Np(Edta)- - log_k 19.900 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.99E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+3 - 2.000H+ + 2.000H2(PO4)- = Np(HPO4)2- - log_k -5.380 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.38E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 + 1.000NO3- = Np(NO3)+3 - log_k 1.900 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+3 + 1.000Nta-3 = Np(Nta) - log_k 13.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.3E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 + 1.000Nta-3 = Np(Nta)+ - log_k 20.700 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.07E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 + 2.000Nta-3 = Np(Nta)2-2 - log_k 36.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.63E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+3 - 1.000H+ + 1.000H2O = Np(OH)+2 - log_k -6.800 #01LEM/FUG - delta_h 77.089 #kJ/mol - # Enthalpy of formation: -735.925 #kJ/mol - -analytic 6.70539E+0 0E+0 -4.02663E+3 0E+0 0E+0 - -1.000Np+4 - 1.000H+ + 1.000H2O = Np(OH)+3 - log_k 0.550 #03GUI/FAN - delta_h 38.192 #kJ/mol - # Enthalpy of formation: -803.66 #kJ/mol - -analytic 7.24094E+0 0E+0 -1.9949E+3 0E+0 0E+0 - -1.000Np+4 - 2.000H+ + 2.000CO3-2 + 2.000H2O = Np(OH)2(CO3)2-2 - log_k 15.170 #99RAI/HES2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.517E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+3 - 2.000H+ + 2.000H2O = Np(OH)2+ - log_k -17.000 #80ALL/KIP - delta_h 155.529 #kJ/mol - # Enthalpy of formation: -943.315 #kJ/mol - -analytic 1.02475E+1 0E+0 -8.12383E+3 0E+0 0E+0 - -1.000Np+4 - 2.000H+ + 2.000H2O = Np(OH)2+2 - log_k 0.350 #03GUI/FAN - delta_h 54.530 #kJ/mol - # Enthalpy of formation: -1073.152 #kJ/mol - -analytic 9.90323E+0 0E+0 -2.8483E+3 0E+0 0E+0 - -1.000Np+3 - 3.000H+ + 3.000H2O = Np(OH)3 - log_k -27.000 #80ALL/KIP - delta_h 235.824 #kJ/mol - # Enthalpy of formation: -1148.85 #kJ/mol - -analytic 1.43145E+1 0E+0 -1.23179E+4 0E+0 0E+0 - -1.000Np+4 - 3.000H+ + 1.000HGlu- + 3.000H2O = Np(OH)3(HGlu) - log_k 3.270 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.27E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 - 3.000H+ + 1.000HIsa- + 3.000H2O = Np(OH)3(HIsa) - log_k 3.270 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.27E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 - 3.000H+ + 2.000HIsa- + 3.000H2O = Np(OH)3(HIsa)2- - log_k 5.380 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.38E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 - 3.000H+ + 3.000H2O = Np(OH)3+ - log_k -2.800 #01NEC/KIM, 99NEC - delta_h 74.932 #kJ/mol - # Enthalpy of formation: -1338.58 #kJ/mol - -analytic 1.03275E+1 0E+0 -3.91397E+3 0E+0 0E+0 - -1.000Np+4 - 4.000H+ + 4.000H2O = Np(OH)4 - log_k -8.300 #03GUI/FAN - delta_h 101.442 #kJ/mol - # Enthalpy of formation: -1597.9 #kJ/mol - -analytic 9.47185E+0 0E+0 -5.29868E+3 0E+0 0E+0 - -1.000Np+4 - 4.000H+ + 1.000CO3-2 + 4.000H2O = Np(OH)4(CO3)-2 - log_k -6.830 #93ERI/NDA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.83E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 - 4.000H+ + 1.000HGlu- + 4.000H2O = Np(OH)4(HGlu)- - log_k -3.700 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 - 4.000H+ + 1.000HIsa- + 4.000H2O = Np(OH)4(HIsa)- - log_k -4.060 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.06E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 - 4.000H+ + 2.000HIsa- + 4.000H2O = Np(OH)4(HIsa)2-2 - log_k -2.200 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.2E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 + 1.000Ox-2 = Np(Ox)+2 - log_k 11.160 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.116E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 + 2.000Ox-2 = Np(Ox)2 - log_k 19.940 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.994E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 + 3.000Ox-2 = Np(Ox)3-2 - log_k 25.190 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.519E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+3 - 4.000H+ + 2.000H2(PO4)- = Np(PO4)2-3 - log_k -19.570 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.957E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+3 + 1.000SO4-2 = Np(SO4)+ - log_k 3.860 #Estimated by correlation with An(III) in function of ionic radii - delta_h 17.889 #kJ/mol - # Enthalpy of formation: -1418.638 #kJ/mol - -analytic 6.99401E+0 0E+0 -9.34406E+2 0E+0 0E+0 - -1.000Np+4 + 1.000SO4-2 = Np(SO4)+2 - log_k 6.850 #01LEM/FUG - delta_h 29.840 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -1435.522 #kJ/mol #01LEM/FUG - -analytic 1.20777E+1 0E+0 -1.55865E+3 0E+0 0E+0 - -1.000Np+4 + 2.000SO4-2 = Np(SO4)2 - log_k 11.050 #01LEM/FUG - delta_h 55.380 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -2319.322 #kJ/mol - -analytic 2.07521E+1 0E+0 -2.89269E+3 0E+0 0E+0 - -1.000Np+3 + 2.000SO4-2 = Np(SO4)2- - log_k 5.560 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.56E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 + 1.000Br- = NpBr+3 - log_k 1.550 #Estimated by correlation with An(IV) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.55E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 + 1.000Cl- = NpCl+3 - log_k 1.500 #01LEM/FUG - delta_h 24.173 #kJ/mol - # Enthalpy of formation: -698.929 #kJ/mol - -analytic 5.73492E+0 0E+0 -1.26264E+3 0E+0 0E+0 - -1.000Np+4 + 1.000F- = NpF+3 - log_k 8.960 #01LEM/FUG - delta_h 1.500 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -889.872 #kJ/mol - -analytic 9.22279E+0 0E+0 -7.83503E+1 0E+0 0E+0 - -1.000Np+4 + 2.000F- = NpF2+2 - log_k 15.700 #01LEM/FUG - delta_h 15.930 #kJ/mol - # Enthalpy of formation: -1210.792 #kJ/mol - -analytic 1.84908E+1 0E+0 -8.32081E+2 0E+0 0E+0 - -1.000Np+4 + 3.000F- = NpF3+ - log_k 20.050 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.005E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 + 4.000F- = NpF4 - log_k 25.950 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.595E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Np+3 - 1.000H+ + 1.000H2(PO4)- = NpHPO4+ - log_k -1.780 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.78E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+4 + 1.000I- = NpI+3 - log_k 1.500 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+ + 1.000Acetate- = NpO2(Acetate) - log_k 1.320 #11RIC/GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.32E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+ + 2.000Acetate- = NpO2(Acetate)2- - log_k 3.420 #09TAK/TAK - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.42E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+ + 3.000Acetate- = NpO2(Acetate)3-2 - log_k 3.570 #09TAK/TAK - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.57E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+2 + 1.000CO3-2 = NpO2(CO3) - log_k 9.320 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.32E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+2 - 2.000H+ + 1.000CO3-2 + 2.000H2O = NpO2(CO3)(OH)2-2 - log_k -7.690 #99CHO/BRO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.69E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+ + 1.000CO3-2 = NpO2(CO3)- - log_k 4.960 #01LEM/FUG - delta_h 59.904 #kJ/mol - # Enthalpy of formation: -1593.507 #kJ/mol - -analytic 1.54547E+1 0E+0 -3.129E+3 0E+0 0E+0 - -1.000NpO2+2 + 2.000CO3-2 = NpO2(CO3)2-2 - log_k 16.520 #01LEM/FUG - delta_h 13.776 #kJ/mol - # Enthalpy of formation: -2197.417 #kJ/mol - -analytic 1.89334E+1 0E+0 -7.1957E+2 0E+0 0E+0 - -1.000NpO2+ + 2.000CO3-2 = NpO2(CO3)2-3 - log_k 6.530 #01LEM/FUG - delta_h 39.027 #kJ/mol - # Enthalpy of formation: -2289.614 #kJ/mol - -analytic 1.33672E+1 0E+0 -2.03852E+3 0E+0 0E+0 - -1.000NpO2+ - 1.000H+ + 2.000CO3-2 + 1.000H2O = NpO2(CO3)2OH-4 - log_k -5.310 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.31E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+2 + 3.000CO3-2 = NpO2(CO3)3-4 - log_k 19.370 - delta_h -41.900 #kJ/mol - # Enthalpy of formation: -2928.323 #kJ/mol #01LEM/FUG - -analytic 1.20294E+1 0E+0 2.18859E+3 0E+0 0E+0 - -1.000NpO2+ + 3.000CO3-2 = NpO2(CO3)3-5 - log_k 5.500 - delta_h -13.249 #kJ/mol - # Enthalpy of formation: -3017.12 #kJ/mol #01LEM/FUG - -analytic 3.17888E+0 0E+0 6.92042E+2 0E+0 0E+0 - -1.000NpO2+ + 1.000Cit-3 = NpO2(Cit)-2 - log_k 3.680 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.68E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+ + 1.000Edta-4 = NpO2(Edta)-3 - log_k 9.230 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.23E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+ + 2.000H+ + 1.000Edta-4 = NpO2(H2Edta)- - log_k 22.510 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.251E+1 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+ + 1.000H+ + 1.000Edta-4 = NpO2(HEdta)-2 - log_k 17.060 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.706E+1 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+ + 1.000H+ + 1.000Nta-3 = NpO2(HNta)- - log_k 11.700 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.17E+1 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+2 - 1.000H+ + 1.000H2(PO4)- = NpO2(HPO4) - log_k -1.010 #01LEM/FUG - delta_h 92.209 #kJ/mol - # Enthalpy of formation: -2071.124 #kJ/mol - -analytic 1.51443E+1 0E+0 -4.8164E+3 0E+0 0E+0 - -1.000NpO2+2 - 2.000H+ + 2.000H2(PO4)- = NpO2(HPO4)2-2 - log_k -4.920 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.92E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+2 + 1.000NO3- = NpO2(NO3)+ - log_k 0.100 #12GRI/GAR2 in analogy to UO2(NO3)+ - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1E-1 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+2 + 1.000Nta-3 = NpO2(Nta)- - log_k 11.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.1E+1 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+ + 1.000Nta-3 = NpO2(Nta)-2 - log_k 7.460 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.46E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+ - 1.000H+ + 1.000H2O = NpO2(OH) - log_k -11.300 #01LEM/FUG - delta_h 64.785 #kJ/mol - # Enthalpy of formation: -1199.226 #kJ/mol - -analytic 4.98281E-2 0E+0 -3.38395E+3 0E+0 0E+0 - -1.000NpO2+ - 1.000H+ + 1.000Nta-3 + 1.000H2O = NpO2(OH)(Nta)-3 - log_k -4.700 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+2 - 1.000H+ + 1.000H2O = NpO2(OH)+ - log_k -5.100 #01LEM/FUG - delta_h 42.957 #kJ/mol - # Enthalpy of formation: -1103.606 #kJ/mol - -analytic 2.42573E+0 0E+0 -2.2438E+3 0E+0 0E+0 - -1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2 - log_k -12.210 #Estimated by correlation with An(VI) in funciton of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+ - 2.000H+ + 2.000H2O = NpO2(OH)2- - log_k -23.600 #01LEM/FUG - delta_h 118.610 #kJ/mol - # Enthalpy of formation: -1431.23 #kJ/mol - -analytic -2.82045E+0 0E+0 -6.19542E+3 0E+0 0E+0 - -1.000NpO2+ + 1.000Ox-2 = NpO2(Ox)- - log_k 3.900 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+ + 2.000Ox-2 = NpO2(Ox)2-3 - log_k 5.800 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.8E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+2 + 1.000SO4-2 = NpO2(SO4) - log_k 3.280 #01LEM/FUG - delta_h 16.700 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -1753.373 #kJ/mol - -analytic 6.20571E+0 0E+0 -8.723E+2 0E+0 0E+0 - -1.000NpO2+ + 1.000SO4-2 = NpO2(SO4)- - log_k 0.440 #01LEM/FUG - delta_h 23.200 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -1864.321 #kJ/mol - -analytic 4.50446E+0 0E+0 -1.21182E+3 0E+0 0E+0 - -1.000NpO2+2 + 2.000SO4-2 = NpO2(SO4)2-2 - log_k 4.700 #01LEM/FUG - delta_h 26.000 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -2653.413 #kJ/mol - -analytic 9.255E+0 0E+0 -1.35807E+3 0E+0 0E+0 - -1.000NpO2+ + 1.000Cl- = NpO2Cl - log_k -0.930 #94NEC/KIM - delta_h 25.972 #kJ/mol - # Enthalpy of formation: -1119.289 #kJ/mol - -analytic 3.62009E+0 0E+0 -1.35661E+3 0E+0 0E+0 - -1.000NpO2+2 + 1.000Cl- = NpO2Cl+ - log_k 0.400 #01LEM/FUG - delta_h 8.387 #kJ/mol - # Enthalpy of formation: -1019.426 #kJ/mol - -analytic 1.86934E+0 0E+0 -4.38083E+2 0E+0 0E+0 - -1.000NpO2+ + 1.000F- = NpO2F - log_k 1.200 #01LEM/FUG - delta_h 40.768 #kJ/mol - # Enthalpy of formation: -1272.763 #kJ/mol - -analytic 8.34224E+0 0E+0 -2.12946E+3 0E+0 0E+0 - -1.000NpO2+2 + 1.000F- = NpO2F+ - log_k 4.570 #01LEM/FUG - delta_h 1.400 #kJ/mol - # Enthalpy of formation: -1194.683 #kJ/mol - -analytic 4.81527E+0 0E+0 -7.3127E+1 0E+0 0E+0 - -1.000NpO2+2 + 2.000F- = NpO2F2 - log_k 7.600 #01LEM/FUG - delta_h 4.321 #kJ/mol - # Enthalpy of formation: -1527.112 #kJ/mol - -analytic 8.35701E+0 0E+0 -2.25701E+2 0E+0 0E+0 - -1.000NpO2+2 + 1.000H2(PO4)- = NpO2H2PO4+ - log_k 3.320 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.32E+0 0E+0 0E+0 0E+0 0E+0 - -1.000NpO2+ - 1.000H+ + 1.000H2(PO4)- = NpO2HPO4- - log_k -4.260 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.26E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Np+3 - 2.000H+ + 1.000H2(PO4)- = NpPO4 - log_k -7.830 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.83E+0 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000H2O = OH- - log_k -14.000 - delta_h 55.815 #kJ/mol - # Enthalpy of formation: -230.015 #kJ/mol #89COX/WAG - -analytic -4.22165E+0 0E+0 -2.91542E+3 0E+0 0E+0 - -- 2.000H+ + 1.000H2(PO4)- = PO4-3 - log_k -19.560 #89COX/WAG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -1284.4 #kJ/mol #89COX/WAG - -analytic -1.956E+1 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000Pa+4 + 1.000H2O = Pa(OH)+3 - log_k 0.840 #76BAE/MES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.4E-1 0E+0 0E+0 0E+0 0E+0 - -- 2.000H+ + 1.000Pa+4 + 2.000H2O = Pa(OH)2+2 - log_k -0.020 #76BAE/MES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2E-2 0E+0 0E+0 0E+0 0E+0 - -- 3.000H+ + 1.000Pa+4 + 3.000H2O = Pa(OH)3+ - log_k -1.500 #76BAE/MES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000PaO2+ = PaO(OH)+2 - log_k 1.250 #Original data 03TRU/LEN and 04FOU/PER - delta_h -5.700 #kJ/mol #03TRU/LEN - # Enthalpy of formation: #kJ/mol - -analytic 2.51404E-1 0E+0 2.97731E+2 0E+0 0E+0 - -2.000H+ + 1.000SO4-2 + 1.000PaO2+ - 1.000H2O = PaO(SO4)+ - log_k 5.130 #07GIA/TRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.13E+0 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 2.000SO4-2 + 1.000PaO2+ - 1.000H2O = PaO(SO4)2- - log_k 8.240 #07GIA/TRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.24E+0 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 3.000SO4-2 + 1.000PaO2+ - 1.000H2O = PaO(SO4)3-3 - log_k 9.830 #07GIA/TRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.83E+0 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000PaO2+ + 1.000H2O = PaO2(OH) - log_k -7.000 #Original data 03TRU/LEN and 04FOU/PER - delta_h 61.000 #kJ/mol #03TRU/LEN - # Enthalpy of formation: #kJ/mol - -analytic 3.68673E+0 0E+0 -3.18625E+3 0E+0 0E+0 - -- 2.000H+ + 1.000PaO2+ + 2.000H2O = PaO2(OH)2- - log_k -16.400 #04FOU/PER - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.64E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pb+2 + 1.000B(OH)4- = Pb(B(OH)4)+ - log_k 5.200 #80BAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.2E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pb+2 + 3.000B(OH)4- = Pb(B(OH)4)3- - log_k 11.180 #80BAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.118E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pb+2 + 1.000CO3-2 = Pb(CO3) - log_k 7.000 #06BLA/PIA - delta_h -3.015 #kJ/mol - # Enthalpy of formation: -677.325 #kJ/mol - -analytic 6.4718E+0 0E+0 1.57484E+2 0E+0 0E+0 - -1.000Pb+2 + 2.000CO3-2 = Pb(CO3)2-2 - log_k 10.130 #99LOT/OCH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.013E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pb+2 + 1.000H2(PO4)- = Pb(H2PO4)+ - log_k 1.500 #74NRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pb+2 + 2.000HS- = Pb(HS)2 - log_k 15.010 #06BLA/PIA - delta_h -65.579 #kJ/mol - # Enthalpy of formation: -97.259 #kJ/mol - -analytic 3.52107E+0 0E+0 3.42542E+3 0E+0 0E+0 - -1.000Pb+2 + 3.000HS- = Pb(HS)3- - log_k 16.260 #06BLA/PIA - delta_h -73.328 #kJ/mol - # Enthalpy of formation: -121.308 #kJ/mol - -analytic 3.4135E+0 0E+0 3.83018E+3 0E+0 0E+0 - -1.000Pb+2 + 1.000NO3- = Pb(NO3)+ - log_k 1.060 #99LOT/OCH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.06E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pb+2 + 2.000NO3- = Pb(NO3)2 - log_k 1.480 #99LOT/OCH - delta_h -11.012 #kJ/mol - # Enthalpy of formation: 401.768 #kJ/mol - -analytic -4.49217E-1 0E+0 5.75196E+2 0E+0 0E+0 - -1.000Pb+2 - 1.000H+ + 1.000H2O = Pb(OH)+ - log_k -7.510 #99LOT/OCH - delta_h 53.920 #kJ/mol - # Enthalpy of formation: -230.99 #kJ/mol - -analytic 1.93636E+0 0E+0 -2.81643E+3 0E+0 0E+0 - -1.000Pb+2 - 2.000H+ + 2.000H2O = Pb(OH)2 - log_k -16.950 #99LOT/OCH - delta_h 97.824 #kJ/mol - # Enthalpy of formation: -472.916 #kJ/mol - -analytic 1.88004E-1 0E+0 -5.1097E+3 0E+0 0E+0 - -1.000Pb+2 - 3.000H+ + 3.000H2O = Pb(OH)3- - log_k -27.200 #01PER/HEF - delta_h 130.485 #kJ/mol - # Enthalpy of formation: -726.085 #kJ/mol - -analytic -4.34004E+0 0E+0 -6.8157E+3 0E+0 0E+0 - -1.000Pb+2 - 4.000H+ + 4.000H2O = Pb(OH)4-2 - log_k -38.900 #01PER/HEF - delta_h 197.474 #kJ/mol - # Enthalpy of formation: -944.926 #kJ/mol - -analytic -4.30409E+0 0E+0 -1.03148E+4 0E+0 0E+0 - -1.000Pb+2 + 1.000SO4-2 = Pb(SO4) - log_k 2.820 #99LOT/OCH - delta_h 6.861 #kJ/mol - # Enthalpy of formation: -901.559 #kJ/mol - -analytic 4.02199E+0 0E+0 -3.58374E+2 0E+0 0E+0 - -1.000Pb+2 + 2.000SO4-2 = Pb(SO4)2-2 - log_k 3.470 #97MAR/SMI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.47E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pb+2 + 1.000SeO3-2 = Pb(SeO3) - log_k 5.730 #01SEB/POT2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.73E+0 0E+0 0E+0 0E+0 0E+0 - -2.000Pb+2 - 1.000H+ + 1.000H2O = Pb2(OH)+3 - log_k -7.180 #99LOT/OCH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.18E+0 0E+0 0E+0 0E+0 0E+0 - -4.000Pb+2 - 4.000H+ + 4.000H2O = Pb4(OH)4+4 - log_k -20.630 #99LOT/OCH - delta_h 82.038 #kJ/mol - # Enthalpy of formation: -1057.602 #kJ/mol - -analytic -6.25758E+0 0E+0 -4.28514E+3 0E+0 0E+0 - -6.000Pb+2 - 8.000H+ + 8.000H2O = Pb6(OH)8+4 - log_k -42.680 #99LOT/OCH - delta_h 192.157 #kJ/mol - # Enthalpy of formation: -2088.963 #kJ/mol - -analytic -9.01559E+0 0E+0 -1.0037E+4 0E+0 0E+0 - -1.000Pb+2 + 1.000Br- = PbBr+ - log_k 1.700 #82HÖG - delta_h 4.228 #kJ/mol - # Enthalpy of formation: -116.262 #kJ/mol - -analytic 2.44071E+0 0E+0 -2.20843E+2 0E+0 0E+0 - -1.000Pb+2 + 2.000Br- = PbBr2 - log_k 1.900 #82HÖG - delta_h 10.991 #kJ/mol - # Enthalpy of formation: -230.909 #kJ/mol - -analytic 3.82554E+0 0E+0 -5.74099E+2 0E+0 0E+0 - -1.000Pb+2 + 3.000Br- = PbBr3- - log_k 2.900 #82HÖG - delta_h 10.653 #kJ/mol - # Enthalpy of formation: -352.657 #kJ/mol - -analytic 4.76632E+0 0E+0 -5.56444E+2 0E+0 0E+0 - -1.000Pb+2 + 1.000Cl- = PbCl+ - log_k 1.440 #97SVE/SHO - delta_h 4.318 #kJ/mol - # Enthalpy of formation: -161.842 #kJ/mol - -analytic 2.19648E+0 0E+0 -2.25545E+2 0E+0 0E+0 - -1.000Pb+2 + 2.000Cl- = PbCl2 - log_k 2.000 #97SVE/SHO - delta_h 7.949 #kJ/mol - # Enthalpy of formation: -325.291 #kJ/mol - -analytic 3.3926E+0 0E+0 -4.15205E+2 0E+0 0E+0 - -1.000Pb+2 + 3.000Cl- = PbCl3- - log_k 1.690 #97SVE/SHO - delta_h 7.813 #kJ/mol - # Enthalpy of formation: -492.507 #kJ/mol - -analytic 3.05878E+0 0E+0 -4.08101E+2 0E+0 0E+0 - -1.000Pb+2 + 4.000Cl- = PbCl4-2 - log_k 1.400 #97SVE/SHO - delta_h 1.323 #kJ/mol - # Enthalpy of formation: -666.077 #kJ/mol - -analytic 1.63178E+0 0E+0 -6.9105E+1 0E+0 0E+0 - -1.000Pb+2 + 1.000F- = PbF+ - log_k 2.270 #99LOT/OCH - delta_h -4.054 #kJ/mol - # Enthalpy of formation: -338.484 #kJ/mol - -analytic 1.55977E+0 0E+0 2.11755E+2 0E+0 0E+0 - -1.000Pb+2 + 2.000F- = PbF2 - log_k 3.010 #99LOT/OCH - delta_h -8.881 #kJ/mol - # Enthalpy of formation: -678.661 #kJ/mol - -analytic 1.45412E+0 0E+0 4.63886E+2 0E+0 0E+0 - -1.000Pb+2 - 1.000H+ + 1.000H2(PO4)- = PbHPO4 - log_k -4.110 #74NRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.11E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pb+2 + 1.000I- = PbI+ - log_k 1.980 #82HÖG - delta_h 3.874 #kJ/mol - # Enthalpy of formation: -51.986 #kJ/mol - -analytic 2.65869E+0 0E+0 -2.02353E+2 0E+0 0E+0 - -1.000Pb+2 + 2.000I- = PbI2 - log_k 3.150 #82HÖG - delta_h 7.106 #kJ/mol - # Enthalpy of formation: -105.534 #kJ/mol - -analytic 4.39492E+0 0E+0 -3.71172E+2 0E+0 0E+0 - -1.000Pb+2 + 3.000I- = PbI3- - log_k 3.810 #82HÖG - delta_h 3.163 #kJ/mol - # Enthalpy of formation: -166.257 #kJ/mol - -analytic 4.36413E+0 0E+0 -1.65215E+2 0E+0 0E+0 - -1.000Pb+2 + 4.000I- = PbI4-2 - log_k 3.750 #82HÖG - delta_h -15.561 #kJ/mol - # Enthalpy of formation: -241.761 #kJ/mol - -analytic 1.02383E+0 0E+0 8.12806E+2 0E+0 0E+0 - -1.000Pb+2 + 1.000Pyrophos-4 = PbPyrophos-2 - log_k 8.330 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.33E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pd+2 + 1.000CO3-2 = Pd(CO3) - log_k 6.830 #87BRO/WAN - delta_h -8.829 #kJ/mol - # Enthalpy of formation: -494.175 #kJ/mol - -analytic 5.28323E+0 0E+0 4.6117E+2 0E+0 0E+0 - -1.000Pd+2 + 2.000CO3-2 = Pd(CO3)2-2 - log_k 12.530 #87BRO/WAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.253E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pd+2 + 1.000NH3 = Pd(NH3)+2 - log_k 9.600 #68RAS/JOR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.6E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pd+2 + 2.000NH3 = Pd(NH3)2+2 - log_k 18.500 #68RAS/JOR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.85E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pd+2 + 3.000NH3 = Pd(NH3)3+2 - log_k 26.000 #68RAS/JOR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.6E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pd+2 + 4.000NH3 = Pd(NH3)4+2 - log_k 32.800 #68RAS/JOR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.28E+1 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000Pd+2 + 1.000H2O = Pd(OH)+ - log_k -1.860 #70NAB/KAL - delta_h 11.900 #kJ/mol - # Enthalpy of formation: -84.047 #kJ/mol - -analytic 2.24787E-1 0E+0 -6.21579E+2 0E+0 0E+0 - -- 2.000H+ + 1.000Pd+2 + 2.000H2O = Pd(OH)2 - log_k -3.790 #70NAB/KAL - delta_h 15.293 #kJ/mol - # Enthalpy of formation: -366.483 #kJ/mol - -analytic -1.11079E+0 0E+0 -7.98808E+2 0E+0 0E+0 - -- 3.000H+ + 1.000Pd+2 + 3.000H2O = Pd(OH)3- - log_k -15.930 #70NAB/KAL - delta_h 54.863 #kJ/mol - # Enthalpy of formation: -612.744 #kJ/mol - -analytic -6.31843E+0 0E+0 -2.86569E+3 0E+0 0E+0 - -- 4.000H+ + 1.000Pd+2 + 4.000H2O = Pd(OH)4-2 - log_k -29.360 #70NAB/KAL - delta_h 118.563 #kJ/mol - # Enthalpy of formation: -834.874 #kJ/mol - -analytic -8.58868E+0 0E+0 -6.19297E+3 0E+0 0E+0 - -1.000Pd+2 + 1.000SO4-2 = Pd(SO4) - log_k 2.910 #87BRO/WAN - delta_h 4.596 #kJ/mol - # Enthalpy of formation: -714.86 #kJ/mol - -analytic 3.71518E+0 0E+0 -2.40065E+2 0E+0 0E+0 - -1.000Pd+2 + 2.000SO4-2 = Pd(SO4)2-2 - log_k 4.170 #82HOG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.17E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pd+2 + 1.000Br- = PdBr+ - log_k 5.770 #72ELD - delta_h -30.140 #kJ/mol - # Enthalpy of formation: 38.344 #kJ/mol - -analytic 4.89706E-1 0E+0 1.57432E+3 0E+0 0E+0 - -1.000Pd+2 + 2.000Br- = PdBr2 - log_k 10.060 #72ELD - delta_h -57.708 #kJ/mol - # Enthalpy of formation: -110.645 #kJ/mol - -analytic -4.99928E-2 0E+0 3.01429E+3 0E+0 0E+0 - -1.000Pd+2 + 3.000Br- = PdBr3- - log_k 13.750 #72ELD - delta_h -92.385 #kJ/mol - # Enthalpy of formation: -266.731 #kJ/mol - -analytic -2.43513E+0 0E+0 4.8256E+3 0E+0 0E+0 - -1.000Pd+2 + 4.000Br- = PdBr4-2 - log_k 15.110 #72ELD - delta_h -126.683 #kJ/mol - # Enthalpy of formation: -422.439 #kJ/mol - -analytic -7.08388E+0 0E+0 6.6171E+3 0E+0 0E+0 - -1.000Pd+2 + 1.000Cl- = PdCl+ - log_k 5.100 #99LOT/OCH - delta_h -24.542 #kJ/mol - # Enthalpy of formation: -1.739 #kJ/mol - -analytic 8.00432E-1 0E+0 1.28192E+3 0E+0 0E+0 - -1.000Pd+2 + 2.000Cl- = PdCl2 - log_k 8.300 #99LOT/OCH - delta_h -47.297 #kJ/mol - # Enthalpy of formation: -191.573 #kJ/mol - -analytic 1.39334E-2 0E+0 2.47049E+3 0E+0 0E+0 - -- 1.000H+ + 1.000Pd+2 + 3.000Cl- + 1.000H2O = PdCl3(OH)-2 - log_k 2.310 #00BYR/YAO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.31E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pd+2 + 3.000Cl- = PdCl3- - log_k 10.900 #99LOT/OCH - delta_h -77.344 #kJ/mol - # Enthalpy of formation: -388.7 #kJ/mol - -analytic -2.65007E+0 0E+0 4.03995E+3 0E+0 0E+0 - -1.000Pd+2 + 4.000Cl- = PdCl4-2 - log_k 11.700 #99LOT/OCH - delta_h -112.469 #kJ/mol - # Enthalpy of formation: -590.906 #kJ/mol - -analytic -8.00369E+0 0E+0 5.87466E+3 0E+0 0E+0 - -1.000Pd+2 + 1.000I- = PdI+ - log_k 10.400 #89BAE/McK - delta_h -58.201 #kJ/mol - # Enthalpy of formation: 74.902 #kJ/mol - -analytic 2.03637E-1 0E+0 3.04005E+3 0E+0 0E+0 - -1.000Pd+2 + 2.000I- = PdI2 - log_k 14.500 #97BOU - delta_h -83.420 #kJ/mol - # Enthalpy of formation: -7.096 #kJ/mol - -analytic -1.14535E-1 0E+0 4.35732E+3 0E+0 0E+0 - -1.000Pd+2 + 3.000I- = PdI3- - log_k 18.600 #97BOU - delta_h -121.750 #kJ/mol - # Enthalpy of formation: -102.207 #kJ/mol - -analytic -2.72965E+0 0E+0 6.35944E+3 0E+0 0E+0 - -1.000Pd+2 + 4.000I- = PdI4-2 - log_k 24.640 - delta_h -190.052 #kJ/mol - # Enthalpy of formation: -227.288 #kJ/mol - -analytic -8.65563E+0 0E+0 9.92709E+3 0E+0 0E+0 - -1.000Pu+3 + 1.000Acetate- = Pu(Acetate)+2 - log_k 2.850 #69MOS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.85E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 + 1.000Acetate- = Pu(Acetate)+3 - log_k 5.930 #62SCH/NEB - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.93E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 + 2.000Acetate- = Pu(Acetate)2+ - log_k 5.060 #69MOS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.06E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 + 2.000Acetate- = Pu(Acetate)2+2 - log_k 10.090 #62SCH/NEB - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.009E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 + 3.000Acetate- = Pu(Acetate)3 - log_k 6.570 #69MOS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.57E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 + 1.000CO3-2 = Pu(CO3)+ - log_k 7.640 #Estimated by correlation with An(III) in function of ionic radii - delta_h 152.754 #kJ/mol - # Enthalpy of formation: -1114.266 #kJ/mol - -analytic 3.44013E+1 0E+0 -7.97889E+3 0E+0 0E+0 - -1.000Pu+4 - 2.000H+ + 2.000CO3-2 + 2.000H2O = Pu(CO3)2(OH)2-2 - log_k 16.760 #99RAI/HES1 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.676E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 + 2.000CO3-2 = Pu(CO3)2- - log_k 12.540 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.254E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 + 3.000CO3-2 = Pu(CO3)3-3 - log_k 16.400 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.64E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 + 4.000CO3-2 = Pu(CO3)4-4 - log_k 37.000 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.7E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 + 5.000CO3-2 = Pu(CO3)5-6 - log_k 35.650 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.565E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 + 1.000Edta-4 = Pu(Edta) - log_k 31.800 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.18E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 + 1.000Edta-4 = Pu(Edta)- - log_k 20.180 #05HUM/AND - delta_h -8.700 #kJ/mol - # Enthalpy of formation: -2305.29 #kJ/mol - -analytic 1.86558E+1 0E+0 4.54432E+2 0E+0 0E+0 - -1.000Pu+3 + 1.000H2(PO4)- = Pu(H2PO4)+2 - log_k 2.200 #10RAI/MOO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.2E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 + 1.000H+ + 1.000Edta-4 = Pu(HEdta) - log_k 22.020 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.202E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 - 1.000H+ + 1.000H2(PO4)- = Pu(HPO4)+ - log_k -1.820 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.82E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 - 2.000H+ + 2.000H2(PO4)- = Pu(HPO4)2- - log_k -5.460 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.46E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 + 1.000NO3- = Pu(NO3)+2 - log_k 1.330 #95SIL/BID, LogK selected in analogy to Am (NEA recommendation 95SIL/BID) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.33E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 + 1.000NO3- = Pu(NO3)+3 - log_k 1.950 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.95E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 + 1.000Nta-3 = Pu(Nta) - log_k 13.100 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.31E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 + 1.000Nta-3 = Pu(Nta)+ - log_k 21.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.1E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 - 1.000H+ + 1.000H2O = Pu(OH)+2 - log_k -6.900 #01LEM/FUG - delta_h 78.274 #kJ/mol - # Enthalpy of formation: -799.346 #kJ/mol - -analytic 6.813E+0 0E+0 -4.08853E+3 0E+0 0E+0 - -1.000Pu+4 - 1.000H+ + 1.000H2O = Pu(OH)+3 - log_k 0.600 #99NEC, 01NEC/KIM, 03GUI/FAN - delta_h 36.000 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -789.725 #kJ/mol - -analytic 6.90692E+0 0E+0 -1.88041E+3 0E+0 0E+0 - -1.000Pu+3 - 2.000H+ + 2.000H2O = Pu(OH)2+ - log_k -15.900 #80ALL/KIP - delta_h 150.342 #kJ/mol - # Enthalpy of formation: -1013.108 #kJ/mol - -analytic 1.04387E+1 0E+0 -7.8529E+3 0E+0 0E+0 - -1.000Pu+4 - 2.000H+ + 2.000H2O = Pu(OH)2+2 - log_k 0.600 #99NEC, 01NEC/KIM, 03GUI/FAN - delta_h 49.569 #kJ/mol - # Enthalpy of formation: -1061.986 #kJ/mol - -analytic 9.2841E+0 0E+0 -2.58917E+3 0E+0 0E+0 - -1.000Pu+3 - 3.000H+ + 3.000H2O = Pu(OH)3 - log_k -25.300 #80ALL/KIP - delta_h 227.540 #kJ/mol - # Enthalpy of formation: -1221.74 #kJ/mol - -analytic 1.45632E+1 0E+0 -1.18852E+4 0E+0 0E+0 - -1.000Pu+4 - 3.000H+ + 1.000HGlu- + 3.000H2O = Pu(OH)3(HGlu) - log_k 4.750 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.75E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 - 3.000H+ + 1.000HIsa- + 3.000H2O = Pu(OH)3(HIsa) - log_k 4.750 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.75E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 - 3.000H+ + 2.000HIsa- + 3.000H2O = Pu(OH)3(HIsa)2- - log_k 6.860 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.86E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 - 3.000H+ + 3.000H2O = Pu(OH)3+ - log_k -2.300 #99NEC, 01NEC/KIM, 03GUI/FAN - delta_h 68.543 #kJ/mol - # Enthalpy of formation: -1328.842 #kJ/mol - -analytic 9.7082E+0 0E+0 -3.58024E+3 0E+0 0E+0 - -1.000Pu+4 - 4.000H+ + 4.000H2O = Pu(OH)4 - log_k -8.500 #03GUI/FAN - delta_h 99.049 #kJ/mol - # Enthalpy of formation: -1584.166 #kJ/mol - -analytic 8.85261E+0 0E+0 -5.17368E+3 0E+0 0E+0 - -1.000Pu+4 - 4.000H+ + 1.000HGlu- + 4.000H2O = Pu(OH)4(HGlu)- - log_k -2.700 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 - 4.000H+ + 1.000HIsa- + 4.000H2O = Pu(OH)4(HIsa)- - log_k -3.600 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.6E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 - 4.000H+ + 2.000HIsa- + 4.000H2O = Pu(OH)4(HIsa)2-2 - log_k 0.700 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 + 1.000Ox-2 = Pu(Ox)+2 - log_k 11.400 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.14E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 + 2.000Ox-2 = Pu(Ox)2 - log_k 20.600 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.06E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 + 2.000Ox-2 = Pu(Ox)2- - log_k 10.620 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.062E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 + 3.000Ox-2 = Pu(Ox)3-2 - log_k 25.690 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.569E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 + 3.000Ox-2 = Pu(Ox)3-3 - log_k 13.220 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.322E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 - 4.000H+ + 2.000H2(PO4)- = Pu(PO4)2-3 - log_k -19.730 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.973E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 + 1.000SO4-2 = Pu(SO4)+ - log_k 3.910 #01LEM/FUG - delta_h 17.240 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -1483.89 #kJ/mol - -analytic 6.93031E+0 0E+0 -9.00507E+2 0E+0 0E+0 - -1.000Pu+4 + 1.000SO4-2 = Pu(SO4)+2 - log_k 6.890 #01LEM/FUG - delta_h 13.753 #kJ/mol - # Enthalpy of formation: -1435.482 #kJ/mol - -analytic 9.29942E+0 0E+0 -7.18368E+2 0E+0 0E+0 - -1.000Pu+4 + 2.000SO4-2 = Pu(SO4)2 - log_k 11.140 #01LEM/FUG - delta_h 43.906 #kJ/mol - # Enthalpy of formation: -2314.669 #kJ/mol - -analytic 1.8832E+1 0E+0 -2.29337E+3 0E+0 0E+0 - -1.000Pu+3 + 2.000SO4-2 = Pu(SO4)2- - log_k 5.700 #01LEM/FUG - delta_h 11.880 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -2398.59 #kJ/mol - -analytic 7.78128E+0 0E+0 -6.20535E+2 0E+0 0E+0 - -1.000Pu+4 + 1.000Br- = PuBr+3 - log_k 1.600 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.6E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 + 1.000Cl- = PuCl+3 - log_k 1.800 #01LEM/FUG - delta_h 19.820 #kJ/mol - # Enthalpy of formation: -687.155 #kJ/mol - -analytic 5.27231E+0 0E+0 -1.03527E+3 0E+0 0E+0 - -1.000Pu+4 + 1.000F- = PuF+3 - log_k 8.840 #01LEM/FUG - delta_h 9.100 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -866.145 #kJ/mol - -analytic 1.04342E+1 0E+0 -4.75325E+2 0E+0 0E+0 - -1.000Pu+4 + 2.000F- = PuF2+2 - log_k 15.700 #01LEM/FUG - delta_h 11.000 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -1199.595 #kJ/mol - -analytic 1.76271E+1 0E+0 -5.74569E+2 0E+0 0E+0 - -1.000Pu+4 + 3.000F- = PuF3+ - log_k 20.110 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.011E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 + 1.000H+ + 1.000H2(PO4)- = PuH3PO4+4 - log_k 4.540 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.54E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 + 1.000I- = PuI+2 - log_k 1.100 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.1E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+4 + 1.000I- = PuI+3 - log_k 1.620 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.62E+0 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 + 1.000Acetate- = PuO2(Acetate)+ - log_k 2.870 #11RIC/GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.87E+0 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 + 2.000Acetate- = PuO2(Acetate)2 - log_k 4.770 #11RIC/GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.77E+0 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 + 3.000Acetate- = PuO2(Acetate)3- - log_k 6.190 #11RIC/GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.19E+0 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 + 1.000CO3-2 = PuO2(CO3) - log_k 9.500 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 + 2.000CO3-2 = PuO2(CO3)2-2 - log_k 14.700 #03GUI/FAN - delta_h -27.000 #kJ/mol #03GUI/FAN - # Enthalpy of formation: -2199.496 #kJ/mol - -analytic 9.96981E+0 0E+0 1.41031E+3 0E+0 0E+0 - -1.000PuO2+2 + 3.000CO3-2 = PuO2(CO3)3-4 - log_k 18.000 #03GUI/FAN - delta_h -38.600 #kJ/mol #03GUI/FAN - # Enthalpy of formation: -2886.326 #kJ/mol - -analytic 1.12376E+1 0E+0 2.01622E+3 0E+0 0E+0 - -1.000PuO2+ + 3.000CO3-2 = PuO2(CO3)3-5 - log_k 5.030 - delta_h -19.110 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -2954.927 #kJ/mol - -analytic 1.68208E+0 0E+0 9.98183E+2 0E+0 0E+0 - -2.000UO2+2 + 1.000PuO2+2 + 6.000CO3-2 = PuO2(CO3)6(UO2)2-6 - log_k 53.480 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.348E+1 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+ - 1.000H+ + 1.000H2(PO4)- = PuO2(HPO4)- - log_k -4.860 #NEA Guidelines in 01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.86E+0 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 + 1.000Nta-3 = PuO2(Nta)- - log_k 11.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.1E+1 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+ + 1.000Nta-3 = PuO2(Nta)-2 - log_k 7.500 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 - 1.000H+ + 1.000H2O = PuO2(OH)+ - log_k -5.500 #01LEM/FUG - delta_h 28.000 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -1079.866 #kJ/mol - -analytic -5.94618E-1 0E+0 -1.46254E+3 0E+0 0E+0 - -1.000PuO2+2 - 2.000H+ + 2.000H2O = PuO2(OH)2 - log_k -13.200 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.32E+1 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 - 1.000H+ + 1.000H4(SiO4) = PuO2(OSi(OH)3)+ - log_k -3.640 #03YUS/FED - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.64E+0 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 + 1.000Ox-2 = PuO2(Ox) - log_k 7.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 + 2.000Ox-2 = PuO2(Ox)2-2 - log_k 10.500 #73POR/DEP in 95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.05E+1 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 + 1.000Phthalat-2 = PuO2(Phthalat) - log_k 5.760 #11GRI/COL3 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.76E+0 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 + 1.000SO4-2 = PuO2(SO4) - log_k 3.380 #01LEM/FUG - delta_h 16.100 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -1715.276 #kJ/mol - -analytic 6.20059E+0 0E+0 -8.4096E+2 0E+0 0E+0 - -1.000PuO2+ + 1.000SO4-2 = PuO2(SO4)- - log_k 0.440 #Duro et al. (2006), In analogy to NpO2(SO4)- - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.4E-1 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 + 2.000SO4-2 = PuO2(SO4)2-2 - log_k 4.400 #01LEM/FUG - delta_h 43.000 #kJ/mol #01LEM/FUG - # Enthalpy of formation: -2597.716 #kJ/mol - -analytic 1.19333E+1 0E+0 -2.24604E+3 0E+0 0E+0 - -1.000PuO2+ + 1.000CO3-2 = PuO2CO3- - log_k 5.120 #01LEM/FUG - delta_h 44.874 #kJ/mol - # Enthalpy of formation: -1540.483 #kJ/mol - -analytic 1.29816E+1 0E+0 -2.34393E+3 0E+0 0E+0 - -1.000PuO2+2 + 1.000Cl- = PuO2Cl+ - log_k 0.230 #03GUI/FAN - delta_h 4.187 #kJ/mol - # Enthalpy of formation: -984.929 #kJ/mol - -analytic 9.6353E-1 0E+0 -2.18702E+2 0E+0 0E+0 - -1.000PuO2+2 + 2.000Cl- = PuO2Cl2 - log_k -1.150 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.15E+0 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+ + 1.000F- = PuO2F - log_k 1.200 #In analogy to NpO2)F - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.2E+0 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+2 + 1.000F- = PuO2F+ - log_k 4.560 #01LEM/FUG - delta_h -3.653 #kJ/mol - # Enthalpy of formation: -1161.039 #kJ/mol - -analytic 3.92002E+0 0E+0 1.90809E+2 0E+0 0E+0 - -1.000PuO2+2 + 2.000F- = PuO2F2 - log_k 7.250 #01LEM/FUG - delta_h 1.208 #kJ/mol - # Enthalpy of formation: -1491.528 #kJ/mol - -analytic 7.46163E+0 0E+0 -6.30981E+1 0E+0 0E+0 - -1.000PuO2+2 + 3.000F- = PuO2F3- - log_k 9.590 #85SAW/CHA - delta_h 2.401 #kJ/mol - # Enthalpy of formation: -1825.685 #kJ/mol - -analytic 1.00106E+1 0E+0 -1.25413E+2 0E+0 0E+0 - -1.000PuO2+2 + 1.000NO3- = PuO2NO3+ - log_k 0.100 #12GRI/GAR1 (LogK selected in analogy to U (NEA recommendation), logK(UO2NO3 +)) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1E-1 0E+0 0E+0 0E+0 0E+0 - -1.000PuO2+ - 1.000H+ + 1.000H2O = PuO2OH - log_k -11.300 #01LEM/FUG - delta_h 71.826 #kJ/mol - # Enthalpy of formation: -1124.131 #kJ/mol - -analytic 1.28336E+0 0E+0 -3.75173E+3 0E+0 0E+0 - -1.000Pu+3 + 1.000Ox-2 = PuOx+ - log_k 6.490 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.49E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Pu+3 - 2.000H+ + 1.000H2(PO4)- = PuPO4 - log_k -7.920 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.92E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Ra+2 + 1.000CO3-2 = Ra(CO3) - log_k 2.500 #99SCH - delta_h 4.496 #kJ/mol - # Enthalpy of formation: -1198.76 #kJ/mol - -analytic 3.28766E+0 0E+0 -2.34842E+2 0E+0 0E+0 - -1.000H+ + 1.000Ra+2 + 1.000CO3-2 = Ra(HCO3)+ - log_k 10.920 #02ILE/TWE - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.092E+1 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000Ra+2 + 1.000H2O = Ra(OH)+ - log_k -13.490 - delta_h 60.417 #kJ/mol #85LAN/RIE - # Enthalpy of formation: -753.438 #kJ/mol - -analytic -2.90541E+0 0E+0 -3.1558E+3 0E+0 0E+0 - -- 2.000H+ + 1.000Ra+2 + 2.000H2O = Ra(OH)2 - log_k -28.070 - delta_h 112.197 #kJ/mol - # Enthalpy of formation: -987.488 #kJ/mol - -analytic -8.41396E+0 0E+0 -5.86045E+3 0E+0 0E+0 - -1.000Ra+2 + 1.000SO4-2 = Ra(SO4) - log_k 2.760 - delta_h 5.481 #kJ/mol - # Enthalpy of formation: -1431.884 #kJ/mol - -analytic 3.72023E+0 0E+0 -2.86292E+2 0E+0 0E+0 - -1.000Ra+2 + 1.000Cl- = RaCl+ - log_k -0.100 #85LAN/RIE - delta_h 2.479 #kJ/mol - # Enthalpy of formation: -692.626 #kJ/mol - -analytic 3.34302E-1 0E+0 -1.29487E+2 0E+0 0E+0 - -1.000Ra+2 + 2.000Cl- = RaCl2 - log_k -0.100 - delta_h 0.496 #kJ/mol - # Enthalpy of formation: -861.689 #kJ/mol - -analytic -1.31047E-2 0E+0 -2.59078E+1 0E+0 0E+0 - -1.000Ra+2 + 1.000F- = RaF+ - log_k 0.480 #87BRO/WAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.8E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Br- + 1.000Rb+ = RbBr - log_k -1.240 - delta_h 13.836 #kJ/mol - # Enthalpy of formation: -358.694 #kJ/mol #97SVE/SHO - -analytic 1.18396E+0 0E+0 -7.22704E+2 0E+0 0E+0 - -1.000Cl- + 1.000Rb+ = RbCl - log_k -1.010 - delta_h 13.189 #kJ/mol - # Enthalpy of formation: -405.011 #kJ/mol #97SVE/SHO - -analytic 1.30061E+0 0E+0 -6.88908E+2 0E+0 0E+0 - -1.000F- + 1.000Rb+ = RbF - log_k 0.940 - delta_h 1.923 #kJ/mol - # Enthalpy of formation: -584.547 #kJ/mol #97SVE/SHO - -analytic 1.27689E+0 0E+0 -1.00445E+2 0E+0 0E+0 - -1.000I- + 1.000Rb+ = RbI - log_k -0.840 - delta_h 6.987 #kJ/mol - # Enthalpy of formation: -300.913 #kJ/mol #97SVE/SHO - -analytic 3.84068E-1 0E+0 -3.64956E+2 0E+0 0E+0 - -- 1.000H+ + 1.000Rb+ + 1.000H2O = RbOH - log_k -14.260 - delta_h 64.158 #kJ/mol - # Enthalpy of formation: -472.792 #kJ/mol #97SHO/SAS2 - -analytic -3.02002E+0 0E+0 -3.3512E+3 0E+0 0E+0 - -- 1.000H+ + 1.000HS- = S-2 - log_k -17.100 #04CHI - delta_h 73.278 #kJ/mol - # Enthalpy of formation: 56.978 #kJ/mol - -analytic -4.26226E+0 0E+0 -3.82757E+3 0E+0 0E+0 - -2.000HS- - 1.000H2O + 0.500O2 = S2-2 - log_k 32.450 - delta_h -212.123 #kJ/mol - # Enthalpy of formation: 35.04 #kJ/mol #04CHI - -analytic -4.7123E+0 0E+0 1.10799E+4 0E+0 0E+0 - -2.000H+ + 2.000SO3-2 - 1.000H2O = S2O5-2 - log_k 12.850 #85GOL/PAR - delta_h 2.606 #kJ/mol - # Enthalpy of formation: -973.684 #kJ/mol - -analytic 1.33066E+1 0E+0 -1.36121E+2 0E+0 0E+0 - -2.000SO4-2 - 1.000H2O + 2.000H+ + 0.500O2 = S2O8-2 - log_k -22.390 - delta_h 194.217 #kJ/mol - # Enthalpy of formation: -1344.7 #kJ/mol #82WAG/EVA - -analytic 1.16353E+1 0E+0 -1.01446E+4 0E+0 0E+0 - -1.000H+ + 3.000HS- - 2.000H2O + 1.000O2 = S3-2 - log_k 79.470 - delta_h -484.686 #kJ/mol - # Enthalpy of formation: 25.94 #kJ/mol #74NAU/RYZ - -analytic -5.44322E+0 0E+0 2.53169E+4 0E+0 0E+0 - -4.000H+ + 3.000SO3-2 - 2.000H2O - 0.500O2 = S3O6-2 - log_k -6.170 - delta_h 148.117 #kJ/mol - # Enthalpy of formation: -1167.336 #kJ/mol #04CHI - -analytic 1.97789E+1 0E+0 -7.73668E+3 0E+0 0E+0 - -2.000H+ + 4.000HS- - 3.000H2O + 1.500O2 = S4-2 - log_k 125.390 - delta_h -751.079 #kJ/mol - # Enthalpy of formation: 23.01 #kJ/mol #74NAU/RYZ - -analytic -6.1932E+0 0E+0 3.92315E+4 0E+0 0E+0 - -6.000H+ + 4.000SO3-2 - 3.000H2O - 1.500O2 = S4O6-2 - log_k -38.170 - delta_h 424.311 #kJ/mol - # Enthalpy of formation: -1224.238 #kJ/mol #04CHI - -analytic 3.6166E+1 0E+0 -2.21633E+4 0E+0 0E+0 - -3.000H+ + 5.000HS- - 4.000H2O + 2.000O2 = S5-2 - log_k 171.090 - delta_h -1016.212 #kJ/mol - # Enthalpy of formation: 21.34 #kJ/mol #74NAU/RYZ - -analytic -6.94244E+0 0E+0 5.30804E+4 0E+0 0E+0 - -8.000H+ + 5.000SO3-2 - 4.000H2O - 2.500O2 = S5O6-2 - log_k -99.570 - delta_h 805.941 #kJ/mol - # Enthalpy of formation: -1175.704 #kJ/mol #04CHI - -analytic 4.16246E+1 0E+0 -4.20972E+4 0E+0 0E+0 - -2.000H+ + 1.000SO3-2 - 1.000H2O = SO2 - log_k 9.030 - delta_h 21.450 #kJ/mol - # Enthalpy of formation: -323.78 #kJ/mol #85GOL/PAR - -analytic 1.27879E+1 0E+0 -1.12041E+3 0E+0 0E+0 - -2.000H+ + 1.000Sb(OH)3 - 2.000H2O = Sb(OH)+2 - log_k 0.740 #99LOT/OCH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.4E-1 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000Sb(OH)3 - 1.000H2O = Sb(OH)2+ - log_k 1.330 #77ANT/NEV and others recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.33E+0 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000Sb(OH)5 - 1.000H2O = Sb(OH)4+ - log_k -3.260 #57PIT/POU in 99LOT/OCH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.26E+0 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000Sb(OH)3 + 1.000H2O = Sb(OH)4- - log_k -11.820 #52GAY/GAR recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.182E+1 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000Sb(OH)5 + 1.000H2O = Sb(OH)6- - log_k -2.720 #63LEF/MAR in 76BAE/MES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.72E+0 0E+0 0E+0 0E+0 0E+0 - -3.000H+ + 1.000Sb(OH)3 - 3.000H2O = Sb+3 - log_k -0.730 #99LOT/OCH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.3E-1 0E+0 0E+0 0E+0 0E+0 - -- 4.000H+ + 12.000Sb(OH)5 + 4.000H2O = Sb12(OH)64-4 - log_k 20.340 #63LEF/MAR in 76BAE/MES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.034E+1 0E+0 0E+0 0E+0 0E+0 - -- 5.000H+ + 12.000Sb(OH)5 + 5.000H2O = Sb12(OH)65-5 - log_k 16.720 #63LEF/MAR in 76BAE/MES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.672E+1 0E+0 0E+0 0E+0 0E+0 - -- 6.000H+ + 12.000Sb(OH)5 + 6.000H2O = Sb12(OH)66-6 - log_k 11.890 #63LEF/MAR in 76BAE/MES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.189E+1 0E+0 0E+0 0E+0 0E+0 - -- 7.000H+ + 12.000Sb(OH)5 + 7.000H2O = Sb12(OH)67-7 - log_k 6.070 #63LEF/MAR in 76BAE/MES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.07E+0 0E+0 0E+0 0E+0 0E+0 - -4.000H+ + 4.000HS- + 2.000Sb(OH)3 - 6.000H2O = Sb2H2S4 - log_k 57.810 #88KRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.781E+1 0E+0 0E+0 0E+0 0E+0 - -3.000H+ + 4.000HS- + 2.000Sb(OH)3 - 6.000H2O = Sb2HS4- - log_k 52.900 #88KRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.29E+1 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 4.000HS- + 2.000Sb(OH)3 - 6.000H2O = Sb2S4-2 - log_k 43.380 #88KRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.338E+1 0E+0 0E+0 0E+0 0E+0 - -3.000H+ + 1.000Cl- + 1.000Sb(OH)3 - 3.000H2O = SbCl+2 - log_k 2.800 #70BON/WAU and others recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.8E+0 0E+0 0E+0 0E+0 0E+0 - -3.000H+ + 2.000Cl- + 1.000Sb(OH)3 - 3.000H2O = SbCl2+ - log_k 3.270 #70BON/WAU and others recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.27E+0 0E+0 0E+0 0E+0 0E+0 - -3.000H+ + 1.000F- + 1.000Sb(OH)3 - 3.000H2O = SbF+2 - log_k 6.370 #70BON recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.37E+0 0E+0 0E+0 0E+0 0E+0 - -3.000H+ + 2.000F- + 1.000Sb(OH)3 - 3.000H2O = SbF2+ - log_k 12.420 #70BON recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.242E+1 0E+0 0E+0 0E+0 0E+0 - -3.000H+ + 3.000F- + 1.000Sb(OH)3 - 3.000H2O = SbF3 - log_k 18.200 #70BON recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.82E+1 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000HSe- = Se-2 - log_k -14.910 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.491E+1 0E+0 0E+0 0E+0 0E+0 - -2.000HSe- - 1.000H2O + 0.500O2 = Se2-2 - log_k 38.490 #05OLI/NOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.849E+1 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 3.000HSe- - 2.000H2O + 1.000O2 = Se3-2 - log_k 91.220 #05OLI/NOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.122E+1 0E+0 0E+0 0E+0 0E+0 - -2.000H+ + 4.000HSe- - 3.000H2O + 1.500O2 = Se4-2 - log_k 142.350 #05OLI/NOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.4235E+2 0E+0 0E+0 0E+0 0E+0 - -1.000H+ + 1.000Cn- + 1.000HSe- - 1.000H2O + 0.500O2 = SeCn- - log_k 56.020 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.602E+1 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 2.000H4(SiO4) - 1.000H2O = Si2O2(OH)5- - log_k -8.500 #01FEL/CHO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -8.5E+0 0E+0 0E+0 0E+0 0E+0 - -- 2.000H+ + 2.000H4(SiO4) - 1.000H2O = Si2O3(OH)4-2 - log_k -19.400 #01FEL/CHO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.94E+1 0E+0 0E+0 0E+0 0E+0 - -- 3.000H+ + 3.000H4(SiO4) - 2.000H2O = Si3O5(OH)5-3 - log_k -29.400 #01FEL/CHO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.94E+1 0E+0 0E+0 0E+0 0E+0 - -- 3.000H+ + 3.000H4(SiO4) - 3.000H2O = Si3O6(OH)3-3 - log_k -29.300 #01FEL/CHO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.93E+1 0E+0 0E+0 0E+0 0E+0 - -- 2.000H+ + 4.000H4(SiO4) - 4.000H2O = Si4O6(OH)6-2 - log_k -15.600 #01FEL/CHO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.56E+1 0E+0 0E+0 0E+0 0E+0 - -- 4.000H+ + 4.000H4(SiO4) - 3.000H2O = Si4O7(OH)6-4 - log_k -39.100 #01FEL/CHO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.91E+1 0E+0 0E+0 0E+0 0E+0 - -- 4.000H+ + 4.000H4(SiO4) - 4.000H2O = Si4O8(OH)4-4 - log_k -39.200 #01FEL/CHO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.92E+1 0E+0 0E+0 0E+0 0E+0 - -- 6.000H+ + 6.000H4(SiO4) - 9.000H2O = Si6O15-6 - log_k -61.800 #01FEL/CHO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.18E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sm+3 + 1.000CO3-2 = Sm(CO3)+ - log_k 7.800 #95SPA/BRU - delta_h 163.392 #kJ/mol - # Enthalpy of formation: -1203.037 #kJ/mol - -analytic 3.6425E+1 0E+0 -8.53455E+3 0E+0 0E+0 - -1.000Sm+3 + 2.000CO3-2 = Sm(CO3)2- - log_k 12.800 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.28E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sm+3 + 3.000CO3-2 = Sm(CO3)3-3 - log_k 14.800 #05VER/VIT2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.48E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sm+3 + 1.000H2(PO4)- = Sm(H2PO4)+2 - log_k 2.350 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.35E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sm+3 + 1.000H+ + 1.000CO3-2 = Sm(HCO3)+2 - log_k 12.430 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.243E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sm+3 - 1.000H+ + 1.000H2(PO4)- = Sm(HPO4)+ - log_k -1.610 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.61E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sm+3 - 2.000H+ + 2.000H2(PO4)- = Sm(HPO4)2- - log_k -5.020 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.02E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sm+3 + 1.000NO3- = Sm(NO3)+2 - log_k 0.900 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Sm+3 - 1.000H+ + 1.000H2O = Sm(OH)+2 - log_k -7.900 #95SPA/BRU - delta_h 81.304 #kJ/mol - # Enthalpy of formation: -895.725 #kJ/mol - -analytic 6.34383E+0 0E+0 -4.2468E+3 0E+0 0E+0 - -1.000Sm+3 - 2.000H+ + 2.000H2O = Sm(OH)2+ - log_k -15.700 #07NEC/ALT2 - delta_h 145.698 #kJ/mol - # Enthalpy of formation: -1117.161 #kJ/mol - -analytic 9.82516E+0 0E+0 -7.61033E+3 0E+0 0E+0 - -1.000Sm+3 - 3.000H+ + 3.000H2O = Sm(OH)3 - log_k -26.200 #07NEC/ALT2 - delta_h 228.395 #kJ/mol - # Enthalpy of formation: -1320.294 #kJ/mol - -analytic 1.3813E+1 0E+0 -1.19299E+4 0E+0 0E+0 - -1.000Sm+3 - 4.000H+ + 4.000H2O = Sm(OH)4- - log_k -40.700 #07NEC/ALT2 - delta_h 298.594 #kJ/mol - # Enthalpy of formation: -1535.925 #kJ/mol - -analytic 1.16113E+1 0E+0 -1.55966E+4 0E+0 0E+0 - -1.000Sm+3 - 2.000H+ + 1.000H2(PO4)- = Sm(PO4) - log_k -7.460 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.46E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sm+3 - 4.000H+ + 2.000H2(PO4)- = Sm(PO4)2-3 - log_k -18.720 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.872E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sm+3 + 1.000SO4-2 = Sm(SO4)+ - log_k 3.500 #95SPA/BRU - delta_h 16.575 #kJ/mol - # Enthalpy of formation: -1583.964 #kJ/mol - -analytic 6.40381E+0 0E+0 -8.65771E+2 0E+0 0E+0 - -1.000Sm+3 + 2.000SO4-2 = Sm(SO4)2- - log_k 5.200 #95SPA/BRU - delta_h 24.910 #kJ/mol - # Enthalpy of formation: -2484.969 #kJ/mol - -analytic 9.56404E+0 0E+0 -1.30114E+3 0E+0 0E+0 - -1.000Sm+3 + 1.000Br- = SmBr+2 - log_k 0.230 #96FAL/REA - delta_h 17.023 #kJ/mol - # Enthalpy of formation: -795.586 #kJ/mol - -analytic 3.2123E+0 0E+0 -8.89172E+2 0E+0 0E+0 - -1.000Sm+3 + 1.000Cl- = SmCl+2 - log_k 0.720 #Original data 01LUO/BYR and 07LUO/BYR - delta_h 22.277 #kJ/mol - # Enthalpy of formation: -836.002 #kJ/mol - -analytic 4.62276E+0 0E+0 -1.16361E+3 0E+0 0E+0 - -1.000Sm+3 + 1.000F- = SmF+2 - log_k 4.210 #07LUO/BYR - delta_h 24.180 #kJ/mol - # Enthalpy of formation: -1002.369 #kJ/mol - -analytic 8.44615E+0 0E+0 -1.26301E+3 0E+0 0E+0 - -1.000Sm+3 + 2.000F- = SmF2+ - log_k 6.430 #Original data 99SCH/BYR and 04LUO/BYR - delta_h 18.850 #kJ/mol - # Enthalpy of formation: -1343.049 #kJ/mol - -analytic 9.73237E+0 0E+0 -9.84603E+2 0E+0 0E+0 - -1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2 - log_k -2.620 #Orginal data 07THA/SIN and 96JEN/CHO1 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 1.000Cit-3 = Sn(Cit)- - log_k 8.700 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 2.000Cit-3 = Sn(Cit)2-4 - log_k 11.900 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.19E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 1.000Edta-4 = Sn(Edta)-2 - log_k 24.600 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.46E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 2.000H+ + 1.000Edta-4 = Sn(H2Edta) - log_k 24.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.43E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 1.000H+ + 1.000Edta-4 = Sn(HEdta)- - log_k 23.400 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.34E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 1.000Nta-3 = Sn(Nta)- - log_k 13.400 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.34E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 - 1.000H+ + 1.000H2O = Sn(OH)+ - log_k -3.530 #12GAM/GAJ - delta_h 18.612 #kJ/mol - # Enthalpy of formation: -276.835 #kJ/mol - -analytic -2.69322E-1 0E+0 -9.72171E+2 0E+0 0E+0 - -1.000Sn+2 - 2.000H+ + 2.000H2O = Sn(OH)2 - log_k -7.680 #12GAM/GAJ - delta_h 40.762 #kJ/mol - # Enthalpy of formation: -540.515 #kJ/mol - -analytic -5.38815E-1 0E+0 -2.12914E+3 0E+0 0E+0 - -1.000Sn+2 - 3.000H+ + 3.000H2O = Sn(OH)3- - log_k -61.190 #13COL/GRI - delta_h 344.633 #kJ/mol - # Enthalpy of formation: -522.474 #kJ/mol - -analytic -8.12979E-1 0E+0 -1.80014E+4 0E+0 0E+0 - -1.000Sn+4 - 4.000H+ + 4.000H2O = Sn(OH)4 - log_k 7.540 - delta_h -49.215 #kJ/mol - # Enthalpy of formation: -1224.035 #kJ/mol - -analytic -1.08209E+0 0E+0 2.57067E+3 0E+0 0E+0 - -1.000Sn+4 - 5.000H+ + 5.000H2O = Sn(OH)5- - log_k -1.060 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.06E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+4 - 6.000H+ + 6.000H2O = Sn(OH)6-2 - log_k -11.130 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.113E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 - 1.000H+ + 1.000Cl- + 1.000H2O = Sn(OH)Cl - log_k -3.100 #52VAN/RHO recalculated in 02HUM/BER - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.1E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 1.000Ox-2 = Sn(Ox) - log_k 6.500 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 2.000Ox-2 = Sn(Ox)2-2 - log_k 12.900 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.29E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 3.000Ox-2 = Sn(Ox)3-4 - log_k 17.100 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.71E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 1.000SO4-2 = Sn(SO4) - log_k 3.430 #12GAM/GAJ - delta_h 16.900 #kJ/mol #Suggested but not selected in 12GAM/GAJ - # Enthalpy of formation: -902.057 #kJ/mol - -analytic 6.39075E+0 0E+0 -8.82747E+2 0E+0 0E+0 - -3.000Sn+2 - 4.000H+ + 4.000H2O = Sn3(OH)4+2 - log_k -5.600 #12GAM/GAJ - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.6E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 1.000Br- = SnBr+ - log_k 1.330 #12GAM/GAJ - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.33E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 2.000Br- = SnBr2 - log_k 1.970 #12GAM/GAJ - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.97E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 3.000Br- = SnBr3- - log_k 1.930 #12GAM/GAJ - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.93E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 1.000Cl- = SnCl+ - log_k 1.520 #12GAM/GAJ - delta_h 12.700 #kJ/mol #12GAM/GAJ - # Enthalpy of formation: -163.997 #kJ/mol - -analytic 3.74494E+0 0E+0 -6.63366E+2 0E+0 0E+0 - -1.000Sn+2 + 2.000Cl- = SnCl2 - log_k 2.170 #12GAM/GAJ - delta_h 19.700 #kJ/mol #12GAM/GAJ - # Enthalpy of formation: -324.077 #kJ/mol - -analytic 5.62129E+0 0E+0 -1.029E+3 0E+0 0E+0 - -1.000Sn+2 + 3.000Cl- = SnCl3- - log_k 2.130 #12GAM/GAJ - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.13E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 4.000Cl- = SnCl4-2 - log_k 2.030 #12GAM/GAJ - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.03E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 1.000F- = SnF+ - log_k 5.250 #12GAM/GAJ - delta_h -9.579 #kJ/mol - # Enthalpy of formation: -354.546 #kJ/mol - -analytic 3.57183E+0 0E+0 5.00345E+2 0E+0 0E+0 - -1.000Sn+2 + 2.000F- = SnF2 - log_k 8.890 #12GAM/GAJ - delta_h -9.968 #kJ/mol - # Enthalpy of formation: -690.285 #kJ/mol - -analytic 7.14368E+0 0E+0 5.20664E+2 0E+0 0E+0 - -1.000Sn+2 + 3.000F- = SnF3- - log_k 11.500 #12GAM/GAJ - delta_h -4.478 #kJ/mol - # Enthalpy of formation: -1020.145 #kJ/mol - -analytic 1.07155E+1 0E+0 2.33902E+2 0E+0 0E+0 - -1.000Sn+2 - 1.000H+ + 1.000H2(PO4)- = SnHPO4 - log_k 2.290 #00CIA/IUL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.29E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 1.000I- = SnI+ - log_k 1.740 #68HAI/JOH1 recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.74E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 + 2.000I- = SnI2 - log_k 2.690 #68HAI/JOH1 recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.69E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sn+2 - 2.000H+ + 1.000H2(PO4)- = SnPO4- - log_k -1.560 #00CIA/IUL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.56E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000CO3-2 = Sr(CO3) - log_k 2.810 #84BUS/PLU - delta_h 21.824 #kJ/mol - # Enthalpy of formation: -1204.306 #kJ/mol - -analytic 6.6334E+0 0E+0 -1.13995E+3 0E+0 0E+0 - -1.000Sr+2 + 1.000Cit-3 = Sr(Cit)- - log_k 4.240 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.24E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 - 1.000H+ + 2.000Cit-3 + 1.000H2O = Sr(Cit)2(OH)-5 - log_k -1.780 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.78E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 2.000Cit-3 = Sr(Cit)2-4 - log_k 4.840 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.84E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000Cn- = Sr(Cn)+ - log_k 0.710 #estimation NEA87 08/02/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.1E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 2.000Cn- = Sr(Cn)2 - log_k 0.200 #estimation NEA87 08/02/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000Edta-4 = Sr(Edta)-2 - log_k 10.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.03E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 2.000H+ + 1.000Cit-3 = Sr(H2Cit)+ - log_k 12.460 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.246E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000H2(PO4)- = Sr(H2PO4)+ - log_k 0.830 #97MAR/SMI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.3E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000H+ + 1.000CO3-2 = Sr(HCO3)+ - log_k 11.510 #84BUS/PLUS - delta_h 10.598 #kJ/mol - # Enthalpy of formation: -1215.533 #kJ/mol - -analytic 1.33667E+1 0E+0 -5.53571E+2 0E+0 0E+0 - -1.000Sr+2 + 1.000H+ + 1.000Cit-3 = Sr(HCit) - log_k 9.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000H+ + 1.000Edta-4 = Sr(HEdta)- - log_k 14.700 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.47E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000H+ + 1.000Ox-2 = Sr(HOx)+ - log_k 5.800 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.8E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 2.000H+ + 2.000Ox-2 = Sr(HOx)2 - log_k 10.800 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.08E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 - 1.000H+ + 1.000H2(PO4)- = Sr(HPO4) - log_k -4.700 #97MAR/SMI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000IO3- = Sr(IO3)+ - log_k 0.330 #estimation NEA87 01/02/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.3E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 2.000IO3- = Sr(IO3)2 - log_k -0.550 #estimation NEA87 01/02/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.5E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000NH3 = Sr(NH3)+2 - log_k -0.550 #estimation NEA87 08/02/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.5E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000NO3- = Sr(NO3)+ - log_k 0.600 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 2.000NO3- = Sr(NO3)2 - log_k 0.310 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.1E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000Nta-3 = Sr(Nta)- - log_k 6.250 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.25E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 - 1.000H+ + 1.000H2O = Sr(OH)+ - log_k -13.290 #76BAE/MES - delta_h 82.609 #kJ/mol - # Enthalpy of formation: -754.12 #kJ/mol - -analytic 1.18245E+0 0E+0 -4.31496E+3 0E+0 0E+0 - -1.000Sr+2 + 1.000Ox-2 = Sr(Ox) - log_k 2.540 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.54E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 2.000Ox-2 = Sr(Ox)2-2 - log_k 3.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 - 2.000H+ + 1.000H2(PO4)- = Sr(PO4)- - log_k -13.560 #96BOU1 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.356E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000Pyrophos-4 = Sr(Pyrophos)-2 - log_k 5.400 #76SMI/MAR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.4E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000S2O3-2 = Sr(S2O3) - log_k 2.040 #76SMI/MAR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.04E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000SO4-2 = Sr(SO4) - log_k 2.300 #06BLA/IGN - delta_h 7.029 #kJ/mol #06BLA/IGN - # Enthalpy of formation: -1453.211 #kJ/mol - -analytic 3.53143E+0 0E+0 -3.6715E+2 0E+0 0E+0 - -2.000Sr+2 - 1.000H+ + 1.000Cit-3 + 1.000H2O = Sr2(Cit)(OH) - log_k 0.380 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.8E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000B(OH)4- = SrB(OH)4+ - log_k 1.550 #80BAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.55E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000Cl- = SrCl+ - log_k 0.230 #96BOU1 - delta_h 4.924 #kJ/mol - # Enthalpy of formation: -713.054 #kJ/mol - -analytic 1.09265E+0 0E+0 -2.57198E+2 0E+0 0E+0 - -1.000Sr+2 + 1.000F- = SrF+ - log_k 0.300 - delta_h 16.740 #kJ/mol - # Enthalpy of formation: -869.51 #kJ/mol - -analytic 3.23272E+0 0E+0 -8.7439E+2 0E+0 0E+0 - -1.000Sr+2 + 2.000F- = SrF2 - log_k 2.020 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.02E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 1.000I- = SrI+ - log_k 0.140 #estimation NEA87 01/02/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.4E-1 0E+0 0E+0 0E+0 0E+0 - -1.000Sr+2 + 2.000I- = SrI2 - log_k -0.040 #estimation NEA87 01/02/95 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4E-2 0E+0 0E+0 0E+0 0E+0 - -1.000TcO(OH)2 + 2.000H+ + 1.000CO3-2 - 1.000H2O = Tc(OH)2CO3 - log_k 19.260 #99RAR/RAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.926E+1 0E+0 0E+0 0E+0 0E+0 - -1.000TcO(OH)2 + 1.000H+ + 1.000CO3-2 = Tc(OH)3CO3- - log_k 10.960 #99RAR/RAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.096E+1 0E+0 0E+0 0E+0 0E+0 - -1.000TcO(OH)2 + 1.000H+ - 1.000H2O + 1.000Acetate- = TcO(OH)(Acetate) - log_k 5.550 #11RIC/GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.55E+0 0E+0 0E+0 0E+0 0E+0 - -1.000TcO(OH)2 + 1.000H+ + 1.000Edta-4 - 1.000H2O = TcO(OH)(Edta)-3 - log_k 19.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.9E+1 0E+0 0E+0 0E+0 0E+0 - -1.000TcO(OH)2 + 1.000H+ + 1.000Nta-3 - 1.000H2O = TcO(OH)(Nta)-2 - log_k 13.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.33E+1 0E+0 0E+0 0E+0 0E+0 - -1.000TcO(OH)2 + 1.000H+ + 2.000Nta-3 - 1.000H2O = TcO(OH)(Nta)2-5 - log_k 11.700 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.17E+1 0E+0 0E+0 0E+0 0E+0 - -1.000TcO(OH)2 + 1.000H+ - 1.000H2O = TcO(OH)+ - log_k 2.790 - delta_h 4.020 #kJ/mol #97NGU/LAN - # Enthalpy of formation: -459.47 #kJ/mol - -analytic 3.49427E+0 0E+0 -2.09979E+2 0E+0 0E+0 - -1.000TcO(OH)2 + 2.000H+ + 1.000Ox-2 - 2.000H2O = TcO(Ox) - log_k 9.800 #06XIA/HES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.8E+0 0E+0 0E+0 0E+0 0E+0 - -1.000TcO(OH)2 + 2.000H+ + 2.000Ox-2 - 2.000H2O = TcO(Ox)2-2 - log_k 13.660 #06XIA/HES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.366E+1 0E+0 0E+0 0E+0 0E+0 - -1.000TcO(OH)2 + 2.000H+ - 2.000H2O = TcO+2 - log_k 2.580 #97NGU/LAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.58E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000Acetate- = Th(Acetate)+3 - log_k 5.240 #11RIC/GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.24E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 2.000Acetate- = Th(Acetate)2+2 - log_k 9.440 #11RIC/GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.44E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 3.000Acetate- = Th(Acetate)3+ - log_k 12.560 #11RIC/GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.256E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 4.000Acetate- = Th(Acetate)4 - log_k 14.380 #11RIC/GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.438E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 5.000Acetate- = Th(Acetate)5- - log_k 15.370 #11RIC/GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.537E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 5.000CO3-2 = Th(CO3)5-6 - log_k 31.000 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.1E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000Cit-3 = Th(Cit)+ - log_k 16.800 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.68E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 2.000Cit-3 = Th(Cit)2-2 - log_k 25.800 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.58E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000Edta-4 = Th(Edta) - log_k 26.950 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.695E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000H2(PO4)- = Th(H2PO4)+3 - log_k 5.590 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.59E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 2.000H2(PO4)- = Th(H2PO4)2+2 - log_k 10.480 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.048E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000H+ + 2.000H2(PO4)- = Th(H3PO4)(H2PO4)+3 - log_k 9.700 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000H+ + 1.000H2(PO4)- = Th(H3PO4)+4 - log_k 4.030 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.03E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000H+ + 1.000Edta-4 = Th(HEdta)+ - log_k 28.700 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.87E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000H+ + 1.000Ox-2 = Th(HOx)+3 - log_k 11.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.1E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 2.000H+ + 2.000Ox-2 = Th(HOx)2+2 - log_k 18.130 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.813E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 4.000H+ + 4.000Ox-2 = Th(HOx)4 - log_k 24.300 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.43E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000Malonate-2 = Th(Malonate)+2 - log_k 9.320 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.32E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 2.000Malonate-2 = Th(Malonate)2 - log_k 16.070 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.607E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 3.000Malonate-2 = Th(Malonate)3-2 - log_k 19.630 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.963E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000NO3- = Th(NO3)+3 - log_k 1.300 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 2.000NO3- = Th(NO3)2+2 - log_k 2.300 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000Nta-3 = Th(Nta)+ - log_k 17.150 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.715E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 - 1.000H+ + 4.000CO3-2 + 1.000H2O = Th(OH)(CO3)4-5 - log_k 21.600 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.16E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 - 1.000H+ + 1.000Edta-4 + 1.000H2O = Th(OH)(Edta)- - log_k 19.500 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.95E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 - 1.000H+ + 1.000Nta-3 + 1.000H2O = Th(OH)(Nta) - log_k 25.200 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.52E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 - 1.000H+ + 1.000H2O = Th(OH)+3 - log_k -2.500 #09RAN/FUG - delta_h 44.200 #kJ/mol #09RAN/FUG - # Enthalpy of formation: -1010.33 #kJ/mol - -analytic 5.2435E+0 0E+0 -2.30872E+3 0E+0 0E+0 - -1.000Th+4 - 2.000H+ + 1.000CO3-2 + 2.000H2O = Th(OH)2(CO3) - log_k 2.500 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 - 2.000H+ + 2.000CO3-2 + 2.000H2O = Th(OH)2(CO3)2-2 - log_k 8.800 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.8E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 - 2.000H+ + 1.000Nta-3 + 2.000H2O = Th(OH)2(Nta)- - log_k 35.200 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.52E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 - 2.000H+ + 2.000H2O = Th(OH)2+2 - log_k -6.200 #09RAN/FUG - delta_h 85.700 #kJ/mol #09RAN/FUG - # Enthalpy of formation: -1254.66 #kJ/mol - -analytic 8.81397E+0 0E+0 -4.47642E+3 0E+0 0E+0 - -1.000Th+4 - 3.000H+ + 1.000CO3-2 + 3.000H2O = Th(OH)3(CO3)- - log_k -3.700 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 - 3.000H+ + 1.000HGlu- + 3.000H2O = Th(OH)3(HGlu) - log_k -6.700 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 - 3.000H+ + 1.000HIsa- + 3.000H2O = Th(OH)3(HIsa) - log_k -5.650 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.65E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 - 3.000H+ + 2.000HIsa- + 3.000H2O = Th(OH)3(HIsa)2- - log_k -4.900 #09RAI/YUI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 - 3.000H+ + 3.000H2O = Th(OH)3+ - log_k -11.000 #10GRI/RIB - delta_h 125.623 #kJ/mol - # Enthalpy of formation: -1500.554 #kJ/mol - -analytic 1.10082E+1 0E+0 -6.56174E+3 0E+0 0E+0 - -1.000Th+4 - 4.000H+ + 4.000H2O = Th(OH)4 - log_k -17.400 #09RAN/FUG - delta_h 152.688 #kJ/mol - # Enthalpy of formation: -1759.319 #kJ/mol - -analytic 9.34975E+0 0E+0 -7.97544E+3 0E+0 0E+0 - -1.000Th+4 - 4.000H+ + 1.000CO3-2 + 4.000H2O = Th(OH)4(CO3)-2 - log_k -15.600 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.56E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 - 4.000H+ + 1.000HGlu- + 4.000H2O = Th(OH)4(HGlu)- - log_k -11.800 #13COL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.18E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 2.000HGlu- + 4.000H2O - 4.000H+ = Th(OH)4(HGlu)2-2 - log_k -9.900 #13COL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -9.9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 - 4.000H+ + 1.000HIsa- + 4.000H2O = Th(OH)4(HIsa)- - log_k -13.200 #13COL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.32E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 - 4.000H+ + 2.000HIsa- + 4.000H2O = Th(OH)4(HIsa)2-2 - log_k -10.400 #13COL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.04E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000Ox-2 = Th(Ox)+2 - log_k 9.700 #08SAS/TAK; 09KOB/SAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 2.000Ox-2 = Th(Ox)2 - log_k 16.000 #08SAS/TAK; 09KOB/SAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.6E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 3.000Ox-2 = Th(Ox)3-2 - log_k 22.200 #08SAS/TAK; 09KOB/SAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.22E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000SO4-2 = Th(SO4)+2 - log_k 6.170 #09RAN/FUG - delta_h 20.920 #kJ/mol #09RAN/FUG - # Enthalpy of formation: -1657.12 #kJ/mol - -analytic 9.83502E+0 0E+0 -1.09273E+3 0E+0 0E+0 - -1.000Th+4 + 2.000SO4-2 = Th(SO4)2 - log_k 9.690 #09RAN/FUG - delta_h 40.380 #kJ/mol #09RAN/FUG - # Enthalpy of formation: -2547 #kJ/mol - -analytic 1.67643E+1 0E+0 -2.10919E+3 0E+0 0E+0 - -1.000Th+4 + 3.000SO4-2 = Th(SO4)3-2 - log_k 10.750 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.075E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000Succinat-2 = Th(Succinat)+2 - log_k 8.490 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.49E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 2.000Succinat-2 = Th(Succinat)2 - log_k 12.920 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.292E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 3.000Succinat-2 = Th(Succinat)3-2 - log_k 16.620 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.662E+1 0E+0 0E+0 0E+0 0E+0 - -2.000Th+4 - 2.000H+ + 2.000H2O = Th2(OH)2+6 - log_k -5.900 #09RAN/FUG - delta_h 58.300 #kJ/mol #09RAN/FUG - # Enthalpy of formation: -2050.76 #kJ/mol - -analytic 4.31371E+0 0E+0 -3.04522E+3 0E+0 0E+0 - -2.000Th+4 - 3.000H+ + 3.000H2O = Th2(OH)3+5 - log_k -6.800 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.8E+0 0E+0 0E+0 0E+0 0E+0 - -2.000Th+4 - 1.000H+ + 1.000Ox-2 + 1.000H2O = Th2(Ox)(OH)+5 - log_k 26.240 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.624E+1 0E+0 0E+0 0E+0 0E+0 - -4.000Th+4 - 12.000H+ + 12.000H2O = Th4(OH)12+4 - log_k -26.600 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.66E+1 0E+0 0E+0 0E+0 0E+0 - -4.000Th+4 - 8.000H+ + 8.000H2O = Th4(OH)8+8 - log_k -20.400 #09RAN/FUG - delta_h 243.000 #kJ/mol #09RAN/FUG - # Enthalpy of formation: -5118.44 #kJ/mol - -analytic 2.21717E+1 0E+0 -1.26928E+4 0E+0 0E+0 - -6.000Th+4 - 14.000H+ + 14.000H2O = Th6(OH)14+10 - log_k -36.800 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.68E+1 0E+0 0E+0 0E+0 0E+0 - -6.000Th+4 - 15.000H+ + 15.000H2O = Th6(OH)15+9 - log_k -36.800 #09RAN/FUG - delta_h 472.800 #kJ/mol #09RAN/FUG - # Enthalpy of formation: -8426.85 #kJ/mol - -analytic 4.60309E+1 0E+0 -2.4696E+4 0E+0 0E+0 - -1.000Th+4 + 1.000Cl- = ThCl+3 - log_k 1.700 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 1.000F- = ThF+3 - log_k 8.870 #09RAN/FUG - delta_h -0.400 #kJ/mol #09RAN/FUG - # Enthalpy of formation: -1104.45 #kJ/mol - -analytic 8.79992E+0 0E+0 2.08934E+1 0E+0 0E+0 - -1.000Th+4 + 2.000F- = ThF2+2 - log_k 15.630 #09RAN/FUG - delta_h -3.300 #kJ/mol #09RAN/FUG - # Enthalpy of formation: -1442.7 #kJ/mol - -analytic 1.50519E+1 0E+0 1.72371E+2 0E+0 0E+0 - -1.000Th+4 + 3.000F- = ThF3+ - log_k 20.670 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.067E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Th+4 + 4.000F- = ThF4 - log_k 25.580 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.558E+1 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 + 1.000Acetate- = U(Acetate)+3 - log_k 5.640 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.64E+0 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 + 2.000Acetate- = U(Acetate)2+2 - log_k 9.810 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.81E+0 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 + 4.000CO3-2 = U(CO3)4-4 - log_k 35.120 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.512E+1 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 + 5.000CO3-2 = U(CO3)5-6 - log_k 34.000 #03GUI/FAN - delta_h -20.000 #kJ/mol #03GUI/FAN - # Enthalpy of formation: -3987.35 #kJ/mol - -analytic 3.04962E+1 0E+0 1.04467E+3 0E+0 0E+0 - -1.000U+4 + 1.000Edta-4 = U(Edta) - log_k 29.500 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.95E+1 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 + 1.000NO3- = U(NO3)+3 - log_k 1.470 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.47E+0 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 + 2.000NO3- = U(NO3)2+2 - log_k 2.300 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.3E+0 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 + 1.000Nta-3 = U(Nta)+ - log_k 20.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2E+1 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 - 1.000H+ + 1.000Edta-4 + 1.000H2O = U(OH)(Edta)- - log_k 24.600 #63ERM/KRO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.46E+1 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 - 1.000H+ + 1.000H2O = U(OH)+3 - log_k -0.540 #92GRE/FUG - delta_h 46.910 #kJ/mol - # Enthalpy of formation: -830.12 #kJ/mol - -analytic 7.67827E+0 0E+0 -2.45028E+3 0E+0 0E+0 - -1.000U+4 - 2.000H+ + 1.000Edta-4 + 2.000H2O = U(OH)2(Edta)-2 - log_k 16.500 #63ERM/KRO - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.65E+1 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 - 2.000H+ + 2.000H2O = U(OH)2+2 - log_k -1.100 #01NEC/KIM - delta_h 59.974 #kJ/mol - # Enthalpy of formation: -1102.886 #kJ/mol - -analytic 9.40698E+0 0E+0 -3.13266E+3 0E+0 0E+0 - -1.000U+4 - 3.000H+ + 1.000HGlu- + 3.000H2O = U(OH)3(HGlu) - log_k 0.290 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.9E-1 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 - 3.000H+ + 1.000HIsa- + 3.000H2O = U(OH)3(HIsa) - log_k 0.290 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.9E-1 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 - 3.000H+ + 2.000HIsa- + 3.000H2O = U(OH)3(HIsa)2- - log_k 2.400 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.4E+0 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 - 3.000H+ + 3.000H2O = U(OH)3+ - log_k -4.700 #01NEC/KIM - delta_h 82.944 #kJ/mol - # Enthalpy of formation: -1365.746 #kJ/mol - -analytic 9.83114E+0 0E+0 -4.33246E+3 0E+0 0E+0 - -1.000U+4 - 4.000H+ + 4.000H2O = U(OH)4 - log_k -10.000 #03GUI/FAN - delta_h 109.881 #kJ/mol - # Enthalpy of formation: -1624.639 #kJ/mol - -analytic 9.2503E+0 0E+0 -5.73948E+3 0E+0 0E+0 - -1.000U+4 - 4.000H+ + 1.000HGlu- + 4.000H2O = U(OH)4(HGlu)- - log_k -5.940 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.94E+0 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 - 4.000H+ + 1.000HIsa- + 4.000H2O = U(OH)4(HIsa)- - log_k -6.700 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 - 4.000H+ + 2.000HIsa- + 4.000H2O = U(OH)4(HIsa)2-2 - log_k -5.100 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.1E+0 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 + 2.000Ox-2 = U(Ox)2 - log_k 18.630 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.863E+1 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 + 3.000Ox-2 = U(Ox)3-2 - log_k 24.190 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.419E+1 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 + 1.000SO4-2 = U(SO4)+2 - log_k 6.580 #92GRE/FUG - delta_h 8.000 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -1492.54 #kJ/mol - -analytic 7.98154E+0 0E+0 -4.17868E+2 0E+0 0E+0 - -1.000U+4 + 2.000SO4-2 = U(SO4)2 - log_k 10.510 #92GRE/FUG - delta_h 32.700 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -2377.18 #kJ/mol - -analytic 1.62388E+1 0E+0 -1.70804E+3 0E+0 0E+0 - -1.000U+4 + 1.000Br- = UBr+3 - log_k 1.460 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.46E+0 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 + 1.000Cl- = UCl+3 - log_k 1.720 #92GRE/FUG - delta_h -19.000 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -777.28 #kJ/mol - -analytic -1.60865E+0 0E+0 9.92438E+2 0E+0 0E+0 - -1.000U+4 + 1.000F- = UF+3 - log_k 9.420 #03GUI/FAN - delta_h -5.600 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -932.15 #kJ/mol - -analytic 8.43892E+0 0E+0 2.92508E+2 0E+0 0E+0 - -1.000U+4 + 2.000F- = UF2+2 - log_k 16.560 #03GUI/FAN - delta_h -3.500 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -1265.4 #kJ/mol - -analytic 1.59468E+1 0E+0 1.82817E+2 0E+0 0E+0 - -1.000U+4 + 3.000F- = UF3+ - log_k 21.890 #03GUI/FAN - delta_h 0.500 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -1596.75 #kJ/mol - -analytic 2.19776E+1 0E+0 -2.61168E+1 0E+0 0E+0 - -1.000U+4 + 4.000F- = UF4 - log_k 26.340 #03GUI/FAN - delta_h -8.429 #kJ/mol - # Enthalpy of formation: -1941.029 #kJ/mol - -analytic 2.48633E+1 0E+0 4.40277E+2 0E+0 0E+0 - -1.000U+4 + 5.000F- = UF5- - log_k 27.730 #03GUI/FAN - delta_h -11.624 #kJ/mol - # Enthalpy of formation: -2279.574 #kJ/mol - -analytic 2.56936E+1 0E+0 6.07163E+2 0E+0 0E+0 - -1.000U+4 + 6.000F- = UF6-2 - log_k 29.800 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.98E+1 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 + 1.000I- = UI+3 - log_k 1.250 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.25E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000Acetate- = UO2(Acetate)+ - log_k 3.020 #11RIC/GRI - delta_h -35.366 #kJ/mol - # Enthalpy of formation: -1540.376 #kJ/mol - -analytic -3.17585E+0 0E+0 1.84729E+3 0E+0 0E+0 - -1.000UO2+2 + 2.000Acetate- = UO2(Acetate)2 - log_k 5.200 #11RIC/GRI - delta_h -34.958 #kJ/mol - # Enthalpy of formation: -2025.978 #kJ/mol - -analytic -9.2437E-1 0E+0 1.82598E+3 0E+0 0E+0 - -1.000UO2+2 + 3.000Acetate- = UO2(Acetate)3- - log_k 7.030 #11RIC/GRI - delta_h -45.947 #kJ/mol - # Enthalpy of formation: -2522.977 #kJ/mol - -analytic -1.01956E+0 0E+0 2.39998E+3 0E+0 0E+0 - -1.000UO2+2 + 1.000CO3-2 = UO2(CO3) - log_k 9.940 #03GUI/FAN - delta_h 5.000 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -1689.23 #kJ/mol - -analytic 1.0816E+1 0E+0 -2.61168E+2 0E+0 0E+0 - -1.000UO2+2 + 2.000CO3-2 = UO2(CO3)2-2 - log_k 16.610 #03GUI/FAN - delta_h 18.500 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -2350.96 #kJ/mol - -analytic 1.98511E+1 0E+0 -9.66321E+2 0E+0 0E+0 - -1.000UO2+2 + 3.000CO3-2 = UO2(CO3)3-4 - log_k 21.840 #03GUI/FAN - delta_h -39.200 #kJ/mol - # Enthalpy of formation: -3083.89 #kJ/mol - -analytic 1.49725E+1 0E+0 2.04756E+3 0E+0 0E+0 - -1.000UO2+ + 3.000CO3-2 = UO2(CO3)3-5 - log_k 6.950 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.95E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000Cit-3 = UO2(Cit)- - log_k 8.960 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.96E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000Edta-4 = UO2(Edta)-2 - log_k 13.700 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.37E+1 0E+0 0E+0 0E+0 0E+0 - -1.000AsO4-3 + 1.000UO2+2 + 2.000H+ = UO2(H2AsO4)+ - log_k 21.960 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.196E+1 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 4.000H+ + 2.000AsO4-3 = UO2(H2AsO4)2 - log_k 41.530 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.153E+1 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000H+ + 2.000H2(PO4)- = UO2(H2PO4)(H3PO4)+ - log_k 5.930 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.93E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000H2(PO4)- = UO2(H2PO4)+ - log_k 3.260 #92GRE/FUG - delta_h -15.340 #kJ/mol - # Enthalpy of formation: -2336.94 #kJ/mol - -analytic 5.72551E-1 0E+0 8.01263E+2 0E+0 0E+0 - -1.000UO2+2 + 2.000H2(PO4)- = UO2(H2PO4)2 - log_k 4.920 #92GRE/FUG - delta_h -51.871 #kJ/mol - # Enthalpy of formation: -6902.925 #kJ/mol - -analytic -4.1674E+0 0E+0 2.70941E+3 0E+0 0E+0 - -1.000UO2+2 + 1.000H+ + 1.000H2(PO4)- = UO2(H3PO4)+2 - log_k 2.900 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000AsO4-3 + 1.000UO2+2 + 1.000H+ = UO2(HAsO4) - log_k 18.760 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.876E+1 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000H+ + 1.000Cit-3 = UO2(HCit) - log_k 11.360 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.136E+1 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000H+ + 1.000Edta-4 = UO2(HEdta)- - log_k 19.610 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.961E+1 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000HIsa- = UO2(HIsa)+ - log_k 3.700 #04RAO/GAR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.7E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 2.000HIsa- = UO2(HIsa)2 - log_k 6.600 #04RAO/GAR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.6E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 3.000HIsa- = UO2(HIsa)3- - log_k 8.500 #04RAO/GAR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.5E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000H+ + 1.000Nta-3 = UO2(HNta) - log_k 9.000 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 - 1.000H+ + 1.000H2(PO4)- = UO2(HPO4) - log_k 0.030 #92GRE/FUG - delta_h 2.795 #kJ/mol - # Enthalpy of formation: -4408.507 #kJ/mol - -analytic 5.19662E-1 0E+0 -1.45993E+2 0E+0 0E+0 - -1.000UO2+2 + 2.000I- + 3.000O2 = UO2(IO3)2 - log_k 38.400 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.84E+1 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000NO3- = UO2(NO3)+ - log_k 0.100 #08RAO/TIA - delta_h 3.900 #kJ/mol #08RAO/TIA - # Enthalpy of formation: -1221.95 #kJ/mol - -analytic 7.8325E-1 0E+0 -2.03711E+2 0E+0 0E+0 - -1.000UO2+2 + 1.000Nta-3 = UO2(Nta)- - log_k 10.800 #95AKR/BOU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.08E+1 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 - 1.000H+ + 1.000Ox-2 + 1.000H2O = UO2(OH)(Ox)- - log_k 0.630 #56GRI/PTI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.3E-1 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 - 1.000H+ + 1.000H2O = UO2(OH)+ - log_k -5.250 #03GUI/FAN - delta_h 43.458 #kJ/mol - # Enthalpy of formation: -1261.372 #kJ/mol - -analytic 2.3635E+0 0E+0 -2.26997E+3 0E+0 0E+0 - -1.000UO2+2 - 2.000H+ + 2.000H2O = UO2(OH)2 - log_k -12.150 #03GUI/FAN - delta_h 111.160 #kJ/mol - # Enthalpy of formation: -1479.5 #kJ/mol #82WAG/EVA - -analytic 7.32437E+0 0E+0 -5.80628E+3 0E+0 0E+0 - -1.000UO2+2 - 3.000H+ + 3.000H2O = UO2(OH)3- - log_k -20.250 #03GUI/FAN - delta_h 148.060 #kJ/mol #Estimated by linear correlations - # Enthalpy of formation: -1728.43 #kJ/mol - -analytic 5.68896E+0 0E+0 -7.7337E+3 0E+0 0E+0 - -1.000UO2+2 - 4.000H+ + 1.000HIsa- + 4.000H2O = UO2(OH)4(HIsa)-3 - log_k -28.100 #06GAO/MON - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.81E+1 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 - 4.000H+ + 4.000H2O = UO2(OH)4-2 - log_k -32.400 #03GUI/FAN - delta_h 156.138 #kJ/mol - # Enthalpy of formation: -2006.182 #kJ/mol - -analytic -5.04584E+0 0E+0 -8.15564E+3 0E+0 0E+0 - -1.000UO2+2 + 1.000Ox-2 = UO2(Ox) - log_k 7.130 #05HUM/AND - delta_h 25.360 #kJ/mol - # Enthalpy of formation: -1824.3 #kJ/mol #05HUM/AND - -analytic 1.15729E+1 0E+0 -1.32464E+3 0E+0 0E+0 - -1.000UO2+2 + 2.000Ox-2 = UO2(Ox)2-2 - log_k 11.650 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.165E+1 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 3.000Ox-2 = UO2(Ox)3-4 - log_k 13.800 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.38E+1 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 - 2.000H+ + 1.000H2(PO4)- = UO2(PO4)- - log_k -6.330 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.33E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000Phthalat-2 = UO2(Phthalat) - log_k 5.560 #11GRI/COL3 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.56E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000S2O3-2 = UO2(S2O3) - log_k 2.800 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.8E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000SO3-2 = UO2(SO3) - log_k 6.600 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.6E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000SO4-2 = UO2(SO4) - log_k 3.150 #03GUI/FAN - delta_h 19.500 #kJ/mol #03GUI/FAN - # Enthalpy of formation: -1908.84 #kJ/mol - -analytic 6.56625E+0 0E+0 -1.01855E+3 0E+0 0E+0 - -1.000UO2+2 + 2.000SO4-2 = UO2(SO4)2-2 - log_k 4.140 #03GUI/FAN - delta_h 35.100 #kJ/mol #03GUI/FAN - # Enthalpy of formation: -2802.58 #kJ/mol - -analytic 1.02892E+1 0E+0 -1.8334E+3 0E+0 0E+0 - -1.000UO2+2 + 3.000SO4-2 = UO2(SO4)3-4 - log_k 3.020 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.02E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000SeO4-2 = UO2(SeO4) - log_k 2.740 #05OLI/NOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.74E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 2.000SeO4-2 = UO2(SeO4)2-2 - log_k 3.100 #99DJO/PIZ recalculated in 05OLI/NOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.1E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000Succinat-2 = UO2(Succinat) - log_k 5.280 #13GRI/CAM - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.28E+0 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000Br- = UO2Br+ - log_k 0.220 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.2E-1 0E+0 0E+0 0E+0 0E+0 - -1.000UO2+2 + 1.000Br- + 1.500O2 = UO2BrO3+ - log_k -16.570 #92GRE/FUG - delta_h 73.011 #kJ/mol - # Enthalpy of formation: -1085.6 #kJ/mol - -analytic -3.77904E+0 0E+0 -3.81362E+3 0E+0 0E+0 - -1.000UO2+2 + 1.000Cl- = UO2Cl+ - log_k 0.170 #92GRE/FUG - delta_h 8.000 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -1178.08 #kJ/mol - -analytic 1.57154E+0 0E+0 -4.17868E+2 0E+0 0E+0 - -1.000UO2+2 + 2.000Cl- = UO2Cl2 - log_k -1.100 #92GRE/FUG - delta_h 15.000 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -1338.16 #kJ/mol - -analytic 1.52788E+0 0E+0 -7.83503E+2 0E+0 0E+0 - -1.000UO2+2 + 1.000Cl- + 1.500O2 = UO2ClO3+ - log_k -16.770 #92GRE/FUG - delta_h 77.381 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -1126.9 #kJ/mol - -analytic -3.21345E+0 0E+0 -4.04189E+3 0E+0 0E+0 - -1.000UO2+2 + 1.000F- = UO2F+ - log_k 5.160 #03GUI/FAN - delta_h 1.700 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -1352.65 #kJ/mol - -analytic 5.45783E+0 0E+0 -8.87971E+1 0E+0 0E+0 - -1.000UO2+2 + 2.000F- = UO2F2 - log_k 8.830 #03GUI/FAN - delta_h 2.100 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -1687.6 #kJ/mol - -analytic 9.1979E+0 0E+0 -1.0969E+2 0E+0 0E+0 - -1.000UO2+2 + 3.000F- = UO2F3- - log_k 10.900 #03GUI/FAN - delta_h 2.350 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -2022.7 #kJ/mol - -analytic 1.13117E+1 0E+0 -1.22749E+2 0E+0 0E+0 - -1.000UO2+2 + 4.000F- = UO2F4-2 - log_k 11.840 #03GUI/FAN - delta_h 0.290 #kJ/mol #92GRE/FUG - # Enthalpy of formation: -2360.11 #kJ/mol - -analytic 1.18908E+1 0E+0 -1.51477E+1 0E+0 0E+0 - -1.000UO2+2 + 1.000I- + 1.500O2 = UO2IO3+ - log_k 19.410 #92GRE/FUG - delta_h -134.919 #kJ/mol - # Enthalpy of formation: -1228.9 #kJ/mol - -analytic -4.22676E+0 0E+0 7.0473E+3 0E+0 0E+0 - -1.000UO2+2 - 1.000H+ + 1.000H4(SiO4) = UO2SiO(OH)3+ - log_k -1.840 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.84E+0 0E+0 0E+0 0E+0 0E+0 - -1.000U+4 + 1.000Ox-2 = UOx+2 - log_k 10.670 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.067E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Zn+2 + 1.000H+ + 1.000Cn- + 1.000HSe- - 1.000H2O + 0.500O2 = Zn(SeCn)+ - log_k 57.230 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.723E+1 0E+0 0E+0 0E+0 0E+0 - -1.000Zn+2 + 2.000H+ + 2.000Cn- + 2.000HSe- - 2.000H2O + 1.000O2 = Zn(SeCn)2 - log_k 113.710 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.1371E+2 0E+0 0E+0 0E+0 0E+0 - -1.000Zn+2 + 1.000SeO4-2 = Zn(SeO4) - log_k 2.160 #05OLI/NOL - delta_h 4.600 #kJ/mol #05OLI/NOL - # Enthalpy of formation: -752.29 #kJ/mol - -analytic 2.96588E+0 0E+0 -2.40274E+2 0E+0 0E+0 - -4.000CO3-2 + 1.000Zr+4 = Zr(CO3)4-4 - log_k 42.900 #05BRO/CUR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.29E+1 0E+0 0E+0 0E+0 0E+0 - -2.000NO3- + 1.000Zr+4 = Zr(NO3)2+2 - log_k 2.640 #05BRO/CUR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.64E+0 0E+0 0E+0 0E+0 0E+0 - -- 1.000H+ + 1.000Zr+4 + 1.000H2O = Zr(OH)+3 - log_k 0.320 #05BRO/CUR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.2E-1 0E+0 0E+0 0E+0 0E+0 - -- 2.000H+ + 1.000Zr+4 + 2.000H2O = Zr(OH)2+2 - log_k 0.980 #05BRO/CUR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.8E-1 0E+0 0E+0 0E+0 0E+0 - -- 4.000H+ + 1.000Zr+4 + 4.000H2O = Zr(OH)4 - log_k -2.190 #05BRO/CUR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.19E+0 0E+0 0E+0 0E+0 0E+0 - -- 6.000H+ + 1.000Zr+4 + 6.000H2O = Zr(OH)6-2 - log_k -29.000 #05BRO/CUR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.9E+1 0E+0 0E+0 0E+0 0E+0 - -2.000SO4-2 + 1.000Zr+4 = Zr(SO4)2 - log_k 11.540 #05BRO/CUR - delta_h 67.380 #kJ/mol - # Enthalpy of formation: -2359.8 #kJ/mol #05BRO/CUR - -analytic 2.33445E+1 0E+0 -3.5195E+3 0E+0 0E+0 - -3.000SO4-2 + 1.000Zr+4 = Zr(SO4)3-2 - log_k 14.300 #05BRO/CUR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.43E+1 0E+0 0E+0 0E+0 0E+0 - -- 4.000H+ + 3.000Zr+4 + 4.000H2O = Zr3(OH)4+8 - log_k 0.400 #05BRO/CUR - delta_h -1.980 #kJ/mol - # Enthalpy of formation: -2970.8 #kJ/mol #05BRO/CUR - -analytic 5.31194E-2 0E+0 1.03422E+2 0E+0 0E+0 - -- 15.000H+ + 4.000Zr+4 + 15.000H2O = Zr4(OH)15+ - log_k 12.580 #05BRO/CUR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.258E+1 0E+0 0E+0 0E+0 0E+0 - -- 16.000H+ + 4.000Zr+4 + 16.000H2O = Zr4(OH)16 - log_k 8.390 #05BRO/CUR - delta_h 301.120 #kJ/mol - # Enthalpy of formation: -6706.16 #kJ/mol #05BRO/CUR - -analytic 6.11439E+1 0E+0 -1.57286E+4 0E+0 0E+0 - -1.000Cl- + 1.000Zr+4 = ZrCl+3 - log_k 1.590 #05BRO/CUR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.59E+0 0E+0 0E+0 0E+0 0E+0 - -2.000Cl- + 1.000Zr+4 = ZrCl2+2 - log_k 2.170 #05BRO/CUR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.17E+0 0E+0 0E+0 0E+0 0E+0 - -1.000F- + 1.000Zr+4 = ZrF+3 - log_k 10.120 #05BRO/CUR - delta_h -17.500 #kJ/mol #05BRO/CUR - # Enthalpy of formation: -961.35 #kJ/mol - -analytic 7.05414E+0 0E+0 9.14087E+2 0E+0 0E+0 - -2.000F- + 1.000Zr+4 = ZrF2+2 - log_k 18.550 #05BRO/CUR - delta_h -16.800 #kJ/mol #05BRO/CUR - # Enthalpy of formation: -1296 #kJ/mol - -analytic 1.56068E+1 0E+0 8.77524E+2 0E+0 0E+0 - -3.000F- + 1.000Zr+4 = ZrF3+ - log_k 24.720 #05BRO/CUR - delta_h -11.200 #kJ/mol #05BRO/CUR - # Enthalpy of formation: -1625.75 #kJ/mol - -analytic 2.27578E+1 0E+0 5.85016E+2 0E+0 0E+0 - -4.000F- + 1.000Zr+4 = ZrF4 - log_k 30.110 #05BRO/CUR - delta_h -22.000 #kJ/mol #05BRO/CUR - # Enthalpy of formation: -1971.9 #kJ/mol - -analytic 2.62558E+1 0E+0 1.14914E+3 0E+0 0E+0 - -5.000F- + 1.000Zr+4 = ZrF5- - log_k 34.600 #05BRO/CUR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.46E+1 0E+0 0E+0 0E+0 0E+0 - -6.000F- + 1.000Zr+4 = ZrF6-2 - log_k 38.110 #05BRO/CUR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.811E+1 0E+0 0E+0 0E+0 0E+0 - -1.000NO3- + 1.000Zr+4 = ZrNO3+3 - log_k 1.590 #05BRO/CUR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.59E+0 0E+0 0E+0 0E+0 0E+0 - -1.000SO4-2 + 1.000Zr+4 = ZrSO4+2 - log_k 7.040 #05BRO/CUR - delta_h 36.940 #kJ/mol - # Enthalpy of formation: -1480.9 #kJ/mol #05BRO/CUR - -analytic 1.35116E+1 0E+0 -1.92951E+3 0E+0 0E+0 - - ++1.000Acetate- = Acetate- + log_k +0.00 +# Enthalpy of formation: -486.010 kJ/mol 82WAG/EVA + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Adipate-2 = Adipate-2 + log_k +0.00 + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ag+ = Ag+ + log_k +0.00 +# Enthalpy of formation: +105.790 kJ/mol 95SIL/BID + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 = Al+3 + log_k +0.00 +# Enthalpy of formation: -538.400 kJ/mol 95POK/HEL + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Am+3 = Am+3 + log_k +0.00 +# Enthalpy of formation: -616.700 kJ/mol 95SIL/BID + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000AsO4-3 = AsO4-3 + log_k +0.00 +# Enthalpy of formation: -888.140 kJ/mol 09RAN/FUG + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000B(OH)4- = B(OH)4- + log_k +0.00 +# Enthalpy of formation: -1345.116 kJ/mol 99RAR/RAN + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ba+2 = Ba+2 + log_k +0.00 +# Enthalpy of formation: -534.800 kJ/mol 95SIL/BID + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Be+2 = Be+2 + log_k +0.00 +# Enthalpy of formation: -382.800 kJ/mol 89COX/WAG + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Br- = Br- + log_k +0.00 +# Enthalpy of formation: -121.410 kJ/mol 95SIL/BID + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 = Ca+2 + log_k +0.00 +# Enthalpy of formation: -543.000 kJ/mol 89COX/WAG + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cd+2 = Cd+2 + log_k +0.00 +# Enthalpy of formation: -75.920 kJ/mol 89COX/WAG + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cit-3 = Cit-3 + log_k +0.00 +# Enthalpy of formation: -1519.920 kJ/mol 05HUM/AND + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cl- = Cl- + log_k +0.00 +# Enthalpy of formation: -167.080 kJ/mol 89COX/WAG + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cm+3 = Cm+3 + log_k +0.00 +# Enthalpy of formation: -615.000 kJ/mol 01KON2 + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Co+2 = Co+2 + log_k +0.00 +# Enthalpy of formation: -57.600 kJ/mol 98PLY/ZHA1 + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000CO3-2 = CO3-2 + log_k +0.00 +# Enthalpy of formation: -675.230 kJ/mol 89COX/WAG + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000CrO4-2 = CrO4-2 + log_k +0.00 +# Enthalpy of formation: -879.000 kJ/mol + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cs+ = Cs+ + log_k +0.00 +# Enthalpy of formation: -258.000 kJ/mol 95SIL/BID + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cu+2 = Cu+2 + log_k +0.00 +# Enthalpy of formation: +64.900 kJ/mol 92GRE/FUG + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000e- = e- + log_k +0.00 +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Edta-4 = Edta-4 + log_k +0.00 +# Enthalpy of formation: -1704.800 kJ/mol 05HUM/AND + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 = Eu+3 + log_k +0.00 +# Enthalpy of formation: -605.325 kJ/mol + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000F- = F- + log_k +0.00 +# Enthalpy of formation: -335.350 kJ/mol 95SIL/BID + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+2 = Fe+2 + log_k +0.00 +# Enthalpy of formation: -90.295 kJ/mol 13LEM/BER + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H+ = H+ + log_k +0.00 +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H2(PO4)- = H2(PO4)- + log_k +0.00 +# Enthalpy of formation: -1302.600 kJ/mol 89COX/WAG + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H2O = H2O + log_k +0.00 +# Enthalpy of formation: -285.830 kJ/mol 89COX/WAG + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H4(SiO4) = H4(SiO4) + log_k +0.00 +# Enthalpy of formation: -1461.194 kJ/mol + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Hf+4 = Hf+4 + log_k +0.00 +# Enthalpy of formation: -628.910 kJ/mol 99VAS/LYT + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Hg+2 = Hg+2 + log_k +0.00 +# Enthalpy of formation: +170.210 kJ/mol 89COX/WAG + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000HGlu- = HGlu- + log_k +0.00 + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000HIsa- = HIsa- + log_k +0.00 + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ho+3 = Ho+3 + log_k +0.00 +# Enthalpy of formation: -707.042 kJ/mol + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000I- = I- + log_k +0.00 +# Enthalpy of formation: -56.780 kJ/mol 92GRE/FUG + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000K+ = K+ + log_k +0.00 +# Enthalpy of formation: -252.140 kJ/mol 89COX/WAG + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Li+ = Li+ + log_k +0.00 +# Enthalpy of formation: -278.470 kJ/mol 92GRE/FUG + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Malonate-2 = Malonate-2 + log_k +0.00 + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mg+2 = Mg+2 + log_k +0.00 +# Enthalpy of formation: -467.000 kJ/mol 89COX/WAG + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mn+2 = Mn+2 + log_k +0.00 +# Enthalpy of formation: -220.800 kJ/mol 95ROB/HEM + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000MoO4-2 = MoO4-2 + log_k +0.00 +# Enthalpy of formation: -997.000 kJ/mol 74OHA + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Na+ = Na+ + log_k +0.00 +# Enthalpy of formation: -240.340 kJ/mol 92GRE/FUG (89COX/WAG) + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Nb(OH)6- = Nb(OH)6- + log_k +0.00 +# Enthalpy of formation: -1925.658 kJ/mol + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 = Ni+2 + log_k +0.00 +# Enthalpy of formation: -55.012 kJ/mol 05GAM/BUG + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000NO3- = NO3- + log_k +0.00 +# Enthalpy of formation: -206.850 kJ/mol 92GRE/FUG + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000NpO2+2 = NpO2+2 + log_k +0.00 +# Enthalpy of formation: -860.733 kJ/mol 01LEM/FUG + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Nta-3 = Nta-3 + log_k +0.00 + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ox-2 = Ox-2 + log_k +0.00 +# Enthalpy of formation: -830.660 kJ/mol 05HUM/AND + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pa+4 = Pa+4 + log_k +0.00 +# Enthalpy of formation: -620.000 kJ/mol 85BAR/PAR + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pb+2 = Pb+2 + log_k +0.00 +# Enthalpy of formation: +0.920 kJ/mol 89COX/WAG + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pd+2 = Pd+2 + log_k +0.00 +# Enthalpy of formation: +189.889 kJ/mol + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Phthalat-2 = Phthalat-2 + log_k +0.00 + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000PuO2+2 = PuO2+2 + log_k +0.00 +# Enthalpy of formation: -822.036 kJ/mol 01LEM/FUG + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pyrophos-4 = Pyrophos-4 + log_k +0.00 + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ra+2 = Ra+2 + log_k +0.00 +# Enthalpy of formation: -528.025 kJ/mol + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Rb+ = Rb+ + log_k +0.00 +# Enthalpy of formation: -251.120 kJ/mol 92GRE/FUG + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sb(OH)3 = Sb(OH)3 + log_k +0.00 +# Enthalpy of formation: -773.893 kJ/mol + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000SeO4-2 = SeO4-2 + log_k +0.00 +# Enthalpy of formation: -603.500 kJ/mol 05OLI/NOL + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sm+3 = Sm+3 + log_k +0.00 +# Enthalpy of formation: -691.198 kJ/mol + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sn+2 = Sn+2 + log_k +0.00 +# Enthalpy of formation: -9.617 kJ/mol 12GAM/GAJ + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000SO4-2 = SO4-2 + log_k +0.00 +# Enthalpy of formation: -909.340 kJ/mol 89COX/WAG + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sr+2 = Sr+2 + log_k +0.00 +# Enthalpy of formation: -550.900 kJ/mol 84BUS/PLUS + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Suberate-2 = Suberate-2 + log_k +0.00 + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Succinat-2 = Succinat-2 + log_k +0.00 + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000TcO(OH)2 = TcO(OH)2 + log_k +0.00 +# Enthalpy of formation: -749.243 kJ/mol + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 = Th+4 + log_k +0.00 +# Enthalpy of formation: -768.700 kJ/mol 09RAN/FUG + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 = UO2+2 + log_k +0.00 +# Enthalpy of formation: -1019.000 kJ/mol 92GRE/FUG + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Zn+2 = Zn+2 + log_k +0.00 +# Enthalpy of formation: -153.390 kJ/mol 92GRE/FUG + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Zr+4 = Zr+4 + log_k +0.00 +# Enthalpy of formation: -608.500 kJ/mol 05BRO/CUR + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Am+3 +1.000e- = Am+2 + log_k -38.88 #95SIL/BID + delta_h +262.076 #kJ/mol +# Enthalpy of formation: -354.624 kJ/mol + -analytic 70.33744E-1 00.00000E+0 -13.68918E+3 00.00000E+0 00.00000E+0 + ++1.000Am+3 -1.000e- = Am+4 + log_k -44.21 + delta_h +210.700 #kJ/mol +# Enthalpy of formation: -406.000 kJ/mol 95SIL/BID + -analytic -72.96945E-1 00.00000E+0 -11.00563E+3 00.00000E+0 00.00000E+0 + +-4.000H+ +1.000Am+3 -2.000e- +2.000H2O = AmO2+ + log_k -58.37 + delta_h +384.100 #kJ/mol 95SIL/BID +# Enthalpy of formation: -804.260 kJ/mol + -analytic 89.21431E-1 00.00000E+0 -20.06294E+3 00.00000E+0 00.00000E+0 + +-4.000H+ +1.000Am+3 -3.000e- +2.000H2O = AmO2+2 + log_k -85.35 + delta_h +537.600 #kJ/mol 95SIL/BID +# Enthalpy of formation: -650.760 kJ/mol + -analytic 88.33477E-1 00.00000E+0 -28.08080E+3 00.00000E+0 00.00000E+0 + ++10.000H+ +8.000e- +1.000CO3-2 -3.000H2O = CH4 + log_k +37.93 + delta_h -270.166 #kJ/mol +# Enthalpy of formation: -87.906 kJ/mol 01SCH/SHO + -analytic -94.01051E-1 00.00000E+0 14.11175E+3 00.00000E+0 00.00000E+0 + ++8.000H+ +4.000e- +1.000CrO4-2 -4.000H2O = Cr+2 + log_k +67.22 #04CHI + delta_h -421.933 #kJ/mol +# Enthalpy of formation: -157.614 kJ/mol + -analytic -66.99489E-1 00.00000E+0 22.03910E+3 00.00000E+0 00.00000E+0 + ++8.000H+ +3.000e- +1.000CrO4-2 -4.000H2O = Cr+3 + log_k +73.62 + delta_h -504.820 #kJ/mol +# Enthalpy of formation: -240.500 kJ/mol 04CHI + -analytic -14.82067E+0 00.00000E+0 26.36859E+3 00.00000E+0 00.00000E+0 + ++1.000Cu+2 +1.000e- = Cu+ + log_k +2.83 #80CIA/FER + delta_h +5.689 #kJ/mol +# Enthalpy of formation: +70.589 kJ/mol + -analytic 38.26670E-1 00.00000E+0 -29.71572E+1 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +1.000e- = Eu+2 + log_k -5.97 + delta_h +77.723 #kJ/mol +# Enthalpy of formation: -527.602 kJ/mol 92JOH/OEL + -analytic 76.46485E-1 00.00000E+0 -40.59755E+2 00.00000E+0 00.00000E+0 + ++1.000Fe+2 -1.000e- = Fe+3 + log_k -13.05 + delta_h +40.239 #kJ/mol +# Enthalpy of formation: -50.056 kJ/mol 13LEM/BER + -analytic -60.00430E-1 00.00000E+0 -21.01829E+2 00.00000E+0 00.00000E+0 + ++2.000H+ +2.000e- = H2 + log_k -3.08 + delta_h -4.200 #kJ/mol +# Enthalpy of formation: -4.200 kJ/mol 82WAG/EVA + -analytic -38.15808E-1 00.00000E+0 21.93813E+1 00.00000E+0 00.00000E+0 + ++5.000H+ +2.000e- +1.000AsO4-3 -1.000H2O = H3(AsO3) + log_k +40.02 + delta_h -139.890 #kJ/mol +# Enthalpy of formation: -742.200 kJ/mol 09RAN/FUG + -analytic 15.51232E+0 00.00000E+0 73.06964E+2 00.00000E+0 00.00000E+0 + ++2.000e- +2.000Hg+2 = Hg2+2 + log_k +30.79 + delta_h -173.600 #kJ/mol +# Enthalpy of formation: +166.820 kJ/mol 85BAR/PAR + -analytic 37.65855E-2 00.00000E+0 90.67760E+2 00.00000E+0 00.00000E+0 + ++9.000H+ +8.000e- +1.000SO4-2 -4.000H2O = HS- + log_k +33.69 + delta_h -250.280 #kJ/mol +# Enthalpy of formation: -16.300 kJ/mol 89COX/WAG + -analytic -10.15717E+0 00.00000E+0 13.07303E+3 00.00000E+0 00.00000E+0 + ++9.000H+ +8.000e- +1.000SeO4-2 -4.000H2O = HSe- + log_k +81.57 + delta_h -525.520 #kJ/mol +# Enthalpy of formation: +14.300 kJ/mol 05OLI/NOL + -analytic -10.49715E+0 00.00000E+0 27.44982E+3 00.00000E+0 00.00000E+0 + +-6.000H+ -6.000e- +1.000I- +3.000H2O = IO3- + log_k -111.56 + delta_h +694.570 #kJ/mol +# Enthalpy of formation: -219.700 kJ/mol 92GRE/FUG + -analytic 10.12344E+0 00.00000E+0 -36.27992E+3 00.00000E+0 00.00000E+0 + ++9.000H+ +8.000e- +1.000NO3- -3.000H2O = NH3 + log_k +109.90 + delta_h -731.810 #kJ/mol +# Enthalpy of formation: -81.170 kJ/mol 95SIL/BID + -analytic -18.30761E+0 00.00000E+0 38.22510E+3 00.00000E+0 00.00000E+0 + ++1.000Np+4 +1.000e- = Np+3 + log_k +3.70 + delta_h +28.838 #kJ/mol +# Enthalpy of formation: -527.184 kJ/mol 01LEM/FUG + -analytic 87.52201E-1 00.00000E+0 -15.06314E+2 00.00000E+0 00.00000E+0 + ++1.000NpO2+ +4.000H+ +1.000e- -2.000H2O = Np+4 + log_k +10.21 + delta_h -149.501 #kJ/mol +# Enthalpy of formation: -556.022 kJ/mol 03GUI/FAN + -analytic -15.98145E+0 00.00000E+0 78.08981E+2 00.00000E+0 00.00000E+0 + ++1.000NpO2+2 +1.000e- = NpO2+ + log_k +19.59 + delta_h -117.448 #kJ/mol +# Enthalpy of formation: -978.181 kJ/mol 01LEM/FUG + -analytic -98.60064E-2 00.00000E+0 61.34736E+2 00.00000E+0 00.00000E+0 + +-4.000H+ -4.000e- +2.000H2O = O2 + log_k -85.99 + delta_h +559.526 #kJ/mol +# Enthalpy of formation: -12.134 kJ/mol 89SHO/HEL (Uncertainty in order to cover available data) + -analytic 12.03475E+0 00.00000E+0 -29.22608E+3 00.00000E+0 00.00000E+0 + +-4.000H+ -1.000e- +1.000Pa+4 +2.000H2O = PaO2+ + log_k +4.22 #85BAR/PAR, 76BAE/MES + -analytic 42.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+4 +1.000e- = Pu+3 + log_k +17.69 + delta_h -51.895 #kJ/mol +# Enthalpy of formation: -591.790 kJ/mol 01LEM/FUG + -analytic 85.98386E-1 00.00000E+0 27.10665E+2 00.00000E+0 00.00000E+0 + ++1.000PuO2+ +4.000H+ +1.000e- -2.000H2O = Pu+4 + log_k +17.45 + delta_h -201.428 #kJ/mol +# Enthalpy of formation: -539.895 kJ/mol 01LEM/FUG + -analytic -17.83867E+0 00.00000E+0 10.52132E+3 00.00000E+0 00.00000E+0 + ++1.000PuO2+2 +1.000e- = PuO2+ + log_k +15.82 + delta_h -88.091 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -910.127 kJ/mol + -analytic 38.71193E-2 00.00000E+0 46.01313E+2 00.00000E+0 00.00000E+0 + ++10.000H+ +8.000e- +2.000SO4-2 -5.000H2O = S2O3-2 + log_k +38.57 + delta_h -262.756 #kJ/mol +# Enthalpy of formation: -652.286 kJ/mol 04CHI + -analytic -74.62875E-1 00.00000E+0 13.72470E+3 00.00000E+0 00.00000E+0 + ++8.000H+ +6.000e- +2.000SO4-2 -4.000H2O = S2O4-2 + log_k +10.70 + delta_h -78.140 #kJ/mol +# Enthalpy of formation: -753.500 kJ/mol 82WAG/EVA + -analytic -29.89540E-1 00.00000E+0 40.81536E+2 00.00000E+0 00.00000E+0 + +-2.000H+ -2.000e- +1.000Sb(OH)3 +2.000H2O = Sb(OH)5 + log_k -21.74 #99LOT/OCH recalculated + -analytic -21.74000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000H+ +2.000e- +1.000SeO4-2 -1.000H2O = SeO3-2 + log_k +28.04 #05OLI/NOL + delta_h -189.490 #kJ/mol +# Enthalpy of formation: -507.160 kJ/mol 05OLI/NOL + -analytic -51.57223E-1 00.00000E+0 98.97752E+2 00.00000E+0 00.00000E+0 + ++1.000Sn+2 -2.000e- = Sn+4 + log_k -12.98 #12GAM/GAJ; Eº=0.384V for Sn2+/Sn4+ reaction ( I=0) + delta_h -21.894 #kJ/mol +# Enthalpy of formation: -31.511 kJ/mol + -analytic -16.81566E+0 00.00000E+0 11.43603E+2 00.00000E+0 00.00000E+0 + ++2.000H+ +2.000e- +1.000SO4-2 -1.000H2O = SO3-2 + log_k -3.62 + delta_h -7.550 #kJ/mol +# Enthalpy of formation: -631.060 kJ/mol 85GOL/PAR + -analytic -49.42703E-1 00.00000E+0 39.43640E+1 00.00000E+0 00.00000E+0 + ++1.000TcO(OH)2 -4.000H+ -3.000e- +1.000H2O = TcO4- + log_k -30.17 + delta_h +305.673 #kJ/mol +# Enthalpy of formation: -729.400 kJ/mol 99RAR/RAN + -analytic 23.38161E+0 00.00000E+0 -15.96641E+3 00.00000E+0 00.00000E+0 + ++1.000e- +1.000TcO4- = TcO4-2 + log_k -10.80 #20GRE/GAO + -analytic -10.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000U+4 +1.000e- = U+3 + log_k -9.35 #92GRE/FUG + delta_h +102.100 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -489.100 kJ/mol + -analytic 85.37152E-1 00.00000E+0 -53.33054E+2 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +4.000H+ +2.000e- -2.000H2O = U+4 + log_k +9.04 #92GRE/FUG + delta_h -143.860 #kJ/mol +# Enthalpy of formation: -591.200 kJ/mol 92GRE/FUG + -analytic -16.16319E+0 00.00000E+0 75.14331E+2 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000e- = UO2+ + log_k +1.48 + delta_h -6.127 #kJ/mol +# Enthalpy of formation: -1025.127 kJ/mol + -analytic 40.65957E-2 00.00000E+0 32.00355E+1 00.00000E+0 00.00000E+0 + +-2.000H+ +2.000CH4 +1.000Hg+2 = (CH3)2Hg + log_k +19.00 #18BLA/BUR + -analytic 19.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-3.000H+ +2.000CH4 +1.000H2O +2.000Hg+2 = (CH3Hg)2OH+ + log_k +3.85 #18BLA/BUR + -analytic 38.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000NpO2+2 -2.000H+ +2.000H2O = (NpO2)2(OH)2+2 + log_k -6.27 #01LEM/FUG + delta_h +44.995 #kJ/mol +# Enthalpy of formation: -2248.130 kJ/mol + -analytic 16.12786E-1 00.00000E+0 -23.50253E+2 00.00000E+0 00.00000E+0 + ++2.000NpO2+2 -3.000H+ +1.000CO3-2 +3.000H2O = (NpO2)2CO3(OH)3- + log_k -1.78 #20GRE/GAO + -analytic -17.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++3.000NpO2+2 +6.000CO3-2 = (NpO2)3(CO3)6-6 + log_k +51.43 #20GRE/GAO + -analytic 51.43000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++3.000NpO2+2 -5.000H+ +5.000H2O = (NpO2)3(OH)5+ + log_k -17.12 #01LEM/FUG + delta_h +110.665 #kJ/mol +# Enthalpy of formation: -3900.682 kJ/mol + -analytic 22.67676E-1 00.00000E+0 -57.80436E+2 00.00000E+0 00.00000E+0 + ++2.000PuO2+2 -2.000H+ +2.000H2O = (PuO2)2(OH)2+2 + log_k -7.50 #01LEM/FUG + delta_h +43.583 #kJ/mol +# Enthalpy of formation: -2172.149 kJ/mol + -analytic 13.54138E-2 00.00000E+0 -22.76499E+2 00.00000E+0 00.00000E+0 + ++3.000PuO2+2 +6.000CO3-2 = (PuO2)3(CO3)6-6 + log_k +51.00 #20GRE/GAO + -analytic 51.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++11.000UO2+2 -12.000H+ +6.000CO3-2 +12.000H2O = (UO2)11(CO3)6(OH)12-2 + log_k +36.40 #03GUI/FAN + -analytic 36.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000UO2+2 -1.000H+ +1.000Cit-3 +1.000H2O = (UO2)2(Cit)(OH) + log_k +9.65 #12BER/CRE + -analytic 96.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000UO2+2 -2.000H+ +1.000Cit-3 +2.000H2O = (UO2)2(Cit)(OH)2- + log_k +5.30 #12BER/CRE + -analytic 53.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000UO2+2 -2.000H+ +2.000Cit-3 +2.000H2O = (UO2)2(Cit)2(OH)2-4 + log_k +9.29 #12BER/CRE + -analytic 92.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000UO2+2 -1.000H+ +2.000Cit-3 +1.000H2O = (UO2)2(Cit)2(OH)-3 + log_k +16.04 #12BER/CRE + -analytic 16.04000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000UO2+2 +2.000Cit-3 = (UO2)2(Cit)2-2 + log_k +21.30 #05HUM/AND + -analytic 21.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000UO2+2 -3.000H+ +1.000CO3-2 +3.000H2O = (UO2)2(CO3)(OH)3- + log_k -0.86 #03GUI/FAN + -analytic -86.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000UO2+2 +1.000Edta-4 = (UO2)2(Edta) + log_k +20.60 #05HUM/AND + -analytic 20.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000UO2+2 +1.000NpO2+2 +6.000CO3-2 = (UO2)2(NpO2)(CO3)6-6 + log_k +53.59 #01LEM/FUG + -analytic 53.59000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000UO2+2 -1.000H+ +1.000H2O = (UO2)2(OH)+3 + log_k -2.70 #92GRE/FUG + delta_h +14.353 #kJ/mol +# Enthalpy of formation: -2309.477 kJ/mol + -analytic -18.54623E-2 00.00000E+0 -74.97094E+1 00.00000E+0 00.00000E+0 + ++2.000UO2+2 -2.000H+ +2.000H2O = (UO2)2(OH)2+2 + log_k -5.62 #20GRE/GAO + delta_h +47.800 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2561.860 kJ/mol + -analytic 27.54201E-1 00.00000E+0 -24.96768E+2 00.00000E+0 00.00000E+0 + ++3.000UO2+2 -3.000H+ +1.000CO3-2 +3.000H2O = (UO2)3(CO3)(OH)3+ + log_k +0.66 #03GUI/FAN + delta_h +81.131 #kJ/mol +# Enthalpy of formation: -4508.589 kJ/mol + -analytic 14.87354E+0 00.00000E+0 -42.37767E+2 00.00000E+0 00.00000E+0 + ++3.000UO2+2 +6.000CO3-2 = (UO2)3(CO3)6-6 + log_k +54.00 #92GRE/FUG + delta_h -62.700 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -7171.080 kJ/mol + -analytic 43.01543E+0 00.00000E+0 32.75049E+2 00.00000E+0 00.00000E+0 + ++3.000UO2+2 -4.000H+ +4.000H2O = (UO2)3(OH)4+2 + log_k -11.90 #92GRE/FUG + delta_h +99.200 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -4101.120 kJ/mol + -analytic 54.79094E-1 00.00000E+0 -51.81577E+2 00.00000E+0 00.00000E+0 + ++3.000UO2+2 -5.000H+ +5.000H2O = (UO2)3(OH)5+ + log_k -15.55 #92GRE/FUG + delta_h +120.700 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -4365.450 kJ/mol + -analytic 55.95732E-1 00.00000E+0 -63.04600E+2 00.00000E+0 00.00000E+0 + ++3.000UO2+2 -7.000H+ +7.000H2O = (UO2)3(OH)7- + log_k -32.20 #92SAN/BRU + delta_h +227.015 #kJ/mol +# Enthalpy of formation: -4830.794 kJ/mol + -analytic 75.71321E-1 00.00000E+0 -11.85782E+3 00.00000E+0 00.00000E+0 + ++4.000UO2+2 -7.000H+ +7.000H2O = (UO2)4(OH)7+ + log_k -21.90 #92GRE/FUG + -analytic -21.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ag+ +2.000CO3-2 = Ag(CO3)2-3 + log_k +2.16 #97SVE/SHO + delta_h -28.115 #kJ/mol +# Enthalpy of formation: -1272.786 kJ/mol + -analytic -27.65537E-1 00.00000E+0 14.68549E+2 00.00000E+0 00.00000E+0 + ++1.000Ag+ +1.000HS- = Ag(HS) + log_k +14.05 #74NAU/RYZ in 91BAL/NOR; Uncertainty to include available data. + delta_h -78.811 #kJ/mol +# Enthalpy of formation: +10.679 kJ/mol + -analytic 24.29055E-2 00.00000E+0 41.16585E+2 00.00000E+0 00.00000E+0 + ++1.000Ag+ +2.000HS- = Ag(HS)2- + log_k +18.45 #74NAU/RYZ in 91BAL/NOR; Uncertainty to include available data. + delta_h -105.805 #kJ/mol +# Enthalpy of formation: -32.615 kJ/mol + -analytic -86.24032E-3 00.00000E+0 55.26580E+2 00.00000E+0 00.00000E+0 + ++1.000Ag+ -1.000H+ +1.000H2O = Ag(OH) + log_k -12.00 #76BAE/MES + delta_h +47.198 #kJ/mol +# Enthalpy of formation: -132.842 kJ/mol + -analytic -37.31265E-1 00.00000E+0 -24.65323E+2 00.00000E+0 00.00000E+0 + ++1.000Ag+ -2.000H+ +2.000H2O = Ag(OH)2- + log_k -24.00 #76BAE/MES + delta_h +111.635 #kJ/mol +# Enthalpy of formation: -354.235 kJ/mol + -analytic -44.42388E-1 00.00000E+0 -58.31102E+2 00.00000E+0 00.00000E+0 + ++1.000Ag+ +1.000S2O3-2 = Ag(S2O3)- + log_k +9.23 #74BEL/MAR in 82HÖG + delta_h -58.994 #kJ/mol 74BEL/MAR in 82HÖG +# Enthalpy of formation: -605.490 kJ/mol + -analytic -11.05305E-1 00.00000E+0 30.81471E+2 00.00000E+0 00.00000E+0 + ++1.000Ag+ +2.000S2O3-2 = Ag(S2O3)2-3 + log_k +13.64 #72POU/RIG in 82HÖG + delta_h -86.918 #kJ/mol +# Enthalpy of formation: -1285.700 kJ/mol 82WAG/EVA + -analytic -15.87380E-1 00.00000E+0 45.40043E+2 00.00000E+0 00.00000E+0 + ++1.000Ag+ +1.000SeO3-2 = Ag(SeO3)- + log_k +3.20 #Data from 68MEH and 69MEH/GUB in 05OLI/NOL corrected to I=0 by DH + -analytic 32.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ag+ +1.000SO3-2 = Ag(SO3)- + log_k +5.43 + -analytic 54.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ag+ +1.000SO4-2 = Ag(SO4)- + log_k +1.38 + delta_h +4.645 #kJ/mol +# Enthalpy of formation: -798.904 kJ/mol + -analytic 21.93769E-1 00.00000E+0 -24.26252E+1 00.00000E+0 00.00000E+0 + ++1.000Ag+ +1.000Br- = AgBr + log_k +4.24 #91BAL/NOR, 68WAG + delta_h -23.129 #kJ/mol +# Enthalpy of formation: -38.748 kJ/mol + -analytic 18.79731E-2 00.00000E+0 12.08112E+2 00.00000E+0 00.00000E+0 + ++1.000Ag+ +2.000Br- = AgBr2- + log_k +7.28 #91BAL/NOR, 68WAG + delta_h -45.296 #kJ/mol +# Enthalpy of formation: -182.325 kJ/mol + -analytic -65.55186E-2 00.00000E+0 23.65975E+2 00.00000E+0 00.00000E+0 + ++1.000Ag+ +3.000Br- = AgBr3-2 + log_k +8.71 #91BAL/NOR, 68WAG + delta_h -66.741 #kJ/mol +# Enthalpy of formation: -325.180 kJ/mol + -analytic -29.82521E-1 00.00000E+0 34.86125E+2 00.00000E+0 00.00000E+0 + ++1.000Ag+ +1.000Cl- = AgCl + log_k +3.27 #91BAL/NOR; Uncertainty to include available data. + delta_h -17.100 #kJ/mol +# Enthalpy of formation: -78.390 kJ/mol + -analytic 27.42086E-2 00.00000E+0 89.31952E+1 00.00000E+0 00.00000E+0 + ++1.000Ag+ +2.000Cl- = AgCl2- + log_k +5.27 #91BAL/NOR; Uncertainty to include available data. + delta_h -28.754 #kJ/mol +# Enthalpy of formation: -257.124 kJ/mol + -analytic 23.25154E-2 00.00000E+0 15.01926E+2 00.00000E+0 00.00000E+0 + ++1.000Ag+ +3.000Cl- = AgCl3-2 + log_k +5.29 #91BAL/NOR; Uncertainty to include available data. + delta_h -29.167 #kJ/mol +# Enthalpy of formation: -424.616 kJ/mol + -analytic 18.01609E-2 00.00000E+0 15.23499E+2 00.00000E+0 00.00000E+0 + ++1.000Ag+ +4.000Cl- = AgCl4-3 + log_k +5.51 #91BAL/NOR; Uncertainty to include available data. + delta_h -26.099 #kJ/mol +# Enthalpy of formation: -588.628 kJ/mol + -analytic 93.76515E-2 00.00000E+0 13.63246E+2 00.00000E+0 00.00000E+0 + ++1.000Ag+ +1.000CO3-2 = AgCO3- + log_k +2.69 #97SVE/SHO + delta_h -22.838 #kJ/mol +# Enthalpy of formation: -592.278 kJ/mol + -analytic -13.11046E-1 00.00000E+0 11.92912E+2 00.00000E+0 00.00000E+0 + ++1.000Ag+ +1.000I- = AgI + log_k +6.58 #76SMI/MAR + delta_h -36.962 #kJ/mol +# Enthalpy of formation: +12.048 kJ/mol + -analytic 10.45356E-2 00.00000E+0 19.30660E+2 00.00000E+0 00.00000E+0 + ++1.000Ag+ +2.000I- = AgI2- + log_k +11.70 #76SMI/MAR + delta_h -76.578 #kJ/mol +# Enthalpy of formation: -84.347 kJ/mol + -analytic -17.15890E-1 00.00000E+0 39.99948E+2 00.00000E+0 00.00000E+0 + ++1.000Ag+ +3.000I- = AgI3-2 + log_k +13.28 + delta_h -114.914 #kJ/mol +# Enthalpy of formation: -179.463 kJ/mol + -analytic -68.52069E-1 00.00000E+0 60.02376E+2 00.00000E+0 00.00000E+0 + ++1.000Ag+ +1.000NO3- = AgNO3 + log_k -0.29 #91BAL/NOR, 68WAG; Uncertainty to include available data. + delta_h -0.740 #kJ/mol +# Enthalpy of formation: -101.800 kJ/mol 82WAG/EVA + -analytic -41.96424E-2 00.00000E+0 38.65289E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 +1.000Cit-3 = Al(Cit) + log_k +9.90 #95AKR/BOU + -analytic 99.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 -1.000H+ +2.000Cit-3 +1.000H2O = Al(Cit)2(OH)-4 + log_k +10.19 #95AKR/BOU + -analytic 10.19000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 +2.000Cit-3 = Al(Cit)2-3 + log_k +14.13 #95AKR/BOU + -analytic 14.13000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 +1.000Edta-4 = Al(Edta)- + log_k +19.08 #95AKR/BOU + -analytic 19.08000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 +1.000H+ +1.000Cit-3 = Al(HCit)+ + log_k +12.90 #95AKR/BOU + -analytic 12.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 +1.000H+ +1.000Edta-4 = Al(HEdta) + log_k +21.82 #95AKR/BOU + -analytic 21.82000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 +1.000HGlu- = Al(HGlu)+2 + log_k +3.20 #08LAK/KIS + -analytic 32.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 +1.000H+ +1.000Nta-3 = Al(HNta)+ + log_k +15.13 #95AKR/BOU + -analytic 15.13000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 +1.000H+ +1.000Ox-2 = Al(HOx)+2 + log_k +7.50 #95AKR/BOU + -analytic 75.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 +1.000IO3- = Al(IO3)+2 + log_k +2.46 #estimation NEA87 08/2/95 + -analytic 24.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 +2.000IO3- = Al(IO3)2+ + log_k +4.30 #estimation NEA87 08/2/95 + -analytic 43.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 +1.000Nta-3 = Al(Nta) + log_k +13.23 #95AKR/BOU + -analytic 13.23000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 -2.000H+ +1.000Nta-3 +2.000H2O = Al(Nta)(OH)2-2 + log_k -0.30 #95AKR/BOU + -analytic -30.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 +2.000Nta-3 = Al(Nta)2-3 + log_k +20.80 #95AKR/BOU + -analytic 20.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 -1.000H+ +1.000Cit-3 +1.000H2O = Al(OH)(Cit)- + log_k +8.10 #95AKR/BOU + -analytic 81.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 -1.000H+ +1.000Edta-4 +1.000H2O = Al(OH)(Edta)-2 + log_k +13.00 #95AKR/BOU + -analytic 13.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 -1.000H+ +1.000HGlu- +1.000H2O = Al(OH)(HGlu)+ + log_k -0.39 #08LAK/KIS + -analytic -39.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 -1.000H+ +2.000HGlu- +1.000H2O = Al(OH)(HGlu)2 + log_k +2.85 #08LAK/KIS + -analytic 28.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 -1.000H+ +1.000Nta-3 +1.000H2O = Al(OH)(Nta)- + log_k +6.79 #95AKR/BOU + -analytic 67.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 -1.000H+ +1.000H2O = Al(OH)+2 + log_k -4.95 #95POK/HEL + delta_h +49.759 #kJ/mol +# Enthalpy of formation: -774.471 kJ/mol + -analytic 37.67403E-1 00.00000E+0 -25.99094E+2 00.00000E+0 00.00000E+0 + ++1.000Al+3 -2.000H+ +1.000Edta-4 +2.000H2O = Al(OH)2(Edta)-3 + log_k +2.30 #95AKR/BOU + -analytic 23.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 -2.000H+ +1.000HGlu- +2.000H2O = Al(OH)2(HGlu) + log_k -4.85 #08LAK/KIS + -analytic -48.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 -2.000H+ +2.000HGlu- +2.000H2O = Al(OH)2(HGlu)2- + log_k -2.60 #08LAK/KIS + -analytic -26.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 -2.000H+ +2.000H2O = Al(OH)2+ + log_k -10.58 + delta_h +98.264 #kJ/mol +# Enthalpy of formation: -1011.796 kJ/mol 95POK/HEL + -analytic 66.35114E-1 00.00000E+0 -51.32686E+2 00.00000E+0 00.00000E+0 + ++1.000Al+3 -2.000H+ +1.000F- +2.000H2O = Al(OH)2F + log_k -4.21 + delta_h +118.636 #kJ/mol +# Enthalpy of formation: -1326.774 kJ/mol 01TAG/SCH + -analytic 16.57414E+0 00.00000E+0 -61.96790E+2 00.00000E+0 00.00000E+0 + ++1.000Al+3 -2.000H+ +2.000F- +2.000H2O = Al(OH)2F2- + log_k -1.99 + delta_h +134.839 #kJ/mol +# Enthalpy of formation: -1645.921 kJ/mol 01TAG/SCH + -analytic 21.63278E+0 00.00000E+0 -70.43131E+2 00.00000E+0 00.00000E+0 + ++1.000Al+3 -3.000H+ +3.000H2O = Al(OH)3 + log_k -16.42 + delta_h +144.686 #kJ/mol +# Enthalpy of formation: -1251.204 kJ/mol 95POK/HEL + -analytic 89.27899E-1 00.00000E+0 -75.57476E+2 00.00000E+0 00.00000E+0 + ++1.000Al+3 -3.000H+ +1.000HGlu- +3.000H2O = Al(OH)3(HGlu)- + log_k -11.11 #08LAK/KIS + -analytic -11.11000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 -4.000H+ +4.000H2O = Al(OH)4- + log_k -22.87 + delta_h +180.881 #kJ/mol +# Enthalpy of formation: -1500.839 kJ/mol 95POK/HEL + -analytic 88.18991E-1 00.00000E+0 -94.48073E+2 00.00000E+0 00.00000E+0 + ++1.000Al+3 -4.000H+ +1.000HGlu- +4.000H2O = Al(OH)4(HGlu)-2 + log_k -20.47 #13PAL/TAS + -analytic -20.47000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 +1.000Ox-2 = Al(Ox)+ + log_k +9.40 #95AKR/BOU + -analytic 94.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 +2.000Ox-2 = Al(Ox)2- + log_k +15.39 #95AKR/BOU + -analytic 15.39000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 +3.000Ox-2 = Al(Ox)3-3 + log_k +18.30 #95AKR/BOU + -analytic 18.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 +1.000SO4-2 = Al(SO4)+ + log_k +3.17 #01TAG/SCH + delta_h +18.869 #kJ/mol +# Enthalpy of formation: -1428.870 kJ/mol + -analytic 64.75707E-1 00.00000E+0 -98.55965E+1 00.00000E+0 00.00000E+0 + ++2.000Al+3 -2.000H+ +4.000Ox-2 +2.000H2O = Al2(Ox)4(OH)2-4 + log_k +22.00 #95AKR/BOU + -analytic 22.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++3.000Al+3 -4.000H+ +3.000Cit-3 +4.000H2O = Al3(Cit)3(OH)4-4 + log_k +20.60 #95AKR/BOU + -analytic 20.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++3.000Al+3 -3.000H+ +3.000Ox-2 +3.000H2O = Al3(Ox)3(OH)3 + log_k +16.00 #95AKR/BOU + -analytic 16.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++4.000Al+3 -4.000H+ +4.000Ox-2 +4.000H2O = Al4(Ox)4(OH)4 + log_k +21.00 #95AKR/BOU + -analytic 21.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 +1.000F- = AlF+2 + log_k +6.98 #01TAG/SCH + delta_h -0.345 #kJ/mol +# Enthalpy of formation: -874.094 kJ/mol + -analytic 69.19559E-1 00.00000E+0 18.02061E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 +2.000F- = AlF2+ + log_k +12.50 #01TAG/SCH + delta_h +74.869 #kJ/mol +# Enthalpy of formation: -1134.230 kJ/mol + -analytic 25.61649E+0 00.00000E+0 -39.10680E+2 00.00000E+0 00.00000E+0 + ++1.000Al+3 +3.000F- = AlF3 + log_k +16.55 #01TAG/SCH + delta_h +0.616 #kJ/mol +# Enthalpy of formation: -1543.833 kJ/mol + -analytic 16.65792E+0 00.00000E+0 -32.17592E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 +4.000F- = AlF4- + log_k +18.93 #01TAG/SCH + delta_h +0.824 #kJ/mol +# Enthalpy of formation: -1878.974 kJ/mol + -analytic 19.07436E+0 00.00000E+0 -43.04052E+0 00.00000E+0 00.00000E+0 + ++1.000Al+3 -1.000H+ +1.000H4(SiO4) = AlH3SiO4+2 + log_k -2.38 #01TAG/SCH + delta_h +77.382 #kJ/mol +# Enthalpy of formation: -1922.212 kJ/mol + -analytic 11.17674E+0 00.00000E+0 -40.41943E+2 00.00000E+0 00.00000E+0 + ++1.000Al+3 -1.000H+ +2.000F- +1.000H2O = AlOHF2 + log_k +0.21 + delta_h +139.337 #kJ/mol +# Enthalpy of formation: -1355.593 kJ/mol 01TAG/SCH + -analytic 24.62079E+0 00.00000E+0 -72.78078E+2 00.00000E+0 00.00000E+0 + ++1.000Am+3 +1.000Acetate- = Am(Acetate)+2 + log_k +2.94 #11RIC/GRI + -analytic 29.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Am+3 +2.000Acetate- = Am(Acetate)2+ + log_k +5.07 #69MOS + -analytic 50.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Am+3 +3.000Acetate- = Am(Acetate)3 + log_k +6.54 #69MOS + -analytic 65.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Am+3 +1.000Cit-3 = Am(Cit) + log_k +8.55 #05HUM/AND + -analytic 85.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Am+3 +2.000Cit-3 = Am(Cit)2-3 + log_k +13.90 #05HUM/AND + -analytic 13.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Am+3 +1.000CO3-2 = Am(CO3)+ + log_k +7.90 #recalculated from 03GUI/FAN + delta_h +18.174 #kJ/mol +# Enthalpy of formation: -1273.757 kJ/mol + -analytic 11.08395E+0 00.00000E+0 -94.92941E+1 00.00000E+0 00.00000E+0 + ++1.000Am+3 +2.000CO3-2 = Am(CO3)2- + log_k +12.60 #recalculated from 03GUI/FAN + -analytic 12.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Am+3 +3.000CO3-2 = Am(CO3)3-3 + log_k +14.60 #Recalculated from 03GUI/FAN + -analytic 14.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Am+3 -1.000e- +5.000CO3-2 = Am(CO3)5-6 + log_k -5.10 #03GUI/FAN + -analytic -51.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Am+3 +1.000Edta-4 = Am(Edta)- + log_k +19.67 #05HUM/AND + delta_h -10.600 #kJ/mol 05HUM/AND +# Enthalpy of formation: -2332.100 kJ/mol + -analytic 17.81296E+0 00.00000E+0 55.36766E+1 00.00000E+0 00.00000E+0 + ++1.000Am+3 +1.000H2(PO4)- = Am(H2PO4)+2 + log_k +2.46 #20GRE/GAO + -analytic 24.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000Am+3 +1.000Cit-3 = Am(HCit)+ + log_k +12.86 #05HUM/AND + -analytic 12.86000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000H+ +1.000Am+3 +2.000Cit-3 = Am(HCit)2- + log_k +23.52 #05HUM/AND + -analytic 23.52000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000Am+3 +1.000CO3-2 = Am(HCO3)+2 + log_k +13.43 #03GUI/FAN + -analytic 13.43000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000Am+3 +1.000Edta-4 = Am(HEdta) + log_k +21.84 #05HUM/AND + -analytic 21.84000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000Am+3 +1.000H2(PO4)- = Am(HPO4)+ + log_k -1.74 #Estimated by correlation with An(III) in function of ionic radii. + -analytic -17.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-2.000H+ +1.000Am+3 +2.000H2(PO4)- = Am(HPO4)2- + log_k -5.30 #Estimated by correlation with An(III) in function of ionic radii. + -analytic -53.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Am+3 +1.000NO3- = Am(NO3)+2 + log_k +1.28 #20GRE/GAO + delta_h +1.800 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -821.750 kJ/mol + -analytic 15.95346E-1 00.00000E+0 -94.02055E+0 00.00000E+0 00.00000E+0 + ++1.000Am+3 +2.000NO3- = Am(NO3)2+ + log_k +0.88 #20GRE/GAO + delta_h +10.800 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1019.600 kJ/mol + -analytic 27.72079E-1 00.00000E+0 -56.41233E+1 00.00000E+0 00.00000E+0 + ++1.000Am+3 +1.000Nta-3 = Am(Nta) + log_k +13.00 #95AKR/BOU + -analytic 13.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000Am+3 +1.000H2O = Am(OH)+2 + log_k -7.20 #03GUI/FAN, 88STA/KIM1, 94RUN/KIM, 83EDE/BUC, 83CAC/CHO, 92WIM/KLE + delta_h +41.492 #kJ/mol +# Enthalpy of formation: -861.038 kJ/mol + -analytic 69.08637E-3 00.00000E+0 -21.67278E+2 00.00000E+0 00.00000E+0 + +-2.000H+ +1.000Am+3 +1.000HGlu- +2.000H2O = Am(OH)2(HGlu) + log_k -10.97 #Analogy with Pu(OH)2(HIsa)(aq) + -analytic -10.97000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-2.000H+ +1.000Am+3 +1.000HIsa- +2.000H2O = Am(OH)2(HIsa) + log_k -10.97 #Analogy with Pu(OH)2(HIsa)(aq) + -analytic -10.97000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-2.000H+ +1.000Am+3 +2.000H2O = Am(OH)2+ + log_k -15.10 #03GUI/FAN, 88STA/KIM1, 94RUN/KIM, 83EDE/BUC, 83CAC/CHO, 92WIM/KLE + delta_h +94.628 #kJ/mol +# Enthalpy of formation: -1093.732 kJ/mol + -analytic 14.78114E-1 00.00000E+0 -49.42765E+2 00.00000E+0 00.00000E+0 + +-3.000H+ +1.000Am+3 +3.000H2O = Am(OH)3 + log_k -26.20 #03GUI/FAN, 88STA/KIM1, 94RUN/KIM, 83EDE/BUC, 83CAC/CHO, 92WIM/KLE + delta_h +156.808 #kJ/mol +# Enthalpy of formation: -1317.382 kJ/mol + -analytic 12.71582E-1 00.00000E+0 -81.90652E+2 00.00000E+0 00.00000E+0 + ++1.000Am+3 +1.000Ox-2 = Am(Ox)+ + log_k +6.51 #05HUM/AND + -analytic 65.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Am+3 +2.000Ox-2 = Am(Ox)2- + log_k +10.71 #05HUM/AND + -analytic 10.71000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Am+3 +3.000Ox-2 = Am(Ox)3-3 + log_k +13.00 #05HUM/AND + -analytic 13.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Am+3 +1.000Phthalat-2 = Am(Phthalat)+ + log_k +4.93 #In analogy with Cm + -analytic 49.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-2.000H+ +1.000Am+3 +1.000H2(PO4)- = Am(PO4) + log_k -7.76 #1. Estimated by correlation with An(III) in function of ionic radii + -analytic -77.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-4.000H+ +1.000Am+3 +2.000H2(PO4)- = Am(PO4)2-3 + log_k -19.41 #Estimated by correlation with An(III) in function of ionic radii. + -analytic -19.41000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Am+3 +1.000SO4-2 = Am(SO4)+ + log_k +3.50 #20GRE/GAO + delta_h +40.000 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1486.040 kJ/mol + -analytic 10.50770E+0 00.00000E+0 -20.89346E+2 00.00000E+0 00.00000E+0 + ++1.000Am+3 +2.000SO4-2 = Am(SO4)2- + log_k +5.00 #20GRE/GAO + delta_h +70.000 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2365.380 kJ/mol + -analytic 17.26347E+0 00.00000E+0 -36.56355E+2 00.00000E+0 00.00000E+0 + ++1.000Am+3 +1.000Cl- = AmCl+2 + log_k +0.24 #20GRE/GAO + delta_h +19.390 #kJ/mol 00YEH/MAD +# Enthalpy of formation: -764.390 kJ/mol + -analytic 36.36982E-1 00.00000E+0 -10.12810E+2 00.00000E+0 00.00000E+0 + ++1.000Am+3 +2.000Cl- = AmCl2+ + log_k -0.81 #20GRE/GAO + delta_h +54.900 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -895.960 kJ/mol + -analytic 88.08067E-1 00.00000E+0 -28.67627E+2 00.00000E+0 00.00000E+0 + ++1.000Am+3 +1.000F- = AmF+2 + log_k +3.40 #20GRE/GAO + delta_h +12.100 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -939.950 kJ/mol + -analytic 55.19829E-1 00.00000E+0 -63.20270E+1 00.00000E+0 00.00000E+0 + ++1.000Am+3 +2.000F- = AmF2+ + log_k +5.80 #20GRE/GAO + delta_h +45.100 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1242.300 kJ/mol + -analytic 13.70118E+0 00.00000E+0 -23.55737E+2 00.00000E+0 00.00000E+0 + ++1.000Am+3 +3.000F- = AmF3 + log_k +10.82 #69AZI/LYL + delta_h +20.407 #kJ/mol +# Enthalpy of formation: -1602.342 kJ/mol + -analytic 14.39515E+0 00.00000E+0 -10.65932E+2 00.00000E+0 00.00000E+0 + ++1.000AmO2+ +1.000CO3-2 = AmO2(CO3)- + log_k +5.10 #03GUI/FAN + -analytic 51.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000AmO2+ +2.000CO3-2 = AmO2(CO3)2-3 + log_k +6.70 #03GUI/FAN + -analytic 67.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000AmO2+ +3.000CO3-2 = AmO2(CO3)3-5 + log_k +5.10 #03GUI/FAN + -analytic 51.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-2.000H+ +1.000AmO2+ +2.000H2O = AmO2(OH)2- + log_k -23.60 #03GUI/FAN + -analytic -23.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000AmO2+ +1.000H2O = AmO2OH + log_k -11.30 #03GUI/FAN + -analytic -11.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000Am+3 +1.000H4(SiO4) = AmSiO(OH)3+2 + log_k -2.31 #Original data 07THA/SIN, 05PAN/KIM and 97STE/FAN + delta_h +47.963 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2029.931 kJ/mol + -analytic 60.92757E-1 00.00000E+0 -25.05282E+2 00.00000E+0 00.00000E+0 + +-3.000H+ +1.000H3(AsO3) = AsO3-3 + log_k -38.59 #79IVA/VOR + -analytic -38.59000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000B(OH)4- -1.000H2O = B(OH)3 + log_k +9.24 + delta_h -13.514 #kJ/mol +# Enthalpy of formation: -1072.800 kJ/mol 01LEM/FUG + -analytic 68.72449E-1 00.00000E+0 70.58854E+1 00.00000E+0 00.00000E+0 + ++2.000H+ +3.000B(OH)4- -7.000H2O = B3O5- + log_k +20.90 #97CRO + -analytic 20.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000H+ +4.000B(OH)4- -9.000H2O = B4O7-2 + log_k +21.90 #97CRO + -analytic 21.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ba+2 +1.000CO3-2 = Ba(CO3) + log_k +2.71 #86BUS/PLU + delta_h +14.841 #kJ/mol 86BUS/PLU +# Enthalpy of formation: -1195.189 kJ/mol + -analytic 53.10032E-1 00.00000E+0 -77.51994E+1 00.00000E+0 00.00000E+0 + ++1.000Ba+2 +1.000H+ +1.000CO3-2 = Ba(HCO3)+ + log_k +11.31 #86BUS/PLU + delta_h +8.560 #kJ/mol 86BUS/PLU +# Enthalpy of formation: -1201.470 kJ/mol + -analytic 12.80965E+0 00.00000E+0 -44.71199E+1 00.00000E+0 00.00000E+0 + ++1.000Ba+2 +1.000NO3- = Ba(NO3)+ + log_k -0.31 + delta_h +6.819 #kJ/mol +# Enthalpy of formation: -734.831 kJ/mol + -analytic 88.46375E-2 00.00000E+0 -35.61812E+1 00.00000E+0 00.00000E+0 + ++1.000Ba+2 -1.000H+ +1.000H2O = Ba(OH)+ + log_k -13.47 #76BAE/MES + delta_h +87.397 #kJ/mol +# Enthalpy of formation: -733.233 kJ/mol + -analytic 18.41297E-1 00.00000E+0 -45.65063E+2 00.00000E+0 00.00000E+0 + ++1.000Ba+2 +1.000SO4-2 = Ba(SO4) + log_k +2.70 #76SMI/MAR; Uncertainty to include available data. + delta_h +7.367 #kJ/mol +# Enthalpy of formation: -1436.772 kJ/mol + -analytic 39.90643E-1 00.00000E+0 -38.48052E+1 00.00000E+0 00.00000E+0 + ++2.000Ba+2 +1.000UO2+2 +3.000CO3-2 = Ba2UO2(CO3)3 + log_k +29.75 #06DON/BRO + -analytic 29.75000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ba+2 +1.000B(OH)4- = BaB(OH)4+ + log_k +1.49 #80BAS + -analytic 14.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ba+2 +1.000F- = BaF+ + log_k +0.40 + delta_h +6.698 #kJ/mol +# Enthalpy of formation: -863.452 kJ/mol 97SVE/SHO + -analytic 15.73439E-1 00.00000E+0 -34.98609E+1 00.00000E+0 00.00000E+0 + ++1.000Ba+2 +1.000UO2+2 +3.000CO3-2 = BaUO2(CO3)3-2 + log_k +25.60 #20GRE/GAO + -analytic 25.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000CO3-2 +1.000H2O +1.000Be+2 = Be(OH)(CO3)- + log_k +1.85 #87BRU/GRE + -analytic 18.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000H2O +1.000Be+2 = Be(OH)+ + log_k -5.49 #17CAM/COL + -analytic -54.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-2.000H+ +2.000H2O +1.000Be+2 = Be(OH)2 + log_k -13.70 #20ÇEV/GAO + -analytic -13.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-2.000H+ +1.000CO3-2 +2.000H2O +1.000Be+2 = Be(OH)2(CO3)-2 + log_k -6.04 #87BRU/GRE + -analytic -60.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-3.000H+ +3.000H2O +1.000Be+2 = Be(OH)3- + log_k -24.30 #20ÇEV/GAO + -analytic -24.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-4.000H+ +4.000H2O +1.000Be+2 = Be(OH)4-2 + log_k -37.60 #20ÇEV/GAO + -analytic -37.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000SO4-2 +1.000Be+2 = Be(SO4)2-2 + log_k +3.35 #67SEI/SAK + -analytic 33.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++3.000SO4-2 +1.000Be+2 = Be(SO4)3-4 + log_k +4.58 #67SEI/SAK + -analytic 45.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000H2O +2.000Be+2 = Be2(OH)+3 + log_k -3.47 #87BRU + delta_h +20.420 #kJ/mol 67MES/BAE +# Enthalpy of formation: -1031.010 kJ/mol + -analytic 10.74304E-2 00.00000E+0 -10.66611E+2 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000CO3-2 +1.000H2O +3.000Be+2 = Be3(OH)(CO3)+3 + log_k +9.47 #87BRU/GRE + -analytic 94.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-3.000H+ +3.000CO3-2 +3.000H2O +3.000Be+2 = Be3(OH)3(CO3)3-3 + log_k +9.04 #87BRU/GRE + -analytic 90.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-3.000H+ +3.000H2O +3.000Be+2 = Be3(OH)3+3 + log_k -8.86 #87BRU + delta_h +66.944 #kJ/mol 67MES/BAE +# Enthalpy of formation: -1938.946 kJ/mol + -analytic 28.68085E-1 00.00000E+0 -34.96729E+2 00.00000E+0 00.00000E+0 + +-4.000H+ +3.000CO3-2 +4.000H2O +3.000Be+2 = Be3(OH)4(CO3)3-4 + log_k +1.06 #87BRU/GRE + -analytic 10.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-4.000H+ +1.000CO3-2 +4.000H2O +5.000Be+2 = Be5(OH)4(CO3)+4 + log_k +1.16 #87BRU/GREa + -analytic 11.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-6.000H+ +6.000H2O +5.000Be+2 = Be5(OH)6+4 + log_k -19.50 #87BRU + -analytic -19.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-5.000H+ +2.000CO3-2 +5.000H2O +6.000Be+2 = Be6(OH)5(CO3)2+3 + log_k +8.91 #87BRU/GREa + -analytic 89.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-8.000H+ +8.000H2O +6.000Be+2 = Be6(OH)8+4 + log_k -26.30 #87BRU + -analytic -26.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cl- +1.000Be+2 = BeCl+ + log_k +0.19 #65MOR/JON + -analytic 19.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000CO3-2 +1.000Be+2 = BeCO3 + log_k +8.57 #87BRU/GRE + -analytic 85.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000F- +1.000Be+2 = BeF+ + log_k +5.52 #69MES/BAE + delta_h -1.464 #kJ/mol 69MES/BAE +# Enthalpy of formation: -719.614 kJ/mol + -analytic 52.63518E-1 00.00000E+0 76.47005E+0 00.00000E+0 00.00000E+0 + ++2.000F- +1.000Be+2 = BeF2 + log_k +9.67 #69MES/BAE + delta_h -6.318 #kJ/mol 69MES/BAE +# Enthalpy of formation: -1059.818 kJ/mol + -analytic 85.63134E-1 00.00000E+0 33.00121E+1 00.00000E+0 00.00000E+0 + ++3.000F- +1.000Be+2 = BeF3- + log_k +12.44 #69MES/BAE + delta_h -7.531 #kJ/mol 69MES/BAE +# Enthalpy of formation: -1396.381 kJ/mol + -analytic 11.12063E+0 00.00000E+0 39.33715E+1 00.00000E+0 00.00000E+0 + ++4.000F- +1.000Be+2 = BeF4-2 + log_k +13.44 #69MES/BAE + delta_h -9.456 #kJ/mol 69MES/BAE +# Enthalpy of formation: -1733.656 kJ/mol + -analytic 11.78338E+0 00.00000E+0 49.39213E+1 00.00000E+0 00.00000E+0 + ++1.000SO4-2 +1.000Be+2 = BeSO4 + log_k +2.03 #62BEL/KOL + -analytic 20.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000F- +1.000B(OH)4- -1.000H2O = BF(OH)3- + log_k +8.94 #77NOR/JEN + delta_h -39.078 #kJ/mol 77NOR/JEN +# Enthalpy of formation: -1433.714 kJ/mol + -analytic 20.93828E-1 00.00000E+0 20.41186E+2 00.00000E+0 00.00000E+0 + ++2.000H+ +2.000F- +1.000B(OH)4- -2.000H2O = BF2(OH)2- + log_k +16.97 #77NOR/JEN + delta_h -38.702 #kJ/mol 77NOR/JEN +# Enthalpy of formation: -1482.858 kJ/mol + -analytic 10.18970E+0 00.00000E+0 20.21546E+2 00.00000E+0 00.00000E+0 + ++3.000H+ +3.000F- +1.000B(OH)4- -3.000H2O = BF3(OH)- + log_k +23.01 #77NOR/JEN + delta_h -38.326 #kJ/mol 77NOR/JEN +# Enthalpy of formation: -1532.002 kJ/mol + -analytic 16.29557E+0 00.00000E+0 20.01906E+2 00.00000E+0 00.00000E+0 + ++4.000H+ +4.000F- +1.000B(OH)4- -4.000H2O = BF4- + log_k +29.62 #77NOR/JEN + delta_h +73.680 #kJ/mol 77NOR/JEN +# Enthalpy of formation: -1469.516 kJ/mol + -analytic 42.52818E+0 00.00000E+0 -38.48574E+2 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000Acetate- = Ca(Acetate)+ + log_k +1.12 #95DER/DIG + delta_h +0.143 #kJ/mol +# Enthalpy of formation: -1028.867 kJ/mol + -analytic 11.45053E-1 00.00000E+0 -74.69410E-1 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000Adipate-2 = Ca(Adipate) + log_k +2.19 #04MAR/SMI from 40TOP/DAV + -analytic 21.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 -3.000H+ +1.000Am+3 +3.000H2O = Ca(Am(OH)3)+2 + log_k -26.30 #07RAB/ALT + -analytic -26.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000AsO4-3 = Ca(AsO4)- + log_k +5.77 #10MAR/ACC + -analytic 57.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000Cit-3 = Ca(Cit)- + log_k +4.80 #05HUM/AND + delta_h +0.000 #kJ/mol 05HUM/AND +# Enthalpy of formation: -2062.920 kJ/mol + -analytic 48.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 -3.000H+ +1.000Cm+3 +3.000H2O = Ca(Cm(OH)3)+2 + log_k -26.30 #07RAB/ALT + -analytic -26.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000Edta-4 = Ca(Edta)-2 + log_k +12.69 #05HUM/AND + delta_h -22.200 #kJ/mol 05HUM/AND +# Enthalpy of formation: -2270.000 kJ/mol + -analytic 88.00727E-1 00.00000E+0 11.59587E+2 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000Eu+3 -3.000H+ +3.000H2O = Ca(Eu(OH)3)+2 + log_k -26.30 #07RAB/ALT + -analytic -26.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +2.000H+ +1.000AsO4-3 = Ca(H2AsO4)+ + log_k +19.87 #10MAR/ACC + -analytic 19.87000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +2.000H+ +1.000Cit-3 = Ca(H2Cit)+ + log_k +12.67 #05HUM/AND + -analytic 12.67000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000H2(PO4)- = Ca(H2PO4)+ + log_k +1.41 #68CHU/MAR + delta_h +14.226 #kJ/mol 68CHU/MAR +# Enthalpy of formation: -1831.374 kJ/mol + -analytic 39.02288E-1 00.00000E+0 -74.30757E+1 00.00000E+0 00.00000E+0 + ++1.000Ca+2 -1.000H+ +1.000H4(SiO4) = Ca(H3SiO4)+ + log_k -8.83 #97SVE/SHO + delta_h +31.633 #kJ/mol +# Enthalpy of formation: -1972.561 kJ/mol + -analytic -32.88136E-1 00.00000E+0 -16.52307E+2 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000H+ +1.000AsO4-3 = Ca(HAsO4) + log_k +13.90 #10MAR/ACC + -analytic 13.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000H+ +1.000Cit-3 = Ca(HCit) + log_k +9.28 #05HUM/AND + -analytic 92.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000H+ +1.000CO3-2 = Ca(HCO3)+ + log_k +11.43 #96BOU1 + delta_h -23.595 #kJ/mol +# Enthalpy of formation: -1241.826 kJ/mol + -analytic 72.96333E-1 00.00000E+0 12.32453E+2 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000H+ +1.000Edta-4 = Ca(HEdta)- + log_k +16.23 #05HUM/AND + -analytic 16.23000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000HGlu- = Ca(HGlu)+ + log_k +1.73 #52SCH/LIN + -analytic 17.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000HIsa- = Ca(HIsa)+ + log_k +1.70 #05HUM/AND + -analytic 17.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000H+ +1.000Malonate-2 = Ca(HMalonate)+ + log_k +6.64 #13GRI/CAM + -analytic 66.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000H+ +1.000Nta-3 = Ca(HNta) + log_k +13.40 #95AKR/BOU + -analytic 13.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +2.000H+ +2.000Nta-3 = Ca(HNta)2-2 + log_k +23.63 #95AKR/BOU + -analytic 23.63000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 -3.000H+ +1.000Ho+3 +3.000H2O = Ca(Ho(OH)3)+2 + log_k -26.30 #07RAB/ALT + -analytic -26.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000H+ +1.000Phthalat-2 = Ca(HPhthalat)+ + log_k +6.42 #85DAN/DER + -analytic 64.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 -1.000H+ +1.000H2(PO4)- = Ca(HPO4) + log_k -4.47 #68CHU/MAR + delta_h +17.407 #kJ/mol 68CHU/MAR +# Enthalpy of formation: -1828.193 kJ/mol + -analytic -14.20425E-1 00.00000E+0 -90.92309E+1 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000H+ +1.000Pyrophos-4 = Ca(HPyrophos)- + log_k +13.80 #88CHA/NEW + -analytic 13.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000H+ +1.000Succinat-2 = Ca(HSuccinat)+ + log_k +6.79 #13GRI/CAM + -analytic 67.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000IO3- = Ca(IO3)+ + log_k +0.40 #estimation NEA87 08/2/95 + -analytic 40.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 -1.000H+ +1.000HIsa- = Ca(Isa) + log_k -10.40 #05HUM/AND + -analytic -10.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000Malonate-2 = Ca(Malonate) + log_k +2.43 #13GRI/CAM + -analytic 24.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000NH3 = Ca(NH3)+2 + log_k -0.10 #88CHA/NEW + -analytic -10.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +2.000NH3 = Ca(NH3)2+2 + log_k -0.70 #88CHA/NEW + -analytic -70.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +3.000NH3 = Ca(NH3)3+2 + log_k -1.50 #88CHA/NEW + -analytic -15.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +4.000NH3 = Ca(NH3)4+2 + log_k -2.60 #88CHA/NEW + -analytic -26.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000NpO2+ -2.000H+ +2.000H2O = Ca(NpO2(OH)2)+ + log_k -20.60 #20GRE/GAO + -analytic -20.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000Nta-3 = Ca(Nta)- + log_k +7.73 #95AKR/BOU + -analytic 77.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 -1.000H+ +1.000HGlu- +1.000H2O = Ca(OH)(HGlu) + log_k -10.40 #02TIT/WIE + -analytic -10.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 -1.000H+ +1.000H2O = Ca(OH)+ + log_k -12.78 #87GAR/PAR + delta_h +77.207 #kJ/mol +# Enthalpy of formation: -751.623 kJ/mol + -analytic 74.60858E-2 00.00000E+0 -40.32802E+2 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000Ox-2 = Ca(Ox) + log_k +3.19 #05HUM/AND + delta_h +6.811 #kJ/mol +# Enthalpy of formation: -1366.849 kJ/mol + -analytic 43.83236E-1 00.00000E+0 -35.57633E+1 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +2.000Ox-2 = Ca(Ox)2-2 + log_k +4.02 #05HUM/AND + -analytic 40.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000Phthalat-2 = Ca(Phthalat) + log_k +2.49 #85DAN/DER + -analytic 24.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 -2.000H+ +1.000H2(PO4)- = Ca(PO4)- + log_k -13.10 #68CHU/MAR + delta_h +31.170 #kJ/mol 68CHU/MAR +# Enthalpy of formation: -1814.430 kJ/mol + -analytic -76.39250E-1 00.00000E+0 -16.28122E+2 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000Pyrophos-4 = Ca(Pyrophos)-2 + log_k +7.50 #88CHA/NEW + -analytic 75.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000S2O3-2 = Ca(S2O3) + log_k +1.35 + delta_h +3.786 #kJ/mol +# Enthalpy of formation: -1191.500 kJ/mol 03-91 MINTEQL-PSI + -analytic 20.13279E-1 00.00000E+0 -19.77566E+1 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000SeO4-2 = Ca(SeO4) + log_k +2.00 #05OLI/NOL + delta_h +1.475 #kJ/mol +# Enthalpy of formation: -1145.025 kJ/mol + -analytic 22.58409E-1 00.00000E+0 -77.04462E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000Sm+3 -3.000H+ +3.000H2O = Ca(Sm(OH)3)+2 + log_k -26.30 #07RAB/ALT + -analytic -26.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000SO4-2 = Ca(SO4) + log_k +2.31 #53BEL/GEO + delta_h +4.292 #kJ/mol +# Enthalpy of formation: -1448.047 kJ/mol + -analytic 30.61926E-1 00.00000E+0 -22.41868E+1 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000Succinat-2 = Ca(Succinat) + log_k +2.34 #13GRI/CAM + -analytic 23.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000Ca+2 -4.000H+ +1.000Am+3 +4.000H2O = Ca2(Am(OH)4)+3 + log_k -37.20 #07RAB/ALT + -analytic -37.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000Ca+2 -4.000H+ +1.000Cm+3 +4.000H2O = Ca2(Cm(OH)4)+3 + log_k -37.20 #07RAB/ALT + -analytic -37.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000Ca+2 +1.000Eu+3 -4.000H+ +4.000H2O = Ca2(Eu(OH)4)+3 + log_k -37.20 #07RAB/ALT + -analytic -37.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000Ca+2 -4.000H+ +1.000Ho+3 +4.000H2O = Ca2(Ho(OH)4)+3 + log_k -37.20 #07RAB/ALT + -analytic -37.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000Ca+2 +1.000Sm+3 -4.000H+ +4.000H2O = Ca2(Sm(OH)4)+3 + log_k -37.20 #07RAB/ALT + -analytic -37.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000Ca+2 +1.000UO2+2 +3.000CO3-2 = Ca2UO2(CO3)3 + log_k +30.80 #20GRE/GAO + delta_h -47.000 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -4177.690 kJ/mol + -analytic 22.56595E+0 00.00000E+0 24.54981E+2 00.00000E+0 00.00000E+0 + ++3.000Ca+2 -6.000H+ +1.000Am+3 +6.000H2O = Ca3(Am(OH)6)+3 + log_k -60.70 #07RAB/ALT + -analytic -60.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++3.000Ca+2 -6.000H+ +1.000Cm+3 +6.000H2O = Ca3(Cm(OH)6)+3 + log_k -60.70 #07RAB/ALT + -analytic -60.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++3.000Ca+2 +1.000Eu+3 -6.000H+ +6.000H2O = Ca3(Eu(OH)6)+3 + log_k -60.70 #07RAB/ALT + -analytic -60.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++3.000Ca+2 -6.000H+ +1.000Ho+3 +6.000H2O = Ca3(Ho(OH)6)+3 + log_k -60.70 #07RAB/ALT + -analytic -60.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++3.000Ca+2 +1.000NpO2+ -5.000H+ +5.000H2O = Ca3(NpO2(OH)5)+2 + log_k -54.80 #20GRE/GAO + -analytic -54.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++3.000Ca+2 +1.000Sm+3 -6.000H+ +6.000H2O = Ca3(Sm(OH)6)+3 + log_k -60.70 #07RAB/ALT + -analytic -60.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++4.000Ca+2 +1.000Pu+4 -8.000H+ +8.000H2O = Ca4Pu(OH)8+4 + log_k -56.97 #20GRE/GAO + -analytic -56.97000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++4.000Ca+2 +1.000Th+4 -8.000H+ +8.000H2O = Ca4Th(OH)8+4 + log_k -63.10 #08ALT/NEC + -analytic -63.10000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000B(OH)4- = CaB(OH)4+ + log_k +1.80 #97CRO + -analytic 18.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000CO3-2 = CaCO3 + log_k +3.22 #96BOU1 + delta_h +14.830 #kJ/mol +# Enthalpy of formation: -1203.400 kJ/mol 96BOU1 + -analytic 58.18104E-1 00.00000E+0 -77.46248E+1 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000CrO4-2 = CaCrO4 + log_k +2.77 #00PER/PAL + -analytic 27.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000F- = CaF+ + log_k +0.94 #96BOU + delta_h +17.238 #kJ/mol 96BOU +# Enthalpy of formation: -861.112 kJ/mol + -analytic 39.59968E-1 00.00000E+0 -90.04034E+1 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000I- = CaI+ + log_k +0.14 #92JOH/OEL + -analytic 14.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +2.000I- = CaI2 + log_k -0.02 #92JOH/OEL + -analytic -20.00000E-3 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000Pu+4 -4.000H+ +1.000HIsa- +4.000H2O = CaPu(OH)4(HIsa)+ + log_k -1.66 #18TAS/GAO1 + -analytic -16.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000Pu+4 -5.000H+ +1.000HIsa- +5.000H2O = CaPu(OH)5(HIsa) + log_k -12.70 #18TAS/GAO1 + -analytic -12.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ca+2 +1.000UO2+2 +3.000CO3-2 = CaUO2(CO3)3-2 + log_k +27.00 #20GRE/GAO + delta_h -47.000 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -3634.690 kJ/mol + -analytic 18.76595E+0 00.00000E+0 24.54981E+2 00.00000E+0 00.00000E+0 + ++1.000Cd+2 +1.000CO3-2 = Cd(CO3) + log_k +4.70 #91RAI/FEL1 + delta_h +4.299 #kJ/mol +# Enthalpy of formation: -746.851 kJ/mol + -analytic 54.53152E-1 00.00000E+0 -22.45524E+1 00.00000E+0 00.00000E+0 + ++1.000Cd+2 +2.000CO3-2 = Cd(CO3)2-2 + log_k +6.50 #91RAI/FEL1 + -analytic 65.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cd+2 +1.000H2(PO4)- = Cd(H2PO4)+ + log_k +1.80 #01AYA/MAD + -analytic 18.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cd+2 +1.000H+ +1.000CO3-2 = Cd(HCO3)+ + log_k +11.83 #93STI/PAR + -analytic 11.83000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cd+2 +2.000HS- = Cd(HS)2 + log_k +14.43 #99WAN/TES + -analytic 14.43000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cd+2 +1.000NH3 = Cd(NH3)+2 + log_k +2.52 + -analytic 25.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cd+2 +2.000NH3 = Cd(NH3)2+2 + log_k +4.87 + delta_h -27.965 #kJ/mol +# Enthalpy of formation: -266.225 kJ/mol + -analytic -29.25770E-3 00.00000E+0 14.60714E+2 00.00000E+0 00.00000E+0 + ++1.000Cd+2 +3.000NH3 = Cd(NH3)3+2 + log_k +5.93 #ANDRA report (C RP 0ENQ 02-001, Interpolated + -analytic 59.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cd+2 +4.000NH3 = Cd(NH3)4+2 + log_k +7.30 + delta_h -49.714 #kJ/mol +# Enthalpy of formation: -450.314 kJ/mol + -analytic -14.09519E-1 00.00000E+0 25.96743E+2 00.00000E+0 00.00000E+0 + ++1.000Cd+2 +1.000NO3- = Cd(NO3)+ + log_k +0.46 #74FED/ROB in 82HÖG + delta_h -21.757 #kJ/mol 74NAU/RYZ in 91BAL/NOR +# Enthalpy of formation: -304.527 kJ/mol + -analytic -33.51663E-1 00.00000E+0 11.36447E+2 00.00000E+0 00.00000E+0 + ++1.000Cd+2 +2.000NO3- = Cd(NO3)2 + log_k +0.17 #97CRO + -analytic 17.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cd+2 -1.000H+ +1.000H2O = Cd(OH)+ + log_k -10.08 #81BAE/MES + delta_h +54.810 #kJ/mol 81BAE/MES +# Enthalpy of formation: -306.940 kJ/mol + -analytic -47.77002E-2 00.00000E+0 -28.62926E+2 00.00000E+0 00.00000E+0 + ++1.000Cd+2 -2.000H+ +2.000H2O = Cd(OH)2 + log_k -20.90 #91RAI/FEL1 + delta_h +114.900 #kJ/mol +# Enthalpy of formation: -532.680 kJ/mol + -analytic -77.03841E-2 00.00000E+0 -60.01645E+2 00.00000E+0 00.00000E+0 + ++1.000Cd+2 -3.000H+ +3.000H2O = Cd(OH)3- + log_k -33.30 #81BAE/MES + delta_h +156.416 #kJ/mol +# Enthalpy of formation: -776.994 kJ/mol + -analytic -58.97093E-1 00.00000E+0 -81.70177E+2 00.00000E+0 00.00000E+0 + ++1.000Cd+2 -4.000H+ +4.000H2O = Cd(OH)4-2 + log_k -47.48 #91RAI/FEL1 + delta_h +229.570 #kJ/mol +# Enthalpy of formation: -989.669 kJ/mol + -analytic -72.61062E-1 00.00000E+0 -11.99128E+3 00.00000E+0 00.00000E+0 + ++1.000Cd+2 +1.000Pyrophos-4 = Cd(Pyrophos)-2 + log_k +8.70 #92CLE/DER + -analytic 87.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cd+2 +1.000S2O3-2 = Cd(S2O3) + log_k +2.46 + delta_h +5.405 #kJ/mol +# Enthalpy of formation: -722.801 kJ/mol 74NAU/RYZ + -analytic 34.06915E-1 00.00000E+0 -28.23228E+1 00.00000E+0 00.00000E+0 + ++1.000Cd+2 +1.000SeO4-2 = Cd(SeO4) + log_k +2.27 #05OLI/NOL + delta_h +8.300 #kJ/mol 05OLI/NOL +# Enthalpy of formation: -671.120 kJ/mol + -analytic 37.24098E-1 00.00000E+0 -43.35392E+1 00.00000E+0 00.00000E+0 + ++1.000Cd+2 +1.000SO4-2 = Cd(SO4) + log_k +2.37 #97MAR/SMI + delta_h +8.700 #kJ/mol 97MAR/SMI +# Enthalpy of formation: -976.560 kJ/mol + -analytic 38.94175E-1 00.00000E+0 -45.44326E+1 00.00000E+0 00.00000E+0 + ++1.000Cd+2 +2.000SO4-2 = Cd(SO4)2-2 + log_k +3.44 #76SMI/MAR + -analytic 34.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++4.000Cd+2 -4.000H+ +4.000H2O = Cd4(OH)4+4 + log_k -32.07 + delta_h +172.135 #kJ/mol +# Enthalpy of formation: -1274.865 kJ/mol 99YUN/GLU + -analytic -19.13243E-1 00.00000E+0 -89.91237E+2 00.00000E+0 00.00000E+0 + ++1.000Cd+2 +1.000Br- = CdBr+ + log_k +2.16 + delta_h -7.959 #kJ/mol +# Enthalpy of formation: -205.289 kJ/mol + -analytic 76.56431E-2 00.00000E+0 41.57275E+1 00.00000E+0 00.00000E+0 + ++1.000Cd+2 +2.000Br- = CdBr2 + log_k +2.92 + delta_h -15.743 #kJ/mol +# Enthalpy of formation: -334.482 kJ/mol + -analytic 16.19448E-2 00.00000E+0 82.23142E+1 00.00000E+0 00.00000E+0 + ++1.000Cd+2 +3.000Br- = CdBr3- + log_k +3.19 + delta_h -28.846 #kJ/mol +# Enthalpy of formation: -468.995 kJ/mol + -analytic -18.63602E-1 00.00000E+0 15.06732E+2 00.00000E+0 00.00000E+0 + ++1.000Cd+2 +1.000Cl- = CdCl+ + log_k +1.97 #76BAE/MES + delta_h -5.520 #kJ/mol +# Enthalpy of formation: -248.520 kJ/mol + -analytic 10.02938E-1 00.00000E+0 28.83297E+1 00.00000E+0 00.00000E+0 + ++1.000Cd+2 +2.000Cl- = CdCl2 + log_k +2.59 #76BAE/MES + delta_h -14.068 #kJ/mol +# Enthalpy of formation: -424.148 kJ/mol + -analytic 12.53922E-2 00.00000E+0 73.48228E+1 00.00000E+0 00.00000E+0 + ++1.000Cd+2 +3.000Cl- = CdCl3- + log_k +2.40 #76BAE/MES + delta_h -25.804 #kJ/mol +# Enthalpy of formation: -602.963 kJ/mol + -analytic -21.20667E-1 00.00000E+0 13.47837E+2 00.00000E+0 00.00000E+0 + ++1.000Cd+2 +4.000Cl- = CdCl4-2 + log_k +1.47 #76BAE/MES + delta_h -44.765 #kJ/mol +# Enthalpy of formation: -789.004 kJ/mol + -analytic -63.72491E-1 00.00000E+0 23.38239E+2 00.00000E+0 00.00000E+0 + ++1.000Cd+2 -1.000H+ +1.000H2(PO4)- = CdHPO4 + log_k -2.38 #01AYA/MAD + -analytic -23.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cd+2 +1.000HS- = CdHS+ + log_k +7.38 #99WAN/TES + -analytic 73.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cd+2 +1.000I- = CdI+ + log_k +2.09 + delta_h -8.739 #kJ/mol +# Enthalpy of formation: -141.439 kJ/mol + -analytic 55.89929E-2 00.00000E+0 45.64698E+1 00.00000E+0 00.00000E+0 + ++1.000Cd+2 +2.000I- = CdI2 + log_k +3.53 + delta_h -18.988 #kJ/mol +# Enthalpy of formation: -208.468 kJ/mol + -analytic 20.34452E-2 00.00000E+0 99.18123E+1 00.00000E+0 00.00000E+0 + ++1.000Cd+2 +3.000I- = CdI3- + log_k +4.64 + delta_h -38.648 #kJ/mol +# Enthalpy of formation: -284.907 kJ/mol + -analytic -21.30839E-1 00.00000E+0 20.18726E+2 00.00000E+0 00.00000E+0 + ++1.000Cd+2 +4.000I- = CdI4-2 + log_k +5.48 + delta_h -75.610 #kJ/mol +# Enthalpy of formation: -378.649 kJ/mol + -analytic -77.66303E-1 00.00000E+0 39.49385E+2 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000CH4 = CH3- + log_k -46.00 #18BLA/BUR + -analytic -46.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000CH4 +1.000Hg+2 = CH3Hg+ + log_k +3.00 #18BLA/BUR + -analytic 30.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000Cl- +1.000CH4 +1.000Hg+2 = CH3HgCl + log_k +8.45 #18BLA/BUR + -analytic 84.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000CO3-2 +1.000CH4 +1.000Hg+2 = CH3HgCO3- + log_k +9.10 #18BLA/BUR + -analytic 91.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000CO3-2 +1.000CH4 +1.000Hg+2 = CH3HgHCO3 + log_k +15.93 #18BLA/BUR + -analytic 15.93000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-2.000H+ +1.000CH4 +1.000H2O +1.000Hg+2 = CH3HgOH + log_k -1.53 #18BLA/BUR + -analytic -15.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-2.000H+ +1.000HS- +1.000CH4 +1.000Hg+2 = CH3HgS- + log_k +7.00 #18BLA/BUR + -analytic 70.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000HS- +1.000CH4 +1.000Hg+2 = CH3HgSH + log_k +17.50 #18BLA/BUR + -analytic 17.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000SO4-2 +1.000CH4 +1.000Hg+2 = CH3HgSO4- + log_k +5.64 #18BLA/BUR + -analytic 56.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-2.000e- +2.000Cl- = Cl2 + log_k -47.21 + delta_h +310.760 #kJ/mol +# Enthalpy of formation: -23.400 kJ/mol 82WAG/EVA + -analytic 72.32815E-1 00.00000E+0 -16.23213E+3 00.00000E+0 00.00000E+0 + +-8.000H+ -8.000e- +1.000Cl- +4.000H2O = ClO4- + log_k -187.79 + delta_h +1182.300 #kJ/mol +# Enthalpy of formation: -128.100 kJ/mol 89COX/WAG + -analytic 19.34007E+0 00.00000E+0 -61.75583E+3 00.00000E+0 00.00000E+0 + ++1.000Cm+3 +1.000Acetate- = Cm(Acetate)+2 + log_k +3.01 #11RIC/GRI + -analytic 30.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cm+3 +2.000Acetate- = Cm(Acetate)2+ + log_k +4.96 #12GRI/GAR2 + -analytic 49.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cm+3 +3.000Acetate- = Cm(Acetate)3 + log_k +6.30 #69MOS + -analytic 63.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cit-3 +1.000Cm+3 = Cm(Cit) + log_k +8.55 #Analogy with Am + -analytic 85.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000Cit-3 +1.000Cm+3 = Cm(Cit)2-3 + log_k +13.90 #Analogy with Am + -analytic 13.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000CO3-2 +1.000Cm+3 = Cm(CO3)+ + log_k +7.90 #06DUR/CER + delta_h +16.981 #kJ/mol +# Enthalpy of formation: -1273.250 kJ/mol + -analytic 10.87494E+0 00.00000E+0 -88.69794E+1 00.00000E+0 00.00000E+0 + ++2.000CO3-2 +1.000Cm+3 = Cm(CO3)2- + log_k +12.60 #06DUR/CER + -analytic 12.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++3.000CO3-2 +1.000Cm+3 = Cm(CO3)3-3 + log_k +14.60 #06DUR/CER + -analytic 14.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Edta-4 +1.000Cm+3 = Cm(Edta)- + log_k +19.67 #Analogy with Am(Edta)- + -analytic 19.67000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H2(PO4)- +1.000Cm+3 = Cm(H2PO4)+2 + log_k +2.46 #20GRE/GAO + -analytic 24.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000Cit-3 +1.000Cm+3 = Cm(HCit)+ + log_k +12.86 #Analogy with Am + -analytic 12.86000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000H+ +2.000Cit-3 +1.000Cm+3 = Cm(HCit)2- + log_k +23.52 #Analogy with Am + -analytic 23.52000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000Edta-4 +1.000Cm+3 = Cm(HEdta) + log_k +21.84 #Analogy with Am(HEdta) + -analytic 21.84000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000H2(PO4)- +1.000Cm+3 = Cm(HPO4)+ + log_k -1.69 #Estimated by correlation with An(III) in function of ionic radii + -analytic -16.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-2.000H+ +2.000H2(PO4)- +1.000Cm+3 = Cm(HPO4)2- + log_k -5.19 #Estimated by correlation with An(III) in function of ionic radii + -analytic -51.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000NO3- +1.000Cm+3 = Cm(NO3)+2 + log_k +1.28 #20GRE/GAO + delta_h +1.800 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -820.050 kJ/mol + -analytic 15.95346E-1 00.00000E+0 -94.02055E+0 00.00000E+0 00.00000E+0 + ++2.000NO3- +1.000Cm+3 = Cm(NO3)2+ + log_k +0.88 #20GRE/GAO + delta_h +10.800 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1017.900 kJ/mol + -analytic 27.72079E-1 00.00000E+0 -56.41233E+1 00.00000E+0 00.00000E+0 + ++1.000Nta-3 +1.000Cm+3 = Cm(Nta) + log_k +13.00 #Analogy with Am(Nta)(aq) + -analytic 13.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000Cm+3 +1.000H2O = Cm(OH)+2 + log_k -7.20 #03GUI/FAN + delta_h +38.510 #kJ/mol +# Enthalpy of formation: -862.320 kJ/mol + -analytic -45.33376E-2 00.00000E+0 -20.11517E+2 00.00000E+0 00.00000E+0 + +-2.000H+ +1.000HGlu- +1.000Cm+3 +2.000H2O = Cm(OH)2(HGlu) + log_k -10.97 #Analogy with Pu(OH)2(HIsa)(aq) + -analytic -10.97000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-2.000H+ +1.000HIsa- +1.000Cm+3 +2.000H2O = Cm(OH)2(HIsa) + log_k -10.97 #Analogy with Pu(OH)2(HIsa)(aq) + -analytic -10.97000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-2.000H+ +1.000Cm+3 +2.000H2O = Cm(OH)2+ + log_k -15.10 #03GUI/FAN + delta_h +91.646 #kJ/mol +# Enthalpy of formation: -1095.013 kJ/mol + -analytic 95.56900E-2 00.00000E+0 -47.87004E+2 00.00000E+0 00.00000E+0 + +-3.000H+ +1.000Cm+3 +3.000H2O = Cm(OH)3 + log_k -26.20 #03GUI/FAN + delta_h +153.826 #kJ/mol +# Enthalpy of formation: -1318.663 kJ/mol + -analytic 74.91584E-2 00.00000E+0 -80.34892E+2 00.00000E+0 00.00000E+0 + ++1.000Ox-2 +1.000Cm+3 = Cm(Ox)+ + log_k +6.48 #95AKR/BOU + -analytic 64.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000Ox-2 +1.000Cm+3 = Cm(Ox)2- + log_k +10.40 #95AKR/BOU + -analytic 10.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++3.000Ox-2 +1.000Cm+3 = Cm(Ox)3-3 + log_k +12.84 #95AKR/BOU + -analytic 12.84000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cm+3 +1.000Phthalat-2 = Cm(Phthalat)+ + log_k +4.93 #11GRI/COL2 from 95PAN/KLE + -analytic 49.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-2.000H+ +1.000H2(PO4)- +1.000Cm+3 = Cm(PO4) + log_k -7.65 #Estimated by correlation with An(III) in function of ionic radii. + -analytic -76.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-4.000H+ +2.000H2(PO4)- +1.000Cm+3 = Cm(PO4)2-3 + log_k -19.20 #Estimated by correlation with An(III) in function of ionic radii + -analytic -19.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000SO4-2 +1.000Cm+3 = Cm(SO4)+ + log_k +3.50 #20GRE/GAO + delta_h +40.000 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1484.340 kJ/mol + -analytic 10.50770E+0 00.00000E+0 -20.89346E+2 00.00000E+0 00.00000E+0 + ++2.000SO4-2 +1.000Cm+3 = Cm(SO4)2- + log_k +5.00 #20GRE/GAO + delta_h +70.000 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2363.680 kJ/mol + -analytic 17.26347E+0 00.00000E+0 -36.56355E+2 00.00000E+0 00.00000E+0 + ++1.000Cl- +1.000Cm+3 = CmCl+2 + log_k +0.24 #20GRE/GAO + delta_h +44.483 #kJ/mol +# Enthalpy of formation: -737.597 kJ/mol + -analytic 80.33087E-1 00.00000E+0 -23.23509E+2 00.00000E+0 00.00000E+0 + ++2.000Cl- +1.000Cm+3 = CmCl2+ + log_k -0.81 #20GRE/GAO + delta_h +54.900 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -894.260 kJ/mol + -analytic 88.08067E-1 00.00000E+0 -28.67627E+2 00.00000E+0 00.00000E+0 + ++1.000F- +1.000Cm+3 = CmF+2 + log_k +3.40 #20GRE/GAO + delta_h +12.100 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -938.250 kJ/mol + -analytic 55.19829E-1 00.00000E+0 -63.20270E+1 00.00000E+0 00.00000E+0 + ++2.000F- +1.000Cm+3 = CmF2+ + log_k +5.80 #20GRE/GAO + delta_h +45.100 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1240.600 kJ/mol + -analytic 13.70118E+0 00.00000E+0 -23.55737E+2 00.00000E+0 00.00000E+0 + ++3.000F- +1.000Cm+3 = CmF3 + log_k +11.18 #69AZI/LYL + delta_h +15.371 #kJ/mol +# Enthalpy of formation: -1605.678 kJ/mol + -analytic 13.87288E+0 00.00000E+0 -80.28832E+1 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000CO3-2 +1.000Cm+3 = CmHCO3+2 + log_k +13.43 #03GUI/FAN, same as Am + -analytic 13.43000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000H4(SiO4) +1.000Cm+3 = CmSiO(OH)3+2 + log_k -2.31 #Original data 07THA/SIN, 05PAN/KIM and 97STE/FAN + delta_h +47.963 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2028.231 kJ/mol + -analytic 60.92757E-1 00.00000E+0 -25.05282E+2 00.00000E+0 00.00000E+0 + ++4.000H+ +2.000e- +1.000CO3-2 -2.000H2O = CO + log_k +11.60 + delta_h -17.390 #kJ/mol +# Enthalpy of formation: -120.960 kJ/mol 82WAG/EVA + -analytic 85.53403E-1 00.00000E+0 90.83430E+1 00.00000E+0 00.00000E+0 + ++1.000Co+2 +2.000HS- = Co(HS)2 + log_k +8.77 #66KHO; Uncertainty to include available data. + -analytic 87.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Co+2 -1.000H+ +1.000H2O = Co(OH)+ + log_k -9.23 #98PLY/ZHA1 + delta_h +45.962 #kJ/mol +# Enthalpy of formation: -297.468 kJ/mol + -analytic -11.77803E-1 00.00000E+0 -24.00762E+2 00.00000E+0 00.00000E+0 + ++1.000Co+2 -2.000H+ +2.000H2O = Co(OH)2 + log_k -18.60 #98PLY/ZHA1 + delta_h +105.707 #kJ/mol +# Enthalpy of formation: -523.552 kJ/mol + -analytic -80.92855E-3 00.00000E+0 -55.21461E+2 00.00000E+0 00.00000E+0 + ++1.000Co+2 -3.000H+ +3.000H2O = Co(OH)3- + log_k -31.70 #98PLY/ZHA1 + delta_h +160.297 #kJ/mol +# Enthalpy of formation: -754.792 kJ/mol + -analytic -36.17171E-1 00.00000E+0 -83.72895E+2 00.00000E+0 00.00000E+0 + ++1.000Co+2 -4.000H+ +4.000H2O = Co(OH)4-2 + log_k -46.42 #98PLY/ZHA1 + delta_h +214.483 #kJ/mol +# Enthalpy of formation: -986.435 kJ/mol + -analytic -88.44191E-1 00.00000E+0 -11.20323E+3 00.00000E+0 00.00000E+0 + ++1.000Co+2 +1.000SeO4-2 = Co(SeO4) + log_k +2.70 #05OLI/NOL + delta_h -3.617 #kJ/mol +# Enthalpy of formation: -664.716 kJ/mol + -analytic 20.66329E-1 00.00000E+0 18.89291E+1 00.00000E+0 00.00000E+0 + ++2.000H+ +1.000CO3-2 -1.000H2O = CO2 + log_k +16.68 + delta_h -23.860 #kJ/mol +# Enthalpy of formation: -413.260 kJ/mol 89COX/WAG + -analytic 12.49991E+0 00.00000E+0 12.46295E+2 00.00000E+0 00.00000E+0 + ++2.000Co+2 -1.000H+ +1.000H2O = Co2(OH)+3 + log_k -9.83 #98PLY/ZHA1 + delta_h +30.030 #kJ/mol +# Enthalpy of formation: -371.000 kJ/mol 98PLY/ZHA1 + -analytic -45.68970E-1 00.00000E+0 -15.68576E+2 00.00000E+0 00.00000E+0 + ++4.000Co+2 -4.000H+ +4.000H2O = Co4(OH)4+4 + log_k -29.88 #98PLY/ZHA1 + delta_h +149.720 #kJ/mol +# Enthalpy of formation: -1224.000 kJ/mol 98PLY/ZHA1 + -analytic -36.50182E-1 00.00000E+0 -78.20420E+2 00.00000E+0 00.00000E+0 + ++1.000Co+2 +1.000Cl- = CoCl+ + log_k +0.57 #81TUR/WHI; Uncertainty to include available data. + delta_h -2.180 #kJ/mol +# Enthalpy of formation: -226.859 kJ/mol + -analytic 18.80804E-2 00.00000E+0 11.38693E+1 00.00000E+0 00.00000E+0 + ++1.000Co+2 +2.000Cl- = CoCl2 + log_k +0.02 #06BLA/IGN; Uncertainty from 89PAN/SUS + delta_h +4.074 #kJ/mol 06BLA/IGN +# Enthalpy of formation: -387.686 kJ/mol + -analytic 73.37342E-2 00.00000E+0 -21.27998E+1 00.00000E+0 00.00000E+0 + ++1.000Co+2 +3.000Cl- = CoCl3- + log_k -1.71 #06BLA/IGN; Uncertainty 89PAN/SUS + delta_h +6.688 #kJ/mol 06BLA/IGN +# Enthalpy of formation: -552.152 kJ/mol + -analytic -53.83127E-2 00.00000E+0 -34.93386E+1 00.00000E+0 00.00000E+0 + ++1.000Co+2 +4.000Cl- = CoCl4-2 + log_k -2.09 #06BLA/IGN + delta_h +22.570 #kJ/mol 06BLA/IGN +# Enthalpy of formation: -703.350 kJ/mol + -analytic 18.64094E-1 00.00000E+0 -11.78913E+2 00.00000E+0 00.00000E+0 + ++1.000Co+2 +1.000CO3-2 = CoCO3 + log_k +4.23 #97MAR/SMI; Uncertainty to include available data. + -analytic 42.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Co+2 +1.000F- = CoF+ + log_k +1.50 #97MAR/SMI + delta_h -0.631 #kJ/mol +# Enthalpy of formation: -393.580 kJ/mol + -analytic 13.89454E-1 00.00000E+0 32.95943E+0 00.00000E+0 00.00000E+0 + ++1.000Co+2 +1.000H+ +1.000CO3-2 = CoHCO3+ + log_k +12.22 #97MAR/SMI; Uncertainty to include available data. + -analytic 12.22000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Co+2 -1.000H+ +1.000H2(PO4)- = CoHPO4 + log_k -4.15 #97MAR/SMI; Uncertainty to include available data and is preliminary. + -analytic -41.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Co+2 +1.000HS- = CoHS+ + log_k +5.67 #66KHO; Uncertainty to include available data. + -analytic 56.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Co+2 +1.000S2O3-2 = CoS2O3 + log_k +2.05 #51DEN/MON + -analytic 20.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Co+2 +1.000SO4-2 = CoSO4 + log_k +2.30 #97MAR/SMI; Uncertainty to include available data. + delta_h +2.092 #kJ/mol 74NAU/RYZ +# Enthalpy of formation: -964.848 kJ/mol + -analytic 26.66503E-1 00.00000E+0 -10.92728E+1 00.00000E+0 00.00000E+0 + ++1.000H2(PO4)- +1.000Cr+3 = Cr(H2PO4)+2 + log_k +2.56 #66LAH/ADI + -analytic 25.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000H2(PO4)- +1.000Cr+3 = Cr(HPO4)+ + log_k +2.25 #76ALE/MAS + -analytic 22.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +2.000CO3-2 +1.000Cr+3 +1.000H2O = Cr(OH)(CO3)2-2 + log_k +9.73 #07RAI/MOO + -analytic 97.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000Cr+2 +1.000H2O = Cr(OH)+ + log_k -5.30 #83MIC/DEB, 04CHI + delta_h +30.327 #kJ/mol +# Enthalpy of formation: -413.117 kJ/mol + -analytic 13.06233E-3 00.00000E+0 -15.84090E+2 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000Cr+3 +1.000H2O = Cr(OH)+2 + log_k -3.42 #04RAI/MOO + delta_h +37.222 #kJ/mol +# Enthalpy of formation: -489.108 kJ/mol + -analytic 31.01014E-1 00.00000E+0 -19.44240E+2 00.00000E+0 00.00000E+0 + +-2.000H+ +1.000Cr+3 +2.000H2O = Cr(OH)2+ + log_k -8.90 #11GRI/COL4 + delta_h +93.198 #kJ/mol +# Enthalpy of formation: -718.961 kJ/mol + -analytic 74.27589E-1 00.00000E+0 -48.68071E+2 00.00000E+0 00.00000E+0 + +-3.000H+ +1.000Cr+3 +3.000H2O = Cr(OH)3 + log_k -14.34 #04RAI/MOO + delta_h +143.704 #kJ/mol +# Enthalpy of formation: -954.285 kJ/mol + -analytic 10.83586E+0 00.00000E+0 -75.06183E+2 00.00000E+0 00.00000E+0 + +-3.000H+ +1.000H2(PO4)- +1.000Cr+3 +3.000H2O = Cr(OH)3(H2PO4)- + log_k -11.56 #04RAI/MOO + -analytic -11.56000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-3.000H+ +2.000H2(PO4)- +1.000Cr+3 +3.000H2O = Cr(OH)3(H2PO4)2-2 + log_k -10.86 #04RAI/MOO + -analytic -10.86000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-4.000H+ +1.000H2(PO4)- +1.000Cr+3 +3.000H2O = Cr(OH)3(HPO4)-2 + log_k -19.58 #04RAI/MOO + -analytic -19.58000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-5.000H+ +1.000H2(PO4)- +1.000Cr+3 +3.000H2O = Cr(OH)3(PO4)-3 + log_k -30.24 #98ZIE/JON + -analytic -30.24000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-4.000H+ +1.000Cr+3 +4.000H2O = Cr(OH)4- + log_k -25.86 #04RAI/MOO + delta_h +193.614 #kJ/mol +# Enthalpy of formation: -1190.205 kJ/mol + -analytic 80.59717E-1 00.00000E+0 -10.11316E+3 00.00000E+0 00.00000E+0 + +-4.000H+ +1.000CO3-2 +1.000Cr+3 +4.000H2O = Cr(OH)4(CO3)-3 + log_k -25.69 #07RAI/MOO + -analytic -25.69000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-5.000H+ +2.000H2(PO4)- +1.000Cr+3 +4.000H2O = Cr(OH)4(HPO4)(H2PO4)-4 + log_k -28.76 #98ZIE/JON + delta_h +14.000 #kJ/mol 98ZIE/JON +# Enthalpy of formation: -3975.020 kJ/mol + -analytic -26.30731E+0 00.00000E+0 -73.12709E+1 00.00000E+0 00.00000E+0 + +-1.000H+ +2.000Cl- +1.000Cr+3 +1.000H2O = Cr(OH)Cl2 + log_k -5.73 + delta_h +32.720 #kJ/mol +# Enthalpy of formation: -827.770 kJ/mol 76DEL/HEP + -analytic 22.97936E-4 00.00000E+0 -17.09085E+2 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000CO3-2 +1.000Cr+3 +1.000H2O = Cr(OH)CO3 + log_k +4.00 #07RAI/MOO + -analytic 40.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-2.000H+ +2.000Cr+3 +2.000H2O = Cr2(OH)2+4 + log_k -4.00 #11GRI/COL4 + -analytic -40.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000H+ +2.000CrO4-2 -1.000H2O = Cr2O7-2 + log_k +14.75 #87PAL/WES, 04CHI + delta_h -3.752 #kJ/mol +# Enthalpy of formation: -1475.923 kJ/mol + -analytic 14.09268E+0 00.00000E+0 19.59806E+1 00.00000E+0 00.00000E+0 + +-4.000H+ +3.000Cr+3 +4.000H2O = Cr3(OH)4+5 + log_k -7.60 #11GRI/COL4 + -analytic -76.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Br- +1.000Cr+3 = CrBr+2 + log_k -0.62 + delta_h +22.588 #kJ/mol +# Enthalpy of formation: -339.322 kJ/mol 76DEL/HEP + -analytic 33.37248E-1 00.00000E+0 -11.79853E+2 00.00000E+0 00.00000E+0 + ++1.000Cl- +1.000Cr+2 = CrCl+ + log_k +5.60 #91ALL/BRO + delta_h -20.200 #kJ/mol 91ALL/BRO +# Enthalpy of formation: -344.894 kJ/mol + -analytic 20.61112E-1 00.00000E+0 10.55119E+2 00.00000E+0 00.00000E+0 + ++1.000Cl- +1.000Cr+3 = CrCl+2 + log_k +0.62 #64SIL/MAR + delta_h +20.920 #kJ/mol 64SIL/MAR +# Enthalpy of formation: -386.660 kJ/mol + -analytic 42.85027E-1 00.00000E+0 -10.92728E+2 00.00000E+0 00.00000E+0 + ++2.000Cl- +1.000Cr+3 = CrCl2+ + log_k -0.71 #64SIL/MAR + delta_h +20.920 #kJ/mol 64SIL/MAR +# Enthalpy of formation: -553.740 kJ/mol + -analytic 29.55027E-1 00.00000E+0 -10.92728E+2 00.00000E+0 00.00000E+0 + ++1.000F- +1.000Cr+3 = CrF+2 + log_k +5.21 #81TUR/WHI + delta_h -2.510 #kJ/mol 53HEP/JOL +# Enthalpy of formation: -578.360 kJ/mol + -analytic 47.70267E-1 00.00000E+0 13.11064E+1 00.00000E+0 00.00000E+0 + ++2.000F- +1.000Cr+3 = CrF2+ + log_k +9.31 #81TUR/WHI + delta_h -0.418 #kJ/mol 53HEP/JOL +# Enthalpy of formation: -911.618 kJ/mol + -analytic 92.36770E-1 00.00000E+0 21.83366E+0 00.00000E+0 00.00000E+0 + ++3.000F- +1.000Cr+3 = CrF3 + log_k +11.91 #81TUR/WHI + -analytic 11.91000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000H+ +1.000Cl- +1.000CrO4-2 -1.000H2O = CrO3Cl- + log_k +8.08 + delta_h +5.450 #kJ/mol +# Enthalpy of formation: -754.800 kJ/mol 76DEL/HEP + -analytic 90.34799E-1 00.00000E+0 -28.46733E+1 00.00000E+0 00.00000E+0 + ++1.000SO4-2 +1.000Cr+3 = CrSO4+ + log_k +4.61 #81TUR/WHI + -analytic 46.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cs+ +1.000Cit-3 = Cs(Cit)-2 + log_k +0.98 #95AKR/BOU + -analytic 98.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cs+ +1.000Edta-4 = Cs(Edta)-3 + log_k +1.30 #95AKR/BOU + -analytic 13.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cs+ +1.000Nta-3 = Cs(Nta)-2 + log_k +0.85 #95AKR/BOU + -analytic 85.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cs+ -1.000H+ +1.000H2O = Cs(OH) + log_k -15.64 + delta_h +65.736 #kJ/mol +# Enthalpy of formation: -478.094 kJ/mol 97SHO/SAS2 + -analytic -41.23547E-1 00.00000E+0 -34.33630E+2 00.00000E+0 00.00000E+0 + ++1.000Cs+ +1.000Br- = CsBr + log_k +0.10 + delta_h +5.912 #kJ/mol +# Enthalpy of formation: -373.497 kJ/mol + -analytic 11.35738E-1 00.00000E+0 -30.88053E+1 00.00000E+0 00.00000E+0 + ++1.000Cs+ +1.000Cl- = CsCl + log_k -0.09 + delta_h +7.514 #kJ/mol +# Enthalpy of formation: -417.566 kJ/mol + -analytic 12.26396E-1 00.00000E+0 -39.24836E+1 00.00000E+0 00.00000E+0 + ++1.000Cs+ +1.000F- = CsF + log_k -0.38 + delta_h +2.436 #kJ/mol +# Enthalpy of formation: -590.913 kJ/mol + -analytic 46.76888E-3 00.00000E+0 -12.72411E+1 00.00000E+0 00.00000E+0 + ++1.000Cs+ +1.000I- = CsI + log_k +1.05 + delta_h -0.071 #kJ/mol +# Enthalpy of formation: -314.850 kJ/mol + -analytic 10.37561E-1 00.00000E+0 37.08588E-1 00.00000E+0 00.00000E+0 + ++1.000Cu+2 +1.000B(OH)4- = Cu(B(OH)4)+ + log_k +7.13 #80BAS + -analytic 71.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cu+2 +2.000B(OH)4- = Cu(B(OH)4)2 + log_k +12.45 #80BAS + -analytic 12.45000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cu+2 +3.000B(OH)4- = Cu(B(OH)4)3- + log_k +15.17 #80BAS + -analytic 15.17000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cu+2 +2.000CO3-2 = Cu(CO3)2-2 + log_k +10.30 #07POW/BRO + delta_h +36.616 #kJ/mol +# Enthalpy of formation: -1248.945 kJ/mol + -analytic 16.71485E+0 00.00000E+0 -19.12587E+2 00.00000E+0 00.00000E+0 + ++1.000Cu+ +2.000HS- = Cu(HS)2- + log_k +17.18 #99MON/SEW + delta_h -78.863 #kJ/mol +# Enthalpy of formation: -40.875 kJ/mol + -analytic 33.63795E-1 00.00000E+0 41.19301E+2 00.00000E+0 00.00000E+0 + ++1.000Cu+2 -1.000H+ +1.000H2O = Cu(OH)+ + log_k -7.97 #97PLY/WAN + delta_h +36.000 #kJ/mol 76ARE/CAL in 97PLY/WAN +# Enthalpy of formation: -184.930 kJ/mol + -analytic -16.63071E-1 00.00000E+0 -18.80411E+2 00.00000E+0 00.00000E+0 + ++1.000Cu+2 -2.000H+ +2.000H2O = Cu(OH)2 + log_k -16.23 #97PLY/WAN + delta_h +92.820 #kJ/mol 76ARE/CAL in 97PLY/WAN +# Enthalpy of formation: -413.940 kJ/mol + -analytic 31.36597E-3 00.00000E+0 -48.48326E+2 00.00000E+0 00.00000E+0 + ++1.000Cu+ -2.000H+ +2.000H2O = Cu(OH)2- + log_k -18.20 #11PAL + delta_h +57.672 #kJ/mol +# Enthalpy of formation: -443.399 kJ/mol + -analytic -80.96299E-1 00.00000E+0 -30.12418E+2 00.00000E+0 00.00000E+0 + ++1.000Cu+2 -3.000H+ +3.000H2O = Cu(OH)3- + log_k -26.63 #36DOW/JOH in 97PLY/WAN + delta_h +114.482 #kJ/mol +# Enthalpy of formation: -678.107 kJ/mol + -analytic -65.73615E-1 00.00000E+0 -59.79811E+2 00.00000E+0 00.00000E+0 + ++1.000Cu+2 -4.000H+ +4.000H2O = Cu(OH)4-2 + log_k -39.73 #36DOW/JOH, 67AKH in 97PLY/WAN + -analytic -39.73000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cu+2 +1.000SeO4-2 = Cu(SeO4) + log_k +2.20 #Upper value suggested in 05OLI/NOL + -analytic 22.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000Cu+2 -1.000H+ +1.000H2O = Cu2(OH)+3 + log_k -6.71 #97PLY/WAN + delta_h +46.100 #kJ/mol 97ROB/STE +# Enthalpy of formation: -109.930 kJ/mol + -analytic 13.66373E-1 00.00000E+0 -24.07971E+2 00.00000E+0 00.00000E+0 + ++2.000Cu+2 -2.000H+ +2.000H2O = Cu2(OH)2+2 + log_k -10.55 #97PLY/WAN + delta_h +75.400 #kJ/mol 97PLY/WAN +# Enthalpy of formation: -366.460 kJ/mol + -analytic 26.59513E-1 00.00000E+0 -39.38416E+2 00.00000E+0 00.00000E+0 + ++2.000Cu+ +4.000Cl- = Cu2Cl4-2 + log_k +10.55 #80FRIN in 00PUI/TAX + delta_h -54.860 #kJ/mol 00PUI/TAX +# Enthalpy of formation: -582.002 kJ/mol + -analytic 93.89406E-2 00.00000E+0 28.65537E+2 00.00000E+0 00.00000E+0 + ++2.000Cu+ -1.000H+ +3.000HS- = Cu2S(HS)2-2 + log_k +29.87 #99MON/SEW + delta_h -314.862 #kJ/mol +# Enthalpy of formation: -222.586 kJ/mol + -analytic -25.29145E+0 00.00000E+0 16.44639E+3 00.00000E+0 00.00000E+0 + ++3.000Cu+2 -4.000H+ +4.000H2O = Cu3(OH)4+2 + log_k -20.94 #76ARE/CAL in 97PLY/WAN + delta_h +110.000 #kJ/mol 76ARE/CAL in 97PLY/WAN +# Enthalpy of formation: -838.620 kJ/mol + -analytic -16.68827E-1 00.00000E+0 -57.45700E+2 00.00000E+0 00.00000E+0 + ++3.000Cu+ +6.000Cl- = Cu3Cl6-3 + log_k +15.99 #80FRI in 00PUI/TAX + delta_h +124.510 #kJ/mol 00PUI/TAX +# Enthalpy of formation: -666.203 kJ/mol + -analytic 37.80322E+0 00.00000E+0 -65.03610E+2 00.00000E+0 00.00000E+0 + ++1.000Cu+ +1.000Cl- = CuCl + log_k +3.30 #98XIA/GAM + delta_h +3.763 #kJ/mol +# Enthalpy of formation: -92.728 kJ/mol + -analytic 39.59249E-1 00.00000E+0 -19.65552E+1 00.00000E+0 00.00000E+0 + ++1.000Cu+2 +1.000Cl- = CuCl+ + log_k +0.64 #97WAN/ZHA + delta_h +8.700 #kJ/mol 97WAN/ZHA +# Enthalpy of formation: -93.480 kJ/mol + -analytic 21.64175E-1 00.00000E+0 -45.44326E+1 00.00000E+0 00.00000E+0 + ++1.000Cu+2 +2.000Cl- = CuCl2 + log_k +0.60 #97WAN/ZHA + delta_h +23.000 #kJ/mol 97WAN/ZHA +# Enthalpy of formation: -246.260 kJ/mol + -analytic 46.29427E-1 00.00000E+0 -12.01374E+2 00.00000E+0 00.00000E+0 + ++1.000Cu+ +2.000Cl- = CuCl2- + log_k +5.68 #97WAN/ZHA + delta_h -14.250 #kJ/mol 84FRI in 97WAN/ZHA +# Enthalpy of formation: -277.821 kJ/mol + -analytic 31.83507E-1 00.00000E+0 74.43293E+1 00.00000E+0 00.00000E+0 + ++1.000Cu+2 +3.000Cl- = CuCl3- + log_k -1.28 #97WAN/ZHA + delta_h +22.200 #kJ/mol 97WAN/ZHA +# Enthalpy of formation: -414.140 kJ/mol + -analytic 26.09273E-1 00.00000E+0 -11.59587E+2 00.00000E+0 00.00000E+0 + ++1.000Cu+ +3.000Cl- = CuCl3-2 + log_k +5.03 #97WAN/ZHA + delta_h -27.330 #kJ/mol 97WAN/ZHA +# Enthalpy of formation: -457.981 kJ/mol + -analytic 24.19895E-2 00.00000E+0 14.27545E+2 00.00000E+0 00.00000E+0 + ++1.000Cu+2 +4.000Cl- = CuCl4-2 + log_k -3.98 #97WAN/ZHA + delta_h +28.000 #kJ/mol 97WAN/ZHA +# Enthalpy of formation: -575.420 kJ/mol + -analytic 92.53894E-2 00.00000E+0 -14.62542E+2 00.00000E+0 00.00000E+0 + ++1.000Cu+2 +1.000CO3-2 = CuCO3 + log_k +6.75 #07POW/BRO + delta_h +10.400 #kJ/mol 89SOL/BYR +# Enthalpy of formation: -599.930 kJ/mol + -analytic 85.72002E-1 00.00000E+0 -54.32298E+1 00.00000E+0 00.00000E+0 + ++1.000Cu+2 +1.000H+ +1.000CO3-2 = CuHCO3+ + log_k +12.17 #07POW/BRO + delta_h -5.841 #kJ/mol +# Enthalpy of formation: -616.172 kJ/mol + -analytic 11.14670E+0 00.00000E+0 30.50967E+1 00.00000E+0 00.00000E+0 + ++1.000Cu+ +1.000HS- = CuHS + log_k +13.00 #99MON/SEW + delta_h -44.866 #kJ/mol +# Enthalpy of formation: +9.422 kJ/mol + -analytic 51.39814E-1 00.00000E+0 23.43514E+2 00.00000E+0 00.00000E+0 + ++1.000Cu+ -1.000H+ +1.000H2O = CuOH + log_k -7.68 #11PAL + -analytic -76.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cu+ +1.000S2O3-2 = CuS2O3- + log_k +10.13 + delta_h -51.130 #kJ/mol +# Enthalpy of formation: -632.828 kJ/mol + -analytic 11.72409E-1 00.00000E+0 26.70706E+2 00.00000E+0 00.00000E+0 + ++1.000Cu+2 +1.000SO4-2 = CuSO4 + log_k +2.31 + delta_h +5.102 #kJ/mol +# Enthalpy of formation: -839.338 kJ/mol + -analytic 32.03832E-1 00.00000E+0 -26.64960E+1 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +1.000Acetate- = Eu(Acetate)+2 + log_k +2.90 #12GRI/GAR2 + -analytic 29.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +2.000Acetate- = Eu(Acetate)2+ + log_k +4.80 #12GRI/GAR2 + -analytic 48.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +3.000Acetate- = Eu(Acetate)3 + log_k +5.60 #12GRI/GAR2 + -analytic 56.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +1.000Cit-3 = Eu(Cit) + log_k +8.55 #Analogy with Am + -analytic 85.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +2.000Cit-3 = Eu(Cit)2-3 + log_k +13.90 #Analogy with Am + -analytic 13.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +1.000CO3-2 = Eu(CO3)+ + log_k +7.90 #95SPA/BRU + delta_h +26.150 #kJ/mol +# Enthalpy of formation: -1254.406 kJ/mol + -analytic 12.48128E+0 00.00000E+0 -13.65910E+2 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +2.000CO3-2 = Eu(CO3)2- + log_k +12.90 #95SPA/BRU + -analytic 12.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +3.000CO3-2 = Eu(CO3)3-3 + log_k +14.80 #05VER/VIT2 + -analytic 14.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +1.000Edta-4 = Eu(Edta)- + log_k +19.67 #Analoly with Am(Edta)- + -analytic 19.67000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +1.000H2(PO4)- = Eu(H2PO4)+2 + log_k +2.40 #95SPA/BRU + -analytic 24.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +1.000H+ +1.000Cit-3 = Eu(HCit)+ + log_k +12.86 #Analogy with Am + -analytic 12.86000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +2.000H+ +2.000Cit-3 = Eu(HCit)2- + log_k +23.52 #Analogy with Am + -analytic 23.52000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +1.000H+ +1.000CO3-2 = Eu(HCO3)+2 + log_k +12.43 #95SPA/BRU + -analytic 12.43000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +1.000H+ +1.000Edta-4 = Eu(HEdta) + log_k +21.84 #Analogy with Am(HEdta) + -analytic 21.84000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 -1.000H+ +1.000H2(PO4)- = Eu(HPO4)+ + log_k -1.51 #95SPA/BRU + -analytic -15.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 -2.000H+ +2.000H2(PO4)- = Eu(HPO4)2- + log_k -4.82 #95SPA/BRU + -analytic -48.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +1.000Malonate-2 = Eu(Malonate)+ + log_k +5.43 #13GRI/CAM + -analytic 54.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +2.000Malonate-2 = Eu(Malonate)2- + log_k +7.78 #13GRI/CAM + -analytic 77.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +1.000NO3- = Eu(NO3)+2 + log_k +1.21 #09RAO/TIA1 (Calculated usig SIT) + -analytic 12.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +1.000Nta-3 = Eu(Nta) + log_k +13.00 #Analogy with Am(Nta)(aq) + -analytic 13.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 -1.000H+ +1.000H2O = Eu(OH)+2 + log_k -7.80 #95SPA/BRU + delta_h +51.104 #kJ/mol +# Enthalpy of formation: -840.051 kJ/mol + -analytic 11.53036E-1 00.00000E+0 -26.69348E+2 00.00000E+0 00.00000E+0 + ++1.000Eu+3 -2.000H+ +1.000HGlu- +2.000H2O = Eu(OH)2(HGlu) + log_k -10.97 #Analogy with Pu(OH)2(HIsa)(aq) + -analytic -10.97000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 -2.000H+ +1.000HIsa- +2.000H2O = Eu(OH)2(HIsa) + log_k -10.97 #Analogy with Pu(OH)2(HIsa)(aq) + -analytic -10.97000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 -2.000H+ +2.000H2O = Eu(OH)2+ + log_k -15.70 #07NEC/ALT2 + delta_h +104.240 #kJ/mol +# Enthalpy of formation: -1072.744 kJ/mol + -analytic 25.62064E-1 00.00000E+0 -54.44834E+2 00.00000E+0 00.00000E+0 + ++1.000Eu+3 -3.000H+ +3.000H2O = Eu(OH)3 + log_k -26.20 #07NEC/ALT2 + delta_h +162.995 #kJ/mol +# Enthalpy of formation: -1299.819 kJ/mol + -analytic 23.55498E-1 00.00000E+0 -85.13822E+2 00.00000E+0 00.00000E+0 + ++1.000Eu+3 -4.000H+ +4.000H2O = Eu(OH)4- + log_k -40.70 #07NEC/ALT2 + delta_h +235.317 #kJ/mol +# Enthalpy of formation: -1513.326 kJ/mol + -analytic 52.57687E-2 00.00000E+0 -12.29146E+3 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +1.000Ox-2 = Eu(Ox)+ + log_k +6.55 #Richard et al. 2011. Extrapolation to I=0 from various data, specially using the constant reported in 01SCH/BYR + -analytic 65.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +2.000Ox-2 = Eu(Ox)2- + log_k +10.93 # Extrapolation to I=0 from various data, specially using the constant reported in 01SCH/BYR + -analytic 10.93000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +3.000Ox-2 = Eu(Ox)3-3 + log_k +12.48 #Richard et al. 2011. Extrapolation to I=0 from various data, specially using the constant reported in 01SCH/BYR + -analytic 12.48000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +1.000Phthalat-2 = Eu(Phthalat)+ + log_k +4.96 #11GRI/COL2 + -analytic 49.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +2.000Phthalat-2 = Eu(Phthalat)2- + log_k +7.34 #11GRI/COL2 + -analytic 73.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 -2.000H+ +1.000H2(PO4)- = Eu(PO4) + log_k -7.36 #95SPA/BRU + -analytic -73.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 -4.000H+ +2.000H2(PO4)- = Eu(PO4)2-3 + log_k -18.46 #95SPA/BRU + -analytic -18.46000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +1.000SO4-2 = Eu(SO4)+ + log_k +3.50 #95SPA/BRU + delta_h +15.577 #kJ/mol +# Enthalpy of formation: -1499.088 kJ/mol + -analytic 62.28973E-1 00.00000E+0 -81.36434E+1 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +2.000SO4-2 = Eu(SO4)2- + log_k +5.20 #95SPA/BRU + delta_h +23.017 #kJ/mol +# Enthalpy of formation: -2400.987 kJ/mol + -analytic 92.32405E-1 00.00000E+0 -12.02262E+2 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +1.000Succinat-2 = Eu(Succinat)+ + log_k +4.36 #13GRI/CAM + -analytic 43.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +2.000Succinat-2 = Eu(Succinat)2- + log_k +6.50 #13GRI/CAM + -analytic 65.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +1.000Br- = EuBr+2 + log_k +0.25 #95SPA/BRU + delta_h +1.397 #kJ/mol +# Enthalpy of formation: -725.337 kJ/mol + -analytic 49.47439E-2 00.00000E+0 -72.97039E+0 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +2.000Br- = EuBr2+ + log_k -0.09 #95SPA/BRU + delta_h +7.625 #kJ/mol +# Enthalpy of formation: -840.520 kJ/mol + -analytic 12.45843E-1 00.00000E+0 -39.82815E+1 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +1.000Cl- = EuCl+2 + log_k +0.76 #Original data 01LUO/BYR and 04LUO/BYR + delta_h +19.940 #kJ/mol 00YEH +# Enthalpy of formation: -752.465 kJ/mol + -analytic 42.53338E-1 00.00000E+0 -10.41539E+2 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +2.000Cl- = EuCl2+ + log_k -0.05 #95SPA/BRU + delta_h +22.870 #kJ/mol +# Enthalpy of formation: -916.614 kJ/mol + -analytic 39.56652E-1 00.00000E+0 -11.94583E+2 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +1.000F- = EuF+2 + log_k +4.33 #07LUO/BYR + delta_h +8.190 #kJ/mol 04LUO/MIL +# Enthalpy of formation: -932.485 kJ/mol + -analytic 57.64826E-1 00.00000E+0 -42.77935E+1 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +2.000F- = EuF2+ + log_k +6.55 #Original data from 99SCH/BYR and 04LUO/BYR + delta_h +18.580 #kJ/mol 04LUO/MIL +# Enthalpy of formation: -1257.445 kJ/mol + -analytic 98.05076E-1 00.00000E+0 -97.05010E+1 00.00000E+0 00.00000E+0 + ++1.000Eu+3 +3.000F- = EuF3 + log_k +10.60 #95SPA/BRU + delta_h +27.850 #kJ/mol +# Enthalpy of formation: -1583.524 kJ/mol + -analytic 15.47911E+0 00.00000E+0 -14.54707E+2 00.00000E+0 00.00000E+0 + ++1.000Eu+3 -1.000H+ +1.000H4(SiO4) = EuSiO(OH)3+2 + log_k -2.62 #Original data 07THA/SIN and 96JEN/CHO1 + -analytic -26.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +1.000B(OH)4- = Fe(B(OH)4)+2 + log_k +8.58 #80BAS + -analytic 85.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +2.000B(OH)4- = Fe(B(OH)4)2+ + log_k +15.54 #80BAS + -analytic 15.54000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +1.000Cit-3 = Fe(Cit) + log_k +12.65 #95AKR/BOU + -analytic 12.65000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+2 +1.000Cit-3 = Fe(Cit)- + log_k +6.10 #95AKR/BOU + -analytic 61.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 -1.000H+ +1.000Cit-3 +1.000H2O = Fe(Cit)(OH)- + log_k +10.33 #95AKR/BOU + -analytic 10.33000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +2.000Cit-3 = Fe(Cit)2-3 + log_k +18.15 #95AKR/BOU + -analytic 18.15000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+2 +2.000CO3-2 = Fe(CO3)2-2 + log_k +7.04 #13LEM/BER + delta_h +58.257 #kJ/mol +# Enthalpy of formation: -1382.499 kJ/mol + -analytic 17.24619E+0 00.00000E+0 -30.42975E+2 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +3.000CO3-2 = Fe(CO3)3-3 + log_k +24.00 #05GRI in 13LEM/BER + -analytic 24.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +1.000Edta-4 = Fe(Edta)- + log_k +27.70 #95AKR/BOU + -analytic 27.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+2 +1.000Edta-4 = Fe(Edta)-2 + log_k +16.02 #95AKR/BOU + -analytic 16.02000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+2 +2.000H+ +1.000Cit-3 = Fe(H2Cit)+ + log_k +13.64 #91DUF/JOH + -analytic 13.64000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +2.000H+ +1.000Cit-3 = Fe(H2Cit)+2 + log_k +14.13 #82NAM/PAL + -analytic 14.13000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+2 +1.000H2(PO4)- = Fe(H2PO4)+ + log_k +2.70 #20LEM/PAL + -analytic 27.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +1.000H2(PO4)- = Fe(H2PO4)+2 + log_k +5.43 #Recalculated from 72NRIa in 20LEM/PAL + -analytic 54.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 -1.000H+ +1.000H4(SiO4) = Fe(H3SiO4)+2 + log_k +0.36 #88CHA/NEW + -analytic 36.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+2 +1.000H+ +1.000Cit-3 = Fe(HCit) + log_k +10.02 #95AKR/BOU + -analytic 10.02000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +1.000H+ +2.000Cit-3 = Fe(HCit)(Cit)-2 + log_k +19.30 #95AKR/BOU + -analytic 19.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +1.000H+ +1.000Cit-3 = Fe(HCit)+ + log_k +13.56 #95AKR/BOU + -analytic 13.56000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +2.000H+ +2.000Cit-3 = Fe(HCit)2- + log_k +24.92 #95AKR/BOU + -analytic 24.92000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +1.000H+ +1.000Edta-4 = Fe(HEdta) + log_k +29.20 #95AKR/BOU + -analytic 29.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+2 +1.000H+ +1.000Edta-4 = Fe(HEdta)- + log_k +18.30 #95AKR/BOU + -analytic 18.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+2 +1.000H+ +1.000Nta-3 = Fe(HNta) + log_k +12.30 #95AKR/BOU + -analytic 12.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +1.000H+ +1.000Ox-2 = Fe(HOx)+2 + log_k +9.30 #95AKR/BOU + -analytic 93.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+2 -1.000H+ +1.000H2(PO4)- = Fe(HPO4) + log_k -3.61 #USGS original + -analytic -36.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+2 +1.000HS- = Fe(HS)+ + log_k +4.34 #04CHI + -analytic 43.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+2 +2.000HS- = Fe(HS)2 + log_k +6.45 #04CHI + -analytic 64.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +1.000H+ +1.000SeO3-2 = Fe(HSeO3)+2 + log_k +12.35 #01SEB/POT2 + -analytic 12.35000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+2 +1.000NH3 = Fe(NH3)+2 + log_k +1.30 #82SCH + -analytic 13.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+2 +2.000NH3 = Fe(NH3)2+2 + log_k +2.10 #82SCH + -analytic 21.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+2 +4.000NH3 = Fe(NH3)4+2 + log_k +3.60 #82SCH + -analytic 36.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +1.000NO3- = Fe(NO3)+2 + log_k +0.95 #HATCHES 8.0 1996 + -analytic 95.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +1.000Nta-3 = Fe(Nta) + log_k +18.60 #95AKR/BOU + -analytic 18.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+2 +1.000Nta-3 = Fe(Nta)- + log_k +10.60 #95AKR/BOU + -analytic 10.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +2.000Nta-3 = Fe(Nta)2-3 + log_k +27.00 #95AKR/BOU + -analytic 27.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+2 +2.000Nta-3 = Fe(Nta)2-4 + log_k +13.50 #95AKR/BOU + -analytic 13.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+2 -1.000H+ +1.000Cit-3 +1.000H2O = Fe(OH)(Cit)-2 + log_k -0.86 #91DUF/JOH + -analytic -86.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 -1.000H+ +1.000Edta-4 +1.000H2O = Fe(OH)(Edta)-2 + log_k +20.84 #95AKR/BOU + -analytic 20.84000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+2 -1.000H+ +1.000Edta-4 +1.000H2O = Fe(OH)(Edta)-3 + log_k +6.40 #95AKR/BOU + -analytic 64.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 -1.000H+ +1.000Nta-3 +1.000H2O = Fe(OH)(Nta)- + log_k +14.60 #95AKR/BOU + -analytic 14.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+2 -1.000H+ +1.000Nta-3 +1.000H2O = Fe(OH)(Nta)-2 + log_k -0.12 #95AKR/BOU + -analytic -12.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+2 -1.000H+ +1.000H2O = Fe(OH)+ + log_k -9.25 #21RIB/BEG + delta_h +40.921 #kJ/mol 21RIB/BEG +# Enthalpy of formation: -335.204 kJ/mol + -analytic -20.80949E-1 00.00000E+0 -21.37453E+2 00.00000E+0 00.00000E+0 + ++1.000Fe+3 -1.000H+ +1.000H2O = Fe(OH)+2 + log_k -2.15 #13LEM/BER + delta_h +38.800 #kJ/mol 13LEM/BER +# Enthalpy of formation: -297.086 kJ/mol + -analytic 46.47468E-1 00.00000E+0 -20.26665E+2 00.00000E+0 00.00000E+0 + ++1.000Fe+2 -2.000H+ +2.000H2O = Fe(OH)2 + log_k -20.84 #21RIB/BEG + delta_h +114.131 #kJ/mol 21RIB/BEG +# Enthalpy of formation: -547.824 kJ/mol + -analytic -84.51071E-2 00.00000E+0 -59.61477E+2 00.00000E+0 00.00000E+0 + ++1.000Fe+3 -2.000H+ +1.000Cit-3 +2.000H2O = Fe(OH)2(Cit)-2 + log_k +2.90 #95AKR/BOU + -analytic 29.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 -2.000H+ +1.000Edta-4 +2.000H2O = Fe(OH)2(Edta)-3 + log_k +10.06 #95AKR/BOU + -analytic 10.06000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+2 -2.000H+ +1.000Edta-4 +2.000H2O = Fe(OH)2(Edta)-4 + log_k -4.40 #95AKR/BOU + -analytic -44.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 -2.000H+ +1.000Nta-3 +2.000H2O = Fe(OH)2(Nta)-2 + log_k +6.00 #95AKR/BOU + -analytic 60.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 -2.000H+ +2.000H2O = Fe(OH)2+ + log_k -4.80 #13LEM/BER + delta_h +71.546 #kJ/mol 76BAE/MES in 98CHI +# Enthalpy of formation: -550.170 kJ/mol + -analytic 77.34321E-1 00.00000E+0 -37.37108E+2 00.00000E+0 00.00000E+0 + ++1.000Fe+3 -3.000H+ +3.000H2O = Fe(OH)3 + log_k -12.56 #95BOU in 04CHI + delta_h +103.764 #kJ/mol 95BOU in 04CHI +# Enthalpy of formation: -803.782 kJ/mol + -analytic 56.18672E-1 00.00000E+0 -54.19971E+2 00.00000E+0 00.00000E+0 + ++1.000Fe+2 -3.000H+ +3.000H2O = Fe(OH)3- + log_k -33.84 #21RIB/BEG + delta_h +162.231 #kJ/mol 21RIB/BEG +# Enthalpy of formation: -785.554 kJ/mol + -analytic -54.18349E-1 00.00000E+0 -84.73915E+2 00.00000E+0 00.00000E+0 + ++1.000Fe+3 -3.000H+ +1.000Edta-4 +3.000H2O = Fe(OH)3(Edta)-4 + log_k -2.24 #51SCH/HEL + -analytic -22.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 -4.000H+ +4.000H2O = Fe(OH)4- + log_k -21.60 #76BAE/MES in 04CHI + delta_h +133.471 #kJ/mol 95BOU in 04CHI +# Enthalpy of formation: -1059.905 kJ/mol + -analytic 17.83115E-1 00.00000E+0 -69.71676E+2 00.00000E+0 00.00000E+0 + ++1.000Fe+2 -4.000H+ +4.000H2O = Fe(OH)4-2 + log_k -46.32 #21RIB/BEG from 56GAY/WOO + delta_h +160.750 #kJ/mol +# Enthalpy of formation: -1072.864 kJ/mol + -analytic -18.15781E+0 00.00000E+0 -83.96557E+2 00.00000E+0 00.00000E+0 + ++1.000Fe+3 -1.000H+ +1.000CO3-2 +1.000H2O = Fe(OH)CO3 + log_k +10.70 #05GRI + -analytic 10.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+2 +1.000Ox-2 = Fe(Ox) + log_k +4.10 #95AKR/BOU + -analytic 41.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +1.000Ox-2 = Fe(Ox)+ + log_k +9.53 #95AKR/BOU + -analytic 95.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +2.000Ox-2 = Fe(Ox)2- + log_k +15.75 #95AKR/BOU + -analytic 15.75000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+2 +2.000Ox-2 = Fe(Ox)2-2 + log_k +6.20 #95AKR/BOU + -analytic 62.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +3.000Ox-2 = Fe(Ox)3-3 + log_k +20.20 #95AKR/BOU + -analytic 20.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+2 +3.000Ox-2 = Fe(Ox)3-4 + log_k +5.22 #95AKR/BOU + -analytic 52.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 -2.000H+ +1.000H2(PO4)- = Fe(PO4) + log_k +3.44 #Recalculated from 07IUL/CIA in 20LEM/PAL + -analytic 34.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +1.000SeO3-2 = Fe(SeO3)+ + log_k +11.15 #05OLI/NOL + -analytic 11.15000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+2 +1.000SeO4-2 = Fe(SeO4) + log_k +2.71 #01SEB/POT2 + delta_h -12.425 #kJ/mol +# Enthalpy of formation: -706.220 kJ/mol + -analytic 53.32334E-2 00.00000E+0 64.90029E+1 00.00000E+0 00.00000E+0 + ++1.000Fe+2 +1.000SO4-2 = Fe(SO4) + log_k +2.44 #13LEM/BER + delta_h +8.400 #kJ/mol 13LEM/BER +# Enthalpy of formation: -991.235 kJ/mol + -analytic 39.11617E-1 00.00000E+0 -43.87626E+1 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +1.000SO4-2 = Fe(SO4)+ + log_k +4.25 #13LEM/BER + delta_h +26.000 #kJ/mol Suggested but not selected 13LEM/BER +# Enthalpy of formation: -933.396 kJ/mol + -analytic 88.05004E-1 00.00000E+0 -13.58075E+2 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +2.000SO4-2 = Fe(SO4)2- + log_k +6.22 #91PEA/BER in 98CHI + -analytic 62.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000Fe+3 -2.000H+ +2.000Cit-3 +2.000H2O = Fe2(Cit)2(OH)2-2 + log_k +17.00 #95AKR/BOU + -analytic 17.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000Fe+3 -2.000H+ +2.000Edta-4 +2.000H2O = Fe2(OH)2(Edta)2-4 + log_k +40.00 #95AKR/BOU + -analytic 40.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000Fe+3 -2.000H+ +2.000H2O = Fe2(OH)2+4 + log_k -2.82 #13LEM/BER + delta_h +44.000 #kJ/mol 13LEM/BER +# Enthalpy of formation: -627.772 kJ/mol + -analytic 48.88469E-1 00.00000E+0 -22.98280E+2 00.00000E+0 00.00000E+0 + ++3.000Fe+3 -4.000H+ +4.000H2O = Fe3(OH)4+5 + log_k -6.30 #76BAE/MES in 98CHI + delta_h +59.831 #kJ/mol 76BAE/MES +# Enthalpy of formation: -1233.657 kJ/mol + -analytic 41.81941E-1 00.00000E+0 -31.25191E+2 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +1.000Br- = FeBr+2 + log_k +0.70 #88CHA/NEW + -analytic 70.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +2.000Br- = FeBr2+ + log_k +0.90 #96FAL/REA + -analytic 90.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+2 +1.000Cl- = FeCl+ + log_k +1.00 #Suggested in 13LEM/BER + delta_h +21.551 #kJ/mol 13LEM/BER +# Enthalpy of formation: -235.824 kJ/mol + -analytic 47.75573E-1 00.00000E+0 -11.25687E+2 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +1.000Cl- = FeCl+2 + log_k +1.52 #13LEM/BER + delta_h +22.500 #kJ/mol 13LEM/BER +# Enthalpy of formation: -194.636 kJ/mol + -analytic 54.61831E-1 00.00000E+0 -11.75257E+2 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +2.000Cl- = FeCl2+ + log_k +2.22 #13LEM/BER + -analytic 22.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +3.000Cl- = FeCl3 + log_k +1.02 #13LEM/BER + -analytic 10.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +4.000Cl- = FeCl4- + log_k -0.98 #13LEM/BER + -analytic -98.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+2 +1.000CO3-2 = FeCO3 + log_k +5.27 #13LEM/BER + delta_h -3.367 #kJ/mol +# Enthalpy of formation: -768.892 kJ/mol + -analytic 46.80127E-1 00.00000E+0 17.58707E+1 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +1.000CrO4-2 = FeCrO4+ + log_k +7.80 #96BAR/PAL + delta_h +19.100 #kJ/mol 96BAR/PAL +# Enthalpy of formation: -909.956 kJ/mol + -analytic 11.14618E+0 00.00000E+0 -99.76625E+1 00.00000E+0 00.00000E+0 + ++1.000Fe+2 +1.000F- = FeF+ + log_k +1.70 #13LEM/BER + -analytic 17.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +1.000F- = FeF+2 + log_k +6.09 #20LEM/PAL + delta_h +12.800 #kJ/mol 20LEM/PAL +# Enthalpy of formation: -372.606 kJ/mol + -analytic 83.32464E-1 00.00000E+0 -66.85906E+1 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +2.000F- = FeF2+ + log_k +10.41 #Calculated in 20LEM/PAL + delta_h +22.000 #kJ/mol Calculated in 20LEM/PAL +# Enthalpy of formation: -698.756 kJ/mol + -analytic 14.26423E+0 00.00000E+0 -11.49140E+2 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +2.000H+ +1.000Pyrophos-4 = FeH2Pyrophos+ + log_k +26.00 #88CHA/NEW + -analytic 26.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +1.000I- = FeI+2 + log_k +2.10 #96BOU2 + -analytic 21.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Fe+3 +1.000S2O3-2 = FeS2O3+ + log_k +3.90 #82SCH + -analytic 39.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000Adipate-2 = H(Adipate)- + log_k +5.45 #04MAR/SMI + -analytic 54.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-2.000H+ +1.000H3(AsO3) = H(AsO3)-2 + log_k -23.62 #79IVA/VOR + -analytic -23.62000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000AsO4-3 = H(AsO4)-2 + log_k +11.60 + delta_h -18.200 #kJ/mol +# Enthalpy of formation: -906.340 kJ/mol 09RAN/FUG + -analytic 84.11497E-1 00.00000E+0 95.06522E+1 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000Cit-3 = H(Cit)-2 + log_k +6.36 #05HUM/AND + delta_h +3.300 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1516.620 kJ/mol + -analytic 69.38135E-1 00.00000E+0 -17.23710E+1 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000Edta-4 = H(Edta)-3 + log_k +11.24 #05HUM/AND + delta_h -19.800 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1724.600 kJ/mol + -analytic 77.71189E-1 00.00000E+0 10.34226E+2 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000Malonate-2 = H(Malonate)- + log_k +5.71 #13GRI/CAM + -analytic 57.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000Nta-3 = H(Nta)-2 + log_k +10.28 #95AKR/BOU + -analytic 10.28000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000Ox-2 = H(Ox)- + log_k +4.25 #05HUM/AND + delta_h +7.300 #kJ/mol 05HUM/AND +# Enthalpy of formation: -823.360 kJ/mol + -analytic 55.28905E-1 00.00000E+0 -38.13056E+1 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000Pyrophos-4 = H(Pyrophos)-3 + log_k +9.40 #92GRE/FUG + -analytic 94.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000S2O3-2 = H(S2O3)- + log_k +1.72 #04CHI + delta_h +8.253 #kJ/mol +# Enthalpy of formation: -644.033 kJ/mol + -analytic 31.65864E-1 00.00000E+0 -43.10842E+1 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000SeO3-2 = H(SeO3)- + log_k +8.36 #05OLI/NOL + delta_h -5.170 #kJ/mol +# Enthalpy of formation: -512.330 kJ/mol 05OLI/NOL + -analytic 74.54255E-1 00.00000E+0 27.00479E+1 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000SeO4-2 = H(SeO4)- + log_k +1.75 #05OLI/NOL + delta_h +20.800 #kJ/mol 05OLI/NOL +# Enthalpy of formation: -582.700 kJ/mol + -analytic 53.94004E-1 00.00000E+0 -10.86460E+2 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000SO3-2 = H(SO3)- + log_k +7.17 #85GOL/PAR + delta_h +3.668 #kJ/mol +# Enthalpy of formation: -627.392 kJ/mol + -analytic 78.12606E-1 00.00000E+0 -19.15930E+1 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000SO4-2 = H(SO4)- + log_k +1.98 + delta_h +22.440 #kJ/mol +# Enthalpy of formation: -886.900 kJ/mol 92GRE/FUG + -analytic 59.11319E-1 00.00000E+0 -11.72123E+2 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000Suberate-2 = H(Suberate)- + log_k +5.40 #31GAN/ING + -analytic 54.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000Succinat-2 = H(Succinat)- + log_k +5.71 #13GRI/CAM + -analytic 57.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000H+ +1.000Adipate-2 = H2(Adipate) + log_k +9.89 #04MAR/SMI + -analytic 98.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000H3(AsO3) = H2(AsO3)- + log_k -9.22 + delta_h +27.410 #kJ/mol +# Enthalpy of formation: -714.790 kJ/mol 10RAN/FUG + -analytic -44.17974E-1 00.00000E+0 -14.31724E+2 00.00000E+0 00.00000E+0 + ++2.000H+ +1.000AsO4-3 = H2(AsO4)- + log_k +18.37 + delta_h -21.420 #kJ/mol +# Enthalpy of formation: -909.560 kJ/mol 09RAN/FUG + -analytic 14.61738E+0 00.00000E+0 11.18845E+2 00.00000E+0 00.00000E+0 + ++2.000H+ +1.000Cit-3 = H2(Cit)- + log_k +11.14 #05HUM/AND + delta_h +0.900 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1519.020 kJ/mol + -analytic 11.29767E+0 00.00000E+0 -47.01027E+0 00.00000E+0 00.00000E+0 + ++2.000H+ +1.000Edta-4 = H2(Edta)-2 + log_k +18.04 #05HUM/AND + delta_h -35.000 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1739.800 kJ/mol + -analytic 11.90826E+0 00.00000E+0 18.28177E+2 00.00000E+0 00.00000E+0 + ++2.000H+ +1.000Malonate-2 = H2(Malonate) + log_k +8.67 #13GRI/CAM + -analytic 86.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000H+ +1.000Nta-3 = H2(Nta)- + log_k +13.20 #95AKR/BOU + -analytic 13.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000H+ +1.000Ox-2 = H2(Ox) + log_k +5.65 #05HUM/AND + delta_h +10.600 #kJ/mol 05HUM/AND +# Enthalpy of formation: -820.060 kJ/mol + -analytic 75.07040E-1 00.00000E+0 -55.36766E+1 00.00000E+0 00.00000E+0 + ++2.000H+ +1.000Pyrophos-4 = H2(Pyrophos)-2 + log_k +16.05 #92GRE/FUG + -analytic 16.05000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000H+ +1.000S2O3-2 = H2(S2O3) + log_k +2.32 #04CHI + delta_h +22.917 #kJ/mol +# Enthalpy of formation: -629.369 kJ/mol + -analytic 63.34886E-1 00.00000E+0 -11.97038E+2 00.00000E+0 00.00000E+0 + ++2.000H+ +1.000SeO3-2 = H2(SeO3) + log_k +11.00 #05OLI/NOL + delta_h +1.840 #kJ/mol +# Enthalpy of formation: -505.320 kJ/mol 05OLI/NOL + -analytic 11.32235E+0 00.00000E+0 -96.10989E+0 00.00000E+0 00.00000E+0 + +-2.000H+ +1.000H4(SiO4) = H2(SiO4)-2 + log_k -23.14 #92GRE/FUG + delta_h +75.000 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -1386.194 kJ/mol + -analytic -10.00056E+0 00.00000E+0 -39.17523E+2 00.00000E+0 00.00000E+0 + ++2.000H+ +1.000SO3-2 = H2(SO3) + log_k +9.03 #85GOL/PAR + delta_h +21.453 #kJ/mol +# Enthalpy of formation: -609.607 kJ/mol + -analytic 12.78840E+0 00.00000E+0 -11.20568E+2 00.00000E+0 00.00000E+0 + ++2.000H+ +1.000Suberate-2 = H2(Suberate) + log_k +9.92 #31GAN/ING + -analytic 99.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000H+ +1.000Succinat-2 = H2(Succinat) + log_k +9.95 #13GRI/CAM + -analytic 99.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000H+ +1.000CrO4-2 = H2CrO4 + log_k +6.32 #76BAE/MES, 04CHI + delta_h +39.596 #kJ/mol +# Enthalpy of formation: -839.404 kJ/mol + -analytic 13.25692E+0 00.00000E+0 -20.68243E+2 00.00000E+0 00.00000E+0 + ++2.000H+ +1.000H2(PO4)- +1.000CrO4-2 -1.000H2O = H2CrPO7- + log_k +9.02 + delta_h -51.490 #kJ/mol +# Enthalpy of formation: -1947.260 kJ/mol 76DEL/HAL + -analytic -66.07802E-5 00.00000E+0 26.89510E+2 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000HGlu- = H2Glu + log_k +3.90 #98ZUB/CAS + -analytic 39.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000HIsa- = H2Isa + log_k +4.00 #05HUM/AND + -analytic 40.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000H+ +1.000MoO4-2 = H2MoO4 + log_k +8.15 #68SAS/SIL, 64AVE/ANA; + -analytic 81.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000H+ +1.000Phthalat-2 = H2Phthalat + log_k +8.32 #10RIC/SAB1 + -analytic 83.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000HS- = H2S + log_k +6.99 + delta_h -22.300 #kJ/mol +# Enthalpy of formation: -38.600 kJ/mol 89COX/WAG + -analytic 30.83208E-1 00.00000E+0 11.64810E+2 00.00000E+0 00.00000E+0 + ++2.000H+ +1.000S2O4-2 = H2S2O4 + log_k +2.80 #04CHI + delta_h +20.193 #kJ/mol +# Enthalpy of formation: -733.307 kJ/mol + -analytic 63.37662E-1 00.00000E+0 -10.54754E+2 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000HSe- = H2Se + log_k +3.85 + delta_h +0.000 #kJ/mol +# Enthalpy of formation: +14.300 kJ/mol 05OLI/NOL + -analytic 38.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++3.000H+ +1.000AsO4-3 = H3(AsO4) + log_k +20.63 + delta_h -14.360 #kJ/mol +# Enthalpy of formation: -902.500 kJ/mol 09RAN/FUG + -analytic 18.11424E+0 00.00000E+0 75.00750E+1 00.00000E+0 00.00000E+0 + ++3.000H+ +1.000Cit-3 = H3(Cit) + log_k +14.27 #05HUM/AND + delta_h -3.600 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1523.520 kJ/mol + -analytic 13.63931E+0 00.00000E+0 18.80411E+1 00.00000E+0 00.00000E+0 + ++3.000H+ +1.000Edta-4 = H3(Edta)- + log_k +21.19 #05HUM/AND + delta_h -27.900 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1732.700 kJ/mol + -analytic 16.30213E+0 00.00000E+0 14.57318E+2 00.00000E+0 00.00000E+0 + ++3.000H+ +1.000Nta-3 = H3(Nta) + log_k +15.33 #95AKR/BOU + -analytic 15.33000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000H2(PO4)- = H3(PO4) + log_k +2.14 #92GRE/FUG + delta_h +8.480 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -1294.120 kJ/mol + -analytic 36.25632E-1 00.00000E+0 -44.29412E+1 00.00000E+0 00.00000E+0 + ++3.000H+ +1.000Pyrophos-4 = H3(Pyrophos)- + log_k +18.30 #92GRE/FUG + -analytic 18.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000H4(SiO4) = H3(SiO4)- + log_k -9.84 #06BLA/PIA; Uncertainty to include available data. + delta_h +29.363 #kJ/mol +# Enthalpy of formation: -1431.831 kJ/mol + -analytic -46.95823E-1 00.00000E+0 -15.33736E+2 00.00000E+0 00.00000E+0 + ++4.000H+ +1.000Edta-4 = H4(Edta) + log_k +23.42 #05HUM/AND + delta_h -26.000 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1730.800 kJ/mol + -analytic 18.86500E+0 00.00000E+0 13.58075E+2 00.00000E+0 00.00000E+0 + ++4.000H+ +1.000Nta-3 = H4(Nta)+ + log_k +16.13 #95AKR/BOU + -analytic 16.13000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++4.000H+ +1.000Pyrophos-4 = H4(Pyrophos) + log_k +19.30 #92GRE/FUG +# Enthalpy of formation: -2280.210 kJ/mol 92GRE/FUG + -analytic 19.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++5.000H+ +1.000Edta-4 = H5(Edta)+ + log_k +24.72 #05HUM/AND + -analytic 24.72000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++6.000H+ +1.000Edta-4 = H6(Edta)+2 + log_k +24.22 #05HUM/AND + -analytic 24.22000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000Acetate- = HAcetate + log_k +4.76 + delta_h +0.250 #kJ/mol +# Enthalpy of formation: -485.760 kJ/mol 82WAG/EVA + -analytic 48.03798E-1 00.00000E+0 -13.05841E+0 00.00000E+0 00.00000E+0 + ++1.000H+ +2.000B(OH)4- -4.000H2O = HB2O4- + log_k +9.17 #97CRO + -analytic 91.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000CO3-2 = HCO3- + log_k +10.33 + delta_h -14.700 #kJ/mol +# Enthalpy of formation: -689.930 kJ/mol 89COX/WAG + -analytic 77.54671E-1 00.00000E+0 76.78345E+1 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000CrO4-2 = HCrO4- + log_k +6.52 #87PAL/WES, 04CHI + delta_h +6.016 #kJ/mol +# Enthalpy of formation: -872.985 kJ/mol + -analytic 75.73958E-1 00.00000E+0 -31.42376E+1 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000H2(PO4)- +1.000CrO4-2 -1.000H2O = HCrPO7-2 + log_k +6.37 + delta_h -36.390 #kJ/mol +# Enthalpy of formation: -1932.160 kJ/mol 76DEL/HEP + -analytic -52.54337E-4 00.00000E+0 19.00782E+2 00.00000E+0 00.00000E+0 + ++4.000CO3-2 +1.000Hf+4 = Hf(CO3)4-4 + log_k +42.90 #analogy with Zr + -analytic 42.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000NO3- +1.000Hf+4 = Hf(NO3)2+2 + log_k +2.49 #65DES/KHO recalculated; Uncertainty to include available data. + -analytic 24.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000Hf+4 +1.000H2O = Hf(OH)+3 + log_k -0.20 #01RAI/XIA; Uncertainty to include available data. + -analytic -20.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-4.000H+ +1.000Hf+4 +4.000H2O = Hf(OH)4 + log_k -11.20 #01RAI/XIA; Uncertainty to include available data. + -analytic -11.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-5.000H+ +1.000Hf+4 +5.000H2O = Hf(OH)5- + log_k -20.30 #01RAI/XIA + -analytic -20.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-6.000H+ +1.000Hf+4 +6.000H2O = Hf(OH)6-2 + log_k -32.80 #01RAI/XIA + -analytic -32.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000SO4-2 +1.000Hf+4 = Hf(SO4)2 + log_k +10.11 #65DES/KHO recalculated;Uncertainty to include available data. + -analytic 10.11000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Br- +1.000Hf+4 = HfBr+3 + log_k +0.38 #67HAL/POH recalculated + -analytic 38.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cl- +1.000Hf+4 = HfCl+3 + log_k +2.20 #65DES/KHO and others recalculated + -analytic 22.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000Cl- +1.000Hf+4 = HfCl2+2 + log_k +2.05 #65DES/KHO and others recalculated; Uncertainty to include available data. + -analytic 20.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000F- +1.000Hf+4 = HfF+3 + log_k +9.29 #05SAW/THA and others recalculated + -analytic 92.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000F- +1.000Hf+4 = HfF2+2 + log_k +17.85 #05SAW/THA and others recalculated + -analytic 17.85000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++3.000F- +1.000Hf+4 = HfF3+ + log_k +25.08 #05SAW/THA and others recalculated + -analytic 25.08000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++4.000F- +1.000Hf+4 = HfF4 + log_k +31.41 #05SAW/THA and others recalculated + -analytic 31.41000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000I- +1.000Hf+4 = HfI+3 + log_k +0.02 #67HAL/POH recalculated + -analytic 20.00000E-3 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000NO3- +1.000Hf+4 = HfNO3+3 + log_k +1.85 #65DES/KHO 69HAL/SMO recalculated; Uncertainty to include available data. + -analytic 18.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000SO4-2 +1.000Hf+4 = HfSO4+2 + log_k +6.06 #65DES/KHO recalculated; Uncertainty to include available data. + -analytic 60.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000CO3-2 +1.000Hg+2 = Hg(CO3) + log_k +11.47 #05POW/BRO + -analytic 11.47000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000CO3-2 +1.000Hg+2 = Hg(HCO3)+ + log_k +15.80 #05POW/BRO + -analytic 15.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000HS- +1.000Hg+2 = Hg(HS)+ + log_k +30.50 #99BEN/GIL + -analytic 30.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000HS- +1.000Hg+2 = Hg(HS)2 + log_k +37.50 #99BEN/GIL + -analytic 37.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000H2O +1.000Hg+2 = Hg(OH)+ + log_k -3.40 #05POW/BRO + -analytic -34.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-2.000H+ +2.000H2O +1.000Hg+2 = Hg(OH)2 + log_k -5.98 #05POW/BRO + delta_h +51.500 #kJ/mol 05POW/BRO +# Enthalpy of formation: -349.950 kJ/mol + -analytic 30.42413E-1 00.00000E+0 -26.90032E+2 00.00000E+0 00.00000E+0 + +-3.000H+ +3.000H2O +1.000Hg+2 = Hg(OH)3- + log_k -21.10 #05POW/BRO + -analytic -21.10000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000Cl- +1.000H2O +1.000Hg+2 = Hg(OH)Cl + log_k +4.27 #05POW/BRO + -analytic 42.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000CO3-2 +1.000H2O +1.000Hg+2 = Hg(OH)CO3- + log_k +5.33 #05POW/BRO + -analytic 53.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000H2O +1.000Hg2+2 = Hg2(OH)+ + log_k -5.00 #76BAE/MES + -analytic -50.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000H2O +2.000Hg+2 = Hg2(OH)+3 + log_k -3.33 #76BAE/MES + -analytic -33.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-3.000H+ +3.000H2O +3.000Hg+2 = Hg3(OH)3+3 + log_k -6.42 #76BAE/MES + -analytic -64.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Cl- +1.000Hg+2 = HgCl+ + log_k +7.31 #05POW/BRO + delta_h -21.300 #kJ/mol 05POW/BRO +# Enthalpy of formation: -18.170 kJ/mol + -analytic 35.78400E-1 00.00000E+0 11.12576E+2 00.00000E+0 00.00000E+0 + ++2.000Cl- +1.000Hg+2 = HgCl2 + log_k +14.00 #05POW/BRO + delta_h -49.100 #kJ/mol 05POW/BRO +# Enthalpy of formation: -213.050 kJ/mol + -analytic 53.98049E-1 00.00000E+0 25.64672E+2 00.00000E+0 00.00000E+0 + ++3.000Cl- +1.000Hg+2 = HgCl3- + log_k +14.93 #05POW/BRO + delta_h -48.600 #kJ/mol 05POW/BRO +# Enthalpy of formation: -379.630 kJ/mol + -analytic 64.15645E-1 00.00000E+0 25.38555E+2 00.00000E+0 00.00000E+0 + ++4.000Cl- +1.000Hg+2 = HgCl4-2 + log_k +15.54 #05POW/BRO + delta_h -59.100 #kJ/mol 05POW/BRO +# Enthalpy of formation: -557.210 kJ/mol + -analytic 51.86124E-1 00.00000E+0 30.87008E+2 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000H2(PO4)- +1.000Hg+2 = HgHPO4 + log_k +2.86 #05POW/BRO + -analytic 28.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-2.000H+ +1.000H2(PO4)- +1.000Hg+2 = HgPO4- + log_k -2.63 #05POW/BRO + -analytic -26.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000HS- +1.000Hg+2 = HgS + log_k +26.50 #99BEN/GIL + -analytic 26.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +2.000HS- +1.000Hg+2 = HgS(HS)- + log_k +32.00 #99BEN/GIL + -analytic 32.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-2.000H+ +2.000HS- +1.000Hg+2 = HgS2-2 + log_k +23.50 #99BEN/GIL + -analytic 23.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000SO4-2 +1.000Hg+2 = HgSO4 + log_k +2.68 #05POW/BRO + -analytic 26.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000MoO4-2 = HMoO4- + log_k +4.11 #68SAS/SIL, 64AVE/ANA + delta_h +58.576 #kJ/mol 68ARN/SZI in 76BAE/MES +# Enthalpy of formation: -938.424 kJ/mol + -analytic 14.37207E+0 00.00000E+0 -30.59638E+2 00.00000E+0 00.00000E+0 + ++1.000Ho+3 +1.000CO3-2 = Ho(CO3)+ + log_k +8.00 #95SPA/BRU + delta_h -55.444 #kJ/mol +# Enthalpy of formation: -1437.717 kJ/mol + -analytic -17.13372E-1 00.00000E+0 28.96042E+2 00.00000E+0 00.00000E+0 + ++1.000Ho+3 +2.000CO3-2 = Ho(CO3)2- + log_k +13.30 #95SPA/BRU + -analytic 13.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ho+3 +3.000CO3-2 = Ho(CO3)3-3 + log_k +14.80 #05VER/VIT2 + -analytic 14.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ho+3 +1.000H2(PO4)- = Ho(H2PO4)+2 + log_k +2.30 #95SPA/BRU + -analytic 23.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000Ho+3 +1.000CO3-2 = Ho(HCO3)+2 + log_k +12.50 #95SPA/BRU + -analytic 12.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000Ho+3 +1.000H2(PO4)- = Ho(HPO4)+ + log_k -1.41 #95SPA/BRU + -analytic -14.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-2.000H+ +1.000Ho+3 +2.000H2(PO4)- = Ho(HPO4)2- + log_k -4.52 #95SPA/BRU + -analytic -45.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ho+3 +1.000NO3- = Ho(NO3)+2 + log_k +0.50 #95SPA/BRU + -analytic 50.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000Ho+3 +1.000H2O = Ho(OH)+2 + log_k -7.90 #95SPA/BRU + delta_h +53.296 #kJ/mol +# Enthalpy of formation: -939.576 kJ/mol + -analytic 14.37058E-1 00.00000E+0 -27.83844E+2 00.00000E+0 00.00000E+0 + +-2.000H+ +1.000Ho+3 +2.000H2O = Ho(OH)2+ + log_k -15.70 #07NEC/ALT2 + delta_h +105.862 #kJ/mol +# Enthalpy of formation: -1172.840 kJ/mol + -analytic 28.46226E-1 00.00000E+0 -55.29557E+2 00.00000E+0 00.00000E+0 + +-3.000H+ +1.000Ho+3 +3.000H2O = Ho(OH)3 + log_k -26.20 #07NEC/ALT2 + delta_h +164.617 #kJ/mol +# Enthalpy of formation: -1399.915 kJ/mol + -analytic 26.39660E-1 00.00000E+0 -85.98545E+2 00.00000E+0 00.00000E+0 + +-4.000H+ +1.000Ho+3 +4.000H2O = Ho(OH)4- + log_k -40.70 #07NEC/ALT2 + delta_h +236.939 #kJ/mol +# Enthalpy of formation: -1613.422 kJ/mol + -analytic 80.99309E-2 00.00000E+0 -12.37619E+3 00.00000E+0 00.00000E+0 + +-2.000H+ +1.000Ho+3 +1.000H2(PO4)- = Ho(PO4) + log_k -6.96 #95SPA/BRU + -analytic -69.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-4.000H+ +1.000Ho+3 +2.000H2(PO4)- = Ho(PO4)2-3 + log_k -17.82 #95SPA/BRU + -analytic -17.82000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ho+3 +1.000SO4-2 = Ho(SO4)+ + log_k +3.40 #95SPA/BRU + delta_h +15.384 #kJ/mol +# Enthalpy of formation: -1600.998 kJ/mol + -analytic 60.95161E-1 00.00000E+0 -80.35623E+1 00.00000E+0 00.00000E+0 + ++1.000Ho+3 +2.000SO4-2 = Ho(SO4)2- + log_k +4.90 #95SPA/BRU + delta_h +23.668 #kJ/mol +# Enthalpy of formation: -2502.054 kJ/mol + -analytic 90.46456E-1 00.00000E+0 -12.36266E+2 00.00000E+0 00.00000E+0 + ++1.000Ho+3 +1.000Cl- = HoCl+2 + log_k +0.74 #Original data from 01LUO/BYR and 04LUO/BYR + delta_h +7.959 #kJ/mol +# Enthalpy of formation: -866.163 kJ/mol + -analytic 21.34357E-1 00.00000E+0 -41.57275E+1 00.00000E+0 00.00000E+0 + ++1.000Ho+3 +2.000Cl- = HoCl2+ + log_k -0.29 #81TUR/WHI + delta_h +25.862 #kJ/mol +# Enthalpy of formation: -1015.340 kJ/mol + -analytic 42.40828E-1 00.00000E+0 -13.50866E+2 00.00000E+0 00.00000E+0 + ++1.000Ho+3 +1.000F- = HoF+2 + log_k +4.33 #07LUO/BYR + delta_h +10.020 #kJ/mol 04LUO/MIL +# Enthalpy of formation: -1032.372 kJ/mol + -analytic 60.85429E-1 00.00000E+0 -52.33811E+1 00.00000E+0 00.00000E+0 + ++1.000Ho+3 +2.000F- = HoF2+ + log_k +6.52 #Original data from 99SCH/BYR and 04LUO/BYR + delta_h +21.110 #kJ/mol 04LUO/MIL +# Enthalpy of formation: -1356.632 kJ/mol + -analytic 10.21831E+0 00.00000E+0 -11.02652E+2 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000Ho+3 +1.000H4(SiO4) = HoSiO(OH)3+2 + log_k -2.62 #Original data from 07THA/SIN and 96JEN/CHO1 + -analytic -26.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000Phthalat-2 = HPhthalat- + log_k +5.34 #10RIC/SAB1 + -analytic 53.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000H2(PO4)- = HPO4-2 + log_k -7.21 + delta_h +3.600 #kJ/mol +# Enthalpy of formation: -1299.000 kJ/mol 89COX/WAG + -analytic -65.79307E-1 00.00000E+0 -18.80411E+1 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000S2O4-2 = HS2O4- + log_k +2.50 #04CHI + delta_h +3.818 #kJ/mol +# Enthalpy of formation: -749.683 kJ/mol + -analytic 31.68885E-1 00.00000E+0 -19.94280E+1 00.00000E+0 00.00000E+0 + +-1.000H+ -2.000e- +1.000SO4-2 +1.000H2O = HSO5- + log_k -60.21 + delta_h +419.540 #kJ/mol +# Enthalpy of formation: -775.630 kJ/mol 88SHO/HEL + -analytic 13.29025E+0 00.00000E+0 -21.91410E+3 00.00000E+0 00.00000E+0 + +-2.000e- +3.000I- = I3- + log_k -18.17 + delta_h +118.877 #kJ/mol +# Enthalpy of formation: -51.463 kJ/mol 92JOH/OEL + -analytic 26.56356E-1 00.00000E+0 -62.09378E+2 00.00000E+0 00.00000E+0 + +-2.000e- +2.000Cl- +1.000I- = ICl2- + log_k -26.80 #96FAL/REA + -analytic -26.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-2.000H+ -2.000e- +1.000I- +1.000H2O = IO- + log_k -44.00 #96FAL/REA + -analytic -44.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-8.000H+ -8.000e- +1.000I- +4.000H2O = IO4- + log_k -164.98 + delta_h +1048.639 #kJ/mol +# Enthalpy of formation: -151.461 kJ/mol 92JOH/OEL + -analytic 18.73367E+0 00.00000E+0 -54.77423E+3 00.00000E+0 00.00000E+0 + ++1.000K+ +1.000Edta-4 = K(Edta)-3 + log_k +1.80 #05HUM/AND + -analytic 18.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000K+ +1.000H+ +1.000Nta-3 = K(HNta)- + log_k +10.30 #95AKR/BOU + -analytic 10.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000K+ -1.000H+ +1.000H2(PO4)- = K(HPO4)- + log_k -6.40 #97MAR/SMI + delta_h +31.589 #kJ/mol 97MAR/SMI +# Enthalpy of formation: -1523.151 kJ/mol + -analytic -86.58448E-2 00.00000E+0 -16.50008E+2 00.00000E+0 00.00000E+0 + ++1.000K+ +1.000IO3- = K(IO3) + log_k +0.02 #estimation NEA87 08/2/95 + -analytic 20.00000E-3 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000K+ +1.000Nta-3 = K(Nta)-2 + log_k +1.30 #95AKR/BOU + -analytic 13.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000K+ +1.000Pyrophos-4 = K(Pyrophos)-3 + log_k +2.10 #76MAR/SMI + delta_h +7.113 #kJ/mol 76MAR/SMI + -analytic 33.46144E-1 00.00000E+0 -37.15379E+1 00.00000E+0 00.00000E+0 + ++1.000K+ +1.000I- = KI + log_k -1.57 + delta_h +9.011 #kJ/mol +# Enthalpy of formation: -299.909 kJ/mol 92JOH/OEL + -analytic 86.59435E-4 00.00000E+0 -47.06773E+1 00.00000E+0 00.00000E+0 + ++1.000K+ -2.000H+ +1.000H2(PO4)- = KPO4-2 + log_k -18.26 #97MAR/SMI + -analytic -18.26000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +1.000Cit-3 = Mg(Cit)- + log_k +4.81 #05HUM/AND + -analytic 48.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +1.000CO3-2 = Mg(CO3) + log_k +2.98 #97SVE/SHO + delta_h +8.810 #kJ/mol +# Enthalpy of formation: -1133.420 kJ/mol + -analytic 45.23446E-1 00.00000E+0 -46.01783E+1 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +1.000Edta-4 = Mg(Edta)-2 + log_k +10.90 #05HUM/AND + delta_h +19.800 #kJ/mol 05HUM/AND +# Enthalpy of formation: -2152.000 kJ/mol + -analytic 14.36881E+0 00.00000E+0 -10.34226E+2 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +2.000H+ +1.000Cit-3 = Mg(H2Cit)+ + log_k +12.45 #05HUM/AND + -analytic 12.45000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +1.000H2(PO4)- = Mg(H2PO4)+ + log_k +1.17 #81TUR/WHI + delta_h +13.514 #kJ/mol 96BOU1 +# Enthalpy of formation: -1756.086 kJ/mol + -analytic 35.37551E-1 00.00000E+0 -70.58854E+1 00.00000E+0 00.00000E+0 + ++1.000Mg+2 -1.000H+ +1.000H4(SiO4) = Mg(H3SiO4)+ + log_k -8.58 #97SVE/SHO + delta_h +27.114 #kJ/mol +# Enthalpy of formation: -1901.080 kJ/mol + -analytic -38.29831E-1 00.00000E+0 -14.16263E+2 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +1.000H+ +1.000Cit-3 = Mg(HCit) + log_k +8.96 #05HUM/AND + -analytic 89.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +1.000H+ +1.000CO3-2 = Mg(HCO3)+ + log_k +11.37 #95SHO/KOR + delta_h -12.888 #kJ/mol +# Enthalpy of formation: -1155.118 kJ/mol + -analytic 91.12119E-1 00.00000E+0 67.31871E+1 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +1.000H+ +1.000Edta-4 = Mg(HEdta)- + log_k +15.40 #05HUM/AND + -analytic 15.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +1.000HGlu- = Mg(HGlu)+ + log_k +0.81 #19KUT/DUD + -analytic 81.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +1.000HIsa- = Mg(HIsa)+ + log_k +0.81 #Analogy with Mg(HGlu)+ + -analytic 81.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +1.000H+ +1.000Malonate-2 = Mg(HMalonate)+ + log_k +7.05 #13GRI/CAM + -analytic 70.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mg+2 -1.000H+ +1.000H2(PO4)- = Mg(HPO4) + log_k -4.30 #76SMI/MAR + delta_h +16.152 #kJ/mol 76SMI/MAR +# Enthalpy of formation: -1753.448 kJ/mol + -analytic -14.70291E-1 00.00000E+0 -84.36777E+1 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +1.000H+ +1.000Succinat-2 = Mg(HSuccinat)+ + log_k +6.72 #13GRI/CAM + -analytic 67.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +1.000IO3- = Mg(IO3)+ + log_k +0.70 #estimation NEA87 08/2/95 ; + -analytic 70.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +1.000Malonate-2 = Mg(Malonate) + log_k +2.86 #76KLA/OST + -analytic 28.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +1.000NH3 = Mg(NH3)+2 + log_k +0.10 + delta_h +0.022 #kJ/mol +# Enthalpy of formation: -548.148 kJ/mol 03-91 MINTEQL-PSI + -analytic 10.38542E-2 00.00000E+0 -11.49140E-1 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +2.000NH3 = Mg(NH3)2+2 + log_k +0.00 + delta_h +0.044 #kJ/mol +# Enthalpy of formation: -629.296 kJ/mol 03-91 MINTEQL-PSI + -analytic 77.08469E-4 00.00000E+0 -22.98280E-1 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +3.000NH3 = Mg(NH3)3+2 + log_k -0.30 + delta_h +0.066 #kJ/mol +# Enthalpy of formation: -710.444 kJ/mol 03-91 MINTEQL-PSI + -analytic -28.84373E-2 00.00000E+0 -34.47420E-1 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +4.000NH3 = Mg(NH3)4+2 + log_k -1.00 + delta_h +0.088 #kJ/mol +# Enthalpy of formation: -791.592 kJ/mol 03-91 MINTEQL-PSI + -analytic -98.45831E-2 00.00000E+0 -45.96560E-1 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +1.000Nta-3 = Mg(Nta)- + log_k +6.79 #95AKR/BOU + -analytic 67.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mg+2 -1.000H+ +1.000HGlu- +1.000H2O = Mg(OH)(HGlu) + log_k -9.10 #19KUT/DUD + -analytic -91.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mg+2 -1.000H+ +1.000HIsa- +1.000H2O = Mg(OH)(HIsa) + log_k -9.10 #Analogy with Mg(OH)(HGlu) + -analytic -91.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mg+2 -1.000H+ +1.000H2O = Mg(OH)+ + log_k -11.68 #97SHO/SAS2; Uncertainty to include available data. + delta_h +62.834 #kJ/mol +# Enthalpy of formation: -689.995 kJ/mol + -analytic -67.19557E-2 00.00000E+0 -32.82048E+2 00.00000E+0 00.00000E+0 + ++1.000Mg+2 -2.000H+ +1.000HGlu- +2.000H2O = Mg(OH)2(HGlu)- + log_k -20.44 #19KUT/DUD + -analytic -20.44000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mg+2 -2.000H+ +1.000HIsa- +2.000H2O = Mg(OH)2(HIsa)- + log_k -20.44 #Analogy with Mg(OH)2(HGlu)- + -analytic -20.44000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +1.000Ox-2 = Mg(Ox) + log_k +3.56 #05HUM/AND + -analytic 35.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +2.000Ox-2 = Mg(Ox)2-2 + log_k +5.17 #05HUM/AND + -analytic 51.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mg+2 -2.000H+ +1.000H2(PO4)- = Mg(PO4)- + log_k -14.71 #81TUR/WHI + delta_h +31.170 #kJ/mol 96BOU1 +# Enthalpy of formation: -1738.430 kJ/mol + -analytic -92.49250E-1 00.00000E+0 -16.28122E+2 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +1.000Pyrophos-4 = Mg(Pyrophos)-2 + log_k +7.20 #76SMI/MAR + delta_h +12.540 #kJ/mol + -analytic 93.96914E-1 00.00000E+0 -65.50098E+1 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +1.000S2O3-2 = Mg(S2O3) + log_k +1.82 #76SMI/MAR + -analytic 18.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +1.000SeO4-2 = Mg(SeO4) + log_k +2.20 #05OLI/NOL + delta_h -6.614 #kJ/mol +# Enthalpy of formation: -1077.114 kJ/mol + -analytic 10.41277E-1 00.00000E+0 34.54733E+1 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +1.000SO4-2 = Mg(SO4) + log_k +2.23 #76SMI/MAR + delta_h +5.858 #kJ/mol 76SMI/MAR +# Enthalpy of formation: -1370.482 kJ/mol + -analytic 32.56278E-1 00.00000E+0 -30.59847E+1 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +1.000Succinat-2 = Mg(Succinat) + log_k +2.27 #13GRI/CAM + -analytic 22.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000Mg+2 +1.000UO2+2 +3.000CO3-2 = Mg2UO2(CO3)3 + log_k +27.10 #20GRE/GAO + -analytic 27.10000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++4.000Mg+2 -4.000H+ +4.000H2O = Mg4(OH)4+4 + log_k -39.75 #76BAE/MES + delta_h +229.186 #kJ/mol +# Enthalpy of formation: -2782.132 kJ/mol + -analytic 40.16637E-2 00.00000E+0 -11.97122E+3 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +1.000B(OH)4- = MgB(OH)4+ + log_k +1.60 #97CRO + -analytic 16.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +1.000Br- = MgBr+ + log_k -0.14 #88CHA/NEW + -analytic -14.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +1.000Cl- = MgCl+ + log_k +0.35 #96BOU1 + delta_h -1.728 #kJ/mol +# Enthalpy of formation: -635.808 kJ/mol + -analytic 47.26740E-3 00.00000E+0 90.25973E+0 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +1.000F- = MgF+ + log_k +1.80 #96BOU + delta_h +13.389 #kJ/mol 96BOU +# Enthalpy of formation: -788.961 kJ/mol + -analytic 41.45652E-1 00.00000E+0 -69.93562E+1 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +1.000I- = MgI+ + log_k +0.18 #92JOH/OEL + -analytic 18.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +2.000I- = MgI2 + log_k +0.03 #92JOH/OEL + -analytic 30.00000E-3 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mg+2 +1.000UO2+2 +3.000CO3-2 = MgUO2(CO3)3-2 + log_k +26.20 #20GRE/GAO + delta_h -50.900 #kJ/mol 21SHA/REI +# Enthalpy of formation: -3562.590 kJ/mol + -analytic 17.28270E+0 00.00000E+0 26.58692E+2 00.00000E+0 00.00000E+0 + ++1.000Mn+2 +1.000CO3-2 = Mn(CO3) + log_k +6.50 #96FAL/REA + -analytic 65.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mn+2 +1.000H+ +1.000CO3-2 = Mn(HCO3)+ + log_k +11.61 #95CHI + -analytic 11.61000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mn+2 -1.000H+ +1.000H2(PO4)- = Mn(HPO4) + log_k -3.26 #96FAL/REA + -analytic -32.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mn+2 -2.000H+ +2.000H2(PO4)- = Mn(HPO4)2-2 + log_k -9.12 #96FAL/REA + -analytic -91.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mn+2 +1.000IO3- = Mn(IO3)+ + log_k +0.84 #estimation NEA87 08/2/95 + -analytic 84.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mn+2 +2.000IO3- = Mn(IO3)2 + log_k +0.13 #estimation NEA87 08/2/95 + -analytic 13.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mn+2 +1.000NH3 = Mn(NH3)+2 + log_k +0.70 #88CHA/NEW + -analytic 70.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mn+2 +2.000NH3 = Mn(NH3)2+2 + log_k +1.20 #88CHA/NEW + -analytic 12.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mn+2 +1.000NO3- = Mn(NO3)+ + log_k +0.16 #96FAL/REA + -analytic 16.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mn+2 +2.000NO3- = Mn(NO3)2 + log_k +0.50 #96FAL/REA + -analytic 50.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mn+2 -1.000H+ +1.000H2O = Mn(OH)+ + log_k -10.59 #95CHI + -analytic -10.59000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mn+2 -2.000H+ +2.000H2O = Mn(OH)2 + log_k -22.20 #95CHI + -analytic -22.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mn+2 -3.000H+ +3.000H2O = Mn(OH)3- + log_k -34.80 #95CHI + -analytic -34.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mn+2 -4.000H+ +4.000H2O = Mn(OH)4-2 + log_k -48.30 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/91PEA/BER 11891 EN ; Nagra TR 91-18 (mai 1992, Hatches 3.0) (provient de la base 0391 MINEQL- PSY) + -analytic -48.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mn+2 +1.000Pyrophos-4 = Mn(Pyrophos)-2 + log_k +6.00 #88CHA/NEW + -analytic 60.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mn+2 +1.000S2O3-2 = Mn(S2O3) + log_k +1.90 #88CHA/NEW + -analytic 19.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mn+2 +1.000SeO4-2 = Mn(SeO4) + log_k +2.43 #05OLI/NOL + delta_h -1.560 #kJ/mol +# Enthalpy of formation: -825.861 kJ/mol + -analytic 21.56700E-1 00.00000E+0 81.48448E+0 00.00000E+0 00.00000E+0 + ++1.000Mn+2 +1.000SO4-2 = Mn(SO4) + log_k +2.25 #95CHI + delta_h +14.100 #kJ/mol 95CHI +# Enthalpy of formation: -1116.040 kJ/mol + -analytic 47.20214E-1 00.00000E+0 -73.64943E+1 00.00000E+0 00.00000E+0 + ++1.000Mn+2 -1.000e- = Mn+3 + log_k -25.51 #96FAL/REA + -analytic -25.51000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000Mn+2 -1.000H+ +1.000H2O = Mn2(OH)+3 + log_k -10.10 #96FAL/REA + -analytic -10.10000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000Mn+2 -3.000H+ +3.000H2O = Mn2(OH)3+ + log_k -24.90 #96FAL/REA + -analytic -24.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mn+2 +1.000Br- = MnBr+ + log_k +0.13 #88CHA/NEW + -analytic 13.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mn+2 +1.000Cl- = MnCl+ + log_k +0.27 + delta_h +18.516 #kJ/mol +# Enthalpy of formation: -369.364 kJ/mol 97SVE/SHO + -analytic 35.13864E-1 00.00000E+0 -96.71580E+1 00.00000E+0 00.00000E+0 + ++1.000Mn+2 +2.000Cl- = MnCl2 + log_k +0.25 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 (provient de la base 0391 MINEQL- PSY) + -analytic 25.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mn+2 +3.000Cl- = MnCl3- + log_k -0.31 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 (provient de la base 0391 MINEQL- PSY) + -analytic -31.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mn+2 +1.000F- = MnF+ + log_k +0.85 #96FAL/REA + -analytic 85.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mn+2 +2.000F- = MnF2 + log_k +9.04 #88CHA/NEW + -analytic 90.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mn+2 +3.000F- = MnF3- + log_k +11.64 #88CHA/NEW + -analytic 11.64000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mn+2 +4.000F- = MnF4-2 + log_k +13.40 #88CHA/NEW + -analytic 13.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mn+2 +5.000F- = MnF5-3 + log_k +14.70 #88CHA/NEW + -analytic 14.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mn+2 +6.000F- = MnF6-4 + log_k +15.50 #88CHA/NEW + -analytic 15.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mn+2 +1.000I- = MnI+ + log_k +0.23 #92JOH/OEL + -analytic 23.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Mn+2 -8.000H+ -5.000e- +4.000H2O = MnO4- + log_k -127.81 + delta_h +822.710 #kJ/mol +# Enthalpy of formation: -541.410 kJ/mol 92JOH/OEL + -analytic 16.32260E+0 00.00000E+0 -42.97314E+3 00.00000E+0 00.00000E+0 + ++1.000Mn+2 -8.000H+ -4.000e- +4.000H2O = MnO4-2 + log_k -118.43 + delta_h +711.416 #kJ/mol +# Enthalpy of formation: -652.704 kJ/mol 92JOH/OEL + -analytic 62.04733E-1 00.00000E+0 -37.15985E+3 00.00000E+0 00.00000E+0 + ++1.000Mn+2 -8.000H+ -3.000e- +4.000H2O = MnO4-3 + log_k -113.00 #96FAL/REA + -analytic -11.30000E+1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++8.000H+ +3.000e- +1.000MoO4-2 -4.000H2O = Mo+3 + log_k +21.76 #68SAS/SIL + -analytic 21.76000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++34.000H+ +19.000MoO4-2 -17.000H2O = Mo19O59-4 + log_k +196.30 #68SAS/SIL + -analytic 19.63000E+1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++5.000H+ +2.000MoO4-2 -2.000H2O = Mo2O5(OH)+ + log_k +19.00 #68SAS/SIL + -analytic 19.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++11.000H+ +7.000MoO4-2 -4.000H2O = Mo7O21(OH)3-3 + log_k +66.48 #68SAS/SIL, 64AVE/ANA + delta_h -222.589 #kJ/mol 68ARN/SZI in 76BAE/MES +# Enthalpy of formation: -6058.269 kJ/mol + -analytic 27.48408E+0 00.00000E+0 11.62663E+3 00.00000E+0 00.00000E+0 + ++10.000H+ +7.000MoO4-2 -4.000H2O = Mo7O22(OH)2-4 + log_k +62.71 #68SAS/SIL, 64AVE/ANA + delta_h -220.079 #kJ/mol 68ARN/SZI in 76BAE/MES +# Enthalpy of formation: -6055.759 kJ/mol + -analytic 24.15381E+0 00.00000E+0 11.49553E+3 00.00000E+0 00.00000E+0 + ++9.000H+ +7.000MoO4-2 -4.000H2O = Mo7O23(OH)-5 + log_k +57.21 #68SAS/SIL, 64AVE/ANA + delta_h -223.426 #kJ/mol 68ARN/SZI in 76BAE/MES +# Enthalpy of formation: -6059.106 kJ/mol + -analytic 18.06745E+0 00.00000E+0 11.67035E+3 00.00000E+0 00.00000E+0 + ++8.000H+ +7.000MoO4-2 -4.000H2O = Mo7O24-6 + log_k +50.35 #68SAS/SIL, 64AVE/ANA + delta_h -234.304 #kJ/mol 68ARN/SZI in 76BAE/MES +# Enthalpy of formation: -6069.984 kJ/mol + -analytic 93.01701E-1 00.00000E+0 12.23855E+3 00.00000E+0 00.00000E+0 + ++1.000Na+ +1.000CO3-2 = Na(CO3)- + log_k +1.27 #90NOR/PLU + delta_h +37.279 #kJ/mol 90NOR/PLU +# Enthalpy of formation: -878.291 kJ/mol + -analytic 78.01000E-1 00.00000E+0 -19.47218E+2 00.00000E+0 00.00000E+0 + ++1.000Na+ +1.000Edta-4 = Na(Edta)-3 + log_k +2.80 #05HUM/AND + delta_h -4.000 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1949.140 kJ/mol + -analytic 20.99230E-1 00.00000E+0 20.89346E+1 00.00000E+0 00.00000E+0 + ++1.000Na+ +1.000H+ +1.000CO3-2 = Na(HCO3) + log_k +10.08 #90NOR/PLU + delta_h -26.127 #kJ/mol +# Enthalpy of formation: -941.697 kJ/mol + -analytic 55.02746E-1 00.00000E+0 13.64708E+2 00.00000E+0 00.00000E+0 + ++1.000Na+ +1.000H+ +1.000Nta-3 = Na(HNta)- + log_k +10.32 #95AKR/BOU + -analytic 10.32000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Na+ -1.000H+ +1.000H2(PO4)- = Na(HPO4)- + log_k -6.34 #97MAR/SMI + delta_h +34.936 #kJ/mol 97MAR/SMI +# Enthalpy of formation: -1508.004 kJ/mol + -analytic -21.94755E-2 00.00000E+0 -18.24834E+2 00.00000E+0 00.00000E+0 + ++1.000Na+ +1.000IO3- = Na(IO3) + log_k +0.06 #estimation NEA87 08/2/95 + -analytic 60.00000E-3 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Na+ +1.000Nta-3 = Na(Nta)-2 + log_k +1.88 #95AKR/BOU + -analytic 18.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Na+ +1.000S2O3-2 = Na(S2O3)- + log_k +0.61 + delta_h +4.656 #kJ/mol +# Enthalpy of formation: -887.970 kJ/mol 82WAG/EVA + -analytic 14.25696E-1 00.00000E+0 -24.31998E+1 00.00000E+0 00.00000E+0 + ++2.000Na+ +1.000Pyrophos-4 = Na2(Pyrophos)-2 + log_k +2.29 #76SMI/MAR + delta_h +5.858 #kJ/mol 76SMI/MAR + -analytic 33.16278E-1 00.00000E+0 -30.59847E+1 00.00000E+0 00.00000E+0 + ++1.000Na+ +1.000Al+3 -4.000H+ +4.000H2O = NaAl(OH)4 + log_k -23.63 + delta_h +190.348 #kJ/mol +# Enthalpy of formation: -1731.712 kJ/mol 95POK/HEL + -analytic 97.17538E-1 00.00000E+0 -99.42568E+2 00.00000E+0 00.00000E+0 + ++1.000Na+ +1.000B(OH)4- = NaB(OH)4 + log_k -0.10 + delta_h +1.226 #kJ/mol +# Enthalpy of formation: -1584.230 kJ/mol + -analytic 11.47860E-2 00.00000E+0 -64.03844E+0 00.00000E+0 00.00000E+0 + ++1.000Na+ +1.000F- = NaF + log_k -0.45 #96BOU + delta_h -12.552 #kJ/mol 96BOU +# Enthalpy of formation: -588.242 kJ/mol + -analytic -26.49016E-1 00.00000E+0 65.56366E+1 00.00000E+0 00.00000E+0 + ++1.000Na+ +1.000H2(PO4)- = NaH2PO4 + log_k +0.41 #97MAR/SMI + -analytic 41.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Na+ +1.000I- = NaI + log_k -1.52 + delta_h +7.252 #kJ/mol +# Enthalpy of formation: -289.868 kJ/mol 92JOH/OEL + -analytic -24.95041E-2 00.00000E+0 -37.87983E+1 00.00000E+0 00.00000E+0 + ++1.000Na+ -2.000H+ +1.000H2(PO4)- = NaPO4-2 + log_k -18.07 #97MAR/SMI + -analytic -18.07000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++3.000H+ +1.000Nb(OH)6- -3.000H2O = Nb(OH)3+2 + log_k +7.50 #97PEI/NGU + delta_h -10.230 #kJ/mol 97PEI/NGU +# Enthalpy of formation: -1078.398 kJ/mol + -analytic 57.07781E-1 00.00000E+0 53.43501E+1 00.00000E+0 00.00000E+0 + ++2.000H+ +1.000Nb(OH)6- -2.000H2O = Nb(OH)4+ + log_k +6.64 #97PEI/NGU + delta_h -35.350 #kJ/mol 97PEI/NGU +# Enthalpy of formation: -1389.348 kJ/mol + -analytic 44.69458E-2 00.00000E+0 18.46459E+2 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000Nb(OH)6- -1.000H2O = Nb(OH)5 + log_k +5.08 #97PEI/NGU + delta_h -13.390 #kJ/mol 97PEI/NGU +# Enthalpy of formation: -1653.218 kJ/mol + -analytic 27.34173E-1 00.00000E+0 69.94084E+1 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000Nb(OH)6- +1.000H2O = Nb(OH)7-2 + log_k -8.88 #97PEI/NGU + delta_h +10.170 #kJ/mol 97PEI/NGU +# Enthalpy of formation: -2201.318 kJ/mol + -analytic -70.98292E-1 00.00000E+0 -53.12161E+1 00.00000E+0 00.00000E+0 + ++5.000H+ +1.000Nb(OH)6- +1.000Cit-3 -4.000H2O = NbO2(H3Cit)+ + log_k +25.64 #95AKR/BOU + -analytic 25.64000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++3.000H+ +1.000Nb(OH)6- +1.000Ox-2 -4.000H2O = NbO2(HOx) + log_k +13.70 #95AKR/BOU + -analytic 13.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++4.000H+ +1.000Nb(OH)6- +2.000Ox-2 -4.000H2O = NbO2(HOx)2- + log_k +20.96 #95AKR/BOU + -analytic 20.96000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000H+ +1.000Nb(OH)6- +1.000Ox-2 -4.000H2O = NbO2(Ox)- + log_k +10.94 #95AKR/BOU + -analytic 10.94000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000NH3 = NH4+ + log_k +9.24 + delta_h -52.090 #kJ/mol +# Enthalpy of formation: -133.260 kJ/mol 92GRE/FUG + -analytic 11.42237E-2 00.00000E+0 27.20850E+2 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +1.000Acetate- = Ni(Acetate)+ + log_k +1.34 #11RIC/GRI + delta_h -8.761 #kJ/mol +# Enthalpy of formation: -549.783 kJ/mol + -analytic -19.48613E-2 00.00000E+0 45.76189E+1 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +1.000Cit-3 = Ni(Cit)- + log_k +6.76 #05HUM/AND + -analytic 67.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +2.000Cit-3 = Ni(Cit)2-4 + log_k +8.50 #05HUM/AND + -analytic 85.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +1.000CO3-2 = Ni(CO3) + log_k +4.20 #03BAE/BRA in 05GAM/BUG + delta_h +3.546 #kJ/mol +# Enthalpy of formation: -726.696 kJ/mol + -analytic 48.21233E-1 00.00000E+0 -18.52205E+1 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +2.000CO3-2 = Ni(CO3)2-2 + log_k +6.20 #03BAE/BRA; Uncertainty 03HUM/CUR + -analytic 62.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +1.000Edta-4 = Ni(Edta)-2 + log_k +20.54 #05HUM/AND + delta_h -26.100 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1785.912 kJ/mol + -analytic 15.96748E+0 00.00000E+0 13.63298E+2 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +2.000H+ +1.000Cit-3 = Ni(H2Cit)+ + log_k +13.19 #05HUM/AND + -analytic 13.19000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +1.000H+ +1.000Cit-3 = Ni(HCit) + log_k +10.52 #05HUM/BER + -analytic 10.52000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +1.000H+ +1.000CO3-2 = Ni(HCO3)+ + log_k +11.73 #03BAE/BRA; Uncertainty 03HUM/CUR + -analytic 11.73000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +1.000H+ +1.000Edta-4 = Ni(HEdta)- + log_k +24.20 #05HUM/AND + -analytic 24.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 -1.000H+ +1.000H2(PO4)- = Ni(HPO4) + log_k -4.16 #05GAM/BUG + -analytic -41.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +2.000HS- = Ni(HS)2 + log_k +11.10 #02HUM/BER + -analytic 11.10000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +1.000Malonate-2 = Ni(Malonate) + log_k +4.39 #13GRI/CAM + -analytic 43.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +2.000Malonate-2 = Ni(Malonate)2-2 + log_k +8.15 #98KHA/RAD + -analytic 81.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +1.000NH3 = Ni(NH3)+2 + log_k +2.61 #70LET + -analytic 26.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +2.000NH3 = Ni(NH3)2+2 + log_k +4.76 #70LET + -analytic 47.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +3.000NH3 = Ni(NH3)3+2 + log_k +6.79 #70LET + -analytic 67.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +4.000NH3 = Ni(NH3)4+2 + log_k +8.34 #70LET + -analytic 83.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +1.000NO3- = Ni(NO3)+ + log_k +0.50 #05GAM/BUG + -analytic 50.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +2.000NO3- = Ni(NO3)2 + log_k -0.60 #76SMI/MAR in 89BAE/McK; Uncertainty is by analogy with Ni(NO3)+ and is preliminary. + -analytic -60.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +1.000Nta-3 = Ni(Nta)- + log_k +12.75 #95AKR/BOU + -analytic 12.75000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +2.000Nta-3 = Ni(Nta)2-4 + log_k +16.95 #95AKR/BOU + -analytic 16.95000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 -1.000H+ +1.000Edta-4 +1.000H2O = Ni(OH)(Edta)-3 + log_k +6.50 #04FEL/QAF + -analytic 65.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 -1.000H+ +1.000HIsa- +1.000H2O = Ni(OH)(HIsa) + log_k -6.50 #18GON/GAO + -analytic -65.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 -1.000H+ +1.000Nta-3 +1.000H2O = Ni(OH)(Nta)-2 + log_k +1.47 #95AKR/BOU + -analytic 14.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 -1.000H+ +1.000H2O = Ni(OH)+ + log_k -9.54 #05GAM/BUG + delta_h +53.800 #kJ/mol 05GAM/BUG +# Enthalpy of formation: -287.042 kJ/mol + -analytic -11.46446E-2 00.00000E+0 -28.10170E+2 00.00000E+0 00.00000E+0 + ++1.000Ni+2 -2.000H+ +2.000H2O = Ni(OH)2 + log_k -18.00 #49GAY/GAR reevaluated in 05GAM/BUG + -analytic -18.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 -2.000H+ +1.000HIsa- +2.000H2O = Ni(OH)2(HIsa)- + log_k -17.60 #18GON/GAO + -analytic -17.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 -3.000H+ +1.000H2(PO4)- +2.000H2O = Ni(OH)2(HPO4)-2 + log_k -23.24 #95LEM + -analytic -23.24000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 -3.000H+ +1.000HIsa- +3.000H2O = Ni(OH)3(HIsa)-2 + log_k -31.00 #18GON/GAO + -analytic -31.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +1.000Ox-2 = Ni(Ox) + log_k +5.19 #05HUM/AND + delta_h +0.000 #kJ/mol 05HUM/AND +# Enthalpy of formation: -885.672 kJ/mol + -analytic 51.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +2.000Ox-2 = Ni(Ox)2-2 + log_k +7.64 #05HUM/AND + delta_h -7.800 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1724.132 kJ/mol + -analytic 62.73499E-1 00.00000E+0 40.74224E+1 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +1.000Phthalat-2 = Ni(Phthalat) + log_k +3.00 #11GRI/COL2 + -analytic 30.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +1.000Pyrophos-4 = Ni(Pyrophos)-2 + log_k +8.73 #05GAM/BUG + -analytic 87.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +1.000S2O3-2 = Ni(S2O3) + log_k +2.06 #51DEU/HEI in 64SIL/MAR + -analytic 20.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +1.000SeO4-2 = Ni(SeO4) + log_k +2.67 #05OLI/NOL + delta_h -0.680 #kJ/mol +# Enthalpy of formation: -659.192 kJ/mol + -analytic 25.50869E-1 00.00000E+0 35.51887E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +1.000SO4-2 = Ni(SO4) + log_k +2.35 #05GAM/BUG + delta_h +5.660 #kJ/mol 05GAM/BUG +# Enthalpy of formation: -958.692 kJ/mol + -analytic 33.41589E-1 00.00000E+0 -29.56424E+1 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +2.000SO4-2 = Ni(SO4)2-2 + log_k +3.01 #89BAE/McK + -analytic 30.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000Ni+2 -1.000H+ +1.000H2O = Ni2(OH)+3 + log_k -10.60 #05GAM/BUG + delta_h +45.900 #kJ/mol 05GAM/BUG +# Enthalpy of formation: -349.954 kJ/mol + -analytic -25.58665E-1 00.00000E+0 -23.97524E+2 00.00000E+0 00.00000E+0 + ++4.000Ni+2 -4.000H+ +4.000H2O = Ni4(OH)4+4 + log_k -27.52 #05GAM/BUG + delta_h +190.000 #kJ/mol 05GAM/BUG +# Enthalpy of formation: -1173.368 kJ/mol + -analytic 57.66571E-1 00.00000E+0 -99.24391E+2 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +1.000Cl- = NiCl+ + log_k +0.08 #05GAM/BUG + -analytic 80.00000E-3 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +1.000F- = NiF+ + log_k +1.43 #05GAM/BUG + delta_h +9.500 #kJ/mol 05GAM/BUG +# Enthalpy of formation: -380.862 kJ/mol + -analytic 30.94329E-1 00.00000E+0 -49.62196E+1 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +1.000H+ +1.000AsO4-3 = NiHAsO4 + log_k +14.50 + -analytic 14.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +1.000H+ +1.000Pyrophos-4 = NiHPyrophos- + log_k +14.54 #05GAM/BUG + -analytic 14.54000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Ni+2 +1.000HS- = NiHS+ + log_k +5.50 #02HUM/BER + -analytic 55.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+4 +1.000Acetate- = Np(Acetate)+3 + log_k +5.83 #12GRI/GAR2 + -analytic 58.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+4 +2.000Acetate- = Np(Acetate)2+2 + log_k +10.00 #11RIC/GRI + -analytic 10.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+3 +1.000CO3-2 = Np(CO3)+ + log_k +7.67 #Estimated by correlation with An(III) in function of ionic radii + delta_h +19.064 #kJ/mol +# Enthalpy of formation: -1183.350 kJ/mol + -analytic 11.00987E+0 00.00000E+0 -99.57821E+1 00.00000E+0 00.00000E+0 + ++1.000Np+3 +2.000CO3-2 = Np(CO3)2- + log_k +12.60 #Estimated by correlation with An(III) in function of ionic radii + -analytic 12.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+3 +3.000CO3-2 = Np(CO3)3-3 + log_k +15.66 #01LEM/FUG + -analytic 15.66000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+4 +4.000CO3-2 = Np(CO3)4-4 + log_k +36.68 #01LEM/FUG + -analytic 36.68000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+4 +5.000CO3-2 = Np(CO3)5-6 + log_k +35.61 #01LEM/FUG + delta_h -1.595 #kJ/mol +# Enthalpy of formation: -3933.768 kJ/mol + -analytic 35.33057E+0 00.00000E+0 83.31265E+0 00.00000E+0 00.00000E+0 + ++1.000Np+4 +1.000Edta-4 = Np(Edta) + log_k +31.20 #05HUM/AND + -analytic 31.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+3 +1.000Edta-4 = Np(Edta)- + log_k +19.90 #Recommended in 05HUM/AND + -analytic 19.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+3 +1.000H2(PO4)- = Np(H2PO4)+2 + log_k +2.39 #Estimated by correlation with An(III) in function of ionic radii. + -analytic 23.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+3 +1.000H+ +1.000Edta-4 = Np(HEdta) + log_k +22.02 #Analogy with Pu(HEdta) + -analytic 22.02000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+3 -1.000H+ +1.000H2(PO4)- = Np(HPO4)+ + log_k -1.88 #Estimated by correlation with An(III) in function of ionic radii + -analytic -18.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+3 -2.000H+ +2.000H2(PO4)- = Np(HPO4)2- + log_k -5.61 #Estimated by correlation with An(III) in function of ionic radii + -analytic -56.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+4 +1.000NO3- = Np(NO3)+3 + log_k +1.90 #01LEM/FUG + -analytic 19.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+3 +1.000Nta-3 = Np(Nta) + log_k +13.00 #95AKR/BOU + -analytic 13.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+4 +1.000Nta-3 = Np(Nta)+ + log_k +20.70 #95AKR/BOU + -analytic 20.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+3 -1.000H+ +1.000H2O = Np(OH)+2 + log_k -6.80 #01LEM/FUG + delta_h +36.997 #kJ/mol +# Enthalpy of formation: -776.017 kJ/mol + -analytic -31.84038E-2 00.00000E+0 -19.32488E+2 00.00000E+0 00.00000E+0 + ++1.000Np+4 -1.000H+ +1.000H2O = Np(OH)+3 + log_k +0.55 #03GUI/FAN + delta_h +26.743 #kJ/mol +# Enthalpy of formation: -815.109 kJ/mol + -analytic 52.35172E-1 00.00000E+0 -13.96884E+2 00.00000E+0 00.00000E+0 + ++1.000Np+4 -2.000H+ +2.000CO3-2 +2.000H2O = Np(OH)2(CO3)2-2 + log_k +16.92 #99RAI/HES2 + -analytic 16.92000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+3 -2.000H+ +2.000H2O = Np(OH)2+ + log_k -17.00 #80ALL/KIP + delta_h +103.262 #kJ/mol +# Enthalpy of formation: -995.582 kJ/mol + -analytic 10.90726E-1 00.00000E+0 -53.93750E+2 00.00000E+0 00.00000E+0 + ++1.000Np+4 -2.000H+ +2.000H2O = Np(OH)2+2 + log_k +0.35 #03GUI/FAN + delta_h +44.742 #kJ/mol +# Enthalpy of formation: -1082.939 kJ/mol + -analytic 81.88462E-1 00.00000E+0 -23.37037E+2 00.00000E+0 00.00000E+0 + ++1.000Np+4 -2.000H+ +1.000Edta-4 +2.000H2O = Np(OH)2Edta-2 + log_k +18.24 #23ROD/COL + -analytic 18.24000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+3 -3.000H+ +3.000H2O = Np(OH)3 + log_k -27.00 #80ALL/KIP + delta_h +159.163 #kJ/mol +# Enthalpy of formation: -1225.510 kJ/mol + -analytic 88.41606E-2 00.00000E+0 -83.13662E+2 00.00000E+0 00.00000E+0 + ++1.000Np+4 -3.000H+ +3.000H2O = Np(OH)3+ + log_k -2.80 #01NEC/KIM, 99NEC + delta_h +70.765 #kJ/mol +# Enthalpy of formation: -1342.745 kJ/mol + -analytic 95.97496E-1 00.00000E+0 -36.96313E+2 00.00000E+0 00.00000E+0 + ++1.000Np+4 -3.000H+ +1.000Edta-4 +3.000H2O = Np(OH)3Edta-3 + log_k +8.62 #23ROD/COL + -analytic 86.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+4 -4.000H+ +4.000H2O = Np(OH)4 + log_k -8.30 #20GRE/GAO + delta_h +100.980 #kJ/mol +# Enthalpy of formation: -1598.360 kJ/mol + -analytic 93.90937E-1 00.00000E+0 -52.74553E+2 00.00000E+0 00.00000E+0 + ++1.000Np+4 -4.000H+ +1.000HGlu- +4.000H2O = Np(OH)4(HGlu)- + log_k -5.89 #Analogy with An(IV)-ISA + -analytic -58.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+4 -4.000H+ +2.000HGlu- +4.000H2O = Np(OH)4(HGlu)2-2 + log_k -3.69 #Analogy with An(IV)-ISA + -analytic -36.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+4 -4.000H+ +1.000HIsa- +4.000H2O = Np(OH)4(HIsa)- + log_k -5.89 #23ROD/COL + -analytic -58.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+4 -4.000H+ +2.000HIsa- +4.000H2O = Np(OH)4(HIsa)2-2 + log_k -3.69 #23ROD/COL + -analytic -36.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+4 -1.000H+ +1.000Edta-4 +1.000H2O = Np(OH)Edta- + log_k +23.73 #23ROD/COL + -analytic 23.73000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+4 +1.000Ox-2 = Np(Ox)+2 + log_k +11.16 #12GRI/GAR2 + -analytic 11.16000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+4 +2.000Ox-2 = Np(Ox)2 + log_k +19.94 #12GRI/GAR2 + -analytic 19.94000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+4 +3.000Ox-2 = Np(Ox)3-2 + log_k +25.19 #12GRI/GAR2 + -analytic 25.19000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+3 -2.000H+ +1.000H2(PO4)- = Np(PO4) + log_k -8.07 #Estimated by correlation with An(III) in function of ionic radii + -analytic -80.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+3 -4.000H+ +2.000H2(PO4)- = Np(PO4)2-3 + log_k -20.03 #Estimated by correlation with An(III) in function of ionic radii + -analytic -20.03000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+3 +1.000SO4-2 = Np(SO4)+ + log_k +3.72 #Estimated by correlation with An(III) in function of ionic radii + delta_h +21.188 #kJ/mol +# Enthalpy of formation: -1415.336 kJ/mol + -analytic 74.31978E-1 00.00000E+0 -11.06726E+2 00.00000E+0 00.00000E+0 + ++1.000Np+4 +1.000SO4-2 = Np(SO4)+2 + log_k +6.85 #01LEM/FUG + delta_h +29.840 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -1435.522 kJ/mol + -analytic 12.07774E+0 00.00000E+0 -15.58652E+2 00.00000E+0 00.00000E+0 + ++1.000Np+4 +2.000SO4-2 = Np(SO4)2 + log_k +11.05 #01LEM/FUG + delta_h +55.380 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -2319.322 kJ/mol + -analytic 20.75216E+0 00.00000E+0 -28.92699E+2 00.00000E+0 00.00000E+0 + ++1.000Np+3 +2.000SO4-2 = Np(SO4)2- + log_k +5.16 #Estimated by correlation with An(III) in function of ionic radii + -analytic 51.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+4 +1.000Br- = NpBr+3 + log_k +1.55 #Estimated by correlation with An(IV) in function of ionic radii + -analytic 15.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+4 +1.000Cl- = NpCl+3 + log_k +1.50 #01LEM/FUG + delta_h +24.173 #kJ/mol +# Enthalpy of formation: -698.928 kJ/mol + -analytic 57.34928E-1 00.00000E+0 -12.62644E+2 00.00000E+0 00.00000E+0 + ++1.000Np+4 +1.000F- = NpF+3 + log_k +8.96 #01LEM/FUG + delta_h +1.500 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -889.872 kJ/mol + -analytic 92.22789E-1 00.00000E+0 -78.35046E+0 00.00000E+0 00.00000E+0 + ++1.000Np+4 +2.000F- = NpF2+2 + log_k +15.70 #01LEM/FUG + delta_h +15.928 #kJ/mol +# Enthalpy of formation: -1210.793 kJ/mol + -analytic 18.49047E+0 00.00000E+0 -83.19774E+1 00.00000E+0 00.00000E+0 + ++1.000Np+4 +3.000F- = NpF3+ + log_k +20.05 #01LEM/FUG + -analytic 20.05000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+4 +4.000F- = NpF4 + log_k +25.95 #01LEM/FUG + -analytic 25.95000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Np+4 +1.000I- = NpI+3 + log_k +1.50 #01LEM/FUG + -analytic 15.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000NpO2+ +1.000Acetate- = NpO2(Acetate) + log_k +1.32 #11RIC/GRI + -analytic 13.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000NpO2+ +2.000Acetate- = NpO2(Acetate)2- + log_k +3.42 #09TAK/TAK + -analytic 34.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000NpO2+ +3.000Acetate- = NpO2(Acetate)3-2 + log_k +3.57 #09TAK/TAK + -analytic 35.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000NpO2+ +1.000Cit-3 = NpO2(Cit)-2 + log_k +3.68 #05HUM/AND + -analytic 36.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000NpO2+ +1.000CO3-2 = NpO2(CO3)- + log_k +4.96 #01LEM/FUG + delta_h +59.912 #kJ/mol +# Enthalpy of formation: -1593.499 kJ/mol + -analytic 15.45613E+0 00.00000E+0 -31.29422E+2 00.00000E+0 00.00000E+0 + ++1.000NpO2+2 -2.000H+ +1.000CO3-2 +2.000H2O = NpO2(CO3)(OH)2-2 + log_k -7.69 #99CHO/BRO + -analytic -76.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000NpO2+2 +2.000CO3-2 = NpO2(CO3)2-2 + log_k +15.00 #Upper limit value in 20GRE/GAO + -analytic 15.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000NpO2+ +2.000CO3-2 = NpO2(CO3)2-3 + log_k +6.53 #01LEM/FUG + delta_h +39.024 #kJ/mol +# Enthalpy of formation: -2289.617 kJ/mol + -analytic 13.36671E+0 00.00000E+0 -20.38365E+2 00.00000E+0 00.00000E+0 + ++1.000NpO2+ -1.000H+ +2.000CO3-2 +1.000H2O = NpO2(CO3)2OH-4 + log_k -5.31 #01LEM/FUG + -analytic -53.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000NpO2+2 +3.000CO3-2 = NpO2(CO3)3-4 + log_k +19.90 #20GRE/GAO + delta_h -41.900 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -2928.323 kJ/mol + -analytic 12.55944E+0 00.00000E+0 21.88589E+2 00.00000E+0 00.00000E+0 + ++1.000NpO2+ +3.000CO3-2 = NpO2(CO3)3-5 + log_k +5.50 + delta_h -13.249 #kJ/mol +# Enthalpy of formation: -3017.120 kJ/mol 01LEM/FUG + -analytic 31.78875E-1 00.00000E+0 69.20435E+1 00.00000E+0 00.00000E+0 + ++1.000NpO2+ +1.000Edta-4 = NpO2(Edta)-3 + log_k +9.23 #05HUM/AND + -analytic 92.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000NpO2+ +2.000H+ +1.000Edta-4 = NpO2(H2Edta)- + log_k +22.51 #05HUM/AND + -analytic 22.51000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000NpO2+ +1.000H2(PO4)- = NpO2(H2PO4) + log_k +1.40 #20GRE/GAO + -analytic 14.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000NpO2+ +1.000H+ +1.000Edta-4 = NpO2(HEdta)-2 + log_k +17.06 #05HUM/AND + -analytic 17.06000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000NpO2+ +1.000HGlu- = NpO2(HGlu) + log_k +1.68 #06ZHA/CLA + -analytic 16.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000NpO2+ +2.000HGlu- = NpO2(HGlu)2- + log_k +2.39 #06ZHA/CLA + -analytic 23.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000NpO2+ +1.000H+ +1.000Nta-3 = NpO2(HNta)- + log_k +11.70 #95AKR/BOU + -analytic 11.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000NpO2+2 -1.000H+ +1.000H2(PO4)- = NpO2(HPO4) + log_k -1.01 #01LEM/FUG + delta_h +92.195 #kJ/mol +# Enthalpy of formation: -2071.137 kJ/mol + -analytic 15.14187E+0 00.00000E+0 -48.15680E+2 00.00000E+0 00.00000E+0 + ++1.000NpO2+ -1.000H+ +1.000H2(PO4)- = NpO2(HPO4)- + log_k -4.26 #20GRE/GAO + delta_h -7.400 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2288.181 kJ/mol + -analytic -55.56424E-1 00.00000E+0 38.65289E+1 00.00000E+0 00.00000E+0 + ++1.000NpO2+2 -2.000H+ +2.000H2(PO4)- = NpO2(HPO4)2-2 + log_k -4.92 #01LEM/FUG + -analytic -49.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000NpO2+2 +1.000NO3- = NpO2(NO3)+ + log_k +0.10 #12GRI/GAR2 in analogy to UO2(NO3)+ + -analytic 10.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000NpO2+ +1.000Nta-3 = NpO2(Nta)-2 + log_k +7.46 #95AKR/BOU + -analytic 74.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000NpO2+ -1.000H+ +1.000H2O = NpO2(OH) + log_k -11.30 #01LEM/FUG + delta_h +64.785 #kJ/mol +# Enthalpy of formation: -1199.226 kJ/mol + -analytic 49.84480E-3 00.00000E+0 -33.83956E+2 00.00000E+0 00.00000E+0 + ++1.000NpO2+2 -1.000H+ +1.000H2O = NpO2(OH)+ + log_k -5.10 #01LEM/FUG + delta_h +42.956 #kJ/mol +# Enthalpy of formation: -1103.606 kJ/mol + -analytic 24.25568E-1 00.00000E+0 -22.43748E+2 00.00000E+0 00.00000E+0 + ++1.000NpO2+2 -2.000H+ +2.000H2O = NpO2(OH)2 + log_k -12.21 #Estimated by correlation with An(VI) in funciton of ionic radii + -analytic -12.21000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000NpO2+ -2.000H+ +2.000H2O = NpO2(OH)2- + log_k -23.60 #01LEM/FUG + delta_h +118.610 #kJ/mol +# Enthalpy of formation: -1431.230 kJ/mol + -analytic -28.20420E-1 00.00000E+0 -61.95432E+2 00.00000E+0 00.00000E+0 + ++1.000NpO2+2 -3.000H+ +3.000H2O = NpO2(OH)3- + log_k -21.20 #20GRE/GAO + -analytic -21.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000NpO2+2 -4.000H+ +4.000H2O = NpO2(OH)4-2 + log_k -32.00 #20GRE/GAO + -analytic -32.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000NpO2+ +1.000Ox-2 = NpO2(Ox)- + log_k +3.90 #05HUM/AND + delta_h -1.300 #kJ/mol 20MAI/TRU +# Enthalpy of formation: -1810.141 kJ/mol + -analytic 36.72250E-1 00.00000E+0 67.90373E+0 00.00000E+0 00.00000E+0 + ++1.000NpO2+ +2.000Ox-2 = NpO2(Ox)2-3 + log_k +5.80 #05HUM/AND + delta_h -8.700 #kJ/mol 20MAI/TRU +# Enthalpy of formation: -2648.201 kJ/mol + -analytic 42.75825E-1 00.00000E+0 45.44326E+1 00.00000E+0 00.00000E+0 + ++1.000NpO2+2 +1.000SO4-2 = NpO2(SO4) + log_k +3.28 #01LEM/FUG + delta_h +16.700 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -1753.373 kJ/mol + -analytic 62.05714E-1 00.00000E+0 -87.23018E+1 00.00000E+0 00.00000E+0 + ++1.000NpO2+ +1.000SO4-2 = NpO2(SO4)- + log_k +1.30 #20GRE/GAO + delta_h +22.000 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1865.521 kJ/mol + -analytic 51.54235E-1 00.00000E+0 -11.49140E+2 00.00000E+0 00.00000E+0 + ++1.000NpO2+2 +2.000SO4-2 = NpO2(SO4)2-2 + log_k +4.70 #01LEM/FUG + delta_h +26.000 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -2653.413 kJ/mol + -analytic 92.55004E-1 00.00000E+0 -13.58075E+2 00.00000E+0 00.00000E+0 + ++1.000NpO2+ +1.000Cl- = NpO2Cl + log_k -0.93 #94NEC/KIM + delta_h +25.971 #kJ/mol +# Enthalpy of formation: -1119.289 kJ/mol + -analytic 36.19924E-1 00.00000E+0 -13.56560E+2 00.00000E+0 00.00000E+0 + ++1.000NpO2+2 +1.000Cl- = NpO2Cl+ + log_k +0.40 #01LEM/FUG + delta_h +8.387 #kJ/mol +# Enthalpy of formation: -1019.426 kJ/mol + -analytic 18.69339E-1 00.00000E+0 -43.80835E+1 00.00000E+0 00.00000E+0 + ++1.000NpO2+2 +1.000CO3-2 = NpO2CO3 + log_k +9.86 #20GRE/GAO + -analytic 98.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000NpO2+ +1.000F- = NpO2F + log_k +1.40 #20GRE/GAO + -analytic 14.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000NpO2+2 +1.000F- = NpO2F+ + log_k +4.57 #01LEM/FUG + delta_h +1.400 #kJ/mol +# Enthalpy of formation: -1194.682 kJ/mol + -analytic 48.15269E-1 00.00000E+0 -73.12709E+0 00.00000E+0 00.00000E+0 + ++1.000NpO2+2 +2.000F- = NpO2F2 + log_k +7.60 #01LEM/FUG + delta_h +4.320 #kJ/mol +# Enthalpy of formation: -1527.113 kJ/mol + -analytic 83.56832E-1 00.00000E+0 -22.56493E+1 00.00000E+0 00.00000E+0 + ++1.000NpO2+ +2.000F- = NpO2F2- + log_k +1.90 #20GRE/GAO + -analytic 19.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000NpO2+2 +1.000H2(PO4)- = NpO2H2PO4+ + log_k +3.32 #01LEM/FUG + -analytic 33.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000H2O = OH- + log_k -14.00 + delta_h +55.815 #kJ/mol +# Enthalpy of formation: -230.015 kJ/mol 89COX/WAG + -analytic -42.21632E-1 00.00000E+0 -29.15420E+2 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000Pa+4 +1.000H2O = Pa(OH)+3 + log_k +0.84 #76BAE/MES + -analytic 84.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-2.000H+ +1.000Pa+4 +2.000H2O = Pa(OH)2+2 + log_k -0.02 #76BAE/MES + -analytic -20.00000E-3 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-3.000H+ +1.000Pa+4 +3.000H2O = Pa(OH)3+ + log_k -1.50 #76BAE/MES + -analytic -15.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000PaO2+ = PaO(OH)+2 + log_k +1.25 #Original data 03TRU/LEN and 04FOU/PER + delta_h -5.700 #kJ/mol 03TRU/LEN + -analytic 25.14029E-2 00.00000E+0 29.77317E+1 00.00000E+0 00.00000E+0 + ++2.000H+ +1.000SO4-2 +1.000PaO2+ -1.000H2O = PaO(SO4)+ + log_k +5.13 #07GIA/TRU + -analytic 51.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000H+ +2.000SO4-2 +1.000PaO2+ -1.000H2O = PaO(SO4)2- + log_k +8.24 #07GIA/TRU + -analytic 82.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000H+ +3.000SO4-2 +1.000PaO2+ -1.000H2O = PaO(SO4)3-3 + log_k +9.83 #07GIA/TRU + -analytic 98.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000PaO2+ +1.000H2O = PaO2(OH) + log_k -7.00 #Original data 03TRU/LEN and 04FOU/PER + delta_h +61.000 #kJ/mol 03TRU/LEN + -analytic 36.86741E-1 00.00000E+0 -31.86252E+2 00.00000E+0 00.00000E+0 + +-2.000H+ +1.000PaO2+ +2.000H2O = PaO2(OH)2- + log_k -16.40 #04FOU/PER + -analytic -16.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +1.000B(OH)4- = Pb(B(OH)4)+ + log_k +5.20 #80BAS + -analytic 52.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +3.000B(OH)4- = Pb(B(OH)4)3- + log_k +11.18 #80BAS + -analytic 11.18000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +1.000CO3-2 = Pb(CO3) + log_k +7.00 #06BLA/PIA + delta_h -3.015 #kJ/mol +# Enthalpy of formation: -677.326 kJ/mol + -analytic 64.71795E-1 00.00000E+0 15.74844E+1 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +2.000CO3-2 = Pb(CO3)2-2 + log_k +10.13 #99LOT/OCH; Uncertainty to include available data. + -analytic 10.13000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +1.000Edta-4 = Pb(Edta)-2 + log_k +18.80 #04MAR/SMI + -analytic 18.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +2.000H+ +1.000Edta-4 = Pb(H2Edta) + log_k +24.90 #04MAR/SMI + -analytic 24.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +1.000H2(PO4)- = Pb(H2PO4)+ + log_k +1.50 #74NRI + -analytic 15.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +1.000H+ +1.000Edta-4 = Pb(HEdta)- + log_k +23.00 #04MAR/SMI + -analytic 23.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +2.000HS- = Pb(HS)2 + log_k +15.01 #06BLA/PIA; Uncertainty to include available data. + delta_h -65.579 #kJ/mol +# Enthalpy of formation: -97.259 kJ/mol + -analytic 35.21052E-1 00.00000E+0 34.25430E+2 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +3.000HS- = Pb(HS)3- + log_k +16.26 #06BLA/PIA; Uncertainty to include available data. + delta_h -73.329 #kJ/mol +# Enthalpy of formation: -121.309 kJ/mol + -analytic 34.13311E-1 00.00000E+0 38.30240E+2 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +1.000NO3- = Pb(NO3)+ + log_k +1.06 #99LOT/OCH + -analytic 10.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +2.000NO3- = Pb(NO3)2 + log_k +1.48 #99LOT/OCH + delta_h -11.012 #kJ/mol +# Enthalpy of formation: -423.792 kJ/mol + -analytic -44.92196E-2 00.00000E+0 57.51968E+1 00.00000E+0 00.00000E+0 + ++1.000Pb+2 -1.000H+ +1.000H2O = Pb(OH)+ + log_k -7.51 #99LOT/OCH; Uncertainty to include available data. + delta_h +53.920 #kJ/mol +# Enthalpy of formation: -230.990 kJ/mol + -analytic 19.36379E-1 00.00000E+0 -28.16438E+2 00.00000E+0 00.00000E+0 + ++1.000Pb+2 -2.000H+ +2.000H2O = Pb(OH)2 + log_k -16.95 #99LOT/OCH; Uncertainty to include available data. + delta_h +97.824 #kJ/mol +# Enthalpy of formation: -472.915 kJ/mol + -analytic 18.80291E-2 00.00000E+0 -51.09703E+2 00.00000E+0 00.00000E+0 + ++1.000Pb+2 -3.000H+ +3.000H2O = Pb(OH)3- + log_k -27.20 #01PER/HEF + delta_h +130.485 #kJ/mol +# Enthalpy of formation: -726.085 kJ/mol + -analytic -43.40009E-1 00.00000E+0 -68.15706E+2 00.00000E+0 00.00000E+0 + ++1.000Pb+2 -4.000H+ +4.000H2O = Pb(OH)4-2 + log_k -38.90 #01PER/HEF + delta_h +197.474 #kJ/mol +# Enthalpy of formation: -944.925 kJ/mol + -analytic -43.04040E-1 00.00000E+0 -10.31479E+3 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +1.000Ox-2 = Pb(Ox) + log_k +5.85 #13XIO/KIR + -analytic 58.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +2.000Ox-2 = Pb(Ox)2-2 + log_k +8.05 #13XIO/KIR + -analytic 80.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +1.000SeO3-2 = Pb(SeO3) + log_k +5.73 #01SEB/POT2 + -analytic 57.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +1.000SO4-2 = Pb(SO4) + log_k +2.82 #99LOT/OCH; Uncertainty to include available data. + delta_h +6.861 #kJ/mol +# Enthalpy of formation: -901.559 kJ/mol + -analytic 40.21996E-1 00.00000E+0 -35.83750E+1 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +2.000SO4-2 = Pb(SO4)2-2 + log_k +3.47 #97MAR/SMI; Uncertainty to include available data. + -analytic 34.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000Pb+2 -1.000H+ +1.000H2O = Pb2(OH)+3 + log_k -7.18 #99LOT/OCH; Uncertainty to include available data. + -analytic -71.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++4.000Pb+2 -4.000H+ +4.000H2O = Pb4(OH)4+4 + log_k -20.63 #99LOT/OCH; Uncertainty to include available data. + delta_h +82.038 #kJ/mol +# Enthalpy of formation: -1057.601 kJ/mol + -analytic -62.57559E-1 00.00000E+0 -42.85143E+2 00.00000E+0 00.00000E+0 + ++6.000Pb+2 -8.000H+ +8.000H2O = Pb6(OH)8+4 + log_k -42.68 #99LOT/OCH + delta_h +192.157 #kJ/mol +# Enthalpy of formation: -2088.961 kJ/mol + -analytic -90.15539E-1 00.00000E+0 -10.03706E+3 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +1.000Br- = PbBr+ + log_k +1.70 #82HÖG + delta_h +4.220 #kJ/mol +# Enthalpy of formation: -116.270 kJ/mol + -analytic 24.39312E-1 00.00000E+0 -22.04260E+1 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +2.000Br- = PbBr2 + log_k +1.90 #82HÖG + delta_h +10.979 #kJ/mol +# Enthalpy of formation: -230.920 kJ/mol + -analytic 38.23438E-1 00.00000E+0 -57.34731E+1 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +3.000Br- = PbBr3- + log_k +2.90 #82HÖG + delta_h +10.653 #kJ/mol +# Enthalpy of formation: -352.656 kJ/mol + -analytic 47.66325E-1 00.00000E+0 -55.64449E+1 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +1.000Cl- = PbCl+ + log_k +1.44 #97SVE/SHO; Uncertainty to include available data. + delta_h +4.318 #kJ/mol +# Enthalpy of formation: -161.841 kJ/mol + -analytic 21.96481E-1 00.00000E+0 -22.55448E+1 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +2.000Cl- = PbCl2 + log_k +2.00 #97SVE/SHO; Uncertainty to include available data. + delta_h +7.948 #kJ/mol +# Enthalpy of formation: -325.291 kJ/mol + -analytic 33.92430E-1 00.00000E+0 -41.51530E+1 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +3.000Cl- = PbCl3- + log_k +1.69 #97SVE/SHO; 22. Uncertainty to include available data. + delta_h +7.812 #kJ/mol +# Enthalpy of formation: -492.507 kJ/mol + -analytic 30.58604E-1 00.00000E+0 -40.80492E+1 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +4.000Cl- = PbCl4-2 + log_k +1.40 #97SVE/SHO; 22. Uncertainty to include available data. + delta_h +1.324 #kJ/mol +# Enthalpy of formation: -666.074 kJ/mol + -analytic 16.31955E-1 00.00000E+0 -69.15734E+0 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +1.000F- = PbF+ + log_k +2.27 #99LOT/OCH + delta_h -4.054 #kJ/mol +# Enthalpy of formation: -338.484 kJ/mol + -analytic 15.59770E-1 00.00000E+0 21.17552E+1 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +2.000F- = PbF2 + log_k +3.01 #99LOT/OCH + delta_h -8.879 #kJ/mol +# Enthalpy of formation: -678.659 kJ/mol + -analytic 14.54466E-1 00.00000E+0 46.37825E+1 00.00000E+0 00.00000E+0 + ++1.000Pb+2 -1.000H+ +1.000H2(PO4)- = PbHPO4 + log_k -4.11 #74NRI + -analytic -41.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +1.000I- = PbI+ + log_k +1.98 #82HÖG + delta_h +3.874 #kJ/mol +# Enthalpy of formation: -51.986 kJ/mol + -analytic 26.58696E-1 00.00000E+0 -20.23531E+1 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +2.000I- = PbI2 + log_k +3.15 #82HÖG + delta_h +7.106 #kJ/mol +# Enthalpy of formation: -105.533 kJ/mol + -analytic 43.94918E-1 00.00000E+0 -37.11722E+1 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +3.000I- = PbI3- + log_k +3.81 #82HÖG + delta_h +3.163 #kJ/mol +# Enthalpy of formation: -166.256 kJ/mol + -analytic 43.64134E-1 00.00000E+0 -16.52150E+1 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +4.000I- = PbI4-2 + log_k +3.75 #82HÖG + delta_h -15.561 #kJ/mol +# Enthalpy of formation: -241.760 kJ/mol + -analytic 10.23830E-1 00.00000E+0 81.28076E+1 00.00000E+0 00.00000E+0 + ++1.000Pb+2 +1.000Pyrophos-4 = PbPyrophos-2 + log_k +8.33 #82WAG/EVA + -analytic 83.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pd+2 +1.000CO3-2 = Pd(CO3) + log_k +6.83 #87BRO/WAN + delta_h -8.843 #kJ/mol +# Enthalpy of formation: -494.184 kJ/mol + -analytic 52.80773E-1 00.00000E+0 46.19021E+1 00.00000E+0 00.00000E+0 + ++1.000Pd+2 +2.000CO3-2 = Pd(CO3)2-2 + log_k +12.53 #87BRO/WAN + -analytic 12.53000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pd+2 +1.000NH3 = Pd(NH3)+2 + log_k +9.60 #68RAS/JOR + -analytic 96.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pd+2 +2.000NH3 = Pd(NH3)2+2 + log_k +18.50 #68RAS/JOR + -analytic 18.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pd+2 +3.000NH3 = Pd(NH3)3+2 + log_k +26.00 #68RAS/JOR + -analytic 26.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pd+2 +4.000NH3 = Pd(NH3)4+2 + log_k +32.80 #68RAS/JOR + -analytic 32.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000Pd+2 +1.000H2O = Pd(OH)+ + log_k -1.86 #70NAB/KAL + delta_h +11.908 #kJ/mol +# Enthalpy of formation: -84.032 kJ/mol + -analytic 22.61920E-2 00.00000E+0 -62.19982E+1 00.00000E+0 00.00000E+0 + +-2.000H+ +1.000Pd+2 +2.000H2O = Pd(OH)2 + log_k -3.49 #12RAI/YUI + delta_h +13.576 #kJ/mol +# Enthalpy of formation: -368.195 kJ/mol + -analytic -11.11587E-1 00.00000E+0 -70.91239E+1 00.00000E+0 00.00000E+0 + +-3.000H+ +1.000Pd+2 +3.000H2O = Pd(OH)3- + log_k -15.48 #12RAI/YUI + delta_h +52.289 #kJ/mol +# Enthalpy of formation: -615.311 kJ/mol + -analytic -63.19360E-1 00.00000E+0 -27.31245E+2 00.00000E+0 00.00000E+0 + ++1.000Pd+2 +1.000SO4-2 = Pd(SO4) + log_k +2.91 #87BRO/WAN + delta_h +4.588 #kJ/mol +# Enthalpy of formation: -714.862 kJ/mol + -analytic 37.13783E-1 00.00000E+0 -23.96479E+1 00.00000E+0 00.00000E+0 + ++1.000Pd+2 +2.000SO4-2 = Pd(SO4)2-2 + log_k +4.17 #82HOG + -analytic 41.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pd+2 +1.000Br- = PdBr+ + log_k +5.77 #72ELD + delta_h -30.145 #kJ/mol +# Enthalpy of formation: +38.334 kJ/mol + -analytic 48.88227E-2 00.00000E+0 15.74583E+2 00.00000E+0 00.00000E+0 + ++1.000Pd+2 +2.000Br- = PdBr2 + log_k +10.06 #72ELD + delta_h -57.714 #kJ/mol +# Enthalpy of formation: -110.644 kJ/mol + -analytic -51.05877E-3 00.00000E+0 30.14612E+2 00.00000E+0 00.00000E+0 + ++1.000Pd+2 +3.000Br- = PdBr3- + log_k +13.75 #72ELD + delta_h -92.390 #kJ/mol +# Enthalpy of formation: -266.730 kJ/mol + -analytic -24.36033E-1 00.00000E+0 48.25866E+2 00.00000E+0 00.00000E+0 + ++1.000Pd+2 +4.000Br- = PdBr4-2 + log_k +15.11 #72ELD + delta_h -126.688 #kJ/mol +# Enthalpy of formation: -422.437 kJ/mol + -analytic -70.84785E-1 00.00000E+0 66.17375E+2 00.00000E+0 00.00000E+0 + ++1.000Pd+2 +1.000Cl- = PdCl+ + log_k +5.00 #12RAI/YUI + delta_h -23.954 #kJ/mol +# Enthalpy of formation: -1.145 kJ/mol + -analytic 80.34393E-2 00.00000E+0 12.51205E+2 00.00000E+0 00.00000E+0 + ++1.000Pd+2 +2.000Cl- = PdCl2 + log_k +8.42 #12RAI/YUI + delta_h -48.037 #kJ/mol +# Enthalpy of formation: -192.307 kJ/mol + -analytic 42.78852E-4 00.00000E+0 25.09147E+2 00.00000E+0 00.00000E+0 + ++1.000Pd+2 +3.000Cl- = PdCl3- + log_k +10.93 #12RAI/YUI + delta_h -77.749 #kJ/mol +# Enthalpy of formation: -389.099 kJ/mol + -analytic -26.91040E-1 00.00000E+0 40.61113E+2 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000Pd+2 +3.000Cl- +1.000H2O = PdCl3(OH)-2 + log_k +2.42 #12RAI/YUI + -analytic 24.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pd+2 +4.000Cl- = PdCl4-2 + log_k +13.05 #12RAI/YUI + delta_h -120.180 #kJ/mol +# Enthalpy of formation: -598.610 kJ/mol + -analytic -80.04632E-1 00.00000E+0 62.77439E+2 00.00000E+0 00.00000E+0 + ++1.000Pd+2 +1.000I- = PdI+ + log_k +10.40 #89BAE/McK + delta_h -58.206 #kJ/mol +# Enthalpy of formation: +74.903 kJ/mol + -analytic 20.27465E-2 00.00000E+0 30.40311E+2 00.00000E+0 00.00000E+0 + ++1.000Pd+2 +2.000I- = PdI2 + log_k +14.50 #97BOU + delta_h -83.425 #kJ/mol +# Enthalpy of formation: -7.096 kJ/mol + -analytic -11.54326E-2 00.00000E+0 43.57591E+2 00.00000E+0 00.00000E+0 + ++1.000Pd+2 +3.000I- = PdI3- + log_k +18.60 #97BOU + delta_h -121.755 #kJ/mol +# Enthalpy of formation: -102.205 kJ/mol + -analytic -27.30560E-1 00.00000E+0 63.59707E+2 00.00000E+0 00.00000E+0 + ++1.000Pd+2 +4.000I- = PdI4-2 + log_k +24.64 + delta_h -190.061 #kJ/mol +# Enthalpy of formation: -227.291 kJ/mol + -analytic -86.57258E-1 00.00000E+0 99.27577E+2 00.00000E+0 00.00000E+0 + +-2.000H+ +1.000H2(PO4)- = PO4-3 + log_k -19.56 #89COX/WAG + delta_h +18.200 #kJ/mol +# Enthalpy of formation: -1284.400 kJ/mol 89COX/WAG + -analytic -16.37150E+0 00.00000E+0 -95.06522E+1 00.00000E+0 00.00000E+0 + ++1.000Pu+3 +1.000Acetate- = Pu(Acetate)+2 + log_k +2.85 #69MOS + -analytic 28.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+4 +1.000Acetate- = Pu(Acetate)+3 + log_k +5.93 #62SCH/NEB + -analytic 59.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+3 +2.000Acetate- = Pu(Acetate)2+ + log_k +5.06 #69MOS + -analytic 50.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+4 +2.000Acetate- = Pu(Acetate)2+2 + log_k +10.09 #62SCH/NEB + -analytic 10.09000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+3 +3.000Acetate- = Pu(Acetate)3 + log_k +6.57 #69MOS + -analytic 65.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+3 +1.000Cit-3 = Pu(Cit) + log_k +8.55 #Analogy with Am + -analytic 85.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+3 +2.000Cit-3 = Pu(Cit)2-3 + log_k +13.90 #Analogy with Am + -analytic 13.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+3 +1.000CO3-2 = Pu(CO3)+ + log_k +7.64 #Estimated by correlation with An(III) in function of ionic radii + delta_h +14.742 #kJ/mol +# Enthalpy of formation: -1252.279 kJ/mol + -analytic 10.22269E+0 00.00000E+0 -77.00283E+1 00.00000E+0 00.00000E+0 + ++1.000Pu+3 +2.000CO3-2 = Pu(CO3)2- + log_k +12.54 #Estimated by correlation with An(III) in function of ionic radii + -analytic 12.54000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+3 +3.000CO3-2 = Pu(CO3)3-3 + log_k +15.20 #Estimated by correlation with An(III) in function of ionic radii + -analytic 15.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+4 +4.000CO3-2 = Pu(CO3)4-4 + log_k +37.00 #03GUI/FAN + -analytic 37.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+4 +5.000CO3-2 = Pu(CO3)5-6 + log_k +35.65 #03GUI/FAN + -analytic 35.65000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+4 +1.000Edta-4 = Pu(Edta) + log_k +31.80 #Recommended in 05HUM/AND + -analytic 31.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+3 +1.000Edta-4 = Pu(Edta)- + log_k +20.18 #05HUM/AND + delta_h -8.700 #kJ/mol 05HUM/AND +# Enthalpy of formation: -2305.290 kJ/mol + -analytic 18.65583E+0 00.00000E+0 45.44326E+1 00.00000E+0 00.00000E+0 + ++1.000Pu+3 +1.000H2(PO4)- = Pu(H2PO4)+2 + log_k +2.20 #10RAI/MOO + -analytic 22.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+3 +1.000H+ +1.000Cit-3 = Pu(HCit)+ + log_k +12.86 #Analogy with Am + -analytic 12.86000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+3 +2.000H+ +2.000Cit-3 = Pu(HCit)2- + log_k +23.52 #Analogy with Am + -analytic 23.52000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+3 +1.000H+ +1.000Edta-4 = Pu(HEdta) + log_k +22.02 #05HUM/AND + -analytic 22.02000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+3 -1.000H+ +1.000H2(PO4)- = Pu(HPO4)+ + log_k -1.81 #Estimated by correlation with An(III) in function of ionic radii + -analytic -18.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+3 -2.000H+ +2.000H2(PO4)- = Pu(HPO4)2- + log_k -5.45 #Estimated by correlation with An(III) in function of ionic radii + -analytic -54.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+3 +1.000NO3- = Pu(NO3)+2 + log_k +1.33 #95SIL/BID, LogK selected in analogy to Am (NEA recommendation 95SIL/BID) + -analytic 13.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+4 +1.000NO3- = Pu(NO3)+3 + log_k +1.95 #01LEM/FUG + -analytic 19.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+3 +1.000Nta-3 = Pu(Nta) + log_k +13.10 #95AKR/BOU + -analytic 13.10000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+4 +1.000Nta-3 = Pu(Nta)+ + log_k +25.72 #16BON/AUP + -analytic 25.72000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+3 -1.000H+ +1.000H2O = Pu(OH)+2 + log_k -6.18 #20GRE/GAO + delta_h +30.753 #kJ/mol +# Enthalpy of formation: -846.866 kJ/mol + -analytic -79.23057E-2 00.00000E+0 -16.06341E+2 00.00000E+0 00.00000E+0 + ++1.000Pu+4 -1.000H+ +1.000H2O = Pu(OH)+3 + log_k +0.60 #99NEC, 01NEC/KIM, 03GUI/FAN + delta_h +22.922 #kJ/mol +# Enthalpy of formation: -802.803 kJ/mol + -analytic 46.15762E-1 00.00000E+0 -11.97299E+2 00.00000E+0 00.00000E+0 + ++1.000Pu+4 -2.000H+ +2.000CO3-2 +2.000H2O = Pu(OH)2(CO3)2-2 + log_k +18.21 #99RAI/HES1 + -analytic 18.21000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+3 -2.000H+ +1.000HGlu- +2.000H2O = Pu(OH)2(HGlu) + log_k -10.97 #Analogy with Pu(OH)2(HIsa)(aq) + -analytic -10.97000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+3 -2.000H+ +1.000HIsa- +2.000H2O = Pu(OH)2(HIsa) + log_k -10.97 #18TAS/GAO + -analytic -10.97000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+3 -2.000H+ +2.000H2O = Pu(OH)2+ + log_k -15.10 #Analogy with Am(III) + delta_h +89.712 #kJ/mol +# Enthalpy of formation: -1073.737 kJ/mol + -analytic 61.68677E-2 00.00000E+0 -46.85984E+2 00.00000E+0 00.00000E+0 + ++1.000Pu+4 -2.000H+ +2.000H2O = Pu(OH)2+2 + log_k +0.60 #99NEC, 01NEC/KIM, 03GUI/FAN + delta_h +39.780 #kJ/mol +# Enthalpy of formation: -1071.775 kJ/mol + -analytic 75.69157E-1 00.00000E+0 -20.77854E+2 00.00000E+0 00.00000E+0 + ++1.000Pu+4 -2.000H+ +1.000Edta-4 +2.000H2O = Pu(OH)2Edta-2 + log_k +18.02 #21DIB/TAS + -analytic 18.02000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+3 -3.000H+ +3.000H2O = Pu(OH)3 + log_k -26.20 #20GRE/GAO + delta_h +151.892 #kJ/mol +# Enthalpy of formation: -1297.387 kJ/mol + -analytic 41.03361E-2 00.00000E+0 -79.33872E+2 00.00000E+0 00.00000E+0 + ++1.000Pu+4 -3.000H+ +1.000HGlu- +3.000H2O = Pu(OH)3(HGlu) + log_k +4.75 #06GAO/GRI + -analytic 47.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+4 -3.000H+ +3.000H2O = Pu(OH)3+ + log_k -2.30 #99NEC, 01NEC/KIM, 03GUI/FAN + delta_h +64.376 #kJ/mol +# Enthalpy of formation: -1333.008 kJ/mol + -analytic 89.78191E-1 00.00000E+0 -33.62593E+2 00.00000E+0 00.00000E+0 + ++1.000Pu+4 -3.000H+ +1.000Edta-4 +3.000H2O = Pu(OH)3Edta-3 + log_k +8.50 #21DIB/TAS + -analytic 85.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+4 -4.000H+ +4.000H2O = Pu(OH)4 + log_k -8.50 #03GUI/FAN + delta_h +98.586 #kJ/mol +# Enthalpy of formation: -1584.627 kJ/mol + -analytic 87.71526E-1 00.00000E+0 -51.49505E+2 00.00000E+0 00.00000E+0 + ++1.000Pu+4 -4.000H+ +1.000HGlu- +4.000H2O = Pu(OH)4(HGlu)- + log_k -2.70 #06GAO/GRI + -analytic -27.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+4 -4.000H+ +2.000HGlu- +4.000H2O = Pu(OH)4(HGlu)2-2 + log_k -2.83 #Analogy with An(IV)-ISA + -analytic -28.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+4 -4.000H+ +1.000HIsa- +4.000H2O = Pu(OH)4(HIsa)- + log_k -5.03 #18TAS/GAO & TAS/GAO1 + -analytic -50.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+4 -4.000H+ +2.000HIsa- +4.000H2O = Pu(OH)4(HIsa)2-2 + log_k -2.83 #23ROD/COL + -analytic -28.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+4 -5.000H+ +1.000HGlu- +5.000H2O = Pu(OH)5(HGlu)-2 + log_k -16.92 #Analogy with An(IV)-ISA + -analytic -16.92000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+4 -5.000H+ +1.000HIsa- +5.000H2O = Pu(OH)5(HIsa)-2 + log_k -16.92 #18TAS/GAO & 18TAS/GAO1 + -analytic -16.92000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+4 -1.000H+ +1.000Edta-4 +1.000H2O = Pu(OH)Edta- + log_k +23.00 #21DIB/TAS + -analytic 23.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+3 +1.000Ox-2 = Pu(Ox)+ + log_k +6.49 #12GRI/GAR2 + -analytic 64.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+4 +1.000Ox-2 = Pu(Ox)+2 + log_k +11.40 #05HUM/AND + -analytic 11.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+4 +2.000Ox-2 = Pu(Ox)2 + log_k +20.60 #05HUM/AND + -analytic 20.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+3 +2.000Ox-2 = Pu(Ox)2- + log_k +10.62 #12GRI/GAR2 + -analytic 10.62000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+4 +3.000Ox-2 = Pu(Ox)3-2 + log_k +25.69 #05HUM/AND + -analytic 25.69000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+3 +3.000Ox-2 = Pu(Ox)3-3 + log_k +13.22 #12GRI/GAR2 + -analytic 13.22000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+3 -2.000H+ +1.000H2(PO4)- = Pu(PO4) + log_k -7.91 #Estimated by correlation with An(III) in function of ionic radii + -analytic -79.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+3 -4.000H+ +2.000H2(PO4)- = Pu(PO4)2-3 + log_k -19.71 #Estimated by correlation with An(III) in function of ionic radii + -analytic -19.71000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+3 +1.000SO4-2 = Pu(SO4)+ + log_k +3.91 #01LEM/FUG + delta_h +17.240 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -1483.890 kJ/mol + -analytic 69.30318E-1 00.00000E+0 -90.05079E+1 00.00000E+0 00.00000E+0 + ++1.000Pu+4 +1.000SO4-2 = Pu(SO4)+2 + log_k +6.89 #01LEM/FUG + delta_h +13.754 #kJ/mol +# Enthalpy of formation: -1435.481 kJ/mol + -analytic 92.99597E-1 00.00000E+0 -71.84215E+1 00.00000E+0 00.00000E+0 + ++1.000Pu+4 +2.000SO4-2 = Pu(SO4)2 + log_k +11.14 #01LEM/FUG + delta_h +43.907 #kJ/mol +# Enthalpy of formation: -2314.667 kJ/mol + -analytic 18.83218E+0 00.00000E+0 -22.93422E+2 00.00000E+0 00.00000E+0 + ++1.000Pu+3 +2.000SO4-2 = Pu(SO4)2- + log_k +5.70 #01LEM/FUG + delta_h +11.880 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -2398.590 kJ/mol + -analytic 77.81287E-1 00.00000E+0 -62.05356E+1 00.00000E+0 00.00000E+0 + ++1.000Pu+4 +1.000Br- = PuBr+3 + log_k +1.60 #01LEM/FUG + -analytic 16.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+4 +1.000Cl- = PuCl+3 + log_k +1.80 #01LEM/FUG + delta_h +19.820 #kJ/mol +# Enthalpy of formation: -687.155 kJ/mol + -analytic 52.72315E-1 00.00000E+0 -10.35271E+2 00.00000E+0 00.00000E+0 + ++1.000Pu+4 +1.000F- = PuF+3 + log_k +8.84 #01LEM/FUG + delta_h +9.100 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -866.145 kJ/mol + -analytic 10.43425E+0 00.00000E+0 -47.53261E+1 00.00000E+0 00.00000E+0 + ++1.000Pu+4 +2.000F- = PuF2+2 + log_k +15.70 #01LEM/FUG + delta_h +11.000 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -1199.595 kJ/mol + -analytic 17.62712E+0 00.00000E+0 -57.45700E+1 00.00000E+0 00.00000E+0 + ++1.000Pu+4 +3.000F- = PuF3+ + log_k +20.11 #01LEM/FUG + -analytic 20.11000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+4 +1.000H+ +1.000H2(PO4)- = PuH3PO4+4 + log_k +4.54 #01LEM/FUG + -analytic 45.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+3 +1.000I- = PuI+2 + log_k +1.10 #01LEM/FUG + -analytic 11.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Pu+4 +1.000I- = PuI+3 + log_k +1.62 #ANDRA report (C RP 0ENQ 02-001,Estimated by correlation with An(IV) in function of ionic radii) + -analytic 16.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000PuO2+2 +1.000Acetate- = PuO2(Acetate)+ + log_k +2.87 #11RIC/GRI + -analytic 28.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000PuO2+2 +2.000Acetate- = PuO2(Acetate)2 + log_k +4.77 #11RIC/GRI + -analytic 47.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000PuO2+2 +3.000Acetate- = PuO2(Acetate)3- + log_k +6.19 #11RIC/GRI + -analytic 61.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000PuO2+2 +1.000CO3-2 = PuO2(CO3) + log_k +9.50 #03GUI/FAN + -analytic 95.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000PuO2+ +1.000CO3-2 = PuO2(CO3)- + log_k +5.03 #20GRE/GAO + -analytic 50.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000PuO2+2 +2.000CO3-2 = PuO2(CO3)2-2 + log_k +14.70 #03GUI/FAN + delta_h -27.000 #kJ/mol 03GUI/FAN +# Enthalpy of formation: -2199.496 kJ/mol + -analytic 99.69803E-1 00.00000E+0 14.10308E+2 00.00000E+0 00.00000E+0 + ++1.000PuO2+ +2.000CO3-2 = PuO2(CO3)2-3 + log_k +6.34 #20GRE/GAO + -analytic 63.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000PuO2+2 +3.000CO3-2 = PuO2(CO3)3-4 + log_k +18.00 #03GUI/FAN + delta_h -38.600 #kJ/mol 03GUI/FAN +# Enthalpy of formation: -2886.326 kJ/mol + -analytic 11.23757E+0 00.00000E+0 20.16218E+2 00.00000E+0 00.00000E+0 + ++1.000PuO2+ +3.000CO3-2 = PuO2(CO3)3-5 + log_k +5.61 #20GRE/GAO + -analytic 56.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000UO2+2 +1.000PuO2+2 +6.000CO3-2 = PuO2(CO3)6(UO2)2-6 + log_k +53.48 #20GRE/GAO + -analytic 53.48000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000PuO2+ -1.000H+ +1.000H2(PO4)- = PuO2(HPO4)- + log_k -4.86 #NEA Guidelines in 01LEM/FUG + -analytic -48.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000PuO2+ +1.000Nta-3 = PuO2(Nta)-2 + log_k +7.50 #95AKR/BOU + -analytic 75.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000PuO2+2 -1.000H+ +1.000H2O = PuO2(OH)+ + log_k -5.50 #01LEM/FUG + delta_h +28.000 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -1079.866 kJ/mol + -analytic -59.46106E-2 00.00000E+0 -14.62542E+2 00.00000E+0 00.00000E+0 + ++1.000PuO2+2 -2.000H+ +2.000H2O = PuO2(OH)2 + log_k -13.20 #01LEM/FUG + -analytic -13.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000PuO2+2 -3.000H+ +3.000H2O = PuO2(OH)3- + log_k -24.00 #20GRE/GAO + -analytic -24.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000PuO2+2 -1.000H+ +1.000H4(SiO4) = PuO2(OSi(OH)3)+ + log_k -3.64 #03YUS/FED + -analytic -36.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000PuO2+2 +1.000Ox-2 = PuO2(Ox) + log_k +7.00 #95AKR/BOU + -analytic 70.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000PuO2+2 +2.000Ox-2 = PuO2(Ox)2-2 + log_k +10.50 #73POR/DEP in 95AKR/BOU + -analytic 10.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000PuO2+2 +1.000Phthalat-2 = PuO2(Phthalat) + log_k +5.76 #11GRI/COL3 + -analytic 57.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000PuO2+2 +1.000SO4-2 = PuO2(SO4) + log_k +3.38 #01LEM/FUG + delta_h +16.100 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -1715.276 kJ/mol + -analytic 62.00599E-1 00.00000E+0 -84.09616E+1 00.00000E+0 00.00000E+0 + ++1.000PuO2+ +1.000SO4-2 = PuO2(SO4)- + log_k +1.26 #20GRE/GAO + -analytic 12.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000PuO2+2 +2.000SO4-2 = PuO2(SO4)2-2 + log_k +4.40 #01LEM/FUG + delta_h +43.000 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -2597.716 kJ/mol + -analytic 11.93328E+0 00.00000E+0 -22.46046E+2 00.00000E+0 00.00000E+0 + ++1.000PuO2+2 +1.000Cl- = PuO2Cl+ + log_k +0.23 #03GUI/FAN + delta_h +4.187 #kJ/mol +# Enthalpy of formation: -984.929 kJ/mol + -analytic 96.35309E-2 00.00000E+0 -21.87022E+1 00.00000E+0 00.00000E+0 + ++1.000PuO2+2 +2.000Cl- = PuO2Cl2 + log_k -1.15 #03GUI/FAN + -analytic -11.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000PuO2+ +1.000F- = PuO2F + log_k +1.20 #In analogy to NpO2)F + -analytic 12.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000PuO2+2 +1.000F- = PuO2F+ + log_k +4.56 #01LEM/FUG + delta_h -3.654 #kJ/mol +# Enthalpy of formation: -1161.039 kJ/mol + -analytic 39.19847E-1 00.00000E+0 19.08617E+1 00.00000E+0 00.00000E+0 + ++1.000PuO2+2 +2.000F- = PuO2F2 + log_k +7.25 #01LEM/FUG + delta_h +1.206 #kJ/mol +# Enthalpy of formation: -1491.529 kJ/mol + -analytic 74.61282E-1 00.00000E+0 -62.99377E+0 00.00000E+0 00.00000E+0 + ++1.000PuO2+2 +3.000F- = PuO2F3- + log_k +9.59 #85SAW/CHA + delta_h +2.399 #kJ/mol +# Enthalpy of formation: -1825.686 kJ/mol + -analytic 10.01029E+0 00.00000E+0 -12.53085E+1 00.00000E+0 00.00000E+0 + ++1.000PuO2+2 +1.000NO3- = PuO2NO3+ + log_k +0.10 #12GRI/GAR1 (LogK selected in analogy to U (NEA recommendation), logK(UO2NO3 +)) + -analytic 10.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000PuO2+ -1.000H+ +1.000H2O = PuO2OH + log_k -11.30 #01LEM/FUG + delta_h +71.826 #kJ/mol +# Enthalpy of formation: -1124.131 kJ/mol + -analytic 12.83375E-1 00.00000E+0 -37.51733E+2 00.00000E+0 00.00000E+0 + ++1.000Ra+2 +1.000CO3-2 = Ra(CO3) + log_k +2.50 #99SCH + delta_h +4.496 #kJ/mol +# Enthalpy of formation: -1198.760 kJ/mol + -analytic 32.87665E-1 00.00000E+0 -23.48424E+1 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000Ra+2 +1.000CO3-2 = Ra(HCO3)+ + log_k +10.92 #02ILE/TWE; Uncertainty to include available data. + -analytic 10.92000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000Ra+2 +1.000H2O = Ra(OH)+ + log_k -13.49 + delta_h +60.417 #kJ/mol 85LAN/RIE +# Enthalpy of formation: -753.438 kJ/mol + -analytic -29.05396E-1 00.00000E+0 -31.55800E+2 00.00000E+0 00.00000E+0 + +-2.000H+ +1.000Ra+2 +2.000H2O = Ra(OH)2 + log_k -28.07 + delta_h +112.197 #kJ/mol +# Enthalpy of formation: -987.488 kJ/mol + -analytic -84.13929E-1 00.00000E+0 -58.60457E+2 00.00000E+0 00.00000E+0 + ++1.000Ra+2 +1.000SO4-2 = Ra(SO4) + log_k +2.76 + delta_h +5.472 #kJ/mol +# Enthalpy of formation: -1431.892 kJ/mol + -analytic 37.18653E-1 00.00000E+0 -28.58225E+1 00.00000E+0 00.00000E+0 + ++1.000Ra+2 +1.000Cl- = RaCl+ + log_k -0.10 #85LAN/RIE; Uncertainty to include available data. + delta_h +2.479 #kJ/mol +# Enthalpy of formation: -692.626 kJ/mol + -analytic 33.43022E-2 00.00000E+0 -12.94872E+1 00.00000E+0 00.00000E+0 + ++1.000Ra+2 +2.000Cl- = RaCl2 + log_k -0.10 + delta_h +0.495 #kJ/mol +# Enthalpy of formation: -861.689 kJ/mol + -analytic -13.27972E-3 00.00000E+0 -25.85565E+0 00.00000E+0 00.00000E+0 + ++1.000Ra+2 +1.000F- = RaF+ + log_k +0.48 #87BRO/WAN + -analytic 48.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Br- +1.000Rb+ = RbBr + log_k -1.24 + delta_h +13.836 #kJ/mol +# Enthalpy of formation: -358.694 kJ/mol 97SVE/SHO + -analytic 11.83963E-1 00.00000E+0 -72.27046E+1 00.00000E+0 00.00000E+0 + ++1.000Cl- +1.000Rb+ = RbCl + log_k -1.01 + delta_h +13.189 #kJ/mol +# Enthalpy of formation: -405.011 kJ/mol 97SVE/SHO + -analytic 13.00614E-1 00.00000E+0 -68.89094E+1 00.00000E+0 00.00000E+0 + ++1.000F- +1.000Rb+ = RbF + log_k +0.94 + delta_h +1.923 #kJ/mol +# Enthalpy of formation: -584.547 kJ/mol 97SVE/SHO + -analytic 12.76895E-1 00.00000E+0 -10.04453E+1 00.00000E+0 00.00000E+0 + ++1.000I- +1.000Rb+ = RbI + log_k -0.84 + delta_h +6.987 #kJ/mol +# Enthalpy of formation: -300.913 kJ/mol 97SVE/SHO + -analytic 38.40699E-2 00.00000E+0 -36.49564E+1 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000Rb+ +1.000H2O = RbOH + log_k -14.26 + delta_h +64.158 #kJ/mol +# Enthalpy of formation: -472.792 kJ/mol 97SHO/SAS2 + -analytic -30.20001E-1 00.00000E+0 -33.51206E+2 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000HS- = S-2 + log_k -17.10 #04CHI + delta_h +73.278 #kJ/mol +# Enthalpy of formation: +56.978 kJ/mol + -analytic -42.62245E-1 00.00000E+0 -38.27577E+2 00.00000E+0 00.00000E+0 + +-2.000H+ -2.000e- +2.000HS- = S2-2 + log_k -10.54 + delta_h +67.640 #kJ/mol +# Enthalpy of formation: +35.040 kJ/mol 04CHI + -analytic 13.10019E-1 00.00000E+0 -35.33083E+2 00.00000E+0 00.00000E+0 + ++2.000H+ +2.000SO3-2 -1.000H2O = S2O5-2 + log_k +12.85 #85GOL/PAR + delta_h +2.606 #kJ/mol +# Enthalpy of formation: -973.684 kJ/mol + -analytic 13.30655E+0 00.00000E+0 -13.61209E+1 00.00000E+0 00.00000E+0 + +-2.000e- +2.000SO4-2 = S2O8-2 + log_k -65.38 + delta_h +473.980 #kJ/mol +# Enthalpy of formation: -1344.700 kJ/mol 82WAG/EVA + -analytic 17.65773E+0 00.00000E+0 -24.75770E+3 00.00000E+0 00.00000E+0 + +-3.000H+ -4.000e- +3.000HS- = S3-2 + log_k -6.51 + delta_h +74.840 #kJ/mol +# Enthalpy of formation: +25.940 kJ/mol 74NAU/RYZ + -analytic 66.01405E-1 00.00000E+0 -39.09165E+2 00.00000E+0 00.00000E+0 + ++6.000H+ +2.000e- +3.000SO3-2 -3.000H2O = S3O6-2 + log_k +36.82 + delta_h -131.646 #kJ/mol +# Enthalpy of formation: -1167.336 kJ/mol 04CHI + -analytic 13.75661E+0 00.00000E+0 68.76349E+2 00.00000E+0 00.00000E+0 + +-4.000H+ -6.000e- +4.000HS- = S4-2 + log_k -3.58 + delta_h +88.210 #kJ/mol +# Enthalpy of formation: +23.010 kJ/mol 74NAU/RYZ + -analytic 11.87373E+0 00.00000E+0 -46.07529E+2 00.00000E+0 00.00000E+0 + ++12.000H+ +6.000e- +4.000SO3-2 -6.000H2O = S4O6-2 + log_k +90.80 + delta_h -414.978 #kJ/mol +# Enthalpy of formation: -1224.238 kJ/mol 04CHI + -analytic 18.09898E+0 00.00000E+0 21.67581E+3 00.00000E+0 00.00000E+0 + +-5.000H+ -8.000e- +5.000HS- = S5-2 + log_k -0.87 + delta_h +102.840 #kJ/mol +# Enthalpy of formation: +21.340 kJ/mol 74NAU/RYZ + -analytic 17.14679E+0 00.00000E+0 -53.71707E+2 00.00000E+0 00.00000E+0 + ++18.000H+ +10.000e- +5.000SO3-2 -9.000H2O = S5O6-2 + log_k +115.39 + delta_h -592.874 #kJ/mol +# Enthalpy of formation: -1175.704 kJ/mol 04CHI + -analytic 11.52293E+0 00.00000E+0 30.96797E+3 00.00000E+0 00.00000E+0 + ++2.000H+ +1.000Sb(OH)3 -2.000H2O = Sb(OH)+2 + log_k +0.74 #99LOT/OCH + -analytic 74.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000Sb(OH)3 -1.000H2O = Sb(OH)2+ + log_k +1.33 #77ANT/NEV and others recalculated + -analytic 13.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000Sb(OH)3 +1.000H2O = Sb(OH)4- + log_k -11.82 #52GAY/GAR recalculated + -analytic -11.82000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000H+ +1.000Sb(OH)5 -1.000H2O = Sb(OH)4+ + log_k -3.26 #57PIT/POU in 99LOT/OCH + -analytic -32.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000Sb(OH)5 +1.000H2O = Sb(OH)6- + log_k -2.72 #63LEF/MAR in 76BAE/MES + -analytic -27.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++3.000H+ +1.000Sb(OH)3 -3.000H2O = Sb+3 + log_k -0.73 #99LOT/OCH + -analytic -73.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-4.000H+ +12.000Sb(OH)5 +4.000H2O = Sb12(OH)64-4 + log_k +20.34 #63LEF/MAR in 76BAE/MES + -analytic 20.34000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-5.000H+ +12.000Sb(OH)5 +5.000H2O = Sb12(OH)65-5 + log_k +16.72 #63LEF/MAR in 76BAE/MES + -analytic 16.72000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-6.000H+ +12.000Sb(OH)5 +6.000H2O = Sb12(OH)66-6 + log_k +11.89 #63LEF/MAR in 76BAE/MES + -analytic 11.89000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-7.000H+ +12.000Sb(OH)5 +7.000H2O = Sb12(OH)67-7 + log_k +6.07 #63LEF/MAR in 76BAE/MES + -analytic 60.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++4.000H+ +4.000HS- +2.000Sb(OH)3 -6.000H2O = Sb2H2S4 + log_k +57.81 #88KRU + -analytic 57.81000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++3.000H+ +4.000HS- +2.000Sb(OH)3 -6.000H2O = Sb2HS4- + log_k +52.90 #88KRU + -analytic 52.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000H+ +4.000HS- +2.000Sb(OH)3 -6.000H2O = Sb2S4-2 + log_k +43.38 #88KRU + -analytic 43.38000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++3.000H+ +1.000Cl- +1.000Sb(OH)3 -3.000H2O = SbCl+2 + log_k +2.80 #70BON/WAU and others recalculated + -analytic 28.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++3.000H+ +2.000Cl- +1.000Sb(OH)3 -3.000H2O = SbCl2+ + log_k +3.27 #70BON/WAU and others recalculated + -analytic 32.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++3.000H+ +1.000F- +1.000Sb(OH)3 -3.000H2O = SbF+2 + log_k +6.37 #70BON recalculated + -analytic 63.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++3.000H+ +2.000F- +1.000Sb(OH)3 -3.000H2O = SbF2+ + log_k +12.42 #70BON recalculated + -analytic 12.42000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++3.000H+ +3.000F- +1.000Sb(OH)3 -3.000H2O = SbF3 + log_k +18.20 #70BON recalculated + -analytic 18.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000HSe- = Se-2 + log_k -14.91 + -analytic -14.91000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-2.000H+ -2.000e- +2.000HSe- = Se2-2 + log_k -4.50 #05OLI/NOL + -analytic -45.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-3.000H+ -4.000e- +3.000HSe- = Se3-2 + log_k +5.24 #05OLI/NOL + -analytic 52.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-4.000H+ -6.000e- +4.000HSe- = Se4-2 + log_k +13.38 #05OLI/NOL + -analytic 13.38000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +2.000H4(SiO4) -1.000H2O = Si2O2(OH)5- + log_k -8.50 #01FEL/CHO + -analytic -85.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-2.000H+ +2.000H4(SiO4) -1.000H2O = Si2O3(OH)4-2 + log_k -19.40 #01FEL/CHO + -analytic -19.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-3.000H+ +3.000H4(SiO4) -2.000H2O = Si3O5(OH)5-3 + log_k -29.40 #01FEL/CHO + -analytic -29.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-3.000H+ +3.000H4(SiO4) -3.000H2O = Si3O6(OH)3-3 + log_k -29.30 #01FEL/CHO + -analytic -29.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-2.000H+ +4.000H4(SiO4) -4.000H2O = Si4O6(OH)6-2 + log_k -15.60 #01FEL/CHO + -analytic -15.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-4.000H+ +4.000H4(SiO4) -3.000H2O = Si4O7(OH)6-4 + log_k -39.10 #01FEL/CHO + -analytic -39.10000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-4.000H+ +4.000H4(SiO4) -4.000H2O = Si4O8(OH)4-4 + log_k -39.20 #01FEL/CHO + -analytic -39.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-6.000H+ +6.000H4(SiO4) -9.000H2O = Si6O15-6 + log_k -61.80 #01FEL/CHO + -analytic -61.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sm+3 +1.000CO3-2 = Sm(CO3)+ + log_k +7.80 #95SPA/BRU + delta_h +23.851 #kJ/mol +# Enthalpy of formation: -1342.577 kJ/mol + -analytic 11.97852E+0 00.00000E+0 -12.45824E+2 00.00000E+0 00.00000E+0 + ++1.000Sm+3 +2.000CO3-2 = Sm(CO3)2- + log_k +12.80 #95SPA/BRU + -analytic 12.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sm+3 +3.000CO3-2 = Sm(CO3)3-3 + log_k +14.80 #05VER/VIT2 + -analytic 14.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sm+3 +1.000H2(PO4)- = Sm(H2PO4)+2 + log_k +2.35 #95SPA/BRU + -analytic 23.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sm+3 +1.000H+ +1.000CO3-2 = Sm(HCO3)+2 + log_k +12.43 #95SPA/BRU + -analytic 12.43000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sm+3 -1.000H+ +1.000H2(PO4)- = Sm(HPO4)+ + log_k -1.61 #95SPA/BRU + -analytic -16.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sm+3 -2.000H+ +2.000H2(PO4)- = Sm(HPO4)2- + log_k -5.02 #95SPA/BRU + -analytic -50.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sm+3 +1.000NO3- = Sm(NO3)+2 + log_k +0.90 #95SPA/BRU + -analytic 90.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sm+3 -1.000H+ +1.000H2O = Sm(OH)+2 + log_k -7.90 #95SPA/BRU + delta_h +48.805 #kJ/mol +# Enthalpy of formation: -928.223 kJ/mol + -analytic 65.02690E-2 00.00000E+0 -25.49263E+2 00.00000E+0 00.00000E+0 + ++1.000Sm+3 -2.000H+ +2.000H2O = Sm(OH)2+ + log_k -15.70 #07NEC/ALT2 + delta_h +101.371 #kJ/mol +# Enthalpy of formation: -1161.487 kJ/mol + -analytic 20.59437E-1 00.00000E+0 -52.94976E+2 00.00000E+0 00.00000E+0 + ++1.000Sm+3 -3.000H+ +3.000H2O = Sm(OH)3 + log_k -26.20 #07NEC/ALT2 + delta_h +160.126 #kJ/mol +# Enthalpy of formation: -1388.562 kJ/mol + -analytic 18.52871E-1 00.00000E+0 -83.63963E+2 00.00000E+0 00.00000E+0 + ++1.000Sm+3 -4.000H+ +4.000H2O = Sm(OH)4- + log_k -40.70 #07NEC/ALT2 + delta_h +232.448 #kJ/mol +# Enthalpy of formation: -1602.069 kJ/mol + -analytic 23.14152E-3 00.00000E+0 -12.14160E+3 00.00000E+0 00.00000E+0 + ++1.000Sm+3 -2.000H+ +1.000H2(PO4)- = Sm(PO4) + log_k -7.46 #95SPA/BRU + -analytic -74.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sm+3 -4.000H+ +2.000H2(PO4)- = Sm(PO4)2-3 + log_k -18.72 #95SPA/BRU + -analytic -18.72000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sm+3 +1.000SO4-2 = Sm(SO4)+ + log_k +3.50 #95SPA/BRU + delta_h +16.584 #kJ/mol +# Enthalpy of formation: -1583.954 kJ/mol + -analytic 64.05392E-1 00.00000E+0 -86.62426E+1 00.00000E+0 00.00000E+0 + ++1.000Sm+3 +2.000SO4-2 = Sm(SO4)2- + log_k +5.20 #95SPA/BRU + delta_h +24.918 #kJ/mol +# Enthalpy of formation: -2484.959 kJ/mol + -analytic 95.65446E-1 00.00000E+0 -13.01558E+2 00.00000E+0 00.00000E+0 + ++1.000Sm+3 +1.000Br- = SmBr+2 + log_k +0.23 #96FAL/REA + delta_h -1.358 #kJ/mol +# Enthalpy of formation: -813.965 kJ/mol + -analytic -79.11387E-4 00.00000E+0 70.93328E+0 00.00000E+0 00.00000E+0 + ++1.000Sm+3 +1.000Cl- = SmCl+2 + log_k +0.72 #Original data 01LUO/BYR and 07LUO/BYR + delta_h +3.583 #kJ/mol +# Enthalpy of formation: -854.695 kJ/mol + -analytic 13.47715E-1 00.00000E+0 -18.71531E+1 00.00000E+0 00.00000E+0 + ++1.000Sm+3 +1.000F- = SmF+2 + log_k +4.21 #07LUO/BYR + delta_h +7.970 #kJ/mol 04LUO/MIL +# Enthalpy of formation: -1018.578 kJ/mol + -analytic 56.06284E-1 00.00000E+0 -41.63021E+1 00.00000E+0 00.00000E+0 + ++1.000Sm+3 +2.000F- = SmF2+ + log_k +6.43 #Original data 99SCH/BYR and 04LUO/BYR + delta_h +18.850 #kJ/mol 04LUO/MIL +# Enthalpy of formation: -1343.048 kJ/mol + -analytic 97.32378E-1 00.00000E+0 -98.46041E+1 00.00000E+0 00.00000E+0 + ++1.000Sm+3 -1.000H+ +1.000H4(SiO4) = SmSiO(OH)3+2 + log_k -2.62 #Orginal data 07THA/SIN and 96JEN/CHO1 + -analytic -26.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sn+2 +1.000Cit-3 = Sn(Cit)- + log_k +8.70 #95AKR/BOU + -analytic 87.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sn+2 +2.000Cit-3 = Sn(Cit)2-4 + log_k +11.90 #95AKR/BOU + -analytic 11.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sn+2 +1.000Edta-4 = Sn(Edta)-2 + log_k +24.60 #95AKR/BOU + -analytic 24.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sn+2 +2.000H+ +1.000Edta-4 = Sn(H2Edta) + log_k +24.30 #95AKR/BOU + -analytic 24.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sn+2 +1.000H+ +1.000Edta-4 = Sn(HEdta)- + log_k +23.40 #95AKR/BOU + -analytic 23.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sn+2 +1.000Nta-3 = Sn(Nta)- + log_k +13.40 #95AKR/BOU + -analytic 13.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sn+2 -1.000H+ +1.000H2O = Sn(OH)+ + log_k -3.53 #12GAM/GAJ + delta_h +18.611 #kJ/mol +# Enthalpy of formation: -276.835 kJ/mol + -analytic -26.94928E-2 00.00000E+0 -97.21202E+1 00.00000E+0 00.00000E+0 + ++1.000Sn+2 -2.000H+ +2.000H2O = Sn(OH)2 + log_k -7.68 #12GAM/GAJ + delta_h +40.762 #kJ/mol +# Enthalpy of formation: -540.515 kJ/mol + -analytic -53.88041E-2 00.00000E+0 -21.29148E+2 00.00000E+0 00.00000E+0 + ++1.000Sn+2 -3.000H+ +3.000H2O = Sn(OH)3- + log_k -16.43 + delta_h +89.189 #kJ/mol +# Enthalpy of formation: -777.917 kJ/mol + -analytic -80.47579E-2 00.00000E+0 -46.58666E+2 00.00000E+0 00.00000E+0 + ++1.000Sn+4 -4.000H+ +4.000H2O = Sn(OH)4 + log_k +7.54 + delta_h -49.205 #kJ/mol +# Enthalpy of formation: -1224.035 kJ/mol + -analytic -10.80346E-1 00.00000E+0 25.70156E+2 00.00000E+0 00.00000E+0 + ++1.000Sn+4 -5.000H+ +5.000H2O = Sn(OH)5- + log_k -1.06 + -analytic -10.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sn+4 -6.000H+ +6.000H2O = Sn(OH)6-2 + log_k -11.13 + -analytic -11.13000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sn+2 -1.000H+ +1.000Cl- +1.000H2O = Sn(OH)Cl + log_k -3.10 #52VAN/RHO recalculated in 02HUM/BER + -analytic -31.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sn+2 +1.000Ox-2 = Sn(Ox) + log_k +6.50 #95AKR/BOU + -analytic 65.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sn+2 +2.000Ox-2 = Sn(Ox)2-2 + log_k +12.90 #95AKR/BOU + -analytic 12.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sn+2 +3.000Ox-2 = Sn(Ox)3-4 + log_k +17.10 #95AKR/BOU + -analytic 17.10000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sn+2 +1.000SO4-2 = Sn(SO4) + log_k +3.43 #12GAM/GAJ + delta_h +16.900 #kJ/mol Suggested but not selected in 12GAM/GAJ +# Enthalpy of formation: -902.057 kJ/mol + -analytic 63.90753E-1 00.00000E+0 -88.27485E+1 00.00000E+0 00.00000E+0 + ++3.000Sn+2 -4.000H+ +4.000H2O = Sn3(OH)4+2 + log_k -5.60 #12GAM/GAJ + -analytic -56.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sn+2 +1.000Br- = SnBr+ + log_k +1.33 #12GAM/GAJ + -analytic 13.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sn+2 +2.000Br- = SnBr2 + log_k +1.97 #12GAM/GAJ + -analytic 19.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sn+2 +3.000Br- = SnBr3- + log_k +1.93 #12GAM/GAJ + -analytic 19.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sn+2 +1.000Cl- = SnCl+ + log_k +1.52 #12GAM/GAJ + delta_h +12.700 #kJ/mol 12GAM/GAJ +# Enthalpy of formation: -163.997 kJ/mol + -analytic 37.44944E-1 00.00000E+0 -66.33672E+1 00.00000E+0 00.00000E+0 + ++1.000Sn+2 +2.000Cl- = SnCl2 + log_k +2.17 #12GAM/GAJ + delta_h +19.700 #kJ/mol 12GAM/GAJ +# Enthalpy of formation: -324.077 kJ/mol + -analytic 56.21292E-1 00.00000E+0 -10.29003E+2 00.00000E+0 00.00000E+0 + ++1.000Sn+2 +3.000Cl- = SnCl3- + log_k +2.13 #12GAM/GAJ + -analytic 21.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sn+2 +4.000Cl- = SnCl4-2 + log_k +2.03 #12GAM/GAJ + -analytic 20.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sn+2 +1.000F- = SnF+ + log_k +5.25 #12GAM/GAJ + delta_h -9.580 #kJ/mol +# Enthalpy of formation: -354.546 kJ/mol + -analytic 35.71656E-1 00.00000E+0 50.03983E+1 00.00000E+0 00.00000E+0 + ++1.000Sn+2 +2.000F- = SnF2 + log_k +8.89 #12GAM/GAJ + delta_h -9.969 #kJ/mol +# Enthalpy of formation: -690.285 kJ/mol + -analytic 71.43506E-1 00.00000E+0 52.07171E+1 00.00000E+0 00.00000E+0 + ++1.000Sn+2 +3.000F- = SnF3- + log_k +11.50 #12GAM/GAJ + delta_h -4.479 #kJ/mol +# Enthalpy of formation: -1020.145 kJ/mol + -analytic 10.71531E+0 00.00000E+0 23.39545E+1 00.00000E+0 00.00000E+0 + ++1.000Sn+2 -1.000H+ +1.000H2(PO4)- = SnHPO4 + log_k +2.29 #00CIA/IUL + -analytic 22.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sn+2 +1.000I- = SnI+ + log_k +1.74 #68HAI/JOH1 recalculated + -analytic 17.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sn+2 +2.000I- = SnI2 + log_k +2.69 #68HAI/JOH1 recalculated + -analytic 26.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sn+2 -2.000H+ +1.000H2(PO4)- = SnPO4- + log_k -1.56 #00CIA/IUL + -analytic -15.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000H+ +1.000SO3-2 -1.000H2O = SO2 + log_k +9.03 + delta_h +21.450 #kJ/mol +# Enthalpy of formation: -323.780 kJ/mol 85GOL/PAR + -analytic 12.78788E+0 00.00000E+0 -11.20412E+2 00.00000E+0 00.00000E+0 + ++1.000Sr+2 +1.000Cit-3 = Sr(Cit)- + log_k +4.24 #95AKR/BOU + -analytic 42.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sr+2 -1.000H+ +2.000Cit-3 +1.000H2O = Sr(Cit)2(OH)-5 + log_k -1.78 #95AKR/BOU + -analytic -17.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sr+2 +2.000Cit-3 = Sr(Cit)2-4 + log_k +4.84 #95AKR/BOU + -analytic 48.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sr+2 +1.000CO3-2 = Sr(CO3) + log_k +2.81 #84BUS/PLU + delta_h +21.796 #kJ/mol +# Enthalpy of formation: -1204.335 kJ/mol + -analytic 66.28495E-1 00.00000E+0 -11.38484E+2 00.00000E+0 00.00000E+0 + ++1.000Sr+2 +1.000Edta-4 = Sr(Edta)-2 + log_k +10.30 #95AKR/BOU + -analytic 10.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sr+2 +2.000H+ +1.000Cit-3 = Sr(H2Cit)+ + log_k +12.46 #95AKR/BOU + -analytic 12.46000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sr+2 +1.000H2(PO4)- = Sr(H2PO4)+ + log_k +0.83 #97MAR/SMI; Uncertainty to include available data. + -analytic 83.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sr+2 +1.000H+ +1.000Cit-3 = Sr(HCit) + log_k +9.00 #95AKR/BOU + -analytic 90.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sr+2 +1.000H+ +1.000CO3-2 = Sr(HCO3)+ + log_k +11.51 #84BUS/PLUS + delta_h +10.597 #kJ/mol +# Enthalpy of formation: -1215.533 kJ/mol + -analytic 13.36651E+0 00.00000E+0 -55.35199E+1 00.00000E+0 00.00000E+0 + ++1.000Sr+2 +1.000H+ +1.000Edta-4 = Sr(HEdta)- + log_k +14.70 #95AKR/BOU + -analytic 14.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sr+2 +1.000H+ +1.000Ox-2 = Sr(HOx)+ + log_k +5.80 #95AKR/BOU + -analytic 58.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sr+2 +2.000H+ +2.000Ox-2 = Sr(HOx)2 + log_k +10.80 #95AKR/BOU + -analytic 10.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sr+2 -1.000H+ +1.000H2(PO4)- = Sr(HPO4) + log_k -4.70 #97MAR/SMI; Uncertainty to include available data. + -analytic -47.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sr+2 +1.000IO3- = Sr(IO3)+ + log_k +0.33 #estimation NEA87 01/02/95 + -analytic 33.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sr+2 +2.000IO3- = Sr(IO3)2 + log_k -0.55 #estimation NEA87 01/02/95 + -analytic -55.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sr+2 +1.000NH3 = Sr(NH3)+2 + log_k -0.55 #estimation NEA87 08/02/95 + -analytic -55.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sr+2 +1.000NO3- = Sr(NO3)+ + log_k +0.60 #96FAL/REA + -analytic 60.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sr+2 +2.000NO3- = Sr(NO3)2 + log_k +0.31 #96FAL/REA + -analytic 31.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sr+2 +1.000Nta-3 = Sr(Nta)- + log_k +6.25 #95AKR/BOU + -analytic 62.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sr+2 -1.000H+ +1.000H2O = Sr(OH)+ + log_k -13.29 #76BAE/MES + delta_h +82.608 #kJ/mol +# Enthalpy of formation: -754.122 kJ/mol + -analytic 11.82300E-1 00.00000E+0 -43.14916E+2 00.00000E+0 00.00000E+0 + ++1.000Sr+2 +1.000Ox-2 = Sr(Ox) + log_k +2.54 #95AKR/BOU + -analytic 25.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sr+2 +2.000Ox-2 = Sr(Ox)2-2 + log_k +3.00 #95AKR/BOU + -analytic 30.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sr+2 -2.000H+ +1.000H2(PO4)- = Sr(PO4)- + log_k -13.56 #96BOU1 + -analytic -13.56000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sr+2 +1.000Pyrophos-4 = Sr(Pyrophos)-2 + log_k +5.40 #76SMI/MAR + -analytic 54.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sr+2 +1.000S2O3-2 = Sr(S2O3) + log_k +2.04 #76SMI/MAR + -analytic 20.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sr+2 +1.000SO4-2 = Sr(SO4) + log_k +2.30 #06BLA/IGN + delta_h +7.029 #kJ/mol 06BLA/IGN +# Enthalpy of formation: -1453.211 kJ/mol + -analytic 35.31428E-1 00.00000E+0 -36.71502E+1 00.00000E+0 00.00000E+0 + ++2.000Sr+2 -1.000H+ +1.000Cit-3 +1.000H2O = Sr2(Cit)(OH) + log_k +0.38 #95AKR/BOU + -analytic 38.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000Sr+2 +1.000UO2+2 +3.000CO3-2 = Sr2UO2(CO3)3 + log_k +29.70 #20GRE/GAO + -analytic 29.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sr+2 +1.000B(OH)4- = SrB(OH)4+ + log_k +1.55 #80BAS + -analytic 15.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sr+2 +1.000Cl- = SrCl+ + log_k +0.23 #96BOU1 + delta_h +4.926 #kJ/mol +# Enthalpy of formation: -713.054 kJ/mol + -analytic 10.92998E-1 00.00000E+0 -25.73029E+1 00.00000E+0 00.00000E+0 + ++1.000Sr+2 +1.000F- = SrF+ + log_k +0.30 #96BOU + delta_h +16.740 #kJ/mol 96BOU +# Enthalpy of formation: -869.510 kJ/mol + -analytic 32.32722E-1 00.00000E+0 -87.43911E+1 00.00000E+0 00.00000E+0 + ++1.000Sr+2 +2.000F- = SrF2 + log_k +2.02 #96FAL/REA + -analytic 20.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sr+2 +1.000I- = SrI+ + log_k +0.14 #estimation NEA87 01/02/95 + -analytic 14.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sr+2 +2.000I- = SrI2 + log_k -0.04 #estimation NEA87 01/02/95 + -analytic -40.00000E-3 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Sr+2 +1.000UO2+2 +3.000CO3-2 = SrUO2(CO3)3-2 + log_k +25.90 #20GRE/GAO + -analytic 25.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000TcO(OH)2 +2.000H+ -2.000H2O = Tc2O2(OH)2+2 + log_k +12.99 #20GRE/GAO + -analytic 12.99000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000TcO(OH)2 +2.000H+ +1.000CO3-2 -1.000H2O = TcCO3(OH)2 + log_k +19.25 #99RAR/RAN + -analytic 19.25000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000TcO(OH)2 +1.000H+ +1.000CO3-2 = TcCO3(OH)3- + log_k +10.95 #99RAR/RAN + -analytic 10.95000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000TcO(OH)2 +1.000H+ -1.000H2O +1.000Acetate- = TcO(OH)(Acetate) + log_k +5.55 #11RIC/GRI + -analytic 55.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000TcO(OH)2 +1.000H+ +1.000Nta-3 -1.000H2O = TcO(OH)(Nta)-2 + log_k +13.30 #95AKR/BOU + -analytic 13.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000TcO(OH)2 +1.000H+ +2.000Nta-3 -1.000H2O = TcO(OH)(Nta)2-5 + log_k +11.70 #95AKR/BOU + -analytic 11.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000TcO(OH)2 +1.000Cit-3 = TcO(OH)2Cit-3 + log_k +2.80 #13WAL/KAR + -analytic 28.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000TcO(OH)2 -1.000H+ +1.000H2O = TcO(OH)3- + log_k -10.92 #20GRE/GAO + delta_h +39.030 #kJ/mol 97NGU/LAN +# Enthalpy of formation: -996.043 kJ/mol + -analytic -40.82238E-1 00.00000E+0 -20.38679E+2 00.00000E+0 00.00000E+0 + ++1.000TcO(OH)2 +2.000H+ +1.000Ox-2 -2.000H2O = TcO(Ox) + log_k +9.80 #06XIA/HES + -analytic 98.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000TcO(OH)2 +2.000H+ +2.000Ox-2 -2.000H2O = TcO(Ox)2-2 + log_k +13.66 #06XIA/HES + -analytic 13.66000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +1.000Acetate- = Th(Acetate)+3 + log_k +5.24 #11RIC/GRI + -analytic 52.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +2.000Acetate- = Th(Acetate)2+2 + log_k +9.44 #11RIC/GRI + -analytic 94.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +3.000Acetate- = Th(Acetate)3+ + log_k +12.56 #11RIC/GRI + -analytic 12.56000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +4.000Acetate- = Th(Acetate)4 + log_k +14.38 #11RIC/GRI + -analytic 14.38000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +5.000Acetate- = Th(Acetate)5- + log_k +15.37 #11RIC/GRI + -analytic 15.37000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +1.000Cit-3 = Th(Cit)+ + log_k +14.13 #87RAY/DUF + -analytic 14.13000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +2.000Cit-3 = Th(Cit)2-2 + log_k +24.29 #87RAY/DUF + -analytic 24.29000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +5.000CO3-2 = Th(CO3)5-6 + log_k +31.00 #09RAN/FUG + -analytic 31.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +1.000Edta-4 = Th(Edta) + log_k +26.95 #95AKR/BOU + -analytic 26.95000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +1.000H2(PO4)- = Th(H2PO4)+3 + log_k +5.59 #09RAN/FUG + -analytic 55.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +2.000H2(PO4)- = Th(H2PO4)2+2 + log_k +10.48 #09RAN/FUG + -analytic 10.48000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +1.000H+ +2.000H2(PO4)- = Th(H3PO4)(H2PO4)+3 + log_k +9.70 #09RAN/FUG + -analytic 97.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +1.000H+ +1.000H2(PO4)- = Th(H3PO4)+4 + log_k +4.03 #09RAN/FUG + -analytic 40.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +1.000H+ +1.000Edta-4 = Th(HEdta)+ + log_k +28.70 #95AKR/BOU + -analytic 28.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +1.000H+ +1.000Ox-2 = Th(HOx)+3 + log_k +11.00 #95AKR/BOU + -analytic 11.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +2.000H+ +2.000Ox-2 = Th(HOx)2+2 + log_k +18.13 #95AKR/BOU + -analytic 18.13000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +4.000H+ +4.000Ox-2 = Th(HOx)4 + log_k +24.30 #95AKR/BOU + -analytic 24.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +1.000Malonate-2 = Th(Malonate)+2 + log_k +9.32 #13GRI/CAM + -analytic 93.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +2.000Malonate-2 = Th(Malonate)2 + log_k +16.07 #13GRI/CAM + -analytic 16.07000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +3.000Malonate-2 = Th(Malonate)3-2 + log_k +19.63 #13GRI/CAM + -analytic 19.63000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +1.000NO3- = Th(NO3)+3 + log_k +1.30 #09RAN/FUG + -analytic 13.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +2.000NO3- = Th(NO3)2+2 + log_k +2.30 #09RAN/FUG + -analytic 23.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +1.000Nta-3 = Th(Nta)+ + log_k +19.73 #16BON/AUP + -analytic 19.73000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 -1.000H+ +4.000CO3-2 +1.000H2O = Th(OH)(CO3)4-5 + log_k +21.60 #09RAN/FUG + -analytic 21.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 -1.000H+ +1.000Edta-4 +1.000H2O = Th(OH)(Edta)- + log_k +19.50 #95AKR/BOU + -analytic 19.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 -1.000H+ +1.000H2O = Th(OH)+3 + log_k -2.50 #09RAN/FUG + delta_h +44.200 #kJ/mol 09RAN/FUG +# Enthalpy of formation: -1010.330 kJ/mol + -analytic 52.43508E-1 00.00000E+0 -23.08727E+2 00.00000E+0 00.00000E+0 + ++1.000Th+4 -2.000H+ +1.000CO3-2 +2.000H2O = Th(OH)2(CO3) + log_k +2.50 #09RAN/FUG + -analytic 25.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 -2.000H+ +2.000CO3-2 +2.000H2O = Th(OH)2(CO3)2-2 + log_k +8.80 #09RAN/FUG + -analytic 88.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 -2.000H+ +2.000H2O = Th(OH)2+2 + log_k -6.20 #09RAN/FUG + delta_h +85.700 #kJ/mol 09RAN/FUG +# Enthalpy of formation: -1254.660 kJ/mol + -analytic 88.13996E-1 00.00000E+0 -44.76423E+2 00.00000E+0 00.00000E+0 + ++1.000Th+4 -2.000H+ +1.000Edta-4 +2.000H2O = Th(OH)2Edta-2 + log_k +11.50 #03XIA/FEL + -analytic 11.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 -3.000H+ +1.000CO3-2 +3.000H2O = Th(OH)3(CO3)- + log_k -3.70 #09RAN/FUG + -analytic -37.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 -3.000H+ +2.000HGlu- +3.000H2O = Th(OH)3(HGlu)2- + log_k -4.90 #Analogy with An(IV)-ISA + -analytic -49.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 -3.000H+ +2.000HIsa- +3.000H2O = Th(OH)3(HIsa)2- + log_k -4.90 #09RAI/YUI + -analytic -49.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 -3.000H+ +3.000H2O = Th(OH)3+ + log_k -11.00 #10GRI/RIB + delta_h +125.623 #kJ/mol +# Enthalpy of formation: -1500.566 kJ/mol + -analytic 11.00820E+0 00.00000E+0 -65.61746E+2 00.00000E+0 00.00000E+0 + ++1.000Th+4 -3.000H+ +1.000Edta-4 +3.000H2O = Th(OH)3Edta-3 + log_k -4.00 #03XIA/FEL + -analytic -40.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 -4.000H+ +4.000H2O = Th(OH)4 + log_k -17.40 #09RAN/FUG + delta_h +152.688 #kJ/mol +# Enthalpy of formation: -1759.331 kJ/mol + -analytic 93.49789E-1 00.00000E+0 -79.75450E+2 00.00000E+0 00.00000E+0 + ++1.000Th+4 -4.000H+ +1.000CO3-2 +4.000H2O = Th(OH)4(CO3)-2 + log_k -15.60 #09RAN/FUG + -analytic -15.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 -4.000H+ +1.000HGlu- +4.000H2O = Th(OH)4(HGlu)- + log_k -14.70 #Analogy with An(IV)-ISA + -analytic -14.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 -4.000H+ +2.000HGlu- +4.000H2O = Th(OH)4(HGlu)2-2 + log_k -12.50 #Analogy with An(IV)-ISA + -analytic -12.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 -4.000H+ +1.000HIsa- +4.000H2O = Th(OH)4(HIsa)- + log_k -14.70 #Reevaluated from 09RAI/YUI + -analytic -14.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 -4.000H+ +2.000HIsa- +4.000H2O = Th(OH)4(HIsa)2-2 + log_k -12.50 #Reevaluated from 09RAI/YUI + -analytic -12.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +1.000Ox-2 = Th(Ox)+2 + log_k +9.70 #08SAS/TAK; 09KOB/SAS + -analytic 97.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +2.000Ox-2 = Th(Ox)2 + log_k +16.00 #08SAS/TAK; 09KOB/SAS + -analytic 16.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +3.000Ox-2 = Th(Ox)3-2 + log_k +22.20 #08SAS/TAK; 09KOB/SAS + -analytic 22.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +1.000SO4-2 = Th(SO4)+2 + log_k +6.17 #09RAN/FUG + delta_h +20.920 #kJ/mol 09RAN/FUG +# Enthalpy of formation: -1657.120 kJ/mol + -analytic 98.35027E-1 00.00000E+0 -10.92728E+2 00.00000E+0 00.00000E+0 + ++1.000Th+4 +2.000SO4-2 = Th(SO4)2 + log_k +9.69 #09RAN/FUG + delta_h +40.380 #kJ/mol 09RAN/FUG +# Enthalpy of formation: -2547.000 kJ/mol + -analytic 16.76427E+0 00.00000E+0 -21.09194E+2 00.00000E+0 00.00000E+0 + ++1.000Th+4 +3.000SO4-2 = Th(SO4)3-2 + log_k +10.75 #09RAN/FUG + -analytic 10.75000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +1.000Succinat-2 = Th(Succinat)+2 + log_k +8.49 #13GRI/CAM + -analytic 84.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +2.000Succinat-2 = Th(Succinat)2 + log_k +12.92 #13GRI/CAM + -analytic 12.92000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +3.000Succinat-2 = Th(Succinat)3-2 + log_k +16.62 #13GRI/CAM + -analytic 16.62000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000Th+4 -2.000H+ +2.000H2O = Th2(OH)2+6 + log_k -5.90 #09RAN/FUG + delta_h +58.300 #kJ/mol 09RAN/FUG +# Enthalpy of formation: -2050.760 kJ/mol + -analytic 43.13722E-1 00.00000E+0 -30.45221E+2 00.00000E+0 00.00000E+0 + ++2.000Th+4 -3.000H+ +3.000H2O = Th2(OH)3+5 + log_k -6.80 #09RAN/FUG + -analytic -68.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++4.000Th+4 -12.000H+ +12.000H2O = Th4(OH)12+4 + log_k -26.60 #09RAN/FUG + -analytic -26.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++4.000Th+4 -8.000H+ +8.000H2O = Th4(OH)8+8 + log_k -20.40 #09RAN/FUG + delta_h +243.000 #kJ/mol 09RAN/FUG +# Enthalpy of formation: -5118.440 kJ/mol + -analytic 22.17177E+0 00.00000E+0 -12.69277E+3 00.00000E+0 00.00000E+0 + ++6.000Th+4 -14.000H+ +14.000H2O = Th6(OH)14+10 + log_k -36.80 #09RAN/FUG + -analytic -36.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++6.000Th+4 -15.000H+ +15.000H2O = Th6(OH)15+9 + log_k -36.80 #09RAN/FUG + delta_h +472.800 #kJ/mol 09RAN/FUG +# Enthalpy of formation: -8426.850 kJ/mol + -analytic 46.03100E+0 00.00000E+0 -24.69606E+3 00.00000E+0 00.00000E+0 + ++1.000Th+4 +1.000Cl- = ThCl+3 + log_k +1.70 #09RAN/FUG + -analytic 17.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +1.000F- = ThF+3 + log_k +8.87 #09RAN/FUG + delta_h -0.400 #kJ/mol 09RAN/FUG +# Enthalpy of formation: -1104.450 kJ/mol + -analytic 87.99923E-1 00.00000E+0 20.89346E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +2.000F- = ThF2+2 + log_k +15.63 #09RAN/FUG + delta_h -3.300 #kJ/mol 09RAN/FUG +# Enthalpy of formation: -1442.700 kJ/mol + -analytic 15.05186E+0 00.00000E+0 17.23710E+1 00.00000E+0 00.00000E+0 + ++1.000Th+4 +3.000F- = ThF3+ + log_k +20.67 #09RAN/FUG + -analytic 20.67000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Th+4 +4.000F- = ThF4 + log_k +25.58 #09RAN/FUG + -analytic 25.58000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000U+4 +1.000Acetate- = U(Acetate)+3 + log_k +5.64 #12GRI/GAR2 + -analytic 56.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000U+4 +2.000Acetate- = U(Acetate)2+2 + log_k +9.81 #12GRI/GAR2 + -analytic 98.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000U+4 +4.000CO3-2 = U(CO3)4-4 + log_k +35.12 #03GUI/FAN + -analytic 35.12000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000U+4 +5.000CO3-2 = U(CO3)5-6 + log_k +34.00 #03GUI/FAN + delta_h -20.000 #kJ/mol 03GUI/FAN +# Enthalpy of formation: -3987.350 kJ/mol + -analytic 30.49615E+0 00.00000E+0 10.44673E+2 00.00000E+0 00.00000E+0 + ++1.000U+4 +1.000Edta-4 = U(Edta) + log_k +29.50 #05HUM/AND + -analytic 29.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000U+4 +1.000NO3- = U(NO3)+3 + log_k +1.47 #92GRE/FUG + -analytic 14.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000U+4 +2.000NO3- = U(NO3)2+2 + log_k +2.30 #92GRE/FUG + -analytic 23.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000U+4 +1.000Nta-3 = U(Nta)+ + log_k +20.00 #95AKR/BOU + -analytic 20.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000U+4 -1.000H+ +1.000Edta-4 +1.000H2O = U(OH)(Edta)- + log_k +22.70 #23ROD/COL + -analytic 22.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000U+4 -1.000H+ +1.000H2O = U(OH)+3 + log_k -0.54 #20GRE/GAO + delta_h +46.910 #kJ/mol +# Enthalpy of formation: -830.119 kJ/mol + -analytic 76.78279E-1 00.00000E+0 -24.50280E+2 00.00000E+0 00.00000E+0 + ++1.000U+4 -2.000H+ +2.000CO3-2 +2.000H2O = U(OH)2(CO3)2-2 + log_k +14.36 #98RAI/HES + -analytic 14.36000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000U+4 -2.000H+ +1.000Edta-4 +2.000H2O = U(OH)2(Edta)-2 + log_k +16.68 #23ROD/COL + -analytic 16.68000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000U+4 -2.000H+ +2.000H2O = U(OH)2+2 + log_k -1.90 #20GRE/GAO + delta_h +59.014 #kJ/mol +# Enthalpy of formation: -1103.845 kJ/mol + -analytic 84.38809E-1 00.00000E+0 -30.82516E+2 00.00000E+0 00.00000E+0 + ++1.000U+4 -3.000H+ +1.000Edta-4 +3.000H2O = U(OH)3(Edta)-3 + log_k +7.06 #23ROD/COL + -analytic 70.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000U+4 -3.000H+ +3.000H2O = U(OH)3+ + log_k -5.20 #20GRE/GAO + delta_h +89.407 #kJ/mol +# Enthalpy of formation: -1359.281 kJ/mol + -analytic 10.46343E+0 00.00000E+0 -46.70053E+2 00.00000E+0 00.00000E+0 + ++1.000U+4 -4.000H+ +4.000H2O = U(OH)4 + log_k -10.00 #03GUI/FAN + delta_h +109.870 #kJ/mol +# Enthalpy of formation: -1624.649 kJ/mol + -analytic 92.48398E-1 00.00000E+0 -57.38910E+2 00.00000E+0 00.00000E+0 + ++1.000U+4 -4.000H+ +1.000HGlu- +4.000H2O = U(OH)4(HGlu)- + log_k -7.60 #Analogy with An(IV)-ISA + -analytic -76.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000U+4 -4.000H+ +2.000HGlu- +4.000H2O = U(OH)4(HGlu)2-2 + log_k -5.40 #Analogy with An(IV)-ISA + -analytic -54.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000U+4 -4.000H+ +1.000HIsa- +4.000H2O = U(OH)4(HIsa)- + log_k -7.60 #19KOB/SAS + -analytic -76.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000U+4 -4.000H+ +2.000HIsa- +4.000H2O = U(OH)4(HIsa)2-2 + log_k -5.40 #19KOB/SAS + -analytic -54.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000U+4 +2.000Ox-2 = U(Ox)2 + log_k +18.63 #12GRI/GAR2 + -analytic 18.63000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000U+4 +3.000Ox-2 = U(Ox)3-2 + log_k +24.19 #12GRI/GAR2 + -analytic 24.19000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000U+4 +1.000SO4-2 = U(SO4)+2 + log_k +6.58 #92GRE/FUG + delta_h +8.000 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -1492.540 kJ/mol + -analytic 79.81540E-1 00.00000E+0 -41.78691E+1 00.00000E+0 00.00000E+0 + ++1.000U+4 +2.000SO4-2 = U(SO4)2 + log_k +10.51 #92GRE/FUG + delta_h +32.700 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -2377.180 kJ/mol + -analytic 16.23879E+0 00.00000E+0 -17.08040E+2 00.00000E+0 00.00000E+0 + ++1.000U+4 +1.000Br- = UBr+3 + log_k +1.46 #92GRE/FUG + -analytic 14.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000U+4 +1.000Cl- = UCl+3 + log_k +1.72 #92GRE/FUG + delta_h -19.000 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -777.280 kJ/mol + -analytic -16.08657E-1 00.00000E+0 99.24391E+1 00.00000E+0 00.00000E+0 + ++1.000U+4 +1.000F- = UF+3 + log_k +9.42 #03GUI/FAN + delta_h -5.600 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -932.150 kJ/mol + -analytic 84.38922E-1 00.00000E+0 29.25084E+1 00.00000E+0 00.00000E+0 + ++1.000U+4 +2.000F- = UF2+2 + log_k +16.56 #03GUI/FAN + delta_h -3.500 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -1265.400 kJ/mol + -analytic 15.94683E+0 00.00000E+0 18.28177E+1 00.00000E+0 00.00000E+0 + ++1.000U+4 +3.000F- = UF3+ + log_k +21.89 #03GUI/FAN + delta_h +0.500 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -1596.750 kJ/mol + -analytic 21.97760E+0 00.00000E+0 -26.11682E+0 00.00000E+0 00.00000E+0 + ++1.000U+4 +4.000F- = UF4 + log_k +26.34 #03GUI/FAN + delta_h -8.430 #kJ/mol +# Enthalpy of formation: -1941.028 kJ/mol + -analytic 24.86313E+0 00.00000E+0 44.03296E+1 00.00000E+0 00.00000E+0 + ++1.000U+4 +5.000F- = UF5- + log_k +27.73 #03GUI/FAN + delta_h -11.636 #kJ/mol +# Enthalpy of formation: -2279.584 kJ/mol + -analytic 25.69146E+0 00.00000E+0 60.77906E+1 00.00000E+0 00.00000E+0 + ++1.000U+4 +6.000F- = UF6-2 + log_k +29.80 #03GUI/FAN + -analytic 29.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000U+4 +1.000I- = UI+3 + log_k +1.25 #92GRE/FUG + -analytic 12.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000Acetate- = UO2(Acetate)+ + log_k +3.02 #11RIC/GRI + delta_h -15.894 #kJ/mol +# Enthalpy of formation: -1520.904 kJ/mol + -analytic 23.54907E-2 00.00000E+0 83.02014E+1 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +2.000Acetate- = UO2(Acetate)2 + log_k +5.20 #11RIC/GRI + delta_h -34.940 #kJ/mol +# Enthalpy of formation: -2025.960 kJ/mol + -analytic -92.12252E-2 00.00000E+0 18.25043E+2 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +3.000Acetate- = UO2(Acetate)3- + log_k +7.03 #11RIC/GRI + delta_h -65.460 #kJ/mol +# Enthalpy of formation: -2542.491 kJ/mol + -analytic -44.38100E-1 00.00000E+0 34.19214E+2 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000Cit-3 = UO2(Cit)- + log_k +8.96 #05HUM/AND + -analytic 89.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000CO3-2 = UO2(CO3) + log_k +9.94 #03GUI/FAN + delta_h +5.000 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -1689.230 kJ/mol + -analytic 10.81596E+0 00.00000E+0 -26.11682E+1 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +2.000CO3-2 = UO2(CO3)2-2 + log_k +16.61 #03GUI/FAN + delta_h +18.500 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -2350.960 kJ/mol + -analytic 19.85106E+0 00.00000E+0 -96.63223E+1 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +3.000CO3-2 = UO2(CO3)3-4 + log_k +21.84 #03GUI/FAN + delta_h -39.200 #kJ/mol 03GUI/FAN +# Enthalpy of formation: -3083.890 kJ/mol + -analytic 14.97245E+0 00.00000E+0 20.47559E+2 00.00000E+0 00.00000E+0 + ++1.000UO2+ +3.000CO3-2 = UO2(CO3)3-5 + log_k +6.95 #03GUI/FAN + -analytic 69.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000Edta-4 = UO2(Edta)-2 + log_k +13.70 #05HUM/AND + -analytic 13.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +2.000H+ +1.000AsO4-3 = UO2(H2AsO4)+ + log_k +21.96 #03GUI/FAN + -analytic 21.96000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +4.000H+ +2.000AsO4-3 = UO2(H2AsO4)2 + log_k +41.53 #03GUI/FAN + -analytic 41.53000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000H+ +2.000H2(PO4)- = UO2(H2PO4)(H3PO4)+ + log_k +5.93 #92GRE/FUG + -analytic 59.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000H2(PO4)- = UO2(H2PO4)+ + log_k +3.26 #92GRE/FUG + delta_h -15.340 #kJ/mol +# Enthalpy of formation: -2336.940 kJ/mol + -analytic 57.25474E-2 00.00000E+0 80.12640E+1 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +2.000H2(PO4)- = UO2(H2PO4)2 + log_k +4.92 #92GRE/FUG + delta_h -51.871 #kJ/mol +# Enthalpy of formation: -3676.070 kJ/mol + -analytic -41.67409E-1 00.00000E+0 27.09411E+2 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000H+ +1.000H2(PO4)- = UO2(H3PO4)+2 + log_k +2.90 #92GRE/FUG + -analytic 29.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000H+ +1.000AsO4-3 = UO2(HAsO4) + log_k +18.76 #03GUI/FAN + -analytic 18.76000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000H+ +1.000Cit-3 = UO2(HCit) + log_k +11.36 #05HUM/AND + -analytic 11.36000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000H+ +1.000Edta-4 = UO2(HEdta)- + log_k +19.61 #05HUM/AND + -analytic 19.61000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000HGlu- = UO2(HGlu)+ + log_k +2.59 #09ZHA/HEL + -analytic 25.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000HIsa- = UO2(HIsa)+ + log_k +3.70 #04RAO/GAR + -analytic 37.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +2.000HIsa- = UO2(HIsa)2 + log_k +6.60 #04RAO/GAR + -analytic 66.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +3.000HIsa- = UO2(HIsa)3- + log_k +8.50 #04RAO/GAR + -analytic 85.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000H+ +1.000Nta-3 = UO2(HNta) + log_k +14.50 #06DES/GIA + -analytic 14.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 -1.000H+ +1.000H2(PO4)- = UO2(HPO4) + log_k +0.03 #92GRE/FUG + delta_h +2.783 #kJ/mol +# Enthalpy of formation: -2318.816 kJ/mol + -analytic 51.75607E-2 00.00000E+0 -14.53662E+1 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +2.000H+ +2.000SeO3-2 = UO2(HSeO3)2 + log_k +22.23 #20GRE/GAO + -analytic 22.23000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 -12.000H+ -12.000e- +2.000I- +6.000H2O = UO2(IO3)2 + log_k -219.54 #92GRE/FUG + -analytic -21.95400E+1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000NO3- = UO2(NO3)+ + log_k -0.19 #20GRE/GAO + delta_h +20.900 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1204.950 kJ/mol + -analytic 34.71523E-1 00.00000E+0 -10.91683E+2 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000Nta-3 = UO2(Nta)- + log_k +10.15 #06DES/GIA + -analytic 10.15000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 -1.000H+ +1.000HGlu- +1.000H2O = UO2(OH)(HGlu) + log_k +0.20 #09ZHA/HEL + -analytic 20.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 -1.000H+ +1.000Ox-2 +1.000H2O = UO2(OH)(Ox)- + log_k +0.63 #56GRI/PTI + -analytic 63.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 -1.000H+ +1.000H2O = UO2(OH)+ + log_k -5.25 #03GUI/FAN + delta_h +43.300 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1261.530 kJ/mol + -analytic 23.35834E-1 00.00000E+0 -22.61717E+2 00.00000E+0 00.00000E+0 + ++1.000UO2+2 -2.000H+ +2.000H2O = UO2(OH)2 + log_k -12.15 #03GUI/FAN + delta_h +76.821 #kJ/mol +# Enthalpy of formation: -1513.839 kJ/mol + -analytic 13.08461E-1 00.00000E+0 -40.12640E+2 00.00000E+0 00.00000E+0 + ++1.000UO2+2 -3.000H+ +3.000H2O = UO2(OH)3- + log_k -20.25 #03GUI/FAN + delta_h +113.757 #kJ/mol +# Enthalpy of formation: -1762.732 kJ/mol + -analytic -32.06291E-2 00.00000E+0 -59.41942E+2 00.00000E+0 00.00000E+0 + ++1.000UO2+2 -3.000H+ +2.000HIsa- +3.000H2O = UO2(OH)3(HIsa)2-3 + log_k -14.50 #19KOB/SAS + -analytic -14.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 -4.000H+ +4.000H2O = UO2(OH)4-2 + log_k -32.40 #03GUI/FAN + delta_h +164.152 #kJ/mol +# Enthalpy of formation: -1998.167 kJ/mol + -analytic -36.41804E-1 00.00000E+0 -85.74256E+2 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000Ox-2 = UO2(Ox) + log_k +7.13 #05HUM/AND + delta_h +25.360 #kJ/mol +# Enthalpy of formation: -1824.300 kJ/mol 05HUM/AND + -analytic 11.57288E+0 00.00000E+0 -13.24645E+2 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +2.000Ox-2 = UO2(Ox)2-2 + log_k +11.65 #05HUM/AND + -analytic 11.65000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +3.000Ox-2 = UO2(Ox)3-4 + log_k +13.80 #05HUM/AND + -analytic 13.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000Phthalat-2 = UO2(Phthalat) + log_k +5.56 #11GRI/COL2 + -analytic 55.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 -2.000H+ +1.000H2(PO4)- = UO2(PO4)- + log_k -8.55 #20GRE/GAO + -analytic -85.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000S2O3-2 = UO2(S2O3) + log_k +2.80 #92GRE/FUG + -analytic 28.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000SeO4-2 = UO2(SeO4) + log_k +2.93 #20GRE/GAO + delta_h +20.000 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1602.500 kJ/mol + -analytic 64.33850E-1 00.00000E+0 -10.44673E+2 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +2.000SeO4-2 = UO2(SeO4)2-2 + log_k +4.03 #20GRE/GAO + delta_h +31.000 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2195.000 kJ/mol + -analytic 94.60967E-1 00.00000E+0 -16.19243E+2 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000SO3-2 = UO2(SO3) + log_k +6.60 #92GRE/FUG + -analytic 66.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000SO4-2 = UO2(SO4) + log_k +3.15 #20GRE/GAO + delta_h +19.500 #kJ/mol 03GUI/FAN +# Enthalpy of formation: -1908.840 kJ/mol + -analytic 65.66253E-1 00.00000E+0 -10.18556E+2 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +2.000SO4-2 = UO2(SO4)2-2 + log_k +4.14 #20GRE/GAO + delta_h +35.100 #kJ/mol 03GUI/FAN +# Enthalpy of formation: -2802.580 kJ/mol + -analytic 10.28926E+0 00.00000E+0 -18.33401E+2 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +3.000SO4-2 = UO2(SO4)3-4 + log_k +3.02 #03GUI/FAN + -analytic 30.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000Succinat-2 = UO2(Succinat) + log_k +5.28 #13GRI/CAM + -analytic 52.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000Br- = UO2Br+ + log_k +0.22 #92GRE/FUG + -analytic 22.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000Cl- = UO2Cl+ + log_k +0.17 #92GRE/FUG + delta_h +8.000 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -1178.080 kJ/mol + -analytic 15.71540E-1 00.00000E+0 -41.78691E+1 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +2.000Cl- = UO2Cl2 + log_k -1.10 #92GRE/FUG + delta_h +15.000 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -1338.160 kJ/mol + -analytic 15.27887E-1 00.00000E+0 -78.35046E+1 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000CO3-2 +1.000F- = UO2CO3F- + log_k +13.70 #03GUI/FAN + -analytic 13.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000CO3-2 +2.000F- = UO2CO3F2-2 + log_k +15.57 #03GUI/FAN + -analytic 15.57000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000CO3-2 +3.000F- = UO2CO3F3-3 + log_k +16.38 #03GUI/FAN + -analytic 16.38000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000F- = UO2F+ + log_k +5.16 #03GUI/FAN + delta_h -0.540 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1354.890 kJ/mol + -analytic 50.65396E-1 00.00000E+0 28.20616E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +2.000F- = UO2F2 + log_k +8.83 #03GUI/FAN + delta_h -1.340 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1691.040 kJ/mol + -analytic 85.95242E-1 00.00000E+0 69.99307E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +3.000F- = UO2F3- + log_k +10.90 #03GUI/FAN + delta_h -1.180 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2026.230 kJ/mol + -analytic 10.69327E+0 00.00000E+0 61.63569E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +4.000F- = UO2F4-2 + log_k +11.84 #03GUI/FAN + delta_h -2.120 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2362.520 kJ/mol + -analytic 11.46859E+0 00.00000E+0 11.07353E+1 00.00000E+0 00.00000E+0 + ++1.000UO2+2 +1.000H+ +1.000SeO3-2 = UO2HSeO3+ + log_k +11.63 #20GRE/GAO + -analytic 11.63000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000UO2+2 -6.000H+ -6.000e- +1.000I- +3.000H2O = UO2IO3+ + log_k -109.56 #92GRE/FUG + delta_h +704.370 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -1228.900 kJ/mol + -analytic 13.84033E+0 00.00000E+0 -36.79181E+3 00.00000E+0 00.00000E+0 + ++1.000UO2+2 -1.000H+ +1.000H4(SiO4) = UO2SiO(OH)3+ + log_k -1.88 #20GRE/GAO + delta_h +40.000 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2440.194 kJ/mol + -analytic 51.27699E-1 00.00000E+0 -20.89346E+2 00.00000E+0 00.00000E+0 + ++1.000U+4 +1.000Ox-2 = UOx+2 + log_k +10.67 #12GRI/GAR2 + -analytic 10.67000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000Zn+2 +1.000SeO4-2 = Zn(SeO4) + log_k +2.16 #05OLI/NOL + delta_h +4.600 #kJ/mol 05OLI/NOL +# Enthalpy of formation: -752.290 kJ/mol + -analytic 29.65885E-1 00.00000E+0 -24.02747E+1 00.00000E+0 00.00000E+0 + ++4.000CO3-2 +1.000Zr+4 = Zr(CO3)4-4 + log_k +42.90 #05BRO/CUR + -analytic 42.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000NO3- +1.000Zr+4 = Zr(NO3)2+2 + log_k +2.64 #05BRO/CUR + -analytic 26.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-1.000H+ +1.000Zr+4 +1.000H2O = Zr(OH)+3 + log_k +0.32 #05BRO/CUR + -analytic 32.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-2.000H+ +1.000Zr+4 +2.000H2O = Zr(OH)2+2 + log_k +0.98 #05BRO/CUR + -analytic 98.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-4.000H+ +1.000Zr+4 +4.000H2O = Zr(OH)4 + log_k -2.19 #05BRO/CUR + -analytic -21.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-6.000H+ +1.000Zr+4 +6.000H2O = Zr(OH)6-2 + log_k -29.00 #05BRO/CUR + -analytic -29.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000SO4-2 +1.000Zr+4 = Zr(SO4)2 + log_k +11.54 #05BRO/CUR + delta_h +67.380 #kJ/mol +# Enthalpy of formation: -2359.800 kJ/mol 05BRO/CUR + -analytic 23.34447E+0 00.00000E+0 -35.19503E+2 00.00000E+0 00.00000E+0 + ++3.000SO4-2 +1.000Zr+4 = Zr(SO4)3-2 + log_k +14.30 #05BRO/CUR + -analytic 14.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-4.000H+ +3.000Zr+4 +4.000H2O = Zr3(OH)4+8 + log_k +0.40 #05BRO/CUR + delta_h -1.980 #kJ/mol +# Enthalpy of formation: -2970.800 kJ/mol 05BRO/CUR + -analytic 53.11889E-3 00.00000E+0 10.34226E+1 00.00000E+0 00.00000E+0 + +-15.000H+ +4.000Zr+4 +15.000H2O = Zr4(OH)15+ + log_k +12.58 #05BRO/CUR + -analytic 12.58000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +-16.000H+ +4.000Zr+4 +16.000H2O = Zr4(OH)16 + log_k +8.39 #05BRO/CUR + delta_h +301.120 #kJ/mol +# Enthalpy of formation: -6706.160 kJ/mol 05BRO/CUR + -analytic 61.14396E+0 00.00000E+0 -15.72859E+3 00.00000E+0 00.00000E+0 + ++1.000Cl- +1.000Zr+4 = ZrCl+3 + log_k +1.59 #05BRO/CUR + -analytic 15.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++2.000Cl- +1.000Zr+4 = ZrCl2+2 + log_k +2.17 #05BRO/CUR + -analytic 21.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000F- +1.000Zr+4 = ZrF+3 + log_k +10.12 #05BRO/CUR + delta_h -17.500 #kJ/mol 05BRO/CUR +# Enthalpy of formation: -961.350 kJ/mol + -analytic 70.54132E-1 00.00000E+0 91.40887E+1 00.00000E+0 00.00000E+0 + ++2.000F- +1.000Zr+4 = ZrF2+2 + log_k +18.55 #05BRO/CUR + delta_h -16.800 #kJ/mol 05BRO/CUR +# Enthalpy of formation: -1296.000 kJ/mol + -analytic 15.60677E+0 00.00000E+0 87.75251E+1 00.00000E+0 00.00000E+0 + ++3.000F- +1.000Zr+4 = ZrF3+ + log_k +24.72 #05BRO/CUR + delta_h -11.200 #kJ/mol 05BRO/CUR +# Enthalpy of formation: -1625.750 kJ/mol + -analytic 22.75784E+0 00.00000E+0 58.50167E+1 00.00000E+0 00.00000E+0 + ++4.000F- +1.000Zr+4 = ZrF4 + log_k +30.11 #05BRO/CUR + delta_h -22.000 #kJ/mol 05BRO/CUR +# Enthalpy of formation: -1971.900 kJ/mol + -analytic 26.25577E+0 00.00000E+0 11.49140E+2 00.00000E+0 00.00000E+0 + ++5.000F- +1.000Zr+4 = ZrF5- + log_k +34.60 #05BRO/CUR + -analytic 34.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++6.000F- +1.000Zr+4 = ZrF6-2 + log_k +38.11 #05BRO/CUR + -analytic 38.11000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000NO3- +1.000Zr+4 = ZrNO3+3 + log_k +1.59 #05BRO/CUR + -analytic 15.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + ++1.000SO4-2 +1.000Zr+4 = ZrSO4+2 + log_k +7.04 #05BRO/CUR + delta_h +36.940 #kJ/mol +# Enthalpy of formation: -1480.900 kJ/mol 05BRO/CUR + -analytic 13.51161E+0 00.00000E+0 -19.29511E+2 00.00000E+0 00.00000E+0 PHASES +(HgOH)3PO4(s) +(HgOH)3PO4 = -5.000H+ +1.000H2(PO4)- +3.000H2O +3.000Hg+2 + log_k -3.80 #05POW/BRO + -analytic -38.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +(NH4)4NpO2(CO3)3(cr) +(NH4)4NpO2(CO3)3 = +1.000NpO2+2 +4.000H+ +3.000CO3-2 +4.000NH3 + log_k -64.30 #20GRE/GAO + -analytic -64.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +(PuO2)3(PO4)2:4H2O(am) +(PuO2)3(PO4)2:4H2O = +3.000PuO2+2 -4.000H+ +2.000H2(PO4)- +4.000H2O + log_k -9.85 #20GRE/GAO + -analytic -98.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + (UO2)2(As2O7)(cr) -(UO2)2(As2O7) = 2.000UO2+2 + 2.000H+ + 2.000AsO4-3 - 1.000H2O - log_k -29.010 - delta_h -102.450 #kJ/mol - # Enthalpy of formation: -3426 #kJ/mol #92GRE/FUG - -analytic -4.69584E+1 0E+0 5.35133E+3 0E+0 0E+0 +(UO2)2(As2O7) = +2.000UO2+2 +2.000H+ +2.000AsO4-3 -1.000H2O + log_k -29.01 + delta_h -102.450 #kJ/mol +# Enthalpy of formation: -3426.000 kJ/mol 92GRE/FUG + -analytic -46.95847E+0 00.00000E+0 53.51336E+2 00.00000E+0 00.00000E+0 (UO2)3(AsO4)2(cr) -(UO2)3(AsO4)2 = 3.000UO2+2 + 2.000AsO4-3 - log_k -27.400 - delta_h -143.880 #kJ/mol - # Enthalpy of formation: -4689.4 #kJ/mol #92GRE/FUG - -analytic -5.26067E+1 0E+0 7.51536E+3 0E+0 0E+0 +(UO2)3(AsO4)2 = +3.000UO2+2 +2.000AsO4-3 + log_k -27.40 + delta_h -143.880 #kJ/mol +# Enthalpy of formation: -4689.400 kJ/mol 92GRE/FUG + -analytic -52.60669E+0 00.00000E+0 75.15376E+2 00.00000E+0 00.00000E+0 (UO2)3(PO4)2(cr) -(UO2)3(PO4)2 = 3.000UO2+2 - 4.000H+ + 2.000H2(PO4)- - log_k 2.800 - delta_h -170.900 #kJ/mol - # Enthalpy of formation: -5491.3 #kJ/mol #92GRE/FUG - -analytic -2.71404E+1 0E+0 8.92672E+3 0E+0 0E+0 +(UO2)3(PO4)2 = +3.000UO2+2 -4.000H+ +2.000H2(PO4)- + log_k +2.80 + delta_h -170.900 #kJ/mol +# Enthalpy of formation: -5491.300 kJ/mol 92GRE/FUG + -analytic -27.14039E+0 00.00000E+0 89.26729E+2 00.00000E+0 00.00000E+0 (UO2)3(PO4)2:4H2O(cr) -(UO2)3(PO4)2:4H2O = 3.000UO2+2 - 4.000H+ + 2.000H2(PO4)- + 4.000H2O - log_k -14.150 #92SAN/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.415E+1 0E+0 0E+0 0E+0 0E+0 +(UO2)3(PO4)2:4H2O = +3.000UO2+2 -4.000H+ +2.000H2(PO4)- +4.000H2O + log_k -10.24 #20GRE/GAO + -analytic -10.24000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 (UO2)3(PO4)2:6H2O(s) -(UO2)3(PO4)2:6H2O = 3.000UO2+2 - 4.000H+ + 2.000H2(PO4)- + 6.000H2O - log_k -10.200 - delta_h -48.780 #kJ/mol - # Enthalpy of formation: -7328.4 #kJ/mol #03GUI/FAN - -analytic -1.87459E+1 0E+0 2.54795E+3 0E+0 0E+0 +(UO2)3(PO4)2:6H2O = +3.000UO2+2 -4.000H+ +2.000H2(PO4)- +6.000H2O + log_k -10.20 + delta_h -48.780 #kJ/mol +# Enthalpy of formation: -7328.400 kJ/mol 03GUI/FAN + -analytic -18.74589E+0 00.00000E+0 25.47957E+2 00.00000E+0 00.00000E+0 Acanthite -Ag2S = 2.000Ag+ - 1.000H+ + 1.000HS- - log_k -36.070 - delta_h 224.768 #kJ/mol - # Enthalpy of formation: -29.488 #kJ/mol - -analytic 3.30761E+0 0E+0 -1.17404E+4 0E+0 0E+0 +Ag2S = +2.000Ag+ -1.000H+ +1.000HS- + log_k -36.07 + delta_h +224.768 #kJ/mol +# Enthalpy of formation: -29.488 kJ/mol + -analytic 33.07663E-1 00.00000E+0 -11.74045E+3 00.00000E+0 00.00000E+0 Acmite -NaFeSi2O6 = 1.000Na+ + 1.000Fe+3 - 4.000H+ + 2.000H4(SiO4) - 2.000H2O - log_k 0.920 - delta_h -55.568 #kJ/mol - # Enthalpy of formation: -2584.5 #kJ/mol #95ROB/HEM - -analytic -8.81508E+0 0E+0 2.90251E+3 0E+0 0E+0 +NaFeSi2O6 = +1.000Na+ +1.000Fe+3 -4.000H+ +2.000H4(SiO4) -2.000H2O + log_k +0.89 + delta_h -56.624 #kJ/mol +# Enthalpy of formation: -2584.500 kJ/mol 95ROB/HEM + -analytic -90.30099E-1 00.00000E+0 29.57678E+2 00.00000E+0 00.00000E+0 + -Vm 64.600 Afwillite -Ca3Si2O4(OH)6 = 3.000Ca+2 - 6.000H+ + 2.000H4(SiO4) + 2.000H2O - log_k 49.420 #10BLA/BOU1 - delta_h -269.228 #kJ/mol - # Enthalpy of formation: -4853.82 #kJ/mol #10BLA/BOU1 - -analytic 2.25335E+0 0E+0 1.40627E+4 0E+0 0E+0 +Ca3Si2O4(OH)6 = +3.000Ca+2 -6.000H+ +2.000H4(SiO4) +2.000H2O + log_k +49.42 #10BLA/BOU1 + delta_h -269.228 #kJ/mol +# Enthalpy of formation: -4853.820 kJ/mol 10BLA/BOU1 + -analytic 22.53279E-1 00.00000E+0 14.06276E+3 00.00000E+0 00.00000E+0 + -Vm 129.530 + +Ag(cr) +Ag = +1.000Ag+ +1.000e- + log_k -13.51 + delta_h +105.790 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 95SIL/BID + -analytic 50.23612E-1 00.00000E+0 -55.25797E+2 00.00000E+0 00.00000E+0 Ag(OH)(s) -Ag(OH) = 1.000Ag+ - 1.000H+ + 1.000H2O - log_k 6.300 #76BAE/MES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.3E+0 0E+0 0E+0 0E+0 0E+0 - -Ag(SeCn)(cr) -Ag(SeCn) = 1.000Ag+ + 1.000H+ + 1.000Cn- + 1.000HSe- - 1.000H2O + 0.500O2 - log_k -70.020 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.002E+1 0E+0 0E+0 0E+0 0E+0 - -Ag(s) -Ag = 1.000Ag+ + 0.500H2O - 1.000H+ - 0.250O2 - log_k 7.985 - delta_h -34.092 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #95SIL/BID - -analytic 2.01243E+0 0E+0 1.78072E+3 0E+0 0E+0 +Ag(OH) = +1.000Ag+ -1.000H+ +1.000H2O + log_k +6.30 #76BAE/MES + -analytic 63.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Ag2(CO3)(s) -Ag2(CO3) = 2.000Ag+ + 1.000CO3-2 - log_k -11.050 - delta_h 42.073 #kJ/mol - # Enthalpy of formation: -505.723 #kJ/mol - -analytic -3.67914E+0 0E+0 -2.19762E+3 0E+0 0E+0 +Ag2(CO3) = +2.000Ag+ +1.000CO3-2 + log_k -11.05 + delta_h +42.072 #kJ/mol +# Enthalpy of formation: -505.723 kJ/mol + -analytic -36.79302E-1 00.00000E+0 -21.97574E+2 00.00000E+0 00.00000E+0 Ag2(MoO4)(s) -Ag2(MoO4) = 2.000Ag+ + 1.000MoO4-2 - log_k -11.460 - delta_h 55.354 #kJ/mol - # Enthalpy of formation: -840.774 #kJ/mol - -analytic -1.76241E+0 0E+0 -2.89134E+3 0E+0 0E+0 - -Ag2(SO4)(s) -Ag2(SO4) = 2.000Ag+ + 1.000SO4-2 - log_k -5.010 - delta_h 18.162 #kJ/mol - # Enthalpy of formation: -715.922 #kJ/mol - -analytic -1.82816E+0 0E+0 -9.48666E+2 0E+0 0E+0 +Ag2(MoO4) = +2.000Ag+ +1.000MoO4-2 + log_k -11.46 + delta_h +55.324 #kJ/mol +# Enthalpy of formation: -840.744 kJ/mol + -analytic -17.67651E-1 00.00000E+0 -28.89774E+2 00.00000E+0 00.00000E+0 Ag2(SeO3)(s) -Ag2(SeO3) = 2.000Ag+ + 1.000SeO3-2 - log_k -15.800 #05OLI/NOL - delta_h 67.860 #kJ/mol - # Enthalpy of formation: -363.44 #kJ/mol #05OLI/NOL - -analytic -3.91146E+0 0E+0 -3.54457E+3 0E+0 0E+0 +Ag2(SeO3) = +2.000Ag+ +1.000SeO3-2 + log_k -15.80 #05OLI/NOL + delta_h +67.860 #kJ/mol +# Enthalpy of formation: -363.440 kJ/mol 05OLI/NOL + -analytic -39.11438E-1 00.00000E+0 -35.44575E+2 00.00000E+0 00.00000E+0 Ag2(SeO4)(s) -Ag2(SeO4) = 2.000Ag+ + 1.000SeO4-2 - log_k -7.860 #05OLI/NOL - delta_h 30.590 #kJ/mol - # Enthalpy of formation: -422.51 #kJ/mol #05OLI/NOL - -analytic -2.50087E+0 0E+0 -1.59782E+3 0E+0 0E+0 +Ag2(SeO4) = +2.000Ag+ +1.000SeO4-2 + log_k -7.86 #05OLI/NOL + delta_h +30.590 #kJ/mol +# Enthalpy of formation: -422.510 kJ/mol 05OLI/NOL + -analytic -25.00862E-1 00.00000E+0 -15.97827E+2 00.00000E+0 00.00000E+0 + +Ag2(SO4)(s) +Ag2(SO4) = +2.000Ag+ +1.000SO4-2 + log_k -5.01 + delta_h +18.163 #kJ/mol +# Enthalpy of formation: -715.922 kJ/mol + -analytic -18.27979E-1 00.00000E+0 -94.87196E+1 00.00000E+0 00.00000E+0 Ag2Se(alfa) -Ag2Se = 2.000Ag+ - 1.000H+ + 1.000HSe- - log_k -42.850 - delta_h 266.009 #kJ/mol - # Enthalpy of formation: -40.129 #kJ/mol - -analytic 3.75271E+0 0E+0 -1.38946E+4 0E+0 0E+0 +Ag2Se = +2.000Ag+ -1.000H+ +1.000HSe- + log_k -42.85 + delta_h +266.009 #kJ/mol +# Enthalpy of formation: -40.129 kJ/mol + -analytic 37.52776E-1 00.00000E+0 -13.89462E+3 00.00000E+0 00.00000E+0 Ag3(PO4)(s) -Ag3(PO4) = 3.000Ag+ - 2.000H+ + 1.000H2(PO4)- - log_k 2.010 #03BÖT in 76SMI/MAR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.01E+0 0E+0 0E+0 0E+0 0E+0 +Ag3(PO4) = +3.000Ag+ -2.000H+ +1.000H2(PO4)- + log_k +2.01 #03BÖT in 76SMI/MAR + -analytic 20.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 AgBr(s) -AgBr = 1.000Ag+ + 1.000Br- - log_k -12.290 - delta_h 84.725 #kJ/mol - # Enthalpy of formation: -100.345 #kJ/mol - -analytic 2.55316E+0 0E+0 -4.42549E+3 0E+0 0E+0 +AgBr = +1.000Ag+ +1.000Br- + log_k -12.29 + delta_h +84.726 #kJ/mol +# Enthalpy of formation: -100.345 kJ/mol + -analytic 25.53358E-1 00.00000E+0 -44.25547E+2 00.00000E+0 00.00000E+0 AgCl(cr) -AgCl = 1.000Ag+ + 1.000Cl- - log_k -9.750 - delta_h 65.720 #kJ/mol - # Enthalpy of formation: -127.01 #kJ/mol #92GRE/FUG - -analytic 1.76363E+0 0E+0 -3.43279E+3 0E+0 0E+0 +AgCl = +1.000Ag+ +1.000Cl- + log_k -9.75 + delta_h +65.720 #kJ/mol +# Enthalpy of formation: -127.010 kJ/mol 92GRE/FUG + -analytic 17.63650E-1 00.00000E+0 -34.32795E+2 00.00000E+0 00.00000E+0 AgI(s) -AgI = 1.000Ag+ + 1.000I- - log_k -16.040 - delta_h 110.764 #kJ/mol - # Enthalpy of formation: -61.754 #kJ/mol - -analytic 3.36499E+0 0E+0 -5.7856E+3 0E+0 0E+0 +AgI = +1.000Ag+ +1.000I- + log_k -16.04 + delta_h +110.764 #kJ/mol +# Enthalpy of formation: -61.754 kJ/mol + -analytic 33.65020E-1 00.00000E+0 -57.85607E+2 00.00000E+0 00.00000E+0 + +Al(cr) +Al = +1.000Al+3 +3.000e- + log_k +85.43 + delta_h -538.400 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 95POK/HEL + -analytic -88.93631E-1 00.00000E+0 28.12259E+3 00.00000E+0 00.00000E+0 Al(PO4)(cr) -Al(PO4) = 1.000Al+3 - 2.000H+ + 1.000H2(PO4)- - log_k -2.940 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 (provient de la base 0391 MINEQL- PSY) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -1822.8 #kJ/mol - -analytic -2.94E+0 0E+0 0E+0 0E+0 0E+0 +Al(PO4) = +1.000Al+3 -2.000H+ +1.000H2(PO4)- + log_k -3.62 + delta_h -18.200 #kJ/mol +# Enthalpy of formation: -1822.800 kJ/mol 03-91 MINTEQL-PSI + -analytic -68.08503E-1 00.00000E+0 95.06522E+1 00.00000E+0 00.00000E+0 Al(PO4):2H2O(s) -Al(PO4):2H2O = 1.000Al+3 - 2.000H+ + 1.000H2(PO4)- + 2.000H2O - log_k -2.510 #620BRG91.025 ANDRA 21.10.94 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.51E+0 0E+0 0E+0 0E+0 0E+0 - -Al(s) -Al = 1.000Al+3 + 1.500H2O - 3.000H+ - 0.750O2 - log_k 149.915 - delta_h -958.045 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #95POK/HEL - -analytic -1.79269E+1 0E+0 5.00421E+4 0E+0 0E+0 - -Al2(OH)(PO4)2(s) -Al2(OH)(PO4)2 = 2.000Al+3 - 4.000H+ + 2.000H2(PO4)- + 0.500H2O + 0.250O2 - log_k -37.375 #620BRG91.025 ANDRA 21.10.94 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.7375E+1 0E+0 0E+0 0E+0 0E+0 +Al(PO4):2H2O = +1.000Al+3 -2.000H+ +1.000H2(PO4)- +2.000H2O + log_k -2.51 #620BRG91.025 ANDRA 21.10.94 + -analytic -25.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Alabandite -MnS = 1.000Mn+2 - 1.000H+ + 1.000HS- - log_k 0.900 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9E-1 0E+0 0E+0 0E+0 0E+0 +MnS = +1.000Mn+2 -1.000H+ +1.000HS- + log_k +0.90 #88CHA/NEW + -analytic 90.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Alamosite -PbSiO3 = 1.000Pb+2 - 2.000H+ + 1.000H4(SiO4) - 1.000H2O - log_k 6.170 - delta_h -29.451 #kJ/mol - # Enthalpy of formation: -1144.993 #kJ/mol #98CHA - -analytic 1.01041E+0 0E+0 1.53833E+3 0E+0 0E+0 +PbSiO3 = +1.000Pb+2 -2.000H+ +1.000H4(SiO4) -1.000H2O + log_k +6.17 + delta_h -29.451 #kJ/mol +# Enthalpy of formation: -1144.993 kJ/mol 98CHA + -analytic 10.10406E-1 00.00000E+0 15.38333E+2 00.00000E+0 00.00000E+0 Albite-high -NaAlSi3O8 = 1.000Na+ + 1.000Al+3 - 4.000H+ + 3.000H4(SiO4) - 4.000H2O - log_k 4.140 - delta_h -95.623 #kJ/mol - # Enthalpy of formation: -3923.38 #kJ/mol #99ARN/STE - -analytic -1.26124E+1 0E+0 4.99473E+3 0E+0 0E+0 +NaAlSi3O8 = +1.000Na+ +1.000Al+3 -4.000H+ +3.000H4(SiO4) -4.000H2O + log_k +4.14 + delta_h -95.622 #kJ/mol +# Enthalpy of formation: -3923.380 kJ/mol 99ARN/STE + -analytic -12.61226E+0 00.00000E+0 49.94685E+2 00.00000E+0 00.00000E+0 Albite-low -NaAlSi3O8 = 1.000Na+ + 1.000Al+3 - 4.000H+ + 3.000H4(SiO4) - 4.000H2O - log_k 2.740 - delta_h -82.813 #kJ/mol - # Enthalpy of formation: -3936.19 #kJ/mol #99ARN/STE - -analytic -1.17682E+1 0E+0 4.32562E+3 0E+0 0E+0 - -Am(CO3)(OH)(am) -Am(CO3)(OH) = - 1.000H+ + 1.000Am+3 + 1.000CO3-2 + 1.000H2O - log_k -6.200 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.2E+0 0E+0 0E+0 0E+0 0E+0 - -Am(CO3)(OH)(cr) -Am(CO3)(OH) = - 1.000H+ + 1.000Am+3 + 1.000CO3-2 + 1.000H2O - log_k -11.510 - delta_h -25.260 #kJ/mol - # Enthalpy of formation: -1552.5 #kJ/mol #05ROR/FUG - -analytic -1.59354E+1 0E+0 1.31942E+3 0E+0 0E+0 - -Am(CO3)(OH):0.5H2O(cr) -Am(CO3)(OH):0.5H2O = - 1.000H+ + 1.000Am+3 + 1.000CO3-2 + 1.500H2O - log_k -8.400 #03GUI/FAN - delta_h -37.775 #kJ/mol - # Enthalpy of formation: -1682.9 #kJ/mol #03GUI/FAN - -analytic -1.50179E+1 0E+0 1.97312E+3 0E+0 0E+0 - -Am(CO3)2Na:5H2O(s) -Am(CO3)2Na:5H2O = 1.000Na+ + 1.000Am+3 + 2.000CO3-2 + 5.000H2O - log_k -21.000 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.1E+1 0E+0 0E+0 0E+0 0E+0 - -Am(OH)3(am) -Am(OH)3 = - 3.000H+ + 1.000Am+3 + 3.000H2O - log_k 16.900 #03GUI/FAN, 83RAI/STR, 83EDE/BUC, 85NIT/EDE - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.69E+1 0E+0 0E+0 0E+0 0E+0 - -Am(OH)3(cr) -Am(OH)3 = - 3.000H+ + 1.000Am+3 + 3.000H2O - log_k 15.600 #03GUI/FAN, 82SIL, 88STA/KIM1 - delta_h -120.992 #kJ/mol - # Enthalpy of formation: -1353.2 #kJ/mol - -analytic -5.59686E+0 0E+0 6.31984E+3 0E+0 0E+0 - -Am(PO4):xH2O(am) -Am(PO4) = - 2.000H+ + 1.000Am+3 + 1.000H2(PO4)- - log_k -5.230 #95SIL/BID - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.23E+0 0E+0 0E+0 0E+0 0E+0 +NaAlSi3O8 = +1.000Na+ +1.000Al+3 -4.000H+ +3.000H4(SiO4) -4.000H2O + log_k +2.74 + delta_h -82.812 #kJ/mol +# Enthalpy of formation: -3936.190 kJ/mol 99ARN/STE + -analytic -11.76804E+0 00.00000E+0 43.25572E+2 00.00000E+0 00.00000E+0 + -Vm 100.070 Am(cr) -Am = 1.000Am+3 + 1.500H2O - 3.000H+ - 0.750O2 - log_k 169.375 - delta_h -1036.345 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #95SIL/BID - -analytic -1.21845E+1 0E+0 5.4132E+4 0E+0 0E+0 +Am = +1.000Am+3 +3.000e- + log_k +104.89 + delta_h -616.700 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 95SIL/BID + -analytic -31.51202E-1 00.00000E+0 32.21248E+3 00.00000E+0 00.00000E+0 -Am2(CO3)3(cr) -Am2(CO3)3 = 2.000Am+3 + 3.000CO3-2 - log_k -33.400 #95SIL/BID - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.34E+1 0E+0 0E+0 0E+0 0E+0 +Am(OH)3(am) +Am(OH)3 = -3.000H+ +1.000Am+3 +3.000H2O + log_k +16.90 #03GUI/FAN, 83RAI/STR, 83EDE/BUC, 85NIT/EDE + -analytic 16.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +Am(OH)3(cr) +Am(OH)3 = -3.000H+ +1.000Am+3 +3.000H2O + log_k +15.60 #03GUI/FAN, 82SIL, 88STA/KIM1 + delta_h -120.992 #kJ/mol +# Enthalpy of formation: -1353.198 kJ/mol + -analytic -55.96889E-1 00.00000E+0 63.19852E+2 00.00000E+0 00.00000E+0 + +Am(PO4):0.5H2O(am) +Am(PO4):0.5H2O = -2.000H+ +1.000Am+3 +1.000H2(PO4)- +0.500H2O + log_k -5.23 #95SIL/BID + -analytic -52.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +Am2(CO3)3(s) +Am2(CO3)3 = +2.000Am+3 +3.000CO3-2 + log_k -33.40 #03GUI/FAN + -analytic -33.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Am2O3(cr) -Am2O3 = - 6.000H+ + 2.000Am+3 + 3.000H2O - log_k 53.150 - delta_h -400.490 #kJ/mol - # Enthalpy of formation: -1690.4 #kJ/mol #95SIL/BID - -analytic -1.70127E+1 0E+0 2.0919E+4 0E+0 0E+0 +Am2O3 = -6.000H+ +2.000Am+3 +3.000H2O + log_k +53.12 + delta_h -400.490 #kJ/mol +# Enthalpy of formation: -1690.400 kJ/mol 95SIL/BID + -analytic -17.04284E+0 00.00000E+0 20.91905E+3 00.00000E+0 00.00000E+0 AmBr3(cr) -AmBr3 = 1.000Am+3 + 3.000Br- - log_k 23.930 - delta_h -176.930 #kJ/mol - # Enthalpy of formation: -804 #kJ/mol #03GUI/FAN - -analytic -7.06676E+0 0E+0 9.24168E+3 0E+0 0E+0 +AmBr3 = +1.000Am+3 +3.000Br- + log_k +23.93 + delta_h -176.930 #kJ/mol +# Enthalpy of formation: -804.000 kJ/mol 03GUI/FAN + -analytic -70.66805E-1 00.00000E+0 92.41698E+2 00.00000E+0 00.00000E+0 AmCl3(cr) -AmCl3 = 1.000Am+3 + 3.000Cl- - log_k 15.280 - delta_h -140.140 #kJ/mol - # Enthalpy of formation: -977.8 #kJ/mol #95SIL/BID - -analytic -9.27144E+0 0E+0 7.32001E+3 0E+0 0E+0 +AmCl3 = +1.000Am+3 +3.000Cl- + log_k +15.29 + delta_h -140.140 #kJ/mol +# Enthalpy of formation: -977.800 kJ/mol 95SIL/BID + -analytic -92.61474E-1 00.00000E+0 73.20022E+2 00.00000E+0 00.00000E+0 AmCl6Cs2Na(cr) -AmCl6Cs2Na = 1.000Na+ + 2.000Cs+ + 1.000Am+3 + 6.000Cl- - log_k 12.560 - delta_h -59.720 #kJ/mol - # Enthalpy of formation: -2315.8 #kJ/mol #03GUI/FAN - -analytic 2.09752E+0 0E+0 3.11939E+3 0E+0 0E+0 +AmCl6Cs2Na = +1.000Na+ +2.000Cs+ +1.000Am+3 +6.000Cl- + log_k +12.56 + delta_h -59.720 #kJ/mol +# Enthalpy of formation: -2315.800 kJ/mol 03GUI/FAN + -analytic 20.97505E-1 00.00000E+0 31.19393E+2 00.00000E+0 00.00000E+0 -AmF3(cr) -AmF3 = 1.000Am+3 + 3.000F- - log_k -13.400 - delta_h -28.750 #kJ/mol - # Enthalpy of formation: -1594 #kJ/mol #03GUI/FAN - -analytic -1.84368E+1 0E+0 1.50171E+3 0E+0 0E+0 +AmCO3OH(cr) +Am(CO3)(OH) = -1.000H+ +1.000Am+3 +1.000CO3-2 +1.000H2O + log_k -11.51 + delta_h -25.260 #kJ/mol +# Enthalpy of formation: -1552.500 kJ/mol 05ROR/FUG + -analytic -15.93536E+0 00.00000E+0 13.19422E+2 00.00000E+0 00.00000E+0 -AmI3(cr) -AmI3 = 1.000Am+3 + 3.000I- - log_k 25.300 - delta_h -172.040 #kJ/mol - # Enthalpy of formation: -615 #kJ/mol #03GUI/FAN - -analytic -4.84007E+0 0E+0 8.98626E+3 0E+0 0E+0 +AmCO3OH(s) +Am(CO3)(OH) = -1.000H+ +1.000Am+3 +1.000CO3-2 +1.000H2O + log_k -6.20 #03GUI/FAN + -analytic -62.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 -AmO2(cr) -AmO2 = - 3.000H+ + 1.000Am+3 + 1.500H2O + 0.250O2 - log_k 12.715 - delta_h -116.279 #kJ/mol - # Enthalpy of formation: -932.2 #kJ/mol #95SIL/BID - -analytic -7.65609E+0 0E+0 6.07364E+3 0E+0 0E+0 - -AmO2OH(am) -AmO2OH = - 1.000H+ + 1.000AmO2+ + 1.000H2O - log_k 5.300 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.3E+0 0E+0 0E+0 0E+0 0E+0 - -AmOBr(cr) -AmOBr = - 2.000H+ + 1.000Am+3 + 1.000Br- + 1.000H2O - log_k 15.980 - delta_h -136.940 #kJ/mol - # Enthalpy of formation: -887 #kJ/mol #03GUI/FAN - -analytic -8.01082E+0 0E+0 7.15286E+3 0E+0 0E+0 - -AmOCl(cr) -AmOCl = - 2.000H+ + 1.000Am+3 + 1.000Cl- + 1.000H2O - log_k 12.260 - delta_h -119.810 #kJ/mol - # Enthalpy of formation: -949.8 #kJ/mol #95SIL/BID - -analytic -8.72978E+0 0E+0 6.2581E+3 0E+0 0E+0 +AmCO3OH:0.5H2O(s) +Am(CO3)(OH):0.5H2O = -1.000H+ +1.000Am+3 +1.000CO3-2 +1.500H2O + log_k -8.40 #03GUI/FAN + delta_h -37.775 #kJ/mol +# Enthalpy of formation: -1682.900 kJ/mol 03GUI/FAN + -analytic -15.01790E+0 00.00000E+0 19.73126E+2 00.00000E+0 00.00000E+0 Amesite -Mg4Al4Si2O10(OH)8 = 4.000Mg+2 + 4.000Al+3 - 20.000H+ + 2.000H4(SiO4) + 10.000H2O - log_k 69.420 - delta_h -766.388 #kJ/mol - # Enthalpy of formation: -9035.9 #kJ/mol #05VID/PAR - -analytic -6.48452E+1 0E+0 4.00312E+4 0E+0 0E+0 +Mg4Al4Si2O10(OH)8 = +4.000Mg+2 +4.000Al+3 -20.000H+ +2.000H4(SiO4) +10.000H2O + log_k +69.39 + delta_h -766.388 #kJ/mol +# Enthalpy of formation: -9035.900 kJ/mol 05VID/PAR + -analytic -64.87541E+0 00.00000E+0 40.03123E+3 00.00000E+0 00.00000E+0 + -Vm 205.200 Amesite-Fe -Fe4Al4Si2O10(OH)8 = 4.000Fe+2 + 4.000Al+3 - 20.000H+ + 2.000H4(SiO4) + 10.000H2O - log_k 57.040 - delta_h -686.828 #kJ/mol - # Enthalpy of formation: -7607.46 #kJ/mol #05VID/PAR - -analytic -6.32869E+1 0E+0 3.58755E+4 0E+0 0E+0 +Fe4Al4Si2O10(OH)8 = +4.000Fe+2 +4.000Al+3 -20.000H+ +2.000H4(SiO4) +10.000H2O + log_k +57.10 + delta_h -688.008 #kJ/mol +# Enthalpy of formation: -7607.460 kJ/mol 05VID/PAR + -analytic -63.43383E+0 00.00000E+0 35.93716E+3 00.00000E+0 00.00000E+0 + -Vm 209.000 + +AmF3(cr) +AmF3 = +1.000Am+3 +3.000F- + log_k -13.40 + delta_h -28.750 #kJ/mol +# Enthalpy of formation: -1594.000 kJ/mol 03GUI/FAN + -analytic -18.43678E+0 00.00000E+0 15.01717E+2 00.00000E+0 00.00000E+0 + +AmI3(cr) +AmI3 = +1.000Am+3 +3.000I- + log_k +25.30 + delta_h -172.040 #kJ/mol +# Enthalpy of formation: -615.000 kJ/mol 03GUI/FAN + -analytic -48.40114E-1 00.00000E+0 89.86275E+2 00.00000E+0 00.00000E+0 + +AmO2(cr) +AmO2 = -4.000H+ +1.000Am+3 -1.000e- +2.000H2O + log_k +34.33 + delta_h -256.160 #kJ/mol +# Enthalpy of formation: -932.200 kJ/mol 95SIL/BID + -analytic -10.54731E+0 00.00000E+0 13.38017E+3 00.00000E+0 00.00000E+0 + +AmO2OH(am) +AmO2OH = -1.000H+ +1.000AmO2+ +1.000H2O + log_k +5.30 #03GUI/FAN + -analytic 53.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +AmOBr(cr) +AmOBr = -2.000H+ +1.000Am+3 +1.000Br- +1.000H2O + log_k +15.98 + delta_h -136.940 #kJ/mol +# Enthalpy of formation: -887.000 kJ/mol 03GUI/FAN + -analytic -80.10858E-1 00.00000E+0 71.52874E+2 00.00000E+0 00.00000E+0 + +AmOCl(cr) +AmOCl = -2.000H+ +1.000Am+3 +1.000Cl- +1.000H2O + log_k +12.26 + delta_h -119.810 #kJ/mol +# Enthalpy of formation: -949.800 kJ/mol 95SIL/BID + -analytic -87.29811E-1 00.00000E+0 62.58112E+2 00.00000E+0 00.00000E+0 Analcime -Na0.99Al0.99Si2.01O6:H2O = 0.990Na+ + 0.990Al+3 - 3.960H+ + 2.010H4(SiO4) - 1.040H2O - log_k 6.650 - delta_h -102.689 #kJ/mol - # Enthalpy of formation: -3308 #kJ/mol #04NEU/HOV - -analytic -1.13403E+1 0E+0 5.36381E+3 0E+0 0E+0 +Na0.99Al0.99Si2.01O6:H2O = +0.990Na+ +0.990Al+3 -3.960H+ +2.010H4(SiO4) -1.040H2O + log_k +6.64 + delta_h -102.689 #kJ/mol +# Enthalpy of formation: -3308.000 kJ/mol 04NEU/HOV + -analytic -11.35034E+0 00.00000E+0 53.63820E+2 00.00000E+0 00.00000E+0 + -Vm 97.090 -Anapaite -Ca2Fe(PO4)2:4H2O = 2.000Ca+2 + 1.000Fe+2 - 4.000H+ + 2.000H2(PO4)- + 4.000H2O - log_k 5.020 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.02E+0 0E+0 0E+0 0E+0 0E+0 +Andersonite +Na2CaUO2(CO3)3:6H2O = +1.000Ca+2 +2.000Na+ +1.000UO2+2 +3.000CO3-2 +6.000H2O + log_k -31.80 #19LEE/AMA + -analytic -31.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Anglesite -Pb(SO4) = 1.000Pb+2 + 1.000SO4-2 - log_k -7.850 - delta_h 11.550 #kJ/mol - # Enthalpy of formation: -919.97 #kJ/mol #89COX/WAG - -analytic -5.82653E+0 0E+0 -6.03298E+2 0E+0 0E+0 +Pb(SO4) = +1.000Pb+2 +1.000SO4-2 + log_k -7.85 + delta_h +11.550 #kJ/mol +# Enthalpy of formation: -919.970 kJ/mol 89COX/WAG + -analytic -58.26527E-1 00.00000E+0 -60.32985E+1 00.00000E+0 00.00000E+0 Anhydrite -Ca(SO4) = 1.000Ca+2 + 1.000SO4-2 - log_k -4.440 - delta_h -17.940 #kJ/mol - # Enthalpy of formation: -1434.4 #kJ/mol #95ROB/HEM - -analytic -7.58295E+0 0E+0 9.3707E+2 0E+0 0E+0 +Ca(SO4) = +1.000Ca+2 +1.000SO4-2 + log_k -4.44 + delta_h -17.940 #kJ/mol +# Enthalpy of formation: -1434.400 kJ/mol 95ROB/HEM + -analytic -75.82953E-1 00.00000E+0 93.70715E+1 00.00000E+0 00.00000E+0 + -Vm 46.010 Annite -KFe3Si3AlO10(OH)2 = 1.000K+ + 3.000Fe+2 + 1.000Al+3 - 10.000H+ + 3.000H4(SiO4) - log_k 32.770 - delta_h -313.152 #kJ/mol - # Enthalpy of formation: -5130.97 #kJ/mol #95DAC/BEN - -analytic -2.20918E+1 0E+0 1.6357E+4 0E+0 0E+0 +KFe3Si3AlO10(OH)2 = +1.000K+ +3.000Fe+2 +1.000Al+3 -10.000H+ +3.000H4(SiO4) + log_k +32.82 + delta_h -314.037 #kJ/mol +# Enthalpy of formation: -5130.970 kJ/mol 95DAC/BEN + -analytic -22.19692E+0 00.00000E+0 16.40329E+3 00.00000E+0 00.00000E+0 + -Vm 154.300 Anorthite -CaAl2Si2O8 = 1.000Ca+2 + 2.000Al+3 - 8.000H+ + 2.000H4(SiO4) - log_k 25.310 - delta_h -314.358 #kJ/mol - # Enthalpy of formation: -4227.83 #kJ/mol #99ARN/STE - -analytic -2.97631E+1 0E+0 1.642E+4 0E+0 0E+0 +CaAl2Si2O8 = +1.000Ca+2 +2.000Al+3 -8.000H+ +2.000H4(SiO4) + log_k +25.31 + delta_h -314.358 #kJ/mol +# Enthalpy of formation: -4227.830 kJ/mol 99ARN/STE + -analytic -29.76316E+0 00.00000E+0 16.42006E+3 00.00000E+0 00.00000E+0 Antarcticite -CaCl2:6H2O = 1.000Ca+2 + 2.000Cl- + 6.000H2O - log_k 3.940 - delta_h 13.990 #kJ/mol - # Enthalpy of formation: -2606.13 #kJ/mol #87GAR/PAR - -analytic 6.39094E+0 0E+0 -7.30748E+2 0E+0 0E+0 +CaCl2:6H2O = +1.000Ca+2 +2.000Cl- +6.000H2O + log_k +3.94 + delta_h +13.990 #kJ/mol +# Enthalpy of formation: -2606.130 kJ/mol 87GAR/PAR + -analytic 63.90943E-1 00.00000E+0 -73.07486E+1 00.00000E+0 00.00000E+0 Antigorite -Mg48Si34O85(OH)62 = 48.000Mg+2 - 96.000H+ + 34.000H4(SiO4) + 11.000H2O - log_k 500.160 - delta_h -3822.746 #kJ/mol - # Enthalpy of formation: -71417.98 #kJ/mol #98HOL/POW - -analytic -1.69555E+2 0E+0 1.99676E+5 0E+0 0E+0 +Mg48Si34O85(OH)62 = +48.000Mg+2 -96.000H+ +34.000H4(SiO4) +11.000H2O + log_k +499.89 + delta_h -3822.746 #kJ/mol +# Enthalpy of formation: -71417.980kJ/mol 98HOL/POW + -analytic -16.98264E+1 00.00000E+0 19.96759E+4 00.00000E+0 00.00000E+0 + -Vm 1754.800 + +Antlerite +Cu3SO4(OH)4 = +3.000Cu+2 -4.000H+ +1.000SO4-2 +4.000H2O + log_k +8.91 + delta_h -117.063 #kJ/mol +# Enthalpy of formation: -1740.896 kJ/mol + -analytic -11.59856E+0 00.00000E+0 61.14626E+2 00.00000E+0 00.00000E+0 Aragonite -CaCO3 = 1.000Ca+2 + 1.000CO3-2 - log_k -8.310 - delta_h -10.454 #kJ/mol - # Enthalpy of formation: -1207.776 #kJ/mol #87GAR/PAR - -analytic -1.01415E+1 0E+0 5.4605E+2 0E+0 0E+0 +CaCO3 = +1.000Ca+2 +1.000CO3-2 + log_k -8.31 + delta_h -10.454 #kJ/mol +# Enthalpy of formation: -1207.776 kJ/mol 87GAR/PAR + -analytic -10.14146E+0 00.00000E+0 54.60504E+1 00.00000E+0 00.00000E+0 + -Vm 34.150 Arcanite -K2SO4 = 2.000K+ + 1.000SO4-2 - log_k -1.850 - delta_h 24.080 #kJ/mol - # Enthalpy of formation: -1437.7 #kJ/mol #95ROB/HEM - -analytic 2.36863E+0 0E+0 -1.25778E+3 0E+0 0E+0 +K2SO4 = +2.000K+ +1.000SO4-2 + log_k -1.85 + delta_h +24.080 #kJ/mol +# Enthalpy of formation: -1437.700 kJ/mol 95ROB/HEM + -analytic 23.68635E-1 00.00000E+0 -12.57786E+2 00.00000E+0 00.00000E+0 + -Vm 65.500 Artinite -Mg2(CO3)(OH)2:3H2O = 2.000Mg+2 - 2.000H+ + 1.000CO3-2 + 5.000H2O - log_k 9.810 - delta_h -117.780 #kJ/mol - # Enthalpy of formation: -2920.6 #kJ/mol #73HEM/ROB - -analytic -1.08241E+1 0E+0 6.15207E+3 0E+0 0E+0 +Mg2(CO3)(OH)2:3H2O = +2.000Mg+2 -2.000H+ +1.000CO3-2 +5.000H2O + log_k +9.81 + delta_h -117.780 #kJ/mol +# Enthalpy of formation: -2920.600 kJ/mol 73HEM/ROB + -analytic -10.82417E+0 00.00000E+0 61.52078E+2 00.00000E+0 00.00000E+0 -As(s) -As = 3.000H+ + 1.000AsO4-3 - 1.500H2O - 1.250O2 - log_k 54.885 - delta_h -444.228 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #09RAN/FUG - -analytic -2.29402E+1 0E+0 2.32036E+4 0E+0 0E+0 +As(cr) +As = +8.000H+ +5.000e- +1.000AsO4-3 -4.000H2O + log_k -52.59 + delta_h +255.180 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 09RAN/FUG + -analytic -78.84383E-1 00.00000E+0 -13.32898E+3 00.00000E+0 00.00000E+0 As2O5(s) -As2O5 = 6.000H+ + 2.000AsO4-3 - 3.000H2O - log_k -35.340 - delta_h 10.640 #kJ/mol - # Enthalpy of formation: -929.43 #kJ/mol #65BEE/MOR - -analytic -3.3476E+1 0E+0 -5.55765E+2 0E+0 0E+0 +As2O5 = +6.000H+ +2.000AsO4-3 -3.000H2O + log_k -35.34 + delta_h +10.640 #kJ/mol +# Enthalpy of formation: -929.430 kJ/mol 65BEE/MOR + -analytic -33.47595E+0 00.00000E+0 -55.57659E+1 00.00000E+0 00.00000E+0 -B(OH)3(cr) -B(OH)3 = 1.000H+ + 1.000B(OH)4- - 1.000H2O - log_k -9.310 - delta_h 35.514 #kJ/mol - # Enthalpy of formation: -1094.8 #kJ/mol #01LEM/FUG - -analytic -3.08822E+0 0E+0 -1.85502E+3 0E+0 0E+0 +Azurite +Cu3(CO3)2(OH)2 = +3.000Cu+2 -2.000H+ +2.000CO3-2 +2.000H2O + log_k -16.91 #91BAL/NOR in 07POW/BRO + delta_h -55.087 #kJ/mol +# Enthalpy of formation: -1672.333 kJ/mol + -analytic -26.56083E+0 00.00000E+0 28.77394E+2 00.00000E+0 00.00000E+0 B(cr) -B = 1.000H+ + 1.000B(OH)4- - 2.500H2O - 0.750O2 - log_k 100.415 - delta_h -621.441 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #92GRE/FUG - -analytic -8.45654E+0 0E+0 3.24601E+4 0E+0 0E+0 +B = +4.000H+ +3.000e- +1.000B(OH)4- -4.000H2O + log_k +35.93 + delta_h -201.796 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 92GRE/FUG + -analytic 57.68584E-2 00.00000E+0 10.54054E+3 00.00000E+0 00.00000E+0 + +B(OH)3(cr) +B(OH)3 = +1.000H+ +1.000B(OH)4- -1.000H2O + log_k -9.31 + delta_h +35.514 #kJ/mol +# Enthalpy of formation: -1094.800 kJ/mol 01LEM/FUG + -analytic -30.88214E-1 00.00000E+0 -18.55025E+2 00.00000E+0 00.00000E+0 B2O3(am) -B2O3 = 2.000H+ + 2.000B(OH)4- - 5.000H2O - log_k -10.630 - delta_h -6.711 #kJ/mol - # Enthalpy of formation: -1254.371 #kJ/mol - -analytic -1.18057E+1 0E+0 3.50539E+2 0E+0 0E+0 +B2O3 = +2.000H+ +2.000B(OH)4- -5.000H2O + log_k -10.63 + delta_h -6.712 #kJ/mol +# Enthalpy of formation: -1254.371 kJ/mol + -analytic -11.80589E+0 00.00000E+0 35.05922E+1 00.00000E+0 00.00000E+0 B2O3(cr) -B2O3 = 2.000H+ + 2.000B(OH)4- - 5.000H2O - log_k -12.740 - delta_h 12.418 #kJ/mol - # Enthalpy of formation: -1273.5 #kJ/mol #01LEM/FUG - -analytic -1.05645E+1 0E+0 -6.48636E+2 0E+0 0E+0 - -Ba(OH)2:8H2O(cr) -Ba(OH)2:8H2O = 1.000Ba+2 - 2.000H+ + 10.000H2O - log_k 23.870 - delta_h -52.509 #kJ/mol - # Enthalpy of formation: -3340.591 #kJ/mol - -analytic 1.46708E+1 0E+0 2.74273E+3 0E+0 0E+0 - -Ba(SeO3)(s) -Ba(SeO3) = 1.000Ba+2 + 1.000SeO3-2 - log_k -6.500 #05OLI/NOL - delta_h -5.260 #kJ/mol - # Enthalpy of formation: -1036.7 #kJ/mol #05OLI/NOL - -analytic -7.42151E+0 0E+0 2.74749E+2 0E+0 0E+0 - -Ba(SeO4)(cr) -Ba(SeO4) = 1.000Ba+2 + 1.000SeO4-2 - log_k -7.560 #05OLI/NOL - delta_h 5.700 #kJ/mol - # Enthalpy of formation: -1144 #kJ/mol #05OLI/NOL - -analytic -6.5614E+0 0E+0 -2.97731E+2 0E+0 0E+0 +B2O3 = +2.000H+ +2.000B(OH)4- -5.000H2O + log_k -12.74 + delta_h +12.418 #kJ/mol +# Enthalpy of formation: -1273.500 kJ/mol 01LEM/FUG + -analytic -10.56446E+0 00.00000E+0 -64.86373E+1 00.00000E+0 00.00000E+0 Ba(cr) -Ba = 1.000Ba+2 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 140.690 - delta_h -814.563 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #92GRE/FUG - -analytic -2.0151E+0 0E+0 4.25475E+4 0E+0 0E+0 +Ba = +1.000Ba+2 +2.000e- + log_k +97.70 + delta_h -534.800 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 92GRE/FUG + -analytic 40.07062E-1 00.00000E+0 27.93455E+3 00.00000E+0 00.00000E+0 + +Ba(OH)2:8H2O(cr) +Ba(OH)2:8H2O = +1.000Ba+2 -2.000H+ +10.000H2O + log_k +23.87 + delta_h -52.506 #kJ/mol +# Enthalpy of formation: -3340.591 kJ/mol + -analytic 14.67134E+0 00.00000E+0 27.42579E+2 00.00000E+0 00.00000E+0 + +Ba(SeO3)(s) +Ba(SeO3) = +1.000Ba+2 +1.000SeO3-2 + log_k -6.50 #05OLI/NOL + delta_h -5.260 #kJ/mol +# Enthalpy of formation: -1036.700 kJ/mol 05OLI/NOL + -analytic -74.21512E-1 00.00000E+0 27.47489E+1 00.00000E+0 00.00000E+0 + +Ba(SeO4)(cr) +Ba(SeO4) = +1.000Ba+2 +1.000SeO4-2 + log_k -7.56 #05OLI/NOL + delta_h +5.700 #kJ/mol +# Enthalpy of formation: -1144.000 kJ/mol 05OLI/NOL + -analytic -65.61403E-1 00.00000E+0 -29.77317E+1 00.00000E+0 00.00000E+0 BaCl2(cr) -BaCl2 = 1.000Ba+2 + 2.000Cl- - log_k 2.300 - delta_h -13.760 #kJ/mol - # Enthalpy of formation: -855.2 #kJ/mol #95SIL/BID - -analytic -1.10645E-1 0E+0 7.18734E+2 0E+0 0E+0 +BaCl2 = +1.000Ba+2 +2.000Cl- + log_k +2.30 + delta_h -13.760 #kJ/mol +# Enthalpy of formation: -855.200 kJ/mol 95SIL/BID + -analytic -11.06485E-2 00.00000E+0 71.87349E+1 00.00000E+0 00.00000E+0 BaCl2:2H2O(s) -BaCl2:2H2O = 1.000Ba+2 + 2.000Cl- + 2.000H2O - log_k -0.340 - delta_h 19.418 #kJ/mol - # Enthalpy of formation: -1460.038 #kJ/mol - -analytic 3.06188E+0 0E+0 -1.01427E+3 0E+0 0E+0 +BaCl2:2H2O = +1.000Ba+2 +2.000Cl- +2.000H2O + log_k -0.34 + delta_h +19.420 #kJ/mol +# Enthalpy of formation: -1460.038 kJ/mol + -analytic 30.62238E-1 00.00000E+0 -10.14377E+2 00.00000E+0 00.00000E+0 BaCl2:H2O(s) -BaCl2:H2O = 1.000Ba+2 + 2.000Cl- + 1.000H2O - log_k 0.280 - delta_h 5.746 #kJ/mol - # Enthalpy of formation: -1160.536 #kJ/mol - -analytic 1.28665E+0 0E+0 -3.00134E+2 0E+0 0E+0 +BaCl2:H2O = +1.000Ba+2 +2.000Cl- +1.000H2O + log_k +0.28 + delta_h +5.747 #kJ/mol +# Enthalpy of formation: -1160.536 kJ/mol + -analytic 12.86831E-1 00.00000E+0 -30.01867E+1 00.00000E+0 00.00000E+0 BaF2(cr) -BaF2 = 1.000Ba+2 + 2.000F- - log_k -6.320 - delta_h 1.631 #kJ/mol - # Enthalpy of formation: -1207.131 #kJ/mol - -analytic -6.03426E+0 0E+0 -8.51929E+1 0E+0 0E+0 +BaF2 = +1.000Ba+2 +2.000F- + log_k -6.32 + delta_h +1.644 #kJ/mol +# Enthalpy of formation: -1207.143 kJ/mol + -analytic -60.31984E-1 00.00000E+0 -85.87210E+0 00.00000E+0 00.00000E+0 BaHPO4(s) -BaHPO4 = 1.000Ba+2 - 1.000H+ + 1.000H2(PO4)- - log_k -0.190 #66SPI/MIK in 76SMI/MAR - delta_h -22.800 #kJ/mol - # Enthalpy of formation: -1814.6 #kJ/mol #82WAG/EVA - -analytic -4.18438E+0 0E+0 1.19093E+3 0E+0 0E+0 +BaHPO4 = +1.000Ba+2 -1.000H+ +1.000H2(PO4)- + log_k -0.19 #66SPI/MIK in 76SMI/MAR + delta_h -22.800 #kJ/mol +# Enthalpy of formation: -1814.600 kJ/mol 82WAG/EVA + -analytic -41.84389E-1 00.00000E+0 11.90927E+2 00.00000E+0 00.00000E+0 BaMoO4(s) -BaMoO4 = 1.000Ba+2 + 1.000MoO4-2 - log_k -7.830 - delta_h 13.822 #kJ/mol - # Enthalpy of formation: -1545.622 #kJ/mol - -analytic -5.40849E+0 0E+0 -7.21972E+2 0E+0 0E+0 +BaMoO4 = +1.000Ba+2 +1.000MoO4-2 + log_k -7.83 + delta_h +13.779 #kJ/mol +# Enthalpy of formation: -1545.578 kJ/mol + -analytic -54.16023E-1 00.00000E+0 -71.97273E+1 00.00000E+0 00.00000E+0 BaO(cr) -BaO = 1.000Ba+2 - 2.000H+ + 1.000H2O - log_k 48.070 - delta_h -272.530 #kJ/mol - # Enthalpy of formation: -548.1 #kJ/mol #95SIL/BID - -analytic 3.24864E-1 0E+0 1.42352E+4 0E+0 0E+0 - -BaS(s) -BaS = 1.000Ba+2 - 1.000H+ + 1.000HS- - log_k 15.660 - delta_h -90.248 #kJ/mol - # Enthalpy of formation: -460.852 #kJ/mol - -analytic -1.50748E-1 0E+0 4.71397E+3 0E+0 0E+0 +BaO = +1.000Ba+2 -2.000H+ +1.000H2O + log_k +48.07 + delta_h -272.530 #kJ/mol +# Enthalpy of formation: -548.100 kJ/mol 95SIL/BID + -analytic 32.47935E-2 00.00000E+0 14.23523E+3 00.00000E+0 00.00000E+0 Barite -Ba(SO4) = 1.000Ba+2 + 1.000SO4-2 - log_k -9.970 #85LAN/MEL in 90NOR/PLU - delta_h 26.460 #kJ/mol #85LAN/MEL in 90NOR/PLU - # Enthalpy of formation: -1470.6 #kJ/mol - -analytic -5.33441E+0 0E+0 -1.3821E+3 0E+0 0E+0 +Ba(SO4) = +1.000Ba+2 +1.000SO4-2 + log_k -9.97 #85LAN/MEL in 90NOR/PLU; Uncertainty to include available data. + delta_h +26.460 #kJ/mol 85LAN/MEL in 90NOR/PLU +# Enthalpy of formation: -1470.600 kJ/mol + -analytic -53.34407E-1 00.00000E+0 -13.82102E+2 00.00000E+0 00.00000E+0 + -Vm 52.100 + +BaS(s) +BaS = +1.000Ba+2 -1.000H+ +1.000HS- + log_k +15.66 + delta_h -90.248 #kJ/mol +# Enthalpy of formation: -460.852 kJ/mol + -analytic -15.07709E-2 00.00000E+0 47.13981E+2 00.00000E+0 00.00000E+0 Bassanite -CaSO4:0.5H2O = 1.000Ca+2 + 1.000SO4-2 + 0.500H2O - log_k -3.920 #06BLA/PIA - delta_h -17.358 #kJ/mol - # Enthalpy of formation: -1577.897 #kJ/mol - -analytic -6.96099E+0 0E+0 9.0667E+2 0E+0 0E+0 +CaSO4:0.5H2O = +1.000Ca+2 +1.000SO4-2 +0.500H2O + log_k -3.92 #06BLA/PIA + delta_h -17.358 #kJ/mol +# Enthalpy of formation: -1577.897 kJ/mol + -analytic -69.60991E-1 00.00000E+0 90.66715E+1 00.00000E+0 00.00000E+0 Bassetite -Fe(UO2)2(PO4)2 = 1.000Fe+2 + 2.000UO2+2 - 4.000H+ + 2.000H2(PO4)- - log_k -1.070 #65MUT/HIR - delta_h -36.464 #kJ/mol - # Enthalpy of formation: -8996.928 #kJ/mol - -analytic -7.45821E+0 0E+0 1.90464E+3 0E+0 0E+0 +Fe(UO2)2(PO4)2 = +1.000Fe+2 +2.000UO2+2 -4.000H+ +2.000H2(PO4)- + log_k -1.07 #65MUT/HIR + delta_h -36.645 #kJ/mol +# Enthalpy of formation: -4696.849 kJ/mol + -analytic -74.89928E-1 00.00000E+0 19.14102E+2 00.00000E+0 00.00000E+0 + +Be(cr) +Be = +2.000e- +1.000Be+2 + log_k +66.62 + delta_h -382.800 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic -44.36812E-2 00.00000E+0 19.99504E+3 00.00000E+0 00.00000E+0 + +Be(OH)2(alpha,cr) +Be(OH)2 = -2.000H+ +2.000H2O +1.000Be+2 + log_k +6.90 #20ÇEV/GAO + delta_h -51.812 #kJ/mol +# Enthalpy of formation: -902.647 kJ/mol + -analytic -21.77073E-1 00.00000E+0 27.06329E+2 00.00000E+0 00.00000E+0 + +Be(OH)2(beta,cr) +Be(OH)2 = -2.000H+ +2.000H2O +1.000Be+2 + log_k +5.90 #87BRU/GRE + delta_h -45.603 #kJ/mol +# Enthalpy of formation: -908.856 kJ/mol + -analytic -20.89303E-1 00.00000E+0 23.82011E+2 00.00000E+0 00.00000E+0 + +BeCl2(alpha,cr) +BeCl2 = +2.000Cl- +1.000Be+2 + log_k +34.42 + delta_h -226.030 #kJ/mol +# Enthalpy of formation: -490.930 kJ/mol 98CHA + -analytic -51.78756E-1 00.00000E+0 11.80637E+3 00.00000E+0 00.00000E+0 + +BeCl2(beta,cr) +BeCl2 = +2.000Cl- +1.000Be+2 + log_k +33.85 + delta_h -220.738 #kJ/mol +# Enthalpy of formation: -496.222 kJ/mol 98CHA + -analytic -48.21638E-1 00.00000E+0 11.52995E+3 00.00000E+0 00.00000E+0 Becquerelite(nat) -Ca(UO2)6O4(OH)6:8H2O = 1.000Ca+2 + 6.000UO2+2 - 14.000H+ + 18.000H2O - log_k 29.000 #97CAS/BRU - delta_h -378.310 #kJ/mol - # Enthalpy of formation: -11423.63 #kJ/mol #99CHE/EWI - -analytic -3.7277E+1 0E+0 1.97605E+4 0E+0 0E+0 +Ca(UO2)6O4(OH)6:8H2O = +1.000Ca+2 +6.000UO2+2 -14.000H+ +18.000H2O + log_k +29.00 #97CAS/BRU + delta_h -378.310 #kJ/mol +# Enthalpy of formation: -11423.630kJ/mol 99CHE/EWI + -analytic -37.27707E+0 00.00000E+0 19.76051E+3 00.00000E+0 00.00000E+0 Becquerelite(syn) -Ca(UO2)6O4(OH)6:8H2O = 1.000Ca+2 + 6.000UO2+2 - 14.000H+ + 18.000H2O - log_k 40.500 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.05E+1 0E+0 0E+0 0E+0 0E+0 +Ca(UO2)6O4(OH)6:8H2O = +1.000Ca+2 +6.000UO2+2 -14.000H+ +18.000H2O + log_k +40.50 #03GUI/FAN + -analytic 40.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 -Beidellite-Ca -Ca0.17Al2.34Si3.66O10(OH)2 = 0.170Ca+2 + 2.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k 5.770 - delta_h -207.635 #kJ/mol - # Enthalpy of formation: -5737.91 #kJ/mol #15BLA/VIE - -analytic -3.0606E+1 0E+0 1.08455E+4 0E+0 0E+0 - -Beidellite-K -K0.34Al2.34Si3.66O10(OH)2 = 0.340K+ + 2.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k 4.600 - delta_h -189.102 #kJ/mol - # Enthalpy of formation: -5749.86 #kJ/mol #15BLA/VIE - -analytic -2.85292E+1 0E+0 9.87747E+3 0E+0 0E+0 - -Beidellite-Mg -Mg0.17Al2.34Si3.66O10(OH)2 = 0.170Mg+2 + 2.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k 5.230 - delta_h -208.815 #kJ/mol - # Enthalpy of formation: -5723.81 #kJ/mol #15BLA/VIE - -analytic -3.13528E+1 0E+0 1.09072E+4 0E+0 0E+0 - -Beidellite-Na -Na0.34Al2.34Si3.66O10(OH)2 = 0.340Na+ + 2.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k 5.100 - delta_h -197.720 #kJ/mol - # Enthalpy of formation: -5737.23 #kJ/mol #15BLA/VIE - -analytic -2.9539E+1 0E+0 1.03276E+4 0E+0 0E+0 +BeF2(alfa,cr) +BeF2 = +2.000F- +1.000Be+2 + log_k -6.32 + delta_h -26.746 #kJ/mol +# Enthalpy of formation: -1026.754 kJ/mol 98CHA + -analytic -11.00570E+0 00.00000E+0 13.97041E+2 00.00000E+0 00.00000E+0 Beidellite_SBld-1 -Ca0.185K0.104(Si3.574Al0.426)(Al1.812Mg0.090Fe0.112)O10(OH)2 = 0.185Ca+2 + 0.090Mg+2 + 0.104K+ + 0.112Fe+3 + 2.238Al+3 - 7.704H+ + 3.574H4(SiO4) - 2.296H2O - log_k 7.590 - delta_h -224.486 #kJ/mol - # Enthalpy of formation: -5720.69 #kJ/mol #12GAI/BLA - -analytic -3.17382E+1 0E+0 1.17257E+4 0E+0 0E+0 +Ca0.185K0.104(Si3.574Al0.426)(Al1.812Mg0.090Fe0.112)O10(OH)2 = +0.185Ca+2 +0.090Mg+2 +0.104K+ +0.112Fe+3 +2.238Al+3 -7.704H+ +3.574H4(SiO4) -2.296H2O + log_k +7.58 + delta_h -224.605 #kJ/mol +# Enthalpy of formation: -5720.690 kJ/mol 12GAI/BLA + -analytic -31.76911E+0 00.00000E+0 11.73194E+3 00.00000E+0 00.00000E+0 + -Vm 137.980 Beidellite_SBld-1(4.576H2O) -Ca0.185K0.104Si3.574Al2.238Mg0.090Fe0.112O10(OH)2:4.576H2O = 0.185Ca+2 + 0.090Mg+2 + 0.104K+ + 0.112Fe+3 + 2.238Al+3 - 7.704H+ + 3.574H4(SiO4) + 2.280H2O - log_k 4.290 - delta_h -193.685 #kJ/mol - # Enthalpy of formation: -7059.45 #kJ/mol #12GAI/BLA - -analytic -2.96421E+1 0E+0 1.01169E+4 0E+0 0E+0 +Ca0.185K0.104Si3.574Al2.238Mg0.090Fe0.112O10(OH)2:4.576H2O = +0.185Ca+2 +0.090Mg+2 +0.104K+ +0.112Fe+3 +2.238Al+3 -7.704H+ +3.574H4(SiO4) +2.280H2O + log_k +4.26 + delta_h -193.803 #kJ/mol +# Enthalpy of formation: -7059.450 kJ/mol 12GAI/BLA + -analytic -29.69283E+0 00.00000E+0 10.12304E+3 00.00000E+0 00.00000E+0 + -Vm 220.670 + +Beidellite-Ca +Ca0.17Al2.34Si3.66O10(OH)2 = +0.170Ca+2 +2.340Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O + log_k +5.77 + delta_h -207.635 #kJ/mol +# Enthalpy of formation: -5737.910 kJ/mol 15BLA/VIE + -analytic -30.60609E+0 00.00000E+0 10.84553E+3 00.00000E+0 00.00000E+0 + -Vm 134.100 + +Beidellite-K +K0.34Al2.34Si3.66O10(OH)2 = +0.340K+ +2.340Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O + log_k +4.60 + delta_h -189.102 #kJ/mol +# Enthalpy of formation: -5749.860 kJ/mol 15BLA/VIE + -analytic -28.52925E+0 00.00000E+0 98.77485E+2 00.00000E+0 00.00000E+0 + -Vm 133.220 + +Beidellite-Mg +Mg0.17Al2.34Si3.66O10(OH)2 = +0.170Mg+2 +2.340Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O + log_k +5.23 + delta_h -208.815 #kJ/mol +# Enthalpy of formation: -5723.810 kJ/mol 15BLA/VIE + -analytic -31.35282E+0 00.00000E+0 10.90717E+3 00.00000E+0 00.00000E+0 + -Vm 130.110 + +Beidellite-Na +Na0.34Al2.34Si3.66O10(OH)2 = +0.340Na+ +2.340Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O + log_k +5.10 + delta_h -197.720 #kJ/mol +# Enthalpy of formation: -5737.230 kJ/mol 15BLA/VIE + -analytic -29.53906E+0 00.00000E+0 10.32763E+3 00.00000E+0 00.00000E+0 + -Vm 132.490 + +BeO(cr) +BeO = -2.000H+ +1.000H2O +1.000Be+2 + log_k +6.72 + delta_h -60.276 #kJ/mol +# Enthalpy of formation: -608.354 kJ/mol 98CHA + -analytic -38.39902E-1 00.00000E+0 31.48435E+2 00.00000E+0 00.00000E+0 Berlinite -Al(PO4) = 1.000Al+3 - 2.000H+ + 1.000H2(PO4)- - log_k -0.570 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.7E-1 0E+0 0E+0 0E+0 0E+0 +Al(PO4) = +1.000Al+3 -2.000H+ +1.000H2(PO4)- + log_k -0.57 #96FAL/REA + -analytic -57.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Berndtite -SnS2 = 1.000Sn+4 - 2.000H+ + 2.000HS- - log_k -37.560 - delta_h 87.401 #kJ/mol - # Enthalpy of formation: -151.5 #kJ/mol #12GAM/GAJ - -analytic -2.2248E+1 0E+0 -4.56527E+3 0E+0 0E+0 +SnS2 = +1.000Sn+4 -2.000H+ +2.000HS- + log_k -37.56 + delta_h +87.389 #kJ/mol +# Enthalpy of formation: -151.500 kJ/mol 12GAM/GAJ + -analytic -22.25010E+0 00.00000E+0 -45.64645E+2 00.00000E+0 00.00000E+0 Berthierine(FeII) -(Fe2Al)(SiAl)O5(OH)4 = 2.000Al+3 + 1.000H4(SiO4) + 2.000Fe+2 + 5.000H2O - 10.000H+ - log_k 34.560 - delta_h -376.684 #kJ/mol - # Enthalpy of formation: -3770.46 #kJ/mol #15BLA/VIE - -analytic -3.14321E+1 0E+0 1.96755E+4 0E+0 0E+0 +(Fe2Al)(SiAl)O5(OH)4 = +2.000Fe+2 +2.000Al+3 -10.000H+ +1.000H4(SiO4) +5.000H2O + log_k +34.61 + delta_h -377.274 #kJ/mol +# Enthalpy of formation: -3770.460 kJ/mol 15BLA/VIE + -analytic -31.48557E+0 00.00000E+0 19.70639E+3 00.00000E+0 00.00000E+0 + -Vm 103.860 Berthierine(FeIII) -(Fe2.34Fe0.33Al0.33)(Si1.34Al0.66)O5(OH)4 = 0.330Fe+3 + 2.340Fe+2 + 0.990Al+3 - 8.640H+ + 1.340H4(SiO4) + 3.640H2O - log_k 28.800 - delta_h -300.177 #kJ/mol - # Enthalpy of formation: -3458.03 #kJ/mol #15BLA/VIE - -analytic -2.37887E+1 0E+0 1.56793E+4 0E+0 0E+0 +(Fe2.34Fe0.33Al0.33)(Si1.34Al0.66)O5(OH)4 = +0.330Fe+3 +2.340Fe+2 +0.990Al+3 -8.640H+ +1.340H4(SiO4) +3.640H2O + log_k +28.85 + delta_h -301.216 #kJ/mol +# Enthalpy of formation: -3458.030 kJ/mol 15BLA/VIE + -analytic -23.92078E+0 00.00000E+0 15.73361E+3 00.00000E+0 00.00000E+0 + -Vm 103.270 Berthierine_ISGS -(Si1.332Al0.668)(Al0.976Fe0.182Fe1.44Mg0.157)O5(OH)4 = 0.157Mg+2 + 0.182Fe+3 + 1.644Al+3 + 1.332H4(SiO4) + 1.440Fe+2 + 3.672H2O - 8.672H+ - log_k 27.930 - delta_h -318.385 #kJ/mol - # Enthalpy of formation: -3774.46 #kJ/mol #13BLA/GAI2 - -analytic -2.78486E+1 0E+0 1.66304E+4 0E+0 0E+0 +(Si1.332Al0.668)(Al0.976Fe0.182Fe1.44Mg0.157)O5(OH)4 = +0.157Mg+2 +0.182Fe+3 +1.440Fe+2 +1.644Al+3 -8.672H+ +1.332H4(SiO4) +3.672H2O + log_k +27.94 + delta_h -319.002 #kJ/mol +# Enthalpy of formation: -3774.460 kJ/mol 13BLA/GAI2 + -analytic -27.94675E+0 00.00000E+0 16.66263E+3 00.00000E+0 00.00000E+0 + -Vm 101.160 Berthierine_Lorraine -Fe0.608Fe0.936Mg0.37Al1.052Si1.52O5(OH)4 = 0.370Mg+2 + 0.936Fe+3 + 0.608Fe+2 + 1.052Al+3 - 7.920H+ + 1.520H4(SiO4) + 2.920H2O - log_k 1.030 - delta_h -162.510 #kJ/mol - # Enthalpy of formation: -3732.9 #kJ/mol #08GAI - -analytic -2.74405E+1 0E+0 8.48848E+3 0E+0 0E+0 +Fe0.608Fe0.936Mg0.37Al1.052Si1.52O5(OH)4 = +0.370Mg+2 +0.936Fe+3 +0.608Fe+2 +1.052Al+3 -7.920H+ +1.520H4(SiO4) +2.920H2O + log_k +1.01 + delta_h -163.677 #kJ/mol +# Enthalpy of formation: -3732.900 kJ/mol 08GAI + -analytic -27.66498E+0 00.00000E+0 85.49445E+2 00.00000E+0 00.00000E+0 + -Vm 103.800 + +BeSO4(alfa,cr) +BeSO4 = +1.000SO4-2 +1.000Be+2 + log_k +6.12 + delta_h -91.340 #kJ/mol +# Enthalpy of formation: -1200.800 kJ/mol 98CHA + -analytic -98.82081E-1 00.00000E+0 47.71020E+2 00.00000E+0 00.00000E+0 Bieberite -CoSO4:7H2O = 1.000Co+2 + 1.000SO4-2 + 7.000H2O - log_k -2.350 - delta_h 11.840 #kJ/mol - # Enthalpy of formation: -2979.59 #kJ/mol #74NAU/RYZ - -analytic -2.75724E-1 0E+0 -6.18445E+2 0E+0 0E+0 +CoSO4:7H2O = +1.000Co+2 +1.000SO4-2 +7.000H2O + log_k -2.35 + delta_h +11.840 #kJ/mol +# Enthalpy of formation: -2979.590 kJ/mol 74NAU/RYZ + -analytic -27.57210E-2 00.00000E+0 -61.84463E+1 00.00000E+0 00.00000E+0 Bischofite -MgCl2:6H2O = 1.000Mg+2 + 2.000Cl- + 6.000H2O - log_k 4.460 #84HAR/MOL - delta_h -8.710 #kJ/mol - # Enthalpy of formation: -2507.43 #kJ/mol - -analytic 2.93408E+0 0E+0 4.54954E+2 0E+0 0E+0 +MgCl2:6H2O = +1.000Mg+2 +2.000Cl- +6.000H2O + log_k +4.46 #84HAR/MOL + delta_h -8.710 #kJ/mol +# Enthalpy of formation: -2507.430 kJ/mol 84HAR/MOL + -analytic 29.34074E-1 00.00000E+0 45.49550E+1 00.00000E+0 00.00000E+0 Bloedite -Na2Mg(SO4)2:4H2O = 1.000Mg+2 + 2.000Na+ + 2.000SO4-2 + 4.000H2O - log_k -2.350 #84HAR/MOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.35E+0 0E+0 0E+0 0E+0 0E+0 +Na2Mg(SO4)2:4H2O = +1.000Mg+2 +2.000Na+ +2.000SO4-2 +4.000H2O + log_k -2.35 #84HAR/MOL + -analytic -23.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Boehmite -AlO(OH) = 1.000Al+3 - 3.000H+ + 2.000H2O - log_k 7.620 - delta_h -113.660 #kJ/mol - # Enthalpy of formation: -996.4 #kJ/mol #95ROB/HEM - -analytic -1.22923E+1 0E+0 5.93687E+3 0E+0 0E+0 +AlO(OH) = +1.000Al+3 -3.000H+ +2.000H2O + log_k +7.62 + delta_h -113.660 #kJ/mol +# Enthalpy of formation: -996.400 kJ/mol 95ROB/HEM + -analytic -12.29238E+0 00.00000E+0 59.36875E+2 00.00000E+0 00.00000E+0 + +Br2(l) +Br2 = -2.000e- +2.000Br- + log_k -36.39 + delta_h +242.820 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic 61.50238E-1 00.00000E+0 -12.68337E+3 00.00000E+0 00.00000E+0 + +Brochantite +Cu4SO4(OH)6 = +4.000Cu+2 -6.000H+ +1.000SO4-2 +6.000H2O + log_k +15.54 + delta_h -176.191 #kJ/mol +# Enthalpy of formation: -2188.527 kJ/mol + -analytic -15.32734E+0 00.00000E+0 92.03097E+2 00.00000E+0 00.00000E+0 Brucite -Mg(OH)2 = 1.000Mg+2 - 2.000H+ + 2.000H2O - log_k 17.100 #03ALT/MET - delta_h -114.160 #kJ/mol - # Enthalpy of formation: -924.5 #kJ/mol #95ROB/HEM - -analytic -2.89994E+0 0E+0 5.96298E+3 0E+0 0E+0 +Mg(OH)2 = +1.000Mg+2 -2.000H+ +2.000H2O + log_k +17.10 #03ALT/MET + delta_h -114.160 #kJ/mol +# Enthalpy of formation: -924.500 kJ/mol 95ROB/HEM + -analytic -28.99973E-1 00.00000E+0 59.62992E+2 00.00000E+0 00.00000E+0 + -Vm 24.630 Brushite -Ca(HPO4):2H2O = 1.000Ca+2 - 1.000H+ + 1.000H2(PO4)- + 2.000H2O - log_k 0.600 #84NAN - delta_h -7.375 #kJ/mol - # Enthalpy of formation: -2409.885 #kJ/mol - -analytic -6.92043E-1 0E+0 3.85223E+2 0E+0 0E+0 +Ca(HPO4):2H2O = +1.000Ca+2 -1.000H+ +1.000H2(PO4)- +2.000H2O + log_k +0.60 #84NAN + delta_h -7.375 #kJ/mol +# Enthalpy of formation: -2409.884 kJ/mol + -analytic -69.20445E-2 00.00000E+0 38.52231E+1 00.00000E+0 00.00000E+0 Bunsenite -NiO = 1.000Ni+2 - 2.000H+ + 1.000H2O - log_k 12.480 - delta_h -101.142 #kJ/mol - # Enthalpy of formation: -239.7 #kJ/mol #05GAM/BUG - -analytic -5.23929E+0 0E+0 5.28301E+3 0E+0 0E+0 +NiO = +1.000Ni+2 -2.000H+ +1.000H2O + log_k +12.48 + delta_h -101.142 #kJ/mol +# Enthalpy of formation: -239.700 kJ/mol 05GAM/BUG + -analytic -52.39318E-1 00.00000E+0 52.83015E+2 00.00000E+0 00.00000E+0 Burkeite -Na6(CO3)(SO4)2 = 6.000Na+ + 1.000CO3-2 + 2.000SO4-2 - log_k -0.770 #84HAR/MOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.7E-1 0E+0 0E+0 0E+0 0E+0 +Na6(CO3)(SO4)2 = +6.000Na+ +1.000CO3-2 +2.000SO4-2 + log_k -0.77 #84HAR/MOL + -analytic -77.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 C(cr) -C = 2.000H+ + 1.000CO3-2 - 1.000H2O - 1.000O2 - log_k 53.830 - delta_h -377.266 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #89COX/WAG - -analytic -1.22641E+1 0E+0 1.97059E+4 0E+0 0E+0 +C = +6.000H+ +4.000e- +1.000CO3-2 -3.000H2O + log_k -32.15 + delta_h +182.260 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic -21.94186E-2 00.00000E+0 -95.20103E+2 00.00000E+0 00.00000E+0 C2SH(alpha) -Ca2(HSiO4)(OH) = 2.000Ca+2 - 4.000H+ + 1.000H4(SiO4) + 1.000H2O - log_k 35.540 - delta_h -198.104 #kJ/mol - # Enthalpy of formation: -2634.92 #kJ/mol #10BLA/BOU1 - -analytic 8.3372E-1 0E+0 1.03477E+4 0E+0 0E+0 +Ca2(HSiO4)(OH) = +2.000Ca+2 -4.000H+ +1.000H4(SiO4) +1.000H2O + log_k +35.54 + delta_h -198.104 #kJ/mol +# Enthalpy of formation: -2634.920 kJ/mol 10BLA/BOU1 + -analytic 83.36690E-2 00.00000E+0 10.34769E+3 00.00000E+0 00.00000E+0 + -Vm 71.120 C3AH6 -Ca3Al2(OH)12 = 3.000Ca+2 + 2.000Al+3 - 12.000H+ + 12.000H2O - log_k 80.320 #10BLA/BOU2 - delta_h -584.260 #kJ/mol - # Enthalpy of formation: -5551.5 #kJ/mol #99SCH/NAV - -analytic -2.20378E+1 0E+0 3.0518E+4 0E+0 0E+0 +Ca3Al2(OH)12 = +3.000Ca+2 +2.000Al+3 -12.000H+ +12.000H2O + log_k +80.32 #10BLA/BOU2 + delta_h -584.260 #kJ/mol +# Enthalpy of formation: -5551.500 kJ/mol 99SCH/NAV + -analytic -22.03796E+0 00.00000E+0 30.51803E+3 00.00000E+0 00.00000E+0 + -Vm 149.520 C3FH6 -Ca3Fe2(OH)12 = 3.000Ca+2 + 2.000Fe+3 - 12.000H+ + 12.000H2O - log_k 72.390 - delta_h -509.370 #kJ/mol - # Enthalpy of formation: -4647.59 #kJ/mol #10BLA/BOU2 - -analytic -1.68477E+1 0E+0 2.66062E+4 0E+0 0E+0 +Ca3Fe2(OH)12 = +3.000Ca+2 +2.000Fe+3 -12.000H+ +12.000H2O + log_k +72.33 + delta_h -511.482 #kJ/mol +# Enthalpy of formation: -4647.590 kJ/mol 10BLA/BOU2 + -analytic -17.27780E+0 00.00000E+0 26.71657E+3 00.00000E+0 00.00000E+0 + -Vm 154.500 C4AH13 -Ca4Al2(OH)14:6H2O = 4.000Ca+2 + 2.000Al+3 - 14.000H+ + 20.000H2O - log_k 103.650 #10BLA/BOU2 - delta_h -647.400 #kJ/mol - # Enthalpy of formation: -8318 #kJ/mol #76HOU/STE - -analytic -9.76944E+0 0E+0 3.3816E+4 0E+0 0E+0 +Ca4Al2(OH)14:6H2O = +4.000Ca+2 +2.000Al+3 -14.000H+ +20.000H2O + log_k +103.65 #10BLA/BOU2 + delta_h -647.400 #kJ/mol +# Enthalpy of formation: -8318.000 kJ/mol 76HOU/STE + -analytic -97.69611E-1 00.00000E+0 33.81606E+3 00.00000E+0 00.00000E+0 + -Vm 269.200 C4FH13 -Ca4Fe2(OH)14:6H2O = 4.000Ca+2 + 2.000Fe+3 - 14.000H+ + 20.000H2O - log_k 95.160 - delta_h -569.200 #kJ/mol - # Enthalpy of formation: -7417.4 #kJ/mol #10BLA/BOU2 - -analytic -4.55941E+0 0E+0 2.97313E+4 0E+0 0E+0 - -CSH0.8 -Ca0.8SiO2.8:1.54H2O = 0.800Ca+2 - 1.600H+ + 1.000H4(SiO4) + 0.340H2O - log_k 11.050 #10BLA/BOU1 - delta_h -47.646 #kJ/mol - # Enthalpy of formation: -1945.13 #kJ/mol #10BLA/BOU1 - -analytic 2.70279E+0 0E+0 2.48872E+3 0E+0 0E+0 - -CSH1.2 -Ca1.2SiO3.2:2.06H2O = 1.200Ca+2 - 2.400H+ + 1.000H4(SiO4) + 1.260H2O - log_k 19.300 #10BLA/BOU1 - delta_h -88.600 #kJ/mol - # Enthalpy of formation: -2384.34 #kJ/mol #10BLA/BOU1 - -analytic 3.77797E+0 0E+0 4.62789E+3 0E+0 0E+0 - -CSH1.6 -Ca1.6SiO3.6:2.58H2O = 1.600Ca+2 - 3.200H+ + 1.000H4(SiO4) + 2.180H2O - log_k 28.000 #10BLA/BOU1 - delta_h -133.313 #kJ/mol - # Enthalpy of formation: -2819.79 #kJ/mol #10BLA/BOU1 - -analytic 4.6446E+0 0E+0 6.96341E+3 0E+0 0E+0 +Ca4Fe2(OH)14:6H2O = +4.000Ca+2 +2.000Fe+3 -14.000H+ +20.000H2O + log_k +95.08 + delta_h -571.312 #kJ/mol +# Enthalpy of formation: -7417.400 kJ/mol 10BLA/BOU2 + -analytic -50.09566E-1 00.00000E+0 29.84170E+3 00.00000E+0 00.00000E+0 + -Vm 274.400 Ca(Adipate)(s) -Ca(Adipate) = 1.000Ca+2 + 1.000Adipate-2 - log_k -3.300 #12GRI/GAR2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.3E+0 0E+0 0E+0 0E+0 0E+0 +Ca(Adipate) = +1.000Ca+2 +1.000Adipate-2 + log_k -3.30 #12GRI/GAR2 + -analytic -33.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +Ca(cr) +Ca = +1.000Ca+2 +2.000e- + log_k +96.85 + delta_h -543.000 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic 17.20484E-1 00.00000E+0 28.36287E+3 00.00000E+0 00.00000E+0 Ca(HGlu)2(s) -Ca(HGlu)2 = 1.000Ca+2 + 2.000HGlu- - log_k -4.190 #99VAN/GLA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.19E+0 0E+0 0E+0 0E+0 0E+0 +Ca(HGlu)2 = +1.000Ca+2 +2.000HGlu- + log_k -4.19 #99VAN/GLA + -analytic -41.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Ca(HIsa)2(cr) -Ca(HIsa)2 = 1.000Ca+2 + 2.000HIsa- - log_k -6.400 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.4E+0 0E+0 0E+0 0E+0 0E+0 +Ca(HIsa)2 = +1.000Ca+2 +2.000HIsa- + log_k -6.40 #05HUM/AND + -analytic -64.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Ca(HPO4)(s) -Ca(HPO4) = 1.000Ca+2 - 1.000H+ + 1.000H2(PO4)- - log_k 0.300 #84NAN - delta_h -24.098 #kJ/mol - # Enthalpy of formation: -1821.502 #kJ/mol - -analytic -3.92178E+0 0E+0 1.25872E+3 0E+0 0E+0 +Ca(HPO4) = +1.000Ca+2 -1.000H+ +1.000H2(PO4)- + log_k +0.30 #84NAN + delta_h -24.098 #kJ/mol +# Enthalpy of formation: -1821.502 kJ/mol + -analytic -39.21788E-1 00.00000E+0 12.58726E+2 00.00000E+0 00.00000E+0 Ca(NO3)2(s) -Ca(NO3)2 = 1.000Ca+2 + 2.000NO3- - log_k 5.890 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.89E+0 0E+0 0E+0 0E+0 0E+0 +Ca(NO3)2 = +1.000Ca+2 +2.000NO3- + log_k +5.89 #96FAL/REA + -analytic 58.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Ca(Ox):2H2O(s) -Ca(Ox):2H2O = 1.000Ca+2 + 1.000Ox-2 + 2.000H2O - log_k -8.300 #05HUM/AND - delta_h 25.200 #kJ/mol - # Enthalpy of formation: -1970.52 #kJ/mol - -analytic -3.88516E+0 0E+0 -1.31629E+3 0E+0 0E+0 +Ca(Ox):2H2O = +1.000Ca+2 +1.000Ox-2 +2.000H2O + log_k -8.30 #05HUM/AND + delta_h +25.200 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1970.520 kJ/mol + -analytic -38.85150E-1 00.00000E+0 -13.16288E+2 00.00000E+0 00.00000E+0 Ca(Ox):3H2O(s) -Ca(Ox):3H2O = 1.000Ca+2 + 1.000Ox-2 + 3.000H2O - log_k -8.190 #05HUM/AND - delta_h 29.700 #kJ/mol - # Enthalpy of formation: -2260.85 #kJ/mol - -analytic -2.98679E+0 0E+0 -1.55134E+3 0E+0 0E+0 +Ca(Ox):3H2O = +1.000Ca+2 +1.000Ox-2 +3.000H2O + log_k -8.19 #05HUM/AND + delta_h +29.700 #kJ/mol 05HUM/AND +# Enthalpy of formation: -2260.850 kJ/mol + -analytic -29.86783E-1 00.00000E+0 -15.51339E+2 00.00000E+0 00.00000E+0 Ca(Ox):H2O(s) -Ca(Ox):H2O = 1.000Ca+2 + 1.000Ox-2 + 1.000H2O - log_k -8.730 #05HUM/AND - delta_h 21.500 #kJ/mol - # Enthalpy of formation: -1680.99 #kJ/mol - -analytic -4.96337E+0 0E+0 -1.12302E+3 0E+0 0E+0 - -Ca(SO3)(s) -Ca(SO3) = 1.000Ca+2 + 1.000SO3-2 - log_k -6.500 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 (provient de la base 0391 MINEQL- PSY) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.5E+0 0E+0 0E+0 0E+0 0E+0 +Ca(Ox):H2O = +1.000Ca+2 +1.000Ox-2 +1.000H2O + log_k -8.73 #05HUM/AND + delta_h +21.500 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1680.990 kJ/mol + -analytic -49.63362E-1 00.00000E+0 -11.23023E+2 00.00000E+0 00.00000E+0 Ca(SeO3):H2O(s) -Ca(SeO3):H2O = 1.000Ca+2 + 1.000SeO3-2 + 1.000H2O - log_k -6.400 #05OLI/NOL - delta_h -11.190 #kJ/mol - # Enthalpy of formation: -1324.8 #kJ/mol #05OLI/NOL - -analytic -8.3604E+0 0E+0 5.84494E+2 0E+0 0E+0 +Ca(SeO3):H2O = +1.000Ca+2 +1.000SeO3-2 +1.000H2O + log_k -6.40 #05OLI/NOL + delta_h -11.190 #kJ/mol +# Enthalpy of formation: -1324.800 kJ/mol 05OLI/NOL + -analytic -83.60404E-1 00.00000E+0 58.44944E+1 00.00000E+0 00.00000E+0 Ca(SeO4):2H2O(s) -Ca(SeO4):2H2O = 1.000Ca+2 + 1.000SeO4-2 + 2.000H2O - log_k -2.680 #05OLI/NOL - delta_h -9.160 #kJ/mol - # Enthalpy of formation: -1709 #kJ/mol #05OLI/NOL - -analytic -4.28476E+0 0E+0 4.78459E+2 0E+0 0E+0 +Ca(SeO4):2H2O = +1.000Ca+2 +1.000SeO4-2 +2.000H2O + log_k -2.68 #05OLI/NOL + delta_h -9.160 #kJ/mol +# Enthalpy of formation: -1709.000 kJ/mol 05OLI/NOL + -analytic -42.84763E-1 00.00000E+0 47.84601E+1 00.00000E+0 00.00000E+0 -Ca(s) -Ca = 1.000Ca+2 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 139.840 - delta_h -822.763 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #89COX/WAG - -analytic -4.30168E+0 0E+0 4.29758E+4 0E+0 0E+0 +Ca(SO3)(s) +Ca(SO3) = +1.000Ca+2 +1.000SO3-2 + log_k -6.50 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 (provient de la base 0391 MINEQL- PSY) + -analytic -65.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +Ca0.5NpO2(OH)2:1.3H2O(cr) +Ca0.5NpO2(OH)2:1.3H2O = +0.500Ca+2 +1.000NpO2+ -2.000H+ +3.300H2O + log_k +12.30 #20GRE/GAO + -analytic 12.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Ca2(Pyrophos)(s) -Ca2(Pyrophos) = 2.000Ca+2 + 1.000Pyrophos-4 - log_k -15.500 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.55E+1 0E+0 0E+0 0E+0 0E+0 +Ca2(Pyrophos) = +2.000Ca+2 +1.000Pyrophos-4 + log_k -15.50 #88CHA/NEW + -analytic -15.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Ca2Cl2(OH)2:H2O(s) -Ca2Cl2(OH)2:H2O = 2.000Ca+2 - 2.000H+ + 2.000Cl- + 3.000H2O - log_k 26.530 #84HAR/MOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.653E+1 0E+0 0E+0 0E+0 0E+0 +Ca2Cl2(OH)2:H2O = +2.000Ca+2 -2.000H+ +2.000Cl- +3.000H2O + log_k +26.53 #84HAR/MOL + -analytic 26.53000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Ca2Fe2O5(s) -Ca2Fe2O5 = 2.000Ca+2 + 2.000Fe+3 - 10.000H+ + 5.000H2O - log_k 56.760 - delta_h -473.870 #kJ/mol - # Enthalpy of formation: -2138.3 #kJ/mol - -analytic -2.62583E+1 0E+0 2.47519E+4 0E+0 0E+0 +Ca2Fe2O5 = +2.000Ca+2 +2.000Fe+3 -10.000H+ +5.000H2O + log_k +56.74 + delta_h -476.962 #kJ/mol +# Enthalpy of formation: -2138.300 kJ/mol 95ROB/HEM + -analytic -26.82016E+0 00.00000E+0 24.91346E+3 00.00000E+0 00.00000E+0 Ca2ZrSi3O12(cr) -Ca2ZrSi3O12 = 2.000Ca+2 - 8.000H+ + 3.000H4(SiO4) + 1.000Zr+4 - 2.000H2O + 1.000O2 - log_k -154.250 - delta_h 764.444 #kJ/mol - # Enthalpy of formation: -6283 #kJ/mol #05BRO/CUR - -analytic -2.03254E+1 0E+0 -3.99296E+4 0E+0 0E+0 +Ca2ZrSi3O12 = +2.000Ca+2 -12.000H+ -4.000e- +3.000H4(SiO4) +1.000Zr+4 + log_k -68.27 + delta_h +204.918 #kJ/mol +# Enthalpy of formation: -6283.000 kJ/mol 05BRO/CUR + -analytic -32.36991E+0 00.00000E+0 -10.70361E+3 00.00000E+0 00.00000E+0 Ca3(AsO4)2:xH2O -Ca3(AsO4)2 = 3.000Ca+2 + 2.000AsO4-3 - log_k -21.000 #11GRI/COL4 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.1E+1 0E+0 0E+0 0E+0 0E+0 +Ca3(AsO4)2 = +3.000Ca+2 +2.000AsO4-3 + log_k -21.00 #11GRI/COL4 + -analytic -21.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Ca3(Cit)2:4H2O(s) -Ca3(Cit)2:4H2O = 3.000Ca+2 + 2.000Cit-3 + 4.000H2O - log_k -17.900 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.79E+1 0E+0 0E+0 0E+0 0E+0 +Ca3(Cit)2:4H2O = +3.000Ca+2 +2.000Cit-3 +4.000H2O + log_k -17.90 #05HUM/AND + -analytic -17.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Ca3(PO4)2(alfa) -Ca3(PO4)2 = 3.000Ca+2 - 4.000H+ + 2.000H2(PO4)- - log_k 10.220 #84NAN - delta_h -125.300 #kJ/mol - # Enthalpy of formation: -4108.9 #kJ/mol - -analytic -1.17316E+1 0E+0 6.54487E+3 0E+0 0E+0 +Ca3(PO4)2 = +3.000Ca+2 -4.000H+ +2.000H2(PO4)- + log_k +10.22 #84NAN + delta_h -125.300 #kJ/mol +# Enthalpy of formation: -4108.898 kJ/mol + -analytic -11.73162E+0 00.00000E+0 65.44875E+2 00.00000E+0 00.00000E+0 Ca3B2O6(s) -Ca3B2O6 = 3.000Ca+2 - 4.000H+ + 2.000B(OH)4- - 2.000H2O - log_k 40.580 - delta_h -318.306 #kJ/mol - # Enthalpy of formation: -3429.266 #kJ/mol - -analytic -1.51847E+1 0E+0 1.66263E+4 0E+0 0E+0 +Ca3B2O6 = +3.000Ca+2 -4.000H+ +2.000B(OH)4- -2.000H2O + log_k +40.58 + delta_h -318.306 #kJ/mol +# Enthalpy of formation: -3429.266 kJ/mol + -analytic -15.18482E+0 00.00000E+0 16.62628E+3 00.00000E+0 00.00000E+0 Ca3ZrSi2O9(cr) -Ca3ZrSi2O9 = 3.000Ca+2 - 10.000H+ + 2.000H4(SiO4) + 1.000Zr+4 + 1.000H2O - log_k 47.870 - delta_h -416.718 #kJ/mol - # Enthalpy of formation: -5029 #kJ/mol #05BRO/CUR - -analytic -2.51358E+1 0E+0 2.17667E+4 0E+0 0E+0 +Ca3ZrSi2O9 = +3.000Ca+2 -10.000H+ +2.000H4(SiO4) +1.000Zr+4 +1.000H2O + log_k +47.87 + delta_h -416.718 #kJ/mol +# Enthalpy of formation: -5029.000 kJ/mol 05BRO/CUR + -analytic -25.13586E+0 00.00000E+0 21.76670E+3 00.00000E+0 00.00000E+0 Ca4Al2O6(CrO4):15H2O(s) -Ca4Al2O6(CrO4):15H2O = 4.000Ca+2 + 2.000Al+3 - 12.000H+ + 1.000CrO4-2 + 21.000H2O - log_k 71.360 #01PER/PAL - delta_h -545.980 #kJ/mol #01PER/PAL - # Enthalpy of formation: -9584.25 #kJ/mol - -analytic -2.42914E+1 0E+0 2.85185E+4 0E+0 0E+0 +Ca4Al2O6(CrO4):15H2O = +4.000Ca+2 +2.000Al+3 -12.000H+ +1.000CrO4-2 +21.000H2O + log_k +71.36 #01PER/PAL + delta_h -545.980 #kJ/mol 01PER/PAL +# Enthalpy of formation: -9584.250 kJ/mol + -analytic -24.29159E+0 00.00000E+0 28.51852E+3 00.00000E+0 00.00000E+0 Ca4Cl2(OH)6:13H2O(s) -Ca4Cl2(OH)6:13H2O = 4.000Ca+2 - 6.000H+ + 2.000Cl- + 19.000H2O - log_k 68.730 #84HAR/MOL - delta_h -271.930 #kJ/mol - # Enthalpy of formation: -7665 #kJ/mol #82WAG/EVA - -analytic 2.109E+1 0E+0 1.42039E+4 0E+0 0E+0 +Ca4Cl2(OH)6:13H2O = +4.000Ca+2 -6.000H+ +2.000Cl- +19.000H2O + log_k +68.73 #84HAR/MOL + delta_h -271.930 #kJ/mol +# Enthalpy of formation: -7665.000 kJ/mol 82WAG/EVA + -analytic 21.08991E+0 00.00000E+0 14.20389E+3 00.00000E+0 00.00000E+0 Ca4H(PO4)3:2.5H2O(s) -Ca4H(PO4)3:2.5H2O = 4.000Ca+2 - 5.000H+ + 3.000H2(PO4)- + 2.500H2O - log_k 11.810 #84NAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.181E+1 0E+0 0E+0 0E+0 0E+0 +Ca4H(PO4)3:2.5H2O = +4.000Ca+2 -5.000H+ +3.000H2(PO4)- +2.500H2O + log_k +11.81 #84NAN + -analytic 11.81000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Ca6(Al(OH)6)2(CrO4)3:26H2O(s) -Ca6(Al(OH)6)2(CrO4)3:26H2O = 6.000Ca+2 + 2.000Al+3 - 12.000H+ + 3.000CrO4-2 + 38.000H2O - log_k 60.280 #00PER/PAL - delta_h -509.590 #kJ/mol #00PER/PAL - # Enthalpy of formation: -17323.75 #kJ/mol - -analytic -2.89962E+1 0E+0 2.66177E+4 0E+0 0E+0 +Ca6(Al(OH)6)2(CrO4)3:26H2O = +6.000Ca+2 +2.000Al+3 -12.000H+ +3.000CrO4-2 +38.000H2O + log_k +60.28 #00PER/PAL + delta_h -509.590 #kJ/mol 00PER/PAL +# Enthalpy of formation: -17323.750kJ/mol + -analytic -28.99634E+0 00.00000E+0 26.61774E+3 00.00000E+0 00.00000E+0 CaB2O4(s) -CaB2O4 = 1.000Ca+2 + 2.000B(OH)4- - 4.000H2O - log_k -2.180 - delta_h -58.908 #kJ/mol - # Enthalpy of formation: -2031.004 #kJ/mol - -analytic -1.25002E+1 0E+0 3.07697E+3 0E+0 0E+0 +CaB2O4 = +1.000Ca+2 +2.000B(OH)4- -4.000H2O + log_k -2.18 + delta_h -58.894 #kJ/mol +# Enthalpy of formation: -2031.019 kJ/mol + -analytic -12.49779E+0 00.00000E+0 30.76248E+2 00.00000E+0 00.00000E+0 CaB4O7(s) -CaB4O7 = 1.000Ca+2 + 2.000H+ + 4.000B(OH)4- - 9.000H2O - log_k -23.440 - delta_h 9.373 #kJ/mol - # Enthalpy of formation: -3360.367 #kJ/mol - -analytic -2.17979E+1 0E+0 -4.89585E+2 0E+0 0E+0 - -CaCO3:H2O(s) -CaCO3:H2O = 1.000Ca+2 + 1.000CO3-2 + 1.000H2O - log_k -7.600 #73HUL/TUR - delta_h -5.770 #kJ/mol - # Enthalpy of formation: -1498.29 #kJ/mol #73HUL/TUR - -analytic -8.61086E+0 0E+0 3.01388E+2 0E+0 0E+0 +CaB4O7 = +1.000Ca+2 +2.000H+ +4.000B(OH)4- -9.000H2O + log_k -23.44 + delta_h +9.371 #kJ/mol +# Enthalpy of formation: -3360.367 kJ/mol + -analytic -21.79827E+0 00.00000E+0 -48.94814E+1 00.00000E+0 00.00000E+0 CaCl2:2H2O(cr) -CaCl2:2H2O = 1.000Ca+2 + 2.000Cl- + 2.000H2O - log_k 7.950 - delta_h -44.790 #kJ/mol - # Enthalpy of formation: -1404.03 #kJ/mol #87GAR/PAR - -analytic 1.0314E-1 0E+0 2.33954E+3 0E+0 0E+0 +CaCl2:2H2O = +1.000Ca+2 +2.000Cl- +2.000H2O + log_k +7.95 + delta_h -44.790 #kJ/mol +# Enthalpy of formation: -1404.030 kJ/mol 87GAR/PAR + -analytic 10.31288E-2 00.00000E+0 23.39545E+2 00.00000E+0 00.00000E+0 CaCl2:4H2O(cr) -CaCl2:4H2O = 1.000Ca+2 + 2.000Cl- + 4.000H2O - log_k 5.350 - delta_h -11.310 #kJ/mol - # Enthalpy of formation: -2009.17 #kJ/mol #87GAR/PAR - -analytic 3.36858E+0 0E+0 5.90762E+2 0E+0 0E+0 +CaCl2:4H2O = +1.000Ca+2 +2.000Cl- +4.000H2O + log_k +5.35 + delta_h -11.310 #kJ/mol +# Enthalpy of formation: -2009.170 kJ/mol 87GAR/PAR + -analytic 33.68573E-1 00.00000E+0 59.07624E+1 00.00000E+0 00.00000E+0 CaCl2:H2O(s) -CaCl2:H2O = 1.000Ca+2 + 2.000Cl- + 1.000H2O - log_k 7.850 - delta_h -52.160 #kJ/mol - # Enthalpy of formation: -1110.83 #kJ/mol #87GAR/PAR - -analytic -1.28803E+0 0E+0 2.7245E+3 0E+0 0E+0 +CaCl2:H2O = +1.000Ca+2 +2.000Cl- +1.000H2O + log_k +7.85 + delta_h -52.160 #kJ/mol +# Enthalpy of formation: -1110.830 kJ/mol 87GAR/PAR + -analytic -12.88040E-1 00.00000E+0 27.24507E+2 00.00000E+0 00.00000E+0 + +CaCO3:H2O(s) +CaCO3:H2O = +1.000Ca+2 +1.000CO3-2 +1.000H2O + log_k -7.60 #73HUL/TUR + delta_h -5.770 #kJ/mol +# Enthalpy of formation: -1498.290 kJ/mol 73HUL/TUR + -analytic -86.10861E-1 00.00000E+0 30.13881E+1 00.00000E+0 00.00000E+0 CaCrO4(s) -CaCrO4 = 1.000Ca+2 + 1.000CrO4-2 - log_k -3.150 #03DEA - delta_h -22.814 #kJ/mol - # Enthalpy of formation: -1399.186 #kJ/mol - -analytic -7.14684E+0 0E+0 1.19166E+3 0E+0 0E+0 - -CaF2:6H2O(s) -CaF2:6H2O = 1.000Ca+2 + 2.000F- + 6.000H2O - log_k -5.480 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.48E+0 0E+0 0E+0 0E+0 0E+0 - -CaFe2O4(s) -CaFe2O4 = 1.000Ca+2 + 2.000Fe+3 - 8.000H+ + 4.000H2O - log_k 21.240 #79ROB - delta_h -263.980 #kJ/mol - # Enthalpy of formation: -1520.34 #kJ/mol - -analytic -2.50072E+1 0E+0 1.37886E+4 0E+0 0E+0 - -CaI2(s) -CaI2 = 1.000Ca+2 + 2.000I- - log_k 22.500 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.25E+1 0E+0 0E+0 0E+0 0E+0 - -CaMg3(CO3)4(s) -CaMg3(CO3)4 = 1.000Ca+2 + 3.000Mg+2 + 4.000CO3-2 - log_k -30.810 # - delta_h -112.340 #kJ/mol - # Enthalpy of formation: -4532.58 #kJ/mol #73HEM/ROB - -analytic -5.04911E+1 0E+0 5.86792E+3 0E+0 0E+0 - -CaMoO4(s) -CaMoO4 = 1.000Ca+2 + 1.000MoO4-2 - log_k -7.900 - delta_h 1.424 #kJ/mol - # Enthalpy of formation: -1541.424 #kJ/mol - -analytic -7.65053E+0 0E+0 -7.43806E+1 0E+0 0E+0 - -CaO(cr) -CaO = 1.000Ca+2 - 2.000H+ + 1.000H2O - log_k 32.700 - delta_h -193.910 #kJ/mol - # Enthalpy of formation: -634.92 #kJ/mol #89COX/WAG - -analytic -1.27152E+0 0E+0 1.01286E+4 0E+0 0E+0 - -CaSn(OH)6(s) -CaSn(OH)6 = 1.000Ca+2 + 1.000Sn+4 - 6.000H+ + 6.000H2O - log_k -0.740 #Log K¿ estimated as the mean value of data in 00LOT/OCH2 (uncertainty to include both values) recalculated using values of Sn(OH)6-2 selected in this work - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.4E-1 0E+0 0E+0 0E+0 0E+0 - -CaU2O7:3H2O(cr) -CaU2O7:3H2O = 1.000Ca+2 + 2.000UO2+2 - 6.000H+ + 6.000H2O - log_k 23.400 #05ALT/NEC - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.34E+1 0E+0 0E+0 0E+0 0E+0 +CaCrO4 = +1.000Ca+2 +1.000CrO4-2 + log_k -3.15 #03DEA + delta_h -22.807 #kJ/mol +# Enthalpy of formation: -1399.193 kJ/mol + -analytic -71.45615E-1 00.00000E+0 11.91293E+2 00.00000E+0 00.00000E+0 Cadmoselite -CdSe = 1.000Cd+2 - 1.000H+ + 1.000HSe- - log_k -18.680 - delta_h 81.480 #kJ/mol - # Enthalpy of formation: -143.1 #kJ/mol #05OLI/NOL - -analytic -4.40534E+0 0E+0 -4.25599E+3 0E+0 0E+0 +CdSe = +1.000Cd+2 -1.000H+ +1.000HSe- + log_k -18.68 + delta_h +81.480 #kJ/mol +# Enthalpy of formation: -143.100 kJ/mol 05OLI/NOL + -analytic -44.05317E-1 00.00000E+0 -42.55997E+2 00.00000E+0 00.00000E+0 + +CaF2:6H2O(s) +CaF2:6H2O = +1.000Ca+2 +2.000F- +6.000H2O + log_k -5.48 #96FAL/REA + -analytic -54.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +CaFe2O4(s) +CaFe2O4 = +1.000Ca+2 +2.000Fe+3 -8.000H+ +4.000H2O + log_k +21.24 #79ROB + delta_h -263.980 #kJ/mol 79ROB +# Enthalpy of formation: -1522.452 kJ/mol + -analytic -25.00731E+0 00.00000E+0 13.78864E+3 00.00000E+0 00.00000E+0 + +CaI2(s) +CaI2 = +1.000Ca+2 +2.000I- + log_k +22.50 #96FAL/REA + -analytic 22.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Calcite -CaCO3 = 1.000Ca+2 + 1.000CO3-2 - log_k -8.480 #82PLUM/BUS - delta_h -10.620 #kJ/mol #82PLUM/BUS - # Enthalpy of formation: -1207.61 #kJ/mol - -analytic -1.03405E+1 0E+0 5.5472E+2 0E+0 0E+0 +CaCO3 = +1.000Ca+2 +1.000CO3-2 + log_k -8.48 #82PLUM/BUS + delta_h -10.620 #kJ/mol 82PLUM/BUS +# Enthalpy of formation: -1207.610 kJ/mol + -analytic -10.34054E+0 00.00000E+0 55.47212E+1 00.00000E+0 00.00000E+0 + -Vm 36.930 + +CaMg3(CO3)4(s) +CaMg3(CO3)4 = +1.000Ca+2 +3.000Mg+2 +4.000CO3-2 + log_k -30.81 + delta_h -112.340 #kJ/mol +# Enthalpy of formation: -4532.580 kJ/mol 73HEM/ROB + -analytic -50.49112E+0 00.00000E+0 58.67927E+2 00.00000E+0 00.00000E+0 + +CaMoO4(s) +CaMoO4 = +1.000Ca+2 +1.000MoO4-2 + log_k -7.90 + delta_h +1.427 #kJ/mol +# Enthalpy of formation: -1541.427 kJ/mol + -analytic -76.50000E-1 00.00000E+0 -74.53740E+0 00.00000E+0 00.00000E+0 + +CaO(cr) +CaO = +1.000Ca+2 -2.000H+ +1.000H2O + log_k +32.70 + delta_h -193.910 #kJ/mol +# Enthalpy of formation: -634.920 kJ/mol 89COX/WAG + -analytic -12.71574E-1 00.00000E+0 10.12862E+3 00.00000E+0 00.00000E+0 Carnallite -KMgCl3:6H2O = 1.000Mg+2 + 1.000K+ + 3.000Cl- + 6.000H2O - log_k 4.330 #84HAR/MOL - delta_h 9.339 #kJ/mol - # Enthalpy of formation: -2944.699 #kJ/mol #74NAU/RYZ - -analytic 5.96612E+0 0E+0 -4.87809E+2 0E+0 0E+0 +KMgCl3:6H2O = +1.000Mg+2 +1.000K+ +3.000Cl- +6.000H2O + log_k +4.33 #84HAR/MOL + delta_h +9.339 #kJ/mol +# Enthalpy of formation: -2944.699 kJ/mol 74NAU/RYZ + -analytic 59.66123E-1 00.00000E+0 -48.78099E+1 00.00000E+0 00.00000E+0 + +CaSn(OH)6(s) +CaSn(OH)6 = +1.000Ca+2 +1.000Sn+4 -6.000H+ +6.000H2O + log_k -0.74 #Log Kº estimated as the mean value of data in 00LOT/OCH2 (uncertainty to include both values) recalculated using values of Sn(OH)6-2 selected in this work + -analytic -74.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Cassiterite -SnO2 = 1.000Sn+4 - 4.000H+ + 2.000H2O - log_k -15.600 - delta_h -25.529 #kJ/mol - # Enthalpy of formation: -577.63 #kJ/mol #12GAM/GAJ - -analytic -2.00725E+1 0E+0 1.33347E+3 0E+0 0E+0 +SnO2 = +1.000Sn+4 -4.000H+ +2.000H2O + log_k -15.60 + delta_h -25.541 #kJ/mol +# Enthalpy of formation: -577.630 kJ/mol 12GAM/GAJ + -analytic -20.07459E+0 00.00000E+0 13.34099E+2 00.00000E+0 00.00000E+0 Cattierite -CoS2 = 1.000Co+2 + 2.000HS- - 1.000H2O + 0.500O2 - log_k -62.970 - delta_h 340.463 #kJ/mol - # Enthalpy of formation: -150.9 #kJ/mol #95ROB/HEM - -analytic -3.32353E+0 0E+0 -1.77836E+4 0E+0 0E+0 +CoS2 = +1.000Co+2 -2.000H+ -2.000e- +2.000HS- + log_k -19.98 + delta_h +60.700 #kJ/mol +# Enthalpy of formation: -150.900 kJ/mol 95ROB/HEM + -analytic -93.45816E-1 00.00000E+0 -31.70582E+2 00.00000E+0 00.00000E+0 + +CaU2O7:3H2O(cr) +CaU2O7:3H2O = +1.000Ca+2 +2.000UO2+2 -6.000H+ +6.000H2O + log_k +23.40 #05ALT/NEC + -analytic 23.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Cd(CO3)(s) -Cd(CO3) = 1.000Cd+2 + 1.000CO3-2 - log_k -12.100 #91RAI/FEL1 - delta_h 1.482 #kJ/mol - # Enthalpy of formation: -752.632 #kJ/mol - -analytic -1.18404E+1 0E+0 -7.74101E+1 0E+0 0E+0 - -Cd(OH)2(s) -Cd(OH)2 = 1.000Cd+2 - 2.000H+ + 2.000H2O - log_k 13.860 #91RAI/FEL1 - delta_h -87.730 #kJ/mol - # Enthalpy of formation: -559.85 #kJ/mol - -analytic -1.50961E+0 0E+0 4.58245E+3 0E+0 0E+0 - -Cd(SO4)(cr) -Cd(SO4) = 1.000Cd+2 + 1.000SO4-2 - log_k -0.160 - delta_h -51.980 #kJ/mol - # Enthalpy of formation: -933.28 #kJ/mol #82WAG/EVA - -analytic -9.26649E+0 0E+0 2.7151E+3 0E+0 0E+0 - -Cd(SO4):2.67H2O(cr) -Cd(SO4):2.67H2O = 1.000Cd+2 + 1.000SO4-2 + 2.670H2O - log_k -1.550 - delta_h -20.126 #kJ/mol - # Enthalpy of formation: -1728.3 #kJ/mol #89COX/WAG - -analytic -5.07592E+0 0E+0 1.05125E+3 0E+0 0E+0 - -Cd(SeCn)2(cr) -Cd(SeCn)2 = 1.000Cd+2 + 2.000H+ + 2.000Cn- + 2.000HSe- - 2.000H2O + 1.000O2 - log_k -117.730 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.1773E+2 0E+0 0E+0 0E+0 0E+0 +Cd(CO3) = +1.000Cd+2 +1.000CO3-2 + log_k -12.10 #91RAI/FEL1 + delta_h +1.482 #kJ/mol +# Enthalpy of formation: -752.633 kJ/mol + -analytic -11.84036E+0 00.00000E+0 -77.41025E+0 00.00000E+0 00.00000E+0 Cd(cr) -Cd = 1.000Cd+2 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 56.610 - delta_h -355.683 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #89COX/WAG - -analytic -5.7029E+0 0E+0 1.85786E+4 0E+0 0E+0 +Cd = +1.000Cd+2 +2.000e- + log_k +13.62 + delta_h -75.920 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic 31.93869E-2 00.00000E+0 39.65578E+2 00.00000E+0 00.00000E+0 + +Cd(OH)2(s) +Cd(OH)2 = +1.000Cd+2 -2.000H+ +2.000H2O + log_k +13.86 #91RAI/FEL1 + delta_h -87.730 #kJ/mol +# Enthalpy of formation: -559.850 kJ/mol + -analytic -15.09636E-1 00.00000E+0 45.82457E+2 00.00000E+0 00.00000E+0 + +Cd(SO4)(cr) +Cd(SO4) = +1.000Cd+2 +1.000SO4-2 + log_k -0.16 + delta_h -51.980 #kJ/mol +# Enthalpy of formation: -933.280 kJ/mol 82WAG/EVA + -analytic -92.66505E-1 00.00000E+0 27.15104E+2 00.00000E+0 00.00000E+0 + +Cd(SO4):2.67H2O(cr) +Cd(SO4):2.67H2O = +1.000Cd+2 +1.000SO4-2 +2.670H2O + log_k -1.55 + delta_h -20.126 #kJ/mol +# Enthalpy of formation: -1728.300 kJ/mol 89COX/WAG + -analytic -50.75924E-1 00.00000E+0 10.51254E+2 00.00000E+0 00.00000E+0 Cd3(AsO4)2(s) -Cd3(AsO4)2 = 3.000Cd+2 + 2.000AsO4-3 - log_k -32.620 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.262E+1 0E+0 0E+0 0E+0 0E+0 +Cd3(AsO4)2 = +3.000Cd+2 +2.000AsO4-3 + log_k -32.62 + -analytic -32.62000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Cd3(PO4)2(s) -Cd3(PO4)2 = 3.000Cd+2 - 4.000H+ + 2.000H2(PO4)- - log_k 8.970 - delta_h -206.960 #kJ/mol - # Enthalpy of formation: -2626 #kJ/mol #01BEN/JEM - -analytic -2.72878E+1 0E+0 1.08103E+4 0E+0 0E+0 +Cd3(PO4)2 = +3.000Cd+2 -4.000H+ +2.000H2(PO4)- + log_k +8.97 + delta_h -206.960 #kJ/mol +# Enthalpy of formation: -2626.000 kJ/mol 01BEN/JEM + -analytic -27.28784E+0 00.00000E+0 10.81027E+3 00.00000E+0 00.00000E+0 Cd5(PO4)3Cl(cr) -Cd5(PO4)3Cl = 5.000Cd+2 - 6.000H+ + 1.000Cl- + 3.000H2(PO4)- - log_k 12.670 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.267E+1 0E+0 0E+0 0E+0 0E+0 +Cd5(PO4)3Cl = +5.000Cd+2 -6.000H+ +1.000Cl- +3.000H2(PO4)- + log_k +12.67 + -analytic 12.67000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Cd5(PO4)3OH(cr) -Cd5(PO4)3OH = 5.000Cd+2 - 7.000H+ + 3.000H2(PO4)- + 1.000H2O - log_k 19.840 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.984E+1 0E+0 0E+0 0E+0 0E+0 +Cd5(PO4)3OH = +5.000Cd+2 -7.000H+ +3.000H2(PO4)- +1.000H2O + log_k +19.84 + -analytic 19.84000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 CdB2O4(s) -CdB2O4 = 1.000Cd+2 + 2.000B(OH)4- - 4.000H2O - log_k -8.640 #91BAL/NOR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -8.64E+0 0E+0 0E+0 0E+0 0E+0 +CdB2O4 = +1.000Cd+2 +2.000B(OH)4- -4.000H2O + log_k -8.64 #91BAL/NOR + -analytic -86.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 CdCl2(s) -CdCl2 = 1.000Cd+2 + 2.000Cl- - log_k -0.660 - delta_h -18.580 #kJ/mol - # Enthalpy of formation: -391.5 #kJ/mol #74NAU/RYZ - -analytic -3.91507E+0 0E+0 9.705E+2 0E+0 0E+0 +CdCl2 = +1.000Cd+2 +2.000Cl- + log_k -0.66 + delta_h -18.580 #kJ/mol +# Enthalpy of formation: -391.500 kJ/mol 74NAU/RYZ + -analytic -39.15076E-1 00.00000E+0 97.05010E+1 00.00000E+0 00.00000E+0 CdCl2:2.5H2O(s) -CdCl2:2.5H2O = 1.000Cd+2 + 2.000Cl- + 2.500H2O - log_k -1.900 - delta_h 7.285 #kJ/mol - # Enthalpy of formation: -1131.94 #kJ/mol #82WAG/EVA - -analytic -6.23725E-1 0E+0 -3.80521E+2 0E+0 0E+0 +CdCl2:2.5H2O = +1.000Cd+2 +2.000Cl- +2.500H2O + log_k -1.90 + delta_h +7.285 #kJ/mol +# Enthalpy of formation: -1131.940 kJ/mol 82WAG/EVA + -analytic -62.37228E-2 00.00000E+0 -38.05221E+1 00.00000E+0 00.00000E+0 CdCl2:H2O(cr) -CdCl2:H2O = 1.000Cd+2 + 2.000Cl- + 1.000H2O - log_k -1.690 - delta_h -7.470 #kJ/mol - # Enthalpy of formation: -688.44 #kJ/mol #82WAG/EVA - -analytic -2.99869E+0 0E+0 3.90185E+2 0E+0 0E+0 +CdCl2:H2O = +1.000Cd+2 +2.000Cl- +1.000H2O + log_k -1.69 + delta_h -7.470 #kJ/mol +# Enthalpy of formation: -688.440 kJ/mol 82WAG/EVA + -analytic -29.98688E-1 00.00000E+0 39.01853E+1 00.00000E+0 00.00000E+0 CdO(s) -CdO = 1.000Cd+2 - 2.000H+ + 1.000H2O - log_k 15.100 - delta_h -103.400 #kJ/mol - # Enthalpy of formation: -258.35 #kJ/mol #89COX/WAG - -analytic -3.01488E+0 0E+0 5.40095E+3 0E+0 0E+0 +CdO = +1.000Cd+2 -2.000H+ +1.000H2O + log_k +15.10 + delta_h -103.400 #kJ/mol +# Enthalpy of formation: -258.350 kJ/mol 89COX/WAG + -analytic -30.14902E-1 00.00000E+0 54.00958E+2 00.00000E+0 00.00000E+0 CdS(s) -CdS = 1.000Cd+2 - 1.000H+ + 1.000HS- - log_k -14.820 #99WAN/TES - delta_h 56.570 #kJ/mol - # Enthalpy of formation: -148.79 #kJ/mol #06DEO/NAV - -analytic -4.90938E+0 0E+0 -2.95485E+3 0E+0 0E+0 +CdS = +1.000Cd+2 -1.000H+ +1.000HS- + log_k -14.82 #99WAN/TES + delta_h +56.570 #kJ/mol +# Enthalpy of formation: -148.790 kJ/mol 06DEO/NAV + -analytic -49.09361E-1 00.00000E+0 -29.54857E+2 00.00000E+0 00.00000E+0 CdSiO3(cr) -CdSiO3 = 1.000Cd+2 - 2.000H+ + 1.000H4(SiO4) - 1.000H2O - log_k 7.790 - delta_h -62.194 #kJ/mol - # Enthalpy of formation: -1189.09 #kJ/mol #77BAR/KNA - -analytic -3.10591E+0 0E+0 3.24861E+3 0E+0 0E+0 +CdSiO3 = +1.000Cd+2 -2.000H+ +1.000H4(SiO4) -1.000H2O + log_k +7.79 + delta_h -62.194 #kJ/mol +# Enthalpy of formation: -1189.090 kJ/mol 77BAR/KNA + -analytic -31.05921E-1 00.00000E+0 32.48619E+2 00.00000E+0 00.00000E+0 Celadonite-Fe -KFeAlSi4O10(OH)2 = 1.000K+ + 1.000Fe+2 + 1.000Al+3 - 6.000H+ + 4.000H4(SiO4) - 4.000H2O - log_k 10.220 - delta_h -103.866 #kJ/mol - # Enthalpy of formation: -5478.13 #kJ/mol #02 - -analytic -7.97652E+0 0E+0 5.42529E+3 0E+0 0E+0 +KFeAlSi4O10(OH)2 = +1.000K+ +1.000Fe+2 +1.000Al+3 -6.000H+ +4.000H4(SiO4) -4.000H2O + log_k +6.45 + delta_h -104.161 #kJ/mol +# Enthalpy of formation: -5478.130 kJ/mol 02PAR/VID + -analytic -11.79822E+0 00.00000E+0 54.40708E+2 00.00000E+0 00.00000E+0 + -Vm 143.010 Celadonite-Mg -KMgAlSi4O10(OH)2 = 1.000Mg+2 + 1.000K+ + 1.000Al+3 - 6.000H+ + 4.000H4(SiO4) - 4.000H2O - log_k 10.220 - delta_h -124.256 #kJ/mol - # Enthalpy of formation: -5834.74 #kJ/mol #02PAR/VID - -analytic -1.15487E+1 0E+0 6.49033E+3 0E+0 0E+0 +KMgAlSi4O10(OH)2 = +1.000Mg+2 +1.000K+ +1.000Al+3 -6.000H+ +4.000H4(SiO4) -4.000H2O + log_k +10.20 + delta_h -124.256 #kJ/mol +# Enthalpy of formation: -5834.740 kJ/mol 02PAR/VID + -analytic -11.56872E+0 00.00000E+0 64.90343E+2 00.00000E+0 00.00000E+0 + -Vm 139.620 Celestite -Sr(SO4) = 1.000Sr+2 + 1.000SO4-2 - log_k -6.620 #06BLA/IGN - delta_h -2.451 #kJ/mol - # Enthalpy of formation: -1457.788 #kJ/mol - -analytic -7.0494E+0 0E+0 1.28024E+2 0E+0 0E+0 +Sr(SO4) = +1.000Sr+2 +1.000SO4-2 + log_k -6.62 #06BLA/IGN + delta_h -2.451 #kJ/mol +# Enthalpy of formation: -1457.789 kJ/mol + -analytic -70.49397E-1 00.00000E+0 12.80246E+1 00.00000E+0 00.00000E+0 + -Vm 46.250 Cerussite -Pb(CO3) = 1.000Pb+2 + 1.000CO3-2 - log_k -13.290 - delta_h 27.414 #kJ/mol - # Enthalpy of formation: -701.723 #kJ/mol - -analytic -8.48728E+0 0E+0 -1.43193E+3 0E+0 0E+0 +Pb(CO3) = +1.000Pb+2 +1.000CO3-2 + log_k -13.29 + delta_h +27.425 #kJ/mol +# Enthalpy of formation: -701.735 kJ/mol + -analytic -84.85346E-1 00.00000E+0 -14.32508E+2 00.00000E+0 00.00000E+0 Chabazite -CaAl2Si4O12:6H2O = 1.000Ca+2 + 2.000Al+3 - 8.000H+ + 4.000H4(SiO4) + 2.000H2O - log_k 11.540 - delta_h -209.796 #kJ/mol - # Enthalpy of formation: -7826.44 #kJ/mol #09BLA - -analytic -2.52146E+1 0E+0 1.09584E+4 0E+0 0E+0 +CaAl2Si4O12:6H2O = +1.000Ca+2 +2.000Al+3 -8.000H+ +4.000H4(SiO4) +2.000H2O + log_k +11.52 + delta_h -209.796 #kJ/mol +# Enthalpy of formation: -7826.440 kJ/mol 09BLA + -analytic -25.23468E+0 00.00000E+0 10.95841E+3 00.00000E+0 00.00000E+0 + -Vm 251.160 + +Chalcanthite +CuSO4:5H2O = +1.000Cu+2 +1.000SO4-2 +5.000H2O + log_k -2.69 + delta_h +6.108 #kJ/mol +# Enthalpy of formation: -2279.696 kJ/mol + -analytic -16.19924E-1 00.00000E+0 -31.90431E+1 00.00000E+0 00.00000E+0 + +Chalcocite +Cu2S = +2.000Cu+ -1.000H+ +1.000HS- + log_k -34.02 #94THO/HEL + delta_h +204.317 #kJ/mol +# Enthalpy of formation: -79.440 kJ/mol + -analytic 17.74802E-1 00.00000E+0 -10.67222E+3 00.00000E+0 00.00000E+0 + +Chalcocyanite +CuSO4 = +1.000Cu+2 +1.000SO4-2 + log_k +2.94 + delta_h -73.025 #kJ/mol +# Enthalpy of formation: -771.415 kJ/mol + -analytic -98.53431E-1 00.00000E+0 38.14361E+2 00.00000E+0 00.00000E+0 Chamosite -Fe5Al2Si3O10(OH)8 = 5.000Fe+2 + 2.000Al+3 - 16.000H+ + 3.000H4(SiO4) + 6.000H2O - log_k 47.600 - delta_h -504.512 #kJ/mol - # Enthalpy of formation: -7120.85 #kJ/mol #05VID/PAR - -analytic -4.07866E+1 0E+0 2.63525E+4 0E+0 0E+0 +Fe5Al2Si3O10(OH)8 = +5.000Fe+2 +2.000Al+3 -16.000H+ +3.000H4(SiO4) +6.000H2O + log_k +47.68 + delta_h -505.987 #kJ/mol +# Enthalpy of formation: -7120.850 kJ/mol 05VID/PAR + -analytic -40.96512E+0 00.00000E+0 26.42954E+3 00.00000E+0 00.00000E+0 + -Vm 215.880 Chloroapatite -Ca5Cl(PO4)3 = 5.000Ca+2 - 6.000H+ + 1.000Cl- + 3.000H2(PO4)- - log_k 5.210 #68VAL/KOG - delta_h -132.541 #kJ/mol - # Enthalpy of formation: -6657.339 #kJ/mol - -analytic -1.80102E+1 0E+0 6.92309E+3 0E+0 0E+0 +Ca5Cl(PO4)3 = +5.000Ca+2 -6.000H+ +1.000Cl- +3.000H2(PO4)- + log_k +5.21 #68VAL/KOG + delta_h -132.541 #kJ/mol +# Enthalpy of formation: -6657.337 kJ/mol + -analytic -18.01019E+0 00.00000E+0 69.23099E+2 00.00000E+0 00.00000E+0 Chromite -FeCr2O4 = 1.000Fe+2 - 8.000H+ + 2.000Cr+3 + 4.000H2O - log_k 15.120 - delta_h -268.820 #kJ/mol - # Enthalpy of formation: -1445.5 #kJ/mol #95ROB/HEM - -analytic -3.19752E+1 0E+0 1.40414E+4 0E+0 0E+0 +FeCr2O4 = +1.000Fe+2 -8.000H+ +2.000Cr+3 +4.000H2O + log_k +15.14 + delta_h -269.115 #kJ/mol +# Enthalpy of formation: -1445.500 kJ/mol 95ROB/HEM + -analytic -32.00692E+0 00.00000E+0 14.05686E+3 00.00000E+0 00.00000E+0 + +Chukanovite +Fe2(OH)2CO3 = +2.000Fe+2 -2.000H+ +1.000CO3-2 +2.000H2O + log_k +2.97 + -analytic 29.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +Cinnabar +HgS = -1.000H+ +1.000HS- +1.000Hg+2 + log_k -39.18 + delta_h +208.210 #kJ/mol +# Enthalpy of formation: -54.300 kJ/mol 95ROB/HEM + -analytic -27.03174E-1 00.00000E+0 -10.87557E+3 00.00000E+0 00.00000E+0 Clarkeite -Na(UO2)O(OH) = 1.000Na+ + 1.000UO2+2 - 3.000H+ + 2.000H2O - log_k 9.400 #08GOR/FEI - delta_h -106.300 #kJ/mol - # Enthalpy of formation: -1724.7 #kJ/mol #06KUB/HEL - -analytic -9.22293E+0 0E+0 5.55243E+3 0E+0 0E+0 +Na(UO2)O(OH) = +1.000Na+ +1.000UO2+2 -3.000H+ +2.000H2O + log_k +9.40 #08GOR/FEI + delta_h -106.300 #kJ/mol +# Enthalpy of formation: -1724.700 kJ/mol 06KUB/HEL + -analytic -92.22961E-1 00.00000E+0 55.52436E+2 00.00000E+0 00.00000E+0 Claudetite -As2O3 = - 3.000H2O + 2.000H3(AsO3) - log_k -1.460 - delta_h 28.240 #kJ/mol - # Enthalpy of formation: -655.15 #kJ/mol - -analytic 3.48743E+0 0E+0 -1.47508E+3 0E+0 0E+0 +As2O3 = -3.000H2O +2.000H3(AsO3) + log_k -1.46 + delta_h +28.238 #kJ/mol +# Enthalpy of formation: -655.150 kJ/mol + -analytic 34.87085E-1 00.00000E+0 -14.74973E+2 00.00000E+0 00.00000E+0 Clausthalite -PbSe = 1.000Pb+2 - 1.000H+ + 1.000HSe- - log_k -20.530 - delta_h 113.720 #kJ/mol - # Enthalpy of formation: -98.5 #kJ/mol #05OLI/NOL - -analytic -6.0714E-1 0E+0 -5.94E+3 0E+0 0E+0 +PbSe = +1.000Pb+2 -1.000H+ +1.000HSe- + log_k -20.53 + delta_h +113.720 #kJ/mol +# Enthalpy of formation: -98.500 kJ/mol 05OLI/NOL + -analytic -60.71112E-2 00.00000E+0 -59.40009E+2 00.00000E+0 00.00000E+0 Clinochlore -Mg5Al2Si3O10(OH)8 = 5.000Mg+2 + 2.000Al+3 - 16.000H+ + 3.000H4(SiO4) + 6.000H2O - log_k 61.720 - delta_h -600.772 #kJ/mol - # Enthalpy of formation: -8909.59 #kJ/mol #05VID/PAR - -analytic -4.35306E+1 0E+0 3.13805E+4 0E+0 0E+0 +Mg5Al2Si3O10(OH)8 = +5.000Mg+2 +2.000Al+3 -16.000H+ +3.000H4(SiO4) +6.000H2O + log_k +61.68 + delta_h -600.772 #kJ/mol +# Enthalpy of formation: -8909.590 kJ/mol 05VID/PAR + -analytic -43.57074E+0 00.00000E+0 31.38051E+3 00.00000E+0 00.00000E+0 + -Vm 211.470 Clinoptilolite_Ca -Ca0.55(Si4.9Al1.1)O12:3.9H2O = 0.550Ca+2 + 1.100Al+3 - 4.400H+ + 4.900H4(SiO4) - 3.700H2O - log_k -2.350 #09BLA - delta_h -68.512 #kJ/mol - # Enthalpy of formation: -6924.658 #kJ/mol - -analytic -1.43528E+1 0E+0 3.57863E+3 0E+0 0E+0 +Ca0.55(Si4.9Al1.1)O12:3.9H2O = +0.550Ca+2 +1.100Al+3 -4.400H+ +4.900H4(SiO4) -3.700H2O + log_k -2.35 #09BLA + delta_h -68.491 #kJ/mol +# Enthalpy of formation: -6924.681 kJ/mol + -analytic -14.34911E+0 00.00000E+0 35.77534E+2 00.00000E+0 00.00000E+0 + -Vm 209.660 Clinoptilolite_K -K1.1(Si4.9Al1.1)O12:2.7H2O = 1.100K+ + 1.100Al+3 - 4.400H+ + 4.900H4(SiO4) - 4.900H2O - log_k -1.230 #09BLA - delta_h -60.128 #kJ/mol - # Enthalpy of formation: -6568.749 #kJ/mol - -analytic -1.1764E+1 0E+0 3.1407E+3 0E+0 0E+0 +K1.1(Si4.9Al1.1)O12:2.7H2O = +1.100K+ +1.100Al+3 -4.400H+ +4.900H4(SiO4) -4.900H2O + log_k -1.23 #09BLA + delta_h -60.121 #kJ/mol +# Enthalpy of formation: -6568.760 kJ/mol + -analytic -11.76275E+0 00.00000E+0 31.40339E+2 00.00000E+0 00.00000E+0 + -Vm 210.730 Clinoptilolite_Na -Na1.1(Si4.9Al1.1)O12:3.5H2O = 1.100Na+ + 1.100Al+3 - 4.400H+ + 4.900H4(SiO4) - 4.100H2O - log_k -0.090 #09BLA - delta_h -62.470 #kJ/mol - # Enthalpy of formation: -6782.091 #kJ/mol - -analytic -1.10343E+1 0E+0 3.26303E+3 0E+0 0E+0 - -Cm(CO3)(OH)(cr) -Cm(CO3)(OH) = - 1.000H+ + 1.000CO3-2 + 1.000Cm+3 + 1.000H2O - log_k -10.340 #estimated by correlation with Ln(III) and An(III) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.034E+1 0E+0 0E+0 0E+0 0E+0 - -Cm(CO3)(OH):0.5H2O(s) -Cm(CO3)(OH):0.5H2O = - 1.000H+ + 1.000CO3-2 + 1.000Cm+3 + 1.500H2O - log_k -7.780 #estimated by correlation with Ln(III) and An(III) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.78E+0 0E+0 0E+0 0E+0 0E+0 - -Cm(OH)3(am) -Cm(OH)3 = - 3.000H+ + 1.000Cm+3 + 3.000H2O - log_k 17.900 #estimated from ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.79E+1 0E+0 0E+0 0E+0 0E+0 - -Cm(OH)3(cr) -Cm(OH)3 = - 3.000H+ + 1.000Cm+3 + 3.000H2O - log_k 15.600 #estimated from ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.56E+1 0E+0 0E+0 0E+0 0E+0 - -Cm(PO4):xH2O(s) -Cm(PO4) = - 2.000H+ + 1.000H2(PO4)- + 1.000Cm+3 - log_k -4.970 #estimated by correlation with Ln(III) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.97E+0 0E+0 0E+0 0E+0 0E+0 +Na1.1(Si4.9Al1.1)O12:3.5H2O = +1.100Na+ +1.100Al+3 -4.400H+ +4.900H4(SiO4) -4.100H2O + log_k -0.09 #09BLA + delta_h -62.460 #kJ/mol +# Enthalpy of formation: -6782.105 kJ/mol + -analytic -11.03252E+0 00.00000E+0 32.62513E+2 00.00000E+0 00.00000E+0 + -Vm 214.780 Cm(cr) -Cm = 1.000Cm+3 + 1.500H2O - 3.000H+ - 0.750O2 - log_k 168.795 #01KON2 - delta_h -1034.645 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol - -analytic -1.24667E+1 0E+0 5.40432E+4 0E+0 0E+0 +Cm = +3.000e- +1.000Cm+3 + log_k +104.31 + delta_h -615.000 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 01KON2 + -analytic -34.33375E-1 00.00000E+0 32.12369E+3 00.00000E+0 00.00000E+0 -Cm2(CO3)3(am) -Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3 - log_k -33.900 #estimated in analogy wiht Ln(III) and Am(III) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0 +Cm(OH)3(am) +Cm(OH)3 = -3.000H+ +1.000Cm+3 +3.000H2O + log_k +17.80 #Estimated by correlation with An(III) in function of ionic radii. + -analytic 17.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +Cm(OH)3(cr) +Cm(OH)3 = -3.000H+ +1.000Cm+3 +3.000H2O + log_k +15.67 #estimated from ionic radii + -analytic 15.67000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +Cm(PO4):0.5H2O(am) +Cm(PO4):0.5H2O = -2.000H+ +1.000H2(PO4)- +1.000Cm+3 +0.500H2O + log_k -4.97 #estimated by correlation with Ln(III) + -analytic -49.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +Cm2(CO3)3(s) +Cm2(CO3)3 = +3.000CO3-2 +2.000Cm+3 + log_k -34.30 #Estimated by correlation with An(III). + -analytic -34.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Cm2O3(cr) -Cm2O3 = - 6.000H+ + 2.000Cm+3 + 3.000H2O - log_k 53.100 - delta_h -403.490 #kJ/mol - # Enthalpy of formation: -1684 #kJ/mol #01KON2 - -analytic -1.75883E+1 0E+0 2.10757E+4 0E+0 0E+0 +Cm2O3 = -6.000H+ +2.000Cm+3 +3.000H2O + log_k +52.97 + delta_h -403.490 #kJ/mol +# Enthalpy of formation: -1684.000 kJ/mol 01KON2 + -analytic -17.71841E+0 00.00000E+0 21.07575E+3 00.00000E+0 00.00000E+0 CmCl3(cr) -CmCl3 = 3.000Cl- + 1.000Cm+3 - log_k 15.070 - delta_h -141.840 #kJ/mol - # Enthalpy of formation: -974.4 #kJ/mol #85BAR/PAR - -analytic -9.77926E+0 0E+0 7.40881E+3 0E+0 0E+0 +CmCl3 = +3.000Cl- +1.000Cm+3 + log_k +15.07 + delta_h -141.840 #kJ/mol +# Enthalpy of formation: -974.400 kJ/mol 85BAR/PAR + -analytic -97.79301E-1 00.00000E+0 74.08819E+2 00.00000E+0 00.00000E+0 + +CmCO3OH(cr) +Cm(CO3)(OH) = -1.000H+ +1.000CO3-2 +1.000Cm+3 +1.000H2O + log_k -10.34 #Estimation. Correlation with An(III). + -analytic -10.34000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +CmCO3OH(s) +CmOHCO3 = -1.000H+ +1.000CO3-2 +1.000Cm+3 +1.000H2O + log_k -6.15 #Estimated using the data for AmCO3OH(s). + -analytic -61.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +CmCO3OH:0.5H2O(s) +Cm(CO3)(OH):0.5H2O = -1.000H+ +1.000CO3-2 +1.000Cm+3 +1.500H2O + log_k -7.72 #Estimated by correlation with An(III) in function of ionic radii. + -analytic -77.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 CmF3(cr) -CmF3 = 3.000F- + 1.000Cm+3 - log_k -13.160 - delta_h -32.036 #kJ/mol - # Enthalpy of formation: -1589.014 #kJ/mol #estimated by 97SVE/SHO equation - -analytic -1.87725E+1 0E+0 1.67335E+3 0E+0 0E+0 +CmF3 = +3.000F- +1.000Cm+3 + log_k -13.16 + delta_h -32.036 #kJ/mol +# Enthalpy of formation: -1589.014 kJ/mol estimated by 97SVE/SHO equation + -analytic -18.77247E+0 00.00000E+0 16.73357E+2 00.00000E+0 00.00000E+0 CmOCl(cr) -CmOCl = - 2.000H+ + 1.000Cl- + 1.000Cm+3 + 1.000H2O - log_k 9.490 - delta_h -104.710 #kJ/mol - # Enthalpy of formation: -963.2 #kJ/mol #85BAR/PAR - -analytic -8.85438E+0 0E+0 5.46938E+3 0E+0 0E+0 - -CmOHCO3(am) -CmOHCO3 = - 1.000H+ + 1.000CO3-2 + 1.000Cm+3 + 1.000H2O - log_k -6.120 #estimated in anlogy with Ln(III) and Am(III) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.12E+0 0E+0 0E+0 0E+0 0E+0 - -Co(FeO2)2(alpha) -Co(FeO2)2 = 2.000Fe+3 + 1.000Co+2 - 8.000H+ + 4.000H2O - log_k 0.770 - delta_h -159.200 #kJ/mol - # Enthalpy of formation: -1139.72 #kJ/mol #74NAU/RYZ - -analytic -2.71206E+1 0E+0 8.31558E+3 0E+0 0E+0 - -Co(OH)2(s,blue) -Co(OH)2 = 1.000Co+2 - 2.000H+ + 2.000H2O - log_k 13.800 #98PLY/ZHA1 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.38E+1 0E+0 0E+0 0E+0 0E+0 - -Co(OH)2(s,rose1) -Co(OH)2 = 1.000Co+2 - 2.000H+ + 2.000H2O - log_k 12.200 #98PLY/ZHA1 - delta_h -88.460 #kJ/mol - # Enthalpy of formation: -540.8 #kJ/mol #98PLY/ZHA1 - -analytic -3.2975E+0 0E+0 4.62058E+3 0E+0 0E+0 - -Co(OH)2(s,rose2) -Co(OH)2 = 1.000Co+2 - 2.000H+ + 2.000H2O - log_k 13.200 #98PLY/ZHA1 - delta_h -93.560 #kJ/mol - # Enthalpy of formation: -535.7 #kJ/mol #98PLY/ZHA1 - -analytic -3.19098E+0 0E+0 4.88697E+3 0E+0 0E+0 - -Co(SeO3):2H2O(s) -Co(SeO3):2H2O = 1.000Co+2 + 1.000SeO3-2 + 2.000H2O - log_k -7.900 #05OLI/NOL - delta_h -20.860 #kJ/mol - # Enthalpy of formation: -1115.56 #kJ/mol #05OLI/NOL - -analytic -1.15545E+1 0E+0 1.08959E+3 0E+0 0E+0 - -Co(SeO4):6H2O(s) -Co(SeO4):6H2O = 1.000Co+2 + 1.000SeO4-2 + 6.000H2O - log_k -1.760 #05OLI/NOL - delta_h -3.299 #kJ/mol - # Enthalpy of formation: -2372.781 #kJ/mol - -analytic -2.33796E+0 0E+0 1.72319E+2 0E+0 0E+0 +CmOCl = -2.000H+ +1.000Cl- +1.000Cm+3 +1.000H2O + log_k +9.49 + delta_h -104.710 #kJ/mol +# Enthalpy of formation: -963.200 kJ/mol 85BAR/PAR + -analytic -88.54405E-1 00.00000E+0 54.69384E+2 00.00000E+0 00.00000E+0 Co(cr) -Co = 1.000Co+2 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 52.730 - delta_h -337.363 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol - -analytic -6.37337E+0 0E+0 1.76217E+4 0E+0 0E+0 +Co = +1.000Co+2 +2.000e- + log_k +9.74 + delta_h -57.600 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 87FER + -analytic -35.10868E-2 00.00000E+0 30.08658E+2 00.00000E+0 00.00000E+0 + +Co(FeO2)2(alpha) +Co(FeO2)2 = +2.000Fe+3 +1.000Co+2 -8.000H+ +4.000H2O + log_k +0.73 + delta_h -161.312 #kJ/mol +# Enthalpy of formation: -1139.720 kJ/mol 74NAU/RYZ + -analytic -27.53065E+0 00.00000E+0 84.25913E+2 00.00000E+0 00.00000E+0 + +Co(OH)2(s,blue) +Co(OH)2 = +1.000Co+2 -2.000H+ +2.000H2O + log_k +13.80 #98PLY/ZHA1; Uncertainty by analogy with Co(OH)2(s,rose1). + -analytic 13.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +Co(OH)2(s,rose1) +Co(OH)2 = +1.000Co+2 -2.000H+ +2.000H2O + log_k +12.20 #98PLY/ZHA1 + delta_h -88.460 #kJ/mol +# Enthalpy of formation: -540.800 kJ/mol 98PLY/ZHA1 + -analytic -32.97527E-1 00.00000E+0 46.20588E+2 00.00000E+0 00.00000E+0 + +Co(OH)2(s,rose2) +Co(OH)2 = +1.000Co+2 -2.000H+ +2.000H2O + log_k +13.20 #98PLY/ZHA1; Uncertainty by analogy with Co(OH)2(s,rose1). + delta_h -93.560 #kJ/mol +# Enthalpy of formation: -535.700 kJ/mol 98PLY/ZHA1 + -analytic -31.91008E-1 00.00000E+0 48.86979E+2 00.00000E+0 00.00000E+0 + +Co(SeO3):2H2O(s) +Co(SeO3):2H2O = +1.000Co+2 +1.000SeO3-2 +2.000H2O + log_k -7.90 #05OLI/NOL + delta_h -20.860 #kJ/mol +# Enthalpy of formation: -1115.560 kJ/mol 05OLI/NOL + -analytic -11.55452E+0 00.00000E+0 10.89594E+2 00.00000E+0 00.00000E+0 + +Co(SeO4):6H2O(s) +Co(SeO4):6H2O = +1.000Co+2 +1.000SeO4-2 +6.000H2O + log_k -1.76 #05OLI/NOL + delta_h -3.400 #kJ/mol +# Enthalpy of formation: -2372.678 kJ/mol + -analytic -23.55654E-1 00.00000E+0 17.75944E+1 00.00000E+0 00.00000E+0 Co0.84Se(cr) -Co0.84Se = 0.840Co+2 - 0.680H+ + 1.000HSe- - 0.160H2O + 0.080O2 - log_k -16.178 - delta_h 66.078 #kJ/mol - # Enthalpy of formation: -55.4 #kJ/mol #05OLI/NOL - -analytic -4.60203E+0 0E+0 -3.45149E+3 0E+0 0E+0 +Co0.84Se = +0.840Co+2 -1.000H+ -0.320e- +1.000HSe- + log_k -9.30 + delta_h +21.316 #kJ/mol +# Enthalpy of formation: -55.400 kJ/mol 05OLI/NOL + -analytic -55.65597E-1 00.00000E+0 -11.13412E+2 00.00000E+0 00.00000E+0 Co2SiO4(s) -Co2SiO4 = 2.000Co+2 - 4.000H+ + 1.000H4(SiO4) - log_k 7.350 - delta_h -99.394 #kJ/mol - # Enthalpy of formation: -1477 #kJ/mol #82WAG/EVA - -analytic -1.00631E+1 0E+0 5.1917E+3 0E+0 0E+0 +Co2SiO4 = +2.000Co+2 -4.000H+ +1.000H4(SiO4) + log_k +7.35 + delta_h -99.394 #kJ/mol +# Enthalpy of formation: -1477.000 kJ/mol 82WAG/EVA + -analytic -10.06308E+0 00.00000E+0 51.91710E+2 00.00000E+0 00.00000E+0 Co3(AsO4)2(s) -Co3(AsO4)2 = 3.000Co+2 + 2.000AsO4-3 - log_k -27.560 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.756E+1 0E+0 0E+0 0E+0 0E+0 +Co3(AsO4)2 = +3.000Co+2 +2.000AsO4-3 + log_k -27.56 + -analytic -27.56000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Co3(PO4)2(s) -Co3(PO4)2 = 3.000Co+2 - 4.000H+ + 2.000H2(PO4)- - log_k 4.360 #84VIE/TAR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.36E+0 0E+0 0E+0 0E+0 0E+0 +Co3(PO4)2 = +3.000Co+2 -4.000H+ +2.000H2(PO4)- + log_k +4.36 #84VIE/TAR + -analytic 43.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Co3O4(s) -Co3O4 = 3.000Co+2 - 6.000H+ + 3.000H2O + 0.500O2 - log_k 11.870 - delta_h -117.537 #kJ/mol - # Enthalpy of formation: -918.8 #kJ/mol #95ROB/HEM - -analytic -8.72157E+0 0E+0 6.13938E+3 0E+0 0E+0 +Co3O4 = +3.000Co+2 -8.000H+ -2.000e- +4.000H2O + log_k +54.86 + delta_h -397.320 #kJ/mol +# Enthalpy of formation: -918.800 kJ/mol 95ROB/HEM + -analytic -14.74748E+0 00.00000E+0 20.75347E+3 00.00000E+0 00.00000E+0 CoCl2(s) -CoCl2 = 1.000Co+2 + 2.000Cl- - log_k 8.470 - delta_h -79.220 #kJ/mol - # Enthalpy of formation: -312.54 #kJ/mol #98CHA - -analytic -5.40873E+0 0E+0 4.13794E+3 0E+0 0E+0 +CoCl2 = +1.000Co+2 +2.000Cl- + log_k +8.47 + delta_h -79.220 #kJ/mol +# Enthalpy of formation: -312.540 kJ/mol 98CHA + -analytic -54.08748E-1 00.00000E+0 41.37949E+2 00.00000E+0 00.00000E+0 CoCl2:6H2O(s) -CoCl2:6H2O = 1.000Co+2 + 2.000Cl- + 6.000H2O - log_k 2.540 #97MAR/SMI - delta_h 8.060 #kJ/mol #97MAR/SMI - # Enthalpy of formation: -2114.8 #kJ/mol - -analytic 3.95205E+0 0E+0 -4.21003E+2 0E+0 0E+0 +CoCl2:6H2O = +1.000Co+2 +2.000Cl- +6.000H2O + log_k +2.54 #97MAR/SMI + delta_h +8.060 #kJ/mol 97MAR/SMI +# Enthalpy of formation: -2114.800 kJ/mol + -analytic 39.52051E-1 00.00000E+0 -42.10031E+1 00.00000E+0 00.00000E+0 CoF2(s) -CoF2 = 1.000Co+2 + 2.000F- - log_k -1.390 - delta_h -56.770 #kJ/mol - # Enthalpy of formation: -671.53 #kJ/mol #98CHA - -analytic -1.13357E+1 0E+0 2.9653E+3 0E+0 0E+0 - -CoHPO4(s) -CoHPO4 = 1.000Co+2 - 1.000H+ + 1.000H2(PO4)- - log_k 0.490 #84VIE/TAR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.9E-1 0E+0 0E+0 0E+0 0E+0 - -CoO(s) -CoO = 1.000Co+2 - 2.000H+ + 1.000H2O - log_k 13.770 - delta_h -105.530 #kJ/mol - # Enthalpy of formation: -237.9 #kJ/mol #95ROB/HEM - -analytic -4.71804E+0 0E+0 5.51221E+3 0E+0 0E+0 - -CoS(alpha) -CoS = 1.000Co+2 - 1.000H+ + 1.000HS- - log_k -7.440 #90DYR/KRE - delta_h 11.836 #kJ/mol - # Enthalpy of formation: -85.736 #kJ/mol - -analytic -5.36642E+0 0E+0 -6.18236E+2 0E+0 0E+0 - -CoS(beta) -CoS = 1.000Co+2 - 1.000H+ + 1.000HS- - log_k -11.070 #90DYR/KRE - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.107E+1 0E+0 0E+0 0E+0 0E+0 - -CoSO4(s) -CoSO4 = 1.000Co+2 + 1.000SO4-2 - log_k 3.010 - delta_h -78.680 #kJ/mol - # Enthalpy of formation: -888.26 #kJ/mol #98CHA - -analytic -1.07741E+1 0E+0 4.10974E+3 0E+0 0E+0 - -CoSO4:6H2O(s) -CoSO4:6H2O = 1.000Co+2 + 1.000SO4-2 + 6.000H2O - log_k -2.200 - delta_h 1.570 #kJ/mol - # Enthalpy of formation: -2683.49 #kJ/mol #74NAU/RYZ - -analytic -1.92495E+0 0E+0 -8.20067E+1 0E+0 0E+0 - -CoSO4:H2O(s) -CoSO4:H2O = 1.000Co+2 + 1.000SO4-2 + 1.000H2O - log_k -1.050 - delta_h -52.050 #kJ/mol - # Enthalpy of formation: -1200.72 #kJ/mol #74NAU/RYZ - -analytic -1.01688E+1 0E+0 2.71876E+3 0E+0 0E+0 - -CoSe2(cr) -CoSe2 = 1.000Co+2 + 2.000HSe- - 1.000H2O + 0.500O2 - log_k -66.080 - delta_h 356.263 #kJ/mol - # Enthalpy of formation: -105.5 #kJ/mol #05OLI/NOL - -analytic -3.66549E+0 0E+0 -1.86089E+4 0E+0 0E+0 +CoF2 = +1.000Co+2 +2.000F- + log_k -1.39 + delta_h -56.770 #kJ/mol +# Enthalpy of formation: -671.530 kJ/mol 98CHA + -analytic -11.33568E+0 00.00000E+0 29.65304E+2 00.00000E+0 00.00000E+0 Coffinite -U(SiO4) = 1.000U+4 - 4.000H+ + 1.000H4(SiO4) - log_k -7.800 - delta_h -61.070 #kJ/mol - # Enthalpy of formation: -1991.326 #kJ/mol - -analytic -1.8499E+1 0E+0 3.1899E+3 0E+0 0E+0 +U(SiO4) = +1.000U+4 -4.000H+ +1.000H4(SiO4) + log_k -4.47 + delta_h -78.577 #kJ/mol +# Enthalpy of formation: -1973.817 kJ/mol + -analytic -18.23610E+0 00.00000E+0 41.04363E+2 00.00000E+0 00.00000E+0 -Coffinite(am) -U(SiO4) = 1.000U+4 - 4.000H+ + 1.000H4(SiO4) - log_k -1.500 #Estimation based on NEA Guidelines - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.5E+0 0E+0 0E+0 0E+0 0E+0 +CoHPO4(s) +CoHPO4 = +1.000Co+2 -1.000H+ +1.000H2(PO4)- + log_k +0.49 #84VIE/TAR + -analytic 49.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Compreignacite -K2(UO2)6O4(OH)6:7H2O = 2.000K+ + 6.000UO2+2 - 14.000H+ + 17.000H2O - log_k 35.800 #08GOR/FEI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.58E+1 0E+0 0E+0 0E+0 0E+0 +K2(UO2)6O4(OH)6:7H2O = +2.000K+ +6.000UO2+2 -14.000H+ +17.000H2O + log_k +35.80 #08GOR/FEI + -analytic 35.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +CoO(s) +CoO = +1.000Co+2 -2.000H+ +1.000H2O + log_k +13.77 + delta_h -105.530 #kJ/mol +# Enthalpy of formation: -237.900 kJ/mol 95ROB/HEM + -analytic -47.18062E-1 00.00000E+0 55.12216E+2 00.00000E+0 00.00000E+0 Corundum -Al2O3 = 2.000Al+3 - 6.000H+ + 3.000H2O - log_k 18.300 - delta_h -258.590 #kJ/mol - # Enthalpy of formation: -1675.7 #kJ/mol #89COX/WAG - -analytic -2.7003E+1 0E+0 1.35071E+4 0E+0 0E+0 +Al2O3 = +2.000Al+3 -6.000H+ +3.000H2O + log_k +18.30 + delta_h -258.590 #kJ/mol +# Enthalpy of formation: -1675.700 kJ/mol 89COX/WAG + -analytic -27.00302E+0 00.00000E+0 13.50710E+3 00.00000E+0 00.00000E+0 + +CoS(alpha) +CoS = +1.000Co+2 -1.000H+ +1.000HS- + log_k -7.44 #90DYR/KRE + delta_h +11.836 #kJ/mol +# Enthalpy of formation: -85.735 kJ/mol + -analytic -53.66422E-1 00.00000E+0 -61.82373E+1 00.00000E+0 00.00000E+0 + +CoS(beta) +CoS = +1.000Co+2 -1.000H+ +1.000HS- + log_k -11.07 #90DYR/KRE + -analytic -11.07000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +CoSe2(cr) +CoSe2 = +1.000Co+2 -2.000H+ -2.000e- +2.000HSe- + log_k -23.09 + delta_h +76.500 #kJ/mol +# Enthalpy of formation: -105.500 kJ/mol 05OLI/NOL + -analytic -96.87775E-1 00.00000E+0 -39.95873E+2 00.00000E+0 00.00000E+0 + +CoSO4(s) +CoSO4 = +1.000Co+2 +1.000SO4-2 + log_k +3.01 + delta_h -78.680 #kJ/mol +# Enthalpy of formation: -888.260 kJ/mol 98CHA + -analytic -10.77414E+0 00.00000E+0 41.09743E+2 00.00000E+0 00.00000E+0 + +CoSO4:6H2O(s) +CoSO4:6H2O = +1.000Co+2 +1.000SO4-2 +6.000H2O + log_k -2.20 + delta_h +1.570 #kJ/mol +# Enthalpy of formation: -2683.490 kJ/mol 74NAU/RYZ + -analytic -19.24948E-1 00.00000E+0 -82.00681E+0 00.00000E+0 00.00000E+0 + +CoSO4:H2O(s) +CoSO4:H2O = +1.000Co+2 +1.000SO4-2 +1.000H2O + log_k -1.05 + delta_h -52.050 #kJ/mol +# Enthalpy of formation: -1200.720 kJ/mol 74NAU/RYZ + -analytic -10.16877E+0 00.00000E+0 27.18761E+2 00.00000E+0 00.00000E+0 Cotunnite -PbCl2 = 1.000Pb+2 + 2.000Cl- - log_k -4.810 - delta_h 26.160 #kJ/mol - # Enthalpy of formation: -359.4 #kJ/mol #98CHA - -analytic -2.26971E-1 0E+0 -1.36643E+3 0E+0 0E+0 +PbCl2 = +1.000Pb+2 +2.000Cl- + log_k -4.81 + delta_h +26.160 #kJ/mol +# Enthalpy of formation: -359.400 kJ/mol 98CHA + -analytic -22.69647E-2 00.00000E+0 -13.66432E+2 00.00000E+0 00.00000E+0 -Cr(OH)2(H2PO4)(s) -Cr(OH)2(H2PO4) = 1.000H2(PO4)- + 1.000Cr+3 + 2.000H2O - 2.000H+ - log_k 0.890 #04RAI/MOO - delta_h -5.080 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.3509E-5 0E+0 2.65346E+2 0E+0 0E+0 +Covellite +CuS = +1.000Cu+2 -1.000H+ +1.000HS- + log_k -22.06 #94THO/HEL + delta_h +97.475 #kJ/mol +# Enthalpy of formation: -48.875 kJ/mol + -analytic -49.83113E-1 00.00000E+0 -50.91474E+2 00.00000E+0 00.00000E+0 + +Cr(cr) +Cr = +8.000H+ +6.000e- +1.000CrO4-2 -4.000H2O + log_k -39.31 + delta_h +264.320 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 98CHA, 04CHI + -analytic 69.96876E-1 00.00000E+0 -13.80640E+3 00.00000E+0 00.00000E+0 Cr(OH)2(cr) -Cr(OH)2 = - 2.000H+ + 1.000Cr+2 + 2.000H2O - log_k 11.000 #41HUM/STO, 04CHI - delta_h -75.459 #kJ/mol - # Enthalpy of formation: -653.82 #kJ/mol - -analytic -2.21983E+0 0E+0 3.94149E+3 0E+0 0E+0 +Cr(OH)2 = -2.000H+ +1.000Cr+2 +2.000H2O + log_k +11.00 #41HUM/STO, 04CHI + delta_h -75.459 #kJ/mol +# Enthalpy of formation: -653.814 kJ/mol + -analytic -22.19849E-1 00.00000E+0 39.41498E+2 00.00000E+0 00.00000E+0 + +Cr(OH)2(H2PO4)(s) +Cr(OH)2(H2PO4) = -2.000H+ +1.000H2(PO4)- +1.000Cr+3 +2.000H2O + log_k +0.89 #04RAI/MOO + -analytic 89.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Cr(OH)3(cr) -Cr(OH)3 = - 3.000H+ + 1.000Cr+3 + 3.000H2O - log_k 7.500 #04RAI/MOO - delta_h -104.751 #kJ/mol - # Enthalpy of formation: -993.238 #kJ/mol - -analytic -1.08516E+1 0E+0 5.47152E+3 0E+0 0E+0 - -Cr(s) -Cr = 2.000H+ + 1.000CrO4-2 - 1.000H2O - 1.500O2 - log_k 89.660 - delta_h -574.989 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol - -analytic -1.10736E+1 0E+0 3.00337E+4 0E+0 0E+0 +Cr(OH)3 = -3.000H+ +1.000Cr+3 +3.000H2O + log_k +7.50 #04RAI/MOO + delta_h -104.751 #kJ/mol +# Enthalpy of formation: -993.239 kJ/mol + -analytic -10.85159E+0 00.00000E+0 54.71526E+2 00.00000E+0 00.00000E+0 Cr2(SO4)3(s) -Cr2(SO4)3 = 3.000SO4-2 + 2.000Cr+3 - log_k 4.380 - delta_h -277.720 #kJ/mol - # Enthalpy of formation: -2931.3 #kJ/mol #91KNA/KUB - -analytic -4.42744E+1 0E+0 1.45063E+4 0E+0 0E+0 +Cr2(SO4)3 = +3.000SO4-2 +2.000Cr+3 + log_k +4.38 + delta_h -277.720 #kJ/mol +# Enthalpy of formation: -2931.300 kJ/mol 91KNA/KUB + -analytic -44.27446E+0 00.00000E+0 14.50633E+3 00.00000E+0 00.00000E+0 Cr2O3(cr) -Cr2O3 = - 6.000H+ + 2.000Cr+3 + 3.000H2O - log_k 7.750 - delta_h -198.000 #kJ/mol - # Enthalpy of formation: -1140.5 #kJ/mol #04CHI - -analytic -2.69381E+1 0E+0 1.03422E+4 0E+0 0E+0 +Cr2O3 = -6.000H+ +2.000Cr+3 +3.000H2O + log_k +7.75 + delta_h -197.990 #kJ/mol +# Enthalpy of formation: -1140.500 kJ/mol 04CHI + -analytic -26.93636E+0 00.00000E+0 10.34174E+3 00.00000E+0 00.00000E+0 Cr2S3(s) -Cr2S3 = - 3.000H+ + 3.000HS- + 2.000Cr+3 - log_k 3.260 - delta_h -195.200 #kJ/mol - # Enthalpy of formation: -334.7 #kJ/mol #84PAN - -analytic -3.09375E+1 0E+0 1.0196E+4 0E+0 0E+0 +Cr2S3 = -3.000H+ +3.000HS- +2.000Cr+3 + log_k +3.26 + delta_h -195.200 #kJ/mol +# Enthalpy of formation: -334.700 kJ/mol 84PAN + -analytic -30.93757E+0 00.00000E+0 10.19601E+3 00.00000E+0 00.00000E+0 CrCl2(cr) -CrCl2 = 2.000Cl- + 1.000Cr+2 - log_k 12.730 - delta_h -103.500 #kJ/mol - # Enthalpy of formation: -388.3 #kJ/mol #98BAL/NOR - -analytic -5.4024E+0 0E+0 5.40617E+3 0E+0 0E+0 +CrCl2 = +2.000Cl- +1.000Cr+2 + log_k +12.73 + delta_h -103.474 #kJ/mol +# Enthalpy of formation: -388.300 kJ/mol 98BAL/NOR + -analytic -53.97867E-1 00.00000E+0 54.04823E+2 00.00000E+0 00.00000E+0 CrCl3(cr) -CrCl3 = 3.000Cl- + 1.000Cr+3 - log_k 20.190 - delta_h -197.300 #kJ/mol - # Enthalpy of formation: -544.4 #kJ/mol #98BAL/NOR - -analytic -1.43754E+1 0E+0 1.03057E+4 0E+0 0E+0 - -CrO2(cr) -CrO2 = 2.000H+ + 1.000CrO4-2 - 1.000H2O - 0.500O2 - log_k -8.690 - delta_h 10.797 #kJ/mol - # Enthalpy of formation: -597.9 #kJ/mol #93BAR, 04CHI - -analytic -6.79845E+0 0E+0 -5.63966E+2 0E+0 0E+0 - -CrO3(cr) -CrO3 = 2.000H+ + 1.000CrO4-2 - 1.000H2O - log_k -3.020 - delta_h -10.070 #kJ/mol - # Enthalpy of formation: -583.1 #kJ/mol #98BAL/NOR, 04CHI - -analytic -4.78419E+0 0E+0 5.25992E+2 0E+0 0E+0 - -CrPO4(green) -CrPO4 = - 2.000H+ + 1.000H2(PO4)- + 1.000Cr+3 - log_k -3.060 #51ZHA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.06E+0 0E+0 0E+0 0E+0 0E+0 - -CrPO4(purple) -CrPO4 = - 2.000H+ + 1.000H2(PO4)- + 1.000Cr+3 - log_k 2.560 #51ZHA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.56E+0 0E+0 0E+0 0E+0 0E+0 - -CrS(s) -CrS = - 1.000H+ + 1.000HS- + 1.000Cr+2 - log_k 1.660 - delta_h -38.800 #kJ/mol - # Enthalpy of formation: -135.143 #kJ/mol #84PAN - -analytic -5.13746E+0 0E+0 2.02666E+3 0E+0 0E+0 +CrCl3 = +3.000Cl- +1.000Cr+3 + log_k +20.19 + delta_h -197.340 #kJ/mol +# Enthalpy of formation: -544.400 kJ/mol 98BAL/NOR + -analytic -14.38248E+0 00.00000E+0 10.30779E+3 00.00000E+0 00.00000E+0 Cristobalite -SiO2 = 1.000H4(SiO4) - 2.000H2O - log_k -3.160 - delta_h 16.500 #kJ/mol - # Enthalpy of formation: -906.034 #kJ/mol #04FAB/SAX - -analytic -2.69328E-1 0E+0 -8.61854E+2 0E+0 0E+0 +SiO2 = +1.000H4(SiO4) -2.000H2O + log_k -3.16 + delta_h +16.500 #kJ/mol +# Enthalpy of formation: -906.034 kJ/mol 04FAB/SAX + -analytic -26.93241E-2 00.00000E+0 -86.18550E+1 00.00000E+0 00.00000E+0 + +CrO2(cr) +CrO2 = +4.000H+ +2.000e- +1.000CrO4-2 -2.000H2O + log_k -51.68 + delta_h +290.560 #kJ/mol +# Enthalpy of formation: -597.900 kJ/mol 93BAR, 04CHI + -analytic -77.60731E-2 00.00000E+0 -15.17701E+3 00.00000E+0 00.00000E+0 + +CrO3(cr) +CrO3 = +2.000H+ +1.000CrO4-2 -1.000H2O + log_k -3.02 + delta_h -10.070 #kJ/mol +# Enthalpy of formation: -583.100 kJ/mol 98BAL/NOR, 04CHI + -analytic -47.84188E-1 00.00000E+0 52.59927E+1 00.00000E+0 00.00000E+0 Crocoite -PbCrO4 = 1.000Pb+2 + 1.000CrO4-2 - log_k -12.550 #42KOL/PER - delta_h 48.940 #kJ/mol - # Enthalpy of formation: -927.02 #kJ/mol #75DEL/MCC - -analytic -3.97609E+0 0E+0 -2.55631E+3 0E+0 0E+0 +PbCrO4 = +1.000Pb+2 +1.000CrO4-2 + log_k -12.55 #42KOL/PER + delta_h +48.940 #kJ/mol +# Enthalpy of formation: -927.020 kJ/mol 75DEL/MCC + -analytic -39.76080E-1 00.00000E+0 -25.56314E+2 00.00000E+0 00.00000E+0 Cronstedtite-Th -Fe4SiO5(OH)4 = 2.000Fe+3 + 2.000Fe+2 - 10.000H+ + 1.000H4(SiO4) + 5.000H2O - log_k 16.110 - delta_h -253.794 #kJ/mol - # Enthalpy of formation: -2914.55 #kJ/mol #15BLA/VIE - -analytic -2.83527E+1 0E+0 1.32566E+4 0E+0 0E+0 +Fe4SiO5(OH)4 = +2.000Fe+3 +2.000Fe+2 -10.000H+ +1.000H4(SiO4) +5.000H2O + log_k +16.11 + delta_h -256.496 #kJ/mol +# Enthalpy of formation: -2914.550 kJ/mol 15BLA/VIE + -analytic -28.82617E+0 00.00000E+0 13.39772E+3 00.00000E+0 00.00000E+0 + -Vm 76.800 -Cs(s) -Cs = 1.000Cs+ + 0.500H2O - 1.000H+ - 0.250O2 - log_k 72.555 - delta_h -397.882 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #92GRE/FUG - -analytic 2.84926E+0 0E+0 2.07828E+4 0E+0 0E+0 +CrPO4(green) +CrPO4 = -2.000H+ +1.000H2(PO4)- +1.000Cr+3 + log_k -3.06 #51ZHA + -analytic -30.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +CrPO4(purple) +CrPO4 = -2.000H+ +1.000H2(PO4)- +1.000Cr+3 + log_k +2.56 #51ZHA + -analytic 25.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +CrS(s) +CrS = -1.000H+ +1.000HS- +1.000Cr+2 + log_k +1.66 + delta_h -38.771 #kJ/mol +# Enthalpy of formation: -135.143 kJ/mol 84PAN + -analytic -51.32388E-1 00.00000E+0 20.25150E+2 00.00000E+0 00.00000E+0 + +Cs(cr) +Cs = +1.000Cs+ +1.000e- + log_k +51.06 + delta_h -258.000 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 92GRE/FUG + -analytic 58.60340E-1 00.00000E+0 13.47628E+3 00.00000E+0 00.00000E+0 Cs2(CO3)(s) -Cs2(CO3) = 2.000Cs+ + 1.000CO3-2 - log_k 9.900 - delta_h -55.348 #kJ/mol - # Enthalpy of formation: -1135.882 #kJ/mol - -analytic 2.03461E-1 0E+0 2.89102E+3 0E+0 0E+0 +Cs2(CO3) = +2.000Cs+ +1.000CO3-2 + log_k +9.90 + delta_h -53.609 #kJ/mol +# Enthalpy of formation: -1137.620 kJ/mol + -analytic 50.81064E-2 00.00000E+0 28.00193E+2 00.00000E+0 00.00000E+0 Cs2(SO4)(s) -Cs2(SO4) = 2.000Cs+ + 1.000SO4-2 - log_k 0.580 - delta_h 17.756 #kJ/mol - # Enthalpy of formation: -1443.096 #kJ/mol - -analytic 3.69071E+0 0E+0 -9.27459E+2 0E+0 0E+0 +Cs2(SO4) = +2.000Cs+ +1.000SO4-2 + log_k +0.58 + delta_h +17.769 #kJ/mol +# Enthalpy of formation: -1443.108 kJ/mol + -analytic 36.92995E-1 00.00000E+0 -92.81395E+1 00.00000E+0 00.00000E+0 Cs2MoO4(s) -Cs2MoO4 = 2.000Cs+ + 1.000MoO4-2 - log_k 2.210 - delta_h 1.581 #kJ/mol - # Enthalpy of formation: -1514.581 #kJ/mol - -analytic 2.48698E+0 0E+0 -8.25813E+1 0E+0 0E+0 +Cs2MoO4 = +2.000Cs+ +1.000MoO4-2 + log_k +2.21 + delta_h +1.731 #kJ/mol +# Enthalpy of formation: -1514.730 kJ/mol + -analytic 25.13258E-1 00.00000E+0 -90.41643E+0 00.00000E+0 00.00000E+0 Cs2O(s) -Cs2O = 2.000Cs+ - 2.000H+ + 1.000H2O - log_k 89.680 - delta_h -456.100 #kJ/mol - # Enthalpy of formation: -345.73 #kJ/mol - -analytic 9.77483E+0 0E+0 2.38237E+4 0E+0 0E+0 +Cs2O = +2.000Cs+ -2.000H+ +1.000H2O + log_k +89.68 + delta_h -456.069 #kJ/mol +# Enthalpy of formation: -345.759 kJ/mol + -analytic 97.80141E-1 00.00000E+0 23.82214E+3 00.00000E+0 00.00000E+0 CsBr(cr) -CsBr = 1.000Cs+ + 1.000Br- - log_k 0.720 - delta_h 26.190 #kJ/mol - # Enthalpy of formation: -405.6 #kJ/mol #01LEM/FUG - -analytic 5.30828E+0 0E+0 -1.368E+3 0E+0 0E+0 +CsBr = +1.000Cs+ +1.000Br- + log_k +0.72 + delta_h +26.190 #kJ/mol +# Enthalpy of formation: -405.600 kJ/mol 01LEM/FUG + -analytic 53.08291E-1 00.00000E+0 -13.67999E+2 00.00000E+0 00.00000E+0 CsCl(cr) -CsCl = 1.000Cs+ + 1.000Cl- - log_k 1.550 - delta_h 17.230 #kJ/mol - # Enthalpy of formation: -442.31 #kJ/mol #01LEM/FUG - -analytic 4.56856E+0 0E+0 -8.99984E+2 0E+0 0E+0 +CsCl = +1.000Cs+ +1.000Cl- + log_k +1.55 + delta_h +17.230 #kJ/mol +# Enthalpy of formation: -442.310 kJ/mol 01LEM/FUG + -analytic 45.68566E-1 00.00000E+0 -89.99856E+1 00.00000E+0 00.00000E+0 -Cu(SeO3):2H2O(s) -Cu(SeO3):2H2O = 1.000Cu+2 + 1.000SeO3-2 + 2.000H2O - log_k -9.500 #Average value from 56CHU2 and 93SLA/POP in 05OLI/NOL - delta_h -15.320 #kJ/mol - # Enthalpy of formation: -998.6 #kJ/mol #05OLI/NOL - -analytic -1.21839E+1 0E+0 8.00218E+2 0E+0 0E+0 +CSH0.8 +Ca0.8SiO2.8:1.54H2O = +0.800Ca+2 -1.600H+ +1.000H4(SiO4) +0.340H2O + log_k +11.05 #10BLA/BOU1 + delta_h -47.646 #kJ/mol +# Enthalpy of formation: -1945.130 kJ/mol 10BLA/BOU1 + -analytic 27.02779E-1 00.00000E+0 24.88724E+2 00.00000E+0 00.00000E+0 + -Vm 59.290 -Cu(SeO4):5H2O(s) -Cu(SeO4):5H2O = 1.000Cu+2 + 1.000SeO4-2 + 5.000H2O - log_k -2.440 #05OLI/NOL - delta_h 5.580 #kJ/mol - # Enthalpy of formation: -1973.33 #kJ/mol #05OLI/NOL - -analytic -1.46243E+0 0E+0 -2.91463E+2 0E+0 0E+0 +CSH1.2 +Ca1.2SiO3.2:2.06H2O = +1.200Ca+2 -2.400H+ +1.000H4(SiO4) +1.260H2O + log_k +19.30 #10BLA/BOU1 + delta_h -88.600 #kJ/mol +# Enthalpy of formation: -2384.340 kJ/mol 10BLA/BOU1 + -analytic 37.77946E-1 00.00000E+0 46.27900E+2 00.00000E+0 00.00000E+0 + -Vm 71.950 + +CSH1.6 +Ca1.6SiO3.6:2.58H2O = +1.600Ca+2 -3.200H+ +1.000H4(SiO4) +2.180H2O + log_k +28.00 #10BLA/BOU1 + delta_h -133.313 #kJ/mol +# Enthalpy of formation: -2819.790 kJ/mol 10BLA/BOU1 + -analytic 46.44565E-1 00.00000E+0 69.63423E+2 00.00000E+0 00.00000E+0 + -Vm 84.680 Cu(cr) -Cu = 1.000Cu+2 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 31.600 - delta_h -214.863 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #01LEM/FUG - -analytic -6.04233E+0 0E+0 1.12231E+4 0E+0 0E+0 +Cu = +1.000Cu+2 +2.000e- + log_k -11.39 + delta_h +64.900 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 01LEM/FUG + -analytic -20.00807E-3 00.00000E+0 -33.89963E+2 00.00000E+0 00.00000E+0 + +Cu(OH)2(s) +Cu(OH)2 = +1.000Cu+2 -2.000H+ +2.000H2O + log_k +8.64 #97BEV/PUI + delta_h -62.764 #kJ/mol +# Enthalpy of formation: -443.996 kJ/mol + -analytic -23.55781E-1 00.00000E+0 32.78392E+2 00.00000E+0 00.00000E+0 + +Cu(SeO3):2H2O(s) +Cu(SeO3):2H2O = +1.000Cu+2 +1.000SeO3-2 +2.000H2O + log_k -9.50 #Average value from 56CHU2 and 93SLA/POP in 05OLI/NOL + delta_h -15.320 #kJ/mol +# Enthalpy of formation: -998.600 kJ/mol 05OLI/NOL + -analytic -12.18395E+0 00.00000E+0 80.02193E+1 00.00000E+0 00.00000E+0 + +Cu(SeO4):5H2O(s) +Cu(SeO4):5H2O = +1.000Cu+2 +1.000SeO4-2 +5.000H2O + log_k -2.44 #05OLI/NOL + delta_h +5.580 #kJ/mol +# Enthalpy of formation: -1973.330 kJ/mol 05OLI/NOL + -analytic -14.62426E-1 00.00000E+0 -29.14637E+1 00.00000E+0 00.00000E+0 + +Cu1.75S(cr) +Cu1.75S = +0.250Cu+2 +1.500Cu+ -1.000H+ +1.000HS- + log_k -31.22 #94THO/HEL + delta_h +179.717 #kJ/mol +# Enthalpy of formation: -73.910 kJ/mol + -analytic 26.50669E-2 00.00000E+0 -93.87273E+2 00.00000E+0 00.00000E+0 + +Cu1.934S(cr) +Cu1.934S = +0.066Cu+2 +1.868Cu+ -1.000H+ +1.000HS- + log_k -33.33 #94THO/HEL + delta_h +198.224 #kJ/mol +# Enthalpy of formation: -78.382 kJ/mol + -analytic 13.97354E-1 00.00000E+0 -10.35396E+3 00.00000E+0 00.00000E+0 + +Cu2Cl(OH)3(am) +Cu2Cl(OH)3 = +2.000Cu+2 -3.000H+ +1.000Cl- +3.000H2O + log_k +7.46 #00PUI/TAX + delta_h -79.445 #kJ/mol 97LUB/KOL +# Enthalpy of formation: -815.325 kJ/mol + -analytic -64.58167E-1 00.00000E+0 41.49701E+2 00.00000E+0 00.00000E+0 + +Cu2Cl(OH)3(s) +Cu2Cl(OH)3 = +2.000Cu+2 -3.000H+ +1.000Cl- +3.000H2O + log_k +6.90 #97LUB/KOL + delta_h -79.445 #kJ/mol 97LUB/KOL +# Enthalpy of formation: -815.325 kJ/mol + -analytic -70.18167E-1 00.00000E+0 41.49701E+2 00.00000E+0 00.00000E+0 + +Cu2O(cr) +Cu2O = +2.000Cu+ -2.000H+ +1.000H2O + log_k -0.62 #11PAL + delta_h +18.446 #kJ/mol +# Enthalpy of formation: -163.099 kJ/mol + -analytic 26.11600E-1 00.00000E+0 -96.35017E+1 00.00000E+0 00.00000E+0 Cu2Se(alfa) -Cu2Se = 2.000Cu+ - 1.000H+ + 1.000HSe- - log_k -45.890 #01SEB/POT2 - delta_h 216.940 #kJ/mol - # Enthalpy of formation: -59.3 #kJ/mol #05OLI/NOL - -analytic -7.8838E+0 0E+0 -1.13315E+4 0E+0 0E+0 +Cu2Se = +2.000Cu+ -1.000H+ +1.000HSe- + log_k -45.89 #01SEB/POT2 + delta_h +214.778 #kJ/mol +# Enthalpy of formation: -59.300 kJ/mol 05OLI/NOL + -analytic -82.62510E-1 00.00000E+0 -11.21864E+3 00.00000E+0 00.00000E+0 Cu3(AsO4)2(s) -Cu3(AsO4)2 = 3.000Cu+2 + 2.000AsO4-3 - log_k -34.880 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.488E+1 0E+0 0E+0 0E+0 0E+0 +Cu3(AsO4)2 = +3.000Cu+2 +2.000AsO4-3 + log_k -34.88 + -analytic -34.88000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +CuCl(s) +CuCl = +1.000Cu+ +1.000Cl- + log_k -6.82 #97WAN/ZHA + delta_h +41.579 #kJ/mol +# Enthalpy of formation: -138.070 kJ/mol 85CHA/DAV + -analytic 46.43281E-2 00.00000E+0 -21.71822E+2 00.00000E+0 00.00000E+0 + +CuCO3(s) +CuCO3 = +1.000Cu+2 +1.000CO3-2 + log_k -11.45 #99GRA/BER in 00PUI/TAX + delta_h -4.977 #kJ/mol +# Enthalpy of formation: -605.353 kJ/mol + -analytic -12.32193E+0 00.00000E+0 25.99668E+1 00.00000E+0 00.00000E+0 + +CuO(s) +CuO = +1.000Cu+2 -2.000H+ +1.000H2O + log_k +7.63 #21RIB/COL from 65SCH/ALT + delta_h -64.616 #kJ/mol +# Enthalpy of formation: -156.313 kJ/mol + -analytic -36.90237E-1 00.00000E+0 33.75129E+2 00.00000E+0 00.00000E+0 CuSe(alfa) -CuSe = 1.000Cu+2 - 1.000H+ + 1.000HSe- - log_k -25.460 - delta_h 118.700 #kJ/mol - # Enthalpy of formation: -39.5 #kJ/mol #05OLI/NOL - -analytic -4.66468E+0 0E+0 -6.20012E+3 0E+0 0E+0 +CuSe = +1.000Cu+2 -1.000H+ +1.000HSe- + log_k -25.46 + delta_h +118.700 #kJ/mol +# Enthalpy of formation: -39.500 kJ/mol 05OLI/NOL + -analytic -46.64653E-1 00.00000E+0 -62.00133E+2 00.00000E+0 00.00000E+0 CuSe(beta) -CuSe = 1.000Cu+2 - 1.000H+ + 1.000HSe- - log_k -25.130 - delta_h 116.000 #kJ/mol - # Enthalpy of formation: -36.8 #kJ/mol #05OLI/NOL - -analytic -4.8077E+0 0E+0 -6.05909E+3 0E+0 0E+0 +CuSe = +1.000Cu+2 -1.000H+ +1.000HSe- + log_k -25.13 + delta_h +116.000 #kJ/mol +# Enthalpy of formation: -36.800 kJ/mol 05OLI/NOL + -analytic -48.07672E-1 00.00000E+0 -60.59102E+2 00.00000E+0 00.00000E+0 Dawsonite -NaAl(CO3)(OH)2 = 1.000Na+ + 1.000Al+3 - 2.000H+ + 1.000CO3-2 + 2.000H2O - log_k -6.000 - delta_h -61.630 #kJ/mol - # Enthalpy of formation: -1964 #kJ/mol #76FER/STU - -analytic -1.67971E+1 0E+0 3.21915E+3 0E+0 0E+0 +NaAl(CO3)(OH)2 = +1.000Na+ +1.000Al+3 -2.000H+ +1.000CO3-2 +2.000H2O + log_k -6.00 + delta_h -61.630 #kJ/mol +# Enthalpy of formation: -1964.000 kJ/mol 76FER/STU + -analytic -16.79711E+0 00.00000E+0 32.19159E+2 00.00000E+0 00.00000E+0 + -Vm 59.300 Diaspore -AlO(OH) = 1.000Al+3 - 3.000H+ + 2.000H2O - log_k 6.860 - delta_h -108.760 #kJ/mol - # Enthalpy of formation: -1001.3 #kJ/mol #95ROB/HEM - -analytic -1.21939E+1 0E+0 5.68092E+3 0E+0 0E+0 +AlO(OH) = +1.000Al+3 -3.000H+ +2.000H2O + log_k +6.87 + delta_h -108.760 #kJ/mol +# Enthalpy of formation: -1001.300 kJ/mol 95ROB/HEM + -analytic -12.18393E+0 00.00000E+0 56.80930E+2 00.00000E+0 00.00000E+0 Dickite -Al2Si2O5(OH)4 = 2.000Al+3 - 6.000H+ + 2.000H4(SiO4) + 1.000H2O - log_k 9.390 - delta_h -185.218 #kJ/mol - # Enthalpy of formation: -4099.8 #kJ/mol #03FIA/MAJ - -analytic -2.30588E+1 0E+0 9.6746E+3 0E+0 0E+0 +Al2Si2O5(OH)4 = +2.000Al+3 -6.000H+ +2.000H4(SiO4) +1.000H2O + log_k +9.39 + delta_h -185.218 #kJ/mol +# Enthalpy of formation: -4099.800 kJ/mol 03FIA/MAJ + -analytic -23.05880E+0 00.00000E+0 96.74610E+2 00.00000E+0 00.00000E+0 Dolomite -CaMg(CO3)2 = 1.000Ca+2 + 1.000Mg+2 + 2.000CO3-2 - log_k -17.120 - delta_h -35.960 #kJ/mol - # Enthalpy of formation: -2324.5 #kJ/mol #95ROB/HEM - -analytic -2.34199E+1 0E+0 1.87832E+3 0E+0 0E+0 +CaMg(CO3)2 = +1.000Ca+2 +1.000Mg+2 +2.000CO3-2 + log_k -17.13 + delta_h -35.960 #kJ/mol +# Enthalpy of formation: -2324.500 kJ/mol 95ROB/HEM + -analytic -23.42992E+0 00.00000E+0 18.78322E+2 00.00000E+0 00.00000E+0 + -Vm 64.370 Downeyite -SeO2 = 2.000H+ + 1.000SeO3-2 - 1.000H2O - log_k -8.150 - delta_h 4.060 #kJ/mol - # Enthalpy of formation: -225.39 #kJ/mol #05OLI/NOL - -analytic -7.43872E+0 0E+0 -2.12068E+2 0E+0 0E+0 +SeO2 = +2.000H+ +1.000SeO3-2 -1.000H2O + log_k -8.15 + delta_h +4.060 #kJ/mol +# Enthalpy of formation: -225.390 kJ/mol 05OLI/NOL + -analytic -74.38719E-1 00.00000E+0 -21.20686E+1 00.00000E+0 00.00000E+0 Eastonite -KMg2Al3Si2O10(OH)2 = 2.000Mg+2 + 1.000K+ + 3.000Al+3 - 14.000H+ + 2.000H4(SiO4) + 4.000H2O - log_k 46.320 - delta_h -518.108 #kJ/mol - # Enthalpy of formation: -6348.94 #kJ/mol #98HOL/POW - -analytic -4.44485E+1 0E+0 2.70626E+4 0E+0 0E+0 +KMg2Al3Si2O10(OH)2 = +2.000Mg+2 +1.000K+ +3.000Al+3 -14.000H+ +2.000H4(SiO4) +4.000H2O + log_k +46.30 + delta_h -518.108 #kJ/mol +# Enthalpy of formation: -6348.940 kJ/mol 98HOL/POW + -analytic -44.46863E+0 00.00000E+0 27.06267E+3 00.00000E+0 00.00000E+0 + -Vm 147.510 Epsonite -Mg(SO4):7H2O = 1.000Mg+2 + 1.000SO4-2 + 7.000H2O - log_k -1.880 #84HAR/MOL - delta_h 10.990 #kJ/mol - # Enthalpy of formation: -3388.14 #kJ/mol - -analytic 4.53625E-2 0E+0 -5.74047E+2 0E+0 0E+0 +Mg(SO4):7H2O = +1.000Mg+2 +1.000SO4-2 +7.000H2O + log_k -1.88 #84HAR/MOL + delta_h +10.990 #kJ/mol +# Enthalpy of formation: -3388.138 kJ/mol + -analytic 45.36535E-3 00.00000E+0 -57.40477E+1 00.00000E+0 00.00000E+0 Ettringite -Ca6Al2(SO4)3(OH)12:26H2O = 6.000Ca+2 + 2.000Al+3 - 12.000H+ + 3.000SO4-2 + 38.000H2O - log_k 56.970 #10BLA/BOU2 - delta_h -379.830 #kJ/mol - # Enthalpy of formation: -17544.53 #kJ/mol #10BLA/BOU2 - -analytic -9.57326E+0 0E+0 1.98399E+4 0E+0 0E+0 +Ca6Al2(SO4)3(OH)12:26H2O = +6.000Ca+2 +2.000Al+3 -12.000H+ +3.000SO4-2 +38.000H2O + log_k +56.97 #10BLA/BOU2 + delta_h -379.830 #kJ/mol +# Enthalpy of formation: -17544.530kJ/mol 10BLA/BOU2 + -analytic -95.73360E-1 00.00000E+0 19.83990E+3 00.00000E+0 00.00000E+0 + -Vm 710.320 Ettringite-Fe -Ca6Fe2(SO4)3(OH)12:26H2O = 6.000Ca+2 + 2.000Fe+3 - 12.000H+ + 3.000SO4-2 + 38.000H2O - log_k 54.550 #10BLA/BOU2 - delta_h -343.754 #kJ/mol - # Enthalpy of formation: -16601.806 #kJ/mol - -analytic -5.67303E+0 0E+0 1.79555E+4 0E+0 0E+0 - -Eu(CO3)(OH)(cr) -Eu(CO3)(OH) = 1.000Eu+3 - 1.000H+ + 1.000CO3-2 + 1.000H2O - log_k -9.630 - delta_h -43.391 #kJ/mol - # Enthalpy of formation: -1523 #kJ/mol #05ROR/FUG - -analytic -1.72318E+1 0E+0 2.26647E+3 0E+0 0E+0 - -Eu(CO3)(OH):0.5H2O(s) -Eu(CO3)(OH):0.5H2O = 1.000Eu+3 - 1.000H+ + 1.000CO3-2 + 1.500H2O - log_k -7.800 #95SPA/BRU - delta_h -55.906 #kJ/mol - # Enthalpy of formation: -1653.4 #kJ/mol #05ROR/FUG - -analytic -1.75943E+1 0E+0 2.92017E+3 0E+0 0E+0 - -Eu(NO3)3:6H2O(s) -Eu(NO3)3:6H2O = 1.000Eu+3 + 3.000NO3- + 6.000H2O - log_k 1.840 #95SPA/BRU - delta_h 16.839 #kJ/mol - # Enthalpy of formation: -2957.7 #kJ/mol #82WAG/EVA - -analytic 4.79006E+0 0E+0 -8.79561E+2 0E+0 0E+0 - -Eu(OH)3(am) -Eu(OH)3 = 1.000Eu+3 - 3.000H+ + 3.000H2O - log_k 17.600 #98DIA/RAG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.76E+1 0E+0 0E+0 0E+0 0E+0 - -Eu(OH)3(cr) -Eu(OH)3 = 1.000Eu+3 - 3.000H+ + 3.000H2O - log_k 15.460 #98DIA/RAG - delta_h -127.542 #kJ/mol - # Enthalpy of formation: -1335.279 #kJ/mol - -analytic -6.88437E+0 0E+0 6.66197E+3 0E+0 0E+0 - -Eu(PO4):xH2O(s) -Eu(PO4) = 1.000Eu+3 - 2.000H+ + 1.000H2(PO4)- - log_k -4.840 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.84E+0 0E+0 0E+0 0E+0 0E+0 +Ca6Fe2(SO4)3(OH)12:26H2O = +6.000Ca+2 +2.000Fe+3 -12.000H+ +3.000SO4-2 +38.000H2O + log_k +54.55 #10BLA/BOU2 + delta_h -346.706 #kJ/mol +# Enthalpy of formation: -16600.951kJ/mol + -analytic -61.90284E-1 00.00000E+0 18.10972E+3 00.00000E+0 00.00000E+0 + -Vm 711.800 Eu(cr) -Eu = 1.000Eu+3 + 1.500H2O - 3.000H+ - 0.750O2 - log_k 165.125 - delta_h -1024.976 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #82WAG/EVA - -analytic -1.44427E+1 0E+0 5.35381E+4 0E+0 0E+0 +Eu = +1.000Eu+3 +3.000e- + log_k +100.64 + delta_h -605.325 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 82WAG/EVA + -analytic -54.08388E-1 00.00000E+0 31.61833E+3 00.00000E+0 00.00000E+0 -Eu2(CO3)3:3H2O(s) -Eu2(CO3)3:3H2O = 2.000Eu+3 + 3.000CO3-2 + 3.000H2O - log_k -35.000 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.5E+1 0E+0 0E+0 0E+0 0E+0 +Eu(NO3)3:6H2O(s) +Eu(NO3)3:6H2O = +1.000Eu+3 +3.000NO3- +6.000H2O + log_k +1.84 #95SPA/BRU + delta_h +16.845 #kJ/mol +# Enthalpy of formation: -2957.700 kJ/mol 82WAG/EVA + -analytic 47.91117E-1 00.00000E+0 -87.98756E+1 00.00000E+0 00.00000E+0 + +Eu(OH)3(am) +Eu(OH)3 = +1.000Eu+3 -3.000H+ +3.000H2O + log_k +17.60 #98DIA/RAG + -analytic 17.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +Eu(OH)3(cr) +Eu(OH)3 = +1.000Eu+3 -3.000H+ +3.000H2O + log_k +15.46 #98DIA/RAG + delta_h -127.543 #kJ/mol +# Enthalpy of formation: -1335.272 kJ/mol + -analytic -68.84574E-1 00.00000E+0 66.62035E+2 00.00000E+0 00.00000E+0 + +Eu(PO4):xH2O(s) +Eu(PO4) = +1.000Eu+3 -2.000H+ +1.000H2(PO4)- + log_k -4.84 #95SPA/BRU + -analytic -48.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +Eu2(CO3)3(s) +Eu2(CO3)3 = +2.000Eu+3 +3.000CO3-2 + log_k -35.00 #95SPA/BRU + -analytic -35.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Eu2(SO4)3:8H2O(s) -Eu2(SO4)3:8H2O = 2.000Eu+3 + 3.000SO4-2 + 8.000H2O - log_k -10.200 #95SPA/BRU - delta_h -90.974 #kJ/mol - # Enthalpy of formation: -6134.348 #kJ/mol - -analytic -2.61379E+1 0E+0 4.7519E+3 0E+0 0E+0 +Eu2(SO4)3:8H2O = +2.000Eu+3 +3.000SO4-2 +8.000H2O + log_k -10.20 #95SPA/BRU + delta_h -90.974 #kJ/mol +# Enthalpy of formation: -6134.332 kJ/mol + -analytic -26.13796E+0 00.00000E+0 47.51903E+2 00.00000E+0 00.00000E+0 Eu2O3(cubic) -Eu2O3 = 2.000Eu+3 - 6.000H+ + 3.000H2O - log_k 52.400 #95SPA/BRU - delta_h -405.453 #kJ/mol - # Enthalpy of formation: -1662.7 #kJ/mol #82WAG/EVA - -analytic -1.86322E+1 0E+0 2.11783E+4 0E+0 0E+0 +Eu2O3 = +2.000Eu+3 -6.000H+ +3.000H2O + log_k +52.40 #95SPA/BRU + delta_h -405.440 #kJ/mol +# Enthalpy of formation: -1662.700 kJ/mol 82WAG/EVA + -analytic -18.63004E+0 00.00000E+0 21.17761E+3 00.00000E+0 00.00000E+0 Eu2O3(monoclinic) -Eu2O3 = 2.000Eu+3 - 6.000H+ + 3.000H2O - log_k 53.470 - delta_h -418.514 #kJ/mol - # Enthalpy of formation: -1649.638 #kJ/mol - -analytic -1.98504E+1 0E+0 2.18605E+4 0E+0 0E+0 +Eu2O3 = +2.000Eu+3 -6.000H+ +3.000H2O + log_k +53.47 + delta_h -418.513 #kJ/mol +# Enthalpy of formation: -1649.626 kJ/mol + -analytic -19.85033E+0 00.00000E+0 21.86046E+3 00.00000E+0 00.00000E+0 Eu3O4(s) -Eu3O4 = 3.000Eu+3 - 9.000H+ + 4.500H2O - 0.250O2 - log_k 114.515 - delta_h -829.196 #kJ/mol - # Enthalpy of formation: -2270 #kJ/mol - -analytic -3.07536E+1 0E+0 4.33118E+4 0E+0 0E+0 +Eu3O4 = +3.000Eu+3 -8.000H+ +1.000e- +4.000H2O + log_k +93.02 + delta_h -688.765 #kJ/mol +# Enthalpy of formation: -2270.529 kJ/mol + -analytic -27.64645E+0 00.00000E+0 35.97670E+3 00.00000E+0 00.00000E+0 EuBr3(s) -EuBr3 = 1.000Eu+3 + 3.000Br- - log_k 30.190 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.019E+1 0E+0 0E+0 0E+0 0E+0 +EuBr3 = +1.000Eu+3 +3.000Br- + log_k +30.19 #95SPA/BRU + -analytic 30.19000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 EuCl(OH)2(s) -EuCl(OH)2 = 1.000Eu+3 - 2.000H+ + 1.000Cl- + 2.000H2O - log_k 9.130 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.13E+0 0E+0 0E+0 0E+0 0E+0 +EuCl(OH)2 = +1.000Eu+3 -2.000H+ +1.000Cl- +2.000H2O + log_k +9.13 #95SPA/BRU + -analytic 91.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 EuCl2(s) -EuCl2 = 1.000Eu+3 + 2.000Cl- + 0.500H2O - 1.000H+ - 0.250O2 - log_k 32.715 #95SPA/BRU - delta_h -255.373 #kJ/mol - # Enthalpy of formation: -824 #kJ/mol #82WAG/EVA - -analytic -1.20243E+1 0E+0 1.3339E+4 0E+0 0E+0 +EuCl2 = +1.000Eu+3 +1.000e- +2.000Cl- + log_k +11.22 #95SPA/BRU + delta_h -115.485 #kJ/mol +# Enthalpy of formation: -824.000 kJ/mol 82WAG/EVA + -analytic -90.12104E-1 00.00000E+0 60.32202E+2 00.00000E+0 00.00000E+0 EuCl3(s) -EuCl3 = 1.000Eu+3 + 3.000Cl- - log_k 19.720 #96FAL/REA - delta_h -170.571 #kJ/mol - # Enthalpy of formation: -936 #kJ/mol #82WAG/EVA - -analytic -1.01627E+1 0E+0 8.90953E+3 0E+0 0E+0 +EuCl3 = +1.000Eu+3 +3.000Cl- + log_k +19.72 #96FAL/REA + delta_h -170.565 #kJ/mol +# Enthalpy of formation: -936.000 kJ/mol 82WAG/EVA + -analytic -10.16171E+0 00.00000E+0 89.09230E+2 00.00000E+0 00.00000E+0 EuCl3:6H2O(s) -EuCl3:6H2O = 1.000Eu+3 + 3.000Cl- + 6.000H2O - log_k 5.200 #95SPA/BRU - delta_h -41.414 #kJ/mol - # Enthalpy of formation: -2780.137 #kJ/mol - -analytic -2.05541E+0 0E+0 2.1632E+3 0E+0 0E+0 +EuCl3:6H2O = +1.000Eu+3 +3.000Cl- +6.000H2O + log_k +5.20 #95SPA/BRU + delta_h -41.414 #kJ/mol +# Enthalpy of formation: -2780.128 kJ/mol + -analytic -20.55421E-1 00.00000E+0 21.63204E+2 00.00000E+0 00.00000E+0 + +EuCO3OH(cr) +Eu(CO3)(OH) = +1.000Eu+3 -1.000H+ +1.000CO3-2 +1.000H2O + log_k -9.63 + delta_h -43.385 #kJ/mol +# Enthalpy of formation: -1523.000 kJ/mol 05ROR/FUG + -analytic -17.23073E+0 00.00000E+0 22.66156E+2 00.00000E+0 00.00000E+0 + +EuCO3OH:0.5H2O(s) +Eu(CO3)(OH):0.5H2O = +1.000Eu+3 -1.000H+ +1.000CO3-2 +1.500H2O + log_k -7.80 #95SPA/BRU + delta_h -55.900 #kJ/mol +# Enthalpy of formation: -1653.400 kJ/mol 05ROR/FUG + -analytic -17.59326E+0 00.00000E+0 29.19860E+2 00.00000E+0 00.00000E+0 EuF3(s) -EuF3 = 1.000Eu+3 + 3.000F- - log_k -18.500 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.85E+1 0E+0 0E+0 0E+0 0E+0 +EuF3 = +1.000Eu+3 +3.000F- + log_k -18.50 #96FAL/REA + -analytic -18.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 EuF3:0.5H2O(s) -EuF3:0.5H2O = 1.000Eu+3 + 3.000F- + 0.500H2O - log_k -17.200 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.72E+1 0E+0 0E+0 0E+0 0E+0 +EuF3:0.5H2O = +1.000Eu+3 +3.000F- +0.500H2O + log_k -17.20 #95SPA/BRU + -analytic -17.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 EuO(s) -EuO = 1.000Eu+3 - 3.000H+ + 1.500H2O - 0.250O2 - log_k 66.265 - delta_h -439.894 #kJ/mol - # Enthalpy of formation: -591.149 #kJ/mol - -analytic -1.08009E+1 0E+0 2.29772E+4 0E+0 0E+0 +EuO = +1.000Eu+3 -2.000H+ +1.000e- +1.000H2O + log_k +44.77 + delta_h -300.012 #kJ/mol +# Enthalpy of formation: -591.143 kJ/mol + -analytic -77.89846E-1 00.00000E+0 15.67072E+3 00.00000E+0 00.00000E+0 EuOCl(s) -EuOCl = 1.000Eu+3 - 2.000H+ + 1.000Cl- + 1.000H2O - log_k 15.810 #95SPA/BRU - delta_h -154.741 #kJ/mol - # Enthalpy of formation: -903.5 #kJ/mol - -analytic -1.12994E+1 0E+0 8.08267E+3 0E+0 0E+0 +EuOCl = +1.000Eu+3 -2.000H+ +1.000Cl- +1.000H2O + log_k +15.81 #95SPA/BRU + delta_h -154.735 #kJ/mol +# Enthalpy of formation: -903.500 kJ/mol 98BUR/PET + -analytic -11.29841E+0 00.00000E+0 80.82372E+2 00.00000E+0 00.00000E+0 EuPO4:H2O(cr) -EuPO4:H2O = 1.000Eu+3 - 2.000H+ + 1.000H2(PO4)- + 1.000H2O - log_k -6.440 #97LIU/BYR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.44E+0 0E+0 0E+0 0E+0 0E+0 +EuPO4:H2O = +1.000Eu+3 -2.000H+ +1.000H2(PO4)- +1.000H2O + log_k -6.44 #97LIU/BYR + -analytic -64.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 EuSO4(s) -EuSO4 = 1.000Eu+3 + 1.000SO4-2 + 0.500H2O - 1.000H+ - 0.250O2 - log_k 18.975 #95SPA/BRU - delta_h -232.746 #kJ/mol - # Enthalpy of formation: -1421.807 #kJ/mol - -analytic -2.18002E+1 0E+0 1.21571E+4 0E+0 0E+0 +EuSO4 = +1.000Eu+3 +1.000e- +1.000SO4-2 + log_k -2.52 #95SPA/BRU + delta_h -92.864 #kJ/mol +# Enthalpy of formation: -1421.801 kJ/mol + -analytic -18.78907E+0 00.00000E+0 48.50625E+2 00.00000E+0 00.00000E+0 Fayalite -Fe2(SiO4) = 2.000Fe+2 - 4.000H+ + 1.000H4(SiO4) - log_k 19.510 - delta_h -163.054 #kJ/mol - # Enthalpy of formation: -1478.14 #kJ/mol #95ROB/HEM - -analytic -9.05579E+0 0E+0 8.51689E+3 0E+0 0E+0 +Fe2(SiO4) = +2.000Fe+2 -4.000H+ +1.000H4(SiO4) + log_k +19.55 + delta_h -163.644 #kJ/mol +# Enthalpy of formation: -1478.140 kJ/mol 95ROB/HEM + -analytic -91.19198E-1 00.00000E+0 85.47721E+2 00.00000E+0 00.00000E+0 + +Fe(alpha,cr) +Fe = +1.000Fe+2 +2.000e- + log_k +15.89 + delta_h -90.295 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 13LEM/BER + -analytic 70.99504E-3 00.00000E+0 47.16436E+2 00.00000E+0 00.00000E+0 Fe(OH)2(cr) -Fe(OH)2 = 1.000Fe+2 - 2.000H+ + 2.000H2O - log_k 12.760 - delta_h -99.056 #kJ/mol - # Enthalpy of formation: -574.011 #kJ/mol - -analytic -4.59384E+0 0E+0 5.17405E+3 0E+0 0E+0 +Fe(OH)2 = +1.000Fe+2 -2.000H+ +2.000H2O + log_k +12.78 + delta_h -87.915 #kJ/mol +# Enthalpy of formation: -574.040 kJ/mol 98CHA in 04CHI + -analytic -26.22047E-1 00.00000E+0 45.92120E+2 00.00000E+0 00.00000E+0 Fe(PO4)(cr) -Fe(PO4) = 1.000Fe+3 - 2.000H+ + 1.000H2(PO4)- - log_k -6.240 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 (provient de la base 0391 MINEQL- PSY) - delta_h -18.600 #kJ/mol - # Enthalpy of formation: -1333 #kJ/mol - -analytic -9.49858E+0 0E+0 9.71544E+2 0E+0 0E+0 +Fe(PO4) = +1.000Fe+3 -2.000H+ +1.000H2(PO4)- + log_k -1.39 + delta_h -85.096 #kJ/mol +# Enthalpy of formation: -1267.560 kJ/mol 20LEM/PAL + -analytic -16.29818E+0 00.00000E+0 44.44874E+2 00.00000E+0 00.00000E+0 -Fe(s) -Fe = 1.000Fe+2 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 58.850 #95PAR/KHO in 98CHI - delta_h -369.763 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol - -analytic -5.9296E+0 0E+0 1.9314E+4 0E+0 0E+0 +Fe0.932O(s) +Fe0.932O = +0.932Fe+2 -2.000H+ -0.136e- +1.000H2O + log_k +13.51 + delta_h -104.185 #kJ/mol +# Enthalpy of formation: -265.800 kJ/mol 20LEM/PAL + -analytic -47.42428E-1 00.00000E+0 54.41962E+2 00.00000E+0 00.00000E+0 Fe1.04Se(beta) -Fe1.04Se = 1.040Fe+2 - 1.080H+ + 1.000HSe- + 0.040H2O - 0.020O2 - log_k -1.680 - delta_h -20.891 #kJ/mol - # Enthalpy of formation: -69.6 #kJ/mol #05OLI/NOL - -analytic -5.34026E+0 0E+0 1.09119E+3 0E+0 0E+0 +Fe1.04Se = +1.040Fe+2 -1.000H+ +0.080e- +1.000HSe- + log_k -3.38 + delta_h -10.007 #kJ/mol +# Enthalpy of formation: -69.600 kJ/mol 05OLI/NOL + -analytic -51.33151E-1 00.00000E+0 52.27020E+1 00.00000E+0 00.00000E+0 Fe2(SeO3)3:6H2O(s) -Fe2(SeO3)3:6H2O = 2.000Fe+3 + 3.000SeO3-2 + 6.000H2O - log_k -41.580 #05OLI/NOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.158E+1 0E+0 0E+0 0E+0 0E+0 +Fe2(SeO3)3:6H2O = +2.000Fe+3 +3.000SeO3-2 +6.000H2O + log_k -41.58 #05OLI/NOL + -analytic -41.58000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +Fe3O4(s) +Fe3O4 = +2.000Fe+3 +1.000Fe+2 -8.000H+ +4.000H2O + log_k +12.60 #18BRU/GON + -analytic 12.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Fe3Se4(gamma) -Fe3Se4 = 3.000Fe+2 - 2.000H+ + 4.000HSe- - 1.000H2O + 0.500O2 - log_k -68.590 - delta_h 301.963 #kJ/mol - # Enthalpy of formation: -235 #kJ/mol #05OLI/NOL - -analytic -1.56884E+1 0E+0 -1.57726E+4 0E+0 0E+0 - -Fe5(OH)(PO4)3(s) -Fe5(OH)(PO4)3 = 5.000Fe+2 - 7.000H+ + 3.000H2(PO4)- + 1.000H2O - log_k -402.320 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.0232E+2 0E+0 0E+0 0E+0 0E+0 +Fe3Se4 = +3.000Fe+2 -4.000H+ -2.000e- +4.000HSe- + log_k -25.53 + delta_h +21.315 #kJ/mol +# Enthalpy of formation: -235.000 kJ/mol 05OLI/NOL + -analytic -21.79577E+0 00.00000E+0 -11.13360E+2 00.00000E+0 00.00000E+0 Fe7Se8(alfa) -Fe7Se8 = 7.000Fe+2 - 6.000H+ + 8.000HSe- - 1.000H2O + 0.500O2 - log_k -78.590 - delta_h 227.663 #kJ/mol - # Enthalpy of formation: -463.5 #kJ/mol #05OLI/NOL - -analytic -3.87052E+1 0E+0 -1.18916E+4 0E+0 0E+0 +Fe7Se8 = +7.000Fe+2 -8.000H+ -2.000e- +8.000HSe- + log_k -35.44 + delta_h -54.165 #kJ/mol +# Enthalpy of formation: -463.500 kJ/mol 05OLI/NOL + -analytic -44.92930E+0 00.00000E+0 28.29235E+2 00.00000E+0 00.00000E+0 FeAl2O4(s) -FeAl2O4 = 1.000Fe+2 + 2.000Al+3 - 8.000H+ + 4.000H2O - log_k 27.200 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.72E+1 0E+0 0E+0 0E+0 0E+0 +FeAl2O4 = +1.000Fe+2 +2.000Al+3 -8.000H+ +4.000H2O + log_k +27.20 #96FAL/REA + -analytic 27.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +FeF2(cr) +FeF2 = +1.000Fe+2 +2.000F- + log_k -2.76 + delta_h -48.895 #kJ/mol +# Enthalpy of formation: -712.100 kJ/mol 13LEM/BER + -analytic -11.32604E+0 00.00000E+0 25.53964E+2 00.00000E+0 00.00000E+0 FeMoO4(s) -FeMoO4 = 1.000Fe+2 + 1.000MoO4-2 - log_k -8.350 - delta_h -11.534 #kJ/mol - # Enthalpy of formation: -1075.466 #kJ/mol - -analytic -1.03707E+1 0E+0 6.02462E+2 0E+0 0E+0 +FeMoO4 = +1.000Fe+2 +1.000MoO4-2 + log_k -8.32 + delta_h -11.893 #kJ/mol +# Enthalpy of formation: -1075.402 kJ/mol + -analytic -10.40356E+0 00.00000E+0 62.12147E+1 00.00000E+0 00.00000E+0 FeO(s) -FeO = 1.000Fe+2 - 2.000H+ + 1.000H2O - log_k 13.370 #95ROB/HEM - delta_h -103.830 #kJ/mol - # Enthalpy of formation: -272 #kJ/mol - -analytic -4.82021E+0 0E+0 5.42341E+3 0E+0 0E+0 - -FeS(am) -FeS = 1.000Fe+2 - 1.000H+ + 1.000HS- - log_k -2.950 #91DAV - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.95E+0 0E+0 0E+0 0E+0 0E+0 +FeO = +1.000Fe+2 -2.000H+ +1.000H2O + log_k +13.39 + delta_h -104.125 #kJ/mol +# Enthalpy of formation: -272.000 kJ/mol 95ROB/HEM + -analytic -48.51917E-1 00.00000E+0 54.38828E+2 00.00000E+0 00.00000E+0 + -Vm 12.000 Ferrihydrite(am) -Fe(OH)3 = 1.000Fe+3 - 3.000H+ + 3.000H2O - log_k 2.540 #63SCH/MIC - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.54E+0 0E+0 0E+0 0E+0 0E+0 +Fe(OH)3 = +1.000Fe+3 -3.000H+ +3.000H2O + log_k +3.92 #21RIB/BEG from 04MAJ/NAV + -analytic 39.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +Ferrihydrite(cr) +Fe(OH)3 = +1.000Fe+3 -3.000H+ +3.000H2O + log_k +1.22 #21RIB/BEG from 05GRI + -analytic 12.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +Ferrihydrite(s) +Fe(OH)3 = +1.000Fe+3 -3.000H+ +3.000H2O + log_k +2.78 #21RIB/BEG from 63SCH/MIC + -analytic 27.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Ferroselite -FeSe2 = 1.000Fe+2 + 2.000HSe- - 1.000H2O + 0.500O2 - log_k -60.120 #05OLI/NOL - delta_h 327.063 #kJ/mol - # Enthalpy of formation: -108.7 #kJ/mol #05OLI/NOL - -analytic -2.82111E+0 0E+0 -1.70837E+4 0E+0 0E+0 +FeSe2 = +1.000Fe+2 -2.000H+ -2.000e- +2.000HSe- + log_k -17.10 + delta_h +47.005 #kJ/mol +# Enthalpy of formation: -108.700 kJ/mol 05OLI/NOL + -analytic -88.65077E-1 00.00000E+0 -24.55242E+2 00.00000E+0 00.00000E+0 Ferrosilite -FeSiO3 = 1.000Fe+2 - 2.000H+ + 1.000H4(SiO4) - 1.000H2O - log_k 32.710 #95TRO: CEA, N.T.SESD n° 95/49, L. TROTIGNON avril 1996; Critique et sélection de données thermodynamiques en vue de modéliser les équilibres minéral - solution, rapport annuel 1995 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.271E+1 0E+0 0E+0 0E+0 0E+0 +FeSiO3 = +1.000Fe+2 -2.000H+ +1.000H4(SiO4) -1.000H2O + log_k +32.71 #95TRO: CEA, N.T.SESD n° 95/49, L. TROTIGNON avril 1996; Critique et sélection de données thermodynamiques en vue de modéliser les équilibres minéral - solution, rapport annuel 1995 + -analytic 32.71000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 -Ferryhydrite -Fe(OH)3 = 1.000Fe+3 - 3.000H+ + 3.000H2O - log_k 1.190 #05GRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.19E+0 0E+0 0E+0 0E+0 0E+0 +FeS(am) +FeS = +1.000Fe+2 -1.000H+ +1.000HS- + log_k -2.95 #91DAV + -analytic -29.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Fluorapatite -Ca5F(PO4)3 = 5.000Ca+2 - 6.000H+ + 1.000F- + 3.000H2(PO4)- - log_k -0.910 #74HAG - delta_h -115.603 #kJ/mol - # Enthalpy of formation: -6842.547 #kJ/mol - -analytic -2.11627E+1 0E+0 6.03836E+3 0E+0 0E+0 +Ca5F(PO4)3 = +5.000Ca+2 -6.000H+ +1.000F- +3.000H2(PO4)- + log_k -0.91 #74HAG + delta_h -115.603 #kJ/mol +# Enthalpy of formation: -6842.544 kJ/mol + -analytic -21.16278E+0 00.00000E+0 60.38365E+2 00.00000E+0 00.00000E+0 + -Vm 157.600 Fluorite -CaF2 = 1.000Ca+2 + 2.000F- - log_k -10.600 - delta_h 19.623 #kJ/mol - # Enthalpy of formation: -1233.323 #kJ/mol - -analytic -7.1622E+0 0E+0 -1.02498E+3 0E+0 0E+0 +CaF2 = +1.000Ca+2 +2.000F- + log_k -10.60 #96FAL/REA + delta_h +19.623 #kJ/mol 90NOR/PLU +# Enthalpy of formation: -1233.323 kJ/mol + -analytic -71.62198E-1 00.00000E+0 -10.24981E+2 00.00000E+0 00.00000E+0 + -Vm 24.540 Foshagite -Ca4Si3O9(OH)2:0.5H2O = 4.000Ca+2 - 8.000H+ + 3.000H4(SiO4) - 0.500H2O - log_k 65.960 #10BLA/BOU1 - delta_h -380.237 #kJ/mol - # Enthalpy of formation: -6032.43 #kJ/mol #56NEW - -analytic -6.54565E-1 0E+0 1.98611E+4 0E+0 0E+0 +Ca4Si3O9(OH)2:0.5H2O = +4.000Ca+2 -8.000H+ +3.000H4(SiO4) -0.500H2O + log_k +65.96 #10BLA/BOU1 + delta_h -380.237 #kJ/mol +# Enthalpy of formation: -6032.430 kJ/mol 56NEW + -analytic -65.46629E-2 00.00000E+0 19.86116E+3 00.00000E+0 00.00000E+0 + -Vm 160.660 Friedel-salt -Ca4Al2(OH)12Cl2:4H2O = 4.000Ca+2 + 2.000Al+3 - 12.000H+ + 2.000Cl- + 16.000H2O - log_k 74.930 #10BLA/BOU2 - delta_h -486.200 #kJ/mol - # Enthalpy of formation: -7670.04 #kJ/mol #76HOU/STE - -analytic -1.02485E+1 0E+0 2.5396E+4 0E+0 0E+0 +Ca4Al2(OH)12Cl2:4H2O = +4.000Ca+2 +2.000Al+3 -12.000H+ +2.000Cl- +16.000H2O + log_k +74.93 #10BLA/BOU2 + delta_h -486.200 #kJ/mol +# Enthalpy of formation: -7670.040 kJ/mol 76HOU/STE + -analytic -10.24858E+0 00.00000E+0 25.39599E+3 00.00000E+0 00.00000E+0 + -Vm 276.240 Galena -PbS = 1.000Pb+2 - 1.000H+ + 1.000HS- - log_k -14.840 - delta_h 82.940 #kJ/mol - # Enthalpy of formation: -98.32 #kJ/mol #98CHA - -analytic -3.09557E-1 0E+0 -4.33225E+3 0E+0 0E+0 +PbS = +1.000Pb+2 -1.000H+ +1.000HS- + log_k -14.84 + delta_h +82.940 #kJ/mol +# Enthalpy of formation: -98.320 kJ/mol 98CHA + -analytic -30.95357E-2 00.00000E+0 -43.32258E+2 00.00000E+0 00.00000E+0 Gaylussite -CaNa2(CO3)2:5H2O = 1.000Ca+2 + 2.000Na+ + 2.000CO3-2 + 5.000H2O - log_k -9.430 #99KON/KON - delta_h 31.099 #kJ/mol - # Enthalpy of formation: -3834.389 #kJ/mol - -analytic -3.9817E+0 0E+0 -1.62441E+3 0E+0 0E+0 +CaNa2(CO3)2:5H2O = +1.000Ca+2 +2.000Na+ +2.000CO3-2 +5.000H2O + log_k -9.43 #99KON/KON + delta_h +31.099 #kJ/mol +# Enthalpy of formation: -3834.387 kJ/mol + -analytic -39.81689E-1 00.00000E+0 -16.24414E+2 00.00000E+0 00.00000E+0 Gibbsite -Al(OH)3 = 1.000Al+3 - 3.000H+ + 3.000H2O - log_k 7.740 #95POK/HEL - delta_h -102.759 #kJ/mol - # Enthalpy of formation: -1293.131 #kJ/mol - -analytic -1.02626E+1 0E+0 5.36747E+3 0E+0 0E+0 +Al(OH)3 = +1.000Al+3 -3.000H+ +3.000H2O + log_k +7.74 #95POK/HEL + delta_h -102.784 #kJ/mol +# Enthalpy of formation: -1293.105 kJ/mol + -analytic -10.26698E+0 00.00000E+0 53.68782E+2 00.00000E+0 00.00000E+0 + -Vm 31.960 Gismondine -Ca2Al4Si4O16:9H2O = 2.000Ca+2 + 4.000Al+3 - 16.000H+ + 4.000H4(SiO4) + 9.000H2O - log_k 39.010 - delta_h -477.046 #kJ/mol - # Enthalpy of formation: -11179.8 #kJ/mol #89CHE/RIM - -analytic -4.45647E+1 0E+0 2.49178E+4 0E+0 0E+0 +Ca2Al4Si4O16:9H2O = +2.000Ca+2 +4.000Al+3 -16.000H+ +4.000H4(SiO4) +9.000H2O + log_k +38.97 + delta_h -477.046 #kJ/mol +# Enthalpy of formation: -11179.800kJ/mol 89CHE/RIM + -analytic -44.60487E+0 00.00000E+0 24.91785E+3 00.00000E+0 00.00000E+0 + -Vm 315.070 Glaserite -Na2K6(SO4)4 = 6.000K+ + 2.000Na+ + 4.000SO4-2 - log_k -7.610 #80HAR/WEA - delta_h 78.360 #kJ/mol - # Enthalpy of formation: -5709.24 #kJ/mol - -analytic 6.11806E+0 0E+0 -4.09302E+3 0E+0 0E+0 +Na2K6(SO4)4 = +6.000K+ +2.000Na+ +4.000SO4-2 + log_k -7.61 #80HAR/WEA + delta_h +78.360 #kJ/mol +# Enthalpy of formation: -5709.240 kJ/mol 80HAR/WEA + -analytic 61.18083E-1 00.00000E+0 -40.93028E+2 00.00000E+0 00.00000E+0 Glauberite -Na2Ca(SO4)2 = 1.000Ca+2 + 2.000Na+ + 2.000SO4-2 - log_k 1.970 #84HAR/MOL - delta_h -13.160 #kJ/mol - # Enthalpy of formation: -2829.2 #kJ/mol #82WAG/EVA - -analytic -3.3553E-1 0E+0 6.87394E+2 0E+0 0E+0 +Na2Ca(SO4)2 = +1.000Ca+2 +2.000Na+ +2.000SO4-2 + log_k +1.97 #84HAR/MOL + delta_h -13.160 #kJ/mol +# Enthalpy of formation: -2829.200 kJ/mol 82WAG/EVA + -analytic -33.55330E-2 00.00000E+0 68.73947E+1 00.00000E+0 00.00000E+0 Glauconite -(K0.75Mg0.25Fe1.5Al0.25)(Al0.25Si3.75)O10(OH)2 = 0.250Mg+2 + 0.750K+ + 1.250Fe+3 + 0.250Fe+2 + 0.500Al+3 - 7.000H+ + 3.750H4(SiO4) - 3.000H2O - log_k 1.860 - delta_h -129.662 #kJ/mol - # Enthalpy of formation: -5151.13 #kJ/mol #15BLA/VIE - -analytic -2.08558E+1 0E+0 6.77271E+3 0E+0 0E+0 +(K0.75Mg0.25Fe1.5Al0.25)(Al0.25Si3.75)O10(OH)2 = +0.250Mg+2 +0.750K+ +1.250Fe+3 +0.250Fe+2 +0.500Al+3 -7.000H+ +3.750H4(SiO4) -3.000H2O + log_k +1.84 + delta_h -131.056 #kJ/mol +# Enthalpy of formation: -5151.130 kJ/mol 15BLA/VIE + -analytic -21.12003E+0 00.00000E+0 68.45532E+2 00.00000E+0 00.00000E+0 + -Vm 139.760 Goethite -FeOOH = 1.000Fe+3 - 3.000H+ + 2.000H2O - log_k 0.390 #63SCH/MIC - delta_h -61.522 #kJ/mol - # Enthalpy of formation: -559.124 #kJ/mol - -analytic -1.03882E+1 0E+0 3.21351E+3 0E+0 0E+0 +FeOOH = +1.000Fe+3 -3.000H+ +2.000H2O + log_k +0.17 + delta_h -61.256 #kJ/mol +# Enthalpy of formation: -560.460 kJ/mol 13LEM/BER + -analytic -10.56159E+0 00.00000E+0 31.99624E+2 00.00000E+0 00.00000E+0 + -Vm 20.820 + +GR-Cl +Fe3Fe(OH)8Cl = +4.000Fe+2 -8.000H+ -1.000e- +1.000Cl- +8.000H2O + log_k +41.80 + -analytic 41.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +GR-CO3 +Fe4Fe2(OH)12CO3:2H2O = +6.000Fe+2 -12.000H+ -2.000e- +1.000CO3-2 +14.000H2O + log_k +55.50 + -analytic 55.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Greenalite -Fe3Si2O5(OH)4 = 3.000Fe+2 - 6.000H+ + 2.000H4(SiO4) + 1.000H2O - log_k 21.770 - delta_h -177.218 #kJ/mol - # Enthalpy of formation: -3301 #kJ/mol #83MIY/KLE - -analytic -9.27722E+0 0E+0 9.25673E+3 0E+0 0E+0 +Fe3Si2O5(OH)4 = +3.000Fe+2 -6.000H+ +2.000H4(SiO4) +1.000H2O + log_k +21.82 + delta_h -178.103 #kJ/mol +# Enthalpy of formation: -3301.000 kJ/mol 83MIY/KLE + -analytic -93.82306E-1 00.00000E+0 93.02968E+2 00.00000E+0 00.00000E+0 + -Vm 115.000 + +Greigite +Fe3S4 = +3.000Fe+2 -4.000H+ -2.000e- +4.000HS- + log_k -15.03 + -analytic -15.03000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +GR-SO4 +Fe4Fe2(OH)12SO4 = +6.000Fe+2 -12.000H+ -2.000e- +1.000SO4-2 +12.000H2O + log_k +58.30 + -analytic 58.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Gypsum -CaSO4:2H2O = 1.000Ca+2 + 1.000SO4-2 + 2.000H2O - log_k -4.610 - delta_h -1.050 #kJ/mol - # Enthalpy of formation: -2022.95 #kJ/mol #87GAR/PAR - -analytic -4.79395E+0 0E+0 5.48452E+1 0E+0 0E+0 +CaSO4:2H2O = +1.000Ca+2 +1.000SO4-2 +2.000H2O + log_k -4.61 + delta_h -1.050 #kJ/mol +# Enthalpy of formation: -2022.950 kJ/mol 87GAR/PAR + -analytic -47.93952E-1 00.00000E+0 54.84532E+0 00.00000E+0 00.00000E+0 + -Vm 74.690 Gyrolite -Ca2Si3O7.5(OH):2H2O = 2.000Ca+2 - 4.000H+ + 3.000H4(SiO4) - 1.500H2O - log_k 22.340 #10BLA/BOU1 - delta_h -122.847 #kJ/mol - # Enthalpy of formation: -4917.99 #kJ/mol #10BLA/BOU1 - -analytic 8.18161E-1 0E+0 6.41674E+3 0E+0 0E+0 +Ca2Si3O7.5(OH):2H2O = +2.000Ca+2 -4.000H+ +3.000H4(SiO4) -1.500H2O + log_k +22.34 #10BLA/BOU1 + delta_h -122.847 #kJ/mol +# Enthalpy of formation: -4917.990 kJ/mol 10BLA/BOU1 + -analytic 81.81294E-2 00.00000E+0 64.16746E+2 00.00000E+0 00.00000E+0 + -Vm 137.340 H2MoO4(s) -H2MoO4 = 2.000H+ + 1.000MoO4-2 - log_k -13.170 - delta_h 48.763 #kJ/mol - # Enthalpy of formation: -1045.763 #kJ/mol - -analytic -4.6271E+0 0E+0 -2.54707E+3 0E+0 0E+0 +H2MoO4 = +2.000H+ +1.000MoO4-2 + log_k -13.17 + delta_h +48.763 #kJ/mol +# Enthalpy of formation: -1045.763 kJ/mol + -analytic -46.27089E-1 00.00000E+0 -25.47069E+2 00.00000E+0 00.00000E+0 H3Cit:H2O(cr) -H3Cit:H2O = 3.000H+ + 1.000Cit-3 + 1.000H2O - log_k -12.940 #05HUM/AND - delta_h 32.710 #kJ/mol - # Enthalpy of formation: -1838.46 #kJ/mol - -analytic -7.20946E+0 0E+0 -1.70856E+3 0E+0 0E+0 +H3Cit:H2O = +3.000H+ +1.000Cit-3 +1.000H2O + log_k -12.94 #05HUM/AND + delta_h +32.710 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1838.460 kJ/mol + -analytic -72.09454E-1 00.00000E+0 -17.08562E+2 00.00000E+0 00.00000E+0 H4Edta(cr) -H4Edta = 4.000H+ + 1.000Edta-4 - log_k -27.220 #05HUM/AND - delta_h 55.000 #kJ/mol - # Enthalpy of formation: -1759.8 #kJ/mol - -analytic -1.75844E+1 0E+0 -2.87285E+3 0E+0 0E+0 - -HBeidellite-Ca -Ca0.17Al2.34Si3.66O10(OH)2:4.45H2O = 0.170Ca+2 + 2.340Al+3 - 7.360H+ + 3.660H4(SiO4) + 1.810H2O - log_k 2.110 - delta_h -160.492 #kJ/mol - # Enthalpy of formation: -7056.996 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -2.6007E+1 0E+0 8.38307E+3 0E+0 0E+0 - -HBeidellite-K -K0.34Al2.34Si3.66O10(OH)2:1.96H2O = 0.340K+ + 2.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 0.680H2O - log_k 2.240 - delta_h -167.142 #kJ/mol - # Enthalpy of formation: -6332.047 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -2.7042E+1 0E+0 8.73042E+3 0E+0 0E+0 - -HBeidellite-Mg -Mg0.17Al2.34Si3.66O10(OH)2:4.61H2O = 0.170Mg+2 + 2.340Al+3 - 7.360H+ + 3.660H4(SiO4) + 1.970H2O - log_k 2.240 - delta_h -159.892 #kJ/mol - # Enthalpy of formation: -7090.409 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -2.57718E+1 0E+0 8.35173E+3 0E+0 0E+0 - -HBeidellite-Na -Na0.34Al2.34Si3.66O10(OH)2:3.84H2O = 0.340Na+ + 2.340Al+3 - 7.360H+ + 3.660H4(SiO4) + 1.200H2O - log_k 1.860 - delta_h -171.523 #kJ/mol - # Enthalpy of formation: -6861.015 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -2.81895E+1 0E+0 8.95926E+3 0E+0 0E+0 - -HMontmorillonite-BCCa -Ca0.17Mg0.34Al1.66Si4O10(OH)2:4.45H2O = 0.170Ca+2 + 0.340Mg+2 + 1.660Al+3 - 6.000H+ + 4.000H4(SiO4) + 0.450H2O - log_k 2.200 - delta_h -118.557 #kJ/mol - # Enthalpy of formation: -6999.676 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.85703E+1 0E+0 6.19265E+3 0E+0 0E+0 - -HMontmorillonite-BCK -K0.34Mg0.34Al1.66Si4O10(OH)2:1.96H2O = 0.340Mg+2 + 0.340K+ + 1.660Al+3 - 6.000H+ + 4.000H4(SiO4) - 2.040H2O - log_k 2.090 - delta_h -123.828 #kJ/mol - # Enthalpy of formation: -6276.107 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.96037E+1 0E+0 6.46798E+3 0E+0 0E+0 - -HMontmorillonite-BCMg -Mg0.17Mg0.34Al1.66Si4O10(OH)2:4.61H2O = 0.510Mg+2 + 1.660Al+3 - 6.000H+ + 4.000H4(SiO4) + 0.610H2O - log_k 2.350 - delta_h -118.107 #kJ/mol - # Enthalpy of formation: -7032.939 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.83414E+1 0E+0 6.16915E+3 0E+0 0E+0 - -HMontmorillonite-BCNa -Na0.34Mg0.34Al1.66Si4O10(OH)2:3.84H2O = 0.340Mg+2 + 0.340Na+ + 1.660Al+3 - 6.000H+ + 4.000H4(SiO4) - 0.160H2O - log_k 1.790 - delta_h -128.688 #kJ/mol - # Enthalpy of formation: -6804.595 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -2.07551E+1 0E+0 6.72183E+3 0E+0 0E+0 - -HMontmorillonite-HCCa -Ca0.3Mg0.6Al1.4Si4O10(OH)2:4.45H2O = 0.300Ca+2 + 0.600Mg+2 + 1.400Al+3 - 6.000H+ + 4.000H4(SiO4) + 0.450H2O - log_k 6.180 - delta_h -134.133 #kJ/mol - # Enthalpy of formation: -7036.126 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.73191E+1 0E+0 7.00624E+3 0E+0 0E+0 - -HMontmorillonite-HCK -K0.6Mg0.6Al1.4Si4O10(OH)2:1.96H2O = 0.600Mg+2 + 0.600K+ + 1.400Al+3 - 6.000H+ + 4.000H4(SiO4) - 2.040H2O - log_k 4.260 - delta_h -119.730 #kJ/mol - # Enthalpy of formation: -6327.197 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.67158E+1 0E+0 6.25392E+3 0E+0 0E+0 - -HMontmorillonite-HCMg -Mg0.3Mg0.6Al1.4Si4O10(OH)2:4.61H2O = 0.900Mg+2 + 1.400Al+3 - 6.000H+ + 4.000H4(SiO4) + 0.610H2O - log_k 6.500 - delta_h -133.713 #kJ/mol - # Enthalpy of formation: -7059.479 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.69255E+1 0E+0 6.98431E+3 0E+0 0E+0 - -HMontmorillonite-HCNa -Na0.6Mg0.6Al1.4Si4O10(OH)2:3.84H2O = 0.600Mg+2 + 0.600Na+ + 1.400Al+3 - 6.000H+ + 4.000H4(SiO4) - 0.160H2O - log_k 4.560 - delta_h -132.493 #kJ/mol - # Enthalpy of formation: -6844.715 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.86517E+1 0E+0 6.92058E+3 0E+0 0E+0 - -HNontronite-Ca -Ca0.17Fe1.67Al0.67Si3.66O10(OH)2:4.45H2O = 0.170Ca+2 + 1.670Fe+3 + 0.670Al+3 - 7.360H+ + 3.660H4(SiO4) + 1.810H2O - log_k -2.830 - delta_h -109.854 #kJ/mol - # Enthalpy of formation: -6290.336 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -2.20756E+1 0E+0 5.73807E+3 0E+0 0E+0 - -HNontronite-K -K0.34Fe1.67Al0.67Si3.66O10(OH)2:1.96H2O = 0.340K+ + 1.670Fe+3 + 0.670Al+3 - 7.360H+ + 3.660H4(SiO4) - 0.680H2O - log_k -2.700 - delta_h -116.514 #kJ/mol - # Enthalpy of formation: -5565.377 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -2.31123E+1 0E+0 6.08594E+3 0E+0 0E+0 - -HNontronite-Mg -Mg0.17Fe1.67Al0.67Si3.66O10(OH)2:4.61H2O = 0.170Mg+2 + 1.670Fe+3 + 0.670Al+3 - 7.360H+ + 3.660H4(SiO4) + 1.970H2O - log_k -2.530 - delta_h -109.254 #kJ/mol - # Enthalpy of formation: -6323.749 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -2.16705E+1 0E+0 5.70673E+3 0E+0 0E+0 - -HNontronite-Na -Na0.34Fe1.67Al0.67Si3.66O10(OH)2:3.84H2O = 0.340Na+ + 1.670Fe+3 + 0.670Al+3 - 7.360H+ + 3.660H4(SiO4) + 1.200H2O - log_k -3.090 - delta_h -120.885 #kJ/mol - # Enthalpy of formation: -6094.355 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -2.42681E+1 0E+0 6.31425E+3 0E+0 0E+0 - -HSaponite-Ca -Ca0.17Mg3Al0.34Si3.66O10(OH)2:4.45H2O = 0.170Ca+2 + 3.000Mg+2 + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) + 1.810H2O - log_k 28.390 - delta_h -239.662 #kJ/mol - # Enthalpy of formation: -7302.026 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.35969E+1 0E+0 1.25184E+4 0E+0 0E+0 - -HSaponite-FeCa -Ca0.17Mg2FeAl0.34Si3.66O10(OH)2:4.45H2O = 0.170Ca+2 + 2.000Mg+2 + 1.000Fe+2 + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) + 1.810H2O - log_k 27.980 - delta_h -235.552 #kJ/mol - # Enthalpy of formation: -6929.136 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.32869E+1 0E+0 1.23037E+4 0E+0 0E+0 - -HSaponite-FeK -K0.34Mg2FeAl0.34Si3.66O10(OH)2:1.96H2O = 2.000Mg+2 + 0.340K+ + 1.000Fe+2 + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 0.680H2O - log_k 28.110 - delta_h -242.212 #kJ/mol - # Enthalpy of formation: -6204.177 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.43237E+1 0E+0 1.26516E+4 0E+0 0E+0 - -HSaponite-FeMg -Mg0.17Mg2FeAl0.34Si3.66O10(OH)2:4.61H2O = 2.170Mg+2 + 1.000Fe+2 + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) + 1.970H2O - log_k 28.070 - delta_h -234.962 #kJ/mol - # Enthalpy of formation: -6962.539 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.30935E+1 0E+0 1.22729E+4 0E+0 0E+0 - -HSaponite-FeNa -Na0.34Mg2FeAl0.34Si3.66O10(OH)2:3.84H2O = 2.000Mg+2 + 0.340Na+ + 1.000Fe+2 + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) + 1.200H2O - log_k 27.720 - delta_h -246.583 #kJ/mol - # Enthalpy of formation: -6733.155 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.54794E+1 0E+0 1.28799E+4 0E+0 0E+0 - -HSaponite-K -K0.34Mg3Al0.34Si3.66O10(OH)2:1.96H2O = 3.000Mg+2 + 0.340K+ + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 0.680H2O - log_k 28.520 - delta_h -246.322 #kJ/mol - # Enthalpy of formation: -6577.067 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.46337E+1 0E+0 1.28663E+4 0E+0 0E+0 - -HSaponite-Mg -Mg0.17Mg3Al0.34Si3.66O10(OH)2:4.61H2O = 3.170Mg+2 + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) + 1.970H2O - log_k 28.510 - delta_h -239.062 #kJ/mol - # Enthalpy of formation: -7335.439 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.33718E+1 0E+0 1.24871E+4 0E+0 0E+0 - -HSaponite-Na -Na0.34Mg3Al0.34Si3.66O10(OH)2:3.84H2O = 3.000Mg+2 + 0.340Na+ + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) + 1.200H2O - log_k 28.130 - delta_h -250.693 #kJ/mol - # Enthalpy of formation: -7106.45 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.57895E+1 0E+0 1.30946E+4 0E+0 0E+0 - -HVermiculite-Ca -Ca0.43Mg3.00Si3.14Al0.86O10(OH)2:4.45H2O = 0.430Ca+2 + 3.000Mg+2 + 0.860Al+3 - 9.440H+ + 3.140H4(SiO4) + 3.890H2O - log_k 97.850 - delta_h -683.046 #kJ/mol - # Enthalpy of formation: -7114.496 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -2.18143E+1 0E+0 3.56779E+4 0E+0 0E+0 - -HVermiculite-K -K0.86Mg3.00Si3.14Al0.86O10(OH)2:1.96H2O = 3.000Mg+2 + 0.860K+ + 0.860Al+3 - 9.440H+ + 3.140H4(SiO4) + 1.400H2O - log_k 87.710 - delta_h -609.749 #kJ/mol - # Enthalpy of formation: -6459.427 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -1.91133E+1 0E+0 3.18494E+4 0E+0 0E+0 - -HVermiculite-Mg -Mg0.43Mg3.00Si3.14Al0.86O10(OH)2:4.61H2O = 3.430Mg+2 + 0.860Al+3 - 9.440H+ + 3.140H4(SiO4) + 4.050H2O - log_k 68.210 - delta_h -523.376 #kJ/mol - # Enthalpy of formation: -7287.219 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -2.34814E+1 0E+0 2.73378E+4 0E+0 0E+0 - -HVermiculite-Na -Na0.86Mg3.00Si3.14Al0.86O10(OH)2:3.84H2O = 3.000Mg+2 + 0.860Na+ + 0.860Al+3 - 9.440H+ + 3.140H4(SiO4) + 3.280H2O - log_k 96.550 - delta_h -673.353 #kJ/mol - # Enthalpy of formation: -6923.035 #kJ/mol #13BLA/VI; 11VIE/BLA - -analytic -2.14162E+1 0E+0 3.51716E+4 0E+0 0E+0 +H4Edta = +4.000H+ +1.000Edta-4 + log_k -27.22 #05HUM/AND + delta_h +55.000 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1759.800 kJ/mol + -analytic -17.58441E+0 00.00000E+0 -28.72850E+2 00.00000E+0 00.00000E+0 Halite -NaCl = 1.000Na+ + 1.000Cl- - log_k 1.590 - delta_h 3.700 #kJ/mol - # Enthalpy of formation: -411.12 #kJ/mol #98CHA - -analytic 2.23821E+0 0E+0 -1.93264E+2 0E+0 0E+0 +NaCl = +1.000Na+ +1.000Cl- + log_k +1.59 + delta_h +3.700 #kJ/mol +# Enthalpy of formation: -411.120 kJ/mol 98CHA + -analytic 22.38212E-1 00.00000E+0 -19.32645E+1 00.00000E+0 00.00000E+0 + -Vm 27.020 Halloysite -Al2Si2O5(OH)4 = 2.000Al+3 - 6.000H+ + 2.000H4(SiO4) + 1.000H2O - log_k 10.320 - delta_h -192.418 #kJ/mol - # Enthalpy of formation: -4092.6 #kJ/mol #99DEL/NAV - -analytic -2.33901E+1 0E+0 1.00507E+4 0E+0 0E+0 +Al2Si2O5(OH)4 = +2.000Al+3 -6.000H+ +2.000H4(SiO4) +1.000H2O + log_k +10.32 + delta_h -192.418 #kJ/mol +# Enthalpy of formation: -4092.600 kJ/mol 99DEL/NAV + -analytic -23.39019E+0 00.00000E+0 10.05069E+3 00.00000E+0 00.00000E+0 Hausmannite -Mn3O4 = 3.000Mn+2 - 6.000H+ + 3.000H2O + 0.500O2 - log_k 18.330 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.833E+1 0E+0 0E+0 0E+0 0E+0 +Mn3O4 = +3.000Mn+2 -8.000H+ -2.000e- +4.000H2O + log_k +61.32 #96FAL/REA + -analytic 61.32000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +HBeidellite-Ca +Ca0.17Al2.34Si3.66O10(OH)2:4.45H2O = +0.170Ca+2 +2.340Al+3 -7.360H+ +3.660H4(SiO4) +1.810H2O + log_k +2.09 + delta_h -160.492 #kJ/mol +# Enthalpy of formation: -7056.996 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -26.02699E+0 00.00000E+0 83.83081E+2 00.00000E+0 00.00000E+0 + -Vm 214.550 + +HBeidellite-K +K0.34Al2.34Si3.66O10(OH)2:1.96H2O = +0.340K+ +2.340Al+3 -7.360H+ +3.660H4(SiO4) -0.680H2O + log_k +2.22 + delta_h -167.142 #kJ/mol +# Enthalpy of formation: -6332.047 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -27.06202E+0 00.00000E+0 87.30435E+2 00.00000E+0 00.00000E+0 + -Vm 168.650 + +HBeidellite-Mg +Mg0.17Al2.34Si3.66O10(OH)2:4.61H2O = +0.170Mg+2 +2.340Al+3 -7.360H+ +3.660H4(SiO4) +1.970H2O + log_k +2.21 + delta_h -159.892 #kJ/mol +# Enthalpy of formation: -7090.409 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -25.80188E+0 00.00000E+0 83.51741E+2 00.00000E+0 00.00000E+0 + -Vm 212.610 + +HBeidellite-Na +Na0.34Al2.34Si3.66O10(OH)2:3.84H2O = +0.340Na+ +2.340Al+3 -7.360H+ +3.660H4(SiO4) +1.200H2O + log_k +1.83 + delta_h -171.523 #kJ/mol +# Enthalpy of formation: -6861.015 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -28.21954E+0 00.00000E+0 89.59270E+2 00.00000E+0 00.00000E+0 + -Vm 201.940 Heazlewoodite -Ni3S2 = 3.000Ni+2 - 4.000H+ + 2.000HS- + 1.000H2O - 0.500O2 - log_k 25.760 - delta_h -260.199 #kJ/mol - # Enthalpy of formation: -217.2 #kJ/mol #05GAM/BUG - -analytic -1.98248E+1 0E+0 1.35911E+4 0E+0 0E+0 +Ni3S2 = +3.000Ni+2 -2.000H+ +2.000e- +2.000HS- + log_k -17.23 + delta_h +19.564 #kJ/mol +# Enthalpy of formation: -217.200 kJ/mol 05GAM/BUG + -analytic -13.80253E+0 00.00000E+0 -10.21899E+2 00.00000E+0 00.00000E+0 -Hematite -Fe2O3 = 2.000Fe+3 - 6.000H+ + 3.000H2O - log_k -1.020 #05GRI - delta_h -123.679 #kJ/mol - # Enthalpy of formation: -831.811 #kJ/mol - -analytic -2.26876E+1 0E+0 6.46019E+3 0E+0 0E+0 +Hematite(cr) +Fe2O3 = +2.000Fe+3 -6.000H+ +3.000H2O + log_k -0.83 #21RIB/BEG from 05GRI + delta_h -127.150 #kJ/mol +# Enthalpy of formation: -830.451 kJ/mol + -analytic -23.10572E+0 00.00000E+0 66.41507E+2 00.00000E+0 00.00000E+0 + +Hematite(s) +Fe2O3 = +2.000Fe+3 -6.000H+ +3.000H2O + log_k -0.10 + delta_h -131.312 #kJ/mol +# Enthalpy of formation: -826.290 kJ/mol 13LEM/BER + -analytic -23.10487E+0 00.00000E+0 68.58903E+2 00.00000E+0 00.00000E+0 + -Vm 30.270 Hemicarboaluminate -Ca6O6:Al4O6:CaCO3:Ca(OH)2:21H2O = 8.000Ca+2 + 4.000Al+3 - 26.000H+ + 1.000CO3-2 + 35.000H2O - log_k 173.200 #07MAT/LOT1 - delta_h -1188.595 #kJ/mol - # Enthalpy of formation: -15988.285 #kJ/mol - -analytic -3.50326E+1 0E+0 6.20845E+4 0E+0 0E+0 +Ca6O6:Al4O6:CaCO3:Ca(OH)2:21H2O = +8.000Ca+2 +4.000Al+3 -26.000H+ +1.000CO3-2 +35.000H2O + log_k +173.20 #07MAT/LOT1 + delta_h -1189.079 #kJ/mol +# Enthalpy of formation: -15987.789kJ/mol + -analytic -35.11770E+0 00.00000E+0 62.10992E+3 00.00000E+0 00.00000E+0 + -Vm 569.020 Herzenbergite -SnS = 1.000Sn+2 - 1.000H+ + 1.000HS- - log_k -16.210 - delta_h 83.683 #kJ/mol - # Enthalpy of formation: -109.6 #kJ/mol #12GAM/GAJ - -analytic -1.54939E+0 0E+0 -4.37106E+3 0E+0 0E+0 +SnS = +1.000Sn+2 -1.000H+ +1.000HS- + log_k -16.21 + delta_h +83.683 #kJ/mol +# Enthalpy of formation: -109.600 kJ/mol 12GAM/GAJ + -analytic -15.49368E-1 00.00000E+0 -43.71068E+2 00.00000E+0 00.00000E+0 Heulandite_Ca -Ca1.07Al2.14Si6.86O18:6.17H2O = 1.070Ca+2 + 2.140Al+3 - 8.560H+ + 6.860H4(SiO4) - 3.270H2O - log_k 2.460 #09BLA - delta_h -155.113 #kJ/mol - # Enthalpy of formation: -10667.2 #kJ/mol #09BLA - -analytic -2.47146E+1 0E+0 8.1021E+3 0E+0 0E+0 +Ca1.07Al2.14Si6.86O18:6.17H2O = +1.070Ca+2 +2.140Al+3 -8.560H+ +6.860H4(SiO4) -3.270H2O + log_k +2.46 #09BLA + delta_h -155.113 #kJ/mol +# Enthalpy of formation: -10667.200kJ/mol 09BLA + -analytic -24.71463E+0 00.00000E+0 81.02116E+2 00.00000E+0 00.00000E+0 + -Vm 322.060 Heulandite_Na -Na2.14Al2.14Si6.86O18:6.17H2O = 2.140Na+ + 2.140Al+3 - 8.560H+ + 6.860H4(SiO4) - 3.270H2O - log_k 2.800 #09BLA - delta_h -142.780 #kJ/mol - # Enthalpy of formation: -10612.85 #kJ/mol #09BLA - -analytic -2.22139E+1 0E+0 7.45791E+3 0E+0 0E+0 +Na2.14Al2.14Si6.86O18:6.17H2O = +2.140Na+ +2.140Al+3 -8.560H+ +6.860H4(SiO4) -3.270H2O + log_k +2.80 #09BLA + delta_h -142.780 #kJ/mol +# Enthalpy of formation: -10612.850kJ/mol 09BLA + -analytic -22.21398E+0 00.00000E+0 74.57919E+2 00.00000E+0 00.00000E+0 + -Vm 325.000 Hexahydrite -Mg(SO4):6H2O = 1.000Mg+2 + 1.000SO4-2 + 6.000H2O - log_k -1.640 #84HAR/MOL - delta_h -4.625 #kJ/mol - # Enthalpy of formation: -3086.695 #kJ/mol - -analytic -2.45026E+0 0E+0 2.4158E+2 0E+0 0E+0 +Mg(SO4):6H2O = +1.000Mg+2 +1.000SO4-2 +6.000H2O + log_k -1.64 #84HAR/MOL + delta_h -4.625 #kJ/mol +# Enthalpy of formation: -3086.692 kJ/mol + -analytic -24.50265E-1 00.00000E+0 24.15806E+1 00.00000E+0 00.00000E+0 + +Hf(cr) +Hf = +4.000e- +1.000Hf+4 + log_k +97.20 + delta_h -628.910 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 79ROB/HEM + -analytic -12.98030E+0 00.00000E+0 32.85026E+3 00.00000E+0 00.00000E+0 Hf(HPO4)2:H2O(s) -Hf(HPO4)2:H2O = - 2.000H+ + 2.000H2(PO4)- + 1.000Hf+4 + 1.000H2O - log_k -21.050 #25HEV/KIM recalculated - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -3481.6 #kJ/mol #97KAR/CHE - -analytic -2.105E+1 0E+0 0E+0 0E+0 0E+0 - -#Hf(cr) -#Hf = 1.000Hf+4 + 2.000H2O - 4.000H+ - 1.000O2 - # log_k - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol - # -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 +Hf(HPO4)2:H2O = -2.000H+ +2.000H2(PO4)- +1.000Hf+4 +1.000H2O + log_k -21.05 #25HEV/KIM recalculated; Uncertainty is by analogy with Zr(HPO4)2:H2O(s) and is preliminary. + delta_h -38.340 #kJ/mol +# Enthalpy of formation: -3481.600 kJ/mol 97KAR/CHE + -analytic -27.76688E+0 00.00000E+0 20.02638E+2 00.00000E+0 00.00000E+0 HfO2(am) -HfO2 = - 4.000H+ + 1.000Hf+4 + 2.000H2O - log_k 0.900 #01RAI/XIA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -1101.7 #kJ/mol #98KAR/CHE - -analytic 9E-1 0E+0 0E+0 0E+0 0E+0 +HfO2 = -4.000H+ +1.000Hf+4 +2.000H2O + log_k +0.90 #01RAI/XIA + delta_h -98.870 #kJ/mol +# Enthalpy of formation: -1101.700 kJ/mol 98KAR/CHE + -analytic -16.42128E+0 00.00000E+0 51.64340E+2 00.00000E+0 00.00000E+0 HfO2(cr) -HfO2 = - 4.000H+ + 1.000Hf+4 + 2.000H2O - log_k -5.600 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -1117.63 #kJ/mol #75KOR/USH - -analytic -5.6E+0 0E+0 0E+0 0E+0 0E+0 +HfO2 = -4.000H+ +1.000Hf+4 +2.000H2O + log_k -5.62 + delta_h -82.940 #kJ/mol +# Enthalpy of formation: -1117.630 kJ/mol 75KOR/USH + -analytic -20.15046E+0 00.00000E+0 43.32258E+2 00.00000E+0 00.00000E+0 -Hg2SeO3(s) -Hg2SeO3 = 1.000SeO3-2 + 1.000Hg2+2 - log_k -15.200 #05OLI/NOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.52E+1 0E+0 0E+0 0E+0 0E+0 +Hg(l) +Hg = +2.000e- +1.000Hg+2 + log_k +28.85 + delta_h -170.210 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic -96.95120E-2 00.00000E+0 88.90687E+2 00.00000E+0 00.00000E+0 -HgSeO3(s) -HgSeO3 = 1.000Hg+2 + 1.000SeO3-2 - log_k -16.200 #05OLI/NOL - delta_h 36.650 #kJ/mol - # Enthalpy of formation: -373.6 #kJ/mol #05OLI/NOL - -analytic -9.77921E+0 0E+0 -1.91436E+3 0E+0 0E+0 +Hg2Cl2(s) +Hg2Cl2 = +2.000Cl- +1.000Hg2+2 + log_k -17.85 + delta_h +98.030 #kJ/mol +# Enthalpy of formation: -265.370 kJ/mol 89COX/WAG + -analytic -67.58812E-2 00.00000E+0 -51.20464E+2 00.00000E+0 00.00000E+0 + +Hg3(PO4)2(s) +Hg3(PO4)2 = -4.000H+ +2.000H2(PO4)- +3.000Hg+2 + log_k -13.01 #05POW/BRO + -analytic -13.01000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +HgCl2(s) +HgCl2 = +2.000Cl- +1.000Hg+2 + log_k -14.57 #74AND/CUM + -analytic -14.57000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +HgCO3:2HgO(s) +HgCO3:2HgO = -4.000H+ +1.000CO3-2 +2.000H2O +3.000Hg+2 + log_k -11.48 #05POW/BRO + -analytic -11.48000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +HgHPO4(s) +HgHPO4 = -1.000H+ +1.000H2(PO4)- +1.000Hg+2 + log_k -7.16 #05POW/BRO + -analytic -71.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +HgO(s) +HgO = -2.000H+ +1.000H2O +1.000Hg+2 + log_k +2.37 #05POW/BRO + delta_h -25.300 #kJ/mol 05POW/BRO +# Enthalpy of formation: -90.320 kJ/mol + -analytic -20.62370E-1 00.00000E+0 13.21511E+2 00.00000E+0 00.00000E+0 Hillebrandite -Ca2SiO3(OH)2:0.17H2O = 2.000Ca+2 - 4.000H+ + 1.000H4(SiO4) + 1.170H2O - log_k 36.950 #10BLA/BOU1 - delta_h -219.135 #kJ/mol - # Enthalpy of formation: -2662.48 #kJ/mol #56NEW - -analytic -1.44075E+0 0E+0 1.14462E+4 0E+0 0E+0 +Ca2SiO3(OH)2:0.17H2O = +2.000Ca+2 -4.000H+ +1.000H4(SiO4) +1.170H2O + log_k +36.95 #10BLA/BOU1 + delta_h -219.135 #kJ/mol +# Enthalpy of formation: -2662.480 kJ/mol 56NEW + -analytic -14.40804E-1 00.00000E+0 11.44622E+3 00.00000E+0 00.00000E+0 + -Vm 72.580 -Ho(OH)3(am) -Ho(OH)3 = - 3.000H+ + 1.000Ho+3 + 3.000H2O - log_k 17.480 #98DIA/RAG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.748E+1 0E+0 0E+0 0E+0 0E+0 +HMontmorillonite-BCCa +Ca0.17Mg0.34Al1.66Si4O10(OH)2:4.45H2O = +0.170Ca+2 +0.340Mg+2 +1.660Al+3 -6.000H+ +4.000H4(SiO4) +0.450H2O + log_k +2.18 + delta_h -118.558 #kJ/mol +# Enthalpy of formation: -6999.676 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -18.59047E+0 00.00000E+0 61.92716E+2 00.00000E+0 00.00000E+0 + -Vm 216.020 -Ho(OH)3(s) -Ho(OH)3 = - 3.000H+ + 1.000Ho+3 + 3.000H2O - log_k 15.430 #98DIA/RAG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.543E+1 0E+0 0E+0 0E+0 0E+0 +HMontmorillonite-BCK +K0.34Mg0.34Al1.66Si4O10(OH)2:1.96H2O = +0.340Mg+2 +0.340K+ +1.660Al+3 -6.000H+ +4.000H4(SiO4) -2.040H2O + log_k +2.07 + delta_h -123.827 #kJ/mol +# Enthalpy of formation: -6276.107 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -19.62356E+0 00.00000E+0 64.67935E+2 00.00000E+0 00.00000E+0 + -Vm 170.130 -Ho(PO4):xH2O(s) -Ho(PO4) = - 2.000H+ + 1.000Ho+3 + 1.000H2(PO4)- - log_k -4.640 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.64E+0 0E+0 0E+0 0E+0 0E+0 +HMontmorillonite-BCMg +Mg0.17Mg0.34Al1.66Si4O10(OH)2:4.61H2O = +0.510Mg+2 +1.660Al+3 -6.000H+ +4.000H4(SiO4) +0.610H2O + log_k +2.33 + delta_h -118.107 #kJ/mol +# Enthalpy of formation: -7032.939 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -18.36146E+0 00.00000E+0 61.69158E+2 00.00000E+0 00.00000E+0 + -Vm 214.080 + +HMontmorillonite-BCNa +Na0.34Mg0.34Al1.66Si4O10(OH)2:3.84H2O = +0.340Mg+2 +0.340Na+ +1.660Al+3 -6.000H+ +4.000H4(SiO4) -0.160H2O + log_k +1.77 + delta_h -128.688 #kJ/mol +# Enthalpy of formation: -6804.595 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -20.77517E+0 00.00000E+0 67.21842E+2 00.00000E+0 00.00000E+0 + -Vm 203.420 + +HMontmorillonite-HCCa +Ca0.3Mg0.6Al1.4Si4O10(OH)2:4.45H2O = +0.300Ca+2 +0.600Mg+2 +1.400Al+3 -6.000H+ +4.000H4(SiO4) +0.450H2O + log_k +6.15 + delta_h -134.134 #kJ/mol +# Enthalpy of formation: -7036.126 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -17.34927E+0 00.00000E+0 70.06307E+2 00.00000E+0 00.00000E+0 + -Vm 220.760 + +HMontmorillonite-HCK +K0.6Mg0.6Al1.4Si4O10(OH)2:1.96H2O = +0.600Mg+2 +0.600K+ +1.400Al+3 -6.000H+ +4.000H4(SiO4) -2.040H2O + log_k +4.24 + delta_h -119.730 #kJ/mol +# Enthalpy of formation: -6327.197 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -16.73580E+0 00.00000E+0 62.53933E+2 00.00000E+0 00.00000E+0 + -Vm 174.180 + +HMontmorillonite-HCMg +Mg0.3Mg0.6Al1.4Si4O10(OH)2:4.61H2O = +0.900Mg+2 +1.400Al+3 -6.000H+ +4.000H4(SiO4) +0.610H2O + log_k +6.47 + delta_h -133.713 #kJ/mol +# Enthalpy of formation: -7059.479 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -16.95551E+0 00.00000E+0 69.84316E+2 00.00000E+0 00.00000E+0 + -Vm 215.180 + +HMontmorillonite-HCNa +Na0.6Mg0.6Al1.4Si4O10(OH)2:3.84H2O = +0.600Mg+2 +0.600Na+ +1.400Al+3 -6.000H+ +4.000H4(SiO4) -0.160H2O + log_k +4.54 + delta_h -132.492 #kJ/mol +# Enthalpy of formation: -6844.715 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -18.67160E+0 00.00000E+0 69.20539E+2 00.00000E+0 00.00000E+0 + -Vm 206.920 + +HNontronite-Ca +Ca0.17Fe1.67Al0.67Si3.66O10(OH)2:4.45H2O = +0.170Ca+2 +1.670Fe+3 +0.670Al+3 -7.360H+ +3.660H4(SiO4) +1.810H2O + log_k -2.89 + delta_h -111.618 #kJ/mol +# Enthalpy of formation: -6290.336 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -22.44463E+0 00.00000E+0 58.30214E+2 00.00000E+0 00.00000E+0 + -Vm 214.180 + +HNontronite-K +K0.34Fe1.67Al0.67Si3.66O10(OH)2:1.96H2O = +0.340K+ +1.670Fe+3 +0.670Al+3 -7.360H+ +3.660H4(SiO4) -0.680H2O + log_k +0.38 + delta_h -118.278 #kJ/mol +# Enthalpy of formation: -5565.377 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -20.34142E+0 00.00000E+0 61.78090E+2 00.00000E+0 00.00000E+0 + -Vm 168.280 + +HNontronite-Mg +Mg0.17Fe1.67Al0.67Si3.66O10(OH)2:4.61H2O = +0.170Mg+2 +1.670Fe+3 +0.670Al+3 -7.360H+ +3.660H4(SiO4) +1.970H2O + log_k -2.59 + delta_h -111.018 #kJ/mol +# Enthalpy of formation: -6323.749 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -22.03952E+0 00.00000E+0 57.98874E+2 00.00000E+0 00.00000E+0 + -Vm 212.670 + +HNontronite-Na +Na0.34Fe1.67Al0.67Si3.66O10(OH)2:3.84H2O = +0.340Na+ +1.670Fe+3 +0.670Al+3 -7.360H+ +3.660H4(SiO4) +1.200H2O + log_k -3.14 + delta_h -122.648 #kJ/mol +# Enthalpy of formation: -6094.355 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -24.62701E+0 00.00000E+0 64.06351E+2 00.00000E+0 00.00000E+0 + -Vm 201.570 Ho(cr) -Ho = 1.000Ho+3 + 1.500H2O - 3.000H+ - 0.750O2 - log_k 182.795 - delta_h -1126.687 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #82WAG/EVA - -analytic -1.45917E+1 0E+0 5.88508E+4 0E+0 0E+0 +Ho = +1.000Ho+3 +3.000e- + log_k +118.31 + delta_h -707.042 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 82WAG/EVA + -analytic -55.58441E-1 00.00000E+0 36.93138E+3 00.00000E+0 00.00000E+0 -Ho2(CO3)3(cr) -Ho2(CO3)3 = 2.000Ho+3 + 3.000CO3-2 - log_k -33.800 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.38E+1 0E+0 0E+0 0E+0 0E+0 +Ho(OH)3(am) +Ho(OH)3 = -3.000H+ +1.000Ho+3 +3.000H2O + log_k +17.48 #98DIA/RAG + -analytic 17.48000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +Ho(OH)3(s) +Ho(OH)3 = -3.000H+ +1.000Ho+3 +3.000H2O + log_k +15.43 #98DIA/RAG + -analytic 15.43000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +Ho(PO4):xH2O(s) +Ho(PO4) = -2.000H+ +1.000Ho+3 +1.000H2(PO4)- + log_k -4.64 #95SPA/BRU + -analytic -46.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +Ho2(CO3)3(s) +Ho2(CO3)3 = +2.000Ho+3 +3.000CO3-2 + log_k -33.80 #95SPA/BRU + -analytic -33.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Ho2O3(s) -Ho2O3 = - 6.000H+ + 2.000Ho+3 + 3.000H2O - log_k 47.410 - delta_h -390.718 #kJ/mol - # Enthalpy of formation: -1880.856 #kJ/mol - -analytic -2.10408E+1 0E+0 2.04086E+4 0E+0 0E+0 +Ho2O3 = -6.000H+ +2.000Ho+3 +3.000H2O + log_k +47.41 + delta_h -390.706 #kJ/mol +# Enthalpy of formation: -1880.868 kJ/mol + -analytic -21.03875E+0 00.00000E+0 20.40800E+3 00.00000E+0 00.00000E+0 HoCl3:6H2O(s) -HoCl3:6H2O = 1.000Ho+3 + 3.000Cl- + 6.000H2O - log_k 5.390 #95SPA/BRU - delta_h -43.855 #kJ/mol - # Enthalpy of formation: -2879.407 #kJ/mol - -analytic -2.29305E+0 0E+0 2.2907E+3 0E+0 0E+0 +HoCl3:6H2O = +1.000Ho+3 +3.000Cl- +6.000H2O + log_k +5.39 #95SPA/BRU + delta_h -43.846 #kJ/mol +# Enthalpy of formation: -2879.413 kJ/mol + -analytic -22.91489E-1 00.00000E+0 22.90236E+2 00.00000E+0 00.00000E+0 HoF3:0.5H2O(s) -HoF3:0.5H2O = 1.000Ho+3 + 3.000F- + 0.500H2O - log_k -16.400 #95SPA/BRU - delta_h -149.007 #kJ/mol - # Enthalpy of formation: -1707 #kJ/mol #82WAG/EVA - -analytic -4.25049E+1 0E+0 7.78317E+3 0E+0 0E+0 +HoF3:0.5H2O = +1.000Ho+3 +3.000F- +0.500H2O + log_k -16.40 #95SPA/BRU + delta_h -149.007 #kJ/mol +# Enthalpy of formation: -1707.000 kJ/mol 82WAG/EVA + -analytic -42.50491E+0 00.00000E+0 77.83178E+2 00.00000E+0 00.00000E+0 HoPO4:H2O(cr) -HoPO4:H2O = - 2.000H+ + 1.000Ho+3 + 1.000H2(PO4)- + 1.000H2O - log_k -5.560 #97LIU/BYR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.56E+0 0E+0 0E+0 0E+0 0E+0 +HoPO4:H2O = -2.000H+ +1.000Ho+3 +1.000H2(PO4)- +1.000H2O + log_k -5.56 #97LIU/BYR + -analytic -55.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +HSaponite-Ca +Ca0.17Mg3Al0.34Si3.66O10(OH)2:4.45H2O = +0.170Ca+2 +3.000Mg+2 +0.340Al+3 -7.360H+ +3.660H4(SiO4) +1.810H2O + log_k +28.36 + delta_h -239.662 #kJ/mol +# Enthalpy of formation: -7302.026 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -13.62698E+0 00.00000E+0 12.51842E+3 00.00000E+0 00.00000E+0 + -Vm 223.010 + +HSaponite-FeCa +Ca0.17Mg2FeAl0.34Si3.66O10(OH)2:4.45H2O = +0.170Ca+2 +2.000Mg+2 +1.000Fe+2 +0.340Al+3 -7.360H+ +3.660H4(SiO4) +1.810H2O + log_k +27.97 + delta_h -235.847 #kJ/mol +# Enthalpy of formation: -6929.136 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -13.34862E+0 00.00000E+0 12.31915E+3 00.00000E+0 00.00000E+0 + -Vm 225.590 + +HSaponite-FeK +K0.34Mg2FeAl0.34Si3.66O10(OH)2:1.96H2O = +2.000Mg+2 +0.340K+ +1.000Fe+2 +0.340Al+3 -7.360H+ +3.660H4(SiO4) -0.680H2O + log_k +28.11 + delta_h -242.507 #kJ/mol +# Enthalpy of formation: -6204.177 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -14.37540E+0 00.00000E+0 12.66702E+3 00.00000E+0 00.00000E+0 + -Vm 179.690 + +HSaponite-FeMg +Mg0.17Mg2FeAl0.34Si3.66O10(OH)2:4.61H2O = +2.170Mg+2 +1.000Fe+2 +0.340Al+3 -7.360H+ +3.660H4(SiO4) +1.970H2O + log_k +28.07 + delta_h -235.257 #kJ/mol +# Enthalpy of formation: -6962.539 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -13.14526E+0 00.00000E+0 12.28833E+3 00.00000E+0 00.00000E+0 + -Vm 223.850 + +HSaponite-FeNa +Na0.34Mg2FeAl0.34Si3.66O10(OH)2:3.84H2O = +2.000Mg+2 +0.340Na+ +1.000Fe+2 +0.340Al+3 -7.360H+ +3.660H4(SiO4) +1.200H2O + log_k +27.72 + delta_h -246.878 #kJ/mol +# Enthalpy of formation: -6733.155 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -15.53117E+0 00.00000E+0 12.89534E+3 00.00000E+0 00.00000E+0 + -Vm 212.990 + +HSaponite-K +K0.34Mg3Al0.34Si3.66O10(OH)2:1.96H2O = +3.000Mg+2 +0.340K+ +0.340Al+3 -7.360H+ +3.660H4(SiO4) -0.680H2O + log_k +28.49 + delta_h -246.322 #kJ/mol +# Enthalpy of formation: -6577.067 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -14.66376E+0 00.00000E+0 12.86629E+3 00.00000E+0 00.00000E+0 + -Vm 177.110 + +HSaponite-Mg +Mg0.17Mg3Al0.34Si3.66O10(OH)2:4.61H2O = +3.170Mg+2 +0.340Al+3 -7.360H+ +3.660H4(SiO4) +1.970H2O + log_k +28.48 + delta_h -239.062 #kJ/mol +# Enthalpy of formation: -7335.439 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -13.40186E+0 00.00000E+0 12.48708E+3 00.00000E+0 00.00000E+0 + -Vm 221.080 + +HSaponite-Na +Na0.34Mg3Al0.34Si3.66O10(OH)2:3.84H2O = +3.000Mg+2 +0.340Na+ +0.340Al+3 -7.360H+ +3.660H4(SiO4) +1.200H2O + log_k +28.03 + delta_h -250.288 #kJ/mol +# Enthalpy of formation: -7106.450 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -15.81858E+0 00.00000E+0 13.07345E+3 00.00000E+0 00.00000E+0 + -Vm 210.400 + +HVermiculite-Ca +Ca0.43Mg3.00Si3.14Al0.86O10(OH)2:4.45H2O = +0.430Ca+2 +3.000Mg+2 +0.860Al+3 -9.440H+ +3.140H4(SiO4) +3.890H2O + log_k +97.82 + delta_h -683.046 #kJ/mol +# Enthalpy of formation: -7114.496 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -21.84452E+0 00.00000E+0 35.67798E+3 00.00000E+0 00.00000E+0 + -Vm 219.360 + +HVermiculite-K +K0.86Mg3.00Si3.14Al0.86O10(OH)2:1.96H2O = +3.000Mg+2 +0.860K+ +0.860Al+3 -9.440H+ +3.140H4(SiO4) +1.400H2O + log_k +87.68 + delta_h -609.749 #kJ/mol +# Enthalpy of formation: -6459.427 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -19.14344E+0 00.00000E+0 31.84941E+3 00.00000E+0 00.00000E+0 + -Vm 175.490 + +HVermiculite-Mg +Mg0.43Mg3.00Si3.14Al0.86O10(OH)2:4.61H2O = +3.430Mg+2 +0.860Al+3 -9.440H+ +3.140H4(SiO4) +4.050H2O + log_k +68.18 + delta_h -523.376 #kJ/mol +# Enthalpy of formation: -7287.219 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -23.51154E+0 00.00000E+0 27.33783E+3 00.00000E+0 00.00000E+0 + -Vm 222.240 + +HVermiculite-Na +Na0.86Mg3.00Si3.14Al0.86O10(OH)2:3.84H2O = +3.000Mg+2 +0.860Na+ +0.860Al+3 -9.440H+ +3.140H4(SiO4) +3.280H2O + log_k +96.52 + delta_h -673.353 #kJ/mol +# Enthalpy of formation: -6923.035 kJ/mol 13BLA/VI; 11VIE/BLA + -analytic -21.44638E+0 00.00000E+0 35.17168E+3 00.00000E+0 00.00000E+0 + -Vm 210.120 Hydrocerussite -Pb3(CO3)2(OH)2 = 3.000Pb+2 - 2.000H+ + 2.000CO3-2 + 2.000H2O - log_k -17.910 - delta_h -5.160 #kJ/mol - # Enthalpy of formation: -1914.2 #kJ/mol #83SAN/BAR - -analytic -1.8814E+1 0E+0 2.69525E+2 0E+0 0E+0 +Pb3(CO3)2(OH)2 = +3.000Pb+2 -2.000H+ +2.000CO3-2 +2.000H2O + log_k -17.91 + delta_h -5.160 #kJ/mol +# Enthalpy of formation: -1914.200 kJ/mol 83SAN/BAR + -analytic -18.81399E+0 00.00000E+0 26.95256E+1 00.00000E+0 00.00000E+0 Hydrophilite -CaCl2 = 1.000Ca+2 + 2.000Cl- - log_k 11.770 - delta_h -81.360 #kJ/mol - # Enthalpy of formation: -795.8 #kJ/mol #98CHA - -analytic -2.48364E+0 0E+0 4.24972E+3 0E+0 0E+0 +CaCl2 = +1.000Ca+2 +2.000Cl- + log_k +11.77 + delta_h -81.360 #kJ/mol +# Enthalpy of formation: -795.800 kJ/mol 98CHA + -analytic -24.83660E-1 00.00000E+0 42.49729E+2 00.00000E+0 00.00000E+0 Hydrotalcite -Mg4Al2(OH)14:3H2O = 4.000Mg+2 + 2.000Al+3 - 14.000H+ + 17.000H2O - log_k 73.740 #92ATK/GLA - delta_h -583.985 #kJ/mol - # Enthalpy of formation: -7219.925 #kJ/mol - -analytic -2.85696E+1 0E+0 3.05036E+4 0E+0 0E+0 +Mg4Al2(OH)14:3H2O = +4.000Mg+2 +2.000Al+3 -14.000H+ +17.000H2O + log_k +73.74 #92ATK/GLA + delta_h -584.220 #kJ/mol +# Enthalpy of formation: -7219.684 kJ/mol + -analytic -28.61095E+0 00.00000E+0 30.51594E+3 00.00000E+0 00.00000E+0 + -Vm 227.360 Hydrotalcite-CO3 -Mg4Al2(OH)12CO3:2H2O = 4.000Mg+2 + 2.000Al+3 - 12.000H+ + 1.000CO3-2 + 14.000H2O - log_k 50.860 #03JOH/GLA - delta_h -542.565 #kJ/mol - # Enthalpy of formation: -7079.085 #kJ/mol - -analytic -4.41932E+1 0E+0 2.83401E+4 0E+0 0E+0 +Mg4Al2(OH)12CO3:2H2O = +4.000Mg+2 +2.000Al+3 -12.000H+ +1.000CO3-2 +14.000H2O + log_k +50.86 #03JOH/GLA + delta_h -542.756 #kJ/mol +# Enthalpy of formation: -7078.889 kJ/mol + -analytic -44.22677E+0 00.00000E+0 28.35012E+3 00.00000E+0 00.00000E+0 + -Vm 231.460 Hydroxyapatite -Ca5(OH)(PO4)3 = 5.000Ca+2 - 7.000H+ + 3.000H2(PO4)- + 1.000H2O - log_k 14.350 #84NAN - delta_h -178.487 #kJ/mol - # Enthalpy of formation: -6730.143 #kJ/mol - -analytic -1.69195E+1 0E+0 9.32301E+3 0E+0 0E+0 +Ca5(OH)(PO4)3 = +5.000Ca+2 -7.000H+ +3.000H2(PO4)- +1.000H2O + log_k +14.35 #84NAN + delta_h -178.487 #kJ/mol +# Enthalpy of formation: -6730.141 kJ/mol + -analytic -16.91958E+0 00.00000E+0 93.23025E+2 00.00000E+0 00.00000E+0 + -Vm 159.600 -Illite-Al -K0.85Al2.85Si3.15O10(OH)2 = 0.850K+ + 2.850Al+3 - 9.400H+ + 3.150H4(SiO4) - 0.600H2O - log_k 13.020 - delta_h -266.372 #kJ/mol - # Enthalpy of formation: -5913.65 #kJ/mol #15BLA/VIE - -analytic -3.36463E+1 0E+0 1.39136E+4 0E+0 0E+0 +I2(cr) +I2 = -2.000e- +2.000I- + log_k +18.12 + delta_h -113.560 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic -17.74858E-1 00.00000E+0 59.31652E+2 00.00000E+0 00.00000E+0 -Illite-FeII -K0.85Fe0.25Al2.35Si3.4O10(OH)2 = 0.850K+ + 0.250Fe+2 + 2.350Al+3 - 8.400H+ + 3.400H4(SiO4) - 1.600H2O - log_k 9.450 - delta_h -216.501 #kJ/mol - # Enthalpy of formation: -5796.29 #kJ/mol #15BLA/VIE - -analytic -2.84793E+1 0E+0 1.13086E+4 0E+0 0E+0 - -Illite-Mg -K0.85Mg0.25Al2.35Si3.4O10(OH)2 = 0.250Mg+2 + 0.850K+ + 2.350Al+3 - 8.400H+ + 3.400H4(SiO4) - 1.600H2O - log_k 11.010 - delta_h -225.651 #kJ/mol - # Enthalpy of formation: -5881.39 #kJ/mol #15BLA/VIE - -analytic -2.85223E+1 0E+0 1.17866E+4 0E+0 0E+0 - -Illite-Smec_ISCz-1(2.996H2O) -(Na0.134K0.53)(Si3.565Al0.435)(Al1.717Fe0.05Fe0.017Mg0.218)O10(OH)2:2.996H2O = 0.218Mg+2 + 0.530K+ + 0.134Na+ + 0.050Fe+3 + 0.017Fe+2 + 2.152Al+3 - 7.740H+ + 3.565H4(SiO4) + 0.736H2O - log_k 13.650 - delta_h -225.171 #kJ/mol - # Enthalpy of formation: -6624.62 #kJ/mol #09GAI - -analytic -2.57982E+1 0E+0 1.17615E+4 0E+0 0E+0 - -Illite/smectiteISCz-1 -(Ca0.092K0.439)(Si3.559Al0.441)(Al1.728Fe0.011Fe0.034Mg0.255)O10(OH)2 = 0.092Ca+2 + 0.255Mg+2 + 0.439K+ + 0.034Fe+3 + 0.011Fe+2 + 2.169Al+3 - 7.764H+ + 3.559H4(SiO4) - 2.236H2O - log_k 10.900 - delta_h -224.050 #kJ/mol - # Enthalpy of formation: -5787.4 #kJ/mol #14BLA/GAI - -analytic -2.83518E+1 0E+0 1.17029E+4 0E+0 0E+0 +Illite/smectite ISCz-1 +(Ca0.092K0.439)(Si3.559Al0.441)(Al1.728Fe0.011Fe0.034Mg0.255)O10(OH)2 = +0.092Ca+2 +0.255Mg+2 +0.439K+ +0.034Fe+3 +0.011Fe+2 +2.169Al+3 -7.764H+ +3.559H4(SiO4) -2.236H2O + log_k +10.89 + delta_h -224.089 #kJ/mol +# Enthalpy of formation: -5787.400 kJ/mol 14BLA/GAI + -analytic -28.36871E+0 00.00000E+0 11.70498E+3 00.00000E+0 00.00000E+0 + -Vm 137.130 Illite_Imt-2 -(Na0.044K0.762)(Si3.387Al0.613)(Al1.427Fe0.292Fe0.084Mg0.241)O10(OH)2 = 0.241Mg+2 + 0.762K+ + 0.044Na+ + 0.292Fe+3 + 0.084Fe+2 + 2.040Al+3 - 8.452H+ + 3.387H4(SiO4) - 1.548H2O - log_k 11.540 - delta_h -230.806 #kJ/mol - # Enthalpy of formation: -5711.25 #kJ/mol #12GAI/BLA - -analytic -2.88954E+1 0E+0 1.20558E+4 0E+0 0E+0 +(Na0.044K0.762)(Si3.387Al0.613)(Al1.427Fe0.292Fe0.084Mg0.241)O10(OH)2 = +0.241Mg+2 +0.762K+ +0.044Na+ +0.292Fe+3 +0.084Fe+2 +2.040Al+3 -8.452H+ +3.387H4(SiO4) -1.548H2O + log_k +11.52 + delta_h -231.139 #kJ/mol +# Enthalpy of formation: -5711.250 kJ/mol 12GAI/BLA + -analytic -28.97381E+0 00.00000E+0 12.07323E+3 00.00000E+0 00.00000E+0 + -Vm 139.180 + +Illite-Al +K0.85Al2.85Si3.15O10(OH)2 = +0.850K+ +2.850Al+3 -9.400H+ +3.150H4(SiO4) -0.600H2O + log_k +13.02 + delta_h -266.372 #kJ/mol +# Enthalpy of formation: -5913.650 kJ/mol 15BLA/VIE + -analytic -33.64637E+0 00.00000E+0 13.91358E+3 00.00000E+0 00.00000E+0 + -Vm 138.980 + +Illite-FeII +K0.85Fe0.25Al2.35Si3.4O10(OH)2 = +0.850K+ +0.250Fe+2 +2.350Al+3 -8.400H+ +3.400H4(SiO4) -1.600H2O + log_k +9.46 + delta_h -216.574 #kJ/mol +# Enthalpy of formation: -5796.290 kJ/mol 15BLA/VIE + -analytic -28.48214E+0 00.00000E+0 11.31245E+3 00.00000E+0 00.00000E+0 + -Vm 140.670 + +Illite-FeIII +K0.85Fe0.25Al2.6Si3.15O10(OH)2 = +0.850K+ +0.250Fe+3 +2.600Al+3 -9.400H+ +3.150H4(SiO4) -0.600H2O + log_k +12.36 + delta_h -262.546 #kJ/mol +# Enthalpy of formation: -5795.390 kJ/mol 15BLA/VIE + -analytic -33.63608E+0 00.00000E+0 13.71373E+3 00.00000E+0 00.00000E+0 + -Vm 138.920 + +Illite-Mg +K0.85Mg0.25Al2.35Si3.4O10(OH)2 = +0.250Mg+2 +0.850K+ +2.350Al+3 -8.400H+ +3.400H4(SiO4) -1.600H2O + log_k +11.01 + delta_h -225.651 #kJ/mol +# Enthalpy of formation: -5881.390 kJ/mol 15BLA/VIE + -analytic -28.52236E+0 00.00000E+0 11.78657E+3 00.00000E+0 00.00000E+0 + -Vm 140.060 + +Illite-Smec_ISCz-1(2.996H2O) +(Na0.134K0.53)(Si3.565Al0.435)(Al1.717Fe0.05Fe0.017Mg0.218)O10(OH)2:2.996H2O = +0.218Mg+2 +0.530K+ +0.134Na+ +0.050Fe+3 +0.017Fe+2 +2.152Al+3 -7.740H+ +3.565H4(SiO4) +0.736H2O + log_k +13.61 + delta_h -225.228 #kJ/mol +# Enthalpy of formation: -6624.620 kJ/mol 09GAI + -analytic -25.84825E+0 00.00000E+0 11.76448E+3 00.00000E+0 00.00000E+0 + -Vm 192.420 Jaffeite -Ca6(Si2O7)(OH)6 = 6.000Ca+2 - 12.000H+ + 2.000H4(SiO4) + 5.000H2O - log_k 114.060 - delta_h -636.768 #kJ/mol - # Enthalpy of formation: -6972.77 #kJ/mol #10BLA/BOU1 - -analytic 2.5032E+0 0E+0 3.32607E+4 0E+0 0E+0 +Ca6(Si2O7)(OH)6 = +6.000Ca+2 -12.000H+ +2.000H4(SiO4) +5.000H2O + log_k +114.06 + delta_h -636.768 #kJ/mol +# Enthalpy of formation: -6972.770 kJ/mol 10BLA/BOU1 + -analytic 25.03035E-1 00.00000E+0 33.26071E+3 00.00000E+0 00.00000E+0 + -Vm 174.380 Jennite -Ca9Si6O16(OH)10:6(H2O) = 9.000Ca+2 - 18.000H+ + 6.000H4(SiO4) + 8.000H2O - log_k 147.330 #10BLA/BOU1 - delta_h -751.764 #kJ/mol - # Enthalpy of formation: -15189.04 #kJ/mol #10BLA/BOU1 - -analytic 1.56268E+1 0E+0 3.92673E+4 0E+0 0E+0 - -K(NO3)(s) -K(NO3) = 1.000K+ + 1.000NO3- - log_k -0.100 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1E-1 0E+0 0E+0 0E+0 0E+0 - -K(OH)(s) -K(OH) = 1.000K+ - 1.000H+ + 1.000H2O - log_k 24.600 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.46E+1 0E+0 0E+0 0E+0 0E+0 - -K(TcO4)(s) -K(TcO4) = 1.000K+ + 1.000TcO4- - log_k -2.280 - delta_h 53.560 #kJ/mol - # Enthalpy of formation: -1035.1 #kJ/mol #99RAR/RAN - -analytic 7.1033E+0 0E+0 -2.79763E+3 0E+0 0E+0 +Ca9Si6O16(OH)10:6H2O = +9.000Ca+2 -18.000H+ +6.000H4(SiO4) +8.000H2O + log_k +147.33 #10BLA/BOU1 + delta_h -751.764 #kJ/mol +# Enthalpy of formation: -15189.040kJ/mol 10BLA/BOU1 + -analytic 15.62660E+0 00.00000E+0 39.26737E+3 00.00000E+0 00.00000E+0 + -Vm 456.400 K(cr) -K = 1.000K+ + 0.500H2O - 1.000H+ - 0.250O2 - log_k 70.985 - delta_h -392.022 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #89COX/WAG - -analytic 2.30588E+0 0E+0 2.04767E+4 0E+0 0E+0 +K = +1.000K+ +1.000e- + log_k +49.49 + delta_h -252.140 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic 53.16968E-1 00.00000E+0 13.17019E+3 00.00000E+0 00.00000E+0 -K-carbonate -K2CO3:1.5H2O = 2.000K+ + 1.000CO3-2 + 1.500H2O - log_k 3.030 #84HAR/MOL - delta_h -1.188 #kJ/mol - # Enthalpy of formation: -1607.067 #kJ/mol - -analytic 2.82187E+0 0E+0 6.20535E+1 0E+0 0E+0 +K(NO3)(s) +K(NO3) = +1.000K+ +1.000NO3- + log_k -0.10 #96FAL/REA + -analytic -10.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 -K-trona -K2NaH(CO3)2:2H2O = 2.000K+ + 1.000Na+ + 1.000H+ + 2.000CO3-2 + 2.000H2O - log_k -9.100 #84HAR/MOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -9.1E+0 0E+0 0E+0 0E+0 0E+0 +K(OH)(s) +K(OH) = +1.000K+ -1.000H+ +1.000H2O + log_k +24.60 #96FAL/REA + -analytic 24.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 K2CO3(cr) -K2CO3 = 2.000K+ + 1.000CO3-2 - log_k 5.410 - delta_h -31.798 #kJ/mol - # Enthalpy of formation: -1147.712 #kJ/mol - -analytic -1.60762E-1 0E+0 1.66092E+3 0E+0 0E+0 +K2CO3 = +2.000K+ +1.000CO3-2 + log_k +5.41 + delta_h -31.798 #kJ/mol 74NAU/RYZ +# Enthalpy of formation: -1147.712 kJ/mol + -analytic -16.07705E-2 00.00000E+0 16.60925E+2 00.00000E+0 00.00000E+0 K2O(s) -K2O = 2.000K+ - 2.000H+ + 1.000H2O - log_k 84.110 - delta_h -426.940 #kJ/mol - # Enthalpy of formation: -363.17 #kJ/mol #98CHA - -analytic 9.31343E+0 0E+0 2.23006E+4 0E+0 0E+0 +K2O = +2.000K+ -2.000H+ +1.000H2O + log_k +84.11 + delta_h -426.940 #kJ/mol +# Enthalpy of formation: -363.170 kJ/mol 98CHA + -analytic 93.13323E-1 00.00000E+0 22.30063E+3 00.00000E+0 00.00000E+0 -K4NpO2(CO3)3(s) -K4NpO2(CO3)3 = 4.000K+ + 1.000NpO2+2 + 3.000CO3-2 - log_k -26.400 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.64E+1 0E+0 0E+0 0E+0 0E+0 +K3NpO2(CO3)2(cr) +K3NpO2(CO3)2 = +3.000K+ +1.000NpO2+ +2.000CO3-2 + log_k -15.46 #03GUI/FAN + -analytic -15.46000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 -KAl(SO4)2(s) -KAl(SO4)2 = 1.000K+ + 1.000Al+3 + 2.000SO4-2 - log_k 3.740 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.74E+0 0E+0 0E+0 0E+0 0E+0 - -KAl(SO4)2:12H2O(s) -KAl(SO4)2:12H2O = 1.000K+ + 1.000Al+3 + 2.000SO4-2 + 12.000H2O - log_k -6.680 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.68E+0 0E+0 0E+0 0E+0 0E+0 - -KBr(s) -KBr = 1.000K+ + 1.000Br- - log_k 1.130 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.13E+0 0E+0 0E+0 0E+0 0E+0 - -KFe(CrO4)2:2H2O(s) -KFe(CrO4)2:2H2O = 1.000K+ + 1.000Fe+3 + 2.000CrO4-2 + 2.000H2O - log_k -19.390 #98BAR/PAL - delta_h 27.540 #kJ/mol #98BAR/PAL - # Enthalpy of formation: -2658.34 #kJ/mol - -analytic -1.45652E+1 0E+0 -1.43851E+3 0E+0 0E+0 - -KFe3(CrO4)2(OH)6(cr) -KFe3(CrO4)2(OH)6 = 1.000K+ + 3.000Fe+3 - 6.000H+ + 2.000CrO4-2 + 6.000H2O - log_k -18.400 #96BAR/PAL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.84E+1 0E+0 0E+0 0E+0 0E+0 - -KH2PO4(cr) -KH2PO4 = 1.000K+ + 1.000H2(PO4)- - log_k -0.370 - delta_h 19.686 #kJ/mol #74NAU/RYZ - # Enthalpy of formation: -1574.426 #kJ/mol - -analytic 3.07883E+0 0E+0 -1.02827E+3 0E+0 0E+0 - -KI(s) -KI = 1.000K+ + 1.000I- - log_k 1.740 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.74E+0 0E+0 0E+0 0E+0 0E+0 +K4NpO2(CO3)3(cr) +K4NpO2(CO3)3 = +4.000K+ +1.000NpO2+2 +3.000CO3-2 + log_k -26.93 #01LEM/FUG + -analytic -26.93000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Kainite -KMgCl(SO4):3H2O = 1.000Mg+2 + 1.000K+ + 1.000SO4-2 + 1.000Cl- + 3.000H2O - log_k -0.190 #84HAR/MOL - delta_h -12.950 #kJ/mol - # Enthalpy of formation: -2640.1 #kJ/mol #82WAG/EVA - -analytic -2.45874E+0 0E+0 6.76425E+2 0E+0 0E+0 +KMgCl(SO4):3H2O = +1.000Mg+2 +1.000K+ +1.000SO4-2 +1.000Cl- +3.000H2O + log_k -0.19 #84HAR/MOL + delta_h -12.950 #kJ/mol +# Enthalpy of formation: -2640.100 kJ/mol 82WAG/EVA + -analytic -24.58743E-1 00.00000E+0 67.64256E+1 00.00000E+0 00.00000E+0 + +KAl(OH)4 +KAl(OH)4 = +1.000K+ +1.000Al+3 -4.000H+ +4.000H2O + log_k +24.22 + delta_h -211.675 #kJ/mol +# Enthalpy of formation: -1722.185 kJ/mol 97POK/HEL2 + -analytic -12.86387E+0 00.00000E+0 11.05656E+3 00.00000E+0 00.00000E+0 + +KAl(SO4)2(s) +KAl(SO4)2 = +1.000K+ +1.000Al+3 +2.000SO4-2 + log_k +3.74 #96FAL/REA + -analytic 37.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +KAl(SO4)2:12H2O(s) +KAl(SO4)2:12H2O = +1.000K+ +1.000Al+3 +2.000SO4-2 +12.000H2O + log_k -6.68 #96FAL/REA + -analytic -66.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Kalicinite -KHCO3 = 1.000K+ + 1.000H+ + 1.000CO3-2 - log_k -10.060 #84HAR/MOL - delta_h 34.950 #kJ/mol - # Enthalpy of formation: -962.32 #kJ/mol #74NAU/RYZ - -analytic -3.93703E+0 0E+0 -1.82556E+3 0E+0 0E+0 +KHCO3 = +1.000K+ +1.000H+ +1.000CO3-2 + log_k -10.06 #84HAR/MOL + delta_h +34.950 #kJ/mol +# Enthalpy of formation: -962.320 kJ/mol 74NAU/RYZ + -analytic -39.37023E-1 00.00000E+0 -18.25566E+2 00.00000E+0 00.00000E+0 Kaolinite -Al2(Si2O5)(OH)4 = 2.000Al+3 - 6.000H+ + 2.000H4(SiO4) + 1.000H2O - log_k 6.510 - delta_h -169.718 #kJ/mol - # Enthalpy of formation: -4115.3 #kJ/mol #01FIA/NAV - -analytic -2.32233E+1 0E+0 8.86498E+3 0E+0 0E+0 +Al2(Si2O5)(OH)4 = +2.000Al+3 -6.000H+ +2.000H4(SiO4) +1.000H2O + log_k +6.50 + delta_h -169.718 #kJ/mol +# Enthalpy of formation: -4115.300 kJ/mol 01FIA/NAV + -analytic -23.23332E+0 00.00000E+0 88.64989E+2 00.00000E+0 00.00000E+0 + -Vm 99.340 Katoite -Ca3Al2(SiO4)(OH)8 = 3.000Ca+2 + 2.000Al+3 - 12.000H+ + 1.000H4(SiO4) + 8.000H2O - log_k 71.160 #10BLA/BOU2 - delta_h -545.657 #kJ/mol - # Enthalpy of formation: -5907.977 #kJ/mol - -analytic -2.44349E+1 0E+0 2.85016E+4 0E+0 0E+0 +Ca3Al2(SiO4)(OH)8 = +3.000Ca+2 +2.000Al+3 -12.000H+ +1.000H4(SiO4) +8.000H2O + log_k +71.16 #10BLA/BOU2 + delta_h -545.767 #kJ/mol +# Enthalpy of formation: -5907.865 kJ/mol + -analytic -24.45427E+0 00.00000E+0 28.50740E+3 00.00000E+0 00.00000E+0 + -Vm 141.510 + +K-Boltwoodite +K(UO2)(SiO3OH):H2O = +1.000K+ +1.000UO2+2 -3.000H+ +1.000H4(SiO4) +1.000H2O + log_k +4.48 #20GRE/GAO + delta_h -27.146 #kJ/mol +# Enthalpy of formation: -2991.019 kJ/mol + -analytic -27.57751E-2 00.00000E+0 14.17934E+2 00.00000E+0 00.00000E+0 + +KBr(s) +KBr = +1.000K+ +1.000Br- + log_k +1.13 #96FAL/REA + -analytic 11.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +K-carbonate +K2CO3:1.5H2O = +2.000K+ +1.000CO3-2 +1.500H2O + log_k +3.03 #84HAR/MOL + delta_h -1.188 #kJ/mol +# Enthalpy of formation: -1607.068 kJ/mol + -analytic 28.21871E-1 00.00000E+0 62.05356E+0 00.00000E+0 00.00000E+0 + +KFe(CrO4)2:2H2O(s) +KFe(CrO4)2:2H2O = +1.000K+ +1.000Fe+3 +2.000CrO4-2 +2.000H2O + log_k -19.39 #98BAR/PAL + delta_h +27.540 #kJ/mol 98BAR/PAL +# Enthalpy of formation: -2659.396 kJ/mol + -analytic -14.56520E+0 00.00000E+0 -14.38514E+2 00.00000E+0 00.00000E+0 + +KFe3(CrO4)2(OH)6(cr) +KFe3(CrO4)2(OH)6 = +1.000K+ +3.000Fe+3 -6.000H+ +2.000CrO4-2 +6.000H2O + log_k -18.40 #96BAR/PAL + -analytic -18.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +KH2PO4 +KH2PO4 = +1.000K+ +1.000H2(PO4)- + log_k -0.44 #97MAR/SMI + -analytic -44.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +KH2PO4(cr) +KH2PO4 = +1.000K+ +1.000H2(PO4)- + log_k -0.37 + delta_h +19.686 #kJ/mol 74NAU/RYZ +# Enthalpy of formation: -1574.426 kJ/mol + -analytic 30.78839E-1 00.00000E+0 -10.28271E+2 00.00000E+0 00.00000E+0 + +KI(s) +KI = +1.000K+ +1.000I- + log_k +1.74 #96FAL/REA + -analytic 17.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +KNpO2CO3(cr) +KNpO2CO3 = +1.000K+ +1.000NpO2+ +1.000CO3-2 + log_k -13.15 #03GUI/FAN + -analytic -13.15000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +KTcO4(cr) +KTcO4 = +1.000K+ +1.000TcO4- + log_k -2.29 #99RAR/RAN + delta_h +53.260 #kJ/mol 99RAR/RAN +# Enthalpy of formation: -1034.800 kJ/mol + -analytic 70.40751E-1 00.00000E+0 -27.81964E+2 00.00000E+0 00.00000E+0 + +K-trona +K2NaH(CO3)2:2H2O = +2.000K+ +1.000Na+ +1.000H+ +2.000CO3-2 +2.000H2O + log_k -9.10 #84HAR/MOL + -analytic -91.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Lanarkite -PbSO4:PbO = 2.000Pb+2 - 2.000H+ + 1.000SO4-2 + 1.000H2O - log_k 2.630 #82ABD/THO - delta_h -39.234 #kJ/mol - # Enthalpy of formation: -1154.096 #kJ/mol - -analytic -4.24349E+0 0E+0 2.04933E+3 0E+0 0E+0 +PbSO4:PbO = +2.000Pb+2 -2.000H+ +1.000SO4-2 +1.000H2O + log_k +2.63 #82ABD/THO + delta_h -39.234 #kJ/mol +# Enthalpy of formation: -1154.096 kJ/mol + -analytic -42.43502E-1 00.00000E+0 20.49335E+2 00.00000E+0 00.00000E+0 + +Langite +Cu4SO4(OH)6:H2O = +4.000Cu+2 -6.000H+ +1.000SO4-2 +7.000H2O + log_k +17.49 + delta_h -165.074 #kJ/mol +# Enthalpy of formation: -2485.474 kJ/mol + -analytic -11.42972E+0 00.00000E+0 86.22416E+2 00.00000E+0 00.00000E+0 Lansfordite -Mg(CO3):5H2O = 1.000Mg+2 + 1.000CO3-2 + 5.000H2O - log_k -5.040 - delta_h 2.890 #kJ/mol - # Enthalpy of formation: -2574.27 #kJ/mol #99KON/KON - -analytic -4.53369E+0 0E+0 -1.50955E+2 0E+0 0E+0 +Mg(CO3):5H2O = +1.000Mg+2 +1.000CO3-2 +5.000H2O + log_k -5.04 + delta_h +2.890 #kJ/mol +# Enthalpy of formation: -2574.270 kJ/mol 99KON/KON + -analytic -45.33694E-1 00.00000E+0 -15.09552E+1 00.00000E+0 00.00000E+0 Laumontite -CaAl2Si4O12:4H2O = 1.000Ca+2 + 2.000Al+3 - 8.000H+ + 4.000H4(SiO4) - log_k 11.700 - delta_h -213.576 #kJ/mol - # Enthalpy of formation: -7251 #kJ/mol #96KIS/NAV - -analytic -2.57169E+1 0E+0 1.11558E+4 0E+0 0E+0 +CaAl2Si4O12:4H2O = +1.000Ca+2 +2.000Al+3 -8.000H+ +4.000H4(SiO4) + log_k +11.67 + delta_h -213.576 #kJ/mol +# Enthalpy of formation: -7251.000 kJ/mol 96KIS/NAV + -analytic -25.74691E+0 00.00000E+0 11.15585E+3 00.00000E+0 00.00000E+0 + -Vm 207.530 Laurionite -PbClOH = 1.000Pb+2 - 1.000H+ + 1.000Cl- + 1.000H2O - log_k 0.620 #99LOT/OCH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.2E-1 0E+0 0E+0 0E+0 0E+0 +PbClOH = +1.000Pb+2 -1.000H+ +1.000Cl- +1.000H2O + log_k +0.62 #99LOT/OCH + -analytic 62.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Lawrencite -FeCl2 = 1.000Fe+2 + 2.000Cl- - log_k 8.890 - delta_h -82.460 #kJ/mol - # Enthalpy of formation: -341.7 #kJ/mol #95ROB/HEM - -analytic -5.55635E+0 0E+0 4.30718E+3 0E+0 0E+0 +FeCl2 = +1.000Fe+2 +2.000Cl- + log_k +8.93 + delta_h -82.921 #kJ/mol +# Enthalpy of formation: -341.534 kJ/mol 13LEM/BER + -analytic -55.97136E-1 00.00000E+0 43.31265E+2 00.00000E+0 00.00000E+0 Leonhardtite -MgSO4:4H2O = 1.000Mg+2 + 1.000SO4-2 + 4.000H2O - log_k -0.890 #80HAR/WEA - delta_h -24.030 #kJ/mol - # Enthalpy of formation: -2495.63 #kJ/mol #74NAU/RYZ - -analytic -5.09987E+0 0E+0 1.25517E+3 0E+0 0E+0 +MgSO4:4H2O = +1.000Mg+2 +1.000SO4-2 +4.000H2O + log_k -0.89 #80HAR/WEA + delta_h -24.030 #kJ/mol +# Enthalpy of formation: -2495.630 kJ/mol 74NAU/RYZ + -analytic -50.99875E-1 00.00000E+0 12.55174E+2 00.00000E+0 00.00000E+0 Leonite -K2Mg(SO4)2:4H2O = 1.000Mg+2 + 2.000K+ + 2.000SO4-2 + 4.000H2O - log_k -3.980 #84HAR/MOL - delta_h 15.290 #kJ/mol - # Enthalpy of formation: -3948.57 #kJ/mol #74NAU/RYZ - -analytic -1.30131E+0 0E+0 -7.98651E+2 0E+0 0E+0 +K2Mg(SO4)2:4H2O = +1.000Mg+2 +2.000K+ +2.000SO4-2 +4.000H2O + log_k -3.98 #84HAR/MOL + delta_h +15.290 #kJ/mol +# Enthalpy of formation: -3948.570 kJ/mol 74NAU/RYZ + -analytic -13.01307E-1 00.00000E+0 -79.86523E+1 00.00000E+0 00.00000E+0 Lepidocrocite -FeOOH = 1.000Fe+3 - 3.000H+ + 2.000H2O - log_k 0.750 #98DIA2 in 98CHI - delta_h -64.260 #kJ/mol - # Enthalpy of formation: -556.4 #kJ/mol - -analytic -1.05079E+1 0E+0 3.35653E+3 0E+0 0E+0 +FeOOH = +1.000Fe+3 -3.000H+ +2.000H2O + log_k +1.86 + delta_h -72.516 #kJ/mol +# Enthalpy of formation: -549.200 kJ/mol 13LEM/BER + -analytic -10.84426E+0 00.00000E+0 37.87774E+2 00.00000E+0 00.00000E+0 + +Li(cr) +Li = +1.000e- +1.000Li+ + log_k +51.32 + delta_h -278.470 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic 25.34150E-1 00.00000E+0 14.54550E+3 00.00000E+0 00.00000E+0 + +Liebigite +Ca2UO2(CO3)3:10H2O = +2.000Ca+2 +1.000UO2+2 +3.000CO3-2 +10.000H2O + log_k -32.30 #19LEE/AMA + delta_h +55.710 #kJ/mol +# Enthalpy of formation: -7044.700 kJ/mol 20GRE/GAO + -analytic -22.54003E+0 00.00000E+0 -29.09936E+2 00.00000E+0 00.00000E+0 Linnaeite -Co3S4 = 3.000Co+2 - 2.000H+ + 4.000HS- - 1.000H2O + 0.500O2 - log_k -85.750 - delta_h 416.263 #kJ/mol - # Enthalpy of formation: -374.5 #kJ/mol #95ROB/HEM - -analytic -1.2824E+1 0E+0 -2.17429E+4 0E+0 0E+0 +Co3S4 = +3.000Co+2 -4.000H+ -2.000e- +4.000HS- + log_k -42.76 + delta_h +136.500 #kJ/mol +# Enthalpy of formation: -374.500 kJ/mol 95ROB/HEM + -analytic -18.84623E+0 00.00000E+0 -71.29892E+2 00.00000E+0 00.00000E+0 Litharge -PbO = 1.000Pb+2 - 2.000H+ + 1.000H2O - log_k 12.630 - delta_h -65.501 #kJ/mol - # Enthalpy of formation: -219.409 #kJ/mol #98CHA - -analytic 1.15473E+0 0E+0 3.42135E+3 0E+0 0E+0 +PbO = +1.000Pb+2 -2.000H+ +1.000H2O + log_k +12.63 + delta_h -65.501 #kJ/mol +# Enthalpy of formation: -219.409 kJ/mol 98CHA + -analytic 11.54717E-1 00.00000E+0 34.21356E+2 00.00000E+0 00.00000E+0 Lizardite -Mg3Si2O5(OH)4 = 3.000Mg+2 - 6.000H+ + 2.000H4(SiO4) + 1.000H2O - log_k 33.100 - delta_h -247.218 #kJ/mol - # Enthalpy of formation: -4362 #kJ/mol #04EVA - -analytic -1.02107E+1 0E+0 1.29131E+4 0E+0 0E+0 +Mg3Si2O5(OH)4 = +3.000Mg+2 -6.000H+ +2.000H4(SiO4) +1.000H2O + log_k +33.08 + delta_h -247.218 #kJ/mol +# Enthalpy of formation: -4362.000 kJ/mol 04EVA + -analytic -10.23073E+0 00.00000E+0 12.91310E+3 00.00000E+0 00.00000E+0 + -Vm 107.500 Mackinawite -FeS = 1.000Fe+2 - 1.000H+ + 1.000HS- - log_k -3.600 #91DAV - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.6E+0 0E+0 0E+0 0E+0 0E+0 +FeS = +1.000Fe+2 -1.000H+ +1.000HS- + log_k -3.19 #20LEM/PAL + -analytic -31.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -Vm 20.450 -Maghemite(disord) -Fe2O3 = 2.000Fe+3 - 6.000H+ + 3.000H2O - log_k 3.310 #98DIA1 in 98CHI - delta_h -149.690 #kJ/mol - # Enthalpy of formation: -805.8 #kJ/mol - -analytic -2.29145E+1 0E+0 7.81884E+3 0E+0 0E+0 - -Maghemite(ord) -Fe2O3 = 2.000Fe+3 - 6.000H+ + 3.000H2O - log_k 3.520 #98DIA1 in 98CHI - delta_h -149.690 #kJ/mol - # Enthalpy of formation: -805.8 #kJ/mol - -analytic -2.27045E+1 0E+0 7.81884E+3 0E+0 0E+0 +Maghemite +Fe2O3 = +2.000Fe+3 -6.000H+ +3.000H2O + log_k +2.79 + delta_h -149.612 #kJ/mol +# Enthalpy of formation: -807.990 kJ/mol 13LEM/BER + -analytic -23.42090E+0 00.00000E+0 78.14779E+2 00.00000E+0 00.00000E+0 Magnesite(nat) -MgCO3 = 1.000Mg+2 + 1.000CO3-2 - log_k -8.910 - delta_h -24.290 #kJ/mol - # Enthalpy of formation: -1117.94 #kJ/mol #99KON/KON - -analytic -1.31654E+1 0E+0 1.26875E+3 0E+0 0E+0 +MgCO3 = +1.000Mg+2 +1.000CO3-2 + log_k -8.91 + delta_h -24.290 #kJ/mol +# Enthalpy of formation: -1117.940 kJ/mol 99KON/KON + -analytic -13.16543E+0 00.00000E+0 12.68755E+2 00.00000E+0 00.00000E+0 Magnesite(syn) -Mg(CO3) = 1.000Mg+2 + 1.000CO3-2 - log_k -8.100 - delta_h -28.930 #kJ/mol - # Enthalpy of formation: -1113.3 #kJ/mol #95ROB/HEM - -analytic -1.31683E+1 0E+0 1.51112E+3 0E+0 0E+0 +Mg(CO3) = +1.000Mg+2 +1.000CO3-2 + log_k -8.10 + delta_h -28.930 #kJ/mol +# Enthalpy of formation: -1113.300 kJ/mol 95ROB/HEM + -analytic -13.16832E+0 00.00000E+0 15.11119E+2 00.00000E+0 00.00000E+0 Magnetite -Fe3O4 = 2.000Fe+3 + 1.000Fe+2 - 8.000H+ + 4.000H2O - log_k 10.410 - delta_h -215.920 #kJ/mol - # Enthalpy of formation: -1115.4 #kJ/mol #88ONE - -analytic -2.74175E+1 0E+0 1.12783E+4 0E+0 0E+0 +Fe3O4 = +2.000Fe+3 +1.000Fe+2 -8.000H+ +4.000H2O + log_k +10.34 + delta_h -217.947 #kJ/mol +# Enthalpy of formation: -1115.780 kJ/mol 13LEM/BER + -analytic -27.84268E+0 00.00000E+0 11.38416E+3 00.00000E+0 00.00000E+0 + -Vm 44.520 + +Malachite +Cu2CO3(OH)2 = +2.000Cu+2 -2.000H+ +1.000CO3-2 +2.000H2O + log_k -5.18 #91BAL/NOR in 07POW/BRO + delta_h -51.649 #kJ/mol +# Enthalpy of formation: -1065.441 kJ/mol + -analytic -14.22852E+0 00.00000E+0 26.97815E+2 00.00000E+0 00.00000E+0 Manganite -MnOOH = 1.000Mn+2 - 2.000H+ + 1.500H2O + 0.250O2 - log_k 3.775 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.775E+0 0E+0 0E+0 0E+0 0E+0 +MnOOH = +1.000Mn+2 -3.000H+ -1.000e- +2.000H2O + log_k +25.27 #96FAL/REA + -analytic 25.27000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Margarite -CaAl4Si2O10(OH)2 = 1.000Ca+2 + 4.000Al+3 - 14.000H+ + 2.000H4(SiO4) + 4.000H2O - log_k 37.000 - delta_h -518.308 #kJ/mol - # Enthalpy of formation: -6244 #kJ/mol #95ROB/HEM - -analytic -5.38035E+1 0E+0 2.70731E+4 0E+0 0E+0 +CaAl4Si2O10(OH)2 = +1.000Ca+2 +4.000Al+3 -14.000H+ +2.000H4(SiO4) +4.000H2O + log_k +36.99 + delta_h -518.308 #kJ/mol +# Enthalpy of formation: -6244.000 kJ/mol 95ROB/HEM + -analytic -53.81366E+0 00.00000E+0 27.07311E+3 00.00000E+0 00.00000E+0 + -Vm 129.630 Massicot -PbO = 1.000Pb+2 - 2.000H+ + 1.000H2O - log_k 12.740 - delta_h -66.848 #kJ/mol - # Enthalpy of formation: -218.062 #kJ/mol #98CHA - -analytic 1.02875E+0 0E+0 3.49171E+3 0E+0 0E+0 +PbO = +1.000Pb+2 -2.000H+ +1.000H2O + log_k +12.74 + delta_h -66.848 #kJ/mol +# Enthalpy of formation: -218.062 kJ/mol 98CHA + -analytic 10.28733E-1 00.00000E+0 34.91714E+2 00.00000E+0 00.00000E+0 Melanterite -FeSO4:7H2O = 1.000Fe+2 + 1.000SO4-2 + 7.000H2O - log_k -2.210 #90NOR/PLU - delta_h 20.543 #kJ/mol - # Enthalpy of formation: -3020.693 #kJ/mol - -analytic 1.38897E+0 0E+0 -1.07303E+3 0E+0 0E+0 +FeSO4:7H2O = +1.000Fe+2 +1.000SO4-2 +7.000H2O + log_k -2.28 + delta_h +12.067 #kJ/mol +# Enthalpy of formation: -3012.512 kJ/mol 13LEM/BER + -analytic -16.59523E-2 00.00000E+0 -63.03033E+1 00.00000E+0 00.00000E+0 Mercallite -KHSO4 = 1.000K+ + 1.000H+ + 1.000SO4-2 - log_k -1.400 #84HAR/MOL - delta_h -0.590 #kJ/mol - # Enthalpy of formation: -1160.89 #kJ/mol #74NAU/RYZ - -analytic -1.50336E+0 0E+0 3.08178E+1 0E+0 0E+0 +KHSO4 = +1.000K+ +1.000H+ +1.000SO4-2 + log_k -1.40 #84HAR/MOL + delta_h -0.590 #kJ/mol +# Enthalpy of formation: -1160.890 kJ/mol 74NAU/RYZ + -analytic -15.03364E-1 00.00000E+0 30.81785E+0 00.00000E+0 00.00000E+0 Merlinoite_K -K1.04Al1.04Si1.96O6:1.69H2O = 1.040K+ + 1.040Al+3 - 4.160H+ + 1.960H4(SiO4) - 0.150H2O - log_k 9.490 - delta_h -105.627 #kJ/mol - # Enthalpy of formation: -3537.6 #kJ/mol #09BLA - -analytic -9.01503E+0 0E+0 5.51727E+3 0E+0 0E+0 +K1.04Al1.04Si1.96O6:1.69H2O = +1.040K+ +1.040Al+3 -4.160H+ +1.960H4(SiO4) -0.150H2O + log_k +9.47 + delta_h -105.627 #kJ/mol +# Enthalpy of formation: -3537.600 kJ/mol 09BLA + -analytic -90.35056E-1 00.00000E+0 55.17282E+2 00.00000E+0 00.00000E+0 + -Vm 112.910 Merlinoite_Na -Na1.04Al1.04Si1.96O6:2.27H2O = 1.040Na+ + 1.040Al+3 - 4.160H+ + 1.960H4(SiO4) + 0.430H2O - log_k 10.300 - delta_h -115.307 #kJ/mol - # Enthalpy of formation: -3681.43 #kJ/mol #09BLA - -analytic -9.90089E+0 0E+0 6.0229E+3 0E+0 0E+0 +Na1.04Al1.04Si1.96O6:2.27H2O = +1.040Na+ +1.040Al+3 -4.160H+ +1.960H4(SiO4) +0.430H2O + log_k +10.29 + delta_h -115.307 #kJ/mol +# Enthalpy of formation: -3681.430 kJ/mol 09BLA + -analytic -99.10919E-1 00.00000E+0 60.22904E+2 00.00000E+0 00.00000E+0 + -Vm 114.040 -Mg(HPO4):3H2O(s) -Mg(HPO4):3H2O = 1.000Mg+2 - 1.000H+ + 1.000H2(PO4)- + 3.000H2O - log_k 1.410 #01WEN/MUS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.41E+0 0E+0 0E+0 0E+0 0E+0 +Metacinnabar +HgS = -1.000H+ +1.000HS- +1.000Hg+2 + log_k -38.53 + delta_h +200.410 #kJ/mol +# Enthalpy of formation: -46.500 kJ/mol 95ROB/HEM + -analytic -34.19675E-1 00.00000E+0 -10.46814E+3 00.00000E+0 00.00000E+0 -Mg(NO3)2(s) -Mg(NO3)2 = 1.000Mg+2 + 2.000NO3- - log_k 15.500 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.55E+1 0E+0 0E+0 0E+0 0E+0 - -Mg(NO3)2:6H2O(s) -Mg(NO3)2:6H2O = 1.000Mg+2 + 2.000NO3- + 6.000H2O - log_k 2.580 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.58E+0 0E+0 0E+0 0E+0 0E+0 - -Mg(SO4)(s) -Mg(SO4) = 1.000Mg+2 + 1.000SO4-2 - log_k 9.100 - delta_h -114.550 #kJ/mol - # Enthalpy of formation: -1261.79 #kJ/mol #98CHA - -analytic -1.09683E+1 0E+0 5.98335E+3 0E+0 0E+0 - -Mg(SO4):H2O(s) -Mg(SO4):H2O = 1.000Mg+2 + 1.000SO4-2 + 1.000H2O - log_k -0.120 #84HAR/MOL - delta_h -51.464 #kJ/mol - # Enthalpy of formation: -1610.706 #kJ/mol - -analytic -9.13609E+0 0E+0 2.68815E+3 0E+0 0E+0 - -Mg(SeO3):6H2O(s) -Mg(SeO3):6H2O = 1.000Mg+2 + 1.000SeO3-2 + 6.000H2O - log_k -5.820 #05OLI/NOL - delta_h 18.070 #kJ/mol - # Enthalpy of formation: -2707.21 #kJ/mol #05OLI/NOL - -analytic -2.65428E+0 0E+0 -9.4386E+2 0E+0 0E+0 - -Mg(SeO4):6H2O(s) -Mg(SeO4):6H2O = 1.000Mg+2 + 1.000SeO4-2 + 6.000H2O - log_k -1.133 #05OLI/NOL - delta_h -4.080 #kJ/mol - # Enthalpy of formation: -2781.4 #kJ/mol #05OLI/NOL - -analytic -1.84778E+0 0E+0 2.13113E+2 0E+0 0E+0 +Metaschoepite +UO3:2H2O = +1.000UO2+2 -2.000H+ +3.000H2O + log_k +5.35 #20GRE/GAO + -analytic 53.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Mg(cr) -Mg = 1.000Mg+2 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 122.770 - delta_h -746.763 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #89COX/WAG - -analytic -8.05707E+0 0E+0 3.90061E+4 0E+0 0E+0 +Mg = +1.000Mg+2 +2.000e- + log_k +79.78 + delta_h -467.000 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic -20.34888E-1 00.00000E+0 24.39311E+3 00.00000E+0 00.00000E+0 -Mg-oxychlorur -Mg2Cl(OH)3:4H2O = 2.000Mg+2 - 3.000H+ + 1.000Cl- + 7.000H2O - log_k 26.030 #84HAR/MOL - delta_h -154.690 #kJ/mol - # Enthalpy of formation: -2947.2 #kJ/mol #82WAG/EVA - -analytic -1.07048E+0 0E+0 8.08001E+3 0E+0 0E+0 +Mg(HPO4):3H2O(s) +Mg(HPO4):3H2O = +1.000Mg+2 -1.000H+ +1.000H2(PO4)- +3.000H2O + log_k +1.41 #01WEN/MUS + -analytic 14.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +Mg(NO3)2(s) +Mg(NO3)2 = +1.000Mg+2 +2.000NO3- + log_k +15.50 #96FAL/REA + -analytic 15.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +Mg(NO3)2:6H2O(s) +Mg(NO3)2:6H2O = +1.000Mg+2 +2.000NO3- +6.000H2O + log_k +2.58 #96FAL/REA + -analytic 25.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +Mg(SeO3):6H2O(s) +Mg(SeO3):6H2O = +1.000Mg+2 +1.000SeO3-2 +6.000H2O + log_k -5.82 #05OLI/NOL + delta_h +18.070 #kJ/mol +# Enthalpy of formation: -2707.210 kJ/mol 05OLI/NOL + -analytic -26.54272E-1 00.00000E+0 -94.38618E+1 00.00000E+0 00.00000E+0 + +Mg(SeO4):6H2O(s) +Mg(SeO4):6H2O = +1.000Mg+2 +1.000SeO4-2 +6.000H2O + log_k -1.13 #05OLI/NOL + delta_h -4.080 #kJ/mol +# Enthalpy of formation: -2781.400 kJ/mol 05OLI/NOL + -analytic -18.44785E-1 00.00000E+0 21.31132E+1 00.00000E+0 00.00000E+0 + +Mg(SO4)(s) +Mg(SO4) = +1.000Mg+2 +1.000SO4-2 + log_k +9.10 + delta_h -114.550 #kJ/mol +# Enthalpy of formation: -1261.790 kJ/mol 98CHA + -analytic -10.96830E+0 00.00000E+0 59.83363E+2 00.00000E+0 00.00000E+0 + +Mg(SO4):H2O(s) +Mg(SO4):H2O = +1.000Mg+2 +1.000SO4-2 +1.000H2O + log_k -0.12 #84HAR/MOL + delta_h -51.464 #kJ/mol +# Enthalpy of formation: -1610.705 kJ/mol + -analytic -91.36106E-1 00.00000E+0 26.88152E+2 00.00000E+0 00.00000E+0 Mg3(PO4)2(cr) -Mg3(PO4)2 = 3.000Mg+2 - 4.000H+ + 2.000H2(PO4)- - log_k 15.820 #68RAC/SOP - delta_h -214.093 #kJ/mol - # Enthalpy of formation: -3792.107 #kJ/mol - -analytic -2.16874E+1 0E+0 1.11828E+4 0E+0 0E+0 +Mg3(PO4)2 = +3.000Mg+2 -4.000H+ +2.000H2(PO4)- + log_k +15.82 #68RAC/SOP + delta_h -214.093 #kJ/mol +# Enthalpy of formation: -3792.106 kJ/mol + -analytic -21.68748E+0 00.00000E+0 11.18286E+3 00.00000E+0 00.00000E+0 Mg3(PO4)2:22H2O(s) -Mg3(PO4)2:22H2O = 3.000Mg+2 - 4.000H+ + 2.000H2(PO4)- + 22.000H2O - log_k 16.000 #63TAY/FRA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.6E+1 0E+0 0E+0 0E+0 0E+0 +Mg3(PO4)2:22H2O = +3.000Mg+2 -4.000H+ +2.000H2(PO4)- +22.000H2O + log_k +16.00 #63TAY/FRA + -analytic 16.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Mg3(PO4)2:8H2O(s) -Mg3(PO4)2:8H2O = 3.000Mg+2 - 4.000H+ + 2.000H2(PO4)- + 8.000H2O - log_k 13.900 #63TAY/FRA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.39E+1 0E+0 0E+0 0E+0 0E+0 +Mg3(PO4)2:8H2O = +3.000Mg+2 -4.000H+ +2.000H2(PO4)- +8.000H2O + log_k +13.90 #63TAY/FRA + -analytic 13.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Mg5(CO3)4(OH)2:4H2O(s) -Mg5(CO3)4(OH)2:4H2O = 5.000Mg+2 - 2.000H+ + 4.000CO3-2 + 6.000H2O - log_k -10.310 - delta_h -234.900 #kJ/mol - # Enthalpy of formation: -6516 #kJ/mol #73ROB/HEM - -analytic -5.14627E+1 0E+0 1.22697E+4 0E+0 0E+0 +Mg5(CO3)4(OH)2:4H2O = +5.000Mg+2 -2.000H+ +4.000CO3-2 +6.000H2O + log_k -10.31 + delta_h -234.900 #kJ/mol +# Enthalpy of formation: -6516.000 kJ/mol 73ROB/HEM + -analytic -51.46271E+0 00.00000E+0 12.26968E+3 00.00000E+0 00.00000E+0 MgBr2(s) -MgBr2 = 1.000Mg+2 + 2.000Br- - log_k 27.800 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.78E+1 0E+0 0E+0 0E+0 0E+0 +MgBr2 = +1.000Mg+2 +2.000Br- + log_k +27.80 #96FAL/REA + -analytic 27.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 MgBr2:6H2O(s) -MgBr2:6H2O = 1.000Mg+2 + 2.000Br- + 6.000H2O - log_k 5.220 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.22E+0 0E+0 0E+0 0E+0 0E+0 +MgBr2:6H2O = +1.000Mg+2 +2.000Br- +6.000H2O + log_k +5.22 #96FAL/REA + -analytic 52.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 MgCl2(s) -MgCl2 = 1.000Mg+2 + 2.000Cl- - log_k 22.030 - delta_h -159.540 #kJ/mol - # Enthalpy of formation: -641.62 #kJ/mol #98CHA - -analytic -5.92017E+0 0E+0 8.33334E+3 0E+0 0E+0 +MgCl2 = +1.000Mg+2 +2.000Cl- + log_k +22.03 + delta_h -159.540 #kJ/mol +# Enthalpy of formation: -641.620 kJ/mol 98CHA + -analytic -59.20208E-1 00.00000E+0 83.33355E+2 00.00000E+0 00.00000E+0 MgCl2:2H2O(s) -MgCl2:2H2O = 1.000Mg+2 + 2.000Cl- + 2.000H2O - log_k 12.900 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.29E+1 0E+0 0E+0 0E+0 0E+0 +MgCl2:2H2O = +1.000Mg+2 +2.000Cl- +2.000H2O + log_k +12.90 #96FAL/REA + -analytic 12.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 MgCl2:4H2O(s) -MgCl2:4H2O = 1.000Mg+2 + 2.000Cl- + 4.000H2O - log_k 7.440 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.44E+0 0E+0 0E+0 0E+0 0E+0 +MgCl2:4H2O = +1.000Mg+2 +2.000Cl- +4.000H2O + log_k +7.44 #96FAL/REA + -analytic 74.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 MgCl2:H2O(s) -MgCl2:H2O = 1.000Mg+2 + 2.000Cl- + 1.000H2O - log_k 16.220 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.622E+1 0E+0 0E+0 0E+0 0E+0 +MgCl2:H2O = +1.000Mg+2 +2.000Cl- +1.000H2O + log_k +16.22 #96FAL/REA + -analytic 16.22000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 -MgCrO4(s) -MgCrO4 = 1.000Mg+2 + 1.000CrO4-2 - log_k -86.990 - delta_h 437.600 #kJ/mol - # Enthalpy of formation: -1783.6 #kJ/mol #95ROB/HEM - -analytic -1.03259E+1 0E+0 -2.28574E+4 0E+0 0E+0 +MgCr2O4(s) +MgCr2O4 = +1.000Mg+2 -8.000H+ +2.000Cr+3 +4.000H2O + log_k +22.17 + delta_h -307.720 #kJ/mol +# Enthalpy of formation: -1783.600 kJ/mol 95ROB/HEM + -analytic -31.74023E+0 00.00000E+0 16.07334E+3 00.00000E+0 00.00000E+0 MgF2(cr) -MgF2 = 1.000Mg+2 + 2.000F- - log_k -9.220 #92GRE/FUG - delta_h -13.500 #kJ/mol - # Enthalpy of formation: -1124.2 #kJ/mol - -analytic -1.15851E+1 0E+0 7.05153E+2 0E+0 0E+0 +MgF2 = +1.000Mg+2 +2.000F- + log_k -9.22 + delta_h -13.500 #kJ/mol +# Enthalpy of formation: -1124.200 kJ/mol 92GRE/FUG + -analytic -11.58510E+0 00.00000E+0 70.51541E+1 00.00000E+0 00.00000E+0 MgI2(s) -MgI2 = 1.000Mg+2 + 2.000I- - log_k 35.000 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.5E+1 0E+0 0E+0 0E+0 0E+0 +MgI2 = +1.000Mg+2 +2.000I- + log_k +35.00 #96FAL/REA + -analytic 35.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 MgMoO4(s) -MgMoO4 = 1.000Mg+2 + 1.000MoO4-2 - log_k -0.640 - delta_h -62.967 #kJ/mol - # Enthalpy of formation: -1401.033 #kJ/mol - -analytic -1.16713E+1 0E+0 3.28899E+3 0E+0 0E+0 +MgMoO4 = +1.000Mg+2 +1.000MoO4-2 + log_k -0.64 + delta_h -62.966 #kJ/mol +# Enthalpy of formation: -1401.033 kJ/mol + -analytic -11.67117E+0 00.00000E+0 32.88943E+2 00.00000E+0 00.00000E+0 + +Mg-oxychlorur +Mg2Cl(OH)3:4H2O = +2.000Mg+2 -3.000H+ +1.000Cl- +7.000H2O + log_k +26.03 #84HAR/MOL + delta_h -154.690 #kJ/mol +# Enthalpy of formation: -2947.200 kJ/mol 82WAG/EVA + -analytic -10.70525E-1 00.00000E+0 80.80021E+2 00.00000E+0 00.00000E+0 Microcline -KAlSi3O8 = 1.000K+ + 1.000Al+3 - 4.000H+ + 3.000H4(SiO4) - 4.000H2O - log_k 0.050 - delta_h -56.463 #kJ/mol - # Enthalpy of formation: -3974.34 #kJ/mol #99ARN/STE - -analytic -9.84188E+0 0E+0 2.94926E+3 0E+0 0E+0 +KAlSi3O8 = +1.000K+ +1.000Al+3 -4.000H+ +3.000H4(SiO4) -4.000H2O + log_k +0.05 + delta_h -56.462 #kJ/mol +# Enthalpy of formation: -3974.340 kJ/mol 99ARN/STE + -analytic -98.41718E-1 00.00000E+0 29.49216E+2 00.00000E+0 00.00000E+0 + -Vm 108.740 Millerite -NiS = 1.000Ni+2 - 1.000H+ + 1.000HS- - log_k -10.130 - delta_h 22.688 #kJ/mol - # Enthalpy of formation: -94 #kJ/mol #05GAM/BUG - -analytic -6.15524E+0 0E+0 -1.18508E+3 0E+0 0E+0 +NiS = +1.000Ni+2 -1.000H+ +1.000HS- + log_k -10.13 + delta_h +22.688 #kJ/mol +# Enthalpy of formation: -94.000 kJ/mol 05GAM/BUG + -analytic -61.55233E-1 00.00000E+0 -11.85077E+2 00.00000E+0 00.00000E+0 Minium -Pb3O4 = 3.000Pb+2 - 6.000H+ + 3.000H2O + 0.500O2 - log_k 30.540 - delta_h -142.111 #kJ/mol - # Enthalpy of formation: -718.686 #kJ/mol - -analytic 5.64326E+0 0E+0 7.42296E+3 0E+0 0E+0 +Pb3O4 = +3.000Pb+2 -8.000H+ -2.000e- +4.000H2O + log_k +73.53 + delta_h -421.874 #kJ/mol +# Enthalpy of formation: -718.686 kJ/mol 98CHA + -analytic -37.91522E-2 00.00000E+0 22.03601E+3 00.00000E+0 00.00000E+0 Minnesotaite -Fe3Si4O10(OH)2 = 3.000Fe+2 - 6.000H+ + 4.000H4(SiO4) - 4.000H2O - log_k 14.930 - delta_h -148.466 #kJ/mol - # Enthalpy of formation: -4822.99 #kJ/mol #83MIY/KLE - -analytic -1.10801E+1 0E+0 7.75491E+3 0E+0 0E+0 +Fe3Si4O10(OH)2 = +3.000Fe+2 -6.000H+ +4.000H4(SiO4) -4.000H2O + log_k +14.99 + delta_h -149.351 #kJ/mol +# Enthalpy of formation: -4822.990 kJ/mol 83MIY/KLE + -analytic -11.17517E+0 00.00000E+0 78.01146E+2 00.00000E+0 00.00000E+0 + -Vm 148.500 Mirabilite -Na2SO4:10H2O = 2.000Na+ + 1.000SO4-2 + 10.000H2O - log_k -1.230 #84HAR/MOL - delta_h 79.471 #kJ/mol - # Enthalpy of formation: -4327.791 #kJ/mol - -analytic 1.26927E+1 0E+0 -4.15105E+3 0E+0 0E+0 +Na2SO4:10H2O = +2.000Na+ +1.000SO4-2 +10.000H2O + log_k -1.23 #84HAR/MOL + delta_h +79.471 #kJ/mol +# Enthalpy of formation: -4327.788 kJ/mol + -analytic 12.69272E+0 00.00000E+0 -41.51059E+2 00.00000E+0 00.00000E+0 + -Vm 219.800 + +Mn(cr) +Mn = +1.000Mn+2 +2.000e- + log_k +39.99 + delta_h -220.800 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 82WAG/EVA in 05OLI/NOL + -analytic 13.07500E-1 00.00000E+0 11.53319E+3 00.00000E+0 00.00000E+0 Mn(H2SiO4)(s) -Mn(H2SiO4) = 1.000Mn+2 - 2.000H+ + 1.000H4(SiO4) - log_k 12.440 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.244E+1 0E+0 0E+0 0E+0 0E+0 +Mn(H2SiO4) = +1.000Mn+2 -2.000H+ +1.000H4(SiO4) + log_k +12.44 #88CHA/NEW + -analytic 12.44000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Mn(HPO4)(s) -Mn(HPO4) = 1.000Mn+2 - 1.000H+ + 1.000H2(PO4)- - log_k -5.740 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.74E+0 0E+0 0E+0 0E+0 0E+0 - -Mn(SO4)(s) -Mn(SO4) = 1.000Mn+2 + 1.000SO4-2 - log_k -2.680 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.68E+0 0E+0 0E+0 0E+0 0E+0 +Mn(HPO4) = +1.000Mn+2 -1.000H+ +1.000H2(PO4)- + log_k -5.74 #96FAL/REA + -analytic -57.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Mn(SeO3):2H2O(cr) -Mn(SeO3):2H2O = 1.000Mn+2 + 1.000SeO3-2 + 2.000H2O - log_k -7.600 #05OLI/NOL - delta_h -18.920 #kJ/mol - # Enthalpy of formation: -1280.7 #kJ/mol #05OLI/NOL - -analytic -1.09146E+1 0E+0 9.88259E+2 0E+0 0E+0 +Mn(SeO3):2H2O = +1.000Mn+2 +1.000SeO3-2 +2.000H2O + log_k -7.60 #05OLI/NOL + delta_h -18.920 #kJ/mol +# Enthalpy of formation: -1280.700 kJ/mol 05OLI/NOL + -analytic -10.91464E+0 00.00000E+0 98.82604E+1 00.00000E+0 00.00000E+0 -#Mn(cr) -#Mn = 1.000Mn+2 + 1.000H2O - 2.000H+ - 0.500O2 - # log_k - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #82WAG/EVA in 05OLI/NOL - # -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 +Mn(SO4)(s) +Mn(SO4) = +1.000Mn+2 +1.000SO4-2 + log_k -2.68 #96FAL/REA + -analytic -26.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Mn2(Pyrophos)(s) -Mn2(Pyrophos) = 2.000Mn+2 + 1.000Pyrophos-4 - log_k -19.500 #88CHA/NEW - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.95E+1 0E+0 0E+0 0E+0 0E+0 +Mn2(Pyrophos) = +2.000Mn+2 +1.000Pyrophos-4 + log_k -19.50 #88CHA/NEW + -analytic -19.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Mn3(PO4)2(s) -Mn3(PO4)2 = 3.000Mn+2 - 4.000H+ + 2.000H2(PO4)- - log_k 15.320 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.532E+1 0E+0 0E+0 0E+0 0E+0 +Mn3(PO4)2 = +3.000Mn+2 -4.000H+ +2.000H2(PO4)- + log_k +15.32 #96FAL/REA + -analytic 15.32000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Mn3(PO4)2:3H2O(s) -Mn3(PO4)2:3H2O = 3.000Mn+2 - 4.000H+ + 2.000H2(PO4)- + 3.000H2O - log_k 2.320 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.32E+0 0E+0 0E+0 0E+0 0E+0 +Mn3(PO4)2:3H2O = +3.000Mn+2 -4.000H+ +2.000H2(PO4)- +3.000H2O + log_k +2.32 #96FAL/REA + -analytic 23.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 MnCl2:2H2O(s) -MnCl2:2H2O = 1.000Mn+2 + 2.000Cl- + 2.000H2O - log_k 3.980 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.98E+0 0E+0 0E+0 0E+0 0E+0 +MnCl2:2H2O = +1.000Mn+2 +2.000Cl- +2.000H2O + log_k +3.98 #96FAL/REA + -analytic 39.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 MnCl2:4H2O(s) -MnCl2:4H2O = 1.000Mn+2 + 2.000Cl- + 4.000H2O - log_k 2.710 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.71E+0 0E+0 0E+0 0E+0 0E+0 +MnCl2:4H2O = +1.000Mn+2 +2.000Cl- +4.000H2O + log_k +2.71 #96FAL/REA + -analytic 27.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 MnCl2:H2O(s) -MnCl2:H2O = 1.000Mn+2 + 2.000Cl- + 1.000H2O - log_k 5.530 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.53E+0 0E+0 0E+0 0E+0 0E+0 +MnCl2:H2O = +1.000Mn+2 +2.000Cl- +1.000H2O + log_k +5.53 #96FAL/REA + -analytic 55.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 MnO(s) -MnO = 1.000Mn+2 - 2.000H+ + 1.000H2O - log_k 17.900 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.79E+1 0E+0 0E+0 0E+0 0E+0 +MnO = +1.000Mn+2 -2.000H+ +1.000H2O + log_k +17.90 #96FAL/REA + -analytic 17.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 MnO2(s) -MnO2 = 1.000Mn+2 - 2.000H+ + 1.000H2O + 0.500O2 - log_k -0.990 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -9.9E-1 0E+0 0E+0 0E+0 0E+0 +MnO2 = +1.000Mn+2 -4.000H+ -2.000e- +2.000H2O + log_k +42.00 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 + -analytic 42.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 MnSe(alfa) -MnSe = 1.000Mn+2 - 1.000H+ + 1.000HSe- - log_k 0.300 - delta_h -28.579 #kJ/mol - # Enthalpy of formation: -177.921 #kJ/mol - -analytic -4.70682E+0 0E+0 1.49278E+3 0E+0 0E+0 +MnSe = +1.000Mn+2 -1.000H+ +1.000HSe- + log_k +0.33 + delta_h -28.579 #kJ/mol +# Enthalpy of formation: -177.921 kJ/mol + -analytic -46.76826E-1 00.00000E+0 14.92785E+2 00.00000E+0 00.00000E+0 MnSe2(cr) -MnSe2 = 1.000Mn+2 + 2.000HSe- - 1.000H2O + 0.500O2 - log_k -51.140 - delta_h 268.063 #kJ/mol - # Enthalpy of formation: -180.5 #kJ/mol #05OLI/NOL - -analytic -4.17745E+0 0E+0 -1.40019E+4 0E+0 0E+0 +MnSe2 = +1.000Mn+2 -2.000H+ -2.000e- +2.000HSe- + log_k -8.12 + delta_h -11.700 #kJ/mol +# Enthalpy of formation: -180.500 kJ/mol 05OLI/NOL + -analytic -10.16975E+0 00.00000E+0 61.11336E+1 00.00000E+0 00.00000E+0 -Mo(s) -Mo = 2.000H+ + 1.000MoO4-2 - 1.000H2O - 1.500O2 - log_k 109.390 - delta_h -692.969 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #82WAG/EVA - -analytic -1.20128E+1 0E+0 3.61962E+4 0E+0 0E+0 +Mo(cr) +Mo = +8.000H+ +6.000e- +1.000MoO4-2 -4.000H2O + log_k -19.58 + delta_h +146.320 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 82WAG/EVA + -analytic 60.54164E-1 00.00000E+0 -76.42826E+2 00.00000E+0 00.00000E+0 Mo3O8(s) -Mo3O8 = 6.000H+ + 3.000MoO4-2 - 3.000H2O - 0.500O2 - log_k -20.570 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.057E+1 0E+0 0E+0 0E+0 0E+0 - -MoO2(s) -MoO2 = 2.000H+ + 1.000MoO4-2 - 1.000H2O - 0.500O2 - log_k 13.110 - delta_h -117.246 #kJ/mol - # Enthalpy of formation: -587.857 #kJ/mol - -analytic -7.43059E+0 0E+0 6.12418E+3 0E+0 0E+0 - -MoO3(s) -MoO3 = 2.000H+ + 1.000MoO4-2 - 1.000H2O - log_k -11.980 - delta_h 34.001 #kJ/mol - # Enthalpy of formation: -745.171 #kJ/mol - -analytic -6.02329E+0 0E+0 -1.77599E+3 0E+0 0E+0 - -MoS2(s) -MoS2 = 4.000H+ + 2.000HS- + 1.000MoO4-2 - 3.000H2O - 0.500O2 - log_k -26.920 - delta_h 105.752 #kJ/mol - # Enthalpy of formation: -271.795 #kJ/mol - -analytic -8.39307E+0 0E+0 -5.5238E+3 0E+0 0E+0 - -MoS3(s) -MoS3 = 5.000H+ + 3.000HS- + 1.000MoO4-2 - 4.000H2O - log_k -68.070 - delta_h 354.849 #kJ/mol - # Enthalpy of formation: -257.429 #kJ/mol - -analytic -5.90321E+0 0E+0 -1.8535E+4 0E+0 0E+0 +Mo3O8 = +8.000H+ +2.000e- +3.000MoO4-2 -4.000H2O + log_k -63.56 + -analytic -63.56000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Monocarboaluminate -(CaO)3Al2O3:CaCO3:10.68H2O = 4.000Ca+2 + 2.000Al+3 - 12.000H+ + 1.000CO3-2 + 16.680H2O - log_k 70.300 #95DAM/GLA - delta_h -515.924 #kJ/mol - # Enthalpy of formation: -8175.75 #kJ/mol #10BLA/BOU2 - -analytic -2.00859E+1 0E+0 2.69485E+4 0E+0 0E+0 +(CaO)3Al2O3:CaCO3:10.68H2O = +4.000Ca+2 +2.000Al+3 -12.000H+ +1.000CO3-2 +16.680H2O + log_k +70.30 #95DAM/GLA + delta_h -515.924 #kJ/mol +# Enthalpy of formation: -8175.750 kJ/mol 10BLA/BOU2 + -analytic -20.08600E+0 00.00000E+0 26.94859E+3 00.00000E+0 00.00000E+0 + -Vm 261.960 Monosulfate-Fe -Ca4Fe2(SO4)(OH)12:6H2O = 4.000Ca+2 + 2.000Fe+3 - 12.000H+ + 1.000SO4-2 + 18.000H2O - log_k 66.050 #10BLA/BOU2 - delta_h -477.312 #kJ/mol - # Enthalpy of formation: -7846.968 #kJ/mol - -analytic -1.75714E+1 0E+0 2.49317E+4 0E+0 0E+0 +Ca4Fe2(SO4)(OH)12:6H2O = +4.000Ca+2 +2.000Fe+3 -12.000H+ +1.000SO4-2 +18.000H2O + log_k +66.05 #10BLA/BOU2 + delta_h -479.966 #kJ/mol +# Enthalpy of formation: -7846.419 kJ/mol + -analytic -18.03643E+0 00.00000E+0 25.07037E+3 00.00000E+0 00.00000E+0 + -Vm 316.060 Monosulfoaluminate -Ca4Al2(SO4)(OH)12:6H2O = 4.000Ca+2 + 2.000Al+3 - 12.000H+ + 1.000SO4-2 + 18.000H2O - log_k 73.070 #10BLA/BOU2 - delta_h -539.400 #kJ/mol - # Enthalpy of formation: -8763.68 #kJ/mol #10BLA/BOU2 - -analytic -2.14287E+1 0E+0 2.81748E+4 0E+0 0E+0 +Ca4Al2(SO4)(OH)12:6H2O = +4.000Ca+2 +2.000Al+3 -12.000H+ +1.000SO4-2 +18.000H2O + log_k +73.07 #10BLA/BOU2 + delta_h -539.400 #kJ/mol +# Enthalpy of formation: -8763.680 kJ/mol 10BLA/BOU2 + -analytic -21.42882E+0 00.00000E+0 28.17482E+3 00.00000E+0 00.00000E+0 + -Vm 311.260 Montmorillonite-BCCa -Ca0.17Mg0.34Al1.66Si4O10(OH)2 = 0.170Ca+2 + 0.340Mg+2 + 1.660Al+3 - 6.000H+ + 4.000H4(SiO4) - 4.000H2O - log_k 4.200 - delta_h -156.000 #kJ/mol - # Enthalpy of formation: -5690.29 #kJ/mol #15BLA/VIE - -analytic -2.313E+1 0E+0 8.14844E+3 0E+0 0E+0 +Ca0.17Mg0.34Al1.66Si4O10(OH)2 = +0.170Ca+2 +0.340Mg+2 +1.660Al+3 -6.000H+ +4.000H4(SiO4) -4.000H2O + log_k +4.20 + delta_h -156.000 #kJ/mol +# Enthalpy of formation: -5690.290 kJ/mol 15BLA/VIE + -analytic -23.13003E+0 00.00000E+0 81.48448E+2 00.00000E+0 00.00000E+0 + -Vm 135.580 Montmorillonite-BCK -K0.34Mg0.34Al1.66Si4O10(OH)2 = 0.340Mg+2 + 0.340K+ + 1.660Al+3 - 6.000H+ + 4.000H4(SiO4) - 4.000H2O - log_k 2.810 - delta_h -136.198 #kJ/mol - # Enthalpy of formation: -5703.51 #kJ/mol #15BLA/VIE - -analytic -2.10508E+1 0E+0 7.11411E+3 0E+0 0E+0 +K0.34Mg0.34Al1.66Si4O10(OH)2 = +0.340Mg+2 +0.340K+ +1.660Al+3 -6.000H+ +4.000H4(SiO4) -4.000H2O + log_k +2.81 + delta_h -136.198 #kJ/mol +# Enthalpy of formation: -5703.510 kJ/mol 15BLA/VIE + -analytic -21.05087E+0 00.00000E+0 71.14117E+2 00.00000E+0 00.00000E+0 + -Vm 134.690 Montmorillonite-BCMg -Mg0.17Mg0.34Al1.66Si4O10(OH)2 = 0.510Mg+2 + 1.660Al+3 - 6.000H+ + 4.000H4(SiO4) - 4.000H2O - log_k 3.690 - delta_h -157.360 #kJ/mol - # Enthalpy of formation: -5676.01 #kJ/mol #15BLA/VIE - -analytic -2.38782E+1 0E+0 8.21947E+3 0E+0 0E+0 +Mg0.17Mg0.34Al1.66Si4O10(OH)2 = +0.510Mg+2 +1.660Al+3 -6.000H+ +4.000H4(SiO4) -4.000H2O + log_k +3.69 + delta_h -157.360 #kJ/mol +# Enthalpy of formation: -5676.010 kJ/mol 15BLA/VIE + -analytic -23.87829E+0 00.00000E+0 82.19485E+2 00.00000E+0 00.00000E+0 + -Vm 131.580 Montmorillonite-BCNa -Na0.34Mg0.34Al1.66Si4O10(OH)2 = 0.340Mg+2 + 0.340Na+ + 1.660Al+3 - 6.000H+ + 4.000H4(SiO4) - 4.000H2O - log_k 3.390 - delta_h -145.286 #kJ/mol - # Enthalpy of formation: -5690.41 #kJ/mol #15BLA/VIE - -analytic -2.2063E+1 0E+0 7.58881E+3 0E+0 0E+0 +Na0.34Mg0.34Al1.66Si4O10(OH)2 = +0.340Mg+2 +0.340Na+ +1.660Al+3 -6.000H+ +4.000H4(SiO4) -4.000H2O + log_k +3.39 + delta_h -145.286 #kJ/mol +# Enthalpy of formation: -5690.410 kJ/mol 15BLA/VIE + -analytic -22.06301E+0 00.00000E+0 75.88816E+2 00.00000E+0 00.00000E+0 + -Vm 133.960 Montmorillonite-HCCa -Ca0.3Mg0.6Al1.4Si4O10(OH)2 = 0.300Ca+2 + 0.600Mg+2 + 1.400Al+3 - 6.000H+ + 4.000H4(SiO4) - 4.000H2O - log_k 6.890 - delta_h -163.896 #kJ/mol - # Enthalpy of formation: -5734.42 #kJ/mol #15BLA/VIE - -analytic -2.18233E+1 0E+0 8.56087E+3 0E+0 0E+0 +Ca0.3Mg0.6Al1.4Si4O10(OH)2 = +0.300Ca+2 +0.600Mg+2 +1.400Al+3 -6.000H+ +4.000H4(SiO4) -4.000H2O + log_k +6.89 + delta_h -163.896 #kJ/mol +# Enthalpy of formation: -5734.420 kJ/mol 15BLA/VIE + -analytic -21.82335E+0 00.00000E+0 85.60884E+2 00.00000E+0 00.00000E+0 + -Vm 140.320 Montmorillonite-HCK -K0.6Mg0.6Al1.4Si4O10(OH)2 = 0.600Mg+2 + 0.600K+ + 1.400Al+3 - 6.000H+ + 4.000H4(SiO4) - 4.000H2O - log_k 4.430 - delta_h -128.960 #kJ/mol - # Enthalpy of formation: -5757.74 #kJ/mol #15BLA/VIE - -analytic -1.81628E+1 0E+0 6.73604E+3 0E+0 0E+0 +K0.6Mg0.6Al1.4Si4O10(OH)2 = +0.600Mg+2 +0.600K+ +1.400Al+3 -6.000H+ +4.000H4(SiO4) -4.000H2O + log_k +4.43 + delta_h -128.960 #kJ/mol +# Enthalpy of formation: -5757.740 kJ/mol 15BLA/VIE + -analytic -18.16282E+0 00.00000E+0 67.36050E+2 00.00000E+0 00.00000E+0 + -Vm 138.750 Montmorillonite-HCMg -Mg0.3Mg0.6Al1.4Si4O10(OH)2 = 0.900Mg+2 + 1.400Al+3 - 6.000H+ + 4.000H4(SiO4) - 4.000H2O - log_k 5.980 - delta_h -166.296 #kJ/mol - # Enthalpy of formation: -5709.22 #kJ/mol #15BLA/VIE - -analytic -2.31538E+1 0E+0 8.68623E+3 0E+0 0E+0 +Mg0.3Mg0.6Al1.4Si4O10(OH)2 = +0.900Mg+2 +1.400Al+3 -6.000H+ +4.000H4(SiO4) -4.000H2O + log_k +5.98 + delta_h -166.296 #kJ/mol +# Enthalpy of formation: -5709.220 kJ/mol 15BLA/VIE + -analytic -23.15381E+0 00.00000E+0 86.86245E+2 00.00000E+0 00.00000E+0 + -Vm 133.270 Montmorillonite-HCNa -Na0.6Mg0.6Al1.4Si4O10(OH)2 = 0.600Mg+2 + 0.600Na+ + 1.400Al+3 - 6.000H+ + 4.000H4(SiO4) - 4.000H2O - log_k 5.450 - delta_h -144.990 #kJ/mol - # Enthalpy of formation: -5734.63 #kJ/mol #15BLA/VIE - -analytic -1.99511E+1 0E+0 7.57334E+3 0E+0 0E+0 +Na0.6Mg0.6Al1.4Si4O10(OH)2 = +0.600Mg+2 +0.600Na+ +1.400Al+3 -6.000H+ +4.000H4(SiO4) -4.000H2O + log_k +5.45 + delta_h -144.990 #kJ/mol +# Enthalpy of formation: -5734.630 kJ/mol 15BLA/VIE + -analytic -19.95116E+0 00.00000E+0 75.73355E+2 00.00000E+0 00.00000E+0 + -Vm 137.470 + +MoO2(s) +MoO2 = +4.000H+ +2.000e- +1.000MoO4-2 -2.000H2O + log_k -29.88 + delta_h +162.510 #kJ/mol +# Enthalpy of formation: -587.851 kJ/mol + -analytic -14.09470E-1 00.00000E+0 -84.88488E+2 00.00000E+0 00.00000E+0 + +MoO3(s) +MoO3 = +2.000H+ +1.000MoO4-2 -1.000H2O + log_k -11.98 + delta_h +34.001 #kJ/mol +# Enthalpy of formation: -745.171 kJ/mol + -analytic -60.23280E-1 00.00000E+0 -17.75996E+2 00.00000E+0 00.00000E+0 Mordenite_Ca -Ca0.515Al1.03Si4.97O12:3.1H2O = 0.515Ca+2 + 1.030Al+3 - 4.120H+ + 4.970H4(SiO4) - 4.780H2O - log_k -2.920 #09BLA - delta_h -74.768 #kJ/mol - # Enthalpy of formation: -6655.295 #kJ/mol - -analytic -1.60188E+1 0E+0 3.9054E+3 0E+0 0E+0 +Ca0.515Al1.03Si4.97O12:3.1H2O = +0.515Ca+2 +1.030Al+3 -4.120H+ +4.970H4(SiO4) -4.780H2O + log_k -2.92 #09BLA + delta_h -74.732 #kJ/mol +# Enthalpy of formation: -6655.334 kJ/mol + -analytic -16.01248E+0 00.00000E+0 39.03524E+2 00.00000E+0 00.00000E+0 + -Vm 209.800 Mordenite_Oregon -Ca0.289Na0.362Al0.94Si5.06O12:3.468H2O = 0.289Ca+2 + 0.362Na+ + 0.940Al+3 - 3.760H+ + 5.060H4(SiO4) - 4.772H2O - log_k -4.160 - delta_h -41.247 #kJ/mol - # Enthalpy of formation: -6738.44 #kJ/mol #92JOH/TAS - -analytic -1.13862E+1 0E+0 2.15448E+3 0E+0 0E+0 +Ca0.289Na0.362Al0.94Si5.06O12:3.468H2O = +0.289Ca+2 +0.362Na+ +0.940Al+3 -3.760H+ +5.060H4(SiO4) -4.772H2O + log_k -4.18 + delta_h -41.247 #kJ/mol +# Enthalpy of formation: -6738.440 kJ/mol 92JOH/TAS + -analytic -11.40616E+0 00.00000E+0 21.54481E+2 00.00000E+0 00.00000E+0 + -Vm 212.400 + +MoS2(s) +MoS2 = +6.000H+ +2.000e- +2.000HS- +1.000MoO4-2 -4.000H2O + log_k -69.91 + delta_h +385.522 #kJ/mol +# Enthalpy of formation: -271.804 kJ/mol + -analytic -23.69445E-1 00.00000E+0 -20.13722E+3 00.00000E+0 00.00000E+0 + +MoS3(s) +MoS3 = +5.000H+ +3.000HS- +1.000MoO4-2 -4.000H2O + log_k -68.07 + delta_h +354.847 #kJ/mol +# Enthalpy of formation: -257.429 kJ/mol + -analytic -59.03474E-1 00.00000E+0 -18.53495E+3 00.00000E+0 00.00000E+0 Muscovite -KAl3Si3O10(OH)2 = 1.000K+ + 3.000Al+3 - 10.000H+ + 3.000H4(SiO4) - log_k 13.040 - delta_h -276.122 #kJ/mol - # Enthalpy of formation: -5974.8 #kJ/mol #95HAS/CYG - -analytic -3.53344E+1 0E+0 1.44228E+4 0E+0 0E+0 - -Na(NO3)(s) -Na(NO3) = 1.000Na+ + 1.000NO3- - log_k 1.090 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.09E+0 0E+0 0E+0 0E+0 0E+0 - -Na(TcO4):4H2O(s) -Na(TcO4):4H2O = 1.000Na+ + 1.000TcO4- + 4.000H2O - log_k 0.790 #99RAR/RAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 7.9E-1 0E+0 0E+0 0E+0 0E+0 +KAl3Si3O10(OH)2 = +1.000K+ +3.000Al+3 -10.000H+ +3.000H4(SiO4) + log_k +13.02 + delta_h -276.122 #kJ/mol +# Enthalpy of formation: -5974.800 kJ/mol 95HAS/CYG + -analytic -35.35450E+0 00.00000E+0 14.42286E+3 00.00000E+0 00.00000E+0 + -Vm 140.810 Na(cr) -Na = 1.000Na+ + 0.500H2O - 1.000H+ - 0.250O2 - log_k 67.385 - delta_h -380.222 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #92GRE/FUG (89COX/WAG) - -analytic 7.7315E-1 0E+0 1.98603E+4 0E+0 0E+0 +Na = +1.000Na+ +1.000e- + log_k +45.89 + delta_h -240.340 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 92GRE/FUG (89COX/WAG) + -analytic 37.84239E-1 00.00000E+0 12.55383E+3 00.00000E+0 00.00000E+0 + +Na(NO3)(s) +Na(NO3) = +1.000Na+ +1.000NO3- + log_k +1.09 #96FAL/REA + -analytic 10.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Na2(CO3)(cr) -Na2(CO3) = 2.000Na+ + 1.000CO3-2 - log_k 1.120 - delta_h -26.710 #kJ/mol - # Enthalpy of formation: -1129.2 #kJ/mol #95ROB/HEM - -analytic -3.55938E+0 0E+0 1.39516E+3 0E+0 0E+0 +Na2(CO3) = +2.000Na+ +1.000CO3-2 + log_k +1.12 + delta_h -26.710 #kJ/mol +# Enthalpy of formation: -1129.200 kJ/mol 95ROB/HEM + -analytic -35.59391E-1 00.00000E+0 13.95160E+2 00.00000E+0 00.00000E+0 Na2B4O7(cr) -Na2B4O7 = 2.000Na+ + 2.000H+ + 4.000B(OH)4- - 9.000H2O - log_k -16.060 - delta_h 2.534 #kJ/mol - # Enthalpy of formation: -3291.208 #kJ/mol - -analytic -1.56161E+1 0E+0 -1.3236E+2 0E+0 0E+0 +Na2B4O7 = +2.000Na+ +2.000H+ +4.000B(OH)4- -9.000H2O + log_k -16.06 + delta_h +2.520 #kJ/mol +# Enthalpy of formation: -3291.196 kJ/mol + -analytic -15.61851E+0 00.00000E+0 -13.16288E+1 00.00000E+0 00.00000E+0 Na2B4O7:10H2O(s) -Na2B4O7:10H2O = 2.000Na+ + 2.000H+ + 4.000B(OH)4- + 1.000H2O - log_k -24.580 - delta_h 141.721 #kJ/mol - # Enthalpy of formation: -6288.445 #kJ/mol - -analytic 2.48417E-1 0E+0 -7.40259E+3 0E+0 0E+0 +Na2B4O7:10H2O = +2.000Na+ +2.000H+ +4.000B(OH)4- +1.000H2O + log_k -24.58 + delta_h +141.471 #kJ/mol +# Enthalpy of formation: -6288.445 kJ/mol + -analytic 20.46553E-2 00.00000E+0 -73.89545E+2 00.00000E+0 00.00000E+0 Na2CO3:7H2O(s) -Na2CO3:7H2O = 2.000Na+ + 1.000CO3-2 + 7.000H2O - log_k -0.460 #84HAR/MOL - delta_h 42.682 #kJ/mol - # Enthalpy of formation: -3199.402 #kJ/mol - -analytic 7.01755E+0 0E+0 -2.22943E+3 0E+0 0E+0 +Na2CO3:7H2O = +2.000Na+ +1.000CO3-2 +7.000H2O + log_k -0.46 #84HAR/MOL + delta_h +42.682 #kJ/mol +# Enthalpy of formation: -3199.400 kJ/mol + -analytic 70.17565E-1 00.00000E+0 -22.29436E+2 00.00000E+0 00.00000E+0 Na2HPO4(cr) -Na2HPO4 = 2.000Na+ - 1.000H+ + 1.000H2(PO4)- - log_k 9.240 - delta_h -35.180 #kJ/mol - # Enthalpy of formation: -1748.1 #kJ/mol #82WAG/EVA - -analytic 3.07674E+0 0E+0 1.83758E+3 0E+0 0E+0 +Na2HPO4 = +2.000Na+ -1.000H+ +1.000H2(PO4)- + log_k +9.24 + delta_h -35.180 #kJ/mol +# Enthalpy of formation: -1748.100 kJ/mol 82WAG/EVA + -analytic 30.76729E-1 00.00000E+0 18.37579E+2 00.00000E+0 00.00000E+0 + +Na2Np2O7(cr) +Na2Np2O7 = +2.000Na+ +2.000NpO2+2 -6.000H+ +3.000H2O + log_k +25.20 #20GRE/GAO + -analytic 25.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Na2O(cr) -Na2O = 2.000Na+ - 2.000H+ + 1.000H2O - log_k 67.460 - delta_h -351.710 #kJ/mol - # Enthalpy of formation: -414.8 #kJ/mol #95ROB/HEM - -analytic 5.84314E+0 0E+0 1.83711E+4 0E+0 0E+0 +Na2O = +2.000Na+ -2.000H+ +1.000H2O + log_k +67.46 + delta_h -351.710 #kJ/mol +# Enthalpy of formation: -414.800 kJ/mol 95ROB/HEM + -analytic 58.43053E-1 00.00000E+0 18.37109E+3 00.00000E+0 00.00000E+0 + +Na2U2O7:H2O(cr) +Na2U2O7:H2O = +2.000Na+ +2.000UO2+2 -6.000H+ +4.000H2O + log_k +24.40 #20GRE/GAO + -analytic 24.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Na2ZrSi2O7(cr) -Na2ZrSi2O7 = 2.000Na+ - 6.000H+ + 2.000H4(SiO4) + 1.000Zr+4 - 1.000H2O - log_k 3.740 - delta_h -119.738 #kJ/mol - # Enthalpy of formation: -3606 #kJ/mol #05BRO/CUR - -analytic -1.72372E+1 0E+0 6.25434E+3 0E+0 0E+0 +Na2ZrSi2O7 = +2.000Na+ -6.000H+ +2.000H4(SiO4) +1.000Zr+4 -1.000H2O + log_k +3.74 + delta_h -119.738 #kJ/mol +# Enthalpy of formation: -3606.000 kJ/mol 05BRO/CUR + -analytic -17.23720E+0 00.00000E+0 62.54351E+2 00.00000E+0 00.00000E+0 Na2ZrSi3O9:2H2O(cr) -Na2ZrSi3O9:2H2O = 2.000Na+ - 6.000H+ + 3.000H4(SiO4) + 1.000Zr+4 - 1.000H2O - log_k 15.580 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.558E+1 0E+0 0E+0 0E+0 0E+0 +Na2ZrSi3O9:2H2O = +2.000Na+ -6.000H+ +3.000H4(SiO4) +1.000Zr+4 -1.000H2O + log_k +15.58 + -analytic 15.58000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Na2ZrSi4O11(cr) -Na2ZrSi4O11 = 2.000Na+ - 6.000H+ + 4.000H4(SiO4) + 1.000Zr+4 - 5.000H2O - log_k -13.560 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.356E+1 0E+0 0E+0 0E+0 0E+0 +Na2ZrSi4O11 = +2.000Na+ -6.000H+ +4.000H4(SiO4) +1.000Zr+4 -5.000H2O + log_k -13.56 + -analytic -13.56000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Na2ZrSi6O15:3H2O(cr) -Na2ZrSi6O15:3H2O = 2.000Na+ - 6.000H+ + 6.000H4(SiO4) + 1.000Zr+4 - 6.000H2O - log_k 16.460 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.646E+1 0E+0 0E+0 0E+0 0E+0 +Na2ZrSi6O15:3H2O = +2.000Na+ -6.000H+ +6.000H4(SiO4) +1.000Zr+4 -6.000H2O + log_k +16.46 + -analytic 16.46000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Na2ZrSiO5(cr) -Na2ZrSiO5 = 2.000Na+ - 6.000H+ + 1.000H4(SiO4) + 1.000Zr+4 + 1.000H2O - log_k 13.190 - delta_h -166.204 #kJ/mol - # Enthalpy of formation: -2670 #kJ/mol #05BRO/CUR - -analytic -1.59276E+1 0E+0 8.68143E+3 0E+0 0E+0 +Na2ZrSiO5 = +2.000Na+ -6.000H+ +1.000H4(SiO4) +1.000Zr+4 +1.000H2O + log_k +13.19 + delta_h -166.204 #kJ/mol +# Enthalpy of formation: -2670.000 kJ/mol 05BRO/CUR + -analytic -15.92769E+0 00.00000E+0 86.81440E+2 00.00000E+0 00.00000E+0 + +Na3NpO2(CO3)2(cr) +Na3NpO2(CO3)2 = +3.000Na+ +1.000NpO2+ +2.000CO3-2 + log_k -14.22 #03GUI/FAN + -analytic -14.22000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Na3PO4(cr) -Na3PO4 = 3.000Na+ - 2.000H+ + 1.000H2(PO4)- - log_k 23.520 - delta_h -106.218 #kJ/mol - # Enthalpy of formation: -1917.402 #kJ/mol #74NAU/RYZ - -analytic 4.91143E+0 0E+0 5.54814E+3 0E+0 0E+0 +Na3PO4 = +3.000Na+ -2.000H+ +1.000H2(PO4)- + log_k +23.52 + delta_h -106.218 #kJ/mol +# Enthalpy of formation: -1917.402 kJ/mol 74NAU/RYZ + -analytic 49.11405E-1 00.00000E+0 55.48153E+2 00.00000E+0 00.00000E+0 Na4Zr2Si3O12(cr) -Na4Zr2Si3O12 = 4.000Na+ - 12.000H+ + 3.000H4(SiO4) + 2.000Zr+4 - log_k 15.510 - delta_h -276.942 #kJ/mol - # Enthalpy of formation: -6285 #kJ/mol #05BRO/CUR - -analytic -3.30081E+1 0E+0 1.44657E+4 0E+0 0E+0 +Na4Zr2Si3O12 = +4.000Na+ -12.000H+ +3.000H4(SiO4) +2.000Zr+4 + log_k +15.50 + delta_h -276.942 #kJ/mol +# Enthalpy of formation: -6285.000 kJ/mol 05BRO/CUR + -analytic -33.01816E+0 00.00000E+0 14.46569E+3 00.00000E+0 00.00000E+0 Na6Th(CO3)5:12H2O(cr) -Na6Th(CO3)5:12H2O = 6.000Na+ + 1.000Th+4 + 5.000CO3-2 + 12.000H2O - log_k -42.200 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.22E+1 0E+0 0E+0 0E+0 0E+0 +Na6Th(CO3)5:12H2O = +6.000Na+ +1.000Th+4 +5.000CO3-2 +12.000H2O + log_k -42.20 #09RAN/FUG + -analytic -42.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +NaAm(CO3)2:5H2O(s) +NaAm(CO3)2:5H2O = +1.000Na+ +1.000Am+3 +2.000CO3-2 +5.000H2O + log_k -21.00 #03GUI/FAN + -analytic -21.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 NaAmO2CO3(s) -NaAmO2CO3 = 1.000Na+ + 1.000AmO2+ + 1.000CO3-2 - log_k -10.900 #94GIF, 94RUN/KIM, 96RUN/NEU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.09E+1 0E+0 0E+0 0E+0 0E+0 +NaAmO2CO3 = +1.000Na+ +1.000AmO2+ +1.000CO3-2 + log_k -10.90 #94GIF, 94RUN/KIM, 96RUN/NEU + -analytic -10.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 NaBO2(s) -NaBO2 = 1.000Na+ + 1.000B(OH)4- - 2.000H2O - log_k 3.620 - delta_h -36.790 #kJ/mol - # Enthalpy of formation: -977.006 #kJ/mol - -analytic -2.82532E+0 0E+0 1.92167E+3 0E+0 0E+0 +NaBO2 = +1.000Na+ +1.000B(OH)4- -2.000H2O + log_k +3.62 + delta_h -36.793 #kJ/mol +# Enthalpy of formation: -977.003 kJ/mol + -analytic -28.25857E-1 00.00000E+0 19.21832E+2 00.00000E+0 00.00000E+0 + +Na-Boltwoodite +Na(UO2)(SiO3OH):H2O = +1.000Na+ +1.000UO2+2 -3.000H+ +1.000H4(SiO4) +1.000H2O + log_k +5.81 #20GRE/GAO + -analytic 58.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 NaCm(CO3)2:5H2O(s) -NaCm(CO3)2:5H2O = 1.000Na+ + 2.000CO3-2 + 1.000Cm+3 + 5.000H2O - log_k -21.000 #estimated by correlation with Ln(III) and An(III) - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.1E+1 0E+0 0E+0 0E+0 0E+0 +NaCm(CO3)2:5H2O = +1.000Na+ +2.000CO3-2 +1.000Cm+3 +5.000H2O + log_k -20.94 #Estimated by correlation with An(III). + -analytic -20.94000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 NaEu(CO3)2:5H2O(s) -NaEu(CO3)2:5H2O = 1.000Na+ + 1.000Eu+3 + 2.000CO3-2 + 5.000H2O - log_k -20.900 #05VER/VIT2 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.09E+1 0E+0 0E+0 0E+0 0E+0 +NaEu(CO3)2:5H2O = +1.000Na+ +1.000Eu+3 +2.000CO3-2 +5.000H2O + log_k -20.60 #10PHI + -analytic -20.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 NaF(s) -NaF = 1.000Na+ + 1.000F- - log_k -0.480 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.8E-1 0E+0 0E+0 0E+0 0E+0 +NaF = +1.000Na+ +1.000F- + log_k -0.48 #96FAL/REA + -analytic -48.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 NaH2PO4(cr) -NaH2PO4 = 1.000Na+ + 1.000H2(PO4)- - log_k 2.300 - delta_h -6.140 #kJ/mol - # Enthalpy of formation: -1536.8 #kJ/mol #82WAG/EVA - -analytic 1.22432E+0 0E+0 3.20714E+2 0E+0 0E+0 - -NaHo(CO3)2:5H2O(s) -NaHo(CO3)2:5H2O = 1.000Na+ + 1.000Ho+3 + 2.000CO3-2 + 5.000H2O - log_k -20.500 #Estimated by ionic radii correlation - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.05E+1 0E+0 0E+0 0E+0 0E+0 - -NaNbO3(s) -NaNbO3 = 1.000Na+ + 1.000Nb(OH)6- - 3.000H2O - log_k -3.660 - delta_h 7.504 #kJ/mol - # Enthalpy of formation: -1316.013 #kJ/mol - -analytic -2.34536E+0 0E+0 -3.91961E+2 0E+0 0E+0 - -NaSm(CO3)2:5H2O(s) -NaSm(CO3)2:5H2O = 1.000Na+ + 1.000Sm+3 + 2.000CO3-2 + 5.000H2O - log_k -20.990 #Estimated by ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.099E+1 0E+0 0E+0 0E+0 0E+0 +NaH2PO4 = +1.000Na+ +1.000H2(PO4)- + log_k +2.30 + delta_h -6.140 #kJ/mol +# Enthalpy of formation: -1536.800 kJ/mol 82WAG/EVA + -analytic 12.24318E-1 00.00000E+0 32.07145E+1 00.00000E+0 00.00000E+0 Nahcolite -Na(HCO3) = 1.000Na+ + 1.000H+ + 1.000CO3-2 - log_k -10.740 #84HAR/MOL - delta_h 33.430 #kJ/mol - # Enthalpy of formation: -949 #kJ/mol #82VAN - -analytic -4.88332E+0 0E+0 -1.74617E+3 0E+0 0E+0 +Na(HCO3) = +1.000Na+ +1.000H+ +1.000CO3-2 + log_k -10.74 #84HAR/MOL + delta_h +33.430 #kJ/mol +# Enthalpy of formation: -949.000 kJ/mol 82VAN + -analytic -48.83315E-1 00.00000E+0 -17.46171E+2 00.00000E+0 00.00000E+0 + +NaHo(CO3)2:5H2O(s) +NaHo(CO3)2:5H2O = +1.000Na+ +1.000Ho+3 +2.000CO3-2 +5.000H2O + log_k -19.97 #Estimated by correlation with An(III). + -analytic -19.97000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +NaNbO3(s) +NaNbO3 = +1.000Na+ +1.000Nb(OH)6- -3.000H2O + log_k -3.66 + delta_h +7.504 #kJ/mol +# Enthalpy of formation: -1316.013 kJ/mol + -analytic -23.45356E-1 00.00000E+0 -39.19612E+1 00.00000E+0 00.00000E+0 + +NaNpO2CO3:3.5H2O(cr) +NaNpO2CO3:3.5H2O = +1.000Na+ +1.000NpO2+ +1.000CO3-2 +3.500H2O + log_k -11.00 #03GUI/FAN + delta_h +30.997 #kJ/mol +# Enthalpy of formation: -2925.152 kJ/mol + -analytic -55.69559E-1 00.00000E+0 -16.19086E+2 00.00000E+0 00.00000E+0 + +NaSm(CO3)2:5H2O(s) +NaSm(CO3)2:5H2O = +1.000Na+ +1.000Sm+3 +2.000CO3-2 +5.000H2O + log_k -20.99 #Estimated by correlation with An(III). + -analytic -20.99000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +NaTcO4:4H2O(s) +NaTcO4:4H2O = +1.000Na+ +1.000TcO4- +4.000H2O + log_k +0.79 #99RAR/RAN + -analytic 79.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Natrolite -Na2(Al2Si3)O10:2H2O = 2.000Na+ + 2.000Al+3 - 8.000H+ + 3.000H4(SiO4) - log_k 19.330 - delta_h -222.462 #kJ/mol - # Enthalpy of formation: -5718.6 #kJ/mol #83JOH/FLO - -analytic -1.96436E+1 0E+0 1.162E+4 0E+0 0E+0 +Na2(Al2Si3)O10:2H2O = +2.000Na+ +2.000Al+3 -8.000H+ +3.000H4(SiO4) + log_k +19.31 + delta_h -222.462 #kJ/mol +# Enthalpy of formation: -5718.600 kJ/mol 83JOH/FLO + -analytic -19.66367E+0 00.00000E+0 11.62000E+3 00.00000E+0 00.00000E+0 + -Vm 169.200 Natron -Na2(CO3):10H2O = 2.000Na+ + 1.000CO3-2 + 10.000H2O - log_k -0.830 #84HAR/MOL - delta_h 64.870 #kJ/mol - # Enthalpy of formation: -4079 #kJ/mol - -analytic 1.05347E+1 0E+0 -3.38839E+3 0E+0 0E+0 +Na2(CO3):10H2O = +2.000Na+ +1.000CO3-2 +10.000H2O + log_k -0.83 #84HAR/MOL + delta_h +64.870 #kJ/mol +# Enthalpy of formation: -4079.078 kJ/mol + -analytic 10.53474E+0 00.00000E+0 -33.88396E+2 00.00000E+0 00.00000E+0 Nb(cr) -Nb = 1.000H+ + 1.000Nb(OH)6- - 3.500H2O - 1.250O2 - log_k 149.295 - delta_h -910.093 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #82WAG/EVA - -analytic -1.01461E+1 0E+0 4.75374E+4 0E+0 0E+0 +Nb = +6.000H+ +1.000Nb(OH)6- +5.000e- -6.000H2O + log_k +41.82 + delta_h -210.678 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 82WAG/EVA + -analytic 49.10799E-1 00.00000E+0 11.00448E+3 00.00000E+0 00.00000E+0 Nb2O5(s) -Nb2O5 = 2.000H+ + 2.000Nb(OH)6- - 7.000H2O - log_k -28.380 #97PEI/NGU - delta_h 52.400 #kJ/mol #97PEI/NGU - # Enthalpy of formation: -1902.92 #kJ/mol - -analytic -1.91999E+1 0E+0 -2.73704E+3 0E+0 0E+0 +Nb2O5 = +2.000H+ +2.000Nb(OH)6- -7.000H2O + log_k -28.38 #97PEI/NGU + delta_h +52.400 #kJ/mol 97PEI/NGU +# Enthalpy of formation: -1902.906 kJ/mol + -analytic -19.19991E+0 00.00000E+0 -27.37043E+2 00.00000E+0 00.00000E+0 Nesquehonite -Mg(CO3):3H2O = 1.000Mg+2 + 1.000CO3-2 + 3.000H2O - log_k -5.100 - delta_h -22.420 #kJ/mol - # Enthalpy of formation: -1977.3 #kJ/mol #73ROB/HEM - -analytic -9.02781E+0 0E+0 1.17108E+3 0E+0 0E+0 +Mg(CO3):3H2O = +1.000Mg+2 +1.000CO3-2 +3.000H2O + log_k -5.10 + delta_h -22.420 #kJ/mol +# Enthalpy of formation: -1977.300 kJ/mol 73ROB/HEM + -analytic -90.27815E-1 00.00000E+0 11.71078E+2 00.00000E+0 00.00000E+0 Ni(BO2)2(s) -Ni(BO2)2 = 1.000Ni+2 + 2.000B(OH)4- - 4.000H2O - log_k -8.700 #92PEA/BER - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -8.7E+0 0E+0 0E+0 0E+0 0E+0 +Ni(BO2)2 = +1.000Ni+2 +2.000B(OH)4- -4.000H2O + log_k -8.70 #92PEA/BER + -analytic -87.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 -#Ni(CO3)(cr) -#Ni(CO3) = 1.000Ni+2 + 1.000CO3-2 - # log_k - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -713.32 #kJ/mol #05GAM/BUG - # -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 +Ni(CO3)(cr) +Ni(CO3) = +1.000Ni+2 +1.000CO3-2 + log_k -10.99 + delta_h -16.922 #kJ/mol +# Enthalpy of formation: -713.320 kJ/mol + -analytic -13.95461E+0 00.00000E+0 88.38976E+1 00.00000E+0 00.00000E+0 Ni(CO3):5.5H2O(cr) -Ni(CO3):5.5H2O = 1.000Ni+2 + 1.000CO3-2 + 5.500H2O - log_k -7.520 - delta_h 10.685 #kJ/mol - # Enthalpy of formation: -2312.992 #kJ/mol #05GAM/BUG - -analytic -5.64807E+0 0E+0 -5.58116E+2 0E+0 0E+0 +Ni(CO3):5.5H2O = +1.000Ni+2 +1.000CO3-2 +5.500H2O + log_k -7.52 + delta_h +10.687 #kJ/mol +# Enthalpy of formation: -2312.992 kJ/mol + -analytic -56.47718E-1 00.00000E+0 -55.82209E+1 00.00000E+0 00.00000E+0 + +Ni(cr) +Ni = +1.000Ni+2 +2.000e- + log_k +8.02 + delta_h -55.012 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 05GAM/BUG + -analytic -16.17689E-1 00.00000E+0 28.73477E+2 00.00000E+0 00.00000E+0 Ni(IO3)2(beta) -Ni(IO3)2 = 1.000Ni+2 + 2.000IO3- - log_k -4.430 - delta_h -7.300 #kJ/mol #05GAM/BUG - # Enthalpy of formation: -487.112 #kJ/mol - -analytic -5.7089E+0 0E+0 3.81305E+2 0E+0 0E+0 +Ni(IO3)2 = +1.000Ni+2 +2.000IO3- + log_k -4.43 + delta_h -7.300 #kJ/mol 05GAM/BUG +# Enthalpy of formation: -487.112 kJ/mol + -analytic -57.08905E-1 00.00000E+0 38.13056E+1 00.00000E+0 00.00000E+0 Ni(IO3)2:2H2O(cr) -Ni(IO3)2:2H2O = 1.000Ni+2 + 2.000IO3- + 2.000H2O - log_k -5.140 - delta_h 21.600 #kJ/mol #05GAM/BUG - # Enthalpy of formation: -1087.672 #kJ/mol - -analytic -1.35585E+0 0E+0 -1.12824E+3 0E+0 0E+0 +Ni(IO3)2:2H2O = +1.000Ni+2 +2.000IO3- +2.000H2O + log_k -5.14 + delta_h +21.600 #kJ/mol 05GAM/BUG +# Enthalpy of formation: -1087.672 kJ/mol + -analytic -13.55842E-1 00.00000E+0 -11.28247E+2 00.00000E+0 00.00000E+0 Ni(OH)2(s) -Ni(OH)2 = 1.000Ni+2 - 2.000H+ + 2.000H2O - log_k 11.030 - delta_h -84.390 #kJ/mol - # Enthalpy of formation: -542.3 #kJ/mol #05GAM/BUG - -analytic -3.75447E+0 0E+0 4.40799E+3 0E+0 0E+0 - -Ni(SO4)(cr) -Ni(SO4) = 1.000Ni+2 + 1.000SO4-2 - log_k 4.750 #05GAM/BUG - delta_h -91.072 #kJ/mol - # Enthalpy of formation: -873.28 #kJ/mol #05GAM/BUG - -analytic -1.12051E+1 0E+0 4.75701E+3 0E+0 0E+0 - -Ni(SO4):6H2O(s) -Ni(SO4):6H2O = 1.000Ni+2 + 1.000SO4-2 + 6.000H2O - log_k -2.250 #05GAM/BUG - delta_h 4.485 #kJ/mol #05GAM/BUG - # Enthalpy of formation: -2683.817 #kJ/mol - -analytic -1.46426E+0 0E+0 -2.34268E+2 0E+0 0E+0 - -Ni(SO4):7H2O(s) -Ni(SO4):7H2O = 1.000Ni+2 + 1.000SO4-2 + 7.000H2O - log_k -2.270 #05GAM/BUG - delta_h 12.167 #kJ/mol #05GAM/BUG - # Enthalpy of formation: -2977.329 #kJ/mol - -analytic -1.38436E-1 0E+0 -6.35526E+2 0E+0 0E+0 +Ni(OH)2 = +1.000Ni+2 -2.000H+ +2.000H2O + log_k +11.03 + delta_h -84.389 #kJ/mol +# Enthalpy of formation: -542.282 kJ/mol + -analytic -37.54318E-1 00.00000E+0 44.07944E+2 00.00000E+0 00.00000E+0 Ni(SeO3):2H2O(cr) -Ni(SeO3):2H2O = 1.000Ni+2 + 1.000SeO3-2 + 2.000H2O - log_k -5.800 #05OLI/NOL - delta_h -24.502 #kJ/mol - # Enthalpy of formation: -1109.33 #kJ/mol #05OLI/NOL - -analytic -1.00926E+1 0E+0 1.27983E+3 0E+0 0E+0 +Ni(SeO3):2H2O = +1.000Ni+2 +1.000SeO3-2 +2.000H2O + log_k -5.80 #05OLI/NOL + delta_h -24.502 #kJ/mol +# Enthalpy of formation: -1109.330 kJ/mol 05OLI/NOL + -analytic -10.09257E+0 00.00000E+0 12.79829E+2 00.00000E+0 00.00000E+0 Ni(SeO4):6H2O(s) -Ni(SeO4):6H2O = 1.000Ni+2 + 1.000SeO4-2 + 6.000H2O - log_k -1.381 #05OLI/NOL - delta_h -3.787 #kJ/mol - # Enthalpy of formation: -2369.705 #kJ/mol - -analytic -2.04445E+0 0E+0 1.97808E+2 0E+0 0E+0 +Ni(SeO4):6H2O = +1.000Ni+2 +1.000SeO4-2 +6.000H2O + log_k -1.38 #05OLI/NOL + delta_h -3.791 #kJ/mol +# Enthalpy of formation: -2369.699 kJ/mol + -analytic -20.44155E-1 00.00000E+0 19.80177E+1 00.00000E+0 00.00000E+0 -#Ni(SiO3)(s) -#Ni(SiO3) = 1.000Ni+2 - 2.000H+ + 1.000H4(SiO4) - 1.000H2O - # log_k - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - # -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 +Ni(SiO3)(s) +Ni(SiO3) = +1.000Ni+2 -2.000H+ +1.000H4(SiO4) -1.000H2O + log_k -1.78 + -analytic -17.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 -Ni(s) -Ni = 1.000Ni+2 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 51.010 - delta_h -334.775 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #05GAM/BUG - -analytic -7.63998E+0 0E+0 1.74865E+4 0E+0 0E+0 +Ni(SO4)(cr) +Ni(SO4) = +1.000Ni+2 +1.000SO4-2 + log_k +4.75 + delta_h -91.072 #kJ/mol +# Enthalpy of formation: -873.280 kJ/mol 05GAM/BUG + -analytic -11.20513E+0 00.00000E+0 47.57022E+2 00.00000E+0 00.00000E+0 + +Ni(SO4):6H2O(s) +Ni(SO4):6H2O = +1.000Ni+2 +1.000SO4-2 +6.000H2O + log_k -2.25 + delta_h +4.485 #kJ/mol +# Enthalpy of formation: -2683.817 kJ/mol 05GAM/BUG + -analytic -14.64262E-1 00.00000E+0 -23.42679E+1 00.00000E+0 00.00000E+0 + +Ni(SO4):7H2O(s) +Ni(SO4):7H2O = +1.000Ni+2 +1.000SO4-2 +7.000H2O + log_k -2.27 + delta_h +12.167 #kJ/mol 05GAM/BUG +# Enthalpy of formation: -2977.329 kJ/mol + -analytic -13.84331E-2 00.00000E+0 -63.55267E+1 00.00000E+0 00.00000E+0 Ni0.88Se(cr) -Ni0.88Se = 0.880Ni+2 - 0.760H+ + 1.000HSe- - 0.120H2O + 0.060O2 - log_k -17.919 - delta_h 69.261 #kJ/mol - # Enthalpy of formation: -69.8 #kJ/mol #05OLI/NOL - -analytic -5.78489E+0 0E+0 -3.61773E+3 0E+0 0E+0 +Ni0.88Se = +0.880Ni+2 -1.000H+ -0.240e- +1.000HSe- + log_k -12.76 + delta_h +35.689 #kJ/mol +# Enthalpy of formation: -69.800 kJ/mol 05OLI/NOL + -analytic -65.07556E-1 00.00000E+0 -18.64166E+2 00.00000E+0 00.00000E+0 Ni11As8(cr) -Ni11As8 = 11.000Ni+2 + 2.000H+ + 8.000AsO4-3 - 1.000H2O - 15.500O2 - log_k 874.760 - delta_h -6493.345 #kJ/mol - # Enthalpy of formation: -743 #kJ/mol #05GAM/BUG - -analytic -2.62824E+2 0E+0 3.39171E+5 0E+0 0E+0 +Ni11As8 = +11.000Ni+2 +64.000H+ +62.000e- +8.000AsO4-3 -32.000H2O + log_k -457.93 + delta_h +2179.308 #kJ/mol +# Enthalpy of formation: -743.000 kJ/mol 05GAM/BUG + -analytic -76.13163E+0 00.00000E+0 -11.38332E+4 00.00000E+0 00.00000E+0 Ni2(Pyrophos)(cr) -Ni2(Pyrophos) = 2.000Ni+2 + 1.000Pyrophos-4 - log_k -9.820 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -9.82E+0 0E+0 0E+0 0E+0 0E+0 +Ni2(Pyrophos) = +2.000Ni+2 +1.000Pyrophos-4 + log_k -9.82 + -analytic -98.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Ni3(AsO3)2(s) -Ni3(AsO3)2 = 3.000Ni+2 + 2.000AsO4-3 - 1.000O2 - log_k 34.500 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.45E+1 0E+0 0E+0 0E+0 0E+0 +Ni3(AsO3)2 = +3.000Ni+2 +4.000H+ +4.000e- +2.000AsO4-3 -2.000H2O + log_k -51.48 + -analytic -51.48000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Ni3(AsO4)2:8H2O(s) -Ni3(AsO4)2:8H2O = 3.000Ni+2 + 2.000AsO4-3 + 8.000H2O - log_k -28.100 #05GAM/BUG - delta_h -48.956 #kJ/mol - # Enthalpy of formation: -4179 #kJ/mol #05GAM/BUG - -analytic -3.66767E+1 0E+0 2.55715E+3 0E+0 0E+0 +Ni3(AsO4)2:8H2O = +3.000Ni+2 +2.000AsO4-3 +8.000H2O + log_k -28.10 #05GAM/BUG + delta_h -48.956 #kJ/mol +# Enthalpy of formation: -4179.000 kJ/mol 05GAM/BUG + -analytic -36.67672E+0 00.00000E+0 25.57150E+2 00.00000E+0 00.00000E+0 Ni3(PO4)2(cr) -Ni3(PO4)2 = 3.000Ni+2 - 4.000H+ + 2.000H2(PO4)- - log_k 10.253 - delta_h -188.236 #kJ/mol - # Enthalpy of formation: -2582 #kJ/mol #89BAE/McK - -analytic -2.27245E+1 0E+0 9.83224E+3 0E+0 0E+0 +Ni3(PO4)2 = +3.000Ni+2 -4.000H+ +2.000H2(PO4)- + log_k +10.25 + delta_h -188.236 #kJ/mol +# Enthalpy of formation: -2582.000 kJ/mol 89BAE/McK + -analytic -22.72753E+0 00.00000E+0 98.32251E+2 00.00000E+0 00.00000E+0 -#Ni3O4(s) -#Ni3O4 = 3.000Ni+2 - 6.000H+ + 3.000H2O + 0.500O2 - # log_k - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -819.308 #kJ/mol - # -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 +Ni3O4(s) +Ni3O4 = +3.000Ni+2 -8.000H+ -2.000e- +4.000H2O + log_k +65.50 + delta_h -489.045 #kJ/mol +# Enthalpy of formation: -819.308 kJ/mol + -analytic -20.17701E+0 00.00000E+0 25.54460E+3 00.00000E+0 00.00000E+0 Ni5As2(cr) -Ni5As2 = 5.000Ni+2 - 4.000H+ + 2.000AsO4-3 + 2.000H2O - 5.000O2 - log_k 323.170 - delta_h -2317.670 #kJ/mol - # Enthalpy of formation: -244.66 #kJ/mol #05GAM/BUG - -analytic -8.28678E+1 0E+0 1.2106E+5 0E+0 0E+0 +Ni5As2 = +5.000Ni+2 +16.000H+ +20.000e- +2.000AsO4-3 -8.000H2O + log_k -106.73 + delta_h +479.960 #kJ/mol +# Enthalpy of formation: -244.660 kJ/mol 05GAM/BUG + -analytic -22.64462E+0 00.00000E+0 -25.07006E+3 00.00000E+0 00.00000E+0 NiAs(cr) -NiAs = 1.000Ni+2 + 1.000H+ + 1.000AsO4-3 - 0.500H2O - 1.750O2 - log_k 94.225 - delta_h -708.183 #kJ/mol - # Enthalpy of formation: -70.82 #kJ/mol #05GAM/BUG - -analytic -2.98431E+1 0E+0 3.69909E+4 0E+0 0E+0 +NiAs = +1.000Ni+2 +8.000H+ +7.000e- +1.000AsO4-3 -4.000H2O + log_k -56.24 + delta_h +270.988 #kJ/mol +# Enthalpy of formation: -70.820 kJ/mol 05GAM/BUG + -analytic -87.64940E-1 00.00000E+0 -14.15469E+3 00.00000E+0 00.00000E+0 NiBr2(s) -NiBr2 = 1.000Ni+2 + 2.000Br- - log_k 10.170 - delta_h -84.332 #kJ/mol - # Enthalpy of formation: -213.5 #kJ/mol #05GAM/BUG - -analytic -4.60431E+0 0E+0 4.40496E+3 0E+0 0E+0 +NiBr2 = +1.000Ni+2 +2.000Br- + log_k +10.17 + delta_h -84.332 #kJ/mol +# Enthalpy of formation: -213.500 kJ/mol 05GAM/BUG + -analytic -46.04332E-1 00.00000E+0 44.04967E+2 00.00000E+0 00.00000E+0 NiCl2(s) -NiCl2 = 1.000Ni+2 + 2.000Cl- - log_k 8.670 - delta_h -84.272 #kJ/mol - # Enthalpy of formation: -304.9 #kJ/mol #05GAM/BUG - -analytic -6.0938E+0 0E+0 4.40183E+3 0E+0 0E+0 +NiCl2 = +1.000Ni+2 +2.000Cl- + log_k +8.67 + delta_h -84.272 #kJ/mol +# Enthalpy of formation: -304.900 kJ/mol 05GAM/BUG + -analytic -60.93821E-1 00.00000E+0 44.01833E+2 00.00000E+0 00.00000E+0 NiCl2:2H2O(s) -NiCl2:2H2O = 1.000Ni+2 + 2.000Cl- + 2.000H2O - log_k 4.920 - delta_h -47.461 #kJ/mol - # Enthalpy of formation: -913.371 #kJ/mol - -analytic -3.3948E+0 0E+0 2.47906E+3 0E+0 0E+0 +NiCl2:2H2O = +1.000Ni+2 +2.000Cl- +2.000H2O + log_k +4.92 + delta_h -47.458 #kJ/mol +# Enthalpy of formation: -913.372 kJ/mol + -analytic -33.94285E-1 00.00000E+0 24.78904E+2 00.00000E+0 00.00000E+0 NiCl2:4H2O(s) -NiCl2:4H2O = 1.000Ni+2 + 2.000Cl- + 4.000H2O - log_k 3.820 - delta_h -18.444 #kJ/mol #05GAM/BUG - # Enthalpy of formation: -1514.048 #kJ/mol - -analytic 5.88755E-1 0E+0 9.63396E+2 0E+0 0E+0 +NiCl2:4H2O = +1.000Ni+2 +2.000Cl- +4.000H2O + log_k +3.82 + delta_h -18.444 #kJ/mol 05GAM/BUG +# Enthalpy of formation: -1514.048 kJ/mol + -analytic 58.87499E-2 00.00000E+0 96.33972E+1 00.00000E+0 00.00000E+0 NiCl2:6H2O(s) -NiCl2:6H2O = 1.000Ni+2 + 2.000Cl- + 6.000H2O - log_k 3.040 - delta_h 0.548 #kJ/mol - # Enthalpy of formation: -2104.7 #kJ/mol #05GAM/BUG - -analytic 3.13601E+0 0E+0 -2.8624E+1 0E+0 0E+0 +NiCl2:6H2O = +1.000Ni+2 +2.000Cl- +6.000H2O + log_k +3.04 + delta_h +0.548 #kJ/mol +# Enthalpy of formation: -2104.700 kJ/mol 05GAM/BUG + -analytic 31.36005E-1 00.00000E+0 -28.62403E+0 00.00000E+0 00.00000E+0 NiF2(s) -NiF2 = 1.000Ni+2 + 2.000F- - log_k -0.180 - delta_h -68.412 #kJ/mol - # Enthalpy of formation: -657.3 #kJ/mol #05GAM/BUG - -analytic -1.21653E+1 0E+0 3.5734E+3 0E+0 0E+0 +NiF2 = +1.000Ni+2 +2.000F- + log_k -0.18 + delta_h -68.412 #kJ/mol +# Enthalpy of formation: -657.300 kJ/mol 05GAM/BUG + -analytic -12.16527E+0 00.00000E+0 35.73408E+2 00.00000E+0 00.00000E+0 NiI2(s) -NiI2 = 1.000Ni+2 + 2.000I- - log_k 9.610 - delta_h -72.152 #kJ/mol - # Enthalpy of formation: -96.42 #kJ/mol #05GAM/BUG - -analytic -3.03047E+0 0E+0 3.76876E+3 0E+0 0E+0 +NiI2 = +1.000Ni+2 +2.000I- + log_k +9.61 + delta_h -72.152 #kJ/mol +# Enthalpy of formation: -96.420 kJ/mol 05GAM/BUG + -analytic -30.30488E-1 00.00000E+0 37.68761E+2 00.00000E+0 00.00000E+0 NiSe2(cr) -NiSe2 = 1.000Ni+2 + 2.000HSe- - 1.000H2O + 0.500O2 - log_k -69.890 - delta_h 368.851 #kJ/mol - # Enthalpy of formation: -115.5 #kJ/mol #05OLI/NOL - -analytic -5.27017E+0 0E+0 -1.92664E+4 0E+0 0E+0 - -Nontronite-Ca -Ca0.17Fe1.67Al0.67Si3.66O10(OH)2 = 0.170Ca+2 + 1.670Fe+3 + 0.670Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k -2.830 - delta_h -145.927 #kJ/mol - # Enthalpy of formation: -4982.32 #kJ/mol #15BLA/VIE - -analytic -2.83953E+1 0E+0 7.62229E+3 0E+0 0E+0 - -Nontronite-K -K0.34Fe1.67Al0.67Si3.66O10(OH)2 = 0.340K+ + 1.670Fe+3 + 0.670Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k -4.000 - delta_h -127.394 #kJ/mol - # Enthalpy of formation: -4994.27 #kJ/mol #15BLA/VIE - -analytic -2.63184E+1 0E+0 6.65424E+3 0E+0 0E+0 - -Nontronite-Mg -Mg0.17Fe1.67Al0.67Si3.66O10(OH)2 = 0.170Mg+2 + 1.670Fe+3 + 0.670Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k -3.370 - delta_h -147.107 #kJ/mol - # Enthalpy of formation: -4968.22 #kJ/mol #15BLA/VIE - -analytic -2.9142E+1 0E+0 7.68392E+3 0E+0 0E+0 - -Nontronite-Na -Na0.34Fe1.67Al0.67Si3.66O10(OH)2 = 0.340Na+ + 1.670Fe+3 + 0.670Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k -3.500 - delta_h -136.012 #kJ/mol - # Enthalpy of formation: -4981.64 #kJ/mol #15BLA/VIE - -analytic -2.73282E+1 0E+0 7.10439E+3 0E+0 0E+0 +NiSe2 = +1.000Ni+2 -2.000H+ -2.000e- +2.000HSe- + log_k -26.90 + delta_h +89.088 #kJ/mol +# Enthalpy of formation: -115.500 kJ/mol 05OLI/NOL + -analytic -11.29245E+0 00.00000E+0 -46.53390E+2 00.00000E+0 00.00000E+0 Nontronite_Nau-2 -Ca0.247K0.02(Si3.458Al0.542)(Fe1.688Al0.276Mg0.068)O10(OH)2 = 0.247Ca+2 + 0.068Mg+2 + 0.020K+ + 1.688Fe+3 + 0.818Al+3 + 3.458H4(SiO4) - 1.832H2O - 8.168H+ - log_k 1.350 - delta_h -187.521 #kJ/mol - # Enthalpy of formation: -5035.69 #kJ/mol #13GAI/BLA - -analytic -3.15022E+1 0E+0 9.79489E+3 0E+0 0E+0 +Ca0.247K0.02(Si3.458Al0.542)(Fe1.688Al0.276Mg0.068)O10(OH)2 = +0.247Ca+2 +0.068Mg+2 +0.020K+ +1.688Fe+3 +0.818Al+3 -8.168H+ +3.458H4(SiO4) -1.832H2O + log_k +1.30 + delta_h -189.304 #kJ/mol +# Enthalpy of formation: -5035.690 kJ/mol 13GAI/BLA + -analytic -31.86464E+0 00.00000E+0 98.88037E+2 00.00000E+0 00.00000E+0 + -Vm 136.380 -Np(CO3)(OH)(s) -Np(CO3)(OH) = 1.000Np+3 - 1.000H+ + 1.000CO3-2 + 1.000H2O - log_k -6.060 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.06E+0 0E+0 0E+0 0E+0 0E+0 +Nontronite-Ca +Ca0.17Fe1.67Al0.67Si3.66O10(OH)2 = +0.170Ca+2 +1.670Fe+3 +0.670Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O + log_k -2.86 + delta_h -147.690 #kJ/mol +# Enthalpy of formation: -4982.320 kJ/mol 15BLA/VIE + -analytic -28.73418E+0 00.00000E+0 77.14386E+2 00.00000E+0 00.00000E+0 + -Vm 133.740 -Np(HPO4)2(s) -Np(HPO4)2 = 1.000Np+4 - 2.000H+ + 2.000H2(PO4)- - log_k -16.060 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.606E+1 0E+0 0E+0 0E+0 0E+0 +Nontronite-K +K0.34Fe1.67Al0.67Si3.66O10(OH)2 = +0.340K+ +1.670Fe+3 +0.670Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O + log_k -4.03 + delta_h -129.158 #kJ/mol +# Enthalpy of formation: -4994.270 kJ/mol 15BLA/VIE + -analytic -26.65751E+0 00.00000E+0 67.46392E+2 00.00000E+0 00.00000E+0 + -Vm 132.850 -Np(OH)3(s) -Np(OH)3 = 1.000Np+3 - 3.000H+ + 3.000H2O - log_k 18.000 #80ALL/KIP - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.8E+1 0E+0 0E+0 0E+0 0E+0 +Nontronite-Mg +Mg0.17Fe1.67Al0.67Si3.66O10(OH)2 = +0.170Mg+2 +1.670Fe+3 +0.670Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O + log_k -3.41 + delta_h -148.870 #kJ/mol +# Enthalpy of formation: -4968.220 kJ/mol 15BLA/VIE + -analytic -29.49090E+0 00.00000E+0 77.76022E+2 00.00000E+0 00.00000E+0 + -Vm 129.740 + +Nontronite-Na +Na0.34Fe1.67Al0.67Si3.66O10(OH)2 = +0.340Na+ +1.670Fe+3 +0.670Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O + log_k -3.53 + delta_h -137.776 #kJ/mol +# Enthalpy of formation: -4981.640 kJ/mol 15BLA/VIE + -analytic -27.66732E+0 00.00000E+0 71.96542E+2 00.00000E+0 00.00000E+0 + -Vm 132.120 Np(cr) -Np = 1.000Np+3 + 1.500H2O - 3.000H+ - 0.750O2 - log_k 154.335 - delta_h -946.829 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #01LEM/FUG - -analytic -1.1542E+1 0E+0 4.94562E+4 0E+0 0E+0 +Np = +1.000Np+3 +3.000e- + log_k +89.85 + delta_h -527.184 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 01LEM/FUG + -analytic -25.08672E-1 00.00000E+0 27.53674E+3 00.00000E+0 00.00000E+0 + +Np(HPO4)2(s) +Np(HPO4)2 = +1.000Np+4 -2.000H+ +2.000H2(PO4)- + log_k -16.06 #Estimated by correlation with An(III) in function of ionic radii + -analytic -16.06000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +Np(OH)3(s) +Np(OH)3 = +1.000Np+3 -3.000H+ +3.000H2O + log_k +18.00 #80ALL/KIP + -analytic 18.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Np2O5(cr) -Np2O5 = 2.000NpO2+ - 2.000H+ + 1.000H2O - log_k 3.700 - delta_h -79.492 #kJ/mol - # Enthalpy of formation: -2162.7 #kJ/mol #01LEM/FUG - -analytic -1.02264E+1 0E+0 4.15215E+3 0E+0 0E+0 +Np2O5 = +2.000NpO2+ -2.000H+ +1.000H2O + log_k +3.07 + delta_h -79.492 #kJ/mol +# Enthalpy of formation: -2162.700 kJ/mol 01LEM/FUG + -analytic -10.85640E+0 00.00000E+0 41.52156E+2 00.00000E+0 00.00000E+0 -NpO2(CO3)(s) -NpO2(CO3) = 1.000NpO2+2 + 1.000CO3-2 - log_k -14.600 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.46E+1 0E+0 0E+0 0E+0 0E+0 +NpCO3OH(s) +Np(CO3)(OH) = +1.000Np+3 -1.000H+ +1.000CO3-2 +1.000H2O + log_k -6.35 #Estimated using the data for AmCO3OH(s) and the trend versus r identified for AnCO3OH·0.5H2O(s)(orthorhombic). + -analytic -63.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 -NpO2(CO3)2Na3(s) -NpO2(CO3)2Na3 = 3.000Na+ + 1.000NpO2+ + 2.000CO3-2 - log_k -14.220 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.422E+1 0E+0 0E+0 0E+0 0E+0 +NpO2(cr) +NpO2 = +1.000Np+4 -4.000H+ +2.000H2O + log_k -9.75 + delta_h -53.682 #kJ/mol +# Enthalpy of formation: -1074.000 kJ/mol 01LEM/FUG + -analytic -19.15468E+0 00.00000E+0 28.04006E+2 00.00000E+0 00.00000E+0 -NpO2(CO3)Na:3.5H2O(s) -NpO2(CO3)Na:3.5H2O = 1.000Na+ + 1.000NpO2+ + 1.000CO3-2 + 3.500H2O - log_k -11.000 #03GUI/FAN - delta_h 30.995 #kJ/mol - # Enthalpy of formation: -2925.151 #kJ/mol - -analytic -5.56992E+0 0E+0 -1.61898E+3 0E+0 0E+0 - -NpO2(NH4)4(CO3)3(s) -NpO2(NH4)4(CO3)3 = 1.000NpO2+2 + 4.000H+ + 3.000CO3-2 + 4.000NH3 - log_k -26.810 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.681E+1 0E+0 0E+0 0E+0 0E+0 - -NpO2(s) -NpO2 = 1.000Np+4 - 4.000H+ + 2.000H2O - log_k -9.750 - delta_h -53.682 #kJ/mol - # Enthalpy of formation: -1074 #kJ/mol #01LEM/FUG - -analytic -1.91547E+1 0E+0 2.804E+3 0E+0 0E+0 +NpO2(OH)2:H2O(cr) +NpO2(OH)2:H2O = +1.000NpO2+2 -2.000H+ +3.000H2O + log_k +5.47 #20GRE/GAO + -analytic 54.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 NpO2:2H2O(am) -NpO2:2H2O = 1.000Np+4 - 4.000H+ + 4.000H2O - log_k -0.700 #03GUI/FAN - delta_h -81.156 #kJ/mol - # Enthalpy of formation: -1618.186 #kJ/mol - -analytic -1.49179E+1 0E+0 4.23907E+3 0E+0 0E+0 +NpO2:2H2O = +1.000Np+4 -4.000H+ +4.000H2O + log_k -0.70 #03GUI/FAN + delta_h -81.154 #kJ/mol +# Enthalpy of formation: -1618.186 kJ/mol + -analytic -14.91757E+0 00.00000E+0 42.38969E+2 00.00000E+0 00.00000E+0 -NpO2OH(am,aged) -NpO2OH = 1.000NpO2+ - 1.000H+ + 1.000H2O - log_k 4.700 #01LEM/FUG - delta_h -41.111 #kJ/mol - # Enthalpy of formation: -1222.9 #kJ/mol #01LEM/FUG - -analytic -2.50233E+0 0E+0 2.14737E+3 0E+0 0E+0 +NpO2CO3(cr) +NpO2CO3 = +1.000NpO2+2 +1.000CO3-2 + log_k -14.83 #20GRE/GAO + -analytic -14.83000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 -NpO2OH(am,fresh) -NpO2OH = 1.000NpO2+ - 1.000H+ + 1.000H2O - log_k 5.300 #01LEM/FUG - delta_h -41.111 #kJ/mol - # Enthalpy of formation: -1222.9 #kJ/mol #01LEM/FUG - -analytic -1.90233E+0 0E+0 2.14737E+3 0E+0 0E+0 - -NpO3:H2O(cr) -NpO3:H2O = 1.000NpO2+2 - 2.000H+ + 2.000H2O - log_k 5.470 #01LEM/FUG - delta_h -52.240 #kJ/mol - # Enthalpy of formation: -1380.153 #kJ/mol - -analytic -3.68204E+0 0E+0 2.72868E+3 0E+0 0E+0 +NpO2OH(am) +NpO2OH = +1.000NpO2+ -1.000H+ +1.000H2O + log_k +5.30 #01LEM/FUG + delta_h -41.111 #kJ/mol +# Enthalpy of formation: -1222.900 kJ/mol 01LEM/FUG + -analytic -19.02338E-1 00.00000E+0 21.47377E+2 00.00000E+0 00.00000E+0 Okenite -CaSi2O5:2H2O = 1.000Ca+2 - 2.000H+ + 2.000H4(SiO4) - 1.000H2O - log_k 9.180 - delta_h -44.388 #kJ/mol - # Enthalpy of formation: -3135.17 #kJ/mol #10BLA/BOU1 - -analytic 1.40357E+0 0E+0 2.31854E+3 0E+0 0E+0 +CaSi2O5:2H2O = +1.000Ca+2 -2.000H+ +2.000H4(SiO4) -1.000H2O + log_k +9.18 + delta_h -44.388 #kJ/mol +# Enthalpy of formation: -3135.170 kJ/mol 10BLA/BOU1 + -analytic 14.03556E-1 00.00000E+0 23.18547E+2 00.00000E+0 00.00000E+0 + -Vm 94.770 -#Olivine -#Ni2(SiO4) = 2.000Ni+2 - 4.000H+ + 1.000H4(SiO4) - # log_k - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: -1396 #kJ/mol #05GAM/BUG - # -analytic 0E+0 0E+0 0E+0 0E+0 0E+0 +Olivine +Ni2(SiO4) = +2.000Ni+2 -4.000H+ +1.000H4(SiO4) + log_k +19.68 + delta_h -175.218 #kJ/mol +# Enthalpy of formation: -1396.000 kJ/mol 05GAM/BUG + -analytic -11.01688E+0 00.00000E+0 91.52274E+2 00.00000E+0 00.00000E+0 Orpiment -As2S3 = 9.000H+ + 3.000HS- + 2.000AsO4-3 - 6.000H2O - 1.000O2 - log_k -41.480 - delta_h -6.843 #kJ/mol - # Enthalpy of formation: -91.223 #kJ/mol - -analytic -4.26788E+1 0E+0 3.57434E+2 0E+0 0E+0 +As2S3 = +13.000H+ +4.000e- +3.000HS- +2.000AsO4-3 -8.000H2O + log_k -127.46 + delta_h +552.680 #kJ/mol +# Enthalpy of formation: -91.223 kJ/mol + -analytic -30.63462E+0 00.00000E+0 -28.86849E+3 00.00000E+0 00.00000E+0 P(cr) -P = 1.000H+ + 1.000H2(PO4)- - 1.500H2O - 1.250O2 - log_k 140.515 - delta_h -858.688 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #89COX/WAG - -analytic -9.92037E+0 0E+0 4.48523E+4 0E+0 0E+0 +P = +6.000H+ +5.000e- +1.000H2(PO4)- -4.000H2O + log_k +33.04 + delta_h -159.280 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic 51.35342E-1 00.00000E+0 83.19774E+2 00.00000E+0 00.00000E+0 Pa(cr) -Pa = 1.000Pa+4 + 2.000H2O - 4.000H+ - 1.000O2 - log_k 184.730 - delta_h -1179.526 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #85BAR/PAR - -analytic -2.19138E+1 0E+0 6.16108E+4 0E+0 0E+0 +Pa = +4.000e- +1.000Pa+4 + log_k +98.75 + delta_h -620.000 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 85BAR/PAR + -analytic -98.69337E-1 00.00000E+0 32.38486E+3 00.00000E+0 00.00000E+0 Pa2O5(s) -Pa2O5 = - 2.000H+ + 2.000PaO2+ + 1.000H2O - log_k -4.000 #76BAE/MES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4E+0 0E+0 0E+0 0E+0 0E+0 +Pa2O5 = -2.000H+ +2.000PaO2+ +1.000H2O + log_k -4.00 #76BAE/MES; Uncertainty to include available data. + -analytic -40.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 PaO2(s) -PaO2 = - 4.000H+ + 1.000Pa+4 + 2.000H2O - log_k 0.600 #76BAE/MES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6E-1 0E+0 0E+0 0E+0 0E+0 +PaO2 = -4.000H+ +1.000Pa+4 +2.000H2O + log_k +0.60 #76BAE/MES + -analytic 60.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Paragonite -NaAl3Si3O10(OH)2 = 1.000Na+ + 3.000Al+3 - 10.000H+ + 3.000H4(SiO4) - log_k 16.800 - delta_h -301.622 #kJ/mol - # Enthalpy of formation: -5937.5 #kJ/mol #96ROU/HOV - -analytic -3.60418E+1 0E+0 1.57548E+4 0E+0 0E+0 +NaAl3Si3O10(OH)2 = +1.000Na+ +3.000Al+3 -10.000H+ +3.000H4(SiO4) + log_k +16.79 + delta_h -301.622 #kJ/mol +# Enthalpy of formation: -5937.500 kJ/mol 96ROU/HOV + -analytic -36.05191E+0 00.00000E+0 15.75481E+3 00.00000E+0 00.00000E+0 + -Vm 132.100 Paralaurionite -PbCl(OH) = 1.000Pb+2 - 1.000H+ + 1.000Cl- + 1.000H2O - log_k 0.620 #99LOT/OCH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 6.2E-1 0E+0 0E+0 0E+0 0E+0 - -Pb(H2PO4)2(cr) -Pb(H2PO4)2 = 1.000Pb+2 + 2.000H2(PO4)- - log_k -9.840 #74NRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -9.84E+0 0E+0 0E+0 0E+0 0E+0 - -Pb(HPO4)(s) -Pb(HPO4) = 1.000Pb+2 - 1.000H+ + 1.000H2(PO4)- - log_k -4.250 #74NRI - delta_h 16.436 #kJ/mol - # Enthalpy of formation: -1318.116 #kJ/mol - -analytic -1.37054E+0 0E+0 -8.58511E+2 0E+0 0E+0 - -Pb(OH)2(s) -Pb(OH)2 = 1.000Pb+2 - 2.000H+ + 2.000H2O - log_k 13.510 - delta_h -56.140 #kJ/mol - # Enthalpy of formation: -514.6 #kJ/mol #52LAT - -analytic 3.67471E+0 0E+0 2.93239E+3 0E+0 0E+0 - -Pb(SeO3)(s) -Pb(SeO3) = 1.000Pb+2 + 1.000SeO3-2 - log_k -12.500 #05OLI/NOL - delta_h 25.840 #kJ/mol - # Enthalpy of formation: -532.08 #kJ/mol #05OLI/NOL - -analytic -7.97303E+0 0E+0 -1.34972E+3 0E+0 0E+0 - -Pb(SeO4)(s) -Pb(SeO4) = 1.000Pb+2 + 1.000SeO4-2 - log_k -6.900 #05OLI/NOL - delta_h 4.720 #kJ/mol #05OLI/NOL - # Enthalpy of formation: -607.3 #kJ/mol - -analytic -6.07309E+0 0E+0 -2.46542E+2 0E+0 0E+0 +PbCl(OH) = +1.000Pb+2 -1.000H+ +1.000Cl- +1.000H2O + log_k +0.62 #99LOT/OCH + -analytic 62.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Pb(cr) -Pb = 1.000Pb+2 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 47.240 - delta_h -278.843 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #89COX/WAG - -analytic -1.61112E+0 0E+0 1.4565E+4 0E+0 0E+0 +Pb = +1.000Pb+2 +2.000e- + log_k +4.25 + delta_h +0.920 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic 44.11177E-1 00.00000E+0 -48.05495E+0 00.00000E+0 00.00000E+0 + +Pb(H2PO4)2(cr) +Pb(H2PO4)2 = +1.000Pb+2 +2.000H2(PO4)- + log_k -9.84 #74NRI + -analytic -98.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +Pb(HPO4)(s) +Pb(HPO4) = +1.000Pb+2 -1.000H+ +1.000H2(PO4)- + log_k -4.25 #74NRI + delta_h +16.436 #kJ/mol +# Enthalpy of formation: -1318.115 kJ/mol + -analytic -13.70536E-1 00.00000E+0 -85.85121E+1 00.00000E+0 00.00000E+0 + +Pb(OH)2(s) +Pb(OH)2 = +1.000Pb+2 -2.000H+ +2.000H2O + log_k +13.51 + delta_h -56.140 #kJ/mol +# Enthalpy of formation: -514.600 kJ/mol 52LAT; Uncertainty to cover available data. + -analytic 36.74694E-1 00.00000E+0 29.32396E+2 00.00000E+0 00.00000E+0 + +Pb(Ox)(cr) +Pb(Ox) = +1.000Pb+2 +1.000Ox-2 + log_k -11.13 #13XIO/KIR + -analytic -11.13000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +Pb(SeO3)(s) +Pb(SeO3) = +1.000Pb+2 +1.000SeO3-2 + log_k -12.50 #05OLI/NOL + delta_h +25.840 #kJ/mol +# Enthalpy of formation: -532.080 kJ/mol 05OLI/NOL + -analytic -79.73026E-1 00.00000E+0 -13.49717E+2 00.00000E+0 00.00000E+0 + +Pb(SeO4)(s) +Pb(SeO4) = +1.000Pb+2 +1.000SeO4-2 + log_k -6.90 #05OLI/NOL + delta_h +4.720 #kJ/mol 05OLI/NOL +# Enthalpy of formation: -607.300 kJ/mol + -analytic -60.73091E-1 00.00000E+0 -24.65428E+1 00.00000E+0 00.00000E+0 Pb2(SiO4)(s) -Pb2(SiO4) = 2.000Pb+2 - 4.000H+ + 1.000H4(SiO4) - log_k 15.890 - delta_h -81.474 #kJ/mol - # Enthalpy of formation: -1377.88 #kJ/mol #98CHA - -analytic 1.61639E+0 0E+0 4.25568E+3 0E+0 0E+0 +Pb2(SiO4) = +2.000Pb+2 -4.000H+ +1.000H4(SiO4) + log_k +15.89 + delta_h -81.474 #kJ/mol +# Enthalpy of formation: -1377.880 kJ/mol 98CHA + -analytic 16.16368E-1 00.00000E+0 42.55683E+2 00.00000E+0 00.00000E+0 Pb3(AsO4)2(s) -Pb3(AsO4)2 = 3.000Pb+2 + 2.000AsO4-3 - log_k -35.400 #74NAU/RYZ - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.54E+1 0E+0 0E+0 0E+0 0E+0 +Pb3(AsO4)2 = +3.000Pb+2 +2.000AsO4-3 + log_k -35.40 #74NAU/RYZ + -analytic -35.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Pb3(PO4)2(s) -Pb3(PO4)2 = 3.000Pb+2 - 4.000H+ + 2.000H2(PO4)- - log_k -5.260 #74NRI - delta_h -3.548 #kJ/mol - # Enthalpy of formation: -2598.892 #kJ/mol - -analytic -5.88158E+0 0E+0 1.85325E+2 0E+0 0E+0 +Pb3(PO4)2 = +3.000Pb+2 -4.000H+ +2.000H2(PO4)- + log_k -5.26 #74NRI + delta_h -3.548 #kJ/mol +# Enthalpy of formation: -2598.892 kJ/mol + -analytic -58.81583E-1 00.00000E+0 18.53249E+1 00.00000E+0 00.00000E+0 Pb4O(PO4)2(cr) -Pb4O(PO4)2 = 4.000Pb+2 - 6.000H+ + 2.000H2(PO4)- + 1.000H2O - log_k 2.240 #74NRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.24E+0 0E+0 0E+0 0E+0 0E+0 +Pb4O(PO4)2 = +4.000Pb+2 -6.000H+ +2.000H2(PO4)- +1.000H2O + log_k +2.24 #74NRI + -analytic 22.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 PbB2O4(s) -PbB2O4 = 1.000Pb+2 + 2.000B(OH)4- - 4.000H2O - log_k -10.870 #91BAL/NOR - delta_h 2.761 #kJ/mol #91BAL/NOR - # Enthalpy of formation: -1548.753 #kJ/mol - -analytic -1.03863E+1 0E+0 -1.44217E+2 0E+0 0E+0 +PbB2O4 = +1.000Pb+2 +2.000B(OH)4- -4.000H2O + log_k -10.87 #91BAL/NOR + delta_h +2.761 #kJ/mol 91BAL/NOR +# Enthalpy of formation: -1548.753 kJ/mol + -analytic -10.38629E+0 00.00000E+0 -14.42171E+1 00.00000E+0 00.00000E+0 PbF2(s) -PbF2 = 1.000Pb+2 + 2.000F- - log_k -7.520 #99LOT/OCH - delta_h 6.530 #kJ/mol - # Enthalpy of formation: -676.31 #kJ/mol - -analytic -6.37599E+0 0E+0 -3.41085E+2 0E+0 0E+0 +PbF2 = +1.000Pb+2 +2.000F- + log_k -7.52 #99LOT/OCH + delta_h +6.530 #kJ/mol +# Enthalpy of formation: -676.309 kJ/mol + -analytic -63.75993E-1 00.00000E+0 -34.10857E+1 00.00000E+0 00.00000E+0 PbI2(cr) -PbI2 = 1.000Pb+2 + 2.000I- - log_k -8.050 - delta_h 62.801 #kJ/mol - # Enthalpy of formation: -175.441 #kJ/mol - -analytic 2.95225E+0 0E+0 -3.28032E+3 0E+0 0E+0 +PbI2 = +1.000Pb+2 +2.000I- + log_k -8.05 + delta_h +62.816 #kJ/mol +# Enthalpy of formation: -175.456 kJ/mol + -analytic 29.54891E-1 00.00000E+0 -32.81108E+2 00.00000E+0 00.00000E+0 PbMoO4(s) -PbMoO4 = 1.000Pb+2 + 1.000MoO4-2 - log_k -15.800 - delta_h 55.795 #kJ/mol - # Enthalpy of formation: -1051.875 #kJ/mol - -analytic -6.02515E+0 0E+0 -2.91437E+3 0E+0 0E+0 +PbMoO4 = +1.000Pb+2 +1.000MoO4-2 + log_k -15.80 + delta_h +55.795 #kJ/mol +# Enthalpy of formation: -1051.875 kJ/mol + -analytic -60.25136E-1 00.00000E+0 -29.14376E+2 00.00000E+0 00.00000E+0 PbSiO3(Glass) -PbSiO3 = 1.000Pb+2 - 2.000H+ + 1.000H4(SiO4) - 1.000H2O - log_k 6.600 - delta_h -36.814 #kJ/mol - # Enthalpy of formation: -1137.63 #kJ/mol #74NAU/RYZ - -analytic 1.50474E-1 0E+0 1.92293E+3 0E+0 0E+0 - -Pd(OH)2(s) -Pd(OH)2 = - 2.000H+ + 1.000Pd+2 + 2.000H2O - log_k -1.610 #70NAB/KAL - delta_h 13.223 #kJ/mol - # Enthalpy of formation: -395 #kJ/mol #82WAG/EVA - -analytic 7.06567E-1 0E+0 -6.90684E+2 0E+0 0E+0 +PbSiO3 = +1.000Pb+2 -2.000H+ +1.000H4(SiO4) -1.000H2O + log_k +6.60 + delta_h -36.814 #kJ/mol +# Enthalpy of formation: -1137.630 kJ/mol 74NAU/RYZ + -analytic 15.04641E-2 00.00000E+0 19.22929E+2 00.00000E+0 00.00000E+0 Pd(cr) -Pd = 1.000Pd+2 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 9.960 #43TEM/WAT - delta_h -89.880 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol - -analytic -5.78628E+0 0E+0 4.69475E+3 0E+0 0E+0 +Pd = +1.000Pd+2 +2.000e- + log_k -33.03 + delta_h +189.889 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 79ROB/HEM in 98SAS/SHO + -analytic 23.71248E-2 00.00000E+0 -99.18593E+2 00.00000E+0 00.00000E+0 + +Pd(OH)2(am) +Pd(OH)2 = -2.000H+ +1.000Pd+2 +2.000H2O + log_k -3.58 #12RAI/YUI + delta_h +13.229 #kJ/mol +# Enthalpy of formation: -395.000 kJ/mol 82WAG/EVA + -analytic -12.62379E-1 00.00000E+0 -69.09988E+1 00.00000E+0 00.00000E+0 PdBr2(cr) -PdBr2 = 1.000Pd+2 + 2.000Br- - log_k -13.310 #89BAE/McK - delta_h 51.263 #kJ/mol - # Enthalpy of formation: -104.2 #kJ/mol #89BAE/McK - -analytic -4.32912E+0 0E+0 -2.67765E+3 0E+0 0E+0 +PdBr2 = +1.000Pd+2 +2.000Br- + log_k -13.31 #89BAE/McK + delta_h +51.269 #kJ/mol +# Enthalpy of formation: -104.200 kJ/mol 89BAE/McK + -analytic -43.28057E-1 00.00000E+0 -26.77966E+2 00.00000E+0 00.00000E+0 PdCl2(cr) -PdCl2 = 1.000Pd+2 + 2.000Cl- - log_k -9.200 - delta_h 54.423 #kJ/mol - # Enthalpy of formation: -198.7 #kJ/mol #82WAG/EVA - -analytic 3.34486E-1 0E+0 -2.84271E+3 0E+0 0E+0 +PdCl2 = +1.000Pd+2 +2.000Cl- + log_k -9.20 + delta_h +54.429 #kJ/mol +# Enthalpy of formation: -198.700 kJ/mol 82WAG/EVA + -analytic 33.55515E-2 00.00000E+0 -28.43025E+2 00.00000E+0 00.00000E+0 PdI2(cr) -PdI2 = 1.000Pd+2 + 2.000I- - log_k -25.870 - delta_h 139.923 #kJ/mol - # Enthalpy of formation: -63.6 #kJ/mol #89BAE/McK - -analytic -1.35658E+0 0E+0 -7.30868E+3 0E+0 0E+0 +PdI2 = +1.000Pd+2 +2.000I- + log_k -25.87 + delta_h +139.929 #kJ/mol +# Enthalpy of formation: -63.600 kJ/mol 89BAE/McK + -analytic -13.55492E-1 00.00000E+0 -73.09001E+2 00.00000E+0 00.00000E+0 PdO(s) -PdO = - 2.000H+ + 1.000Pd+2 + 1.000H2O - log_k -6.020 - delta_h -10.547 #kJ/mol - # Enthalpy of formation: -85.4 #kJ/mol #82WAG/EVA - -analytic -7.86775E+0 0E+0 5.50907E+2 0E+0 0E+0 +PdO = -2.000H+ +1.000Pd+2 +1.000H2O + log_k -6.02 + delta_h -10.541 #kJ/mol +# Enthalpy of formation: -85.400 kJ/mol 82WAG/EVA + -analytic -78.66704E-1 00.00000E+0 55.05948E+1 00.00000E+0 00.00000E+0 PdS(s) -PdS = - 1.000H+ + 1.000Pd+2 + 1.000HS- - log_k -46.860 - delta_h 244.293 #kJ/mol - # Enthalpy of formation: -70.71 #kJ/mol #74MIL - -analytic -4.06177E+0 0E+0 -1.27603E+4 0E+0 0E+0 +PdS = -1.000H+ +1.000Pd+2 +1.000HS- + log_k -46.86 + delta_h +244.299 #kJ/mol +# Enthalpy of formation: -70.710 kJ/mol 74MIL + -analytic -40.60652E-1 00.00000E+0 -12.76063E+3 00.00000E+0 00.00000E+0 PdSe(s) -PdSe = - 1.000H+ + 1.000Pd+2 + 1.000HSe- - log_k -49.110 - delta_h 254.463 #kJ/mol - # Enthalpy of formation: -50.28 #kJ/mol #74MIL - -analytic -4.53006E+0 0E+0 -1.32915E+4 0E+0 0E+0 +PdSe = -1.000H+ +1.000Pd+2 +1.000HSe- + log_k -49.11 + delta_h +254.469 #kJ/mol +# Enthalpy of formation: -50.280 kJ/mol 74MIL + -analytic -45.28945E-1 00.00000E+0 -13.29184E+3 00.00000E+0 00.00000E+0 Pentahydrite -MgSO4:5H2O = 1.000Mg+2 + 1.000SO4-2 + 5.000H2O - log_k -1.280 #80HAR/WEA - delta_h -14.187 #kJ/mol - # Enthalpy of formation: -2791.303 #kJ/mol - -analytic -3.76545E+0 0E+0 7.41038E+2 0E+0 0E+0 +MgSO4:5H2O = +1.000Mg+2 +1.000SO4-2 +5.000H2O + log_k -1.28 #80HAR/WEA + delta_h -14.187 #kJ/mol +# Enthalpy of formation: -2791.300 kJ/mol + -analytic -37.65456E-1 00.00000E+0 74.10386E+1 00.00000E+0 00.00000E+0 Periclase -MgO = 1.000Mg+2 - 2.000H+ + 1.000H2O - log_k 21.580 - delta_h -151.230 #kJ/mol - # Enthalpy of formation: -601.6 #kJ/mol #89COX/WAG - -analytic -4.91432E+0 0E+0 7.89928E+3 0E+0 0E+0 +MgO = +1.000Mg+2 -2.000H+ +1.000H2O + log_k +21.58 + delta_h -151.230 #kJ/mol +# Enthalpy of formation: -601.600 kJ/mol 89COX/WAG + -analytic -49.14359E-1 00.00000E+0 78.99293E+2 00.00000E+0 00.00000E+0 + -Vm 11.250 Phillipsite_Ca -Ca0.5AlSi3O8:3H2O = 0.500Ca+2 + 1.000Al+3 - 4.000H+ + 3.000H4(SiO4) - 1.000H2O - log_k 2.320 #09BLA - delta_h -83.630 #kJ/mol - # Enthalpy of formation: -4824.022 #kJ/mol - -analytic -1.23313E+1 0E+0 4.36829E+3 0E+0 0E+0 +Ca0.5AlSi3O8:3H2O = +0.500Ca+2 +1.000Al+3 -4.000H+ +3.000H4(SiO4) -1.000H2O + log_k +2.32 #09BLA + delta_h -83.633 #kJ/mol +# Enthalpy of formation: -4824.020 kJ/mol + -analytic -12.33187E+0 00.00000E+0 43.68456E+2 00.00000E+0 00.00000E+0 + -Vm 151.150 Phillipsite_K -KAlSi3O8:3H2O = 1.000K+ + 1.000Al+3 - 4.000H+ + 3.000H4(SiO4) - 1.000H2O - log_k 0.040 #09BLA - delta_h -46.433 #kJ/mol - # Enthalpy of formation: -4841.859 #kJ/mol - -analytic -8.0947E+0 0E+0 2.42536E+3 0E+0 0E+0 +KAlSi3O8:3H2O = +1.000K+ +1.000Al+3 -4.000H+ +3.000H4(SiO4) -1.000H2O + log_k +0.04 #09BLA + delta_h -46.436 #kJ/mol +# Enthalpy of formation: -4841.858 kJ/mol + -analytic -80.95238E-1 00.00000E+0 24.25521E+2 00.00000E+0 00.00000E+0 + -Vm 148.970 Phillipsite_Na -NaAlSi3O8:3H2O = 1.000Na+ + 1.000Al+3 - 4.000H+ + 3.000H4(SiO4) - 1.000H2O - log_k 1.450 #09BLA - delta_h -64.815 #kJ/mol - # Enthalpy of formation: -4811.677 #kJ/mol - -analytic -9.90508E+0 0E+0 3.38552E+3 0E+0 0E+0 +NaAlSi3O8:3H2O = +1.000Na+ +1.000Al+3 -4.000H+ +3.000H4(SiO4) -1.000H2O + log_k +1.45 #09BLA + delta_h -64.833 #kJ/mol +# Enthalpy of formation: -4811.661 kJ/mol + -analytic -99.08254E-1 00.00000E+0 33.86463E+2 00.00000E+0 00.00000E+0 + -Vm 149.690 Phlogopite_K -KMg3Si3AlO10(OH)2 = 3.000Mg+2 + 1.000K+ + 1.000Al+3 - 10.000H+ + 3.000H4(SiO4) - log_k 41.100 - delta_h -360.122 #kJ/mol - # Enthalpy of formation: -6215 #kJ/mol #92CIR/NAV - -analytic -2.19906E+1 0E+0 1.88105E+4 0E+0 0E+0 +KMg3Si3AlO10(OH)2 = +3.000Mg+2 +1.000K+ +1.000Al+3 -10.000H+ +3.000H4(SiO4) + log_k +41.08 + delta_h -360.122 #kJ/mol +# Enthalpy of formation: -6215.000 kJ/mol 92CIR/NAV + -analytic -22.01067E+0 00.00000E+0 18.81048E+3 00.00000E+0 00.00000E+0 + -Vm 149.650 Phlogopite_Na -NaMg3AlSi3O10(OH)2 = 3.000Mg+2 + 1.000Na+ + 1.000Al+3 - 10.000H+ + 3.000H4(SiO4) - log_k 44.200 - delta_h -391.182 #kJ/mol - # Enthalpy of formation: -6172.14 #kJ/mol #98HOL/POW - -analytic -2.4332E+1 0E+0 2.04328E+4 0E+0 0E+0 +NaMg3AlSi3O10(OH)2 = +3.000Mg+2 +1.000Na+ +1.000Al+3 -10.000H+ +3.000H4(SiO4) + log_k +44.18 + delta_h -391.182 #kJ/mol +# Enthalpy of formation: -6172.140 kJ/mol 98HOL/POW + -analytic -24.35214E+0 00.00000E+0 20.43286E+3 00.00000E+0 00.00000E+0 + -Vm 144.500 Phosgenite -Pb2(CO3)Cl2 = 2.000Pb+2 + 1.000CO3-2 + 2.000Cl- - log_k 19.900 #74NAU/RYZ - delta_h -163.291 #kJ/mol - # Enthalpy of formation: -844.259 #kJ/mol - -analytic -8.70731E+0 0E+0 8.52927E+3 0E+0 0E+0 +Pb2(CO3)Cl2 = +2.000Pb+2 +1.000CO3-2 +2.000Cl- + log_k +19.90 #74NAU/RYZ + delta_h -163.291 #kJ/mol +# Enthalpy of formation: -844.259 kJ/mol + -analytic -87.07355E-1 00.00000E+0 85.29283E+2 00.00000E+0 00.00000E+0 Picromerite -K2Mg(SO4)2:6H2O = 1.000Mg+2 + 2.000K+ + 2.000SO4-2 + 6.000H2O - log_k -4.330 #84HAR/MOL - delta_h 33.487 #kJ/mol - # Enthalpy of formation: -4538.427 #kJ/mol #74NAU/RYZ - -analytic 1.53666E+0 0E+0 -1.74915E+3 0E+0 0E+0 +K2Mg(SO4)2:6H2O = +1.000Mg+2 +2.000K+ +2.000SO4-2 +6.000H2O + log_k -4.33 #84HAR/MOL + delta_h +33.487 #kJ/mol +# Enthalpy of formation: -4538.427 kJ/mol 74NAU/RYZ + -analytic 15.36671E-1 00.00000E+0 -17.49148E+2 00.00000E+0 00.00000E+0 Pirssonite -Na2Ca(CO3)2:2H2O = 1.000Ca+2 + 2.000Na+ + 2.000CO3-2 + 2.000H2O - log_k -8.910 #99KON/KON - delta_h 9.580 #kJ/mol - # Enthalpy of formation: -2955.38 #kJ/mol - -analytic -7.23166E+0 0E+0 -5.00398E+2 0E+0 0E+0 +Na2Ca(CO3)2:2H2O = +1.000Ca+2 +2.000Na+ +2.000CO3-2 +2.000H2O + log_k -8.91 #99KON/KON + delta_h +9.579 #kJ/mol +# Enthalpy of formation: -2955.379 kJ/mol + -analytic -72.31831E-1 00.00000E+0 -50.03460E+1 00.00000E+0 00.00000E+0 Plattnerite -PbO2 = 1.000Pb+2 - 2.000H+ + 1.000H2O + 0.500O2 - log_k 6.610 - delta_h -16.507 #kJ/mol - # Enthalpy of formation: -274.47 #kJ/mol #98CHA - -analytic 3.7181E+0 0E+0 8.62219E+2 0E+0 0E+0 +PbO2 = +1.000Pb+2 -4.000H+ -2.000e- +2.000H2O + log_k +49.60 + delta_h -296.270 #kJ/mol +# Enthalpy of formation: -274.470 kJ/mol 98CHA + -analytic -23.04276E-1 00.00000E+0 15.47526E+3 00.00000E+0 00.00000E+0 Plumbogummite -PbAl3(PO4)2(OH)5:H2O = 1.000Pb+2 + 3.000Al+3 - 9.000H+ + 2.000H2(PO4)- + 6.000H2O - log_k 13.240 #74NRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.324E+1 0E+0 0E+0 0E+0 0E+0 +PbAl3(PO4)2(OH)5:H2O = +1.000Pb+2 +3.000Al+3 -9.000H+ +2.000H2(PO4)- +6.000H2O + log_k +13.24 #74NRI + -analytic 13.24000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Plumbonacrite -Pb10(CO3)6O(OH)6 = 10.000Pb+2 - 8.000H+ + 6.000CO3-2 + 7.000H2O - log_k -42.090 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.209E+1 0E+0 0E+0 0E+0 0E+0 +Pb10(CO3)6O(OH)6 = +10.000Pb+2 -8.000H+ +6.000CO3-2 +7.000H2O + log_k -42.09 + -analytic -42.09000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Polydymite -Ni3S4 = 3.000Ni+2 - 2.000H+ + 4.000HS- - 1.000H2O + 0.500O2 - log_k -82.260 - delta_h 375.879 #kJ/mol - # Enthalpy of formation: -326.352 #kJ/mol #74MIL - -analytic -1.64089E+1 0E+0 -1.96335E+4 0E+0 0E+0 +Ni3S4 = +3.000Ni+2 -4.000H+ -2.000e- +4.000HS- + log_k -39.27 + delta_h +96.116 #kJ/mol +# Enthalpy of formation: -326.352 kJ/mol 74MIL + -analytic -22.43120E+0 00.00000E+0 -50.20488E+2 00.00000E+0 00.00000E+0 Polyhalite -K2MgCa2(SO4)4:2H2O = 2.000Ca+2 + 1.000Mg+2 + 2.000K+ + 4.000SO4-2 + 2.000H2O - log_k -13.740 #84HAR/MOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.374E+1 0E+0 0E+0 0E+0 0E+0 +K2MgCa2(SO4)4:2H2O = +2.000Ca+2 +1.000Mg+2 +2.000K+ +4.000SO4-2 +2.000H2O + log_k -13.74 #84HAR/MOL + -analytic -13.74000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Portlandite -Ca(OH)2 = 1.000Ca+2 - 2.000H+ + 2.000H2O - log_k 22.810 #10BLA/BOU1 - delta_h -130.078 #kJ/mol - # Enthalpy of formation: -984.582 #kJ/mol - -analytic 2.13461E-2 0E+0 6.79444E+3 0E+0 0E+0 - -Pu(CO3)(OH)(s) -Pu(CO3)(OH) = 1.000Pu+3 - 1.000H+ + 1.000CO3-2 + 1.000H2O - log_k -5.740 #Estimated by correlation with An(III) in function of ionic radii - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.74E+0 0E+0 0E+0 0E+0 0E+0 - -Pu(HPO4)2(am,hyd) -Pu(HPO4)2 = 1.000Pu+4 - 2.000H+ + 2.000H2(PO4)- - log_k -16.030 #01LEM/FUG - delta_h -32.718 #kJ/mol - # Enthalpy of formation: -3112.377 #kJ/mol - -analytic -2.17619E+1 0E+0 1.70898E+3 0E+0 0E+0 - -Pu(OH)3(cr) -Pu(OH)3 = 1.000Pu+3 - 3.000H+ + 3.000H2O - log_k 15.800 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.58E+1 0E+0 0E+0 0E+0 0E+0 - -Pu(OH)4(am) -Pu(OH)4 = 1.000Pu+4 - 4.000H+ + 4.000H2O - log_k -0.800 #89LEM/GAR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -8E-1 0E+0 0E+0 0E+0 0E+0 - -Pu(PO4)(s,hyd) -Pu(PO4) = 1.000Pu+3 - 2.000H+ + 1.000H2(PO4)- - log_k -5.040 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.04E+0 0E+0 0E+0 0E+0 0E+0 +Ca(OH)2 = +1.000Ca+2 -2.000H+ +2.000H2O + log_k +22.81 #10BLA/BOU1 + delta_h -130.107 #kJ/mol +# Enthalpy of formation: -984.552 kJ/mol + -analytic 16.23204E-3 00.00000E+0 67.95962E+2 00.00000E+0 00.00000E+0 + -Vm 33.060 Pu(cr) -Pu = 1.000Pu+3 + 1.500H2O - 3.000H+ - 0.750O2 - log_k 165.915 - delta_h -1011.435 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #01LEM/FUG - -analytic -1.12805E+1 0E+0 5.28308E+4 0E+0 0E+0 +Pu = +1.000Pu+3 +3.000e- + log_k +101.43 + delta_h -591.790 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 01LEM/FUG + -analytic -22.47158E-1 00.00000E+0 30.91134E+3 00.00000E+0 00.00000E+0 + +Pu(HPO4)2(am,hyd) +Pu(HPO4)2 = +1.000Pu+4 -2.000H+ +2.000H2(PO4)- + log_k -16.03 #01LEM/FUG + delta_h -32.691 #kJ/mol +# Enthalpy of formation: -3112.403 kJ/mol + -analytic -21.75722E+0 00.00000E+0 17.07570E+2 00.00000E+0 00.00000E+0 + +Pu(OH)3(am) +Pu(OH)3 = +1.000Pu+3 -3.000H+ +3.000H2O + log_k +14.58 #20GRE/GAO + -analytic 14.58000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +Pu(PO4)(am) +Pu(PO4) = +1.000Pu+3 -2.000H+ +1.000H2(PO4)- + log_k -4.88 #20GRE/GAO + -analytic -48.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Pu2O3(s) -Pu2O3 = 2.000Pu+3 - 6.000H+ + 3.000H2O - log_k 50.630 - delta_h -385.070 #kJ/mol - # Enthalpy of formation: -1656 #kJ/mol #01LEM/FUG - -analytic -1.68313E+1 0E+0 2.01136E+4 0E+0 0E+0 +Pu2O3 = +2.000Pu+3 -6.000H+ +3.000H2O + log_k +50.63 + delta_h -385.070 #kJ/mol +# Enthalpy of formation: -1656.000 kJ/mol 01LEM/FUG + -analytic -16.83137E+0 00.00000E+0 20.11361E+3 00.00000E+0 00.00000E+0 PuAs(s) -PuAs = 1.000AsO4-3 + 1.000PuO2+2 - 0.500H2O + 1.000H+ - 2.750O2 - log_k 192.005 - delta_h -1293.893 #kJ/mol - # Enthalpy of formation: -240 #kJ/mol #01LEM/FUG - -analytic -3.46749E+1 0E+0 6.75846E+4 0E+0 0E+0 +PuAs = +1.000PuO2+2 +12.000H+ +11.000e- +1.000AsO4-3 -6.000H2O + log_k -44.42 + delta_h +244.804 #kJ/mol +# Enthalpy of formation: -240.000 kJ/mol 01LEM/FUG + -analytic -15.32180E-1 00.00000E+0 -12.78700E+3 00.00000E+0 00.00000E+0 + +PuCO3OH(s) +Pu(CO3)(OH) = +1.000Pu+3 -1.000H+ +1.000CO3-2 +1.000H2O + log_k -6.27 #Estimated using the data for AmCO3OH(s) and the trend versus r identified for AnCO3OH·0.5H2O(s)(orthorhombic). + -analytic -62.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 PuF4(s) -PuF4 = 1.000Pu+4 + 4.000F- - log_k -26.070 #01LEM/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.607E+1 0E+0 0E+0 0E+0 0E+0 +PuF4 = +1.000Pu+4 +4.000F- + log_k -26.07 #01LEM/FUG + -analytic -26.07000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 -PuO2(CO3)(s) -PuO2(CO3) = 1.000PuO2+2 + 1.000CO3-2 - log_k -14.650 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.465E+1 0E+0 0E+0 0E+0 0E+0 +PuO2(CO3)(cr) +PuO2(CO3) = +1.000PuO2+2 +1.000CO3-2 + log_k -14.82 #20GRE/GAO + -analytic -14.82000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 -PuO2(OH)(s) -PuO2(OH) = 1.000PuO2+ - 1.000H+ + 1.000H2O - log_k 5.000 #01LEM/FUG - delta_h -36.164 #kJ/mol - # Enthalpy of formation: -1159.793 #kJ/mol - -analytic -1.33565E+0 0E+0 1.88897E+3 0E+0 0E+0 +PuO2(coll) +PuO2 = +1.000Pu+4 -4.000H+ +2.000H2O + log_k +0.20 #07NEC/ALT3 + -analytic 20.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 -PuO2(OH)2:H2O(s) -PuO2(OH)2:H2O = 1.000PuO2+2 - 2.000H+ + 3.000H2O - log_k 5.500 #01LEM/FUG - delta_h -46.718 #kJ/mol - # Enthalpy of formation: -1632.808 #kJ/mol - -analytic -2.68463E+0 0E+0 2.44025E+3 0E+0 0E+0 +PuO2(cr) +PuO2 = +1.000Pu+4 -4.000H+ +2.000H2O + log_k -8.03 + delta_h -55.755 #kJ/mol +# Enthalpy of formation: -1055.800 kJ/mol 01LEM/FUG + -analytic -17.79786E+0 00.00000E+0 29.12286E+2 00.00000E+0 00.00000E+0 + +PuO2(OH)2:H2O(am) +PuO2(OH)2:H2O = +1.000PuO2+2 -2.000H+ +3.000H2O + log_k +5.17 #20GRE/GAO + delta_h -44.834 #kJ/mol +# Enthalpy of formation: -1634.691 kJ/mol + -analytic -26.84580E-1 00.00000E+0 23.41843E+2 00.00000E+0 00.00000E+0 PuO2(Ox):3H2O(s) -PuO2(Ox):3H2O = 1.000PuO2+2 + 1.000Ox-2 + 3.000H2O - log_k -10.000 #05HUM/AND - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1E+1 0E+0 0E+0 0E+0 0E+0 - -PuO2(coll,hyd) -PuO2 = 1.000Pu+4 - 4.000H+ + 2.000H2O - log_k 0.200 #07NEC/ALT3 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2E-1 0E+0 0E+0 0E+0 0E+0 - -PuO2(s) -PuO2 = 1.000Pu+4 - 4.000H+ + 2.000H2O - log_k -8.030 - delta_h -55.755 #kJ/mol - # Enthalpy of formation: -1055.8 #kJ/mol #01LEM/FUG - -analytic -1.77978E+1 0E+0 2.91228E+3 0E+0 0E+0 +PuO2(Ox):3H2O = +1.000PuO2+2 +1.000Ox-2 +3.000H2O + log_k -10.00 #05HUM/AND + -analytic -10.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 PuO2:2H2O(am) -PuO2:2H2O = 1.000Pu+4 - 4.000H+ + 4.000H2O - log_k -2.370 #03GUI/FAN - delta_h -58.548 #kJ/mol - # Enthalpy of formation: -1624.667 #kJ/mol - -analytic -1.26272E+1 0E+0 3.05817E+3 0E+0 0E+0 +PuO2:2H2O = +1.000Pu+4 -4.000H+ +4.000H2O + log_k -2.33 #03GUI/FAN + delta_h -58.774 #kJ/mol +# Enthalpy of formation: -1624.439 kJ/mol + -analytic -12.62676E+0 00.00000E+0 30.69980E+2 00.00000E+0 00.00000E+0 + +PuO2OH(am) +PuO2OH = +1.000PuO2+ -1.000H+ +1.000H2O + log_k +5.00 #01LEM/FUG + delta_h -36.164 #kJ/mol +# Enthalpy of formation: -1159.793 kJ/mol + -analytic -13.35661E-1 00.00000E+0 18.88977E+2 00.00000E+0 00.00000E+0 Pyrite -FeS2 = 1.000Fe+2 + 2.000HS- - 1.000H2O + 0.500O2 - log_k -58.780 - delta_h 324.813 #kJ/mol - # Enthalpy of formation: -167.65 #kJ/mol #76RAU in 04CHI - -analytic -1.87529E+0 0E+0 -1.69661E+4 0E+0 0E+0 +FeS2 = +1.000Fe+2 -2.000H+ -2.000e- +2.000HS- + log_k -16.82 + delta_h +50.735 #kJ/mol +# Enthalpy of formation: -173.630 kJ/mol 20LEM/PAL + -analytic -79.31610E-1 00.00000E+0 -26.50074E+2 00.00000E+0 00.00000E+0 + -Vm 23.940 Pyrochroite -Mn(OH)2 = 1.000Mn+2 - 2.000H+ + 2.000H2O - log_k 15.300 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.53E+1 0E+0 0E+0 0E+0 0E+0 +Mn(OH)2 = +1.000Mn+2 -2.000H+ +2.000H2O + log_k +15.30 #96FAL/REA + -analytic 15.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Pyromorphite -Pb5Cl(PO4)3 = 5.000Pb+2 - 6.000H+ + 1.000Cl- + 3.000H2(PO4)- - log_k -25.750 #74NRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.575E+1 0E+0 0E+0 0E+0 0E+0 +Pb5Cl(PO4)3 = +5.000Pb+2 -6.000H+ +1.000Cl- +3.000H2(PO4)- + log_k -25.75 #74NRI + -analytic -25.75000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Pyromorphite-Br -Pb5Br(PO4)3 = 5.000Pb+2 - 6.000H+ + 1.000Br- + 3.000H2(PO4)- - log_k -19.450 #74NRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.945E+1 0E+0 0E+0 0E+0 0E+0 +Pb5Br(PO4)3 = +5.000Pb+2 -6.000H+ +1.000Br- +3.000H2(PO4)- + log_k -19.45 #74NRI + -analytic -19.45000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Pyromorphite-F -Pb5F(PO4)3 = 5.000Pb+2 - 6.000H+ + 1.000F- + 3.000H2(PO4)- - log_k -13.100 #74NRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.31E+1 0E+0 0E+0 0E+0 0E+0 +Pb5F(PO4)3 = +5.000Pb+2 -6.000H+ +1.000F- +3.000H2(PO4)- + log_k -13.10 #74NRI + -analytic -13.10000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Pyromorphite-OH -Pb5(OH)(PO4)3 = 5.000Pb+2 - 7.000H+ + 3.000H2(PO4)- + 1.000H2O - log_k -4.150 #74NRI - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -4.15E+0 0E+0 0E+0 0E+0 0E+0 +Pb5(OH)(PO4)3 = +5.000Pb+2 -7.000H+ +3.000H2(PO4)- +1.000H2O + log_k -4.15 #74NRI + -analytic -41.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Pyrophyllite -Al2Si4O10(OH)2 = 2.000Al+3 - 6.000H+ + 4.000H4(SiO4) - 4.000H2O - log_k -0.420 - delta_h -138.256 #kJ/mol - # Enthalpy of formation: -5640 #kJ/mol #95ROB/HEM - -analytic -2.46414E+1 0E+0 7.2216E+3 0E+0 0E+0 +Al2Si4O10(OH)2 = +2.000Al+3 -6.000H+ +4.000H4(SiO4) -4.000H2O + log_k -0.44 + delta_h -138.256 #kJ/mol +# Enthalpy of formation: -5640.000 kJ/mol 95ROB/HEM + -analytic -24.66141E+0 00.00000E+0 72.21614E+2 00.00000E+0 00.00000E+0 + -Vm 128.100 Pyrrhotite -Fe0.87S = 0.870Fe+2 - 0.740H+ + 1.000HS- - 0.130H2O + 0.065O2 - log_k -11.179 - delta_h 38.819 #kJ/mol - # Enthalpy of formation: -97.5 #kJ/mol #95ROB/HEM - -analytic -4.37788E+0 0E+0 -2.02766E+3 0E+0 0E+0 +Fe0.87S = +0.870Fe+2 -1.000H+ -0.260e- +1.000HS- + log_k -5.32 + delta_h +0.673 #kJ/mol +# Enthalpy of formation: -95.530 kJ/mol 20LEM/PAL + -analytic -52.02095E-1 00.00000E+0 -35.15324E+0 00.00000E+0 00.00000E+0 + -Vm 18.200 Quartz -SiO2 = 1.000H4(SiO4) - 2.000H2O - log_k -3.740 - delta_h 21.166 #kJ/mol - # Enthalpy of formation: -910.7 #kJ/mol #82RIC/BOT - -analytic -3.18814E-2 0E+0 -1.10558E+3 0E+0 0E+0 +SiO2 = +1.000H4(SiO4) -2.000H2O + log_k -3.74 + delta_h +21.166 #kJ/mol +# Enthalpy of formation: -910.700 kJ/mol 82RIC/BOT + -analytic -31.87597E-3 00.00000E+0 -11.05577E+2 00.00000E+0 00.00000E+0 + -Vm 22.690 Ra(CO3)(s) -Ra(CO3) = 1.000Ra+2 + 1.000CO3-2 - log_k -8.300 #85LAN/RIE - delta_h 13.390 #kJ/mol - # Enthalpy of formation: -1216.646 #kJ/mol - -analytic -5.95418E+0 0E+0 -6.99407E+2 0E+0 0E+0 - -Ra(NO3)2(s) -Ra(NO3)2 = 1.000Ra+2 + 2.000NO3- - log_k -2.210 - delta_h 49.980 #kJ/mol - # Enthalpy of formation: -991.706 #kJ/mol - -analytic 6.54611E+0 0E+0 -2.61063E+3 0E+0 0E+0 - -Ra(OH)2(s) -Ra(OH)2 = - 2.000H+ + 1.000Ra+2 + 2.000H2O - log_k 30.990 - delta_h -149.763 #kJ/mol - # Enthalpy of formation: -949.923 #kJ/mol - -analytic 4.75269E+0 0E+0 7.82265E+3 0E+0 0E+0 - -Ra(SO4)(s) -Ra(SO4) = 1.000Ra+2 + 1.000SO4-2 - log_k -10.260 #99SCH, 85LAN/RIE - delta_h 38.910 #kJ/mol - # Enthalpy of formation: -1476.275 #kJ/mol - -analytic -3.44327E+0 0E+0 -2.03241E+3 0E+0 0E+0 +Ra(CO3) = +1.000Ra+2 +1.000CO3-2 + log_k -8.30 #85LAN/RIE; Uncertainty estimated by analogy with Sr(CO3)(s). + delta_h +13.640 #kJ/mol +# Enthalpy of formation: -1216.896 kJ/mol + -analytic -59.10375E-1 00.00000E+0 -71.24668E+1 00.00000E+0 00.00000E+0 Ra(cr) -Ra = 1.000Ra+2 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 141.430 - delta_h -807.788 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #82WAG/EVA - -analytic -8.81751E-2 0E+0 4.21936E+4 0E+0 0E+0 +Ra = +1.000Ra+2 +2.000e- + log_k +98.44 + delta_h -528.025 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 82WAG/EVA + -analytic 59.33991E-1 00.00000E+0 27.58067E+3 00.00000E+0 00.00000E+0 + +Ra(NO3)2(s) +Ra(NO3)2 = +1.000Ra+2 +2.000NO3- + log_k -2.21 + delta_h +49.981 #kJ/mol +# Enthalpy of formation: -991.706 kJ/mol + -analytic 65.46295E-1 00.00000E+0 -26.10689E+2 00.00000E+0 00.00000E+0 + +Ra(OH)2(s) +Ra(OH)2 = -2.000H+ +1.000Ra+2 +2.000H2O + log_k +30.99 + delta_h -149.762 #kJ/mol +# Enthalpy of formation: -949.923 kJ/mol + -analytic 47.52824E-1 00.00000E+0 78.22614E+2 00.00000E+0 00.00000E+0 + +Ra(SO4)(s) +Ra(SO4) = +1.000Ra+2 +1.000SO4-2 + log_k -10.26 #99SCH, 85LAN/RIE + delta_h +39.014 #kJ/mol +# Enthalpy of formation: -1476.379 kJ/mol + -analytic -34.25041E-1 00.00000E+0 -20.37843E+2 00.00000E+0 00.00000E+0 RaCl2:2H2O(s) -RaCl2:2H2O = 1.000Ra+2 + 2.000Cl- + 2.000H2O - log_k -0.730 - delta_h 32.220 #kJ/mol - # Enthalpy of formation: -1466.065 #kJ/mol - -analytic 4.91469E+0 0E+0 -1.68297E+3 0E+0 0E+0 +RaCl2:2H2O = +1.000Ra+2 +2.000Cl- +2.000H2O + log_k -0.73 + delta_h +32.221 #kJ/mol +# Enthalpy of formation: -1466.065 kJ/mol + -analytic 49.14877E-1 00.00000E+0 -16.83020E+2 00.00000E+0 00.00000E+0 -Rb(s) -Rb = 1.000Rb+ + 0.500H2O - 1.000H+ - 0.250O2 - log_k 71.255 - delta_h -391.002 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #92GRE/FUG - -analytic 2.75458E+0 0E+0 2.04234E+4 0E+0 0E+0 +Rb(cr) +Rb = +1.000e- +1.000Rb+ + log_k +49.76 + delta_h -251.120 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 92GRE/FUG + -analytic 57.65664E-1 00.00000E+0 13.11691E+3 00.00000E+0 00.00000E+0 Rb2MoO4(s) -Rb2MoO4 = 1.000MoO4-2 + 2.000Rb+ - log_k 3.100 - delta_h -5.391 #kJ/mol - # Enthalpy of formation: -1493.849 #kJ/mol - -analytic 2.15554E+0 0E+0 2.81591E+2 0E+0 0E+0 +Rb2MoO4 = +1.000MoO4-2 +2.000Rb+ + log_k +3.10 + delta_h -5.315 #kJ/mol +# Enthalpy of formation: -1493.925 kJ/mol + -analytic 21.68852E-1 00.00000E+0 27.76218E+1 00.00000E+0 00.00000E+0 Realgar -AsS = 4.000H+ + 1.000HS- + 1.000AsO4-3 - 2.500H2O - 0.750O2 - log_k -2.575 - delta_h -109.359 #kJ/mol - # Enthalpy of formation: -71.406 #kJ/mol - -analytic -2.17338E+1 0E+0 5.71218E+3 0E+0 0E+0 +AsS = +7.000H+ +3.000e- +1.000HS- +1.000AsO4-3 -4.000H2O + log_k -67.06 + delta_h +310.285 #kJ/mol +# Enthalpy of formation: -71.406 kJ/mol + -analytic -12.70040E+0 00.00000E+0 -16.20731E+3 00.00000E+0 00.00000E+0 Rhodochrosite -Mn(CO3) = 1.000Mn+2 + 1.000CO3-2 - log_k -11.130 #92PEA/BER - delta_h -5.899 #kJ/mol - # Enthalpy of formation: -890.081 #kJ/mol - -analytic -1.21635E+1 0E+0 3.08126E+2 0E+0 0E+0 +Mn(CO3) = +1.000Mn+2 +1.000CO3-2 + log_k -11.13 #92PEA/BER + delta_h -5.899 #kJ/mol 92PEA/BER +# Enthalpy of formation: -890.131 kJ/mol + -analytic -12.16346E+0 00.00000E+0 30.81262E+1 00.00000E+0 00.00000E+0 Rhodochrosite(syn) -Mn(CO3) = 1.000Mn+2 + 1.000CO3-2 - log_k -10.520 - delta_h -6.792 #kJ/mol - # Enthalpy of formation: -889.188 #kJ/mol #92JOH - -analytic -1.17099E+1 0E+0 3.5477E+2 0E+0 0E+0 +Mn(CO3) = +1.000Mn+2 +1.000CO3-2 + log_k -10.49 + delta_h -6.842 #kJ/mol +# Enthalpy of formation: -889.188 kJ/mol 92JOH + -analytic -11.68867E+0 00.00000E+0 35.73825E+1 00.00000E+0 00.00000E+0 Ripidolite_Cca-2 -(Mg2.964Fe1.712Fe0.215Al1.116Ca0.011)(Si2.633Al1.367)O10(OH)8 = 0.011Ca+2 + 2.964Mg+2 + 0.215Fe+3 + 1.712Fe+2 + 2.483Al+3 - 17.468H+ + 2.633H4(SiO4) + 7.468H2O - log_k 61.350 - delta_h -633.385 #kJ/mol - # Enthalpy of formation: -8240.14 #kJ/mol #13BLA/GAI2 - -analytic -4.96141E+1 0E+0 3.3084E+4 0E+0 0E+0 +(Mg2.964Fe1.712Fe0.215Al1.116Ca0.011)(Si2.633Al1.367)O10(OH)8 = +0.011Ca+2 +2.964Mg+2 +0.215Fe+3 +1.712Fe+2 +2.483Al+3 -17.468H+ +2.633H4(SiO4) +7.468H2O + log_k +61.35 + delta_h -634.118 #kJ/mol +# Enthalpy of formation: -8240.140 kJ/mol 13BLA/GAI2 + -analytic -49.74270E+0 00.00000E+0 33.12229E+3 00.00000E+0 00.00000E+0 + -Vm 211.830 Romarchite -SnO = 1.000Sn+2 - 2.000H+ + 1.000H2O - log_k 1.590 - delta_h -11.207 #kJ/mol - # Enthalpy of formation: -284.24 #kJ/mol #12GAM/GAJ - -analytic -3.73379E-1 0E+0 5.85382E+2 0E+0 0E+0 +SnO = +1.000Sn+2 -2.000H+ +1.000H2O + log_k +1.59 + delta_h -11.207 #kJ/mol +# Enthalpy of formation: -284.240 kJ/mol 12GAM/GAJ + -analytic -37.33821E-2 00.00000E+0 58.53824E+1 00.00000E+0 00.00000E+0 Rutherfordine -(UO2)(CO3) = 1.000UO2+2 + 1.000CO3-2 - log_k -14.760 #03GUI/FAN - delta_h -2.929 #kJ/mol - # Enthalpy of formation: -1691.301 #kJ/mol - -analytic -1.52731E+1 0E+0 1.52992E+2 0E+0 0E+0 +(UO2)(CO3) = +1.000UO2+2 +1.000CO3-2 + log_k -14.76 #03GUI/FAN + delta_h -2.929 #kJ/mol +# Enthalpy of formation: -1691.302 kJ/mol + -analytic -15.27314E+0 00.00000E+0 15.29923E+1 00.00000E+0 00.00000E+0 S(cr) -S = 1.000H+ + 1.000HS- - 1.000H2O + 0.500O2 - log_k -45.130 - delta_h 263.463 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #89COX/WAG - -analytic 1.02667E+0 0E+0 -1.37616E+4 0E+0 0E+0 +S = -1.000H+ -2.000e- +1.000HS- + log_k -2.14 + delta_h -16.300 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic -49.95637E-1 00.00000E+0 85.14083E+1 00.00000E+0 00.00000E+0 Sacchite -MnCl2 = 1.000Mn+2 + 2.000Cl- - log_k 8.770 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.77E+0 0E+0 0E+0 0E+0 0E+0 +MnCl2 = +1.000Mn+2 +2.000Cl- + log_k +8.77 #96FAL/REA + -analytic 87.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Sanidine -KAlSi3O8 = 1.000K+ + 1.000Al+3 - 4.000H+ + 3.000H4(SiO4) - 4.000H2O - log_k 0.580 - delta_h -65.073 #kJ/mol - # Enthalpy of formation: -3965.73 #kJ/mol #99ARN/STE - -analytic -1.08203E+1 0E+0 3.39899E+3 0E+0 0E+0 - -Saponite-Ca -Ca0.17Mg3Al0.34Si3.66O10(OH)2 = 0.170Ca+2 + 3.000Mg+2 + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k 29.340 - delta_h -271.305 #kJ/mol - # Enthalpy of formation: -5998.44 #kJ/mol #15BLA/VIE - -analytic -1.81905E+1 0E+0 1.41712E+4 0E+0 0E+0 - -Saponite-FeCa -Ca0.17Mg2FeAl0.34Si3.66O10(OH)2 = 0.170Ca+2 + 2.000Mg+2 + 1.000Fe+2 + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k 26.550 - delta_h -259.175 #kJ/mol - # Enthalpy of formation: -5633.57 #kJ/mol #15BLA/VIE - -analytic -1.88554E+1 0E+0 1.35376E+4 0E+0 0E+0 - -Saponite-FeK -K0.34Mg2FeAl0.34Si3.66O10(OH)2 = 2.000Mg+2 + 0.340K+ + 1.000Fe+2 + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k 25.380 - delta_h -240.632 #kJ/mol - # Enthalpy of formation: -5645.53 #kJ/mol #15BLA/VIE - -analytic -1.67769E+1 0E+0 1.25691E+4 0E+0 0E+0 - -Saponite-FeMg -Mg0.17Mg2FeAl0.34Si3.66O10(OH)2 = 2.170Mg+2 + 1.000Fe+2 + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k 26.000 - delta_h -260.345 #kJ/mol - # Enthalpy of formation: -5619.48 #kJ/mol #15BLA/VIE - -analytic -1.96104E+1 0E+0 1.35987E+4 0E+0 0E+0 - -Saponite-FeNa -Na0.34Mg2FeAl0.34Si3.66O10(OH)2 = 2.000Mg+2 + 0.340Na+ + 1.000Fe+2 + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k 25.700 - delta_h -248.260 #kJ/mol - # Enthalpy of formation: -5633.89 #kJ/mol #15BLA/VIE - -analytic -1.77932E+1 0E+0 1.29675E+4 0E+0 0E+0 - -Saponite-K -K0.34Mg3Al0.34Si3.66O10(OH)2 = 3.000Mg+2 + 0.340K+ + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k 28.170 - delta_h -252.772 #kJ/mol - # Enthalpy of formation: -6010.39 #kJ/mol #15BLA/VIE - -analytic -1.61137E+1 0E+0 1.32032E+4 0E+0 0E+0 - -Saponite-Mg -Mg0.17Mg3Al0.34Si3.66O10(OH)2 = 3.170Mg+2 + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k 28.790 - delta_h -272.485 #kJ/mol - # Enthalpy of formation: -5984.34 #kJ/mol #15BLA/VIE - -analytic -1.89473E+1 0E+0 1.42329E+4 0E+0 0E+0 - -Saponite-Na -Na0.34Mg3Al0.34Si3.66O10(OH)2 = 3.000Mg+2 + 0.340Na+ + 0.340Al+3 - 7.360H+ + 3.660H4(SiO4) - 2.640H2O - log_k 28.670 - delta_h -261.390 #kJ/mol - # Enthalpy of formation: -5997.76 #kJ/mol #15BLA/VIE - -analytic -1.71235E+1 0E+0 1.36533E+4 0E+0 0E+0 +KAlSi3O8 = +1.000K+ +1.000Al+3 -4.000H+ +3.000H4(SiO4) -4.000H2O + log_k +0.58 + delta_h -65.072 #kJ/mol +# Enthalpy of formation: -3965.730 kJ/mol 99ARN/STE + -analytic -10.82013E+0 00.00000E+0 33.98947E+2 00.00000E+0 00.00000E+0 Saponite_SapCa -(Na0.394K0.021Ca0.038)(Si3.569Al0.397)(Mg2.949Fe0.034Fe0.021)O10(OH)2 = 0.038Ca+2 + 2.949Mg+2 + 0.021K+ + 0.394Na+ + 0.034Fe+3 + 0.021Fe+2 + 0.397Al+3 - 7.724H+ + 3.569H4(SiO4) - 2.276H2O - log_k 31.470 - delta_h -285.499 #kJ/mol - # Enthalpy of formation: -5994.06 #kJ/mol #13GAI/BLA - -analytic -1.85472E+1 0E+0 1.49126E+4 0E+0 0E+0 +(Na0.394K0.021Ca0.038)(Si3.569Al0.397)(Mg2.949Fe0.034Fe0.021)O10(OH)2 = +0.038Ca+2 +2.949Mg+2 +0.021K+ +0.394Na+ +0.034Fe+3 +0.021Fe+2 +0.397Al+3 -7.724H+ +3.569H4(SiO4) -2.276H2O + log_k +31.45 + delta_h -285.541 #kJ/mol +# Enthalpy of formation: -5994.060 kJ/mol 13GAI/BLA + -analytic -18.57464E+0 00.00000E+0 14.91485E+3 00.00000E+0 00.00000E+0 + -Vm 141.660 Saponite_SapCa(4.151H2O) -(Na0.394K0.021Ca0.038)(Si3.569Al0.397)(Mg2.949Fe0.034Fe0.021)O10(OH)2:4.151H2O = 0.038Ca+2 + 2.949Mg+2 + 0.021K+ + 0.394Na+ + 0.034Fe+3 + 0.021Fe+2 + 0.397Al+3 - 7.724H+ + 3.569H4(SiO4) + 1.875H2O - log_k 28.300 - delta_h -255.590 #kJ/mol - # Enthalpy of formation: -7210.45 #kJ/mol #09GAI - -analytic -1.64774E+1 0E+0 1.33504E+4 0E+0 0E+0 +(Na0.394K0.021Ca0.038)(Si3.569Al0.397)(Mg2.949Fe0.034Fe0.021)O10(OH)2:4.151H2O = +0.038Ca+2 +2.949Mg+2 +0.021K+ +0.394Na+ +0.034Fe+3 +0.021Fe+2 +0.397Al+3 -7.724H+ +3.569H4(SiO4) +1.875H2O + log_k +28.27 + delta_h -255.631 #kJ/mol +# Enthalpy of formation: -7210.450 kJ/mol 09GAI + -analytic -16.51463E+0 00.00000E+0 13.35254E+3 00.00000E+0 00.00000E+0 + -Vm 216.670 + +Saponite-Ca +Ca0.17Mg3Al0.34Si3.66O10(OH)2 = +0.170Ca+2 +3.000Mg+2 +0.340Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O + log_k +29.34 + delta_h -271.305 #kJ/mol +# Enthalpy of formation: -5998.440 kJ/mol 15BLA/VIE + -analytic -18.19060E+0 00.00000E+0 14.17125E+3 00.00000E+0 00.00000E+0 + -Vm 142.570 + +Saponite-FeCa +Ca0.17Mg2FeAl0.34Si3.66O10(OH)2 = +0.170Ca+2 +2.000Mg+2 +1.000Fe+2 +0.340Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O + log_k +24.48 + delta_h -259.470 #kJ/mol +# Enthalpy of formation: -5633.570 kJ/mol 15BLA/VIE + -analytic -20.97719E+0 00.00000E+0 13.55306E+3 00.00000E+0 00.00000E+0 + -Vm 145.150 + +Saponite-FeK +K0.34Mg2FeAl0.34Si3.66O10(OH)2 = +2.000Mg+2 +0.340K+ +1.000Fe+2 +0.340Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O + log_k +25.40 + delta_h -240.927 #kJ/mol +# Enthalpy of formation: -5645.530 kJ/mol 15BLA/VIE + -analytic -16.80860E+0 00.00000E+0 12.58449E+3 00.00000E+0 00.00000E+0 + -Vm 144.270 + +Saponite-FeMg +Mg0.17Mg2FeAl0.34Si3.66O10(OH)2 = +2.170Mg+2 +1.000Fe+2 +0.340Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O + log_k +26.03 + delta_h -260.640 #kJ/mol +# Enthalpy of formation: -5619.480 kJ/mol 15BLA/VIE + -analytic -19.63217E+0 00.00000E+0 13.61418E+3 00.00000E+0 00.00000E+0 + -Vm 141.160 + +Saponite-FeNa +Na0.34Mg2FeAl0.34Si3.66O10(OH)2 = +2.000Mg+2 +0.340Na+ +1.000Fe+2 +0.340Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O + log_k +25.73 + delta_h -248.555 #kJ/mol +# Enthalpy of formation: -5633.890 kJ/mol 15BLA/VIE + -analytic -17.81497E+0 00.00000E+0 12.98293E+3 00.00000E+0 00.00000E+0 + -Vm 143.540 + +Saponite-K +K0.34Mg3Al0.34Si3.66O10(OH)2 = +3.000Mg+2 +0.340K+ +0.340Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O + log_k +28.17 + delta_h -252.772 #kJ/mol +# Enthalpy of formation: -6010.390 kJ/mol 15BLA/VIE + -analytic -16.11375E+0 00.00000E+0 13.20320E+3 00.00000E+0 00.00000E+0 + -Vm 141.690 + +Saponite-Mg +Mg0.17Mg3Al0.34Si3.66O10(OH)2 = +3.170Mg+2 +0.340Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O + log_k +28.79 + delta_h -272.485 #kJ/mol +# Enthalpy of formation: -5984.340 kJ/mol 15BLA/VIE + -analytic -18.94732E+0 00.00000E+0 14.23288E+3 00.00000E+0 00.00000E+0 + -Vm 138.580 + +Saponite-Na +Na0.34Mg3Al0.34Si3.66O10(OH)2 = +3.000Mg+2 +0.340Na+ +0.340Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O + log_k +28.67 + delta_h -261.390 #kJ/mol +# Enthalpy of formation: -5997.760 kJ/mol 15BLA/VIE + -analytic -17.12356E+0 00.00000E+0 13.65335E+3 00.00000E+0 00.00000E+0 + -Vm 140.960 Sb(cr) -Sb = 1.000Sb(OH)3 - 1.500H2O - 0.750O2 - log_k 52.815 - delta_h -336.045 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol - -analytic -6.05738E+0 0E+0 1.75528E+4 0E+0 0E+0 +Sb = +3.000H+ +3.000e- +1.000Sb(OH)3 -3.000H2O + log_k -11.67 + delta_h +83.597 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 98KON/VAN + -analytic 29.75566E-1 00.00000E+0 -43.66575E+2 00.00000E+0 00.00000E+0 Sb2O5(s) -Sb2O5 = 2.000Sb(OH)5 - 5.000H2O - log_k -7.400 #48TOU/MOU in 76BAE/MES - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.4E+0 0E+0 0E+0 0E+0 0E+0 +Sb2O5 = +2.000Sb(OH)5 -5.000H2O + log_k -7.40 #48TOU/MOU in 76BAE/MES + -analytic -74.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 -Schoepite -UO3:2H2O = 1.000UO2+2 - 2.000H+ + 3.000H2O - log_k 5.960 #91SAN/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5.96E+0 0E+0 0E+0 0E+0 0E+0 - -Schoepite(des) -UO3:0.9H2O = 1.000UO2+2 - 2.000H+ + 1.900H2O - log_k 5.000 - delta_h -55.777 #kJ/mol - # Enthalpy of formation: -1506.3 #kJ/mol #92GRE/FUG - -analytic -4.7717E+0 0E+0 2.91343E+3 0E+0 0E+0 +Schwertmannite(cr) +Fe8O8(OH)6SO4 = +8.000Fe+3 -22.000H+ +1.000SO4-2 +14.000H2O + log_k +8.72 + -analytic 87.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Scolecite -CaAl2Si3O10:3H2O = 1.000Ca+2 + 2.000Al+3 - 8.000H+ + 3.000H4(SiO4) + 1.000H2O - log_k 16.650 - delta_h -240.212 #kJ/mol - # Enthalpy of formation: -6049 #kJ/mol #83JOH/FLO - -analytic -2.54333E+1 0E+0 1.25471E+4 0E+0 0E+0 +CaAl2Si3O10:3H2O = +1.000Ca+2 +2.000Al+3 -8.000H+ +3.000H4(SiO4) +1.000H2O + log_k +16.63 + delta_h -240.212 #kJ/mol +# Enthalpy of formation: -6049.000 kJ/mol 83JOH/FLO + -analytic -25.45334E+0 00.00000E+0 12.54715E+3 00.00000E+0 00.00000E+0 + -Vm 172.300 Se(s) -Se = 1.000H+ + 1.000HSe- - 1.000H2O + 0.500O2 - log_k -50.610 - delta_h 294.063 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #92GRE/FUG - -analytic 9.07551E-1 0E+0 -1.536E+4 0E+0 0E+0 +Se = -1.000H+ -2.000e- +1.000HSe- + log_k -7.62 + delta_h +14.300 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 92GRE/FUG + -analytic -51.14748E-1 00.00000E+0 -74.69410E+1 00.00000E+0 00.00000E+0 Se3U(cr) -Se3U = 1.000UO2+2 + 1.000H+ + 3.000HSe- - 2.000H2O - log_k -18.270 - delta_h 47.560 #kJ/mol - # Enthalpy of formation: -452 #kJ/mol #92GRE/FUG - -analytic -9.93786E+0 0E+0 -2.48423E+3 0E+0 0E+0 +Se3U = +1.000UO2+2 +1.000H+ +3.000HSe- -2.000H2O + log_k -18.27 + delta_h +47.560 #kJ/mol +# Enthalpy of formation: -452.000 kJ/mol 92GRE/FUG + -analytic -99.37846E-1 00.00000E+0 -24.84232E+2 00.00000E+0 00.00000E+0 SeO3(cr) -SeO3 = 2.000H+ + 1.000SeO4-2 - 1.000H2O - log_k 20.360 - delta_h -154.570 #kJ/mol - # Enthalpy of formation: -163.1 #kJ/mol #05OLI/NOL - -analytic -6.71946E+0 0E+0 8.07374E+3 0E+0 0E+0 +SeO3 = +2.000H+ +1.000SeO4-2 -1.000H2O + log_k +20.36 + delta_h -154.570 #kJ/mol +# Enthalpy of formation: -163.100 kJ/mol 05OLI/NOL + -analytic -67.19502E-1 00.00000E+0 80.73753E+2 00.00000E+0 00.00000E+0 SeU(cr) -SeU = 1.000U+4 - 3.000H+ + 1.000HSe- + 1.000H2O - 0.500O2 - log_k 80.330 - delta_h -584.663 #kJ/mol - # Enthalpy of formation: -272 #kJ/mol #05OLI/NOL - -analytic -2.20984E+1 0E+0 3.0539E+4 0E+0 0E+0 +SeU = +1.000U+4 -1.000H+ +2.000e- +1.000HSe- + log_k +37.34 + delta_h -304.900 #kJ/mol +# Enthalpy of formation: -272.000 kJ/mol 05OLI/NOL + -analytic -16.07619E+0 00.00000E+0 15.92604E+3 00.00000E+0 00.00000E+0 Si(cr) -Si = 1.000H4(SiO4) - 2.000H2O - 1.000O2 - log_k 149.170 - delta_h -877.400 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #89COX/WAG - -analytic -4.54366E+0 0E+0 4.58297E+4 0E+0 0E+0 - -SiO2(am) -SiO2 = 1.000H4(SiO4) - 2.000H2O - log_k -2.710 #00GUN/ARN - delta_h 13.522 #kJ/mol - # Enthalpy of formation: -903.056 #kJ/mol - -analytic -3.41051E-1 0E+0 -7.06302E+2 0E+0 0E+0 +Si = +4.000H+ +4.000e- +1.000H4(SiO4) -4.000H2O + log_k +63.19 + delta_h -317.874 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic 75.00866E-1 00.00000E+0 16.60372E+3 00.00000E+0 00.00000E+0 Siderite -Fe(CO3) = 1.000Fe+2 + 1.000CO3-2 - log_k -10.800 #92BRU/WER - delta_h -12.012 #kJ/mol - # Enthalpy of formation: -753.218 #kJ/mol - -analytic -1.29044E+1 0E+0 6.2743E+2 0E+0 0E+0 +Fe(CO3) = +1.000Fe+2 +1.000CO3-2 + log_k -10.68 + delta_h -12.916 #kJ/mol +# Enthalpy of formation: -752.609 kJ/mol 13LEM/BER + -analytic -12.94279E+0 00.00000E+0 67.46497E+1 00.00000E+0 00.00000E+0 + -Vm 29.380 Siderophyllite -KFe2Al3Si2O10(OH)2 = 1.000K+ + 2.000Fe+2 + 3.000Al+3 - 14.000H+ + 2.000H4(SiO4) + 4.000H2O - log_k 40.570 - delta_h -484.778 #kJ/mol - # Enthalpy of formation: -5628.27 #kJ/mol #90HOL/POW - -analytic -4.43593E+1 0E+0 2.53217E+4 0E+0 0E+0 +KFe2Al3Si2O10(OH)2 = +1.000K+ +2.000Fe+2 +3.000Al+3 -14.000H+ +2.000H4(SiO4) +4.000H2O + log_k +40.60 + delta_h -485.368 #kJ/mol +# Enthalpy of formation: -5628.270 kJ/mol 90HOL/POW + -analytic -44.43282E+0 00.00000E+0 25.35254E+3 00.00000E+0 00.00000E+0 + -Vm 150.630 -Sm(OH)3(am) -Sm(OH)3 = 1.000Sm+3 - 3.000H+ + 3.000H2O - log_k 17.850 #98DIA/RAG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.785E+1 0E+0 0E+0 0E+0 0E+0 - -Sm(OH)3(s) -Sm(OH)3 = 1.000Sm+3 - 3.000H+ + 3.000H2O - log_k 16.130 #98DIA/RAG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.613E+1 0E+0 0E+0 0E+0 0E+0 +SiO2(am) +SiO2 = +1.000H4(SiO4) -2.000H2O + log_k -2.71 #00GUN/ARN + delta_h +13.522 #kJ/mol +# Enthalpy of formation: -903.057 kJ/mol + -analytic -34.10473E-2 00.00000E+0 -70.63033E+1 00.00000E+0 00.00000E+0 + -Vm 29.000 Sm(cr) -Sm = 1.000Sm+3 + 1.500H2O - 3.000H+ - 0.750O2 - log_k 181.105 - delta_h -1110.844 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #79ROB/HEM - -analytic -1.35061E+1 0E+0 5.80233E+4 0E+0 0E+0 +Sm = +1.000Sm+3 +3.000e- + log_k +116.62 + delta_h -691.198 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 79ROB/HEM + -analytic -44.72692E-1 00.00000E+0 36.10379E+3 00.00000E+0 00.00000E+0 + +Sm(OH)3(am) +Sm(OH)3 = +1.000Sm+3 -3.000H+ +3.000H2O + log_k +17.85 #98DIA/RAG + -analytic 17.85000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +Sm(OH)3(s) +Sm(OH)3 = +1.000Sm+3 -3.000H+ +3.000H2O + log_k +16.13 #98DIA/RAG + -analytic 16.13000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Sm2(CO3)3(s) -Sm2(CO3)3 = 2.000Sm+3 + 3.000CO3-2 - log_k -34.500 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.45E+1 0E+0 0E+0 0E+0 0E+0 +Sm2(CO3)3 = +2.000Sm+3 +3.000CO3-2 + log_k -34.50 #95SPA/BRU + -analytic -34.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Sm2(SO4)3(s) -Sm2(SO4)3 = 2.000Sm+3 + 3.000SO4-2 - log_k -9.800 #95SPA/BRU - delta_h -211.318 #kJ/mol - # Enthalpy of formation: -3899.1 #kJ/mol #82WAG/EVA - -analytic -4.68213E+1 0E+0 1.10379E+4 0E+0 0E+0 +Sm2(SO4)3 = +2.000Sm+3 +3.000SO4-2 + log_k -9.80 #95SPA/BRU + delta_h -211.316 #kJ/mol +# Enthalpy of formation: -3899.100 kJ/mol 82WAG/EVA + -analytic -46.82097E+0 00.00000E+0 11.03780E+3 00.00000E+0 00.00000E+0 Sm2O3(s) -Sm2O3 = 2.000Sm+3 - 6.000H+ + 3.000H2O - log_k 43.110 - delta_h -355.039 #kJ/mol - # Enthalpy of formation: -1884.849 #kJ/mol - -analytic -1.90901E+1 0E+0 1.8545E+4 0E+0 0E+0 +Sm2O3 = +2.000Sm+3 -6.000H+ +3.000H2O + log_k +43.11 + delta_h -355.036 #kJ/mol +# Enthalpy of formation: -1884.849 kJ/mol + -analytic -19.08964E+0 00.00000E+0 18.54482E+3 00.00000E+0 00.00000E+0 SmCl3:6H2O(s) -SmCl3:6H2O = 1.000Sm+3 + 3.000Cl- + 6.000H2O - log_k 4.800 #96FAL/REA - delta_h -38.311 #kJ/mol - # Enthalpy of formation: -2869.108 #kJ/mol - -analytic -1.91179E+0 0E+0 2.00112E+3 0E+0 0E+0 +SmCl3:6H2O = +1.000Sm+3 +3.000Cl- +6.000H2O + log_k +4.80 #96FAL/REA + delta_h -38.319 #kJ/mol +# Enthalpy of formation: -2869.096 kJ/mol + -analytic -19.13201E-1 00.00000E+0 20.01541E+2 00.00000E+0 00.00000E+0 -SmF3:0.5H2O(s) -SmF3:0.5H2O = 1.000Sm+3 + 3.000F- + 0.500H2O - log_k -17.500 #95SPA/BRU - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.75E+1 0E+0 0E+0 0E+0 0E+0 +SmCO3OH(cr) +SmOHCO3 = +1.000Sm+3 -1.000H+ +1.000CO3-2 +1.000H2O + log_k -10.23 + delta_h -38.858 #kJ/mol +# Enthalpy of formation: -1613.400 kJ/mol 05ROR/FUG + -analytic -17.03763E+0 00.00000E+0 20.29695E+2 00.00000E+0 00.00000E+0 -SmOHCO3(cr) -SmOHCO3 = 1.000Sm+3 - 1.000H+ + 1.000CO3-2 + 1.000H2O - log_k -10.230 - delta_h -38.859 #kJ/mol - # Enthalpy of formation: -1613.4 #kJ/mol #05ROR/FUG - -analytic -1.70378E+1 0E+0 2.02974E+3 0E+0 0E+0 +SmCO3OH:0.5H2O(s) +SmOHCO3:0.5H2O = +1.000Sm+3 -1.000H+ +1.000CO3-2 +1.500H2O + log_k -7.31 + delta_h -51.073 #kJ/mol +# Enthalpy of formation: -1744.100 kJ/mol 05ROR/FUG + -analytic -16.25761E+0 00.00000E+0 26.67729E+2 00.00000E+0 00.00000E+0 -SmOHCO3:0.5H2O(cr) -SmOHCO3:0.5H2O = 1.000Sm+3 - 1.000H+ + 1.000CO3-2 + 1.500H2O - log_k -7.310 - delta_h -51.074 #kJ/mol - # Enthalpy of formation: -1744.1 #kJ/mol #05ROR/FUG - -analytic -1.62578E+1 0E+0 2.66778E+3 0E+0 0E+0 - -SmPO4:H2O(am) -SmPO4:H2O = 1.000Sm+3 - 2.000H+ + 1.000H2(PO4)- + 1.000H2O - log_k -5.000 #05CET/WOO - delta_h -26.480 #kJ/mol - # Enthalpy of formation: -2253.149 #kJ/mol #05CET/WOO - -analytic -9.63909E+0 0E+0 1.38314E+3 0E+0 0E+0 - -SmPO4:H2O(cr) -SmPO4:H2O = 1.000Sm+3 - 2.000H+ + 1.000H2(PO4)- + 1.000H2O - log_k -6.670 #97LIU/BYR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.67E+0 0E+0 0E+0 0E+0 0E+0 - -SmectiteMX80 -Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.173Fe0.035)O10(OH)2 = 0.009Ca+2 + 0.214Mg+2 + 0.024K+ + 0.409Na+ + 0.173Fe+3 + 1.860Al+3 + 3.738H4(SiO4) + 0.035Fe+2 - 2.952H2O - 7.048H+ - log_k 5.270 - delta_h -184.029 #kJ/mol - # Enthalpy of formation: -5656.37 #kJ/mol #12GAI/BLA - -analytic -2.69704E+1 0E+0 9.61249E+3 0E+0 0E+0 +Smectite MX80 +Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.173Fe0.035)O10(OH)2 = +0.009Ca+2 +0.214Mg+2 +0.024K+ +0.409Na+ +0.173Fe+3 +0.035Fe+2 +1.860Al+3 -7.048H+ +3.738H4(SiO4) -2.952H2O + log_k +5.26 + delta_h -184.222 #kJ/mol +# Enthalpy of formation: -5656.370 kJ/mol 12GAI/BLA + -analytic -27.01431E+0 00.00000E+0 96.22585E+2 00.00000E+0 00.00000E+0 + -Vm 134.920 Smectite_MX80(3.989H2O) -(Ca0.009Na0.409K0.024)(Si3.738Al0.262)(Al1.598Fe0.173Fe0.035Mg0.214)O10(OH)2:3.989H2O = 0.009Ca+2 + 0.214Mg+2 + 0.024K+ + 0.409Na+ + 0.173Fe+3 + 0.035Fe+2 + 1.860Al+3 - 7.048H+ + 3.738H4(SiO4) + 1.037H2O - log_k 1.780 - delta_h -157.245 #kJ/mol - # Enthalpy of formation: -6823.33 #kJ/mol #12GAI/BLA - -analytic -2.57681E+1 0E+0 8.21347E+3 0E+0 0E+0 +(Ca0.009Na0.409K0.024)(Si3.738Al0.262)(Al1.598Fe0.173Fe0.035Mg0.214)O10(OH)2:3.989H2O = +0.009Ca+2 +0.214Mg+2 +0.024K+ +0.409Na+ +0.173Fe+3 +0.035Fe+2 +1.860Al+3 -7.048H+ +3.738H4(SiO4) +1.037H2O + log_k +1.75 + delta_h -157.438 #kJ/mol +# Enthalpy of formation: -6823.330 kJ/mol 12GAI/BLA + -analytic -25.83195E+0 00.00000E+0 82.23559E+2 00.00000E+0 00.00000E+0 + -Vm 207.000 Smectite_MX80(5.189H2O) -(Ca0.009Na0.409K0.024)(Si3.738Al0.262)(Al1.598Fe0.173Fe0.035Mg0.214)O10(OH)2:5.189H2O = 0.009Ca+2 + 0.214Mg+2 + 0.024K+ + 0.409Na+ + 0.173Fe+3 + 0.035Fe+2 + 1.860Al+3 - 7.048H+ + 3.738H4(SiO4) + 2.237H2O - log_k 1.440 - delta_h -149.152 #kJ/mol - # Enthalpy of formation: -7174.42 #kJ/mol #12GAI/BLA - -analytic -2.46903E+1 0E+0 7.79074E+3 0E+0 0E+0 +(Ca0.009Na0.409K0.024)(Si3.738Al0.262)(Al1.598Fe0.173Fe0.035Mg0.214)O10(OH)2:5.189H2O = +0.009Ca+2 +0.214Mg+2 +0.024K+ +0.409Na+ +0.173Fe+3 +0.035Fe+2 +1.860Al+3 -7.048H+ +3.738H4(SiO4) +2.237H2O + log_k +1.41 + delta_h -149.344 #kJ/mol +# Enthalpy of formation: -7174.420 kJ/mol 12GAI/BLA + -analytic -24.75395E+0 00.00000E+0 78.00780E+2 00.00000E+0 00.00000E+0 + -Vm 228.690 + +SmF3:0.5H2O(s) +SmF3:0.5H2O = +1.000Sm+3 +3.000F- +0.500H2O + log_k -17.50 #95SPA/BRU + -analytic -17.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +SmPO4:H2O(am) +SmPO4:H2O = +1.000Sm+3 -2.000H+ +1.000H2(PO4)- +1.000H2O + log_k -5.00 #05CET/WOO + delta_h -26.479 #kJ/mol +# Enthalpy of formation: -2253.149 kJ/mol 05CET/WOO + -analytic -96.38922E-1 00.00000E+0 13.83094E+2 00.00000E+0 00.00000E+0 + +SmPO4:H2O(cr) +SmPO4:H2O = +1.000Sm+3 -2.000H+ +1.000H2(PO4)- +1.000H2O + log_k -6.67 #97LIU/BYR + -analytic -66.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +Sn(cr,alfa) +Sn = +1.000Sn+2 +2.000e- + log_k +4.82 + delta_h -7.637 #kJ/mol +# Enthalpy of formation: -1.980 kJ/mol 12GAM/GAJ + -analytic 34.82055E-1 00.00000E+0 39.89083E+1 00.00000E+0 00.00000E+0 + +Sn(cr,beta) +Sn = +1.000Sn+2 +2.000e- + log_k +4.80 + delta_h -9.617 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic 31.15174E-1 00.00000E+0 50.23309E+1 00.00000E+0 00.00000E+0 Sn(OH)4(s) -Sn(OH)4 = 1.000Sn+4 - 4.000H+ + 4.000H2O - log_k -1.280 #70BAR/KLI in 01SEB/POT - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.28E+0 0E+0 0E+0 0E+0 0E+0 +Sn(OH)4 = +1.000Sn+4 -4.000H+ +4.000H2O + log_k -1.28 #70BAR/KLI in 01SEB/POT; Uncertainty to cover available data. + -analytic -12.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Sn(OH)Cl(s) -Sn(OH)Cl = 1.000Sn+2 - 1.000H+ + 1.000Cl- + 1.000H2O - log_k -2.420 #30RAN/MUR recalculated in 99LOT/OCH - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.42E+0 0E+0 0E+0 0E+0 0E+0 - -Sn(cr)(alfa) -Sn = 1.000Sn+2 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 47.810 - delta_h -287.400 #kJ/mol - # Enthalpy of formation: -1.98 #kJ/mol #12GAM/GAJ - -analytic -2.54024E+0 0E+0 1.50119E+4 0E+0 0E+0 - -Sn(cr)(beta) -Sn = 1.000Sn+2 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 47.790 - delta_h -289.380 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #89COX/WAG - -analytic -2.90713E+0 0E+0 1.51153E+4 0E+0 0E+0 +Sn(OH)Cl = +1.000Sn+2 -1.000H+ +1.000Cl- +1.000H2O + log_k -2.42 #30RAN/MUR recalculated in 99LOT/OCH + -analytic -24.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 SnO2(am) -SnO2 = 1.000Sn+4 - 4.000H+ + 2.000H2O - log_k -14.770 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.477E+1 0E+0 0E+0 0E+0 0E+0 +SnO2 = +1.000Sn+4 -4.000H+ +2.000H2O + log_k -14.77 + -analytic -14.77000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 SnSe(alfa) -SnSe = 1.000Sn+2 - 1.000H+ + 1.000HSe- - log_k -21.670 - delta_h 114.183 #kJ/mol - # Enthalpy of formation: -109.5 #kJ/mol #05OLI/NOL - -analytic -1.66603E+0 0E+0 -5.96418E+3 0E+0 0E+0 +SnSe = +1.000Sn+2 -1.000H+ +1.000HSe- + log_k -21.67 + delta_h +114.183 #kJ/mol +# Enthalpy of formation: -109.500 kJ/mol 05OLI/NOL + -analytic -16.65997E-1 00.00000E+0 -59.64193E+2 00.00000E+0 00.00000E+0 SnSe2(s) -SnSe2 = 1.000Sn+2 + 2.000HSe- - 1.000H2O + 0.500O2 - log_k -73.780 - delta_h 413.646 #kJ/mol - # Enthalpy of formation: -114.9 #kJ/mol #05OLI/NOL - -analytic -1.31244E+0 0E+0 -2.16062E+4 0E+0 0E+0 +SnSe2 = +1.000Sn+2 -2.000H+ -2.000e- +2.000HSe- + log_k -30.79 + delta_h +133.883 #kJ/mol +# Enthalpy of formation: -114.900 kJ/mol 05OLI/NOL + -analytic -73.34705E-1 00.00000E+0 -69.93196E+2 00.00000E+0 00.00000E+0 -Soddyite(synt1) -(UO2)2SiO4:2H2O = 2.000UO2+2 - 4.000H+ + 1.000H4(SiO4) + 2.000H2O - log_k 3.900 #97PER/CAS - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3.9E+0 0E+0 0E+0 0E+0 0E+0 - -Soddyite(synt2) -(UO2)2SiO4:2H2O = 2.000UO2+2 - 4.000H+ + 1.000H4(SiO4) + 2.000H2O - log_k 6.430 #07GOR/MAZ - delta_h -25.454 #kJ/mol - # Enthalpy of formation: -4045.4 #kJ/mol #07GOR/MAZ - -analytic 1.97066E+0 0E+0 1.32955E+3 0E+0 0E+0 +Soddyite +(UO2)2SiO4:2H2O = +2.000UO2+2 -4.000H+ +1.000H4(SiO4) +2.000H2O + log_k +5.75 #20GRE/GAO + -analytic 57.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Sodium-compreignacite -Na2(UO2)6O4(OH)6:7H2O = 2.000Na+ + 6.000UO2+2 - 14.000H+ + 17.000H2O - log_k 39.400 #08GOR/FEI - delta_h -517.390 #kJ/mol - # Enthalpy of formation: -10936.4 #kJ/mol #06KUB/HEL - -analytic -5.12427E+1 0E+0 2.70251E+4 0E+0 0E+0 +Na2(UO2)6O4(OH)6:7H2O = +2.000Na+ +6.000UO2+2 -14.000H+ +17.000H2O + log_k +39.40 #08GOR/FEI + delta_h -517.390 #kJ/mol +# Enthalpy of formation: -10936.400kJ/mol 06KUB/HEL + -analytic -51.24284E+0 00.00000E+0 27.02516E+3 00.00000E+0 00.00000E+0 Sphaerocobaltite -CoCO3 = 1.000Co+2 + 1.000CO3-2 - log_k -11.200 #99GRA2 - delta_h -9.421 #kJ/mol - # Enthalpy of formation: -723.409 #kJ/mol - -analytic -1.28505E+1 0E+0 4.92092E+2 0E+0 0E+0 - -Sr(HPO4)(s) -Sr(HPO4) = 1.000Sr+2 - 1.000H+ + 1.000H2(PO4)- - log_k 0.280 #97MAR/SMI - delta_h -19.487 #kJ/mol - # Enthalpy of formation: -1834.012 #kJ/mol - -analytic -3.13397E+0 0E+0 1.01788E+3 0E+0 0E+0 - -Sr(NO3)2(cr) -Sr(NO3)2 = 1.000Sr+2 + 2.000NO3- - log_k 0.400 - delta_h 17.760 #kJ/mol - # Enthalpy of formation: -982.36 #kJ/mol #92GRE/FUG - -analytic 3.51141E+0 0E+0 -9.27668E+2 0E+0 0E+0 - -Sr(NO3)2:2H2O(s) -Sr(NO3)2:2H2O = 1.000Sr+2 + 2.000NO3- + 2.000H2O - log_k 0.050 #25/08/1994 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 5E-2 0E+0 0E+0 0E+0 0E+0 - -Sr(NO3)2:4H2O(s) -Sr(NO3)2:4H2O = 1.000Sr+2 + 2.000NO3- + 4.000H2O - log_k -0.870 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -8.7E-1 0E+0 0E+0 0E+0 0E+0 - -Sr(OH)2(s) -Sr(OH)2 = 1.000Sr+2 - 2.000H+ + 2.000H2O - log_k 27.510 - delta_h -153.670 #kJ/mol - # Enthalpy of formation: -968.89 #kJ/mol #98CHA - -analytic 5.88211E-1 0E+0 8.02673E+3 0E+0 0E+0 - -Sr(OH)2:8H2O(s) -Sr(OH)2:8H2O = 1.000Sr+2 - 2.000H+ + 10.000H2O - log_k 24.320 #98FEL/DIX - delta_h -57.000 #kJ/mol - # Enthalpy of formation: -3352.2 #kJ/mol #82WAG/EVA - -analytic 1.4334E+1 0E+0 2.97731E+3 0E+0 0E+0 - -Sr(SeO3)(cr) -Sr(SeO3) = 1.000Sr+2 + 1.000SeO3-2 - log_k -6.300 #05OLI/NOL - delta_h -6.160 #kJ/mol - # Enthalpy of formation: -1051.9 #kJ/mol #05OLI/NOL - -analytic -7.37918E+0 0E+0 3.21759E+2 0E+0 0E+0 - -Sr(SeO4)(s) -Sr(SeO4) = 1.000Sr+2 + 1.000SeO4-2 - log_k -4.350 #Original source 59SEL/ZUB recalculated in 05OLI/NOL - delta_h -21.841 #kJ/mol - # Enthalpy of formation: -1132.559 #kJ/mol - -analytic -8.17637E+0 0E+0 1.14083E+3 0E+0 0E+0 +CoCO3 = +1.000Co+2 +1.000CO3-2 + log_k -11.20 #99GRA2 + delta_h -9.421 #kJ/mol +# Enthalpy of formation: -723.409 kJ/mol + -analytic -12.85049E+0 00.00000E+0 49.20931E+1 00.00000E+0 00.00000E+0 Sr(cr) -Sr = 1.000Sr+2 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 141.780 - delta_h -830.663 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol - -analytic -3.7457E+0 0E+0 4.33885E+4 0E+0 0E+0 +Sr = +1.000Sr+2 +2.000e- + log_k +98.79 + delta_h -550.900 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 98CHA + -analytic 22.76463E-1 00.00000E+0 28.77551E+3 00.00000E+0 00.00000E+0 + +Sr(HPO4)(s) +Sr(HPO4) = +1.000Sr+2 -1.000H+ +1.000H2(PO4)- + log_k +0.28 #97MAR/SMI + delta_h -19.487 #kJ/mol +# Enthalpy of formation: -1834.013 kJ/mol + -analytic -31.33976E-1 00.00000E+0 10.17877E+2 00.00000E+0 00.00000E+0 + +Sr(NO3)2(cr) +Sr(NO3)2 = +1.000Sr+2 +2.000NO3- + log_k +0.40 + delta_h +17.760 #kJ/mol +# Enthalpy of formation: -982.360 kJ/mol 92GRE/FUG + -analytic 35.11418E-1 00.00000E+0 -92.76694E+1 00.00000E+0 00.00000E+0 + +Sr(NO3)2:2H2O(s) +Sr(NO3)2:2H2O = +1.000Sr+2 +2.000NO3- +2.000H2O + log_k +0.05 #25/08/1994 + -analytic 50.00000E-3 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +Sr(NO3)2:4H2O(s) +Sr(NO3)2:4H2O = +1.000Sr+2 +2.000NO3- +4.000H2O + log_k -0.87 #96FAL/REA + -analytic -87.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +Sr(OH)2(s) +Sr(OH)2 = +1.000Sr+2 -2.000H+ +2.000H2O + log_k +27.51 + delta_h -153.670 #kJ/mol +# Enthalpy of formation: -968.890 kJ/mol 98CHA + -analytic 58.81716E-2 00.00000E+0 80.26743E+2 00.00000E+0 00.00000E+0 + +Sr(OH)2:8H2O(s) +Sr(OH)2:8H2O = +1.000Sr+2 -2.000H+ +10.000H2O + log_k +24.32 #98FEL/DIX + delta_h -57.000 #kJ/mol +# Enthalpy of formation: -3352.200 kJ/mol 82WAG/EVA + -analytic 14.33403E+0 00.00000E+0 29.77317E+2 00.00000E+0 00.00000E+0 + +Sr(SeO3)(cr) +Sr(SeO3) = +1.000Sr+2 +1.000SeO3-2 + log_k -6.30 #05OLI/NOL + delta_h -6.160 #kJ/mol +# Enthalpy of formation: -1051.900 kJ/mol 05OLI/NOL + -analytic -73.79186E-1 00.00000E+0 32.17592E+1 00.00000E+0 00.00000E+0 + +Sr(SeO4)(s) +Sr(SeO4) = +1.000Sr+2 +1.000SeO4-2 + log_k -4.35 #Original source 59SEL/ZUB recalculated in 05OLI/NOL + delta_h -21.841 #kJ/mol +# Enthalpy of formation: -1132.559 kJ/mol + -analytic -81.76379E-1 00.00000E+0 11.40835E+2 00.00000E+0 00.00000E+0 Sr2SiO4(s) -Sr2SiO4 = 2.000Sr+2 - 4.000H+ + 1.000H4(SiO4) - log_k 43.250 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 4.325E+1 0E+0 0E+0 0E+0 0E+0 +Sr2SiO4 = +2.000Sr+2 -4.000H+ +1.000H4(SiO4) + log_k +43.25 + -analytic 43.25000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Sr3(AsO4)2(s) -Sr3(AsO4)2 = 3.000Sr+2 + 2.000AsO4-3 - log_k -16.080 - delta_h -109.493 #kJ/mol - # Enthalpy of formation: -3319.487 #kJ/mol - -analytic -3.52623E+1 0E+0 5.71921E+3 0E+0 0E+0 +Sr3(AsO4)2 = +3.000Sr+2 +2.000AsO4-3 + log_k -16.08 + delta_h -109.504 #kJ/mol +# Enthalpy of formation: -3319.478 kJ/mol + -analytic -35.26428E+0 00.00000E+0 57.19792E+2 00.00000E+0 00.00000E+0 Sr3(PO4)2(s) -Sr3(PO4)2 = 3.000Sr+2 - 4.000H+ + 2.000H2(PO4)- - log_k 10.530 #06BLA/IGN - delta_h -147.900 #kJ/mol - # Enthalpy of formation: -4110 #kJ/mol #97KHA/JEM - -analytic -1.53809E+1 0E+0 7.72534E+3 0E+0 0E+0 +Sr3(PO4)2 = +3.000Sr+2 -4.000H+ +2.000H2(PO4)- + log_k +10.53 #06BLA/IGN + delta_h -147.900 #kJ/mol +# Enthalpy of formation: -4110.000 kJ/mol 97KHA/JEM + -analytic -15.38097E+0 00.00000E+0 77.25355E+2 00.00000E+0 00.00000E+0 Sr5(PO4)3(OH)(s) -Sr5(PO4)3(OH) = 5.000Sr+2 - 7.000H+ + 3.000H2(PO4)- + 1.000H2O - log_k 7.170 #05KIM/PAR - delta_h -261.630 #kJ/mol - # Enthalpy of formation: -6686.5 #kJ/mol #95JEM/CHE - -analytic -3.86655E+1 0E+0 1.36659E+4 0E+0 0E+0 +Sr5(PO4)3(OH) = +5.000Sr+2 -7.000H+ +3.000H2(PO4)- +1.000H2O + log_k +7.17 #05KIM/PAR + delta_h -261.630 #kJ/mol +# Enthalpy of formation: -6686.500 kJ/mol 95JEM/CHE + -analytic -38.66561E+0 00.00000E+0 13.66589E+3 00.00000E+0 00.00000E+0 SrBr2(s) -SrBr2 = 1.000Sr+2 + 2.000Br- - log_k 12.500 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.25E+1 0E+0 0E+0 0E+0 0E+0 +SrBr2 = +1.000Sr+2 +2.000Br- + log_k +12.50 #96FAL/REA + -analytic 12.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 SrBr2:6H2O(s) -SrBr2:6H2O = 1.000Sr+2 + 2.000Br- + 6.000H2O - log_k 2.820 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 2.82E+0 0E+0 0E+0 0E+0 0E+0 +SrBr2:6H2O = +1.000Sr+2 +2.000Br- +6.000H2O + log_k +2.82 #96FAL/REA + -analytic 28.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 SrBr2:H2O(s) -SrBr2:H2O = 1.000Sr+2 + 2.000Br- + 1.000H2O - log_k 8.800 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.8E+0 0E+0 0E+0 0E+0 0E+0 +SrBr2:H2O = +1.000Sr+2 +2.000Br- +1.000H2O + log_k +8.80 #96FAL/REA + -analytic 88.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 SrCl2(s) -SrCl2 = 1.000Sr+2 + 2.000Cl- - log_k 8.120 - delta_h -56.210 #kJ/mol - # Enthalpy of formation: -828.85 #kJ/mol #98CHA - -analytic -1.72755E+0 0E+0 2.93605E+3 0E+0 0E+0 +SrCl2 = +1.000Sr+2 +2.000Cl- + log_k +8.12 + delta_h -56.210 #kJ/mol +# Enthalpy of formation: -828.850 kJ/mol 98CHA + -analytic -17.27569E-1 00.00000E+0 29.36053E+2 00.00000E+0 00.00000E+0 SrCl2:2H2O(s) -SrCl2:2H2O = 1.000Sr+2 + 2.000Cl- + 2.000H2O - log_k 3.470 - delta_h -18.720 #kJ/mol - # Enthalpy of formation: -1438 #kJ/mol #82WAG/EVA - -analytic 1.90402E-1 0E+0 9.77812E+2 0E+0 0E+0 +SrCl2:2H2O = +1.000Sr+2 +2.000Cl- +2.000H2O + log_k +3.47 + delta_h -18.720 #kJ/mol +# Enthalpy of formation: -1438.000 kJ/mol 82WAG/EVA + -analytic 19.03968E-2 00.00000E+0 97.78137E+1 00.00000E+0 00.00000E+0 SrCl2:6H2O(s) -SrCl2:6H2O = 1.000Sr+2 + 2.000Cl- + 6.000H2O - log_k 1.610 - delta_h 23.760 #kJ/mol - # Enthalpy of formation: -2623.8 #kJ/mol #82WAG/EVA - -analytic 5.77257E+0 0E+0 -1.24107E+3 0E+0 0E+0 +SrCl2:6H2O = +1.000Sr+2 +2.000Cl- +6.000H2O + log_k +1.61 + delta_h +23.760 #kJ/mol +# Enthalpy of formation: -2623.800 kJ/mol 82WAG/EVA + -analytic 57.72573E-1 00.00000E+0 -12.41071E+2 00.00000E+0 00.00000E+0 SrCl2:H2O(s) -SrCl2:H2O = 1.000Sr+2 + 2.000Cl- + 1.000H2O - log_k 4.910 - delta_h -34.090 #kJ/mol - # Enthalpy of formation: -1136.8 #kJ/mol #82WAG/EVA - -analytic -1.0623E+0 0E+0 1.78064E+3 0E+0 0E+0 +SrCl2:H2O = +1.000Sr+2 +2.000Cl- +1.000H2O + log_k +4.91 + delta_h -34.090 #kJ/mol +# Enthalpy of formation: -1136.800 kJ/mol 82WAG/EVA + -analytic -10.62312E-1 00.00000E+0 17.80645E+2 00.00000E+0 00.00000E+0 SrCrO4(s) -SrCrO4 = 1.000Sr+2 + 1.000CrO4-2 - log_k -4.650 #97MAR/SMI - delta_h -10.125 #kJ/mol #97MAR/SMI - # Enthalpy of formation: -1419.775 #kJ/mol - -analytic -6.42382E+0 0E+0 5.28865E+2 0E+0 0E+0 +SrCrO4 = +1.000Sr+2 +1.000CrO4-2 + log_k -4.65 #97MAR/SMI + delta_h -10.125 #kJ/mol 97MAR/SMI +# Enthalpy of formation: -1419.775 kJ/mol + -analytic -64.23824E-1 00.00000E+0 52.88656E+1 00.00000E+0 00.00000E+0 SrF2(cr) -SrF2 = 1.000Sr+2 + 2.000F- - log_k -8.540 #96FAL/REA - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -8.54E+0 0E+0 0E+0 0E+0 0E+0 +SrF2 = +1.000Sr+2 +2.000F- + log_k -8.54 #96FAL/REA + -analytic -85.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 SrMoO4(s) -SrMoO4 = 1.000Sr+2 + 1.000MoO4-2 - log_k -6.590 #54RAO in 74OHA/KEN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -6.59E+0 0E+0 0E+0 0E+0 0E+0 +SrMoO4 = +1.000Sr+2 +1.000MoO4-2 + log_k -6.59 #54RAO in 74OHA/KEN + -analytic -65.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 SrO(cr) -SrO = 1.000Sr+2 - 2.000H+ + 1.000H2O - log_k 41.980 - delta_h -244.690 #kJ/mol - # Enthalpy of formation: -592.04 #kJ/mol #98CHA - -analytic -8.87785E-1 0E+0 1.2781E+4 0E+0 0E+0 +SrO = +1.000Sr+2 -2.000H+ +1.000H2O + log_k +41.98 + delta_h -244.690 #kJ/mol +# Enthalpy of formation: -592.040 kJ/mol 98CHA + -analytic -88.78479E-2 00.00000E+0 12.78105E+3 00.00000E+0 00.00000E+0 SrS(s) -SrS = 1.000Sr+2 - 1.000H+ + 1.000HS- - log_k 14.680 # - delta_h -93.570 #kJ/mol - # Enthalpy of formation: -473.63 #kJ/mol #82WAG/EVA - -analytic -1.71274E+0 0E+0 4.88749E+3 0E+0 0E+0 +SrS = +1.000Sr+2 -1.000H+ +1.000HS- + log_k +14.68 + delta_h -93.570 #kJ/mol +# Enthalpy of formation: -473.630 kJ/mol 82WAG/EVA + -analytic -17.12760E-1 00.00000E+0 48.87501E+2 00.00000E+0 00.00000E+0 SrSiO3(s) -SrSiO3 = 1.000Sr+2 - 2.000H+ + 1.000H4(SiO4) - 1.000H2O - log_k 13.160 - delta_h -80.278 #kJ/mol - # Enthalpy of formation: -1645.986 #kJ/mol #74NAU/RYZ - -analytic -9.04081E-1 0E+0 4.19321E+3 0E+0 0E+0 +SrSiO3 = +1.000Sr+2 -2.000H+ +1.000H4(SiO4) -1.000H2O + log_k +13.16 + delta_h -80.278 #kJ/mol +# Enthalpy of formation: -1645.986 kJ/mol 74NAU/RYZ + -analytic -90.41019E-2 00.00000E+0 41.93212E+2 00.00000E+0 00.00000E+0 SrZrSi2O7(cr) -SrZrSi2O7 = 1.000Sr+2 - 6.000H+ + 2.000H4(SiO4) + 1.000Zr+4 - 1.000H2O - log_k 5.200 - delta_h -155.158 #kJ/mol - # Enthalpy of formation: -3640.8 #kJ/mol #05BRO/CUR - -analytic -2.19825E+1 0E+0 8.10445E+3 0E+0 0E+0 +SrZrSi2O7 = +1.000Sr+2 -6.000H+ +2.000H4(SiO4) +1.000Zr+4 -1.000H2O + log_k +5.20 + delta_h -155.158 #kJ/mol +# Enthalpy of formation: -3640.800 kJ/mol 05BRO/CUR + -analytic -21.98251E+0 00.00000E+0 81.04467E+2 00.00000E+0 00.00000E+0 Stellerite -Ca2Al4Si14O36:14H2O = 2.000Ca+2 + 4.000Al+3 - 16.000H+ + 14.000H4(SiO4) - 6.000H2O - log_k 6.990 - delta_h -325.096 #kJ/mol - # Enthalpy of formation: -21656.24 #kJ/mol #01FRI/NEU - -analytic -4.99643E+1 0E+0 1.69809E+4 0E+0 0E+0 +Ca2Al4Si14O36:14H2O = +2.000Ca+2 +4.000Al+3 -16.000H+ +14.000H4(SiO4) -6.000H2O + log_k +6.92 + delta_h -325.096 #kJ/mol +# Enthalpy of formation: -21656.240kJ/mol 01FRI/NEU + -analytic -50.03437E+0 00.00000E+0 16.98095E+3 00.00000E+0 00.00000E+0 + -Vm 666.500 Stibnite -Sb2S3 = 3.000H+ + 3.000HS- + 2.000Sb(OH)3 - 6.000H2O - log_k -56.030 - delta_h 269.695 #kJ/mol - # Enthalpy of formation: -151.4 #kJ/mol #95ROB/HEM - -analytic -8.78153E+0 0E+0 -1.40871E+4 0E+0 0E+0 +Sb2S3 = +3.000H+ +3.000HS- +2.000Sb(OH)3 -6.000H2O + log_k -56.03 + delta_h +269.694 #kJ/mol +# Enthalpy of formation: -151.400 kJ/mol 95ROB/HEM + -analytic -87.81639E-1 00.00000E+0 -14.08710E+3 00.00000E+0 00.00000E+0 Stilbite -NaCa2(Al5Si13)O36:16H2O = 2.000Ca+2 + 1.000Na+ + 5.000Al+3 - 20.000H+ + 13.000H4(SiO4) - log_k 23.050 - delta_h -434.152 #kJ/mol - # Enthalpy of formation: -22579.71 #kJ/mol #01FRI/NEU - -analytic -5.30101E+1 0E+0 2.26773E+4 0E+0 0E+0 +NaCa2(Al5Si13)O36:16H2O = +2.000Ca+2 +1.000Na+ +5.000Al+3 -20.000H+ +13.000H4(SiO4) + log_k +22.97 + delta_h -434.152 #kJ/mol +# Enthalpy of formation: -22579.710kJ/mol 01FRI/NEU + -analytic -53.09017E+0 00.00000E+0 22.67734E+3 00.00000E+0 00.00000E+0 + -Vm 664.700 Stilleite -ZnSe = 1.000Zn+2 - 1.000H+ + 1.000HSe- - log_k -12.050 - delta_h 36.910 #kJ/mol - # Enthalpy of formation: -176 #kJ/mol #05OLI/NOL - -analytic -5.58366E+0 0E+0 -1.92794E+3 0E+0 0E+0 +ZnSe = +1.000Zn+2 -1.000H+ +1.000HSe- + log_k -12.05 + delta_h +36.910 #kJ/mol +# Enthalpy of formation: -176.000 kJ/mol 05OLI/NOL + -analytic -55.83646E-1 00.00000E+0 -19.27944E+2 00.00000E+0 00.00000E+0 Stratlingite -Ca2Al2SiO3(OH)8:4H2O = 2.000Ca+2 + 2.000Al+3 - 10.000H+ + 1.000H4(SiO4) + 11.000H2O - log_k 49.660 #10BLA/BOU2 - delta_h -397.795 #kJ/mol - # Enthalpy of formation: -6370.329 #kJ/mol - -analytic -2.00306E+1 0E+0 2.07782E+4 0E+0 0E+0 +Ca2Al2SiO3(OH)8:4H2O = +2.000Ca+2 +2.000Al+3 -10.000H+ +1.000H4(SiO4) +11.000H2O + log_k +49.66 #10BLA/BOU2 + delta_h -397.949 #kJ/mol +# Enthalpy of formation: -6370.171 kJ/mol + -analytic -20.05767E+0 00.00000E+0 20.78632E+3 00.00000E+0 00.00000E+0 + -Vm 215.630 Strontianite -Sr(CO3) = 1.000Sr+2 + 1.000CO3-2 - log_k -9.270 #84BUS/PLU - delta_h -0.366 #kJ/mol - # Enthalpy of formation: -1225.764 #kJ/mol - -analytic -9.33412E+0 0E+0 1.91175E+1 0E+0 0E+0 +Sr(CO3) = +1.000Sr+2 +1.000CO3-2 + log_k -9.27 #84BUS/PLU + delta_h -0.366 #kJ/mol +# Enthalpy of formation: -1225.765 kJ/mol + -analytic -93.34120E-1 00.00000E+0 19.11751E+0 00.00000E+0 00.00000E+0 Sudoite -Mg2Al4Si3O10(OH)8 = 2.000Mg+2 + 4.000Al+3 - 16.000H+ + 3.000H4(SiO4) + 6.000H2O - log_k 37.960 - delta_h -530.892 #kJ/mol - # Enthalpy of formation: -8655.27 #kJ/mol #05VID/PAR - -analytic -5.50481E+1 0E+0 2.77304E+4 0E+0 0E+0 +Mg2Al4Si3O10(OH)8 = +2.000Mg+2 +4.000Al+3 -16.000H+ +3.000H4(SiO4) +6.000H2O + log_k +37.93 + delta_h -530.892 #kJ/mol +# Enthalpy of formation: -8655.270 kJ/mol 05VID/PAR + -analytic -55.07829E+0 00.00000E+0 27.73042E+3 00.00000E+0 00.00000E+0 + -Vm 205.100 Sylvite -KCl = 1.000K+ + 1.000Cl- - log_k 0.870 - delta_h 17.460 #kJ/mol - # Enthalpy of formation: -436.68 #kJ/mol #98CHA - -analytic 3.92886E+0 0E+0 -9.11998E+2 0E+0 0E+0 +KCl = +1.000K+ +1.000Cl- + log_k +0.87 + delta_h +17.460 #kJ/mol +# Enthalpy of formation: -436.680 kJ/mol 98CHA + -analytic 39.28861E-1 00.00000E+0 -91.19993E+1 00.00000E+0 00.00000E+0 + -Vm 37.520 Syngenite -K2Ca(SO4)2:6H2O = 1.000Ca+2 + 2.000K+ + 2.000SO4-2 + 6.000H2O - log_k -7.450 #84HAR/MOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -7.45E+0 0E+0 0E+0 0E+0 0E+0 +K2Ca(SO4)2:6H2O = +1.000Ca+2 +2.000K+ +2.000SO4-2 +6.000H2O + log_k -7.45 #84HAR/MOL + -analytic -74.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Tachyhydrite -Mg2CaCl6:12H2O = 1.000Ca+2 + 2.000Mg+2 + 6.000Cl- + 12.000H2O - log_k 17.380 #84HAR/MOL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.738E+1 0E+0 0E+0 0E+0 0E+0 +Mg2CaCl6:12H2O = +1.000Ca+2 +2.000Mg+2 +6.000Cl- +12.000H2O + log_k +17.38 #84HAR/MOL + -analytic 17.38000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Talc -Mg3Si4O10(OH)2 = 3.000Mg+2 - 6.000H+ + 4.000H4(SiO4) - 4.000H2O - log_k 24.940 - delta_h -210.356 #kJ/mol - # Enthalpy of formation: -5892.1 #kJ/mol #01KAH/MAR - -analytic -1.19127E+1 0E+0 1.09876E+4 0E+0 0E+0 +Mg3Si4O10(OH)2 = +3.000Mg+2 -6.000H+ +4.000H4(SiO4) -4.000H2O + log_k +24.92 + delta_h -210.356 #kJ/mol +# Enthalpy of formation: -5892.100 kJ/mol 01KAH/MAR + -analytic -11.93279E+0 00.00000E+0 10.98766E+3 00.00000E+0 00.00000E+0 + -Vm 136.200 Tc(cr) -Tc = 1.000TcO(OH)2 - 1.000H2O - 1.000O2 - log_k 60.900 - delta_h -451.356 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #99RAR/RAN - -analytic -1.81741E+1 0E+0 2.35759E+4 0E+0 0E+0 +Tc = +1.000TcO(OH)2 +4.000H+ +4.000e- -3.000H2O + log_k -24.34 + delta_h +108.247 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 99RAR/RAN + -analytic -53.75940E-1 00.00000E+0 -56.54135E+2 00.00000E+0 00.00000E+0 -Tc2O7(s) -Tc2O7 = 2.000H+ + 2.000TcO4- - 1.000H2O - log_k 15.310 - delta_h -46.470 #kJ/mol - # Enthalpy of formation: -1126.5 #kJ/mol #99RAR/RAN - -analytic 7.16882E+0 0E+0 2.42729E+3 0E+0 0E+0 +Tc2O7(cr) +Tc2O7 = +2.000H+ +2.000TcO4- -1.000H2O + log_k +15.31 + delta_h -46.470 #kJ/mol +# Enthalpy of formation: -1126.500 kJ/mol 99RAR/RAN + -analytic 71.68805E-1 00.00000E+0 24.27297E+2 00.00000E+0 00.00000E+0 Tc2O7:H2O(s) -Tc2O7:H2O = 2.000H+ + 2.000TcO4- - log_k 14.100 - delta_h -44.654 #kJ/mol - # Enthalpy of formation: -1414.146 #kJ/mol #99RAR/RAN - -analytic 6.27697E+0 0E+0 2.33244E+3 0E+0 0E+0 +Tc2O7:H2O = +2.000H+ +2.000TcO4- + log_k +14.11 + delta_h -44.654 #kJ/mol +# Enthalpy of formation: -1414.146 kJ/mol 99RAR/RAN + -analytic 62.86955E-1 00.00000E+0 23.32441E+2 00.00000E+0 00.00000E+0 + +TcO2(aged) +TcO2 = +1.000TcO(OH)2 -1.000H2O + log_k -8.72 #20GRE/GAO + -analytic -87.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 TcO2(cr) -TcO2 = 1.000TcO(OH)2 - 1.000H2O - log_k -9.140 #97NGU/LAN - delta_h -5.690 #kJ/mol - # Enthalpy of formation: -457.8 #kJ/mol #99RAR/RAN - -analytic -1.01368E+1 0E+0 2.97209E+2 0E+0 0E+0 +TcO2 = +1.000TcO(OH)2 -1.000H2O + log_k -9.15 #97NGU/LAN + delta_h -5.613 #kJ/mol +# Enthalpy of formation: -457.800 kJ/mol 20GRE/GAO + -analytic -10.13336E+0 00.00000E+0 29.31874E+1 00.00000E+0 00.00000E+0 -TcO2:1.63H2O(s) -TcO2:1.63H2O = 1.000TcO(OH)2 + 0.630H2O - log_k -8.400 #99RAR/RAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -8.4E+0 0E+0 0E+0 0E+0 0E+0 - -Th(HPO4)2(s) -Th(HPO4)2 = 1.000Th+4 - 2.000H+ + 2.000H2(PO4)- - log_k -16.110 #Estimated from An(IV) correlations - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.611E+1 0E+0 0E+0 0E+0 0E+0 - -Th(SO4)2:9H2O(cr) -Th(SO4)2:9H2O = 1.000Th+4 + 2.000SO4-2 + 9.000H2O - log_k -11.250 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.125E+1 0E+0 0E+0 0E+0 0E+0 +TcO2(fresh) +TcO2 = +1.000TcO(OH)2 -1.000H2O + log_k -7.66 #20GRE/GAO + -analytic -76.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Th(cr) -Th = 1.000Th+4 + 2.000H2O - 4.000H+ - 1.000O2 - log_k 209.450 - delta_h -1328.226 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #09RAN/FUG - -analytic -2.32449E+1 0E+0 6.9378E+4 0E+0 0E+0 +Th = +1.000Th+4 +4.000e- + log_k +123.47 + delta_h -768.700 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 09RAN/FUG + -analytic -11.20046E+0 00.00000E+0 40.15200E+3 00.00000E+0 00.00000E+0 -ThF4(cr) -ThF4 = 1.000Th+4 + 4.000F- - log_k -19.110 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.911E+1 0E+0 0E+0 0E+0 0E+0 +Th(HPO4)2(s) +Th(HPO4)2 = +1.000Th+4 -2.000H+ +2.000H2(PO4)- + log_k -16.11 #Estimated from An(IV) correlations + -analytic -16.11000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 -ThO2(aged) -ThO2 = 1.000Th+4 - 4.000H+ + 2.000H2O - log_k 8.500 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 8.5E+0 0E+0 0E+0 0E+0 0E+0 +Th(SO4)2:9H2O(cr) +Th(SO4)2:9H2O = +1.000Th+4 +2.000SO4-2 +9.000H2O + log_k -11.25 #09RAN/FUG + -analytic -11.25000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 -ThO2(coll) -ThO2 = 1.000Th+4 - 4.000H+ + 2.000H2O - log_k 11.100 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.11E+1 0E+0 0E+0 0E+0 0E+0 - -ThO2(cr) -ThO2 = 1.000Th+4 - 4.000H+ + 2.000H2O - log_k 1.770 - delta_h -113.960 #kJ/mol - # Enthalpy of formation: -1226.4 #kJ/mol #09RAN/FUG - -analytic -1.81949E+1 0E+0 5.95254E+3 0E+0 0E+0 - -ThO2(fresh) -ThO2 = 1.000Th+4 - 4.000H+ + 2.000H2O - log_k 9.300 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.3E+0 0E+0 0E+0 0E+0 0E+0 - -ThO2(mcr) -ThO2 = 1.000Th+4 - 4.000H+ + 2.000H2O - log_k 3.000 #09RAN/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 3E+0 0E+0 0E+0 0E+0 0E+0 +Thenardite +Na2SO4 = +2.000Na+ +1.000SO4-2 + log_k -0.36 + delta_h -2.200 #kJ/mol +# Enthalpy of formation: -1387.820 kJ/mol 98CHA + -analytic -74.54235E-2 00.00000E+0 11.49140E+1 00.00000E+0 00.00000E+0 + -Vm 53.330 Thermonatrite -Na2(CO3):H2O = 2.000Na+ + 1.000CO3-2 + 1.000H2O - log_k 0.480 #84HAR/MOL - delta_h -12.040 #kJ/mol - # Enthalpy of formation: -1429.7 #kJ/mol #82VAN - -analytic -1.62931E+0 0E+0 6.28892E+2 0E+0 0E+0 +Na2(CO3):H2O = +2.000Na+ +1.000CO3-2 +1.000H2O + log_k +0.48 #84HAR/MOL + delta_h -12.040 #kJ/mol +# Enthalpy of formation: -1429.700 kJ/mol 82VAN + -analytic -16.29317E-1 00.00000E+0 62.88930E+1 00.00000E+0 00.00000E+0 -Thernardite -Na2SO4 = 2.000Na+ + 1.000SO4-2 - log_k -0.360 - delta_h -2.200 #kJ/mol - # Enthalpy of formation: -1387.82 #kJ/mol #98CHA - -analytic -7.45423E-1 0E+0 1.14914E+2 0E+0 0E+0 +ThF4(cr) +ThF4 = +1.000Th+4 +4.000F- + log_k -30.63 + delta_h +74.611 #kJ/mol +# Enthalpy of formation: -2184.710 kJ/mol + -analytic -17.55871E+0 00.00000E+0 -38.97204E+2 00.00000E+0 00.00000E+0 -Tiemannite -HgSe = 1.000Hg+2 - 1.000H+ + 1.000HSe- - log_k -45.430 - delta_h 241.521 #kJ/mol - # Enthalpy of formation: -57.011 #kJ/mol - -analytic -3.1174E+0 0E+0 -1.26155E+4 0E+0 0E+0 +ThO2(aged) +ThO2 = +1.000Th+4 -4.000H+ +2.000H2O + log_k +8.50 #09RAN/FUG + -analytic 85.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +ThO2(coll) +ThO2 = +1.000Th+4 -4.000H+ +2.000H2O + log_k +11.10 #09RAN/FUG + -analytic 11.10000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +ThO2(cr) +ThO2 = +1.000Th+4 -4.000H+ +2.000H2O + log_k +1.77 + delta_h -113.960 #kJ/mol +# Enthalpy of formation: -1226.400 kJ/mol 09RAN/FUG + -analytic -18.19493E+0 00.00000E+0 59.52545E+2 00.00000E+0 00.00000E+0 + +ThO2(fresh) +ThO2 = +1.000Th+4 -4.000H+ +2.000H2O + log_k +9.30 #09RAN/FUG + -analytic 93.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +ThO2(mcr) +ThO2 = +1.000Th+4 -4.000H+ +2.000H2O + log_k +3.00 #09RAN/FUG + -analytic 30.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Tobermorite-11A -Ca5Si6O16.5(OH):5H2O = 5.000Ca+2 - 10.000H+ + 6.000H4(SiO4) - 1.500H2O - log_k 65.580 #10BLA/BOU1 - delta_h -372.499 #kJ/mol - # Enthalpy of formation: -10680.92 #kJ/mol #00ZUE/FEH - -analytic 3.21072E-1 0E+0 1.94569E+4 0E+0 0E+0 +Ca5Si6O16.5(OH):5H2O = +5.000Ca+2 -10.000H+ +6.000H4(SiO4) -1.500H2O + log_k +65.58 #10BLA/BOU1 + delta_h -372.499 #kJ/mol +# Enthalpy of formation: -10680.920kJ/mol 00ZUE/FEH + -analytic 32.09765E-2 00.00000E+0 19.45698E+3 00.00000E+0 00.00000E+0 + -Vm 286.190 Tobermorite-14A -Ca5Si6O16.5(OH):10H2O = 5.000Ca+2 - 10.000H+ + 6.000H4(SiO4) + 3.500H2O - log_k 62.940 #10BLA/BOU1 - delta_h -307.419 #kJ/mol - # Enthalpy of formation: -12175.15 #kJ/mol #10BLA/BOU1 - -analytic 9.08258E+0 0E+0 1.60576E+4 0E+0 0E+0 +Ca5Si6O16.5(OH):10H2O = +5.000Ca+2 -10.000H+ +6.000H4(SiO4) +3.500H2O + log_k +62.94 #10BLA/BOU1 + delta_h -307.419 #kJ/mol +# Enthalpy of formation: -12175.150kJ/mol 10BLA/BOU1 + -analytic 90.82503E-1 00.00000E+0 16.05761E+3 00.00000E+0 00.00000E+0 + -Vm 351.300 Trevorite -Fe2NiO4 = 2.000Fe+3 + 1.000Ni+2 - 8.000H+ + 4.000H2O - log_k 9.400 - delta_h -214.413 #kJ/mol - # Enthalpy of formation: -1081.173 #kJ/mol - -analytic -2.81635E+1 0E+0 1.11996E+4 0E+0 0E+0 +Fe2NiO4 = +2.000Fe+3 +1.000Ni+2 -8.000H+ +4.000H2O + log_k +9.43 + delta_h -217.410 #kJ/mol +# Enthalpy of formation: -1081.032 kJ/mol + -analytic -28.65860E+0 00.00000E+0 11.35612E+3 00.00000E+0 00.00000E+0 Troilite -FeS = 1.000Fe+2 - 1.000H+ + 1.000HS- - log_k -5.310 #91DAV - delta_h 2.015 #kJ/mol - # Enthalpy of formation: -108.315 #kJ/mol - -analytic -4.95699E+0 0E+0 -1.05251E+2 0E+0 0E+0 +FeS = +1.000Fe+2 -1.000H+ +1.000HS- + log_k -3.99 + delta_h -5.685 #kJ/mol +# Enthalpy of formation: -100.910 kJ/mol 20LEM/PAL + -analytic -49.85969E-1 00.00000E+0 29.69482E+1 00.00000E+0 00.00000E+0 Trona -Na3H(CO3)2:2H2O = 3.000Na+ + 1.000H+ + 2.000CO3-2 + 2.000H2O - log_k -11.380 #84HAR/MOL - delta_h 38.960 #kJ/mol - # Enthalpy of formation: -2682.1 #kJ/mol #82VAN - -analytic -4.55451E+0 0E+0 -2.03502E+3 0E+0 0E+0 +Na3H(CO3)2:2H2O = +3.000Na+ +1.000H+ +2.000CO3-2 +2.000H2O + log_k -11.38 #84HAR/MOL + delta_h +38.960 #kJ/mol +# Enthalpy of formation: -2682.100 kJ/mol 82VAN + -analytic -45.54501E-1 00.00000E+0 -20.35023E+2 00.00000E+0 00.00000E+0 Truscottite -Ca7Si12O29(OH)4:H2O = 7.000Ca+2 - 14.000H+ + 12.000H4(SiO4) - 14.000H2O - log_k 77.080 - delta_h -479.088 #kJ/mol - # Enthalpy of formation: -16854.62 #kJ/mol #10BLA/BOU1 - -analytic -6.85249E+0 0E+0 2.50245E+4 0E+0 0E+0 - -U(HPO4)2:4H2O(s) -U(HPO4)2:4H2O = 1.000U+4 - 2.000H+ + 2.000H2(PO4)- + 4.000H2O - log_k -16.070 #92GRE/FUG - delta_h -4.902 #kJ/mol - # Enthalpy of formation: -4334.819 #kJ/mol - -analytic -1.69288E+1 0E+0 2.56049E+2 0E+0 0E+0 - -U(OH)2(SO4)(cr) -U(OH)2(SO4) = 1.000U+4 - 2.000H+ + 1.000SO4-2 + 2.000H2O - log_k -3.170 #92GRE/FUG - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -3.17E+0 0E+0 0E+0 0E+0 0E+0 - -U(SO4)2(cr) -U(SO4)2 = 1.000U+4 + 2.000SO4-2 - log_k -11.680 - delta_h -100.280 #kJ/mol - # Enthalpy of formation: -2309.6 #kJ/mol #92GRE/FUG - -analytic -2.92483E+1 0E+0 5.23798E+3 0E+0 0E+0 - -U(SO4)2:4H2O(cr) -U(SO4)2:4H2O = 1.000U+4 + 2.000SO4-2 + 4.000H2O - log_k -11.720 - delta_h -70.000 #kJ/mol - # Enthalpy of formation: -3483.2 #kJ/mol #92GRE/FUG - -analytic -2.39835E+1 0E+0 3.65635E+3 0E+0 0E+0 - -U(SO4)2:8H2O(cr) -U(SO4)2:8H2O = 1.000U+4 + 2.000SO4-2 + 8.000H2O - log_k -12.770 - delta_h -33.920 #kJ/mol - # Enthalpy of formation: -4662.6 #kJ/mol #92GRE/FUG - -analytic -1.87125E+1 0E+0 1.77176E+3 0E+0 0E+0 +Ca7Si12O29(OH)4:H2O = +7.000Ca+2 -14.000H+ +12.000H4(SiO4) -14.000H2O + log_k +77.08 + delta_h -479.088 #kJ/mol +# Enthalpy of formation: -16854.620kJ/mol 10BLA/BOU1 + -analytic -68.52615E-1 00.00000E+0 25.02451E+3 00.00000E+0 00.00000E+0 + -Vm 478.730 U(cr) -U = 1.000U+4 + 2.000H2O - 4.000H+ - 1.000O2 - log_k 178.810 - delta_h -1150.726 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #92GRE/FUG - -analytic -2.27882E+1 0E+0 6.01065E+4 0E+0 0E+0 +U = +1.000U+4 +4.000e- + log_k +92.83 + delta_h -591.200 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 92GRE/FUG + -analytic -10.74379E+0 00.00000E+0 30.88053E+3 00.00000E+0 00.00000E+0 + +U(HPO4)2:4H2O(s) +U(HPO4)2:4H2O = +1.000U+4 -2.000H+ +2.000H2(PO4)- +4.000H2O + log_k -16.07 #92GRE/FUG + delta_h -4.890 #kJ/mol +# Enthalpy of formation: -4334.828 kJ/mol + -analytic -16.92669E+0 00.00000E+0 25.54225E+1 00.00000E+0 00.00000E+0 + +U(OH)2(SO4)(cr) +U(OH)2(SO4) = +1.000U+4 -2.000H+ +1.000SO4-2 +2.000H2O + log_k -3.17 #92GRE/FUG + -analytic -31.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +U(SO4)2(cr) +U(SO4)2 = +1.000U+4 +2.000SO4-2 + log_k -11.68 + delta_h -100.280 #kJ/mol +# Enthalpy of formation: -2309.600 kJ/mol 92GRE/FUG + -analytic -29.24830E+0 00.00000E+0 52.37989E+2 00.00000E+0 00.00000E+0 + +U(SO4)2:4H2O(cr) +U(SO4)2:4H2O = +1.000U+4 +2.000SO4-2 +4.000H2O + log_k -11.71 + delta_h -70.000 #kJ/mol +# Enthalpy of formation: -3483.200 kJ/mol 92GRE/FUG + -analytic -23.97347E+0 00.00000E+0 36.56355E+2 00.00000E+0 00.00000E+0 + +U(SO4)2:8H2O(s) +U(SO4)2:8H2O = +1.000U+4 +2.000SO4-2 +8.000H2O + log_k -12.77 + delta_h -33.920 #kJ/mol +# Enthalpy of formation: -4662.600 kJ/mol 92GRE/FUG + -analytic -18.71253E+0 00.00000E+0 17.71765E+2 00.00000E+0 00.00000E+0 U2O7Ba(cr) -U2O7Ba = 1.000Ba+2 + 2.000UO2+2 - 6.000H+ + 3.000H2O - log_k 21.390 - delta_h -193.090 #kJ/mol - # Enthalpy of formation: -3237.2 #kJ/mol #92GRE/FUG - -analytic -1.24379E+1 0E+0 1.00858E+4 0E+0 0E+0 +U2O7Ba = +1.000Ba+2 +2.000UO2+2 -6.000H+ +3.000H2O + log_k +21.39 + delta_h -193.090 #kJ/mol +# Enthalpy of formation: -3237.200 kJ/mol 92GRE/FUG + -analytic -12.43792E+0 00.00000E+0 10.08579E+3 00.00000E+0 00.00000E+0 U2O7Ba2(cr) -U2O7Ba2 = 2.000Ba+2 + 2.000UO2+ - 6.000H+ + 3.000H2O - log_k 35.350 - delta_h -237.344 #kJ/mol - # Enthalpy of formation: -3740 #kJ/mol #92GRE/FUG - -analytic -6.23082E+0 0E+0 1.23973E+4 0E+0 0E+0 +U2O7Ba2 = +2.000Ba+2 +2.000UO2+ -6.000H+ +3.000H2O + log_k +35.35 + delta_h -237.344 #kJ/mol +# Enthalpy of formation: -3740.000 kJ/mol 92GRE/FUG + -analytic -62.30884E-1 00.00000E+0 12.39734E+3 00.00000E+0 00.00000E+0 U2O7Na2(s) -U2O7Na2 = 2.000Na+ + 2.000UO2+2 - 6.000H+ + 3.000H2O - log_k 22.600 - delta_h -172.370 #kJ/mol - # Enthalpy of formation: -3203.8 #kJ/mol #92GRE/FUG - -analytic -7.59788E+0 0E+0 9.0035E+3 0E+0 0E+0 +U2O7Na2 = +2.000Na+ +2.000UO2+2 -6.000H+ +3.000H2O + log_k +22.60 + delta_h -172.370 #kJ/mol +# Enthalpy of formation: -3203.800 kJ/mol 92GRE/FUG + -analytic -75.97928E-1 00.00000E+0 90.03512E+2 00.00000E+0 00.00000E+0 U3As4(s) -U3As4 = 3.000UO2+2 - 3.000H2O + 6.000H+ + 4.000AsO4-3 - 9.500O2 - log_k 730.640 - delta_h -4916.797 #kJ/mol - # Enthalpy of formation: -720 #kJ/mol #03GUI/FAN - -analytic -1.30745E+2 0E+0 2.56822E+5 0E+0 0E+0 +U3As4 = +3.000UO2+2 +44.000H+ +38.000e- +4.000AsO4-3 -22.000H2O + log_k -86.09 + delta_h +398.700 #kJ/mol +# Enthalpy of formation: -720.000 kJ/mol 03GUI/FAN + -analytic -16.24076E+0 00.00000E+0 -20.82555E+3 00.00000E+0 00.00000E+0 UAs(s) -UAs = 1.000UO2+2 - 0.500H2O + 1.000H+ + 1.000AsO4-3 - 2.750O2 - log_k 225.935 - delta_h -1496.557 #kJ/mol - # Enthalpy of formation: -234.3 #kJ/mol #03GUI/FAN - -analytic -3.62501E+1 0E+0 7.81705E+4 0E+0 0E+0 +UAs = +1.000UO2+2 +12.000H+ +11.000e- +1.000AsO4-3 -6.000H2O + log_k -10.48 + delta_h +42.140 #kJ/mol +# Enthalpy of formation: -234.300 kJ/mol 03GUI/FAN + -analytic -30.97389E-1 00.00000E+0 -22.01125E+2 00.00000E+0 00.00000E+0 UAs2(s) -UAs2 = 1.000UO2+2 - 2.000H2O + 4.000H+ + 2.000AsO4-3 - 4.000O2 - log_k 278.200 - delta_h -1923.084 #kJ/mol - # Enthalpy of formation: -252 #kJ/mol #03GUI/FAN - -analytic -5.87094E+1 0E+0 1.0045E+5 0E+0 0E+0 +UAs2 = +1.000UO2+2 +20.000H+ +16.000e- +2.000AsO4-3 -10.000H2O + log_k -65.68 + delta_h +315.020 #kJ/mol +# Enthalpy of formation: -252.000 kJ/mol 03GUI/FAN + -analytic -10.49087E+0 00.00000E+0 -16.45464E+3 00.00000E+0 00.00000E+0 UO2(CO3)3Mg2:18H2O(s) -UO2(CO3)3Mg2:18H2O = 2.000Mg+2 + 1.000UO2+2 + 3.000CO3-2 + 18.000H2O - log_k -29.010 - delta_h 40.570 #kJ/mol - # Enthalpy of formation: -9164.2 #kJ/mol #99CHE/EWI - -analytic -2.19025E+1 0E+0 -2.11912E+3 0E+0 0E+0 +UO2(CO3)3Mg2:18H2O = +2.000Mg+2 +1.000UO2+2 +3.000CO3-2 +18.000H2O + log_k -29.01 + delta_h +40.570 #kJ/mol +# Enthalpy of formation: -9164.200 kJ/mol 99CHE/EWI + -analytic -21.90244E+0 00.00000E+0 -21.19119E+2 00.00000E+0 00.00000E+0 UO2(CO3)3Na4(cr) -UO2(CO3)3Na4 = 4.000Na+ + 1.000UO2+2 + 3.000CO3-2 - log_k -27.180 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.718E+1 0E+0 0E+0 0E+0 0E+0 +UO2(CO3)3Na4 = +4.000Na+ +1.000UO2+2 +3.000CO3-2 + log_k -27.18 #03GUI/FAN + -analytic -27.18000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 UO2(HPO4):4H2O(cr) -UO2(HPO4):4H2O = 1.000UO2+2 - 1.000H+ + 1.000H2(PO4)- + 4.000H2O - log_k -4.640 #92GRE/FUG - delta_h 5.048 #kJ/mol - # Enthalpy of formation: -3469.968 #kJ/mol - -analytic -3.75563E+0 0E+0 -2.63675E+2 0E+0 0E+0 +UO2(HPO4):4H2O = +1.000UO2+2 -1.000H+ +1.000H2(PO4)- +4.000H2O + log_k -4.64 #92GRE/FUG + delta_h +5.048 #kJ/mol +# Enthalpy of formation: -3469.967 kJ/mol + -analytic -37.55628E-1 00.00000E+0 -26.36754E+1 00.00000E+0 00.00000E+0 UO2(OH)2(beta) -UO2(OH)2 = 1.000UO2+2 - 2.000H+ + 2.000H2O - log_k 4.930 - delta_h -56.860 #kJ/mol - # Enthalpy of formation: -1533.8 #kJ/mol #92GRE/FUG - -analytic -5.03143E+0 0E+0 2.97E+3 0E+0 0E+0 +UO2(OH)2 = +1.000UO2+2 -2.000H+ +2.000H2O + log_k +4.93 + delta_h -56.860 #kJ/mol +# Enthalpy of formation: -1533.800 kJ/mol 92GRE/FUG + -analytic -50.31444E-1 00.00000E+0 29.70005E+2 00.00000E+0 00.00000E+0 UO2(Ox):3H2O(s) -UO2(Ox):3H2O = 1.000UO2+2 + 1.000Ox-2 + 3.000H2O - log_k -8.930 #05HUM/AND - delta_h -5.160 #kJ/mol #05HUM/AND - # Enthalpy of formation: -2701.99 #kJ/mol - -analytic -9.83399E+0 0E+0 2.69525E+2 0E+0 0E+0 +UO2(Ox):3H2O = +1.000UO2+2 +1.000Ox-2 +3.000H2O + log_k -8.93 #05HUM/AND + delta_h -5.160 #kJ/mol 05HUM/AND +# Enthalpy of formation: -2701.990 kJ/mol + -analytic -98.33993E-1 00.00000E+0 26.95256E+1 00.00000E+0 00.00000E+0 UO2(SO3)(cr) -UO2(SO3) = 1.000UO2+2 + 1.000SO3-2 - log_k -15.830 - delta_h 6.450 #kJ/mol - # Enthalpy of formation: -1661 #kJ/mol #92GRE/FUG - -analytic -1.47E+1 0E+0 -3.36906E+2 0E+0 0E+0 +UO2(SO3) = +1.000UO2+2 +1.000SO3-2 + log_k -16.05 + delta_h +10.940 #kJ/mol +# Enthalpy of formation: -1661.000 kJ/mol 92GRE/FUG + -analytic -14.13339E+0 00.00000E+0 -57.14360E+1 00.00000E+0 00.00000E+0 UO2(SO4)(cr) -UO2(SO4) = 1.000UO2+2 + 1.000SO4-2 - log_k 1.890 #92GRE/FUG - delta_h -83.200 #kJ/mol - # Enthalpy of formation: -1845.14 #kJ/mol #92GRE/FUG - -analytic -1.2686E+1 0E+0 4.34583E+3 0E+0 0E+0 +UO2(SO4) = +1.000UO2+2 +1.000SO4-2 + log_k +1.89 + delta_h -83.200 #kJ/mol +# Enthalpy of formation: -1845.140 kJ/mol 92GRE/FUG + -analytic -12.68601E+0 00.00000E+0 43.45839E+2 00.00000E+0 00.00000E+0 UO2(SO4):2.5H2O(cr) -UO2(SO4):2.5H2O = 1.000UO2+2 + 1.000SO4-2 + 2.500H2O - log_k -1.590 - delta_h -35.915 #kJ/mol - # Enthalpy of formation: -2607 #kJ/mol #92GRE/FUG - -analytic -7.88203E+0 0E+0 1.87597E+3 0E+0 0E+0 +UO2(SO4):2.5H2O = +1.000UO2+2 +1.000SO4-2 +2.500H2O + log_k -1.59 + delta_h -35.915 #kJ/mol +# Enthalpy of formation: -2607.000 kJ/mol 92GRE/FUG + -analytic -78.82038E-1 00.00000E+0 18.75971E+2 00.00000E+0 00.00000E+0 UO2(SO4):3.5H2O(cr) -UO2(SO4):3.5H2O = 1.000UO2+2 + 1.000SO4-2 + 3.500H2O - log_k -1.590 - delta_h -27.145 #kJ/mol - # Enthalpy of formation: -2901.6 #kJ/mol #92GRE/FUG - -analytic -6.34559E+0 0E+0 1.41788E+3 0E+0 0E+0 +UO2(SO4):3.5H2O = +1.000UO2+2 +1.000SO4-2 +3.500H2O + log_k -1.59 + delta_h -27.145 #kJ/mol +# Enthalpy of formation: -2901.600 kJ/mol 92GRE/FUG + -analytic -63.45600E-1 00.00000E+0 14.17882E+2 00.00000E+0 00.00000E+0 UO2(SO4):3H2O(cr) -UO2(SO4):3H2O = 1.000UO2+2 + 1.000SO4-2 + 3.000H2O - log_k -1.500 #92GRE/FUG - delta_h -34.330 #kJ/mol - # Enthalpy of formation: -2751.5 #kJ/mol #92GRE/FUG - -analytic -7.51435E+0 0E+0 1.79318E+3 0E+0 0E+0 +UO2(SO4):3H2O = +1.000UO2+2 +1.000SO4-2 +3.000H2O + log_k -1.50 + delta_h -34.330 #kJ/mol +# Enthalpy of formation: -2751.500 kJ/mol 92GRE/FUG + -analytic -75.14358E-1 00.00000E+0 17.93181E+2 00.00000E+0 00.00000E+0 UO2.25(s) -UO2.25 = 1.000U+4 - 4.000H+ + 2.000H2O + 0.125O2 - log_k -11.748 - delta_h -36.377 #kJ/mol - # Enthalpy of formation: -1128 #kJ/mol #92GRE/FUG - -analytic -1.81205E+1 0E+0 1.90011E+3 0E+0 0E+0 +UO2.25 = +1.000U+4 -4.500H+ -0.500e- +2.250H2O + log_k -1.00 + delta_h -106.318 #kJ/mol +# Enthalpy of formation: -1128.000 kJ/mol 92GRE/FUG + -analytic -19.62611E+0 00.00000E+0 55.53376E+2 00.00000E+0 00.00000E+0 UO2.34(beta) -UO2.34 = 1.000U+4 - 4.000H+ + 2.000H2O + 0.170O2 - log_k -13.987 - delta_h -22.008 #kJ/mol - # Enthalpy of formation: -1141 #kJ/mol #03GUI/FAN - -analytic -1.78422E+1 0E+0 1.14953E+3 0E+0 0E+0 +UO2.34 = +1.000U+4 -4.680H+ -0.680e- +2.340H2O + log_k +0.95 + delta_h -119.042 #kJ/mol +# Enthalpy of formation: -1141.000 kJ/mol 03GUI/FAN + -analytic -19.90526E+0 00.00000E+0 62.17997E+2 00.00000E+0 00.00000E+0 UO2.67(s) -UO2.67 = 1.000U+4 - 4.000H+ + 2.000H2O + 0.335O2 - log_k -21.953 - delta_h 25.618 #kJ/mol - # Enthalpy of formation: -1191.6 #kJ/mol #92GRE/FUG - -analytic -1.74652E+1 0E+0 -1.33813E+3 0E+0 0E+0 +UO2.67 = +1.000U+4 -5.340H+ -1.340e- +2.670H2O + log_k +7.00 + delta_h -162.766 #kJ/mol +# Enthalpy of formation: -1191.600 kJ/mol 92GRE/FUG + -analytic -21.51538E+0 00.00000E+0 85.01860E+2 00.00000E+0 00.00000E+0 UO2:2H2O(am) -UO2:2H2O = 1.000U+4 - 4.000H+ + 4.000H2O - log_k 1.500 #03GUI/FAN - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 1.5E+0 0E+0 0E+0 0E+0 0E+0 +UO2:2H2O = +1.000U+4 -4.000H+ +4.000H2O + log_k +1.50 #20GRE/GAO + -analytic 15.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 UO3(alfa) -UO3 = 1.000UO2+2 - 2.000H+ + 1.000H2O - log_k 9.520 - delta_h -92.420 #kJ/mol - # Enthalpy of formation: -1212.41 #kJ/mol #03GUI/FAN - -analytic -6.67127E+0 0E+0 4.82743E+3 0E+0 0E+0 +UO3 = +1.000UO2+2 -2.000H+ +1.000H2O + log_k +9.52 + delta_h -92.420 #kJ/mol +# Enthalpy of formation: -1212.410 kJ/mol 03GUI/FAN + -analytic -66.71289E-1 00.00000E+0 48.27433E+2 00.00000E+0 00.00000E+0 UO3(beta) -UO3 = 1.000UO2+2 - 2.000H+ + 1.000H2O - log_k 8.300 - delta_h -84.530 #kJ/mol - # Enthalpy of formation: -1220.3 #kJ/mol #92GRE/FUG - -analytic -6.509E+0 0E+0 4.4153E+3 0E+0 0E+0 +UO3 = +1.000UO2+2 -2.000H+ +1.000H2O + log_k +8.30 + delta_h -84.530 #kJ/mol +# Enthalpy of formation: -1220.300 kJ/mol 92GRE/FUG + -analytic -65.09020E-1 00.00000E+0 44.15309E+2 00.00000E+0 00.00000E+0 + +UO3:0.9H2O(s) +UO3:0.9H2O = +1.000UO2+2 -2.000H+ +1.900H2O + log_k +5.00 + delta_h -55.777 #kJ/mol +# Enthalpy of formation: -1506.300 kJ/mol 92GRE/FUG + -analytic -47.71711E-1 00.00000E+0 29.13436E+2 00.00000E+0 00.00000E+0 UO3Na(s) -UO3Na = 1.000Na+ + 1.000UO2+ - 2.000H+ + 1.000H2O - log_k 8.340 - delta_h -56.397 #kJ/mol - # Enthalpy of formation: -1494.9 #kJ/mol #92GRE/FUG - -analytic -1.54032E+0 0E+0 2.94582E+3 0E+0 0E+0 +UO3Na = +1.000Na+ +1.000UO2+ -2.000H+ +1.000H2O + log_k +8.34 + delta_h -56.397 #kJ/mol +# Enthalpy of formation: -1494.900 kJ/mol 92GRE/FUG + -analytic -15.40330E-1 00.00000E+0 29.45820E+2 00.00000E+0 00.00000E+0 UO4Ba(s) -UO4Ba = 1.000Ba+2 + 1.000UO2+2 - 4.000H+ + 2.000H2O - log_k 17.640 - delta_h -131.660 #kJ/mol - # Enthalpy of formation: -1993.8 #kJ/mol #92GRE/FUG - -analytic -5.42581E+0 0E+0 6.87707E+3 0E+0 0E+0 +UO4Ba = +1.000Ba+2 +1.000UO2+2 -4.000H+ +2.000H2O + log_k +17.64 + delta_h -131.660 #kJ/mol +# Enthalpy of formation: -1993.800 kJ/mol 92GRE/FUG + -analytic -54.25842E-1 00.00000E+0 68.77081E+2 00.00000E+0 00.00000E+0 UO4Ca(cr) -UO4Ca = 1.000Ca+2 + 1.000UO2+2 - 4.000H+ + 2.000H2O - log_k 15.930 - delta_h -131.360 #kJ/mol - # Enthalpy of formation: -2002.3 #kJ/mol #92GRE/FUG - -analytic -7.08325E+0 0E+0 6.8614E+3 0E+0 0E+0 +UO4Ca = +1.000Ca+2 +1.000UO2+2 -4.000H+ +2.000H2O + log_k +15.93 + delta_h -131.360 #kJ/mol +# Enthalpy of formation: -2002.300 kJ/mol 92GRE/FUG + -analytic -70.83284E-1 00.00000E+0 68.61411E+2 00.00000E+0 00.00000E+0 UO4Li2(s) -UO4Li2 = 2.000Li+ + 1.000UO2+2 - 4.000H+ + 2.000H2O - log_k 27.940 - delta_h -179.400 #kJ/mol - # Enthalpy of formation: -1968.2 #kJ/mol #92GRE/FUG - -analytic -3.48948E+0 0E+0 9.3707E+3 0E+0 0E+0 +UO4Li2 = +1.000UO2+2 -4.000H+ +2.000H2O +2.000Li+ + log_k +27.94 + delta_h -179.400 #kJ/mol +# Enthalpy of formation: -1968.200 kJ/mol 92GRE/FUG + -analytic -34.89531E-1 00.00000E+0 93.70715E+2 00.00000E+0 00.00000E+0 UO4Mg(cr) -UO4Mg = 1.000Mg+2 + 1.000UO2+2 - 4.000H+ + 2.000H2O - log_k 23.230 - delta_h -200.360 #kJ/mol - # Enthalpy of formation: -1857.3 #kJ/mol #92GRE/FUG - -analytic -1.18715E+1 0E+0 1.04655E+4 0E+0 0E+0 +UO4Mg = +1.000Mg+2 +1.000UO2+2 -4.000H+ +2.000H2O + log_k +23.23 + delta_h -200.360 #kJ/mol +# Enthalpy of formation: -1857.300 kJ/mol 92GRE/FUG + -analytic -11.87157E+0 00.00000E+0 10.46553E+3 00.00000E+0 00.00000E+0 UO4Na2(alfa) -UO4Na2 = 2.000Na+ + 1.000UO2+2 - 4.000H+ + 2.000H2O - log_k 30.030 - delta_h -173.640 #kJ/mol - # Enthalpy of formation: -1897.7 #kJ/mol #92GRE/FUG - -analytic -3.90378E-1 0E+0 9.06984E+3 0E+0 0E+0 +UO4Na2 = +2.000Na+ +1.000UO2+2 -4.000H+ +2.000H2O + log_k +30.03 + delta_h -173.640 #kJ/mol +# Enthalpy of formation: -1897.700 kJ/mol 92GRE/FUG + -analytic -39.04222E-2 00.00000E+0 90.69849E+2 00.00000E+0 00.00000E+0 UO4Na3(cr) -UO4Na3 = 3.000Na+ + 1.000UO2+ - 4.000H+ + 2.000H2O - log_k 56.280 - delta_h -293.807 #kJ/mol - # Enthalpy of formation: -2024 #kJ/mol #92GRE/FUG - -analytic 4.8073E+0 0E+0 1.53466E+4 0E+0 0E+0 +UO4Na3 = +3.000Na+ +1.000UO2+ -4.000H+ +2.000H2O + log_k +56.28 + delta_h -293.807 #kJ/mol +# Enthalpy of formation: -2024.000 kJ/mol 92GRE/FUG + -analytic 48.07223E-1 00.00000E+0 15.34661E+3 00.00000E+0 00.00000E+0 UO4Sr(alfa) -UO4Sr = 1.000Sr+2 + 1.000UO2+2 - 4.000H+ + 2.000H2O - log_k 19.160 - delta_h -151.960 #kJ/mol - # Enthalpy of formation: -1989.6 #kJ/mol #92GRE/FUG - -analytic -7.46221E+0 0E+0 7.93741E+3 0E+0 0E+0 +UO4Sr = +1.000Sr+2 +1.000UO2+2 -4.000H+ +2.000H2O + log_k +19.16 + delta_h -151.960 #kJ/mol +# Enthalpy of formation: -1989.600 kJ/mol 92GRE/FUG + -analytic -74.62249E-1 00.00000E+0 79.37424E+2 00.00000E+0 00.00000E+0 UO6Ba3(cr) -UO6Ba3 = 3.000Ba+2 + 1.000UO2+2 - 8.000H+ + 4.000H2O - log_k 92.700 - delta_h -556.320 #kJ/mol - # Enthalpy of formation: -3210.4 #kJ/mol #92GRE/FUG - -analytic -4.76294E+0 0E+0 2.90586E+4 0E+0 0E+0 - -US2(cr) -US2 = 1.000U+4 - 2.000H+ + 2.000HS- - log_k -2.430 - delta_h -103.400 #kJ/mol - # Enthalpy of formation: -520.4 #kJ/mol #92GRE/FUG - -analytic -2.05449E+1 0E+0 5.40095E+3 0E+0 0E+0 - -USe2(beta) -USe2 = 1.000U+4 - 2.000H+ + 2.000HSe- - log_k 2.820 - delta_h -135.600 #kJ/mol - # Enthalpy of formation: -427 #kJ/mol #92GRE/FUG - -analytic -2.09361E+1 0E+0 7.08287E+3 0E+0 0E+0 +UO6Ba3 = +3.000Ba+2 +1.000UO2+2 -8.000H+ +4.000H2O + log_k +92.70 + delta_h -556.320 #kJ/mol +# Enthalpy of formation: -3210.400 kJ/mol 92GRE/FUG + -analytic -47.63080E-1 00.00000E+0 29.05862E+3 00.00000E+0 00.00000E+0 Uraninite -UO2 = 1.000U+4 - 4.000H+ + 2.000H2O - log_k -4.850 - delta_h -77.860 #kJ/mol - # Enthalpy of formation: -1085 #kJ/mol #92GRE/FUG - -analytic -1.84905E+1 0E+0 4.06691E+3 0E+0 0E+0 +UO2 = +1.000U+4 -4.000H+ +2.000H2O + log_k -4.85 + delta_h -77.860 #kJ/mol +# Enthalpy of formation: -1085.000 kJ/mol 92GRE/FUG + -analytic -18.49049E+0 00.00000E+0 40.66911E+2 00.00000E+0 00.00000E+0 Uranophane -Ca(UO2)2(SiO3OH)2:5H2O = 1.000Ca+2 + 2.000UO2+2 - 6.000H+ + 2.000H4(SiO4) + 5.000H2O - log_k 9.420 #92NGU/SIL - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic 9.42E+0 0E+0 0E+0 0E+0 0E+0 +Ca(UO2)2(SiO3OH)2:5H2O = +1.000Ca+2 +2.000UO2+2 -6.000H+ +2.000H4(SiO4) +5.000H2O + log_k +11.52 #20GRE/GAO + -analytic 11.52000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +US2(cr) +US2 = +1.000U+4 -2.000H+ +2.000HS- + log_k -2.43 + delta_h -103.400 #kJ/mol +# Enthalpy of formation: -520.400 kJ/mol 92GRE/FUG + -analytic -20.54490E+0 00.00000E+0 54.00958E+2 00.00000E+0 00.00000E+0 + +USe2(beta) +USe2 = +1.000U+4 -2.000H+ +2.000HSe- + log_k +2.82 + delta_h -135.600 #kJ/mol +# Enthalpy of formation: -427.000 kJ/mol 92GRE/FUG + -analytic -20.93610E+0 00.00000E+0 70.82881E+2 00.00000E+0 00.00000E+0 Vaesite -NiS2 = 1.000Ni+2 + 2.000HS- - 1.000H2O + 0.500O2 - log_k -60.960 - delta_h 320.151 #kJ/mol - # Enthalpy of formation: -128 #kJ/mol #05GAM/BUG - -analytic -4.87203E+0 0E+0 -1.67226E+4 0E+0 0E+0 +NiS2 = +1.000Ni+2 -2.000H+ -2.000e- +2.000HS- + log_k -17.97 + delta_h +40.388 #kJ/mol +# Enthalpy of formation: -128.000 kJ/mol 05GAM/BUG + -analytic -10.89433E+0 00.00000E+0 -21.09612E+2 00.00000E+0 00.00000E+0 Valentinite -Sb2O3 = 2.000Sb(OH)3 - 3.000H2O - log_k -8.480 #52GAY/GAR in 76BAE/MES - delta_h 18.500 #kJ/mol - # Enthalpy of formation: -708.77 #kJ/mol #62MAH in 03ZOT/SHI - -analytic -5.23894E+0 0E+0 -9.66321E+2 0E+0 0E+0 +Sb2O3 = +2.000Sb(OH)3 -3.000H2O + log_k -8.48 + delta_h +18.474 #kJ/mol +# Enthalpy of formation: -708.770 kJ/mol 62MAH in 03ZOT/SHI + -analytic -52.43494E-1 00.00000E+0 -96.49642E+1 00.00000E+0 00.00000E+0 Vaterite -CaCO3 = 1.000Ca+2 + 1.000CO3-2 - log_k -7.900 - delta_h -14.930 #kJ/mol - # Enthalpy of formation: -1203.3 #kJ/mol #87GAR/PAR - -analytic -1.05156E+1 0E+0 7.79847E+2 0E+0 0E+0 - -Vermiculite-Ca -Ca0.43Mg3Si3.14Al0.86O10(OH)2 = 0.430Ca+2 + 3.000Mg+2 + 0.860Al+3 - 9.440H+ + 3.140H4(SiO4) - 0.560H2O - log_k 39.550 - delta_h -377.538 #kJ/mol - # Enthalpy of formation: -6148.06 #kJ/mol #15BLA/VIE - -analytic -2.65917E+1 0E+0 1.97202E+4 0E+0 0E+0 - -Vermiculite-K -K0.86Mg3.00Si3.14Al0.86O10(OH)2 = 3.000Mg+2 + 0.860K+ + 0.860Al+3 - 9.440H+ + 3.140H4(SiO4) - 0.560H2O - log_k 37.440 - delta_h -335.539 #kJ/mol - # Enthalpy of formation: -6173.41 #kJ/mol #15BLA/VIE - -analytic -2.13438E+1 0E+0 1.75264E+4 0E+0 0E+0 - -Vermiculite-Mg -Mg0.43Mg3Si3.14Al0.86O10(OH)2 = 3.430Mg+2 + 0.860Al+3 - 9.440H+ + 3.140H4(SiO4) - 0.560H2O - log_k 38.040 - delta_h -379.808 #kJ/mol - # Enthalpy of formation: -6113.11 #kJ/mol #15BLA/VIE - -analytic -2.84994E+1 0E+0 1.98387E+4 0E+0 0E+0 - -Vermiculite-Na -Na0.86Mg3.00Si3.14Al0.86O10(OH)2 = 3.000Mg+2 + 0.860Na+ + 0.860Al+3 - 9.440H+ + 3.140H4(SiO4) - 0.560H2O - log_k 38.390 - delta_h -355.541 #kJ/mol - # Enthalpy of formation: -6143.26 #kJ/mol #15BLA/VIE - -analytic -2.3898E+1 0E+0 1.85712E+4 0E+0 0E+0 +CaCO3 = +1.000Ca+2 +1.000CO3-2 + log_k -7.90 + delta_h -14.930 #kJ/mol +# Enthalpy of formation: -1203.300 kJ/mol 87GAR/PAR + -analytic -10.51562E+0 00.00000E+0 77.98482E+1 00.00000E+0 00.00000E+0 Vermiculite_SO -(Ca0.445)(Si2.778Al1.222)(Al0.216Fe0.226Fe0.028Mg2.475)O10(OH)2 = 0.445Ca+2 + 2.475Mg+2 + 0.226Fe+3 + 1.438Al+3 + 2.778H4(SiO4) + 0.028Fe+2 + 0.888H2O - 10.888H+ - log_k 45.910 - delta_h -463.877 #kJ/mol - # Enthalpy of formation: -6034.41 #kJ/mol #13GAI/BLA - -analytic -3.53576E+1 0E+0 2.42299E+4 0E+0 0E+0 +(Ca0.445)(Si2.778Al1.222)(Al0.216Fe0.226Fe0.028Mg2.475)O10(OH)2 = +0.445Ca+2 +2.475Mg+2 +0.226Fe+3 +0.028Fe+2 +1.438Al+3 -10.888H+ +2.778H4(SiO4) +0.888H2O + log_k +45.88 + delta_h -464.124 #kJ/mol +# Enthalpy of formation: -6034.410 kJ/mol 13GAI/BLA + -analytic -35.43103E+0 00.00000E+0 24.24288E+3 00.00000E+0 00.00000E+0 + -Vm 148.360 + +Vermiculite-Ca +Ca0.43Mg3Si3.14Al0.86O10(OH)2 = +0.430Ca+2 +3.000Mg+2 +0.860Al+3 -9.440H+ +3.140H4(SiO4) -0.560H2O + log_k +39.55 + delta_h -377.538 #kJ/mol +# Enthalpy of formation: -6148.060 kJ/mol 15BLA/VIE + -analytic -26.59182E+0 00.00000E+0 19.72018E+3 00.00000E+0 00.00000E+0 + -Vm 149.800 + +Vermiculite-K +K0.86Mg3.00Si3.14Al0.86O10(OH)2 = +3.000Mg+2 +0.860K+ +0.860Al+3 -9.440H+ +3.140H4(SiO4) -0.560H2O + log_k +37.44 + delta_h -335.539 #kJ/mol +# Enthalpy of formation: -6173.410 kJ/mol 15BLA/VIE + -analytic -21.34391E+0 00.00000E+0 17.52642E+3 00.00000E+0 00.00000E+0 + -Vm 147.560 + +Vermiculite-Mg +Mg0.43Mg3Si3.14Al0.86O10(OH)2 = +3.430Mg+2 +0.860Al+3 -9.440H+ +3.140H4(SiO4) -0.560H2O + log_k +38.04 + delta_h -379.808 #kJ/mol +# Enthalpy of formation: -6113.110 kJ/mol 15BLA/VIE + -analytic -28.49951E+0 00.00000E+0 19.83875E+3 00.00000E+0 00.00000E+0 + -Vm 139.690 + +Vermiculite-Na +Na0.86Mg3.00Si3.14Al0.86O10(OH)2 = +3.000Mg+2 +0.860Na+ +0.860Al+3 -9.440H+ +3.140H4(SiO4) -0.560H2O + log_k +38.39 + delta_h -355.541 #kJ/mol +# Enthalpy of formation: -6143.260 kJ/mol 15BLA/VIE + -analytic -23.89811E+0 00.00000E+0 18.57120E+3 00.00000E+0 00.00000E+0 + -Vm 145.710 Vivianite -Fe3(PO4)2:8H2O = 3.000Fe+2 - 4.000H+ + 2.000H2(PO4)- + 8.000H2O - log_k 3.120 - delta_h -9.561 #kJ/mol - # Enthalpy of formation: -5152.279 #kJ/mol - -analytic 1.44499E+0 0E+0 4.99405E+2 0E+0 0E+0 +Fe3(PO4)2:8H2O = +3.000Fe+2 -4.000H+ +2.000H2(PO4)- +8.000H2O + log_k +3.12 #20LEM/PAL + -analytic 31.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Wairakite -CaAl2Si4O12:2H2O = 1.000Ca+2 + 2.000Al+3 - 8.000H+ + 4.000H4(SiO4) - 2.000H2O - log_k 14.440 - delta_h -246.216 #kJ/mol - # Enthalpy of formation: -6646.7 #kJ/mol #96KIS/NAV - -analytic -2.86951E+1 0E+0 1.28607E+4 0E+0 0E+0 +CaAl2Si4O12:2H2O = +1.000Ca+2 +2.000Al+3 -8.000H+ +4.000H4(SiO4) -2.000H2O + log_k +14.42 + delta_h -246.216 #kJ/mol +# Enthalpy of formation: -6646.700 kJ/mol 96KIS/NAV + -analytic -28.71519E+0 00.00000E+0 12.86076E+3 00.00000E+0 00.00000E+0 + -Vm 193.560 Witherite -Ba(CO3) = 1.000Ba+2 + 1.000CO3-2 - log_k -8.560 #86BUS/PLU - delta_h 2.941 #kJ/mol #86BUS/PLU - # Enthalpy of formation: -1212.971 #kJ/mol - -analytic -8.04476E+0 0E+0 -1.53619E+2 0E+0 0E+0 +Ba(CO3) = +1.000Ba+2 +1.000CO3-2 + log_k -8.56 #86BUS/PLU + delta_h +2.941 #kJ/mol 86BUS/PLU +# Enthalpy of formation: -1212.971 kJ/mol + -analytic -80.44759E-1 00.00000E+0 -15.36191E+1 00.00000E+0 00.00000E+0 Xonotlite -Ca6Si6O17(OH)2 = 6.000Ca+2 - 12.000H+ + 6.000H4(SiO4) - 5.000H2O - log_k 91.340 #10BLA/BOU1 - delta_h -573.864 #kJ/mol - # Enthalpy of formation: -10022.15 #kJ/mol #56NEW - -analytic -9.19651E+0 0E+0 2.9975E+4 0E+0 0E+0 +Ca6Si6O17(OH)2 = +6.000Ca+2 -12.000H+ +6.000H4(SiO4) -5.000H2O + log_k +91.34 #10BLA/BOU1 + delta_h -573.864 #kJ/mol +# Enthalpy of formation: -10022.150kJ/mol 56NEW + -analytic -91.96657E-1 00.00000E+0 29.97500E+3 00.00000E+0 00.00000E+0 + -Vm 256.900 Zeolite_CaP -Ca2Al4Si4O16:9H2O = 2.000Ca+2 + 4.000Al+3 - 16.000H+ + 4.000H4(SiO4) + 9.000H2O - log_k 45.150 #09BLA - delta_h -527.736 #kJ/mol - # Enthalpy of formation: -11129.11 #kJ/mol #09BLA - -analytic -4.73052E+1 0E+0 2.75655E+4 0E+0 0E+0 +Ca2Al4Si4O16:9H2O = +2.000Ca+2 +4.000Al+3 -16.000H+ +4.000H4(SiO4) +9.000H2O + log_k +45.15 #09BLA + delta_h -527.736 #kJ/mol +# Enthalpy of formation: -11129.110kJ/mol 09BLA + -analytic -47.30538E+0 00.00000E+0 27.56557E+3 00.00000E+0 00.00000E+0 + -Vm 305.700 + +Zn(cr) +Zn = +1.000Zn+2 +2.000e- + log_k +25.79 + delta_h -153.390 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic -10.82774E-1 00.00000E+0 80.12118E+2 00.00000E+0 00.00000E+0 Zn(SeO4):6H2O(s) -Zn(SeO4):6H2O = 1.000Zn+2 + 1.000SeO4-2 + 6.000H2O - log_k -1.538 #05OLI/NOL - delta_h -13.330 #kJ/mol - # Enthalpy of formation: -2458.54 #kJ/mol #05OLI/NOL - -analytic -3.87331E+0 0E+0 6.96273E+2 0E+0 0E+0 +Zn(SeO4):6H2O = +1.000Zn+2 +1.000SeO4-2 +6.000H2O + log_k -1.54 #05OLI/NOL + delta_h -13.330 #kJ/mol +# Enthalpy of formation: -2458.540 kJ/mol 05OLI/NOL + -analytic -38.75316E-1 00.00000E+0 69.62744E+1 00.00000E+0 00.00000E+0 Zn3(AsO4)2(s) -Zn3(AsO4)2 = 3.000Zn+2 + 2.000AsO4-3 - log_k -27.450 - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -2.745E+1 0E+0 0E+0 0E+0 0E+0 +Zn3(AsO4)2 = +3.000Zn+2 +2.000AsO4-3 + log_k -27.45 + -analytic -27.45000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 ZnB2O4(s) -ZnB2O4 = 1.000Zn+2 + 2.000B(OH)4- - 4.000H2O - log_k -10.190 #91BAL/NOR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -1.019E+1 0E+0 0E+0 0E+0 0E+0 - -Zr(HPO4)2(alfa) -Zr(HPO4)2 = - 2.000H+ + 2.000H2(PO4)- + 1.000Zr+4 - log_k -32.270 - delta_h -47.500 #kJ/mol - # Enthalpy of formation: -3166.2 #kJ/mol #05BRO/CUR - -analytic -4.05916E+1 0E+0 2.48109E+3 0E+0 0E+0 - -Zr(HPO4)2:H2O(cr) -Zr(HPO4)2:H2O = - 2.000H+ + 2.000H2(PO4)- + 1.000Zr+4 + 1.000H2O - log_k -27.080 #05BRO/CUR - delta_h -33.430 #kJ/mol - # Enthalpy of formation: -3466.1 #kJ/mol #05BRO/CUR - -analytic -3.29367E+1 0E+0 1.74617E+3 0E+0 0E+0 - -Zr(OH)4(am,aged) -Zr(OH)4 = - 4.000H+ + 1.000Zr+4 + 4.000H2O - log_k -5.550 #Recalculated from 04EKB/KAL in 05BRO/CUR - # delta_h 0.000 #kJ/mol - # Enthalpy of formation: #kJ/mol - -analytic -5.55E+0 0E+0 0E+0 0E+0 0E+0 - -Zr(OH)4(am,fresh) -Zr(OH)4 = - 4.000H+ + 1.000Zr+4 + 4.000H2O - log_k -3.240 #05BRO/CUR - delta_h -89.620 #kJ/mol - # Enthalpy of formation: -1662.2 #kJ/mol #05BRO/CUR - -analytic -1.89407E+1 0E+0 4.68117E+3 0E+0 0E+0 - -Zr(SO4)2(cr) -Zr(SO4)2 = 2.000SO4-2 + 1.000Zr+4 - log_k 1.240 - delta_h -181.980 #kJ/mol - # Enthalpy of formation: -2245.2 #kJ/mol #05BRO/CUR - -analytic -3.06415E+1 0E+0 9.50546E+3 0E+0 0E+0 - -Zr(SO4)2:4H2O(s) -Zr(SO4)2:4H2O = 2.000SO4-2 + 1.000Zr+4 + 4.000H2O - log_k -7.650 - delta_h -99.600 #kJ/mol - # Enthalpy of formation: -3470.9 #kJ/mol #05BRO/CUR - -analytic -2.50991E+1 0E+0 5.20246E+3 0E+0 0E+0 +ZnB2O4 = +1.000Zn+2 +2.000B(OH)4- -4.000H2O + log_k -10.19 #91BAL/NOR + -analytic -10.19000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 Zr(cr) -Zr = 1.000Zr+4 + 2.000H2O - 4.000H+ - 1.000O2 - log_k 178.570 - delta_h -1168.026 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #05BRO/CUR - -analytic -2.60591E+1 0E+0 6.10102E+4 0E+0 0E+0 +Zr = +4.000e- +1.000Zr+4 + log_k +92.59 + delta_h -608.500 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 05BRO/CUR + -analytic -14.01462E+0 00.00000E+0 31.78417E+3 00.00000E+0 00.00000E+0 + +Zr(HPO4)2(alfa) +Zr(HPO4)2 = -2.000H+ +2.000H2(PO4)- +1.000Zr+4 + log_k -32.27 + delta_h -47.500 #kJ/mol +# Enthalpy of formation: -3166.200 kJ/mol 05BRO/CUR + -analytic -40.59164E+0 00.00000E+0 24.81098E+2 00.00000E+0 00.00000E+0 + +Zr(HPO4)2:H2O(cr) +Zr(HPO4)2:H2O = -2.000H+ +2.000H2(PO4)- +1.000Zr+4 +1.000H2O + log_k -27.08 #05BRO/CUR + delta_h -33.430 #kJ/mol +# Enthalpy of formation: -3466.100 kJ/mol 05BRO/CUR + -analytic -32.93668E+0 00.00000E+0 17.46171E+2 00.00000E+0 00.00000E+0 + +Zr(OH)4(am,aged) +Zr(OH)4 = -4.000H+ +1.000Zr+4 +4.000H2O + log_k -5.55 #Recalculated from 04EKB/KAL in 05BRO/CUR + -analytic -55.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +Zr(OH)4(am,fresh) +Zr(OH)4 = -4.000H+ +1.000Zr+4 +4.000H2O + log_k -3.24 #05BRO/CUR + delta_h -89.620 #kJ/mol +# Enthalpy of formation: -1662.200 kJ/mol 05BRO/CUR + -analytic -18.94075E+0 00.00000E+0 46.81179E+2 00.00000E+0 00.00000E+0 + +Zr(SO4)2(cr) +Zr(SO4)2 = +2.000SO4-2 +1.000Zr+4 + log_k +1.24 + delta_h -181.980 #kJ/mol +# Enthalpy of formation: -2245.200 kJ/mol 05BRO/CUR + -analytic -30.64153E+0 00.00000E+0 95.05477E+2 00.00000E+0 00.00000E+0 + +Zr(SO4)2:4H2O(s) +Zr(SO4)2:4H2O = +2.000SO4-2 +1.000Zr+4 +4.000H2O + log_k -7.65 + delta_h -99.600 #kJ/mol +# Enthalpy of formation: -3470.900 kJ/mol 05BRO/CUR + -analytic -25.09917E+0 00.00000E+0 52.02470E+2 00.00000E+0 00.00000E+0 ZrBr4(cr) -ZrBr4 = 4.000Br- + 1.000Zr+4 - log_k 38.520 - delta_h -334.640 #kJ/mol - # Enthalpy of formation: -759.5 #kJ/mol #05BRO/CUR - -analytic -2.01063E+1 0E+0 1.74794E+4 0E+0 0E+0 +ZrBr4 = +4.000Br- +1.000Zr+4 + log_k +38.52 + delta_h -334.640 #kJ/mol +# Enthalpy of formation: -759.500 kJ/mol 05BRO/CUR + -analytic -20.10641E+0 00.00000E+0 17.47946E+3 00.00000E+0 00.00000E+0 ZrCl(s) -ZrCl = 1.000Cl- + 1.000Zr+4 + 1.500H2O - 3.000H+ - 0.750O2 - log_k 133.725 - delta_h -904.025 #kJ/mol - # Enthalpy of formation: -291.2 #kJ/mol #05BRO/CUR - -analytic -2.46531E+1 0E+0 4.72204E+4 0E+0 0E+0 +ZrCl = +3.000e- +1.000Cl- +1.000Zr+4 + log_k +69.24 + delta_h -484.380 #kJ/mol +# Enthalpy of formation: -291.200 kJ/mol 05BRO/CUR + -analytic -15.61973E+0 00.00000E+0 25.30093E+3 00.00000E+0 00.00000E+0 ZrCl2(s) -ZrCl2 = 2.000Cl- + 1.000Zr+4 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 94.640 - delta_h -679.623 #kJ/mol - # Enthalpy of formation: -542.8 #kJ/mol #05BRO/CUR - -analytic -2.44247E+1 0E+0 3.54991E+4 0E+0 0E+0 +ZrCl2 = +2.000e- +2.000Cl- +1.000Zr+4 + log_k +51.65 + delta_h -399.860 #kJ/mol +# Enthalpy of formation: -542.800 kJ/mol 05BRO/CUR + -analytic -18.40246E+0 00.00000E+0 20.88614E+3 00.00000E+0 00.00000E+0 ZrCl3(s) -ZrCl3 = 3.000Cl- + 1.000Zr+4 + 0.500H2O - 1.000H+ - 0.250O2 - log_k 62.215 - delta_h -489.522 #kJ/mol - # Enthalpy of formation: -760.1 #kJ/mol #05BRO/CUR - -analytic -2.35454E+1 0E+0 2.55695E+4 0E+0 0E+0 +ZrCl3 = +1.000e- +3.000Cl- +1.000Zr+4 + log_k +40.72 + delta_h -349.640 #kJ/mol +# Enthalpy of formation: -760.100 kJ/mol 05BRO/CUR + -analytic -20.53430E+0 00.00000E+0 18.26297E+3 00.00000E+0 00.00000E+0 ZrCl4(s) -ZrCl4 = 4.000Cl- + 1.000Zr+4 - log_k 28.600 - delta_h -296.020 #kJ/mol - # Enthalpy of formation: -980.8 #kJ/mol #05BRO/CUR - -analytic -2.32604E+1 0E+0 1.54622E+4 0E+0 0E+0 +ZrCl4 = +4.000Cl- +1.000Zr+4 + log_k +28.60 + delta_h -296.020 #kJ/mol +# Enthalpy of formation: -980.800 kJ/mol 05BRO/CUR + -analytic -23.26048E+0 00.00000E+0 15.46220E+3 00.00000E+0 00.00000E+0 ZrF2(s) -ZrF2 = 2.000F- + 1.000Zr+4 + 1.000H2O - 2.000H+ - 0.500O2 - log_k 75.600 - delta_h -602.963 #kJ/mol - # Enthalpy of formation: -956 #kJ/mol #97VIS/COR - -analytic -3.00344E+1 0E+0 3.14949E+4 0E+0 0E+0 +ZrF2 = +2.000e- +2.000F- +1.000Zr+4 + log_k +32.61 + delta_h -323.200 #kJ/mol +# Enthalpy of formation: -956.000 kJ/mol 97VIS/COR + -analytic -24.01221E+0 00.00000E+0 16.88191E+3 00.00000E+0 00.00000E+0 ZrF3(s) -ZrF3 = 3.000F- + 1.000Zr+4 + 0.500H2O - 1.000H+ - 0.250O2 - log_k 24.295 - delta_h -321.432 #kJ/mol - # Enthalpy of formation: -1433 #kJ/mol #97VIS/COR - -analytic -3.20173E+1 0E+0 1.67895E+4 0E+0 0E+0 +ZrF3 = +1.000e- +3.000F- +1.000Zr+4 + log_k +2.80 + delta_h -181.550 #kJ/mol +# Enthalpy of formation: -1433.000 kJ/mol 97VIS/COR + -analytic -29.00619E+0 00.00000E+0 94.83017E+2 00.00000E+0 00.00000E+0 ZrF4(beta) -ZrF4 = 4.000F- + 1.000Zr+4 - log_k -27.250 - delta_h -38.600 #kJ/mol - # Enthalpy of formation: -1911.3 #kJ/mol #05BRO/CUR - -analytic -3.40124E+1 0E+0 2.01622E+3 0E+0 0E+0 +ZrF4 = +4.000F- +1.000Zr+4 + log_k -27.25 + delta_h -38.600 #kJ/mol +# Enthalpy of formation: -1911.300 kJ/mol 05BRO/CUR + -analytic -34.01243E+0 00.00000E+0 20.16218E+2 00.00000E+0 00.00000E+0 ZrI4(cr) -ZrI4 = 4.000I- + 1.000Zr+4 - log_k 44.590 - delta_h -346.720 #kJ/mol - # Enthalpy of formation: -488.9 #kJ/mol #05BRO/CUR - -analytic -1.61526E+1 0E+0 1.81104E+4 0E+0 0E+0 +ZrI4 = +4.000I- +1.000Zr+4 + log_k +44.59 + delta_h -346.720 #kJ/mol +# Enthalpy of formation: -488.900 kJ/mol 05BRO/CUR + -analytic -16.15274E+0 00.00000E+0 18.11045E+3 00.00000E+0 00.00000E+0 ZrO2(cr) -ZrO2 = - 4.000H+ + 1.000Zr+4 + 2.000H2O - log_k -7.000 - delta_h -79.560 #kJ/mol - # Enthalpy of formation: -1100.6 #kJ/mol #05BRO/CUR - -analytic -2.09383E+1 0E+0 4.1557E+3 0E+0 0E+0 +ZrO2 = -4.000H+ +1.000Zr+4 +2.000H2O + log_k -7.00 + delta_h -79.560 #kJ/mol +# Enthalpy of formation: -1100.600 kJ/mol 05BRO/CUR + -analytic -20.93831E+0 00.00000E+0 41.55708E+2 00.00000E+0 00.00000E+0 ZrSiO4(s) -ZrSiO4 = - 4.000H+ + 1.000H4(SiO4) + 1.000Zr+4 - log_k -14.360 - delta_h -35.494 #kJ/mol - # Enthalpy of formation: -2034.2 #kJ/mol #05BRO/CUR - -analytic -2.05783E+1 0E+0 1.85398E+3 0E+0 0E+0 - -illite-FeIII -K0.85Fe0.25Al2.6Si3.15O10(OH)2 = 0.850K+ + 0.250Fe+3 + 2.600Al+3 - 9.400H+ + 3.150H4(SiO4) - 0.600H2O - log_k 12.370 - delta_h -262.282 #kJ/mol - # Enthalpy of formation: -5795.39 #kJ/mol #15BLA/VIE - -analytic -3.35798E+1 0E+0 1.36999E+4 0E+0 0E+0 - - +ZrSiO4 = -4.000H+ +1.000H4(SiO4) +1.000Zr+4 + log_k -14.36 + delta_h -35.494 #kJ/mol +# Enthalpy of formation: -2034.200 kJ/mol 05BRO/CUR + -analytic -20.57828E+0 00.00000E+0 18.53981E+2 00.00000E+0 00.00000E+0 # PMATCH GASES CH4(g) -CH4 = 2.000H+ + 1.000CO3-2 + 1.000H2O - 2.000O2 - log_k 130.910 - delta_h -861.919 #kJ/mol - # Enthalpy of formation: -74.873 #kJ/mol #98CHA - -analytic -2.00915E+1 0E+0 4.50211E+4 0E+0 0E+0 - -CO(g) -CO = 2.000H+ + 1.000CO3-2 - 1.000H2O - 0.500O2 - log_k 28.350 - delta_h -272.803 #kJ/mol - # Enthalpy of formation: -110.53 #kJ/mol #89COX/WAG - -analytic -1.9443E+1 0E+0 1.42495E+4 0E+0 0E+0 - -CO2(g) -CO2 = 2.000H+ + 1.000CO3-2 - 1.000H2O - log_k -18.150 - delta_h 4.110 #kJ/mol - # Enthalpy of formation: -393.51 #kJ/mol #89COX/WAG - -analytic -1.743E+1 0E+0 -2.1468E+2 0E+0 0E+0 +CH4 = +10.000H+ +8.000e- +1.000CO3-2 -3.000H2O + log_k -41.05 + delta_h +257.133 #kJ/mol +# Enthalpy of formation: -74.873 kJ/mol 98CHA + -analytic 39.97768E-1 00.00000E+0 -13.43099E+3 00.00000E+0 00.00000E+0 Cl2(g) -Cl2 = 2.000Cl- - 1.000H2O + 2.000H+ + 0.500O2 - log_k 2.990 - delta_h -54.397 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #89COX/WAG - -analytic -6.53993E+0 0E+0 2.84135E+3 0E+0 0E+0 +Cl2 = -2.000e- +2.000Cl- + log_k +45.98 + delta_h -334.160 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic -12.56232E+0 00.00000E+0 17.45439E+3 00.00000E+0 00.00000E+0 + +CO(g) +CO = +4.000H+ +2.000e- +1.000CO3-2 -2.000H2O + log_k -14.64 + delta_h +6.960 #kJ/mol +# Enthalpy of formation: -110.530 kJ/mol 89COX/WAG + -analytic -13.42066E+0 00.00000E+0 -36.35461E+1 00.00000E+0 00.00000E+0 + +CO2(g) +CO2 = +2.000H+ +1.000CO3-2 -1.000H2O + log_k -18.15 + delta_h +4.110 #kJ/mol +# Enthalpy of formation: -393.510 kJ/mol 89COX/WAG + -analytic -17.42996E+0 00.00000E+0 -21.46803E+1 00.00000E+0 00.00000E+0 + +F2(g) +F2 = -2.000e- +2.000F- + log_k +98.64 + delta_h -670.700 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic -18.86160E+0 00.00000E+0 35.03310E+3 00.00000E+0 00.00000E+0 H2(g) -H2 = 1.000H2O - 0.500O2 - log_k 42.990 - delta_h -279.763 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol #89COX/WAG - -analytic -6.0223E+0 0E+0 1.4613E+4 0E+0 0E+0 +H2 = +2.000H+ +2.000e- + log_k +0.00 + delta_h +0.000 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 H2O(g) -H2O = 1.000H2O - log_k 1.500 - delta_h -44.004 #kJ/mol - # Enthalpy of formation: -241.826 #kJ/mol #89COX/WAG - -analytic -6.20916E+0 0E+0 2.29849E+3 0E+0 0E+0 +H2O = +2.000H+ +2.000e- +0.500O2 + log_k -41.50 + delta_h +235.759 #kJ/mol +# Enthalpy of formation: -241.826 kJ/mol 89COX/WAG + -analytic -19.67962E-2 00.00000E+0 -12.31455E+3 00.00000E+0 00.00000E+0 H2S(g) -H2S = 1.000H+ + 1.000HS- - log_k -8.000 - delta_h 4.300 #kJ/mol - # Enthalpy of formation: -20.6 #kJ/mol #89COX/WAG - -analytic -7.24667E+0 0E+0 -2.24604E+2 0E+0 0E+0 +H2S = +1.000H+ +1.000HS- + log_k -8.00 + delta_h +4.300 #kJ/mol +# Enthalpy of formation: -20.600 kJ/mol 89COX/WAG + -analytic -72.46672E-1 00.00000E+0 -22.46046E+1 00.00000E+0 00.00000E+0 HCl(g) -HCl = 1.000H+ + 1.000Cl- - log_k 6.290 - delta_h -74.770 #kJ/mol - # Enthalpy of formation: -92.31 #kJ/mol #89COX/WAG - -analytic -6.80912E+0 0E+0 3.9055E+3 0E+0 0E+0 +HCl = +1.000H+ +1.000Cl- + log_k +6.29 + delta_h -74.770 #kJ/mol +# Enthalpy of formation: -92.310 kJ/mol 89COX/WAG + -analytic -68.09142E-1 00.00000E+0 39.05509E+2 00.00000E+0 00.00000E+0 + +Hg(CH3)2(g) +Hg(CH3)2 = -2.000H+ +2.000CH4 +1.000Hg+2 + log_k -8.82 #18BLA/BUR + -analytic -88.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + +N2(g) +N2 = +12.000H+ +10.000e- +2.000NO3- -6.000H2O + log_k -210.45 + delta_h +1301.280 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic 17.52447E+0 00.00000E+0 -67.97059E+3 00.00000E+0 00.00000E+0 O2(g) -O2 = 1.000O2 - log_k -2.900 - delta_h -12.134 #kJ/mol - # Enthalpy of formation: 0 #kJ/mol - -analytic -5.02578E+0 0E+0 6.33802E+2 0E+0 0E+0 +O2 = +1.000O2 + log_k -2.90 + delta_h -12.134 #kJ/mol +# Enthalpy of formation: +0.000 kJ/mol 89COX/WAG + -analytic -50.25786E-1 00.00000E+0 63.38030E+1 00.00000E+0 00.00000E+0 SO2(g) -SO2 = 2.000H+ + 1.000SO3-2 - 1.000H2O - log_k -8.940 - delta_h -48.420 #kJ/mol - # Enthalpy of formation: -296.81 #kJ/mol #89COX/WAG - -analytic -1.74228E+1 0E+0 2.52915E+3 0E+0 0E+0 +SO2 = +2.000H+ +1.000SO3-2 -1.000H2O + log_k -8.94 + delta_h -48.420 #kJ/mol +# Enthalpy of formation: -296.810 kJ/mol 89COX/WAG + -analytic -17.42282E+0 00.00000E+0 25.29153E+2 00.00000E+0 00.00000E+0 From 1c2e59be9af871f1e5757f2e83120651a4f0b043 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Sat, 18 May 2024 15:07:13 -0600 Subject: [PATCH 164/384] Tony revised latest sit with lsp --- sit.dat | 20524 +++++++++++++++++++++++++++--------------------------- 1 file changed, 10263 insertions(+), 10261 deletions(-) diff --git a/sit.dat b/sit.dat index adc5ecda..2e019ce2 100644 --- a/sit.dat +++ b/sit.dat @@ -1,10 +1,12 @@ + +SOLUTION_SPECIES # PHREEQC database # Thermodynamic database ANDRA - NWS - ONDRAF THERMO_CHIMIE (www.thermochimie-tdb.com) # Version 12a # Name : ThermoChimie project # Database date: 22/08/2023 0:00:00 # Generated by XCheck Tool v5.2.0 -# Comment: +# Comment: tidied with lsp.exe from https://phreeplot.org/lsp/lsp.html SOLUTION_MASTER_SPECIES #element species alk gfw_formula element_gfw @@ -749,13567 +751,13567 @@ ZrNO3+3 ClO4- 0.880 SOLUTION_SPECIES -+1.000Acetate- = Acetate- - log_k +0.00 +Acetate- = Acetate- + log_k 0 # Enthalpy of formation: -486.010 kJ/mol 82WAG/EVA - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Adipate-2 = Adipate-2 - log_k +0.00 - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Adipate-2 = Adipate-2 + log_k 0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Ag+ = Ag+ - log_k +0.00 +Ag+ = Ag+ + log_k 0 # Enthalpy of formation: +105.790 kJ/mol 95SIL/BID - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Al+3 = Al+3 - log_k +0.00 +Al+3 = Al+3 + log_k 0 # Enthalpy of formation: -538.400 kJ/mol 95POK/HEL - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Am+3 = Am+3 - log_k +0.00 +Am+3 = Am+3 + log_k 0 # Enthalpy of formation: -616.700 kJ/mol 95SIL/BID - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000AsO4-3 = AsO4-3 - log_k +0.00 +AsO4-3 = AsO4-3 + log_k 0 # Enthalpy of formation: -888.140 kJ/mol 09RAN/FUG - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000B(OH)4- = B(OH)4- - log_k +0.00 +B(OH)4- = B(OH)4- + log_k 0 # Enthalpy of formation: -1345.116 kJ/mol 99RAR/RAN - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Ba+2 = Ba+2 - log_k +0.00 +Ba+2 = Ba+2 + log_k 0 # Enthalpy of formation: -534.800 kJ/mol 95SIL/BID - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Be+2 = Be+2 - log_k +0.00 +Be+2 = Be+2 + log_k 0 # Enthalpy of formation: -382.800 kJ/mol 89COX/WAG - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Br- = Br- - log_k +0.00 +Br- = Br- + log_k 0 # Enthalpy of formation: -121.410 kJ/mol 95SIL/BID - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Ca+2 = Ca+2 - log_k +0.00 +Ca+2 = Ca+2 + log_k 0 # Enthalpy of formation: -543.000 kJ/mol 89COX/WAG - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Cd+2 = Cd+2 - log_k +0.00 +Cd+2 = Cd+2 + log_k 0 # Enthalpy of formation: -75.920 kJ/mol 89COX/WAG - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Cit-3 = Cit-3 - log_k +0.00 +Cit-3 = Cit-3 + log_k 0 # Enthalpy of formation: -1519.920 kJ/mol 05HUM/AND - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Cl- = Cl- - log_k +0.00 +Cl- = Cl- + log_k 0 # Enthalpy of formation: -167.080 kJ/mol 89COX/WAG - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Cm+3 = Cm+3 - log_k +0.00 +Cm+3 = Cm+3 + log_k 0 # Enthalpy of formation: -615.000 kJ/mol 01KON2 - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Co+2 = Co+2 - log_k +0.00 +Co+2 = Co+2 + log_k 0 # Enthalpy of formation: -57.600 kJ/mol 98PLY/ZHA1 - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000CO3-2 = CO3-2 - log_k +0.00 +CO3-2 = CO3-2 + log_k 0 # Enthalpy of formation: -675.230 kJ/mol 89COX/WAG - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000CrO4-2 = CrO4-2 - log_k +0.00 -# Enthalpy of formation: -879.000 kJ/mol - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +CrO4-2 = CrO4-2 + log_k 0 +# Enthalpy of formation: -879.000 kJ/mol + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Cs+ = Cs+ - log_k +0.00 +Cs+ = Cs+ + log_k 0 # Enthalpy of formation: -258.000 kJ/mol 95SIL/BID - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Cu+2 = Cu+2 - log_k +0.00 +Cu+2 = Cu+2 + log_k 0 # Enthalpy of formation: +64.900 kJ/mol 92GRE/FUG - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000e- = e- - log_k +0.00 +e- = e- + log_k 0 # Enthalpy of formation: +0.000 kJ/mol 89COX/WAG - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Edta-4 = Edta-4 - log_k +0.00 +Edta-4 = Edta-4 + log_k 0 # Enthalpy of formation: -1704.800 kJ/mol 05HUM/AND - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Eu+3 = Eu+3 - log_k +0.00 -# Enthalpy of formation: -605.325 kJ/mol - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Eu+3 = Eu+3 + log_k 0 +# Enthalpy of formation: -605.325 kJ/mol + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000F- = F- - log_k +0.00 +F- = F- + log_k 0 # Enthalpy of formation: -335.350 kJ/mol 95SIL/BID - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Fe+2 = Fe+2 - log_k +0.00 +Fe+2 = Fe+2 + log_k 0 # Enthalpy of formation: -90.295 kJ/mol 13LEM/BER - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000H+ = H+ - log_k +0.00 +H+ = H+ + log_k 0 # Enthalpy of formation: +0.000 kJ/mol 89COX/WAG - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000H2(PO4)- = H2(PO4)- - log_k +0.00 +H2(PO4)- = H2(PO4)- + log_k 0 # Enthalpy of formation: -1302.600 kJ/mol 89COX/WAG - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000H2O = H2O - log_k +0.00 +H2O = H2O + log_k 0 # Enthalpy of formation: -285.830 kJ/mol 89COX/WAG - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000H4(SiO4) = H4(SiO4) - log_k +0.00 -# Enthalpy of formation: -1461.194 kJ/mol - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +H4(SiO4) = H4(SiO4) + log_k 0 +# Enthalpy of formation: -1461.194 kJ/mol + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Hf+4 = Hf+4 - log_k +0.00 +Hf+4 = Hf+4 + log_k 0 # Enthalpy of formation: -628.910 kJ/mol 99VAS/LYT - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Hg+2 = Hg+2 - log_k +0.00 +Hg+2 = Hg+2 + log_k 0 # Enthalpy of formation: +170.210 kJ/mol 89COX/WAG - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000HGlu- = HGlu- - log_k +0.00 - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +HGlu- = HGlu- + log_k 0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000HIsa- = HIsa- - log_k +0.00 - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +HIsa- = HIsa- + log_k 0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Ho+3 = Ho+3 - log_k +0.00 -# Enthalpy of formation: -707.042 kJ/mol - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ho+3 = Ho+3 + log_k 0 +# Enthalpy of formation: -707.042 kJ/mol + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000I- = I- - log_k +0.00 +I- = I- + log_k 0 # Enthalpy of formation: -56.780 kJ/mol 92GRE/FUG - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000K+ = K+ - log_k +0.00 +K+ = K+ + log_k 0 # Enthalpy of formation: -252.140 kJ/mol 89COX/WAG - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Li+ = Li+ - log_k +0.00 +Li+ = Li+ + log_k 0 # Enthalpy of formation: -278.470 kJ/mol 92GRE/FUG - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Malonate-2 = Malonate-2 - log_k +0.00 - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Malonate-2 = Malonate-2 + log_k 0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Mg+2 = Mg+2 - log_k +0.00 +Mg+2 = Mg+2 + log_k 0 # Enthalpy of formation: -467.000 kJ/mol 89COX/WAG - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Mn+2 = Mn+2 - log_k +0.00 +Mn+2 = Mn+2 + log_k 0 # Enthalpy of formation: -220.800 kJ/mol 95ROB/HEM - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000MoO4-2 = MoO4-2 - log_k +0.00 +MoO4-2 = MoO4-2 + log_k 0 # Enthalpy of formation: -997.000 kJ/mol 74OHA - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Na+ = Na+ - log_k +0.00 +Na+ = Na+ + log_k 0 # Enthalpy of formation: -240.340 kJ/mol 92GRE/FUG (89COX/WAG) - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Nb(OH)6- = Nb(OH)6- - log_k +0.00 -# Enthalpy of formation: -1925.658 kJ/mol - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Nb(OH)6- = Nb(OH)6- + log_k 0 +# Enthalpy of formation: -1925.658 kJ/mol + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Ni+2 = Ni+2 - log_k +0.00 +Ni+2 = Ni+2 + log_k 0 # Enthalpy of formation: -55.012 kJ/mol 05GAM/BUG - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000NO3- = NO3- - log_k +0.00 +NO3- = NO3- + log_k 0 # Enthalpy of formation: -206.850 kJ/mol 92GRE/FUG - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000NpO2+2 = NpO2+2 - log_k +0.00 +NpO2+2 = NpO2+2 + log_k 0 # Enthalpy of formation: -860.733 kJ/mol 01LEM/FUG - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Nta-3 = Nta-3 - log_k +0.00 - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Nta-3 = Nta-3 + log_k 0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Ox-2 = Ox-2 - log_k +0.00 +Ox-2 = Ox-2 + log_k 0 # Enthalpy of formation: -830.660 kJ/mol 05HUM/AND - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Pa+4 = Pa+4 - log_k +0.00 +Pa+4 = Pa+4 + log_k 0 # Enthalpy of formation: -620.000 kJ/mol 85BAR/PAR - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Pb+2 = Pb+2 - log_k +0.00 +Pb+2 = Pb+2 + log_k 0 # Enthalpy of formation: +0.920 kJ/mol 89COX/WAG - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Pd+2 = Pd+2 - log_k +0.00 -# Enthalpy of formation: +189.889 kJ/mol - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Pd+2 = Pd+2 + log_k 0 +# Enthalpy of formation: +189.889 kJ/mol + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Phthalat-2 = Phthalat-2 - log_k +0.00 - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Phthalat-2 = Phthalat-2 + log_k 0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000PuO2+2 = PuO2+2 - log_k +0.00 +PuO2+2 = PuO2+2 + log_k 0 # Enthalpy of formation: -822.036 kJ/mol 01LEM/FUG - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Pyrophos-4 = Pyrophos-4 - log_k +0.00 - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Pyrophos-4 = Pyrophos-4 + log_k 0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Ra+2 = Ra+2 - log_k +0.00 -# Enthalpy of formation: -528.025 kJ/mol - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ra+2 = Ra+2 + log_k 0 +# Enthalpy of formation: -528.025 kJ/mol + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Rb+ = Rb+ - log_k +0.00 +Rb+ = Rb+ + log_k 0 # Enthalpy of formation: -251.120 kJ/mol 92GRE/FUG - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Sb(OH)3 = Sb(OH)3 - log_k +0.00 -# Enthalpy of formation: -773.893 kJ/mol - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Sb(OH)3 = Sb(OH)3 + log_k 0 +# Enthalpy of formation: -773.893 kJ/mol + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000SeO4-2 = SeO4-2 - log_k +0.00 +SeO4-2 = SeO4-2 + log_k 0 # Enthalpy of formation: -603.500 kJ/mol 05OLI/NOL - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Sm+3 = Sm+3 - log_k +0.00 -# Enthalpy of formation: -691.198 kJ/mol - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Sm+3 = Sm+3 + log_k 0 +# Enthalpy of formation: -691.198 kJ/mol + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Sn+2 = Sn+2 - log_k +0.00 +Sn+2 = Sn+2 + log_k 0 # Enthalpy of formation: -9.617 kJ/mol 12GAM/GAJ - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000SO4-2 = SO4-2 - log_k +0.00 +SO4-2 = SO4-2 + log_k 0 # Enthalpy of formation: -909.340 kJ/mol 89COX/WAG - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Sr+2 = Sr+2 - log_k +0.00 +Sr+2 = Sr+2 + log_k 0 # Enthalpy of formation: -550.900 kJ/mol 84BUS/PLUS - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Suberate-2 = Suberate-2 - log_k +0.00 - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Suberate-2 = Suberate-2 + log_k 0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Succinat-2 = Succinat-2 - log_k +0.00 - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Succinat-2 = Succinat-2 + log_k 0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000TcO(OH)2 = TcO(OH)2 - log_k +0.00 -# Enthalpy of formation: -749.243 kJ/mol - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +TcO(OH)2 = TcO(OH)2 + log_k 0 +# Enthalpy of formation: -749.243 kJ/mol + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Th+4 = Th+4 - log_k +0.00 +Th+4 = Th+4 + log_k 0 # Enthalpy of formation: -768.700 kJ/mol 09RAN/FUG - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000UO2+2 = UO2+2 - log_k +0.00 +UO2+2 = UO2+2 + log_k 0 # Enthalpy of formation: -1019.000 kJ/mol 92GRE/FUG - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Zn+2 = Zn+2 - log_k +0.00 +Zn+2 = Zn+2 + log_k 0 # Enthalpy of formation: -153.390 kJ/mol 92GRE/FUG - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Zr+4 = Zr+4 - log_k +0.00 +Zr+4 = Zr+4 + log_k 0 # Enthalpy of formation: -608.500 kJ/mol 05BRO/CUR - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Am+3 +1.000e- = Am+2 - log_k -38.88 #95SIL/BID - delta_h +262.076 #kJ/mol -# Enthalpy of formation: -354.624 kJ/mol - -analytic 70.33744E-1 00.00000E+0 -13.68918E+3 00.00000E+0 00.00000E+0 +Am+3 + e- = Am+2 + log_k -38.88 #95SIL/BID + delta_h 262.076 #kJ/mol +# Enthalpy of formation: -354.624 kJ/mol + -analytic 70.33744E-1 00E+0 -13.68918E+3 00E+0 00E+0 -+1.000Am+3 -1.000e- = Am+4 - log_k -44.21 - delta_h +210.700 #kJ/mol +Am+3 - e- = Am+4 + log_k -44.21 + delta_h 210.7 #kJ/mol # Enthalpy of formation: -406.000 kJ/mol 95SIL/BID - -analytic -72.96945E-1 00.00000E+0 -11.00563E+3 00.00000E+0 00.00000E+0 + -analytic -72.96945E-1 00E+0 -11.00563E+3 00E+0 00E+0 --4.000H+ +1.000Am+3 -2.000e- +2.000H2O = AmO2+ - log_k -58.37 - delta_h +384.100 #kJ/mol 95SIL/BID -# Enthalpy of formation: -804.260 kJ/mol - -analytic 89.21431E-1 00.00000E+0 -20.06294E+3 00.00000E+0 00.00000E+0 +- 4 H+ + Am+3 - 2 e- + 2 H2O = AmO2+ + log_k -58.37 + delta_h 384.1 #kJ/mol 95SIL/BID +# Enthalpy of formation: -804.260 kJ/mol + -analytic 89.21431E-1 00E+0 -20.06294E+3 00E+0 00E+0 --4.000H+ +1.000Am+3 -3.000e- +2.000H2O = AmO2+2 - log_k -85.35 - delta_h +537.600 #kJ/mol 95SIL/BID -# Enthalpy of formation: -650.760 kJ/mol - -analytic 88.33477E-1 00.00000E+0 -28.08080E+3 00.00000E+0 00.00000E+0 +- 4 H+ + Am+3 - 3 e- + 2 H2O = AmO2+2 + log_k -85.35 + delta_h 537.6 #kJ/mol 95SIL/BID +# Enthalpy of formation: -650.760 kJ/mol + -analytic 88.33477E-1 00E+0 -28.0808E+3 00E+0 00E+0 -+10.000H+ +8.000e- +1.000CO3-2 -3.000H2O = CH4 - log_k +37.93 - delta_h -270.166 #kJ/mol +10 H+ + 8 e- + CO3-2 - 3 H2O = CH4 + log_k 37.93 + delta_h -270.166 #kJ/mol # Enthalpy of formation: -87.906 kJ/mol 01SCH/SHO - -analytic -94.01051E-1 00.00000E+0 14.11175E+3 00.00000E+0 00.00000E+0 + -analytic -94.01051E-1 00E+0 14.11175E+3 00E+0 00E+0 -+8.000H+ +4.000e- +1.000CrO4-2 -4.000H2O = Cr+2 - log_k +67.22 #04CHI - delta_h -421.933 #kJ/mol -# Enthalpy of formation: -157.614 kJ/mol - -analytic -66.99489E-1 00.00000E+0 22.03910E+3 00.00000E+0 00.00000E+0 +8 H+ + 4 e- + CrO4-2 - 4 H2O = Cr+2 + log_k 67.22 #04CHI + delta_h -421.933 #kJ/mol +# Enthalpy of formation: -157.614 kJ/mol + -analytic -66.99489E-1 00E+0 22.0391E+3 00E+0 00E+0 -+8.000H+ +3.000e- +1.000CrO4-2 -4.000H2O = Cr+3 - log_k +73.62 - delta_h -504.820 #kJ/mol +8 H+ + 3 e- + CrO4-2 - 4 H2O = Cr+3 + log_k 73.62 + delta_h -504.82 #kJ/mol # Enthalpy of formation: -240.500 kJ/mol 04CHI - -analytic -14.82067E+0 00.00000E+0 26.36859E+3 00.00000E+0 00.00000E+0 + -analytic -14.82067E+0 00E+0 26.36859E+3 00E+0 00E+0 -+1.000Cu+2 +1.000e- = Cu+ - log_k +2.83 #80CIA/FER - delta_h +5.689 #kJ/mol -# Enthalpy of formation: +70.589 kJ/mol - -analytic 38.26670E-1 00.00000E+0 -29.71572E+1 00.00000E+0 00.00000E+0 +Cu+2 + e- = Cu+ + log_k 2.83 #80CIA/FER + delta_h 5.689 #kJ/mol +# Enthalpy of formation: +70.589 kJ/mol + -analytic 38.2667E-1 00E+0 -29.71572E+1 00E+0 00E+0 -+1.000Eu+3 +1.000e- = Eu+2 - log_k -5.97 - delta_h +77.723 #kJ/mol +Eu+3 + e- = Eu+2 + log_k -5.97 + delta_h 77.723 #kJ/mol # Enthalpy of formation: -527.602 kJ/mol 92JOH/OEL - -analytic 76.46485E-1 00.00000E+0 -40.59755E+2 00.00000E+0 00.00000E+0 + -analytic 76.46485E-1 00E+0 -40.59755E+2 00E+0 00E+0 -+1.000Fe+2 -1.000e- = Fe+3 - log_k -13.05 - delta_h +40.239 #kJ/mol +Fe+2 - e- = Fe+3 + log_k -13.05 + delta_h 40.239 #kJ/mol # Enthalpy of formation: -50.056 kJ/mol 13LEM/BER - -analytic -60.00430E-1 00.00000E+0 -21.01829E+2 00.00000E+0 00.00000E+0 + -analytic -60.0043E-1 00E+0 -21.01829E+2 00E+0 00E+0 -+2.000H+ +2.000e- = H2 - log_k -3.08 - delta_h -4.200 #kJ/mol +2 H+ + 2 e- = H2 + log_k -3.08 + delta_h -4.2 #kJ/mol # Enthalpy of formation: -4.200 kJ/mol 82WAG/EVA - -analytic -38.15808E-1 00.00000E+0 21.93813E+1 00.00000E+0 00.00000E+0 + -analytic -38.15808E-1 00E+0 21.93813E+1 00E+0 00E+0 -+5.000H+ +2.000e- +1.000AsO4-3 -1.000H2O = H3(AsO3) - log_k +40.02 - delta_h -139.890 #kJ/mol +5 H+ + 2 e- + AsO4-3 - H2O = H3(AsO3) + log_k 40.02 + delta_h -139.89 #kJ/mol # Enthalpy of formation: -742.200 kJ/mol 09RAN/FUG - -analytic 15.51232E+0 00.00000E+0 73.06964E+2 00.00000E+0 00.00000E+0 + -analytic 15.51232E+0 00E+0 73.06964E+2 00E+0 00E+0 -+2.000e- +2.000Hg+2 = Hg2+2 - log_k +30.79 - delta_h -173.600 #kJ/mol +2 e- + 2 Hg+2 = Hg2+2 + log_k 30.79 + delta_h -173.6 #kJ/mol # Enthalpy of formation: +166.820 kJ/mol 85BAR/PAR - -analytic 37.65855E-2 00.00000E+0 90.67760E+2 00.00000E+0 00.00000E+0 + -analytic 37.65855E-2 00E+0 90.6776E+2 00E+0 00E+0 -+9.000H+ +8.000e- +1.000SO4-2 -4.000H2O = HS- - log_k +33.69 - delta_h -250.280 #kJ/mol +9 H+ + 8 e- + SO4-2 - 4 H2O = HS- + log_k 33.69 + delta_h -250.28 #kJ/mol # Enthalpy of formation: -16.300 kJ/mol 89COX/WAG - -analytic -10.15717E+0 00.00000E+0 13.07303E+3 00.00000E+0 00.00000E+0 + -analytic -10.15717E+0 00E+0 13.07303E+3 00E+0 00E+0 -+9.000H+ +8.000e- +1.000SeO4-2 -4.000H2O = HSe- - log_k +81.57 - delta_h -525.520 #kJ/mol +9 H+ + 8 e- + SeO4-2 - 4 H2O = HSe- + log_k 81.57 + delta_h -525.52 #kJ/mol # Enthalpy of formation: +14.300 kJ/mol 05OLI/NOL - -analytic -10.49715E+0 00.00000E+0 27.44982E+3 00.00000E+0 00.00000E+0 + -analytic -10.49715E+0 00E+0 27.44982E+3 00E+0 00E+0 --6.000H+ -6.000e- +1.000I- +3.000H2O = IO3- - log_k -111.56 - delta_h +694.570 #kJ/mol +- 6 H+ - 6 e- + I- + 3 H2O = IO3- + log_k -111.56 + delta_h 694.57 #kJ/mol # Enthalpy of formation: -219.700 kJ/mol 92GRE/FUG - -analytic 10.12344E+0 00.00000E+0 -36.27992E+3 00.00000E+0 00.00000E+0 + -analytic 10.12344E+0 00E+0 -36.27992E+3 00E+0 00E+0 -+9.000H+ +8.000e- +1.000NO3- -3.000H2O = NH3 - log_k +109.90 - delta_h -731.810 #kJ/mol +9 H+ + 8 e- + NO3- - 3 H2O = NH3 + log_k 109.9 + delta_h -731.81 #kJ/mol # Enthalpy of formation: -81.170 kJ/mol 95SIL/BID - -analytic -18.30761E+0 00.00000E+0 38.22510E+3 00.00000E+0 00.00000E+0 + -analytic -18.30761E+0 00E+0 38.2251E+3 00E+0 00E+0 -+1.000Np+4 +1.000e- = Np+3 - log_k +3.70 - delta_h +28.838 #kJ/mol +Np+4 + e- = Np+3 + log_k 3.7 + delta_h 28.838 #kJ/mol # Enthalpy of formation: -527.184 kJ/mol 01LEM/FUG - -analytic 87.52201E-1 00.00000E+0 -15.06314E+2 00.00000E+0 00.00000E+0 + -analytic 87.52201E-1 00E+0 -15.06314E+2 00E+0 00E+0 -+1.000NpO2+ +4.000H+ +1.000e- -2.000H2O = Np+4 - log_k +10.21 - delta_h -149.501 #kJ/mol +NpO2+ + 4 H+ + e- - 2 H2O = Np+4 + log_k 10.21 + delta_h -149.501 #kJ/mol # Enthalpy of formation: -556.022 kJ/mol 03GUI/FAN - -analytic -15.98145E+0 00.00000E+0 78.08981E+2 00.00000E+0 00.00000E+0 + -analytic -15.98145E+0 00E+0 78.08981E+2 00E+0 00E+0 -+1.000NpO2+2 +1.000e- = NpO2+ - log_k +19.59 - delta_h -117.448 #kJ/mol +NpO2+2 + e- = NpO2+ + log_k 19.59 + delta_h -117.448 #kJ/mol # Enthalpy of formation: -978.181 kJ/mol 01LEM/FUG - -analytic -98.60064E-2 00.00000E+0 61.34736E+2 00.00000E+0 00.00000E+0 + -analytic -98.60064E-2 00E+0 61.34736E+2 00E+0 00E+0 --4.000H+ -4.000e- +2.000H2O = O2 - log_k -85.99 - delta_h +559.526 #kJ/mol +- 4 H+ - 4 e- + 2 H2O = O2 + log_k -85.99 + delta_h 559.526 #kJ/mol # Enthalpy of formation: -12.134 kJ/mol 89SHO/HEL (Uncertainty in order to cover available data) - -analytic 12.03475E+0 00.00000E+0 -29.22608E+3 00.00000E+0 00.00000E+0 + -analytic 12.03475E+0 00E+0 -29.22608E+3 00E+0 00E+0 --4.000H+ -1.000e- +1.000Pa+4 +2.000H2O = PaO2+ - log_k +4.22 #85BAR/PAR, 76BAE/MES - -analytic 42.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 4 H+ - e- + Pa+4 + 2 H2O = PaO2+ + log_k 4.22 #85BAR/PAR, 76BAE/MES + -analytic 42.2E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Pu+4 +1.000e- = Pu+3 - log_k +17.69 - delta_h -51.895 #kJ/mol +Pu+4 + e- = Pu+3 + log_k 17.69 + delta_h -51.895 #kJ/mol # Enthalpy of formation: -591.790 kJ/mol 01LEM/FUG - -analytic 85.98386E-1 00.00000E+0 27.10665E+2 00.00000E+0 00.00000E+0 + -analytic 85.98386E-1 00E+0 27.10665E+2 00E+0 00E+0 -+1.000PuO2+ +4.000H+ +1.000e- -2.000H2O = Pu+4 - log_k +17.45 - delta_h -201.428 #kJ/mol +PuO2+ + 4 H+ + e- - 2 H2O = Pu+4 + log_k 17.45 + delta_h -201.428 #kJ/mol # Enthalpy of formation: -539.895 kJ/mol 01LEM/FUG - -analytic -17.83867E+0 00.00000E+0 10.52132E+3 00.00000E+0 00.00000E+0 + -analytic -17.83867E+0 00E+0 10.52132E+3 00E+0 00E+0 -+1.000PuO2+2 +1.000e- = PuO2+ - log_k +15.82 - delta_h -88.091 #kJ/mol 01LEM/FUG -# Enthalpy of formation: -910.127 kJ/mol - -analytic 38.71193E-2 00.00000E+0 46.01313E+2 00.00000E+0 00.00000E+0 +PuO2+2 + e- = PuO2+ + log_k 15.82 + delta_h -88.091 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -910.127 kJ/mol + -analytic 38.71193E-2 00E+0 46.01313E+2 00E+0 00E+0 -+10.000H+ +8.000e- +2.000SO4-2 -5.000H2O = S2O3-2 - log_k +38.57 - delta_h -262.756 #kJ/mol +10 H+ + 8 e- + 2 SO4-2 - 5 H2O = S2O3-2 + log_k 38.57 + delta_h -262.756 #kJ/mol # Enthalpy of formation: -652.286 kJ/mol 04CHI - -analytic -74.62875E-1 00.00000E+0 13.72470E+3 00.00000E+0 00.00000E+0 + -analytic -74.62875E-1 00E+0 13.7247E+3 00E+0 00E+0 -+8.000H+ +6.000e- +2.000SO4-2 -4.000H2O = S2O4-2 - log_k +10.70 - delta_h -78.140 #kJ/mol +8 H+ + 6 e- + 2 SO4-2 - 4 H2O = S2O4-2 + log_k 10.7 + delta_h -78.14 #kJ/mol # Enthalpy of formation: -753.500 kJ/mol 82WAG/EVA - -analytic -29.89540E-1 00.00000E+0 40.81536E+2 00.00000E+0 00.00000E+0 + -analytic -29.8954E-1 00E+0 40.81536E+2 00E+0 00E+0 --2.000H+ -2.000e- +1.000Sb(OH)3 +2.000H2O = Sb(OH)5 - log_k -21.74 #99LOT/OCH recalculated - -analytic -21.74000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 2 H+ - 2 e- + Sb(OH)3 + 2 H2O = Sb(OH)5 + log_k -21.74 #99LOT/OCH recalculated + -analytic -21.74E+0 00E+0 00E+0 00E+0 00E+0 -+2.000H+ +2.000e- +1.000SeO4-2 -1.000H2O = SeO3-2 - log_k +28.04 #05OLI/NOL - delta_h -189.490 #kJ/mol +2 H+ + 2 e- + SeO4-2 - H2O = SeO3-2 + log_k 28.04 #05OLI/NOL + delta_h -189.49 #kJ/mol # Enthalpy of formation: -507.160 kJ/mol 05OLI/NOL - -analytic -51.57223E-1 00.00000E+0 98.97752E+2 00.00000E+0 00.00000E+0 + -analytic -51.57223E-1 00E+0 98.97752E+2 00E+0 00E+0 -+1.000Sn+2 -2.000e- = Sn+4 - log_k -12.98 #12GAM/GAJ; Eº=0.384V for Sn2+/Sn4+ reaction ( I=0) - delta_h -21.894 #kJ/mol -# Enthalpy of formation: -31.511 kJ/mol - -analytic -16.81566E+0 00.00000E+0 11.43603E+2 00.00000E+0 00.00000E+0 +Sn+2 - 2 e- = Sn+4 + log_k -12.98 #12GAM/GAJ; Eº = 0.384 VforSn2 + / Sn4 + reaction (I=0) + delta_h -21.894 #kJ/mol +# Enthalpy of formation: -31.511 kJ/mol + -analytic -16.81566E+0 00E+0 11.43603E+2 00E+0 00E+0 -+2.000H+ +2.000e- +1.000SO4-2 -1.000H2O = SO3-2 - log_k -3.62 - delta_h -7.550 #kJ/mol +2 H+ + 2 e- + SO4-2 - H2O = SO3-2 + log_k -3.62 + delta_h -7.55 #kJ/mol # Enthalpy of formation: -631.060 kJ/mol 85GOL/PAR - -analytic -49.42703E-1 00.00000E+0 39.43640E+1 00.00000E+0 00.00000E+0 + -analytic -49.42703E-1 00E+0 39.4364E+1 00E+0 00E+0 -+1.000TcO(OH)2 -4.000H+ -3.000e- +1.000H2O = TcO4- - log_k -30.17 - delta_h +305.673 #kJ/mol +TcO(OH)2 - 4 H+ - 3 e- + H2O = TcO4- + log_k -30.17 + delta_h 305.673 #kJ/mol # Enthalpy of formation: -729.400 kJ/mol 99RAR/RAN - -analytic 23.38161E+0 00.00000E+0 -15.96641E+3 00.00000E+0 00.00000E+0 + -analytic 23.38161E+0 00E+0 -15.96641E+3 00E+0 00E+0 -+1.000e- +1.000TcO4- = TcO4-2 - log_k -10.80 #20GRE/GAO - -analytic -10.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +e- + TcO4- = TcO4-2 + log_k -10.8 #20GRE/GAO + -analytic -10.8E+0 00E+0 00E+0 00E+0 00E+0 -+1.000U+4 +1.000e- = U+3 - log_k -9.35 #92GRE/FUG - delta_h +102.100 #kJ/mol 92GRE/FUG -# Enthalpy of formation: -489.100 kJ/mol - -analytic 85.37152E-1 00.00000E+0 -53.33054E+2 00.00000E+0 00.00000E+0 +U+4 + e- = U+3 + log_k -9.35 #92GRE/FUG + delta_h 102.1 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -489.100 kJ/mol + -analytic 85.37152E-1 00E+0 -53.33054E+2 00E+0 00E+0 -+1.000UO2+2 +4.000H+ +2.000e- -2.000H2O = U+4 - log_k +9.04 #92GRE/FUG - delta_h -143.860 #kJ/mol +UO2+2 + 4 H+ + 2 e- - 2 H2O = U+4 + log_k 9.04 #92GRE/FUG + delta_h -143.86 #kJ/mol # Enthalpy of formation: -591.200 kJ/mol 92GRE/FUG - -analytic -16.16319E+0 00.00000E+0 75.14331E+2 00.00000E+0 00.00000E+0 + -analytic -16.16319E+0 00E+0 75.14331E+2 00E+0 00E+0 -+1.000UO2+2 +1.000e- = UO2+ - log_k +1.48 - delta_h -6.127 #kJ/mol -# Enthalpy of formation: -1025.127 kJ/mol - -analytic 40.65957E-2 00.00000E+0 32.00355E+1 00.00000E+0 00.00000E+0 +UO2+2 + e- = UO2+ + log_k 1.48 + delta_h -6.127 #kJ/mol +# Enthalpy of formation: -1025.127 kJ/mol + -analytic 40.65957E-2 00E+0 32.00355E+1 00E+0 00E+0 --2.000H+ +2.000CH4 +1.000Hg+2 = (CH3)2Hg - log_k +19.00 #18BLA/BUR - -analytic 19.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 2 H+ + 2 CH4 + Hg+2 = (CH3)2Hg + log_k 19 #18BLA/BUR + -analytic 19E+0 00E+0 00E+0 00E+0 00E+0 --3.000H+ +2.000CH4 +1.000H2O +2.000Hg+2 = (CH3Hg)2OH+ - log_k +3.85 #18BLA/BUR - -analytic 38.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 3 H+ + 2 CH4 + H2O + 2 Hg+2 = (CH3Hg)2OH+ + log_k 3.85 #18BLA/BUR + -analytic 38.5E-1 00E+0 00E+0 00E+0 00E+0 -+2.000NpO2+2 -2.000H+ +2.000H2O = (NpO2)2(OH)2+2 - log_k -6.27 #01LEM/FUG - delta_h +44.995 #kJ/mol -# Enthalpy of formation: -2248.130 kJ/mol - -analytic 16.12786E-1 00.00000E+0 -23.50253E+2 00.00000E+0 00.00000E+0 +2 NpO2+2 - 2 H+ + 2 H2O = (NpO2)2(OH)2+2 + log_k -6.27 #01LEM/FUG + delta_h 44.995 #kJ/mol +# Enthalpy of formation: -2248.130 kJ/mol + -analytic 16.12786E-1 00E+0 -23.50253E+2 00E+0 00E+0 -+2.000NpO2+2 -3.000H+ +1.000CO3-2 +3.000H2O = (NpO2)2CO3(OH)3- - log_k -1.78 #20GRE/GAO - -analytic -17.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 NpO2+2 - 3 H+ + CO3-2 + 3 H2O = (NpO2)2CO3(OH)3- + log_k -1.78 #20GRE/GAO + -analytic -17.8E-1 00E+0 00E+0 00E+0 00E+0 -+3.000NpO2+2 +6.000CO3-2 = (NpO2)3(CO3)6-6 - log_k +51.43 #20GRE/GAO - -analytic 51.43000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +3 NpO2+2 + 6 CO3-2 = (NpO2)3(CO3)6-6 + log_k 51.43 #20GRE/GAO + -analytic 51.43E+0 00E+0 00E+0 00E+0 00E+0 -+3.000NpO2+2 -5.000H+ +5.000H2O = (NpO2)3(OH)5+ - log_k -17.12 #01LEM/FUG - delta_h +110.665 #kJ/mol -# Enthalpy of formation: -3900.682 kJ/mol - -analytic 22.67676E-1 00.00000E+0 -57.80436E+2 00.00000E+0 00.00000E+0 +3 NpO2+2 - 5 H+ + 5 H2O = (NpO2)3(OH)5+ + log_k -17.12 #01LEM/FUG + delta_h 110.665 #kJ/mol +# Enthalpy of formation: -3900.682 kJ/mol + -analytic 22.67676E-1 00E+0 -57.80436E+2 00E+0 00E+0 -+2.000PuO2+2 -2.000H+ +2.000H2O = (PuO2)2(OH)2+2 - log_k -7.50 #01LEM/FUG - delta_h +43.583 #kJ/mol -# Enthalpy of formation: -2172.149 kJ/mol - -analytic 13.54138E-2 00.00000E+0 -22.76499E+2 00.00000E+0 00.00000E+0 +2 PuO2+2 - 2 H+ + 2 H2O = (PuO2)2(OH)2+2 + log_k -7.5 #01LEM/FUG + delta_h 43.583 #kJ/mol +# Enthalpy of formation: -2172.149 kJ/mol + -analytic 13.54138E-2 00E+0 -22.76499E+2 00E+0 00E+0 -+3.000PuO2+2 +6.000CO3-2 = (PuO2)3(CO3)6-6 - log_k +51.00 #20GRE/GAO - -analytic 51.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +3 PuO2+2 + 6 CO3-2 = (PuO2)3(CO3)6-6 + log_k 51 #20GRE/GAO + -analytic 51E+0 00E+0 00E+0 00E+0 00E+0 -+11.000UO2+2 -12.000H+ +6.000CO3-2 +12.000H2O = (UO2)11(CO3)6(OH)12-2 - log_k +36.40 #03GUI/FAN - -analytic 36.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +11 UO2+2 - 12 H+ + 6 CO3-2 + 12 H2O = (UO2)11(CO3)6(OH)12-2 + log_k 36.4 #03GUI/FAN + -analytic 36.4E+0 00E+0 00E+0 00E+0 00E+0 -+2.000UO2+2 -1.000H+ +1.000Cit-3 +1.000H2O = (UO2)2(Cit)(OH) - log_k +9.65 #12BER/CRE - -analytic 96.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 UO2+2 - H+ + Cit-3 + H2O = (UO2)2(Cit)(OH) + log_k 9.65 #12BER/CRE + -analytic 96.5E-1 00E+0 00E+0 00E+0 00E+0 -+2.000UO2+2 -2.000H+ +1.000Cit-3 +2.000H2O = (UO2)2(Cit)(OH)2- - log_k +5.30 #12BER/CRE - -analytic 53.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 UO2+2 - 2 H+ + Cit-3 + 2 H2O = (UO2)2(Cit)(OH)2- + log_k 5.3 #12BER/CRE + -analytic 53E-1 00E+0 00E+0 00E+0 00E+0 -+2.000UO2+2 -2.000H+ +2.000Cit-3 +2.000H2O = (UO2)2(Cit)2(OH)2-4 - log_k +9.29 #12BER/CRE - -analytic 92.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 UO2+2 - 2 H+ + 2 Cit-3 + 2 H2O = (UO2)2(Cit)2(OH)2-4 + log_k 9.29 #12BER/CRE + -analytic 92.9E-1 00E+0 00E+0 00E+0 00E+0 -+2.000UO2+2 -1.000H+ +2.000Cit-3 +1.000H2O = (UO2)2(Cit)2(OH)-3 - log_k +16.04 #12BER/CRE - -analytic 16.04000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 UO2+2 - H+ + 2 Cit-3 + H2O = (UO2)2(Cit)2(OH)-3 + log_k 16.04 #12BER/CRE + -analytic 16.04E+0 00E+0 00E+0 00E+0 00E+0 -+2.000UO2+2 +2.000Cit-3 = (UO2)2(Cit)2-2 - log_k +21.30 #05HUM/AND - -analytic 21.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 UO2+2 + 2 Cit-3 = (UO2)2(Cit)2-2 + log_k 21.3 #05HUM/AND + -analytic 21.3E+0 00E+0 00E+0 00E+0 00E+0 -+2.000UO2+2 -3.000H+ +1.000CO3-2 +3.000H2O = (UO2)2(CO3)(OH)3- - log_k -0.86 #03GUI/FAN - -analytic -86.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 UO2+2 - 3 H+ + CO3-2 + 3 H2O = (UO2)2(CO3)(OH)3- + log_k -0.86 #03GUI/FAN + -analytic -86E-2 00E+0 00E+0 00E+0 00E+0 -+2.000UO2+2 +1.000Edta-4 = (UO2)2(Edta) - log_k +20.60 #05HUM/AND - -analytic 20.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 UO2+2 + Edta-4 = (UO2)2(Edta) + log_k 20.6 #05HUM/AND + -analytic 20.6E+0 00E+0 00E+0 00E+0 00E+0 -+2.000UO2+2 +1.000NpO2+2 +6.000CO3-2 = (UO2)2(NpO2)(CO3)6-6 - log_k +53.59 #01LEM/FUG - -analytic 53.59000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 UO2+2 + NpO2+2 + 6 CO3-2 = (UO2)2(NpO2)(CO3)6-6 + log_k 53.59 #01LEM/FUG + -analytic 53.59E+0 00E+0 00E+0 00E+0 00E+0 -+2.000UO2+2 -1.000H+ +1.000H2O = (UO2)2(OH)+3 - log_k -2.70 #92GRE/FUG - delta_h +14.353 #kJ/mol -# Enthalpy of formation: -2309.477 kJ/mol - -analytic -18.54623E-2 00.00000E+0 -74.97094E+1 00.00000E+0 00.00000E+0 +2 UO2+2 - H+ + H2O = (UO2)2(OH)+3 + log_k -2.7 #92GRE/FUG + delta_h 14.353 #kJ/mol +# Enthalpy of formation: -2309.477 kJ/mol + -analytic -18.54623E-2 00E+0 -74.97094E+1 00E+0 00E+0 -+2.000UO2+2 -2.000H+ +2.000H2O = (UO2)2(OH)2+2 - log_k -5.62 #20GRE/GAO - delta_h +47.800 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -2561.860 kJ/mol - -analytic 27.54201E-1 00.00000E+0 -24.96768E+2 00.00000E+0 00.00000E+0 +2 UO2+2 - 2 H+ + 2 H2O = (UO2)2(OH)2+2 + log_k -5.62 #20GRE/GAO + delta_h 47.8 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2561.860 kJ/mol + -analytic 27.54201E-1 00E+0 -24.96768E+2 00E+0 00E+0 -+3.000UO2+2 -3.000H+ +1.000CO3-2 +3.000H2O = (UO2)3(CO3)(OH)3+ - log_k +0.66 #03GUI/FAN - delta_h +81.131 #kJ/mol -# Enthalpy of formation: -4508.589 kJ/mol - -analytic 14.87354E+0 00.00000E+0 -42.37767E+2 00.00000E+0 00.00000E+0 +3 UO2+2 - 3 H+ + CO3-2 + 3 H2O = (UO2)3(CO3)(OH)3+ + log_k 0.66 #03GUI/FAN + delta_h 81.131 #kJ/mol +# Enthalpy of formation: -4508.589 kJ/mol + -analytic 14.87354E+0 00E+0 -42.37767E+2 00E+0 00E+0 -+3.000UO2+2 +6.000CO3-2 = (UO2)3(CO3)6-6 - log_k +54.00 #92GRE/FUG - delta_h -62.700 #kJ/mol 92GRE/FUG -# Enthalpy of formation: -7171.080 kJ/mol - -analytic 43.01543E+0 00.00000E+0 32.75049E+2 00.00000E+0 00.00000E+0 +3 UO2+2 + 6 CO3-2 = (UO2)3(CO3)6-6 + log_k 54 #92GRE/FUG + delta_h -62.7 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -7171.080 kJ/mol + -analytic 43.01543E+0 00E+0 32.75049E+2 00E+0 00E+0 -+3.000UO2+2 -4.000H+ +4.000H2O = (UO2)3(OH)4+2 - log_k -11.90 #92GRE/FUG - delta_h +99.200 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -4101.120 kJ/mol - -analytic 54.79094E-1 00.00000E+0 -51.81577E+2 00.00000E+0 00.00000E+0 +3 UO2+2 - 4 H+ + 4 H2O = (UO2)3(OH)4+2 + log_k -11.9 #92GRE/FUG + delta_h 99.2 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -4101.120 kJ/mol + -analytic 54.79094E-1 00E+0 -51.81577E+2 00E+0 00E+0 -+3.000UO2+2 -5.000H+ +5.000H2O = (UO2)3(OH)5+ - log_k -15.55 #92GRE/FUG - delta_h +120.700 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -4365.450 kJ/mol - -analytic 55.95732E-1 00.00000E+0 -63.04600E+2 00.00000E+0 00.00000E+0 +3 UO2+2 - 5 H+ + 5 H2O = (UO2)3(OH)5+ + log_k -15.55 #92GRE/FUG + delta_h 120.7 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -4365.450 kJ/mol + -analytic 55.95732E-1 00E+0 -63.046E+2 00E+0 00E+0 -+3.000UO2+2 -7.000H+ +7.000H2O = (UO2)3(OH)7- - log_k -32.20 #92SAN/BRU - delta_h +227.015 #kJ/mol -# Enthalpy of formation: -4830.794 kJ/mol - -analytic 75.71321E-1 00.00000E+0 -11.85782E+3 00.00000E+0 00.00000E+0 +3 UO2+2 - 7 H+ + 7 H2O = (UO2)3(OH)7- + log_k -32.2 #92SAN/BRU + delta_h 227.015 #kJ/mol +# Enthalpy of formation: -4830.794 kJ/mol + -analytic 75.71321E-1 00E+0 -11.85782E+3 00E+0 00E+0 -+4.000UO2+2 -7.000H+ +7.000H2O = (UO2)4(OH)7+ - log_k -21.90 #92GRE/FUG - -analytic -21.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +4 UO2+2 - 7 H+ + 7 H2O = (UO2)4(OH)7+ + log_k -21.9 #92GRE/FUG + -analytic -21.9E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Ag+ +2.000CO3-2 = Ag(CO3)2-3 - log_k +2.16 #97SVE/SHO - delta_h -28.115 #kJ/mol -# Enthalpy of formation: -1272.786 kJ/mol - -analytic -27.65537E-1 00.00000E+0 14.68549E+2 00.00000E+0 00.00000E+0 +Ag+ + 2 CO3-2 = Ag(CO3)2-3 + log_k 2.16 #97SVE/SHO + delta_h -28.115 #kJ/mol +# Enthalpy of formation: -1272.786 kJ/mol + -analytic -27.65537E-1 00E+0 14.68549E+2 00E+0 00E+0 -+1.000Ag+ +1.000HS- = Ag(HS) - log_k +14.05 #74NAU/RYZ in 91BAL/NOR; Uncertainty to include available data. - delta_h -78.811 #kJ/mol -# Enthalpy of formation: +10.679 kJ/mol - -analytic 24.29055E-2 00.00000E+0 41.16585E+2 00.00000E+0 00.00000E+0 +Ag+ + HS- = Ag(HS) + log_k 14.05 #74NAU/RYZ in 91BAL/NOR; Uncertainty to include available data. + delta_h -78.811 #kJ/mol +# Enthalpy of formation: +10.679 kJ/mol + -analytic 24.29055E-2 00E+0 41.16585E+2 00E+0 00E+0 -+1.000Ag+ +2.000HS- = Ag(HS)2- - log_k +18.45 #74NAU/RYZ in 91BAL/NOR; Uncertainty to include available data. - delta_h -105.805 #kJ/mol -# Enthalpy of formation: -32.615 kJ/mol - -analytic -86.24032E-3 00.00000E+0 55.26580E+2 00.00000E+0 00.00000E+0 +Ag+ + 2 HS- = Ag(HS)2- + log_k 18.45 #74NAU/RYZ in 91BAL/NOR; Uncertainty to include available data. + delta_h -105.805 #kJ/mol +# Enthalpy of formation: -32.615 kJ/mol + -analytic -86.24032E-3 00E+0 55.2658E+2 00E+0 00E+0 -+1.000Ag+ -1.000H+ +1.000H2O = Ag(OH) - log_k -12.00 #76BAE/MES - delta_h +47.198 #kJ/mol -# Enthalpy of formation: -132.842 kJ/mol - -analytic -37.31265E-1 00.00000E+0 -24.65323E+2 00.00000E+0 00.00000E+0 +Ag+ - H+ + H2O = Ag(OH) + log_k -12 #76BAE/MES + delta_h 47.198 #kJ/mol +# Enthalpy of formation: -132.842 kJ/mol + -analytic -37.31265E-1 00E+0 -24.65323E+2 00E+0 00E+0 -+1.000Ag+ -2.000H+ +2.000H2O = Ag(OH)2- - log_k -24.00 #76BAE/MES - delta_h +111.635 #kJ/mol -# Enthalpy of formation: -354.235 kJ/mol - -analytic -44.42388E-1 00.00000E+0 -58.31102E+2 00.00000E+0 00.00000E+0 +Ag+ - 2 H+ + 2 H2O = Ag(OH)2- + log_k -24 #76BAE/MES + delta_h 111.635 #kJ/mol +# Enthalpy of formation: -354.235 kJ/mol + -analytic -44.42388E-1 00E+0 -58.31102E+2 00E+0 00E+0 -+1.000Ag+ +1.000S2O3-2 = Ag(S2O3)- - log_k +9.23 #74BEL/MAR in 82HÖG - delta_h -58.994 #kJ/mol 74BEL/MAR in 82HÖG -# Enthalpy of formation: -605.490 kJ/mol - -analytic -11.05305E-1 00.00000E+0 30.81471E+2 00.00000E+0 00.00000E+0 +Ag+ + S2O3-2 = Ag(S2O3)- + log_k 9.23 #74BEL/MAR in 82HÖG + delta_h -58.994 #kJ/mol 74BEL/MAR in 82HÖG +# Enthalpy of formation: -605.490 kJ/mol + -analytic -11.05305E-1 00E+0 30.81471E+2 00E+0 00E+0 -+1.000Ag+ +2.000S2O3-2 = Ag(S2O3)2-3 - log_k +13.64 #72POU/RIG in 82HÖG - delta_h -86.918 #kJ/mol +Ag+ + 2 S2O3-2 = Ag(S2O3)2-3 + log_k 13.64 #72POU/RIG in 82HÖG + delta_h -86.918 #kJ/mol # Enthalpy of formation: -1285.700 kJ/mol 82WAG/EVA - -analytic -15.87380E-1 00.00000E+0 45.40043E+2 00.00000E+0 00.00000E+0 + -analytic -15.8738E-1 00E+0 45.40043E+2 00E+0 00E+0 -+1.000Ag+ +1.000SeO3-2 = Ag(SeO3)- - log_k +3.20 #Data from 68MEH and 69MEH/GUB in 05OLI/NOL corrected to I=0 by DH - -analytic 32.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ag+ + SeO3-2 = Ag(SeO3)- + log_k +3.20 #Data from 68MEH and 69MEH/GUB in 05OLI/NOL corrected to I=0 by DH + -analytic 32E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Ag+ +1.000SO3-2 = Ag(SO3)- - log_k +5.43 - -analytic 54.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ag+ + SO3-2 = Ag(SO3)- + log_k 5.43 + -analytic 54.3E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Ag+ +1.000SO4-2 = Ag(SO4)- - log_k +1.38 - delta_h +4.645 #kJ/mol -# Enthalpy of formation: -798.904 kJ/mol - -analytic 21.93769E-1 00.00000E+0 -24.26252E+1 00.00000E+0 00.00000E+0 +Ag+ + SO4-2 = Ag(SO4)- + log_k 1.38 + delta_h 4.645 #kJ/mol +# Enthalpy of formation: -798.904 kJ/mol + -analytic 21.93769E-1 00E+0 -24.26252E+1 00E+0 00E+0 -+1.000Ag+ +1.000Br- = AgBr - log_k +4.24 #91BAL/NOR, 68WAG - delta_h -23.129 #kJ/mol -# Enthalpy of formation: -38.748 kJ/mol - -analytic 18.79731E-2 00.00000E+0 12.08112E+2 00.00000E+0 00.00000E+0 +Ag+ + Br- = AgBr + log_k 4.24 #91BAL/NOR, 68WAG + delta_h -23.129 #kJ/mol +# Enthalpy of formation: -38.748 kJ/mol + -analytic 18.79731E-2 00E+0 12.08112E+2 00E+0 00E+0 -+1.000Ag+ +2.000Br- = AgBr2- - log_k +7.28 #91BAL/NOR, 68WAG - delta_h -45.296 #kJ/mol -# Enthalpy of formation: -182.325 kJ/mol - -analytic -65.55186E-2 00.00000E+0 23.65975E+2 00.00000E+0 00.00000E+0 +Ag+ + 2 Br- = AgBr2- + log_k 7.28 #91BAL/NOR, 68WAG + delta_h -45.296 #kJ/mol +# Enthalpy of formation: -182.325 kJ/mol + -analytic -65.55186E-2 00E+0 23.65975E+2 00E+0 00E+0 -+1.000Ag+ +3.000Br- = AgBr3-2 - log_k +8.71 #91BAL/NOR, 68WAG - delta_h -66.741 #kJ/mol -# Enthalpy of formation: -325.180 kJ/mol - -analytic -29.82521E-1 00.00000E+0 34.86125E+2 00.00000E+0 00.00000E+0 +Ag+ + 3 Br- = AgBr3-2 + log_k 8.71 #91BAL/NOR, 68WAG + delta_h -66.741 #kJ/mol +# Enthalpy of formation: -325.180 kJ/mol + -analytic -29.82521E-1 00E+0 34.86125E+2 00E+0 00E+0 -+1.000Ag+ +1.000Cl- = AgCl - log_k +3.27 #91BAL/NOR; Uncertainty to include available data. - delta_h -17.100 #kJ/mol -# Enthalpy of formation: -78.390 kJ/mol - -analytic 27.42086E-2 00.00000E+0 89.31952E+1 00.00000E+0 00.00000E+0 +Ag+ + Cl- = AgCl + log_k 3.27 #91BAL/NOR; Uncertainty to include available data. + delta_h -17.1 #kJ/mol +# Enthalpy of formation: -78.390 kJ/mol + -analytic 27.42086E-2 00E+0 89.31952E+1 00E+0 00E+0 -+1.000Ag+ +2.000Cl- = AgCl2- - log_k +5.27 #91BAL/NOR; Uncertainty to include available data. - delta_h -28.754 #kJ/mol -# Enthalpy of formation: -257.124 kJ/mol - -analytic 23.25154E-2 00.00000E+0 15.01926E+2 00.00000E+0 00.00000E+0 +Ag+ + 2 Cl- = AgCl2- + log_k 5.27 #91BAL/NOR; Uncertainty to include available data. + delta_h -28.754 #kJ/mol +# Enthalpy of formation: -257.124 kJ/mol + -analytic 23.25154E-2 00E+0 15.01926E+2 00E+0 00E+0 -+1.000Ag+ +3.000Cl- = AgCl3-2 - log_k +5.29 #91BAL/NOR; Uncertainty to include available data. - delta_h -29.167 #kJ/mol -# Enthalpy of formation: -424.616 kJ/mol - -analytic 18.01609E-2 00.00000E+0 15.23499E+2 00.00000E+0 00.00000E+0 +Ag+ + 3 Cl- = AgCl3-2 + log_k 5.29 #91BAL/NOR; Uncertainty to include available data. + delta_h -29.167 #kJ/mol +# Enthalpy of formation: -424.616 kJ/mol + -analytic 18.01609E-2 00E+0 15.23499E+2 00E+0 00E+0 -+1.000Ag+ +4.000Cl- = AgCl4-3 - log_k +5.51 #91BAL/NOR; Uncertainty to include available data. - delta_h -26.099 #kJ/mol -# Enthalpy of formation: -588.628 kJ/mol - -analytic 93.76515E-2 00.00000E+0 13.63246E+2 00.00000E+0 00.00000E+0 +Ag+ + 4 Cl- = AgCl4-3 + log_k 5.51 #91BAL/NOR; Uncertainty to include available data. + delta_h -26.099 #kJ/mol +# Enthalpy of formation: -588.628 kJ/mol + -analytic 93.76515E-2 00E+0 13.63246E+2 00E+0 00E+0 -+1.000Ag+ +1.000CO3-2 = AgCO3- - log_k +2.69 #97SVE/SHO - delta_h -22.838 #kJ/mol -# Enthalpy of formation: -592.278 kJ/mol - -analytic -13.11046E-1 00.00000E+0 11.92912E+2 00.00000E+0 00.00000E+0 +Ag+ + CO3-2 = AgCO3- + log_k 2.69 #97SVE/SHO + delta_h -22.838 #kJ/mol +# Enthalpy of formation: -592.278 kJ/mol + -analytic -13.11046E-1 00E+0 11.92912E+2 00E+0 00E+0 -+1.000Ag+ +1.000I- = AgI - log_k +6.58 #76SMI/MAR - delta_h -36.962 #kJ/mol -# Enthalpy of formation: +12.048 kJ/mol - -analytic 10.45356E-2 00.00000E+0 19.30660E+2 00.00000E+0 00.00000E+0 +Ag+ + I- = AgI + log_k 6.58 #76SMI/MAR + delta_h -36.962 #kJ/mol +# Enthalpy of formation: +12.048 kJ/mol + -analytic 10.45356E-2 00E+0 19.3066E+2 00E+0 00E+0 -+1.000Ag+ +2.000I- = AgI2- - log_k +11.70 #76SMI/MAR - delta_h -76.578 #kJ/mol -# Enthalpy of formation: -84.347 kJ/mol - -analytic -17.15890E-1 00.00000E+0 39.99948E+2 00.00000E+0 00.00000E+0 +Ag+ + 2 I- = AgI2- + log_k 11.7 #76SMI/MAR + delta_h -76.578 #kJ/mol +# Enthalpy of formation: -84.347 kJ/mol + -analytic -17.1589E-1 00E+0 39.99948E+2 00E+0 00E+0 -+1.000Ag+ +3.000I- = AgI3-2 - log_k +13.28 - delta_h -114.914 #kJ/mol -# Enthalpy of formation: -179.463 kJ/mol - -analytic -68.52069E-1 00.00000E+0 60.02376E+2 00.00000E+0 00.00000E+0 +Ag+ + 3 I- = AgI3-2 + log_k 13.28 + delta_h -114.914 #kJ/mol +# Enthalpy of formation: -179.463 kJ/mol + -analytic -68.52069E-1 00E+0 60.02376E+2 00E+0 00E+0 -+1.000Ag+ +1.000NO3- = AgNO3 - log_k -0.29 #91BAL/NOR, 68WAG; Uncertainty to include available data. - delta_h -0.740 #kJ/mol +Ag+ + NO3- = AgNO3 + log_k -0.29 #91BAL/NOR, 68WAG; Uncertainty to include available data. + delta_h -0.74 #kJ/mol # Enthalpy of formation: -101.800 kJ/mol 82WAG/EVA - -analytic -41.96424E-2 00.00000E+0 38.65289E+0 00.00000E+0 00.00000E+0 + -analytic -41.96424E-2 00E+0 38.65289E+0 00E+0 00E+0 -+1.000Al+3 +1.000Cit-3 = Al(Cit) - log_k +9.90 #95AKR/BOU - -analytic 99.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Al+3 + Cit-3 = Al(Cit) + log_k 9.9 #95AKR/BOU + -analytic 99E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Al+3 -1.000H+ +2.000Cit-3 +1.000H2O = Al(Cit)2(OH)-4 - log_k +10.19 #95AKR/BOU - -analytic 10.19000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Al+3 - H+ + 2 Cit-3 + H2O = Al(Cit)2(OH)-4 + log_k 10.19 #95AKR/BOU + -analytic 10.19E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Al+3 +2.000Cit-3 = Al(Cit)2-3 - log_k +14.13 #95AKR/BOU - -analytic 14.13000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Al+3 + 2 Cit-3 = Al(Cit)2-3 + log_k 14.13 #95AKR/BOU + -analytic 14.13E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Al+3 +1.000Edta-4 = Al(Edta)- - log_k +19.08 #95AKR/BOU - -analytic 19.08000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Al+3 + Edta-4 = Al(Edta)- + log_k 19.08 #95AKR/BOU + -analytic 19.08E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Al+3 +1.000H+ +1.000Cit-3 = Al(HCit)+ - log_k +12.90 #95AKR/BOU - -analytic 12.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Al+3 + H+ + Cit-3 = Al(HCit)+ + log_k 12.9 #95AKR/BOU + -analytic 12.9E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Al+3 +1.000H+ +1.000Edta-4 = Al(HEdta) - log_k +21.82 #95AKR/BOU - -analytic 21.82000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Al+3 + H+ + Edta-4 = Al(HEdta) + log_k 21.82 #95AKR/BOU + -analytic 21.82E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Al+3 +1.000HGlu- = Al(HGlu)+2 - log_k +3.20 #08LAK/KIS - -analytic 32.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Al+3 + HGlu- = Al(HGlu)+2 + log_k 3.2 #08LAK/KIS + -analytic 32E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Al+3 +1.000H+ +1.000Nta-3 = Al(HNta)+ - log_k +15.13 #95AKR/BOU - -analytic 15.13000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Al+3 + H+ + Nta-3 = Al(HNta)+ + log_k 15.13 #95AKR/BOU + -analytic 15.13E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Al+3 +1.000H+ +1.000Ox-2 = Al(HOx)+2 - log_k +7.50 #95AKR/BOU - -analytic 75.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Al+3 + H+ + Ox-2 = Al(HOx)+2 + log_k 7.5 #95AKR/BOU + -analytic 75E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Al+3 +1.000IO3- = Al(IO3)+2 - log_k +2.46 #estimation NEA87 08/2/95 - -analytic 24.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Al+3 + IO3- = Al(IO3)+2 + log_k 2.46 #estimation NEA87 08/2/95 + -analytic 24.6E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Al+3 +2.000IO3- = Al(IO3)2+ - log_k +4.30 #estimation NEA87 08/2/95 - -analytic 43.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Al+3 + 2 IO3- = Al(IO3)2+ + log_k 4.3 #estimation NEA87 08/2/95 + -analytic 43E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Al+3 +1.000Nta-3 = Al(Nta) - log_k +13.23 #95AKR/BOU - -analytic 13.23000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Al+3 + Nta-3 = Al(Nta) + log_k 13.23 #95AKR/BOU + -analytic 13.23E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Al+3 -2.000H+ +1.000Nta-3 +2.000H2O = Al(Nta)(OH)2-2 - log_k -0.30 #95AKR/BOU - -analytic -30.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Al+3 - 2 H+ + Nta-3 + 2 H2O = Al(Nta)(OH)2-2 + log_k -0.3 #95AKR/BOU + -analytic -30E-2 00E+0 00E+0 00E+0 00E+0 -+1.000Al+3 +2.000Nta-3 = Al(Nta)2-3 - log_k +20.80 #95AKR/BOU - -analytic 20.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Al+3 + 2 Nta-3 = Al(Nta)2-3 + log_k 20.8 #95AKR/BOU + -analytic 20.8E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Al+3 -1.000H+ +1.000Cit-3 +1.000H2O = Al(OH)(Cit)- - log_k +8.10 #95AKR/BOU - -analytic 81.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Al+3 - H+ + Cit-3 + H2O = Al(OH)(Cit)- + log_k 8.1 #95AKR/BOU + -analytic 81E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Al+3 -1.000H+ +1.000Edta-4 +1.000H2O = Al(OH)(Edta)-2 - log_k +13.00 #95AKR/BOU - -analytic 13.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Al+3 - H+ + Edta-4 + H2O = Al(OH)(Edta)-2 + log_k 13 #95AKR/BOU + -analytic 13E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Al+3 -1.000H+ +1.000HGlu- +1.000H2O = Al(OH)(HGlu)+ - log_k -0.39 #08LAK/KIS - -analytic -39.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Al+3 - H+ + HGlu- + H2O = Al(OH)(HGlu)+ + log_k -0.39 #08LAK/KIS + -analytic -39E-2 00E+0 00E+0 00E+0 00E+0 -+1.000Al+3 -1.000H+ +2.000HGlu- +1.000H2O = Al(OH)(HGlu)2 - log_k +2.85 #08LAK/KIS - -analytic 28.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Al+3 - H+ + 2 HGlu- + H2O = Al(OH)(HGlu)2 + log_k 2.85 #08LAK/KIS + -analytic 28.5E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Al+3 -1.000H+ +1.000Nta-3 +1.000H2O = Al(OH)(Nta)- - log_k +6.79 #95AKR/BOU - -analytic 67.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Al+3 - H+ + Nta-3 + H2O = Al(OH)(Nta)- + log_k 6.79 #95AKR/BOU + -analytic 67.9E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Al+3 -1.000H+ +1.000H2O = Al(OH)+2 - log_k -4.95 #95POK/HEL - delta_h +49.759 #kJ/mol -# Enthalpy of formation: -774.471 kJ/mol - -analytic 37.67403E-1 00.00000E+0 -25.99094E+2 00.00000E+0 00.00000E+0 +Al+3 - H+ + H2O = Al(OH)+2 + log_k -4.95 #95POK/HEL + delta_h 49.759 #kJ/mol +# Enthalpy of formation: -774.471 kJ/mol + -analytic 37.67403E-1 00E+0 -25.99094E+2 00E+0 00E+0 -+1.000Al+3 -2.000H+ +1.000Edta-4 +2.000H2O = Al(OH)2(Edta)-3 - log_k +2.30 #95AKR/BOU - -analytic 23.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Al+3 - 2 H+ + Edta-4 + 2 H2O = Al(OH)2(Edta)-3 + log_k 2.3 #95AKR/BOU + -analytic 23E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Al+3 -2.000H+ +1.000HGlu- +2.000H2O = Al(OH)2(HGlu) - log_k -4.85 #08LAK/KIS - -analytic -48.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Al+3 - 2 H+ + HGlu- + 2 H2O = Al(OH)2(HGlu) + log_k -4.85 #08LAK/KIS + -analytic -48.5E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Al+3 -2.000H+ +2.000HGlu- +2.000H2O = Al(OH)2(HGlu)2- - log_k -2.60 #08LAK/KIS - -analytic -26.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Al+3 - 2 H+ + 2 HGlu- + 2 H2O = Al(OH)2(HGlu)2- + log_k -2.6 #08LAK/KIS + -analytic -26E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Al+3 -2.000H+ +2.000H2O = Al(OH)2+ - log_k -10.58 - delta_h +98.264 #kJ/mol +Al+3 - 2 H+ + 2 H2O = Al(OH)2+ + log_k -10.58 + delta_h 98.264 #kJ/mol # Enthalpy of formation: -1011.796 kJ/mol 95POK/HEL - -analytic 66.35114E-1 00.00000E+0 -51.32686E+2 00.00000E+0 00.00000E+0 + -analytic 66.35114E-1 00E+0 -51.32686E+2 00E+0 00E+0 -+1.000Al+3 -2.000H+ +1.000F- +2.000H2O = Al(OH)2F - log_k -4.21 - delta_h +118.636 #kJ/mol +Al+3 - 2 H+ + F- + 2 H2O = Al(OH)2F + log_k -4.21 + delta_h 118.636 #kJ/mol # Enthalpy of formation: -1326.774 kJ/mol 01TAG/SCH - -analytic 16.57414E+0 00.00000E+0 -61.96790E+2 00.00000E+0 00.00000E+0 + -analytic 16.57414E+0 00E+0 -61.9679E+2 00E+0 00E+0 -+1.000Al+3 -2.000H+ +2.000F- +2.000H2O = Al(OH)2F2- - log_k -1.99 - delta_h +134.839 #kJ/mol +Al+3 - 2 H+ + 2 F- + 2 H2O = Al(OH)2F2- + log_k -1.99 + delta_h 134.839 #kJ/mol # Enthalpy of formation: -1645.921 kJ/mol 01TAG/SCH - -analytic 21.63278E+0 00.00000E+0 -70.43131E+2 00.00000E+0 00.00000E+0 + -analytic 21.63278E+0 00E+0 -70.43131E+2 00E+0 00E+0 -+1.000Al+3 -3.000H+ +3.000H2O = Al(OH)3 - log_k -16.42 - delta_h +144.686 #kJ/mol +Al+3 - 3 H+ + 3 H2O = Al(OH)3 + log_k -16.42 + delta_h 144.686 #kJ/mol # Enthalpy of formation: -1251.204 kJ/mol 95POK/HEL - -analytic 89.27899E-1 00.00000E+0 -75.57476E+2 00.00000E+0 00.00000E+0 + -analytic 89.27899E-1 00E+0 -75.57476E+2 00E+0 00E+0 -+1.000Al+3 -3.000H+ +1.000HGlu- +3.000H2O = Al(OH)3(HGlu)- - log_k -11.11 #08LAK/KIS - -analytic -11.11000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Al+3 - 3 H+ + HGlu- + 3 H2O = Al(OH)3(HGlu)- + log_k -11.11 #08LAK/KIS + -analytic -11.11E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Al+3 -4.000H+ +4.000H2O = Al(OH)4- - log_k -22.87 - delta_h +180.881 #kJ/mol +Al+3 - 4 H+ + 4 H2O = Al(OH)4- + log_k -22.87 + delta_h 180.881 #kJ/mol # Enthalpy of formation: -1500.839 kJ/mol 95POK/HEL - -analytic 88.18991E-1 00.00000E+0 -94.48073E+2 00.00000E+0 00.00000E+0 + -analytic 88.18991E-1 00E+0 -94.48073E+2 00E+0 00E+0 -+1.000Al+3 -4.000H+ +1.000HGlu- +4.000H2O = Al(OH)4(HGlu)-2 - log_k -20.47 #13PAL/TAS - -analytic -20.47000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Al+3 - 4 H+ + HGlu- + 4 H2O = Al(OH)4(HGlu)-2 + log_k -20.47 #13PAL/TAS + -analytic -20.47E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Al+3 +1.000Ox-2 = Al(Ox)+ - log_k +9.40 #95AKR/BOU - -analytic 94.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Al+3 + Ox-2 = Al(Ox)+ + log_k 9.4 #95AKR/BOU + -analytic 94E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Al+3 +2.000Ox-2 = Al(Ox)2- - log_k +15.39 #95AKR/BOU - -analytic 15.39000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Al+3 + 2 Ox-2 = Al(Ox)2- + log_k 15.39 #95AKR/BOU + -analytic 15.39E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Al+3 +3.000Ox-2 = Al(Ox)3-3 - log_k +18.30 #95AKR/BOU - -analytic 18.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Al+3 + 3 Ox-2 = Al(Ox)3-3 + log_k 18.3 #95AKR/BOU + -analytic 18.3E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Al+3 +1.000SO4-2 = Al(SO4)+ - log_k +3.17 #01TAG/SCH - delta_h +18.869 #kJ/mol -# Enthalpy of formation: -1428.870 kJ/mol - -analytic 64.75707E-1 00.00000E+0 -98.55965E+1 00.00000E+0 00.00000E+0 +Al+3 + SO4-2 = Al(SO4)+ + log_k 3.17 #01TAG/SCH + delta_h 18.869 #kJ/mol +# Enthalpy of formation: -1428.870 kJ/mol + -analytic 64.75707E-1 00E+0 -98.55965E+1 00E+0 00E+0 -+2.000Al+3 -2.000H+ +4.000Ox-2 +2.000H2O = Al2(Ox)4(OH)2-4 - log_k +22.00 #95AKR/BOU - -analytic 22.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 Al+3 - 2 H+ + 4 Ox-2 + 2 H2O = Al2(Ox)4(OH)2-4 + log_k 22 #95AKR/BOU + -analytic 22E+0 00E+0 00E+0 00E+0 00E+0 -+3.000Al+3 -4.000H+ +3.000Cit-3 +4.000H2O = Al3(Cit)3(OH)4-4 - log_k +20.60 #95AKR/BOU - -analytic 20.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +3 Al+3 - 4 H+ + 3 Cit-3 + 4 H2O = Al3(Cit)3(OH)4-4 + log_k 20.6 #95AKR/BOU + -analytic 20.6E+0 00E+0 00E+0 00E+0 00E+0 -+3.000Al+3 -3.000H+ +3.000Ox-2 +3.000H2O = Al3(Ox)3(OH)3 - log_k +16.00 #95AKR/BOU - -analytic 16.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +3 Al+3 - 3 H+ + 3 Ox-2 + 3 H2O = Al3(Ox)3(OH)3 + log_k 16 #95AKR/BOU + -analytic 16E+0 00E+0 00E+0 00E+0 00E+0 -+4.000Al+3 -4.000H+ +4.000Ox-2 +4.000H2O = Al4(Ox)4(OH)4 - log_k +21.00 #95AKR/BOU - -analytic 21.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +4 Al+3 - 4 H+ + 4 Ox-2 + 4 H2O = Al4(Ox)4(OH)4 + log_k 21 #95AKR/BOU + -analytic 21E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Al+3 +1.000F- = AlF+2 - log_k +6.98 #01TAG/SCH - delta_h -0.345 #kJ/mol -# Enthalpy of formation: -874.094 kJ/mol - -analytic 69.19559E-1 00.00000E+0 18.02061E+0 00.00000E+0 00.00000E+0 +Al+3 + F- = AlF+2 + log_k 6.98 #01TAG/SCH + delta_h -0.345 #kJ/mol +# Enthalpy of formation: -874.094 kJ/mol + -analytic 69.19559E-1 00E+0 18.02061E+0 00E+0 00E+0 -+1.000Al+3 +2.000F- = AlF2+ - log_k +12.50 #01TAG/SCH - delta_h +74.869 #kJ/mol -# Enthalpy of formation: -1134.230 kJ/mol - -analytic 25.61649E+0 00.00000E+0 -39.10680E+2 00.00000E+0 00.00000E+0 +Al+3 + 2 F- = AlF2+ + log_k 12.5 #01TAG/SCH + delta_h 74.869 #kJ/mol +# Enthalpy of formation: -1134.230 kJ/mol + -analytic 25.61649E+0 00E+0 -39.1068E+2 00E+0 00E+0 -+1.000Al+3 +3.000F- = AlF3 - log_k +16.55 #01TAG/SCH - delta_h +0.616 #kJ/mol -# Enthalpy of formation: -1543.833 kJ/mol - -analytic 16.65792E+0 00.00000E+0 -32.17592E+0 00.00000E+0 00.00000E+0 +Al+3 + 3 F- = AlF3 + log_k 16.55 #01TAG/SCH + delta_h 0.616 #kJ/mol +# Enthalpy of formation: -1543.833 kJ/mol + -analytic 16.65792E+0 00E+0 -32.17592E+0 00E+0 00E+0 -+1.000Al+3 +4.000F- = AlF4- - log_k +18.93 #01TAG/SCH - delta_h +0.824 #kJ/mol -# Enthalpy of formation: -1878.974 kJ/mol - -analytic 19.07436E+0 00.00000E+0 -43.04052E+0 00.00000E+0 00.00000E+0 +Al+3 + 4 F- = AlF4- + log_k 18.93 #01TAG/SCH + delta_h 0.824 #kJ/mol +# Enthalpy of formation: -1878.974 kJ/mol + -analytic 19.07436E+0 00E+0 -43.04052E+0 00E+0 00E+0 -+1.000Al+3 -1.000H+ +1.000H4(SiO4) = AlH3SiO4+2 - log_k -2.38 #01TAG/SCH - delta_h +77.382 #kJ/mol -# Enthalpy of formation: -1922.212 kJ/mol - -analytic 11.17674E+0 00.00000E+0 -40.41943E+2 00.00000E+0 00.00000E+0 +Al+3 - H+ + H4(SiO4) = AlH3SiO4+2 + log_k -2.38 #01TAG/SCH + delta_h 77.382 #kJ/mol +# Enthalpy of formation: -1922.212 kJ/mol + -analytic 11.17674E+0 00E+0 -40.41943E+2 00E+0 00E+0 -+1.000Al+3 -1.000H+ +2.000F- +1.000H2O = AlOHF2 - log_k +0.21 - delta_h +139.337 #kJ/mol +Al+3 - H+ + 2 F- + H2O = AlOHF2 + log_k 0.21 + delta_h 139.337 #kJ/mol # Enthalpy of formation: -1355.593 kJ/mol 01TAG/SCH - -analytic 24.62079E+0 00.00000E+0 -72.78078E+2 00.00000E+0 00.00000E+0 + -analytic 24.62079E+0 00E+0 -72.78078E+2 00E+0 00E+0 -+1.000Am+3 +1.000Acetate- = Am(Acetate)+2 - log_k +2.94 #11RIC/GRI - -analytic 29.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Am+3 + Acetate- = Am(Acetate)+2 + log_k 2.94 #11RIC/GRI + -analytic 29.4E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Am+3 +2.000Acetate- = Am(Acetate)2+ - log_k +5.07 #69MOS - -analytic 50.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Am+3 + 2 Acetate- = Am(Acetate)2+ + log_k 5.07 #69MOS + -analytic 50.7E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Am+3 +3.000Acetate- = Am(Acetate)3 - log_k +6.54 #69MOS - -analytic 65.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Am+3 + 3 Acetate- = Am(Acetate)3 + log_k 6.54 #69MOS + -analytic 65.4E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Am+3 +1.000Cit-3 = Am(Cit) - log_k +8.55 #05HUM/AND - -analytic 85.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Am+3 + Cit-3 = Am(Cit) + log_k 8.55 #05HUM/AND + -analytic 85.5E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Am+3 +2.000Cit-3 = Am(Cit)2-3 - log_k +13.90 #05HUM/AND - -analytic 13.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Am+3 + 2 Cit-3 = Am(Cit)2-3 + log_k 13.9 #05HUM/AND + -analytic 13.9E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Am+3 +1.000CO3-2 = Am(CO3)+ - log_k +7.90 #recalculated from 03GUI/FAN - delta_h +18.174 #kJ/mol -# Enthalpy of formation: -1273.757 kJ/mol - -analytic 11.08395E+0 00.00000E+0 -94.92941E+1 00.00000E+0 00.00000E+0 +Am+3 + CO3-2 = Am(CO3)+ + log_k 7.9 #recalculated from 03GUI/FAN + delta_h 18.174 #kJ/mol +# Enthalpy of formation: -1273.757 kJ/mol + -analytic 11.08395E+0 00E+0 -94.92941E+1 00E+0 00E+0 -+1.000Am+3 +2.000CO3-2 = Am(CO3)2- - log_k +12.60 #recalculated from 03GUI/FAN - -analytic 12.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Am+3 + 2 CO3-2 = Am(CO3)2- + log_k 12.6 #recalculated from 03GUI/FAN + -analytic 12.6E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Am+3 +3.000CO3-2 = Am(CO3)3-3 - log_k +14.60 #Recalculated from 03GUI/FAN - -analytic 14.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Am+3 + 3 CO3-2 = Am(CO3)3-3 + log_k 14.6 #Recalculated from 03GUI/FAN + -analytic 14.6E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Am+3 -1.000e- +5.000CO3-2 = Am(CO3)5-6 - log_k -5.10 #03GUI/FAN - -analytic -51.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Am+3 - e- + 5 CO3-2 = Am(CO3)5-6 + log_k -5.1 #03GUI/FAN + -analytic -51E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Am+3 +1.000Edta-4 = Am(Edta)- - log_k +19.67 #05HUM/AND - delta_h -10.600 #kJ/mol 05HUM/AND -# Enthalpy of formation: -2332.100 kJ/mol - -analytic 17.81296E+0 00.00000E+0 55.36766E+1 00.00000E+0 00.00000E+0 +Am+3 + Edta-4 = Am(Edta)- + log_k 19.67 #05HUM/AND + delta_h -10.6 #kJ/mol 05HUM/AND +# Enthalpy of formation: -2332.100 kJ/mol + -analytic 17.81296E+0 00E+0 55.36766E+1 00E+0 00E+0 -+1.000Am+3 +1.000H2(PO4)- = Am(H2PO4)+2 - log_k +2.46 #20GRE/GAO - -analytic 24.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Am+3 + H2(PO4)- = Am(H2PO4)+2 + log_k 2.46 #20GRE/GAO + -analytic 24.6E-1 00E+0 00E+0 00E+0 00E+0 -+1.000H+ +1.000Am+3 +1.000Cit-3 = Am(HCit)+ - log_k +12.86 #05HUM/AND - -analytic 12.86000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +H+ + Am+3 + Cit-3 = Am(HCit)+ + log_k 12.86 #05HUM/AND + -analytic 12.86E+0 00E+0 00E+0 00E+0 00E+0 -+2.000H+ +1.000Am+3 +2.000Cit-3 = Am(HCit)2- - log_k +23.52 #05HUM/AND - -analytic 23.52000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 H+ + Am+3 + 2 Cit-3 = Am(HCit)2- + log_k 23.52 #05HUM/AND + -analytic 23.52E+0 00E+0 00E+0 00E+0 00E+0 -+1.000H+ +1.000Am+3 +1.000CO3-2 = Am(HCO3)+2 - log_k +13.43 #03GUI/FAN - -analytic 13.43000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +H+ + Am+3 + CO3-2 = Am(HCO3)+2 + log_k 13.43 #03GUI/FAN + -analytic 13.43E+0 00E+0 00E+0 00E+0 00E+0 -+1.000H+ +1.000Am+3 +1.000Edta-4 = Am(HEdta) - log_k +21.84 #05HUM/AND - -analytic 21.84000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +H+ + Am+3 + Edta-4 = Am(HEdta) + log_k 21.84 #05HUM/AND + -analytic 21.84E+0 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000Am+3 +1.000H2(PO4)- = Am(HPO4)+ - log_k -1.74 #Estimated by correlation with An(III) in function of ionic radii. - -analytic -17.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- H+ + Am+3 + H2(PO4)- = Am(HPO4)+ + log_k -1.74 #Estimated by correlation with An(III) in function of ionic radii. + -analytic -17.4E-1 00E+0 00E+0 00E+0 00E+0 --2.000H+ +1.000Am+3 +2.000H2(PO4)- = Am(HPO4)2- - log_k -5.30 #Estimated by correlation with An(III) in function of ionic radii. - -analytic -53.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 2 H+ + Am+3 + 2 H2(PO4)- = Am(HPO4)2- + log_k -5.3 #Estimated by correlation with An(III) in function of ionic radii. + -analytic -53E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Am+3 +1.000NO3- = Am(NO3)+2 - log_k +1.28 #20GRE/GAO - delta_h +1.800 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -821.750 kJ/mol - -analytic 15.95346E-1 00.00000E+0 -94.02055E+0 00.00000E+0 00.00000E+0 +Am+3 + NO3- = Am(NO3)+2 + log_k 1.28 #20GRE/GAO + delta_h 1.8 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -821.750 kJ/mol + -analytic 15.95346E-1 00E+0 -94.02055E+0 00E+0 00E+0 -+1.000Am+3 +2.000NO3- = Am(NO3)2+ - log_k +0.88 #20GRE/GAO - delta_h +10.800 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -1019.600 kJ/mol - -analytic 27.72079E-1 00.00000E+0 -56.41233E+1 00.00000E+0 00.00000E+0 +Am+3 + 2 NO3- = Am(NO3)2+ + log_k 0.88 #20GRE/GAO + delta_h 10.8 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1019.600 kJ/mol + -analytic 27.72079E-1 00E+0 -56.41233E+1 00E+0 00E+0 -+1.000Am+3 +1.000Nta-3 = Am(Nta) - log_k +13.00 #95AKR/BOU - -analytic 13.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Am+3 + Nta-3 = Am(Nta) + log_k 13 #95AKR/BOU + -analytic 13E+0 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000Am+3 +1.000H2O = Am(OH)+2 - log_k -7.20 #03GUI/FAN, 88STA/KIM1, 94RUN/KIM, 83EDE/BUC, 83CAC/CHO, 92WIM/KLE - delta_h +41.492 #kJ/mol -# Enthalpy of formation: -861.038 kJ/mol - -analytic 69.08637E-3 00.00000E+0 -21.67278E+2 00.00000E+0 00.00000E+0 +- H+ + Am+3 + H2O = Am(OH)+2 + log_k -7.2 #03GUI/FAN, 88STA/KIM1, 94RUN/KIM, 83EDE/BUC, 83CAC/CHO, 92WIM/KLE + delta_h 41.492 #kJ/mol +# Enthalpy of formation: -861.038 kJ/mol + -analytic 69.08637E-3 00E+0 -21.67278E+2 00E+0 00E+0 --2.000H+ +1.000Am+3 +1.000HGlu- +2.000H2O = Am(OH)2(HGlu) - log_k -10.97 #Analogy with Pu(OH)2(HIsa)(aq) - -analytic -10.97000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 2 H+ + Am+3 + HGlu- + 2 H2O = Am(OH)2(HGlu) + log_k -10.97 #Analogy with Pu(OH)2(HIsa)(aq) + -analytic -10.97E+0 00E+0 00E+0 00E+0 00E+0 --2.000H+ +1.000Am+3 +1.000HIsa- +2.000H2O = Am(OH)2(HIsa) - log_k -10.97 #Analogy with Pu(OH)2(HIsa)(aq) - -analytic -10.97000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 2 H+ + Am+3 + HIsa- + 2 H2O = Am(OH)2(HIsa) + log_k -10.97 #Analogy with Pu(OH)2(HIsa)(aq) + -analytic -10.97E+0 00E+0 00E+0 00E+0 00E+0 --2.000H+ +1.000Am+3 +2.000H2O = Am(OH)2+ - log_k -15.10 #03GUI/FAN, 88STA/KIM1, 94RUN/KIM, 83EDE/BUC, 83CAC/CHO, 92WIM/KLE - delta_h +94.628 #kJ/mol -# Enthalpy of formation: -1093.732 kJ/mol - -analytic 14.78114E-1 00.00000E+0 -49.42765E+2 00.00000E+0 00.00000E+0 +- 2 H+ + Am+3 + 2 H2O = Am(OH)2+ + log_k -15.1 #03GUI/FAN, 88STA/KIM1, 94RUN/KIM, 83EDE/BUC, 83CAC/CHO, 92WIM/KLE + delta_h 94.628 #kJ/mol +# Enthalpy of formation: -1093.732 kJ/mol + -analytic 14.78114E-1 00E+0 -49.42765E+2 00E+0 00E+0 --3.000H+ +1.000Am+3 +3.000H2O = Am(OH)3 - log_k -26.20 #03GUI/FAN, 88STA/KIM1, 94RUN/KIM, 83EDE/BUC, 83CAC/CHO, 92WIM/KLE - delta_h +156.808 #kJ/mol -# Enthalpy of formation: -1317.382 kJ/mol - -analytic 12.71582E-1 00.00000E+0 -81.90652E+2 00.00000E+0 00.00000E+0 +- 3 H+ + Am+3 + 3 H2O = Am(OH)3 + log_k -26.2 #03GUI/FAN, 88STA/KIM1, 94RUN/KIM, 83EDE/BUC, 83CAC/CHO, 92WIM/KLE + delta_h 156.808 #kJ/mol +# Enthalpy of formation: -1317.382 kJ/mol + -analytic 12.71582E-1 00E+0 -81.90652E+2 00E+0 00E+0 -+1.000Am+3 +1.000Ox-2 = Am(Ox)+ - log_k +6.51 #05HUM/AND - -analytic 65.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Am+3 + Ox-2 = Am(Ox)+ + log_k 6.51 #05HUM/AND + -analytic 65.1E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Am+3 +2.000Ox-2 = Am(Ox)2- - log_k +10.71 #05HUM/AND - -analytic 10.71000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Am+3 + 2 Ox-2 = Am(Ox)2- + log_k 10.71 #05HUM/AND + -analytic 10.71E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Am+3 +3.000Ox-2 = Am(Ox)3-3 - log_k +13.00 #05HUM/AND - -analytic 13.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Am+3 + 3 Ox-2 = Am(Ox)3-3 + log_k 13 #05HUM/AND + -analytic 13E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Am+3 +1.000Phthalat-2 = Am(Phthalat)+ - log_k +4.93 #In analogy with Cm - -analytic 49.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Am+3 + Phthalat-2 = Am(Phthalat)+ + log_k 4.93 #In analogy with Cm + -analytic 49.3E-1 00E+0 00E+0 00E+0 00E+0 --2.000H+ +1.000Am+3 +1.000H2(PO4)- = Am(PO4) - log_k -7.76 #1. Estimated by correlation with An(III) in function of ionic radii - -analytic -77.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 2 H+ + Am+3 + H2(PO4)- = Am(PO4) + log_k -7.76 #1. Estimated by correlation with An(III) in function of ionic radii + -analytic -77.6E-1 00E+0 00E+0 00E+0 00E+0 --4.000H+ +1.000Am+3 +2.000H2(PO4)- = Am(PO4)2-3 - log_k -19.41 #Estimated by correlation with An(III) in function of ionic radii. - -analytic -19.41000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 4 H+ + Am+3 + 2 H2(PO4)- = Am(PO4)2-3 + log_k -19.41 #Estimated by correlation with An(III) in function of ionic radii. + -analytic -19.41E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Am+3 +1.000SO4-2 = Am(SO4)+ - log_k +3.50 #20GRE/GAO - delta_h +40.000 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -1486.040 kJ/mol - -analytic 10.50770E+0 00.00000E+0 -20.89346E+2 00.00000E+0 00.00000E+0 +Am+3 + SO4-2 = Am(SO4)+ + log_k 3.5 #20GRE/GAO + delta_h 40 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1486.040 kJ/mol + -analytic 10.5077E+0 00E+0 -20.89346E+2 00E+0 00E+0 -+1.000Am+3 +2.000SO4-2 = Am(SO4)2- - log_k +5.00 #20GRE/GAO - delta_h +70.000 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -2365.380 kJ/mol - -analytic 17.26347E+0 00.00000E+0 -36.56355E+2 00.00000E+0 00.00000E+0 +Am+3 + 2 SO4-2 = Am(SO4)2- + log_k 5 #20GRE/GAO + delta_h 70 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2365.380 kJ/mol + -analytic 17.26347E+0 00E+0 -36.56355E+2 00E+0 00E+0 -+1.000Am+3 +1.000Cl- = AmCl+2 - log_k +0.24 #20GRE/GAO - delta_h +19.390 #kJ/mol 00YEH/MAD -# Enthalpy of formation: -764.390 kJ/mol - -analytic 36.36982E-1 00.00000E+0 -10.12810E+2 00.00000E+0 00.00000E+0 +Am+3 + Cl- = AmCl+2 + log_k 0.24 #20GRE/GAO + delta_h 19.39 #kJ/mol 00YEH/MAD +# Enthalpy of formation: -764.390 kJ/mol + -analytic 36.36982E-1 00E+0 -10.1281E+2 00E+0 00E+0 -+1.000Am+3 +2.000Cl- = AmCl2+ - log_k -0.81 #20GRE/GAO - delta_h +54.900 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -895.960 kJ/mol - -analytic 88.08067E-1 00.00000E+0 -28.67627E+2 00.00000E+0 00.00000E+0 +Am+3 + 2 Cl- = AmCl2+ + log_k -0.81 #20GRE/GAO + delta_h 54.9 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -895.960 kJ/mol + -analytic 88.08067E-1 00E+0 -28.67627E+2 00E+0 00E+0 -+1.000Am+3 +1.000F- = AmF+2 - log_k +3.40 #20GRE/GAO - delta_h +12.100 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -939.950 kJ/mol - -analytic 55.19829E-1 00.00000E+0 -63.20270E+1 00.00000E+0 00.00000E+0 +Am+3 + F- = AmF+2 + log_k 3.4 #20GRE/GAO + delta_h 12.1 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -939.950 kJ/mol + -analytic 55.19829E-1 00E+0 -63.2027E+1 00E+0 00E+0 -+1.000Am+3 +2.000F- = AmF2+ - log_k +5.80 #20GRE/GAO - delta_h +45.100 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -1242.300 kJ/mol - -analytic 13.70118E+0 00.00000E+0 -23.55737E+2 00.00000E+0 00.00000E+0 +Am+3 + 2 F- = AmF2+ + log_k 5.8 #20GRE/GAO + delta_h 45.1 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1242.300 kJ/mol + -analytic 13.70118E+0 00E+0 -23.55737E+2 00E+0 00E+0 -+1.000Am+3 +3.000F- = AmF3 - log_k +10.82 #69AZI/LYL - delta_h +20.407 #kJ/mol -# Enthalpy of formation: -1602.342 kJ/mol - -analytic 14.39515E+0 00.00000E+0 -10.65932E+2 00.00000E+0 00.00000E+0 +Am+3 + 3 F- = AmF3 + log_k 10.82 #69AZI/LYL + delta_h 20.407 #kJ/mol +# Enthalpy of formation: -1602.342 kJ/mol + -analytic 14.39515E+0 00E+0 -10.65932E+2 00E+0 00E+0 -+1.000AmO2+ +1.000CO3-2 = AmO2(CO3)- - log_k +5.10 #03GUI/FAN - -analytic 51.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +AmO2+ + CO3-2 = AmO2(CO3)- + log_k 5.1 #03GUI/FAN + -analytic 51E-1 00E+0 00E+0 00E+0 00E+0 -+1.000AmO2+ +2.000CO3-2 = AmO2(CO3)2-3 - log_k +6.70 #03GUI/FAN - -analytic 67.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +AmO2+ + 2 CO3-2 = AmO2(CO3)2-3 + log_k 6.7 #03GUI/FAN + -analytic 67E-1 00E+0 00E+0 00E+0 00E+0 -+1.000AmO2+ +3.000CO3-2 = AmO2(CO3)3-5 - log_k +5.10 #03GUI/FAN - -analytic 51.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +AmO2+ + 3 CO3-2 = AmO2(CO3)3-5 + log_k 5.1 #03GUI/FAN + -analytic 51E-1 00E+0 00E+0 00E+0 00E+0 --2.000H+ +1.000AmO2+ +2.000H2O = AmO2(OH)2- - log_k -23.60 #03GUI/FAN - -analytic -23.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 2 H+ + AmO2+ + 2 H2O = AmO2(OH)2- + log_k -23.6 #03GUI/FAN + -analytic -23.6E+0 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000AmO2+ +1.000H2O = AmO2OH - log_k -11.30 #03GUI/FAN - -analytic -11.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- H+ + AmO2+ + H2O = AmO2OH + log_k -11.3 #03GUI/FAN + -analytic -11.3E+0 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000Am+3 +1.000H4(SiO4) = AmSiO(OH)3+2 - log_k -2.31 #Original data 07THA/SIN, 05PAN/KIM and 97STE/FAN - delta_h +47.963 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -2029.931 kJ/mol - -analytic 60.92757E-1 00.00000E+0 -25.05282E+2 00.00000E+0 00.00000E+0 +- H+ + Am+3 + H4(SiO4) = AmSiO(OH)3+2 + log_k -2.31 #Original data 07THA/SIN, 05PAN/KIM and 97STE/FAN + delta_h 47.963 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2029.931 kJ/mol + -analytic 60.92757E-1 00E+0 -25.05282E+2 00E+0 00E+0 --3.000H+ +1.000H3(AsO3) = AsO3-3 - log_k -38.59 #79IVA/VOR - -analytic -38.59000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 3 H+ + H3(AsO3) = AsO3-3 + log_k -38.59 #79IVA/VOR + -analytic -38.59E+0 00E+0 00E+0 00E+0 00E+0 -+1.000H+ +1.000B(OH)4- -1.000H2O = B(OH)3 - log_k +9.24 - delta_h -13.514 #kJ/mol +H+ + B(OH)4- - H2O = B(OH)3 + log_k 9.24 + delta_h -13.514 #kJ/mol # Enthalpy of formation: -1072.800 kJ/mol 01LEM/FUG - -analytic 68.72449E-1 00.00000E+0 70.58854E+1 00.00000E+0 00.00000E+0 + -analytic 68.72449E-1 00E+0 70.58854E+1 00E+0 00E+0 -+2.000H+ +3.000B(OH)4- -7.000H2O = B3O5- - log_k +20.90 #97CRO - -analytic 20.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 H+ + 3 B(OH)4- - 7 H2O = B3O5- + log_k 20.9 #97CRO + -analytic 20.9E+0 00E+0 00E+0 00E+0 00E+0 -+2.000H+ +4.000B(OH)4- -9.000H2O = B4O7-2 - log_k +21.90 #97CRO - -analytic 21.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 H+ + 4 B(OH)4- - 9 H2O = B4O7-2 + log_k 21.9 #97CRO + -analytic 21.9E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Ba+2 +1.000CO3-2 = Ba(CO3) - log_k +2.71 #86BUS/PLU - delta_h +14.841 #kJ/mol 86BUS/PLU -# Enthalpy of formation: -1195.189 kJ/mol - -analytic 53.10032E-1 00.00000E+0 -77.51994E+1 00.00000E+0 00.00000E+0 +Ba+2 + CO3-2 = Ba(CO3) + log_k 2.71 #86BUS/PLU + delta_h 14.841 #kJ/mol 86BUS/PLU +# Enthalpy of formation: -1195.189 kJ/mol + -analytic 53.10032E-1 00E+0 -77.51994E+1 00E+0 00E+0 -+1.000Ba+2 +1.000H+ +1.000CO3-2 = Ba(HCO3)+ - log_k +11.31 #86BUS/PLU - delta_h +8.560 #kJ/mol 86BUS/PLU -# Enthalpy of formation: -1201.470 kJ/mol - -analytic 12.80965E+0 00.00000E+0 -44.71199E+1 00.00000E+0 00.00000E+0 +Ba+2 + H+ + CO3-2 = Ba(HCO3)+ + log_k 11.31 #86BUS/PLU + delta_h 8.56 #kJ/mol 86BUS/PLU +# Enthalpy of formation: -1201.470 kJ/mol + -analytic 12.80965E+0 00E+0 -44.71199E+1 00E+0 00E+0 -+1.000Ba+2 +1.000NO3- = Ba(NO3)+ - log_k -0.31 - delta_h +6.819 #kJ/mol -# Enthalpy of formation: -734.831 kJ/mol - -analytic 88.46375E-2 00.00000E+0 -35.61812E+1 00.00000E+0 00.00000E+0 +Ba+2 + NO3- = Ba(NO3)+ + log_k -0.31 + delta_h 6.819 #kJ/mol +# Enthalpy of formation: -734.831 kJ/mol + -analytic 88.46375E-2 00E+0 -35.61812E+1 00E+0 00E+0 -+1.000Ba+2 -1.000H+ +1.000H2O = Ba(OH)+ - log_k -13.47 #76BAE/MES - delta_h +87.397 #kJ/mol -# Enthalpy of formation: -733.233 kJ/mol - -analytic 18.41297E-1 00.00000E+0 -45.65063E+2 00.00000E+0 00.00000E+0 +Ba+2 - H+ + H2O = Ba(OH)+ + log_k -13.47 #76BAE/MES + delta_h 87.397 #kJ/mol +# Enthalpy of formation: -733.233 kJ/mol + -analytic 18.41297E-1 00E+0 -45.65063E+2 00E+0 00E+0 -+1.000Ba+2 +1.000SO4-2 = Ba(SO4) - log_k +2.70 #76SMI/MAR; Uncertainty to include available data. - delta_h +7.367 #kJ/mol -# Enthalpy of formation: -1436.772 kJ/mol - -analytic 39.90643E-1 00.00000E+0 -38.48052E+1 00.00000E+0 00.00000E+0 +Ba+2 + SO4-2 = Ba(SO4) + log_k 2.7 #76SMI/MAR; Uncertainty to include available data. + delta_h 7.367 #kJ/mol +# Enthalpy of formation: -1436.772 kJ/mol + -analytic 39.90643E-1 00E+0 -38.48052E+1 00E+0 00E+0 -+2.000Ba+2 +1.000UO2+2 +3.000CO3-2 = Ba2UO2(CO3)3 - log_k +29.75 #06DON/BRO - -analytic 29.75000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 Ba+2 + UO2+2 + 3 CO3-2 = Ba2UO2(CO3)3 + log_k 29.75 #06DON/BRO + -analytic 29.75E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Ba+2 +1.000B(OH)4- = BaB(OH)4+ - log_k +1.49 #80BAS - -analytic 14.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ba+2 + B(OH)4- = BaB(OH)4+ + log_k 1.49 #80BAS + -analytic 14.9E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Ba+2 +1.000F- = BaF+ - log_k +0.40 - delta_h +6.698 #kJ/mol +Ba+2 + F- = BaF+ + log_k 0.4 + delta_h 6.698 #kJ/mol # Enthalpy of formation: -863.452 kJ/mol 97SVE/SHO - -analytic 15.73439E-1 00.00000E+0 -34.98609E+1 00.00000E+0 00.00000E+0 - -+1.000Ba+2 +1.000UO2+2 +3.000CO3-2 = BaUO2(CO3)3-2 - log_k +25.60 #20GRE/GAO - -analytic 25.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --1.000H+ +1.000CO3-2 +1.000H2O +1.000Be+2 = Be(OH)(CO3)- - log_k +1.85 #87BRU/GRE - -analytic 18.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --1.000H+ +1.000H2O +1.000Be+2 = Be(OH)+ - log_k -5.49 #17CAM/COL - -analytic -54.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --2.000H+ +2.000H2O +1.000Be+2 = Be(OH)2 - log_k -13.70 #20ÇEV/GAO - -analytic -13.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --2.000H+ +1.000CO3-2 +2.000H2O +1.000Be+2 = Be(OH)2(CO3)-2 - log_k -6.04 #87BRU/GRE - -analytic -60.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --3.000H+ +3.000H2O +1.000Be+2 = Be(OH)3- - log_k -24.30 #20ÇEV/GAO - -analytic -24.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --4.000H+ +4.000H2O +1.000Be+2 = Be(OH)4-2 - log_k -37.60 #20ÇEV/GAO - -analytic -37.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+2.000SO4-2 +1.000Be+2 = Be(SO4)2-2 - log_k +3.35 #67SEI/SAK - -analytic 33.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+3.000SO4-2 +1.000Be+2 = Be(SO4)3-4 - log_k +4.58 #67SEI/SAK - -analytic 45.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --1.000H+ +1.000H2O +2.000Be+2 = Be2(OH)+3 - log_k -3.47 #87BRU - delta_h +20.420 #kJ/mol 67MES/BAE -# Enthalpy of formation: -1031.010 kJ/mol - -analytic 10.74304E-2 00.00000E+0 -10.66611E+2 00.00000E+0 00.00000E+0 - --1.000H+ +1.000CO3-2 +1.000H2O +3.000Be+2 = Be3(OH)(CO3)+3 - log_k +9.47 #87BRU/GRE - -analytic 94.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --3.000H+ +3.000CO3-2 +3.000H2O +3.000Be+2 = Be3(OH)3(CO3)3-3 - log_k +9.04 #87BRU/GRE - -analytic 90.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --3.000H+ +3.000H2O +3.000Be+2 = Be3(OH)3+3 - log_k -8.86 #87BRU - delta_h +66.944 #kJ/mol 67MES/BAE -# Enthalpy of formation: -1938.946 kJ/mol - -analytic 28.68085E-1 00.00000E+0 -34.96729E+2 00.00000E+0 00.00000E+0 - --4.000H+ +3.000CO3-2 +4.000H2O +3.000Be+2 = Be3(OH)4(CO3)3-4 - log_k +1.06 #87BRU/GRE - -analytic 10.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --4.000H+ +1.000CO3-2 +4.000H2O +5.000Be+2 = Be5(OH)4(CO3)+4 - log_k +1.16 #87BRU/GREa - -analytic 11.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --6.000H+ +6.000H2O +5.000Be+2 = Be5(OH)6+4 - log_k -19.50 #87BRU - -analytic -19.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --5.000H+ +2.000CO3-2 +5.000H2O +6.000Be+2 = Be6(OH)5(CO3)2+3 - log_k +8.91 #87BRU/GREa - -analytic 89.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --8.000H+ +8.000H2O +6.000Be+2 = Be6(OH)8+4 - log_k -26.30 #87BRU - -analytic -26.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Cl- +1.000Be+2 = BeCl+ - log_k +0.19 #65MOR/JON - -analytic 19.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000CO3-2 +1.000Be+2 = BeCO3 - log_k +8.57 #87BRU/GRE - -analytic 85.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000F- +1.000Be+2 = BeF+ - log_k +5.52 #69MES/BAE - delta_h -1.464 #kJ/mol 69MES/BAE -# Enthalpy of formation: -719.614 kJ/mol - -analytic 52.63518E-1 00.00000E+0 76.47005E+0 00.00000E+0 00.00000E+0 - -+2.000F- +1.000Be+2 = BeF2 - log_k +9.67 #69MES/BAE - delta_h -6.318 #kJ/mol 69MES/BAE -# Enthalpy of formation: -1059.818 kJ/mol - -analytic 85.63134E-1 00.00000E+0 33.00121E+1 00.00000E+0 00.00000E+0 - -+3.000F- +1.000Be+2 = BeF3- - log_k +12.44 #69MES/BAE - delta_h -7.531 #kJ/mol 69MES/BAE -# Enthalpy of formation: -1396.381 kJ/mol - -analytic 11.12063E+0 00.00000E+0 39.33715E+1 00.00000E+0 00.00000E+0 - -+4.000F- +1.000Be+2 = BeF4-2 - log_k +13.44 #69MES/BAE - delta_h -9.456 #kJ/mol 69MES/BAE -# Enthalpy of formation: -1733.656 kJ/mol - -analytic 11.78338E+0 00.00000E+0 49.39213E+1 00.00000E+0 00.00000E+0 - -+1.000SO4-2 +1.000Be+2 = BeSO4 - log_k +2.03 #62BEL/KOL - -analytic 20.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000H+ +1.000F- +1.000B(OH)4- -1.000H2O = BF(OH)3- - log_k +8.94 #77NOR/JEN - delta_h -39.078 #kJ/mol 77NOR/JEN -# Enthalpy of formation: -1433.714 kJ/mol - -analytic 20.93828E-1 00.00000E+0 20.41186E+2 00.00000E+0 00.00000E+0 - -+2.000H+ +2.000F- +1.000B(OH)4- -2.000H2O = BF2(OH)2- - log_k +16.97 #77NOR/JEN - delta_h -38.702 #kJ/mol 77NOR/JEN -# Enthalpy of formation: -1482.858 kJ/mol - -analytic 10.18970E+0 00.00000E+0 20.21546E+2 00.00000E+0 00.00000E+0 - -+3.000H+ +3.000F- +1.000B(OH)4- -3.000H2O = BF3(OH)- - log_k +23.01 #77NOR/JEN - delta_h -38.326 #kJ/mol 77NOR/JEN -# Enthalpy of formation: -1532.002 kJ/mol - -analytic 16.29557E+0 00.00000E+0 20.01906E+2 00.00000E+0 00.00000E+0 - -+4.000H+ +4.000F- +1.000B(OH)4- -4.000H2O = BF4- - log_k +29.62 #77NOR/JEN - delta_h +73.680 #kJ/mol 77NOR/JEN -# Enthalpy of formation: -1469.516 kJ/mol - -analytic 42.52818E+0 00.00000E+0 -38.48574E+2 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +1.000Acetate- = Ca(Acetate)+ - log_k +1.12 #95DER/DIG - delta_h +0.143 #kJ/mol -# Enthalpy of formation: -1028.867 kJ/mol - -analytic 11.45053E-1 00.00000E+0 -74.69410E-1 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +1.000Adipate-2 = Ca(Adipate) - log_k +2.19 #04MAR/SMI from 40TOP/DAV - -analytic 21.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 -3.000H+ +1.000Am+3 +3.000H2O = Ca(Am(OH)3)+2 - log_k -26.30 #07RAB/ALT - -analytic -26.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +1.000AsO4-3 = Ca(AsO4)- - log_k +5.77 #10MAR/ACC - -analytic 57.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +1.000Cit-3 = Ca(Cit)- - log_k +4.80 #05HUM/AND - delta_h +0.000 #kJ/mol 05HUM/AND -# Enthalpy of formation: -2062.920 kJ/mol - -analytic 48.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 -3.000H+ +1.000Cm+3 +3.000H2O = Ca(Cm(OH)3)+2 - log_k -26.30 #07RAB/ALT - -analytic -26.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +1.000Edta-4 = Ca(Edta)-2 - log_k +12.69 #05HUM/AND - delta_h -22.200 #kJ/mol 05HUM/AND -# Enthalpy of formation: -2270.000 kJ/mol - -analytic 88.00727E-1 00.00000E+0 11.59587E+2 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +1.000Eu+3 -3.000H+ +3.000H2O = Ca(Eu(OH)3)+2 - log_k -26.30 #07RAB/ALT - -analytic -26.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +2.000H+ +1.000AsO4-3 = Ca(H2AsO4)+ - log_k +19.87 #10MAR/ACC - -analytic 19.87000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +2.000H+ +1.000Cit-3 = Ca(H2Cit)+ - log_k +12.67 #05HUM/AND - -analytic 12.67000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +1.000H2(PO4)- = Ca(H2PO4)+ - log_k +1.41 #68CHU/MAR - delta_h +14.226 #kJ/mol 68CHU/MAR -# Enthalpy of formation: -1831.374 kJ/mol - -analytic 39.02288E-1 00.00000E+0 -74.30757E+1 00.00000E+0 00.00000E+0 - -+1.000Ca+2 -1.000H+ +1.000H4(SiO4) = Ca(H3SiO4)+ - log_k -8.83 #97SVE/SHO - delta_h +31.633 #kJ/mol -# Enthalpy of formation: -1972.561 kJ/mol - -analytic -32.88136E-1 00.00000E+0 -16.52307E+2 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +1.000H+ +1.000AsO4-3 = Ca(HAsO4) - log_k +13.90 #10MAR/ACC - -analytic 13.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +1.000H+ +1.000Cit-3 = Ca(HCit) - log_k +9.28 #05HUM/AND - -analytic 92.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +1.000H+ +1.000CO3-2 = Ca(HCO3)+ - log_k +11.43 #96BOU1 - delta_h -23.595 #kJ/mol -# Enthalpy of formation: -1241.826 kJ/mol - -analytic 72.96333E-1 00.00000E+0 12.32453E+2 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +1.000H+ +1.000Edta-4 = Ca(HEdta)- - log_k +16.23 #05HUM/AND - -analytic 16.23000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +1.000HGlu- = Ca(HGlu)+ - log_k +1.73 #52SCH/LIN - -analytic 17.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +1.000HIsa- = Ca(HIsa)+ - log_k +1.70 #05HUM/AND - -analytic 17.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +1.000H+ +1.000Malonate-2 = Ca(HMalonate)+ - log_k +6.64 #13GRI/CAM - -analytic 66.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +1.000H+ +1.000Nta-3 = Ca(HNta) - log_k +13.40 #95AKR/BOU - -analytic 13.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +2.000H+ +2.000Nta-3 = Ca(HNta)2-2 - log_k +23.63 #95AKR/BOU - -analytic 23.63000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 -3.000H+ +1.000Ho+3 +3.000H2O = Ca(Ho(OH)3)+2 - log_k -26.30 #07RAB/ALT - -analytic -26.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +1.000H+ +1.000Phthalat-2 = Ca(HPhthalat)+ - log_k +6.42 #85DAN/DER - -analytic 64.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 -1.000H+ +1.000H2(PO4)- = Ca(HPO4) - log_k -4.47 #68CHU/MAR - delta_h +17.407 #kJ/mol 68CHU/MAR -# Enthalpy of formation: -1828.193 kJ/mol - -analytic -14.20425E-1 00.00000E+0 -90.92309E+1 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +1.000H+ +1.000Pyrophos-4 = Ca(HPyrophos)- - log_k +13.80 #88CHA/NEW - -analytic 13.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +1.000H+ +1.000Succinat-2 = Ca(HSuccinat)+ - log_k +6.79 #13GRI/CAM - -analytic 67.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +1.000IO3- = Ca(IO3)+ - log_k +0.40 #estimation NEA87 08/2/95 - -analytic 40.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 -1.000H+ +1.000HIsa- = Ca(Isa) - log_k -10.40 #05HUM/AND - -analytic -10.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +1.000Malonate-2 = Ca(Malonate) - log_k +2.43 #13GRI/CAM - -analytic 24.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +1.000NH3 = Ca(NH3)+2 - log_k -0.10 #88CHA/NEW - -analytic -10.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +2.000NH3 = Ca(NH3)2+2 - log_k -0.70 #88CHA/NEW - -analytic -70.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +3.000NH3 = Ca(NH3)3+2 - log_k -1.50 #88CHA/NEW - -analytic -15.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +4.000NH3 = Ca(NH3)4+2 - log_k -2.60 #88CHA/NEW - -analytic -26.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +1.000NpO2+ -2.000H+ +2.000H2O = Ca(NpO2(OH)2)+ - log_k -20.60 #20GRE/GAO - -analytic -20.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +1.000Nta-3 = Ca(Nta)- - log_k +7.73 #95AKR/BOU - -analytic 77.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 -1.000H+ +1.000HGlu- +1.000H2O = Ca(OH)(HGlu) - log_k -10.40 #02TIT/WIE - -analytic -10.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 -1.000H+ +1.000H2O = Ca(OH)+ - log_k -12.78 #87GAR/PAR - delta_h +77.207 #kJ/mol -# Enthalpy of formation: -751.623 kJ/mol - -analytic 74.60858E-2 00.00000E+0 -40.32802E+2 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +1.000Ox-2 = Ca(Ox) - log_k +3.19 #05HUM/AND - delta_h +6.811 #kJ/mol -# Enthalpy of formation: -1366.849 kJ/mol - -analytic 43.83236E-1 00.00000E+0 -35.57633E+1 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +2.000Ox-2 = Ca(Ox)2-2 - log_k +4.02 #05HUM/AND - -analytic 40.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +1.000Phthalat-2 = Ca(Phthalat) - log_k +2.49 #85DAN/DER - -analytic 24.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 -2.000H+ +1.000H2(PO4)- = Ca(PO4)- - log_k -13.10 #68CHU/MAR - delta_h +31.170 #kJ/mol 68CHU/MAR -# Enthalpy of formation: -1814.430 kJ/mol - -analytic -76.39250E-1 00.00000E+0 -16.28122E+2 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +1.000Pyrophos-4 = Ca(Pyrophos)-2 - log_k +7.50 #88CHA/NEW - -analytic 75.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ca+2 +1.000S2O3-2 = Ca(S2O3) - log_k +1.35 - delta_h +3.786 #kJ/mol + -analytic 15.73439E-1 00E+0 -34.98609E+1 00E+0 00E+0 + +Ba+2 + UO2+2 + 3 CO3-2 = BaUO2(CO3)3-2 + log_k 25.6 #20GRE/GAO + -analytic 25.6E+0 00E+0 00E+0 00E+0 00E+0 + +- H+ + CO3-2 + H2O + Be+2 = Be(OH)(CO3)- + log_k 1.85 #87BRU/GRE + -analytic 18.5E-1 00E+0 00E+0 00E+0 00E+0 + +- H+ + H2O + Be+2 = Be(OH)+ + log_k -5.49 #17CAM/COL + -analytic -54.9E-1 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ + 2 H2O + Be+2 = Be(OH)2 + log_k -13.7 #20ÇEV/GAO + -analytic -13.7E+0 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ + CO3-2 + 2 H2O + Be+2 = Be(OH)2(CO3)-2 + log_k -6.04 #87BRU/GRE + -analytic -60.4E-1 00E+0 00E+0 00E+0 00E+0 + +- 3 H+ + 3 H2O + Be+2 = Be(OH)3- + log_k -24.3 #20ÇEV/GAO + -analytic -24.3E+0 00E+0 00E+0 00E+0 00E+0 + +- 4 H+ + 4 H2O + Be+2 = Be(OH)4-2 + log_k -37.6 #20ÇEV/GAO + -analytic -37.6E+0 00E+0 00E+0 00E+0 00E+0 + +2 SO4-2 + Be+2 = Be(SO4)2-2 + log_k 3.35 #67SEI/SAK + -analytic 33.5E-1 00E+0 00E+0 00E+0 00E+0 + +3 SO4-2 + Be+2 = Be(SO4)3-4 + log_k 4.58 #67SEI/SAK + -analytic 45.8E-1 00E+0 00E+0 00E+0 00E+0 + +- H+ + H2O + 2 Be+2 = Be2(OH)+3 + log_k -3.47 #87BRU + delta_h 20.42 #kJ/mol 67MES/BAE +# Enthalpy of formation: -1031.010 kJ/mol + -analytic 10.74304E-2 00E+0 -10.66611E+2 00E+0 00E+0 + +- H+ + CO3-2 + H2O + 3 Be+2 = Be3(OH)(CO3)+3 + log_k 9.47 #87BRU/GRE + -analytic 94.7E-1 00E+0 00E+0 00E+0 00E+0 + +- 3 H+ + 3 CO3-2 + 3 H2O + 3 Be+2 = Be3(OH)3(CO3)3-3 + log_k 9.04 #87BRU/GRE + -analytic 90.4E-1 00E+0 00E+0 00E+0 00E+0 + +- 3 H+ + 3 H2O + 3 Be+2 = Be3(OH)3+3 + log_k -8.86 #87BRU + delta_h 66.944 #kJ/mol 67MES/BAE +# Enthalpy of formation: -1938.946 kJ/mol + -analytic 28.68085E-1 00E+0 -34.96729E+2 00E+0 00E+0 + +- 4 H+ + 3 CO3-2 + 4 H2O + 3 Be+2 = Be3(OH)4(CO3)3-4 + log_k 1.06 #87BRU/GRE + -analytic 10.6E-1 00E+0 00E+0 00E+0 00E+0 + +- 4 H+ + CO3-2 + 4 H2O + 5 Be+2 = Be5(OH)4(CO3)+4 + log_k 1.16 #87BRU/GREa + -analytic 11.6E-1 00E+0 00E+0 00E+0 00E+0 + +- 6 H+ + 6 H2O + 5 Be+2 = Be5(OH)6+4 + log_k -19.5 #87BRU + -analytic -19.5E+0 00E+0 00E+0 00E+0 00E+0 + +- 5 H+ + 2 CO3-2 + 5 H2O + 6 Be+2 = Be6(OH)5(CO3)2+3 + log_k 8.91 #87BRU/GREa + -analytic 89.1E-1 00E+0 00E+0 00E+0 00E+0 + +- 8 H+ + 8 H2O + 6 Be+2 = Be6(OH)8+4 + log_k -26.3 #87BRU + -analytic -26.3E+0 00E+0 00E+0 00E+0 00E+0 + +Cl- + Be+2 = BeCl+ + log_k 0.19 #65MOR/JON + -analytic 19E-2 00E+0 00E+0 00E+0 00E+0 + +CO3-2 + Be+2 = BeCO3 + log_k 8.57 #87BRU/GRE + -analytic 85.7E-1 00E+0 00E+0 00E+0 00E+0 + +F- + Be+2 = BeF+ + log_k 5.52 #69MES/BAE + delta_h -1.464 #kJ/mol 69MES/BAE +# Enthalpy of formation: -719.614 kJ/mol + -analytic 52.63518E-1 00E+0 76.47005E+0 00E+0 00E+0 + +2 F- + Be+2 = BeF2 + log_k 9.67 #69MES/BAE + delta_h -6.318 #kJ/mol 69MES/BAE +# Enthalpy of formation: -1059.818 kJ/mol + -analytic 85.63134E-1 00E+0 33.00121E+1 00E+0 00E+0 + +3 F- + Be+2 = BeF3- + log_k 12.44 #69MES/BAE + delta_h -7.531 #kJ/mol 69MES/BAE +# Enthalpy of formation: -1396.381 kJ/mol + -analytic 11.12063E+0 00E+0 39.33715E+1 00E+0 00E+0 + +4 F- + Be+2 = BeF4-2 + log_k 13.44 #69MES/BAE + delta_h -9.456 #kJ/mol 69MES/BAE +# Enthalpy of formation: -1733.656 kJ/mol + -analytic 11.78338E+0 00E+0 49.39213E+1 00E+0 00E+0 + +SO4-2 + Be+2 = BeSO4 + log_k 2.03 #62BEL/KOL + -analytic 20.3E-1 00E+0 00E+0 00E+0 00E+0 + +H+ + F- + B(OH)4- - H2O = BF(OH)3- + log_k 8.94 #77NOR/JEN + delta_h -39.078 #kJ/mol 77NOR/JEN +# Enthalpy of formation: -1433.714 kJ/mol + -analytic 20.93828E-1 00E+0 20.41186E+2 00E+0 00E+0 + +2 H+ + 2 F- + B(OH)4- - 2 H2O = BF2(OH)2- + log_k 16.97 #77NOR/JEN + delta_h -38.702 #kJ/mol 77NOR/JEN +# Enthalpy of formation: -1482.858 kJ/mol + -analytic 10.1897E+0 00E+0 20.21546E+2 00E+0 00E+0 + +3 H+ + 3 F- + B(OH)4- - 3 H2O = BF3(OH)- + log_k 23.01 #77NOR/JEN + delta_h -38.326 #kJ/mol 77NOR/JEN +# Enthalpy of formation: -1532.002 kJ/mol + -analytic 16.29557E+0 00E+0 20.01906E+2 00E+0 00E+0 + +4 H+ + 4 F- + B(OH)4- - 4 H2O = BF4- + log_k 29.62 #77NOR/JEN + delta_h 73.68 #kJ/mol 77NOR/JEN +# Enthalpy of formation: -1469.516 kJ/mol + -analytic 42.52818E+0 00E+0 -38.48574E+2 00E+0 00E+0 + +Ca+2 + Acetate- = Ca(Acetate)+ + log_k 1.12 #95DER/DIG + delta_h 0.143 #kJ/mol +# Enthalpy of formation: -1028.867 kJ/mol + -analytic 11.45053E-1 00E+0 -74.6941E-1 00E+0 00E+0 + +Ca+2 + Adipate-2 = Ca(Adipate) + log_k 2.19 #04MAR/SMI from 40TOP/DAV + -analytic 21.9E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 - 3 H+ + Am+3 + 3 H2O = Ca(Am(OH)3)+2 + log_k -26.3 #07RAB/ALT + -analytic -26.3E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + AsO4-3 = Ca(AsO4)- + log_k 5.77 #10MAR/ACC + -analytic 57.7E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + Cit-3 = Ca(Cit)- + log_k 4.8 #05HUM/AND + delta_h 0 #kJ/mol 05HUM/AND +# Enthalpy of formation: -2062.920 kJ/mol + -analytic 48E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 - 3 H+ + Cm+3 + 3 H2O = Ca(Cm(OH)3)+2 + log_k -26.3 #07RAB/ALT + -analytic -26.3E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + Edta-4 = Ca(Edta)-2 + log_k 12.69 #05HUM/AND + delta_h -22.2 #kJ/mol 05HUM/AND +# Enthalpy of formation: -2270.000 kJ/mol + -analytic 88.00727E-1 00E+0 11.59587E+2 00E+0 00E+0 + +Ca+2 + Eu+3 - 3 H+ + 3 H2O = Ca(Eu(OH)3)+2 + log_k -26.3 #07RAB/ALT + -analytic -26.3E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + 2 H+ + AsO4-3 = Ca(H2AsO4)+ + log_k 19.87 #10MAR/ACC + -analytic 19.87E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + 2 H+ + Cit-3 = Ca(H2Cit)+ + log_k 12.67 #05HUM/AND + -analytic 12.67E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + H2(PO4)- = Ca(H2PO4)+ + log_k 1.41 #68CHU/MAR + delta_h 14.226 #kJ/mol 68CHU/MAR +# Enthalpy of formation: -1831.374 kJ/mol + -analytic 39.02288E-1 00E+0 -74.30757E+1 00E+0 00E+0 + +Ca+2 - H+ + H4(SiO4) = Ca(H3SiO4)+ + log_k -8.83 #97SVE/SHO + delta_h 31.633 #kJ/mol +# Enthalpy of formation: -1972.561 kJ/mol + -analytic -32.88136E-1 00E+0 -16.52307E+2 00E+0 00E+0 + +Ca+2 + H+ + AsO4-3 = Ca(HAsO4) + log_k 13.9 #10MAR/ACC + -analytic 13.9E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + H+ + Cit-3 = Ca(HCit) + log_k 9.28 #05HUM/AND + -analytic 92.8E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + H+ + CO3-2 = Ca(HCO3)+ + log_k 11.43 #96BOU1 + delta_h -23.595 #kJ/mol +# Enthalpy of formation: -1241.826 kJ/mol + -analytic 72.96333E-1 00E+0 12.32453E+2 00E+0 00E+0 + +Ca+2 + H+ + Edta-4 = Ca(HEdta)- + log_k 16.23 #05HUM/AND + -analytic 16.23E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + HGlu- = Ca(HGlu)+ + log_k 1.73 #52SCH/LIN + -analytic 17.3E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + HIsa- = Ca(HIsa)+ + log_k 1.7 #05HUM/AND + -analytic 17E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + H+ + Malonate-2 = Ca(HMalonate)+ + log_k 6.64 #13GRI/CAM + -analytic 66.4E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + H+ + Nta-3 = Ca(HNta) + log_k 13.4 #95AKR/BOU + -analytic 13.4E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + 2 H+ + 2 Nta-3 = Ca(HNta)2-2 + log_k 23.63 #95AKR/BOU + -analytic 23.63E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 - 3 H+ + Ho+3 + 3 H2O = Ca(Ho(OH)3)+2 + log_k -26.3 #07RAB/ALT + -analytic -26.3E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + H+ + Phthalat-2 = Ca(HPhthalat)+ + log_k 6.42 #85DAN/DER + -analytic 64.2E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 - H+ + H2(PO4)- = Ca(HPO4) + log_k -4.47 #68CHU/MAR + delta_h 17.407 #kJ/mol 68CHU/MAR +# Enthalpy of formation: -1828.193 kJ/mol + -analytic -14.20425E-1 00E+0 -90.92309E+1 00E+0 00E+0 + +Ca+2 + H+ + Pyrophos-4 = Ca(HPyrophos)- + log_k 13.8 #88CHA/NEW + -analytic 13.8E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + H+ + Succinat-2 = Ca(HSuccinat)+ + log_k 6.79 #13GRI/CAM + -analytic 67.9E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + IO3- = Ca(IO3)+ + log_k 0.4 #estimation NEA87 08/2/95 + -analytic 40E-2 00E+0 00E+0 00E+0 00E+0 + +Ca+2 - H+ + HIsa- = Ca(Isa) + log_k -10.4 #05HUM/AND + -analytic -10.4E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + Malonate-2 = Ca(Malonate) + log_k 2.43 #13GRI/CAM + -analytic 24.3E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + NH3 = Ca(NH3)+2 + log_k -0.1 #88CHA/NEW + -analytic -10E-2 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + 2 NH3 = Ca(NH3)2+2 + log_k -0.7 #88CHA/NEW + -analytic -70E-2 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + 3 NH3 = Ca(NH3)3+2 + log_k -1.5 #88CHA/NEW + -analytic -15E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + 4 NH3 = Ca(NH3)4+2 + log_k -2.6 #88CHA/NEW + -analytic -26E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + NpO2+ - 2 H+ + 2 H2O = Ca(NpO2(OH)2)+ + log_k -20.6 #20GRE/GAO + -analytic -20.6E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + Nta-3 = Ca(Nta)- + log_k 7.73 #95AKR/BOU + -analytic 77.3E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 - H+ + HGlu- + H2O = Ca(OH)(HGlu) + log_k -10.4 #02TIT/WIE + -analytic -10.4E+0 00E+0 00E+0 00E+0 00E+0 + +Ca+2 - H+ + H2O = Ca(OH)+ + log_k -12.78 #87GAR/PAR + delta_h 77.207 #kJ/mol +# Enthalpy of formation: -751.623 kJ/mol + -analytic 74.60858E-2 00E+0 -40.32802E+2 00E+0 00E+0 + +Ca+2 + Ox-2 = Ca(Ox) + log_k 3.19 #05HUM/AND + delta_h 6.811 #kJ/mol +# Enthalpy of formation: -1366.849 kJ/mol + -analytic 43.83236E-1 00E+0 -35.57633E+1 00E+0 00E+0 + +Ca+2 + 2 Ox-2 = Ca(Ox)2-2 + log_k 4.02 #05HUM/AND + -analytic 40.2E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + Phthalat-2 = Ca(Phthalat) + log_k 2.49 #85DAN/DER + -analytic 24.9E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 - 2 H+ + H2(PO4)- = Ca(PO4)- + log_k -13.1 #68CHU/MAR + delta_h 31.17 #kJ/mol 68CHU/MAR +# Enthalpy of formation: -1814.430 kJ/mol + -analytic -76.3925E-1 00E+0 -16.28122E+2 00E+0 00E+0 + +Ca+2 + Pyrophos-4 = Ca(Pyrophos)-2 + log_k 7.5 #88CHA/NEW + -analytic 75E-1 00E+0 00E+0 00E+0 00E+0 + +Ca+2 + S2O3-2 = Ca(S2O3) + log_k 1.35 + delta_h 3.786 #kJ/mol # Enthalpy of formation: -1191.500 kJ/mol 03-91 MINTEQL-PSI - -analytic 20.13279E-1 00.00000E+0 -19.77566E+1 00.00000E+0 00.00000E+0 + -analytic 20.13279E-1 00E+0 -19.77566E+1 00E+0 00E+0 -+1.000Ca+2 +1.000SeO4-2 = Ca(SeO4) - log_k +2.00 #05OLI/NOL - delta_h +1.475 #kJ/mol -# Enthalpy of formation: -1145.025 kJ/mol - -analytic 22.58409E-1 00.00000E+0 -77.04462E+0 00.00000E+0 00.00000E+0 +Ca+2 + SeO4-2 = Ca(SeO4) + log_k 2 #05OLI/NOL + delta_h 1.475 #kJ/mol +# Enthalpy of formation: -1145.025 kJ/mol + -analytic 22.58409E-1 00E+0 -77.04462E+0 00E+0 00E+0 -+1.000Ca+2 +1.000Sm+3 -3.000H+ +3.000H2O = Ca(Sm(OH)3)+2 - log_k -26.30 #07RAB/ALT - -analytic -26.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ca+2 + Sm+3 - 3 H+ + 3 H2O = Ca(Sm(OH)3)+2 + log_k -26.3 #07RAB/ALT + -analytic -26.3E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Ca+2 +1.000SO4-2 = Ca(SO4) - log_k +2.31 #53BEL/GEO - delta_h +4.292 #kJ/mol -# Enthalpy of formation: -1448.047 kJ/mol - -analytic 30.61926E-1 00.00000E+0 -22.41868E+1 00.00000E+0 00.00000E+0 +Ca+2 + SO4-2 = Ca(SO4) + log_k 2.31 #53BEL/GEO + delta_h 4.292 #kJ/mol +# Enthalpy of formation: -1448.047 kJ/mol + -analytic 30.61926E-1 00E+0 -22.41868E+1 00E+0 00E+0 -+1.000Ca+2 +1.000Succinat-2 = Ca(Succinat) - log_k +2.34 #13GRI/CAM - -analytic 23.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ca+2 + Succinat-2 = Ca(Succinat) + log_k 2.34 #13GRI/CAM + -analytic 23.4E-1 00E+0 00E+0 00E+0 00E+0 -+2.000Ca+2 -4.000H+ +1.000Am+3 +4.000H2O = Ca2(Am(OH)4)+3 - log_k -37.20 #07RAB/ALT - -analytic -37.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 Ca+2 - 4 H+ + Am+3 + 4 H2O = Ca2(Am(OH)4)+3 + log_k -37.2 #07RAB/ALT + -analytic -37.2E+0 00E+0 00E+0 00E+0 00E+0 -+2.000Ca+2 -4.000H+ +1.000Cm+3 +4.000H2O = Ca2(Cm(OH)4)+3 - log_k -37.20 #07RAB/ALT - -analytic -37.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 Ca+2 - 4 H+ + Cm+3 + 4 H2O = Ca2(Cm(OH)4)+3 + log_k -37.2 #07RAB/ALT + -analytic -37.2E+0 00E+0 00E+0 00E+0 00E+0 -+2.000Ca+2 +1.000Eu+3 -4.000H+ +4.000H2O = Ca2(Eu(OH)4)+3 - log_k -37.20 #07RAB/ALT - -analytic -37.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 Ca+2 + Eu+3 - 4 H+ + 4 H2O = Ca2(Eu(OH)4)+3 + log_k -37.2 #07RAB/ALT + -analytic -37.2E+0 00E+0 00E+0 00E+0 00E+0 -+2.000Ca+2 -4.000H+ +1.000Ho+3 +4.000H2O = Ca2(Ho(OH)4)+3 - log_k -37.20 #07RAB/ALT - -analytic -37.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 Ca+2 - 4 H+ + Ho+3 + 4 H2O = Ca2(Ho(OH)4)+3 + log_k -37.2 #07RAB/ALT + -analytic -37.2E+0 00E+0 00E+0 00E+0 00E+0 -+2.000Ca+2 +1.000Sm+3 -4.000H+ +4.000H2O = Ca2(Sm(OH)4)+3 - log_k -37.20 #07RAB/ALT - -analytic -37.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 Ca+2 + Sm+3 - 4 H+ + 4 H2O = Ca2(Sm(OH)4)+3 + log_k -37.2 #07RAB/ALT + -analytic -37.2E+0 00E+0 00E+0 00E+0 00E+0 -+2.000Ca+2 +1.000UO2+2 +3.000CO3-2 = Ca2UO2(CO3)3 - log_k +30.80 #20GRE/GAO - delta_h -47.000 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -4177.690 kJ/mol - -analytic 22.56595E+0 00.00000E+0 24.54981E+2 00.00000E+0 00.00000E+0 +2 Ca+2 + UO2+2 + 3 CO3-2 = Ca2UO2(CO3)3 + log_k 30.8 #20GRE/GAO + delta_h -47 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -4177.690 kJ/mol + -analytic 22.56595E+0 00E+0 24.54981E+2 00E+0 00E+0 -+3.000Ca+2 -6.000H+ +1.000Am+3 +6.000H2O = Ca3(Am(OH)6)+3 - log_k -60.70 #07RAB/ALT - -analytic -60.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +3 Ca+2 - 6 H+ + Am+3 + 6 H2O = Ca3(Am(OH)6)+3 + log_k -60.7 #07RAB/ALT + -analytic -60.7E+0 00E+0 00E+0 00E+0 00E+0 -+3.000Ca+2 -6.000H+ +1.000Cm+3 +6.000H2O = Ca3(Cm(OH)6)+3 - log_k -60.70 #07RAB/ALT - -analytic -60.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +3 Ca+2 - 6 H+ + Cm+3 + 6 H2O = Ca3(Cm(OH)6)+3 + log_k -60.7 #07RAB/ALT + -analytic -60.7E+0 00E+0 00E+0 00E+0 00E+0 -+3.000Ca+2 +1.000Eu+3 -6.000H+ +6.000H2O = Ca3(Eu(OH)6)+3 - log_k -60.70 #07RAB/ALT - -analytic -60.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +3 Ca+2 + Eu+3 - 6 H+ + 6 H2O = Ca3(Eu(OH)6)+3 + log_k -60.7 #07RAB/ALT + -analytic -60.7E+0 00E+0 00E+0 00E+0 00E+0 -+3.000Ca+2 -6.000H+ +1.000Ho+3 +6.000H2O = Ca3(Ho(OH)6)+3 - log_k -60.70 #07RAB/ALT - -analytic -60.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +3 Ca+2 - 6 H+ + Ho+3 + 6 H2O = Ca3(Ho(OH)6)+3 + log_k -60.7 #07RAB/ALT + -analytic -60.7E+0 00E+0 00E+0 00E+0 00E+0 -+3.000Ca+2 +1.000NpO2+ -5.000H+ +5.000H2O = Ca3(NpO2(OH)5)+2 - log_k -54.80 #20GRE/GAO - -analytic -54.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +3 Ca+2 + NpO2+ - 5 H+ + 5 H2O = Ca3(NpO2(OH)5)+2 + log_k -54.8 #20GRE/GAO + -analytic -54.8E+0 00E+0 00E+0 00E+0 00E+0 -+3.000Ca+2 +1.000Sm+3 -6.000H+ +6.000H2O = Ca3(Sm(OH)6)+3 - log_k -60.70 #07RAB/ALT - -analytic -60.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +3 Ca+2 + Sm+3 - 6 H+ + 6 H2O = Ca3(Sm(OH)6)+3 + log_k -60.7 #07RAB/ALT + -analytic -60.7E+0 00E+0 00E+0 00E+0 00E+0 -+4.000Ca+2 +1.000Pu+4 -8.000H+ +8.000H2O = Ca4Pu(OH)8+4 - log_k -56.97 #20GRE/GAO - -analytic -56.97000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +4 Ca+2 + Pu+4 - 8 H+ + 8 H2O = Ca4Pu(OH)8+4 + log_k -56.97 #20GRE/GAO + -analytic -56.97E+0 00E+0 00E+0 00E+0 00E+0 -+4.000Ca+2 +1.000Th+4 -8.000H+ +8.000H2O = Ca4Th(OH)8+4 - log_k -63.10 #08ALT/NEC - -analytic -63.10000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +4 Ca+2 + Th+4 - 8 H+ + 8 H2O = Ca4Th(OH)8+4 + log_k -63.1 #08ALT/NEC + -analytic -63.1E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Ca+2 +1.000B(OH)4- = CaB(OH)4+ - log_k +1.80 #97CRO - -analytic 18.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ca+2 + B(OH)4- = CaB(OH)4+ + log_k 1.8 #97CRO + -analytic 18E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Ca+2 +1.000CO3-2 = CaCO3 - log_k +3.22 #96BOU1 - delta_h +14.830 #kJ/mol +Ca+2 + CO3-2 = CaCO3 + log_k 3.22 #96BOU1 + delta_h 14.83 #kJ/mol # Enthalpy of formation: -1203.400 kJ/mol 96BOU1 - -analytic 58.18104E-1 00.00000E+0 -77.46248E+1 00.00000E+0 00.00000E+0 + -analytic 58.18104E-1 00E+0 -77.46248E+1 00E+0 00E+0 -+1.000Ca+2 +1.000CrO4-2 = CaCrO4 - log_k +2.77 #00PER/PAL - -analytic 27.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ca+2 + CrO4-2 = CaCrO4 + log_k 2.77 #00PER/PAL + -analytic 27.7E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Ca+2 +1.000F- = CaF+ - log_k +0.94 #96BOU - delta_h +17.238 #kJ/mol 96BOU -# Enthalpy of formation: -861.112 kJ/mol - -analytic 39.59968E-1 00.00000E+0 -90.04034E+1 00.00000E+0 00.00000E+0 +Ca+2 + F- = CaF+ + log_k 0.94 #96BOU + delta_h 17.238 #kJ/mol 96BOU +# Enthalpy of formation: -861.112 kJ/mol + -analytic 39.59968E-1 00E+0 -90.04034E+1 00E+0 00E+0 -+1.000Ca+2 +1.000I- = CaI+ - log_k +0.14 #92JOH/OEL - -analytic 14.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ca+2 + I- = CaI+ + log_k 0.14 #92JOH/OEL + -analytic 14E-2 00E+0 00E+0 00E+0 00E+0 -+1.000Ca+2 +2.000I- = CaI2 - log_k -0.02 #92JOH/OEL - -analytic -20.00000E-3 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ca+2 + 2 I- = CaI2 + log_k -0.02 #92JOH/OEL + -analytic -20E-3 00E+0 00E+0 00E+0 00E+0 -+1.000Ca+2 +1.000Pu+4 -4.000H+ +1.000HIsa- +4.000H2O = CaPu(OH)4(HIsa)+ - log_k -1.66 #18TAS/GAO1 - -analytic -16.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ca+2 + Pu+4 - 4 H+ + HIsa- + 4 H2O = CaPu(OH)4(HIsa)+ + log_k -1.66 #18TAS/GAO1 + -analytic -16.6E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Ca+2 +1.000Pu+4 -5.000H+ +1.000HIsa- +5.000H2O = CaPu(OH)5(HIsa) - log_k -12.70 #18TAS/GAO1 - -analytic -12.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ca+2 + Pu+4 - 5 H+ + HIsa- + 5 H2O = CaPu(OH)5(HIsa) + log_k -12.7 #18TAS/GAO1 + -analytic -12.7E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Ca+2 +1.000UO2+2 +3.000CO3-2 = CaUO2(CO3)3-2 - log_k +27.00 #20GRE/GAO - delta_h -47.000 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -3634.690 kJ/mol - -analytic 18.76595E+0 00.00000E+0 24.54981E+2 00.00000E+0 00.00000E+0 +Ca+2 + UO2+2 + 3 CO3-2 = CaUO2(CO3)3-2 + log_k 27 #20GRE/GAO + delta_h -47 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -3634.690 kJ/mol + -analytic 18.76595E+0 00E+0 24.54981E+2 00E+0 00E+0 -+1.000Cd+2 +1.000CO3-2 = Cd(CO3) - log_k +4.70 #91RAI/FEL1 - delta_h +4.299 #kJ/mol -# Enthalpy of formation: -746.851 kJ/mol - -analytic 54.53152E-1 00.00000E+0 -22.45524E+1 00.00000E+0 00.00000E+0 +Cd+2 + CO3-2 = Cd(CO3) + log_k 4.7 #91RAI/FEL1 + delta_h 4.299 #kJ/mol +# Enthalpy of formation: -746.851 kJ/mol + -analytic 54.53152E-1 00E+0 -22.45524E+1 00E+0 00E+0 -+1.000Cd+2 +2.000CO3-2 = Cd(CO3)2-2 - log_k +6.50 #91RAI/FEL1 - -analytic 65.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cd+2 + 2 CO3-2 = Cd(CO3)2-2 + log_k 6.5 #91RAI/FEL1 + -analytic 65E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Cd+2 +1.000H2(PO4)- = Cd(H2PO4)+ - log_k +1.80 #01AYA/MAD - -analytic 18.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cd+2 + H2(PO4)- = Cd(H2PO4)+ + log_k 1.8 #01AYA/MAD + -analytic 18E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Cd+2 +1.000H+ +1.000CO3-2 = Cd(HCO3)+ - log_k +11.83 #93STI/PAR - -analytic 11.83000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cd+2 + H+ + CO3-2 = Cd(HCO3)+ + log_k 11.83 #93STI/PAR + -analytic 11.83E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Cd+2 +2.000HS- = Cd(HS)2 - log_k +14.43 #99WAN/TES - -analytic 14.43000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cd+2 + 2 HS- = Cd(HS)2 + log_k 14.43 #99WAN/TES + -analytic 14.43E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Cd+2 +1.000NH3 = Cd(NH3)+2 - log_k +2.52 - -analytic 25.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cd+2 + NH3 = Cd(NH3)+2 + log_k 2.52 + -analytic 25.2E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Cd+2 +2.000NH3 = Cd(NH3)2+2 - log_k +4.87 - delta_h -27.965 #kJ/mol -# Enthalpy of formation: -266.225 kJ/mol - -analytic -29.25770E-3 00.00000E+0 14.60714E+2 00.00000E+0 00.00000E+0 +Cd+2 + 2 NH3 = Cd(NH3)2+2 + log_k 4.87 + delta_h -27.965 #kJ/mol +# Enthalpy of formation: -266.225 kJ/mol + -analytic -29.2577E-3 00E+0 14.60714E+2 00E+0 00E+0 -+1.000Cd+2 +3.000NH3 = Cd(NH3)3+2 - log_k +5.93 #ANDRA report (C RP 0ENQ 02-001, Interpolated - -analytic 59.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cd+2 + 3 NH3 = Cd(NH3)3+2 + log_k 5.93 #ANDRA report (C RP 0ENQ 02-001, Interpolated + -analytic 59.3E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Cd+2 +4.000NH3 = Cd(NH3)4+2 - log_k +7.30 - delta_h -49.714 #kJ/mol -# Enthalpy of formation: -450.314 kJ/mol - -analytic -14.09519E-1 00.00000E+0 25.96743E+2 00.00000E+0 00.00000E+0 +Cd+2 + 4 NH3 = Cd(NH3)4+2 + log_k 7.3 + delta_h -49.714 #kJ/mol +# Enthalpy of formation: -450.314 kJ/mol + -analytic -14.09519E-1 00E+0 25.96743E+2 00E+0 00E+0 -+1.000Cd+2 +1.000NO3- = Cd(NO3)+ - log_k +0.46 #74FED/ROB in 82HÖG - delta_h -21.757 #kJ/mol 74NAU/RYZ in 91BAL/NOR -# Enthalpy of formation: -304.527 kJ/mol - -analytic -33.51663E-1 00.00000E+0 11.36447E+2 00.00000E+0 00.00000E+0 +Cd+2 + NO3- = Cd(NO3)+ + log_k 0.46 #74FED/ROB in 82HÖG + delta_h -21.757 #kJ/mol 74NAU/RYZ in 91BAL/NOR +# Enthalpy of formation: -304.527 kJ/mol + -analytic -33.51663E-1 00E+0 11.36447E+2 00E+0 00E+0 -+1.000Cd+2 +2.000NO3- = Cd(NO3)2 - log_k +0.17 #97CRO - -analytic 17.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cd+2 + 2 NO3- = Cd(NO3)2 + log_k 0.17 #97CRO + -analytic 17E-2 00E+0 00E+0 00E+0 00E+0 -+1.000Cd+2 -1.000H+ +1.000H2O = Cd(OH)+ - log_k -10.08 #81BAE/MES - delta_h +54.810 #kJ/mol 81BAE/MES -# Enthalpy of formation: -306.940 kJ/mol - -analytic -47.77002E-2 00.00000E+0 -28.62926E+2 00.00000E+0 00.00000E+0 +Cd+2 - H+ + H2O = Cd(OH)+ + log_k -10.08 #81BAE/MES + delta_h 54.81 #kJ/mol 81BAE/MES +# Enthalpy of formation: -306.940 kJ/mol + -analytic -47.77002E-2 00E+0 -28.62926E+2 00E+0 00E+0 -+1.000Cd+2 -2.000H+ +2.000H2O = Cd(OH)2 - log_k -20.90 #91RAI/FEL1 - delta_h +114.900 #kJ/mol -# Enthalpy of formation: -532.680 kJ/mol - -analytic -77.03841E-2 00.00000E+0 -60.01645E+2 00.00000E+0 00.00000E+0 +Cd+2 - 2 H+ + 2 H2O = Cd(OH)2 + log_k -20.9 #91RAI/FEL1 + delta_h 114.9 #kJ/mol +# Enthalpy of formation: -532.680 kJ/mol + -analytic -77.03841E-2 00E+0 -60.01645E+2 00E+0 00E+0 -+1.000Cd+2 -3.000H+ +3.000H2O = Cd(OH)3- - log_k -33.30 #81BAE/MES - delta_h +156.416 #kJ/mol -# Enthalpy of formation: -776.994 kJ/mol - -analytic -58.97093E-1 00.00000E+0 -81.70177E+2 00.00000E+0 00.00000E+0 +Cd+2 - 3 H+ + 3 H2O = Cd(OH)3- + log_k -33.3 #81BAE/MES + delta_h 156.416 #kJ/mol +# Enthalpy of formation: -776.994 kJ/mol + -analytic -58.97093E-1 00E+0 -81.70177E+2 00E+0 00E+0 -+1.000Cd+2 -4.000H+ +4.000H2O = Cd(OH)4-2 - log_k -47.48 #91RAI/FEL1 - delta_h +229.570 #kJ/mol -# Enthalpy of formation: -989.669 kJ/mol - -analytic -72.61062E-1 00.00000E+0 -11.99128E+3 00.00000E+0 00.00000E+0 +Cd+2 - 4 H+ + 4 H2O = Cd(OH)4-2 + log_k -47.48 #91RAI/FEL1 + delta_h 229.57 #kJ/mol +# Enthalpy of formation: -989.669 kJ/mol + -analytic -72.61062E-1 00E+0 -11.99128E+3 00E+0 00E+0 -+1.000Cd+2 +1.000Pyrophos-4 = Cd(Pyrophos)-2 - log_k +8.70 #92CLE/DER - -analytic 87.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cd+2 + Pyrophos-4 = Cd(Pyrophos)-2 + log_k 8.7 #92CLE/DER + -analytic 87E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Cd+2 +1.000S2O3-2 = Cd(S2O3) - log_k +2.46 - delta_h +5.405 #kJ/mol +Cd+2 + S2O3-2 = Cd(S2O3) + log_k 2.46 + delta_h 5.405 #kJ/mol # Enthalpy of formation: -722.801 kJ/mol 74NAU/RYZ - -analytic 34.06915E-1 00.00000E+0 -28.23228E+1 00.00000E+0 00.00000E+0 + -analytic 34.06915E-1 00E+0 -28.23228E+1 00E+0 00E+0 -+1.000Cd+2 +1.000SeO4-2 = Cd(SeO4) - log_k +2.27 #05OLI/NOL - delta_h +8.300 #kJ/mol 05OLI/NOL -# Enthalpy of formation: -671.120 kJ/mol - -analytic 37.24098E-1 00.00000E+0 -43.35392E+1 00.00000E+0 00.00000E+0 +Cd+2 + SeO4-2 = Cd(SeO4) + log_k 2.27 #05OLI/NOL + delta_h 8.3 #kJ/mol 05OLI/NOL +# Enthalpy of formation: -671.120 kJ/mol + -analytic 37.24098E-1 00E+0 -43.35392E+1 00E+0 00E+0 -+1.000Cd+2 +1.000SO4-2 = Cd(SO4) - log_k +2.37 #97MAR/SMI - delta_h +8.700 #kJ/mol 97MAR/SMI -# Enthalpy of formation: -976.560 kJ/mol - -analytic 38.94175E-1 00.00000E+0 -45.44326E+1 00.00000E+0 00.00000E+0 +Cd+2 + SO4-2 = Cd(SO4) + log_k 2.37 #97MAR/SMI + delta_h 8.7 #kJ/mol 97MAR/SMI +# Enthalpy of formation: -976.560 kJ/mol + -analytic 38.94175E-1 00E+0 -45.44326E+1 00E+0 00E+0 -+1.000Cd+2 +2.000SO4-2 = Cd(SO4)2-2 - log_k +3.44 #76SMI/MAR - -analytic 34.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cd+2 + 2 SO4-2 = Cd(SO4)2-2 + log_k 3.44 #76SMI/MAR + -analytic 34.4E-1 00E+0 00E+0 00E+0 00E+0 -+4.000Cd+2 -4.000H+ +4.000H2O = Cd4(OH)4+4 - log_k -32.07 - delta_h +172.135 #kJ/mol +4 Cd+2 - 4 H+ + 4 H2O = Cd4(OH)4+4 + log_k -32.07 + delta_h 172.135 #kJ/mol # Enthalpy of formation: -1274.865 kJ/mol 99YUN/GLU - -analytic -19.13243E-1 00.00000E+0 -89.91237E+2 00.00000E+0 00.00000E+0 + -analytic -19.13243E-1 00E+0 -89.91237E+2 00E+0 00E+0 -+1.000Cd+2 +1.000Br- = CdBr+ - log_k +2.16 - delta_h -7.959 #kJ/mol -# Enthalpy of formation: -205.289 kJ/mol - -analytic 76.56431E-2 00.00000E+0 41.57275E+1 00.00000E+0 00.00000E+0 +Cd+2 + Br- = CdBr+ + log_k 2.16 + delta_h -7.959 #kJ/mol +# Enthalpy of formation: -205.289 kJ/mol + -analytic 76.56431E-2 00E+0 41.57275E+1 00E+0 00E+0 -+1.000Cd+2 +2.000Br- = CdBr2 - log_k +2.92 - delta_h -15.743 #kJ/mol -# Enthalpy of formation: -334.482 kJ/mol - -analytic 16.19448E-2 00.00000E+0 82.23142E+1 00.00000E+0 00.00000E+0 +Cd+2 + 2 Br- = CdBr2 + log_k 2.92 + delta_h -15.743 #kJ/mol +# Enthalpy of formation: -334.482 kJ/mol + -analytic 16.19448E-2 00E+0 82.23142E+1 00E+0 00E+0 -+1.000Cd+2 +3.000Br- = CdBr3- - log_k +3.19 - delta_h -28.846 #kJ/mol -# Enthalpy of formation: -468.995 kJ/mol - -analytic -18.63602E-1 00.00000E+0 15.06732E+2 00.00000E+0 00.00000E+0 +Cd+2 + 3 Br- = CdBr3- + log_k 3.19 + delta_h -28.846 #kJ/mol +# Enthalpy of formation: -468.995 kJ/mol + -analytic -18.63602E-1 00E+0 15.06732E+2 00E+0 00E+0 -+1.000Cd+2 +1.000Cl- = CdCl+ - log_k +1.97 #76BAE/MES - delta_h -5.520 #kJ/mol -# Enthalpy of formation: -248.520 kJ/mol - -analytic 10.02938E-1 00.00000E+0 28.83297E+1 00.00000E+0 00.00000E+0 +Cd+2 + Cl- = CdCl+ + log_k 1.97 #76BAE/MES + delta_h -5.52 #kJ/mol +# Enthalpy of formation: -248.520 kJ/mol + -analytic 10.02938E-1 00E+0 28.83297E+1 00E+0 00E+0 -+1.000Cd+2 +2.000Cl- = CdCl2 - log_k +2.59 #76BAE/MES - delta_h -14.068 #kJ/mol -# Enthalpy of formation: -424.148 kJ/mol - -analytic 12.53922E-2 00.00000E+0 73.48228E+1 00.00000E+0 00.00000E+0 +Cd+2 + 2 Cl- = CdCl2 + log_k 2.59 #76BAE/MES + delta_h -14.068 #kJ/mol +# Enthalpy of formation: -424.148 kJ/mol + -analytic 12.53922E-2 00E+0 73.48228E+1 00E+0 00E+0 -+1.000Cd+2 +3.000Cl- = CdCl3- - log_k +2.40 #76BAE/MES - delta_h -25.804 #kJ/mol -# Enthalpy of formation: -602.963 kJ/mol - -analytic -21.20667E-1 00.00000E+0 13.47837E+2 00.00000E+0 00.00000E+0 +Cd+2 + 3 Cl- = CdCl3- + log_k 2.4 #76BAE/MES + delta_h -25.804 #kJ/mol +# Enthalpy of formation: -602.963 kJ/mol + -analytic -21.20667E-1 00E+0 13.47837E+2 00E+0 00E+0 -+1.000Cd+2 +4.000Cl- = CdCl4-2 - log_k +1.47 #76BAE/MES - delta_h -44.765 #kJ/mol -# Enthalpy of formation: -789.004 kJ/mol - -analytic -63.72491E-1 00.00000E+0 23.38239E+2 00.00000E+0 00.00000E+0 +Cd+2 + 4 Cl- = CdCl4-2 + log_k 1.47 #76BAE/MES + delta_h -44.765 #kJ/mol +# Enthalpy of formation: -789.004 kJ/mol + -analytic -63.72491E-1 00E+0 23.38239E+2 00E+0 00E+0 -+1.000Cd+2 -1.000H+ +1.000H2(PO4)- = CdHPO4 - log_k -2.38 #01AYA/MAD - -analytic -23.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cd+2 - H+ + H2(PO4)- = CdHPO4 + log_k -2.38 #01AYA/MAD + -analytic -23.8E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Cd+2 +1.000HS- = CdHS+ - log_k +7.38 #99WAN/TES - -analytic 73.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cd+2 + HS- = CdHS+ + log_k 7.38 #99WAN/TES + -analytic 73.8E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Cd+2 +1.000I- = CdI+ - log_k +2.09 - delta_h -8.739 #kJ/mol -# Enthalpy of formation: -141.439 kJ/mol - -analytic 55.89929E-2 00.00000E+0 45.64698E+1 00.00000E+0 00.00000E+0 +Cd+2 + I- = CdI+ + log_k 2.09 + delta_h -8.739 #kJ/mol +# Enthalpy of formation: -141.439 kJ/mol + -analytic 55.89929E-2 00E+0 45.64698E+1 00E+0 00E+0 -+1.000Cd+2 +2.000I- = CdI2 - log_k +3.53 - delta_h -18.988 #kJ/mol -# Enthalpy of formation: -208.468 kJ/mol - -analytic 20.34452E-2 00.00000E+0 99.18123E+1 00.00000E+0 00.00000E+0 +Cd+2 + 2 I- = CdI2 + log_k 3.53 + delta_h -18.988 #kJ/mol +# Enthalpy of formation: -208.468 kJ/mol + -analytic 20.34452E-2 00E+0 99.18123E+1 00E+0 00E+0 -+1.000Cd+2 +3.000I- = CdI3- - log_k +4.64 - delta_h -38.648 #kJ/mol -# Enthalpy of formation: -284.907 kJ/mol - -analytic -21.30839E-1 00.00000E+0 20.18726E+2 00.00000E+0 00.00000E+0 +Cd+2 + 3 I- = CdI3- + log_k 4.64 + delta_h -38.648 #kJ/mol +# Enthalpy of formation: -284.907 kJ/mol + -analytic -21.30839E-1 00E+0 20.18726E+2 00E+0 00E+0 -+1.000Cd+2 +4.000I- = CdI4-2 - log_k +5.48 - delta_h -75.610 #kJ/mol -# Enthalpy of formation: -378.649 kJ/mol - -analytic -77.66303E-1 00.00000E+0 39.49385E+2 00.00000E+0 00.00000E+0 +Cd+2 + 4 I- = CdI4-2 + log_k 5.48 + delta_h -75.61 #kJ/mol +# Enthalpy of formation: -378.649 kJ/mol + -analytic -77.66303E-1 00E+0 39.49385E+2 00E+0 00E+0 --1.000H+ +1.000CH4 = CH3- - log_k -46.00 #18BLA/BUR - -analytic -46.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- H+ + CH4 = CH3- + log_k -46 #18BLA/BUR + -analytic -46E+0 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000CH4 +1.000Hg+2 = CH3Hg+ - log_k +3.00 #18BLA/BUR - -analytic 30.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- H+ + CH4 + Hg+2 = CH3Hg+ + log_k 3 #18BLA/BUR + -analytic 30E-1 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000Cl- +1.000CH4 +1.000Hg+2 = CH3HgCl - log_k +8.45 #18BLA/BUR - -analytic 84.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- H+ + Cl- + CH4 + Hg+2 = CH3HgCl + log_k 8.45 #18BLA/BUR + -analytic 84.5E-1 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000CO3-2 +1.000CH4 +1.000Hg+2 = CH3HgCO3- - log_k +9.10 #18BLA/BUR - -analytic 91.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- H+ + CO3-2 + CH4 + Hg+2 = CH3HgCO3- + log_k 9.1 #18BLA/BUR + -analytic 91E-1 00E+0 00E+0 00E+0 00E+0 -+1.000CO3-2 +1.000CH4 +1.000Hg+2 = CH3HgHCO3 - log_k +15.93 #18BLA/BUR - -analytic 15.93000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +CO3-2 + CH4 + Hg+2 = CH3HgHCO3 + log_k 15.93 #18BLA/BUR + -analytic 15.93E+0 00E+0 00E+0 00E+0 00E+0 --2.000H+ +1.000CH4 +1.000H2O +1.000Hg+2 = CH3HgOH - log_k -1.53 #18BLA/BUR - -analytic -15.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 2 H+ + CH4 + H2O + Hg+2 = CH3HgOH + log_k -1.53 #18BLA/BUR + -analytic -15.3E-1 00E+0 00E+0 00E+0 00E+0 --2.000H+ +1.000HS- +1.000CH4 +1.000Hg+2 = CH3HgS- - log_k +7.00 #18BLA/BUR - -analytic 70.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 2 H+ + HS- + CH4 + Hg+2 = CH3HgS- + log_k 7 #18BLA/BUR + -analytic 70E-1 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000HS- +1.000CH4 +1.000Hg+2 = CH3HgSH - log_k +17.50 #18BLA/BUR - -analytic 17.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- H+ + HS- + CH4 + Hg+2 = CH3HgSH + log_k 17.5 #18BLA/BUR + -analytic 17.5E+0 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000SO4-2 +1.000CH4 +1.000Hg+2 = CH3HgSO4- - log_k +5.64 #18BLA/BUR - -analytic 56.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- H+ + SO4-2 + CH4 + Hg+2 = CH3HgSO4- + log_k 5.64 #18BLA/BUR + -analytic 56.4E-1 00E+0 00E+0 00E+0 00E+0 --2.000e- +2.000Cl- = Cl2 - log_k -47.21 - delta_h +310.760 #kJ/mol +- 2 e- + 2 Cl- = Cl2 + log_k -47.21 + delta_h 310.76 #kJ/mol # Enthalpy of formation: -23.400 kJ/mol 82WAG/EVA - -analytic 72.32815E-1 00.00000E+0 -16.23213E+3 00.00000E+0 00.00000E+0 + -analytic 72.32815E-1 00E+0 -16.23213E+3 00E+0 00E+0 --8.000H+ -8.000e- +1.000Cl- +4.000H2O = ClO4- - log_k -187.79 - delta_h +1182.300 #kJ/mol +- 8 H+ - 8 e- + Cl- + 4 H2O = ClO4- + log_k -187.79 + delta_h 1182.3 #kJ/mol # Enthalpy of formation: -128.100 kJ/mol 89COX/WAG - -analytic 19.34007E+0 00.00000E+0 -61.75583E+3 00.00000E+0 00.00000E+0 + -analytic 19.34007E+0 00E+0 -61.75583E+3 00E+0 00E+0 -+1.000Cm+3 +1.000Acetate- = Cm(Acetate)+2 - log_k +3.01 #11RIC/GRI - -analytic 30.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cm+3 + Acetate- = Cm(Acetate)+2 + log_k 3.01 #11RIC/GRI + -analytic 30.1E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Cm+3 +2.000Acetate- = Cm(Acetate)2+ - log_k +4.96 #12GRI/GAR2 - -analytic 49.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cm+3 + 2 Acetate- = Cm(Acetate)2+ + log_k 4.96 #12GRI/GAR2 + -analytic 49.6E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Cm+3 +3.000Acetate- = Cm(Acetate)3 - log_k +6.30 #69MOS - -analytic 63.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cm+3 + 3 Acetate- = Cm(Acetate)3 + log_k 6.3 #69MOS + -analytic 63E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Cit-3 +1.000Cm+3 = Cm(Cit) - log_k +8.55 #Analogy with Am - -analytic 85.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cit-3 + Cm+3 = Cm(Cit) + log_k 8.55 #Analogy with Am + -analytic 85.5E-1 00E+0 00E+0 00E+0 00E+0 -+2.000Cit-3 +1.000Cm+3 = Cm(Cit)2-3 - log_k +13.90 #Analogy with Am - -analytic 13.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 Cit-3 + Cm+3 = Cm(Cit)2-3 + log_k 13.9 #Analogy with Am + -analytic 13.9E+0 00E+0 00E+0 00E+0 00E+0 -+1.000CO3-2 +1.000Cm+3 = Cm(CO3)+ - log_k +7.90 #06DUR/CER - delta_h +16.981 #kJ/mol -# Enthalpy of formation: -1273.250 kJ/mol - -analytic 10.87494E+0 00.00000E+0 -88.69794E+1 00.00000E+0 00.00000E+0 +CO3-2 + Cm+3 = Cm(CO3)+ + log_k 7.9 #06DUR/CER + delta_h 16.981 #kJ/mol +# Enthalpy of formation: -1273.250 kJ/mol + -analytic 10.87494E+0 00E+0 -88.69794E+1 00E+0 00E+0 -+2.000CO3-2 +1.000Cm+3 = Cm(CO3)2- - log_k +12.60 #06DUR/CER - -analytic 12.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 CO3-2 + Cm+3 = Cm(CO3)2- + log_k 12.6 #06DUR/CER + -analytic 12.6E+0 00E+0 00E+0 00E+0 00E+0 -+3.000CO3-2 +1.000Cm+3 = Cm(CO3)3-3 - log_k +14.60 #06DUR/CER - -analytic 14.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +3 CO3-2 + Cm+3 = Cm(CO3)3-3 + log_k 14.6 #06DUR/CER + -analytic 14.6E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Edta-4 +1.000Cm+3 = Cm(Edta)- - log_k +19.67 #Analogy with Am(Edta)- - -analytic 19.67000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Edta-4 + Cm+3 = Cm(Edta)- + log_k 19.67 #Analogy with Am(Edta)- + -analytic 19.67E+0 00E+0 00E+0 00E+0 00E+0 -+1.000H2(PO4)- +1.000Cm+3 = Cm(H2PO4)+2 - log_k +2.46 #20GRE/GAO - -analytic 24.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +H2(PO4)- + Cm+3 = Cm(H2PO4)+2 + log_k 2.46 #20GRE/GAO + -analytic 24.6E-1 00E+0 00E+0 00E+0 00E+0 -+1.000H+ +1.000Cit-3 +1.000Cm+3 = Cm(HCit)+ - log_k +12.86 #Analogy with Am - -analytic 12.86000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +H+ + Cit-3 + Cm+3 = Cm(HCit)+ + log_k 12.86 #Analogy with Am + -analytic 12.86E+0 00E+0 00E+0 00E+0 00E+0 -+2.000H+ +2.000Cit-3 +1.000Cm+3 = Cm(HCit)2- - log_k +23.52 #Analogy with Am - -analytic 23.52000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 H+ + 2 Cit-3 + Cm+3 = Cm(HCit)2- + log_k 23.52 #Analogy with Am + -analytic 23.52E+0 00E+0 00E+0 00E+0 00E+0 -+1.000H+ +1.000Edta-4 +1.000Cm+3 = Cm(HEdta) - log_k +21.84 #Analogy with Am(HEdta) - -analytic 21.84000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +H+ + Edta-4 + Cm+3 = Cm(HEdta) + log_k 21.84 #Analogy with Am(HEdta) + -analytic 21.84E+0 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000H2(PO4)- +1.000Cm+3 = Cm(HPO4)+ - log_k -1.69 #Estimated by correlation with An(III) in function of ionic radii - -analytic -16.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- H+ + H2(PO4)- + Cm+3 = Cm(HPO4)+ + log_k -1.69 #Estimated by correlation with An(III) in function of ionic radii + -analytic -16.9E-1 00E+0 00E+0 00E+0 00E+0 --2.000H+ +2.000H2(PO4)- +1.000Cm+3 = Cm(HPO4)2- - log_k -5.19 #Estimated by correlation with An(III) in function of ionic radii - -analytic -51.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 2 H+ + 2 H2(PO4)- + Cm+3 = Cm(HPO4)2- + log_k -5.19 #Estimated by correlation with An(III) in function of ionic radii + -analytic -51.9E-1 00E+0 00E+0 00E+0 00E+0 -+1.000NO3- +1.000Cm+3 = Cm(NO3)+2 - log_k +1.28 #20GRE/GAO - delta_h +1.800 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -820.050 kJ/mol - -analytic 15.95346E-1 00.00000E+0 -94.02055E+0 00.00000E+0 00.00000E+0 +NO3- + Cm+3 = Cm(NO3)+2 + log_k 1.28 #20GRE/GAO + delta_h 1.8 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -820.050 kJ/mol + -analytic 15.95346E-1 00E+0 -94.02055E+0 00E+0 00E+0 -+2.000NO3- +1.000Cm+3 = Cm(NO3)2+ - log_k +0.88 #20GRE/GAO - delta_h +10.800 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -1017.900 kJ/mol - -analytic 27.72079E-1 00.00000E+0 -56.41233E+1 00.00000E+0 00.00000E+0 +2 NO3- + Cm+3 = Cm(NO3)2+ + log_k 0.88 #20GRE/GAO + delta_h 10.8 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1017.900 kJ/mol + -analytic 27.72079E-1 00E+0 -56.41233E+1 00E+0 00E+0 -+1.000Nta-3 +1.000Cm+3 = Cm(Nta) - log_k +13.00 #Analogy with Am(Nta)(aq) - -analytic 13.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Nta-3 + Cm+3 = Cm(Nta) + log_k 13 #Analogy with Am(Nta)(aq) + -analytic 13E+0 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000Cm+3 +1.000H2O = Cm(OH)+2 - log_k -7.20 #03GUI/FAN - delta_h +38.510 #kJ/mol -# Enthalpy of formation: -862.320 kJ/mol - -analytic -45.33376E-2 00.00000E+0 -20.11517E+2 00.00000E+0 00.00000E+0 +- H+ + Cm+3 + H2O = Cm(OH)+2 + log_k -7.2 #03GUI/FAN + delta_h 38.51 #kJ/mol +# Enthalpy of formation: -862.320 kJ/mol + -analytic -45.33376E-2 00E+0 -20.11517E+2 00E+0 00E+0 --2.000H+ +1.000HGlu- +1.000Cm+3 +2.000H2O = Cm(OH)2(HGlu) - log_k -10.97 #Analogy with Pu(OH)2(HIsa)(aq) - -analytic -10.97000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 2 H+ + HGlu- + Cm+3 + 2 H2O = Cm(OH)2(HGlu) + log_k -10.97 #Analogy with Pu(OH)2(HIsa)(aq) + -analytic -10.97E+0 00E+0 00E+0 00E+0 00E+0 --2.000H+ +1.000HIsa- +1.000Cm+3 +2.000H2O = Cm(OH)2(HIsa) - log_k -10.97 #Analogy with Pu(OH)2(HIsa)(aq) - -analytic -10.97000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 2 H+ + HIsa- + Cm+3 + 2 H2O = Cm(OH)2(HIsa) + log_k -10.97 #Analogy with Pu(OH)2(HIsa)(aq) + -analytic -10.97E+0 00E+0 00E+0 00E+0 00E+0 --2.000H+ +1.000Cm+3 +2.000H2O = Cm(OH)2+ - log_k -15.10 #03GUI/FAN - delta_h +91.646 #kJ/mol -# Enthalpy of formation: -1095.013 kJ/mol - -analytic 95.56900E-2 00.00000E+0 -47.87004E+2 00.00000E+0 00.00000E+0 +- 2 H+ + Cm+3 + 2 H2O = Cm(OH)2+ + log_k -15.1 #03GUI/FAN + delta_h 91.646 #kJ/mol +# Enthalpy of formation: -1095.013 kJ/mol + -analytic 95.569E-2 00E+0 -47.87004E+2 00E+0 00E+0 --3.000H+ +1.000Cm+3 +3.000H2O = Cm(OH)3 - log_k -26.20 #03GUI/FAN - delta_h +153.826 #kJ/mol -# Enthalpy of formation: -1318.663 kJ/mol - -analytic 74.91584E-2 00.00000E+0 -80.34892E+2 00.00000E+0 00.00000E+0 +- 3 H+ + Cm+3 + 3 H2O = Cm(OH)3 + log_k -26.2 #03GUI/FAN + delta_h 153.826 #kJ/mol +# Enthalpy of formation: -1318.663 kJ/mol + -analytic 74.91584E-2 00E+0 -80.34892E+2 00E+0 00E+0 -+1.000Ox-2 +1.000Cm+3 = Cm(Ox)+ - log_k +6.48 #95AKR/BOU - -analytic 64.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ox-2 + Cm+3 = Cm(Ox)+ + log_k 6.48 #95AKR/BOU + -analytic 64.8E-1 00E+0 00E+0 00E+0 00E+0 -+2.000Ox-2 +1.000Cm+3 = Cm(Ox)2- - log_k +10.40 #95AKR/BOU - -analytic 10.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 Ox-2 + Cm+3 = Cm(Ox)2- + log_k 10.4 #95AKR/BOU + -analytic 10.4E+0 00E+0 00E+0 00E+0 00E+0 -+3.000Ox-2 +1.000Cm+3 = Cm(Ox)3-3 - log_k +12.84 #95AKR/BOU - -analytic 12.84000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +3 Ox-2 + Cm+3 = Cm(Ox)3-3 + log_k 12.84 #95AKR/BOU + -analytic 12.84E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Cm+3 +1.000Phthalat-2 = Cm(Phthalat)+ - log_k +4.93 #11GRI/COL2 from 95PAN/KLE - -analytic 49.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cm+3 + Phthalat-2 = Cm(Phthalat)+ + log_k 4.93 #11GRI/COL2 from 95PAN/KLE + -analytic 49.3E-1 00E+0 00E+0 00E+0 00E+0 --2.000H+ +1.000H2(PO4)- +1.000Cm+3 = Cm(PO4) - log_k -7.65 #Estimated by correlation with An(III) in function of ionic radii. - -analytic -76.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 2 H+ + H2(PO4)- + Cm+3 = Cm(PO4) + log_k -7.65 #Estimated by correlation with An(III) in function of ionic radii. + -analytic -76.5E-1 00E+0 00E+0 00E+0 00E+0 --4.000H+ +2.000H2(PO4)- +1.000Cm+3 = Cm(PO4)2-3 - log_k -19.20 #Estimated by correlation with An(III) in function of ionic radii - -analytic -19.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 4 H+ + 2 H2(PO4)- + Cm+3 = Cm(PO4)2-3 + log_k -19.2 #Estimated by correlation with An(III) in function of ionic radii + -analytic -19.2E+0 00E+0 00E+0 00E+0 00E+0 -+1.000SO4-2 +1.000Cm+3 = Cm(SO4)+ - log_k +3.50 #20GRE/GAO - delta_h +40.000 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -1484.340 kJ/mol - -analytic 10.50770E+0 00.00000E+0 -20.89346E+2 00.00000E+0 00.00000E+0 +SO4-2 + Cm+3 = Cm(SO4)+ + log_k 3.5 #20GRE/GAO + delta_h 40 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1484.340 kJ/mol + -analytic 10.5077E+0 00E+0 -20.89346E+2 00E+0 00E+0 -+2.000SO4-2 +1.000Cm+3 = Cm(SO4)2- - log_k +5.00 #20GRE/GAO - delta_h +70.000 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -2363.680 kJ/mol - -analytic 17.26347E+0 00.00000E+0 -36.56355E+2 00.00000E+0 00.00000E+0 +2 SO4-2 + Cm+3 = Cm(SO4)2- + log_k 5 #20GRE/GAO + delta_h 70 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2363.680 kJ/mol + -analytic 17.26347E+0 00E+0 -36.56355E+2 00E+0 00E+0 -+1.000Cl- +1.000Cm+3 = CmCl+2 - log_k +0.24 #20GRE/GAO - delta_h +44.483 #kJ/mol -# Enthalpy of formation: -737.597 kJ/mol - -analytic 80.33087E-1 00.00000E+0 -23.23509E+2 00.00000E+0 00.00000E+0 +Cl- + Cm+3 = CmCl+2 + log_k 0.24 #20GRE/GAO + delta_h 44.483 #kJ/mol +# Enthalpy of formation: -737.597 kJ/mol + -analytic 80.33087E-1 00E+0 -23.23509E+2 00E+0 00E+0 -+2.000Cl- +1.000Cm+3 = CmCl2+ - log_k -0.81 #20GRE/GAO - delta_h +54.900 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -894.260 kJ/mol - -analytic 88.08067E-1 00.00000E+0 -28.67627E+2 00.00000E+0 00.00000E+0 +2 Cl- + Cm+3 = CmCl2+ + log_k -0.81 #20GRE/GAO + delta_h 54.9 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -894.260 kJ/mol + -analytic 88.08067E-1 00E+0 -28.67627E+2 00E+0 00E+0 -+1.000F- +1.000Cm+3 = CmF+2 - log_k +3.40 #20GRE/GAO - delta_h +12.100 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -938.250 kJ/mol - -analytic 55.19829E-1 00.00000E+0 -63.20270E+1 00.00000E+0 00.00000E+0 +F- + Cm+3 = CmF+2 + log_k 3.4 #20GRE/GAO + delta_h 12.1 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -938.250 kJ/mol + -analytic 55.19829E-1 00E+0 -63.2027E+1 00E+0 00E+0 -+2.000F- +1.000Cm+3 = CmF2+ - log_k +5.80 #20GRE/GAO - delta_h +45.100 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -1240.600 kJ/mol - -analytic 13.70118E+0 00.00000E+0 -23.55737E+2 00.00000E+0 00.00000E+0 +2 F- + Cm+3 = CmF2+ + log_k 5.8 #20GRE/GAO + delta_h 45.1 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1240.600 kJ/mol + -analytic 13.70118E+0 00E+0 -23.55737E+2 00E+0 00E+0 -+3.000F- +1.000Cm+3 = CmF3 - log_k +11.18 #69AZI/LYL - delta_h +15.371 #kJ/mol -# Enthalpy of formation: -1605.678 kJ/mol - -analytic 13.87288E+0 00.00000E+0 -80.28832E+1 00.00000E+0 00.00000E+0 +3 F- + Cm+3 = CmF3 + log_k 11.18 #69AZI/LYL + delta_h 15.371 #kJ/mol +# Enthalpy of formation: -1605.678 kJ/mol + -analytic 13.87288E+0 00E+0 -80.28832E+1 00E+0 00E+0 -+1.000H+ +1.000CO3-2 +1.000Cm+3 = CmHCO3+2 - log_k +13.43 #03GUI/FAN, same as Am - -analytic 13.43000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +H+ + CO3-2 + Cm+3 = CmHCO3+2 + log_k 13.43 #03GUI/FAN, same as Am + -analytic 13.43E+0 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000H4(SiO4) +1.000Cm+3 = CmSiO(OH)3+2 - log_k -2.31 #Original data 07THA/SIN, 05PAN/KIM and 97STE/FAN - delta_h +47.963 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -2028.231 kJ/mol - -analytic 60.92757E-1 00.00000E+0 -25.05282E+2 00.00000E+0 00.00000E+0 +- H+ + H4(SiO4) + Cm+3 = CmSiO(OH)3+2 + log_k -2.31 #Original data 07THA/SIN, 05PAN/KIM and 97STE/FAN + delta_h 47.963 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2028.231 kJ/mol + -analytic 60.92757E-1 00E+0 -25.05282E+2 00E+0 00E+0 -+4.000H+ +2.000e- +1.000CO3-2 -2.000H2O = CO - log_k +11.60 - delta_h -17.390 #kJ/mol +4 H+ + 2 e- + CO3-2 - 2 H2O = CO + log_k 11.6 + delta_h -17.39 #kJ/mol # Enthalpy of formation: -120.960 kJ/mol 82WAG/EVA - -analytic 85.53403E-1 00.00000E+0 90.83430E+1 00.00000E+0 00.00000E+0 + -analytic 85.53403E-1 00E+0 90.8343E+1 00E+0 00E+0 -+1.000Co+2 +2.000HS- = Co(HS)2 - log_k +8.77 #66KHO; Uncertainty to include available data. - -analytic 87.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Co+2 + 2 HS- = Co(HS)2 + log_k 8.77 #66KHO; Uncertainty to include available data. + -analytic 87.7E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Co+2 -1.000H+ +1.000H2O = Co(OH)+ - log_k -9.23 #98PLY/ZHA1 - delta_h +45.962 #kJ/mol -# Enthalpy of formation: -297.468 kJ/mol - -analytic -11.77803E-1 00.00000E+0 -24.00762E+2 00.00000E+0 00.00000E+0 +Co+2 - H+ + H2O = Co(OH)+ + log_k -9.23 #98PLY/ZHA1 + delta_h 45.962 #kJ/mol +# Enthalpy of formation: -297.468 kJ/mol + -analytic -11.77803E-1 00E+0 -24.00762E+2 00E+0 00E+0 -+1.000Co+2 -2.000H+ +2.000H2O = Co(OH)2 - log_k -18.60 #98PLY/ZHA1 - delta_h +105.707 #kJ/mol -# Enthalpy of formation: -523.552 kJ/mol - -analytic -80.92855E-3 00.00000E+0 -55.21461E+2 00.00000E+0 00.00000E+0 +Co+2 - 2 H+ + 2 H2O = Co(OH)2 + log_k -18.6 #98PLY/ZHA1 + delta_h 105.707 #kJ/mol +# Enthalpy of formation: -523.552 kJ/mol + -analytic -80.92855E-3 00E+0 -55.21461E+2 00E+0 00E+0 -+1.000Co+2 -3.000H+ +3.000H2O = Co(OH)3- - log_k -31.70 #98PLY/ZHA1 - delta_h +160.297 #kJ/mol -# Enthalpy of formation: -754.792 kJ/mol - -analytic -36.17171E-1 00.00000E+0 -83.72895E+2 00.00000E+0 00.00000E+0 +Co+2 - 3 H+ + 3 H2O = Co(OH)3- + log_k -31.7 #98PLY/ZHA1 + delta_h 160.297 #kJ/mol +# Enthalpy of formation: -754.792 kJ/mol + -analytic -36.17171E-1 00E+0 -83.72895E+2 00E+0 00E+0 -+1.000Co+2 -4.000H+ +4.000H2O = Co(OH)4-2 - log_k -46.42 #98PLY/ZHA1 - delta_h +214.483 #kJ/mol -# Enthalpy of formation: -986.435 kJ/mol - -analytic -88.44191E-1 00.00000E+0 -11.20323E+3 00.00000E+0 00.00000E+0 +Co+2 - 4 H+ + 4 H2O = Co(OH)4-2 + log_k -46.42 #98PLY/ZHA1 + delta_h 214.483 #kJ/mol +# Enthalpy of formation: -986.435 kJ/mol + -analytic -88.44191E-1 00E+0 -11.20323E+3 00E+0 00E+0 -+1.000Co+2 +1.000SeO4-2 = Co(SeO4) - log_k +2.70 #05OLI/NOL - delta_h -3.617 #kJ/mol -# Enthalpy of formation: -664.716 kJ/mol - -analytic 20.66329E-1 00.00000E+0 18.89291E+1 00.00000E+0 00.00000E+0 +Co+2 + SeO4-2 = Co(SeO4) + log_k 2.7 #05OLI/NOL + delta_h -3.617 #kJ/mol +# Enthalpy of formation: -664.716 kJ/mol + -analytic 20.66329E-1 00E+0 18.89291E+1 00E+0 00E+0 -+2.000H+ +1.000CO3-2 -1.000H2O = CO2 - log_k +16.68 - delta_h -23.860 #kJ/mol +2 H+ + CO3-2 - H2O = CO2 + log_k 16.68 + delta_h -23.86 #kJ/mol # Enthalpy of formation: -413.260 kJ/mol 89COX/WAG - -analytic 12.49991E+0 00.00000E+0 12.46295E+2 00.00000E+0 00.00000E+0 + -analytic 12.49991E+0 00E+0 12.46295E+2 00E+0 00E+0 -+2.000Co+2 -1.000H+ +1.000H2O = Co2(OH)+3 - log_k -9.83 #98PLY/ZHA1 - delta_h +30.030 #kJ/mol +2 Co+2 - H+ + H2O = Co2(OH)+3 + log_k -9.83 #98PLY/ZHA1 + delta_h 30.03 #kJ/mol # Enthalpy of formation: -371.000 kJ/mol 98PLY/ZHA1 - -analytic -45.68970E-1 00.00000E+0 -15.68576E+2 00.00000E+0 00.00000E+0 + -analytic -45.6897E-1 00E+0 -15.68576E+2 00E+0 00E+0 -+4.000Co+2 -4.000H+ +4.000H2O = Co4(OH)4+4 - log_k -29.88 #98PLY/ZHA1 - delta_h +149.720 #kJ/mol +4 Co+2 - 4 H+ + 4 H2O = Co4(OH)4+4 + log_k -29.88 #98PLY/ZHA1 + delta_h 149.72 #kJ/mol # Enthalpy of formation: -1224.000 kJ/mol 98PLY/ZHA1 - -analytic -36.50182E-1 00.00000E+0 -78.20420E+2 00.00000E+0 00.00000E+0 + -analytic -36.50182E-1 00E+0 -78.2042E+2 00E+0 00E+0 -+1.000Co+2 +1.000Cl- = CoCl+ - log_k +0.57 #81TUR/WHI; Uncertainty to include available data. - delta_h -2.180 #kJ/mol -# Enthalpy of formation: -226.859 kJ/mol - -analytic 18.80804E-2 00.00000E+0 11.38693E+1 00.00000E+0 00.00000E+0 +Co+2 + Cl- = CoCl+ + log_k 0.57 #81TUR/WHI; Uncertainty to include available data. + delta_h -2.18 #kJ/mol +# Enthalpy of formation: -226.859 kJ/mol + -analytic 18.80804E-2 00E+0 11.38693E+1 00E+0 00E+0 -+1.000Co+2 +2.000Cl- = CoCl2 - log_k +0.02 #06BLA/IGN; Uncertainty from 89PAN/SUS - delta_h +4.074 #kJ/mol 06BLA/IGN -# Enthalpy of formation: -387.686 kJ/mol - -analytic 73.37342E-2 00.00000E+0 -21.27998E+1 00.00000E+0 00.00000E+0 +Co+2 + 2 Cl- = CoCl2 + log_k 0.02 #06BLA/IGN; Uncertainty from 89PAN/SUS + delta_h 4.074 #kJ/mol 06BLA/IGN +# Enthalpy of formation: -387.686 kJ/mol + -analytic 73.37342E-2 00E+0 -21.27998E+1 00E+0 00E+0 -+1.000Co+2 +3.000Cl- = CoCl3- - log_k -1.71 #06BLA/IGN; Uncertainty 89PAN/SUS - delta_h +6.688 #kJ/mol 06BLA/IGN -# Enthalpy of formation: -552.152 kJ/mol - -analytic -53.83127E-2 00.00000E+0 -34.93386E+1 00.00000E+0 00.00000E+0 +Co+2 + 3 Cl- = CoCl3- + log_k -1.71 #06BLA/IGN; Uncertainty 89PAN/SUS + delta_h 6.688 #kJ/mol 06BLA/IGN +# Enthalpy of formation: -552.152 kJ/mol + -analytic -53.83127E-2 00E+0 -34.93386E+1 00E+0 00E+0 -+1.000Co+2 +4.000Cl- = CoCl4-2 - log_k -2.09 #06BLA/IGN - delta_h +22.570 #kJ/mol 06BLA/IGN -# Enthalpy of formation: -703.350 kJ/mol - -analytic 18.64094E-1 00.00000E+0 -11.78913E+2 00.00000E+0 00.00000E+0 +Co+2 + 4 Cl- = CoCl4-2 + log_k -2.09 #06BLA/IGN + delta_h 22.57 #kJ/mol 06BLA/IGN +# Enthalpy of formation: -703.350 kJ/mol + -analytic 18.64094E-1 00E+0 -11.78913E+2 00E+0 00E+0 -+1.000Co+2 +1.000CO3-2 = CoCO3 - log_k +4.23 #97MAR/SMI; Uncertainty to include available data. - -analytic 42.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Co+2 + CO3-2 = CoCO3 + log_k 4.23 #97MAR/SMI; Uncertainty to include available data. + -analytic 42.3E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Co+2 +1.000F- = CoF+ - log_k +1.50 #97MAR/SMI - delta_h -0.631 #kJ/mol -# Enthalpy of formation: -393.580 kJ/mol - -analytic 13.89454E-1 00.00000E+0 32.95943E+0 00.00000E+0 00.00000E+0 +Co+2 + F- = CoF+ + log_k 1.5 #97MAR/SMI + delta_h -0.631 #kJ/mol +# Enthalpy of formation: -393.580 kJ/mol + -analytic 13.89454E-1 00E+0 32.95943E+0 00E+0 00E+0 -+1.000Co+2 +1.000H+ +1.000CO3-2 = CoHCO3+ - log_k +12.22 #97MAR/SMI; Uncertainty to include available data. - -analytic 12.22000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Co+2 + H+ + CO3-2 = CoHCO3+ + log_k 12.22 #97MAR/SMI; Uncertainty to include available data. + -analytic 12.22E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Co+2 -1.000H+ +1.000H2(PO4)- = CoHPO4 - log_k -4.15 #97MAR/SMI; Uncertainty to include available data and is preliminary. - -analytic -41.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Co+2 - H+ + H2(PO4)- = CoHPO4 + log_k -4.15 #97MAR/SMI; Uncertainty to include available data and is preliminary. + -analytic -41.5E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Co+2 +1.000HS- = CoHS+ - log_k +5.67 #66KHO; Uncertainty to include available data. - -analytic 56.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Co+2 + HS- = CoHS+ + log_k 5.67 #66KHO; Uncertainty to include available data. + -analytic 56.7E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Co+2 +1.000S2O3-2 = CoS2O3 - log_k +2.05 #51DEN/MON - -analytic 20.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Co+2 + S2O3-2 = CoS2O3 + log_k 2.05 #51DEN/MON + -analytic 20.5E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Co+2 +1.000SO4-2 = CoSO4 - log_k +2.30 #97MAR/SMI; Uncertainty to include available data. - delta_h +2.092 #kJ/mol 74NAU/RYZ -# Enthalpy of formation: -964.848 kJ/mol - -analytic 26.66503E-1 00.00000E+0 -10.92728E+1 00.00000E+0 00.00000E+0 +Co+2 + SO4-2 = CoSO4 + log_k 2.3 #97MAR/SMI; Uncertainty to include available data. + delta_h 2.092 #kJ/mol 74NAU/RYZ +# Enthalpy of formation: -964.848 kJ/mol + -analytic 26.66503E-1 00E+0 -10.92728E+1 00E+0 00E+0 -+1.000H2(PO4)- +1.000Cr+3 = Cr(H2PO4)+2 - log_k +2.56 #66LAH/ADI - -analytic 25.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +H2(PO4)- + Cr+3 = Cr(H2PO4)+2 + log_k 2.56 #66LAH/ADI + -analytic 25.6E-1 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000H2(PO4)- +1.000Cr+3 = Cr(HPO4)+ - log_k +2.25 #76ALE/MAS - -analytic 22.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- H+ + H2(PO4)- + Cr+3 = Cr(HPO4)+ + log_k 2.25 #76ALE/MAS + -analytic 22.5E-1 00E+0 00E+0 00E+0 00E+0 --1.000H+ +2.000CO3-2 +1.000Cr+3 +1.000H2O = Cr(OH)(CO3)2-2 - log_k +9.73 #07RAI/MOO - -analytic 97.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- H+ + 2 CO3-2 + Cr+3 + H2O = Cr(OH)(CO3)2-2 + log_k 9.73 #07RAI/MOO + -analytic 97.3E-1 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000Cr+2 +1.000H2O = Cr(OH)+ - log_k -5.30 #83MIC/DEB, 04CHI - delta_h +30.327 #kJ/mol -# Enthalpy of formation: -413.117 kJ/mol - -analytic 13.06233E-3 00.00000E+0 -15.84090E+2 00.00000E+0 00.00000E+0 +- H+ + Cr+2 + H2O = Cr(OH)+ + log_k -5.3 #83MIC/DEB, 04CHI + delta_h 30.327 #kJ/mol +# Enthalpy of formation: -413.117 kJ/mol + -analytic 13.06233E-3 00E+0 -15.8409E+2 00E+0 00E+0 --1.000H+ +1.000Cr+3 +1.000H2O = Cr(OH)+2 - log_k -3.42 #04RAI/MOO - delta_h +37.222 #kJ/mol -# Enthalpy of formation: -489.108 kJ/mol - -analytic 31.01014E-1 00.00000E+0 -19.44240E+2 00.00000E+0 00.00000E+0 +- H+ + Cr+3 + H2O = Cr(OH)+2 + log_k -3.42 #04RAI/MOO + delta_h 37.222 #kJ/mol +# Enthalpy of formation: -489.108 kJ/mol + -analytic 31.01014E-1 00E+0 -19.4424E+2 00E+0 00E+0 --2.000H+ +1.000Cr+3 +2.000H2O = Cr(OH)2+ - log_k -8.90 #11GRI/COL4 - delta_h +93.198 #kJ/mol -# Enthalpy of formation: -718.961 kJ/mol - -analytic 74.27589E-1 00.00000E+0 -48.68071E+2 00.00000E+0 00.00000E+0 +- 2 H+ + Cr+3 + 2 H2O = Cr(OH)2+ + log_k -8.9 #11GRI/COL4 + delta_h 93.198 #kJ/mol +# Enthalpy of formation: -718.961 kJ/mol + -analytic 74.27589E-1 00E+0 -48.68071E+2 00E+0 00E+0 --3.000H+ +1.000Cr+3 +3.000H2O = Cr(OH)3 - log_k -14.34 #04RAI/MOO - delta_h +143.704 #kJ/mol -# Enthalpy of formation: -954.285 kJ/mol - -analytic 10.83586E+0 00.00000E+0 -75.06183E+2 00.00000E+0 00.00000E+0 +- 3 H+ + Cr+3 + 3 H2O = Cr(OH)3 + log_k -14.34 #04RAI/MOO + delta_h 143.704 #kJ/mol +# Enthalpy of formation: -954.285 kJ/mol + -analytic 10.83586E+0 00E+0 -75.06183E+2 00E+0 00E+0 --3.000H+ +1.000H2(PO4)- +1.000Cr+3 +3.000H2O = Cr(OH)3(H2PO4)- - log_k -11.56 #04RAI/MOO - -analytic -11.56000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 3 H+ + H2(PO4)- + Cr+3 + 3 H2O = Cr(OH)3(H2PO4)- + log_k -11.56 #04RAI/MOO + -analytic -11.56E+0 00E+0 00E+0 00E+0 00E+0 --3.000H+ +2.000H2(PO4)- +1.000Cr+3 +3.000H2O = Cr(OH)3(H2PO4)2-2 - log_k -10.86 #04RAI/MOO - -analytic -10.86000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 3 H+ + 2 H2(PO4)- + Cr+3 + 3 H2O = Cr(OH)3(H2PO4)2-2 + log_k -10.86 #04RAI/MOO + -analytic -10.86E+0 00E+0 00E+0 00E+0 00E+0 --4.000H+ +1.000H2(PO4)- +1.000Cr+3 +3.000H2O = Cr(OH)3(HPO4)-2 - log_k -19.58 #04RAI/MOO - -analytic -19.58000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 4 H+ + H2(PO4)- + Cr+3 + 3 H2O = Cr(OH)3(HPO4)-2 + log_k -19.58 #04RAI/MOO + -analytic -19.58E+0 00E+0 00E+0 00E+0 00E+0 --5.000H+ +1.000H2(PO4)- +1.000Cr+3 +3.000H2O = Cr(OH)3(PO4)-3 - log_k -30.24 #98ZIE/JON - -analytic -30.24000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 5 H+ + H2(PO4)- + Cr+3 + 3 H2O = Cr(OH)3(PO4)-3 + log_k -30.24 #98ZIE/JON + -analytic -30.24E+0 00E+0 00E+0 00E+0 00E+0 --4.000H+ +1.000Cr+3 +4.000H2O = Cr(OH)4- - log_k -25.86 #04RAI/MOO - delta_h +193.614 #kJ/mol -# Enthalpy of formation: -1190.205 kJ/mol - -analytic 80.59717E-1 00.00000E+0 -10.11316E+3 00.00000E+0 00.00000E+0 +- 4 H+ + Cr+3 + 4 H2O = Cr(OH)4- + log_k -25.86 #04RAI/MOO + delta_h 193.614 #kJ/mol +# Enthalpy of formation: -1190.205 kJ/mol + -analytic 80.59717E-1 00E+0 -10.11316E+3 00E+0 00E+0 --4.000H+ +1.000CO3-2 +1.000Cr+3 +4.000H2O = Cr(OH)4(CO3)-3 - log_k -25.69 #07RAI/MOO - -analytic -25.69000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 4 H+ + CO3-2 + Cr+3 + 4 H2O = Cr(OH)4(CO3)-3 + log_k -25.69 #07RAI/MOO + -analytic -25.69E+0 00E+0 00E+0 00E+0 00E+0 --5.000H+ +2.000H2(PO4)- +1.000Cr+3 +4.000H2O = Cr(OH)4(HPO4)(H2PO4)-4 - log_k -28.76 #98ZIE/JON - delta_h +14.000 #kJ/mol 98ZIE/JON -# Enthalpy of formation: -3975.020 kJ/mol - -analytic -26.30731E+0 00.00000E+0 -73.12709E+1 00.00000E+0 00.00000E+0 +- 5 H+ + 2 H2(PO4)- + Cr+3 + 4 H2O = Cr(OH)4(HPO4)(H2PO4)-4 + log_k -28.76 #98ZIE/JON + delta_h 14 #kJ/mol 98ZIE/JON +# Enthalpy of formation: -3975.020 kJ/mol + -analytic -26.30731E+0 00E+0 -73.12709E+1 00E+0 00E+0 --1.000H+ +2.000Cl- +1.000Cr+3 +1.000H2O = Cr(OH)Cl2 - log_k -5.73 - delta_h +32.720 #kJ/mol +- H+ + 2 Cl- + Cr+3 + H2O = Cr(OH)Cl2 + log_k -5.73 + delta_h 32.72 #kJ/mol # Enthalpy of formation: -827.770 kJ/mol 76DEL/HEP - -analytic 22.97936E-4 00.00000E+0 -17.09085E+2 00.00000E+0 00.00000E+0 + -analytic 22.97936E-4 00E+0 -17.09085E+2 00E+0 00E+0 --1.000H+ +1.000CO3-2 +1.000Cr+3 +1.000H2O = Cr(OH)CO3 - log_k +4.00 #07RAI/MOO - -analytic 40.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- H+ + CO3-2 + Cr+3 + H2O = Cr(OH)CO3 + log_k 4 #07RAI/MOO + -analytic 40E-1 00E+0 00E+0 00E+0 00E+0 --2.000H+ +2.000Cr+3 +2.000H2O = Cr2(OH)2+4 - log_k -4.00 #11GRI/COL4 - -analytic -40.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 2 H+ + 2 Cr+3 + 2 H2O = Cr2(OH)2+4 + log_k -4 #11GRI/COL4 + -analytic -40E-1 00E+0 00E+0 00E+0 00E+0 -+2.000H+ +2.000CrO4-2 -1.000H2O = Cr2O7-2 - log_k +14.75 #87PAL/WES, 04CHI - delta_h -3.752 #kJ/mol -# Enthalpy of formation: -1475.923 kJ/mol - -analytic 14.09268E+0 00.00000E+0 19.59806E+1 00.00000E+0 00.00000E+0 +2 H+ + 2 CrO4-2 - H2O = Cr2O7-2 + log_k 14.75 #87PAL/WES, 04CHI + delta_h -3.752 #kJ/mol +# Enthalpy of formation: -1475.923 kJ/mol + -analytic 14.09268E+0 00E+0 19.59806E+1 00E+0 00E+0 --4.000H+ +3.000Cr+3 +4.000H2O = Cr3(OH)4+5 - log_k -7.60 #11GRI/COL4 - -analytic -76.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 4 H+ + 3 Cr+3 + 4 H2O = Cr3(OH)4+5 + log_k -7.6 #11GRI/COL4 + -analytic -76E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Br- +1.000Cr+3 = CrBr+2 - log_k -0.62 - delta_h +22.588 #kJ/mol +Br- + Cr+3 = CrBr+2 + log_k -0.62 + delta_h 22.588 #kJ/mol # Enthalpy of formation: -339.322 kJ/mol 76DEL/HEP - -analytic 33.37248E-1 00.00000E+0 -11.79853E+2 00.00000E+0 00.00000E+0 + -analytic 33.37248E-1 00E+0 -11.79853E+2 00E+0 00E+0 -+1.000Cl- +1.000Cr+2 = CrCl+ - log_k +5.60 #91ALL/BRO - delta_h -20.200 #kJ/mol 91ALL/BRO -# Enthalpy of formation: -344.894 kJ/mol - -analytic 20.61112E-1 00.00000E+0 10.55119E+2 00.00000E+0 00.00000E+0 +Cl- + Cr+2 = CrCl+ + log_k 5.6 #91ALL/BRO + delta_h -20.2 #kJ/mol 91ALL/BRO +# Enthalpy of formation: -344.894 kJ/mol + -analytic 20.61112E-1 00E+0 10.55119E+2 00E+0 00E+0 -+1.000Cl- +1.000Cr+3 = CrCl+2 - log_k +0.62 #64SIL/MAR - delta_h +20.920 #kJ/mol 64SIL/MAR -# Enthalpy of formation: -386.660 kJ/mol - -analytic 42.85027E-1 00.00000E+0 -10.92728E+2 00.00000E+0 00.00000E+0 +Cl- + Cr+3 = CrCl+2 + log_k 0.62 #64SIL/MAR + delta_h 20.92 #kJ/mol 64SIL/MAR +# Enthalpy of formation: -386.660 kJ/mol + -analytic 42.85027E-1 00E+0 -10.92728E+2 00E+0 00E+0 -+2.000Cl- +1.000Cr+3 = CrCl2+ - log_k -0.71 #64SIL/MAR - delta_h +20.920 #kJ/mol 64SIL/MAR -# Enthalpy of formation: -553.740 kJ/mol - -analytic 29.55027E-1 00.00000E+0 -10.92728E+2 00.00000E+0 00.00000E+0 +2 Cl- + Cr+3 = CrCl2+ + log_k -0.71 #64SIL/MAR + delta_h 20.92 #kJ/mol 64SIL/MAR +# Enthalpy of formation: -553.740 kJ/mol + -analytic 29.55027E-1 00E+0 -10.92728E+2 00E+0 00E+0 -+1.000F- +1.000Cr+3 = CrF+2 - log_k +5.21 #81TUR/WHI - delta_h -2.510 #kJ/mol 53HEP/JOL -# Enthalpy of formation: -578.360 kJ/mol - -analytic 47.70267E-1 00.00000E+0 13.11064E+1 00.00000E+0 00.00000E+0 +F- + Cr+3 = CrF+2 + log_k 5.21 #81TUR/WHI + delta_h -2.51 #kJ/mol 53HEP/JOL +# Enthalpy of formation: -578.360 kJ/mol + -analytic 47.70267E-1 00E+0 13.11064E+1 00E+0 00E+0 -+2.000F- +1.000Cr+3 = CrF2+ - log_k +9.31 #81TUR/WHI - delta_h -0.418 #kJ/mol 53HEP/JOL -# Enthalpy of formation: -911.618 kJ/mol - -analytic 92.36770E-1 00.00000E+0 21.83366E+0 00.00000E+0 00.00000E+0 +2 F- + Cr+3 = CrF2+ + log_k 9.31 #81TUR/WHI + delta_h -0.418 #kJ/mol 53HEP/JOL +# Enthalpy of formation: -911.618 kJ/mol + -analytic 92.3677E-1 00E+0 21.83366E+0 00E+0 00E+0 -+3.000F- +1.000Cr+3 = CrF3 - log_k +11.91 #81TUR/WHI - -analytic 11.91000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +3 F- + Cr+3 = CrF3 + log_k 11.91 #81TUR/WHI + -analytic 11.91E+0 00E+0 00E+0 00E+0 00E+0 -+2.000H+ +1.000Cl- +1.000CrO4-2 -1.000H2O = CrO3Cl- - log_k +8.08 - delta_h +5.450 #kJ/mol +2 H+ + Cl- + CrO4-2 - H2O = CrO3Cl- + log_k 8.08 + delta_h 5.45 #kJ/mol # Enthalpy of formation: -754.800 kJ/mol 76DEL/HEP - -analytic 90.34799E-1 00.00000E+0 -28.46733E+1 00.00000E+0 00.00000E+0 + -analytic 90.34799E-1 00E+0 -28.46733E+1 00E+0 00E+0 -+1.000SO4-2 +1.000Cr+3 = CrSO4+ - log_k +4.61 #81TUR/WHI - -analytic 46.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +SO4-2 + Cr+3 = CrSO4+ + log_k 4.61 #81TUR/WHI + -analytic 46.1E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Cs+ +1.000Cit-3 = Cs(Cit)-2 - log_k +0.98 #95AKR/BOU - -analytic 98.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cs+ + Cit-3 = Cs(Cit)-2 + log_k 0.98 #95AKR/BOU + -analytic 98E-2 00E+0 00E+0 00E+0 00E+0 -+1.000Cs+ +1.000Edta-4 = Cs(Edta)-3 - log_k +1.30 #95AKR/BOU - -analytic 13.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cs+ + Edta-4 = Cs(Edta)-3 + log_k 1.3 #95AKR/BOU + -analytic 13E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Cs+ +1.000Nta-3 = Cs(Nta)-2 - log_k +0.85 #95AKR/BOU - -analytic 85.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cs+ + Nta-3 = Cs(Nta)-2 + log_k 0.85 #95AKR/BOU + -analytic 85E-2 00E+0 00E+0 00E+0 00E+0 -+1.000Cs+ -1.000H+ +1.000H2O = Cs(OH) - log_k -15.64 - delta_h +65.736 #kJ/mol +Cs+ - H+ + H2O = Cs(OH) + log_k -15.64 + delta_h 65.736 #kJ/mol # Enthalpy of formation: -478.094 kJ/mol 97SHO/SAS2 - -analytic -41.23547E-1 00.00000E+0 -34.33630E+2 00.00000E+0 00.00000E+0 - -+1.000Cs+ +1.000Br- = CsBr - log_k +0.10 - delta_h +5.912 #kJ/mol -# Enthalpy of formation: -373.497 kJ/mol - -analytic 11.35738E-1 00.00000E+0 -30.88053E+1 00.00000E+0 00.00000E+0 - -+1.000Cs+ +1.000Cl- = CsCl - log_k -0.09 - delta_h +7.514 #kJ/mol -# Enthalpy of formation: -417.566 kJ/mol - -analytic 12.26396E-1 00.00000E+0 -39.24836E+1 00.00000E+0 00.00000E+0 - -+1.000Cs+ +1.000F- = CsF - log_k -0.38 - delta_h +2.436 #kJ/mol -# Enthalpy of formation: -590.913 kJ/mol - -analytic 46.76888E-3 00.00000E+0 -12.72411E+1 00.00000E+0 00.00000E+0 - -+1.000Cs+ +1.000I- = CsI - log_k +1.05 - delta_h -0.071 #kJ/mol -# Enthalpy of formation: -314.850 kJ/mol - -analytic 10.37561E-1 00.00000E+0 37.08588E-1 00.00000E+0 00.00000E+0 - -+1.000Cu+2 +1.000B(OH)4- = Cu(B(OH)4)+ - log_k +7.13 #80BAS - -analytic 71.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Cu+2 +2.000B(OH)4- = Cu(B(OH)4)2 - log_k +12.45 #80BAS - -analytic 12.45000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Cu+2 +3.000B(OH)4- = Cu(B(OH)4)3- - log_k +15.17 #80BAS - -analytic 15.17000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Cu+2 +2.000CO3-2 = Cu(CO3)2-2 - log_k +10.30 #07POW/BRO - delta_h +36.616 #kJ/mol -# Enthalpy of formation: -1248.945 kJ/mol - -analytic 16.71485E+0 00.00000E+0 -19.12587E+2 00.00000E+0 00.00000E+0 - -+1.000Cu+ +2.000HS- = Cu(HS)2- - log_k +17.18 #99MON/SEW - delta_h -78.863 #kJ/mol -# Enthalpy of formation: -40.875 kJ/mol - -analytic 33.63795E-1 00.00000E+0 41.19301E+2 00.00000E+0 00.00000E+0 - -+1.000Cu+2 -1.000H+ +1.000H2O = Cu(OH)+ - log_k -7.97 #97PLY/WAN - delta_h +36.000 #kJ/mol 76ARE/CAL in 97PLY/WAN -# Enthalpy of formation: -184.930 kJ/mol - -analytic -16.63071E-1 00.00000E+0 -18.80411E+2 00.00000E+0 00.00000E+0 - -+1.000Cu+2 -2.000H+ +2.000H2O = Cu(OH)2 - log_k -16.23 #97PLY/WAN - delta_h +92.820 #kJ/mol 76ARE/CAL in 97PLY/WAN -# Enthalpy of formation: -413.940 kJ/mol - -analytic 31.36597E-3 00.00000E+0 -48.48326E+2 00.00000E+0 00.00000E+0 - -+1.000Cu+ -2.000H+ +2.000H2O = Cu(OH)2- - log_k -18.20 #11PAL - delta_h +57.672 #kJ/mol -# Enthalpy of formation: -443.399 kJ/mol - -analytic -80.96299E-1 00.00000E+0 -30.12418E+2 00.00000E+0 00.00000E+0 - -+1.000Cu+2 -3.000H+ +3.000H2O = Cu(OH)3- - log_k -26.63 #36DOW/JOH in 97PLY/WAN - delta_h +114.482 #kJ/mol -# Enthalpy of formation: -678.107 kJ/mol - -analytic -65.73615E-1 00.00000E+0 -59.79811E+2 00.00000E+0 00.00000E+0 - -+1.000Cu+2 -4.000H+ +4.000H2O = Cu(OH)4-2 - log_k -39.73 #36DOW/JOH, 67AKH in 97PLY/WAN - -analytic -39.73000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Cu+2 +1.000SeO4-2 = Cu(SeO4) - log_k +2.20 #Upper value suggested in 05OLI/NOL - -analytic 22.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+2.000Cu+2 -1.000H+ +1.000H2O = Cu2(OH)+3 - log_k -6.71 #97PLY/WAN - delta_h +46.100 #kJ/mol 97ROB/STE -# Enthalpy of formation: -109.930 kJ/mol - -analytic 13.66373E-1 00.00000E+0 -24.07971E+2 00.00000E+0 00.00000E+0 - -+2.000Cu+2 -2.000H+ +2.000H2O = Cu2(OH)2+2 - log_k -10.55 #97PLY/WAN - delta_h +75.400 #kJ/mol 97PLY/WAN -# Enthalpy of formation: -366.460 kJ/mol - -analytic 26.59513E-1 00.00000E+0 -39.38416E+2 00.00000E+0 00.00000E+0 - -+2.000Cu+ +4.000Cl- = Cu2Cl4-2 - log_k +10.55 #80FRIN in 00PUI/TAX - delta_h -54.860 #kJ/mol 00PUI/TAX -# Enthalpy of formation: -582.002 kJ/mol - -analytic 93.89406E-2 00.00000E+0 28.65537E+2 00.00000E+0 00.00000E+0 - -+2.000Cu+ -1.000H+ +3.000HS- = Cu2S(HS)2-2 - log_k +29.87 #99MON/SEW - delta_h -314.862 #kJ/mol -# Enthalpy of formation: -222.586 kJ/mol - -analytic -25.29145E+0 00.00000E+0 16.44639E+3 00.00000E+0 00.00000E+0 - -+3.000Cu+2 -4.000H+ +4.000H2O = Cu3(OH)4+2 - log_k -20.94 #76ARE/CAL in 97PLY/WAN - delta_h +110.000 #kJ/mol 76ARE/CAL in 97PLY/WAN -# Enthalpy of formation: -838.620 kJ/mol - -analytic -16.68827E-1 00.00000E+0 -57.45700E+2 00.00000E+0 00.00000E+0 - -+3.000Cu+ +6.000Cl- = Cu3Cl6-3 - log_k +15.99 #80FRI in 00PUI/TAX - delta_h +124.510 #kJ/mol 00PUI/TAX -# Enthalpy of formation: -666.203 kJ/mol - -analytic 37.80322E+0 00.00000E+0 -65.03610E+2 00.00000E+0 00.00000E+0 - -+1.000Cu+ +1.000Cl- = CuCl - log_k +3.30 #98XIA/GAM - delta_h +3.763 #kJ/mol -# Enthalpy of formation: -92.728 kJ/mol - -analytic 39.59249E-1 00.00000E+0 -19.65552E+1 00.00000E+0 00.00000E+0 - -+1.000Cu+2 +1.000Cl- = CuCl+ - log_k +0.64 #97WAN/ZHA - delta_h +8.700 #kJ/mol 97WAN/ZHA -# Enthalpy of formation: -93.480 kJ/mol - -analytic 21.64175E-1 00.00000E+0 -45.44326E+1 00.00000E+0 00.00000E+0 - -+1.000Cu+2 +2.000Cl- = CuCl2 - log_k +0.60 #97WAN/ZHA - delta_h +23.000 #kJ/mol 97WAN/ZHA -# Enthalpy of formation: -246.260 kJ/mol - -analytic 46.29427E-1 00.00000E+0 -12.01374E+2 00.00000E+0 00.00000E+0 - -+1.000Cu+ +2.000Cl- = CuCl2- - log_k +5.68 #97WAN/ZHA - delta_h -14.250 #kJ/mol 84FRI in 97WAN/ZHA -# Enthalpy of formation: -277.821 kJ/mol - -analytic 31.83507E-1 00.00000E+0 74.43293E+1 00.00000E+0 00.00000E+0 - -+1.000Cu+2 +3.000Cl- = CuCl3- - log_k -1.28 #97WAN/ZHA - delta_h +22.200 #kJ/mol 97WAN/ZHA -# Enthalpy of formation: -414.140 kJ/mol - -analytic 26.09273E-1 00.00000E+0 -11.59587E+2 00.00000E+0 00.00000E+0 - -+1.000Cu+ +3.000Cl- = CuCl3-2 - log_k +5.03 #97WAN/ZHA - delta_h -27.330 #kJ/mol 97WAN/ZHA -# Enthalpy of formation: -457.981 kJ/mol - -analytic 24.19895E-2 00.00000E+0 14.27545E+2 00.00000E+0 00.00000E+0 - -+1.000Cu+2 +4.000Cl- = CuCl4-2 - log_k -3.98 #97WAN/ZHA - delta_h +28.000 #kJ/mol 97WAN/ZHA -# Enthalpy of formation: -575.420 kJ/mol - -analytic 92.53894E-2 00.00000E+0 -14.62542E+2 00.00000E+0 00.00000E+0 - -+1.000Cu+2 +1.000CO3-2 = CuCO3 - log_k +6.75 #07POW/BRO - delta_h +10.400 #kJ/mol 89SOL/BYR -# Enthalpy of formation: -599.930 kJ/mol - -analytic 85.72002E-1 00.00000E+0 -54.32298E+1 00.00000E+0 00.00000E+0 - -+1.000Cu+2 +1.000H+ +1.000CO3-2 = CuHCO3+ - log_k +12.17 #07POW/BRO - delta_h -5.841 #kJ/mol -# Enthalpy of formation: -616.172 kJ/mol - -analytic 11.14670E+0 00.00000E+0 30.50967E+1 00.00000E+0 00.00000E+0 - -+1.000Cu+ +1.000HS- = CuHS - log_k +13.00 #99MON/SEW - delta_h -44.866 #kJ/mol -# Enthalpy of formation: +9.422 kJ/mol - -analytic 51.39814E-1 00.00000E+0 23.43514E+2 00.00000E+0 00.00000E+0 - -+1.000Cu+ -1.000H+ +1.000H2O = CuOH - log_k -7.68 #11PAL - -analytic -76.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Cu+ +1.000S2O3-2 = CuS2O3- - log_k +10.13 - delta_h -51.130 #kJ/mol -# Enthalpy of formation: -632.828 kJ/mol - -analytic 11.72409E-1 00.00000E+0 26.70706E+2 00.00000E+0 00.00000E+0 - -+1.000Cu+2 +1.000SO4-2 = CuSO4 - log_k +2.31 - delta_h +5.102 #kJ/mol -# Enthalpy of formation: -839.338 kJ/mol - -analytic 32.03832E-1 00.00000E+0 -26.64960E+1 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +1.000Acetate- = Eu(Acetate)+2 - log_k +2.90 #12GRI/GAR2 - -analytic 29.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +2.000Acetate- = Eu(Acetate)2+ - log_k +4.80 #12GRI/GAR2 - -analytic 48.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +3.000Acetate- = Eu(Acetate)3 - log_k +5.60 #12GRI/GAR2 - -analytic 56.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +1.000Cit-3 = Eu(Cit) - log_k +8.55 #Analogy with Am - -analytic 85.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +2.000Cit-3 = Eu(Cit)2-3 - log_k +13.90 #Analogy with Am - -analytic 13.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +1.000CO3-2 = Eu(CO3)+ - log_k +7.90 #95SPA/BRU - delta_h +26.150 #kJ/mol -# Enthalpy of formation: -1254.406 kJ/mol - -analytic 12.48128E+0 00.00000E+0 -13.65910E+2 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +2.000CO3-2 = Eu(CO3)2- - log_k +12.90 #95SPA/BRU - -analytic 12.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +3.000CO3-2 = Eu(CO3)3-3 - log_k +14.80 #05VER/VIT2 - -analytic 14.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +1.000Edta-4 = Eu(Edta)- - log_k +19.67 #Analoly with Am(Edta)- - -analytic 19.67000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +1.000H2(PO4)- = Eu(H2PO4)+2 - log_k +2.40 #95SPA/BRU - -analytic 24.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +1.000H+ +1.000Cit-3 = Eu(HCit)+ - log_k +12.86 #Analogy with Am - -analytic 12.86000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +2.000H+ +2.000Cit-3 = Eu(HCit)2- - log_k +23.52 #Analogy with Am - -analytic 23.52000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +1.000H+ +1.000CO3-2 = Eu(HCO3)+2 - log_k +12.43 #95SPA/BRU - -analytic 12.43000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +1.000H+ +1.000Edta-4 = Eu(HEdta) - log_k +21.84 #Analogy with Am(HEdta) - -analytic 21.84000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 -1.000H+ +1.000H2(PO4)- = Eu(HPO4)+ - log_k -1.51 #95SPA/BRU - -analytic -15.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 -2.000H+ +2.000H2(PO4)- = Eu(HPO4)2- - log_k -4.82 #95SPA/BRU - -analytic -48.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +1.000Malonate-2 = Eu(Malonate)+ - log_k +5.43 #13GRI/CAM - -analytic 54.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +2.000Malonate-2 = Eu(Malonate)2- - log_k +7.78 #13GRI/CAM - -analytic 77.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +1.000NO3- = Eu(NO3)+2 - log_k +1.21 #09RAO/TIA1 (Calculated usig SIT) - -analytic 12.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +1.000Nta-3 = Eu(Nta) - log_k +13.00 #Analogy with Am(Nta)(aq) - -analytic 13.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 -1.000H+ +1.000H2O = Eu(OH)+2 - log_k -7.80 #95SPA/BRU - delta_h +51.104 #kJ/mol -# Enthalpy of formation: -840.051 kJ/mol - -analytic 11.53036E-1 00.00000E+0 -26.69348E+2 00.00000E+0 00.00000E+0 - -+1.000Eu+3 -2.000H+ +1.000HGlu- +2.000H2O = Eu(OH)2(HGlu) - log_k -10.97 #Analogy with Pu(OH)2(HIsa)(aq) - -analytic -10.97000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 -2.000H+ +1.000HIsa- +2.000H2O = Eu(OH)2(HIsa) - log_k -10.97 #Analogy with Pu(OH)2(HIsa)(aq) - -analytic -10.97000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 -2.000H+ +2.000H2O = Eu(OH)2+ - log_k -15.70 #07NEC/ALT2 - delta_h +104.240 #kJ/mol -# Enthalpy of formation: -1072.744 kJ/mol - -analytic 25.62064E-1 00.00000E+0 -54.44834E+2 00.00000E+0 00.00000E+0 - -+1.000Eu+3 -3.000H+ +3.000H2O = Eu(OH)3 - log_k -26.20 #07NEC/ALT2 - delta_h +162.995 #kJ/mol -# Enthalpy of formation: -1299.819 kJ/mol - -analytic 23.55498E-1 00.00000E+0 -85.13822E+2 00.00000E+0 00.00000E+0 - -+1.000Eu+3 -4.000H+ +4.000H2O = Eu(OH)4- - log_k -40.70 #07NEC/ALT2 - delta_h +235.317 #kJ/mol -# Enthalpy of formation: -1513.326 kJ/mol - -analytic 52.57687E-2 00.00000E+0 -12.29146E+3 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +1.000Ox-2 = Eu(Ox)+ - log_k +6.55 #Richard et al. 2011. Extrapolation to I=0 from various data, specially using the constant reported in 01SCH/BYR - -analytic 65.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +2.000Ox-2 = Eu(Ox)2- - log_k +10.93 # Extrapolation to I=0 from various data, specially using the constant reported in 01SCH/BYR - -analytic 10.93000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +3.000Ox-2 = Eu(Ox)3-3 - log_k +12.48 #Richard et al. 2011. Extrapolation to I=0 from various data, specially using the constant reported in 01SCH/BYR - -analytic 12.48000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +1.000Phthalat-2 = Eu(Phthalat)+ - log_k +4.96 #11GRI/COL2 - -analytic 49.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +2.000Phthalat-2 = Eu(Phthalat)2- - log_k +7.34 #11GRI/COL2 - -analytic 73.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 -2.000H+ +1.000H2(PO4)- = Eu(PO4) - log_k -7.36 #95SPA/BRU - -analytic -73.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 -4.000H+ +2.000H2(PO4)- = Eu(PO4)2-3 - log_k -18.46 #95SPA/BRU - -analytic -18.46000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +1.000SO4-2 = Eu(SO4)+ - log_k +3.50 #95SPA/BRU - delta_h +15.577 #kJ/mol -# Enthalpy of formation: -1499.088 kJ/mol - -analytic 62.28973E-1 00.00000E+0 -81.36434E+1 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +2.000SO4-2 = Eu(SO4)2- - log_k +5.20 #95SPA/BRU - delta_h +23.017 #kJ/mol -# Enthalpy of formation: -2400.987 kJ/mol - -analytic 92.32405E-1 00.00000E+0 -12.02262E+2 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +1.000Succinat-2 = Eu(Succinat)+ - log_k +4.36 #13GRI/CAM - -analytic 43.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +2.000Succinat-2 = Eu(Succinat)2- - log_k +6.50 #13GRI/CAM - -analytic 65.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +1.000Br- = EuBr+2 - log_k +0.25 #95SPA/BRU - delta_h +1.397 #kJ/mol -# Enthalpy of formation: -725.337 kJ/mol - -analytic 49.47439E-2 00.00000E+0 -72.97039E+0 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +2.000Br- = EuBr2+ - log_k -0.09 #95SPA/BRU - delta_h +7.625 #kJ/mol -# Enthalpy of formation: -840.520 kJ/mol - -analytic 12.45843E-1 00.00000E+0 -39.82815E+1 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +1.000Cl- = EuCl+2 - log_k +0.76 #Original data 01LUO/BYR and 04LUO/BYR - delta_h +19.940 #kJ/mol 00YEH -# Enthalpy of formation: -752.465 kJ/mol - -analytic 42.53338E-1 00.00000E+0 -10.41539E+2 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +2.000Cl- = EuCl2+ - log_k -0.05 #95SPA/BRU - delta_h +22.870 #kJ/mol -# Enthalpy of formation: -916.614 kJ/mol - -analytic 39.56652E-1 00.00000E+0 -11.94583E+2 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +1.000F- = EuF+2 - log_k +4.33 #07LUO/BYR - delta_h +8.190 #kJ/mol 04LUO/MIL -# Enthalpy of formation: -932.485 kJ/mol - -analytic 57.64826E-1 00.00000E+0 -42.77935E+1 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +2.000F- = EuF2+ - log_k +6.55 #Original data from 99SCH/BYR and 04LUO/BYR - delta_h +18.580 #kJ/mol 04LUO/MIL -# Enthalpy of formation: -1257.445 kJ/mol - -analytic 98.05076E-1 00.00000E+0 -97.05010E+1 00.00000E+0 00.00000E+0 - -+1.000Eu+3 +3.000F- = EuF3 - log_k +10.60 #95SPA/BRU - delta_h +27.850 #kJ/mol -# Enthalpy of formation: -1583.524 kJ/mol - -analytic 15.47911E+0 00.00000E+0 -14.54707E+2 00.00000E+0 00.00000E+0 - -+1.000Eu+3 -1.000H+ +1.000H4(SiO4) = EuSiO(OH)3+2 - log_k -2.62 #Original data 07THA/SIN and 96JEN/CHO1 - -analytic -26.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +1.000B(OH)4- = Fe(B(OH)4)+2 - log_k +8.58 #80BAS - -analytic 85.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +2.000B(OH)4- = Fe(B(OH)4)2+ - log_k +15.54 #80BAS - -analytic 15.54000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +1.000Cit-3 = Fe(Cit) - log_k +12.65 #95AKR/BOU - -analytic 12.65000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+2 +1.000Cit-3 = Fe(Cit)- - log_k +6.10 #95AKR/BOU - -analytic 61.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 -1.000H+ +1.000Cit-3 +1.000H2O = Fe(Cit)(OH)- - log_k +10.33 #95AKR/BOU - -analytic 10.33000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +2.000Cit-3 = Fe(Cit)2-3 - log_k +18.15 #95AKR/BOU - -analytic 18.15000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+2 +2.000CO3-2 = Fe(CO3)2-2 - log_k +7.04 #13LEM/BER - delta_h +58.257 #kJ/mol -# Enthalpy of formation: -1382.499 kJ/mol - -analytic 17.24619E+0 00.00000E+0 -30.42975E+2 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +3.000CO3-2 = Fe(CO3)3-3 - log_k +24.00 #05GRI in 13LEM/BER - -analytic 24.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +1.000Edta-4 = Fe(Edta)- - log_k +27.70 #95AKR/BOU - -analytic 27.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+2 +1.000Edta-4 = Fe(Edta)-2 - log_k +16.02 #95AKR/BOU - -analytic 16.02000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+2 +2.000H+ +1.000Cit-3 = Fe(H2Cit)+ - log_k +13.64 #91DUF/JOH - -analytic 13.64000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +2.000H+ +1.000Cit-3 = Fe(H2Cit)+2 - log_k +14.13 #82NAM/PAL - -analytic 14.13000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+2 +1.000H2(PO4)- = Fe(H2PO4)+ - log_k +2.70 #20LEM/PAL - -analytic 27.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +1.000H2(PO4)- = Fe(H2PO4)+2 - log_k +5.43 #Recalculated from 72NRIa in 20LEM/PAL - -analytic 54.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 -1.000H+ +1.000H4(SiO4) = Fe(H3SiO4)+2 - log_k +0.36 #88CHA/NEW - -analytic 36.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+2 +1.000H+ +1.000Cit-3 = Fe(HCit) - log_k +10.02 #95AKR/BOU - -analytic 10.02000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +1.000H+ +2.000Cit-3 = Fe(HCit)(Cit)-2 - log_k +19.30 #95AKR/BOU - -analytic 19.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +1.000H+ +1.000Cit-3 = Fe(HCit)+ - log_k +13.56 #95AKR/BOU - -analytic 13.56000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +2.000H+ +2.000Cit-3 = Fe(HCit)2- - log_k +24.92 #95AKR/BOU - -analytic 24.92000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +1.000H+ +1.000Edta-4 = Fe(HEdta) - log_k +29.20 #95AKR/BOU - -analytic 29.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+2 +1.000H+ +1.000Edta-4 = Fe(HEdta)- - log_k +18.30 #95AKR/BOU - -analytic 18.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+2 +1.000H+ +1.000Nta-3 = Fe(HNta) - log_k +12.30 #95AKR/BOU - -analytic 12.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +1.000H+ +1.000Ox-2 = Fe(HOx)+2 - log_k +9.30 #95AKR/BOU - -analytic 93.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+2 -1.000H+ +1.000H2(PO4)- = Fe(HPO4) - log_k -3.61 #USGS original - -analytic -36.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+2 +1.000HS- = Fe(HS)+ - log_k +4.34 #04CHI - -analytic 43.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+2 +2.000HS- = Fe(HS)2 - log_k +6.45 #04CHI - -analytic 64.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +1.000H+ +1.000SeO3-2 = Fe(HSeO3)+2 - log_k +12.35 #01SEB/POT2 - -analytic 12.35000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+2 +1.000NH3 = Fe(NH3)+2 - log_k +1.30 #82SCH - -analytic 13.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+2 +2.000NH3 = Fe(NH3)2+2 - log_k +2.10 #82SCH - -analytic 21.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+2 +4.000NH3 = Fe(NH3)4+2 - log_k +3.60 #82SCH - -analytic 36.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +1.000NO3- = Fe(NO3)+2 - log_k +0.95 #HATCHES 8.0 1996 - -analytic 95.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +1.000Nta-3 = Fe(Nta) - log_k +18.60 #95AKR/BOU - -analytic 18.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+2 +1.000Nta-3 = Fe(Nta)- - log_k +10.60 #95AKR/BOU - -analytic 10.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +2.000Nta-3 = Fe(Nta)2-3 - log_k +27.00 #95AKR/BOU - -analytic 27.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+2 +2.000Nta-3 = Fe(Nta)2-4 - log_k +13.50 #95AKR/BOU - -analytic 13.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+2 -1.000H+ +1.000Cit-3 +1.000H2O = Fe(OH)(Cit)-2 - log_k -0.86 #91DUF/JOH - -analytic -86.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 -1.000H+ +1.000Edta-4 +1.000H2O = Fe(OH)(Edta)-2 - log_k +20.84 #95AKR/BOU - -analytic 20.84000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+2 -1.000H+ +1.000Edta-4 +1.000H2O = Fe(OH)(Edta)-3 - log_k +6.40 #95AKR/BOU - -analytic 64.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 -1.000H+ +1.000Nta-3 +1.000H2O = Fe(OH)(Nta)- - log_k +14.60 #95AKR/BOU - -analytic 14.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+2 -1.000H+ +1.000Nta-3 +1.000H2O = Fe(OH)(Nta)-2 - log_k -0.12 #95AKR/BOU - -analytic -12.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+2 -1.000H+ +1.000H2O = Fe(OH)+ - log_k -9.25 #21RIB/BEG - delta_h +40.921 #kJ/mol 21RIB/BEG -# Enthalpy of formation: -335.204 kJ/mol - -analytic -20.80949E-1 00.00000E+0 -21.37453E+2 00.00000E+0 00.00000E+0 - -+1.000Fe+3 -1.000H+ +1.000H2O = Fe(OH)+2 - log_k -2.15 #13LEM/BER - delta_h +38.800 #kJ/mol 13LEM/BER -# Enthalpy of formation: -297.086 kJ/mol - -analytic 46.47468E-1 00.00000E+0 -20.26665E+2 00.00000E+0 00.00000E+0 - -+1.000Fe+2 -2.000H+ +2.000H2O = Fe(OH)2 - log_k -20.84 #21RIB/BEG - delta_h +114.131 #kJ/mol 21RIB/BEG -# Enthalpy of formation: -547.824 kJ/mol - -analytic -84.51071E-2 00.00000E+0 -59.61477E+2 00.00000E+0 00.00000E+0 - -+1.000Fe+3 -2.000H+ +1.000Cit-3 +2.000H2O = Fe(OH)2(Cit)-2 - log_k +2.90 #95AKR/BOU - -analytic 29.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 -2.000H+ +1.000Edta-4 +2.000H2O = Fe(OH)2(Edta)-3 - log_k +10.06 #95AKR/BOU - -analytic 10.06000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+2 -2.000H+ +1.000Edta-4 +2.000H2O = Fe(OH)2(Edta)-4 - log_k -4.40 #95AKR/BOU - -analytic -44.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 -2.000H+ +1.000Nta-3 +2.000H2O = Fe(OH)2(Nta)-2 - log_k +6.00 #95AKR/BOU - -analytic 60.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 -2.000H+ +2.000H2O = Fe(OH)2+ - log_k -4.80 #13LEM/BER - delta_h +71.546 #kJ/mol 76BAE/MES in 98CHI -# Enthalpy of formation: -550.170 kJ/mol - -analytic 77.34321E-1 00.00000E+0 -37.37108E+2 00.00000E+0 00.00000E+0 - -+1.000Fe+3 -3.000H+ +3.000H2O = Fe(OH)3 - log_k -12.56 #95BOU in 04CHI - delta_h +103.764 #kJ/mol 95BOU in 04CHI -# Enthalpy of formation: -803.782 kJ/mol - -analytic 56.18672E-1 00.00000E+0 -54.19971E+2 00.00000E+0 00.00000E+0 - -+1.000Fe+2 -3.000H+ +3.000H2O = Fe(OH)3- - log_k -33.84 #21RIB/BEG - delta_h +162.231 #kJ/mol 21RIB/BEG -# Enthalpy of formation: -785.554 kJ/mol - -analytic -54.18349E-1 00.00000E+0 -84.73915E+2 00.00000E+0 00.00000E+0 - -+1.000Fe+3 -3.000H+ +1.000Edta-4 +3.000H2O = Fe(OH)3(Edta)-4 - log_k -2.24 #51SCH/HEL - -analytic -22.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 -4.000H+ +4.000H2O = Fe(OH)4- - log_k -21.60 #76BAE/MES in 04CHI - delta_h +133.471 #kJ/mol 95BOU in 04CHI -# Enthalpy of formation: -1059.905 kJ/mol - -analytic 17.83115E-1 00.00000E+0 -69.71676E+2 00.00000E+0 00.00000E+0 - -+1.000Fe+2 -4.000H+ +4.000H2O = Fe(OH)4-2 - log_k -46.32 #21RIB/BEG from 56GAY/WOO - delta_h +160.750 #kJ/mol -# Enthalpy of formation: -1072.864 kJ/mol - -analytic -18.15781E+0 00.00000E+0 -83.96557E+2 00.00000E+0 00.00000E+0 - -+1.000Fe+3 -1.000H+ +1.000CO3-2 +1.000H2O = Fe(OH)CO3 - log_k +10.70 #05GRI - -analytic 10.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+2 +1.000Ox-2 = Fe(Ox) - log_k +4.10 #95AKR/BOU - -analytic 41.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +1.000Ox-2 = Fe(Ox)+ - log_k +9.53 #95AKR/BOU - -analytic 95.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +2.000Ox-2 = Fe(Ox)2- - log_k +15.75 #95AKR/BOU - -analytic 15.75000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+2 +2.000Ox-2 = Fe(Ox)2-2 - log_k +6.20 #95AKR/BOU - -analytic 62.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +3.000Ox-2 = Fe(Ox)3-3 - log_k +20.20 #95AKR/BOU - -analytic 20.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+2 +3.000Ox-2 = Fe(Ox)3-4 - log_k +5.22 #95AKR/BOU - -analytic 52.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 -2.000H+ +1.000H2(PO4)- = Fe(PO4) - log_k +3.44 #Recalculated from 07IUL/CIA in 20LEM/PAL - -analytic 34.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +1.000SeO3-2 = Fe(SeO3)+ - log_k +11.15 #05OLI/NOL - -analytic 11.15000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+2 +1.000SeO4-2 = Fe(SeO4) - log_k +2.71 #01SEB/POT2 - delta_h -12.425 #kJ/mol -# Enthalpy of formation: -706.220 kJ/mol - -analytic 53.32334E-2 00.00000E+0 64.90029E+1 00.00000E+0 00.00000E+0 - -+1.000Fe+2 +1.000SO4-2 = Fe(SO4) - log_k +2.44 #13LEM/BER - delta_h +8.400 #kJ/mol 13LEM/BER -# Enthalpy of formation: -991.235 kJ/mol - -analytic 39.11617E-1 00.00000E+0 -43.87626E+1 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +1.000SO4-2 = Fe(SO4)+ - log_k +4.25 #13LEM/BER - delta_h +26.000 #kJ/mol Suggested but not selected 13LEM/BER -# Enthalpy of formation: -933.396 kJ/mol - -analytic 88.05004E-1 00.00000E+0 -13.58075E+2 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +2.000SO4-2 = Fe(SO4)2- - log_k +6.22 #91PEA/BER in 98CHI - -analytic 62.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+2.000Fe+3 -2.000H+ +2.000Cit-3 +2.000H2O = Fe2(Cit)2(OH)2-2 - log_k +17.00 #95AKR/BOU - -analytic 17.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+2.000Fe+3 -2.000H+ +2.000Edta-4 +2.000H2O = Fe2(OH)2(Edta)2-4 - log_k +40.00 #95AKR/BOU - -analytic 40.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+2.000Fe+3 -2.000H+ +2.000H2O = Fe2(OH)2+4 - log_k -2.82 #13LEM/BER - delta_h +44.000 #kJ/mol 13LEM/BER -# Enthalpy of formation: -627.772 kJ/mol - -analytic 48.88469E-1 00.00000E+0 -22.98280E+2 00.00000E+0 00.00000E+0 - -+3.000Fe+3 -4.000H+ +4.000H2O = Fe3(OH)4+5 - log_k -6.30 #76BAE/MES in 98CHI - delta_h +59.831 #kJ/mol 76BAE/MES -# Enthalpy of formation: -1233.657 kJ/mol - -analytic 41.81941E-1 00.00000E+0 -31.25191E+2 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +1.000Br- = FeBr+2 - log_k +0.70 #88CHA/NEW - -analytic 70.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +2.000Br- = FeBr2+ - log_k +0.90 #96FAL/REA - -analytic 90.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+2 +1.000Cl- = FeCl+ - log_k +1.00 #Suggested in 13LEM/BER - delta_h +21.551 #kJ/mol 13LEM/BER -# Enthalpy of formation: -235.824 kJ/mol - -analytic 47.75573E-1 00.00000E+0 -11.25687E+2 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +1.000Cl- = FeCl+2 - log_k +1.52 #13LEM/BER - delta_h +22.500 #kJ/mol 13LEM/BER -# Enthalpy of formation: -194.636 kJ/mol - -analytic 54.61831E-1 00.00000E+0 -11.75257E+2 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +2.000Cl- = FeCl2+ - log_k +2.22 #13LEM/BER - -analytic 22.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +3.000Cl- = FeCl3 - log_k +1.02 #13LEM/BER - -analytic 10.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +4.000Cl- = FeCl4- - log_k -0.98 #13LEM/BER - -analytic -98.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+2 +1.000CO3-2 = FeCO3 - log_k +5.27 #13LEM/BER - delta_h -3.367 #kJ/mol -# Enthalpy of formation: -768.892 kJ/mol - -analytic 46.80127E-1 00.00000E+0 17.58707E+1 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +1.000CrO4-2 = FeCrO4+ - log_k +7.80 #96BAR/PAL - delta_h +19.100 #kJ/mol 96BAR/PAL -# Enthalpy of formation: -909.956 kJ/mol - -analytic 11.14618E+0 00.00000E+0 -99.76625E+1 00.00000E+0 00.00000E+0 - -+1.000Fe+2 +1.000F- = FeF+ - log_k +1.70 #13LEM/BER - -analytic 17.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +1.000F- = FeF+2 - log_k +6.09 #20LEM/PAL - delta_h +12.800 #kJ/mol 20LEM/PAL -# Enthalpy of formation: -372.606 kJ/mol - -analytic 83.32464E-1 00.00000E+0 -66.85906E+1 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +2.000F- = FeF2+ - log_k +10.41 #Calculated in 20LEM/PAL - delta_h +22.000 #kJ/mol Calculated in 20LEM/PAL -# Enthalpy of formation: -698.756 kJ/mol - -analytic 14.26423E+0 00.00000E+0 -11.49140E+2 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +2.000H+ +1.000Pyrophos-4 = FeH2Pyrophos+ - log_k +26.00 #88CHA/NEW - -analytic 26.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +1.000I- = FeI+2 - log_k +2.10 #96BOU2 - -analytic 21.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Fe+3 +1.000S2O3-2 = FeS2O3+ - log_k +3.90 #82SCH - -analytic 39.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000H+ +1.000Adipate-2 = H(Adipate)- - log_k +5.45 #04MAR/SMI - -analytic 54.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --2.000H+ +1.000H3(AsO3) = H(AsO3)-2 - log_k -23.62 #79IVA/VOR - -analytic -23.62000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000H+ +1.000AsO4-3 = H(AsO4)-2 - log_k +11.60 - delta_h -18.200 #kJ/mol + -analytic -41.23547E-1 00E+0 -34.3363E+2 00E+0 00E+0 + +Cs+ + Br- = CsBr + log_k 0.1 + delta_h 5.912 #kJ/mol +# Enthalpy of formation: -373.497 kJ/mol + -analytic 11.35738E-1 00E+0 -30.88053E+1 00E+0 00E+0 + +Cs+ + Cl- = CsCl + log_k -0.09 + delta_h 7.514 #kJ/mol +# Enthalpy of formation: -417.566 kJ/mol + -analytic 12.26396E-1 00E+0 -39.24836E+1 00E+0 00E+0 + +Cs+ + F- = CsF + log_k -0.38 + delta_h 2.436 #kJ/mol +# Enthalpy of formation: -590.913 kJ/mol + -analytic 46.76888E-3 00E+0 -12.72411E+1 00E+0 00E+0 + +Cs+ + I- = CsI + log_k 1.05 + delta_h -0.071 #kJ/mol +# Enthalpy of formation: -314.850 kJ/mol + -analytic 10.37561E-1 00E+0 37.08588E-1 00E+0 00E+0 + +Cu+2 + B(OH)4- = Cu(B(OH)4)+ + log_k 7.13 #80BAS + -analytic 71.3E-1 00E+0 00E+0 00E+0 00E+0 + +Cu+2 + 2 B(OH)4- = Cu(B(OH)4)2 + log_k 12.45 #80BAS + -analytic 12.45E+0 00E+0 00E+0 00E+0 00E+0 + +Cu+2 + 3 B(OH)4- = Cu(B(OH)4)3- + log_k 15.17 #80BAS + -analytic 15.17E+0 00E+0 00E+0 00E+0 00E+0 + +Cu+2 + 2 CO3-2 = Cu(CO3)2-2 + log_k 10.3 #07POW/BRO + delta_h 36.616 #kJ/mol +# Enthalpy of formation: -1248.945 kJ/mol + -analytic 16.71485E+0 00E+0 -19.12587E+2 00E+0 00E+0 + +Cu+ + 2 HS- = Cu(HS)2- + log_k 17.18 #99MON/SEW + delta_h -78.863 #kJ/mol +# Enthalpy of formation: -40.875 kJ/mol + -analytic 33.63795E-1 00E+0 41.19301E+2 00E+0 00E+0 + +Cu+2 - H+ + H2O = Cu(OH)+ + log_k -7.97 #97PLY/WAN + delta_h 36 #kJ/mol 76ARE/CAL in 97PLY/WAN +# Enthalpy of formation: -184.930 kJ/mol + -analytic -16.63071E-1 00E+0 -18.80411E+2 00E+0 00E+0 + +Cu+2 - 2 H+ + 2 H2O = Cu(OH)2 + log_k -16.23 #97PLY/WAN + delta_h 92.82 #kJ/mol 76ARE/CAL in 97PLY/WAN +# Enthalpy of formation: -413.940 kJ/mol + -analytic 31.36597E-3 00E+0 -48.48326E+2 00E+0 00E+0 + +Cu+ - 2 H+ + 2 H2O = Cu(OH)2- + log_k -18.2 #11PAL + delta_h 57.672 #kJ/mol +# Enthalpy of formation: -443.399 kJ/mol + -analytic -80.96299E-1 00E+0 -30.12418E+2 00E+0 00E+0 + +Cu+2 - 3 H+ + 3 H2O = Cu(OH)3- + log_k -26.63 #36DOW/JOH in 97PLY/WAN + delta_h 114.482 #kJ/mol +# Enthalpy of formation: -678.107 kJ/mol + -analytic -65.73615E-1 00E+0 -59.79811E+2 00E+0 00E+0 + +Cu+2 - 4 H+ + 4 H2O = Cu(OH)4-2 + log_k -39.73 #36DOW/JOH, 67AKH in 97PLY/WAN + -analytic -39.73E+0 00E+0 00E+0 00E+0 00E+0 + +Cu+2 + SeO4-2 = Cu(SeO4) + log_k 2.2 #Upper value suggested in 05OLI/NOL + -analytic 22E-1 00E+0 00E+0 00E+0 00E+0 + +2 Cu+2 - H+ + H2O = Cu2(OH)+3 + log_k -6.71 #97PLY/WAN + delta_h 46.1 #kJ/mol 97ROB/STE +# Enthalpy of formation: -109.930 kJ/mol + -analytic 13.66373E-1 00E+0 -24.07971E+2 00E+0 00E+0 + +2 Cu+2 - 2 H+ + 2 H2O = Cu2(OH)2+2 + log_k -10.55 #97PLY/WAN + delta_h 75.4 #kJ/mol 97PLY/WAN +# Enthalpy of formation: -366.460 kJ/mol + -analytic 26.59513E-1 00E+0 -39.38416E+2 00E+0 00E+0 + +2 Cu+ + 4 Cl- = Cu2Cl4-2 + log_k 10.55 #80FRIN in 00PUI/TAX + delta_h -54.86 #kJ/mol 00PUI/TAX +# Enthalpy of formation: -582.002 kJ/mol + -analytic 93.89406E-2 00E+0 28.65537E+2 00E+0 00E+0 + +2 Cu+ - H+ + 3 HS- = Cu2S(HS)2-2 + log_k 29.87 #99MON/SEW + delta_h -314.862 #kJ/mol +# Enthalpy of formation: -222.586 kJ/mol + -analytic -25.29145E+0 00E+0 16.44639E+3 00E+0 00E+0 + +3 Cu+2 - 4 H+ + 4 H2O = Cu3(OH)4+2 + log_k -20.94 #76ARE/CAL in 97PLY/WAN + delta_h 110 #kJ/mol 76ARE/CAL in 97PLY/WAN +# Enthalpy of formation: -838.620 kJ/mol + -analytic -16.68827E-1 00E+0 -57.457E+2 00E+0 00E+0 + +3 Cu+ + 6 Cl- = Cu3Cl6-3 + log_k 15.99 #80FRI in 00PUI/TAX + delta_h 124.51 #kJ/mol 00PUI/TAX +# Enthalpy of formation: -666.203 kJ/mol + -analytic 37.80322E+0 00E+0 -65.0361E+2 00E+0 00E+0 + +Cu+ + Cl- = CuCl + log_k 3.3 #98XIA/GAM + delta_h 3.763 #kJ/mol +# Enthalpy of formation: -92.728 kJ/mol + -analytic 39.59249E-1 00E+0 -19.65552E+1 00E+0 00E+0 + +Cu+2 + Cl- = CuCl+ + log_k 0.64 #97WAN/ZHA + delta_h 8.7 #kJ/mol 97WAN/ZHA +# Enthalpy of formation: -93.480 kJ/mol + -analytic 21.64175E-1 00E+0 -45.44326E+1 00E+0 00E+0 + +Cu+2 + 2 Cl- = CuCl2 + log_k 0.6 #97WAN/ZHA + delta_h 23 #kJ/mol 97WAN/ZHA +# Enthalpy of formation: -246.260 kJ/mol + -analytic 46.29427E-1 00E+0 -12.01374E+2 00E+0 00E+0 + +Cu+ + 2 Cl- = CuCl2- + log_k 5.68 #97WAN/ZHA + delta_h -14.25 #kJ/mol 84FRI in 97WAN/ZHA +# Enthalpy of formation: -277.821 kJ/mol + -analytic 31.83507E-1 00E+0 74.43293E+1 00E+0 00E+0 + +Cu+2 + 3 Cl- = CuCl3- + log_k -1.28 #97WAN/ZHA + delta_h 22.2 #kJ/mol 97WAN/ZHA +# Enthalpy of formation: -414.140 kJ/mol + -analytic 26.09273E-1 00E+0 -11.59587E+2 00E+0 00E+0 + +Cu+ + 3 Cl- = CuCl3-2 + log_k 5.03 #97WAN/ZHA + delta_h -27.33 #kJ/mol 97WAN/ZHA +# Enthalpy of formation: -457.981 kJ/mol + -analytic 24.19895E-2 00E+0 14.27545E+2 00E+0 00E+0 + +Cu+2 + 4 Cl- = CuCl4-2 + log_k -3.98 #97WAN/ZHA + delta_h 28 #kJ/mol 97WAN/ZHA +# Enthalpy of formation: -575.420 kJ/mol + -analytic 92.53894E-2 00E+0 -14.62542E+2 00E+0 00E+0 + +Cu+2 + CO3-2 = CuCO3 + log_k 6.75 #07POW/BRO + delta_h 10.4 #kJ/mol 89SOL/BYR +# Enthalpy of formation: -599.930 kJ/mol + -analytic 85.72002E-1 00E+0 -54.32298E+1 00E+0 00E+0 + +Cu+2 + H+ + CO3-2 = CuHCO3+ + log_k 12.17 #07POW/BRO + delta_h -5.841 #kJ/mol +# Enthalpy of formation: -616.172 kJ/mol + -analytic 11.1467E+0 00E+0 30.50967E+1 00E+0 00E+0 + +Cu+ + HS- = CuHS + log_k 13 #99MON/SEW + delta_h -44.866 #kJ/mol +# Enthalpy of formation: +9.422 kJ/mol + -analytic 51.39814E-1 00E+0 23.43514E+2 00E+0 00E+0 + +Cu+ - H+ + H2O = CuOH + log_k -7.68 #11PAL + -analytic -76.8E-1 00E+0 00E+0 00E+0 00E+0 + +Cu+ + S2O3-2 = CuS2O3- + log_k 10.13 + delta_h -51.13 #kJ/mol +# Enthalpy of formation: -632.828 kJ/mol + -analytic 11.72409E-1 00E+0 26.70706E+2 00E+0 00E+0 + +Cu+2 + SO4-2 = CuSO4 + log_k 2.31 + delta_h 5.102 #kJ/mol +# Enthalpy of formation: -839.338 kJ/mol + -analytic 32.03832E-1 00E+0 -26.6496E+1 00E+0 00E+0 + +Eu+3 + Acetate- = Eu(Acetate)+2 + log_k 2.9 #12GRI/GAR2 + -analytic 29E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + 2 Acetate- = Eu(Acetate)2+ + log_k 4.8 #12GRI/GAR2 + -analytic 48E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + 3 Acetate- = Eu(Acetate)3 + log_k 5.6 #12GRI/GAR2 + -analytic 56E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + Cit-3 = Eu(Cit) + log_k 8.55 #Analogy with Am + -analytic 85.5E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + 2 Cit-3 = Eu(Cit)2-3 + log_k 13.9 #Analogy with Am + -analytic 13.9E+0 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + CO3-2 = Eu(CO3)+ + log_k 7.9 #95SPA/BRU + delta_h 26.15 #kJ/mol +# Enthalpy of formation: -1254.406 kJ/mol + -analytic 12.48128E+0 00E+0 -13.6591E+2 00E+0 00E+0 + +Eu+3 + 2 CO3-2 = Eu(CO3)2- + log_k 12.9 #95SPA/BRU + -analytic 12.9E+0 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + 3 CO3-2 = Eu(CO3)3-3 + log_k 14.8 #05VER/VIT2 + -analytic 14.8E+0 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + Edta-4 = Eu(Edta)- + log_k 19.67 #Analoly with Am(Edta)- + -analytic 19.67E+0 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + H2(PO4)- = Eu(H2PO4)+2 + log_k 2.4 #95SPA/BRU + -analytic 24E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + H+ + Cit-3 = Eu(HCit)+ + log_k 12.86 #Analogy with Am + -analytic 12.86E+0 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + 2 H+ + 2 Cit-3 = Eu(HCit)2- + log_k 23.52 #Analogy with Am + -analytic 23.52E+0 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + H+ + CO3-2 = Eu(HCO3)+2 + log_k 12.43 #95SPA/BRU + -analytic 12.43E+0 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + H+ + Edta-4 = Eu(HEdta) + log_k 21.84 #Analogy with Am(HEdta) + -analytic 21.84E+0 00E+0 00E+0 00E+0 00E+0 + +Eu+3 - H+ + H2(PO4)- = Eu(HPO4)+ + log_k -1.51 #95SPA/BRU + -analytic -15.1E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 - 2 H+ + 2 H2(PO4)- = Eu(HPO4)2- + log_k -4.82 #95SPA/BRU + -analytic -48.2E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + Malonate-2 = Eu(Malonate)+ + log_k 5.43 #13GRI/CAM + -analytic 54.3E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + 2 Malonate-2 = Eu(Malonate)2- + log_k 7.78 #13GRI/CAM + -analytic 77.8E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + NO3- = Eu(NO3)+2 + log_k 1.21 #09RAO/TIA1 (Calculated usig SIT) + -analytic 12.1E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + Nta-3 = Eu(Nta) + log_k 13 #Analogy with Am(Nta)(aq) + -analytic 13E+0 00E+0 00E+0 00E+0 00E+0 + +Eu+3 - H+ + H2O = Eu(OH)+2 + log_k -7.8 #95SPA/BRU + delta_h 51.104 #kJ/mol +# Enthalpy of formation: -840.051 kJ/mol + -analytic 11.53036E-1 00E+0 -26.69348E+2 00E+0 00E+0 + +Eu+3 - 2 H+ + HGlu- + 2 H2O = Eu(OH)2(HGlu) + log_k -10.97 #Analogy with Pu(OH)2(HIsa)(aq) + -analytic -10.97E+0 00E+0 00E+0 00E+0 00E+0 + +Eu+3 - 2 H+ + HIsa- + 2 H2O = Eu(OH)2(HIsa) + log_k -10.97 #Analogy with Pu(OH)2(HIsa)(aq) + -analytic -10.97E+0 00E+0 00E+0 00E+0 00E+0 + +Eu+3 - 2 H+ + 2 H2O = Eu(OH)2+ + log_k -15.7 #07NEC/ALT2 + delta_h 104.24 #kJ/mol +# Enthalpy of formation: -1072.744 kJ/mol + -analytic 25.62064E-1 00E+0 -54.44834E+2 00E+0 00E+0 + +Eu+3 - 3 H+ + 3 H2O = Eu(OH)3 + log_k -26.2 #07NEC/ALT2 + delta_h 162.995 #kJ/mol +# Enthalpy of formation: -1299.819 kJ/mol + -analytic 23.55498E-1 00E+0 -85.13822E+2 00E+0 00E+0 + +Eu+3 - 4 H+ + 4 H2O = Eu(OH)4- + log_k -40.7 #07NEC/ALT2 + delta_h 235.317 #kJ/mol +# Enthalpy of formation: -1513.326 kJ/mol + -analytic 52.57687E-2 00E+0 -12.29146E+3 00E+0 00E+0 + +Eu+3 + Ox-2 = Eu(Ox)+ + log_k +6.55 #Richard et al. 2011 Extrapolation to I=0 from various data, specially using the constant reported in 01SCH/BYR + -analytic 65.5E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + 2 Ox-2 = Eu(Ox)2- + log_k +10.93 # Extrapolation to I=0 from various data, specially using the constant reported in 01SCH/BYR + -analytic 10.93E+0 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + 3 Ox-2 = Eu(Ox)3-3 + log_k +12.48 #Richard et al. 2011 Extrapolation to I=0 from various data, specially using the constant reported in 01SCH/BYR + -analytic 12.48E+0 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + Phthalat-2 = Eu(Phthalat)+ + log_k 4.96 #11GRI/COL2 + -analytic 49.6E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + 2 Phthalat-2 = Eu(Phthalat)2- + log_k 7.34 #11GRI/COL2 + -analytic 73.4E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 - 2 H+ + H2(PO4)- = Eu(PO4) + log_k -7.36 #95SPA/BRU + -analytic -73.6E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 - 4 H+ + 2 H2(PO4)- = Eu(PO4)2-3 + log_k -18.46 #95SPA/BRU + -analytic -18.46E+0 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + SO4-2 = Eu(SO4)+ + log_k 3.5 #95SPA/BRU + delta_h 15.577 #kJ/mol +# Enthalpy of formation: -1499.088 kJ/mol + -analytic 62.28973E-1 00E+0 -81.36434E+1 00E+0 00E+0 + +Eu+3 + 2 SO4-2 = Eu(SO4)2- + log_k 5.2 #95SPA/BRU + delta_h 23.017 #kJ/mol +# Enthalpy of formation: -2400.987 kJ/mol + -analytic 92.32405E-1 00E+0 -12.02262E+2 00E+0 00E+0 + +Eu+3 + Succinat-2 = Eu(Succinat)+ + log_k 4.36 #13GRI/CAM + -analytic 43.6E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + 2 Succinat-2 = Eu(Succinat)2- + log_k 6.5 #13GRI/CAM + -analytic 65E-1 00E+0 00E+0 00E+0 00E+0 + +Eu+3 + Br- = EuBr+2 + log_k 0.25 #95SPA/BRU + delta_h 1.397 #kJ/mol +# Enthalpy of formation: -725.337 kJ/mol + -analytic 49.47439E-2 00E+0 -72.97039E+0 00E+0 00E+0 + +Eu+3 + 2 Br- = EuBr2+ + log_k -0.09 #95SPA/BRU + delta_h 7.625 #kJ/mol +# Enthalpy of formation: -840.520 kJ/mol + -analytic 12.45843E-1 00E+0 -39.82815E+1 00E+0 00E+0 + +Eu+3 + Cl- = EuCl+2 + log_k 0.76 #Original data 01LUO/BYR and 04LUO/BYR + delta_h 19.94 #kJ/mol 00YEH +# Enthalpy of formation: -752.465 kJ/mol + -analytic 42.53338E-1 00E+0 -10.41539E+2 00E+0 00E+0 + +Eu+3 + 2 Cl- = EuCl2+ + log_k -0.05 #95SPA/BRU + delta_h 22.87 #kJ/mol +# Enthalpy of formation: -916.614 kJ/mol + -analytic 39.56652E-1 00E+0 -11.94583E+2 00E+0 00E+0 + +Eu+3 + F- = EuF+2 + log_k 4.33 #07LUO/BYR + delta_h 8.19 #kJ/mol 04LUO/MIL +# Enthalpy of formation: -932.485 kJ/mol + -analytic 57.64826E-1 00E+0 -42.77935E+1 00E+0 00E+0 + +Eu+3 + 2 F- = EuF2+ + log_k 6.55 #Original data from 99SCH/BYR and 04LUO/BYR + delta_h 18.58 #kJ/mol 04LUO/MIL +# Enthalpy of formation: -1257.445 kJ/mol + -analytic 98.05076E-1 00E+0 -97.0501E+1 00E+0 00E+0 + +Eu+3 + 3 F- = EuF3 + log_k 10.6 #95SPA/BRU + delta_h 27.85 #kJ/mol +# Enthalpy of formation: -1583.524 kJ/mol + -analytic 15.47911E+0 00E+0 -14.54707E+2 00E+0 00E+0 + +Eu+3 - H+ + H4(SiO4) = EuSiO(OH)3+2 + log_k -2.62 #Original data 07THA/SIN and 96JEN/CHO1 + -analytic -26.2E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + B(OH)4- = Fe(B(OH)4)+2 + log_k 8.58 #80BAS + -analytic 85.8E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + 2 B(OH)4- = Fe(B(OH)4)2+ + log_k 15.54 #80BAS + -analytic 15.54E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + Cit-3 = Fe(Cit) + log_k 12.65 #95AKR/BOU + -analytic 12.65E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + Cit-3 = Fe(Cit)- + log_k 6.1 #95AKR/BOU + -analytic 61E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 - H+ + Cit-3 + H2O = Fe(Cit)(OH)- + log_k 10.33 #95AKR/BOU + -analytic 10.33E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + 2 Cit-3 = Fe(Cit)2-3 + log_k 18.15 #95AKR/BOU + -analytic 18.15E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + 2 CO3-2 = Fe(CO3)2-2 + log_k 7.04 #13LEM/BER + delta_h 58.257 #kJ/mol +# Enthalpy of formation: -1382.499 kJ/mol + -analytic 17.24619E+0 00E+0 -30.42975E+2 00E+0 00E+0 + +Fe+3 + 3 CO3-2 = Fe(CO3)3-3 + log_k 24 #05GRI in 13LEM/BER + -analytic 24E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + Edta-4 = Fe(Edta)- + log_k 27.7 #95AKR/BOU + -analytic 27.7E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + Edta-4 = Fe(Edta)-2 + log_k 16.02 #95AKR/BOU + -analytic 16.02E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + 2 H+ + Cit-3 = Fe(H2Cit)+ + log_k 13.64 #91DUF/JOH + -analytic 13.64E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + 2 H+ + Cit-3 = Fe(H2Cit)+2 + log_k 14.13 #82NAM/PAL + -analytic 14.13E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + H2(PO4)- = Fe(H2PO4)+ + log_k 2.7 #20LEM/PAL + -analytic 27E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + H2(PO4)- = Fe(H2PO4)+2 + log_k 5.43 #Recalculated from 72NRIa in 20LEM/PAL + -analytic 54.3E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 - H+ + H4(SiO4) = Fe(H3SiO4)+2 + log_k 0.36 #88CHA/NEW + -analytic 36E-2 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + H+ + Cit-3 = Fe(HCit) + log_k 10.02 #95AKR/BOU + -analytic 10.02E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + H+ + 2 Cit-3 = Fe(HCit)(Cit)-2 + log_k 19.3 #95AKR/BOU + -analytic 19.3E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + H+ + Cit-3 = Fe(HCit)+ + log_k 13.56 #95AKR/BOU + -analytic 13.56E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + 2 H+ + 2 Cit-3 = Fe(HCit)2- + log_k 24.92 #95AKR/BOU + -analytic 24.92E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + H+ + Edta-4 = Fe(HEdta) + log_k 29.2 #95AKR/BOU + -analytic 29.2E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + H+ + Edta-4 = Fe(HEdta)- + log_k 18.3 #95AKR/BOU + -analytic 18.3E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + H+ + Nta-3 = Fe(HNta) + log_k 12.3 #95AKR/BOU + -analytic 12.3E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + H+ + Ox-2 = Fe(HOx)+2 + log_k 9.3 #95AKR/BOU + -analytic 93E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+2 - H+ + H2(PO4)- = Fe(HPO4) + log_k -3.61 #USGS original + -analytic -36.1E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + HS- = Fe(HS)+ + log_k 4.34 #04CHI + -analytic 43.4E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + 2 HS- = Fe(HS)2 + log_k 6.45 #04CHI + -analytic 64.5E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + H+ + SeO3-2 = Fe(HSeO3)+2 + log_k 12.35 #01SEB/POT2 + -analytic 12.35E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + NH3 = Fe(NH3)+2 + log_k 1.3 #82SCH + -analytic 13E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + 2 NH3 = Fe(NH3)2+2 + log_k 2.1 #82SCH + -analytic 21E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + 4 NH3 = Fe(NH3)4+2 + log_k 3.6 #82SCH + -analytic 36E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + NO3- = Fe(NO3)+2 + log_k 0.95 #HATCHES 8 1996 + -analytic 95E-2 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + Nta-3 = Fe(Nta) + log_k 18.6 #95AKR/BOU + -analytic 18.6E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + Nta-3 = Fe(Nta)- + log_k 10.6 #95AKR/BOU + -analytic 10.6E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + 2 Nta-3 = Fe(Nta)2-3 + log_k 27 #95AKR/BOU + -analytic 27E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + 2 Nta-3 = Fe(Nta)2-4 + log_k 13.5 #95AKR/BOU + -analytic 13.5E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 - H+ + Cit-3 + H2O = Fe(OH)(Cit)-2 + log_k -0.86 #91DUF/JOH + -analytic -86E-2 00E+0 00E+0 00E+0 00E+0 + +Fe+3 - H+ + Edta-4 + H2O = Fe(OH)(Edta)-2 + log_k 20.84 #95AKR/BOU + -analytic 20.84E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 - H+ + Edta-4 + H2O = Fe(OH)(Edta)-3 + log_k 6.4 #95AKR/BOU + -analytic 64E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 - H+ + Nta-3 + H2O = Fe(OH)(Nta)- + log_k 14.6 #95AKR/BOU + -analytic 14.6E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 - H+ + Nta-3 + H2O = Fe(OH)(Nta)-2 + log_k -0.12 #95AKR/BOU + -analytic -12E-2 00E+0 00E+0 00E+0 00E+0 + +Fe+2 - H+ + H2O = Fe(OH)+ + log_k -9.25 #21RIB/BEG + delta_h 40.921 #kJ/mol 21RIB/BEG +# Enthalpy of formation: -335.204 kJ/mol + -analytic -20.80949E-1 00E+0 -21.37453E+2 00E+0 00E+0 + +Fe+3 - H+ + H2O = Fe(OH)+2 + log_k -2.15 #13LEM/BER + delta_h 38.8 #kJ/mol 13LEM/BER +# Enthalpy of formation: -297.086 kJ/mol + -analytic 46.47468E-1 00E+0 -20.26665E+2 00E+0 00E+0 + +Fe+2 - 2 H+ + 2 H2O = Fe(OH)2 + log_k -20.84 #21RIB/BEG + delta_h 114.131 #kJ/mol 21RIB/BEG +# Enthalpy of formation: -547.824 kJ/mol + -analytic -84.51071E-2 00E+0 -59.61477E+2 00E+0 00E+0 + +Fe+3 - 2 H+ + Cit-3 + 2 H2O = Fe(OH)2(Cit)-2 + log_k 2.9 #95AKR/BOU + -analytic 29E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 - 2 H+ + Edta-4 + 2 H2O = Fe(OH)2(Edta)-3 + log_k 10.06 #95AKR/BOU + -analytic 10.06E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 - 2 H+ + Edta-4 + 2 H2O = Fe(OH)2(Edta)-4 + log_k -4.4 #95AKR/BOU + -analytic -44E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 - 2 H+ + Nta-3 + 2 H2O = Fe(OH)2(Nta)-2 + log_k 6 #95AKR/BOU + -analytic 60E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 - 2 H+ + 2 H2O = Fe(OH)2+ + log_k -4.8 #13LEM/BER + delta_h 71.546 #kJ/mol 76BAE/MES in 98CHI +# Enthalpy of formation: -550.170 kJ/mol + -analytic 77.34321E-1 00E+0 -37.37108E+2 00E+0 00E+0 + +Fe+3 - 3 H+ + 3 H2O = Fe(OH)3 + log_k -12.56 #95BOU in 04CHI + delta_h 103.764 #kJ/mol 95BOU in 04CHI +# Enthalpy of formation: -803.782 kJ/mol + -analytic 56.18672E-1 00E+0 -54.19971E+2 00E+0 00E+0 + +Fe+2 - 3 H+ + 3 H2O = Fe(OH)3- + log_k -33.84 #21RIB/BEG + delta_h 162.231 #kJ/mol 21RIB/BEG +# Enthalpy of formation: -785.554 kJ/mol + -analytic -54.18349E-1 00E+0 -84.73915E+2 00E+0 00E+0 + +Fe+3 - 3 H+ + Edta-4 + 3 H2O = Fe(OH)3(Edta)-4 + log_k -2.24 #51SCH/HEL + -analytic -22.4E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 - 4 H+ + 4 H2O = Fe(OH)4- + log_k -21.6 #76BAE/MES in 04CHI + delta_h 133.471 #kJ/mol 95BOU in 04CHI +# Enthalpy of formation: -1059.905 kJ/mol + -analytic 17.83115E-1 00E+0 -69.71676E+2 00E+0 00E+0 + +Fe+2 - 4 H+ + 4 H2O = Fe(OH)4-2 + log_k -46.32 #21RIB/BEG from 56GAY/WOO + delta_h 160.75 #kJ/mol +# Enthalpy of formation: -1072.864 kJ/mol + -analytic -18.15781E+0 00E+0 -83.96557E+2 00E+0 00E+0 + +Fe+3 - H+ + CO3-2 + H2O = Fe(OH)CO3 + log_k 10.7 #05GRI + -analytic 10.7E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + Ox-2 = Fe(Ox) + log_k 4.1 #95AKR/BOU + -analytic 41E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + Ox-2 = Fe(Ox)+ + log_k 9.53 #95AKR/BOU + -analytic 95.3E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + 2 Ox-2 = Fe(Ox)2- + log_k 15.75 #95AKR/BOU + -analytic 15.75E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + 2 Ox-2 = Fe(Ox)2-2 + log_k 6.2 #95AKR/BOU + -analytic 62E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + 3 Ox-2 = Fe(Ox)3-3 + log_k 20.2 #95AKR/BOU + -analytic 20.2E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + 3 Ox-2 = Fe(Ox)3-4 + log_k 5.22 #95AKR/BOU + -analytic 52.2E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 - 2 H+ + H2(PO4)- = Fe(PO4) + log_k 3.44 #Recalculated from 07IUL/CIA in 20LEM/PAL + -analytic 34.4E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + SeO3-2 = Fe(SeO3)+ + log_k 11.15 #05OLI/NOL + -analytic 11.15E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + SeO4-2 = Fe(SeO4) + log_k 2.71 #01SEB/POT2 + delta_h -12.425 #kJ/mol +# Enthalpy of formation: -706.220 kJ/mol + -analytic 53.32334E-2 00E+0 64.90029E+1 00E+0 00E+0 + +Fe+2 + SO4-2 = Fe(SO4) + log_k 2.44 #13LEM/BER + delta_h 8.4 #kJ/mol 13LEM/BER +# Enthalpy of formation: -991.235 kJ/mol + -analytic 39.11617E-1 00E+0 -43.87626E+1 00E+0 00E+0 + +Fe+3 + SO4-2 = Fe(SO4)+ + log_k 4.25 #13LEM/BER + delta_h 26 #kJ/mol Suggested but not selected 13LEM/BER +# Enthalpy of formation: -933.396 kJ/mol + -analytic 88.05004E-1 00E+0 -13.58075E+2 00E+0 00E+0 + +Fe+3 + 2 SO4-2 = Fe(SO4)2- + log_k 6.22 #91PEA/BER in 98CHI + -analytic 62.2E-1 00E+0 00E+0 00E+0 00E+0 + +2 Fe+3 - 2 H+ + 2 Cit-3 + 2 H2O = Fe2(Cit)2(OH)2-2 + log_k 17 #95AKR/BOU + -analytic 17E+0 00E+0 00E+0 00E+0 00E+0 + +2 Fe+3 - 2 H+ + 2 Edta-4 + 2 H2O = Fe2(OH)2(Edta)2-4 + log_k 40 #95AKR/BOU + -analytic 40E+0 00E+0 00E+0 00E+0 00E+0 + +2 Fe+3 - 2 H+ + 2 H2O = Fe2(OH)2+4 + log_k -2.82 #13LEM/BER + delta_h 44 #kJ/mol 13LEM/BER +# Enthalpy of formation: -627.772 kJ/mol + -analytic 48.88469E-1 00E+0 -22.9828E+2 00E+0 00E+0 + +3 Fe+3 - 4 H+ + 4 H2O = Fe3(OH)4+5 + log_k -6.3 #76BAE/MES in 98CHI + delta_h 59.831 #kJ/mol 76BAE/MES +# Enthalpy of formation: -1233.657 kJ/mol + -analytic 41.81941E-1 00E+0 -31.25191E+2 00E+0 00E+0 + +Fe+3 + Br- = FeBr+2 + log_k 0.7 #88CHA/NEW + -analytic 70E-2 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + 2 Br- = FeBr2+ + log_k 0.9 #96FAL/REA + -analytic 90E-2 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + Cl- = FeCl+ + log_k 1 #Suggested in 13LEM/BER + delta_h 21.551 #kJ/mol 13LEM/BER +# Enthalpy of formation: -235.824 kJ/mol + -analytic 47.75573E-1 00E+0 -11.25687E+2 00E+0 00E+0 + +Fe+3 + Cl- = FeCl+2 + log_k 1.52 #13LEM/BER + delta_h 22.5 #kJ/mol 13LEM/BER +# Enthalpy of formation: -194.636 kJ/mol + -analytic 54.61831E-1 00E+0 -11.75257E+2 00E+0 00E+0 + +Fe+3 + 2 Cl- = FeCl2+ + log_k 2.22 #13LEM/BER + -analytic 22.2E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + 3 Cl- = FeCl3 + log_k 1.02 #13LEM/BER + -analytic 10.2E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + 4 Cl- = FeCl4- + log_k -0.98 #13LEM/BER + -analytic -98E-2 00E+0 00E+0 00E+0 00E+0 + +Fe+2 + CO3-2 = FeCO3 + log_k 5.27 #13LEM/BER + delta_h -3.367 #kJ/mol +# Enthalpy of formation: -768.892 kJ/mol + -analytic 46.80127E-1 00E+0 17.58707E+1 00E+0 00E+0 + +Fe+3 + CrO4-2 = FeCrO4+ + log_k 7.8 #96BAR/PAL + delta_h 19.1 #kJ/mol 96BAR/PAL +# Enthalpy of formation: -909.956 kJ/mol + -analytic 11.14618E+0 00E+0 -99.76625E+1 00E+0 00E+0 + +Fe+2 + F- = FeF+ + log_k 1.7 #13LEM/BER + -analytic 17E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + F- = FeF+2 + log_k 6.09 #20LEM/PAL + delta_h 12.8 #kJ/mol 20LEM/PAL +# Enthalpy of formation: -372.606 kJ/mol + -analytic 83.32464E-1 00E+0 -66.85906E+1 00E+0 00E+0 + +Fe+3 + 2 F- = FeF2+ + log_k 10.41 #Calculated in 20LEM/PAL + delta_h 22 #kJ/mol Calculated in 20LEM/PAL +# Enthalpy of formation: -698.756 kJ/mol + -analytic 14.26423E+0 00E+0 -11.4914E+2 00E+0 00E+0 + +Fe+3 + 2 H+ + Pyrophos-4 = FeH2Pyrophos+ + log_k 26 #88CHA/NEW + -analytic 26E+0 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + I- = FeI+2 + log_k 2.1 #96BOU2 + -analytic 21E-1 00E+0 00E+0 00E+0 00E+0 + +Fe+3 + S2O3-2 = FeS2O3+ + log_k 3.9 #82SCH + -analytic 39E-1 00E+0 00E+0 00E+0 00E+0 + +H+ + Adipate-2 = H(Adipate)- + log_k 5.45 #04MAR/SMI + -analytic 54.5E-1 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ + H3(AsO3) = H(AsO3)-2 + log_k -23.62 #79IVA/VOR + -analytic -23.62E+0 00E+0 00E+0 00E+0 00E+0 + +H+ + AsO4-3 = H(AsO4)-2 + log_k 11.6 + delta_h -18.2 #kJ/mol # Enthalpy of formation: -906.340 kJ/mol 09RAN/FUG - -analytic 84.11497E-1 00.00000E+0 95.06522E+1 00.00000E+0 00.00000E+0 + -analytic 84.11497E-1 00E+0 95.06522E+1 00E+0 00E+0 -+1.000H+ +1.000Cit-3 = H(Cit)-2 - log_k +6.36 #05HUM/AND - delta_h +3.300 #kJ/mol 05HUM/AND -# Enthalpy of formation: -1516.620 kJ/mol - -analytic 69.38135E-1 00.00000E+0 -17.23710E+1 00.00000E+0 00.00000E+0 +H+ + Cit-3 = H(Cit)-2 + log_k 6.36 #05HUM/AND + delta_h 3.3 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1516.620 kJ/mol + -analytic 69.38135E-1 00E+0 -17.2371E+1 00E+0 00E+0 -+1.000H+ +1.000Edta-4 = H(Edta)-3 - log_k +11.24 #05HUM/AND - delta_h -19.800 #kJ/mol 05HUM/AND -# Enthalpy of formation: -1724.600 kJ/mol - -analytic 77.71189E-1 00.00000E+0 10.34226E+2 00.00000E+0 00.00000E+0 +H+ + Edta-4 = H(Edta)-3 + log_k 11.24 #05HUM/AND + delta_h -19.8 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1724.600 kJ/mol + -analytic 77.71189E-1 00E+0 10.34226E+2 00E+0 00E+0 -+1.000H+ +1.000Malonate-2 = H(Malonate)- - log_k +5.71 #13GRI/CAM - -analytic 57.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +H+ + Malonate-2 = H(Malonate)- + log_k 5.71 #13GRI/CAM + -analytic 57.1E-1 00E+0 00E+0 00E+0 00E+0 -+1.000H+ +1.000Nta-3 = H(Nta)-2 - log_k +10.28 #95AKR/BOU - -analytic 10.28000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +H+ + Nta-3 = H(Nta)-2 + log_k 10.28 #95AKR/BOU + -analytic 10.28E+0 00E+0 00E+0 00E+0 00E+0 -+1.000H+ +1.000Ox-2 = H(Ox)- - log_k +4.25 #05HUM/AND - delta_h +7.300 #kJ/mol 05HUM/AND -# Enthalpy of formation: -823.360 kJ/mol - -analytic 55.28905E-1 00.00000E+0 -38.13056E+1 00.00000E+0 00.00000E+0 +H+ + Ox-2 = H(Ox)- + log_k 4.25 #05HUM/AND + delta_h 7.3 #kJ/mol 05HUM/AND +# Enthalpy of formation: -823.360 kJ/mol + -analytic 55.28905E-1 00E+0 -38.13056E+1 00E+0 00E+0 -+1.000H+ +1.000Pyrophos-4 = H(Pyrophos)-3 - log_k +9.40 #92GRE/FUG - -analytic 94.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +H+ + Pyrophos-4 = H(Pyrophos)-3 + log_k 9.4 #92GRE/FUG + -analytic 94E-1 00E+0 00E+0 00E+0 00E+0 -+1.000H+ +1.000S2O3-2 = H(S2O3)- - log_k +1.72 #04CHI - delta_h +8.253 #kJ/mol -# Enthalpy of formation: -644.033 kJ/mol - -analytic 31.65864E-1 00.00000E+0 -43.10842E+1 00.00000E+0 00.00000E+0 +H+ + S2O3-2 = H(S2O3)- + log_k 1.72 #04CHI + delta_h 8.253 #kJ/mol +# Enthalpy of formation: -644.033 kJ/mol + -analytic 31.65864E-1 00E+0 -43.10842E+1 00E+0 00E+0 -+1.000H+ +1.000SeO3-2 = H(SeO3)- - log_k +8.36 #05OLI/NOL - delta_h -5.170 #kJ/mol +H+ + SeO3-2 = H(SeO3)- + log_k 8.36 #05OLI/NOL + delta_h -5.17 #kJ/mol # Enthalpy of formation: -512.330 kJ/mol 05OLI/NOL - -analytic 74.54255E-1 00.00000E+0 27.00479E+1 00.00000E+0 00.00000E+0 + -analytic 74.54255E-1 00E+0 27.00479E+1 00E+0 00E+0 -+1.000H+ +1.000SeO4-2 = H(SeO4)- - log_k +1.75 #05OLI/NOL - delta_h +20.800 #kJ/mol 05OLI/NOL -# Enthalpy of formation: -582.700 kJ/mol - -analytic 53.94004E-1 00.00000E+0 -10.86460E+2 00.00000E+0 00.00000E+0 +H+ + SeO4-2 = H(SeO4)- + log_k 1.75 #05OLI/NOL + delta_h 20.8 #kJ/mol 05OLI/NOL +# Enthalpy of formation: -582.700 kJ/mol + -analytic 53.94004E-1 00E+0 -10.8646E+2 00E+0 00E+0 -+1.000H+ +1.000SO3-2 = H(SO3)- - log_k +7.17 #85GOL/PAR - delta_h +3.668 #kJ/mol -# Enthalpy of formation: -627.392 kJ/mol - -analytic 78.12606E-1 00.00000E+0 -19.15930E+1 00.00000E+0 00.00000E+0 +H+ + SO3-2 = H(SO3)- + log_k 7.17 #85GOL/PAR + delta_h 3.668 #kJ/mol +# Enthalpy of formation: -627.392 kJ/mol + -analytic 78.12606E-1 00E+0 -19.1593E+1 00E+0 00E+0 -+1.000H+ +1.000SO4-2 = H(SO4)- - log_k +1.98 - delta_h +22.440 #kJ/mol +H+ + SO4-2 = H(SO4)- + log_k 1.98 + delta_h 22.44 #kJ/mol # Enthalpy of formation: -886.900 kJ/mol 92GRE/FUG - -analytic 59.11319E-1 00.00000E+0 -11.72123E+2 00.00000E+0 00.00000E+0 + -analytic 59.11319E-1 00E+0 -11.72123E+2 00E+0 00E+0 -+1.000H+ +1.000Suberate-2 = H(Suberate)- - log_k +5.40 #31GAN/ING - -analytic 54.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +H+ + Suberate-2 = H(Suberate)- + log_k 5.4 #31GAN/ING + -analytic 54E-1 00E+0 00E+0 00E+0 00E+0 -+1.000H+ +1.000Succinat-2 = H(Succinat)- - log_k +5.71 #13GRI/CAM - -analytic 57.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +H+ + Succinat-2 = H(Succinat)- + log_k 5.71 #13GRI/CAM + -analytic 57.1E-1 00E+0 00E+0 00E+0 00E+0 -+2.000H+ +1.000Adipate-2 = H2(Adipate) - log_k +9.89 #04MAR/SMI - -analytic 98.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 H+ + Adipate-2 = H2(Adipate) + log_k 9.89 #04MAR/SMI + -analytic 98.9E-1 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000H3(AsO3) = H2(AsO3)- - log_k -9.22 - delta_h +27.410 #kJ/mol +- H+ + H3(AsO3) = H2(AsO3)- + log_k -9.22 + delta_h 27.41 #kJ/mol # Enthalpy of formation: -714.790 kJ/mol 10RAN/FUG - -analytic -44.17974E-1 00.00000E+0 -14.31724E+2 00.00000E+0 00.00000E+0 + -analytic -44.17974E-1 00E+0 -14.31724E+2 00E+0 00E+0 -+2.000H+ +1.000AsO4-3 = H2(AsO4)- - log_k +18.37 - delta_h -21.420 #kJ/mol +2 H+ + AsO4-3 = H2(AsO4)- + log_k 18.37 + delta_h -21.42 #kJ/mol # Enthalpy of formation: -909.560 kJ/mol 09RAN/FUG - -analytic 14.61738E+0 00.00000E+0 11.18845E+2 00.00000E+0 00.00000E+0 + -analytic 14.61738E+0 00E+0 11.18845E+2 00E+0 00E+0 -+2.000H+ +1.000Cit-3 = H2(Cit)- - log_k +11.14 #05HUM/AND - delta_h +0.900 #kJ/mol 05HUM/AND -# Enthalpy of formation: -1519.020 kJ/mol - -analytic 11.29767E+0 00.00000E+0 -47.01027E+0 00.00000E+0 00.00000E+0 +2 H+ + Cit-3 = H2(Cit)- + log_k 11.14 #05HUM/AND + delta_h 0.9 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1519.020 kJ/mol + -analytic 11.29767E+0 00E+0 -47.01027E+0 00E+0 00E+0 -+2.000H+ +1.000Edta-4 = H2(Edta)-2 - log_k +18.04 #05HUM/AND - delta_h -35.000 #kJ/mol 05HUM/AND -# Enthalpy of formation: -1739.800 kJ/mol - -analytic 11.90826E+0 00.00000E+0 18.28177E+2 00.00000E+0 00.00000E+0 +2 H+ + Edta-4 = H2(Edta)-2 + log_k 18.04 #05HUM/AND + delta_h -35 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1739.800 kJ/mol + -analytic 11.90826E+0 00E+0 18.28177E+2 00E+0 00E+0 -+2.000H+ +1.000Malonate-2 = H2(Malonate) - log_k +8.67 #13GRI/CAM - -analytic 86.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 H+ + Malonate-2 = H2(Malonate) + log_k 8.67 #13GRI/CAM + -analytic 86.7E-1 00E+0 00E+0 00E+0 00E+0 -+2.000H+ +1.000Nta-3 = H2(Nta)- - log_k +13.20 #95AKR/BOU - -analytic 13.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 H+ + Nta-3 = H2(Nta)- + log_k 13.2 #95AKR/BOU + -analytic 13.2E+0 00E+0 00E+0 00E+0 00E+0 -+2.000H+ +1.000Ox-2 = H2(Ox) - log_k +5.65 #05HUM/AND - delta_h +10.600 #kJ/mol 05HUM/AND -# Enthalpy of formation: -820.060 kJ/mol - -analytic 75.07040E-1 00.00000E+0 -55.36766E+1 00.00000E+0 00.00000E+0 +2 H+ + Ox-2 = H2(Ox) + log_k 5.65 #05HUM/AND + delta_h 10.6 #kJ/mol 05HUM/AND +# Enthalpy of formation: -820.060 kJ/mol + -analytic 75.0704E-1 00E+0 -55.36766E+1 00E+0 00E+0 -+2.000H+ +1.000Pyrophos-4 = H2(Pyrophos)-2 - log_k +16.05 #92GRE/FUG - -analytic 16.05000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 H+ + Pyrophos-4 = H2(Pyrophos)-2 + log_k 16.05 #92GRE/FUG + -analytic 16.05E+0 00E+0 00E+0 00E+0 00E+0 -+2.000H+ +1.000S2O3-2 = H2(S2O3) - log_k +2.32 #04CHI - delta_h +22.917 #kJ/mol -# Enthalpy of formation: -629.369 kJ/mol - -analytic 63.34886E-1 00.00000E+0 -11.97038E+2 00.00000E+0 00.00000E+0 +2 H+ + S2O3-2 = H2(S2O3) + log_k 2.32 #04CHI + delta_h 22.917 #kJ/mol +# Enthalpy of formation: -629.369 kJ/mol + -analytic 63.34886E-1 00E+0 -11.97038E+2 00E+0 00E+0 -+2.000H+ +1.000SeO3-2 = H2(SeO3) - log_k +11.00 #05OLI/NOL - delta_h +1.840 #kJ/mol +2 H+ + SeO3-2 = H2(SeO3) + log_k 11 #05OLI/NOL + delta_h 1.84 #kJ/mol # Enthalpy of formation: -505.320 kJ/mol 05OLI/NOL - -analytic 11.32235E+0 00.00000E+0 -96.10989E+0 00.00000E+0 00.00000E+0 + -analytic 11.32235E+0 00E+0 -96.10989E+0 00E+0 00E+0 --2.000H+ +1.000H4(SiO4) = H2(SiO4)-2 - log_k -23.14 #92GRE/FUG - delta_h +75.000 #kJ/mol 92GRE/FUG -# Enthalpy of formation: -1386.194 kJ/mol - -analytic -10.00056E+0 00.00000E+0 -39.17523E+2 00.00000E+0 00.00000E+0 +- 2 H+ + H4(SiO4) = H2(SiO4)-2 + log_k -23.14 #92GRE/FUG + delta_h 75 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -1386.194 kJ/mol + -analytic -10.00056E+0 00E+0 -39.17523E+2 00E+0 00E+0 -+2.000H+ +1.000SO3-2 = H2(SO3) - log_k +9.03 #85GOL/PAR - delta_h +21.453 #kJ/mol -# Enthalpy of formation: -609.607 kJ/mol - -analytic 12.78840E+0 00.00000E+0 -11.20568E+2 00.00000E+0 00.00000E+0 +2 H+ + SO3-2 = H2(SO3) + log_k 9.03 #85GOL/PAR + delta_h 21.453 #kJ/mol +# Enthalpy of formation: -609.607 kJ/mol + -analytic 12.7884E+0 00E+0 -11.20568E+2 00E+0 00E+0 -+2.000H+ +1.000Suberate-2 = H2(Suberate) - log_k +9.92 #31GAN/ING - -analytic 99.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 H+ + Suberate-2 = H2(Suberate) + log_k 9.92 #31GAN/ING + -analytic 99.2E-1 00E+0 00E+0 00E+0 00E+0 -+2.000H+ +1.000Succinat-2 = H2(Succinat) - log_k +9.95 #13GRI/CAM - -analytic 99.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 H+ + Succinat-2 = H2(Succinat) + log_k 9.95 #13GRI/CAM + -analytic 99.5E-1 00E+0 00E+0 00E+0 00E+0 -+2.000H+ +1.000CrO4-2 = H2CrO4 - log_k +6.32 #76BAE/MES, 04CHI - delta_h +39.596 #kJ/mol -# Enthalpy of formation: -839.404 kJ/mol - -analytic 13.25692E+0 00.00000E+0 -20.68243E+2 00.00000E+0 00.00000E+0 +2 H+ + CrO4-2 = H2CrO4 + log_k 6.32 #76BAE/MES, 04CHI + delta_h 39.596 #kJ/mol +# Enthalpy of formation: -839.404 kJ/mol + -analytic 13.25692E+0 00E+0 -20.68243E+2 00E+0 00E+0 -+2.000H+ +1.000H2(PO4)- +1.000CrO4-2 -1.000H2O = H2CrPO7- - log_k +9.02 - delta_h -51.490 #kJ/mol +2 H+ + H2(PO4)- + CrO4-2 - H2O = H2CrPO7- + log_k 9.02 + delta_h -51.49 #kJ/mol # Enthalpy of formation: -1947.260 kJ/mol 76DEL/HAL - -analytic -66.07802E-5 00.00000E+0 26.89510E+2 00.00000E+0 00.00000E+0 + -analytic -66.07802E-5 00E+0 26.8951E+2 00E+0 00E+0 -+1.000H+ +1.000HGlu- = H2Glu - log_k +3.90 #98ZUB/CAS - -analytic 39.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +H+ + HGlu- = H2Glu + log_k 3.9 #98ZUB/CAS + -analytic 39E-1 00E+0 00E+0 00E+0 00E+0 -+1.000H+ +1.000HIsa- = H2Isa - log_k +4.00 #05HUM/AND - -analytic 40.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +H+ + HIsa- = H2Isa + log_k 4 #05HUM/AND + -analytic 40E-1 00E+0 00E+0 00E+0 00E+0 -+2.000H+ +1.000MoO4-2 = H2MoO4 - log_k +8.15 #68SAS/SIL, 64AVE/ANA; - -analytic 81.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 H+ + MoO4-2 = H2MoO4 + log_k 8.15 #68SAS/SIL, 64AVE/ANA + -analytic 81.5E-1 00E+0 00E+0 00E+0 00E+0 -+2.000H+ +1.000Phthalat-2 = H2Phthalat - log_k +8.32 #10RIC/SAB1 - -analytic 83.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 H+ + Phthalat-2 = H2Phthalat + log_k 8.32 #10RIC/SAB1 + -analytic 83.2E-1 00E+0 00E+0 00E+0 00E+0 -+1.000H+ +1.000HS- = H2S - log_k +6.99 - delta_h -22.300 #kJ/mol +H+ + HS- = H2S + log_k 6.99 + delta_h -22.3 #kJ/mol # Enthalpy of formation: -38.600 kJ/mol 89COX/WAG - -analytic 30.83208E-1 00.00000E+0 11.64810E+2 00.00000E+0 00.00000E+0 + -analytic 30.83208E-1 00E+0 11.6481E+2 00E+0 00E+0 -+2.000H+ +1.000S2O4-2 = H2S2O4 - log_k +2.80 #04CHI - delta_h +20.193 #kJ/mol -# Enthalpy of formation: -733.307 kJ/mol - -analytic 63.37662E-1 00.00000E+0 -10.54754E+2 00.00000E+0 00.00000E+0 +2 H+ + S2O4-2 = H2S2O4 + log_k 2.8 #04CHI + delta_h 20.193 #kJ/mol +# Enthalpy of formation: -733.307 kJ/mol + -analytic 63.37662E-1 00E+0 -10.54754E+2 00E+0 00E+0 -+1.000H+ +1.000HSe- = H2Se - log_k +3.85 - delta_h +0.000 #kJ/mol +H+ + HSe- = H2Se + log_k 3.85 + delta_h 0 #kJ/mol # Enthalpy of formation: +14.300 kJ/mol 05OLI/NOL - -analytic 38.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 38.5E-1 00E+0 00E+0 00E+0 00E+0 -+3.000H+ +1.000AsO4-3 = H3(AsO4) - log_k +20.63 - delta_h -14.360 #kJ/mol +3 H+ + AsO4-3 = H3(AsO4) + log_k 20.63 + delta_h -14.36 #kJ/mol # Enthalpy of formation: -902.500 kJ/mol 09RAN/FUG - -analytic 18.11424E+0 00.00000E+0 75.00750E+1 00.00000E+0 00.00000E+0 + -analytic 18.11424E+0 00E+0 75.0075E+1 00E+0 00E+0 -+3.000H+ +1.000Cit-3 = H3(Cit) - log_k +14.27 #05HUM/AND - delta_h -3.600 #kJ/mol 05HUM/AND -# Enthalpy of formation: -1523.520 kJ/mol - -analytic 13.63931E+0 00.00000E+0 18.80411E+1 00.00000E+0 00.00000E+0 +3 H+ + Cit-3 = H3(Cit) + log_k 14.27 #05HUM/AND + delta_h -3.6 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1523.520 kJ/mol + -analytic 13.63931E+0 00E+0 18.80411E+1 00E+0 00E+0 -+3.000H+ +1.000Edta-4 = H3(Edta)- - log_k +21.19 #05HUM/AND - delta_h -27.900 #kJ/mol 05HUM/AND -# Enthalpy of formation: -1732.700 kJ/mol - -analytic 16.30213E+0 00.00000E+0 14.57318E+2 00.00000E+0 00.00000E+0 +3 H+ + Edta-4 = H3(Edta)- + log_k 21.19 #05HUM/AND + delta_h -27.9 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1732.700 kJ/mol + -analytic 16.30213E+0 00E+0 14.57318E+2 00E+0 00E+0 -+3.000H+ +1.000Nta-3 = H3(Nta) - log_k +15.33 #95AKR/BOU - -analytic 15.33000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +3 H+ + Nta-3 = H3(Nta) + log_k 15.33 #95AKR/BOU + -analytic 15.33E+0 00E+0 00E+0 00E+0 00E+0 -+1.000H+ +1.000H2(PO4)- = H3(PO4) - log_k +2.14 #92GRE/FUG - delta_h +8.480 #kJ/mol 92GRE/FUG -# Enthalpy of formation: -1294.120 kJ/mol - -analytic 36.25632E-1 00.00000E+0 -44.29412E+1 00.00000E+0 00.00000E+0 +H+ + H2(PO4)- = H3(PO4) + log_k 2.14 #92GRE/FUG + delta_h 8.48 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -1294.120 kJ/mol + -analytic 36.25632E-1 00E+0 -44.29412E+1 00E+0 00E+0 -+3.000H+ +1.000Pyrophos-4 = H3(Pyrophos)- - log_k +18.30 #92GRE/FUG - -analytic 18.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +3 H+ + Pyrophos-4 = H3(Pyrophos)- + log_k 18.3 #92GRE/FUG + -analytic 18.3E+0 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000H4(SiO4) = H3(SiO4)- - log_k -9.84 #06BLA/PIA; Uncertainty to include available data. - delta_h +29.363 #kJ/mol -# Enthalpy of formation: -1431.831 kJ/mol - -analytic -46.95823E-1 00.00000E+0 -15.33736E+2 00.00000E+0 00.00000E+0 +- H+ + H4(SiO4) = H3(SiO4)- + log_k -9.84 #06BLA/PIA; Uncertainty to include available data. + delta_h 29.363 #kJ/mol +# Enthalpy of formation: -1431.831 kJ/mol + -analytic -46.95823E-1 00E+0 -15.33736E+2 00E+0 00E+0 -+4.000H+ +1.000Edta-4 = H4(Edta) - log_k +23.42 #05HUM/AND - delta_h -26.000 #kJ/mol 05HUM/AND -# Enthalpy of formation: -1730.800 kJ/mol - -analytic 18.86500E+0 00.00000E+0 13.58075E+2 00.00000E+0 00.00000E+0 +4 H+ + Edta-4 = H4(Edta) + log_k 23.42 #05HUM/AND + delta_h -26 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1730.800 kJ/mol + -analytic 18.865E+0 00E+0 13.58075E+2 00E+0 00E+0 -+4.000H+ +1.000Nta-3 = H4(Nta)+ - log_k +16.13 #95AKR/BOU - -analytic 16.13000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +4 H+ + Nta-3 = H4(Nta)+ + log_k 16.13 #95AKR/BOU + -analytic 16.13E+0 00E+0 00E+0 00E+0 00E+0 -+4.000H+ +1.000Pyrophos-4 = H4(Pyrophos) - log_k +19.30 #92GRE/FUG +4 H+ + Pyrophos-4 = H4(Pyrophos) + log_k 19.3 #92GRE/FUG # Enthalpy of formation: -2280.210 kJ/mol 92GRE/FUG - -analytic 19.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 19.3E+0 00E+0 00E+0 00E+0 00E+0 -+5.000H+ +1.000Edta-4 = H5(Edta)+ - log_k +24.72 #05HUM/AND - -analytic 24.72000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +5 H+ + Edta-4 = H5(Edta)+ + log_k 24.72 #05HUM/AND + -analytic 24.72E+0 00E+0 00E+0 00E+0 00E+0 -+6.000H+ +1.000Edta-4 = H6(Edta)+2 - log_k +24.22 #05HUM/AND - -analytic 24.22000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +6 H+ + Edta-4 = H6(Edta)+2 + log_k 24.22 #05HUM/AND + -analytic 24.22E+0 00E+0 00E+0 00E+0 00E+0 -+1.000H+ +1.000Acetate- = HAcetate - log_k +4.76 - delta_h +0.250 #kJ/mol +H+ + Acetate- = HAcetate + log_k 4.76 + delta_h 0.25 #kJ/mol # Enthalpy of formation: -485.760 kJ/mol 82WAG/EVA - -analytic 48.03798E-1 00.00000E+0 -13.05841E+0 00.00000E+0 00.00000E+0 + -analytic 48.03798E-1 00E+0 -13.05841E+0 00E+0 00E+0 -+1.000H+ +2.000B(OH)4- -4.000H2O = HB2O4- - log_k +9.17 #97CRO - -analytic 91.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +H+ + 2 B(OH)4- - 4 H2O = HB2O4- + log_k 9.17 #97CRO + -analytic 91.7E-1 00E+0 00E+0 00E+0 00E+0 -+1.000H+ +1.000CO3-2 = HCO3- - log_k +10.33 - delta_h -14.700 #kJ/mol +H+ + CO3-2 = HCO3- + log_k 10.33 + delta_h -14.7 #kJ/mol # Enthalpy of formation: -689.930 kJ/mol 89COX/WAG - -analytic 77.54671E-1 00.00000E+0 76.78345E+1 00.00000E+0 00.00000E+0 + -analytic 77.54671E-1 00E+0 76.78345E+1 00E+0 00E+0 -+1.000H+ +1.000CrO4-2 = HCrO4- - log_k +6.52 #87PAL/WES, 04CHI - delta_h +6.016 #kJ/mol -# Enthalpy of formation: -872.985 kJ/mol - -analytic 75.73958E-1 00.00000E+0 -31.42376E+1 00.00000E+0 00.00000E+0 +H+ + CrO4-2 = HCrO4- + log_k 6.52 #87PAL/WES, 04CHI + delta_h 6.016 #kJ/mol +# Enthalpy of formation: -872.985 kJ/mol + -analytic 75.73958E-1 00E+0 -31.42376E+1 00E+0 00E+0 -+1.000H+ +1.000H2(PO4)- +1.000CrO4-2 -1.000H2O = HCrPO7-2 - log_k +6.37 - delta_h -36.390 #kJ/mol +H+ + H2(PO4)- + CrO4-2 - H2O = HCrPO7-2 + log_k 6.37 + delta_h -36.39 #kJ/mol # Enthalpy of formation: -1932.160 kJ/mol 76DEL/HEP - -analytic -52.54337E-4 00.00000E+0 19.00782E+2 00.00000E+0 00.00000E+0 + -analytic -52.54337E-4 00E+0 19.00782E+2 00E+0 00E+0 -+4.000CO3-2 +1.000Hf+4 = Hf(CO3)4-4 - log_k +42.90 #analogy with Zr - -analytic 42.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +4 CO3-2 + Hf+4 = Hf(CO3)4-4 + log_k 42.9 #analogy with Zr + -analytic 42.9E+0 00E+0 00E+0 00E+0 00E+0 -+2.000NO3- +1.000Hf+4 = Hf(NO3)2+2 - log_k +2.49 #65DES/KHO recalculated; Uncertainty to include available data. - -analytic 24.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 NO3- + Hf+4 = Hf(NO3)2+2 + log_k 2.49 #65DES/KHO recalculated; Uncertainty to include available data. + -analytic 24.9E-1 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000Hf+4 +1.000H2O = Hf(OH)+3 - log_k -0.20 #01RAI/XIA; Uncertainty to include available data. - -analytic -20.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- H+ + Hf+4 + H2O = Hf(OH)+3 + log_k -0.2 #01RAI/XIA; Uncertainty to include available data. + -analytic -20E-2 00E+0 00E+0 00E+0 00E+0 --4.000H+ +1.000Hf+4 +4.000H2O = Hf(OH)4 - log_k -11.20 #01RAI/XIA; Uncertainty to include available data. - -analytic -11.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 4 H+ + Hf+4 + 4 H2O = Hf(OH)4 + log_k -11.2 #01RAI/XIA; Uncertainty to include available data. + -analytic -11.2E+0 00E+0 00E+0 00E+0 00E+0 --5.000H+ +1.000Hf+4 +5.000H2O = Hf(OH)5- - log_k -20.30 #01RAI/XIA - -analytic -20.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 5 H+ + Hf+4 + 5 H2O = Hf(OH)5- + log_k -20.3 #01RAI/XIA + -analytic -20.3E+0 00E+0 00E+0 00E+0 00E+0 --6.000H+ +1.000Hf+4 +6.000H2O = Hf(OH)6-2 - log_k -32.80 #01RAI/XIA - -analytic -32.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 6 H+ + Hf+4 + 6 H2O = Hf(OH)6-2 + log_k -32.8 #01RAI/XIA + -analytic -32.8E+0 00E+0 00E+0 00E+0 00E+0 -+2.000SO4-2 +1.000Hf+4 = Hf(SO4)2 - log_k +10.11 #65DES/KHO recalculated;Uncertainty to include available data. - -analytic 10.11000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 SO4-2 + Hf+4 = Hf(SO4)2 + log_k 10.11 #65DES/KHO recalculated;Uncertainty to include available data. + -analytic 10.11E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Br- +1.000Hf+4 = HfBr+3 - log_k +0.38 #67HAL/POH recalculated - -analytic 38.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Br- + Hf+4 = HfBr+3 + log_k 0.38 #67HAL/POH recalculated + -analytic 38E-2 00E+0 00E+0 00E+0 00E+0 -+1.000Cl- +1.000Hf+4 = HfCl+3 - log_k +2.20 #65DES/KHO and others recalculated - -analytic 22.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cl- + Hf+4 = HfCl+3 + log_k 2.2 #65DES/KHO and others recalculated + -analytic 22E-1 00E+0 00E+0 00E+0 00E+0 -+2.000Cl- +1.000Hf+4 = HfCl2+2 - log_k +2.05 #65DES/KHO and others recalculated; Uncertainty to include available data. - -analytic 20.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 Cl- + Hf+4 = HfCl2+2 + log_k 2.05 #65DES/KHO and others recalculated; Uncertainty to include available data. + -analytic 20.5E-1 00E+0 00E+0 00E+0 00E+0 -+1.000F- +1.000Hf+4 = HfF+3 - log_k +9.29 #05SAW/THA and others recalculated - -analytic 92.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +F- + Hf+4 = HfF+3 + log_k 9.29 #05SAW/THA and others recalculated + -analytic 92.9E-1 00E+0 00E+0 00E+0 00E+0 -+2.000F- +1.000Hf+4 = HfF2+2 - log_k +17.85 #05SAW/THA and others recalculated - -analytic 17.85000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 F- + Hf+4 = HfF2+2 + log_k 17.85 #05SAW/THA and others recalculated + -analytic 17.85E+0 00E+0 00E+0 00E+0 00E+0 -+3.000F- +1.000Hf+4 = HfF3+ - log_k +25.08 #05SAW/THA and others recalculated - -analytic 25.08000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +3 F- + Hf+4 = HfF3+ + log_k 25.08 #05SAW/THA and others recalculated + -analytic 25.08E+0 00E+0 00E+0 00E+0 00E+0 -+4.000F- +1.000Hf+4 = HfF4 - log_k +31.41 #05SAW/THA and others recalculated - -analytic 31.41000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +4 F- + Hf+4 = HfF4 + log_k 31.41 #05SAW/THA and others recalculated + -analytic 31.41E+0 00E+0 00E+0 00E+0 00E+0 -+1.000I- +1.000Hf+4 = HfI+3 - log_k +0.02 #67HAL/POH recalculated - -analytic 20.00000E-3 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +I- + Hf+4 = HfI+3 + log_k 0.02 #67HAL/POH recalculated + -analytic 20E-3 00E+0 00E+0 00E+0 00E+0 -+1.000NO3- +1.000Hf+4 = HfNO3+3 - log_k +1.85 #65DES/KHO 69HAL/SMO recalculated; Uncertainty to include available data. - -analytic 18.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +NO3- + Hf+4 = HfNO3+3 + log_k 1.85 #65DES/KHO 69HAL/SMO recalculated; Uncertainty to include available data. + -analytic 18.5E-1 00E+0 00E+0 00E+0 00E+0 -+1.000SO4-2 +1.000Hf+4 = HfSO4+2 - log_k +6.06 #65DES/KHO recalculated; Uncertainty to include available data. - -analytic 60.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +SO4-2 + Hf+4 = HfSO4+2 + log_k 6.06 #65DES/KHO recalculated; Uncertainty to include available data. + -analytic 60.6E-1 00E+0 00E+0 00E+0 00E+0 -+1.000CO3-2 +1.000Hg+2 = Hg(CO3) - log_k +11.47 #05POW/BRO - -analytic 11.47000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +CO3-2 + Hg+2 = Hg(CO3) + log_k 11.47 #05POW/BRO + -analytic 11.47E+0 00E+0 00E+0 00E+0 00E+0 -+1.000H+ +1.000CO3-2 +1.000Hg+2 = Hg(HCO3)+ - log_k +15.80 #05POW/BRO - -analytic 15.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +H+ + CO3-2 + Hg+2 = Hg(HCO3)+ + log_k 15.8 #05POW/BRO + -analytic 15.8E+0 00E+0 00E+0 00E+0 00E+0 -+1.000HS- +1.000Hg+2 = Hg(HS)+ - log_k +30.50 #99BEN/GIL - -analytic 30.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +HS- + Hg+2 = Hg(HS)+ + log_k 30.5 #99BEN/GIL + -analytic 30.5E+0 00E+0 00E+0 00E+0 00E+0 -+2.000HS- +1.000Hg+2 = Hg(HS)2 - log_k +37.50 #99BEN/GIL - -analytic 37.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 HS- + Hg+2 = Hg(HS)2 + log_k 37.5 #99BEN/GIL + -analytic 37.5E+0 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000H2O +1.000Hg+2 = Hg(OH)+ - log_k -3.40 #05POW/BRO - -analytic -34.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- H+ + H2O + Hg+2 = Hg(OH)+ + log_k -3.4 #05POW/BRO + -analytic -34E-1 00E+0 00E+0 00E+0 00E+0 --2.000H+ +2.000H2O +1.000Hg+2 = Hg(OH)2 - log_k -5.98 #05POW/BRO - delta_h +51.500 #kJ/mol 05POW/BRO -# Enthalpy of formation: -349.950 kJ/mol - -analytic 30.42413E-1 00.00000E+0 -26.90032E+2 00.00000E+0 00.00000E+0 +- 2 H+ + 2 H2O + Hg+2 = Hg(OH)2 + log_k -5.98 #05POW/BRO + delta_h 51.5 #kJ/mol 05POW/BRO +# Enthalpy of formation: -349.950 kJ/mol + -analytic 30.42413E-1 00E+0 -26.90032E+2 00E+0 00E+0 --3.000H+ +3.000H2O +1.000Hg+2 = Hg(OH)3- - log_k -21.10 #05POW/BRO - -analytic -21.10000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 3 H+ + 3 H2O + Hg+2 = Hg(OH)3- + log_k -21.1 #05POW/BRO + -analytic -21.1E+0 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000Cl- +1.000H2O +1.000Hg+2 = Hg(OH)Cl - log_k +4.27 #05POW/BRO - -analytic 42.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- H+ + Cl- + H2O + Hg+2 = Hg(OH)Cl + log_k 4.27 #05POW/BRO + -analytic 42.7E-1 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000CO3-2 +1.000H2O +1.000Hg+2 = Hg(OH)CO3- - log_k +5.33 #05POW/BRO - -analytic 53.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- H+ + CO3-2 + H2O + Hg+2 = Hg(OH)CO3- + log_k 5.33 #05POW/BRO + -analytic 53.3E-1 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000H2O +1.000Hg2+2 = Hg2(OH)+ - log_k -5.00 #76BAE/MES - -analytic -50.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- H+ + H2O + Hg2+2 = Hg2(OH)+ + log_k -5 #76BAE/MES + -analytic -50E-1 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000H2O +2.000Hg+2 = Hg2(OH)+3 - log_k -3.33 #76BAE/MES - -analytic -33.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- H+ + H2O + 2 Hg+2 = Hg2(OH)+3 + log_k -3.33 #76BAE/MES + -analytic -33.3E-1 00E+0 00E+0 00E+0 00E+0 --3.000H+ +3.000H2O +3.000Hg+2 = Hg3(OH)3+3 - log_k -6.42 #76BAE/MES - -analytic -64.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 3 H+ + 3 H2O + 3 Hg+2 = Hg3(OH)3+3 + log_k -6.42 #76BAE/MES + -analytic -64.2E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Cl- +1.000Hg+2 = HgCl+ - log_k +7.31 #05POW/BRO - delta_h -21.300 #kJ/mol 05POW/BRO -# Enthalpy of formation: -18.170 kJ/mol - -analytic 35.78400E-1 00.00000E+0 11.12576E+2 00.00000E+0 00.00000E+0 +Cl- + Hg+2 = HgCl+ + log_k 7.31 #05POW/BRO + delta_h -21.3 #kJ/mol 05POW/BRO +# Enthalpy of formation: -18.170 kJ/mol + -analytic 35.784E-1 00E+0 11.12576E+2 00E+0 00E+0 -+2.000Cl- +1.000Hg+2 = HgCl2 - log_k +14.00 #05POW/BRO - delta_h -49.100 #kJ/mol 05POW/BRO -# Enthalpy of formation: -213.050 kJ/mol - -analytic 53.98049E-1 00.00000E+0 25.64672E+2 00.00000E+0 00.00000E+0 +2 Cl- + Hg+2 = HgCl2 + log_k 14 #05POW/BRO + delta_h -49.1 #kJ/mol 05POW/BRO +# Enthalpy of formation: -213.050 kJ/mol + -analytic 53.98049E-1 00E+0 25.64672E+2 00E+0 00E+0 -+3.000Cl- +1.000Hg+2 = HgCl3- - log_k +14.93 #05POW/BRO - delta_h -48.600 #kJ/mol 05POW/BRO -# Enthalpy of formation: -379.630 kJ/mol - -analytic 64.15645E-1 00.00000E+0 25.38555E+2 00.00000E+0 00.00000E+0 +3 Cl- + Hg+2 = HgCl3- + log_k 14.93 #05POW/BRO + delta_h -48.6 #kJ/mol 05POW/BRO +# Enthalpy of formation: -379.630 kJ/mol + -analytic 64.15645E-1 00E+0 25.38555E+2 00E+0 00E+0 -+4.000Cl- +1.000Hg+2 = HgCl4-2 - log_k +15.54 #05POW/BRO - delta_h -59.100 #kJ/mol 05POW/BRO -# Enthalpy of formation: -557.210 kJ/mol - -analytic 51.86124E-1 00.00000E+0 30.87008E+2 00.00000E+0 00.00000E+0 +4 Cl- + Hg+2 = HgCl4-2 + log_k 15.54 #05POW/BRO + delta_h -59.1 #kJ/mol 05POW/BRO +# Enthalpy of formation: -557.210 kJ/mol + -analytic 51.86124E-1 00E+0 30.87008E+2 00E+0 00E+0 --1.000H+ +1.000H2(PO4)- +1.000Hg+2 = HgHPO4 - log_k +2.86 #05POW/BRO - -analytic 28.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- H+ + H2(PO4)- + Hg+2 = HgHPO4 + log_k 2.86 #05POW/BRO + -analytic 28.6E-1 00E+0 00E+0 00E+0 00E+0 --2.000H+ +1.000H2(PO4)- +1.000Hg+2 = HgPO4- - log_k -2.63 #05POW/BRO - -analytic -26.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 2 H+ + H2(PO4)- + Hg+2 = HgPO4- + log_k -2.63 #05POW/BRO + -analytic -26.3E-1 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000HS- +1.000Hg+2 = HgS - log_k +26.50 #99BEN/GIL - -analytic 26.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- H+ + HS- + Hg+2 = HgS + log_k 26.5 #99BEN/GIL + -analytic 26.5E+0 00E+0 00E+0 00E+0 00E+0 --1.000H+ +2.000HS- +1.000Hg+2 = HgS(HS)- - log_k +32.00 #99BEN/GIL - -analytic 32.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- H+ + 2 HS- + Hg+2 = HgS(HS)- + log_k 32 #99BEN/GIL + -analytic 32E+0 00E+0 00E+0 00E+0 00E+0 --2.000H+ +2.000HS- +1.000Hg+2 = HgS2-2 - log_k +23.50 #99BEN/GIL - -analytic 23.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 2 H+ + 2 HS- + Hg+2 = HgS2-2 + log_k 23.5 #99BEN/GIL + -analytic 23.5E+0 00E+0 00E+0 00E+0 00E+0 -+1.000SO4-2 +1.000Hg+2 = HgSO4 - log_k +2.68 #05POW/BRO - -analytic 26.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +SO4-2 + Hg+2 = HgSO4 + log_k 2.68 #05POW/BRO + -analytic 26.8E-1 00E+0 00E+0 00E+0 00E+0 -+1.000H+ +1.000MoO4-2 = HMoO4- - log_k +4.11 #68SAS/SIL, 64AVE/ANA - delta_h +58.576 #kJ/mol 68ARN/SZI in 76BAE/MES -# Enthalpy of formation: -938.424 kJ/mol - -analytic 14.37207E+0 00.00000E+0 -30.59638E+2 00.00000E+0 00.00000E+0 +H+ + MoO4-2 = HMoO4- + log_k 4.11 #68SAS/SIL, 64AVE/ANA + delta_h 58.576 #kJ/mol 68ARN/SZI in 76BAE/MES +# Enthalpy of formation: -938.424 kJ/mol + -analytic 14.37207E+0 00E+0 -30.59638E+2 00E+0 00E+0 -+1.000Ho+3 +1.000CO3-2 = Ho(CO3)+ - log_k +8.00 #95SPA/BRU - delta_h -55.444 #kJ/mol -# Enthalpy of formation: -1437.717 kJ/mol - -analytic -17.13372E-1 00.00000E+0 28.96042E+2 00.00000E+0 00.00000E+0 +Ho+3 + CO3-2 = Ho(CO3)+ + log_k 8 #95SPA/BRU + delta_h -55.444 #kJ/mol +# Enthalpy of formation: -1437.717 kJ/mol + -analytic -17.13372E-1 00E+0 28.96042E+2 00E+0 00E+0 -+1.000Ho+3 +2.000CO3-2 = Ho(CO3)2- - log_k +13.30 #95SPA/BRU - -analytic 13.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ho+3 + 2 CO3-2 = Ho(CO3)2- + log_k 13.3 #95SPA/BRU + -analytic 13.3E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Ho+3 +3.000CO3-2 = Ho(CO3)3-3 - log_k +14.80 #05VER/VIT2 - -analytic 14.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ho+3 + 3 CO3-2 = Ho(CO3)3-3 + log_k 14.8 #05VER/VIT2 + -analytic 14.8E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Ho+3 +1.000H2(PO4)- = Ho(H2PO4)+2 - log_k +2.30 #95SPA/BRU - -analytic 23.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ho+3 + H2(PO4)- = Ho(H2PO4)+2 + log_k 2.3 #95SPA/BRU + -analytic 23E-1 00E+0 00E+0 00E+0 00E+0 -+1.000H+ +1.000Ho+3 +1.000CO3-2 = Ho(HCO3)+2 - log_k +12.50 #95SPA/BRU - -analytic 12.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +H+ + Ho+3 + CO3-2 = Ho(HCO3)+2 + log_k 12.5 #95SPA/BRU + -analytic 12.5E+0 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000Ho+3 +1.000H2(PO4)- = Ho(HPO4)+ - log_k -1.41 #95SPA/BRU - -analytic -14.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- H+ + Ho+3 + H2(PO4)- = Ho(HPO4)+ + log_k -1.41 #95SPA/BRU + -analytic -14.1E-1 00E+0 00E+0 00E+0 00E+0 --2.000H+ +1.000Ho+3 +2.000H2(PO4)- = Ho(HPO4)2- - log_k -4.52 #95SPA/BRU - -analytic -45.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 2 H+ + Ho+3 + 2 H2(PO4)- = Ho(HPO4)2- + log_k -4.52 #95SPA/BRU + -analytic -45.2E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Ho+3 +1.000NO3- = Ho(NO3)+2 - log_k +0.50 #95SPA/BRU - -analytic 50.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ho+3 + NO3- = Ho(NO3)+2 + log_k 0.5 #95SPA/BRU + -analytic 50E-2 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000Ho+3 +1.000H2O = Ho(OH)+2 - log_k -7.90 #95SPA/BRU - delta_h +53.296 #kJ/mol -# Enthalpy of formation: -939.576 kJ/mol - -analytic 14.37058E-1 00.00000E+0 -27.83844E+2 00.00000E+0 00.00000E+0 +- H+ + Ho+3 + H2O = Ho(OH)+2 + log_k -7.9 #95SPA/BRU + delta_h 53.296 #kJ/mol +# Enthalpy of formation: -939.576 kJ/mol + -analytic 14.37058E-1 00E+0 -27.83844E+2 00E+0 00E+0 --2.000H+ +1.000Ho+3 +2.000H2O = Ho(OH)2+ - log_k -15.70 #07NEC/ALT2 - delta_h +105.862 #kJ/mol -# Enthalpy of formation: -1172.840 kJ/mol - -analytic 28.46226E-1 00.00000E+0 -55.29557E+2 00.00000E+0 00.00000E+0 +- 2 H+ + Ho+3 + 2 H2O = Ho(OH)2+ + log_k -15.7 #07NEC/ALT2 + delta_h 105.862 #kJ/mol +# Enthalpy of formation: -1172.840 kJ/mol + -analytic 28.46226E-1 00E+0 -55.29557E+2 00E+0 00E+0 --3.000H+ +1.000Ho+3 +3.000H2O = Ho(OH)3 - log_k -26.20 #07NEC/ALT2 - delta_h +164.617 #kJ/mol -# Enthalpy of formation: -1399.915 kJ/mol - -analytic 26.39660E-1 00.00000E+0 -85.98545E+2 00.00000E+0 00.00000E+0 +- 3 H+ + Ho+3 + 3 H2O = Ho(OH)3 + log_k -26.2 #07NEC/ALT2 + delta_h 164.617 #kJ/mol +# Enthalpy of formation: -1399.915 kJ/mol + -analytic 26.3966E-1 00E+0 -85.98545E+2 00E+0 00E+0 --4.000H+ +1.000Ho+3 +4.000H2O = Ho(OH)4- - log_k -40.70 #07NEC/ALT2 - delta_h +236.939 #kJ/mol -# Enthalpy of formation: -1613.422 kJ/mol - -analytic 80.99309E-2 00.00000E+0 -12.37619E+3 00.00000E+0 00.00000E+0 +- 4 H+ + Ho+3 + 4 H2O = Ho(OH)4- + log_k -40.7 #07NEC/ALT2 + delta_h 236.939 #kJ/mol +# Enthalpy of formation: -1613.422 kJ/mol + -analytic 80.99309E-2 00E+0 -12.37619E+3 00E+0 00E+0 --2.000H+ +1.000Ho+3 +1.000H2(PO4)- = Ho(PO4) - log_k -6.96 #95SPA/BRU - -analytic -69.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 2 H+ + Ho+3 + H2(PO4)- = Ho(PO4) + log_k -6.96 #95SPA/BRU + -analytic -69.6E-1 00E+0 00E+0 00E+0 00E+0 --4.000H+ +1.000Ho+3 +2.000H2(PO4)- = Ho(PO4)2-3 - log_k -17.82 #95SPA/BRU - -analytic -17.82000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 4 H+ + Ho+3 + 2 H2(PO4)- = Ho(PO4)2-3 + log_k -17.82 #95SPA/BRU + -analytic -17.82E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Ho+3 +1.000SO4-2 = Ho(SO4)+ - log_k +3.40 #95SPA/BRU - delta_h +15.384 #kJ/mol -# Enthalpy of formation: -1600.998 kJ/mol - -analytic 60.95161E-1 00.00000E+0 -80.35623E+1 00.00000E+0 00.00000E+0 +Ho+3 + SO4-2 = Ho(SO4)+ + log_k 3.4 #95SPA/BRU + delta_h 15.384 #kJ/mol +# Enthalpy of formation: -1600.998 kJ/mol + -analytic 60.95161E-1 00E+0 -80.35623E+1 00E+0 00E+0 -+1.000Ho+3 +2.000SO4-2 = Ho(SO4)2- - log_k +4.90 #95SPA/BRU - delta_h +23.668 #kJ/mol -# Enthalpy of formation: -2502.054 kJ/mol - -analytic 90.46456E-1 00.00000E+0 -12.36266E+2 00.00000E+0 00.00000E+0 +Ho+3 + 2 SO4-2 = Ho(SO4)2- + log_k 4.9 #95SPA/BRU + delta_h 23.668 #kJ/mol +# Enthalpy of formation: -2502.054 kJ/mol + -analytic 90.46456E-1 00E+0 -12.36266E+2 00E+0 00E+0 -+1.000Ho+3 +1.000Cl- = HoCl+2 - log_k +0.74 #Original data from 01LUO/BYR and 04LUO/BYR - delta_h +7.959 #kJ/mol -# Enthalpy of formation: -866.163 kJ/mol - -analytic 21.34357E-1 00.00000E+0 -41.57275E+1 00.00000E+0 00.00000E+0 +Ho+3 + Cl- = HoCl+2 + log_k 0.74 #Original data from 01LUO/BYR and 04LUO/BYR + delta_h 7.959 #kJ/mol +# Enthalpy of formation: -866.163 kJ/mol + -analytic 21.34357E-1 00E+0 -41.57275E+1 00E+0 00E+0 -+1.000Ho+3 +2.000Cl- = HoCl2+ - log_k -0.29 #81TUR/WHI - delta_h +25.862 #kJ/mol -# Enthalpy of formation: -1015.340 kJ/mol - -analytic 42.40828E-1 00.00000E+0 -13.50866E+2 00.00000E+0 00.00000E+0 +Ho+3 + 2 Cl- = HoCl2+ + log_k -0.29 #81TUR/WHI + delta_h 25.862 #kJ/mol +# Enthalpy of formation: -1015.340 kJ/mol + -analytic 42.40828E-1 00E+0 -13.50866E+2 00E+0 00E+0 -+1.000Ho+3 +1.000F- = HoF+2 - log_k +4.33 #07LUO/BYR - delta_h +10.020 #kJ/mol 04LUO/MIL -# Enthalpy of formation: -1032.372 kJ/mol - -analytic 60.85429E-1 00.00000E+0 -52.33811E+1 00.00000E+0 00.00000E+0 +Ho+3 + F- = HoF+2 + log_k 4.33 #07LUO/BYR + delta_h 10.02 #kJ/mol 04LUO/MIL +# Enthalpy of formation: -1032.372 kJ/mol + -analytic 60.85429E-1 00E+0 -52.33811E+1 00E+0 00E+0 -+1.000Ho+3 +2.000F- = HoF2+ - log_k +6.52 #Original data from 99SCH/BYR and 04LUO/BYR - delta_h +21.110 #kJ/mol 04LUO/MIL -# Enthalpy of formation: -1356.632 kJ/mol - -analytic 10.21831E+0 00.00000E+0 -11.02652E+2 00.00000E+0 00.00000E+0 +Ho+3 + 2 F- = HoF2+ + log_k 6.52 #Original data from 99SCH/BYR and 04LUO/BYR + delta_h 21.11 #kJ/mol 04LUO/MIL +# Enthalpy of formation: -1356.632 kJ/mol + -analytic 10.21831E+0 00E+0 -11.02652E+2 00E+0 00E+0 --1.000H+ +1.000Ho+3 +1.000H4(SiO4) = HoSiO(OH)3+2 - log_k -2.62 #Original data from 07THA/SIN and 96JEN/CHO1 - -analytic -26.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- H+ + Ho+3 + H4(SiO4) = HoSiO(OH)3+2 + log_k -2.62 #Original data from 07THA/SIN and 96JEN/CHO1 + -analytic -26.2E-1 00E+0 00E+0 00E+0 00E+0 -+1.000H+ +1.000Phthalat-2 = HPhthalat- - log_k +5.34 #10RIC/SAB1 - -analytic 53.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +H+ + Phthalat-2 = HPhthalat- + log_k 5.34 #10RIC/SAB1 + -analytic 53.4E-1 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000H2(PO4)- = HPO4-2 - log_k -7.21 - delta_h +3.600 #kJ/mol +- H+ + H2(PO4)- = HPO4-2 + log_k -7.21 + delta_h 3.6 #kJ/mol # Enthalpy of formation: -1299.000 kJ/mol 89COX/WAG - -analytic -65.79307E-1 00.00000E+0 -18.80411E+1 00.00000E+0 00.00000E+0 + -analytic -65.79307E-1 00E+0 -18.80411E+1 00E+0 00E+0 -+1.000H+ +1.000S2O4-2 = HS2O4- - log_k +2.50 #04CHI - delta_h +3.818 #kJ/mol -# Enthalpy of formation: -749.683 kJ/mol - -analytic 31.68885E-1 00.00000E+0 -19.94280E+1 00.00000E+0 00.00000E+0 +H+ + S2O4-2 = HS2O4- + log_k 2.5 #04CHI + delta_h 3.818 #kJ/mol +# Enthalpy of formation: -749.683 kJ/mol + -analytic 31.68885E-1 00E+0 -19.9428E+1 00E+0 00E+0 --1.000H+ -2.000e- +1.000SO4-2 +1.000H2O = HSO5- - log_k -60.21 - delta_h +419.540 #kJ/mol +- H+ - 2 e- + SO4-2 + H2O = HSO5- + log_k -60.21 + delta_h 419.54 #kJ/mol # Enthalpy of formation: -775.630 kJ/mol 88SHO/HEL - -analytic 13.29025E+0 00.00000E+0 -21.91410E+3 00.00000E+0 00.00000E+0 + -analytic 13.29025E+0 00E+0 -21.9141E+3 00E+0 00E+0 --2.000e- +3.000I- = I3- - log_k -18.17 - delta_h +118.877 #kJ/mol +- 2 e- + 3 I- = I3- + log_k -18.17 + delta_h 118.877 #kJ/mol # Enthalpy of formation: -51.463 kJ/mol 92JOH/OEL - -analytic 26.56356E-1 00.00000E+0 -62.09378E+2 00.00000E+0 00.00000E+0 + -analytic 26.56356E-1 00E+0 -62.09378E+2 00E+0 00E+0 --2.000e- +2.000Cl- +1.000I- = ICl2- - log_k -26.80 #96FAL/REA - -analytic -26.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 2 e- + 2 Cl- + I- = ICl2- + log_k -26.8 #96FAL/REA + -analytic -26.8E+0 00E+0 00E+0 00E+0 00E+0 --2.000H+ -2.000e- +1.000I- +1.000H2O = IO- - log_k -44.00 #96FAL/REA - -analytic -44.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 2 H+ - 2 e- + I- + H2O = IO- + log_k -44 #96FAL/REA + -analytic -44E+0 00E+0 00E+0 00E+0 00E+0 --8.000H+ -8.000e- +1.000I- +4.000H2O = IO4- - log_k -164.98 - delta_h +1048.639 #kJ/mol +- 8 H+ - 8 e- + I- + 4 H2O = IO4- + log_k -164.98 + delta_h 1048.639 #kJ/mol # Enthalpy of formation: -151.461 kJ/mol 92JOH/OEL - -analytic 18.73367E+0 00.00000E+0 -54.77423E+3 00.00000E+0 00.00000E+0 + -analytic 18.73367E+0 00E+0 -54.77423E+3 00E+0 00E+0 -+1.000K+ +1.000Edta-4 = K(Edta)-3 - log_k +1.80 #05HUM/AND - -analytic 18.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +K+ + Edta-4 = K(Edta)-3 + log_k 1.8 #05HUM/AND + -analytic 18E-1 00E+0 00E+0 00E+0 00E+0 -+1.000K+ +1.000H+ +1.000Nta-3 = K(HNta)- - log_k +10.30 #95AKR/BOU - -analytic 10.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +K+ + H+ + Nta-3 = K(HNta)- + log_k 10.3 #95AKR/BOU + -analytic 10.3E+0 00E+0 00E+0 00E+0 00E+0 -+1.000K+ -1.000H+ +1.000H2(PO4)- = K(HPO4)- - log_k -6.40 #97MAR/SMI - delta_h +31.589 #kJ/mol 97MAR/SMI -# Enthalpy of formation: -1523.151 kJ/mol - -analytic -86.58448E-2 00.00000E+0 -16.50008E+2 00.00000E+0 00.00000E+0 +K+ - H+ + H2(PO4)- = K(HPO4)- + log_k -6.4 #97MAR/SMI + delta_h 31.589 #kJ/mol 97MAR/SMI +# Enthalpy of formation: -1523.151 kJ/mol + -analytic -86.58448E-2 00E+0 -16.50008E+2 00E+0 00E+0 -+1.000K+ +1.000IO3- = K(IO3) - log_k +0.02 #estimation NEA87 08/2/95 - -analytic 20.00000E-3 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +K+ + IO3- = K(IO3) + log_k 0.02 #estimation NEA87 08/2/95 + -analytic 20E-3 00E+0 00E+0 00E+0 00E+0 -+1.000K+ +1.000Nta-3 = K(Nta)-2 - log_k +1.30 #95AKR/BOU - -analytic 13.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +K+ + Nta-3 = K(Nta)-2 + log_k 1.3 #95AKR/BOU + -analytic 13E-1 00E+0 00E+0 00E+0 00E+0 -+1.000K+ +1.000Pyrophos-4 = K(Pyrophos)-3 - log_k +2.10 #76MAR/SMI - delta_h +7.113 #kJ/mol 76MAR/SMI - -analytic 33.46144E-1 00.00000E+0 -37.15379E+1 00.00000E+0 00.00000E+0 +K+ + Pyrophos-4 = K(Pyrophos)-3 + log_k 2.1 #76MAR/SMI + delta_h 7.113 #kJ/mol 76MAR/SMI + -analytic 33.46144E-1 00E+0 -37.15379E+1 00E+0 00E+0 -+1.000K+ +1.000I- = KI - log_k -1.57 - delta_h +9.011 #kJ/mol +K+ + I- = KI + log_k -1.57 + delta_h 9.011 #kJ/mol # Enthalpy of formation: -299.909 kJ/mol 92JOH/OEL - -analytic 86.59435E-4 00.00000E+0 -47.06773E+1 00.00000E+0 00.00000E+0 + -analytic 86.59435E-4 00E+0 -47.06773E+1 00E+0 00E+0 -+1.000K+ -2.000H+ +1.000H2(PO4)- = KPO4-2 - log_k -18.26 #97MAR/SMI - -analytic -18.26000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +K+ - 2 H+ + H2(PO4)- = KPO4-2 + log_k -18.26 #97MAR/SMI + -analytic -18.26E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Mg+2 +1.000Cit-3 = Mg(Cit)- - log_k +4.81 #05HUM/AND - -analytic 48.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mg+2 + Cit-3 = Mg(Cit)- + log_k 4.81 #05HUM/AND + -analytic 48.1E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Mg+2 +1.000CO3-2 = Mg(CO3) - log_k +2.98 #97SVE/SHO - delta_h +8.810 #kJ/mol -# Enthalpy of formation: -1133.420 kJ/mol - -analytic 45.23446E-1 00.00000E+0 -46.01783E+1 00.00000E+0 00.00000E+0 +Mg+2 + CO3-2 = Mg(CO3) + log_k 2.98 #97SVE/SHO + delta_h 8.81 #kJ/mol +# Enthalpy of formation: -1133.420 kJ/mol + -analytic 45.23446E-1 00E+0 -46.01783E+1 00E+0 00E+0 -+1.000Mg+2 +1.000Edta-4 = Mg(Edta)-2 - log_k +10.90 #05HUM/AND - delta_h +19.800 #kJ/mol 05HUM/AND -# Enthalpy of formation: -2152.000 kJ/mol - -analytic 14.36881E+0 00.00000E+0 -10.34226E+2 00.00000E+0 00.00000E+0 +Mg+2 + Edta-4 = Mg(Edta)-2 + log_k 10.9 #05HUM/AND + delta_h 19.8 #kJ/mol 05HUM/AND +# Enthalpy of formation: -2152.000 kJ/mol + -analytic 14.36881E+0 00E+0 -10.34226E+2 00E+0 00E+0 -+1.000Mg+2 +2.000H+ +1.000Cit-3 = Mg(H2Cit)+ - log_k +12.45 #05HUM/AND - -analytic 12.45000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mg+2 + 2 H+ + Cit-3 = Mg(H2Cit)+ + log_k 12.45 #05HUM/AND + -analytic 12.45E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Mg+2 +1.000H2(PO4)- = Mg(H2PO4)+ - log_k +1.17 #81TUR/WHI - delta_h +13.514 #kJ/mol 96BOU1 -# Enthalpy of formation: -1756.086 kJ/mol - -analytic 35.37551E-1 00.00000E+0 -70.58854E+1 00.00000E+0 00.00000E+0 +Mg+2 + H2(PO4)- = Mg(H2PO4)+ + log_k 1.17 #81TUR/WHI + delta_h 13.514 #kJ/mol 96BOU1 +# Enthalpy of formation: -1756.086 kJ/mol + -analytic 35.37551E-1 00E+0 -70.58854E+1 00E+0 00E+0 -+1.000Mg+2 -1.000H+ +1.000H4(SiO4) = Mg(H3SiO4)+ - log_k -8.58 #97SVE/SHO - delta_h +27.114 #kJ/mol -# Enthalpy of formation: -1901.080 kJ/mol - -analytic -38.29831E-1 00.00000E+0 -14.16263E+2 00.00000E+0 00.00000E+0 +Mg+2 - H+ + H4(SiO4) = Mg(H3SiO4)+ + log_k -8.58 #97SVE/SHO + delta_h 27.114 #kJ/mol +# Enthalpy of formation: -1901.080 kJ/mol + -analytic -38.29831E-1 00E+0 -14.16263E+2 00E+0 00E+0 -+1.000Mg+2 +1.000H+ +1.000Cit-3 = Mg(HCit) - log_k +8.96 #05HUM/AND - -analytic 89.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mg+2 + H+ + Cit-3 = Mg(HCit) + log_k 8.96 #05HUM/AND + -analytic 89.6E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Mg+2 +1.000H+ +1.000CO3-2 = Mg(HCO3)+ - log_k +11.37 #95SHO/KOR - delta_h -12.888 #kJ/mol -# Enthalpy of formation: -1155.118 kJ/mol - -analytic 91.12119E-1 00.00000E+0 67.31871E+1 00.00000E+0 00.00000E+0 +Mg+2 + H+ + CO3-2 = Mg(HCO3)+ + log_k 11.37 #95SHO/KOR + delta_h -12.888 #kJ/mol +# Enthalpy of formation: -1155.118 kJ/mol + -analytic 91.12119E-1 00E+0 67.31871E+1 00E+0 00E+0 -+1.000Mg+2 +1.000H+ +1.000Edta-4 = Mg(HEdta)- - log_k +15.40 #05HUM/AND - -analytic 15.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mg+2 + H+ + Edta-4 = Mg(HEdta)- + log_k 15.4 #05HUM/AND + -analytic 15.4E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Mg+2 +1.000HGlu- = Mg(HGlu)+ - log_k +0.81 #19KUT/DUD - -analytic 81.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mg+2 + HGlu- = Mg(HGlu)+ + log_k 0.81 #19KUT/DUD + -analytic 81E-2 00E+0 00E+0 00E+0 00E+0 -+1.000Mg+2 +1.000HIsa- = Mg(HIsa)+ - log_k +0.81 #Analogy with Mg(HGlu)+ - -analytic 81.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mg+2 + HIsa- = Mg(HIsa)+ + log_k 0.81 #Analogy with Mg(HGlu)+ + -analytic 81E-2 00E+0 00E+0 00E+0 00E+0 -+1.000Mg+2 +1.000H+ +1.000Malonate-2 = Mg(HMalonate)+ - log_k +7.05 #13GRI/CAM - -analytic 70.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mg+2 + H+ + Malonate-2 = Mg(HMalonate)+ + log_k 7.05 #13GRI/CAM + -analytic 70.5E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Mg+2 -1.000H+ +1.000H2(PO4)- = Mg(HPO4) - log_k -4.30 #76SMI/MAR - delta_h +16.152 #kJ/mol 76SMI/MAR -# Enthalpy of formation: -1753.448 kJ/mol - -analytic -14.70291E-1 00.00000E+0 -84.36777E+1 00.00000E+0 00.00000E+0 +Mg+2 - H+ + H2(PO4)- = Mg(HPO4) + log_k -4.3 #76SMI/MAR + delta_h 16.152 #kJ/mol 76SMI/MAR +# Enthalpy of formation: -1753.448 kJ/mol + -analytic -14.70291E-1 00E+0 -84.36777E+1 00E+0 00E+0 -+1.000Mg+2 +1.000H+ +1.000Succinat-2 = Mg(HSuccinat)+ - log_k +6.72 #13GRI/CAM - -analytic 67.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mg+2 + H+ + Succinat-2 = Mg(HSuccinat)+ + log_k 6.72 #13GRI/CAM + -analytic 67.2E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Mg+2 +1.000IO3- = Mg(IO3)+ - log_k +0.70 #estimation NEA87 08/2/95 ; - -analytic 70.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mg+2 + IO3- = Mg(IO3)+ + log_k 0.7 #estimation NEA87 08/2/95 + -analytic 70E-2 00E+0 00E+0 00E+0 00E+0 -+1.000Mg+2 +1.000Malonate-2 = Mg(Malonate) - log_k +2.86 #76KLA/OST - -analytic 28.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mg+2 + Malonate-2 = Mg(Malonate) + log_k 2.86 #76KLA/OST + -analytic 28.6E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Mg+2 +1.000NH3 = Mg(NH3)+2 - log_k +0.10 - delta_h +0.022 #kJ/mol +Mg+2 + NH3 = Mg(NH3)+2 + log_k 0.1 + delta_h 0.022 #kJ/mol # Enthalpy of formation: -548.148 kJ/mol 03-91 MINTEQL-PSI - -analytic 10.38542E-2 00.00000E+0 -11.49140E-1 00.00000E+0 00.00000E+0 + -analytic 10.38542E-2 00E+0 -11.4914E-1 00E+0 00E+0 -+1.000Mg+2 +2.000NH3 = Mg(NH3)2+2 - log_k +0.00 - delta_h +0.044 #kJ/mol +Mg+2 + 2 NH3 = Mg(NH3)2+2 + log_k 0 + delta_h 0.044 #kJ/mol # Enthalpy of formation: -629.296 kJ/mol 03-91 MINTEQL-PSI - -analytic 77.08469E-4 00.00000E+0 -22.98280E-1 00.00000E+0 00.00000E+0 + -analytic 77.08469E-4 00E+0 -22.9828E-1 00E+0 00E+0 -+1.000Mg+2 +3.000NH3 = Mg(NH3)3+2 - log_k -0.30 - delta_h +0.066 #kJ/mol +Mg+2 + 3 NH3 = Mg(NH3)3+2 + log_k -0.3 + delta_h 0.066 #kJ/mol # Enthalpy of formation: -710.444 kJ/mol 03-91 MINTEQL-PSI - -analytic -28.84373E-2 00.00000E+0 -34.47420E-1 00.00000E+0 00.00000E+0 + -analytic -28.84373E-2 00E+0 -34.4742E-1 00E+0 00E+0 -+1.000Mg+2 +4.000NH3 = Mg(NH3)4+2 - log_k -1.00 - delta_h +0.088 #kJ/mol +Mg+2 + 4 NH3 = Mg(NH3)4+2 + log_k -1 + delta_h 0.088 #kJ/mol # Enthalpy of formation: -791.592 kJ/mol 03-91 MINTEQL-PSI - -analytic -98.45831E-2 00.00000E+0 -45.96560E-1 00.00000E+0 00.00000E+0 + -analytic -98.45831E-2 00E+0 -45.9656E-1 00E+0 00E+0 -+1.000Mg+2 +1.000Nta-3 = Mg(Nta)- - log_k +6.79 #95AKR/BOU - -analytic 67.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mg+2 + Nta-3 = Mg(Nta)- + log_k 6.79 #95AKR/BOU + -analytic 67.9E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Mg+2 -1.000H+ +1.000HGlu- +1.000H2O = Mg(OH)(HGlu) - log_k -9.10 #19KUT/DUD - -analytic -91.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mg+2 - H+ + HGlu- + H2O = Mg(OH)(HGlu) + log_k -9.1 #19KUT/DUD + -analytic -91E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Mg+2 -1.000H+ +1.000HIsa- +1.000H2O = Mg(OH)(HIsa) - log_k -9.10 #Analogy with Mg(OH)(HGlu) - -analytic -91.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mg+2 - H+ + HIsa- + H2O = Mg(OH)(HIsa) + log_k -9.1 #Analogy with Mg(OH)(HGlu) + -analytic -91E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Mg+2 -1.000H+ +1.000H2O = Mg(OH)+ - log_k -11.68 #97SHO/SAS2; Uncertainty to include available data. - delta_h +62.834 #kJ/mol -# Enthalpy of formation: -689.995 kJ/mol - -analytic -67.19557E-2 00.00000E+0 -32.82048E+2 00.00000E+0 00.00000E+0 +Mg+2 - H+ + H2O = Mg(OH)+ + log_k -11.68 #97SHO/SAS2; Uncertainty to include available data. + delta_h 62.834 #kJ/mol +# Enthalpy of formation: -689.995 kJ/mol + -analytic -67.19557E-2 00E+0 -32.82048E+2 00E+0 00E+0 -+1.000Mg+2 -2.000H+ +1.000HGlu- +2.000H2O = Mg(OH)2(HGlu)- - log_k -20.44 #19KUT/DUD - -analytic -20.44000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mg+2 - 2 H+ + HGlu- + 2 H2O = Mg(OH)2(HGlu)- + log_k -20.44 #19KUT/DUD + -analytic -20.44E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Mg+2 -2.000H+ +1.000HIsa- +2.000H2O = Mg(OH)2(HIsa)- - log_k -20.44 #Analogy with Mg(OH)2(HGlu)- - -analytic -20.44000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mg+2 - 2 H+ + HIsa- + 2 H2O = Mg(OH)2(HIsa)- + log_k -20.44 #Analogy with Mg(OH)2(HGlu)- + -analytic -20.44E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Mg+2 +1.000Ox-2 = Mg(Ox) - log_k +3.56 #05HUM/AND - -analytic 35.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mg+2 + Ox-2 = Mg(Ox) + log_k 3.56 #05HUM/AND + -analytic 35.6E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Mg+2 +2.000Ox-2 = Mg(Ox)2-2 - log_k +5.17 #05HUM/AND - -analytic 51.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mg+2 + 2 Ox-2 = Mg(Ox)2-2 + log_k 5.17 #05HUM/AND + -analytic 51.7E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Mg+2 -2.000H+ +1.000H2(PO4)- = Mg(PO4)- - log_k -14.71 #81TUR/WHI - delta_h +31.170 #kJ/mol 96BOU1 -# Enthalpy of formation: -1738.430 kJ/mol - -analytic -92.49250E-1 00.00000E+0 -16.28122E+2 00.00000E+0 00.00000E+0 +Mg+2 - 2 H+ + H2(PO4)- = Mg(PO4)- + log_k -14.71 #81TUR/WHI + delta_h 31.17 #kJ/mol 96BOU1 +# Enthalpy of formation: -1738.430 kJ/mol + -analytic -92.4925E-1 00E+0 -16.28122E+2 00E+0 00E+0 -+1.000Mg+2 +1.000Pyrophos-4 = Mg(Pyrophos)-2 - log_k +7.20 #76SMI/MAR - delta_h +12.540 #kJ/mol - -analytic 93.96914E-1 00.00000E+0 -65.50098E+1 00.00000E+0 00.00000E+0 +Mg+2 + Pyrophos-4 = Mg(Pyrophos)-2 + log_k 7.2 #76SMI/MAR + delta_h 12.54 #kJ/mol + -analytic 93.96914E-1 00E+0 -65.50098E+1 00E+0 00E+0 -+1.000Mg+2 +1.000S2O3-2 = Mg(S2O3) - log_k +1.82 #76SMI/MAR - -analytic 18.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mg+2 + S2O3-2 = Mg(S2O3) + log_k 1.82 #76SMI/MAR + -analytic 18.2E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Mg+2 +1.000SeO4-2 = Mg(SeO4) - log_k +2.20 #05OLI/NOL - delta_h -6.614 #kJ/mol -# Enthalpy of formation: -1077.114 kJ/mol - -analytic 10.41277E-1 00.00000E+0 34.54733E+1 00.00000E+0 00.00000E+0 +Mg+2 + SeO4-2 = Mg(SeO4) + log_k 2.2 #05OLI/NOL + delta_h -6.614 #kJ/mol +# Enthalpy of formation: -1077.114 kJ/mol + -analytic 10.41277E-1 00E+0 34.54733E+1 00E+0 00E+0 -+1.000Mg+2 +1.000SO4-2 = Mg(SO4) - log_k +2.23 #76SMI/MAR - delta_h +5.858 #kJ/mol 76SMI/MAR -# Enthalpy of formation: -1370.482 kJ/mol - -analytic 32.56278E-1 00.00000E+0 -30.59847E+1 00.00000E+0 00.00000E+0 +Mg+2 + SO4-2 = Mg(SO4) + log_k 2.23 #76SMI/MAR + delta_h 5.858 #kJ/mol 76SMI/MAR +# Enthalpy of formation: -1370.482 kJ/mol + -analytic 32.56278E-1 00E+0 -30.59847E+1 00E+0 00E+0 -+1.000Mg+2 +1.000Succinat-2 = Mg(Succinat) - log_k +2.27 #13GRI/CAM - -analytic 22.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mg+2 + Succinat-2 = Mg(Succinat) + log_k 2.27 #13GRI/CAM + -analytic 22.7E-1 00E+0 00E+0 00E+0 00E+0 -+2.000Mg+2 +1.000UO2+2 +3.000CO3-2 = Mg2UO2(CO3)3 - log_k +27.10 #20GRE/GAO - -analytic 27.10000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 Mg+2 + UO2+2 + 3 CO3-2 = Mg2UO2(CO3)3 + log_k 27.1 #20GRE/GAO + -analytic 27.1E+0 00E+0 00E+0 00E+0 00E+0 -+4.000Mg+2 -4.000H+ +4.000H2O = Mg4(OH)4+4 - log_k -39.75 #76BAE/MES - delta_h +229.186 #kJ/mol -# Enthalpy of formation: -2782.132 kJ/mol - -analytic 40.16637E-2 00.00000E+0 -11.97122E+3 00.00000E+0 00.00000E+0 +4 Mg+2 - 4 H+ + 4 H2O = Mg4(OH)4+4 + log_k -39.75 #76BAE/MES + delta_h 229.186 #kJ/mol +# Enthalpy of formation: -2782.132 kJ/mol + -analytic 40.16637E-2 00E+0 -11.97122E+3 00E+0 00E+0 -+1.000Mg+2 +1.000B(OH)4- = MgB(OH)4+ - log_k +1.60 #97CRO - -analytic 16.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mg+2 + B(OH)4- = MgB(OH)4+ + log_k 1.6 #97CRO + -analytic 16E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Mg+2 +1.000Br- = MgBr+ - log_k -0.14 #88CHA/NEW - -analytic -14.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mg+2 + Br- = MgBr+ + log_k -0.14 #88CHA/NEW + -analytic -14E-2 00E+0 00E+0 00E+0 00E+0 -+1.000Mg+2 +1.000Cl- = MgCl+ - log_k +0.35 #96BOU1 - delta_h -1.728 #kJ/mol -# Enthalpy of formation: -635.808 kJ/mol - -analytic 47.26740E-3 00.00000E+0 90.25973E+0 00.00000E+0 00.00000E+0 +Mg+2 + Cl- = MgCl+ + log_k 0.35 #96BOU1 + delta_h -1.728 #kJ/mol +# Enthalpy of formation: -635.808 kJ/mol + -analytic 47.2674E-3 00E+0 90.25973E+0 00E+0 00E+0 -+1.000Mg+2 +1.000F- = MgF+ - log_k +1.80 #96BOU - delta_h +13.389 #kJ/mol 96BOU -# Enthalpy of formation: -788.961 kJ/mol - -analytic 41.45652E-1 00.00000E+0 -69.93562E+1 00.00000E+0 00.00000E+0 +Mg+2 + F- = MgF+ + log_k 1.8 #96BOU + delta_h 13.389 #kJ/mol 96BOU +# Enthalpy of formation: -788.961 kJ/mol + -analytic 41.45652E-1 00E+0 -69.93562E+1 00E+0 00E+0 -+1.000Mg+2 +1.000I- = MgI+ - log_k +0.18 #92JOH/OEL - -analytic 18.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mg+2 + I- = MgI+ + log_k 0.18 #92JOH/OEL + -analytic 18E-2 00E+0 00E+0 00E+0 00E+0 -+1.000Mg+2 +2.000I- = MgI2 - log_k +0.03 #92JOH/OEL - -analytic 30.00000E-3 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mg+2 + 2 I- = MgI2 + log_k 0.03 #92JOH/OEL + -analytic 30E-3 00E+0 00E+0 00E+0 00E+0 -+1.000Mg+2 +1.000UO2+2 +3.000CO3-2 = MgUO2(CO3)3-2 - log_k +26.20 #20GRE/GAO - delta_h -50.900 #kJ/mol 21SHA/REI -# Enthalpy of formation: -3562.590 kJ/mol - -analytic 17.28270E+0 00.00000E+0 26.58692E+2 00.00000E+0 00.00000E+0 +Mg+2 + UO2+2 + 3 CO3-2 = MgUO2(CO3)3-2 + log_k 26.2 #20GRE/GAO + delta_h -50.9 #kJ/mol 21SHA/REI +# Enthalpy of formation: -3562.590 kJ/mol + -analytic 17.2827E+0 00E+0 26.58692E+2 00E+0 00E+0 -+1.000Mn+2 +1.000CO3-2 = Mn(CO3) - log_k +6.50 #96FAL/REA - -analytic 65.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn+2 + CO3-2 = Mn(CO3) + log_k 6.5 #96FAL/REA + -analytic 65E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Mn+2 +1.000H+ +1.000CO3-2 = Mn(HCO3)+ - log_k +11.61 #95CHI - -analytic 11.61000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn+2 + H+ + CO3-2 = Mn(HCO3)+ + log_k 11.61 #95CHI + -analytic 11.61E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Mn+2 -1.000H+ +1.000H2(PO4)- = Mn(HPO4) - log_k -3.26 #96FAL/REA - -analytic -32.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn+2 - H+ + H2(PO4)- = Mn(HPO4) + log_k -3.26 #96FAL/REA + -analytic -32.6E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Mn+2 -2.000H+ +2.000H2(PO4)- = Mn(HPO4)2-2 - log_k -9.12 #96FAL/REA - -analytic -91.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn+2 - 2 H+ + 2 H2(PO4)- = Mn(HPO4)2-2 + log_k -9.12 #96FAL/REA + -analytic -91.2E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Mn+2 +1.000IO3- = Mn(IO3)+ - log_k +0.84 #estimation NEA87 08/2/95 - -analytic 84.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn+2 + IO3- = Mn(IO3)+ + log_k 0.84 #estimation NEA87 08/2/95 + -analytic 84E-2 00E+0 00E+0 00E+0 00E+0 -+1.000Mn+2 +2.000IO3- = Mn(IO3)2 - log_k +0.13 #estimation NEA87 08/2/95 - -analytic 13.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn+2 + 2 IO3- = Mn(IO3)2 + log_k 0.13 #estimation NEA87 08/2/95 + -analytic 13E-2 00E+0 00E+0 00E+0 00E+0 -+1.000Mn+2 +1.000NH3 = Mn(NH3)+2 - log_k +0.70 #88CHA/NEW - -analytic 70.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn+2 + NH3 = Mn(NH3)+2 + log_k 0.7 #88CHA/NEW + -analytic 70E-2 00E+0 00E+0 00E+0 00E+0 -+1.000Mn+2 +2.000NH3 = Mn(NH3)2+2 - log_k +1.20 #88CHA/NEW - -analytic 12.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn+2 + 2 NH3 = Mn(NH3)2+2 + log_k 1.2 #88CHA/NEW + -analytic 12E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Mn+2 +1.000NO3- = Mn(NO3)+ - log_k +0.16 #96FAL/REA - -analytic 16.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn+2 + NO3- = Mn(NO3)+ + log_k 0.16 #96FAL/REA + -analytic 16E-2 00E+0 00E+0 00E+0 00E+0 -+1.000Mn+2 +2.000NO3- = Mn(NO3)2 - log_k +0.50 #96FAL/REA - -analytic 50.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn+2 + 2 NO3- = Mn(NO3)2 + log_k 0.5 #96FAL/REA + -analytic 50E-2 00E+0 00E+0 00E+0 00E+0 -+1.000Mn+2 -1.000H+ +1.000H2O = Mn(OH)+ - log_k -10.59 #95CHI - -analytic -10.59000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn+2 - H+ + H2O = Mn(OH)+ + log_k -10.59 #95CHI + -analytic -10.59E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Mn+2 -2.000H+ +2.000H2O = Mn(OH)2 - log_k -22.20 #95CHI - -analytic -22.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn+2 - 2 H+ + 2 H2O = Mn(OH)2 + log_k -22.2 #95CHI + -analytic -22.2E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Mn+2 -3.000H+ +3.000H2O = Mn(OH)3- - log_k -34.80 #95CHI - -analytic -34.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn+2 - 3 H+ + 3 H2O = Mn(OH)3- + log_k -34.8 #95CHI + -analytic -34.8E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Mn+2 -4.000H+ +4.000H2O = Mn(OH)4-2 - log_k -48.30 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/91PEA/BER 11891 EN ; Nagra TR 91-18 (mai 1992, Hatches 3.0) (provient de la base 0391 MINEQL- PSY) - -analytic -48.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn+2 - 4 H+ + 4 H2O = Mn(OH)4-2 + log_k -48.3 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/91PEA/BER 11891 EN; Nagra TR 91-18 (mai 1992, Hatches 3.0) (provient de la base 0391 MINEQL- PSY) + -analytic -48.3E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Mn+2 +1.000Pyrophos-4 = Mn(Pyrophos)-2 - log_k +6.00 #88CHA/NEW - -analytic 60.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn+2 + Pyrophos-4 = Mn(Pyrophos)-2 + log_k 6 #88CHA/NEW + -analytic 60E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Mn+2 +1.000S2O3-2 = Mn(S2O3) - log_k +1.90 #88CHA/NEW - -analytic 19.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn+2 + S2O3-2 = Mn(S2O3) + log_k 1.9 #88CHA/NEW + -analytic 19E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Mn+2 +1.000SeO4-2 = Mn(SeO4) - log_k +2.43 #05OLI/NOL - delta_h -1.560 #kJ/mol -# Enthalpy of formation: -825.861 kJ/mol - -analytic 21.56700E-1 00.00000E+0 81.48448E+0 00.00000E+0 00.00000E+0 +Mn+2 + SeO4-2 = Mn(SeO4) + log_k 2.43 #05OLI/NOL + delta_h -1.56 #kJ/mol +# Enthalpy of formation: -825.861 kJ/mol + -analytic 21.567E-1 00E+0 81.48448E+0 00E+0 00E+0 -+1.000Mn+2 +1.000SO4-2 = Mn(SO4) - log_k +2.25 #95CHI - delta_h +14.100 #kJ/mol 95CHI -# Enthalpy of formation: -1116.040 kJ/mol - -analytic 47.20214E-1 00.00000E+0 -73.64943E+1 00.00000E+0 00.00000E+0 +Mn+2 + SO4-2 = Mn(SO4) + log_k 2.25 #95CHI + delta_h 14.1 #kJ/mol 95CHI +# Enthalpy of formation: -1116.040 kJ/mol + -analytic 47.20214E-1 00E+0 -73.64943E+1 00E+0 00E+0 -+1.000Mn+2 -1.000e- = Mn+3 - log_k -25.51 #96FAL/REA - -analytic -25.51000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn+2 - e- = Mn+3 + log_k -25.51 #96FAL/REA + -analytic -25.51E+0 00E+0 00E+0 00E+0 00E+0 -+2.000Mn+2 -1.000H+ +1.000H2O = Mn2(OH)+3 - log_k -10.10 #96FAL/REA - -analytic -10.10000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 Mn+2 - H+ + H2O = Mn2(OH)+3 + log_k -10.1 #96FAL/REA + -analytic -10.1E+0 00E+0 00E+0 00E+0 00E+0 -+2.000Mn+2 -3.000H+ +3.000H2O = Mn2(OH)3+ - log_k -24.90 #96FAL/REA - -analytic -24.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 Mn+2 - 3 H+ + 3 H2O = Mn2(OH)3+ + log_k -24.9 #96FAL/REA + -analytic -24.9E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Mn+2 +1.000Br- = MnBr+ - log_k +0.13 #88CHA/NEW - -analytic 13.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn+2 + Br- = MnBr+ + log_k 0.13 #88CHA/NEW + -analytic 13E-2 00E+0 00E+0 00E+0 00E+0 -+1.000Mn+2 +1.000Cl- = MnCl+ - log_k +0.27 - delta_h +18.516 #kJ/mol +Mn+2 + Cl- = MnCl+ + log_k 0.27 + delta_h 18.516 #kJ/mol # Enthalpy of formation: -369.364 kJ/mol 97SVE/SHO - -analytic 35.13864E-1 00.00000E+0 -96.71580E+1 00.00000E+0 00.00000E+0 + -analytic 35.13864E-1 00E+0 -96.7158E+1 00E+0 00E+0 -+1.000Mn+2 +2.000Cl- = MnCl2 - log_k +0.25 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 (provient de la base 0391 MINEQL- PSY) - -analytic 25.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn+2 + 2 Cl- = MnCl2 + log_k 0.25 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 (provient de la base 0391 MINEQL- PSY) + -analytic 25E-2 00E+0 00E+0 00E+0 00E+0 -+1.000Mn+2 +3.000Cl- = MnCl3- - log_k -0.31 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 (provient de la base 0391 MINEQL- PSY) - -analytic -31.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn+2 + 3 Cl- = MnCl3- + log_k -0.31 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 (provient de la base 0391 MINEQL- PSY) + -analytic -31E-2 00E+0 00E+0 00E+0 00E+0 -+1.000Mn+2 +1.000F- = MnF+ - log_k +0.85 #96FAL/REA - -analytic 85.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn+2 + F- = MnF+ + log_k 0.85 #96FAL/REA + -analytic 85E-2 00E+0 00E+0 00E+0 00E+0 -+1.000Mn+2 +2.000F- = MnF2 - log_k +9.04 #88CHA/NEW - -analytic 90.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn+2 + 2 F- = MnF2 + log_k 9.04 #88CHA/NEW + -analytic 90.4E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Mn+2 +3.000F- = MnF3- - log_k +11.64 #88CHA/NEW - -analytic 11.64000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn+2 + 3 F- = MnF3- + log_k 11.64 #88CHA/NEW + -analytic 11.64E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Mn+2 +4.000F- = MnF4-2 - log_k +13.40 #88CHA/NEW - -analytic 13.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn+2 + 4 F- = MnF4-2 + log_k 13.4 #88CHA/NEW + -analytic 13.4E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Mn+2 +5.000F- = MnF5-3 - log_k +14.70 #88CHA/NEW - -analytic 14.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn+2 + 5 F- = MnF5-3 + log_k 14.7 #88CHA/NEW + -analytic 14.7E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Mn+2 +6.000F- = MnF6-4 - log_k +15.50 #88CHA/NEW - -analytic 15.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn+2 + 6 F- = MnF6-4 + log_k 15.5 #88CHA/NEW + -analytic 15.5E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Mn+2 +1.000I- = MnI+ - log_k +0.23 #92JOH/OEL - -analytic 23.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn+2 + I- = MnI+ + log_k 0.23 #92JOH/OEL + -analytic 23E-2 00E+0 00E+0 00E+0 00E+0 -+1.000Mn+2 -8.000H+ -5.000e- +4.000H2O = MnO4- - log_k -127.81 - delta_h +822.710 #kJ/mol +Mn+2 - 8 H+ - 5 e- + 4 H2O = MnO4- + log_k -127.81 + delta_h 822.71 #kJ/mol # Enthalpy of formation: -541.410 kJ/mol 92JOH/OEL - -analytic 16.32260E+0 00.00000E+0 -42.97314E+3 00.00000E+0 00.00000E+0 + -analytic 16.3226E+0 00E+0 -42.97314E+3 00E+0 00E+0 -+1.000Mn+2 -8.000H+ -4.000e- +4.000H2O = MnO4-2 - log_k -118.43 - delta_h +711.416 #kJ/mol +Mn+2 - 8 H+ - 4 e- + 4 H2O = MnO4-2 + log_k -118.43 + delta_h 711.416 #kJ/mol # Enthalpy of formation: -652.704 kJ/mol 92JOH/OEL - -analytic 62.04733E-1 00.00000E+0 -37.15985E+3 00.00000E+0 00.00000E+0 + -analytic 62.04733E-1 00E+0 -37.15985E+3 00E+0 00E+0 -+1.000Mn+2 -8.000H+ -3.000e- +4.000H2O = MnO4-3 - log_k -113.00 #96FAL/REA - -analytic -11.30000E+1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn+2 - 8 H+ - 3 e- + 4 H2O = MnO4-3 + log_k -113 #96FAL/REA + -analytic -11.3E+1 00E+0 00E+0 00E+0 00E+0 -+8.000H+ +3.000e- +1.000MoO4-2 -4.000H2O = Mo+3 - log_k +21.76 #68SAS/SIL - -analytic 21.76000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +8 H+ + 3 e- + MoO4-2 - 4 H2O = Mo+3 + log_k 21.76 #68SAS/SIL + -analytic 21.76E+0 00E+0 00E+0 00E+0 00E+0 -+34.000H+ +19.000MoO4-2 -17.000H2O = Mo19O59-4 - log_k +196.30 #68SAS/SIL - -analytic 19.63000E+1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +34 H+ + 19 MoO4-2 - 17 H2O = Mo19O59-4 + log_k 196.3 #68SAS/SIL + -analytic 19.63E+1 00E+0 00E+0 00E+0 00E+0 -+5.000H+ +2.000MoO4-2 -2.000H2O = Mo2O5(OH)+ - log_k +19.00 #68SAS/SIL - -analytic 19.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +5 H+ + 2 MoO4-2 - 2 H2O = Mo2O5(OH)+ + log_k 19 #68SAS/SIL + -analytic 19E+0 00E+0 00E+0 00E+0 00E+0 -+11.000H+ +7.000MoO4-2 -4.000H2O = Mo7O21(OH)3-3 - log_k +66.48 #68SAS/SIL, 64AVE/ANA - delta_h -222.589 #kJ/mol 68ARN/SZI in 76BAE/MES -# Enthalpy of formation: -6058.269 kJ/mol - -analytic 27.48408E+0 00.00000E+0 11.62663E+3 00.00000E+0 00.00000E+0 +11 H+ + 7 MoO4-2 - 4 H2O = Mo7O21(OH)3-3 + log_k 66.48 #68SAS/SIL, 64AVE/ANA + delta_h -222.589 #kJ/mol 68ARN/SZI in 76BAE/MES +# Enthalpy of formation: -6058.269 kJ/mol + -analytic 27.48408E+0 00E+0 11.62663E+3 00E+0 00E+0 -+10.000H+ +7.000MoO4-2 -4.000H2O = Mo7O22(OH)2-4 - log_k +62.71 #68SAS/SIL, 64AVE/ANA - delta_h -220.079 #kJ/mol 68ARN/SZI in 76BAE/MES -# Enthalpy of formation: -6055.759 kJ/mol - -analytic 24.15381E+0 00.00000E+0 11.49553E+3 00.00000E+0 00.00000E+0 +10 H+ + 7 MoO4-2 - 4 H2O = Mo7O22(OH)2-4 + log_k 62.71 #68SAS/SIL, 64AVE/ANA + delta_h -220.079 #kJ/mol 68ARN/SZI in 76BAE/MES +# Enthalpy of formation: -6055.759 kJ/mol + -analytic 24.15381E+0 00E+0 11.49553E+3 00E+0 00E+0 -+9.000H+ +7.000MoO4-2 -4.000H2O = Mo7O23(OH)-5 - log_k +57.21 #68SAS/SIL, 64AVE/ANA - delta_h -223.426 #kJ/mol 68ARN/SZI in 76BAE/MES -# Enthalpy of formation: -6059.106 kJ/mol - -analytic 18.06745E+0 00.00000E+0 11.67035E+3 00.00000E+0 00.00000E+0 +9 H+ + 7 MoO4-2 - 4 H2O = Mo7O23(OH)-5 + log_k 57.21 #68SAS/SIL, 64AVE/ANA + delta_h -223.426 #kJ/mol 68ARN/SZI in 76BAE/MES +# Enthalpy of formation: -6059.106 kJ/mol + -analytic 18.06745E+0 00E+0 11.67035E+3 00E+0 00E+0 -+8.000H+ +7.000MoO4-2 -4.000H2O = Mo7O24-6 - log_k +50.35 #68SAS/SIL, 64AVE/ANA - delta_h -234.304 #kJ/mol 68ARN/SZI in 76BAE/MES -# Enthalpy of formation: -6069.984 kJ/mol - -analytic 93.01701E-1 00.00000E+0 12.23855E+3 00.00000E+0 00.00000E+0 +8 H+ + 7 MoO4-2 - 4 H2O = Mo7O24-6 + log_k 50.35 #68SAS/SIL, 64AVE/ANA + delta_h -234.304 #kJ/mol 68ARN/SZI in 76BAE/MES +# Enthalpy of formation: -6069.984 kJ/mol + -analytic 93.01701E-1 00E+0 12.23855E+3 00E+0 00E+0 -+1.000Na+ +1.000CO3-2 = Na(CO3)- - log_k +1.27 #90NOR/PLU - delta_h +37.279 #kJ/mol 90NOR/PLU -# Enthalpy of formation: -878.291 kJ/mol - -analytic 78.01000E-1 00.00000E+0 -19.47218E+2 00.00000E+0 00.00000E+0 +Na+ + CO3-2 = Na(CO3)- + log_k 1.27 #90NOR/PLU + delta_h 37.279 #kJ/mol 90NOR/PLU +# Enthalpy of formation: -878.291 kJ/mol + -analytic 78.01E-1 00E+0 -19.47218E+2 00E+0 00E+0 -+1.000Na+ +1.000Edta-4 = Na(Edta)-3 - log_k +2.80 #05HUM/AND - delta_h -4.000 #kJ/mol 05HUM/AND -# Enthalpy of formation: -1949.140 kJ/mol - -analytic 20.99230E-1 00.00000E+0 20.89346E+1 00.00000E+0 00.00000E+0 +Na+ + Edta-4 = Na(Edta)-3 + log_k 2.8 #05HUM/AND + delta_h -4 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1949.140 kJ/mol + -analytic 20.9923E-1 00E+0 20.89346E+1 00E+0 00E+0 -+1.000Na+ +1.000H+ +1.000CO3-2 = Na(HCO3) - log_k +10.08 #90NOR/PLU - delta_h -26.127 #kJ/mol -# Enthalpy of formation: -941.697 kJ/mol - -analytic 55.02746E-1 00.00000E+0 13.64708E+2 00.00000E+0 00.00000E+0 +Na+ + H+ + CO3-2 = Na(HCO3) + log_k 10.08 #90NOR/PLU + delta_h -26.127 #kJ/mol +# Enthalpy of formation: -941.697 kJ/mol + -analytic 55.02746E-1 00E+0 13.64708E+2 00E+0 00E+0 -+1.000Na+ +1.000H+ +1.000Nta-3 = Na(HNta)- - log_k +10.32 #95AKR/BOU - -analytic 10.32000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Na+ + H+ + Nta-3 = Na(HNta)- + log_k 10.32 #95AKR/BOU + -analytic 10.32E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Na+ -1.000H+ +1.000H2(PO4)- = Na(HPO4)- - log_k -6.34 #97MAR/SMI - delta_h +34.936 #kJ/mol 97MAR/SMI -# Enthalpy of formation: -1508.004 kJ/mol - -analytic -21.94755E-2 00.00000E+0 -18.24834E+2 00.00000E+0 00.00000E+0 +Na+ - H+ + H2(PO4)- = Na(HPO4)- + log_k -6.34 #97MAR/SMI + delta_h 34.936 #kJ/mol 97MAR/SMI +# Enthalpy of formation: -1508.004 kJ/mol + -analytic -21.94755E-2 00E+0 -18.24834E+2 00E+0 00E+0 -+1.000Na+ +1.000IO3- = Na(IO3) - log_k +0.06 #estimation NEA87 08/2/95 - -analytic 60.00000E-3 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Na+ + IO3- = Na(IO3) + log_k 0.06 #estimation NEA87 08/2/95 + -analytic 60E-3 00E+0 00E+0 00E+0 00E+0 -+1.000Na+ +1.000Nta-3 = Na(Nta)-2 - log_k +1.88 #95AKR/BOU - -analytic 18.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Na+ + Nta-3 = Na(Nta)-2 + log_k 1.88 #95AKR/BOU + -analytic 18.8E-1 00E+0 00E+0 00E+0 00E+0 -+1.000Na+ +1.000S2O3-2 = Na(S2O3)- - log_k +0.61 - delta_h +4.656 #kJ/mol +Na+ + S2O3-2 = Na(S2O3)- + log_k 0.61 + delta_h 4.656 #kJ/mol # Enthalpy of formation: -887.970 kJ/mol 82WAG/EVA - -analytic 14.25696E-1 00.00000E+0 -24.31998E+1 00.00000E+0 00.00000E+0 + -analytic 14.25696E-1 00E+0 -24.31998E+1 00E+0 00E+0 -+2.000Na+ +1.000Pyrophos-4 = Na2(Pyrophos)-2 - log_k +2.29 #76SMI/MAR - delta_h +5.858 #kJ/mol 76SMI/MAR - -analytic 33.16278E-1 00.00000E+0 -30.59847E+1 00.00000E+0 00.00000E+0 +2 Na+ + Pyrophos-4 = Na2(Pyrophos)-2 + log_k 2.29 #76SMI/MAR + delta_h 5.858 #kJ/mol 76SMI/MAR + -analytic 33.16278E-1 00E+0 -30.59847E+1 00E+0 00E+0 -+1.000Na+ +1.000Al+3 -4.000H+ +4.000H2O = NaAl(OH)4 - log_k -23.63 - delta_h +190.348 #kJ/mol +Na+ + Al+3 - 4 H+ + 4 H2O = NaAl(OH)4 + log_k -23.63 + delta_h 190.348 #kJ/mol # Enthalpy of formation: -1731.712 kJ/mol 95POK/HEL - -analytic 97.17538E-1 00.00000E+0 -99.42568E+2 00.00000E+0 00.00000E+0 + -analytic 97.17538E-1 00E+0 -99.42568E+2 00E+0 00E+0 -+1.000Na+ +1.000B(OH)4- = NaB(OH)4 - log_k -0.10 - delta_h +1.226 #kJ/mol -# Enthalpy of formation: -1584.230 kJ/mol - -analytic 11.47860E-2 00.00000E+0 -64.03844E+0 00.00000E+0 00.00000E+0 +Na+ + B(OH)4- = NaB(OH)4 + log_k -0.1 + delta_h 1.226 #kJ/mol +# Enthalpy of formation: -1584.230 kJ/mol + -analytic 11.4786E-2 00E+0 -64.03844E+0 00E+0 00E+0 -+1.000Na+ +1.000F- = NaF - log_k -0.45 #96BOU - delta_h -12.552 #kJ/mol 96BOU -# Enthalpy of formation: -588.242 kJ/mol - -analytic -26.49016E-1 00.00000E+0 65.56366E+1 00.00000E+0 00.00000E+0 +Na+ + F- = NaF + log_k -0.45 #96BOU + delta_h -12.552 #kJ/mol 96BOU +# Enthalpy of formation: -588.242 kJ/mol + -analytic -26.49016E-1 00E+0 65.56366E+1 00E+0 00E+0 -+1.000Na+ +1.000H2(PO4)- = NaH2PO4 - log_k +0.41 #97MAR/SMI - -analytic 41.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Na+ + H2(PO4)- = NaH2PO4 + log_k 0.41 #97MAR/SMI + -analytic 41E-2 00E+0 00E+0 00E+0 00E+0 -+1.000Na+ +1.000I- = NaI - log_k -1.52 - delta_h +7.252 #kJ/mol +Na+ + I- = NaI + log_k -1.52 + delta_h 7.252 #kJ/mol # Enthalpy of formation: -289.868 kJ/mol 92JOH/OEL - -analytic -24.95041E-2 00.00000E+0 -37.87983E+1 00.00000E+0 00.00000E+0 + -analytic -24.95041E-2 00E+0 -37.87983E+1 00E+0 00E+0 -+1.000Na+ -2.000H+ +1.000H2(PO4)- = NaPO4-2 - log_k -18.07 #97MAR/SMI - -analytic -18.07000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Na+ - 2 H+ + H2(PO4)- = NaPO4-2 + log_k -18.07 #97MAR/SMI + -analytic -18.07E+0 00E+0 00E+0 00E+0 00E+0 -+3.000H+ +1.000Nb(OH)6- -3.000H2O = Nb(OH)3+2 - log_k +7.50 #97PEI/NGU - delta_h -10.230 #kJ/mol 97PEI/NGU -# Enthalpy of formation: -1078.398 kJ/mol - -analytic 57.07781E-1 00.00000E+0 53.43501E+1 00.00000E+0 00.00000E+0 +3 H+ + Nb(OH)6- - 3 H2O = Nb(OH)3+2 + log_k 7.5 #97PEI/NGU + delta_h -10.23 #kJ/mol 97PEI/NGU +# Enthalpy of formation: -1078.398 kJ/mol + -analytic 57.07781E-1 00E+0 53.43501E+1 00E+0 00E+0 -+2.000H+ +1.000Nb(OH)6- -2.000H2O = Nb(OH)4+ - log_k +6.64 #97PEI/NGU - delta_h -35.350 #kJ/mol 97PEI/NGU -# Enthalpy of formation: -1389.348 kJ/mol - -analytic 44.69458E-2 00.00000E+0 18.46459E+2 00.00000E+0 00.00000E+0 +2 H+ + Nb(OH)6- - 2 H2O = Nb(OH)4+ + log_k 6.64 #97PEI/NGU + delta_h -35.35 #kJ/mol 97PEI/NGU +# Enthalpy of formation: -1389.348 kJ/mol + -analytic 44.69458E-2 00E+0 18.46459E+2 00E+0 00E+0 -+1.000H+ +1.000Nb(OH)6- -1.000H2O = Nb(OH)5 - log_k +5.08 #97PEI/NGU - delta_h -13.390 #kJ/mol 97PEI/NGU -# Enthalpy of formation: -1653.218 kJ/mol - -analytic 27.34173E-1 00.00000E+0 69.94084E+1 00.00000E+0 00.00000E+0 +H+ + Nb(OH)6- - H2O = Nb(OH)5 + log_k 5.08 #97PEI/NGU + delta_h -13.39 #kJ/mol 97PEI/NGU +# Enthalpy of formation: -1653.218 kJ/mol + -analytic 27.34173E-1 00E+0 69.94084E+1 00E+0 00E+0 --1.000H+ +1.000Nb(OH)6- +1.000H2O = Nb(OH)7-2 - log_k -8.88 #97PEI/NGU - delta_h +10.170 #kJ/mol 97PEI/NGU -# Enthalpy of formation: -2201.318 kJ/mol - -analytic -70.98292E-1 00.00000E+0 -53.12161E+1 00.00000E+0 00.00000E+0 +- H+ + Nb(OH)6- + H2O = Nb(OH)7-2 + log_k -8.88 #97PEI/NGU + delta_h 10.17 #kJ/mol 97PEI/NGU +# Enthalpy of formation: -2201.318 kJ/mol + -analytic -70.98292E-1 00E+0 -53.12161E+1 00E+0 00E+0 -+5.000H+ +1.000Nb(OH)6- +1.000Cit-3 -4.000H2O = NbO2(H3Cit)+ - log_k +25.64 #95AKR/BOU - -analytic 25.64000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +5 H+ + Nb(OH)6- + Cit-3 - 4 H2O = NbO2(H3Cit)+ + log_k 25.64 #95AKR/BOU + -analytic 25.64E+0 00E+0 00E+0 00E+0 00E+0 -+3.000H+ +1.000Nb(OH)6- +1.000Ox-2 -4.000H2O = NbO2(HOx) - log_k +13.70 #95AKR/BOU - -analytic 13.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +3 H+ + Nb(OH)6- + Ox-2 - 4 H2O = NbO2(HOx) + log_k 13.7 #95AKR/BOU + -analytic 13.7E+0 00E+0 00E+0 00E+0 00E+0 -+4.000H+ +1.000Nb(OH)6- +2.000Ox-2 -4.000H2O = NbO2(HOx)2- - log_k +20.96 #95AKR/BOU - -analytic 20.96000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +4 H+ + Nb(OH)6- + 2 Ox-2 - 4 H2O = NbO2(HOx)2- + log_k 20.96 #95AKR/BOU + -analytic 20.96E+0 00E+0 00E+0 00E+0 00E+0 -+2.000H+ +1.000Nb(OH)6- +1.000Ox-2 -4.000H2O = NbO2(Ox)- - log_k +10.94 #95AKR/BOU - -analytic 10.94000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 H+ + Nb(OH)6- + Ox-2 - 4 H2O = NbO2(Ox)- + log_k 10.94 #95AKR/BOU + -analytic 10.94E+0 00E+0 00E+0 00E+0 00E+0 -+1.000H+ +1.000NH3 = NH4+ - log_k +9.24 - delta_h -52.090 #kJ/mol +H+ + NH3 = NH4+ + log_k 9.24 + delta_h -52.09 #kJ/mol # Enthalpy of formation: -133.260 kJ/mol 92GRE/FUG - -analytic 11.42237E-2 00.00000E+0 27.20850E+2 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +1.000Acetate- = Ni(Acetate)+ - log_k +1.34 #11RIC/GRI - delta_h -8.761 #kJ/mol -# Enthalpy of formation: -549.783 kJ/mol - -analytic -19.48613E-2 00.00000E+0 45.76189E+1 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +1.000Cit-3 = Ni(Cit)- - log_k +6.76 #05HUM/AND - -analytic 67.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +2.000Cit-3 = Ni(Cit)2-4 - log_k +8.50 #05HUM/AND - -analytic 85.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +1.000CO3-2 = Ni(CO3) - log_k +4.20 #03BAE/BRA in 05GAM/BUG - delta_h +3.546 #kJ/mol -# Enthalpy of formation: -726.696 kJ/mol - -analytic 48.21233E-1 00.00000E+0 -18.52205E+1 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +2.000CO3-2 = Ni(CO3)2-2 - log_k +6.20 #03BAE/BRA; Uncertainty 03HUM/CUR - -analytic 62.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +1.000Edta-4 = Ni(Edta)-2 - log_k +20.54 #05HUM/AND - delta_h -26.100 #kJ/mol 05HUM/AND -# Enthalpy of formation: -1785.912 kJ/mol - -analytic 15.96748E+0 00.00000E+0 13.63298E+2 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +2.000H+ +1.000Cit-3 = Ni(H2Cit)+ - log_k +13.19 #05HUM/AND - -analytic 13.19000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +1.000H+ +1.000Cit-3 = Ni(HCit) - log_k +10.52 #05HUM/BER - -analytic 10.52000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +1.000H+ +1.000CO3-2 = Ni(HCO3)+ - log_k +11.73 #03BAE/BRA; Uncertainty 03HUM/CUR - -analytic 11.73000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +1.000H+ +1.000Edta-4 = Ni(HEdta)- - log_k +24.20 #05HUM/AND - -analytic 24.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 -1.000H+ +1.000H2(PO4)- = Ni(HPO4) - log_k -4.16 #05GAM/BUG - -analytic -41.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +2.000HS- = Ni(HS)2 - log_k +11.10 #02HUM/BER - -analytic 11.10000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +1.000Malonate-2 = Ni(Malonate) - log_k +4.39 #13GRI/CAM - -analytic 43.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +2.000Malonate-2 = Ni(Malonate)2-2 - log_k +8.15 #98KHA/RAD - -analytic 81.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +1.000NH3 = Ni(NH3)+2 - log_k +2.61 #70LET - -analytic 26.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +2.000NH3 = Ni(NH3)2+2 - log_k +4.76 #70LET - -analytic 47.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +3.000NH3 = Ni(NH3)3+2 - log_k +6.79 #70LET - -analytic 67.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +4.000NH3 = Ni(NH3)4+2 - log_k +8.34 #70LET - -analytic 83.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +1.000NO3- = Ni(NO3)+ - log_k +0.50 #05GAM/BUG - -analytic 50.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +2.000NO3- = Ni(NO3)2 - log_k -0.60 #76SMI/MAR in 89BAE/McK; Uncertainty is by analogy with Ni(NO3)+ and is preliminary. - -analytic -60.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +1.000Nta-3 = Ni(Nta)- - log_k +12.75 #95AKR/BOU - -analytic 12.75000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +2.000Nta-3 = Ni(Nta)2-4 - log_k +16.95 #95AKR/BOU - -analytic 16.95000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 -1.000H+ +1.000Edta-4 +1.000H2O = Ni(OH)(Edta)-3 - log_k +6.50 #04FEL/QAF - -analytic 65.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 -1.000H+ +1.000HIsa- +1.000H2O = Ni(OH)(HIsa) - log_k -6.50 #18GON/GAO - -analytic -65.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 -1.000H+ +1.000Nta-3 +1.000H2O = Ni(OH)(Nta)-2 - log_k +1.47 #95AKR/BOU - -analytic 14.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 -1.000H+ +1.000H2O = Ni(OH)+ - log_k -9.54 #05GAM/BUG - delta_h +53.800 #kJ/mol 05GAM/BUG -# Enthalpy of formation: -287.042 kJ/mol - -analytic -11.46446E-2 00.00000E+0 -28.10170E+2 00.00000E+0 00.00000E+0 - -+1.000Ni+2 -2.000H+ +2.000H2O = Ni(OH)2 - log_k -18.00 #49GAY/GAR reevaluated in 05GAM/BUG - -analytic -18.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 -2.000H+ +1.000HIsa- +2.000H2O = Ni(OH)2(HIsa)- - log_k -17.60 #18GON/GAO - -analytic -17.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 -3.000H+ +1.000H2(PO4)- +2.000H2O = Ni(OH)2(HPO4)-2 - log_k -23.24 #95LEM - -analytic -23.24000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 -3.000H+ +1.000HIsa- +3.000H2O = Ni(OH)3(HIsa)-2 - log_k -31.00 #18GON/GAO - -analytic -31.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +1.000Ox-2 = Ni(Ox) - log_k +5.19 #05HUM/AND - delta_h +0.000 #kJ/mol 05HUM/AND -# Enthalpy of formation: -885.672 kJ/mol - -analytic 51.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +2.000Ox-2 = Ni(Ox)2-2 - log_k +7.64 #05HUM/AND - delta_h -7.800 #kJ/mol 05HUM/AND -# Enthalpy of formation: -1724.132 kJ/mol - -analytic 62.73499E-1 00.00000E+0 40.74224E+1 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +1.000Phthalat-2 = Ni(Phthalat) - log_k +3.00 #11GRI/COL2 - -analytic 30.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +1.000Pyrophos-4 = Ni(Pyrophos)-2 - log_k +8.73 #05GAM/BUG - -analytic 87.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +1.000S2O3-2 = Ni(S2O3) - log_k +2.06 #51DEU/HEI in 64SIL/MAR - -analytic 20.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +1.000SeO4-2 = Ni(SeO4) - log_k +2.67 #05OLI/NOL - delta_h -0.680 #kJ/mol -# Enthalpy of formation: -659.192 kJ/mol - -analytic 25.50869E-1 00.00000E+0 35.51887E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +1.000SO4-2 = Ni(SO4) - log_k +2.35 #05GAM/BUG - delta_h +5.660 #kJ/mol 05GAM/BUG -# Enthalpy of formation: -958.692 kJ/mol - -analytic 33.41589E-1 00.00000E+0 -29.56424E+1 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +2.000SO4-2 = Ni(SO4)2-2 - log_k +3.01 #89BAE/McK - -analytic 30.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+2.000Ni+2 -1.000H+ +1.000H2O = Ni2(OH)+3 - log_k -10.60 #05GAM/BUG - delta_h +45.900 #kJ/mol 05GAM/BUG -# Enthalpy of formation: -349.954 kJ/mol - -analytic -25.58665E-1 00.00000E+0 -23.97524E+2 00.00000E+0 00.00000E+0 - -+4.000Ni+2 -4.000H+ +4.000H2O = Ni4(OH)4+4 - log_k -27.52 #05GAM/BUG - delta_h +190.000 #kJ/mol 05GAM/BUG -# Enthalpy of formation: -1173.368 kJ/mol - -analytic 57.66571E-1 00.00000E+0 -99.24391E+2 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +1.000Cl- = NiCl+ - log_k +0.08 #05GAM/BUG - -analytic 80.00000E-3 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +1.000F- = NiF+ - log_k +1.43 #05GAM/BUG - delta_h +9.500 #kJ/mol 05GAM/BUG -# Enthalpy of formation: -380.862 kJ/mol - -analytic 30.94329E-1 00.00000E+0 -49.62196E+1 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +1.000H+ +1.000AsO4-3 = NiHAsO4 - log_k +14.50 - -analytic 14.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +1.000H+ +1.000Pyrophos-4 = NiHPyrophos- - log_k +14.54 #05GAM/BUG - -analytic 14.54000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Ni+2 +1.000HS- = NiHS+ - log_k +5.50 #02HUM/BER - -analytic 55.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+4 +1.000Acetate- = Np(Acetate)+3 - log_k +5.83 #12GRI/GAR2 - -analytic 58.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+4 +2.000Acetate- = Np(Acetate)2+2 - log_k +10.00 #11RIC/GRI - -analytic 10.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+3 +1.000CO3-2 = Np(CO3)+ - log_k +7.67 #Estimated by correlation with An(III) in function of ionic radii - delta_h +19.064 #kJ/mol -# Enthalpy of formation: -1183.350 kJ/mol - -analytic 11.00987E+0 00.00000E+0 -99.57821E+1 00.00000E+0 00.00000E+0 - -+1.000Np+3 +2.000CO3-2 = Np(CO3)2- - log_k +12.60 #Estimated by correlation with An(III) in function of ionic radii - -analytic 12.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+3 +3.000CO3-2 = Np(CO3)3-3 - log_k +15.66 #01LEM/FUG - -analytic 15.66000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+4 +4.000CO3-2 = Np(CO3)4-4 - log_k +36.68 #01LEM/FUG - -analytic 36.68000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+4 +5.000CO3-2 = Np(CO3)5-6 - log_k +35.61 #01LEM/FUG - delta_h -1.595 #kJ/mol -# Enthalpy of formation: -3933.768 kJ/mol - -analytic 35.33057E+0 00.00000E+0 83.31265E+0 00.00000E+0 00.00000E+0 - -+1.000Np+4 +1.000Edta-4 = Np(Edta) - log_k +31.20 #05HUM/AND - -analytic 31.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+3 +1.000Edta-4 = Np(Edta)- - log_k +19.90 #Recommended in 05HUM/AND - -analytic 19.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+3 +1.000H2(PO4)- = Np(H2PO4)+2 - log_k +2.39 #Estimated by correlation with An(III) in function of ionic radii. - -analytic 23.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+3 +1.000H+ +1.000Edta-4 = Np(HEdta) - log_k +22.02 #Analogy with Pu(HEdta) - -analytic 22.02000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+3 -1.000H+ +1.000H2(PO4)- = Np(HPO4)+ - log_k -1.88 #Estimated by correlation with An(III) in function of ionic radii - -analytic -18.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+3 -2.000H+ +2.000H2(PO4)- = Np(HPO4)2- - log_k -5.61 #Estimated by correlation with An(III) in function of ionic radii - -analytic -56.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+4 +1.000NO3- = Np(NO3)+3 - log_k +1.90 #01LEM/FUG - -analytic 19.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+3 +1.000Nta-3 = Np(Nta) - log_k +13.00 #95AKR/BOU - -analytic 13.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+4 +1.000Nta-3 = Np(Nta)+ - log_k +20.70 #95AKR/BOU - -analytic 20.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+3 -1.000H+ +1.000H2O = Np(OH)+2 - log_k -6.80 #01LEM/FUG - delta_h +36.997 #kJ/mol -# Enthalpy of formation: -776.017 kJ/mol - -analytic -31.84038E-2 00.00000E+0 -19.32488E+2 00.00000E+0 00.00000E+0 - -+1.000Np+4 -1.000H+ +1.000H2O = Np(OH)+3 - log_k +0.55 #03GUI/FAN - delta_h +26.743 #kJ/mol -# Enthalpy of formation: -815.109 kJ/mol - -analytic 52.35172E-1 00.00000E+0 -13.96884E+2 00.00000E+0 00.00000E+0 - -+1.000Np+4 -2.000H+ +2.000CO3-2 +2.000H2O = Np(OH)2(CO3)2-2 - log_k +16.92 #99RAI/HES2 - -analytic 16.92000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+3 -2.000H+ +2.000H2O = Np(OH)2+ - log_k -17.00 #80ALL/KIP - delta_h +103.262 #kJ/mol -# Enthalpy of formation: -995.582 kJ/mol - -analytic 10.90726E-1 00.00000E+0 -53.93750E+2 00.00000E+0 00.00000E+0 - -+1.000Np+4 -2.000H+ +2.000H2O = Np(OH)2+2 - log_k +0.35 #03GUI/FAN - delta_h +44.742 #kJ/mol -# Enthalpy of formation: -1082.939 kJ/mol - -analytic 81.88462E-1 00.00000E+0 -23.37037E+2 00.00000E+0 00.00000E+0 - -+1.000Np+4 -2.000H+ +1.000Edta-4 +2.000H2O = Np(OH)2Edta-2 - log_k +18.24 #23ROD/COL - -analytic 18.24000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+3 -3.000H+ +3.000H2O = Np(OH)3 - log_k -27.00 #80ALL/KIP - delta_h +159.163 #kJ/mol -# Enthalpy of formation: -1225.510 kJ/mol - -analytic 88.41606E-2 00.00000E+0 -83.13662E+2 00.00000E+0 00.00000E+0 - -+1.000Np+4 -3.000H+ +3.000H2O = Np(OH)3+ - log_k -2.80 #01NEC/KIM, 99NEC - delta_h +70.765 #kJ/mol -# Enthalpy of formation: -1342.745 kJ/mol - -analytic 95.97496E-1 00.00000E+0 -36.96313E+2 00.00000E+0 00.00000E+0 - -+1.000Np+4 -3.000H+ +1.000Edta-4 +3.000H2O = Np(OH)3Edta-3 - log_k +8.62 #23ROD/COL - -analytic 86.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+4 -4.000H+ +4.000H2O = Np(OH)4 - log_k -8.30 #20GRE/GAO - delta_h +100.980 #kJ/mol -# Enthalpy of formation: -1598.360 kJ/mol - -analytic 93.90937E-1 00.00000E+0 -52.74553E+2 00.00000E+0 00.00000E+0 - -+1.000Np+4 -4.000H+ +1.000HGlu- +4.000H2O = Np(OH)4(HGlu)- - log_k -5.89 #Analogy with An(IV)-ISA - -analytic -58.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+4 -4.000H+ +2.000HGlu- +4.000H2O = Np(OH)4(HGlu)2-2 - log_k -3.69 #Analogy with An(IV)-ISA - -analytic -36.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+4 -4.000H+ +1.000HIsa- +4.000H2O = Np(OH)4(HIsa)- - log_k -5.89 #23ROD/COL - -analytic -58.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+4 -4.000H+ +2.000HIsa- +4.000H2O = Np(OH)4(HIsa)2-2 - log_k -3.69 #23ROD/COL - -analytic -36.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+4 -1.000H+ +1.000Edta-4 +1.000H2O = Np(OH)Edta- - log_k +23.73 #23ROD/COL - -analytic 23.73000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+4 +1.000Ox-2 = Np(Ox)+2 - log_k +11.16 #12GRI/GAR2 - -analytic 11.16000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+4 +2.000Ox-2 = Np(Ox)2 - log_k +19.94 #12GRI/GAR2 - -analytic 19.94000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+4 +3.000Ox-2 = Np(Ox)3-2 - log_k +25.19 #12GRI/GAR2 - -analytic 25.19000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+3 -2.000H+ +1.000H2(PO4)- = Np(PO4) - log_k -8.07 #Estimated by correlation with An(III) in function of ionic radii - -analytic -80.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+3 -4.000H+ +2.000H2(PO4)- = Np(PO4)2-3 - log_k -20.03 #Estimated by correlation with An(III) in function of ionic radii - -analytic -20.03000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+3 +1.000SO4-2 = Np(SO4)+ - log_k +3.72 #Estimated by correlation with An(III) in function of ionic radii - delta_h +21.188 #kJ/mol -# Enthalpy of formation: -1415.336 kJ/mol - -analytic 74.31978E-1 00.00000E+0 -11.06726E+2 00.00000E+0 00.00000E+0 - -+1.000Np+4 +1.000SO4-2 = Np(SO4)+2 - log_k +6.85 #01LEM/FUG - delta_h +29.840 #kJ/mol 01LEM/FUG -# Enthalpy of formation: -1435.522 kJ/mol - -analytic 12.07774E+0 00.00000E+0 -15.58652E+2 00.00000E+0 00.00000E+0 - -+1.000Np+4 +2.000SO4-2 = Np(SO4)2 - log_k +11.05 #01LEM/FUG - delta_h +55.380 #kJ/mol 01LEM/FUG -# Enthalpy of formation: -2319.322 kJ/mol - -analytic 20.75216E+0 00.00000E+0 -28.92699E+2 00.00000E+0 00.00000E+0 - -+1.000Np+3 +2.000SO4-2 = Np(SO4)2- - log_k +5.16 #Estimated by correlation with An(III) in function of ionic radii - -analytic 51.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+4 +1.000Br- = NpBr+3 - log_k +1.55 #Estimated by correlation with An(IV) in function of ionic radii - -analytic 15.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+4 +1.000Cl- = NpCl+3 - log_k +1.50 #01LEM/FUG - delta_h +24.173 #kJ/mol -# Enthalpy of formation: -698.928 kJ/mol - -analytic 57.34928E-1 00.00000E+0 -12.62644E+2 00.00000E+0 00.00000E+0 - -+1.000Np+4 +1.000F- = NpF+3 - log_k +8.96 #01LEM/FUG - delta_h +1.500 #kJ/mol 01LEM/FUG -# Enthalpy of formation: -889.872 kJ/mol - -analytic 92.22789E-1 00.00000E+0 -78.35046E+0 00.00000E+0 00.00000E+0 - -+1.000Np+4 +2.000F- = NpF2+2 - log_k +15.70 #01LEM/FUG - delta_h +15.928 #kJ/mol -# Enthalpy of formation: -1210.793 kJ/mol - -analytic 18.49047E+0 00.00000E+0 -83.19774E+1 00.00000E+0 00.00000E+0 - -+1.000Np+4 +3.000F- = NpF3+ - log_k +20.05 #01LEM/FUG - -analytic 20.05000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+4 +4.000F- = NpF4 - log_k +25.95 #01LEM/FUG - -analytic 25.95000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Np+4 +1.000I- = NpI+3 - log_k +1.50 #01LEM/FUG - -analytic 15.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000NpO2+ +1.000Acetate- = NpO2(Acetate) - log_k +1.32 #11RIC/GRI - -analytic 13.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000NpO2+ +2.000Acetate- = NpO2(Acetate)2- - log_k +3.42 #09TAK/TAK - -analytic 34.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000NpO2+ +3.000Acetate- = NpO2(Acetate)3-2 - log_k +3.57 #09TAK/TAK - -analytic 35.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000NpO2+ +1.000Cit-3 = NpO2(Cit)-2 - log_k +3.68 #05HUM/AND - -analytic 36.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000NpO2+ +1.000CO3-2 = NpO2(CO3)- - log_k +4.96 #01LEM/FUG - delta_h +59.912 #kJ/mol -# Enthalpy of formation: -1593.499 kJ/mol - -analytic 15.45613E+0 00.00000E+0 -31.29422E+2 00.00000E+0 00.00000E+0 - -+1.000NpO2+2 -2.000H+ +1.000CO3-2 +2.000H2O = NpO2(CO3)(OH)2-2 - log_k -7.69 #99CHO/BRO - -analytic -76.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000NpO2+2 +2.000CO3-2 = NpO2(CO3)2-2 - log_k +15.00 #Upper limit value in 20GRE/GAO - -analytic 15.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000NpO2+ +2.000CO3-2 = NpO2(CO3)2-3 - log_k +6.53 #01LEM/FUG - delta_h +39.024 #kJ/mol -# Enthalpy of formation: -2289.617 kJ/mol - -analytic 13.36671E+0 00.00000E+0 -20.38365E+2 00.00000E+0 00.00000E+0 - -+1.000NpO2+ -1.000H+ +2.000CO3-2 +1.000H2O = NpO2(CO3)2OH-4 - log_k -5.31 #01LEM/FUG - -analytic -53.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000NpO2+2 +3.000CO3-2 = NpO2(CO3)3-4 - log_k +19.90 #20GRE/GAO - delta_h -41.900 #kJ/mol 01LEM/FUG -# Enthalpy of formation: -2928.323 kJ/mol - -analytic 12.55944E+0 00.00000E+0 21.88589E+2 00.00000E+0 00.00000E+0 - -+1.000NpO2+ +3.000CO3-2 = NpO2(CO3)3-5 - log_k +5.50 - delta_h -13.249 #kJ/mol + -analytic 11.42237E-2 00E+0 27.2085E+2 00E+0 00E+0 + +Ni+2 + Acetate- = Ni(Acetate)+ + log_k 1.34 #11RIC/GRI + delta_h -8.761 #kJ/mol +# Enthalpy of formation: -549.783 kJ/mol + -analytic -19.48613E-2 00E+0 45.76189E+1 00E+0 00E+0 + +Ni+2 + Cit-3 = Ni(Cit)- + log_k 6.76 #05HUM/AND + -analytic 67.6E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + 2 Cit-3 = Ni(Cit)2-4 + log_k 8.5 #05HUM/AND + -analytic 85E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + CO3-2 = Ni(CO3) + log_k 4.2 #03BAE/BRA in 05GAM/BUG + delta_h 3.546 #kJ/mol +# Enthalpy of formation: -726.696 kJ/mol + -analytic 48.21233E-1 00E+0 -18.52205E+1 00E+0 00E+0 + +Ni+2 + 2 CO3-2 = Ni(CO3)2-2 + log_k 6.2 #03BAE/BRA; Uncertainty 03HUM/CUR + -analytic 62E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + Edta-4 = Ni(Edta)-2 + log_k 20.54 #05HUM/AND + delta_h -26.1 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1785.912 kJ/mol + -analytic 15.96748E+0 00E+0 13.63298E+2 00E+0 00E+0 + +Ni+2 + 2 H+ + Cit-3 = Ni(H2Cit)+ + log_k 13.19 #05HUM/AND + -analytic 13.19E+0 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + H+ + Cit-3 = Ni(HCit) + log_k 10.52 #05HUM/BER + -analytic 10.52E+0 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + H+ + CO3-2 = Ni(HCO3)+ + log_k 11.73 #03BAE/BRA; Uncertainty 03HUM/CUR + -analytic 11.73E+0 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + H+ + Edta-4 = Ni(HEdta)- + log_k 24.2 #05HUM/AND + -analytic 24.2E+0 00E+0 00E+0 00E+0 00E+0 + +Ni+2 - H+ + H2(PO4)- = Ni(HPO4) + log_k -4.16 #05GAM/BUG + -analytic -41.6E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + 2 HS- = Ni(HS)2 + log_k 11.1 #02HUM/BER + -analytic 11.1E+0 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + Malonate-2 = Ni(Malonate) + log_k 4.39 #13GRI/CAM + -analytic 43.9E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + 2 Malonate-2 = Ni(Malonate)2-2 + log_k 8.15 #98KHA/RAD + -analytic 81.5E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + NH3 = Ni(NH3)+2 + log_k 2.61 #70LET + -analytic 26.1E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + 2 NH3 = Ni(NH3)2+2 + log_k 4.76 #70LET + -analytic 47.6E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + 3 NH3 = Ni(NH3)3+2 + log_k 6.79 #70LET + -analytic 67.9E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + 4 NH3 = Ni(NH3)4+2 + log_k 8.34 #70LET + -analytic 83.4E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + NO3- = Ni(NO3)+ + log_k 0.5 #05GAM/BUG + -analytic 50E-2 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + 2 NO3- = Ni(NO3)2 + log_k -0.6 #76SMI/MAR in 89BAE/McK; Uncertainty is by analogy with Ni(NO3)+ and is preliminary. + -analytic -60E-2 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + Nta-3 = Ni(Nta)- + log_k 12.75 #95AKR/BOU + -analytic 12.75E+0 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + 2 Nta-3 = Ni(Nta)2-4 + log_k 16.95 #95AKR/BOU + -analytic 16.95E+0 00E+0 00E+0 00E+0 00E+0 + +Ni+2 - H+ + Edta-4 + H2O = Ni(OH)(Edta)-3 + log_k 6.5 #04FEL/QAF + -analytic 65E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 - H+ + HIsa- + H2O = Ni(OH)(HIsa) + log_k -6.5 #18GON/GAO + -analytic -65E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 - H+ + Nta-3 + H2O = Ni(OH)(Nta)-2 + log_k 1.47 #95AKR/BOU + -analytic 14.7E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 - H+ + H2O = Ni(OH)+ + log_k -9.54 #05GAM/BUG + delta_h 53.8 #kJ/mol 05GAM/BUG +# Enthalpy of formation: -287.042 kJ/mol + -analytic -11.46446E-2 00E+0 -28.1017E+2 00E+0 00E+0 + +Ni+2 - 2 H+ + 2 H2O = Ni(OH)2 + log_k -18 #49GAY/GAR reevaluated in 05GAM/BUG + -analytic -18E+0 00E+0 00E+0 00E+0 00E+0 + +Ni+2 - 2 H+ + HIsa- + 2 H2O = Ni(OH)2(HIsa)- + log_k -17.6 #18GON/GAO + -analytic -17.6E+0 00E+0 00E+0 00E+0 00E+0 + +Ni+2 - 3 H+ + H2(PO4)- + 2 H2O = Ni(OH)2(HPO4)-2 + log_k -23.24 #95LEM + -analytic -23.24E+0 00E+0 00E+0 00E+0 00E+0 + +Ni+2 - 3 H+ + HIsa- + 3 H2O = Ni(OH)3(HIsa)-2 + log_k -31 #18GON/GAO + -analytic -31E+0 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + Ox-2 = Ni(Ox) + log_k 5.19 #05HUM/AND + delta_h 0 #kJ/mol 05HUM/AND +# Enthalpy of formation: -885.672 kJ/mol + -analytic 51.9E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + 2 Ox-2 = Ni(Ox)2-2 + log_k 7.64 #05HUM/AND + delta_h -7.8 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1724.132 kJ/mol + -analytic 62.73499E-1 00E+0 40.74224E+1 00E+0 00E+0 + +Ni+2 + Phthalat-2 = Ni(Phthalat) + log_k 3 #11GRI/COL2 + -analytic 30E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + Pyrophos-4 = Ni(Pyrophos)-2 + log_k 8.73 #05GAM/BUG + -analytic 87.3E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + S2O3-2 = Ni(S2O3) + log_k 2.06 #51DEU/HEI in 64SIL/MAR + -analytic 20.6E-1 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + SeO4-2 = Ni(SeO4) + log_k 2.67 #05OLI/NOL + delta_h -0.68 #kJ/mol +# Enthalpy of formation: -659.192 kJ/mol + -analytic 25.50869E-1 00E+0 35.51887E+0 00E+0 00E+0 + +Ni+2 + SO4-2 = Ni(SO4) + log_k 2.35 #05GAM/BUG + delta_h 5.66 #kJ/mol 05GAM/BUG +# Enthalpy of formation: -958.692 kJ/mol + -analytic 33.41589E-1 00E+0 -29.56424E+1 00E+0 00E+0 + +Ni+2 + 2 SO4-2 = Ni(SO4)2-2 + log_k 3.01 #89BAE/McK + -analytic 30.1E-1 00E+0 00E+0 00E+0 00E+0 + +2 Ni+2 - H+ + H2O = Ni2(OH)+3 + log_k -10.6 #05GAM/BUG + delta_h 45.9 #kJ/mol 05GAM/BUG +# Enthalpy of formation: -349.954 kJ/mol + -analytic -25.58665E-1 00E+0 -23.97524E+2 00E+0 00E+0 + +4 Ni+2 - 4 H+ + 4 H2O = Ni4(OH)4+4 + log_k -27.52 #05GAM/BUG + delta_h 190 #kJ/mol 05GAM/BUG +# Enthalpy of formation: -1173.368 kJ/mol + -analytic 57.66571E-1 00E+0 -99.24391E+2 00E+0 00E+0 + +Ni+2 + Cl- = NiCl+ + log_k 0.08 #05GAM/BUG + -analytic 80E-3 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + F- = NiF+ + log_k 1.43 #05GAM/BUG + delta_h 9.5 #kJ/mol 05GAM/BUG +# Enthalpy of formation: -380.862 kJ/mol + -analytic 30.94329E-1 00E+0 -49.62196E+1 00E+0 00E+0 + +Ni+2 + H+ + AsO4-3 = NiHAsO4 + log_k 14.5 + -analytic 14.5E+0 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + H+ + Pyrophos-4 = NiHPyrophos- + log_k 14.54 #05GAM/BUG + -analytic 14.54E+0 00E+0 00E+0 00E+0 00E+0 + +Ni+2 + HS- = NiHS+ + log_k 5.5 #02HUM/BER + -analytic 55E-1 00E+0 00E+0 00E+0 00E+0 + +Np+4 + Acetate- = Np(Acetate)+3 + log_k 5.83 #12GRI/GAR2 + -analytic 58.3E-1 00E+0 00E+0 00E+0 00E+0 + +Np+4 + 2 Acetate- = Np(Acetate)2+2 + log_k 10 #11RIC/GRI + -analytic 10E+0 00E+0 00E+0 00E+0 00E+0 + +Np+3 + CO3-2 = Np(CO3)+ + log_k 7.67 #Estimated by correlation with An(III) in function of ionic radii + delta_h 19.064 #kJ/mol +# Enthalpy of formation: -1183.350 kJ/mol + -analytic 11.00987E+0 00E+0 -99.57821E+1 00E+0 00E+0 + +Np+3 + 2 CO3-2 = Np(CO3)2- + log_k 12.6 #Estimated by correlation with An(III) in function of ionic radii + -analytic 12.6E+0 00E+0 00E+0 00E+0 00E+0 + +Np+3 + 3 CO3-2 = Np(CO3)3-3 + log_k 15.66 #01LEM/FUG + -analytic 15.66E+0 00E+0 00E+0 00E+0 00E+0 + +Np+4 + 4 CO3-2 = Np(CO3)4-4 + log_k 36.68 #01LEM/FUG + -analytic 36.68E+0 00E+0 00E+0 00E+0 00E+0 + +Np+4 + 5 CO3-2 = Np(CO3)5-6 + log_k 35.61 #01LEM/FUG + delta_h -1.595 #kJ/mol +# Enthalpy of formation: -3933.768 kJ/mol + -analytic 35.33057E+0 00E+0 83.31265E+0 00E+0 00E+0 + +Np+4 + Edta-4 = Np(Edta) + log_k 31.2 #05HUM/AND + -analytic 31.2E+0 00E+0 00E+0 00E+0 00E+0 + +Np+3 + Edta-4 = Np(Edta)- + log_k 19.9 #Recommended in 05HUM/AND + -analytic 19.9E+0 00E+0 00E+0 00E+0 00E+0 + +Np+3 + H2(PO4)- = Np(H2PO4)+2 + log_k 2.39 #Estimated by correlation with An(III) in function of ionic radii. + -analytic 23.9E-1 00E+0 00E+0 00E+0 00E+0 + +Np+3 + H+ + Edta-4 = Np(HEdta) + log_k 22.02 #Analogy with Pu(HEdta) + -analytic 22.02E+0 00E+0 00E+0 00E+0 00E+0 + +Np+3 - H+ + H2(PO4)- = Np(HPO4)+ + log_k -1.88 #Estimated by correlation with An(III) in function of ionic radii + -analytic -18.8E-1 00E+0 00E+0 00E+0 00E+0 + +Np+3 - 2 H+ + 2 H2(PO4)- = Np(HPO4)2- + log_k -5.61 #Estimated by correlation with An(III) in function of ionic radii + -analytic -56.1E-1 00E+0 00E+0 00E+0 00E+0 + +Np+4 + NO3- = Np(NO3)+3 + log_k 1.9 #01LEM/FUG + -analytic 19E-1 00E+0 00E+0 00E+0 00E+0 + +Np+3 + Nta-3 = Np(Nta) + log_k 13 #95AKR/BOU + -analytic 13E+0 00E+0 00E+0 00E+0 00E+0 + +Np+4 + Nta-3 = Np(Nta)+ + log_k 20.7 #95AKR/BOU + -analytic 20.7E+0 00E+0 00E+0 00E+0 00E+0 + +Np+3 - H+ + H2O = Np(OH)+2 + log_k -6.8 #01LEM/FUG + delta_h 36.997 #kJ/mol +# Enthalpy of formation: -776.017 kJ/mol + -analytic -31.84038E-2 00E+0 -19.32488E+2 00E+0 00E+0 + +Np+4 - H+ + H2O = Np(OH)+3 + log_k 0.55 #03GUI/FAN + delta_h 26.743 #kJ/mol +# Enthalpy of formation: -815.109 kJ/mol + -analytic 52.35172E-1 00E+0 -13.96884E+2 00E+0 00E+0 + +Np+4 - 2 H+ + 2 CO3-2 + 2 H2O = Np(OH)2(CO3)2-2 + log_k 16.92 #99RAI/HES2 + -analytic 16.92E+0 00E+0 00E+0 00E+0 00E+0 + +Np+3 - 2 H+ + 2 H2O = Np(OH)2+ + log_k -17 #80ALL/KIP + delta_h 103.262 #kJ/mol +# Enthalpy of formation: -995.582 kJ/mol + -analytic 10.90726E-1 00E+0 -53.9375E+2 00E+0 00E+0 + +Np+4 - 2 H+ + 2 H2O = Np(OH)2+2 + log_k 0.35 #03GUI/FAN + delta_h 44.742 #kJ/mol +# Enthalpy of formation: -1082.939 kJ/mol + -analytic 81.88462E-1 00E+0 -23.37037E+2 00E+0 00E+0 + +Np+4 - 2 H+ + Edta-4 + 2 H2O = Np(OH)2Edta-2 + log_k 18.24 #23ROD/COL + -analytic 18.24E+0 00E+0 00E+0 00E+0 00E+0 + +Np+3 - 3 H+ + 3 H2O = Np(OH)3 + log_k -27 #80ALL/KIP + delta_h 159.163 #kJ/mol +# Enthalpy of formation: -1225.510 kJ/mol + -analytic 88.41606E-2 00E+0 -83.13662E+2 00E+0 00E+0 + +Np+4 - 3 H+ + 3 H2O = Np(OH)3+ + log_k -2.8 #01NEC/KIM, 99NEC + delta_h 70.765 #kJ/mol +# Enthalpy of formation: -1342.745 kJ/mol + -analytic 95.97496E-1 00E+0 -36.96313E+2 00E+0 00E+0 + +Np+4 - 3 H+ + Edta-4 + 3 H2O = Np(OH)3Edta-3 + log_k 8.62 #23ROD/COL + -analytic 86.2E-1 00E+0 00E+0 00E+0 00E+0 + +Np+4 - 4 H+ + 4 H2O = Np(OH)4 + log_k -8.3 #20GRE/GAO + delta_h 100.98 #kJ/mol +# Enthalpy of formation: -1598.360 kJ/mol + -analytic 93.90937E-1 00E+0 -52.74553E+2 00E+0 00E+0 + +Np+4 - 4 H+ + HGlu- + 4 H2O = Np(OH)4(HGlu)- + log_k -5.89 #Analogy with An(IV)-ISA + -analytic -58.9E-1 00E+0 00E+0 00E+0 00E+0 + +Np+4 - 4 H+ + 2 HGlu- + 4 H2O = Np(OH)4(HGlu)2-2 + log_k -3.69 #Analogy with An(IV)-ISA + -analytic -36.9E-1 00E+0 00E+0 00E+0 00E+0 + +Np+4 - 4 H+ + HIsa- + 4 H2O = Np(OH)4(HIsa)- + log_k -5.89 #23ROD/COL + -analytic -58.9E-1 00E+0 00E+0 00E+0 00E+0 + +Np+4 - 4 H+ + 2 HIsa- + 4 H2O = Np(OH)4(HIsa)2-2 + log_k -3.69 #23ROD/COL + -analytic -36.9E-1 00E+0 00E+0 00E+0 00E+0 + +Np+4 - H+ + Edta-4 + H2O = Np(OH)Edta- + log_k 23.73 #23ROD/COL + -analytic 23.73E+0 00E+0 00E+0 00E+0 00E+0 + +Np+4 + Ox-2 = Np(Ox)+2 + log_k 11.16 #12GRI/GAR2 + -analytic 11.16E+0 00E+0 00E+0 00E+0 00E+0 + +Np+4 + 2 Ox-2 = Np(Ox)2 + log_k 19.94 #12GRI/GAR2 + -analytic 19.94E+0 00E+0 00E+0 00E+0 00E+0 + +Np+4 + 3 Ox-2 = Np(Ox)3-2 + log_k 25.19 #12GRI/GAR2 + -analytic 25.19E+0 00E+0 00E+0 00E+0 00E+0 + +Np+3 - 2 H+ + H2(PO4)- = Np(PO4) + log_k -8.07 #Estimated by correlation with An(III) in function of ionic radii + -analytic -80.7E-1 00E+0 00E+0 00E+0 00E+0 + +Np+3 - 4 H+ + 2 H2(PO4)- = Np(PO4)2-3 + log_k -20.03 #Estimated by correlation with An(III) in function of ionic radii + -analytic -20.03E+0 00E+0 00E+0 00E+0 00E+0 + +Np+3 + SO4-2 = Np(SO4)+ + log_k 3.72 #Estimated by correlation with An(III) in function of ionic radii + delta_h 21.188 #kJ/mol +# Enthalpy of formation: -1415.336 kJ/mol + -analytic 74.31978E-1 00E+0 -11.06726E+2 00E+0 00E+0 + +Np+4 + SO4-2 = Np(SO4)+2 + log_k 6.85 #01LEM/FUG + delta_h 29.84 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -1435.522 kJ/mol + -analytic 12.07774E+0 00E+0 -15.58652E+2 00E+0 00E+0 + +Np+4 + 2 SO4-2 = Np(SO4)2 + log_k 11.05 #01LEM/FUG + delta_h 55.38 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -2319.322 kJ/mol + -analytic 20.75216E+0 00E+0 -28.92699E+2 00E+0 00E+0 + +Np+3 + 2 SO4-2 = Np(SO4)2- + log_k 5.16 #Estimated by correlation with An(III) in function of ionic radii + -analytic 51.6E-1 00E+0 00E+0 00E+0 00E+0 + +Np+4 + Br- = NpBr+3 + log_k 1.55 #Estimated by correlation with An(IV) in function of ionic radii + -analytic 15.5E-1 00E+0 00E+0 00E+0 00E+0 + +Np+4 + Cl- = NpCl+3 + log_k 1.5 #01LEM/FUG + delta_h 24.173 #kJ/mol +# Enthalpy of formation: -698.928 kJ/mol + -analytic 57.34928E-1 00E+0 -12.62644E+2 00E+0 00E+0 + +Np+4 + F- = NpF+3 + log_k 8.96 #01LEM/FUG + delta_h 1.5 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -889.872 kJ/mol + -analytic 92.22789E-1 00E+0 -78.35046E+0 00E+0 00E+0 + +Np+4 + 2 F- = NpF2+2 + log_k 15.7 #01LEM/FUG + delta_h 15.928 #kJ/mol +# Enthalpy of formation: -1210.793 kJ/mol + -analytic 18.49047E+0 00E+0 -83.19774E+1 00E+0 00E+0 + +Np+4 + 3 F- = NpF3+ + log_k 20.05 #01LEM/FUG + -analytic 20.05E+0 00E+0 00E+0 00E+0 00E+0 + +Np+4 + 4 F- = NpF4 + log_k 25.95 #01LEM/FUG + -analytic 25.95E+0 00E+0 00E+0 00E+0 00E+0 + +Np+4 + I- = NpI+3 + log_k 1.5 #01LEM/FUG + -analytic 15E-1 00E+0 00E+0 00E+0 00E+0 + +NpO2+ + Acetate- = NpO2(Acetate) + log_k 1.32 #11RIC/GRI + -analytic 13.2E-1 00E+0 00E+0 00E+0 00E+0 + +NpO2+ + 2 Acetate- = NpO2(Acetate)2- + log_k 3.42 #09TAK/TAK + -analytic 34.2E-1 00E+0 00E+0 00E+0 00E+0 + +NpO2+ + 3 Acetate- = NpO2(Acetate)3-2 + log_k 3.57 #09TAK/TAK + -analytic 35.7E-1 00E+0 00E+0 00E+0 00E+0 + +NpO2+ + Cit-3 = NpO2(Cit)-2 + log_k 3.68 #05HUM/AND + -analytic 36.8E-1 00E+0 00E+0 00E+0 00E+0 + +NpO2+ + CO3-2 = NpO2(CO3)- + log_k 4.96 #01LEM/FUG + delta_h 59.912 #kJ/mol +# Enthalpy of formation: -1593.499 kJ/mol + -analytic 15.45613E+0 00E+0 -31.29422E+2 00E+0 00E+0 + +NpO2+2 - 2 H+ + CO3-2 + 2 H2O = NpO2(CO3)(OH)2-2 + log_k -7.69 #99CHO/BRO + -analytic -76.9E-1 00E+0 00E+0 00E+0 00E+0 + +NpO2+2 + 2 CO3-2 = NpO2(CO3)2-2 + log_k 15 #Upper limit value in 20GRE/GAO + -analytic 15E+0 00E+0 00E+0 00E+0 00E+0 + +NpO2+ + 2 CO3-2 = NpO2(CO3)2-3 + log_k 6.53 #01LEM/FUG + delta_h 39.024 #kJ/mol +# Enthalpy of formation: -2289.617 kJ/mol + -analytic 13.36671E+0 00E+0 -20.38365E+2 00E+0 00E+0 + +NpO2+ - H+ + 2 CO3-2 + H2O = NpO2(CO3)2OH-4 + log_k -5.31 #01LEM/FUG + -analytic -53.1E-1 00E+0 00E+0 00E+0 00E+0 + +NpO2+2 + 3 CO3-2 = NpO2(CO3)3-4 + log_k 19.9 #20GRE/GAO + delta_h -41.9 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -2928.323 kJ/mol + -analytic 12.55944E+0 00E+0 21.88589E+2 00E+0 00E+0 + +NpO2+ + 3 CO3-2 = NpO2(CO3)3-5 + log_k 5.5 + delta_h -13.249 #kJ/mol # Enthalpy of formation: -3017.120 kJ/mol 01LEM/FUG - -analytic 31.78875E-1 00.00000E+0 69.20435E+1 00.00000E+0 00.00000E+0 + -analytic 31.78875E-1 00E+0 69.20435E+1 00E+0 00E+0 -+1.000NpO2+ +1.000Edta-4 = NpO2(Edta)-3 - log_k +9.23 #05HUM/AND - -analytic 92.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +NpO2+ + Edta-4 = NpO2(Edta)-3 + log_k 9.23 #05HUM/AND + -analytic 92.3E-1 00E+0 00E+0 00E+0 00E+0 -+1.000NpO2+ +2.000H+ +1.000Edta-4 = NpO2(H2Edta)- - log_k +22.51 #05HUM/AND - -analytic 22.51000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +NpO2+ + 2 H+ + Edta-4 = NpO2(H2Edta)- + log_k 22.51 #05HUM/AND + -analytic 22.51E+0 00E+0 00E+0 00E+0 00E+0 -+1.000NpO2+ +1.000H2(PO4)- = NpO2(H2PO4) - log_k +1.40 #20GRE/GAO - -analytic 14.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +NpO2+ + H2(PO4)- = NpO2(H2PO4) + log_k 1.4 #20GRE/GAO + -analytic 14E-1 00E+0 00E+0 00E+0 00E+0 -+1.000NpO2+ +1.000H+ +1.000Edta-4 = NpO2(HEdta)-2 - log_k +17.06 #05HUM/AND - -analytic 17.06000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +NpO2+ + H+ + Edta-4 = NpO2(HEdta)-2 + log_k 17.06 #05HUM/AND + -analytic 17.06E+0 00E+0 00E+0 00E+0 00E+0 -+1.000NpO2+ +1.000HGlu- = NpO2(HGlu) - log_k +1.68 #06ZHA/CLA - -analytic 16.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +NpO2+ + HGlu- = NpO2(HGlu) + log_k 1.68 #06ZHA/CLA + -analytic 16.8E-1 00E+0 00E+0 00E+0 00E+0 -+1.000NpO2+ +2.000HGlu- = NpO2(HGlu)2- - log_k +2.39 #06ZHA/CLA - -analytic 23.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +NpO2+ + 2 HGlu- = NpO2(HGlu)2- + log_k 2.39 #06ZHA/CLA + -analytic 23.9E-1 00E+0 00E+0 00E+0 00E+0 -+1.000NpO2+ +1.000H+ +1.000Nta-3 = NpO2(HNta)- - log_k +11.70 #95AKR/BOU - -analytic 11.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +NpO2+ + H+ + Nta-3 = NpO2(HNta)- + log_k 11.7 #95AKR/BOU + -analytic 11.7E+0 00E+0 00E+0 00E+0 00E+0 -+1.000NpO2+2 -1.000H+ +1.000H2(PO4)- = NpO2(HPO4) - log_k -1.01 #01LEM/FUG - delta_h +92.195 #kJ/mol -# Enthalpy of formation: -2071.137 kJ/mol - -analytic 15.14187E+0 00.00000E+0 -48.15680E+2 00.00000E+0 00.00000E+0 +NpO2+2 - H+ + H2(PO4)- = NpO2(HPO4) + log_k -1.01 #01LEM/FUG + delta_h 92.195 #kJ/mol +# Enthalpy of formation: -2071.137 kJ/mol + -analytic 15.14187E+0 00E+0 -48.1568E+2 00E+0 00E+0 -+1.000NpO2+ -1.000H+ +1.000H2(PO4)- = NpO2(HPO4)- - log_k -4.26 #20GRE/GAO - delta_h -7.400 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -2288.181 kJ/mol - -analytic -55.56424E-1 00.00000E+0 38.65289E+1 00.00000E+0 00.00000E+0 +NpO2+ - H+ + H2(PO4)- = NpO2(HPO4)- + log_k -4.26 #20GRE/GAO + delta_h -7.4 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2288.181 kJ/mol + -analytic -55.56424E-1 00E+0 38.65289E+1 00E+0 00E+0 -+1.000NpO2+2 -2.000H+ +2.000H2(PO4)- = NpO2(HPO4)2-2 - log_k -4.92 #01LEM/FUG - -analytic -49.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +NpO2+2 - 2 H+ + 2 H2(PO4)- = NpO2(HPO4)2-2 + log_k -4.92 #01LEM/FUG + -analytic -49.2E-1 00E+0 00E+0 00E+0 00E+0 -+1.000NpO2+2 +1.000NO3- = NpO2(NO3)+ - log_k +0.10 #12GRI/GAR2 in analogy to UO2(NO3)+ - -analytic 10.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +NpO2+2 + NO3- = NpO2(NO3)+ + log_k 0.1 #12GRI/GAR2 in analogy to UO2(NO3)+ + -analytic 10E-2 00E+0 00E+0 00E+0 00E+0 -+1.000NpO2+ +1.000Nta-3 = NpO2(Nta)-2 - log_k +7.46 #95AKR/BOU - -analytic 74.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +NpO2+ + Nta-3 = NpO2(Nta)-2 + log_k 7.46 #95AKR/BOU + -analytic 74.6E-1 00E+0 00E+0 00E+0 00E+0 -+1.000NpO2+ -1.000H+ +1.000H2O = NpO2(OH) - log_k -11.30 #01LEM/FUG - delta_h +64.785 #kJ/mol -# Enthalpy of formation: -1199.226 kJ/mol - -analytic 49.84480E-3 00.00000E+0 -33.83956E+2 00.00000E+0 00.00000E+0 +NpO2+ - H+ + H2O = NpO2(OH) + log_k -11.3 #01LEM/FUG + delta_h 64.785 #kJ/mol +# Enthalpy of formation: -1199.226 kJ/mol + -analytic 49.8448E-3 00E+0 -33.83956E+2 00E+0 00E+0 -+1.000NpO2+2 -1.000H+ +1.000H2O = NpO2(OH)+ - log_k -5.10 #01LEM/FUG - delta_h +42.956 #kJ/mol -# Enthalpy of formation: -1103.606 kJ/mol - -analytic 24.25568E-1 00.00000E+0 -22.43748E+2 00.00000E+0 00.00000E+0 +NpO2+2 - H+ + H2O = NpO2(OH)+ + log_k -5.1 #01LEM/FUG + delta_h 42.956 #kJ/mol +# Enthalpy of formation: -1103.606 kJ/mol + -analytic 24.25568E-1 00E+0 -22.43748E+2 00E+0 00E+0 -+1.000NpO2+2 -2.000H+ +2.000H2O = NpO2(OH)2 - log_k -12.21 #Estimated by correlation with An(VI) in funciton of ionic radii - -analytic -12.21000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +NpO2+2 - 2 H+ + 2 H2O = NpO2(OH)2 + log_k -12.21 #Estimated by correlation with An(VI) in funciton of ionic radii + -analytic -12.21E+0 00E+0 00E+0 00E+0 00E+0 -+1.000NpO2+ -2.000H+ +2.000H2O = NpO2(OH)2- - log_k -23.60 #01LEM/FUG - delta_h +118.610 #kJ/mol -# Enthalpy of formation: -1431.230 kJ/mol - -analytic -28.20420E-1 00.00000E+0 -61.95432E+2 00.00000E+0 00.00000E+0 +NpO2+ - 2 H+ + 2 H2O = NpO2(OH)2- + log_k -23.6 #01LEM/FUG + delta_h 118.61 #kJ/mol +# Enthalpy of formation: -1431.230 kJ/mol + -analytic -28.2042E-1 00E+0 -61.95432E+2 00E+0 00E+0 -+1.000NpO2+2 -3.000H+ +3.000H2O = NpO2(OH)3- - log_k -21.20 #20GRE/GAO - -analytic -21.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +NpO2+2 - 3 H+ + 3 H2O = NpO2(OH)3- + log_k -21.2 #20GRE/GAO + -analytic -21.2E+0 00E+0 00E+0 00E+0 00E+0 -+1.000NpO2+2 -4.000H+ +4.000H2O = NpO2(OH)4-2 - log_k -32.00 #20GRE/GAO - -analytic -32.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +NpO2+2 - 4 H+ + 4 H2O = NpO2(OH)4-2 + log_k -32 #20GRE/GAO + -analytic -32E+0 00E+0 00E+0 00E+0 00E+0 -+1.000NpO2+ +1.000Ox-2 = NpO2(Ox)- - log_k +3.90 #05HUM/AND - delta_h -1.300 #kJ/mol 20MAI/TRU -# Enthalpy of formation: -1810.141 kJ/mol - -analytic 36.72250E-1 00.00000E+0 67.90373E+0 00.00000E+0 00.00000E+0 +NpO2+ + Ox-2 = NpO2(Ox)- + log_k 3.9 #05HUM/AND + delta_h -1.3 #kJ/mol 20MAI/TRU +# Enthalpy of formation: -1810.141 kJ/mol + -analytic 36.7225E-1 00E+0 67.90373E+0 00E+0 00E+0 -+1.000NpO2+ +2.000Ox-2 = NpO2(Ox)2-3 - log_k +5.80 #05HUM/AND - delta_h -8.700 #kJ/mol 20MAI/TRU -# Enthalpy of formation: -2648.201 kJ/mol - -analytic 42.75825E-1 00.00000E+0 45.44326E+1 00.00000E+0 00.00000E+0 +NpO2+ + 2 Ox-2 = NpO2(Ox)2-3 + log_k 5.8 #05HUM/AND + delta_h -8.7 #kJ/mol 20MAI/TRU +# Enthalpy of formation: -2648.201 kJ/mol + -analytic 42.75825E-1 00E+0 45.44326E+1 00E+0 00E+0 -+1.000NpO2+2 +1.000SO4-2 = NpO2(SO4) - log_k +3.28 #01LEM/FUG - delta_h +16.700 #kJ/mol 01LEM/FUG -# Enthalpy of formation: -1753.373 kJ/mol - -analytic 62.05714E-1 00.00000E+0 -87.23018E+1 00.00000E+0 00.00000E+0 +NpO2+2 + SO4-2 = NpO2(SO4) + log_k 3.28 #01LEM/FUG + delta_h 16.7 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -1753.373 kJ/mol + -analytic 62.05714E-1 00E+0 -87.23018E+1 00E+0 00E+0 -+1.000NpO2+ +1.000SO4-2 = NpO2(SO4)- - log_k +1.30 #20GRE/GAO - delta_h +22.000 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -1865.521 kJ/mol - -analytic 51.54235E-1 00.00000E+0 -11.49140E+2 00.00000E+0 00.00000E+0 +NpO2+ + SO4-2 = NpO2(SO4)- + log_k 1.3 #20GRE/GAO + delta_h 22 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1865.521 kJ/mol + -analytic 51.54235E-1 00E+0 -11.4914E+2 00E+0 00E+0 -+1.000NpO2+2 +2.000SO4-2 = NpO2(SO4)2-2 - log_k +4.70 #01LEM/FUG - delta_h +26.000 #kJ/mol 01LEM/FUG -# Enthalpy of formation: -2653.413 kJ/mol - -analytic 92.55004E-1 00.00000E+0 -13.58075E+2 00.00000E+0 00.00000E+0 +NpO2+2 + 2 SO4-2 = NpO2(SO4)2-2 + log_k 4.7 #01LEM/FUG + delta_h 26 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -2653.413 kJ/mol + -analytic 92.55004E-1 00E+0 -13.58075E+2 00E+0 00E+0 -+1.000NpO2+ +1.000Cl- = NpO2Cl - log_k -0.93 #94NEC/KIM - delta_h +25.971 #kJ/mol -# Enthalpy of formation: -1119.289 kJ/mol - -analytic 36.19924E-1 00.00000E+0 -13.56560E+2 00.00000E+0 00.00000E+0 +NpO2+ + Cl- = NpO2Cl + log_k -0.93 #94NEC/KIM + delta_h 25.971 #kJ/mol +# Enthalpy of formation: -1119.289 kJ/mol + -analytic 36.19924E-1 00E+0 -13.5656E+2 00E+0 00E+0 -+1.000NpO2+2 +1.000Cl- = NpO2Cl+ - log_k +0.40 #01LEM/FUG - delta_h +8.387 #kJ/mol -# Enthalpy of formation: -1019.426 kJ/mol - -analytic 18.69339E-1 00.00000E+0 -43.80835E+1 00.00000E+0 00.00000E+0 +NpO2+2 + Cl- = NpO2Cl+ + log_k 0.4 #01LEM/FUG + delta_h 8.387 #kJ/mol +# Enthalpy of formation: -1019.426 kJ/mol + -analytic 18.69339E-1 00E+0 -43.80835E+1 00E+0 00E+0 -+1.000NpO2+2 +1.000CO3-2 = NpO2CO3 - log_k +9.86 #20GRE/GAO - -analytic 98.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +NpO2+2 + CO3-2 = NpO2CO3 + log_k 9.86 #20GRE/GAO + -analytic 98.6E-1 00E+0 00E+0 00E+0 00E+0 -+1.000NpO2+ +1.000F- = NpO2F - log_k +1.40 #20GRE/GAO - -analytic 14.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +NpO2+ + F- = NpO2F + log_k 1.4 #20GRE/GAO + -analytic 14E-1 00E+0 00E+0 00E+0 00E+0 -+1.000NpO2+2 +1.000F- = NpO2F+ - log_k +4.57 #01LEM/FUG - delta_h +1.400 #kJ/mol -# Enthalpy of formation: -1194.682 kJ/mol - -analytic 48.15269E-1 00.00000E+0 -73.12709E+0 00.00000E+0 00.00000E+0 +NpO2+2 + F- = NpO2F+ + log_k 4.57 #01LEM/FUG + delta_h 1.4 #kJ/mol +# Enthalpy of formation: -1194.682 kJ/mol + -analytic 48.15269E-1 00E+0 -73.12709E+0 00E+0 00E+0 -+1.000NpO2+2 +2.000F- = NpO2F2 - log_k +7.60 #01LEM/FUG - delta_h +4.320 #kJ/mol -# Enthalpy of formation: -1527.113 kJ/mol - -analytic 83.56832E-1 00.00000E+0 -22.56493E+1 00.00000E+0 00.00000E+0 +NpO2+2 + 2 F- = NpO2F2 + log_k 7.6 #01LEM/FUG + delta_h 4.32 #kJ/mol +# Enthalpy of formation: -1527.113 kJ/mol + -analytic 83.56832E-1 00E+0 -22.56493E+1 00E+0 00E+0 -+1.000NpO2+ +2.000F- = NpO2F2- - log_k +1.90 #20GRE/GAO - -analytic 19.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +NpO2+ + 2 F- = NpO2F2- + log_k 1.9 #20GRE/GAO + -analytic 19E-1 00E+0 00E+0 00E+0 00E+0 -+1.000NpO2+2 +1.000H2(PO4)- = NpO2H2PO4+ - log_k +3.32 #01LEM/FUG - -analytic 33.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +NpO2+2 + H2(PO4)- = NpO2H2PO4+ + log_k 3.32 #01LEM/FUG + -analytic 33.2E-1 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000H2O = OH- - log_k -14.00 - delta_h +55.815 #kJ/mol +- H+ + H2O = OH- + log_k -14 + delta_h 55.815 #kJ/mol # Enthalpy of formation: -230.015 kJ/mol 89COX/WAG - -analytic -42.21632E-1 00.00000E+0 -29.15420E+2 00.00000E+0 00.00000E+0 - --1.000H+ +1.000Pa+4 +1.000H2O = Pa(OH)+3 - log_k +0.84 #76BAE/MES - -analytic 84.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --2.000H+ +1.000Pa+4 +2.000H2O = Pa(OH)2+2 - log_k -0.02 #76BAE/MES - -analytic -20.00000E-3 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --3.000H+ +1.000Pa+4 +3.000H2O = Pa(OH)3+ - log_k -1.50 #76BAE/MES - -analytic -15.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000H+ +1.000PaO2+ = PaO(OH)+2 - log_k +1.25 #Original data 03TRU/LEN and 04FOU/PER - delta_h -5.700 #kJ/mol 03TRU/LEN - -analytic 25.14029E-2 00.00000E+0 29.77317E+1 00.00000E+0 00.00000E+0 - -+2.000H+ +1.000SO4-2 +1.000PaO2+ -1.000H2O = PaO(SO4)+ - log_k +5.13 #07GIA/TRU - -analytic 51.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+2.000H+ +2.000SO4-2 +1.000PaO2+ -1.000H2O = PaO(SO4)2- - log_k +8.24 #07GIA/TRU - -analytic 82.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+2.000H+ +3.000SO4-2 +1.000PaO2+ -1.000H2O = PaO(SO4)3-3 - log_k +9.83 #07GIA/TRU - -analytic 98.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --1.000H+ +1.000PaO2+ +1.000H2O = PaO2(OH) - log_k -7.00 #Original data 03TRU/LEN and 04FOU/PER - delta_h +61.000 #kJ/mol 03TRU/LEN - -analytic 36.86741E-1 00.00000E+0 -31.86252E+2 00.00000E+0 00.00000E+0 - --2.000H+ +1.000PaO2+ +2.000H2O = PaO2(OH)2- - log_k -16.40 #04FOU/PER - -analytic -16.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +1.000B(OH)4- = Pb(B(OH)4)+ - log_k +5.20 #80BAS - -analytic 52.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +3.000B(OH)4- = Pb(B(OH)4)3- - log_k +11.18 #80BAS - -analytic 11.18000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +1.000CO3-2 = Pb(CO3) - log_k +7.00 #06BLA/PIA - delta_h -3.015 #kJ/mol -# Enthalpy of formation: -677.326 kJ/mol - -analytic 64.71795E-1 00.00000E+0 15.74844E+1 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +2.000CO3-2 = Pb(CO3)2-2 - log_k +10.13 #99LOT/OCH; Uncertainty to include available data. - -analytic 10.13000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +1.000Edta-4 = Pb(Edta)-2 - log_k +18.80 #04MAR/SMI - -analytic 18.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +2.000H+ +1.000Edta-4 = Pb(H2Edta) - log_k +24.90 #04MAR/SMI - -analytic 24.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +1.000H2(PO4)- = Pb(H2PO4)+ - log_k +1.50 #74NRI - -analytic 15.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +1.000H+ +1.000Edta-4 = Pb(HEdta)- - log_k +23.00 #04MAR/SMI - -analytic 23.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +2.000HS- = Pb(HS)2 - log_k +15.01 #06BLA/PIA; Uncertainty to include available data. - delta_h -65.579 #kJ/mol -# Enthalpy of formation: -97.259 kJ/mol - -analytic 35.21052E-1 00.00000E+0 34.25430E+2 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +3.000HS- = Pb(HS)3- - log_k +16.26 #06BLA/PIA; Uncertainty to include available data. - delta_h -73.329 #kJ/mol -# Enthalpy of formation: -121.309 kJ/mol - -analytic 34.13311E-1 00.00000E+0 38.30240E+2 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +1.000NO3- = Pb(NO3)+ - log_k +1.06 #99LOT/OCH - -analytic 10.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +2.000NO3- = Pb(NO3)2 - log_k +1.48 #99LOT/OCH - delta_h -11.012 #kJ/mol -# Enthalpy of formation: -423.792 kJ/mol - -analytic -44.92196E-2 00.00000E+0 57.51968E+1 00.00000E+0 00.00000E+0 - -+1.000Pb+2 -1.000H+ +1.000H2O = Pb(OH)+ - log_k -7.51 #99LOT/OCH; Uncertainty to include available data. - delta_h +53.920 #kJ/mol -# Enthalpy of formation: -230.990 kJ/mol - -analytic 19.36379E-1 00.00000E+0 -28.16438E+2 00.00000E+0 00.00000E+0 - -+1.000Pb+2 -2.000H+ +2.000H2O = Pb(OH)2 - log_k -16.95 #99LOT/OCH; Uncertainty to include available data. - delta_h +97.824 #kJ/mol -# Enthalpy of formation: -472.915 kJ/mol - -analytic 18.80291E-2 00.00000E+0 -51.09703E+2 00.00000E+0 00.00000E+0 - -+1.000Pb+2 -3.000H+ +3.000H2O = Pb(OH)3- - log_k -27.20 #01PER/HEF - delta_h +130.485 #kJ/mol -# Enthalpy of formation: -726.085 kJ/mol - -analytic -43.40009E-1 00.00000E+0 -68.15706E+2 00.00000E+0 00.00000E+0 - -+1.000Pb+2 -4.000H+ +4.000H2O = Pb(OH)4-2 - log_k -38.90 #01PER/HEF - delta_h +197.474 #kJ/mol -# Enthalpy of formation: -944.925 kJ/mol - -analytic -43.04040E-1 00.00000E+0 -10.31479E+3 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +1.000Ox-2 = Pb(Ox) - log_k +5.85 #13XIO/KIR - -analytic 58.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +2.000Ox-2 = Pb(Ox)2-2 - log_k +8.05 #13XIO/KIR - -analytic 80.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +1.000SeO3-2 = Pb(SeO3) - log_k +5.73 #01SEB/POT2 - -analytic 57.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +1.000SO4-2 = Pb(SO4) - log_k +2.82 #99LOT/OCH; Uncertainty to include available data. - delta_h +6.861 #kJ/mol -# Enthalpy of formation: -901.559 kJ/mol - -analytic 40.21996E-1 00.00000E+0 -35.83750E+1 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +2.000SO4-2 = Pb(SO4)2-2 - log_k +3.47 #97MAR/SMI; Uncertainty to include available data. - -analytic 34.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+2.000Pb+2 -1.000H+ +1.000H2O = Pb2(OH)+3 - log_k -7.18 #99LOT/OCH; Uncertainty to include available data. - -analytic -71.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+4.000Pb+2 -4.000H+ +4.000H2O = Pb4(OH)4+4 - log_k -20.63 #99LOT/OCH; Uncertainty to include available data. - delta_h +82.038 #kJ/mol -# Enthalpy of formation: -1057.601 kJ/mol - -analytic -62.57559E-1 00.00000E+0 -42.85143E+2 00.00000E+0 00.00000E+0 - -+6.000Pb+2 -8.000H+ +8.000H2O = Pb6(OH)8+4 - log_k -42.68 #99LOT/OCH - delta_h +192.157 #kJ/mol -# Enthalpy of formation: -2088.961 kJ/mol - -analytic -90.15539E-1 00.00000E+0 -10.03706E+3 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +1.000Br- = PbBr+ - log_k +1.70 #82HÖG - delta_h +4.220 #kJ/mol -# Enthalpy of formation: -116.270 kJ/mol - -analytic 24.39312E-1 00.00000E+0 -22.04260E+1 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +2.000Br- = PbBr2 - log_k +1.90 #82HÖG - delta_h +10.979 #kJ/mol -# Enthalpy of formation: -230.920 kJ/mol - -analytic 38.23438E-1 00.00000E+0 -57.34731E+1 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +3.000Br- = PbBr3- - log_k +2.90 #82HÖG - delta_h +10.653 #kJ/mol -# Enthalpy of formation: -352.656 kJ/mol - -analytic 47.66325E-1 00.00000E+0 -55.64449E+1 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +1.000Cl- = PbCl+ - log_k +1.44 #97SVE/SHO; Uncertainty to include available data. - delta_h +4.318 #kJ/mol -# Enthalpy of formation: -161.841 kJ/mol - -analytic 21.96481E-1 00.00000E+0 -22.55448E+1 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +2.000Cl- = PbCl2 - log_k +2.00 #97SVE/SHO; Uncertainty to include available data. - delta_h +7.948 #kJ/mol -# Enthalpy of formation: -325.291 kJ/mol - -analytic 33.92430E-1 00.00000E+0 -41.51530E+1 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +3.000Cl- = PbCl3- - log_k +1.69 #97SVE/SHO; 22. Uncertainty to include available data. - delta_h +7.812 #kJ/mol -# Enthalpy of formation: -492.507 kJ/mol - -analytic 30.58604E-1 00.00000E+0 -40.80492E+1 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +4.000Cl- = PbCl4-2 - log_k +1.40 #97SVE/SHO; 22. Uncertainty to include available data. - delta_h +1.324 #kJ/mol -# Enthalpy of formation: -666.074 kJ/mol - -analytic 16.31955E-1 00.00000E+0 -69.15734E+0 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +1.000F- = PbF+ - log_k +2.27 #99LOT/OCH - delta_h -4.054 #kJ/mol -# Enthalpy of formation: -338.484 kJ/mol - -analytic 15.59770E-1 00.00000E+0 21.17552E+1 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +2.000F- = PbF2 - log_k +3.01 #99LOT/OCH - delta_h -8.879 #kJ/mol -# Enthalpy of formation: -678.659 kJ/mol - -analytic 14.54466E-1 00.00000E+0 46.37825E+1 00.00000E+0 00.00000E+0 - -+1.000Pb+2 -1.000H+ +1.000H2(PO4)- = PbHPO4 - log_k -4.11 #74NRI - -analytic -41.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +1.000I- = PbI+ - log_k +1.98 #82HÖG - delta_h +3.874 #kJ/mol -# Enthalpy of formation: -51.986 kJ/mol - -analytic 26.58696E-1 00.00000E+0 -20.23531E+1 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +2.000I- = PbI2 - log_k +3.15 #82HÖG - delta_h +7.106 #kJ/mol -# Enthalpy of formation: -105.533 kJ/mol - -analytic 43.94918E-1 00.00000E+0 -37.11722E+1 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +3.000I- = PbI3- - log_k +3.81 #82HÖG - delta_h +3.163 #kJ/mol -# Enthalpy of formation: -166.256 kJ/mol - -analytic 43.64134E-1 00.00000E+0 -16.52150E+1 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +4.000I- = PbI4-2 - log_k +3.75 #82HÖG - delta_h -15.561 #kJ/mol -# Enthalpy of formation: -241.760 kJ/mol - -analytic 10.23830E-1 00.00000E+0 81.28076E+1 00.00000E+0 00.00000E+0 - -+1.000Pb+2 +1.000Pyrophos-4 = PbPyrophos-2 - log_k +8.33 #82WAG/EVA - -analytic 83.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pd+2 +1.000CO3-2 = Pd(CO3) - log_k +6.83 #87BRO/WAN - delta_h -8.843 #kJ/mol -# Enthalpy of formation: -494.184 kJ/mol - -analytic 52.80773E-1 00.00000E+0 46.19021E+1 00.00000E+0 00.00000E+0 - -+1.000Pd+2 +2.000CO3-2 = Pd(CO3)2-2 - log_k +12.53 #87BRO/WAN - -analytic 12.53000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pd+2 +1.000NH3 = Pd(NH3)+2 - log_k +9.60 #68RAS/JOR - -analytic 96.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pd+2 +2.000NH3 = Pd(NH3)2+2 - log_k +18.50 #68RAS/JOR - -analytic 18.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pd+2 +3.000NH3 = Pd(NH3)3+2 - log_k +26.00 #68RAS/JOR - -analytic 26.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pd+2 +4.000NH3 = Pd(NH3)4+2 - log_k +32.80 #68RAS/JOR - -analytic 32.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --1.000H+ +1.000Pd+2 +1.000H2O = Pd(OH)+ - log_k -1.86 #70NAB/KAL - delta_h +11.908 #kJ/mol -# Enthalpy of formation: -84.032 kJ/mol - -analytic 22.61920E-2 00.00000E+0 -62.19982E+1 00.00000E+0 00.00000E+0 - --2.000H+ +1.000Pd+2 +2.000H2O = Pd(OH)2 - log_k -3.49 #12RAI/YUI - delta_h +13.576 #kJ/mol -# Enthalpy of formation: -368.195 kJ/mol - -analytic -11.11587E-1 00.00000E+0 -70.91239E+1 00.00000E+0 00.00000E+0 - --3.000H+ +1.000Pd+2 +3.000H2O = Pd(OH)3- - log_k -15.48 #12RAI/YUI - delta_h +52.289 #kJ/mol -# Enthalpy of formation: -615.311 kJ/mol - -analytic -63.19360E-1 00.00000E+0 -27.31245E+2 00.00000E+0 00.00000E+0 - -+1.000Pd+2 +1.000SO4-2 = Pd(SO4) - log_k +2.91 #87BRO/WAN - delta_h +4.588 #kJ/mol -# Enthalpy of formation: -714.862 kJ/mol - -analytic 37.13783E-1 00.00000E+0 -23.96479E+1 00.00000E+0 00.00000E+0 - -+1.000Pd+2 +2.000SO4-2 = Pd(SO4)2-2 - log_k +4.17 #82HOG - -analytic 41.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pd+2 +1.000Br- = PdBr+ - log_k +5.77 #72ELD - delta_h -30.145 #kJ/mol -# Enthalpy of formation: +38.334 kJ/mol - -analytic 48.88227E-2 00.00000E+0 15.74583E+2 00.00000E+0 00.00000E+0 - -+1.000Pd+2 +2.000Br- = PdBr2 - log_k +10.06 #72ELD - delta_h -57.714 #kJ/mol -# Enthalpy of formation: -110.644 kJ/mol - -analytic -51.05877E-3 00.00000E+0 30.14612E+2 00.00000E+0 00.00000E+0 - -+1.000Pd+2 +3.000Br- = PdBr3- - log_k +13.75 #72ELD - delta_h -92.390 #kJ/mol -# Enthalpy of formation: -266.730 kJ/mol - -analytic -24.36033E-1 00.00000E+0 48.25866E+2 00.00000E+0 00.00000E+0 - -+1.000Pd+2 +4.000Br- = PdBr4-2 - log_k +15.11 #72ELD - delta_h -126.688 #kJ/mol -# Enthalpy of formation: -422.437 kJ/mol - -analytic -70.84785E-1 00.00000E+0 66.17375E+2 00.00000E+0 00.00000E+0 - -+1.000Pd+2 +1.000Cl- = PdCl+ - log_k +5.00 #12RAI/YUI - delta_h -23.954 #kJ/mol -# Enthalpy of formation: -1.145 kJ/mol - -analytic 80.34393E-2 00.00000E+0 12.51205E+2 00.00000E+0 00.00000E+0 - -+1.000Pd+2 +2.000Cl- = PdCl2 - log_k +8.42 #12RAI/YUI - delta_h -48.037 #kJ/mol -# Enthalpy of formation: -192.307 kJ/mol - -analytic 42.78852E-4 00.00000E+0 25.09147E+2 00.00000E+0 00.00000E+0 - -+1.000Pd+2 +3.000Cl- = PdCl3- - log_k +10.93 #12RAI/YUI - delta_h -77.749 #kJ/mol -# Enthalpy of formation: -389.099 kJ/mol - -analytic -26.91040E-1 00.00000E+0 40.61113E+2 00.00000E+0 00.00000E+0 - --1.000H+ +1.000Pd+2 +3.000Cl- +1.000H2O = PdCl3(OH)-2 - log_k +2.42 #12RAI/YUI - -analytic 24.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pd+2 +4.000Cl- = PdCl4-2 - log_k +13.05 #12RAI/YUI - delta_h -120.180 #kJ/mol -# Enthalpy of formation: -598.610 kJ/mol - -analytic -80.04632E-1 00.00000E+0 62.77439E+2 00.00000E+0 00.00000E+0 - -+1.000Pd+2 +1.000I- = PdI+ - log_k +10.40 #89BAE/McK - delta_h -58.206 #kJ/mol -# Enthalpy of formation: +74.903 kJ/mol - -analytic 20.27465E-2 00.00000E+0 30.40311E+2 00.00000E+0 00.00000E+0 - -+1.000Pd+2 +2.000I- = PdI2 - log_k +14.50 #97BOU - delta_h -83.425 #kJ/mol -# Enthalpy of formation: -7.096 kJ/mol - -analytic -11.54326E-2 00.00000E+0 43.57591E+2 00.00000E+0 00.00000E+0 - -+1.000Pd+2 +3.000I- = PdI3- - log_k +18.60 #97BOU - delta_h -121.755 #kJ/mol -# Enthalpy of formation: -102.205 kJ/mol - -analytic -27.30560E-1 00.00000E+0 63.59707E+2 00.00000E+0 00.00000E+0 - -+1.000Pd+2 +4.000I- = PdI4-2 - log_k +24.64 - delta_h -190.061 #kJ/mol -# Enthalpy of formation: -227.291 kJ/mol - -analytic -86.57258E-1 00.00000E+0 99.27577E+2 00.00000E+0 00.00000E+0 - --2.000H+ +1.000H2(PO4)- = PO4-3 - log_k -19.56 #89COX/WAG - delta_h +18.200 #kJ/mol + -analytic -42.21632E-1 00E+0 -29.1542E+2 00E+0 00E+0 + +- H+ + Pa+4 + H2O = Pa(OH)+3 + log_k 0.84 #76BAE/MES + -analytic 84E-2 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ + Pa+4 + 2 H2O = Pa(OH)2+2 + log_k -0.02 #76BAE/MES + -analytic -20E-3 00E+0 00E+0 00E+0 00E+0 + +- 3 H+ + Pa+4 + 3 H2O = Pa(OH)3+ + log_k -1.5 #76BAE/MES + -analytic -15E-1 00E+0 00E+0 00E+0 00E+0 + +H+ + PaO2+ = PaO(OH)+2 + log_k 1.25 #Original data 03TRU/LEN and 04FOU/PER + delta_h -5.7 #kJ/mol 03TRU/LEN + -analytic 25.14029E-2 00E+0 29.77317E+1 00E+0 00E+0 + +2 H+ + SO4-2 + PaO2+ - H2O = PaO(SO4)+ + log_k 5.13 #07GIA/TRU + -analytic 51.3E-1 00E+0 00E+0 00E+0 00E+0 + +2 H+ + 2 SO4-2 + PaO2+ - H2O = PaO(SO4)2- + log_k 8.24 #07GIA/TRU + -analytic 82.4E-1 00E+0 00E+0 00E+0 00E+0 + +2 H+ + 3 SO4-2 + PaO2+ - H2O = PaO(SO4)3-3 + log_k 9.83 #07GIA/TRU + -analytic 98.3E-1 00E+0 00E+0 00E+0 00E+0 + +- H+ + PaO2+ + H2O = PaO2(OH) + log_k -7 #Original data 03TRU/LEN and 04FOU/PER + delta_h 61 #kJ/mol 03TRU/LEN + -analytic 36.86741E-1 00E+0 -31.86252E+2 00E+0 00E+0 + +- 2 H+ + PaO2+ + 2 H2O = PaO2(OH)2- + log_k -16.4 #04FOU/PER + -analytic -16.4E+0 00E+0 00E+0 00E+0 00E+0 + +Pb+2 + B(OH)4- = Pb(B(OH)4)+ + log_k 5.2 #80BAS + -analytic 52E-1 00E+0 00E+0 00E+0 00E+0 + +Pb+2 + 3 B(OH)4- = Pb(B(OH)4)3- + log_k 11.18 #80BAS + -analytic 11.18E+0 00E+0 00E+0 00E+0 00E+0 + +Pb+2 + CO3-2 = Pb(CO3) + log_k 7 #06BLA/PIA + delta_h -3.015 #kJ/mol +# Enthalpy of formation: -677.326 kJ/mol + -analytic 64.71795E-1 00E+0 15.74844E+1 00E+0 00E+0 + +Pb+2 + 2 CO3-2 = Pb(CO3)2-2 + log_k 10.13 #99LOT/OCH; Uncertainty to include available data. + -analytic 10.13E+0 00E+0 00E+0 00E+0 00E+0 + +Pb+2 + Edta-4 = Pb(Edta)-2 + log_k 18.8 #04MAR/SMI + -analytic 18.8E+0 00E+0 00E+0 00E+0 00E+0 + +Pb+2 + 2 H+ + Edta-4 = Pb(H2Edta) + log_k 24.9 #04MAR/SMI + -analytic 24.9E+0 00E+0 00E+0 00E+0 00E+0 + +Pb+2 + H2(PO4)- = Pb(H2PO4)+ + log_k 1.5 #74NRI + -analytic 15E-1 00E+0 00E+0 00E+0 00E+0 + +Pb+2 + H+ + Edta-4 = Pb(HEdta)- + log_k 23 #04MAR/SMI + -analytic 23E+0 00E+0 00E+0 00E+0 00E+0 + +Pb+2 + 2 HS- = Pb(HS)2 + log_k 15.01 #06BLA/PIA; Uncertainty to include available data. + delta_h -65.579 #kJ/mol +# Enthalpy of formation: -97.259 kJ/mol + -analytic 35.21052E-1 00E+0 34.2543E+2 00E+0 00E+0 + +Pb+2 + 3 HS- = Pb(HS)3- + log_k 16.26 #06BLA/PIA; Uncertainty to include available data. + delta_h -73.329 #kJ/mol +# Enthalpy of formation: -121.309 kJ/mol + -analytic 34.13311E-1 00E+0 38.3024E+2 00E+0 00E+0 + +Pb+2 + NO3- = Pb(NO3)+ + log_k 1.06 #99LOT/OCH + -analytic 10.6E-1 00E+0 00E+0 00E+0 00E+0 + +Pb+2 + 2 NO3- = Pb(NO3)2 + log_k 1.48 #99LOT/OCH + delta_h -11.012 #kJ/mol +# Enthalpy of formation: -423.792 kJ/mol + -analytic -44.92196E-2 00E+0 57.51968E+1 00E+0 00E+0 + +Pb+2 - H+ + H2O = Pb(OH)+ + log_k -7.51 #99LOT/OCH; Uncertainty to include available data. + delta_h 53.92 #kJ/mol +# Enthalpy of formation: -230.990 kJ/mol + -analytic 19.36379E-1 00E+0 -28.16438E+2 00E+0 00E+0 + +Pb+2 - 2 H+ + 2 H2O = Pb(OH)2 + log_k -16.95 #99LOT/OCH; Uncertainty to include available data. + delta_h 97.824 #kJ/mol +# Enthalpy of formation: -472.915 kJ/mol + -analytic 18.80291E-2 00E+0 -51.09703E+2 00E+0 00E+0 + +Pb+2 - 3 H+ + 3 H2O = Pb(OH)3- + log_k -27.2 #01PER/HEF + delta_h 130.485 #kJ/mol +# Enthalpy of formation: -726.085 kJ/mol + -analytic -43.40009E-1 00E+0 -68.15706E+2 00E+0 00E+0 + +Pb+2 - 4 H+ + 4 H2O = Pb(OH)4-2 + log_k -38.9 #01PER/HEF + delta_h 197.474 #kJ/mol +# Enthalpy of formation: -944.925 kJ/mol + -analytic -43.0404E-1 00E+0 -10.31479E+3 00E+0 00E+0 + +Pb+2 + Ox-2 = Pb(Ox) + log_k 5.85 #13XIO/KIR + -analytic 58.5E-1 00E+0 00E+0 00E+0 00E+0 + +Pb+2 + 2 Ox-2 = Pb(Ox)2-2 + log_k 8.05 #13XIO/KIR + -analytic 80.5E-1 00E+0 00E+0 00E+0 00E+0 + +Pb+2 + SeO3-2 = Pb(SeO3) + log_k 5.73 #01SEB/POT2 + -analytic 57.3E-1 00E+0 00E+0 00E+0 00E+0 + +Pb+2 + SO4-2 = Pb(SO4) + log_k 2.82 #99LOT/OCH; Uncertainty to include available data. + delta_h 6.861 #kJ/mol +# Enthalpy of formation: -901.559 kJ/mol + -analytic 40.21996E-1 00E+0 -35.8375E+1 00E+0 00E+0 + +Pb+2 + 2 SO4-2 = Pb(SO4)2-2 + log_k 3.47 #97MAR/SMI; Uncertainty to include available data. + -analytic 34.7E-1 00E+0 00E+0 00E+0 00E+0 + +2 Pb+2 - H+ + H2O = Pb2(OH)+3 + log_k -7.18 #99LOT/OCH; Uncertainty to include available data. + -analytic -71.8E-1 00E+0 00E+0 00E+0 00E+0 + +4 Pb+2 - 4 H+ + 4 H2O = Pb4(OH)4+4 + log_k -20.63 #99LOT/OCH; Uncertainty to include available data. + delta_h 82.038 #kJ/mol +# Enthalpy of formation: -1057.601 kJ/mol + -analytic -62.57559E-1 00E+0 -42.85143E+2 00E+0 00E+0 + +6 Pb+2 - 8 H+ + 8 H2O = Pb6(OH)8+4 + log_k -42.68 #99LOT/OCH + delta_h 192.157 #kJ/mol +# Enthalpy of formation: -2088.961 kJ/mol + -analytic -90.15539E-1 00E+0 -10.03706E+3 00E+0 00E+0 + +Pb+2 + Br- = PbBr+ + log_k 1.7 #82HÖG + delta_h 4.22 #kJ/mol +# Enthalpy of formation: -116.270 kJ/mol + -analytic 24.39312E-1 00E+0 -22.0426E+1 00E+0 00E+0 + +Pb+2 + 2 Br- = PbBr2 + log_k 1.9 #82HÖG + delta_h 10.979 #kJ/mol +# Enthalpy of formation: -230.920 kJ/mol + -analytic 38.23438E-1 00E+0 -57.34731E+1 00E+0 00E+0 + +Pb+2 + 3 Br- = PbBr3- + log_k 2.9 #82HÖG + delta_h 10.653 #kJ/mol +# Enthalpy of formation: -352.656 kJ/mol + -analytic 47.66325E-1 00E+0 -55.64449E+1 00E+0 00E+0 + +Pb+2 + Cl- = PbCl+ + log_k 1.44 #97SVE/SHO; Uncertainty to include available data. + delta_h 4.318 #kJ/mol +# Enthalpy of formation: -161.841 kJ/mol + -analytic 21.96481E-1 00E+0 -22.55448E+1 00E+0 00E+0 + +Pb+2 + 2 Cl- = PbCl2 + log_k 2 #97SVE/SHO; Uncertainty to include available data. + delta_h 7.948 #kJ/mol +# Enthalpy of formation: -325.291 kJ/mol + -analytic 33.9243E-1 00E+0 -41.5153E+1 00E+0 00E+0 + +Pb+2 + 3 Cl- = PbCl3- + log_k 1.69 #97SVE/SHO; 22 Uncertainty to include available data. + delta_h 7.812 #kJ/mol +# Enthalpy of formation: -492.507 kJ/mol + -analytic 30.58604E-1 00E+0 -40.80492E+1 00E+0 00E+0 + +Pb+2 + 4 Cl- = PbCl4-2 + log_k 1.4 #97SVE/SHO; 22 Uncertainty to include available data. + delta_h 1.324 #kJ/mol +# Enthalpy of formation: -666.074 kJ/mol + -analytic 16.31955E-1 00E+0 -69.15734E+0 00E+0 00E+0 + +Pb+2 + F- = PbF+ + log_k 2.27 #99LOT/OCH + delta_h -4.054 #kJ/mol +# Enthalpy of formation: -338.484 kJ/mol + -analytic 15.5977E-1 00E+0 21.17552E+1 00E+0 00E+0 + +Pb+2 + 2 F- = PbF2 + log_k 3.01 #99LOT/OCH + delta_h -8.879 #kJ/mol +# Enthalpy of formation: -678.659 kJ/mol + -analytic 14.54466E-1 00E+0 46.37825E+1 00E+0 00E+0 + +Pb+2 - H+ + H2(PO4)- = PbHPO4 + log_k -4.11 #74NRI + -analytic -41.1E-1 00E+0 00E+0 00E+0 00E+0 + +Pb+2 + I- = PbI+ + log_k 1.98 #82HÖG + delta_h 3.874 #kJ/mol +# Enthalpy of formation: -51.986 kJ/mol + -analytic 26.58696E-1 00E+0 -20.23531E+1 00E+0 00E+0 + +Pb+2 + 2 I- = PbI2 + log_k 3.15 #82HÖG + delta_h 7.106 #kJ/mol +# Enthalpy of formation: -105.533 kJ/mol + -analytic 43.94918E-1 00E+0 -37.11722E+1 00E+0 00E+0 + +Pb+2 + 3 I- = PbI3- + log_k 3.81 #82HÖG + delta_h 3.163 #kJ/mol +# Enthalpy of formation: -166.256 kJ/mol + -analytic 43.64134E-1 00E+0 -16.5215E+1 00E+0 00E+0 + +Pb+2 + 4 I- = PbI4-2 + log_k 3.75 #82HÖG + delta_h -15.561 #kJ/mol +# Enthalpy of formation: -241.760 kJ/mol + -analytic 10.2383E-1 00E+0 81.28076E+1 00E+0 00E+0 + +Pb+2 + Pyrophos-4 = PbPyrophos-2 + log_k 8.33 #82WAG/EVA + -analytic 83.3E-1 00E+0 00E+0 00E+0 00E+0 + +Pd+2 + CO3-2 = Pd(CO3) + log_k 6.83 #87BRO/WAN + delta_h -8.843 #kJ/mol +# Enthalpy of formation: -494.184 kJ/mol + -analytic 52.80773E-1 00E+0 46.19021E+1 00E+0 00E+0 + +Pd+2 + 2 CO3-2 = Pd(CO3)2-2 + log_k 12.53 #87BRO/WAN + -analytic 12.53E+0 00E+0 00E+0 00E+0 00E+0 + +Pd+2 + NH3 = Pd(NH3)+2 + log_k 9.6 #68RAS/JOR + -analytic 96E-1 00E+0 00E+0 00E+0 00E+0 + +Pd+2 + 2 NH3 = Pd(NH3)2+2 + log_k 18.5 #68RAS/JOR + -analytic 18.5E+0 00E+0 00E+0 00E+0 00E+0 + +Pd+2 + 3 NH3 = Pd(NH3)3+2 + log_k 26 #68RAS/JOR + -analytic 26E+0 00E+0 00E+0 00E+0 00E+0 + +Pd+2 + 4 NH3 = Pd(NH3)4+2 + log_k 32.8 #68RAS/JOR + -analytic 32.8E+0 00E+0 00E+0 00E+0 00E+0 + +- H+ + Pd+2 + H2O = Pd(OH)+ + log_k -1.86 #70NAB/KAL + delta_h 11.908 #kJ/mol +# Enthalpy of formation: -84.032 kJ/mol + -analytic 22.6192E-2 00E+0 -62.19982E+1 00E+0 00E+0 + +- 2 H+ + Pd+2 + 2 H2O = Pd(OH)2 + log_k -3.49 #12RAI/YUI + delta_h 13.576 #kJ/mol +# Enthalpy of formation: -368.195 kJ/mol + -analytic -11.11587E-1 00E+0 -70.91239E+1 00E+0 00E+0 + +- 3 H+ + Pd+2 + 3 H2O = Pd(OH)3- + log_k -15.48 #12RAI/YUI + delta_h 52.289 #kJ/mol +# Enthalpy of formation: -615.311 kJ/mol + -analytic -63.1936E-1 00E+0 -27.31245E+2 00E+0 00E+0 + +Pd+2 + SO4-2 = Pd(SO4) + log_k 2.91 #87BRO/WAN + delta_h 4.588 #kJ/mol +# Enthalpy of formation: -714.862 kJ/mol + -analytic 37.13783E-1 00E+0 -23.96479E+1 00E+0 00E+0 + +Pd+2 + 2 SO4-2 = Pd(SO4)2-2 + log_k 4.17 #82HOG + -analytic 41.7E-1 00E+0 00E+0 00E+0 00E+0 + +Pd+2 + Br- = PdBr+ + log_k 5.77 #72ELD + delta_h -30.145 #kJ/mol +# Enthalpy of formation: +38.334 kJ/mol + -analytic 48.88227E-2 00E+0 15.74583E+2 00E+0 00E+0 + +Pd+2 + 2 Br- = PdBr2 + log_k 10.06 #72ELD + delta_h -57.714 #kJ/mol +# Enthalpy of formation: -110.644 kJ/mol + -analytic -51.05877E-3 00E+0 30.14612E+2 00E+0 00E+0 + +Pd+2 + 3 Br- = PdBr3- + log_k 13.75 #72ELD + delta_h -92.39 #kJ/mol +# Enthalpy of formation: -266.730 kJ/mol + -analytic -24.36033E-1 00E+0 48.25866E+2 00E+0 00E+0 + +Pd+2 + 4 Br- = PdBr4-2 + log_k 15.11 #72ELD + delta_h -126.688 #kJ/mol +# Enthalpy of formation: -422.437 kJ/mol + -analytic -70.84785E-1 00E+0 66.17375E+2 00E+0 00E+0 + +Pd+2 + Cl- = PdCl+ + log_k 5 #12RAI/YUI + delta_h -23.954 #kJ/mol +# Enthalpy of formation: -1.145 kJ/mol + -analytic 80.34393E-2 00E+0 12.51205E+2 00E+0 00E+0 + +Pd+2 + 2 Cl- = PdCl2 + log_k 8.42 #12RAI/YUI + delta_h -48.037 #kJ/mol +# Enthalpy of formation: -192.307 kJ/mol + -analytic 42.78852E-4 00E+0 25.09147E+2 00E+0 00E+0 + +Pd+2 + 3 Cl- = PdCl3- + log_k 10.93 #12RAI/YUI + delta_h -77.749 #kJ/mol +# Enthalpy of formation: -389.099 kJ/mol + -analytic -26.9104E-1 00E+0 40.61113E+2 00E+0 00E+0 + +- H+ + Pd+2 + 3 Cl- + H2O = PdCl3(OH)-2 + log_k 2.42 #12RAI/YUI + -analytic 24.2E-1 00E+0 00E+0 00E+0 00E+0 + +Pd+2 + 4 Cl- = PdCl4-2 + log_k 13.05 #12RAI/YUI + delta_h -120.18 #kJ/mol +# Enthalpy of formation: -598.610 kJ/mol + -analytic -80.04632E-1 00E+0 62.77439E+2 00E+0 00E+0 + +Pd+2 + I- = PdI+ + log_k 10.4 #89BAE/McK + delta_h -58.206 #kJ/mol +# Enthalpy of formation: +74.903 kJ/mol + -analytic 20.27465E-2 00E+0 30.40311E+2 00E+0 00E+0 + +Pd+2 + 2 I- = PdI2 + log_k 14.5 #97BOU + delta_h -83.425 #kJ/mol +# Enthalpy of formation: -7.096 kJ/mol + -analytic -11.54326E-2 00E+0 43.57591E+2 00E+0 00E+0 + +Pd+2 + 3 I- = PdI3- + log_k 18.6 #97BOU + delta_h -121.755 #kJ/mol +# Enthalpy of formation: -102.205 kJ/mol + -analytic -27.3056E-1 00E+0 63.59707E+2 00E+0 00E+0 + +Pd+2 + 4 I- = PdI4-2 + log_k 24.64 + delta_h -190.061 #kJ/mol +# Enthalpy of formation: -227.291 kJ/mol + -analytic -86.57258E-1 00E+0 99.27577E+2 00E+0 00E+0 + +- 2 H+ + H2(PO4)- = PO4-3 + log_k -19.56 #89COX/WAG + delta_h 18.2 #kJ/mol # Enthalpy of formation: -1284.400 kJ/mol 89COX/WAG - -analytic -16.37150E+0 00.00000E+0 -95.06522E+1 00.00000E+0 00.00000E+0 + -analytic -16.3715E+0 00E+0 -95.06522E+1 00E+0 00E+0 -+1.000Pu+3 +1.000Acetate- = Pu(Acetate)+2 - log_k +2.85 #69MOS - -analytic 28.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+4 +1.000Acetate- = Pu(Acetate)+3 - log_k +5.93 #62SCH/NEB - -analytic 59.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+3 +2.000Acetate- = Pu(Acetate)2+ - log_k +5.06 #69MOS - -analytic 50.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+4 +2.000Acetate- = Pu(Acetate)2+2 - log_k +10.09 #62SCH/NEB - -analytic 10.09000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+3 +3.000Acetate- = Pu(Acetate)3 - log_k +6.57 #69MOS - -analytic 65.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+3 +1.000Cit-3 = Pu(Cit) - log_k +8.55 #Analogy with Am - -analytic 85.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+3 +2.000Cit-3 = Pu(Cit)2-3 - log_k +13.90 #Analogy with Am - -analytic 13.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+3 +1.000CO3-2 = Pu(CO3)+ - log_k +7.64 #Estimated by correlation with An(III) in function of ionic radii - delta_h +14.742 #kJ/mol -# Enthalpy of formation: -1252.279 kJ/mol - -analytic 10.22269E+0 00.00000E+0 -77.00283E+1 00.00000E+0 00.00000E+0 - -+1.000Pu+3 +2.000CO3-2 = Pu(CO3)2- - log_k +12.54 #Estimated by correlation with An(III) in function of ionic radii - -analytic 12.54000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+3 +3.000CO3-2 = Pu(CO3)3-3 - log_k +15.20 #Estimated by correlation with An(III) in function of ionic radii - -analytic 15.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+4 +4.000CO3-2 = Pu(CO3)4-4 - log_k +37.00 #03GUI/FAN - -analytic 37.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+4 +5.000CO3-2 = Pu(CO3)5-6 - log_k +35.65 #03GUI/FAN - -analytic 35.65000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+4 +1.000Edta-4 = Pu(Edta) - log_k +31.80 #Recommended in 05HUM/AND - -analytic 31.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+3 +1.000Edta-4 = Pu(Edta)- - log_k +20.18 #05HUM/AND - delta_h -8.700 #kJ/mol 05HUM/AND -# Enthalpy of formation: -2305.290 kJ/mol - -analytic 18.65583E+0 00.00000E+0 45.44326E+1 00.00000E+0 00.00000E+0 - -+1.000Pu+3 +1.000H2(PO4)- = Pu(H2PO4)+2 - log_k +2.20 #10RAI/MOO - -analytic 22.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+3 +1.000H+ +1.000Cit-3 = Pu(HCit)+ - log_k +12.86 #Analogy with Am - -analytic 12.86000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+3 +2.000H+ +2.000Cit-3 = Pu(HCit)2- - log_k +23.52 #Analogy with Am - -analytic 23.52000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+3 +1.000H+ +1.000Edta-4 = Pu(HEdta) - log_k +22.02 #05HUM/AND - -analytic 22.02000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+3 -1.000H+ +1.000H2(PO4)- = Pu(HPO4)+ - log_k -1.81 #Estimated by correlation with An(III) in function of ionic radii - -analytic -18.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+3 -2.000H+ +2.000H2(PO4)- = Pu(HPO4)2- - log_k -5.45 #Estimated by correlation with An(III) in function of ionic radii - -analytic -54.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+3 +1.000NO3- = Pu(NO3)+2 - log_k +1.33 #95SIL/BID, LogK selected in analogy to Am (NEA recommendation 95SIL/BID) - -analytic 13.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+4 +1.000NO3- = Pu(NO3)+3 - log_k +1.95 #01LEM/FUG - -analytic 19.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+3 +1.000Nta-3 = Pu(Nta) - log_k +13.10 #95AKR/BOU - -analytic 13.10000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+4 +1.000Nta-3 = Pu(Nta)+ - log_k +25.72 #16BON/AUP - -analytic 25.72000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+3 -1.000H+ +1.000H2O = Pu(OH)+2 - log_k -6.18 #20GRE/GAO - delta_h +30.753 #kJ/mol -# Enthalpy of formation: -846.866 kJ/mol - -analytic -79.23057E-2 00.00000E+0 -16.06341E+2 00.00000E+0 00.00000E+0 - -+1.000Pu+4 -1.000H+ +1.000H2O = Pu(OH)+3 - log_k +0.60 #99NEC, 01NEC/KIM, 03GUI/FAN - delta_h +22.922 #kJ/mol -# Enthalpy of formation: -802.803 kJ/mol - -analytic 46.15762E-1 00.00000E+0 -11.97299E+2 00.00000E+0 00.00000E+0 - -+1.000Pu+4 -2.000H+ +2.000CO3-2 +2.000H2O = Pu(OH)2(CO3)2-2 - log_k +18.21 #99RAI/HES1 - -analytic 18.21000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+3 -2.000H+ +1.000HGlu- +2.000H2O = Pu(OH)2(HGlu) - log_k -10.97 #Analogy with Pu(OH)2(HIsa)(aq) - -analytic -10.97000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+3 -2.000H+ +1.000HIsa- +2.000H2O = Pu(OH)2(HIsa) - log_k -10.97 #18TAS/GAO - -analytic -10.97000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+3 -2.000H+ +2.000H2O = Pu(OH)2+ - log_k -15.10 #Analogy with Am(III) - delta_h +89.712 #kJ/mol -# Enthalpy of formation: -1073.737 kJ/mol - -analytic 61.68677E-2 00.00000E+0 -46.85984E+2 00.00000E+0 00.00000E+0 - -+1.000Pu+4 -2.000H+ +2.000H2O = Pu(OH)2+2 - log_k +0.60 #99NEC, 01NEC/KIM, 03GUI/FAN - delta_h +39.780 #kJ/mol -# Enthalpy of formation: -1071.775 kJ/mol - -analytic 75.69157E-1 00.00000E+0 -20.77854E+2 00.00000E+0 00.00000E+0 - -+1.000Pu+4 -2.000H+ +1.000Edta-4 +2.000H2O = Pu(OH)2Edta-2 - log_k +18.02 #21DIB/TAS - -analytic 18.02000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+3 -3.000H+ +3.000H2O = Pu(OH)3 - log_k -26.20 #20GRE/GAO - delta_h +151.892 #kJ/mol -# Enthalpy of formation: -1297.387 kJ/mol - -analytic 41.03361E-2 00.00000E+0 -79.33872E+2 00.00000E+0 00.00000E+0 - -+1.000Pu+4 -3.000H+ +1.000HGlu- +3.000H2O = Pu(OH)3(HGlu) - log_k +4.75 #06GAO/GRI - -analytic 47.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+4 -3.000H+ +3.000H2O = Pu(OH)3+ - log_k -2.30 #99NEC, 01NEC/KIM, 03GUI/FAN - delta_h +64.376 #kJ/mol -# Enthalpy of formation: -1333.008 kJ/mol - -analytic 89.78191E-1 00.00000E+0 -33.62593E+2 00.00000E+0 00.00000E+0 - -+1.000Pu+4 -3.000H+ +1.000Edta-4 +3.000H2O = Pu(OH)3Edta-3 - log_k +8.50 #21DIB/TAS - -analytic 85.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+4 -4.000H+ +4.000H2O = Pu(OH)4 - log_k -8.50 #03GUI/FAN - delta_h +98.586 #kJ/mol -# Enthalpy of formation: -1584.627 kJ/mol - -analytic 87.71526E-1 00.00000E+0 -51.49505E+2 00.00000E+0 00.00000E+0 - -+1.000Pu+4 -4.000H+ +1.000HGlu- +4.000H2O = Pu(OH)4(HGlu)- - log_k -2.70 #06GAO/GRI - -analytic -27.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+4 -4.000H+ +2.000HGlu- +4.000H2O = Pu(OH)4(HGlu)2-2 - log_k -2.83 #Analogy with An(IV)-ISA - -analytic -28.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+4 -4.000H+ +1.000HIsa- +4.000H2O = Pu(OH)4(HIsa)- - log_k -5.03 #18TAS/GAO & TAS/GAO1 - -analytic -50.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+4 -4.000H+ +2.000HIsa- +4.000H2O = Pu(OH)4(HIsa)2-2 - log_k -2.83 #23ROD/COL - -analytic -28.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+4 -5.000H+ +1.000HGlu- +5.000H2O = Pu(OH)5(HGlu)-2 - log_k -16.92 #Analogy with An(IV)-ISA - -analytic -16.92000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+4 -5.000H+ +1.000HIsa- +5.000H2O = Pu(OH)5(HIsa)-2 - log_k -16.92 #18TAS/GAO & 18TAS/GAO1 - -analytic -16.92000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+4 -1.000H+ +1.000Edta-4 +1.000H2O = Pu(OH)Edta- - log_k +23.00 #21DIB/TAS - -analytic 23.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+3 +1.000Ox-2 = Pu(Ox)+ - log_k +6.49 #12GRI/GAR2 - -analytic 64.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+4 +1.000Ox-2 = Pu(Ox)+2 - log_k +11.40 #05HUM/AND - -analytic 11.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+4 +2.000Ox-2 = Pu(Ox)2 - log_k +20.60 #05HUM/AND - -analytic 20.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+3 +2.000Ox-2 = Pu(Ox)2- - log_k +10.62 #12GRI/GAR2 - -analytic 10.62000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+4 +3.000Ox-2 = Pu(Ox)3-2 - log_k +25.69 #05HUM/AND - -analytic 25.69000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+3 +3.000Ox-2 = Pu(Ox)3-3 - log_k +13.22 #12GRI/GAR2 - -analytic 13.22000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+3 -2.000H+ +1.000H2(PO4)- = Pu(PO4) - log_k -7.91 #Estimated by correlation with An(III) in function of ionic radii - -analytic -79.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+3 -4.000H+ +2.000H2(PO4)- = Pu(PO4)2-3 - log_k -19.71 #Estimated by correlation with An(III) in function of ionic radii - -analytic -19.71000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+3 +1.000SO4-2 = Pu(SO4)+ - log_k +3.91 #01LEM/FUG - delta_h +17.240 #kJ/mol 01LEM/FUG -# Enthalpy of formation: -1483.890 kJ/mol - -analytic 69.30318E-1 00.00000E+0 -90.05079E+1 00.00000E+0 00.00000E+0 - -+1.000Pu+4 +1.000SO4-2 = Pu(SO4)+2 - log_k +6.89 #01LEM/FUG - delta_h +13.754 #kJ/mol -# Enthalpy of formation: -1435.481 kJ/mol - -analytic 92.99597E-1 00.00000E+0 -71.84215E+1 00.00000E+0 00.00000E+0 - -+1.000Pu+4 +2.000SO4-2 = Pu(SO4)2 - log_k +11.14 #01LEM/FUG - delta_h +43.907 #kJ/mol -# Enthalpy of formation: -2314.667 kJ/mol - -analytic 18.83218E+0 00.00000E+0 -22.93422E+2 00.00000E+0 00.00000E+0 - -+1.000Pu+3 +2.000SO4-2 = Pu(SO4)2- - log_k +5.70 #01LEM/FUG - delta_h +11.880 #kJ/mol 01LEM/FUG -# Enthalpy of formation: -2398.590 kJ/mol - -analytic 77.81287E-1 00.00000E+0 -62.05356E+1 00.00000E+0 00.00000E+0 - -+1.000Pu+4 +1.000Br- = PuBr+3 - log_k +1.60 #01LEM/FUG - -analytic 16.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+4 +1.000Cl- = PuCl+3 - log_k +1.80 #01LEM/FUG - delta_h +19.820 #kJ/mol -# Enthalpy of formation: -687.155 kJ/mol - -analytic 52.72315E-1 00.00000E+0 -10.35271E+2 00.00000E+0 00.00000E+0 - -+1.000Pu+4 +1.000F- = PuF+3 - log_k +8.84 #01LEM/FUG - delta_h +9.100 #kJ/mol 01LEM/FUG -# Enthalpy of formation: -866.145 kJ/mol - -analytic 10.43425E+0 00.00000E+0 -47.53261E+1 00.00000E+0 00.00000E+0 - -+1.000Pu+4 +2.000F- = PuF2+2 - log_k +15.70 #01LEM/FUG - delta_h +11.000 #kJ/mol 01LEM/FUG -# Enthalpy of formation: -1199.595 kJ/mol - -analytic 17.62712E+0 00.00000E+0 -57.45700E+1 00.00000E+0 00.00000E+0 - -+1.000Pu+4 +3.000F- = PuF3+ - log_k +20.11 #01LEM/FUG - -analytic 20.11000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+4 +1.000H+ +1.000H2(PO4)- = PuH3PO4+4 - log_k +4.54 #01LEM/FUG - -analytic 45.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+3 +1.000I- = PuI+2 - log_k +1.10 #01LEM/FUG - -analytic 11.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Pu+4 +1.000I- = PuI+3 - log_k +1.62 #ANDRA report (C RP 0ENQ 02-001,Estimated by correlation with An(IV) in function of ionic radii) - -analytic 16.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000PuO2+2 +1.000Acetate- = PuO2(Acetate)+ - log_k +2.87 #11RIC/GRI - -analytic 28.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000PuO2+2 +2.000Acetate- = PuO2(Acetate)2 - log_k +4.77 #11RIC/GRI - -analytic 47.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000PuO2+2 +3.000Acetate- = PuO2(Acetate)3- - log_k +6.19 #11RIC/GRI - -analytic 61.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000PuO2+2 +1.000CO3-2 = PuO2(CO3) - log_k +9.50 #03GUI/FAN - -analytic 95.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000PuO2+ +1.000CO3-2 = PuO2(CO3)- - log_k +5.03 #20GRE/GAO - -analytic 50.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000PuO2+2 +2.000CO3-2 = PuO2(CO3)2-2 - log_k +14.70 #03GUI/FAN - delta_h -27.000 #kJ/mol 03GUI/FAN -# Enthalpy of formation: -2199.496 kJ/mol - -analytic 99.69803E-1 00.00000E+0 14.10308E+2 00.00000E+0 00.00000E+0 - -+1.000PuO2+ +2.000CO3-2 = PuO2(CO3)2-3 - log_k +6.34 #20GRE/GAO - -analytic 63.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000PuO2+2 +3.000CO3-2 = PuO2(CO3)3-4 - log_k +18.00 #03GUI/FAN - delta_h -38.600 #kJ/mol 03GUI/FAN -# Enthalpy of formation: -2886.326 kJ/mol - -analytic 11.23757E+0 00.00000E+0 20.16218E+2 00.00000E+0 00.00000E+0 - -+1.000PuO2+ +3.000CO3-2 = PuO2(CO3)3-5 - log_k +5.61 #20GRE/GAO - -analytic 56.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+2.000UO2+2 +1.000PuO2+2 +6.000CO3-2 = PuO2(CO3)6(UO2)2-6 - log_k +53.48 #20GRE/GAO - -analytic 53.48000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000PuO2+ -1.000H+ +1.000H2(PO4)- = PuO2(HPO4)- - log_k -4.86 #NEA Guidelines in 01LEM/FUG - -analytic -48.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000PuO2+ +1.000Nta-3 = PuO2(Nta)-2 - log_k +7.50 #95AKR/BOU - -analytic 75.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000PuO2+2 -1.000H+ +1.000H2O = PuO2(OH)+ - log_k -5.50 #01LEM/FUG - delta_h +28.000 #kJ/mol 01LEM/FUG -# Enthalpy of formation: -1079.866 kJ/mol - -analytic -59.46106E-2 00.00000E+0 -14.62542E+2 00.00000E+0 00.00000E+0 - -+1.000PuO2+2 -2.000H+ +2.000H2O = PuO2(OH)2 - log_k -13.20 #01LEM/FUG - -analytic -13.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000PuO2+2 -3.000H+ +3.000H2O = PuO2(OH)3- - log_k -24.00 #20GRE/GAO - -analytic -24.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000PuO2+2 -1.000H+ +1.000H4(SiO4) = PuO2(OSi(OH)3)+ - log_k -3.64 #03YUS/FED - -analytic -36.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000PuO2+2 +1.000Ox-2 = PuO2(Ox) - log_k +7.00 #95AKR/BOU - -analytic 70.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000PuO2+2 +2.000Ox-2 = PuO2(Ox)2-2 - log_k +10.50 #73POR/DEP in 95AKR/BOU - -analytic 10.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000PuO2+2 +1.000Phthalat-2 = PuO2(Phthalat) - log_k +5.76 #11GRI/COL3 - -analytic 57.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000PuO2+2 +1.000SO4-2 = PuO2(SO4) - log_k +3.38 #01LEM/FUG - delta_h +16.100 #kJ/mol 01LEM/FUG -# Enthalpy of formation: -1715.276 kJ/mol - -analytic 62.00599E-1 00.00000E+0 -84.09616E+1 00.00000E+0 00.00000E+0 - -+1.000PuO2+ +1.000SO4-2 = PuO2(SO4)- - log_k +1.26 #20GRE/GAO - -analytic 12.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000PuO2+2 +2.000SO4-2 = PuO2(SO4)2-2 - log_k +4.40 #01LEM/FUG - delta_h +43.000 #kJ/mol 01LEM/FUG -# Enthalpy of formation: -2597.716 kJ/mol - -analytic 11.93328E+0 00.00000E+0 -22.46046E+2 00.00000E+0 00.00000E+0 - -+1.000PuO2+2 +1.000Cl- = PuO2Cl+ - log_k +0.23 #03GUI/FAN - delta_h +4.187 #kJ/mol -# Enthalpy of formation: -984.929 kJ/mol - -analytic 96.35309E-2 00.00000E+0 -21.87022E+1 00.00000E+0 00.00000E+0 - -+1.000PuO2+2 +2.000Cl- = PuO2Cl2 - log_k -1.15 #03GUI/FAN - -analytic -11.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000PuO2+ +1.000F- = PuO2F - log_k +1.20 #In analogy to NpO2)F - -analytic 12.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000PuO2+2 +1.000F- = PuO2F+ - log_k +4.56 #01LEM/FUG - delta_h -3.654 #kJ/mol -# Enthalpy of formation: -1161.039 kJ/mol - -analytic 39.19847E-1 00.00000E+0 19.08617E+1 00.00000E+0 00.00000E+0 - -+1.000PuO2+2 +2.000F- = PuO2F2 - log_k +7.25 #01LEM/FUG - delta_h +1.206 #kJ/mol -# Enthalpy of formation: -1491.529 kJ/mol - -analytic 74.61282E-1 00.00000E+0 -62.99377E+0 00.00000E+0 00.00000E+0 - -+1.000PuO2+2 +3.000F- = PuO2F3- - log_k +9.59 #85SAW/CHA - delta_h +2.399 #kJ/mol -# Enthalpy of formation: -1825.686 kJ/mol - -analytic 10.01029E+0 00.00000E+0 -12.53085E+1 00.00000E+0 00.00000E+0 - -+1.000PuO2+2 +1.000NO3- = PuO2NO3+ - log_k +0.10 #12GRI/GAR1 (LogK selected in analogy to U (NEA recommendation), logK(UO2NO3 +)) - -analytic 10.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000PuO2+ -1.000H+ +1.000H2O = PuO2OH - log_k -11.30 #01LEM/FUG - delta_h +71.826 #kJ/mol -# Enthalpy of formation: -1124.131 kJ/mol - -analytic 12.83375E-1 00.00000E+0 -37.51733E+2 00.00000E+0 00.00000E+0 - -+1.000Ra+2 +1.000CO3-2 = Ra(CO3) - log_k +2.50 #99SCH - delta_h +4.496 #kJ/mol -# Enthalpy of formation: -1198.760 kJ/mol - -analytic 32.87665E-1 00.00000E+0 -23.48424E+1 00.00000E+0 00.00000E+0 - -+1.000H+ +1.000Ra+2 +1.000CO3-2 = Ra(HCO3)+ - log_k +10.92 #02ILE/TWE; Uncertainty to include available data. - -analytic 10.92000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --1.000H+ +1.000Ra+2 +1.000H2O = Ra(OH)+ - log_k -13.49 - delta_h +60.417 #kJ/mol 85LAN/RIE -# Enthalpy of formation: -753.438 kJ/mol - -analytic -29.05396E-1 00.00000E+0 -31.55800E+2 00.00000E+0 00.00000E+0 - --2.000H+ +1.000Ra+2 +2.000H2O = Ra(OH)2 - log_k -28.07 - delta_h +112.197 #kJ/mol -# Enthalpy of formation: -987.488 kJ/mol - -analytic -84.13929E-1 00.00000E+0 -58.60457E+2 00.00000E+0 00.00000E+0 - -+1.000Ra+2 +1.000SO4-2 = Ra(SO4) - log_k +2.76 - delta_h +5.472 #kJ/mol -# Enthalpy of formation: -1431.892 kJ/mol - -analytic 37.18653E-1 00.00000E+0 -28.58225E+1 00.00000E+0 00.00000E+0 - -+1.000Ra+2 +1.000Cl- = RaCl+ - log_k -0.10 #85LAN/RIE; Uncertainty to include available data. - delta_h +2.479 #kJ/mol -# Enthalpy of formation: -692.626 kJ/mol - -analytic 33.43022E-2 00.00000E+0 -12.94872E+1 00.00000E+0 00.00000E+0 - -+1.000Ra+2 +2.000Cl- = RaCl2 - log_k -0.10 - delta_h +0.495 #kJ/mol -# Enthalpy of formation: -861.689 kJ/mol - -analytic -13.27972E-3 00.00000E+0 -25.85565E+0 00.00000E+0 00.00000E+0 - -+1.000Ra+2 +1.000F- = RaF+ - log_k +0.48 #87BRO/WAN - -analytic 48.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Br- +1.000Rb+ = RbBr - log_k -1.24 - delta_h +13.836 #kJ/mol +Pu+3 + Acetate- = Pu(Acetate)+2 + log_k 2.85 #69MOS + -analytic 28.5E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+4 + Acetate- = Pu(Acetate)+3 + log_k 5.93 #62SCH/NEB + -analytic 59.3E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + 2 Acetate- = Pu(Acetate)2+ + log_k 5.06 #69MOS + -analytic 50.6E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+4 + 2 Acetate- = Pu(Acetate)2+2 + log_k 10.09 #62SCH/NEB + -analytic 10.09E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + 3 Acetate- = Pu(Acetate)3 + log_k 6.57 #69MOS + -analytic 65.7E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + Cit-3 = Pu(Cit) + log_k 8.55 #Analogy with Am + -analytic 85.5E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + 2 Cit-3 = Pu(Cit)2-3 + log_k 13.9 #Analogy with Am + -analytic 13.9E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + CO3-2 = Pu(CO3)+ + log_k 7.64 #Estimated by correlation with An(III) in function of ionic radii + delta_h 14.742 #kJ/mol +# Enthalpy of formation: -1252.279 kJ/mol + -analytic 10.22269E+0 00E+0 -77.00283E+1 00E+0 00E+0 + +Pu+3 + 2 CO3-2 = Pu(CO3)2- + log_k 12.54 #Estimated by correlation with An(III) in function of ionic radii + -analytic 12.54E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + 3 CO3-2 = Pu(CO3)3-3 + log_k 15.2 #Estimated by correlation with An(III) in function of ionic radii + -analytic 15.2E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+4 + 4 CO3-2 = Pu(CO3)4-4 + log_k 37 #03GUI/FAN + -analytic 37E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+4 + 5 CO3-2 = Pu(CO3)5-6 + log_k 35.65 #03GUI/FAN + -analytic 35.65E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+4 + Edta-4 = Pu(Edta) + log_k 31.8 #Recommended in 05HUM/AND + -analytic 31.8E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + Edta-4 = Pu(Edta)- + log_k 20.18 #05HUM/AND + delta_h -8.7 #kJ/mol 05HUM/AND +# Enthalpy of formation: -2305.290 kJ/mol + -analytic 18.65583E+0 00E+0 45.44326E+1 00E+0 00E+0 + +Pu+3 + H2(PO4)- = Pu(H2PO4)+2 + log_k 2.2 #10RAI/MOO + -analytic 22E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + H+ + Cit-3 = Pu(HCit)+ + log_k 12.86 #Analogy with Am + -analytic 12.86E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + 2 H+ + 2 Cit-3 = Pu(HCit)2- + log_k 23.52 #Analogy with Am + -analytic 23.52E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + H+ + Edta-4 = Pu(HEdta) + log_k 22.02 #05HUM/AND + -analytic 22.02E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 - H+ + H2(PO4)- = Pu(HPO4)+ + log_k -1.81 #Estimated by correlation with An(III) in function of ionic radii + -analytic -18.1E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+3 - 2 H+ + 2 H2(PO4)- = Pu(HPO4)2- + log_k -5.45 #Estimated by correlation with An(III) in function of ionic radii + -analytic -54.5E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + NO3- = Pu(NO3)+2 + log_k 1.33 #95SIL/BID, LogK selected in analogy to Am (NEA recommendation 95SIL/BID) + -analytic 13.3E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+4 + NO3- = Pu(NO3)+3 + log_k 1.95 #01LEM/FUG + -analytic 19.5E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + Nta-3 = Pu(Nta) + log_k 13.1 #95AKR/BOU + -analytic 13.1E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+4 + Nta-3 = Pu(Nta)+ + log_k 25.72 #16BON/AUP + -analytic 25.72E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 - H+ + H2O = Pu(OH)+2 + log_k -6.18 #20GRE/GAO + delta_h 30.753 #kJ/mol +# Enthalpy of formation: -846.866 kJ/mol + -analytic -79.23057E-2 00E+0 -16.06341E+2 00E+0 00E+0 + +Pu+4 - H+ + H2O = Pu(OH)+3 + log_k 0.6 #99NEC, 01NEC/KIM, 03GUI/FAN + delta_h 22.922 #kJ/mol +# Enthalpy of formation: -802.803 kJ/mol + -analytic 46.15762E-1 00E+0 -11.97299E+2 00E+0 00E+0 + +Pu+4 - 2 H+ + 2 CO3-2 + 2 H2O = Pu(OH)2(CO3)2-2 + log_k 18.21 #99RAI/HES1 + -analytic 18.21E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 - 2 H+ + HGlu- + 2 H2O = Pu(OH)2(HGlu) + log_k -10.97 #Analogy with Pu(OH)2(HIsa)(aq) + -analytic -10.97E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 - 2 H+ + HIsa- + 2 H2O = Pu(OH)2(HIsa) + log_k -10.97 #18TAS/GAO + -analytic -10.97E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 - 2 H+ + 2 H2O = Pu(OH)2+ + log_k -15.1 #Analogy with Am(III) + delta_h 89.712 #kJ/mol +# Enthalpy of formation: -1073.737 kJ/mol + -analytic 61.68677E-2 00E+0 -46.85984E+2 00E+0 00E+0 + +Pu+4 - 2 H+ + 2 H2O = Pu(OH)2+2 + log_k 0.6 #99NEC, 01NEC/KIM, 03GUI/FAN + delta_h 39.78 #kJ/mol +# Enthalpy of formation: -1071.775 kJ/mol + -analytic 75.69157E-1 00E+0 -20.77854E+2 00E+0 00E+0 + +Pu+4 - 2 H+ + Edta-4 + 2 H2O = Pu(OH)2Edta-2 + log_k 18.02 #21DIB/TAS + -analytic 18.02E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 - 3 H+ + 3 H2O = Pu(OH)3 + log_k -26.2 #20GRE/GAO + delta_h 151.892 #kJ/mol +# Enthalpy of formation: -1297.387 kJ/mol + -analytic 41.03361E-2 00E+0 -79.33872E+2 00E+0 00E+0 + +Pu+4 - 3 H+ + HGlu- + 3 H2O = Pu(OH)3(HGlu) + log_k 4.75 #06GAO/GRI + -analytic 47.5E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+4 - 3 H+ + 3 H2O = Pu(OH)3+ + log_k -2.3 #99NEC, 01NEC/KIM, 03GUI/FAN + delta_h 64.376 #kJ/mol +# Enthalpy of formation: -1333.008 kJ/mol + -analytic 89.78191E-1 00E+0 -33.62593E+2 00E+0 00E+0 + +Pu+4 - 3 H+ + Edta-4 + 3 H2O = Pu(OH)3Edta-3 + log_k 8.5 #21DIB/TAS + -analytic 85E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+4 - 4 H+ + 4 H2O = Pu(OH)4 + log_k -8.5 #03GUI/FAN + delta_h 98.586 #kJ/mol +# Enthalpy of formation: -1584.627 kJ/mol + -analytic 87.71526E-1 00E+0 -51.49505E+2 00E+0 00E+0 + +Pu+4 - 4 H+ + HGlu- + 4 H2O = Pu(OH)4(HGlu)- + log_k -2.7 #06GAO/GRI + -analytic -27E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+4 - 4 H+ + 2 HGlu- + 4 H2O = Pu(OH)4(HGlu)2-2 + log_k -2.83 #Analogy with An(IV)-ISA + -analytic -28.3E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+4 - 4 H+ + HIsa- + 4 H2O = Pu(OH)4(HIsa)- + log_k -5.03 #18TAS/GAO & TAS/GAO1 + -analytic -50.3E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+4 - 4 H+ + 2 HIsa- + 4 H2O = Pu(OH)4(HIsa)2-2 + log_k -2.83 #23ROD/COL + -analytic -28.3E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+4 - 5 H+ + HGlu- + 5 H2O = Pu(OH)5(HGlu)-2 + log_k -16.92 #Analogy with An(IV)-ISA + -analytic -16.92E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+4 - 5 H+ + HIsa- + 5 H2O = Pu(OH)5(HIsa)-2 + log_k -16.92 #18TAS/GAO & 18TAS/GAO1 + -analytic -16.92E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+4 - H+ + Edta-4 + H2O = Pu(OH)Edta- + log_k 23 #21DIB/TAS + -analytic 23E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + Ox-2 = Pu(Ox)+ + log_k 6.49 #12GRI/GAR2 + -analytic 64.9E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+4 + Ox-2 = Pu(Ox)+2 + log_k 11.4 #05HUM/AND + -analytic 11.4E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+4 + 2 Ox-2 = Pu(Ox)2 + log_k 20.6 #05HUM/AND + -analytic 20.6E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + 2 Ox-2 = Pu(Ox)2- + log_k 10.62 #12GRI/GAR2 + -analytic 10.62E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+4 + 3 Ox-2 = Pu(Ox)3-2 + log_k 25.69 #05HUM/AND + -analytic 25.69E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + 3 Ox-2 = Pu(Ox)3-3 + log_k 13.22 #12GRI/GAR2 + -analytic 13.22E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 - 2 H+ + H2(PO4)- = Pu(PO4) + log_k -7.91 #Estimated by correlation with An(III) in function of ionic radii + -analytic -79.1E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+3 - 4 H+ + 2 H2(PO4)- = Pu(PO4)2-3 + log_k -19.71 #Estimated by correlation with An(III) in function of ionic radii + -analytic -19.71E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + SO4-2 = Pu(SO4)+ + log_k 3.91 #01LEM/FUG + delta_h 17.24 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -1483.890 kJ/mol + -analytic 69.30318E-1 00E+0 -90.05079E+1 00E+0 00E+0 + +Pu+4 + SO4-2 = Pu(SO4)+2 + log_k 6.89 #01LEM/FUG + delta_h 13.754 #kJ/mol +# Enthalpy of formation: -1435.481 kJ/mol + -analytic 92.99597E-1 00E+0 -71.84215E+1 00E+0 00E+0 + +Pu+4 + 2 SO4-2 = Pu(SO4)2 + log_k 11.14 #01LEM/FUG + delta_h 43.907 #kJ/mol +# Enthalpy of formation: -2314.667 kJ/mol + -analytic 18.83218E+0 00E+0 -22.93422E+2 00E+0 00E+0 + +Pu+3 + 2 SO4-2 = Pu(SO4)2- + log_k 5.7 #01LEM/FUG + delta_h 11.88 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -2398.590 kJ/mol + -analytic 77.81287E-1 00E+0 -62.05356E+1 00E+0 00E+0 + +Pu+4 + Br- = PuBr+3 + log_k 1.6 #01LEM/FUG + -analytic 16E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+4 + Cl- = PuCl+3 + log_k 1.8 #01LEM/FUG + delta_h 19.82 #kJ/mol +# Enthalpy of formation: -687.155 kJ/mol + -analytic 52.72315E-1 00E+0 -10.35271E+2 00E+0 00E+0 + +Pu+4 + F- = PuF+3 + log_k 8.84 #01LEM/FUG + delta_h 9.1 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -866.145 kJ/mol + -analytic 10.43425E+0 00E+0 -47.53261E+1 00E+0 00E+0 + +Pu+4 + 2 F- = PuF2+2 + log_k 15.7 #01LEM/FUG + delta_h 11 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -1199.595 kJ/mol + -analytic 17.62712E+0 00E+0 -57.457E+1 00E+0 00E+0 + +Pu+4 + 3 F- = PuF3+ + log_k 20.11 #01LEM/FUG + -analytic 20.11E+0 00E+0 00E+0 00E+0 00E+0 + +Pu+4 + H+ + H2(PO4)- = PuH3PO4+4 + log_k 4.54 #01LEM/FUG + -analytic 45.4E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+3 + I- = PuI+2 + log_k 1.1 #01LEM/FUG + -analytic 11E-1 00E+0 00E+0 00E+0 00E+0 + +Pu+4 + I- = PuI+3 + log_k 1.62 #ANDRA report (C RP 0ENQ 02-001,Estimated by correlation with An(IV) in function of ionic radii) + -analytic 16.2E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 + Acetate- = PuO2(Acetate)+ + log_k 2.87 #11RIC/GRI + -analytic 28.7E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 + 2 Acetate- = PuO2(Acetate)2 + log_k 4.77 #11RIC/GRI + -analytic 47.7E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 + 3 Acetate- = PuO2(Acetate)3- + log_k 6.19 #11RIC/GRI + -analytic 61.9E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 + CO3-2 = PuO2(CO3) + log_k 9.5 #03GUI/FAN + -analytic 95E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+ + CO3-2 = PuO2(CO3)- + log_k 5.03 #20GRE/GAO + -analytic 50.3E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 + 2 CO3-2 = PuO2(CO3)2-2 + log_k 14.7 #03GUI/FAN + delta_h -27 #kJ/mol 03GUI/FAN +# Enthalpy of formation: -2199.496 kJ/mol + -analytic 99.69803E-1 00E+0 14.10308E+2 00E+0 00E+0 + +PuO2+ + 2 CO3-2 = PuO2(CO3)2-3 + log_k 6.34 #20GRE/GAO + -analytic 63.4E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 + 3 CO3-2 = PuO2(CO3)3-4 + log_k 18 #03GUI/FAN + delta_h -38.6 #kJ/mol 03GUI/FAN +# Enthalpy of formation: -2886.326 kJ/mol + -analytic 11.23757E+0 00E+0 20.16218E+2 00E+0 00E+0 + +PuO2+ + 3 CO3-2 = PuO2(CO3)3-5 + log_k 5.61 #20GRE/GAO + -analytic 56.1E-1 00E+0 00E+0 00E+0 00E+0 + +2 UO2+2 + PuO2+2 + 6 CO3-2 = PuO2(CO3)6(UO2)2-6 + log_k 53.48 #20GRE/GAO + -analytic 53.48E+0 00E+0 00E+0 00E+0 00E+0 + +PuO2+ - H+ + H2(PO4)- = PuO2(HPO4)- + log_k -4.86 #NEA Guidelines in 01LEM/FUG + -analytic -48.6E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+ + Nta-3 = PuO2(Nta)-2 + log_k 7.5 #95AKR/BOU + -analytic 75E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 - H+ + H2O = PuO2(OH)+ + log_k -5.5 #01LEM/FUG + delta_h 28 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -1079.866 kJ/mol + -analytic -59.46106E-2 00E+0 -14.62542E+2 00E+0 00E+0 + +PuO2+2 - 2 H+ + 2 H2O = PuO2(OH)2 + log_k -13.2 #01LEM/FUG + -analytic -13.2E+0 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 - 3 H+ + 3 H2O = PuO2(OH)3- + log_k -24 #20GRE/GAO + -analytic -24E+0 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 - H+ + H4(SiO4) = PuO2(OSi(OH)3)+ + log_k -3.64 #03YUS/FED + -analytic -36.4E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 + Ox-2 = PuO2(Ox) + log_k 7 #95AKR/BOU + -analytic 70E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 + 2 Ox-2 = PuO2(Ox)2-2 + log_k 10.5 #73POR/DEP in 95AKR/BOU + -analytic 10.5E+0 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 + Phthalat-2 = PuO2(Phthalat) + log_k 5.76 #11GRI/COL3 + -analytic 57.6E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 + SO4-2 = PuO2(SO4) + log_k 3.38 #01LEM/FUG + delta_h 16.1 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -1715.276 kJ/mol + -analytic 62.00599E-1 00E+0 -84.09616E+1 00E+0 00E+0 + +PuO2+ + SO4-2 = PuO2(SO4)- + log_k 1.26 #20GRE/GAO + -analytic 12.6E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 + 2 SO4-2 = PuO2(SO4)2-2 + log_k 4.4 #01LEM/FUG + delta_h 43 #kJ/mol 01LEM/FUG +# Enthalpy of formation: -2597.716 kJ/mol + -analytic 11.93328E+0 00E+0 -22.46046E+2 00E+0 00E+0 + +PuO2+2 + Cl- = PuO2Cl+ + log_k 0.23 #03GUI/FAN + delta_h 4.187 #kJ/mol +# Enthalpy of formation: -984.929 kJ/mol + -analytic 96.35309E-2 00E+0 -21.87022E+1 00E+0 00E+0 + +PuO2+2 + 2 Cl- = PuO2Cl2 + log_k -1.15 #03GUI/FAN + -analytic -11.5E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+ + F- = PuO2F + log_k 1.2 #In analogy to NpO2)F + -analytic 12E-1 00E+0 00E+0 00E+0 00E+0 + +PuO2+2 + F- = PuO2F+ + log_k 4.56 #01LEM/FUG + delta_h -3.654 #kJ/mol +# Enthalpy of formation: -1161.039 kJ/mol + -analytic 39.19847E-1 00E+0 19.08617E+1 00E+0 00E+0 + +PuO2+2 + 2 F- = PuO2F2 + log_k 7.25 #01LEM/FUG + delta_h 1.206 #kJ/mol +# Enthalpy of formation: -1491.529 kJ/mol + -analytic 74.61282E-1 00E+0 -62.99377E+0 00E+0 00E+0 + +PuO2+2 + 3 F- = PuO2F3- + log_k 9.59 #85SAW/CHA + delta_h 2.399 #kJ/mol +# Enthalpy of formation: -1825.686 kJ/mol + -analytic 10.01029E+0 00E+0 -12.53085E+1 00E+0 00E+0 + +PuO2+2 + NO3- = PuO2NO3+ + log_k 0.1 #12GRI/GAR1 (LogK selected in analogy to U (NEA recommendation), logK(UO2NO3 +)) + -analytic 10E-2 00E+0 00E+0 00E+0 00E+0 + +PuO2+ - H+ + H2O = PuO2OH + log_k -11.3 #01LEM/FUG + delta_h 71.826 #kJ/mol +# Enthalpy of formation: -1124.131 kJ/mol + -analytic 12.83375E-1 00E+0 -37.51733E+2 00E+0 00E+0 + +Ra+2 + CO3-2 = Ra(CO3) + log_k 2.5 #99SCH + delta_h 4.496 #kJ/mol +# Enthalpy of formation: -1198.760 kJ/mol + -analytic 32.87665E-1 00E+0 -23.48424E+1 00E+0 00E+0 + +H+ + Ra+2 + CO3-2 = Ra(HCO3)+ + log_k 10.92 #02ILE/TWE; Uncertainty to include available data. + -analytic 10.92E+0 00E+0 00E+0 00E+0 00E+0 + +- H+ + Ra+2 + H2O = Ra(OH)+ + log_k -13.49 + delta_h 60.417 #kJ/mol 85LAN/RIE +# Enthalpy of formation: -753.438 kJ/mol + -analytic -29.05396E-1 00E+0 -31.558E+2 00E+0 00E+0 + +- 2 H+ + Ra+2 + 2 H2O = Ra(OH)2 + log_k -28.07 + delta_h 112.197 #kJ/mol +# Enthalpy of formation: -987.488 kJ/mol + -analytic -84.13929E-1 00E+0 -58.60457E+2 00E+0 00E+0 + +Ra+2 + SO4-2 = Ra(SO4) + log_k 2.76 + delta_h 5.472 #kJ/mol +# Enthalpy of formation: -1431.892 kJ/mol + -analytic 37.18653E-1 00E+0 -28.58225E+1 00E+0 00E+0 + +Ra+2 + Cl- = RaCl+ + log_k -0.1 #85LAN/RIE; Uncertainty to include available data. + delta_h 2.479 #kJ/mol +# Enthalpy of formation: -692.626 kJ/mol + -analytic 33.43022E-2 00E+0 -12.94872E+1 00E+0 00E+0 + +Ra+2 + 2 Cl- = RaCl2 + log_k -0.1 + delta_h 0.495 #kJ/mol +# Enthalpy of formation: -861.689 kJ/mol + -analytic -13.27972E-3 00E+0 -25.85565E+0 00E+0 00E+0 + +Ra+2 + F- = RaF+ + log_k 0.48 #87BRO/WAN + -analytic 48E-2 00E+0 00E+0 00E+0 00E+0 + +Br- + Rb+ = RbBr + log_k -1.24 + delta_h 13.836 #kJ/mol # Enthalpy of formation: -358.694 kJ/mol 97SVE/SHO - -analytic 11.83963E-1 00.00000E+0 -72.27046E+1 00.00000E+0 00.00000E+0 + -analytic 11.83963E-1 00E+0 -72.27046E+1 00E+0 00E+0 -+1.000Cl- +1.000Rb+ = RbCl - log_k -1.01 - delta_h +13.189 #kJ/mol +Cl- + Rb+ = RbCl + log_k -1.01 + delta_h 13.189 #kJ/mol # Enthalpy of formation: -405.011 kJ/mol 97SVE/SHO - -analytic 13.00614E-1 00.00000E+0 -68.89094E+1 00.00000E+0 00.00000E+0 + -analytic 13.00614E-1 00E+0 -68.89094E+1 00E+0 00E+0 -+1.000F- +1.000Rb+ = RbF - log_k +0.94 - delta_h +1.923 #kJ/mol +F- + Rb+ = RbF + log_k 0.94 + delta_h 1.923 #kJ/mol # Enthalpy of formation: -584.547 kJ/mol 97SVE/SHO - -analytic 12.76895E-1 00.00000E+0 -10.04453E+1 00.00000E+0 00.00000E+0 + -analytic 12.76895E-1 00E+0 -10.04453E+1 00E+0 00E+0 -+1.000I- +1.000Rb+ = RbI - log_k -0.84 - delta_h +6.987 #kJ/mol +I- + Rb+ = RbI + log_k -0.84 + delta_h 6.987 #kJ/mol # Enthalpy of formation: -300.913 kJ/mol 97SVE/SHO - -analytic 38.40699E-2 00.00000E+0 -36.49564E+1 00.00000E+0 00.00000E+0 + -analytic 38.40699E-2 00E+0 -36.49564E+1 00E+0 00E+0 --1.000H+ +1.000Rb+ +1.000H2O = RbOH - log_k -14.26 - delta_h +64.158 #kJ/mol +- H+ + Rb+ + H2O = RbOH + log_k -14.26 + delta_h 64.158 #kJ/mol # Enthalpy of formation: -472.792 kJ/mol 97SHO/SAS2 - -analytic -30.20001E-1 00.00000E+0 -33.51206E+2 00.00000E+0 00.00000E+0 + -analytic -30.20001E-1 00E+0 -33.51206E+2 00E+0 00E+0 --1.000H+ +1.000HS- = S-2 - log_k -17.10 #04CHI - delta_h +73.278 #kJ/mol -# Enthalpy of formation: +56.978 kJ/mol - -analytic -42.62245E-1 00.00000E+0 -38.27577E+2 00.00000E+0 00.00000E+0 +- H+ + HS- = S-2 + log_k -17.1 #04CHI + delta_h 73.278 #kJ/mol +# Enthalpy of formation: +56.978 kJ/mol + -analytic -42.62245E-1 00E+0 -38.27577E+2 00E+0 00E+0 --2.000H+ -2.000e- +2.000HS- = S2-2 - log_k -10.54 - delta_h +67.640 #kJ/mol +- 2 H+ - 2 e- + 2 HS- = S2-2 + log_k -10.54 + delta_h 67.64 #kJ/mol # Enthalpy of formation: +35.040 kJ/mol 04CHI - -analytic 13.10019E-1 00.00000E+0 -35.33083E+2 00.00000E+0 00.00000E+0 + -analytic 13.10019E-1 00E+0 -35.33083E+2 00E+0 00E+0 -+2.000H+ +2.000SO3-2 -1.000H2O = S2O5-2 - log_k +12.85 #85GOL/PAR - delta_h +2.606 #kJ/mol -# Enthalpy of formation: -973.684 kJ/mol - -analytic 13.30655E+0 00.00000E+0 -13.61209E+1 00.00000E+0 00.00000E+0 +2 H+ + 2 SO3-2 - H2O = S2O5-2 + log_k 12.85 #85GOL/PAR + delta_h 2.606 #kJ/mol +# Enthalpy of formation: -973.684 kJ/mol + -analytic 13.30655E+0 00E+0 -13.61209E+1 00E+0 00E+0 --2.000e- +2.000SO4-2 = S2O8-2 - log_k -65.38 - delta_h +473.980 #kJ/mol +- 2 e- + 2 SO4-2 = S2O8-2 + log_k -65.38 + delta_h 473.98 #kJ/mol # Enthalpy of formation: -1344.700 kJ/mol 82WAG/EVA - -analytic 17.65773E+0 00.00000E+0 -24.75770E+3 00.00000E+0 00.00000E+0 + -analytic 17.65773E+0 00E+0 -24.7577E+3 00E+0 00E+0 --3.000H+ -4.000e- +3.000HS- = S3-2 - log_k -6.51 - delta_h +74.840 #kJ/mol +- 3 H+ - 4 e- + 3 HS- = S3-2 + log_k -6.51 + delta_h 74.84 #kJ/mol # Enthalpy of formation: +25.940 kJ/mol 74NAU/RYZ - -analytic 66.01405E-1 00.00000E+0 -39.09165E+2 00.00000E+0 00.00000E+0 + -analytic 66.01405E-1 00E+0 -39.09165E+2 00E+0 00E+0 -+6.000H+ +2.000e- +3.000SO3-2 -3.000H2O = S3O6-2 - log_k +36.82 - delta_h -131.646 #kJ/mol +6 H+ + 2 e- + 3 SO3-2 - 3 H2O = S3O6-2 + log_k 36.82 + delta_h -131.646 #kJ/mol # Enthalpy of formation: -1167.336 kJ/mol 04CHI - -analytic 13.75661E+0 00.00000E+0 68.76349E+2 00.00000E+0 00.00000E+0 + -analytic 13.75661E+0 00E+0 68.76349E+2 00E+0 00E+0 --4.000H+ -6.000e- +4.000HS- = S4-2 - log_k -3.58 - delta_h +88.210 #kJ/mol +- 4 H+ - 6 e- + 4 HS- = S4-2 + log_k -3.58 + delta_h 88.21 #kJ/mol # Enthalpy of formation: +23.010 kJ/mol 74NAU/RYZ - -analytic 11.87373E+0 00.00000E+0 -46.07529E+2 00.00000E+0 00.00000E+0 + -analytic 11.87373E+0 00E+0 -46.07529E+2 00E+0 00E+0 -+12.000H+ +6.000e- +4.000SO3-2 -6.000H2O = S4O6-2 - log_k +90.80 - delta_h -414.978 #kJ/mol +12 H+ + 6 e- + 4 SO3-2 - 6 H2O = S4O6-2 + log_k 90.8 + delta_h -414.978 #kJ/mol # Enthalpy of formation: -1224.238 kJ/mol 04CHI - -analytic 18.09898E+0 00.00000E+0 21.67581E+3 00.00000E+0 00.00000E+0 + -analytic 18.09898E+0 00E+0 21.67581E+3 00E+0 00E+0 --5.000H+ -8.000e- +5.000HS- = S5-2 - log_k -0.87 - delta_h +102.840 #kJ/mol +- 5 H+ - 8 e- + 5 HS- = S5-2 + log_k -0.87 + delta_h 102.84 #kJ/mol # Enthalpy of formation: +21.340 kJ/mol 74NAU/RYZ - -analytic 17.14679E+0 00.00000E+0 -53.71707E+2 00.00000E+0 00.00000E+0 + -analytic 17.14679E+0 00E+0 -53.71707E+2 00E+0 00E+0 -+18.000H+ +10.000e- +5.000SO3-2 -9.000H2O = S5O6-2 - log_k +115.39 - delta_h -592.874 #kJ/mol +18 H+ + 10 e- + 5 SO3-2 - 9 H2O = S5O6-2 + log_k 115.39 + delta_h -592.874 #kJ/mol # Enthalpy of formation: -1175.704 kJ/mol 04CHI - -analytic 11.52293E+0 00.00000E+0 30.96797E+3 00.00000E+0 00.00000E+0 + -analytic 11.52293E+0 00E+0 30.96797E+3 00E+0 00E+0 -+2.000H+ +1.000Sb(OH)3 -2.000H2O = Sb(OH)+2 - log_k +0.74 #99LOT/OCH - -analytic 74.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 H+ + Sb(OH)3 - 2 H2O = Sb(OH)+2 + log_k 0.74 #99LOT/OCH + -analytic 74E-2 00E+0 00E+0 00E+0 00E+0 -+1.000H+ +1.000Sb(OH)3 -1.000H2O = Sb(OH)2+ - log_k +1.33 #77ANT/NEV and others recalculated - -analytic 13.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +H+ + Sb(OH)3 - H2O = Sb(OH)2+ + log_k 1.33 #77ANT/NEV and others recalculated + -analytic 13.3E-1 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000Sb(OH)3 +1.000H2O = Sb(OH)4- - log_k -11.82 #52GAY/GAR recalculated - -analytic -11.82000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- H+ + Sb(OH)3 + H2O = Sb(OH)4- + log_k -11.82 #52GAY/GAR recalculated + -analytic -11.82E+0 00E+0 00E+0 00E+0 00E+0 -+1.000H+ +1.000Sb(OH)5 -1.000H2O = Sb(OH)4+ - log_k -3.26 #57PIT/POU in 99LOT/OCH - -analytic -32.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +H+ + Sb(OH)5 - H2O = Sb(OH)4+ + log_k -3.26 #57PIT/POU in 99LOT/OCH + -analytic -32.6E-1 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000Sb(OH)5 +1.000H2O = Sb(OH)6- - log_k -2.72 #63LEF/MAR in 76BAE/MES - -analytic -27.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- H+ + Sb(OH)5 + H2O = Sb(OH)6- + log_k -2.72 #63LEF/MAR in 76BAE/MES + -analytic -27.2E-1 00E+0 00E+0 00E+0 00E+0 -+3.000H+ +1.000Sb(OH)3 -3.000H2O = Sb+3 - log_k -0.73 #99LOT/OCH - -analytic -73.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +3 H+ + Sb(OH)3 - 3 H2O = Sb+3 + log_k -0.73 #99LOT/OCH + -analytic -73E-2 00E+0 00E+0 00E+0 00E+0 --4.000H+ +12.000Sb(OH)5 +4.000H2O = Sb12(OH)64-4 - log_k +20.34 #63LEF/MAR in 76BAE/MES - -analytic 20.34000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 4 H+ + 12 Sb(OH)5 + 4 H2O = Sb12(OH)64-4 + log_k 20.34 #63LEF/MAR in 76BAE/MES + -analytic 20.34E+0 00E+0 00E+0 00E+0 00E+0 --5.000H+ +12.000Sb(OH)5 +5.000H2O = Sb12(OH)65-5 - log_k +16.72 #63LEF/MAR in 76BAE/MES - -analytic 16.72000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 5 H+ + 12 Sb(OH)5 + 5 H2O = Sb12(OH)65-5 + log_k 16.72 #63LEF/MAR in 76BAE/MES + -analytic 16.72E+0 00E+0 00E+0 00E+0 00E+0 --6.000H+ +12.000Sb(OH)5 +6.000H2O = Sb12(OH)66-6 - log_k +11.89 #63LEF/MAR in 76BAE/MES - -analytic 11.89000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 6 H+ + 12 Sb(OH)5 + 6 H2O = Sb12(OH)66-6 + log_k 11.89 #63LEF/MAR in 76BAE/MES + -analytic 11.89E+0 00E+0 00E+0 00E+0 00E+0 --7.000H+ +12.000Sb(OH)5 +7.000H2O = Sb12(OH)67-7 - log_k +6.07 #63LEF/MAR in 76BAE/MES - -analytic 60.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 7 H+ + 12 Sb(OH)5 + 7 H2O = Sb12(OH)67-7 + log_k 6.07 #63LEF/MAR in 76BAE/MES + -analytic 60.7E-1 00E+0 00E+0 00E+0 00E+0 -+4.000H+ +4.000HS- +2.000Sb(OH)3 -6.000H2O = Sb2H2S4 - log_k +57.81 #88KRU - -analytic 57.81000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +4 H+ + 4 HS- + 2 Sb(OH)3 - 6 H2O = Sb2H2S4 + log_k 57.81 #88KRU + -analytic 57.81E+0 00E+0 00E+0 00E+0 00E+0 -+3.000H+ +4.000HS- +2.000Sb(OH)3 -6.000H2O = Sb2HS4- - log_k +52.90 #88KRU - -analytic 52.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +3 H+ + 4 HS- + 2 Sb(OH)3 - 6 H2O = Sb2HS4- + log_k 52.9 #88KRU + -analytic 52.9E+0 00E+0 00E+0 00E+0 00E+0 -+2.000H+ +4.000HS- +2.000Sb(OH)3 -6.000H2O = Sb2S4-2 - log_k +43.38 #88KRU - -analytic 43.38000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 H+ + 4 HS- + 2 Sb(OH)3 - 6 H2O = Sb2S4-2 + log_k 43.38 #88KRU + -analytic 43.38E+0 00E+0 00E+0 00E+0 00E+0 -+3.000H+ +1.000Cl- +1.000Sb(OH)3 -3.000H2O = SbCl+2 - log_k +2.80 #70BON/WAU and others recalculated - -analytic 28.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +3 H+ + Cl- + Sb(OH)3 - 3 H2O = SbCl+2 + log_k 2.8 #70BON/WAU and others recalculated + -analytic 28E-1 00E+0 00E+0 00E+0 00E+0 -+3.000H+ +2.000Cl- +1.000Sb(OH)3 -3.000H2O = SbCl2+ - log_k +3.27 #70BON/WAU and others recalculated - -analytic 32.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +3 H+ + 2 Cl- + Sb(OH)3 - 3 H2O = SbCl2+ + log_k 3.27 #70BON/WAU and others recalculated + -analytic 32.7E-1 00E+0 00E+0 00E+0 00E+0 -+3.000H+ +1.000F- +1.000Sb(OH)3 -3.000H2O = SbF+2 - log_k +6.37 #70BON recalculated - -analytic 63.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+3.000H+ +2.000F- +1.000Sb(OH)3 -3.000H2O = SbF2+ - log_k +12.42 #70BON recalculated - -analytic 12.42000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+3.000H+ +3.000F- +1.000Sb(OH)3 -3.000H2O = SbF3 - log_k +18.20 #70BON recalculated - -analytic 18.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --1.000H+ +1.000HSe- = Se-2 - log_k -14.91 - -analytic -14.91000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --2.000H+ -2.000e- +2.000HSe- = Se2-2 - log_k -4.50 #05OLI/NOL - -analytic -45.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --3.000H+ -4.000e- +3.000HSe- = Se3-2 - log_k +5.24 #05OLI/NOL - -analytic 52.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --4.000H+ -6.000e- +4.000HSe- = Se4-2 - log_k +13.38 #05OLI/NOL - -analytic 13.38000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --1.000H+ +2.000H4(SiO4) -1.000H2O = Si2O2(OH)5- - log_k -8.50 #01FEL/CHO - -analytic -85.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --2.000H+ +2.000H4(SiO4) -1.000H2O = Si2O3(OH)4-2 - log_k -19.40 #01FEL/CHO - -analytic -19.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --3.000H+ +3.000H4(SiO4) -2.000H2O = Si3O5(OH)5-3 - log_k -29.40 #01FEL/CHO - -analytic -29.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --3.000H+ +3.000H4(SiO4) -3.000H2O = Si3O6(OH)3-3 - log_k -29.30 #01FEL/CHO - -analytic -29.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --2.000H+ +4.000H4(SiO4) -4.000H2O = Si4O6(OH)6-2 - log_k -15.60 #01FEL/CHO - -analytic -15.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --4.000H+ +4.000H4(SiO4) -3.000H2O = Si4O7(OH)6-4 - log_k -39.10 #01FEL/CHO - -analytic -39.10000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --4.000H+ +4.000H4(SiO4) -4.000H2O = Si4O8(OH)4-4 - log_k -39.20 #01FEL/CHO - -analytic -39.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - --6.000H+ +6.000H4(SiO4) -9.000H2O = Si6O15-6 - log_k -61.80 #01FEL/CHO - -analytic -61.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sm+3 +1.000CO3-2 = Sm(CO3)+ - log_k +7.80 #95SPA/BRU - delta_h +23.851 #kJ/mol -# Enthalpy of formation: -1342.577 kJ/mol - -analytic 11.97852E+0 00.00000E+0 -12.45824E+2 00.00000E+0 00.00000E+0 - -+1.000Sm+3 +2.000CO3-2 = Sm(CO3)2- - log_k +12.80 #95SPA/BRU - -analytic 12.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sm+3 +3.000CO3-2 = Sm(CO3)3-3 - log_k +14.80 #05VER/VIT2 - -analytic 14.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sm+3 +1.000H2(PO4)- = Sm(H2PO4)+2 - log_k +2.35 #95SPA/BRU - -analytic 23.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sm+3 +1.000H+ +1.000CO3-2 = Sm(HCO3)+2 - log_k +12.43 #95SPA/BRU - -analytic 12.43000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sm+3 -1.000H+ +1.000H2(PO4)- = Sm(HPO4)+ - log_k -1.61 #95SPA/BRU - -analytic -16.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sm+3 -2.000H+ +2.000H2(PO4)- = Sm(HPO4)2- - log_k -5.02 #95SPA/BRU - -analytic -50.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sm+3 +1.000NO3- = Sm(NO3)+2 - log_k +0.90 #95SPA/BRU - -analytic 90.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sm+3 -1.000H+ +1.000H2O = Sm(OH)+2 - log_k -7.90 #95SPA/BRU - delta_h +48.805 #kJ/mol -# Enthalpy of formation: -928.223 kJ/mol - -analytic 65.02690E-2 00.00000E+0 -25.49263E+2 00.00000E+0 00.00000E+0 - -+1.000Sm+3 -2.000H+ +2.000H2O = Sm(OH)2+ - log_k -15.70 #07NEC/ALT2 - delta_h +101.371 #kJ/mol -# Enthalpy of formation: -1161.487 kJ/mol - -analytic 20.59437E-1 00.00000E+0 -52.94976E+2 00.00000E+0 00.00000E+0 - -+1.000Sm+3 -3.000H+ +3.000H2O = Sm(OH)3 - log_k -26.20 #07NEC/ALT2 - delta_h +160.126 #kJ/mol -# Enthalpy of formation: -1388.562 kJ/mol - -analytic 18.52871E-1 00.00000E+0 -83.63963E+2 00.00000E+0 00.00000E+0 - -+1.000Sm+3 -4.000H+ +4.000H2O = Sm(OH)4- - log_k -40.70 #07NEC/ALT2 - delta_h +232.448 #kJ/mol -# Enthalpy of formation: -1602.069 kJ/mol - -analytic 23.14152E-3 00.00000E+0 -12.14160E+3 00.00000E+0 00.00000E+0 - -+1.000Sm+3 -2.000H+ +1.000H2(PO4)- = Sm(PO4) - log_k -7.46 #95SPA/BRU - -analytic -74.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sm+3 -4.000H+ +2.000H2(PO4)- = Sm(PO4)2-3 - log_k -18.72 #95SPA/BRU - -analytic -18.72000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sm+3 +1.000SO4-2 = Sm(SO4)+ - log_k +3.50 #95SPA/BRU - delta_h +16.584 #kJ/mol -# Enthalpy of formation: -1583.954 kJ/mol - -analytic 64.05392E-1 00.00000E+0 -86.62426E+1 00.00000E+0 00.00000E+0 - -+1.000Sm+3 +2.000SO4-2 = Sm(SO4)2- - log_k +5.20 #95SPA/BRU - delta_h +24.918 #kJ/mol -# Enthalpy of formation: -2484.959 kJ/mol - -analytic 95.65446E-1 00.00000E+0 -13.01558E+2 00.00000E+0 00.00000E+0 - -+1.000Sm+3 +1.000Br- = SmBr+2 - log_k +0.23 #96FAL/REA - delta_h -1.358 #kJ/mol -# Enthalpy of formation: -813.965 kJ/mol - -analytic -79.11387E-4 00.00000E+0 70.93328E+0 00.00000E+0 00.00000E+0 - -+1.000Sm+3 +1.000Cl- = SmCl+2 - log_k +0.72 #Original data 01LUO/BYR and 07LUO/BYR - delta_h +3.583 #kJ/mol -# Enthalpy of formation: -854.695 kJ/mol - -analytic 13.47715E-1 00.00000E+0 -18.71531E+1 00.00000E+0 00.00000E+0 - -+1.000Sm+3 +1.000F- = SmF+2 - log_k +4.21 #07LUO/BYR - delta_h +7.970 #kJ/mol 04LUO/MIL -# Enthalpy of formation: -1018.578 kJ/mol - -analytic 56.06284E-1 00.00000E+0 -41.63021E+1 00.00000E+0 00.00000E+0 - -+1.000Sm+3 +2.000F- = SmF2+ - log_k +6.43 #Original data 99SCH/BYR and 04LUO/BYR - delta_h +18.850 #kJ/mol 04LUO/MIL -# Enthalpy of formation: -1343.048 kJ/mol - -analytic 97.32378E-1 00.00000E+0 -98.46041E+1 00.00000E+0 00.00000E+0 - -+1.000Sm+3 -1.000H+ +1.000H4(SiO4) = SmSiO(OH)3+2 - log_k -2.62 #Orginal data 07THA/SIN and 96JEN/CHO1 - -analytic -26.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sn+2 +1.000Cit-3 = Sn(Cit)- - log_k +8.70 #95AKR/BOU - -analytic 87.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sn+2 +2.000Cit-3 = Sn(Cit)2-4 - log_k +11.90 #95AKR/BOU - -analytic 11.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sn+2 +1.000Edta-4 = Sn(Edta)-2 - log_k +24.60 #95AKR/BOU - -analytic 24.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sn+2 +2.000H+ +1.000Edta-4 = Sn(H2Edta) - log_k +24.30 #95AKR/BOU - -analytic 24.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sn+2 +1.000H+ +1.000Edta-4 = Sn(HEdta)- - log_k +23.40 #95AKR/BOU - -analytic 23.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sn+2 +1.000Nta-3 = Sn(Nta)- - log_k +13.40 #95AKR/BOU - -analytic 13.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sn+2 -1.000H+ +1.000H2O = Sn(OH)+ - log_k -3.53 #12GAM/GAJ - delta_h +18.611 #kJ/mol -# Enthalpy of formation: -276.835 kJ/mol - -analytic -26.94928E-2 00.00000E+0 -97.21202E+1 00.00000E+0 00.00000E+0 - -+1.000Sn+2 -2.000H+ +2.000H2O = Sn(OH)2 - log_k -7.68 #12GAM/GAJ - delta_h +40.762 #kJ/mol -# Enthalpy of formation: -540.515 kJ/mol - -analytic -53.88041E-2 00.00000E+0 -21.29148E+2 00.00000E+0 00.00000E+0 - -+1.000Sn+2 -3.000H+ +3.000H2O = Sn(OH)3- - log_k -16.43 - delta_h +89.189 #kJ/mol -# Enthalpy of formation: -777.917 kJ/mol - -analytic -80.47579E-2 00.00000E+0 -46.58666E+2 00.00000E+0 00.00000E+0 - -+1.000Sn+4 -4.000H+ +4.000H2O = Sn(OH)4 - log_k +7.54 - delta_h -49.205 #kJ/mol -# Enthalpy of formation: -1224.035 kJ/mol - -analytic -10.80346E-1 00.00000E+0 25.70156E+2 00.00000E+0 00.00000E+0 - -+1.000Sn+4 -5.000H+ +5.000H2O = Sn(OH)5- - log_k -1.06 - -analytic -10.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sn+4 -6.000H+ +6.000H2O = Sn(OH)6-2 - log_k -11.13 - -analytic -11.13000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sn+2 -1.000H+ +1.000Cl- +1.000H2O = Sn(OH)Cl - log_k -3.10 #52VAN/RHO recalculated in 02HUM/BER - -analytic -31.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sn+2 +1.000Ox-2 = Sn(Ox) - log_k +6.50 #95AKR/BOU - -analytic 65.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sn+2 +2.000Ox-2 = Sn(Ox)2-2 - log_k +12.90 #95AKR/BOU - -analytic 12.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sn+2 +3.000Ox-2 = Sn(Ox)3-4 - log_k +17.10 #95AKR/BOU - -analytic 17.10000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sn+2 +1.000SO4-2 = Sn(SO4) - log_k +3.43 #12GAM/GAJ - delta_h +16.900 #kJ/mol Suggested but not selected in 12GAM/GAJ -# Enthalpy of formation: -902.057 kJ/mol - -analytic 63.90753E-1 00.00000E+0 -88.27485E+1 00.00000E+0 00.00000E+0 - -+3.000Sn+2 -4.000H+ +4.000H2O = Sn3(OH)4+2 - log_k -5.60 #12GAM/GAJ - -analytic -56.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sn+2 +1.000Br- = SnBr+ - log_k +1.33 #12GAM/GAJ - -analytic 13.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sn+2 +2.000Br- = SnBr2 - log_k +1.97 #12GAM/GAJ - -analytic 19.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sn+2 +3.000Br- = SnBr3- - log_k +1.93 #12GAM/GAJ - -analytic 19.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sn+2 +1.000Cl- = SnCl+ - log_k +1.52 #12GAM/GAJ - delta_h +12.700 #kJ/mol 12GAM/GAJ -# Enthalpy of formation: -163.997 kJ/mol - -analytic 37.44944E-1 00.00000E+0 -66.33672E+1 00.00000E+0 00.00000E+0 - -+1.000Sn+2 +2.000Cl- = SnCl2 - log_k +2.17 #12GAM/GAJ - delta_h +19.700 #kJ/mol 12GAM/GAJ -# Enthalpy of formation: -324.077 kJ/mol - -analytic 56.21292E-1 00.00000E+0 -10.29003E+2 00.00000E+0 00.00000E+0 - -+1.000Sn+2 +3.000Cl- = SnCl3- - log_k +2.13 #12GAM/GAJ - -analytic 21.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sn+2 +4.000Cl- = SnCl4-2 - log_k +2.03 #12GAM/GAJ - -analytic 20.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sn+2 +1.000F- = SnF+ - log_k +5.25 #12GAM/GAJ - delta_h -9.580 #kJ/mol -# Enthalpy of formation: -354.546 kJ/mol - -analytic 35.71656E-1 00.00000E+0 50.03983E+1 00.00000E+0 00.00000E+0 - -+1.000Sn+2 +2.000F- = SnF2 - log_k +8.89 #12GAM/GAJ - delta_h -9.969 #kJ/mol -# Enthalpy of formation: -690.285 kJ/mol - -analytic 71.43506E-1 00.00000E+0 52.07171E+1 00.00000E+0 00.00000E+0 - -+1.000Sn+2 +3.000F- = SnF3- - log_k +11.50 #12GAM/GAJ - delta_h -4.479 #kJ/mol -# Enthalpy of formation: -1020.145 kJ/mol - -analytic 10.71531E+0 00.00000E+0 23.39545E+1 00.00000E+0 00.00000E+0 - -+1.000Sn+2 -1.000H+ +1.000H2(PO4)- = SnHPO4 - log_k +2.29 #00CIA/IUL - -analytic 22.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sn+2 +1.000I- = SnI+ - log_k +1.74 #68HAI/JOH1 recalculated - -analytic 17.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sn+2 +2.000I- = SnI2 - log_k +2.69 #68HAI/JOH1 recalculated - -analytic 26.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sn+2 -2.000H+ +1.000H2(PO4)- = SnPO4- - log_k -1.56 #00CIA/IUL - -analytic -15.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+2.000H+ +1.000SO3-2 -1.000H2O = SO2 - log_k +9.03 - delta_h +21.450 #kJ/mol +3 H+ + F- + Sb(OH)3 - 3 H2O = SbF+2 + log_k 6.37 #70BON recalculated + -analytic 63.7E-1 00E+0 00E+0 00E+0 00E+0 + +3 H+ + 2 F- + Sb(OH)3 - 3 H2O = SbF2+ + log_k 12.42 #70BON recalculated + -analytic 12.42E+0 00E+0 00E+0 00E+0 00E+0 + +3 H+ + 3 F- + Sb(OH)3 - 3 H2O = SbF3 + log_k 18.2 #70BON recalculated + -analytic 18.2E+0 00E+0 00E+0 00E+0 00E+0 + +- H+ + HSe- = Se-2 + log_k -14.91 + -analytic -14.91E+0 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ - 2 e- + 2 HSe- = Se2-2 + log_k -4.5 #05OLI/NOL + -analytic -45E-1 00E+0 00E+0 00E+0 00E+0 + +- 3 H+ - 4 e- + 3 HSe- = Se3-2 + log_k 5.24 #05OLI/NOL + -analytic 52.4E-1 00E+0 00E+0 00E+0 00E+0 + +- 4 H+ - 6 e- + 4 HSe- = Se4-2 + log_k 13.38 #05OLI/NOL + -analytic 13.38E+0 00E+0 00E+0 00E+0 00E+0 + +- H+ + 2 H4(SiO4) - H2O = Si2O2(OH)5- + log_k -8.5 #01FEL/CHO + -analytic -85E-1 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ + 2 H4(SiO4) - H2O = Si2O3(OH)4-2 + log_k -19.4 #01FEL/CHO + -analytic -19.4E+0 00E+0 00E+0 00E+0 00E+0 + +- 3 H+ + 3 H4(SiO4) - 2 H2O = Si3O5(OH)5-3 + log_k -29.4 #01FEL/CHO + -analytic -29.4E+0 00E+0 00E+0 00E+0 00E+0 + +- 3 H+ + 3 H4(SiO4) - 3 H2O = Si3O6(OH)3-3 + log_k -29.3 #01FEL/CHO + -analytic -29.3E+0 00E+0 00E+0 00E+0 00E+0 + +- 2 H+ + 4 H4(SiO4) - 4 H2O = Si4O6(OH)6-2 + log_k -15.6 #01FEL/CHO + -analytic -15.6E+0 00E+0 00E+0 00E+0 00E+0 + +- 4 H+ + 4 H4(SiO4) - 3 H2O = Si4O7(OH)6-4 + log_k -39.1 #01FEL/CHO + -analytic -39.1E+0 00E+0 00E+0 00E+0 00E+0 + +- 4 H+ + 4 H4(SiO4) - 4 H2O = Si4O8(OH)4-4 + log_k -39.2 #01FEL/CHO + -analytic -39.2E+0 00E+0 00E+0 00E+0 00E+0 + +- 6 H+ + 6 H4(SiO4) - 9 H2O = Si6O15-6 + log_k -61.8 #01FEL/CHO + -analytic -61.8E+0 00E+0 00E+0 00E+0 00E+0 + +Sm+3 + CO3-2 = Sm(CO3)+ + log_k 7.8 #95SPA/BRU + delta_h 23.851 #kJ/mol +# Enthalpy of formation: -1342.577 kJ/mol + -analytic 11.97852E+0 00E+0 -12.45824E+2 00E+0 00E+0 + +Sm+3 + 2 CO3-2 = Sm(CO3)2- + log_k 12.8 #95SPA/BRU + -analytic 12.8E+0 00E+0 00E+0 00E+0 00E+0 + +Sm+3 + 3 CO3-2 = Sm(CO3)3-3 + log_k 14.8 #05VER/VIT2 + -analytic 14.8E+0 00E+0 00E+0 00E+0 00E+0 + +Sm+3 + H2(PO4)- = Sm(H2PO4)+2 + log_k 2.35 #95SPA/BRU + -analytic 23.5E-1 00E+0 00E+0 00E+0 00E+0 + +Sm+3 + H+ + CO3-2 = Sm(HCO3)+2 + log_k 12.43 #95SPA/BRU + -analytic 12.43E+0 00E+0 00E+0 00E+0 00E+0 + +Sm+3 - H+ + H2(PO4)- = Sm(HPO4)+ + log_k -1.61 #95SPA/BRU + -analytic -16.1E-1 00E+0 00E+0 00E+0 00E+0 + +Sm+3 - 2 H+ + 2 H2(PO4)- = Sm(HPO4)2- + log_k -5.02 #95SPA/BRU + -analytic -50.2E-1 00E+0 00E+0 00E+0 00E+0 + +Sm+3 + NO3- = Sm(NO3)+2 + log_k 0.9 #95SPA/BRU + -analytic 90E-2 00E+0 00E+0 00E+0 00E+0 + +Sm+3 - H+ + H2O = Sm(OH)+2 + log_k -7.9 #95SPA/BRU + delta_h 48.805 #kJ/mol +# Enthalpy of formation: -928.223 kJ/mol + -analytic 65.0269E-2 00E+0 -25.49263E+2 00E+0 00E+0 + +Sm+3 - 2 H+ + 2 H2O = Sm(OH)2+ + log_k -15.7 #07NEC/ALT2 + delta_h 101.371 #kJ/mol +# Enthalpy of formation: -1161.487 kJ/mol + -analytic 20.59437E-1 00E+0 -52.94976E+2 00E+0 00E+0 + +Sm+3 - 3 H+ + 3 H2O = Sm(OH)3 + log_k -26.2 #07NEC/ALT2 + delta_h 160.126 #kJ/mol +# Enthalpy of formation: -1388.562 kJ/mol + -analytic 18.52871E-1 00E+0 -83.63963E+2 00E+0 00E+0 + +Sm+3 - 4 H+ + 4 H2O = Sm(OH)4- + log_k -40.7 #07NEC/ALT2 + delta_h 232.448 #kJ/mol +# Enthalpy of formation: -1602.069 kJ/mol + -analytic 23.14152E-3 00E+0 -12.1416E+3 00E+0 00E+0 + +Sm+3 - 2 H+ + H2(PO4)- = Sm(PO4) + log_k -7.46 #95SPA/BRU + -analytic -74.6E-1 00E+0 00E+0 00E+0 00E+0 + +Sm+3 - 4 H+ + 2 H2(PO4)- = Sm(PO4)2-3 + log_k -18.72 #95SPA/BRU + -analytic -18.72E+0 00E+0 00E+0 00E+0 00E+0 + +Sm+3 + SO4-2 = Sm(SO4)+ + log_k 3.5 #95SPA/BRU + delta_h 16.584 #kJ/mol +# Enthalpy of formation: -1583.954 kJ/mol + -analytic 64.05392E-1 00E+0 -86.62426E+1 00E+0 00E+0 + +Sm+3 + 2 SO4-2 = Sm(SO4)2- + log_k 5.2 #95SPA/BRU + delta_h 24.918 #kJ/mol +# Enthalpy of formation: -2484.959 kJ/mol + -analytic 95.65446E-1 00E+0 -13.01558E+2 00E+0 00E+0 + +Sm+3 + Br- = SmBr+2 + log_k 0.23 #96FAL/REA + delta_h -1.358 #kJ/mol +# Enthalpy of formation: -813.965 kJ/mol + -analytic -79.11387E-4 00E+0 70.93328E+0 00E+0 00E+0 + +Sm+3 + Cl- = SmCl+2 + log_k 0.72 #Original data 01LUO/BYR and 07LUO/BYR + delta_h 3.583 #kJ/mol +# Enthalpy of formation: -854.695 kJ/mol + -analytic 13.47715E-1 00E+0 -18.71531E+1 00E+0 00E+0 + +Sm+3 + F- = SmF+2 + log_k 4.21 #07LUO/BYR + delta_h 7.97 #kJ/mol 04LUO/MIL +# Enthalpy of formation: -1018.578 kJ/mol + -analytic 56.06284E-1 00E+0 -41.63021E+1 00E+0 00E+0 + +Sm+3 + 2 F- = SmF2+ + log_k 6.43 #Original data 99SCH/BYR and 04LUO/BYR + delta_h 18.85 #kJ/mol 04LUO/MIL +# Enthalpy of formation: -1343.048 kJ/mol + -analytic 97.32378E-1 00E+0 -98.46041E+1 00E+0 00E+0 + +Sm+3 - H+ + H4(SiO4) = SmSiO(OH)3+2 + log_k -2.62 #Orginal data 07THA/SIN and 96JEN/CHO1 + -analytic -26.2E-1 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + Cit-3 = Sn(Cit)- + log_k 8.7 #95AKR/BOU + -analytic 87E-1 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + 2 Cit-3 = Sn(Cit)2-4 + log_k 11.9 #95AKR/BOU + -analytic 11.9E+0 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + Edta-4 = Sn(Edta)-2 + log_k 24.6 #95AKR/BOU + -analytic 24.6E+0 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + 2 H+ + Edta-4 = Sn(H2Edta) + log_k 24.3 #95AKR/BOU + -analytic 24.3E+0 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + H+ + Edta-4 = Sn(HEdta)- + log_k 23.4 #95AKR/BOU + -analytic 23.4E+0 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + Nta-3 = Sn(Nta)- + log_k 13.4 #95AKR/BOU + -analytic 13.4E+0 00E+0 00E+0 00E+0 00E+0 + +Sn+2 - H+ + H2O = Sn(OH)+ + log_k -3.53 #12GAM/GAJ + delta_h 18.611 #kJ/mol +# Enthalpy of formation: -276.835 kJ/mol + -analytic -26.94928E-2 00E+0 -97.21202E+1 00E+0 00E+0 + +Sn+2 - 2 H+ + 2 H2O = Sn(OH)2 + log_k -7.68 #12GAM/GAJ + delta_h 40.762 #kJ/mol +# Enthalpy of formation: -540.515 kJ/mol + -analytic -53.88041E-2 00E+0 -21.29148E+2 00E+0 00E+0 + +Sn+2 - 3 H+ + 3 H2O = Sn(OH)3- + log_k -16.43 + delta_h 89.189 #kJ/mol +# Enthalpy of formation: -777.917 kJ/mol + -analytic -80.47579E-2 00E+0 -46.58666E+2 00E+0 00E+0 + +Sn+4 - 4 H+ + 4 H2O = Sn(OH)4 + log_k 7.54 + delta_h -49.205 #kJ/mol +# Enthalpy of formation: -1224.035 kJ/mol + -analytic -10.80346E-1 00E+0 25.70156E+2 00E+0 00E+0 + +Sn+4 - 5 H+ + 5 H2O = Sn(OH)5- + log_k -1.06 + -analytic -10.6E-1 00E+0 00E+0 00E+0 00E+0 + +Sn+4 - 6 H+ + 6 H2O = Sn(OH)6-2 + log_k -11.13 + -analytic -11.13E+0 00E+0 00E+0 00E+0 00E+0 + +Sn+2 - H+ + Cl- + H2O = Sn(OH)Cl + log_k -3.1 #52VAN/RHO recalculated in 02HUM/BER + -analytic -31E-1 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + Ox-2 = Sn(Ox) + log_k 6.5 #95AKR/BOU + -analytic 65E-1 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + 2 Ox-2 = Sn(Ox)2-2 + log_k 12.9 #95AKR/BOU + -analytic 12.9E+0 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + 3 Ox-2 = Sn(Ox)3-4 + log_k 17.1 #95AKR/BOU + -analytic 17.1E+0 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + SO4-2 = Sn(SO4) + log_k 3.43 #12GAM/GAJ + delta_h 16.9 #kJ/mol Suggested but not selected in 12GAM/GAJ +# Enthalpy of formation: -902.057 kJ/mol + -analytic 63.90753E-1 00E+0 -88.27485E+1 00E+0 00E+0 + +3 Sn+2 - 4 H+ + 4 H2O = Sn3(OH)4+2 + log_k -5.6 #12GAM/GAJ + -analytic -56E-1 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + Br- = SnBr+ + log_k 1.33 #12GAM/GAJ + -analytic 13.3E-1 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + 2 Br- = SnBr2 + log_k 1.97 #12GAM/GAJ + -analytic 19.7E-1 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + 3 Br- = SnBr3- + log_k 1.93 #12GAM/GAJ + -analytic 19.3E-1 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + Cl- = SnCl+ + log_k 1.52 #12GAM/GAJ + delta_h 12.7 #kJ/mol 12GAM/GAJ +# Enthalpy of formation: -163.997 kJ/mol + -analytic 37.44944E-1 00E+0 -66.33672E+1 00E+0 00E+0 + +Sn+2 + 2 Cl- = SnCl2 + log_k 2.17 #12GAM/GAJ + delta_h 19.7 #kJ/mol 12GAM/GAJ +# Enthalpy of formation: -324.077 kJ/mol + -analytic 56.21292E-1 00E+0 -10.29003E+2 00E+0 00E+0 + +Sn+2 + 3 Cl- = SnCl3- + log_k 2.13 #12GAM/GAJ + -analytic 21.3E-1 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + 4 Cl- = SnCl4-2 + log_k 2.03 #12GAM/GAJ + -analytic 20.3E-1 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + F- = SnF+ + log_k 5.25 #12GAM/GAJ + delta_h -9.58 #kJ/mol +# Enthalpy of formation: -354.546 kJ/mol + -analytic 35.71656E-1 00E+0 50.03983E+1 00E+0 00E+0 + +Sn+2 + 2 F- = SnF2 + log_k 8.89 #12GAM/GAJ + delta_h -9.969 #kJ/mol +# Enthalpy of formation: -690.285 kJ/mol + -analytic 71.43506E-1 00E+0 52.07171E+1 00E+0 00E+0 + +Sn+2 + 3 F- = SnF3- + log_k 11.5 #12GAM/GAJ + delta_h -4.479 #kJ/mol +# Enthalpy of formation: -1020.145 kJ/mol + -analytic 10.71531E+0 00E+0 23.39545E+1 00E+0 00E+0 + +Sn+2 - H+ + H2(PO4)- = SnHPO4 + log_k 2.29 #00CIA/IUL + -analytic 22.9E-1 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + I- = SnI+ + log_k 1.74 #68HAI/JOH1 recalculated + -analytic 17.4E-1 00E+0 00E+0 00E+0 00E+0 + +Sn+2 + 2 I- = SnI2 + log_k 2.69 #68HAI/JOH1 recalculated + -analytic 26.9E-1 00E+0 00E+0 00E+0 00E+0 + +Sn+2 - 2 H+ + H2(PO4)- = SnPO4- + log_k -1.56 #00CIA/IUL + -analytic -15.6E-1 00E+0 00E+0 00E+0 00E+0 + +2 H+ + SO3-2 - H2O = SO2 + log_k 9.03 + delta_h 21.45 #kJ/mol # Enthalpy of formation: -323.780 kJ/mol 85GOL/PAR - -analytic 12.78788E+0 00.00000E+0 -11.20412E+2 00.00000E+0 00.00000E+0 - -+1.000Sr+2 +1.000Cit-3 = Sr(Cit)- - log_k +4.24 #95AKR/BOU - -analytic 42.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sr+2 -1.000H+ +2.000Cit-3 +1.000H2O = Sr(Cit)2(OH)-5 - log_k -1.78 #95AKR/BOU - -analytic -17.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sr+2 +2.000Cit-3 = Sr(Cit)2-4 - log_k +4.84 #95AKR/BOU - -analytic 48.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sr+2 +1.000CO3-2 = Sr(CO3) - log_k +2.81 #84BUS/PLU - delta_h +21.796 #kJ/mol -# Enthalpy of formation: -1204.335 kJ/mol - -analytic 66.28495E-1 00.00000E+0 -11.38484E+2 00.00000E+0 00.00000E+0 - -+1.000Sr+2 +1.000Edta-4 = Sr(Edta)-2 - log_k +10.30 #95AKR/BOU - -analytic 10.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sr+2 +2.000H+ +1.000Cit-3 = Sr(H2Cit)+ - log_k +12.46 #95AKR/BOU - -analytic 12.46000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sr+2 +1.000H2(PO4)- = Sr(H2PO4)+ - log_k +0.83 #97MAR/SMI; Uncertainty to include available data. - -analytic 83.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sr+2 +1.000H+ +1.000Cit-3 = Sr(HCit) - log_k +9.00 #95AKR/BOU - -analytic 90.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sr+2 +1.000H+ +1.000CO3-2 = Sr(HCO3)+ - log_k +11.51 #84BUS/PLUS - delta_h +10.597 #kJ/mol -# Enthalpy of formation: -1215.533 kJ/mol - -analytic 13.36651E+0 00.00000E+0 -55.35199E+1 00.00000E+0 00.00000E+0 - -+1.000Sr+2 +1.000H+ +1.000Edta-4 = Sr(HEdta)- - log_k +14.70 #95AKR/BOU - -analytic 14.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sr+2 +1.000H+ +1.000Ox-2 = Sr(HOx)+ - log_k +5.80 #95AKR/BOU - -analytic 58.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sr+2 +2.000H+ +2.000Ox-2 = Sr(HOx)2 - log_k +10.80 #95AKR/BOU - -analytic 10.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sr+2 -1.000H+ +1.000H2(PO4)- = Sr(HPO4) - log_k -4.70 #97MAR/SMI; Uncertainty to include available data. - -analytic -47.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sr+2 +1.000IO3- = Sr(IO3)+ - log_k +0.33 #estimation NEA87 01/02/95 - -analytic 33.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sr+2 +2.000IO3- = Sr(IO3)2 - log_k -0.55 #estimation NEA87 01/02/95 - -analytic -55.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sr+2 +1.000NH3 = Sr(NH3)+2 - log_k -0.55 #estimation NEA87 08/02/95 - -analytic -55.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sr+2 +1.000NO3- = Sr(NO3)+ - log_k +0.60 #96FAL/REA - -analytic 60.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sr+2 +2.000NO3- = Sr(NO3)2 - log_k +0.31 #96FAL/REA - -analytic 31.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sr+2 +1.000Nta-3 = Sr(Nta)- - log_k +6.25 #95AKR/BOU - -analytic 62.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sr+2 -1.000H+ +1.000H2O = Sr(OH)+ - log_k -13.29 #76BAE/MES - delta_h +82.608 #kJ/mol -# Enthalpy of formation: -754.122 kJ/mol - -analytic 11.82300E-1 00.00000E+0 -43.14916E+2 00.00000E+0 00.00000E+0 - -+1.000Sr+2 +1.000Ox-2 = Sr(Ox) - log_k +2.54 #95AKR/BOU - -analytic 25.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sr+2 +2.000Ox-2 = Sr(Ox)2-2 - log_k +3.00 #95AKR/BOU - -analytic 30.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sr+2 -2.000H+ +1.000H2(PO4)- = Sr(PO4)- - log_k -13.56 #96BOU1 - -analytic -13.56000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sr+2 +1.000Pyrophos-4 = Sr(Pyrophos)-2 - log_k +5.40 #76SMI/MAR - -analytic 54.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sr+2 +1.000S2O3-2 = Sr(S2O3) - log_k +2.04 #76SMI/MAR - -analytic 20.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sr+2 +1.000SO4-2 = Sr(SO4) - log_k +2.30 #06BLA/IGN - delta_h +7.029 #kJ/mol 06BLA/IGN -# Enthalpy of formation: -1453.211 kJ/mol - -analytic 35.31428E-1 00.00000E+0 -36.71502E+1 00.00000E+0 00.00000E+0 - -+2.000Sr+2 -1.000H+ +1.000Cit-3 +1.000H2O = Sr2(Cit)(OH) - log_k +0.38 #95AKR/BOU - -analytic 38.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+2.000Sr+2 +1.000UO2+2 +3.000CO3-2 = Sr2UO2(CO3)3 - log_k +29.70 #20GRE/GAO - -analytic 29.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sr+2 +1.000B(OH)4- = SrB(OH)4+ - log_k +1.55 #80BAS - -analytic 15.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sr+2 +1.000Cl- = SrCl+ - log_k +0.23 #96BOU1 - delta_h +4.926 #kJ/mol -# Enthalpy of formation: -713.054 kJ/mol - -analytic 10.92998E-1 00.00000E+0 -25.73029E+1 00.00000E+0 00.00000E+0 - -+1.000Sr+2 +1.000F- = SrF+ - log_k +0.30 #96BOU - delta_h +16.740 #kJ/mol 96BOU -# Enthalpy of formation: -869.510 kJ/mol - -analytic 32.32722E-1 00.00000E+0 -87.43911E+1 00.00000E+0 00.00000E+0 - -+1.000Sr+2 +2.000F- = SrF2 - log_k +2.02 #96FAL/REA - -analytic 20.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sr+2 +1.000I- = SrI+ - log_k +0.14 #estimation NEA87 01/02/95 - -analytic 14.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sr+2 +2.000I- = SrI2 - log_k -0.04 #estimation NEA87 01/02/95 - -analytic -40.00000E-3 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Sr+2 +1.000UO2+2 +3.000CO3-2 = SrUO2(CO3)3-2 - log_k +25.90 #20GRE/GAO - -analytic 25.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+2.000TcO(OH)2 +2.000H+ -2.000H2O = Tc2O2(OH)2+2 - log_k +12.99 #20GRE/GAO - -analytic 12.99000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000TcO(OH)2 +2.000H+ +1.000CO3-2 -1.000H2O = TcCO3(OH)2 - log_k +19.25 #99RAR/RAN - -analytic 19.25000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000TcO(OH)2 +1.000H+ +1.000CO3-2 = TcCO3(OH)3- - log_k +10.95 #99RAR/RAN - -analytic 10.95000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000TcO(OH)2 +1.000H+ -1.000H2O +1.000Acetate- = TcO(OH)(Acetate) - log_k +5.55 #11RIC/GRI - -analytic 55.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000TcO(OH)2 +1.000H+ +1.000Nta-3 -1.000H2O = TcO(OH)(Nta)-2 - log_k +13.30 #95AKR/BOU - -analytic 13.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000TcO(OH)2 +1.000H+ +2.000Nta-3 -1.000H2O = TcO(OH)(Nta)2-5 - log_k +11.70 #95AKR/BOU - -analytic 11.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000TcO(OH)2 +1.000Cit-3 = TcO(OH)2Cit-3 - log_k +2.80 #13WAL/KAR - -analytic 28.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000TcO(OH)2 -1.000H+ +1.000H2O = TcO(OH)3- - log_k -10.92 #20GRE/GAO - delta_h +39.030 #kJ/mol 97NGU/LAN -# Enthalpy of formation: -996.043 kJ/mol - -analytic -40.82238E-1 00.00000E+0 -20.38679E+2 00.00000E+0 00.00000E+0 - -+1.000TcO(OH)2 +2.000H+ +1.000Ox-2 -2.000H2O = TcO(Ox) - log_k +9.80 #06XIA/HES - -analytic 98.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000TcO(OH)2 +2.000H+ +2.000Ox-2 -2.000H2O = TcO(Ox)2-2 - log_k +13.66 #06XIA/HES - -analytic 13.66000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +1.000Acetate- = Th(Acetate)+3 - log_k +5.24 #11RIC/GRI - -analytic 52.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +2.000Acetate- = Th(Acetate)2+2 - log_k +9.44 #11RIC/GRI - -analytic 94.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +3.000Acetate- = Th(Acetate)3+ - log_k +12.56 #11RIC/GRI - -analytic 12.56000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +4.000Acetate- = Th(Acetate)4 - log_k +14.38 #11RIC/GRI - -analytic 14.38000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +5.000Acetate- = Th(Acetate)5- - log_k +15.37 #11RIC/GRI - -analytic 15.37000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +1.000Cit-3 = Th(Cit)+ - log_k +14.13 #87RAY/DUF - -analytic 14.13000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +2.000Cit-3 = Th(Cit)2-2 - log_k +24.29 #87RAY/DUF - -analytic 24.29000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +5.000CO3-2 = Th(CO3)5-6 - log_k +31.00 #09RAN/FUG - -analytic 31.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +1.000Edta-4 = Th(Edta) - log_k +26.95 #95AKR/BOU - -analytic 26.95000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +1.000H2(PO4)- = Th(H2PO4)+3 - log_k +5.59 #09RAN/FUG - -analytic 55.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +2.000H2(PO4)- = Th(H2PO4)2+2 - log_k +10.48 #09RAN/FUG - -analytic 10.48000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +1.000H+ +2.000H2(PO4)- = Th(H3PO4)(H2PO4)+3 - log_k +9.70 #09RAN/FUG - -analytic 97.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +1.000H+ +1.000H2(PO4)- = Th(H3PO4)+4 - log_k +4.03 #09RAN/FUG - -analytic 40.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +1.000H+ +1.000Edta-4 = Th(HEdta)+ - log_k +28.70 #95AKR/BOU - -analytic 28.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +1.000H+ +1.000Ox-2 = Th(HOx)+3 - log_k +11.00 #95AKR/BOU - -analytic 11.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +2.000H+ +2.000Ox-2 = Th(HOx)2+2 - log_k +18.13 #95AKR/BOU - -analytic 18.13000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +4.000H+ +4.000Ox-2 = Th(HOx)4 - log_k +24.30 #95AKR/BOU - -analytic 24.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +1.000Malonate-2 = Th(Malonate)+2 - log_k +9.32 #13GRI/CAM - -analytic 93.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +2.000Malonate-2 = Th(Malonate)2 - log_k +16.07 #13GRI/CAM - -analytic 16.07000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +3.000Malonate-2 = Th(Malonate)3-2 - log_k +19.63 #13GRI/CAM - -analytic 19.63000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +1.000NO3- = Th(NO3)+3 - log_k +1.30 #09RAN/FUG - -analytic 13.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +2.000NO3- = Th(NO3)2+2 - log_k +2.30 #09RAN/FUG - -analytic 23.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +1.000Nta-3 = Th(Nta)+ - log_k +19.73 #16BON/AUP - -analytic 19.73000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 -1.000H+ +4.000CO3-2 +1.000H2O = Th(OH)(CO3)4-5 - log_k +21.60 #09RAN/FUG - -analytic 21.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 -1.000H+ +1.000Edta-4 +1.000H2O = Th(OH)(Edta)- - log_k +19.50 #95AKR/BOU - -analytic 19.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 -1.000H+ +1.000H2O = Th(OH)+3 - log_k -2.50 #09RAN/FUG - delta_h +44.200 #kJ/mol 09RAN/FUG -# Enthalpy of formation: -1010.330 kJ/mol - -analytic 52.43508E-1 00.00000E+0 -23.08727E+2 00.00000E+0 00.00000E+0 - -+1.000Th+4 -2.000H+ +1.000CO3-2 +2.000H2O = Th(OH)2(CO3) - log_k +2.50 #09RAN/FUG - -analytic 25.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 -2.000H+ +2.000CO3-2 +2.000H2O = Th(OH)2(CO3)2-2 - log_k +8.80 #09RAN/FUG - -analytic 88.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 -2.000H+ +2.000H2O = Th(OH)2+2 - log_k -6.20 #09RAN/FUG - delta_h +85.700 #kJ/mol 09RAN/FUG -# Enthalpy of formation: -1254.660 kJ/mol - -analytic 88.13996E-1 00.00000E+0 -44.76423E+2 00.00000E+0 00.00000E+0 - -+1.000Th+4 -2.000H+ +1.000Edta-4 +2.000H2O = Th(OH)2Edta-2 - log_k +11.50 #03XIA/FEL - -analytic 11.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 -3.000H+ +1.000CO3-2 +3.000H2O = Th(OH)3(CO3)- - log_k -3.70 #09RAN/FUG - -analytic -37.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 -3.000H+ +2.000HGlu- +3.000H2O = Th(OH)3(HGlu)2- - log_k -4.90 #Analogy with An(IV)-ISA - -analytic -49.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 -3.000H+ +2.000HIsa- +3.000H2O = Th(OH)3(HIsa)2- - log_k -4.90 #09RAI/YUI - -analytic -49.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 -3.000H+ +3.000H2O = Th(OH)3+ - log_k -11.00 #10GRI/RIB - delta_h +125.623 #kJ/mol -# Enthalpy of formation: -1500.566 kJ/mol - -analytic 11.00820E+0 00.00000E+0 -65.61746E+2 00.00000E+0 00.00000E+0 - -+1.000Th+4 -3.000H+ +1.000Edta-4 +3.000H2O = Th(OH)3Edta-3 - log_k -4.00 #03XIA/FEL - -analytic -40.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 -4.000H+ +4.000H2O = Th(OH)4 - log_k -17.40 #09RAN/FUG - delta_h +152.688 #kJ/mol -# Enthalpy of formation: -1759.331 kJ/mol - -analytic 93.49789E-1 00.00000E+0 -79.75450E+2 00.00000E+0 00.00000E+0 - -+1.000Th+4 -4.000H+ +1.000CO3-2 +4.000H2O = Th(OH)4(CO3)-2 - log_k -15.60 #09RAN/FUG - -analytic -15.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 -4.000H+ +1.000HGlu- +4.000H2O = Th(OH)4(HGlu)- - log_k -14.70 #Analogy with An(IV)-ISA - -analytic -14.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 -4.000H+ +2.000HGlu- +4.000H2O = Th(OH)4(HGlu)2-2 - log_k -12.50 #Analogy with An(IV)-ISA - -analytic -12.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 -4.000H+ +1.000HIsa- +4.000H2O = Th(OH)4(HIsa)- - log_k -14.70 #Reevaluated from 09RAI/YUI - -analytic -14.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 -4.000H+ +2.000HIsa- +4.000H2O = Th(OH)4(HIsa)2-2 - log_k -12.50 #Reevaluated from 09RAI/YUI - -analytic -12.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +1.000Ox-2 = Th(Ox)+2 - log_k +9.70 #08SAS/TAK; 09KOB/SAS - -analytic 97.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +2.000Ox-2 = Th(Ox)2 - log_k +16.00 #08SAS/TAK; 09KOB/SAS - -analytic 16.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +3.000Ox-2 = Th(Ox)3-2 - log_k +22.20 #08SAS/TAK; 09KOB/SAS - -analytic 22.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +1.000SO4-2 = Th(SO4)+2 - log_k +6.17 #09RAN/FUG - delta_h +20.920 #kJ/mol 09RAN/FUG -# Enthalpy of formation: -1657.120 kJ/mol - -analytic 98.35027E-1 00.00000E+0 -10.92728E+2 00.00000E+0 00.00000E+0 - -+1.000Th+4 +2.000SO4-2 = Th(SO4)2 - log_k +9.69 #09RAN/FUG - delta_h +40.380 #kJ/mol 09RAN/FUG -# Enthalpy of formation: -2547.000 kJ/mol - -analytic 16.76427E+0 00.00000E+0 -21.09194E+2 00.00000E+0 00.00000E+0 - -+1.000Th+4 +3.000SO4-2 = Th(SO4)3-2 - log_k +10.75 #09RAN/FUG - -analytic 10.75000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +1.000Succinat-2 = Th(Succinat)+2 - log_k +8.49 #13GRI/CAM - -analytic 84.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +2.000Succinat-2 = Th(Succinat)2 - log_k +12.92 #13GRI/CAM - -analytic 12.92000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +3.000Succinat-2 = Th(Succinat)3-2 - log_k +16.62 #13GRI/CAM - -analytic 16.62000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+2.000Th+4 -2.000H+ +2.000H2O = Th2(OH)2+6 - log_k -5.90 #09RAN/FUG - delta_h +58.300 #kJ/mol 09RAN/FUG -# Enthalpy of formation: -2050.760 kJ/mol - -analytic 43.13722E-1 00.00000E+0 -30.45221E+2 00.00000E+0 00.00000E+0 - -+2.000Th+4 -3.000H+ +3.000H2O = Th2(OH)3+5 - log_k -6.80 #09RAN/FUG - -analytic -68.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+4.000Th+4 -12.000H+ +12.000H2O = Th4(OH)12+4 - log_k -26.60 #09RAN/FUG - -analytic -26.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+4.000Th+4 -8.000H+ +8.000H2O = Th4(OH)8+8 - log_k -20.40 #09RAN/FUG - delta_h +243.000 #kJ/mol 09RAN/FUG -# Enthalpy of formation: -5118.440 kJ/mol - -analytic 22.17177E+0 00.00000E+0 -12.69277E+3 00.00000E+0 00.00000E+0 - -+6.000Th+4 -14.000H+ +14.000H2O = Th6(OH)14+10 - log_k -36.80 #09RAN/FUG - -analytic -36.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+6.000Th+4 -15.000H+ +15.000H2O = Th6(OH)15+9 - log_k -36.80 #09RAN/FUG - delta_h +472.800 #kJ/mol 09RAN/FUG -# Enthalpy of formation: -8426.850 kJ/mol - -analytic 46.03100E+0 00.00000E+0 -24.69606E+3 00.00000E+0 00.00000E+0 - -+1.000Th+4 +1.000Cl- = ThCl+3 - log_k +1.70 #09RAN/FUG - -analytic 17.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +1.000F- = ThF+3 - log_k +8.87 #09RAN/FUG - delta_h -0.400 #kJ/mol 09RAN/FUG -# Enthalpy of formation: -1104.450 kJ/mol - -analytic 87.99923E-1 00.00000E+0 20.89346E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +2.000F- = ThF2+2 - log_k +15.63 #09RAN/FUG - delta_h -3.300 #kJ/mol 09RAN/FUG -# Enthalpy of formation: -1442.700 kJ/mol - -analytic 15.05186E+0 00.00000E+0 17.23710E+1 00.00000E+0 00.00000E+0 - -+1.000Th+4 +3.000F- = ThF3+ - log_k +20.67 #09RAN/FUG - -analytic 20.67000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000Th+4 +4.000F- = ThF4 - log_k +25.58 #09RAN/FUG - -analytic 25.58000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000U+4 +1.000Acetate- = U(Acetate)+3 - log_k +5.64 #12GRI/GAR2 - -analytic 56.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000U+4 +2.000Acetate- = U(Acetate)2+2 - log_k +9.81 #12GRI/GAR2 - -analytic 98.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000U+4 +4.000CO3-2 = U(CO3)4-4 - log_k +35.12 #03GUI/FAN - -analytic 35.12000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000U+4 +5.000CO3-2 = U(CO3)5-6 - log_k +34.00 #03GUI/FAN - delta_h -20.000 #kJ/mol 03GUI/FAN -# Enthalpy of formation: -3987.350 kJ/mol - -analytic 30.49615E+0 00.00000E+0 10.44673E+2 00.00000E+0 00.00000E+0 - -+1.000U+4 +1.000Edta-4 = U(Edta) - log_k +29.50 #05HUM/AND - -analytic 29.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000U+4 +1.000NO3- = U(NO3)+3 - log_k +1.47 #92GRE/FUG - -analytic 14.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000U+4 +2.000NO3- = U(NO3)2+2 - log_k +2.30 #92GRE/FUG - -analytic 23.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000U+4 +1.000Nta-3 = U(Nta)+ - log_k +20.00 #95AKR/BOU - -analytic 20.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000U+4 -1.000H+ +1.000Edta-4 +1.000H2O = U(OH)(Edta)- - log_k +22.70 #23ROD/COL - -analytic 22.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000U+4 -1.000H+ +1.000H2O = U(OH)+3 - log_k -0.54 #20GRE/GAO - delta_h +46.910 #kJ/mol -# Enthalpy of formation: -830.119 kJ/mol - -analytic 76.78279E-1 00.00000E+0 -24.50280E+2 00.00000E+0 00.00000E+0 - -+1.000U+4 -2.000H+ +2.000CO3-2 +2.000H2O = U(OH)2(CO3)2-2 - log_k +14.36 #98RAI/HES - -analytic 14.36000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000U+4 -2.000H+ +1.000Edta-4 +2.000H2O = U(OH)2(Edta)-2 - log_k +16.68 #23ROD/COL - -analytic 16.68000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000U+4 -2.000H+ +2.000H2O = U(OH)2+2 - log_k -1.90 #20GRE/GAO - delta_h +59.014 #kJ/mol -# Enthalpy of formation: -1103.845 kJ/mol - -analytic 84.38809E-1 00.00000E+0 -30.82516E+2 00.00000E+0 00.00000E+0 - -+1.000U+4 -3.000H+ +1.000Edta-4 +3.000H2O = U(OH)3(Edta)-3 - log_k +7.06 #23ROD/COL - -analytic 70.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000U+4 -3.000H+ +3.000H2O = U(OH)3+ - log_k -5.20 #20GRE/GAO - delta_h +89.407 #kJ/mol -# Enthalpy of formation: -1359.281 kJ/mol - -analytic 10.46343E+0 00.00000E+0 -46.70053E+2 00.00000E+0 00.00000E+0 - -+1.000U+4 -4.000H+ +4.000H2O = U(OH)4 - log_k -10.00 #03GUI/FAN - delta_h +109.870 #kJ/mol -# Enthalpy of formation: -1624.649 kJ/mol - -analytic 92.48398E-1 00.00000E+0 -57.38910E+2 00.00000E+0 00.00000E+0 - -+1.000U+4 -4.000H+ +1.000HGlu- +4.000H2O = U(OH)4(HGlu)- - log_k -7.60 #Analogy with An(IV)-ISA - -analytic -76.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000U+4 -4.000H+ +2.000HGlu- +4.000H2O = U(OH)4(HGlu)2-2 - log_k -5.40 #Analogy with An(IV)-ISA - -analytic -54.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000U+4 -4.000H+ +1.000HIsa- +4.000H2O = U(OH)4(HIsa)- - log_k -7.60 #19KOB/SAS - -analytic -76.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000U+4 -4.000H+ +2.000HIsa- +4.000H2O = U(OH)4(HIsa)2-2 - log_k -5.40 #19KOB/SAS - -analytic -54.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000U+4 +2.000Ox-2 = U(Ox)2 - log_k +18.63 #12GRI/GAR2 - -analytic 18.63000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000U+4 +3.000Ox-2 = U(Ox)3-2 - log_k +24.19 #12GRI/GAR2 - -analytic 24.19000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000U+4 +1.000SO4-2 = U(SO4)+2 - log_k +6.58 #92GRE/FUG - delta_h +8.000 #kJ/mol 92GRE/FUG -# Enthalpy of formation: -1492.540 kJ/mol - -analytic 79.81540E-1 00.00000E+0 -41.78691E+1 00.00000E+0 00.00000E+0 - -+1.000U+4 +2.000SO4-2 = U(SO4)2 - log_k +10.51 #92GRE/FUG - delta_h +32.700 #kJ/mol 92GRE/FUG -# Enthalpy of formation: -2377.180 kJ/mol - -analytic 16.23879E+0 00.00000E+0 -17.08040E+2 00.00000E+0 00.00000E+0 - -+1.000U+4 +1.000Br- = UBr+3 - log_k +1.46 #92GRE/FUG - -analytic 14.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000U+4 +1.000Cl- = UCl+3 - log_k +1.72 #92GRE/FUG - delta_h -19.000 #kJ/mol 92GRE/FUG -# Enthalpy of formation: -777.280 kJ/mol - -analytic -16.08657E-1 00.00000E+0 99.24391E+1 00.00000E+0 00.00000E+0 - -+1.000U+4 +1.000F- = UF+3 - log_k +9.42 #03GUI/FAN - delta_h -5.600 #kJ/mol 92GRE/FUG -# Enthalpy of formation: -932.150 kJ/mol - -analytic 84.38922E-1 00.00000E+0 29.25084E+1 00.00000E+0 00.00000E+0 - -+1.000U+4 +2.000F- = UF2+2 - log_k +16.56 #03GUI/FAN - delta_h -3.500 #kJ/mol 92GRE/FUG -# Enthalpy of formation: -1265.400 kJ/mol - -analytic 15.94683E+0 00.00000E+0 18.28177E+1 00.00000E+0 00.00000E+0 - -+1.000U+4 +3.000F- = UF3+ - log_k +21.89 #03GUI/FAN - delta_h +0.500 #kJ/mol 92GRE/FUG -# Enthalpy of formation: -1596.750 kJ/mol - -analytic 21.97760E+0 00.00000E+0 -26.11682E+0 00.00000E+0 00.00000E+0 - -+1.000U+4 +4.000F- = UF4 - log_k +26.34 #03GUI/FAN - delta_h -8.430 #kJ/mol -# Enthalpy of formation: -1941.028 kJ/mol - -analytic 24.86313E+0 00.00000E+0 44.03296E+1 00.00000E+0 00.00000E+0 - -+1.000U+4 +5.000F- = UF5- - log_k +27.73 #03GUI/FAN - delta_h -11.636 #kJ/mol -# Enthalpy of formation: -2279.584 kJ/mol - -analytic 25.69146E+0 00.00000E+0 60.77906E+1 00.00000E+0 00.00000E+0 - -+1.000U+4 +6.000F- = UF6-2 - log_k +29.80 #03GUI/FAN - -analytic 29.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000U+4 +1.000I- = UI+3 - log_k +1.25 #92GRE/FUG - -analytic 12.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000UO2+2 +1.000Acetate- = UO2(Acetate)+ - log_k +3.02 #11RIC/GRI - delta_h -15.894 #kJ/mol -# Enthalpy of formation: -1520.904 kJ/mol - -analytic 23.54907E-2 00.00000E+0 83.02014E+1 00.00000E+0 00.00000E+0 - -+1.000UO2+2 +2.000Acetate- = UO2(Acetate)2 - log_k +5.20 #11RIC/GRI - delta_h -34.940 #kJ/mol -# Enthalpy of formation: -2025.960 kJ/mol - -analytic -92.12252E-2 00.00000E+0 18.25043E+2 00.00000E+0 00.00000E+0 - -+1.000UO2+2 +3.000Acetate- = UO2(Acetate)3- - log_k +7.03 #11RIC/GRI - delta_h -65.460 #kJ/mol -# Enthalpy of formation: -2542.491 kJ/mol - -analytic -44.38100E-1 00.00000E+0 34.19214E+2 00.00000E+0 00.00000E+0 - -+1.000UO2+2 +1.000Cit-3 = UO2(Cit)- - log_k +8.96 #05HUM/AND - -analytic 89.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000UO2+2 +1.000CO3-2 = UO2(CO3) - log_k +9.94 #03GUI/FAN - delta_h +5.000 #kJ/mol 92GRE/FUG -# Enthalpy of formation: -1689.230 kJ/mol - -analytic 10.81596E+0 00.00000E+0 -26.11682E+1 00.00000E+0 00.00000E+0 - -+1.000UO2+2 +2.000CO3-2 = UO2(CO3)2-2 - log_k +16.61 #03GUI/FAN - delta_h +18.500 #kJ/mol 92GRE/FUG -# Enthalpy of formation: -2350.960 kJ/mol - -analytic 19.85106E+0 00.00000E+0 -96.63223E+1 00.00000E+0 00.00000E+0 - -+1.000UO2+2 +3.000CO3-2 = UO2(CO3)3-4 - log_k +21.84 #03GUI/FAN - delta_h -39.200 #kJ/mol 03GUI/FAN -# Enthalpy of formation: -3083.890 kJ/mol - -analytic 14.97245E+0 00.00000E+0 20.47559E+2 00.00000E+0 00.00000E+0 - -+1.000UO2+ +3.000CO3-2 = UO2(CO3)3-5 - log_k +6.95 #03GUI/FAN - -analytic 69.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000UO2+2 +1.000Edta-4 = UO2(Edta)-2 - log_k +13.70 #05HUM/AND - -analytic 13.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000UO2+2 +2.000H+ +1.000AsO4-3 = UO2(H2AsO4)+ - log_k +21.96 #03GUI/FAN - -analytic 21.96000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000UO2+2 +4.000H+ +2.000AsO4-3 = UO2(H2AsO4)2 - log_k +41.53 #03GUI/FAN - -analytic 41.53000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000UO2+2 +1.000H+ +2.000H2(PO4)- = UO2(H2PO4)(H3PO4)+ - log_k +5.93 #92GRE/FUG - -analytic 59.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000UO2+2 +1.000H2(PO4)- = UO2(H2PO4)+ - log_k +3.26 #92GRE/FUG - delta_h -15.340 #kJ/mol -# Enthalpy of formation: -2336.940 kJ/mol - -analytic 57.25474E-2 00.00000E+0 80.12640E+1 00.00000E+0 00.00000E+0 - -+1.000UO2+2 +2.000H2(PO4)- = UO2(H2PO4)2 - log_k +4.92 #92GRE/FUG - delta_h -51.871 #kJ/mol -# Enthalpy of formation: -3676.070 kJ/mol - -analytic -41.67409E-1 00.00000E+0 27.09411E+2 00.00000E+0 00.00000E+0 - -+1.000UO2+2 +1.000H+ +1.000H2(PO4)- = UO2(H3PO4)+2 - log_k +2.90 #92GRE/FUG - -analytic 29.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000UO2+2 +1.000H+ +1.000AsO4-3 = UO2(HAsO4) - log_k +18.76 #03GUI/FAN - -analytic 18.76000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000UO2+2 +1.000H+ +1.000Cit-3 = UO2(HCit) - log_k +11.36 #05HUM/AND - -analytic 11.36000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000UO2+2 +1.000H+ +1.000Edta-4 = UO2(HEdta)- - log_k +19.61 #05HUM/AND - -analytic 19.61000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000UO2+2 +1.000HGlu- = UO2(HGlu)+ - log_k +2.59 #09ZHA/HEL - -analytic 25.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000UO2+2 +1.000HIsa- = UO2(HIsa)+ - log_k +3.70 #04RAO/GAR - -analytic 37.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000UO2+2 +2.000HIsa- = UO2(HIsa)2 - log_k +6.60 #04RAO/GAR - -analytic 66.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000UO2+2 +3.000HIsa- = UO2(HIsa)3- - log_k +8.50 #04RAO/GAR - -analytic 85.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000UO2+2 +1.000H+ +1.000Nta-3 = UO2(HNta) - log_k +14.50 #06DES/GIA - -analytic 14.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000UO2+2 -1.000H+ +1.000H2(PO4)- = UO2(HPO4) - log_k +0.03 #92GRE/FUG - delta_h +2.783 #kJ/mol -# Enthalpy of formation: -2318.816 kJ/mol - -analytic 51.75607E-2 00.00000E+0 -14.53662E+1 00.00000E+0 00.00000E+0 - -+1.000UO2+2 +2.000H+ +2.000SeO3-2 = UO2(HSeO3)2 - log_k +22.23 #20GRE/GAO - -analytic 22.23000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000UO2+2 -12.000H+ -12.000e- +2.000I- +6.000H2O = UO2(IO3)2 - log_k -219.54 #92GRE/FUG - -analytic -21.95400E+1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000UO2+2 +1.000NO3- = UO2(NO3)+ - log_k -0.19 #20GRE/GAO - delta_h +20.900 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -1204.950 kJ/mol - -analytic 34.71523E-1 00.00000E+0 -10.91683E+2 00.00000E+0 00.00000E+0 - -+1.000UO2+2 +1.000Nta-3 = UO2(Nta)- - log_k +10.15 #06DES/GIA - -analytic 10.15000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000UO2+2 -1.000H+ +1.000HGlu- +1.000H2O = UO2(OH)(HGlu) - log_k +0.20 #09ZHA/HEL - -analytic 20.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000UO2+2 -1.000H+ +1.000Ox-2 +1.000H2O = UO2(OH)(Ox)- - log_k +0.63 #56GRI/PTI - -analytic 63.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000UO2+2 -1.000H+ +1.000H2O = UO2(OH)+ - log_k -5.25 #03GUI/FAN - delta_h +43.300 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -1261.530 kJ/mol - -analytic 23.35834E-1 00.00000E+0 -22.61717E+2 00.00000E+0 00.00000E+0 - -+1.000UO2+2 -2.000H+ +2.000H2O = UO2(OH)2 - log_k -12.15 #03GUI/FAN - delta_h +76.821 #kJ/mol -# Enthalpy of formation: -1513.839 kJ/mol - -analytic 13.08461E-1 00.00000E+0 -40.12640E+2 00.00000E+0 00.00000E+0 - -+1.000UO2+2 -3.000H+ +3.000H2O = UO2(OH)3- - log_k -20.25 #03GUI/FAN - delta_h +113.757 #kJ/mol -# Enthalpy of formation: -1762.732 kJ/mol - -analytic -32.06291E-2 00.00000E+0 -59.41942E+2 00.00000E+0 00.00000E+0 - -+1.000UO2+2 -3.000H+ +2.000HIsa- +3.000H2O = UO2(OH)3(HIsa)2-3 - log_k -14.50 #19KOB/SAS - -analytic -14.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -+1.000UO2+2 -4.000H+ +4.000H2O = UO2(OH)4-2 - log_k -32.40 #03GUI/FAN - delta_h +164.152 #kJ/mol -# Enthalpy of formation: -1998.167 kJ/mol - -analytic -36.41804E-1 00.00000E+0 -85.74256E+2 00.00000E+0 00.00000E+0 - -+1.000UO2+2 +1.000Ox-2 = UO2(Ox) - log_k +7.13 #05HUM/AND - delta_h +25.360 #kJ/mol + -analytic 12.78788E+0 00E+0 -11.20412E+2 00E+0 00E+0 + +Sr+2 + Cit-3 = Sr(Cit)- + log_k 4.24 #95AKR/BOU + -analytic 42.4E-1 00E+0 00E+0 00E+0 00E+0 + +Sr+2 - H+ + 2 Cit-3 + H2O = Sr(Cit)2(OH)-5 + log_k -1.78 #95AKR/BOU + -analytic -17.8E-1 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + 2 Cit-3 = Sr(Cit)2-4 + log_k 4.84 #95AKR/BOU + -analytic 48.4E-1 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + CO3-2 = Sr(CO3) + log_k 2.81 #84BUS/PLU + delta_h 21.796 #kJ/mol +# Enthalpy of formation: -1204.335 kJ/mol + -analytic 66.28495E-1 00E+0 -11.38484E+2 00E+0 00E+0 + +Sr+2 + Edta-4 = Sr(Edta)-2 + log_k 10.3 #95AKR/BOU + -analytic 10.3E+0 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + 2 H+ + Cit-3 = Sr(H2Cit)+ + log_k 12.46 #95AKR/BOU + -analytic 12.46E+0 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + H2(PO4)- = Sr(H2PO4)+ + log_k 0.83 #97MAR/SMI; Uncertainty to include available data. + -analytic 83E-2 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + H+ + Cit-3 = Sr(HCit) + log_k 9 #95AKR/BOU + -analytic 90E-1 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + H+ + CO3-2 = Sr(HCO3)+ + log_k 11.51 #84BUS/PLUS + delta_h 10.597 #kJ/mol +# Enthalpy of formation: -1215.533 kJ/mol + -analytic 13.36651E+0 00E+0 -55.35199E+1 00E+0 00E+0 + +Sr+2 + H+ + Edta-4 = Sr(HEdta)- + log_k 14.7 #95AKR/BOU + -analytic 14.7E+0 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + H+ + Ox-2 = Sr(HOx)+ + log_k 5.8 #95AKR/BOU + -analytic 58E-1 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + 2 H+ + 2 Ox-2 = Sr(HOx)2 + log_k 10.8 #95AKR/BOU + -analytic 10.8E+0 00E+0 00E+0 00E+0 00E+0 + +Sr+2 - H+ + H2(PO4)- = Sr(HPO4) + log_k -4.7 #97MAR/SMI; Uncertainty to include available data. + -analytic -47E-1 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + IO3- = Sr(IO3)+ + log_k 0.33 #estimation NEA87 01/02/95 + -analytic 33E-2 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + 2 IO3- = Sr(IO3)2 + log_k -0.55 #estimation NEA87 01/02/95 + -analytic -55E-2 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + NH3 = Sr(NH3)+2 + log_k -0.55 #estimation NEA87 08/02/95 + -analytic -55E-2 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + NO3- = Sr(NO3)+ + log_k 0.6 #96FAL/REA + -analytic 60E-2 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + 2 NO3- = Sr(NO3)2 + log_k 0.31 #96FAL/REA + -analytic 31E-2 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + Nta-3 = Sr(Nta)- + log_k 6.25 #95AKR/BOU + -analytic 62.5E-1 00E+0 00E+0 00E+0 00E+0 + +Sr+2 - H+ + H2O = Sr(OH)+ + log_k -13.29 #76BAE/MES + delta_h 82.608 #kJ/mol +# Enthalpy of formation: -754.122 kJ/mol + -analytic 11.823E-1 00E+0 -43.14916E+2 00E+0 00E+0 + +Sr+2 + Ox-2 = Sr(Ox) + log_k 2.54 #95AKR/BOU + -analytic 25.4E-1 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + 2 Ox-2 = Sr(Ox)2-2 + log_k 3 #95AKR/BOU + -analytic 30E-1 00E+0 00E+0 00E+0 00E+0 + +Sr+2 - 2 H+ + H2(PO4)- = Sr(PO4)- + log_k -13.56 #96BOU1 + -analytic -13.56E+0 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + Pyrophos-4 = Sr(Pyrophos)-2 + log_k 5.4 #76SMI/MAR + -analytic 54E-1 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + S2O3-2 = Sr(S2O3) + log_k 2.04 #76SMI/MAR + -analytic 20.4E-1 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + SO4-2 = Sr(SO4) + log_k 2.3 #06BLA/IGN + delta_h 7.029 #kJ/mol 06BLA/IGN +# Enthalpy of formation: -1453.211 kJ/mol + -analytic 35.31428E-1 00E+0 -36.71502E+1 00E+0 00E+0 + +2 Sr+2 - H+ + Cit-3 + H2O = Sr2(Cit)(OH) + log_k 0.38 #95AKR/BOU + -analytic 38E-2 00E+0 00E+0 00E+0 00E+0 + +2 Sr+2 + UO2+2 + 3 CO3-2 = Sr2UO2(CO3)3 + log_k 29.7 #20GRE/GAO + -analytic 29.7E+0 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + B(OH)4- = SrB(OH)4+ + log_k 1.55 #80BAS + -analytic 15.5E-1 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + Cl- = SrCl+ + log_k 0.23 #96BOU1 + delta_h 4.926 #kJ/mol +# Enthalpy of formation: -713.054 kJ/mol + -analytic 10.92998E-1 00E+0 -25.73029E+1 00E+0 00E+0 + +Sr+2 + F- = SrF+ + log_k 0.3 #96BOU + delta_h 16.74 #kJ/mol 96BOU +# Enthalpy of formation: -869.510 kJ/mol + -analytic 32.32722E-1 00E+0 -87.43911E+1 00E+0 00E+0 + +Sr+2 + 2 F- = SrF2 + log_k 2.02 #96FAL/REA + -analytic 20.2E-1 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + I- = SrI+ + log_k 0.14 #estimation NEA87 01/02/95 + -analytic 14E-2 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + 2 I- = SrI2 + log_k -0.04 #estimation NEA87 01/02/95 + -analytic -40E-3 00E+0 00E+0 00E+0 00E+0 + +Sr+2 + UO2+2 + 3 CO3-2 = SrUO2(CO3)3-2 + log_k 25.9 #20GRE/GAO + -analytic 25.9E+0 00E+0 00E+0 00E+0 00E+0 + +2 TcO(OH)2 + 2 H+ - 2 H2O = Tc2O2(OH)2+2 + log_k 12.99 #20GRE/GAO + -analytic 12.99E+0 00E+0 00E+0 00E+0 00E+0 + +TcO(OH)2 + 2 H+ + CO3-2 - H2O = TcCO3(OH)2 + log_k 19.25 #99RAR/RAN + -analytic 19.25E+0 00E+0 00E+0 00E+0 00E+0 + +TcO(OH)2 + H+ + CO3-2 = TcCO3(OH)3- + log_k 10.95 #99RAR/RAN + -analytic 10.95E+0 00E+0 00E+0 00E+0 00E+0 + +TcO(OH)2 + H+ - H2O + Acetate- = TcO(OH)(Acetate) + log_k 5.55 #11RIC/GRI + -analytic 55.5E-1 00E+0 00E+0 00E+0 00E+0 + +TcO(OH)2 + H+ + Nta-3 - H2O = TcO(OH)(Nta)-2 + log_k 13.3 #95AKR/BOU + -analytic 13.3E+0 00E+0 00E+0 00E+0 00E+0 + +TcO(OH)2 + H+ + 2 Nta-3 - H2O = TcO(OH)(Nta)2-5 + log_k 11.7 #95AKR/BOU + -analytic 11.7E+0 00E+0 00E+0 00E+0 00E+0 + +TcO(OH)2 + Cit-3 = TcO(OH)2Cit-3 + log_k 2.8 #13WAL/KAR + -analytic 28E-1 00E+0 00E+0 00E+0 00E+0 + +TcO(OH)2 - H+ + H2O = TcO(OH)3- + log_k -10.92 #20GRE/GAO + delta_h 39.03 #kJ/mol 97NGU/LAN +# Enthalpy of formation: -996.043 kJ/mol + -analytic -40.82238E-1 00E+0 -20.38679E+2 00E+0 00E+0 + +TcO(OH)2 + 2 H+ + Ox-2 - 2 H2O = TcO(Ox) + log_k 9.8 #06XIA/HES + -analytic 98E-1 00E+0 00E+0 00E+0 00E+0 + +TcO(OH)2 + 2 H+ + 2 Ox-2 - 2 H2O = TcO(Ox)2-2 + log_k 13.66 #06XIA/HES + -analytic 13.66E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + Acetate- = Th(Acetate)+3 + log_k 5.24 #11RIC/GRI + -analytic 52.4E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 2 Acetate- = Th(Acetate)2+2 + log_k 9.44 #11RIC/GRI + -analytic 94.4E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 3 Acetate- = Th(Acetate)3+ + log_k 12.56 #11RIC/GRI + -analytic 12.56E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 4 Acetate- = Th(Acetate)4 + log_k 14.38 #11RIC/GRI + -analytic 14.38E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 5 Acetate- = Th(Acetate)5- + log_k 15.37 #11RIC/GRI + -analytic 15.37E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + Cit-3 = Th(Cit)+ + log_k 14.13 #87RAY/DUF + -analytic 14.13E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 2 Cit-3 = Th(Cit)2-2 + log_k 24.29 #87RAY/DUF + -analytic 24.29E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 5 CO3-2 = Th(CO3)5-6 + log_k 31 #09RAN/FUG + -analytic 31E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + Edta-4 = Th(Edta) + log_k 26.95 #95AKR/BOU + -analytic 26.95E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + H2(PO4)- = Th(H2PO4)+3 + log_k 5.59 #09RAN/FUG + -analytic 55.9E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 2 H2(PO4)- = Th(H2PO4)2+2 + log_k 10.48 #09RAN/FUG + -analytic 10.48E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + H+ + 2 H2(PO4)- = Th(H3PO4)(H2PO4)+3 + log_k 9.7 #09RAN/FUG + -analytic 97E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 + H+ + H2(PO4)- = Th(H3PO4)+4 + log_k 4.03 #09RAN/FUG + -analytic 40.3E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 + H+ + Edta-4 = Th(HEdta)+ + log_k 28.7 #95AKR/BOU + -analytic 28.7E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + H+ + Ox-2 = Th(HOx)+3 + log_k 11 #95AKR/BOU + -analytic 11E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 2 H+ + 2 Ox-2 = Th(HOx)2+2 + log_k 18.13 #95AKR/BOU + -analytic 18.13E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 4 H+ + 4 Ox-2 = Th(HOx)4 + log_k 24.3 #95AKR/BOU + -analytic 24.3E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + Malonate-2 = Th(Malonate)+2 + log_k 9.32 #13GRI/CAM + -analytic 93.2E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 2 Malonate-2 = Th(Malonate)2 + log_k 16.07 #13GRI/CAM + -analytic 16.07E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 3 Malonate-2 = Th(Malonate)3-2 + log_k 19.63 #13GRI/CAM + -analytic 19.63E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + NO3- = Th(NO3)+3 + log_k 1.3 #09RAN/FUG + -analytic 13E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 2 NO3- = Th(NO3)2+2 + log_k 2.3 #09RAN/FUG + -analytic 23E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 + Nta-3 = Th(Nta)+ + log_k 19.73 #16BON/AUP + -analytic 19.73E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 - H+ + 4 CO3-2 + H2O = Th(OH)(CO3)4-5 + log_k 21.6 #09RAN/FUG + -analytic 21.6E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 - H+ + Edta-4 + H2O = Th(OH)(Edta)- + log_k 19.5 #95AKR/BOU + -analytic 19.5E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 - H+ + H2O = Th(OH)+3 + log_k -2.5 #09RAN/FUG + delta_h 44.2 #kJ/mol 09RAN/FUG +# Enthalpy of formation: -1010.330 kJ/mol + -analytic 52.43508E-1 00E+0 -23.08727E+2 00E+0 00E+0 + +Th+4 - 2 H+ + CO3-2 + 2 H2O = Th(OH)2(CO3) + log_k 2.5 #09RAN/FUG + -analytic 25E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 - 2 H+ + 2 CO3-2 + 2 H2O = Th(OH)2(CO3)2-2 + log_k 8.8 #09RAN/FUG + -analytic 88E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 - 2 H+ + 2 H2O = Th(OH)2+2 + log_k -6.2 #09RAN/FUG + delta_h 85.7 #kJ/mol 09RAN/FUG +# Enthalpy of formation: -1254.660 kJ/mol + -analytic 88.13996E-1 00E+0 -44.76423E+2 00E+0 00E+0 + +Th+4 - 2 H+ + Edta-4 + 2 H2O = Th(OH)2Edta-2 + log_k 11.5 #03XIA/FEL + -analytic 11.5E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 - 3 H+ + CO3-2 + 3 H2O = Th(OH)3(CO3)- + log_k -3.7 #09RAN/FUG + -analytic -37E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 - 3 H+ + 2 HGlu- + 3 H2O = Th(OH)3(HGlu)2- + log_k -4.9 #Analogy with An(IV)-ISA + -analytic -49E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 - 3 H+ + 2 HIsa- + 3 H2O = Th(OH)3(HIsa)2- + log_k -4.9 #09RAI/YUI + -analytic -49E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 - 3 H+ + 3 H2O = Th(OH)3+ + log_k -11 #10GRI/RIB + delta_h 125.623 #kJ/mol +# Enthalpy of formation: -1500.566 kJ/mol + -analytic 11.0082E+0 00E+0 -65.61746E+2 00E+0 00E+0 + +Th+4 - 3 H+ + Edta-4 + 3 H2O = Th(OH)3Edta-3 + log_k -4 #03XIA/FEL + -analytic -40E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 - 4 H+ + 4 H2O = Th(OH)4 + log_k -17.4 #09RAN/FUG + delta_h 152.688 #kJ/mol +# Enthalpy of formation: -1759.331 kJ/mol + -analytic 93.49789E-1 00E+0 -79.7545E+2 00E+0 00E+0 + +Th+4 - 4 H+ + CO3-2 + 4 H2O = Th(OH)4(CO3)-2 + log_k -15.6 #09RAN/FUG + -analytic -15.6E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 - 4 H+ + HGlu- + 4 H2O = Th(OH)4(HGlu)- + log_k -14.7 #Analogy with An(IV)-ISA + -analytic -14.7E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 - 4 H+ + 2 HGlu- + 4 H2O = Th(OH)4(HGlu)2-2 + log_k -12.5 #Analogy with An(IV)-ISA + -analytic -12.5E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 - 4 H+ + HIsa- + 4 H2O = Th(OH)4(HIsa)- + log_k -14.7 #Reevaluated from 09RAI/YUI + -analytic -14.7E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 - 4 H+ + 2 HIsa- + 4 H2O = Th(OH)4(HIsa)2-2 + log_k -12.5 #Reevaluated from 09RAI/YUI + -analytic -12.5E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + Ox-2 = Th(Ox)+2 + log_k 9.7 #08SAS/TAK; 09KOB/SAS + -analytic 97E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 2 Ox-2 = Th(Ox)2 + log_k 16 #08SAS/TAK; 09KOB/SAS + -analytic 16E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 3 Ox-2 = Th(Ox)3-2 + log_k 22.2 #08SAS/TAK; 09KOB/SAS + -analytic 22.2E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + SO4-2 = Th(SO4)+2 + log_k 6.17 #09RAN/FUG + delta_h 20.92 #kJ/mol 09RAN/FUG +# Enthalpy of formation: -1657.120 kJ/mol + -analytic 98.35027E-1 00E+0 -10.92728E+2 00E+0 00E+0 + +Th+4 + 2 SO4-2 = Th(SO4)2 + log_k 9.69 #09RAN/FUG + delta_h 40.38 #kJ/mol 09RAN/FUG +# Enthalpy of formation: -2547.000 kJ/mol + -analytic 16.76427E+0 00E+0 -21.09194E+2 00E+0 00E+0 + +Th+4 + 3 SO4-2 = Th(SO4)3-2 + log_k 10.75 #09RAN/FUG + -analytic 10.75E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + Succinat-2 = Th(Succinat)+2 + log_k 8.49 #13GRI/CAM + -analytic 84.9E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 2 Succinat-2 = Th(Succinat)2 + log_k 12.92 #13GRI/CAM + -analytic 12.92E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 3 Succinat-2 = Th(Succinat)3-2 + log_k 16.62 #13GRI/CAM + -analytic 16.62E+0 00E+0 00E+0 00E+0 00E+0 + +2 Th+4 - 2 H+ + 2 H2O = Th2(OH)2+6 + log_k -5.9 #09RAN/FUG + delta_h 58.3 #kJ/mol 09RAN/FUG +# Enthalpy of formation: -2050.760 kJ/mol + -analytic 43.13722E-1 00E+0 -30.45221E+2 00E+0 00E+0 + +2 Th+4 - 3 H+ + 3 H2O = Th2(OH)3+5 + log_k -6.8 #09RAN/FUG + -analytic -68E-1 00E+0 00E+0 00E+0 00E+0 + +4 Th+4 - 12 H+ + 12 H2O = Th4(OH)12+4 + log_k -26.6 #09RAN/FUG + -analytic -26.6E+0 00E+0 00E+0 00E+0 00E+0 + +4 Th+4 - 8 H+ + 8 H2O = Th4(OH)8+8 + log_k -20.4 #09RAN/FUG + delta_h 243 #kJ/mol 09RAN/FUG +# Enthalpy of formation: -5118.440 kJ/mol + -analytic 22.17177E+0 00E+0 -12.69277E+3 00E+0 00E+0 + +6 Th+4 - 14 H+ + 14 H2O = Th6(OH)14+10 + log_k -36.8 #09RAN/FUG + -analytic -36.8E+0 00E+0 00E+0 00E+0 00E+0 + +6 Th+4 - 15 H+ + 15 H2O = Th6(OH)15+9 + log_k -36.8 #09RAN/FUG + delta_h 472.8 #kJ/mol 09RAN/FUG +# Enthalpy of formation: -8426.850 kJ/mol + -analytic 46.031E+0 00E+0 -24.69606E+3 00E+0 00E+0 + +Th+4 + Cl- = ThCl+3 + log_k 1.7 #09RAN/FUG + -analytic 17E-1 00E+0 00E+0 00E+0 00E+0 + +Th+4 + F- = ThF+3 + log_k 8.87 #09RAN/FUG + delta_h -0.4 #kJ/mol 09RAN/FUG +# Enthalpy of formation: -1104.450 kJ/mol + -analytic 87.99923E-1 00E+0 20.89346E+0 00E+0 00E+0 + +Th+4 + 2 F- = ThF2+2 + log_k 15.63 #09RAN/FUG + delta_h -3.3 #kJ/mol 09RAN/FUG +# Enthalpy of formation: -1442.700 kJ/mol + -analytic 15.05186E+0 00E+0 17.2371E+1 00E+0 00E+0 + +Th+4 + 3 F- = ThF3+ + log_k 20.67 #09RAN/FUG + -analytic 20.67E+0 00E+0 00E+0 00E+0 00E+0 + +Th+4 + 4 F- = ThF4 + log_k 25.58 #09RAN/FUG + -analytic 25.58E+0 00E+0 00E+0 00E+0 00E+0 + +U+4 + Acetate- = U(Acetate)+3 + log_k 5.64 #12GRI/GAR2 + -analytic 56.4E-1 00E+0 00E+0 00E+0 00E+0 + +U+4 + 2 Acetate- = U(Acetate)2+2 + log_k 9.81 #12GRI/GAR2 + -analytic 98.1E-1 00E+0 00E+0 00E+0 00E+0 + +U+4 + 4 CO3-2 = U(CO3)4-4 + log_k 35.12 #03GUI/FAN + -analytic 35.12E+0 00E+0 00E+0 00E+0 00E+0 + +U+4 + 5 CO3-2 = U(CO3)5-6 + log_k 34 #03GUI/FAN + delta_h -20 #kJ/mol 03GUI/FAN +# Enthalpy of formation: -3987.350 kJ/mol + -analytic 30.49615E+0 00E+0 10.44673E+2 00E+0 00E+0 + +U+4 + Edta-4 = U(Edta) + log_k 29.5 #05HUM/AND + -analytic 29.5E+0 00E+0 00E+0 00E+0 00E+0 + +U+4 + NO3- = U(NO3)+3 + log_k 1.47 #92GRE/FUG + -analytic 14.7E-1 00E+0 00E+0 00E+0 00E+0 + +U+4 + 2 NO3- = U(NO3)2+2 + log_k 2.3 #92GRE/FUG + -analytic 23E-1 00E+0 00E+0 00E+0 00E+0 + +U+4 + Nta-3 = U(Nta)+ + log_k 20 #95AKR/BOU + -analytic 20E+0 00E+0 00E+0 00E+0 00E+0 + +U+4 - H+ + Edta-4 + H2O = U(OH)(Edta)- + log_k 22.7 #23ROD/COL + -analytic 22.7E+0 00E+0 00E+0 00E+0 00E+0 + +U+4 - H+ + H2O = U(OH)+3 + log_k -0.54 #20GRE/GAO + delta_h 46.91 #kJ/mol +# Enthalpy of formation: -830.119 kJ/mol + -analytic 76.78279E-1 00E+0 -24.5028E+2 00E+0 00E+0 + +U+4 - 2 H+ + 2 CO3-2 + 2 H2O = U(OH)2(CO3)2-2 + log_k 14.36 #98RAI/HES + -analytic 14.36E+0 00E+0 00E+0 00E+0 00E+0 + +U+4 - 2 H+ + Edta-4 + 2 H2O = U(OH)2(Edta)-2 + log_k 16.68 #23ROD/COL + -analytic 16.68E+0 00E+0 00E+0 00E+0 00E+0 + +U+4 - 2 H+ + 2 H2O = U(OH)2+2 + log_k -1.9 #20GRE/GAO + delta_h 59.014 #kJ/mol +# Enthalpy of formation: -1103.845 kJ/mol + -analytic 84.38809E-1 00E+0 -30.82516E+2 00E+0 00E+0 + +U+4 - 3 H+ + Edta-4 + 3 H2O = U(OH)3(Edta)-3 + log_k 7.06 #23ROD/COL + -analytic 70.6E-1 00E+0 00E+0 00E+0 00E+0 + +U+4 - 3 H+ + 3 H2O = U(OH)3+ + log_k -5.2 #20GRE/GAO + delta_h 89.407 #kJ/mol +# Enthalpy of formation: -1359.281 kJ/mol + -analytic 10.46343E+0 00E+0 -46.70053E+2 00E+0 00E+0 + +U+4 - 4 H+ + 4 H2O = U(OH)4 + log_k -10 #03GUI/FAN + delta_h 109.87 #kJ/mol +# Enthalpy of formation: -1624.649 kJ/mol + -analytic 92.48398E-1 00E+0 -57.3891E+2 00E+0 00E+0 + +U+4 - 4 H+ + HGlu- + 4 H2O = U(OH)4(HGlu)- + log_k -7.6 #Analogy with An(IV)-ISA + -analytic -76E-1 00E+0 00E+0 00E+0 00E+0 + +U+4 - 4 H+ + 2 HGlu- + 4 H2O = U(OH)4(HGlu)2-2 + log_k -5.4 #Analogy with An(IV)-ISA + -analytic -54E-1 00E+0 00E+0 00E+0 00E+0 + +U+4 - 4 H+ + HIsa- + 4 H2O = U(OH)4(HIsa)- + log_k -7.6 #19KOB/SAS + -analytic -76E-1 00E+0 00E+0 00E+0 00E+0 + +U+4 - 4 H+ + 2 HIsa- + 4 H2O = U(OH)4(HIsa)2-2 + log_k -5.4 #19KOB/SAS + -analytic -54E-1 00E+0 00E+0 00E+0 00E+0 + +U+4 + 2 Ox-2 = U(Ox)2 + log_k 18.63 #12GRI/GAR2 + -analytic 18.63E+0 00E+0 00E+0 00E+0 00E+0 + +U+4 + 3 Ox-2 = U(Ox)3-2 + log_k 24.19 #12GRI/GAR2 + -analytic 24.19E+0 00E+0 00E+0 00E+0 00E+0 + +U+4 + SO4-2 = U(SO4)+2 + log_k 6.58 #92GRE/FUG + delta_h 8 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -1492.540 kJ/mol + -analytic 79.8154E-1 00E+0 -41.78691E+1 00E+0 00E+0 + +U+4 + 2 SO4-2 = U(SO4)2 + log_k 10.51 #92GRE/FUG + delta_h 32.7 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -2377.180 kJ/mol + -analytic 16.23879E+0 00E+0 -17.0804E+2 00E+0 00E+0 + +U+4 + Br- = UBr+3 + log_k 1.46 #92GRE/FUG + -analytic 14.6E-1 00E+0 00E+0 00E+0 00E+0 + +U+4 + Cl- = UCl+3 + log_k 1.72 #92GRE/FUG + delta_h -19 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -777.280 kJ/mol + -analytic -16.08657E-1 00E+0 99.24391E+1 00E+0 00E+0 + +U+4 + F- = UF+3 + log_k 9.42 #03GUI/FAN + delta_h -5.6 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -932.150 kJ/mol + -analytic 84.38922E-1 00E+0 29.25084E+1 00E+0 00E+0 + +U+4 + 2 F- = UF2+2 + log_k 16.56 #03GUI/FAN + delta_h -3.5 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -1265.400 kJ/mol + -analytic 15.94683E+0 00E+0 18.28177E+1 00E+0 00E+0 + +U+4 + 3 F- = UF3+ + log_k 21.89 #03GUI/FAN + delta_h 0.5 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -1596.750 kJ/mol + -analytic 21.9776E+0 00E+0 -26.11682E+0 00E+0 00E+0 + +U+4 + 4 F- = UF4 + log_k 26.34 #03GUI/FAN + delta_h -8.43 #kJ/mol +# Enthalpy of formation: -1941.028 kJ/mol + -analytic 24.86313E+0 00E+0 44.03296E+1 00E+0 00E+0 + +U+4 + 5 F- = UF5- + log_k 27.73 #03GUI/FAN + delta_h -11.636 #kJ/mol +# Enthalpy of formation: -2279.584 kJ/mol + -analytic 25.69146E+0 00E+0 60.77906E+1 00E+0 00E+0 + +U+4 + 6 F- = UF6-2 + log_k 29.8 #03GUI/FAN + -analytic 29.8E+0 00E+0 00E+0 00E+0 00E+0 + +U+4 + I- = UI+3 + log_k 1.25 #92GRE/FUG + -analytic 12.5E-1 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + Acetate- = UO2(Acetate)+ + log_k 3.02 #11RIC/GRI + delta_h -15.894 #kJ/mol +# Enthalpy of formation: -1520.904 kJ/mol + -analytic 23.54907E-2 00E+0 83.02014E+1 00E+0 00E+0 + +UO2+2 + 2 Acetate- = UO2(Acetate)2 + log_k 5.2 #11RIC/GRI + delta_h -34.94 #kJ/mol +# Enthalpy of formation: -2025.960 kJ/mol + -analytic -92.12252E-2 00E+0 18.25043E+2 00E+0 00E+0 + +UO2+2 + 3 Acetate- = UO2(Acetate)3- + log_k 7.03 #11RIC/GRI + delta_h -65.46 #kJ/mol +# Enthalpy of formation: -2542.491 kJ/mol + -analytic -44.381E-1 00E+0 34.19214E+2 00E+0 00E+0 + +UO2+2 + Cit-3 = UO2(Cit)- + log_k 8.96 #05HUM/AND + -analytic 89.6E-1 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + CO3-2 = UO2(CO3) + log_k 9.94 #03GUI/FAN + delta_h 5 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -1689.230 kJ/mol + -analytic 10.81596E+0 00E+0 -26.11682E+1 00E+0 00E+0 + +UO2+2 + 2 CO3-2 = UO2(CO3)2-2 + log_k 16.61 #03GUI/FAN + delta_h 18.5 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -2350.960 kJ/mol + -analytic 19.85106E+0 00E+0 -96.63223E+1 00E+0 00E+0 + +UO2+2 + 3 CO3-2 = UO2(CO3)3-4 + log_k 21.84 #03GUI/FAN + delta_h -39.2 #kJ/mol 03GUI/FAN +# Enthalpy of formation: -3083.890 kJ/mol + -analytic 14.97245E+0 00E+0 20.47559E+2 00E+0 00E+0 + +UO2+ + 3 CO3-2 = UO2(CO3)3-5 + log_k 6.95 #03GUI/FAN + -analytic 69.5E-1 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + Edta-4 = UO2(Edta)-2 + log_k 13.7 #05HUM/AND + -analytic 13.7E+0 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + 2 H+ + AsO4-3 = UO2(H2AsO4)+ + log_k 21.96 #03GUI/FAN + -analytic 21.96E+0 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + 4 H+ + 2 AsO4-3 = UO2(H2AsO4)2 + log_k 41.53 #03GUI/FAN + -analytic 41.53E+0 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + H+ + 2 H2(PO4)- = UO2(H2PO4)(H3PO4)+ + log_k 5.93 #92GRE/FUG + -analytic 59.3E-1 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + H2(PO4)- = UO2(H2PO4)+ + log_k 3.26 #92GRE/FUG + delta_h -15.34 #kJ/mol +# Enthalpy of formation: -2336.940 kJ/mol + -analytic 57.25474E-2 00E+0 80.1264E+1 00E+0 00E+0 + +UO2+2 + 2 H2(PO4)- = UO2(H2PO4)2 + log_k 4.92 #92GRE/FUG + delta_h -51.871 #kJ/mol +# Enthalpy of formation: -3676.070 kJ/mol + -analytic -41.67409E-1 00E+0 27.09411E+2 00E+0 00E+0 + +UO2+2 + H+ + H2(PO4)- = UO2(H3PO4)+2 + log_k 2.9 #92GRE/FUG + -analytic 29E-1 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + H+ + AsO4-3 = UO2(HAsO4) + log_k 18.76 #03GUI/FAN + -analytic 18.76E+0 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + H+ + Cit-3 = UO2(HCit) + log_k 11.36 #05HUM/AND + -analytic 11.36E+0 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + H+ + Edta-4 = UO2(HEdta)- + log_k 19.61 #05HUM/AND + -analytic 19.61E+0 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + HGlu- = UO2(HGlu)+ + log_k 2.59 #09ZHA/HEL + -analytic 25.9E-1 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + HIsa- = UO2(HIsa)+ + log_k 3.7 #04RAO/GAR + -analytic 37E-1 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + 2 HIsa- = UO2(HIsa)2 + log_k 6.6 #04RAO/GAR + -analytic 66E-1 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + 3 HIsa- = UO2(HIsa)3- + log_k 8.5 #04RAO/GAR + -analytic 85E-1 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + H+ + Nta-3 = UO2(HNta) + log_k 14.5 #06DES/GIA + -analytic 14.5E+0 00E+0 00E+0 00E+0 00E+0 + +UO2+2 - H+ + H2(PO4)- = UO2(HPO4) + log_k 0.03 #92GRE/FUG + delta_h 2.783 #kJ/mol +# Enthalpy of formation: -2318.816 kJ/mol + -analytic 51.75607E-2 00E+0 -14.53662E+1 00E+0 00E+0 + +UO2+2 + 2 H+ + 2 SeO3-2 = UO2(HSeO3)2 + log_k 22.23 #20GRE/GAO + -analytic 22.23E+0 00E+0 00E+0 00E+0 00E+0 + +UO2+2 - 12 H+ - 12 e- + 2 I- + 6 H2O = UO2(IO3)2 + log_k -219.54 #92GRE/FUG + -analytic -21.954E+1 00E+0 00E+0 00E+0 00E+0 + +UO2+2 + NO3- = UO2(NO3)+ + log_k -0.19 #20GRE/GAO + delta_h 20.9 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1204.950 kJ/mol + -analytic 34.71523E-1 00E+0 -10.91683E+2 00E+0 00E+0 + +UO2+2 + Nta-3 = UO2(Nta)- + log_k 10.15 #06DES/GIA + -analytic 10.15E+0 00E+0 00E+0 00E+0 00E+0 + +UO2+2 - H+ + HGlu- + H2O = UO2(OH)(HGlu) + log_k 0.2 #09ZHA/HEL + -analytic 20E-2 00E+0 00E+0 00E+0 00E+0 + +UO2+2 - H+ + Ox-2 + H2O = UO2(OH)(Ox)- + log_k 0.63 #56GRI/PTI + -analytic 63E-2 00E+0 00E+0 00E+0 00E+0 + +UO2+2 - H+ + H2O = UO2(OH)+ + log_k -5.25 #03GUI/FAN + delta_h 43.3 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1261.530 kJ/mol + -analytic 23.35834E-1 00E+0 -22.61717E+2 00E+0 00E+0 + +UO2+2 - 2 H+ + 2 H2O = UO2(OH)2 + log_k -12.15 #03GUI/FAN + delta_h 76.821 #kJ/mol +# Enthalpy of formation: -1513.839 kJ/mol + -analytic 13.08461E-1 00E+0 -40.1264E+2 00E+0 00E+0 + +UO2+2 - 3 H+ + 3 H2O = UO2(OH)3- + log_k -20.25 #03GUI/FAN + delta_h 113.757 #kJ/mol +# Enthalpy of formation: -1762.732 kJ/mol + -analytic -32.06291E-2 00E+0 -59.41942E+2 00E+0 00E+0 + +UO2+2 - 3 H+ + 2 HIsa- + 3 H2O = UO2(OH)3(HIsa)2-3 + log_k -14.5 #19KOB/SAS + -analytic -14.5E+0 00E+0 00E+0 00E+0 00E+0 + +UO2+2 - 4 H+ + 4 H2O = UO2(OH)4-2 + log_k -32.4 #03GUI/FAN + delta_h 164.152 #kJ/mol +# Enthalpy of formation: -1998.167 kJ/mol + -analytic -36.41804E-1 00E+0 -85.74256E+2 00E+0 00E+0 + +UO2+2 + Ox-2 = UO2(Ox) + log_k 7.13 #05HUM/AND + delta_h 25.36 #kJ/mol # Enthalpy of formation: -1824.300 kJ/mol 05HUM/AND - -analytic 11.57288E+0 00.00000E+0 -13.24645E+2 00.00000E+0 00.00000E+0 + -analytic 11.57288E+0 00E+0 -13.24645E+2 00E+0 00E+0 -+1.000UO2+2 +2.000Ox-2 = UO2(Ox)2-2 - log_k +11.65 #05HUM/AND - -analytic 11.65000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +UO2+2 + 2 Ox-2 = UO2(Ox)2-2 + log_k 11.65 #05HUM/AND + -analytic 11.65E+0 00E+0 00E+0 00E+0 00E+0 -+1.000UO2+2 +3.000Ox-2 = UO2(Ox)3-4 - log_k +13.80 #05HUM/AND - -analytic 13.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +UO2+2 + 3 Ox-2 = UO2(Ox)3-4 + log_k 13.8 #05HUM/AND + -analytic 13.8E+0 00E+0 00E+0 00E+0 00E+0 -+1.000UO2+2 +1.000Phthalat-2 = UO2(Phthalat) - log_k +5.56 #11GRI/COL2 - -analytic 55.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +UO2+2 + Phthalat-2 = UO2(Phthalat) + log_k 5.56 #11GRI/COL2 + -analytic 55.6E-1 00E+0 00E+0 00E+0 00E+0 -+1.000UO2+2 -2.000H+ +1.000H2(PO4)- = UO2(PO4)- - log_k -8.55 #20GRE/GAO - -analytic -85.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +UO2+2 - 2 H+ + H2(PO4)- = UO2(PO4)- + log_k -8.55 #20GRE/GAO + -analytic -85.5E-1 00E+0 00E+0 00E+0 00E+0 -+1.000UO2+2 +1.000S2O3-2 = UO2(S2O3) - log_k +2.80 #92GRE/FUG - -analytic 28.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +UO2+2 + S2O3-2 = UO2(S2O3) + log_k 2.8 #92GRE/FUG + -analytic 28E-1 00E+0 00E+0 00E+0 00E+0 -+1.000UO2+2 +1.000SeO4-2 = UO2(SeO4) - log_k +2.93 #20GRE/GAO - delta_h +20.000 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -1602.500 kJ/mol - -analytic 64.33850E-1 00.00000E+0 -10.44673E+2 00.00000E+0 00.00000E+0 +UO2+2 + SeO4-2 = UO2(SeO4) + log_k 2.93 #20GRE/GAO + delta_h 20 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1602.500 kJ/mol + -analytic 64.3385E-1 00E+0 -10.44673E+2 00E+0 00E+0 -+1.000UO2+2 +2.000SeO4-2 = UO2(SeO4)2-2 - log_k +4.03 #20GRE/GAO - delta_h +31.000 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -2195.000 kJ/mol - -analytic 94.60967E-1 00.00000E+0 -16.19243E+2 00.00000E+0 00.00000E+0 +UO2+2 + 2 SeO4-2 = UO2(SeO4)2-2 + log_k 4.03 #20GRE/GAO + delta_h 31 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2195.000 kJ/mol + -analytic 94.60967E-1 00E+0 -16.19243E+2 00E+0 00E+0 -+1.000UO2+2 +1.000SO3-2 = UO2(SO3) - log_k +6.60 #92GRE/FUG - -analytic 66.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +UO2+2 + SO3-2 = UO2(SO3) + log_k 6.6 #92GRE/FUG + -analytic 66E-1 00E+0 00E+0 00E+0 00E+0 -+1.000UO2+2 +1.000SO4-2 = UO2(SO4) - log_k +3.15 #20GRE/GAO - delta_h +19.500 #kJ/mol 03GUI/FAN -# Enthalpy of formation: -1908.840 kJ/mol - -analytic 65.66253E-1 00.00000E+0 -10.18556E+2 00.00000E+0 00.00000E+0 +UO2+2 + SO4-2 = UO2(SO4) + log_k 3.15 #20GRE/GAO + delta_h 19.5 #kJ/mol 03GUI/FAN +# Enthalpy of formation: -1908.840 kJ/mol + -analytic 65.66253E-1 00E+0 -10.18556E+2 00E+0 00E+0 -+1.000UO2+2 +2.000SO4-2 = UO2(SO4)2-2 - log_k +4.14 #20GRE/GAO - delta_h +35.100 #kJ/mol 03GUI/FAN -# Enthalpy of formation: -2802.580 kJ/mol - -analytic 10.28926E+0 00.00000E+0 -18.33401E+2 00.00000E+0 00.00000E+0 +UO2+2 + 2 SO4-2 = UO2(SO4)2-2 + log_k 4.14 #20GRE/GAO + delta_h 35.1 #kJ/mol 03GUI/FAN +# Enthalpy of formation: -2802.580 kJ/mol + -analytic 10.28926E+0 00E+0 -18.33401E+2 00E+0 00E+0 -+1.000UO2+2 +3.000SO4-2 = UO2(SO4)3-4 - log_k +3.02 #03GUI/FAN - -analytic 30.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +UO2+2 + 3 SO4-2 = UO2(SO4)3-4 + log_k 3.02 #03GUI/FAN + -analytic 30.2E-1 00E+0 00E+0 00E+0 00E+0 -+1.000UO2+2 +1.000Succinat-2 = UO2(Succinat) - log_k +5.28 #13GRI/CAM - -analytic 52.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +UO2+2 + Succinat-2 = UO2(Succinat) + log_k 5.28 #13GRI/CAM + -analytic 52.8E-1 00E+0 00E+0 00E+0 00E+0 -+1.000UO2+2 +1.000Br- = UO2Br+ - log_k +0.22 #92GRE/FUG - -analytic 22.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +UO2+2 + Br- = UO2Br+ + log_k 0.22 #92GRE/FUG + -analytic 22E-2 00E+0 00E+0 00E+0 00E+0 -+1.000UO2+2 +1.000Cl- = UO2Cl+ - log_k +0.17 #92GRE/FUG - delta_h +8.000 #kJ/mol 92GRE/FUG -# Enthalpy of formation: -1178.080 kJ/mol - -analytic 15.71540E-1 00.00000E+0 -41.78691E+1 00.00000E+0 00.00000E+0 +UO2+2 + Cl- = UO2Cl+ + log_k 0.17 #92GRE/FUG + delta_h 8 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -1178.080 kJ/mol + -analytic 15.7154E-1 00E+0 -41.78691E+1 00E+0 00E+0 -+1.000UO2+2 +2.000Cl- = UO2Cl2 - log_k -1.10 #92GRE/FUG - delta_h +15.000 #kJ/mol 92GRE/FUG -# Enthalpy of formation: -1338.160 kJ/mol - -analytic 15.27887E-1 00.00000E+0 -78.35046E+1 00.00000E+0 00.00000E+0 +UO2+2 + 2 Cl- = UO2Cl2 + log_k -1.1 #92GRE/FUG + delta_h 15 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -1338.160 kJ/mol + -analytic 15.27887E-1 00E+0 -78.35046E+1 00E+0 00E+0 -+1.000UO2+2 +1.000CO3-2 +1.000F- = UO2CO3F- - log_k +13.70 #03GUI/FAN - -analytic 13.70000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +UO2+2 + CO3-2 + F- = UO2CO3F- + log_k 13.7 #03GUI/FAN + -analytic 13.7E+0 00E+0 00E+0 00E+0 00E+0 -+1.000UO2+2 +1.000CO3-2 +2.000F- = UO2CO3F2-2 - log_k +15.57 #03GUI/FAN - -analytic 15.57000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +UO2+2 + CO3-2 + 2 F- = UO2CO3F2-2 + log_k 15.57 #03GUI/FAN + -analytic 15.57E+0 00E+0 00E+0 00E+0 00E+0 -+1.000UO2+2 +1.000CO3-2 +3.000F- = UO2CO3F3-3 - log_k +16.38 #03GUI/FAN - -analytic 16.38000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +UO2+2 + CO3-2 + 3 F- = UO2CO3F3-3 + log_k 16.38 #03GUI/FAN + -analytic 16.38E+0 00E+0 00E+0 00E+0 00E+0 -+1.000UO2+2 +1.000F- = UO2F+ - log_k +5.16 #03GUI/FAN - delta_h -0.540 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -1354.890 kJ/mol - -analytic 50.65396E-1 00.00000E+0 28.20616E+0 00.00000E+0 00.00000E+0 +UO2+2 + F- = UO2F+ + log_k 5.16 #03GUI/FAN + delta_h -0.54 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1354.890 kJ/mol + -analytic 50.65396E-1 00E+0 28.20616E+0 00E+0 00E+0 -+1.000UO2+2 +2.000F- = UO2F2 - log_k +8.83 #03GUI/FAN - delta_h -1.340 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -1691.040 kJ/mol - -analytic 85.95242E-1 00.00000E+0 69.99307E+0 00.00000E+0 00.00000E+0 +UO2+2 + 2 F- = UO2F2 + log_k 8.83 #03GUI/FAN + delta_h -1.34 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -1691.040 kJ/mol + -analytic 85.95242E-1 00E+0 69.99307E+0 00E+0 00E+0 -+1.000UO2+2 +3.000F- = UO2F3- - log_k +10.90 #03GUI/FAN - delta_h -1.180 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -2026.230 kJ/mol - -analytic 10.69327E+0 00.00000E+0 61.63569E+0 00.00000E+0 00.00000E+0 +UO2+2 + 3 F- = UO2F3- + log_k 10.9 #03GUI/FAN + delta_h -1.18 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2026.230 kJ/mol + -analytic 10.69327E+0 00E+0 61.63569E+0 00E+0 00E+0 -+1.000UO2+2 +4.000F- = UO2F4-2 - log_k +11.84 #03GUI/FAN - delta_h -2.120 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -2362.520 kJ/mol - -analytic 11.46859E+0 00.00000E+0 11.07353E+1 00.00000E+0 00.00000E+0 +UO2+2 + 4 F- = UO2F4-2 + log_k 11.84 #03GUI/FAN + delta_h -2.12 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2362.520 kJ/mol + -analytic 11.46859E+0 00E+0 11.07353E+1 00E+0 00E+0 -+1.000UO2+2 +1.000H+ +1.000SeO3-2 = UO2HSeO3+ - log_k +11.63 #20GRE/GAO - -analytic 11.63000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +UO2+2 + H+ + SeO3-2 = UO2HSeO3+ + log_k 11.63 #20GRE/GAO + -analytic 11.63E+0 00E+0 00E+0 00E+0 00E+0 -+1.000UO2+2 -6.000H+ -6.000e- +1.000I- +3.000H2O = UO2IO3+ - log_k -109.56 #92GRE/FUG - delta_h +704.370 #kJ/mol 92GRE/FUG -# Enthalpy of formation: -1228.900 kJ/mol - -analytic 13.84033E+0 00.00000E+0 -36.79181E+3 00.00000E+0 00.00000E+0 +UO2+2 - 6 H+ - 6 e- + I- + 3 H2O = UO2IO3+ + log_k -109.56 #92GRE/FUG + delta_h 704.37 #kJ/mol 92GRE/FUG +# Enthalpy of formation: -1228.900 kJ/mol + -analytic 13.84033E+0 00E+0 -36.79181E+3 00E+0 00E+0 -+1.000UO2+2 -1.000H+ +1.000H4(SiO4) = UO2SiO(OH)3+ - log_k -1.88 #20GRE/GAO - delta_h +40.000 #kJ/mol 20GRE/GAO -# Enthalpy of formation: -2440.194 kJ/mol - -analytic 51.27699E-1 00.00000E+0 -20.89346E+2 00.00000E+0 00.00000E+0 +UO2+2 - H+ + H4(SiO4) = UO2SiO(OH)3+ + log_k -1.88 #20GRE/GAO + delta_h 40 #kJ/mol 20GRE/GAO +# Enthalpy of formation: -2440.194 kJ/mol + -analytic 51.27699E-1 00E+0 -20.89346E+2 00E+0 00E+0 -+1.000U+4 +1.000Ox-2 = UOx+2 - log_k +10.67 #12GRI/GAR2 - -analytic 10.67000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +U+4 + Ox-2 = UOx+2 + log_k 10.67 #12GRI/GAR2 + -analytic 10.67E+0 00E+0 00E+0 00E+0 00E+0 -+1.000Zn+2 +1.000SeO4-2 = Zn(SeO4) - log_k +2.16 #05OLI/NOL - delta_h +4.600 #kJ/mol 05OLI/NOL -# Enthalpy of formation: -752.290 kJ/mol - -analytic 29.65885E-1 00.00000E+0 -24.02747E+1 00.00000E+0 00.00000E+0 +Zn+2 + SeO4-2 = Zn(SeO4) + log_k 2.16 #05OLI/NOL + delta_h 4.6 #kJ/mol 05OLI/NOL +# Enthalpy of formation: -752.290 kJ/mol + -analytic 29.65885E-1 00E+0 -24.02747E+1 00E+0 00E+0 -+4.000CO3-2 +1.000Zr+4 = Zr(CO3)4-4 - log_k +42.90 #05BRO/CUR - -analytic 42.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +4 CO3-2 + Zr+4 = Zr(CO3)4-4 + log_k 42.9 #05BRO/CUR + -analytic 42.9E+0 00E+0 00E+0 00E+0 00E+0 -+2.000NO3- +1.000Zr+4 = Zr(NO3)2+2 - log_k +2.64 #05BRO/CUR - -analytic 26.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 NO3- + Zr+4 = Zr(NO3)2+2 + log_k 2.64 #05BRO/CUR + -analytic 26.4E-1 00E+0 00E+0 00E+0 00E+0 --1.000H+ +1.000Zr+4 +1.000H2O = Zr(OH)+3 - log_k +0.32 #05BRO/CUR - -analytic 32.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- H+ + Zr+4 + H2O = Zr(OH)+3 + log_k 0.32 #05BRO/CUR + -analytic 32E-2 00E+0 00E+0 00E+0 00E+0 --2.000H+ +1.000Zr+4 +2.000H2O = Zr(OH)2+2 - log_k +0.98 #05BRO/CUR - -analytic 98.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 2 H+ + Zr+4 + 2 H2O = Zr(OH)2+2 + log_k 0.98 #05BRO/CUR + -analytic 98E-2 00E+0 00E+0 00E+0 00E+0 --4.000H+ +1.000Zr+4 +4.000H2O = Zr(OH)4 - log_k -2.19 #05BRO/CUR - -analytic -21.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 4 H+ + Zr+4 + 4 H2O = Zr(OH)4 + log_k -2.19 #05BRO/CUR + -analytic -21.9E-1 00E+0 00E+0 00E+0 00E+0 --6.000H+ +1.000Zr+4 +6.000H2O = Zr(OH)6-2 - log_k -29.00 #05BRO/CUR - -analytic -29.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 6 H+ + Zr+4 + 6 H2O = Zr(OH)6-2 + log_k -29 #05BRO/CUR + -analytic -29E+0 00E+0 00E+0 00E+0 00E+0 -+2.000SO4-2 +1.000Zr+4 = Zr(SO4)2 - log_k +11.54 #05BRO/CUR - delta_h +67.380 #kJ/mol +2 SO4-2 + Zr+4 = Zr(SO4)2 + log_k 11.54 #05BRO/CUR + delta_h 67.38 #kJ/mol # Enthalpy of formation: -2359.800 kJ/mol 05BRO/CUR - -analytic 23.34447E+0 00.00000E+0 -35.19503E+2 00.00000E+0 00.00000E+0 + -analytic 23.34447E+0 00E+0 -35.19503E+2 00E+0 00E+0 -+3.000SO4-2 +1.000Zr+4 = Zr(SO4)3-2 - log_k +14.30 #05BRO/CUR - -analytic 14.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +3 SO4-2 + Zr+4 = Zr(SO4)3-2 + log_k 14.3 #05BRO/CUR + -analytic 14.3E+0 00E+0 00E+0 00E+0 00E+0 --4.000H+ +3.000Zr+4 +4.000H2O = Zr3(OH)4+8 - log_k +0.40 #05BRO/CUR - delta_h -1.980 #kJ/mol +- 4 H+ + 3 Zr+4 + 4 H2O = Zr3(OH)4+8 + log_k 0.4 #05BRO/CUR + delta_h -1.98 #kJ/mol # Enthalpy of formation: -2970.800 kJ/mol 05BRO/CUR - -analytic 53.11889E-3 00.00000E+0 10.34226E+1 00.00000E+0 00.00000E+0 + -analytic 53.11889E-3 00E+0 10.34226E+1 00E+0 00E+0 --15.000H+ +4.000Zr+4 +15.000H2O = Zr4(OH)15+ - log_k +12.58 #05BRO/CUR - -analytic 12.58000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +- 15 H+ + 4 Zr+4 + 15 H2O = Zr4(OH)15+ + log_k 12.58 #05BRO/CUR + -analytic 12.58E+0 00E+0 00E+0 00E+0 00E+0 --16.000H+ +4.000Zr+4 +16.000H2O = Zr4(OH)16 - log_k +8.39 #05BRO/CUR - delta_h +301.120 #kJ/mol +- 16 H+ + 4 Zr+4 + 16 H2O = Zr4(OH)16 + log_k 8.39 #05BRO/CUR + delta_h 301.12 #kJ/mol # Enthalpy of formation: -6706.160 kJ/mol 05BRO/CUR - -analytic 61.14396E+0 00.00000E+0 -15.72859E+3 00.00000E+0 00.00000E+0 + -analytic 61.14396E+0 00E+0 -15.72859E+3 00E+0 00E+0 -+1.000Cl- +1.000Zr+4 = ZrCl+3 - log_k +1.59 #05BRO/CUR - -analytic 15.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cl- + Zr+4 = ZrCl+3 + log_k 1.59 #05BRO/CUR + -analytic 15.9E-1 00E+0 00E+0 00E+0 00E+0 -+2.000Cl- +1.000Zr+4 = ZrCl2+2 - log_k +2.17 #05BRO/CUR - -analytic 21.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +2 Cl- + Zr+4 = ZrCl2+2 + log_k 2.17 #05BRO/CUR + -analytic 21.7E-1 00E+0 00E+0 00E+0 00E+0 -+1.000F- +1.000Zr+4 = ZrF+3 - log_k +10.12 #05BRO/CUR - delta_h -17.500 #kJ/mol 05BRO/CUR -# Enthalpy of formation: -961.350 kJ/mol - -analytic 70.54132E-1 00.00000E+0 91.40887E+1 00.00000E+0 00.00000E+0 +F- + Zr+4 = ZrF+3 + log_k 10.12 #05BRO/CUR + delta_h -17.5 #kJ/mol 05BRO/CUR +# Enthalpy of formation: -961.350 kJ/mol + -analytic 70.54132E-1 00E+0 91.40887E+1 00E+0 00E+0 -+2.000F- +1.000Zr+4 = ZrF2+2 - log_k +18.55 #05BRO/CUR - delta_h -16.800 #kJ/mol 05BRO/CUR -# Enthalpy of formation: -1296.000 kJ/mol - -analytic 15.60677E+0 00.00000E+0 87.75251E+1 00.00000E+0 00.00000E+0 +2 F- + Zr+4 = ZrF2+2 + log_k 18.55 #05BRO/CUR + delta_h -16.8 #kJ/mol 05BRO/CUR +# Enthalpy of formation: -1296.000 kJ/mol + -analytic 15.60677E+0 00E+0 87.75251E+1 00E+0 00E+0 -+3.000F- +1.000Zr+4 = ZrF3+ - log_k +24.72 #05BRO/CUR - delta_h -11.200 #kJ/mol 05BRO/CUR -# Enthalpy of formation: -1625.750 kJ/mol - -analytic 22.75784E+0 00.00000E+0 58.50167E+1 00.00000E+0 00.00000E+0 +3 F- + Zr+4 = ZrF3+ + log_k 24.72 #05BRO/CUR + delta_h -11.2 #kJ/mol 05BRO/CUR +# Enthalpy of formation: -1625.750 kJ/mol + -analytic 22.75784E+0 00E+0 58.50167E+1 00E+0 00E+0 -+4.000F- +1.000Zr+4 = ZrF4 - log_k +30.11 #05BRO/CUR - delta_h -22.000 #kJ/mol 05BRO/CUR -# Enthalpy of formation: -1971.900 kJ/mol - -analytic 26.25577E+0 00.00000E+0 11.49140E+2 00.00000E+0 00.00000E+0 +4 F- + Zr+4 = ZrF4 + log_k 30.11 #05BRO/CUR + delta_h -22 #kJ/mol 05BRO/CUR +# Enthalpy of formation: -1971.900 kJ/mol + -analytic 26.25577E+0 00E+0 11.4914E+2 00E+0 00E+0 -+5.000F- +1.000Zr+4 = ZrF5- - log_k +34.60 #05BRO/CUR - -analytic 34.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +5 F- + Zr+4 = ZrF5- + log_k 34.6 #05BRO/CUR + -analytic 34.6E+0 00E+0 00E+0 00E+0 00E+0 -+6.000F- +1.000Zr+4 = ZrF6-2 - log_k +38.11 #05BRO/CUR - -analytic 38.11000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +6 F- + Zr+4 = ZrF6-2 + log_k 38.11 #05BRO/CUR + -analytic 38.11E+0 00E+0 00E+0 00E+0 00E+0 -+1.000NO3- +1.000Zr+4 = ZrNO3+3 - log_k +1.59 #05BRO/CUR - -analytic 15.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +NO3- + Zr+4 = ZrNO3+3 + log_k 1.59 #05BRO/CUR + -analytic 15.9E-1 00E+0 00E+0 00E+0 00E+0 -+1.000SO4-2 +1.000Zr+4 = ZrSO4+2 - log_k +7.04 #05BRO/CUR - delta_h +36.940 #kJ/mol +SO4-2 + Zr+4 = ZrSO4+2 + log_k 7.04 #05BRO/CUR + delta_h 36.94 #kJ/mol # Enthalpy of formation: -1480.900 kJ/mol 05BRO/CUR - -analytic 13.51161E+0 00.00000E+0 -19.29511E+2 00.00000E+0 00.00000E+0 + -analytic 13.51161E+0 00E+0 -19.29511E+2 00E+0 00E+0 PHASES (HgOH)3PO4(s) -(HgOH)3PO4 = -5.000H+ +1.000H2(PO4)- +3.000H2O +3.000Hg+2 - log_k -3.80 #05POW/BRO - -analytic -38.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +(HgOH)3PO4 = -5 H+ + H2(PO4)- + 3 H2O + 3 Hg+2 + log_k -3.8 #05POW/BRO + -analytic -38E-1 00E+0 00E+0 00E+0 00E+0 (NH4)4NpO2(CO3)3(cr) -(NH4)4NpO2(CO3)3 = +1.000NpO2+2 +4.000H+ +3.000CO3-2 +4.000NH3 - log_k -64.30 #20GRE/GAO - -analytic -64.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +(NH4)4NpO2(CO3)3 = NpO2+2 + 4 H+ + 3 CO3-2 + 4 NH3 + log_k -64.3 #20GRE/GAO + -analytic -64.3E+0 00E+0 00E+0 00E+0 00E+0 (PuO2)3(PO4)2:4H2O(am) -(PuO2)3(PO4)2:4H2O = +3.000PuO2+2 -4.000H+ +2.000H2(PO4)- +4.000H2O - log_k -9.85 #20GRE/GAO - -analytic -98.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +(PuO2)3(PO4)2:4H2O = 3 PuO2+2 - 4 H+ + 2 H2(PO4)- + 4 H2O + log_k -9.85 #20GRE/GAO + -analytic -98.5E-1 00E+0 00E+0 00E+0 00E+0 (UO2)2(As2O7)(cr) -(UO2)2(As2O7) = +2.000UO2+2 +2.000H+ +2.000AsO4-3 -1.000H2O - log_k -29.01 - delta_h -102.450 #kJ/mol +(UO2)2(As2O7) = 2 UO2+2 + 2 H+ + 2 AsO4-3 - H2O + log_k -29.01 + delta_h -102.45 #kJ/mol # Enthalpy of formation: -3426.000 kJ/mol 92GRE/FUG - -analytic -46.95847E+0 00.00000E+0 53.51336E+2 00.00000E+0 00.00000E+0 + -analytic -46.95847E+0 00E+0 53.51336E+2 00E+0 00E+0 (UO2)3(AsO4)2(cr) -(UO2)3(AsO4)2 = +3.000UO2+2 +2.000AsO4-3 - log_k -27.40 - delta_h -143.880 #kJ/mol +(UO2)3(AsO4)2 = 3 UO2+2 + 2 AsO4-3 + log_k -27.4 + delta_h -143.88 #kJ/mol # Enthalpy of formation: -4689.400 kJ/mol 92GRE/FUG - -analytic -52.60669E+0 00.00000E+0 75.15376E+2 00.00000E+0 00.00000E+0 + -analytic -52.60669E+0 00E+0 75.15376E+2 00E+0 00E+0 (UO2)3(PO4)2(cr) -(UO2)3(PO4)2 = +3.000UO2+2 -4.000H+ +2.000H2(PO4)- - log_k +2.80 - delta_h -170.900 #kJ/mol +(UO2)3(PO4)2 = 3 UO2+2 - 4 H+ + 2 H2(PO4)- + log_k 2.8 + delta_h -170.9 #kJ/mol # Enthalpy of formation: -5491.300 kJ/mol 92GRE/FUG - -analytic -27.14039E+0 00.00000E+0 89.26729E+2 00.00000E+0 00.00000E+0 + -analytic -27.14039E+0 00E+0 89.26729E+2 00E+0 00E+0 (UO2)3(PO4)2:4H2O(cr) -(UO2)3(PO4)2:4H2O = +3.000UO2+2 -4.000H+ +2.000H2(PO4)- +4.000H2O - log_k -10.24 #20GRE/GAO - -analytic -10.24000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +(UO2)3(PO4)2:4H2O = 3 UO2+2 - 4 H+ + 2 H2(PO4)- + 4 H2O + log_k -10.24 #20GRE/GAO + -analytic -10.24E+0 00E+0 00E+0 00E+0 00E+0 (UO2)3(PO4)2:6H2O(s) -(UO2)3(PO4)2:6H2O = +3.000UO2+2 -4.000H+ +2.000H2(PO4)- +6.000H2O - log_k -10.20 - delta_h -48.780 #kJ/mol +(UO2)3(PO4)2:6H2O = 3 UO2+2 - 4 H+ + 2 H2(PO4)- + 6 H2O + log_k -10.2 + delta_h -48.78 #kJ/mol # Enthalpy of formation: -7328.400 kJ/mol 03GUI/FAN - -analytic -18.74589E+0 00.00000E+0 25.47957E+2 00.00000E+0 00.00000E+0 + -analytic -18.74589E+0 00E+0 25.47957E+2 00E+0 00E+0 Acanthite -Ag2S = +2.000Ag+ -1.000H+ +1.000HS- - log_k -36.07 - delta_h +224.768 #kJ/mol -# Enthalpy of formation: -29.488 kJ/mol - -analytic 33.07663E-1 00.00000E+0 -11.74045E+3 00.00000E+0 00.00000E+0 +Ag2S = 2 Ag+ - H+ + HS- + log_k -36.07 + delta_h 224.768 #kJ/mol +# Enthalpy of formation: -29.488 kJ/mol + -analytic 33.07663E-1 00E+0 -11.74045E+3 00E+0 00E+0 Acmite -NaFeSi2O6 = +1.000Na+ +1.000Fe+3 -4.000H+ +2.000H4(SiO4) -2.000H2O - log_k +0.89 - delta_h -56.624 #kJ/mol +NaFeSi2O6 = Na+ + Fe+3 - 4 H+ + 2 H4(SiO4) - 2 H2O + log_k 0.89 + delta_h -56.624 #kJ/mol # Enthalpy of formation: -2584.500 kJ/mol 95ROB/HEM - -analytic -90.30099E-1 00.00000E+0 29.57678E+2 00.00000E+0 00.00000E+0 - -Vm 64.600 + -analytic -90.30099E-1 00E+0 29.57678E+2 00E+0 00E+0 + -Vm 64.6 Afwillite -Ca3Si2O4(OH)6 = +3.000Ca+2 -6.000H+ +2.000H4(SiO4) +2.000H2O - log_k +49.42 #10BLA/BOU1 - delta_h -269.228 #kJ/mol +Ca3Si2O4(OH)6 = 3 Ca+2 - 6 H+ + 2 H4(SiO4) + 2 H2O + log_k 49.42 #10BLA/BOU1 + delta_h -269.228 #kJ/mol # Enthalpy of formation: -4853.820 kJ/mol 10BLA/BOU1 - -analytic 22.53279E-1 00.00000E+0 14.06276E+3 00.00000E+0 00.00000E+0 - -Vm 129.530 + -analytic 22.53279E-1 00E+0 14.06276E+3 00E+0 00E+0 + -Vm 129.53 Ag(cr) -Ag = +1.000Ag+ +1.000e- - log_k -13.51 - delta_h +105.790 #kJ/mol +Ag = Ag+ + e- + log_k -13.51 + delta_h 105.79 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 95SIL/BID - -analytic 50.23612E-1 00.00000E+0 -55.25797E+2 00.00000E+0 00.00000E+0 + -analytic 50.23612E-1 00E+0 -55.25797E+2 00E+0 00E+0 Ag(OH)(s) -Ag(OH) = +1.000Ag+ -1.000H+ +1.000H2O - log_k +6.30 #76BAE/MES - -analytic 63.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ag(OH) = Ag+ - H+ + H2O + log_k 6.3 #76BAE/MES + -analytic 63E-1 00E+0 00E+0 00E+0 00E+0 Ag2(CO3)(s) -Ag2(CO3) = +2.000Ag+ +1.000CO3-2 - log_k -11.05 - delta_h +42.072 #kJ/mol -# Enthalpy of formation: -505.723 kJ/mol - -analytic -36.79302E-1 00.00000E+0 -21.97574E+2 00.00000E+0 00.00000E+0 +Ag2(CO3) = 2 Ag+ + CO3-2 + log_k -11.05 + delta_h 42.072 #kJ/mol +# Enthalpy of formation: -505.723 kJ/mol + -analytic -36.79302E-1 00E+0 -21.97574E+2 00E+0 00E+0 Ag2(MoO4)(s) -Ag2(MoO4) = +2.000Ag+ +1.000MoO4-2 - log_k -11.46 - delta_h +55.324 #kJ/mol -# Enthalpy of formation: -840.744 kJ/mol - -analytic -17.67651E-1 00.00000E+0 -28.89774E+2 00.00000E+0 00.00000E+0 +Ag2(MoO4) = 2 Ag+ + MoO4-2 + log_k -11.46 + delta_h 55.324 #kJ/mol +# Enthalpy of formation: -840.744 kJ/mol + -analytic -17.67651E-1 00E+0 -28.89774E+2 00E+0 00E+0 Ag2(SeO3)(s) -Ag2(SeO3) = +2.000Ag+ +1.000SeO3-2 - log_k -15.80 #05OLI/NOL - delta_h +67.860 #kJ/mol +Ag2(SeO3) = 2 Ag+ + SeO3-2 + log_k -15.8 #05OLI/NOL + delta_h 67.86 #kJ/mol # Enthalpy of formation: -363.440 kJ/mol 05OLI/NOL - -analytic -39.11438E-1 00.00000E+0 -35.44575E+2 00.00000E+0 00.00000E+0 + -analytic -39.11438E-1 00E+0 -35.44575E+2 00E+0 00E+0 Ag2(SeO4)(s) -Ag2(SeO4) = +2.000Ag+ +1.000SeO4-2 - log_k -7.86 #05OLI/NOL - delta_h +30.590 #kJ/mol +Ag2(SeO4) = 2 Ag+ + SeO4-2 + log_k -7.86 #05OLI/NOL + delta_h 30.59 #kJ/mol # Enthalpy of formation: -422.510 kJ/mol 05OLI/NOL - -analytic -25.00862E-1 00.00000E+0 -15.97827E+2 00.00000E+0 00.00000E+0 + -analytic -25.00862E-1 00E+0 -15.97827E+2 00E+0 00E+0 Ag2(SO4)(s) -Ag2(SO4) = +2.000Ag+ +1.000SO4-2 - log_k -5.01 - delta_h +18.163 #kJ/mol -# Enthalpy of formation: -715.922 kJ/mol - -analytic -18.27979E-1 00.00000E+0 -94.87196E+1 00.00000E+0 00.00000E+0 +Ag2(SO4) = 2 Ag+ + SO4-2 + log_k -5.01 + delta_h 18.163 #kJ/mol +# Enthalpy of formation: -715.922 kJ/mol + -analytic -18.27979E-1 00E+0 -94.87196E+1 00E+0 00E+0 Ag2Se(alfa) -Ag2Se = +2.000Ag+ -1.000H+ +1.000HSe- - log_k -42.85 - delta_h +266.009 #kJ/mol -# Enthalpy of formation: -40.129 kJ/mol - -analytic 37.52776E-1 00.00000E+0 -13.89462E+3 00.00000E+0 00.00000E+0 +Ag2Se = 2 Ag+ - H+ + HSe- + log_k -42.85 + delta_h 266.009 #kJ/mol +# Enthalpy of formation: -40.129 kJ/mol + -analytic 37.52776E-1 00E+0 -13.89462E+3 00E+0 00E+0 Ag3(PO4)(s) -Ag3(PO4) = +3.000Ag+ -2.000H+ +1.000H2(PO4)- - log_k +2.01 #03BÖT in 76SMI/MAR - -analytic 20.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ag3(PO4) = 3 Ag+ - 2 H+ + H2(PO4)- + log_k 2.01 #03BÖT in 76SMI/MAR + -analytic 20.1E-1 00E+0 00E+0 00E+0 00E+0 AgBr(s) -AgBr = +1.000Ag+ +1.000Br- - log_k -12.29 - delta_h +84.726 #kJ/mol -# Enthalpy of formation: -100.345 kJ/mol - -analytic 25.53358E-1 00.00000E+0 -44.25547E+2 00.00000E+0 00.00000E+0 +AgBr = Ag+ + Br- + log_k -12.29 + delta_h 84.726 #kJ/mol +# Enthalpy of formation: -100.345 kJ/mol + -analytic 25.53358E-1 00E+0 -44.25547E+2 00E+0 00E+0 AgCl(cr) -AgCl = +1.000Ag+ +1.000Cl- - log_k -9.75 - delta_h +65.720 #kJ/mol +AgCl = Ag+ + Cl- + log_k -9.75 + delta_h 65.72 #kJ/mol # Enthalpy of formation: -127.010 kJ/mol 92GRE/FUG - -analytic 17.63650E-1 00.00000E+0 -34.32795E+2 00.00000E+0 00.00000E+0 + -analytic 17.6365E-1 00E+0 -34.32795E+2 00E+0 00E+0 AgI(s) -AgI = +1.000Ag+ +1.000I- - log_k -16.04 - delta_h +110.764 #kJ/mol -# Enthalpy of formation: -61.754 kJ/mol - -analytic 33.65020E-1 00.00000E+0 -57.85607E+2 00.00000E+0 00.00000E+0 +AgI = Ag+ + I- + log_k -16.04 + delta_h 110.764 #kJ/mol +# Enthalpy of formation: -61.754 kJ/mol + -analytic 33.6502E-1 00E+0 -57.85607E+2 00E+0 00E+0 Al(cr) -Al = +1.000Al+3 +3.000e- - log_k +85.43 - delta_h -538.400 #kJ/mol +Al = Al+3 + 3 e- + log_k 85.43 + delta_h -538.4 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 95POK/HEL - -analytic -88.93631E-1 00.00000E+0 28.12259E+3 00.00000E+0 00.00000E+0 + -analytic -88.93631E-1 00E+0 28.12259E+3 00E+0 00E+0 Al(PO4)(cr) -Al(PO4) = +1.000Al+3 -2.000H+ +1.000H2(PO4)- - log_k -3.62 - delta_h -18.200 #kJ/mol +Al(PO4) = Al+3 - 2 H+ + H2(PO4)- + log_k -3.62 + delta_h -18.2 #kJ/mol # Enthalpy of formation: -1822.800 kJ/mol 03-91 MINTEQL-PSI - -analytic -68.08503E-1 00.00000E+0 95.06522E+1 00.00000E+0 00.00000E+0 + -analytic -68.08503E-1 00E+0 95.06522E+1 00E+0 00E+0 Al(PO4):2H2O(s) -Al(PO4):2H2O = +1.000Al+3 -2.000H+ +1.000H2(PO4)- +2.000H2O - log_k -2.51 #620BRG91.025 ANDRA 21.10.94 - -analytic -25.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Al(PO4):2H2O = Al+3 - 2 H+ + H2(PO4)- + 2 H2O + log_k -2.51 #620BRG91.025 ANDRA 21.10.94 + -analytic -25.1E-1 00E+0 00E+0 00E+0 00E+0 Alabandite -MnS = +1.000Mn+2 -1.000H+ +1.000HS- - log_k +0.90 #88CHA/NEW - -analytic 90.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +MnS = Mn+2 - H+ + HS- + log_k 0.9 #88CHA/NEW + -analytic 90E-2 00E+0 00E+0 00E+0 00E+0 Alamosite -PbSiO3 = +1.000Pb+2 -2.000H+ +1.000H4(SiO4) -1.000H2O - log_k +6.17 - delta_h -29.451 #kJ/mol +PbSiO3 = Pb+2 - 2 H+ + H4(SiO4) - H2O + log_k 6.17 + delta_h -29.451 #kJ/mol # Enthalpy of formation: -1144.993 kJ/mol 98CHA - -analytic 10.10406E-1 00.00000E+0 15.38333E+2 00.00000E+0 00.00000E+0 + -analytic 10.10406E-1 00E+0 15.38333E+2 00E+0 00E+0 Albite-high -NaAlSi3O8 = +1.000Na+ +1.000Al+3 -4.000H+ +3.000H4(SiO4) -4.000H2O - log_k +4.14 - delta_h -95.622 #kJ/mol +NaAlSi3O8 = Na+ + Al+3 - 4 H+ + 3 H4(SiO4) - 4 H2O + log_k 4.14 + delta_h -95.622 #kJ/mol # Enthalpy of formation: -3923.380 kJ/mol 99ARN/STE - -analytic -12.61226E+0 00.00000E+0 49.94685E+2 00.00000E+0 00.00000E+0 + -analytic -12.61226E+0 00E+0 49.94685E+2 00E+0 00E+0 Albite-low -NaAlSi3O8 = +1.000Na+ +1.000Al+3 -4.000H+ +3.000H4(SiO4) -4.000H2O - log_k +2.74 - delta_h -82.812 #kJ/mol +NaAlSi3O8 = Na+ + Al+3 - 4 H+ + 3 H4(SiO4) - 4 H2O + log_k 2.74 + delta_h -82.812 #kJ/mol # Enthalpy of formation: -3936.190 kJ/mol 99ARN/STE - -analytic -11.76804E+0 00.00000E+0 43.25572E+2 00.00000E+0 00.00000E+0 - -Vm 100.070 + -analytic -11.76804E+0 00E+0 43.25572E+2 00E+0 00E+0 + -Vm 100.07 Am(cr) -Am = +1.000Am+3 +3.000e- - log_k +104.89 - delta_h -616.700 #kJ/mol +Am = Am+3 + 3 e- + log_k 104.89 + delta_h -616.7 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 95SIL/BID - -analytic -31.51202E-1 00.00000E+0 32.21248E+3 00.00000E+0 00.00000E+0 + -analytic -31.51202E-1 00E+0 32.21248E+3 00E+0 00E+0 Am(OH)3(am) -Am(OH)3 = -3.000H+ +1.000Am+3 +3.000H2O - log_k +16.90 #03GUI/FAN, 83RAI/STR, 83EDE/BUC, 85NIT/EDE - -analytic 16.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Am(OH)3 = -3 H+ + Am+3 + 3 H2O + log_k 16.9 #03GUI/FAN, 83RAI/STR, 83EDE/BUC, 85NIT/EDE + -analytic 16.9E+0 00E+0 00E+0 00E+0 00E+0 Am(OH)3(cr) -Am(OH)3 = -3.000H+ +1.000Am+3 +3.000H2O - log_k +15.60 #03GUI/FAN, 82SIL, 88STA/KIM1 - delta_h -120.992 #kJ/mol -# Enthalpy of formation: -1353.198 kJ/mol - -analytic -55.96889E-1 00.00000E+0 63.19852E+2 00.00000E+0 00.00000E+0 +Am(OH)3 = -3 H+ + Am+3 + 3 H2O + log_k 15.6 #03GUI/FAN, 82SIL, 88STA/KIM1 + delta_h -120.992 #kJ/mol +# Enthalpy of formation: -1353.198 kJ/mol + -analytic -55.96889E-1 00E+0 63.19852E+2 00E+0 00E+0 Am(PO4):0.5H2O(am) -Am(PO4):0.5H2O = -2.000H+ +1.000Am+3 +1.000H2(PO4)- +0.500H2O - log_k -5.23 #95SIL/BID - -analytic -52.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Am(PO4):0.5H2O = -2 H+ + Am+3 + H2(PO4)- + 0.5 H2O + log_k -5.23 #95SIL/BID + -analytic -52.3E-1 00E+0 00E+0 00E+0 00E+0 Am2(CO3)3(s) -Am2(CO3)3 = +2.000Am+3 +3.000CO3-2 - log_k -33.40 #03GUI/FAN - -analytic -33.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Am2(CO3)3 = 2 Am+3 + 3 CO3-2 + log_k -33.4 #03GUI/FAN + -analytic -33.4E+0 00E+0 00E+0 00E+0 00E+0 Am2O3(cr) -Am2O3 = -6.000H+ +2.000Am+3 +3.000H2O - log_k +53.12 - delta_h -400.490 #kJ/mol +Am2O3 = -6 H+ + 2 Am+3 + 3 H2O + log_k 53.12 + delta_h -400.49 #kJ/mol # Enthalpy of formation: -1690.400 kJ/mol 95SIL/BID - -analytic -17.04284E+0 00.00000E+0 20.91905E+3 00.00000E+0 00.00000E+0 + -analytic -17.04284E+0 00E+0 20.91905E+3 00E+0 00E+0 AmBr3(cr) -AmBr3 = +1.000Am+3 +3.000Br- - log_k +23.93 - delta_h -176.930 #kJ/mol +AmBr3 = Am+3 + 3 Br- + log_k 23.93 + delta_h -176.93 #kJ/mol # Enthalpy of formation: -804.000 kJ/mol 03GUI/FAN - -analytic -70.66805E-1 00.00000E+0 92.41698E+2 00.00000E+0 00.00000E+0 + -analytic -70.66805E-1 00E+0 92.41698E+2 00E+0 00E+0 AmCl3(cr) -AmCl3 = +1.000Am+3 +3.000Cl- - log_k +15.29 - delta_h -140.140 #kJ/mol +AmCl3 = Am+3 + 3 Cl- + log_k 15.29 + delta_h -140.14 #kJ/mol # Enthalpy of formation: -977.800 kJ/mol 95SIL/BID - -analytic -92.61474E-1 00.00000E+0 73.20022E+2 00.00000E+0 00.00000E+0 + -analytic -92.61474E-1 00E+0 73.20022E+2 00E+0 00E+0 AmCl6Cs2Na(cr) -AmCl6Cs2Na = +1.000Na+ +2.000Cs+ +1.000Am+3 +6.000Cl- - log_k +12.56 - delta_h -59.720 #kJ/mol +AmCl6Cs2Na = Na+ + 2 Cs+ + Am+3 + 6 Cl- + log_k 12.56 + delta_h -59.72 #kJ/mol # Enthalpy of formation: -2315.800 kJ/mol 03GUI/FAN - -analytic 20.97505E-1 00.00000E+0 31.19393E+2 00.00000E+0 00.00000E+0 + -analytic 20.97505E-1 00E+0 31.19393E+2 00E+0 00E+0 AmCO3OH(cr) -Am(CO3)(OH) = -1.000H+ +1.000Am+3 +1.000CO3-2 +1.000H2O - log_k -11.51 - delta_h -25.260 #kJ/mol +Am(CO3)(OH) = - H+ + Am+3 + CO3-2 + H2O + log_k -11.51 + delta_h -25.26 #kJ/mol # Enthalpy of formation: -1552.500 kJ/mol 05ROR/FUG - -analytic -15.93536E+0 00.00000E+0 13.19422E+2 00.00000E+0 00.00000E+0 + -analytic -15.93536E+0 00E+0 13.19422E+2 00E+0 00E+0 AmCO3OH(s) -Am(CO3)(OH) = -1.000H+ +1.000Am+3 +1.000CO3-2 +1.000H2O - log_k -6.20 #03GUI/FAN - -analytic -62.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Am(CO3)(OH) = - H+ + Am+3 + CO3-2 + H2O + log_k -6.2 #03GUI/FAN + -analytic -62E-1 00E+0 00E+0 00E+0 00E+0 AmCO3OH:0.5H2O(s) -Am(CO3)(OH):0.5H2O = -1.000H+ +1.000Am+3 +1.000CO3-2 +1.500H2O - log_k -8.40 #03GUI/FAN - delta_h -37.775 #kJ/mol +Am(CO3)(OH):0.5H2O = - H+ + Am+3 + CO3-2 + 1.5 H2O + log_k -8.4 #03GUI/FAN + delta_h -37.775 #kJ/mol # Enthalpy of formation: -1682.900 kJ/mol 03GUI/FAN - -analytic -15.01790E+0 00.00000E+0 19.73126E+2 00.00000E+0 00.00000E+0 + -analytic -15.0179E+0 00E+0 19.73126E+2 00E+0 00E+0 Amesite -Mg4Al4Si2O10(OH)8 = +4.000Mg+2 +4.000Al+3 -20.000H+ +2.000H4(SiO4) +10.000H2O - log_k +69.39 - delta_h -766.388 #kJ/mol +Mg4Al4Si2O10(OH)8 = 4 Mg+2 + 4 Al+3 - 20 H+ + 2 H4(SiO4) + 10 H2O + log_k 69.39 + delta_h -766.388 #kJ/mol # Enthalpy of formation: -9035.900 kJ/mol 05VID/PAR - -analytic -64.87541E+0 00.00000E+0 40.03123E+3 00.00000E+0 00.00000E+0 - -Vm 205.200 + -analytic -64.87541E+0 00E+0 40.03123E+3 00E+0 00E+0 + -Vm 205.2 Amesite-Fe -Fe4Al4Si2O10(OH)8 = +4.000Fe+2 +4.000Al+3 -20.000H+ +2.000H4(SiO4) +10.000H2O - log_k +57.10 - delta_h -688.008 #kJ/mol +Fe4Al4Si2O10(OH)8 = 4 Fe+2 + 4 Al+3 - 20 H+ + 2 H4(SiO4) + 10 H2O + log_k 57.1 + delta_h -688.008 #kJ/mol # Enthalpy of formation: -7607.460 kJ/mol 05VID/PAR - -analytic -63.43383E+0 00.00000E+0 35.93716E+3 00.00000E+0 00.00000E+0 - -Vm 209.000 + -analytic -63.43383E+0 00E+0 35.93716E+3 00E+0 00E+0 + -Vm 209 AmF3(cr) -AmF3 = +1.000Am+3 +3.000F- - log_k -13.40 - delta_h -28.750 #kJ/mol +AmF3 = Am+3 + 3 F- + log_k -13.4 + delta_h -28.75 #kJ/mol # Enthalpy of formation: -1594.000 kJ/mol 03GUI/FAN - -analytic -18.43678E+0 00.00000E+0 15.01717E+2 00.00000E+0 00.00000E+0 + -analytic -18.43678E+0 00E+0 15.01717E+2 00E+0 00E+0 AmI3(cr) -AmI3 = +1.000Am+3 +3.000I- - log_k +25.30 - delta_h -172.040 #kJ/mol +AmI3 = Am+3 + 3 I- + log_k 25.3 + delta_h -172.04 #kJ/mol # Enthalpy of formation: -615.000 kJ/mol 03GUI/FAN - -analytic -48.40114E-1 00.00000E+0 89.86275E+2 00.00000E+0 00.00000E+0 + -analytic -48.40114E-1 00E+0 89.86275E+2 00E+0 00E+0 AmO2(cr) -AmO2 = -4.000H+ +1.000Am+3 -1.000e- +2.000H2O - log_k +34.33 - delta_h -256.160 #kJ/mol +AmO2 = -4 H+ + Am+3 - e- + 2 H2O + log_k 34.33 + delta_h -256.16 #kJ/mol # Enthalpy of formation: -932.200 kJ/mol 95SIL/BID - -analytic -10.54731E+0 00.00000E+0 13.38017E+3 00.00000E+0 00.00000E+0 + -analytic -10.54731E+0 00E+0 13.38017E+3 00E+0 00E+0 AmO2OH(am) -AmO2OH = -1.000H+ +1.000AmO2+ +1.000H2O - log_k +5.30 #03GUI/FAN - -analytic 53.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +AmO2OH = - H+ + AmO2+ + H2O + log_k 5.3 #03GUI/FAN + -analytic 53E-1 00E+0 00E+0 00E+0 00E+0 AmOBr(cr) -AmOBr = -2.000H+ +1.000Am+3 +1.000Br- +1.000H2O - log_k +15.98 - delta_h -136.940 #kJ/mol +AmOBr = -2 H+ + Am+3 + Br- + H2O + log_k 15.98 + delta_h -136.94 #kJ/mol # Enthalpy of formation: -887.000 kJ/mol 03GUI/FAN - -analytic -80.10858E-1 00.00000E+0 71.52874E+2 00.00000E+0 00.00000E+0 + -analytic -80.10858E-1 00E+0 71.52874E+2 00E+0 00E+0 AmOCl(cr) -AmOCl = -2.000H+ +1.000Am+3 +1.000Cl- +1.000H2O - log_k +12.26 - delta_h -119.810 #kJ/mol +AmOCl = -2 H+ + Am+3 + Cl- + H2O + log_k 12.26 + delta_h -119.81 #kJ/mol # Enthalpy of formation: -949.800 kJ/mol 95SIL/BID - -analytic -87.29811E-1 00.00000E+0 62.58112E+2 00.00000E+0 00.00000E+0 + -analytic -87.29811E-1 00E+0 62.58112E+2 00E+0 00E+0 Analcime -Na0.99Al0.99Si2.01O6:H2O = +0.990Na+ +0.990Al+3 -3.960H+ +2.010H4(SiO4) -1.040H2O - log_k +6.64 - delta_h -102.689 #kJ/mol +Na0.99Al0.99Si2.01O6:H2O = 0.99 Na+ + 0.99 Al+3 - 3.96 H+ + 2.01 H4(SiO4) - 1.04 H2O + log_k 6.64 + delta_h -102.689 #kJ/mol # Enthalpy of formation: -3308.000 kJ/mol 04NEU/HOV - -analytic -11.35034E+0 00.00000E+0 53.63820E+2 00.00000E+0 00.00000E+0 - -Vm 97.090 + -analytic -11.35034E+0 00E+0 53.6382E+2 00E+0 00E+0 + -Vm 97.09 Andersonite -Na2CaUO2(CO3)3:6H2O = +1.000Ca+2 +2.000Na+ +1.000UO2+2 +3.000CO3-2 +6.000H2O - log_k -31.80 #19LEE/AMA - -analytic -31.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Na2CaUO2(CO3)3:6H2O = Ca+2 + 2 Na+ + UO2+2 + 3 CO3-2 + 6 H2O + log_k -31.8 #19LEE/AMA + -analytic -31.8E+0 00E+0 00E+0 00E+0 00E+0 Anglesite -Pb(SO4) = +1.000Pb+2 +1.000SO4-2 - log_k -7.85 - delta_h +11.550 #kJ/mol +Pb(SO4) = Pb+2 + SO4-2 + log_k -7.85 + delta_h 11.55 #kJ/mol # Enthalpy of formation: -919.970 kJ/mol 89COX/WAG - -analytic -58.26527E-1 00.00000E+0 -60.32985E+1 00.00000E+0 00.00000E+0 + -analytic -58.26527E-1 00E+0 -60.32985E+1 00E+0 00E+0 Anhydrite -Ca(SO4) = +1.000Ca+2 +1.000SO4-2 - log_k -4.44 - delta_h -17.940 #kJ/mol +Ca(SO4) = Ca+2 + SO4-2 + log_k -4.44 + delta_h -17.94 #kJ/mol # Enthalpy of formation: -1434.400 kJ/mol 95ROB/HEM - -analytic -75.82953E-1 00.00000E+0 93.70715E+1 00.00000E+0 00.00000E+0 - -Vm 46.010 + -analytic -75.82953E-1 00E+0 93.70715E+1 00E+0 00E+0 + -Vm 46.01 Annite -KFe3Si3AlO10(OH)2 = +1.000K+ +3.000Fe+2 +1.000Al+3 -10.000H+ +3.000H4(SiO4) - log_k +32.82 - delta_h -314.037 #kJ/mol +KFe3Si3AlO10(OH)2 = K+ + 3 Fe+2 + Al+3 - 10 H+ + 3 H4(SiO4) + log_k 32.82 + delta_h -314.037 #kJ/mol # Enthalpy of formation: -5130.970 kJ/mol 95DAC/BEN - -analytic -22.19692E+0 00.00000E+0 16.40329E+3 00.00000E+0 00.00000E+0 - -Vm 154.300 + -analytic -22.19692E+0 00E+0 16.40329E+3 00E+0 00E+0 + -Vm 154.3 Anorthite -CaAl2Si2O8 = +1.000Ca+2 +2.000Al+3 -8.000H+ +2.000H4(SiO4) - log_k +25.31 - delta_h -314.358 #kJ/mol +CaAl2Si2O8 = Ca+2 + 2 Al+3 - 8 H+ + 2 H4(SiO4) + log_k 25.31 + delta_h -314.358 #kJ/mol # Enthalpy of formation: -4227.830 kJ/mol 99ARN/STE - -analytic -29.76316E+0 00.00000E+0 16.42006E+3 00.00000E+0 00.00000E+0 + -analytic -29.76316E+0 00E+0 16.42006E+3 00E+0 00E+0 Antarcticite -CaCl2:6H2O = +1.000Ca+2 +2.000Cl- +6.000H2O - log_k +3.94 - delta_h +13.990 #kJ/mol +CaCl2:6H2O = Ca+2 + 2 Cl- + 6 H2O + log_k 3.94 + delta_h 13.99 #kJ/mol # Enthalpy of formation: -2606.130 kJ/mol 87GAR/PAR - -analytic 63.90943E-1 00.00000E+0 -73.07486E+1 00.00000E+0 00.00000E+0 + -analytic 63.90943E-1 00E+0 -73.07486E+1 00E+0 00E+0 Antigorite -Mg48Si34O85(OH)62 = +48.000Mg+2 -96.000H+ +34.000H4(SiO4) +11.000H2O - log_k +499.89 - delta_h -3822.746 #kJ/mol +Mg48Si34O85(OH)62 = 48 Mg+2 - 96 H+ + 34 H4(SiO4) + 11 H2O + log_k 499.89 + delta_h -3822.746 #kJ/mol # Enthalpy of formation: -71417.980kJ/mol 98HOL/POW - -analytic -16.98264E+1 00.00000E+0 19.96759E+4 00.00000E+0 00.00000E+0 - -Vm 1754.800 + -analytic -16.98264E+1 00E+0 19.96759E+4 00E+0 00E+0 + -Vm 1754.8 Antlerite -Cu3SO4(OH)4 = +3.000Cu+2 -4.000H+ +1.000SO4-2 +4.000H2O - log_k +8.91 - delta_h -117.063 #kJ/mol -# Enthalpy of formation: -1740.896 kJ/mol - -analytic -11.59856E+0 00.00000E+0 61.14626E+2 00.00000E+0 00.00000E+0 +Cu3SO4(OH)4 = 3 Cu+2 - 4 H+ + SO4-2 + 4 H2O + log_k 8.91 + delta_h -117.063 #kJ/mol +# Enthalpy of formation: -1740.896 kJ/mol + -analytic -11.59856E+0 00E+0 61.14626E+2 00E+0 00E+0 Aragonite -CaCO3 = +1.000Ca+2 +1.000CO3-2 - log_k -8.31 - delta_h -10.454 #kJ/mol +CaCO3 = Ca+2 + CO3-2 + log_k -8.31 + delta_h -10.454 #kJ/mol # Enthalpy of formation: -1207.776 kJ/mol 87GAR/PAR - -analytic -10.14146E+0 00.00000E+0 54.60504E+1 00.00000E+0 00.00000E+0 - -Vm 34.150 + -analytic -10.14146E+0 00E+0 54.60504E+1 00E+0 00E+0 + -Vm 34.15 Arcanite -K2SO4 = +2.000K+ +1.000SO4-2 - log_k -1.85 - delta_h +24.080 #kJ/mol +K2SO4 = 2 K+ + SO4-2 + log_k -1.85 + delta_h 24.08 #kJ/mol # Enthalpy of formation: -1437.700 kJ/mol 95ROB/HEM - -analytic 23.68635E-1 00.00000E+0 -12.57786E+2 00.00000E+0 00.00000E+0 - -Vm 65.500 + -analytic 23.68635E-1 00E+0 -12.57786E+2 00E+0 00E+0 + -Vm 65.5 Artinite -Mg2(CO3)(OH)2:3H2O = +2.000Mg+2 -2.000H+ +1.000CO3-2 +5.000H2O - log_k +9.81 - delta_h -117.780 #kJ/mol +Mg2(CO3)(OH)2:3H2O = 2 Mg+2 - 2 H+ + CO3-2 + 5 H2O + log_k 9.81 + delta_h -117.78 #kJ/mol # Enthalpy of formation: -2920.600 kJ/mol 73HEM/ROB - -analytic -10.82417E+0 00.00000E+0 61.52078E+2 00.00000E+0 00.00000E+0 + -analytic -10.82417E+0 00E+0 61.52078E+2 00E+0 00E+0 As(cr) -As = +8.000H+ +5.000e- +1.000AsO4-3 -4.000H2O - log_k -52.59 - delta_h +255.180 #kJ/mol +As = 8 H+ + 5 e- + AsO4-3 - 4 H2O + log_k -52.59 + delta_h 255.18 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 09RAN/FUG - -analytic -78.84383E-1 00.00000E+0 -13.32898E+3 00.00000E+0 00.00000E+0 + -analytic -78.84383E-1 00E+0 -13.32898E+3 00E+0 00E+0 As2O5(s) -As2O5 = +6.000H+ +2.000AsO4-3 -3.000H2O - log_k -35.34 - delta_h +10.640 #kJ/mol +As2O5 = 6 H+ + 2 AsO4-3 - 3 H2O + log_k -35.34 + delta_h 10.64 #kJ/mol # Enthalpy of formation: -929.430 kJ/mol 65BEE/MOR - -analytic -33.47595E+0 00.00000E+0 -55.57659E+1 00.00000E+0 00.00000E+0 + -analytic -33.47595E+0 00E+0 -55.57659E+1 00E+0 00E+0 Azurite -Cu3(CO3)2(OH)2 = +3.000Cu+2 -2.000H+ +2.000CO3-2 +2.000H2O - log_k -16.91 #91BAL/NOR in 07POW/BRO - delta_h -55.087 #kJ/mol -# Enthalpy of formation: -1672.333 kJ/mol - -analytic -26.56083E+0 00.00000E+0 28.77394E+2 00.00000E+0 00.00000E+0 +Cu3(CO3)2(OH)2 = 3 Cu+2 - 2 H+ + 2 CO3-2 + 2 H2O + log_k -16.91 #91BAL/NOR in 07POW/BRO + delta_h -55.087 #kJ/mol +# Enthalpy of formation: -1672.333 kJ/mol + -analytic -26.56083E+0 00E+0 28.77394E+2 00E+0 00E+0 B(cr) -B = +4.000H+ +3.000e- +1.000B(OH)4- -4.000H2O - log_k +35.93 - delta_h -201.796 #kJ/mol +B = 4 H+ + 3 e- + B(OH)4- - 4 H2O + log_k 35.93 + delta_h -201.796 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 92GRE/FUG - -analytic 57.68584E-2 00.00000E+0 10.54054E+3 00.00000E+0 00.00000E+0 + -analytic 57.68584E-2 00E+0 10.54054E+3 00E+0 00E+0 B(OH)3(cr) -B(OH)3 = +1.000H+ +1.000B(OH)4- -1.000H2O - log_k -9.31 - delta_h +35.514 #kJ/mol +B(OH)3 = H+ + B(OH)4- - H2O + log_k -9.31 + delta_h 35.514 #kJ/mol # Enthalpy of formation: -1094.800 kJ/mol 01LEM/FUG - -analytic -30.88214E-1 00.00000E+0 -18.55025E+2 00.00000E+0 00.00000E+0 + -analytic -30.88214E-1 00E+0 -18.55025E+2 00E+0 00E+0 B2O3(am) -B2O3 = +2.000H+ +2.000B(OH)4- -5.000H2O - log_k -10.63 - delta_h -6.712 #kJ/mol -# Enthalpy of formation: -1254.371 kJ/mol - -analytic -11.80589E+0 00.00000E+0 35.05922E+1 00.00000E+0 00.00000E+0 +B2O3 = 2 H+ + 2 B(OH)4- - 5 H2O + log_k -10.63 + delta_h -6.712 #kJ/mol +# Enthalpy of formation: -1254.371 kJ/mol + -analytic -11.80589E+0 00E+0 35.05922E+1 00E+0 00E+0 B2O3(cr) -B2O3 = +2.000H+ +2.000B(OH)4- -5.000H2O - log_k -12.74 - delta_h +12.418 #kJ/mol +B2O3 = 2 H+ + 2 B(OH)4- - 5 H2O + log_k -12.74 + delta_h 12.418 #kJ/mol # Enthalpy of formation: -1273.500 kJ/mol 01LEM/FUG - -analytic -10.56446E+0 00.00000E+0 -64.86373E+1 00.00000E+0 00.00000E+0 + -analytic -10.56446E+0 00E+0 -64.86373E+1 00E+0 00E+0 Ba(cr) -Ba = +1.000Ba+2 +2.000e- - log_k +97.70 - delta_h -534.800 #kJ/mol +Ba = Ba+2 + 2 e- + log_k 97.7 + delta_h -534.8 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 92GRE/FUG - -analytic 40.07062E-1 00.00000E+0 27.93455E+3 00.00000E+0 00.00000E+0 + -analytic 40.07062E-1 00E+0 27.93455E+3 00E+0 00E+0 Ba(OH)2:8H2O(cr) -Ba(OH)2:8H2O = +1.000Ba+2 -2.000H+ +10.000H2O - log_k +23.87 - delta_h -52.506 #kJ/mol -# Enthalpy of formation: -3340.591 kJ/mol - -analytic 14.67134E+0 00.00000E+0 27.42579E+2 00.00000E+0 00.00000E+0 +Ba(OH)2:8H2O = Ba+2 - 2 H+ + 10 H2O + log_k 23.87 + delta_h -52.506 #kJ/mol +# Enthalpy of formation: -3340.591 kJ/mol + -analytic 14.67134E+0 00E+0 27.42579E+2 00E+0 00E+0 Ba(SeO3)(s) -Ba(SeO3) = +1.000Ba+2 +1.000SeO3-2 - log_k -6.50 #05OLI/NOL - delta_h -5.260 #kJ/mol +Ba(SeO3) = Ba+2 + SeO3-2 + log_k -6.5 #05OLI/NOL + delta_h -5.26 #kJ/mol # Enthalpy of formation: -1036.700 kJ/mol 05OLI/NOL - -analytic -74.21512E-1 00.00000E+0 27.47489E+1 00.00000E+0 00.00000E+0 + -analytic -74.21512E-1 00E+0 27.47489E+1 00E+0 00E+0 Ba(SeO4)(cr) -Ba(SeO4) = +1.000Ba+2 +1.000SeO4-2 - log_k -7.56 #05OLI/NOL - delta_h +5.700 #kJ/mol +Ba(SeO4) = Ba+2 + SeO4-2 + log_k -7.56 #05OLI/NOL + delta_h 5.7 #kJ/mol # Enthalpy of formation: -1144.000 kJ/mol 05OLI/NOL - -analytic -65.61403E-1 00.00000E+0 -29.77317E+1 00.00000E+0 00.00000E+0 + -analytic -65.61403E-1 00E+0 -29.77317E+1 00E+0 00E+0 BaCl2(cr) -BaCl2 = +1.000Ba+2 +2.000Cl- - log_k +2.30 - delta_h -13.760 #kJ/mol +BaCl2 = Ba+2 + 2 Cl- + log_k 2.3 + delta_h -13.76 #kJ/mol # Enthalpy of formation: -855.200 kJ/mol 95SIL/BID - -analytic -11.06485E-2 00.00000E+0 71.87349E+1 00.00000E+0 00.00000E+0 + -analytic -11.06485E-2 00E+0 71.87349E+1 00E+0 00E+0 BaCl2:2H2O(s) -BaCl2:2H2O = +1.000Ba+2 +2.000Cl- +2.000H2O - log_k -0.34 - delta_h +19.420 #kJ/mol -# Enthalpy of formation: -1460.038 kJ/mol - -analytic 30.62238E-1 00.00000E+0 -10.14377E+2 00.00000E+0 00.00000E+0 +BaCl2:2H2O = Ba+2 + 2 Cl- + 2 H2O + log_k -0.34 + delta_h 19.42 #kJ/mol +# Enthalpy of formation: -1460.038 kJ/mol + -analytic 30.62238E-1 00E+0 -10.14377E+2 00E+0 00E+0 BaCl2:H2O(s) -BaCl2:H2O = +1.000Ba+2 +2.000Cl- +1.000H2O - log_k +0.28 - delta_h +5.747 #kJ/mol -# Enthalpy of formation: -1160.536 kJ/mol - -analytic 12.86831E-1 00.00000E+0 -30.01867E+1 00.00000E+0 00.00000E+0 +BaCl2:H2O = Ba+2 + 2 Cl- + H2O + log_k 0.28 + delta_h 5.747 #kJ/mol +# Enthalpy of formation: -1160.536 kJ/mol + -analytic 12.86831E-1 00E+0 -30.01867E+1 00E+0 00E+0 BaF2(cr) -BaF2 = +1.000Ba+2 +2.000F- - log_k -6.32 - delta_h +1.644 #kJ/mol -# Enthalpy of formation: -1207.143 kJ/mol - -analytic -60.31984E-1 00.00000E+0 -85.87210E+0 00.00000E+0 00.00000E+0 +BaF2 = Ba+2 + 2 F- + log_k -6.32 + delta_h 1.644 #kJ/mol +# Enthalpy of formation: -1207.143 kJ/mol + -analytic -60.31984E-1 00E+0 -85.8721E+0 00E+0 00E+0 BaHPO4(s) -BaHPO4 = +1.000Ba+2 -1.000H+ +1.000H2(PO4)- - log_k -0.19 #66SPI/MIK in 76SMI/MAR - delta_h -22.800 #kJ/mol +BaHPO4 = Ba+2 - H+ + H2(PO4)- + log_k -0.19 #66SPI/MIK in 76SMI/MAR + delta_h -22.8 #kJ/mol # Enthalpy of formation: -1814.600 kJ/mol 82WAG/EVA - -analytic -41.84389E-1 00.00000E+0 11.90927E+2 00.00000E+0 00.00000E+0 + -analytic -41.84389E-1 00E+0 11.90927E+2 00E+0 00E+0 BaMoO4(s) -BaMoO4 = +1.000Ba+2 +1.000MoO4-2 - log_k -7.83 - delta_h +13.779 #kJ/mol -# Enthalpy of formation: -1545.578 kJ/mol - -analytic -54.16023E-1 00.00000E+0 -71.97273E+1 00.00000E+0 00.00000E+0 +BaMoO4 = Ba+2 + MoO4-2 + log_k -7.83 + delta_h 13.779 #kJ/mol +# Enthalpy of formation: -1545.578 kJ/mol + -analytic -54.16023E-1 00E+0 -71.97273E+1 00E+0 00E+0 BaO(cr) -BaO = +1.000Ba+2 -2.000H+ +1.000H2O - log_k +48.07 - delta_h -272.530 #kJ/mol +BaO = Ba+2 - 2 H+ + H2O + log_k 48.07 + delta_h -272.53 #kJ/mol # Enthalpy of formation: -548.100 kJ/mol 95SIL/BID - -analytic 32.47935E-2 00.00000E+0 14.23523E+3 00.00000E+0 00.00000E+0 + -analytic 32.47935E-2 00E+0 14.23523E+3 00E+0 00E+0 Barite -Ba(SO4) = +1.000Ba+2 +1.000SO4-2 - log_k -9.97 #85LAN/MEL in 90NOR/PLU; Uncertainty to include available data. - delta_h +26.460 #kJ/mol 85LAN/MEL in 90NOR/PLU -# Enthalpy of formation: -1470.600 kJ/mol - -analytic -53.34407E-1 00.00000E+0 -13.82102E+2 00.00000E+0 00.00000E+0 - -Vm 52.100 +Ba(SO4) = Ba+2 + SO4-2 + log_k -9.97 #85LAN/MEL in 90NOR/PLU; Uncertainty to include available data. + delta_h 26.46 #kJ/mol 85LAN/MEL in 90NOR/PLU +# Enthalpy of formation: -1470.600 kJ/mol + -analytic -53.34407E-1 00E+0 -13.82102E+2 00E+0 00E+0 + -Vm 52.1 BaS(s) -BaS = +1.000Ba+2 -1.000H+ +1.000HS- - log_k +15.66 - delta_h -90.248 #kJ/mol -# Enthalpy of formation: -460.852 kJ/mol - -analytic -15.07709E-2 00.00000E+0 47.13981E+2 00.00000E+0 00.00000E+0 +BaS = Ba+2 - H+ + HS- + log_k 15.66 + delta_h -90.248 #kJ/mol +# Enthalpy of formation: -460.852 kJ/mol + -analytic -15.07709E-2 00E+0 47.13981E+2 00E+0 00E+0 Bassanite -CaSO4:0.5H2O = +1.000Ca+2 +1.000SO4-2 +0.500H2O - log_k -3.92 #06BLA/PIA - delta_h -17.358 #kJ/mol -# Enthalpy of formation: -1577.897 kJ/mol - -analytic -69.60991E-1 00.00000E+0 90.66715E+1 00.00000E+0 00.00000E+0 +CaSO4:0.5H2O = Ca+2 + SO4-2 + 0.5 H2O + log_k -3.92 #06BLA/PIA + delta_h -17.358 #kJ/mol +# Enthalpy of formation: -1577.897 kJ/mol + -analytic -69.60991E-1 00E+0 90.66715E+1 00E+0 00E+0 Bassetite -Fe(UO2)2(PO4)2 = +1.000Fe+2 +2.000UO2+2 -4.000H+ +2.000H2(PO4)- - log_k -1.07 #65MUT/HIR - delta_h -36.645 #kJ/mol -# Enthalpy of formation: -4696.849 kJ/mol - -analytic -74.89928E-1 00.00000E+0 19.14102E+2 00.00000E+0 00.00000E+0 +Fe(UO2)2(PO4)2 = Fe+2 + 2 UO2+2 - 4 H+ + 2 H2(PO4)- + log_k -1.07 #65MUT/HIR + delta_h -36.645 #kJ/mol +# Enthalpy of formation: -4696.849 kJ/mol + -analytic -74.89928E-1 00E+0 19.14102E+2 00E+0 00E+0 Be(cr) -Be = +2.000e- +1.000Be+2 - log_k +66.62 - delta_h -382.800 #kJ/mol +Be = 2 e- + Be+2 + log_k 66.62 + delta_h -382.8 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 89COX/WAG - -analytic -44.36812E-2 00.00000E+0 19.99504E+3 00.00000E+0 00.00000E+0 + -analytic -44.36812E-2 00E+0 19.99504E+3 00E+0 00E+0 Be(OH)2(alpha,cr) -Be(OH)2 = -2.000H+ +2.000H2O +1.000Be+2 - log_k +6.90 #20ÇEV/GAO - delta_h -51.812 #kJ/mol -# Enthalpy of formation: -902.647 kJ/mol - -analytic -21.77073E-1 00.00000E+0 27.06329E+2 00.00000E+0 00.00000E+0 +Be(OH)2 = -2 H+ + 2 H2O + Be+2 + log_k 6.9 #20ÇEV/GAO + delta_h -51.812 #kJ/mol +# Enthalpy of formation: -902.647 kJ/mol + -analytic -21.77073E-1 00E+0 27.06329E+2 00E+0 00E+0 Be(OH)2(beta,cr) -Be(OH)2 = -2.000H+ +2.000H2O +1.000Be+2 - log_k +5.90 #87BRU/GRE - delta_h -45.603 #kJ/mol -# Enthalpy of formation: -908.856 kJ/mol - -analytic -20.89303E-1 00.00000E+0 23.82011E+2 00.00000E+0 00.00000E+0 +Be(OH)2 = -2 H+ + 2 H2O + Be+2 + log_k 5.9 #87BRU/GRE + delta_h -45.603 #kJ/mol +# Enthalpy of formation: -908.856 kJ/mol + -analytic -20.89303E-1 00E+0 23.82011E+2 00E+0 00E+0 BeCl2(alpha,cr) -BeCl2 = +2.000Cl- +1.000Be+2 - log_k +34.42 - delta_h -226.030 #kJ/mol +BeCl2 = 2 Cl- + Be+2 + log_k 34.42 + delta_h -226.03 #kJ/mol # Enthalpy of formation: -490.930 kJ/mol 98CHA - -analytic -51.78756E-1 00.00000E+0 11.80637E+3 00.00000E+0 00.00000E+0 + -analytic -51.78756E-1 00E+0 11.80637E+3 00E+0 00E+0 BeCl2(beta,cr) -BeCl2 = +2.000Cl- +1.000Be+2 - log_k +33.85 - delta_h -220.738 #kJ/mol +BeCl2 = 2 Cl- + Be+2 + log_k 33.85 + delta_h -220.738 #kJ/mol # Enthalpy of formation: -496.222 kJ/mol 98CHA - -analytic -48.21638E-1 00.00000E+0 11.52995E+3 00.00000E+0 00.00000E+0 + -analytic -48.21638E-1 00E+0 11.52995E+3 00E+0 00E+0 Becquerelite(nat) -Ca(UO2)6O4(OH)6:8H2O = +1.000Ca+2 +6.000UO2+2 -14.000H+ +18.000H2O - log_k +29.00 #97CAS/BRU - delta_h -378.310 #kJ/mol +Ca(UO2)6O4(OH)6:8H2O = Ca+2 + 6 UO2+2 - 14 H+ + 18 H2O + log_k 29 #97CAS/BRU + delta_h -378.31 #kJ/mol # Enthalpy of formation: -11423.630kJ/mol 99CHE/EWI - -analytic -37.27707E+0 00.00000E+0 19.76051E+3 00.00000E+0 00.00000E+0 + -analytic -37.27707E+0 00E+0 19.76051E+3 00E+0 00E+0 Becquerelite(syn) -Ca(UO2)6O4(OH)6:8H2O = +1.000Ca+2 +6.000UO2+2 -14.000H+ +18.000H2O - log_k +40.50 #03GUI/FAN - -analytic 40.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ca(UO2)6O4(OH)6:8H2O = Ca+2 + 6 UO2+2 - 14 H+ + 18 H2O + log_k 40.5 #03GUI/FAN + -analytic 40.5E+0 00E+0 00E+0 00E+0 00E+0 BeF2(alfa,cr) -BeF2 = +2.000F- +1.000Be+2 - log_k -6.32 - delta_h -26.746 #kJ/mol +BeF2 = 2 F- + Be+2 + log_k -6.32 + delta_h -26.746 #kJ/mol # Enthalpy of formation: -1026.754 kJ/mol 98CHA - -analytic -11.00570E+0 00.00000E+0 13.97041E+2 00.00000E+0 00.00000E+0 + -analytic -11.0057E+0 00E+0 13.97041E+2 00E+0 00E+0 Beidellite_SBld-1 -Ca0.185K0.104(Si3.574Al0.426)(Al1.812Mg0.090Fe0.112)O10(OH)2 = +0.185Ca+2 +0.090Mg+2 +0.104K+ +0.112Fe+3 +2.238Al+3 -7.704H+ +3.574H4(SiO4) -2.296H2O - log_k +7.58 - delta_h -224.605 #kJ/mol +Ca0.185K0.104(Si3.574Al0.426)(Al1.812Mg0.09Fe0.112)O10(OH)2 = 0.185 Ca+2 + 0.09 Mg+2 + 0.104 K+ + 0.112 Fe+3 + 2.238 Al+3 - 7.704 H+ + 3.574 H4(SiO4) - 2.296 H2O + log_k 7.58 + delta_h -224.605 #kJ/mol # Enthalpy of formation: -5720.690 kJ/mol 12GAI/BLA - -analytic -31.76911E+0 00.00000E+0 11.73194E+3 00.00000E+0 00.00000E+0 - -Vm 137.980 + -analytic -31.76911E+0 00E+0 11.73194E+3 00E+0 00E+0 + -Vm 137.98 Beidellite_SBld-1(4.576H2O) -Ca0.185K0.104Si3.574Al2.238Mg0.090Fe0.112O10(OH)2:4.576H2O = +0.185Ca+2 +0.090Mg+2 +0.104K+ +0.112Fe+3 +2.238Al+3 -7.704H+ +3.574H4(SiO4) +2.280H2O - log_k +4.26 - delta_h -193.803 #kJ/mol +Ca0.185K0.104Si3.574Al2.238Mg0.09Fe0.112O10(OH)2:4.576H2O = 0.185 Ca+2 + 0.09 Mg+2 + 0.104 K+ + 0.112 Fe+3 + 2.238 Al+3 - 7.704 H+ + 3.574 H4(SiO4) + 2.28 H2O + log_k 4.26 + delta_h -193.803 #kJ/mol # Enthalpy of formation: -7059.450 kJ/mol 12GAI/BLA - -analytic -29.69283E+0 00.00000E+0 10.12304E+3 00.00000E+0 00.00000E+0 - -Vm 220.670 + -analytic -29.69283E+0 00E+0 10.12304E+3 00E+0 00E+0 + -Vm 220.67 Beidellite-Ca -Ca0.17Al2.34Si3.66O10(OH)2 = +0.170Ca+2 +2.340Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O - log_k +5.77 - delta_h -207.635 #kJ/mol +Ca0.17Al2.34Si3.66O10(OH)2 = 0.17 Ca+2 + 2.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k 5.77 + delta_h -207.635 #kJ/mol # Enthalpy of formation: -5737.910 kJ/mol 15BLA/VIE - -analytic -30.60609E+0 00.00000E+0 10.84553E+3 00.00000E+0 00.00000E+0 - -Vm 134.100 + -analytic -30.60609E+0 00E+0 10.84553E+3 00E+0 00E+0 + -Vm 134.1 Beidellite-K -K0.34Al2.34Si3.66O10(OH)2 = +0.340K+ +2.340Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O - log_k +4.60 - delta_h -189.102 #kJ/mol +K0.34Al2.34Si3.66O10(OH)2 = 0.34 K+ + 2.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k 4.6 + delta_h -189.102 #kJ/mol # Enthalpy of formation: -5749.860 kJ/mol 15BLA/VIE - -analytic -28.52925E+0 00.00000E+0 98.77485E+2 00.00000E+0 00.00000E+0 - -Vm 133.220 + -analytic -28.52925E+0 00E+0 98.77485E+2 00E+0 00E+0 + -Vm 133.22 Beidellite-Mg -Mg0.17Al2.34Si3.66O10(OH)2 = +0.170Mg+2 +2.340Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O - log_k +5.23 - delta_h -208.815 #kJ/mol +Mg0.17Al2.34Si3.66O10(OH)2 = 0.17 Mg+2 + 2.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k 5.23 + delta_h -208.815 #kJ/mol # Enthalpy of formation: -5723.810 kJ/mol 15BLA/VIE - -analytic -31.35282E+0 00.00000E+0 10.90717E+3 00.00000E+0 00.00000E+0 - -Vm 130.110 + -analytic -31.35282E+0 00E+0 10.90717E+3 00E+0 00E+0 + -Vm 130.11 Beidellite-Na -Na0.34Al2.34Si3.66O10(OH)2 = +0.340Na+ +2.340Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O - log_k +5.10 - delta_h -197.720 #kJ/mol +Na0.34Al2.34Si3.66O10(OH)2 = 0.34 Na+ + 2.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k 5.1 + delta_h -197.72 #kJ/mol # Enthalpy of formation: -5737.230 kJ/mol 15BLA/VIE - -analytic -29.53906E+0 00.00000E+0 10.32763E+3 00.00000E+0 00.00000E+0 - -Vm 132.490 + -analytic -29.53906E+0 00E+0 10.32763E+3 00E+0 00E+0 + -Vm 132.49 BeO(cr) -BeO = -2.000H+ +1.000H2O +1.000Be+2 - log_k +6.72 - delta_h -60.276 #kJ/mol +BeO = -2 H+ + H2O + Be+2 + log_k 6.72 + delta_h -60.276 #kJ/mol # Enthalpy of formation: -608.354 kJ/mol 98CHA - -analytic -38.39902E-1 00.00000E+0 31.48435E+2 00.00000E+0 00.00000E+0 + -analytic -38.39902E-1 00E+0 31.48435E+2 00E+0 00E+0 Berlinite -Al(PO4) = +1.000Al+3 -2.000H+ +1.000H2(PO4)- - log_k -0.57 #96FAL/REA - -analytic -57.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Al(PO4) = Al+3 - 2 H+ + H2(PO4)- + log_k -0.57 #96FAL/REA + -analytic -57E-2 00E+0 00E+0 00E+0 00E+0 Berndtite -SnS2 = +1.000Sn+4 -2.000H+ +2.000HS- - log_k -37.56 - delta_h +87.389 #kJ/mol +SnS2 = Sn+4 - 2 H+ + 2 HS- + log_k -37.56 + delta_h 87.389 #kJ/mol # Enthalpy of formation: -151.500 kJ/mol 12GAM/GAJ - -analytic -22.25010E+0 00.00000E+0 -45.64645E+2 00.00000E+0 00.00000E+0 + -analytic -22.2501E+0 00E+0 -45.64645E+2 00E+0 00E+0 Berthierine(FeII) -(Fe2Al)(SiAl)O5(OH)4 = +2.000Fe+2 +2.000Al+3 -10.000H+ +1.000H4(SiO4) +5.000H2O - log_k +34.61 - delta_h -377.274 #kJ/mol +(Fe2Al)(SiAl)O5(OH)4 = 2 Fe+2 + 2 Al+3 - 10 H+ + H4(SiO4) + 5 H2O + log_k 34.61 + delta_h -377.274 #kJ/mol # Enthalpy of formation: -3770.460 kJ/mol 15BLA/VIE - -analytic -31.48557E+0 00.00000E+0 19.70639E+3 00.00000E+0 00.00000E+0 - -Vm 103.860 + -analytic -31.48557E+0 00E+0 19.70639E+3 00E+0 00E+0 + -Vm 103.86 Berthierine(FeIII) -(Fe2.34Fe0.33Al0.33)(Si1.34Al0.66)O5(OH)4 = +0.330Fe+3 +2.340Fe+2 +0.990Al+3 -8.640H+ +1.340H4(SiO4) +3.640H2O - log_k +28.85 - delta_h -301.216 #kJ/mol +(Fe2.34Fe0.33Al0.33)(Si1.34Al0.66)O5(OH)4 = 0.33 Fe+3 + 2.34 Fe+2 + 0.99 Al+3 - 8.64 H+ + 1.34 H4(SiO4) + 3.64 H2O + log_k 28.85 + delta_h -301.216 #kJ/mol # Enthalpy of formation: -3458.030 kJ/mol 15BLA/VIE - -analytic -23.92078E+0 00.00000E+0 15.73361E+3 00.00000E+0 00.00000E+0 - -Vm 103.270 + -analytic -23.92078E+0 00E+0 15.73361E+3 00E+0 00E+0 + -Vm 103.27 Berthierine_ISGS -(Si1.332Al0.668)(Al0.976Fe0.182Fe1.44Mg0.157)O5(OH)4 = +0.157Mg+2 +0.182Fe+3 +1.440Fe+2 +1.644Al+3 -8.672H+ +1.332H4(SiO4) +3.672H2O - log_k +27.94 - delta_h -319.002 #kJ/mol +(Si1.332Al0.668)(Al0.976Fe0.182Fe1.44Mg0.157)O5(OH)4 = 0.157 Mg+2 + 0.182 Fe+3 + 1.44 Fe+2 + 1.644 Al+3 - 8.672 H+ + 1.332 H4(SiO4) + 3.672 H2O + log_k 27.94 + delta_h -319.002 #kJ/mol # Enthalpy of formation: -3774.460 kJ/mol 13BLA/GAI2 - -analytic -27.94675E+0 00.00000E+0 16.66263E+3 00.00000E+0 00.00000E+0 - -Vm 101.160 + -analytic -27.94675E+0 00E+0 16.66263E+3 00E+0 00E+0 + -Vm 101.16 Berthierine_Lorraine -Fe0.608Fe0.936Mg0.37Al1.052Si1.52O5(OH)4 = +0.370Mg+2 +0.936Fe+3 +0.608Fe+2 +1.052Al+3 -7.920H+ +1.520H4(SiO4) +2.920H2O - log_k +1.01 - delta_h -163.677 #kJ/mol +Fe0.608Fe0.936Mg0.37Al1.052Si1.52O5(OH)4 = 0.37 Mg+2 + 0.936 Fe+3 + 0.608 Fe+2 + 1.052 Al+3 - 7.92 H+ + 1.52 H4(SiO4) + 2.92 H2O + log_k 1.01 + delta_h -163.677 #kJ/mol # Enthalpy of formation: -3732.900 kJ/mol 08GAI - -analytic -27.66498E+0 00.00000E+0 85.49445E+2 00.00000E+0 00.00000E+0 - -Vm 103.800 + -analytic -27.66498E+0 00E+0 85.49445E+2 00E+0 00E+0 + -Vm 103.8 BeSO4(alfa,cr) -BeSO4 = +1.000SO4-2 +1.000Be+2 - log_k +6.12 - delta_h -91.340 #kJ/mol +BeSO4 = SO4-2 + Be+2 + log_k 6.12 + delta_h -91.34 #kJ/mol # Enthalpy of formation: -1200.800 kJ/mol 98CHA - -analytic -98.82081E-1 00.00000E+0 47.71020E+2 00.00000E+0 00.00000E+0 + -analytic -98.82081E-1 00E+0 47.7102E+2 00E+0 00E+0 Bieberite -CoSO4:7H2O = +1.000Co+2 +1.000SO4-2 +7.000H2O - log_k -2.35 - delta_h +11.840 #kJ/mol +CoSO4:7H2O = Co+2 + SO4-2 + 7 H2O + log_k -2.35 + delta_h 11.84 #kJ/mol # Enthalpy of formation: -2979.590 kJ/mol 74NAU/RYZ - -analytic -27.57210E-2 00.00000E+0 -61.84463E+1 00.00000E+0 00.00000E+0 + -analytic -27.5721E-2 00E+0 -61.84463E+1 00E+0 00E+0 Bischofite -MgCl2:6H2O = +1.000Mg+2 +2.000Cl- +6.000H2O - log_k +4.46 #84HAR/MOL - delta_h -8.710 #kJ/mol +MgCl2:6H2O = Mg+2 + 2 Cl- + 6 H2O + log_k 4.46 #84HAR/MOL + delta_h -8.71 #kJ/mol # Enthalpy of formation: -2507.430 kJ/mol 84HAR/MOL - -analytic 29.34074E-1 00.00000E+0 45.49550E+1 00.00000E+0 00.00000E+0 + -analytic 29.34074E-1 00E+0 45.4955E+1 00E+0 00E+0 Bloedite -Na2Mg(SO4)2:4H2O = +1.000Mg+2 +2.000Na+ +2.000SO4-2 +4.000H2O - log_k -2.35 #84HAR/MOL - -analytic -23.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Na2Mg(SO4)2:4H2O = Mg+2 + 2 Na+ + 2 SO4-2 + 4 H2O + log_k -2.35 #84HAR/MOL + -analytic -23.5E-1 00E+0 00E+0 00E+0 00E+0 Boehmite -AlO(OH) = +1.000Al+3 -3.000H+ +2.000H2O - log_k +7.62 - delta_h -113.660 #kJ/mol +AlO(OH) = Al+3 - 3 H+ + 2 H2O + log_k 7.62 + delta_h -113.66 #kJ/mol # Enthalpy of formation: -996.400 kJ/mol 95ROB/HEM - -analytic -12.29238E+0 00.00000E+0 59.36875E+2 00.00000E+0 00.00000E+0 + -analytic -12.29238E+0 00E+0 59.36875E+2 00E+0 00E+0 Br2(l) -Br2 = -2.000e- +2.000Br- - log_k -36.39 - delta_h +242.820 #kJ/mol +Br2 = -2 e- + 2 Br- + log_k -36.39 + delta_h 242.82 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 89COX/WAG - -analytic 61.50238E-1 00.00000E+0 -12.68337E+3 00.00000E+0 00.00000E+0 + -analytic 61.50238E-1 00E+0 -12.68337E+3 00E+0 00E+0 Brochantite -Cu4SO4(OH)6 = +4.000Cu+2 -6.000H+ +1.000SO4-2 +6.000H2O - log_k +15.54 - delta_h -176.191 #kJ/mol -# Enthalpy of formation: -2188.527 kJ/mol - -analytic -15.32734E+0 00.00000E+0 92.03097E+2 00.00000E+0 00.00000E+0 +Cu4SO4(OH)6 = 4 Cu+2 - 6 H+ + SO4-2 + 6 H2O + log_k 15.54 + delta_h -176.191 #kJ/mol +# Enthalpy of formation: -2188.527 kJ/mol + -analytic -15.32734E+0 00E+0 92.03097E+2 00E+0 00E+0 Brucite -Mg(OH)2 = +1.000Mg+2 -2.000H+ +2.000H2O - log_k +17.10 #03ALT/MET - delta_h -114.160 #kJ/mol +Mg(OH)2 = Mg+2 - 2 H+ + 2 H2O + log_k 17.1 #03ALT/MET + delta_h -114.16 #kJ/mol # Enthalpy of formation: -924.500 kJ/mol 95ROB/HEM - -analytic -28.99973E-1 00.00000E+0 59.62992E+2 00.00000E+0 00.00000E+0 - -Vm 24.630 + -analytic -28.99973E-1 00E+0 59.62992E+2 00E+0 00E+0 + -Vm 24.63 Brushite -Ca(HPO4):2H2O = +1.000Ca+2 -1.000H+ +1.000H2(PO4)- +2.000H2O - log_k +0.60 #84NAN - delta_h -7.375 #kJ/mol -# Enthalpy of formation: -2409.884 kJ/mol - -analytic -69.20445E-2 00.00000E+0 38.52231E+1 00.00000E+0 00.00000E+0 +Ca(HPO4):2H2O = Ca+2 - H+ + H2(PO4)- + 2 H2O + log_k 0.6 #84NAN + delta_h -7.375 #kJ/mol +# Enthalpy of formation: -2409.884 kJ/mol + -analytic -69.20445E-2 00E+0 38.52231E+1 00E+0 00E+0 Bunsenite -NiO = +1.000Ni+2 -2.000H+ +1.000H2O - log_k +12.48 - delta_h -101.142 #kJ/mol +NiO = Ni+2 - 2 H+ + H2O + log_k 12.48 + delta_h -101.142 #kJ/mol # Enthalpy of formation: -239.700 kJ/mol 05GAM/BUG - -analytic -52.39318E-1 00.00000E+0 52.83015E+2 00.00000E+0 00.00000E+0 + -analytic -52.39318E-1 00E+0 52.83015E+2 00E+0 00E+0 Burkeite -Na6(CO3)(SO4)2 = +6.000Na+ +1.000CO3-2 +2.000SO4-2 - log_k -0.77 #84HAR/MOL - -analytic -77.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Na6(CO3)(SO4)2 = 6 Na+ + CO3-2 + 2 SO4-2 + log_k -0.77 #84HAR/MOL + -analytic -77E-2 00E+0 00E+0 00E+0 00E+0 C(cr) -C = +6.000H+ +4.000e- +1.000CO3-2 -3.000H2O - log_k -32.15 - delta_h +182.260 #kJ/mol +C = 6 H+ + 4 e- + CO3-2 - 3 H2O + log_k -32.15 + delta_h 182.26 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 89COX/WAG - -analytic -21.94186E-2 00.00000E+0 -95.20103E+2 00.00000E+0 00.00000E+0 + -analytic -21.94186E-2 00E+0 -95.20103E+2 00E+0 00E+0 C2SH(alpha) -Ca2(HSiO4)(OH) = +2.000Ca+2 -4.000H+ +1.000H4(SiO4) +1.000H2O - log_k +35.54 - delta_h -198.104 #kJ/mol +Ca2(HSiO4)(OH) = 2 Ca+2 - 4 H+ + H4(SiO4) + H2O + log_k 35.54 + delta_h -198.104 #kJ/mol # Enthalpy of formation: -2634.920 kJ/mol 10BLA/BOU1 - -analytic 83.36690E-2 00.00000E+0 10.34769E+3 00.00000E+0 00.00000E+0 - -Vm 71.120 + -analytic 83.3669E-2 00E+0 10.34769E+3 00E+0 00E+0 + -Vm 71.12 C3AH6 -Ca3Al2(OH)12 = +3.000Ca+2 +2.000Al+3 -12.000H+ +12.000H2O - log_k +80.32 #10BLA/BOU2 - delta_h -584.260 #kJ/mol +Ca3Al2(OH)12 = 3 Ca+2 + 2 Al+3 - 12 H+ + 12 H2O + log_k 80.32 #10BLA/BOU2 + delta_h -584.26 #kJ/mol # Enthalpy of formation: -5551.500 kJ/mol 99SCH/NAV - -analytic -22.03796E+0 00.00000E+0 30.51803E+3 00.00000E+0 00.00000E+0 - -Vm 149.520 + -analytic -22.03796E+0 00E+0 30.51803E+3 00E+0 00E+0 + -Vm 149.52 C3FH6 -Ca3Fe2(OH)12 = +3.000Ca+2 +2.000Fe+3 -12.000H+ +12.000H2O - log_k +72.33 - delta_h -511.482 #kJ/mol +Ca3Fe2(OH)12 = 3 Ca+2 + 2 Fe+3 - 12 H+ + 12 H2O + log_k 72.33 + delta_h -511.482 #kJ/mol # Enthalpy of formation: -4647.590 kJ/mol 10BLA/BOU2 - -analytic -17.27780E+0 00.00000E+0 26.71657E+3 00.00000E+0 00.00000E+0 - -Vm 154.500 + -analytic -17.2778E+0 00E+0 26.71657E+3 00E+0 00E+0 + -Vm 154.5 C4AH13 -Ca4Al2(OH)14:6H2O = +4.000Ca+2 +2.000Al+3 -14.000H+ +20.000H2O - log_k +103.65 #10BLA/BOU2 - delta_h -647.400 #kJ/mol +Ca4Al2(OH)14:6H2O = 4 Ca+2 + 2 Al+3 - 14 H+ + 20 H2O + log_k 103.65 #10BLA/BOU2 + delta_h -647.4 #kJ/mol # Enthalpy of formation: -8318.000 kJ/mol 76HOU/STE - -analytic -97.69611E-1 00.00000E+0 33.81606E+3 00.00000E+0 00.00000E+0 - -Vm 269.200 + -analytic -97.69611E-1 00E+0 33.81606E+3 00E+0 00E+0 + -Vm 269.2 C4FH13 -Ca4Fe2(OH)14:6H2O = +4.000Ca+2 +2.000Fe+3 -14.000H+ +20.000H2O - log_k +95.08 - delta_h -571.312 #kJ/mol +Ca4Fe2(OH)14:6H2O = 4 Ca+2 + 2 Fe+3 - 14 H+ + 20 H2O + log_k 95.08 + delta_h -571.312 #kJ/mol # Enthalpy of formation: -7417.400 kJ/mol 10BLA/BOU2 - -analytic -50.09566E-1 00.00000E+0 29.84170E+3 00.00000E+0 00.00000E+0 - -Vm 274.400 + -analytic -50.09566E-1 00E+0 29.8417E+3 00E+0 00E+0 + -Vm 274.4 Ca(Adipate)(s) -Ca(Adipate) = +1.000Ca+2 +1.000Adipate-2 - log_k -3.30 #12GRI/GAR2 - -analytic -33.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ca(Adipate) = Ca+2 + Adipate-2 + log_k -3.3 #12GRI/GAR2 + -analytic -33E-1 00E+0 00E+0 00E+0 00E+0 Ca(cr) -Ca = +1.000Ca+2 +2.000e- - log_k +96.85 - delta_h -543.000 #kJ/mol +Ca = Ca+2 + 2 e- + log_k 96.85 + delta_h -543 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 89COX/WAG - -analytic 17.20484E-1 00.00000E+0 28.36287E+3 00.00000E+0 00.00000E+0 + -analytic 17.20484E-1 00E+0 28.36287E+3 00E+0 00E+0 Ca(HGlu)2(s) -Ca(HGlu)2 = +1.000Ca+2 +2.000HGlu- - log_k -4.19 #99VAN/GLA - -analytic -41.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ca(HGlu)2 = Ca+2 + 2 HGlu- + log_k -4.19 #99VAN/GLA + -analytic -41.9E-1 00E+0 00E+0 00E+0 00E+0 Ca(HIsa)2(cr) -Ca(HIsa)2 = +1.000Ca+2 +2.000HIsa- - log_k -6.40 #05HUM/AND - -analytic -64.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ca(HIsa)2 = Ca+2 + 2 HIsa- + log_k -6.4 #05HUM/AND + -analytic -64E-1 00E+0 00E+0 00E+0 00E+0 Ca(HPO4)(s) -Ca(HPO4) = +1.000Ca+2 -1.000H+ +1.000H2(PO4)- - log_k +0.30 #84NAN - delta_h -24.098 #kJ/mol -# Enthalpy of formation: -1821.502 kJ/mol - -analytic -39.21788E-1 00.00000E+0 12.58726E+2 00.00000E+0 00.00000E+0 +Ca(HPO4) = Ca+2 - H+ + H2(PO4)- + log_k 0.3 #84NAN + delta_h -24.098 #kJ/mol +# Enthalpy of formation: -1821.502 kJ/mol + -analytic -39.21788E-1 00E+0 12.58726E+2 00E+0 00E+0 Ca(NO3)2(s) -Ca(NO3)2 = +1.000Ca+2 +2.000NO3- - log_k +5.89 #96FAL/REA - -analytic 58.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ca(NO3)2 = Ca+2 + 2 NO3- + log_k 5.89 #96FAL/REA + -analytic 58.9E-1 00E+0 00E+0 00E+0 00E+0 Ca(Ox):2H2O(s) -Ca(Ox):2H2O = +1.000Ca+2 +1.000Ox-2 +2.000H2O - log_k -8.30 #05HUM/AND - delta_h +25.200 #kJ/mol 05HUM/AND -# Enthalpy of formation: -1970.520 kJ/mol - -analytic -38.85150E-1 00.00000E+0 -13.16288E+2 00.00000E+0 00.00000E+0 +Ca(Ox):2H2O = Ca+2 + Ox-2 + 2 H2O + log_k -8.3 #05HUM/AND + delta_h 25.2 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1970.520 kJ/mol + -analytic -38.8515E-1 00E+0 -13.16288E+2 00E+0 00E+0 Ca(Ox):3H2O(s) -Ca(Ox):3H2O = +1.000Ca+2 +1.000Ox-2 +3.000H2O - log_k -8.19 #05HUM/AND - delta_h +29.700 #kJ/mol 05HUM/AND -# Enthalpy of formation: -2260.850 kJ/mol - -analytic -29.86783E-1 00.00000E+0 -15.51339E+2 00.00000E+0 00.00000E+0 +Ca(Ox):3H2O = Ca+2 + Ox-2 + 3 H2O + log_k -8.19 #05HUM/AND + delta_h 29.7 #kJ/mol 05HUM/AND +# Enthalpy of formation: -2260.850 kJ/mol + -analytic -29.86783E-1 00E+0 -15.51339E+2 00E+0 00E+0 Ca(Ox):H2O(s) -Ca(Ox):H2O = +1.000Ca+2 +1.000Ox-2 +1.000H2O - log_k -8.73 #05HUM/AND - delta_h +21.500 #kJ/mol 05HUM/AND -# Enthalpy of formation: -1680.990 kJ/mol - -analytic -49.63362E-1 00.00000E+0 -11.23023E+2 00.00000E+0 00.00000E+0 +Ca(Ox):H2O = Ca+2 + Ox-2 + H2O + log_k -8.73 #05HUM/AND + delta_h 21.5 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1680.990 kJ/mol + -analytic -49.63362E-1 00E+0 -11.23023E+2 00E+0 00E+0 Ca(SeO3):H2O(s) -Ca(SeO3):H2O = +1.000Ca+2 +1.000SeO3-2 +1.000H2O - log_k -6.40 #05OLI/NOL - delta_h -11.190 #kJ/mol +Ca(SeO3):H2O = Ca+2 + SeO3-2 + H2O + log_k -6.4 #05OLI/NOL + delta_h -11.19 #kJ/mol # Enthalpy of formation: -1324.800 kJ/mol 05OLI/NOL - -analytic -83.60404E-1 00.00000E+0 58.44944E+1 00.00000E+0 00.00000E+0 + -analytic -83.60404E-1 00E+0 58.44944E+1 00E+0 00E+0 Ca(SeO4):2H2O(s) -Ca(SeO4):2H2O = +1.000Ca+2 +1.000SeO4-2 +2.000H2O - log_k -2.68 #05OLI/NOL - delta_h -9.160 #kJ/mol +Ca(SeO4):2H2O = Ca+2 + SeO4-2 + 2 H2O + log_k -2.68 #05OLI/NOL + delta_h -9.16 #kJ/mol # Enthalpy of formation: -1709.000 kJ/mol 05OLI/NOL - -analytic -42.84763E-1 00.00000E+0 47.84601E+1 00.00000E+0 00.00000E+0 + -analytic -42.84763E-1 00E+0 47.84601E+1 00E+0 00E+0 Ca(SO3)(s) -Ca(SO3) = +1.000Ca+2 +1.000SO3-2 - log_k -6.50 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 (provient de la base 0391 MINEQL- PSY) - -analytic -65.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ca(SO3) = Ca+2 + SO3-2 + log_k -6.5 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 (provient de la base 0391 MINEQL- PSY) + -analytic -65E-1 00E+0 00E+0 00E+0 00E+0 Ca0.5NpO2(OH)2:1.3H2O(cr) -Ca0.5NpO2(OH)2:1.3H2O = +0.500Ca+2 +1.000NpO2+ -2.000H+ +3.300H2O - log_k +12.30 #20GRE/GAO - -analytic 12.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ca0.5NpO2(OH)2:1.3H2O = 0.5 Ca+2 + NpO2+ - 2 H+ + 3.3 H2O + log_k 12.3 #20GRE/GAO + -analytic 12.3E+0 00E+0 00E+0 00E+0 00E+0 Ca2(Pyrophos)(s) -Ca2(Pyrophos) = +2.000Ca+2 +1.000Pyrophos-4 - log_k -15.50 #88CHA/NEW - -analytic -15.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ca2(Pyrophos) = 2 Ca+2 + Pyrophos-4 + log_k -15.5 #88CHA/NEW + -analytic -15.5E+0 00E+0 00E+0 00E+0 00E+0 Ca2Cl2(OH)2:H2O(s) -Ca2Cl2(OH)2:H2O = +2.000Ca+2 -2.000H+ +2.000Cl- +3.000H2O - log_k +26.53 #84HAR/MOL - -analytic 26.53000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ca2Cl2(OH)2:H2O = 2 Ca+2 - 2 H+ + 2 Cl- + 3 H2O + log_k 26.53 #84HAR/MOL + -analytic 26.53E+0 00E+0 00E+0 00E+0 00E+0 Ca2Fe2O5(s) -Ca2Fe2O5 = +2.000Ca+2 +2.000Fe+3 -10.000H+ +5.000H2O - log_k +56.74 - delta_h -476.962 #kJ/mol +Ca2Fe2O5 = 2 Ca+2 + 2 Fe+3 - 10 H+ + 5 H2O + log_k 56.74 + delta_h -476.962 #kJ/mol # Enthalpy of formation: -2138.300 kJ/mol 95ROB/HEM - -analytic -26.82016E+0 00.00000E+0 24.91346E+3 00.00000E+0 00.00000E+0 + -analytic -26.82016E+0 00E+0 24.91346E+3 00E+0 00E+0 Ca2ZrSi3O12(cr) -Ca2ZrSi3O12 = +2.000Ca+2 -12.000H+ -4.000e- +3.000H4(SiO4) +1.000Zr+4 - log_k -68.27 - delta_h +204.918 #kJ/mol +Ca2ZrSi3O12 = 2 Ca+2 - 12 H+ - 4 e- + 3 H4(SiO4) + Zr+4 + log_k -68.27 + delta_h 204.918 #kJ/mol # Enthalpy of formation: -6283.000 kJ/mol 05BRO/CUR - -analytic -32.36991E+0 00.00000E+0 -10.70361E+3 00.00000E+0 00.00000E+0 + -analytic -32.36991E+0 00E+0 -10.70361E+3 00E+0 00E+0 Ca3(AsO4)2:xH2O -Ca3(AsO4)2 = +3.000Ca+2 +2.000AsO4-3 - log_k -21.00 #11GRI/COL4 - -analytic -21.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ca3(AsO4)2 = 3 Ca+2 + 2 AsO4-3 + log_k -21 #11GRI/COL4 + -analytic -21E+0 00E+0 00E+0 00E+0 00E+0 Ca3(Cit)2:4H2O(s) -Ca3(Cit)2:4H2O = +3.000Ca+2 +2.000Cit-3 +4.000H2O - log_k -17.90 #05HUM/AND - -analytic -17.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ca3(Cit)2:4H2O = 3 Ca+2 + 2 Cit-3 + 4 H2O + log_k -17.9 #05HUM/AND + -analytic -17.9E+0 00E+0 00E+0 00E+0 00E+0 Ca3(PO4)2(alfa) -Ca3(PO4)2 = +3.000Ca+2 -4.000H+ +2.000H2(PO4)- - log_k +10.22 #84NAN - delta_h -125.300 #kJ/mol -# Enthalpy of formation: -4108.898 kJ/mol - -analytic -11.73162E+0 00.00000E+0 65.44875E+2 00.00000E+0 00.00000E+0 +Ca3(PO4)2 = 3 Ca+2 - 4 H+ + 2 H2(PO4)- + log_k 10.22 #84NAN + delta_h -125.3 #kJ/mol +# Enthalpy of formation: -4108.898 kJ/mol + -analytic -11.73162E+0 00E+0 65.44875E+2 00E+0 00E+0 Ca3B2O6(s) -Ca3B2O6 = +3.000Ca+2 -4.000H+ +2.000B(OH)4- -2.000H2O - log_k +40.58 - delta_h -318.306 #kJ/mol -# Enthalpy of formation: -3429.266 kJ/mol - -analytic -15.18482E+0 00.00000E+0 16.62628E+3 00.00000E+0 00.00000E+0 +Ca3B2O6 = 3 Ca+2 - 4 H+ + 2 B(OH)4- - 2 H2O + log_k 40.58 + delta_h -318.306 #kJ/mol +# Enthalpy of formation: -3429.266 kJ/mol + -analytic -15.18482E+0 00E+0 16.62628E+3 00E+0 00E+0 Ca3ZrSi2O9(cr) -Ca3ZrSi2O9 = +3.000Ca+2 -10.000H+ +2.000H4(SiO4) +1.000Zr+4 +1.000H2O - log_k +47.87 - delta_h -416.718 #kJ/mol +Ca3ZrSi2O9 = 3 Ca+2 - 10 H+ + 2 H4(SiO4) + Zr+4 + H2O + log_k 47.87 + delta_h -416.718 #kJ/mol # Enthalpy of formation: -5029.000 kJ/mol 05BRO/CUR - -analytic -25.13586E+0 00.00000E+0 21.76670E+3 00.00000E+0 00.00000E+0 + -analytic -25.13586E+0 00E+0 21.7667E+3 00E+0 00E+0 Ca4Al2O6(CrO4):15H2O(s) -Ca4Al2O6(CrO4):15H2O = +4.000Ca+2 +2.000Al+3 -12.000H+ +1.000CrO4-2 +21.000H2O - log_k +71.36 #01PER/PAL - delta_h -545.980 #kJ/mol 01PER/PAL -# Enthalpy of formation: -9584.250 kJ/mol - -analytic -24.29159E+0 00.00000E+0 28.51852E+3 00.00000E+0 00.00000E+0 +Ca4Al2O6(CrO4):15H2O = 4 Ca+2 + 2 Al+3 - 12 H+ + CrO4-2 + 21 H2O + log_k 71.36 #01PER/PAL + delta_h -545.98 #kJ/mol 01PER/PAL +# Enthalpy of formation: -9584.250 kJ/mol + -analytic -24.29159E+0 00E+0 28.51852E+3 00E+0 00E+0 Ca4Cl2(OH)6:13H2O(s) -Ca4Cl2(OH)6:13H2O = +4.000Ca+2 -6.000H+ +2.000Cl- +19.000H2O - log_k +68.73 #84HAR/MOL - delta_h -271.930 #kJ/mol +Ca4Cl2(OH)6:13H2O = 4 Ca+2 - 6 H+ + 2 Cl- + 19 H2O + log_k 68.73 #84HAR/MOL + delta_h -271.93 #kJ/mol # Enthalpy of formation: -7665.000 kJ/mol 82WAG/EVA - -analytic 21.08991E+0 00.00000E+0 14.20389E+3 00.00000E+0 00.00000E+0 + -analytic 21.08991E+0 00E+0 14.20389E+3 00E+0 00E+0 Ca4H(PO4)3:2.5H2O(s) -Ca4H(PO4)3:2.5H2O = +4.000Ca+2 -5.000H+ +3.000H2(PO4)- +2.500H2O - log_k +11.81 #84NAN - -analytic 11.81000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ca4H(PO4)3:2.5H2O = 4 Ca+2 - 5 H+ + 3 H2(PO4)- + 2.5 H2O + log_k 11.81 #84NAN + -analytic 11.81E+0 00E+0 00E+0 00E+0 00E+0 Ca6(Al(OH)6)2(CrO4)3:26H2O(s) -Ca6(Al(OH)6)2(CrO4)3:26H2O = +6.000Ca+2 +2.000Al+3 -12.000H+ +3.000CrO4-2 +38.000H2O - log_k +60.28 #00PER/PAL - delta_h -509.590 #kJ/mol 00PER/PAL -# Enthalpy of formation: -17323.750kJ/mol - -analytic -28.99634E+0 00.00000E+0 26.61774E+3 00.00000E+0 00.00000E+0 +Ca6(Al(OH)6)2(CrO4)3:26H2O = 6 Ca+2 + 2 Al+3 - 12 H+ + 3 CrO4-2 + 38 H2O + log_k 60.28 #00PER/PAL + delta_h -509.59 #kJ/mol 00PER/PAL +# Enthalpy of formation: -17323.750kJ/mol + -analytic -28.99634E+0 00E+0 26.61774E+3 00E+0 00E+0 CaB2O4(s) -CaB2O4 = +1.000Ca+2 +2.000B(OH)4- -4.000H2O - log_k -2.18 - delta_h -58.894 #kJ/mol -# Enthalpy of formation: -2031.019 kJ/mol - -analytic -12.49779E+0 00.00000E+0 30.76248E+2 00.00000E+0 00.00000E+0 +CaB2O4 = Ca+2 + 2 B(OH)4- - 4 H2O + log_k -2.18 + delta_h -58.894 #kJ/mol +# Enthalpy of formation: -2031.019 kJ/mol + -analytic -12.49779E+0 00E+0 30.76248E+2 00E+0 00E+0 CaB4O7(s) -CaB4O7 = +1.000Ca+2 +2.000H+ +4.000B(OH)4- -9.000H2O - log_k -23.44 - delta_h +9.371 #kJ/mol -# Enthalpy of formation: -3360.367 kJ/mol - -analytic -21.79827E+0 00.00000E+0 -48.94814E+1 00.00000E+0 00.00000E+0 +CaB4O7 = Ca+2 + 2 H+ + 4 B(OH)4- - 9 H2O + log_k -23.44 + delta_h 9.371 #kJ/mol +# Enthalpy of formation: -3360.367 kJ/mol + -analytic -21.79827E+0 00E+0 -48.94814E+1 00E+0 00E+0 CaCl2:2H2O(cr) -CaCl2:2H2O = +1.000Ca+2 +2.000Cl- +2.000H2O - log_k +7.95 - delta_h -44.790 #kJ/mol +CaCl2:2H2O = Ca+2 + 2 Cl- + 2 H2O + log_k 7.95 + delta_h -44.79 #kJ/mol # Enthalpy of formation: -1404.030 kJ/mol 87GAR/PAR - -analytic 10.31288E-2 00.00000E+0 23.39545E+2 00.00000E+0 00.00000E+0 + -analytic 10.31288E-2 00E+0 23.39545E+2 00E+0 00E+0 CaCl2:4H2O(cr) -CaCl2:4H2O = +1.000Ca+2 +2.000Cl- +4.000H2O - log_k +5.35 - delta_h -11.310 #kJ/mol +CaCl2:4H2O = Ca+2 + 2 Cl- + 4 H2O + log_k 5.35 + delta_h -11.31 #kJ/mol # Enthalpy of formation: -2009.170 kJ/mol 87GAR/PAR - -analytic 33.68573E-1 00.00000E+0 59.07624E+1 00.00000E+0 00.00000E+0 + -analytic 33.68573E-1 00E+0 59.07624E+1 00E+0 00E+0 CaCl2:H2O(s) -CaCl2:H2O = +1.000Ca+2 +2.000Cl- +1.000H2O - log_k +7.85 - delta_h -52.160 #kJ/mol +CaCl2:H2O = Ca+2 + 2 Cl- + H2O + log_k 7.85 + delta_h -52.16 #kJ/mol # Enthalpy of formation: -1110.830 kJ/mol 87GAR/PAR - -analytic -12.88040E-1 00.00000E+0 27.24507E+2 00.00000E+0 00.00000E+0 + -analytic -12.8804E-1 00E+0 27.24507E+2 00E+0 00E+0 CaCO3:H2O(s) -CaCO3:H2O = +1.000Ca+2 +1.000CO3-2 +1.000H2O - log_k -7.60 #73HUL/TUR - delta_h -5.770 #kJ/mol +CaCO3:H2O = Ca+2 + CO3-2 + H2O + log_k -7.6 #73HUL/TUR + delta_h -5.77 #kJ/mol # Enthalpy of formation: -1498.290 kJ/mol 73HUL/TUR - -analytic -86.10861E-1 00.00000E+0 30.13881E+1 00.00000E+0 00.00000E+0 + -analytic -86.10861E-1 00E+0 30.13881E+1 00E+0 00E+0 CaCrO4(s) -CaCrO4 = +1.000Ca+2 +1.000CrO4-2 - log_k -3.15 #03DEA - delta_h -22.807 #kJ/mol -# Enthalpy of formation: -1399.193 kJ/mol - -analytic -71.45615E-1 00.00000E+0 11.91293E+2 00.00000E+0 00.00000E+0 +CaCrO4 = Ca+2 + CrO4-2 + log_k -3.15 #03DEA + delta_h -22.807 #kJ/mol +# Enthalpy of formation: -1399.193 kJ/mol + -analytic -71.45615E-1 00E+0 11.91293E+2 00E+0 00E+0 Cadmoselite -CdSe = +1.000Cd+2 -1.000H+ +1.000HSe- - log_k -18.68 - delta_h +81.480 #kJ/mol +CdSe = Cd+2 - H+ + HSe- + log_k -18.68 + delta_h 81.48 #kJ/mol # Enthalpy of formation: -143.100 kJ/mol 05OLI/NOL - -analytic -44.05317E-1 00.00000E+0 -42.55997E+2 00.00000E+0 00.00000E+0 + -analytic -44.05317E-1 00E+0 -42.55997E+2 00E+0 00E+0 CaF2:6H2O(s) -CaF2:6H2O = +1.000Ca+2 +2.000F- +6.000H2O - log_k -5.48 #96FAL/REA - -analytic -54.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +CaF2:6H2O = Ca+2 + 2 F- + 6 H2O + log_k -5.48 #96FAL/REA + -analytic -54.8E-1 00E+0 00E+0 00E+0 00E+0 CaFe2O4(s) -CaFe2O4 = +1.000Ca+2 +2.000Fe+3 -8.000H+ +4.000H2O - log_k +21.24 #79ROB - delta_h -263.980 #kJ/mol 79ROB -# Enthalpy of formation: -1522.452 kJ/mol - -analytic -25.00731E+0 00.00000E+0 13.78864E+3 00.00000E+0 00.00000E+0 +CaFe2O4 = Ca+2 + 2 Fe+3 - 8 H+ + 4 H2O + log_k 21.24 #79ROB + delta_h -263.98 #kJ/mol 79ROB +# Enthalpy of formation: -1522.452 kJ/mol + -analytic -25.00731E+0 00E+0 13.78864E+3 00E+0 00E+0 CaI2(s) -CaI2 = +1.000Ca+2 +2.000I- - log_k +22.50 #96FAL/REA - -analytic 22.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +CaI2 = Ca+2 + 2 I- + log_k 22.5 #96FAL/REA + -analytic 22.5E+0 00E+0 00E+0 00E+0 00E+0 Calcite -CaCO3 = +1.000Ca+2 +1.000CO3-2 - log_k -8.48 #82PLUM/BUS - delta_h -10.620 #kJ/mol 82PLUM/BUS -# Enthalpy of formation: -1207.610 kJ/mol - -analytic -10.34054E+0 00.00000E+0 55.47212E+1 00.00000E+0 00.00000E+0 - -Vm 36.930 +CaCO3 = Ca+2 + CO3-2 + log_k -8.48 #82PLUM/BUS + delta_h -10.62 #kJ/mol 82PLUM/BUS +# Enthalpy of formation: -1207.610 kJ/mol + -analytic -10.34054E+0 00E+0 55.47212E+1 00E+0 00E+0 + -Vm 36.93 CaMg3(CO3)4(s) -CaMg3(CO3)4 = +1.000Ca+2 +3.000Mg+2 +4.000CO3-2 - log_k -30.81 - delta_h -112.340 #kJ/mol +CaMg3(CO3)4 = Ca+2 + 3 Mg+2 + 4 CO3-2 + log_k -30.81 + delta_h -112.34 #kJ/mol # Enthalpy of formation: -4532.580 kJ/mol 73HEM/ROB - -analytic -50.49112E+0 00.00000E+0 58.67927E+2 00.00000E+0 00.00000E+0 + -analytic -50.49112E+0 00E+0 58.67927E+2 00E+0 00E+0 CaMoO4(s) -CaMoO4 = +1.000Ca+2 +1.000MoO4-2 - log_k -7.90 - delta_h +1.427 #kJ/mol -# Enthalpy of formation: -1541.427 kJ/mol - -analytic -76.50000E-1 00.00000E+0 -74.53740E+0 00.00000E+0 00.00000E+0 +CaMoO4 = Ca+2 + MoO4-2 + log_k -7.9 + delta_h 1.427 #kJ/mol +# Enthalpy of formation: -1541.427 kJ/mol + -analytic -76.5E-1 00E+0 -74.5374E+0 00E+0 00E+0 CaO(cr) -CaO = +1.000Ca+2 -2.000H+ +1.000H2O - log_k +32.70 - delta_h -193.910 #kJ/mol +CaO = Ca+2 - 2 H+ + H2O + log_k 32.7 + delta_h -193.91 #kJ/mol # Enthalpy of formation: -634.920 kJ/mol 89COX/WAG - -analytic -12.71574E-1 00.00000E+0 10.12862E+3 00.00000E+0 00.00000E+0 + -analytic -12.71574E-1 00E+0 10.12862E+3 00E+0 00E+0 Carnallite -KMgCl3:6H2O = +1.000Mg+2 +1.000K+ +3.000Cl- +6.000H2O - log_k +4.33 #84HAR/MOL - delta_h +9.339 #kJ/mol +KMgCl3:6H2O = Mg+2 + K+ + 3 Cl- + 6 H2O + log_k 4.33 #84HAR/MOL + delta_h 9.339 #kJ/mol # Enthalpy of formation: -2944.699 kJ/mol 74NAU/RYZ - -analytic 59.66123E-1 00.00000E+0 -48.78099E+1 00.00000E+0 00.00000E+0 + -analytic 59.66123E-1 00E+0 -48.78099E+1 00E+0 00E+0 CaSn(OH)6(s) -CaSn(OH)6 = +1.000Ca+2 +1.000Sn+4 -6.000H+ +6.000H2O - log_k -0.74 #Log Kº estimated as the mean value of data in 00LOT/OCH2 (uncertainty to include both values) recalculated using values of Sn(OH)6-2 selected in this work - -analytic -74.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +CaSn(OH)6 = Ca+2 + Sn+4 - 6 H+ + 6 H2O + log_k -0.74 #Log Kº estimated as the mean value of data in 00LOT/OCH2 (uncertainty to include both values) recalculated using values of Sn(OH)6-2 selected in this work + -analytic -74E-2 00E+0 00E+0 00E+0 00E+0 Cassiterite -SnO2 = +1.000Sn+4 -4.000H+ +2.000H2O - log_k -15.60 - delta_h -25.541 #kJ/mol +SnO2 = Sn+4 - 4 H+ + 2 H2O + log_k -15.6 + delta_h -25.541 #kJ/mol # Enthalpy of formation: -577.630 kJ/mol 12GAM/GAJ - -analytic -20.07459E+0 00.00000E+0 13.34099E+2 00.00000E+0 00.00000E+0 + -analytic -20.07459E+0 00E+0 13.34099E+2 00E+0 00E+0 Cattierite -CoS2 = +1.000Co+2 -2.000H+ -2.000e- +2.000HS- - log_k -19.98 - delta_h +60.700 #kJ/mol +CoS2 = Co+2 - 2 H+ - 2 e- + 2 HS- + log_k -19.98 + delta_h 60.7 #kJ/mol # Enthalpy of formation: -150.900 kJ/mol 95ROB/HEM - -analytic -93.45816E-1 00.00000E+0 -31.70582E+2 00.00000E+0 00.00000E+0 + -analytic -93.45816E-1 00E+0 -31.70582E+2 00E+0 00E+0 CaU2O7:3H2O(cr) -CaU2O7:3H2O = +1.000Ca+2 +2.000UO2+2 -6.000H+ +6.000H2O - log_k +23.40 #05ALT/NEC - -analytic 23.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +CaU2O7:3H2O = Ca+2 + 2 UO2+2 - 6 H+ + 6 H2O + log_k 23.4 #05ALT/NEC + -analytic 23.4E+0 00E+0 00E+0 00E+0 00E+0 Cd(CO3)(s) -Cd(CO3) = +1.000Cd+2 +1.000CO3-2 - log_k -12.10 #91RAI/FEL1 - delta_h +1.482 #kJ/mol -# Enthalpy of formation: -752.633 kJ/mol - -analytic -11.84036E+0 00.00000E+0 -77.41025E+0 00.00000E+0 00.00000E+0 +Cd(CO3) = Cd+2 + CO3-2 + log_k -12.1 #91RAI/FEL1 + delta_h 1.482 #kJ/mol +# Enthalpy of formation: -752.633 kJ/mol + -analytic -11.84036E+0 00E+0 -77.41025E+0 00E+0 00E+0 Cd(cr) -Cd = +1.000Cd+2 +2.000e- - log_k +13.62 - delta_h -75.920 #kJ/mol +Cd = Cd+2 + 2 e- + log_k 13.62 + delta_h -75.92 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 89COX/WAG - -analytic 31.93869E-2 00.00000E+0 39.65578E+2 00.00000E+0 00.00000E+0 + -analytic 31.93869E-2 00E+0 39.65578E+2 00E+0 00E+0 Cd(OH)2(s) -Cd(OH)2 = +1.000Cd+2 -2.000H+ +2.000H2O - log_k +13.86 #91RAI/FEL1 - delta_h -87.730 #kJ/mol -# Enthalpy of formation: -559.850 kJ/mol - -analytic -15.09636E-1 00.00000E+0 45.82457E+2 00.00000E+0 00.00000E+0 +Cd(OH)2 = Cd+2 - 2 H+ + 2 H2O + log_k 13.86 #91RAI/FEL1 + delta_h -87.73 #kJ/mol +# Enthalpy of formation: -559.850 kJ/mol + -analytic -15.09636E-1 00E+0 45.82457E+2 00E+0 00E+0 Cd(SO4)(cr) -Cd(SO4) = +1.000Cd+2 +1.000SO4-2 - log_k -0.16 - delta_h -51.980 #kJ/mol +Cd(SO4) = Cd+2 + SO4-2 + log_k -0.16 + delta_h -51.98 #kJ/mol # Enthalpy of formation: -933.280 kJ/mol 82WAG/EVA - -analytic -92.66505E-1 00.00000E+0 27.15104E+2 00.00000E+0 00.00000E+0 + -analytic -92.66505E-1 00E+0 27.15104E+2 00E+0 00E+0 Cd(SO4):2.67H2O(cr) -Cd(SO4):2.67H2O = +1.000Cd+2 +1.000SO4-2 +2.670H2O - log_k -1.55 - delta_h -20.126 #kJ/mol +Cd(SO4):2.67H2O = Cd+2 + SO4-2 + 2.67 H2O + log_k -1.55 + delta_h -20.126 #kJ/mol # Enthalpy of formation: -1728.300 kJ/mol 89COX/WAG - -analytic -50.75924E-1 00.00000E+0 10.51254E+2 00.00000E+0 00.00000E+0 + -analytic -50.75924E-1 00E+0 10.51254E+2 00E+0 00E+0 Cd3(AsO4)2(s) -Cd3(AsO4)2 = +3.000Cd+2 +2.000AsO4-3 - log_k -32.62 - -analytic -32.62000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cd3(AsO4)2 = 3 Cd+2 + 2 AsO4-3 + log_k -32.62 + -analytic -32.62E+0 00E+0 00E+0 00E+0 00E+0 Cd3(PO4)2(s) -Cd3(PO4)2 = +3.000Cd+2 -4.000H+ +2.000H2(PO4)- - log_k +8.97 - delta_h -206.960 #kJ/mol +Cd3(PO4)2 = 3 Cd+2 - 4 H+ + 2 H2(PO4)- + log_k 8.97 + delta_h -206.96 #kJ/mol # Enthalpy of formation: -2626.000 kJ/mol 01BEN/JEM - -analytic -27.28784E+0 00.00000E+0 10.81027E+3 00.00000E+0 00.00000E+0 + -analytic -27.28784E+0 00E+0 10.81027E+3 00E+0 00E+0 Cd5(PO4)3Cl(cr) -Cd5(PO4)3Cl = +5.000Cd+2 -6.000H+ +1.000Cl- +3.000H2(PO4)- - log_k +12.67 - -analytic 12.67000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cd5(PO4)3Cl = 5 Cd+2 - 6 H+ + Cl- + 3 H2(PO4)- + log_k 12.67 + -analytic 12.67E+0 00E+0 00E+0 00E+0 00E+0 Cd5(PO4)3OH(cr) -Cd5(PO4)3OH = +5.000Cd+2 -7.000H+ +3.000H2(PO4)- +1.000H2O - log_k +19.84 - -analytic 19.84000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cd5(PO4)3OH = 5 Cd+2 - 7 H+ + 3 H2(PO4)- + H2O + log_k 19.84 + -analytic 19.84E+0 00E+0 00E+0 00E+0 00E+0 CdB2O4(s) -CdB2O4 = +1.000Cd+2 +2.000B(OH)4- -4.000H2O - log_k -8.64 #91BAL/NOR - -analytic -86.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +CdB2O4 = Cd+2 + 2 B(OH)4- - 4 H2O + log_k -8.64 #91BAL/NOR + -analytic -86.4E-1 00E+0 00E+0 00E+0 00E+0 CdCl2(s) -CdCl2 = +1.000Cd+2 +2.000Cl- - log_k -0.66 - delta_h -18.580 #kJ/mol +CdCl2 = Cd+2 + 2 Cl- + log_k -0.66 + delta_h -18.58 #kJ/mol # Enthalpy of formation: -391.500 kJ/mol 74NAU/RYZ - -analytic -39.15076E-1 00.00000E+0 97.05010E+1 00.00000E+0 00.00000E+0 + -analytic -39.15076E-1 00E+0 97.0501E+1 00E+0 00E+0 CdCl2:2.5H2O(s) -CdCl2:2.5H2O = +1.000Cd+2 +2.000Cl- +2.500H2O - log_k -1.90 - delta_h +7.285 #kJ/mol +CdCl2:2.5H2O = Cd+2 + 2 Cl- + 2.5 H2O + log_k -1.9 + delta_h 7.285 #kJ/mol # Enthalpy of formation: -1131.940 kJ/mol 82WAG/EVA - -analytic -62.37228E-2 00.00000E+0 -38.05221E+1 00.00000E+0 00.00000E+0 + -analytic -62.37228E-2 00E+0 -38.05221E+1 00E+0 00E+0 CdCl2:H2O(cr) -CdCl2:H2O = +1.000Cd+2 +2.000Cl- +1.000H2O - log_k -1.69 - delta_h -7.470 #kJ/mol +CdCl2:H2O = Cd+2 + 2 Cl- + H2O + log_k -1.69 + delta_h -7.47 #kJ/mol # Enthalpy of formation: -688.440 kJ/mol 82WAG/EVA - -analytic -29.98688E-1 00.00000E+0 39.01853E+1 00.00000E+0 00.00000E+0 + -analytic -29.98688E-1 00E+0 39.01853E+1 00E+0 00E+0 CdO(s) -CdO = +1.000Cd+2 -2.000H+ +1.000H2O - log_k +15.10 - delta_h -103.400 #kJ/mol +CdO = Cd+2 - 2 H+ + H2O + log_k 15.1 + delta_h -103.4 #kJ/mol # Enthalpy of formation: -258.350 kJ/mol 89COX/WAG - -analytic -30.14902E-1 00.00000E+0 54.00958E+2 00.00000E+0 00.00000E+0 + -analytic -30.14902E-1 00E+0 54.00958E+2 00E+0 00E+0 CdS(s) -CdS = +1.000Cd+2 -1.000H+ +1.000HS- - log_k -14.82 #99WAN/TES - delta_h +56.570 #kJ/mol +CdS = Cd+2 - H+ + HS- + log_k -14.82 #99WAN/TES + delta_h 56.57 #kJ/mol # Enthalpy of formation: -148.790 kJ/mol 06DEO/NAV - -analytic -49.09361E-1 00.00000E+0 -29.54857E+2 00.00000E+0 00.00000E+0 + -analytic -49.09361E-1 00E+0 -29.54857E+2 00E+0 00E+0 CdSiO3(cr) -CdSiO3 = +1.000Cd+2 -2.000H+ +1.000H4(SiO4) -1.000H2O - log_k +7.79 - delta_h -62.194 #kJ/mol +CdSiO3 = Cd+2 - 2 H+ + H4(SiO4) - H2O + log_k 7.79 + delta_h -62.194 #kJ/mol # Enthalpy of formation: -1189.090 kJ/mol 77BAR/KNA - -analytic -31.05921E-1 00.00000E+0 32.48619E+2 00.00000E+0 00.00000E+0 + -analytic -31.05921E-1 00E+0 32.48619E+2 00E+0 00E+0 Celadonite-Fe -KFeAlSi4O10(OH)2 = +1.000K+ +1.000Fe+2 +1.000Al+3 -6.000H+ +4.000H4(SiO4) -4.000H2O - log_k +6.45 - delta_h -104.161 #kJ/mol +KFeAlSi4O10(OH)2 = K+ + Fe+2 + Al+3 - 6 H+ + 4 H4(SiO4) - 4 H2O + log_k 6.45 + delta_h -104.161 #kJ/mol # Enthalpy of formation: -5478.130 kJ/mol 02PAR/VID - -analytic -11.79822E+0 00.00000E+0 54.40708E+2 00.00000E+0 00.00000E+0 - -Vm 143.010 + -analytic -11.79822E+0 00E+0 54.40708E+2 00E+0 00E+0 + -Vm 143.01 Celadonite-Mg -KMgAlSi4O10(OH)2 = +1.000Mg+2 +1.000K+ +1.000Al+3 -6.000H+ +4.000H4(SiO4) -4.000H2O - log_k +10.20 - delta_h -124.256 #kJ/mol +KMgAlSi4O10(OH)2 = Mg+2 + K+ + Al+3 - 6 H+ + 4 H4(SiO4) - 4 H2O + log_k 10.2 + delta_h -124.256 #kJ/mol # Enthalpy of formation: -5834.740 kJ/mol 02PAR/VID - -analytic -11.56872E+0 00.00000E+0 64.90343E+2 00.00000E+0 00.00000E+0 - -Vm 139.620 + -analytic -11.56872E+0 00E+0 64.90343E+2 00E+0 00E+0 + -Vm 139.62 Celestite -Sr(SO4) = +1.000Sr+2 +1.000SO4-2 - log_k -6.62 #06BLA/IGN - delta_h -2.451 #kJ/mol -# Enthalpy of formation: -1457.789 kJ/mol - -analytic -70.49397E-1 00.00000E+0 12.80246E+1 00.00000E+0 00.00000E+0 - -Vm 46.250 +Sr(SO4) = Sr+2 + SO4-2 + log_k -6.62 #06BLA/IGN + delta_h -2.451 #kJ/mol +# Enthalpy of formation: -1457.789 kJ/mol + -analytic -70.49397E-1 00E+0 12.80246E+1 00E+0 00E+0 + -Vm 46.25 Cerussite -Pb(CO3) = +1.000Pb+2 +1.000CO3-2 - log_k -13.29 - delta_h +27.425 #kJ/mol -# Enthalpy of formation: -701.735 kJ/mol - -analytic -84.85346E-1 00.00000E+0 -14.32508E+2 00.00000E+0 00.00000E+0 +Pb(CO3) = Pb+2 + CO3-2 + log_k -13.29 + delta_h 27.425 #kJ/mol +# Enthalpy of formation: -701.735 kJ/mol + -analytic -84.85346E-1 00E+0 -14.32508E+2 00E+0 00E+0 Chabazite -CaAl2Si4O12:6H2O = +1.000Ca+2 +2.000Al+3 -8.000H+ +4.000H4(SiO4) +2.000H2O - log_k +11.52 - delta_h -209.796 #kJ/mol +CaAl2Si4O12:6H2O = Ca+2 + 2 Al+3 - 8 H+ + 4 H4(SiO4) + 2 H2O + log_k 11.52 + delta_h -209.796 #kJ/mol # Enthalpy of formation: -7826.440 kJ/mol 09BLA - -analytic -25.23468E+0 00.00000E+0 10.95841E+3 00.00000E+0 00.00000E+0 - -Vm 251.160 + -analytic -25.23468E+0 00E+0 10.95841E+3 00E+0 00E+0 + -Vm 251.16 Chalcanthite -CuSO4:5H2O = +1.000Cu+2 +1.000SO4-2 +5.000H2O - log_k -2.69 - delta_h +6.108 #kJ/mol -# Enthalpy of formation: -2279.696 kJ/mol - -analytic -16.19924E-1 00.00000E+0 -31.90431E+1 00.00000E+0 00.00000E+0 +CuSO4:5H2O = Cu+2 + SO4-2 + 5 H2O + log_k -2.69 + delta_h 6.108 #kJ/mol +# Enthalpy of formation: -2279.696 kJ/mol + -analytic -16.19924E-1 00E+0 -31.90431E+1 00E+0 00E+0 Chalcocite -Cu2S = +2.000Cu+ -1.000H+ +1.000HS- - log_k -34.02 #94THO/HEL - delta_h +204.317 #kJ/mol -# Enthalpy of formation: -79.440 kJ/mol - -analytic 17.74802E-1 00.00000E+0 -10.67222E+3 00.00000E+0 00.00000E+0 +Cu2S = 2 Cu+ - H+ + HS- + log_k -34.02 #94THO/HEL + delta_h 204.317 #kJ/mol +# Enthalpy of formation: -79.440 kJ/mol + -analytic 17.74802E-1 00E+0 -10.67222E+3 00E+0 00E+0 Chalcocyanite -CuSO4 = +1.000Cu+2 +1.000SO4-2 - log_k +2.94 - delta_h -73.025 #kJ/mol -# Enthalpy of formation: -771.415 kJ/mol - -analytic -98.53431E-1 00.00000E+0 38.14361E+2 00.00000E+0 00.00000E+0 +CuSO4 = Cu+2 + SO4-2 + log_k 2.94 + delta_h -73.025 #kJ/mol +# Enthalpy of formation: -771.415 kJ/mol + -analytic -98.53431E-1 00E+0 38.14361E+2 00E+0 00E+0 Chamosite -Fe5Al2Si3O10(OH)8 = +5.000Fe+2 +2.000Al+3 -16.000H+ +3.000H4(SiO4) +6.000H2O - log_k +47.68 - delta_h -505.987 #kJ/mol +Fe5Al2Si3O10(OH)8 = 5 Fe+2 + 2 Al+3 - 16 H+ + 3 H4(SiO4) + 6 H2O + log_k 47.68 + delta_h -505.987 #kJ/mol # Enthalpy of formation: -7120.850 kJ/mol 05VID/PAR - -analytic -40.96512E+0 00.00000E+0 26.42954E+3 00.00000E+0 00.00000E+0 - -Vm 215.880 + -analytic -40.96512E+0 00E+0 26.42954E+3 00E+0 00E+0 + -Vm 215.88 Chloroapatite -Ca5Cl(PO4)3 = +5.000Ca+2 -6.000H+ +1.000Cl- +3.000H2(PO4)- - log_k +5.21 #68VAL/KOG - delta_h -132.541 #kJ/mol -# Enthalpy of formation: -6657.337 kJ/mol - -analytic -18.01019E+0 00.00000E+0 69.23099E+2 00.00000E+0 00.00000E+0 +Ca5Cl(PO4)3 = 5 Ca+2 - 6 H+ + Cl- + 3 H2(PO4)- + log_k 5.21 #68VAL/KOG + delta_h -132.541 #kJ/mol +# Enthalpy of formation: -6657.337 kJ/mol + -analytic -18.01019E+0 00E+0 69.23099E+2 00E+0 00E+0 Chromite -FeCr2O4 = +1.000Fe+2 -8.000H+ +2.000Cr+3 +4.000H2O - log_k +15.14 - delta_h -269.115 #kJ/mol +FeCr2O4 = Fe+2 - 8 H+ + 2 Cr+3 + 4 H2O + log_k 15.14 + delta_h -269.115 #kJ/mol # Enthalpy of formation: -1445.500 kJ/mol 95ROB/HEM - -analytic -32.00692E+0 00.00000E+0 14.05686E+3 00.00000E+0 00.00000E+0 + -analytic -32.00692E+0 00E+0 14.05686E+3 00E+0 00E+0 Chukanovite -Fe2(OH)2CO3 = +2.000Fe+2 -2.000H+ +1.000CO3-2 +2.000H2O - log_k +2.97 - -analytic 29.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Fe2(OH)2CO3 = 2 Fe+2 - 2 H+ + CO3-2 + 2 H2O + log_k 2.97 + -analytic 29.7E-1 00E+0 00E+0 00E+0 00E+0 Cinnabar -HgS = -1.000H+ +1.000HS- +1.000Hg+2 - log_k -39.18 - delta_h +208.210 #kJ/mol +HgS = - H+ + HS- + Hg+2 + log_k -39.18 + delta_h 208.21 #kJ/mol # Enthalpy of formation: -54.300 kJ/mol 95ROB/HEM - -analytic -27.03174E-1 00.00000E+0 -10.87557E+3 00.00000E+0 00.00000E+0 + -analytic -27.03174E-1 00E+0 -10.87557E+3 00E+0 00E+0 Clarkeite -Na(UO2)O(OH) = +1.000Na+ +1.000UO2+2 -3.000H+ +2.000H2O - log_k +9.40 #08GOR/FEI - delta_h -106.300 #kJ/mol +Na(UO2)O(OH) = Na+ + UO2+2 - 3 H+ + 2 H2O + log_k 9.4 #08GOR/FEI + delta_h -106.3 #kJ/mol # Enthalpy of formation: -1724.700 kJ/mol 06KUB/HEL - -analytic -92.22961E-1 00.00000E+0 55.52436E+2 00.00000E+0 00.00000E+0 + -analytic -92.22961E-1 00E+0 55.52436E+2 00E+0 00E+0 Claudetite -As2O3 = -3.000H2O +2.000H3(AsO3) - log_k -1.46 - delta_h +28.238 #kJ/mol -# Enthalpy of formation: -655.150 kJ/mol - -analytic 34.87085E-1 00.00000E+0 -14.74973E+2 00.00000E+0 00.00000E+0 +As2O3 = -3 H2O + 2 H3(AsO3) + log_k -1.46 + delta_h 28.238 #kJ/mol +# Enthalpy of formation: -655.150 kJ/mol + -analytic 34.87085E-1 00E+0 -14.74973E+2 00E+0 00E+0 Clausthalite -PbSe = +1.000Pb+2 -1.000H+ +1.000HSe- - log_k -20.53 - delta_h +113.720 #kJ/mol +PbSe = Pb+2 - H+ + HSe- + log_k -20.53 + delta_h 113.72 #kJ/mol # Enthalpy of formation: -98.500 kJ/mol 05OLI/NOL - -analytic -60.71112E-2 00.00000E+0 -59.40009E+2 00.00000E+0 00.00000E+0 + -analytic -60.71112E-2 00E+0 -59.40009E+2 00E+0 00E+0 Clinochlore -Mg5Al2Si3O10(OH)8 = +5.000Mg+2 +2.000Al+3 -16.000H+ +3.000H4(SiO4) +6.000H2O - log_k +61.68 - delta_h -600.772 #kJ/mol +Mg5Al2Si3O10(OH)8 = 5 Mg+2 + 2 Al+3 - 16 H+ + 3 H4(SiO4) + 6 H2O + log_k 61.68 + delta_h -600.772 #kJ/mol # Enthalpy of formation: -8909.590 kJ/mol 05VID/PAR - -analytic -43.57074E+0 00.00000E+0 31.38051E+3 00.00000E+0 00.00000E+0 - -Vm 211.470 + -analytic -43.57074E+0 00E+0 31.38051E+3 00E+0 00E+0 + -Vm 211.47 Clinoptilolite_Ca -Ca0.55(Si4.9Al1.1)O12:3.9H2O = +0.550Ca+2 +1.100Al+3 -4.400H+ +4.900H4(SiO4) -3.700H2O - log_k -2.35 #09BLA - delta_h -68.491 #kJ/mol -# Enthalpy of formation: -6924.681 kJ/mol - -analytic -14.34911E+0 00.00000E+0 35.77534E+2 00.00000E+0 00.00000E+0 - -Vm 209.660 +Ca0.55(Si4.9Al1.1)O12:3.9H2O = 0.55 Ca+2 + 1.1 Al+3 - 4.4 H+ + 4.9 H4(SiO4) - 3.7 H2O + log_k -2.35 #09BLA + delta_h -68.491 #kJ/mol +# Enthalpy of formation: -6924.681 kJ/mol + -analytic -14.34911E+0 00E+0 35.77534E+2 00E+0 00E+0 + -Vm 209.66 Clinoptilolite_K -K1.1(Si4.9Al1.1)O12:2.7H2O = +1.100K+ +1.100Al+3 -4.400H+ +4.900H4(SiO4) -4.900H2O - log_k -1.23 #09BLA - delta_h -60.121 #kJ/mol -# Enthalpy of formation: -6568.760 kJ/mol - -analytic -11.76275E+0 00.00000E+0 31.40339E+2 00.00000E+0 00.00000E+0 - -Vm 210.730 +K1.1(Si4.9Al1.1)O12:2.7H2O = 1.1 K+ + 1.1 Al+3 - 4.4 H+ + 4.9 H4(SiO4) - 4.9 H2O + log_k -1.23 #09BLA + delta_h -60.121 #kJ/mol +# Enthalpy of formation: -6568.760 kJ/mol + -analytic -11.76275E+0 00E+0 31.40339E+2 00E+0 00E+0 + -Vm 210.73 Clinoptilolite_Na -Na1.1(Si4.9Al1.1)O12:3.5H2O = +1.100Na+ +1.100Al+3 -4.400H+ +4.900H4(SiO4) -4.100H2O - log_k -0.09 #09BLA - delta_h -62.460 #kJ/mol -# Enthalpy of formation: -6782.105 kJ/mol - -analytic -11.03252E+0 00.00000E+0 32.62513E+2 00.00000E+0 00.00000E+0 - -Vm 214.780 +Na1.1(Si4.9Al1.1)O12:3.5H2O = 1.1 Na+ + 1.1 Al+3 - 4.4 H+ + 4.9 H4(SiO4) - 4.1 H2O + log_k -0.09 #09BLA + delta_h -62.46 #kJ/mol +# Enthalpy of formation: -6782.105 kJ/mol + -analytic -11.03252E+0 00E+0 32.62513E+2 00E+0 00E+0 + -Vm 214.78 Cm(cr) -Cm = +3.000e- +1.000Cm+3 - log_k +104.31 - delta_h -615.000 #kJ/mol +Cm = 3 e- + Cm+3 + log_k 104.31 + delta_h -615 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 01KON2 - -analytic -34.33375E-1 00.00000E+0 32.12369E+3 00.00000E+0 00.00000E+0 + -analytic -34.33375E-1 00E+0 32.12369E+3 00E+0 00E+0 Cm(OH)3(am) -Cm(OH)3 = -3.000H+ +1.000Cm+3 +3.000H2O - log_k +17.80 #Estimated by correlation with An(III) in function of ionic radii. - -analytic 17.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cm(OH)3 = -3 H+ + Cm+3 + 3 H2O + log_k 17.8 #Estimated by correlation with An(III) in function of ionic radii. + -analytic 17.8E+0 00E+0 00E+0 00E+0 00E+0 Cm(OH)3(cr) -Cm(OH)3 = -3.000H+ +1.000Cm+3 +3.000H2O - log_k +15.67 #estimated from ionic radii - -analytic 15.67000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cm(OH)3 = -3 H+ + Cm+3 + 3 H2O + log_k 15.67 #estimated from ionic radii + -analytic 15.67E+0 00E+0 00E+0 00E+0 00E+0 Cm(PO4):0.5H2O(am) -Cm(PO4):0.5H2O = -2.000H+ +1.000H2(PO4)- +1.000Cm+3 +0.500H2O - log_k -4.97 #estimated by correlation with Ln(III) - -analytic -49.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cm(PO4):0.5H2O = -2 H+ + H2(PO4)- + Cm+3 + 0.5 H2O + log_k -4.97 #estimated by correlation with Ln(III) + -analytic -49.7E-1 00E+0 00E+0 00E+0 00E+0 Cm2(CO3)3(s) -Cm2(CO3)3 = +3.000CO3-2 +2.000Cm+3 - log_k -34.30 #Estimated by correlation with An(III). - -analytic -34.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cm2(CO3)3 = 3 CO3-2 + 2 Cm+3 + log_k -34.3 #Estimated by correlation with An(III). + -analytic -34.3E+0 00E+0 00E+0 00E+0 00E+0 Cm2O3(cr) -Cm2O3 = -6.000H+ +2.000Cm+3 +3.000H2O - log_k +52.97 - delta_h -403.490 #kJ/mol +Cm2O3 = -6 H+ + 2 Cm+3 + 3 H2O + log_k 52.97 + delta_h -403.49 #kJ/mol # Enthalpy of formation: -1684.000 kJ/mol 01KON2 - -analytic -17.71841E+0 00.00000E+0 21.07575E+3 00.00000E+0 00.00000E+0 + -analytic -17.71841E+0 00E+0 21.07575E+3 00E+0 00E+0 CmCl3(cr) -CmCl3 = +3.000Cl- +1.000Cm+3 - log_k +15.07 - delta_h -141.840 #kJ/mol +CmCl3 = 3 Cl- + Cm+3 + log_k 15.07 + delta_h -141.84 #kJ/mol # Enthalpy of formation: -974.400 kJ/mol 85BAR/PAR - -analytic -97.79301E-1 00.00000E+0 74.08819E+2 00.00000E+0 00.00000E+0 + -analytic -97.79301E-1 00E+0 74.08819E+2 00E+0 00E+0 CmCO3OH(cr) -Cm(CO3)(OH) = -1.000H+ +1.000CO3-2 +1.000Cm+3 +1.000H2O - log_k -10.34 #Estimation. Correlation with An(III). - -analytic -10.34000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cm(CO3)(OH) = - H+ + CO3-2 + Cm+3 + H2O + log_k -10.34 #Estimation. Correlation with An(III). + -analytic -10.34E+0 00E+0 00E+0 00E+0 00E+0 CmCO3OH(s) -CmOHCO3 = -1.000H+ +1.000CO3-2 +1.000Cm+3 +1.000H2O - log_k -6.15 #Estimated using the data for AmCO3OH(s). - -analytic -61.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +CmOHCO3 = - H+ + CO3-2 + Cm+3 + H2O + log_k -6.15 #Estimated using the data for AmCO3OH(s). + -analytic -61.5E-1 00E+0 00E+0 00E+0 00E+0 CmCO3OH:0.5H2O(s) -Cm(CO3)(OH):0.5H2O = -1.000H+ +1.000CO3-2 +1.000Cm+3 +1.500H2O - log_k -7.72 #Estimated by correlation with An(III) in function of ionic radii. - -analytic -77.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cm(CO3)(OH):0.5H2O = - H+ + CO3-2 + Cm+3 + 1.5 H2O + log_k -7.72 #Estimated by correlation with An(III) in function of ionic radii. + -analytic -77.2E-1 00E+0 00E+0 00E+0 00E+0 CmF3(cr) -CmF3 = +3.000F- +1.000Cm+3 - log_k -13.16 - delta_h -32.036 #kJ/mol +CmF3 = 3 F- + Cm+3 + log_k -13.16 + delta_h -32.036 #kJ/mol # Enthalpy of formation: -1589.014 kJ/mol estimated by 97SVE/SHO equation - -analytic -18.77247E+0 00.00000E+0 16.73357E+2 00.00000E+0 00.00000E+0 + -analytic -18.77247E+0 00E+0 16.73357E+2 00E+0 00E+0 CmOCl(cr) -CmOCl = -2.000H+ +1.000Cl- +1.000Cm+3 +1.000H2O - log_k +9.49 - delta_h -104.710 #kJ/mol +CmOCl = -2 H+ + Cl- + Cm+3 + H2O + log_k 9.49 + delta_h -104.71 #kJ/mol # Enthalpy of formation: -963.200 kJ/mol 85BAR/PAR - -analytic -88.54405E-1 00.00000E+0 54.69384E+2 00.00000E+0 00.00000E+0 + -analytic -88.54405E-1 00E+0 54.69384E+2 00E+0 00E+0 Co(cr) -Co = +1.000Co+2 +2.000e- - log_k +9.74 - delta_h -57.600 #kJ/mol +Co = Co+2 + 2 e- + log_k 9.74 + delta_h -57.6 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 87FER - -analytic -35.10868E-2 00.00000E+0 30.08658E+2 00.00000E+0 00.00000E+0 + -analytic -35.10868E-2 00E+0 30.08658E+2 00E+0 00E+0 Co(FeO2)2(alpha) -Co(FeO2)2 = +2.000Fe+3 +1.000Co+2 -8.000H+ +4.000H2O - log_k +0.73 - delta_h -161.312 #kJ/mol +Co(FeO2)2 = 2 Fe+3 + Co+2 - 8 H+ + 4 H2O + log_k 0.73 + delta_h -161.312 #kJ/mol # Enthalpy of formation: -1139.720 kJ/mol 74NAU/RYZ - -analytic -27.53065E+0 00.00000E+0 84.25913E+2 00.00000E+0 00.00000E+0 + -analytic -27.53065E+0 00E+0 84.25913E+2 00E+0 00E+0 Co(OH)2(s,blue) -Co(OH)2 = +1.000Co+2 -2.000H+ +2.000H2O - log_k +13.80 #98PLY/ZHA1; Uncertainty by analogy with Co(OH)2(s,rose1). - -analytic 13.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Co(OH)2 = Co+2 - 2 H+ + 2 H2O + log_k 13.8 #98PLY/ZHA1; Uncertainty by analogy with Co(OH)2(s,rose1). + -analytic 13.8E+0 00E+0 00E+0 00E+0 00E+0 Co(OH)2(s,rose1) -Co(OH)2 = +1.000Co+2 -2.000H+ +2.000H2O - log_k +12.20 #98PLY/ZHA1 - delta_h -88.460 #kJ/mol +Co(OH)2 = Co+2 - 2 H+ + 2 H2O + log_k 12.2 #98PLY/ZHA1 + delta_h -88.46 #kJ/mol # Enthalpy of formation: -540.800 kJ/mol 98PLY/ZHA1 - -analytic -32.97527E-1 00.00000E+0 46.20588E+2 00.00000E+0 00.00000E+0 + -analytic -32.97527E-1 00E+0 46.20588E+2 00E+0 00E+0 Co(OH)2(s,rose2) -Co(OH)2 = +1.000Co+2 -2.000H+ +2.000H2O - log_k +13.20 #98PLY/ZHA1; Uncertainty by analogy with Co(OH)2(s,rose1). - delta_h -93.560 #kJ/mol +Co(OH)2 = Co+2 - 2 H+ + 2 H2O + log_k 13.2 #98PLY/ZHA1; Uncertainty by analogy with Co(OH)2(s,rose1). + delta_h -93.56 #kJ/mol # Enthalpy of formation: -535.700 kJ/mol 98PLY/ZHA1 - -analytic -31.91008E-1 00.00000E+0 48.86979E+2 00.00000E+0 00.00000E+0 + -analytic -31.91008E-1 00E+0 48.86979E+2 00E+0 00E+0 Co(SeO3):2H2O(s) -Co(SeO3):2H2O = +1.000Co+2 +1.000SeO3-2 +2.000H2O - log_k -7.90 #05OLI/NOL - delta_h -20.860 #kJ/mol +Co(SeO3):2H2O = Co+2 + SeO3-2 + 2 H2O + log_k -7.9 #05OLI/NOL + delta_h -20.86 #kJ/mol # Enthalpy of formation: -1115.560 kJ/mol 05OLI/NOL - -analytic -11.55452E+0 00.00000E+0 10.89594E+2 00.00000E+0 00.00000E+0 + -analytic -11.55452E+0 00E+0 10.89594E+2 00E+0 00E+0 Co(SeO4):6H2O(s) -Co(SeO4):6H2O = +1.000Co+2 +1.000SeO4-2 +6.000H2O - log_k -1.76 #05OLI/NOL - delta_h -3.400 #kJ/mol -# Enthalpy of formation: -2372.678 kJ/mol - -analytic -23.55654E-1 00.00000E+0 17.75944E+1 00.00000E+0 00.00000E+0 +Co(SeO4):6H2O = Co+2 + SeO4-2 + 6 H2O + log_k -1.76 #05OLI/NOL + delta_h -3.4 #kJ/mol +# Enthalpy of formation: -2372.678 kJ/mol + -analytic -23.55654E-1 00E+0 17.75944E+1 00E+0 00E+0 Co0.84Se(cr) -Co0.84Se = +0.840Co+2 -1.000H+ -0.320e- +1.000HSe- - log_k -9.30 - delta_h +21.316 #kJ/mol +Co0.84Se = 0.84 Co+2 - H+ - 0.32 e- + HSe- + log_k -9.3 + delta_h 21.316 #kJ/mol # Enthalpy of formation: -55.400 kJ/mol 05OLI/NOL - -analytic -55.65597E-1 00.00000E+0 -11.13412E+2 00.00000E+0 00.00000E+0 + -analytic -55.65597E-1 00E+0 -11.13412E+2 00E+0 00E+0 Co2SiO4(s) -Co2SiO4 = +2.000Co+2 -4.000H+ +1.000H4(SiO4) - log_k +7.35 - delta_h -99.394 #kJ/mol +Co2SiO4 = 2 Co+2 - 4 H+ + H4(SiO4) + log_k 7.35 + delta_h -99.394 #kJ/mol # Enthalpy of formation: -1477.000 kJ/mol 82WAG/EVA - -analytic -10.06308E+0 00.00000E+0 51.91710E+2 00.00000E+0 00.00000E+0 + -analytic -10.06308E+0 00E+0 51.9171E+2 00E+0 00E+0 Co3(AsO4)2(s) -Co3(AsO4)2 = +3.000Co+2 +2.000AsO4-3 - log_k -27.56 - -analytic -27.56000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Co3(AsO4)2 = 3 Co+2 + 2 AsO4-3 + log_k -27.56 + -analytic -27.56E+0 00E+0 00E+0 00E+0 00E+0 Co3(PO4)2(s) -Co3(PO4)2 = +3.000Co+2 -4.000H+ +2.000H2(PO4)- - log_k +4.36 #84VIE/TAR - -analytic 43.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Co3(PO4)2 = 3 Co+2 - 4 H+ + 2 H2(PO4)- + log_k 4.36 #84VIE/TAR + -analytic 43.6E-1 00E+0 00E+0 00E+0 00E+0 Co3O4(s) -Co3O4 = +3.000Co+2 -8.000H+ -2.000e- +4.000H2O - log_k +54.86 - delta_h -397.320 #kJ/mol +Co3O4 = 3 Co+2 - 8 H+ - 2 e- + 4 H2O + log_k 54.86 + delta_h -397.32 #kJ/mol # Enthalpy of formation: -918.800 kJ/mol 95ROB/HEM - -analytic -14.74748E+0 00.00000E+0 20.75347E+3 00.00000E+0 00.00000E+0 + -analytic -14.74748E+0 00E+0 20.75347E+3 00E+0 00E+0 CoCl2(s) -CoCl2 = +1.000Co+2 +2.000Cl- - log_k +8.47 - delta_h -79.220 #kJ/mol +CoCl2 = Co+2 + 2 Cl- + log_k 8.47 + delta_h -79.22 #kJ/mol # Enthalpy of formation: -312.540 kJ/mol 98CHA - -analytic -54.08748E-1 00.00000E+0 41.37949E+2 00.00000E+0 00.00000E+0 + -analytic -54.08748E-1 00E+0 41.37949E+2 00E+0 00E+0 CoCl2:6H2O(s) -CoCl2:6H2O = +1.000Co+2 +2.000Cl- +6.000H2O - log_k +2.54 #97MAR/SMI - delta_h +8.060 #kJ/mol 97MAR/SMI -# Enthalpy of formation: -2114.800 kJ/mol - -analytic 39.52051E-1 00.00000E+0 -42.10031E+1 00.00000E+0 00.00000E+0 +CoCl2:6H2O = Co+2 + 2 Cl- + 6 H2O + log_k 2.54 #97MAR/SMI + delta_h 8.06 #kJ/mol 97MAR/SMI +# Enthalpy of formation: -2114.800 kJ/mol + -analytic 39.52051E-1 00E+0 -42.10031E+1 00E+0 00E+0 CoF2(s) -CoF2 = +1.000Co+2 +2.000F- - log_k -1.39 - delta_h -56.770 #kJ/mol +CoF2 = Co+2 + 2 F- + log_k -1.39 + delta_h -56.77 #kJ/mol # Enthalpy of formation: -671.530 kJ/mol 98CHA - -analytic -11.33568E+0 00.00000E+0 29.65304E+2 00.00000E+0 00.00000E+0 + -analytic -11.33568E+0 00E+0 29.65304E+2 00E+0 00E+0 Coffinite -U(SiO4) = +1.000U+4 -4.000H+ +1.000H4(SiO4) - log_k -4.47 - delta_h -78.577 #kJ/mol -# Enthalpy of formation: -1973.817 kJ/mol - -analytic -18.23610E+0 00.00000E+0 41.04363E+2 00.00000E+0 00.00000E+0 +U(SiO4) = U+4 - 4 H+ + H4(SiO4) + log_k -4.47 + delta_h -78.577 #kJ/mol +# Enthalpy of formation: -1973.817 kJ/mol + -analytic -18.2361E+0 00E+0 41.04363E+2 00E+0 00E+0 CoHPO4(s) -CoHPO4 = +1.000Co+2 -1.000H+ +1.000H2(PO4)- - log_k +0.49 #84VIE/TAR - -analytic 49.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +CoHPO4 = Co+2 - H+ + H2(PO4)- + log_k 0.49 #84VIE/TAR + -analytic 49E-2 00E+0 00E+0 00E+0 00E+0 Compreignacite -K2(UO2)6O4(OH)6:7H2O = +2.000K+ +6.000UO2+2 -14.000H+ +17.000H2O - log_k +35.80 #08GOR/FEI - -analytic 35.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +K2(UO2)6O4(OH)6:7H2O = 2 K+ + 6 UO2+2 - 14 H+ + 17 H2O + log_k 35.8 #08GOR/FEI + -analytic 35.8E+0 00E+0 00E+0 00E+0 00E+0 CoO(s) -CoO = +1.000Co+2 -2.000H+ +1.000H2O - log_k +13.77 - delta_h -105.530 #kJ/mol +CoO = Co+2 - 2 H+ + H2O + log_k 13.77 + delta_h -105.53 #kJ/mol # Enthalpy of formation: -237.900 kJ/mol 95ROB/HEM - -analytic -47.18062E-1 00.00000E+0 55.12216E+2 00.00000E+0 00.00000E+0 + -analytic -47.18062E-1 00E+0 55.12216E+2 00E+0 00E+0 Corundum -Al2O3 = +2.000Al+3 -6.000H+ +3.000H2O - log_k +18.30 - delta_h -258.590 #kJ/mol +Al2O3 = 2 Al+3 - 6 H+ + 3 H2O + log_k 18.3 + delta_h -258.59 #kJ/mol # Enthalpy of formation: -1675.700 kJ/mol 89COX/WAG - -analytic -27.00302E+0 00.00000E+0 13.50710E+3 00.00000E+0 00.00000E+0 + -analytic -27.00302E+0 00E+0 13.5071E+3 00E+0 00E+0 CoS(alpha) -CoS = +1.000Co+2 -1.000H+ +1.000HS- - log_k -7.44 #90DYR/KRE - delta_h +11.836 #kJ/mol -# Enthalpy of formation: -85.735 kJ/mol - -analytic -53.66422E-1 00.00000E+0 -61.82373E+1 00.00000E+0 00.00000E+0 +CoS = Co+2 - H+ + HS- + log_k -7.44 #90DYR/KRE + delta_h 11.836 #kJ/mol +# Enthalpy of formation: -85.735 kJ/mol + -analytic -53.66422E-1 00E+0 -61.82373E+1 00E+0 00E+0 CoS(beta) -CoS = +1.000Co+2 -1.000H+ +1.000HS- - log_k -11.07 #90DYR/KRE - -analytic -11.07000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +CoS = Co+2 - H+ + HS- + log_k -11.07 #90DYR/KRE + -analytic -11.07E+0 00E+0 00E+0 00E+0 00E+0 CoSe2(cr) -CoSe2 = +1.000Co+2 -2.000H+ -2.000e- +2.000HSe- - log_k -23.09 - delta_h +76.500 #kJ/mol +CoSe2 = Co+2 - 2 H+ - 2 e- + 2 HSe- + log_k -23.09 + delta_h 76.5 #kJ/mol # Enthalpy of formation: -105.500 kJ/mol 05OLI/NOL - -analytic -96.87775E-1 00.00000E+0 -39.95873E+2 00.00000E+0 00.00000E+0 + -analytic -96.87775E-1 00E+0 -39.95873E+2 00E+0 00E+0 CoSO4(s) -CoSO4 = +1.000Co+2 +1.000SO4-2 - log_k +3.01 - delta_h -78.680 #kJ/mol +CoSO4 = Co+2 + SO4-2 + log_k 3.01 + delta_h -78.68 #kJ/mol # Enthalpy of formation: -888.260 kJ/mol 98CHA - -analytic -10.77414E+0 00.00000E+0 41.09743E+2 00.00000E+0 00.00000E+0 + -analytic -10.77414E+0 00E+0 41.09743E+2 00E+0 00E+0 CoSO4:6H2O(s) -CoSO4:6H2O = +1.000Co+2 +1.000SO4-2 +6.000H2O - log_k -2.20 - delta_h +1.570 #kJ/mol +CoSO4:6H2O = Co+2 + SO4-2 + 6 H2O + log_k -2.2 + delta_h 1.57 #kJ/mol # Enthalpy of formation: -2683.490 kJ/mol 74NAU/RYZ - -analytic -19.24948E-1 00.00000E+0 -82.00681E+0 00.00000E+0 00.00000E+0 + -analytic -19.24948E-1 00E+0 -82.00681E+0 00E+0 00E+0 CoSO4:H2O(s) -CoSO4:H2O = +1.000Co+2 +1.000SO4-2 +1.000H2O - log_k -1.05 - delta_h -52.050 #kJ/mol +CoSO4:H2O = Co+2 + SO4-2 + H2O + log_k -1.05 + delta_h -52.05 #kJ/mol # Enthalpy of formation: -1200.720 kJ/mol 74NAU/RYZ - -analytic -10.16877E+0 00.00000E+0 27.18761E+2 00.00000E+0 00.00000E+0 + -analytic -10.16877E+0 00E+0 27.18761E+2 00E+0 00E+0 Cotunnite -PbCl2 = +1.000Pb+2 +2.000Cl- - log_k -4.81 - delta_h +26.160 #kJ/mol +PbCl2 = Pb+2 + 2 Cl- + log_k -4.81 + delta_h 26.16 #kJ/mol # Enthalpy of formation: -359.400 kJ/mol 98CHA - -analytic -22.69647E-2 00.00000E+0 -13.66432E+2 00.00000E+0 00.00000E+0 + -analytic -22.69647E-2 00E+0 -13.66432E+2 00E+0 00E+0 Covellite -CuS = +1.000Cu+2 -1.000H+ +1.000HS- - log_k -22.06 #94THO/HEL - delta_h +97.475 #kJ/mol -# Enthalpy of formation: -48.875 kJ/mol - -analytic -49.83113E-1 00.00000E+0 -50.91474E+2 00.00000E+0 00.00000E+0 +CuS = Cu+2 - H+ + HS- + log_k -22.06 #94THO/HEL + delta_h 97.475 #kJ/mol +# Enthalpy of formation: -48.875 kJ/mol + -analytic -49.83113E-1 00E+0 -50.91474E+2 00E+0 00E+0 Cr(cr) -Cr = +8.000H+ +6.000e- +1.000CrO4-2 -4.000H2O - log_k -39.31 - delta_h +264.320 #kJ/mol +Cr = 8 H+ + 6 e- + CrO4-2 - 4 H2O + log_k -39.31 + delta_h 264.32 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 98CHA, 04CHI - -analytic 69.96876E-1 00.00000E+0 -13.80640E+3 00.00000E+0 00.00000E+0 + -analytic 69.96876E-1 00E+0 -13.8064E+3 00E+0 00E+0 Cr(OH)2(cr) -Cr(OH)2 = -2.000H+ +1.000Cr+2 +2.000H2O - log_k +11.00 #41HUM/STO, 04CHI - delta_h -75.459 #kJ/mol -# Enthalpy of formation: -653.814 kJ/mol - -analytic -22.19849E-1 00.00000E+0 39.41498E+2 00.00000E+0 00.00000E+0 +Cr(OH)2 = -2 H+ + Cr+2 + 2 H2O + log_k 11 #41HUM/STO, 04CHI + delta_h -75.459 #kJ/mol +# Enthalpy of formation: -653.814 kJ/mol + -analytic -22.19849E-1 00E+0 39.41498E+2 00E+0 00E+0 Cr(OH)2(H2PO4)(s) -Cr(OH)2(H2PO4) = -2.000H+ +1.000H2(PO4)- +1.000Cr+3 +2.000H2O - log_k +0.89 #04RAI/MOO - -analytic 89.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cr(OH)2(H2PO4) = -2 H+ + H2(PO4)- + Cr+3 + 2 H2O + log_k 0.89 #04RAI/MOO + -analytic 89E-2 00E+0 00E+0 00E+0 00E+0 Cr(OH)3(cr) -Cr(OH)3 = -3.000H+ +1.000Cr+3 +3.000H2O - log_k +7.50 #04RAI/MOO - delta_h -104.751 #kJ/mol -# Enthalpy of formation: -993.239 kJ/mol - -analytic -10.85159E+0 00.00000E+0 54.71526E+2 00.00000E+0 00.00000E+0 +Cr(OH)3 = -3 H+ + Cr+3 + 3 H2O + log_k 7.5 #04RAI/MOO + delta_h -104.751 #kJ/mol +# Enthalpy of formation: -993.239 kJ/mol + -analytic -10.85159E+0 00E+0 54.71526E+2 00E+0 00E+0 Cr2(SO4)3(s) -Cr2(SO4)3 = +3.000SO4-2 +2.000Cr+3 - log_k +4.38 - delta_h -277.720 #kJ/mol +Cr2(SO4)3 = 3 SO4-2 + 2 Cr+3 + log_k 4.38 + delta_h -277.72 #kJ/mol # Enthalpy of formation: -2931.300 kJ/mol 91KNA/KUB - -analytic -44.27446E+0 00.00000E+0 14.50633E+3 00.00000E+0 00.00000E+0 + -analytic -44.27446E+0 00E+0 14.50633E+3 00E+0 00E+0 Cr2O3(cr) -Cr2O3 = -6.000H+ +2.000Cr+3 +3.000H2O - log_k +7.75 - delta_h -197.990 #kJ/mol +Cr2O3 = -6 H+ + 2 Cr+3 + 3 H2O + log_k 7.75 + delta_h -197.99 #kJ/mol # Enthalpy of formation: -1140.500 kJ/mol 04CHI - -analytic -26.93636E+0 00.00000E+0 10.34174E+3 00.00000E+0 00.00000E+0 + -analytic -26.93636E+0 00E+0 10.34174E+3 00E+0 00E+0 Cr2S3(s) -Cr2S3 = -3.000H+ +3.000HS- +2.000Cr+3 - log_k +3.26 - delta_h -195.200 #kJ/mol +Cr2S3 = -3 H+ + 3 HS- + 2 Cr+3 + log_k 3.26 + delta_h -195.2 #kJ/mol # Enthalpy of formation: -334.700 kJ/mol 84PAN - -analytic -30.93757E+0 00.00000E+0 10.19601E+3 00.00000E+0 00.00000E+0 + -analytic -30.93757E+0 00E+0 10.19601E+3 00E+0 00E+0 CrCl2(cr) -CrCl2 = +2.000Cl- +1.000Cr+2 - log_k +12.73 - delta_h -103.474 #kJ/mol +CrCl2 = 2 Cl- + Cr+2 + log_k 12.73 + delta_h -103.474 #kJ/mol # Enthalpy of formation: -388.300 kJ/mol 98BAL/NOR - -analytic -53.97867E-1 00.00000E+0 54.04823E+2 00.00000E+0 00.00000E+0 + -analytic -53.97867E-1 00E+0 54.04823E+2 00E+0 00E+0 CrCl3(cr) -CrCl3 = +3.000Cl- +1.000Cr+3 - log_k +20.19 - delta_h -197.340 #kJ/mol +CrCl3 = 3 Cl- + Cr+3 + log_k 20.19 + delta_h -197.34 #kJ/mol # Enthalpy of formation: -544.400 kJ/mol 98BAL/NOR - -analytic -14.38248E+0 00.00000E+0 10.30779E+3 00.00000E+0 00.00000E+0 + -analytic -14.38248E+0 00E+0 10.30779E+3 00E+0 00E+0 Cristobalite -SiO2 = +1.000H4(SiO4) -2.000H2O - log_k -3.16 - delta_h +16.500 #kJ/mol +SiO2 = H4(SiO4) - 2 H2O + log_k -3.16 + delta_h 16.5 #kJ/mol # Enthalpy of formation: -906.034 kJ/mol 04FAB/SAX - -analytic -26.93241E-2 00.00000E+0 -86.18550E+1 00.00000E+0 00.00000E+0 + -analytic -26.93241E-2 00E+0 -86.1855E+1 00E+0 00E+0 CrO2(cr) -CrO2 = +4.000H+ +2.000e- +1.000CrO4-2 -2.000H2O - log_k -51.68 - delta_h +290.560 #kJ/mol +CrO2 = 4 H+ + 2 e- + CrO4-2 - 2 H2O + log_k -51.68 + delta_h 290.56 #kJ/mol # Enthalpy of formation: -597.900 kJ/mol 93BAR, 04CHI - -analytic -77.60731E-2 00.00000E+0 -15.17701E+3 00.00000E+0 00.00000E+0 + -analytic -77.60731E-2 00E+0 -15.17701E+3 00E+0 00E+0 CrO3(cr) -CrO3 = +2.000H+ +1.000CrO4-2 -1.000H2O - log_k -3.02 - delta_h -10.070 #kJ/mol +CrO3 = 2 H+ + CrO4-2 - H2O + log_k -3.02 + delta_h -10.07 #kJ/mol # Enthalpy of formation: -583.100 kJ/mol 98BAL/NOR, 04CHI - -analytic -47.84188E-1 00.00000E+0 52.59927E+1 00.00000E+0 00.00000E+0 + -analytic -47.84188E-1 00E+0 52.59927E+1 00E+0 00E+0 Crocoite -PbCrO4 = +1.000Pb+2 +1.000CrO4-2 - log_k -12.55 #42KOL/PER - delta_h +48.940 #kJ/mol +PbCrO4 = Pb+2 + CrO4-2 + log_k -12.55 #42KOL/PER + delta_h 48.94 #kJ/mol # Enthalpy of formation: -927.020 kJ/mol 75DEL/MCC - -analytic -39.76080E-1 00.00000E+0 -25.56314E+2 00.00000E+0 00.00000E+0 + -analytic -39.7608E-1 00E+0 -25.56314E+2 00E+0 00E+0 Cronstedtite-Th -Fe4SiO5(OH)4 = +2.000Fe+3 +2.000Fe+2 -10.000H+ +1.000H4(SiO4) +5.000H2O - log_k +16.11 - delta_h -256.496 #kJ/mol +Fe4SiO5(OH)4 = 2 Fe+3 + 2 Fe+2 - 10 H+ + H4(SiO4) + 5 H2O + log_k 16.11 + delta_h -256.496 #kJ/mol # Enthalpy of formation: -2914.550 kJ/mol 15BLA/VIE - -analytic -28.82617E+0 00.00000E+0 13.39772E+3 00.00000E+0 00.00000E+0 - -Vm 76.800 + -analytic -28.82617E+0 00E+0 13.39772E+3 00E+0 00E+0 + -Vm 76.8 CrPO4(green) -CrPO4 = -2.000H+ +1.000H2(PO4)- +1.000Cr+3 - log_k -3.06 #51ZHA - -analytic -30.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +CrPO4 = -2 H+ + H2(PO4)- + Cr+3 + log_k -3.06 #51ZHA + -analytic -30.6E-1 00E+0 00E+0 00E+0 00E+0 CrPO4(purple) -CrPO4 = -2.000H+ +1.000H2(PO4)- +1.000Cr+3 - log_k +2.56 #51ZHA - -analytic 25.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +CrPO4 = -2 H+ + H2(PO4)- + Cr+3 + log_k 2.56 #51ZHA + -analytic 25.6E-1 00E+0 00E+0 00E+0 00E+0 CrS(s) -CrS = -1.000H+ +1.000HS- +1.000Cr+2 - log_k +1.66 - delta_h -38.771 #kJ/mol +CrS = - H+ + HS- + Cr+2 + log_k 1.66 + delta_h -38.771 #kJ/mol # Enthalpy of formation: -135.143 kJ/mol 84PAN - -analytic -51.32388E-1 00.00000E+0 20.25150E+2 00.00000E+0 00.00000E+0 + -analytic -51.32388E-1 00E+0 20.2515E+2 00E+0 00E+0 Cs(cr) -Cs = +1.000Cs+ +1.000e- - log_k +51.06 - delta_h -258.000 #kJ/mol +Cs = Cs+ + e- + log_k 51.06 + delta_h -258 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 92GRE/FUG - -analytic 58.60340E-1 00.00000E+0 13.47628E+3 00.00000E+0 00.00000E+0 + -analytic 58.6034E-1 00E+0 13.47628E+3 00E+0 00E+0 Cs2(CO3)(s) -Cs2(CO3) = +2.000Cs+ +1.000CO3-2 - log_k +9.90 - delta_h -53.609 #kJ/mol -# Enthalpy of formation: -1137.620 kJ/mol - -analytic 50.81064E-2 00.00000E+0 28.00193E+2 00.00000E+0 00.00000E+0 +Cs2(CO3) = 2 Cs+ + CO3-2 + log_k 9.9 + delta_h -53.609 #kJ/mol +# Enthalpy of formation: -1137.620 kJ/mol + -analytic 50.81064E-2 00E+0 28.00193E+2 00E+0 00E+0 Cs2(SO4)(s) -Cs2(SO4) = +2.000Cs+ +1.000SO4-2 - log_k +0.58 - delta_h +17.769 #kJ/mol -# Enthalpy of formation: -1443.108 kJ/mol - -analytic 36.92995E-1 00.00000E+0 -92.81395E+1 00.00000E+0 00.00000E+0 +Cs2(SO4) = 2 Cs+ + SO4-2 + log_k 0.58 + delta_h 17.769 #kJ/mol +# Enthalpy of formation: -1443.108 kJ/mol + -analytic 36.92995E-1 00E+0 -92.81395E+1 00E+0 00E+0 Cs2MoO4(s) -Cs2MoO4 = +2.000Cs+ +1.000MoO4-2 - log_k +2.21 - delta_h +1.731 #kJ/mol -# Enthalpy of formation: -1514.730 kJ/mol - -analytic 25.13258E-1 00.00000E+0 -90.41643E+0 00.00000E+0 00.00000E+0 +Cs2MoO4 = 2 Cs+ + MoO4-2 + log_k 2.21 + delta_h 1.731 #kJ/mol +# Enthalpy of formation: -1514.730 kJ/mol + -analytic 25.13258E-1 00E+0 -90.41643E+0 00E+0 00E+0 Cs2O(s) -Cs2O = +2.000Cs+ -2.000H+ +1.000H2O - log_k +89.68 - delta_h -456.069 #kJ/mol -# Enthalpy of formation: -345.759 kJ/mol - -analytic 97.80141E-1 00.00000E+0 23.82214E+3 00.00000E+0 00.00000E+0 +Cs2O = 2 Cs+ - 2 H+ + H2O + log_k 89.68 + delta_h -456.069 #kJ/mol +# Enthalpy of formation: -345.759 kJ/mol + -analytic 97.80141E-1 00E+0 23.82214E+3 00E+0 00E+0 CsBr(cr) -CsBr = +1.000Cs+ +1.000Br- - log_k +0.72 - delta_h +26.190 #kJ/mol +CsBr = Cs+ + Br- + log_k 0.72 + delta_h 26.19 #kJ/mol # Enthalpy of formation: -405.600 kJ/mol 01LEM/FUG - -analytic 53.08291E-1 00.00000E+0 -13.67999E+2 00.00000E+0 00.00000E+0 + -analytic 53.08291E-1 00E+0 -13.67999E+2 00E+0 00E+0 CsCl(cr) -CsCl = +1.000Cs+ +1.000Cl- - log_k +1.55 - delta_h +17.230 #kJ/mol +CsCl = Cs+ + Cl- + log_k 1.55 + delta_h 17.23 #kJ/mol # Enthalpy of formation: -442.310 kJ/mol 01LEM/FUG - -analytic 45.68566E-1 00.00000E+0 -89.99856E+1 00.00000E+0 00.00000E+0 + -analytic 45.68566E-1 00E+0 -89.99856E+1 00E+0 00E+0 CSH0.8 -Ca0.8SiO2.8:1.54H2O = +0.800Ca+2 -1.600H+ +1.000H4(SiO4) +0.340H2O - log_k +11.05 #10BLA/BOU1 - delta_h -47.646 #kJ/mol +Ca0.8SiO2.8:1.54H2O = 0.8 Ca+2 - 1.6 H+ + H4(SiO4) + 0.34 H2O + log_k 11.05 #10BLA/BOU1 + delta_h -47.646 #kJ/mol # Enthalpy of formation: -1945.130 kJ/mol 10BLA/BOU1 - -analytic 27.02779E-1 00.00000E+0 24.88724E+2 00.00000E+0 00.00000E+0 - -Vm 59.290 + -analytic 27.02779E-1 00E+0 24.88724E+2 00E+0 00E+0 + -Vm 59.29 CSH1.2 -Ca1.2SiO3.2:2.06H2O = +1.200Ca+2 -2.400H+ +1.000H4(SiO4) +1.260H2O - log_k +19.30 #10BLA/BOU1 - delta_h -88.600 #kJ/mol +Ca1.2SiO3.2:2.06H2O = 1.2 Ca+2 - 2.4 H+ + H4(SiO4) + 1.26 H2O + log_k 19.3 #10BLA/BOU1 + delta_h -88.6 #kJ/mol # Enthalpy of formation: -2384.340 kJ/mol 10BLA/BOU1 - -analytic 37.77946E-1 00.00000E+0 46.27900E+2 00.00000E+0 00.00000E+0 - -Vm 71.950 + -analytic 37.77946E-1 00E+0 46.279E+2 00E+0 00E+0 + -Vm 71.95 CSH1.6 -Ca1.6SiO3.6:2.58H2O = +1.600Ca+2 -3.200H+ +1.000H4(SiO4) +2.180H2O - log_k +28.00 #10BLA/BOU1 - delta_h -133.313 #kJ/mol +Ca1.6SiO3.6:2.58H2O = 1.6 Ca+2 - 3.2 H+ + H4(SiO4) + 2.18 H2O + log_k 28 #10BLA/BOU1 + delta_h -133.313 #kJ/mol # Enthalpy of formation: -2819.790 kJ/mol 10BLA/BOU1 - -analytic 46.44565E-1 00.00000E+0 69.63423E+2 00.00000E+0 00.00000E+0 - -Vm 84.680 + -analytic 46.44565E-1 00E+0 69.63423E+2 00E+0 00E+0 + -Vm 84.68 Cu(cr) -Cu = +1.000Cu+2 +2.000e- - log_k -11.39 - delta_h +64.900 #kJ/mol +Cu = Cu+2 + 2 e- + log_k -11.39 + delta_h 64.9 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 01LEM/FUG - -analytic -20.00807E-3 00.00000E+0 -33.89963E+2 00.00000E+0 00.00000E+0 + -analytic -20.00807E-3 00E+0 -33.89963E+2 00E+0 00E+0 Cu(OH)2(s) -Cu(OH)2 = +1.000Cu+2 -2.000H+ +2.000H2O - log_k +8.64 #97BEV/PUI - delta_h -62.764 #kJ/mol -# Enthalpy of formation: -443.996 kJ/mol - -analytic -23.55781E-1 00.00000E+0 32.78392E+2 00.00000E+0 00.00000E+0 +Cu(OH)2 = Cu+2 - 2 H+ + 2 H2O + log_k 8.64 #97BEV/PUI + delta_h -62.764 #kJ/mol +# Enthalpy of formation: -443.996 kJ/mol + -analytic -23.55781E-1 00E+0 32.78392E+2 00E+0 00E+0 Cu(SeO3):2H2O(s) -Cu(SeO3):2H2O = +1.000Cu+2 +1.000SeO3-2 +2.000H2O - log_k -9.50 #Average value from 56CHU2 and 93SLA/POP in 05OLI/NOL - delta_h -15.320 #kJ/mol +Cu(SeO3):2H2O = Cu+2 + SeO3-2 + 2 H2O + log_k -9.5 #Average value from 56CHU2 and 93SLA/POP in 05OLI/NOL + delta_h -15.32 #kJ/mol # Enthalpy of formation: -998.600 kJ/mol 05OLI/NOL - -analytic -12.18395E+0 00.00000E+0 80.02193E+1 00.00000E+0 00.00000E+0 + -analytic -12.18395E+0 00E+0 80.02193E+1 00E+0 00E+0 Cu(SeO4):5H2O(s) -Cu(SeO4):5H2O = +1.000Cu+2 +1.000SeO4-2 +5.000H2O - log_k -2.44 #05OLI/NOL - delta_h +5.580 #kJ/mol +Cu(SeO4):5H2O = Cu+2 + SeO4-2 + 5 H2O + log_k -2.44 #05OLI/NOL + delta_h 5.58 #kJ/mol # Enthalpy of formation: -1973.330 kJ/mol 05OLI/NOL - -analytic -14.62426E-1 00.00000E+0 -29.14637E+1 00.00000E+0 00.00000E+0 + -analytic -14.62426E-1 00E+0 -29.14637E+1 00E+0 00E+0 Cu1.75S(cr) -Cu1.75S = +0.250Cu+2 +1.500Cu+ -1.000H+ +1.000HS- - log_k -31.22 #94THO/HEL - delta_h +179.717 #kJ/mol -# Enthalpy of formation: -73.910 kJ/mol - -analytic 26.50669E-2 00.00000E+0 -93.87273E+2 00.00000E+0 00.00000E+0 +Cu1.75S = 0.25 Cu+2 + 1.5 Cu+ - H+ + HS- + log_k -31.22 #94THO/HEL + delta_h 179.717 #kJ/mol +# Enthalpy of formation: -73.910 kJ/mol + -analytic 26.50669E-2 00E+0 -93.87273E+2 00E+0 00E+0 Cu1.934S(cr) -Cu1.934S = +0.066Cu+2 +1.868Cu+ -1.000H+ +1.000HS- - log_k -33.33 #94THO/HEL - delta_h +198.224 #kJ/mol -# Enthalpy of formation: -78.382 kJ/mol - -analytic 13.97354E-1 00.00000E+0 -10.35396E+3 00.00000E+0 00.00000E+0 +Cu1.934S = 0.066 Cu+2 + 1.868 Cu+ - H+ + HS- + log_k -33.33 #94THO/HEL + delta_h 198.224 #kJ/mol +# Enthalpy of formation: -78.382 kJ/mol + -analytic 13.97354E-1 00E+0 -10.35396E+3 00E+0 00E+0 Cu2Cl(OH)3(am) -Cu2Cl(OH)3 = +2.000Cu+2 -3.000H+ +1.000Cl- +3.000H2O - log_k +7.46 #00PUI/TAX - delta_h -79.445 #kJ/mol 97LUB/KOL -# Enthalpy of formation: -815.325 kJ/mol - -analytic -64.58167E-1 00.00000E+0 41.49701E+2 00.00000E+0 00.00000E+0 +Cu2Cl(OH)3 = 2 Cu+2 - 3 H+ + Cl- + 3 H2O + log_k 7.46 #00PUI/TAX + delta_h -79.445 #kJ/mol 97LUB/KOL +# Enthalpy of formation: -815.325 kJ/mol + -analytic -64.58167E-1 00E+0 41.49701E+2 00E+0 00E+0 Cu2Cl(OH)3(s) -Cu2Cl(OH)3 = +2.000Cu+2 -3.000H+ +1.000Cl- +3.000H2O - log_k +6.90 #97LUB/KOL - delta_h -79.445 #kJ/mol 97LUB/KOL -# Enthalpy of formation: -815.325 kJ/mol - -analytic -70.18167E-1 00.00000E+0 41.49701E+2 00.00000E+0 00.00000E+0 +Cu2Cl(OH)3 = 2 Cu+2 - 3 H+ + Cl- + 3 H2O + log_k 6.9 #97LUB/KOL + delta_h -79.445 #kJ/mol 97LUB/KOL +# Enthalpy of formation: -815.325 kJ/mol + -analytic -70.18167E-1 00E+0 41.49701E+2 00E+0 00E+0 Cu2O(cr) -Cu2O = +2.000Cu+ -2.000H+ +1.000H2O - log_k -0.62 #11PAL - delta_h +18.446 #kJ/mol -# Enthalpy of formation: -163.099 kJ/mol - -analytic 26.11600E-1 00.00000E+0 -96.35017E+1 00.00000E+0 00.00000E+0 +Cu2O = 2 Cu+ - 2 H+ + H2O + log_k -0.62 #11PAL + delta_h 18.446 #kJ/mol +# Enthalpy of formation: -163.099 kJ/mol + -analytic 26.116E-1 00E+0 -96.35017E+1 00E+0 00E+0 Cu2Se(alfa) -Cu2Se = +2.000Cu+ -1.000H+ +1.000HSe- - log_k -45.89 #01SEB/POT2 - delta_h +214.778 #kJ/mol +Cu2Se = 2 Cu+ - H+ + HSe- + log_k -45.89 #01SEB/POT2 + delta_h 214.778 #kJ/mol # Enthalpy of formation: -59.300 kJ/mol 05OLI/NOL - -analytic -82.62510E-1 00.00000E+0 -11.21864E+3 00.00000E+0 00.00000E+0 + -analytic -82.6251E-1 00E+0 -11.21864E+3 00E+0 00E+0 Cu3(AsO4)2(s) -Cu3(AsO4)2 = +3.000Cu+2 +2.000AsO4-3 - log_k -34.88 - -analytic -34.88000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Cu3(AsO4)2 = 3 Cu+2 + 2 AsO4-3 + log_k -34.88 + -analytic -34.88E+0 00E+0 00E+0 00E+0 00E+0 CuCl(s) -CuCl = +1.000Cu+ +1.000Cl- - log_k -6.82 #97WAN/ZHA - delta_h +41.579 #kJ/mol +CuCl = Cu+ + Cl- + log_k -6.82 #97WAN/ZHA + delta_h 41.579 #kJ/mol # Enthalpy of formation: -138.070 kJ/mol 85CHA/DAV - -analytic 46.43281E-2 00.00000E+0 -21.71822E+2 00.00000E+0 00.00000E+0 + -analytic 46.43281E-2 00E+0 -21.71822E+2 00E+0 00E+0 CuCO3(s) -CuCO3 = +1.000Cu+2 +1.000CO3-2 - log_k -11.45 #99GRA/BER in 00PUI/TAX - delta_h -4.977 #kJ/mol -# Enthalpy of formation: -605.353 kJ/mol - -analytic -12.32193E+0 00.00000E+0 25.99668E+1 00.00000E+0 00.00000E+0 +CuCO3 = Cu+2 + CO3-2 + log_k -11.45 #99GRA/BER in 00PUI/TAX + delta_h -4.977 #kJ/mol +# Enthalpy of formation: -605.353 kJ/mol + -analytic -12.32193E+0 00E+0 25.99668E+1 00E+0 00E+0 CuO(s) -CuO = +1.000Cu+2 -2.000H+ +1.000H2O - log_k +7.63 #21RIB/COL from 65SCH/ALT - delta_h -64.616 #kJ/mol -# Enthalpy of formation: -156.313 kJ/mol - -analytic -36.90237E-1 00.00000E+0 33.75129E+2 00.00000E+0 00.00000E+0 +CuO = Cu+2 - 2 H+ + H2O + log_k 7.63 #21RIB/COL from 65SCH/ALT + delta_h -64.616 #kJ/mol +# Enthalpy of formation: -156.313 kJ/mol + -analytic -36.90237E-1 00E+0 33.75129E+2 00E+0 00E+0 CuSe(alfa) -CuSe = +1.000Cu+2 -1.000H+ +1.000HSe- - log_k -25.46 - delta_h +118.700 #kJ/mol +CuSe = Cu+2 - H+ + HSe- + log_k -25.46 + delta_h 118.7 #kJ/mol # Enthalpy of formation: -39.500 kJ/mol 05OLI/NOL - -analytic -46.64653E-1 00.00000E+0 -62.00133E+2 00.00000E+0 00.00000E+0 + -analytic -46.64653E-1 00E+0 -62.00133E+2 00E+0 00E+0 CuSe(beta) -CuSe = +1.000Cu+2 -1.000H+ +1.000HSe- - log_k -25.13 - delta_h +116.000 #kJ/mol +CuSe = Cu+2 - H+ + HSe- + log_k -25.13 + delta_h 116 #kJ/mol # Enthalpy of formation: -36.800 kJ/mol 05OLI/NOL - -analytic -48.07672E-1 00.00000E+0 -60.59102E+2 00.00000E+0 00.00000E+0 + -analytic -48.07672E-1 00E+0 -60.59102E+2 00E+0 00E+0 Dawsonite -NaAl(CO3)(OH)2 = +1.000Na+ +1.000Al+3 -2.000H+ +1.000CO3-2 +2.000H2O - log_k -6.00 - delta_h -61.630 #kJ/mol +NaAl(CO3)(OH)2 = Na+ + Al+3 - 2 H+ + CO3-2 + 2 H2O + log_k -6 + delta_h -61.63 #kJ/mol # Enthalpy of formation: -1964.000 kJ/mol 76FER/STU - -analytic -16.79711E+0 00.00000E+0 32.19159E+2 00.00000E+0 00.00000E+0 - -Vm 59.300 + -analytic -16.79711E+0 00E+0 32.19159E+2 00E+0 00E+0 + -Vm 59.3 Diaspore -AlO(OH) = +1.000Al+3 -3.000H+ +2.000H2O - log_k +6.87 - delta_h -108.760 #kJ/mol +AlO(OH) = Al+3 - 3 H+ + 2 H2O + log_k 6.87 + delta_h -108.76 #kJ/mol # Enthalpy of formation: -1001.300 kJ/mol 95ROB/HEM - -analytic -12.18393E+0 00.00000E+0 56.80930E+2 00.00000E+0 00.00000E+0 + -analytic -12.18393E+0 00E+0 56.8093E+2 00E+0 00E+0 Dickite -Al2Si2O5(OH)4 = +2.000Al+3 -6.000H+ +2.000H4(SiO4) +1.000H2O - log_k +9.39 - delta_h -185.218 #kJ/mol +Al2Si2O5(OH)4 = 2 Al+3 - 6 H+ + 2 H4(SiO4) + H2O + log_k 9.39 + delta_h -185.218 #kJ/mol # Enthalpy of formation: -4099.800 kJ/mol 03FIA/MAJ - -analytic -23.05880E+0 00.00000E+0 96.74610E+2 00.00000E+0 00.00000E+0 + -analytic -23.0588E+0 00E+0 96.7461E+2 00E+0 00E+0 Dolomite -CaMg(CO3)2 = +1.000Ca+2 +1.000Mg+2 +2.000CO3-2 - log_k -17.13 - delta_h -35.960 #kJ/mol +CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + log_k -17.13 + delta_h -35.96 #kJ/mol # Enthalpy of formation: -2324.500 kJ/mol 95ROB/HEM - -analytic -23.42992E+0 00.00000E+0 18.78322E+2 00.00000E+0 00.00000E+0 - -Vm 64.370 + -analytic -23.42992E+0 00E+0 18.78322E+2 00E+0 00E+0 + -Vm 64.37 Downeyite -SeO2 = +2.000H+ +1.000SeO3-2 -1.000H2O - log_k -8.15 - delta_h +4.060 #kJ/mol +SeO2 = 2 H+ + SeO3-2 - H2O + log_k -8.15 + delta_h 4.06 #kJ/mol # Enthalpy of formation: -225.390 kJ/mol 05OLI/NOL - -analytic -74.38719E-1 00.00000E+0 -21.20686E+1 00.00000E+0 00.00000E+0 + -analytic -74.38719E-1 00E+0 -21.20686E+1 00E+0 00E+0 Eastonite -KMg2Al3Si2O10(OH)2 = +2.000Mg+2 +1.000K+ +3.000Al+3 -14.000H+ +2.000H4(SiO4) +4.000H2O - log_k +46.30 - delta_h -518.108 #kJ/mol +KMg2Al3Si2O10(OH)2 = 2 Mg+2 + K+ + 3 Al+3 - 14 H+ + 2 H4(SiO4) + 4 H2O + log_k 46.3 + delta_h -518.108 #kJ/mol # Enthalpy of formation: -6348.940 kJ/mol 98HOL/POW - -analytic -44.46863E+0 00.00000E+0 27.06267E+3 00.00000E+0 00.00000E+0 - -Vm 147.510 + -analytic -44.46863E+0 00E+0 27.06267E+3 00E+0 00E+0 + -Vm 147.51 Epsonite -Mg(SO4):7H2O = +1.000Mg+2 +1.000SO4-2 +7.000H2O - log_k -1.88 #84HAR/MOL - delta_h +10.990 #kJ/mol -# Enthalpy of formation: -3388.138 kJ/mol - -analytic 45.36535E-3 00.00000E+0 -57.40477E+1 00.00000E+0 00.00000E+0 +Mg(SO4):7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -1.88 #84HAR/MOL + delta_h 10.99 #kJ/mol +# Enthalpy of formation: -3388.138 kJ/mol + -analytic 45.36535E-3 00E+0 -57.40477E+1 00E+0 00E+0 Ettringite -Ca6Al2(SO4)3(OH)12:26H2O = +6.000Ca+2 +2.000Al+3 -12.000H+ +3.000SO4-2 +38.000H2O - log_k +56.97 #10BLA/BOU2 - delta_h -379.830 #kJ/mol +Ca6Al2(SO4)3(OH)12:26H2O = 6 Ca+2 + 2 Al+3 - 12 H+ + 3 SO4-2 + 38 H2O + log_k 56.97 #10BLA/BOU2 + delta_h -379.83 #kJ/mol # Enthalpy of formation: -17544.530kJ/mol 10BLA/BOU2 - -analytic -95.73360E-1 00.00000E+0 19.83990E+3 00.00000E+0 00.00000E+0 - -Vm 710.320 + -analytic -95.7336E-1 00E+0 19.8399E+3 00E+0 00E+0 + -Vm 710.32 Ettringite-Fe -Ca6Fe2(SO4)3(OH)12:26H2O = +6.000Ca+2 +2.000Fe+3 -12.000H+ +3.000SO4-2 +38.000H2O - log_k +54.55 #10BLA/BOU2 - delta_h -346.706 #kJ/mol -# Enthalpy of formation: -16600.951kJ/mol - -analytic -61.90284E-1 00.00000E+0 18.10972E+3 00.00000E+0 00.00000E+0 - -Vm 711.800 +Ca6Fe2(SO4)3(OH)12:26H2O = 6 Ca+2 + 2 Fe+3 - 12 H+ + 3 SO4-2 + 38 H2O + log_k 54.55 #10BLA/BOU2 + delta_h -346.706 #kJ/mol +# Enthalpy of formation: -16600.951kJ/mol + -analytic -61.90284E-1 00E+0 18.10972E+3 00E+0 00E+0 + -Vm 711.8 Eu(cr) -Eu = +1.000Eu+3 +3.000e- - log_k +100.64 - delta_h -605.325 #kJ/mol +Eu = Eu+3 + 3 e- + log_k 100.64 + delta_h -605.325 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 82WAG/EVA - -analytic -54.08388E-1 00.00000E+0 31.61833E+3 00.00000E+0 00.00000E+0 + -analytic -54.08388E-1 00E+0 31.61833E+3 00E+0 00E+0 Eu(NO3)3:6H2O(s) -Eu(NO3)3:6H2O = +1.000Eu+3 +3.000NO3- +6.000H2O - log_k +1.84 #95SPA/BRU - delta_h +16.845 #kJ/mol +Eu(NO3)3:6H2O = Eu+3 + 3 NO3- + 6 H2O + log_k 1.84 #95SPA/BRU + delta_h 16.845 #kJ/mol # Enthalpy of formation: -2957.700 kJ/mol 82WAG/EVA - -analytic 47.91117E-1 00.00000E+0 -87.98756E+1 00.00000E+0 00.00000E+0 + -analytic 47.91117E-1 00E+0 -87.98756E+1 00E+0 00E+0 Eu(OH)3(am) -Eu(OH)3 = +1.000Eu+3 -3.000H+ +3.000H2O - log_k +17.60 #98DIA/RAG - -analytic 17.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Eu(OH)3 = Eu+3 - 3 H+ + 3 H2O + log_k 17.6 #98DIA/RAG + -analytic 17.6E+0 00E+0 00E+0 00E+0 00E+0 Eu(OH)3(cr) -Eu(OH)3 = +1.000Eu+3 -3.000H+ +3.000H2O - log_k +15.46 #98DIA/RAG - delta_h -127.543 #kJ/mol -# Enthalpy of formation: -1335.272 kJ/mol - -analytic -68.84574E-1 00.00000E+0 66.62035E+2 00.00000E+0 00.00000E+0 +Eu(OH)3 = Eu+3 - 3 H+ + 3 H2O + log_k 15.46 #98DIA/RAG + delta_h -127.543 #kJ/mol +# Enthalpy of formation: -1335.272 kJ/mol + -analytic -68.84574E-1 00E+0 66.62035E+2 00E+0 00E+0 Eu(PO4):xH2O(s) -Eu(PO4) = +1.000Eu+3 -2.000H+ +1.000H2(PO4)- - log_k -4.84 #95SPA/BRU - -analytic -48.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Eu(PO4) = Eu+3 - 2 H+ + H2(PO4)- + log_k -4.84 #95SPA/BRU + -analytic -48.4E-1 00E+0 00E+0 00E+0 00E+0 Eu2(CO3)3(s) -Eu2(CO3)3 = +2.000Eu+3 +3.000CO3-2 - log_k -35.00 #95SPA/BRU - -analytic -35.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Eu2(CO3)3 = 2 Eu+3 + 3 CO3-2 + log_k -35 #95SPA/BRU + -analytic -35E+0 00E+0 00E+0 00E+0 00E+0 Eu2(SO4)3:8H2O(s) -Eu2(SO4)3:8H2O = +2.000Eu+3 +3.000SO4-2 +8.000H2O - log_k -10.20 #95SPA/BRU - delta_h -90.974 #kJ/mol -# Enthalpy of formation: -6134.332 kJ/mol - -analytic -26.13796E+0 00.00000E+0 47.51903E+2 00.00000E+0 00.00000E+0 +Eu2(SO4)3:8H2O = 2 Eu+3 + 3 SO4-2 + 8 H2O + log_k -10.2 #95SPA/BRU + delta_h -90.974 #kJ/mol +# Enthalpy of formation: -6134.332 kJ/mol + -analytic -26.13796E+0 00E+0 47.51903E+2 00E+0 00E+0 Eu2O3(cubic) -Eu2O3 = +2.000Eu+3 -6.000H+ +3.000H2O - log_k +52.40 #95SPA/BRU - delta_h -405.440 #kJ/mol +Eu2O3 = 2 Eu+3 - 6 H+ + 3 H2O + log_k 52.4 #95SPA/BRU + delta_h -405.44 #kJ/mol # Enthalpy of formation: -1662.700 kJ/mol 82WAG/EVA - -analytic -18.63004E+0 00.00000E+0 21.17761E+3 00.00000E+0 00.00000E+0 + -analytic -18.63004E+0 00E+0 21.17761E+3 00E+0 00E+0 Eu2O3(monoclinic) -Eu2O3 = +2.000Eu+3 -6.000H+ +3.000H2O - log_k +53.47 - delta_h -418.513 #kJ/mol -# Enthalpy of formation: -1649.626 kJ/mol - -analytic -19.85033E+0 00.00000E+0 21.86046E+3 00.00000E+0 00.00000E+0 +Eu2O3 = 2 Eu+3 - 6 H+ + 3 H2O + log_k 53.47 + delta_h -418.513 #kJ/mol +# Enthalpy of formation: -1649.626 kJ/mol + -analytic -19.85033E+0 00E+0 21.86046E+3 00E+0 00E+0 Eu3O4(s) -Eu3O4 = +3.000Eu+3 -8.000H+ +1.000e- +4.000H2O - log_k +93.02 - delta_h -688.765 #kJ/mol -# Enthalpy of formation: -2270.529 kJ/mol - -analytic -27.64645E+0 00.00000E+0 35.97670E+3 00.00000E+0 00.00000E+0 +Eu3O4 = 3 Eu+3 - 8 H+ + e- + 4 H2O + log_k 93.02 + delta_h -688.765 #kJ/mol +# Enthalpy of formation: -2270.529 kJ/mol + -analytic -27.64645E+0 00E+0 35.9767E+3 00E+0 00E+0 EuBr3(s) -EuBr3 = +1.000Eu+3 +3.000Br- - log_k +30.19 #95SPA/BRU - -analytic 30.19000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +EuBr3 = Eu+3 + 3 Br- + log_k 30.19 #95SPA/BRU + -analytic 30.19E+0 00E+0 00E+0 00E+0 00E+0 EuCl(OH)2(s) -EuCl(OH)2 = +1.000Eu+3 -2.000H+ +1.000Cl- +2.000H2O - log_k +9.13 #95SPA/BRU - -analytic 91.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +EuCl(OH)2 = Eu+3 - 2 H+ + Cl- + 2 H2O + log_k 9.13 #95SPA/BRU + -analytic 91.3E-1 00E+0 00E+0 00E+0 00E+0 EuCl2(s) -EuCl2 = +1.000Eu+3 +1.000e- +2.000Cl- - log_k +11.22 #95SPA/BRU - delta_h -115.485 #kJ/mol +EuCl2 = Eu+3 + e- + 2 Cl- + log_k 11.22 #95SPA/BRU + delta_h -115.485 #kJ/mol # Enthalpy of formation: -824.000 kJ/mol 82WAG/EVA - -analytic -90.12104E-1 00.00000E+0 60.32202E+2 00.00000E+0 00.00000E+0 + -analytic -90.12104E-1 00E+0 60.32202E+2 00E+0 00E+0 EuCl3(s) -EuCl3 = +1.000Eu+3 +3.000Cl- - log_k +19.72 #96FAL/REA - delta_h -170.565 #kJ/mol +EuCl3 = Eu+3 + 3 Cl- + log_k 19.72 #96FAL/REA + delta_h -170.565 #kJ/mol # Enthalpy of formation: -936.000 kJ/mol 82WAG/EVA - -analytic -10.16171E+0 00.00000E+0 89.09230E+2 00.00000E+0 00.00000E+0 + -analytic -10.16171E+0 00E+0 89.0923E+2 00E+0 00E+0 EuCl3:6H2O(s) -EuCl3:6H2O = +1.000Eu+3 +3.000Cl- +6.000H2O - log_k +5.20 #95SPA/BRU - delta_h -41.414 #kJ/mol -# Enthalpy of formation: -2780.128 kJ/mol - -analytic -20.55421E-1 00.00000E+0 21.63204E+2 00.00000E+0 00.00000E+0 +EuCl3:6H2O = Eu+3 + 3 Cl- + 6 H2O + log_k 5.2 #95SPA/BRU + delta_h -41.414 #kJ/mol +# Enthalpy of formation: -2780.128 kJ/mol + -analytic -20.55421E-1 00E+0 21.63204E+2 00E+0 00E+0 EuCO3OH(cr) -Eu(CO3)(OH) = +1.000Eu+3 -1.000H+ +1.000CO3-2 +1.000H2O - log_k -9.63 - delta_h -43.385 #kJ/mol +Eu(CO3)(OH) = Eu+3 - H+ + CO3-2 + H2O + log_k -9.63 + delta_h -43.385 #kJ/mol # Enthalpy of formation: -1523.000 kJ/mol 05ROR/FUG - -analytic -17.23073E+0 00.00000E+0 22.66156E+2 00.00000E+0 00.00000E+0 + -analytic -17.23073E+0 00E+0 22.66156E+2 00E+0 00E+0 EuCO3OH:0.5H2O(s) -Eu(CO3)(OH):0.5H2O = +1.000Eu+3 -1.000H+ +1.000CO3-2 +1.500H2O - log_k -7.80 #95SPA/BRU - delta_h -55.900 #kJ/mol +Eu(CO3)(OH):0.5H2O = Eu+3 - H+ + CO3-2 + 1.5 H2O + log_k -7.8 #95SPA/BRU + delta_h -55.9 #kJ/mol # Enthalpy of formation: -1653.400 kJ/mol 05ROR/FUG - -analytic -17.59326E+0 00.00000E+0 29.19860E+2 00.00000E+0 00.00000E+0 + -analytic -17.59326E+0 00E+0 29.1986E+2 00E+0 00E+0 EuF3(s) -EuF3 = +1.000Eu+3 +3.000F- - log_k -18.50 #96FAL/REA - -analytic -18.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +EuF3 = Eu+3 + 3 F- + log_k -18.5 #96FAL/REA + -analytic -18.5E+0 00E+0 00E+0 00E+0 00E+0 EuF3:0.5H2O(s) -EuF3:0.5H2O = +1.000Eu+3 +3.000F- +0.500H2O - log_k -17.20 #95SPA/BRU - -analytic -17.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +EuF3:0.5H2O = Eu+3 + 3 F- + 0.5 H2O + log_k -17.2 #95SPA/BRU + -analytic -17.2E+0 00E+0 00E+0 00E+0 00E+0 EuO(s) -EuO = +1.000Eu+3 -2.000H+ +1.000e- +1.000H2O - log_k +44.77 - delta_h -300.012 #kJ/mol -# Enthalpy of formation: -591.143 kJ/mol - -analytic -77.89846E-1 00.00000E+0 15.67072E+3 00.00000E+0 00.00000E+0 +EuO = Eu+3 - 2 H+ + e- + H2O + log_k 44.77 + delta_h -300.012 #kJ/mol +# Enthalpy of formation: -591.143 kJ/mol + -analytic -77.89846E-1 00E+0 15.67072E+3 00E+0 00E+0 EuOCl(s) -EuOCl = +1.000Eu+3 -2.000H+ +1.000Cl- +1.000H2O - log_k +15.81 #95SPA/BRU - delta_h -154.735 #kJ/mol +EuOCl = Eu+3 - 2 H+ + Cl- + H2O + log_k 15.81 #95SPA/BRU + delta_h -154.735 #kJ/mol # Enthalpy of formation: -903.500 kJ/mol 98BUR/PET - -analytic -11.29841E+0 00.00000E+0 80.82372E+2 00.00000E+0 00.00000E+0 + -analytic -11.29841E+0 00E+0 80.82372E+2 00E+0 00E+0 EuPO4:H2O(cr) -EuPO4:H2O = +1.000Eu+3 -2.000H+ +1.000H2(PO4)- +1.000H2O - log_k -6.44 #97LIU/BYR - -analytic -64.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +EuPO4:H2O = Eu+3 - 2 H+ + H2(PO4)- + H2O + log_k -6.44 #97LIU/BYR + -analytic -64.4E-1 00E+0 00E+0 00E+0 00E+0 EuSO4(s) -EuSO4 = +1.000Eu+3 +1.000e- +1.000SO4-2 - log_k -2.52 #95SPA/BRU - delta_h -92.864 #kJ/mol -# Enthalpy of formation: -1421.801 kJ/mol - -analytic -18.78907E+0 00.00000E+0 48.50625E+2 00.00000E+0 00.00000E+0 +EuSO4 = Eu+3 + e- + SO4-2 + log_k -2.52 #95SPA/BRU + delta_h -92.864 #kJ/mol +# Enthalpy of formation: -1421.801 kJ/mol + -analytic -18.78907E+0 00E+0 48.50625E+2 00E+0 00E+0 Fayalite -Fe2(SiO4) = +2.000Fe+2 -4.000H+ +1.000H4(SiO4) - log_k +19.55 - delta_h -163.644 #kJ/mol +Fe2(SiO4) = 2 Fe+2 - 4 H+ + H4(SiO4) + log_k 19.55 + delta_h -163.644 #kJ/mol # Enthalpy of formation: -1478.140 kJ/mol 95ROB/HEM - -analytic -91.19198E-1 00.00000E+0 85.47721E+2 00.00000E+0 00.00000E+0 + -analytic -91.19198E-1 00E+0 85.47721E+2 00E+0 00E+0 Fe(alpha,cr) -Fe = +1.000Fe+2 +2.000e- - log_k +15.89 - delta_h -90.295 #kJ/mol +Fe = Fe+2 + 2 e- + log_k 15.89 + delta_h -90.295 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 13LEM/BER - -analytic 70.99504E-3 00.00000E+0 47.16436E+2 00.00000E+0 00.00000E+0 + -analytic 70.99504E-3 00E+0 47.16436E+2 00E+0 00E+0 Fe(OH)2(cr) -Fe(OH)2 = +1.000Fe+2 -2.000H+ +2.000H2O - log_k +12.78 - delta_h -87.915 #kJ/mol +Fe(OH)2 = Fe+2 - 2 H+ + 2 H2O + log_k 12.78 + delta_h -87.915 #kJ/mol # Enthalpy of formation: -574.040 kJ/mol 98CHA in 04CHI - -analytic -26.22047E-1 00.00000E+0 45.92120E+2 00.00000E+0 00.00000E+0 + -analytic -26.22047E-1 00E+0 45.9212E+2 00E+0 00E+0 Fe(PO4)(cr) -Fe(PO4) = +1.000Fe+3 -2.000H+ +1.000H2(PO4)- - log_k -1.39 - delta_h -85.096 #kJ/mol +Fe(PO4) = Fe+3 - 2 H+ + H2(PO4)- + log_k -1.39 + delta_h -85.096 #kJ/mol # Enthalpy of formation: -1267.560 kJ/mol 20LEM/PAL - -analytic -16.29818E+0 00.00000E+0 44.44874E+2 00.00000E+0 00.00000E+0 + -analytic -16.29818E+0 00E+0 44.44874E+2 00E+0 00E+0 Fe0.932O(s) -Fe0.932O = +0.932Fe+2 -2.000H+ -0.136e- +1.000H2O - log_k +13.51 - delta_h -104.185 #kJ/mol +Fe0.932O = 0.932 Fe+2 - 2 H+ - 0.136 e- + H2O + log_k 13.51 + delta_h -104.185 #kJ/mol # Enthalpy of formation: -265.800 kJ/mol 20LEM/PAL - -analytic -47.42428E-1 00.00000E+0 54.41962E+2 00.00000E+0 00.00000E+0 + -analytic -47.42428E-1 00E+0 54.41962E+2 00E+0 00E+0 Fe1.04Se(beta) -Fe1.04Se = +1.040Fe+2 -1.000H+ +0.080e- +1.000HSe- - log_k -3.38 - delta_h -10.007 #kJ/mol +Fe1.04Se = 1.04 Fe+2 - H+ + 0.08 e- + HSe- + log_k -3.38 + delta_h -10.007 #kJ/mol # Enthalpy of formation: -69.600 kJ/mol 05OLI/NOL - -analytic -51.33151E-1 00.00000E+0 52.27020E+1 00.00000E+0 00.00000E+0 + -analytic -51.33151E-1 00E+0 52.2702E+1 00E+0 00E+0 Fe2(SeO3)3:6H2O(s) -Fe2(SeO3)3:6H2O = +2.000Fe+3 +3.000SeO3-2 +6.000H2O - log_k -41.58 #05OLI/NOL - -analytic -41.58000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Fe2(SeO3)3:6H2O = 2 Fe+3 + 3 SeO3-2 + 6 H2O + log_k -41.58 #05OLI/NOL + -analytic -41.58E+0 00E+0 00E+0 00E+0 00E+0 Fe3O4(s) -Fe3O4 = +2.000Fe+3 +1.000Fe+2 -8.000H+ +4.000H2O - log_k +12.60 #18BRU/GON - -analytic 12.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Fe3O4 = 2 Fe+3 + Fe+2 - 8 H+ + 4 H2O + log_k 12.6 #18BRU/GON + -analytic 12.6E+0 00E+0 00E+0 00E+0 00E+0 Fe3Se4(gamma) -Fe3Se4 = +3.000Fe+2 -4.000H+ -2.000e- +4.000HSe- - log_k -25.53 - delta_h +21.315 #kJ/mol +Fe3Se4 = 3 Fe+2 - 4 H+ - 2 e- + 4 HSe- + log_k -25.53 + delta_h 21.315 #kJ/mol # Enthalpy of formation: -235.000 kJ/mol 05OLI/NOL - -analytic -21.79577E+0 00.00000E+0 -11.13360E+2 00.00000E+0 00.00000E+0 + -analytic -21.79577E+0 00E+0 -11.1336E+2 00E+0 00E+0 Fe7Se8(alfa) -Fe7Se8 = +7.000Fe+2 -8.000H+ -2.000e- +8.000HSe- - log_k -35.44 - delta_h -54.165 #kJ/mol +Fe7Se8 = 7 Fe+2 - 8 H+ - 2 e- + 8 HSe- + log_k -35.44 + delta_h -54.165 #kJ/mol # Enthalpy of formation: -463.500 kJ/mol 05OLI/NOL - -analytic -44.92930E+0 00.00000E+0 28.29235E+2 00.00000E+0 00.00000E+0 + -analytic -44.9293E+0 00E+0 28.29235E+2 00E+0 00E+0 FeAl2O4(s) -FeAl2O4 = +1.000Fe+2 +2.000Al+3 -8.000H+ +4.000H2O - log_k +27.20 #96FAL/REA - -analytic 27.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +FeAl2O4 = Fe+2 + 2 Al+3 - 8 H+ + 4 H2O + log_k 27.2 #96FAL/REA + -analytic 27.2E+0 00E+0 00E+0 00E+0 00E+0 FeF2(cr) -FeF2 = +1.000Fe+2 +2.000F- - log_k -2.76 - delta_h -48.895 #kJ/mol +FeF2 = Fe+2 + 2 F- + log_k -2.76 + delta_h -48.895 #kJ/mol # Enthalpy of formation: -712.100 kJ/mol 13LEM/BER - -analytic -11.32604E+0 00.00000E+0 25.53964E+2 00.00000E+0 00.00000E+0 + -analytic -11.32604E+0 00E+0 25.53964E+2 00E+0 00E+0 FeMoO4(s) -FeMoO4 = +1.000Fe+2 +1.000MoO4-2 - log_k -8.32 - delta_h -11.893 #kJ/mol -# Enthalpy of formation: -1075.402 kJ/mol - -analytic -10.40356E+0 00.00000E+0 62.12147E+1 00.00000E+0 00.00000E+0 +FeMoO4 = Fe+2 + MoO4-2 + log_k -8.32 + delta_h -11.893 #kJ/mol +# Enthalpy of formation: -1075.402 kJ/mol + -analytic -10.40356E+0 00E+0 62.12147E+1 00E+0 00E+0 FeO(s) -FeO = +1.000Fe+2 -2.000H+ +1.000H2O - log_k +13.39 - delta_h -104.125 #kJ/mol +FeO = Fe+2 - 2 H+ + H2O + log_k 13.39 + delta_h -104.125 #kJ/mol # Enthalpy of formation: -272.000 kJ/mol 95ROB/HEM - -analytic -48.51917E-1 00.00000E+0 54.38828E+2 00.00000E+0 00.00000E+0 - -Vm 12.000 + -analytic -48.51917E-1 00E+0 54.38828E+2 00E+0 00E+0 + -Vm 12 Ferrihydrite(am) -Fe(OH)3 = +1.000Fe+3 -3.000H+ +3.000H2O - log_k +3.92 #21RIB/BEG from 04MAJ/NAV - -analytic 39.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Fe(OH)3 = Fe+3 - 3 H+ + 3 H2O + log_k 3.92 #21RIB/BEG from 04MAJ/NAV + -analytic 39.2E-1 00E+0 00E+0 00E+0 00E+0 Ferrihydrite(cr) -Fe(OH)3 = +1.000Fe+3 -3.000H+ +3.000H2O - log_k +1.22 #21RIB/BEG from 05GRI - -analytic 12.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Fe(OH)3 = Fe+3 - 3 H+ + 3 H2O + log_k 1.22 #21RIB/BEG from 05GRI + -analytic 12.2E-1 00E+0 00E+0 00E+0 00E+0 Ferrihydrite(s) -Fe(OH)3 = +1.000Fe+3 -3.000H+ +3.000H2O - log_k +2.78 #21RIB/BEG from 63SCH/MIC - -analytic 27.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Fe(OH)3 = Fe+3 - 3 H+ + 3 H2O + log_k 2.78 #21RIB/BEG from 63SCH/MIC + -analytic 27.8E-1 00E+0 00E+0 00E+0 00E+0 Ferroselite -FeSe2 = +1.000Fe+2 -2.000H+ -2.000e- +2.000HSe- - log_k -17.10 - delta_h +47.005 #kJ/mol +FeSe2 = Fe+2 - 2 H+ - 2 e- + 2 HSe- + log_k -17.1 + delta_h 47.005 #kJ/mol # Enthalpy of formation: -108.700 kJ/mol 05OLI/NOL - -analytic -88.65077E-1 00.00000E+0 -24.55242E+2 00.00000E+0 00.00000E+0 + -analytic -88.65077E-1 00E+0 -24.55242E+2 00E+0 00E+0 Ferrosilite -FeSiO3 = +1.000Fe+2 -2.000H+ +1.000H4(SiO4) -1.000H2O - log_k +32.71 #95TRO: CEA, N.T.SESD n° 95/49, L. TROTIGNON avril 1996; Critique et sélection de données thermodynamiques en vue de modéliser les équilibres minéral - solution, rapport annuel 1995 - -analytic 32.71000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +FeSiO3 = Fe+2 - 2 H+ + H4(SiO4) - H2O + log_k 32.71 #95TRO: CEA, N.T.SESD n° 95/49, L. TROTIGNON avril 1996; Critique et sélection de données thermodynamiques en vue de modéliser les équilibres minéral - solution, rapport annuel 1995 + -analytic 32.71E+0 00E+0 00E+0 00E+0 00E+0 FeS(am) -FeS = +1.000Fe+2 -1.000H+ +1.000HS- - log_k -2.95 #91DAV - -analytic -29.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +FeS = Fe+2 - H+ + HS- + log_k -2.95 #91DAV + -analytic -29.5E-1 00E+0 00E+0 00E+0 00E+0 Fluorapatite -Ca5F(PO4)3 = +5.000Ca+2 -6.000H+ +1.000F- +3.000H2(PO4)- - log_k -0.91 #74HAG - delta_h -115.603 #kJ/mol -# Enthalpy of formation: -6842.544 kJ/mol - -analytic -21.16278E+0 00.00000E+0 60.38365E+2 00.00000E+0 00.00000E+0 - -Vm 157.600 +Ca5F(PO4)3 = 5 Ca+2 - 6 H+ + F- + 3 H2(PO4)- + log_k -0.91 #74HAG + delta_h -115.603 #kJ/mol +# Enthalpy of formation: -6842.544 kJ/mol + -analytic -21.16278E+0 00E+0 60.38365E+2 00E+0 00E+0 + -Vm 157.6 Fluorite -CaF2 = +1.000Ca+2 +2.000F- - log_k -10.60 #96FAL/REA - delta_h +19.623 #kJ/mol 90NOR/PLU -# Enthalpy of formation: -1233.323 kJ/mol - -analytic -71.62198E-1 00.00000E+0 -10.24981E+2 00.00000E+0 00.00000E+0 - -Vm 24.540 +CaF2 = Ca+2 + 2 F- + log_k -10.6 #96FAL/REA + delta_h 19.623 #kJ/mol 90NOR/PLU +# Enthalpy of formation: -1233.323 kJ/mol + -analytic -71.62198E-1 00E+0 -10.24981E+2 00E+0 00E+0 + -Vm 24.54 Foshagite -Ca4Si3O9(OH)2:0.5H2O = +4.000Ca+2 -8.000H+ +3.000H4(SiO4) -0.500H2O - log_k +65.96 #10BLA/BOU1 - delta_h -380.237 #kJ/mol +Ca4Si3O9(OH)2:0.5H2O = 4 Ca+2 - 8 H+ + 3 H4(SiO4) - 0.5 H2O + log_k 65.96 #10BLA/BOU1 + delta_h -380.237 #kJ/mol # Enthalpy of formation: -6032.430 kJ/mol 56NEW - -analytic -65.46629E-2 00.00000E+0 19.86116E+3 00.00000E+0 00.00000E+0 - -Vm 160.660 + -analytic -65.46629E-2 00E+0 19.86116E+3 00E+0 00E+0 + -Vm 160.66 Friedel-salt -Ca4Al2(OH)12Cl2:4H2O = +4.000Ca+2 +2.000Al+3 -12.000H+ +2.000Cl- +16.000H2O - log_k +74.93 #10BLA/BOU2 - delta_h -486.200 #kJ/mol +Ca4Al2(OH)12Cl2:4H2O = 4 Ca+2 + 2 Al+3 - 12 H+ + 2 Cl- + 16 H2O + log_k 74.93 #10BLA/BOU2 + delta_h -486.2 #kJ/mol # Enthalpy of formation: -7670.040 kJ/mol 76HOU/STE - -analytic -10.24858E+0 00.00000E+0 25.39599E+3 00.00000E+0 00.00000E+0 - -Vm 276.240 + -analytic -10.24858E+0 00E+0 25.39599E+3 00E+0 00E+0 + -Vm 276.24 Galena -PbS = +1.000Pb+2 -1.000H+ +1.000HS- - log_k -14.84 - delta_h +82.940 #kJ/mol +PbS = Pb+2 - H+ + HS- + log_k -14.84 + delta_h 82.94 #kJ/mol # Enthalpy of formation: -98.320 kJ/mol 98CHA - -analytic -30.95357E-2 00.00000E+0 -43.32258E+2 00.00000E+0 00.00000E+0 + -analytic -30.95357E-2 00E+0 -43.32258E+2 00E+0 00E+0 Gaylussite -CaNa2(CO3)2:5H2O = +1.000Ca+2 +2.000Na+ +2.000CO3-2 +5.000H2O - log_k -9.43 #99KON/KON - delta_h +31.099 #kJ/mol -# Enthalpy of formation: -3834.387 kJ/mol - -analytic -39.81689E-1 00.00000E+0 -16.24414E+2 00.00000E+0 00.00000E+0 +CaNa2(CO3)2:5H2O = Ca+2 + 2 Na+ + 2 CO3-2 + 5 H2O + log_k -9.43 #99KON/KON + delta_h 31.099 #kJ/mol +# Enthalpy of formation: -3834.387 kJ/mol + -analytic -39.81689E-1 00E+0 -16.24414E+2 00E+0 00E+0 Gibbsite -Al(OH)3 = +1.000Al+3 -3.000H+ +3.000H2O - log_k +7.74 #95POK/HEL - delta_h -102.784 #kJ/mol -# Enthalpy of formation: -1293.105 kJ/mol - -analytic -10.26698E+0 00.00000E+0 53.68782E+2 00.00000E+0 00.00000E+0 - -Vm 31.960 +Al(OH)3 = Al+3 - 3 H+ + 3 H2O + log_k 7.74 #95POK/HEL + delta_h -102.784 #kJ/mol +# Enthalpy of formation: -1293.105 kJ/mol + -analytic -10.26698E+0 00E+0 53.68782E+2 00E+0 00E+0 + -Vm 31.96 Gismondine -Ca2Al4Si4O16:9H2O = +2.000Ca+2 +4.000Al+3 -16.000H+ +4.000H4(SiO4) +9.000H2O - log_k +38.97 - delta_h -477.046 #kJ/mol +Ca2Al4Si4O16:9H2O = 2 Ca+2 + 4 Al+3 - 16 H+ + 4 H4(SiO4) + 9 H2O + log_k 38.97 + delta_h -477.046 #kJ/mol # Enthalpy of formation: -11179.800kJ/mol 89CHE/RIM - -analytic -44.60487E+0 00.00000E+0 24.91785E+3 00.00000E+0 00.00000E+0 - -Vm 315.070 + -analytic -44.60487E+0 00E+0 24.91785E+3 00E+0 00E+0 + -Vm 315.07 Glaserite -Na2K6(SO4)4 = +6.000K+ +2.000Na+ +4.000SO4-2 - log_k -7.61 #80HAR/WEA - delta_h +78.360 #kJ/mol +Na2K6(SO4)4 = 6 K+ + 2 Na+ + 4 SO4-2 + log_k -7.61 #80HAR/WEA + delta_h 78.36 #kJ/mol # Enthalpy of formation: -5709.240 kJ/mol 80HAR/WEA - -analytic 61.18083E-1 00.00000E+0 -40.93028E+2 00.00000E+0 00.00000E+0 + -analytic 61.18083E-1 00E+0 -40.93028E+2 00E+0 00E+0 Glauberite -Na2Ca(SO4)2 = +1.000Ca+2 +2.000Na+ +2.000SO4-2 - log_k +1.97 #84HAR/MOL - delta_h -13.160 #kJ/mol +Na2Ca(SO4)2 = Ca+2 + 2 Na+ + 2 SO4-2 + log_k 1.97 #84HAR/MOL + delta_h -13.16 #kJ/mol # Enthalpy of formation: -2829.200 kJ/mol 82WAG/EVA - -analytic -33.55330E-2 00.00000E+0 68.73947E+1 00.00000E+0 00.00000E+0 + -analytic -33.5533E-2 00E+0 68.73947E+1 00E+0 00E+0 Glauconite -(K0.75Mg0.25Fe1.5Al0.25)(Al0.25Si3.75)O10(OH)2 = +0.250Mg+2 +0.750K+ +1.250Fe+3 +0.250Fe+2 +0.500Al+3 -7.000H+ +3.750H4(SiO4) -3.000H2O - log_k +1.84 - delta_h -131.056 #kJ/mol +(K0.75Mg0.25Fe1.5Al0.25)(Al0.25Si3.75)O10(OH)2 = 0.25 Mg+2 + 0.75 K+ + 1.25 Fe+3 + 0.25 Fe+2 + 0.5 Al+3 - 7 H+ + 3.75 H4(SiO4) - 3 H2O + log_k 1.84 + delta_h -131.056 #kJ/mol # Enthalpy of formation: -5151.130 kJ/mol 15BLA/VIE - -analytic -21.12003E+0 00.00000E+0 68.45532E+2 00.00000E+0 00.00000E+0 - -Vm 139.760 + -analytic -21.12003E+0 00E+0 68.45532E+2 00E+0 00E+0 + -Vm 139.76 Goethite -FeOOH = +1.000Fe+3 -3.000H+ +2.000H2O - log_k +0.17 - delta_h -61.256 #kJ/mol +FeOOH = Fe+3 - 3 H+ + 2 H2O + log_k 0.17 + delta_h -61.256 #kJ/mol # Enthalpy of formation: -560.460 kJ/mol 13LEM/BER - -analytic -10.56159E+0 00.00000E+0 31.99624E+2 00.00000E+0 00.00000E+0 - -Vm 20.820 + -analytic -10.56159E+0 00E+0 31.99624E+2 00E+0 00E+0 + -Vm 20.82 GR-Cl -Fe3Fe(OH)8Cl = +4.000Fe+2 -8.000H+ -1.000e- +1.000Cl- +8.000H2O - log_k +41.80 - -analytic 41.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Fe3Fe(OH)8Cl = 4 Fe+2 - 8 H+ - e- + Cl- + 8 H2O + log_k 41.8 + -analytic 41.8E+0 00E+0 00E+0 00E+0 00E+0 GR-CO3 -Fe4Fe2(OH)12CO3:2H2O = +6.000Fe+2 -12.000H+ -2.000e- +1.000CO3-2 +14.000H2O - log_k +55.50 - -analytic 55.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Fe4Fe2(OH)12CO3:2H2O = 6 Fe+2 - 12 H+ - 2 e- + CO3-2 + 14 H2O + log_k 55.5 + -analytic 55.5E+0 00E+0 00E+0 00E+0 00E+0 Greenalite -Fe3Si2O5(OH)4 = +3.000Fe+2 -6.000H+ +2.000H4(SiO4) +1.000H2O - log_k +21.82 - delta_h -178.103 #kJ/mol +Fe3Si2O5(OH)4 = 3 Fe+2 - 6 H+ + 2 H4(SiO4) + H2O + log_k 21.82 + delta_h -178.103 #kJ/mol # Enthalpy of formation: -3301.000 kJ/mol 83MIY/KLE - -analytic -93.82306E-1 00.00000E+0 93.02968E+2 00.00000E+0 00.00000E+0 - -Vm 115.000 + -analytic -93.82306E-1 00E+0 93.02968E+2 00E+0 00E+0 + -Vm 115 Greigite -Fe3S4 = +3.000Fe+2 -4.000H+ -2.000e- +4.000HS- - log_k -15.03 - -analytic -15.03000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Fe3S4 = 3 Fe+2 - 4 H+ - 2 e- + 4 HS- + log_k -15.03 + -analytic -15.03E+0 00E+0 00E+0 00E+0 00E+0 GR-SO4 -Fe4Fe2(OH)12SO4 = +6.000Fe+2 -12.000H+ -2.000e- +1.000SO4-2 +12.000H2O - log_k +58.30 - -analytic 58.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Fe4Fe2(OH)12SO4 = 6 Fe+2 - 12 H+ - 2 e- + SO4-2 + 12 H2O + log_k 58.3 + -analytic 58.3E+0 00E+0 00E+0 00E+0 00E+0 Gypsum -CaSO4:2H2O = +1.000Ca+2 +1.000SO4-2 +2.000H2O - log_k -4.61 - delta_h -1.050 #kJ/mol +CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O + log_k -4.61 + delta_h -1.05 #kJ/mol # Enthalpy of formation: -2022.950 kJ/mol 87GAR/PAR - -analytic -47.93952E-1 00.00000E+0 54.84532E+0 00.00000E+0 00.00000E+0 - -Vm 74.690 + -analytic -47.93952E-1 00E+0 54.84532E+0 00E+0 00E+0 + -Vm 74.69 Gyrolite -Ca2Si3O7.5(OH):2H2O = +2.000Ca+2 -4.000H+ +3.000H4(SiO4) -1.500H2O - log_k +22.34 #10BLA/BOU1 - delta_h -122.847 #kJ/mol +Ca2Si3O7.5(OH):2H2O = 2 Ca+2 - 4 H+ + 3 H4(SiO4) - 1.5 H2O + log_k 22.34 #10BLA/BOU1 + delta_h -122.847 #kJ/mol # Enthalpy of formation: -4917.990 kJ/mol 10BLA/BOU1 - -analytic 81.81294E-2 00.00000E+0 64.16746E+2 00.00000E+0 00.00000E+0 - -Vm 137.340 + -analytic 81.81294E-2 00E+0 64.16746E+2 00E+0 00E+0 + -Vm 137.34 H2MoO4(s) -H2MoO4 = +2.000H+ +1.000MoO4-2 - log_k -13.17 - delta_h +48.763 #kJ/mol -# Enthalpy of formation: -1045.763 kJ/mol - -analytic -46.27089E-1 00.00000E+0 -25.47069E+2 00.00000E+0 00.00000E+0 +H2MoO4 = 2 H+ + MoO4-2 + log_k -13.17 + delta_h 48.763 #kJ/mol +# Enthalpy of formation: -1045.763 kJ/mol + -analytic -46.27089E-1 00E+0 -25.47069E+2 00E+0 00E+0 H3Cit:H2O(cr) -H3Cit:H2O = +3.000H+ +1.000Cit-3 +1.000H2O - log_k -12.94 #05HUM/AND - delta_h +32.710 #kJ/mol 05HUM/AND -# Enthalpy of formation: -1838.460 kJ/mol - -analytic -72.09454E-1 00.00000E+0 -17.08562E+2 00.00000E+0 00.00000E+0 +H3Cit:H2O = 3 H+ + Cit-3 + H2O + log_k -12.94 #05HUM/AND + delta_h 32.71 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1838.460 kJ/mol + -analytic -72.09454E-1 00E+0 -17.08562E+2 00E+0 00E+0 H4Edta(cr) -H4Edta = +4.000H+ +1.000Edta-4 - log_k -27.22 #05HUM/AND - delta_h +55.000 #kJ/mol 05HUM/AND -# Enthalpy of formation: -1759.800 kJ/mol - -analytic -17.58441E+0 00.00000E+0 -28.72850E+2 00.00000E+0 00.00000E+0 +H4Edta = 4 H+ + Edta-4 + log_k -27.22 #05HUM/AND + delta_h 55 #kJ/mol 05HUM/AND +# Enthalpy of formation: -1759.800 kJ/mol + -analytic -17.58441E+0 00E+0 -28.7285E+2 00E+0 00E+0 Halite -NaCl = +1.000Na+ +1.000Cl- - log_k +1.59 - delta_h +3.700 #kJ/mol +NaCl = Na+ + Cl- + log_k 1.59 + delta_h 3.7 #kJ/mol # Enthalpy of formation: -411.120 kJ/mol 98CHA - -analytic 22.38212E-1 00.00000E+0 -19.32645E+1 00.00000E+0 00.00000E+0 - -Vm 27.020 + -analytic 22.38212E-1 00E+0 -19.32645E+1 00E+0 00E+0 + -Vm 27.02 Halloysite -Al2Si2O5(OH)4 = +2.000Al+3 -6.000H+ +2.000H4(SiO4) +1.000H2O - log_k +10.32 - delta_h -192.418 #kJ/mol +Al2Si2O5(OH)4 = 2 Al+3 - 6 H+ + 2 H4(SiO4) + H2O + log_k 10.32 + delta_h -192.418 #kJ/mol # Enthalpy of formation: -4092.600 kJ/mol 99DEL/NAV - -analytic -23.39019E+0 00.00000E+0 10.05069E+3 00.00000E+0 00.00000E+0 + -analytic -23.39019E+0 00E+0 10.05069E+3 00E+0 00E+0 Hausmannite -Mn3O4 = +3.000Mn+2 -8.000H+ -2.000e- +4.000H2O - log_k +61.32 #96FAL/REA - -analytic 61.32000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn3O4 = 3 Mn+2 - 8 H+ - 2 e- + 4 H2O + log_k 61.32 #96FAL/REA + -analytic 61.32E+0 00E+0 00E+0 00E+0 00E+0 HBeidellite-Ca -Ca0.17Al2.34Si3.66O10(OH)2:4.45H2O = +0.170Ca+2 +2.340Al+3 -7.360H+ +3.660H4(SiO4) +1.810H2O - log_k +2.09 - delta_h -160.492 #kJ/mol +Ca0.17Al2.34Si3.66O10(OH)2:4.45H2O = 0.17 Ca+2 + 2.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) + 1.81 H2O + log_k 2.09 + delta_h -160.492 #kJ/mol # Enthalpy of formation: -7056.996 kJ/mol 13BLA/VI; 11VIE/BLA - -analytic -26.02699E+0 00.00000E+0 83.83081E+2 00.00000E+0 00.00000E+0 - -Vm 214.550 + -analytic -26.02699E+0 00E+0 83.83081E+2 00E+0 00E+0 + -Vm 214.55 HBeidellite-K -K0.34Al2.34Si3.66O10(OH)2:1.96H2O = +0.340K+ +2.340Al+3 -7.360H+ +3.660H4(SiO4) -0.680H2O - log_k +2.22 - delta_h -167.142 #kJ/mol +K0.34Al2.34Si3.66O10(OH)2:1.96H2O = 0.34 K+ + 2.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 0.68 H2O + log_k 2.22 + delta_h -167.142 #kJ/mol # Enthalpy of formation: -6332.047 kJ/mol 13BLA/VI; 11VIE/BLA - -analytic -27.06202E+0 00.00000E+0 87.30435E+2 00.00000E+0 00.00000E+0 - -Vm 168.650 + -analytic -27.06202E+0 00E+0 87.30435E+2 00E+0 00E+0 + -Vm 168.65 HBeidellite-Mg -Mg0.17Al2.34Si3.66O10(OH)2:4.61H2O = +0.170Mg+2 +2.340Al+3 -7.360H+ +3.660H4(SiO4) +1.970H2O - log_k +2.21 - delta_h -159.892 #kJ/mol +Mg0.17Al2.34Si3.66O10(OH)2:4.61H2O = 0.17 Mg+2 + 2.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) + 1.97 H2O + log_k 2.21 + delta_h -159.892 #kJ/mol # Enthalpy of formation: -7090.409 kJ/mol 13BLA/VI; 11VIE/BLA - -analytic -25.80188E+0 00.00000E+0 83.51741E+2 00.00000E+0 00.00000E+0 - -Vm 212.610 + -analytic -25.80188E+0 00E+0 83.51741E+2 00E+0 00E+0 + -Vm 212.61 HBeidellite-Na -Na0.34Al2.34Si3.66O10(OH)2:3.84H2O = +0.340Na+ +2.340Al+3 -7.360H+ +3.660H4(SiO4) +1.200H2O - log_k +1.83 - delta_h -171.523 #kJ/mol +Na0.34Al2.34Si3.66O10(OH)2:3.84H2O = 0.34 Na+ + 2.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) + 1.2 H2O + log_k 1.83 + delta_h -171.523 #kJ/mol # Enthalpy of formation: -6861.015 kJ/mol 13BLA/VI; 11VIE/BLA - -analytic -28.21954E+0 00.00000E+0 89.59270E+2 00.00000E+0 00.00000E+0 - -Vm 201.940 + -analytic -28.21954E+0 00E+0 89.5927E+2 00E+0 00E+0 + -Vm 201.94 Heazlewoodite -Ni3S2 = +3.000Ni+2 -2.000H+ +2.000e- +2.000HS- - log_k -17.23 - delta_h +19.564 #kJ/mol +Ni3S2 = 3 Ni+2 - 2 H+ + 2 e- + 2 HS- + log_k -17.23 + delta_h 19.564 #kJ/mol # Enthalpy of formation: -217.200 kJ/mol 05GAM/BUG - -analytic -13.80253E+0 00.00000E+0 -10.21899E+2 00.00000E+0 00.00000E+0 + -analytic -13.80253E+0 00E+0 -10.21899E+2 00E+0 00E+0 Hematite(cr) -Fe2O3 = +2.000Fe+3 -6.000H+ +3.000H2O - log_k -0.83 #21RIB/BEG from 05GRI - delta_h -127.150 #kJ/mol -# Enthalpy of formation: -830.451 kJ/mol - -analytic -23.10572E+0 00.00000E+0 66.41507E+2 00.00000E+0 00.00000E+0 +Fe2O3 = 2 Fe+3 - 6 H+ + 3 H2O + log_k -0.83 #21RIB/BEG from 05GRI + delta_h -127.15 #kJ/mol +# Enthalpy of formation: -830.451 kJ/mol + -analytic -23.10572E+0 00E+0 66.41507E+2 00E+0 00E+0 Hematite(s) -Fe2O3 = +2.000Fe+3 -6.000H+ +3.000H2O - log_k -0.10 - delta_h -131.312 #kJ/mol +Fe2O3 = 2 Fe+3 - 6 H+ + 3 H2O + log_k -0.1 + delta_h -131.312 #kJ/mol # Enthalpy of formation: -826.290 kJ/mol 13LEM/BER - -analytic -23.10487E+0 00.00000E+0 68.58903E+2 00.00000E+0 00.00000E+0 - -Vm 30.270 + -analytic -23.10487E+0 00E+0 68.58903E+2 00E+0 00E+0 + -Vm 30.27 Hemicarboaluminate -Ca6O6:Al4O6:CaCO3:Ca(OH)2:21H2O = +8.000Ca+2 +4.000Al+3 -26.000H+ +1.000CO3-2 +35.000H2O - log_k +173.20 #07MAT/LOT1 - delta_h -1189.079 #kJ/mol -# Enthalpy of formation: -15987.789kJ/mol - -analytic -35.11770E+0 00.00000E+0 62.10992E+3 00.00000E+0 00.00000E+0 - -Vm 569.020 +Ca6O6:Al4O6:CaCO3:Ca(OH)2:21H2O = 8 Ca+2 + 4 Al+3 - 26 H+ + CO3-2 + 35 H2O + log_k 173.2 #07MAT/LOT1 + delta_h -1189.079 #kJ/mol +# Enthalpy of formation: -15987.789kJ/mol + -analytic -35.1177E+0 00E+0 62.10992E+3 00E+0 00E+0 + -Vm 569.02 Herzenbergite -SnS = +1.000Sn+2 -1.000H+ +1.000HS- - log_k -16.21 - delta_h +83.683 #kJ/mol +SnS = Sn+2 - H+ + HS- + log_k -16.21 + delta_h 83.683 #kJ/mol # Enthalpy of formation: -109.600 kJ/mol 12GAM/GAJ - -analytic -15.49368E-1 00.00000E+0 -43.71068E+2 00.00000E+0 00.00000E+0 + -analytic -15.49368E-1 00E+0 -43.71068E+2 00E+0 00E+0 Heulandite_Ca -Ca1.07Al2.14Si6.86O18:6.17H2O = +1.070Ca+2 +2.140Al+3 -8.560H+ +6.860H4(SiO4) -3.270H2O - log_k +2.46 #09BLA - delta_h -155.113 #kJ/mol +Ca1.07Al2.14Si6.86O18:6.17H2O = 1.07 Ca+2 + 2.14 Al+3 - 8.56 H+ + 6.86 H4(SiO4) - 3.27 H2O + log_k 2.46 #09BLA + delta_h -155.113 #kJ/mol # Enthalpy of formation: -10667.200kJ/mol 09BLA - -analytic -24.71463E+0 00.00000E+0 81.02116E+2 00.00000E+0 00.00000E+0 - -Vm 322.060 + -analytic -24.71463E+0 00E+0 81.02116E+2 00E+0 00E+0 + -Vm 322.06 Heulandite_Na -Na2.14Al2.14Si6.86O18:6.17H2O = +2.140Na+ +2.140Al+3 -8.560H+ +6.860H4(SiO4) -3.270H2O - log_k +2.80 #09BLA - delta_h -142.780 #kJ/mol +Na2.14Al2.14Si6.86O18:6.17H2O = 2.14 Na+ + 2.14 Al+3 - 8.56 H+ + 6.86 H4(SiO4) - 3.27 H2O + log_k 2.8 #09BLA + delta_h -142.78 #kJ/mol # Enthalpy of formation: -10612.850kJ/mol 09BLA - -analytic -22.21398E+0 00.00000E+0 74.57919E+2 00.00000E+0 00.00000E+0 - -Vm 325.000 + -analytic -22.21398E+0 00E+0 74.57919E+2 00E+0 00E+0 + -Vm 325 Hexahydrite -Mg(SO4):6H2O = +1.000Mg+2 +1.000SO4-2 +6.000H2O - log_k -1.64 #84HAR/MOL - delta_h -4.625 #kJ/mol -# Enthalpy of formation: -3086.692 kJ/mol - -analytic -24.50265E-1 00.00000E+0 24.15806E+1 00.00000E+0 00.00000E+0 +Mg(SO4):6H2O = Mg+2 + SO4-2 + 6 H2O + log_k -1.64 #84HAR/MOL + delta_h -4.625 #kJ/mol +# Enthalpy of formation: -3086.692 kJ/mol + -analytic -24.50265E-1 00E+0 24.15806E+1 00E+0 00E+0 Hf(cr) -Hf = +4.000e- +1.000Hf+4 - log_k +97.20 - delta_h -628.910 #kJ/mol +Hf = 4 e- + Hf+4 + log_k 97.2 + delta_h -628.91 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 79ROB/HEM - -analytic -12.98030E+0 00.00000E+0 32.85026E+3 00.00000E+0 00.00000E+0 + -analytic -12.9803E+0 00E+0 32.85026E+3 00E+0 00E+0 Hf(HPO4)2:H2O(s) -Hf(HPO4)2:H2O = -2.000H+ +2.000H2(PO4)- +1.000Hf+4 +1.000H2O - log_k -21.05 #25HEV/KIM recalculated; Uncertainty is by analogy with Zr(HPO4)2:H2O(s) and is preliminary. - delta_h -38.340 #kJ/mol +Hf(HPO4)2:H2O = -2 H+ + 2 H2(PO4)- + Hf+4 + H2O + log_k -21.05 #25HEV/KIM recalculated; Uncertainty is by analogy with Zr(HPO4)2:H2O(s) and is preliminary. + delta_h -38.34 #kJ/mol # Enthalpy of formation: -3481.600 kJ/mol 97KAR/CHE - -analytic -27.76688E+0 00.00000E+0 20.02638E+2 00.00000E+0 00.00000E+0 + -analytic -27.76688E+0 00E+0 20.02638E+2 00E+0 00E+0 HfO2(am) -HfO2 = -4.000H+ +1.000Hf+4 +2.000H2O - log_k +0.90 #01RAI/XIA - delta_h -98.870 #kJ/mol +HfO2 = -4 H+ + Hf+4 + 2 H2O + log_k 0.9 #01RAI/XIA + delta_h -98.87 #kJ/mol # Enthalpy of formation: -1101.700 kJ/mol 98KAR/CHE - -analytic -16.42128E+0 00.00000E+0 51.64340E+2 00.00000E+0 00.00000E+0 + -analytic -16.42128E+0 00E+0 51.6434E+2 00E+0 00E+0 HfO2(cr) -HfO2 = -4.000H+ +1.000Hf+4 +2.000H2O - log_k -5.62 - delta_h -82.940 #kJ/mol +HfO2 = -4 H+ + Hf+4 + 2 H2O + log_k -5.62 + delta_h -82.94 #kJ/mol # Enthalpy of formation: -1117.630 kJ/mol 75KOR/USH - -analytic -20.15046E+0 00.00000E+0 43.32258E+2 00.00000E+0 00.00000E+0 + -analytic -20.15046E+0 00E+0 43.32258E+2 00E+0 00E+0 Hg(l) -Hg = +2.000e- +1.000Hg+2 - log_k +28.85 - delta_h -170.210 #kJ/mol +Hg = 2 e- + Hg+2 + log_k 28.85 + delta_h -170.21 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 89COX/WAG - -analytic -96.95120E-2 00.00000E+0 88.90687E+2 00.00000E+0 00.00000E+0 + -analytic -96.9512E-2 00E+0 88.90687E+2 00E+0 00E+0 Hg2Cl2(s) -Hg2Cl2 = +2.000Cl- +1.000Hg2+2 - log_k -17.85 - delta_h +98.030 #kJ/mol +Hg2Cl2 = 2 Cl- + Hg2+2 + log_k -17.85 + delta_h 98.03 #kJ/mol # Enthalpy of formation: -265.370 kJ/mol 89COX/WAG - -analytic -67.58812E-2 00.00000E+0 -51.20464E+2 00.00000E+0 00.00000E+0 + -analytic -67.58812E-2 00E+0 -51.20464E+2 00E+0 00E+0 Hg3(PO4)2(s) -Hg3(PO4)2 = -4.000H+ +2.000H2(PO4)- +3.000Hg+2 - log_k -13.01 #05POW/BRO - -analytic -13.01000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Hg3(PO4)2 = -4 H+ + 2 H2(PO4)- + 3 Hg+2 + log_k -13.01 #05POW/BRO + -analytic -13.01E+0 00E+0 00E+0 00E+0 00E+0 HgCl2(s) -HgCl2 = +2.000Cl- +1.000Hg+2 - log_k -14.57 #74AND/CUM - -analytic -14.57000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +HgCl2 = 2 Cl- + Hg+2 + log_k -14.57 #74AND/CUM + -analytic -14.57E+0 00E+0 00E+0 00E+0 00E+0 HgCO3:2HgO(s) -HgCO3:2HgO = -4.000H+ +1.000CO3-2 +2.000H2O +3.000Hg+2 - log_k -11.48 #05POW/BRO - -analytic -11.48000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +HgCO3:2HgO = -4 H+ + CO3-2 + 2 H2O + 3 Hg+2 + log_k -11.48 #05POW/BRO + -analytic -11.48E+0 00E+0 00E+0 00E+0 00E+0 HgHPO4(s) -HgHPO4 = -1.000H+ +1.000H2(PO4)- +1.000Hg+2 - log_k -7.16 #05POW/BRO - -analytic -71.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +HgHPO4 = - H+ + H2(PO4)- + Hg+2 + log_k -7.16 #05POW/BRO + -analytic -71.6E-1 00E+0 00E+0 00E+0 00E+0 HgO(s) -HgO = -2.000H+ +1.000H2O +1.000Hg+2 - log_k +2.37 #05POW/BRO - delta_h -25.300 #kJ/mol 05POW/BRO -# Enthalpy of formation: -90.320 kJ/mol - -analytic -20.62370E-1 00.00000E+0 13.21511E+2 00.00000E+0 00.00000E+0 +HgO = -2 H+ + H2O + Hg+2 + log_k 2.37 #05POW/BRO + delta_h -25.3 #kJ/mol 05POW/BRO +# Enthalpy of formation: -90.320 kJ/mol + -analytic -20.6237E-1 00E+0 13.21511E+2 00E+0 00E+0 Hillebrandite -Ca2SiO3(OH)2:0.17H2O = +2.000Ca+2 -4.000H+ +1.000H4(SiO4) +1.170H2O - log_k +36.95 #10BLA/BOU1 - delta_h -219.135 #kJ/mol +Ca2SiO3(OH)2:0.17H2O = 2 Ca+2 - 4 H+ + H4(SiO4) + 1.17 H2O + log_k 36.95 #10BLA/BOU1 + delta_h -219.135 #kJ/mol # Enthalpy of formation: -2662.480 kJ/mol 56NEW - -analytic -14.40804E-1 00.00000E+0 11.44622E+3 00.00000E+0 00.00000E+0 - -Vm 72.580 + -analytic -14.40804E-1 00E+0 11.44622E+3 00E+0 00E+0 + -Vm 72.58 HMontmorillonite-BCCa -Ca0.17Mg0.34Al1.66Si4O10(OH)2:4.45H2O = +0.170Ca+2 +0.340Mg+2 +1.660Al+3 -6.000H+ +4.000H4(SiO4) +0.450H2O - log_k +2.18 - delta_h -118.558 #kJ/mol +Ca0.17Mg0.34Al1.66Si4O10(OH)2:4.45H2O = 0.17 Ca+2 + 0.34 Mg+2 + 1.66 Al+3 - 6 H+ + 4 H4(SiO4) + 0.45 H2O + log_k 2.18 + delta_h -118.558 #kJ/mol # Enthalpy of formation: -6999.676 kJ/mol 13BLA/VI; 11VIE/BLA - -analytic -18.59047E+0 00.00000E+0 61.92716E+2 00.00000E+0 00.00000E+0 - -Vm 216.020 + -analytic -18.59047E+0 00E+0 61.92716E+2 00E+0 00E+0 + -Vm 216.02 HMontmorillonite-BCK -K0.34Mg0.34Al1.66Si4O10(OH)2:1.96H2O = +0.340Mg+2 +0.340K+ +1.660Al+3 -6.000H+ +4.000H4(SiO4) -2.040H2O - log_k +2.07 - delta_h -123.827 #kJ/mol +K0.34Mg0.34Al1.66Si4O10(OH)2:1.96H2O = 0.34 Mg+2 + 0.34 K+ + 1.66 Al+3 - 6 H+ + 4 H4(SiO4) - 2.04 H2O + log_k 2.07 + delta_h -123.827 #kJ/mol # Enthalpy of formation: -6276.107 kJ/mol 13BLA/VI; 11VIE/BLA - -analytic -19.62356E+0 00.00000E+0 64.67935E+2 00.00000E+0 00.00000E+0 - -Vm 170.130 + -analytic -19.62356E+0 00E+0 64.67935E+2 00E+0 00E+0 + -Vm 170.13 HMontmorillonite-BCMg -Mg0.17Mg0.34Al1.66Si4O10(OH)2:4.61H2O = +0.510Mg+2 +1.660Al+3 -6.000H+ +4.000H4(SiO4) +0.610H2O - log_k +2.33 - delta_h -118.107 #kJ/mol +Mg0.17Mg0.34Al1.66Si4O10(OH)2:4.61H2O = 0.51 Mg+2 + 1.66 Al+3 - 6 H+ + 4 H4(SiO4) + 0.61 H2O + log_k 2.33 + delta_h -118.107 #kJ/mol # Enthalpy of formation: -7032.939 kJ/mol 13BLA/VI; 11VIE/BLA - -analytic -18.36146E+0 00.00000E+0 61.69158E+2 00.00000E+0 00.00000E+0 - -Vm 214.080 + -analytic -18.36146E+0 00E+0 61.69158E+2 00E+0 00E+0 + -Vm 214.08 HMontmorillonite-BCNa -Na0.34Mg0.34Al1.66Si4O10(OH)2:3.84H2O = +0.340Mg+2 +0.340Na+ +1.660Al+3 -6.000H+ +4.000H4(SiO4) -0.160H2O - log_k +1.77 - delta_h -128.688 #kJ/mol +Na0.34Mg0.34Al1.66Si4O10(OH)2:3.84H2O = 0.34 Mg+2 + 0.34 Na+ + 1.66 Al+3 - 6 H+ + 4 H4(SiO4) - 0.16 H2O + log_k 1.77 + delta_h -128.688 #kJ/mol # Enthalpy of formation: -6804.595 kJ/mol 13BLA/VI; 11VIE/BLA - -analytic -20.77517E+0 00.00000E+0 67.21842E+2 00.00000E+0 00.00000E+0 - -Vm 203.420 + -analytic -20.77517E+0 00E+0 67.21842E+2 00E+0 00E+0 + -Vm 203.42 HMontmorillonite-HCCa -Ca0.3Mg0.6Al1.4Si4O10(OH)2:4.45H2O = +0.300Ca+2 +0.600Mg+2 +1.400Al+3 -6.000H+ +4.000H4(SiO4) +0.450H2O - log_k +6.15 - delta_h -134.134 #kJ/mol +Ca0.3Mg0.6Al1.4Si4O10(OH)2:4.45H2O = 0.3 Ca+2 + 0.6 Mg+2 + 1.4 Al+3 - 6 H+ + 4 H4(SiO4) + 0.45 H2O + log_k 6.15 + delta_h -134.134 #kJ/mol # Enthalpy of formation: -7036.126 kJ/mol 13BLA/VI; 11VIE/BLA - -analytic -17.34927E+0 00.00000E+0 70.06307E+2 00.00000E+0 00.00000E+0 - -Vm 220.760 + -analytic -17.34927E+0 00E+0 70.06307E+2 00E+0 00E+0 + -Vm 220.76 HMontmorillonite-HCK -K0.6Mg0.6Al1.4Si4O10(OH)2:1.96H2O = +0.600Mg+2 +0.600K+ +1.400Al+3 -6.000H+ +4.000H4(SiO4) -2.040H2O - log_k +4.24 - delta_h -119.730 #kJ/mol +K0.6Mg0.6Al1.4Si4O10(OH)2:1.96H2O = 0.6 Mg+2 + 0.6 K+ + 1.4 Al+3 - 6 H+ + 4 H4(SiO4) - 2.04 H2O + log_k 4.24 + delta_h -119.73 #kJ/mol # Enthalpy of formation: -6327.197 kJ/mol 13BLA/VI; 11VIE/BLA - -analytic -16.73580E+0 00.00000E+0 62.53933E+2 00.00000E+0 00.00000E+0 - -Vm 174.180 + -analytic -16.7358E+0 00E+0 62.53933E+2 00E+0 00E+0 + -Vm 174.18 HMontmorillonite-HCMg -Mg0.3Mg0.6Al1.4Si4O10(OH)2:4.61H2O = +0.900Mg+2 +1.400Al+3 -6.000H+ +4.000H4(SiO4) +0.610H2O - log_k +6.47 - delta_h -133.713 #kJ/mol +Mg0.3Mg0.6Al1.4Si4O10(OH)2:4.61H2O = 0.9 Mg+2 + 1.4 Al+3 - 6 H+ + 4 H4(SiO4) + 0.61 H2O + log_k 6.47 + delta_h -133.713 #kJ/mol # Enthalpy of formation: -7059.479 kJ/mol 13BLA/VI; 11VIE/BLA - -analytic -16.95551E+0 00.00000E+0 69.84316E+2 00.00000E+0 00.00000E+0 - -Vm 215.180 + -analytic -16.95551E+0 00E+0 69.84316E+2 00E+0 00E+0 + -Vm 215.18 HMontmorillonite-HCNa -Na0.6Mg0.6Al1.4Si4O10(OH)2:3.84H2O = +0.600Mg+2 +0.600Na+ +1.400Al+3 -6.000H+ +4.000H4(SiO4) -0.160H2O - log_k +4.54 - delta_h -132.492 #kJ/mol +Na0.6Mg0.6Al1.4Si4O10(OH)2:3.84H2O = 0.6 Mg+2 + 0.6 Na+ + 1.4 Al+3 - 6 H+ + 4 H4(SiO4) - 0.16 H2O + log_k 4.54 + delta_h -132.492 #kJ/mol # Enthalpy of formation: -6844.715 kJ/mol 13BLA/VI; 11VIE/BLA - -analytic -18.67160E+0 00.00000E+0 69.20539E+2 00.00000E+0 00.00000E+0 - -Vm 206.920 + -analytic -18.6716E+0 00E+0 69.20539E+2 00E+0 00E+0 + -Vm 206.92 HNontronite-Ca -Ca0.17Fe1.67Al0.67Si3.66O10(OH)2:4.45H2O = +0.170Ca+2 +1.670Fe+3 +0.670Al+3 -7.360H+ +3.660H4(SiO4) +1.810H2O - log_k -2.89 - delta_h -111.618 #kJ/mol +Ca0.17Fe1.67Al0.67Si3.66O10(OH)2:4.45H2O = 0.17 Ca+2 + 1.67 Fe+3 + 0.67 Al+3 - 7.36 H+ + 3.66 H4(SiO4) + 1.81 H2O + log_k -2.89 + delta_h -111.618 #kJ/mol # Enthalpy of formation: -6290.336 kJ/mol 13BLA/VI; 11VIE/BLA - -analytic -22.44463E+0 00.00000E+0 58.30214E+2 00.00000E+0 00.00000E+0 - -Vm 214.180 + -analytic -22.44463E+0 00E+0 58.30214E+2 00E+0 00E+0 + -Vm 214.18 HNontronite-K -K0.34Fe1.67Al0.67Si3.66O10(OH)2:1.96H2O = +0.340K+ +1.670Fe+3 +0.670Al+3 -7.360H+ +3.660H4(SiO4) -0.680H2O - log_k +0.38 - delta_h -118.278 #kJ/mol +K0.34Fe1.67Al0.67Si3.66O10(OH)2:1.96H2O = 0.34 K+ + 1.67 Fe+3 + 0.67 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 0.68 H2O + log_k 0.38 + delta_h -118.278 #kJ/mol # Enthalpy of formation: -5565.377 kJ/mol 13BLA/VI; 11VIE/BLA - -analytic -20.34142E+0 00.00000E+0 61.78090E+2 00.00000E+0 00.00000E+0 - -Vm 168.280 + -analytic -20.34142E+0 00E+0 61.7809E+2 00E+0 00E+0 + -Vm 168.28 HNontronite-Mg -Mg0.17Fe1.67Al0.67Si3.66O10(OH)2:4.61H2O = +0.170Mg+2 +1.670Fe+3 +0.670Al+3 -7.360H+ +3.660H4(SiO4) +1.970H2O - log_k -2.59 - delta_h -111.018 #kJ/mol +Mg0.17Fe1.67Al0.67Si3.66O10(OH)2:4.61H2O = 0.17 Mg+2 + 1.67 Fe+3 + 0.67 Al+3 - 7.36 H+ + 3.66 H4(SiO4) + 1.97 H2O + log_k -2.59 + delta_h -111.018 #kJ/mol # Enthalpy of formation: -6323.749 kJ/mol 13BLA/VI; 11VIE/BLA - -analytic -22.03952E+0 00.00000E+0 57.98874E+2 00.00000E+0 00.00000E+0 - -Vm 212.670 + -analytic -22.03952E+0 00E+0 57.98874E+2 00E+0 00E+0 + -Vm 212.67 HNontronite-Na -Na0.34Fe1.67Al0.67Si3.66O10(OH)2:3.84H2O = +0.340Na+ +1.670Fe+3 +0.670Al+3 -7.360H+ +3.660H4(SiO4) +1.200H2O - log_k -3.14 - delta_h -122.648 #kJ/mol +Na0.34Fe1.67Al0.67Si3.66O10(OH)2:3.84H2O = 0.34 Na+ + 1.67 Fe+3 + 0.67 Al+3 - 7.36 H+ + 3.66 H4(SiO4) + 1.2 H2O + log_k -3.14 + delta_h -122.648 #kJ/mol # Enthalpy of formation: -6094.355 kJ/mol 13BLA/VI; 11VIE/BLA - -analytic -24.62701E+0 00.00000E+0 64.06351E+2 00.00000E+0 00.00000E+0 - -Vm 201.570 + -analytic -24.62701E+0 00E+0 64.06351E+2 00E+0 00E+0 + -Vm 201.57 Ho(cr) -Ho = +1.000Ho+3 +3.000e- - log_k +118.31 - delta_h -707.042 #kJ/mol +Ho = Ho+3 + 3 e- + log_k 118.31 + delta_h -707.042 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 82WAG/EVA - -analytic -55.58441E-1 00.00000E+0 36.93138E+3 00.00000E+0 00.00000E+0 + -analytic -55.58441E-1 00E+0 36.93138E+3 00E+0 00E+0 Ho(OH)3(am) -Ho(OH)3 = -3.000H+ +1.000Ho+3 +3.000H2O - log_k +17.48 #98DIA/RAG - -analytic 17.48000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ho(OH)3 = -3 H+ + Ho+3 + 3 H2O + log_k 17.48 #98DIA/RAG + -analytic 17.48E+0 00E+0 00E+0 00E+0 00E+0 Ho(OH)3(s) -Ho(OH)3 = -3.000H+ +1.000Ho+3 +3.000H2O - log_k +15.43 #98DIA/RAG - -analytic 15.43000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ho(OH)3 = -3 H+ + Ho+3 + 3 H2O + log_k 15.43 #98DIA/RAG + -analytic 15.43E+0 00E+0 00E+0 00E+0 00E+0 Ho(PO4):xH2O(s) -Ho(PO4) = -2.000H+ +1.000Ho+3 +1.000H2(PO4)- - log_k -4.64 #95SPA/BRU - -analytic -46.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ho(PO4) = -2 H+ + Ho+3 + H2(PO4)- + log_k -4.64 #95SPA/BRU + -analytic -46.4E-1 00E+0 00E+0 00E+0 00E+0 Ho2(CO3)3(s) -Ho2(CO3)3 = +2.000Ho+3 +3.000CO3-2 - log_k -33.80 #95SPA/BRU - -analytic -33.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ho2(CO3)3 = 2 Ho+3 + 3 CO3-2 + log_k -33.8 #95SPA/BRU + -analytic -33.8E+0 00E+0 00E+0 00E+0 00E+0 Ho2O3(s) -Ho2O3 = -6.000H+ +2.000Ho+3 +3.000H2O - log_k +47.41 - delta_h -390.706 #kJ/mol -# Enthalpy of formation: -1880.868 kJ/mol - -analytic -21.03875E+0 00.00000E+0 20.40800E+3 00.00000E+0 00.00000E+0 +Ho2O3 = -6 H+ + 2 Ho+3 + 3 H2O + log_k 47.41 + delta_h -390.706 #kJ/mol +# Enthalpy of formation: -1880.868 kJ/mol + -analytic -21.03875E+0 00E+0 20.408E+3 00E+0 00E+0 HoCl3:6H2O(s) -HoCl3:6H2O = +1.000Ho+3 +3.000Cl- +6.000H2O - log_k +5.39 #95SPA/BRU - delta_h -43.846 #kJ/mol -# Enthalpy of formation: -2879.413 kJ/mol - -analytic -22.91489E-1 00.00000E+0 22.90236E+2 00.00000E+0 00.00000E+0 +HoCl3:6H2O = Ho+3 + 3 Cl- + 6 H2O + log_k 5.39 #95SPA/BRU + delta_h -43.846 #kJ/mol +# Enthalpy of formation: -2879.413 kJ/mol + -analytic -22.91489E-1 00E+0 22.90236E+2 00E+0 00E+0 HoF3:0.5H2O(s) -HoF3:0.5H2O = +1.000Ho+3 +3.000F- +0.500H2O - log_k -16.40 #95SPA/BRU - delta_h -149.007 #kJ/mol +HoF3:0.5H2O = Ho+3 + 3 F- + 0.5 H2O + log_k -16.4 #95SPA/BRU + delta_h -149.007 #kJ/mol # Enthalpy of formation: -1707.000 kJ/mol 82WAG/EVA - -analytic -42.50491E+0 00.00000E+0 77.83178E+2 00.00000E+0 00.00000E+0 + -analytic -42.50491E+0 00E+0 77.83178E+2 00E+0 00E+0 HoPO4:H2O(cr) -HoPO4:H2O = -2.000H+ +1.000Ho+3 +1.000H2(PO4)- +1.000H2O - log_k -5.56 #97LIU/BYR - -analytic -55.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +HoPO4:H2O = -2 H+ + Ho+3 + H2(PO4)- + H2O + log_k -5.56 #97LIU/BYR + -analytic -55.6E-1 00E+0 00E+0 00E+0 00E+0 HSaponite-Ca -Ca0.17Mg3Al0.34Si3.66O10(OH)2:4.45H2O = +0.170Ca+2 +3.000Mg+2 +0.340Al+3 -7.360H+ +3.660H4(SiO4) +1.810H2O - log_k +28.36 - delta_h -239.662 #kJ/mol +Ca0.17Mg3Al0.34Si3.66O10(OH)2:4.45H2O = 0.17 Ca+2 + 3 Mg+2 + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) + 1.81 H2O + log_k 28.36 + delta_h -239.662 #kJ/mol # Enthalpy of formation: -7302.026 kJ/mol 13BLA/VI; 11VIE/BLA - -analytic -13.62698E+0 00.00000E+0 12.51842E+3 00.00000E+0 00.00000E+0 - -Vm 223.010 + -analytic -13.62698E+0 00E+0 12.51842E+3 00E+0 00E+0 + -Vm 223.01 HSaponite-FeCa -Ca0.17Mg2FeAl0.34Si3.66O10(OH)2:4.45H2O = +0.170Ca+2 +2.000Mg+2 +1.000Fe+2 +0.340Al+3 -7.360H+ +3.660H4(SiO4) +1.810H2O - log_k +27.97 - delta_h -235.847 #kJ/mol +Ca0.17Mg2FeAl0.34Si3.66O10(OH)2:4.45H2O = 0.17 Ca+2 + 2 Mg+2 + Fe+2 + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) + 1.81 H2O + log_k 27.97 + delta_h -235.847 #kJ/mol # Enthalpy of formation: -6929.136 kJ/mol 13BLA/VI; 11VIE/BLA - -analytic -13.34862E+0 00.00000E+0 12.31915E+3 00.00000E+0 00.00000E+0 - -Vm 225.590 + -analytic -13.34862E+0 00E+0 12.31915E+3 00E+0 00E+0 + -Vm 225.59 HSaponite-FeK -K0.34Mg2FeAl0.34Si3.66O10(OH)2:1.96H2O = +2.000Mg+2 +0.340K+ +1.000Fe+2 +0.340Al+3 -7.360H+ +3.660H4(SiO4) -0.680H2O - log_k +28.11 - delta_h -242.507 #kJ/mol +K0.34Mg2FeAl0.34Si3.66O10(OH)2:1.96H2O = 2 Mg+2 + 0.34 K+ + Fe+2 + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 0.68 H2O + log_k 28.11 + delta_h -242.507 #kJ/mol # Enthalpy of formation: -6204.177 kJ/mol 13BLA/VI; 11VIE/BLA - -analytic -14.37540E+0 00.00000E+0 12.66702E+3 00.00000E+0 00.00000E+0 - -Vm 179.690 + -analytic -14.3754E+0 00E+0 12.66702E+3 00E+0 00E+0 + -Vm 179.69 HSaponite-FeMg -Mg0.17Mg2FeAl0.34Si3.66O10(OH)2:4.61H2O = +2.170Mg+2 +1.000Fe+2 +0.340Al+3 -7.360H+ +3.660H4(SiO4) +1.970H2O - log_k +28.07 - delta_h -235.257 #kJ/mol +Mg0.17Mg2FeAl0.34Si3.66O10(OH)2:4.61H2O = 2.17 Mg+2 + Fe+2 + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) + 1.97 H2O + log_k 28.07 + delta_h -235.257 #kJ/mol # Enthalpy of formation: -6962.539 kJ/mol 13BLA/VI; 11VIE/BLA - -analytic -13.14526E+0 00.00000E+0 12.28833E+3 00.00000E+0 00.00000E+0 - -Vm 223.850 + -analytic -13.14526E+0 00E+0 12.28833E+3 00E+0 00E+0 + -Vm 223.85 HSaponite-FeNa -Na0.34Mg2FeAl0.34Si3.66O10(OH)2:3.84H2O = +2.000Mg+2 +0.340Na+ +1.000Fe+2 +0.340Al+3 -7.360H+ +3.660H4(SiO4) +1.200H2O - log_k +27.72 - delta_h -246.878 #kJ/mol +Na0.34Mg2FeAl0.34Si3.66O10(OH)2:3.84H2O = 2 Mg+2 + 0.34 Na+ + Fe+2 + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) + 1.2 H2O + log_k 27.72 + delta_h -246.878 #kJ/mol # Enthalpy of formation: -6733.155 kJ/mol 13BLA/VI; 11VIE/BLA - -analytic -15.53117E+0 00.00000E+0 12.89534E+3 00.00000E+0 00.00000E+0 - -Vm 212.990 + -analytic -15.53117E+0 00E+0 12.89534E+3 00E+0 00E+0 + -Vm 212.99 HSaponite-K -K0.34Mg3Al0.34Si3.66O10(OH)2:1.96H2O = +3.000Mg+2 +0.340K+ +0.340Al+3 -7.360H+ +3.660H4(SiO4) -0.680H2O - log_k +28.49 - delta_h -246.322 #kJ/mol +K0.34Mg3Al0.34Si3.66O10(OH)2:1.96H2O = 3 Mg+2 + 0.34 K+ + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 0.68 H2O + log_k 28.49 + delta_h -246.322 #kJ/mol # Enthalpy of formation: -6577.067 kJ/mol 13BLA/VI; 11VIE/BLA - -analytic -14.66376E+0 00.00000E+0 12.86629E+3 00.00000E+0 00.00000E+0 - -Vm 177.110 + -analytic -14.66376E+0 00E+0 12.86629E+3 00E+0 00E+0 + -Vm 177.11 HSaponite-Mg -Mg0.17Mg3Al0.34Si3.66O10(OH)2:4.61H2O = +3.170Mg+2 +0.340Al+3 -7.360H+ +3.660H4(SiO4) +1.970H2O - log_k +28.48 - delta_h -239.062 #kJ/mol +Mg0.17Mg3Al0.34Si3.66O10(OH)2:4.61H2O = 3.17 Mg+2 + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) + 1.97 H2O + log_k 28.48 + delta_h -239.062 #kJ/mol # Enthalpy of formation: -7335.439 kJ/mol 13BLA/VI; 11VIE/BLA - -analytic -13.40186E+0 00.00000E+0 12.48708E+3 00.00000E+0 00.00000E+0 - -Vm 221.080 + -analytic -13.40186E+0 00E+0 12.48708E+3 00E+0 00E+0 + -Vm 221.08 HSaponite-Na -Na0.34Mg3Al0.34Si3.66O10(OH)2:3.84H2O = +3.000Mg+2 +0.340Na+ +0.340Al+3 -7.360H+ +3.660H4(SiO4) +1.200H2O - log_k +28.03 - delta_h -250.288 #kJ/mol +Na0.34Mg3Al0.34Si3.66O10(OH)2:3.84H2O = 3 Mg+2 + 0.34 Na+ + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) + 1.2 H2O + log_k 28.03 + delta_h -250.288 #kJ/mol # Enthalpy of formation: -7106.450 kJ/mol 13BLA/VI; 11VIE/BLA - -analytic -15.81858E+0 00.00000E+0 13.07345E+3 00.00000E+0 00.00000E+0 - -Vm 210.400 + -analytic -15.81858E+0 00E+0 13.07345E+3 00E+0 00E+0 + -Vm 210.4 HVermiculite-Ca -Ca0.43Mg3.00Si3.14Al0.86O10(OH)2:4.45H2O = +0.430Ca+2 +3.000Mg+2 +0.860Al+3 -9.440H+ +3.140H4(SiO4) +3.890H2O - log_k +97.82 - delta_h -683.046 #kJ/mol +Ca0.43Mg3Si3.14Al0.86O10(OH)2:4.45H2O = 0.43 Ca+2 + 3 Mg+2 + 0.86 Al+3 - 9.44 H+ + 3.14 H4(SiO4) + 3.89 H2O + log_k 97.82 + delta_h -683.046 #kJ/mol # Enthalpy of formation: -7114.496 kJ/mol 13BLA/VI; 11VIE/BLA - -analytic -21.84452E+0 00.00000E+0 35.67798E+3 00.00000E+0 00.00000E+0 - -Vm 219.360 + -analytic -21.84452E+0 00E+0 35.67798E+3 00E+0 00E+0 + -Vm 219.36 HVermiculite-K -K0.86Mg3.00Si3.14Al0.86O10(OH)2:1.96H2O = +3.000Mg+2 +0.860K+ +0.860Al+3 -9.440H+ +3.140H4(SiO4) +1.400H2O - log_k +87.68 - delta_h -609.749 #kJ/mol +K0.86Mg3Si3.14Al0.86O10(OH)2:1.96H2O = 3 Mg+2 + 0.86 K+ + 0.86 Al+3 - 9.44 H+ + 3.14 H4(SiO4) + 1.4 H2O + log_k 87.68 + delta_h -609.749 #kJ/mol # Enthalpy of formation: -6459.427 kJ/mol 13BLA/VI; 11VIE/BLA - -analytic -19.14344E+0 00.00000E+0 31.84941E+3 00.00000E+0 00.00000E+0 - -Vm 175.490 + -analytic -19.14344E+0 00E+0 31.84941E+3 00E+0 00E+0 + -Vm 175.49 HVermiculite-Mg -Mg0.43Mg3.00Si3.14Al0.86O10(OH)2:4.61H2O = +3.430Mg+2 +0.860Al+3 -9.440H+ +3.140H4(SiO4) +4.050H2O - log_k +68.18 - delta_h -523.376 #kJ/mol +Mg0.43Mg3Si3.14Al0.86O10(OH)2:4.61H2O = 3.43 Mg+2 + 0.86 Al+3 - 9.44 H+ + 3.14 H4(SiO4) + 4.05 H2O + log_k 68.18 + delta_h -523.376 #kJ/mol # Enthalpy of formation: -7287.219 kJ/mol 13BLA/VI; 11VIE/BLA - -analytic -23.51154E+0 00.00000E+0 27.33783E+3 00.00000E+0 00.00000E+0 - -Vm 222.240 + -analytic -23.51154E+0 00E+0 27.33783E+3 00E+0 00E+0 + -Vm 222.24 HVermiculite-Na -Na0.86Mg3.00Si3.14Al0.86O10(OH)2:3.84H2O = +3.000Mg+2 +0.860Na+ +0.860Al+3 -9.440H+ +3.140H4(SiO4) +3.280H2O - log_k +96.52 - delta_h -673.353 #kJ/mol +Na0.86Mg3Si3.14Al0.86O10(OH)2:3.84H2O = 3 Mg+2 + 0.86 Na+ + 0.86 Al+3 - 9.44 H+ + 3.14 H4(SiO4) + 3.28 H2O + log_k 96.52 + delta_h -673.353 #kJ/mol # Enthalpy of formation: -6923.035 kJ/mol 13BLA/VI; 11VIE/BLA - -analytic -21.44638E+0 00.00000E+0 35.17168E+3 00.00000E+0 00.00000E+0 - -Vm 210.120 + -analytic -21.44638E+0 00E+0 35.17168E+3 00E+0 00E+0 + -Vm 210.12 Hydrocerussite -Pb3(CO3)2(OH)2 = +3.000Pb+2 -2.000H+ +2.000CO3-2 +2.000H2O - log_k -17.91 - delta_h -5.160 #kJ/mol +Pb3(CO3)2(OH)2 = 3 Pb+2 - 2 H+ + 2 CO3-2 + 2 H2O + log_k -17.91 + delta_h -5.16 #kJ/mol # Enthalpy of formation: -1914.200 kJ/mol 83SAN/BAR - -analytic -18.81399E+0 00.00000E+0 26.95256E+1 00.00000E+0 00.00000E+0 + -analytic -18.81399E+0 00E+0 26.95256E+1 00E+0 00E+0 Hydrophilite -CaCl2 = +1.000Ca+2 +2.000Cl- - log_k +11.77 - delta_h -81.360 #kJ/mol +CaCl2 = Ca+2 + 2 Cl- + log_k 11.77 + delta_h -81.36 #kJ/mol # Enthalpy of formation: -795.800 kJ/mol 98CHA - -analytic -24.83660E-1 00.00000E+0 42.49729E+2 00.00000E+0 00.00000E+0 + -analytic -24.8366E-1 00E+0 42.49729E+2 00E+0 00E+0 Hydrotalcite -Mg4Al2(OH)14:3H2O = +4.000Mg+2 +2.000Al+3 -14.000H+ +17.000H2O - log_k +73.74 #92ATK/GLA - delta_h -584.220 #kJ/mol -# Enthalpy of formation: -7219.684 kJ/mol - -analytic -28.61095E+0 00.00000E+0 30.51594E+3 00.00000E+0 00.00000E+0 - -Vm 227.360 +Mg4Al2(OH)14:3H2O = 4 Mg+2 + 2 Al+3 - 14 H+ + 17 H2O + log_k 73.74 #92ATK/GLA + delta_h -584.22 #kJ/mol +# Enthalpy of formation: -7219.684 kJ/mol + -analytic -28.61095E+0 00E+0 30.51594E+3 00E+0 00E+0 + -Vm 227.36 Hydrotalcite-CO3 -Mg4Al2(OH)12CO3:2H2O = +4.000Mg+2 +2.000Al+3 -12.000H+ +1.000CO3-2 +14.000H2O - log_k +50.86 #03JOH/GLA - delta_h -542.756 #kJ/mol -# Enthalpy of formation: -7078.889 kJ/mol - -analytic -44.22677E+0 00.00000E+0 28.35012E+3 00.00000E+0 00.00000E+0 - -Vm 231.460 +Mg4Al2(OH)12CO3:2H2O = 4 Mg+2 + 2 Al+3 - 12 H+ + CO3-2 + 14 H2O + log_k 50.86 #03JOH/GLA + delta_h -542.756 #kJ/mol +# Enthalpy of formation: -7078.889 kJ/mol + -analytic -44.22677E+0 00E+0 28.35012E+3 00E+0 00E+0 + -Vm 231.46 Hydroxyapatite -Ca5(OH)(PO4)3 = +5.000Ca+2 -7.000H+ +3.000H2(PO4)- +1.000H2O - log_k +14.35 #84NAN - delta_h -178.487 #kJ/mol -# Enthalpy of formation: -6730.141 kJ/mol - -analytic -16.91958E+0 00.00000E+0 93.23025E+2 00.00000E+0 00.00000E+0 - -Vm 159.600 +Ca5(OH)(PO4)3 = 5 Ca+2 - 7 H+ + 3 H2(PO4)- + H2O + log_k 14.35 #84NAN + delta_h -178.487 #kJ/mol +# Enthalpy of formation: -6730.141 kJ/mol + -analytic -16.91958E+0 00E+0 93.23025E+2 00E+0 00E+0 + -Vm 159.6 I2(cr) -I2 = -2.000e- +2.000I- - log_k +18.12 - delta_h -113.560 #kJ/mol +I2 = -2 e- + 2 I- + log_k 18.12 + delta_h -113.56 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 89COX/WAG - -analytic -17.74858E-1 00.00000E+0 59.31652E+2 00.00000E+0 00.00000E+0 + -analytic -17.74858E-1 00E+0 59.31652E+2 00E+0 00E+0 Illite/smectite ISCz-1 -(Ca0.092K0.439)(Si3.559Al0.441)(Al1.728Fe0.011Fe0.034Mg0.255)O10(OH)2 = +0.092Ca+2 +0.255Mg+2 +0.439K+ +0.034Fe+3 +0.011Fe+2 +2.169Al+3 -7.764H+ +3.559H4(SiO4) -2.236H2O - log_k +10.89 - delta_h -224.089 #kJ/mol +(Ca0.092K0.439)(Si3.559Al0.441)(Al1.728Fe0.011Fe0.034Mg0.255)O10(OH)2 = 0.092 Ca+2 + 0.255 Mg+2 + 0.439 K+ + 0.034 Fe+3 + 0.011 Fe+2 + 2.169 Al+3 - 7.764 H+ + 3.559 H4(SiO4) - 2.236 H2O + log_k 10.89 + delta_h -224.089 #kJ/mol # Enthalpy of formation: -5787.400 kJ/mol 14BLA/GAI - -analytic -28.36871E+0 00.00000E+0 11.70498E+3 00.00000E+0 00.00000E+0 - -Vm 137.130 + -analytic -28.36871E+0 00E+0 11.70498E+3 00E+0 00E+0 + -Vm 137.13 Illite_Imt-2 -(Na0.044K0.762)(Si3.387Al0.613)(Al1.427Fe0.292Fe0.084Mg0.241)O10(OH)2 = +0.241Mg+2 +0.762K+ +0.044Na+ +0.292Fe+3 +0.084Fe+2 +2.040Al+3 -8.452H+ +3.387H4(SiO4) -1.548H2O - log_k +11.52 - delta_h -231.139 #kJ/mol +(Na0.044K0.762)(Si3.387Al0.613)(Al1.427Fe0.292Fe0.084Mg0.241)O10(OH)2 = 0.241 Mg+2 + 0.762 K+ + 0.044 Na+ + 0.292 Fe+3 + 0.084 Fe+2 + 2.04 Al+3 - 8.452 H+ + 3.387 H4(SiO4) - 1.548 H2O + log_k 11.52 + delta_h -231.139 #kJ/mol # Enthalpy of formation: -5711.250 kJ/mol 12GAI/BLA - -analytic -28.97381E+0 00.00000E+0 12.07323E+3 00.00000E+0 00.00000E+0 - -Vm 139.180 + -analytic -28.97381E+0 00E+0 12.07323E+3 00E+0 00E+0 + -Vm 139.18 Illite-Al -K0.85Al2.85Si3.15O10(OH)2 = +0.850K+ +2.850Al+3 -9.400H+ +3.150H4(SiO4) -0.600H2O - log_k +13.02 - delta_h -266.372 #kJ/mol +K0.85Al2.85Si3.15O10(OH)2 = 0.85 K+ + 2.85 Al+3 - 9.4 H+ + 3.15 H4(SiO4) - 0.6 H2O + log_k 13.02 + delta_h -266.372 #kJ/mol # Enthalpy of formation: -5913.650 kJ/mol 15BLA/VIE - -analytic -33.64637E+0 00.00000E+0 13.91358E+3 00.00000E+0 00.00000E+0 - -Vm 138.980 + -analytic -33.64637E+0 00E+0 13.91358E+3 00E+0 00E+0 + -Vm 138.98 Illite-FeII -K0.85Fe0.25Al2.35Si3.4O10(OH)2 = +0.850K+ +0.250Fe+2 +2.350Al+3 -8.400H+ +3.400H4(SiO4) -1.600H2O - log_k +9.46 - delta_h -216.574 #kJ/mol +K0.85Fe0.25Al2.35Si3.4O10(OH)2 = 0.85 K+ + 0.25 Fe+2 + 2.35 Al+3 - 8.4 H+ + 3.4 H4(SiO4) - 1.6 H2O + log_k 9.46 + delta_h -216.574 #kJ/mol # Enthalpy of formation: -5796.290 kJ/mol 15BLA/VIE - -analytic -28.48214E+0 00.00000E+0 11.31245E+3 00.00000E+0 00.00000E+0 - -Vm 140.670 + -analytic -28.48214E+0 00E+0 11.31245E+3 00E+0 00E+0 + -Vm 140.67 Illite-FeIII -K0.85Fe0.25Al2.6Si3.15O10(OH)2 = +0.850K+ +0.250Fe+3 +2.600Al+3 -9.400H+ +3.150H4(SiO4) -0.600H2O - log_k +12.36 - delta_h -262.546 #kJ/mol +K0.85Fe0.25Al2.6Si3.15O10(OH)2 = 0.85 K+ + 0.25 Fe+3 + 2.6 Al+3 - 9.4 H+ + 3.15 H4(SiO4) - 0.6 H2O + log_k 12.36 + delta_h -262.546 #kJ/mol # Enthalpy of formation: -5795.390 kJ/mol 15BLA/VIE - -analytic -33.63608E+0 00.00000E+0 13.71373E+3 00.00000E+0 00.00000E+0 - -Vm 138.920 + -analytic -33.63608E+0 00E+0 13.71373E+3 00E+0 00E+0 + -Vm 138.92 Illite-Mg -K0.85Mg0.25Al2.35Si3.4O10(OH)2 = +0.250Mg+2 +0.850K+ +2.350Al+3 -8.400H+ +3.400H4(SiO4) -1.600H2O - log_k +11.01 - delta_h -225.651 #kJ/mol +K0.85Mg0.25Al2.35Si3.4O10(OH)2 = 0.25 Mg+2 + 0.85 K+ + 2.35 Al+3 - 8.4 H+ + 3.4 H4(SiO4) - 1.6 H2O + log_k 11.01 + delta_h -225.651 #kJ/mol # Enthalpy of formation: -5881.390 kJ/mol 15BLA/VIE - -analytic -28.52236E+0 00.00000E+0 11.78657E+3 00.00000E+0 00.00000E+0 - -Vm 140.060 + -analytic -28.52236E+0 00E+0 11.78657E+3 00E+0 00E+0 + -Vm 140.06 Illite-Smec_ISCz-1(2.996H2O) -(Na0.134K0.53)(Si3.565Al0.435)(Al1.717Fe0.05Fe0.017Mg0.218)O10(OH)2:2.996H2O = +0.218Mg+2 +0.530K+ +0.134Na+ +0.050Fe+3 +0.017Fe+2 +2.152Al+3 -7.740H+ +3.565H4(SiO4) +0.736H2O - log_k +13.61 - delta_h -225.228 #kJ/mol +(Na0.134K0.53)(Si3.565Al0.435)(Al1.717Fe0.05Fe0.017Mg0.218)O10(OH)2:2.996H2O = 0.218 Mg+2 + 0.53 K+ + 0.134 Na+ + 0.05 Fe+3 + 0.017 Fe+2 + 2.152 Al+3 - 7.74 H+ + 3.565 H4(SiO4) + 0.736 H2O + log_k 13.61 + delta_h -225.228 #kJ/mol # Enthalpy of formation: -6624.620 kJ/mol 09GAI - -analytic -25.84825E+0 00.00000E+0 11.76448E+3 00.00000E+0 00.00000E+0 - -Vm 192.420 + -analytic -25.84825E+0 00E+0 11.76448E+3 00E+0 00E+0 + -Vm 192.42 Jaffeite -Ca6(Si2O7)(OH)6 = +6.000Ca+2 -12.000H+ +2.000H4(SiO4) +5.000H2O - log_k +114.06 - delta_h -636.768 #kJ/mol +Ca6(Si2O7)(OH)6 = 6 Ca+2 - 12 H+ + 2 H4(SiO4) + 5 H2O + log_k 114.06 + delta_h -636.768 #kJ/mol # Enthalpy of formation: -6972.770 kJ/mol 10BLA/BOU1 - -analytic 25.03035E-1 00.00000E+0 33.26071E+3 00.00000E+0 00.00000E+0 - -Vm 174.380 + -analytic 25.03035E-1 00E+0 33.26071E+3 00E+0 00E+0 + -Vm 174.38 Jennite -Ca9Si6O16(OH)10:6H2O = +9.000Ca+2 -18.000H+ +6.000H4(SiO4) +8.000H2O - log_k +147.33 #10BLA/BOU1 - delta_h -751.764 #kJ/mol +Ca9Si6O16(OH)10:6H2O = 9 Ca+2 - 18 H+ + 6 H4(SiO4) + 8 H2O + log_k 147.33 #10BLA/BOU1 + delta_h -751.764 #kJ/mol # Enthalpy of formation: -15189.040kJ/mol 10BLA/BOU1 - -analytic 15.62660E+0 00.00000E+0 39.26737E+3 00.00000E+0 00.00000E+0 - -Vm 456.400 + -analytic 15.6266E+0 00E+0 39.26737E+3 00E+0 00E+0 + -Vm 456.4 K(cr) -K = +1.000K+ +1.000e- - log_k +49.49 - delta_h -252.140 #kJ/mol +K = K+ + e- + log_k 49.49 + delta_h -252.14 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 89COX/WAG - -analytic 53.16968E-1 00.00000E+0 13.17019E+3 00.00000E+0 00.00000E+0 + -analytic 53.16968E-1 00E+0 13.17019E+3 00E+0 00E+0 K(NO3)(s) -K(NO3) = +1.000K+ +1.000NO3- - log_k -0.10 #96FAL/REA - -analytic -10.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +K(NO3) = K+ + NO3- + log_k -0.1 #96FAL/REA + -analytic -10E-2 00E+0 00E+0 00E+0 00E+0 K(OH)(s) -K(OH) = +1.000K+ -1.000H+ +1.000H2O - log_k +24.60 #96FAL/REA - -analytic 24.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +K(OH) = K+ - H+ + H2O + log_k 24.6 #96FAL/REA + -analytic 24.6E+0 00E+0 00E+0 00E+0 00E+0 K2CO3(cr) -K2CO3 = +2.000K+ +1.000CO3-2 - log_k +5.41 - delta_h -31.798 #kJ/mol 74NAU/RYZ -# Enthalpy of formation: -1147.712 kJ/mol - -analytic -16.07705E-2 00.00000E+0 16.60925E+2 00.00000E+0 00.00000E+0 +K2CO3 = 2 K+ + CO3-2 + log_k 5.41 + delta_h -31.798 #kJ/mol 74NAU/RYZ +# Enthalpy of formation: -1147.712 kJ/mol + -analytic -16.07705E-2 00E+0 16.60925E+2 00E+0 00E+0 K2O(s) -K2O = +2.000K+ -2.000H+ +1.000H2O - log_k +84.11 - delta_h -426.940 #kJ/mol +K2O = 2 K+ - 2 H+ + H2O + log_k 84.11 + delta_h -426.94 #kJ/mol # Enthalpy of formation: -363.170 kJ/mol 98CHA - -analytic 93.13323E-1 00.00000E+0 22.30063E+3 00.00000E+0 00.00000E+0 + -analytic 93.13323E-1 00E+0 22.30063E+3 00E+0 00E+0 K3NpO2(CO3)2(cr) -K3NpO2(CO3)2 = +3.000K+ +1.000NpO2+ +2.000CO3-2 - log_k -15.46 #03GUI/FAN - -analytic -15.46000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +K3NpO2(CO3)2 = 3 K+ + NpO2+ + 2 CO3-2 + log_k -15.46 #03GUI/FAN + -analytic -15.46E+0 00E+0 00E+0 00E+0 00E+0 K4NpO2(CO3)3(cr) -K4NpO2(CO3)3 = +4.000K+ +1.000NpO2+2 +3.000CO3-2 - log_k -26.93 #01LEM/FUG - -analytic -26.93000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +K4NpO2(CO3)3 = 4 K+ + NpO2+2 + 3 CO3-2 + log_k -26.93 #01LEM/FUG + -analytic -26.93E+0 00E+0 00E+0 00E+0 00E+0 Kainite -KMgCl(SO4):3H2O = +1.000Mg+2 +1.000K+ +1.000SO4-2 +1.000Cl- +3.000H2O - log_k -0.19 #84HAR/MOL - delta_h -12.950 #kJ/mol +KMgCl(SO4):3H2O = Mg+2 + K+ + SO4-2 + Cl- + 3 H2O + log_k -0.19 #84HAR/MOL + delta_h -12.95 #kJ/mol # Enthalpy of formation: -2640.100 kJ/mol 82WAG/EVA - -analytic -24.58743E-1 00.00000E+0 67.64256E+1 00.00000E+0 00.00000E+0 + -analytic -24.58743E-1 00E+0 67.64256E+1 00E+0 00E+0 KAl(OH)4 -KAl(OH)4 = +1.000K+ +1.000Al+3 -4.000H+ +4.000H2O - log_k +24.22 - delta_h -211.675 #kJ/mol +KAl(OH)4 = K+ + Al+3 - 4 H+ + 4 H2O + log_k 24.22 + delta_h -211.675 #kJ/mol # Enthalpy of formation: -1722.185 kJ/mol 97POK/HEL2 - -analytic -12.86387E+0 00.00000E+0 11.05656E+3 00.00000E+0 00.00000E+0 + -analytic -12.86387E+0 00E+0 11.05656E+3 00E+0 00E+0 KAl(SO4)2(s) -KAl(SO4)2 = +1.000K+ +1.000Al+3 +2.000SO4-2 - log_k +3.74 #96FAL/REA - -analytic 37.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +KAl(SO4)2 = K+ + Al+3 + 2 SO4-2 + log_k 3.74 #96FAL/REA + -analytic 37.4E-1 00E+0 00E+0 00E+0 00E+0 KAl(SO4)2:12H2O(s) -KAl(SO4)2:12H2O = +1.000K+ +1.000Al+3 +2.000SO4-2 +12.000H2O - log_k -6.68 #96FAL/REA - -analytic -66.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +KAl(SO4)2:12H2O = K+ + Al+3 + 2 SO4-2 + 12 H2O + log_k -6.68 #96FAL/REA + -analytic -66.8E-1 00E+0 00E+0 00E+0 00E+0 Kalicinite -KHCO3 = +1.000K+ +1.000H+ +1.000CO3-2 - log_k -10.06 #84HAR/MOL - delta_h +34.950 #kJ/mol +KHCO3 = K+ + H+ + CO3-2 + log_k -10.06 #84HAR/MOL + delta_h 34.95 #kJ/mol # Enthalpy of formation: -962.320 kJ/mol 74NAU/RYZ - -analytic -39.37023E-1 00.00000E+0 -18.25566E+2 00.00000E+0 00.00000E+0 + -analytic -39.37023E-1 00E+0 -18.25566E+2 00E+0 00E+0 Kaolinite -Al2(Si2O5)(OH)4 = +2.000Al+3 -6.000H+ +2.000H4(SiO4) +1.000H2O - log_k +6.50 - delta_h -169.718 #kJ/mol +Al2(Si2O5)(OH)4 = 2 Al+3 - 6 H+ + 2 H4(SiO4) + H2O + log_k 6.5 + delta_h -169.718 #kJ/mol # Enthalpy of formation: -4115.300 kJ/mol 01FIA/NAV - -analytic -23.23332E+0 00.00000E+0 88.64989E+2 00.00000E+0 00.00000E+0 - -Vm 99.340 + -analytic -23.23332E+0 00E+0 88.64989E+2 00E+0 00E+0 + -Vm 99.34 Katoite -Ca3Al2(SiO4)(OH)8 = +3.000Ca+2 +2.000Al+3 -12.000H+ +1.000H4(SiO4) +8.000H2O - log_k +71.16 #10BLA/BOU2 - delta_h -545.767 #kJ/mol -# Enthalpy of formation: -5907.865 kJ/mol - -analytic -24.45427E+0 00.00000E+0 28.50740E+3 00.00000E+0 00.00000E+0 - -Vm 141.510 +Ca3Al2(SiO4)(OH)8 = 3 Ca+2 + 2 Al+3 - 12 H+ + H4(SiO4) + 8 H2O + log_k 71.16 #10BLA/BOU2 + delta_h -545.767 #kJ/mol +# Enthalpy of formation: -5907.865 kJ/mol + -analytic -24.45427E+0 00E+0 28.5074E+3 00E+0 00E+0 + -Vm 141.51 K-Boltwoodite -K(UO2)(SiO3OH):H2O = +1.000K+ +1.000UO2+2 -3.000H+ +1.000H4(SiO4) +1.000H2O - log_k +4.48 #20GRE/GAO - delta_h -27.146 #kJ/mol -# Enthalpy of formation: -2991.019 kJ/mol - -analytic -27.57751E-2 00.00000E+0 14.17934E+2 00.00000E+0 00.00000E+0 +K(UO2)(SiO3OH):H2O = K+ + UO2+2 - 3 H+ + H4(SiO4) + H2O + log_k 4.48 #20GRE/GAO + delta_h -27.146 #kJ/mol +# Enthalpy of formation: -2991.019 kJ/mol + -analytic -27.57751E-2 00E+0 14.17934E+2 00E+0 00E+0 KBr(s) -KBr = +1.000K+ +1.000Br- - log_k +1.13 #96FAL/REA - -analytic 11.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +KBr = K+ + Br- + log_k 1.13 #96FAL/REA + -analytic 11.3E-1 00E+0 00E+0 00E+0 00E+0 K-carbonate -K2CO3:1.5H2O = +2.000K+ +1.000CO3-2 +1.500H2O - log_k +3.03 #84HAR/MOL - delta_h -1.188 #kJ/mol -# Enthalpy of formation: -1607.068 kJ/mol - -analytic 28.21871E-1 00.00000E+0 62.05356E+0 00.00000E+0 00.00000E+0 +K2CO3:1.5H2O = 2 K+ + CO3-2 + 1.5 H2O + log_k 3.03 #84HAR/MOL + delta_h -1.188 #kJ/mol +# Enthalpy of formation: -1607.068 kJ/mol + -analytic 28.21871E-1 00E+0 62.05356E+0 00E+0 00E+0 KFe(CrO4)2:2H2O(s) -KFe(CrO4)2:2H2O = +1.000K+ +1.000Fe+3 +2.000CrO4-2 +2.000H2O - log_k -19.39 #98BAR/PAL - delta_h +27.540 #kJ/mol 98BAR/PAL -# Enthalpy of formation: -2659.396 kJ/mol - -analytic -14.56520E+0 00.00000E+0 -14.38514E+2 00.00000E+0 00.00000E+0 +KFe(CrO4)2:2H2O = K+ + Fe+3 + 2 CrO4-2 + 2 H2O + log_k -19.39 #98BAR/PAL + delta_h 27.54 #kJ/mol 98BAR/PAL +# Enthalpy of formation: -2659.396 kJ/mol + -analytic -14.5652E+0 00E+0 -14.38514E+2 00E+0 00E+0 KFe3(CrO4)2(OH)6(cr) -KFe3(CrO4)2(OH)6 = +1.000K+ +3.000Fe+3 -6.000H+ +2.000CrO4-2 +6.000H2O - log_k -18.40 #96BAR/PAL - -analytic -18.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +KFe3(CrO4)2(OH)6 = K+ + 3 Fe+3 - 6 H+ + 2 CrO4-2 + 6 H2O + log_k -18.4 #96BAR/PAL + -analytic -18.4E+0 00E+0 00E+0 00E+0 00E+0 KH2PO4 -KH2PO4 = +1.000K+ +1.000H2(PO4)- - log_k -0.44 #97MAR/SMI - -analytic -44.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +KH2PO4 = K+ + H2(PO4)- + log_k -0.44 #97MAR/SMI + -analytic -44E-2 00E+0 00E+0 00E+0 00E+0 KH2PO4(cr) -KH2PO4 = +1.000K+ +1.000H2(PO4)- - log_k -0.37 - delta_h +19.686 #kJ/mol 74NAU/RYZ -# Enthalpy of formation: -1574.426 kJ/mol - -analytic 30.78839E-1 00.00000E+0 -10.28271E+2 00.00000E+0 00.00000E+0 +KH2PO4 = K+ + H2(PO4)- + log_k -0.37 + delta_h 19.686 #kJ/mol 74NAU/RYZ +# Enthalpy of formation: -1574.426 kJ/mol + -analytic 30.78839E-1 00E+0 -10.28271E+2 00E+0 00E+0 KI(s) -KI = +1.000K+ +1.000I- - log_k +1.74 #96FAL/REA - -analytic 17.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +KI = K+ + I- + log_k 1.74 #96FAL/REA + -analytic 17.4E-1 00E+0 00E+0 00E+0 00E+0 KNpO2CO3(cr) -KNpO2CO3 = +1.000K+ +1.000NpO2+ +1.000CO3-2 - log_k -13.15 #03GUI/FAN - -analytic -13.15000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +KNpO2CO3 = K+ + NpO2+ + CO3-2 + log_k -13.15 #03GUI/FAN + -analytic -13.15E+0 00E+0 00E+0 00E+0 00E+0 KTcO4(cr) -KTcO4 = +1.000K+ +1.000TcO4- - log_k -2.29 #99RAR/RAN - delta_h +53.260 #kJ/mol 99RAR/RAN -# Enthalpy of formation: -1034.800 kJ/mol - -analytic 70.40751E-1 00.00000E+0 -27.81964E+2 00.00000E+0 00.00000E+0 +KTcO4 = K+ + TcO4- + log_k -2.29 #99RAR/RAN + delta_h 53.26 #kJ/mol 99RAR/RAN +# Enthalpy of formation: -1034.800 kJ/mol + -analytic 70.40751E-1 00E+0 -27.81964E+2 00E+0 00E+0 K-trona -K2NaH(CO3)2:2H2O = +2.000K+ +1.000Na+ +1.000H+ +2.000CO3-2 +2.000H2O - log_k -9.10 #84HAR/MOL - -analytic -91.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +K2NaH(CO3)2:2H2O = 2 K+ + Na+ + H+ + 2 CO3-2 + 2 H2O + log_k -9.1 #84HAR/MOL + -analytic -91E-1 00E+0 00E+0 00E+0 00E+0 Lanarkite -PbSO4:PbO = +2.000Pb+2 -2.000H+ +1.000SO4-2 +1.000H2O - log_k +2.63 #82ABD/THO - delta_h -39.234 #kJ/mol -# Enthalpy of formation: -1154.096 kJ/mol - -analytic -42.43502E-1 00.00000E+0 20.49335E+2 00.00000E+0 00.00000E+0 +PbSO4:PbO = 2 Pb+2 - 2 H+ + SO4-2 + H2O + log_k 2.63 #82ABD/THO + delta_h -39.234 #kJ/mol +# Enthalpy of formation: -1154.096 kJ/mol + -analytic -42.43502E-1 00E+0 20.49335E+2 00E+0 00E+0 Langite -Cu4SO4(OH)6:H2O = +4.000Cu+2 -6.000H+ +1.000SO4-2 +7.000H2O - log_k +17.49 - delta_h -165.074 #kJ/mol -# Enthalpy of formation: -2485.474 kJ/mol - -analytic -11.42972E+0 00.00000E+0 86.22416E+2 00.00000E+0 00.00000E+0 +Cu4SO4(OH)6:H2O = 4 Cu+2 - 6 H+ + SO4-2 + 7 H2O + log_k 17.49 + delta_h -165.074 #kJ/mol +# Enthalpy of formation: -2485.474 kJ/mol + -analytic -11.42972E+0 00E+0 86.22416E+2 00E+0 00E+0 Lansfordite -Mg(CO3):5H2O = +1.000Mg+2 +1.000CO3-2 +5.000H2O - log_k -5.04 - delta_h +2.890 #kJ/mol +Mg(CO3):5H2O = Mg+2 + CO3-2 + 5 H2O + log_k -5.04 + delta_h 2.89 #kJ/mol # Enthalpy of formation: -2574.270 kJ/mol 99KON/KON - -analytic -45.33694E-1 00.00000E+0 -15.09552E+1 00.00000E+0 00.00000E+0 + -analytic -45.33694E-1 00E+0 -15.09552E+1 00E+0 00E+0 Laumontite -CaAl2Si4O12:4H2O = +1.000Ca+2 +2.000Al+3 -8.000H+ +4.000H4(SiO4) - log_k +11.67 - delta_h -213.576 #kJ/mol +CaAl2Si4O12:4H2O = Ca+2 + 2 Al+3 - 8 H+ + 4 H4(SiO4) + log_k 11.67 + delta_h -213.576 #kJ/mol # Enthalpy of formation: -7251.000 kJ/mol 96KIS/NAV - -analytic -25.74691E+0 00.00000E+0 11.15585E+3 00.00000E+0 00.00000E+0 - -Vm 207.530 + -analytic -25.74691E+0 00E+0 11.15585E+3 00E+0 00E+0 + -Vm 207.53 Laurionite -PbClOH = +1.000Pb+2 -1.000H+ +1.000Cl- +1.000H2O - log_k +0.62 #99LOT/OCH - -analytic 62.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +PbClOH = Pb+2 - H+ + Cl- + H2O + log_k 0.62 #99LOT/OCH + -analytic 62E-2 00E+0 00E+0 00E+0 00E+0 Lawrencite -FeCl2 = +1.000Fe+2 +2.000Cl- - log_k +8.93 - delta_h -82.921 #kJ/mol +FeCl2 = Fe+2 + 2 Cl- + log_k 8.93 + delta_h -82.921 #kJ/mol # Enthalpy of formation: -341.534 kJ/mol 13LEM/BER - -analytic -55.97136E-1 00.00000E+0 43.31265E+2 00.00000E+0 00.00000E+0 + -analytic -55.97136E-1 00E+0 43.31265E+2 00E+0 00E+0 Leonhardtite -MgSO4:4H2O = +1.000Mg+2 +1.000SO4-2 +4.000H2O - log_k -0.89 #80HAR/WEA - delta_h -24.030 #kJ/mol +MgSO4:4H2O = Mg+2 + SO4-2 + 4 H2O + log_k -0.89 #80HAR/WEA + delta_h -24.03 #kJ/mol # Enthalpy of formation: -2495.630 kJ/mol 74NAU/RYZ - -analytic -50.99875E-1 00.00000E+0 12.55174E+2 00.00000E+0 00.00000E+0 + -analytic -50.99875E-1 00E+0 12.55174E+2 00E+0 00E+0 Leonite -K2Mg(SO4)2:4H2O = +1.000Mg+2 +2.000K+ +2.000SO4-2 +4.000H2O - log_k -3.98 #84HAR/MOL - delta_h +15.290 #kJ/mol +K2Mg(SO4)2:4H2O = Mg+2 + 2 K+ + 2 SO4-2 + 4 H2O + log_k -3.98 #84HAR/MOL + delta_h 15.29 #kJ/mol # Enthalpy of formation: -3948.570 kJ/mol 74NAU/RYZ - -analytic -13.01307E-1 00.00000E+0 -79.86523E+1 00.00000E+0 00.00000E+0 + -analytic -13.01307E-1 00E+0 -79.86523E+1 00E+0 00E+0 Lepidocrocite -FeOOH = +1.000Fe+3 -3.000H+ +2.000H2O - log_k +1.86 - delta_h -72.516 #kJ/mol +FeOOH = Fe+3 - 3 H+ + 2 H2O + log_k 1.86 + delta_h -72.516 #kJ/mol # Enthalpy of formation: -549.200 kJ/mol 13LEM/BER - -analytic -10.84426E+0 00.00000E+0 37.87774E+2 00.00000E+0 00.00000E+0 + -analytic -10.84426E+0 00E+0 37.87774E+2 00E+0 00E+0 Li(cr) -Li = +1.000e- +1.000Li+ - log_k +51.32 - delta_h -278.470 #kJ/mol +Li = e- + Li+ + log_k 51.32 + delta_h -278.47 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 89COX/WAG - -analytic 25.34150E-1 00.00000E+0 14.54550E+3 00.00000E+0 00.00000E+0 + -analytic 25.3415E-1 00E+0 14.5455E+3 00E+0 00E+0 Liebigite -Ca2UO2(CO3)3:10H2O = +2.000Ca+2 +1.000UO2+2 +3.000CO3-2 +10.000H2O - log_k -32.30 #19LEE/AMA - delta_h +55.710 #kJ/mol +Ca2UO2(CO3)3:10H2O = 2 Ca+2 + UO2+2 + 3 CO3-2 + 10 H2O + log_k -32.3 #19LEE/AMA + delta_h 55.71 #kJ/mol # Enthalpy of formation: -7044.700 kJ/mol 20GRE/GAO - -analytic -22.54003E+0 00.00000E+0 -29.09936E+2 00.00000E+0 00.00000E+0 + -analytic -22.54003E+0 00E+0 -29.09936E+2 00E+0 00E+0 Linnaeite -Co3S4 = +3.000Co+2 -4.000H+ -2.000e- +4.000HS- - log_k -42.76 - delta_h +136.500 #kJ/mol +Co3S4 = 3 Co+2 - 4 H+ - 2 e- + 4 HS- + log_k -42.76 + delta_h 136.5 #kJ/mol # Enthalpy of formation: -374.500 kJ/mol 95ROB/HEM - -analytic -18.84623E+0 00.00000E+0 -71.29892E+2 00.00000E+0 00.00000E+0 + -analytic -18.84623E+0 00E+0 -71.29892E+2 00E+0 00E+0 Litharge -PbO = +1.000Pb+2 -2.000H+ +1.000H2O - log_k +12.63 - delta_h -65.501 #kJ/mol +PbO = Pb+2 - 2 H+ + H2O + log_k 12.63 + delta_h -65.501 #kJ/mol # Enthalpy of formation: -219.409 kJ/mol 98CHA - -analytic 11.54717E-1 00.00000E+0 34.21356E+2 00.00000E+0 00.00000E+0 + -analytic 11.54717E-1 00E+0 34.21356E+2 00E+0 00E+0 Lizardite -Mg3Si2O5(OH)4 = +3.000Mg+2 -6.000H+ +2.000H4(SiO4) +1.000H2O - log_k +33.08 - delta_h -247.218 #kJ/mol +Mg3Si2O5(OH)4 = 3 Mg+2 - 6 H+ + 2 H4(SiO4) + H2O + log_k 33.08 + delta_h -247.218 #kJ/mol # Enthalpy of formation: -4362.000 kJ/mol 04EVA - -analytic -10.23073E+0 00.00000E+0 12.91310E+3 00.00000E+0 00.00000E+0 - -Vm 107.500 + -analytic -10.23073E+0 00E+0 12.9131E+3 00E+0 00E+0 + -Vm 107.5 Mackinawite -FeS = +1.000Fe+2 -1.000H+ +1.000HS- - log_k -3.19 #20LEM/PAL - -analytic -31.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 - -Vm 20.450 +FeS = Fe+2 - H+ + HS- + log_k -3.19 #20LEM/PAL + -analytic -31.9E-1 00E+0 00E+0 00E+0 00E+0 + -Vm 20.45 Maghemite -Fe2O3 = +2.000Fe+3 -6.000H+ +3.000H2O - log_k +2.79 - delta_h -149.612 #kJ/mol +Fe2O3 = 2 Fe+3 - 6 H+ + 3 H2O + log_k 2.79 + delta_h -149.612 #kJ/mol # Enthalpy of formation: -807.990 kJ/mol 13LEM/BER - -analytic -23.42090E+0 00.00000E+0 78.14779E+2 00.00000E+0 00.00000E+0 + -analytic -23.4209E+0 00E+0 78.14779E+2 00E+0 00E+0 Magnesite(nat) -MgCO3 = +1.000Mg+2 +1.000CO3-2 - log_k -8.91 - delta_h -24.290 #kJ/mol +MgCO3 = Mg+2 + CO3-2 + log_k -8.91 + delta_h -24.29 #kJ/mol # Enthalpy of formation: -1117.940 kJ/mol 99KON/KON - -analytic -13.16543E+0 00.00000E+0 12.68755E+2 00.00000E+0 00.00000E+0 + -analytic -13.16543E+0 00E+0 12.68755E+2 00E+0 00E+0 Magnesite(syn) -Mg(CO3) = +1.000Mg+2 +1.000CO3-2 - log_k -8.10 - delta_h -28.930 #kJ/mol +Mg(CO3) = Mg+2 + CO3-2 + log_k -8.1 + delta_h -28.93 #kJ/mol # Enthalpy of formation: -1113.300 kJ/mol 95ROB/HEM - -analytic -13.16832E+0 00.00000E+0 15.11119E+2 00.00000E+0 00.00000E+0 + -analytic -13.16832E+0 00E+0 15.11119E+2 00E+0 00E+0 Magnetite -Fe3O4 = +2.000Fe+3 +1.000Fe+2 -8.000H+ +4.000H2O - log_k +10.34 - delta_h -217.947 #kJ/mol +Fe3O4 = 2 Fe+3 + Fe+2 - 8 H+ + 4 H2O + log_k 10.34 + delta_h -217.947 #kJ/mol # Enthalpy of formation: -1115.780 kJ/mol 13LEM/BER - -analytic -27.84268E+0 00.00000E+0 11.38416E+3 00.00000E+0 00.00000E+0 - -Vm 44.520 + -analytic -27.84268E+0 00E+0 11.38416E+3 00E+0 00E+0 + -Vm 44.52 Malachite -Cu2CO3(OH)2 = +2.000Cu+2 -2.000H+ +1.000CO3-2 +2.000H2O - log_k -5.18 #91BAL/NOR in 07POW/BRO - delta_h -51.649 #kJ/mol -# Enthalpy of formation: -1065.441 kJ/mol - -analytic -14.22852E+0 00.00000E+0 26.97815E+2 00.00000E+0 00.00000E+0 +Cu2CO3(OH)2 = 2 Cu+2 - 2 H+ + CO3-2 + 2 H2O + log_k -5.18 #91BAL/NOR in 07POW/BRO + delta_h -51.649 #kJ/mol +# Enthalpy of formation: -1065.441 kJ/mol + -analytic -14.22852E+0 00E+0 26.97815E+2 00E+0 00E+0 Manganite -MnOOH = +1.000Mn+2 -3.000H+ -1.000e- +2.000H2O - log_k +25.27 #96FAL/REA - -analytic 25.27000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +MnOOH = Mn+2 - 3 H+ - e- + 2 H2O + log_k 25.27 #96FAL/REA + -analytic 25.27E+0 00E+0 00E+0 00E+0 00E+0 Margarite -CaAl4Si2O10(OH)2 = +1.000Ca+2 +4.000Al+3 -14.000H+ +2.000H4(SiO4) +4.000H2O - log_k +36.99 - delta_h -518.308 #kJ/mol +CaAl4Si2O10(OH)2 = Ca+2 + 4 Al+3 - 14 H+ + 2 H4(SiO4) + 4 H2O + log_k 36.99 + delta_h -518.308 #kJ/mol # Enthalpy of formation: -6244.000 kJ/mol 95ROB/HEM - -analytic -53.81366E+0 00.00000E+0 27.07311E+3 00.00000E+0 00.00000E+0 - -Vm 129.630 + -analytic -53.81366E+0 00E+0 27.07311E+3 00E+0 00E+0 + -Vm 129.63 Massicot -PbO = +1.000Pb+2 -2.000H+ +1.000H2O - log_k +12.74 - delta_h -66.848 #kJ/mol +PbO = Pb+2 - 2 H+ + H2O + log_k 12.74 + delta_h -66.848 #kJ/mol # Enthalpy of formation: -218.062 kJ/mol 98CHA - -analytic 10.28733E-1 00.00000E+0 34.91714E+2 00.00000E+0 00.00000E+0 + -analytic 10.28733E-1 00E+0 34.91714E+2 00E+0 00E+0 Melanterite -FeSO4:7H2O = +1.000Fe+2 +1.000SO4-2 +7.000H2O - log_k -2.28 - delta_h +12.067 #kJ/mol +FeSO4:7H2O = Fe+2 + SO4-2 + 7 H2O + log_k -2.28 + delta_h 12.067 #kJ/mol # Enthalpy of formation: -3012.512 kJ/mol 13LEM/BER - -analytic -16.59523E-2 00.00000E+0 -63.03033E+1 00.00000E+0 00.00000E+0 + -analytic -16.59523E-2 00E+0 -63.03033E+1 00E+0 00E+0 Mercallite -KHSO4 = +1.000K+ +1.000H+ +1.000SO4-2 - log_k -1.40 #84HAR/MOL - delta_h -0.590 #kJ/mol +KHSO4 = K+ + H+ + SO4-2 + log_k -1.4 #84HAR/MOL + delta_h -0.59 #kJ/mol # Enthalpy of formation: -1160.890 kJ/mol 74NAU/RYZ - -analytic -15.03364E-1 00.00000E+0 30.81785E+0 00.00000E+0 00.00000E+0 + -analytic -15.03364E-1 00E+0 30.81785E+0 00E+0 00E+0 Merlinoite_K -K1.04Al1.04Si1.96O6:1.69H2O = +1.040K+ +1.040Al+3 -4.160H+ +1.960H4(SiO4) -0.150H2O - log_k +9.47 - delta_h -105.627 #kJ/mol +K1.04Al1.04Si1.96O6:1.69H2O = 1.04 K+ + 1.04 Al+3 - 4.16 H+ + 1.96 H4(SiO4) - 0.15 H2O + log_k 9.47 + delta_h -105.627 #kJ/mol # Enthalpy of formation: -3537.600 kJ/mol 09BLA - -analytic -90.35056E-1 00.00000E+0 55.17282E+2 00.00000E+0 00.00000E+0 - -Vm 112.910 + -analytic -90.35056E-1 00E+0 55.17282E+2 00E+0 00E+0 + -Vm 112.91 Merlinoite_Na -Na1.04Al1.04Si1.96O6:2.27H2O = +1.040Na+ +1.040Al+3 -4.160H+ +1.960H4(SiO4) +0.430H2O - log_k +10.29 - delta_h -115.307 #kJ/mol +Na1.04Al1.04Si1.96O6:2.27H2O = 1.04 Na+ + 1.04 Al+3 - 4.16 H+ + 1.96 H4(SiO4) + 0.43 H2O + log_k 10.29 + delta_h -115.307 #kJ/mol # Enthalpy of formation: -3681.430 kJ/mol 09BLA - -analytic -99.10919E-1 00.00000E+0 60.22904E+2 00.00000E+0 00.00000E+0 - -Vm 114.040 + -analytic -99.10919E-1 00E+0 60.22904E+2 00E+0 00E+0 + -Vm 114.04 Metacinnabar -HgS = -1.000H+ +1.000HS- +1.000Hg+2 - log_k -38.53 - delta_h +200.410 #kJ/mol +HgS = - H+ + HS- + Hg+2 + log_k -38.53 + delta_h 200.41 #kJ/mol # Enthalpy of formation: -46.500 kJ/mol 95ROB/HEM - -analytic -34.19675E-1 00.00000E+0 -10.46814E+3 00.00000E+0 00.00000E+0 + -analytic -34.19675E-1 00E+0 -10.46814E+3 00E+0 00E+0 Metaschoepite -UO3:2H2O = +1.000UO2+2 -2.000H+ +3.000H2O - log_k +5.35 #20GRE/GAO - -analytic 53.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +UO3:2H2O = UO2+2 - 2 H+ + 3 H2O + log_k 5.35 #20GRE/GAO + -analytic 53.5E-1 00E+0 00E+0 00E+0 00E+0 Mg(cr) -Mg = +1.000Mg+2 +2.000e- - log_k +79.78 - delta_h -467.000 #kJ/mol +Mg = Mg+2 + 2 e- + log_k 79.78 + delta_h -467 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 89COX/WAG - -analytic -20.34888E-1 00.00000E+0 24.39311E+3 00.00000E+0 00.00000E+0 + -analytic -20.34888E-1 00E+0 24.39311E+3 00E+0 00E+0 Mg(HPO4):3H2O(s) -Mg(HPO4):3H2O = +1.000Mg+2 -1.000H+ +1.000H2(PO4)- +3.000H2O - log_k +1.41 #01WEN/MUS - -analytic 14.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mg(HPO4):3H2O = Mg+2 - H+ + H2(PO4)- + 3 H2O + log_k 1.41 #01WEN/MUS + -analytic 14.1E-1 00E+0 00E+0 00E+0 00E+0 Mg(NO3)2(s) -Mg(NO3)2 = +1.000Mg+2 +2.000NO3- - log_k +15.50 #96FAL/REA - -analytic 15.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mg(NO3)2 = Mg+2 + 2 NO3- + log_k 15.5 #96FAL/REA + -analytic 15.5E+0 00E+0 00E+0 00E+0 00E+0 Mg(NO3)2:6H2O(s) -Mg(NO3)2:6H2O = +1.000Mg+2 +2.000NO3- +6.000H2O - log_k +2.58 #96FAL/REA - -analytic 25.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mg(NO3)2:6H2O = Mg+2 + 2 NO3- + 6 H2O + log_k 2.58 #96FAL/REA + -analytic 25.8E-1 00E+0 00E+0 00E+0 00E+0 Mg(SeO3):6H2O(s) -Mg(SeO3):6H2O = +1.000Mg+2 +1.000SeO3-2 +6.000H2O - log_k -5.82 #05OLI/NOL - delta_h +18.070 #kJ/mol +Mg(SeO3):6H2O = Mg+2 + SeO3-2 + 6 H2O + log_k -5.82 #05OLI/NOL + delta_h 18.07 #kJ/mol # Enthalpy of formation: -2707.210 kJ/mol 05OLI/NOL - -analytic -26.54272E-1 00.00000E+0 -94.38618E+1 00.00000E+0 00.00000E+0 + -analytic -26.54272E-1 00E+0 -94.38618E+1 00E+0 00E+0 Mg(SeO4):6H2O(s) -Mg(SeO4):6H2O = +1.000Mg+2 +1.000SeO4-2 +6.000H2O - log_k -1.13 #05OLI/NOL - delta_h -4.080 #kJ/mol +Mg(SeO4):6H2O = Mg+2 + SeO4-2 + 6 H2O + log_k -1.13 #05OLI/NOL + delta_h -4.08 #kJ/mol # Enthalpy of formation: -2781.400 kJ/mol 05OLI/NOL - -analytic -18.44785E-1 00.00000E+0 21.31132E+1 00.00000E+0 00.00000E+0 + -analytic -18.44785E-1 00E+0 21.31132E+1 00E+0 00E+0 Mg(SO4)(s) -Mg(SO4) = +1.000Mg+2 +1.000SO4-2 - log_k +9.10 - delta_h -114.550 #kJ/mol +Mg(SO4) = Mg+2 + SO4-2 + log_k 9.1 + delta_h -114.55 #kJ/mol # Enthalpy of formation: -1261.790 kJ/mol 98CHA - -analytic -10.96830E+0 00.00000E+0 59.83363E+2 00.00000E+0 00.00000E+0 + -analytic -10.9683E+0 00E+0 59.83363E+2 00E+0 00E+0 Mg(SO4):H2O(s) -Mg(SO4):H2O = +1.000Mg+2 +1.000SO4-2 +1.000H2O - log_k -0.12 #84HAR/MOL - delta_h -51.464 #kJ/mol -# Enthalpy of formation: -1610.705 kJ/mol - -analytic -91.36106E-1 00.00000E+0 26.88152E+2 00.00000E+0 00.00000E+0 +Mg(SO4):H2O = Mg+2 + SO4-2 + H2O + log_k -0.12 #84HAR/MOL + delta_h -51.464 #kJ/mol +# Enthalpy of formation: -1610.705 kJ/mol + -analytic -91.36106E-1 00E+0 26.88152E+2 00E+0 00E+0 Mg3(PO4)2(cr) -Mg3(PO4)2 = +3.000Mg+2 -4.000H+ +2.000H2(PO4)- - log_k +15.82 #68RAC/SOP - delta_h -214.093 #kJ/mol -# Enthalpy of formation: -3792.106 kJ/mol - -analytic -21.68748E+0 00.00000E+0 11.18286E+3 00.00000E+0 00.00000E+0 +Mg3(PO4)2 = 3 Mg+2 - 4 H+ + 2 H2(PO4)- + log_k 15.82 #68RAC/SOP + delta_h -214.093 #kJ/mol +# Enthalpy of formation: -3792.106 kJ/mol + -analytic -21.68748E+0 00E+0 11.18286E+3 00E+0 00E+0 Mg3(PO4)2:22H2O(s) -Mg3(PO4)2:22H2O = +3.000Mg+2 -4.000H+ +2.000H2(PO4)- +22.000H2O - log_k +16.00 #63TAY/FRA - -analytic 16.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mg3(PO4)2:22H2O = 3 Mg+2 - 4 H+ + 2 H2(PO4)- + 22 H2O + log_k 16 #63TAY/FRA + -analytic 16E+0 00E+0 00E+0 00E+0 00E+0 Mg3(PO4)2:8H2O(s) -Mg3(PO4)2:8H2O = +3.000Mg+2 -4.000H+ +2.000H2(PO4)- +8.000H2O - log_k +13.90 #63TAY/FRA - -analytic 13.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mg3(PO4)2:8H2O = 3 Mg+2 - 4 H+ + 2 H2(PO4)- + 8 H2O + log_k 13.9 #63TAY/FRA + -analytic 13.9E+0 00E+0 00E+0 00E+0 00E+0 Mg5(CO3)4(OH)2:4H2O(s) -Mg5(CO3)4(OH)2:4H2O = +5.000Mg+2 -2.000H+ +4.000CO3-2 +6.000H2O - log_k -10.31 - delta_h -234.900 #kJ/mol +Mg5(CO3)4(OH)2:4H2O = 5 Mg+2 - 2 H+ + 4 CO3-2 + 6 H2O + log_k -10.31 + delta_h -234.9 #kJ/mol # Enthalpy of formation: -6516.000 kJ/mol 73ROB/HEM - -analytic -51.46271E+0 00.00000E+0 12.26968E+3 00.00000E+0 00.00000E+0 + -analytic -51.46271E+0 00E+0 12.26968E+3 00E+0 00E+0 MgBr2(s) -MgBr2 = +1.000Mg+2 +2.000Br- - log_k +27.80 #96FAL/REA - -analytic 27.80000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +MgBr2 = Mg+2 + 2 Br- + log_k 27.8 #96FAL/REA + -analytic 27.8E+0 00E+0 00E+0 00E+0 00E+0 MgBr2:6H2O(s) -MgBr2:6H2O = +1.000Mg+2 +2.000Br- +6.000H2O - log_k +5.22 #96FAL/REA - -analytic 52.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +MgBr2:6H2O = Mg+2 + 2 Br- + 6 H2O + log_k 5.22 #96FAL/REA + -analytic 52.2E-1 00E+0 00E+0 00E+0 00E+0 MgCl2(s) -MgCl2 = +1.000Mg+2 +2.000Cl- - log_k +22.03 - delta_h -159.540 #kJ/mol +MgCl2 = Mg+2 + 2 Cl- + log_k 22.03 + delta_h -159.54 #kJ/mol # Enthalpy of formation: -641.620 kJ/mol 98CHA - -analytic -59.20208E-1 00.00000E+0 83.33355E+2 00.00000E+0 00.00000E+0 + -analytic -59.20208E-1 00E+0 83.33355E+2 00E+0 00E+0 MgCl2:2H2O(s) -MgCl2:2H2O = +1.000Mg+2 +2.000Cl- +2.000H2O - log_k +12.90 #96FAL/REA - -analytic 12.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +MgCl2:2H2O = Mg+2 + 2 Cl- + 2 H2O + log_k 12.9 #96FAL/REA + -analytic 12.9E+0 00E+0 00E+0 00E+0 00E+0 MgCl2:4H2O(s) -MgCl2:4H2O = +1.000Mg+2 +2.000Cl- +4.000H2O - log_k +7.44 #96FAL/REA - -analytic 74.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +MgCl2:4H2O = Mg+2 + 2 Cl- + 4 H2O + log_k 7.44 #96FAL/REA + -analytic 74.4E-1 00E+0 00E+0 00E+0 00E+0 MgCl2:H2O(s) -MgCl2:H2O = +1.000Mg+2 +2.000Cl- +1.000H2O - log_k +16.22 #96FAL/REA - -analytic 16.22000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +MgCl2:H2O = Mg+2 + 2 Cl- + H2O + log_k 16.22 #96FAL/REA + -analytic 16.22E+0 00E+0 00E+0 00E+0 00E+0 MgCr2O4(s) -MgCr2O4 = +1.000Mg+2 -8.000H+ +2.000Cr+3 +4.000H2O - log_k +22.17 - delta_h -307.720 #kJ/mol +MgCr2O4 = Mg+2 - 8 H+ + 2 Cr+3 + 4 H2O + log_k 22.17 + delta_h -307.72 #kJ/mol # Enthalpy of formation: -1783.600 kJ/mol 95ROB/HEM - -analytic -31.74023E+0 00.00000E+0 16.07334E+3 00.00000E+0 00.00000E+0 + -analytic -31.74023E+0 00E+0 16.07334E+3 00E+0 00E+0 MgF2(cr) -MgF2 = +1.000Mg+2 +2.000F- - log_k -9.22 - delta_h -13.500 #kJ/mol +MgF2 = Mg+2 + 2 F- + log_k -9.22 + delta_h -13.5 #kJ/mol # Enthalpy of formation: -1124.200 kJ/mol 92GRE/FUG - -analytic -11.58510E+0 00.00000E+0 70.51541E+1 00.00000E+0 00.00000E+0 + -analytic -11.5851E+0 00E+0 70.51541E+1 00E+0 00E+0 MgI2(s) -MgI2 = +1.000Mg+2 +2.000I- - log_k +35.00 #96FAL/REA - -analytic 35.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +MgI2 = Mg+2 + 2 I- + log_k 35 #96FAL/REA + -analytic 35E+0 00E+0 00E+0 00E+0 00E+0 MgMoO4(s) -MgMoO4 = +1.000Mg+2 +1.000MoO4-2 - log_k -0.64 - delta_h -62.966 #kJ/mol -# Enthalpy of formation: -1401.033 kJ/mol - -analytic -11.67117E+0 00.00000E+0 32.88943E+2 00.00000E+0 00.00000E+0 +MgMoO4 = Mg+2 + MoO4-2 + log_k -0.64 + delta_h -62.966 #kJ/mol +# Enthalpy of formation: -1401.033 kJ/mol + -analytic -11.67117E+0 00E+0 32.88943E+2 00E+0 00E+0 Mg-oxychlorur -Mg2Cl(OH)3:4H2O = +2.000Mg+2 -3.000H+ +1.000Cl- +7.000H2O - log_k +26.03 #84HAR/MOL - delta_h -154.690 #kJ/mol +Mg2Cl(OH)3:4H2O = 2 Mg+2 - 3 H+ + Cl- + 7 H2O + log_k 26.03 #84HAR/MOL + delta_h -154.69 #kJ/mol # Enthalpy of formation: -2947.200 kJ/mol 82WAG/EVA - -analytic -10.70525E-1 00.00000E+0 80.80021E+2 00.00000E+0 00.00000E+0 + -analytic -10.70525E-1 00E+0 80.80021E+2 00E+0 00E+0 Microcline -KAlSi3O8 = +1.000K+ +1.000Al+3 -4.000H+ +3.000H4(SiO4) -4.000H2O - log_k +0.05 - delta_h -56.462 #kJ/mol +KAlSi3O8 = K+ + Al+3 - 4 H+ + 3 H4(SiO4) - 4 H2O + log_k 0.05 + delta_h -56.462 #kJ/mol # Enthalpy of formation: -3974.340 kJ/mol 99ARN/STE - -analytic -98.41718E-1 00.00000E+0 29.49216E+2 00.00000E+0 00.00000E+0 - -Vm 108.740 + -analytic -98.41718E-1 00E+0 29.49216E+2 00E+0 00E+0 + -Vm 108.74 Millerite -NiS = +1.000Ni+2 -1.000H+ +1.000HS- - log_k -10.13 - delta_h +22.688 #kJ/mol +NiS = Ni+2 - H+ + HS- + log_k -10.13 + delta_h 22.688 #kJ/mol # Enthalpy of formation: -94.000 kJ/mol 05GAM/BUG - -analytic -61.55233E-1 00.00000E+0 -11.85077E+2 00.00000E+0 00.00000E+0 + -analytic -61.55233E-1 00E+0 -11.85077E+2 00E+0 00E+0 Minium -Pb3O4 = +3.000Pb+2 -8.000H+ -2.000e- +4.000H2O - log_k +73.53 - delta_h -421.874 #kJ/mol +Pb3O4 = 3 Pb+2 - 8 H+ - 2 e- + 4 H2O + log_k 73.53 + delta_h -421.874 #kJ/mol # Enthalpy of formation: -718.686 kJ/mol 98CHA - -analytic -37.91522E-2 00.00000E+0 22.03601E+3 00.00000E+0 00.00000E+0 + -analytic -37.91522E-2 00E+0 22.03601E+3 00E+0 00E+0 Minnesotaite -Fe3Si4O10(OH)2 = +3.000Fe+2 -6.000H+ +4.000H4(SiO4) -4.000H2O - log_k +14.99 - delta_h -149.351 #kJ/mol +Fe3Si4O10(OH)2 = 3 Fe+2 - 6 H+ + 4 H4(SiO4) - 4 H2O + log_k 14.99 + delta_h -149.351 #kJ/mol # Enthalpy of formation: -4822.990 kJ/mol 83MIY/KLE - -analytic -11.17517E+0 00.00000E+0 78.01146E+2 00.00000E+0 00.00000E+0 - -Vm 148.500 + -analytic -11.17517E+0 00E+0 78.01146E+2 00E+0 00E+0 + -Vm 148.5 Mirabilite -Na2SO4:10H2O = +2.000Na+ +1.000SO4-2 +10.000H2O - log_k -1.23 #84HAR/MOL - delta_h +79.471 #kJ/mol -# Enthalpy of formation: -4327.788 kJ/mol - -analytic 12.69272E+0 00.00000E+0 -41.51059E+2 00.00000E+0 00.00000E+0 - -Vm 219.800 +Na2SO4:10H2O = 2 Na+ + SO4-2 + 10 H2O + log_k -1.23 #84HAR/MOL + delta_h 79.471 #kJ/mol +# Enthalpy of formation: -4327.788 kJ/mol + -analytic 12.69272E+0 00E+0 -41.51059E+2 00E+0 00E+0 + -Vm 219.8 Mn(cr) -Mn = +1.000Mn+2 +2.000e- - log_k +39.99 - delta_h -220.800 #kJ/mol +Mn = Mn+2 + 2 e- + log_k 39.99 + delta_h -220.8 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 82WAG/EVA in 05OLI/NOL - -analytic 13.07500E-1 00.00000E+0 11.53319E+3 00.00000E+0 00.00000E+0 + -analytic 13.075E-1 00E+0 11.53319E+3 00E+0 00E+0 Mn(H2SiO4)(s) -Mn(H2SiO4) = +1.000Mn+2 -2.000H+ +1.000H4(SiO4) - log_k +12.44 #88CHA/NEW - -analytic 12.44000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn(H2SiO4) = Mn+2 - 2 H+ + H4(SiO4) + log_k 12.44 #88CHA/NEW + -analytic 12.44E+0 00E+0 00E+0 00E+0 00E+0 Mn(HPO4)(s) -Mn(HPO4) = +1.000Mn+2 -1.000H+ +1.000H2(PO4)- - log_k -5.74 #96FAL/REA - -analytic -57.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn(HPO4) = Mn+2 - H+ + H2(PO4)- + log_k -5.74 #96FAL/REA + -analytic -57.4E-1 00E+0 00E+0 00E+0 00E+0 Mn(SeO3):2H2O(cr) -Mn(SeO3):2H2O = +1.000Mn+2 +1.000SeO3-2 +2.000H2O - log_k -7.60 #05OLI/NOL - delta_h -18.920 #kJ/mol +Mn(SeO3):2H2O = Mn+2 + SeO3-2 + 2 H2O + log_k -7.6 #05OLI/NOL + delta_h -18.92 #kJ/mol # Enthalpy of formation: -1280.700 kJ/mol 05OLI/NOL - -analytic -10.91464E+0 00.00000E+0 98.82604E+1 00.00000E+0 00.00000E+0 + -analytic -10.91464E+0 00E+0 98.82604E+1 00E+0 00E+0 Mn(SO4)(s) -Mn(SO4) = +1.000Mn+2 +1.000SO4-2 - log_k -2.68 #96FAL/REA - -analytic -26.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn(SO4) = Mn+2 + SO4-2 + log_k -2.68 #96FAL/REA + -analytic -26.8E-1 00E+0 00E+0 00E+0 00E+0 Mn2(Pyrophos)(s) -Mn2(Pyrophos) = +2.000Mn+2 +1.000Pyrophos-4 - log_k -19.50 #88CHA/NEW - -analytic -19.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn2(Pyrophos) = 2 Mn+2 + Pyrophos-4 + log_k -19.5 #88CHA/NEW + -analytic -19.5E+0 00E+0 00E+0 00E+0 00E+0 Mn3(PO4)2(s) -Mn3(PO4)2 = +3.000Mn+2 -4.000H+ +2.000H2(PO4)- - log_k +15.32 #96FAL/REA - -analytic 15.32000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn3(PO4)2 = 3 Mn+2 - 4 H+ + 2 H2(PO4)- + log_k 15.32 #96FAL/REA + -analytic 15.32E+0 00E+0 00E+0 00E+0 00E+0 Mn3(PO4)2:3H2O(s) -Mn3(PO4)2:3H2O = +3.000Mn+2 -4.000H+ +2.000H2(PO4)- +3.000H2O - log_k +2.32 #96FAL/REA - -analytic 23.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn3(PO4)2:3H2O = 3 Mn+2 - 4 H+ + 2 H2(PO4)- + 3 H2O + log_k 2.32 #96FAL/REA + -analytic 23.2E-1 00E+0 00E+0 00E+0 00E+0 MnCl2:2H2O(s) -MnCl2:2H2O = +1.000Mn+2 +2.000Cl- +2.000H2O - log_k +3.98 #96FAL/REA - -analytic 39.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +MnCl2:2H2O = Mn+2 + 2 Cl- + 2 H2O + log_k 3.98 #96FAL/REA + -analytic 39.8E-1 00E+0 00E+0 00E+0 00E+0 MnCl2:4H2O(s) -MnCl2:4H2O = +1.000Mn+2 +2.000Cl- +4.000H2O - log_k +2.71 #96FAL/REA - -analytic 27.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +MnCl2:4H2O = Mn+2 + 2 Cl- + 4 H2O + log_k 2.71 #96FAL/REA + -analytic 27.1E-1 00E+0 00E+0 00E+0 00E+0 MnCl2:H2O(s) -MnCl2:H2O = +1.000Mn+2 +2.000Cl- +1.000H2O - log_k +5.53 #96FAL/REA - -analytic 55.30000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +MnCl2:H2O = Mn+2 + 2 Cl- + H2O + log_k 5.53 #96FAL/REA + -analytic 55.3E-1 00E+0 00E+0 00E+0 00E+0 MnO(s) -MnO = +1.000Mn+2 -2.000H+ +1.000H2O - log_k +17.90 #96FAL/REA - -analytic 17.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +MnO = Mn+2 - 2 H+ + H2O + log_k 17.9 #96FAL/REA + -analytic 17.9E+0 00E+0 00E+0 00E+0 00E+0 MnO2(s) -MnO2 = +1.000Mn+2 -4.000H+ -2.000e- +2.000H2O - log_k +42.00 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 - -analytic 42.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +MnO2 = Mn+2 - 4 H+ - 2 e- + 2 H2O + log_k 42 #NAGRA, TR 91-18; F.J. PEARSON, U. BERNER, W. HUMMEL; Nagra thermochemical data base, supplemental data 05/92 + -analytic 42E+0 00E+0 00E+0 00E+0 00E+0 MnSe(alfa) -MnSe = +1.000Mn+2 -1.000H+ +1.000HSe- - log_k +0.33 - delta_h -28.579 #kJ/mol -# Enthalpy of formation: -177.921 kJ/mol - -analytic -46.76826E-1 00.00000E+0 14.92785E+2 00.00000E+0 00.00000E+0 +MnSe = Mn+2 - H+ + HSe- + log_k 0.33 + delta_h -28.579 #kJ/mol +# Enthalpy of formation: -177.921 kJ/mol + -analytic -46.76826E-1 00E+0 14.92785E+2 00E+0 00E+0 MnSe2(cr) -MnSe2 = +1.000Mn+2 -2.000H+ -2.000e- +2.000HSe- - log_k -8.12 - delta_h -11.700 #kJ/mol +MnSe2 = Mn+2 - 2 H+ - 2 e- + 2 HSe- + log_k -8.12 + delta_h -11.7 #kJ/mol # Enthalpy of formation: -180.500 kJ/mol 05OLI/NOL - -analytic -10.16975E+0 00.00000E+0 61.11336E+1 00.00000E+0 00.00000E+0 + -analytic -10.16975E+0 00E+0 61.11336E+1 00E+0 00E+0 Mo(cr) -Mo = +8.000H+ +6.000e- +1.000MoO4-2 -4.000H2O - log_k -19.58 - delta_h +146.320 #kJ/mol +Mo = 8 H+ + 6 e- + MoO4-2 - 4 H2O + log_k -19.58 + delta_h 146.32 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 82WAG/EVA - -analytic 60.54164E-1 00.00000E+0 -76.42826E+2 00.00000E+0 00.00000E+0 + -analytic 60.54164E-1 00E+0 -76.42826E+2 00E+0 00E+0 Mo3O8(s) -Mo3O8 = +8.000H+ +2.000e- +3.000MoO4-2 -4.000H2O - log_k -63.56 - -analytic -63.56000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mo3O8 = 8 H+ + 2 e- + 3 MoO4-2 - 4 H2O + log_k -63.56 + -analytic -63.56E+0 00E+0 00E+0 00E+0 00E+0 Monocarboaluminate -(CaO)3Al2O3:CaCO3:10.68H2O = +4.000Ca+2 +2.000Al+3 -12.000H+ +1.000CO3-2 +16.680H2O - log_k +70.30 #95DAM/GLA - delta_h -515.924 #kJ/mol +(CaO)3Al2O3:CaCO3:10.68H2O = 4 Ca+2 + 2 Al+3 - 12 H+ + CO3-2 + 16.68 H2O + log_k 70.3 #95DAM/GLA + delta_h -515.924 #kJ/mol # Enthalpy of formation: -8175.750 kJ/mol 10BLA/BOU2 - -analytic -20.08600E+0 00.00000E+0 26.94859E+3 00.00000E+0 00.00000E+0 - -Vm 261.960 + -analytic -20.086E+0 00E+0 26.94859E+3 00E+0 00E+0 + -Vm 261.96 Monosulfate-Fe -Ca4Fe2(SO4)(OH)12:6H2O = +4.000Ca+2 +2.000Fe+3 -12.000H+ +1.000SO4-2 +18.000H2O - log_k +66.05 #10BLA/BOU2 - delta_h -479.966 #kJ/mol -# Enthalpy of formation: -7846.419 kJ/mol - -analytic -18.03643E+0 00.00000E+0 25.07037E+3 00.00000E+0 00.00000E+0 - -Vm 316.060 +Ca4Fe2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Fe+3 - 12 H+ + SO4-2 + 18 H2O + log_k 66.05 #10BLA/BOU2 + delta_h -479.966 #kJ/mol +# Enthalpy of formation: -7846.419 kJ/mol + -analytic -18.03643E+0 00E+0 25.07037E+3 00E+0 00E+0 + -Vm 316.06 Monosulfoaluminate -Ca4Al2(SO4)(OH)12:6H2O = +4.000Ca+2 +2.000Al+3 -12.000H+ +1.000SO4-2 +18.000H2O - log_k +73.07 #10BLA/BOU2 - delta_h -539.400 #kJ/mol +Ca4Al2(SO4)(OH)12:6H2O = 4 Ca+2 + 2 Al+3 - 12 H+ + SO4-2 + 18 H2O + log_k 73.07 #10BLA/BOU2 + delta_h -539.4 #kJ/mol # Enthalpy of formation: -8763.680 kJ/mol 10BLA/BOU2 - -analytic -21.42882E+0 00.00000E+0 28.17482E+3 00.00000E+0 00.00000E+0 - -Vm 311.260 + -analytic -21.42882E+0 00E+0 28.17482E+3 00E+0 00E+0 + -Vm 311.26 Montmorillonite-BCCa -Ca0.17Mg0.34Al1.66Si4O10(OH)2 = +0.170Ca+2 +0.340Mg+2 +1.660Al+3 -6.000H+ +4.000H4(SiO4) -4.000H2O - log_k +4.20 - delta_h -156.000 #kJ/mol +Ca0.17Mg0.34Al1.66Si4O10(OH)2 = 0.17 Ca+2 + 0.34 Mg+2 + 1.66 Al+3 - 6 H+ + 4 H4(SiO4) - 4 H2O + log_k 4.2 + delta_h -156 #kJ/mol # Enthalpy of formation: -5690.290 kJ/mol 15BLA/VIE - -analytic -23.13003E+0 00.00000E+0 81.48448E+2 00.00000E+0 00.00000E+0 - -Vm 135.580 + -analytic -23.13003E+0 00E+0 81.48448E+2 00E+0 00E+0 + -Vm 135.58 Montmorillonite-BCK -K0.34Mg0.34Al1.66Si4O10(OH)2 = +0.340Mg+2 +0.340K+ +1.660Al+3 -6.000H+ +4.000H4(SiO4) -4.000H2O - log_k +2.81 - delta_h -136.198 #kJ/mol +K0.34Mg0.34Al1.66Si4O10(OH)2 = 0.34 Mg+2 + 0.34 K+ + 1.66 Al+3 - 6 H+ + 4 H4(SiO4) - 4 H2O + log_k 2.81 + delta_h -136.198 #kJ/mol # Enthalpy of formation: -5703.510 kJ/mol 15BLA/VIE - -analytic -21.05087E+0 00.00000E+0 71.14117E+2 00.00000E+0 00.00000E+0 - -Vm 134.690 + -analytic -21.05087E+0 00E+0 71.14117E+2 00E+0 00E+0 + -Vm 134.69 Montmorillonite-BCMg -Mg0.17Mg0.34Al1.66Si4O10(OH)2 = +0.510Mg+2 +1.660Al+3 -6.000H+ +4.000H4(SiO4) -4.000H2O - log_k +3.69 - delta_h -157.360 #kJ/mol +Mg0.17Mg0.34Al1.66Si4O10(OH)2 = 0.51 Mg+2 + 1.66 Al+3 - 6 H+ + 4 H4(SiO4) - 4 H2O + log_k 3.69 + delta_h -157.36 #kJ/mol # Enthalpy of formation: -5676.010 kJ/mol 15BLA/VIE - -analytic -23.87829E+0 00.00000E+0 82.19485E+2 00.00000E+0 00.00000E+0 - -Vm 131.580 + -analytic -23.87829E+0 00E+0 82.19485E+2 00E+0 00E+0 + -Vm 131.58 Montmorillonite-BCNa -Na0.34Mg0.34Al1.66Si4O10(OH)2 = +0.340Mg+2 +0.340Na+ +1.660Al+3 -6.000H+ +4.000H4(SiO4) -4.000H2O - log_k +3.39 - delta_h -145.286 #kJ/mol +Na0.34Mg0.34Al1.66Si4O10(OH)2 = 0.34 Mg+2 + 0.34 Na+ + 1.66 Al+3 - 6 H+ + 4 H4(SiO4) - 4 H2O + log_k 3.39 + delta_h -145.286 #kJ/mol # Enthalpy of formation: -5690.410 kJ/mol 15BLA/VIE - -analytic -22.06301E+0 00.00000E+0 75.88816E+2 00.00000E+0 00.00000E+0 - -Vm 133.960 + -analytic -22.06301E+0 00E+0 75.88816E+2 00E+0 00E+0 + -Vm 133.96 Montmorillonite-HCCa -Ca0.3Mg0.6Al1.4Si4O10(OH)2 = +0.300Ca+2 +0.600Mg+2 +1.400Al+3 -6.000H+ +4.000H4(SiO4) -4.000H2O - log_k +6.89 - delta_h -163.896 #kJ/mol +Ca0.3Mg0.6Al1.4Si4O10(OH)2 = 0.3 Ca+2 + 0.6 Mg+2 + 1.4 Al+3 - 6 H+ + 4 H4(SiO4) - 4 H2O + log_k 6.89 + delta_h -163.896 #kJ/mol # Enthalpy of formation: -5734.420 kJ/mol 15BLA/VIE - -analytic -21.82335E+0 00.00000E+0 85.60884E+2 00.00000E+0 00.00000E+0 - -Vm 140.320 + -analytic -21.82335E+0 00E+0 85.60884E+2 00E+0 00E+0 + -Vm 140.32 Montmorillonite-HCK -K0.6Mg0.6Al1.4Si4O10(OH)2 = +0.600Mg+2 +0.600K+ +1.400Al+3 -6.000H+ +4.000H4(SiO4) -4.000H2O - log_k +4.43 - delta_h -128.960 #kJ/mol +K0.6Mg0.6Al1.4Si4O10(OH)2 = 0.6 Mg+2 + 0.6 K+ + 1.4 Al+3 - 6 H+ + 4 H4(SiO4) - 4 H2O + log_k 4.43 + delta_h -128.96 #kJ/mol # Enthalpy of formation: -5757.740 kJ/mol 15BLA/VIE - -analytic -18.16282E+0 00.00000E+0 67.36050E+2 00.00000E+0 00.00000E+0 - -Vm 138.750 + -analytic -18.16282E+0 00E+0 67.3605E+2 00E+0 00E+0 + -Vm 138.75 Montmorillonite-HCMg -Mg0.3Mg0.6Al1.4Si4O10(OH)2 = +0.900Mg+2 +1.400Al+3 -6.000H+ +4.000H4(SiO4) -4.000H2O - log_k +5.98 - delta_h -166.296 #kJ/mol +Mg0.3Mg0.6Al1.4Si4O10(OH)2 = 0.9 Mg+2 + 1.4 Al+3 - 6 H+ + 4 H4(SiO4) - 4 H2O + log_k 5.98 + delta_h -166.296 #kJ/mol # Enthalpy of formation: -5709.220 kJ/mol 15BLA/VIE - -analytic -23.15381E+0 00.00000E+0 86.86245E+2 00.00000E+0 00.00000E+0 - -Vm 133.270 + -analytic -23.15381E+0 00E+0 86.86245E+2 00E+0 00E+0 + -Vm 133.27 Montmorillonite-HCNa -Na0.6Mg0.6Al1.4Si4O10(OH)2 = +0.600Mg+2 +0.600Na+ +1.400Al+3 -6.000H+ +4.000H4(SiO4) -4.000H2O - log_k +5.45 - delta_h -144.990 #kJ/mol +Na0.6Mg0.6Al1.4Si4O10(OH)2 = 0.6 Mg+2 + 0.6 Na+ + 1.4 Al+3 - 6 H+ + 4 H4(SiO4) - 4 H2O + log_k 5.45 + delta_h -144.99 #kJ/mol # Enthalpy of formation: -5734.630 kJ/mol 15BLA/VIE - -analytic -19.95116E+0 00.00000E+0 75.73355E+2 00.00000E+0 00.00000E+0 - -Vm 137.470 + -analytic -19.95116E+0 00E+0 75.73355E+2 00E+0 00E+0 + -Vm 137.47 MoO2(s) -MoO2 = +4.000H+ +2.000e- +1.000MoO4-2 -2.000H2O - log_k -29.88 - delta_h +162.510 #kJ/mol -# Enthalpy of formation: -587.851 kJ/mol - -analytic -14.09470E-1 00.00000E+0 -84.88488E+2 00.00000E+0 00.00000E+0 +MoO2 = 4 H+ + 2 e- + MoO4-2 - 2 H2O + log_k -29.88 + delta_h 162.51 #kJ/mol +# Enthalpy of formation: -587.851 kJ/mol + -analytic -14.0947E-1 00E+0 -84.88488E+2 00E+0 00E+0 MoO3(s) -MoO3 = +2.000H+ +1.000MoO4-2 -1.000H2O - log_k -11.98 - delta_h +34.001 #kJ/mol -# Enthalpy of formation: -745.171 kJ/mol - -analytic -60.23280E-1 00.00000E+0 -17.75996E+2 00.00000E+0 00.00000E+0 +MoO3 = 2 H+ + MoO4-2 - H2O + log_k -11.98 + delta_h 34.001 #kJ/mol +# Enthalpy of formation: -745.171 kJ/mol + -analytic -60.2328E-1 00E+0 -17.75996E+2 00E+0 00E+0 Mordenite_Ca -Ca0.515Al1.03Si4.97O12:3.1H2O = +0.515Ca+2 +1.030Al+3 -4.120H+ +4.970H4(SiO4) -4.780H2O - log_k -2.92 #09BLA - delta_h -74.732 #kJ/mol -# Enthalpy of formation: -6655.334 kJ/mol - -analytic -16.01248E+0 00.00000E+0 39.03524E+2 00.00000E+0 00.00000E+0 - -Vm 209.800 +Ca0.515Al1.03Si4.97O12:3.1H2O = 0.515 Ca+2 + 1.03 Al+3 - 4.12 H+ + 4.97 H4(SiO4) - 4.78 H2O + log_k -2.92 #09BLA + delta_h -74.732 #kJ/mol +# Enthalpy of formation: -6655.334 kJ/mol + -analytic -16.01248E+0 00E+0 39.03524E+2 00E+0 00E+0 + -Vm 209.8 Mordenite_Oregon -Ca0.289Na0.362Al0.94Si5.06O12:3.468H2O = +0.289Ca+2 +0.362Na+ +0.940Al+3 -3.760H+ +5.060H4(SiO4) -4.772H2O - log_k -4.18 - delta_h -41.247 #kJ/mol +Ca0.289Na0.362Al0.94Si5.06O12:3.468H2O = 0.289 Ca+2 + 0.362 Na+ + 0.94 Al+3 - 3.76 H+ + 5.06 H4(SiO4) - 4.772 H2O + log_k -4.18 + delta_h -41.247 #kJ/mol # Enthalpy of formation: -6738.440 kJ/mol 92JOH/TAS - -analytic -11.40616E+0 00.00000E+0 21.54481E+2 00.00000E+0 00.00000E+0 - -Vm 212.400 + -analytic -11.40616E+0 00E+0 21.54481E+2 00E+0 00E+0 + -Vm 212.4 MoS2(s) -MoS2 = +6.000H+ +2.000e- +2.000HS- +1.000MoO4-2 -4.000H2O - log_k -69.91 - delta_h +385.522 #kJ/mol -# Enthalpy of formation: -271.804 kJ/mol - -analytic -23.69445E-1 00.00000E+0 -20.13722E+3 00.00000E+0 00.00000E+0 +MoS2 = 6 H+ + 2 e- + 2 HS- + MoO4-2 - 4 H2O + log_k -69.91 + delta_h 385.522 #kJ/mol +# Enthalpy of formation: -271.804 kJ/mol + -analytic -23.69445E-1 00E+0 -20.13722E+3 00E+0 00E+0 MoS3(s) -MoS3 = +5.000H+ +3.000HS- +1.000MoO4-2 -4.000H2O - log_k -68.07 - delta_h +354.847 #kJ/mol -# Enthalpy of formation: -257.429 kJ/mol - -analytic -59.03474E-1 00.00000E+0 -18.53495E+3 00.00000E+0 00.00000E+0 +MoS3 = 5 H+ + 3 HS- + MoO4-2 - 4 H2O + log_k -68.07 + delta_h 354.847 #kJ/mol +# Enthalpy of formation: -257.429 kJ/mol + -analytic -59.03474E-1 00E+0 -18.53495E+3 00E+0 00E+0 Muscovite -KAl3Si3O10(OH)2 = +1.000K+ +3.000Al+3 -10.000H+ +3.000H4(SiO4) - log_k +13.02 - delta_h -276.122 #kJ/mol +KAl3Si3O10(OH)2 = K+ + 3 Al+3 - 10 H+ + 3 H4(SiO4) + log_k 13.02 + delta_h -276.122 #kJ/mol # Enthalpy of formation: -5974.800 kJ/mol 95HAS/CYG - -analytic -35.35450E+0 00.00000E+0 14.42286E+3 00.00000E+0 00.00000E+0 - -Vm 140.810 + -analytic -35.3545E+0 00E+0 14.42286E+3 00E+0 00E+0 + -Vm 140.81 Na(cr) -Na = +1.000Na+ +1.000e- - log_k +45.89 - delta_h -240.340 #kJ/mol +Na = Na+ + e- + log_k 45.89 + delta_h -240.34 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 92GRE/FUG (89COX/WAG) - -analytic 37.84239E-1 00.00000E+0 12.55383E+3 00.00000E+0 00.00000E+0 + -analytic 37.84239E-1 00E+0 12.55383E+3 00E+0 00E+0 Na(NO3)(s) -Na(NO3) = +1.000Na+ +1.000NO3- - log_k +1.09 #96FAL/REA - -analytic 10.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Na(NO3) = Na+ + NO3- + log_k 1.09 #96FAL/REA + -analytic 10.9E-1 00E+0 00E+0 00E+0 00E+0 Na2(CO3)(cr) -Na2(CO3) = +2.000Na+ +1.000CO3-2 - log_k +1.12 - delta_h -26.710 #kJ/mol +Na2(CO3) = 2 Na+ + CO3-2 + log_k 1.12 + delta_h -26.71 #kJ/mol # Enthalpy of formation: -1129.200 kJ/mol 95ROB/HEM - -analytic -35.59391E-1 00.00000E+0 13.95160E+2 00.00000E+0 00.00000E+0 + -analytic -35.59391E-1 00E+0 13.9516E+2 00E+0 00E+0 Na2B4O7(cr) -Na2B4O7 = +2.000Na+ +2.000H+ +4.000B(OH)4- -9.000H2O - log_k -16.06 - delta_h +2.520 #kJ/mol -# Enthalpy of formation: -3291.196 kJ/mol - -analytic -15.61851E+0 00.00000E+0 -13.16288E+1 00.00000E+0 00.00000E+0 +Na2B4O7 = 2 Na+ + 2 H+ + 4 B(OH)4- - 9 H2O + log_k -16.06 + delta_h 2.52 #kJ/mol +# Enthalpy of formation: -3291.196 kJ/mol + -analytic -15.61851E+0 00E+0 -13.16288E+1 00E+0 00E+0 Na2B4O7:10H2O(s) -Na2B4O7:10H2O = +2.000Na+ +2.000H+ +4.000B(OH)4- +1.000H2O - log_k -24.58 - delta_h +141.471 #kJ/mol -# Enthalpy of formation: -6288.445 kJ/mol - -analytic 20.46553E-2 00.00000E+0 -73.89545E+2 00.00000E+0 00.00000E+0 +Na2B4O7:10H2O = 2 Na+ + 2 H+ + 4 B(OH)4- + H2O + log_k -24.58 + delta_h 141.471 #kJ/mol +# Enthalpy of formation: -6288.445 kJ/mol + -analytic 20.46553E-2 00E+0 -73.89545E+2 00E+0 00E+0 Na2CO3:7H2O(s) -Na2CO3:7H2O = +2.000Na+ +1.000CO3-2 +7.000H2O - log_k -0.46 #84HAR/MOL - delta_h +42.682 #kJ/mol -# Enthalpy of formation: -3199.400 kJ/mol - -analytic 70.17565E-1 00.00000E+0 -22.29436E+2 00.00000E+0 00.00000E+0 +Na2CO3:7H2O = 2 Na+ + CO3-2 + 7 H2O + log_k -0.46 #84HAR/MOL + delta_h 42.682 #kJ/mol +# Enthalpy of formation: -3199.400 kJ/mol + -analytic 70.17565E-1 00E+0 -22.29436E+2 00E+0 00E+0 Na2HPO4(cr) -Na2HPO4 = +2.000Na+ -1.000H+ +1.000H2(PO4)- - log_k +9.24 - delta_h -35.180 #kJ/mol +Na2HPO4 = 2 Na+ - H+ + H2(PO4)- + log_k 9.24 + delta_h -35.18 #kJ/mol # Enthalpy of formation: -1748.100 kJ/mol 82WAG/EVA - -analytic 30.76729E-1 00.00000E+0 18.37579E+2 00.00000E+0 00.00000E+0 + -analytic 30.76729E-1 00E+0 18.37579E+2 00E+0 00E+0 Na2Np2O7(cr) -Na2Np2O7 = +2.000Na+ +2.000NpO2+2 -6.000H+ +3.000H2O - log_k +25.20 #20GRE/GAO - -analytic 25.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Na2Np2O7 = 2 Na+ + 2 NpO2+2 - 6 H+ + 3 H2O + log_k 25.2 #20GRE/GAO + -analytic 25.2E+0 00E+0 00E+0 00E+0 00E+0 Na2O(cr) -Na2O = +2.000Na+ -2.000H+ +1.000H2O - log_k +67.46 - delta_h -351.710 #kJ/mol +Na2O = 2 Na+ - 2 H+ + H2O + log_k 67.46 + delta_h -351.71 #kJ/mol # Enthalpy of formation: -414.800 kJ/mol 95ROB/HEM - -analytic 58.43053E-1 00.00000E+0 18.37109E+3 00.00000E+0 00.00000E+0 + -analytic 58.43053E-1 00E+0 18.37109E+3 00E+0 00E+0 Na2U2O7:H2O(cr) -Na2U2O7:H2O = +2.000Na+ +2.000UO2+2 -6.000H+ +4.000H2O - log_k +24.40 #20GRE/GAO - -analytic 24.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Na2U2O7:H2O = 2 Na+ + 2 UO2+2 - 6 H+ + 4 H2O + log_k 24.4 #20GRE/GAO + -analytic 24.4E+0 00E+0 00E+0 00E+0 00E+0 Na2ZrSi2O7(cr) -Na2ZrSi2O7 = +2.000Na+ -6.000H+ +2.000H4(SiO4) +1.000Zr+4 -1.000H2O - log_k +3.74 - delta_h -119.738 #kJ/mol +Na2ZrSi2O7 = 2 Na+ - 6 H+ + 2 H4(SiO4) + Zr+4 - H2O + log_k 3.74 + delta_h -119.738 #kJ/mol # Enthalpy of formation: -3606.000 kJ/mol 05BRO/CUR - -analytic -17.23720E+0 00.00000E+0 62.54351E+2 00.00000E+0 00.00000E+0 + -analytic -17.2372E+0 00E+0 62.54351E+2 00E+0 00E+0 Na2ZrSi3O9:2H2O(cr) -Na2ZrSi3O9:2H2O = +2.000Na+ -6.000H+ +3.000H4(SiO4) +1.000Zr+4 -1.000H2O - log_k +15.58 - -analytic 15.58000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Na2ZrSi3O9:2H2O = 2 Na+ - 6 H+ + 3 H4(SiO4) + Zr+4 - H2O + log_k 15.58 + -analytic 15.58E+0 00E+0 00E+0 00E+0 00E+0 Na2ZrSi4O11(cr) -Na2ZrSi4O11 = +2.000Na+ -6.000H+ +4.000H4(SiO4) +1.000Zr+4 -5.000H2O - log_k -13.56 - -analytic -13.56000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Na2ZrSi4O11 = 2 Na+ - 6 H+ + 4 H4(SiO4) + Zr+4 - 5 H2O + log_k -13.56 + -analytic -13.56E+0 00E+0 00E+0 00E+0 00E+0 Na2ZrSi6O15:3H2O(cr) -Na2ZrSi6O15:3H2O = +2.000Na+ -6.000H+ +6.000H4(SiO4) +1.000Zr+4 -6.000H2O - log_k +16.46 - -analytic 16.46000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Na2ZrSi6O15:3H2O = 2 Na+ - 6 H+ + 6 H4(SiO4) + Zr+4 - 6 H2O + log_k 16.46 + -analytic 16.46E+0 00E+0 00E+0 00E+0 00E+0 Na2ZrSiO5(cr) -Na2ZrSiO5 = +2.000Na+ -6.000H+ +1.000H4(SiO4) +1.000Zr+4 +1.000H2O - log_k +13.19 - delta_h -166.204 #kJ/mol +Na2ZrSiO5 = 2 Na+ - 6 H+ + H4(SiO4) + Zr+4 + H2O + log_k 13.19 + delta_h -166.204 #kJ/mol # Enthalpy of formation: -2670.000 kJ/mol 05BRO/CUR - -analytic -15.92769E+0 00.00000E+0 86.81440E+2 00.00000E+0 00.00000E+0 + -analytic -15.92769E+0 00E+0 86.8144E+2 00E+0 00E+0 Na3NpO2(CO3)2(cr) -Na3NpO2(CO3)2 = +3.000Na+ +1.000NpO2+ +2.000CO3-2 - log_k -14.22 #03GUI/FAN - -analytic -14.22000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Na3NpO2(CO3)2 = 3 Na+ + NpO2+ + 2 CO3-2 + log_k -14.22 #03GUI/FAN + -analytic -14.22E+0 00E+0 00E+0 00E+0 00E+0 Na3PO4(cr) -Na3PO4 = +3.000Na+ -2.000H+ +1.000H2(PO4)- - log_k +23.52 - delta_h -106.218 #kJ/mol +Na3PO4 = 3 Na+ - 2 H+ + H2(PO4)- + log_k 23.52 + delta_h -106.218 #kJ/mol # Enthalpy of formation: -1917.402 kJ/mol 74NAU/RYZ - -analytic 49.11405E-1 00.00000E+0 55.48153E+2 00.00000E+0 00.00000E+0 + -analytic 49.11405E-1 00E+0 55.48153E+2 00E+0 00E+0 Na4Zr2Si3O12(cr) -Na4Zr2Si3O12 = +4.000Na+ -12.000H+ +3.000H4(SiO4) +2.000Zr+4 - log_k +15.50 - delta_h -276.942 #kJ/mol +Na4Zr2Si3O12 = 4 Na+ - 12 H+ + 3 H4(SiO4) + 2 Zr+4 + log_k 15.5 + delta_h -276.942 #kJ/mol # Enthalpy of formation: -6285.000 kJ/mol 05BRO/CUR - -analytic -33.01816E+0 00.00000E+0 14.46569E+3 00.00000E+0 00.00000E+0 + -analytic -33.01816E+0 00E+0 14.46569E+3 00E+0 00E+0 Na6Th(CO3)5:12H2O(cr) -Na6Th(CO3)5:12H2O = +6.000Na+ +1.000Th+4 +5.000CO3-2 +12.000H2O - log_k -42.20 #09RAN/FUG - -analytic -42.20000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Na6Th(CO3)5:12H2O = 6 Na+ + Th+4 + 5 CO3-2 + 12 H2O + log_k -42.2 #09RAN/FUG + -analytic -42.2E+0 00E+0 00E+0 00E+0 00E+0 NaAm(CO3)2:5H2O(s) -NaAm(CO3)2:5H2O = +1.000Na+ +1.000Am+3 +2.000CO3-2 +5.000H2O - log_k -21.00 #03GUI/FAN - -analytic -21.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +NaAm(CO3)2:5H2O = Na+ + Am+3 + 2 CO3-2 + 5 H2O + log_k -21 #03GUI/FAN + -analytic -21E+0 00E+0 00E+0 00E+0 00E+0 NaAmO2CO3(s) -NaAmO2CO3 = +1.000Na+ +1.000AmO2+ +1.000CO3-2 - log_k -10.90 #94GIF, 94RUN/KIM, 96RUN/NEU - -analytic -10.90000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +NaAmO2CO3 = Na+ + AmO2+ + CO3-2 + log_k -10.9 #94GIF, 94RUN/KIM, 96RUN/NEU + -analytic -10.9E+0 00E+0 00E+0 00E+0 00E+0 NaBO2(s) -NaBO2 = +1.000Na+ +1.000B(OH)4- -2.000H2O - log_k +3.62 - delta_h -36.793 #kJ/mol -# Enthalpy of formation: -977.003 kJ/mol - -analytic -28.25857E-1 00.00000E+0 19.21832E+2 00.00000E+0 00.00000E+0 +NaBO2 = Na+ + B(OH)4- - 2 H2O + log_k 3.62 + delta_h -36.793 #kJ/mol +# Enthalpy of formation: -977.003 kJ/mol + -analytic -28.25857E-1 00E+0 19.21832E+2 00E+0 00E+0 Na-Boltwoodite -Na(UO2)(SiO3OH):H2O = +1.000Na+ +1.000UO2+2 -3.000H+ +1.000H4(SiO4) +1.000H2O - log_k +5.81 #20GRE/GAO - -analytic 58.10000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Na(UO2)(SiO3OH):H2O = Na+ + UO2+2 - 3 H+ + H4(SiO4) + H2O + log_k 5.81 #20GRE/GAO + -analytic 58.1E-1 00E+0 00E+0 00E+0 00E+0 NaCm(CO3)2:5H2O(s) -NaCm(CO3)2:5H2O = +1.000Na+ +2.000CO3-2 +1.000Cm+3 +5.000H2O - log_k -20.94 #Estimated by correlation with An(III). - -analytic -20.94000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +NaCm(CO3)2:5H2O = Na+ + 2 CO3-2 + Cm+3 + 5 H2O + log_k -20.94 #Estimated by correlation with An(III). + -analytic -20.94E+0 00E+0 00E+0 00E+0 00E+0 NaEu(CO3)2:5H2O(s) -NaEu(CO3)2:5H2O = +1.000Na+ +1.000Eu+3 +2.000CO3-2 +5.000H2O - log_k -20.60 #10PHI - -analytic -20.60000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +NaEu(CO3)2:5H2O = Na+ + Eu+3 + 2 CO3-2 + 5 H2O + log_k -20.6 #10PHI + -analytic -20.6E+0 00E+0 00E+0 00E+0 00E+0 NaF(s) -NaF = +1.000Na+ +1.000F- - log_k -0.48 #96FAL/REA - -analytic -48.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +NaF = Na+ + F- + log_k -0.48 #96FAL/REA + -analytic -48E-2 00E+0 00E+0 00E+0 00E+0 NaH2PO4(cr) -NaH2PO4 = +1.000Na+ +1.000H2(PO4)- - log_k +2.30 - delta_h -6.140 #kJ/mol +NaH2PO4 = Na+ + H2(PO4)- + log_k 2.3 + delta_h -6.14 #kJ/mol # Enthalpy of formation: -1536.800 kJ/mol 82WAG/EVA - -analytic 12.24318E-1 00.00000E+0 32.07145E+1 00.00000E+0 00.00000E+0 + -analytic 12.24318E-1 00E+0 32.07145E+1 00E+0 00E+0 Nahcolite -Na(HCO3) = +1.000Na+ +1.000H+ +1.000CO3-2 - log_k -10.74 #84HAR/MOL - delta_h +33.430 #kJ/mol +Na(HCO3) = Na+ + H+ + CO3-2 + log_k -10.74 #84HAR/MOL + delta_h 33.43 #kJ/mol # Enthalpy of formation: -949.000 kJ/mol 82VAN - -analytic -48.83315E-1 00.00000E+0 -17.46171E+2 00.00000E+0 00.00000E+0 + -analytic -48.83315E-1 00E+0 -17.46171E+2 00E+0 00E+0 NaHo(CO3)2:5H2O(s) -NaHo(CO3)2:5H2O = +1.000Na+ +1.000Ho+3 +2.000CO3-2 +5.000H2O - log_k -19.97 #Estimated by correlation with An(III). - -analytic -19.97000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +NaHo(CO3)2:5H2O = Na+ + Ho+3 + 2 CO3-2 + 5 H2O + log_k -19.97 #Estimated by correlation with An(III). + -analytic -19.97E+0 00E+0 00E+0 00E+0 00E+0 NaNbO3(s) -NaNbO3 = +1.000Na+ +1.000Nb(OH)6- -3.000H2O - log_k -3.66 - delta_h +7.504 #kJ/mol -# Enthalpy of formation: -1316.013 kJ/mol - -analytic -23.45356E-1 00.00000E+0 -39.19612E+1 00.00000E+0 00.00000E+0 +NaNbO3 = Na+ + Nb(OH)6- - 3 H2O + log_k -3.66 + delta_h 7.504 #kJ/mol +# Enthalpy of formation: -1316.013 kJ/mol + -analytic -23.45356E-1 00E+0 -39.19612E+1 00E+0 00E+0 NaNpO2CO3:3.5H2O(cr) -NaNpO2CO3:3.5H2O = +1.000Na+ +1.000NpO2+ +1.000CO3-2 +3.500H2O - log_k -11.00 #03GUI/FAN - delta_h +30.997 #kJ/mol -# Enthalpy of formation: -2925.152 kJ/mol - -analytic -55.69559E-1 00.00000E+0 -16.19086E+2 00.00000E+0 00.00000E+0 +NaNpO2CO3:3.5H2O = Na+ + NpO2+ + CO3-2 + 3.5 H2O + log_k -11 #03GUI/FAN + delta_h 30.997 #kJ/mol +# Enthalpy of formation: -2925.152 kJ/mol + -analytic -55.69559E-1 00E+0 -16.19086E+2 00E+0 00E+0 NaSm(CO3)2:5H2O(s) -NaSm(CO3)2:5H2O = +1.000Na+ +1.000Sm+3 +2.000CO3-2 +5.000H2O - log_k -20.99 #Estimated by correlation with An(III). - -analytic -20.99000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +NaSm(CO3)2:5H2O = Na+ + Sm+3 + 2 CO3-2 + 5 H2O + log_k -20.99 #Estimated by correlation with An(III). + -analytic -20.99E+0 00E+0 00E+0 00E+0 00E+0 NaTcO4:4H2O(s) -NaTcO4:4H2O = +1.000Na+ +1.000TcO4- +4.000H2O - log_k +0.79 #99RAR/RAN - -analytic 79.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +NaTcO4:4H2O = Na+ + TcO4- + 4 H2O + log_k 0.79 #99RAR/RAN + -analytic 79E-2 00E+0 00E+0 00E+0 00E+0 Natrolite -Na2(Al2Si3)O10:2H2O = +2.000Na+ +2.000Al+3 -8.000H+ +3.000H4(SiO4) - log_k +19.31 - delta_h -222.462 #kJ/mol +Na2(Al2Si3)O10:2H2O = 2 Na+ + 2 Al+3 - 8 H+ + 3 H4(SiO4) + log_k 19.31 + delta_h -222.462 #kJ/mol # Enthalpy of formation: -5718.600 kJ/mol 83JOH/FLO - -analytic -19.66367E+0 00.00000E+0 11.62000E+3 00.00000E+0 00.00000E+0 - -Vm 169.200 + -analytic -19.66367E+0 00E+0 11.62E+3 00E+0 00E+0 + -Vm 169.2 Natron -Na2(CO3):10H2O = +2.000Na+ +1.000CO3-2 +10.000H2O - log_k -0.83 #84HAR/MOL - delta_h +64.870 #kJ/mol -# Enthalpy of formation: -4079.078 kJ/mol - -analytic 10.53474E+0 00.00000E+0 -33.88396E+2 00.00000E+0 00.00000E+0 +Na2(CO3):10H2O = 2 Na+ + CO3-2 + 10 H2O + log_k -0.83 #84HAR/MOL + delta_h 64.87 #kJ/mol +# Enthalpy of formation: -4079.078 kJ/mol + -analytic 10.53474E+0 00E+0 -33.88396E+2 00E+0 00E+0 Nb(cr) -Nb = +6.000H+ +1.000Nb(OH)6- +5.000e- -6.000H2O - log_k +41.82 - delta_h -210.678 #kJ/mol +Nb = 6 H+ + Nb(OH)6- + 5 e- - 6 H2O + log_k 41.82 + delta_h -210.678 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 82WAG/EVA - -analytic 49.10799E-1 00.00000E+0 11.00448E+3 00.00000E+0 00.00000E+0 + -analytic 49.10799E-1 00E+0 11.00448E+3 00E+0 00E+0 Nb2O5(s) -Nb2O5 = +2.000H+ +2.000Nb(OH)6- -7.000H2O - log_k -28.38 #97PEI/NGU - delta_h +52.400 #kJ/mol 97PEI/NGU -# Enthalpy of formation: -1902.906 kJ/mol - -analytic -19.19991E+0 00.00000E+0 -27.37043E+2 00.00000E+0 00.00000E+0 +Nb2O5 = 2 H+ + 2 Nb(OH)6- - 7 H2O + log_k -28.38 #97PEI/NGU + delta_h 52.4 #kJ/mol 97PEI/NGU +# Enthalpy of formation: -1902.906 kJ/mol + -analytic -19.19991E+0 00E+0 -27.37043E+2 00E+0 00E+0 Nesquehonite -Mg(CO3):3H2O = +1.000Mg+2 +1.000CO3-2 +3.000H2O - log_k -5.10 - delta_h -22.420 #kJ/mol +Mg(CO3):3H2O = Mg+2 + CO3-2 + 3 H2O + log_k -5.1 + delta_h -22.42 #kJ/mol # Enthalpy of formation: -1977.300 kJ/mol 73ROB/HEM - -analytic -90.27815E-1 00.00000E+0 11.71078E+2 00.00000E+0 00.00000E+0 + -analytic -90.27815E-1 00E+0 11.71078E+2 00E+0 00E+0 Ni(BO2)2(s) -Ni(BO2)2 = +1.000Ni+2 +2.000B(OH)4- -4.000H2O - log_k -8.70 #92PEA/BER - -analytic -87.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ni(BO2)2 = Ni+2 + 2 B(OH)4- - 4 H2O + log_k -8.7 #92PEA/BER + -analytic -87E-1 00E+0 00E+0 00E+0 00E+0 Ni(CO3)(cr) -Ni(CO3) = +1.000Ni+2 +1.000CO3-2 - log_k -10.99 - delta_h -16.922 #kJ/mol -# Enthalpy of formation: -713.320 kJ/mol - -analytic -13.95461E+0 00.00000E+0 88.38976E+1 00.00000E+0 00.00000E+0 +Ni(CO3) = Ni+2 + CO3-2 + log_k -10.99 + delta_h -16.922 #kJ/mol +# Enthalpy of formation: -713.320 kJ/mol + -analytic -13.95461E+0 00E+0 88.38976E+1 00E+0 00E+0 Ni(CO3):5.5H2O(cr) -Ni(CO3):5.5H2O = +1.000Ni+2 +1.000CO3-2 +5.500H2O - log_k -7.52 - delta_h +10.687 #kJ/mol -# Enthalpy of formation: -2312.992 kJ/mol - -analytic -56.47718E-1 00.00000E+0 -55.82209E+1 00.00000E+0 00.00000E+0 +Ni(CO3):5.5H2O = Ni+2 + CO3-2 + 5.5 H2O + log_k -7.52 + delta_h 10.687 #kJ/mol +# Enthalpy of formation: -2312.992 kJ/mol + -analytic -56.47718E-1 00E+0 -55.82209E+1 00E+0 00E+0 Ni(cr) -Ni = +1.000Ni+2 +2.000e- - log_k +8.02 - delta_h -55.012 #kJ/mol +Ni = Ni+2 + 2 e- + log_k 8.02 + delta_h -55.012 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 05GAM/BUG - -analytic -16.17689E-1 00.00000E+0 28.73477E+2 00.00000E+0 00.00000E+0 + -analytic -16.17689E-1 00E+0 28.73477E+2 00E+0 00E+0 Ni(IO3)2(beta) -Ni(IO3)2 = +1.000Ni+2 +2.000IO3- - log_k -4.43 - delta_h -7.300 #kJ/mol 05GAM/BUG -# Enthalpy of formation: -487.112 kJ/mol - -analytic -57.08905E-1 00.00000E+0 38.13056E+1 00.00000E+0 00.00000E+0 +Ni(IO3)2 = Ni+2 + 2 IO3- + log_k -4.43 + delta_h -7.3 #kJ/mol 05GAM/BUG +# Enthalpy of formation: -487.112 kJ/mol + -analytic -57.08905E-1 00E+0 38.13056E+1 00E+0 00E+0 Ni(IO3)2:2H2O(cr) -Ni(IO3)2:2H2O = +1.000Ni+2 +2.000IO3- +2.000H2O - log_k -5.14 - delta_h +21.600 #kJ/mol 05GAM/BUG -# Enthalpy of formation: -1087.672 kJ/mol - -analytic -13.55842E-1 00.00000E+0 -11.28247E+2 00.00000E+0 00.00000E+0 +Ni(IO3)2:2H2O = Ni+2 + 2 IO3- + 2 H2O + log_k -5.14 + delta_h 21.6 #kJ/mol 05GAM/BUG +# Enthalpy of formation: -1087.672 kJ/mol + -analytic -13.55842E-1 00E+0 -11.28247E+2 00E+0 00E+0 Ni(OH)2(s) -Ni(OH)2 = +1.000Ni+2 -2.000H+ +2.000H2O - log_k +11.03 - delta_h -84.389 #kJ/mol -# Enthalpy of formation: -542.282 kJ/mol - -analytic -37.54318E-1 00.00000E+0 44.07944E+2 00.00000E+0 00.00000E+0 +Ni(OH)2 = Ni+2 - 2 H+ + 2 H2O + log_k 11.03 + delta_h -84.389 #kJ/mol +# Enthalpy of formation: -542.282 kJ/mol + -analytic -37.54318E-1 00E+0 44.07944E+2 00E+0 00E+0 Ni(SeO3):2H2O(cr) -Ni(SeO3):2H2O = +1.000Ni+2 +1.000SeO3-2 +2.000H2O - log_k -5.80 #05OLI/NOL - delta_h -24.502 #kJ/mol +Ni(SeO3):2H2O = Ni+2 + SeO3-2 + 2 H2O + log_k -5.8 #05OLI/NOL + delta_h -24.502 #kJ/mol # Enthalpy of formation: -1109.330 kJ/mol 05OLI/NOL - -analytic -10.09257E+0 00.00000E+0 12.79829E+2 00.00000E+0 00.00000E+0 + -analytic -10.09257E+0 00E+0 12.79829E+2 00E+0 00E+0 Ni(SeO4):6H2O(s) -Ni(SeO4):6H2O = +1.000Ni+2 +1.000SeO4-2 +6.000H2O - log_k -1.38 #05OLI/NOL - delta_h -3.791 #kJ/mol -# Enthalpy of formation: -2369.699 kJ/mol - -analytic -20.44155E-1 00.00000E+0 19.80177E+1 00.00000E+0 00.00000E+0 +Ni(SeO4):6H2O = Ni+2 + SeO4-2 + 6 H2O + log_k -1.38 #05OLI/NOL + delta_h -3.791 #kJ/mol +# Enthalpy of formation: -2369.699 kJ/mol + -analytic -20.44155E-1 00E+0 19.80177E+1 00E+0 00E+0 Ni(SiO3)(s) -Ni(SiO3) = +1.000Ni+2 -2.000H+ +1.000H4(SiO4) -1.000H2O - log_k -1.78 - -analytic -17.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ni(SiO3) = Ni+2 - 2 H+ + H4(SiO4) - H2O + log_k -1.78 + -analytic -17.8E-1 00E+0 00E+0 00E+0 00E+0 Ni(SO4)(cr) -Ni(SO4) = +1.000Ni+2 +1.000SO4-2 - log_k +4.75 - delta_h -91.072 #kJ/mol +Ni(SO4) = Ni+2 + SO4-2 + log_k 4.75 + delta_h -91.072 #kJ/mol # Enthalpy of formation: -873.280 kJ/mol 05GAM/BUG - -analytic -11.20513E+0 00.00000E+0 47.57022E+2 00.00000E+0 00.00000E+0 + -analytic -11.20513E+0 00E+0 47.57022E+2 00E+0 00E+0 Ni(SO4):6H2O(s) -Ni(SO4):6H2O = +1.000Ni+2 +1.000SO4-2 +6.000H2O - log_k -2.25 - delta_h +4.485 #kJ/mol +Ni(SO4):6H2O = Ni+2 + SO4-2 + 6 H2O + log_k -2.25 + delta_h 4.485 #kJ/mol # Enthalpy of formation: -2683.817 kJ/mol 05GAM/BUG - -analytic -14.64262E-1 00.00000E+0 -23.42679E+1 00.00000E+0 00.00000E+0 + -analytic -14.64262E-1 00E+0 -23.42679E+1 00E+0 00E+0 Ni(SO4):7H2O(s) -Ni(SO4):7H2O = +1.000Ni+2 +1.000SO4-2 +7.000H2O - log_k -2.27 - delta_h +12.167 #kJ/mol 05GAM/BUG -# Enthalpy of formation: -2977.329 kJ/mol - -analytic -13.84331E-2 00.00000E+0 -63.55267E+1 00.00000E+0 00.00000E+0 +Ni(SO4):7H2O = Ni+2 + SO4-2 + 7 H2O + log_k -2.27 + delta_h 12.167 #kJ/mol 05GAM/BUG +# Enthalpy of formation: -2977.329 kJ/mol + -analytic -13.84331E-2 00E+0 -63.55267E+1 00E+0 00E+0 Ni0.88Se(cr) -Ni0.88Se = +0.880Ni+2 -1.000H+ -0.240e- +1.000HSe- - log_k -12.76 - delta_h +35.689 #kJ/mol +Ni0.88Se = 0.88 Ni+2 - H+ - 0.24 e- + HSe- + log_k -12.76 + delta_h 35.689 #kJ/mol # Enthalpy of formation: -69.800 kJ/mol 05OLI/NOL - -analytic -65.07556E-1 00.00000E+0 -18.64166E+2 00.00000E+0 00.00000E+0 + -analytic -65.07556E-1 00E+0 -18.64166E+2 00E+0 00E+0 Ni11As8(cr) -Ni11As8 = +11.000Ni+2 +64.000H+ +62.000e- +8.000AsO4-3 -32.000H2O - log_k -457.93 - delta_h +2179.308 #kJ/mol +Ni11As8 = 11 Ni+2 + 64 H+ + 62 e- + 8 AsO4-3 - 32 H2O + log_k -457.93 + delta_h 2179.308 #kJ/mol # Enthalpy of formation: -743.000 kJ/mol 05GAM/BUG - -analytic -76.13163E+0 00.00000E+0 -11.38332E+4 00.00000E+0 00.00000E+0 + -analytic -76.13163E+0 00E+0 -11.38332E+4 00E+0 00E+0 Ni2(Pyrophos)(cr) -Ni2(Pyrophos) = +2.000Ni+2 +1.000Pyrophos-4 - log_k -9.82 - -analytic -98.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ni2(Pyrophos) = 2 Ni+2 + Pyrophos-4 + log_k -9.82 + -analytic -98.2E-1 00E+0 00E+0 00E+0 00E+0 Ni3(AsO3)2(s) -Ni3(AsO3)2 = +3.000Ni+2 +4.000H+ +4.000e- +2.000AsO4-3 -2.000H2O - log_k -51.48 - -analytic -51.48000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ni3(AsO3)2 = 3 Ni+2 + 4 H+ + 4 e- + 2 AsO4-3 - 2 H2O + log_k -51.48 + -analytic -51.48E+0 00E+0 00E+0 00E+0 00E+0 Ni3(AsO4)2:8H2O(s) -Ni3(AsO4)2:8H2O = +3.000Ni+2 +2.000AsO4-3 +8.000H2O - log_k -28.10 #05GAM/BUG - delta_h -48.956 #kJ/mol +Ni3(AsO4)2:8H2O = 3 Ni+2 + 2 AsO4-3 + 8 H2O + log_k -28.1 #05GAM/BUG + delta_h -48.956 #kJ/mol # Enthalpy of formation: -4179.000 kJ/mol 05GAM/BUG - -analytic -36.67672E+0 00.00000E+0 25.57150E+2 00.00000E+0 00.00000E+0 + -analytic -36.67672E+0 00E+0 25.5715E+2 00E+0 00E+0 Ni3(PO4)2(cr) -Ni3(PO4)2 = +3.000Ni+2 -4.000H+ +2.000H2(PO4)- - log_k +10.25 - delta_h -188.236 #kJ/mol +Ni3(PO4)2 = 3 Ni+2 - 4 H+ + 2 H2(PO4)- + log_k 10.25 + delta_h -188.236 #kJ/mol # Enthalpy of formation: -2582.000 kJ/mol 89BAE/McK - -analytic -22.72753E+0 00.00000E+0 98.32251E+2 00.00000E+0 00.00000E+0 + -analytic -22.72753E+0 00E+0 98.32251E+2 00E+0 00E+0 Ni3O4(s) -Ni3O4 = +3.000Ni+2 -8.000H+ -2.000e- +4.000H2O - log_k +65.50 - delta_h -489.045 #kJ/mol -# Enthalpy of formation: -819.308 kJ/mol - -analytic -20.17701E+0 00.00000E+0 25.54460E+3 00.00000E+0 00.00000E+0 +Ni3O4 = 3 Ni+2 - 8 H+ - 2 e- + 4 H2O + log_k 65.5 + delta_h -489.045 #kJ/mol +# Enthalpy of formation: -819.308 kJ/mol + -analytic -20.17701E+0 00E+0 25.5446E+3 00E+0 00E+0 Ni5As2(cr) -Ni5As2 = +5.000Ni+2 +16.000H+ +20.000e- +2.000AsO4-3 -8.000H2O - log_k -106.73 - delta_h +479.960 #kJ/mol +Ni5As2 = 5 Ni+2 + 16 H+ + 20 e- + 2 AsO4-3 - 8 H2O + log_k -106.73 + delta_h 479.96 #kJ/mol # Enthalpy of formation: -244.660 kJ/mol 05GAM/BUG - -analytic -22.64462E+0 00.00000E+0 -25.07006E+3 00.00000E+0 00.00000E+0 + -analytic -22.64462E+0 00E+0 -25.07006E+3 00E+0 00E+0 NiAs(cr) -NiAs = +1.000Ni+2 +8.000H+ +7.000e- +1.000AsO4-3 -4.000H2O - log_k -56.24 - delta_h +270.988 #kJ/mol +NiAs = Ni+2 + 8 H+ + 7 e- + AsO4-3 - 4 H2O + log_k -56.24 + delta_h 270.988 #kJ/mol # Enthalpy of formation: -70.820 kJ/mol 05GAM/BUG - -analytic -87.64940E-1 00.00000E+0 -14.15469E+3 00.00000E+0 00.00000E+0 + -analytic -87.6494E-1 00E+0 -14.15469E+3 00E+0 00E+0 NiBr2(s) -NiBr2 = +1.000Ni+2 +2.000Br- - log_k +10.17 - delta_h -84.332 #kJ/mol +NiBr2 = Ni+2 + 2 Br- + log_k 10.17 + delta_h -84.332 #kJ/mol # Enthalpy of formation: -213.500 kJ/mol 05GAM/BUG - -analytic -46.04332E-1 00.00000E+0 44.04967E+2 00.00000E+0 00.00000E+0 + -analytic -46.04332E-1 00E+0 44.04967E+2 00E+0 00E+0 NiCl2(s) -NiCl2 = +1.000Ni+2 +2.000Cl- - log_k +8.67 - delta_h -84.272 #kJ/mol +NiCl2 = Ni+2 + 2 Cl- + log_k 8.67 + delta_h -84.272 #kJ/mol # Enthalpy of formation: -304.900 kJ/mol 05GAM/BUG - -analytic -60.93821E-1 00.00000E+0 44.01833E+2 00.00000E+0 00.00000E+0 + -analytic -60.93821E-1 00E+0 44.01833E+2 00E+0 00E+0 NiCl2:2H2O(s) -NiCl2:2H2O = +1.000Ni+2 +2.000Cl- +2.000H2O - log_k +4.92 - delta_h -47.458 #kJ/mol -# Enthalpy of formation: -913.372 kJ/mol - -analytic -33.94285E-1 00.00000E+0 24.78904E+2 00.00000E+0 00.00000E+0 +NiCl2:2H2O = Ni+2 + 2 Cl- + 2 H2O + log_k 4.92 + delta_h -47.458 #kJ/mol +# Enthalpy of formation: -913.372 kJ/mol + -analytic -33.94285E-1 00E+0 24.78904E+2 00E+0 00E+0 NiCl2:4H2O(s) -NiCl2:4H2O = +1.000Ni+2 +2.000Cl- +4.000H2O - log_k +3.82 - delta_h -18.444 #kJ/mol 05GAM/BUG -# Enthalpy of formation: -1514.048 kJ/mol - -analytic 58.87499E-2 00.00000E+0 96.33972E+1 00.00000E+0 00.00000E+0 +NiCl2:4H2O = Ni+2 + 2 Cl- + 4 H2O + log_k 3.82 + delta_h -18.444 #kJ/mol 05GAM/BUG +# Enthalpy of formation: -1514.048 kJ/mol + -analytic 58.87499E-2 00E+0 96.33972E+1 00E+0 00E+0 NiCl2:6H2O(s) -NiCl2:6H2O = +1.000Ni+2 +2.000Cl- +6.000H2O - log_k +3.04 - delta_h +0.548 #kJ/mol +NiCl2:6H2O = Ni+2 + 2 Cl- + 6 H2O + log_k 3.04 + delta_h 0.548 #kJ/mol # Enthalpy of formation: -2104.700 kJ/mol 05GAM/BUG - -analytic 31.36005E-1 00.00000E+0 -28.62403E+0 00.00000E+0 00.00000E+0 + -analytic 31.36005E-1 00E+0 -28.62403E+0 00E+0 00E+0 NiF2(s) -NiF2 = +1.000Ni+2 +2.000F- - log_k -0.18 - delta_h -68.412 #kJ/mol +NiF2 = Ni+2 + 2 F- + log_k -0.18 + delta_h -68.412 #kJ/mol # Enthalpy of formation: -657.300 kJ/mol 05GAM/BUG - -analytic -12.16527E+0 00.00000E+0 35.73408E+2 00.00000E+0 00.00000E+0 + -analytic -12.16527E+0 00E+0 35.73408E+2 00E+0 00E+0 NiI2(s) -NiI2 = +1.000Ni+2 +2.000I- - log_k +9.61 - delta_h -72.152 #kJ/mol +NiI2 = Ni+2 + 2 I- + log_k 9.61 + delta_h -72.152 #kJ/mol # Enthalpy of formation: -96.420 kJ/mol 05GAM/BUG - -analytic -30.30488E-1 00.00000E+0 37.68761E+2 00.00000E+0 00.00000E+0 + -analytic -30.30488E-1 00E+0 37.68761E+2 00E+0 00E+0 NiSe2(cr) -NiSe2 = +1.000Ni+2 -2.000H+ -2.000e- +2.000HSe- - log_k -26.90 - delta_h +89.088 #kJ/mol +NiSe2 = Ni+2 - 2 H+ - 2 e- + 2 HSe- + log_k -26.9 + delta_h 89.088 #kJ/mol # Enthalpy of formation: -115.500 kJ/mol 05OLI/NOL - -analytic -11.29245E+0 00.00000E+0 -46.53390E+2 00.00000E+0 00.00000E+0 + -analytic -11.29245E+0 00E+0 -46.5339E+2 00E+0 00E+0 Nontronite_Nau-2 -Ca0.247K0.02(Si3.458Al0.542)(Fe1.688Al0.276Mg0.068)O10(OH)2 = +0.247Ca+2 +0.068Mg+2 +0.020K+ +1.688Fe+3 +0.818Al+3 -8.168H+ +3.458H4(SiO4) -1.832H2O - log_k +1.30 - delta_h -189.304 #kJ/mol +Ca0.247K0.02(Si3.458Al0.542)(Fe1.688Al0.276Mg0.068)O10(OH)2 = 0.247 Ca+2 + 0.068 Mg+2 + 0.02 K+ + 1.688 Fe+3 + 0.818 Al+3 - 8.168 H+ + 3.458 H4(SiO4) - 1.832 H2O + log_k 1.3 + delta_h -189.304 #kJ/mol # Enthalpy of formation: -5035.690 kJ/mol 13GAI/BLA - -analytic -31.86464E+0 00.00000E+0 98.88037E+2 00.00000E+0 00.00000E+0 - -Vm 136.380 + -analytic -31.86464E+0 00E+0 98.88037E+2 00E+0 00E+0 + -Vm 136.38 Nontronite-Ca -Ca0.17Fe1.67Al0.67Si3.66O10(OH)2 = +0.170Ca+2 +1.670Fe+3 +0.670Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O - log_k -2.86 - delta_h -147.690 #kJ/mol +Ca0.17Fe1.67Al0.67Si3.66O10(OH)2 = 0.17 Ca+2 + 1.67 Fe+3 + 0.67 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k -2.86 + delta_h -147.69 #kJ/mol # Enthalpy of formation: -4982.320 kJ/mol 15BLA/VIE - -analytic -28.73418E+0 00.00000E+0 77.14386E+2 00.00000E+0 00.00000E+0 - -Vm 133.740 + -analytic -28.73418E+0 00E+0 77.14386E+2 00E+0 00E+0 + -Vm 133.74 Nontronite-K -K0.34Fe1.67Al0.67Si3.66O10(OH)2 = +0.340K+ +1.670Fe+3 +0.670Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O - log_k -4.03 - delta_h -129.158 #kJ/mol +K0.34Fe1.67Al0.67Si3.66O10(OH)2 = 0.34 K+ + 1.67 Fe+3 + 0.67 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k -4.03 + delta_h -129.158 #kJ/mol # Enthalpy of formation: -4994.270 kJ/mol 15BLA/VIE - -analytic -26.65751E+0 00.00000E+0 67.46392E+2 00.00000E+0 00.00000E+0 - -Vm 132.850 + -analytic -26.65751E+0 00E+0 67.46392E+2 00E+0 00E+0 + -Vm 132.85 Nontronite-Mg -Mg0.17Fe1.67Al0.67Si3.66O10(OH)2 = +0.170Mg+2 +1.670Fe+3 +0.670Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O - log_k -3.41 - delta_h -148.870 #kJ/mol +Mg0.17Fe1.67Al0.67Si3.66O10(OH)2 = 0.17 Mg+2 + 1.67 Fe+3 + 0.67 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k -3.41 + delta_h -148.87 #kJ/mol # Enthalpy of formation: -4968.220 kJ/mol 15BLA/VIE - -analytic -29.49090E+0 00.00000E+0 77.76022E+2 00.00000E+0 00.00000E+0 - -Vm 129.740 + -analytic -29.4909E+0 00E+0 77.76022E+2 00E+0 00E+0 + -Vm 129.74 Nontronite-Na -Na0.34Fe1.67Al0.67Si3.66O10(OH)2 = +0.340Na+ +1.670Fe+3 +0.670Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O - log_k -3.53 - delta_h -137.776 #kJ/mol +Na0.34Fe1.67Al0.67Si3.66O10(OH)2 = 0.34 Na+ + 1.67 Fe+3 + 0.67 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k -3.53 + delta_h -137.776 #kJ/mol # Enthalpy of formation: -4981.640 kJ/mol 15BLA/VIE - -analytic -27.66732E+0 00.00000E+0 71.96542E+2 00.00000E+0 00.00000E+0 - -Vm 132.120 + -analytic -27.66732E+0 00E+0 71.96542E+2 00E+0 00E+0 + -Vm 132.12 Np(cr) -Np = +1.000Np+3 +3.000e- - log_k +89.85 - delta_h -527.184 #kJ/mol +Np = Np+3 + 3 e- + log_k 89.85 + delta_h -527.184 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 01LEM/FUG - -analytic -25.08672E-1 00.00000E+0 27.53674E+3 00.00000E+0 00.00000E+0 + -analytic -25.08672E-1 00E+0 27.53674E+3 00E+0 00E+0 Np(HPO4)2(s) -Np(HPO4)2 = +1.000Np+4 -2.000H+ +2.000H2(PO4)- - log_k -16.06 #Estimated by correlation with An(III) in function of ionic radii - -analytic -16.06000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Np(HPO4)2 = Np+4 - 2 H+ + 2 H2(PO4)- + log_k -16.06 #Estimated by correlation with An(III) in function of ionic radii + -analytic -16.06E+0 00E+0 00E+0 00E+0 00E+0 Np(OH)3(s) -Np(OH)3 = +1.000Np+3 -3.000H+ +3.000H2O - log_k +18.00 #80ALL/KIP - -analytic 18.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Np(OH)3 = Np+3 - 3 H+ + 3 H2O + log_k 18 #80ALL/KIP + -analytic 18E+0 00E+0 00E+0 00E+0 00E+0 Np2O5(cr) -Np2O5 = +2.000NpO2+ -2.000H+ +1.000H2O - log_k +3.07 - delta_h -79.492 #kJ/mol +Np2O5 = 2 NpO2+ - 2 H+ + H2O + log_k 3.07 + delta_h -79.492 #kJ/mol # Enthalpy of formation: -2162.700 kJ/mol 01LEM/FUG - -analytic -10.85640E+0 00.00000E+0 41.52156E+2 00.00000E+0 00.00000E+0 + -analytic -10.8564E+0 00E+0 41.52156E+2 00E+0 00E+0 NpCO3OH(s) -Np(CO3)(OH) = +1.000Np+3 -1.000H+ +1.000CO3-2 +1.000H2O - log_k -6.35 #Estimated using the data for AmCO3OH(s) and the trend versus r identified for AnCO3OH·0.5H2O(s)(orthorhombic). - -analytic -63.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Np(CO3)(OH) = Np+3 - H+ + CO3-2 + H2O + log_k -6.35 #Estimated using the data for AmCO3OH(s) and the trend versus r identified for AnCO3OH·0.5H2O(s)(orthorhombic). + -analytic -63.5E-1 00E+0 00E+0 00E+0 00E+0 NpO2(cr) -NpO2 = +1.000Np+4 -4.000H+ +2.000H2O - log_k -9.75 - delta_h -53.682 #kJ/mol +NpO2 = Np+4 - 4 H+ + 2 H2O + log_k -9.75 + delta_h -53.682 #kJ/mol # Enthalpy of formation: -1074.000 kJ/mol 01LEM/FUG - -analytic -19.15468E+0 00.00000E+0 28.04006E+2 00.00000E+0 00.00000E+0 + -analytic -19.15468E+0 00E+0 28.04006E+2 00E+0 00E+0 NpO2(OH)2:H2O(cr) -NpO2(OH)2:H2O = +1.000NpO2+2 -2.000H+ +3.000H2O - log_k +5.47 #20GRE/GAO - -analytic 54.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +NpO2(OH)2:H2O = NpO2+2 - 2 H+ + 3 H2O + log_k 5.47 #20GRE/GAO + -analytic 54.7E-1 00E+0 00E+0 00E+0 00E+0 NpO2:2H2O(am) -NpO2:2H2O = +1.000Np+4 -4.000H+ +4.000H2O - log_k -0.70 #03GUI/FAN - delta_h -81.154 #kJ/mol -# Enthalpy of formation: -1618.186 kJ/mol - -analytic -14.91757E+0 00.00000E+0 42.38969E+2 00.00000E+0 00.00000E+0 +NpO2:2H2O = Np+4 - 4 H+ + 4 H2O + log_k -0.7 #03GUI/FAN + delta_h -81.154 #kJ/mol +# Enthalpy of formation: -1618.186 kJ/mol + -analytic -14.91757E+0 00E+0 42.38969E+2 00E+0 00E+0 NpO2CO3(cr) -NpO2CO3 = +1.000NpO2+2 +1.000CO3-2 - log_k -14.83 #20GRE/GAO - -analytic -14.83000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +NpO2CO3 = NpO2+2 + CO3-2 + log_k -14.83 #20GRE/GAO + -analytic -14.83E+0 00E+0 00E+0 00E+0 00E+0 NpO2OH(am) -NpO2OH = +1.000NpO2+ -1.000H+ +1.000H2O - log_k +5.30 #01LEM/FUG - delta_h -41.111 #kJ/mol +NpO2OH = NpO2+ - H+ + H2O + log_k 5.3 #01LEM/FUG + delta_h -41.111 #kJ/mol # Enthalpy of formation: -1222.900 kJ/mol 01LEM/FUG - -analytic -19.02338E-1 00.00000E+0 21.47377E+2 00.00000E+0 00.00000E+0 + -analytic -19.02338E-1 00E+0 21.47377E+2 00E+0 00E+0 Okenite -CaSi2O5:2H2O = +1.000Ca+2 -2.000H+ +2.000H4(SiO4) -1.000H2O - log_k +9.18 - delta_h -44.388 #kJ/mol +CaSi2O5:2H2O = Ca+2 - 2 H+ + 2 H4(SiO4) - H2O + log_k 9.18 + delta_h -44.388 #kJ/mol # Enthalpy of formation: -3135.170 kJ/mol 10BLA/BOU1 - -analytic 14.03556E-1 00.00000E+0 23.18547E+2 00.00000E+0 00.00000E+0 - -Vm 94.770 + -analytic 14.03556E-1 00E+0 23.18547E+2 00E+0 00E+0 + -Vm 94.77 Olivine -Ni2(SiO4) = +2.000Ni+2 -4.000H+ +1.000H4(SiO4) - log_k +19.68 - delta_h -175.218 #kJ/mol +Ni2(SiO4) = 2 Ni+2 - 4 H+ + H4(SiO4) + log_k 19.68 + delta_h -175.218 #kJ/mol # Enthalpy of formation: -1396.000 kJ/mol 05GAM/BUG - -analytic -11.01688E+0 00.00000E+0 91.52274E+2 00.00000E+0 00.00000E+0 + -analytic -11.01688E+0 00E+0 91.52274E+2 00E+0 00E+0 Orpiment -As2S3 = +13.000H+ +4.000e- +3.000HS- +2.000AsO4-3 -8.000H2O - log_k -127.46 - delta_h +552.680 #kJ/mol -# Enthalpy of formation: -91.223 kJ/mol - -analytic -30.63462E+0 00.00000E+0 -28.86849E+3 00.00000E+0 00.00000E+0 +As2S3 = 13 H+ + 4 e- + 3 HS- + 2 AsO4-3 - 8 H2O + log_k -127.46 + delta_h 552.68 #kJ/mol +# Enthalpy of formation: -91.223 kJ/mol + -analytic -30.63462E+0 00E+0 -28.86849E+3 00E+0 00E+0 P(cr) -P = +6.000H+ +5.000e- +1.000H2(PO4)- -4.000H2O - log_k +33.04 - delta_h -159.280 #kJ/mol +P = 6 H+ + 5 e- + H2(PO4)- - 4 H2O + log_k 33.04 + delta_h -159.28 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 89COX/WAG - -analytic 51.35342E-1 00.00000E+0 83.19774E+2 00.00000E+0 00.00000E+0 + -analytic 51.35342E-1 00E+0 83.19774E+2 00E+0 00E+0 Pa(cr) -Pa = +4.000e- +1.000Pa+4 - log_k +98.75 - delta_h -620.000 #kJ/mol +Pa = 4 e- + Pa+4 + log_k 98.75 + delta_h -620 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 85BAR/PAR - -analytic -98.69337E-1 00.00000E+0 32.38486E+3 00.00000E+0 00.00000E+0 + -analytic -98.69337E-1 00E+0 32.38486E+3 00E+0 00E+0 Pa2O5(s) -Pa2O5 = -2.000H+ +2.000PaO2+ +1.000H2O - log_k -4.00 #76BAE/MES; Uncertainty to include available data. - -analytic -40.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Pa2O5 = -2 H+ + 2 PaO2+ + H2O + log_k -4 #76BAE/MES; Uncertainty to include available data. + -analytic -40E-1 00E+0 00E+0 00E+0 00E+0 PaO2(s) -PaO2 = -4.000H+ +1.000Pa+4 +2.000H2O - log_k +0.60 #76BAE/MES - -analytic 60.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +PaO2 = -4 H+ + Pa+4 + 2 H2O + log_k 0.6 #76BAE/MES + -analytic 60E-2 00E+0 00E+0 00E+0 00E+0 Paragonite -NaAl3Si3O10(OH)2 = +1.000Na+ +3.000Al+3 -10.000H+ +3.000H4(SiO4) - log_k +16.79 - delta_h -301.622 #kJ/mol +NaAl3Si3O10(OH)2 = Na+ + 3 Al+3 - 10 H+ + 3 H4(SiO4) + log_k 16.79 + delta_h -301.622 #kJ/mol # Enthalpy of formation: -5937.500 kJ/mol 96ROU/HOV - -analytic -36.05191E+0 00.00000E+0 15.75481E+3 00.00000E+0 00.00000E+0 - -Vm 132.100 + -analytic -36.05191E+0 00E+0 15.75481E+3 00E+0 00E+0 + -Vm 132.1 Paralaurionite -PbCl(OH) = +1.000Pb+2 -1.000H+ +1.000Cl- +1.000H2O - log_k +0.62 #99LOT/OCH - -analytic 62.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +PbCl(OH) = Pb+2 - H+ + Cl- + H2O + log_k 0.62 #99LOT/OCH + -analytic 62E-2 00E+0 00E+0 00E+0 00E+0 Pb(cr) -Pb = +1.000Pb+2 +2.000e- - log_k +4.25 - delta_h +0.920 #kJ/mol +Pb = Pb+2 + 2 e- + log_k 4.25 + delta_h 0.92 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 89COX/WAG - -analytic 44.11177E-1 00.00000E+0 -48.05495E+0 00.00000E+0 00.00000E+0 + -analytic 44.11177E-1 00E+0 -48.05495E+0 00E+0 00E+0 Pb(H2PO4)2(cr) -Pb(H2PO4)2 = +1.000Pb+2 +2.000H2(PO4)- - log_k -9.84 #74NRI - -analytic -98.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Pb(H2PO4)2 = Pb+2 + 2 H2(PO4)- + log_k -9.84 #74NRI + -analytic -98.4E-1 00E+0 00E+0 00E+0 00E+0 Pb(HPO4)(s) -Pb(HPO4) = +1.000Pb+2 -1.000H+ +1.000H2(PO4)- - log_k -4.25 #74NRI - delta_h +16.436 #kJ/mol -# Enthalpy of formation: -1318.115 kJ/mol - -analytic -13.70536E-1 00.00000E+0 -85.85121E+1 00.00000E+0 00.00000E+0 +Pb(HPO4) = Pb+2 - H+ + H2(PO4)- + log_k -4.25 #74NRI + delta_h 16.436 #kJ/mol +# Enthalpy of formation: -1318.115 kJ/mol + -analytic -13.70536E-1 00E+0 -85.85121E+1 00E+0 00E+0 Pb(OH)2(s) -Pb(OH)2 = +1.000Pb+2 -2.000H+ +2.000H2O - log_k +13.51 - delta_h -56.140 #kJ/mol +Pb(OH)2 = Pb+2 - 2 H+ + 2 H2O + log_k 13.51 + delta_h -56.14 #kJ/mol # Enthalpy of formation: -514.600 kJ/mol 52LAT; Uncertainty to cover available data. - -analytic 36.74694E-1 00.00000E+0 29.32396E+2 00.00000E+0 00.00000E+0 + -analytic 36.74694E-1 00E+0 29.32396E+2 00E+0 00E+0 Pb(Ox)(cr) -Pb(Ox) = +1.000Pb+2 +1.000Ox-2 - log_k -11.13 #13XIO/KIR - -analytic -11.13000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Pb(Ox) = Pb+2 + Ox-2 + log_k -11.13 #13XIO/KIR + -analytic -11.13E+0 00E+0 00E+0 00E+0 00E+0 Pb(SeO3)(s) -Pb(SeO3) = +1.000Pb+2 +1.000SeO3-2 - log_k -12.50 #05OLI/NOL - delta_h +25.840 #kJ/mol +Pb(SeO3) = Pb+2 + SeO3-2 + log_k -12.5 #05OLI/NOL + delta_h 25.84 #kJ/mol # Enthalpy of formation: -532.080 kJ/mol 05OLI/NOL - -analytic -79.73026E-1 00.00000E+0 -13.49717E+2 00.00000E+0 00.00000E+0 + -analytic -79.73026E-1 00E+0 -13.49717E+2 00E+0 00E+0 Pb(SeO4)(s) -Pb(SeO4) = +1.000Pb+2 +1.000SeO4-2 - log_k -6.90 #05OLI/NOL - delta_h +4.720 #kJ/mol 05OLI/NOL -# Enthalpy of formation: -607.300 kJ/mol - -analytic -60.73091E-1 00.00000E+0 -24.65428E+1 00.00000E+0 00.00000E+0 +Pb(SeO4) = Pb+2 + SeO4-2 + log_k -6.9 #05OLI/NOL + delta_h 4.72 #kJ/mol 05OLI/NOL +# Enthalpy of formation: -607.300 kJ/mol + -analytic -60.73091E-1 00E+0 -24.65428E+1 00E+0 00E+0 Pb2(SiO4)(s) -Pb2(SiO4) = +2.000Pb+2 -4.000H+ +1.000H4(SiO4) - log_k +15.89 - delta_h -81.474 #kJ/mol +Pb2(SiO4) = 2 Pb+2 - 4 H+ + H4(SiO4) + log_k 15.89 + delta_h -81.474 #kJ/mol # Enthalpy of formation: -1377.880 kJ/mol 98CHA - -analytic 16.16368E-1 00.00000E+0 42.55683E+2 00.00000E+0 00.00000E+0 + -analytic 16.16368E-1 00E+0 42.55683E+2 00E+0 00E+0 Pb3(AsO4)2(s) -Pb3(AsO4)2 = +3.000Pb+2 +2.000AsO4-3 - log_k -35.40 #74NAU/RYZ - -analytic -35.40000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Pb3(AsO4)2 = 3 Pb+2 + 2 AsO4-3 + log_k -35.4 #74NAU/RYZ + -analytic -35.4E+0 00E+0 00E+0 00E+0 00E+0 Pb3(PO4)2(s) -Pb3(PO4)2 = +3.000Pb+2 -4.000H+ +2.000H2(PO4)- - log_k -5.26 #74NRI - delta_h -3.548 #kJ/mol -# Enthalpy of formation: -2598.892 kJ/mol - -analytic -58.81583E-1 00.00000E+0 18.53249E+1 00.00000E+0 00.00000E+0 +Pb3(PO4)2 = 3 Pb+2 - 4 H+ + 2 H2(PO4)- + log_k -5.26 #74NRI + delta_h -3.548 #kJ/mol +# Enthalpy of formation: -2598.892 kJ/mol + -analytic -58.81583E-1 00E+0 18.53249E+1 00E+0 00E+0 Pb4O(PO4)2(cr) -Pb4O(PO4)2 = +4.000Pb+2 -6.000H+ +2.000H2(PO4)- +1.000H2O - log_k +2.24 #74NRI - -analytic 22.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Pb4O(PO4)2 = 4 Pb+2 - 6 H+ + 2 H2(PO4)- + H2O + log_k 2.24 #74NRI + -analytic 22.4E-1 00E+0 00E+0 00E+0 00E+0 PbB2O4(s) -PbB2O4 = +1.000Pb+2 +2.000B(OH)4- -4.000H2O - log_k -10.87 #91BAL/NOR - delta_h +2.761 #kJ/mol 91BAL/NOR -# Enthalpy of formation: -1548.753 kJ/mol - -analytic -10.38629E+0 00.00000E+0 -14.42171E+1 00.00000E+0 00.00000E+0 +PbB2O4 = Pb+2 + 2 B(OH)4- - 4 H2O + log_k -10.87 #91BAL/NOR + delta_h 2.761 #kJ/mol 91BAL/NOR +# Enthalpy of formation: -1548.753 kJ/mol + -analytic -10.38629E+0 00E+0 -14.42171E+1 00E+0 00E+0 PbF2(s) -PbF2 = +1.000Pb+2 +2.000F- - log_k -7.52 #99LOT/OCH - delta_h +6.530 #kJ/mol -# Enthalpy of formation: -676.309 kJ/mol - -analytic -63.75993E-1 00.00000E+0 -34.10857E+1 00.00000E+0 00.00000E+0 +PbF2 = Pb+2 + 2 F- + log_k -7.52 #99LOT/OCH + delta_h 6.53 #kJ/mol +# Enthalpy of formation: -676.309 kJ/mol + -analytic -63.75993E-1 00E+0 -34.10857E+1 00E+0 00E+0 PbI2(cr) -PbI2 = +1.000Pb+2 +2.000I- - log_k -8.05 - delta_h +62.816 #kJ/mol -# Enthalpy of formation: -175.456 kJ/mol - -analytic 29.54891E-1 00.00000E+0 -32.81108E+2 00.00000E+0 00.00000E+0 +PbI2 = Pb+2 + 2 I- + log_k -8.05 + delta_h 62.816 #kJ/mol +# Enthalpy of formation: -175.456 kJ/mol + -analytic 29.54891E-1 00E+0 -32.81108E+2 00E+0 00E+0 PbMoO4(s) -PbMoO4 = +1.000Pb+2 +1.000MoO4-2 - log_k -15.80 - delta_h +55.795 #kJ/mol -# Enthalpy of formation: -1051.875 kJ/mol - -analytic -60.25136E-1 00.00000E+0 -29.14376E+2 00.00000E+0 00.00000E+0 +PbMoO4 = Pb+2 + MoO4-2 + log_k -15.8 + delta_h 55.795 #kJ/mol +# Enthalpy of formation: -1051.875 kJ/mol + -analytic -60.25136E-1 00E+0 -29.14376E+2 00E+0 00E+0 PbSiO3(Glass) -PbSiO3 = +1.000Pb+2 -2.000H+ +1.000H4(SiO4) -1.000H2O - log_k +6.60 - delta_h -36.814 #kJ/mol +PbSiO3 = Pb+2 - 2 H+ + H4(SiO4) - H2O + log_k 6.6 + delta_h -36.814 #kJ/mol # Enthalpy of formation: -1137.630 kJ/mol 74NAU/RYZ - -analytic 15.04641E-2 00.00000E+0 19.22929E+2 00.00000E+0 00.00000E+0 + -analytic 15.04641E-2 00E+0 19.22929E+2 00E+0 00E+0 Pd(cr) -Pd = +1.000Pd+2 +2.000e- - log_k -33.03 - delta_h +189.889 #kJ/mol +Pd = Pd+2 + 2 e- + log_k -33.03 + delta_h 189.889 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 79ROB/HEM in 98SAS/SHO - -analytic 23.71248E-2 00.00000E+0 -99.18593E+2 00.00000E+0 00.00000E+0 + -analytic 23.71248E-2 00E+0 -99.18593E+2 00E+0 00E+0 Pd(OH)2(am) -Pd(OH)2 = -2.000H+ +1.000Pd+2 +2.000H2O - log_k -3.58 #12RAI/YUI - delta_h +13.229 #kJ/mol +Pd(OH)2 = -2 H+ + Pd+2 + 2 H2O + log_k -3.58 #12RAI/YUI + delta_h 13.229 #kJ/mol # Enthalpy of formation: -395.000 kJ/mol 82WAG/EVA - -analytic -12.62379E-1 00.00000E+0 -69.09988E+1 00.00000E+0 00.00000E+0 + -analytic -12.62379E-1 00E+0 -69.09988E+1 00E+0 00E+0 PdBr2(cr) -PdBr2 = +1.000Pd+2 +2.000Br- - log_k -13.31 #89BAE/McK - delta_h +51.269 #kJ/mol +PdBr2 = Pd+2 + 2 Br- + log_k -13.31 #89BAE/McK + delta_h 51.269 #kJ/mol # Enthalpy of formation: -104.200 kJ/mol 89BAE/McK - -analytic -43.28057E-1 00.00000E+0 -26.77966E+2 00.00000E+0 00.00000E+0 + -analytic -43.28057E-1 00E+0 -26.77966E+2 00E+0 00E+0 PdCl2(cr) -PdCl2 = +1.000Pd+2 +2.000Cl- - log_k -9.20 - delta_h +54.429 #kJ/mol +PdCl2 = Pd+2 + 2 Cl- + log_k -9.2 + delta_h 54.429 #kJ/mol # Enthalpy of formation: -198.700 kJ/mol 82WAG/EVA - -analytic 33.55515E-2 00.00000E+0 -28.43025E+2 00.00000E+0 00.00000E+0 + -analytic 33.55515E-2 00E+0 -28.43025E+2 00E+0 00E+0 PdI2(cr) -PdI2 = +1.000Pd+2 +2.000I- - log_k -25.87 - delta_h +139.929 #kJ/mol +PdI2 = Pd+2 + 2 I- + log_k -25.87 + delta_h 139.929 #kJ/mol # Enthalpy of formation: -63.600 kJ/mol 89BAE/McK - -analytic -13.55492E-1 00.00000E+0 -73.09001E+2 00.00000E+0 00.00000E+0 + -analytic -13.55492E-1 00E+0 -73.09001E+2 00E+0 00E+0 PdO(s) -PdO = -2.000H+ +1.000Pd+2 +1.000H2O - log_k -6.02 - delta_h -10.541 #kJ/mol +PdO = -2 H+ + Pd+2 + H2O + log_k -6.02 + delta_h -10.541 #kJ/mol # Enthalpy of formation: -85.400 kJ/mol 82WAG/EVA - -analytic -78.66704E-1 00.00000E+0 55.05948E+1 00.00000E+0 00.00000E+0 + -analytic -78.66704E-1 00E+0 55.05948E+1 00E+0 00E+0 PdS(s) -PdS = -1.000H+ +1.000Pd+2 +1.000HS- - log_k -46.86 - delta_h +244.299 #kJ/mol +PdS = - H+ + Pd+2 + HS- + log_k -46.86 + delta_h 244.299 #kJ/mol # Enthalpy of formation: -70.710 kJ/mol 74MIL - -analytic -40.60652E-1 00.00000E+0 -12.76063E+3 00.00000E+0 00.00000E+0 + -analytic -40.60652E-1 00E+0 -12.76063E+3 00E+0 00E+0 PdSe(s) -PdSe = -1.000H+ +1.000Pd+2 +1.000HSe- - log_k -49.11 - delta_h +254.469 #kJ/mol +PdSe = - H+ + Pd+2 + HSe- + log_k -49.11 + delta_h 254.469 #kJ/mol # Enthalpy of formation: -50.280 kJ/mol 74MIL - -analytic -45.28945E-1 00.00000E+0 -13.29184E+3 00.00000E+0 00.00000E+0 + -analytic -45.28945E-1 00E+0 -13.29184E+3 00E+0 00E+0 Pentahydrite -MgSO4:5H2O = +1.000Mg+2 +1.000SO4-2 +5.000H2O - log_k -1.28 #80HAR/WEA - delta_h -14.187 #kJ/mol -# Enthalpy of formation: -2791.300 kJ/mol - -analytic -37.65456E-1 00.00000E+0 74.10386E+1 00.00000E+0 00.00000E+0 +MgSO4:5H2O = Mg+2 + SO4-2 + 5 H2O + log_k -1.28 #80HAR/WEA + delta_h -14.187 #kJ/mol +# Enthalpy of formation: -2791.300 kJ/mol + -analytic -37.65456E-1 00E+0 74.10386E+1 00E+0 00E+0 Periclase -MgO = +1.000Mg+2 -2.000H+ +1.000H2O - log_k +21.58 - delta_h -151.230 #kJ/mol +MgO = Mg+2 - 2 H+ + H2O + log_k 21.58 + delta_h -151.23 #kJ/mol # Enthalpy of formation: -601.600 kJ/mol 89COX/WAG - -analytic -49.14359E-1 00.00000E+0 78.99293E+2 00.00000E+0 00.00000E+0 - -Vm 11.250 + -analytic -49.14359E-1 00E+0 78.99293E+2 00E+0 00E+0 + -Vm 11.25 Phillipsite_Ca -Ca0.5AlSi3O8:3H2O = +0.500Ca+2 +1.000Al+3 -4.000H+ +3.000H4(SiO4) -1.000H2O - log_k +2.32 #09BLA - delta_h -83.633 #kJ/mol -# Enthalpy of formation: -4824.020 kJ/mol - -analytic -12.33187E+0 00.00000E+0 43.68456E+2 00.00000E+0 00.00000E+0 - -Vm 151.150 +Ca0.5AlSi3O8:3H2O = 0.5 Ca+2 + Al+3 - 4 H+ + 3 H4(SiO4) - H2O + log_k 2.32 #09BLA + delta_h -83.633 #kJ/mol +# Enthalpy of formation: -4824.020 kJ/mol + -analytic -12.33187E+0 00E+0 43.68456E+2 00E+0 00E+0 + -Vm 151.15 Phillipsite_K -KAlSi3O8:3H2O = +1.000K+ +1.000Al+3 -4.000H+ +3.000H4(SiO4) -1.000H2O - log_k +0.04 #09BLA - delta_h -46.436 #kJ/mol -# Enthalpy of formation: -4841.858 kJ/mol - -analytic -80.95238E-1 00.00000E+0 24.25521E+2 00.00000E+0 00.00000E+0 - -Vm 148.970 +KAlSi3O8:3H2O = K+ + Al+3 - 4 H+ + 3 H4(SiO4) - H2O + log_k 0.04 #09BLA + delta_h -46.436 #kJ/mol +# Enthalpy of formation: -4841.858 kJ/mol + -analytic -80.95238E-1 00E+0 24.25521E+2 00E+0 00E+0 + -Vm 148.97 Phillipsite_Na -NaAlSi3O8:3H2O = +1.000Na+ +1.000Al+3 -4.000H+ +3.000H4(SiO4) -1.000H2O - log_k +1.45 #09BLA - delta_h -64.833 #kJ/mol -# Enthalpy of formation: -4811.661 kJ/mol - -analytic -99.08254E-1 00.00000E+0 33.86463E+2 00.00000E+0 00.00000E+0 - -Vm 149.690 +NaAlSi3O8:3H2O = Na+ + Al+3 - 4 H+ + 3 H4(SiO4) - H2O + log_k 1.45 #09BLA + delta_h -64.833 #kJ/mol +# Enthalpy of formation: -4811.661 kJ/mol + -analytic -99.08254E-1 00E+0 33.86463E+2 00E+0 00E+0 + -Vm 149.69 Phlogopite_K -KMg3Si3AlO10(OH)2 = +3.000Mg+2 +1.000K+ +1.000Al+3 -10.000H+ +3.000H4(SiO4) - log_k +41.08 - delta_h -360.122 #kJ/mol +KMg3Si3AlO10(OH)2 = 3 Mg+2 + K+ + Al+3 - 10 H+ + 3 H4(SiO4) + log_k 41.08 + delta_h -360.122 #kJ/mol # Enthalpy of formation: -6215.000 kJ/mol 92CIR/NAV - -analytic -22.01067E+0 00.00000E+0 18.81048E+3 00.00000E+0 00.00000E+0 - -Vm 149.650 + -analytic -22.01067E+0 00E+0 18.81048E+3 00E+0 00E+0 + -Vm 149.65 Phlogopite_Na -NaMg3AlSi3O10(OH)2 = +3.000Mg+2 +1.000Na+ +1.000Al+3 -10.000H+ +3.000H4(SiO4) - log_k +44.18 - delta_h -391.182 #kJ/mol +NaMg3AlSi3O10(OH)2 = 3 Mg+2 + Na+ + Al+3 - 10 H+ + 3 H4(SiO4) + log_k 44.18 + delta_h -391.182 #kJ/mol # Enthalpy of formation: -6172.140 kJ/mol 98HOL/POW - -analytic -24.35214E+0 00.00000E+0 20.43286E+3 00.00000E+0 00.00000E+0 - -Vm 144.500 + -analytic -24.35214E+0 00E+0 20.43286E+3 00E+0 00E+0 + -Vm 144.5 Phosgenite -Pb2(CO3)Cl2 = +2.000Pb+2 +1.000CO3-2 +2.000Cl- - log_k +19.90 #74NAU/RYZ - delta_h -163.291 #kJ/mol -# Enthalpy of formation: -844.259 kJ/mol - -analytic -87.07355E-1 00.00000E+0 85.29283E+2 00.00000E+0 00.00000E+0 +Pb2(CO3)Cl2 = 2 Pb+2 + CO3-2 + 2 Cl- + log_k 19.9 #74NAU/RYZ + delta_h -163.291 #kJ/mol +# Enthalpy of formation: -844.259 kJ/mol + -analytic -87.07355E-1 00E+0 85.29283E+2 00E+0 00E+0 Picromerite -K2Mg(SO4)2:6H2O = +1.000Mg+2 +2.000K+ +2.000SO4-2 +6.000H2O - log_k -4.33 #84HAR/MOL - delta_h +33.487 #kJ/mol +K2Mg(SO4)2:6H2O = Mg+2 + 2 K+ + 2 SO4-2 + 6 H2O + log_k -4.33 #84HAR/MOL + delta_h 33.487 #kJ/mol # Enthalpy of formation: -4538.427 kJ/mol 74NAU/RYZ - -analytic 15.36671E-1 00.00000E+0 -17.49148E+2 00.00000E+0 00.00000E+0 + -analytic 15.36671E-1 00E+0 -17.49148E+2 00E+0 00E+0 Pirssonite -Na2Ca(CO3)2:2H2O = +1.000Ca+2 +2.000Na+ +2.000CO3-2 +2.000H2O - log_k -8.91 #99KON/KON - delta_h +9.579 #kJ/mol -# Enthalpy of formation: -2955.379 kJ/mol - -analytic -72.31831E-1 00.00000E+0 -50.03460E+1 00.00000E+0 00.00000E+0 +Na2Ca(CO3)2:2H2O = Ca+2 + 2 Na+ + 2 CO3-2 + 2 H2O + log_k -8.91 #99KON/KON + delta_h 9.579 #kJ/mol +# Enthalpy of formation: -2955.379 kJ/mol + -analytic -72.31831E-1 00E+0 -50.0346E+1 00E+0 00E+0 Plattnerite -PbO2 = +1.000Pb+2 -4.000H+ -2.000e- +2.000H2O - log_k +49.60 - delta_h -296.270 #kJ/mol +PbO2 = Pb+2 - 4 H+ - 2 e- + 2 H2O + log_k 49.6 + delta_h -296.27 #kJ/mol # Enthalpy of formation: -274.470 kJ/mol 98CHA - -analytic -23.04276E-1 00.00000E+0 15.47526E+3 00.00000E+0 00.00000E+0 + -analytic -23.04276E-1 00E+0 15.47526E+3 00E+0 00E+0 Plumbogummite -PbAl3(PO4)2(OH)5:H2O = +1.000Pb+2 +3.000Al+3 -9.000H+ +2.000H2(PO4)- +6.000H2O - log_k +13.24 #74NRI - -analytic 13.24000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +PbAl3(PO4)2(OH)5:H2O = Pb+2 + 3 Al+3 - 9 H+ + 2 H2(PO4)- + 6 H2O + log_k 13.24 #74NRI + -analytic 13.24E+0 00E+0 00E+0 00E+0 00E+0 Plumbonacrite -Pb10(CO3)6O(OH)6 = +10.000Pb+2 -8.000H+ +6.000CO3-2 +7.000H2O - log_k -42.09 - -analytic -42.09000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Pb10(CO3)6O(OH)6 = 10 Pb+2 - 8 H+ + 6 CO3-2 + 7 H2O + log_k -42.09 + -analytic -42.09E+0 00E+0 00E+0 00E+0 00E+0 Polydymite -Ni3S4 = +3.000Ni+2 -4.000H+ -2.000e- +4.000HS- - log_k -39.27 - delta_h +96.116 #kJ/mol +Ni3S4 = 3 Ni+2 - 4 H+ - 2 e- + 4 HS- + log_k -39.27 + delta_h 96.116 #kJ/mol # Enthalpy of formation: -326.352 kJ/mol 74MIL - -analytic -22.43120E+0 00.00000E+0 -50.20488E+2 00.00000E+0 00.00000E+0 + -analytic -22.4312E+0 00E+0 -50.20488E+2 00E+0 00E+0 Polyhalite -K2MgCa2(SO4)4:2H2O = +2.000Ca+2 +1.000Mg+2 +2.000K+ +4.000SO4-2 +2.000H2O - log_k -13.74 #84HAR/MOL - -analytic -13.74000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +K2MgCa2(SO4)4:2H2O = 2 Ca+2 + Mg+2 + 2 K+ + 4 SO4-2 + 2 H2O + log_k -13.74 #84HAR/MOL + -analytic -13.74E+0 00E+0 00E+0 00E+0 00E+0 Portlandite -Ca(OH)2 = +1.000Ca+2 -2.000H+ +2.000H2O - log_k +22.81 #10BLA/BOU1 - delta_h -130.107 #kJ/mol -# Enthalpy of formation: -984.552 kJ/mol - -analytic 16.23204E-3 00.00000E+0 67.95962E+2 00.00000E+0 00.00000E+0 - -Vm 33.060 +Ca(OH)2 = Ca+2 - 2 H+ + 2 H2O + log_k 22.81 #10BLA/BOU1 + delta_h -130.107 #kJ/mol +# Enthalpy of formation: -984.552 kJ/mol + -analytic 16.23204E-3 00E+0 67.95962E+2 00E+0 00E+0 + -Vm 33.06 Pu(cr) -Pu = +1.000Pu+3 +3.000e- - log_k +101.43 - delta_h -591.790 #kJ/mol +Pu = Pu+3 + 3 e- + log_k 101.43 + delta_h -591.79 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 01LEM/FUG - -analytic -22.47158E-1 00.00000E+0 30.91134E+3 00.00000E+0 00.00000E+0 + -analytic -22.47158E-1 00E+0 30.91134E+3 00E+0 00E+0 Pu(HPO4)2(am,hyd) -Pu(HPO4)2 = +1.000Pu+4 -2.000H+ +2.000H2(PO4)- - log_k -16.03 #01LEM/FUG - delta_h -32.691 #kJ/mol -# Enthalpy of formation: -3112.403 kJ/mol - -analytic -21.75722E+0 00.00000E+0 17.07570E+2 00.00000E+0 00.00000E+0 +Pu(HPO4)2 = Pu+4 - 2 H+ + 2 H2(PO4)- + log_k -16.03 #01LEM/FUG + delta_h -32.691 #kJ/mol +# Enthalpy of formation: -3112.403 kJ/mol + -analytic -21.75722E+0 00E+0 17.0757E+2 00E+0 00E+0 Pu(OH)3(am) -Pu(OH)3 = +1.000Pu+3 -3.000H+ +3.000H2O - log_k +14.58 #20GRE/GAO - -analytic 14.58000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Pu(OH)3 = Pu+3 - 3 H+ + 3 H2O + log_k 14.58 #20GRE/GAO + -analytic 14.58E+0 00E+0 00E+0 00E+0 00E+0 Pu(PO4)(am) -Pu(PO4) = +1.000Pu+3 -2.000H+ +1.000H2(PO4)- - log_k -4.88 #20GRE/GAO - -analytic -48.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Pu(PO4) = Pu+3 - 2 H+ + H2(PO4)- + log_k -4.88 #20GRE/GAO + -analytic -48.8E-1 00E+0 00E+0 00E+0 00E+0 Pu2O3(s) -Pu2O3 = +2.000Pu+3 -6.000H+ +3.000H2O - log_k +50.63 - delta_h -385.070 #kJ/mol +Pu2O3 = 2 Pu+3 - 6 H+ + 3 H2O + log_k 50.63 + delta_h -385.07 #kJ/mol # Enthalpy of formation: -1656.000 kJ/mol 01LEM/FUG - -analytic -16.83137E+0 00.00000E+0 20.11361E+3 00.00000E+0 00.00000E+0 + -analytic -16.83137E+0 00E+0 20.11361E+3 00E+0 00E+0 PuAs(s) -PuAs = +1.000PuO2+2 +12.000H+ +11.000e- +1.000AsO4-3 -6.000H2O - log_k -44.42 - delta_h +244.804 #kJ/mol +PuAs = PuO2+2 + 12 H+ + 11 e- + AsO4-3 - 6 H2O + log_k -44.42 + delta_h 244.804 #kJ/mol # Enthalpy of formation: -240.000 kJ/mol 01LEM/FUG - -analytic -15.32180E-1 00.00000E+0 -12.78700E+3 00.00000E+0 00.00000E+0 + -analytic -15.3218E-1 00E+0 -12.787E+3 00E+0 00E+0 PuCO3OH(s) -Pu(CO3)(OH) = +1.000Pu+3 -1.000H+ +1.000CO3-2 +1.000H2O - log_k -6.27 #Estimated using the data for AmCO3OH(s) and the trend versus r identified for AnCO3OH·0.5H2O(s)(orthorhombic). - -analytic -62.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Pu(CO3)(OH) = Pu+3 - H+ + CO3-2 + H2O + log_k -6.27 #Estimated using the data for AmCO3OH(s) and the trend versus r identified for AnCO3OH·0.5H2O(s)(orthorhombic). + -analytic -62.7E-1 00E+0 00E+0 00E+0 00E+0 PuF4(s) -PuF4 = +1.000Pu+4 +4.000F- - log_k -26.07 #01LEM/FUG - -analytic -26.07000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +PuF4 = Pu+4 + 4 F- + log_k -26.07 #01LEM/FUG + -analytic -26.07E+0 00E+0 00E+0 00E+0 00E+0 PuO2(CO3)(cr) -PuO2(CO3) = +1.000PuO2+2 +1.000CO3-2 - log_k -14.82 #20GRE/GAO - -analytic -14.82000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +PuO2(CO3) = PuO2+2 + CO3-2 + log_k -14.82 #20GRE/GAO + -analytic -14.82E+0 00E+0 00E+0 00E+0 00E+0 PuO2(coll) -PuO2 = +1.000Pu+4 -4.000H+ +2.000H2O - log_k +0.20 #07NEC/ALT3 - -analytic 20.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +PuO2 = Pu+4 - 4 H+ + 2 H2O + log_k 0.2 #07NEC/ALT3 + -analytic 20E-2 00E+0 00E+0 00E+0 00E+0 PuO2(cr) -PuO2 = +1.000Pu+4 -4.000H+ +2.000H2O - log_k -8.03 - delta_h -55.755 #kJ/mol +PuO2 = Pu+4 - 4 H+ + 2 H2O + log_k -8.03 + delta_h -55.755 #kJ/mol # Enthalpy of formation: -1055.800 kJ/mol 01LEM/FUG - -analytic -17.79786E+0 00.00000E+0 29.12286E+2 00.00000E+0 00.00000E+0 + -analytic -17.79786E+0 00E+0 29.12286E+2 00E+0 00E+0 PuO2(OH)2:H2O(am) -PuO2(OH)2:H2O = +1.000PuO2+2 -2.000H+ +3.000H2O - log_k +5.17 #20GRE/GAO - delta_h -44.834 #kJ/mol -# Enthalpy of formation: -1634.691 kJ/mol - -analytic -26.84580E-1 00.00000E+0 23.41843E+2 00.00000E+0 00.00000E+0 +PuO2(OH)2:H2O = PuO2+2 - 2 H+ + 3 H2O + log_k 5.17 #20GRE/GAO + delta_h -44.834 #kJ/mol +# Enthalpy of formation: -1634.691 kJ/mol + -analytic -26.8458E-1 00E+0 23.41843E+2 00E+0 00E+0 PuO2(Ox):3H2O(s) -PuO2(Ox):3H2O = +1.000PuO2+2 +1.000Ox-2 +3.000H2O - log_k -10.00 #05HUM/AND - -analytic -10.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +PuO2(Ox):3H2O = PuO2+2 + Ox-2 + 3 H2O + log_k -10 #05HUM/AND + -analytic -10E+0 00E+0 00E+0 00E+0 00E+0 PuO2:2H2O(am) -PuO2:2H2O = +1.000Pu+4 -4.000H+ +4.000H2O - log_k -2.33 #03GUI/FAN - delta_h -58.774 #kJ/mol -# Enthalpy of formation: -1624.439 kJ/mol - -analytic -12.62676E+0 00.00000E+0 30.69980E+2 00.00000E+0 00.00000E+0 +PuO2:2H2O = Pu+4 - 4 H+ + 4 H2O + log_k -2.33 #03GUI/FAN + delta_h -58.774 #kJ/mol +# Enthalpy of formation: -1624.439 kJ/mol + -analytic -12.62676E+0 00E+0 30.6998E+2 00E+0 00E+0 PuO2OH(am) -PuO2OH = +1.000PuO2+ -1.000H+ +1.000H2O - log_k +5.00 #01LEM/FUG - delta_h -36.164 #kJ/mol -# Enthalpy of formation: -1159.793 kJ/mol - -analytic -13.35661E-1 00.00000E+0 18.88977E+2 00.00000E+0 00.00000E+0 +PuO2OH = PuO2+ - H+ + H2O + log_k 5 #01LEM/FUG + delta_h -36.164 #kJ/mol +# Enthalpy of formation: -1159.793 kJ/mol + -analytic -13.35661E-1 00E+0 18.88977E+2 00E+0 00E+0 Pyrite -FeS2 = +1.000Fe+2 -2.000H+ -2.000e- +2.000HS- - log_k -16.82 - delta_h +50.735 #kJ/mol +FeS2 = Fe+2 - 2 H+ - 2 e- + 2 HS- + log_k -16.82 + delta_h 50.735 #kJ/mol # Enthalpy of formation: -173.630 kJ/mol 20LEM/PAL - -analytic -79.31610E-1 00.00000E+0 -26.50074E+2 00.00000E+0 00.00000E+0 - -Vm 23.940 + -analytic -79.3161E-1 00E+0 -26.50074E+2 00E+0 00E+0 + -Vm 23.94 Pyrochroite -Mn(OH)2 = +1.000Mn+2 -2.000H+ +2.000H2O - log_k +15.30 #96FAL/REA - -analytic 15.30000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mn(OH)2 = Mn+2 - 2 H+ + 2 H2O + log_k 15.3 #96FAL/REA + -analytic 15.3E+0 00E+0 00E+0 00E+0 00E+0 Pyromorphite -Pb5Cl(PO4)3 = +5.000Pb+2 -6.000H+ +1.000Cl- +3.000H2(PO4)- - log_k -25.75 #74NRI - -analytic -25.75000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Pb5Cl(PO4)3 = 5 Pb+2 - 6 H+ + Cl- + 3 H2(PO4)- + log_k -25.75 #74NRI + -analytic -25.75E+0 00E+0 00E+0 00E+0 00E+0 Pyromorphite-Br -Pb5Br(PO4)3 = +5.000Pb+2 -6.000H+ +1.000Br- +3.000H2(PO4)- - log_k -19.45 #74NRI - -analytic -19.45000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Pb5Br(PO4)3 = 5 Pb+2 - 6 H+ + Br- + 3 H2(PO4)- + log_k -19.45 #74NRI + -analytic -19.45E+0 00E+0 00E+0 00E+0 00E+0 Pyromorphite-F -Pb5F(PO4)3 = +5.000Pb+2 -6.000H+ +1.000F- +3.000H2(PO4)- - log_k -13.10 #74NRI - -analytic -13.10000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Pb5F(PO4)3 = 5 Pb+2 - 6 H+ + F- + 3 H2(PO4)- + log_k -13.1 #74NRI + -analytic -13.1E+0 00E+0 00E+0 00E+0 00E+0 Pyromorphite-OH -Pb5(OH)(PO4)3 = +5.000Pb+2 -7.000H+ +3.000H2(PO4)- +1.000H2O - log_k -4.15 #74NRI - -analytic -41.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Pb5(OH)(PO4)3 = 5 Pb+2 - 7 H+ + 3 H2(PO4)- + H2O + log_k -4.15 #74NRI + -analytic -41.5E-1 00E+0 00E+0 00E+0 00E+0 Pyrophyllite -Al2Si4O10(OH)2 = +2.000Al+3 -6.000H+ +4.000H4(SiO4) -4.000H2O - log_k -0.44 - delta_h -138.256 #kJ/mol +Al2Si4O10(OH)2 = 2 Al+3 - 6 H+ + 4 H4(SiO4) - 4 H2O + log_k -0.44 + delta_h -138.256 #kJ/mol # Enthalpy of formation: -5640.000 kJ/mol 95ROB/HEM - -analytic -24.66141E+0 00.00000E+0 72.21614E+2 00.00000E+0 00.00000E+0 - -Vm 128.100 + -analytic -24.66141E+0 00E+0 72.21614E+2 00E+0 00E+0 + -Vm 128.1 Pyrrhotite -Fe0.87S = +0.870Fe+2 -1.000H+ -0.260e- +1.000HS- - log_k -5.32 - delta_h +0.673 #kJ/mol +Fe0.87S = 0.87 Fe+2 - H+ - 0.26 e- + HS- + log_k -5.32 + delta_h 0.673 #kJ/mol # Enthalpy of formation: -95.530 kJ/mol 20LEM/PAL - -analytic -52.02095E-1 00.00000E+0 -35.15324E+0 00.00000E+0 00.00000E+0 - -Vm 18.200 + -analytic -52.02095E-1 00E+0 -35.15324E+0 00E+0 00E+0 + -Vm 18.2 Quartz -SiO2 = +1.000H4(SiO4) -2.000H2O - log_k -3.74 - delta_h +21.166 #kJ/mol +SiO2 = H4(SiO4) - 2 H2O + log_k -3.74 + delta_h 21.166 #kJ/mol # Enthalpy of formation: -910.700 kJ/mol 82RIC/BOT - -analytic -31.87597E-3 00.00000E+0 -11.05577E+2 00.00000E+0 00.00000E+0 - -Vm 22.690 + -analytic -31.87597E-3 00E+0 -11.05577E+2 00E+0 00E+0 + -Vm 22.69 Ra(CO3)(s) -Ra(CO3) = +1.000Ra+2 +1.000CO3-2 - log_k -8.30 #85LAN/RIE; Uncertainty estimated by analogy with Sr(CO3)(s). - delta_h +13.640 #kJ/mol -# Enthalpy of formation: -1216.896 kJ/mol - -analytic -59.10375E-1 00.00000E+0 -71.24668E+1 00.00000E+0 00.00000E+0 +Ra(CO3) = Ra+2 + CO3-2 + log_k -8.3 #85LAN/RIE; Uncertainty estimated by analogy with Sr(CO3)(s). + delta_h 13.64 #kJ/mol +# Enthalpy of formation: -1216.896 kJ/mol + -analytic -59.10375E-1 00E+0 -71.24668E+1 00E+0 00E+0 Ra(cr) -Ra = +1.000Ra+2 +2.000e- - log_k +98.44 - delta_h -528.025 #kJ/mol +Ra = Ra+2 + 2 e- + log_k 98.44 + delta_h -528.025 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 82WAG/EVA - -analytic 59.33991E-1 00.00000E+0 27.58067E+3 00.00000E+0 00.00000E+0 + -analytic 59.33991E-1 00E+0 27.58067E+3 00E+0 00E+0 Ra(NO3)2(s) -Ra(NO3)2 = +1.000Ra+2 +2.000NO3- - log_k -2.21 - delta_h +49.981 #kJ/mol -# Enthalpy of formation: -991.706 kJ/mol - -analytic 65.46295E-1 00.00000E+0 -26.10689E+2 00.00000E+0 00.00000E+0 +Ra(NO3)2 = Ra+2 + 2 NO3- + log_k -2.21 + delta_h 49.981 #kJ/mol +# Enthalpy of formation: -991.706 kJ/mol + -analytic 65.46295E-1 00E+0 -26.10689E+2 00E+0 00E+0 Ra(OH)2(s) -Ra(OH)2 = -2.000H+ +1.000Ra+2 +2.000H2O - log_k +30.99 - delta_h -149.762 #kJ/mol -# Enthalpy of formation: -949.923 kJ/mol - -analytic 47.52824E-1 00.00000E+0 78.22614E+2 00.00000E+0 00.00000E+0 +Ra(OH)2 = -2 H+ + Ra+2 + 2 H2O + log_k 30.99 + delta_h -149.762 #kJ/mol +# Enthalpy of formation: -949.923 kJ/mol + -analytic 47.52824E-1 00E+0 78.22614E+2 00E+0 00E+0 Ra(SO4)(s) -Ra(SO4) = +1.000Ra+2 +1.000SO4-2 - log_k -10.26 #99SCH, 85LAN/RIE - delta_h +39.014 #kJ/mol -# Enthalpy of formation: -1476.379 kJ/mol - -analytic -34.25041E-1 00.00000E+0 -20.37843E+2 00.00000E+0 00.00000E+0 +Ra(SO4) = Ra+2 + SO4-2 + log_k -10.26 #99SCH, 85LAN/RIE + delta_h 39.014 #kJ/mol +# Enthalpy of formation: -1476.379 kJ/mol + -analytic -34.25041E-1 00E+0 -20.37843E+2 00E+0 00E+0 RaCl2:2H2O(s) -RaCl2:2H2O = +1.000Ra+2 +2.000Cl- +2.000H2O - log_k -0.73 - delta_h +32.221 #kJ/mol -# Enthalpy of formation: -1466.065 kJ/mol - -analytic 49.14877E-1 00.00000E+0 -16.83020E+2 00.00000E+0 00.00000E+0 +RaCl2:2H2O = Ra+2 + 2 Cl- + 2 H2O + log_k -0.73 + delta_h 32.221 #kJ/mol +# Enthalpy of formation: -1466.065 kJ/mol + -analytic 49.14877E-1 00E+0 -16.8302E+2 00E+0 00E+0 Rb(cr) -Rb = +1.000e- +1.000Rb+ - log_k +49.76 - delta_h -251.120 #kJ/mol +Rb = e- + Rb+ + log_k 49.76 + delta_h -251.12 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 92GRE/FUG - -analytic 57.65664E-1 00.00000E+0 13.11691E+3 00.00000E+0 00.00000E+0 + -analytic 57.65664E-1 00E+0 13.11691E+3 00E+0 00E+0 Rb2MoO4(s) -Rb2MoO4 = +1.000MoO4-2 +2.000Rb+ - log_k +3.10 - delta_h -5.315 #kJ/mol -# Enthalpy of formation: -1493.925 kJ/mol - -analytic 21.68852E-1 00.00000E+0 27.76218E+1 00.00000E+0 00.00000E+0 +Rb2MoO4 = MoO4-2 + 2 Rb+ + log_k 3.1 + delta_h -5.315 #kJ/mol +# Enthalpy of formation: -1493.925 kJ/mol + -analytic 21.68852E-1 00E+0 27.76218E+1 00E+0 00E+0 Realgar -AsS = +7.000H+ +3.000e- +1.000HS- +1.000AsO4-3 -4.000H2O - log_k -67.06 - delta_h +310.285 #kJ/mol -# Enthalpy of formation: -71.406 kJ/mol - -analytic -12.70040E+0 00.00000E+0 -16.20731E+3 00.00000E+0 00.00000E+0 +AsS = 7 H+ + 3 e- + HS- + AsO4-3 - 4 H2O + log_k -67.06 + delta_h 310.285 #kJ/mol +# Enthalpy of formation: -71.406 kJ/mol + -analytic -12.7004E+0 00E+0 -16.20731E+3 00E+0 00E+0 Rhodochrosite -Mn(CO3) = +1.000Mn+2 +1.000CO3-2 - log_k -11.13 #92PEA/BER - delta_h -5.899 #kJ/mol 92PEA/BER -# Enthalpy of formation: -890.131 kJ/mol - -analytic -12.16346E+0 00.00000E+0 30.81262E+1 00.00000E+0 00.00000E+0 +Mn(CO3) = Mn+2 + CO3-2 + log_k -11.13 #92PEA/BER + delta_h -5.899 #kJ/mol 92PEA/BER +# Enthalpy of formation: -890.131 kJ/mol + -analytic -12.16346E+0 00E+0 30.81262E+1 00E+0 00E+0 Rhodochrosite(syn) -Mn(CO3) = +1.000Mn+2 +1.000CO3-2 - log_k -10.49 - delta_h -6.842 #kJ/mol +Mn(CO3) = Mn+2 + CO3-2 + log_k -10.49 + delta_h -6.842 #kJ/mol # Enthalpy of formation: -889.188 kJ/mol 92JOH - -analytic -11.68867E+0 00.00000E+0 35.73825E+1 00.00000E+0 00.00000E+0 + -analytic -11.68867E+0 00E+0 35.73825E+1 00E+0 00E+0 Ripidolite_Cca-2 -(Mg2.964Fe1.712Fe0.215Al1.116Ca0.011)(Si2.633Al1.367)O10(OH)8 = +0.011Ca+2 +2.964Mg+2 +0.215Fe+3 +1.712Fe+2 +2.483Al+3 -17.468H+ +2.633H4(SiO4) +7.468H2O - log_k +61.35 - delta_h -634.118 #kJ/mol +(Mg2.964Fe1.712Fe0.215Al1.116Ca0.011)(Si2.633Al1.367)O10(OH)8 = 0.011 Ca+2 + 2.964 Mg+2 + 0.215 Fe+3 + 1.712 Fe+2 + 2.483 Al+3 - 17.468 H+ + 2.633 H4(SiO4) + 7.468 H2O + log_k 61.35 + delta_h -634.118 #kJ/mol # Enthalpy of formation: -8240.140 kJ/mol 13BLA/GAI2 - -analytic -49.74270E+0 00.00000E+0 33.12229E+3 00.00000E+0 00.00000E+0 - -Vm 211.830 + -analytic -49.7427E+0 00E+0 33.12229E+3 00E+0 00E+0 + -Vm 211.83 Romarchite -SnO = +1.000Sn+2 -2.000H+ +1.000H2O - log_k +1.59 - delta_h -11.207 #kJ/mol +SnO = Sn+2 - 2 H+ + H2O + log_k 1.59 + delta_h -11.207 #kJ/mol # Enthalpy of formation: -284.240 kJ/mol 12GAM/GAJ - -analytic -37.33821E-2 00.00000E+0 58.53824E+1 00.00000E+0 00.00000E+0 + -analytic -37.33821E-2 00E+0 58.53824E+1 00E+0 00E+0 Rutherfordine -(UO2)(CO3) = +1.000UO2+2 +1.000CO3-2 - log_k -14.76 #03GUI/FAN - delta_h -2.929 #kJ/mol -# Enthalpy of formation: -1691.302 kJ/mol - -analytic -15.27314E+0 00.00000E+0 15.29923E+1 00.00000E+0 00.00000E+0 +(UO2)(CO3) = UO2+2 + CO3-2 + log_k -14.76 #03GUI/FAN + delta_h -2.929 #kJ/mol +# Enthalpy of formation: -1691.302 kJ/mol + -analytic -15.27314E+0 00E+0 15.29923E+1 00E+0 00E+0 S(cr) -S = -1.000H+ -2.000e- +1.000HS- - log_k -2.14 - delta_h -16.300 #kJ/mol +S = - H+ - 2 e- + HS- + log_k -2.14 + delta_h -16.3 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 89COX/WAG - -analytic -49.95637E-1 00.00000E+0 85.14083E+1 00.00000E+0 00.00000E+0 + -analytic -49.95637E-1 00E+0 85.14083E+1 00E+0 00E+0 Sacchite -MnCl2 = +1.000Mn+2 +2.000Cl- - log_k +8.77 #96FAL/REA - -analytic 87.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +MnCl2 = Mn+2 + 2 Cl- + log_k 8.77 #96FAL/REA + -analytic 87.7E-1 00E+0 00E+0 00E+0 00E+0 Sanidine -KAlSi3O8 = +1.000K+ +1.000Al+3 -4.000H+ +3.000H4(SiO4) -4.000H2O - log_k +0.58 - delta_h -65.072 #kJ/mol +KAlSi3O8 = K+ + Al+3 - 4 H+ + 3 H4(SiO4) - 4 H2O + log_k 0.58 + delta_h -65.072 #kJ/mol # Enthalpy of formation: -3965.730 kJ/mol 99ARN/STE - -analytic -10.82013E+0 00.00000E+0 33.98947E+2 00.00000E+0 00.00000E+0 + -analytic -10.82013E+0 00E+0 33.98947E+2 00E+0 00E+0 Saponite_SapCa -(Na0.394K0.021Ca0.038)(Si3.569Al0.397)(Mg2.949Fe0.034Fe0.021)O10(OH)2 = +0.038Ca+2 +2.949Mg+2 +0.021K+ +0.394Na+ +0.034Fe+3 +0.021Fe+2 +0.397Al+3 -7.724H+ +3.569H4(SiO4) -2.276H2O - log_k +31.45 - delta_h -285.541 #kJ/mol +(Na0.394K0.021Ca0.038)(Si3.569Al0.397)(Mg2.949Fe0.034Fe0.021)O10(OH)2 = 0.038 Ca+2 + 2.949 Mg+2 + 0.021 K+ + 0.394 Na+ + 0.034 Fe+3 + 0.021 Fe+2 + 0.397 Al+3 - 7.724 H+ + 3.569 H4(SiO4) - 2.276 H2O + log_k 31.45 + delta_h -285.541 #kJ/mol # Enthalpy of formation: -5994.060 kJ/mol 13GAI/BLA - -analytic -18.57464E+0 00.00000E+0 14.91485E+3 00.00000E+0 00.00000E+0 - -Vm 141.660 + -analytic -18.57464E+0 00E+0 14.91485E+3 00E+0 00E+0 + -Vm 141.66 Saponite_SapCa(4.151H2O) -(Na0.394K0.021Ca0.038)(Si3.569Al0.397)(Mg2.949Fe0.034Fe0.021)O10(OH)2:4.151H2O = +0.038Ca+2 +2.949Mg+2 +0.021K+ +0.394Na+ +0.034Fe+3 +0.021Fe+2 +0.397Al+3 -7.724H+ +3.569H4(SiO4) +1.875H2O - log_k +28.27 - delta_h -255.631 #kJ/mol +(Na0.394K0.021Ca0.038)(Si3.569Al0.397)(Mg2.949Fe0.034Fe0.021)O10(OH)2:4.151H2O = 0.038 Ca+2 + 2.949 Mg+2 + 0.021 K+ + 0.394 Na+ + 0.034 Fe+3 + 0.021 Fe+2 + 0.397 Al+3 - 7.724 H+ + 3.569 H4(SiO4) + 1.875 H2O + log_k 28.27 + delta_h -255.631 #kJ/mol # Enthalpy of formation: -7210.450 kJ/mol 09GAI - -analytic -16.51463E+0 00.00000E+0 13.35254E+3 00.00000E+0 00.00000E+0 - -Vm 216.670 + -analytic -16.51463E+0 00E+0 13.35254E+3 00E+0 00E+0 + -Vm 216.67 Saponite-Ca -Ca0.17Mg3Al0.34Si3.66O10(OH)2 = +0.170Ca+2 +3.000Mg+2 +0.340Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O - log_k +29.34 - delta_h -271.305 #kJ/mol +Ca0.17Mg3Al0.34Si3.66O10(OH)2 = 0.17 Ca+2 + 3 Mg+2 + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k 29.34 + delta_h -271.305 #kJ/mol # Enthalpy of formation: -5998.440 kJ/mol 15BLA/VIE - -analytic -18.19060E+0 00.00000E+0 14.17125E+3 00.00000E+0 00.00000E+0 - -Vm 142.570 + -analytic -18.1906E+0 00E+0 14.17125E+3 00E+0 00E+0 + -Vm 142.57 Saponite-FeCa -Ca0.17Mg2FeAl0.34Si3.66O10(OH)2 = +0.170Ca+2 +2.000Mg+2 +1.000Fe+2 +0.340Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O - log_k +24.48 - delta_h -259.470 #kJ/mol +Ca0.17Mg2FeAl0.34Si3.66O10(OH)2 = 0.17 Ca+2 + 2 Mg+2 + Fe+2 + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k 24.48 + delta_h -259.47 #kJ/mol # Enthalpy of formation: -5633.570 kJ/mol 15BLA/VIE - -analytic -20.97719E+0 00.00000E+0 13.55306E+3 00.00000E+0 00.00000E+0 - -Vm 145.150 + -analytic -20.97719E+0 00E+0 13.55306E+3 00E+0 00E+0 + -Vm 145.15 Saponite-FeK -K0.34Mg2FeAl0.34Si3.66O10(OH)2 = +2.000Mg+2 +0.340K+ +1.000Fe+2 +0.340Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O - log_k +25.40 - delta_h -240.927 #kJ/mol +K0.34Mg2FeAl0.34Si3.66O10(OH)2 = 2 Mg+2 + 0.34 K+ + Fe+2 + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k 25.4 + delta_h -240.927 #kJ/mol # Enthalpy of formation: -5645.530 kJ/mol 15BLA/VIE - -analytic -16.80860E+0 00.00000E+0 12.58449E+3 00.00000E+0 00.00000E+0 - -Vm 144.270 + -analytic -16.8086E+0 00E+0 12.58449E+3 00E+0 00E+0 + -Vm 144.27 Saponite-FeMg -Mg0.17Mg2FeAl0.34Si3.66O10(OH)2 = +2.170Mg+2 +1.000Fe+2 +0.340Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O - log_k +26.03 - delta_h -260.640 #kJ/mol +Mg0.17Mg2FeAl0.34Si3.66O10(OH)2 = 2.17 Mg+2 + Fe+2 + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k 26.03 + delta_h -260.64 #kJ/mol # Enthalpy of formation: -5619.480 kJ/mol 15BLA/VIE - -analytic -19.63217E+0 00.00000E+0 13.61418E+3 00.00000E+0 00.00000E+0 - -Vm 141.160 + -analytic -19.63217E+0 00E+0 13.61418E+3 00E+0 00E+0 + -Vm 141.16 Saponite-FeNa -Na0.34Mg2FeAl0.34Si3.66O10(OH)2 = +2.000Mg+2 +0.340Na+ +1.000Fe+2 +0.340Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O - log_k +25.73 - delta_h -248.555 #kJ/mol +Na0.34Mg2FeAl0.34Si3.66O10(OH)2 = 2 Mg+2 + 0.34 Na+ + Fe+2 + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k 25.73 + delta_h -248.555 #kJ/mol # Enthalpy of formation: -5633.890 kJ/mol 15BLA/VIE - -analytic -17.81497E+0 00.00000E+0 12.98293E+3 00.00000E+0 00.00000E+0 - -Vm 143.540 + -analytic -17.81497E+0 00E+0 12.98293E+3 00E+0 00E+0 + -Vm 143.54 Saponite-K -K0.34Mg3Al0.34Si3.66O10(OH)2 = +3.000Mg+2 +0.340K+ +0.340Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O - log_k +28.17 - delta_h -252.772 #kJ/mol +K0.34Mg3Al0.34Si3.66O10(OH)2 = 3 Mg+2 + 0.34 K+ + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k 28.17 + delta_h -252.772 #kJ/mol # Enthalpy of formation: -6010.390 kJ/mol 15BLA/VIE - -analytic -16.11375E+0 00.00000E+0 13.20320E+3 00.00000E+0 00.00000E+0 - -Vm 141.690 + -analytic -16.11375E+0 00E+0 13.2032E+3 00E+0 00E+0 + -Vm 141.69 Saponite-Mg -Mg0.17Mg3Al0.34Si3.66O10(OH)2 = +3.170Mg+2 +0.340Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O - log_k +28.79 - delta_h -272.485 #kJ/mol +Mg0.17Mg3Al0.34Si3.66O10(OH)2 = 3.17 Mg+2 + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k 28.79 + delta_h -272.485 #kJ/mol # Enthalpy of formation: -5984.340 kJ/mol 15BLA/VIE - -analytic -18.94732E+0 00.00000E+0 14.23288E+3 00.00000E+0 00.00000E+0 - -Vm 138.580 + -analytic -18.94732E+0 00E+0 14.23288E+3 00E+0 00E+0 + -Vm 138.58 Saponite-Na -Na0.34Mg3Al0.34Si3.66O10(OH)2 = +3.000Mg+2 +0.340Na+ +0.340Al+3 -7.360H+ +3.660H4(SiO4) -2.640H2O - log_k +28.67 - delta_h -261.390 #kJ/mol +Na0.34Mg3Al0.34Si3.66O10(OH)2 = 3 Mg+2 + 0.34 Na+ + 0.34 Al+3 - 7.36 H+ + 3.66 H4(SiO4) - 2.64 H2O + log_k 28.67 + delta_h -261.39 #kJ/mol # Enthalpy of formation: -5997.760 kJ/mol 15BLA/VIE - -analytic -17.12356E+0 00.00000E+0 13.65335E+3 00.00000E+0 00.00000E+0 - -Vm 140.960 + -analytic -17.12356E+0 00E+0 13.65335E+3 00E+0 00E+0 + -Vm 140.96 Sb(cr) -Sb = +3.000H+ +3.000e- +1.000Sb(OH)3 -3.000H2O - log_k -11.67 - delta_h +83.597 #kJ/mol +Sb = 3 H+ + 3 e- + Sb(OH)3 - 3 H2O + log_k -11.67 + delta_h 83.597 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 98KON/VAN - -analytic 29.75566E-1 00.00000E+0 -43.66575E+2 00.00000E+0 00.00000E+0 + -analytic 29.75566E-1 00E+0 -43.66575E+2 00E+0 00E+0 Sb2O5(s) -Sb2O5 = +2.000Sb(OH)5 -5.000H2O - log_k -7.40 #48TOU/MOU in 76BAE/MES - -analytic -74.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Sb2O5 = 2 Sb(OH)5 - 5 H2O + log_k -7.4 #48TOU/MOU in 76BAE/MES + -analytic -74E-1 00E+0 00E+0 00E+0 00E+0 Schwertmannite(cr) -Fe8O8(OH)6SO4 = +8.000Fe+3 -22.000H+ +1.000SO4-2 +14.000H2O - log_k +8.72 - -analytic 87.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Fe8O8(OH)6SO4 = 8 Fe+3 - 22 H+ + SO4-2 + 14 H2O + log_k 8.72 + -analytic 87.2E-1 00E+0 00E+0 00E+0 00E+0 Scolecite -CaAl2Si3O10:3H2O = +1.000Ca+2 +2.000Al+3 -8.000H+ +3.000H4(SiO4) +1.000H2O - log_k +16.63 - delta_h -240.212 #kJ/mol +CaAl2Si3O10:3H2O = Ca+2 + 2 Al+3 - 8 H+ + 3 H4(SiO4) + H2O + log_k 16.63 + delta_h -240.212 #kJ/mol # Enthalpy of formation: -6049.000 kJ/mol 83JOH/FLO - -analytic -25.45334E+0 00.00000E+0 12.54715E+3 00.00000E+0 00.00000E+0 - -Vm 172.300 + -analytic -25.45334E+0 00E+0 12.54715E+3 00E+0 00E+0 + -Vm 172.3 Se(s) -Se = -1.000H+ -2.000e- +1.000HSe- - log_k -7.62 - delta_h +14.300 #kJ/mol +Se = - H+ - 2 e- + HSe- + log_k -7.62 + delta_h 14.3 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 92GRE/FUG - -analytic -51.14748E-1 00.00000E+0 -74.69410E+1 00.00000E+0 00.00000E+0 + -analytic -51.14748E-1 00E+0 -74.6941E+1 00E+0 00E+0 Se3U(cr) -Se3U = +1.000UO2+2 +1.000H+ +3.000HSe- -2.000H2O - log_k -18.27 - delta_h +47.560 #kJ/mol +Se3U = UO2+2 + H+ + 3 HSe- - 2 H2O + log_k -18.27 + delta_h 47.56 #kJ/mol # Enthalpy of formation: -452.000 kJ/mol 92GRE/FUG - -analytic -99.37846E-1 00.00000E+0 -24.84232E+2 00.00000E+0 00.00000E+0 + -analytic -99.37846E-1 00E+0 -24.84232E+2 00E+0 00E+0 SeO3(cr) -SeO3 = +2.000H+ +1.000SeO4-2 -1.000H2O - log_k +20.36 - delta_h -154.570 #kJ/mol +SeO3 = 2 H+ + SeO4-2 - H2O + log_k 20.36 + delta_h -154.57 #kJ/mol # Enthalpy of formation: -163.100 kJ/mol 05OLI/NOL - -analytic -67.19502E-1 00.00000E+0 80.73753E+2 00.00000E+0 00.00000E+0 + -analytic -67.19502E-1 00E+0 80.73753E+2 00E+0 00E+0 SeU(cr) -SeU = +1.000U+4 -1.000H+ +2.000e- +1.000HSe- - log_k +37.34 - delta_h -304.900 #kJ/mol +SeU = U+4 - H+ + 2 e- + HSe- + log_k 37.34 + delta_h -304.9 #kJ/mol # Enthalpy of formation: -272.000 kJ/mol 05OLI/NOL - -analytic -16.07619E+0 00.00000E+0 15.92604E+3 00.00000E+0 00.00000E+0 + -analytic -16.07619E+0 00E+0 15.92604E+3 00E+0 00E+0 Si(cr) -Si = +4.000H+ +4.000e- +1.000H4(SiO4) -4.000H2O - log_k +63.19 - delta_h -317.874 #kJ/mol +Si = 4 H+ + 4 e- + H4(SiO4) - 4 H2O + log_k 63.19 + delta_h -317.874 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 89COX/WAG - -analytic 75.00866E-1 00.00000E+0 16.60372E+3 00.00000E+0 00.00000E+0 + -analytic 75.00866E-1 00E+0 16.60372E+3 00E+0 00E+0 Siderite -Fe(CO3) = +1.000Fe+2 +1.000CO3-2 - log_k -10.68 - delta_h -12.916 #kJ/mol +Fe(CO3) = Fe+2 + CO3-2 + log_k -10.68 + delta_h -12.916 #kJ/mol # Enthalpy of formation: -752.609 kJ/mol 13LEM/BER - -analytic -12.94279E+0 00.00000E+0 67.46497E+1 00.00000E+0 00.00000E+0 - -Vm 29.380 + -analytic -12.94279E+0 00E+0 67.46497E+1 00E+0 00E+0 + -Vm 29.38 Siderophyllite -KFe2Al3Si2O10(OH)2 = +1.000K+ +2.000Fe+2 +3.000Al+3 -14.000H+ +2.000H4(SiO4) +4.000H2O - log_k +40.60 - delta_h -485.368 #kJ/mol +KFe2Al3Si2O10(OH)2 = K+ + 2 Fe+2 + 3 Al+3 - 14 H+ + 2 H4(SiO4) + 4 H2O + log_k 40.6 + delta_h -485.368 #kJ/mol # Enthalpy of formation: -5628.270 kJ/mol 90HOL/POW - -analytic -44.43282E+0 00.00000E+0 25.35254E+3 00.00000E+0 00.00000E+0 - -Vm 150.630 + -analytic -44.43282E+0 00E+0 25.35254E+3 00E+0 00E+0 + -Vm 150.63 SiO2(am) -SiO2 = +1.000H4(SiO4) -2.000H2O - log_k -2.71 #00GUN/ARN - delta_h +13.522 #kJ/mol -# Enthalpy of formation: -903.057 kJ/mol - -analytic -34.10473E-2 00.00000E+0 -70.63033E+1 00.00000E+0 00.00000E+0 - -Vm 29.000 +SiO2 = H4(SiO4) - 2 H2O + log_k -2.71 #00GUN/ARN + delta_h 13.522 #kJ/mol +# Enthalpy of formation: -903.057 kJ/mol + -analytic -34.10473E-2 00E+0 -70.63033E+1 00E+0 00E+0 + -Vm 29 Sm(cr) -Sm = +1.000Sm+3 +3.000e- - log_k +116.62 - delta_h -691.198 #kJ/mol +Sm = Sm+3 + 3 e- + log_k 116.62 + delta_h -691.198 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 79ROB/HEM - -analytic -44.72692E-1 00.00000E+0 36.10379E+3 00.00000E+0 00.00000E+0 + -analytic -44.72692E-1 00E+0 36.10379E+3 00E+0 00E+0 Sm(OH)3(am) -Sm(OH)3 = +1.000Sm+3 -3.000H+ +3.000H2O - log_k +17.85 #98DIA/RAG - -analytic 17.85000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Sm(OH)3 = Sm+3 - 3 H+ + 3 H2O + log_k 17.85 #98DIA/RAG + -analytic 17.85E+0 00E+0 00E+0 00E+0 00E+0 Sm(OH)3(s) -Sm(OH)3 = +1.000Sm+3 -3.000H+ +3.000H2O - log_k +16.13 #98DIA/RAG - -analytic 16.13000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Sm(OH)3 = Sm+3 - 3 H+ + 3 H2O + log_k 16.13 #98DIA/RAG + -analytic 16.13E+0 00E+0 00E+0 00E+0 00E+0 Sm2(CO3)3(s) -Sm2(CO3)3 = +2.000Sm+3 +3.000CO3-2 - log_k -34.50 #95SPA/BRU - -analytic -34.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Sm2(CO3)3 = 2 Sm+3 + 3 CO3-2 + log_k -34.5 #95SPA/BRU + -analytic -34.5E+0 00E+0 00E+0 00E+0 00E+0 Sm2(SO4)3(s) -Sm2(SO4)3 = +2.000Sm+3 +3.000SO4-2 - log_k -9.80 #95SPA/BRU - delta_h -211.316 #kJ/mol +Sm2(SO4)3 = 2 Sm+3 + 3 SO4-2 + log_k -9.8 #95SPA/BRU + delta_h -211.316 #kJ/mol # Enthalpy of formation: -3899.100 kJ/mol 82WAG/EVA - -analytic -46.82097E+0 00.00000E+0 11.03780E+3 00.00000E+0 00.00000E+0 + -analytic -46.82097E+0 00E+0 11.0378E+3 00E+0 00E+0 Sm2O3(s) -Sm2O3 = +2.000Sm+3 -6.000H+ +3.000H2O - log_k +43.11 - delta_h -355.036 #kJ/mol -# Enthalpy of formation: -1884.849 kJ/mol - -analytic -19.08964E+0 00.00000E+0 18.54482E+3 00.00000E+0 00.00000E+0 +Sm2O3 = 2 Sm+3 - 6 H+ + 3 H2O + log_k 43.11 + delta_h -355.036 #kJ/mol +# Enthalpy of formation: -1884.849 kJ/mol + -analytic -19.08964E+0 00E+0 18.54482E+3 00E+0 00E+0 SmCl3:6H2O(s) -SmCl3:6H2O = +1.000Sm+3 +3.000Cl- +6.000H2O - log_k +4.80 #96FAL/REA - delta_h -38.319 #kJ/mol -# Enthalpy of formation: -2869.096 kJ/mol - -analytic -19.13201E-1 00.00000E+0 20.01541E+2 00.00000E+0 00.00000E+0 +SmCl3:6H2O = Sm+3 + 3 Cl- + 6 H2O + log_k 4.8 #96FAL/REA + delta_h -38.319 #kJ/mol +# Enthalpy of formation: -2869.096 kJ/mol + -analytic -19.13201E-1 00E+0 20.01541E+2 00E+0 00E+0 SmCO3OH(cr) -SmOHCO3 = +1.000Sm+3 -1.000H+ +1.000CO3-2 +1.000H2O - log_k -10.23 - delta_h -38.858 #kJ/mol +SmOHCO3 = Sm+3 - H+ + CO3-2 + H2O + log_k -10.23 + delta_h -38.858 #kJ/mol # Enthalpy of formation: -1613.400 kJ/mol 05ROR/FUG - -analytic -17.03763E+0 00.00000E+0 20.29695E+2 00.00000E+0 00.00000E+0 + -analytic -17.03763E+0 00E+0 20.29695E+2 00E+0 00E+0 SmCO3OH:0.5H2O(s) -SmOHCO3:0.5H2O = +1.000Sm+3 -1.000H+ +1.000CO3-2 +1.500H2O - log_k -7.31 - delta_h -51.073 #kJ/mol +SmOHCO3:0.5H2O = Sm+3 - H+ + CO3-2 + 1.5 H2O + log_k -7.31 + delta_h -51.073 #kJ/mol # Enthalpy of formation: -1744.100 kJ/mol 05ROR/FUG - -analytic -16.25761E+0 00.00000E+0 26.67729E+2 00.00000E+0 00.00000E+0 + -analytic -16.25761E+0 00E+0 26.67729E+2 00E+0 00E+0 Smectite MX80 -Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.173Fe0.035)O10(OH)2 = +0.009Ca+2 +0.214Mg+2 +0.024K+ +0.409Na+ +0.173Fe+3 +0.035Fe+2 +1.860Al+3 -7.048H+ +3.738H4(SiO4) -2.952H2O - log_k +5.26 - delta_h -184.222 #kJ/mol +Na0.409K0.024Ca0.009(Si3.738Al0.262)(Al1.598Mg0.214Fe0.173Fe0.035)O10(OH)2 = 0.009 Ca+2 + 0.214 Mg+2 + 0.024 K+ + 0.409 Na+ + 0.173 Fe+3 + 0.035 Fe+2 + 1.86 Al+3 - 7.048 H+ + 3.738 H4(SiO4) - 2.952 H2O + log_k 5.26 + delta_h -184.222 #kJ/mol # Enthalpy of formation: -5656.370 kJ/mol 12GAI/BLA - -analytic -27.01431E+0 00.00000E+0 96.22585E+2 00.00000E+0 00.00000E+0 - -Vm 134.920 + -analytic -27.01431E+0 00E+0 96.22585E+2 00E+0 00E+0 + -Vm 134.92 Smectite_MX80(3.989H2O) -(Ca0.009Na0.409K0.024)(Si3.738Al0.262)(Al1.598Fe0.173Fe0.035Mg0.214)O10(OH)2:3.989H2O = +0.009Ca+2 +0.214Mg+2 +0.024K+ +0.409Na+ +0.173Fe+3 +0.035Fe+2 +1.860Al+3 -7.048H+ +3.738H4(SiO4) +1.037H2O - log_k +1.75 - delta_h -157.438 #kJ/mol +(Ca0.009Na0.409K0.024)(Si3.738Al0.262)(Al1.598Fe0.173Fe0.035Mg0.214)O10(OH)2:3.989H2O = 0.009 Ca+2 + 0.214 Mg+2 + 0.024 K+ + 0.409 Na+ + 0.173 Fe+3 + 0.035 Fe+2 + 1.86 Al+3 - 7.048 H+ + 3.738 H4(SiO4) + 1.037 H2O + log_k 1.75 + delta_h -157.438 #kJ/mol # Enthalpy of formation: -6823.330 kJ/mol 12GAI/BLA - -analytic -25.83195E+0 00.00000E+0 82.23559E+2 00.00000E+0 00.00000E+0 - -Vm 207.000 + -analytic -25.83195E+0 00E+0 82.23559E+2 00E+0 00E+0 + -Vm 207 Smectite_MX80(5.189H2O) -(Ca0.009Na0.409K0.024)(Si3.738Al0.262)(Al1.598Fe0.173Fe0.035Mg0.214)O10(OH)2:5.189H2O = +0.009Ca+2 +0.214Mg+2 +0.024K+ +0.409Na+ +0.173Fe+3 +0.035Fe+2 +1.860Al+3 -7.048H+ +3.738H4(SiO4) +2.237H2O - log_k +1.41 - delta_h -149.344 #kJ/mol +(Ca0.009Na0.409K0.024)(Si3.738Al0.262)(Al1.598Fe0.173Fe0.035Mg0.214)O10(OH)2:5.189H2O = 0.009 Ca+2 + 0.214 Mg+2 + 0.024 K+ + 0.409 Na+ + 0.173 Fe+3 + 0.035 Fe+2 + 1.86 Al+3 - 7.048 H+ + 3.738 H4(SiO4) + 2.237 H2O + log_k 1.41 + delta_h -149.344 #kJ/mol # Enthalpy of formation: -7174.420 kJ/mol 12GAI/BLA - -analytic -24.75395E+0 00.00000E+0 78.00780E+2 00.00000E+0 00.00000E+0 - -Vm 228.690 + -analytic -24.75395E+0 00E+0 78.0078E+2 00E+0 00E+0 + -Vm 228.69 SmF3:0.5H2O(s) -SmF3:0.5H2O = +1.000Sm+3 +3.000F- +0.500H2O - log_k -17.50 #95SPA/BRU - -analytic -17.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +SmF3:0.5H2O = Sm+3 + 3 F- + 0.5 H2O + log_k -17.5 #95SPA/BRU + -analytic -17.5E+0 00E+0 00E+0 00E+0 00E+0 SmPO4:H2O(am) -SmPO4:H2O = +1.000Sm+3 -2.000H+ +1.000H2(PO4)- +1.000H2O - log_k -5.00 #05CET/WOO - delta_h -26.479 #kJ/mol +SmPO4:H2O = Sm+3 - 2 H+ + H2(PO4)- + H2O + log_k -5 #05CET/WOO + delta_h -26.479 #kJ/mol # Enthalpy of formation: -2253.149 kJ/mol 05CET/WOO - -analytic -96.38922E-1 00.00000E+0 13.83094E+2 00.00000E+0 00.00000E+0 + -analytic -96.38922E-1 00E+0 13.83094E+2 00E+0 00E+0 SmPO4:H2O(cr) -SmPO4:H2O = +1.000Sm+3 -2.000H+ +1.000H2(PO4)- +1.000H2O - log_k -6.67 #97LIU/BYR - -analytic -66.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +SmPO4:H2O = Sm+3 - 2 H+ + H2(PO4)- + H2O + log_k -6.67 #97LIU/BYR + -analytic -66.7E-1 00E+0 00E+0 00E+0 00E+0 Sn(cr,alfa) -Sn = +1.000Sn+2 +2.000e- - log_k +4.82 - delta_h -7.637 #kJ/mol +Sn = Sn+2 + 2 e- + log_k 4.82 + delta_h -7.637 #kJ/mol # Enthalpy of formation: -1.980 kJ/mol 12GAM/GAJ - -analytic 34.82055E-1 00.00000E+0 39.89083E+1 00.00000E+0 00.00000E+0 + -analytic 34.82055E-1 00E+0 39.89083E+1 00E+0 00E+0 Sn(cr,beta) -Sn = +1.000Sn+2 +2.000e- - log_k +4.80 - delta_h -9.617 #kJ/mol +Sn = Sn+2 + 2 e- + log_k 4.8 + delta_h -9.617 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 89COX/WAG - -analytic 31.15174E-1 00.00000E+0 50.23309E+1 00.00000E+0 00.00000E+0 + -analytic 31.15174E-1 00E+0 50.23309E+1 00E+0 00E+0 Sn(OH)4(s) -Sn(OH)4 = +1.000Sn+4 -4.000H+ +4.000H2O - log_k -1.28 #70BAR/KLI in 01SEB/POT; Uncertainty to cover available data. - -analytic -12.80000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Sn(OH)4 = Sn+4 - 4 H+ + 4 H2O + log_k -1.28 #70BAR/KLI in 01SEB/POT; Uncertainty to cover available data. + -analytic -12.8E-1 00E+0 00E+0 00E+0 00E+0 Sn(OH)Cl(s) -Sn(OH)Cl = +1.000Sn+2 -1.000H+ +1.000Cl- +1.000H2O - log_k -2.42 #30RAN/MUR recalculated in 99LOT/OCH - -analytic -24.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Sn(OH)Cl = Sn+2 - H+ + Cl- + H2O + log_k -2.42 #30RAN/MUR recalculated in 99LOT/OCH + -analytic -24.2E-1 00E+0 00E+0 00E+0 00E+0 SnO2(am) -SnO2 = +1.000Sn+4 -4.000H+ +2.000H2O - log_k -14.77 - -analytic -14.77000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +SnO2 = Sn+4 - 4 H+ + 2 H2O + log_k -14.77 + -analytic -14.77E+0 00E+0 00E+0 00E+0 00E+0 SnSe(alfa) -SnSe = +1.000Sn+2 -1.000H+ +1.000HSe- - log_k -21.67 - delta_h +114.183 #kJ/mol +SnSe = Sn+2 - H+ + HSe- + log_k -21.67 + delta_h 114.183 #kJ/mol # Enthalpy of formation: -109.500 kJ/mol 05OLI/NOL - -analytic -16.65997E-1 00.00000E+0 -59.64193E+2 00.00000E+0 00.00000E+0 + -analytic -16.65997E-1 00E+0 -59.64193E+2 00E+0 00E+0 SnSe2(s) -SnSe2 = +1.000Sn+2 -2.000H+ -2.000e- +2.000HSe- - log_k -30.79 - delta_h +133.883 #kJ/mol +SnSe2 = Sn+2 - 2 H+ - 2 e- + 2 HSe- + log_k -30.79 + delta_h 133.883 #kJ/mol # Enthalpy of formation: -114.900 kJ/mol 05OLI/NOL - -analytic -73.34705E-1 00.00000E+0 -69.93196E+2 00.00000E+0 00.00000E+0 + -analytic -73.34705E-1 00E+0 -69.93196E+2 00E+0 00E+0 Soddyite -(UO2)2SiO4:2H2O = +2.000UO2+2 -4.000H+ +1.000H4(SiO4) +2.000H2O - log_k +5.75 #20GRE/GAO - -analytic 57.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +(UO2)2SiO4:2H2O = 2 UO2+2 - 4 H+ + H4(SiO4) + 2 H2O + log_k 5.75 #20GRE/GAO + -analytic 57.5E-1 00E+0 00E+0 00E+0 00E+0 Sodium-compreignacite -Na2(UO2)6O4(OH)6:7H2O = +2.000Na+ +6.000UO2+2 -14.000H+ +17.000H2O - log_k +39.40 #08GOR/FEI - delta_h -517.390 #kJ/mol +Na2(UO2)6O4(OH)6:7H2O = 2 Na+ + 6 UO2+2 - 14 H+ + 17 H2O + log_k 39.4 #08GOR/FEI + delta_h -517.39 #kJ/mol # Enthalpy of formation: -10936.400kJ/mol 06KUB/HEL - -analytic -51.24284E+0 00.00000E+0 27.02516E+3 00.00000E+0 00.00000E+0 + -analytic -51.24284E+0 00E+0 27.02516E+3 00E+0 00E+0 Sphaerocobaltite -CoCO3 = +1.000Co+2 +1.000CO3-2 - log_k -11.20 #99GRA2 - delta_h -9.421 #kJ/mol -# Enthalpy of formation: -723.409 kJ/mol - -analytic -12.85049E+0 00.00000E+0 49.20931E+1 00.00000E+0 00.00000E+0 +CoCO3 = Co+2 + CO3-2 + log_k -11.2 #99GRA2 + delta_h -9.421 #kJ/mol +# Enthalpy of formation: -723.409 kJ/mol + -analytic -12.85049E+0 00E+0 49.20931E+1 00E+0 00E+0 Sr(cr) -Sr = +1.000Sr+2 +2.000e- - log_k +98.79 - delta_h -550.900 #kJ/mol +Sr = Sr+2 + 2 e- + log_k 98.79 + delta_h -550.9 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 98CHA - -analytic 22.76463E-1 00.00000E+0 28.77551E+3 00.00000E+0 00.00000E+0 + -analytic 22.76463E-1 00E+0 28.77551E+3 00E+0 00E+0 Sr(HPO4)(s) -Sr(HPO4) = +1.000Sr+2 -1.000H+ +1.000H2(PO4)- - log_k +0.28 #97MAR/SMI - delta_h -19.487 #kJ/mol -# Enthalpy of formation: -1834.013 kJ/mol - -analytic -31.33976E-1 00.00000E+0 10.17877E+2 00.00000E+0 00.00000E+0 +Sr(HPO4) = Sr+2 - H+ + H2(PO4)- + log_k 0.28 #97MAR/SMI + delta_h -19.487 #kJ/mol +# Enthalpy of formation: -1834.013 kJ/mol + -analytic -31.33976E-1 00E+0 10.17877E+2 00E+0 00E+0 Sr(NO3)2(cr) -Sr(NO3)2 = +1.000Sr+2 +2.000NO3- - log_k +0.40 - delta_h +17.760 #kJ/mol +Sr(NO3)2 = Sr+2 + 2 NO3- + log_k 0.4 + delta_h 17.76 #kJ/mol # Enthalpy of formation: -982.360 kJ/mol 92GRE/FUG - -analytic 35.11418E-1 00.00000E+0 -92.76694E+1 00.00000E+0 00.00000E+0 + -analytic 35.11418E-1 00E+0 -92.76694E+1 00E+0 00E+0 Sr(NO3)2:2H2O(s) -Sr(NO3)2:2H2O = +1.000Sr+2 +2.000NO3- +2.000H2O - log_k +0.05 #25/08/1994 - -analytic 50.00000E-3 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Sr(NO3)2:2H2O = Sr+2 + 2 NO3- + 2 H2O + log_k 0.05 #25/08/1994 + -analytic 50E-3 00E+0 00E+0 00E+0 00E+0 Sr(NO3)2:4H2O(s) -Sr(NO3)2:4H2O = +1.000Sr+2 +2.000NO3- +4.000H2O - log_k -0.87 #96FAL/REA - -analytic -87.00000E-2 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Sr(NO3)2:4H2O = Sr+2 + 2 NO3- + 4 H2O + log_k -0.87 #96FAL/REA + -analytic -87E-2 00E+0 00E+0 00E+0 00E+0 Sr(OH)2(s) -Sr(OH)2 = +1.000Sr+2 -2.000H+ +2.000H2O - log_k +27.51 - delta_h -153.670 #kJ/mol +Sr(OH)2 = Sr+2 - 2 H+ + 2 H2O + log_k 27.51 + delta_h -153.67 #kJ/mol # Enthalpy of formation: -968.890 kJ/mol 98CHA - -analytic 58.81716E-2 00.00000E+0 80.26743E+2 00.00000E+0 00.00000E+0 + -analytic 58.81716E-2 00E+0 80.26743E+2 00E+0 00E+0 Sr(OH)2:8H2O(s) -Sr(OH)2:8H2O = +1.000Sr+2 -2.000H+ +10.000H2O - log_k +24.32 #98FEL/DIX - delta_h -57.000 #kJ/mol +Sr(OH)2:8H2O = Sr+2 - 2 H+ + 10 H2O + log_k 24.32 #98FEL/DIX + delta_h -57 #kJ/mol # Enthalpy of formation: -3352.200 kJ/mol 82WAG/EVA - -analytic 14.33403E+0 00.00000E+0 29.77317E+2 00.00000E+0 00.00000E+0 + -analytic 14.33403E+0 00E+0 29.77317E+2 00E+0 00E+0 Sr(SeO3)(cr) -Sr(SeO3) = +1.000Sr+2 +1.000SeO3-2 - log_k -6.30 #05OLI/NOL - delta_h -6.160 #kJ/mol +Sr(SeO3) = Sr+2 + SeO3-2 + log_k -6.3 #05OLI/NOL + delta_h -6.16 #kJ/mol # Enthalpy of formation: -1051.900 kJ/mol 05OLI/NOL - -analytic -73.79186E-1 00.00000E+0 32.17592E+1 00.00000E+0 00.00000E+0 + -analytic -73.79186E-1 00E+0 32.17592E+1 00E+0 00E+0 Sr(SeO4)(s) -Sr(SeO4) = +1.000Sr+2 +1.000SeO4-2 - log_k -4.35 #Original source 59SEL/ZUB recalculated in 05OLI/NOL - delta_h -21.841 #kJ/mol -# Enthalpy of formation: -1132.559 kJ/mol - -analytic -81.76379E-1 00.00000E+0 11.40835E+2 00.00000E+0 00.00000E+0 +Sr(SeO4) = Sr+2 + SeO4-2 + log_k -4.35 #Original source 59SEL/ZUB recalculated in 05OLI/NOL + delta_h -21.841 #kJ/mol +# Enthalpy of formation: -1132.559 kJ/mol + -analytic -81.76379E-1 00E+0 11.40835E+2 00E+0 00E+0 Sr2SiO4(s) -Sr2SiO4 = +2.000Sr+2 -4.000H+ +1.000H4(SiO4) - log_k +43.25 - -analytic 43.25000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Sr2SiO4 = 2 Sr+2 - 4 H+ + H4(SiO4) + log_k 43.25 + -analytic 43.25E+0 00E+0 00E+0 00E+0 00E+0 Sr3(AsO4)2(s) -Sr3(AsO4)2 = +3.000Sr+2 +2.000AsO4-3 - log_k -16.08 - delta_h -109.504 #kJ/mol -# Enthalpy of formation: -3319.478 kJ/mol - -analytic -35.26428E+0 00.00000E+0 57.19792E+2 00.00000E+0 00.00000E+0 +Sr3(AsO4)2 = 3 Sr+2 + 2 AsO4-3 + log_k -16.08 + delta_h -109.504 #kJ/mol +# Enthalpy of formation: -3319.478 kJ/mol + -analytic -35.26428E+0 00E+0 57.19792E+2 00E+0 00E+0 Sr3(PO4)2(s) -Sr3(PO4)2 = +3.000Sr+2 -4.000H+ +2.000H2(PO4)- - log_k +10.53 #06BLA/IGN - delta_h -147.900 #kJ/mol +Sr3(PO4)2 = 3 Sr+2 - 4 H+ + 2 H2(PO4)- + log_k 10.53 #06BLA/IGN + delta_h -147.9 #kJ/mol # Enthalpy of formation: -4110.000 kJ/mol 97KHA/JEM - -analytic -15.38097E+0 00.00000E+0 77.25355E+2 00.00000E+0 00.00000E+0 + -analytic -15.38097E+0 00E+0 77.25355E+2 00E+0 00E+0 Sr5(PO4)3(OH)(s) -Sr5(PO4)3(OH) = +5.000Sr+2 -7.000H+ +3.000H2(PO4)- +1.000H2O - log_k +7.17 #05KIM/PAR - delta_h -261.630 #kJ/mol +Sr5(PO4)3(OH) = 5 Sr+2 - 7 H+ + 3 H2(PO4)- + H2O + log_k 7.17 #05KIM/PAR + delta_h -261.63 #kJ/mol # Enthalpy of formation: -6686.500 kJ/mol 95JEM/CHE - -analytic -38.66561E+0 00.00000E+0 13.66589E+3 00.00000E+0 00.00000E+0 + -analytic -38.66561E+0 00E+0 13.66589E+3 00E+0 00E+0 SrBr2(s) -SrBr2 = +1.000Sr+2 +2.000Br- - log_k +12.50 #96FAL/REA - -analytic 12.50000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +SrBr2 = Sr+2 + 2 Br- + log_k 12.5 #96FAL/REA + -analytic 12.5E+0 00E+0 00E+0 00E+0 00E+0 SrBr2:6H2O(s) -SrBr2:6H2O = +1.000Sr+2 +2.000Br- +6.000H2O - log_k +2.82 #96FAL/REA - -analytic 28.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +SrBr2:6H2O = Sr+2 + 2 Br- + 6 H2O + log_k 2.82 #96FAL/REA + -analytic 28.2E-1 00E+0 00E+0 00E+0 00E+0 SrBr2:H2O(s) -SrBr2:H2O = +1.000Sr+2 +2.000Br- +1.000H2O - log_k +8.80 #96FAL/REA - -analytic 88.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +SrBr2:H2O = Sr+2 + 2 Br- + H2O + log_k 8.8 #96FAL/REA + -analytic 88E-1 00E+0 00E+0 00E+0 00E+0 SrCl2(s) -SrCl2 = +1.000Sr+2 +2.000Cl- - log_k +8.12 - delta_h -56.210 #kJ/mol +SrCl2 = Sr+2 + 2 Cl- + log_k 8.12 + delta_h -56.21 #kJ/mol # Enthalpy of formation: -828.850 kJ/mol 98CHA - -analytic -17.27569E-1 00.00000E+0 29.36053E+2 00.00000E+0 00.00000E+0 + -analytic -17.27569E-1 00E+0 29.36053E+2 00E+0 00E+0 SrCl2:2H2O(s) -SrCl2:2H2O = +1.000Sr+2 +2.000Cl- +2.000H2O - log_k +3.47 - delta_h -18.720 #kJ/mol +SrCl2:2H2O = Sr+2 + 2 Cl- + 2 H2O + log_k 3.47 + delta_h -18.72 #kJ/mol # Enthalpy of formation: -1438.000 kJ/mol 82WAG/EVA - -analytic 19.03968E-2 00.00000E+0 97.78137E+1 00.00000E+0 00.00000E+0 + -analytic 19.03968E-2 00E+0 97.78137E+1 00E+0 00E+0 SrCl2:6H2O(s) -SrCl2:6H2O = +1.000Sr+2 +2.000Cl- +6.000H2O - log_k +1.61 - delta_h +23.760 #kJ/mol +SrCl2:6H2O = Sr+2 + 2 Cl- + 6 H2O + log_k 1.61 + delta_h 23.76 #kJ/mol # Enthalpy of formation: -2623.800 kJ/mol 82WAG/EVA - -analytic 57.72573E-1 00.00000E+0 -12.41071E+2 00.00000E+0 00.00000E+0 + -analytic 57.72573E-1 00E+0 -12.41071E+2 00E+0 00E+0 SrCl2:H2O(s) -SrCl2:H2O = +1.000Sr+2 +2.000Cl- +1.000H2O - log_k +4.91 - delta_h -34.090 #kJ/mol +SrCl2:H2O = Sr+2 + 2 Cl- + H2O + log_k 4.91 + delta_h -34.09 #kJ/mol # Enthalpy of formation: -1136.800 kJ/mol 82WAG/EVA - -analytic -10.62312E-1 00.00000E+0 17.80645E+2 00.00000E+0 00.00000E+0 + -analytic -10.62312E-1 00E+0 17.80645E+2 00E+0 00E+0 SrCrO4(s) -SrCrO4 = +1.000Sr+2 +1.000CrO4-2 - log_k -4.65 #97MAR/SMI - delta_h -10.125 #kJ/mol 97MAR/SMI -# Enthalpy of formation: -1419.775 kJ/mol - -analytic -64.23824E-1 00.00000E+0 52.88656E+1 00.00000E+0 00.00000E+0 +SrCrO4 = Sr+2 + CrO4-2 + log_k -4.65 #97MAR/SMI + delta_h -10.125 #kJ/mol 97MAR/SMI +# Enthalpy of formation: -1419.775 kJ/mol + -analytic -64.23824E-1 00E+0 52.88656E+1 00E+0 00E+0 SrF2(cr) -SrF2 = +1.000Sr+2 +2.000F- - log_k -8.54 #96FAL/REA - -analytic -85.40000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +SrF2 = Sr+2 + 2 F- + log_k -8.54 #96FAL/REA + -analytic -85.4E-1 00E+0 00E+0 00E+0 00E+0 SrMoO4(s) -SrMoO4 = +1.000Sr+2 +1.000MoO4-2 - log_k -6.59 #54RAO in 74OHA/KEN - -analytic -65.90000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +SrMoO4 = Sr+2 + MoO4-2 + log_k -6.59 #54RAO in 74OHA/KEN + -analytic -65.9E-1 00E+0 00E+0 00E+0 00E+0 SrO(cr) -SrO = +1.000Sr+2 -2.000H+ +1.000H2O - log_k +41.98 - delta_h -244.690 #kJ/mol +SrO = Sr+2 - 2 H+ + H2O + log_k 41.98 + delta_h -244.69 #kJ/mol # Enthalpy of formation: -592.040 kJ/mol 98CHA - -analytic -88.78479E-2 00.00000E+0 12.78105E+3 00.00000E+0 00.00000E+0 + -analytic -88.78479E-2 00E+0 12.78105E+3 00E+0 00E+0 SrS(s) -SrS = +1.000Sr+2 -1.000H+ +1.000HS- - log_k +14.68 - delta_h -93.570 #kJ/mol +SrS = Sr+2 - H+ + HS- + log_k 14.68 + delta_h -93.57 #kJ/mol # Enthalpy of formation: -473.630 kJ/mol 82WAG/EVA - -analytic -17.12760E-1 00.00000E+0 48.87501E+2 00.00000E+0 00.00000E+0 + -analytic -17.1276E-1 00E+0 48.87501E+2 00E+0 00E+0 SrSiO3(s) -SrSiO3 = +1.000Sr+2 -2.000H+ +1.000H4(SiO4) -1.000H2O - log_k +13.16 - delta_h -80.278 #kJ/mol +SrSiO3 = Sr+2 - 2 H+ + H4(SiO4) - H2O + log_k 13.16 + delta_h -80.278 #kJ/mol # Enthalpy of formation: -1645.986 kJ/mol 74NAU/RYZ - -analytic -90.41019E-2 00.00000E+0 41.93212E+2 00.00000E+0 00.00000E+0 + -analytic -90.41019E-2 00E+0 41.93212E+2 00E+0 00E+0 SrZrSi2O7(cr) -SrZrSi2O7 = +1.000Sr+2 -6.000H+ +2.000H4(SiO4) +1.000Zr+4 -1.000H2O - log_k +5.20 - delta_h -155.158 #kJ/mol +SrZrSi2O7 = Sr+2 - 6 H+ + 2 H4(SiO4) + Zr+4 - H2O + log_k 5.2 + delta_h -155.158 #kJ/mol # Enthalpy of formation: -3640.800 kJ/mol 05BRO/CUR - -analytic -21.98251E+0 00.00000E+0 81.04467E+2 00.00000E+0 00.00000E+0 + -analytic -21.98251E+0 00E+0 81.04467E+2 00E+0 00E+0 Stellerite -Ca2Al4Si14O36:14H2O = +2.000Ca+2 +4.000Al+3 -16.000H+ +14.000H4(SiO4) -6.000H2O - log_k +6.92 - delta_h -325.096 #kJ/mol +Ca2Al4Si14O36:14H2O = 2 Ca+2 + 4 Al+3 - 16 H+ + 14 H4(SiO4) - 6 H2O + log_k 6.92 + delta_h -325.096 #kJ/mol # Enthalpy of formation: -21656.240kJ/mol 01FRI/NEU - -analytic -50.03437E+0 00.00000E+0 16.98095E+3 00.00000E+0 00.00000E+0 - -Vm 666.500 + -analytic -50.03437E+0 00E+0 16.98095E+3 00E+0 00E+0 + -Vm 666.5 Stibnite -Sb2S3 = +3.000H+ +3.000HS- +2.000Sb(OH)3 -6.000H2O - log_k -56.03 - delta_h +269.694 #kJ/mol +Sb2S3 = 3 H+ + 3 HS- + 2 Sb(OH)3 - 6 H2O + log_k -56.03 + delta_h 269.694 #kJ/mol # Enthalpy of formation: -151.400 kJ/mol 95ROB/HEM - -analytic -87.81639E-1 00.00000E+0 -14.08710E+3 00.00000E+0 00.00000E+0 + -analytic -87.81639E-1 00E+0 -14.0871E+3 00E+0 00E+0 Stilbite -NaCa2(Al5Si13)O36:16H2O = +2.000Ca+2 +1.000Na+ +5.000Al+3 -20.000H+ +13.000H4(SiO4) - log_k +22.97 - delta_h -434.152 #kJ/mol +NaCa2(Al5Si13)O36:16H2O = 2 Ca+2 + Na+ + 5 Al+3 - 20 H+ + 13 H4(SiO4) + log_k 22.97 + delta_h -434.152 #kJ/mol # Enthalpy of formation: -22579.710kJ/mol 01FRI/NEU - -analytic -53.09017E+0 00.00000E+0 22.67734E+3 00.00000E+0 00.00000E+0 - -Vm 664.700 + -analytic -53.09017E+0 00E+0 22.67734E+3 00E+0 00E+0 + -Vm 664.7 Stilleite -ZnSe = +1.000Zn+2 -1.000H+ +1.000HSe- - log_k -12.05 - delta_h +36.910 #kJ/mol +ZnSe = Zn+2 - H+ + HSe- + log_k -12.05 + delta_h 36.91 #kJ/mol # Enthalpy of formation: -176.000 kJ/mol 05OLI/NOL - -analytic -55.83646E-1 00.00000E+0 -19.27944E+2 00.00000E+0 00.00000E+0 + -analytic -55.83646E-1 00E+0 -19.27944E+2 00E+0 00E+0 Stratlingite -Ca2Al2SiO3(OH)8:4H2O = +2.000Ca+2 +2.000Al+3 -10.000H+ +1.000H4(SiO4) +11.000H2O - log_k +49.66 #10BLA/BOU2 - delta_h -397.949 #kJ/mol -# Enthalpy of formation: -6370.171 kJ/mol - -analytic -20.05767E+0 00.00000E+0 20.78632E+3 00.00000E+0 00.00000E+0 - -Vm 215.630 +Ca2Al2SiO3(OH)8:4H2O = 2 Ca+2 + 2 Al+3 - 10 H+ + H4(SiO4) + 11 H2O + log_k 49.66 #10BLA/BOU2 + delta_h -397.949 #kJ/mol +# Enthalpy of formation: -6370.171 kJ/mol + -analytic -20.05767E+0 00E+0 20.78632E+3 00E+0 00E+0 + -Vm 215.63 Strontianite -Sr(CO3) = +1.000Sr+2 +1.000CO3-2 - log_k -9.27 #84BUS/PLU - delta_h -0.366 #kJ/mol -# Enthalpy of formation: -1225.765 kJ/mol - -analytic -93.34120E-1 00.00000E+0 19.11751E+0 00.00000E+0 00.00000E+0 +Sr(CO3) = Sr+2 + CO3-2 + log_k -9.27 #84BUS/PLU + delta_h -0.366 #kJ/mol +# Enthalpy of formation: -1225.765 kJ/mol + -analytic -93.3412E-1 00E+0 19.11751E+0 00E+0 00E+0 Sudoite -Mg2Al4Si3O10(OH)8 = +2.000Mg+2 +4.000Al+3 -16.000H+ +3.000H4(SiO4) +6.000H2O - log_k +37.93 - delta_h -530.892 #kJ/mol +Mg2Al4Si3O10(OH)8 = 2 Mg+2 + 4 Al+3 - 16 H+ + 3 H4(SiO4) + 6 H2O + log_k 37.93 + delta_h -530.892 #kJ/mol # Enthalpy of formation: -8655.270 kJ/mol 05VID/PAR - -analytic -55.07829E+0 00.00000E+0 27.73042E+3 00.00000E+0 00.00000E+0 - -Vm 205.100 + -analytic -55.07829E+0 00E+0 27.73042E+3 00E+0 00E+0 + -Vm 205.1 Sylvite -KCl = +1.000K+ +1.000Cl- - log_k +0.87 - delta_h +17.460 #kJ/mol +KCl = K+ + Cl- + log_k 0.87 + delta_h 17.46 #kJ/mol # Enthalpy of formation: -436.680 kJ/mol 98CHA - -analytic 39.28861E-1 00.00000E+0 -91.19993E+1 00.00000E+0 00.00000E+0 - -Vm 37.520 + -analytic 39.28861E-1 00E+0 -91.19993E+1 00E+0 00E+0 + -Vm 37.52 Syngenite -K2Ca(SO4)2:6H2O = +1.000Ca+2 +2.000K+ +2.000SO4-2 +6.000H2O - log_k -7.45 #84HAR/MOL - -analytic -74.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +K2Ca(SO4)2:6H2O = Ca+2 + 2 K+ + 2 SO4-2 + 6 H2O + log_k -7.45 #84HAR/MOL + -analytic -74.5E-1 00E+0 00E+0 00E+0 00E+0 Tachyhydrite -Mg2CaCl6:12H2O = +1.000Ca+2 +2.000Mg+2 +6.000Cl- +12.000H2O - log_k +17.38 #84HAR/MOL - -analytic 17.38000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Mg2CaCl6:12H2O = Ca+2 + 2 Mg+2 + 6 Cl- + 12 H2O + log_k 17.38 #84HAR/MOL + -analytic 17.38E+0 00E+0 00E+0 00E+0 00E+0 Talc -Mg3Si4O10(OH)2 = +3.000Mg+2 -6.000H+ +4.000H4(SiO4) -4.000H2O - log_k +24.92 - delta_h -210.356 #kJ/mol +Mg3Si4O10(OH)2 = 3 Mg+2 - 6 H+ + 4 H4(SiO4) - 4 H2O + log_k 24.92 + delta_h -210.356 #kJ/mol # Enthalpy of formation: -5892.100 kJ/mol 01KAH/MAR - -analytic -11.93279E+0 00.00000E+0 10.98766E+3 00.00000E+0 00.00000E+0 - -Vm 136.200 + -analytic -11.93279E+0 00E+0 10.98766E+3 00E+0 00E+0 + -Vm 136.2 Tc(cr) -Tc = +1.000TcO(OH)2 +4.000H+ +4.000e- -3.000H2O - log_k -24.34 - delta_h +108.247 #kJ/mol +Tc = TcO(OH)2 + 4 H+ + 4 e- - 3 H2O + log_k -24.34 + delta_h 108.247 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 99RAR/RAN - -analytic -53.75940E-1 00.00000E+0 -56.54135E+2 00.00000E+0 00.00000E+0 + -analytic -53.7594E-1 00E+0 -56.54135E+2 00E+0 00E+0 Tc2O7(cr) -Tc2O7 = +2.000H+ +2.000TcO4- -1.000H2O - log_k +15.31 - delta_h -46.470 #kJ/mol +Tc2O7 = 2 H+ + 2 TcO4- - H2O + log_k 15.31 + delta_h -46.47 #kJ/mol # Enthalpy of formation: -1126.500 kJ/mol 99RAR/RAN - -analytic 71.68805E-1 00.00000E+0 24.27297E+2 00.00000E+0 00.00000E+0 + -analytic 71.68805E-1 00E+0 24.27297E+2 00E+0 00E+0 Tc2O7:H2O(s) -Tc2O7:H2O = +2.000H+ +2.000TcO4- - log_k +14.11 - delta_h -44.654 #kJ/mol +Tc2O7:H2O = 2 H+ + 2 TcO4- + log_k 14.11 + delta_h -44.654 #kJ/mol # Enthalpy of formation: -1414.146 kJ/mol 99RAR/RAN - -analytic 62.86955E-1 00.00000E+0 23.32441E+2 00.00000E+0 00.00000E+0 + -analytic 62.86955E-1 00E+0 23.32441E+2 00E+0 00E+0 TcO2(aged) -TcO2 = +1.000TcO(OH)2 -1.000H2O - log_k -8.72 #20GRE/GAO - -analytic -87.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +TcO2 = TcO(OH)2 - H2O + log_k -8.72 #20GRE/GAO + -analytic -87.2E-1 00E+0 00E+0 00E+0 00E+0 TcO2(cr) -TcO2 = +1.000TcO(OH)2 -1.000H2O - log_k -9.15 #97NGU/LAN - delta_h -5.613 #kJ/mol +TcO2 = TcO(OH)2 - H2O + log_k -9.15 #97NGU/LAN + delta_h -5.613 #kJ/mol # Enthalpy of formation: -457.800 kJ/mol 20GRE/GAO - -analytic -10.13336E+0 00.00000E+0 29.31874E+1 00.00000E+0 00.00000E+0 + -analytic -10.13336E+0 00E+0 29.31874E+1 00E+0 00E+0 TcO2(fresh) -TcO2 = +1.000TcO(OH)2 -1.000H2O - log_k -7.66 #20GRE/GAO - -analytic -76.60000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +TcO2 = TcO(OH)2 - H2O + log_k -7.66 #20GRE/GAO + -analytic -76.6E-1 00E+0 00E+0 00E+0 00E+0 Th(cr) -Th = +1.000Th+4 +4.000e- - log_k +123.47 - delta_h -768.700 #kJ/mol +Th = Th+4 + 4 e- + log_k 123.47 + delta_h -768.7 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 09RAN/FUG - -analytic -11.20046E+0 00.00000E+0 40.15200E+3 00.00000E+0 00.00000E+0 + -analytic -11.20046E+0 00E+0 40.152E+3 00E+0 00E+0 Th(HPO4)2(s) -Th(HPO4)2 = +1.000Th+4 -2.000H+ +2.000H2(PO4)- - log_k -16.11 #Estimated from An(IV) correlations - -analytic -16.11000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Th(HPO4)2 = Th+4 - 2 H+ + 2 H2(PO4)- + log_k -16.11 #Estimated from An(IV) correlations + -analytic -16.11E+0 00E+0 00E+0 00E+0 00E+0 Th(SO4)2:9H2O(cr) -Th(SO4)2:9H2O = +1.000Th+4 +2.000SO4-2 +9.000H2O - log_k -11.25 #09RAN/FUG - -analytic -11.25000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Th(SO4)2:9H2O = Th+4 + 2 SO4-2 + 9 H2O + log_k -11.25 #09RAN/FUG + -analytic -11.25E+0 00E+0 00E+0 00E+0 00E+0 Thenardite -Na2SO4 = +2.000Na+ +1.000SO4-2 - log_k -0.36 - delta_h -2.200 #kJ/mol +Na2SO4 = 2 Na+ + SO4-2 + log_k -0.36 + delta_h -2.2 #kJ/mol # Enthalpy of formation: -1387.820 kJ/mol 98CHA - -analytic -74.54235E-2 00.00000E+0 11.49140E+1 00.00000E+0 00.00000E+0 - -Vm 53.330 + -analytic -74.54235E-2 00E+0 11.4914E+1 00E+0 00E+0 + -Vm 53.33 Thermonatrite -Na2(CO3):H2O = +2.000Na+ +1.000CO3-2 +1.000H2O - log_k +0.48 #84HAR/MOL - delta_h -12.040 #kJ/mol +Na2(CO3):H2O = 2 Na+ + CO3-2 + H2O + log_k 0.48 #84HAR/MOL + delta_h -12.04 #kJ/mol # Enthalpy of formation: -1429.700 kJ/mol 82VAN - -analytic -16.29317E-1 00.00000E+0 62.88930E+1 00.00000E+0 00.00000E+0 + -analytic -16.29317E-1 00E+0 62.8893E+1 00E+0 00E+0 ThF4(cr) -ThF4 = +1.000Th+4 +4.000F- - log_k -30.63 - delta_h +74.611 #kJ/mol -# Enthalpy of formation: -2184.710 kJ/mol - -analytic -17.55871E+0 00.00000E+0 -38.97204E+2 00.00000E+0 00.00000E+0 +ThF4 = Th+4 + 4 F- + log_k -30.63 + delta_h 74.611 #kJ/mol +# Enthalpy of formation: -2184.710 kJ/mol + -analytic -17.55871E+0 00E+0 -38.97204E+2 00E+0 00E+0 ThO2(aged) -ThO2 = +1.000Th+4 -4.000H+ +2.000H2O - log_k +8.50 #09RAN/FUG - -analytic 85.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +ThO2 = Th+4 - 4 H+ + 2 H2O + log_k 8.5 #09RAN/FUG + -analytic 85E-1 00E+0 00E+0 00E+0 00E+0 ThO2(coll) -ThO2 = +1.000Th+4 -4.000H+ +2.000H2O - log_k +11.10 #09RAN/FUG - -analytic 11.10000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +ThO2 = Th+4 - 4 H+ + 2 H2O + log_k 11.1 #09RAN/FUG + -analytic 11.1E+0 00E+0 00E+0 00E+0 00E+0 ThO2(cr) -ThO2 = +1.000Th+4 -4.000H+ +2.000H2O - log_k +1.77 - delta_h -113.960 #kJ/mol +ThO2 = Th+4 - 4 H+ + 2 H2O + log_k 1.77 + delta_h -113.96 #kJ/mol # Enthalpy of formation: -1226.400 kJ/mol 09RAN/FUG - -analytic -18.19493E+0 00.00000E+0 59.52545E+2 00.00000E+0 00.00000E+0 + -analytic -18.19493E+0 00E+0 59.52545E+2 00E+0 00E+0 ThO2(fresh) -ThO2 = +1.000Th+4 -4.000H+ +2.000H2O - log_k +9.30 #09RAN/FUG - -analytic 93.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +ThO2 = Th+4 - 4 H+ + 2 H2O + log_k 9.3 #09RAN/FUG + -analytic 93E-1 00E+0 00E+0 00E+0 00E+0 ThO2(mcr) -ThO2 = +1.000Th+4 -4.000H+ +2.000H2O - log_k +3.00 #09RAN/FUG - -analytic 30.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +ThO2 = Th+4 - 4 H+ + 2 H2O + log_k 3 #09RAN/FUG + -analytic 30E-1 00E+0 00E+0 00E+0 00E+0 Tobermorite-11A -Ca5Si6O16.5(OH):5H2O = +5.000Ca+2 -10.000H+ +6.000H4(SiO4) -1.500H2O - log_k +65.58 #10BLA/BOU1 - delta_h -372.499 #kJ/mol +Ca5Si6O16.5(OH):5H2O = 5 Ca+2 - 10 H+ + 6 H4(SiO4) - 1.5 H2O + log_k 65.58 #10BLA/BOU1 + delta_h -372.499 #kJ/mol # Enthalpy of formation: -10680.920kJ/mol 00ZUE/FEH - -analytic 32.09765E-2 00.00000E+0 19.45698E+3 00.00000E+0 00.00000E+0 - -Vm 286.190 + -analytic 32.09765E-2 00E+0 19.45698E+3 00E+0 00E+0 + -Vm 286.19 Tobermorite-14A -Ca5Si6O16.5(OH):10H2O = +5.000Ca+2 -10.000H+ +6.000H4(SiO4) +3.500H2O - log_k +62.94 #10BLA/BOU1 - delta_h -307.419 #kJ/mol +Ca5Si6O16.5(OH):10H2O = 5 Ca+2 - 10 H+ + 6 H4(SiO4) + 3.5 H2O + log_k 62.94 #10BLA/BOU1 + delta_h -307.419 #kJ/mol # Enthalpy of formation: -12175.150kJ/mol 10BLA/BOU1 - -analytic 90.82503E-1 00.00000E+0 16.05761E+3 00.00000E+0 00.00000E+0 - -Vm 351.300 + -analytic 90.82503E-1 00E+0 16.05761E+3 00E+0 00E+0 + -Vm 351.3 Trevorite -Fe2NiO4 = +2.000Fe+3 +1.000Ni+2 -8.000H+ +4.000H2O - log_k +9.43 - delta_h -217.410 #kJ/mol -# Enthalpy of formation: -1081.032 kJ/mol - -analytic -28.65860E+0 00.00000E+0 11.35612E+3 00.00000E+0 00.00000E+0 +Fe2NiO4 = 2 Fe+3 + Ni+2 - 8 H+ + 4 H2O + log_k 9.43 + delta_h -217.41 #kJ/mol +# Enthalpy of formation: -1081.032 kJ/mol + -analytic -28.6586E+0 00E+0 11.35612E+3 00E+0 00E+0 Troilite -FeS = +1.000Fe+2 -1.000H+ +1.000HS- - log_k -3.99 - delta_h -5.685 #kJ/mol +FeS = Fe+2 - H+ + HS- + log_k -3.99 + delta_h -5.685 #kJ/mol # Enthalpy of formation: -100.910 kJ/mol 20LEM/PAL - -analytic -49.85969E-1 00.00000E+0 29.69482E+1 00.00000E+0 00.00000E+0 + -analytic -49.85969E-1 00E+0 29.69482E+1 00E+0 00E+0 Trona -Na3H(CO3)2:2H2O = +3.000Na+ +1.000H+ +2.000CO3-2 +2.000H2O - log_k -11.38 #84HAR/MOL - delta_h +38.960 #kJ/mol +Na3H(CO3)2:2H2O = 3 Na+ + H+ + 2 CO3-2 + 2 H2O + log_k -11.38 #84HAR/MOL + delta_h 38.96 #kJ/mol # Enthalpy of formation: -2682.100 kJ/mol 82VAN - -analytic -45.54501E-1 00.00000E+0 -20.35023E+2 00.00000E+0 00.00000E+0 + -analytic -45.54501E-1 00E+0 -20.35023E+2 00E+0 00E+0 Truscottite -Ca7Si12O29(OH)4:H2O = +7.000Ca+2 -14.000H+ +12.000H4(SiO4) -14.000H2O - log_k +77.08 - delta_h -479.088 #kJ/mol +Ca7Si12O29(OH)4:H2O = 7 Ca+2 - 14 H+ + 12 H4(SiO4) - 14 H2O + log_k 77.08 + delta_h -479.088 #kJ/mol # Enthalpy of formation: -16854.620kJ/mol 10BLA/BOU1 - -analytic -68.52615E-1 00.00000E+0 25.02451E+3 00.00000E+0 00.00000E+0 - -Vm 478.730 + -analytic -68.52615E-1 00E+0 25.02451E+3 00E+0 00E+0 + -Vm 478.73 U(cr) -U = +1.000U+4 +4.000e- - log_k +92.83 - delta_h -591.200 #kJ/mol +U = U+4 + 4 e- + log_k 92.83 + delta_h -591.2 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 92GRE/FUG - -analytic -10.74379E+0 00.00000E+0 30.88053E+3 00.00000E+0 00.00000E+0 + -analytic -10.74379E+0 00E+0 30.88053E+3 00E+0 00E+0 U(HPO4)2:4H2O(s) -U(HPO4)2:4H2O = +1.000U+4 -2.000H+ +2.000H2(PO4)- +4.000H2O - log_k -16.07 #92GRE/FUG - delta_h -4.890 #kJ/mol -# Enthalpy of formation: -4334.828 kJ/mol - -analytic -16.92669E+0 00.00000E+0 25.54225E+1 00.00000E+0 00.00000E+0 +U(HPO4)2:4H2O = U+4 - 2 H+ + 2 H2(PO4)- + 4 H2O + log_k -16.07 #92GRE/FUG + delta_h -4.89 #kJ/mol +# Enthalpy of formation: -4334.828 kJ/mol + -analytic -16.92669E+0 00E+0 25.54225E+1 00E+0 00E+0 U(OH)2(SO4)(cr) -U(OH)2(SO4) = +1.000U+4 -2.000H+ +1.000SO4-2 +2.000H2O - log_k -3.17 #92GRE/FUG - -analytic -31.70000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +U(OH)2(SO4) = U+4 - 2 H+ + SO4-2 + 2 H2O + log_k -3.17 #92GRE/FUG + -analytic -31.7E-1 00E+0 00E+0 00E+0 00E+0 U(SO4)2(cr) -U(SO4)2 = +1.000U+4 +2.000SO4-2 - log_k -11.68 - delta_h -100.280 #kJ/mol +U(SO4)2 = U+4 + 2 SO4-2 + log_k -11.68 + delta_h -100.28 #kJ/mol # Enthalpy of formation: -2309.600 kJ/mol 92GRE/FUG - -analytic -29.24830E+0 00.00000E+0 52.37989E+2 00.00000E+0 00.00000E+0 + -analytic -29.2483E+0 00E+0 52.37989E+2 00E+0 00E+0 U(SO4)2:4H2O(cr) -U(SO4)2:4H2O = +1.000U+4 +2.000SO4-2 +4.000H2O - log_k -11.71 - delta_h -70.000 #kJ/mol +U(SO4)2:4H2O = U+4 + 2 SO4-2 + 4 H2O + log_k -11.71 + delta_h -70 #kJ/mol # Enthalpy of formation: -3483.200 kJ/mol 92GRE/FUG - -analytic -23.97347E+0 00.00000E+0 36.56355E+2 00.00000E+0 00.00000E+0 + -analytic -23.97347E+0 00E+0 36.56355E+2 00E+0 00E+0 U(SO4)2:8H2O(s) -U(SO4)2:8H2O = +1.000U+4 +2.000SO4-2 +8.000H2O - log_k -12.77 - delta_h -33.920 #kJ/mol +U(SO4)2:8H2O = U+4 + 2 SO4-2 + 8 H2O + log_k -12.77 + delta_h -33.92 #kJ/mol # Enthalpy of formation: -4662.600 kJ/mol 92GRE/FUG - -analytic -18.71253E+0 00.00000E+0 17.71765E+2 00.00000E+0 00.00000E+0 + -analytic -18.71253E+0 00E+0 17.71765E+2 00E+0 00E+0 U2O7Ba(cr) -U2O7Ba = +1.000Ba+2 +2.000UO2+2 -6.000H+ +3.000H2O - log_k +21.39 - delta_h -193.090 #kJ/mol +U2O7Ba = Ba+2 + 2 UO2+2 - 6 H+ + 3 H2O + log_k 21.39 + delta_h -193.09 #kJ/mol # Enthalpy of formation: -3237.200 kJ/mol 92GRE/FUG - -analytic -12.43792E+0 00.00000E+0 10.08579E+3 00.00000E+0 00.00000E+0 + -analytic -12.43792E+0 00E+0 10.08579E+3 00E+0 00E+0 U2O7Ba2(cr) -U2O7Ba2 = +2.000Ba+2 +2.000UO2+ -6.000H+ +3.000H2O - log_k +35.35 - delta_h -237.344 #kJ/mol +U2O7Ba2 = 2 Ba+2 + 2 UO2+ - 6 H+ + 3 H2O + log_k 35.35 + delta_h -237.344 #kJ/mol # Enthalpy of formation: -3740.000 kJ/mol 92GRE/FUG - -analytic -62.30884E-1 00.00000E+0 12.39734E+3 00.00000E+0 00.00000E+0 + -analytic -62.30884E-1 00E+0 12.39734E+3 00E+0 00E+0 U2O7Na2(s) -U2O7Na2 = +2.000Na+ +2.000UO2+2 -6.000H+ +3.000H2O - log_k +22.60 - delta_h -172.370 #kJ/mol +U2O7Na2 = 2 Na+ + 2 UO2+2 - 6 H+ + 3 H2O + log_k 22.6 + delta_h -172.37 #kJ/mol # Enthalpy of formation: -3203.800 kJ/mol 92GRE/FUG - -analytic -75.97928E-1 00.00000E+0 90.03512E+2 00.00000E+0 00.00000E+0 + -analytic -75.97928E-1 00E+0 90.03512E+2 00E+0 00E+0 U3As4(s) -U3As4 = +3.000UO2+2 +44.000H+ +38.000e- +4.000AsO4-3 -22.000H2O - log_k -86.09 - delta_h +398.700 #kJ/mol +U3As4 = 3 UO2+2 + 44 H+ + 38 e- + 4 AsO4-3 - 22 H2O + log_k -86.09 + delta_h 398.7 #kJ/mol # Enthalpy of formation: -720.000 kJ/mol 03GUI/FAN - -analytic -16.24076E+0 00.00000E+0 -20.82555E+3 00.00000E+0 00.00000E+0 + -analytic -16.24076E+0 00E+0 -20.82555E+3 00E+0 00E+0 UAs(s) -UAs = +1.000UO2+2 +12.000H+ +11.000e- +1.000AsO4-3 -6.000H2O - log_k -10.48 - delta_h +42.140 #kJ/mol +UAs = UO2+2 + 12 H+ + 11 e- + AsO4-3 - 6 H2O + log_k -10.48 + delta_h 42.14 #kJ/mol # Enthalpy of formation: -234.300 kJ/mol 03GUI/FAN - -analytic -30.97389E-1 00.00000E+0 -22.01125E+2 00.00000E+0 00.00000E+0 + -analytic -30.97389E-1 00E+0 -22.01125E+2 00E+0 00E+0 UAs2(s) -UAs2 = +1.000UO2+2 +20.000H+ +16.000e- +2.000AsO4-3 -10.000H2O - log_k -65.68 - delta_h +315.020 #kJ/mol +UAs2 = UO2+2 + 20 H+ + 16 e- + 2 AsO4-3 - 10 H2O + log_k -65.68 + delta_h 315.02 #kJ/mol # Enthalpy of formation: -252.000 kJ/mol 03GUI/FAN - -analytic -10.49087E+0 00.00000E+0 -16.45464E+3 00.00000E+0 00.00000E+0 + -analytic -10.49087E+0 00E+0 -16.45464E+3 00E+0 00E+0 UO2(CO3)3Mg2:18H2O(s) -UO2(CO3)3Mg2:18H2O = +2.000Mg+2 +1.000UO2+2 +3.000CO3-2 +18.000H2O - log_k -29.01 - delta_h +40.570 #kJ/mol +UO2(CO3)3Mg2:18H2O = 2 Mg+2 + UO2+2 + 3 CO3-2 + 18 H2O + log_k -29.01 + delta_h 40.57 #kJ/mol # Enthalpy of formation: -9164.200 kJ/mol 99CHE/EWI - -analytic -21.90244E+0 00.00000E+0 -21.19119E+2 00.00000E+0 00.00000E+0 + -analytic -21.90244E+0 00E+0 -21.19119E+2 00E+0 00E+0 UO2(CO3)3Na4(cr) -UO2(CO3)3Na4 = +4.000Na+ +1.000UO2+2 +3.000CO3-2 - log_k -27.18 #03GUI/FAN - -analytic -27.18000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +UO2(CO3)3Na4 = 4 Na+ + UO2+2 + 3 CO3-2 + log_k -27.18 #03GUI/FAN + -analytic -27.18E+0 00E+0 00E+0 00E+0 00E+0 UO2(HPO4):4H2O(cr) -UO2(HPO4):4H2O = +1.000UO2+2 -1.000H+ +1.000H2(PO4)- +4.000H2O - log_k -4.64 #92GRE/FUG - delta_h +5.048 #kJ/mol -# Enthalpy of formation: -3469.967 kJ/mol - -analytic -37.55628E-1 00.00000E+0 -26.36754E+1 00.00000E+0 00.00000E+0 +UO2(HPO4):4H2O = UO2+2 - H+ + H2(PO4)- + 4 H2O + log_k -4.64 #92GRE/FUG + delta_h 5.048 #kJ/mol +# Enthalpy of formation: -3469.967 kJ/mol + -analytic -37.55628E-1 00E+0 -26.36754E+1 00E+0 00E+0 UO2(OH)2(beta) -UO2(OH)2 = +1.000UO2+2 -2.000H+ +2.000H2O - log_k +4.93 - delta_h -56.860 #kJ/mol +UO2(OH)2 = UO2+2 - 2 H+ + 2 H2O + log_k 4.93 + delta_h -56.86 #kJ/mol # Enthalpy of formation: -1533.800 kJ/mol 92GRE/FUG - -analytic -50.31444E-1 00.00000E+0 29.70005E+2 00.00000E+0 00.00000E+0 + -analytic -50.31444E-1 00E+0 29.70005E+2 00E+0 00E+0 UO2(Ox):3H2O(s) -UO2(Ox):3H2O = +1.000UO2+2 +1.000Ox-2 +3.000H2O - log_k -8.93 #05HUM/AND - delta_h -5.160 #kJ/mol 05HUM/AND -# Enthalpy of formation: -2701.990 kJ/mol - -analytic -98.33993E-1 00.00000E+0 26.95256E+1 00.00000E+0 00.00000E+0 +UO2(Ox):3H2O = UO2+2 + Ox-2 + 3 H2O + log_k -8.93 #05HUM/AND + delta_h -5.16 #kJ/mol 05HUM/AND +# Enthalpy of formation: -2701.990 kJ/mol + -analytic -98.33993E-1 00E+0 26.95256E+1 00E+0 00E+0 UO2(SO3)(cr) -UO2(SO3) = +1.000UO2+2 +1.000SO3-2 - log_k -16.05 - delta_h +10.940 #kJ/mol +UO2(SO3) = UO2+2 + SO3-2 + log_k -16.05 + delta_h 10.94 #kJ/mol # Enthalpy of formation: -1661.000 kJ/mol 92GRE/FUG - -analytic -14.13339E+0 00.00000E+0 -57.14360E+1 00.00000E+0 00.00000E+0 + -analytic -14.13339E+0 00E+0 -57.1436E+1 00E+0 00E+0 UO2(SO4)(cr) -UO2(SO4) = +1.000UO2+2 +1.000SO4-2 - log_k +1.89 - delta_h -83.200 #kJ/mol +UO2(SO4) = UO2+2 + SO4-2 + log_k 1.89 + delta_h -83.2 #kJ/mol # Enthalpy of formation: -1845.140 kJ/mol 92GRE/FUG - -analytic -12.68601E+0 00.00000E+0 43.45839E+2 00.00000E+0 00.00000E+0 + -analytic -12.68601E+0 00E+0 43.45839E+2 00E+0 00E+0 UO2(SO4):2.5H2O(cr) -UO2(SO4):2.5H2O = +1.000UO2+2 +1.000SO4-2 +2.500H2O - log_k -1.59 - delta_h -35.915 #kJ/mol +UO2(SO4):2.5H2O = UO2+2 + SO4-2 + 2.5 H2O + log_k -1.59 + delta_h -35.915 #kJ/mol # Enthalpy of formation: -2607.000 kJ/mol 92GRE/FUG - -analytic -78.82038E-1 00.00000E+0 18.75971E+2 00.00000E+0 00.00000E+0 + -analytic -78.82038E-1 00E+0 18.75971E+2 00E+0 00E+0 UO2(SO4):3.5H2O(cr) -UO2(SO4):3.5H2O = +1.000UO2+2 +1.000SO4-2 +3.500H2O - log_k -1.59 - delta_h -27.145 #kJ/mol +UO2(SO4):3.5H2O = UO2+2 + SO4-2 + 3.5 H2O + log_k -1.59 + delta_h -27.145 #kJ/mol # Enthalpy of formation: -2901.600 kJ/mol 92GRE/FUG - -analytic -63.45600E-1 00.00000E+0 14.17882E+2 00.00000E+0 00.00000E+0 + -analytic -63.456E-1 00E+0 14.17882E+2 00E+0 00E+0 UO2(SO4):3H2O(cr) -UO2(SO4):3H2O = +1.000UO2+2 +1.000SO4-2 +3.000H2O - log_k -1.50 - delta_h -34.330 #kJ/mol +UO2(SO4):3H2O = UO2+2 + SO4-2 + 3 H2O + log_k -1.5 + delta_h -34.33 #kJ/mol # Enthalpy of formation: -2751.500 kJ/mol 92GRE/FUG - -analytic -75.14358E-1 00.00000E+0 17.93181E+2 00.00000E+0 00.00000E+0 + -analytic -75.14358E-1 00E+0 17.93181E+2 00E+0 00E+0 UO2.25(s) -UO2.25 = +1.000U+4 -4.500H+ -0.500e- +2.250H2O - log_k -1.00 - delta_h -106.318 #kJ/mol +UO2.25 = U+4 - 4.5 H+ - 0.5 e- + 2.25 H2O + log_k -1 + delta_h -106.318 #kJ/mol # Enthalpy of formation: -1128.000 kJ/mol 92GRE/FUG - -analytic -19.62611E+0 00.00000E+0 55.53376E+2 00.00000E+0 00.00000E+0 + -analytic -19.62611E+0 00E+0 55.53376E+2 00E+0 00E+0 UO2.34(beta) -UO2.34 = +1.000U+4 -4.680H+ -0.680e- +2.340H2O - log_k +0.95 - delta_h -119.042 #kJ/mol +UO2.34 = U+4 - 4.68 H+ - 0.68 e- + 2.34 H2O + log_k 0.95 + delta_h -119.042 #kJ/mol # Enthalpy of formation: -1141.000 kJ/mol 03GUI/FAN - -analytic -19.90526E+0 00.00000E+0 62.17997E+2 00.00000E+0 00.00000E+0 + -analytic -19.90526E+0 00E+0 62.17997E+2 00E+0 00E+0 UO2.67(s) -UO2.67 = +1.000U+4 -5.340H+ -1.340e- +2.670H2O - log_k +7.00 - delta_h -162.766 #kJ/mol +UO2.67 = U+4 - 5.34 H+ - 1.34 e- + 2.67 H2O + log_k 7 + delta_h -162.766 #kJ/mol # Enthalpy of formation: -1191.600 kJ/mol 92GRE/FUG - -analytic -21.51538E+0 00.00000E+0 85.01860E+2 00.00000E+0 00.00000E+0 + -analytic -21.51538E+0 00E+0 85.0186E+2 00E+0 00E+0 UO2:2H2O(am) -UO2:2H2O = +1.000U+4 -4.000H+ +4.000H2O - log_k +1.50 #20GRE/GAO - -analytic 15.00000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +UO2:2H2O = U+4 - 4 H+ + 4 H2O + log_k 1.5 #20GRE/GAO + -analytic 15E-1 00E+0 00E+0 00E+0 00E+0 UO3(alfa) -UO3 = +1.000UO2+2 -2.000H+ +1.000H2O - log_k +9.52 - delta_h -92.420 #kJ/mol +UO3 = UO2+2 - 2 H+ + H2O + log_k 9.52 + delta_h -92.42 #kJ/mol # Enthalpy of formation: -1212.410 kJ/mol 03GUI/FAN - -analytic -66.71289E-1 00.00000E+0 48.27433E+2 00.00000E+0 00.00000E+0 + -analytic -66.71289E-1 00E+0 48.27433E+2 00E+0 00E+0 UO3(beta) -UO3 = +1.000UO2+2 -2.000H+ +1.000H2O - log_k +8.30 - delta_h -84.530 #kJ/mol +UO3 = UO2+2 - 2 H+ + H2O + log_k 8.3 + delta_h -84.53 #kJ/mol # Enthalpy of formation: -1220.300 kJ/mol 92GRE/FUG - -analytic -65.09020E-1 00.00000E+0 44.15309E+2 00.00000E+0 00.00000E+0 + -analytic -65.0902E-1 00E+0 44.15309E+2 00E+0 00E+0 UO3:0.9H2O(s) -UO3:0.9H2O = +1.000UO2+2 -2.000H+ +1.900H2O - log_k +5.00 - delta_h -55.777 #kJ/mol +UO3:0.9H2O = UO2+2 - 2 H+ + 1.9 H2O + log_k 5 + delta_h -55.777 #kJ/mol # Enthalpy of formation: -1506.300 kJ/mol 92GRE/FUG - -analytic -47.71711E-1 00.00000E+0 29.13436E+2 00.00000E+0 00.00000E+0 + -analytic -47.71711E-1 00E+0 29.13436E+2 00E+0 00E+0 UO3Na(s) -UO3Na = +1.000Na+ +1.000UO2+ -2.000H+ +1.000H2O - log_k +8.34 - delta_h -56.397 #kJ/mol +UO3Na = Na+ + UO2+ - 2 H+ + H2O + log_k 8.34 + delta_h -56.397 #kJ/mol # Enthalpy of formation: -1494.900 kJ/mol 92GRE/FUG - -analytic -15.40330E-1 00.00000E+0 29.45820E+2 00.00000E+0 00.00000E+0 + -analytic -15.4033E-1 00E+0 29.4582E+2 00E+0 00E+0 UO4Ba(s) -UO4Ba = +1.000Ba+2 +1.000UO2+2 -4.000H+ +2.000H2O - log_k +17.64 - delta_h -131.660 #kJ/mol +UO4Ba = Ba+2 + UO2+2 - 4 H+ + 2 H2O + log_k 17.64 + delta_h -131.66 #kJ/mol # Enthalpy of formation: -1993.800 kJ/mol 92GRE/FUG - -analytic -54.25842E-1 00.00000E+0 68.77081E+2 00.00000E+0 00.00000E+0 + -analytic -54.25842E-1 00E+0 68.77081E+2 00E+0 00E+0 UO4Ca(cr) -UO4Ca = +1.000Ca+2 +1.000UO2+2 -4.000H+ +2.000H2O - log_k +15.93 - delta_h -131.360 #kJ/mol +UO4Ca = Ca+2 + UO2+2 - 4 H+ + 2 H2O + log_k 15.93 + delta_h -131.36 #kJ/mol # Enthalpy of formation: -2002.300 kJ/mol 92GRE/FUG - -analytic -70.83284E-1 00.00000E+0 68.61411E+2 00.00000E+0 00.00000E+0 + -analytic -70.83284E-1 00E+0 68.61411E+2 00E+0 00E+0 UO4Li2(s) -UO4Li2 = +1.000UO2+2 -4.000H+ +2.000H2O +2.000Li+ - log_k +27.94 - delta_h -179.400 #kJ/mol +UO4Li2 = UO2+2 - 4 H+ + 2 H2O + 2 Li+ + log_k 27.94 + delta_h -179.4 #kJ/mol # Enthalpy of formation: -1968.200 kJ/mol 92GRE/FUG - -analytic -34.89531E-1 00.00000E+0 93.70715E+2 00.00000E+0 00.00000E+0 + -analytic -34.89531E-1 00E+0 93.70715E+2 00E+0 00E+0 UO4Mg(cr) -UO4Mg = +1.000Mg+2 +1.000UO2+2 -4.000H+ +2.000H2O - log_k +23.23 - delta_h -200.360 #kJ/mol +UO4Mg = Mg+2 + UO2+2 - 4 H+ + 2 H2O + log_k 23.23 + delta_h -200.36 #kJ/mol # Enthalpy of formation: -1857.300 kJ/mol 92GRE/FUG - -analytic -11.87157E+0 00.00000E+0 10.46553E+3 00.00000E+0 00.00000E+0 + -analytic -11.87157E+0 00E+0 10.46553E+3 00E+0 00E+0 UO4Na2(alfa) -UO4Na2 = +2.000Na+ +1.000UO2+2 -4.000H+ +2.000H2O - log_k +30.03 - delta_h -173.640 #kJ/mol +UO4Na2 = 2 Na+ + UO2+2 - 4 H+ + 2 H2O + log_k 30.03 + delta_h -173.64 #kJ/mol # Enthalpy of formation: -1897.700 kJ/mol 92GRE/FUG - -analytic -39.04222E-2 00.00000E+0 90.69849E+2 00.00000E+0 00.00000E+0 + -analytic -39.04222E-2 00E+0 90.69849E+2 00E+0 00E+0 UO4Na3(cr) -UO4Na3 = +3.000Na+ +1.000UO2+ -4.000H+ +2.000H2O - log_k +56.28 - delta_h -293.807 #kJ/mol +UO4Na3 = 3 Na+ + UO2+ - 4 H+ + 2 H2O + log_k 56.28 + delta_h -293.807 #kJ/mol # Enthalpy of formation: -2024.000 kJ/mol 92GRE/FUG - -analytic 48.07223E-1 00.00000E+0 15.34661E+3 00.00000E+0 00.00000E+0 + -analytic 48.07223E-1 00E+0 15.34661E+3 00E+0 00E+0 UO4Sr(alfa) -UO4Sr = +1.000Sr+2 +1.000UO2+2 -4.000H+ +2.000H2O - log_k +19.16 - delta_h -151.960 #kJ/mol +UO4Sr = Sr+2 + UO2+2 - 4 H+ + 2 H2O + log_k 19.16 + delta_h -151.96 #kJ/mol # Enthalpy of formation: -1989.600 kJ/mol 92GRE/FUG - -analytic -74.62249E-1 00.00000E+0 79.37424E+2 00.00000E+0 00.00000E+0 + -analytic -74.62249E-1 00E+0 79.37424E+2 00E+0 00E+0 UO6Ba3(cr) -UO6Ba3 = +3.000Ba+2 +1.000UO2+2 -8.000H+ +4.000H2O - log_k +92.70 - delta_h -556.320 #kJ/mol +UO6Ba3 = 3 Ba+2 + UO2+2 - 8 H+ + 4 H2O + log_k 92.7 + delta_h -556.32 #kJ/mol # Enthalpy of formation: -3210.400 kJ/mol 92GRE/FUG - -analytic -47.63080E-1 00.00000E+0 29.05862E+3 00.00000E+0 00.00000E+0 + -analytic -47.6308E-1 00E+0 29.05862E+3 00E+0 00E+0 Uraninite -UO2 = +1.000U+4 -4.000H+ +2.000H2O - log_k -4.85 - delta_h -77.860 #kJ/mol +UO2 = U+4 - 4 H+ + 2 H2O + log_k -4.85 + delta_h -77.86 #kJ/mol # Enthalpy of formation: -1085.000 kJ/mol 92GRE/FUG - -analytic -18.49049E+0 00.00000E+0 40.66911E+2 00.00000E+0 00.00000E+0 + -analytic -18.49049E+0 00E+0 40.66911E+2 00E+0 00E+0 Uranophane -Ca(UO2)2(SiO3OH)2:5H2O = +1.000Ca+2 +2.000UO2+2 -6.000H+ +2.000H4(SiO4) +5.000H2O - log_k +11.52 #20GRE/GAO - -analytic 11.52000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Ca(UO2)2(SiO3OH)2:5H2O = Ca+2 + 2 UO2+2 - 6 H+ + 2 H4(SiO4) + 5 H2O + log_k 11.52 #20GRE/GAO + -analytic 11.52E+0 00E+0 00E+0 00E+0 00E+0 US2(cr) -US2 = +1.000U+4 -2.000H+ +2.000HS- - log_k -2.43 - delta_h -103.400 #kJ/mol +US2 = U+4 - 2 H+ + 2 HS- + log_k -2.43 + delta_h -103.4 #kJ/mol # Enthalpy of formation: -520.400 kJ/mol 92GRE/FUG - -analytic -20.54490E+0 00.00000E+0 54.00958E+2 00.00000E+0 00.00000E+0 + -analytic -20.5449E+0 00E+0 54.00958E+2 00E+0 00E+0 USe2(beta) -USe2 = +1.000U+4 -2.000H+ +2.000HSe- - log_k +2.82 - delta_h -135.600 #kJ/mol +USe2 = U+4 - 2 H+ + 2 HSe- + log_k 2.82 + delta_h -135.6 #kJ/mol # Enthalpy of formation: -427.000 kJ/mol 92GRE/FUG - -analytic -20.93610E+0 00.00000E+0 70.82881E+2 00.00000E+0 00.00000E+0 + -analytic -20.9361E+0 00E+0 70.82881E+2 00E+0 00E+0 Vaesite -NiS2 = +1.000Ni+2 -2.000H+ -2.000e- +2.000HS- - log_k -17.97 - delta_h +40.388 #kJ/mol +NiS2 = Ni+2 - 2 H+ - 2 e- + 2 HS- + log_k -17.97 + delta_h 40.388 #kJ/mol # Enthalpy of formation: -128.000 kJ/mol 05GAM/BUG - -analytic -10.89433E+0 00.00000E+0 -21.09612E+2 00.00000E+0 00.00000E+0 + -analytic -10.89433E+0 00E+0 -21.09612E+2 00E+0 00E+0 Valentinite -Sb2O3 = +2.000Sb(OH)3 -3.000H2O - log_k -8.48 - delta_h +18.474 #kJ/mol +Sb2O3 = 2 Sb(OH)3 - 3 H2O + log_k -8.48 + delta_h 18.474 #kJ/mol # Enthalpy of formation: -708.770 kJ/mol 62MAH in 03ZOT/SHI - -analytic -52.43494E-1 00.00000E+0 -96.49642E+1 00.00000E+0 00.00000E+0 + -analytic -52.43494E-1 00E+0 -96.49642E+1 00E+0 00E+0 Vaterite -CaCO3 = +1.000Ca+2 +1.000CO3-2 - log_k -7.90 - delta_h -14.930 #kJ/mol +CaCO3 = Ca+2 + CO3-2 + log_k -7.9 + delta_h -14.93 #kJ/mol # Enthalpy of formation: -1203.300 kJ/mol 87GAR/PAR - -analytic -10.51562E+0 00.00000E+0 77.98482E+1 00.00000E+0 00.00000E+0 + -analytic -10.51562E+0 00E+0 77.98482E+1 00E+0 00E+0 Vermiculite_SO -(Ca0.445)(Si2.778Al1.222)(Al0.216Fe0.226Fe0.028Mg2.475)O10(OH)2 = +0.445Ca+2 +2.475Mg+2 +0.226Fe+3 +0.028Fe+2 +1.438Al+3 -10.888H+ +2.778H4(SiO4) +0.888H2O - log_k +45.88 - delta_h -464.124 #kJ/mol +(Ca0.445)(Si2.778Al1.222)(Al0.216Fe0.226Fe0.028Mg2.475)O10(OH)2 = 0.445 Ca+2 + 2.475 Mg+2 + 0.226 Fe+3 + 0.028 Fe+2 + 1.438 Al+3 - 10.888 H+ + 2.778 H4(SiO4) + 0.888 H2O + log_k 45.88 + delta_h -464.124 #kJ/mol # Enthalpy of formation: -6034.410 kJ/mol 13GAI/BLA - -analytic -35.43103E+0 00.00000E+0 24.24288E+3 00.00000E+0 00.00000E+0 - -Vm 148.360 + -analytic -35.43103E+0 00E+0 24.24288E+3 00E+0 00E+0 + -Vm 148.36 Vermiculite-Ca -Ca0.43Mg3Si3.14Al0.86O10(OH)2 = +0.430Ca+2 +3.000Mg+2 +0.860Al+3 -9.440H+ +3.140H4(SiO4) -0.560H2O - log_k +39.55 - delta_h -377.538 #kJ/mol +Ca0.43Mg3Si3.14Al0.86O10(OH)2 = 0.43 Ca+2 + 3 Mg+2 + 0.86 Al+3 - 9.44 H+ + 3.14 H4(SiO4) - 0.56 H2O + log_k 39.55 + delta_h -377.538 #kJ/mol # Enthalpy of formation: -6148.060 kJ/mol 15BLA/VIE - -analytic -26.59182E+0 00.00000E+0 19.72018E+3 00.00000E+0 00.00000E+0 - -Vm 149.800 + -analytic -26.59182E+0 00E+0 19.72018E+3 00E+0 00E+0 + -Vm 149.8 Vermiculite-K -K0.86Mg3.00Si3.14Al0.86O10(OH)2 = +3.000Mg+2 +0.860K+ +0.860Al+3 -9.440H+ +3.140H4(SiO4) -0.560H2O - log_k +37.44 - delta_h -335.539 #kJ/mol +K0.86Mg3Si3.14Al0.86O10(OH)2 = 3 Mg+2 + 0.86 K+ + 0.86 Al+3 - 9.44 H+ + 3.14 H4(SiO4) - 0.56 H2O + log_k 37.44 + delta_h -335.539 #kJ/mol # Enthalpy of formation: -6173.410 kJ/mol 15BLA/VIE - -analytic -21.34391E+0 00.00000E+0 17.52642E+3 00.00000E+0 00.00000E+0 - -Vm 147.560 + -analytic -21.34391E+0 00E+0 17.52642E+3 00E+0 00E+0 + -Vm 147.56 Vermiculite-Mg -Mg0.43Mg3Si3.14Al0.86O10(OH)2 = +3.430Mg+2 +0.860Al+3 -9.440H+ +3.140H4(SiO4) -0.560H2O - log_k +38.04 - delta_h -379.808 #kJ/mol +Mg0.43Mg3Si3.14Al0.86O10(OH)2 = 3.43 Mg+2 + 0.86 Al+3 - 9.44 H+ + 3.14 H4(SiO4) - 0.56 H2O + log_k 38.04 + delta_h -379.808 #kJ/mol # Enthalpy of formation: -6113.110 kJ/mol 15BLA/VIE - -analytic -28.49951E+0 00.00000E+0 19.83875E+3 00.00000E+0 00.00000E+0 - -Vm 139.690 + -analytic -28.49951E+0 00E+0 19.83875E+3 00E+0 00E+0 + -Vm 139.69 Vermiculite-Na -Na0.86Mg3.00Si3.14Al0.86O10(OH)2 = +3.000Mg+2 +0.860Na+ +0.860Al+3 -9.440H+ +3.140H4(SiO4) -0.560H2O - log_k +38.39 - delta_h -355.541 #kJ/mol +Na0.86Mg3Si3.14Al0.86O10(OH)2 = 3 Mg+2 + 0.86 Na+ + 0.86 Al+3 - 9.44 H+ + 3.14 H4(SiO4) - 0.56 H2O + log_k 38.39 + delta_h -355.541 #kJ/mol # Enthalpy of formation: -6143.260 kJ/mol 15BLA/VIE - -analytic -23.89811E+0 00.00000E+0 18.57120E+3 00.00000E+0 00.00000E+0 - -Vm 145.710 + -analytic -23.89811E+0 00E+0 18.5712E+3 00E+0 00E+0 + -Vm 145.71 Vivianite -Fe3(PO4)2:8H2O = +3.000Fe+2 -4.000H+ +2.000H2(PO4)- +8.000H2O - log_k +3.12 #20LEM/PAL - -analytic 31.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Fe3(PO4)2:8H2O = 3 Fe+2 - 4 H+ + 2 H2(PO4)- + 8 H2O + log_k 3.12 #20LEM/PAL + -analytic 31.2E-1 00E+0 00E+0 00E+0 00E+0 Wairakite -CaAl2Si4O12:2H2O = +1.000Ca+2 +2.000Al+3 -8.000H+ +4.000H4(SiO4) -2.000H2O - log_k +14.42 - delta_h -246.216 #kJ/mol +CaAl2Si4O12:2H2O = Ca+2 + 2 Al+3 - 8 H+ + 4 H4(SiO4) - 2 H2O + log_k 14.42 + delta_h -246.216 #kJ/mol # Enthalpy of formation: -6646.700 kJ/mol 96KIS/NAV - -analytic -28.71519E+0 00.00000E+0 12.86076E+3 00.00000E+0 00.00000E+0 - -Vm 193.560 + -analytic -28.71519E+0 00E+0 12.86076E+3 00E+0 00E+0 + -Vm 193.56 Witherite -Ba(CO3) = +1.000Ba+2 +1.000CO3-2 - log_k -8.56 #86BUS/PLU - delta_h +2.941 #kJ/mol 86BUS/PLU -# Enthalpy of formation: -1212.971 kJ/mol - -analytic -80.44759E-1 00.00000E+0 -15.36191E+1 00.00000E+0 00.00000E+0 +Ba(CO3) = Ba+2 + CO3-2 + log_k -8.56 #86BUS/PLU + delta_h 2.941 #kJ/mol 86BUS/PLU +# Enthalpy of formation: -1212.971 kJ/mol + -analytic -80.44759E-1 00E+0 -15.36191E+1 00E+0 00E+0 Xonotlite -Ca6Si6O17(OH)2 = +6.000Ca+2 -12.000H+ +6.000H4(SiO4) -5.000H2O - log_k +91.34 #10BLA/BOU1 - delta_h -573.864 #kJ/mol +Ca6Si6O17(OH)2 = 6 Ca+2 - 12 H+ + 6 H4(SiO4) - 5 H2O + log_k 91.34 #10BLA/BOU1 + delta_h -573.864 #kJ/mol # Enthalpy of formation: -10022.150kJ/mol 56NEW - -analytic -91.96657E-1 00.00000E+0 29.97500E+3 00.00000E+0 00.00000E+0 - -Vm 256.900 + -analytic -91.96657E-1 00E+0 29.975E+3 00E+0 00E+0 + -Vm 256.9 Zeolite_CaP -Ca2Al4Si4O16:9H2O = +2.000Ca+2 +4.000Al+3 -16.000H+ +4.000H4(SiO4) +9.000H2O - log_k +45.15 #09BLA - delta_h -527.736 #kJ/mol +Ca2Al4Si4O16:9H2O = 2 Ca+2 + 4 Al+3 - 16 H+ + 4 H4(SiO4) + 9 H2O + log_k 45.15 #09BLA + delta_h -527.736 #kJ/mol # Enthalpy of formation: -11129.110kJ/mol 09BLA - -analytic -47.30538E+0 00.00000E+0 27.56557E+3 00.00000E+0 00.00000E+0 - -Vm 305.700 + -analytic -47.30538E+0 00E+0 27.56557E+3 00E+0 00E+0 + -Vm 305.7 Zn(cr) -Zn = +1.000Zn+2 +2.000e- - log_k +25.79 - delta_h -153.390 #kJ/mol +Zn = Zn+2 + 2 e- + log_k 25.79 + delta_h -153.39 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 89COX/WAG - -analytic -10.82774E-1 00.00000E+0 80.12118E+2 00.00000E+0 00.00000E+0 + -analytic -10.82774E-1 00E+0 80.12118E+2 00E+0 00E+0 Zn(SeO4):6H2O(s) -Zn(SeO4):6H2O = +1.000Zn+2 +1.000SeO4-2 +6.000H2O - log_k -1.54 #05OLI/NOL - delta_h -13.330 #kJ/mol +Zn(SeO4):6H2O = Zn+2 + SeO4-2 + 6 H2O + log_k -1.54 #05OLI/NOL + delta_h -13.33 #kJ/mol # Enthalpy of formation: -2458.540 kJ/mol 05OLI/NOL - -analytic -38.75316E-1 00.00000E+0 69.62744E+1 00.00000E+0 00.00000E+0 + -analytic -38.75316E-1 00E+0 69.62744E+1 00E+0 00E+0 Zn3(AsO4)2(s) -Zn3(AsO4)2 = +3.000Zn+2 +2.000AsO4-3 - log_k -27.45 - -analytic -27.45000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Zn3(AsO4)2 = 3 Zn+2 + 2 AsO4-3 + log_k -27.45 + -analytic -27.45E+0 00E+0 00E+0 00E+0 00E+0 ZnB2O4(s) -ZnB2O4 = +1.000Zn+2 +2.000B(OH)4- -4.000H2O - log_k -10.19 #91BAL/NOR - -analytic -10.19000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +ZnB2O4 = Zn+2 + 2 B(OH)4- - 4 H2O + log_k -10.19 #91BAL/NOR + -analytic -10.19E+0 00E+0 00E+0 00E+0 00E+0 Zr(cr) -Zr = +4.000e- +1.000Zr+4 - log_k +92.59 - delta_h -608.500 #kJ/mol +Zr = 4 e- + Zr+4 + log_k 92.59 + delta_h -608.5 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 05BRO/CUR - -analytic -14.01462E+0 00.00000E+0 31.78417E+3 00.00000E+0 00.00000E+0 + -analytic -14.01462E+0 00E+0 31.78417E+3 00E+0 00E+0 Zr(HPO4)2(alfa) -Zr(HPO4)2 = -2.000H+ +2.000H2(PO4)- +1.000Zr+4 - log_k -32.27 - delta_h -47.500 #kJ/mol +Zr(HPO4)2 = -2 H+ + 2 H2(PO4)- + Zr+4 + log_k -32.27 + delta_h -47.5 #kJ/mol # Enthalpy of formation: -3166.200 kJ/mol 05BRO/CUR - -analytic -40.59164E+0 00.00000E+0 24.81098E+2 00.00000E+0 00.00000E+0 + -analytic -40.59164E+0 00E+0 24.81098E+2 00E+0 00E+0 Zr(HPO4)2:H2O(cr) -Zr(HPO4)2:H2O = -2.000H+ +2.000H2(PO4)- +1.000Zr+4 +1.000H2O - log_k -27.08 #05BRO/CUR - delta_h -33.430 #kJ/mol +Zr(HPO4)2:H2O = -2 H+ + 2 H2(PO4)- + Zr+4 + H2O + log_k -27.08 #05BRO/CUR + delta_h -33.43 #kJ/mol # Enthalpy of formation: -3466.100 kJ/mol 05BRO/CUR - -analytic -32.93668E+0 00.00000E+0 17.46171E+2 00.00000E+0 00.00000E+0 + -analytic -32.93668E+0 00E+0 17.46171E+2 00E+0 00E+0 Zr(OH)4(am,aged) -Zr(OH)4 = -4.000H+ +1.000Zr+4 +4.000H2O - log_k -5.55 #Recalculated from 04EKB/KAL in 05BRO/CUR - -analytic -55.50000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Zr(OH)4 = -4 H+ + Zr+4 + 4 H2O + log_k -5.55 #Recalculated from 04EKB/KAL in 05BRO/CUR + -analytic -55.5E-1 00E+0 00E+0 00E+0 00E+0 Zr(OH)4(am,fresh) -Zr(OH)4 = -4.000H+ +1.000Zr+4 +4.000H2O - log_k -3.24 #05BRO/CUR - delta_h -89.620 #kJ/mol +Zr(OH)4 = -4 H+ + Zr+4 + 4 H2O + log_k -3.24 #05BRO/CUR + delta_h -89.62 #kJ/mol # Enthalpy of formation: -1662.200 kJ/mol 05BRO/CUR - -analytic -18.94075E+0 00.00000E+0 46.81179E+2 00.00000E+0 00.00000E+0 + -analytic -18.94075E+0 00E+0 46.81179E+2 00E+0 00E+0 Zr(SO4)2(cr) -Zr(SO4)2 = +2.000SO4-2 +1.000Zr+4 - log_k +1.24 - delta_h -181.980 #kJ/mol +Zr(SO4)2 = 2 SO4-2 + Zr+4 + log_k 1.24 + delta_h -181.98 #kJ/mol # Enthalpy of formation: -2245.200 kJ/mol 05BRO/CUR - -analytic -30.64153E+0 00.00000E+0 95.05477E+2 00.00000E+0 00.00000E+0 + -analytic -30.64153E+0 00E+0 95.05477E+2 00E+0 00E+0 Zr(SO4)2:4H2O(s) -Zr(SO4)2:4H2O = +2.000SO4-2 +1.000Zr+4 +4.000H2O - log_k -7.65 - delta_h -99.600 #kJ/mol +Zr(SO4)2:4H2O = 2 SO4-2 + Zr+4 + 4 H2O + log_k -7.65 + delta_h -99.6 #kJ/mol # Enthalpy of formation: -3470.900 kJ/mol 05BRO/CUR - -analytic -25.09917E+0 00.00000E+0 52.02470E+2 00.00000E+0 00.00000E+0 + -analytic -25.09917E+0 00E+0 52.0247E+2 00E+0 00E+0 ZrBr4(cr) -ZrBr4 = +4.000Br- +1.000Zr+4 - log_k +38.52 - delta_h -334.640 #kJ/mol +ZrBr4 = 4 Br- + Zr+4 + log_k 38.52 + delta_h -334.64 #kJ/mol # Enthalpy of formation: -759.500 kJ/mol 05BRO/CUR - -analytic -20.10641E+0 00.00000E+0 17.47946E+3 00.00000E+0 00.00000E+0 + -analytic -20.10641E+0 00E+0 17.47946E+3 00E+0 00E+0 ZrCl(s) -ZrCl = +3.000e- +1.000Cl- +1.000Zr+4 - log_k +69.24 - delta_h -484.380 #kJ/mol +ZrCl = 3 e- + Cl- + Zr+4 + log_k 69.24 + delta_h -484.38 #kJ/mol # Enthalpy of formation: -291.200 kJ/mol 05BRO/CUR - -analytic -15.61973E+0 00.00000E+0 25.30093E+3 00.00000E+0 00.00000E+0 + -analytic -15.61973E+0 00E+0 25.30093E+3 00E+0 00E+0 ZrCl2(s) -ZrCl2 = +2.000e- +2.000Cl- +1.000Zr+4 - log_k +51.65 - delta_h -399.860 #kJ/mol +ZrCl2 = 2 e- + 2 Cl- + Zr+4 + log_k 51.65 + delta_h -399.86 #kJ/mol # Enthalpy of formation: -542.800 kJ/mol 05BRO/CUR - -analytic -18.40246E+0 00.00000E+0 20.88614E+3 00.00000E+0 00.00000E+0 + -analytic -18.40246E+0 00E+0 20.88614E+3 00E+0 00E+0 ZrCl3(s) -ZrCl3 = +1.000e- +3.000Cl- +1.000Zr+4 - log_k +40.72 - delta_h -349.640 #kJ/mol +ZrCl3 = e- + 3 Cl- + Zr+4 + log_k 40.72 + delta_h -349.64 #kJ/mol # Enthalpy of formation: -760.100 kJ/mol 05BRO/CUR - -analytic -20.53430E+0 00.00000E+0 18.26297E+3 00.00000E+0 00.00000E+0 + -analytic -20.5343E+0 00E+0 18.26297E+3 00E+0 00E+0 ZrCl4(s) -ZrCl4 = +4.000Cl- +1.000Zr+4 - log_k +28.60 - delta_h -296.020 #kJ/mol +ZrCl4 = 4 Cl- + Zr+4 + log_k 28.6 + delta_h -296.02 #kJ/mol # Enthalpy of formation: -980.800 kJ/mol 05BRO/CUR - -analytic -23.26048E+0 00.00000E+0 15.46220E+3 00.00000E+0 00.00000E+0 + -analytic -23.26048E+0 00E+0 15.4622E+3 00E+0 00E+0 ZrF2(s) -ZrF2 = +2.000e- +2.000F- +1.000Zr+4 - log_k +32.61 - delta_h -323.200 #kJ/mol +ZrF2 = 2 e- + 2 F- + Zr+4 + log_k 32.61 + delta_h -323.2 #kJ/mol # Enthalpy of formation: -956.000 kJ/mol 97VIS/COR - -analytic -24.01221E+0 00.00000E+0 16.88191E+3 00.00000E+0 00.00000E+0 + -analytic -24.01221E+0 00E+0 16.88191E+3 00E+0 00E+0 ZrF3(s) -ZrF3 = +1.000e- +3.000F- +1.000Zr+4 - log_k +2.80 - delta_h -181.550 #kJ/mol +ZrF3 = e- + 3 F- + Zr+4 + log_k 2.8 + delta_h -181.55 #kJ/mol # Enthalpy of formation: -1433.000 kJ/mol 97VIS/COR - -analytic -29.00619E+0 00.00000E+0 94.83017E+2 00.00000E+0 00.00000E+0 + -analytic -29.00619E+0 00E+0 94.83017E+2 00E+0 00E+0 ZrF4(beta) -ZrF4 = +4.000F- +1.000Zr+4 - log_k -27.25 - delta_h -38.600 #kJ/mol +ZrF4 = 4 F- + Zr+4 + log_k -27.25 + delta_h -38.6 #kJ/mol # Enthalpy of formation: -1911.300 kJ/mol 05BRO/CUR - -analytic -34.01243E+0 00.00000E+0 20.16218E+2 00.00000E+0 00.00000E+0 + -analytic -34.01243E+0 00E+0 20.16218E+2 00E+0 00E+0 ZrI4(cr) -ZrI4 = +4.000I- +1.000Zr+4 - log_k +44.59 - delta_h -346.720 #kJ/mol +ZrI4 = 4 I- + Zr+4 + log_k 44.59 + delta_h -346.72 #kJ/mol # Enthalpy of formation: -488.900 kJ/mol 05BRO/CUR - -analytic -16.15274E+0 00.00000E+0 18.11045E+3 00.00000E+0 00.00000E+0 + -analytic -16.15274E+0 00E+0 18.11045E+3 00E+0 00E+0 ZrO2(cr) -ZrO2 = -4.000H+ +1.000Zr+4 +2.000H2O - log_k -7.00 - delta_h -79.560 #kJ/mol +ZrO2 = -4 H+ + Zr+4 + 2 H2O + log_k -7 + delta_h -79.56 #kJ/mol # Enthalpy of formation: -1100.600 kJ/mol 05BRO/CUR - -analytic -20.93831E+0 00.00000E+0 41.55708E+2 00.00000E+0 00.00000E+0 + -analytic -20.93831E+0 00E+0 41.55708E+2 00E+0 00E+0 ZrSiO4(s) -ZrSiO4 = -4.000H+ +1.000H4(SiO4) +1.000Zr+4 - log_k -14.36 - delta_h -35.494 #kJ/mol +ZrSiO4 = -4 H+ + H4(SiO4) + Zr+4 + log_k -14.36 + delta_h -35.494 #kJ/mol # Enthalpy of formation: -2034.200 kJ/mol 05BRO/CUR - -analytic -20.57828E+0 00.00000E+0 18.53981E+2 00.00000E+0 00.00000E+0 + -analytic -20.57828E+0 00E+0 18.53981E+2 00E+0 00E+0 # PMATCH GASES CH4(g) -CH4 = +10.000H+ +8.000e- +1.000CO3-2 -3.000H2O - log_k -41.05 - delta_h +257.133 #kJ/mol +CH4 = 10 H+ + 8 e- + CO3-2 - 3 H2O + log_k -41.05 + delta_h 257.133 #kJ/mol # Enthalpy of formation: -74.873 kJ/mol 98CHA - -analytic 39.97768E-1 00.00000E+0 -13.43099E+3 00.00000E+0 00.00000E+0 + -analytic 39.97768E-1 00E+0 -13.43099E+3 00E+0 00E+0 Cl2(g) -Cl2 = -2.000e- +2.000Cl- - log_k +45.98 - delta_h -334.160 #kJ/mol +Cl2 = -2 e- + 2 Cl- + log_k 45.98 + delta_h -334.16 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 89COX/WAG - -analytic -12.56232E+0 00.00000E+0 17.45439E+3 00.00000E+0 00.00000E+0 + -analytic -12.56232E+0 00E+0 17.45439E+3 00E+0 00E+0 CO(g) -CO = +4.000H+ +2.000e- +1.000CO3-2 -2.000H2O - log_k -14.64 - delta_h +6.960 #kJ/mol +CO = 4 H+ + 2 e- + CO3-2 - 2 H2O + log_k -14.64 + delta_h 6.96 #kJ/mol # Enthalpy of formation: -110.530 kJ/mol 89COX/WAG - -analytic -13.42066E+0 00.00000E+0 -36.35461E+1 00.00000E+0 00.00000E+0 + -analytic -13.42066E+0 00E+0 -36.35461E+1 00E+0 00E+0 CO2(g) -CO2 = +2.000H+ +1.000CO3-2 -1.000H2O - log_k -18.15 - delta_h +4.110 #kJ/mol +CO2 = 2 H+ + CO3-2 - H2O + log_k -18.15 + delta_h 4.11 #kJ/mol # Enthalpy of formation: -393.510 kJ/mol 89COX/WAG - -analytic -17.42996E+0 00.00000E+0 -21.46803E+1 00.00000E+0 00.00000E+0 + -analytic -17.42996E+0 00E+0 -21.46803E+1 00E+0 00E+0 F2(g) -F2 = -2.000e- +2.000F- - log_k +98.64 - delta_h -670.700 #kJ/mol +F2 = -2 e- + 2 F- + log_k 98.64 + delta_h -670.7 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 89COX/WAG - -analytic -18.86160E+0 00.00000E+0 35.03310E+3 00.00000E+0 00.00000E+0 + -analytic -18.8616E+0 00E+0 35.0331E+3 00E+0 00E+0 H2(g) -H2 = +2.000H+ +2.000e- - log_k +0.00 - delta_h +0.000 #kJ/mol +H2 = 2 H+ + 2 e- + log_k 0 + delta_h 0 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 89COX/WAG - -analytic 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 + -analytic 00E+0 00E+0 00E+0 00E+0 00E+0 H2O(g) -H2O = +2.000H+ +2.000e- +0.500O2 - log_k -41.50 - delta_h +235.759 #kJ/mol +H2O = 2 H+ + 2 e- + 0.5 O2 + log_k -41.5 + delta_h 235.759 #kJ/mol # Enthalpy of formation: -241.826 kJ/mol 89COX/WAG - -analytic -19.67962E-2 00.00000E+0 -12.31455E+3 00.00000E+0 00.00000E+0 + -analytic -19.67962E-2 00E+0 -12.31455E+3 00E+0 00E+0 H2S(g) -H2S = +1.000H+ +1.000HS- - log_k -8.00 - delta_h +4.300 #kJ/mol +H2S = H+ + HS- + log_k -8 + delta_h 4.3 #kJ/mol # Enthalpy of formation: -20.600 kJ/mol 89COX/WAG - -analytic -72.46672E-1 00.00000E+0 -22.46046E+1 00.00000E+0 00.00000E+0 + -analytic -72.46672E-1 00E+0 -22.46046E+1 00E+0 00E+0 HCl(g) -HCl = +1.000H+ +1.000Cl- - log_k +6.29 - delta_h -74.770 #kJ/mol +HCl = H+ + Cl- + log_k 6.29 + delta_h -74.77 #kJ/mol # Enthalpy of formation: -92.310 kJ/mol 89COX/WAG - -analytic -68.09142E-1 00.00000E+0 39.05509E+2 00.00000E+0 00.00000E+0 + -analytic -68.09142E-1 00E+0 39.05509E+2 00E+0 00E+0 Hg(CH3)2(g) -Hg(CH3)2 = -2.000H+ +2.000CH4 +1.000Hg+2 - log_k -8.82 #18BLA/BUR - -analytic -88.20000E-1 00.00000E+0 00.00000E+0 00.00000E+0 00.00000E+0 +Hg(CH3)2 = -2 H+ + 2 CH4 + Hg+2 + log_k -8.82 #18BLA/BUR + -analytic -88.2E-1 00E+0 00E+0 00E+0 00E+0 N2(g) -N2 = +12.000H+ +10.000e- +2.000NO3- -6.000H2O - log_k -210.45 - delta_h +1301.280 #kJ/mol +N2 = 12 H+ + 10 e- + 2 NO3- - 6 H2O + log_k -210.45 + delta_h 1301.28 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 89COX/WAG - -analytic 17.52447E+0 00.00000E+0 -67.97059E+3 00.00000E+0 00.00000E+0 + -analytic 17.52447E+0 00E+0 -67.97059E+3 00E+0 00E+0 O2(g) -O2 = +1.000O2 - log_k -2.90 - delta_h -12.134 #kJ/mol +O2 = O2 + log_k -2.9 + delta_h -12.134 #kJ/mol # Enthalpy of formation: +0.000 kJ/mol 89COX/WAG - -analytic -50.25786E-1 00.00000E+0 63.38030E+1 00.00000E+0 00.00000E+0 + -analytic -50.25786E-1 00E+0 63.3803E+1 00E+0 00E+0 SO2(g) -SO2 = +2.000H+ +1.000SO3-2 -1.000H2O - log_k -8.94 - delta_h -48.420 #kJ/mol +SO2 = 2 H+ + SO3-2 - H2O + log_k -8.94 + delta_h -48.42 #kJ/mol # Enthalpy of formation: -296.810 kJ/mol 89COX/WAG - -analytic -17.42282E+0 00.00000E+0 25.29153E+2 00.00000E+0 00.00000E+0 + -analytic -17.42282E+0 00E+0 25.29153E+2 00E+0 00E+0 From 26398a442446dc31463fb08c3d1cd06df609b633 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Sun, 19 May 2024 22:32:41 -0600 Subject: [PATCH 165/384] lsp of databases, changed alk of e- to 1.0 in all databases, modified sit.dat --- Amm.dat | 2070 ++-- Tipping_Hurley.dat | 4590 ++++----- iso.dat | 5900 +++++------ llnl.dat | 22878 ++++++++++++++++++++++--------------------- minimum.dat | 94 +- minteq.dat | 8718 +++++++++-------- minteq.v4.dat | 19238 ++++++++++++++++++------------------ phreeqc.dat | 2072 ++-- phreeqc_rates.dat | 2170 ++-- pitzer.dat | 1278 +-- sit.dat | 57 +- wateq4f.dat | 4292 ++++---- 12 files changed, 36716 insertions(+), 36641 deletions(-) diff --git a/Amm.dat b/Amm.dat index 4f815c5b..8c8c4701 100644 --- a/Amm.dat +++ b/Amm.dat @@ -1,69 +1,72 @@ +# File 1 = C:\GitPrograms\phreeqc3-1\database\Amm.dat, 17/05/2024 14:30, 1947 lines, 55811 bytes, md5=f11f0d8a8ca35e2b27e82514f241db82 +# Created 17 May 2024 14:30:37 +# c:\3rdParty\lsp\lsp.exe -f2 -k="asis" -ts "Amm.dat" + # PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: # diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. # Details are given at the end of this file. SOLUTION_MASTER_SPECIES # -#element species alk gfw_formula element_gfw +#element species alk gfw_formula element_gfw # -H H+ -1.0 H 1.008 -H(0) H2 0 H -H(1) H+ -1.0 H -E e- 0 0 0 -O H2O 0 O 16.0 -O(0) O2 0 O -O(-2) H2O 0 0 -Ca Ca+2 0 Ca 40.08 -Mg Mg+2 0 Mg 24.312 -Na Na+ 0 Na 22.9898 -K K+ 0 K 39.102 -Fe Fe+2 0 Fe 55.847 -Fe(+2) Fe+2 0 Fe -Fe(+3) Fe+3 -2.0 Fe -Mn Mn+2 0 Mn 54.938 -Mn(+2) Mn+2 0 Mn -Mn(+3) Mn+3 0 Mn -Al Al+3 0 Al 26.9815 -Ba Ba+2 0 Ba 137.34 -Sr Sr+2 0 Sr 87.62 -Si H4SiO4 0 SiO2 28.0843 -Cl Cl- 0 Cl 35.453 -C CO3-2 2.0 HCO3 12.0111 -C(+4) CO3-2 2.0 HCO3 -C(-4) CH4 0 CH4 -Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05 -S SO4-2 0 SO4 32.064 -S(6) SO4-2 0 SO4 -S(-2) HS- 1.0 S -N NO3- 0 N 14.0067 -N(+5) NO3- 0 NO3 -N(+3) NO2- 0 NO2 -N(0) N2 0 N -# N(-3) NH4+ NH4 14.0067 -Amm AmmH+ 0 AmmH 17.031 -B H3BO3 0 B 10.81 -P PO4-3 2.0 P 30.9738 -F F- 0 F 18.9984 -Li Li+ 0 Li 6.939 -Br Br- 0 Br 79.904 -Zn Zn+2 0 Zn 65.37 -Cd Cd+2 0 Cd 112.4 -Pb Pb+2 0 Pb 207.19 -Cu Cu+2 0 Cu 63.546 -Cu(+2) Cu+2 0 Cu -Cu(+1) Cu+1 0 Cu -# redox-uncoupled gases -Hdg Hdg 0 Hdg 2.016 # H2 gas -Oxg Oxg 0 Oxg 32 # O2 gas -Mtg Mtg 0 Mtg 16.032 # CH4 gas -Sg H2Sg 0.0 H2Sg 32.064 # H2S gas -Ntg Ntg 0 Ntg 28.0134 # N2 gas - +H H+ -1 H 1.008 +H(0) H2 0 H +H(1) H+ -1 H +E e- 1 0 0 +O H2O 0 O 16 +O(0) O2 0 O +O(-2) H2O 0 0 +Ca Ca+2 0 Ca 40.08 +Mg Mg+2 0 Mg 24.312 +Na Na+ 0 Na 22.9898 +K K+ 0 K 39.102 +Fe Fe+2 0 Fe 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2 Fe +Mn Mn+2 0 Mn 54.938 +Mn(+2) Mn+2 0 Mn +Mn(+3) Mn+3 0 Mn +Al Al+3 0 Al 26.9815 +Ba Ba+2 0 Ba 137.34 +Sr Sr+2 0 Sr 87.62 +Si H4SiO4 0 SiO2 28.0843 +Cl Cl- 0 Cl 35.453 +C CO3-2 2 HCO3 12.0111 +C(+4) CO3-2 2 HCO3 +C(-4) CH4 0 CH4 +Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05 +S SO4-2 0 SO4 32.064 +S(6) SO4-2 0 SO4 +S(-2) HS- 1 S +N NO3- 0 N 14.0067 +N(+5) NO3- 0 NO3 +N(+3) NO2- 0 NO2 +N(0) N2 0 N +#N(-3) NH4+ 0 NH4 14.0067 +Amm AmmH+ 0 AmmH 17.031 +B H3BO3 0 B 10.81 +P PO4-3 2 P 30.9738 +F F- 0 F 18.9984 +Li Li+ 0 Li 6.939 +Br Br- 0 Br 79.904 +Zn Zn+2 0 Zn 65.37 +Cd Cd+2 0 Cd 112.4 +Pb Pb+2 0 Pb 207.19 +Cu Cu+2 0 Cu 63.546 +Cu(+2) Cu+2 0 Cu +Cu(+1) Cu+1 0 Cu +# redox-uncoupled gases +Hdg Hdg 0 Hdg 2.016 # H2 gas +Oxg Oxg 0 Oxg 32 # O2 gas +Mtg Mtg 0 Mtg 16.032 # CH4 gas +Sg H2Sg 0 H2Sg 32.064 # H2S gas +Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ - -gamma 9.0 0 - -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 - -dw 9.31e-9 838 16.315 0 2.376 24.01 0 + -gamma 9 0 + -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 + -dw 9.31e-9 838 16.315 0 2.376 24.01 0 # Dw(25 C) dw_T a a2 visc a3 a_v_dif # Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc # a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif @@ -76,585 +79,585 @@ H+ = H+ # If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. e- = e- H2O = H2O - -dw 2.299e-9 -254 + -dw 2.299e-9 -254 # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence Li+ = Li+ - -gamma 6.0 0 # The apparent volume parameters are defined in ref. 1 & 2 - -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 - -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl - -dw 1.03e-9 -14 4.03 0.8341 1.679 + -gamma 6 0 # The apparent volume parameters are defined in ref. 1 & 2 + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 + -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl + -dw 1.03e-9 -14 4.03 0.8341 1.679 Na+ = Na+ - -gamma 4.0 0.075 - -gamma 4.08 0.082 # halite solubility - -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 + -gamma 4 0.075 + -gamma 4.08 0.082 # halite solubility + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 # for densities (rho) when I > 3. - -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 - -dw 1.33e-9 75 3.627 0 0.7037 + -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 + -dw 1.33e-9 75 3.627 0 0.7037 K+ = K+ - -gamma 3.5 0.015 - -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 - -viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028 - -dw 1.96e-9 254 3.484 0 0.1964 + -gamma 3.5 0.015 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 + -viscosity 0.116 -0.191 1.52e-2 1.4e-2 2.59e-2 0.9028 + -dw 1.96e-9 254 3.484 0 0.1964 Mg+2 = Mg+2 - -gamma 5.5 0.20 - -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 - -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 - -dw 0.705e-9 -4 5.569 0 1.047 + -gamma 5.5 0.2 + -Vm -1.41 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 + -dw 0.705e-9 -4 5.569 0 1.047 Ca+2 = Ca+2 - -gamma 5.0 0.1650 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 - -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M - -dw 0.792e-9 34 5.411 0 1.046 + -gamma 5 0.165 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.6 -57.1 -6.12e-3 1 + -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.3 # ref. 4, CaCl2 < 6 M + -dw 0.792e-9 34 5.411 0 1.046 Sr+2 = Sr+2 - -gamma 5.260 0.121 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 - -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 - -dw 0.794e-9 160 0.680 0.767 1e-9 0.912 + -gamma 5.26 0.121 + -Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97 + -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 + -dw 0.794e-9 160 0.68 0.767 1e-9 0.912 Ba+2 = Ba+2 - -gamma 5.0 0 - -gamma 4.0 0.153 # Barite solubility - -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 - -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 - -dw 0.848e-9 174 10.53 0 3.0 + -gamma 5 0 + -gamma 4 0.153 # Barite solubility + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 + -dw 0.848e-9 174 10.53 0 3 Fe+2 = Fe+2 - -gamma 6.0 0 - -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 - -dw 0.719e-9 + -gamma 6 0 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -dw 0.719e-9 Mn+2 = Mn+2 - -gamma 6.0 0 - -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 - -dw 0.688e-9 + -gamma 6 0 + -Vm -1.1 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 + -dw 0.688e-9 Al+3 = Al+3 - -gamma 9.0 0 - -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353. - -dw 0.559e-9 + -gamma 9 0 + -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353 + -dw 0.559e-9 H4SiO4 = H4SiO4 - -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 - -dw 1.10e-9 + -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt 2*H2O in a1 + -dw 1.1e-9 Cl- = Cl- - -gamma 3.5 0.015 - -gamma 3.63 0.017 # cf. pitzer.dat - -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 - -viscosity 0 0 0 0 0 0 1 # the reference solute - -dw 2.033e-9 216 3.160 0.2071 0.7432 + -gamma 3.5 0.015 + -gamma 3.63 0.017 # cf. pitzer.dat + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -viscosity 0 0 0 0 0 0 1 # the reference solute + -dw 2.033e-9 216 3.16 0.2071 0.7432 CO3-2 = CO3-2 - -gamma 5.4 0 - -Vm 6.09 -2.78 -0.405 -5.30 5.02 0 0.169 101 -1.38e-2 0.9316 - -viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147 - -dw 0.955e-9 -103 2.246 7.13e-2 0.3686 + -gamma 5.4 0 + -Vm 6.09 -2.78 -0.405 -5.3 5.02 0 0.169 101 -1.38e-2 0.9316 + -viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147 + -dw 0.955e-9 -103 2.246 7.13e-2 0.3686 SO4-2 = SO4-2 - -gamma 5.0 -0.04 - -Vm -7.77 43.17 176 -51.45 3.794 0 42.99 -541 -0.145 0.45 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC - -viscosity -0.30 0.501 2.57e-3 0.195 3.14e-2 2.015 0.605 - -dw 1.07e-9 -114 17 6.02e-2 4.94e-2 + -gamma 5 -0.04 + -Vm -7.77 43.17 176 -51.45 3.794 0 42.99 -541 -0.145 0.45 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC + -viscosity -0.3 0.501 2.57e-3 0.195 3.14e-2 2.015 0.605 + -dw 1.07e-9 -114 17 6.02e-2 4.94e-2 NO3- = NO3- - -gamma 3.0 0 - -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 - -viscosity 8.37e-2 -0.458 1.54e-2 0.340 1.79e-2 5.02e-2 0.7381 - -dw 1.90e-9 104 1.11 + -gamma 3 0 + -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 + -viscosity 8.37e-2 -0.458 1.54e-2 0.34 1.79e-2 5.02e-2 0.7381 + -dw 1.9e-9 104 1.11 AmmH+ = AmmH+ - -gamma 2.5 0 - -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 - -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 - -dw 1.98e-9 178 3.747 0 1.220 + -gamma 2.5 0 + -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 + -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -dw 1.98e-9 178 3.747 0 1.22 H3BO3 = H3BO3 - -Vm 7.0643 8.8547 3.5844 -3.1451 -0.20 # supcrt - -dw 1.1e-9 + -Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt + -dw 1.1e-9 PO4-3 = PO4-3 - -gamma 4.0 0 - -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 - -dw 0.612e-9 + -gamma 4 0 + -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 + -dw 0.612e-9 F- = F- - -gamma 3.5 0 - -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 - -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 - -dw 1.46e-9 -36 4.352 + -gamma 3.5 0 + -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 + -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 + -dw 1.46e-9 -36 4.352 Br- = Br- - -gamma 3.0 0 - -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 - -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.820 - -dw 2.01e-9 139 2.94 0 1.304 + -gamma 3 0 + -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 + -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.82 + -dw 2.01e-9 139 2.94 0 1.304 Zn+2 = Zn+2 - -gamma 5.0 0 - -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 - -dw 0.715e-9 + -gamma 5 0 + -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 + -dw 0.715e-9 Cd+2 = Cd+2 - -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 - -dw 0.717e-9 + -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 + -dw 0.717e-9 Pb+2 = Pb+2 - -Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt - -dw 0.945e-9 + -Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt + -dw 0.945e-9 Cu+2 = Cu+2 - -gamma 6.0 0 - -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 - -dw 0.733e-9 + -gamma 6 0 + -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 + -dw 0.733e-9 # redox-uncoupled gases Hdg = Hdg # H2 - -Vm 6.52 0.78 0.12 # supcrt - -dw 5.13e-9 + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 Oxg = Oxg # O2 - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt - -dw 2.35e-9 + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 Mtg = Mtg # CH4 - -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 - -dw 1.85e-9 + -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 Ntg = Ntg # N2 - -Vm 7 # Pray et al., 1952, IEC 44. 1146 - -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 + -Vm 7 # Pray et al., 1952, IEC 44 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 H2Sg = H2Sg # H2S - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 - -dw 2.1e-9 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 # aqueous species H2O = OH- + H+ - -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 - -gamma 3.5 0 - -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 - -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH - -dw 5.27e-9 478 0.8695 + -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 + -gamma 3.5 0 + -Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1 + -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH + -dw 5.27e-9 478 0.8695 2 H2O = O2 + 4 H+ + 4 e- - -log_k -86.08 + -log_k -86.08 -delta_h 134.79 kcal - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt - -dw 2.35e-9 + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 2 H+ + 2 e- = H2 - -log_k -3.15 + -log_k -3.15 -delta_h -1.759 kcal - -Vm 6.52 0.78 0.12 # supcrt - -dw 5.13e-9 + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 H+ + Cl- = HCl - -log_k -0.5 - -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50C - -gamma 0 0.4256 - -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 + -log_k -0.5 + -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50C + -gamma 0 0.4256 + -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 CO3-2 + H+ = HCO3- - -log_k 10.329; -delta_h -3.561 kcal - -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 - -gamma 5.4 0 - -Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144 - -viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253 - -dw 1.18e-9 -190 11.386 + -log_k 10.329; -delta_h -3.561 kcal + -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 + -Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144 + -viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253 + -dw 1.18e-9 -190 11.386 CO3-2 + 2 H+ = CO2 + H2O - -log_k 16.681 + -log_k 16.681 -delta_h -5.738 kcal - -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 - -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 - -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 -2CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T - -log_k -1.8 - -analytical_expression 8.68 -0.0103 -2190 - -Vm 14.58 1.84 4.14 -2.46 -3.20 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 + -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171 + -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 +2 CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T + -log_k -1.8 + -analytical_expression 8.68 -0.0103 -2190 + -Vm 14.58 1.84 4.14 -2.46 -3.2 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O - -log_k 41.071 + -log_k 41.071 -delta_h -61.039 kcal - -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 - -dw 1.85e-9 + -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 SO4-2 + H+ = HSO4- - -log_k 1.988; -delta_h 3.85 kcal - -analytic -56.889 0.006473 2307.9 19.8858 - -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 - -viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987 - -dw 1.22e-9 1000 15.0 2.861 + -log_k 1.988; -delta_h 3.85 kcal + -analytic -56.889 0.006473 2307.9 19.8858 + -Vm 8.2 9.259 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987 + -dw 1.22e-9 1000 15 2.861 HS- = S-2 + H+ - -log_k -12.918 - -delta_h 12.1 kcal - -gamma 5.0 0 - -dw 0.731e-9 + -log_k -12.918 + -delta_h 12.1 kcal + -gamma 5 0 + -dw 0.731e-9 SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O - -log_k 33.65 - -delta_h -60.140 kcal - -gamma 3.5 0 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt - -dw 1.73e-9 + -log_k 33.65 + -delta_h -60.14 kcal + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt + -dw 1.73e-9 HS- + H+ = H2S - -log_k 6.994; -delta_h -5.30 kcal - -analytical -11.17 0.02386 3279.0 - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 - -dw 2.1e-9 -2H2S = (H2S)2 # activity correction for H2S solubility at high P, T - -analytical_expression 10.227 -0.01384 -2200 - -Vm 36.41 -71.95 0 0 2.58 - -dw 2.1e-9 + -log_k 6.994; -delta_h -5.3 kcal + -analytical -11.17 0.02386 3279 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 +2 H2S = (H2S)2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 H2Sg = HSg- + H+ - -log_k -6.994; -delta_h 5.30 kcal - -analytical_expression 11.17 -0.02386 -3279.0 - -gamma 3.5 0 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt - -dw 1.73e-9 -2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T - -analytical_expression 10.227 -0.01384 -2200 - -Vm 36.41 -71.95 0 0 2.58 - -dw 2.1e-9 + -log_k -6.994; -delta_h 5.3 kcal + -analytical_expression 11.17 -0.02386 -3279 + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt + -dw 1.73e-9 +2 H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 NO3- + 2 H+ + 2 e- = NO2- + H2O - -log_k 28.570 - -delta_h -43.760 kcal - -gamma 3.0 0 - -Vm 5.5864 5.8590 3.4472 -3.0212 1.1847 # supcrt - -dw 1.91e-9 + -log_k 28.57 + -delta_h -43.76 kcal + -gamma 3 0 + -Vm 5.5864 5.859 3.4472 -3.0212 1.1847 # supcrt + -dw 1.91e-9 2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O - -log_k 207.08 - -delta_h -312.130 kcal - -Vm 7 # Pray et al., 1952, IEC 44. 1146 - -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 + -log_k 207.08 + -delta_h -312.13 kcal + -Vm 7 # Pray et al., 1952, IEC 44 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 AmmH+ = Amm + H+ - -log_k -9.252 - -delta_h 12.48 kcal - -analytic 0.6322 -0.001225 -2835.76 - -Vm 6.69 2.8 3.58 -2.88 1.43 - -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 - -dw 2.28e-9 + -log_k -9.252 + -delta_h 12.48 kcal + -analytic 0.6322 -0.001225 -2835.76 + -Vm 6.69 2.8 3.58 -2.88 1.43 + -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -dw 2.28e-9 #NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O # -log_k 119.077 # -delta_h -187.055 kcal # -gamma 2.5 0 # -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 AmmH+ + SO4-2 = AmmHSO4- - -gamma 6.54 -0.08 - -log_k 1.106; -delta_h 4.30 kcal - -Vm -3.23 0 -68.42 0 -14.27 0 68.51 0 -0.4099 0.2339 - -viscosity 0.24 0 0 3.3e-3 -0.10 0.528 0.748 - -dw 1.35e-9 500 12.50 3.0 -1 + -gamma 6.54 -0.08 + -log_k 1.106; -delta_h 4.3 kcal + -Vm -3.23 0 -68.42 0 -14.27 0 68.51 0 -0.4099 0.2339 + -viscosity 0.24 0 0 3.3e-3 -0.1 0.528 0.748 + -dw 1.35e-9 500 12.5 3 -1 H3BO3 = H2BO3- + H+ - -log_k -9.24 - -delta_h 3.224 kcal + -log_k -9.24 + -delta_h 3.224 kcal H3BO3 + F- = BF(OH)3- - -log_k -0.4 - -delta_h 1.850 kcal + -log_k -0.4 + -delta_h 1.85 kcal H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O - -log_k 7.63 - -delta_h 1.618 kcal + -log_k 7.63 + -delta_h 1.618 kcal H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O - -log_k 13.67 + -log_k 13.67 -delta_h -1.614 kcal H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O - -log_k 20.28 + -log_k 20.28 -delta_h -1.846 kcal PO4-3 + H+ = HPO4-2 - -log_k 12.346 - -delta_h -3.530 kcal - -gamma 5.0 0 - -dw 0.69e-9 - -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 + -log_k 12.346 + -delta_h -3.53 kcal + -gamma 5 0 + -dw 0.69e-9 + -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 PO4-3 + 2 H+ = H2PO4- - -log_k 19.553 - -delta_h -4.520 kcal - -gamma 5.4 0 - -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 - -dw 0.846e-9 -PO4-3 + 3H+ = H3PO4 - log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 - delta_h -10.1 kJ - -Vm 7.47 12.4 6.29 -3.29 0 + -log_k 19.553 + -delta_h -4.52 kcal + -gamma 5.4 0 + -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 + -dw 0.846e-9 +PO4-3 + 3 H+ = H3PO4 + log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 + delta_h -10.1 kJ + -Vm 7.47 12.4 6.29 -3.29 0 H+ + F- = HF - -log_k 3.18 - -delta_h 3.18 kcal - -analytic -2.033 0.012645 429.01 - -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt + -log_k 3.18 + -delta_h 3.18 kcal + -analytic -2.033 0.012645 429.01 + -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt H+ + 2 F- = HF2- - -log_k 3.76 - -delta_h 4.550 kcal - -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt + -log_k 3.76 + -delta_h 4.55 kcal + -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt Ca+2 + H2O = CaOH+ + H+ - -log_k -12.78 + -log_k -12.78 Ca+2 + CO3-2 = CaCO3 - -log_k 3.224; -delta_h 3.545 kcal - -analytic -1228.732 -0.299440 35512.75 485.818 - -dw 4.46e-10 # complexes: calc'd with the Pikal formula - -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt + -log_k 3.224; -delta_h 3.545 kcal + -analytic -1228.732 -0.29944 35512.75 485.818 + -dw 4.46e-10 # complexes: calc'd with the Pikal formula + -Vm -.243 -8.3748 9.0417 -2.4328 -.03 # supcrt Ca+2 + CO3-2 + H+ = CaHCO3+ - -log_k 10.91; -delta_h 4.38 kcal - -analytic -6.009 3.377e-2 2044 - -gamma 6.0 0 - -Vm 30.19 .010 5.75 -2.78 .308 5.4 - -dw 5.06e-10 + -log_k 10.91; -delta_h 4.38 kcal + -analytic -6.009 3.377e-2 2044 + -gamma 6 0 + -Vm 30.19 .01 5.75 -2.78 .308 5.4 + -dw 5.06e-10 Ca+2 + SO4-2 = CaSO4 - -log_k 2.25 - -delta_h 1.325 kcal + -log_k 2.25 + -delta_h 1.325 kcal -dw 4.71e-10 - -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # supcrt + -Vm 2.791 -.9666 6.13 -2.739 -.001 # supcrt Ca+2 + HSO4- = CaHSO4+ - -log_k 1.08 + -log_k 1.08 Ca+2 + PO4-3 = CaPO4- - -log_k 6.459 - -delta_h 3.10 kcal - -gamma 5.4 0.0 + -log_k 6.459 + -delta_h 3.1 kcal + -gamma 5.4 0 Ca+2 + HPO4-2 = CaHPO4 - -log_k 2.739 + -log_k 2.739 -delta_h 3.3 kcal Ca+2 + H2PO4- = CaH2PO4+ - -log_k 1.408 + -log_k 1.408 -delta_h 3.4 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 # Ca+2 + F- = CaF+ # -log_k 0.94 # -delta_h 4.120 kcal # -gamma 5.5 0.0 # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt Mg+2 + H2O = MgOH+ + H+ - -log_k -11.44 + -log_k -11.44 -delta_h 15.952 kcal - -gamma 6.5 0 + -gamma 6.5 0 Mg+2 + CO3-2 = MgCO3 - -log_k 2.98 - -delta_h 2.713 kcal - -analytic 0.9910 0.00667 - -Vm -0.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt - -dw 4.21e-10 + -log_k 2.98 + -delta_h 2.713 kcal + -analytic 0.991 0.00667 + -Vm -0.5837 -9.2067 9.3687 -2.3984 -.03 # supcrt + -dw 4.21e-10 Mg+2 + H+ + CO3-2 = MgHCO3+ - -log_k 11.399 + -log_k 11.399 -delta_h -2.771 kcal - -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 - -gamma 4.0 0 - -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt - -dw 4.78e-10 + -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 + -gamma 4 0 + -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt + -dw 4.78e-10 Mg+2 + SO4-2 = MgSO4 - -gamma 0 0.20 - -log_k 2.42; -delta_h 19.0 kJ - -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -Vm 8.65 -10.21 29.58 -18.60 1.061 - -viscosity 0.318 -5.4e-4 -3.42e-2 0.708 3.70e-3 0.696 - -dw 4.45e-10 + -gamma 0 0.2 + -log_k 2.42; -delta_h 19 kJ + -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm 8.65 -10.21 29.58 -18.6 1.061 + -viscosity 0.318 -5.4e-4 -3.42e-2 0.708 3.7e-3 0.696 + -dw 4.45e-10 SO4-2 + MgSO4 = Mg(SO4)2-2 - -gamma 7 0.047 - -log_k 0.52; -delta_h -13.6 kJ - -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -Vm -8.14 -62.20 -15.96 3.29 -3.01 0 150 0 0.153 3.79e-2 - -viscosity -0.169 5e-4 -5.69e-2 0.110 2.03e-3 2.027 -1e-3 - -dw 0.845e-9 -200 8.0 0 0.965 + -gamma 7 0.047 + -log_k 0.52; -delta_h -13.6 kJ + -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm -8.14 -62.2 -15.96 3.29 -3.01 0 150 0 0.153 3.79e-2 + -viscosity -0.169 5e-4 -5.69e-2 0.11 2.03e-3 2.027 -1e-3 + -dw 0.845e-9 -200 8 0 0.965 Mg+2 + PO4-3 = MgPO4- - -log_k 6.589 - -delta_h 3.10 kcal - -gamma 5.4 0 + -log_k 6.589 + -delta_h 3.1 kcal + -gamma 5.4 0 Mg+2 + HPO4-2 = MgHPO4 - -log_k 2.87 + -log_k 2.87 -delta_h 3.3 kcal Mg+2 + H2PO4- = MgH2PO4+ - -log_k 1.513 + -log_k 1.513 -delta_h 3.4 kcal - -gamma 5.4 0 + -gamma 5.4 0 Mg+2 + F- = MgF+ - -log_k 1.82 - -delta_h 3.20 kcal - -gamma 4.5 0 - -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt + -log_k 1.82 + -delta_h 3.2 kcal + -gamma 4.5 0 + -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt Na+ + OH- = NaOH - -log_k -10 # remove this complex + -log_k -10 # remove this complex Na+ + HCO3- = NaHCO3 - -log_k -0.06; -delta_h 21 kJ - -gamma 0 0.2 - -Vm 7.95 0 0 0 0.609 - -viscosity -4e-2 -2.717 1.67e-5 - -dw 6.73e-10 + -log_k -0.06; -delta_h 21 kJ + -gamma 0 0.2 + -Vm 7.95 0 0 0 0.609 + -viscosity -4e-2 -2.717 1.67e-5 + -dw 6.73e-10 Na+ + SO4-2 = NaSO4- - -gamma 5.5 0 - -log_k 0.6; -delta_h -14.4 kJ - -analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC - -Vm 1.99 -10.78 21.88 -12.70 1.601 5 32.38 501 1.565e-2 0.2325 - -viscosity 0.20 -5.93e-2 -4.0e-4 8.46e-3 1.78e-3 2.308 -0.208 - -dw 1.13e-9 -23 8.50 0.392 0.521 + -gamma 5.5 0 + -log_k 0.6; -delta_h -14.4 kJ + -analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC + -Vm 1.99 -10.78 21.88 -12.7 1.601 5 32.38 501 1.565e-2 0.2325 + -viscosity 0.2 -5.93e-2 -4e-4 8.46e-3 1.78e-3 2.308 -0.208 + -dw 1.13e-9 -23 8.5 0.392 0.521 Na+ + HPO4-2 = NaHPO4- - -log_k 0.29 - -gamma 5.4 0 - -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 Na+ + F- = NaF - -log_k -0.24 - -Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt + -log_k -0.24 + -Vm 2.7483 -1.0708 6.1709 -2.7347 -.03 # supcrt K+ + HCO3- = KHCO3 - -log_k -0.35; -delta_h 12 kJ - -gamma 0 9.4e-3 - -Vm 9.48 0 0 0 -0.542 - -viscosity 0.7 -1.289 9e-2 + -log_k -0.35; -delta_h 12 kJ + -gamma 0 9.4e-3 + -Vm 9.48 0 0 0 -0.542 + -viscosity 0.7 -1.289 9e-2 K+ + SO4-2 = KSO4- - -gamma 5.4 0.19 - -log_k 0.6; -delta_h -10.4 kJ - -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC - -Vm 13.48 -18.03 61.74 -19.60 2.046 5.4 -17.32 0 0.1522 1.919 - -viscosity -1.0 1.06 1e-4 -0.464 3.78e-2 0.539 -0.690 - -dw 0.90e-9 63 8.48 0 1.80 + -gamma 5.4 0.19 + -log_k 0.6; -delta_h -10.4 kJ + -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC + -Vm 13.48 -18.03 61.74 -19.6 2.046 5.4 -17.32 0 0.1522 1.919 + -viscosity -1 1.06 1e-4 -0.464 3.78e-2 0.539 -0.69 + -dw 0.9e-9 63 8.48 0 1.8 K+ + HPO4-2 = KHPO4- - -log_k 0.29 - -gamma 5.4 0 - -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 Fe+2 + H2O = FeOH+ + H+ - -log_k -9.5 - -delta_h 13.20 kcal - -gamma 5.0 0 -Fe+2 + 3H2O = Fe(OH)3- + 3H+ - -log_k -31.0 + -log_k -9.5 + -delta_h 13.2 kcal + -gamma 5 0 +Fe+2 + 3 H2O = Fe(OH)3- + 3 H+ + -log_k -31 -delta_h 30.3 kcal - -gamma 5.0 0 + -gamma 5 0 Fe+2 + Cl- = FeCl+ - -log_k 0.14 + -log_k 0.14 Fe+2 + CO3-2 = FeCO3 - -log_k 4.38 + -log_k 4.38 Fe+2 + HCO3- = FeHCO3+ - -log_k 2.0 + -log_k 2 Fe+2 + SO4-2 = FeSO4 - -log_k 2.25 - -delta_h 3.230 kcal - -Vm -13 0 123 + -log_k 2.25 + -delta_h 3.23 kcal + -Vm -13 0 123 Fe+2 + HSO4- = FeHSO4+ - -log_k 1.08 -Fe+2 + 2HS- = Fe(HS)2 - -log_k 8.95 -Fe+2 + 3HS- = Fe(HS)3- - -log_k 10.987 + -log_k 1.08 +Fe+2 + 2 HS- = Fe(HS)2 + -log_k 8.95 +Fe+2 + 3 HS- = Fe(HS)3- + -log_k 10.987 Fe+2 + HPO4-2 = FeHPO4 - -log_k 3.6 + -log_k 3.6 Fe+2 + H2PO4- = FeH2PO4+ - -log_k 2.7 - -gamma 5.4 0 + -log_k 2.7 + -gamma 5.4 0 Fe+2 + F- = FeF+ - -log_k 1.0 + -log_k 1 Fe+2 = Fe+3 + e- - -log_k -13.02 - -delta_h 9.680 kcal - -gamma 9.0 0 + -log_k -13.02 + -delta_h 9.68 kcal + -gamma 9 0 Fe+3 + H2O = FeOH+2 + H+ - -log_k -2.19 - -delta_h 10.4 kcal - -gamma 5.0 0 + -log_k -2.19 + -delta_h 10.4 kcal + -gamma 5 0 Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ - -log_k -5.67 - -delta_h 17.1 kcal - -gamma 5.4 0 + -log_k -5.67 + -delta_h 17.1 kcal + -gamma 5.4 0 Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ - -log_k -12.56 - -delta_h 24.8 kcal + -log_k -12.56 + -delta_h 24.8 kcal Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ - -log_k -21.6 - -delta_h 31.9 kcal - -gamma 5.4 0 -Fe+2 + 2H2O = Fe(OH)2 + 2H+ - -log_k -20.57 + -log_k -21.6 + -delta_h 31.9 kcal + -gamma 5.4 0 +Fe+2 + 2 H2O = Fe(OH)2 + 2 H+ + -log_k -20.57 -delta_h 28.565 kcal 2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ - -log_k -2.95 - -delta_h 13.5 kcal + -log_k -2.95 + -delta_h 13.5 kcal 3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ - -log_k -6.3 - -delta_h 14.3 kcal + -log_k -6.3 + -delta_h 14.3 kcal Fe+3 + Cl- = FeCl+2 - -log_k 1.48 - -delta_h 5.6 kcal - -gamma 5.0 0 + -log_k 1.48 + -delta_h 5.6 kcal + -gamma 5 0 Fe+3 + 2 Cl- = FeCl2+ - -log_k 2.13 - -gamma 5.0 0 + -log_k 2.13 + -gamma 5 0 Fe+3 + 3 Cl- = FeCl3 - -log_k 1.13 + -log_k 1.13 Fe+3 + SO4-2 = FeSO4+ - -log_k 4.04 - -delta_h 3.91 kcal - -gamma 5.0 0 + -log_k 4.04 + -delta_h 3.91 kcal + -gamma 5 0 Fe+3 + HSO4- = FeHSO4+2 - -log_k 2.48 + -log_k 2.48 Fe+3 + 2 SO4-2 = Fe(SO4)2- - -log_k 5.38 - -delta_h 4.60 kcal + -log_k 5.38 + -delta_h 4.6 kcal Fe+3 + HPO4-2 = FeHPO4+ - -log_k 5.43 - -delta_h 5.76 kcal - -gamma 5.0 0 + -log_k 5.43 + -delta_h 5.76 kcal + -gamma 5 0 Fe+3 + H2PO4- = FeH2PO4+2 - -log_k 5.43 - -gamma 5.4 0 + -log_k 5.43 + -gamma 5.4 0 Fe+3 + F- = FeF+2 - -log_k 6.2 - -delta_h 2.7 kcal - -gamma 5.0 0 + -log_k 6.2 + -delta_h 2.7 kcal + -gamma 5 0 Fe+3 + 2 F- = FeF2+ - -log_k 10.8 - -delta_h 4.8 kcal - -gamma 5.0 0 + -log_k 10.8 + -delta_h 4.8 kcal + -gamma 5 0 Fe+3 + 3 F- = FeF3 - -log_k 14.0 - -delta_h 5.4 kcal + -log_k 14 + -delta_h 5.4 kcal Mn+2 + H2O = MnOH+ + H+ - -log_k -10.59 - -delta_h 14.40 kcal - -gamma 5.0 0 -Mn+2 + 3H2O = Mn(OH)3- + 3H+ - -log_k -34.8 - -gamma 5.0 0 + -log_k -10.59 + -delta_h 14.4 kcal + -gamma 5 0 +Mn+2 + 3 H2O = Mn(OH)3- + 3 H+ + -log_k -34.8 + -gamma 5 0 Mn+2 + Cl- = MnCl+ - -log_k 0.61 - -gamma 5.0 0 - -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 + -log_k 0.61 + -gamma 5 0 + -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 Mn+2 + 2 Cl- = MnCl2 - -log_k 0.25 - -Vm 1e-5 0 144 + -log_k 0.25 + -Vm 1e-5 0 144 Mn+2 + 3 Cl- = MnCl3- - -log_k -0.31 - -gamma 5.0 0 - -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 + -log_k -0.31 + -gamma 5 0 + -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 Mn+2 + CO3-2 = MnCO3 - -log_k 4.9 + -log_k 4.9 Mn+2 + HCO3- = MnHCO3+ - -log_k 1.95 - -gamma 5.0 0 + -log_k 1.95 + -gamma 5 0 Mn+2 + SO4-2 = MnSO4 - -log_k 2.25 - -delta_h 3.370 kcal - -Vm -1.31 -1.83 62.3 -2.7 + -log_k 2.25 + -delta_h 3.37 kcal + -Vm -1.31 -1.83 62.3 -2.7 Mn+2 + 2 NO3- = Mn(NO3)2 - -log_k 0.6 + -log_k 0.6 -delta_h -0.396 kcal - -Vm 6.16 0 29.4 0 0.9 + -Vm 6.16 0 29.4 0 0.9 Mn+2 + F- = MnF+ - -log_k 0.84 - -gamma 5.0 0 + -log_k 0.84 + -gamma 5 0 Mn+2 = Mn+3 + e- - -log_k -25.51 - -delta_h 25.80 kcal - -gamma 9.0 0 + -log_k -25.51 + -delta_h 25.8 kcal + -gamma 9 0 Al+3 + H2O = AlOH+2 + H+ - -log_k -5.0 - -delta_h 11.49 kcal - -analytic -38.253 0.0 -656.27 14.327 - -gamma 5.4 0 - -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353. + -log_k -5 + -delta_h 11.49 kcal + -analytic -38.253 0 -656.27 14.327 + -gamma 5.4 0 + -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353 Al+3 + 2 H2O = Al(OH)2+ + 2 H+ - -log_k -10.1 - -delta_h 26.90 kcal - -gamma 5.4 0 - -analytic 88.50 0.0 -9391.6 -27.121 + -log_k -10.1 + -delta_h 26.9 kcal + -gamma 5.4 0 + -analytic 88.5 0 -9391.6 -27.121 Al+3 + 3 H2O = Al(OH)3 + 3 H+ - -log_k -16.9 - -delta_h 39.89 kcal - -analytic 226.374 0.0 -18247.8 -73.597 + -log_k -16.9 + -delta_h 39.89 kcal + -analytic 226.374 0 -18247.8 -73.597 Al+3 + 4 H2O = Al(OH)4- + 4 H+ - -log_k -22.7 - -delta_h 42.30 kcal - -analytic 51.578 0.0 -11168.9 -14.865 - -gamma 4.5 0 + -log_k -22.7 + -delta_h 42.3 kcal + -analytic 51.578 0 -11168.9 -14.865 + -gamma 4.5 0 -dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959 Al+3 + SO4-2 = AlSO4+ - -log_k 3.5 + -log_k 3.5 -delta_h 2.29 kcal - -gamma 4.5 0 -Al+3 + 2SO4-2 = Al(SO4)2- - -log_k 5.0 + -gamma 4.5 0 +Al+3 + 2 SO4-2 = Al(SO4)2- + -log_k 5 -delta_h 3.11 kcal - -gamma 4.5 0 + -gamma 4.5 0 Al+3 + HSO4- = AlHSO4+2 - -log_k 0.46 + -log_k 0.46 Al+3 + F- = AlF+2 - -log_k 7.0 - -delta_h 1.060 kcal - -gamma 5.4 0 + -log_k 7 + -delta_h 1.06 kcal + -gamma 5.4 0 Al+3 + 2 F- = AlF2+ - -log_k 12.7 - -delta_h 1.980 kcal - -gamma 5.4 0 + -log_k 12.7 + -delta_h 1.98 kcal + -gamma 5.4 0 Al+3 + 3 F- = AlF3 - -log_k 16.8 - -delta_h 2.160 kcal + -log_k 16.8 + -delta_h 2.16 kcal Al+3 + 4 F- = AlF4- - -log_k 19.4 - -delta_h 2.20 kcal - -gamma 4.5 0 + -log_k 19.4 + -delta_h 2.2 kcal + -gamma 4.5 0 # Al+3 + 5 F- = AlF5-2 # log_k 20.6 # delta_h 1.840 kcal @@ -662,679 +665,679 @@ Al+3 + 4 F- = AlF4- # log_k 20.6 # delta_h -1.670 kcal H4SiO4 = H3SiO4- + H+ - -log_k -9.83 - -delta_h 6.12 kcal - -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 - -gamma 4 0 - -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 + -log_k -9.83 + -delta_h 6.12 kcal + -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669 + -gamma 4 0 + -Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt H2O in a1 H4SiO4 = H2SiO4-2 + 2 H+ - -log_k -23.0 - -delta_h 17.6 kcal - -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 - -gamma 5.4 0 + -log_k -23 + -delta_h 17.6 kcal + -analytic -294.0184 -0.07265 11204.49 108.18466 -1119669 + -gamma 5.4 0 H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O - -log_k 30.18 - -delta_h -16.260 kcal - -gamma 5.0 0 - -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt + -log_k 30.18 + -delta_h -16.26 kcal + -gamma 5 0 + -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt Ba+2 + H2O = BaOH+ + H+ - -log_k -13.47 - -gamma 5.0 0 + -log_k -13.47 + -gamma 5 0 Ba+2 + CO3-2 = BaCO3 - -log_k 2.71 - -delta_h 3.55 kcal - -analytic 0.113 0.008721 - -Vm .2907 -7.0717 8.5295 -2.4867 -.0300 # supcrt + -log_k 2.71 + -delta_h 3.55 kcal + -analytic 0.113 0.008721 + -Vm .2907 -7.0717 8.5295 -2.4867 -.03 # supcrt Ba+2 + HCO3- = BaHCO3+ - -log_k 0.982 + -log_k 0.982 -delta_h 5.56 kcal - -analytic -3.0938 0.013669 + -analytic -3.0938 0.013669 Ba+2 + SO4-2 = BaSO4 - -log_k 2.7 + -log_k 2.7 Sr+2 + H2O = SrOH+ + H+ - -log_k -13.29 - -gamma 5.0 0 + -log_k -13.29 + -gamma 5 0 Sr+2 + CO3-2 + H+ = SrHCO3+ - -log_k 11.509 - -delta_h 2.489 kcal - -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 - -gamma 5.4 0 + -log_k 11.509 + -delta_h 2.489 kcal + -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 Sr+2 + CO3-2 = SrCO3 - -log_k 2.81 - -delta_h 5.22 kcal - -analytic -1.019 0.012826 - -Vm -.1787 -8.2177 8.9799 -2.4393 -.0300 # supcrt + -log_k 2.81 + -delta_h 5.22 kcal + -analytic -1.019 0.012826 + -Vm -.1787 -8.2177 8.9799 -2.4393 -.03 # supcrt Sr+2 + SO4-2 = SrSO4 - -log_k 2.29 - -delta_h 2.08 kcal - -Vm 6.7910 -.9666 6.1300 -2.7390 -.0010 # celestite solubility + -log_k 2.29 + -delta_h 2.08 kcal + -Vm 6.791 -.9666 6.13 -2.739 -.001 # celestite solubility Li+ + SO4-2 = LiSO4- - -log_k 0.64 - -gamma 5.0 0 + -log_k 0.64 + -gamma 5 0 Cu+2 + e- = Cu+ - -log_k 2.72 - -delta_h 1.65 kcal - -gamma 2.5 0 -Cu+ + 2Cl- = CuCl2- - -log_k 5.50 + -log_k 2.72 + -delta_h 1.65 kcal + -gamma 2.5 0 +Cu+ + 2 Cl- = CuCl2- + -log_k 5.5 -delta_h -0.42 kcal - -gamma 4.0 0 -Cu+ + 3Cl- = CuCl3-2 - -log_k 5.70 + -gamma 4 0 +Cu+ + 3 Cl- = CuCl3-2 + -log_k 5.7 -delta_h 0.26 kcal - -gamma 5.0 0.0 + -gamma 5 0 Cu+2 + CO3-2 = CuCO3 - -log_k 6.73 -Cu+2 + 2CO3-2 = Cu(CO3)2-2 - -log_k 9.83 + -log_k 6.73 +Cu+2 + 2 CO3-2 = Cu(CO3)2-2 + -log_k 9.83 Cu+2 + HCO3- = CuHCO3+ - -log_k 2.7 + -log_k 2.7 Cu+2 + Cl- = CuCl+ - -log_k 0.43 + -log_k 0.43 -delta_h 8.65 kcal - -gamma 4.0 0 - -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 -Cu+2 + 2Cl- = CuCl2 - -log_k 0.16 + -gamma 4 0 + -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 +Cu+2 + 2 Cl- = CuCl2 + -log_k 0.16 -delta_h 10.56 kcal - -Vm 26.8 0 -136 -Cu+2 + 3Cl- = CuCl3- - -log_k -2.29 + -Vm 26.8 0 -136 +Cu+2 + 3 Cl- = CuCl3- + -log_k -2.29 -delta_h 13.69 kcal - -gamma 4.0 0 -Cu+2 + 4Cl- = CuCl4-2 - -log_k -4.59 + -gamma 4 0 +Cu+2 + 4 Cl- = CuCl4-2 + -log_k -4.59 -delta_h 17.78 kcal - -gamma 5.0 0 + -gamma 5 0 Cu+2 + F- = CuF+ - -log_k 1.26 + -log_k 1.26 -delta_h 1.62 kcal Cu+2 + H2O = CuOH+ + H+ - -log_k -8.0 - -gamma 4.0 0 + -log_k -8 + -gamma 4 0 Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ - -log_k -13.68 + -log_k -13.68 Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ - -log_k -26.9 + -log_k -26.9 Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ - -log_k -39.6 -2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ - -log_k -10.359 + -log_k -39.6 +2 Cu+2 + 2 H2O = Cu2(OH)2+2 + 2 H+ + -log_k -10.359 -delta_h 17.539 kcal - -analytical 2.497 0.0 -3833.0 + -analytical 2.497 0 -3833 Cu+2 + SO4-2 = CuSO4 - -log_k 2.31 - -delta_h 1.220 kcal - -Vm 5.21 0 -14.6 -Cu+2 + 3HS- = Cu(HS)3- - -log_k 25.9 + -log_k 2.31 + -delta_h 1.22 kcal + -Vm 5.21 0 -14.6 +Cu+2 + 3 HS- = Cu(HS)3- + -log_k 25.9 Zn+2 + H2O = ZnOH+ + H+ - -log_k -8.96 + -log_k -8.96 -delta_h 13.4 kcal Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ - -log_k -16.9 + -log_k -16.9 Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ - -log_k -28.4 + -log_k -28.4 Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ - -log_k -41.2 + -log_k -41.2 Zn+2 + Cl- = ZnCl+ - -log_k 0.43 + -log_k 0.43 -delta_h 7.79 kcal - -gamma 4.0 0 - -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 + -gamma 4 0 + -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 Zn+2 + 2 Cl- = ZnCl2 - -log_k 0.45 + -log_k 0.45 -delta_h 8.5 kcal - -Vm -10.1 4.57 241 -2.97 -1e-3 -Zn+2 + 3Cl- = ZnCl3- - -log_k 0.5 + -Vm -10.1 4.57 241 -2.97 -1e-3 +Zn+2 + 3 Cl- = ZnCl3- + -log_k 0.5 -delta_h 9.56 kcal - -gamma 4.0 0 - -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 -Zn+2 + 4Cl- = ZnCl4-2 - -log_k 0.2 + -gamma 4 0 + -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 +Zn+2 + 4 Cl- = ZnCl4-2 + -log_k 0.2 -delta_h 10.96 kcal - -gamma 5.0 0 - -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 + -gamma 5 0 + -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 Zn+2 + H2O + Cl- = ZnOHCl + H+ - -log_k -7.48 -Zn+2 + 2HS- = Zn(HS)2 - -log_k 14.94 -Zn+2 + 3HS- = Zn(HS)3- - -log_k 16.1 + -log_k -7.48 +Zn+2 + 2 HS- = Zn(HS)2 + -log_k 14.94 +Zn+2 + 3 HS- = Zn(HS)3- + -log_k 16.1 Zn+2 + CO3-2 = ZnCO3 - -log_k 5.3 -Zn+2 + 2CO3-2 = Zn(CO3)2-2 - -log_k 9.63 + -log_k 5.3 +Zn+2 + 2 CO3-2 = Zn(CO3)2-2 + -log_k 9.63 Zn+2 + HCO3- = ZnHCO3+ - -log_k 2.1 + -log_k 2.1 Zn+2 + SO4-2 = ZnSO4 - -log_k 2.37 + -log_k 2.37 -delta_h 1.36 kcal - -Vm 2.51 0 18.8 -Zn+2 + 2SO4-2 = Zn(SO4)2-2 - -log_k 3.28 - -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 + -Vm 2.51 0 18.8 +Zn+2 + 2 SO4-2 = Zn(SO4)2-2 + -log_k 3.28 + -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 Zn+2 + Br- = ZnBr+ - -log_k -0.58 -Zn+2 + 2Br- = ZnBr2 - -log_k -0.98 + -log_k -0.58 +Zn+2 + 2 Br- = ZnBr2 + -log_k -0.98 Zn+2 + F- = ZnF+ - -log_k 1.15 + -log_k 1.15 -delta_h 2.22 kcal Cd+2 + H2O = CdOH+ + H+ - -log_k -10.08 + -log_k -10.08 -delta_h 13.1 kcal Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ - -log_k -20.35 + -log_k -20.35 Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ - -log_k -33.3 + -log_k -33.3 Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ - -log_k -47.35 -2Cd+2 + H2O = Cd2OH+3 + H+ - -log_k -9.39 + -log_k -47.35 +2 Cd+2 + H2O = Cd2OH+3 + H+ + -log_k -9.39 -delta_h 10.9 kcal Cd+2 + H2O + Cl- = CdOHCl + H+ - -log_k -7.404 + -log_k -7.404 -delta_h 4.355 kcal Cd+2 + NO3- = CdNO3+ - -log_k 0.4 + -log_k 0.4 -delta_h -5.2 kcal - -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 + -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 Cd+2 + Cl- = CdCl+ - -log_k 1.98 + -log_k 1.98 -delta_h 0.59 kcal - -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 + -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 Cd+2 + 2 Cl- = CdCl2 - -log_k 2.6 + -log_k 2.6 -delta_h 1.24 kcal - -Vm 5.53 + -Vm 5.53 Cd+2 + 3 Cl- = CdCl3- - -log_k 2.4 + -log_k 2.4 -delta_h 3.9 kcal - -Vm 4.6 0 83.9 0 0 0 0 0 0 1 + -Vm 4.6 0 83.9 0 0 0 0 0 0 1 Cd+2 + CO3-2 = CdCO3 - -log_k 2.9 -Cd+2 + 2CO3-2 = Cd(CO3)2-2 - -log_k 6.4 + -log_k 2.9 +Cd+2 + 2 CO3-2 = Cd(CO3)2-2 + -log_k 6.4 Cd+2 + HCO3- = CdHCO3+ - -log_k 1.5 + -log_k 1.5 Cd+2 + SO4-2 = CdSO4 - -log_k 2.46 + -log_k 2.46 -delta_h 1.08 kcal - -Vm 10.4 0 57.9 -Cd+2 + 2SO4-2 = Cd(SO4)2-2 - -log_k 3.5 - -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 + -Vm 10.4 0 57.9 +Cd+2 + 2 SO4-2 = Cd(SO4)2-2 + -log_k 3.5 + -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 Cd+2 + Br- = CdBr+ - -log_k 2.17 + -log_k 2.17 -delta_h -0.81 kcal -Cd+2 + 2Br- = CdBr2 - -log_k 2.9 +Cd+2 + 2 Br- = CdBr2 + -log_k 2.9 Cd+2 + F- = CdF+ - -log_k 1.1 -Cd+2 + 2F- = CdF2 - -log_k 1.5 + -log_k 1.1 +Cd+2 + 2 F- = CdF2 + -log_k 1.5 Cd+2 + HS- = CdHS+ - -log_k 10.17 -Cd+2 + 2HS- = Cd(HS)2 - -log_k 16.53 -Cd+2 + 3HS- = Cd(HS)3- - -log_k 18.71 -Cd+2 + 4HS- = Cd(HS)4-2 - -log_k 20.9 + -log_k 10.17 +Cd+2 + 2 HS- = Cd(HS)2 + -log_k 16.53 +Cd+2 + 3 HS- = Cd(HS)3- + -log_k 18.71 +Cd+2 + 4 HS- = Cd(HS)4-2 + -log_k 20.9 Pb+2 + H2O = PbOH+ + H+ - -log_k -7.71 + -log_k -7.71 Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ - -log_k -17.12 + -log_k -17.12 Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ - -log_k -28.06 + -log_k -28.06 Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ - -log_k -39.7 + -log_k -39.7 2 Pb+2 + H2O = Pb2OH+3 + H+ - -log_k -6.36 + -log_k -6.36 Pb+2 + Cl- = PbCl+ - -log_k 1.6 + -log_k 1.6 -delta_h 4.38 kcal - -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt + -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt Pb+2 + 2 Cl- = PbCl2 - -log_k 1.8 + -log_k 1.8 -delta_h 1.08 kcal - -Vm 6.5402 8.1879 2.5318 -3.1175 -.0300 # supcrt + -Vm 6.5402 8.1879 2.5318 -3.1175 -.03 # supcrt Pb+2 + 3 Cl- = PbCl3- - -log_k 1.7 + -log_k 1.7 -delta_h 2.17 kcal - -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt + -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt Pb+2 + 4 Cl- = PbCl4-2 - -log_k 1.38 + -log_k 1.38 -delta_h 3.53 kcal - -Vm 16.4150 32.2997 -6.9452 -4.1143 2.3118 # supcrt + -Vm 16.415 32.2997 -6.9452 -4.1143 2.3118 # supcrt Pb+2 + CO3-2 = PbCO3 - -log_k 7.24 + -log_k 7.24 Pb+2 + 2 CO3-2 = Pb(CO3)2-2 - -log_k 10.64 + -log_k 10.64 Pb+2 + HCO3- = PbHCO3+ - -log_k 2.9 + -log_k 2.9 Pb+2 + SO4-2 = PbSO4 - -log_k 2.75 + -log_k 2.75 Pb+2 + 2 SO4-2 = Pb(SO4)2-2 - -log_k 3.47 -Pb+2 + 2HS- = Pb(HS)2 - -log_k 15.27 -Pb+2 + 3HS- = Pb(HS)3- - -log_k 16.57 -3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ - -log_k -23.88 + -log_k 3.47 +Pb+2 + 2 HS- = Pb(HS)2 + -log_k 15.27 +Pb+2 + 3 HS- = Pb(HS)3- + -log_k 16.57 +3 Pb+2 + 4 H2O = Pb3(OH)4+2 + 4 H+ + -log_k -23.88 -delta_h 26.5 kcal Pb+2 + NO3- = PbNO3+ - -log_k 1.17 + -log_k 1.17 Pb+2 + Br- = PbBr+ - -log_k 1.77 + -log_k 1.77 -delta_h 2.88 kcal -Pb+2 + 2Br- = PbBr2 - -log_k 1.44 +Pb+2 + 2 Br- = PbBr2 + -log_k 1.44 Pb+2 + F- = PbF+ - -log_k 1.25 -Pb+2 + 2F- = PbF2 - -log_k 2.56 -Pb+2 + 3F- = PbF3- - -log_k 3.42 -Pb+2 + 4F- = PbF4-2 - -log_k 3.1 + -log_k 1.25 +Pb+2 + 2 F- = PbF2 + -log_k 2.56 +Pb+2 + 3 F- = PbF3- + -log_k 3.42 +Pb+2 + 4 F- = PbF4-2 + -log_k 3.1 PHASES Calcite CaCO3 = CO3-2 + Ca+2 - -log_k -8.48 + -log_k -8.48 -delta_h -2.297 kcal - -analytic 17.118 -0.046528 -3496 # 0 - 250C, Ellis, 1959, Plummer and Busenberg, 1982 + -analytic 17.118 -0.046528 -3496 # 0 - 250C, Ellis, 1959, Plummer and Busenberg, 1982 -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3) Aragonite CaCO3 = CO3-2 + Ca+2 - -log_k -8.336 + -log_k -8.336 -delta_h -2.589 kcal - -analytic -171.9773 -0.077993 2903.293 71.595 + -analytic -171.9773 -0.077993 2903.293 71.595 -Vm 34.04 Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 - -log_k -17.09 - -delta_h -9.436 kcal - -analytic 31.283 -0.0898 -6438 # 25C: Hemingway and Robie, 1994; 50175C: Bnzeth et al., 2018, GCA 224, 262-275. + -log_k -17.09 + -delta_h -9.436 kcal + -analytic 31.283 -0.0898 -6438 # 25C: Hemingway and Robie, 1994; 50175C: Bnzeth et al., 2018, GCA 224, 262-275 -Vm 64.5 Siderite FeCO3 = Fe+2 + CO3-2 - -log_k -10.89 - -delta_h -2.480 kcal + -log_k -10.89 + -delta_h -2.48 kcal -Vm 29.2 Rhodochrosite MnCO3 = Mn+2 + CO3-2 - -log_k -11.13 - -delta_h -1.430 kcal + -log_k -11.13 + -delta_h -1.43 kcal -Vm 31.1 Strontianite SrCO3 = Sr+2 + CO3-2 - -log_k -9.271 - -delta_h -0.400 kcal - -analytic 155.0305 0.0 -7239.594 -56.58638 + -log_k -9.271 + -delta_h -0.4 kcal + -analytic 155.0305 0 -7239.594 -56.58638 -Vm 39.69 Witherite BaCO3 = Ba+2 + CO3-2 - -log_k -8.562 - -delta_h 0.703 kcal - -analytic 607.642 0.121098 -20011.25 -236.4948 + -log_k -8.562 + -delta_h 0.703 kcal + -analytic 607.642 0.121098 -20011.25 -236.4948 -Vm 46 Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O - -log_k -4.58 + -log_k -4.58 -delta_h -0.109 kcal - -analytic 68.2401 0.0 -3221.51 -25.0627 - -analytical_expression 93.7 5.99E-03 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 - -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) + -analytic 68.2401 0 -3221.51 -25.0627 + -analytical_expression 93.7 5.99E-3 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 + -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) Anhydrite CaSO4 = Ca+2 + SO4-2 - -log_k -4.36 - -delta_h -1.710 kcal - -analytic 84.90 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323. + -log_k -4.36 + -delta_h -1.71 kcal + -analytic 84.9 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323 -Vm 46.1 # 136.14 / 2.95 Celestite SrSO4 = Sr+2 + SO4-2 - -log_k -6.63 + -log_k -6.63 -delta_h -4.037 kcal # -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 - -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464. + -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464 -Vm 46.4 Barite BaSO4 = Ba+2 + SO4-2 - -log_k -9.97 - -delta_h 6.35 kcal - -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 + -log_k -9.97 + -delta_h 6.35 kcal + -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 -Vm 52.9 Arcanite - K2SO4 = SO4-2 + 2 K+ - log_k -1.776; -delta_h 5 kcal - -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 + K2SO4 = SO4-2 + 2 K+ + log_k -1.776; -delta_h 5 kcal + -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 # Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06 -Vm 65.5 Mirabilite - Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O - -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 + Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O + -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 Vm 216 Thenardite Na2SO4 = 2 Na+ + SO4-2 - -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 + -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 -Vm 52.9 Epsomite - MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O - log_k -1.74; -delta_h 10.57 kJ - -analytical_expression -3.59 6.21e-3 + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -1.74; -delta_h 10.57 kJ + -analytical_expression -3.59 6.21e-3 Vm 147 Hexahydrite - MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O - log_k -1.57; -delta_h 2.35 kJ - -analytical_expression -1.978 1.38e-3 + MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O + log_k -1.57; -delta_h 2.35 kJ + -analytical_expression -1.978 1.38e-3 Vm 132 Kieserite - MgSO4:H2O = Mg+2 + SO4-2 + H2O - log_k -1.16; -delta_h 9.22 kJ - -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 + MgSO4:H2O = Mg+2 + SO4-2 + H2O + log_k -1.16; -delta_h 9.22 kJ + -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 Vm 53.8 Hydroxyapatite Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 - -log_k -3.421 + -log_k -3.421 -delta_h -36.155 kcal -Vm 128.9 Fluorite CaF2 = Ca+2 + 2 F- - -log_k -10.6 - -delta_h 4.69 kcal - -analytic 66.348 0.0 -4298.2 -25.271 + -log_k -10.6 + -delta_h 4.69 kcal + -analytic 66.348 0 -4298.2 -25.271 -Vm 15.7 SiO2(a) SiO2 + 2 H2O = H4SiO4 - -log_k -2.71 - -delta_h 3.340 kcal - -analytic -0.26 0.0 -731.0 + -log_k -2.71 + -delta_h 3.34 kcal + -analytic -0.26 0 -731 Chalcedony SiO2 + 2 H2O = H4SiO4 - -log_k -3.55 - -delta_h 4.720 kcal - -analytic -0.09 0.0 -1032.0 + -log_k -3.55 + -delta_h 4.72 kcal + -analytic -0.09 0 -1032 -Vm 23.1 Quartz SiO2 + 2 H2O = H4SiO4 - -log_k -3.98 - -delta_h 5.990 kcal - -analytic 0.41 0.0 -1309.0 + -log_k -3.98 + -delta_h 5.99 kcal + -analytic 0.41 0 -1309 -Vm 22.67 Gibbsite Al(OH)3 + 3 H+ = Al+3 + 3 H2O - -log_k 8.11 - -delta_h -22.800 kcal + -log_k 8.11 + -delta_h -22.8 kcal -Vm 32.22 Al(OH)3(a) Al(OH)3 + 3 H+ = Al+3 + 3 H2O - -log_k 10.8 - -delta_h -26.500 kcal + -log_k 10.8 + -delta_h -26.5 kcal Kaolinite Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 - -log_k 7.435 - -delta_h -35.300 kcal + -log_k 7.435 + -delta_h -35.3 kcal -Vm 99.35 Albite NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 - -log_k -18.002 + -log_k -18.002 -delta_h 25.896 kcal -Vm 101.31 Anorthite CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 - -log_k -19.714 - -delta_h 11.580 kcal + -log_k -19.714 + -delta_h 11.58 kcal -Vm 105.05 K-feldspar KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 - -log_k -20.573 - -delta_h 30.820 kcal + -log_k -20.573 + -delta_h 30.82 kcal -Vm 108.15 K-mica KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 - -log_k 12.703 + -log_k 12.703 -delta_h -59.376 kcal Chlorite(14A) - Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O - -log_k 68.38 + Mg5Al2Si3O10(OH)8 + 16 H+ = 5 Mg+2 + 2 Al+3 + 3 H4SiO4 + 6 H2O + -log_k 68.38 -delta_h -151.494 kcal Ca-Montmorillonite - Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ - -log_k -45.027 + Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165 Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ + -log_k -45.027 -delta_h 58.373 kcal -Vm 156.16 Talc Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 - -log_k 21.399 + -log_k 21.399 -delta_h -46.352 kcal -Vm 68.34 Illite - K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+ - -log_k -40.267 + K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2 H2O = 0.6 K+ + 0.25 Mg+2 + 2.3 Al(OH)4- + 3.5 H4SiO4 + 1.2 H+ + -log_k -40.267 -delta_h 54.684 kcal -Vm 141.48 Chrysotile Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 - -log_k 32.2 - -delta_h -46.800 kcal - -analytic 13.248 0.0 10217.1 -6.1894 - -Vm 106.5808 # 277.11/2.60 + -log_k 32.2 + -delta_h -46.8 kcal + -analytic 13.248 0 10217.1 -6.1894 + -Vm 106.5808 # 277.11/2.60 Sepiolite - Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 - -log_k 15.760 - -delta_h -10.700 kcal + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 + -log_k 15.76 + -delta_h -10.7 kcal -Vm 143.765 Sepiolite(d) - Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 - -log_k 18.66 + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 + -log_k 18.66 Hematite Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O - -log_k -4.008 + -log_k -4.008 -delta_h -30.845 kcal -Vm 30.39 Goethite FeOOH + 3 H+ = Fe+3 + 2 H2O - -log_k -1.0 - -delta_h -14.48 kcal + -log_k -1 + -delta_h -14.48 kcal -Vm 20.84 Fe(OH)3(a) Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O - -log_k 4.891 + -log_k 4.891 Pyrite FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- - -log_k -18.479 - -delta_h 11.300 kcal + -log_k -18.479 + -delta_h 11.3 kcal -Vm 23.48 FeS(ppt) FeS + H+ = Fe+2 + HS- - -log_k -3.915 + -log_k -3.915 Mackinawite FeS + H+ = Fe+2 + HS- - -log_k -4.648 + -log_k -4.648 -Vm 20.45 Sulfur - S + 2H+ + 2e- = H2S - -log_k 4.882 + S + 2 H+ + 2 e- = H2S + -log_k 4.882 -delta_h -9.5 kcal Vivianite Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O - -log_k -36.0 -Pyrolusite # H2O added for surface calc's + -log_k -36 +Pyrolusite # H2O added for surface calc's MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O - -log_k 41.38 - -delta_h -65.110 kcal + -log_k 41.38 + -delta_h -65.11 kcal Hausmannite Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O - -log_k 61.03 - -delta_h -100.640 kcal + -log_k 61.03 + -delta_h -100.64 kcal Manganite MnOOH + 3 H+ + e- = Mn+2 + 2 H2O - -log_k 25.34 + -log_k 25.34 Pyrochroite Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O - -log_k 15.2 + -log_k 15.2 Halite - NaCl = Cl- + Na+ - log_k 1.570 - -delta_h 1.37 + NaCl = Cl- + Na+ + log_k 1.57 + -delta_h 1.37 #-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915. -Vm 27.1 Sylvite - KCl = K+ + Cl- - log_k 0.900 - -delta_h 8.5 + KCl = K+ + Cl- + log_k 0.9 + -delta_h 8.5 # -analytic 3.984 0.0 -919.55 Vm 37.5 # Gases... CO2(g) CO2 = CO2 - -log_k -1.468 + -log_k -1.468 -delta_h -4.776 kcal - -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 - -T_c 304.2 # critical T, K - -P_c 72.86 # critical P, atm + -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 + -T_c 304.2 # critical T, K + -P_c 72.86 # critical P, atm -Omega 0.225 # acentric factor H2O(g) H2O = H2O - -log_k 1.506; delta_h -44.03 kJ - -T_c 647.3; -P_c 217.60; -Omega 0.344 - -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 + -log_k 1.506; delta_h -44.03 kJ + -T_c 647.3; -P_c 217.6; -Omega 0.344 + -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 O2(g) O2 = O2 - -log_k -2.8983 - -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 - -T_c 154.6; -P_c 49.80; -Omega 0.021 + -log_k -2.8983 + -analytic -7.5001 7.8981e-3 0 0 2.0027e5 + -T_c 154.6; -P_c 49.8; -Omega 0.021 H2(g) H2 = H2 - -log_k -3.1050 - -delta_h -4.184 kJ - -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 - -T_c 33.2; -P_c 12.80; -Omega -0.225 + -log_k -3.105 + -delta_h -4.184 kJ + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + -T_c 33.2; -P_c 12.8; -Omega -0.225 N2(g) N2 = N2 - -log_k -3.1864 - -analytic -58.453 1.818e-3 3199 17.909 -27460 - -T_c 126.2; -P_c 33.50; -Omega 0.039 + -log_k -3.1864 + -analytic -58.453 1.818e-3 3199 17.909 -27460 + -T_c 126.2; -P_c 33.5; -Omega 0.039 H2S(g) - H2S = H+ + HS- - log_k -7.93 - -delta_h 9.1 - -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 - -T_c 373.2; -P_c 88.20; -Omega 0.1 + H2S = H+ + HS- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2; -P_c 88.2; -Omega 0.1 CH4(g) CH4 = CH4 -log_k -2.8 - -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100C - -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100C + -T_c 190.6; -P_c 45.4; -Omega 0.008 Amm(g) Amm = Amm - -log_k 1.7966 - -analytic -18.758 3.3670e-4 2.5113e3 4.8619 39.192 - -T_c 405.6; -P_c 111.3; -Omega 0.25 + -log_k 1.7966 + -analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192 + -T_c 405.6; -P_c 111.3; -Omega 0.25 # redox-uncoupled gases Oxg(g) Oxg = Oxg - -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 - -T_c 154.6 ; -P_c 49.80 ; -Omega 0.021 + -analytic -7.5001 7.8981e-3 0 0 2.0027e5 + -T_c 154.6; -P_c 49.8; -Omega 0.021 Hdg(g) Hdg = Hdg - -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 - -T_c 33.2 ; -P_c 12.80 ; -Omega -0.225 + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + -T_c 33.2; -P_c 12.8; -Omega -0.225 Ntg(g) Ntg = Ntg - -analytic -58.453 1.81800e-3 3199 17.909 -27460 - T_c 126.2 ; -P_c 33.50 ; -Omega 0.039 + -analytic -58.453 1.818e-3 3199 17.909 -27460 + T_c 126.2; -P_c 33.5; -Omega 0.039 Mtg(g) Mtg = Mtg -log_k -2.8 - -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100C - -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100C + -T_c 190.6; -P_c 45.4; -Omega 0.008 H2Sg(g) - H2Sg = H+ + HSg- - log_k -7.93 - -delta_h 9.1 - -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 - -T_c 373.2 ; -P_c 88.20 ; -Omega 0.1 + H2Sg = H+ + HSg- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2; -P_c 88.2; -Omega 0.1 Melanterite FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 - -log_k -2.209 - -delta_h 4.910 kcal - -analytic 1.447 -0.004153 0.0 0.0 -214949.0 + -log_k -2.209 + -delta_h 4.91 kcal + -analytic 1.447 -0.004153 0 0 -214949 Alunite - KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6H2O - -log_k -1.4 - -delta_h -50.250 kcal + KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O + -log_k -1.4 + -delta_h -50.25 kcal Jarosite-K KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2 - -log_k -9.21 - -delta_h -31.280 kcal + -log_k -9.21 + -delta_h -31.28 kcal Zn(OH)2(e) Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O - -log_k 11.5 + -log_k 11.5 Smithsonite ZnCO3 = Zn+2 + CO3-2 - -log_k -10.0 - -delta_h -4.36 kcal + -log_k -10 + -delta_h -4.36 kcal Sphalerite ZnS + H+ = Zn+2 + HS- - -log_k -11.618 - -delta_h 8.250 kcal -Willemite 289 - Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4 - -log_k 15.33 + -log_k -11.618 + -delta_h 8.25 kcal +Willemite 289 + Zn2SiO4 + 4 H+ = 2 Zn+2 + H4SiO4 + -log_k 15.33 -delta_h -33.37 kcal Cd(OH)2 Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O - -log_k 13.65 + -log_k 13.65 Otavite 315 CdCO3 = Cd+2 + CO3-2 - -log_k -12.1 + -log_k -12.1 -delta_h -0.019 kcal -CdSiO3 328 - CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4 - -log_k 9.06 +CdSiO3 328 + CdSiO3 + H2O + 2 H+ = Cd+2 + H4SiO4 + -log_k 9.06 -delta_h -16.63 kcal -CdSO4 329 +CdSO4 329 CdSO4 = Cd+2 + SO4-2 - -log_k -0.1 + -log_k -0.1 -delta_h -14.74 kcal -Cerussite 365 +Cerussite 365 PbCO3 = Pb+2 + CO3-2 - -log_k -13.13 - -delta_h 4.86 kcal -Anglesite 384 + -log_k -13.13 + -delta_h 4.86 kcal +Anglesite 384 PbSO4 = Pb+2 + SO4-2 - -log_k -7.79 - -delta_h 2.15 kcal + -log_k -7.79 + -delta_h 2.15 kcal Pb(OH)2 389 - Pb(OH)2 + 2H+ = Pb+2 + 2H2O - -log_k 8.15 + Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O + -log_k 8.15 -delta_h -13.99 kcal EXCHANGE_MASTER_SPECIES - X X- + X X- EXCHANGE_SPECIES X- = X- - -log_k 0.0 + -log_k 0 Na+ + X- = NaX - -log_k 0.0 - -gamma 4.08 0.082 + -log_k 0 + -gamma 4.08 0.082 K+ + X- = KX - -log_k 0.7 - -gamma 3.5 0.015 - -delta_h -4.3 # Jardine & Sparks, 1984 + -log_k 0.7 + -gamma 3.5 0.015 + -delta_h -4.3 # Jardine & Sparks, 1984 Li+ + X- = LiX - -log_k -0.08 - -gamma 6.0 0 - -delta_h 1.4 # Merriam & Thomas, 1956 + -log_k -0.08 + -gamma 6 0 + -delta_h 1.4 # Merriam & Thomas, 1956 # !!!!! # H+ + X- = HX @@ -1342,65 +1345,65 @@ EXCHANGE_SPECIES # -gamma 9.0 0 AmmH+ + X- = AmmHX - -log_k 0.6 - -gamma 2.5 0 - -delta_h -2.4 # Laudelout et al., 1968 + -log_k 0.6 + -gamma 2.5 0 + -delta_h -2.4 # Laudelout et al., 1968 - Ca+2 + 2X- = CaX2 - -log_k 0.8 - -gamma 5.0 0.165 - -delta_h 7.2 # Van Bladel & Gheyl, 1980 + Ca+2 + 2 X- = CaX2 + -log_k 0.8 + -gamma 5 0.165 + -delta_h 7.2 # Van Bladel & Gheyl, 1980 - Mg+2 + 2X- = MgX2 - -log_k 0.6 - -gamma 5.5 0.2 - -delta_h 7.4 # Laudelout et al., 1968 + Mg+2 + 2 X- = MgX2 + -log_k 0.6 + -gamma 5.5 0.2 + -delta_h 7.4 # Laudelout et al., 1968 - Sr+2 + 2X- = SrX2 - -log_k 0.91 - -gamma 5.26 0.121 - -delta_h 5.5 # Laudelout et al., 1968 + Sr+2 + 2 X- = SrX2 + -log_k 0.91 + -gamma 5.26 0.121 + -delta_h 5.5 # Laudelout et al., 1968 - Ba+2 + 2X- = BaX2 - -log_k 0.91 - -gamma 4.0 0.153 - -delta_h 4.5 # Laudelout et al., 1968 + Ba+2 + 2 X- = BaX2 + -log_k 0.91 + -gamma 4 0.153 + -delta_h 4.5 # Laudelout et al., 1968 - Mn+2 + 2X- = MnX2 - -log_k 0.52 - -gamma 6.0 0 + Mn+2 + 2 X- = MnX2 + -log_k 0.52 + -gamma 6 0 - Fe+2 + 2X- = FeX2 - -log_k 0.44 - -gamma 6.0 0 + Fe+2 + 2 X- = FeX2 + -log_k 0.44 + -gamma 6 0 - Cu+2 + 2X- = CuX2 - -log_k 0.6 - -gamma 6.0 0 + Cu+2 + 2 X- = CuX2 + -log_k 0.6 + -gamma 6 0 - Zn+2 + 2X- = ZnX2 - -log_k 0.8 - -gamma 5.0 0 + Zn+2 + 2 X- = ZnX2 + -log_k 0.8 + -gamma 5 0 - Cd+2 + 2X- = CdX2 - -log_k 0.8 - -gamma 0.0 0 + Cd+2 + 2 X- = CdX2 + -log_k 0.8 + -gamma 0 0 - Pb+2 + 2X- = PbX2 - -log_k 1.05 - -gamma 0.0 0 + Pb+2 + 2 X- = PbX2 + -log_k 1.05 + -gamma 0 0 - Al+3 + 3X- = AlX3 - -log_k 0.41 - -gamma 9.0 0 + Al+3 + 3 X- = AlX3 + -log_k 0.41 + -gamma 9 0 - AlOH+2 + 2X- = AlOHX2 - -log_k 0.89 - -gamma 0.0 0 + AlOH+2 + 2 X- = AlOHX2 + -log_k 0.89 + -gamma 0 0 SURFACE_MASTER_SPECIES - Hfo_s Hfo_sOH - Hfo_w Hfo_wOH + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH SURFACE_SPECIES # All surface data from # Dzombak and Morel, 1990 @@ -1411,24 +1414,24 @@ SURFACE_SPECIES # strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH - -log_k 0 + -log_k 0 Hfo_sOH + H+ = Hfo_sOH2+ - -log_k 7.29 # = pKa1,int + -log_k 7.29 # = pKa1,int Hfo_sOH = Hfo_sO- + H+ - -log_k -8.93 # = -pKa2,int + -log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH - -log_k 0 + -log_k 0 Hfo_wOH + H+ = Hfo_wOH2+ - -log_k 7.29 # = pKa1,int + -log_k 7.29 # = pKa1,int Hfo_wOH = Hfo_wO- + H+ - -log_k -8.93 # = -pKa2,int + -log_k -8.93 # = -pKa2,int ############################################### # CATIONS # ############################################### @@ -1437,52 +1440,52 @@ SURFACE_SPECIES # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - -log_k 4.97 + -log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ -log_k -5.85 # Strontium Hfo_sOH + Sr+2 = Hfo_sOHSr+2 - -log_k 5.01 + -log_k 5.01 Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ -log_k -6.58 - Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+ + Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2 H+ -log_k -17.6 # Barium Hfo_sOH + Ba+2 = Hfo_sOHBa+2 - -log_k 5.46 + -log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - -log_k -7.2 # table 10.5 + -log_k -7.2 # table 10.5 # # Cations from table 10.2 # # Cadmium Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ - -log_k 0.47 + -log_k 0.47 Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ - -log_k -2.91 + -log_k -2.91 # Zinc Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ - -log_k 0.99 + -log_k 0.99 Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ - -log_k -1.99 + -log_k -1.99 # Copper Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ - -log_k 2.89 + -log_k 2.89 Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ - -log_k 0.6 # table 10.5 + -log_k 0.6 # table 10.5 # Lead Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ - -log_k 4.65 + -log_k 4.65 Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ - -log_k 0.3 # table 10.5 + -log_k 0.3 # table 10.5 # # Derived constants table 10.5 # @@ -1491,18 +1494,18 @@ SURFACE_SPECIES -log_k -4.6 # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ - -log_k -0.4 # table 10.5 + -log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ - -log_k -3.5 # table 10.5 + -log_k -3.5 # table 10.5 # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096 Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ - -log_k -0.95 + -log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ -log_k -2.98 - Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+ + Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2 H+ -log_k -11.55 ############################################### # ANIONS # @@ -1511,51 +1514,51 @@ SURFACE_SPECIES # Anions from table 10.6 # # Phosphate - Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O - -log_k 31.29 + Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O + -log_k 31.29 - Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O - -log_k 25.39 + Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O + -log_k 25.39 Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O - -log_k 17.72 + -log_k 17.72 # # Anions from table 10.7 # # Borate Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O - -log_k 0.62 + -log_k 0.62 # # Anions from table 10.8 # # Sulfate Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O - -log_k 7.78 + -log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - -log_k 0.79 + -log_k 0.79 # # Derived constants table 10.10 # Hfo_wOH + F- + H+ = Hfo_wF + H2O - -log_k 8.7 + -log_k 8.7 Hfo_wOH + F- = Hfo_wOHF- - -log_k 1.6 + -log_k 1.6 # # Carbonate: Van Geen et al., 1994 reoptimized for D&M model # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O - -log_k 12.56 + -log_k 12.56 - Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O - -log_k 20.62 + Hfo_wOH + CO3-2 + 2 H+ = Hfo_wHCO3 + H2O + -log_k 20.62 # # Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422. # - Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 - Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 - Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69 + Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 + Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O; log_K -3.22 + Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2 H+ + H2O; log_K -11.69 MEAN_GAMMAS CaCl2 Ca+2 1 Cl- 2 @@ -1580,6 +1583,7 @@ HCl H+ 1 Cl- 1 H2SO4 H+ 2 SO4-2 1 HBr H+ 1 Br- 1 + RATES ########### @@ -1597,15 +1601,15 @@ RATES Quartz -start -1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 -2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol -3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) -4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz -5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 +1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 +2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol +3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) +4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz +5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 10 dif_temp = 1/TK - 1/298 20 pk_w = 13.7 + 4700.4 * dif_temp -40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) +40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) # Integrate... 50 SAVE moles * TIME -end @@ -1650,38 +1654,38 @@ Quartz K-feldspar -start -1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 -2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar -3 REM PARM(2) = Adjusts lab rate to field rate -4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) -5 REM K-Feldspar parameters -10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 -20 RESTORE 10 -30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH -40 DATA 3500, 2000, 2500, 2000 -50 RESTORE 40 -60 READ e_H, e_H2O, e_OH, e_CO2 -70 pk_CO2 = 13 -80 n_CO2 = 0.6 +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM K-Feldspar parameters +10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp -150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis -170 pk_H2O = pk_H2O + e_H2O * dif_temp +170 pk_H2O = pk_H2O + e_H2O * dif_temp 180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) 190 REM rate by OH- -200 pk_OH = pk_OH + e_OH * dif_temp -210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH 220 REM rate by CO2 -230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) -280 moles = rate * TIME +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) +280 moles = rate * TIME 290 SAVE moles -end @@ -1725,38 +1729,38 @@ K-feldspar Albite -start -1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 -2 REM PARM(1) = Specific area of Albite m^2/mol Albite -3 REM PARM(2) = Adjusts lab rate to field rate -4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) -5 REM Albite parameters -10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 -20 RESTORE 10 -30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH -40 DATA 3500, 2000, 2500, 2000 -50 RESTORE 40 -60 READ e_H, e_H2O, e_OH, e_CO2 -70 pk_CO2 = 13 -80 n_CO2 = 0.6 +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Albite m^2/mol Albite +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM Albite parameters +10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp -150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis -170 pk_H2O = pk_H2O + e_H2O * dif_temp +170 pk_H2O = pk_H2O + e_H2O * dif_temp 180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) 190 REM rate by OH- -200 pk_OH = pk_OH + e_OH * dif_temp -210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH 220 REM rate by CO2 -230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("Albite")) -280 moles = rate * TIME +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("Albite")) +280 moles = rate * TIME 290 SAVE moles -end @@ -1764,7 +1768,7 @@ Albite #Calcite ######## # Example of KINETICS data block for calcite rate, -# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257. +# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257 # KINETICS 1 # Calcite # -tol 1e-8 @@ -1775,16 +1779,16 @@ Albite Calcite -start -1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite -2 REM PARM(2) = exponent for M/M0 +1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite +2 REM PARM(2) = exponent for M/M0 -10 si_cc = SI("Calcite") -20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 -30 k1 = 10^(0.198 - 444.0 / TK ) -40 k2 = 10^(2.84 - 2177.0 /TK ) -50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317.0 / TK) -60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737.0 / TK ) -80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M +10 si_cc = SI("Calcite") +20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 +30 k1 = 10^(0.198 - 444 / TK ) +40 k2 = 10^(2.84 - 2177 /TK ) +50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317 / TK) +60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737 / TK ) +80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M 110 rate = area * (k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O")) 120 rate = rate * (1 - 10^(2/3*si_cc)) 130 moles = rate * 0.001 * TIME # convert from mmol to mol @@ -1809,18 +1813,18 @@ Calcite # -time 1 day in 10 Pyrite -start -1 REM Williamson and Rimstidt, 1994 -2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) -3 REM PARM(2) = exp for (M/M0) -4 REM PARM(3) = exp for O2 -5 REM PARM(4) = exp for H+ +1 REM Williamson and Rimstidt, 1994 +2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) +3 REM PARM(2) = exp for (M/M0) +4 REM PARM(3) = exp for O2 +5 REM PARM(4) = exp for H+ -10 REM Dissolution in presence of DO -20 if (M <= 0) THEN GOTO 200 -30 if (SI("Pyrite") >= 0) THEN GOTO 200 -40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") -50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) -60 moles = 10^(log_area + log_rate) * TIME +10 REM Dissolution in presence of DO +20 if (M <= 0) THEN GOTO 200 +30 if (SI("Pyrite") >= 0) THEN GOTO 200 +40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") +50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) +60 moles = 10^(log_area + log_rate) * TIME 200 SAVE moles -end @@ -1837,19 +1841,19 @@ Pyrite # -time 30 year in 15 Organic_C -start -1 REM Additive Monod kinetics for SOC (sediment organic carbon) -2 REM Electron acceptors: O2, NO3, and SO4 +1 REM Additive Monod kinetics for SOC (sediment organic carbon) +2 REM Electron acceptors: O2, NO3, and SO4 -10 if (M <= 0) THEN GOTO 200 -20 mO2 = MOL("O2") -30 mNO3 = TOT("N(5)") -40 mSO4 = TOT("S(6)") -50 k_O2 = 1.57e-9 # 1/sec -60 k_NO3 = 1.67e-11 # 1/sec -70 k_SO4 = 1.e-13 # 1/sec -80 rate = k_O2 * mO2/(2.94e-4 + mO2) -90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) -100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) +10 if (M <= 0) THEN GOTO 200 +20 mO2 = MOL("O2") +30 mNO3 = TOT("N(5)") +40 mSO4 = TOT("S(6)") +50 k_O2 = 1.57e-9 # 1/sec +60 k_NO3 = 1.67e-11 # 1/sec +70 k_SO4 = 1.e-13 # 1/sec +80 rate = k_O2 * mO2/(2.94e-4 + mO2) +90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) +100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) 110 moles = rate * M * (M/M0) * TIME 200 SAVE moles -end @@ -1870,25 +1874,25 @@ Organic_C # -time 0.5 day in 10 Pyrolusite -start -10 if (M <= 0) THEN GOTO 200 -20 sr_pl = SR("Pyrolusite") -30 if (sr_pl > 1) THEN GOTO 100 -40 REM sr_pl <= 1, undersaturated -50 Fe_t = TOT("Fe(2)") -60 if Fe_t < 1e-8 then goto 200 -70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) -80 GOTO 200 +10 if (M <= 0) THEN GOTO 200 +20 sr_pl = SR("Pyrolusite") +30 if (sr_pl > 1) THEN GOTO 100 +40 REM sr_pl <= 1, undersaturated +50 Fe_t = TOT("Fe(2)") +60 if Fe_t < 1e-8 then goto 200 +70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) +80 GOTO 200 100 REM sr_pl > 1, supersaturated 110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME 200 SAVE moles * SOLN_VOL -end # ============================================================================================= -#(a) means amorphous. (d) means disordered, or less crystalline. -#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt), -#precipitated, indicates an initial precipitate that is less crystalline. +#(a) means amorphous. (d) means disordered, or less crystalline. +#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt), +#precipitated, indicates an initial precipitate that is less crystalline. #Zn(OH)2(e) indicates a specific crystal form, epsilon. -# ============================================================================================= +# ============================================================================================= # For the reaction aA + bB = cC + dD, # with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B), # PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT). diff --git a/Tipping_Hurley.dat b/Tipping_Hurley.dat index 792e440c..471fe128 100644 --- a/Tipping_Hurley.dat +++ b/Tipping_Hurley.dat @@ -1,1397 +1,1401 @@ +# File 1 = C:\GitPrograms\phreeqc3-1\database\Tipping_Hurley.dat, 11/09/2013 23:05, 4134 lines, 111410 bytes, md5=ffec89dbc1a8a57aec1a0f8e2fc8f922 +# Created 17 May 2024 14:30:44 +# c:\3rdParty\lsp\lsp.exe -f2 -k="asis" -ts "Tipping_Hurley.dat" + # $Id: wateq4f.dat 6895 2012-08-21 18:10:05Z dlpark $ # Revised arsenic data from Archer and Nordstrom (2002) SOLUTION_MASTER_SPECIES -Ag Ag+ 0.0 107.868 107.868 -Al Al+3 0.0 26.9815 26.9815 -Alkalinity CO3-2 1.0 50.05 50.05 -As H3AsO4 -1.0 74.9216 74.9216 -As(+3) H3AsO3 0.0 74.9216 74.9216 -As(+5) H3AsO4 -1.0 74.9216 -B H3BO3 0.0 10.81 10.81 -Ba Ba+2 0.0 137.34 137.34 -Br Br- 0.0 79.904 79.904 -C CO3-2 2.0 61.0173 12.0111 -C(+4) CO3-2 2.0 61.0173 -C(-4) CH4 0.0 16.042 -Ca Ca+2 0.0 40.08 40.08 -Cd Cd+2 0.0 112.4 112.4 -Cl Cl- 0.0 35.453 35.453 -Cs Cs+ 0.0 132.905 132.905 -Cu Cu+2 0.0 63.546 63.546 -Cu(+1) Cu+1 0.0 63.546 -Cu(+2) Cu+2 0.0 63.546 -E e- 0.0 0.0 0.0 -F F- 0.0 18.9984 18.9984 -Fe Fe+2 0.0 55.847 55.847 -Fe(+2) Fe+2 0.0 55.847 -Fe(+3) Fe+3 -2.0 55.847 -Fulvate Fulvate-2 0.0 650. 650. -H H+ -1. 1.008 1.008 -H(0) H2 0.0 1.008 -H(1) H+ -1. 1.008 -Humate Humate-2 0.0 2000. 2000. -I I- 0.0 126.9044 126.9044 -K K+ 0.0 39.102 39.102 -Li Li+ 0.0 6.939 6.939 -Mg Mg+2 0.0 24.312 24.312 -Mn Mn+2 0.0 54.938 54.938 -Mn(2) Mn+2 0.0 54.938 -Mn(3) Mn+3 0.0 54.938 -Mn(6) MnO4-2 0.0 54.938 -Mn(7) MnO4- 0.0 54.938 -N NO3- 0.0 14.0067 14.0067 -N(-3) NH4+ 0.0 14.0067 -N(0) N2 0.0 14.0067 -N(+3) NO2- 0.0 14.0067 -N(+5) NO3- 0.0 14.0067 -Na Na+ 0.0 22.9898 22.9898 -Ni Ni+2 0.0 58.71 58.71 -O H2O 0.0 16.00 16.00 -O(-2) H2O 0.0 18.016 -O(0) O2 0.0 16.00 -P PO4-3 2.0 30.9738 30.9738 -Pb Pb+2 0.0 207.19 207.19 -Rb Rb+ 0.0 85.47 85.47 -S SO4-2 0.0 96.0616 32.064 -S(-2) H2S 0.0 32.064 -S(6) SO4-2 0.0 96.0616 -Se SeO4-2 0.0 78.96 78.96 -Se(-2) HSe- 0.0 78.96 -Se(4) SeO3-2 0.0 78.96 -Se(6) SeO4-2 0.0 78.96 -Si H4SiO4 0.0 60.0843 28.0843 -Sr Sr+2 0.0 87.62 87.62 -Zn Zn+2 0.0 65.37 65.37 -U UO2+2 0.0 238.0290 238.0290 -U(3) U+3 0.0 238.0290 238.0290 -U(4) U+4 0.0 238.0290 238.0290 -U(5) UO2+ 0.0 238.0290 238.0290 -U(6) UO2+2 0.0 238.0290 238.0290 +Ag Ag+ 0 107.868 107.868 +Al Al+3 0 26.9815 26.9815 +Alkalinity CO3-2 1 50.05 50.05 +As H3AsO4 -1 74.9216 74.9216 +As(+3) H3AsO3 0 74.9216 74.9216 +As(+5) H3AsO4 -1 74.9216 +B H3BO3 0 10.81 10.81 +Ba Ba+2 0 137.34 137.34 +Br Br- 0 79.904 79.904 +C CO3-2 2 61.0173 12.0111 +C(+4) CO3-2 2 61.0173 +C(-4) CH4 0 16.042 +Ca Ca+2 0 40.08 40.08 +Cd Cd+2 0 112.4 112.4 +Cl Cl- 0 35.453 35.453 +Cs Cs+ 0 132.905 132.905 +Cu Cu+2 0 63.546 63.546 +Cu(+1) Cu+1 0 63.546 +Cu(+2) Cu+2 0 63.546 +E e- 1 0 0 +F F- 0 18.9984 18.9984 +Fe Fe+2 0 55.847 55.847 +Fe(+2) Fe+2 0 55.847 +Fe(+3) Fe+3 -2 55.847 +Fulvate Fulvate-2 0 650 650 +H H+ -1 1.008 1.008 +H(0) H2 0 1.008 +H(1) H+ -1 1.008 +Humate Humate-2 0 2000 2000 +I I- 0 126.9044 126.9044 +K K+ 0 39.102 39.102 +Li Li+ 0 6.939 6.939 +Mg Mg+2 0 24.312 24.312 +Mn Mn+2 0 54.938 54.938 +Mn(2) Mn+2 0 54.938 +Mn(3) Mn+3 0 54.938 +Mn(6) MnO4-2 0 54.938 +Mn(7) MnO4- 0 54.938 +N NO3- 0 14.0067 14.0067 +N(-3) NH4+ 0 14.0067 +N(0) N2 0 14.0067 +N(+3) NO2- 0 14.0067 +N(+5) NO3- 0 14.0067 +Na Na+ 0 22.9898 22.9898 +Ni Ni+2 0 58.71 58.71 +O H2O 0 16 16 +O(-2) H2O 0 18.016 +O(0) O2 0 16 +P PO4-3 2 30.9738 30.9738 +Pb Pb+2 0 207.19 207.19 +Rb Rb+ 0 85.47 85.47 +S SO4-2 0 96.0616 32.064 +S(-2) H2S 0 32.064 +S(6) SO4-2 0 96.0616 +Se SeO4-2 0 78.96 78.96 +Se(-2) HSe- 0 78.96 +Se(4) SeO3-2 0 78.96 +Se(6) SeO4-2 0 78.96 +Si H4SiO4 0 60.0843 28.0843 +Sr Sr+2 0 87.62 87.62 +Zn Zn+2 0 65.37 65.37 +U UO2+2 0 238.029 238.029 +U(3) U+3 0 238.029 238.029 +U(4) U+4 0 238.029 238.029 +U(5) UO2+ 0 238.029 238.029 +U(6) UO2+2 0 238.029 238.029 SOLUTION_SPECIES #H+ primary master species H+ = H+ - log_k 0.0 - -gamma 9.0 0.0 + log_k 0 + -gamma 9 0 #e- primary master species e- = e- - log_k 0.0 + log_k 0 #H2O primary master species H2O = H2O - log_k 0.0 + log_k 0 #Ag+ primary master species Ag+ = Ag+ - log_k 0.0 + log_k 0 #Al+3 primary master species Al+3 = Al+3 - log_k 0.0 - -gamma 9.0 0.0 + log_k 0 + -gamma 9 0 #H3AsO4 primary master species H3AsO4 = H3AsO4 - log_k 0.0 + log_k 0 #H3BO3 primary master species H3BO3 = H3BO3 - log_k 0.0 + log_k 0 #Ba+2 primary master species Ba+2 = Ba+2 - log_k 0.0 - -gamma 5.0 0.0 + log_k 0 + -gamma 5 0 #Br- primary master species Br- = Br- - log_k 0.0 + log_k 0 #CO3-2 primary master species CO3-2 = CO3-2 - log_k 0.0 - -gamma 5.4 0.0 + log_k 0 + -gamma 5.4 0 #Ca+2 primary master species Ca+2 = Ca+2 - log_k 0.0 - -gamma 5.0 0.165 + log_k 0 + -gamma 5 0.165 #Cd+2 primary master species Cd+2 = Cd+2 - log_k 0.0 + log_k 0 #Cl- primary master species Cl- = Cl- - log_k 0.0 - -gamma 3.5 0.015 + log_k 0 + -gamma 3.5 0.015 #Cs+ primary master species Cs+ = Cs+ - log_k 0.0 + log_k 0 #Cu+2 primary master species Cu+2 = Cu+2 - log_k 0.0 - -gamma 6.0 0.0 + log_k 0 + -gamma 6 0 #F- primary master species F- = F- - log_k 0.0 - -gamma 3.5 0.0 + log_k 0 + -gamma 3.5 0 #Fe+2 primary master species Fe+2 = Fe+2 - log_k 0.0 - -gamma 6.0 0.0 - + log_k 0 + -gamma 6 0 + #Fulvate-2 primary master species Fulvate-2 = Fulvate-2 - log_k 0.0 + log_k 0 #Humate-2 primary master species Humate-2 = Humate-2 - log_k 0.0 + log_k 0 #I- primary master species I- = I- - log_k 0.0 + log_k 0 #K+ primary master species K+ = K+ - log_k 0.0 - -gamma 3.5 0.015 + log_k 0 + -gamma 3.5 0.015 #Li+ primary master species Li+ = Li+ - log_k 0.0 - -gamma 6.0 0.0 + log_k 0 + -gamma 6 0 #Mg+2 primary master species Mg+2 = Mg+2 - log_k 0.0 - -gamma 5.5 0.200 + log_k 0 + -gamma 5.5 0.2 #Mn+2 primary master species Mn+2 = Mn+2 - log_k 0.0 - -gamma 6.0 0.0 + log_k 0 + -gamma 6 0 #NO3- primary master species NO3- = NO3- - log_k 0.0 - -gamma 3.0 0.0 + log_k 0 + -gamma 3 0 #Na+ primary master species Na+ = Na+ - log_k 0.0 - -gamma 4.0 0.075 + log_k 0 + -gamma 4 0.075 #Ni+2 primary master species Ni+2 = Ni+2 - log_k 0.0 + log_k 0 #PO4-3 primary master species PO4-3 = PO4-3 - log_k 0.0 - -gamma 5.0 0.0 + log_k 0 + -gamma 5 0 #Pb+2 primary master species Pb+2 = Pb+2 - log_k 0.0 + log_k 0 #Rb+ primary master species Rb+ = Rb+ - log_k 0.0 + log_k 0 #SO4-2 primary master species SO4-2 = SO4-2 - log_k 0.0 - -gamma 5.0 -0.040 + log_k 0 + -gamma 5 -0.04 #SeO4-2 primary master species SeO4-2 = SeO4-2 - log_k 0.0 + log_k 0 #H4SiO4 primary master species H4SiO4 = H4SiO4 - log_k 0.0 + log_k 0 #Sr+2 primary master species Sr+2 = Sr+2 - log_k 0.0 - -gamma 5.26 0.121 + log_k 0 + -gamma 5.26 0.121 #UO2+2 primary master species UO2+2 = UO2+2 - log_k 0.0 + log_k 0 #Zn+2 primary master species Zn+2 = Zn+2 - log_k 0.0 - -gamma 6.0 0.0 + log_k 0 + -gamma 6 0 #Fe+3 secondary master species 0 - Fe+2 = Fe+3 + e- - log_k -13.020 - delta_h 9.680 kcal - -gamma 9.0 0.0 + Fe+2 = Fe+3 + e- + log_k -13.02 + delta_h 9.68 kcal + -gamma 9 0 #FeOH+2 1 - Fe+3 + H2O = FeOH+2 + H+ - log_k -2.19 + Fe+3 + H2O = FeOH+2 + H+ + log_k -2.19 delta_h 10.4 kcal - -gamma 5.0 0.0 + -gamma 5 0 #FeOH+ 2 - Fe+2 + H2O = FeOH+ + H+ - log_k -9.5 + Fe+2 + H2O = FeOH+ + H+ + log_k -9.5 delta_h 13.2 kcal - -gamma 5.0 0.0 + -gamma 5 0 #Fe(OH)3- 3 - Fe+2 + 3H2O = Fe(OH)3- + 3H+ - log_k -31.0 + Fe+2 + 3 H2O = Fe(OH)3- + 3 H+ + log_k -31 delta_h 30.3 kcal - -gamma 5.0 0.0 + -gamma 5 0 #FeSO4+ 4 - Fe+3 + SO4-2 = FeSO4+ - log_k 4.04 + Fe+3 + SO4-2 = FeSO4+ + log_k 4.04 delta_h 3.91 kcal - -gamma 5.0 0.0 + -gamma 5 0 #FeCl+2 5 - Fe+3 + Cl- = FeCl+2 - log_k 1.48 + Fe+3 + Cl- = FeCl+2 + log_k 1.48 delta_h 5.6 kcal - -gamma 5.0 0.0 + -gamma 5 0 #FeCl2+ 6 - Fe+3 + 2Cl- = FeCl2+ - log_k 2.13 + Fe+3 + 2 Cl- = FeCl2+ + log_k 2.13 #FeCl3 7 - Fe+3 + 3Cl- = FeCl3 - log_k 1.13 + Fe+3 + 3 Cl- = FeCl3 + log_k 1.13 #FeSO4 8 - Fe+2 + SO4-2 = FeSO4 - log_k 2.25 + Fe+2 + SO4-2 = FeSO4 + log_k 2.25 delta_h 3.23 kcal #H3SiO4- 13 - H4SiO4 = H3SiO4- + H+ - log_k -9.83 + H4SiO4 = H3SiO4- + H+ + log_k -9.83 delta_h 6.12 kcal - -analytical -302.3724 -0.050698 15669.69 108.18466 -1119669.0 - -gamma 4.0 0.0 + -analytical -302.3724 -0.050698 15669.69 108.18466 -1119669 + -gamma 4 0 #H2SiO4-2 14 - H4SiO4 = H2SiO4-2 + 2H+ - log_k -23.0 + H4SiO4 = H2SiO4-2 + 2 H+ + log_k -23 delta_h 17.6 kcal - -analytical -294.0184 -0.07265 11204.49 108.18466 -1119669.0 - -gamma 5.4 0.0 + -analytical -294.0184 -0.07265 11204.49 108.18466 -1119669 + -gamma 5.4 0 #HPO4-2 15 H+ + PO4-3 = HPO4-2 - log_k 12.346 + log_k 12.346 delta_h -3.53 kcal - -gamma 5.0 0.0 + -gamma 5 0 #H2PO4- 16 - 2H+ + PO4-3 = H2PO4- - log_k 19.553 + 2 H+ + PO4-3 = H2PO4- + log_k 19.553 delta_h -4.52 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #MgF+ 22 - Mg+2 + F- = MgF+ - log_k 1.82 + Mg+2 + F- = MgF+ + log_k 1.82 delta_h 3.2 kcal - -gamma 4.5 0.0 + -gamma 4.5 0 #CaSO4 23 - Ca+2 + SO4-2 = CaSO4 - log_k 2.3 + Ca+2 + SO4-2 = CaSO4 + log_k 2.3 delta_h 1.65 kcal #MgOH+ 24 - Mg+2 + H2O = MgOH+ + H+ - log_k -11.44 + Mg+2 + H2O = MgOH+ + H+ + log_k -11.44 delta_h 15.952 kcal - -gamma 6.5 0.0 + -gamma 6.5 0 #H3BO3 25 H3BO3 = H2BO3- + H+ - log_k -9.24 + log_k -9.24 delta_h 3.224 kcal # -analytical 24.3919 0.012078 -1343.9 -13.2258 - -gamma 2.5 0.0 + -gamma 2.5 0 #NH3 26 - NH4+ = NH3 + H+ - log_k -9.252 + NH4+ = NH3 + H+ + log_k -9.252 delta_h 12.48 kcal - -analytic 0.6322 -0.001225 -2835.76 - -gamma 2.5 0.0 + -analytic 0.6322 -0.001225 -2835.76 + -gamma 2.5 0 #NaHPO4- 30 Na+ + HPO4-2 = NaHPO4- - log_k 0.29 - -gamma 5.4 0.0 + log_k 0.29 + -gamma 5.4 0 #KHPO4- 32 K+ + HPO4-2 = KHPO4- - log_k 0.29 - -gamma 5.4 0.0 + log_k 0.29 + -gamma 5.4 0 #MgHPO4 33 - Mg+2 + HPO4-2 = MgHPO4 - log_k 2.87 + Mg+2 + HPO4-2 = MgHPO4 + log_k 2.87 delta_h 3.3 kcal #CaHPO4 34 - Ca+2 + HPO4-2 = CaHPO4 - log_k 2.739 + Ca+2 + HPO4-2 = CaHPO4 + log_k 2.739 delta_h 3.3 kcal #CH4 secondary master species CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O - log_k 41.071 - delta_h -61.039 kcal + log_k 41.071 + delta_h -61.039 kcal #H2CO3 35 -# HCO3- + H+ = H2CO3 +# HCO3- + H+ = H2CO3 # log_k 6.351 # delta_h -2.247 kcal # -analytical 356.3094 0.06091960 -21834.37 -126.8339 1684915.0 #CO2 could be used instead of H2CO3 CO3-2 + 2 H+ = CO2 + H2O - log_k 16.681 + log_k 16.681 delta_h -5.738 kcal - -analytical 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -analytical 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 #HCO3- 68 - H+ + CO3-2 = HCO3- - log_k 10.329 + H+ + CO3-2 = HCO3- + log_k 10.329 delta_h -3.561 kcal - -analytical 107.8871 0.03252849 -5151.79 -38.92561 563713.9 - -gamma 5.4 0.0 + -analytical 107.8871 0.03252849 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 #NaCO3- 69 - Na+ + CO3-2 = NaCO3- - log_k 1.27 + Na+ + CO3-2 = NaCO3- + log_k 1.27 delta_h 8.91 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #NaHCO3 70 - Na+ + HCO3- = NaHCO3 - log_k -0.25 + Na+ + HCO3- = NaHCO3 + log_k -0.25 #NaSO4- 71 Na+ + SO4-2 = NaSO4- - log_k 0.7 + log_k 0.7 delta_h 1.12 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #KSO4- 72 K+ + SO4-2 = KSO4- - log_k 0.85 + log_k 0.85 delta_h 2.25 kcal - -analytical 3.106 0.0 -673.6 - -gamma 5.4 0.0 + -analytical 3.106 0 -673.6 + -gamma 5.4 0 #MgCO3 73 - Mg+2 + CO3-2 = MgCO3 - log_k 2.98 + Mg+2 + CO3-2 = MgCO3 + log_k 2.98 delta_h 2.713 kcal - -analytical 0.9910 0.00667 + -analytical 0.991 0.00667 #MgHCO3+ 74 Mg+2 + HCO3- = MgHCO3+ - log_k 1.07 + log_k 1.07 delta_h 0.79 kcal - -analytical -59.215 0.0 2537.455 20.92298 0.0 - -gamma 4.0 0.0 + -analytical -59.215 0 2537.455 20.92298 0 + -gamma 4 0 #MgSO4 75 - Mg+2 + SO4-2 = MgSO4 - log_k 2.37 + Mg+2 + SO4-2 = MgSO4 + log_k 2.37 delta_h 4.55 kcal #CaOH+ 76 - Ca+2 + H2O = CaOH+ + H+ - log_k -12.78 - -gamma 6.0 0.0 + Ca+2 + H2O = CaOH+ + H+ + log_k -12.78 + -gamma 6 0 #CaHCO3+ 77 Ca+2 + HCO3- = CaHCO3+ - log_k 1.106 + log_k 1.106 delta_h 2.69 kcal - -analytical 1209.12 0.31294 -34765.05 -478.782 0.0 - -gamma 6.0 0.0 + -analytical 1209.12 0.31294 -34765.05 -478.782 0 + -gamma 6 0 #CaCO3 78 - Ca+2 + CO3-2 = CaCO3 - log_k 3.224 + Ca+2 + CO3-2 = CaCO3 + log_k 3.224 delta_h 3.545 kcal - -analytical -1228.732 -0.299444 35512.75 485.818 0.0 + -analytical -1228.732 -0.299444 35512.75 485.818 0 #SrHCO3+ 79 - Sr+2 + HCO3- = SrHCO3+ - log_k 1.18 + Sr+2 + HCO3- = SrHCO3+ + log_k 1.18 delta_h 6.05 kcal - -analytical -3.248 0.014867 0.0 0.0 0.0 - -gamma 5.4 0.0 + -analytical -3.248 0.014867 0 0 0 + -gamma 5.4 0 #AlOH+2 80 - Al+3 + H2O = AlOH+2 + H+ - log_k -5.0 + Al+3 + H2O = AlOH+2 + H+ + log_k -5 delta_h 11.49 kcal - -analytical -38.253 0.0 -656.27 14.327 0.0 - -gamma 5.4 0.0 + -analytical -38.253 0 -656.27 14.327 0 + -gamma 5.4 0 #Al(OH)2+ 81 - Al+3 + 2H2O = Al(OH)2+ + 2H+ - log_k -10.1 + Al+3 + 2 H2O = Al(OH)2+ + 2 H+ + log_k -10.1 delta_h 26.9 kcal - -analytical 88.5 0.0 -9391.6 -27.121 0.0 - -gamma 5.4 0.0 + -analytical 88.5 0 -9391.6 -27.121 0 + -gamma 5.4 0 #Al(OH)3 336 - Al+3 + 3H2O = Al(OH)3 + 3H+ - log_k -16.9 + Al+3 + 3 H2O = Al(OH)3 + 3 H+ + log_k -16.9 delta_h 39.89 kcal - -analytical 226.374 0.0 -18247.8 -73.597 0.0 + -analytical 226.374 0 -18247.8 -73.597 0 #Al(OH)4- 82 - Al+3 + 4H2O = Al(OH)4- + 4H+ - log_k -22.7 + Al+3 + 4 H2O = Al(OH)4- + 4 H+ + log_k -22.7 delta_h 42.3 kcal - -analytical 51.578 0.0 -11168.9 -14.865 0.0 - -gamma 4.5 0.0 + -analytical 51.578 0 -11168.9 -14.865 0 + -gamma 4.5 0 #AlF+2 83 - Al+3 + F- = AlF+2 - log_k 7.0 + Al+3 + F- = AlF+2 + log_k 7 delta_h 1.06 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #AlF2+ 84 - Al+3 + 2F- = AlF2+ - log_k 12.7 + Al+3 + 2 F- = AlF2+ + log_k 12.7 delta_h 1.98 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #AlF3 85 - Al+3 + 3F- = AlF3 - log_k 16.8 + Al+3 + 3 F- = AlF3 + log_k 16.8 delta_h 2.16 kcal #AlF4- 86 - Al+3 + 4F- = AlF4- - log_k 19.4 + Al+3 + 4 F- = AlF4- + log_k 19.4 delta_h 2.2 kcal - -gamma 4.5 0.0 + -gamma 4.5 0 #AlSO4+ 87 Al+3 + SO4-2 = AlSO4+ - log_k 3.5 + log_k 3.5 delta_h 2.29 kcal - -gamma 4.5 0.0 + -gamma 4.5 0 #Al(SO4)2- 88 - Al+3 + 2SO4-2 = Al(SO4)2- - log_k 5.0 + Al+3 + 2 SO4-2 = Al(SO4)2- + log_k 5 delta_h 3.11 kcal - -gamma 4.5 0.0 + -gamma 4.5 0 #HSO4- 89 - H+ + SO4-2 = HSO4- - log_k 1.988 + H+ + SO4-2 = HSO4- + log_k 1.988 delta_h 3.85 kcal - -analytical -56.889 0.006473 2307.9 19.8858 0.0 - -gamma 4.5 0.0 + -analytical -56.889 0.006473 2307.9 19.8858 0 + -gamma 4.5 0 #H2S secondary master species 90 - SO4-2 + 10H+ + 8e- = H2S + 4H2O - log_k 40.644 + SO4-2 + 10 H+ + 8 e- = H2S + 4 H2O + log_k 40.644 delta_h -65.44 kcal #HS- 91 - H2S = HS- + H+ - log_k -6.994 + H2S = HS- + H+ + log_k -6.994 delta_h 5.3 kcal - -analytical 11.17 -0.02386 -3279.0 - -gamma 3.5 0.0 + -analytical 11.17 -0.02386 -3279 + -gamma 3.5 0 #S-2 92 - HS- = S-2 + H+ - log_k -12.918 + HS- = S-2 + H+ + log_k -12.918 delta_h 12.1 kcal - -gamma 5.0 0.0 + -gamma 5 0 #oxy 93 -# 0.5H2O = 0.25O2 + H+ + e- +# 0.5H2O = 0.25O2 + H+ + e- # log_k -20.780 # delta_h 34.157000 kcal #O2 secondary master species - 2H2O = O2 + 4H+ + 4e- - log_k -86.08 + 2 H2O = O2 + 4 H+ + 4 e- + log_k -86.08 delta_h 134.79 kcal #H2 secondary master species 2 H+ + 2 e- = H2 - log_k -3.15 + log_k -3.15 delta_h -1.759 kcal #Fe(OH)2+ 102 - Fe+3 + 2H2O = Fe(OH)2+ + 2H+ - log_k -5.67 + Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ + log_k -5.67 delta_h 17.1 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #Fe(OH)3 103 - Fe+3 + 3H2O = Fe(OH)3 + 3H+ - log_k -12.56 + Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ + log_k -12.56 delta_h 24.8 kcal #Fe(OH)4- 104 - Fe+3 + 4H2O = Fe(OH)4- + 4H+ - log_k -21.6 + Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ + log_k -21.6 delta_h 31.9 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #Fe(OH)2 105 - Fe+2 + 2H2O = Fe(OH)2 + 2H+ - log_k -20.57 + Fe+2 + 2 H2O = Fe(OH)2 + 2 H+ + log_k -20.57 delta_h 28.565 kcal #FeH2PO4+ 120 - Fe+2 + H2PO4- = FeH2PO4+ - log_k 2.7 - -gamma 5.4 0.0 + Fe+2 + H2PO4- = FeH2PO4+ + log_k 2.7 + -gamma 5.4 0 #CaPO4- 121 Ca+2 + PO4-3 = CaPO4- - log_k 6.459 + log_k 6.459 delta_h 3.1 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #CaH2PO4+ 122 Ca+2 + H2PO4- = CaH2PO4+ - log_k 1.408 + log_k 1.408 delta_h 3.4 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #MgPO4- 123 Mg+2 + PO4-3 = MgPO4- - log_k 6.589 + log_k 6.589 delta_h 3.1 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #MgH2PO4+ 124 Mg+2 + H2PO4- = MgH2PO4+ - log_k 1.513 + log_k 1.513 delta_h 3.4 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #LiSO4- 126 Li+ + SO4-2 = LiSO4- - log_k 0.64 - -gamma 5.0 0.0 + log_k 0.64 + -gamma 5 0 #N2 secondary master species 2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O - log_k 207.080 - delta_h -312.130 kcal + log_k 207.08 + delta_h -312.13 kcal #NH4 secondary master species 127 - NO3- + 10H+ + 8e- = NH4+ + 3H2O - log_k 119.077 + NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O + log_k 119.077 delta_h -187.055 kcal #SrOH+ 129 - Sr+2 + H2O = SrOH+ + H+ - log_k -13.29 - -gamma 5.0 0.0 + Sr+2 + H2O = SrOH+ + H+ + log_k -13.29 + -gamma 5 0 #BaOH+ 130 - Ba+2 + H2O = BaOH+ + H+ - log_k -13.47 - -gamma 5.0 0.0 + Ba+2 + H2O = BaOH+ + H+ + log_k -13.47 + -gamma 5 0 #NH4SO4- 131 - NH4+ + SO4-2 = NH4SO4- - log_k 1.11 - -gamma 5.0 0.0 + NH4+ + SO4-2 = NH4SO4- + log_k 1.11 + -gamma 5 0 #SrCO3 135 - Sr+2 + CO3-2 = SrCO3 - log_k 2.81 + Sr+2 + CO3-2 = SrCO3 + log_k 2.81 delta_h 5.22 kcal - -analytical -1.019 0.012826 0.0 0.0 0.0 - -gamma 5.0 0.0 + -analytical -1.019 0.012826 0 0 0 + -gamma 5 0 #O2Sato 136 -# 0.5H2O = 0.25O2(aq) + H+ + e- +# 0.5H2O = 0.25O2(aq) + H+ + e- # log_k -11.385 #CO2 137 -# CO2 (g) + H2O = H2CO3 +# CO2 (g) + H2O = H2CO3 # -1.468 -4.776 108.38650 0.01985076 -6919.530 -40.45154 -669365.0 #FeHPO4 138 Fe+2 + HPO4-2 = FeHPO4 - log_k 3.6 + log_k 3.6 #FeHPO4+ 139 - Fe+3 + HPO4-2 = FeHPO4+ - log_k 5.43 + Fe+3 + HPO4-2 = FeHPO4+ + log_k 5.43 delta_h 5.76 kcal - -gamma 5.5 0.0 + -gamma 5.5 0 #FeHSO4+ 148 Fe+2 + HSO4- = FeHSO4+ - log_k 1.08 + log_k 1.08 #O2calc 151 -# 0.5H2O = 0.25O2(aq) + H+ + e- +# 0.5H2O = 0.25O2(aq) + H+ + e- # log_k -20.780 # delta_h 33.457 kcal #OH- 152 - H2O = OH- + H+ - log_k -14.0 + H2O = OH- + H+ + log_k -14 delta_h 13.362 kcal - -analytical -283.971 -0.05069842 13323.0 102.24447 -1119669.0 - -gamma 3.5 0.0 + -analytical -283.971 -0.05069842 13323 102.24447 -1119669 + -gamma 3.5 0 #FeH2PO4+2 156 Fe+3 + H2PO4- = FeH2PO4+2 - log_k 5.43 - -gamma 5.4 0.0 + log_k 5.43 + -gamma 5.4 0 #FeHSO4+2 159 - Fe+3 + HSO4- = FeHSO4+2 - log_k 2.48 + Fe+3 + HSO4- = FeHSO4+2 + log_k 2.48 #CaF+ 160 - Ca+2 + F- = CaF+ - log_k 0.94 + Ca+2 + F- = CaF+ + log_k 0.94 delta_h 4.12 kcal - -gamma 5.5 0.0 + -gamma 5.5 0 #BF(OH)3- 161 H3BO3 + F- = BF(OH)3- - log_k -0.4 + log_k -0.4 delta_h 1.85 kcal - -gamma 2.5 0.0 + -gamma 2.5 0 #BF2(OH)2- 162 - H3BO3 + H+ + 2F- = BF2(OH)2- + H2O - log_k 7.63 + H3BO3 + H+ + 2 F- = BF2(OH)2- + H2O + log_k 7.63 delta_h 1.618 kcal - -gamma 2.5 0.0 + -gamma 2.5 0 #BF3OH- 163 - H3BO3 + 2H+ + 3F- = BF3OH- + 2H2O - log_k 13.67 + H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O + log_k 13.67 delta_h -1.614 kcal - -gamma 2.5 0.0 + -gamma 2.5 0 #BF4- 164 - H3BO3 + 3H+ + 4F- = BF4- + 3H2O - log_k 20.28 + H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O + log_k 20.28 delta_h -1.846 kcal - -gamma 2.5 0.0 + -gamma 2.5 0 #FeF+2 165 - Fe+3 + F- = FeF+2 - log_k 6.2 + Fe+3 + F- = FeF+2 + log_k 6.2 delta_h 2.7 kcal - -gamma 5.0 0.0 + -gamma 5 0 #FeF2+ 166 - Fe+3 + 2F- = FeF2+ - log_k 10.8 + Fe+3 + 2 F- = FeF2+ + log_k 10.8 delta_h 4.8 kcal - -gamma 5.0 0.0 + -gamma 5 0 #FeF3 167 - Fe+3 + 3F- = FeF3 - log_k 14.0 + Fe+3 + 3 F- = FeF3 + log_k 14 delta_h 5.4 kcal #CaHSO4+ 168 - Ca+2 + HSO4- = CaHSO4+ - log_k 1.08 + Ca+2 + HSO4- = CaHSO4+ + log_k 1.08 #Mn+3 secondary master species 169 - Mn+2 = Mn+3 + e- - log_k -25.51 + Mn+2 = Mn+3 + e- + log_k -25.51 delta_h 25.8 kcal - -gamma 9.0 0.0 + -gamma 9 0 #MnCl+ 170 - Mn+2 + Cl- = MnCl+ - log_k 0.61 - -gamma 5.0 0.0 + Mn+2 + Cl- = MnCl+ + log_k 0.61 + -gamma 5 0 #MnCl2 171 - Mn+2 + 2Cl- = MnCl2 - log_k 0.25 + Mn+2 + 2 Cl- = MnCl2 + log_k 0.25 #MnCl3- 172 - Mn+2 + 3Cl- = MnCl3- - log_k -0.31 - -gamma 5.0 0.0 + Mn+2 + 3 Cl- = MnCl3- + log_k -0.31 + -gamma 5 0 #MnOH+ 173 - Mn+2 + H2O = MnOH+ + H+ - log_k -10.59 + Mn+2 + H2O = MnOH+ + H+ + log_k -10.59 delta_h 14.4 kcal - -gamma 5.0 0.0 + -gamma 5 0 #Mn(OH)3- 174 - Mn+2 + 3H2O = Mn(OH)3- + 3H+ - log_k -34.8 - -gamma 5.0 0.0 + Mn+2 + 3 H2O = Mn(OH)3- + 3 H+ + log_k -34.8 + -gamma 5 0 #MnF+ 175 - Mn+2 + F- = MnF+ - log_k 0.84 - -gamma 5.0 0.0 + Mn+2 + F- = MnF+ + log_k 0.84 + -gamma 5 0 #MnSO4 176 - Mn+2 + SO4-2 = MnSO4 - log_k 2.25 + Mn+2 + SO4-2 = MnSO4 + log_k 2.25 delta_h 3.37 kcal #Mn(NO3)2 177 - Mn+2 + 2NO3- = Mn(NO3)2 - log_k 0.6 + Mn+2 + 2 NO3- = Mn(NO3)2 + log_k 0.6 delta_h -0.396 kcal #MnHCO3+ 178 Mn+2 + HCO3- = MnHCO3+ - log_k 1.95 - -gamma 5.0 0.0 + log_k 1.95 + -gamma 5 0 #MnO4- secondary master species 179 - Mn+2 + 4H2O = MnO4- + 8H+ + 5e- - log_k -127.824 + Mn+2 + 4 H2O = MnO4- + 8 H+ + 5 e- + log_k -127.824 delta_h 176.62 kcal - -gamma 3.0 0.0 + -gamma 3 0 #MnO4-2 secondary master species 180 - Mn+2 + 4H2O = MnO4-2 + 8H+ + 4e- - log_k -118.44 + Mn+2 + 4 H2O = MnO4-2 + 8 H+ + 4 e- + log_k -118.44 delta_h 150.02 kcal - -gamma 5.0 0.0 + -gamma 5 0 #SiF6-2 201 - H4SiO4 + 4H+ + 6F- = SiF6-2 + 4H2O - log_k 30.18 + H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O + log_k 30.18 delta_h -16.26 kcal - -gamma 5.0 0.0 + -gamma 5 0 #HF 202 - H+ + F- = HF - log_k 3.18 + H+ + F- = HF + log_k 3.18 delta_h 3.18 kcal - -analytical -2.033 0.012645 429.01 0.0 0.0 + -analytical -2.033 0.012645 429.01 0 0 #HF2- 203 - H+ + 2F- = HF2- - log_k 3.76 + H+ + 2 F- = HF2- + log_k 3.76 delta_h 4.55 kcal - -gamma 3.5 0.0 + -gamma 3.5 0 #CuCl2- 206 # Cu+2 + 2Cl- + e- = CuCl2- # log_k 8.220 # delta_h 1.230 kcal - Cu+ + 2Cl- = CuCl2- - log_k 5.50 + Cu+ + 2 Cl- = CuCl2- + log_k 5.5 delta_h -0.42 kcal - -gamma 4.0 0.0 + -gamma 4 0 #CuCl3-2 207 -# Cu+2 + 3Cl- + e- = CuCl3-2 +# Cu+2 + 3Cl- + e- = CuCl3-2 # log_k 8.420 # delta_h 1.910 kcal - Cu+ + 3Cl- = CuCl3-2 - log_k 5.70 + Cu+ + 3 Cl- = CuCl3-2 + log_k 5.7 delta_h 0.26 kcal - -gamma 5.0 0.0 + -gamma 5 0 #Cu+ secondary master species 208 - Cu+2 + e- = Cu+ - log_k 2.72 + Cu+2 + e- = Cu+ + log_k 2.72 delta_h 1.65 kcal - -gamma 2.5 0.0 + -gamma 2.5 0 #CuCO3 209 - Cu+2 + CO3-2 = CuCO3 - log_k 6.73 + Cu+2 + CO3-2 = CuCO3 + log_k 6.73 #Cu(CO3)2-2 210 - Cu+2 + 2CO3-2 = Cu(CO3)2-2 - log_k 9.83 + Cu+2 + 2 CO3-2 = Cu(CO3)2-2 + log_k 9.83 #CuCl+ 211 - Cu+2 + Cl- = CuCl+ - log_k 0.43 + Cu+2 + Cl- = CuCl+ + log_k 0.43 delta_h 8.65 kcal - -gamma 4.0 0.0 + -gamma 4 0 #CuCl2 212 - Cu+2 + 2Cl- = CuCl2 - log_k 0.16 + Cu+2 + 2 Cl- = CuCl2 + log_k 0.16 delta_h 10.56 kcal #CuCl3- 213 - Cu+2 + 3Cl- = CuCl3- - log_k -2.29 + Cu+2 + 3 Cl- = CuCl3- + log_k -2.29 delta_h 13.69 kcal - -gamma 4.0 0.0 + -gamma 4 0 #CuCl4-2 214 - Cu+2 + 4Cl- = CuCl4-2 - log_k -4.59 + Cu+2 + 4 Cl- = CuCl4-2 + log_k -4.59 delta_h 17.78 kcal - -gamma 5.0 0.0 + -gamma 5 0 #CuF+ 215 - Cu+2 + F- = CuF+ - log_k 1.26 + Cu+2 + F- = CuF+ + log_k 1.26 delta_h 1.62 kcal #CuOH+ 216 - Cu+2 + H2O = CuOH+ + H+ - log_k -8.0 - -gamma 4.0 0.0 + Cu+2 + H2O = CuOH+ + H+ + log_k -8 + -gamma 4 0 #Cu(OH)2 217 - Cu+2 + 2H2O = Cu(OH)2 + 2H+ - log_k -13.68 + Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ + log_k -13.68 #Cu(OH)3- 218 - Cu+2 + 3H2O = Cu(OH)3- + 3H+ - log_k -26.9 + Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ + log_k -26.9 #Cu(OH)4-2 219 - Cu+2 + 4H2O = Cu(OH)4-2 + 4H+ - log_k -39.6 + Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ + log_k -39.6 #Cu2(OH)2+2 220 - 2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ - log_k -10.359 + 2 Cu+2 + 2 H2O = Cu2(OH)2+2 + 2 H+ + log_k -10.359 delta_h 17.539 kcal - -analytical 2.497 0.0 -3833.0 0.0 0.0 + -analytical 2.497 0 -3833 0 0 #CuSO4 221 - Cu+2 + SO4-2 = CuSO4 - log_k 2.31 + Cu+2 + SO4-2 = CuSO4 + log_k 2.31 delta_h 1.22 kcal #Cu(HS)3- 222 - Cu+2 + 3HS- = Cu(HS)3- - log_k 25.9 + Cu+2 + 3 HS- = Cu(HS)3- + log_k 25.9 #ZnCl+ 251 - Zn+2 + Cl- = ZnCl+ - log_k 0.43 + Zn+2 + Cl- = ZnCl+ + log_k 0.43 delta_h 7.79 kcal - -gamma 4.0 0.0 + -gamma 4 0 #ZnCl2 252 - Zn+2 + 2Cl- = ZnCl2 - log_k 0.45 + Zn+2 + 2 Cl- = ZnCl2 + log_k 0.45 delta_h 8.5 kcal #ZnCl3- 253 - Zn+2 + 3Cl- = ZnCl3- - log_k 0.5 + Zn+2 + 3 Cl- = ZnCl3- + log_k 0.5 delta_h 9.56 kcal - -gamma 4.0 0.0 + -gamma 4 0 #ZnCl4-2 254 - Zn+2 + 4Cl- = ZnCl4-2 - log_k 0.2 + Zn+2 + 4 Cl- = ZnCl4-2 + log_k 0.2 delta_h 10.96 kcal - -gamma 5.0 0.0 + -gamma 5 0 #ZnF+ 255 - Zn+2 + F- = ZnF+ - log_k 1.15 + Zn+2 + F- = ZnF+ + log_k 1.15 delta_h 2.22 kcal #ZnOH+ 256 - Zn+2 + H2O = ZnOH+ + H+ - log_k -8.96 + Zn+2 + H2O = ZnOH+ + H+ + log_k -8.96 delta_h 13.4 kcal #Zn(OH)2 257 - Zn+2 + 2H2O = Zn(OH)2 + 2H+ - log_k -16.9 + Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ + log_k -16.9 #Zn(OH)3- 258 - Zn+2 + 3H2O = Zn(OH)3- + 3H+ - log_k -28.4 + Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ + log_k -28.4 #Zn(OH)4-2 259 - Zn+2 + 4H2O = Zn(OH)4-2 + 4H+ - log_k -41.2 + Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ + log_k -41.2 #ZnOHCl 260 - Zn+2 + H2O + Cl- = ZnOHCl + H+ - log_k -7.48 + Zn+2 + H2O + Cl- = ZnOHCl + H+ + log_k -7.48 #Zn(HS)2 261 - Zn+2 + 2HS- = Zn(HS)2 - log_k 14.94 + Zn+2 + 2 HS- = Zn(HS)2 + log_k 14.94 #Zn(HS)3- 262 - Zn+2 + 3HS- = Zn(HS)3- - log_k 16.1 + Zn+2 + 3 HS- = Zn(HS)3- + log_k 16.1 #ZnSO4 263 - Zn+2 + SO4-2 = ZnSO4 - log_k 2.37 + Zn+2 + SO4-2 = ZnSO4 + log_k 2.37 delta_h 1.36 kcal #Zn(SO4)2-2 264 - Zn+2 + 2SO4-2 = Zn(SO4)2-2 - log_k 3.28 + Zn+2 + 2 SO4-2 = Zn(SO4)2-2 + log_k 3.28 #CdCl+ 294 - Cd+2 + Cl- = CdCl+ - log_k 1.98 + Cd+2 + Cl- = CdCl+ + log_k 1.98 delta_h 0.59 kcal #CdCl2 295 - Cd+2 + 2Cl- = CdCl2 - log_k 2.6 + Cd+2 + 2 Cl- = CdCl2 + log_k 2.6 delta_h 1.24 kcal #CdCl3- 296 - Cd+2 + 3Cl- = CdCl3- - log_k 2.4 + Cd+2 + 3 Cl- = CdCl3- + log_k 2.4 delta_h 3.9 kcal #CdF+ 297 - Cd+2 + F- = CdF+ - log_k 1.1 + Cd+2 + F- = CdF+ + log_k 1.1 #CdF2 298 - Cd+2 + 2F- = CdF2 - log_k 1.5 + Cd+2 + 2 F- = CdF2 + log_k 1.5 #Cd(CO3)2-2 299 - Cd+2 + 2CO3-2 = Cd(CO3)2-2 - log_k 6.4 + Cd+2 + 2 CO3-2 = Cd(CO3)2-2 + log_k 6.4 #CdOH+ 300 - Cd+2 + H2O = CdOH+ + H+ - log_k -10.08 + Cd+2 + H2O = CdOH+ + H+ + log_k -10.08 delta_h 13.1 kcal #Cd(OH)2 301 - Cd+2 + 2H2O = Cd(OH)2 + 2H+ - log_k -20.35 + Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ + log_k -20.35 #Cd(OH)3- 302 - Cd+2 + 3H2O = Cd(OH)3- + 3H+ - log_k -33.3 + Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ + log_k -33.3 #Cd(OH)4-2 303 - Cd+2 + 4H2O = Cd(OH)4-2 + 4H+ - log_k -47.35 + Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ + log_k -47.35 #Cd2OH+3 304 - 2Cd+2 + H2O = Cd2OH+3 + H+ - log_k -9.39 + 2 Cd+2 + H2O = Cd2OH+3 + H+ + log_k -9.39 delta_h 10.9 kcal #CdOHCl 305 - Cd+2 + H2O + Cl- = CdOHCl + H+ - log_k -7.404 + Cd+2 + H2O + Cl- = CdOHCl + H+ + log_k -7.404 delta_h 4.355 kcal #CdNO3+ 306 Cd+2 + NO3- = CdNO3+ - log_k 0.4 + log_k 0.4 delta_h -5.2 kcal #CdSO4 307 - Cd+2 + SO4-2 = CdSO4 - log_k 2.46 + Cd+2 + SO4-2 = CdSO4 + log_k 2.46 delta_h 1.08 kcal #CdHS+ 308 - Cd+2 + HS- = CdHS+ - log_k 10.17 + Cd+2 + HS- = CdHS+ + log_k 10.17 #Cd(HS)2 309 - Cd+2 + 2HS- = Cd(HS)2 - log_k 16.53 + Cd+2 + 2 HS- = Cd(HS)2 + log_k 16.53 #Cd(HS)3- 310 - Cd+2 + 3HS- = Cd(HS)3- - log_k 18.71 + Cd+2 + 3 HS- = Cd(HS)3- + log_k 18.71 #Cd(HS)4-2 311 - Cd+2 + 4HS- = Cd(HS)4-2 - log_k 20.9 + Cd+2 + 4 HS- = Cd(HS)4-2 + log_k 20.9 #Fe(SO4)2- 333 - Fe+3 + 2SO4-2 = Fe(SO4)2- - log_k 5.38 + Fe+3 + 2 SO4-2 = Fe(SO4)2- + log_k 5.38 delta_h 4.6 kcal #Fe2(OH)2+4 334 - 2Fe+3 + 2H2O = Fe2(OH)2+4 + 2H+ - log_k -2.95 + 2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ + log_k -2.95 delta_h 13.5 kcal #Fe3(OH)4+5 335 - 3Fe+3 + 4H2O = Fe3(OH)4+5 + 4H+ - log_k -6.3 + 3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ + log_k -6.3 delta_h 14.3 kcal #PbCl+ 341 - Pb+2 + Cl- = PbCl+ - log_k 1.6 + Pb+2 + Cl- = PbCl+ + log_k 1.6 delta_h 4.38 kcal #PbCl2 342 - Pb+2 + 2Cl- = PbCl2 - log_k 1.8 + Pb+2 + 2 Cl- = PbCl2 + log_k 1.8 delta_h 1.08 kcal #PbCl3- 343 - Pb+2 + 3Cl- = PbCl3- - log_k 1.7 + Pb+2 + 3 Cl- = PbCl3- + log_k 1.7 delta_h 2.17 kcal #PbCl4-2 344 - Pb+2 + 4Cl- = PbCl4-2 - log_k 1.38 + Pb+2 + 4 Cl- = PbCl4-2 + log_k 1.38 delta_h 3.53 kcal #Pb(CO3)2-2 345 - Pb+2 + 2CO3-2 = Pb(CO3)2-2 - log_k 10.64 + Pb+2 + 2 CO3-2 = Pb(CO3)2-2 + log_k 10.64 #PbF+ 346 - Pb+2 + F- = PbF+ - log_k 1.25 + Pb+2 + F- = PbF+ + log_k 1.25 #PbF2 347 - Pb+2 + 2F- = PbF2 - log_k 2.56 + Pb+2 + 2 F- = PbF2 + log_k 2.56 #PbF3- 348 - Pb+2 + 3F- = PbF3- - log_k 3.42 + Pb+2 + 3 F- = PbF3- + log_k 3.42 #PbF4-2 349 - Pb+2 + 4F- = PbF4-2 - log_k 3.1 + Pb+2 + 4 F- = PbF4-2 + log_k 3.1 #PbOH+ 350 - Pb+2 + H2O = PbOH+ + H+ - log_k -7.71 + Pb+2 + H2O = PbOH+ + H+ + log_k -7.71 #Pb(OH)2 351 - Pb+2 + 2H2O = Pb(OH)2 + 2H+ - log_k -17.12 + Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ + log_k -17.12 #Pb(OH)3- 352 - Pb+2 + 3H2O = Pb(OH)3- + 3H+ - log_k -28.06 + Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ + log_k -28.06 #Pb2OH+3 353 - 2Pb+2 + H2O = Pb2OH+3 + H+ - log_k -6.36 + 2 Pb+2 + H2O = Pb2OH+3 + H+ + log_k -6.36 #PbNO3+ 354 Pb+2 + NO3- = PbNO3+ - log_k 1.17 + log_k 1.17 #PbSO4 355 - Pb+2 + SO4-2 = PbSO4 - log_k 2.75 + Pb+2 + SO4-2 = PbSO4 + log_k 2.75 #Pb(HS)2 356 - Pb+2 + 2HS- = Pb(HS)2 - log_k 15.27 + Pb+2 + 2 HS- = Pb(HS)2 + log_k 15.27 #Pb(HS)3- 357 - Pb+2 + 3HS- = Pb(HS)3- - log_k 16.57 + Pb+2 + 3 HS- = Pb(HS)3- + log_k 16.57 #Pb3(OH)4+2 358 - 3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ - log_k -23.88 + 3 Pb+2 + 4 H2O = Pb3(OH)4+2 + 4 H+ + log_k -23.88 delta_h 26.5 kcal #FeF+ 359 - Fe+2 + F- = FeF+ - log_k 1.0 + Fe+2 + F- = FeF+ + log_k 1 #AlHSO4+2 397 - Al+3 + HSO4- = AlHSO4+2 - log_k 0.46 + Al+3 + HSO4- = AlHSO4+2 + log_k 0.46 #NO2 secondary master species 400 - NO3- + 2H+ + 2e- = NO2- + H2O - log_k 28.57 + NO3- + 2 H+ + 2 e- = NO2- + H2O + log_k 28.57 delta_h -43.76 kcal #NiBr+ 403 - Ni+2 + Br- = NiBr+ - log_k 0.5 + Ni+2 + Br- = NiBr+ + log_k 0.5 #NiCl+ 404 - Ni+2 + Cl- = NiCl+ - log_k 0.4 + Ni+2 + Cl- = NiCl+ + log_k 0.4 #NiF+ 405 - Ni+2 + F- = NiF+ - log_k 1.3 + Ni+2 + F- = NiF+ + log_k 1.3 #NiOH+ 406 - Ni+2 + H2O = NiOH+ + H+ - log_k -9.86 + Ni+2 + H2O = NiOH+ + H+ + log_k -9.86 delta_h 12.42 kcal #Ni(OH)2 407 - Ni+2 + 2H2O = Ni(OH)2 + 2H+ - log_k -19.0 + Ni+2 + 2 H2O = Ni(OH)2 + 2 H+ + log_k -19 #Ni(OH)3- 408 - Ni+2 + 3H2O = Ni(OH)3- + 3H+ - log_k -30.0 + Ni+2 + 3 H2O = Ni(OH)3- + 3 H+ + log_k -30 #NiSO4 409 - Ni+2 + SO4-2 = NiSO4 - log_k 2.29 + Ni+2 + SO4-2 = NiSO4 + log_k 2.29 delta_h 1.52 kcal #AgBr 421 Ag+ + Br- = AgBr - log_k 4.24 + log_k 4.24 #AgBr2- 422 - Ag+ + 2Br- = AgBr2- - log_k 7.28 + Ag+ + 2 Br- = AgBr2- + log_k 7.28 #AgCl 423 Ag+ + Cl- = AgCl - log_k 3.27 + log_k 3.27 delta_h -2.68 kcal #AgCl2- 424 - Ag+ + 2Cl- = AgCl2- - log_k 5.27 + Ag+ + 2 Cl- = AgCl2- + log_k 5.27 delta_h -3.93 kcal #AgCl3-2 425 - Ag+ + 3Cl- = AgCl3-2 - log_k 5.29 + Ag+ + 3 Cl- = AgCl3-2 + log_k 5.29 #AgCl4-3 426 - Ag+ + 4Cl- = AgCl4-3 - log_k 5.51 + Ag+ + 4 Cl- = AgCl4-3 + log_k 5.51 #AgF 427 Ag+ + F- = AgF - log_k 0.36 + log_k 0.36 delta_h -2.83 kcal #AgHS 428 - Ag+ + HS- = AgHS - log_k 14.05 + Ag+ + HS- = AgHS + log_k 14.05 #Ag(HS)2- 429 - Ag+ + 2HS- = Ag(HS)2- - log_k 18.45 + Ag+ + 2 HS- = Ag(HS)2- + log_k 18.45 #AgI 430 Ag+ + I- = AgI - log_k 6.6 + log_k 6.6 #AgI2- 431 - Ag+ + 2I- = AgI2- - log_k 10.68 + Ag+ + 2 I- = AgI2- + log_k 10.68 #AgOH 432 - Ag+ + H2O = AgOH + H+ - log_k -12.0 + Ag+ + H2O = AgOH + H+ + log_k -12 #Ag(OH)2- 433 - Ag+ + 2H2O = Ag(OH)2- + 2H+ - log_k -24.0 + Ag+ + 2 H2O = Ag(OH)2- + 2 H+ + log_k -24 #AgSO4- 434 Ag+ + SO4-2 = AgSO4- - log_k 1.29 + log_k 1.29 delta_h 1.49 kcal #AgNO3 435 Ag+ + NO3- = AgNO3 - log_k -0.29 + log_k -0.29 #Ag(NO2)2- 436 - Ag+ + 2NO2- = Ag(NO2)2- - log_k 2.22 + Ag+ + 2 NO2- = Ag(NO2)2- + log_k 2.22 #ZnBr+ 447 - Zn+2 + Br- = ZnBr+ - log_k -0.58 + Zn+2 + Br- = ZnBr+ + log_k -0.58 #ZnBr2 448 - Zn+2 + 2Br- = ZnBr2 - log_k -0.98 + Zn+2 + 2 Br- = ZnBr2 + log_k -0.98 #ZnI+ 449 - Zn+2 + I- = ZnI+ - log_k -2.91 + Zn+2 + I- = ZnI+ + log_k -2.91 #ZnI2 450 - Zn+2 + 2I- = ZnI2 - log_k -1.69 + Zn+2 + 2 I- = ZnI2 + log_k -1.69 #CdBr+ 451 - Cd+2 + Br- = CdBr+ - log_k 2.17 + Cd+2 + Br- = CdBr+ + log_k 2.17 delta_h -0.81 kcal #CdBr2 452 - Cd+2 + 2Br- = CdBr2 - log_k 2.9 + Cd+2 + 2 Br- = CdBr2 + log_k 2.9 #CdI+ 453 - Cd+2 + I- = CdI+ - log_k 2.15 + Cd+2 + I- = CdI+ + log_k 2.15 delta_h -2.37 kcal #CdI2 454 - Cd+2 + 2I- = CdI2 - log_k 3.59 + Cd+2 + 2 I- = CdI2 + log_k 3.59 #PbBr+ 455 - Pb+2 + Br- = PbBr+ - log_k 1.77 + Pb+2 + Br- = PbBr+ + log_k 1.77 delta_h 2.88 kcal #PbBr2 456 - Pb+2 + 2Br- = PbBr2 - log_k 1.44 + Pb+2 + 2 Br- = PbBr2 + log_k 1.44 #PbI+ 457 - Pb+2 + I- = PbI+ - log_k 1.94 + Pb+2 + I- = PbI+ + log_k 1.94 #PbI2 458 - Pb+2 + 2I- = PbI2 - log_k 3.2 + Pb+2 + 2 I- = PbI2 + log_k 3.2 #PbCO3 468 - Pb+2 + CO3-2 = PbCO3 - log_k 7.24 + Pb+2 + CO3-2 = PbCO3 + log_k 7.24 #Pb(OH)4-2 469 - Pb+2 + 4H2O = Pb(OH)4-2 + 4H+ - log_k -39.7 + Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ + log_k -39.7 #Pb(SO4)2-2 470 - Pb+2 + 2SO4-2 = Pb(SO4)2-2 - log_k 3.47 + Pb+2 + 2 SO4-2 = Pb(SO4)2-2 + log_k 3.47 #AgBr3-2 473 - Ag+ + 3Br- = AgBr3-2 - log_k 8.71 + Ag+ + 3 Br- = AgBr3-2 + log_k 8.71 #AgI3-2 474 - Ag+ + 3I- = AgI3-2 - log_k 13.37 + Ag+ + 3 I- = AgI3-2 + log_k 13.37 delta_h -27.03 kcal #AgI4-3 475 - Ag+ + 4I- = AgI4-3 - log_k 14.08 + Ag+ + 4 I- = AgI4-3 + log_k 14.08 #Fe(HS)2 476 - Fe+2 + 2HS- = Fe(HS)2 - log_k 8.95 + Fe+2 + 2 HS- = Fe(HS)2 + log_k 8.95 #Fe(HS)3- 477 - Fe+2 + 3HS- = Fe(HS)3- - log_k 10.987 + Fe+2 + 3 HS- = Fe(HS)3- + log_k 10.987 #H2AsO3- 478 H3AsO3 = H2AsO3- + H+ - log_k -9.15 - delta_h 27.54 kJ + log_k -9.15 + delta_h 27.54 kJ #HAsO3-2 479 - H3AsO3 = HAsO3-2 + 2H+ - log_k -23.85 - delta_h 59.41 kJ + H3AsO3 = HAsO3-2 + 2 H+ + log_k -23.85 + delta_h 59.41 kJ #AsO3-3 480 - H3AsO3 = AsO3-3 + 3H+ - log_k -39.55 - delta_h 84.73 kJ + H3AsO3 = AsO3-3 + 3 H+ + log_k -39.55 + delta_h 84.73 kJ #H4AsO3+ 481 - H3AsO3 + H+ = H4AsO3+ - log_k -0.305 + H3AsO3 + H+ = H4AsO3+ + log_k -0.305 #H2AsO4- 482 H3AsO4 = H2AsO4- + H+ - log_k -2.3 - delta_h -7.066 kJ + log_k -2.3 + delta_h -7.066 kJ #HAsO4-2 483 - H3AsO4 = HAsO4-2 + 2H+ - log_k -9.46 - delta_h -3.846 kJ + H3AsO4 = HAsO4-2 + 2 H+ + log_k -9.46 + delta_h -3.846 kJ #AsO43- 484 - H3AsO4 = AsO4-3 + 3H+ - log_k -21.11 - delta_h 14.354 kJ + H3AsO4 = AsO4-3 + 3 H+ + log_k -21.11 + delta_h 14.354 kJ #As3 secondary master species 487 H3AsO4 + H2 = H3AsO3 + H2O - log_k 22.5 - delta_h -117.480344 kJ + log_k 22.5 + delta_h -117.480344 kJ #As3S4(HS)-2 631 - 3H3AsO3 + 6HS- + 5H+ = As3S4(HS)2- + 9H2O - log_k 72.314 - -gamma 5.0 0.0 + 3 H3AsO3 + 6 HS- + 5 H+ = As3S4(HS)2- + 9 H2O + log_k 72.314 + -gamma 5 0 #AsS(OH)(HS)- 637 - H3AsO3 + 2HS- + H+ = AsS(OH)(HS)- + 2H2O - log_k 18.038 - -gamma 5.0 0.0 + H3AsO3 + 2 HS- + H+ = AsS(OH)(HS)- + 2 H2O + log_k 18.038 + -gamma 5 0 # -# TURNING OFF CHECKING FOR EQUATION BALANCE FOR +# TURNING OFF CHECKING FOR EQUATION BALANCE FOR # POLYSULFIDES # @@ -1406,73 +1410,73 @@ SOLUTION_SPECIES # Cu+2 + 2HS- + e- = CuS4S5-3 + 2H+ # (lhs) +7S # log_k 5.382 # -no_check -# -mass_balance CuS(-2)9 +# -mass_balance CuS(-2)9 # -gamma 25.0 0.0 #As3/As5 487 -# H3AsO3 + H2O = H3AsO4 + 2H+ + 2e- +# H3AsO3 + H2O = H3AsO4 + 2H+ + 2e- # log_k -18.897 # delta_h 30.015 kcal #S2-2 502 - HS- = S2-2 + H+ # (lhs) +S - log_k -14.528 + HS- = S2-2 + H+ # (lhs) +S + log_k -14.528 delta_h 11.4 kcal -no_check - -mass_balance S(-2)2 - -gamma 6.5 0.0 + -mass_balance S(-2)2 + -gamma 6.5 0 #S3-2 503 - HS- = S3-2 + H+ # (lhs) +2S - log_k -13.282 + HS- = S3-2 + H+ # (lhs) +2S + log_k -13.282 delta_h 10.4 kcal -no_check - -mass_balance S(-2)3 - -gamma 8.0 0.0 + -mass_balance S(-2)3 + -gamma 8 0 #S4-2 504 - HS- = S4-2 + H+ # (lhs) +3S - log_k -9.829 + HS- = S4-2 + H+ # (lhs) +3S + log_k -9.829 delta_h 9.7 kcal -no_check - -mass_balance S(-2)4 - -gamma 10.0 0.0 + -mass_balance S(-2)4 + -gamma 10 0 #S5-2 505 - HS- = S5-2 + H+ # (lhs) +4S - log_k -9.595 + HS- = S5-2 + H+ # (lhs) +4S + log_k -9.595 delta_h 9.3 kcal -no_check - -mass_balance S(-2)5 - -gamma 12.0 0.0 + -mass_balance S(-2)5 + -gamma 12 0 #S6-2 506 - HS- = S6-2 + H+ # (lhs) +5S - log_k -9.881 + HS- = S6-2 + H+ # (lhs) +5S + log_k -9.881 -no_check - -mass_balance S(-2)6 - -gamma 14.0 0.0 + -mass_balance S(-2)6 + -gamma 14 0 #Ag(S4)2-3 507 - Ag+ + 2HS- = Ag(S4)2-3 + 2H+ # (lhs) +6S - log_k 0.991 + Ag+ + 2 HS- = Ag(S4)2-3 + 2 H+ # (lhs) +6S + log_k 0.991 -no_check - -mass_balance AgS(-2)8 - -gamma 22.0 0.0 + -mass_balance AgS(-2)8 + -gamma 22 0 #Ag(S4)S5-3 508 - Ag+ + 2HS- = Ag(S4)S5-3 + 2H+ # (lhs) +7S - log_k 0.68 + Ag+ + 2 HS- = Ag(S4)S5-3 + 2 H+ # (lhs) +7S + log_k 0.68 -no_check - -mass_balance AgS(-2)9 - -gamma 24.0 0.0 + -mass_balance AgS(-2)9 + -gamma 24 0 #AgHS(S4)-2 509 # (lhs) +3S - Ag+ + 2HS- = AgHS(S4)-2 + H+ - log_k 10.43 + Ag+ + 2 HS- = AgHS(S4)-2 + H+ + log_k 10.43 -no_check - -mass_balance AgHS(-2)5 - -gamma 15.0 0.0 + -mass_balance AgHS(-2)5 + -gamma 15 0 # # END OF POLYSULFIDES @@ -1480,99 +1484,99 @@ SOLUTION_SPECIES #CuHCO3+ 510 Cu+2 + HCO3- = CuHCO3+ - log_k 2.7 + log_k 2.7 #ZnHCO3+ 511 Zn+2 + HCO3- = ZnHCO3+ - log_k 2.1 + log_k 2.1 #ZnCO3 512 - Zn+2 + CO3-2 = ZnCO3 - log_k 5.3 + Zn+2 + CO3-2 = ZnCO3 + log_k 5.3 #Zn(CO3)2-2 513 - Zn+2 + 2CO3-2 = Zn(CO3)2-2 - log_k 9.63 + Zn+2 + 2 CO3-2 = Zn(CO3)2-2 + log_k 9.63 #CdHCO3 514 Cd+2 + HCO3- = CdHCO3+ - log_k 1.5 + log_k 1.5 #CdCO3 515 - Cd+2 + CO3-2 = CdCO3 - log_k 2.9 + Cd+2 + CO3-2 = CdCO3 + log_k 2.9 #Cd(SO4)2-2 516 - Cd+2 + 2SO4-2 = Cd(SO4)2-2 - log_k 3.5 + Cd+2 + 2 SO4-2 = Cd(SO4)2-2 + log_k 3.5 #PbHCO3+ 517 Pb+2 + HCO3- = PbHCO3+ - log_k 2.9 + log_k 2.9 #NiCl2 518 - Ni+2 + 2Cl- = NiCl2 - log_k 0.96 + Ni+2 + 2 Cl- = NiCl2 + log_k 0.96 #NiHCO3+ 519 Ni+2 + HCO3- = NiHCO3+ - log_k 2.14 + log_k 2.14 #NiCO3 520 - Ni+2 + CO3-2 = NiCO3 - log_k 6.87 + Ni+2 + CO3-2 = NiCO3 + log_k 6.87 #Ni(CO3)2-2 521 - Ni+2 + 2CO3-2 = Ni(CO3)2-2 - log_k 10.11 + Ni+2 + 2 CO3-2 = Ni(CO3)2-2 + log_k 10.11 #Ni(SO4)2-2 522 - Ni+2 + 2SO4-2 = Ni(SO4)2-2 - log_k 1.02 + Ni+2 + 2 SO4-2 = Ni(SO4)2-2 + log_k 1.02 #HFulvate 523 - H+ + Fulvate-2 = HFulvate- - log_k 4.27 + H+ + Fulvate-2 = HFulvate- + log_k 4.27 #HHumate 524 - H+ + Humate-2 = HHumate- - log_k 4.27 + H+ + Humate-2 = HHumate- + log_k 4.27 #FeFulvate 525 - Fe+3 + Fulvate-2 = FeFulvate+ - log_k 9.4 + Fe+3 + Fulvate-2 = FeFulvate+ + log_k 9.4 #FeHumate 526 - Fe+3 + Humate-2 = FeHumate+ - log_k 9.4 + Fe+3 + Humate-2 = FeHumate+ + log_k 9.4 #CuFulvate 527 Cu+2 + Fulvate-2 = CuFulvate - log_k 6.2 + log_k 6.2 #CuHumate 528 Cu+2 + Humate-2 = CuHumate - log_k 6.2 + log_k 6.2 #CdFulvate 529 Cd+2 + Fulvate-2 = CdFulvate - log_k 3.5 + log_k 3.5 #CdHumate 530 Cd+2 + Humate-2 = CdHumate - log_k 3.5 + log_k 3.5 #AgFulvate 531 - Ag+ + Fulvate-2 = AgFulvate- - log_k 2.4 + Ag+ + Fulvate-2 = AgFulvate- + log_k 2.4 #AgHumate 532 - Ag+ + Humate-2 = AgHumate- - log_k 2.4 + Ag+ + Humate-2 = AgHumate- + log_k 2.4 #H2F2 537 - 2H+ + 2F- = H2F2 - log_k 6.768 + 2 H+ + 2 F- = H2F2 + log_k 6.768 #peS/H2S 538 # S + 2H+ + 2e- = H2S @@ -1580,1969 +1584,1969 @@ SOLUTION_SPECIES #NaF 540 Na+ + F- = NaF - log_k -0.24 + log_k -0.24 #FeCl+ 542 - Fe+2 + Cl- = FeCl+ - log_k 0.14 - -gamma 5.0 0.0 + Fe+2 + Cl- = FeCl+ + log_k 0.14 + -gamma 5 0 #BaSO4 543 - Ba+2 + SO4-2 = BaSO4 - log_k 2.7 + Ba+2 + SO4-2 = BaSO4 + log_k 2.7 #HSe- secondary master species 549 - SeO3-2 + 7H+ + 6e- = HSe- + 3H2O - log_k 42.514 + SeO3-2 + 7 H+ + 6 e- = HSe- + 3 H2O + log_k 42.514 #H2Se 544 - HSe- + H+ = H2Se - log_k 3.8 + HSe- + H+ = H2Se + log_k 3.8 delta_h -5.3 kcal #SeO3-2 secondary master species 548 - SeO4-2 + 2H+ + 2e- = SeO3-2 + H2O - log_k 30.256 + SeO4-2 + 2 H+ + 2 e- = SeO3-2 + H2O + log_k 30.256 #H2SeO3 545 - SeO3-2 + 2H+ = H2SeO3 - log_k 11.25 + SeO3-2 + 2 H+ = H2SeO3 + log_k 11.25 #HSeO3- 546 SeO3-2 + H+ = HSeO3- - log_k 8.5 + log_k 8.5 #HSeO4- 547 SeO4-2 + H+ = HSeO4- - log_k 1.66 + log_k 1.66 delta_h 4.91 kcal #Se4/Se6 548 -# SeO3-2 + H2O = SeO4-2 + 2H+ + 2e- +# SeO3-2 + H2O = SeO4-2 + 2H+ + 2e- # -30.256 0.0 #Se4/Se-2 549 -# SeO3-2 + 7H+ + 6e- = HSe- + 3H2O +# SeO3-2 + 7H+ + 6e- = HSe- + 3H2O # 42.514 0.0 #As3/As 557 -# H3AsO3 + 3H+ + 3e- = As + 3H2O +# H3AsO3 + 3H+ + 3e- = As + 3H2O # 12.170 0.0 #FeHCO3+ 558 Fe+2 + HCO3- = FeHCO3+ - log_k 2.0 + log_k 2 #FeCO3 559 - Fe+2 + CO3-2 = FeCO3 - log_k 4.38 + Fe+2 + CO3-2 = FeCO3 + log_k 4.38 #MnCO3 560 - Mn+2 + CO3-2 = MnCO3 - log_k 4.9 + Mn+2 + CO3-2 = MnCO3 + log_k 4.9 #BaHCO3+ 561 Ba+2 + HCO3- = BaHCO3+ - log_k 0.982 + log_k 0.982 delta_h 5.56 kcal - -analytical -3.0938 0.013669 0.0 0.0 0.0 + -analytical -3.0938 0.013669 0 0 0 #BaCO3 562 - Ba+2 + CO3-2 = BaCO3 - log_k 2.71 + Ba+2 + CO3-2 = BaCO3 + log_k 2.71 delta_h 3.55 kcal - -analytical 0.113 0.008721 0.0 0.0 0.0 + -analytical 0.113 0.008721 0 0 0 #SrSO4 563 - Sr+2 + SO4-2 = SrSO4 - log_k 2.29 + Sr+2 + SO4-2 = SrSO4 + log_k 2.29 delta_h 2.08 kcal #U+4 secondary master species 565 - UO2+2 + 4H+ + 2e- = U+4 + 2H2O - log_k 9.04 + UO2+2 + 4 H+ + 2 e- = U+4 + 2 H2O + log_k 9.04 delta_h -34.43 kcal #U+3 secondary master species 566 - U+4 + e- = U+3 - log_k -8.796 + U+4 + e- = U+3 + log_k -8.796 delta_h 24.4 kcal #UOH+3 567 - U+4 + H2O = UOH+3 + H+ - log_k -0.54 + U+4 + H2O = UOH+3 + H+ + log_k -0.54 delta_h 11.21 kcal #U(OH)2+2 568 - U+4 + 2H2O = U(OH)2+2 + 2H+ - log_k -2.27 + U+4 + 2 H2O = U(OH)2+2 + 2 H+ + log_k -2.27 delta_h 17.73 kcal #U(OH)3+ 569 - U+4 + 3H2O = U(OH)3+ + 3H+ - log_k -4.935 + U+4 + 3 H2O = U(OH)3+ + 3 H+ + log_k -4.935 delta_h 22.645 kcal #U(OH)4 570 - U+4 + 4H2O = U(OH)4 + 4H+ - log_k -8.498 + U+4 + 4 H2O = U(OH)4 + 4 H+ + log_k -8.498 delta_h 24.76 kcal #U6(OH)15+9 572 - 6U+4 + 15H2O = U6(OH)15+9 + 15H+ - log_k -17.2 + 6 U+4 + 15 H2O = U6(OH)15+9 + 15 H+ + log_k -17.2 #UF+3 578 - U+4 + F- = UF+3 - log_k 9.3 + U+4 + F- = UF+3 + log_k 9.3 delta_h -1.3 kcal #UF2+2 579 - U+4 + 2F- = UF2+2 - log_k 16.22 + U+4 + 2 F- = UF2+2 + log_k 16.22 delta_h -0.8 kcal #UF3+ 580 - U+4 + 3F- = UF3+ - log_k 21.6 + U+4 + 3 F- = UF3+ + log_k 21.6 delta_h 0.1 kcal #UF4 581 - U+4 + 4F- = UF4 - log_k 25.5 + U+4 + 4 F- = UF4 + log_k 25.5 delta_h -0.87 kcal #UF5- 582 - U+4 + 5F- = UF5- - log_k 27.01 + U+4 + 5 F- = UF5- + log_k 27.01 delta_h 4.85 kcal #UF6-2 583 - U+4 + 6F- = UF6-2 - log_k 29.1 + U+4 + 6 F- = UF6-2 + log_k 29.1 delta_h 3.3 kcal #UCl+3 586 - U+4 + Cl- = UCl+3 - log_k 1.72 + U+4 + Cl- = UCl+3 + log_k 1.72 delta_h -4.54 kcal #USO4+2 587 - U+4 + SO4-2 = USO4+2 - log_k 6.58 + U+4 + SO4-2 = USO4+2 + log_k 6.58 delta_h 1.9 kcal #U(SO4)2 588 - U+4 + 2SO4-2 = U(SO4)2 - log_k 10.5 + U+4 + 2 SO4-2 = U(SO4)2 + log_k 10.5 delta_h 7.8 kcal #U(CO3)4-4 589 - U+4 + 4CO3-2 = U(CO3)4-4 - log_k 32.9 + U+4 + 4 CO3-2 = U(CO3)4-4 + log_k 32.9 #U(CO3)5-6 590 - U+4 + 5CO3-2 = U(CO3)5-6 - log_k 34.0 - delta_h 20.0 kcal + U+4 + 5 CO3-2 = U(CO3)5-6 + log_k 34 + delta_h 20 kcal #UO2+ secondary master species 595 - UO2+2 + e- = UO2+ - log_k 1.49 + UO2+2 + e- = UO2+ + log_k 1.49 delta_h -3.3 kcal #UO2OH+ 596 - UO2+2 + H2O = UO2OH+ + H+ - log_k -5.2 + UO2+2 + H2O = UO2OH+ + H+ + log_k -5.2 delta_h 11.015 kcal #(UO2)2(OH)2+2 597 - 2UO2+2 + 2H2O = (UO2)2(OH)2+2 + 2H+ - log_k -5.62 + 2 UO2+2 + 2 H2O = (UO2)2(OH)2+2 + 2 H+ + log_k -5.62 delta_h 10.23 kcal #(UO2)3(OH)5+ 598 - 3UO2+2 + 5H2O = (UO2)3(OH)5+ + 5H+ - log_k -15.55 + 3 UO2+2 + 5 H2O = (UO2)3(OH)5+ + 5 H+ + log_k -15.55 delta_h 25.075 kcal #UO2CO3 603 - UO2+2 + CO3-2 = UO2CO3 - log_k 9.63 + UO2+2 + CO3-2 = UO2CO3 + log_k 9.63 delta_h 1.2 kcal #UO2(CO3)2-2 604 - UO2+2 + 2CO3-2 = UO2(CO3)2-2 - log_k 17.0 + UO2+2 + 2 CO3-2 = UO2(CO3)2-2 + log_k 17 delta_h 4.42 kcal #UO2(CO3)3-4 605 - UO2+2 + 3CO3-2 = UO2(CO3)3-4 - log_k 21.63 + UO2+2 + 3 CO3-2 = UO2(CO3)3-4 + log_k 21.63 delta_h -9.13 kcal #UO2F+ 607 - UO2+2 + F- = UO2F+ - log_k 5.09 + UO2+2 + F- = UO2F+ + log_k 5.09 delta_h 0.41 kcal #UO2F2 608 - UO2+2 + 2F- = UO2F2 - log_k 8.62 + UO2+2 + 2 F- = UO2F2 + log_k 8.62 delta_h 0.5 kcal #UO2F3- 609 - UO2+2 + 3F- = UO2F3- - log_k 10.9 + UO2+2 + 3 F- = UO2F3- + log_k 10.9 delta_h 0.56 kcal #UO2F4-2 610 - UO2+2 + 4F- = UO2F4-2 - log_k 11.7 + UO2+2 + 4 F- = UO2F4-2 + log_k 11.7 delta_h 0.07 kcal #UO2Cl+ 611 - UO2+2 + Cl- = UO2Cl+ - log_k 0.17 + UO2+2 + Cl- = UO2Cl+ + log_k 0.17 delta_h 1.9 kcal #UO2SO4 612 - UO2+2 + SO4-2 = UO2SO4 - log_k 3.15 + UO2+2 + SO4-2 = UO2SO4 + log_k 3.15 delta_h 4.7 kcal #UO2(SO4)2-2 613 - UO2+2 + 2SO4-2 = UO2(SO4)2-2 - log_k 4.14 + UO2+2 + 2 SO4-2 = UO2(SO4)2-2 + log_k 4.14 delta_h 8.4 kcal #UO2HPO4 614 - UO2+2 + PO4-3 + H+ = UO2HPO4 - log_k 20.21 + UO2+2 + PO4-3 + H+ = UO2HPO4 + log_k 20.21 delta_h -2.1 kcal #UO2(HPO4)2-2 615 - UO2+2 + 2PO4-3 + 2H+ = UO2(HPO4)2-2 - log_k 43.441 + UO2+2 + 2 PO4-3 + 2 H+ = UO2(HPO4)2-2 + log_k 43.441 delta_h -11.8 kcal #UO2H2PO4+ 616 - UO2+2 + PO4-3 + 2H+ = UO2H2PO4+ - log_k 22.87 + UO2+2 + PO4-3 + 2 H+ = UO2H2PO4+ + log_k 22.87 delta_h -3.7 kcal #UO2H2PO4)2 617 - UO2+2 + 2PO4-3 + 4H+ = UO2(H2PO4)2 - log_k 44.38 + UO2+2 + 2 PO4-3 + 4 H+ = UO2(H2PO4)2 + log_k 44.38 delta_h -16.5 kcal #UO2H2PO4)3- 618 - UO2+2 + 3PO4-3 + 6H+ = UO2(H2PO4)3- - log_k 66.245 + UO2+2 + 3 PO4-3 + 6 H+ = UO2(H2PO4)3- + log_k 66.245 delta_h -28.6 kcal #UBr+3 633 - U+4 + Br- = UBr+3 - log_k 1.5 + U+4 + Br- = UBr+3 + log_k 1.5 #UI+3 634 - U+4 + I- = UI+3 - log_k 1.3 + U+4 + I- = UI+3 + log_k 1.3 #UNO3+3 635 - U+4 + NO3- = UNO3+3 - log_k 1.47 + U+4 + NO3- = UNO3+3 + log_k 1.47 #U(NO3)2+2 636 - U+4 + 2NO3- = U(NO3)2+2 - log_k 2.3 + U+4 + 2 NO3- = U(NO3)2+2 + log_k 2.3 #UO2(OH)3- 638 - UO2+2 + 3H2O = UO2(OH)3- + 3H+ - log_k -19.2 + UO2+2 + 3 H2O = UO2(OH)3- + 3 H+ + log_k -19.2 #UO2(OH)4-2 639 - UO2+2 + 4H2O = UO2(OH)4-2 + 4H+ - log_k -33.0 + UO2+2 + 4 H2O = UO2(OH)4-2 + 4 H+ + log_k -33 #(UO2)2OH+3 640 - 2UO2+2 + H2O = (UO2)2OH+3 + H+ - log_k -2.7 + 2 UO2+2 + H2O = (UO2)2OH+3 + H+ + log_k -2.7 #(UO2)3(OH)4+2 641 - 3UO2+2 + 4H2O = (UO2)3(OH)4+2 + 4H+ - log_k -11.9 + 3 UO2+2 + 4 H2O = (UO2)3(OH)4+2 + 4 H+ + log_k -11.9 #(UO2)3(OH)7- 642 - 3UO2+2 + 7H2O = (UO2)3(OH)7- + 7H+ - log_k -31.0 + 3 UO2+2 + 7 H2O = (UO2)3(OH)7- + 7 H+ + log_k -31 #(UO2)4(OH)7+ 643 - 4UO2+2 + 7H2O = (UO2)4(OH)7+ + 7H+ - log_k -21.9 + 4 UO2+2 + 7 H2O = (UO2)4(OH)7+ + 7 H+ + log_k -21.9 #UO2Cl2 644 - UO2+2 + 2Cl- = UO2Cl2 - log_k -1.1 + UO2+2 + 2 Cl- = UO2Cl2 + log_k -1.1 delta_h 3.6 kcal #UO2Br+ 645 - UO2+2 + Br- = UO2Br+ - log_k 0.22 + UO2+2 + Br- = UO2Br+ + log_k 0.22 #UO2NO3+ 646 - UO2+2 + NO3- = UO2NO3+ - log_k 0.3 + UO2+2 + NO3- = UO2NO3+ + log_k 0.3 #UO2H3PO4+2 647 - UO2+2 + PO4-3 + 3H+ = UO2H3PO4+2 - log_k 22.813 + UO2+2 + PO4-3 + 3 H+ = UO2H3PO4+2 + log_k 22.813 #(UO2)3(CO3)6-6 648 - 3UO2+2 + 6CO3-2 = (UO2)3(CO3)6-6 - log_k 54.0 + 3 UO2+2 + 6 CO3-2 = (UO2)3(CO3)6-6 + log_k 54 #UO2PO4- 649 UO2+2 + PO4-3 = UO2PO4- - log_k 13.69 + log_k 13.69 #UO2(CO3)3-5 650 -# UO2+2 + 3CO3-2 + e- = UO2(CO3)3-5 +# UO2+2 + 3CO3-2 + e- = UO2(CO3)3-5 # log_k 8.920 - UO2+ + 3CO3-2 = UO2(CO3)3-5 - log_k 7.43 + UO2+ + 3 CO3-2 = UO2(CO3)3-5 + log_k 7.43 delta_h 3.33 kcal PHASES H2O(g) H2O = H2O - log_k 1.51 - delta_h -44.03 kJ + log_k 1.51 + delta_h -44.03 kJ # Stumm and Morgan, from NBS and Robie, Hemmingway, and Fischer (1978) -Siderite(d)(3) 9 - FeCO3 = Fe+2 + CO3-2 - log_k -10.45 +Siderite(d)(3) 9 + FeCO3 = Fe+2 + CO3-2 + log_k -10.45 -Magnesite 10 - MgCO3 = Mg+2 + CO3-2 - log_k -8.029 +Magnesite 10 + MgCO3 = Mg+2 + CO3-2 + log_k -8.029 delta_h -6.169 kcal -Dolomite(d) 11 - CaMg(CO3)2 = Ca+2 + Mg+2 + 2CO3-2 - log_k -16.54 +Dolomite(d) 11 + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + log_k -16.54 delta_h -11.09 kcal -Calcite 12 - CaCO3 = Ca+2 + CO3-2 - log_k -8.48 +Calcite 12 + CaCO3 = Ca+2 + CO3-2 + log_k -8.48 delta_h -2.297 kcal - -analytical -171.9065 -0.077993 2839.319 71.595 0.0 + -analytical -171.9065 -0.077993 2839.319 71.595 0 -Anhydrite 17 - CaSO4 = Ca+2 + SO4-2 - log_k -4.36 +Anhydrite 17 + CaSO4 = Ca+2 + SO4-2 + log_k -4.36 delta_h -1.71 kcal - -analytical 197.52 0.0 -8669.8 -69.835 0.0 + -analytical 197.52 0 -8669.8 -69.835 0 -Gypsum 18 - CaSO4:2H2O = Ca+2 + SO4-2 + 2H2O - log_k -4.58 +Gypsum 18 + CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O + log_k -4.58 delta_h -0.109 kcal - -analytical 68.2401 0.0 -3221.51 -25.0627 0.0 + -analytical 68.2401 0 -3221.51 -25.0627 0 -Brucite 19 - Mg(OH)2 + 2H+ = Mg+2 + 2H2O - log_k 16.84 +Brucite 19 + Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O + log_k 16.84 delta_h -27.1 kcal -Chrysotile 20 - Mg3Si2O5(OH)4 + 6H+ = 3Mg+2 + 2H4SiO4 + H2O - log_k 32.2 +Chrysotile 20 + Mg3Si2O5(OH)4 + 6 H+ = 3 Mg+2 + 2 H4SiO4 + H2O + log_k 32.2 delta_h -46.8 kcal - -analytical 13.248 0.0 10217.1 -6.1894 0.0 + -analytical 13.248 0 10217.1 -6.1894 0 -Aragonite 21 - CaCO3 = Ca+2 + CO3-2 - log_k -8.336 +Aragonite 21 + CaCO3 = Ca+2 + CO3-2 + log_k -8.336 delta_h -2.589 kcal - -analytical -171.9773 -0.077993 2903.293 71.595 0.0 + -analytical -171.9773 -0.077993 2903.293 71.595 0 -Forsterite 27 - Mg2SiO4 + 4H+ = 2Mg+2 + H4SiO4 - log_k 28.306 +Forsterite 27 + Mg2SiO4 + 4 H+ = 2 Mg+2 + H4SiO4 + log_k 28.306 delta_h -48.578 kcal -Diopside 28 - CaMgSi2O6 + 4H+ + 2H2O = Ca+2 + Mg+2 + 2H4SiO4 - log_k 19.894 +Diopside 28 + CaMgSi2O6 + 4 H+ + 2 H2O = Ca+2 + Mg+2 + 2 H4SiO4 + log_k 19.894 delta_h -32.348 kcal -Clinoenstatite 29 - MgSiO3 + 2H+ + H2O = Mg+2 + H4SiO4 - log_k 11.342 +Clinoenstatite 29 + MgSiO3 + 2 H+ + H2O = Mg+2 + H4SiO4 + log_k 11.342 delta_h -20.049 kcal -Tremolite 31 - Ca2Mg5Si8O22(OH)2+14H+ +8H2O = 2Ca+2 +5Mg+2 +8H4SiO4 - log_k 56.574 +Tremolite 31 + Ca2Mg5Si8O22(OH)2 + 14 H+ + 8 H2O = 2 Ca+2 + 5 Mg+2 + 8 H4SiO4 + log_k 56.574 delta_h -96.853 kcal -Sepiolite 36 - Mg2Si3O7.5OH:3H2O+0.5H2O+4H+ = 2Mg+2 +3H4SiO4 - log_k 15.76 +Sepiolite 36 + Mg2Si3O7.5OH:3H2O + 0.5 H2O + 4 H+ = 2 Mg+2 + 3 H4SiO4 + log_k 15.76 delta_h -10.7 kcal -Talc 37 - Mg3Si4O10(OH)2+4H2O+6H+=3Mg+2 +4H4SiO4 - log_k 21.399 +Talc 37 + Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 + log_k 21.399 delta_h -46.352 kcal -Hydromagnesite 38 - Mg5(CO3)4(OH)2:4H2O + 2H+ = 5Mg+2 + 4CO3-2 + 6H2O - log_k -8.762 +Hydromagnesite 38 + Mg5(CO3)4(OH)2:4H2O + 2 H+ = 5 Mg+2 + 4 CO3-2 + 6 H2O + log_k -8.762 delta_h -52.244 kcal -Adularia 39 - KAlSi3O8 + 8H2O = K+ + Al(OH)4- + 3H4SiO4 - log_k -20.573 +Adularia 39 + KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 + log_k -20.573 delta_h 30.82 kcal -Albite 40 - NaAlSi3O8 + 8H2O = Na+ + Al(OH)4- + 3H4SiO4 - log_k -18.002 +Albite 40 + NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 + log_k -18.002 delta_h 25.896 kcal -Anorthite 41 - CaAl2Si2O8 + 8H2O = Ca+2 + 2Al(OH)4- + 2H4SiO4 - log_k -19.714 +Anorthite 41 + CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 + log_k -19.714 delta_h 11.58 kcal -Analcime 42 - NaAlSi2O6:H2O + 5H2O = Na+ + Al(OH)4- + 2H4SiO4 - log_k -12.701 +Analcime 42 + NaAlSi2O6:H2O + 5 H2O = Na+ + Al(OH)4- + 2 H4SiO4 + log_k -12.701 delta_h 18.206 kcal -Kmica 43 - KAl3Si3O10(OH)2+10H+=K+ +3Al+3 +3H4SiO4 - log_k 12.703 +Kmica 43 + KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 + log_k 12.703 delta_h -59.376 kcal -Phlogopite 44 - KMg3AlSi3O10(OH)2 + 10H+ = K+ + 3Mg+2 + Al+3 + 3H4SiO4 - log_k 43.3 - delta_h -42.30 kcal +Phlogopite 44 + KMg3AlSi3O10(OH)2 + 10 H+ = K+ + 3 Mg+2 + Al+3 + 3 H4SiO4 + log_k 43.3 + delta_h -42.3 kcal -Illite 45 - K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ +0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+ - log_k -40.267 +Illite 45 + K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2 H2O = 0.6 K+ + 0.25 Mg+2 + 2.3 Al(OH)4- + 3.5 H4SiO4 + 1.2 H+ + log_k -40.267 delta_h 54.684 kcal -Kaolinite 46 - Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O - log_k 7.435 +Kaolinite 46 + Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 H4SiO4 + H2O + log_k 7.435 delta_h -35.3 kcal -Halloysite 47 - Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O - log_k 12.498 - delta_h -39.920 kcal +Halloysite 47 + Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 H4SiO4 + H2O + log_k 12.498 + delta_h -39.92 kcal -Beidellite 48 - (NaKMg0.5)0.11Al2.33Si3.67O10(OH)2 + 12H2O = 0.11Na+ + 0.11K+ + 0.055Mg+2 + 2.33Al(OH)4- + 3.67H4SiO4 + 2H+ - log_k -45.272 +Beidellite 48 + (NaKMg0.5)0.11Al2.33Si3.67O10(OH)2 + 12 H2O = 0.11 Na+ + 0.11 K+ + 0.055 Mg+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ + log_k -45.272 delta_h 60.355 kcal -Chlorite14A 49 - Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O - log_k 68.38 +Chlorite14A 49 + Mg5Al2Si3O10(OH)8 + 16 H+ = 5 Mg+2 + 2 Al+3 + 3 H4SiO4 + 6 H2O + log_k 68.38 delta_h -151.494 kcal -Alunite 50 - KAl3(SO4)2(OH)6 + 6H+ = K+ + 3Al+3 + 2SO4-2 + 6H2O - log_k -1.4 +Alunite 50 + KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O + log_k -1.4 delta_h -50.25 kcal -Gibbsite 51 - Al(OH)3 + 3H+ = Al+3 + 3H2O - log_k 8.11 +Gibbsite 51 + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 8.11 delta_h -22.8 kcal -Boehmite 52 - AlOOH + 3H+ = Al+3 + 2H2O - log_k 8.584 +Boehmite 52 + AlOOH + 3 H+ = Al+3 + 2 H2O + log_k 8.584 delta_h -28.181 kcal -Pyrophyllite 53 - Al2Si4O10(OH)2 + 12H2O = 2Al(OH)4- + 4H4SiO4 + 2H+ - log_k -48.314 +Pyrophyllite 53 + Al2Si4O10(OH)2 + 12 H2O = 2 Al(OH)4- + 4 H4SiO4 + 2 H+ + log_k -48.314 -Phillipsite 54 - Na0.5K0.5AlSi3O8:H2O + 7H2O = 0.5Na+ +0.5K+ + Al(OH)4- + 3H4SiO4 - log_k -19.874 +Phillipsite 54 + Na0.5K0.5AlSi3O8:H2O + 7 H2O = 0.5 Na+ + 0.5 K+ + Al(OH)4- + 3 H4SiO4 + log_k -19.874 -Nahcolite 58 +Nahcolite 58 NaHCO3 = Na+ + HCO3- - log_k -0.548 - delta_h 3.720 kcal + log_k -0.548 + delta_h 3.72 kcal -Trona 59 - NaHCO3:Na2CO3:2H2O = 2H2O + 3Na+ + CO3-2 + HCO3- - log_k -0.795 - delta_h -18.0 kcal +Trona 59 + NaHCO3:Na2CO3:2H2O = 2 H2O + 3 Na+ + CO3-2 + HCO3- + log_k -0.795 + delta_h -18 kcal -Natron 60 - Na2CO3:10H2O = 2Na+ + CO3-2 + 10H2O - log_k -1.311 +Natron 60 + Na2CO3:10H2O = 2 Na+ + CO3-2 + 10 H2O + log_k -1.311 delta_h 15.745 kcal -Thermonatrite 61 - Na2CO3:H2O = 2Na+ + CO3-2 + H2O - log_k 0.125 +Thermonatrite 61 + Na2CO3:H2O = 2 Na+ + CO3-2 + H2O + log_k 0.125 delta_h -2.802 kcal -Fluorite 62 - CaF2 = Ca+2 + 2F- - log_k -10.6 +Fluorite 62 + CaF2 = Ca+2 + 2 F- + log_k -10.6 delta_h 4.69 kcal - -analytical 66.348 0.0 -4298.2 -25.271 0.0 + -analytical 66.348 0 -4298.2 -25.271 0 -Montmorillonite-Ca 63 - Ca0.165Al2.33Si3.67O10(OH)2 + 12H2O = 0.165Ca+2 + 2.33Al(OH)4- + 3.67H4SiO4 + 2H+ - log_k -45.027 +Montmorillonite-Ca 63 + Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165 Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ + log_k -45.027 delta_h 58.373 kcal -Halite 64 - NaCl = Na+ + Cl- - log_k 1.582 +Halite 64 + NaCl = Na+ + Cl- + log_k 1.582 delta_h 0.918 kcal -Thenardite 65 - Na2SO4 = 2Na+ + SO4-2 - log_k -0.179 +Thenardite 65 + Na2SO4 = 2 Na+ + SO4-2 + log_k -0.179 delta_h -0.572 kcal -Mirabilite 66 - Na2SO4:10H2O = 2Na+ + SO4-2 + 10H2O - log_k -1.114 +Mirabilite 66 + Na2SO4:10H2O = 2 Na+ + SO4-2 + 10 H2O + log_k -1.114 delta_h 18.987 kcal -Mackinawite 67 - FeS + H+ = Fe+2 + HS- - log_k -4.648 +Mackinawite 67 + FeS + H+ = Fe+2 + HS- + log_k -4.648 -Siderite 94 - FeCO3 = Fe+2 + CO3-2 - log_k -10.89 +Siderite 94 + FeCO3 = Fe+2 + CO3-2 + log_k -10.89 delta_h -2.48 kcal -Hydroxyapatite 95 - Ca5(PO4)3OH + 4H+ = 5Ca+2 + 3HPO4-2 + H2O - log_k -3.421 +Hydroxyapatite 95 + Ca5(PO4)3OH + 4 H+ = 5 Ca+2 + 3 HPO4-2 + H2O + log_k -3.421 delta_h -36.155 kcal -Fluorapatite 96 - Ca5(PO4)3F + 3H+ = 5Ca+2 + 3HPO4-2 + F- - log_k -17.6 - delta_h -20.070 kcal +Fluorapatite 96 + Ca5(PO4)3F + 3 H+ = 5 Ca+2 + 3 HPO4-2 + F- + log_k -17.6 + delta_h -20.07 kcal -Chalcedony 97 - SiO2 + 2H2O = H4SiO4 - log_k -3.55 +Chalcedony 97 + SiO2 + 2 H2O = H4SiO4 + log_k -3.55 delta_h 4.72 kcal - -analytical -0.09 0.0 -1032.0 0.0 0.0 + -analytical -0.09 0 -1032 0 0 -Magadiite 98 - NaSi7O13(OH)3:3H2O + H+ + 9H2O = Na+ + 7H4SiO4 - log_k -14.3 +Magadiite 98 + NaSi7O13(OH)3:3H2O + H+ + 9 H2O = Na+ + 7 H4SiO4 + log_k -14.3 -Cristobalite 99 - SiO2 + 2H2O = H4SiO4 - log_k -3.587 +Cristobalite 99 + SiO2 + 2 H2O = H4SiO4 + log_k -3.587 delta_h 5.5 kcal -Silicagel 100 - SiO2 + 2H2O = H4SiO4 - log_k -3.018 - delta_h 4.440 kcal +Silicagel 100 + SiO2 + 2 H2O = H4SiO4 + log_k -3.018 + delta_h 4.44 kcal -Quartz 101 - SiO2 + 2H2O = H4SiO4 - log_k -3.98 +Quartz 101 + SiO2 + 2 H2O = H4SiO4 + log_k -3.98 delta_h 5.99 kcal - -analytical 0.41 0.0 -1309.0 0.0 0.0 + -analytical 0.41 0 -1309 0 0 -Vivianite 106 - Fe3(PO4)2:8H2O = 3Fe+2 + 2PO4-3 + 8H2O - log_k -36.0 +Vivianite 106 + Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O + log_k -36 -Magnetite 107 - Fe3O4 + 8H+ = 2Fe+3 + Fe+2 + 4H2O - log_k 3.737 - delta_h -50.460 kcal +Magnetite 107 + Fe3O4 + 8 H+ = 2 Fe+3 + Fe+2 + 4 H2O + log_k 3.737 + delta_h -50.46 kcal -Hematite 108 - Fe2O3 + 6H+ = 2Fe+3 + 3H2O - log_k -4.008 +Hematite 108 + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k -4.008 delta_h -30.845 kcal -Maghemite 109 - Fe2O3 + 6H+ = 2Fe+3 + 3H2O - log_k 6.386 +Maghemite 109 + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k 6.386 -Goethite 110 - FeOOH + 3H+ = Fe+3 + 2H2O - log_k -1.0 - delta_h -14.48 kcal +Goethite 110 + FeOOH + 3 H+ = Fe+3 + 2 H2O + log_k -1 + delta_h -14.48 kcal -Greenalite 111 - Fe3Si2O5(OH)4 + 6H+ = 3Fe+2 + 2 H4SiO4 + H2O - log_k 20.810 +Greenalite 111 + Fe3Si2O5(OH)4 + 6 H+ = 3 Fe+2 + 2 H4SiO4 + H2O + log_k 20.81 -Fe(OH)3(a) 112 - Fe(OH)3 + 3H+ = Fe+3 + 3H2O - log_k 4.891 +Fe(OH)3(a) 112 + Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O + log_k 4.891 -Annite 113 - KFe3AlSi3O10(OH)2 + 10H2O = K+ + 3Fe+2 + Al(OH)4- + 3H4SiO4 + 6OH- - log_k -85.645 - delta_h 62.480 kcal +Annite 113 + KFe3AlSi3O10(OH)2 + 10 H2O = K+ + 3 Fe+2 + Al(OH)4- + 3 H4SiO4 + 6 OH- + log_k -85.645 + delta_h 62.48 kcal -Pyrite 114 - FeS2 + 2H+ + 2e- = Fe+2 + 2HS- - log_k -18.479 +Pyrite 114 + FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- + log_k -18.479 delta_h 11.3 kcal -Montmorillonite-BelleFourche 115 - (HNaK)0.09Mg0.29Fe0.24Al1.57Si3.93O10(OH)2 + 10H2O = 0.09H+ + 0.09Na+ + 0.09K+ + 0.29Mg+2 + 0.24Fe+3 + 1.57Al(OH)4- + 3.93H4SiO4 - log_k -34.913 +Montmorillonite-BelleFourche 115 + (HNaK)0.09Mg0.29Fe0.24Al1.57Si3.93O10(OH)2 + 10 H2O = 0.09 H+ + 0.09 Na+ + 0.09 K+ + 0.29 Mg+2 + 0.24 Fe+3 + 1.57 Al(OH)4- + 3.93 H4SiO4 + log_k -34.913 -Montmorillonite-Aberdeen 116 - (HNaK)0.14Mg0.45Fe0.33Al1.47Si3.82O10(OH)2 + 9.16H2O + 0.84H+ = 0.14H+ + 0.14Na+ + 0.14K+ + 0.45Mg+2 + 0.33Fe+3 + 1.47Al(OH)4- + 3.82H4SiO4 - log_k -29.688 +Montmorillonite-Aberdeen 116 + (HNaK)0.14Mg0.45Fe0.33Al1.47Si3.82O10(OH)2 + 9.16 H2O + 0.84 H+ = 0.14 H+ + 0.14 Na+ + 0.14 K+ + 0.45 Mg+2 + 0.33 Fe+3 + 1.47 Al(OH)4- + 3.82 H4SiO4 + log_k -29.688 -Huntite 117 - CaMg3(CO3)4 = 3Mg+2 + Ca+2 + 4CO3-2 - log_k -29.968 - delta_h -25.760 kcal +Huntite 117 + CaMg3(CO3)4 = 3 Mg+2 + Ca+2 + 4 CO3-2 + log_k -29.968 + delta_h -25.76 kcal -Greigite 118 - Fe3S4 + 4H+ = 2Fe+3 + Fe+2 + 4HS- - log_k -45.035 +Greigite 118 + Fe3S4 + 4 H+ = 2 Fe+3 + Fe+2 + 4 HS- + log_k -45.035 -FeS(ppt) 119 - FeS + H+ = Fe+2 + HS- - log_k -3.915 +FeS(ppt) 119 + FeS + H+ = Fe+2 + HS- + log_k -3.915 -Chlorite7A 125 - Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 +3H4SiO4 + 6H2O - log_k 71.752 +Chlorite7A 125 + Mg5Al2Si3O10(OH)8 + 16 H+ = 5 Mg+2 + 2 Al+3 + 3 H4SiO4 + 6 H2O + log_k 71.752 delta_h -155.261 kcal -Laumontite 128 - CaAl2Si4O12:4H2O + 8H2O = Ca+2 + 2Al(OH)4- + 4H4SiO4 - log_k -30.960 - delta_h 39.610 kcal +Laumontite 128 + CaAl2Si4O12:4H2O + 8 H2O = Ca+2 + 2 Al(OH)4- + 4 H4SiO4 + log_k -30.96 + delta_h 39.61 kcal -Jarosite(ss) 133 - (K0.77Na0.03H0.2)Fe3(SO4)2(OH)6 + 5.8H+ = 0.77K+ + 0.03Na+ + 3Fe+3 + 2SO4-2 + 6H2O - log_k -9.83 # WATEQ4F, Alpers and others, 1989 +Jarosite(ss) 133 + (K0.77Na0.03H0.2)Fe3(SO4)2(OH)6 + 5.8 H+ = 0.77 K+ + 0.03 Na+ + 3 Fe+3 + 2 SO4-2 + 6 H2O + log_k -9.83 # WATEQ4F, Alpers and others, 1989 -Mn2(SO4)3 134 - Mn2(SO4)3 = 2Mn+3 + 3SO4-2 - log_k -5.711 - delta_h -39.060 kcal +Mn2(SO4)3 134 + Mn2(SO4)3 = 2 Mn+3 + 3 SO4-2 + log_k -5.711 + delta_h -39.06 kcal -Al(OH)3(a) 140 - Al(OH)3 + 3H+ = Al+3 + 3H2O - log_k 10.8 +Al(OH)3(a) 140 + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 10.8 delta_h -26.5 kcal -Prehnite 141 - Ca2Al2Si3O10(OH)2 + 8H2O + 2H+ = 2Ca+2 + 2Al(OH)4- + 3H4SiO4 - log_k -11.695 - delta_h 10.390 kcal +Prehnite 141 + Ca2Al2Si3O10(OH)2 + 8 H2O + 2 H+ = 2 Ca+2 + 2 Al(OH)4- + 3 H4SiO4 + log_k -11.695 + delta_h 10.39 kcal -Strontianite 142 - SrCO3 = Sr+2 + CO3-2 - log_k -9.271 +Strontianite 142 + SrCO3 = Sr+2 + CO3-2 + log_k -9.271 delta_h -0.4 kcal - -analytical 155.0305 0.0 -7239.594 -56.58638 0.0 + -analytical 155.0305 0 -7239.594 -56.58638 0 -Celestite 143 - SrSO4 = Sr+2 + SO4-2 - log_k -6.63 +Celestite 143 + SrSO4 = Sr+2 + SO4-2 + log_k -6.63 delta_h -1.037 kcal - -analytical -14805.9622 -2.4660924 756968.533 5436.3588 -40553604. + -analytical -14805.9622 -2.4660924 756968.533 5436.3588 -40553604 -Barite 144 - BaSO4 = Ba+2 + SO4-2 - log_k -9.97 +Barite 144 + BaSO4 = Ba+2 + SO4-2 + log_k -9.97 delta_h 6.35 kcal - -analytical 136.035 0.0 -7680.41 -48.595 0.0 + -analytical 136.035 0 -7680.41 -48.595 0 -Witherite 145 - BaCO3 = Ba+2 + CO3-2 - log_k -8.562 +Witherite 145 + BaCO3 = Ba+2 + CO3-2 + log_k -8.562 delta_h 0.703 kcal - -analytical 607.642 0.121098 -20011.25 -236.4948 0.0 + -analytical 607.642 0.121098 -20011.25 -236.4948 0 -Strengite 146 - FePO4:2H2O = Fe+3 + PO4-3 + 2H2O - log_k -26.4 - delta_h -2.030 kcal +Strengite 146 + FePO4:2H2O = Fe+3 + PO4-3 + 2 H2O + log_k -26.4 + delta_h -2.03 kcal -Leonhardite 147 - Ca2Al4Si8O24:7H2O + 17H2O = 2Ca+2 + 4Al(OH)4- + 8H4SiO4 - log_k -69.756 - delta_h 90.070 kcal +Leonhardite 147 + Ca2Al4Si8O24:7H2O + 17 H2O = 2 Ca+2 + 4 Al(OH)4- + 8 H4SiO4 + log_k -69.756 + delta_h 90.07 kcal -Nesquehonite 149 - MgCO3:3H2O = Mg+2 + CO3-2 + 3H2O - log_k -5.621 +Nesquehonite 149 + MgCO3:3H2O = Mg+2 + CO3-2 + 3 H2O + log_k -5.621 delta_h -5.789 kcal -Artinite 150 - MgCO3:Mg(OH)2:3H2O + 2H+ = 2Mg+2 + CO3-2 + 5H2O - log_k 9.6 +Artinite 150 + MgCO3:Mg(OH)2:3H2O + 2 H+ = 2 Mg+2 + CO3-2 + 5 H2O + log_k 9.6 delta_h -28.742 kcal -Sepiolite(d) 153 - Mg2Si3O7.5OH:3H2O+0.5H2O+4H+=2Mg+2 +3H4SiO4 - log_k 18.66 +Sepiolite(d) 153 + Mg2Si3O7.5OH:3H2O + 0.5 H2O + 4 H+ = 2 Mg+2 + 3 H4SiO4 + log_k 18.66 -Diaspore 154 - AlOOH + 3H+ = Al+3 + 2H2O - log_k 6.879 +Diaspore 154 + AlOOH + 3 H+ = Al+3 + 2 H2O + log_k 6.879 delta_h -24.681 kcal -Wairakite 155 - CaAl2Si4O12:2H2O + 10H2O = Ca+2 + 2Al(OH)4- + 4H4SiO4 - log_k -26.708 - delta_h 26.140 kcal +Wairakite 155 + CaAl2Si4O12:2H2O + 10 H2O = Ca+2 + 2 Al(OH)4- + 4 H4SiO4 + log_k -26.708 + delta_h 26.14 kcal -Fe(OH)2.7Cl.3 181 - Fe(OH)2.7Cl0.3 + 2.7H+ = Fe+3 + 2.7H2O + 0.3 Cl- - log_k -3.040 +Fe(OH)2.7Cl.3 181 + Fe(OH)2.7Cl0.3 + 2.7 H+ = Fe+3 + 2.7 H2O + 0.3 Cl- + log_k -3.04 -MnSO4 182 - MnSO4 = Mn+2 + SO4-2 - log_k 2.669 - delta_h -15.480 kcal +MnSO4 182 + MnSO4 = Mn+2 + SO4-2 + log_k 2.669 + delta_h -15.48 kcal -Pyrolusite 183 - MnO2 + 4H+ + 2e- = Mn+2 + 2H2O - log_k 41.38 +Pyrolusite 183 + MnO2 + 4 H+ + 2 e- = Mn+2 + 2 H2O + log_k 41.38 delta_h -65.11 kcal -Birnessite 184 - MnO2 + 4H+ + 2e- = Mn+2 + 2H2O - log_k 43.601 +Birnessite 184 + MnO2 + 4 H+ + 2 e- = Mn+2 + 2 H2O + log_k 43.601 -Nsutite 185 - MnO2 + 4H+ + 2e- = Mn+2 + 2H2O - log_k 42.564 +Nsutite 185 + MnO2 + 4 H+ + 2 e- = Mn+2 + 2 H2O + log_k 42.564 -Bixbyite 186 - Mn2O3 + 6H+ = 2Mn+3 + 3H2O - log_k -0.611 +Bixbyite 186 + Mn2O3 + 6 H+ = 2 Mn+3 + 3 H2O + log_k -0.611 delta_h -15.245 kcal -Hausmannite 187 - Mn3O4 + 8H+ + 2e- = 3Mn+2 + 4H2O - log_k 61.03 +Hausmannite 187 + Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O + log_k 61.03 delta_h -100.64 kcal -Pyrochroite 188 - Mn(OH)2 + 2H+ = Mn+2 + 2H2O - log_k 15.2 +Pyrochroite 188 + Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O + log_k 15.2 -Manganite 189 - MnOOH + 3H+ + e- = Mn+2 + 2H2O - log_k 25.340 +Manganite 189 + MnOOH + 3 H+ + e- = Mn+2 + 2 H2O + log_k 25.34 -Rhodochrosite(d) 190 - MnCO3 = Mn+2 + CO3-2 - log_k -10.390 +Rhodochrosite(d) 190 + MnCO3 = Mn+2 + CO3-2 + log_k -10.39 -MnCl2:4H2O 191 - MnCl2:4H2O = Mn+2 + 2Cl- + 4H2O - log_k 2.710 - delta_h 17.380 kcal +MnCl2:4H2O 191 + MnCl2:4H2O = Mn+2 + 2 Cl- + 4 H2O + log_k 2.71 + delta_h 17.38 kcal -MnS(Green) 192 - MnS + H+ = Mn+2 + HS- - log_k 3.8 - delta_h -5.790 kcal +MnS(Green) 192 + MnS + H+ = Mn+2 + HS- + log_k 3.8 + delta_h -5.79 kcal -Mn3(PO4)2 193 - Mn3(PO4)2 = 3Mn+2 + 2PO4-3 - log_k -23.827 - delta_h 2.120 kcal +Mn3(PO4)2 193 + Mn3(PO4)2 = 3 Mn+2 + 2 PO4-3 + log_k -23.827 + delta_h 2.12 kcal -MnHPO4 194 - MnHPO4 = Mn+2 + HPO4-2 - log_k -12.947 +MnHPO4 194 + MnHPO4 = Mn+2 + HPO4-2 + log_k -12.947 -Jarosite-Na 204 - NaFe3(SO4)2(OH)6 + 6H+ = Na+ + 3Fe+3 + 2SO4-2 + 6H2O - log_k -5.280 - delta_h -36.180 kcal +Jarosite-Na 204 + NaFe3(SO4)2(OH)6 + 6 H+ = Na+ + 3 Fe+3 + 2 SO4-2 + 6 H2O + log_k -5.28 + delta_h -36.18 kcal -Jarosite-K 205 - KFe3(SO4)2(OH)6 + 6H+ = K+ + 3Fe+3 + 2SO4-2 + 6H2O - log_k -9.21 +Jarosite-K 205 + KFe3(SO4)2(OH)6 + 6 H+ = K+ + 3 Fe+3 + 2 SO4-2 + 6 H2O + log_k -9.21 delta_h -31.28 kcal -CuMetal 223 - Cu = Cu+ + e- - log_k -8.760 - delta_h 17.130 kcal +CuMetal 223 + Cu = Cu+ + e- + log_k -8.76 + delta_h 17.13 kcal -Nantokite 224 - CuCl = Cu+ + Cl- - log_k -6.760 - delta_h 9.980 kcal +Nantokite 224 + CuCl = Cu+ + Cl- + log_k -6.76 + delta_h 9.98 kcal -CuF 225 - CuF = Cu+ + F- - log_k 7.080 - delta_h -12.370 kcal +CuF 225 + CuF = Cu+ + F- + log_k 7.08 + delta_h -12.37 kcal -Cuprite 226 - Cu2O + 2H+ = 2Cu+ + H2O - log_k -1.550 +Cuprite 226 + Cu2O + 2 H+ = 2 Cu+ + H2O + log_k -1.55 delta_h 6.245 kcal -Chalcocite 227 - Cu2S + H+ = 2Cu+ + HS- - log_k -34.619 - delta_h 49.350 kcal +Chalcocite 227 + Cu2S + H+ = 2 Cu+ + HS- + log_k -34.619 + delta_h 49.35 kcal -Cu2SO4 228 - Cu2SO4 = 2Cu+ + SO4-2 - log_k -1.950 - delta_h -4.560 kcal +Cu2SO4 228 + Cu2SO4 = 2 Cu+ + SO4-2 + log_k -1.95 + delta_h -4.56 kcal -CuprousFerrite 229 - CuFeO2 + 4H+ = Cu+ + Fe+3 + 2H2O - log_k -8.920 +CuprousFerrite 229 + CuFeO2 + 4 H+ = Cu+ + Fe+3 + 2 H2O + log_k -8.92 delta_h -3.8 kcal -Melanothallite 230 - CuCl2 = Cu+2 + 2Cl- - log_k 3.730 - delta_h -12.320 kcal +Melanothallite 230 + CuCl2 = Cu+2 + 2 Cl- + log_k 3.73 + delta_h -12.32 kcal -CuCO3 231 - CuCO3 = Cu+2 + CO3-2 - log_k -9.630 +CuCO3 231 + CuCO3 = Cu+2 + CO3-2 + log_k -9.63 -CuF2 232 - CuF2 = Cu+2 + 2F- - log_k -0.620 - delta_h -13.320 kcal +CuF2 232 + CuF2 = Cu+2 + 2 F- + log_k -0.62 + delta_h -13.32 kcal -CuF2:2H2O 233 - CuF2:2H2O = Cu+2 + 2F- + 2H2O - log_k -4.550 - delta_h -3.650 kcal +CuF2:2H2O 233 + CuF2:2H2O = Cu+2 + 2 F- + 2 H2O + log_k -4.55 + delta_h -3.65 kcal -Cu(OH)2 234 - Cu(OH)2 + 2H+ = Cu+2 + 2H2O - log_k 8.640 - delta_h -15.250 kcal +Cu(OH)2 234 + Cu(OH)2 + 2 H+ = Cu+2 + 2 H2O + log_k 8.64 + delta_h -15.25 kcal -Malachite 235 - Cu2(OH)2CO3 + 3H+ = 2Cu+2 + 2H2O + HCO3- - log_k 5.150 - delta_h -19.760 kcal +Malachite 235 + Cu2(OH)2CO3 + 3 H+ = 2 Cu+2 + 2 H2O + HCO3- + log_k 5.15 + delta_h -19.76 kcal -Azurite 236 - Cu3(OH)2(CO3)2 + 4H+ = 3Cu+2 + 2H2O + 2HCO3- - log_k 3.750 - delta_h -30.870 kcal +Azurite 236 + Cu3(OH)2(CO3)2 + 4 H+ = 3 Cu+2 + 2 H2O + 2 HCO3- + log_k 3.75 + delta_h -30.87 kcal -Atacamite 237 - Cu2(OH)3Cl + 3H+ = 2Cu+2 + 3H2O + Cl- - log_k 7.340 - delta_h -18.690 kcal +Atacamite 237 + Cu2(OH)3Cl + 3 H+ = 2 Cu+2 + 3 H2O + Cl- + log_k 7.34 + delta_h -18.69 kcal -Cu2(OH)3NO3 238 - Cu2(OH)3NO3 + 3H+ = 2Cu+2 + 3H2O + NO3- - log_k 9.240 - delta_h -17.350 kcal +Cu2(OH)3NO3 238 + Cu2(OH)3NO3 + 3 H+ = 2 Cu+2 + 3 H2O + NO3- + log_k 9.24 + delta_h -17.35 kcal -Antlerite 239 - Cu3(OH)4SO4 + 4H+ = 3Cu+2 + 4H2O + SO4-2 - log_k 8.290 +Antlerite 239 + Cu3(OH)4SO4 + 4 H+ = 3 Cu+2 + 4 H2O + SO4-2 + log_k 8.29 -Brochantite 240 - Cu4(OH)6SO4 + 6H+ = 4Cu+2 + 6H2O + SO4-2 - log_k 15.340 +Brochantite 240 + Cu4(OH)6SO4 + 6 H+ = 4 Cu+2 + 6 H2O + SO4-2 + log_k 15.34 -Langite 241 - Cu4(OH)6SO4:H2O + 6H+ = 4Cu+2 + 7H2O + SO4-2 - log_k 16.790 - delta_h -39.610 kcal +Langite 241 + Cu4(OH)6SO4:H2O + 6 H+ = 4 Cu+2 + 7 H2O + SO4-2 + log_k 16.79 + delta_h -39.61 kcal -Tenorite 242 - CuO + 2H+ = Cu+2 + H2O - log_k 7.620 - delta_h -15.240 kcal +Tenorite 242 + CuO + 2 H+ = Cu+2 + H2O + log_k 7.62 + delta_h -15.24 kcal -CuOCuSO4 243 - CuO:CuSO4 + 2H+ = 2Cu+2 + H2O + SO4-2 - log_k 11.530 +CuOCuSO4 243 + CuO:CuSO4 + 2 H+ = 2 Cu+2 + H2O + SO4-2 + log_k 11.53 delta_h -35.575 kcal -Cu3(PO4)2 244 - Cu3(PO4)2 = 3Cu+2 + 2PO4-3 - log_k -36.850 +Cu3(PO4)2 244 + Cu3(PO4)2 = 3 Cu+2 + 2 PO4-3 + log_k -36.85 -Cu3(PO4)2:3H2O 245 - Cu3(PO4)2:3H2O = 3Cu+2 + 2PO4-3 + 3H2O - log_k -35.120 +Cu3(PO4)2:3H2O 245 + Cu3(PO4)2:3H2O = 3 Cu+2 + 2 PO4-3 + 3 H2O + log_k -35.12 -Covellite 246 - CuS + H+ = Cu+2 + HS- - log_k -22.270 - delta_h 24.010 kcal +Covellite 246 + CuS + H+ = Cu+2 + HS- + log_k -22.27 + delta_h 24.01 kcal -CuSO4 247 - CuSO4 = Cu+2 + SO4-2 - log_k 3.010 - delta_h -18.140 kcal +CuSO4 247 + CuSO4 = Cu+2 + SO4-2 + log_k 3.01 + delta_h -18.14 kcal -Chalcanthite 248 - CuSO4:5H2O = Cu+2 + SO4-2 + 5H2O - log_k -2.640 - delta_h 1.440 kcal +Chalcanthite 248 + CuSO4:5H2O = Cu+2 + SO4-2 + 5 H2O + log_k -2.64 + delta_h 1.44 kcal -CupricFerrite 249 - CuFe2O4 + 8H+ = Cu+2 + 2Fe+3 + 4H2O - log_k 5.880 - delta_h -38.690 kcal +CupricFerrite 249 + CuFe2O4 + 8 H+ = Cu+2 + 2 Fe+3 + 4 H2O + log_k 5.88 + delta_h -38.69 kcal -Chalcopyrite 250 - CuFeS2 + 2H+ = Cu+2 + Fe+2 + 2HS- - log_k -35.270 - delta_h 35.480 kcal +Chalcopyrite 250 + CuFeS2 + 2 H+ = Cu+2 + Fe+2 + 2 HS- + log_k -35.27 + delta_h 35.48 kcal -ZnMetal 265 - Zn = Zn+2 + 2e- - log_k 25.757 - delta_h -36.780 kcal +ZnMetal 265 + Zn = Zn+2 + 2 e- + log_k 25.757 + delta_h -36.78 kcal -Zn(BO2)2 266 - Zn(BO2)2 + 2H2O + 2H+ = Zn+2 + 2H3BO3 - log_k 8.290 +Zn(BO2)2 266 + Zn(BO2)2 + 2 H2O + 2 H+ = Zn+2 + 2 H3BO3 + log_k 8.29 -ZnCl2 267 - ZnCl2 = Zn+2 + 2Cl- - log_k 7.030 - delta_h -17.480 kcal +ZnCl2 267 + ZnCl2 = Zn+2 + 2 Cl- + log_k 7.03 + delta_h -17.48 kcal -Smithsonite 268 - ZnCO3 = Zn+2 + CO3-2 - log_k -10.0 +Smithsonite 268 + ZnCO3 = Zn+2 + CO3-2 + log_k -10 delta_h -4.36 kcal -ZnCO3:H2O 269 - ZnCO3:H2O = Zn+2 + CO3-2 + H2O - log_k -10.260 +ZnCO3:H2O 269 + ZnCO3:H2O = Zn+2 + CO3-2 + H2O + log_k -10.26 -ZnF2 270 - ZnF2 = Zn+2 + 2F- - log_k -1.520 - delta_h -13.080 kcal +ZnF2 270 + ZnF2 = Zn+2 + 2 F- + log_k -1.52 + delta_h -13.08 kcal -Zn(OH)2-a 271 - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 12.450 +Zn(OH)2-a 271 + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 12.45 -Zn(OH)2-c 272 - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 12.2 +Zn(OH)2-c 272 + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 12.2 -Zn(OH)2-b 273 - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.750 +Zn(OH)2-b 273 + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.75 -Zn(OH)2-g 274 - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.710 +Zn(OH)2-g 274 + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.71 -Zn(OH)2-e 275 - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.5 +Zn(OH)2-e 275 + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.5 -Zn2(OH)3Cl 276 - Zn2(OH)3Cl + 3H+= 2Zn+2 + 3H2O + Cl- - log_k 15.2 +Zn2(OH)3Cl 276 + Zn2(OH)3Cl + 3 H+ = 2 Zn+2 + 3 H2O + Cl- + log_k 15.2 -Zn5(OH)8Cl2 277 - Zn5(OH)8Cl2 + 8H+ = 5Zn+2 + 8H2O + 2Cl- - log_k 38.5 +Zn5(OH)8Cl2 277 + Zn5(OH)8Cl2 + 8 H+ = 5 Zn+2 + 8 H2O + 2 Cl- + log_k 38.5 -Zn2(OH)2SO4 278 - Zn2(OH)2SO4 + 2H+ = 2Zn+2 + 2H2O + SO4-2 - log_k 7.5 +Zn2(OH)2SO4 278 + Zn2(OH)2SO4 + 2 H+ = 2 Zn+2 + 2 H2O + SO4-2 + log_k 7.5 -Zn4(OH)6SO4 279 - Zn4(OH)6SO4 + 6H+ = 4Zn+2 + 6H2O + SO4-2 - log_k 28.4 +Zn4(OH)6SO4 279 + Zn4(OH)6SO4 + 6 H+ = 4 Zn+2 + 6 H2O + SO4-2 + log_k 28.4 -Zn(NO3)2:6H2O 280 - Zn(NO3)2:6H2O = Zn+2 + 2NO3- + 6H2O - log_k 3.440 - delta_h 5.510 kcal +Zn(NO3)2:6H2O 280 + Zn(NO3)2:6H2O = Zn+2 + 2 NO3- + 6 H2O + log_k 3.44 + delta_h 5.51 kcal -ZnO(a) 281 - ZnO + 2H+ = Zn+2 + H2O - log_k 11.310 +ZnO(a) 281 + ZnO + 2 H+ = Zn+2 + H2O + log_k 11.31 -Zincite(c) 282 - ZnO + 2H+ = Zn+2 + H2O - log_k 11.140 - delta_h -21.860 kcal +Zincite(c) 282 + ZnO + 2 H+ = Zn+2 + H2O + log_k 11.14 + delta_h -21.86 kcal -Zn3O(SO4)2 283 - ZnO:2ZnSO4 + 2H+ = 3Zn+2 + 2SO4-2 + H2O - log_k 19.020 - delta_h -62.0 kcal +Zn3O(SO4)2 283 + ZnO:2ZnSO4 + 2 H+ = 3 Zn+2 + 2 SO4-2 + H2O + log_k 19.02 + delta_h -62 kcal -Zn3(PO4)2:4w 284 - Zn3(PO4)2:4H2O = 3Zn+2 + 2PO4-3 + 4H2O - log_k -32.040 +Zn3(PO4)2:4w 284 + Zn3(PO4)2:4H2O = 3 Zn+2 + 2 PO4-3 + 4 H2O + log_k -32.04 -ZnS(a) 285 - ZnS + H+ = Zn+2 + HS- - log_k -9.052 - delta_h 3.670 kcal +ZnS(a) 285 + ZnS + H+ = Zn+2 + HS- + log_k -9.052 + delta_h 3.67 kcal -Sphalerite 286 - ZnS + H+ = Zn+2 + HS- - log_k -11.618 +Sphalerite 286 + ZnS + H+ = Zn+2 + HS- + log_k -11.618 delta_h 8.25 kcal -Wurtzite 287 - ZnS + H+ = Zn+2 + HS- - log_k -9.682 - delta_h 5.060 kcal +Wurtzite 287 + ZnS + H+ = Zn+2 + HS- + log_k -9.682 + delta_h 5.06 kcal -ZnSiO3 288 - ZnSiO3 + 2H+ + H2O = Zn+2 + H4SiO4 - log_k 2.930 - delta_h -18.270 kcal +ZnSiO3 288 + ZnSiO3 + 2 H+ + H2O = Zn+2 + H4SiO4 + log_k 2.93 + delta_h -18.27 kcal -Willemite 289 - Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4 - log_k 15.33 +Willemite 289 + Zn2SiO4 + 4 H+ = 2 Zn+2 + H4SiO4 + log_k 15.33 delta_h -33.37 kcal -Zincosite 290 - ZnSO4 = Zn+2 + SO4-2 - log_k 3.010 +Zincosite 290 + ZnSO4 = Zn+2 + SO4-2 + log_k 3.01 delta_h -19.2 kcal -ZnSO4:H2O 291 - ZnSO4:H2O = Zn+2 + SO4-2 + H2O - log_k -0.570 - delta_h -10.640 kcal +ZnSO4:H2O 291 + ZnSO4:H2O = Zn+2 + SO4-2 + H2O + log_k -0.57 + delta_h -10.64 kcal -Bianchite 292 - ZnSO4:6H2O = Zn+2 + SO4-2 + 6H2O - log_k -1.765 - delta_h -0.160 kcal +Bianchite 292 + ZnSO4:6H2O = Zn+2 + SO4-2 + 6 H2O + log_k -1.765 + delta_h -0.16 kcal -Goslarite 293 - ZnSO4:7H2O = Zn+2 + SO4-2 + 7H2O - log_k -1.960 +Goslarite 293 + ZnSO4:7H2O = Zn+2 + SO4-2 + 7 H2O + log_k -1.96 delta_h 3.3 kcal -CdMetal 312 - Cd = Cd+2 + 2e- - log_k 13.490 - delta_h -18.0 kcal +CdMetal 312 + Cd = Cd+2 + 2 e- + log_k 13.49 + delta_h -18 kcal -Cd(gamma) 313 - Cd = Cd+2 + 2e- - log_k 13.590 - delta_h -18.140 kcal +Cd(gamma) 313 + Cd = Cd+2 + 2 e- + log_k 13.59 + delta_h -18.14 kcal -Cd(BO2)2 314 - Cd(BO2)2 + 2H2O + 2H+ = Cd+2 + 2H3BO3 - log_k 9.840 +Cd(BO2)2 314 + Cd(BO2)2 + 2 H2O + 2 H+ = Cd+2 + 2 H3BO3 + log_k 9.84 -Otavite 315 - CdCO3 = Cd+2 + CO3-2 - log_k -12.1 +Otavite 315 + CdCO3 = Cd+2 + CO3-2 + log_k -12.1 delta_h -0.019 kcal -CdCl2 316 - CdCl2 = Cd+2 + 2Cl- - log_k -0.68 +CdCl2 316 + CdCl2 = Cd+2 + 2 Cl- + log_k -0.68 delta_h -4.47 kcal -CdCl2:H2O 317 - CdCl2:H2O = Cd+2 + 2Cl- + H2O - log_k -1.71 +CdCl2:H2O 317 + CdCl2:H2O = Cd+2 + 2 Cl- + H2O + log_k -1.71 delta_h -1.82 kcal -CdCl2:2.5H2O 318 - CdCl2:2.5H2O = Cd+2 + 2Cl- + 2.5H2O - log_k -1.940 - delta_h 1.710 kcal +CdCl2:2.5H2O 318 + CdCl2:2.5H2O = Cd+2 + 2 Cl- + 2.5 H2O + log_k -1.94 + delta_h 1.71 kcal -CdF2 319 - CdF2 = Cd+2 + 2F- - log_k -2.980 - delta_h -9.720 kcal +CdF2 319 + CdF2 = Cd+2 + 2 F- + log_k -2.98 + delta_h -9.72 kcal -Cd(OH)2(a) 320 - Cd(OH)2 + 2H+ = Cd+2 + 2H2O - log_k 13.730 - delta_h -20.770 kcal +Cd(OH)2(a) 320 + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + log_k 13.73 + delta_h -20.77 kcal -Cd(OH)2 321 - Cd(OH)2 + 2H+ = Cd+2 + 2H2O - log_k 13.65 +Cd(OH)2 321 + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + log_k 13.65 -CdOHCl 322 - CdOHCl + H+ = Cd+2 + H2O + Cl- - log_k 3.520 +CdOHCl 322 + CdOHCl + H+ = Cd+2 + H2O + Cl- + log_k 3.52 delta_h -7.407 kcal -Cd3(OH)4SO4 323 - Cd3(OH)4SO4 + 4H+ = 3Cd+2 + 4H2O + SO4-2 - log_k 22.560 +Cd3(OH)4SO4 323 + Cd3(OH)4SO4 + 4 H+ = 3 Cd+2 + 4 H2O + SO4-2 + log_k 22.56 -Cd3(OH)2(SO4)2 324 - Cd3(OH)2(SO4)2 + 2H+ = 3Cd+2 + 2H2O + 2SO4-2 - log_k 6.710 +Cd3(OH)2(SO4)2 324 + Cd3(OH)2(SO4)2 + 2 H+ = 3 Cd+2 + 2 H2O + 2 SO4-2 + log_k 6.71 -Cd4(OH)6SO4 325 - Cd4(OH)6SO4 + 6H+ = 4Cd+2 + 6H2O + SO4-2 - log_k 28.4 +Cd4(OH)6SO4 325 + Cd4(OH)6SO4 + 6 H+ = 4 Cd+2 + 6 H2O + SO4-2 + log_k 28.4 -Monteponite 326 - CdO + 2H+ = Cd+2 + H2O - log_k 13.770 - delta_h -24.760 kcal +Monteponite 326 + CdO + 2 H+ = Cd+2 + H2O + log_k 13.77 + delta_h -24.76 kcal -Cd3(PO4)2 327 - Cd3(PO4)2 = 3Cd+2 + 2PO4-3 - log_k -32.6 +Cd3(PO4)2 327 + Cd3(PO4)2 = 3 Cd+2 + 2 PO4-3 + log_k -32.6 -CdSiO3 328 - CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4 - log_k 9.06 +CdSiO3 328 + CdSiO3 + H2O + 2 H+ = Cd+2 + H4SiO4 + log_k 9.06 delta_h -16.63 kcal -CdSO4 329 - CdSO4 = Cd+2 + SO4-2 - log_k -0.1 +CdSO4 329 + CdSO4 = Cd+2 + SO4-2 + log_k -0.1 delta_h -14.74 kcal -CdSO4:H2O 330 - CdSO4:H2O = Cd+2 + SO4-2 + H2O - log_k -1.657 - delta_h -7.520 kcal +CdSO4:H2O 330 + CdSO4:H2O = Cd+2 + SO4-2 + H2O + log_k -1.657 + delta_h -7.52 kcal -CdSO4:2.7H2O 331 - CdSO4:2.67H2O = Cd+2 + SO4-2 + 2.67H2O - log_k -1.873 +CdSO4:2.7H2O 331 + CdSO4:2.67H2O = Cd+2 + SO4-2 + 2.67 H2O + log_k -1.873 delta_h -4.3 kcal -Greenockite 332 - CdS + H+ = Cd+2 + HS- - log_k -15.930 - delta_h 16.360 kcal +Greenockite 332 + CdS + H+ = Cd+2 + HS- + log_k -15.93 + delta_h 16.36 kcal -JarositeH 337 - (H3O)Fe3(SO4)2(OH)6 + 5H+ = 3Fe+3 + 2SO4-2 + 7H2O - log_k -5.390 - delta_h -55.150 kcal +JarositeH 337 + (H3O)Fe3(SO4)2(OH)6 + 5 H+ = 3 Fe+3 + 2 SO4-2 + 7 H2O + log_k -5.39 + delta_h -55.15 kcal -AlumK 338 - KAl(SO4)2:12H2O = K+ + Al+3 + 2SO4-2 + 12H2O - log_k -5.170 - delta_h 7.220 kcal +AlumK 338 + KAl(SO4)2:12H2O = K+ + Al+3 + 2 SO4-2 + 12 H2O + log_k -5.17 + delta_h 7.22 kcal -Melanterite 339 - FeSO4:7H2O = Fe+2 + SO4-2 + 7H2O - log_k -2.209 +Melanterite 339 + FeSO4:7H2O = Fe+2 + SO4-2 + 7 H2O + log_k -2.209 delta_h 4.91 kcal - -analytical 1.447 -0.004153 0.0 0.0 -214949.0 + -analytical 1.447 -0.004153 0 0 -214949 -Epsomite 340 - MgSO4:7H2O = Mg+2 + SO4-2 + 7H2O - log_k -2.140 - delta_h 2.820 kcal +Epsomite 340 + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -2.14 + delta_h 2.82 kcal -PbMetal 360 - Pb = Pb+2 + 2e- - log_k 4.270 +PbMetal 360 + Pb = Pb+2 + 2 e- + log_k 4.27 delta_h 0.4 kcal -Pb(BO2)2 361 - Pb(BO2)2 + 2H2O + 2H+ = Pb+2 + 2H3BO3 - log_k 7.610 +Pb(BO2)2 361 + Pb(BO2)2 + 2 H2O + 2 H+ = Pb+2 + 2 H3BO3 + log_k 7.61 delta_h -5.8 kcal -Cotunnite 362 - PbCl2 = Pb+2 + 2Cl- - log_k -4.770 +Cotunnite 362 + PbCl2 = Pb+2 + 2 Cl- + log_k -4.77 delta_h 5.6 kcal -Matlockite 363 - PbClF = Pb+2 + Cl- + F- - log_k -9.430 - delta_h 7.950 kcal +Matlockite 363 + PbClF = Pb+2 + Cl- + F- + log_k -9.43 + delta_h 7.95 kcal -Phosgenite 364 - PbCl2:PbCO3 = 2Pb+2 + 2Cl- + CO3-2 - log_k -19.810 +Phosgenite 364 + PbCl2:PbCO3 = 2 Pb+2 + 2 Cl- + CO3-2 + log_k -19.81 -Cerrusite 365 - PbCO3 = Pb+2 + CO3-2 - log_k -13.13 +Cerrusite 365 + PbCO3 = Pb+2 + CO3-2 + log_k -13.13 delta_h 4.86 kcal -PbF2 366 - PbF2 = Pb+2 + 2F- - log_k -7.440 +PbF2 366 + PbF2 = Pb+2 + 2 F- + log_k -7.44 delta_h -0.7 kcal -Massicot 367 - PbO + 2H+ = Pb+2 + H2O - log_k 12.910 - delta_h -16.780 kcal +Massicot 367 + PbO + 2 H+ = Pb+2 + H2O + log_k 12.91 + delta_h -16.78 kcal -Litharge 368 - PbO + 2H+ = Pb+2 + H2O - log_k 12.720 - delta_h -16.380 kcal +Litharge 368 + PbO + 2 H+ = Pb+2 + H2O + log_k 12.72 + delta_h -16.38 kcal -PbO:0.3H2O 369 - PbO:0.33H2O + 2H+ = Pb+2 + 1.33H2O - log_k 12.980 +PbO:0.3H2O 369 + PbO:0.33H2O + 2 H+ = Pb+2 + 1.33 H2O + log_k 12.98 -Pb2OCO3 370 - PbO:PbCO3 + 2H+ = 2Pb+2 + CO3-2 + H2O - log_k -0.5 - delta_h -11.460 kcal +Pb2OCO3 370 + PbO:PbCO3 + 2 H+ = 2 Pb+2 + CO3-2 + H2O + log_k -0.5 + delta_h -11.46 kcal -Larnakite 371 - PbO:PbSO4 + 2H+ = 2Pb+2 + SO4-2 + H2O - log_k -0.280 - delta_h -6.440 kcal +Larnakite 371 + PbO:PbSO4 + 2 H+ = 2 Pb+2 + SO4-2 + H2O + log_k -0.28 + delta_h -6.44 kcal -Pb3O2SO4 372 - PbSO4:2PbO + 4H+ = 3Pb+2 + SO4-2 + 2H2O - log_k 10.4 - delta_h -20.750 kcal +Pb3O2SO4 372 + PbSO4:2PbO + 4 H+ = 3 Pb+2 + SO4-2 + 2 H2O + log_k 10.4 + delta_h -20.75 kcal -Pb4O3SO4 373 - PbSO4:3PbO + 6H+ = 4Pb+2 + SO4-2 + 3H2O - log_k 22.1 - delta_h -35.070 kcal +Pb4O3SO4 373 + PbSO4:3PbO + 6 H+ = 4 Pb+2 + SO4-2 + 3 H2O + log_k 22.1 + delta_h -35.07 kcal -PbHPO4 374 - PbHPO4 = Pb+2 + HPO4-2 - log_k -11.460 - delta_h 7.040 kcal +PbHPO4 374 + PbHPO4 = Pb+2 + HPO4-2 + log_k -11.46 + delta_h 7.04 kcal -Pb3(PO4)2 375 - Pb3(PO4)2 + 2H+ = 3Pb+2 + 2HPO4-2 - log_k -19.670 - delta_h -1.670 kcal +Pb3(PO4)2 375 + Pb3(PO4)2 + 2 H+ = 3 Pb+2 + 2 HPO4-2 + log_k -19.67 + delta_h -1.67 kcal -Clpyromorphite 376 - Pb5(PO4)3Cl = 5Pb+2 + 3PO4-3 + Cl- - log_k -84.430 +Clpyromorphite 376 + Pb5(PO4)3Cl = 5 Pb+2 + 3 PO4-3 + Cl- + log_k -84.43 -Hxypyromorphite 377 - Pb5(PO4)3OH + H+ = 5Pb+2 + 3PO4-3 + H2O - log_k -62.790 +Hxypyromorphite 377 + Pb5(PO4)3OH + H+ = 5 Pb+2 + 3 PO4-3 + H2O + log_k -62.79 -Pb3O2CO3 378 - PbCO3:2PbO + 4H+ = 3Pb+2 + CO3-2 + 2H2O - log_k 11.020 - delta_h -26.430 kcal +Pb3O2CO3 378 + PbCO3:2PbO + 4 H+ = 3 Pb+2 + CO3-2 + 2 H2O + log_k 11.02 + delta_h -26.43 kcal -Plumbogummite 379 - PbAl3(PO4)2(OH)5:H2O + 5H+ = Pb+2 + 3Al+3 + 2PO4-3 + 6H2O - log_k -32.790 +Plumbogummite 379 + PbAl3(PO4)2(OH)5:H2O + 5 H+ = Pb+2 + 3 Al+3 + 2 PO4-3 + 6 H2O + log_k -32.79 -Hinsdalite 380 - PbAl3PO4SO4(OH)6 + 6H+ = Pb+2 + 3Al+3 + PO4-3 + SO4-2 + 6H2O - log_k -2.5 +Hinsdalite 380 + PbAl3PO4SO4(OH)6 + 6 H+ = Pb+2 + 3 Al+3 + PO4-3 + SO4-2 + 6 H2O + log_k -2.5 -Tsumebite 381 - Pb2CuPO4(OH)3:3H2O + 3H+ = 2Pb+2 + Cu+2 + PO4-3 + 6H2O - log_k -9.790 +Tsumebite 381 + Pb2CuPO4(OH)3:3H2O + 3 H+ = 2 Pb+2 + Cu+2 + PO4-3 + 6 H2O + log_k -9.79 -PbSiO3 382 - PbSiO3 + H2O + 2H+ = Pb+2 + H4SiO4 - log_k 7.320 - delta_h -9.260 kcal +PbSiO3 382 + PbSiO3 + H2O + 2 H+ = Pb+2 + H4SiO4 + log_k 7.32 + delta_h -9.26 kcal -Pb2SiO4 383 - Pb2SiO4 + 4H+ = 2Pb+2 + H4SiO4 - log_k 19.760 - delta_h -26.0 kcal +Pb2SiO4 383 + Pb2SiO4 + 4 H+ = 2 Pb+2 + H4SiO4 + log_k 19.76 + delta_h -26 kcal -Anglesite 384 - PbSO4 = Pb+2 + SO4-2 - log_k -7.79 +Anglesite 384 + PbSO4 = Pb+2 + SO4-2 + log_k -7.79 delta_h 2.15 kcal -Galena 385 - PbS + H+ = Pb+2 + HS- - log_k -12.780 +Galena 385 + PbS + H+ = Pb+2 + HS- + log_k -12.78 delta_h 19.4 kcal -Plattnerite 386 - PbO2 + 4H+ + 2e- = Pb+2 + 2H2O - log_k 49.3 - delta_h -70.730 kcal +Plattnerite 386 + PbO2 + 4 H+ + 2 e- = Pb+2 + 2 H2O + log_k 49.3 + delta_h -70.73 kcal -Pb2O3 387 - Pb2O3 + 6H+ + 2e- = 2Pb+2 + 3H2O - log_k 61.040 +Pb2O3 387 + Pb2O3 + 6 H+ + 2 e- = 2 Pb+2 + 3 H2O + log_k 61.04 -Minium 388 - Pb3O4 + 8H+ + 2e- = 3Pb+2 + 4H2O - log_k 73.690 - delta_h -102.760 kcal +Minium 388 + Pb3O4 + 8 H+ + 2 e- = 3 Pb+2 + 4 H2O + log_k 73.69 + delta_h -102.76 kcal -Pb(OH)2 389 - Pb(OH)2 + 2H+ = Pb+2 + 2H2O - log_k 8.15 +Pb(OH)2 389 + Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O + log_k 8.15 delta_h -13.99 kcal -Laurionite 390 - PbOHCl + H+ = Pb+2 + Cl- + H2O - log_k 0.623 +Laurionite 390 + PbOHCl + H+ = Pb+2 + Cl- + H2O + log_k 0.623 -Pb2(OH)3Cl 391 - Pb2(OH)3Cl + 3H+ = 2Pb+2 + 3H2O + Cl- - log_k 8.793 +Pb2(OH)3Cl 391 + Pb2(OH)3Cl + 3 H+ = 2 Pb+2 + 3 H2O + Cl- + log_k 8.793 -Hydrocerrusite 392 - Pb(OH)2:2PbCO3 + 2H+ = 3Pb+2 + 2CO3-2 + 2H2O - log_k -17.460 +Hydrocerrusite 392 + Pb(OH)2:2PbCO3 + 2 H+ = 3 Pb+2 + 2 CO3-2 + 2 H2O + log_k -17.46 -Pb2O(OH)2 393 - PbO:Pb(OH)2 + 4H+ = 2Pb+2 + 3H2O - log_k 26.2 +Pb2O(OH)2 393 + PbO:Pb(OH)2 + 4 H+ = 2 Pb+2 + 3 H2O + log_k 26.2 -Pb4(OH)6SO4 394 - Pb4(OH)6SO4 + 6H+ = 4Pb+2 + SO4-2 + 6H2O - log_k 21.1 +Pb4(OH)6SO4 394 + Pb4(OH)6SO4 + 6 H+ = 4 Pb+2 + SO4-2 + 6 H2O + log_k 21.1 -SiO2(a) 395 - SiO2 + 2H2O = H4SiO4 - log_k -2.71 +SiO2(a) 395 + SiO2 + 2 H2O = H4SiO4 + log_k -2.71 delta_h 3.34 kcal - -analytical -0.26 0.0 -731.0 0.0 0.0 + -analytical -0.26 0 -731 0 0 -FCO3Apatite 396 - Ca9.316Na0.36Mg0.144(PO4)4.8(CO3)1.2F2.48 = 9.316Ca+2 + 0.36Na+ + 0.144Mg+2 + 4.8PO4-3 + 1.2CO3-2 + 2.48F- - log_k -114.4 - delta_h 39.390 kcal +FCO3Apatite 396 + Ca9.316Na0.36Mg0.144(PO4)4.8(CO3)1.2F2.48 = 9.316 Ca+2 + 0.36 Na+ + 0.144 Mg+2 + 4.8 PO4-3 + 1.2 CO3-2 + 2.48 F- + log_k -114.4 + delta_h 39.39 kcal -BaF2 398 - BaF2 = Ba+2 + 2F- - log_k -5.760 - delta_h 1.0 kcal +BaF2 398 + BaF2 = Ba+2 + 2 F- + log_k -5.76 + delta_h 1 kcal -SrF2 399 - SrF2 = Sr+2 + 2F- - log_k -8.540 - delta_h 1.250 kcal +SrF2 399 + SrF2 = Sr+2 + 2 F- + log_k -8.54 + delta_h 1.25 kcal -Dolomite 401 - CaMg(CO3)2 = Ca+2 + Mg+2 + 2CO3-2 - log_k -17.09 +Dolomite 401 + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + log_k -17.09 delta_h -9.436 kcal -Sulfur 402 - S + 2e- = S-2 - log_k -15.026 +Sulfur 402 + S + 2 e- = S-2 + log_k -15.026 delta_h 7.9 kcal -NiCO3 410 - NiCO3 = Ni+2 + CO3-2 - log_k -6.840 - delta_h -9.940 kcal +NiCO3 410 + NiCO3 = Ni+2 + CO3-2 + log_k -6.84 + delta_h -9.94 kcal -Ni(OH)2 411 - Ni(OH)2 + 2H+ = Ni+2 + 2H2O - log_k 10.8 - delta_h 30.450 kcal +Ni(OH)2 411 + Ni(OH)2 + 2 H+ = Ni+2 + 2 H2O + log_k 10.8 + delta_h 30.45 kcal -Ni4(OH)6SO4 412 - Ni4(OH)6SO4 + 6H+ = 4Ni+2 + SO4-2 + 6H2O - log_k 32.0 +Ni4(OH)6SO4 412 + Ni4(OH)6SO4 + 6 H+ = 4 Ni+2 + SO4-2 + 6 H2O + log_k 32 -Bunsenite 413 - NiO + 2H+ = Ni+2 + H2O - log_k 12.450 - delta_h -23.920 kcal +Bunsenite 413 + NiO + 2 H+ = Ni+2 + H2O + log_k 12.45 + delta_h -23.92 kcal -Ni3(PO4)2 414 - Ni3(PO4)2 = 3Ni+2 + 2PO4-3 - log_k -31.3 +Ni3(PO4)2 414 + Ni3(PO4)2 = 3 Ni+2 + 2 PO4-3 + log_k -31.3 -Millerite 415 - NiS + H+ = Ni+2 + HS- - log_k -8.042 +Millerite 415 + NiS + H+ = Ni+2 + HS- + log_k -8.042 delta_h 2.5 kcal -Retgersite 416 - NiSO4:6H2O = Ni+2 + SO4-2 + 6H2O - log_k -2.040 +Retgersite 416 + NiSO4:6H2O = Ni+2 + SO4-2 + 6 H2O + log_k -2.04 delta_h 1.1 kcal -Morenosite 417 - NiSO4:7H2O = Ni+2 + SO4-2 + 7H2O - log_k -2.360 - delta_h 2.940 kcal +Morenosite 417 + NiSO4:7H2O = Ni+2 + SO4-2 + 7 H2O + log_k -2.36 + delta_h 2.94 kcal -Ni2SiO4 418 - Ni2SiO4 + 4H+ = 2Ni+2 + H4SiO4 - log_k 14.540 - delta_h -33.360 kcal +Ni2SiO4 418 + Ni2SiO4 + 4 H+ = 2 Ni+2 + H4SiO4 + log_k 14.54 + delta_h -33.36 kcal -Fe3(OH)8 419 - Fe3(OH)8 + 8H+ = 2Fe+3 + Fe+2 + 8H2O - log_k 20.222 +Fe3(OH)8 419 + Fe3(OH)8 + 8 H+ = 2 Fe+3 + Fe+2 + 8 H2O + log_k 20.222 -Dioptase 420 - CuSiO3:H2O + 2H+ = Cu+2 + H4SiO4 - log_k 6.5 - delta_h -8.960 kcal +Dioptase 420 + CuSiO3:H2O + 2 H+ = Cu+2 + H4SiO4 + log_k 6.5 + delta_h -8.96 kcal -AgMetal 437 - Ag = Ag+ + e- - log_k -13.510 +AgMetal 437 + Ag = Ag+ + e- + log_k -13.51 delta_h 25.234 kcal -Bromyrite 438 - AgBr = Ag+ + Br- - log_k -12.270 - delta_h 20.170 kcal +Bromyrite 438 + AgBr = Ag+ + Br- + log_k -12.27 + delta_h 20.17 kcal -Cerargyrite 439 - AgCl = Ag+ + Cl- - log_k -9.750 +Cerargyrite 439 + AgCl = Ag+ + Cl- + log_k -9.75 delta_h 15.652 kcal -Ag2CO3 440 - Ag2CO3 = 2Ag+ + CO3-2 - log_k -11.070 - delta_h 9.530 kcal +Ag2CO3 440 + Ag2CO3 = 2 Ag+ + CO3-2 + log_k -11.07 + delta_h 9.53 kcal -AgF:4H2O 441 - AgF:4H2O = Ag+ + F- + 4H2O - log_k 0.550 - delta_h 4.270 kcal +AgF:4H2O 441 + AgF:4H2O = Ag+ + F- + 4 H2O + log_k 0.55 + delta_h 4.27 kcal -Iodyrite 442 - AgI = Ag+ + I- - log_k -16.070 - delta_h 26.820 kcal +Iodyrite 442 + AgI = Ag+ + I- + log_k -16.07 + delta_h 26.82 kcal -Ag2O 443 - Ag2O + 2H+ = 2Ag+ + H2O - log_k 12.580 - delta_h -10.430 kcal +Ag2O 443 + Ag2O + 2 H+ = 2 Ag+ + H2O + log_k 12.58 + delta_h -10.43 kcal -Ag3PO4 444 - Ag3PO4 = 3Ag+ + PO4-3 - log_k -17.550 +Ag3PO4 444 + Ag3PO4 = 3 Ag+ + PO4-3 + log_k -17.55 -Acanthite 445 - Ag2S + H+ = 2Ag+ + HS- - log_k -36.050 +Acanthite 445 + Ag2S + H+ = 2 Ag+ + HS- + log_k -36.05 delta_h 53.3 kcal -Ag2SO4 446 - Ag2SO4 = 2Ag+ + SO4-2 - log_k -4.920 - delta_h 4.250 kcal +Ag2SO4 446 + Ag2SO4 = 2 Ag+ + SO4-2 + log_k -4.92 + delta_h 4.25 kcal -CuBr 459 - CuBr = Cu+ + Br- - log_k -8.210 - delta_h 13.080 kcal +CuBr 459 + CuBr = Cu+ + Br- + log_k -8.21 + delta_h 13.08 kcal -CuI 460 - CuI = Cu+ + I- - log_k -11.890 - delta_h 20.140 kcal +CuI 460 + CuI = Cu+ + I- + log_k -11.89 + delta_h 20.14 kcal -ZnBr2:2H2O 461 - ZnBr2:2H2O = Zn+2 + 2Br- + 2H2O - log_k 5.210 - delta_h -7.510 kcal +ZnBr2:2H2O 461 + ZnBr2:2H2O = Zn+2 + 2 Br- + 2 H2O + log_k 5.21 + delta_h -7.51 kcal -ZnI2 462 - ZnI2 = Zn+2 + 2I- - log_k 7.230 - delta_h -13.440 kcal +ZnI2 462 + ZnI2 = Zn+2 + 2 I- + log_k 7.23 + delta_h -13.44 kcal -CdBr2:4H2O 463 - CdBr2:4H2O = Cd+2 + 2Br- + 4H2O - log_k -2.420 - delta_h 7.230 kcal +CdBr2:4H2O 463 + CdBr2:4H2O = Cd+2 + 2 Br- + 4 H2O + log_k -2.42 + delta_h 7.23 kcal -CdI2 464 - CdI2 = Cd+2 + 2I- - log_k -3.610 - delta_h 4.080 kcal +CdI2 464 + CdI2 = Cd+2 + 2 I- + log_k -3.61 + delta_h 4.08 kcal -PbBr2 465 - PbBr2 = Pb+2 + 2Br- - log_k -5.180 +PbBr2 465 + PbBr2 = Pb+2 + 2 Br- + log_k -5.18 delta_h 8.1 kcal -PbBrF 466 - PbBrF = Pb+2 + Br- + F- - log_k -8.490 +PbBrF 466 + PbBrF = Pb+2 + Br- + F- + log_k -8.49 -PbI2 467 - PbI2 = Pb+2 + 2I- - log_k -8.070 - delta_h 15.160 kcal +PbI2 467 + PbI2 = Pb+2 + 2 I- + log_k -8.07 + delta_h 15.16 kcal -Jurbanite 471 - AlOHSO4 + H+ = Al+3 + SO4-2 + H2O - log_k -3.230 +Jurbanite 471 + AlOHSO4 + H+ = Al+3 + SO4-2 + H2O + log_k -3.23 -Basaluminite 472 - Al4(OH)10SO4 + 10H+ = 4Al+3 + SO4-2 + 10H2O - log_k 22.7 +Basaluminite 472 + Al4(OH)10SO4 + 10 H+ = 4 Al+3 + SO4-2 + 10 H2O + log_k 22.7 -As_native 557 - As + 3H2O = H3AsO3 + 3H+ + 3e- - log_k -12.532 - delta_h 115.131 kJ +As_native 557 + As + 3 H2O = H3AsO3 + 3 H+ + 3 e- + log_k -12.532 + delta_h 115.131 kJ -As2O5(cr) 488 - As2O5 + 3H2O = 2H3AsO4 - log_k 8.228 - delta_h -31.619 kJ +As2O5(cr) 488 + As2O5 + 3 H2O = 2 H3AsO4 + log_k 8.228 + delta_h -31.619 kJ -AlAsO4:2H2O 489 - AlAsO4:2H2O = Al+3 + AsO4-3 + 2H2O - log_k -15.837 +AlAsO4:2H2O 489 + AlAsO4:2H2O = Al+3 + AsO4-3 + 2 H2O + log_k -15.837 -Ca3(AsO4)2:4w 490 - Ca3(AsO4)2:4H2O = 3Ca+2 + 2AsO4-3 + 4H2O - log_k -18.905 +Ca3(AsO4)2:4w 490 + Ca3(AsO4)2:4H2O = 3 Ca+2 + 2 AsO4-3 + 4 H2O + log_k -18.905 -Cu3(AsO4)2:6w 491 - Cu3(AsO4)2:6H2O = 3Cu+2 + 2AsO4-3 + 6H2O - log_k -35.123 +Cu3(AsO4)2:6w 491 + Cu3(AsO4)2:6H2O = 3 Cu+2 + 2 AsO4-3 + 6 H2O + log_k -35.123 -Scorodite 492 - FeAsO4:2H2O = Fe+3 + AsO4-3 + 2H2O - log_k -20.249 +Scorodite 492 + FeAsO4:2H2O = Fe+3 + AsO4-3 + 2 H2O + log_k -20.249 -Mn3(AsO4)2:8H2O 493 - Mn3(AsO4)2:8H2O = 3Mn+2 + 2AsO4-3 + 8H2O - log_k -28.707 +Mn3(AsO4)2:8H2O 493 + Mn3(AsO4)2:8H2O = 3 Mn+2 + 2 AsO4-3 + 8 H2O + log_k -28.707 -Ni3(AsO4)2:8H2O 494 - Ni3(AsO4)2:8H2O = 3Ni+2 + 2AsO4-3 + 8H2O - log_k -25.511 +Ni3(AsO4)2:8H2O 494 + Ni3(AsO4)2:8H2O = 3 Ni+2 + 2 AsO4-3 + 8 H2O + log_k -25.511 -Pb3(AsO4)2 495 - Pb3(AsO4)2 = 3Pb+2 + 2AsO4-3 - log_k -35.403 +Pb3(AsO4)2 495 + Pb3(AsO4)2 = 3 Pb+2 + 2 AsO4-3 + log_k -35.403 -Zn3(AsO4)2:2.5w 496 - Zn3(AsO4)2:2.5H2O = 3Zn+2 + 2AsO4-3 + 2.5H2O - log_k -27.546 +Zn3(AsO4)2:2.5w 496 + Zn3(AsO4)2:2.5H2O = 3 Zn+2 + 2 AsO4-3 + 2.5 H2O + log_k -27.546 -Arsenolite 497 -# As4O6 + 6H2O = 4H3AsO3 +Arsenolite 497 +# As4O6 + 6H2O = 4H3AsO3 # log_k -2.801 # delta_h 14.330 kcal - As2O3 + 3H2O = 2H3AsO3 - log_k -1.38 - delta_h 30.041 kJ + As2O3 + 3 H2O = 2 H3AsO3 + log_k -1.38 + delta_h 30.041 kJ -Claudetite 498 -# As4O6 + 6H2O = 4H3AsO3 +Claudetite 498 +# As4O6 + 6H2O = 4H3AsO3 # log_k -3.065 # delta_h 13.290 kcal - As2O3 + 3H2O = 2H3AsO3 - log_k -1.34 - delta_h 28.443 kJ + As2O3 + 3 H2O = 2 H3AsO3 + log_k -1.34 + delta_h 28.443 kJ -AsI3 499 - AsI3 + 3H2O = H3AsO3 + 3I- + 3H+ - log_k 4.155 +AsI3 499 + AsI3 + 3 H2O = H3AsO3 + 3 I- + 3 H+ + log_k 4.155 delta_h 1.875 kcal -Orpiment 500 - As2S3 + 6H2O = 2H3AsO3 + 3HS- + 3H+ +Orpiment 500 + As2S3 + 6 H2O = 2 H3AsO3 + 3 HS- + 3 H+ # log_k -60.971 # delta_h 82.890 kcal - log_k -46.3 - delta_h 263.1 kJ + log_k -46.3 + delta_h 263.1 kJ -As2S3(am) 132 - As2S3 + 6H2O = 2H3AsO3 + 3HS- + 3H+ - log_k -44.9 - delta_h 244.2 kJ +As2S3(am) 132 + As2S3 + 6 H2O = 2 H3AsO3 + 3 HS- + 3 H+ + log_k -44.9 + delta_h 244.2 kJ -Realgar 501 - AsS + 3H2O = H3AsO3 + HS- + 2H+ + e- +Realgar 501 + AsS + 3 H2O = H3AsO3 + HS- + 2 H+ + e- # log_k -19.747 # delta_h 30.545 kcal - log_k -19.944 - delta_h 129.2625 kJ + log_k -19.944 + delta_h 129.2625 kJ -BlaubleiI 533 - Cu0.9Cu0.2S + H+ = 0.9Cu+2 + 0.2Cu+ + HS- - log_k -24.162 +BlaubleiI 533 + Cu0.9Cu0.2S + H+ = 0.9 Cu+2 + 0.2 Cu+ + HS- + log_k -24.162 -BlaubleiII 534 - Cu0.6Cu0.8S + H+ = 0.6Cu+2 + 0.8Cu+ + HS- - log_k -27.279 +BlaubleiII 534 + Cu0.6Cu0.8S + H+ = 0.6 Cu+2 + 0.8 Cu+ + HS- + log_k -27.279 -Anilite 535 - Cu0.25Cu1.5S + H+ = 0.25Cu+2 + 1.5Cu+ + HS- - log_k -31.878 +Anilite 535 + Cu0.25Cu1.5S + H+ = 0.25 Cu+2 + 1.5 Cu+ + HS- + log_k -31.878 delta_h 43.535 kcal -Djurleite 536 - Cu0.066Cu1.868S + H+ = 0.066Cu+2 + 1.868Cu+ + HS- - log_k -33.920 +Djurleite 536 + Cu0.066Cu1.868S + H+ = 0.066 Cu+2 + 1.868 Cu+ + HS- + log_k -33.92 delta_h 47.881 kcal -Portlandite 539 - Ca(OH)2 + 2H+ = Ca+2 + 2H2O - log_k 22.8 - delta_h -31.0 kcal +Portlandite 539 + Ca(OH)2 + 2 H+ = Ca+2 + 2 H2O + log_k 22.8 + delta_h -31 kcal -Ba3(AsO4)2 541 - Ba3(AsO4)2 = 3Ba+2 + 2AsO4-3 - log_k -50.110 +Ba3(AsO4)2 541 + Ba3(AsO4)2 = 3 Ba+2 + 2 AsO4-3 + log_k -50.11 delta_h 9.5 kcal -Se(s) 550 - Se + H+ + 2e- = HSe- - log_k -17.322 +Se(s) 550 + Se + H+ + 2 e- = HSe- + log_k -17.322 #SemetalSe4 551 -# Se + 3H2O = SeO3-2 + 6H+ + 4e- +# Se + 3H2O = SeO3-2 + 6H+ + 4e- # log_k -59.836 -FeSe2 552 - FeSe2 + 2H+ + 2e- = Fe+2 + 2HSe- - log_k -18.580 +FeSe2 552 + FeSe2 + 2 H+ + 2 e- = Fe+2 + 2 HSe- + log_k -18.58 -SeO2 553 - SeO2 + H2O = SeO3-2 + 2H+ - log_k -8.380 +SeO2 553 + SeO2 + H2O = SeO3-2 + 2 H+ + log_k -8.38 -CaSeO3 554 - CaSeO3 = Ca+2 + SeO3-2 - log_k -5.6 +CaSeO3 554 + CaSeO3 = Ca+2 + SeO3-2 + log_k -5.6 -BaSeO3 555 - BaSeO3 = Ba+2 + SeO3-2 - log_k -6.390 +BaSeO3 555 + BaSeO3 = Ba+2 + SeO3-2 + log_k -6.39 -Fe2(SeO3)3 556 - Fe2(SeO3)3 = 2Fe+3 + 3SeO3-2 - log_k -35.430 +Fe2(SeO3)3 556 + Fe2(SeO3)3 = 2 Fe+3 + 3 SeO3-2 + log_k -35.43 -Rhodochrosite 564 - MnCO3 = Mn+2 + CO3-2 - log_k -11.13 +Rhodochrosite 564 + MnCO3 = Mn+2 + CO3-2 + log_k -11.13 delta_h -1.43 kcal -Na4UO2(CO3)3 571 - Na4UO2(CO3)3 = 4Na+ + UO2+2 + 3CO3-2 - log_k -16.290 +Na4UO2(CO3)3 571 + Na4UO2(CO3)3 = 4 Na+ + UO2+2 + 3 CO3-2 + log_k -16.29 -Uraninite(c) 573 - UO2 + 4H+ = U+4 + 2H2O - log_k -4.8 - delta_h -18.610 kcal +Uraninite(c) 573 + UO2 + 4 H+ = U+4 + 2 H2O + log_k -4.8 + delta_h -18.61 kcal -UO2(a) 574 - UO2 + 4H+ = U+4 + 2H2O - log_k 0.1 +UO2(a) 574 + UO2 + 4 H+ = U+4 + 2 H2O + log_k 0.1 -U4O9(c) 575 - U4O9 + 18H+ + 2e- = 4U+4 + 9H2O - log_k -3.384 +U4O9(c) 575 + U4O9 + 18 H+ + 2 e- = 4 U+4 + 9 H2O + log_k -3.384 delta_h -101.235 kcal -U3O8(c) 576 - U3O8 + 16H+ + 4e- = 3U+4 + 8H2O - log_k 20.530 - delta_h -116.0 kcal +U3O8(c) 576 + U3O8 + 16 H+ + 4 e- = 3 U+4 + 8 H2O + log_k 20.53 + delta_h -116 kcal -Coffinite 577 - USiO4 + 4H+ = U+4 + H4SiO4 - log_k -7.670 +Coffinite 577 + USiO4 + 4 H+ = U+4 + H4SiO4 + log_k -7.67 delta_h -11.6 kcal -UF4(c) 584 - UF4 = U+4 + 4F- - log_k -18.606 +UF4(c) 584 + UF4 = U+4 + 4 F- + log_k -18.606 delta_h -18.9 kcal -UF4:2.5H2O 585 - UF4:2.5H2O = U+4 + 4F- + 2.5H2O - log_k -27.570 +UF4:2.5H2O 585 + UF4:2.5H2O = U+4 + 4 F- + 2.5 H2O + log_k -27.57 delta_h -0.588 kcal -U(OH)2SO4 591 - U(OH)2SO4 + 2H+ = U+4 + SO4-2 + 2H2O - log_k -3.2 +U(OH)2SO4 591 + U(OH)2SO4 + 2 H+ = U+4 + SO4-2 + 2 H2O + log_k -3.2 -UO2HPO4:4H2O 592 - UO2HPO4:4H2O = UO2+2 + HPO4-2 + 4H2O - log_k -11.850 +UO2HPO4:4H2O 592 + UO2HPO4:4H2O = UO2+2 + HPO4-2 + 4 H2O + log_k -11.85 -U(HPO4)2:4H2O 593 - U(HPO4)2:4H2O = U+4 + 2PO4-3 + 2H+ + 4H2O - log_k -55.3 - delta_h 3.840 kcal +U(HPO4)2:4H2O 593 + U(HPO4)2:4H2O = U+4 + 2 PO4-3 + 2 H+ + 4 H2O + log_k -55.3 + delta_h 3.84 kcal -Ningyoite 594 - CaU(PO4)2:2H2O = U+4 + Ca+2 + 2PO4-3 + 2H2O - log_k -53.906 - delta_h -2.270 kcal +Ningyoite 594 + CaU(PO4)2:2H2O = U+4 + Ca+2 + 2 PO4-3 + 2 H2O + log_k -53.906 + delta_h -2.27 kcal -UO3(gamma) 599 - UO3 + 2H+ = UO2+2 + H2O - log_k 7.719 +UO3(gamma) 599 + UO3 + 2 H+ = UO2+2 + H2O + log_k 7.719 delta_h -19.315 kcal -Gummite 600 - UO3 + 2H+ = UO2+2 + H2O - log_k 10.403 +Gummite 600 + UO3 + 2 H+ = UO2+2 + H2O + log_k 10.403 delta_h -23.015 kcal -B-UO2(OH)2 601 - UO2(OH)2 + 2H+ = UO2+2 + 2H2O - log_k 5.544 - delta_h -13.730 kcal +B-UO2(OH)2 601 + UO2(OH)2 + 2 H+ = UO2+2 + 2 H2O + log_k 5.544 + delta_h -13.73 kcal -Schoepite 602 - UO2(OH)2:H2O + 2H+ = UO2+2 + 3H2O - log_k 5.404 +Schoepite 602 + UO2(OH)2:H2O + 2 H+ = UO2+2 + 3 H2O + log_k 5.404 delta_h -12.045 kcal -Rutherfordine 606 - UO2CO3 = UO2+2 + CO3-2 - log_k -14.450 - delta_h -1.440 kcal +Rutherfordine 606 + UO2CO3 = UO2+2 + CO3-2 + log_k -14.45 + delta_h -1.44 kcal -(UO2)3(PO4)2:4w 619 - (UO2)3(PO4)2:4H2O = 3UO2+2 + 2PO4-3 + 4H2O - log_k -37.4 +(UO2)3(PO4)2:4w 619 + (UO2)3(PO4)2:4H2O = 3 UO2+2 + 2 PO4-3 + 4 H2O + log_k -37.4 delta_h 41.5 kcal -H-Autunite 620 - H2(UO2)2(PO4)2 = 2H+ + 2UO2+2 + 2PO4-3 - log_k -47.931 +H-Autunite 620 + H2(UO2)2(PO4)2 = 2 H+ + 2 UO2+2 + 2 PO4-3 + log_k -47.931 delta_h -3.6 kcal -Na-Autunite 621 - Na2(UO2)2(PO4)2 = 2Na+ + 2UO2+2 + 2PO4-3 - log_k -47.409 - delta_h -0.460 kcal +Na-Autunite 621 + Na2(UO2)2(PO4)2 = 2 Na+ + 2 UO2+2 + 2 PO4-3 + log_k -47.409 + delta_h -0.46 kcal -K-Autunite 622 - K2(UO2)2(PO4)2 = 2K+ + 2UO2+2 + 2PO4-3 - log_k -48.244 - delta_h 5.860 kcal +K-Autunite 622 + K2(UO2)2(PO4)2 = 2 K+ + 2 UO2+2 + 2 PO4-3 + log_k -48.244 + delta_h 5.86 kcal -Uramphite 623 - (NH4)2(UO2)2(PO4)2 = 2NH4+ + 2UO2+2 + 2PO4-3 - log_k -51.749 +Uramphite 623 + (NH4)2(UO2)2(PO4)2 = 2 NH4+ + 2 UO2+2 + 2 PO4-3 + log_k -51.749 delta_h 9.7 kcal -Saleeite 624 - Mg(UO2)2(PO4)2 = Mg+2 + 2UO2+2 + 2PO4-3 - log_k -43.646 - delta_h -20.180 kcal +Saleeite 624 + Mg(UO2)2(PO4)2 = Mg+2 + 2 UO2+2 + 2 PO4-3 + log_k -43.646 + delta_h -20.18 kcal -Autunite 625 - Ca(UO2)2(PO4)2 = Ca+2 + 2UO2+2 + 2PO4-3 - log_k -43.927 - delta_h -14.340 kcal +Autunite 625 + Ca(UO2)2(PO4)2 = Ca+2 + 2 UO2+2 + 2 PO4-3 + log_k -43.927 + delta_h -14.34 kcal -Sr-Autunite 626 - Sr(UO2)2(PO4)2 = Sr+2 + 2UO2+2 + 2PO4-3 - log_k -44.457 - delta_h -13.050 kcal +Sr-Autunite 626 + Sr(UO2)2(PO4)2 = Sr+2 + 2 UO2+2 + 2 PO4-3 + log_k -44.457 + delta_h -13.05 kcal -Uranocircite 627 - Ba(UO2)2(PO4)2 = Ba+2 + 2UO2+2 + 2PO4-3 - log_k -44.631 +Uranocircite 627 + Ba(UO2)2(PO4)2 = Ba+2 + 2 UO2+2 + 2 PO4-3 + log_k -44.631 delta_h -10.1 kcal -Bassetite 628 - Fe(UO2)2(PO4)2 = Fe+2 + 2UO2+2 + 2PO4-3 - log_k -44.485 +Bassetite 628 + Fe(UO2)2(PO4)2 = Fe+2 + 2 UO2+2 + 2 PO4-3 + log_k -44.485 delta_h -19.9 kcal -Torbernite 629 - Cu(UO2)2(PO4)2 = Cu+2 + 2UO2+2 + 2PO4-3 - log_k -45.279 +Torbernite 629 + Cu(UO2)2(PO4)2 = Cu+2 + 2 UO2+2 + 2 PO4-3 + log_k -45.279 delta_h -15.9 kcal -Przhevalskite 630 - Pb(UO2)2(PO4)2 = Pb+2 + 2UO2+2 + 2PO4-3 - log_k -44.365 - delta_h -11.0 kcal +Przhevalskite 630 + Pb(UO2)2(PO4)2 = Pb+2 + 2 UO2+2 + 2 PO4-3 + log_k -44.365 + delta_h -11 kcal -Uranophane 632 - Ca(UO2)2(SiO3OH)2 + 6H+ = Ca+2 + 2UO2+2 + 2H4SiO4 - log_k 17.489 +Uranophane 632 + Ca(UO2)2(SiO3OH)2 + 6 H+ = Ca+2 + 2 UO2+2 + 2 H4SiO4 + log_k 17.489 -CO2(g) - CO2 = CO2 - log_k -1.468 +CO2(g) + CO2 = CO2 + log_k -1.468 delta_h -4.776 kcal - -analytical 108.3865 0.01985076 -6919.53 -40.45154 669365.0 + -analytical 108.3865 0.01985076 -6919.53 -40.45154 669365 O2(g) - O2 = O2 + O2 = O2 # log_k -2.960 # delta_h -1.844 kcal # log K from llnl.dat Aug 23, 2005 - log_k -2.8983 - -analytic -7.5001e+000 7.8981e-003 0.0000e+000 0.0000e+000 2.0027e+005 + log_k -2.8983 + -analytic -7.5001e+0 7.8981e-3 0e+0 0e+0 2.0027e+5 H2(g) - H2 = H2 - log_k -3.150 + H2 = H2 + log_k -3.15 delta_h -1.759 kcal N2(g) - N2 = N2 - log_k -3.260 + N2 = N2 + log_k -3.26 delta_h -1.358 kcal H2S(g) - H2S = H2S - log_k -0.997 - delta_h -4.570 kcal + H2S = H2S + log_k -0.997 + delta_h -4.57 kcal CH4(g) - CH4 = CH4 - log_k -2.860 + CH4 = CH4 + log_k -2.86 delta_h -3.373 kcal NH3(g) - NH3 = NH3 - log_k 1.770 - delta_h -8.170 kcal + NH3 = NH3 + log_k 1.77 + delta_h -8.17 kcal EXCHANGE_MASTER_SPECIES - X X- + X X- EXCHANGE_SPECIES X- = X- - log_k 0.0 + log_k 0 Na+ + X- = NaX - log_k 0.0 + log_k 0 K+ + X- = KX - log_k 0.7 + log_k 0.7 Li+ + X- = LiX - log_k -0.08 + log_k -0.08 H+ + X- = HX - log_k 1.0 + log_k 1 NH4+ + X- = NH4X - log_k 0.6 + log_k 0.6 - Ca+2 + 2X- = CaX2 - log_k 0.8 + Ca+2 + 2 X- = CaX2 + log_k 0.8 - Mg+2 + 2X- = MgX2 - log_k 0.6 + Mg+2 + 2 X- = MgX2 + log_k 0.6 - Sr+2 + 2X- = SrX2 - log_k 0.91 + Sr+2 + 2 X- = SrX2 + log_k 0.91 - Ba+2 + 2X- = BaX2 - log_k 0.91 + Ba+2 + 2 X- = BaX2 + log_k 0.91 - Mn+2 + 2X- = MnX2 - log_k 0.52 + Mn+2 + 2 X- = MnX2 + log_k 0.52 - Fe+2 + 2X- = FeX2 - log_k 0.44 + Fe+2 + 2 X- = FeX2 + log_k 0.44 - Cu+2 + 2X- = CuX2 - log_k 0.6 + Cu+2 + 2 X- = CuX2 + log_k 0.6 - Zn+2 + 2X- = ZnX2 - log_k 0.8 + Zn+2 + 2 X- = ZnX2 + log_k 0.8 - Cd+2 + 2X- = CdX2 - log_k 0.8 + Cd+2 + 2 X- = CdX2 + log_k 0.8 - Pb+2 + 2X- = PbX2 - log_k 1.05 + Pb+2 + 2 X- = PbX2 + log_k 1.05 - Al+3 + 3X- = AlX3 - log_k 0.67 + Al+3 + 3 X- = AlX3 + log_k 0.67 SURFACE_MASTER_SPECIES - Hfo_s Hfo_sOH - Hfo_w Hfo_wOH + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH SURFACE_SPECIES -# All surface data from +# All surface data from # Dzombak and Morel, 1990 # # # Acid-base data from table 5.7 # -# strong binding site--Hfo_s, +# strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH - log_k 0.0 + log_k 0 - Hfo_sOH + H+ = Hfo_sOH2+ - log_k 7.29 # = pKa1,int + Hfo_sOH + H+ = Hfo_sOH2+ + log_k 7.29 # = pKa1,int Hfo_sOH = Hfo_sO- + H+ - log_k -8.93 # = -pKa2,int + log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH - log_k 0.0 + log_k 0 - Hfo_wOH + H+ = Hfo_wOH2+ - log_k 7.29 # = pKa1,int + Hfo_wOH + H+ = Hfo_wOH2+ + log_k 7.29 # = pKa1,int Hfo_wOH = Hfo_wO- + H+ - log_k -8.93 # = -pKa2,int + log_k -8.93 # = -pKa2,int ############################################### # CATIONS # @@ -3552,64 +3556,64 @@ SURFACE_SPECIES # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - log_k 4.97 + log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ log_k -5.85 # Strontium Hfo_sOH + Sr+2 = Hfo_sOHSr+2 - log_k 5.01 + log_k 5.01 Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ log_k -6.58 - Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+ - log_k -17.60 + Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2 H+ + log_k -17.6 # Barium Hfo_sOH + Ba+2 = Hfo_sOHBa+2 - log_k 5.46 + log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - log_k -7.2 # table 10.5 + log_k -7.2 # table 10.5 # # Cations from table 10.2 # # Silver Hfo_sOH + Ag+ = Hfo_sOAg + H+ - log_k -1.72 + log_k -1.72 Hfo_wOH + Ag+ = Hfo_wOAg + H+ - log_k -5.3 # table 10.5 + log_k -5.3 # table 10.5 # Nickel Hfo_sOH + Ni+2 = Hfo_sONi+ + H+ - log_k 0.37 + log_k 0.37 Hfo_wOH + Ni+2 = Hfo_wONi+ + H+ - log_k -2.5 # table 10.5 + log_k -2.5 # table 10.5 # Cadmium Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ - log_k 0.47 + log_k 0.47 Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ - log_k -2.91 + log_k -2.91 # Zinc Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ - log_k 0.99 + log_k 0.99 Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ - log_k -1.99 + log_k -1.99 # Copper Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ - log_k 2.89 + log_k 2.89 Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ - log_k 0.6 # table 10.5 + log_k 0.6 # table 10.5 # Lead Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ - log_k 4.65 + log_k 4.65 Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ - log_k 0.3 # table 10.5 + log_k 0.3 # table 10.5 # # Derived constants table 10.5 # @@ -3619,17 +3623,17 @@ SURFACE_SPECIES # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ - log_k -0.4 # table 10.5 + log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ - log_k -3.5 # table 10.5 + log_k -3.5 # table 10.5 # Uranyl Hfo_sOH + UO2+2 = Hfo_sOUO2+ + H+ - log_k 5.2 # table 10.5 + log_k 5.2 # table 10.5 Hfo_wOH + UO2+2 = Hfo_wOUO2+ + H+ - log_k 2.8 # table 10.5 + log_k 2.8 # table 10.5 # Iron # Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ @@ -3641,83 +3645,83 @@ SURFACE_SPECIES # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, subm. Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ - log_k -0.95 + log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ log_k -2.98 - Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+ + Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2 H+ log_k -11.55 ############################################### # ANIONS # ############################################### # -# Anions from table 10.6 +# Anions from table 10.6 # # Phosphate - Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O - log_k 31.29 + Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O + log_k 31.29 - Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O - log_k 25.39 + Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O + log_k 25.39 Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O - log_k 17.72 + log_k 17.72 # Arsenate - Hfo_wOH + AsO4-3 + 3H+ = Hfo_wH2AsO4 + H2O - log_k 29.31 + Hfo_wOH + AsO4-3 + 3 H+ = Hfo_wH2AsO4 + H2O + log_k 29.31 - Hfo_wOH + AsO4-3 + 2H+ = Hfo_wHAsO4- + H2O - log_k 23.51 + Hfo_wOH + AsO4-3 + 2 H+ = Hfo_wHAsO4- + H2O + log_k 23.51 Hfo_wOH + AsO4-3 = Hfo_wOHAsO4-3 - log_k 10.58 + log_k 10.58 # # Anions from table 10.7 # # Arsenite Hfo_wOH + H3AsO3 = Hfo_wH2AsO3 + H2O - log_k 5.41 + log_k 5.41 # Borate Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O - log_k 0.62 + log_k 0.62 # # Anions from table 10.8 # # Sulfate Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O - log_k 7.78 + log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - log_k 0.79 + log_k 0.79 # Selenate Hfo_wOH + SeO4-2 + H+ = Hfo_wSeO4- + H2O - log_k 7.73 + log_k 7.73 Hfo_wOH + SeO4-2 = Hfo_wOHSeO4-2 - log_k 0.80 + log_k 0.8 # Selenite Hfo_wOH + SeO3-2 + H+ = Hfo_wSeO3- + H2O - log_k 12.69 + log_k 12.69 Hfo_wOH + SeO3-2 = Hfo_wOHSeO3-2 - log_k 5.17 + log_k 5.17 # # Derived constants table 10.10 # Hfo_wOH + F- + H+ = Hfo_wF + H2O - log_k 8.7 + log_k 8.7 Hfo_wOH + F- = Hfo_wOHF- - log_k 1.6 + log_k 1.6 # # Carbonate: Van Geen et al., 1994 reoptimized for HFO # 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L # # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O # log_k 12.56 -# +# # Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O # log_k 20.62 @@ -3727,7 +3731,7 @@ RATES #K-feldspar ########### # -# Sverdrup, H.U., 1990, The kinetics of base cation release due to +# Sverdrup, H.U., 1990, The kinetics of base cation release due to # chemical weathering: Lund University Press, Lund, 246 p. # # Example of KINETICS data block for K-feldspar rate: @@ -3742,28 +3746,28 @@ K-feldspar 1 rem specific rate from Sverdrup, 1990, in kmol/m2/s 2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw) 3 rem parm(2) = corrects for field rate relative to lab rate - 4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) - - 10 dif_temp = 1/TK - 1/298 - 20 pk_H = 12.5 + 3134 * dif_temp - 30 pk_w = 15.3 + 1838 * dif_temp - 40 pk_OH = 14.2 + 3134 * dif_temp - 50 pk_CO2 = 14.6 + 1677 * dif_temp + 4 rem temp corr: from p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) + + 10 dif_temp = 1/TK - 1/298 + 20 pk_H = 12.5 + 3134 * dif_temp + 30 pk_w = 15.3 + 1838 * dif_temp + 40 pk_OH = 14.2 + 3134 * dif_temp + 50 pk_CO2 = 14.6 + 1677 * dif_temp #60 pk_org = 13.9 + 1254 * dif_temp # rate increase with DOC - 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 - 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 + 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 + 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 #72 rate = rate + 10^-pk_org * TOT("Doc")^0.4 - 80 moles = parm(1) * parm(2) * rate * (1 - SR("K-feldspar")) * time + 80 moles = parm(1) * parm(2) * rate * (1 - SR("K-feldspar")) * time 81 rem decrease rate on precipitation - 90 if SR("K-feldspar") > 1 then moles = moles * 0.1 - 100 save moles + 90 if SR("K-feldspar") > 1 then moles = moles * 0.1 + 100 save moles -end ########### #Albite ########### # -# Sverdrup, H.U., 1990, The kinetics of base cation release due to +# Sverdrup, H.U., 1990, The kinetics of base cation release due to # chemical weathering: Lund University Press, Lund, 246 p. # # Example of KINETICS data block for Albite rate: @@ -3777,70 +3781,70 @@ Albite 1 rem specific rate from Sverdrup, 1990, in kmol/m2/s 2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw) 3 rem parm(2) = corrects for field rate relative to lab rate - 4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) - - 10 dif_temp = 1/TK - 1/298 - 20 pk_H = 12.5 + 3359 * dif_temp - 30 pk_w = 14.8 + 2648 * dif_temp - 40 pk_OH = 13.7 + 3359 * dif_temp + 4 rem temp corr: from p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) + + 10 dif_temp = 1/TK - 1/298 + 20 pk_H = 12.5 + 3359 * dif_temp + 30 pk_w = 14.8 + 2648 * dif_temp + 40 pk_OH = 13.7 + 3359 * dif_temp #41 rem ^12.9 in Sverdrup, but larger than for oligoclase... - 50 pk_CO2 = 14.0 + 1677 * dif_temp + 50 pk_CO2 = 14 + 1677 * dif_temp #60 pk_org = 12.5 + 1254 * dif_temp # ...rate increase for DOC - 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 - 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 + 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 + 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 #72 rate = rate + 10^-pk_org * TOT("Doc")^0.4 - 80 moles = parm(1) * parm(2) * rate * (1 - SR("Albite")) * time + 80 moles = parm(1) * parm(2) * rate * (1 - SR("Albite")) * time 81 rem decrease rate on precipitation - 90 if SR("Albite") > 1 then moles = moles * 0.1 - 100 save moles + 90 if SR("Albite") > 1 then moles = moles * 0.1 + 100 save moles -end ######## #Calcite ######## # -# Plummer, L.N., Wigley, T.M.L., and Parkhurst, D.L., 1978, +# Plummer, L.N., Wigley, T.M.L., and Parkhurst, D.L., 1978, # American Journal of Science, v. 278, p. 179-216. # # Example of KINETICS data block for calcite rate: # # KINETICS 1 -# Calcite +# Calcite # -tol 1e-8 # -m0 3.e-3 # -m 3.e-3 # -parms 5.0 0.6 Calcite -start - 1 REM Modified from Plummer and others, 1978 - 2 REM M = current moles of calcite - 3 REM M0 = initial moles of calcite - 4 REM parm(1) = Area/Volume, cm^2/L (or cm^2 per cell) - 5 REM parm(2) = exponent for M/M0 for surface area correction - 10 REM rate = 0 if no calcite and undersaturated - 20 si_cc = SI("Calcite") - 30 if (M <= 0 and si_cc < 0) then goto 300 - 40 k1 = 10^(0.198 - 444.0 / TK ) - 50 k2 = 10^(2.84 - 2177.0 / TK ) - 60 if TC <= 25 then k3 = 10^(-5.86 - 317.0 / TK ) - 70 if TC > 25 then k3 = 10^(-1.1 - 1737.0 / TK ) - 80 REM surface area calculation - 90 t = 1 - 100 if M0 > 0 then t = M/M0 - 110 if t = 0 then t = 1 - 120 area = PARM(1) * (t)^PARM(2) - 130 rf = k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O") + 1 REM Modified from Plummer and others, 1978 + 2 REM M = current moles of calcite + 3 REM M0 = initial moles of calcite + 4 REM parm(1) = Area/Volume, cm^2/L (or cm^2 per cell) + 5 REM parm(2) = exponent for M/M0 for surface area correction + 10 REM rate = 0 if no calcite and undersaturated + 20 si_cc = SI("Calcite") + 30 if (M <= 0 and si_cc < 0) then goto 300 + 40 k1 = 10^(0.198 - 444 / TK ) + 50 k2 = 10^(2.84 - 2177 / TK ) + 60 if TC <= 25 then k3 = 10^(-5.86 - 317 / TK ) + 70 if TC > 25 then k3 = 10^(-1.1 - 1737 / TK ) + 80 REM surface area calculation + 90 t = 1 + 100 if M0 > 0 then t = M/M0 + 110 if t = 0 then t = 1 + 120 area = PARM(1) * (t)^PARM(2) + 130 rf = k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O") 140 REM 1e-3 converts mmol to mol - 150 rate = area * 1e-3 * rf * (1 - 10^(2/3*si_cc)) - 160 moles = rate * TIME + 150 rate = area * 1e-3 * rf * (1 - 10^(2/3*si_cc)) + 160 moles = rate * TIME 170 REM do not dissolve more calcite than present - 180 if (moles > M) then moles = M - 190 if (moles >= 0) then goto 300 + 180 if (moles > M) then moles = M + 190 if (moles >= 0) then goto 300 200 REM do not precipitate more Ca or C(4) than present - 210 temp = TOT("Ca") - 220 mc = TOT("C(4)") - 230 if mc < temp then temp = mc - 240 if -moles > temp then moles = -temp + 210 temp = TOT("Ca") + 220 mc = TOT("C(4)") + 230 if mc < temp then temp = mc + 240 if -moles > temp then moles = -temp 300 SAVE moles -end @@ -3848,26 +3852,26 @@ Calcite #Pyrite ####### # -# Williamson, M.A. and Rimstidt, J.D., 1994, +# Williamson, M.A. and Rimstidt, J.D., 1994, # Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454. # # Example of KINETICS data block for pyrite rate: # KINETICS 1 -# Pyrite +# Pyrite # -tol 1e-8 # -m0 5.e-4 # -m 5.e-4 -# -parms 2.0 0.67 .5 -0.11 +# -parms 2.0 0.67 .5 -0.11 Pyrite -start - 1 rem Williamson and Rimstidt, 1994 - 2 rem parm(1) = log10(A/V, 1/dm) parm(2) = exp for (m/m0) - 3 rem parm(3) = exp for O2 parm(4) = exp for H+ - + 1 rem Williamson and Rimstidt, 1994 + 2 rem parm(1) = log10(A/V, 1/dm) parm(2) = exp for (m/m0) + 3 rem parm(3) = exp for O2 parm(4) = exp for H+ + 10 if (m <= 0) then goto 200 20 if (si("Pyrite") >= 0) then goto 200 - 25 rate = -10.19 + parm(1) + parm(3)*lm("O2") + parm(4)*lm("H+") + parm(2)*log10(m/m0) - 30 moles = 10^rate * time + 25 rate = -10.19 + parm(1) + parm(3)*lm("O2") + parm(4)*lm("H+") + parm(2)*log10(m/m0) + 30 moles = 10^rate * time 40 if (moles > m) then moles = m 200 save moles -end @@ -3885,16 +3889,16 @@ Pyrite # -m 5e-3 Organic_C -start - 1 rem Additive Monod kinetics - 2 rem Electron acceptors: O2, NO3, and SO4 + 1 rem Additive Monod kinetics + 2 rem Electron acceptors: O2, NO3, and SO4 10 if (m <= 0) then goto 200 - 20 mO2 = mol("O2") - 30 mNO3 = tot("N(5)") - 40 mSO4 = tot("S(6)") - 50 rate = 1.57e-9*mO2/(2.94e-4 + mO2) + 1.67e-11*mNO3/(1.55e-4 + mNO3) - 60 rate = rate + 1.e-13*mSO4/(1.e-4 + mSO4) - 70 moles = rate * m * (m/m0) * time + 20 mO2 = mol("O2") + 30 mNO3 = tot("N(5)") + 40 mSO4 = tot("S(6)") + 50 rate = 1.57e-9*mO2/(2.94e-4 + mO2) + 1.67e-11*mNO3/(1.55e-4 + mNO3) + 60 rate = rate + 1.e-13*mSO4/(1.e-4 + mSO4) + 70 moles = rate * m * (m/m0) * time 80 if (moles > m) then moles = m 200 save moles -end @@ -3913,222 +3917,222 @@ Organic_C # -m 0.1 Pyrolusite -start - 5 if (m <= 0.0) then goto 200 - 7 sr_pl = sr("Pyrolusite") - 9 if abs(1 - sr_pl) < 0.1 then goto 200 - 10 if (sr_pl > 1.0) then goto 100 + 5 if (m <= 0.0) then goto 200 + 7 sr_pl = sr("Pyrolusite") + 9 if abs(1 - sr_pl) < 0.1 then goto 200 + 10 if (sr_pl > 1.0) then goto 100 #20 rem initially 1 mol Fe+2 = 0.5 mol pyrolusite. k*A/V = 1/time (3 cells) #22 rem time (3 cells) = 1.432e4. 1/time = 6.98e-5 - 30 Fe_t = tot("Fe(2)") - 32 if Fe_t < 1.e-8 then goto 200 - 40 moles = 6.98e-5 * Fe_t * (m/m0)^0.67 * time * (1 - sr_pl) - 50 if moles > Fe_t / 2 then moles = Fe_t / 2 - 70 if moles > m then moles = m - 90 goto 200 - 100 Mn_t = tot("Mn") - 110 moles = 2e-3 * 6.98e-5 * (1-sr_pl) * time - 120 if moles <= -Mn_t then moles = -Mn_t - 200 save moles + 30 Fe_t = tot("Fe(2)") + 32 if Fe_t < 1e-8 then goto 200 + 40 moles = 6.98e-5 * Fe_t * (m/m0)^0.67 * time * (1 - sr_pl) + 50 if moles > Fe_t / 2 then moles = Fe_t / 2 + 70 if moles > m then moles = m + 90 goto 200 + 100 Mn_t = tot("Mn") + 110 moles = 2e-3 * 6.98e-5 * (1-sr_pl) * time + 120 if moles <= -Mn_t then moles = -Mn_t + 200 save moles -end SURFACE_MASTER_SPECIES # Monodentate 60% - H_a H_aH; H_b H_bH; H_c H_cH; H_d H_dH - H_e H_eH; H_f H_fH; H_g H_gH; H_h H_hH + H_a H_aH; H_b H_bH; H_c H_cH; H_d H_dH + H_e H_eH; H_f H_fH; H_g H_gH; H_h H_hH # Diprotic 40% H_ab H_abH2; H_ad H_adH2; H_af H_afH2; H_ah H_ahH2 H_bc H_bcH2; H_be H_beH2; H_bg H_bgH2; H_cd H_cdH2 H_cf H_cfH2; H_ch H_chH2; H_de H_deH2; H_dg H_dgH2 SURFACE_SPECIES - H_aH = H_aH; log_k 0; H_bH = H_bH; log_k 0; H_cH = H_cH; log_k 0; H_dH = H_dH; log_k 0; - H_eH = H_eH; log_k 0; H_fH = H_fH; log_k 0; H_gH = H_gH; log_k 0; H_hH = H_hH; log_k 0; + H_aH = H_aH; log_k 0; H_bH = H_bH; log_k 0; H_cH = H_cH; log_k 0; H_dH = H_dH; log_k 0 + H_eH = H_eH; log_k 0; H_fH = H_fH; log_k 0; H_gH = H_gH; log_k 0; H_hH = H_hH; log_k 0 - H_abH2 = H_abH2; log_k 0; H_adH2 = H_adH2; log_k 0; H_afH2 = H_afH2; log_k 0; - H_ahH2 = H_ahH2; log_k 0; H_bcH2 = H_bcH2; log_k 0; H_beH2 = H_beH2; log_k 0; - H_bgH2 = H_bgH2; log_k 0; H_cdH2 = H_cdH2; log_k 0; H_cfH2 = H_cfH2; log_k 0; - H_chH2 = H_chH2; log_k 0; H_deH2 = H_deH2; log_k 0; H_dgH2 = H_dgH2; log_k 0; + H_abH2 = H_abH2; log_k 0; H_adH2 = H_adH2; log_k 0; H_afH2 = H_afH2; log_k 0 + H_ahH2 = H_ahH2; log_k 0; H_bcH2 = H_bcH2; log_k 0; H_beH2 = H_beH2; log_k 0 + H_bgH2 = H_bgH2; log_k 0; H_cdH2 = H_cdH2; log_k 0; H_cfH2 = H_cfH2; log_k 0 + H_chH2 = H_chH2; log_k 0; H_deH2 = H_deH2; log_k 0; H_dgH2 = H_dgH2; log_k 0 # Protons - H_aH = H_a- + H+; log_k -1.59 - H_bH = H_b- + H+; log_k -2.70 - H_cH = H_c- + H+; log_k -3.82 - H_dH = H_d- + H+; log_k -4.93 - - H_eH = H_e- + H+; log_k -6.88 - H_fH = H_f- + H+; log_k -8.72 - H_gH = H_g- + H+; log_k -10.56 - H_hH = H_h- + H+; log_k -12.40 - - H_abH2 = H_abH- + H+; log_k -1.59; H_abH- = H_ab-2 + H+; log_k -2.70 + H_aH = H_a- + H+; log_k -1.59 + H_bH = H_b- + H+; log_k -2.7 + H_cH = H_c- + H+; log_k -3.82 + H_dH = H_d- + H+; log_k -4.93 + + H_eH = H_e- + H+; log_k -6.88 + H_fH = H_f- + H+; log_k -8.72 + H_gH = H_g- + H+; log_k -10.56 + H_hH = H_h- + H+; log_k -12.4 + + H_abH2 = H_abH- + H+; log_k -1.59; H_abH- = H_ab-2 + H+; log_k -2.7 H_adH2 = H_adH- + H+; log_k -1.59; H_adH- = H_ad-2 + H+; log_k -4.93 H_afH2 = H_afH- + H+; log_k -1.59; H_afH- = H_af-2 + H+; log_k -8.72 - H_ahH2 = H_ahH- + H+; log_k -1.59; H_ahH- = H_ah-2 + H+; log_k -12.40 - H_bcH2 = H_bcH- + H+; log_k -2.70; H_bcH- = H_bc-2 + H+; log_k -3.82 - H_beH2 = H_beH- + H+; log_k -2.70; H_beH- = H_be-2 + H+; log_k -6.88 - H_bgH2 = H_bgH- + H+; log_k -2.70; H_bgH- = H_bg-2 + H+; log_k -10.56 + H_ahH2 = H_ahH- + H+; log_k -1.59; H_ahH- = H_ah-2 + H+; log_k -12.4 + H_bcH2 = H_bcH- + H+; log_k -2.7; H_bcH- = H_bc-2 + H+; log_k -3.82 + H_beH2 = H_beH- + H+; log_k -2.7; H_beH- = H_be-2 + H+; log_k -6.88 + H_bgH2 = H_bgH- + H+; log_k -2.7; H_bgH- = H_bg-2 + H+; log_k -10.56 H_cdH2 = H_cdH- + H+; log_k -3.82; H_cdH- = H_cd-2 + H+; log_k -4.93 H_cfH2 = H_cfH- + H+; log_k -3.82; H_cfH- = H_cf-2 + H+; log_k -8.72 - H_chH2 = H_chH- + H+; log_k -3.82; H_chH- = H_ch-2 + H+; log_k -12.40 + H_chH2 = H_chH- + H+; log_k -3.82; H_chH- = H_ch-2 + H+; log_k -12.4 H_deH2 = H_deH- + H+; log_k -4.93; H_deH- = H_de-2 + H+; log_k -6.88 H_dgH2 = H_dgH- + H+; log_k -4.93; H_dgH- = H_dg-2 + H+; log_k -10.56 # Mg From Lofts and Tipping, 2000 - H_aH + Mg+2 = H_aMg+ + H+; log_k -3.30 - H_bH + Mg+2 = H_bMg+ + H+; log_k -3.30 - H_cH + Mg+2 = H_cMg+ + H+; log_k -3.30 - H_dH + Mg+2 = H_dMg+ + H+; log_k -3.30 + H_aH + Mg+2 = H_aMg+ + H+; log_k -3.3 + H_bH + Mg+2 = H_bMg+ + H+; log_k -3.3 + H_cH + Mg+2 = H_cMg+ + H+; log_k -3.3 + H_dH + Mg+2 = H_dMg+ + H+; log_k -3.3 - H_eH + Mg+2 = H_eMg+ + H+; log_k -7.12 - H_fH + Mg+2 = H_fMg+ + H+; log_k -7.12 - H_gH + Mg+2 = H_gMg+ + H+; log_k -7.12 - H_hH + Mg+2 = H_hMg+ + H+; log_k -7.12 + H_eH + Mg+2 = H_eMg+ + H+; log_k -7.12 + H_fH + Mg+2 = H_fMg+ + H+; log_k -7.12 + H_gH + Mg+2 = H_gMg+ + H+; log_k -7.12 + H_hH + Mg+2 = H_hMg+ + H+; log_k -7.12 - H_abH2 + Mg+2 = H_abMg + 2H+; log_k -6.60 - H_adH2 + Mg+2 = H_adMg + 2H+; log_k -6.60 - H_afH2 + Mg+2 = H_afMg + 2H+; log_k -10.42 - H_ahH2 + Mg+2 = H_ahMg + 2H+; log_k -10.42 - H_bcH2 + Mg+2 = H_bcMg + 2H+; log_k -6.60 - H_beH2 + Mg+2 = H_beMg + 2H+; log_k -10.42 - H_bgH2 + Mg+2 = H_bgMg + 2H+; log_k -10.42 - H_cdH2 + Mg+2 = H_cdMg + 2H+; log_k -6.60 - H_cfH2 + Mg+2 = H_cfMg + 2H+; log_k -10.42 - H_chH2 + Mg+2 = H_chMg + 2H+; log_k -10.42 - H_deH2 + Mg+2 = H_deMg + 2H+; log_k -10.42 - H_dgH2 + Mg+2 = H_dgMg + 2H+; log_k -10.42 + H_abH2 + Mg+2 = H_abMg + 2 H+; log_k -6.6 + H_adH2 + Mg+2 = H_adMg + 2 H+; log_k -6.6 + H_afH2 + Mg+2 = H_afMg + 2 H+; log_k -10.42 + H_ahH2 + Mg+2 = H_ahMg + 2 H+; log_k -10.42 + H_bcH2 + Mg+2 = H_bcMg + 2 H+; log_k -6.6 + H_beH2 + Mg+2 = H_beMg + 2 H+; log_k -10.42 + H_bgH2 + Mg+2 = H_bgMg + 2 H+; log_k -10.42 + H_cdH2 + Mg+2 = H_cdMg + 2 H+; log_k -6.6 + H_cfH2 + Mg+2 = H_cfMg + 2 H+; log_k -10.42 + H_chH2 + Mg+2 = H_chMg + 2 H+; log_k -10.42 + H_deH2 + Mg+2 = H_deMg + 2 H+; log_k -10.42 + H_dgH2 + Mg+2 = H_dgMg + 2 H+; log_k -10.42 # Calcium, Lofts and Tipping, 2000 - H_aH + Ca+2 = H_aCa+ + H+; log_k -3.20 - H_bH + Ca+2 = H_bCa+ + H+; log_k -3.20 - H_cH + Ca+2 = H_cCa+ + H+; log_k -3.20 - H_dH + Ca+2 = H_dCa+ + H+; log_k -3.20 + H_aH + Ca+2 = H_aCa+ + H+; log_k -3.2 + H_bH + Ca+2 = H_bCa+ + H+; log_k -3.2 + H_cH + Ca+2 = H_cCa+ + H+; log_k -3.2 + H_dH + Ca+2 = H_dCa+ + H+; log_k -3.2 - H_eH + Ca+2 = H_eCa+ + H+; log_k -6.99 - H_fH + Ca+2 = H_fCa+ + H+; log_k -6.99 - H_gH + Ca+2 = H_gCa+ + H+; log_k -6.99 - H_hH + Ca+2 = H_hCa+ + H+; log_k -6.99 + H_eH + Ca+2 = H_eCa+ + H+; log_k -6.99 + H_fH + Ca+2 = H_fCa+ + H+; log_k -6.99 + H_gH + Ca+2 = H_gCa+ + H+; log_k -6.99 + H_hH + Ca+2 = H_hCa+ + H+; log_k -6.99 - H_abH2 + Ca+2 = H_abCa + 2H+; log_k -6.40 - H_adH2 + Ca+2 = H_adCa + 2H+; log_k -6.40 - H_afH2 + Ca+2 = H_afCa + 2H+; log_k -7.45 - H_ahH2 + Ca+2 = H_ahCa + 2H+; log_k -10.2 - H_bcH2 + Ca+2 = H_bcCa + 2H+; log_k -6.40 - H_beH2 + Ca+2 = H_beCa + 2H+; log_k -10.2 - H_bgH2 + Ca+2 = H_bgCa + 2H+; log_k -10.2 - H_cdH2 + Ca+2 = H_cdCa + 2H+; log_k -6.40 - H_cfH2 + Ca+2 = H_cfCa + 2H+; log_k -10.2 - H_chH2 + Ca+2 = H_chCa + 2H+; log_k -10.2 - H_deH2 + Ca+2 = H_deCa + 2H+; log_k -10.2 - H_dgH2 + Ca+2 = H_dgCa + 2H+; log_k -10.2 + H_abH2 + Ca+2 = H_abCa + 2 H+; log_k -6.4 + H_adH2 + Ca+2 = H_adCa + 2 H+; log_k -6.4 + H_afH2 + Ca+2 = H_afCa + 2 H+; log_k -7.45 + H_ahH2 + Ca+2 = H_ahCa + 2 H+; log_k -10.2 + H_bcH2 + Ca+2 = H_bcCa + 2 H+; log_k -6.4 + H_beH2 + Ca+2 = H_beCa + 2 H+; log_k -10.2 + H_bgH2 + Ca+2 = H_bgCa + 2 H+; log_k -10.2 + H_cdH2 + Ca+2 = H_cdCa + 2 H+; log_k -6.4 + H_cfH2 + Ca+2 = H_cfCa + 2 H+; log_k -10.2 + H_chH2 + Ca+2 = H_chCa + 2 H+; log_k -10.2 + H_deH2 + Ca+2 = H_deCa + 2 H+; log_k -10.2 + H_dgH2 + Ca+2 = H_dgCa + 2 H+; log_k -10.2 # Nickel - H_aH + Ni+2 = H_aNi+ + H+; log_k -1.4 - H_bH + Ni+2 = H_bNi+ + H+; log_k -1.4 - H_cH + Ni+2 = H_cNi+ + H+; log_k -1.4 - H_dH + Ni+2 = H_dNi+ + H+; log_k -1.4 + H_aH + Ni+2 = H_aNi+ + H+; log_k -1.4 + H_bH + Ni+2 = H_bNi+ + H+; log_k -1.4 + H_cH + Ni+2 = H_cNi+ + H+; log_k -1.4 + H_dH + Ni+2 = H_dNi+ + H+; log_k -1.4 - H_eH + Ni+2 = H_eNi+ + H+; log_k -4.5 - H_fH + Ni+2 = H_fNi+ + H+; log_k -4.5 - H_gH + Ni+2 = H_gNi+ + H+; log_k -4.5 - H_hH + Ni+2 = H_hNi+ + H+; log_k -4.5 + H_eH + Ni+2 = H_eNi+ + H+; log_k -4.5 + H_fH + Ni+2 = H_fNi+ + H+; log_k -4.5 + H_gH + Ni+2 = H_gNi+ + H+; log_k -4.5 + H_hH + Ni+2 = H_hNi+ + H+; log_k -4.5 - H_abH2 + Ni+2 = H_abNi + 2H+; log_k -2.8 - H_adH2 + Ni+2 = H_adNi + 2H+; log_k -2.8 - H_afH2 + Ni+2 = H_afNi + 2H+; log_k -5.9 - H_ahH2 + Ni+2 = H_ahNi + 2H+; log_k -5.9 - H_bcH2 + Ni+2 = H_bcNi + 2H+; log_k -2.8 - H_beH2 + Ni+2 = H_beNi + 2H+; log_k -5.9 - H_bgH2 + Ni+2 = H_bgNi + 2H+; log_k -5.9 - H_cdH2 + Ni+2 = H_cdNi + 2H+; log_k -2.8 - H_cfH2 + Ni+2 = H_cfNi + 2H+; log_k -5.9 - H_chH2 + Ni+2 = H_chNi + 2H+; log_k -5.9 - H_deH2 + Ni+2 = H_deNi + 2H+; log_k -5.9 - H_dgH2 + Ni+2 = H_dgNi + 2H+; log_k -5.9 + H_abH2 + Ni+2 = H_abNi + 2 H+; log_k -2.8 + H_adH2 + Ni+2 = H_adNi + 2 H+; log_k -2.8 + H_afH2 + Ni+2 = H_afNi + 2 H+; log_k -5.9 + H_ahH2 + Ni+2 = H_ahNi + 2 H+; log_k -5.9 + H_bcH2 + Ni+2 = H_bcNi + 2 H+; log_k -2.8 + H_beH2 + Ni+2 = H_beNi + 2 H+; log_k -5.9 + H_bgH2 + Ni+2 = H_bgNi + 2 H+; log_k -5.9 + H_cdH2 + Ni+2 = H_cdNi + 2 H+; log_k -2.8 + H_cfH2 + Ni+2 = H_cfNi + 2 H+; log_k -5.9 + H_chH2 + Ni+2 = H_chNi + 2 H+; log_k -5.9 + H_deH2 + Ni+2 = H_deNi + 2 H+; log_k -5.9 + H_dgH2 + Ni+2 = H_dgNi + 2 H+; log_k -5.9 # Copper - H_aH + Cu+2 = H_aCu+ + H+; log_k -0.63 - H_bH + Cu+2 = H_bCu+ + H+; log_k -0.63 - H_cH + Cu+2 = H_cCu+ + H+; log_k -0.63 - H_dH + Cu+2 = H_dCu+ + H+; log_k -0.63 + H_aH + Cu+2 = H_aCu+ + H+; log_k -0.63 + H_bH + Cu+2 = H_bCu+ + H+; log_k -0.63 + H_cH + Cu+2 = H_cCu+ + H+; log_k -0.63 + H_dH + Cu+2 = H_dCu+ + H+; log_k -0.63 - H_eH + Cu+2 = H_eCu+ + H+; log_k -3.75 - H_fH + Cu+2 = H_fCu+ + H+; log_k -3.75 - H_gH + Cu+2 = H_gCu+ + H+; log_k -3.75 - H_hH + Cu+2 = H_hCu+ + H+; log_k -3.75 + H_eH + Cu+2 = H_eCu+ + H+; log_k -3.75 + H_fH + Cu+2 = H_fCu+ + H+; log_k -3.75 + H_gH + Cu+2 = H_gCu+ + H+; log_k -3.75 + H_hH + Cu+2 = H_hCu+ + H+; log_k -3.75 - H_abH2 + Cu+2 = H_abCu + 2H+; log_k -1.26 - H_adH2 + Cu+2 = H_adCu + 2H+; log_k -1.26 - H_afH2 + Cu+2 = H_afCu + 2H+; log_k -4.38 - H_ahH2 + Cu+2 = H_ahCu + 2H+; log_k -4.38 - H_bcH2 + Cu+2 = H_bcCu + 2H+; log_k -1.26 - H_beH2 + Cu+2 = H_beCu + 2H+; log_k -4.38 - H_bgH2 + Cu+2 = H_bgCu + 2H+; log_k -4.38 - H_cdH2 + Cu+2 = H_cdCu + 2H+; log_k -1.26 - H_cfH2 + Cu+2 = H_cfCu + 2H+; log_k -4.38 - H_chH2 + Cu+2 = H_chCu + 2H+; log_k -4.38 - H_deH2 + Cu+2 = H_deCu + 2H+; log_k -4.38 - H_dgH2 + Cu+2 = H_dgCu + 2H+; log_k -4.38 + H_abH2 + Cu+2 = H_abCu + 2 H+; log_k -1.26 + H_adH2 + Cu+2 = H_adCu + 2 H+; log_k -1.26 + H_afH2 + Cu+2 = H_afCu + 2 H+; log_k -4.38 + H_ahH2 + Cu+2 = H_ahCu + 2 H+; log_k -4.38 + H_bcH2 + Cu+2 = H_bcCu + 2 H+; log_k -1.26 + H_beH2 + Cu+2 = H_beCu + 2 H+; log_k -4.38 + H_bgH2 + Cu+2 = H_bgCu + 2 H+; log_k -4.38 + H_cdH2 + Cu+2 = H_cdCu + 2 H+; log_k -1.26 + H_cfH2 + Cu+2 = H_cfCu + 2 H+; log_k -4.38 + H_chH2 + Cu+2 = H_chCu + 2 H+; log_k -4.38 + H_deH2 + Cu+2 = H_deCu + 2 H+; log_k -4.38 + H_dgH2 + Cu+2 = H_dgCu + 2 H+; log_k -4.38 # Zinc - H_aH + Zn+2 = H_aZn+ + H+; log_k -1.7 - H_bH + Zn+2 = H_bZn+ + H+; log_k -1.7 - H_cH + Zn+2 = H_cZn+ + H+; log_k -1.7 - H_dH + Zn+2 = H_dZn+ + H+; log_k -1.7 + H_aH + Zn+2 = H_aZn+ + H+; log_k -1.7 + H_bH + Zn+2 = H_bZn+ + H+; log_k -1.7 + H_cH + Zn+2 = H_cZn+ + H+; log_k -1.7 + H_dH + Zn+2 = H_dZn+ + H+; log_k -1.7 - H_eH + Zn+2 = H_eZn+ + H+; log_k -4.9 - H_fH + Zn+2 = H_fZn+ + H+; log_k -4.9 - H_gH + Zn+2 = H_gZn+ + H+; log_k -4.9 - H_hH + Zn+2 = H_hZn+ + H+; log_k -4.9 + H_eH + Zn+2 = H_eZn+ + H+; log_k -4.9 + H_fH + Zn+2 = H_fZn+ + H+; log_k -4.9 + H_gH + Zn+2 = H_gZn+ + H+; log_k -4.9 + H_hH + Zn+2 = H_hZn+ + H+; log_k -4.9 - H_abH2 + Zn+2 = H_abZn + 2H+; log_k -2.4 - H_adH2 + Zn+2 = H_adZn + 2H+; log_k -2.4 - H_afH2 + Zn+2 = H_afZn + 2H+; log_k -6.6 - H_ahH2 + Zn+2 = H_ahZn + 2H+; log_k -6.6 - H_bcH2 + Zn+2 = H_bcZn + 2H+; log_k -2.4 - H_beH2 + Zn+2 = H_beZn + 2H+; log_k -6.6 - H_bgH2 + Zn+2 = H_bgZn + 2H+; log_k -6.6 - H_cdH2 + Zn+2 = H_cdZn + 2H+; log_k -2.4 - H_cfH2 + Zn+2 = H_cfZn + 2H+; log_k -6.6 - H_chH2 + Zn+2 = H_chZn + 2H+; log_k -6.6 - H_deH2 + Zn+2 = H_deZn + 2H+; log_k -6.6 - H_dgH2 + Zn+2 = H_dgZn + 2H+; log_k -6.6 + H_abH2 + Zn+2 = H_abZn + 2 H+; log_k -2.4 + H_adH2 + Zn+2 = H_adZn + 2 H+; log_k -2.4 + H_afH2 + Zn+2 = H_afZn + 2 H+; log_k -6.6 + H_ahH2 + Zn+2 = H_ahZn + 2 H+; log_k -6.6 + H_bcH2 + Zn+2 = H_bcZn + 2 H+; log_k -2.4 + H_beH2 + Zn+2 = H_beZn + 2 H+; log_k -6.6 + H_bgH2 + Zn+2 = H_bgZn + 2 H+; log_k -6.6 + H_cdH2 + Zn+2 = H_cdZn + 2 H+; log_k -2.4 + H_cfH2 + Zn+2 = H_cfZn + 2 H+; log_k -6.6 + H_chH2 + Zn+2 = H_chZn + 2 H+; log_k -6.6 + H_deH2 + Zn+2 = H_deZn + 2 H+; log_k -6.6 + H_dgH2 + Zn+2 = H_dgZn + 2 H+; log_k -6.6 # Cadmium - H_aH + Cd+2 = H_aCd+ + H+; log_k -1.52 - H_bH + Cd+2 = H_bCd+ + H+; log_k -1.52 - H_cH + Cd+2 = H_cCd+ + H+; log_k -1.52 - H_dH + Cd+2 = H_dCd+ + H+; log_k -1.52 + H_aH + Cd+2 = H_aCd+ + H+; log_k -1.52 + H_bH + Cd+2 = H_bCd+ + H+; log_k -1.52 + H_cH + Cd+2 = H_cCd+ + H+; log_k -1.52 + H_dH + Cd+2 = H_dCd+ + H+; log_k -1.52 - H_eH + Cd+2 = H_eCd+ + H+; log_k -5.57 - H_fH + Cd+2 = H_fCd+ + H+; log_k -5.57 - H_gH + Cd+2 = H_gCd+ + H+; log_k -5.57 - H_hH + Cd+2 = H_hCd+ + H+; log_k -5.57 + H_eH + Cd+2 = H_eCd+ + H+; log_k -5.57 + H_fH + Cd+2 = H_fCd+ + H+; log_k -5.57 + H_gH + Cd+2 = H_gCd+ + H+; log_k -5.57 + H_hH + Cd+2 = H_hCd+ + H+; log_k -5.57 - H_abH2 + Cd+2 = H_abCd + 2H+; log_k -3.04 - H_adH2 + Cd+2 = H_adCd + 2H+; log_k -3.04 - H_afH2 + Cd+2 = H_afCd + 2H+; log_k -7.09 - H_ahH2 + Cd+2 = H_ahCd + 2H+; log_k -7.09 - H_bcH2 + Cd+2 = H_bcCd + 2H+; log_k -3.04 - H_beH2 + Cd+2 = H_beCd + 2H+; log_k -7.09 - H_bgH2 + Cd+2 = H_bgCd + 2H+; log_k -7.09 - H_cdH2 + Cd+2 = H_cdCd + 2H+; log_k -3.04 - H_cfH2 + Cd+2 = H_cfCd + 2H+; log_k -7.09 - H_chH2 + Cd+2 = H_chCd + 2H+; log_k -7.09 - H_deH2 + Cd+2 = H_deCd + 2H+; log_k -7.09 - H_dgH2 + Cd+2 = H_dgCd + 2H+; log_k -7.09 + H_abH2 + Cd+2 = H_abCd + 2 H+; log_k -3.04 + H_adH2 + Cd+2 = H_adCd + 2 H+; log_k -3.04 + H_afH2 + Cd+2 = H_afCd + 2 H+; log_k -7.09 + H_ahH2 + Cd+2 = H_ahCd + 2 H+; log_k -7.09 + H_bcH2 + Cd+2 = H_bcCd + 2 H+; log_k -3.04 + H_beH2 + Cd+2 = H_beCd + 2 H+; log_k -7.09 + H_bgH2 + Cd+2 = H_bgCd + 2 H+; log_k -7.09 + H_cdH2 + Cd+2 = H_cdCd + 2 H+; log_k -3.04 + H_cfH2 + Cd+2 = H_cfCd + 2 H+; log_k -7.09 + H_chH2 + Cd+2 = H_chCd + 2 H+; log_k -7.09 + H_deH2 + Cd+2 = H_deCd + 2 H+; log_k -7.09 + H_dgH2 + Cd+2 = H_dgCd + 2 H+; log_k -7.09 # Plumbum (Lead) - H_aH + Pb+2 = H_aPb+ + H+; log_k -0.81 - H_bH + Pb+2 = H_bPb+ + H+; log_k -0.81 - H_cH + Pb+2 = H_cPb+ + H+; log_k -0.81 - H_dH + Pb+2 = H_dPb+ + H+; log_k -0.81 + H_aH + Pb+2 = H_aPb+ + H+; log_k -0.81 + H_bH + Pb+2 = H_bPb+ + H+; log_k -0.81 + H_cH + Pb+2 = H_cPb+ + H+; log_k -0.81 + H_dH + Pb+2 = H_dPb+ + H+; log_k -0.81 - H_eH + Pb+2 = H_ePb+ + H+; log_k -3.04 - H_fH + Pb+2 = H_fPb+ + H+; log_k -3.04 - H_gH + Pb+2 = H_gPb+ + H+; log_k -3.04 - H_hH + Pb+2 = H_hPb+ + H+; log_k -3.04 + H_eH + Pb+2 = H_ePb+ + H+; log_k -3.04 + H_fH + Pb+2 = H_fPb+ + H+; log_k -3.04 + H_gH + Pb+2 = H_gPb+ + H+; log_k -3.04 + H_hH + Pb+2 = H_hPb+ + H+; log_k -3.04 + + H_abH2 + Pb+2 = H_abPb + 2 H+; log_k -1.62 + H_adH2 + Pb+2 = H_adPb + 2 H+; log_k -1.62 + H_afH2 + Pb+2 = H_afPb + 2 H+; log_k -3.85 + H_ahH2 + Pb+2 = H_ahPb + 2 H+; log_k -3.85 + H_bcH2 + Pb+2 = H_bcPb + 2 H+; log_k -1.62 + H_beH2 + Pb+2 = H_bePb + 2 H+; log_k -3.85 + H_bgH2 + Pb+2 = H_bgPb + 2 H+; log_k -3.85 + H_cdH2 + Pb+2 = H_cdPb + 2 H+; log_k -1.62 + H_cfH2 + Pb+2 = H_cfPb + 2 H+; log_k -3.85 + H_chH2 + Pb+2 = H_chPb + 2 H+; log_k -3.85 + H_deH2 + Pb+2 = H_dePb + 2 H+; log_k -3.85 + H_dgH2 + Pb+2 = H_dgPb + 2 H+; log_k -3.85 - H_abH2 + Pb+2 = H_abPb + 2H+; log_k -1.62 - H_adH2 + Pb+2 = H_adPb + 2H+; log_k -1.62 - H_afH2 + Pb+2 = H_afPb + 2H+; log_k -3.85 - H_ahH2 + Pb+2 = H_ahPb + 2H+; log_k -3.85 - H_bcH2 + Pb+2 = H_bcPb + 2H+; log_k -1.62 - H_beH2 + Pb+2 = H_bePb + 2H+; log_k -3.85 - H_bgH2 + Pb+2 = H_bgPb + 2H+; log_k -3.85 - H_cdH2 + Pb+2 = H_cdPb + 2H+; log_k -1.62 - H_cfH2 + Pb+2 = H_cfPb + 2H+; log_k -3.85 - H_chH2 + Pb+2 = H_chPb + 2H+; log_k -3.85 - H_deH2 + Pb+2 = H_dePb + 2H+; log_k -3.85 - H_dgH2 + Pb+2 = H_dgPb + 2H+; log_k -3.85 - END diff --git a/iso.dat b/iso.dat index 8558cd69..c922df33 100644 --- a/iso.dat +++ b/iso.dat @@ -1,737 +1,741 @@ +# File 1 = C:\GitPrograms\phreeqc3-1\database\iso.dat, 15/03/2024 15:26, 7231 lines, 260799 bytes, md5=319d28e882b25a6f83f095da65c50849 +# Created 17 May 2024 14:30:37 +# c:\3rdParty\lsp\lsp.exe -f2 -k="asis" -ts "iso.dat" + SOLUTION_MASTER_SPECIES -E e- 0 0 0.0 -H H3O+ -1 H 1.008 -H(0) H2 0 H -H(1) H3O+ -1 H -O H2O 0 O 16.00 -O(0) O2 0 O -O(-2) H2O 0 O -Ca Ca+2 0 Ca 40.08 -Mg Mg+2 0 Mg 24.312 -Na Na+ 0 Na 22.9898 -K K+ 0 K 39.102 -Fe Fe+2 0.0 Fe 55.847 -Fe(+2) Fe+2 0.0 Fe -Fe(+3) Fe+3 -2.0 Fe -Al Al+3 0.0 Al 26.9815 -Si H4SiO4 0.0 SiO2 28.0843 -Cl Cl- 0 Cl 35.453 -C CO2 0 HCO3 12.0111 -C(4) CO2 0 HCO3 -C(-4) CH4 0 CH4 -S SO4-2 0 S 31.972 -S(6) SO4-2 0 SO4 -S(-2) HS- 1 S -N NO3- 0 N 14.0067 -N(+5) NO3- 0 N -N(+3) NO2- 0 N -N(0) N2 0 N -N(-3) NH4+ 0 N -P PO4-3 2.0 P 30.9738 -F F- 0.0 F 18.9984 -Br Br- 0.0 Br 79.904 -Alkalinity CO2 0.0 50.05 50.05 +E e- 1 0 0 +H H3O+ -1 H 1.008 +H(0) H2 0 H +H(1) H3O+ -1 H +O H2O 0 O 16 +O(0) O2 0 O +O(-2) H2O 0 O +Ca Ca+2 0 Ca 40.08 +Mg Mg+2 0 Mg 24.312 +Na Na+ 0 Na 22.9898 +K K+ 0 K 39.102 +Fe Fe+2 0 Fe 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2 Fe +Al Al+3 0 Al 26.9815 +Si H4SiO4 0 SiO2 28.0843 +Cl Cl- 0 Cl 35.453 +C CO2 0 HCO3 12.0111 +C(4) CO2 0 HCO3 +C(-4) CH4 0 CH4 +S SO4-2 0 S 31.972 +S(6) SO4-2 0 SO4 +S(-2) HS- 1 S +N NO3- 0 N 14.0067 +N(+5) NO3- 0 N +N(+3) NO2- 0 N +N(0) N2 0 N +N(-3) NH4+ 0 N +P PO4-3 2 P 30.9738 +F F- 0 F 18.9984 +Br Br- 0 Br 79.904 +Alkalinity CO2 0 50.05 50.05 SOLUTION_SPECIES H3O+ = H3O+ - log_k 0.000 - -gamma 9.0000 0.0000 + log_k 0 + -gamma 9 0 e- = e- - log_k 0.000 + log_k 0 H2O = H2O - log_k 0.000 + log_k 0 Ca+2 = Ca+2 - log_k 0.000 - -gamma 5.0000 0.1650 + log_k 0 + -gamma 5 0.165 Mg+2 = Mg+2 - log_k 0.000 - -gamma 5.5000 0.2000 + log_k 0 + -gamma 5.5 0.2 Na+ = Na+ - log_k 0.000 - -gamma 4.0000 0.0750 + log_k 0 + -gamma 4 0.075 K+ = K+ - log_k 0.000 - -gamma 3.5000 0.0150 + log_k 0 + -gamma 3.5 0.015 Fe+2 = Fe+2 - log_k 0.000 - -gamma 6.0000 0.0000 + log_k 0 + -gamma 6 0 Al+3 = Al+3 - log_k 0.000 - -gamma 9.0000 0.0000 + log_k 0 + -gamma 9 0 H4SiO4 = H4SiO4 - log_k 0.000 + log_k 0 Cl- = Cl- - log_k 0.000 - -gamma 3.5000 0.0150 + log_k 0 + -gamma 3.5 0.015 SO4-2 = SO4-2 - log_k 0.000 - -gamma 5.0000 -0.0400 + log_k 0 + -gamma 5 -0.04 NO3- = NO3- - log_k 0.000 - -gamma 3.0000 0.0000 + log_k 0 + -gamma 3 0 PO4-3 = PO4-3 - log_k 0.000 - -gamma 4.0000 0.0000 + log_k 0 + -gamma 4 0 F- = F- - log_k 0.000 - -gamma 3.5000 0.0000 + log_k 0 + -gamma 3.5 0 Br- = Br- - log_k 0.000 - -gamma 3.0000 0.0000 + log_k 0 + -gamma 3 0 -2H2O = OH- + H3O+ - log_k -14.000 - delta_h 13.362 kcal - -analytic -283.971 -0.05069842 13323.0 102.24447 -1119669.0 - -gamma 3.5000 0.0000 +2 H2O = OH- + H3O+ + log_k -14 + delta_h 13.362 kcal + -analytic -283.971 -0.05069842 13323 102.24447 -1119669 + -gamma 3.5 0 6 H2O = O2 + 4 H3O+ + 4 e- - log_k -86.08 - delta_h 134.79 kcal + log_k -86.08 + delta_h 134.79 kcal -2 H3O+ + 2 e- = H2 + 2H2O - log_k -3.15 - delta_h -1.759 kcal +2 H3O+ + 2 e- = H2 + 2 H2O + log_k -3.15 + delta_h -1.759 kcal -CO2 + 2H2O = HCO3- + H3O+ - log_k -6.352 - delta_h 2.177 kcal - -analytic -356.3094 -0.06092 21834.37 126.8339 -1684915 +CO2 + 2 H2O = HCO3- + H3O+ + log_k -6.352 + delta_h 2.177 kcal + -analytic -356.3094 -0.06092 21834.37 126.8339 -1684915 -CO2 + 3H2O = CO3-2 + 2H3O+ - log_k -16.681 - delta_h 5.738 kcal - -analytic -464.1965 -0.09344813 26986.16 165.75951 -2248628.9 +CO2 + 3 H2O = CO3-2 + 2 H3O+ + log_k -16.681 + delta_h 5.738 kcal + -analytic -464.1965 -0.09344813 26986.16 165.75951 -2248628.9 CO3-2 + 10 H3O+ + 8 e- = CH4 + 13 H2O - log_k 41.071 - delta_h -61.039 kcal + log_k 41.071 + delta_h -61.039 kcal SO4-2 + H3O+ = HSO4- + H2O - log_k 1.988 - delta_h 3.85 kcal - -analytic -56.889 0.006473 2307.9 19.8858 0.0 + log_k 1.988 + delta_h 3.85 kcal + -analytic -56.889 0.006473 2307.9 19.8858 0 SO4-2 + 9 H3O+ + 8 e- = HS- + 13 H2O - log_k 33.65 - delta_h -60.140 kcal - -gamma 3.5000 0.0000 + log_k 33.65 + delta_h -60.14 kcal + -gamma 3.5 0 HS- + H2O = S-2 + H3O+ - log_k -12.918 - delta_h 12.1 kcal - -gamma 5.0000 0.0000 + log_k -12.918 + delta_h 12.1 kcal + -gamma 5 0 HS- + H3O+ = H2S + H2O - log_k 6.994 - delta_h -5.300 kcal - -analytic -11.17 0.02386 3279.0 + log_k 6.994 + delta_h -5.3 kcal + -analytic -11.17 0.02386 3279 -NO3- + 2 H3O+ + 2 e- = NO2- + 3H2O - log_k 28.570 - delta_h -43.760 kcal - -gamma 3.0000 0.0000 +NO3- + 2 H3O+ + 2 e- = NO2- + 3 H2O + log_k 28.57 + delta_h -43.76 kcal + -gamma 3 0 -2 NO3- + 12 H3O+ + 10e- = N2 + 18 H2O - log_k 207.080 - delta_h -312.130 kcal +2 NO3- + 12 H3O+ + 10 e- = N2 + 18 H2O + log_k 207.08 + delta_h -312.13 kcal NH4+ + H2O = NH3 + H3O+ - log_k -9.252 - delta_h 12.48 kcal - -analytic 0.6322 -0.001225 -2835.76 + log_k -9.252 + delta_h 12.48 kcal + -analytic 0.6322 -0.001225 -2835.76 NO3- + 10 H3O+ + 8 e- = NH4+ + 13 H2O - log_k 119.077 - delta_h -187.055 kcal - -gamma 2.5000 0.0000 + log_k 119.077 + delta_h -187.055 kcal + -gamma 2.5 0 NH4+ + SO4-2 = NH4SO4- - log_k 1.11 + log_k 1.11 PO4-3 + H3O+ = HPO4-2 + H2O - log_k 12.346 - delta_h -3.530 kcal - -gamma 4.0000 0.0000 + log_k 12.346 + delta_h -3.53 kcal + -gamma 4 0 -PO4-3 + 2 H3O+ = H2PO4- + 2H2O - log_k 19.553 - delta_h -4.520 kcal - -gamma 4.5000 0.0000 +PO4-3 + 2 H3O+ = H2PO4- + 2 H2O + log_k 19.553 + delta_h -4.52 kcal + -gamma 4.5 0 H3O+ + F- = HF + H2O - log_k 3.18 - delta_h 3.18 kcal - -analytic -2.033 0.012645 429.01 + log_k 3.18 + delta_h 3.18 kcal + -analytic -2.033 0.012645 429.01 H3O+ + 2 F- = HF2- + H2O - log_k 3.760 - delta_h 4.550 kcal + log_k 3.76 + delta_h 4.55 kcal Ca+2 + OH- = CaOH+ - log_k -12.780 + log_k -12.78 Ca+2 + CO3-2 = CaCO3 - log_k 3.224 - delta_h 3.545 kcal - -analytic -1228.732 -0.299440 35512.75 485.818 + log_k 3.224 + delta_h 3.545 kcal + -analytic -1228.732 -0.29944 35512.75 485.818 #Ca+2 + HCO3- = CaHCO3+ Ca+2 + CO3-2 + H3O+ = CaHCO3+ + H2O - log_k 11.435 - delta_h -0.871 kcal - -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9 - -gamma 5.4000 0.0000 + log_k 11.435 + delta_h -0.871 kcal + -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9 + -gamma 5.4 0 Ca+2 + SO4-2 = CaSO4 - log_k 2.300 - delta_h 1.650 kcal + log_k 2.3 + delta_h 1.65 kcal Ca+2 + HSO4- = CaHSO4+ - log_k 1.08 + log_k 1.08 Ca+2 + PO4-3 = CaPO4- - log_k 6.459 - delta_h 3.100 kcal + log_k 6.459 + delta_h 3.1 kcal Ca+2 + HPO4-2 = CaHPO4 - log_k 2.739 - delta_h 3.3 kcal + log_k 2.739 + delta_h 3.3 kcal Ca+2 + H2PO4- = CaH2PO4+ - log_k 1.408 - delta_h 3.4 kcal + log_k 1.408 + delta_h 3.4 kcal Ca+2 + F- = CaF+ - log_k 0.940 - delta_h 4.120 kcal + log_k 0.94 + delta_h 4.12 kcal Mg+2 + OH- = MgOH+ - log_k -11.440 - delta_h 15.952 kcal + log_k -11.44 + delta_h 15.952 kcal Mg+2 + CO3-2 = MgCO3 - log_k 2.98 - delta_h 2.713 kcal - -analytic 0.9910 0.00667 + log_k 2.98 + delta_h 2.713 kcal + -analytic 0.991 0.00667 Mg+2 + H3O+ + CO3-2 = MgHCO3+ + H2O - log_k 11.399 - delta_h -2.771 kcal - -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 + log_k 11.399 + delta_h -2.771 kcal + -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 Mg+2 + SO4-2 = MgSO4 - log_k 2.370 - delta_h 4.550 kcal + log_k 2.37 + delta_h 4.55 kcal Mg+2 + PO4-3 = MgPO4- - log_k 6.589 - delta_h 3.100 kcal + log_k 6.589 + delta_h 3.1 kcal Mg+2 + HPO4-2 = MgHPO4 - log_k 2.87 + log_k 2.87 delta_h 3.3 kcal Mg+2 + H2PO4- = MgH2PO4+ - log_k 1.513 + log_k 1.513 delta_h 3.4 kcal Mg+2 + F- = MgF+ - log_k 1.820 - delta_h 3.200 kcal + log_k 1.82 + delta_h 3.2 kcal Na+ + OH- = NaOH - log_k -14.180 + log_k -14.18 Na+ + CO3-2 = NaCO3- - log_k 1.270 - delta_h 8.910 kcal + log_k 1.27 + delta_h 8.91 kcal Na+ + HCO3- = NaHCO3 - log_k -0.25 + log_k -0.25 Na+ + SO4-2 = NaSO4- - log_k 0.700 - delta_h 1.120 kcal + log_k 0.7 + delta_h 1.12 kcal Na+ + HPO4-2 = NaHPO4- - log_k 0.29 + log_k 0.29 Na+ + F- = NaF - log_k -0.240 + log_k -0.24 K+ + OH- = KOH - log_k -14.460 + log_k -14.46 K+ + SO4-2 = KSO4- - log_k 0.850 - delta_h 2.250 kcal - -analytic 3.106 0.0 -673.6 + log_k 0.85 + delta_h 2.25 kcal + -analytic 3.106 0 -673.6 K+ + HPO4-2 = KHPO4- - log_k 0.29 + log_k 0.29 -Fe+2 + 2H2O = FeOH+ + H3O+ - log_k -9.500 - delta_h 13.200 kcal +Fe+2 + 2 H2O = FeOH+ + H3O+ + log_k -9.5 + delta_h 13.2 kcal Fe+2 + Cl- = FeCl+ - log_k 0.140 + log_k 0.14 Fe+2 + CO3-2 = FeCO3 - log_k 4.380 + log_k 4.38 Fe+2 + HCO3- = FeHCO3+ - log_k 2.0 + log_k 2 Fe+2 + SO4-2 = FeSO4 - log_k 2.250 - delta_h 3.230 kcal + log_k 2.25 + delta_h 3.23 kcal Fe+2 + HSO4- = FeHSO4+ - log_k 1.08 + log_k 1.08 -Fe+2 + 2HS- = Fe(HS)2 - log_k 8.95 +Fe+2 + 2 HS- = Fe(HS)2 + log_k 8.95 -Fe+2 + 3HS- = Fe(HS)3- - log_k 10.987 +Fe+2 + 3 HS- = Fe(HS)3- + log_k 10.987 Fe+2 + HPO4-2 = FeHPO4 - log_k 3.6 + log_k 3.6 Fe+2 + H2PO4- = FeH2PO4+ - log_k 2.7 + log_k 2.7 Fe+2 + F- = FeF+ - log_k 1.000 + log_k 1 Fe+2 = Fe+3 + e- - log_k -13.020 - delta_h 9.680 kcal - -gamma 9.0000 0.0000 + log_k -13.02 + delta_h 9.68 kcal + -gamma 9 0 -Fe+3 + 2H2O = FeOH+2 + H3O+ - log_k -2.19 - delta_h 10.4 kcal +Fe+3 + 2 H2O = FeOH+2 + H3O+ + log_k -2.19 + delta_h 10.4 kcal -Fe+3 + 4H2O = Fe(OH)2+ + 2 H3O+ - log_k -5.67 - delta_h 17.1 kcal +Fe+3 + 4 H2O = Fe(OH)2+ + 2 H3O+ + log_k -5.67 + delta_h 17.1 kcal Fe+3 + 6 H2O = Fe(OH)3 + 3 H3O+ - log_k -12.56 - delta_h 24.8 kcal + log_k -12.56 + delta_h 24.8 kcal Fe+3 + 8 H2O = Fe(OH)4- + 4 H3O+ - log_k -21.6 - delta_h 31.9 kcal + log_k -21.6 + delta_h 31.9 kcal 2 Fe+3 + 4 H2O = Fe2(OH)2+4 + 2 H3O+ - log_k -2.95 - delta_h 13.5 kcal + log_k -2.95 + delta_h 13.5 kcal 3 Fe+3 + 8 H2O = Fe3(OH)4+5 + 4 H3O+ - log_k -6.3 - delta_h 14.3 kcal + log_k -6.3 + delta_h 14.3 kcal Fe+3 + Cl- = FeCl+2 - log_k 1.48 - delta_h 5.6 kcal + log_k 1.48 + delta_h 5.6 kcal Fe+3 + 2 Cl- = FeCl2+ - log_k 2.13 + log_k 2.13 Fe+3 + 3 Cl- = FeCl3 - log_k 1.13 + log_k 1.13 Fe+3 + SO4-2 = FeSO4+ - log_k 4.04 - delta_h 3.91 kcal + log_k 4.04 + delta_h 3.91 kcal Fe+3 + HSO4- = FeHSO4+2 - log_k 2.48 + log_k 2.48 Fe+3 + 2 SO4-2 = Fe(SO4)2- - log_k 5.38 - delta_h 4.60 kcal + log_k 5.38 + delta_h 4.6 kcal Fe+3 + HPO4-2 = FeHPO4+ - log_k 5.43 - delta_h 5.76 kcal + log_k 5.43 + delta_h 5.76 kcal Fe+3 + H2PO4- = FeH2PO4+2 - log_k 5.43 + log_k 5.43 Fe+3 + F- = FeF+2 - log_k 6.2 - delta_h 2.7 kcal + log_k 6.2 + delta_h 2.7 kcal Fe+3 + 2 F- = FeF2+ - log_k 10.8 - delta_h 4.8 kcal + log_k 10.8 + delta_h 4.8 kcal Fe+3 + 3 F- = FeF3 - log_k 14.0 - delta_h 5.4 kcal + log_k 14 + delta_h 5.4 kcal -Al+3 + 2H2O = AlOH+2 + H3O+ - log_k -5.00 - delta_h 11.49 kcal - -analytic -38.253 0.0 -656.27 14.327 +Al+3 + 2 H2O = AlOH+2 + H3O+ + log_k -5 + delta_h 11.49 kcal + -analytic -38.253 0 -656.27 14.327 Al+3 + 4 H2O = Al(OH)2+ + 2 H3O+ - log_k -10.1 - delta_h 26.90 kcal - -analytic 88.500 0.0 -9391.6 -27.121 + log_k -10.1 + delta_h 26.9 kcal + -analytic 88.5 0 -9391.6 -27.121 Al+3 + 6 H2O = Al(OH)3 + 3 H3O+ - log_k -16.9 - delta_h 39.89 kcal - -analytic 226.374 0.0 -18247.8 -73.597 + log_k -16.9 + delta_h 39.89 kcal + -analytic 226.374 0 -18247.8 -73.597 Al+3 + 8 H2O = Al(OH)4- + 4 H3O+ - log_k -22.7 - delta_h 42.30 kcal - -analytic 51.578 0.0 -11168.9 -14.865 + log_k -22.7 + delta_h 42.3 kcal + -analytic 51.578 0 -11168.9 -14.865 Al+3 + SO4-2 = AlSO4+ - log_k 3.5 + log_k 3.5 delta_h 2.29 kcal -Al+3 + 2SO4-2 = Al(SO4)2- - log_k 5.0 +Al+3 + 2 SO4-2 = Al(SO4)2- + log_k 5 delta_h 3.11 kcal Al+3 + HSO4- = AlHSO4+2 - log_k 0.46 + log_k 0.46 Al+3 + F- = AlF+2 - log_k 7.000 - delta_h 1.060 kcal + log_k 7 + delta_h 1.06 kcal Al+3 + 2 F- = AlF2+ - log_k 12.700 - delta_h 1.980 kcal + log_k 12.7 + delta_h 1.98 kcal Al+3 + 3 F- = AlF3 - log_k 16.800 - delta_h 2.160 kcal + log_k 16.8 + delta_h 2.16 kcal Al+3 + 4 F- = AlF4- - log_k 19.400 - delta_h 2.200 kcal + log_k 19.4 + delta_h 2.2 kcal Al+3 + 5 F- = AlF5-2 - log_k 20.600 - delta_h 1.840 kcal + log_k 20.6 + delta_h 1.84 kcal Al+3 + 6 F- = AlF6-3 - log_k 20.600 - delta_h -1.670 kcal + log_k 20.6 + delta_h -1.67 kcal H4SiO4 + H2O = H3SiO4- + H3O+ - log_k -9.83 - delta_h 6.12 kcal - -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 + log_k -9.83 + delta_h 6.12 kcal + -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669 -H4SiO4 + 2H2O= H2SiO4-2 + 2 H3O+ - log_k -23.0 - delta_h 17.6 kcal - -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 +H4SiO4 + 2 H2O = H2SiO4-2 + 2 H3O+ + log_k -23 + delta_h 17.6 kcal + -analytic -294.0184 -0.07265 11204.49 108.18466 -1119669 H4SiO4 + 4 H3O+ + 6 F- = SiF6-2 + 8 H2O - log_k 30.180 - delta_h -16.260 kcal + log_k 30.18 + delta_h -16.26 kcal PHASES Calcite CaCO3 = CO3-2 + Ca+2 - log_k -8.480 - delta_h -2.297 kcal - -analytic -171.9065 -0.077993 2839.319 71.595 + log_k -8.48 + delta_h -2.297 kcal + -analytic -171.9065 -0.077993 2839.319 71.595 Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 - log_k -17.090 + log_k -17.09 delta_h -9.436 kcal Siderite FeCO3 = Fe+2 + CO3-2 - log_k -10.890 - delta_h -2.480 kcal + log_k -10.89 + delta_h -2.48 kcal Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O - log_k -4.580 - delta_h -0.109 kcal - -analytic 68.2401 0.0 -3221.51 -25.0627 + log_k -4.58 + delta_h -0.109 kcal + -analytic 68.2401 0 -3221.51 -25.0627 Anhydrite CaSO4 = Ca+2 + SO4-2 - log_k -4.360 - delta_h -1.710 kcal - -analytic 197.52 0.0 -8669.8 -69.835 + log_k -4.36 + delta_h -1.71 kcal + -analytic 197.52 0 -8669.8 -69.835 Hydroxyapatite - Ca5(PO4)3OH + 4 H3O+ = 5H2O + 3 HPO4-2 + 5 Ca+2 - log_k -3.421 + Ca5(PO4)3OH + 4 H3O+ = 5 H2O + 3 HPO4-2 + 5 Ca+2 + log_k -3.421 delta_h -36.155 kcal Fluorite CaF2 = Ca+2 + 2 F- - log_k -10.600 - delta_h 4.690 kcal - -analytic 66.348 0.0 -4298.2 -25.271 + log_k -10.6 + delta_h 4.69 kcal + -analytic 66.348 0 -4298.2 -25.271 SiO2(a) SiO2 + 2 H2O = H4SiO4 - log_k -2.710 - delta_h 3.340 kcal - -analytic -0.26 0.0 -731.0 + log_k -2.71 + delta_h 3.34 kcal + -analytic -0.26 0 -731 Chalcedony SiO2 + 2 H2O = H4SiO4 - log_k -3.550 - delta_h 4.720 kcal - -analytic -0.09 0.0 -1032.0 + log_k -3.55 + delta_h 4.72 kcal + -analytic -0.09 0 -1032 Quartz SiO2 + 2 H2O = H4SiO4 - log_k -3.980 - delta_h 5.990 kcal - -analytic 0.41 0.0 -1309.0 + log_k -3.98 + delta_h 5.99 kcal + -analytic 0.41 0 -1309 Gibbsite Al(OH)3 + 3 H3O+ = Al+3 + 6 H2O - log_k 8.110 - delta_h -22.800 kcal + log_k 8.11 + delta_h -22.8 kcal Al(OH)3(a) Al(OH)3 + 3 H3O+ = Al+3 + 6 H2O - log_k 10.800 - delta_h -26.500 kcal + log_k 10.8 + delta_h -26.5 kcal Kaolinite - Al2Si2O5(OH)4 + 6 H3O+ = 7H2O + 2 H4SiO4 + 2 Al+3 - log_k 7.435 - delta_h -35.300 kcal + Al2Si2O5(OH)4 + 6 H3O+ = 7 H2O + 2 H4SiO4 + 2 Al+3 + log_k 7.435 + delta_h -35.3 kcal Albite NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 - log_k -18.002 + log_k -18.002 delta_h 25.896 kcal Anorthite CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 - log_k -19.714 - delta_h 11.580 kcal + log_k -19.714 + delta_h 11.58 kcal K-feldspar KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 - log_k -20.573 - delta_h 30.820 kcal + log_k -20.573 + delta_h 30.82 kcal K-mica - KAl3Si3O10(OH)2 + 10 H3O+ = K+ + 3 Al+3 + 3 H4SiO4 + 10H2O - log_k 12.703 + KAl3Si3O10(OH)2 + 10 H3O+ = K+ + 3 Al+3 + 3 H4SiO4 + 10 H2O + log_k 12.703 delta_h -59.376 kcal Chlorite(14A) - Mg5Al2Si3O10(OH)8 + 16 H3O+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 22H2O - log_k 68.38 + Mg5Al2Si3O10(OH)8 + 16 H3O+ = 5 Mg+2 + 2 Al+3 + 3 H4SiO4 + 22 H2O + log_k 68.38 delta_h -151.494 kcal Ca-Montmorillonite - Ca0.165Al2.33Si3.67O10(OH)2 + 14 H2O = 0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H3O+ - log_k -45.027 - delta_h 58.373 kcal + Ca0.165Al2.33Si3.67O10(OH)2 + 14 H2O = 0.165 Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H3O+ + log_k -45.027 + delta_h 58.373 kcal Talc - Mg3Si4O10(OH)2 + 4 H2O + 6 H3O+ = 3 Mg+2 + 4 H4SiO4 + 6H2O - log_k 21.399 + Mg3Si4O10(OH)2 + 4 H2O + 6 H3O+ = 3 Mg+2 + 4 H4SiO4 + 6 H2O + log_k 21.399 delta_h -46.352 kcal Illite - K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 12.4H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H3O+ - log_k -40.267 + K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 12.4 H2O = 0.6 K+ + 0.25 Mg+2 + 2.3 Al(OH)4- + 3.5 H4SiO4 + 1.2 H3O+ + log_k -40.267 delta_h 54.684 kcal Chrysotile - Mg3Si2O5(OH)4 + 6 H3O+ = 7H2O + 2 H4SiO4 + 3 Mg+2 - log_k 32.200 - delta_h -46.800 kcal - -analytic 13.248 0.0 10217.1 -6.1894 + Mg3Si2O5(OH)4 + 6 H3O+ = 7 H2O + 2 H4SiO4 + 3 Mg+2 + log_k 32.2 + delta_h -46.8 kcal + -analytic 13.248 0 10217.1 -6.1894 Sepiolite - Mg2Si3O7.5OH:3H2O + 4 H3O+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 + 4H2O - log_k 15.760 - delta_h -10.700 kcal + Mg2Si3O7.5OH:3H2O + 4 H3O+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 + 4 H2O + log_k 15.76 + delta_h -10.7 kcal Sepiolite(d) - Mg2Si3O7.5OH:3H2O + 4 H3O+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 + 4H2O - log_k 18.660 + Mg2Si3O7.5OH:3H2O + 4 H3O+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 + 4 H2O + log_k 18.66 Hematite Fe2O3 + 6 H3O+ = 2 Fe+3 + 9 H2O - log_k -4.008 + log_k -4.008 delta_h -30.845 kcal Goethite FeOOH + 3 H3O+ = Fe+3 + 5 H2O - log_k -1.000 - delta_h -14.48 kcal + log_k -1 + delta_h -14.48 kcal Fe(OH)3(a) Fe(OH)3 + 3 H3O+ = Fe+3 + 6 H2O - log_k 4.891 + log_k 4.891 Pyrite - FeS2 + 2H3O+ + 2e- = Fe+2 + 2HS- + 2H2O - log_k -18.479 - delta_h 11.300 kcal + FeS2 + 2 H3O+ + 2 e- = Fe+2 + 2 HS- + 2 H2O + log_k -18.479 + delta_h 11.3 kcal FeS(ppt) FeS + H3O+ = Fe+2 + HS- + H2O - log_k -3.915 + log_k -3.915 Mackinawite FeS + H3O+ = Fe+2 + HS- + H2O - log_k -4.648 + log_k -4.648 Sulfur - S + 2 H3O+ + 2e- = H2S + 2H2O - log_k 4.882 + S + 2 H3O+ + 2 e- = H2S + 2 H2O + log_k 4.882 delta_h -9.5 kcal Vivianite Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O - log_k -36.000 + log_k -36 Halite - NaCl = Na+ + Cl- - log_k 1.582 + NaCl = Na+ + Cl- + log_k 1.582 delta_h 0.918 kcal CO2(g) CO2(g) = CO2 - log_k -1.468 - delta_h -4.776 kcal - -analytic 108.3865 0.01985076 -6919.53 -40.45154 669365.0 + log_k -1.468 + delta_h -4.776 kcal + -analytic 108.3865 0.01985076 -6919.53 -40.45154 669365 O2(g) O2 = O2 # log_k -2.960 # delta_h -1.844 kcal # log K from llnl.dat Dec 8, 2010 - log_k -2.8983 - -analytic -7.5001e+000 7.8981e-003 0.0000e+000 0.0000e+000 2.0027e+005 + log_k -2.8983 + -analytic -7.5001e+0 7.8981e-3 0e+0 0e+0 2.0027e+5 H2(g) H2 = H2 - log_k -3.150 - delta_h -1.759 kcal + log_k -3.15 + delta_h -1.759 kcal H2O(g) H2O = H2O - log_k 1.51 - delta_h -44.03 kJ + log_k 1.51 + delta_h -44.03 kJ N2(g) N2 = N2 - log_k -3.260 - delta_h -1.358 kcal + log_k -3.26 + delta_h -1.358 kcal H2S(g) H2S = H2S - log_k -0.997 - delta_h -4.570 kcal + log_k -0.997 + delta_h -4.57 kcal CH4(g) CH4 = CH4 - log_k -2.860 - delta_h -3.373 kcal + log_k -2.86 + delta_h -3.373 kcal NH3(g) NH3 = NH3 - log_k 1.770 - delta_h -8.170 kcal + log_k 1.77 + delta_h -8.17 kcal Melanterite FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 - log_k -2.209 - delta_h 4.910 kcal - -analytic 1.447 -0.004153 0.0 0.0 -214949.0 + log_k -2.209 + delta_h 4.91 kcal + -analytic 1.447 -0.004153 0 0 -214949 Alunite - KAl3(SO4)2(OH)6 + 6 H3O+ = K+ + 3 Al+3 + 2 SO4-2 + 12H2O - log_k -1.400 - delta_h -50.250 kcal + KAl3(SO4)2(OH)6 + 6 H3O+ = K+ + 3 Al+3 + 2 SO4-2 + 12 H2O + log_k -1.4 + delta_h -50.25 kcal Jarosite-K KFe3(SO4)2(OH)6 + 6 H3O+ = 3 Fe+3 + 12 H2O + K+ + 2 SO4-2 - log_k -9.210 - delta_h -31.280 kcal + log_k -9.21 + delta_h -31.28 kcal EXCHANGE_MASTER_SPECIES - X X- + X X- EXCHANGE_SPECIES X- = X- - log_k 0.0 + log_k 0 Na+ + X- = NaX - log_k 0.0 - -gamma 4.0 0.075 + log_k 0 + -gamma 4 0.075 K+ + X- = KX - log_k 0.7 - -gamma 3.5 0.015 - delta_h -4.3 # Jardine & Sparks, 1984 + log_k 0.7 + -gamma 3.5 0.015 + delta_h -4.3 # Jardine & Sparks, 1984 NH4+ + X- = NH4X - log_k 0.6 - -gamma 2.5 0.0 - delta_h -2.4 # Laudelout et al., 1968 + log_k 0.6 + -gamma 2.5 0 + delta_h -2.4 # Laudelout et al., 1968 - Ca+2 + 2X- = CaX2 - log_k 0.8 - -gamma 5.0 0.165 - delta_h 7.2 # Van Bladel & Gheyl, 1980 + Ca+2 + 2 X- = CaX2 + log_k 0.8 + -gamma 5 0.165 + delta_h 7.2 # Van Bladel & Gheyl, 1980 - Mg+2 + 2X- = MgX2 - log_k 0.6 - -gamma 5.5 0.2 - delta_h 7.4 # Laudelout et al., 1968 + Mg+2 + 2 X- = MgX2 + log_k 0.6 + -gamma 5.5 0.2 + delta_h 7.4 # Laudelout et al., 1968 - Fe+2 + 2X- = FeX2 - log_k 0.44 - -gamma 6.0 0.0 + Fe+2 + 2 X- = FeX2 + log_k 0.44 + -gamma 6 0 - Al+3 + 3X- = AlX3 - log_k 0.41 - -gamma 9.0 0.0 + Al+3 + 3 X- = AlX3 + log_k 0.41 + -gamma 9 0 - AlOH+2 + 2X- = AlOHX2 - log_k 0.89 - -gamma 0.0 0.0 + AlOH+2 + 2 X- = AlOHX2 + log_k 0.89 + -gamma 0 0 SURFACE_MASTER_SPECIES - Hfo_s Hfo_sOH - Hfo_w Hfo_wOH + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH SURFACE_SPECIES # All surface data from @@ -743,24 +747,24 @@ SURFACE_SPECIES # strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH - log_k 0.0 + log_k 0 - Hfo_sOH + H3O+ = Hfo_sOH2+ + H2O - log_k 7.29 # = pKa1,int + Hfo_sOH + H3O+ = Hfo_sOH2+ + H2O + log_k 7.29 # = pKa1,int Hfo_sOH + H2O = Hfo_sO- + H3O+ - log_k -8.93 # = -pKa2,int + log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH - log_k 0.0 + log_k 0 - Hfo_wOH + H3O+ = Hfo_wOH2+ + H2O - log_k 7.29 # = pKa1,int + Hfo_wOH + H3O+ = Hfo_wOH2+ + H2O + log_k 7.29 # = pKa1,int Hfo_wOH + H2O = Hfo_wO- + H3O+ - log_k -8.93 # = -pKa2,int + log_k -8.93 # = -pKa2,int ############################################### # CATIONS # @@ -770,7 +774,7 @@ SURFACE_SPECIES # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - log_k 4.97 + log_k 4.97 Hfo_wOH + Ca+2 + H2O = Hfo_wOCa+ + H3O+ log_k -5.85 @@ -789,12 +793,12 @@ SURFACE_SPECIES # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, subm. Hfo_sOH + Fe+2 + H2O = Hfo_sOFe+ + H3O+ - log_k -0.95 + log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M Hfo_wOH + Fe+2 + H2O = Hfo_wOFe+ + H3O+ log_k -2.98 - Hfo_wOH + Fe+2 + 3H2O = Hfo_wOFeOH + 2H3O+ + Hfo_wOH + Fe+2 + 3 H2O = Hfo_wOFeOH + 2 H3O+ log_k -11.55 ############################################### @@ -804,38 +808,38 @@ SURFACE_SPECIES # Anions from table 10.6 # # Phosphate - Hfo_wOH + PO4-3 + 3 H3O+ = Hfo_wH2PO4 + 4H2O - log_k 31.29 + Hfo_wOH + PO4-3 + 3 H3O+ = Hfo_wH2PO4 + 4 H2O + log_k 31.29 - Hfo_wOH + PO4-3 + 2 H3O+ = Hfo_wHPO4- + 3H2O - log_k 25.39 + Hfo_wOH + PO4-3 + 2 H3O+ = Hfo_wHPO4- + 3 H2O + log_k 25.39 - Hfo_wOH + PO4-3 + H3O+ = Hfo_wPO4-2 + 2H2O - log_k 17.72 + Hfo_wOH + PO4-3 + H3O+ = Hfo_wPO4-2 + 2 H2O + log_k 17.72 # # Anions from table 10.7 # # Sulfate - Hfo_wOH + SO4-2 + H3O+ = Hfo_wSO4- + 2H2O - log_k 7.78 + Hfo_wOH + SO4-2 + H3O+ = Hfo_wSO4- + 2 H2O + log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - log_k 0.79 + log_k 0.79 # # Derived constants table 10.10 # - Hfo_wOH + F- + H3O+ = Hfo_wF + 2H2O - log_k 8.7 + Hfo_wOH + F- + H3O+ = Hfo_wF + 2 H2O + log_k 8.7 Hfo_wOH + F- = Hfo_wOHF- - log_k 1.6 + log_k 1.6 # # Carbonate: Van Geen et al., 1994 reoptimized for HFO # 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L # # Hfo_wOH + CO3-2 + H3O+ = Hfo_wCO3- + 2H2O # log_k 12.56 -# +# # Hfo_wOH + CO3-2 + 2 H3O+= Hfo_wHCO3 + 3 H2O # log_k 20.62 @@ -850,641 +854,641 @@ SURFACE_SPECIES ############################################################################################### SOLUTION_MASTER_SPECIES ############################################################################################### -D D2O 0 D 2 -D(1) D2O 0 D -D(0) HD 0 D -T HTO 0 T 3 -T(1) HTO 0 T -T(0) HT 0 T -[18O] H2[18O] 0 [18O] 18 -[18O](-2) H2[18O] 0 [18O] 18 -[18O](0) O[18O] 0 [18O] 18 -[13C] [13C]O2 0 [13C] 13 -[13C](4) [13C]O2 0 [13C] -[13C](-4) [13C]H4 0 [13C] -[14C] [14C]O2 0 [14C] 14 -[14C](4) [14C]O2 0 [14C] -[14C](-4) [14C]H4 0 [14C] -[34S] [34S]O4-2 0 [34S] 33.967 -[34S](6) [34S]O4-2 0 [34S] -[34S](-2) H[34S]- 0 [34S] -[15N] [15N]O3- 0 [15N] 15.00010897312 -[15N](5) [15N]O3- 0 [15N] -[15N](3) [15N]O2- 0 [15N] -[15N](0) N[15N] 0 [15N] -[15N](-3) [15N]H4+ 0 [15N] +D D2O 0 D 2 +D(1) D2O 0 D +D(0) HD 0 D +T HTO 0 T 3 +T(1) HTO 0 T +T(0) HT 0 T +[18O] H2[18O] 0 [18O] 18 +[18O](-2) H2[18O] 0 [18O] 18 +[18O](0) O[18O] 0 [18O] 18 +[13C] [13C]O2 0 [13C] 13 +[13C](4) [13C]O2 0 [13C] +[13C](-4) [13C]H4 0 [13C] +[14C] [14C]O2 0 [14C] 14 +[14C](4) [14C]O2 0 [14C] +[14C](-4) [14C]H4 0 [14C] +[34S] [34S]O4-2 0 [34S] 33.967 +[34S](6) [34S]O4-2 0 [34S] +[34S](-2) H[34S]- 0 [34S] +[15N] [15N]O3- 0 [15N] 15.00010897312 +[15N](5) [15N]O3- 0 [15N] +[15N](3) [15N]O2- 0 [15N] +[15N](0) N[15N] 0 [15N] +[15N](-3) [15N]H4+ 0 [15N] ############################################################################################### ISOTOPES ############################################################################################### H - -isotope D permil 155.76e-6 # VSMOW (Clark and Fritz, 1997) - -isotope T TU 1e-18 # Solomon and Cook, in eds, Cook and Herczeg, 2000 + -isotope D permil 155.76e-6 # VSMOW (Clark and Fritz, 1997) + -isotope T TU 1e-18 # Solomon and Cook, in eds, Cook and Herczeg, 2000 H(0) - -isotope D(0) permil 155.76e-6 # VSMOW (Clark and Fritz, 1997) - -isotope T(0) TU 1e-18 # Solomon and Cook, in eds, Cook and Herczeg, 2000 + -isotope D(0) permil 155.76e-6 # VSMOW (Clark and Fritz, 1997) + -isotope T(0) TU 1e-18 # Solomon and Cook, in eds, Cook and Herczeg, 2000 # 1 THO in 10^18 H2O # -isotope T pCi/L 3.125e-18 # #1e-18/3.2 = T/mol H2O -C - -isotope [13C] permil 0.0111802 # VPDB, Vienna Pee Dee Belemnite +C + -isotope [13C] permil 0.0111802 # VPDB, Vienna Pee Dee Belemnite # Chang and Li, 1990, Chinese Science Bulletin - -isotope [13C](4) permil 0.0111802 # VPDB, Vienna Pee Dee Belemnite + -isotope [13C](4) permil 0.0111802 # VPDB, Vienna Pee Dee Belemnite # Chang and Li, 1990, Chinese Science Bulletin - -isotope [13C](-4) permil 0.0111802 # VPDB, Vienna Pee Dee Belemnite - -isotope [14C] pmc 1.175887709e-12 # Mole fraction of 14C in Modern Carbon - -isotope [14C](4) pmc 1.175887709e-12 # Mole fraction of 14C in Modern Carbon + -isotope [13C](-4) permil 0.0111802 # VPDB, Vienna Pee Dee Belemnite + -isotope [14C] pmc 1.175887709e-12 # Mole fraction of 14C in Modern Carbon + -isotope [14C](4) pmc 1.175887709e-12 # Mole fraction of 14C in Modern Carbon # 13.56 Modern Carbon dpm (Kalin, in eds, Cook and Herczeg, 2000) - -isotope [14C](-4) pmc 1.175887709e-12 # Mole fraction of 14C in Modern Carbon -C(4) - -isotope [13C](4) permil 0.0111802 # VPDB, Vienna Pee Dee Belemnite + -isotope [14C](-4) pmc 1.175887709e-12 # Mole fraction of 14C in Modern Carbon +C(4) + -isotope [13C](4) permil 0.0111802 # VPDB, Vienna Pee Dee Belemnite # Chang and Li, 1990, Chinese Science Bulletin - -isotope [14C](4) pmc 1.175887709e-12 # Mole fraction of 14C in Modern Carbon + -isotope [14C](4) pmc 1.175887709e-12 # Mole fraction of 14C in Modern Carbon # 13.56 Modern Carbon dpm (Kalin, in eds, Cook and Herczeg, 2000) # 13.56 Modern Carbon dpm (Kalin, in eds, Cook and Herczeg, 2000) -C(-4) - -isotope [13C](-4) permil 0.0111802 # VPDB, Vienna Pee Dee Belemnite - -isotope [14C](-4) pmc 1.175887709e-12 # Mole fraction of 14C in Modern Carbon +C(-4) + -isotope [13C](-4) permil 0.0111802 # VPDB, Vienna Pee Dee Belemnite + -isotope [14C](-4) pmc 1.175887709e-12 # Mole fraction of 14C in Modern Carbon # 14C calculation # # lambda = ln(2)/(5730 yrs * 3.15576e7 sec/yr) - # mole/g carbon = -(dn/dt)/lambda = 0.226 dps / 3.8332476e-12 / 6.022136736e23 + # mole/g carbon = -(dn/dt)/lambda = 0.226 dps / 3.8332476e-12 / 6.022136736e23 # mole C/g C NBS Oxalic Acid with 13C = -19.3: 0.08325783313 # mole 14C/mol Modern Carbon mol/g carbon/ (mole C/g C) = 1.175887709e-12 # O - -isotope [18O] permil 2005.2e-6 # VSMOW (Clark and Fritz, 1997) - -isotope [18O](0) permil 2005.2e-6 # VSMOW (Clark and Fritz, 1997) + -isotope [18O] permil 2005.2e-6 # VSMOW (Clark and Fritz, 1997) + -isotope [18O](0) permil 2005.2e-6 # VSMOW (Clark and Fritz, 1997) O(0) - -isotope [18O](0) permil 2005.2e-6 # VSMOW (Clark and Fritz, 1997) + -isotope [18O](0) permil 2005.2e-6 # VSMOW (Clark and Fritz, 1997) S # Coplen and others, 2002 - -isotope [34S] permil 0.04416264 # VCDT, Vienna Canyon Diablo Troilite - -isotope [34S](6) permil 0.04416264 # VCDT - -isotope [34S](-2) permil 0.04416264 # VCDT + -isotope [34S] permil 0.04416264 # VCDT, Vienna Canyon Diablo Troilite + -isotope [34S](6) permil 0.04416264 # VCDT + -isotope [34S](-2) permil 0.04416264 # VCDT S(6) - -isotope [34S](6) permil 0.04416264 # VCDT + -isotope [34S](6) permil 0.04416264 # VCDT S(-2) - -isotope [34S](-2) permil 0.04416264 # VCDT + -isotope [34S](-2) permil 0.04416264 # VCDT N # Coplen and others, 2002 - -isotope [15N] permil 0.003676867 # Air - -isotope [15N](5) permil 0.003676867 # Air - -isotope [15N](3) permil 0.003676867 # Air - -isotope [15N](0) permil 0.003676867 # Air - -isotope [15N](-3) permil 0.003676867 # Air + -isotope [15N] permil 0.003676867 # Air + -isotope [15N](5) permil 0.003676867 # Air + -isotope [15N](3) permil 0.003676867 # Air + -isotope [15N](0) permil 0.003676867 # Air + -isotope [15N](-3) permil 0.003676867 # Air N(5) - -isotope [15N](5) permil 0.003676867 # Air + -isotope [15N](5) permil 0.003676867 # Air N(3) - -isotope [15N](3) permil 0.003676867 # Air + -isotope [15N](3) permil 0.003676867 # Air N(0) - -isotope [15N](0) permil 0.003676867 # Air + -isotope [15N](0) permil 0.003676867 # Air N(-3) - -isotope [15N](-3) permil 0.003676867 # Air + -isotope [15N](-3) permil 0.003676867 # Air ############################################################################################### ISOTOPE_RATIOS ############################################################################################### # # Total aqueous ratios # - R(D) D - R(T) T - R(18O) [18O] - R(13C) [13C] - R(14C) [14C] - R(15N) [15N] - R(34S) [34S] + R(D) D + R(T) T + R(18O) [18O] + R(13C) [13C] + R(14C) [14C] + R(15N) [15N] + R(34S) [34S] # H2O(l) ratios - R(D)_H2O(l) D - R(T)_H2O(l) T - R(18O)_H2O(l) [18O] + R(D)_H2O(l) D + R(T)_H2O(l) T + R(18O)_H2O(l) [18O] # OH- ratios - R(D)_OH- D - R(T)_OH- T - R(18O)_OH- [18O] + R(D)_OH- D + R(T)_OH- T + R(18O)_OH- [18O] # H3O+ ratios - R(D)_H3O+ D - R(T)_H3O+ T - R(18O)_H3O+ [18O] + R(D)_H3O+ D + R(T)_H3O+ T + R(18O)_H3O+ [18O] # O2(aq) ratios - R(18O)_O2(aq) [18O] + R(18O)_O2(aq) [18O] # H2(aq) ratios - R(D)_H2(aq) D - R(T)_H2(aq) T + R(D)_H2(aq) D + R(T)_H2(aq) T # CO2(aq) ratios - R(13C)_CO2(aq) [13C] - R(14C)_CO2(aq) [14C] - R(18O)_CO2(aq) [18O] + R(13C)_CO2(aq) [13C] + R(14C)_CO2(aq) [14C] + R(18O)_CO2(aq) [18O] # HCO3- ratios - R(D)_HCO3- D - R(T)_HCO3- T - R(18O)_HCO3- [18O] - R(13C)_HCO3- [13C] - R(14C)_HCO3- [14C] + R(D)_HCO3- D + R(T)_HCO3- T + R(18O)_HCO3- [18O] + R(13C)_HCO3- [13C] + R(14C)_HCO3- [14C] # CO3-2 ratios - R(18O)_CO3-2 [18O] - R(13C)_CO3-2 [13C] - R(14C)_CO3-2 [14C] + R(18O)_CO3-2 [18O] + R(13C)_CO3-2 [13C] + R(14C)_CO3-2 [14C] # CH4(aq) ratios - R(D)_CH4(aq) D - R(T)_CH4(aq) T - R(13C)_CH4(aq) [13C] - R(14C)_CH4(aq) [14C] + R(D)_CH4(aq) D + R(T)_CH4(aq) T + R(13C)_CH4(aq) [13C] + R(14C)_CH4(aq) [14C] # SO4-2 ratios - R(34S)_SO4-2 [34S] + R(34S)_SO4-2 [34S] # HSO4- ratios - R(D)_HSO4- D - R(T)_HSO4- T - R(34S)_HSO4- [34S] + R(D)_HSO4- D + R(T)_HSO4- T + R(34S)_HSO4- [34S] # S-2 ratios - R(34S)_S-2 [34S] + R(34S)_S-2 [34S] # HS- ratios - R(D)_HS- D - R(T)_HS- T - R(34S)_HS- [34S] + R(D)_HS- D + R(T)_HS- T + R(34S)_HS- [34S] # H2S ratios - R(D)_H2S(aq) D - R(T)_H2S(aq) T - R(34S)_H2S(aq) [34S] + R(D)_H2S(aq) D + R(T)_H2S(aq) T + R(34S)_H2S(aq) [34S] # NO3- ratios - R(15N)_NO3- [15N] + R(15N)_NO3- [15N] # NO2- ratios - R(15N)_NO2- [15N] + R(15N)_NO2- [15N] # N2(aq) ratios - R(15N)_N2(aq) [15N] + R(15N)_N2(aq) [15N] # NH3(aq) ratios - R(D)_NH3(aq) D - R(T)_NH3(aq) T - R(15N)_NH3(aq) [15N] + R(D)_NH3(aq) D + R(T)_NH3(aq) T + R(15N)_NH3(aq) [15N] # NH4+ ratios - R(D)_NH4+ D - R(T)_NH4+ T - R(15N)_NH4+ [15N] + R(D)_NH4+ D + R(T)_NH4+ T + R(15N)_NH4+ [15N] # # Ratios for minerals and gases # # H2O(g) ratios - R(D)_H2O(g) D - R(T)_H2O(g) T - R(18O)_H2O(g) [18O] + R(D)_H2O(g) D + R(T)_H2O(g) T + R(18O)_H2O(g) [18O] # O2(g) ratios - R(18O)_O2(g) [18O] + R(18O)_O2(g) [18O] # H2(g) ratios - R(D)_H2(g) D - R(T)_H2(g) T + R(D)_H2(g) D + R(T)_H2(g) T # CO2(g) ratios - R(18O)_CO2(g) [18O] - R(13C)_CO2(g) [13C] - R(14C)_CO2(g) [14C] + R(18O)_CO2(g) [18O] + R(13C)_CO2(g) [13C] + R(14C)_CO2(g) [14C] # Calcite ratios - R(18O)_Calcite [18O] - R(13C)_Calcite [13C] - R(14C)_Calcite [14C] + R(18O)_Calcite [18O] + R(13C)_Calcite [13C] + R(14C)_Calcite [14C] # Pyrite ratios - R(34S)_Pyrite [34S] + R(34S)_Pyrite [34S] # CH4(g) ratios - R(D)_CH4(g) D - R(T)_CH4(g) T - R(13C)_CH4(g) [13C] - R(14C)_CH4(g) [14C] + R(D)_CH4(g) D + R(T)_CH4(g) T + R(13C)_CH4(g) [13C] + R(14C)_CH4(g) [14C] # H2S(g) ratios - R(D)_H2S(g) D - R(T)_H2S(g) T - R(34S)_H2S(g) [34S] + R(D)_H2S(g) D + R(T)_H2S(g) T + R(34S)_H2S(g) [34S] # Gypsum ratios - R(34S)_Gypsum [34S] + R(34S)_Gypsum [34S] # Anhydrite ratios - R(34S)_Anhydrite [34S] + R(34S)_Anhydrite [34S] # N2(g) ratios - R(15N)_N2(g) [15N] + R(15N)_N2(g) [15N] # NH3(g) ratios - R(D)_NH3(g) D - R(T)_NH3(g) T - R(15N)_NH3(g) [15N] + R(D)_NH3(g) D + R(T)_NH3(g) T + R(15N)_NH3(g) [15N] ISOTOPE_ALPHAS # OH- - Alpha_D_OH-/H2O(l) Log_alpha_D_OH-/H2O(l) - Alpha_T_OH-/H2O(l) Log_alpha_T_OH-/H2O(l) - Alpha_18O_OH-/H2O(l) Log_alpha_18O_OH-/H2O(l) + Alpha_D_OH-/H2O(l) Log_alpha_D_OH-/H2O(l) + Alpha_T_OH-/H2O(l) Log_alpha_T_OH-/H2O(l) + Alpha_18O_OH-/H2O(l) Log_alpha_18O_OH-/H2O(l) # H3O+ - Alpha_D_H3O+/H2O(l) Log_alpha_D_H3O+/H2O(l) - Alpha_T_H3O+/H2O(l) Log_alpha_T_H3O+/H2O(l) - Alpha_18O_H3O+/H2O(l) Log_alpha_18O_H3O+/H2O(l) + Alpha_D_H3O+/H2O(l) Log_alpha_D_H3O+/H2O(l) + Alpha_T_H3O+/H2O(l) Log_alpha_T_H3O+/H2O(l) + Alpha_18O_H3O+/H2O(l) Log_alpha_18O_H3O+/H2O(l) # O2(aq) - Alpha_18O_O2(aq)/H2O(l) Log_alpha_18O_O2(aq)/H2O(l) + Alpha_18O_O2(aq)/H2O(l) Log_alpha_18O_O2(aq)/H2O(l) # H2(aq) - Alpha_D_H2(aq)/H2O(l) Log_alpha_D_H2(aq)/H2O(l) - Alpha_T_H2(aq)/H2O(l) Log_alpha_T_H2(aq)/H2O(l) + Alpha_D_H2(aq)/H2O(l) Log_alpha_D_H2(aq)/H2O(l) + Alpha_T_H2(aq)/H2O(l) Log_alpha_T_H2(aq)/H2O(l) # CO2(aq) - Alpha_18O_CO2(aq)/H2O(l) Log_alpha_18O_CO2(aq)/H2O(l) - Alpha_13C_CO2(aq)/CO2(g) Log_alpha_13C_CO2(aq)/CO2(g) - Alpha_14C_CO2(aq)/CO2(g) Log_alpha_14C_CO2(aq)/CO2(g) + Alpha_18O_CO2(aq)/H2O(l) Log_alpha_18O_CO2(aq)/H2O(l) + Alpha_13C_CO2(aq)/CO2(g) Log_alpha_13C_CO2(aq)/CO2(g) + Alpha_14C_CO2(aq)/CO2(g) Log_alpha_14C_CO2(aq)/CO2(g) # HCO3- - Alpha_D_HCO3-/H2O(l) Log_alpha_D_HCO3-/H2O(l) - Alpha_T_HCO3-/H2O(l) Log_alpha_T_HCO3-/H2O(l) - Alpha_18O_HCO3-/H2O(l) Log_alpha_18O_HCO3-/H2O(l) - Alpha_13C_HCO3-/CO2(aq) Log_alpha_13C_HCO3-/CO2(aq) - Alpha_14C_HCO3-/CO2(aq) Log_alpha_14C_HCO3-/CO2(aq) - Alpha_13C_HCO3-/CO2(g) Log_alpha_13C_HCO3-/CO2(g) - Alpha_14C_HCO3-/CO2(g) Log_alpha_14C_HCO3-/CO2(g) + Alpha_D_HCO3-/H2O(l) Log_alpha_D_HCO3-/H2O(l) + Alpha_T_HCO3-/H2O(l) Log_alpha_T_HCO3-/H2O(l) + Alpha_18O_HCO3-/H2O(l) Log_alpha_18O_HCO3-/H2O(l) + Alpha_13C_HCO3-/CO2(aq) Log_alpha_13C_HCO3-/CO2(aq) + Alpha_14C_HCO3-/CO2(aq) Log_alpha_14C_HCO3-/CO2(aq) + Alpha_13C_HCO3-/CO2(g) Log_alpha_13C_HCO3-/CO2(g) + Alpha_14C_HCO3-/CO2(g) Log_alpha_14C_HCO3-/CO2(g) # CO3-2 - Alpha_18O_CO3-2/H2O(l) Log_alpha_18O_CO3-2/H2O(l) - Alpha_13C_CO3-2/CO2(aq) Log_alpha_13C_CO3-2/CO2(aq) - Alpha_14C_CO3-2/CO2(aq) Log_alpha_14C_CO3-2/CO2(aq) - Alpha_13C_CO3-2/CO2(g) Log_alpha_13C_CO3-2/CO2(g) - Alpha_14C_CO3-2/CO2(g) Log_alpha_14C_CO3-2/CO2(g) + Alpha_18O_CO3-2/H2O(l) Log_alpha_18O_CO3-2/H2O(l) + Alpha_13C_CO3-2/CO2(aq) Log_alpha_13C_CO3-2/CO2(aq) + Alpha_14C_CO3-2/CO2(aq) Log_alpha_14C_CO3-2/CO2(aq) + Alpha_13C_CO3-2/CO2(g) Log_alpha_13C_CO3-2/CO2(g) + Alpha_14C_CO3-2/CO2(g) Log_alpha_14C_CO3-2/CO2(g) # CH4(aq) - Alpha_D_CH4(aq)/H2O(l) Log_alpha_D_CH4(aq)/H2O(l) - Alpha_T_CH4(aq)/H2O(l) Log_alpha_T_CH4(aq)/H2O(l) - Alpha_13C_CH4(aq)/CO2(aq) Log_alpha_13C_CH4(aq)/CO2(aq) - Alpha_14C_CH4(aq)/CO2(aq) Log_alpha_14C_CH4(aq)/CO2(aq) + Alpha_D_CH4(aq)/H2O(l) Log_alpha_D_CH4(aq)/H2O(l) + Alpha_T_CH4(aq)/H2O(l) Log_alpha_T_CH4(aq)/H2O(l) + Alpha_13C_CH4(aq)/CO2(aq) Log_alpha_13C_CH4(aq)/CO2(aq) + Alpha_14C_CH4(aq)/CO2(aq) Log_alpha_14C_CH4(aq)/CO2(aq) # HSO4- - Alpha_D_HSO4-/H2O(l) Log_alpha_D_HSO4-/H2O(l) - Alpha_T_HSO4-/H2O(l) Log_alpha_T_HSO4-/H2O(l) - Alpha_34S_HSO4-/SO4-2 Log_alpha_34S_HSO4-/SO4-2 + Alpha_D_HSO4-/H2O(l) Log_alpha_D_HSO4-/H2O(l) + Alpha_T_HSO4-/H2O(l) Log_alpha_T_HSO4-/H2O(l) + Alpha_34S_HSO4-/SO4-2 Log_alpha_34S_HSO4-/SO4-2 # S-2 - Alpha_34S_S-2/HS- Log_alpha_34S_S-2/HS- + Alpha_34S_S-2/HS- Log_alpha_34S_S-2/HS- # HS- - Alpha_D_HS-/H2O(l) Log_alpha_D_HS-/H2O(l) - Alpha_T_HS-/H2O(l) Log_alpha_T_HS-/H2O(l) - Alpha_34S_HS-/SO4-2 Log_alpha_34S_HS-/SO4-2 + Alpha_D_HS-/H2O(l) Log_alpha_D_HS-/H2O(l) + Alpha_T_HS-/H2O(l) Log_alpha_T_HS-/H2O(l) + Alpha_34S_HS-/SO4-2 Log_alpha_34S_HS-/SO4-2 # H2S - Alpha_D_H2S(aq)/H2O(l) Log_alpha_D_H2S(aq)/H2O(l) - Alpha_T_H2S(aq)/H2O(l) Log_alpha_T_H2S(aq)/H2O(l) - Alpha_34S_H2S(aq)/HS- Log_alpha_34S_H2S(aq)/HS- + Alpha_D_H2S(aq)/H2O(l) Log_alpha_D_H2S(aq)/H2O(l) + Alpha_T_H2S(aq)/H2O(l) Log_alpha_T_H2S(aq)/H2O(l) + Alpha_34S_H2S(aq)/HS- Log_alpha_34S_H2S(aq)/HS- # NO2- - Alpha_15N_NO2-/NO3- Log_alpha_15N_NO2-/NO3- + Alpha_15N_NO2-/NO3- Log_alpha_15N_NO2-/NO3- # N2(aq) - Alpha_15N_N2(aq)/NO3- Log_alpha_15N_N2(aq)/NO3- + Alpha_15N_N2(aq)/NO3- Log_alpha_15N_N2(aq)/NO3- # NH3(aq) - Alpha_D_NH3(aq)/H2O(l) Log_alpha_D_NH3(aq)/H2O(l) - Alpha_T_NH3(aq)/H2O(l) Log_alpha_T_NH3(aq)/H2O(l) - Alpha_15N_NH3(aq)/NO3- Log_alpha_15N_NH3(aq)/NO3- + Alpha_D_NH3(aq)/H2O(l) Log_alpha_D_NH3(aq)/H2O(l) + Alpha_T_NH3(aq)/H2O(l) Log_alpha_T_NH3(aq)/H2O(l) + Alpha_15N_NH3(aq)/NO3- Log_alpha_15N_NH3(aq)/NO3- # NH4+ - Alpha_D_NH4+/H2O(l) Log_alpha_D_NH4+/H2O(l) - Alpha_T_NH4+/H2O(l) Log_alpha_T_NH4+/H2O(l) - Alpha_15N_NH4+/NH3(aq) Log_alpha_15N_NH4+/NH3(aq) + Alpha_D_NH4+/H2O(l) Log_alpha_D_NH4+/H2O(l) + Alpha_T_NH4+/H2O(l) Log_alpha_T_NH4+/H2O(l) + Alpha_15N_NH4+/NH3(aq) Log_alpha_15N_NH4+/NH3(aq) # H2O(g) - Alpha_D_H2O(g)/H2O(l) Log_alpha_D_H2O(g)/H2O(l) - Alpha_T_H2O(g)/H2O(l) Log_alpha_T_H2O(g)/H2O(l) - Alpha_18O_H2O(g)/H2O(l) Log_alpha_18O_H2O(g)/H2O(l) + Alpha_D_H2O(g)/H2O(l) Log_alpha_D_H2O(g)/H2O(l) + Alpha_T_H2O(g)/H2O(l) Log_alpha_T_H2O(g)/H2O(l) + Alpha_18O_H2O(g)/H2O(l) Log_alpha_18O_H2O(g)/H2O(l) # O2(g) - Alpha_18O_O2(g)/H2O(l) Log_alpha_18O_O2(g)/H2O(l) #? + Alpha_18O_O2(g)/H2O(l) Log_alpha_18O_O2(g)/H2O(l) #? # H2(g) - Alpha_D_H2(g)/H2O(l) Log_alpha_D_H2(g)/H2O(l) #? - Alpha_T_H2(g)/H2O(l) Log_alpha_T_H2(g)/H2O(l) #? + Alpha_D_H2(g)/H2O(l) Log_alpha_D_H2(g)/H2O(l) #? + Alpha_T_H2(g)/H2O(l) Log_alpha_T_H2(g)/H2O(l) #? # CO2(g) - Alpha_18O_CO2(g)/H2O(l) Log_alpha_18O_CO2(g)/H2O(l) - Alpha_13C_CO2(g)/CO2(aq) Log_alpha_13C_CO2(g)/CO2(aq) - Alpha_14C_CO2(g)/CO2(aq) Log_alpha_14C_CO2(g)/CO2(aq) + Alpha_18O_CO2(g)/H2O(l) Log_alpha_18O_CO2(g)/H2O(l) + Alpha_13C_CO2(g)/CO2(aq) Log_alpha_13C_CO2(g)/CO2(aq) + Alpha_14C_CO2(g)/CO2(aq) Log_alpha_14C_CO2(g)/CO2(aq) # Calcite - Alpha_18O_Calcite/H2O(l) Log_alpha_18O_Calcite/H2O(l) - Alpha_13C_Calcite/CO2(aq) Log_alpha_13C_Calcite/CO2(aq) - Alpha_13C_Calcite/CO2(g) Log_alpha_13C_Calcite/CO2(g) - Alpha_14C_Calcite/CO2(aq) Log_alpha_14C_Calcite/CO2(aq) - Alpha_14C_Calcite/CO2(g) Log_alpha_14C_Calcite/CO2(g) + Alpha_18O_Calcite/H2O(l) Log_alpha_18O_Calcite/H2O(l) + Alpha_13C_Calcite/CO2(aq) Log_alpha_13C_Calcite/CO2(aq) + Alpha_13C_Calcite/CO2(g) Log_alpha_13C_Calcite/CO2(g) + Alpha_14C_Calcite/CO2(aq) Log_alpha_14C_Calcite/CO2(aq) + Alpha_14C_Calcite/CO2(g) Log_alpha_14C_Calcite/CO2(g) # Pyrite - Alpha_34S_Pyrite/HS- Log_alpha_34S_Pyrite/HS- + Alpha_34S_Pyrite/HS- Log_alpha_34S_Pyrite/HS- # CH4(g) - Alpha_D_CH4(g)/H2O(l) Log_alpha_D_CH4(g)/H2O(l) - Alpha_T_CH4(g)/H2O(l) Log_alpha_T_CH4(g)/H2O(l) - Alpha_13C_CH4(g)/CO2(aq) Log_alpha_13C_CH4(g)/CO2(aq) #? - Alpha_14C_CH4(g)/CO2(aq) Log_alpha_14C_CH4(g)/CO2(aq) #? + Alpha_D_CH4(g)/H2O(l) Log_alpha_D_CH4(g)/H2O(l) + Alpha_T_CH4(g)/H2O(l) Log_alpha_T_CH4(g)/H2O(l) + Alpha_13C_CH4(g)/CO2(aq) Log_alpha_13C_CH4(g)/CO2(aq) #? + Alpha_14C_CH4(g)/CO2(aq) Log_alpha_14C_CH4(g)/CO2(aq) #? # H2S(g) - Alpha_D_H2S(g)/H2S(aq) Log_alpha_D_H2S(g)/H2S(aq) - Alpha_T_H2S(g)/H2S(aq) Log_alpha_T_H2S(g)/H2S(aq) - Alpha_34S_H2S(g)/H2S(aq) Log_alpha_34S_H2S(g)/H2S(aq) + Alpha_D_H2S(g)/H2S(aq) Log_alpha_D_H2S(g)/H2S(aq) + Alpha_T_H2S(g)/H2S(aq) Log_alpha_T_H2S(g)/H2S(aq) + Alpha_34S_H2S(g)/H2S(aq) Log_alpha_34S_H2S(g)/H2S(aq) # Gypsum - Alpha_34S_Gypsum/SO4-2 Log_alpha_34S_Gypsum/SO4-2 + Alpha_34S_Gypsum/SO4-2 Log_alpha_34S_Gypsum/SO4-2 # Anhydrite - Alpha_34S_Anhydrite/SO4-2 Log_alpha_34S_Anhydrite/SO4-2 + Alpha_34S_Anhydrite/SO4-2 Log_alpha_34S_Anhydrite/SO4-2 # N2(g) - Alpha_15N_N2(g)/N2(aq) Log_alpha_15N_N2(g)/N2(aq) + Alpha_15N_N2(g)/N2(aq) Log_alpha_15N_N2(g)/N2(aq) # NH3(g) - Alpha_D_NH3(g)/H2O(l) Log_alpha_D_NH3(g)/H2O(l) + Alpha_D_NH3(g)/H2O(l) Log_alpha_D_NH3(g)/H2O(l) #Alpha_T_NH3(g)/H2O(l) Log_alpha_T_NH3(g)/H2O(l) - Alpha_15N_NH3(g)/NH3(aq) Log_alpha_15N_NH3(g)/NH3(aq) + Alpha_15N_NH3(g)/NH3(aq) Log_alpha_15N_NH3(g)/NH3(aq) NAMED_EXPRESSIONS # # OH- fractionation factors # -Log_alpha_D_OH-/H2O(l) # 1000ln(alpha(25C)) = -1435 +Log_alpha_D_OH-/H2O(l) # 1000ln(alpha(25C)) = -1435 # 13.5 C - -ln_alpha1000 -1435.0 + -ln_alpha1000 -1435 -Log_alpha_T_OH-/H2O(l) # 1000ln(alpha(25C)) = -2870 +Log_alpha_T_OH-/H2O(l) # 1000ln(alpha(25C)) = -2870 # 13.5 C - -ln_alpha1000 -2870.0 + -ln_alpha1000 -2870 -Log_alpha_18O_OH-/H2O(l) # 1000ln(alpha(25C)) = -37.8 +Log_alpha_18O_OH-/H2O(l) # 1000ln(alpha(25C)) = -37.8 # 25 C - -ln_alpha1000 -37.777 + -ln_alpha1000 -37.777 # # H3O- fractionation factors # -Log_alpha_D_H3O+/H2O(l) # 1000ln(alpha(25C)) = 40.8 +Log_alpha_D_H3O+/H2O(l) # 1000ln(alpha(25C)) = 40.8 # 13.5 C - -ln_alpha1000 40.82 - -Log_alpha_T_H3O+/H2O(l) # 1000ln(alpha(25C)) = 81.6 + -ln_alpha1000 40.82 + +Log_alpha_T_H3O+/H2O(l) # 1000ln(alpha(25C)) = 81.6 # 13.5 C - -ln_alpha1000 81.64 - -Log_alpha_18O_H3O+/H2O(l) # 1000ln(alpha(25C)) = 22.9 + -ln_alpha1000 81.64 + +Log_alpha_18O_H3O+/H2O(l) # 1000ln(alpha(25C)) = 22.9 # 25 C - -ln_alpha1000 22.86 + -ln_alpha1000 22.86 # # O2(aq) fractionation factors # Log_alpha_18O_O2(aq)/H2O(l) - -ln_alpha1000 0.0 + -ln_alpha1000 0 # # H2(aq) fractionation factors # Log_alpha_D_H2(aq)/H2O(l) - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_T_H2(aq)/H2O(l) - -ln_alpha1000 0 + -ln_alpha1000 0 # # CO2(aq) fractionation factors # -Log_alpha_18O_CO2(aq)/H2O(l) # 1000ln(alpha(25C)) = 41.2 +Log_alpha_18O_CO2(aq)/H2O(l) # 1000ln(alpha(25C)) = 41.2 # 0-100 C - -ln_alpha1000 -21.9285 0.0 19.43596e3 0.0 -0.181115e6 + -ln_alpha1000 -21.9285 0 19.43596e3 0 -0.181115e6 -Log_alpha_13C_CO2(aq)/CO2(g) # 1000ln(alpha(25C)) -0.84 +Log_alpha_13C_CO2(aq)/CO2(g) # 1000ln(alpha(25C)) -0.84 # Deines and others (1974) - -ln_alpha1000 -0.91 0.0 0.0 0.0 .0063e6 + -ln_alpha1000 -0.91 0 0 0 .0063e6 -Log_alpha_14C_CO2(aq)/CO2(g) # 1000ln(alpha(25C)) -0.84 - -add_logk Log_alpha_13C_CO2(aq)/CO2(g) 2 +Log_alpha_14C_CO2(aq)/CO2(g) # 1000ln(alpha(25C)) -0.84 + -add_logk Log_alpha_13C_CO2(aq)/CO2(g) 2 # # HCO3- fractionation factors # -Log_alpha_18O_HCO3-/H2O(l) - -ln_alpha1000 0.0 #? +Log_alpha_18O_HCO3-/H2O(l) + -ln_alpha1000 0 #? Log_alpha_D_HCO3-/H2O(l) - -ln_alpha1000 0.0 + -ln_alpha1000 0 -Log_alpha_T_HCO3-/H2O(l) - -ln_alpha1000 0.0 +Log_alpha_T_HCO3-/H2O(l) + -ln_alpha1000 0 -Log_alpha_13C_HCO3-/CO2(g) # 1000ln(alpha(25C)) = 7.82 +Log_alpha_13C_HCO3-/CO2(g) # 1000ln(alpha(25C)) = 7.82 # Deines and others (1974) - -ln_alpha1000 -4.54 0.0 0.0 0.0 1.099e6 + -ln_alpha1000 -4.54 0 0 0 1.099e6 -Log_alpha_13C_HCO3-/CO2(aq) # 1000ln(alpha(25C)) = 8.7 +Log_alpha_13C_HCO3-/CO2(aq) # 1000ln(alpha(25C)) = 8.7 # 0-100 C # -ln_alpha1000 -3.63 0.0 0.0 0.0 1.0927e6 - -add_logk Log_alpha_13C_HCO3-/CO2(g) 1 - -add_logk Log_alpha_13C_CO2(aq)/CO2(g) -1 + -add_logk Log_alpha_13C_HCO3-/CO2(g) 1 + -add_logk Log_alpha_13C_CO2(aq)/CO2(g) -1 -Log_alpha_14C_HCO3-/CO2(g) # 1000ln(alpha(25C)) = 7.82 +Log_alpha_14C_HCO3-/CO2(g) # 1000ln(alpha(25C)) = 7.82 # Deines and others (1974) - -add_logk Log_alpha_13C_HCO3-/CO2(g) 2 + -add_logk Log_alpha_13C_HCO3-/CO2(g) 2 -Log_alpha_14C_HCO3-/CO2(aq) # 1000ln(alpha(25C)) = 17.3 +Log_alpha_14C_HCO3-/CO2(aq) # 1000ln(alpha(25C)) = 17.3 # 0-100 C # -ln_alpha1000 -7.26 0.0 0.0 0.0 2.1854e6 - -add_logk Log_alpha_14C_HCO3-/CO2(g) 1 - -add_logk Log_alpha_14C_CO2(aq)/CO2(g) -1 + -add_logk Log_alpha_14C_HCO3-/CO2(g) 1 + -add_logk Log_alpha_14C_CO2(aq)/CO2(g) -1 # # CO3-2 fractionation factors # Log_alpha_18O_CO3-2/H2O(l) - -ln_alpha1000 0.0 - -Log_alpha_13C_CO3-2/CO2(g) # 1000ln(alpha(25C)) - # Deines and others (1974) - -ln_alpha1000 -3.4 0.0 0.0 0.0 0.870e6 + -ln_alpha1000 0 -Log_alpha_13C_CO3-2/CO2(aq) # 1000ln(alpha(25C)) +Log_alpha_13C_CO3-2/CO2(g) # 1000ln(alpha(25C)) + # Deines and others (1974) + -ln_alpha1000 -3.4 0 0 0 0.87e6 + +Log_alpha_13C_CO3-2/CO2(aq) # 1000ln(alpha(25C)) # 0-100 C # -ln_alpha1000 -2.49 0.0 0.0 0.0 0.8637e6 - -add_logk Log_alpha_13C_CO3-2/CO2(g) 1 - -add_logk Log_alpha_13C_CO2(aq)/CO2(g) -1 + -add_logk Log_alpha_13C_CO3-2/CO2(g) 1 + -add_logk Log_alpha_13C_CO2(aq)/CO2(g) -1 -Log_alpha_14C_CO3-2/CO2(g) # 1000ln(alpha(25C)) +Log_alpha_14C_CO3-2/CO2(g) # 1000ln(alpha(25C)) # Deines and others (1974) - -add_logk Log_alpha_13C_CO3-2/CO2(g) 2 + -add_logk Log_alpha_13C_CO3-2/CO2(g) 2 -Log_alpha_14C_CO3-2/CO2(aq) # 1000ln(alpha(25C)) - # +Log_alpha_14C_CO3-2/CO2(aq) # 1000ln(alpha(25C)) + # # -ln_alpha1000 -2.49 0.0 0.0 0.0 0.8637e6 - -add_logk Log_alpha_14C_CO3-2/CO2(g) 1 - -add_logk Log_alpha_14C_CO2(aq)/CO2(g) -1 + -add_logk Log_alpha_14C_CO3-2/CO2(g) 1 + -add_logk Log_alpha_14C_CO2(aq)/CO2(g) -1 # # CH4(aq) fractionation factors # Log_alpha_D_CH4(aq)/H2O(l) - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_T_CH4(aq)/H2O(l) - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_13C_CH4(aq)/CO2(aq) - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_14C_CH4(aq)/CO2(aq) - -ln_alpha1000 0 + -ln_alpha1000 0 # -# HSO4- fractionation factors +# HSO4- fractionation factors # Log_alpha_D_HSO4-/H2O(l) - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_T_HSO4-/H2O(l) - -ln_alpha1000 0 - + -ln_alpha1000 0 + Log_alpha_34S_HSO4-/SO4-2 - -ln_alpha1000 0.0 + -ln_alpha1000 0 # # S-2 fractionation factors # Log_alpha_34S_S-2/HS- - -ln_alpha1000 0.0 + -ln_alpha1000 0 # # HS- fractionation factors # Log_alpha_D_HS-/H2O(l) - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_T_HS-/H2O(l) - -ln_alpha1000 0 - + -ln_alpha1000 0 + Log_alpha_34S_HS-/SO4-2 - -ln_alpha1000 0.0 + -ln_alpha1000 0 # # H2S fractionation factors # Log_alpha_D_H2S(aq)/H2O(l) - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_T_H2S(aq)/H2O(l) - -ln_alpha1000 0 - + -ln_alpha1000 0 + Log_alpha_34S_H2S(aq)/HS- - -ln_alpha1000 0.0 + -ln_alpha1000 0 # # NO2- fractionation factors # -Log_alpha_15N_NO2-/NO3- - -ln_alpha1000 0.0 +Log_alpha_15N_NO2-/NO3- + -ln_alpha1000 0 # # N2(aq) fractionation factors -# +# Log_alpha_15N_N2(aq)/NO3- - -ln_alpha1000 0.0 + -ln_alpha1000 0 # # NH3(aq) fractionation factors -# +# Log_alpha_D_NH3(aq)/H2O(l) - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_T_NH3(aq)/H2O(l) - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_15N_NH3(aq)/NO3- - -ln_alpha1000 0 + -ln_alpha1000 0 # # NH4+ fractionation factors -# +# Log_alpha_D_NH4+/H2O(l) - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_T_NH4+/H2O(l) - -ln_alpha1000 0 - + -ln_alpha1000 0 + Log_alpha_15N_NH4+/NH3(aq) - -ln_alpha1000 0 + -ln_alpha1000 0 # # H2O(g) fractionation factors # -Log_alpha_D_H2O(g)/H2O(l) # 1000ln(alpha(25C)) = -76.4 +Log_alpha_D_H2O(g)/H2O(l) # 1000ln(alpha(25C)) = -76.4 # 0-100 C - -ln_alpha1000 -52.612 0.0 76.248e3 0.0 -24.844e6 + -ln_alpha1000 -52.612 0 76.248e3 0 -24.844e6 -Log_alpha_T_H2O(g)/H2O(l) # 1000ln(alpha(25C)) = -152.7 +Log_alpha_T_H2O(g)/H2O(l) # 1000ln(alpha(25C)) = -152.7 # 0-100 C - -ln_alpha1000 -105.224 0.0 152.496e3 0.0 -49.688e6 + -ln_alpha1000 -105.224 0 152.496e3 0 -49.688e6 -Log_alpha_18O_H2O(g)/H2O(l) # 1000ln(alpha(25C)) = -9.3 +Log_alpha_18O_H2O(g)/H2O(l) # 1000ln(alpha(25C)) = -9.3 # 0-100 C - -ln_alpha1000 2.0667 0.0 0.4156e3 0.0 -1.137e6 + -ln_alpha1000 2.0667 0 0.4156e3 0 -1.137e6 # # O2(g) fractionaton factors # -Log_alpha_18O_O2(g)/H2O(l) - -ln_alpha1000 0.0 +Log_alpha_18O_O2(g)/H2O(l) + -ln_alpha1000 0 # # H2(g) fractionaton factors # Log_alpha_D_H2(g)/H2O(l) - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_T_H2(g)/H2O(l) - -ln_alpha1000 0 + -ln_alpha1000 0 # # CO2(g) fractionaton factors -# -Log_alpha_18O_CO2(g)/H2O(l) # 1000ln(alpha(25C)) = 40.151 +# +Log_alpha_18O_CO2(g)/H2O(l) # 1000ln(alpha(25C)) = 40.151 # 0-100 C - -ln_alpha1000 -19.97 0.0 17.9942e3 0.0 -0.0206e6 + -ln_alpha1000 -19.97 0 17.9942e3 0 -0.0206e6 # Battinga, written commun. 1973, cited in Friedman and O'Neill -Log_alpha_13C_CO2(g)/CO2(aq) # 1000ln(alpha(25C)) = 0.84 +Log_alpha_13C_CO2(g)/CO2(aq) # 1000ln(alpha(25C)) = 0.84 # 0-100 C - -ln_alpha1000 0.91 0.0 0.0 0.0 -0.0063e6 + -ln_alpha1000 0.91 0 0 0 -0.0063e6 -Log_alpha_14C_CO2(g)/CO2(aq) # 1000ln(alpha(25C)) = 1.7 +Log_alpha_14C_CO2(g)/CO2(aq) # 1000ln(alpha(25C)) = 1.7 # 0-100 C - -ln_alpha1000 1.82 0.0 0.0 0.0 -0.0126e6 + -ln_alpha1000 1.82 0 0 0 -0.0126e6 # # CO2-Calcite fractionation factors # #Log_alpha_18O_CO2(aq)/Calcite # 1000ln(alpha(25C)) = 13.6 # # 0-100 C # -ln_alpha1000 -4.7383 0.0 12.05276e3 0.0 -1.963915e6 -Log_alpha_18O_Calcite/H2O(l) # 1000ln(alpha(25C)) = 28.38 +Log_alpha_18O_Calcite/H2O(l) # 1000ln(alpha(25C)) = 28.38 # O'Neil, Clayton and Mayeda (1969) - -ln_alpha1000 -2.89 0 0 0 2.78e6 - -Log_alpha_13C_Calcite/CO2(g) # 1000ln(alpha(25C)) - # Deines and others (1974) - -ln_alpha1000 -3.63 0.0 0.0 0.0 1.194e6 + -ln_alpha1000 -2.89 0 0 0 2.78e6 -Log_alpha_13C_Calcite/CO2(aq) # 1000ln(alpha(25C)) +Log_alpha_13C_Calcite/CO2(g) # 1000ln(alpha(25C)) # Deines and others (1974) - -add_logk Log_alpha_13C_Calcite/CO2(g) 1 - -add_logk Log_alpha_13C_CO2(aq)/CO2(g) -1 + -ln_alpha1000 -3.63 0 0 0 1.194e6 -Log_alpha_14C_Calcite/CO2(g) # 1000ln(alpha(25C)) - -add_logk Log_alpha_13C_Calcite/CO2(g) 2 - -Log_alpha_14C_Calcite/CO2(aq) # 1000ln(alpha(25C)) +Log_alpha_13C_Calcite/CO2(aq) # 1000ln(alpha(25C)) # Deines and others (1974) - -add_logk Log_alpha_14C_Calcite/CO2(g) 1 - -add_logk Log_alpha_14C_CO2(aq)/CO2(g) -1 + -add_logk Log_alpha_13C_Calcite/CO2(g) 1 + -add_logk Log_alpha_13C_CO2(aq)/CO2(g) -1 + +Log_alpha_14C_Calcite/CO2(g) # 1000ln(alpha(25C)) + -add_logk Log_alpha_13C_Calcite/CO2(g) 2 + +Log_alpha_14C_Calcite/CO2(aq) # 1000ln(alpha(25C)) + # Deines and others (1974) + -add_logk Log_alpha_14C_Calcite/CO2(g) 1 + -add_logk Log_alpha_14C_CO2(aq)/CO2(g) -1 # # Pyrite fractionation factors -# +# Log_alpha_34S_Pyrite/HS- - -ln_alpha1000 0 + -ln_alpha1000 0 # # CH4(g) fractionation factors -# +# Log_alpha_D_CH4(g)/H2O(l) #? - -ln_alpha1000 0.0 + -ln_alpha1000 0 Log_alpha_T_CH4(g)/H2O(l) #? - -ln_alpha1000 0.0 - + -ln_alpha1000 0 + Log_alpha_13C_CH4(g)/CO2(aq) #? - -ln_alpha1000 0.0 - + -ln_alpha1000 0 + Log_alpha_14C_CH4(g)/CO2(aq) #? - -ln_alpha1000 0.0 + -ln_alpha1000 0 # # H2S(g) fractionation factors # Log_alpha_D_H2S(g)/H2S(aq) - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_T_H2S(g)/H2S(aq) - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_34S_H2S(g)/H2S(aq) - -ln_alpha1000 0 + -ln_alpha1000 0 # # Gypsum fractionation factors # Log_alpha_34S_Gypsum/SO4-2 - -ln_alpha1000 0 + -ln_alpha1000 0 # # Anhydrite fractionation factors # Log_alpha_34S_Anhydrite/SO4-2 - -ln_alpha1000 0 + -ln_alpha1000 0 # # N2(g) fractionation factors # Log_alpha_15N_N2(g)/N2(aq) - -ln_alpha1000 0 + -ln_alpha1000 0 # # NH3(g) fractionation factors # Log_alpha_D_NH3(g)/H2O(l) #? - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_T_NH3(g)/H2O(l) #? - -ln_alpha1000 0 + -ln_alpha1000 0 Log_alpha_15N_NH3(g)/NH3(aq) - -ln_alpha1000 0 + -ln_alpha1000 0 ############################################################################################### CALCULATE_VALUES @@ -1502,7 +1506,7 @@ R(D) 100 save ratio -end -R(T) ?? +R(T) ?? -start 10 ratio = -9999.999 20 if (TOT("T") <= 0) THEN GOTO 100 @@ -2056,7 +2060,7 @@ R(D)_NH3(aq) -start 10 ratio = -9999.999 20 if (TOT("D") <= 0) THEN GOTO 100 -30 total_D = sum_species("{[15N],N}{H,D,T}3","D") +30 total_D = sum_species("{[15N],N}{H,D,T}3","D") 40 total_H = sum_species("{[15N],N}{H,D,T}3","H") 50 if (total_H <= 0) THEN GOTO 100 60 ratio = total_D/total_H @@ -2067,7 +2071,7 @@ R(T)_NH3(aq) -start 10 ratio = -9999.999 20 if (TOT("T") <= 0) THEN GOTO 100 -30 total_T = sum_species("{[15N],N}{H,D,T}3","T") +30 total_T = sum_species("{[15N],N}{H,D,T}3","T") 40 total_H = sum_species("{[15N],N}{H,D,T}3","H") 50 if (total_H <= 0) THEN GOTO 100 60 ratio = total_T/total_H @@ -2078,7 +2082,7 @@ R(15N)_NH3(aq) -start 10 ratio = -9999.999 20 if (TOT("[15N]") <= 0) THEN GOTO 100 -30 total_15N = sum_species("[15N]{H,D,T}3","[15N]") +30 total_15N = sum_species("[15N]{H,D,T}3","[15N]") 40 total_N = sum_species("N{H,D,T}3","N") 50 if (total_N <= 0) THEN GOTO 100 60 ratio = total_15N/total_N @@ -2091,7 +2095,7 @@ R(D)_NH4+ -start 10 ratio = -9999.999 20 if (TOT("D") <= 0) THEN GOTO 100 -30 total_D = sum_species("*{[15N],N}{H,D,T}4*","D") +30 total_D = sum_species("*{[15N],N}{H,D,T}4*","D") 40 total_H = sum_species("*{[15N],N}{H,D,T}4*","H") 50 if (total_H <= 0) THEN GOTO 100 60 ratio = total_D/total_H @@ -2102,7 +2106,7 @@ R(T)_NH4+ -start 10 ratio = -9999.999 20 if (TOT("T") <= 0) THEN GOTO 100 -30 total_T = sum_species("*{[15N],N}{H,D,T}4*","T") +30 total_T = sum_species("*{[15N],N}{H,D,T}4*","T") 40 total_H = sum_species("*{[15N],N}{H,D,T}4*","H") 50 if (total_H <= 0) THEN GOTO 100 60 ratio = total_T/total_H @@ -2113,7 +2117,7 @@ R(15N)_NH4+ -start 10 ratio = -9999.999 20 if (TOT("[15N]") <= 0) THEN GOTO 100 -30 total_15N = sum_species("*[15N]{H,D,T}4*","[15N]") +30 total_15N = sum_species("*[15N]{H,D,T}4*","[15N]") 40 total_N = sum_species("*N{H,D,T}4*","N") 50 if (total_N <= 0) THEN GOTO 100 60 ratio = total_15N/total_N @@ -3725,209 +3729,209 @@ SOLUTION_SPECIES ############################################################################################### D2O = D2O -activity_water - log_k 0 + log_k 0 HTO = HTO -activity_water - log_k 0 + log_k 0 H2[18O] = H2[18O] -activity_water - log_k 0 + log_k 0 CO2 = CO2 - log_k 0 + log_k 0 [13C]O2 = [13C]O2 - log_k 0 + log_k 0 [14C]O2 = [14C]O2 - log_k 0 + log_k 0 [34S]O4-2 = [34S]O4-2 - log_k 0.0 - -gamma 5.0000 -0.0400 + log_k 0 + -gamma 5 -0.04 -[15N]O3- = [15N]O3- - log_k 0.0 - -gamma 3.0000 0.0000 +[15N]O3- = [15N]O3- + log_k 0 + -gamma 3 0 # -# H2O reactions +# H2O reactions # last update July 31, 2006 # checked September 19, 2006 # -0.5H2O + 0.5D2O = HDO - log_k 0.301029995663 # log10(2) +0.5 H2O + 0.5 D2O = HDO + log_k 0.301029995663 # log10(2) -activity_water HDO + HTO = DTO + H2O - -mole_balance DTO - log_k -0.301029995663 # log10(1/2) + -mole_balance DTO + log_k -0.301029995663 # log10(1/2) -activity_water -2HTO = T2O + H2O - -mole_balance T2O - log_k -0.6020599913279623960 # log10(1/4) +2 HTO = T2O + H2O + -mole_balance T2O + log_k -0.602059991327962396 # log10(1/4) -activity_water H2[18O] + HDO = HD[18O] + H2O - -mole_balance HD[18O] - log_k 0.0 + -mole_balance HD[18O] + log_k 0 -activity_water H2[18O] + HTO = HT[18O] + H2O - -mole_balance HT[18O] - log_k 0.0 + -mole_balance HT[18O] + log_k 0 -activity_water - -DTO + H2[18O] = DT[18O] + H2O - -mole_balance DT[18O] - log_k 0.0 + +DTO + H2[18O] = DT[18O] + H2O + -mole_balance DT[18O] + log_k 0 -activity_water - + D2O + H2[18O] = D2[18O] + H2O - -mole_balance D2[18O] - log_k 0.0 + -mole_balance D2[18O] + log_k 0 -activity_water - + H2[18O] + T2O = T2[18O] + H2O - -mole_balance T2[18O] - log_k 0.0 + -mole_balance T2[18O] + log_k 0 -activity_water # -# OH- reactions +# OH- reactions # last update July 31, 2006 # checked September 19, 2006 # OH- + HDO = OD- + H2O - -mole_balance OD - log_k -0.301029995663 # -log10(2) - -add_logk Log_alpha_D_OH-/H2O(l) 1.0 - -gamma 3.5000 0.0000 - + -mole_balance OD + log_k -0.301029995663 # -log10(2) + -add_logk Log_alpha_D_OH-/H2O(l) 1 + -gamma 3.5 0 + OH- + HTO = OT- + H2O - -mole_balance OT - log_k -0.301029995663 # -log10(2) - -add_logk Log_alpha_T_OH-/H2O(l) 1.0 - -gamma 3.5000 0.0000 - + -mole_balance OT + log_k -0.301029995663 # -log10(2) + -add_logk Log_alpha_T_OH-/H2O(l) 1 + -gamma 3.5 0 + OH- + H2[18O] = [18O]H- + H2O - -mole_balance [18O]H - -add_logk Log_alpha_18O_OH-/H2O(l) 1.0 - -gamma 3.5000 0.0000 - + -mole_balance [18O]H + -add_logk Log_alpha_18O_OH-/H2O(l) 1 + -gamma 3.5 0 + [18O]H- + OD- = [18O]D- + OH- - -mole_balance [18O]D - log_k 0.0 - -gamma 3.5000 0.0000 - + -mole_balance [18O]D + log_k 0 + -gamma 3.5 0 + [18O]H- + OT- = [18O]T- + OH- - -mole_balance [18O]T - log_k 0.0 - -gamma 3.5000 0.0000 + -mole_balance [18O]T + log_k 0 + -gamma 3.5 0 # # H3O+ reactions # last update July 31, 2006 # checked September 19, 2006 # H3O+ + HDO = H2DO+ + H2O - -mole_balance H2DO - log_k 0.176091259055 # log10(1.5) - -add_logk Log_alpha_D_H3O+/H2O(l) 1.0 - -gamma 9.0000 0.0000 - -2H2DO+ = HD2O+ + H3O+ - -mole_balance HD2O - log_k -0.477121254719662 # log10(1/3) - -gamma 9.0000 0.0000 - + -mole_balance H2DO + log_k 0.176091259055 # log10(1.5) + -add_logk Log_alpha_D_H3O+/H2O(l) 1 + -gamma 9 0 + +2 H2DO+ = HD2O+ + H3O+ + -mole_balance HD2O + log_k -0.477121254719662 # log10(1/3) + -gamma 9 0 + H2DO+ + HD2O+ = D3O+ + H3O+ - -mole_balance D3O - log_k -0.954242509439324 # log10(1/9) - -gamma 9.0000 0.0000 - + -mole_balance D3O + log_k -0.954242509439324 # log10(1/9) + -gamma 9 0 + H3O+ + HTO = H2TO+ + H2O - -mole_balance H2TO - log_k 0.176091259055 # log10(1.5) - -add_logk Log_alpha_T_H3O+/H2O(l) 1.0 - -gamma 9.0000 0.0000 - -2H2TO+ = HT2O+ + H3O+ - -mole_balance HT2O - log_k -0.477121254719662 # log10(1/3) - -gamma 9.0000 0.0000 - + -mole_balance H2TO + log_k 0.176091259055 # log10(1.5) + -add_logk Log_alpha_T_H3O+/H2O(l) 1 + -gamma 9 0 + +2 H2TO+ = HT2O+ + H3O+ + -mole_balance HT2O + log_k -0.477121254719662 # log10(1/3) + -gamma 9 0 + H2TO+ + HT2O+ = T3O+ + H3O+ - -mole_balance T3O - log_k -0.954242509439324 # log10(1/9) - -gamma 9.0000 0.0000 - + -mole_balance T3O + log_k -0.954242509439324 # log10(1/9) + -gamma 9 0 + H2TO+ + H2DO+ = HDTO+ + H3O+ - -mole_balance HDTO - log_k -0.477121254719662 # log10(1/3) - -gamma 9.0000 0.0000 - + -mole_balance HDTO + log_k -0.477121254719662 # log10(1/3) + -gamma 9 0 + H2TO+ + HD2O+ = D2TO+ + H3O+ - -mole_balance D2TO - log_k -0.477121254719662 # log10(1/3) - -gamma 9.0000 0.0000 - + -mole_balance D2TO + log_k -0.477121254719662 # log10(1/3) + -gamma 9 0 + H2DO+ + HT2O+ = DT2O+ + H3O+ - -mole_balance DT2O - log_k -0.477121254719662 # log10(1/3) - -gamma 9.0000 0.0000 - + -mole_balance DT2O + log_k -0.477121254719662 # log10(1/3) + -gamma 9 0 + H3O+ + H2[18O] = H3[18O]+ + H2O - -mole_balance H3[18O] - -add_logk Log_alpha_18O_H3O+/H2O(l) 1.0 - -gamma 9.0000 0.0000 + -mole_balance H3[18O] + -add_logk Log_alpha_18O_H3O+/H2O(l) 1 + -gamma 9 0 H3[18O]+ + H2DO+ = H2D[18O]+ + H3O+ - -mole_balance H2D[18O] - log_k 0.0 - -gamma 9.0000 0.0000 - + -mole_balance H2D[18O] + log_k 0 + -gamma 9 0 + H3[18O]+ + HD2O+ = HD2[18O]+ + H3O+ - -mole_balance HD2[18O] - log_k 0.0 - -gamma 9.0000 0.0000 - + -mole_balance HD2[18O] + log_k 0 + -gamma 9 0 + H3[18O]+ + D3O+ = D3[18O]+ + H3O+ - -mole_balance D3[18O] - log_k 0.0 - -gamma 9.0000 0.0000 - + -mole_balance D3[18O] + log_k 0 + -gamma 9 0 + H3[18O]+ + H2TO+ = H2T[18O]+ + H3O+ - -mole_balance H2T[18O] - log_k 0.0 - -gamma 9.0000 0.0000 - + -mole_balance H2T[18O] + log_k 0 + -gamma 9 0 + H3[18O]+ + HT2O+ = HT2[18O]+ + H3O+ - -mole_balance HT2[18O] - log_k 0.0 - -gamma 9.0000 0.0000 - + -mole_balance HT2[18O] + log_k 0 + -gamma 9 0 + H3[18O]+ + T3O+ = T3[18O]+ + H3O+ - -mole_balance T3[18O] - log_k 0.0 - -gamma 9.0000 0.0000 - + -mole_balance T3[18O] + log_k 0 + -gamma 9 0 + H3[18O]+ + HDTO+ = HDT[18O]+ + H3O+ - -mole_balance HDT[18O] - log_k 0.0 - -gamma 9.0000 0.0000 - + -mole_balance HDT[18O] + log_k 0 + -gamma 9 0 + H3[18O]+ + D2TO+ = D2T[18O]+ + H3O+ - -mole_balance D2T[18O] - log_k 0.0 - -gamma 9.0000 0.0000 - + -mole_balance D2T[18O] + log_k 0 + -gamma 9 0 + H3[18O]+ + DT2O+ = DT2[18O]+ + H3O+ - -mole_balance DT2[18O] - log_k 0.0 - -gamma 9.0000 0.0000 - + -mole_balance DT2[18O] + log_k 0 + -gamma 9 0 + # # O2 reactions # last update July 31, 2006 @@ -3935,79 +3939,79 @@ H3[18O]+ + DT2O+ = DT2[18O]+ + H3O+ # O2 + H2[18O] = O[18O] + H2O - log_k 0.301029995663 # log10(2) - -add_logk Log_alpha_18O_O2(aq)/H2O(l) 1.0 - -mole_balance O(0)[18O](0) - -2O[18O] = [18O]2 + O2 - log_k -0.602059991327962396 # -log10(4) - -mole_balance [18O](0)2 + log_k 0.301029995663 # log10(2) + -add_logk Log_alpha_18O_O2(aq)/H2O(l) 1 + -mole_balance O(0)[18O](0) + +2 O[18O] = [18O]2 + O2 + log_k -0.602059991327962396 # -log10(4) + -mole_balance [18O](0)2 # # H2 reactions # last update July 31, 2006 # checked September 19, 2006 # H2 + HDO = HD + H2O - -mole_balance H(0)D(0) - -add_logk Log_alpha_D_H2(aq)/H2O(l) 1.0 - -2HD = D2 + H2 - -mole_balance D(0)2 - log_k -0.602059991327962396 # -log10(4) - + -mole_balance H(0)D(0) + -add_logk Log_alpha_D_H2(aq)/H2O(l) 1 + +2 HD = D2 + H2 + -mole_balance D(0)2 + log_k -0.602059991327962396 # -log10(4) + H2 + HTO = HT + H2O - -mole_balance H(0)T(0) - -add_logk Log_alpha_T_H2(aq)/H2O(l) 1.0 - -2HT = T2 + H2 - -mole_balance T(0)2 - log_k -0.602059991327962396 # -log10(4) - + -mole_balance H(0)T(0) + -add_logk Log_alpha_T_H2(aq)/H2O(l) 1 + +2 HT = T2 + H2 + -mole_balance T(0)2 + log_k -0.602059991327962396 # -log10(4) + HT + HD = DT + H2 - -mole_balance D(0)T(0) - log_k -0.301029995663 # -log10(2) + -mole_balance D(0)T(0) + log_k -0.301029995663 # -log10(2) # # CO2 reactions # last update July 31, 2006 # Checked September 19, 2006 # CO2 + H2[18O] = CO[18O] + H2O - log_k 0.301029995663 # log10(2) - -add_logk Log_alpha_18O_CO2(aq)/H2O(l) 1.0 - -2CO[18O] = C[18O]2 + CO2 - log_k -0.6020599913279623960 # log10(1/4) - + log_k 0.301029995663 # log10(2) + -add_logk Log_alpha_18O_CO2(aq)/H2O(l) 1 + +2 CO[18O] = C[18O]2 + CO2 + log_k -0.602059991327962396 # log10(1/4) + [13C]O2 + CO[18O] = [13C]O[18O] + CO2 - log_k 0 - + log_k 0 + [13C]O2 + C[18O]2 = [13C][18O]2 + CO2 - log_k 0 + log_k 0 [14C]O2 + CO[18O] = [14C]O[18O] + CO2 - log_k 0 + log_k 0 [14C]O2 + C[18O]2 = [14C][18O]2 + CO2 - log_k 0 + log_k 0 # # HCO3- reactions # last update July 31, 2006 # Checked September 19, 2006 # HCO3- + H2[18O] = HCO2[18O]- + H2O - -add_logk Log_alpha_18O_HCO3-/H2O(l) 1.0 - + -add_logk Log_alpha_18O_HCO3-/H2O(l) 1 + HCO2[18O]- = HCO[18O]O- -HCO2[18O]- = HC[18O]O2- -2HCO2[18O]- = HCO[18O]2- + HCO3- -HCO[18O]2- = HC[18O]O[18O]- -HCO[18O]2- = HC[18O]2O- -3HCO2[18O]- = HC[18O]3- + 2HCO3- +HCO2[18O]- = HC[18O]O2- +2 HCO2[18O]- = HCO[18O]2- + HCO3- +HCO[18O]2- = HC[18O]O[18O]- +HCO[18O]2- = HC[18O]2O- +3 HCO2[18O]- = HC[18O]3- + 2 HCO3- HDO + HCO3- = DCO3- + H2O - log_k -0.301029995663 # -log10(2) - -add_logk Log_alpha_D_HCO3-/H2O(l) 1.0 - + log_k -0.301029995663 # -log10(2) + -add_logk Log_alpha_D_HCO3-/H2O(l) 1 + DCO3- + HCO2[18O]- = DCO2[18O]- + HCO3- DCO3- + HCO[18O]O- = DCO[18O]O- + HCO3- DCO3- + HC[18O]O2- = DC[18O]O2- + HCO3- @@ -4017,9 +4021,9 @@ DCO3- + HC[18O]2O- = DC[18O]2O- + HCO3- DCO3- + HC[18O]3- = DC[18O]3- + HCO3- HTO + HCO3- = TCO3- + H2O - log_k -0.301029995663 # -log10(2) - -add_logk Log_alpha_T_HCO3-/H2O(l) 1.0 - + log_k -0.301029995663 # -log10(2) + -add_logk Log_alpha_T_HCO3-/H2O(l) 1 + TCO3- + HCO2[18O]- = TCO2[18O]- + HCO3- TCO3- + HCO[18O]O- = TCO[18O]O- + HCO3- TCO3- + HC[18O]O2- = TC[18O]O2- + HCO3- @@ -4029,8 +4033,8 @@ TCO3- + HC[18O]2O- = TC[18O]2O- + HCO3- TCO3- + HC[18O]3- = TC[18O]3- + HCO3- HCO3- + [13C]O2 = H[13C]O3- + CO2 - -add_logk Log_alpha_13C_HCO3-/CO2(aq) 1.0 - + -add_logk Log_alpha_13C_HCO3-/CO2(aq) 1 + H[13C]O3- + HCO2[18O]- = H[13C]O2[18O]- + HCO3- H[13C]O3- + HCO[18O]O- = H[13C]O[18O]O- + HCO3- H[13C]O3- + HC[18O]O2- = H[13C][18O]O2- + HCO3- @@ -4056,8 +4060,8 @@ H[13C]O3- + TC[18O]2O- = T[13C][18O]2O- + HCO3- H[13C]O3- + TC[18O]3- = T[13C][18O]3- + HCO3- HCO3- + [14C]O2 = H[14C]O3- + CO2 - -add_logk Log_alpha_14C_HCO3-/CO2(aq) 1.0 - + -add_logk Log_alpha_14C_HCO3-/CO2(aq) 1 + H[14C]O3- + HCO2[18O]- = H[14C]O2[18O]- + HCO3- H[14C]O3- + HCO[18O]O- = H[14C]O[18O]O- + HCO3- H[14C]O3- + HC[18O]O2- = H[14C][18O]O2- + HCO3- @@ -4087,210 +4091,210 @@ H[14C]O3- + TC[18O]3- = T[14C][18O]3- + HCO3- # Checked September 19, 2006 # CO3-2 + H2[18O] = CO2[18O]-2 + H2O - log_k 0.477121254719 # log10(3) - -add_logk Log_alpha_18O_CO3-2/H2O(l) 1.0 - -2CO2[18O]-2 = CO[18O]2-2 + CO3-2 - log_k -0.477121254719 # -log10(3) - + log_k 0.477121254719 # log10(3) + -add_logk Log_alpha_18O_CO3-2/H2O(l) 1 + +2 CO2[18O]-2 = CO[18O]2-2 + CO3-2 + log_k -0.477121254719 # -log10(3) + CO2[18O]-2 + CO[18O]2-2 = C[18O]3-2 + CO3-2 - log_k -0.954242509439324 # log10(1/9) - + log_k -0.954242509439324 # log10(1/9) + CO3-2 + [13C]O2 = [13C]O3-2 + CO2 - -add_logk Log_alpha_13C_CO3-2/CO2(aq) 1.0 - + -add_logk Log_alpha_13C_CO3-2/CO2(aq) 1 + [13C]O3-2 + CO2[18O]-2 = [13C]O2[18O]-2 + CO3-2 - log_k 0.0 - + log_k 0 + [13C]O3-2 + CO[18O]2-2 = [13C]O[18O]2-2 + CO3-2 - log_k 0.0 - + log_k 0 + [13C]O3-2 + C[18O]3-2 = [13C][18O]3-2 + CO3-2 - log_k 0.0 - + log_k 0 + CO3-2 + [14C]O2 = [14C]O3-2 + CO2 - -add_logk Log_alpha_14C_CO3-2/CO2(aq) 1.0 - + -add_logk Log_alpha_14C_CO3-2/CO2(aq) 1 + [14C]O3-2 + CO2[18O]-2 = [14C]O2[18O]-2 + CO3-2 - log_k 0.0 - + log_k 0 + [14C]O3-2 + CO[18O]2-2 = [14C]O[18O]2-2 + CO3-2 - log_k 0.0 - + log_k 0 + [14C]O3-2 + C[18O]3-2 = [14C][18O]3-2 + CO3-2 - log_k 0.0 + log_k 0 # # CH4 reactions # Updated September 19, 2006 # Checked September 19, 2006 # CH4 + HDO = CH3D + H2O - log_k 0.301029995663981198 # log10(2) - -add_logk Log_alpha_D_CH4(aq)/H2O(l) 1.0 - -2CH3D = CH2D2 + CH4 - log_k -0.42596873227228 # log10(3/8) - -3CH3D = CHD3 + 2CH4 - log_k -1.20411998265 # log10(1/16) - -4CH3D = CD4 + 3CH4 - log_k -2.408239965311 # log10(1/256) + log_k 0.301029995663981198 # log10(2) + -add_logk Log_alpha_D_CH4(aq)/H2O(l) 1 + +2 CH3D = CH2D2 + CH4 + log_k -0.42596873227228 # log10(3/8) + +3 CH3D = CHD3 + 2 CH4 + log_k -1.20411998265 # log10(1/16) + +4 CH3D = CD4 + 3 CH4 + log_k -2.408239965311 # log10(1/256) CH4 + HTO = CH3T + H2O - log_k 0.301029995663981198 # log10(2) - -add_logk Log_alpha_T_CH4(aq)/H2O(l) 1.0 + log_k 0.301029995663981198 # log10(2) + -add_logk Log_alpha_T_CH4(aq)/H2O(l) 1 -2CH3T = CH2T2 + CH4 - log_k -0.42596873227228 # log10(3/8) +2 CH3T = CH2T2 + CH4 + log_k -0.42596873227228 # log10(3/8) -3CH3T = CHT3 + 2CH4 - log_k -1.20411998265 # log10(1/16) +3 CH3T = CHT3 + 2 CH4 + log_k -1.20411998265 # log10(1/16) -4CH3T = CT4 + 3CH4 - log_k -2.408239965311 # log10(1/256) +4 CH3T = CT4 + 3 CH4 + log_k -2.408239965311 # log10(1/256) # # Added mixed DT C methane species May 19, 2006 # CH3T + CHD3 = CD3T + CH4 - log_k -0.602059991327962396 # -log10(4) + log_k -0.602059991327962396 # -log10(4) CH2T2 + CH2D2 = CD2T2 + CH4 - log_k -0.7781512503836 # -log10(6) + log_k -0.7781512503836 # -log10(6) CHT3 + CH3D = CDT3 + CH4 - log_k -0.602059991327962396 # -log10(4) + log_k -0.602059991327962396 # -log10(4) [13C]O2 + CH4 = [13C]H4 + CO2 - -add_logk Log_alpha_13C_CH4(aq)/CO2(aq) 1.0 + -add_logk Log_alpha_13C_CH4(aq)/CO2(aq) 1 -[13C]H4 + CH3D = [13C]H3D + CH4 +[13C]H4 + CH3D = [13C]H3D + CH4 [13C]H4 + CH2D2 = [13C]H2D2 + CH4 -[13C]H4 + CHD3 = [13C]HD3 + CH4 -[13C]H4 + CD4 = [13C]D4 + CH4 -[13C]H4 + CH3T = [13C]H3T + CH4 +[13C]H4 + CHD3 = [13C]HD3 + CH4 +[13C]H4 + CD4 = [13C]D4 + CH4 +[13C]H4 + CH3T = [13C]H3T + CH4 [13C]H4 + CH2T2 = [13C]H2T2 + CH4 -[13C]H4 + CHT3 = [13C]HT3 + CH4 -[13C]H4 + CT4 = [13C]T4 + CH4 -[13C]H4 + CD3T = [13C]D3T + CH4 +[13C]H4 + CHT3 = [13C]HT3 + CH4 +[13C]H4 + CT4 = [13C]T4 + CH4 +[13C]H4 + CD3T = [13C]D3T + CH4 [13C]H4 + CD2T2 = [13C]D2T2 + CH4 -[13C]H4 + CDT3 = [13C]DT3 + CH4 +[13C]H4 + CDT3 = [13C]DT3 + CH4 [14C]O2 + CH4 = [14C]H4 + CO2 - -add_logk Log_alpha_14C_CH4(aq)/CO2(aq) 1.0 + -add_logk Log_alpha_14C_CH4(aq)/CO2(aq) 1 # # Added mixed DT 14C methane species May 19, 2006 # -[14C]H4 + CH3D = [14C]H3D + CH4 +[14C]H4 + CH3D = [14C]H3D + CH4 [14C]H4 + CH2D2 = [14C]H2D2 + CH4 -[14C]H4 + CHD3 = [14C]HD3 + CH4 -[14C]H4 + CD4 = [14C]D4 + CH4 -[14C]H4 + CH3T = [14C]H3T + CH4 +[14C]H4 + CHD3 = [14C]HD3 + CH4 +[14C]H4 + CD4 = [14C]D4 + CH4 +[14C]H4 + CH3T = [14C]H3T + CH4 [14C]H4 + CH2T2 = [14C]H2T2 + CH4 -[14C]H4 + CHT3 = [14C]HT3 + CH4 -[14C]H4 + CT4 = [14C]T4 + CH4 -[14C]H4 + CD3T = [14C]D3T + CH4 +[14C]H4 + CHT3 = [14C]HT3 + CH4 +[14C]H4 + CT4 = [14C]T4 + CH4 +[14C]H4 + CD3T = [14C]D3T + CH4 [14C]H4 + CD2T2 = [14C]D2T2 + CH4 -[14C]H4 + CDT3 = [14C]DT3 + CH4 +[14C]H4 + CDT3 = [14C]DT3 + CH4 # # HSO4- reactions # Updated September 28, 2006 # Checked September 28, 2006 # HSO4- + HDO = DSO4- + H2O - log_k -0.301029995663 # -log10(2) - -add_logk Log_alpha_D_HSO4-/H2O(l) 1.0 - -mole_balance DS(6)O4- + log_k -0.301029995663 # -log10(2) + -add_logk Log_alpha_D_HSO4-/H2O(l) 1 + -mole_balance DS(6)O4- HSO4- + HTO = TSO4- + H2O - log_k -0.301029995663 # -log10(2) - -add_logk Log_alpha_T_HSO4-/H2O(l) 1.0 - -mole_balance TS(6)O4- + log_k -0.301029995663 # -log10(2) + -add_logk Log_alpha_T_HSO4-/H2O(l) 1 + -mole_balance TS(6)O4- [34S]O4-2 + HSO4- = H[34S]O4- + SO4-2 - -add_logk Log_alpha_34S_HSO4-/SO4-2 1.0 - -mole_balance H[34S](6)O4- + -add_logk Log_alpha_34S_HSO4-/SO4-2 1 + -mole_balance H[34S](6)O4- H[34S]O4- + DSO4- = D[34S]O4- + HSO4- - -mole_balance D[34S](6)O4 + -mole_balance D[34S](6)O4 H[34S]O4- + TSO4- = T[34S]O4- + HSO4- - -mole_balance T[34S](6)O4- + -mole_balance T[34S](6)O4- # # S-2 reactions # S-2 + H[34S]- = [34S]-2 + HS- - -add_logk Log_alpha_34S_S-2/HS- 1.0 - -mole_balance [34S](-2) - -gamma 5.0000 0.0000 + -add_logk Log_alpha_34S_S-2/HS- 1 + -mole_balance [34S](-2) + -gamma 5 0 # # HS- reactions # HS- + HDO = DS- + H2O - log_k -0.301029995663 # -log10(2) - -add_logk Log_alpha_D_HS-/H2O(l) 1.0 - -mole_balance DS(-2) - -gamma 3.5000 0.0000 + log_k -0.301029995663 # -log10(2) + -add_logk Log_alpha_D_HS-/H2O(l) 1 + -mole_balance DS(-2) + -gamma 3.5 0 HS- + HTO = TS- + H2O - log_k -0.301029995663 # -log10(2) - -add_logk Log_alpha_T_HS-/H2O(l) 1.0 - -mole_balance TS(-2) - -gamma 3.5000 0.0000 + log_k -0.301029995663 # -log10(2) + -add_logk Log_alpha_T_HS-/H2O(l) 1 + -mole_balance TS(-2) + -gamma 3.5 0 HS- + [34S]O4-2 = H[34S]- + SO4-2 - -add_logk Log_alpha_34S_HS-/SO4-2 1.0 - -mole_balance H[34S](-2) - -gamma 3.5000 0.0000 + -add_logk Log_alpha_34S_HS-/SO4-2 1 + -mole_balance H[34S](-2) + -gamma 3.5 0 H[34S]- + DS- = D[34S]- + HS- - -gamma 3.5000 0.0000 - -mole_balance D[34S](-2) + -gamma 3.5 0 + -mole_balance D[34S](-2) H[34S]- + TS- = T[34S]- + HS- - -gamma 3.5000 0.0000 - -mole_balance T[34S](-2) + -gamma 3.5 0 + -mole_balance T[34S](-2) # # H2S reactions # H2S + HDO = HDS + H2O - -add_logk Log_alpha_D_H2S(aq)/H2O(l) 1.0 - -mole_balance HDS(-2) + -add_logk Log_alpha_D_H2S(aq)/H2O(l) 1 + -mole_balance HDS(-2) -2HDS = D2S + H2S - log_k -0.602059991327962396 # -log10(4) - -mole_balance D2S(-2) +2 HDS = D2S + H2S + log_k -0.602059991327962396 # -log10(4) + -mole_balance D2S(-2) H2S + HTO = HTS + H2O - -add_logk Log_alpha_T_H2S(aq)/H2O(l) 1.0 - -mole_balance HTS(-2) + -add_logk Log_alpha_T_H2S(aq)/H2O(l) 1 + -mole_balance HTS(-2) -2HTS = T2S + H2S - log_k -0.602059991327962396 # -log10(4) - -mole_balance T2S(-2) +2 HTS = T2S + H2S + log_k -0.602059991327962396 # -log10(4) + -mole_balance T2S(-2) HDS + HTS = DTS + H2S - log_k -0.301029995663 # log10(1/2) - -mole_balance DTS(-2) + log_k -0.301029995663 # log10(1/2) + -mole_balance DTS(-2) H[34S]- + H2S = H2[34S] + HS- - -add_logk Log_alpha_34S_H2S(aq)/HS- 1.0 - -mole_balance H2[34S](-2) + -add_logk Log_alpha_34S_H2S(aq)/HS- 1 + -mole_balance H2[34S](-2) H2[34S] + HDS = HD[34S] + H2S - -mole_balance HD[34S](-2) + -mole_balance HD[34S](-2) H2[34S] + D2S = D2[34S] + H2S - -mole_balance D2[34S](-2) + -mole_balance D2[34S](-2) H2[34S] + HTS = HT[34S] + H2S - -mole_balance HT[34S](-2) + -mole_balance HT[34S](-2) H2[34S] + T2S = T2[34S] + H2S - -mole_balance T2[34S](-2) + -mole_balance T2[34S](-2) H2[34S] + DTS = DT[34S] + H2S - -mole_balance DT[34S](-2) + -mole_balance DT[34S](-2) # # NO2- reactions # Updated March 20, 2006 @@ -4298,177 +4302,177 @@ H2[34S] + DTS = DT[34S] + H2S # Checked September 19, 2006 # [15N]O3- + NO2- = [15N]O2- + NO3- - -add_logk Log_alpha_15N_NO2-/NO3- 1.0 - -gamma 3.0000 0.0000 + -add_logk Log_alpha_15N_NO2-/NO3- 1 + -gamma 3 0 # # N2 reactions # N2 + [15N]O3- = N[15N] + NO3- - log_k 0.301029995663 # log10(2) - -add_logk Log_alpha_15N_N2(aq)/NO3- 1.0 - -mole_balance [15N](0)N(0) -2N[15N] = [15N]2 + N2 - log_k -0.602059991327962396 # -log10(4) - -mole_balance [15N](0)2 + log_k 0.301029995663 # log10(2) + -add_logk Log_alpha_15N_N2(aq)/NO3- 1 + -mole_balance [15N](0)N(0) +2 N[15N] = [15N]2 + N2 + log_k -0.602059991327962396 # -log10(4) + -mole_balance [15N](0)2 # # NH3 reactions -# +# HDO + NH3 = NH2D + H2O - log_k 0.176091259055 # log10(1.5) - -add_logk Log_alpha_D_NH3(aq)/H2O(l) 1.0 - -2NH2D = NHD2 + NH3 - log_k -0.477121254719 # -log10(3) - -3NH2D = ND3 + 2NH3 - -logk -1.431363764158 # log10(1/27) + log_k 0.176091259055 # log10(1.5) + -add_logk Log_alpha_D_NH3(aq)/H2O(l) 1 + +2 NH2D = NHD2 + NH3 + log_k -0.477121254719 # -log10(3) + +3 NH2D = ND3 + 2 NH3 + -logk -1.431363764158 # log10(1/27) HTO + NH3 = NH2T + H2O - log_k 0.176091259055 # log10(1.5) - -add_logk Log_alpha_T_NH3(aq)/H2O(l) 1.0 + log_k 0.176091259055 # log10(1.5) + -add_logk Log_alpha_T_NH3(aq)/H2O(l) 1 -2NH2T = NHT2 + NH3 - log_k -0.477121254719662 # log10(1/3) +2 NH2T = NHT2 + NH3 + log_k -0.477121254719662 # log10(1/3) + +3 NH2T = NT3 + 2 NH3 + -logk -1.431363764158 # log10(1/27) -3NH2T = NT3 + 2NH3 - -logk -1.431363764158 # log10(1/27) - NHD2 + NH2T = ND2T + NH3 - log_k -0.477121254719 # -log10(3) - + log_k -0.477121254719 # -log10(3) + NH2D + NHT2 = NDT2 + NH3 - log_k -0.477121254719 # -log10(3) - + log_k -0.477121254719 # -log10(3) + # Checked September 19, 2006 - + NH3 + [15N]O3- = [15N]H3 + NO3- - -add_logk Log_alpha_15N_NH3(aq)/NO3- 1.0 - -mole_balance [15N](-3)H3 - + -add_logk Log_alpha_15N_NH3(aq)/NO3- 1 + -mole_balance [15N](-3)H3 + [15N]H3 + NH2D = [15N]H2D + NH3 [15N]H3 + NHD2 = [15N]HD2 + NH3 -[15N]H3 + ND3 = [15N]D3 + NH3 +[15N]H3 + ND3 = [15N]D3 + NH3 [15N]H3 + NH2T = [15N]H2T + NH3 [15N]H3 + NHT2 = [15N]HT2 + NH3 -[15N]H3 + NT3 = [15N]T3 + NH3 +[15N]H3 + NT3 = [15N]T3 + NH3 [15N]H3 + ND2T = [15N]D2T + NH3 [15N]H3 + NDT2 = [15N]DT2 + NH3 -# +# # NH4+ reactions # Updated September 19, 2006 # Checked September 19, 2006 -# +# HDO + NH4+ = NH3D+ + H2O - log_k 0.301029995663 # log10(2) - -add_logk Log_alpha_D_NH4+/H2O(l) 1.0 - -mole_balance N(-3)H3D - -gamma 2.5000 0.0000 - -2NH3D+ = NH2D2+ + NH4+ - log_k -0.42596873227228 # log10(3/8) - -mole_balance N(-3)H2D2 - -gamma 2.5000 0.0000 - -3NH3D+ = NHD3+ + 2NH4+ - log_k -1.20411998265 # log10(1/16) - -mole_balance N(-3)HD3 - -gamma 2.5000 0.0000 - -4NH3D+ = ND4+ + 3NH4+ - log_k -2.408239965311 # log10(1/256) - -mole_balance N(-3)D4 - -gamma 2.5000 0.0000 - + log_k 0.301029995663 # log10(2) + -add_logk Log_alpha_D_NH4+/H2O(l) 1 + -mole_balance N(-3)H3D + -gamma 2.5 0 + +2 NH3D+ = NH2D2+ + NH4+ + log_k -0.42596873227228 # log10(3/8) + -mole_balance N(-3)H2D2 + -gamma 2.5 0 + +3 NH3D+ = NHD3+ + 2 NH4+ + log_k -1.20411998265 # log10(1/16) + -mole_balance N(-3)HD3 + -gamma 2.5 0 + +4 NH3D+ = ND4+ + 3 NH4+ + log_k -2.408239965311 # log10(1/256) + -mole_balance N(-3)D4 + -gamma 2.5 0 + HTO + NH4+ = NH3T+ + H2O - log_k 0.301029995663 # log10(2) - -add_logk Log_alpha_T_NH4+/H2O(l) 1.0 - -mole_balance N(-3)H3T - -gamma 2.5000 0.0000 - -2NH3T+ = NH2T2+ + NH4+ - log_k -0.42596873227228 # log10(3/8) - -mole_balance N(-3)H2T2 - -gamma 2.5000 0.0000 - -3NH3T+ = NHT3+ + 2NH4+ - log_k -1.20411998265 # log10(1/16) - -mole_balance N(-3)HT3 - -gamma 2.5000 0.0000 - -4NH3T+ = NT4+ + 3NH4+ - log_k -2.408239965311 # log10(1/256) - -mole_balance N(-3)T4 - -gamma 2.5000 0.0000 -# + log_k 0.301029995663 # log10(2) + -add_logk Log_alpha_T_NH4+/H2O(l) 1 + -mole_balance N(-3)H3T + -gamma 2.5 0 + +2 NH3T+ = NH2T2+ + NH4+ + log_k -0.42596873227228 # log10(3/8) + -mole_balance N(-3)H2T2 + -gamma 2.5 0 + +3 NH3T+ = NHT3+ + 2 NH4+ + log_k -1.20411998265 # log10(1/16) + -mole_balance N(-3)HT3 + -gamma 2.5 0 + +4 NH3T+ = NT4+ + 3 NH4+ + log_k -2.408239965311 # log10(1/256) + -mole_balance N(-3)T4 + -gamma 2.5 0 +# # Updated September 19, 2006 # Checked September 19, 2006 -# +# NHD3+ + NH3T+ = ND3T+ + NH4+ - log_k -0.602059991327962396 # -log10(4) - -mole_balance N(-3)D3T - -gamma 2.5000 0.0000 - + log_k -0.602059991327962396 # -log10(4) + -mole_balance N(-3)D3T + -gamma 2.5 0 + NH2D2+ + NH2T2+ = ND2T2+ + NH4+ - log_k -0.7781512503836 # -log10(6) - -mole_balance N(-3)D2T2 - -gamma 2.5000 0.0000 - + log_k -0.7781512503836 # -log10(6) + -mole_balance N(-3)D2T2 + -gamma 2.5 0 + NH3D+ + NHT3+ = NDT3+ + NH4+ - log_k -0.602059991327962396 # -log10(4) - -mole_balance N(-3)DT3 - -gamma 2.5000 0.0000 - + log_k -0.602059991327962396 # -log10(4) + -mole_balance N(-3)DT3 + -gamma 2.5 0 + [15N]H3 + NH4+ = [15N]H4+ + NH3 - -add_logk Log_alpha_15N_NH4+/NH3(aq) 1.0 - -mole_balance [15N](-3)H4 - -gamma 2.5000 0.0000 - + -add_logk Log_alpha_15N_NH4+/NH3(aq) 1 + -mole_balance [15N](-3)H4 + -gamma 2.5 0 + [15N]H4+ + NH3D+ = [15N]H3D+ + NH4+ - -mole_balance [15N](-3)H3D - -gamma 2.5000 0.0000 - + -mole_balance [15N](-3)H3D + -gamma 2.5 0 + [15N]H4+ + NH2D2+ = [15N]H2D2+ + NH4+ - -mole_balance [15N](-3)H2D2 - -gamma 2.5000 0.0000 - + -mole_balance [15N](-3)H2D2 + -gamma 2.5 0 + [15N]H4+ + NHD3+ = [15N]HD3+ + NH4+ - -mole_balance [15N](-3)HD3 - -gamma 2.5000 0.0000 - + -mole_balance [15N](-3)HD3 + -gamma 2.5 0 + [15N]H4+ + ND4+ = [15N]D4+ + NH4+ - -mole_balance [15N](-3)D4+ - -gamma 2.5000 0.0000 - + -mole_balance [15N](-3)D4+ + -gamma 2.5 0 + [15N]H4+ + NH3T+ = [15N]H3T+ + NH4+ - -mole_balance [15N](-3)H3T - -gamma 2.5000 0.0000 - + -mole_balance [15N](-3)H3T + -gamma 2.5 0 + [15N]H4+ + NH2T2+ = [15N]H2T2+ + NH4+ - -mole_balance [15N](-3)H2T2 - -gamma 2.5000 0.0000 - + -mole_balance [15N](-3)H2T2 + -gamma 2.5 0 + [15N]H4+ + NHT3+ = [15N]HT3+ + NH4+ - -mole_balance [15N](-3)HT3 - -gamma 2.5000 0.0000 - + -mole_balance [15N](-3)HT3 + -gamma 2.5 0 + [15N]H4+ + NT4+ = [15N]T4+ + NH4+ - -mole_balance [15N](-3)T4+ - -gamma 2.5000 0.0000 - + -mole_balance [15N](-3)T4+ + -gamma 2.5 0 + [15N]H4+ + ND3T+ = [15N]D3T+ + NH4+ - -mole_balance [15N](-3)D3T - -gamma 2.5000 0.0000 - + -mole_balance [15N](-3)D3T + -gamma 2.5 0 + [15N]H4+ + ND2T2+ = [15N]D2T2+ + NH4+ - -mole_balance [15N](-3)D2T2 - -gamma 2.5000 0.0000 - + -mole_balance [15N](-3)D2T2 + -gamma 2.5 0 + [15N]H4+ + NDT3+ = [15N]DT3+ + NH4+ - -mole_balance [15N](-3)DT3 - -gamma 2.5000 0.0000 -# + -mole_balance [15N](-3)DT3 + -gamma 2.5 0 +# # Missing NH4SO4- reactions -# +# # # Missing PO4-2 reactions # @@ -4489,18 +4493,18 @@ HF + HTO = TF + H2O HF2- + HDO = DF2- + H2O HF2- + HTO = TF2- + H2O # -# CaOH reactions +# CaOH reactions # CaOH+ + [18O]H- = Ca[18O]H+ + OH- - -mole_balance Ca[18O]H + -mole_balance Ca[18O]H CaOH+ + OD- = CaOD+ + OH- - -mole_balance CaOD + -mole_balance CaOD CaOH+ + [18O]D- = Ca[18O]D+ + OH- - -mole_balance Ca[18O]D + -mole_balance Ca[18O]D CaOH+ + OT- = CaOT+ + OH- - -mole_balance CaOT+ + -mole_balance CaOT+ CaOH+ + [18O]T- = Ca[18O]T+ + OH- - -mole_balance Ca[18O]T + -mole_balance Ca[18O]T # # CaCO3 reactions # @@ -4519,219 +4523,219 @@ CaCO3 + [14C][18O]3-2 = Ca[14C][18O]3 + CO3-2 # CaHCO3+ reactions # CaHCO3+ + HCO2[18O]- = CaHCO2[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + HCO[18O]O- = CaHCO[18O]O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + HC[18O]O2- = CaHC[18O]O2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + HCO[18O]2- = CaHCO[18O]2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + HC[18O]O[18O]- = CaHC[18O]O[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + HC[18O]2O- = CaHC[18O]2O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + HC[18O]3- = CaHC[18O]3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[13C]O3- = CaH[13C]O3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[13C]O2[18O]- = CaH[13C]O2[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[13C]O[18O]O- = CaH[13C]O[18O]O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[13C][18O]O2- = CaH[13C][18O]O2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[13C]O[18O]2- = CaH[13C]O[18O]2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[13C][18O]O[18O]- = CaH[13C][18O]O[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[13C][18O]2O- = CaH[13C][18O]2O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[13C][18O]3- = CaH[13C][18O]3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[14C]O3- = CaH[14C]O3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[14C]O2[18O]- = CaH[14C]O2[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[14C]O[18O]O- = CaH[14C]O[18O]O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[14C][18O]O2- = CaH[14C][18O]O2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[14C]O[18O]2- = CaH[14C]O[18O]2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[14C][18O]O[18O]- = CaH[14C][18O]O[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[14C][18O]2O- = CaH[14C][18O]2O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + H[14C][18O]3- = CaH[14C][18O]3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 # DCO3- CaHCO3+ + DCO3- = CaDCO3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + DCO2[18O]- = CaDCO2[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + DCO[18O]O- = CaDCO[18O]O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + DC[18O]O2- = CaDC[18O]O2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + DCO[18O]2- = CaDCO[18O]2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + DC[18O]O[18O]- = CaDC[18O]O[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + DC[18O]2O- = CaDC[18O]2O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + DC[18O]3- = CaDC[18O]3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[13C]O3- = CaD[13C]O3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[13C]O2[18O]- = CaD[13C]O2[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[13C]O[18O]O- = CaD[13C]O[18O]O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[13C][18O]O2- = CaD[13C][18O]O2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[13C]O[18O]2- = CaD[13C]O[18O]2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[13C][18O]O[18O]- = CaD[13C][18O]O[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[13C][18O]2O- = CaD[13C][18O]2O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[13C][18O]3- = CaD[13C][18O]3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[14C]O3- = CaD[14C]O3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[14C]O2[18O]- = CaD[14C]O2[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[14C]O[18O]O- = CaD[14C]O[18O]O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[14C][18O]O2- = CaD[14C][18O]O2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[14C]O[18O]2- = CaD[14C]O[18O]2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[14C][18O]O[18O]- = CaD[14C][18O]O[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[14C][18O]2O- = CaD[14C][18O]2O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + D[14C][18O]3- = CaD[14C][18O]3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 # TCO3- CaHCO3+ + TCO3- = CaTCO3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + TCO2[18O]- = CaTCO2[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + TCO[18O]O- = CaTCO[18O]O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + TC[18O]O2- = CaTC[18O]O2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + TCO[18O]2- = CaTCO[18O]2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + TC[18O]O[18O]- = CaTC[18O]O[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + TC[18O]2O- = CaTC[18O]2O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + TC[18O]3- = CaTC[18O]3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[13C]O3- = CaT[13C]O3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[13C]O2[18O]- = CaT[13C]O2[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[13C]O[18O]O- = CaT[13C]O[18O]O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[13C][18O]O2- = CaT[13C][18O]O2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[13C]O[18O]2- = CaT[13C]O[18O]2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[13C][18O]O[18O]- = CaT[13C][18O]O[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[13C][18O]2O- = CaT[13C][18O]2O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[13C][18O]3- = CaT[13C][18O]3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[14C]O3- = CaT[14C]O3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[14C]O2[18O]- = CaT[14C]O2[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[14C]O[18O]O- = CaT[14C]O[18O]O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[14C][18O]O2- = CaT[14C][18O]O2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[14C]O[18O]2- = CaT[14C]O[18O]2+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[14C][18O]O[18O]- = CaT[14C][18O]O[18O]+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[14C][18O]2O- = CaT[14C][18O]2O+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 CaHCO3+ + T[14C][18O]3- = CaT[14C][18O]3+ + HCO3- - -gamma 5.4000 0.0000 + -gamma 5.4 0 # # CaSO4 reactions # @@ -4858,13 +4862,13 @@ MgHCO3+ + T[14C][18O]3- = MgT[14C][18O]3+ + HCO3- MgSO4 + [34S]O4-2 = Mg[34S]O4 + SO4-2 # # Missing MgPO4- reactions -# +# # # Missing MgHPO4 reactions -# +# # # Missing Mg2PO4+ reactions -# +# # # NaOH reactions # @@ -4982,7 +4986,7 @@ KOH + OT- = KOT + OH- KOH + [18O]T- = K[18O]T + OH- # # KSO4- reactions -# +# KSO4- + [34S]O4-2 = K[34S]O4- + SO4-2 # # Added FeOH+ reactions 16Dec09 @@ -5098,171 +5102,171 @@ FeHSO4+ + T[34S]O4- = FeT[34S]O4+ + HSO4- # Added Fe(HS)2 reactions 16Dec09 # Revised 17Dec09, limited the number of species # -Fe(HS)2 + HS- + DS- = FeHSDS + 2HS- -Fe(HS)2 + HS- + TS- = FeHSTS + 2HS- -Fe(HS)2 + HS- + H[34S]- = FeHSH[34S] + 2HS- -Fe(HS)2 + HS- + D[34S]- = FeHSD[34S] + 2HS- -Fe(HS)2 + HS- + T[34S]- = FeHST[34S] + 2HS- -Fe(HS)2 + DS- + HS- = FeDSHS + 2HS- -Fe(HS)2 + DS- + DS- = FeDSDS + 2HS- -Fe(HS)2 + DS- + TS- = FeDSTS + 2HS- -Fe(HS)2 + DS- + H[34S]- = FeDSH[34S] + 2HS- -Fe(HS)2 + DS- + D[34S]- = FeDSD[34S] + 2HS- -Fe(HS)2 + DS- + T[34S]- = FeDST[34S] + 2HS- -Fe(HS)2 + TS- + HS- = FeTSHS + 2HS- -Fe(HS)2 + TS- + DS- = FeTSDS + 2HS- -Fe(HS)2 + TS- + H[34S]- = FeTSH[34S] + 2HS- -Fe(HS)2 + TS- + D[34S]- = FeTSD[34S] + 2HS- -Fe(HS)2 + H[34S]- + HS- = FeH[34S]HS + 2HS- -Fe(HS)2 + H[34S]- + DS- = FeH[34S]DS + 2HS- -Fe(HS)2 + H[34S]- + TS- = FeH[34S]TS + 2HS- -Fe(HS)2 + H[34S]- + H[34S]- = FeH[34S]H[34S] + 2HS- -Fe(HS)2 + H[34S]- + D[34S]- = FeH[34S]D[34S] + 2HS- -Fe(HS)2 + H[34S]- + T[34S]- = FeH[34S]T[34S] + 2HS- -Fe(HS)2 + D[34S]- + HS- = FeD[34S]HS + 2HS- -Fe(HS)2 + D[34S]- + DS- = FeD[34S]DS + 2HS- -Fe(HS)2 + D[34S]- + TS- = FeD[34S]TS + 2HS- -Fe(HS)2 + D[34S]- + H[34S]- = FeD[34S]H[34S] + 2HS- -Fe(HS)2 + D[34S]- + D[34S]- = FeD[34S]D[34S] + 2HS- -Fe(HS)2 + D[34S]- + T[34S]- = FeD[34S]T[34S] + 2HS- -Fe(HS)2 + T[34S]- + HS- = FeT[34S]HS + 2HS- -Fe(HS)2 + T[34S]- + DS- = FeT[34S]DS + 2HS- -Fe(HS)2 + T[34S]- + H[34S]- = FeT[34S]H[34S] + 2HS- -Fe(HS)2 + T[34S]- + D[34S]- = FeT[34S]D[34S] + 2HS- +Fe(HS)2 + HS- + DS- = FeHSDS + 2 HS- +Fe(HS)2 + HS- + TS- = FeHSTS + 2 HS- +Fe(HS)2 + HS- + H[34S]- = FeHSH[34S] + 2 HS- +Fe(HS)2 + HS- + D[34S]- = FeHSD[34S] + 2 HS- +Fe(HS)2 + HS- + T[34S]- = FeHST[34S] + 2 HS- +Fe(HS)2 + DS- + HS- = FeDSHS + 2 HS- +Fe(HS)2 + DS- + DS- = FeDSDS + 2 HS- +Fe(HS)2 + DS- + TS- = FeDSTS + 2 HS- +Fe(HS)2 + DS- + H[34S]- = FeDSH[34S] + 2 HS- +Fe(HS)2 + DS- + D[34S]- = FeDSD[34S] + 2 HS- +Fe(HS)2 + DS- + T[34S]- = FeDST[34S] + 2 HS- +Fe(HS)2 + TS- + HS- = FeTSHS + 2 HS- +Fe(HS)2 + TS- + DS- = FeTSDS + 2 HS- +Fe(HS)2 + TS- + H[34S]- = FeTSH[34S] + 2 HS- +Fe(HS)2 + TS- + D[34S]- = FeTSD[34S] + 2 HS- +Fe(HS)2 + H[34S]- + HS- = FeH[34S]HS + 2 HS- +Fe(HS)2 + H[34S]- + DS- = FeH[34S]DS + 2 HS- +Fe(HS)2 + H[34S]- + TS- = FeH[34S]TS + 2 HS- +Fe(HS)2 + H[34S]- + H[34S]- = FeH[34S]H[34S] + 2 HS- +Fe(HS)2 + H[34S]- + D[34S]- = FeH[34S]D[34S] + 2 HS- +Fe(HS)2 + H[34S]- + T[34S]- = FeH[34S]T[34S] + 2 HS- +Fe(HS)2 + D[34S]- + HS- = FeD[34S]HS + 2 HS- +Fe(HS)2 + D[34S]- + DS- = FeD[34S]DS + 2 HS- +Fe(HS)2 + D[34S]- + TS- = FeD[34S]TS + 2 HS- +Fe(HS)2 + D[34S]- + H[34S]- = FeD[34S]H[34S] + 2 HS- +Fe(HS)2 + D[34S]- + D[34S]- = FeD[34S]D[34S] + 2 HS- +Fe(HS)2 + D[34S]- + T[34S]- = FeD[34S]T[34S] + 2 HS- +Fe(HS)2 + T[34S]- + HS- = FeT[34S]HS + 2 HS- +Fe(HS)2 + T[34S]- + DS- = FeT[34S]DS + 2 HS- +Fe(HS)2 + T[34S]- + H[34S]- = FeT[34S]H[34S] + 2 HS- +Fe(HS)2 + T[34S]- + D[34S]- = FeT[34S]D[34S] + 2 HS- # # Added Fe(HS)3- reactions 16Dec09 # Revised 17Dec09, limited the number of species # -Fe(HS)3- + HS- + HS- + DS- = FeHSHSDS- + 3HS- -Fe(HS)3- + HS- + HS- + TS- = FeHSHSTS- + 3HS- -Fe(HS)3- + HS- + HS- + H[34S]- = FeHSHSH[34S]- + 3HS- -Fe(HS)3- + HS- + HS- + D[34S]- = FeHSHSD[34S]- + 3HS- -Fe(HS)3- + HS- + HS- + T[34S]- = FeHSHST[34S]- + 3HS- -Fe(HS)3- + HS- + DS- + HS- = FeHSDSHS- + 3HS- -Fe(HS)3- + HS- + DS- + DS- = FeHSDSDS- + 3HS- -Fe(HS)3- + HS- + DS- + TS- = FeHSDSTS- + 3HS- -Fe(HS)3- + HS- + DS- + H[34S]- = FeHSDSH[34S]- + 3HS- -Fe(HS)3- + HS- + DS- + D[34S]- = FeHSDSD[34S]- + 3HS- -Fe(HS)3- + HS- + DS- + T[34S]- = FeHSDST[34S]- + 3HS- -Fe(HS)3- + HS- + TS- + HS- = FeHSTSHS- + 3HS- -Fe(HS)3- + HS- + TS- + DS- = FeHSTSDS- + 3HS- -Fe(HS)3- + HS- + TS- + H[34S]- = FeHSTSH[34S]- + 3HS- -Fe(HS)3- + HS- + TS- + D[34S]- = FeHSTSD[34S]- + 3HS- -Fe(HS)3- + HS- + H[34S]- + HS- = FeHSH[34S]HS- + 3HS- -Fe(HS)3- + HS- + H[34S]- + DS- = FeHSH[34S]DS- + 3HS- -Fe(HS)3- + HS- + H[34S]- + TS- = FeHSH[34S]TS- + 3HS- -Fe(HS)3- + HS- + H[34S]- + H[34S]- = FeHSH[34S]H[34S]- + 3HS- -Fe(HS)3- + HS- + H[34S]- + D[34S]- = FeHSH[34S]D[34S]- + 3HS- -Fe(HS)3- + HS- + H[34S]- + T[34S]- = FeHSH[34S]T[34S]- + 3HS- -Fe(HS)3- + HS- + D[34S]- + HS- = FeHSD[34S]HS- + 3HS- -Fe(HS)3- + HS- + D[34S]- + DS- = FeHSD[34S]DS- + 3HS- -Fe(HS)3- + HS- + D[34S]- + TS- = FeHSD[34S]TS- + 3HS- -Fe(HS)3- + HS- + D[34S]- + H[34S]- = FeHSD[34S]H[34S]- + 3HS- -Fe(HS)3- + HS- + D[34S]- + D[34S]- = FeHSD[34S]D[34S]- + 3HS- -Fe(HS)3- + HS- + D[34S]- + T[34S]- = FeHSD[34S]T[34S]- + 3HS- -Fe(HS)3- + HS- + T[34S]- + HS- = FeHST[34S]HS- + 3HS- -Fe(HS)3- + HS- + T[34S]- + DS- = FeHST[34S]DS- + 3HS- -Fe(HS)3- + HS- + T[34S]- + H[34S]- = FeHST[34S]H[34S]- + 3HS- -Fe(HS)3- + HS- + T[34S]- + D[34S]- = FeHST[34S]D[34S]- + 3HS- -Fe(HS)3- + DS- + HS- + HS- = FeDSHSHS- + 3HS- -Fe(HS)3- + DS- + HS- + DS- = FeDSHSDS- + 3HS- -Fe(HS)3- + DS- + HS- + TS- = FeDSHSTS- + 3HS- -Fe(HS)3- + DS- + HS- + H[34S]- = FeDSHSH[34S]- + 3HS- -Fe(HS)3- + DS- + HS- + D[34S]- = FeDSHSD[34S]- + 3HS- -Fe(HS)3- + DS- + HS- + T[34S]- = FeDSHST[34S]- + 3HS- -Fe(HS)3- + DS- + DS- + HS- = FeDSDSHS- + 3HS- -Fe(HS)3- + DS- + DS- + TS- = FeDSDSTS- + 3HS- -Fe(HS)3- + DS- + DS- + H[34S]- = FeDSDSH[34S]- + 3HS- -Fe(HS)3- + DS- + DS- + T[34S]- = FeDSDST[34S]- + 3HS- -Fe(HS)3- + DS- + TS- + HS- = FeDSTSHS- + 3HS- -Fe(HS)3- + DS- + TS- + DS- = FeDSTSDS- + 3HS- -Fe(HS)3- + DS- + TS- + H[34S]- = FeDSTSH[34S]- + 3HS- -Fe(HS)3- + DS- + TS- + D[34S]- = FeDSTSD[34S]- + 3HS- -Fe(HS)3- + DS- + H[34S]- + HS- = FeDSH[34S]HS- + 3HS- -Fe(HS)3- + DS- + H[34S]- + DS- = FeDSH[34S]DS- + 3HS- -Fe(HS)3- + DS- + H[34S]- + TS- = FeDSH[34S]TS- + 3HS- -Fe(HS)3- + DS- + H[34S]- + H[34S]- = FeDSH[34S]H[34S]- + 3HS- -Fe(HS)3- + DS- + H[34S]- + D[34S]- = FeDSH[34S]D[34S]- + 3HS- -Fe(HS)3- + DS- + H[34S]- + T[34S]- = FeDSH[34S]T[34S]- + 3HS- -Fe(HS)3- + DS- + D[34S]- + HS- = FeDSD[34S]HS- + 3HS- -Fe(HS)3- + DS- + D[34S]- + TS- = FeDSD[34S]TS- + 3HS- -Fe(HS)3- + DS- + D[34S]- + H[34S]- = FeDSD[34S]H[34S]- + 3HS- -Fe(HS)3- + DS- + T[34S]- + HS- = FeDST[34S]HS- + 3HS- -Fe(HS)3- + DS- + T[34S]- + DS- = FeDST[34S]DS- + 3HS- -Fe(HS)3- + DS- + T[34S]- + H[34S]- = FeDST[34S]H[34S]- + 3HS- -Fe(HS)3- + TS- + HS- + HS- = FeTSHSHS- + 3HS- -Fe(HS)3- + TS- + HS- + DS- = FeTSHSDS- + 3HS- -Fe(HS)3- + TS- + HS- + H[34S]- = FeTSHSH[34S]- + 3HS- -Fe(HS)3- + TS- + HS- + D[34S]- = FeTSHSD[34S]- + 3HS- -Fe(HS)3- + TS- + DS- + HS- = FeTSDSHS- + 3HS- -Fe(HS)3- + TS- + DS- + DS- = FeTSDSDS- + 3HS- -Fe(HS)3- + TS- + DS- + H[34S]- = FeTSDSH[34S]- + 3HS- -Fe(HS)3- + TS- + DS- + D[34S]- = FeTSDSD[34S]- + 3HS- -Fe(HS)3- + TS- + H[34S]- + HS- = FeTSH[34S]HS- + 3HS- -Fe(HS)3- + TS- + H[34S]- + DS- = FeTSH[34S]DS- + 3HS- -Fe(HS)3- + TS- + H[34S]- + H[34S]- = FeTSH[34S]H[34S]- + 3HS- -Fe(HS)3- + TS- + H[34S]- + D[34S]- = FeTSH[34S]D[34S]- + 3HS- -Fe(HS)3- + TS- + D[34S]- + HS- = FeTSD[34S]HS- + 3HS- -Fe(HS)3- + TS- + D[34S]- + DS- = FeTSD[34S]DS- + 3HS- -Fe(HS)3- + TS- + D[34S]- + H[34S]- = FeTSD[34S]H[34S]- + 3HS- -Fe(HS)3- + H[34S]- + HS- + HS- = FeH[34S]HSHS- + 3HS- -Fe(HS)3- + H[34S]- + HS- + DS- = FeH[34S]HSDS- + 3HS- -Fe(HS)3- + H[34S]- + HS- + TS- = FeH[34S]HSTS- + 3HS- -Fe(HS)3- + H[34S]- + HS- + H[34S]- = FeH[34S]HSH[34S]- + 3HS- -Fe(HS)3- + H[34S]- + HS- + D[34S]- = FeH[34S]HSD[34S]- + 3HS- -Fe(HS)3- + H[34S]- + HS- + T[34S]- = FeH[34S]HST[34S]- + 3HS- -Fe(HS)3- + H[34S]- + DS- + HS- = FeH[34S]DSHS- + 3HS- -Fe(HS)3- + H[34S]- + DS- + DS- = FeH[34S]DSDS- + 3HS- -Fe(HS)3- + H[34S]- + DS- + TS- = FeH[34S]DSTS- + 3HS- -Fe(HS)3- + H[34S]- + DS- + H[34S]- = FeH[34S]DSH[34S]- + 3HS- -Fe(HS)3- + H[34S]- + DS- + D[34S]- = FeH[34S]DSD[34S]- + 3HS- -Fe(HS)3- + H[34S]- + DS- + T[34S]- = FeH[34S]DST[34S]- + 3HS- -Fe(HS)3- + H[34S]- + TS- + HS- = FeH[34S]TSHS- + 3HS- -Fe(HS)3- + H[34S]- + TS- + DS- = FeH[34S]TSDS- + 3HS- -Fe(HS)3- + H[34S]- + TS- + H[34S]- = FeH[34S]TSH[34S]- + 3HS- -Fe(HS)3- + H[34S]- + TS- + D[34S]- = FeH[34S]TSD[34S]- + 3HS- -Fe(HS)3- + H[34S]- + H[34S]- + HS- = FeH[34S]H[34S]HS- + 3HS- -Fe(HS)3- + H[34S]- + H[34S]- + DS- = FeH[34S]H[34S]DS- + 3HS- -Fe(HS)3- + H[34S]- + H[34S]- + TS- = FeH[34S]H[34S]TS- + 3HS- -Fe(HS)3- + H[34S]- + H[34S]- + H[34S]- = FeH[34S]H[34S]H[34S]- + 3HS- -Fe(HS)3- + H[34S]- + H[34S]- + D[34S]- = FeH[34S]H[34S]D[34S]- + 3HS- -Fe(HS)3- + H[34S]- + H[34S]- + T[34S]- = FeH[34S]H[34S]T[34S]- + 3HS- -Fe(HS)3- + H[34S]- + D[34S]- + HS- = FeH[34S]D[34S]HS- + 3HS- -Fe(HS)3- + H[34S]- + D[34S]- + DS- = FeH[34S]D[34S]DS- + 3HS- -Fe(HS)3- + H[34S]- + D[34S]- + TS- = FeH[34S]D[34S]TS- + 3HS- -Fe(HS)3- + H[34S]- + D[34S]- + H[34S]- = FeH[34S]D[34S]H[34S]- + 3HS- -Fe(HS)3- + H[34S]- + T[34S]- + HS- = FeH[34S]T[34S]HS- + 3HS- -Fe(HS)3- + H[34S]- + T[34S]- + DS- = FeH[34S]T[34S]DS- + 3HS- -Fe(HS)3- + H[34S]- + T[34S]- + H[34S]- = FeH[34S]T[34S]H[34S]- + 3HS- -Fe(HS)3- + D[34S]- + HS- + HS- = FeD[34S]HSHS- + 3HS- -Fe(HS)3- + D[34S]- + HS- + DS- = FeD[34S]HSDS- + 3HS- -Fe(HS)3- + D[34S]- + HS- + TS- = FeD[34S]HSTS- + 3HS- -Fe(HS)3- + D[34S]- + HS- + H[34S]- = FeD[34S]HSH[34S]- + 3HS- -Fe(HS)3- + D[34S]- + HS- + D[34S]- = FeD[34S]HSD[34S]- + 3HS- -Fe(HS)3- + D[34S]- + HS- + T[34S]- = FeD[34S]HST[34S]- + 3HS- -Fe(HS)3- + D[34S]- + DS- + HS- = FeD[34S]DSHS- + 3HS- -Fe(HS)3- + D[34S]- + DS- + TS- = FeD[34S]DSTS- + 3HS- -Fe(HS)3- + D[34S]- + DS- + H[34S]- = FeD[34S]DSH[34S]- + 3HS- -Fe(HS)3- + D[34S]- + TS- + HS- = FeD[34S]TSHS- + 3HS- -Fe(HS)3- + D[34S]- + TS- + DS- = FeD[34S]TSDS- + 3HS- -Fe(HS)3- + D[34S]- + TS- + H[34S]- = FeD[34S]TSH[34S]- + 3HS- -Fe(HS)3- + D[34S]- + H[34S]- + HS- = FeD[34S]H[34S]HS- + 3HS- -Fe(HS)3- + D[34S]- + H[34S]- + DS- = FeD[34S]H[34S]DS- + 3HS- -Fe(HS)3- + D[34S]- + H[34S]- + TS- = FeD[34S]H[34S]TS- + 3HS- -Fe(HS)3- + D[34S]- + H[34S]- + H[34S]- = FeD[34S]H[34S]H[34S]- + 3HS- -Fe(HS)3- + D[34S]- + D[34S]- + HS- = FeD[34S]D[34S]HS- + 3HS- -Fe(HS)3- + D[34S]- + T[34S]- + HS- = FeD[34S]T[34S]HS- + 3HS- -Fe(HS)3- + T[34S]- + HS- + HS- = FeT[34S]HSHS- + 3HS- -Fe(HS)3- + T[34S]- + HS- + DS- = FeT[34S]HSDS- + 3HS- -Fe(HS)3- + T[34S]- + HS- + H[34S]- = FeT[34S]HSH[34S]- + 3HS- -Fe(HS)3- + T[34S]- + HS- + D[34S]- = FeT[34S]HSD[34S]- + 3HS- -Fe(HS)3- + T[34S]- + DS- + HS- = FeT[34S]DSHS- + 3HS- -Fe(HS)3- + T[34S]- + DS- + DS- = FeT[34S]DSDS- + 3HS- -Fe(HS)3- + T[34S]- + DS- + H[34S]- = FeT[34S]DSH[34S]- + 3HS- -Fe(HS)3- + T[34S]- + H[34S]- + HS- = FeT[34S]H[34S]HS- + 3HS- -Fe(HS)3- + T[34S]- + H[34S]- + DS- = FeT[34S]H[34S]DS- + 3HS- -Fe(HS)3- + T[34S]- + H[34S]- + H[34S]- = FeT[34S]H[34S]H[34S]- + 3HS- -Fe(HS)3- + T[34S]- + D[34S]- + HS- = FeT[34S]D[34S]HS- + 3HS- +Fe(HS)3- + HS- + HS- + DS- = FeHSHSDS- + 3 HS- +Fe(HS)3- + HS- + HS- + TS- = FeHSHSTS- + 3 HS- +Fe(HS)3- + HS- + HS- + H[34S]- = FeHSHSH[34S]- + 3 HS- +Fe(HS)3- + HS- + HS- + D[34S]- = FeHSHSD[34S]- + 3 HS- +Fe(HS)3- + HS- + HS- + T[34S]- = FeHSHST[34S]- + 3 HS- +Fe(HS)3- + HS- + DS- + HS- = FeHSDSHS- + 3 HS- +Fe(HS)3- + HS- + DS- + DS- = FeHSDSDS- + 3 HS- +Fe(HS)3- + HS- + DS- + TS- = FeHSDSTS- + 3 HS- +Fe(HS)3- + HS- + DS- + H[34S]- = FeHSDSH[34S]- + 3 HS- +Fe(HS)3- + HS- + DS- + D[34S]- = FeHSDSD[34S]- + 3 HS- +Fe(HS)3- + HS- + DS- + T[34S]- = FeHSDST[34S]- + 3 HS- +Fe(HS)3- + HS- + TS- + HS- = FeHSTSHS- + 3 HS- +Fe(HS)3- + HS- + TS- + DS- = FeHSTSDS- + 3 HS- +Fe(HS)3- + HS- + TS- + H[34S]- = FeHSTSH[34S]- + 3 HS- +Fe(HS)3- + HS- + TS- + D[34S]- = FeHSTSD[34S]- + 3 HS- +Fe(HS)3- + HS- + H[34S]- + HS- = FeHSH[34S]HS- + 3 HS- +Fe(HS)3- + HS- + H[34S]- + DS- = FeHSH[34S]DS- + 3 HS- +Fe(HS)3- + HS- + H[34S]- + TS- = FeHSH[34S]TS- + 3 HS- +Fe(HS)3- + HS- + H[34S]- + H[34S]- = FeHSH[34S]H[34S]- + 3 HS- +Fe(HS)3- + HS- + H[34S]- + D[34S]- = FeHSH[34S]D[34S]- + 3 HS- +Fe(HS)3- + HS- + H[34S]- + T[34S]- = FeHSH[34S]T[34S]- + 3 HS- +Fe(HS)3- + HS- + D[34S]- + HS- = FeHSD[34S]HS- + 3 HS- +Fe(HS)3- + HS- + D[34S]- + DS- = FeHSD[34S]DS- + 3 HS- +Fe(HS)3- + HS- + D[34S]- + TS- = FeHSD[34S]TS- + 3 HS- +Fe(HS)3- + HS- + D[34S]- + H[34S]- = FeHSD[34S]H[34S]- + 3 HS- +Fe(HS)3- + HS- + D[34S]- + D[34S]- = FeHSD[34S]D[34S]- + 3 HS- +Fe(HS)3- + HS- + D[34S]- + T[34S]- = FeHSD[34S]T[34S]- + 3 HS- +Fe(HS)3- + HS- + T[34S]- + HS- = FeHST[34S]HS- + 3 HS- +Fe(HS)3- + HS- + T[34S]- + DS- = FeHST[34S]DS- + 3 HS- +Fe(HS)3- + HS- + T[34S]- + H[34S]- = FeHST[34S]H[34S]- + 3 HS- +Fe(HS)3- + HS- + T[34S]- + D[34S]- = FeHST[34S]D[34S]- + 3 HS- +Fe(HS)3- + DS- + HS- + HS- = FeDSHSHS- + 3 HS- +Fe(HS)3- + DS- + HS- + DS- = FeDSHSDS- + 3 HS- +Fe(HS)3- + DS- + HS- + TS- = FeDSHSTS- + 3 HS- +Fe(HS)3- + DS- + HS- + H[34S]- = FeDSHSH[34S]- + 3 HS- +Fe(HS)3- + DS- + HS- + D[34S]- = FeDSHSD[34S]- + 3 HS- +Fe(HS)3- + DS- + HS- + T[34S]- = FeDSHST[34S]- + 3 HS- +Fe(HS)3- + DS- + DS- + HS- = FeDSDSHS- + 3 HS- +Fe(HS)3- + DS- + DS- + TS- = FeDSDSTS- + 3 HS- +Fe(HS)3- + DS- + DS- + H[34S]- = FeDSDSH[34S]- + 3 HS- +Fe(HS)3- + DS- + DS- + T[34S]- = FeDSDST[34S]- + 3 HS- +Fe(HS)3- + DS- + TS- + HS- = FeDSTSHS- + 3 HS- +Fe(HS)3- + DS- + TS- + DS- = FeDSTSDS- + 3 HS- +Fe(HS)3- + DS- + TS- + H[34S]- = FeDSTSH[34S]- + 3 HS- +Fe(HS)3- + DS- + TS- + D[34S]- = FeDSTSD[34S]- + 3 HS- +Fe(HS)3- + DS- + H[34S]- + HS- = FeDSH[34S]HS- + 3 HS- +Fe(HS)3- + DS- + H[34S]- + DS- = FeDSH[34S]DS- + 3 HS- +Fe(HS)3- + DS- + H[34S]- + TS- = FeDSH[34S]TS- + 3 HS- +Fe(HS)3- + DS- + H[34S]- + H[34S]- = FeDSH[34S]H[34S]- + 3 HS- +Fe(HS)3- + DS- + H[34S]- + D[34S]- = FeDSH[34S]D[34S]- + 3 HS- +Fe(HS)3- + DS- + H[34S]- + T[34S]- = FeDSH[34S]T[34S]- + 3 HS- +Fe(HS)3- + DS- + D[34S]- + HS- = FeDSD[34S]HS- + 3 HS- +Fe(HS)3- + DS- + D[34S]- + TS- = FeDSD[34S]TS- + 3 HS- +Fe(HS)3- + DS- + D[34S]- + H[34S]- = FeDSD[34S]H[34S]- + 3 HS- +Fe(HS)3- + DS- + T[34S]- + HS- = FeDST[34S]HS- + 3 HS- +Fe(HS)3- + DS- + T[34S]- + DS- = FeDST[34S]DS- + 3 HS- +Fe(HS)3- + DS- + T[34S]- + H[34S]- = FeDST[34S]H[34S]- + 3 HS- +Fe(HS)3- + TS- + HS- + HS- = FeTSHSHS- + 3 HS- +Fe(HS)3- + TS- + HS- + DS- = FeTSHSDS- + 3 HS- +Fe(HS)3- + TS- + HS- + H[34S]- = FeTSHSH[34S]- + 3 HS- +Fe(HS)3- + TS- + HS- + D[34S]- = FeTSHSD[34S]- + 3 HS- +Fe(HS)3- + TS- + DS- + HS- = FeTSDSHS- + 3 HS- +Fe(HS)3- + TS- + DS- + DS- = FeTSDSDS- + 3 HS- +Fe(HS)3- + TS- + DS- + H[34S]- = FeTSDSH[34S]- + 3 HS- +Fe(HS)3- + TS- + DS- + D[34S]- = FeTSDSD[34S]- + 3 HS- +Fe(HS)3- + TS- + H[34S]- + HS- = FeTSH[34S]HS- + 3 HS- +Fe(HS)3- + TS- + H[34S]- + DS- = FeTSH[34S]DS- + 3 HS- +Fe(HS)3- + TS- + H[34S]- + H[34S]- = FeTSH[34S]H[34S]- + 3 HS- +Fe(HS)3- + TS- + H[34S]- + D[34S]- = FeTSH[34S]D[34S]- + 3 HS- +Fe(HS)3- + TS- + D[34S]- + HS- = FeTSD[34S]HS- + 3 HS- +Fe(HS)3- + TS- + D[34S]- + DS- = FeTSD[34S]DS- + 3 HS- +Fe(HS)3- + TS- + D[34S]- + H[34S]- = FeTSD[34S]H[34S]- + 3 HS- +Fe(HS)3- + H[34S]- + HS- + HS- = FeH[34S]HSHS- + 3 HS- +Fe(HS)3- + H[34S]- + HS- + DS- = FeH[34S]HSDS- + 3 HS- +Fe(HS)3- + H[34S]- + HS- + TS- = FeH[34S]HSTS- + 3 HS- +Fe(HS)3- + H[34S]- + HS- + H[34S]- = FeH[34S]HSH[34S]- + 3 HS- +Fe(HS)3- + H[34S]- + HS- + D[34S]- = FeH[34S]HSD[34S]- + 3 HS- +Fe(HS)3- + H[34S]- + HS- + T[34S]- = FeH[34S]HST[34S]- + 3 HS- +Fe(HS)3- + H[34S]- + DS- + HS- = FeH[34S]DSHS- + 3 HS- +Fe(HS)3- + H[34S]- + DS- + DS- = FeH[34S]DSDS- + 3 HS- +Fe(HS)3- + H[34S]- + DS- + TS- = FeH[34S]DSTS- + 3 HS- +Fe(HS)3- + H[34S]- + DS- + H[34S]- = FeH[34S]DSH[34S]- + 3 HS- +Fe(HS)3- + H[34S]- + DS- + D[34S]- = FeH[34S]DSD[34S]- + 3 HS- +Fe(HS)3- + H[34S]- + DS- + T[34S]- = FeH[34S]DST[34S]- + 3 HS- +Fe(HS)3- + H[34S]- + TS- + HS- = FeH[34S]TSHS- + 3 HS- +Fe(HS)3- + H[34S]- + TS- + DS- = FeH[34S]TSDS- + 3 HS- +Fe(HS)3- + H[34S]- + TS- + H[34S]- = FeH[34S]TSH[34S]- + 3 HS- +Fe(HS)3- + H[34S]- + TS- + D[34S]- = FeH[34S]TSD[34S]- + 3 HS- +Fe(HS)3- + H[34S]- + H[34S]- + HS- = FeH[34S]H[34S]HS- + 3 HS- +Fe(HS)3- + H[34S]- + H[34S]- + DS- = FeH[34S]H[34S]DS- + 3 HS- +Fe(HS)3- + H[34S]- + H[34S]- + TS- = FeH[34S]H[34S]TS- + 3 HS- +Fe(HS)3- + H[34S]- + H[34S]- + H[34S]- = FeH[34S]H[34S]H[34S]- + 3 HS- +Fe(HS)3- + H[34S]- + H[34S]- + D[34S]- = FeH[34S]H[34S]D[34S]- + 3 HS- +Fe(HS)3- + H[34S]- + H[34S]- + T[34S]- = FeH[34S]H[34S]T[34S]- + 3 HS- +Fe(HS)3- + H[34S]- + D[34S]- + HS- = FeH[34S]D[34S]HS- + 3 HS- +Fe(HS)3- + H[34S]- + D[34S]- + DS- = FeH[34S]D[34S]DS- + 3 HS- +Fe(HS)3- + H[34S]- + D[34S]- + TS- = FeH[34S]D[34S]TS- + 3 HS- +Fe(HS)3- + H[34S]- + D[34S]- + H[34S]- = FeH[34S]D[34S]H[34S]- + 3 HS- +Fe(HS)3- + H[34S]- + T[34S]- + HS- = FeH[34S]T[34S]HS- + 3 HS- +Fe(HS)3- + H[34S]- + T[34S]- + DS- = FeH[34S]T[34S]DS- + 3 HS- +Fe(HS)3- + H[34S]- + T[34S]- + H[34S]- = FeH[34S]T[34S]H[34S]- + 3 HS- +Fe(HS)3- + D[34S]- + HS- + HS- = FeD[34S]HSHS- + 3 HS- +Fe(HS)3- + D[34S]- + HS- + DS- = FeD[34S]HSDS- + 3 HS- +Fe(HS)3- + D[34S]- + HS- + TS- = FeD[34S]HSTS- + 3 HS- +Fe(HS)3- + D[34S]- + HS- + H[34S]- = FeD[34S]HSH[34S]- + 3 HS- +Fe(HS)3- + D[34S]- + HS- + D[34S]- = FeD[34S]HSD[34S]- + 3 HS- +Fe(HS)3- + D[34S]- + HS- + T[34S]- = FeD[34S]HST[34S]- + 3 HS- +Fe(HS)3- + D[34S]- + DS- + HS- = FeD[34S]DSHS- + 3 HS- +Fe(HS)3- + D[34S]- + DS- + TS- = FeD[34S]DSTS- + 3 HS- +Fe(HS)3- + D[34S]- + DS- + H[34S]- = FeD[34S]DSH[34S]- + 3 HS- +Fe(HS)3- + D[34S]- + TS- + HS- = FeD[34S]TSHS- + 3 HS- +Fe(HS)3- + D[34S]- + TS- + DS- = FeD[34S]TSDS- + 3 HS- +Fe(HS)3- + D[34S]- + TS- + H[34S]- = FeD[34S]TSH[34S]- + 3 HS- +Fe(HS)3- + D[34S]- + H[34S]- + HS- = FeD[34S]H[34S]HS- + 3 HS- +Fe(HS)3- + D[34S]- + H[34S]- + DS- = FeD[34S]H[34S]DS- + 3 HS- +Fe(HS)3- + D[34S]- + H[34S]- + TS- = FeD[34S]H[34S]TS- + 3 HS- +Fe(HS)3- + D[34S]- + H[34S]- + H[34S]- = FeD[34S]H[34S]H[34S]- + 3 HS- +Fe(HS)3- + D[34S]- + D[34S]- + HS- = FeD[34S]D[34S]HS- + 3 HS- +Fe(HS)3- + D[34S]- + T[34S]- + HS- = FeD[34S]T[34S]HS- + 3 HS- +Fe(HS)3- + T[34S]- + HS- + HS- = FeT[34S]HSHS- + 3 HS- +Fe(HS)3- + T[34S]- + HS- + DS- = FeT[34S]HSDS- + 3 HS- +Fe(HS)3- + T[34S]- + HS- + H[34S]- = FeT[34S]HSH[34S]- + 3 HS- +Fe(HS)3- + T[34S]- + HS- + D[34S]- = FeT[34S]HSD[34S]- + 3 HS- +Fe(HS)3- + T[34S]- + DS- + HS- = FeT[34S]DSHS- + 3 HS- +Fe(HS)3- + T[34S]- + DS- + DS- = FeT[34S]DSDS- + 3 HS- +Fe(HS)3- + T[34S]- + DS- + H[34S]- = FeT[34S]DSH[34S]- + 3 HS- +Fe(HS)3- + T[34S]- + H[34S]- + HS- = FeT[34S]H[34S]HS- + 3 HS- +Fe(HS)3- + T[34S]- + H[34S]- + DS- = FeT[34S]H[34S]DS- + 3 HS- +Fe(HS)3- + T[34S]- + H[34S]- + H[34S]- = FeT[34S]H[34S]H[34S]- + 3 HS- +Fe(HS)3- + T[34S]- + D[34S]- + HS- = FeT[34S]D[34S]HS- + 3 HS- # # Missing FeHPO4 reactions # @@ -5281,919 +5285,919 @@ FeOH+2 + [18O]T- = Fe[18O]T+2 + OH- # Added Fe(OH)2+ reactions 16Dec09 # Revised 17Dec09, limited the number of species # -Fe(OH)2+ + OH- + OD- = FeOHOD+ + 2OH- -Fe(OH)2+ + OH- + OT- = FeOHOT+ + 2OH- -Fe(OH)2+ + OH- + [18O]H- = FeOH[18O]H+ + 2OH- -Fe(OH)2+ + OH- + [18O]D- = FeOH[18O]D+ + 2OH- -Fe(OH)2+ + OH- + [18O]T- = FeOH[18O]T+ + 2OH- -Fe(OH)2+ + OD- + OH- = FeODOH+ + 2OH- -Fe(OH)2+ + OD- + OD- = FeODOD+ + 2OH- -Fe(OH)2+ + OD- + OT- = FeODOT+ + 2OH- -Fe(OH)2+ + OD- + [18O]H- = FeOD[18O]H+ + 2OH- -Fe(OH)2+ + OD- + [18O]D- = FeOD[18O]D+ + 2OH- -Fe(OH)2+ + OD- + [18O]T- = FeOD[18O]T+ + 2OH- -Fe(OH)2+ + OT- + OH- = FeOTOH+ + 2OH- -Fe(OH)2+ + OT- + OD- = FeOTOD+ + 2OH- -Fe(OH)2+ + OT- + [18O]H- = FeOT[18O]H+ + 2OH- -Fe(OH)2+ + OT- + [18O]D- = FeOT[18O]D+ + 2OH- -Fe(OH)2+ + [18O]H- + OH- = Fe[18O]HOH+ + 2OH- -Fe(OH)2+ + [18O]H- + OD- = Fe[18O]HOD+ + 2OH- -Fe(OH)2+ + [18O]H- + OT- = Fe[18O]HOT+ + 2OH- -Fe(OH)2+ + [18O]H- + [18O]H- = Fe[18O]H[18O]H+ + 2OH- -Fe(OH)2+ + [18O]H- + [18O]D- = Fe[18O]H[18O]D+ + 2OH- -Fe(OH)2+ + [18O]H- + [18O]T- = Fe[18O]H[18O]T+ + 2OH- -Fe(OH)2+ + [18O]D- + OH- = Fe[18O]DOH+ + 2OH- -Fe(OH)2+ + [18O]D- + OD- = Fe[18O]DOD+ + 2OH- -Fe(OH)2+ + [18O]D- + OT- = Fe[18O]DOT+ + 2OH- -Fe(OH)2+ + [18O]D- + [18O]H- = Fe[18O]D[18O]H+ + 2OH- -Fe(OH)2+ + [18O]D- + [18O]D- = Fe[18O]D[18O]D+ + 2OH- -Fe(OH)2+ + [18O]D- + [18O]T- = Fe[18O]D[18O]T+ + 2OH- -Fe(OH)2+ + [18O]T- + OH- = Fe[18O]TOH+ + 2OH- -Fe(OH)2+ + [18O]T- + OD- = Fe[18O]TOD+ + 2OH- -Fe(OH)2+ + [18O]T- + [18O]H- = Fe[18O]T[18O]H+ + 2OH- -Fe(OH)2+ + [18O]T- + [18O]D- = Fe[18O]T[18O]D+ + 2OH- +Fe(OH)2+ + OH- + OD- = FeOHOD+ + 2 OH- +Fe(OH)2+ + OH- + OT- = FeOHOT+ + 2 OH- +Fe(OH)2+ + OH- + [18O]H- = FeOH[18O]H+ + 2 OH- +Fe(OH)2+ + OH- + [18O]D- = FeOH[18O]D+ + 2 OH- +Fe(OH)2+ + OH- + [18O]T- = FeOH[18O]T+ + 2 OH- +Fe(OH)2+ + OD- + OH- = FeODOH+ + 2 OH- +Fe(OH)2+ + OD- + OD- = FeODOD+ + 2 OH- +Fe(OH)2+ + OD- + OT- = FeODOT+ + 2 OH- +Fe(OH)2+ + OD- + [18O]H- = FeOD[18O]H+ + 2 OH- +Fe(OH)2+ + OD- + [18O]D- = FeOD[18O]D+ + 2 OH- +Fe(OH)2+ + OD- + [18O]T- = FeOD[18O]T+ + 2 OH- +Fe(OH)2+ + OT- + OH- = FeOTOH+ + 2 OH- +Fe(OH)2+ + OT- + OD- = FeOTOD+ + 2 OH- +Fe(OH)2+ + OT- + [18O]H- = FeOT[18O]H+ + 2 OH- +Fe(OH)2+ + OT- + [18O]D- = FeOT[18O]D+ + 2 OH- +Fe(OH)2+ + [18O]H- + OH- = Fe[18O]HOH+ + 2 OH- +Fe(OH)2+ + [18O]H- + OD- = Fe[18O]HOD+ + 2 OH- +Fe(OH)2+ + [18O]H- + OT- = Fe[18O]HOT+ + 2 OH- +Fe(OH)2+ + [18O]H- + [18O]H- = Fe[18O]H[18O]H+ + 2 OH- +Fe(OH)2+ + [18O]H- + [18O]D- = Fe[18O]H[18O]D+ + 2 OH- +Fe(OH)2+ + [18O]H- + [18O]T- = Fe[18O]H[18O]T+ + 2 OH- +Fe(OH)2+ + [18O]D- + OH- = Fe[18O]DOH+ + 2 OH- +Fe(OH)2+ + [18O]D- + OD- = Fe[18O]DOD+ + 2 OH- +Fe(OH)2+ + [18O]D- + OT- = Fe[18O]DOT+ + 2 OH- +Fe(OH)2+ + [18O]D- + [18O]H- = Fe[18O]D[18O]H+ + 2 OH- +Fe(OH)2+ + [18O]D- + [18O]D- = Fe[18O]D[18O]D+ + 2 OH- +Fe(OH)2+ + [18O]D- + [18O]T- = Fe[18O]D[18O]T+ + 2 OH- +Fe(OH)2+ + [18O]T- + OH- = Fe[18O]TOH+ + 2 OH- +Fe(OH)2+ + [18O]T- + OD- = Fe[18O]TOD+ + 2 OH- +Fe(OH)2+ + [18O]T- + [18O]H- = Fe[18O]T[18O]H+ + 2 OH- +Fe(OH)2+ + [18O]T- + [18O]D- = Fe[18O]T[18O]D+ + 2 OH- # # Added Fe(OH)3 reactions 16Dec09 # Revised 17Dec09, limited the number of species # -Fe(OH)3 + OH- + OH- + OD- = FeOHOHOD + 3OH- -Fe(OH)3 + OH- + OH- + OT- = FeOHOHOT + 3OH- -Fe(OH)3 + OH- + OH- + [18O]H- = FeOHOH[18O]H + 3OH- -Fe(OH)3 + OH- + OH- + [18O]D- = FeOHOH[18O]D + 3OH- -Fe(OH)3 + OH- + OH- + [18O]T- = FeOHOH[18O]T + 3OH- -Fe(OH)3 + OH- + OD- + OH- = FeOHODOH + 3OH- -Fe(OH)3 + OH- + OD- + OD- = FeOHODOD + 3OH- -Fe(OH)3 + OH- + OD- + OT- = FeOHODOT + 3OH- -Fe(OH)3 + OH- + OD- + [18O]H- = FeOHOD[18O]H + 3OH- -Fe(OH)3 + OH- + OD- + [18O]D- = FeOHOD[18O]D + 3OH- -Fe(OH)3 + OH- + OD- + [18O]T- = FeOHOD[18O]T + 3OH- -Fe(OH)3 + OH- + OT- + OH- = FeOHOTOH + 3OH- -Fe(OH)3 + OH- + OT- + OD- = FeOHOTOD + 3OH- -Fe(OH)3 + OH- + OT- + [18O]H- = FeOHOT[18O]H + 3OH- -Fe(OH)3 + OH- + OT- + [18O]D- = FeOHOT[18O]D + 3OH- -Fe(OH)3 + OH- + [18O]H- + OH- = FeOH[18O]HOH + 3OH- -Fe(OH)3 + OH- + [18O]H- + OD- = FeOH[18O]HOD + 3OH- -Fe(OH)3 + OH- + [18O]H- + OT- = FeOH[18O]HOT + 3OH- -Fe(OH)3 + OH- + [18O]H- + [18O]H- = FeOH[18O]H[18O]H + 3OH- -Fe(OH)3 + OH- + [18O]H- + [18O]D- = FeOH[18O]H[18O]D + 3OH- -Fe(OH)3 + OH- + [18O]H- + [18O]T- = FeOH[18O]H[18O]T + 3OH- -Fe(OH)3 + OH- + [18O]D- + OH- = FeOH[18O]DOH + 3OH- -Fe(OH)3 + OH- + [18O]D- + OD- = FeOH[18O]DOD + 3OH- -Fe(OH)3 + OH- + [18O]D- + OT- = FeOH[18O]DOT + 3OH- -Fe(OH)3 + OH- + [18O]D- + [18O]H- = FeOH[18O]D[18O]H + 3OH- -Fe(OH)3 + OH- + [18O]D- + [18O]D- = FeOH[18O]D[18O]D + 3OH- -Fe(OH)3 + OH- + [18O]D- + [18O]T- = FeOH[18O]D[18O]T + 3OH- -Fe(OH)3 + OH- + [18O]T- + OH- = FeOH[18O]TOH + 3OH- -Fe(OH)3 + OH- + [18O]T- + OD- = FeOH[18O]TOD + 3OH- -Fe(OH)3 + OH- + [18O]T- + [18O]H- = FeOH[18O]T[18O]H + 3OH- -Fe(OH)3 + OH- + [18O]T- + [18O]D- = FeOH[18O]T[18O]D + 3OH- -Fe(OH)3 + OD- + OH- + OH- = FeODOHOH + 3OH- -Fe(OH)3 + OD- + OH- + OD- = FeODOHOD + 3OH- -Fe(OH)3 + OD- + OH- + OT- = FeODOHOT + 3OH- -Fe(OH)3 + OD- + OH- + [18O]H- = FeODOH[18O]H + 3OH- -Fe(OH)3 + OD- + OH- + [18O]D- = FeODOH[18O]D + 3OH- -Fe(OH)3 + OD- + OH- + [18O]T- = FeODOH[18O]T + 3OH- -Fe(OH)3 + OD- + OD- + OH- = FeODODOH + 3OH- -Fe(OH)3 + OD- + OD- + OT- = FeODODOT + 3OH- -Fe(OH)3 + OD- + OD- + [18O]H- = FeODOD[18O]H + 3OH- -Fe(OH)3 + OD- + OD- + [18O]T- = FeODOD[18O]T + 3OH- -Fe(OH)3 + OD- + OT- + OH- = FeODOTOH + 3OH- -Fe(OH)3 + OD- + OT- + OD- = FeODOTOD + 3OH- -Fe(OH)3 + OD- + OT- + [18O]H- = FeODOT[18O]H + 3OH- -Fe(OH)3 + OD- + OT- + [18O]D- = FeODOT[18O]D + 3OH- -Fe(OH)3 + OD- + [18O]H- + OH- = FeOD[18O]HOH + 3OH- -Fe(OH)3 + OD- + [18O]H- + OD- = FeOD[18O]HOD + 3OH- -Fe(OH)3 + OD- + [18O]H- + OT- = FeOD[18O]HOT + 3OH- -Fe(OH)3 + OD- + [18O]H- + [18O]H- = FeOD[18O]H[18O]H + 3OH- -Fe(OH)3 + OD- + [18O]H- + [18O]D- = FeOD[18O]H[18O]D + 3OH- -Fe(OH)3 + OD- + [18O]H- + [18O]T- = FeOD[18O]H[18O]T + 3OH- -Fe(OH)3 + OD- + [18O]D- + OH- = FeOD[18O]DOH + 3OH- -Fe(OH)3 + OD- + [18O]D- + OT- = FeOD[18O]DOT + 3OH- -Fe(OH)3 + OD- + [18O]D- + [18O]H- = FeOD[18O]D[18O]H + 3OH- -Fe(OH)3 + OD- + [18O]T- + OH- = FeOD[18O]TOH + 3OH- -Fe(OH)3 + OD- + [18O]T- + OD- = FeOD[18O]TOD + 3OH- -Fe(OH)3 + OD- + [18O]T- + [18O]H- = FeOD[18O]T[18O]H + 3OH- -Fe(OH)3 + OT- + OH- + OH- = FeOTOHOH + 3OH- -Fe(OH)3 + OT- + OH- + OD- = FeOTOHOD + 3OH- -Fe(OH)3 + OT- + OH- + [18O]H- = FeOTOH[18O]H + 3OH- -Fe(OH)3 + OT- + OH- + [18O]D- = FeOTOH[18O]D + 3OH- -Fe(OH)3 + OT- + OD- + OH- = FeOTODOH + 3OH- -Fe(OH)3 + OT- + OD- + OD- = FeOTODOD + 3OH- -Fe(OH)3 + OT- + OD- + [18O]H- = FeOTOD[18O]H + 3OH- -Fe(OH)3 + OT- + OD- + [18O]D- = FeOTOD[18O]D + 3OH- -Fe(OH)3 + OT- + [18O]H- + OH- = FeOT[18O]HOH + 3OH- -Fe(OH)3 + OT- + [18O]H- + OD- = FeOT[18O]HOD + 3OH- -Fe(OH)3 + OT- + [18O]H- + [18O]H- = FeOT[18O]H[18O]H + 3OH- -Fe(OH)3 + OT- + [18O]H- + [18O]D- = FeOT[18O]H[18O]D + 3OH- -Fe(OH)3 + OT- + [18O]D- + OH- = FeOT[18O]DOH + 3OH- -Fe(OH)3 + OT- + [18O]D- + OD- = FeOT[18O]DOD + 3OH- -Fe(OH)3 + OT- + [18O]D- + [18O]H- = FeOT[18O]D[18O]H + 3OH- -Fe(OH)3 + [18O]H- + OH- + OH- = Fe[18O]HOHOH + 3OH- -Fe(OH)3 + [18O]H- + OH- + OD- = Fe[18O]HOHOD + 3OH- -Fe(OH)3 + [18O]H- + OH- + OT- = Fe[18O]HOHOT + 3OH- -Fe(OH)3 + [18O]H- + OH- + [18O]H- = Fe[18O]HOH[18O]H + 3OH- -Fe(OH)3 + [18O]H- + OH- + [18O]D- = Fe[18O]HOH[18O]D + 3OH- -Fe(OH)3 + [18O]H- + OH- + [18O]T- = Fe[18O]HOH[18O]T + 3OH- -Fe(OH)3 + [18O]H- + OD- + OH- = Fe[18O]HODOH + 3OH- -Fe(OH)3 + [18O]H- + OD- + OD- = Fe[18O]HODOD + 3OH- -Fe(OH)3 + [18O]H- + OD- + OT- = Fe[18O]HODOT + 3OH- -Fe(OH)3 + [18O]H- + OD- + [18O]H- = Fe[18O]HOD[18O]H + 3OH- -Fe(OH)3 + [18O]H- + OD- + [18O]D- = Fe[18O]HOD[18O]D + 3OH- -Fe(OH)3 + [18O]H- + OD- + [18O]T- = Fe[18O]HOD[18O]T + 3OH- -Fe(OH)3 + [18O]H- + OT- + OH- = Fe[18O]HOTOH + 3OH- -Fe(OH)3 + [18O]H- + OT- + OD- = Fe[18O]HOTOD + 3OH- -Fe(OH)3 + [18O]H- + OT- + [18O]H- = Fe[18O]HOT[18O]H + 3OH- -Fe(OH)3 + [18O]H- + OT- + [18O]D- = Fe[18O]HOT[18O]D + 3OH- -Fe(OH)3 + [18O]H- + [18O]H- + OH- = Fe[18O]H[18O]HOH + 3OH- -Fe(OH)3 + [18O]H- + [18O]H- + OD- = Fe[18O]H[18O]HOD + 3OH- -Fe(OH)3 + [18O]H- + [18O]H- + OT- = Fe[18O]H[18O]HOT + 3OH- -Fe(OH)3 + [18O]H- + [18O]D- + OH- = Fe[18O]H[18O]DOH + 3OH- -Fe(OH)3 + [18O]H- + [18O]D- + OD- = Fe[18O]H[18O]DOD + 3OH- -Fe(OH)3 + [18O]H- + [18O]D- + OT- = Fe[18O]H[18O]DOT + 3OH- -Fe(OH)3 + [18O]H- + [18O]T- + OH- = Fe[18O]H[18O]TOH + 3OH- -Fe(OH)3 + [18O]H- + [18O]T- + OD- = Fe[18O]H[18O]TOD + 3OH- -Fe(OH)3 + [18O]D- + OH- + OH- = Fe[18O]DOHOH + 3OH- -Fe(OH)3 + [18O]D- + OH- + OD- = Fe[18O]DOHOD + 3OH- -Fe(OH)3 + [18O]D- + OH- + OT- = Fe[18O]DOHOT + 3OH- -Fe(OH)3 + [18O]D- + OH- + [18O]H- = Fe[18O]DOH[18O]H + 3OH- -Fe(OH)3 + [18O]D- + OH- + [18O]D- = Fe[18O]DOH[18O]D + 3OH- -Fe(OH)3 + [18O]D- + OH- + [18O]T- = Fe[18O]DOH[18O]T + 3OH- -Fe(OH)3 + [18O]D- + OD- + OH- = Fe[18O]DODOH + 3OH- -Fe(OH)3 + [18O]D- + OD- + OT- = Fe[18O]DODOT + 3OH- -Fe(OH)3 + [18O]D- + OD- + [18O]H- = Fe[18O]DOD[18O]H + 3OH- -Fe(OH)3 + [18O]D- + OT- + OH- = Fe[18O]DOTOH + 3OH- -Fe(OH)3 + [18O]D- + OT- + OD- = Fe[18O]DOTOD + 3OH- -Fe(OH)3 + [18O]D- + OT- + [18O]H- = Fe[18O]DOT[18O]H + 3OH- -Fe(OH)3 + [18O]D- + [18O]H- + OH- = Fe[18O]D[18O]HOH + 3OH- -Fe(OH)3 + [18O]D- + [18O]H- + OD- = Fe[18O]D[18O]HOD + 3OH- -Fe(OH)3 + [18O]D- + [18O]H- + OT- = Fe[18O]D[18O]HOT + 3OH- -Fe(OH)3 + [18O]D- + [18O]D- + OH- = Fe[18O]D[18O]DOH + 3OH- -Fe(OH)3 + [18O]D- + [18O]T- + OH- = Fe[18O]D[18O]TOH + 3OH- -Fe(OH)3 + [18O]T- + OH- + OH- = Fe[18O]TOHOH + 3OH- -Fe(OH)3 + [18O]T- + OH- + OD- = Fe[18O]TOHOD + 3OH- -Fe(OH)3 + [18O]T- + OH- + [18O]H- = Fe[18O]TOH[18O]H + 3OH- -Fe(OH)3 + [18O]T- + OH- + [18O]D- = Fe[18O]TOH[18O]D + 3OH- -Fe(OH)3 + [18O]T- + OD- + OH- = Fe[18O]TODOH + 3OH- -Fe(OH)3 + [18O]T- + OD- + OD- = Fe[18O]TODOD + 3OH- -Fe(OH)3 + [18O]T- + OD- + [18O]H- = Fe[18O]TOD[18O]H + 3OH- -Fe(OH)3 + [18O]T- + [18O]H- + OH- = Fe[18O]T[18O]HOH + 3OH- -Fe(OH)3 + [18O]T- + [18O]H- + OD- = Fe[18O]T[18O]HOD + 3OH- -Fe(OH)3 + [18O]T- + [18O]D- + OH- = Fe[18O]T[18O]DOH + 3OH- +Fe(OH)3 + OH- + OH- + OD- = FeOHOHOD + 3 OH- +Fe(OH)3 + OH- + OH- + OT- = FeOHOHOT + 3 OH- +Fe(OH)3 + OH- + OH- + [18O]H- = FeOHOH[18O]H + 3 OH- +Fe(OH)3 + OH- + OH- + [18O]D- = FeOHOH[18O]D + 3 OH- +Fe(OH)3 + OH- + OH- + [18O]T- = FeOHOH[18O]T + 3 OH- +Fe(OH)3 + OH- + OD- + OH- = FeOHODOH + 3 OH- +Fe(OH)3 + OH- + OD- + OD- = FeOHODOD + 3 OH- +Fe(OH)3 + OH- + OD- + OT- = FeOHODOT + 3 OH- +Fe(OH)3 + OH- + OD- + [18O]H- = FeOHOD[18O]H + 3 OH- +Fe(OH)3 + OH- + OD- + [18O]D- = FeOHOD[18O]D + 3 OH- +Fe(OH)3 + OH- + OD- + [18O]T- = FeOHOD[18O]T + 3 OH- +Fe(OH)3 + OH- + OT- + OH- = FeOHOTOH + 3 OH- +Fe(OH)3 + OH- + OT- + OD- = FeOHOTOD + 3 OH- +Fe(OH)3 + OH- + OT- + [18O]H- = FeOHOT[18O]H + 3 OH- +Fe(OH)3 + OH- + OT- + [18O]D- = FeOHOT[18O]D + 3 OH- +Fe(OH)3 + OH- + [18O]H- + OH- = FeOH[18O]HOH + 3 OH- +Fe(OH)3 + OH- + [18O]H- + OD- = FeOH[18O]HOD + 3 OH- +Fe(OH)3 + OH- + [18O]H- + OT- = FeOH[18O]HOT + 3 OH- +Fe(OH)3 + OH- + [18O]H- + [18O]H- = FeOH[18O]H[18O]H + 3 OH- +Fe(OH)3 + OH- + [18O]H- + [18O]D- = FeOH[18O]H[18O]D + 3 OH- +Fe(OH)3 + OH- + [18O]H- + [18O]T- = FeOH[18O]H[18O]T + 3 OH- +Fe(OH)3 + OH- + [18O]D- + OH- = FeOH[18O]DOH + 3 OH- +Fe(OH)3 + OH- + [18O]D- + OD- = FeOH[18O]DOD + 3 OH- +Fe(OH)3 + OH- + [18O]D- + OT- = FeOH[18O]DOT + 3 OH- +Fe(OH)3 + OH- + [18O]D- + [18O]H- = FeOH[18O]D[18O]H + 3 OH- +Fe(OH)3 + OH- + [18O]D- + [18O]D- = FeOH[18O]D[18O]D + 3 OH- +Fe(OH)3 + OH- + [18O]D- + [18O]T- = FeOH[18O]D[18O]T + 3 OH- +Fe(OH)3 + OH- + [18O]T- + OH- = FeOH[18O]TOH + 3 OH- +Fe(OH)3 + OH- + [18O]T- + OD- = FeOH[18O]TOD + 3 OH- +Fe(OH)3 + OH- + [18O]T- + [18O]H- = FeOH[18O]T[18O]H + 3 OH- +Fe(OH)3 + OH- + [18O]T- + [18O]D- = FeOH[18O]T[18O]D + 3 OH- +Fe(OH)3 + OD- + OH- + OH- = FeODOHOH + 3 OH- +Fe(OH)3 + OD- + OH- + OD- = FeODOHOD + 3 OH- +Fe(OH)3 + OD- + OH- + OT- = FeODOHOT + 3 OH- +Fe(OH)3 + OD- + OH- + [18O]H- = FeODOH[18O]H + 3 OH- +Fe(OH)3 + OD- + OH- + [18O]D- = FeODOH[18O]D + 3 OH- +Fe(OH)3 + OD- + OH- + [18O]T- = FeODOH[18O]T + 3 OH- +Fe(OH)3 + OD- + OD- + OH- = FeODODOH + 3 OH- +Fe(OH)3 + OD- + OD- + OT- = FeODODOT + 3 OH- +Fe(OH)3 + OD- + OD- + [18O]H- = FeODOD[18O]H + 3 OH- +Fe(OH)3 + OD- + OD- + [18O]T- = FeODOD[18O]T + 3 OH- +Fe(OH)3 + OD- + OT- + OH- = FeODOTOH + 3 OH- +Fe(OH)3 + OD- + OT- + OD- = FeODOTOD + 3 OH- +Fe(OH)3 + OD- + OT- + [18O]H- = FeODOT[18O]H + 3 OH- +Fe(OH)3 + OD- + OT- + [18O]D- = FeODOT[18O]D + 3 OH- +Fe(OH)3 + OD- + [18O]H- + OH- = FeOD[18O]HOH + 3 OH- +Fe(OH)3 + OD- + [18O]H- + OD- = FeOD[18O]HOD + 3 OH- +Fe(OH)3 + OD- + [18O]H- + OT- = FeOD[18O]HOT + 3 OH- +Fe(OH)3 + OD- + [18O]H- + [18O]H- = FeOD[18O]H[18O]H + 3 OH- +Fe(OH)3 + OD- + [18O]H- + [18O]D- = FeOD[18O]H[18O]D + 3 OH- +Fe(OH)3 + OD- + [18O]H- + [18O]T- = FeOD[18O]H[18O]T + 3 OH- +Fe(OH)3 + OD- + [18O]D- + OH- = FeOD[18O]DOH + 3 OH- +Fe(OH)3 + OD- + [18O]D- + OT- = FeOD[18O]DOT + 3 OH- +Fe(OH)3 + OD- + [18O]D- + [18O]H- = FeOD[18O]D[18O]H + 3 OH- +Fe(OH)3 + OD- + [18O]T- + OH- = FeOD[18O]TOH + 3 OH- +Fe(OH)3 + OD- + [18O]T- + OD- = FeOD[18O]TOD + 3 OH- +Fe(OH)3 + OD- + [18O]T- + [18O]H- = FeOD[18O]T[18O]H + 3 OH- +Fe(OH)3 + OT- + OH- + OH- = FeOTOHOH + 3 OH- +Fe(OH)3 + OT- + OH- + OD- = FeOTOHOD + 3 OH- +Fe(OH)3 + OT- + OH- + [18O]H- = FeOTOH[18O]H + 3 OH- +Fe(OH)3 + OT- + OH- + [18O]D- = FeOTOH[18O]D + 3 OH- +Fe(OH)3 + OT- + OD- + OH- = FeOTODOH + 3 OH- +Fe(OH)3 + OT- + OD- + OD- = FeOTODOD + 3 OH- +Fe(OH)3 + OT- + OD- + [18O]H- = FeOTOD[18O]H + 3 OH- +Fe(OH)3 + OT- + OD- + [18O]D- = FeOTOD[18O]D + 3 OH- +Fe(OH)3 + OT- + [18O]H- + OH- = FeOT[18O]HOH + 3 OH- +Fe(OH)3 + OT- + [18O]H- + OD- = FeOT[18O]HOD + 3 OH- +Fe(OH)3 + OT- + [18O]H- + [18O]H- = FeOT[18O]H[18O]H + 3 OH- +Fe(OH)3 + OT- + [18O]H- + [18O]D- = FeOT[18O]H[18O]D + 3 OH- +Fe(OH)3 + OT- + [18O]D- + OH- = FeOT[18O]DOH + 3 OH- +Fe(OH)3 + OT- + [18O]D- + OD- = FeOT[18O]DOD + 3 OH- +Fe(OH)3 + OT- + [18O]D- + [18O]H- = FeOT[18O]D[18O]H + 3 OH- +Fe(OH)3 + [18O]H- + OH- + OH- = Fe[18O]HOHOH + 3 OH- +Fe(OH)3 + [18O]H- + OH- + OD- = Fe[18O]HOHOD + 3 OH- +Fe(OH)3 + [18O]H- + OH- + OT- = Fe[18O]HOHOT + 3 OH- +Fe(OH)3 + [18O]H- + OH- + [18O]H- = Fe[18O]HOH[18O]H + 3 OH- +Fe(OH)3 + [18O]H- + OH- + [18O]D- = Fe[18O]HOH[18O]D + 3 OH- +Fe(OH)3 + [18O]H- + OH- + [18O]T- = Fe[18O]HOH[18O]T + 3 OH- +Fe(OH)3 + [18O]H- + OD- + OH- = Fe[18O]HODOH + 3 OH- +Fe(OH)3 + [18O]H- + OD- + OD- = Fe[18O]HODOD + 3 OH- +Fe(OH)3 + [18O]H- + OD- + OT- = Fe[18O]HODOT + 3 OH- +Fe(OH)3 + [18O]H- + OD- + [18O]H- = Fe[18O]HOD[18O]H + 3 OH- +Fe(OH)3 + [18O]H- + OD- + [18O]D- = Fe[18O]HOD[18O]D + 3 OH- +Fe(OH)3 + [18O]H- + OD- + [18O]T- = Fe[18O]HOD[18O]T + 3 OH- +Fe(OH)3 + [18O]H- + OT- + OH- = Fe[18O]HOTOH + 3 OH- +Fe(OH)3 + [18O]H- + OT- + OD- = Fe[18O]HOTOD + 3 OH- +Fe(OH)3 + [18O]H- + OT- + [18O]H- = Fe[18O]HOT[18O]H + 3 OH- +Fe(OH)3 + [18O]H- + OT- + [18O]D- = Fe[18O]HOT[18O]D + 3 OH- +Fe(OH)3 + [18O]H- + [18O]H- + OH- = Fe[18O]H[18O]HOH + 3 OH- +Fe(OH)3 + [18O]H- + [18O]H- + OD- = Fe[18O]H[18O]HOD + 3 OH- +Fe(OH)3 + [18O]H- + [18O]H- + OT- = Fe[18O]H[18O]HOT + 3 OH- +Fe(OH)3 + [18O]H- + [18O]D- + OH- = Fe[18O]H[18O]DOH + 3 OH- +Fe(OH)3 + [18O]H- + [18O]D- + OD- = Fe[18O]H[18O]DOD + 3 OH- +Fe(OH)3 + [18O]H- + [18O]D- + OT- = Fe[18O]H[18O]DOT + 3 OH- +Fe(OH)3 + [18O]H- + [18O]T- + OH- = Fe[18O]H[18O]TOH + 3 OH- +Fe(OH)3 + [18O]H- + [18O]T- + OD- = Fe[18O]H[18O]TOD + 3 OH- +Fe(OH)3 + [18O]D- + OH- + OH- = Fe[18O]DOHOH + 3 OH- +Fe(OH)3 + [18O]D- + OH- + OD- = Fe[18O]DOHOD + 3 OH- +Fe(OH)3 + [18O]D- + OH- + OT- = Fe[18O]DOHOT + 3 OH- +Fe(OH)3 + [18O]D- + OH- + [18O]H- = Fe[18O]DOH[18O]H + 3 OH- +Fe(OH)3 + [18O]D- + OH- + [18O]D- = Fe[18O]DOH[18O]D + 3 OH- +Fe(OH)3 + [18O]D- + OH- + [18O]T- = Fe[18O]DOH[18O]T + 3 OH- +Fe(OH)3 + [18O]D- + OD- + OH- = Fe[18O]DODOH + 3 OH- +Fe(OH)3 + [18O]D- + OD- + OT- = Fe[18O]DODOT + 3 OH- +Fe(OH)3 + [18O]D- + OD- + [18O]H- = Fe[18O]DOD[18O]H + 3 OH- +Fe(OH)3 + [18O]D- + OT- + OH- = Fe[18O]DOTOH + 3 OH- +Fe(OH)3 + [18O]D- + OT- + OD- = Fe[18O]DOTOD + 3 OH- +Fe(OH)3 + [18O]D- + OT- + [18O]H- = Fe[18O]DOT[18O]H + 3 OH- +Fe(OH)3 + [18O]D- + [18O]H- + OH- = Fe[18O]D[18O]HOH + 3 OH- +Fe(OH)3 + [18O]D- + [18O]H- + OD- = Fe[18O]D[18O]HOD + 3 OH- +Fe(OH)3 + [18O]D- + [18O]H- + OT- = Fe[18O]D[18O]HOT + 3 OH- +Fe(OH)3 + [18O]D- + [18O]D- + OH- = Fe[18O]D[18O]DOH + 3 OH- +Fe(OH)3 + [18O]D- + [18O]T- + OH- = Fe[18O]D[18O]TOH + 3 OH- +Fe(OH)3 + [18O]T- + OH- + OH- = Fe[18O]TOHOH + 3 OH- +Fe(OH)3 + [18O]T- + OH- + OD- = Fe[18O]TOHOD + 3 OH- +Fe(OH)3 + [18O]T- + OH- + [18O]H- = Fe[18O]TOH[18O]H + 3 OH- +Fe(OH)3 + [18O]T- + OH- + [18O]D- = Fe[18O]TOH[18O]D + 3 OH- +Fe(OH)3 + [18O]T- + OD- + OH- = Fe[18O]TODOH + 3 OH- +Fe(OH)3 + [18O]T- + OD- + OD- = Fe[18O]TODOD + 3 OH- +Fe(OH)3 + [18O]T- + OD- + [18O]H- = Fe[18O]TOD[18O]H + 3 OH- +Fe(OH)3 + [18O]T- + [18O]H- + OH- = Fe[18O]T[18O]HOH + 3 OH- +Fe(OH)3 + [18O]T- + [18O]H- + OD- = Fe[18O]T[18O]HOD + 3 OH- +Fe(OH)3 + [18O]T- + [18O]D- + OH- = Fe[18O]T[18O]DOH + 3 OH- # # Added Fe(OH)4- reactions 16Dec09 # Revised 17Dec09, limited the number of species # -Fe(OH)4- + OH- + OH- + OH- + OD- = FeOHOHOHOD- + 4OH- -Fe(OH)4- + OH- + OH- + OH- + OT- = FeOHOHOHOT- + 4OH- -Fe(OH)4- + OH- + OH- + OH- + [18O]H- = FeOHOHOH[18O]H- + 4OH- -Fe(OH)4- + OH- + OH- + OH- + [18O]D- = FeOHOHOH[18O]D- + 4OH- -Fe(OH)4- + OH- + OH- + OH- + [18O]T- = FeOHOHOH[18O]T- + 4OH- -Fe(OH)4- + OH- + OH- + OD- + OH- = FeOHOHODOH- + 4OH- -Fe(OH)4- + OH- + OH- + OD- + OD- = FeOHOHODOD- + 4OH- -Fe(OH)4- + OH- + OH- + OD- + OT- = FeOHOHODOT- + 4OH- -Fe(OH)4- + OH- + OH- + OD- + [18O]H- = FeOHOHOD[18O]H- + 4OH- -Fe(OH)4- + OH- + OH- + OD- + [18O]D- = FeOHOHOD[18O]D- + 4OH- -Fe(OH)4- + OH- + OH- + OD- + [18O]T- = FeOHOHOD[18O]T- + 4OH- -Fe(OH)4- + OH- + OH- + OT- + OH- = FeOHOHOTOH- + 4OH- -Fe(OH)4- + OH- + OH- + OT- + OD- = FeOHOHOTOD- + 4OH- -Fe(OH)4- + OH- + OH- + OT- + [18O]H- = FeOHOHOT[18O]H- + 4OH- -Fe(OH)4- + OH- + OH- + OT- + [18O]D- = FeOHOHOT[18O]D- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]H- + OH- = FeOHOH[18O]HOH- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]H- + OD- = FeOHOH[18O]HOD- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]H- + OT- = FeOHOH[18O]HOT- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]H- + [18O]H- = FeOHOH[18O]H[18O]H- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]H- + [18O]D- = FeOHOH[18O]H[18O]D- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]H- + [18O]T- = FeOHOH[18O]H[18O]T- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]D- + OH- = FeOHOH[18O]DOH- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]D- + OD- = FeOHOH[18O]DOD- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]D- + OT- = FeOHOH[18O]DOT- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]D- + [18O]H- = FeOHOH[18O]D[18O]H- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]D- + [18O]D- = FeOHOH[18O]D[18O]D- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]D- + [18O]T- = FeOHOH[18O]D[18O]T- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]T- + OH- = FeOHOH[18O]TOH- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]T- + OD- = FeOHOH[18O]TOD- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]T- + [18O]H- = FeOHOH[18O]T[18O]H- + 4OH- -Fe(OH)4- + OH- + OH- + [18O]T- + [18O]D- = FeOHOH[18O]T[18O]D- + 4OH- -Fe(OH)4- + OH- + OD- + OH- + OH- = FeOHODOHOH- + 4OH- -Fe(OH)4- + OH- + OD- + OH- + OD- = FeOHODOHOD- + 4OH- -Fe(OH)4- + OH- + OD- + OH- + OT- = FeOHODOHOT- + 4OH- -Fe(OH)4- + OH- + OD- + OH- + [18O]H- = FeOHODOH[18O]H- + 4OH- -Fe(OH)4- + OH- + OD- + OH- + [18O]D- = FeOHODOH[18O]D- + 4OH- -Fe(OH)4- + OH- + OD- + OH- + [18O]T- = FeOHODOH[18O]T- + 4OH- -Fe(OH)4- + OH- + OD- + OD- + OH- = FeOHODODOH- + 4OH- -Fe(OH)4- + OH- + OD- + OD- + OT- = FeOHODODOT- + 4OH- -Fe(OH)4- + OH- + OD- + OD- + [18O]H- = FeOHODOD[18O]H- + 4OH- -Fe(OH)4- + OH- + OD- + OD- + [18O]T- = FeOHODOD[18O]T- + 4OH- -Fe(OH)4- + OH- + OD- + OT- + OH- = FeOHODOTOH- + 4OH- -Fe(OH)4- + OH- + OD- + OT- + OD- = FeOHODOTOD- + 4OH- -Fe(OH)4- + OH- + OD- + OT- + [18O]H- = FeOHODOT[18O]H- + 4OH- -Fe(OH)4- + OH- + OD- + OT- + [18O]D- = FeOHODOT[18O]D- + 4OH- -Fe(OH)4- + OH- + OD- + [18O]H- + OH- = FeOHOD[18O]HOH- + 4OH- -Fe(OH)4- + OH- + OD- + [18O]H- + OD- = FeOHOD[18O]HOD- + 4OH- -Fe(OH)4- + OH- + OD- + [18O]H- + OT- = FeOHOD[18O]HOT- + 4OH- -Fe(OH)4- + OH- + OD- + [18O]H- + [18O]H- = FeOHOD[18O]H[18O]H- + 4OH- -Fe(OH)4- + OH- + OD- + [18O]H- + [18O]D- = FeOHOD[18O]H[18O]D- + 4OH- -Fe(OH)4- + OH- + OD- + [18O]H- + [18O]T- = FeOHOD[18O]H[18O]T- + 4OH- -Fe(OH)4- + OH- + OD- + [18O]D- + OH- = FeOHOD[18O]DOH- + 4OH- -Fe(OH)4- + OH- + OD- + [18O]D- + OT- = FeOHOD[18O]DOT- + 4OH- -Fe(OH)4- + OH- + OD- + [18O]D- + [18O]H- = FeOHOD[18O]D[18O]H- + 4OH- -Fe(OH)4- + OH- + OD- + [18O]T- + OH- = FeOHOD[18O]TOH- + 4OH- -Fe(OH)4- + OH- + OD- + [18O]T- + OD- = FeOHOD[18O]TOD- + 4OH- -Fe(OH)4- + OH- + OD- + [18O]T- + [18O]H- = FeOHOD[18O]T[18O]H- + 4OH- -Fe(OH)4- + OH- + OT- + OH- + OH- = FeOHOTOHOH- + 4OH- -Fe(OH)4- + OH- + OT- + OH- + OD- = FeOHOTOHOD- + 4OH- -Fe(OH)4- + OH- + OT- + OH- + [18O]H- = FeOHOTOH[18O]H- + 4OH- -Fe(OH)4- + OH- + OT- + OH- + [18O]D- = FeOHOTOH[18O]D- + 4OH- -Fe(OH)4- + OH- + OT- + OD- + OH- = FeOHOTODOH- + 4OH- -Fe(OH)4- + OH- + OT- + OD- + OD- = FeOHOTODOD- + 4OH- -Fe(OH)4- + OH- + OT- + OD- + [18O]H- = FeOHOTOD[18O]H- + 4OH- -Fe(OH)4- + OH- + OT- + OD- + [18O]D- = FeOHOTOD[18O]D- + 4OH- -Fe(OH)4- + OH- + OT- + [18O]H- + OH- = FeOHOT[18O]HOH- + 4OH- -Fe(OH)4- + OH- + OT- + [18O]H- + OD- = FeOHOT[18O]HOD- + 4OH- -Fe(OH)4- + OH- + OT- + [18O]H- + [18O]H- = FeOHOT[18O]H[18O]H- + 4OH- -Fe(OH)4- + OH- + OT- + [18O]H- + [18O]D- = FeOHOT[18O]H[18O]D- + 4OH- -Fe(OH)4- + OH- + OT- + [18O]D- + OH- = FeOHOT[18O]DOH- + 4OH- -Fe(OH)4- + OH- + OT- + [18O]D- + OD- = FeOHOT[18O]DOD- + 4OH- -Fe(OH)4- + OH- + OT- + [18O]D- + [18O]H- = FeOHOT[18O]D[18O]H- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OH- + OH- = FeOH[18O]HOHOH- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OH- + OD- = FeOH[18O]HOHOD- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OH- + OT- = FeOH[18O]HOHOT- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OH- + [18O]H- = FeOH[18O]HOH[18O]H- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OH- + [18O]D- = FeOH[18O]HOH[18O]D- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OH- + [18O]T- = FeOH[18O]HOH[18O]T- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OD- + OH- = FeOH[18O]HODOH- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OD- + OD- = FeOH[18O]HODOD- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OD- + OT- = FeOH[18O]HODOT- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OD- + [18O]H- = FeOH[18O]HOD[18O]H- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OD- + [18O]D- = FeOH[18O]HOD[18O]D- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OD- + [18O]T- = FeOH[18O]HOD[18O]T- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OT- + OH- = FeOH[18O]HOTOH- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OT- + OD- = FeOH[18O]HOTOD- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OT- + [18O]H- = FeOH[18O]HOT[18O]H- + 4OH- -Fe(OH)4- + OH- + [18O]H- + OT- + [18O]D- = FeOH[18O]HOT[18O]D- + 4OH- -Fe(OH)4- + OH- + [18O]H- + [18O]H- + OH- = FeOH[18O]H[18O]HOH- + 4OH- -Fe(OH)4- + OH- + [18O]H- + [18O]H- + OD- = FeOH[18O]H[18O]HOD- + 4OH- -Fe(OH)4- + OH- + [18O]H- + [18O]H- + OT- = FeOH[18O]H[18O]HOT- + 4OH- -Fe(OH)4- + OH- + [18O]H- + [18O]D- + OH- = FeOH[18O]H[18O]DOH- + 4OH- -Fe(OH)4- + OH- + [18O]H- + [18O]D- + OD- = FeOH[18O]H[18O]DOD- + 4OH- -Fe(OH)4- + OH- + [18O]H- + [18O]D- + OT- = FeOH[18O]H[18O]DOT- + 4OH- -Fe(OH)4- + OH- + [18O]H- + [18O]T- + OH- = FeOH[18O]H[18O]TOH- + 4OH- -Fe(OH)4- + OH- + [18O]H- + [18O]T- + OD- = FeOH[18O]H[18O]TOD- + 4OH- -Fe(OH)4- + OH- + [18O]D- + OH- + OH- = FeOH[18O]DOHOH- + 4OH- -Fe(OH)4- + OH- + [18O]D- + OH- + OD- = FeOH[18O]DOHOD- + 4OH- -Fe(OH)4- + OH- + [18O]D- + OH- + OT- = FeOH[18O]DOHOT- + 4OH- -Fe(OH)4- + OH- + [18O]D- + OH- + [18O]H- = FeOH[18O]DOH[18O]H- + 4OH- -Fe(OH)4- + OH- + [18O]D- + OH- + [18O]D- = FeOH[18O]DOH[18O]D- + 4OH- -Fe(OH)4- + OH- + [18O]D- + OH- + [18O]T- = FeOH[18O]DOH[18O]T- + 4OH- -Fe(OH)4- + OH- + [18O]D- + OD- + OH- = FeOH[18O]DODOH- + 4OH- -Fe(OH)4- + OH- + [18O]D- + OD- + OT- = FeOH[18O]DODOT- + 4OH- -Fe(OH)4- + OH- + [18O]D- + OD- + [18O]H- = FeOH[18O]DOD[18O]H- + 4OH- -Fe(OH)4- + OH- + [18O]D- + OT- + OH- = FeOH[18O]DOTOH- + 4OH- -Fe(OH)4- + OH- + [18O]D- + OT- + OD- = FeOH[18O]DOTOD- + 4OH- -Fe(OH)4- + OH- + [18O]D- + OT- + [18O]H- = FeOH[18O]DOT[18O]H- + 4OH- -Fe(OH)4- + OH- + [18O]D- + [18O]H- + OH- = FeOH[18O]D[18O]HOH- + 4OH- -Fe(OH)4- + OH- + [18O]D- + [18O]H- + OD- = FeOH[18O]D[18O]HOD- + 4OH- -Fe(OH)4- + OH- + [18O]D- + [18O]H- + OT- = FeOH[18O]D[18O]HOT- + 4OH- -Fe(OH)4- + OH- + [18O]D- + [18O]D- + OH- = FeOH[18O]D[18O]DOH- + 4OH- -Fe(OH)4- + OH- + [18O]D- + [18O]T- + OH- = FeOH[18O]D[18O]TOH- + 4OH- -Fe(OH)4- + OH- + [18O]T- + OH- + OH- = FeOH[18O]TOHOH- + 4OH- -Fe(OH)4- + OH- + [18O]T- + OH- + OD- = FeOH[18O]TOHOD- + 4OH- -Fe(OH)4- + OH- + [18O]T- + OH- + [18O]H- = FeOH[18O]TOH[18O]H- + 4OH- -Fe(OH)4- + OH- + [18O]T- + OH- + [18O]D- = FeOH[18O]TOH[18O]D- + 4OH- -Fe(OH)4- + OH- + [18O]T- + OD- + OH- = FeOH[18O]TODOH- + 4OH- -Fe(OH)4- + OH- + [18O]T- + OD- + OD- = FeOH[18O]TODOD- + 4OH- -Fe(OH)4- + OH- + [18O]T- + OD- + [18O]H- = FeOH[18O]TOD[18O]H- + 4OH- -Fe(OH)4- + OH- + [18O]T- + [18O]H- + OH- = FeOH[18O]T[18O]HOH- + 4OH- -Fe(OH)4- + OH- + [18O]T- + [18O]H- + OD- = FeOH[18O]T[18O]HOD- + 4OH- -Fe(OH)4- + OH- + [18O]T- + [18O]D- + OH- = FeOH[18O]T[18O]DOH- + 4OH- -Fe(OH)4- + OD- + OH- + OH- + OH- = FeODOHOHOH- + 4OH- -Fe(OH)4- + OD- + OH- + OH- + OD- = FeODOHOHOD- + 4OH- -Fe(OH)4- + OD- + OH- + OH- + OT- = FeODOHOHOT- + 4OH- -Fe(OH)4- + OD- + OH- + OH- + [18O]H- = FeODOHOH[18O]H- + 4OH- -Fe(OH)4- + OD- + OH- + OH- + [18O]D- = FeODOHOH[18O]D- + 4OH- -Fe(OH)4- + OD- + OH- + OH- + [18O]T- = FeODOHOH[18O]T- + 4OH- -Fe(OH)4- + OD- + OH- + OD- + OH- = FeODOHODOH- + 4OH- -Fe(OH)4- + OD- + OH- + OD- + OT- = FeODOHODOT- + 4OH- -Fe(OH)4- + OD- + OH- + OD- + [18O]H- = FeODOHOD[18O]H- + 4OH- -Fe(OH)4- + OD- + OH- + OD- + [18O]T- = FeODOHOD[18O]T- + 4OH- -Fe(OH)4- + OD- + OH- + OT- + OH- = FeODOHOTOH- + 4OH- -Fe(OH)4- + OD- + OH- + OT- + OD- = FeODOHOTOD- + 4OH- -Fe(OH)4- + OD- + OH- + OT- + [18O]H- = FeODOHOT[18O]H- + 4OH- -Fe(OH)4- + OD- + OH- + OT- + [18O]D- = FeODOHOT[18O]D- + 4OH- -Fe(OH)4- + OD- + OH- + [18O]H- + OH- = FeODOH[18O]HOH- + 4OH- -Fe(OH)4- + OD- + OH- + [18O]H- + OD- = FeODOH[18O]HOD- + 4OH- -Fe(OH)4- + OD- + OH- + [18O]H- + OT- = FeODOH[18O]HOT- + 4OH- -Fe(OH)4- + OD- + OH- + [18O]H- + [18O]H- = FeODOH[18O]H[18O]H- + 4OH- -Fe(OH)4- + OD- + OH- + [18O]H- + [18O]D- = FeODOH[18O]H[18O]D- + 4OH- -Fe(OH)4- + OD- + OH- + [18O]H- + [18O]T- = FeODOH[18O]H[18O]T- + 4OH- -Fe(OH)4- + OD- + OH- + [18O]D- + OH- = FeODOH[18O]DOH- + 4OH- -Fe(OH)4- + OD- + OH- + [18O]D- + OT- = FeODOH[18O]DOT- + 4OH- -Fe(OH)4- + OD- + OH- + [18O]D- + [18O]H- = FeODOH[18O]D[18O]H- + 4OH- -Fe(OH)4- + OD- + OH- + [18O]T- + OH- = FeODOH[18O]TOH- + 4OH- -Fe(OH)4- + OD- + OH- + [18O]T- + OD- = FeODOH[18O]TOD- + 4OH- -Fe(OH)4- + OD- + OH- + [18O]T- + [18O]H- = FeODOH[18O]T[18O]H- + 4OH- -Fe(OH)4- + OD- + OD- + OH- + OH- = FeODODOHOH- + 4OH- -Fe(OH)4- + OD- + OD- + OH- + OT- = FeODODOHOT- + 4OH- -Fe(OH)4- + OD- + OD- + OH- + [18O]H- = FeODODOH[18O]H- + 4OH- -Fe(OH)4- + OD- + OD- + OH- + [18O]T- = FeODODOH[18O]T- + 4OH- -Fe(OH)4- + OD- + OD- + OT- + OH- = FeODODOTOH- + 4OH- -Fe(OH)4- + OD- + OD- + OT- + [18O]H- = FeODODOT[18O]H- + 4OH- -Fe(OH)4- + OD- + OD- + [18O]H- + OH- = FeODOD[18O]HOH- + 4OH- -Fe(OH)4- + OD- + OD- + [18O]H- + OT- = FeODOD[18O]HOT- + 4OH- -Fe(OH)4- + OD- + OD- + [18O]H- + [18O]H- = FeODOD[18O]H[18O]H- + 4OH- -Fe(OH)4- + OD- + OD- + [18O]T- + OH- = FeODOD[18O]TOH- + 4OH- -Fe(OH)4- + OD- + OT- + OH- + OH- = FeODOTOHOH- + 4OH- -Fe(OH)4- + OD- + OT- + OH- + OD- = FeODOTOHOD- + 4OH- -Fe(OH)4- + OD- + OT- + OH- + [18O]H- = FeODOTOH[18O]H- + 4OH- -Fe(OH)4- + OD- + OT- + OH- + [18O]D- = FeODOTOH[18O]D- + 4OH- -Fe(OH)4- + OD- + OT- + OD- + OH- = FeODOTODOH- + 4OH- -Fe(OH)4- + OD- + OT- + OD- + [18O]H- = FeODOTOD[18O]H- + 4OH- -Fe(OH)4- + OD- + OT- + [18O]H- + OH- = FeODOT[18O]HOH- + 4OH- -Fe(OH)4- + OD- + OT- + [18O]H- + OD- = FeODOT[18O]HOD- + 4OH- -Fe(OH)4- + OD- + OT- + [18O]H- + [18O]H- = FeODOT[18O]H[18O]H- + 4OH- -Fe(OH)4- + OD- + OT- + [18O]D- + OH- = FeODOT[18O]DOH- + 4OH- -Fe(OH)4- + OD- + [18O]H- + OH- + OH- = FeOD[18O]HOHOH- + 4OH- -Fe(OH)4- + OD- + [18O]H- + OH- + OD- = FeOD[18O]HOHOD- + 4OH- -Fe(OH)4- + OD- + [18O]H- + OH- + OT- = FeOD[18O]HOHOT- + 4OH- -Fe(OH)4- + OD- + [18O]H- + OH- + [18O]H- = FeOD[18O]HOH[18O]H- + 4OH- -Fe(OH)4- + OD- + [18O]H- + OH- + [18O]D- = FeOD[18O]HOH[18O]D- + 4OH- -Fe(OH)4- + OD- + [18O]H- + OH- + [18O]T- = FeOD[18O]HOH[18O]T- + 4OH- -Fe(OH)4- + OD- + [18O]H- + OD- + OH- = FeOD[18O]HODOH- + 4OH- -Fe(OH)4- + OD- + [18O]H- + OD- + OT- = FeOD[18O]HODOT- + 4OH- -Fe(OH)4- + OD- + [18O]H- + OD- + [18O]H- = FeOD[18O]HOD[18O]H- + 4OH- -Fe(OH)4- + OD- + [18O]H- + OT- + OH- = FeOD[18O]HOTOH- + 4OH- -Fe(OH)4- + OD- + [18O]H- + OT- + OD- = FeOD[18O]HOTOD- + 4OH- -Fe(OH)4- + OD- + [18O]H- + OT- + [18O]H- = FeOD[18O]HOT[18O]H- + 4OH- -Fe(OH)4- + OD- + [18O]H- + [18O]H- + OH- = FeOD[18O]H[18O]HOH- + 4OH- -Fe(OH)4- + OD- + [18O]H- + [18O]H- + OD- = FeOD[18O]H[18O]HOD- + 4OH- -Fe(OH)4- + OD- + [18O]H- + [18O]H- + OT- = FeOD[18O]H[18O]HOT- + 4OH- -Fe(OH)4- + OD- + [18O]H- + [18O]D- + OH- = FeOD[18O]H[18O]DOH- + 4OH- -Fe(OH)4- + OD- + [18O]H- + [18O]T- + OH- = FeOD[18O]H[18O]TOH- + 4OH- -Fe(OH)4- + OD- + [18O]D- + OH- + OH- = FeOD[18O]DOHOH- + 4OH- -Fe(OH)4- + OD- + [18O]D- + OH- + OT- = FeOD[18O]DOHOT- + 4OH- -Fe(OH)4- + OD- + [18O]D- + OH- + [18O]H- = FeOD[18O]DOH[18O]H- + 4OH- -Fe(OH)4- + OD- + [18O]D- + OT- + OH- = FeOD[18O]DOTOH- + 4OH- -Fe(OH)4- + OD- + [18O]D- + [18O]H- + OH- = FeOD[18O]D[18O]HOH- + 4OH- -Fe(OH)4- + OD- + [18O]T- + OH- + OH- = FeOD[18O]TOHOH- + 4OH- -Fe(OH)4- + OD- + [18O]T- + OH- + OD- = FeOD[18O]TOHOD- + 4OH- -Fe(OH)4- + OD- + [18O]T- + OH- + [18O]H- = FeOD[18O]TOH[18O]H- + 4OH- -Fe(OH)4- + OD- + [18O]T- + OD- + OH- = FeOD[18O]TODOH- + 4OH- -Fe(OH)4- + OD- + [18O]T- + [18O]H- + OH- = FeOD[18O]T[18O]HOH- + 4OH- -Fe(OH)4- + OT- + OH- + OH- + OH- = FeOTOHOHOH- + 4OH- -Fe(OH)4- + OT- + OH- + OH- + OD- = FeOTOHOHOD- + 4OH- -Fe(OH)4- + OT- + OH- + OH- + [18O]H- = FeOTOHOH[18O]H- + 4OH- -Fe(OH)4- + OT- + OH- + OH- + [18O]D- = FeOTOHOH[18O]D- + 4OH- -Fe(OH)4- + OT- + OH- + OD- + OH- = FeOTOHODOH- + 4OH- -Fe(OH)4- + OT- + OH- + OD- + OD- = FeOTOHODOD- + 4OH- -Fe(OH)4- + OT- + OH- + OD- + [18O]H- = FeOTOHOD[18O]H- + 4OH- -Fe(OH)4- + OT- + OH- + OD- + [18O]D- = FeOTOHOD[18O]D- + 4OH- -Fe(OH)4- + OT- + OH- + [18O]H- + OH- = FeOTOH[18O]HOH- + 4OH- -Fe(OH)4- + OT- + OH- + [18O]H- + OD- = FeOTOH[18O]HOD- + 4OH- -Fe(OH)4- + OT- + OH- + [18O]H- + [18O]H- = FeOTOH[18O]H[18O]H- + 4OH- -Fe(OH)4- + OT- + OH- + [18O]H- + [18O]D- = FeOTOH[18O]H[18O]D- + 4OH- -Fe(OH)4- + OT- + OH- + [18O]D- + OH- = FeOTOH[18O]DOH- + 4OH- -Fe(OH)4- + OT- + OH- + [18O]D- + OD- = FeOTOH[18O]DOD- + 4OH- -Fe(OH)4- + OT- + OH- + [18O]D- + [18O]H- = FeOTOH[18O]D[18O]H- + 4OH- -Fe(OH)4- + OT- + OD- + OH- + OH- = FeOTODOHOH- + 4OH- -Fe(OH)4- + OT- + OD- + OH- + OD- = FeOTODOHOD- + 4OH- -Fe(OH)4- + OT- + OD- + OH- + [18O]H- = FeOTODOH[18O]H- + 4OH- -Fe(OH)4- + OT- + OD- + OH- + [18O]D- = FeOTODOH[18O]D- + 4OH- -Fe(OH)4- + OT- + OD- + OD- + OH- = FeOTODODOH- + 4OH- -Fe(OH)4- + OT- + OD- + OD- + [18O]H- = FeOTODOD[18O]H- + 4OH- -Fe(OH)4- + OT- + OD- + [18O]H- + OH- = FeOTOD[18O]HOH- + 4OH- -Fe(OH)4- + OT- + OD- + [18O]H- + OD- = FeOTOD[18O]HOD- + 4OH- -Fe(OH)4- + OT- + OD- + [18O]H- + [18O]H- = FeOTOD[18O]H[18O]H- + 4OH- -Fe(OH)4- + OT- + OD- + [18O]D- + OH- = FeOTOD[18O]DOH- + 4OH- -Fe(OH)4- + OT- + [18O]H- + OH- + OH- = FeOT[18O]HOHOH- + 4OH- -Fe(OH)4- + OT- + [18O]H- + OH- + OD- = FeOT[18O]HOHOD- + 4OH- -Fe(OH)4- + OT- + [18O]H- + OH- + [18O]H- = FeOT[18O]HOH[18O]H- + 4OH- -Fe(OH)4- + OT- + [18O]H- + OH- + [18O]D- = FeOT[18O]HOH[18O]D- + 4OH- -Fe(OH)4- + OT- + [18O]H- + OD- + OH- = FeOT[18O]HODOH- + 4OH- -Fe(OH)4- + OT- + [18O]H- + OD- + OD- = FeOT[18O]HODOD- + 4OH- -Fe(OH)4- + OT- + [18O]H- + OD- + [18O]H- = FeOT[18O]HOD[18O]H- + 4OH- -Fe(OH)4- + OT- + [18O]H- + [18O]H- + OH- = FeOT[18O]H[18O]HOH- + 4OH- -Fe(OH)4- + OT- + [18O]H- + [18O]H- + OD- = FeOT[18O]H[18O]HOD- + 4OH- -Fe(OH)4- + OT- + [18O]H- + [18O]D- + OH- = FeOT[18O]H[18O]DOH- + 4OH- -Fe(OH)4- + OT- + [18O]D- + OH- + OH- = FeOT[18O]DOHOH- + 4OH- -Fe(OH)4- + OT- + [18O]D- + OH- + OD- = FeOT[18O]DOHOD- + 4OH- -Fe(OH)4- + OT- + [18O]D- + OH- + [18O]H- = FeOT[18O]DOH[18O]H- + 4OH- -Fe(OH)4- + OT- + [18O]D- + OD- + OH- = FeOT[18O]DODOH- + 4OH- -Fe(OH)4- + OT- + [18O]D- + [18O]H- + OH- = FeOT[18O]D[18O]HOH- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OH- + OH- = Fe[18O]HOHOHOH- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OH- + OD- = Fe[18O]HOHOHOD- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OH- + OT- = Fe[18O]HOHOHOT- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OH- + [18O]H- = Fe[18O]HOHOH[18O]H- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OH- + [18O]D- = Fe[18O]HOHOH[18O]D- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OH- + [18O]T- = Fe[18O]HOHOH[18O]T- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OD- + OH- = Fe[18O]HOHODOH- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OD- + OD- = Fe[18O]HOHODOD- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OD- + OT- = Fe[18O]HOHODOT- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OD- + [18O]H- = Fe[18O]HOHOD[18O]H- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OD- + [18O]D- = Fe[18O]HOHOD[18O]D- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OD- + [18O]T- = Fe[18O]HOHOD[18O]T- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OT- + OH- = Fe[18O]HOHOTOH- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OT- + OD- = Fe[18O]HOHOTOD- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OT- + [18O]H- = Fe[18O]HOHOT[18O]H- + 4OH- -Fe(OH)4- + [18O]H- + OH- + OT- + [18O]D- = Fe[18O]HOHOT[18O]D- + 4OH- -Fe(OH)4- + [18O]H- + OH- + [18O]H- + OH- = Fe[18O]HOH[18O]HOH- + 4OH- -Fe(OH)4- + [18O]H- + OH- + [18O]H- + OD- = Fe[18O]HOH[18O]HOD- + 4OH- -Fe(OH)4- + [18O]H- + OH- + [18O]H- + OT- = Fe[18O]HOH[18O]HOT- + 4OH- -Fe(OH)4- + [18O]H- + OH- + [18O]D- + OH- = Fe[18O]HOH[18O]DOH- + 4OH- -Fe(OH)4- + [18O]H- + OH- + [18O]D- + OD- = Fe[18O]HOH[18O]DOD- + 4OH- -Fe(OH)4- + [18O]H- + OH- + [18O]D- + OT- = Fe[18O]HOH[18O]DOT- + 4OH- -Fe(OH)4- + [18O]H- + OH- + [18O]T- + OH- = Fe[18O]HOH[18O]TOH- + 4OH- -Fe(OH)4- + [18O]H- + OH- + [18O]T- + OD- = Fe[18O]HOH[18O]TOD- + 4OH- -Fe(OH)4- + [18O]H- + OD- + OH- + OH- = Fe[18O]HODOHOH- + 4OH- -Fe(OH)4- + [18O]H- + OD- + OH- + OD- = Fe[18O]HODOHOD- + 4OH- -Fe(OH)4- + [18O]H- + OD- + OH- + OT- = Fe[18O]HODOHOT- + 4OH- -Fe(OH)4- + [18O]H- + OD- + OH- + [18O]H- = Fe[18O]HODOH[18O]H- + 4OH- -Fe(OH)4- + [18O]H- + OD- + OH- + [18O]D- = Fe[18O]HODOH[18O]D- + 4OH- -Fe(OH)4- + [18O]H- + OD- + OH- + [18O]T- = Fe[18O]HODOH[18O]T- + 4OH- -Fe(OH)4- + [18O]H- + OD- + OD- + OH- = Fe[18O]HODODOH- + 4OH- -Fe(OH)4- + [18O]H- + OD- + OD- + OT- = Fe[18O]HODODOT- + 4OH- -Fe(OH)4- + [18O]H- + OD- + OD- + [18O]H- = Fe[18O]HODOD[18O]H- + 4OH- -Fe(OH)4- + [18O]H- + OD- + OT- + OH- = Fe[18O]HODOTOH- + 4OH- -Fe(OH)4- + [18O]H- + OD- + OT- + OD- = Fe[18O]HODOTOD- + 4OH- -Fe(OH)4- + [18O]H- + OD- + OT- + [18O]H- = Fe[18O]HODOT[18O]H- + 4OH- -Fe(OH)4- + [18O]H- + OD- + [18O]H- + OH- = Fe[18O]HOD[18O]HOH- + 4OH- -Fe(OH)4- + [18O]H- + OD- + [18O]H- + OD- = Fe[18O]HOD[18O]HOD- + 4OH- -Fe(OH)4- + [18O]H- + OD- + [18O]H- + OT- = Fe[18O]HOD[18O]HOT- + 4OH- -Fe(OH)4- + [18O]H- + OD- + [18O]D- + OH- = Fe[18O]HOD[18O]DOH- + 4OH- -Fe(OH)4- + [18O]H- + OD- + [18O]T- + OH- = Fe[18O]HOD[18O]TOH- + 4OH- -Fe(OH)4- + [18O]H- + OT- + OH- + OH- = Fe[18O]HOTOHOH- + 4OH- -Fe(OH)4- + [18O]H- + OT- + OH- + OD- = Fe[18O]HOTOHOD- + 4OH- -Fe(OH)4- + [18O]H- + OT- + OH- + [18O]H- = Fe[18O]HOTOH[18O]H- + 4OH- -Fe(OH)4- + [18O]H- + OT- + OH- + [18O]D- = Fe[18O]HOTOH[18O]D- + 4OH- -Fe(OH)4- + [18O]H- + OT- + OD- + OH- = Fe[18O]HOTODOH- + 4OH- -Fe(OH)4- + [18O]H- + OT- + OD- + OD- = Fe[18O]HOTODOD- + 4OH- -Fe(OH)4- + [18O]H- + OT- + OD- + [18O]H- = Fe[18O]HOTOD[18O]H- + 4OH- -Fe(OH)4- + [18O]H- + OT- + [18O]H- + OH- = Fe[18O]HOT[18O]HOH- + 4OH- -Fe(OH)4- + [18O]H- + OT- + [18O]H- + OD- = Fe[18O]HOT[18O]HOD- + 4OH- -Fe(OH)4- + [18O]H- + OT- + [18O]D- + OH- = Fe[18O]HOT[18O]DOH- + 4OH- -Fe(OH)4- + [18O]H- + [18O]H- + OH- + OH- = Fe[18O]H[18O]HOHOH- + 4OH- -Fe(OH)4- + [18O]H- + [18O]H- + OH- + OD- = Fe[18O]H[18O]HOHOD- + 4OH- -Fe(OH)4- + [18O]H- + [18O]H- + OH- + OT- = Fe[18O]H[18O]HOHOT- + 4OH- -Fe(OH)4- + [18O]H- + [18O]H- + OD- + OH- = Fe[18O]H[18O]HODOH- + 4OH- -Fe(OH)4- + [18O]H- + [18O]H- + OD- + OD- = Fe[18O]H[18O]HODOD- + 4OH- -Fe(OH)4- + [18O]H- + [18O]H- + OD- + OT- = Fe[18O]H[18O]HODOT- + 4OH- -Fe(OH)4- + [18O]H- + [18O]H- + OT- + OH- = Fe[18O]H[18O]HOTOH- + 4OH- -Fe(OH)4- + [18O]H- + [18O]H- + OT- + OD- = Fe[18O]H[18O]HOTOD- + 4OH- -Fe(OH)4- + [18O]H- + [18O]D- + OH- + OH- = Fe[18O]H[18O]DOHOH- + 4OH- -Fe(OH)4- + [18O]H- + [18O]D- + OH- + OD- = Fe[18O]H[18O]DOHOD- + 4OH- -Fe(OH)4- + [18O]H- + [18O]D- + OH- + OT- = Fe[18O]H[18O]DOHOT- + 4OH- -Fe(OH)4- + [18O]H- + [18O]D- + OD- + OH- = Fe[18O]H[18O]DODOH- + 4OH- -Fe(OH)4- + [18O]H- + [18O]D- + OT- + OH- = Fe[18O]H[18O]DOTOH- + 4OH- -Fe(OH)4- + [18O]H- + [18O]T- + OH- + OH- = Fe[18O]H[18O]TOHOH- + 4OH- -Fe(OH)4- + [18O]H- + [18O]T- + OH- + OD- = Fe[18O]H[18O]TOHOD- + 4OH- -Fe(OH)4- + [18O]H- + [18O]T- + OD- + OH- = Fe[18O]H[18O]TODOH- + 4OH- -Fe(OH)4- + [18O]D- + OH- + OH- + OH- = Fe[18O]DOHOHOH- + 4OH- -Fe(OH)4- + [18O]D- + OH- + OH- + OD- = Fe[18O]DOHOHOD- + 4OH- -Fe(OH)4- + [18O]D- + OH- + OH- + OT- = Fe[18O]DOHOHOT- + 4OH- -Fe(OH)4- + [18O]D- + OH- + OH- + [18O]H- = Fe[18O]DOHOH[18O]H- + 4OH- -Fe(OH)4- + [18O]D- + OH- + OH- + [18O]D- = Fe[18O]DOHOH[18O]D- + 4OH- -Fe(OH)4- + [18O]D- + OH- + OH- + [18O]T- = Fe[18O]DOHOH[18O]T- + 4OH- -Fe(OH)4- + [18O]D- + OH- + OD- + OH- = Fe[18O]DOHODOH- + 4OH- -Fe(OH)4- + [18O]D- + OH- + OD- + OT- = Fe[18O]DOHODOT- + 4OH- -Fe(OH)4- + [18O]D- + OH- + OD- + [18O]H- = Fe[18O]DOHOD[18O]H- + 4OH- -Fe(OH)4- + [18O]D- + OH- + OT- + OH- = Fe[18O]DOHOTOH- + 4OH- -Fe(OH)4- + [18O]D- + OH- + OT- + OD- = Fe[18O]DOHOTOD- + 4OH- -Fe(OH)4- + [18O]D- + OH- + OT- + [18O]H- = Fe[18O]DOHOT[18O]H- + 4OH- -Fe(OH)4- + [18O]D- + OH- + [18O]H- + OH- = Fe[18O]DOH[18O]HOH- + 4OH- -Fe(OH)4- + [18O]D- + OH- + [18O]H- + OD- = Fe[18O]DOH[18O]HOD- + 4OH- -Fe(OH)4- + [18O]D- + OH- + [18O]H- + OT- = Fe[18O]DOH[18O]HOT- + 4OH- -Fe(OH)4- + [18O]D- + OH- + [18O]D- + OH- = Fe[18O]DOH[18O]DOH- + 4OH- -Fe(OH)4- + [18O]D- + OH- + [18O]T- + OH- = Fe[18O]DOH[18O]TOH- + 4OH- -Fe(OH)4- + [18O]D- + OD- + OH- + OH- = Fe[18O]DODOHOH- + 4OH- -Fe(OH)4- + [18O]D- + OD- + OH- + OT- = Fe[18O]DODOHOT- + 4OH- -Fe(OH)4- + [18O]D- + OD- + OH- + [18O]H- = Fe[18O]DODOH[18O]H- + 4OH- -Fe(OH)4- + [18O]D- + OD- + OT- + OH- = Fe[18O]DODOTOH- + 4OH- -Fe(OH)4- + [18O]D- + OD- + [18O]H- + OH- = Fe[18O]DOD[18O]HOH- + 4OH- -Fe(OH)4- + [18O]D- + OT- + OH- + OH- = Fe[18O]DOTOHOH- + 4OH- -Fe(OH)4- + [18O]D- + OT- + OH- + OD- = Fe[18O]DOTOHOD- + 4OH- -Fe(OH)4- + [18O]D- + OT- + OH- + [18O]H- = Fe[18O]DOTOH[18O]H- + 4OH- -Fe(OH)4- + [18O]D- + OT- + OD- + OH- = Fe[18O]DOTODOH- + 4OH- -Fe(OH)4- + [18O]D- + OT- + [18O]H- + OH- = Fe[18O]DOT[18O]HOH- + 4OH- -Fe(OH)4- + [18O]D- + [18O]H- + OH- + OH- = Fe[18O]D[18O]HOHOH- + 4OH- -Fe(OH)4- + [18O]D- + [18O]H- + OH- + OD- = Fe[18O]D[18O]HOHOD- + 4OH- -Fe(OH)4- + [18O]D- + [18O]H- + OH- + OT- = Fe[18O]D[18O]HOHOT- + 4OH- -Fe(OH)4- + [18O]D- + [18O]H- + OD- + OH- = Fe[18O]D[18O]HODOH- + 4OH- -Fe(OH)4- + [18O]D- + [18O]H- + OT- + OH- = Fe[18O]D[18O]HOTOH- + 4OH- -Fe(OH)4- + [18O]D- + [18O]D- + OH- + OH- = Fe[18O]D[18O]DOHOH- + 4OH- -Fe(OH)4- + [18O]D- + [18O]T- + OH- + OH- = Fe[18O]D[18O]TOHOH- + 4OH- -Fe(OH)4- + [18O]T- + OH- + OH- + OH- = Fe[18O]TOHOHOH- + 4OH- -Fe(OH)4- + [18O]T- + OH- + OH- + OD- = Fe[18O]TOHOHOD- + 4OH- -Fe(OH)4- + [18O]T- + OH- + OH- + [18O]H- = Fe[18O]TOHOH[18O]H- + 4OH- -Fe(OH)4- + [18O]T- + OH- + OH- + [18O]D- = Fe[18O]TOHOH[18O]D- + 4OH- -Fe(OH)4- + [18O]T- + OH- + OD- + OH- = Fe[18O]TOHODOH- + 4OH- -Fe(OH)4- + [18O]T- + OH- + OD- + OD- = Fe[18O]TOHODOD- + 4OH- -Fe(OH)4- + [18O]T- + OH- + OD- + [18O]H- = Fe[18O]TOHOD[18O]H- + 4OH- -Fe(OH)4- + [18O]T- + OH- + [18O]H- + OH- = Fe[18O]TOH[18O]HOH- + 4OH- -Fe(OH)4- + [18O]T- + OH- + [18O]H- + OD- = Fe[18O]TOH[18O]HOD- + 4OH- -Fe(OH)4- + [18O]T- + OH- + [18O]D- + OH- = Fe[18O]TOH[18O]DOH- + 4OH- -Fe(OH)4- + [18O]T- + OD- + OH- + OH- = Fe[18O]TODOHOH- + 4OH- -Fe(OH)4- + [18O]T- + OD- + OH- + OD- = Fe[18O]TODOHOD- + 4OH- -Fe(OH)4- + [18O]T- + OD- + OH- + [18O]H- = Fe[18O]TODOH[18O]H- + 4OH- -Fe(OH)4- + [18O]T- + OD- + OD- + OH- = Fe[18O]TODODOH- + 4OH- -Fe(OH)4- + [18O]T- + OD- + [18O]H- + OH- = Fe[18O]TOD[18O]HOH- + 4OH- -Fe(OH)4- + [18O]T- + [18O]H- + OH- + OH- = Fe[18O]T[18O]HOHOH- + 4OH- -Fe(OH)4- + [18O]T- + [18O]H- + OH- + OD- = Fe[18O]T[18O]HOHOD- + 4OH- -Fe(OH)4- + [18O]T- + [18O]H- + OD- + OH- = Fe[18O]T[18O]HODOH- + 4OH- -Fe(OH)4- + [18O]T- + [18O]D- + OH- + OH- = Fe[18O]T[18O]DOHOH- + 4OH- +Fe(OH)4- + OH- + OH- + OH- + OD- = FeOHOHOHOD- + 4 OH- +Fe(OH)4- + OH- + OH- + OH- + OT- = FeOHOHOHOT- + 4 OH- +Fe(OH)4- + OH- + OH- + OH- + [18O]H- = FeOHOHOH[18O]H- + 4 OH- +Fe(OH)4- + OH- + OH- + OH- + [18O]D- = FeOHOHOH[18O]D- + 4 OH- +Fe(OH)4- + OH- + OH- + OH- + [18O]T- = FeOHOHOH[18O]T- + 4 OH- +Fe(OH)4- + OH- + OH- + OD- + OH- = FeOHOHODOH- + 4 OH- +Fe(OH)4- + OH- + OH- + OD- + OD- = FeOHOHODOD- + 4 OH- +Fe(OH)4- + OH- + OH- + OD- + OT- = FeOHOHODOT- + 4 OH- +Fe(OH)4- + OH- + OH- + OD- + [18O]H- = FeOHOHOD[18O]H- + 4 OH- +Fe(OH)4- + OH- + OH- + OD- + [18O]D- = FeOHOHOD[18O]D- + 4 OH- +Fe(OH)4- + OH- + OH- + OD- + [18O]T- = FeOHOHOD[18O]T- + 4 OH- +Fe(OH)4- + OH- + OH- + OT- + OH- = FeOHOHOTOH- + 4 OH- +Fe(OH)4- + OH- + OH- + OT- + OD- = FeOHOHOTOD- + 4 OH- +Fe(OH)4- + OH- + OH- + OT- + [18O]H- = FeOHOHOT[18O]H- + 4 OH- +Fe(OH)4- + OH- + OH- + OT- + [18O]D- = FeOHOHOT[18O]D- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]H- + OH- = FeOHOH[18O]HOH- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]H- + OD- = FeOHOH[18O]HOD- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]H- + OT- = FeOHOH[18O]HOT- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]H- + [18O]H- = FeOHOH[18O]H[18O]H- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]H- + [18O]D- = FeOHOH[18O]H[18O]D- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]H- + [18O]T- = FeOHOH[18O]H[18O]T- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]D- + OH- = FeOHOH[18O]DOH- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]D- + OD- = FeOHOH[18O]DOD- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]D- + OT- = FeOHOH[18O]DOT- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]D- + [18O]H- = FeOHOH[18O]D[18O]H- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]D- + [18O]D- = FeOHOH[18O]D[18O]D- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]D- + [18O]T- = FeOHOH[18O]D[18O]T- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]T- + OH- = FeOHOH[18O]TOH- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]T- + OD- = FeOHOH[18O]TOD- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]T- + [18O]H- = FeOHOH[18O]T[18O]H- + 4 OH- +Fe(OH)4- + OH- + OH- + [18O]T- + [18O]D- = FeOHOH[18O]T[18O]D- + 4 OH- +Fe(OH)4- + OH- + OD- + OH- + OH- = FeOHODOHOH- + 4 OH- +Fe(OH)4- + OH- + OD- + OH- + OD- = FeOHODOHOD- + 4 OH- +Fe(OH)4- + OH- + OD- + OH- + OT- = FeOHODOHOT- + 4 OH- +Fe(OH)4- + OH- + OD- + OH- + [18O]H- = FeOHODOH[18O]H- + 4 OH- +Fe(OH)4- + OH- + OD- + OH- + [18O]D- = FeOHODOH[18O]D- + 4 OH- +Fe(OH)4- + OH- + OD- + OH- + [18O]T- = FeOHODOH[18O]T- + 4 OH- +Fe(OH)4- + OH- + OD- + OD- + OH- = FeOHODODOH- + 4 OH- +Fe(OH)4- + OH- + OD- + OD- + OT- = FeOHODODOT- + 4 OH- +Fe(OH)4- + OH- + OD- + OD- + [18O]H- = FeOHODOD[18O]H- + 4 OH- +Fe(OH)4- + OH- + OD- + OD- + [18O]T- = FeOHODOD[18O]T- + 4 OH- +Fe(OH)4- + OH- + OD- + OT- + OH- = FeOHODOTOH- + 4 OH- +Fe(OH)4- + OH- + OD- + OT- + OD- = FeOHODOTOD- + 4 OH- +Fe(OH)4- + OH- + OD- + OT- + [18O]H- = FeOHODOT[18O]H- + 4 OH- +Fe(OH)4- + OH- + OD- + OT- + [18O]D- = FeOHODOT[18O]D- + 4 OH- +Fe(OH)4- + OH- + OD- + [18O]H- + OH- = FeOHOD[18O]HOH- + 4 OH- +Fe(OH)4- + OH- + OD- + [18O]H- + OD- = FeOHOD[18O]HOD- + 4 OH- +Fe(OH)4- + OH- + OD- + [18O]H- + OT- = FeOHOD[18O]HOT- + 4 OH- +Fe(OH)4- + OH- + OD- + [18O]H- + [18O]H- = FeOHOD[18O]H[18O]H- + 4 OH- +Fe(OH)4- + OH- + OD- + [18O]H- + [18O]D- = FeOHOD[18O]H[18O]D- + 4 OH- +Fe(OH)4- + OH- + OD- + [18O]H- + [18O]T- = FeOHOD[18O]H[18O]T- + 4 OH- +Fe(OH)4- + OH- + OD- + [18O]D- + OH- = FeOHOD[18O]DOH- + 4 OH- +Fe(OH)4- + OH- + OD- + [18O]D- + OT- = FeOHOD[18O]DOT- + 4 OH- +Fe(OH)4- + OH- + OD- + [18O]D- + [18O]H- = FeOHOD[18O]D[18O]H- + 4 OH- +Fe(OH)4- + OH- + OD- + [18O]T- + OH- = FeOHOD[18O]TOH- + 4 OH- +Fe(OH)4- + OH- + OD- + [18O]T- + OD- = FeOHOD[18O]TOD- + 4 OH- +Fe(OH)4- + OH- + OD- + [18O]T- + [18O]H- = FeOHOD[18O]T[18O]H- + 4 OH- +Fe(OH)4- + OH- + OT- + OH- + OH- = FeOHOTOHOH- + 4 OH- +Fe(OH)4- + OH- + OT- + OH- + OD- = FeOHOTOHOD- + 4 OH- +Fe(OH)4- + OH- + OT- + OH- + [18O]H- = FeOHOTOH[18O]H- + 4 OH- +Fe(OH)4- + OH- + OT- + OH- + [18O]D- = FeOHOTOH[18O]D- + 4 OH- +Fe(OH)4- + OH- + OT- + OD- + OH- = FeOHOTODOH- + 4 OH- +Fe(OH)4- + OH- + OT- + OD- + OD- = FeOHOTODOD- + 4 OH- +Fe(OH)4- + OH- + OT- + OD- + [18O]H- = FeOHOTOD[18O]H- + 4 OH- +Fe(OH)4- + OH- + OT- + OD- + [18O]D- = FeOHOTOD[18O]D- + 4 OH- +Fe(OH)4- + OH- + OT- + [18O]H- + OH- = FeOHOT[18O]HOH- + 4 OH- +Fe(OH)4- + OH- + OT- + [18O]H- + OD- = FeOHOT[18O]HOD- + 4 OH- +Fe(OH)4- + OH- + OT- + [18O]H- + [18O]H- = FeOHOT[18O]H[18O]H- + 4 OH- +Fe(OH)4- + OH- + OT- + [18O]H- + [18O]D- = FeOHOT[18O]H[18O]D- + 4 OH- +Fe(OH)4- + OH- + OT- + [18O]D- + OH- = FeOHOT[18O]DOH- + 4 OH- +Fe(OH)4- + OH- + OT- + [18O]D- + OD- = FeOHOT[18O]DOD- + 4 OH- +Fe(OH)4- + OH- + OT- + [18O]D- + [18O]H- = FeOHOT[18O]D[18O]H- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OH- + OH- = FeOH[18O]HOHOH- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OH- + OD- = FeOH[18O]HOHOD- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OH- + OT- = FeOH[18O]HOHOT- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OH- + [18O]H- = FeOH[18O]HOH[18O]H- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OH- + [18O]D- = FeOH[18O]HOH[18O]D- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OH- + [18O]T- = FeOH[18O]HOH[18O]T- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OD- + OH- = FeOH[18O]HODOH- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OD- + OD- = FeOH[18O]HODOD- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OD- + OT- = FeOH[18O]HODOT- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OD- + [18O]H- = FeOH[18O]HOD[18O]H- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OD- + [18O]D- = FeOH[18O]HOD[18O]D- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OD- + [18O]T- = FeOH[18O]HOD[18O]T- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OT- + OH- = FeOH[18O]HOTOH- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OT- + OD- = FeOH[18O]HOTOD- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OT- + [18O]H- = FeOH[18O]HOT[18O]H- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + OT- + [18O]D- = FeOH[18O]HOT[18O]D- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + [18O]H- + OH- = FeOH[18O]H[18O]HOH- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + [18O]H- + OD- = FeOH[18O]H[18O]HOD- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + [18O]H- + OT- = FeOH[18O]H[18O]HOT- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + [18O]D- + OH- = FeOH[18O]H[18O]DOH- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + [18O]D- + OD- = FeOH[18O]H[18O]DOD- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + [18O]D- + OT- = FeOH[18O]H[18O]DOT- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + [18O]T- + OH- = FeOH[18O]H[18O]TOH- + 4 OH- +Fe(OH)4- + OH- + [18O]H- + [18O]T- + OD- = FeOH[18O]H[18O]TOD- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + OH- + OH- = FeOH[18O]DOHOH- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + OH- + OD- = FeOH[18O]DOHOD- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + OH- + OT- = FeOH[18O]DOHOT- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + OH- + [18O]H- = FeOH[18O]DOH[18O]H- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + OH- + [18O]D- = FeOH[18O]DOH[18O]D- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + OH- + [18O]T- = FeOH[18O]DOH[18O]T- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + OD- + OH- = FeOH[18O]DODOH- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + OD- + OT- = FeOH[18O]DODOT- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + OD- + [18O]H- = FeOH[18O]DOD[18O]H- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + OT- + OH- = FeOH[18O]DOTOH- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + OT- + OD- = FeOH[18O]DOTOD- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + OT- + [18O]H- = FeOH[18O]DOT[18O]H- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + [18O]H- + OH- = FeOH[18O]D[18O]HOH- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + [18O]H- + OD- = FeOH[18O]D[18O]HOD- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + [18O]H- + OT- = FeOH[18O]D[18O]HOT- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + [18O]D- + OH- = FeOH[18O]D[18O]DOH- + 4 OH- +Fe(OH)4- + OH- + [18O]D- + [18O]T- + OH- = FeOH[18O]D[18O]TOH- + 4 OH- +Fe(OH)4- + OH- + [18O]T- + OH- + OH- = FeOH[18O]TOHOH- + 4 OH- +Fe(OH)4- + OH- + [18O]T- + OH- + OD- = FeOH[18O]TOHOD- + 4 OH- +Fe(OH)4- + OH- + [18O]T- + OH- + [18O]H- = FeOH[18O]TOH[18O]H- + 4 OH- +Fe(OH)4- + OH- + [18O]T- + OH- + [18O]D- = FeOH[18O]TOH[18O]D- + 4 OH- +Fe(OH)4- + OH- + [18O]T- + OD- + OH- = FeOH[18O]TODOH- + 4 OH- +Fe(OH)4- + OH- + [18O]T- + OD- + OD- = FeOH[18O]TODOD- + 4 OH- +Fe(OH)4- + OH- + [18O]T- + OD- + [18O]H- = FeOH[18O]TOD[18O]H- + 4 OH- +Fe(OH)4- + OH- + [18O]T- + [18O]H- + OH- = FeOH[18O]T[18O]HOH- + 4 OH- +Fe(OH)4- + OH- + [18O]T- + [18O]H- + OD- = FeOH[18O]T[18O]HOD- + 4 OH- +Fe(OH)4- + OH- + [18O]T- + [18O]D- + OH- = FeOH[18O]T[18O]DOH- + 4 OH- +Fe(OH)4- + OD- + OH- + OH- + OH- = FeODOHOHOH- + 4 OH- +Fe(OH)4- + OD- + OH- + OH- + OD- = FeODOHOHOD- + 4 OH- +Fe(OH)4- + OD- + OH- + OH- + OT- = FeODOHOHOT- + 4 OH- +Fe(OH)4- + OD- + OH- + OH- + [18O]H- = FeODOHOH[18O]H- + 4 OH- +Fe(OH)4- + OD- + OH- + OH- + [18O]D- = FeODOHOH[18O]D- + 4 OH- +Fe(OH)4- + OD- + OH- + OH- + [18O]T- = FeODOHOH[18O]T- + 4 OH- +Fe(OH)4- + OD- + OH- + OD- + OH- = FeODOHODOH- + 4 OH- +Fe(OH)4- + OD- + OH- + OD- + OT- = FeODOHODOT- + 4 OH- +Fe(OH)4- + OD- + OH- + OD- + [18O]H- = FeODOHOD[18O]H- + 4 OH- +Fe(OH)4- + OD- + OH- + OD- + [18O]T- = FeODOHOD[18O]T- + 4 OH- +Fe(OH)4- + OD- + OH- + OT- + OH- = FeODOHOTOH- + 4 OH- +Fe(OH)4- + OD- + OH- + OT- + OD- = FeODOHOTOD- + 4 OH- +Fe(OH)4- + OD- + OH- + OT- + [18O]H- = FeODOHOT[18O]H- + 4 OH- +Fe(OH)4- + OD- + OH- + OT- + [18O]D- = FeODOHOT[18O]D- + 4 OH- +Fe(OH)4- + OD- + OH- + [18O]H- + OH- = FeODOH[18O]HOH- + 4 OH- +Fe(OH)4- + OD- + OH- + [18O]H- + OD- = FeODOH[18O]HOD- + 4 OH- +Fe(OH)4- + OD- + OH- + [18O]H- + OT- = FeODOH[18O]HOT- + 4 OH- +Fe(OH)4- + OD- + OH- + [18O]H- + [18O]H- = FeODOH[18O]H[18O]H- + 4 OH- +Fe(OH)4- + OD- + OH- + [18O]H- + [18O]D- = FeODOH[18O]H[18O]D- + 4 OH- +Fe(OH)4- + OD- + OH- + [18O]H- + [18O]T- = FeODOH[18O]H[18O]T- + 4 OH- +Fe(OH)4- + OD- + OH- + [18O]D- + OH- = FeODOH[18O]DOH- + 4 OH- +Fe(OH)4- + OD- + OH- + [18O]D- + OT- = FeODOH[18O]DOT- + 4 OH- +Fe(OH)4- + OD- + OH- + [18O]D- + [18O]H- = FeODOH[18O]D[18O]H- + 4 OH- +Fe(OH)4- + OD- + OH- + [18O]T- + OH- = FeODOH[18O]TOH- + 4 OH- +Fe(OH)4- + OD- + OH- + [18O]T- + OD- = FeODOH[18O]TOD- + 4 OH- +Fe(OH)4- + OD- + OH- + [18O]T- + [18O]H- = FeODOH[18O]T[18O]H- + 4 OH- +Fe(OH)4- + OD- + OD- + OH- + OH- = FeODODOHOH- + 4 OH- +Fe(OH)4- + OD- + OD- + OH- + OT- = FeODODOHOT- + 4 OH- +Fe(OH)4- + OD- + OD- + OH- + [18O]H- = FeODODOH[18O]H- + 4 OH- +Fe(OH)4- + OD- + OD- + OH- + [18O]T- = FeODODOH[18O]T- + 4 OH- +Fe(OH)4- + OD- + OD- + OT- + OH- = FeODODOTOH- + 4 OH- +Fe(OH)4- + OD- + OD- + OT- + [18O]H- = FeODODOT[18O]H- + 4 OH- +Fe(OH)4- + OD- + OD- + [18O]H- + OH- = FeODOD[18O]HOH- + 4 OH- +Fe(OH)4- + OD- + OD- + [18O]H- + OT- = FeODOD[18O]HOT- + 4 OH- +Fe(OH)4- + OD- + OD- + [18O]H- + [18O]H- = FeODOD[18O]H[18O]H- + 4 OH- +Fe(OH)4- + OD- + OD- + [18O]T- + OH- = FeODOD[18O]TOH- + 4 OH- +Fe(OH)4- + OD- + OT- + OH- + OH- = FeODOTOHOH- + 4 OH- +Fe(OH)4- + OD- + OT- + OH- + OD- = FeODOTOHOD- + 4 OH- +Fe(OH)4- + OD- + OT- + OH- + [18O]H- = FeODOTOH[18O]H- + 4 OH- +Fe(OH)4- + OD- + OT- + OH- + [18O]D- = FeODOTOH[18O]D- + 4 OH- +Fe(OH)4- + OD- + OT- + OD- + OH- = FeODOTODOH- + 4 OH- +Fe(OH)4- + OD- + OT- + OD- + [18O]H- = FeODOTOD[18O]H- + 4 OH- +Fe(OH)4- + OD- + OT- + [18O]H- + OH- = FeODOT[18O]HOH- + 4 OH- +Fe(OH)4- + OD- + OT- + [18O]H- + OD- = FeODOT[18O]HOD- + 4 OH- +Fe(OH)4- + OD- + OT- + [18O]H- + [18O]H- = FeODOT[18O]H[18O]H- + 4 OH- +Fe(OH)4- + OD- + OT- + [18O]D- + OH- = FeODOT[18O]DOH- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + OH- + OH- = FeOD[18O]HOHOH- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + OH- + OD- = FeOD[18O]HOHOD- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + OH- + OT- = FeOD[18O]HOHOT- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + OH- + [18O]H- = FeOD[18O]HOH[18O]H- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + OH- + [18O]D- = FeOD[18O]HOH[18O]D- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + OH- + [18O]T- = FeOD[18O]HOH[18O]T- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + OD- + OH- = FeOD[18O]HODOH- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + OD- + OT- = FeOD[18O]HODOT- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + OD- + [18O]H- = FeOD[18O]HOD[18O]H- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + OT- + OH- = FeOD[18O]HOTOH- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + OT- + OD- = FeOD[18O]HOTOD- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + OT- + [18O]H- = FeOD[18O]HOT[18O]H- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + [18O]H- + OH- = FeOD[18O]H[18O]HOH- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + [18O]H- + OD- = FeOD[18O]H[18O]HOD- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + [18O]H- + OT- = FeOD[18O]H[18O]HOT- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + [18O]D- + OH- = FeOD[18O]H[18O]DOH- + 4 OH- +Fe(OH)4- + OD- + [18O]H- + [18O]T- + OH- = FeOD[18O]H[18O]TOH- + 4 OH- +Fe(OH)4- + OD- + [18O]D- + OH- + OH- = FeOD[18O]DOHOH- + 4 OH- +Fe(OH)4- + OD- + [18O]D- + OH- + OT- = FeOD[18O]DOHOT- + 4 OH- +Fe(OH)4- + OD- + [18O]D- + OH- + [18O]H- = FeOD[18O]DOH[18O]H- + 4 OH- +Fe(OH)4- + OD- + [18O]D- + OT- + OH- = FeOD[18O]DOTOH- + 4 OH- +Fe(OH)4- + OD- + [18O]D- + [18O]H- + OH- = FeOD[18O]D[18O]HOH- + 4 OH- +Fe(OH)4- + OD- + [18O]T- + OH- + OH- = FeOD[18O]TOHOH- + 4 OH- +Fe(OH)4- + OD- + [18O]T- + OH- + OD- = FeOD[18O]TOHOD- + 4 OH- +Fe(OH)4- + OD- + [18O]T- + OH- + [18O]H- = FeOD[18O]TOH[18O]H- + 4 OH- +Fe(OH)4- + OD- + [18O]T- + OD- + OH- = FeOD[18O]TODOH- + 4 OH- +Fe(OH)4- + OD- + [18O]T- + [18O]H- + OH- = FeOD[18O]T[18O]HOH- + 4 OH- +Fe(OH)4- + OT- + OH- + OH- + OH- = FeOTOHOHOH- + 4 OH- +Fe(OH)4- + OT- + OH- + OH- + OD- = FeOTOHOHOD- + 4 OH- +Fe(OH)4- + OT- + OH- + OH- + [18O]H- = FeOTOHOH[18O]H- + 4 OH- +Fe(OH)4- + OT- + OH- + OH- + [18O]D- = FeOTOHOH[18O]D- + 4 OH- +Fe(OH)4- + OT- + OH- + OD- + OH- = FeOTOHODOH- + 4 OH- +Fe(OH)4- + OT- + OH- + OD- + OD- = FeOTOHODOD- + 4 OH- +Fe(OH)4- + OT- + OH- + OD- + [18O]H- = FeOTOHOD[18O]H- + 4 OH- +Fe(OH)4- + OT- + OH- + OD- + [18O]D- = FeOTOHOD[18O]D- + 4 OH- +Fe(OH)4- + OT- + OH- + [18O]H- + OH- = FeOTOH[18O]HOH- + 4 OH- +Fe(OH)4- + OT- + OH- + [18O]H- + OD- = FeOTOH[18O]HOD- + 4 OH- +Fe(OH)4- + OT- + OH- + [18O]H- + [18O]H- = FeOTOH[18O]H[18O]H- + 4 OH- +Fe(OH)4- + OT- + OH- + [18O]H- + [18O]D- = FeOTOH[18O]H[18O]D- + 4 OH- +Fe(OH)4- + OT- + OH- + [18O]D- + OH- = FeOTOH[18O]DOH- + 4 OH- +Fe(OH)4- + OT- + OH- + [18O]D- + OD- = FeOTOH[18O]DOD- + 4 OH- +Fe(OH)4- + OT- + OH- + [18O]D- + [18O]H- = FeOTOH[18O]D[18O]H- + 4 OH- +Fe(OH)4- + OT- + OD- + OH- + OH- = FeOTODOHOH- + 4 OH- +Fe(OH)4- + OT- + OD- + OH- + OD- = FeOTODOHOD- + 4 OH- +Fe(OH)4- + OT- + OD- + OH- + [18O]H- = FeOTODOH[18O]H- + 4 OH- +Fe(OH)4- + OT- + OD- + OH- + [18O]D- = FeOTODOH[18O]D- + 4 OH- +Fe(OH)4- + OT- + OD- + OD- + OH- = FeOTODODOH- + 4 OH- +Fe(OH)4- + OT- + OD- + OD- + [18O]H- = FeOTODOD[18O]H- + 4 OH- +Fe(OH)4- + OT- + OD- + [18O]H- + OH- = FeOTOD[18O]HOH- + 4 OH- +Fe(OH)4- + OT- + OD- + [18O]H- + OD- = FeOTOD[18O]HOD- + 4 OH- +Fe(OH)4- + OT- + OD- + [18O]H- + [18O]H- = FeOTOD[18O]H[18O]H- + 4 OH- +Fe(OH)4- + OT- + OD- + [18O]D- + OH- = FeOTOD[18O]DOH- + 4 OH- +Fe(OH)4- + OT- + [18O]H- + OH- + OH- = FeOT[18O]HOHOH- + 4 OH- +Fe(OH)4- + OT- + [18O]H- + OH- + OD- = FeOT[18O]HOHOD- + 4 OH- +Fe(OH)4- + OT- + [18O]H- + OH- + [18O]H- = FeOT[18O]HOH[18O]H- + 4 OH- +Fe(OH)4- + OT- + [18O]H- + OH- + [18O]D- = FeOT[18O]HOH[18O]D- + 4 OH- +Fe(OH)4- + OT- + [18O]H- + OD- + OH- = FeOT[18O]HODOH- + 4 OH- +Fe(OH)4- + OT- + [18O]H- + OD- + OD- = FeOT[18O]HODOD- + 4 OH- +Fe(OH)4- + OT- + [18O]H- + OD- + [18O]H- = FeOT[18O]HOD[18O]H- + 4 OH- +Fe(OH)4- + OT- + [18O]H- + [18O]H- + OH- = FeOT[18O]H[18O]HOH- + 4 OH- +Fe(OH)4- + OT- + [18O]H- + [18O]H- + OD- = FeOT[18O]H[18O]HOD- + 4 OH- +Fe(OH)4- + OT- + [18O]H- + [18O]D- + OH- = FeOT[18O]H[18O]DOH- + 4 OH- +Fe(OH)4- + OT- + [18O]D- + OH- + OH- = FeOT[18O]DOHOH- + 4 OH- +Fe(OH)4- + OT- + [18O]D- + OH- + OD- = FeOT[18O]DOHOD- + 4 OH- +Fe(OH)4- + OT- + [18O]D- + OH- + [18O]H- = FeOT[18O]DOH[18O]H- + 4 OH- +Fe(OH)4- + OT- + [18O]D- + OD- + OH- = FeOT[18O]DODOH- + 4 OH- +Fe(OH)4- + OT- + [18O]D- + [18O]H- + OH- = FeOT[18O]D[18O]HOH- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OH- + OH- = Fe[18O]HOHOHOH- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OH- + OD- = Fe[18O]HOHOHOD- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OH- + OT- = Fe[18O]HOHOHOT- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OH- + [18O]H- = Fe[18O]HOHOH[18O]H- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OH- + [18O]D- = Fe[18O]HOHOH[18O]D- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OH- + [18O]T- = Fe[18O]HOHOH[18O]T- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OD- + OH- = Fe[18O]HOHODOH- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OD- + OD- = Fe[18O]HOHODOD- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OD- + OT- = Fe[18O]HOHODOT- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OD- + [18O]H- = Fe[18O]HOHOD[18O]H- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OD- + [18O]D- = Fe[18O]HOHOD[18O]D- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OD- + [18O]T- = Fe[18O]HOHOD[18O]T- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OT- + OH- = Fe[18O]HOHOTOH- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OT- + OD- = Fe[18O]HOHOTOD- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OT- + [18O]H- = Fe[18O]HOHOT[18O]H- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + OT- + [18O]D- = Fe[18O]HOHOT[18O]D- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + [18O]H- + OH- = Fe[18O]HOH[18O]HOH- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + [18O]H- + OD- = Fe[18O]HOH[18O]HOD- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + [18O]H- + OT- = Fe[18O]HOH[18O]HOT- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + [18O]D- + OH- = Fe[18O]HOH[18O]DOH- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + [18O]D- + OD- = Fe[18O]HOH[18O]DOD- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + [18O]D- + OT- = Fe[18O]HOH[18O]DOT- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + [18O]T- + OH- = Fe[18O]HOH[18O]TOH- + 4 OH- +Fe(OH)4- + [18O]H- + OH- + [18O]T- + OD- = Fe[18O]HOH[18O]TOD- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + OH- + OH- = Fe[18O]HODOHOH- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + OH- + OD- = Fe[18O]HODOHOD- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + OH- + OT- = Fe[18O]HODOHOT- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + OH- + [18O]H- = Fe[18O]HODOH[18O]H- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + OH- + [18O]D- = Fe[18O]HODOH[18O]D- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + OH- + [18O]T- = Fe[18O]HODOH[18O]T- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + OD- + OH- = Fe[18O]HODODOH- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + OD- + OT- = Fe[18O]HODODOT- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + OD- + [18O]H- = Fe[18O]HODOD[18O]H- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + OT- + OH- = Fe[18O]HODOTOH- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + OT- + OD- = Fe[18O]HODOTOD- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + OT- + [18O]H- = Fe[18O]HODOT[18O]H- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + [18O]H- + OH- = Fe[18O]HOD[18O]HOH- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + [18O]H- + OD- = Fe[18O]HOD[18O]HOD- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + [18O]H- + OT- = Fe[18O]HOD[18O]HOT- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + [18O]D- + OH- = Fe[18O]HOD[18O]DOH- + 4 OH- +Fe(OH)4- + [18O]H- + OD- + [18O]T- + OH- = Fe[18O]HOD[18O]TOH- + 4 OH- +Fe(OH)4- + [18O]H- + OT- + OH- + OH- = Fe[18O]HOTOHOH- + 4 OH- +Fe(OH)4- + [18O]H- + OT- + OH- + OD- = Fe[18O]HOTOHOD- + 4 OH- +Fe(OH)4- + [18O]H- + OT- + OH- + [18O]H- = Fe[18O]HOTOH[18O]H- + 4 OH- +Fe(OH)4- + [18O]H- + OT- + OH- + [18O]D- = Fe[18O]HOTOH[18O]D- + 4 OH- +Fe(OH)4- + [18O]H- + OT- + OD- + OH- = Fe[18O]HOTODOH- + 4 OH- +Fe(OH)4- + [18O]H- + OT- + OD- + OD- = Fe[18O]HOTODOD- + 4 OH- +Fe(OH)4- + [18O]H- + OT- + OD- + [18O]H- = Fe[18O]HOTOD[18O]H- + 4 OH- +Fe(OH)4- + [18O]H- + OT- + [18O]H- + OH- = Fe[18O]HOT[18O]HOH- + 4 OH- +Fe(OH)4- + [18O]H- + OT- + [18O]H- + OD- = Fe[18O]HOT[18O]HOD- + 4 OH- +Fe(OH)4- + [18O]H- + OT- + [18O]D- + OH- = Fe[18O]HOT[18O]DOH- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]H- + OH- + OH- = Fe[18O]H[18O]HOHOH- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]H- + OH- + OD- = Fe[18O]H[18O]HOHOD- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]H- + OH- + OT- = Fe[18O]H[18O]HOHOT- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]H- + OD- + OH- = Fe[18O]H[18O]HODOH- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]H- + OD- + OD- = Fe[18O]H[18O]HODOD- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]H- + OD- + OT- = Fe[18O]H[18O]HODOT- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]H- + OT- + OH- = Fe[18O]H[18O]HOTOH- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]H- + OT- + OD- = Fe[18O]H[18O]HOTOD- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]D- + OH- + OH- = Fe[18O]H[18O]DOHOH- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]D- + OH- + OD- = Fe[18O]H[18O]DOHOD- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]D- + OH- + OT- = Fe[18O]H[18O]DOHOT- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]D- + OD- + OH- = Fe[18O]H[18O]DODOH- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]D- + OT- + OH- = Fe[18O]H[18O]DOTOH- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]T- + OH- + OH- = Fe[18O]H[18O]TOHOH- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]T- + OH- + OD- = Fe[18O]H[18O]TOHOD- + 4 OH- +Fe(OH)4- + [18O]H- + [18O]T- + OD- + OH- = Fe[18O]H[18O]TODOH- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + OH- + OH- = Fe[18O]DOHOHOH- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + OH- + OD- = Fe[18O]DOHOHOD- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + OH- + OT- = Fe[18O]DOHOHOT- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + OH- + [18O]H- = Fe[18O]DOHOH[18O]H- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + OH- + [18O]D- = Fe[18O]DOHOH[18O]D- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + OH- + [18O]T- = Fe[18O]DOHOH[18O]T- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + OD- + OH- = Fe[18O]DOHODOH- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + OD- + OT- = Fe[18O]DOHODOT- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + OD- + [18O]H- = Fe[18O]DOHOD[18O]H- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + OT- + OH- = Fe[18O]DOHOTOH- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + OT- + OD- = Fe[18O]DOHOTOD- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + OT- + [18O]H- = Fe[18O]DOHOT[18O]H- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + [18O]H- + OH- = Fe[18O]DOH[18O]HOH- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + [18O]H- + OD- = Fe[18O]DOH[18O]HOD- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + [18O]H- + OT- = Fe[18O]DOH[18O]HOT- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + [18O]D- + OH- = Fe[18O]DOH[18O]DOH- + 4 OH- +Fe(OH)4- + [18O]D- + OH- + [18O]T- + OH- = Fe[18O]DOH[18O]TOH- + 4 OH- +Fe(OH)4- + [18O]D- + OD- + OH- + OH- = Fe[18O]DODOHOH- + 4 OH- +Fe(OH)4- + [18O]D- + OD- + OH- + OT- = Fe[18O]DODOHOT- + 4 OH- +Fe(OH)4- + [18O]D- + OD- + OH- + [18O]H- = Fe[18O]DODOH[18O]H- + 4 OH- +Fe(OH)4- + [18O]D- + OD- + OT- + OH- = Fe[18O]DODOTOH- + 4 OH- +Fe(OH)4- + [18O]D- + OD- + [18O]H- + OH- = Fe[18O]DOD[18O]HOH- + 4 OH- +Fe(OH)4- + [18O]D- + OT- + OH- + OH- = Fe[18O]DOTOHOH- + 4 OH- +Fe(OH)4- + [18O]D- + OT- + OH- + OD- = Fe[18O]DOTOHOD- + 4 OH- +Fe(OH)4- + [18O]D- + OT- + OH- + [18O]H- = Fe[18O]DOTOH[18O]H- + 4 OH- +Fe(OH)4- + [18O]D- + OT- + OD- + OH- = Fe[18O]DOTODOH- + 4 OH- +Fe(OH)4- + [18O]D- + OT- + [18O]H- + OH- = Fe[18O]DOT[18O]HOH- + 4 OH- +Fe(OH)4- + [18O]D- + [18O]H- + OH- + OH- = Fe[18O]D[18O]HOHOH- + 4 OH- +Fe(OH)4- + [18O]D- + [18O]H- + OH- + OD- = Fe[18O]D[18O]HOHOD- + 4 OH- +Fe(OH)4- + [18O]D- + [18O]H- + OH- + OT- = Fe[18O]D[18O]HOHOT- + 4 OH- +Fe(OH)4- + [18O]D- + [18O]H- + OD- + OH- = Fe[18O]D[18O]HODOH- + 4 OH- +Fe(OH)4- + [18O]D- + [18O]H- + OT- + OH- = Fe[18O]D[18O]HOTOH- + 4 OH- +Fe(OH)4- + [18O]D- + [18O]D- + OH- + OH- = Fe[18O]D[18O]DOHOH- + 4 OH- +Fe(OH)4- + [18O]D- + [18O]T- + OH- + OH- = Fe[18O]D[18O]TOHOH- + 4 OH- +Fe(OH)4- + [18O]T- + OH- + OH- + OH- = Fe[18O]TOHOHOH- + 4 OH- +Fe(OH)4- + [18O]T- + OH- + OH- + OD- = Fe[18O]TOHOHOD- + 4 OH- +Fe(OH)4- + [18O]T- + OH- + OH- + [18O]H- = Fe[18O]TOHOH[18O]H- + 4 OH- +Fe(OH)4- + [18O]T- + OH- + OH- + [18O]D- = Fe[18O]TOHOH[18O]D- + 4 OH- +Fe(OH)4- + [18O]T- + OH- + OD- + OH- = Fe[18O]TOHODOH- + 4 OH- +Fe(OH)4- + [18O]T- + OH- + OD- + OD- = Fe[18O]TOHODOD- + 4 OH- +Fe(OH)4- + [18O]T- + OH- + OD- + [18O]H- = Fe[18O]TOHOD[18O]H- + 4 OH- +Fe(OH)4- + [18O]T- + OH- + [18O]H- + OH- = Fe[18O]TOH[18O]HOH- + 4 OH- +Fe(OH)4- + [18O]T- + OH- + [18O]H- + OD- = Fe[18O]TOH[18O]HOD- + 4 OH- +Fe(OH)4- + [18O]T- + OH- + [18O]D- + OH- = Fe[18O]TOH[18O]DOH- + 4 OH- +Fe(OH)4- + [18O]T- + OD- + OH- + OH- = Fe[18O]TODOHOH- + 4 OH- +Fe(OH)4- + [18O]T- + OD- + OH- + OD- = Fe[18O]TODOHOD- + 4 OH- +Fe(OH)4- + [18O]T- + OD- + OH- + [18O]H- = Fe[18O]TODOH[18O]H- + 4 OH- +Fe(OH)4- + [18O]T- + OD- + OD- + OH- = Fe[18O]TODODOH- + 4 OH- +Fe(OH)4- + [18O]T- + OD- + [18O]H- + OH- = Fe[18O]TOD[18O]HOH- + 4 OH- +Fe(OH)4- + [18O]T- + [18O]H- + OH- + OH- = Fe[18O]T[18O]HOHOH- + 4 OH- +Fe(OH)4- + [18O]T- + [18O]H- + OH- + OD- = Fe[18O]T[18O]HOHOD- + 4 OH- +Fe(OH)4- + [18O]T- + [18O]H- + OD- + OH- = Fe[18O]T[18O]HODOH- + 4 OH- +Fe(OH)4- + [18O]T- + [18O]D- + OH- + OH- = Fe[18O]T[18O]DOHOH- + 4 OH- # # Added Fe2(OH)2+4 reactions 16Dec09 # Revised 17Dec09, limited the number of species # -Fe2(OH)2+4 + OH- + OD- = Fe2OHOD+4 + 2OH- -Fe2(OH)2+4 + OH- + OT- = Fe2OHOT+4 + 2OH- -Fe2(OH)2+4 + OH- + [18O]H- = Fe2OH[18O]H+4 + 2OH- -Fe2(OH)2+4 + OH- + [18O]D- = Fe2OH[18O]D+4 + 2OH- -Fe2(OH)2+4 + OH- + [18O]T- = Fe2OH[18O]T+4 + 2OH- -Fe2(OH)2+4 + OD- + OH- = Fe2ODOH+4 + 2OH- -Fe2(OH)2+4 + OD- + OD- = Fe2ODOD+4 + 2OH- -Fe2(OH)2+4 + OD- + OT- = Fe2ODOT+4 + 2OH- -Fe2(OH)2+4 + OD- + [18O]H- = Fe2OD[18O]H+4 + 2OH- -Fe2(OH)2+4 + OD- + [18O]D- = Fe2OD[18O]D+4 + 2OH- -Fe2(OH)2+4 + OD- + [18O]T- = Fe2OD[18O]T+4 + 2OH- -Fe2(OH)2+4 + OT- + OH- = Fe2OTOH+4 + 2OH- -Fe2(OH)2+4 + OT- + OD- = Fe2OTOD+4 + 2OH- -Fe2(OH)2+4 + OT- + [18O]H- = Fe2OT[18O]H+4 + 2OH- -Fe2(OH)2+4 + OT- + [18O]D- = Fe2OT[18O]D+4 + 2OH- -Fe2(OH)2+4 + [18O]H- + OH- = Fe2[18O]HOH+4 + 2OH- -Fe2(OH)2+4 + [18O]H- + OD- = Fe2[18O]HOD+4 + 2OH- -Fe2(OH)2+4 + [18O]H- + OT- = Fe2[18O]HOT+4 + 2OH- -Fe2(OH)2+4 + [18O]H- + [18O]H- = Fe2[18O]H[18O]H+4 + 2OH- -Fe2(OH)2+4 + [18O]H- + [18O]D- = Fe2[18O]H[18O]D+4 + 2OH- -Fe2(OH)2+4 + [18O]H- + [18O]T- = Fe2[18O]H[18O]T+4 + 2OH- -Fe2(OH)2+4 + [18O]D- + OH- = Fe2[18O]DOH+4 + 2OH- -Fe2(OH)2+4 + [18O]D- + OD- = Fe2[18O]DOD+4 + 2OH- -Fe2(OH)2+4 + [18O]D- + OT- = Fe2[18O]DOT+4 + 2OH- -Fe2(OH)2+4 + [18O]D- + [18O]H- = Fe2[18O]D[18O]H+4 + 2OH- -Fe2(OH)2+4 + [18O]D- + [18O]D- = Fe2[18O]D[18O]D+4 + 2OH- -Fe2(OH)2+4 + [18O]D- + [18O]T- = Fe2[18O]D[18O]T+4 + 2OH- -Fe2(OH)2+4 + [18O]T- + OH- = Fe2[18O]TOH+4 + 2OH- -Fe2(OH)2+4 + [18O]T- + OD- = Fe2[18O]TOD+4 + 2OH- -Fe2(OH)2+4 + [18O]T- + [18O]H- = Fe2[18O]T[18O]H+4 + 2OH- -Fe2(OH)2+4 + [18O]T- + [18O]D- = Fe2[18O]T[18O]D+4 + 2OH- +Fe2(OH)2+4 + OH- + OD- = Fe2OHOD+4 + 2 OH- +Fe2(OH)2+4 + OH- + OT- = Fe2OHOT+4 + 2 OH- +Fe2(OH)2+4 + OH- + [18O]H- = Fe2OH[18O]H+4 + 2 OH- +Fe2(OH)2+4 + OH- + [18O]D- = Fe2OH[18O]D+4 + 2 OH- +Fe2(OH)2+4 + OH- + [18O]T- = Fe2OH[18O]T+4 + 2 OH- +Fe2(OH)2+4 + OD- + OH- = Fe2ODOH+4 + 2 OH- +Fe2(OH)2+4 + OD- + OD- = Fe2ODOD+4 + 2 OH- +Fe2(OH)2+4 + OD- + OT- = Fe2ODOT+4 + 2 OH- +Fe2(OH)2+4 + OD- + [18O]H- = Fe2OD[18O]H+4 + 2 OH- +Fe2(OH)2+4 + OD- + [18O]D- = Fe2OD[18O]D+4 + 2 OH- +Fe2(OH)2+4 + OD- + [18O]T- = Fe2OD[18O]T+4 + 2 OH- +Fe2(OH)2+4 + OT- + OH- = Fe2OTOH+4 + 2 OH- +Fe2(OH)2+4 + OT- + OD- = Fe2OTOD+4 + 2 OH- +Fe2(OH)2+4 + OT- + [18O]H- = Fe2OT[18O]H+4 + 2 OH- +Fe2(OH)2+4 + OT- + [18O]D- = Fe2OT[18O]D+4 + 2 OH- +Fe2(OH)2+4 + [18O]H- + OH- = Fe2[18O]HOH+4 + 2 OH- +Fe2(OH)2+4 + [18O]H- + OD- = Fe2[18O]HOD+4 + 2 OH- +Fe2(OH)2+4 + [18O]H- + OT- = Fe2[18O]HOT+4 + 2 OH- +Fe2(OH)2+4 + [18O]H- + [18O]H- = Fe2[18O]H[18O]H+4 + 2 OH- +Fe2(OH)2+4 + [18O]H- + [18O]D- = Fe2[18O]H[18O]D+4 + 2 OH- +Fe2(OH)2+4 + [18O]H- + [18O]T- = Fe2[18O]H[18O]T+4 + 2 OH- +Fe2(OH)2+4 + [18O]D- + OH- = Fe2[18O]DOH+4 + 2 OH- +Fe2(OH)2+4 + [18O]D- + OD- = Fe2[18O]DOD+4 + 2 OH- +Fe2(OH)2+4 + [18O]D- + OT- = Fe2[18O]DOT+4 + 2 OH- +Fe2(OH)2+4 + [18O]D- + [18O]H- = Fe2[18O]D[18O]H+4 + 2 OH- +Fe2(OH)2+4 + [18O]D- + [18O]D- = Fe2[18O]D[18O]D+4 + 2 OH- +Fe2(OH)2+4 + [18O]D- + [18O]T- = Fe2[18O]D[18O]T+4 + 2 OH- +Fe2(OH)2+4 + [18O]T- + OH- = Fe2[18O]TOH+4 + 2 OH- +Fe2(OH)2+4 + [18O]T- + OD- = Fe2[18O]TOD+4 + 2 OH- +Fe2(OH)2+4 + [18O]T- + [18O]H- = Fe2[18O]T[18O]H+4 + 2 OH- +Fe2(OH)2+4 + [18O]T- + [18O]D- = Fe2[18O]T[18O]D+4 + 2 OH- # # Added Fe3(OH)4+5 reactions 16Dec09 # Revised 17Dec09, limited the number of species # -Fe3(OH)4+5 + OH- + OH- + OH- + OD- = Fe3OHOHOHOD+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + OH- + OT- = Fe3OHOHOHOT+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + OH- + [18O]H- = Fe3OHOHOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + OH- + [18O]D- = Fe3OHOHOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + OH- + [18O]T- = Fe3OHOHOH[18O]T+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + OD- + OH- = Fe3OHOHODOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + OD- + OD- = Fe3OHOHODOD+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + OD- + OT- = Fe3OHOHODOT+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + OD- + [18O]H- = Fe3OHOHOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + OD- + [18O]D- = Fe3OHOHOD[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + OD- + [18O]T- = Fe3OHOHOD[18O]T+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + OT- + OH- = Fe3OHOHOTOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + OT- + OD- = Fe3OHOHOTOD+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + OT- + [18O]H- = Fe3OHOHOT[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + OT- + [18O]D- = Fe3OHOHOT[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]H- + OH- = Fe3OHOH[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]H- + OD- = Fe3OHOH[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]H- + OT- = Fe3OHOH[18O]HOT+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]H- + [18O]H- = Fe3OHOH[18O]H[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]H- + [18O]D- = Fe3OHOH[18O]H[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]H- + [18O]T- = Fe3OHOH[18O]H[18O]T+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]D- + OH- = Fe3OHOH[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]D- + OD- = Fe3OHOH[18O]DOD+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]D- + OT- = Fe3OHOH[18O]DOT+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]D- + [18O]H- = Fe3OHOH[18O]D[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]D- + [18O]D- = Fe3OHOH[18O]D[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]D- + [18O]T- = Fe3OHOH[18O]D[18O]T+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]T- + OH- = Fe3OHOH[18O]TOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]T- + OD- = Fe3OHOH[18O]TOD+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]T- + [18O]H- = Fe3OHOH[18O]T[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OH- + [18O]T- + [18O]D- = Fe3OHOH[18O]T[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + OH- + OH- = Fe3OHODOHOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + OH- + OD- = Fe3OHODOHOD+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + OH- + OT- = Fe3OHODOHOT+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + OH- + [18O]H- = Fe3OHODOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + OH- + [18O]D- = Fe3OHODOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + OH- + [18O]T- = Fe3OHODOH[18O]T+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + OD- + OH- = Fe3OHODODOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + OD- + OT- = Fe3OHODODOT+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + OD- + [18O]H- = Fe3OHODOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + OD- + [18O]T- = Fe3OHODOD[18O]T+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + OT- + OH- = Fe3OHODOTOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + OT- + OD- = Fe3OHODOTOD+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + OT- + [18O]H- = Fe3OHODOT[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + OT- + [18O]D- = Fe3OHODOT[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + [18O]H- + OH- = Fe3OHOD[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + [18O]H- + OD- = Fe3OHOD[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + [18O]H- + OT- = Fe3OHOD[18O]HOT+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + [18O]H- + [18O]H- = Fe3OHOD[18O]H[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + [18O]H- + [18O]D- = Fe3OHOD[18O]H[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + [18O]H- + [18O]T- = Fe3OHOD[18O]H[18O]T+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + [18O]D- + OH- = Fe3OHOD[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + [18O]D- + OT- = Fe3OHOD[18O]DOT+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + [18O]D- + [18O]H- = Fe3OHOD[18O]D[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + [18O]T- + OH- = Fe3OHOD[18O]TOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + [18O]T- + OD- = Fe3OHOD[18O]TOD+5 + 4OH- -Fe3(OH)4+5 + OH- + OD- + [18O]T- + [18O]H- = Fe3OHOD[18O]T[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + OH- + OH- = Fe3OHOTOHOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + OH- + OD- = Fe3OHOTOHOD+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + OH- + [18O]H- = Fe3OHOTOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + OH- + [18O]D- = Fe3OHOTOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + OD- + OH- = Fe3OHOTODOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + OD- + OD- = Fe3OHOTODOD+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + OD- + [18O]H- = Fe3OHOTOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + OD- + [18O]D- = Fe3OHOTOD[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + [18O]H- + OH- = Fe3OHOT[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + [18O]H- + OD- = Fe3OHOT[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + [18O]H- + [18O]H- = Fe3OHOT[18O]H[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + [18O]H- + [18O]D- = Fe3OHOT[18O]H[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + [18O]D- + OH- = Fe3OHOT[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + [18O]D- + OD- = Fe3OHOT[18O]DOD+5 + 4OH- -Fe3(OH)4+5 + OH- + OT- + [18O]D- + [18O]H- = Fe3OHOT[18O]D[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OH- + OH- = Fe3OH[18O]HOHOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OH- + OD- = Fe3OH[18O]HOHOD+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OH- + OT- = Fe3OH[18O]HOHOT+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OH- + [18O]H- = Fe3OH[18O]HOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OH- + [18O]D- = Fe3OH[18O]HOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OH- + [18O]T- = Fe3OH[18O]HOH[18O]T+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OD- + OH- = Fe3OH[18O]HODOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OD- + OD- = Fe3OH[18O]HODOD+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OD- + OT- = Fe3OH[18O]HODOT+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OD- + [18O]H- = Fe3OH[18O]HOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OD- + [18O]D- = Fe3OH[18O]HOD[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OD- + [18O]T- = Fe3OH[18O]HOD[18O]T+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OT- + OH- = Fe3OH[18O]HOTOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OT- + OD- = Fe3OH[18O]HOTOD+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OT- + [18O]H- = Fe3OH[18O]HOT[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + OT- + [18O]D- = Fe3OH[18O]HOT[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + [18O]H- + OH- = Fe3OH[18O]H[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + [18O]H- + OD- = Fe3OH[18O]H[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + [18O]H- + OT- = Fe3OH[18O]H[18O]HOT+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + [18O]D- + OH- = Fe3OH[18O]H[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + [18O]D- + OD- = Fe3OH[18O]H[18O]DOD+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + [18O]D- + OT- = Fe3OH[18O]H[18O]DOT+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + [18O]T- + OH- = Fe3OH[18O]H[18O]TOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]H- + [18O]T- + OD- = Fe3OH[18O]H[18O]TOD+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + OH- + OH- = Fe3OH[18O]DOHOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + OH- + OD- = Fe3OH[18O]DOHOD+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + OH- + OT- = Fe3OH[18O]DOHOT+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + OH- + [18O]H- = Fe3OH[18O]DOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + OH- + [18O]D- = Fe3OH[18O]DOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + OH- + [18O]T- = Fe3OH[18O]DOH[18O]T+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + OD- + OH- = Fe3OH[18O]DODOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + OD- + OT- = Fe3OH[18O]DODOT+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + OD- + [18O]H- = Fe3OH[18O]DOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + OT- + OH- = Fe3OH[18O]DOTOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + OT- + OD- = Fe3OH[18O]DOTOD+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + OT- + [18O]H- = Fe3OH[18O]DOT[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + [18O]H- + OH- = Fe3OH[18O]D[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + [18O]H- + OD- = Fe3OH[18O]D[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + [18O]H- + OT- = Fe3OH[18O]D[18O]HOT+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + [18O]D- + OH- = Fe3OH[18O]D[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]D- + [18O]T- + OH- = Fe3OH[18O]D[18O]TOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]T- + OH- + OH- = Fe3OH[18O]TOHOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]T- + OH- + OD- = Fe3OH[18O]TOHOD+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]T- + OH- + [18O]H- = Fe3OH[18O]TOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]T- + OH- + [18O]D- = Fe3OH[18O]TOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]T- + OD- + OH- = Fe3OH[18O]TODOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]T- + OD- + OD- = Fe3OH[18O]TODOD+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]T- + OD- + [18O]H- = Fe3OH[18O]TOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]T- + [18O]H- + OH- = Fe3OH[18O]T[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]T- + [18O]H- + OD- = Fe3OH[18O]T[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + OH- + [18O]T- + [18O]D- + OH- = Fe3OH[18O]T[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + OH- + OH- = Fe3ODOHOHOH+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + OH- + OD- = Fe3ODOHOHOD+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + OH- + OT- = Fe3ODOHOHOT+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + OH- + [18O]H- = Fe3ODOHOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + OH- + [18O]D- = Fe3ODOHOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + OH- + [18O]T- = Fe3ODOHOH[18O]T+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + OD- + OH- = Fe3ODOHODOH+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + OD- + OT- = Fe3ODOHODOT+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + OD- + [18O]H- = Fe3ODOHOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + OD- + [18O]T- = Fe3ODOHOD[18O]T+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + OT- + OH- = Fe3ODOHOTOH+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + OT- + OD- = Fe3ODOHOTOD+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + OT- + [18O]H- = Fe3ODOHOT[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + OT- + [18O]D- = Fe3ODOHOT[18O]D+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + [18O]H- + OH- = Fe3ODOH[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + [18O]H- + OD- = Fe3ODOH[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + [18O]H- + OT- = Fe3ODOH[18O]HOT+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + [18O]H- + [18O]H- = Fe3ODOH[18O]H[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + [18O]H- + [18O]D- = Fe3ODOH[18O]H[18O]D+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + [18O]H- + [18O]T- = Fe3ODOH[18O]H[18O]T+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + [18O]D- + OH- = Fe3ODOH[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + [18O]D- + OT- = Fe3ODOH[18O]DOT+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + [18O]D- + [18O]H- = Fe3ODOH[18O]D[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + [18O]T- + OH- = Fe3ODOH[18O]TOH+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + [18O]T- + OD- = Fe3ODOH[18O]TOD+5 + 4OH- -Fe3(OH)4+5 + OD- + OH- + [18O]T- + [18O]H- = Fe3ODOH[18O]T[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + OD- + OH- + OH- = Fe3ODODOHOH+5 + 4OH- -Fe3(OH)4+5 + OD- + OD- + OH- + OT- = Fe3ODODOHOT+5 + 4OH- -Fe3(OH)4+5 + OD- + OD- + OH- + [18O]H- = Fe3ODODOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + OD- + OH- + [18O]T- = Fe3ODODOH[18O]T+5 + 4OH- -Fe3(OH)4+5 + OD- + OD- + OT- + OH- = Fe3ODODOTOH+5 + 4OH- -Fe3(OH)4+5 + OD- + OD- + OT- + [18O]H- = Fe3ODODOT[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + OD- + [18O]H- + OH- = Fe3ODOD[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OD- + OD- + [18O]H- + OT- = Fe3ODOD[18O]HOT+5 + 4OH- -Fe3(OH)4+5 + OD- + OD- + [18O]H- + [18O]H- = Fe3ODOD[18O]H[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + OD- + [18O]T- + OH- = Fe3ODOD[18O]TOH+5 + 4OH- -Fe3(OH)4+5 + OD- + OT- + OH- + OH- = Fe3ODOTOHOH+5 + 4OH- -Fe3(OH)4+5 + OD- + OT- + OH- + OD- = Fe3ODOTOHOD+5 + 4OH- -Fe3(OH)4+5 + OD- + OT- + OH- + [18O]H- = Fe3ODOTOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + OT- + OH- + [18O]D- = Fe3ODOTOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + OD- + OT- + OD- + OH- = Fe3ODOTODOH+5 + 4OH- -Fe3(OH)4+5 + OD- + OT- + OD- + [18O]H- = Fe3ODOTOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + OT- + [18O]H- + OH- = Fe3ODOT[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OD- + OT- + [18O]H- + OD- = Fe3ODOT[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + OD- + OT- + [18O]H- + [18O]H- = Fe3ODOT[18O]H[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + OT- + [18O]D- + OH- = Fe3ODOT[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + OH- + OH- = Fe3OD[18O]HOHOH+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + OH- + OD- = Fe3OD[18O]HOHOD+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + OH- + OT- = Fe3OD[18O]HOHOT+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + OH- + [18O]H- = Fe3OD[18O]HOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + OH- + [18O]D- = Fe3OD[18O]HOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + OH- + [18O]T- = Fe3OD[18O]HOH[18O]T+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + OD- + OH- = Fe3OD[18O]HODOH+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + OD- + OT- = Fe3OD[18O]HODOT+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + OD- + [18O]H- = Fe3OD[18O]HOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + OT- + OH- = Fe3OD[18O]HOTOH+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + OT- + OD- = Fe3OD[18O]HOTOD+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + OT- + [18O]H- = Fe3OD[18O]HOT[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + [18O]H- + OH- = Fe3OD[18O]H[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + [18O]H- + OD- = Fe3OD[18O]H[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + [18O]H- + OT- = Fe3OD[18O]H[18O]HOT+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + [18O]D- + OH- = Fe3OD[18O]H[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]H- + [18O]T- + OH- = Fe3OD[18O]H[18O]TOH+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]D- + OH- + OH- = Fe3OD[18O]DOHOH+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]D- + OH- + OT- = Fe3OD[18O]DOHOT+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]D- + OH- + [18O]H- = Fe3OD[18O]DOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]D- + OT- + OH- = Fe3OD[18O]DOTOH+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]D- + [18O]H- + OH- = Fe3OD[18O]D[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]T- + OH- + OH- = Fe3OD[18O]TOHOH+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]T- + OH- + OD- = Fe3OD[18O]TOHOD+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]T- + OH- + [18O]H- = Fe3OD[18O]TOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]T- + OD- + OH- = Fe3OD[18O]TODOH+5 + 4OH- -Fe3(OH)4+5 + OD- + [18O]T- + [18O]H- + OH- = Fe3OD[18O]T[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + OH- + OH- = Fe3OTOHOHOH+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + OH- + OD- = Fe3OTOHOHOD+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + OH- + [18O]H- = Fe3OTOHOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + OH- + [18O]D- = Fe3OTOHOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + OD- + OH- = Fe3OTOHODOH+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + OD- + OD- = Fe3OTOHODOD+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + OD- + [18O]H- = Fe3OTOHOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + OD- + [18O]D- = Fe3OTOHOD[18O]D+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + [18O]H- + OH- = Fe3OTOH[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + [18O]H- + OD- = Fe3OTOH[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + [18O]H- + [18O]H- = Fe3OTOH[18O]H[18O]H+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + [18O]H- + [18O]D- = Fe3OTOH[18O]H[18O]D+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + [18O]D- + OH- = Fe3OTOH[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + [18O]D- + OD- = Fe3OTOH[18O]DOD+5 + 4OH- -Fe3(OH)4+5 + OT- + OH- + [18O]D- + [18O]H- = Fe3OTOH[18O]D[18O]H+5 + 4OH- -Fe3(OH)4+5 + OT- + OD- + OH- + OH- = Fe3OTODOHOH+5 + 4OH- -Fe3(OH)4+5 + OT- + OD- + OH- + OD- = Fe3OTODOHOD+5 + 4OH- -Fe3(OH)4+5 + OT- + OD- + OH- + [18O]H- = Fe3OTODOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OT- + OD- + OH- + [18O]D- = Fe3OTODOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + OT- + OD- + OD- + OH- = Fe3OTODODOH+5 + 4OH- -Fe3(OH)4+5 + OT- + OD- + OD- + [18O]H- = Fe3OTODOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + OT- + OD- + [18O]H- + OH- = Fe3OTOD[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OT- + OD- + [18O]H- + OD- = Fe3OTOD[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + OT- + OD- + [18O]H- + [18O]H- = Fe3OTOD[18O]H[18O]H+5 + 4OH- -Fe3(OH)4+5 + OT- + OD- + [18O]D- + OH- = Fe3OTOD[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]H- + OH- + OH- = Fe3OT[18O]HOHOH+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]H- + OH- + OD- = Fe3OT[18O]HOHOD+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]H- + OH- + [18O]H- = Fe3OT[18O]HOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]H- + OH- + [18O]D- = Fe3OT[18O]HOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]H- + OD- + OH- = Fe3OT[18O]HODOH+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]H- + OD- + OD- = Fe3OT[18O]HODOD+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]H- + OD- + [18O]H- = Fe3OT[18O]HOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]H- + [18O]H- + OH- = Fe3OT[18O]H[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]H- + [18O]H- + OD- = Fe3OT[18O]H[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]H- + [18O]D- + OH- = Fe3OT[18O]H[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]D- + OH- + OH- = Fe3OT[18O]DOHOH+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]D- + OH- + OD- = Fe3OT[18O]DOHOD+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]D- + OH- + [18O]H- = Fe3OT[18O]DOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]D- + OD- + OH- = Fe3OT[18O]DODOH+5 + 4OH- -Fe3(OH)4+5 + OT- + [18O]D- + [18O]H- + OH- = Fe3OT[18O]D[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OH- + OH- = Fe3[18O]HOHOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OH- + OD- = Fe3[18O]HOHOHOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OH- + OT- = Fe3[18O]HOHOHOT+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OH- + [18O]H- = Fe3[18O]HOHOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OH- + [18O]D- = Fe3[18O]HOHOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OH- + [18O]T- = Fe3[18O]HOHOH[18O]T+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OD- + OH- = Fe3[18O]HOHODOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OD- + OD- = Fe3[18O]HOHODOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OD- + OT- = Fe3[18O]HOHODOT+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OD- + [18O]H- = Fe3[18O]HOHOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OD- + [18O]D- = Fe3[18O]HOHOD[18O]D+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OD- + [18O]T- = Fe3[18O]HOHOD[18O]T+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OT- + OH- = Fe3[18O]HOHOTOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OT- + OD- = Fe3[18O]HOHOTOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OT- + [18O]H- = Fe3[18O]HOHOT[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + OT- + [18O]D- = Fe3[18O]HOHOT[18O]D+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + [18O]H- + OH- = Fe3[18O]HOH[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + [18O]H- + OD- = Fe3[18O]HOH[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + [18O]H- + OT- = Fe3[18O]HOH[18O]HOT+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + [18O]D- + OH- = Fe3[18O]HOH[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + [18O]D- + OD- = Fe3[18O]HOH[18O]DOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + [18O]D- + OT- = Fe3[18O]HOH[18O]DOT+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + [18O]T- + OH- = Fe3[18O]HOH[18O]TOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OH- + [18O]T- + OD- = Fe3[18O]HOH[18O]TOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + OH- + OH- = Fe3[18O]HODOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + OH- + OD- = Fe3[18O]HODOHOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + OH- + OT- = Fe3[18O]HODOHOT+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + OH- + [18O]H- = Fe3[18O]HODOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + OH- + [18O]D- = Fe3[18O]HODOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + OH- + [18O]T- = Fe3[18O]HODOH[18O]T+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + OD- + OH- = Fe3[18O]HODODOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + OD- + OT- = Fe3[18O]HODODOT+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + OD- + [18O]H- = Fe3[18O]HODOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + OT- + OH- = Fe3[18O]HODOTOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + OT- + OD- = Fe3[18O]HODOTOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + OT- + [18O]H- = Fe3[18O]HODOT[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + [18O]H- + OH- = Fe3[18O]HOD[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + [18O]H- + OD- = Fe3[18O]HOD[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + [18O]H- + OT- = Fe3[18O]HOD[18O]HOT+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + [18O]D- + OH- = Fe3[18O]HOD[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OD- + [18O]T- + OH- = Fe3[18O]HOD[18O]TOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OT- + OH- + OH- = Fe3[18O]HOTOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OT- + OH- + OD- = Fe3[18O]HOTOHOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OT- + OH- + [18O]H- = Fe3[18O]HOTOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OT- + OH- + [18O]D- = Fe3[18O]HOTOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OT- + OD- + OH- = Fe3[18O]HOTODOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OT- + OD- + OD- = Fe3[18O]HOTODOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OT- + OD- + [18O]H- = Fe3[18O]HOTOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OT- + [18O]H- + OH- = Fe3[18O]HOT[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OT- + [18O]H- + OD- = Fe3[18O]HOT[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + OT- + [18O]D- + OH- = Fe3[18O]HOT[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]H- + OH- + OH- = Fe3[18O]H[18O]HOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]H- + OH- + OD- = Fe3[18O]H[18O]HOHOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]H- + OH- + OT- = Fe3[18O]H[18O]HOHOT+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]H- + OD- + OH- = Fe3[18O]H[18O]HODOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]H- + OD- + OD- = Fe3[18O]H[18O]HODOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]H- + OD- + OT- = Fe3[18O]H[18O]HODOT+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]H- + OT- + OH- = Fe3[18O]H[18O]HOTOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]H- + OT- + OD- = Fe3[18O]H[18O]HOTOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]D- + OH- + OH- = Fe3[18O]H[18O]DOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]D- + OH- + OD- = Fe3[18O]H[18O]DOHOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]D- + OH- + OT- = Fe3[18O]H[18O]DOHOT+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]D- + OD- + OH- = Fe3[18O]H[18O]DODOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]D- + OT- + OH- = Fe3[18O]H[18O]DOTOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]T- + OH- + OH- = Fe3[18O]H[18O]TOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]T- + OH- + OD- = Fe3[18O]H[18O]TOHOD+5 + 4OH- -Fe3(OH)4+5 + [18O]H- + [18O]T- + OD- + OH- = Fe3[18O]H[18O]TODOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + OH- + OH- = Fe3[18O]DOHOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + OH- + OD- = Fe3[18O]DOHOHOD+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + OH- + OT- = Fe3[18O]DOHOHOT+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + OH- + [18O]H- = Fe3[18O]DOHOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + OH- + [18O]D- = Fe3[18O]DOHOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + OH- + [18O]T- = Fe3[18O]DOHOH[18O]T+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + OD- + OH- = Fe3[18O]DOHODOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + OD- + OT- = Fe3[18O]DOHODOT+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + OD- + [18O]H- = Fe3[18O]DOHOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + OT- + OH- = Fe3[18O]DOHOTOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + OT- + OD- = Fe3[18O]DOHOTOD+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + OT- + [18O]H- = Fe3[18O]DOHOT[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + [18O]H- + OH- = Fe3[18O]DOH[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + [18O]H- + OD- = Fe3[18O]DOH[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + [18O]H- + OT- = Fe3[18O]DOH[18O]HOT+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + [18O]D- + OH- = Fe3[18O]DOH[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OH- + [18O]T- + OH- = Fe3[18O]DOH[18O]TOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OD- + OH- + OH- = Fe3[18O]DODOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OD- + OH- + OT- = Fe3[18O]DODOHOT+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OD- + OH- + [18O]H- = Fe3[18O]DODOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OD- + OT- + OH- = Fe3[18O]DODOTOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OD- + [18O]H- + OH- = Fe3[18O]DOD[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OT- + OH- + OH- = Fe3[18O]DOTOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OT- + OH- + OD- = Fe3[18O]DOTOHOD+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OT- + OH- + [18O]H- = Fe3[18O]DOTOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OT- + OD- + OH- = Fe3[18O]DOTODOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + OT- + [18O]H- + OH- = Fe3[18O]DOT[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + [18O]H- + OH- + OH- = Fe3[18O]D[18O]HOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + [18O]H- + OH- + OD- = Fe3[18O]D[18O]HOHOD+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + [18O]H- + OH- + OT- = Fe3[18O]D[18O]HOHOT+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + [18O]H- + OD- + OH- = Fe3[18O]D[18O]HODOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + [18O]H- + OT- + OH- = Fe3[18O]D[18O]HOTOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + [18O]D- + OH- + OH- = Fe3[18O]D[18O]DOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]D- + [18O]T- + OH- + OH- = Fe3[18O]D[18O]TOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OH- + OH- + OH- = Fe3[18O]TOHOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OH- + OH- + OD- = Fe3[18O]TOHOHOD+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OH- + OH- + [18O]H- = Fe3[18O]TOHOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OH- + OH- + [18O]D- = Fe3[18O]TOHOH[18O]D+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OH- + OD- + OH- = Fe3[18O]TOHODOH+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OH- + OD- + OD- = Fe3[18O]TOHODOD+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OH- + OD- + [18O]H- = Fe3[18O]TOHOD[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OH- + [18O]H- + OH- = Fe3[18O]TOH[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OH- + [18O]H- + OD- = Fe3[18O]TOH[18O]HOD+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OH- + [18O]D- + OH- = Fe3[18O]TOH[18O]DOH+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OD- + OH- + OH- = Fe3[18O]TODOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OD- + OH- + OD- = Fe3[18O]TODOHOD+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OD- + OH- + [18O]H- = Fe3[18O]TODOH[18O]H+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OD- + OD- + OH- = Fe3[18O]TODODOH+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + OD- + [18O]H- + OH- = Fe3[18O]TOD[18O]HOH+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + [18O]H- + OH- + OH- = Fe3[18O]T[18O]HOHOH+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + [18O]H- + OH- + OD- = Fe3[18O]T[18O]HOHOD+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + [18O]H- + OD- + OH- = Fe3[18O]T[18O]HODOH+5 + 4OH- -Fe3(OH)4+5 + [18O]T- + [18O]D- + OH- + OH- = Fe3[18O]T[18O]DOHOH+5 + 4OH- +Fe3(OH)4+5 + OH- + OH- + OH- + OD- = Fe3OHOHOHOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + OH- + OT- = Fe3OHOHOHOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + OH- + [18O]H- = Fe3OHOHOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + OH- + [18O]D- = Fe3OHOHOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + OH- + [18O]T- = Fe3OHOHOH[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + OD- + OH- = Fe3OHOHODOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + OD- + OD- = Fe3OHOHODOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + OD- + OT- = Fe3OHOHODOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + OD- + [18O]H- = Fe3OHOHOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + OD- + [18O]D- = Fe3OHOHOD[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + OD- + [18O]T- = Fe3OHOHOD[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + OT- + OH- = Fe3OHOHOTOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + OT- + OD- = Fe3OHOHOTOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + OT- + [18O]H- = Fe3OHOHOT[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + OT- + [18O]D- = Fe3OHOHOT[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]H- + OH- = Fe3OHOH[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]H- + OD- = Fe3OHOH[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]H- + OT- = Fe3OHOH[18O]HOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]H- + [18O]H- = Fe3OHOH[18O]H[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]H- + [18O]D- = Fe3OHOH[18O]H[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]H- + [18O]T- = Fe3OHOH[18O]H[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]D- + OH- = Fe3OHOH[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]D- + OD- = Fe3OHOH[18O]DOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]D- + OT- = Fe3OHOH[18O]DOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]D- + [18O]H- = Fe3OHOH[18O]D[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]D- + [18O]D- = Fe3OHOH[18O]D[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]D- + [18O]T- = Fe3OHOH[18O]D[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]T- + OH- = Fe3OHOH[18O]TOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]T- + OD- = Fe3OHOH[18O]TOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]T- + [18O]H- = Fe3OHOH[18O]T[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OH- + [18O]T- + [18O]D- = Fe3OHOH[18O]T[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + OH- + OH- = Fe3OHODOHOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + OH- + OD- = Fe3OHODOHOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + OH- + OT- = Fe3OHODOHOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + OH- + [18O]H- = Fe3OHODOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + OH- + [18O]D- = Fe3OHODOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + OH- + [18O]T- = Fe3OHODOH[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + OD- + OH- = Fe3OHODODOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + OD- + OT- = Fe3OHODODOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + OD- + [18O]H- = Fe3OHODOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + OD- + [18O]T- = Fe3OHODOD[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + OT- + OH- = Fe3OHODOTOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + OT- + OD- = Fe3OHODOTOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + OT- + [18O]H- = Fe3OHODOT[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + OT- + [18O]D- = Fe3OHODOT[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + [18O]H- + OH- = Fe3OHOD[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + [18O]H- + OD- = Fe3OHOD[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + [18O]H- + OT- = Fe3OHOD[18O]HOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + [18O]H- + [18O]H- = Fe3OHOD[18O]H[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + [18O]H- + [18O]D- = Fe3OHOD[18O]H[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + [18O]H- + [18O]T- = Fe3OHOD[18O]H[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + [18O]D- + OH- = Fe3OHOD[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + [18O]D- + OT- = Fe3OHOD[18O]DOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + [18O]D- + [18O]H- = Fe3OHOD[18O]D[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + [18O]T- + OH- = Fe3OHOD[18O]TOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + [18O]T- + OD- = Fe3OHOD[18O]TOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + OD- + [18O]T- + [18O]H- = Fe3OHOD[18O]T[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + OH- + OH- = Fe3OHOTOHOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + OH- + OD- = Fe3OHOTOHOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + OH- + [18O]H- = Fe3OHOTOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + OH- + [18O]D- = Fe3OHOTOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + OD- + OH- = Fe3OHOTODOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + OD- + OD- = Fe3OHOTODOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + OD- + [18O]H- = Fe3OHOTOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + OD- + [18O]D- = Fe3OHOTOD[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + [18O]H- + OH- = Fe3OHOT[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + [18O]H- + OD- = Fe3OHOT[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + [18O]H- + [18O]H- = Fe3OHOT[18O]H[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + [18O]H- + [18O]D- = Fe3OHOT[18O]H[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + [18O]D- + OH- = Fe3OHOT[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + [18O]D- + OD- = Fe3OHOT[18O]DOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + OT- + [18O]D- + [18O]H- = Fe3OHOT[18O]D[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OH- + OH- = Fe3OH[18O]HOHOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OH- + OD- = Fe3OH[18O]HOHOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OH- + OT- = Fe3OH[18O]HOHOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OH- + [18O]H- = Fe3OH[18O]HOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OH- + [18O]D- = Fe3OH[18O]HOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OH- + [18O]T- = Fe3OH[18O]HOH[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OD- + OH- = Fe3OH[18O]HODOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OD- + OD- = Fe3OH[18O]HODOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OD- + OT- = Fe3OH[18O]HODOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OD- + [18O]H- = Fe3OH[18O]HOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OD- + [18O]D- = Fe3OH[18O]HOD[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OD- + [18O]T- = Fe3OH[18O]HOD[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OT- + OH- = Fe3OH[18O]HOTOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OT- + OD- = Fe3OH[18O]HOTOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OT- + [18O]H- = Fe3OH[18O]HOT[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + OT- + [18O]D- = Fe3OH[18O]HOT[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + [18O]H- + OH- = Fe3OH[18O]H[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + [18O]H- + OD- = Fe3OH[18O]H[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + [18O]H- + OT- = Fe3OH[18O]H[18O]HOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + [18O]D- + OH- = Fe3OH[18O]H[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + [18O]D- + OD- = Fe3OH[18O]H[18O]DOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + [18O]D- + OT- = Fe3OH[18O]H[18O]DOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + [18O]T- + OH- = Fe3OH[18O]H[18O]TOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]H- + [18O]T- + OD- = Fe3OH[18O]H[18O]TOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + OH- + OH- = Fe3OH[18O]DOHOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + OH- + OD- = Fe3OH[18O]DOHOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + OH- + OT- = Fe3OH[18O]DOHOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + OH- + [18O]H- = Fe3OH[18O]DOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + OH- + [18O]D- = Fe3OH[18O]DOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + OH- + [18O]T- = Fe3OH[18O]DOH[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + OD- + OH- = Fe3OH[18O]DODOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + OD- + OT- = Fe3OH[18O]DODOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + OD- + [18O]H- = Fe3OH[18O]DOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + OT- + OH- = Fe3OH[18O]DOTOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + OT- + OD- = Fe3OH[18O]DOTOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + OT- + [18O]H- = Fe3OH[18O]DOT[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + [18O]H- + OH- = Fe3OH[18O]D[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + [18O]H- + OD- = Fe3OH[18O]D[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + [18O]H- + OT- = Fe3OH[18O]D[18O]HOT+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + [18O]D- + OH- = Fe3OH[18O]D[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]D- + [18O]T- + OH- = Fe3OH[18O]D[18O]TOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]T- + OH- + OH- = Fe3OH[18O]TOHOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]T- + OH- + OD- = Fe3OH[18O]TOHOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]T- + OH- + [18O]H- = Fe3OH[18O]TOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]T- + OH- + [18O]D- = Fe3OH[18O]TOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]T- + OD- + OH- = Fe3OH[18O]TODOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]T- + OD- + OD- = Fe3OH[18O]TODOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]T- + OD- + [18O]H- = Fe3OH[18O]TOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]T- + [18O]H- + OH- = Fe3OH[18O]T[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]T- + [18O]H- + OD- = Fe3OH[18O]T[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + OH- + [18O]T- + [18O]D- + OH- = Fe3OH[18O]T[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + OH- + OH- = Fe3ODOHOHOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + OH- + OD- = Fe3ODOHOHOD+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + OH- + OT- = Fe3ODOHOHOT+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + OH- + [18O]H- = Fe3ODOHOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + OH- + [18O]D- = Fe3ODOHOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + OH- + [18O]T- = Fe3ODOHOH[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + OD- + OH- = Fe3ODOHODOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + OD- + OT- = Fe3ODOHODOT+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + OD- + [18O]H- = Fe3ODOHOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + OD- + [18O]T- = Fe3ODOHOD[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + OT- + OH- = Fe3ODOHOTOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + OT- + OD- = Fe3ODOHOTOD+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + OT- + [18O]H- = Fe3ODOHOT[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + OT- + [18O]D- = Fe3ODOHOT[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + [18O]H- + OH- = Fe3ODOH[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + [18O]H- + OD- = Fe3ODOH[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + [18O]H- + OT- = Fe3ODOH[18O]HOT+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + [18O]H- + [18O]H- = Fe3ODOH[18O]H[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + [18O]H- + [18O]D- = Fe3ODOH[18O]H[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + [18O]H- + [18O]T- = Fe3ODOH[18O]H[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + [18O]D- + OH- = Fe3ODOH[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + [18O]D- + OT- = Fe3ODOH[18O]DOT+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + [18O]D- + [18O]H- = Fe3ODOH[18O]D[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + [18O]T- + OH- = Fe3ODOH[18O]TOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + [18O]T- + OD- = Fe3ODOH[18O]TOD+5 + 4 OH- +Fe3(OH)4+5 + OD- + OH- + [18O]T- + [18O]H- = Fe3ODOH[18O]T[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + OD- + OH- + OH- = Fe3ODODOHOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + OD- + OH- + OT- = Fe3ODODOHOT+5 + 4 OH- +Fe3(OH)4+5 + OD- + OD- + OH- + [18O]H- = Fe3ODODOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + OD- + OH- + [18O]T- = Fe3ODODOH[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OD- + OD- + OT- + OH- = Fe3ODODOTOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + OD- + OT- + [18O]H- = Fe3ODODOT[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + OD- + [18O]H- + OH- = Fe3ODOD[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + OD- + [18O]H- + OT- = Fe3ODOD[18O]HOT+5 + 4 OH- +Fe3(OH)4+5 + OD- + OD- + [18O]H- + [18O]H- = Fe3ODOD[18O]H[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + OD- + [18O]T- + OH- = Fe3ODOD[18O]TOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + OT- + OH- + OH- = Fe3ODOTOHOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + OT- + OH- + OD- = Fe3ODOTOHOD+5 + 4 OH- +Fe3(OH)4+5 + OD- + OT- + OH- + [18O]H- = Fe3ODOTOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + OT- + OH- + [18O]D- = Fe3ODOTOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OD- + OT- + OD- + OH- = Fe3ODOTODOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + OT- + OD- + [18O]H- = Fe3ODOTOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + OT- + [18O]H- + OH- = Fe3ODOT[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + OT- + [18O]H- + OD- = Fe3ODOT[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + OD- + OT- + [18O]H- + [18O]H- = Fe3ODOT[18O]H[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + OT- + [18O]D- + OH- = Fe3ODOT[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + OH- + OH- = Fe3OD[18O]HOHOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + OH- + OD- = Fe3OD[18O]HOHOD+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + OH- + OT- = Fe3OD[18O]HOHOT+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + OH- + [18O]H- = Fe3OD[18O]HOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + OH- + [18O]D- = Fe3OD[18O]HOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + OH- + [18O]T- = Fe3OD[18O]HOH[18O]T+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + OD- + OH- = Fe3OD[18O]HODOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + OD- + OT- = Fe3OD[18O]HODOT+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + OD- + [18O]H- = Fe3OD[18O]HOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + OT- + OH- = Fe3OD[18O]HOTOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + OT- + OD- = Fe3OD[18O]HOTOD+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + OT- + [18O]H- = Fe3OD[18O]HOT[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + [18O]H- + OH- = Fe3OD[18O]H[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + [18O]H- + OD- = Fe3OD[18O]H[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + [18O]H- + OT- = Fe3OD[18O]H[18O]HOT+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + [18O]D- + OH- = Fe3OD[18O]H[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]H- + [18O]T- + OH- = Fe3OD[18O]H[18O]TOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]D- + OH- + OH- = Fe3OD[18O]DOHOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]D- + OH- + OT- = Fe3OD[18O]DOHOT+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]D- + OH- + [18O]H- = Fe3OD[18O]DOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]D- + OT- + OH- = Fe3OD[18O]DOTOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]D- + [18O]H- + OH- = Fe3OD[18O]D[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]T- + OH- + OH- = Fe3OD[18O]TOHOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]T- + OH- + OD- = Fe3OD[18O]TOHOD+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]T- + OH- + [18O]H- = Fe3OD[18O]TOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]T- + OD- + OH- = Fe3OD[18O]TODOH+5 + 4 OH- +Fe3(OH)4+5 + OD- + [18O]T- + [18O]H- + OH- = Fe3OD[18O]T[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + OH- + OH- = Fe3OTOHOHOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + OH- + OD- = Fe3OTOHOHOD+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + OH- + [18O]H- = Fe3OTOHOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + OH- + [18O]D- = Fe3OTOHOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + OD- + OH- = Fe3OTOHODOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + OD- + OD- = Fe3OTOHODOD+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + OD- + [18O]H- = Fe3OTOHOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + OD- + [18O]D- = Fe3OTOHOD[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + [18O]H- + OH- = Fe3OTOH[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + [18O]H- + OD- = Fe3OTOH[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + [18O]H- + [18O]H- = Fe3OTOH[18O]H[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + [18O]H- + [18O]D- = Fe3OTOH[18O]H[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + [18O]D- + OH- = Fe3OTOH[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + [18O]D- + OD- = Fe3OTOH[18O]DOD+5 + 4 OH- +Fe3(OH)4+5 + OT- + OH- + [18O]D- + [18O]H- = Fe3OTOH[18O]D[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OT- + OD- + OH- + OH- = Fe3OTODOHOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + OD- + OH- + OD- = Fe3OTODOHOD+5 + 4 OH- +Fe3(OH)4+5 + OT- + OD- + OH- + [18O]H- = Fe3OTODOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OT- + OD- + OH- + [18O]D- = Fe3OTODOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OT- + OD- + OD- + OH- = Fe3OTODODOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + OD- + OD- + [18O]H- = Fe3OTODOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OT- + OD- + [18O]H- + OH- = Fe3OTOD[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + OD- + [18O]H- + OD- = Fe3OTOD[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + OT- + OD- + [18O]H- + [18O]H- = Fe3OTOD[18O]H[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OT- + OD- + [18O]D- + OH- = Fe3OTOD[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]H- + OH- + OH- = Fe3OT[18O]HOHOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]H- + OH- + OD- = Fe3OT[18O]HOHOD+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]H- + OH- + [18O]H- = Fe3OT[18O]HOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]H- + OH- + [18O]D- = Fe3OT[18O]HOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]H- + OD- + OH- = Fe3OT[18O]HODOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]H- + OD- + OD- = Fe3OT[18O]HODOD+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]H- + OD- + [18O]H- = Fe3OT[18O]HOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]H- + [18O]H- + OH- = Fe3OT[18O]H[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]H- + [18O]H- + OD- = Fe3OT[18O]H[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]H- + [18O]D- + OH- = Fe3OT[18O]H[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]D- + OH- + OH- = Fe3OT[18O]DOHOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]D- + OH- + OD- = Fe3OT[18O]DOHOD+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]D- + OH- + [18O]H- = Fe3OT[18O]DOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]D- + OD- + OH- = Fe3OT[18O]DODOH+5 + 4 OH- +Fe3(OH)4+5 + OT- + [18O]D- + [18O]H- + OH- = Fe3OT[18O]D[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OH- + OH- = Fe3[18O]HOHOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OH- + OD- = Fe3[18O]HOHOHOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OH- + OT- = Fe3[18O]HOHOHOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OH- + [18O]H- = Fe3[18O]HOHOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OH- + [18O]D- = Fe3[18O]HOHOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OH- + [18O]T- = Fe3[18O]HOHOH[18O]T+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OD- + OH- = Fe3[18O]HOHODOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OD- + OD- = Fe3[18O]HOHODOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OD- + OT- = Fe3[18O]HOHODOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OD- + [18O]H- = Fe3[18O]HOHOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OD- + [18O]D- = Fe3[18O]HOHOD[18O]D+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OD- + [18O]T- = Fe3[18O]HOHOD[18O]T+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OT- + OH- = Fe3[18O]HOHOTOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OT- + OD- = Fe3[18O]HOHOTOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OT- + [18O]H- = Fe3[18O]HOHOT[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + OT- + [18O]D- = Fe3[18O]HOHOT[18O]D+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + [18O]H- + OH- = Fe3[18O]HOH[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + [18O]H- + OD- = Fe3[18O]HOH[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + [18O]H- + OT- = Fe3[18O]HOH[18O]HOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + [18O]D- + OH- = Fe3[18O]HOH[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + [18O]D- + OD- = Fe3[18O]HOH[18O]DOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + [18O]D- + OT- = Fe3[18O]HOH[18O]DOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + [18O]T- + OH- = Fe3[18O]HOH[18O]TOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OH- + [18O]T- + OD- = Fe3[18O]HOH[18O]TOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + OH- + OH- = Fe3[18O]HODOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + OH- + OD- = Fe3[18O]HODOHOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + OH- + OT- = Fe3[18O]HODOHOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + OH- + [18O]H- = Fe3[18O]HODOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + OH- + [18O]D- = Fe3[18O]HODOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + OH- + [18O]T- = Fe3[18O]HODOH[18O]T+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + OD- + OH- = Fe3[18O]HODODOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + OD- + OT- = Fe3[18O]HODODOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + OD- + [18O]H- = Fe3[18O]HODOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + OT- + OH- = Fe3[18O]HODOTOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + OT- + OD- = Fe3[18O]HODOTOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + OT- + [18O]H- = Fe3[18O]HODOT[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + [18O]H- + OH- = Fe3[18O]HOD[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + [18O]H- + OD- = Fe3[18O]HOD[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + [18O]H- + OT- = Fe3[18O]HOD[18O]HOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + [18O]D- + OH- = Fe3[18O]HOD[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OD- + [18O]T- + OH- = Fe3[18O]HOD[18O]TOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OT- + OH- + OH- = Fe3[18O]HOTOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OT- + OH- + OD- = Fe3[18O]HOTOHOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OT- + OH- + [18O]H- = Fe3[18O]HOTOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OT- + OH- + [18O]D- = Fe3[18O]HOTOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OT- + OD- + OH- = Fe3[18O]HOTODOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OT- + OD- + OD- = Fe3[18O]HOTODOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OT- + OD- + [18O]H- = Fe3[18O]HOTOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OT- + [18O]H- + OH- = Fe3[18O]HOT[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OT- + [18O]H- + OD- = Fe3[18O]HOT[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + OT- + [18O]D- + OH- = Fe3[18O]HOT[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]H- + OH- + OH- = Fe3[18O]H[18O]HOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]H- + OH- + OD- = Fe3[18O]H[18O]HOHOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]H- + OH- + OT- = Fe3[18O]H[18O]HOHOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]H- + OD- + OH- = Fe3[18O]H[18O]HODOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]H- + OD- + OD- = Fe3[18O]H[18O]HODOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]H- + OD- + OT- = Fe3[18O]H[18O]HODOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]H- + OT- + OH- = Fe3[18O]H[18O]HOTOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]H- + OT- + OD- = Fe3[18O]H[18O]HOTOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]D- + OH- + OH- = Fe3[18O]H[18O]DOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]D- + OH- + OD- = Fe3[18O]H[18O]DOHOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]D- + OH- + OT- = Fe3[18O]H[18O]DOHOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]D- + OD- + OH- = Fe3[18O]H[18O]DODOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]D- + OT- + OH- = Fe3[18O]H[18O]DOTOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]T- + OH- + OH- = Fe3[18O]H[18O]TOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]T- + OH- + OD- = Fe3[18O]H[18O]TOHOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]H- + [18O]T- + OD- + OH- = Fe3[18O]H[18O]TODOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + OH- + OH- = Fe3[18O]DOHOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + OH- + OD- = Fe3[18O]DOHOHOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + OH- + OT- = Fe3[18O]DOHOHOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + OH- + [18O]H- = Fe3[18O]DOHOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + OH- + [18O]D- = Fe3[18O]DOHOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + OH- + [18O]T- = Fe3[18O]DOHOH[18O]T+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + OD- + OH- = Fe3[18O]DOHODOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + OD- + OT- = Fe3[18O]DOHODOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + OD- + [18O]H- = Fe3[18O]DOHOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + OT- + OH- = Fe3[18O]DOHOTOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + OT- + OD- = Fe3[18O]DOHOTOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + OT- + [18O]H- = Fe3[18O]DOHOT[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + [18O]H- + OH- = Fe3[18O]DOH[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + [18O]H- + OD- = Fe3[18O]DOH[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + [18O]H- + OT- = Fe3[18O]DOH[18O]HOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + [18O]D- + OH- = Fe3[18O]DOH[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OH- + [18O]T- + OH- = Fe3[18O]DOH[18O]TOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OD- + OH- + OH- = Fe3[18O]DODOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OD- + OH- + OT- = Fe3[18O]DODOHOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OD- + OH- + [18O]H- = Fe3[18O]DODOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OD- + OT- + OH- = Fe3[18O]DODOTOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OD- + [18O]H- + OH- = Fe3[18O]DOD[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OT- + OH- + OH- = Fe3[18O]DOTOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OT- + OH- + OD- = Fe3[18O]DOTOHOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OT- + OH- + [18O]H- = Fe3[18O]DOTOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OT- + OD- + OH- = Fe3[18O]DOTODOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + OT- + [18O]H- + OH- = Fe3[18O]DOT[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + [18O]H- + OH- + OH- = Fe3[18O]D[18O]HOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + [18O]H- + OH- + OD- = Fe3[18O]D[18O]HOHOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + [18O]H- + OH- + OT- = Fe3[18O]D[18O]HOHOT+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + [18O]H- + OD- + OH- = Fe3[18O]D[18O]HODOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + [18O]H- + OT- + OH- = Fe3[18O]D[18O]HOTOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + [18O]D- + OH- + OH- = Fe3[18O]D[18O]DOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]D- + [18O]T- + OH- + OH- = Fe3[18O]D[18O]TOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OH- + OH- + OH- = Fe3[18O]TOHOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OH- + OH- + OD- = Fe3[18O]TOHOHOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OH- + OH- + [18O]H- = Fe3[18O]TOHOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OH- + OH- + [18O]D- = Fe3[18O]TOHOH[18O]D+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OH- + OD- + OH- = Fe3[18O]TOHODOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OH- + OD- + OD- = Fe3[18O]TOHODOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OH- + OD- + [18O]H- = Fe3[18O]TOHOD[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OH- + [18O]H- + OH- = Fe3[18O]TOH[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OH- + [18O]H- + OD- = Fe3[18O]TOH[18O]HOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OH- + [18O]D- + OH- = Fe3[18O]TOH[18O]DOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OD- + OH- + OH- = Fe3[18O]TODOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OD- + OH- + OD- = Fe3[18O]TODOHOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OD- + OH- + [18O]H- = Fe3[18O]TODOH[18O]H+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OD- + OD- + OH- = Fe3[18O]TODODOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + OD- + [18O]H- + OH- = Fe3[18O]TOD[18O]HOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + [18O]H- + OH- + OH- = Fe3[18O]T[18O]HOHOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + [18O]H- + OH- + OD- = Fe3[18O]T[18O]HOHOD+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + [18O]H- + OD- + OH- = Fe3[18O]T[18O]HODOH+5 + 4 OH- +Fe3(OH)4+5 + [18O]T- + [18O]D- + OH- + OH- = Fe3[18O]T[18O]DOHOH+5 + 4 OH- # # Added FeSO4+ reactions 16Dec09 # @@ -6210,9 +6214,9 @@ FeHSO4+2 + T[34S]O4- = FeT[34S]O4+2 + HSO4- # Added Fe(SO4)2- reactions 16Dec09 # Revised 17Dec09 # -Fe(SO4)2- + SO4-2 + [34S]O4-2 = FeSO4[34S]O4- + 2SO4-2 -Fe(SO4)2- + [34S]O4-2 + SO4-2 = Fe[34S]O4SO4- + 2SO4-2 -Fe(SO4)2- + [34S]O4-2 + [34S]O4-2 = Fe[34S]O4[34S]O4- + 2SO4-2 +Fe(SO4)2- + SO4-2 + [34S]O4-2 = FeSO4[34S]O4- + 2 SO4-2 +Fe(SO4)2- + [34S]O4-2 + SO4-2 = Fe[34S]O4SO4- + 2 SO4-2 +Fe(SO4)2- + [34S]O4-2 + [34S]O4-2 = Fe[34S]O4[34S]O4- + 2 SO4-2 # # Missing FeHPO4+ reactions # @@ -6231,524 +6235,524 @@ AlOH+2 + [18O]T- = Al[18O]T+2 + OH- # Added Al(OH)2+ reactions 16Dec09 # Revised 17Dec09, limited the number of species # -Al(OH)2+ + OH- + OD- = AlOHOD+ + 2OH- -Al(OH)2+ + OH- + OT- = AlOHOT+ + 2OH- -Al(OH)2+ + OH- + [18O]H- = AlOH[18O]H+ + 2OH- -Al(OH)2+ + OH- + [18O]D- = AlOH[18O]D+ + 2OH- -Al(OH)2+ + OH- + [18O]T- = AlOH[18O]T+ + 2OH- -Al(OH)2+ + OD- + OH- = AlODOH+ + 2OH- -Al(OH)2+ + OD- + OD- = AlODOD+ + 2OH- -Al(OH)2+ + OD- + OT- = AlODOT+ + 2OH- -Al(OH)2+ + OD- + [18O]H- = AlOD[18O]H+ + 2OH- -Al(OH)2+ + OD- + [18O]D- = AlOD[18O]D+ + 2OH- -Al(OH)2+ + OD- + [18O]T- = AlOD[18O]T+ + 2OH- -Al(OH)2+ + OT- + OH- = AlOTOH+ + 2OH- -Al(OH)2+ + OT- + OD- = AlOTOD+ + 2OH- -Al(OH)2+ + OT- + [18O]H- = AlOT[18O]H+ + 2OH- -Al(OH)2+ + OT- + [18O]D- = AlOT[18O]D+ + 2OH- -Al(OH)2+ + [18O]H- + OH- = Al[18O]HOH+ + 2OH- -Al(OH)2+ + [18O]H- + OD- = Al[18O]HOD+ + 2OH- -Al(OH)2+ + [18O]H- + OT- = Al[18O]HOT+ + 2OH- -Al(OH)2+ + [18O]H- + [18O]H- = Al[18O]H[18O]H+ + 2OH- -Al(OH)2+ + [18O]H- + [18O]D- = Al[18O]H[18O]D+ + 2OH- -Al(OH)2+ + [18O]H- + [18O]T- = Al[18O]H[18O]T+ + 2OH- -Al(OH)2+ + [18O]D- + OH- = Al[18O]DOH+ + 2OH- -Al(OH)2+ + [18O]D- + OD- = Al[18O]DOD+ + 2OH- -Al(OH)2+ + [18O]D- + OT- = Al[18O]DOT+ + 2OH- -Al(OH)2+ + [18O]D- + [18O]H- = Al[18O]D[18O]H+ + 2OH- -Al(OH)2+ + [18O]D- + [18O]D- = Al[18O]D[18O]D+ + 2OH- -Al(OH)2+ + [18O]D- + [18O]T- = Al[18O]D[18O]T+ + 2OH- -Al(OH)2+ + [18O]T- + OH- = Al[18O]TOH+ + 2OH- -Al(OH)2+ + [18O]T- + OD- = Al[18O]TOD+ + 2OH- -Al(OH)2+ + [18O]T- + [18O]H- = Al[18O]T[18O]H+ + 2OH- -Al(OH)2+ + [18O]T- + [18O]D- = Al[18O]T[18O]D+ + 2OH- +Al(OH)2+ + OH- + OD- = AlOHOD+ + 2 OH- +Al(OH)2+ + OH- + OT- = AlOHOT+ + 2 OH- +Al(OH)2+ + OH- + [18O]H- = AlOH[18O]H+ + 2 OH- +Al(OH)2+ + OH- + [18O]D- = AlOH[18O]D+ + 2 OH- +Al(OH)2+ + OH- + [18O]T- = AlOH[18O]T+ + 2 OH- +Al(OH)2+ + OD- + OH- = AlODOH+ + 2 OH- +Al(OH)2+ + OD- + OD- = AlODOD+ + 2 OH- +Al(OH)2+ + OD- + OT- = AlODOT+ + 2 OH- +Al(OH)2+ + OD- + [18O]H- = AlOD[18O]H+ + 2 OH- +Al(OH)2+ + OD- + [18O]D- = AlOD[18O]D+ + 2 OH- +Al(OH)2+ + OD- + [18O]T- = AlOD[18O]T+ + 2 OH- +Al(OH)2+ + OT- + OH- = AlOTOH+ + 2 OH- +Al(OH)2+ + OT- + OD- = AlOTOD+ + 2 OH- +Al(OH)2+ + OT- + [18O]H- = AlOT[18O]H+ + 2 OH- +Al(OH)2+ + OT- + [18O]D- = AlOT[18O]D+ + 2 OH- +Al(OH)2+ + [18O]H- + OH- = Al[18O]HOH+ + 2 OH- +Al(OH)2+ + [18O]H- + OD- = Al[18O]HOD+ + 2 OH- +Al(OH)2+ + [18O]H- + OT- = Al[18O]HOT+ + 2 OH- +Al(OH)2+ + [18O]H- + [18O]H- = Al[18O]H[18O]H+ + 2 OH- +Al(OH)2+ + [18O]H- + [18O]D- = Al[18O]H[18O]D+ + 2 OH- +Al(OH)2+ + [18O]H- + [18O]T- = Al[18O]H[18O]T+ + 2 OH- +Al(OH)2+ + [18O]D- + OH- = Al[18O]DOH+ + 2 OH- +Al(OH)2+ + [18O]D- + OD- = Al[18O]DOD+ + 2 OH- +Al(OH)2+ + [18O]D- + OT- = Al[18O]DOT+ + 2 OH- +Al(OH)2+ + [18O]D- + [18O]H- = Al[18O]D[18O]H+ + 2 OH- +Al(OH)2+ + [18O]D- + [18O]D- = Al[18O]D[18O]D+ + 2 OH- +Al(OH)2+ + [18O]D- + [18O]T- = Al[18O]D[18O]T+ + 2 OH- +Al(OH)2+ + [18O]T- + OH- = Al[18O]TOH+ + 2 OH- +Al(OH)2+ + [18O]T- + OD- = Al[18O]TOD+ + 2 OH- +Al(OH)2+ + [18O]T- + [18O]H- = Al[18O]T[18O]H+ + 2 OH- +Al(OH)2+ + [18O]T- + [18O]D- = Al[18O]T[18O]D+ + 2 OH- # # Added Al(OH)3 reactions 16Dec09 # Revised 17Dec09, limited the number of species # -Al(OH)3 + OH- + OH- + OD- = AlOHOHOD + 3OH- -Al(OH)3 + OH- + OH- + OT- = AlOHOHOT + 3OH- -Al(OH)3 + OH- + OH- + [18O]H- = AlOHOH[18O]H + 3OH- -Al(OH)3 + OH- + OH- + [18O]D- = AlOHOH[18O]D + 3OH- -Al(OH)3 + OH- + OH- + [18O]T- = AlOHOH[18O]T + 3OH- -Al(OH)3 + OH- + OD- + OH- = AlOHODOH + 3OH- -Al(OH)3 + OH- + OD- + OD- = AlOHODOD + 3OH- -Al(OH)3 + OH- + OD- + OT- = AlOHODOT + 3OH- -Al(OH)3 + OH- + OD- + [18O]H- = AlOHOD[18O]H + 3OH- -Al(OH)3 + OH- + OD- + [18O]D- = AlOHOD[18O]D + 3OH- -Al(OH)3 + OH- + OD- + [18O]T- = AlOHOD[18O]T + 3OH- -Al(OH)3 + OH- + OT- + OH- = AlOHOTOH + 3OH- -Al(OH)3 + OH- + OT- + OD- = AlOHOTOD + 3OH- -Al(OH)3 + OH- + OT- + [18O]H- = AlOHOT[18O]H + 3OH- -Al(OH)3 + OH- + OT- + [18O]D- = AlOHOT[18O]D + 3OH- -Al(OH)3 + OH- + [18O]H- + OH- = AlOH[18O]HOH + 3OH- -Al(OH)3 + OH- + [18O]H- + OD- = AlOH[18O]HOD + 3OH- -Al(OH)3 + OH- + [18O]H- + OT- = AlOH[18O]HOT + 3OH- -Al(OH)3 + OH- + [18O]H- + [18O]H- = AlOH[18O]H[18O]H + 3OH- -Al(OH)3 + OH- + [18O]H- + [18O]D- = AlOH[18O]H[18O]D + 3OH- -Al(OH)3 + OH- + [18O]H- + [18O]T- = AlOH[18O]H[18O]T + 3OH- -Al(OH)3 + OH- + [18O]D- + OH- = AlOH[18O]DOH + 3OH- -Al(OH)3 + OH- + [18O]D- + OD- = AlOH[18O]DOD + 3OH- -Al(OH)3 + OH- + [18O]D- + OT- = AlOH[18O]DOT + 3OH- -Al(OH)3 + OH- + [18O]D- + [18O]H- = AlOH[18O]D[18O]H + 3OH- -Al(OH)3 + OH- + [18O]D- + [18O]D- = AlOH[18O]D[18O]D + 3OH- -Al(OH)3 + OH- + [18O]D- + [18O]T- = AlOH[18O]D[18O]T + 3OH- -Al(OH)3 + OH- + [18O]T- + OH- = AlOH[18O]TOH + 3OH- -Al(OH)3 + OH- + [18O]T- + OD- = AlOH[18O]TOD + 3OH- -Al(OH)3 + OH- + [18O]T- + [18O]H- = AlOH[18O]T[18O]H + 3OH- -Al(OH)3 + OH- + [18O]T- + [18O]D- = AlOH[18O]T[18O]D + 3OH- -Al(OH)3 + OD- + OH- + OH- = AlODOHOH + 3OH- -Al(OH)3 + OD- + OH- + OD- = AlODOHOD + 3OH- -Al(OH)3 + OD- + OH- + OT- = AlODOHOT + 3OH- -Al(OH)3 + OD- + OH- + [18O]H- = AlODOH[18O]H + 3OH- -Al(OH)3 + OD- + OH- + [18O]D- = AlODOH[18O]D + 3OH- -Al(OH)3 + OD- + OH- + [18O]T- = AlODOH[18O]T + 3OH- -Al(OH)3 + OD- + OD- + OH- = AlODODOH + 3OH- -Al(OH)3 + OD- + OD- + OT- = AlODODOT + 3OH- -Al(OH)3 + OD- + OD- + [18O]H- = AlODOD[18O]H + 3OH- -Al(OH)3 + OD- + OD- + [18O]T- = AlODOD[18O]T + 3OH- -Al(OH)3 + OD- + OT- + OH- = AlODOTOH + 3OH- -Al(OH)3 + OD- + OT- + OD- = AlODOTOD + 3OH- -Al(OH)3 + OD- + OT- + [18O]H- = AlODOT[18O]H + 3OH- -Al(OH)3 + OD- + OT- + [18O]D- = AlODOT[18O]D + 3OH- -Al(OH)3 + OD- + [18O]H- + OH- = AlOD[18O]HOH + 3OH- -Al(OH)3 + OD- + [18O]H- + OD- = AlOD[18O]HOD + 3OH- -Al(OH)3 + OD- + [18O]H- + OT- = AlOD[18O]HOT + 3OH- -Al(OH)3 + OD- + [18O]H- + [18O]H- = AlOD[18O]H[18O]H + 3OH- -Al(OH)3 + OD- + [18O]H- + [18O]D- = AlOD[18O]H[18O]D + 3OH- -Al(OH)3 + OD- + [18O]H- + [18O]T- = AlOD[18O]H[18O]T + 3OH- -Al(OH)3 + OD- + [18O]D- + OH- = AlOD[18O]DOH + 3OH- -Al(OH)3 + OD- + [18O]D- + OT- = AlOD[18O]DOT + 3OH- -Al(OH)3 + OD- + [18O]D- + [18O]H- = AlOD[18O]D[18O]H + 3OH- -Al(OH)3 + OD- + [18O]T- + OH- = AlOD[18O]TOH + 3OH- -Al(OH)3 + OD- + [18O]T- + OD- = AlOD[18O]TOD + 3OH- -Al(OH)3 + OD- + [18O]T- + [18O]H- = AlOD[18O]T[18O]H + 3OH- -Al(OH)3 + OT- + OH- + OH- = AlOTOHOH + 3OH- -Al(OH)3 + OT- + OH- + OD- = AlOTOHOD + 3OH- -Al(OH)3 + OT- + OH- + [18O]H- = AlOTOH[18O]H + 3OH- -Al(OH)3 + OT- + OH- + [18O]D- = AlOTOH[18O]D + 3OH- -Al(OH)3 + OT- + OD- + OH- = AlOTODOH + 3OH- -Al(OH)3 + OT- + OD- + OD- = AlOTODOD + 3OH- -Al(OH)3 + OT- + OD- + [18O]H- = AlOTOD[18O]H + 3OH- -Al(OH)3 + OT- + OD- + [18O]D- = AlOTOD[18O]D + 3OH- -Al(OH)3 + OT- + [18O]H- + OH- = AlOT[18O]HOH + 3OH- -Al(OH)3 + OT- + [18O]H- + OD- = AlOT[18O]HOD + 3OH- -Al(OH)3 + OT- + [18O]H- + [18O]H- = AlOT[18O]H[18O]H + 3OH- -Al(OH)3 + OT- + [18O]H- + [18O]D- = AlOT[18O]H[18O]D + 3OH- -Al(OH)3 + OT- + [18O]D- + OH- = AlOT[18O]DOH + 3OH- -Al(OH)3 + OT- + [18O]D- + OD- = AlOT[18O]DOD + 3OH- -Al(OH)3 + OT- + [18O]D- + [18O]H- = AlOT[18O]D[18O]H + 3OH- -Al(OH)3 + [18O]H- + OH- + OH- = Al[18O]HOHOH + 3OH- -Al(OH)3 + [18O]H- + OH- + OD- = Al[18O]HOHOD + 3OH- -Al(OH)3 + [18O]H- + OH- + OT- = Al[18O]HOHOT + 3OH- -Al(OH)3 + [18O]H- + OH- + [18O]H- = Al[18O]HOH[18O]H + 3OH- -Al(OH)3 + [18O]H- + OH- + [18O]D- = Al[18O]HOH[18O]D + 3OH- -Al(OH)3 + [18O]H- + OH- + [18O]T- = Al[18O]HOH[18O]T + 3OH- -Al(OH)3 + [18O]H- + OD- + OH- = Al[18O]HODOH + 3OH- -Al(OH)3 + [18O]H- + OD- + OD- = Al[18O]HODOD + 3OH- -Al(OH)3 + [18O]H- + OD- + OT- = Al[18O]HODOT + 3OH- -Al(OH)3 + [18O]H- + OD- + [18O]H- = Al[18O]HOD[18O]H + 3OH- -Al(OH)3 + [18O]H- + OD- + [18O]D- = Al[18O]HOD[18O]D + 3OH- -Al(OH)3 + [18O]H- + OD- + [18O]T- = Al[18O]HOD[18O]T + 3OH- -Al(OH)3 + [18O]H- + OT- + OH- = Al[18O]HOTOH + 3OH- -Al(OH)3 + [18O]H- + OT- + OD- = Al[18O]HOTOD + 3OH- -Al(OH)3 + [18O]H- + OT- + [18O]H- = Al[18O]HOT[18O]H + 3OH- -Al(OH)3 + [18O]H- + OT- + [18O]D- = Al[18O]HOT[18O]D + 3OH- -Al(OH)3 + [18O]H- + [18O]H- + OH- = Al[18O]H[18O]HOH + 3OH- -Al(OH)3 + [18O]H- + [18O]H- + OD- = Al[18O]H[18O]HOD + 3OH- -Al(OH)3 + [18O]H- + [18O]H- + OT- = Al[18O]H[18O]HOT + 3OH- -Al(OH)3 + [18O]H- + [18O]D- + OH- = Al[18O]H[18O]DOH + 3OH- -Al(OH)3 + [18O]H- + [18O]D- + OD- = Al[18O]H[18O]DOD + 3OH- -Al(OH)3 + [18O]H- + [18O]D- + OT- = Al[18O]H[18O]DOT + 3OH- -Al(OH)3 + [18O]H- + [18O]T- + OH- = Al[18O]H[18O]TOH + 3OH- -Al(OH)3 + [18O]H- + [18O]T- + OD- = Al[18O]H[18O]TOD + 3OH- -Al(OH)3 + [18O]D- + OH- + OH- = Al[18O]DOHOH + 3OH- -Al(OH)3 + [18O]D- + OH- + OD- = Al[18O]DOHOD + 3OH- -Al(OH)3 + [18O]D- + OH- + OT- = Al[18O]DOHOT + 3OH- -Al(OH)3 + [18O]D- + OH- + [18O]H- = Al[18O]DOH[18O]H + 3OH- -Al(OH)3 + [18O]D- + OH- + [18O]D- = Al[18O]DOH[18O]D + 3OH- -Al(OH)3 + [18O]D- + OH- + [18O]T- = Al[18O]DOH[18O]T + 3OH- -Al(OH)3 + [18O]D- + OD- + OH- = Al[18O]DODOH + 3OH- -Al(OH)3 + [18O]D- + OD- + OT- = Al[18O]DODOT + 3OH- -Al(OH)3 + [18O]D- + OD- + [18O]H- = Al[18O]DOD[18O]H + 3OH- -Al(OH)3 + [18O]D- + OT- + OH- = Al[18O]DOTOH + 3OH- -Al(OH)3 + [18O]D- + OT- + OD- = Al[18O]DOTOD + 3OH- -Al(OH)3 + [18O]D- + OT- + [18O]H- = Al[18O]DOT[18O]H + 3OH- -Al(OH)3 + [18O]D- + [18O]H- + OH- = Al[18O]D[18O]HOH + 3OH- -Al(OH)3 + [18O]D- + [18O]H- + OD- = Al[18O]D[18O]HOD + 3OH- -Al(OH)3 + [18O]D- + [18O]H- + OT- = Al[18O]D[18O]HOT + 3OH- -Al(OH)3 + [18O]D- + [18O]D- + OH- = Al[18O]D[18O]DOH + 3OH- -Al(OH)3 + [18O]D- + [18O]T- + OH- = Al[18O]D[18O]TOH + 3OH- -Al(OH)3 + [18O]T- + OH- + OH- = Al[18O]TOHOH + 3OH- -Al(OH)3 + [18O]T- + OH- + OD- = Al[18O]TOHOD + 3OH- -Al(OH)3 + [18O]T- + OH- + [18O]H- = Al[18O]TOH[18O]H + 3OH- -Al(OH)3 + [18O]T- + OH- + [18O]D- = Al[18O]TOH[18O]D + 3OH- -Al(OH)3 + [18O]T- + OD- + OH- = Al[18O]TODOH + 3OH- -Al(OH)3 + [18O]T- + OD- + OD- = Al[18O]TODOD + 3OH- -Al(OH)3 + [18O]T- + OD- + [18O]H- = Al[18O]TOD[18O]H + 3OH- -Al(OH)3 + [18O]T- + [18O]H- + OH- = Al[18O]T[18O]HOH + 3OH- -Al(OH)3 + [18O]T- + [18O]H- + OD- = Al[18O]T[18O]HOD + 3OH- -Al(OH)3 + [18O]T- + [18O]D- + OH- = Al[18O]T[18O]DOH + 3OH- +Al(OH)3 + OH- + OH- + OD- = AlOHOHOD + 3 OH- +Al(OH)3 + OH- + OH- + OT- = AlOHOHOT + 3 OH- +Al(OH)3 + OH- + OH- + [18O]H- = AlOHOH[18O]H + 3 OH- +Al(OH)3 + OH- + OH- + [18O]D- = AlOHOH[18O]D + 3 OH- +Al(OH)3 + OH- + OH- + [18O]T- = AlOHOH[18O]T + 3 OH- +Al(OH)3 + OH- + OD- + OH- = AlOHODOH + 3 OH- +Al(OH)3 + OH- + OD- + OD- = AlOHODOD + 3 OH- +Al(OH)3 + OH- + OD- + OT- = AlOHODOT + 3 OH- +Al(OH)3 + OH- + OD- + [18O]H- = AlOHOD[18O]H + 3 OH- +Al(OH)3 + OH- + OD- + [18O]D- = AlOHOD[18O]D + 3 OH- +Al(OH)3 + OH- + OD- + [18O]T- = AlOHOD[18O]T + 3 OH- +Al(OH)3 + OH- + OT- + OH- = AlOHOTOH + 3 OH- +Al(OH)3 + OH- + OT- + OD- = AlOHOTOD + 3 OH- +Al(OH)3 + OH- + OT- + [18O]H- = AlOHOT[18O]H + 3 OH- +Al(OH)3 + OH- + OT- + [18O]D- = AlOHOT[18O]D + 3 OH- +Al(OH)3 + OH- + [18O]H- + OH- = AlOH[18O]HOH + 3 OH- +Al(OH)3 + OH- + [18O]H- + OD- = AlOH[18O]HOD + 3 OH- +Al(OH)3 + OH- + [18O]H- + OT- = AlOH[18O]HOT + 3 OH- +Al(OH)3 + OH- + [18O]H- + [18O]H- = AlOH[18O]H[18O]H + 3 OH- +Al(OH)3 + OH- + [18O]H- + [18O]D- = AlOH[18O]H[18O]D + 3 OH- +Al(OH)3 + OH- + [18O]H- + [18O]T- = AlOH[18O]H[18O]T + 3 OH- +Al(OH)3 + OH- + [18O]D- + OH- = AlOH[18O]DOH + 3 OH- +Al(OH)3 + OH- + [18O]D- + OD- = AlOH[18O]DOD + 3 OH- +Al(OH)3 + OH- + [18O]D- + OT- = AlOH[18O]DOT + 3 OH- +Al(OH)3 + OH- + [18O]D- + [18O]H- = AlOH[18O]D[18O]H + 3 OH- +Al(OH)3 + OH- + [18O]D- + [18O]D- = AlOH[18O]D[18O]D + 3 OH- +Al(OH)3 + OH- + [18O]D- + [18O]T- = AlOH[18O]D[18O]T + 3 OH- +Al(OH)3 + OH- + [18O]T- + OH- = AlOH[18O]TOH + 3 OH- +Al(OH)3 + OH- + [18O]T- + OD- = AlOH[18O]TOD + 3 OH- +Al(OH)3 + OH- + [18O]T- + [18O]H- = AlOH[18O]T[18O]H + 3 OH- +Al(OH)3 + OH- + [18O]T- + [18O]D- = AlOH[18O]T[18O]D + 3 OH- +Al(OH)3 + OD- + OH- + OH- = AlODOHOH + 3 OH- +Al(OH)3 + OD- + OH- + OD- = AlODOHOD + 3 OH- +Al(OH)3 + OD- + OH- + OT- = AlODOHOT + 3 OH- +Al(OH)3 + OD- + OH- + [18O]H- = AlODOH[18O]H + 3 OH- +Al(OH)3 + OD- + OH- + [18O]D- = AlODOH[18O]D + 3 OH- +Al(OH)3 + OD- + OH- + [18O]T- = AlODOH[18O]T + 3 OH- +Al(OH)3 + OD- + OD- + OH- = AlODODOH + 3 OH- +Al(OH)3 + OD- + OD- + OT- = AlODODOT + 3 OH- +Al(OH)3 + OD- + OD- + [18O]H- = AlODOD[18O]H + 3 OH- +Al(OH)3 + OD- + OD- + [18O]T- = AlODOD[18O]T + 3 OH- +Al(OH)3 + OD- + OT- + OH- = AlODOTOH + 3 OH- +Al(OH)3 + OD- + OT- + OD- = AlODOTOD + 3 OH- +Al(OH)3 + OD- + OT- + [18O]H- = AlODOT[18O]H + 3 OH- +Al(OH)3 + OD- + OT- + [18O]D- = AlODOT[18O]D + 3 OH- +Al(OH)3 + OD- + [18O]H- + OH- = AlOD[18O]HOH + 3 OH- +Al(OH)3 + OD- + [18O]H- + OD- = AlOD[18O]HOD + 3 OH- +Al(OH)3 + OD- + [18O]H- + OT- = AlOD[18O]HOT + 3 OH- +Al(OH)3 + OD- + [18O]H- + [18O]H- = AlOD[18O]H[18O]H + 3 OH- +Al(OH)3 + OD- + [18O]H- + [18O]D- = AlOD[18O]H[18O]D + 3 OH- +Al(OH)3 + OD- + [18O]H- + [18O]T- = AlOD[18O]H[18O]T + 3 OH- +Al(OH)3 + OD- + [18O]D- + OH- = AlOD[18O]DOH + 3 OH- +Al(OH)3 + OD- + [18O]D- + OT- = AlOD[18O]DOT + 3 OH- +Al(OH)3 + OD- + [18O]D- + [18O]H- = AlOD[18O]D[18O]H + 3 OH- +Al(OH)3 + OD- + [18O]T- + OH- = AlOD[18O]TOH + 3 OH- +Al(OH)3 + OD- + [18O]T- + OD- = AlOD[18O]TOD + 3 OH- +Al(OH)3 + OD- + [18O]T- + [18O]H- = AlOD[18O]T[18O]H + 3 OH- +Al(OH)3 + OT- + OH- + OH- = AlOTOHOH + 3 OH- +Al(OH)3 + OT- + OH- + OD- = AlOTOHOD + 3 OH- +Al(OH)3 + OT- + OH- + [18O]H- = AlOTOH[18O]H + 3 OH- +Al(OH)3 + OT- + OH- + [18O]D- = AlOTOH[18O]D + 3 OH- +Al(OH)3 + OT- + OD- + OH- = AlOTODOH + 3 OH- +Al(OH)3 + OT- + OD- + OD- = AlOTODOD + 3 OH- +Al(OH)3 + OT- + OD- + [18O]H- = AlOTOD[18O]H + 3 OH- +Al(OH)3 + OT- + OD- + [18O]D- = AlOTOD[18O]D + 3 OH- +Al(OH)3 + OT- + [18O]H- + OH- = AlOT[18O]HOH + 3 OH- +Al(OH)3 + OT- + [18O]H- + OD- = AlOT[18O]HOD + 3 OH- +Al(OH)3 + OT- + [18O]H- + [18O]H- = AlOT[18O]H[18O]H + 3 OH- +Al(OH)3 + OT- + [18O]H- + [18O]D- = AlOT[18O]H[18O]D + 3 OH- +Al(OH)3 + OT- + [18O]D- + OH- = AlOT[18O]DOH + 3 OH- +Al(OH)3 + OT- + [18O]D- + OD- = AlOT[18O]DOD + 3 OH- +Al(OH)3 + OT- + [18O]D- + [18O]H- = AlOT[18O]D[18O]H + 3 OH- +Al(OH)3 + [18O]H- + OH- + OH- = Al[18O]HOHOH + 3 OH- +Al(OH)3 + [18O]H- + OH- + OD- = Al[18O]HOHOD + 3 OH- +Al(OH)3 + [18O]H- + OH- + OT- = Al[18O]HOHOT + 3 OH- +Al(OH)3 + [18O]H- + OH- + [18O]H- = Al[18O]HOH[18O]H + 3 OH- +Al(OH)3 + [18O]H- + OH- + [18O]D- = Al[18O]HOH[18O]D + 3 OH- +Al(OH)3 + [18O]H- + OH- + [18O]T- = Al[18O]HOH[18O]T + 3 OH- +Al(OH)3 + [18O]H- + OD- + OH- = Al[18O]HODOH + 3 OH- +Al(OH)3 + [18O]H- + OD- + OD- = Al[18O]HODOD + 3 OH- +Al(OH)3 + [18O]H- + OD- + OT- = Al[18O]HODOT + 3 OH- +Al(OH)3 + [18O]H- + OD- + [18O]H- = Al[18O]HOD[18O]H + 3 OH- +Al(OH)3 + [18O]H- + OD- + [18O]D- = Al[18O]HOD[18O]D + 3 OH- +Al(OH)3 + [18O]H- + OD- + [18O]T- = Al[18O]HOD[18O]T + 3 OH- +Al(OH)3 + [18O]H- + OT- + OH- = Al[18O]HOTOH + 3 OH- +Al(OH)3 + [18O]H- + OT- + OD- = Al[18O]HOTOD + 3 OH- +Al(OH)3 + [18O]H- + OT- + [18O]H- = Al[18O]HOT[18O]H + 3 OH- +Al(OH)3 + [18O]H- + OT- + [18O]D- = Al[18O]HOT[18O]D + 3 OH- +Al(OH)3 + [18O]H- + [18O]H- + OH- = Al[18O]H[18O]HOH + 3 OH- +Al(OH)3 + [18O]H- + [18O]H- + OD- = Al[18O]H[18O]HOD + 3 OH- +Al(OH)3 + [18O]H- + [18O]H- + OT- = Al[18O]H[18O]HOT + 3 OH- +Al(OH)3 + [18O]H- + [18O]D- + OH- = Al[18O]H[18O]DOH + 3 OH- +Al(OH)3 + [18O]H- + [18O]D- + OD- = Al[18O]H[18O]DOD + 3 OH- +Al(OH)3 + [18O]H- + [18O]D- + OT- = Al[18O]H[18O]DOT + 3 OH- +Al(OH)3 + [18O]H- + [18O]T- + OH- = Al[18O]H[18O]TOH + 3 OH- +Al(OH)3 + [18O]H- + [18O]T- + OD- = Al[18O]H[18O]TOD + 3 OH- +Al(OH)3 + [18O]D- + OH- + OH- = Al[18O]DOHOH + 3 OH- +Al(OH)3 + [18O]D- + OH- + OD- = Al[18O]DOHOD + 3 OH- +Al(OH)3 + [18O]D- + OH- + OT- = Al[18O]DOHOT + 3 OH- +Al(OH)3 + [18O]D- + OH- + [18O]H- = Al[18O]DOH[18O]H + 3 OH- +Al(OH)3 + [18O]D- + OH- + [18O]D- = Al[18O]DOH[18O]D + 3 OH- +Al(OH)3 + [18O]D- + OH- + [18O]T- = Al[18O]DOH[18O]T + 3 OH- +Al(OH)3 + [18O]D- + OD- + OH- = Al[18O]DODOH + 3 OH- +Al(OH)3 + [18O]D- + OD- + OT- = Al[18O]DODOT + 3 OH- +Al(OH)3 + [18O]D- + OD- + [18O]H- = Al[18O]DOD[18O]H + 3 OH- +Al(OH)3 + [18O]D- + OT- + OH- = Al[18O]DOTOH + 3 OH- +Al(OH)3 + [18O]D- + OT- + OD- = Al[18O]DOTOD + 3 OH- +Al(OH)3 + [18O]D- + OT- + [18O]H- = Al[18O]DOT[18O]H + 3 OH- +Al(OH)3 + [18O]D- + [18O]H- + OH- = Al[18O]D[18O]HOH + 3 OH- +Al(OH)3 + [18O]D- + [18O]H- + OD- = Al[18O]D[18O]HOD + 3 OH- +Al(OH)3 + [18O]D- + [18O]H- + OT- = Al[18O]D[18O]HOT + 3 OH- +Al(OH)3 + [18O]D- + [18O]D- + OH- = Al[18O]D[18O]DOH + 3 OH- +Al(OH)3 + [18O]D- + [18O]T- + OH- = Al[18O]D[18O]TOH + 3 OH- +Al(OH)3 + [18O]T- + OH- + OH- = Al[18O]TOHOH + 3 OH- +Al(OH)3 + [18O]T- + OH- + OD- = Al[18O]TOHOD + 3 OH- +Al(OH)3 + [18O]T- + OH- + [18O]H- = Al[18O]TOH[18O]H + 3 OH- +Al(OH)3 + [18O]T- + OH- + [18O]D- = Al[18O]TOH[18O]D + 3 OH- +Al(OH)3 + [18O]T- + OD- + OH- = Al[18O]TODOH + 3 OH- +Al(OH)3 + [18O]T- + OD- + OD- = Al[18O]TODOD + 3 OH- +Al(OH)3 + [18O]T- + OD- + [18O]H- = Al[18O]TOD[18O]H + 3 OH- +Al(OH)3 + [18O]T- + [18O]H- + OH- = Al[18O]T[18O]HOH + 3 OH- +Al(OH)3 + [18O]T- + [18O]H- + OD- = Al[18O]T[18O]HOD + 3 OH- +Al(OH)3 + [18O]T- + [18O]D- + OH- = Al[18O]T[18O]DOH + 3 OH- # # Added Al(OH)4- reactions 16Dec09 # Revised 17Dec09, limited the number of species # -Al(OH)4- + OH- + OH- + OH- + OD- = AlOHOHOHOD- + 4OH- -Al(OH)4- + OH- + OH- + OH- + OT- = AlOHOHOHOT- + 4OH- -Al(OH)4- + OH- + OH- + OH- + [18O]H- = AlOHOHOH[18O]H- + 4OH- -Al(OH)4- + OH- + OH- + OH- + [18O]D- = AlOHOHOH[18O]D- + 4OH- -Al(OH)4- + OH- + OH- + OH- + [18O]T- = AlOHOHOH[18O]T- + 4OH- -Al(OH)4- + OH- + OH- + OD- + OH- = AlOHOHODOH- + 4OH- -Al(OH)4- + OH- + OH- + OD- + OD- = AlOHOHODOD- + 4OH- -Al(OH)4- + OH- + OH- + OD- + OT- = AlOHOHODOT- + 4OH- -Al(OH)4- + OH- + OH- + OD- + [18O]H- = AlOHOHOD[18O]H- + 4OH- -Al(OH)4- + OH- + OH- + OD- + [18O]D- = AlOHOHOD[18O]D- + 4OH- -Al(OH)4- + OH- + OH- + OD- + [18O]T- = AlOHOHOD[18O]T- + 4OH- -Al(OH)4- + OH- + OH- + OT- + OH- = AlOHOHOTOH- + 4OH- -Al(OH)4- + OH- + OH- + OT- + OD- = AlOHOHOTOD- + 4OH- -Al(OH)4- + OH- + OH- + OT- + [18O]H- = AlOHOHOT[18O]H- + 4OH- -Al(OH)4- + OH- + OH- + OT- + [18O]D- = AlOHOHOT[18O]D- + 4OH- -Al(OH)4- + OH- + OH- + [18O]H- + OH- = AlOHOH[18O]HOH- + 4OH- -Al(OH)4- + OH- + OH- + [18O]H- + OD- = AlOHOH[18O]HOD- + 4OH- -Al(OH)4- + OH- + OH- + [18O]H- + OT- = AlOHOH[18O]HOT- + 4OH- -Al(OH)4- + OH- + OH- + [18O]H- + [18O]H- = AlOHOH[18O]H[18O]H- + 4OH- -Al(OH)4- + OH- + OH- + [18O]H- + [18O]D- = AlOHOH[18O]H[18O]D- + 4OH- -Al(OH)4- + OH- + OH- + [18O]H- + [18O]T- = AlOHOH[18O]H[18O]T- + 4OH- -Al(OH)4- + OH- + OH- + [18O]D- + OH- = AlOHOH[18O]DOH- + 4OH- -Al(OH)4- + OH- + OH- + [18O]D- + OD- = AlOHOH[18O]DOD- + 4OH- -Al(OH)4- + OH- + OH- + [18O]D- + OT- = AlOHOH[18O]DOT- + 4OH- -Al(OH)4- + OH- + OH- + [18O]D- + [18O]H- = AlOHOH[18O]D[18O]H- + 4OH- -Al(OH)4- + OH- + OH- + [18O]D- + [18O]D- = AlOHOH[18O]D[18O]D- + 4OH- -Al(OH)4- + OH- + OH- + [18O]D- + [18O]T- = AlOHOH[18O]D[18O]T- + 4OH- -Al(OH)4- + OH- + OH- + [18O]T- + OH- = AlOHOH[18O]TOH- + 4OH- -Al(OH)4- + OH- + OH- + [18O]T- + OD- = AlOHOH[18O]TOD- + 4OH- -Al(OH)4- + OH- + OH- + [18O]T- + [18O]H- = AlOHOH[18O]T[18O]H- + 4OH- -Al(OH)4- + OH- + OH- + [18O]T- + [18O]D- = AlOHOH[18O]T[18O]D- + 4OH- -Al(OH)4- + OH- + OD- + OH- + OH- = AlOHODOHOH- + 4OH- -Al(OH)4- + OH- + OD- + OH- + OD- = AlOHODOHOD- + 4OH- -Al(OH)4- + OH- + OD- + OH- + OT- = AlOHODOHOT- + 4OH- -Al(OH)4- + OH- + OD- + OH- + [18O]H- = AlOHODOH[18O]H- + 4OH- -Al(OH)4- + OH- + OD- + OH- + [18O]D- = AlOHODOH[18O]D- + 4OH- -Al(OH)4- + OH- + OD- + OH- + [18O]T- = AlOHODOH[18O]T- + 4OH- -Al(OH)4- + OH- + OD- + OD- + OH- = AlOHODODOH- + 4OH- -Al(OH)4- + OH- + OD- + OD- + OT- = AlOHODODOT- + 4OH- -Al(OH)4- + OH- + OD- + OD- + [18O]H- = AlOHODOD[18O]H- + 4OH- -Al(OH)4- + OH- + OD- + OD- + [18O]T- = AlOHODOD[18O]T- + 4OH- -Al(OH)4- + OH- + OD- + OT- + OH- = AlOHODOTOH- + 4OH- -Al(OH)4- + OH- + OD- + OT- + OD- = AlOHODOTOD- + 4OH- -Al(OH)4- + OH- + OD- + OT- + [18O]H- = AlOHODOT[18O]H- + 4OH- -Al(OH)4- + OH- + OD- + OT- + [18O]D- = AlOHODOT[18O]D- + 4OH- -Al(OH)4- + OH- + OD- + [18O]H- + OH- = AlOHOD[18O]HOH- + 4OH- -Al(OH)4- + OH- + OD- + [18O]H- + OD- = AlOHOD[18O]HOD- + 4OH- -Al(OH)4- + OH- + OD- + [18O]H- + OT- = AlOHOD[18O]HOT- + 4OH- -Al(OH)4- + OH- + OD- + [18O]H- + [18O]H- = AlOHOD[18O]H[18O]H- + 4OH- -Al(OH)4- + OH- + OD- + [18O]H- + [18O]D- = AlOHOD[18O]H[18O]D- + 4OH- -Al(OH)4- + OH- + OD- + [18O]H- + [18O]T- = AlOHOD[18O]H[18O]T- + 4OH- -Al(OH)4- + OH- + OD- + [18O]D- + OH- = AlOHOD[18O]DOH- + 4OH- -Al(OH)4- + OH- + OD- + [18O]D- + OT- = AlOHOD[18O]DOT- + 4OH- -Al(OH)4- + OH- + OD- + [18O]D- + [18O]H- = AlOHOD[18O]D[18O]H- + 4OH- -Al(OH)4- + OH- + OD- + [18O]T- + OH- = AlOHOD[18O]TOH- + 4OH- -Al(OH)4- + OH- + OD- + [18O]T- + OD- = AlOHOD[18O]TOD- + 4OH- -Al(OH)4- + OH- + OD- + [18O]T- + [18O]H- = AlOHOD[18O]T[18O]H- + 4OH- -Al(OH)4- + OH- + OT- + OH- + OH- = AlOHOTOHOH- + 4OH- -Al(OH)4- + OH- + OT- + OH- + OD- = AlOHOTOHOD- + 4OH- -Al(OH)4- + OH- + OT- + OH- + [18O]H- = AlOHOTOH[18O]H- + 4OH- -Al(OH)4- + OH- + OT- + OH- + [18O]D- = AlOHOTOH[18O]D- + 4OH- -Al(OH)4- + OH- + OT- + OD- + OH- = AlOHOTODOH- + 4OH- -Al(OH)4- + OH- + OT- + OD- + OD- = AlOHOTODOD- + 4OH- -Al(OH)4- + OH- + OT- + OD- + [18O]H- = AlOHOTOD[18O]H- + 4OH- -Al(OH)4- + OH- + OT- + OD- + [18O]D- = AlOHOTOD[18O]D- + 4OH- -Al(OH)4- + OH- + OT- + [18O]H- + OH- = AlOHOT[18O]HOH- + 4OH- -Al(OH)4- + OH- + OT- + [18O]H- + OD- = AlOHOT[18O]HOD- + 4OH- -Al(OH)4- + OH- + OT- + [18O]H- + [18O]H- = AlOHOT[18O]H[18O]H- + 4OH- -Al(OH)4- + OH- + OT- + [18O]H- + [18O]D- = AlOHOT[18O]H[18O]D- + 4OH- -Al(OH)4- + OH- + OT- + [18O]D- + OH- = AlOHOT[18O]DOH- + 4OH- -Al(OH)4- + OH- + OT- + [18O]D- + OD- = AlOHOT[18O]DOD- + 4OH- -Al(OH)4- + OH- + OT- + [18O]D- + [18O]H- = AlOHOT[18O]D[18O]H- + 4OH- -Al(OH)4- + OH- + [18O]H- + OH- + OH- = AlOH[18O]HOHOH- + 4OH- -Al(OH)4- + OH- + [18O]H- + OH- + OD- = AlOH[18O]HOHOD- + 4OH- -Al(OH)4- + OH- + [18O]H- + OH- + OT- = AlOH[18O]HOHOT- + 4OH- -Al(OH)4- + OH- + [18O]H- + OH- + [18O]H- = AlOH[18O]HOH[18O]H- + 4OH- -Al(OH)4- + OH- + [18O]H- + OH- + [18O]D- = AlOH[18O]HOH[18O]D- + 4OH- -Al(OH)4- + OH- + [18O]H- + OH- + [18O]T- = AlOH[18O]HOH[18O]T- + 4OH- -Al(OH)4- + OH- + [18O]H- + OD- + OH- = AlOH[18O]HODOH- + 4OH- -Al(OH)4- + OH- + [18O]H- + OD- + OD- = AlOH[18O]HODOD- + 4OH- -Al(OH)4- + OH- + [18O]H- + OD- + OT- = AlOH[18O]HODOT- + 4OH- -Al(OH)4- + OH- + [18O]H- + OD- + [18O]H- = AlOH[18O]HOD[18O]H- + 4OH- -Al(OH)4- + OH- + [18O]H- + OD- + [18O]D- = AlOH[18O]HOD[18O]D- + 4OH- -Al(OH)4- + OH- + [18O]H- + OD- + [18O]T- = AlOH[18O]HOD[18O]T- + 4OH- -Al(OH)4- + OH- + [18O]H- + OT- + OH- = AlOH[18O]HOTOH- + 4OH- -Al(OH)4- + OH- + [18O]H- + OT- + OD- = AlOH[18O]HOTOD- + 4OH- -Al(OH)4- + OH- + [18O]H- + OT- + [18O]H- = AlOH[18O]HOT[18O]H- + 4OH- -Al(OH)4- + OH- + [18O]H- + OT- + [18O]D- = AlOH[18O]HOT[18O]D- + 4OH- -Al(OH)4- + OH- + [18O]H- + [18O]H- + OH- = AlOH[18O]H[18O]HOH- + 4OH- -Al(OH)4- + OH- + [18O]H- + [18O]H- + OD- = AlOH[18O]H[18O]HOD- + 4OH- -Al(OH)4- + OH- + [18O]H- + [18O]H- + OT- = AlOH[18O]H[18O]HOT- + 4OH- -Al(OH)4- + OH- + [18O]H- + [18O]D- + OH- = AlOH[18O]H[18O]DOH- + 4OH- -Al(OH)4- + OH- + [18O]H- + [18O]D- + OD- = AlOH[18O]H[18O]DOD- + 4OH- -Al(OH)4- + OH- + [18O]H- + [18O]D- + OT- = AlOH[18O]H[18O]DOT- + 4OH- -Al(OH)4- + OH- + [18O]H- + [18O]T- + OH- = AlOH[18O]H[18O]TOH- + 4OH- -Al(OH)4- + OH- + [18O]H- + [18O]T- + OD- = AlOH[18O]H[18O]TOD- + 4OH- -Al(OH)4- + OH- + [18O]D- + OH- + OH- = AlOH[18O]DOHOH- + 4OH- -Al(OH)4- + OH- + [18O]D- + OH- + OD- = AlOH[18O]DOHOD- + 4OH- -Al(OH)4- + OH- + [18O]D- + OH- + OT- = AlOH[18O]DOHOT- + 4OH- -Al(OH)4- + OH- + [18O]D- + OH- + [18O]H- = AlOH[18O]DOH[18O]H- + 4OH- -Al(OH)4- + OH- + [18O]D- + OH- + [18O]D- = AlOH[18O]DOH[18O]D- + 4OH- -Al(OH)4- + OH- + [18O]D- + OH- + [18O]T- = AlOH[18O]DOH[18O]T- + 4OH- -Al(OH)4- + OH- + [18O]D- + OD- + OH- = AlOH[18O]DODOH- + 4OH- -Al(OH)4- + OH- + [18O]D- + OD- + OT- = AlOH[18O]DODOT- + 4OH- -Al(OH)4- + OH- + [18O]D- + OD- + [18O]H- = AlOH[18O]DOD[18O]H- + 4OH- -Al(OH)4- + OH- + [18O]D- + OT- + OH- = AlOH[18O]DOTOH- + 4OH- -Al(OH)4- + OH- + [18O]D- + OT- + OD- = AlOH[18O]DOTOD- + 4OH- -Al(OH)4- + OH- + [18O]D- + OT- + [18O]H- = AlOH[18O]DOT[18O]H- + 4OH- -Al(OH)4- + OH- + [18O]D- + [18O]H- + OH- = AlOH[18O]D[18O]HOH- + 4OH- -Al(OH)4- + OH- + [18O]D- + [18O]H- + OD- = AlOH[18O]D[18O]HOD- + 4OH- -Al(OH)4- + OH- + [18O]D- + [18O]H- + OT- = AlOH[18O]D[18O]HOT- + 4OH- -Al(OH)4- + OH- + [18O]D- + [18O]D- + OH- = AlOH[18O]D[18O]DOH- + 4OH- -Al(OH)4- + OH- + [18O]D- + [18O]T- + OH- = AlOH[18O]D[18O]TOH- + 4OH- -Al(OH)4- + OH- + [18O]T- + OH- + OH- = AlOH[18O]TOHOH- + 4OH- -Al(OH)4- + OH- + [18O]T- + OH- + OD- = AlOH[18O]TOHOD- + 4OH- -Al(OH)4- + OH- + [18O]T- + OH- + [18O]H- = AlOH[18O]TOH[18O]H- + 4OH- -Al(OH)4- + OH- + [18O]T- + OH- + [18O]D- = AlOH[18O]TOH[18O]D- + 4OH- -Al(OH)4- + OH- + [18O]T- + OD- + OH- = AlOH[18O]TODOH- + 4OH- -Al(OH)4- + OH- + [18O]T- + OD- + OD- = AlOH[18O]TODOD- + 4OH- -Al(OH)4- + OH- + [18O]T- + OD- + [18O]H- = AlOH[18O]TOD[18O]H- + 4OH- -Al(OH)4- + OH- + [18O]T- + [18O]H- + OH- = AlOH[18O]T[18O]HOH- + 4OH- -Al(OH)4- + OH- + [18O]T- + [18O]H- + OD- = AlOH[18O]T[18O]HOD- + 4OH- -Al(OH)4- + OH- + [18O]T- + [18O]D- + OH- = AlOH[18O]T[18O]DOH- + 4OH- -Al(OH)4- + OD- + OH- + OH- + OH- = AlODOHOHOH- + 4OH- -Al(OH)4- + OD- + OH- + OH- + OD- = AlODOHOHOD- + 4OH- -Al(OH)4- + OD- + OH- + OH- + OT- = AlODOHOHOT- + 4OH- -Al(OH)4- + OD- + OH- + OH- + [18O]H- = AlODOHOH[18O]H- + 4OH- -Al(OH)4- + OD- + OH- + OH- + [18O]D- = AlODOHOH[18O]D- + 4OH- -Al(OH)4- + OD- + OH- + OH- + [18O]T- = AlODOHOH[18O]T- + 4OH- -Al(OH)4- + OD- + OH- + OD- + OH- = AlODOHODOH- + 4OH- -Al(OH)4- + OD- + OH- + OD- + OT- = AlODOHODOT- + 4OH- -Al(OH)4- + OD- + OH- + OD- + [18O]H- = AlODOHOD[18O]H- + 4OH- -Al(OH)4- + OD- + OH- + OD- + [18O]T- = AlODOHOD[18O]T- + 4OH- -Al(OH)4- + OD- + OH- + OT- + OH- = AlODOHOTOH- + 4OH- -Al(OH)4- + OD- + OH- + OT- + OD- = AlODOHOTOD- + 4OH- -Al(OH)4- + OD- + OH- + OT- + [18O]H- = AlODOHOT[18O]H- + 4OH- -Al(OH)4- + OD- + OH- + OT- + [18O]D- = AlODOHOT[18O]D- + 4OH- -Al(OH)4- + OD- + OH- + [18O]H- + OH- = AlODOH[18O]HOH- + 4OH- -Al(OH)4- + OD- + OH- + [18O]H- + OD- = AlODOH[18O]HOD- + 4OH- -Al(OH)4- + OD- + OH- + [18O]H- + OT- = AlODOH[18O]HOT- + 4OH- -Al(OH)4- + OD- + OH- + [18O]H- + [18O]H- = AlODOH[18O]H[18O]H- + 4OH- -Al(OH)4- + OD- + OH- + [18O]H- + [18O]D- = AlODOH[18O]H[18O]D- + 4OH- -Al(OH)4- + OD- + OH- + [18O]H- + [18O]T- = AlODOH[18O]H[18O]T- + 4OH- -Al(OH)4- + OD- + OH- + [18O]D- + OH- = AlODOH[18O]DOH- + 4OH- -Al(OH)4- + OD- + OH- + [18O]D- + OT- = AlODOH[18O]DOT- + 4OH- -Al(OH)4- + OD- + OH- + [18O]D- + [18O]H- = AlODOH[18O]D[18O]H- + 4OH- -Al(OH)4- + OD- + OH- + [18O]T- + OH- = AlODOH[18O]TOH- + 4OH- -Al(OH)4- + OD- + OH- + [18O]T- + OD- = AlODOH[18O]TOD- + 4OH- -Al(OH)4- + OD- + OH- + [18O]T- + [18O]H- = AlODOH[18O]T[18O]H- + 4OH- -Al(OH)4- + OD- + OD- + OH- + OH- = AlODODOHOH- + 4OH- -Al(OH)4- + OD- + OD- + OH- + OT- = AlODODOHOT- + 4OH- -Al(OH)4- + OD- + OD- + OH- + [18O]H- = AlODODOH[18O]H- + 4OH- -Al(OH)4- + OD- + OD- + OH- + [18O]T- = AlODODOH[18O]T- + 4OH- -Al(OH)4- + OD- + OD- + OT- + OH- = AlODODOTOH- + 4OH- -Al(OH)4- + OD- + OD- + OT- + [18O]H- = AlODODOT[18O]H- + 4OH- -Al(OH)4- + OD- + OD- + [18O]H- + OH- = AlODOD[18O]HOH- + 4OH- -Al(OH)4- + OD- + OD- + [18O]H- + OT- = AlODOD[18O]HOT- + 4OH- -Al(OH)4- + OD- + OD- + [18O]H- + [18O]H- = AlODOD[18O]H[18O]H- + 4OH- -Al(OH)4- + OD- + OD- + [18O]T- + OH- = AlODOD[18O]TOH- + 4OH- -Al(OH)4- + OD- + OT- + OH- + OH- = AlODOTOHOH- + 4OH- -Al(OH)4- + OD- + OT- + OH- + OD- = AlODOTOHOD- + 4OH- -Al(OH)4- + OD- + OT- + OH- + [18O]H- = AlODOTOH[18O]H- + 4OH- -Al(OH)4- + OD- + OT- + OH- + [18O]D- = AlODOTOH[18O]D- + 4OH- -Al(OH)4- + OD- + OT- + OD- + OH- = AlODOTODOH- + 4OH- -Al(OH)4- + OD- + OT- + OD- + [18O]H- = AlODOTOD[18O]H- + 4OH- -Al(OH)4- + OD- + OT- + [18O]H- + OH- = AlODOT[18O]HOH- + 4OH- -Al(OH)4- + OD- + OT- + [18O]H- + OD- = AlODOT[18O]HOD- + 4OH- -Al(OH)4- + OD- + OT- + [18O]H- + [18O]H- = AlODOT[18O]H[18O]H- + 4OH- -Al(OH)4- + OD- + OT- + [18O]D- + OH- = AlODOT[18O]DOH- + 4OH- -Al(OH)4- + OD- + [18O]H- + OH- + OH- = AlOD[18O]HOHOH- + 4OH- -Al(OH)4- + OD- + [18O]H- + OH- + OD- = AlOD[18O]HOHOD- + 4OH- -Al(OH)4- + OD- + [18O]H- + OH- + OT- = AlOD[18O]HOHOT- + 4OH- -Al(OH)4- + OD- + [18O]H- + OH- + [18O]H- = AlOD[18O]HOH[18O]H- + 4OH- -Al(OH)4- + OD- + [18O]H- + OH- + [18O]D- = AlOD[18O]HOH[18O]D- + 4OH- -Al(OH)4- + OD- + [18O]H- + OH- + [18O]T- = AlOD[18O]HOH[18O]T- + 4OH- -Al(OH)4- + OD- + [18O]H- + OD- + OH- = AlOD[18O]HODOH- + 4OH- -Al(OH)4- + OD- + [18O]H- + OD- + OT- = AlOD[18O]HODOT- + 4OH- -Al(OH)4- + OD- + [18O]H- + OD- + [18O]H- = AlOD[18O]HOD[18O]H- + 4OH- -Al(OH)4- + OD- + [18O]H- + OT- + OH- = AlOD[18O]HOTOH- + 4OH- -Al(OH)4- + OD- + [18O]H- + OT- + OD- = AlOD[18O]HOTOD- + 4OH- -Al(OH)4- + OD- + [18O]H- + OT- + [18O]H- = AlOD[18O]HOT[18O]H- + 4OH- -Al(OH)4- + OD- + [18O]H- + [18O]H- + OH- = AlOD[18O]H[18O]HOH- + 4OH- -Al(OH)4- + OD- + [18O]H- + [18O]H- + OD- = AlOD[18O]H[18O]HOD- + 4OH- -Al(OH)4- + OD- + [18O]H- + [18O]H- + OT- = AlOD[18O]H[18O]HOT- + 4OH- -Al(OH)4- + OD- + [18O]H- + [18O]D- + OH- = AlOD[18O]H[18O]DOH- + 4OH- -Al(OH)4- + OD- + [18O]H- + [18O]T- + OH- = AlOD[18O]H[18O]TOH- + 4OH- -Al(OH)4- + OD- + [18O]D- + OH- + OH- = AlOD[18O]DOHOH- + 4OH- -Al(OH)4- + OD- + [18O]D- + OH- + OT- = AlOD[18O]DOHOT- + 4OH- -Al(OH)4- + OD- + [18O]D- + OH- + [18O]H- = AlOD[18O]DOH[18O]H- + 4OH- -Al(OH)4- + OD- + [18O]D- + OT- + OH- = AlOD[18O]DOTOH- + 4OH- -Al(OH)4- + OD- + [18O]D- + [18O]H- + OH- = AlOD[18O]D[18O]HOH- + 4OH- -Al(OH)4- + OD- + [18O]T- + OH- + OH- = AlOD[18O]TOHOH- + 4OH- -Al(OH)4- + OD- + [18O]T- + OH- + OD- = AlOD[18O]TOHOD- + 4OH- -Al(OH)4- + OD- + [18O]T- + OH- + [18O]H- = AlOD[18O]TOH[18O]H- + 4OH- -Al(OH)4- + OD- + [18O]T- + OD- + OH- = AlOD[18O]TODOH- + 4OH- -Al(OH)4- + OD- + [18O]T- + [18O]H- + OH- = AlOD[18O]T[18O]HOH- + 4OH- -Al(OH)4- + OT- + OH- + OH- + OH- = AlOTOHOHOH- + 4OH- -Al(OH)4- + OT- + OH- + OH- + OD- = AlOTOHOHOD- + 4OH- -Al(OH)4- + OT- + OH- + OH- + [18O]H- = AlOTOHOH[18O]H- + 4OH- -Al(OH)4- + OT- + OH- + OH- + [18O]D- = AlOTOHOH[18O]D- + 4OH- -Al(OH)4- + OT- + OH- + OD- + OH- = AlOTOHODOH- + 4OH- -Al(OH)4- + OT- + OH- + OD- + OD- = AlOTOHODOD- + 4OH- -Al(OH)4- + OT- + OH- + OD- + [18O]H- = AlOTOHOD[18O]H- + 4OH- -Al(OH)4- + OT- + OH- + OD- + [18O]D- = AlOTOHOD[18O]D- + 4OH- -Al(OH)4- + OT- + OH- + [18O]H- + OH- = AlOTOH[18O]HOH- + 4OH- -Al(OH)4- + OT- + OH- + [18O]H- + OD- = AlOTOH[18O]HOD- + 4OH- -Al(OH)4- + OT- + OH- + [18O]H- + [18O]H- = AlOTOH[18O]H[18O]H- + 4OH- -Al(OH)4- + OT- + OH- + [18O]H- + [18O]D- = AlOTOH[18O]H[18O]D- + 4OH- -Al(OH)4- + OT- + OH- + [18O]D- + OH- = AlOTOH[18O]DOH- + 4OH- -Al(OH)4- + OT- + OH- + [18O]D- + OD- = AlOTOH[18O]DOD- + 4OH- -Al(OH)4- + OT- + OH- + [18O]D- + [18O]H- = AlOTOH[18O]D[18O]H- + 4OH- -Al(OH)4- + OT- + OD- + OH- + OH- = AlOTODOHOH- + 4OH- -Al(OH)4- + OT- + OD- + OH- + OD- = AlOTODOHOD- + 4OH- -Al(OH)4- + OT- + OD- + OH- + [18O]H- = AlOTODOH[18O]H- + 4OH- -Al(OH)4- + OT- + OD- + OH- + [18O]D- = AlOTODOH[18O]D- + 4OH- -Al(OH)4- + OT- + OD- + OD- + OH- = AlOTODODOH- + 4OH- -Al(OH)4- + OT- + OD- + OD- + [18O]H- = AlOTODOD[18O]H- + 4OH- -Al(OH)4- + OT- + OD- + [18O]H- + OH- = AlOTOD[18O]HOH- + 4OH- -Al(OH)4- + OT- + OD- + [18O]H- + OD- = AlOTOD[18O]HOD- + 4OH- -Al(OH)4- + OT- + OD- + [18O]H- + [18O]H- = AlOTOD[18O]H[18O]H- + 4OH- -Al(OH)4- + OT- + OD- + [18O]D- + OH- = AlOTOD[18O]DOH- + 4OH- -Al(OH)4- + OT- + [18O]H- + OH- + OH- = AlOT[18O]HOHOH- + 4OH- -Al(OH)4- + OT- + [18O]H- + OH- + OD- = AlOT[18O]HOHOD- + 4OH- -Al(OH)4- + OT- + [18O]H- + OH- + [18O]H- = AlOT[18O]HOH[18O]H- + 4OH- -Al(OH)4- + OT- + [18O]H- + OH- + [18O]D- = AlOT[18O]HOH[18O]D- + 4OH- -Al(OH)4- + OT- + [18O]H- + OD- + OH- = AlOT[18O]HODOH- + 4OH- -Al(OH)4- + OT- + [18O]H- + OD- + OD- = AlOT[18O]HODOD- + 4OH- -Al(OH)4- + OT- + [18O]H- + OD- + [18O]H- = AlOT[18O]HOD[18O]H- + 4OH- -Al(OH)4- + OT- + [18O]H- + [18O]H- + OH- = AlOT[18O]H[18O]HOH- + 4OH- -Al(OH)4- + OT- + [18O]H- + [18O]H- + OD- = AlOT[18O]H[18O]HOD- + 4OH- -Al(OH)4- + OT- + [18O]H- + [18O]D- + OH- = AlOT[18O]H[18O]DOH- + 4OH- -Al(OH)4- + OT- + [18O]D- + OH- + OH- = AlOT[18O]DOHOH- + 4OH- -Al(OH)4- + OT- + [18O]D- + OH- + OD- = AlOT[18O]DOHOD- + 4OH- -Al(OH)4- + OT- + [18O]D- + OH- + [18O]H- = AlOT[18O]DOH[18O]H- + 4OH- -Al(OH)4- + OT- + [18O]D- + OD- + OH- = AlOT[18O]DODOH- + 4OH- -Al(OH)4- + OT- + [18O]D- + [18O]H- + OH- = AlOT[18O]D[18O]HOH- + 4OH- -Al(OH)4- + [18O]H- + OH- + OH- + OH- = Al[18O]HOHOHOH- + 4OH- -Al(OH)4- + [18O]H- + OH- + OH- + OD- = Al[18O]HOHOHOD- + 4OH- -Al(OH)4- + [18O]H- + OH- + OH- + OT- = Al[18O]HOHOHOT- + 4OH- -Al(OH)4- + [18O]H- + OH- + OH- + [18O]H- = Al[18O]HOHOH[18O]H- + 4OH- -Al(OH)4- + [18O]H- + OH- + OH- + [18O]D- = Al[18O]HOHOH[18O]D- + 4OH- -Al(OH)4- + [18O]H- + OH- + OH- + [18O]T- = Al[18O]HOHOH[18O]T- + 4OH- -Al(OH)4- + [18O]H- + OH- + OD- + OH- = Al[18O]HOHODOH- + 4OH- -Al(OH)4- + [18O]H- + OH- + OD- + OD- = Al[18O]HOHODOD- + 4OH- -Al(OH)4- + [18O]H- + OH- + OD- + OT- = Al[18O]HOHODOT- + 4OH- -Al(OH)4- + [18O]H- + OH- + OD- + [18O]H- = Al[18O]HOHOD[18O]H- + 4OH- -Al(OH)4- + [18O]H- + OH- + OD- + [18O]D- = Al[18O]HOHOD[18O]D- + 4OH- -Al(OH)4- + [18O]H- + OH- + OD- + [18O]T- = Al[18O]HOHOD[18O]T- + 4OH- -Al(OH)4- + [18O]H- + OH- + OT- + OH- = Al[18O]HOHOTOH- + 4OH- -Al(OH)4- + [18O]H- + OH- + OT- + OD- = Al[18O]HOHOTOD- + 4OH- -Al(OH)4- + [18O]H- + OH- + OT- + [18O]H- = Al[18O]HOHOT[18O]H- + 4OH- -Al(OH)4- + [18O]H- + OH- + OT- + [18O]D- = Al[18O]HOHOT[18O]D- + 4OH- -Al(OH)4- + [18O]H- + OH- + [18O]H- + OH- = Al[18O]HOH[18O]HOH- + 4OH- -Al(OH)4- + [18O]H- + OH- + [18O]H- + OD- = Al[18O]HOH[18O]HOD- + 4OH- -Al(OH)4- + [18O]H- + OH- + [18O]H- + OT- = Al[18O]HOH[18O]HOT- + 4OH- -Al(OH)4- + [18O]H- + OH- + [18O]D- + OH- = Al[18O]HOH[18O]DOH- + 4OH- -Al(OH)4- + [18O]H- + OH- + [18O]D- + OD- = Al[18O]HOH[18O]DOD- + 4OH- -Al(OH)4- + [18O]H- + OH- + [18O]D- + OT- = Al[18O]HOH[18O]DOT- + 4OH- -Al(OH)4- + [18O]H- + OH- + [18O]T- + OH- = Al[18O]HOH[18O]TOH- + 4OH- -Al(OH)4- + [18O]H- + OH- + [18O]T- + OD- = Al[18O]HOH[18O]TOD- + 4OH- -Al(OH)4- + [18O]H- + OD- + OH- + OH- = Al[18O]HODOHOH- + 4OH- -Al(OH)4- + [18O]H- + OD- + OH- + OD- = Al[18O]HODOHOD- + 4OH- -Al(OH)4- + [18O]H- + OD- + OH- + OT- = Al[18O]HODOHOT- + 4OH- -Al(OH)4- + [18O]H- + OD- + OH- + [18O]H- = Al[18O]HODOH[18O]H- + 4OH- -Al(OH)4- + [18O]H- + OD- + OH- + [18O]D- = Al[18O]HODOH[18O]D- + 4OH- -Al(OH)4- + [18O]H- + OD- + OH- + [18O]T- = Al[18O]HODOH[18O]T- + 4OH- -Al(OH)4- + [18O]H- + OD- + OD- + OH- = Al[18O]HODODOH- + 4OH- -Al(OH)4- + [18O]H- + OD- + OD- + OT- = Al[18O]HODODOT- + 4OH- -Al(OH)4- + [18O]H- + OD- + OD- + [18O]H- = Al[18O]HODOD[18O]H- + 4OH- -Al(OH)4- + [18O]H- + OD- + OT- + OH- = Al[18O]HODOTOH- + 4OH- -Al(OH)4- + [18O]H- + OD- + OT- + OD- = Al[18O]HODOTOD- + 4OH- -Al(OH)4- + [18O]H- + OD- + OT- + [18O]H- = Al[18O]HODOT[18O]H- + 4OH- -Al(OH)4- + [18O]H- + OD- + [18O]H- + OH- = Al[18O]HOD[18O]HOH- + 4OH- -Al(OH)4- + [18O]H- + OD- + [18O]H- + OD- = Al[18O]HOD[18O]HOD- + 4OH- -Al(OH)4- + [18O]H- + OD- + [18O]H- + OT- = Al[18O]HOD[18O]HOT- + 4OH- -Al(OH)4- + [18O]H- + OD- + [18O]D- + OH- = Al[18O]HOD[18O]DOH- + 4OH- -Al(OH)4- + [18O]H- + OD- + [18O]T- + OH- = Al[18O]HOD[18O]TOH- + 4OH- -Al(OH)4- + [18O]H- + OT- + OH- + OH- = Al[18O]HOTOHOH- + 4OH- -Al(OH)4- + [18O]H- + OT- + OH- + OD- = Al[18O]HOTOHOD- + 4OH- -Al(OH)4- + [18O]H- + OT- + OH- + [18O]H- = Al[18O]HOTOH[18O]H- + 4OH- -Al(OH)4- + [18O]H- + OT- + OH- + [18O]D- = Al[18O]HOTOH[18O]D- + 4OH- -Al(OH)4- + [18O]H- + OT- + OD- + OH- = Al[18O]HOTODOH- + 4OH- -Al(OH)4- + [18O]H- + OT- + OD- + OD- = Al[18O]HOTODOD- + 4OH- -Al(OH)4- + [18O]H- + OT- + OD- + [18O]H- = Al[18O]HOTOD[18O]H- + 4OH- -Al(OH)4- + [18O]H- + OT- + [18O]H- + OH- = Al[18O]HOT[18O]HOH- + 4OH- -Al(OH)4- + [18O]H- + OT- + [18O]H- + OD- = Al[18O]HOT[18O]HOD- + 4OH- -Al(OH)4- + [18O]H- + OT- + [18O]D- + OH- = Al[18O]HOT[18O]DOH- + 4OH- -Al(OH)4- + [18O]H- + [18O]H- + OH- + OH- = Al[18O]H[18O]HOHOH- + 4OH- -Al(OH)4- + [18O]H- + [18O]H- + OH- + OD- = Al[18O]H[18O]HOHOD- + 4OH- -Al(OH)4- + [18O]H- + [18O]H- + OH- + OT- = Al[18O]H[18O]HOHOT- + 4OH- -Al(OH)4- + [18O]H- + [18O]H- + OD- + OH- = Al[18O]H[18O]HODOH- + 4OH- -Al(OH)4- + [18O]H- + [18O]H- + OD- + OD- = Al[18O]H[18O]HODOD- + 4OH- -Al(OH)4- + [18O]H- + [18O]H- + OD- + OT- = Al[18O]H[18O]HODOT- + 4OH- -Al(OH)4- + [18O]H- + [18O]H- + OT- + OH- = Al[18O]H[18O]HOTOH- + 4OH- -Al(OH)4- + [18O]H- + [18O]H- + OT- + OD- = Al[18O]H[18O]HOTOD- + 4OH- -Al(OH)4- + [18O]H- + [18O]D- + OH- + OH- = Al[18O]H[18O]DOHOH- + 4OH- -Al(OH)4- + [18O]H- + [18O]D- + OH- + OD- = Al[18O]H[18O]DOHOD- + 4OH- -Al(OH)4- + [18O]H- + [18O]D- + OH- + OT- = Al[18O]H[18O]DOHOT- + 4OH- -Al(OH)4- + [18O]H- + [18O]D- + OD- + OH- = Al[18O]H[18O]DODOH- + 4OH- -Al(OH)4- + [18O]H- + [18O]D- + OT- + OH- = Al[18O]H[18O]DOTOH- + 4OH- -Al(OH)4- + [18O]H- + [18O]T- + OH- + OH- = Al[18O]H[18O]TOHOH- + 4OH- -Al(OH)4- + [18O]H- + [18O]T- + OH- + OD- = Al[18O]H[18O]TOHOD- + 4OH- -Al(OH)4- + [18O]H- + [18O]T- + OD- + OH- = Al[18O]H[18O]TODOH- + 4OH- -Al(OH)4- + [18O]D- + OH- + OH- + OH- = Al[18O]DOHOHOH- + 4OH- -Al(OH)4- + [18O]D- + OH- + OH- + OD- = Al[18O]DOHOHOD- + 4OH- -Al(OH)4- + [18O]D- + OH- + OH- + OT- = Al[18O]DOHOHOT- + 4OH- -Al(OH)4- + [18O]D- + OH- + OH- + [18O]H- = Al[18O]DOHOH[18O]H- + 4OH- -Al(OH)4- + [18O]D- + OH- + OH- + [18O]D- = Al[18O]DOHOH[18O]D- + 4OH- -Al(OH)4- + [18O]D- + OH- + OH- + [18O]T- = Al[18O]DOHOH[18O]T- + 4OH- -Al(OH)4- + [18O]D- + OH- + OD- + OH- = Al[18O]DOHODOH- + 4OH- -Al(OH)4- + [18O]D- + OH- + OD- + OT- = Al[18O]DOHODOT- + 4OH- -Al(OH)4- + [18O]D- + OH- + OD- + [18O]H- = Al[18O]DOHOD[18O]H- + 4OH- -Al(OH)4- + [18O]D- + OH- + OT- + OH- = Al[18O]DOHOTOH- + 4OH- -Al(OH)4- + [18O]D- + OH- + OT- + OD- = Al[18O]DOHOTOD- + 4OH- -Al(OH)4- + [18O]D- + OH- + OT- + [18O]H- = Al[18O]DOHOT[18O]H- + 4OH- -Al(OH)4- + [18O]D- + OH- + [18O]H- + OH- = Al[18O]DOH[18O]HOH- + 4OH- -Al(OH)4- + [18O]D- + OH- + [18O]H- + OD- = Al[18O]DOH[18O]HOD- + 4OH- -Al(OH)4- + [18O]D- + OH- + [18O]H- + OT- = Al[18O]DOH[18O]HOT- + 4OH- -Al(OH)4- + [18O]D- + OH- + [18O]D- + OH- = Al[18O]DOH[18O]DOH- + 4OH- -Al(OH)4- + [18O]D- + OH- + [18O]T- + OH- = Al[18O]DOH[18O]TOH- + 4OH- -Al(OH)4- + [18O]D- + OD- + OH- + OH- = Al[18O]DODOHOH- + 4OH- -Al(OH)4- + [18O]D- + OD- + OH- + OT- = Al[18O]DODOHOT- + 4OH- -Al(OH)4- + [18O]D- + OD- + OH- + [18O]H- = Al[18O]DODOH[18O]H- + 4OH- -Al(OH)4- + [18O]D- + OD- + OT- + OH- = Al[18O]DODOTOH- + 4OH- -Al(OH)4- + [18O]D- + OD- + [18O]H- + OH- = Al[18O]DOD[18O]HOH- + 4OH- -Al(OH)4- + [18O]D- + OT- + OH- + OH- = Al[18O]DOTOHOH- + 4OH- -Al(OH)4- + [18O]D- + OT- + OH- + OD- = Al[18O]DOTOHOD- + 4OH- -Al(OH)4- + [18O]D- + OT- + OH- + [18O]H- = Al[18O]DOTOH[18O]H- + 4OH- -Al(OH)4- + [18O]D- + OT- + OD- + OH- = Al[18O]DOTODOH- + 4OH- -Al(OH)4- + [18O]D- + OT- + [18O]H- + OH- = Al[18O]DOT[18O]HOH- + 4OH- -Al(OH)4- + [18O]D- + [18O]H- + OH- + OH- = Al[18O]D[18O]HOHOH- + 4OH- -Al(OH)4- + [18O]D- + [18O]H- + OH- + OD- = Al[18O]D[18O]HOHOD- + 4OH- -Al(OH)4- + [18O]D- + [18O]H- + OH- + OT- = Al[18O]D[18O]HOHOT- + 4OH- -Al(OH)4- + [18O]D- + [18O]H- + OD- + OH- = Al[18O]D[18O]HODOH- + 4OH- -Al(OH)4- + [18O]D- + [18O]H- + OT- + OH- = Al[18O]D[18O]HOTOH- + 4OH- -Al(OH)4- + [18O]D- + [18O]D- + OH- + OH- = Al[18O]D[18O]DOHOH- + 4OH- -Al(OH)4- + [18O]D- + [18O]T- + OH- + OH- = Al[18O]D[18O]TOHOH- + 4OH- -Al(OH)4- + [18O]T- + OH- + OH- + OH- = Al[18O]TOHOHOH- + 4OH- -Al(OH)4- + [18O]T- + OH- + OH- + OD- = Al[18O]TOHOHOD- + 4OH- -Al(OH)4- + [18O]T- + OH- + OH- + [18O]H- = Al[18O]TOHOH[18O]H- + 4OH- -Al(OH)4- + [18O]T- + OH- + OH- + [18O]D- = Al[18O]TOHOH[18O]D- + 4OH- -Al(OH)4- + [18O]T- + OH- + OD- + OH- = Al[18O]TOHODOH- + 4OH- -Al(OH)4- + [18O]T- + OH- + OD- + OD- = Al[18O]TOHODOD- + 4OH- -Al(OH)4- + [18O]T- + OH- + OD- + [18O]H- = Al[18O]TOHOD[18O]H- + 4OH- -Al(OH)4- + [18O]T- + OH- + [18O]H- + OH- = Al[18O]TOH[18O]HOH- + 4OH- -Al(OH)4- + [18O]T- + OH- + [18O]H- + OD- = Al[18O]TOH[18O]HOD- + 4OH- -Al(OH)4- + [18O]T- + OH- + [18O]D- + OH- = Al[18O]TOH[18O]DOH- + 4OH- -Al(OH)4- + [18O]T- + OD- + OH- + OH- = Al[18O]TODOHOH- + 4OH- -Al(OH)4- + [18O]T- + OD- + OH- + OD- = Al[18O]TODOHOD- + 4OH- -Al(OH)4- + [18O]T- + OD- + OH- + [18O]H- = Al[18O]TODOH[18O]H- + 4OH- -Al(OH)4- + [18O]T- + OD- + OD- + OH- = Al[18O]TODODOH- + 4OH- -Al(OH)4- + [18O]T- + OD- + [18O]H- + OH- = Al[18O]TOD[18O]HOH- + 4OH- -Al(OH)4- + [18O]T- + [18O]H- + OH- + OH- = Al[18O]T[18O]HOHOH- + 4OH- -Al(OH)4- + [18O]T- + [18O]H- + OH- + OD- = Al[18O]T[18O]HOHOD- + 4OH- -Al(OH)4- + [18O]T- + [18O]H- + OD- + OH- = Al[18O]T[18O]HODOH- + 4OH- -Al(OH)4- + [18O]T- + [18O]D- + OH- + OH- = Al[18O]T[18O]DOHOH- + 4OH- +Al(OH)4- + OH- + OH- + OH- + OD- = AlOHOHOHOD- + 4 OH- +Al(OH)4- + OH- + OH- + OH- + OT- = AlOHOHOHOT- + 4 OH- +Al(OH)4- + OH- + OH- + OH- + [18O]H- = AlOHOHOH[18O]H- + 4 OH- +Al(OH)4- + OH- + OH- + OH- + [18O]D- = AlOHOHOH[18O]D- + 4 OH- +Al(OH)4- + OH- + OH- + OH- + [18O]T- = AlOHOHOH[18O]T- + 4 OH- +Al(OH)4- + OH- + OH- + OD- + OH- = AlOHOHODOH- + 4 OH- +Al(OH)4- + OH- + OH- + OD- + OD- = AlOHOHODOD- + 4 OH- +Al(OH)4- + OH- + OH- + OD- + OT- = AlOHOHODOT- + 4 OH- +Al(OH)4- + OH- + OH- + OD- + [18O]H- = AlOHOHOD[18O]H- + 4 OH- +Al(OH)4- + OH- + OH- + OD- + [18O]D- = AlOHOHOD[18O]D- + 4 OH- +Al(OH)4- + OH- + OH- + OD- + [18O]T- = AlOHOHOD[18O]T- + 4 OH- +Al(OH)4- + OH- + OH- + OT- + OH- = AlOHOHOTOH- + 4 OH- +Al(OH)4- + OH- + OH- + OT- + OD- = AlOHOHOTOD- + 4 OH- +Al(OH)4- + OH- + OH- + OT- + [18O]H- = AlOHOHOT[18O]H- + 4 OH- +Al(OH)4- + OH- + OH- + OT- + [18O]D- = AlOHOHOT[18O]D- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]H- + OH- = AlOHOH[18O]HOH- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]H- + OD- = AlOHOH[18O]HOD- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]H- + OT- = AlOHOH[18O]HOT- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]H- + [18O]H- = AlOHOH[18O]H[18O]H- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]H- + [18O]D- = AlOHOH[18O]H[18O]D- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]H- + [18O]T- = AlOHOH[18O]H[18O]T- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]D- + OH- = AlOHOH[18O]DOH- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]D- + OD- = AlOHOH[18O]DOD- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]D- + OT- = AlOHOH[18O]DOT- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]D- + [18O]H- = AlOHOH[18O]D[18O]H- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]D- + [18O]D- = AlOHOH[18O]D[18O]D- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]D- + [18O]T- = AlOHOH[18O]D[18O]T- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]T- + OH- = AlOHOH[18O]TOH- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]T- + OD- = AlOHOH[18O]TOD- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]T- + [18O]H- = AlOHOH[18O]T[18O]H- + 4 OH- +Al(OH)4- + OH- + OH- + [18O]T- + [18O]D- = AlOHOH[18O]T[18O]D- + 4 OH- +Al(OH)4- + OH- + OD- + OH- + OH- = AlOHODOHOH- + 4 OH- +Al(OH)4- + OH- + OD- + OH- + OD- = AlOHODOHOD- + 4 OH- +Al(OH)4- + OH- + OD- + OH- + OT- = AlOHODOHOT- + 4 OH- +Al(OH)4- + OH- + OD- + OH- + [18O]H- = AlOHODOH[18O]H- + 4 OH- +Al(OH)4- + OH- + OD- + OH- + [18O]D- = AlOHODOH[18O]D- + 4 OH- +Al(OH)4- + OH- + OD- + OH- + [18O]T- = AlOHODOH[18O]T- + 4 OH- +Al(OH)4- + OH- + OD- + OD- + OH- = AlOHODODOH- + 4 OH- +Al(OH)4- + OH- + OD- + OD- + OT- = AlOHODODOT- + 4 OH- +Al(OH)4- + OH- + OD- + OD- + [18O]H- = AlOHODOD[18O]H- + 4 OH- +Al(OH)4- + OH- + OD- + OD- + [18O]T- = AlOHODOD[18O]T- + 4 OH- +Al(OH)4- + OH- + OD- + OT- + OH- = AlOHODOTOH- + 4 OH- +Al(OH)4- + OH- + OD- + OT- + OD- = AlOHODOTOD- + 4 OH- +Al(OH)4- + OH- + OD- + OT- + [18O]H- = AlOHODOT[18O]H- + 4 OH- +Al(OH)4- + OH- + OD- + OT- + [18O]D- = AlOHODOT[18O]D- + 4 OH- +Al(OH)4- + OH- + OD- + [18O]H- + OH- = AlOHOD[18O]HOH- + 4 OH- +Al(OH)4- + OH- + OD- + [18O]H- + OD- = AlOHOD[18O]HOD- + 4 OH- +Al(OH)4- + OH- + OD- + [18O]H- + OT- = AlOHOD[18O]HOT- + 4 OH- +Al(OH)4- + OH- + OD- + [18O]H- + [18O]H- = AlOHOD[18O]H[18O]H- + 4 OH- +Al(OH)4- + OH- + OD- + [18O]H- + [18O]D- = AlOHOD[18O]H[18O]D- + 4 OH- +Al(OH)4- + OH- + OD- + [18O]H- + [18O]T- = AlOHOD[18O]H[18O]T- + 4 OH- +Al(OH)4- + OH- + OD- + [18O]D- + OH- = AlOHOD[18O]DOH- + 4 OH- +Al(OH)4- + OH- + OD- + [18O]D- + OT- = AlOHOD[18O]DOT- + 4 OH- +Al(OH)4- + OH- + OD- + [18O]D- + [18O]H- = AlOHOD[18O]D[18O]H- + 4 OH- +Al(OH)4- + OH- + OD- + [18O]T- + OH- = AlOHOD[18O]TOH- + 4 OH- +Al(OH)4- + OH- + OD- + [18O]T- + OD- = AlOHOD[18O]TOD- + 4 OH- +Al(OH)4- + OH- + OD- + [18O]T- + [18O]H- = AlOHOD[18O]T[18O]H- + 4 OH- +Al(OH)4- + OH- + OT- + OH- + OH- = AlOHOTOHOH- + 4 OH- +Al(OH)4- + OH- + OT- + OH- + OD- = AlOHOTOHOD- + 4 OH- +Al(OH)4- + OH- + OT- + OH- + [18O]H- = AlOHOTOH[18O]H- + 4 OH- +Al(OH)4- + OH- + OT- + OH- + [18O]D- = AlOHOTOH[18O]D- + 4 OH- +Al(OH)4- + OH- + OT- + OD- + OH- = AlOHOTODOH- + 4 OH- +Al(OH)4- + OH- + OT- + OD- + OD- = AlOHOTODOD- + 4 OH- +Al(OH)4- + OH- + OT- + OD- + [18O]H- = AlOHOTOD[18O]H- + 4 OH- +Al(OH)4- + OH- + OT- + OD- + [18O]D- = AlOHOTOD[18O]D- + 4 OH- +Al(OH)4- + OH- + OT- + [18O]H- + OH- = AlOHOT[18O]HOH- + 4 OH- +Al(OH)4- + OH- + OT- + [18O]H- + OD- = AlOHOT[18O]HOD- + 4 OH- +Al(OH)4- + OH- + OT- + [18O]H- + [18O]H- = AlOHOT[18O]H[18O]H- + 4 OH- +Al(OH)4- + OH- + OT- + [18O]H- + [18O]D- = AlOHOT[18O]H[18O]D- + 4 OH- +Al(OH)4- + OH- + OT- + [18O]D- + OH- = AlOHOT[18O]DOH- + 4 OH- +Al(OH)4- + OH- + OT- + [18O]D- + OD- = AlOHOT[18O]DOD- + 4 OH- +Al(OH)4- + OH- + OT- + [18O]D- + [18O]H- = AlOHOT[18O]D[18O]H- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OH- + OH- = AlOH[18O]HOHOH- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OH- + OD- = AlOH[18O]HOHOD- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OH- + OT- = AlOH[18O]HOHOT- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OH- + [18O]H- = AlOH[18O]HOH[18O]H- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OH- + [18O]D- = AlOH[18O]HOH[18O]D- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OH- + [18O]T- = AlOH[18O]HOH[18O]T- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OD- + OH- = AlOH[18O]HODOH- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OD- + OD- = AlOH[18O]HODOD- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OD- + OT- = AlOH[18O]HODOT- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OD- + [18O]H- = AlOH[18O]HOD[18O]H- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OD- + [18O]D- = AlOH[18O]HOD[18O]D- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OD- + [18O]T- = AlOH[18O]HOD[18O]T- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OT- + OH- = AlOH[18O]HOTOH- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OT- + OD- = AlOH[18O]HOTOD- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OT- + [18O]H- = AlOH[18O]HOT[18O]H- + 4 OH- +Al(OH)4- + OH- + [18O]H- + OT- + [18O]D- = AlOH[18O]HOT[18O]D- + 4 OH- +Al(OH)4- + OH- + [18O]H- + [18O]H- + OH- = AlOH[18O]H[18O]HOH- + 4 OH- +Al(OH)4- + OH- + [18O]H- + [18O]H- + OD- = AlOH[18O]H[18O]HOD- + 4 OH- +Al(OH)4- + OH- + [18O]H- + [18O]H- + OT- = AlOH[18O]H[18O]HOT- + 4 OH- +Al(OH)4- + OH- + [18O]H- + [18O]D- + OH- = AlOH[18O]H[18O]DOH- + 4 OH- +Al(OH)4- + OH- + [18O]H- + [18O]D- + OD- = AlOH[18O]H[18O]DOD- + 4 OH- +Al(OH)4- + OH- + [18O]H- + [18O]D- + OT- = AlOH[18O]H[18O]DOT- + 4 OH- +Al(OH)4- + OH- + [18O]H- + [18O]T- + OH- = AlOH[18O]H[18O]TOH- + 4 OH- +Al(OH)4- + OH- + [18O]H- + [18O]T- + OD- = AlOH[18O]H[18O]TOD- + 4 OH- +Al(OH)4- + OH- + [18O]D- + OH- + OH- = AlOH[18O]DOHOH- + 4 OH- +Al(OH)4- + OH- + [18O]D- + OH- + OD- = AlOH[18O]DOHOD- + 4 OH- +Al(OH)4- + OH- + [18O]D- + OH- + OT- = AlOH[18O]DOHOT- + 4 OH- +Al(OH)4- + OH- + [18O]D- + OH- + [18O]H- = AlOH[18O]DOH[18O]H- + 4 OH- +Al(OH)4- + OH- + [18O]D- + OH- + [18O]D- = AlOH[18O]DOH[18O]D- + 4 OH- +Al(OH)4- + OH- + [18O]D- + OH- + [18O]T- = AlOH[18O]DOH[18O]T- + 4 OH- +Al(OH)4- + OH- + [18O]D- + OD- + OH- = AlOH[18O]DODOH- + 4 OH- +Al(OH)4- + OH- + [18O]D- + OD- + OT- = AlOH[18O]DODOT- + 4 OH- +Al(OH)4- + OH- + [18O]D- + OD- + [18O]H- = AlOH[18O]DOD[18O]H- + 4 OH- +Al(OH)4- + OH- + [18O]D- + OT- + OH- = AlOH[18O]DOTOH- + 4 OH- +Al(OH)4- + OH- + [18O]D- + OT- + OD- = AlOH[18O]DOTOD- + 4 OH- +Al(OH)4- + OH- + [18O]D- + OT- + [18O]H- = AlOH[18O]DOT[18O]H- + 4 OH- +Al(OH)4- + OH- + [18O]D- + [18O]H- + OH- = AlOH[18O]D[18O]HOH- + 4 OH- +Al(OH)4- + OH- + [18O]D- + [18O]H- + OD- = AlOH[18O]D[18O]HOD- + 4 OH- +Al(OH)4- + OH- + [18O]D- + [18O]H- + OT- = AlOH[18O]D[18O]HOT- + 4 OH- +Al(OH)4- + OH- + [18O]D- + [18O]D- + OH- = AlOH[18O]D[18O]DOH- + 4 OH- +Al(OH)4- + OH- + [18O]D- + [18O]T- + OH- = AlOH[18O]D[18O]TOH- + 4 OH- +Al(OH)4- + OH- + [18O]T- + OH- + OH- = AlOH[18O]TOHOH- + 4 OH- +Al(OH)4- + OH- + [18O]T- + OH- + OD- = AlOH[18O]TOHOD- + 4 OH- +Al(OH)4- + OH- + [18O]T- + OH- + [18O]H- = AlOH[18O]TOH[18O]H- + 4 OH- +Al(OH)4- + OH- + [18O]T- + OH- + [18O]D- = AlOH[18O]TOH[18O]D- + 4 OH- +Al(OH)4- + OH- + [18O]T- + OD- + OH- = AlOH[18O]TODOH- + 4 OH- +Al(OH)4- + OH- + [18O]T- + OD- + OD- = AlOH[18O]TODOD- + 4 OH- +Al(OH)4- + OH- + [18O]T- + OD- + [18O]H- = AlOH[18O]TOD[18O]H- + 4 OH- +Al(OH)4- + OH- + [18O]T- + [18O]H- + OH- = AlOH[18O]T[18O]HOH- + 4 OH- +Al(OH)4- + OH- + [18O]T- + [18O]H- + OD- = AlOH[18O]T[18O]HOD- + 4 OH- +Al(OH)4- + OH- + [18O]T- + [18O]D- + OH- = AlOH[18O]T[18O]DOH- + 4 OH- +Al(OH)4- + OD- + OH- + OH- + OH- = AlODOHOHOH- + 4 OH- +Al(OH)4- + OD- + OH- + OH- + OD- = AlODOHOHOD- + 4 OH- +Al(OH)4- + OD- + OH- + OH- + OT- = AlODOHOHOT- + 4 OH- +Al(OH)4- + OD- + OH- + OH- + [18O]H- = AlODOHOH[18O]H- + 4 OH- +Al(OH)4- + OD- + OH- + OH- + [18O]D- = AlODOHOH[18O]D- + 4 OH- +Al(OH)4- + OD- + OH- + OH- + [18O]T- = AlODOHOH[18O]T- + 4 OH- +Al(OH)4- + OD- + OH- + OD- + OH- = AlODOHODOH- + 4 OH- +Al(OH)4- + OD- + OH- + OD- + OT- = AlODOHODOT- + 4 OH- +Al(OH)4- + OD- + OH- + OD- + [18O]H- = AlODOHOD[18O]H- + 4 OH- +Al(OH)4- + OD- + OH- + OD- + [18O]T- = AlODOHOD[18O]T- + 4 OH- +Al(OH)4- + OD- + OH- + OT- + OH- = AlODOHOTOH- + 4 OH- +Al(OH)4- + OD- + OH- + OT- + OD- = AlODOHOTOD- + 4 OH- +Al(OH)4- + OD- + OH- + OT- + [18O]H- = AlODOHOT[18O]H- + 4 OH- +Al(OH)4- + OD- + OH- + OT- + [18O]D- = AlODOHOT[18O]D- + 4 OH- +Al(OH)4- + OD- + OH- + [18O]H- + OH- = AlODOH[18O]HOH- + 4 OH- +Al(OH)4- + OD- + OH- + [18O]H- + OD- = AlODOH[18O]HOD- + 4 OH- +Al(OH)4- + OD- + OH- + [18O]H- + OT- = AlODOH[18O]HOT- + 4 OH- +Al(OH)4- + OD- + OH- + [18O]H- + [18O]H- = AlODOH[18O]H[18O]H- + 4 OH- +Al(OH)4- + OD- + OH- + [18O]H- + [18O]D- = AlODOH[18O]H[18O]D- + 4 OH- +Al(OH)4- + OD- + OH- + [18O]H- + [18O]T- = AlODOH[18O]H[18O]T- + 4 OH- +Al(OH)4- + OD- + OH- + [18O]D- + OH- = AlODOH[18O]DOH- + 4 OH- +Al(OH)4- + OD- + OH- + [18O]D- + OT- = AlODOH[18O]DOT- + 4 OH- +Al(OH)4- + OD- + OH- + [18O]D- + [18O]H- = AlODOH[18O]D[18O]H- + 4 OH- +Al(OH)4- + OD- + OH- + [18O]T- + OH- = AlODOH[18O]TOH- + 4 OH- +Al(OH)4- + OD- + OH- + [18O]T- + OD- = AlODOH[18O]TOD- + 4 OH- +Al(OH)4- + OD- + OH- + [18O]T- + [18O]H- = AlODOH[18O]T[18O]H- + 4 OH- +Al(OH)4- + OD- + OD- + OH- + OH- = AlODODOHOH- + 4 OH- +Al(OH)4- + OD- + OD- + OH- + OT- = AlODODOHOT- + 4 OH- +Al(OH)4- + OD- + OD- + OH- + [18O]H- = AlODODOH[18O]H- + 4 OH- +Al(OH)4- + OD- + OD- + OH- + [18O]T- = AlODODOH[18O]T- + 4 OH- +Al(OH)4- + OD- + OD- + OT- + OH- = AlODODOTOH- + 4 OH- +Al(OH)4- + OD- + OD- + OT- + [18O]H- = AlODODOT[18O]H- + 4 OH- +Al(OH)4- + OD- + OD- + [18O]H- + OH- = AlODOD[18O]HOH- + 4 OH- +Al(OH)4- + OD- + OD- + [18O]H- + OT- = AlODOD[18O]HOT- + 4 OH- +Al(OH)4- + OD- + OD- + [18O]H- + [18O]H- = AlODOD[18O]H[18O]H- + 4 OH- +Al(OH)4- + OD- + OD- + [18O]T- + OH- = AlODOD[18O]TOH- + 4 OH- +Al(OH)4- + OD- + OT- + OH- + OH- = AlODOTOHOH- + 4 OH- +Al(OH)4- + OD- + OT- + OH- + OD- = AlODOTOHOD- + 4 OH- +Al(OH)4- + OD- + OT- + OH- + [18O]H- = AlODOTOH[18O]H- + 4 OH- +Al(OH)4- + OD- + OT- + OH- + [18O]D- = AlODOTOH[18O]D- + 4 OH- +Al(OH)4- + OD- + OT- + OD- + OH- = AlODOTODOH- + 4 OH- +Al(OH)4- + OD- + OT- + OD- + [18O]H- = AlODOTOD[18O]H- + 4 OH- +Al(OH)4- + OD- + OT- + [18O]H- + OH- = AlODOT[18O]HOH- + 4 OH- +Al(OH)4- + OD- + OT- + [18O]H- + OD- = AlODOT[18O]HOD- + 4 OH- +Al(OH)4- + OD- + OT- + [18O]H- + [18O]H- = AlODOT[18O]H[18O]H- + 4 OH- +Al(OH)4- + OD- + OT- + [18O]D- + OH- = AlODOT[18O]DOH- + 4 OH- +Al(OH)4- + OD- + [18O]H- + OH- + OH- = AlOD[18O]HOHOH- + 4 OH- +Al(OH)4- + OD- + [18O]H- + OH- + OD- = AlOD[18O]HOHOD- + 4 OH- +Al(OH)4- + OD- + [18O]H- + OH- + OT- = AlOD[18O]HOHOT- + 4 OH- +Al(OH)4- + OD- + [18O]H- + OH- + [18O]H- = AlOD[18O]HOH[18O]H- + 4 OH- +Al(OH)4- + OD- + [18O]H- + OH- + [18O]D- = AlOD[18O]HOH[18O]D- + 4 OH- +Al(OH)4- + OD- + [18O]H- + OH- + [18O]T- = AlOD[18O]HOH[18O]T- + 4 OH- +Al(OH)4- + OD- + [18O]H- + OD- + OH- = AlOD[18O]HODOH- + 4 OH- +Al(OH)4- + OD- + [18O]H- + OD- + OT- = AlOD[18O]HODOT- + 4 OH- +Al(OH)4- + OD- + [18O]H- + OD- + [18O]H- = AlOD[18O]HOD[18O]H- + 4 OH- +Al(OH)4- + OD- + [18O]H- + OT- + OH- = AlOD[18O]HOTOH- + 4 OH- +Al(OH)4- + OD- + [18O]H- + OT- + OD- = AlOD[18O]HOTOD- + 4 OH- +Al(OH)4- + OD- + [18O]H- + OT- + [18O]H- = AlOD[18O]HOT[18O]H- + 4 OH- +Al(OH)4- + OD- + [18O]H- + [18O]H- + OH- = AlOD[18O]H[18O]HOH- + 4 OH- +Al(OH)4- + OD- + [18O]H- + [18O]H- + OD- = AlOD[18O]H[18O]HOD- + 4 OH- +Al(OH)4- + OD- + [18O]H- + [18O]H- + OT- = AlOD[18O]H[18O]HOT- + 4 OH- +Al(OH)4- + OD- + [18O]H- + [18O]D- + OH- = AlOD[18O]H[18O]DOH- + 4 OH- +Al(OH)4- + OD- + [18O]H- + [18O]T- + OH- = AlOD[18O]H[18O]TOH- + 4 OH- +Al(OH)4- + OD- + [18O]D- + OH- + OH- = AlOD[18O]DOHOH- + 4 OH- +Al(OH)4- + OD- + [18O]D- + OH- + OT- = AlOD[18O]DOHOT- + 4 OH- +Al(OH)4- + OD- + [18O]D- + OH- + [18O]H- = AlOD[18O]DOH[18O]H- + 4 OH- +Al(OH)4- + OD- + [18O]D- + OT- + OH- = AlOD[18O]DOTOH- + 4 OH- +Al(OH)4- + OD- + [18O]D- + [18O]H- + OH- = AlOD[18O]D[18O]HOH- + 4 OH- +Al(OH)4- + OD- + [18O]T- + OH- + OH- = AlOD[18O]TOHOH- + 4 OH- +Al(OH)4- + OD- + [18O]T- + OH- + OD- = AlOD[18O]TOHOD- + 4 OH- +Al(OH)4- + OD- + [18O]T- + OH- + [18O]H- = AlOD[18O]TOH[18O]H- + 4 OH- +Al(OH)4- + OD- + [18O]T- + OD- + OH- = AlOD[18O]TODOH- + 4 OH- +Al(OH)4- + OD- + [18O]T- + [18O]H- + OH- = AlOD[18O]T[18O]HOH- + 4 OH- +Al(OH)4- + OT- + OH- + OH- + OH- = AlOTOHOHOH- + 4 OH- +Al(OH)4- + OT- + OH- + OH- + OD- = AlOTOHOHOD- + 4 OH- +Al(OH)4- + OT- + OH- + OH- + [18O]H- = AlOTOHOH[18O]H- + 4 OH- +Al(OH)4- + OT- + OH- + OH- + [18O]D- = AlOTOHOH[18O]D- + 4 OH- +Al(OH)4- + OT- + OH- + OD- + OH- = AlOTOHODOH- + 4 OH- +Al(OH)4- + OT- + OH- + OD- + OD- = AlOTOHODOD- + 4 OH- +Al(OH)4- + OT- + OH- + OD- + [18O]H- = AlOTOHOD[18O]H- + 4 OH- +Al(OH)4- + OT- + OH- + OD- + [18O]D- = AlOTOHOD[18O]D- + 4 OH- +Al(OH)4- + OT- + OH- + [18O]H- + OH- = AlOTOH[18O]HOH- + 4 OH- +Al(OH)4- + OT- + OH- + [18O]H- + OD- = AlOTOH[18O]HOD- + 4 OH- +Al(OH)4- + OT- + OH- + [18O]H- + [18O]H- = AlOTOH[18O]H[18O]H- + 4 OH- +Al(OH)4- + OT- + OH- + [18O]H- + [18O]D- = AlOTOH[18O]H[18O]D- + 4 OH- +Al(OH)4- + OT- + OH- + [18O]D- + OH- = AlOTOH[18O]DOH- + 4 OH- +Al(OH)4- + OT- + OH- + [18O]D- + OD- = AlOTOH[18O]DOD- + 4 OH- +Al(OH)4- + OT- + OH- + [18O]D- + [18O]H- = AlOTOH[18O]D[18O]H- + 4 OH- +Al(OH)4- + OT- + OD- + OH- + OH- = AlOTODOHOH- + 4 OH- +Al(OH)4- + OT- + OD- + OH- + OD- = AlOTODOHOD- + 4 OH- +Al(OH)4- + OT- + OD- + OH- + [18O]H- = AlOTODOH[18O]H- + 4 OH- +Al(OH)4- + OT- + OD- + OH- + [18O]D- = AlOTODOH[18O]D- + 4 OH- +Al(OH)4- + OT- + OD- + OD- + OH- = AlOTODODOH- + 4 OH- +Al(OH)4- + OT- + OD- + OD- + [18O]H- = AlOTODOD[18O]H- + 4 OH- +Al(OH)4- + OT- + OD- + [18O]H- + OH- = AlOTOD[18O]HOH- + 4 OH- +Al(OH)4- + OT- + OD- + [18O]H- + OD- = AlOTOD[18O]HOD- + 4 OH- +Al(OH)4- + OT- + OD- + [18O]H- + [18O]H- = AlOTOD[18O]H[18O]H- + 4 OH- +Al(OH)4- + OT- + OD- + [18O]D- + OH- = AlOTOD[18O]DOH- + 4 OH- +Al(OH)4- + OT- + [18O]H- + OH- + OH- = AlOT[18O]HOHOH- + 4 OH- +Al(OH)4- + OT- + [18O]H- + OH- + OD- = AlOT[18O]HOHOD- + 4 OH- +Al(OH)4- + OT- + [18O]H- + OH- + [18O]H- = AlOT[18O]HOH[18O]H- + 4 OH- +Al(OH)4- + OT- + [18O]H- + OH- + [18O]D- = AlOT[18O]HOH[18O]D- + 4 OH- +Al(OH)4- + OT- + [18O]H- + OD- + OH- = AlOT[18O]HODOH- + 4 OH- +Al(OH)4- + OT- + [18O]H- + OD- + OD- = AlOT[18O]HODOD- + 4 OH- +Al(OH)4- + OT- + [18O]H- + OD- + [18O]H- = AlOT[18O]HOD[18O]H- + 4 OH- +Al(OH)4- + OT- + [18O]H- + [18O]H- + OH- = AlOT[18O]H[18O]HOH- + 4 OH- +Al(OH)4- + OT- + [18O]H- + [18O]H- + OD- = AlOT[18O]H[18O]HOD- + 4 OH- +Al(OH)4- + OT- + [18O]H- + [18O]D- + OH- = AlOT[18O]H[18O]DOH- + 4 OH- +Al(OH)4- + OT- + [18O]D- + OH- + OH- = AlOT[18O]DOHOH- + 4 OH- +Al(OH)4- + OT- + [18O]D- + OH- + OD- = AlOT[18O]DOHOD- + 4 OH- +Al(OH)4- + OT- + [18O]D- + OH- + [18O]H- = AlOT[18O]DOH[18O]H- + 4 OH- +Al(OH)4- + OT- + [18O]D- + OD- + OH- = AlOT[18O]DODOH- + 4 OH- +Al(OH)4- + OT- + [18O]D- + [18O]H- + OH- = AlOT[18O]D[18O]HOH- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OH- + OH- = Al[18O]HOHOHOH- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OH- + OD- = Al[18O]HOHOHOD- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OH- + OT- = Al[18O]HOHOHOT- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OH- + [18O]H- = Al[18O]HOHOH[18O]H- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OH- + [18O]D- = Al[18O]HOHOH[18O]D- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OH- + [18O]T- = Al[18O]HOHOH[18O]T- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OD- + OH- = Al[18O]HOHODOH- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OD- + OD- = Al[18O]HOHODOD- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OD- + OT- = Al[18O]HOHODOT- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OD- + [18O]H- = Al[18O]HOHOD[18O]H- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OD- + [18O]D- = Al[18O]HOHOD[18O]D- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OD- + [18O]T- = Al[18O]HOHOD[18O]T- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OT- + OH- = Al[18O]HOHOTOH- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OT- + OD- = Al[18O]HOHOTOD- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OT- + [18O]H- = Al[18O]HOHOT[18O]H- + 4 OH- +Al(OH)4- + [18O]H- + OH- + OT- + [18O]D- = Al[18O]HOHOT[18O]D- + 4 OH- +Al(OH)4- + [18O]H- + OH- + [18O]H- + OH- = Al[18O]HOH[18O]HOH- + 4 OH- +Al(OH)4- + [18O]H- + OH- + [18O]H- + OD- = Al[18O]HOH[18O]HOD- + 4 OH- +Al(OH)4- + [18O]H- + OH- + [18O]H- + OT- = Al[18O]HOH[18O]HOT- + 4 OH- +Al(OH)4- + [18O]H- + OH- + [18O]D- + OH- = Al[18O]HOH[18O]DOH- + 4 OH- +Al(OH)4- + [18O]H- + OH- + [18O]D- + OD- = Al[18O]HOH[18O]DOD- + 4 OH- +Al(OH)4- + [18O]H- + OH- + [18O]D- + OT- = Al[18O]HOH[18O]DOT- + 4 OH- +Al(OH)4- + [18O]H- + OH- + [18O]T- + OH- = Al[18O]HOH[18O]TOH- + 4 OH- +Al(OH)4- + [18O]H- + OH- + [18O]T- + OD- = Al[18O]HOH[18O]TOD- + 4 OH- +Al(OH)4- + [18O]H- + OD- + OH- + OH- = Al[18O]HODOHOH- + 4 OH- +Al(OH)4- + [18O]H- + OD- + OH- + OD- = Al[18O]HODOHOD- + 4 OH- +Al(OH)4- + [18O]H- + OD- + OH- + OT- = Al[18O]HODOHOT- + 4 OH- +Al(OH)4- + [18O]H- + OD- + OH- + [18O]H- = Al[18O]HODOH[18O]H- + 4 OH- +Al(OH)4- + [18O]H- + OD- + OH- + [18O]D- = Al[18O]HODOH[18O]D- + 4 OH- +Al(OH)4- + [18O]H- + OD- + OH- + [18O]T- = Al[18O]HODOH[18O]T- + 4 OH- +Al(OH)4- + [18O]H- + OD- + OD- + OH- = Al[18O]HODODOH- + 4 OH- +Al(OH)4- + [18O]H- + OD- + OD- + OT- = Al[18O]HODODOT- + 4 OH- +Al(OH)4- + [18O]H- + OD- + OD- + [18O]H- = Al[18O]HODOD[18O]H- + 4 OH- +Al(OH)4- + [18O]H- + OD- + OT- + OH- = Al[18O]HODOTOH- + 4 OH- +Al(OH)4- + [18O]H- + OD- + OT- + OD- = Al[18O]HODOTOD- + 4 OH- +Al(OH)4- + [18O]H- + OD- + OT- + [18O]H- = Al[18O]HODOT[18O]H- + 4 OH- +Al(OH)4- + [18O]H- + OD- + [18O]H- + OH- = Al[18O]HOD[18O]HOH- + 4 OH- +Al(OH)4- + [18O]H- + OD- + [18O]H- + OD- = Al[18O]HOD[18O]HOD- + 4 OH- +Al(OH)4- + [18O]H- + OD- + [18O]H- + OT- = Al[18O]HOD[18O]HOT- + 4 OH- +Al(OH)4- + [18O]H- + OD- + [18O]D- + OH- = Al[18O]HOD[18O]DOH- + 4 OH- +Al(OH)4- + [18O]H- + OD- + [18O]T- + OH- = Al[18O]HOD[18O]TOH- + 4 OH- +Al(OH)4- + [18O]H- + OT- + OH- + OH- = Al[18O]HOTOHOH- + 4 OH- +Al(OH)4- + [18O]H- + OT- + OH- + OD- = Al[18O]HOTOHOD- + 4 OH- +Al(OH)4- + [18O]H- + OT- + OH- + [18O]H- = Al[18O]HOTOH[18O]H- + 4 OH- +Al(OH)4- + [18O]H- + OT- + OH- + [18O]D- = Al[18O]HOTOH[18O]D- + 4 OH- +Al(OH)4- + [18O]H- + OT- + OD- + OH- = Al[18O]HOTODOH- + 4 OH- +Al(OH)4- + [18O]H- + OT- + OD- + OD- = Al[18O]HOTODOD- + 4 OH- +Al(OH)4- + [18O]H- + OT- + OD- + [18O]H- = Al[18O]HOTOD[18O]H- + 4 OH- +Al(OH)4- + [18O]H- + OT- + [18O]H- + OH- = Al[18O]HOT[18O]HOH- + 4 OH- +Al(OH)4- + [18O]H- + OT- + [18O]H- + OD- = Al[18O]HOT[18O]HOD- + 4 OH- +Al(OH)4- + [18O]H- + OT- + [18O]D- + OH- = Al[18O]HOT[18O]DOH- + 4 OH- +Al(OH)4- + [18O]H- + [18O]H- + OH- + OH- = Al[18O]H[18O]HOHOH- + 4 OH- +Al(OH)4- + [18O]H- + [18O]H- + OH- + OD- = Al[18O]H[18O]HOHOD- + 4 OH- +Al(OH)4- + [18O]H- + [18O]H- + OH- + OT- = Al[18O]H[18O]HOHOT- + 4 OH- +Al(OH)4- + [18O]H- + [18O]H- + OD- + OH- = Al[18O]H[18O]HODOH- + 4 OH- +Al(OH)4- + [18O]H- + [18O]H- + OD- + OD- = Al[18O]H[18O]HODOD- + 4 OH- +Al(OH)4- + [18O]H- + [18O]H- + OD- + OT- = Al[18O]H[18O]HODOT- + 4 OH- +Al(OH)4- + [18O]H- + [18O]H- + OT- + OH- = Al[18O]H[18O]HOTOH- + 4 OH- +Al(OH)4- + [18O]H- + [18O]H- + OT- + OD- = Al[18O]H[18O]HOTOD- + 4 OH- +Al(OH)4- + [18O]H- + [18O]D- + OH- + OH- = Al[18O]H[18O]DOHOH- + 4 OH- +Al(OH)4- + [18O]H- + [18O]D- + OH- + OD- = Al[18O]H[18O]DOHOD- + 4 OH- +Al(OH)4- + [18O]H- + [18O]D- + OH- + OT- = Al[18O]H[18O]DOHOT- + 4 OH- +Al(OH)4- + [18O]H- + [18O]D- + OD- + OH- = Al[18O]H[18O]DODOH- + 4 OH- +Al(OH)4- + [18O]H- + [18O]D- + OT- + OH- = Al[18O]H[18O]DOTOH- + 4 OH- +Al(OH)4- + [18O]H- + [18O]T- + OH- + OH- = Al[18O]H[18O]TOHOH- + 4 OH- +Al(OH)4- + [18O]H- + [18O]T- + OH- + OD- = Al[18O]H[18O]TOHOD- + 4 OH- +Al(OH)4- + [18O]H- + [18O]T- + OD- + OH- = Al[18O]H[18O]TODOH- + 4 OH- +Al(OH)4- + [18O]D- + OH- + OH- + OH- = Al[18O]DOHOHOH- + 4 OH- +Al(OH)4- + [18O]D- + OH- + OH- + OD- = Al[18O]DOHOHOD- + 4 OH- +Al(OH)4- + [18O]D- + OH- + OH- + OT- = Al[18O]DOHOHOT- + 4 OH- +Al(OH)4- + [18O]D- + OH- + OH- + [18O]H- = Al[18O]DOHOH[18O]H- + 4 OH- +Al(OH)4- + [18O]D- + OH- + OH- + [18O]D- = Al[18O]DOHOH[18O]D- + 4 OH- +Al(OH)4- + [18O]D- + OH- + OH- + [18O]T- = Al[18O]DOHOH[18O]T- + 4 OH- +Al(OH)4- + [18O]D- + OH- + OD- + OH- = Al[18O]DOHODOH- + 4 OH- +Al(OH)4- + [18O]D- + OH- + OD- + OT- = Al[18O]DOHODOT- + 4 OH- +Al(OH)4- + [18O]D- + OH- + OD- + [18O]H- = Al[18O]DOHOD[18O]H- + 4 OH- +Al(OH)4- + [18O]D- + OH- + OT- + OH- = Al[18O]DOHOTOH- + 4 OH- +Al(OH)4- + [18O]D- + OH- + OT- + OD- = Al[18O]DOHOTOD- + 4 OH- +Al(OH)4- + [18O]D- + OH- + OT- + [18O]H- = Al[18O]DOHOT[18O]H- + 4 OH- +Al(OH)4- + [18O]D- + OH- + [18O]H- + OH- = Al[18O]DOH[18O]HOH- + 4 OH- +Al(OH)4- + [18O]D- + OH- + [18O]H- + OD- = Al[18O]DOH[18O]HOD- + 4 OH- +Al(OH)4- + [18O]D- + OH- + [18O]H- + OT- = Al[18O]DOH[18O]HOT- + 4 OH- +Al(OH)4- + [18O]D- + OH- + [18O]D- + OH- = Al[18O]DOH[18O]DOH- + 4 OH- +Al(OH)4- + [18O]D- + OH- + [18O]T- + OH- = Al[18O]DOH[18O]TOH- + 4 OH- +Al(OH)4- + [18O]D- + OD- + OH- + OH- = Al[18O]DODOHOH- + 4 OH- +Al(OH)4- + [18O]D- + OD- + OH- + OT- = Al[18O]DODOHOT- + 4 OH- +Al(OH)4- + [18O]D- + OD- + OH- + [18O]H- = Al[18O]DODOH[18O]H- + 4 OH- +Al(OH)4- + [18O]D- + OD- + OT- + OH- = Al[18O]DODOTOH- + 4 OH- +Al(OH)4- + [18O]D- + OD- + [18O]H- + OH- = Al[18O]DOD[18O]HOH- + 4 OH- +Al(OH)4- + [18O]D- + OT- + OH- + OH- = Al[18O]DOTOHOH- + 4 OH- +Al(OH)4- + [18O]D- + OT- + OH- + OD- = Al[18O]DOTOHOD- + 4 OH- +Al(OH)4- + [18O]D- + OT- + OH- + [18O]H- = Al[18O]DOTOH[18O]H- + 4 OH- +Al(OH)4- + [18O]D- + OT- + OD- + OH- = Al[18O]DOTODOH- + 4 OH- +Al(OH)4- + [18O]D- + OT- + [18O]H- + OH- = Al[18O]DOT[18O]HOH- + 4 OH- +Al(OH)4- + [18O]D- + [18O]H- + OH- + OH- = Al[18O]D[18O]HOHOH- + 4 OH- +Al(OH)4- + [18O]D- + [18O]H- + OH- + OD- = Al[18O]D[18O]HOHOD- + 4 OH- +Al(OH)4- + [18O]D- + [18O]H- + OH- + OT- = Al[18O]D[18O]HOHOT- + 4 OH- +Al(OH)4- + [18O]D- + [18O]H- + OD- + OH- = Al[18O]D[18O]HODOH- + 4 OH- +Al(OH)4- + [18O]D- + [18O]H- + OT- + OH- = Al[18O]D[18O]HOTOH- + 4 OH- +Al(OH)4- + [18O]D- + [18O]D- + OH- + OH- = Al[18O]D[18O]DOHOH- + 4 OH- +Al(OH)4- + [18O]D- + [18O]T- + OH- + OH- = Al[18O]D[18O]TOHOH- + 4 OH- +Al(OH)4- + [18O]T- + OH- + OH- + OH- = Al[18O]TOHOHOH- + 4 OH- +Al(OH)4- + [18O]T- + OH- + OH- + OD- = Al[18O]TOHOHOD- + 4 OH- +Al(OH)4- + [18O]T- + OH- + OH- + [18O]H- = Al[18O]TOHOH[18O]H- + 4 OH- +Al(OH)4- + [18O]T- + OH- + OH- + [18O]D- = Al[18O]TOHOH[18O]D- + 4 OH- +Al(OH)4- + [18O]T- + OH- + OD- + OH- = Al[18O]TOHODOH- + 4 OH- +Al(OH)4- + [18O]T- + OH- + OD- + OD- = Al[18O]TOHODOD- + 4 OH- +Al(OH)4- + [18O]T- + OH- + OD- + [18O]H- = Al[18O]TOHOD[18O]H- + 4 OH- +Al(OH)4- + [18O]T- + OH- + [18O]H- + OH- = Al[18O]TOH[18O]HOH- + 4 OH- +Al(OH)4- + [18O]T- + OH- + [18O]H- + OD- = Al[18O]TOH[18O]HOD- + 4 OH- +Al(OH)4- + [18O]T- + OH- + [18O]D- + OH- = Al[18O]TOH[18O]DOH- + 4 OH- +Al(OH)4- + [18O]T- + OD- + OH- + OH- = Al[18O]TODOHOH- + 4 OH- +Al(OH)4- + [18O]T- + OD- + OH- + OD- = Al[18O]TODOHOD- + 4 OH- +Al(OH)4- + [18O]T- + OD- + OH- + [18O]H- = Al[18O]TODOH[18O]H- + 4 OH- +Al(OH)4- + [18O]T- + OD- + OD- + OH- = Al[18O]TODODOH- + 4 OH- +Al(OH)4- + [18O]T- + OD- + [18O]H- + OH- = Al[18O]TOD[18O]HOH- + 4 OH- +Al(OH)4- + [18O]T- + [18O]H- + OH- + OH- = Al[18O]T[18O]HOHOH- + 4 OH- +Al(OH)4- + [18O]T- + [18O]H- + OH- + OD- = Al[18O]T[18O]HOHOD- + 4 OH- +Al(OH)4- + [18O]T- + [18O]H- + OD- + OH- = Al[18O]T[18O]HODOH- + 4 OH- +Al(OH)4- + [18O]T- + [18O]D- + OH- + OH- = Al[18O]T[18O]DOHOH- + 4 OH- # # Added AlSO4+ reactions 16Dec09 # @@ -6757,9 +6761,9 @@ AlSO4+ + [34S]O4-2 = Al[34S]O4+ + SO4-2 # Added Al(SO4)2- reactions 16Dec09 # Revised 17Dec09, limited the number of species # -Al(SO4)2- + SO4-2 + [34S]O4-2 = AlSO4[34S]O4- + 2SO4-2 -Al(SO4)2- + [34S]O4-2 + SO4-2 = Al[34S]O4SO4- + 2SO4-2 -Al(SO4)2- + [34S]O4-2 + [34S]O4-2 = Al[34S]O4[34S]O4- + 2SO4-2 +Al(SO4)2- + SO4-2 + [34S]O4-2 = AlSO4[34S]O4- + 2 SO4-2 +Al(SO4)2- + [34S]O4-2 + SO4-2 = Al[34S]O4SO4- + 2 SO4-2 +Al(SO4)2- + [34S]O4-2 + [34S]O4-2 = Al[34S]O4[34S]O4- + 2 SO4-2 # # Added AlHSO4+2 reactions 16Dec09 # @@ -6789,47 +6793,47 @@ PHASES # HDO(g) HDO(g) + H2O(l) = H2O(g) + HDO(aq) - -add_logk Log_alpha_D_H2O(g)/H2O(l) -1.0 + -add_logk Log_alpha_D_H2O(g)/H2O(l) -1 HTO(g) HTO(g) + H2O(l) = H2O(g) + HTO(aq) - -add_logk Log_alpha_T_H2O(g)/H2O(l) -1.0 + -add_logk Log_alpha_T_H2O(g)/H2O(l) -1 DTO(g) DTO(g) + H2O(g) = HDO(g) + HTO(g) - log_k 0.301029995663 # log10(2) + log_k 0.301029995663 # log10(2) D2O(g) - D2O(g) + H2O(g) = 2HDO(g) - log_k 0.602059991327962396 # log10(4) + D2O(g) + H2O(g) = 2 HDO(g) + log_k 0.602059991327962396 # log10(4) T2O(g) - T2O(g) + H2O(g) = 2HTO(g) - log_k 0.602059991327962396 # log10(4) + T2O(g) + H2O(g) = 2 HTO(g) + log_k 0.602059991327962396 # log10(4) H2[18O](g) H2[18O](g) + H2O(l) = H2O(g) + H2[18O](aq) - -add_logk Log_alpha_18O_H2O(g)/H2O(l) -1.0 + -add_logk Log_alpha_18O_H2O(g)/H2O(l) -1 HD[18O](g) HD[18O](g) + H2O(g) = HDO(g) + H2[18O](g) - log_k 0.0 + log_k 0 HT[18O](g) HT[18O](g) + H2O(g) = HTO(g) + H2[18O](g) - log_k 0.0 + log_k 0 D2[18O](g) D2[18O](g) + H2O(g) = D2O(g) + H2[18O](g) - log_k 0.0 + log_k 0 T2[18O](g) T2[18O](g) + H2O(g) = T2O(g) + H2[18O](g) - log_k 0.0 + log_k 0 DT[18O](g) DT[18O](g) + H2O(g) = DTO(g) + H2[18O](g) - log_k 0.0 + log_k 0 # # O2 gas - O2 aqueous # last update March 20, 2006 @@ -6839,11 +6843,11 @@ DT[18O](g) O[18O](g) O[18O](g) + H2O(l) = O2(g) + H2[18O](aq) ## symmetry K ?? - -add_logk Log_alpha_18O_O2(g)/H2O(l) -1.0 + -add_logk Log_alpha_18O_O2(g)/H2O(l) -1 [18O]2(g) - [18O]2(g) + O2(g) = 2O[18O](g) - log_k 0.602059991327962396 # log10(4) + [18O]2(g) + O2(g) = 2 O[18O](g) + log_k 0.602059991327962396 # log10(4) # # H2 gas - H2 aqueous # last update March 20, 2006 @@ -6852,23 +6856,23 @@ O[18O](g) # HD(g) HD(g) + H2O(l) = H2(g) + HDO(aq) - -add_logk Log_alpha_D_H2(g)/H2O(l) -1.0 + -add_logk Log_alpha_D_H2(g)/H2O(l) -1 HT(g) HT(g) + H2O(l) = H2(g) + HTO(aq) - -add_logk Log_alpha_T_H2(g)/H2O(l) -1.0 + -add_logk Log_alpha_T_H2(g)/H2O(l) -1 D2(g) - D2(g) + H2(g) = 2HD(g) - log_k 0.602059991327962396 # log10(4) - + D2(g) + H2(g) = 2 HD(g) + log_k 0.602059991327962396 # log10(4) + T2(g) - T2(g) + H2(g) = 2HT(g) - log_k 0.602059991327962396 # log10(4) + T2(g) + H2(g) = 2 HT(g) + log_k 0.602059991327962396 # log10(4) DT(g) DT(g) + H2(g) = HD(g) + HT(g) - log_k 0.301029995663 # log10(2) + log_k 0.301029995663 # log10(2) # # CO2 gas - CO2 aqueous # last update March 20, 2006 @@ -6877,36 +6881,36 @@ DT(g) # CO[18O](g) CO[18O](g) + H2O(l) = H2[18O](aq) + CO2(g) - log_k -0.301029995663 # -log10(2) - -add_logk Log_alpha_18O_CO2(g)/H2O(l) -1.0 + log_k -0.301029995663 # -log10(2) + -add_logk Log_alpha_18O_CO2(g)/H2O(l) -1 C[18O]2(g) - C[18O]2(g) + CO2(g) = 2CO[18O](g) - log_k 0.602059991327962396 # log10(4) + C[18O]2(g) + CO2(g) = 2 CO[18O](g) + log_k 0.602059991327962396 # log10(4) [13C]O2(g) [13C]O2(g) + CO2(aq) = [13C]O2(aq) + CO2(g) - -add_logk Log_alpha_13C_CO2(g)/CO2(aq) -1.0 + -add_logk Log_alpha_13C_CO2(g)/CO2(aq) -1 [13C]O[18O](g) [13C]O[18O](g) + CO2(g) = [13C]O2(g) + CO[18O](g) - log_k 0 + log_k 0 [13C][18O]2(g) [13C][18O]2(g) + CO2(g) = C[18O]2(g) + [13C]O2(g) - log_k 0 + log_k 0 [14C]O2(g) [14C]O2(g) + CO2(aq) = [14C]O2(aq) + CO2(g) - -add_logk Log_alpha_14C_CO2(g)/CO2(aq) -1.0 + -add_logk Log_alpha_14C_CO2(g)/CO2(aq) -1 [14C]O[18O](g) [14C]O[18O](g) + CO2(g) = [14C]O2(g) + CO[18O](g) - log_k 0 + log_k 0 [14C][18O]2(g) - [14C][18O]2(g) + CO2(g) = [14C]O2(g) + C[18O]2(g) - log_k 0 + [14C][18O]2(g) + CO2(g) = [14C]O2(g) + C[18O]2(g) + log_k 0 # # Calcite # last update Feb 13, 2006 @@ -6914,63 +6918,63 @@ C[18O]2(g) # Checked September 19, 2006 # CaCO2[18O](s) - CaCO2[18O](s) + H2O(l) = H2[18O](aq) + Calcite(s) - log_k -0.477121254719 # -log10(3) ??? - -add_logk Log_alpha_18O_Calcite/H2O(l) -1.0 + CaCO2[18O](s) + H2O(l) = H2[18O](aq) + Calcite(s) + log_k -0.477121254719 # -log10(3) ??? + -add_logk Log_alpha_18O_Calcite/H2O(l) -1 CaCO[18O]2(s) - CaCO[18O]2(s) + Calcite(s) = 2CaCO2[18O](s) - log_k 0.477121254719 # log10(3) + CaCO[18O]2(s) + Calcite(s) = 2 CaCO2[18O](s) + log_k 0.477121254719 # log10(3) CaC[18O]3(s) - CaC[18O]3(s) + 2Calcite(s) = 3CaCO2[18O](s) - log_k 1.431363764158 # log10(27) + CaC[18O]3(s) + 2 Calcite(s) = 3 CaCO2[18O](s) + log_k 1.431363764158 # log10(27) Ca[13C]O3(s) Ca[13C]O3(s) + CO2 = [13C]O2 + Calcite(s) - -add_logk Log_alpha_13C_Calcite/CO2(aq) -1.0 + -add_logk Log_alpha_13C_Calcite/CO2(aq) -1 Ca[13C]O2[18O](s) Ca[13C]O2[18O](s) + Calcite(s) = Ca[13C]O3(s) + CaCO2[18O](s) - log_k 0 + log_k 0 Ca[13C]O[18O]2(s) Ca[13C]O[18O]2(s) + Calcite(s) = Ca[13C]O3(s) + CaCO[18O]2(s) - log_k 0 + log_k 0 Ca[13C][18O]3(s) Ca[13C][18O]3(s) + Calcite(s) = Ca[13C]O3(s) + CaC[18O]3(s) - log_k 0 + log_k 0 Ca[14C]O3(s) Ca[14C]O3(s) + CO2 = Calcite(s) + [14C]O2 - -add_logk Log_alpha_14C_Calcite/CO2(aq) -1.0 + -add_logk Log_alpha_14C_Calcite/CO2(aq) -1 Ca[14C]O2[18O](s) Ca[14C]O2[18O](s) + Calcite(s) = Ca[14C]O3(s) + CaCO2[18O](s) - log_k 0 + log_k 0 Ca[14C]O[18O]2(s) Ca[14C]O[18O]2(s) + Calcite(s) = Ca[14C]O3(s) + CaCO[18O]2(s) - log_k 0 + log_k 0 Ca[14C][18O]3(s) Ca[14C][18O]3(s) + Calcite(s) = Ca[14C]O3(s) + CaC[18O]3(s) - log_k 0 + log_k 0 # # Pyrite, March 20, 2006 # Update September 28, 2006 # Checked September 28, 2006 -# +# Pyrite_FeS[34S] FeS[34S](s) + HS- = Pyrite(s) + H[34S]- - -add_logk Log_alpha_34S_Pyrite/HS- -1.0 + -add_logk Log_alpha_34S_Pyrite/HS- -1 Pyrite_Fe[34S]S Fe[34S]S(s) = Pyrite_FeS[34S](s) Pyrite_Fe[34S]2 - Fe[34S]2(s) + Pyrite(s) = 2Pyrite_FeS[34S](s) + Fe[34S]2(s) + Pyrite(s) = 2 Pyrite_FeS[34S](s) # # CH4 reactions # last update March 20, 2006 @@ -6979,53 +6983,53 @@ Pyrite_Fe[34S]2 # CH3D(g) CH3D(g) + H2O(l) = CH4(g) + HDO(aq) - log_k -0.301029995663 # -log10(2) ??? - -add_logk Log_alpha_D_CH4(g)/H2O(l) -1.0 + log_k -0.301029995663 # -log10(2) ??? + -add_logk Log_alpha_D_CH4(g)/H2O(l) -1 CH2D2(g) - CH2D2(g) + CH4(g) = 2CH3D(g) - log_k 0.42596873227228 # log10(8/3) + CH2D2(g) + CH4(g) = 2 CH3D(g) + log_k 0.42596873227228 # log10(8/3) CHD3(g) - CHD3(g) + 2CH4(g) = 3CH3D(g) - log_k 1.20411998265 # log10(16) + CHD3(g) + 2 CH4(g) = 3 CH3D(g) + log_k 1.20411998265 # log10(16) CD4(g) - CD4(g) + 3CH4(g) = 4CH3D(g) - log_k 2.408239965311 # log10(256) + CD4(g) + 3 CH4(g) = 4 CH3D(g) + log_k 2.408239965311 # log10(256) CH3T(g) CH3T(g) + H2O(l) = CH4(g) + HTO(aq) - log_k -0.301029995663 # -log10(2) ??? - -add_logk Log_alpha_T_CH4(g)/H2O(l) -1.0 + log_k -0.301029995663 # -log10(2) ??? + -add_logk Log_alpha_T_CH4(g)/H2O(l) -1 CH2T2(g) - CH2T2(g) + CH4(g) = 2CH3T(g) - log_k 0.42596873227228 # log10(8/3) + CH2T2(g) + CH4(g) = 2 CH3T(g) + log_k 0.42596873227228 # log10(8/3) CHT3(g) - CHT3(g) + 2CH4(g) = 3CH3T(g) - log_k 1.20411998265 # log10(16) + CHT3(g) + 2 CH4(g) = 3 CH3T(g) + log_k 1.20411998265 # log10(16) CT4(g) - CT4(g) + 3CH4(g) = 4CH3T(g) - log_k 2.408239965311 # log10(256) + CT4(g) + 3 CH4(g) = 4 CH3T(g) + log_k 2.408239965311 # log10(256) CD3T(g) CD3T(g) + CH4(g) = CHD3(g) + CH3T(g) - log_k 0.602059991327962396 # log10(4) + log_k 0.602059991327962396 # log10(4) CD2T2(g) CD2T2(g) + CH4(g) = CH2D2(g) + CH2T2(g) - log_k 0.7781512503836 # log10(6) + log_k 0.7781512503836 # log10(6) CDT3(g) CDT3(g) + CH4(g) = CHT3(g) + CH3D(g) - log_k 0.602059991327962396 # log10(4) + log_k 0.602059991327962396 # log10(4) [13C]H4(g) [13C]H4(g) + CO2(aq) = [13C]O2(aq) + CH4(g) - -add_logk Log_alpha_13C_CH4(g)/CO2(aq) -1.0 + -add_logk Log_alpha_13C_CH4(g)/CO2(aq) -1 [13C]H3D(g) [13C]H3D(g) + CH4(g) = CH3D(g) + [13C]H4(g) @@ -7056,50 +7060,50 @@ CDT3(g) [13C]D2T2(g) [13C]D2T2(g) + CH4(g) = CD2T2(g) + [13C]H4(g) - + [13C]DT3(g) [13C]DT3(g) + CH4(g) = CDT3(g) + [13C]H4(g) - + [13C]T4(g) [13C]T4(g) + CH4(g) = CT4(g) + [13C]H4(g) - + [14C]H4(g) [14C]H4(g) + CO2(aq) = [14C]O2(aq) + CH4(g) - -add_logk Log_alpha_14C_CH4(g)/CO2(aq) -1.0 - + -add_logk Log_alpha_14C_CH4(g)/CO2(aq) -1 + [14C]H3D(g) [14C]H3D(g) + CH4(g) = CH3D(g) + [14C]H4(g) - + [14C]H2D2(g) [14C]H2D2(g) + CH4(g) = CH2D2(g) + [14C]H4(g) - + [14C]HD3(g) [14C]HD3(g) + CH4(g) = CHD3(g) + [14C]H4(g) [14C]D4(g) [14C]D4(g) + CH4(g) = CD4(g) + [14C]H4(g) - + [14C]H3T(g) [14C]H3T(g) + CH4(g) = CH3T(g) + [14C]H4(g) - + [14C]H2T2(g) [14C]H2T2(g) + CH4(g) = CH2T2(g) + [14C]H4(g) - + [14C]HT3(g) [14C]HT3(g) + CH4(g) = CHT3(g) + [14C]H4(g) - + [14C]T4(g) [14C]T4(g) + CH4(g) = CT4(g) + [14C]H4(g) - + [14C]D3T(g) [14C]D3T(g) + CH4(g) = CD3T(g) + [14C]H4(g) - + [14C]D2T2(g) [14C]D2T2(g) + CH4(g) = CD2T2(g) + [14C]H4(g) - + [14C]DT3(g) [14C]DT3(g) + CH4(g) = CDT3(g) + [14C]H4(g) - + [14C]T4(g) [14C]T4(g) + CH4(g) = CT4(g) + [14C]H4(g) # @@ -7109,27 +7113,27 @@ CDT3(g) # HDS(g) HDS(g) + H2S(aq) = HDS(aq) + H2S(g) - -add_logk Log_alpha_D_H2S(g)/H2S(aq) -1.0 + -add_logk Log_alpha_D_H2S(g)/H2S(aq) -1 D2S(g) - D2S(g) + H2S(g) = 2HDS(g) - log_k 0.602059991327962396 # log10(4) + D2S(g) + H2S(g) = 2 HDS(g) + log_k 0.602059991327962396 # log10(4) HTS(g) HTS(g) + H2S(aq) = HTS(aq) + H2S(g) - -add_logk Log_alpha_T_H2S(g)/H2S(aq) -1.0 + -add_logk Log_alpha_T_H2S(g)/H2S(aq) -1 T2S(g) - T2S(g) + H2S(g) = 2HTS(g) - log_k 0.602059991327962396 # log10(4) + T2S(g) + H2S(g) = 2 HTS(g) + log_k 0.602059991327962396 # log10(4) DTS(g) DTS(g) + H2S(g) = HDS(g) + HTS(g) - log_k 0.301029995663 # log10(2) + log_k 0.301029995663 # log10(2) H2[34S](g) H2[34S](g) + H2S(aq) = H2[34S](aq) + H2S(g) - -add_logk Log_alpha_34S_H2S(g)/H2S(aq) -1.0 + -add_logk Log_alpha_34S_H2S(g)/H2S(aq) -1 HD[34S](g) HD[34S](g) + H2S(g) = HDS(g) + H2[34S](g) @@ -7151,60 +7155,60 @@ DT[34S](g) # Ca[34S]O4:2H2O Ca[34S]O4:2H2O + SO4-2 = [34S]O4-2 + Gypsum(s) - -add_logk Log_alpha_34S_Gypsum/SO4-2 -1.0 + -add_logk Log_alpha_34S_Gypsum/SO4-2 -1 Ca[34S]O4 Ca[34S]O4 + SO4-2 = [34S]O4-2 + Anhydrite(s) - -add_logk Log_alpha_34S_Anhydrite/SO4-2 -1.0 + -add_logk Log_alpha_34S_Anhydrite/SO4-2 -1 # # Nitrogen phases # Checked September 19, 2006 # N[15N](g) N[15N](g) + N2(aq) = N[15N](aq) + N2(g) - -add_logk Log_alpha_15N_N2(g)/N2(aq) -1.0 + -add_logk Log_alpha_15N_N2(g)/N2(aq) -1 [15N]2(g) - [15N]2(g) + N2(g) = 2N[15N](g) - log_k 0.602059991327962396 # log10(4) + [15N]2(g) + N2(g) = 2 N[15N](g) + log_k 0.602059991327962396 # log10(4) NH2D(g) NH2D(g) + H2O(l) = NH3(g) + HDO(aq) ## symmetry K?? - -add_logk Log_alpha_D_NH3(g)/H2O(l) -1.0 + -add_logk Log_alpha_D_NH3(g)/H2O(l) -1 NHD2(g) - NHD2(g) + NH3(g) = 2NH2D(g) - log_k 0.477121254719 # log10(3) + NHD2(g) + NH3(g) = 2 NH2D(g) + log_k 0.477121254719 # log10(3) ND3(g) - ND3(g) + 2NH3(g) = 3NH2D(g) - -logk 1.431363764158 # log10(27) + ND3(g) + 2 NH3(g) = 3 NH2D(g) + -logk 1.431363764158 # log10(27) NH2T(g) NH2T(g) + H2O(l) = NH3(g) + HTO(aq) ## symmetry K?? - -add_logk Log_alpha_T_NH3(g)/H2O(l) -1.0 + -add_logk Log_alpha_T_NH3(g)/H2O(l) -1 NHT2(g) - NHT2(g) + NH3(g) = 2NH2T(g) - log_k 0.477121254719 # log10(3) + NHT2(g) + NH3(g) = 2 NH2T(g) + log_k 0.477121254719 # log10(3) NT3(g) - NT3(g) + 2NH3(g) = 3NH2T(g) - -logk 1.431363764158 # log10(27) + NT3(g) + 2 NH3(g) = 3 NH2T(g) + -logk 1.431363764158 # log10(27) ND2T(g) ND2T(g) + NH3(g) = NHD2(g) + NH2T(g) - log_k 0.477121254719 # log10(3) + log_k 0.477121254719 # log10(3) NDT2(g) NDT2(g) + NH3(g) = NH2D(g) + NHT2(g) - log_k 0.477121254719 # log10(3) + log_k 0.477121254719 # log10(3) [15N]H3(g) [15N]H3(g) + NH3(aq) = [15N]H3(aq) + NH3(g) - -add_logk Log_alpha_15N_NH3(g)/NH3(aq) -1.0 + -add_logk Log_alpha_15N_NH3(g)/NH3(aq) -1 [15N]H2D(g) [15N]H2D(g) + NH3(g) = NH2D(g) + [15N]H3(g) diff --git a/llnl.dat b/llnl.dat index 0c1904c4..64b2c231 100644 --- a/llnl.dat +++ b/llnl.dat @@ -1,8 +1,12 @@ +# File 1 = C:\GitPrograms\phreeqc3-1\database\llnl.dat, 17/05/2024 14:23, 19306 lines, 776949 bytes, md5=efbcb7244fbe9063e0020cf5d1e00458 +# Created 17 May 2024 14:30:38 +# c:\3rdParty\lsp\lsp.exe -f2 -k="asis" -ts "llnl.dat" + # $Id: llnl.dat 12758 2017-08-01 22:09:36Z dlpark $ #Data are from 'thermo.com.V8.R6.230' prepared by Jim Johnson at #Lawrence Livermore National Laboratory, in Geochemist's Workbench #format. Converted to Phreeqc format by Greg Anderson with help from -#David Parkhurst. A few organic species have been omitted. +#David Parkhurst. A few organic species have been omitted. #Delta H of reaction calculated from Delta H of formations given in #thermo.com.V8.R6.230 (8 Mar 2000). @@ -17,34 +21,34 @@ LLNL_AQUEOUS_MODEL_PARAMETERS -temperatures - 0.0100 25.0000 60.0000 100.0000 - 150.0000 200.0000 250.0000 300.0000 + 0.01 25 60 100 + 150 200 250 300 #debye huckel a (adh) -dh_a - 0.4939 0.5114 0.5465 0.5995 - 0.6855 0.7994 0.9593 1.2180 + 0.4939 0.5114 0.5465 0.5995 + 0.6855 0.7994 0.9593 1.218 #debye huckel b (bdh) -dh_b - 0.3253 0.3288 0.3346 0.3421 - 0.3525 0.3639 0.3766 0.3925 + 0.3253 0.3288 0.3346 0.3421 + 0.3525 0.3639 0.3766 0.3925 -bdot - 0.0374 0.0410 0.0438 0.0460 - 0.0470 0.0470 0.0340 0.0000 + 0.0374 0.041 0.0438 0.046 + 0.047 0.047 0.034 0 #cco2 (coefficients for the Drummond (1981) polynomial) -co2_coefs - -1.0312 0.0012806 - 255.9 0.4445 + -1.0312 0.0012806 + 255.9 0.4445 -0.001606 NAMED_EXPRESSIONS # -# formation of O2 from H2O -# 2H2O = O2 + 4H+ + 4e- +# formation of O2 from H2O +# 2H2O = O2 + 4H+ + 4e- # Log_K_O2 - log_k -85.9951 - -delta_H 559.543 kJ/mol # Calculated enthalpy of reaction O2 + log_k -85.9951 + -delta_H 559.543 kJ/mol # Calculated enthalpy of reaction O2 # Enthalpy of formation: -2.9 kcal/mol - -analytic 38.0229 7.99407E-03 -2.7655e+004 -1.4506e+001 199838.45 + -analytic 38.0229 7.99407E-3 -2.7655e+4 -1.4506e+1 199838.45 # Range: 0-300 @@ -52,792 +56,792 @@ SOLUTION_MASTER_SPECIES #element species alk gfw_formula element_gfw -Acetate HAcetate 0.0 Acetate 59. -Ag Ag+ 0.0 Ag 107.8682 -Ag(1) Ag+ 0 Ag -Ag(2) Ag+2 0 Ag -Al Al+3 0.0 Al 26.9815 -Alkalinity HCO3- 1.0 Ca0.5(CO3)0.5 50.05 -Am Am+3 0.0 Am 243.0000 -Am(+2) Am+2 0.0 Am -Am(+3) Am+3 0.0 Am -Am(+4) Am+4 0.0 Am -Am(+5) AmO2+ 0.0 Am -Am(+6) AmO2+2 0.0 Am -Ar Ar 0.0 Ar 39.948 -As H2AsO4- 0.0 As 74.9216 -As(-3) AsH3 0.0 As -As(+3) H2AsO3- 0.0 As -As(+5) H2AsO4- 0.0 As -Au Au+ 0.0 Au 196.9665 -Au(+1) Au+ 0.0 Au -Au(+3) Au+3 0.0 Au +Acetate HAcetate 0 Acetate 59 +Ag Ag+ 0 Ag 107.8682 +Ag(1) Ag+ 0 Ag +Ag(2) Ag+2 0 Ag +Al Al+3 0 Al 26.9815 +Alkalinity HCO3- 1 Ca0.5(CO3)0.5 50.05 +Am Am+3 0 Am 243 +Am(+2) Am+2 0 Am +Am(+3) Am+3 0 Am +Am(+4) Am+4 0 Am +Am(+5) AmO2+ 0 Am +Am(+6) AmO2+2 0 Am +Ar Ar 0 Ar 39.948 +As H2AsO4- 0 As 74.9216 +As(-3) AsH3 0 As +As(+3) H2AsO3- 0 As +As(+5) H2AsO4- 0 As +Au Au+ 0 Au 196.9665 +Au(+1) Au+ 0 Au +Au(+3) Au+3 0 Au #B H3BO3 0.0 B 10.811 -B B(OH)3 0.0 B 10.811 -B(3) B(OH)3 0 B -B(-5) BH4- 0 B -Ba Ba+2 0.0 Ba 137.3270 -Be Be+2 0.0 Be 9.0122 -Br Br- 0.0 Br 79.904 -Br(-03) Br3- 0 Br -Br(-1) Br- 0 Br -Br(0) Br2 0 Br -Br(1) BrO- 0 Br -Br(5) BrO3- 0 Br -Br(7) BrO4- 0 Br -C(-4) CH4 0.0 CH4 -C(-3) C2H6 0.0 C2H6 -C(-2) C2H4 0.0 C2H4 -C HCO3- 1.0 HCO3 12.0110 -C(+2) CO 0 C -C(+4) HCO3- 1.0 HCO3 -Ca Ca+2 0.0 Ca 40.078 -Cyanide Cyanide- 1.0 CN 26. -Cd Cd+2 0.0 Cd 112.411 -Ce Ce+3 0.0 Ce 140.115 -Ce(+2) Ce+2 0.0 Ce -Ce(+3) Ce+3 0.0 Ce -Ce(+4) Ce+4 0.0 Ce -Cl Cl- 0.0 Cl 35.4527 -Cl(-1) Cl- 0 Cl -Cl(1) ClO- 0 Cl -Cl(3) ClO2- 0 Cl -Cl(5) ClO3- 0 Cl -Cl(7) ClO4- 0 Cl -Co Co+2 0.0 Co 58.9332 -Co(+2) Co+2 0.0 Co -Co(+3) Co+3 0.0 Co -Cr CrO4-2 0.0 CrO4-2 51.9961 -Cr(+2) Cr+2 0.0 Cr -Cr(+3) Cr+3 0.0 Cr -Cr(+5) CrO4-3 0.0 Cr -Cr(+6) CrO4-2 0.0 Cr -Cs Cs+ 0.0 Cs 132.9054 -Cu Cu+2 0.0 Cu 63.546 -Cu(+1) Cu+1 0.0 Cu -Cu(+2) Cu+2 0.0 Cu -Dy Dy+3 0.0 Dy 162.50 -Dy(+2) Dy+2 0.0 Dy -Dy(+3) Dy+3 0.0 Dy -E e- 0.0 0.0 0.0 -Er Er+3 0.0 Er 167.26 -Er(+2) Er+2 0.0 Er -Er(+3) Er+3 0.0 Er -Ethylene Ethylene 0.0 Ethylene 28.0536 -Eu Eu+3 0.0 Eu 151.965 -Eu(+2) Eu+2 0.0 Eu -Eu(+3) Eu+3 0.0 Eu -F F- 0.0 F 18.9984 -Fe Fe+2 0.0 Fe 55.847 -Fe(+2) Fe+2 0.0 Fe -Fe(+3) Fe+3 -2.0 Fe -Ga Ga+3 0.0 Ga 69.723 -Gd Gd+3 0.0 Gd 157.25 -Gd(+2) Gd+2 0.0 Gd -Gd(+3) Gd+3 0.0 Gd -H H+ -1. H 1.0079 -H(0) H2 0.0 H -H(+1) H+ -1. 0.0 -He He 0.0 He 4.0026 -He(0) He 0.0 He -Hf Hf+4 0.0 Hf 178.49 -Hg Hg+2 0.0 Hg 200.59 -Hg(+1) Hg2+2 0.0 Hg -Hg(+2) Hg+2 0.0 Hg -Ho Ho+3 0.0 Ho 164.9303 -Ho(+2) Ho+2 0.0 Ho -Ho(+3) Ho+3 0.0 Ho -I I- 0.0 I 126.9045 -I(-03) I3- 0 I -I(-1) I- 0.0 I -I(+1) IO- 0.0 I -I(+5) IO3- 0.0 I -I(+7) IO4- 0.0 I -In In+3 0.0 In 114.82 -K K+ 0.0 K 39.0983 -Kr Kr 0.0 Kr 83.80 -Kr(0) Kr 0.0 Kr -La La+3 0.0 La 138.9055 -La(2) La+2 0 La -La(3) La+3 0 La -Li Li+ 0.0 Li 6.9410 -Lu Lu+3 0.0 Lu 174.967 -Mg Mg+2 0.0 Mg 24.305 -Mn Mn+2 0.0 Mn 54.938 -Mn(+2) Mn+2 0.0 Mn -Mn(+3) Mn+3 0.0 Mn -Mn(+6) MnO4-2 0 Mn -Mn(+7) MnO4- 0 Mn -Mo MoO4-2 0.0 Mo 95.94 -N NH3 1.0 N 14.0067 -N(-3) NH3 1.0 N -N(-03) N3- 0.0 N -N(0) N2 0.0 N -N(+3) NO2- 0.0 N -N(+5) NO3- 0.0 N -Na Na+ 0.0 Na 22.9898 -Nd Nd+3 0.0 Nd 144.24 -Nd(+2) Nd+2 0.0 Nd -Nd(+3) Nd+3 0.0 Nd -Ne Ne 0.0 Ne 20.1797 +B B(OH)3 0 B 10.811 +B(3) B(OH)3 0 B +B(-5) BH4- 0 B +Ba Ba+2 0 Ba 137.327 +Be Be+2 0 Be 9.0122 +Br Br- 0 Br 79.904 +Br(-03) Br3- 0 Br +Br(-1) Br- 0 Br +Br(0) Br2 0 Br +Br(1) BrO- 0 Br +Br(5) BrO3- 0 Br +Br(7) BrO4- 0 Br +C(-4) CH4 0 CH4 +C(-3) C2H6 0 C2H6 +C(-2) C2H4 0 C2H4 +C HCO3- 1 HCO3 12.011 +C(+2) CO 0 C +C(+4) HCO3- 1 HCO3 +Ca Ca+2 0 Ca 40.078 +Cyanide Cyanide- 1 CN 26 +Cd Cd+2 0 Cd 112.411 +Ce Ce+3 0 Ce 140.115 +Ce(+2) Ce+2 0 Ce +Ce(+3) Ce+3 0 Ce +Ce(+4) Ce+4 0 Ce +Cl Cl- 0 Cl 35.4527 +Cl(-1) Cl- 0 Cl +Cl(1) ClO- 0 Cl +Cl(3) ClO2- 0 Cl +Cl(5) ClO3- 0 Cl +Cl(7) ClO4- 0 Cl +Co Co+2 0 Co 58.9332 +Co(+2) Co+2 0 Co +Co(+3) Co+3 0 Co +Cr CrO4-2 0 CrO4-2 51.9961 +Cr(+2) Cr+2 0 Cr +Cr(+3) Cr+3 0 Cr +Cr(+5) CrO4-3 0 Cr +Cr(+6) CrO4-2 0 Cr +Cs Cs+ 0 Cs 132.9054 +Cu Cu+2 0 Cu 63.546 +Cu(+1) Cu+1 0 Cu +Cu(+2) Cu+2 0 Cu +Dy Dy+3 0 Dy 162.5 +Dy(+2) Dy+2 0 Dy +Dy(+3) Dy+3 0 Dy +E e- 1 0 0 +Er Er+3 0 Er 167.26 +Er(+2) Er+2 0 Er +Er(+3) Er+3 0 Er +Ethylene Ethylene 0 Ethylene 28.0536 +Eu Eu+3 0 Eu 151.965 +Eu(+2) Eu+2 0 Eu +Eu(+3) Eu+3 0 Eu +F F- 0 F 18.9984 +Fe Fe+2 0 Fe 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2 Fe +Ga Ga+3 0 Ga 69.723 +Gd Gd+3 0 Gd 157.25 +Gd(+2) Gd+2 0 Gd +Gd(+3) Gd+3 0 Gd +H H+ -1 H 1.0079 +H(0) H2 0 H +H(+1) H+ -1 0 +He He 0 He 4.0026 +He(0) He 0 He +Hf Hf+4 0 Hf 178.49 +Hg Hg+2 0 Hg 200.59 +Hg(+1) Hg2+2 0 Hg +Hg(+2) Hg+2 0 Hg +Ho Ho+3 0 Ho 164.9303 +Ho(+2) Ho+2 0 Ho +Ho(+3) Ho+3 0 Ho +I I- 0 I 126.9045 +I(-03) I3- 0 I +I(-1) I- 0 I +I(+1) IO- 0 I +I(+5) IO3- 0 I +I(+7) IO4- 0 I +In In+3 0 In 114.82 +K K+ 0 K 39.0983 +Kr Kr 0 Kr 83.8 +Kr(0) Kr 0 Kr +La La+3 0 La 138.9055 +La(2) La+2 0 La +La(3) La+3 0 La +Li Li+ 0 Li 6.941 +Lu Lu+3 0 Lu 174.967 +Mg Mg+2 0 Mg 24.305 +Mn Mn+2 0 Mn 54.938 +Mn(+2) Mn+2 0 Mn +Mn(+3) Mn+3 0 Mn +Mn(+6) MnO4-2 0 Mn +Mn(+7) MnO4- 0 Mn +Mo MoO4-2 0 Mo 95.94 +N NH3 1 N 14.0067 +N(-3) NH3 1 N +N(-03) N3- 0 N +N(0) N2 0 N +N(+3) NO2- 0 N +N(+5) NO3- 0 N +Na Na+ 0 Na 22.9898 +Nd Nd+3 0 Nd 144.24 +Nd(+2) Nd+2 0 Nd +Nd(+3) Nd+3 0 Nd +Ne Ne 0 Ne 20.1797 #Ne(0) Ne 0.0 Ne -Ni Ni+2 0.0 Ni 58.69 -Np Np+4 0.0 Np 237.048 -Np(+3) Np+3 0.0 Np -Np(+4) Np+4 0.0 Np -Np(+5) NpO2+ 0.0 Np -Np(+6) NpO2+2 0.0 Np -O H2O 0.0 O 15.994 -O(-2) H2O 0.0 0.0 -O(0) O2 0.0 O +Ni Ni+2 0 Ni 58.69 +Np Np+4 0 Np 237.048 +Np(+3) Np+3 0 Np +Np(+4) Np+4 0 Np +Np(+5) NpO2+ 0 Np +Np(+6) NpO2+2 0 Np +O H2O 0 O 15.994 +O(-2) H2O 0 0 +O(0) O2 0 O O_phthalate O_phthalate-2 0 1 1 -P HPO4-2 2.0 P 30.9738 -P(-3) PH4+ 0 P -P(5) HPO4-2 2.0 P -Pb Pb+2 0.0 Pb 207.20 -Pb(+2) Pb+2 0.0 Pb -Pb(+4) Pb+4 0.0 Pb -Pd Pd+2 0.0 Pd 106.42 -Pm Pm+3 0.0 Pm 147.00 -Pm(+2) Pm+2 0.0 Pm -Pm(+3) Pm+3 0.0 Pm -Pr Pr+3 0.0 Pr 140.9076 -Pr(+2) Pr+2 0.0 Pr -Pr(+3) Pr+3 0.0 Pr -Pu Pu+4 0.0 Pu 244.00 -Pu(+3) Pu+3 0.0 Pu -Pu(+4) Pu+4 0.0 Pu -Pu(+5) PuO2+ 0.0 Pu -Pu(+6) PuO2+2 0.0 Pu -Ra Ra+2 0.0 Ra 226.025 -Rb Rb+ 0.0 Rb 85.4678 -Re ReO4- 0.0 Re 186.207 -Rn Rn 0.0 Rn 222.00 -Ru RuO4-2 0.0 Ru 101.07 -Ru(+2) Ru+2 0.0 Ru -Ru(+3) Ru+3 0.0 Ru -Ru(+4) Ru(OH)2+2 0.0 Ru -Ru(+6) RuO4-2 0.0 Ru -Ru(+7) RuO4- 0.0 Ru -Ru(+8) RuO4 0.0 Ru -S SO4-2 0.0 SO4 32.066 -S(-2) HS- 1.0 S -S(+2) S2O3-2 0.0 S -S(+3) S2O4-2 0.0 S -S(+4) SO3-2 0.0 S -S(+5) S2O5-2 0.0 S -S(+6) SO4-2 0.0 SO4 -S(+7) S2O8-2 0.0 S -S(+8) HSO5- 0.0 S -Sb Sb(OH)3 0.0 Sb 121.75 -Sc Sc+3 0.0 Sc 44.9559 -Se SeO3-2 0.0 Se 78.96 -Se(-2) HSe- 0.0 Se -Se(+4) SeO3-2 0.0 Se -Se(+6) SeO4-2 0.0 Se -Si SiO2 0.0 SiO2 28.0855 -Sm Sm+3 0.0 Sm 150.36 -Sm(+2) Sm+2 0.0 Sm -Sm(+3) Sm+3 0.0 Sm -Sn Sn+2 0.0 Sn 118.71 -Sn(+2) Sn+2 0.0 Sn -Sn(+4) Sn+4 0.0 Sn -Sr Sr+2 0.0 Sr 87.62 -Tb Tb+3 0.0 Tb 158.9253 -Tb(+2) Tb+2 0.0 Tb -Tb(+3) Tb+3 0.0 Tb -Tc TcO4- 0.0 Tc 98.00 -Tc(+3) Tc+3 0.0 Tc -Tc(+4) TcO+2 0.0 Tc -Tc(+5) TcO4-3 0.0 Tc -Tc(+6) TcO4-2 0.0 Tc -Tc(+7) TcO4- 0.0 Tc -Thiocyanate Thiocyanate- 0.0 SCN 58. -Th Th+4 0.0 Th 232.0381 -Ti Ti(OH)4 0.0 Ti 47.88 -Tl Tl+ 0.0 Tl 204.3833 -Tl(+1) Tl+ 0.0 Tl -Tl(+3) Tl+3 0.0 Tl -Tm Tm+3 0.0 Tm 168.9342 -Tm(+2) Tm+2 0.0 Tm -Tm(+3) Tm+3 0.0 Tm -U UO2+2 0.0 U 238.0289 -U(+3) U+3 0.0 U -U(+4) U+4 0.0 U -U(+5) UO2+ 0.0 U -U(+6) UO2+2 0.0 U -V VO+2 0.0 V 50.9415 -V(+3) V+3 0.0 V -V(+4) VO+2 0.0 V -V(+5) VO2+ 0.0 V -W WO4-2 0.0 W 183.85 -Xe Xe 0.0 Xe 131.29 -Xe(0) Xe 0.0 Xe -Y Y+3 0.0 Y 88.9059 -Yb Yb+3 0.0 Yb 173.04 -Yb(+2) Yb+2 0.0 Yb -Yb(+3) Yb+3 0.0 Yb -Zn Zn+2 0.0 Zn 65.39 -Zr Zr(OH)2+2 0.0 Zr 91.224 +P HPO4-2 2 P 30.9738 +P(-3) PH4+ 0 P +P(5) HPO4-2 2 P +Pb Pb+2 0 Pb 207.2 +Pb(+2) Pb+2 0 Pb +Pb(+4) Pb+4 0 Pb +Pd Pd+2 0 Pd 106.42 +Pm Pm+3 0 Pm 147 +Pm(+2) Pm+2 0 Pm +Pm(+3) Pm+3 0 Pm +Pr Pr+3 0 Pr 140.9076 +Pr(+2) Pr+2 0 Pr +Pr(+3) Pr+3 0 Pr +Pu Pu+4 0 Pu 244 +Pu(+3) Pu+3 0 Pu +Pu(+4) Pu+4 0 Pu +Pu(+5) PuO2+ 0 Pu +Pu(+6) PuO2+2 0 Pu +Ra Ra+2 0 Ra 226.025 +Rb Rb+ 0 Rb 85.4678 +Re ReO4- 0 Re 186.207 +Rn Rn 0 Rn 222 +Ru RuO4-2 0 Ru 101.07 +Ru(+2) Ru+2 0 Ru +Ru(+3) Ru+3 0 Ru +Ru(+4) Ru(OH)2+2 0 Ru +Ru(+6) RuO4-2 0 Ru +Ru(+7) RuO4- 0 Ru +Ru(+8) RuO4 0 Ru +S SO4-2 0 SO4 32.066 +S(-2) HS- 1 S +S(+2) S2O3-2 0 S +S(+3) S2O4-2 0 S +S(+4) SO3-2 0 S +S(+5) S2O5-2 0 S +S(+6) SO4-2 0 SO4 +S(+7) S2O8-2 0 S +S(+8) HSO5- 0 S +Sb Sb(OH)3 0 Sb 121.75 +Sc Sc+3 0 Sc 44.9559 +Se SeO3-2 0 Se 78.96 +Se(-2) HSe- 0 Se +Se(+4) SeO3-2 0 Se +Se(+6) SeO4-2 0 Se +Si SiO2 0 SiO2 28.0855 +Sm Sm+3 0 Sm 150.36 +Sm(+2) Sm+2 0 Sm +Sm(+3) Sm+3 0 Sm +Sn Sn+2 0 Sn 118.71 +Sn(+2) Sn+2 0 Sn +Sn(+4) Sn+4 0 Sn +Sr Sr+2 0 Sr 87.62 +Tb Tb+3 0 Tb 158.9253 +Tb(+2) Tb+2 0 Tb +Tb(+3) Tb+3 0 Tb +Tc TcO4- 0 Tc 98 +Tc(+3) Tc+3 0 Tc +Tc(+4) TcO+2 0 Tc +Tc(+5) TcO4-3 0 Tc +Tc(+6) TcO4-2 0 Tc +Tc(+7) TcO4- 0 Tc +Thiocyanate Thiocyanate- 0 SCN 58 +Th Th+4 0 Th 232.0381 +Ti Ti(OH)4 0 Ti 47.88 +Tl Tl+ 0 Tl 204.3833 +Tl(+1) Tl+ 0 Tl +Tl(+3) Tl+3 0 Tl +Tm Tm+3 0 Tm 168.9342 +Tm(+2) Tm+2 0 Tm +Tm(+3) Tm+3 0 Tm +U UO2+2 0 U 238.0289 +U(+3) U+3 0 U +U(+4) U+4 0 U +U(+5) UO2+ 0 U +U(+6) UO2+2 0 U +V VO+2 0 V 50.9415 +V(+3) V+3 0 V +V(+4) VO+2 0 V +V(+5) VO2+ 0 V +W WO4-2 0 W 183.85 +Xe Xe 0 Xe 131.29 +Xe(0) Xe 0 Xe +Y Y+3 0 Y 88.9059 +Yb Yb+3 0 Yb 173.04 +Yb(+2) Yb+2 0 Yb +Yb(+3) Yb+3 0 Yb +Zn Zn+2 0 Zn 65.39 +Zr Zr(OH)2+2 0 Zr 91.224 SOLUTION_SPECIES -HAcetate = HAcetate - -llnl_gamma 3.0000 +HAcetate = HAcetate + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction HAcetate + -delta_H 0 kJ/mol # Calculated enthalpy of reaction HAcetate # Enthalpy of formation: -116.1 kcal/mol -Ag+ = Ag+ - -llnl_gamma 2.5000 +Ag+ = Ag+ + -llnl_gamma 2.5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ag+ + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ag+ # Enthalpy of formation: 25.275 kcal/mol -Al+3 = Al+3 - -llnl_gamma 9.0000 +Al+3 = Al+3 + -llnl_gamma 9 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Al+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Al+3 # Enthalpy of formation: -128.681 kcal/mol -Am+3 = Am+3 - -llnl_gamma 5.0000 +Am+3 = Am+3 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Am+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Am+3 # Enthalpy of formation: -616.7 kJ/mol -Ar = Ar - -llnl_gamma 3.0000 +Ar = Ar + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ar + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ar # Enthalpy of formation: -2.87 kcal/mol -Au+ = Au+ - -llnl_gamma 4.0000 +Au+ = Au+ + -llnl_gamma 4 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Au+ + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Au+ # Enthalpy of formation: 47.58 kcal/mol -B(OH)3 = B(OH)3 - -llnl_gamma 3.0000 +B(OH)3 = B(OH)3 + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction B(OH)3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction B(OH)3 # Enthalpy of formation: -256.82 kcal/mol -Ba+2 = Ba+2 - -llnl_gamma 5.0000 +Ba+2 = Ba+2 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ba+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ba+2 # Enthalpy of formation: -128.5 kcal/mol -Be+2 = Be+2 - -llnl_gamma 8.0000 +Be+2 = Be+2 + -llnl_gamma 8 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Be+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Be+2 # Enthalpy of formation: -91.5 kcal/mol -Br- = Br- - -llnl_gamma 3.0000 +Br- = Br- + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Br- + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Br- # Enthalpy of formation: -29.04 kcal/mol -Ca+2 = Ca+2 - -llnl_gamma 6.0000 +Ca+2 = Ca+2 + -llnl_gamma 6 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ca+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ca+2 # Enthalpy of formation: -129.8 kcal/mol -Cd+2 = Cd+2 - -llnl_gamma 5.0000 +Cd+2 = Cd+2 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cd+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cd+2 # Enthalpy of formation: -18.14 kcal/mol -Ce+3 = Ce+3 - -llnl_gamma 9.0000 +Ce+3 = Ce+3 + -llnl_gamma 9 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ce+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ce+3 # Enthalpy of formation: -167.4 kcal/mol -Cl- = Cl- - -llnl_gamma 3.0000 +Cl- = Cl- + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cl- + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cl- # Enthalpy of formation: -39.933 kcal/mol -Co+2 = Co+2 - -llnl_gamma 6.0000 +Co+2 = Co+2 + -llnl_gamma 6 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Co+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Co+2 # Enthalpy of formation: -13.9 kcal/mol -CrO4-2 = CrO4-2 - -llnl_gamma 4.0000 +CrO4-2 = CrO4-2 + -llnl_gamma 4 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction CrO4-2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction CrO4-2 # Enthalpy of formation: -210.6 kcal/mol -Cs+ = Cs+ - -llnl_gamma 2.5000 +Cs+ = Cs+ + -llnl_gamma 2.5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cs+ + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cs+ # Enthalpy of formation: -61.67 kcal/mol -Cu+2 = Cu+2 - -llnl_gamma 6.0000 +Cu+2 = Cu+2 + -llnl_gamma 6 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cu+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cu+2 # Enthalpy of formation: 15.7 kcal/mol -Dy+3 = Dy+3 - -llnl_gamma 5.0000 +Dy+3 = Dy+3 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Dy+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Dy+3 # Enthalpy of formation: -166.5 kcal/mol -e- = e- +e- = e- log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction e- + -delta_H 0 kJ/mol # Calculated enthalpy of reaction e- # Enthalpy of formation: -0 kJ/mol -Er+3 = Er+3 - -llnl_gamma 5.0000 +Er+3 = Er+3 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Er+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Er+3 # Enthalpy of formation: -168.5 kcal/mol -Ethylene = Ethylene - -llnl_gamma 3.0000 +Ethylene = Ethylene + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ethylene + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ethylene # Enthalpy of formation: 8.57 kcal/mol -Eu+3 = Eu+3 - -llnl_gamma 5.0000 +Eu+3 = Eu+3 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Eu+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Eu+3 # Enthalpy of formation: -144.7 kcal/mol -F- = F- - -llnl_gamma 3.5000 +F- = F- + -llnl_gamma 3.5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction F- + -delta_H 0 kJ/mol # Calculated enthalpy of reaction F- # Enthalpy of formation: -80.15 kcal/mol -Fe+2 = Fe+2 - -llnl_gamma 6.0000 +Fe+2 = Fe+2 + -llnl_gamma 6 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Fe+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Fe+2 # Enthalpy of formation: -22.05 kcal/mol -Ga+3 = Ga+3 - -llnl_gamma 5.0000 +Ga+3 = Ga+3 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ga+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ga+3 # Enthalpy of formation: -50.6 kcal/mol -Gd+3 = Gd+3 - -llnl_gamma 5.0000 +Gd+3 = Gd+3 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Gd+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Gd+3 # Enthalpy of formation: -164.2 kcal/mol -H+ = H+ - -llnl_gamma 9.0000 +H+ = H+ + -llnl_gamma 9 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction H+ + -delta_H 0 kJ/mol # Calculated enthalpy of reaction H+ # Enthalpy of formation: -0 kJ/mol -He = He - -llnl_gamma 3.0000 +He = He + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction He + -delta_H 0 kJ/mol # Calculated enthalpy of reaction He # Enthalpy of formation: -0.15 kcal/mol -H2AsO4- = H2AsO4- - -llnl_gamma 4.0000 +H2AsO4- = H2AsO4- + -llnl_gamma 4 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction H2AsO4- + -delta_H 0 kJ/mol # Calculated enthalpy of reaction H2AsO4- # Enthalpy of formation: -217.39 kcal/mol -HCO3- = HCO3- - -llnl_gamma 4.0000 +HCO3- = HCO3- + -llnl_gamma 4 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction HCO3- + -delta_H 0 kJ/mol # Calculated enthalpy of reaction HCO3- # Enthalpy of formation: -164.898 kcal/mol -HPO4-2 = HPO4-2 - -llnl_gamma 4.0000 +HPO4-2 = HPO4-2 + -llnl_gamma 4 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction HPO4-2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction HPO4-2 # Enthalpy of formation: -308.815 kcal/mol -Hf+4 = Hf+4 +Hf+4 = Hf+4 log_k 0 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf+4 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf+4 # Enthalpy of formation: -0 kcal/mol -Hg+2 = Hg+2 - -llnl_gamma 5.0000 +Hg+2 = Hg+2 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Hg+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Hg+2 # Enthalpy of formation: 40.67 kcal/mol -Ho+3 = Ho+3 - -llnl_gamma 5.0000 +Ho+3 = Ho+3 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ho+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ho+3 # Enthalpy of formation: -169 kcal/mol -I- = I- - -llnl_gamma 3.0000 +I- = I- + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction I- + -delta_H 0 kJ/mol # Calculated enthalpy of reaction I- # Enthalpy of formation: -13.6 kcal/mol -In+3 = In+3 - -llnl_gamma 9.0000 +In+3 = In+3 + -llnl_gamma 9 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction In+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction In+3 # Enthalpy of formation: -25 kcal/mol -K+ = K+ - -llnl_gamma 3.0000 +K+ = K+ + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction K+ + -delta_H 0 kJ/mol # Calculated enthalpy of reaction K+ # Enthalpy of formation: -60.27 kcal/mol -Kr = Kr - -llnl_gamma 3.0000 +Kr = Kr + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Kr + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Kr # Enthalpy of formation: -3.65 kcal/mol -La+3 = La+3 - -llnl_gamma 9.0000 +La+3 = La+3 + -llnl_gamma 9 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction La+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction La+3 # Enthalpy of formation: -169.6 kcal/mol -Li+ = Li+ - -llnl_gamma 6.0000 +Li+ = Li+ + -llnl_gamma 6 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Li+ + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Li+ # Enthalpy of formation: -66.552 kcal/mol -Lu+3 = Lu+3 - -llnl_gamma 5.0000 +Lu+3 = Lu+3 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Lu+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Lu+3 # Enthalpy of formation: -167.9 kcal/mol -Mg+2 = Mg+2 - -llnl_gamma 8.0000 +Mg+2 = Mg+2 + -llnl_gamma 8 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Mg+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Mg+2 # Enthalpy of formation: -111.367 kcal/mol -Mn+2 = Mn+2 - -llnl_gamma 6.0000 +Mn+2 = Mn+2 + -llnl_gamma 6 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Mn+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Mn+2 # Enthalpy of formation: -52.724 kcal/mol -MoO4-2 = MoO4-2 - -llnl_gamma 4.5000 +MoO4-2 = MoO4-2 + -llnl_gamma 4.5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction MoO4-2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction MoO4-2 # Enthalpy of formation: -238.5 kcal/mol -NH3 = NH3 - -llnl_gamma 3.0000 +NH3 = NH3 + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction NH3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction NH3 # Enthalpy of formation: -19.44 kcal/mol -Na+ = Na+ - -llnl_gamma 4.0000 +Na+ = Na+ + -llnl_gamma 4 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Na+ + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Na+ # Enthalpy of formation: -57.433 kcal/mol -Nd+3 = Nd+3 - -llnl_gamma 9.0000 +Nd+3 = Nd+3 + -llnl_gamma 9 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Nd+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Nd+3 # Enthalpy of formation: -166.5 kcal/mol -Ne = Ne - -llnl_gamma 3.0000 +Ne = Ne + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ne + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ne # Enthalpy of formation: -0.87 kcal/mol -Ni+2 = Ni+2 - -llnl_gamma 6.0000 +Ni+2 = Ni+2 + -llnl_gamma 6 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ni+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ni+2 # Enthalpy of formation: -12.9 kcal/mol -Np+4 = Np+4 - -llnl_gamma 5.5000 +Np+4 = Np+4 + -llnl_gamma 5.5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Np+4 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Np+4 # Enthalpy of formation: -556.001 kJ/mol -H2O = H2O - -llnl_gamma 3.0000 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction H2O +H2O = H2O + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction H2O # Enthalpy of formation: -68.317 kcal/mol -O_phthalate-2 = O_phthalate-2 - -llnl_gamma 4.0000 +O_phthalate-2 = O_phthalate-2 + -llnl_gamma 4 log_k 0 - -delta_H 0 # Not possible to calculate enthalpy of reaction O_phthalate-2 + -delta_H 0 # Not possible to calculate enthalpy of reaction O_phthalate-2 # Enthalpy of formation: -0 kcal/mol -Pb+2 = Pb+2 - -llnl_gamma 4.5000 +Pb+2 = Pb+2 + -llnl_gamma 4.5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pb+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pb+2 # Enthalpy of formation: 0.22 kcal/mol -Pd+2 = Pd+2 - -llnl_gamma 4.5000 +Pd+2 = Pd+2 + -llnl_gamma 4.5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pd+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pd+2 # Enthalpy of formation: 42.08 kcal/mol -Pm+3 = Pm+3 +Pm+3 = Pm+3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pm+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pm+3 # Enthalpy of formation: -688 kJ/mol -Pr+3 = Pr+3 - -llnl_gamma 9.0000 +Pr+3 = Pr+3 + -llnl_gamma 9 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pr+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pr+3 # Enthalpy of formation: -168.8 kcal/mol -Pu+4 = Pu+4 - -llnl_gamma 5.5000 +Pu+4 = Pu+4 + -llnl_gamma 5.5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pu+4 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pu+4 # Enthalpy of formation: -535.893 kJ/mol -Ra+2 = Ra+2 - -llnl_gamma 5.0000 +Ra+2 = Ra+2 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ra+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ra+2 # Enthalpy of formation: -126.1 kcal/mol -Rb+ = Rb+ - -llnl_gamma 2.5000 +Rb+ = Rb+ + -llnl_gamma 2.5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Rb+ + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Rb+ # Enthalpy of formation: -60.02 kcal/mol -ReO4- = ReO4- - -llnl_gamma 4.0000 +ReO4- = ReO4- + -llnl_gamma 4 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction ReO4- + -delta_H 0 kJ/mol # Calculated enthalpy of reaction ReO4- # Enthalpy of formation: -188.2 kcal/mol -Rn = Rn - -llnl_gamma 3.0000 +Rn = Rn + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Rn + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Rn # Enthalpy of formation: -5 kcal/mol -RuO4-2 = RuO4-2 - -llnl_gamma 4.0000 +RuO4-2 = RuO4-2 + -llnl_gamma 4 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction RuO4-2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction RuO4-2 # Enthalpy of formation: -457.075 kJ/mol -SO4-2 = SO4-2 - -llnl_gamma 4.0000 +SO4-2 = SO4-2 + -llnl_gamma 4 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction SO4-2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction SO4-2 # Enthalpy of formation: -217.4 kcal/mol -Sb(OH)3 = Sb(OH)3 - -llnl_gamma 3.0000 +Sb(OH)3 = Sb(OH)3 + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sb(OH)3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sb(OH)3 # Enthalpy of formation: -773.789 kJ/mol -Sc+3 = Sc+3 - -llnl_gamma 9.0000 +Sc+3 = Sc+3 + -llnl_gamma 9 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sc+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sc+3 # Enthalpy of formation: -146.8 kcal/mol -SeO3-2 = SeO3-2 - -llnl_gamma 4.0000 +SeO3-2 = SeO3-2 + -llnl_gamma 4 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction SeO3-2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction SeO3-2 # Enthalpy of formation: -121.7 kcal/mol -SiO2 = SiO2 - -llnl_gamma 3.0000 +SiO2 = SiO2 + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction SiO2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction SiO2 # Enthalpy of formation: -209.775 kcal/mol -Sm+3 = Sm+3 - -llnl_gamma 9.0000 +Sm+3 = Sm+3 + -llnl_gamma 9 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sm+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sm+3 # Enthalpy of formation: -165.2 kcal/mol -Sn+2 = Sn+2 - -llnl_gamma 6.0000 +Sn+2 = Sn+2 + -llnl_gamma 6 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sn+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sn+2 # Enthalpy of formation: -2.1 kcal/mol -Sr+2 = Sr+2 - -llnl_gamma 5.0000 +Sr+2 = Sr+2 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sr+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sr+2 # Enthalpy of formation: -131.67 kcal/mol -Tb+3 = Tb+3 - -llnl_gamma 5.0000 +Tb+3 = Tb+3 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tb+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tb+3 # Enthalpy of formation: -166.9 kcal/mol -TcO4- = TcO4- - -llnl_gamma 4.0000 +TcO4- = TcO4- + -llnl_gamma 4 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction TcO4- + -delta_H 0 kJ/mol # Calculated enthalpy of reaction TcO4- # Enthalpy of formation: -716.269 kJ/mol -Th+4 = Th+4 - -llnl_gamma 11.0000 +Th+4 = Th+4 + -llnl_gamma 11 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Th+4 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Th+4 # Enthalpy of formation: -183.8 kcal/mol -Ti(OH)4 = Ti(OH)4 - -llnl_gamma 3.0000 +Ti(OH)4 = Ti(OH)4 + -llnl_gamma 3 log_k 0 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti(OH)4 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti(OH)4 # Enthalpy of formation: -0 kcal/mol -Tl+ = Tl+ - -llnl_gamma 2.5000 +Tl+ = Tl+ + -llnl_gamma 2.5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tl+ + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tl+ # Enthalpy of formation: 1.28 kcal/mol -Tm+3 = Tm+3 - -llnl_gamma 5.0000 +Tm+3 = Tm+3 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tm+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tm+3 # Enthalpy of formation: -168.5 kcal/mol -UO2+2 = UO2+2 - -llnl_gamma 4.5000 +UO2+2 = UO2+2 + -llnl_gamma 4.5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction UO2+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction UO2+2 # Enthalpy of formation: -1019 kJ/mol -VO+2 = VO+2 - -llnl_gamma 4.5000 +VO+2 = VO+2 + -llnl_gamma 4.5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction VO+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction VO+2 # Enthalpy of formation: -116.3 kcal/mol -WO4-2 = WO4-2 - -llnl_gamma 5.0000 +WO4-2 = WO4-2 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction WO4-2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction WO4-2 # Enthalpy of formation: -257.1 kcal/mol -Xe = Xe - -llnl_gamma 3.0000 +Xe = Xe + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Xe + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Xe # Enthalpy of formation: -4.51 kcal/mol -Y+3 = Y+3 - -llnl_gamma 9.0000 +Y+3 = Y+3 + -llnl_gamma 9 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Y+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Y+3 # Enthalpy of formation: -170.9 kcal/mol -Yb+3 = Yb+3 - -llnl_gamma 5.0000 +Yb+3 = Yb+3 + -llnl_gamma 5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Yb+3 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Yb+3 # Enthalpy of formation: -160.3 kcal/mol -Zn+2 = Zn+2 - -llnl_gamma 6.0000 +Zn+2 = Zn+2 + -llnl_gamma 6 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Zn+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Zn+2 # Enthalpy of formation: -36.66 kcal/mol -Zr(OH)2+2 = Zr(OH)2+2 - -llnl_gamma 4.5000 +Zr(OH)2+2 = Zr(OH)2+2 + -llnl_gamma 4.5 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Zr(OH)2+2 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Zr(OH)2+2 # Enthalpy of formation: -260.717 kcal/mol -2H2O = O2 + 4H+ + 4e- +2 H2O = O2 + 4 H+ + 4 e- -CO2_llnl_gamma - log_k -85.9951 - -delta_H 559.543 kJ/mol # Calculated enthalpy of reaction O2 + log_k -85.9951 + -delta_H 559.543 kJ/mol # Calculated enthalpy of reaction O2 # Enthalpy of formation: -2.9 kcal/mol - -analytic 38.0229 7.99407E-03 -2.7655e+004 -1.4506e+001 199838.45 + -analytic 38.0229 7.99407E-3 -2.7655e+4 -1.4506e+1 199838.45 # Range: 0-300 - 1.0000 SO4-- + 1.0000 H+ = HS- +2.0000 O2 - -llnl_gamma 3.5 - log_k -138.3169 - -delta_H 869.226 kJ/mol # Calculated enthalpy of reaction HS- + SO4-2 + H+ = HS- + 2 O2 + -llnl_gamma 3.5 + log_k -138.3169 + -delta_H 869.226 kJ/mol # Calculated enthalpy of reaction HS- # Enthalpy of formation: -3.85 kcal/mol - -analytic 2.6251e+001 3.9525e-002 -4.5443e+004 -1.1107e+001 3.1843e+005 + -analytic 2.6251e+1 3.9525e-2 -4.5443e+4 -1.1107e+1 3.1843e+5 # -Range: 0-300 - .5000 O2 + 2.0000 HS- = S2-- + H2O + .5 O2 + 2 HS- = S2-2 + H2O #2 HS- = S2-- +2 H+ + 2e- - -llnl_gamma 4.0 - log_k 33.2673 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2-2 + -llnl_gamma 4 + log_k 33.2673 + -delta_H 0 # Not possible to calculate enthalpy of reaction S2-2 # Enthalpy of formation: -0 kcal/mol - -analytic 0.21730E+02 -0.12307E-02 0.10098E+05 -0.88813E+01 0.15757E+03 - -mass_balance S(-2)2 + -analytic 0.2173E+2 -0.12307E-2 0.10098E+5 -0.88813E+1 0.15757E+3 + -mass_balance S(-2)2 # -Range: 0-300 # -add_logk Log_K_O2 0.5 -2.0000 H+ + 2.0000 SO3-- = S2O3-- + O2 + H2O - -llnl_gamma 4.0 - log_k -40.2906 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O3-2 +2 H+ + 2 SO3-2 = S2O3-2 + O2 + H2O + -llnl_gamma 4 + log_k -40.2906 + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O3-2 # Enthalpy of formation: -0 kcal/mol - -analytic 0.77679E+02 0.65761E-01 -0.15438E+05 -0.34651E+02 -0.24092E+03 + -analytic 0.77679E+2 0.65761E-1 -0.15438E+5 -0.34651E+2 -0.24092E+3 # -Range: 0-300 - 1.0000 H+ + 1.0000 Ag+ + 0.2500 O2 = Ag++ +0.5000 H2O - -llnl_gamma 4.5 - log_k -12.1244 - -delta_H 22.9764 kJ/mol # Calculated enthalpy of reaction Ag+2 + H+ + Ag+ + 0.25 O2 = Ag+2 + 0.5 H2O + -llnl_gamma 4.5 + log_k -12.1244 + -delta_H 22.9764 kJ/mol # Calculated enthalpy of reaction Ag+2 # Enthalpy of formation: 64.2 kcal/mol - -analytic -4.7312e+001 -1.5239e-002 -4.1954e+002 1.6622e+001 -6.5328e+000 + -analytic -4.7312e+1 -1.5239e-2 -4.1954e+2 1.6622e+1 -6.5328e+0 # -Range: 0-300 - 1.0000 Am+++ + 0.5000 H2O = Am++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -60.3792 - -delta_H 401.953 kJ/mol # Calculated enthalpy of reaction Am+2 + Am+3 + 0.5 H2O = Am+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -60.3792 + -delta_H 401.953 kJ/mol # Calculated enthalpy of reaction Am+2 # Enthalpy of formation: -354.633 kJ/mol - -analytic 1.4922e+001 3.5993e-003 -2.0987e+004 -2.4146e+000 -3.2749e+002 + -analytic 1.4922e+1 3.5993e-3 -2.0987e+4 -2.4146e+0 -3.2749e+2 # -Range: 0-300 - 1.0000 H+ + 1.0000 Am+++ + 0.2500 O2 = Am++++ +0.5000 H2O - -llnl_gamma 5.5 - log_k -22.7073 - -delta_H 70.8142 kJ/mol # Calculated enthalpy of reaction Am+4 + H+ + Am+3 + 0.25 O2 = Am+4 + 0.5 H2O + -llnl_gamma 5.5 + log_k -22.7073 + -delta_H 70.8142 kJ/mol # Calculated enthalpy of reaction Am+4 # Enthalpy of formation: -406 kJ/mol - -analytic -1.7460e+001 -2.2336e-003 -3.5139e+003 2.9102e+000 -5.4826e+001 + -analytic -1.746e+1 -2.2336e-3 -3.5139e+3 2.9102e+0 -5.4826e+1 # -Range: 0-300 - 1.0000 H2O + 1.0000 Am+++ + 0.5000 O2 = AmO2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -15.384 - -delta_H 104.345 kJ/mol # Calculated enthalpy of reaction AmO2+ + H2O + Am+3 + 0.5 O2 = AmO2+ + 2 H+ + -llnl_gamma 4 + log_k -15.384 + -delta_H 104.345 kJ/mol # Calculated enthalpy of reaction AmO2+ # Enthalpy of formation: -804.26 kJ/mol - -analytic 1.4110e+001 6.9728e-003 -4.2098e+003 -6.0936e+000 -2.1192e+005 + -analytic 1.411e+1 6.9728e-3 -4.2098e+3 -6.0936e+0 -2.1192e+5 # -Range: 0-300 - 1.0000 Am+++ + 0.7500 O2 + 0.5000 H2O = AmO2++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -20.862 - -delta_H 117.959 kJ/mol # Calculated enthalpy of reaction AmO2+2 + Am+3 + 0.75 O2 + 0.5 H2O = AmO2+2 + H+ + -llnl_gamma 4.5 + log_k -20.862 + -delta_H 117.959 kJ/mol # Calculated enthalpy of reaction AmO2+2 # Enthalpy of formation: -650.76 kJ/mol - -analytic 5.7163e+001 4.0278e-003 -8.4633e+003 -2.0550e+001 -1.3208e+002 + -analytic 5.7163e+1 4.0278e-3 -8.4633e+3 -2.055e+1 -1.3208e+2 # -Range: 0-300 - 1.0000 H2AsO4- + 1.0000 H+ = AsH3 +2.0000 O2 - -llnl_gamma 3.0 - log_k -155.1907 - -delta_H 931.183 kJ/mol # Calculated enthalpy of reaction AsH3 + H2AsO4- + H+ = AsH3 + 2 O2 + -llnl_gamma 3 + log_k -155.1907 + -delta_H 931.183 kJ/mol # Calculated enthalpy of reaction AsH3 # Enthalpy of formation: 10.968 kcal/mol - -analytic 2.8310e+002 9.6961e-002 -5.4830e+004 -1.1449e+002 -9.3119e+002 + -analytic 2.831e+2 9.6961e-2 -5.483e+4 -1.1449e+2 -9.3119e+2 # -Range: 0-200 - 2.0000 H+ + 1.0000 Au+ + 0.5000 O2 = Au+++ +1.0000 H2O - -llnl_gamma 5.0 - log_k -4.3506 - -delta_H -73.2911 kJ/mol # Calculated enthalpy of reaction Au+3 + 2 H+ + Au+ + 0.5 O2 = Au+3 + H2O + -llnl_gamma 5 + log_k -4.3506 + -delta_H -73.2911 kJ/mol # Calculated enthalpy of reaction Au+3 # Enthalpy of formation: 96.93 kcal/mol - -analytic -6.8661e+001 -2.6838e-002 4.4549e+003 2.3178e+001 6.9534e+001 + -analytic -6.8661e+1 -2.6838e-2 4.4549e+3 2.3178e+1 6.9534e+1 # -Range: 0-300 - 1.0000 H2O + 1.0000 B(OH)3 = BH4- +2.0000 O2 +1.0000 H+ - -llnl_gamma 4.0 - log_k -237.1028 - -delta_H 1384.24 kJ/mol # Calculated enthalpy of reaction BH4- + H2O + B(OH)3 = BH4- + 2 O2 + H+ + -llnl_gamma 4 + log_k -237.1028 + -delta_H 1384.24 kJ/mol # Calculated enthalpy of reaction BH4- # Enthalpy of formation: 48.131 kJ/mol - -analytic -7.4930e+001 -7.2794e-003 -6.9168e+004 2.9105e+001 -1.0793e+003 + -analytic -7.493e+1 -7.2794e-3 -6.9168e+4 2.9105e+1 -1.0793e+3 # -Range: 0-300 - 3.0000 Br- + 2.0000 H+ + 0.5000 O2 = Br3- +1.0000 H2O - -llnl_gamma 4.0 - log_k +7.0696 - -delta_H -45.6767 kJ/mol # Calculated enthalpy of reaction Br3- + 3 Br- + 2 H+ + 0.5 O2 = Br3- + H2O + -llnl_gamma 4 + log_k 7.0696 + -delta_H -45.6767 kJ/mol # Calculated enthalpy of reaction Br3- # Enthalpy of formation: -31.17 kcal/mol - -analytic 1.4899e+002 6.4017e-002 -3.3831e+002 -6.4596e+001 -5.3232e+000 + -analytic 1.4899e+2 6.4017e-2 -3.3831e+2 -6.4596e+1 -5.3232e+0 # -Range: 0-300 - 1.0000 Br- + 0.5000 O2 = BrO- - -llnl_gamma 4.0 - log_k -10.9167 - -delta_H 33.4302 kJ/mol # Calculated enthalpy of reaction BrO- + Br- + 0.5 O2 = BrO- + -llnl_gamma 4 + log_k -10.9167 + -delta_H 33.4302 kJ/mol # Calculated enthalpy of reaction BrO- # Enthalpy of formation: -22.5 kcal/mol - -analytic 5.4335e+001 1.9509e-003 -4.2860e+003 -2.0799e+001 -6.6896e+001 + -analytic 5.4335e+1 1.9509e-3 -4.286e+3 -2.0799e+1 -6.6896e+1 # -Range: 0-300 - 1.5000 O2 + 1.0000 Br- = BrO3- - -llnl_gamma 3.5 - log_k -17.1443 - -delta_H 72.6342 kJ/mol # Calculated enthalpy of reaction BrO3- + 1.5 O2 + Br- = BrO3- + -llnl_gamma 3.5 + log_k -17.1443 + -delta_H 72.6342 kJ/mol # Calculated enthalpy of reaction BrO3- # Enthalpy of formation: -16.03 kcal/mol - -analytic 3.7156e+001 -4.7855e-003 -4.6208e+003 -1.4136e+001 -2.1385e+005 + -analytic 3.7156e+1 -4.7855e-3 -4.6208e+3 -1.4136e+1 -2.1385e+5 # -Range: 0-300 - 2.0000 O2 + 1.0000 Br- = BrO4- - -llnl_gamma 4.0 - log_k -33.104 - -delta_H 158.741 kJ/mol # Calculated enthalpy of reaction BrO4- + 2 O2 + Br- = BrO4- + -llnl_gamma 4 + log_k -33.104 + -delta_H 158.741 kJ/mol # Calculated enthalpy of reaction BrO4- # Enthalpy of formation: 3.1 kcal/mol - -analytic 8.1393e+001 -2.3409e-003 -1.2290e+004 -2.9336e+001 -1.9180e+002 + -analytic 8.1393e+1 -2.3409e-3 -1.229e+4 -2.9336e+1 -1.918e+2 # -Range: 0-300 -# 1.0000 NH3 + 1.0000 HCO3- = CN- +2.0000 H2O +0.5000 O2 -# -llnl_gamma 3.0 +# 1.0000 NH3 + 1.0000 HCO3- = CN- +2.0000 H2O +0.5000 O2 +# -llnl_gamma 3.0 # log_k -56.0505 # -delta_H 344.151 kJ/mol # Calculated enthalpy of reaction CN- # # Enthalpy of formation: 36 kcal/mol @@ -845,493 +849,493 @@ Zr(OH)2+2 = Zr(OH)2+2 # # -Range: 0-300 Cyanide- = Cyanide- - log_k 0 + log_k 0 - H+ + HCO3- + H2O = CH4 + 2.0000 O2 - -llnl_gamma 3.0 - log_k -144.1412 - -delta_H 863.599 kJ/mol # Calculated enthalpy of reaction CH4 + H+ + HCO3- + H2O = CH4 + 2 O2 + -llnl_gamma 3 + log_k -144.1412 + -delta_H 863.599 kJ/mol # Calculated enthalpy of reaction CH4 # Enthalpy of formation: -21.01 kcal/mol - -analytic -0.41698E+02 0.36584E-01 -0.40675E+05 0.93479E+01 -0.63468E+03 + -analytic -0.41698E+2 0.36584E-1 -0.40675E+5 0.93479E+1 -0.63468E+3 # -Range: 0-300 - 2.0000 H+ + 2.0000 HCO3- + H2O = C2H6 + 3.5000 O2 - -llnl_gamma 3.0 - log_k -228.6072 - -delta_H 0 # Not possible to calculate enthalpy of reaction C2H6 + 2 H+ + 2 HCO3- + H2O = C2H6 + 3.5 O2 + -llnl_gamma 3 + log_k -228.6072 + -delta_H 0 # Not possible to calculate enthalpy of reaction C2H6 # Enthalpy of formation: -0 kcal/mol - -analytic -0.10777E+02 0.72105E-01 -0.67489E+05 -0.13915E+02 -0.10531E+04 + -analytic -0.10777E+2 0.72105E-1 -0.67489E+5 -0.13915E+2 -0.10531E+4 # -Range: 0-300 - 2.000 H+ + 2.0000 HCO3- = C2H4 + 3.0000 O2 - -llnl_gamma 3.0 - log_k -254.5034 - -delta_H 1446.6 kJ/mol # Calculated enthalpy of reaction C2H4 + 2 H+ + 2 HCO3- = C2H4 + 3 O2 + -llnl_gamma 3 + log_k -254.5034 + -delta_H 1446.6 kJ/mol # Calculated enthalpy of reaction C2H4 # Enthalpy of formation: 24.65 kcal/mol - -analytic -0.30329E+02 0.71187E-01 -0.73140E+05 0.00000E+00 0.00000E+00 + -analytic -0.30329E+2 0.71187E-1 -0.7314E+5 0E+0 0E+0 # -Range: 0-300 - 1.0000 HCO3- + 1.0000 H+ = CO +1.0000 H2O +0.5000 O2 - -llnl_gamma 3.0 - log_k -41.7002 - -delta_H 277.069 kJ/mol # Calculated enthalpy of reaction CO + HCO3- + H+ = CO + H2O + 0.5 O2 + -llnl_gamma 3 + log_k -41.7002 + -delta_H 277.069 kJ/mol # Calculated enthalpy of reaction CO # Enthalpy of formation: -28.91 kcal/mol - -analytic 1.0028e+002 4.6877e-002 -1.8062e+004 -4.0263e+001 3.8031e+005 + -analytic 1.0028e+2 4.6877e-2 -1.8062e+4 -4.0263e+1 3.8031e+5 # -Range: 0-300 - 1.0000 Ce+++ + 0.5000 H2O = Ce++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -83.6754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce+2 + Ce+3 + 0.5 H2O = Ce+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -83.6754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce+2 # Enthalpy of formation: -0 kcal/mol - - 1.0000 H+ + 1.0000 Ce+++ + 0.2500 O2 = Ce++++ +0.5000 H2O - -llnl_gamma 5.5 - log_k -7.9154 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce+4 + + H+ + Ce+3 + 0.25 O2 = Ce+4 + 0.5 H2O + -llnl_gamma 5.5 + log_k -7.9154 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce+4 # Enthalpy of formation: -0 kcal/mol - - 1.0000 Cl- + 0.5000 O2 = ClO- - -llnl_gamma 4.0 - log_k -15.1014 - -delta_H 66.0361 kJ/mol # Calculated enthalpy of reaction ClO- + + Cl- + 0.5 O2 = ClO- + -llnl_gamma 4 + log_k -15.1014 + -delta_H 66.0361 kJ/mol # Calculated enthalpy of reaction ClO- # Enthalpy of formation: -25.6 kcal/mol - -analytic 6.1314e+001 3.4812e-003 -6.0952e+003 -2.3043e+001 -9.5128e+001 + -analytic 6.1314e+1 3.4812e-3 -6.0952e+3 -2.3043e+1 -9.5128e+1 # -Range: 0-300 - 1.0000 O2 + 1.0000 Cl- = ClO2- - -llnl_gamma 4.0 - log_k -23.108 - -delta_H 112.688 kJ/mol # Calculated enthalpy of reaction ClO2- + O2 + Cl- = ClO2- + -llnl_gamma 4 + log_k -23.108 + -delta_H 112.688 kJ/mol # Calculated enthalpy of reaction ClO2- # Enthalpy of formation: -15.9 kcal/mol - -analytic 3.3638e+000 -6.1675e-003 -4.9726e+003 -2.0467e+000 -2.5769e+005 + -analytic 3.3638e+0 -6.1675e-3 -4.9726e+3 -2.0467e+0 -2.5769e+5 # -Range: 0-300 - 1.5000 O2 + 1.0000 Cl- = ClO3- - -llnl_gamma 3.5 - log_k -17.2608 - -delta_H 81.3077 kJ/mol # Calculated enthalpy of reaction ClO3- + 1.5 O2 + Cl- = ClO3- + -llnl_gamma 3.5 + log_k -17.2608 + -delta_H 81.3077 kJ/mol # Calculated enthalpy of reaction ClO3- # Enthalpy of formation: -24.85 kcal/mol - -analytic 2.8852e+001 -4.8281e-003 -4.6779e+003 -1.0772e+001 -2.0783e+005 + -analytic 2.8852e+1 -4.8281e-3 -4.6779e+3 -1.0772e+1 -2.0783e+5 # -Range: 0-300 - 2.0000 O2 + 1.0000 Cl- = ClO4- - -llnl_gamma 3.5 - log_k -15.7091 - -delta_H 62.0194 kJ/mol # Calculated enthalpy of reaction ClO4- + 2 O2 + Cl- = ClO4- + -llnl_gamma 3.5 + log_k -15.7091 + -delta_H 62.0194 kJ/mol # Calculated enthalpy of reaction ClO4- # Enthalpy of formation: -30.91 kcal/mol - -analytic 7.0280e+001 -6.8927e-005 -5.5690e+003 -2.6446e+001 -1.6596e+005 + -analytic 7.028e+1 -6.8927e-5 -5.569e+3 -2.6446e+1 -1.6596e+5 # -Range: 0-300 - 1.0000 H+ + 1.0000 Co++ + 0.2500 O2 = Co+++ +0.5000 H2O - -llnl_gamma 5.0 - log_k -11.4845 - -delta_H 10.3198 kJ/mol # Calculated enthalpy of reaction Co+3 + H+ + Co+2 + 0.25 O2 = Co+3 + 0.5 H2O + -llnl_gamma 5 + log_k -11.4845 + -delta_H 10.3198 kJ/mol # Calculated enthalpy of reaction Co+3 # Enthalpy of formation: 22 kcal/mol - -analytic -2.2827e+001 -1.2222e-002 -7.2117e+002 7.0306e+000 -1.1247e+001 + -analytic -2.2827e+1 -1.2222e-2 -7.2117e+2 7.0306e+0 -1.1247e+1 # -Range: 0-300 - 4.0000 H+ + 1.0000 CrO4-- = Cr++ +2.0000 H2O +1.0000 O2 - -llnl_gamma 4.5 - log_k -21.6373 - -delta_H 153.829 kJ/mol # Calculated enthalpy of reaction Cr+2 + 4 H+ + CrO4-2 = Cr+2 + 2 H2O + O2 + -llnl_gamma 4.5 + log_k -21.6373 + -delta_H 153.829 kJ/mol # Calculated enthalpy of reaction Cr+2 # Enthalpy of formation: -34.3 kcal/mol - -analytic 6.9003e+001 6.2884e-002 -6.9847e+003 -3.4720e+001 -1.0901e+002 + -analytic 6.9003e+1 6.2884e-2 -6.9847e+3 -3.472e+1 -1.0901e+2 # -Range: 0-300 - 5.0000 H+ + 1.0000 CrO4-- = Cr+++ +2.5000 H2O +0.7500 O2 - -llnl_gamma 9.0 - log_k +8.3842 - -delta_H -81.0336 kJ/mol # Calculated enthalpy of reaction Cr+3 + 5 H+ + CrO4-2 = Cr+3 + 2.5 H2O + 0.75 O2 + -llnl_gamma 9 + log_k 8.3842 + -delta_H -81.0336 kJ/mol # Calculated enthalpy of reaction Cr+3 # Enthalpy of formation: -57 kcal/mol - -analytic 5.1963e+001 6.0932e-002 5.4256e+003 -3.2290e+001 8.4645e+001 + -analytic 5.1963e+1 6.0932e-2 5.4256e+3 -3.229e+1 8.4645e+1 # -Range: 0-300 - 0.5000 H2O + 1.0000 CrO4-- = CrO4--- +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.0 - log_k -19.7709 - -delta_H 0 # Not possible to calculate enthalpy of reaction CrO4-3 + 0.5 H2O + CrO4-2 = CrO4-3 + H+ + 0.25 O2 + -llnl_gamma 4 + log_k -19.7709 + -delta_H 0 # Not possible to calculate enthalpy of reaction CrO4-3 # Enthalpy of formation: -0 kcal/mol - - 1.0000 Cu++ + 0.5000 H2O = Cu+ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.0 - log_k -18.7704 - -delta_H 145.877 kJ/mol # Calculated enthalpy of reaction Cu+ + + Cu+2 + 0.5 H2O = Cu+ + H+ + 0.25 O2 + -llnl_gamma 4 + log_k -18.7704 + -delta_H 145.877 kJ/mol # Calculated enthalpy of reaction Cu+ # Enthalpy of formation: 17.132 kcal/mol - -analytic 3.7909e+001 1.3731e-002 -8.1506e+003 -1.3508e+001 -1.2719e+002 + -analytic 3.7909e+1 1.3731e-2 -8.1506e+3 -1.3508e+1 -1.2719e+2 # -Range: 0-300 - 1.0000 Dy+++ + 0.5000 H2O = Dy++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -61.0754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy+2 + Dy+3 + 0.5 H2O = Dy+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -61.0754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy+2 # Enthalpy of formation: -0 kcal/mol - - 1.0000 Er+++ + 0.5000 H2O = Er++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -70.1754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er+2 + + Er+3 + 0.5 H2O = Er+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -70.1754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er+2 # Enthalpy of formation: -0 kcal/mol - - 1.0000 Eu+++ + 0.5000 H2O = Eu++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -27.5115 - -delta_H 217.708 kJ/mol # Calculated enthalpy of reaction Eu+2 + + Eu+3 + 0.5 H2O = Eu+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -27.5115 + -delta_H 217.708 kJ/mol # Calculated enthalpy of reaction Eu+2 # Enthalpy of formation: -126.1 kcal/mol - -analytic 3.0300e+001 1.4126e-002 -1.2319e+004 -9.0585e+000 1.5289e+005 + -analytic 3.03e+1 1.4126e-2 -1.2319e+4 -9.0585e+0 1.5289e+5 # -Range: 0-300 - 1.0000 H+ + 1.0000 Fe++ + 0.2500 O2 = Fe+++ +0.5000 H2O - -llnl_gamma 9.0 - log_k +8.4899 - -delta_H -97.209 kJ/mol # Calculated enthalpy of reaction Fe+3 + H+ + Fe+2 + 0.25 O2 = Fe+3 + 0.5 H2O + -llnl_gamma 9 + log_k 8.4899 + -delta_H -97.209 kJ/mol # Calculated enthalpy of reaction Fe+3 # Enthalpy of formation: -11.85 kcal/mol - -analytic -1.7808e+001 -1.1753e-002 4.7609e+003 5.5866e+000 7.4295e+001 + -analytic -1.7808e+1 -1.1753e-2 4.7609e+3 5.5866e+0 7.4295e+1 # -Range: 0-300 - 1.0000 Gd+++ + 0.5000 H2O = Gd++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -84.6754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd+2 + Gd+3 + 0.5 H2O = Gd+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -84.6754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd+2 # Enthalpy of formation: -0 kcal/mol - - 1.0000 H2O = H2 +0.5000 O2 + + H2O = H2 + 0.5 O2 -CO2_llnl_gamma - log_k -46.1066 - -delta_H 275.588 kJ/mol # Calculated enthalpy of reaction H2 + log_k -46.1066 + -delta_H 275.588 kJ/mol # Calculated enthalpy of reaction H2 # Enthalpy of formation: -1 kcal/mol - -analytic 6.6835e+001 1.7172e-002 -1.8849e+004 -2.4092e+001 4.2501e+005 + -analytic 6.6835e+1 1.7172e-2 -1.8849e+4 -2.4092e+1 4.2501e+5 # -Range: 0-300 - 1.0000 H2AsO4- = H2AsO3- +0.5000 O2 - -llnl_gamma 4.0 - log_k -30.5349 - -delta_H 188.698 kJ/mol # Calculated enthalpy of reaction H2AsO3- + H2AsO4- = H2AsO3- + 0.5 O2 + -llnl_gamma 4 + log_k -30.5349 + -delta_H 188.698 kJ/mol # Calculated enthalpy of reaction H2AsO3- # Enthalpy of formation: -170.84 kcal/mol - -analytic 7.4245e+001 1.4885e-002 -1.4218e+004 -2.6403e+001 3.3822e+005 + -analytic 7.4245e+1 1.4885e-2 -1.4218e+4 -2.6403e+1 3.3822e+5 # -Range: 0-300 - 1.0000 SO4-- + 1.0000 H+ + 0.5000 O2 = HSO5- - -llnl_gamma 4.0 - log_k -17.2865 - -delta_H 140.038 kJ/mol # Calculated enthalpy of reaction HSO5- + SO4-2 + H+ + 0.5 O2 = HSO5- + -llnl_gamma 4 + log_k -17.2865 + -delta_H 140.038 kJ/mol # Calculated enthalpy of reaction HSO5- # Enthalpy of formation: -185.38 kcal/mol - -analytic 5.9944e+001 3.0904e-002 -7.7494e+003 -2.4420e+001 -1.2094e+002 + -analytic 5.9944e+1 3.0904e-2 -7.7494e+3 -2.442e+1 -1.2094e+2 # -Range: 0-300 - 1.0000 SeO3-- + 1.0000 H+ = HSe- +1.5000 O2 - -llnl_gamma 4.0 - log_k -76.8418 - -delta_H 506.892 kJ/mol # Calculated enthalpy of reaction HSe- + SeO3-2 + H+ = HSe- + 1.5 O2 + -llnl_gamma 4 + log_k -76.8418 + -delta_H 506.892 kJ/mol # Calculated enthalpy of reaction HSe- # Enthalpy of formation: 3.8 kcal/mol - -analytic 4.7105e+001 4.3116e-002 -2.6949e+004 -1.9895e+001 2.5305e+005 + -analytic 4.7105e+1 4.3116e-2 -2.6949e+4 -1.9895e+1 2.5305e+5 # -Range: 0-300 - 2.0000 Hg++ + 1.0000 H2O = Hg2++ +2.0000 H+ +0.5000 O2 - -llnl_gamma 4.0 - log_k -12.208 - -delta_H 106.261 kJ/mol # Calculated enthalpy of reaction Hg2+2 + 2 Hg+2 + H2O = Hg2+2 + 2 H+ + 0.5 O2 + -llnl_gamma 4 + log_k -12.208 + -delta_H 106.261 kJ/mol # Calculated enthalpy of reaction Hg2+2 # Enthalpy of formation: 39.87 kcal/mol - -analytic 5.5010e+001 1.9050e-002 -4.7967e+003 -2.2952e+001 -7.4864e+001 + -analytic 5.501e+1 1.905e-2 -4.7967e+3 -2.2952e+1 -7.4864e+1 # -Range: 0-300 - 1.0000 Ho+++ + 0.5000 H2O = Ho++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -67.3754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho+2 + Ho+3 + 0.5 H2O = Ho+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -67.3754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho+2 # Enthalpy of formation: -0 kcal/mol - - 3.0000 I- + 2.0000 H+ + 0.5000 O2 = I3- +1.0000 H2O - -llnl_gamma 4.0 - log_k +24.7278 - -delta_H -160.528 kJ/mol # Calculated enthalpy of reaction I3- + + 3 I- + 2 H+ + 0.5 O2 = I3- + H2O + -llnl_gamma 4 + log_k 24.7278 + -delta_H -160.528 kJ/mol # Calculated enthalpy of reaction I3- # Enthalpy of formation: -12.3 kcal/mol - -analytic 1.4788e+002 6.6206e-002 5.7407e+003 -6.5517e+001 8.9535e+001 + -analytic 1.4788e+2 6.6206e-2 5.7407e+3 -6.5517e+1 8.9535e+1 # -Range: 0-300 - 1.0000 I- + 0.5000 O2 = IO- - -llnl_gamma 4.0 - log_k -0.9038 - -delta_H -44.5596 kJ/mol # Calculated enthalpy of reaction IO- + I- + 0.5 O2 = IO- + -llnl_gamma 4 + log_k -0.9038 + -delta_H -44.5596 kJ/mol # Calculated enthalpy of reaction IO- # Enthalpy of formation: -25.7 kcal/mol - -analytic 2.7568e+000 -5.5671e-003 3.2484e+003 -3.9065e+000 -2.8800e+005 + -analytic 2.7568e+0 -5.5671e-3 3.2484e+3 -3.9065e+0 -2.88e+5 # -Range: 0-300 - 1.5000 O2 + 1.0000 I- = IO3- - -llnl_gamma 4.0 - log_k +17.6809 - -delta_H -146.231 kJ/mol # Calculated enthalpy of reaction IO3- + 1.5 O2 + I- = IO3- + -llnl_gamma 4 + log_k 17.6809 + -delta_H -146.231 kJ/mol # Calculated enthalpy of reaction IO3- # Enthalpy of formation: -52.9 kcal/mol - -analytic -2.2971e+001 -1.3478e-002 9.5977e+003 6.6010e+000 -3.4371e+005 + -analytic -2.2971e+1 -1.3478e-2 9.5977e+3 6.601e+0 -3.4371e+5 # -Range: 0-300 - 2.0000 O2 + 1.0000 I- = IO4- - -llnl_gamma 3.5 - log_k +6.9621 - -delta_H -70.2912 kJ/mol # Calculated enthalpy of reaction IO4- + 2 O2 + I- = IO4- + -llnl_gamma 3.5 + log_k 6.9621 + -delta_H -70.2912 kJ/mol # Calculated enthalpy of reaction IO4- # Enthalpy of formation: -36.2 kcal/mol - -analytic 2.1232e+001 -7.8107e-003 3.5803e+003 -8.5272e+000 -2.5422e+005 + -analytic 2.1232e+1 -7.8107e-3 3.5803e+3 -8.5272e+0 -2.5422e+5 # -Range: 0-300 - 1.0000 La+++ + 0.5000 H2O = La++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -72.4754 - -delta_H 0 # Not possible to calculate enthalpy of reaction La+2 + La+3 + 0.5 H2O = La+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -72.4754 + -delta_H 0 # Not possible to calculate enthalpy of reaction La+2 # Enthalpy of formation: -0 kcal/mol - - 1.0000 Mn++ + 1.0000 H+ + 0.2500 O2 = Mn+++ +0.5000 H2O - -llnl_gamma 5.0 - log_k -4.0811 - -delta_H -65.2892 kJ/mol # Calculated enthalpy of reaction Mn+3 + + Mn+2 + H+ + 0.25 O2 = Mn+3 + 0.5 H2O + -llnl_gamma 5 + log_k -4.0811 + -delta_H -65.2892 kJ/mol # Calculated enthalpy of reaction Mn+3 # Enthalpy of formation: -34.895 kcal/mol - -analytic 3.8873e+001 1.7458e-002 2.0757e+003 -2.2274e+001 3.2378e+001 + -analytic 3.8873e+1 1.7458e-2 2.0757e+3 -2.2274e+1 3.2378e+1 # -Range: 0-300 - 2.0000 H2O + 1.0000 O2 + 1.0000 Mn++ = MnO4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -32.4146 - -delta_H 151.703 kJ/mol # Calculated enthalpy of reaction MnO4-2 + 2 H2O + O2 + Mn+2 = MnO4-2 + 4 H+ + -llnl_gamma 4 + log_k -32.4146 + -delta_H 151.703 kJ/mol # Calculated enthalpy of reaction MnO4-2 # Enthalpy of formation: -156 kcal/mol - -analytic -1.0407e+001 -4.6464e-002 -1.0515e+004 1.0943e+001 -1.6408e+002 + -analytic -1.0407e+1 -4.6464e-2 -1.0515e+4 1.0943e+1 -1.6408e+2 # -Range: 0-300 - 2.0000 NH3 + 1.5000 O2 = N2 +3.0000 H2O - -llnl_gamma 3.0 - log_k +116.4609 - -delta_H -687.08 kJ/mol # Calculated enthalpy of reaction N2 + 2 NH3 + 1.5 O2 = N2 + 3 H2O + -llnl_gamma 3 + log_k 116.4609 + -delta_H -687.08 kJ/mol # Calculated enthalpy of reaction N2 # Enthalpy of formation: -2.495 kcal/mol - -analytic -8.2621e+001 -1.4671e-002 4.0068e+004 2.9090e+001 -2.5924e+005 + -analytic -8.2621e+1 -1.4671e-2 4.0068e+4 2.909e+1 -2.5924e+5 # -Range: 0-300 - 3.0000 NH3 + 2.0000 O2 = N3- +4.0000 H2O +1.0000 H+ - -llnl_gamma 4.0 - log_k +96.9680 - -delta_H -599.935 kJ/mol # Calculated enthalpy of reaction N3- + 3 NH3 + 2 O2 = N3- + 4 H2O + H+ + -llnl_gamma 4 + log_k 96.968 + -delta_H -599.935 kJ/mol # Calculated enthalpy of reaction N3- # Enthalpy of formation: 275.14 kJ/mol - -analytic -9.1080e+001 -4.0817e-002 3.6350e+004 3.4484e+001 -6.2678e+005 + -analytic -9.108e+1 -4.0817e-2 3.635e+4 3.4484e+1 -6.2678e+5 # -Range: 0-300 - 1.5000 O2 + 1.0000 NH3 = NO2- +1.0000 H+ +1.0000 H2O - -llnl_gamma 3.0 - log_k +46.8653 - -delta_H -290.901 kJ/mol # Calculated enthalpy of reaction NO2- + 1.5 O2 + NH3 = NO2- + H+ + H2O + -llnl_gamma 3 + log_k 46.8653 + -delta_H -290.901 kJ/mol # Calculated enthalpy of reaction NO2- # Enthalpy of formation: -25 kcal/mol - -analytic -1.7011e+001 -3.3459e-002 1.3999e+004 1.1078e+001 -4.8255e+004 + -analytic -1.7011e+1 -3.3459e-2 1.3999e+4 1.1078e+1 -4.8255e+4 # -Range: 0-300 - 2.0000 O2 + 1.0000 NH3 = NO3- +1.0000 H+ +1.0000 H2O - -llnl_gamma 3.0 - log_k +62.1001 - -delta_H -387.045 kJ/mol # Calculated enthalpy of reaction NO3- + 2 O2 + NH3 = NO3- + H+ + H2O + -llnl_gamma 3 + log_k 62.1001 + -delta_H -387.045 kJ/mol # Calculated enthalpy of reaction NO3- # Enthalpy of formation: -49.429 kcal/mol - -analytic -3.9468e+001 -3.9697e-002 2.0614e+004 1.8872e+001 -2.1917e+005 + -analytic -3.9468e+1 -3.9697e-2 2.0614e+4 1.8872e+1 -2.1917e+5 # -Range: 0-300 - 1.0000 Nd+++ + 0.5000 H2O = Nd++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -64.3754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd+2 + Nd+3 + 0.5 H2O = Nd+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -64.3754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd+2 # Enthalpy of formation: -0 kcal/mol - - 1.0000 Np++++ + 0.5000 H2O = Np+++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 5.0 - log_k -19.0131 - -delta_H 168.787 kJ/mol # Calculated enthalpy of reaction Np+3 + + Np+4 + 0.5 H2O = Np+3 + H+ + 0.25 O2 + -llnl_gamma 5 + log_k -19.0131 + -delta_H 168.787 kJ/mol # Calculated enthalpy of reaction Np+3 # Enthalpy of formation: -527.1 kJ/mol - -analytic 1.6615e+001 2.4645e-003 -8.9343e+003 -2.5829e+000 -1.3942e+002 + -analytic 1.6615e+1 2.4645e-3 -8.9343e+3 -2.5829e+0 -1.3942e+2 # -Range: 0-300 - 1.5000 H2O + 1.0000 Np++++ + 0.2500 O2 = NpO2+ +3.0000 H+ - -llnl_gamma 4.0 - log_k +10.5928 - -delta_H 9.80089 kJ/mol # Calculated enthalpy of reaction NpO2+ + 1.5 H2O + Np+4 + 0.25 O2 = NpO2+ + 3 H+ + -llnl_gamma 4 + log_k 10.5928 + -delta_H 9.80089 kJ/mol # Calculated enthalpy of reaction NpO2+ # Enthalpy of formation: -977.991 kJ/mol - -analytic 1.2566e+001 7.5467e-003 1.6921e+003 -2.7125e+000 -2.8381e+005 + -analytic 1.2566e+1 7.5467e-3 1.6921e+3 -2.7125e+0 -2.8381e+5 # -Range: 0-300 - 1.0000 Np++++ + 1.0000 H2O + 0.5000 O2 = NpO2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k +11.2107 - -delta_H -12.5719 kJ/mol # Calculated enthalpy of reaction NpO2+2 + Np+4 + H2O + 0.5 O2 = NpO2+2 + 2 H+ + -llnl_gamma 4.5 + log_k 11.2107 + -delta_H -12.5719 kJ/mol # Calculated enthalpy of reaction NpO2+2 # Enthalpy of formation: -860.478 kJ/mol - -analytic 2.5510e+001 1.1973e-003 1.2753e+003 -6.7082e+000 -2.0792e+005 + -analytic 2.551e+1 1.1973e-3 1.2753e+3 -6.7082e+0 -2.0792e+5 # -Range: 0-300 - 2.0000 H+ + 1.0000 Pb++ + 0.5000 O2 = Pb++++ +1.0000 H2O - -llnl_gamma 5.5 - log_k -14.1802 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb+4 + 2 H+ + Pb+2 + 0.5 O2 = Pb+4 + H2O + -llnl_gamma 5.5 + log_k -14.1802 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb+4 # Enthalpy of formation: -0 kcal/mol - - 1.0000 Pm+++ + 0.5000 H2O = Pm++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -65.2754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm+2 + + Pm+3 + 0.5 H2O = Pm+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -65.2754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm+2 # Enthalpy of formation: -0 kcal/mol - - 1.0000 Pr+++ + 0.5000 H2O = Pr++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -79.9754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr+2 + + Pr+3 + 0.5 H2O = Pr+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -79.9754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr+2 # Enthalpy of formation: -0 kcal/mol - - 1.0000 Pu++++ + 0.5000 H2O = Pu+++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 5.0 - log_k -4.5071 - -delta_H 84.2268 kJ/mol # Calculated enthalpy of reaction Pu+3 + + Pu+4 + 0.5 H2O = Pu+3 + H+ + 0.25 O2 + -llnl_gamma 5 + log_k -4.5071 + -delta_H 84.2268 kJ/mol # Calculated enthalpy of reaction Pu+3 # Enthalpy of formation: -591.552 kJ/mol - -analytic 2.0655e+001 3.2688e-003 -4.7434e+003 -4.1907e+000 1.2944e+004 + -analytic 2.0655e+1 3.2688e-3 -4.7434e+3 -4.1907e+0 1.2944e+4 # -Range: 0-300 - 1.5000 H2O + 1.0000 Pu++++ + 0.2500 O2 = PuO2+ +3.0000 H+ - -llnl_gamma 4.0 - log_k +2.9369 - -delta_H 53.5009 kJ/mol # Calculated enthalpy of reaction PuO2+ + 1.5 H2O + Pu+4 + 0.25 O2 = PuO2+ + 3 H+ + -llnl_gamma 4 + log_k 2.9369 + -delta_H 53.5009 kJ/mol # Calculated enthalpy of reaction PuO2+ # Enthalpy of formation: -914.183 kJ/mol - -analytic -2.0464e+001 2.8265e-003 1.2131e+003 9.2156e+000 -3.8400e+005 + -analytic -2.0464e+1 2.8265e-3 1.2131e+3 9.2156e+0 -3.84e+5 # -Range: 0-300 - 1.0000 Pu++++ + 1.0000 H2O + 0.5000 O2 = PuO2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k +8.1273 - -delta_H 6.22013 kJ/mol # Calculated enthalpy of reaction PuO2+2 + Pu+4 + H2O + 0.5 O2 = PuO2+2 + 2 H+ + -llnl_gamma 4.5 + log_k 8.1273 + -delta_H 6.22013 kJ/mol # Calculated enthalpy of reaction PuO2+2 # Enthalpy of formation: -821.578 kJ/mol - -analytic 3.5219e+001 2.5202e-003 -2.4760e+002 -1.0120e+001 -1.7569e+005 + -analytic 3.5219e+1 2.5202e-3 -2.476e+2 -1.012e+1 -1.7569e+5 # -Range: 0-300 - 4.0000 H+ + 1.0000 RuO4-- = Ru(OH)2++ +1.0000 H2O +0.5000 O2 - -llnl_gamma 4.5 - log_k +25.2470 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2+2 + 4 H+ + RuO4-2 = Ru(OH)2+2 + H2O + 0.5 O2 + -llnl_gamma 4.5 + log_k 25.247 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2+2 # Enthalpy of formation: -0 kcal/mol - - 4.0000 H+ + 1.0000 RuO4-- = Ru++ +2.0000 H2O +1.0000 O2 - -llnl_gamma 4.5 - log_k +0.1610 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru+2 + + 4 H+ + RuO4-2 = Ru+2 + 2 H2O + O2 + -llnl_gamma 4.5 + log_k 0.161 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru+2 # Enthalpy of formation: -0 kcal/mol - - 5.0000 H+ + 1.0000 RuO4-- = Ru+++ +2.5000 H2O +0.7500 O2 - -llnl_gamma 5.0 - log_k +17.6149 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru+3 + + 5 H+ + RuO4-2 = Ru+3 + 2.5 H2O + 0.75 O2 + -llnl_gamma 5 + log_k 17.6149 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru+3 # Enthalpy of formation: -0 kcal/mol - - 2.0000 H+ + 1.0000 RuO4-- + 0.5000 O2 = RuO4 +1.0000 H2O - -llnl_gamma 3.0 - log_k +16.2672 - -delta_H -60.8385 kJ/mol # Calculated enthalpy of reaction RuO4 + + 2 H+ + RuO4-2 + 0.5 O2 = RuO4 + H2O + -llnl_gamma 3 + log_k 16.2672 + -delta_H -60.8385 kJ/mol # Calculated enthalpy of reaction RuO4 # Enthalpy of formation: -238.142 kJ/mol - -analytic 1.9964e+002 6.8286e-002 -1.2020e+003 -8.0706e+001 -2.0481e+001 + -analytic 1.9964e+2 6.8286e-2 -1.202e+3 -8.0706e+1 -2.0481e+1 # -Range: 0-200 - 1.0000 RuO4-- + 1.0000 H+ + 0.2500 O2 = RuO4- +0.5000 H2O - -llnl_gamma 4.0 - log_k +11.6024 - -delta_H -16.1998 kJ/mol # Calculated enthalpy of reaction RuO4- + RuO4-2 + H+ + 0.25 O2 = RuO4- + 0.5 H2O + -llnl_gamma 4 + log_k 11.6024 + -delta_H -16.1998 kJ/mol # Calculated enthalpy of reaction RuO4- # Enthalpy of formation: -333.389 kJ/mol - -analytic -1.9653e+000 8.8623e-003 1.8588e+003 1.8998e+000 2.9005e+001 + -analytic -1.9653e+0 8.8623e-3 1.8588e+3 1.8998e+0 2.9005e+1 # -Range: 0-300 - 2.0000 H+ + 2.0000 SO3-- = S2O4-- + .500 O2 + H2O - -llnl_gamma 5.0 + 2 H+ + 2 SO3-2 = S2O4-2 + .5 O2 + H2O + -llnl_gamma 5 # log_k -25.2075 - log_k -25.2076 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O4-2 + log_k -25.2076 + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O4-2 # Enthalpy of formation: -0 kcal/mol # -analytic -0.15158E+05 -0.31356E+01 0.47072E+06 0.58544E+04 0.73497E+04 - -analytic -2.3172e2 2.0393e-3 -7.1011e0 8.3239e1 9.4155e-1 + -analytic -2.3172e2 2.0393e-3 -7.1011e0 8.3239e1 9.4155e-1 # changed 3/23/04, corrected to supcrt temperature dependence, GMA # -Range: 0-300 # 2.0000 SO3-- + .500 O2 + 2.0000 H+ = S2O6-- + H2O -# H2O = .5 O2 + 2H+ + 2e- -2SO3-- = S2O6-- + 2e- - -llnl_gamma 4.0 - log_k 41.8289 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O6-2 +# H2O = .5 O2 + 2H+ + 2e- +2 SO3-2 = S2O6-2 + 2 e- + -llnl_gamma 4 + log_k 41.8289 + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O6-2 # Enthalpy of formation: -0 kcal/mol - -analytic 0.14458E+03 0.61449E-01 0.71877E+04 -0.58657E+02 0.11211E+03 + -analytic 0.14458E+3 0.61449E-1 0.71877E+4 -0.58657E+2 0.11211E+3 # -Range: 0-300 - -add_logk Log_K_O2 0.5 + -add_logk Log_K_O2 0.5 - 2.0000 SO3-- + 1.500 O2 + 2.0000 H+ = S2O8-- + H2O - -llnl_gamma 4.0 - log_k 70.7489 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O8-2 + 2 SO3-2 + 1.5 O2 + 2 H+ = S2O8-2 + H2O + -llnl_gamma 4 + log_k 70.7489 + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O8-2 # Enthalpy of formation: -0 kcal/mol - -analytic 0.18394E+03 0.60414E-01 0.13864E+05 -0.71804E+02 0.21628E+03 + -analytic 0.18394E+3 0.60414E-1 0.13864E+5 -0.71804E+2 0.21628E+3 # -Range: 0-300 -O2 + H+ + 3.0000 HS- = S3-- + 2.0000 H2O +O2 + H+ + 3 HS- = S3-2 + 2 H2O # 2H2O = O2 + 4H+ + 4e- #3HS- = S3-- + 3H+ + 4e- - -llnl_gamma 4.0 - log_k 79.3915 - -delta_H 0 # Not possible to calculate enthalpy of reaction S3-2 + -llnl_gamma 4 + log_k 79.3915 + -delta_H 0 # Not possible to calculate enthalpy of reaction S3-2 # Enthalpy of formation: -0 kcal/mol - -analytic -0.51626E+02 0.70208E-02 0.31797E+05 0.11927E+02 -0.64249E+06 - -mass_balance S(-2)3 + -analytic -0.51626E+2 0.70208E-2 0.31797E+5 0.11927E+2 -0.64249E+6 + -mass_balance S(-2)3 # -Range: 0-300 # -add_logk Log_K_O2 1.0 # 3.0000 SO3-- + 4.0000 H+ = S3O6-- + .500 O2 + 2.0000 H2O # .5 O2 + 2H+ + 2e- = H2O -3SO3-- + 6 H+ + 2e- = S3O6-- + 3H2O - -llnl_gamma 4.0 - log_k -6.2316 - -delta_H 0 # Not possible to calculate enthalpy of reaction S3O6-2 +3 SO3-2 + 6 H+ + 2 e- = S3O6-2 + 3 H2O + -llnl_gamma 4 + log_k -6.2316 + -delta_H 0 # Not possible to calculate enthalpy of reaction S3O6-2 # Enthalpy of formation: -0 kcal/mol - -analytic 0.23664E+03 0.12702E+00 -0.10110E+05 -0.99715E+02 -0.15783E+03 + -analytic 0.23664E+3 0.12702E+0 -0.1011E+5 -0.99715E+2 -0.15783E+3 # -Range: 0-300 - -add_logk Log_K_O2 -0.5 + -add_logk Log_K_O2 -0.5 -1.5000 O2 + 2.0000 H+ + 4.0000 HS- = S4-- + 3.0000 H2O +1.5 O2 + 2 H+ + 4 HS- = S4-2 + 3 H2O #4 HS- = S4-- + 4H+ + 6e- - -llnl_gamma 4.0 - log_k 125.2958 - -delta_H 0 # Not possible to calculate enthalpy of reaction S4-2 + -llnl_gamma 4 + log_k 125.2958 + -delta_H 0 # Not possible to calculate enthalpy of reaction S4-2 # Enthalpy of formation: -0 kcal/mol - -analytic 0.20875E+03 0.58133E-01 0.33278E+05 -0.85833E+02 0.51921E+03 - -mass_balance S(-2)4 + -analytic 0.20875E+3 0.58133E-1 0.33278E+5 -0.85833E+2 0.51921E+3 + -mass_balance S(-2)4 # -Range: 0-300 # -add_logk Log_K_O2 1.5 # 4.0000 SO3-- + 6.0000 H+ = S4O6-- + 1.500 O2 + 3.0000 H2O -4 SO3-- + 12 H+ + 6e- = S4O6-- + 6H2O - -llnl_gamma 4.0 - log_k -38.3859 - -delta_H 0 # Not possible to calculate enthalpy of reaction S4O6-2 +4 SO3-2 + 12 H+ + 6 e- = S4O6-2 + 6 H2O + -llnl_gamma 4 + log_k -38.3859 + -delta_H 0 # Not possible to calculate enthalpy of reaction S4O6-2 # Enthalpy of formation: -0 kcal/mol - -analytic 0.32239E+03 0.19555E+00 -0.23617E+05 -0.13729E+03 -0.36862E+03 + -analytic 0.32239E+3 0.19555E+0 -0.23617E+5 -0.13729E+3 -0.36862E+3 # -Range: 0-300 - -add_logk Log_K_O2 -1.5 + -add_logk Log_K_O2 -1.5 -2.0000 O2 + 3.0000 H+ + 5.0000 HS- = S5-- + 4.0000 H2O +2 O2 + 3 H+ + 5 HS- = S5-2 + 4 H2O #5 HS- = S5-- + 5H+ + 8e- - -llnl_gamma 4.0 - log_k 170.9802 - -delta_H 0 # Not possible to calculate enthalpy of reaction S5-2 + -llnl_gamma 4 + log_k 170.9802 + -delta_H 0 # Not possible to calculate enthalpy of reaction S5-2 # Enthalpy of formation: -0 kcal/mol - -analytic 0.30329E+03 0.88033E-01 0.44739E+05 -0.12471E+03 0.69803E+03 - -mass_balance S(-2)5 + -analytic 0.30329E+3 0.88033E-1 0.44739E+5 -0.12471E+3 0.69803E+3 + -mass_balance S(-2)5 # -Range: 0-300 # -add_logk Log_K_O2 2 # 5.0000 SO3-- + 8.0000 H+ = S5O6-- + 2.5000 O2 + 4.0000 H2O # 2.5O2 + 10 H+ + 10e- = 5H2O -5SO3-- + 18H+ + 10e- = S5O6-- + 9H2O - -llnl_gamma 4.0 - log_k -99.4206 - -delta_H 0 # Not possible to calculate enthalpy of reaction S5O6-2 +5 SO3-2 + 18 H+ + 10 e- = S5O6-2 + 9 H2O + -llnl_gamma 4 + log_k -99.4206 + -delta_H 0 # Not possible to calculate enthalpy of reaction S5O6-2 # Enthalpy of formation: -0 kcal/mol - -analytic 0.42074E+03 0.25833E+00 -0.43878E+05 -0.18178E+03 -0.68480E+03 + -analytic 0.42074E+3 0.25833E+0 -0.43878E+5 -0.18178E+3 -0.6848E+3 # -Range: 0-300 - -add_logk Log_K_O2 -2.5 + -add_logk Log_K_O2 -2.5 # 1.0000 H+ + HCO3- + HS- + NH3 = SCN- + 3.0000 H2O -# -llnl_gamma 3.5 +# -llnl_gamma 3.5 # log_k 3.0070 # -delta_H 0 # Not possible to calculate enthalpy of reaction SCN- ## Enthalpy of formation: -0 kcal/mol @@ -1339,17541 +1343,17541 @@ O2 + H+ + 3.0000 HS- = S3-- + 2.0000 H2O ## -Range: 0-300 Thiocyanate- = Thiocyanate- - log_k 0.0 + log_k 0 - 1.0000 SO4-- = SO3-- +0.5000 O2 - -llnl_gamma 4.5 - log_k -46.6244 - -delta_H 267.985 kJ/mol # Calculated enthalpy of reaction SO3-2 + SO4-2 = SO3-2 + 0.5 O2 + -llnl_gamma 4.5 + log_k -46.6244 + -delta_H 267.985 kJ/mol # Calculated enthalpy of reaction SO3-2 # Enthalpy of formation: -151.9 kcal/mol - -analytic -1.3771e+001 6.5102e-004 -1.3330e+004 4.7164e+000 -2.0800e+002 + -analytic -1.3771e+1 6.5102e-4 -1.333e+4 4.7164e+0 -2.08e+2 # -Range: 0-300 -1.0000 HSe- = Se-- + 1.0000 H+ - -llnl_gamma 4.0 - log_k -14.9534 - -delta_H 0 # Not possible to calculate enthalpy of reaction Se-2 +HSe- = Se-2 + H+ + -llnl_gamma 4 + log_k -14.9534 + -delta_H 0 # Not possible to calculate enthalpy of reaction Se-2 # Enthalpy of formation: -0 kcal/mol - -analytic 1.0244e+002 3.1346e-002 -5.4190e+003 -4.3871e+001 -8.4589e+001 + -analytic 1.0244e+2 3.1346e-2 -5.419e+3 -4.3871e+1 -8.4589e+1 # -Range: 0-300 - 1.0000 SeO3-- + 0.5000 O2 = SeO4-- - -llnl_gamma 4.0 - log_k +13.9836 - -delta_H -83.8892 kJ/mol # Calculated enthalpy of reaction SeO4-2 + SeO3-2 + 0.5 O2 = SeO4-2 + -llnl_gamma 4 + log_k 13.9836 + -delta_H -83.8892 kJ/mol # Calculated enthalpy of reaction SeO4-2 # Enthalpy of formation: -143.2 kcal/mol - -analytic -7.2314e+001 -1.3657e-002 8.6969e+003 2.6182e+001 -3.1897e+005 + -analytic -7.2314e+1 -1.3657e-2 8.6969e+3 2.6182e+1 -3.1897e+5 # -Range: 0-300 - 1.0000 Sm+++ + 0.5000 H2O = Sm++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -47.9624 - -delta_H 326.911 kJ/mol # Calculated enthalpy of reaction Sm+2 + Sm+3 + 0.5 H2O = Sm+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -47.9624 + -delta_H 326.911 kJ/mol # Calculated enthalpy of reaction Sm+2 # Enthalpy of formation: -120.5 kcal/mol - -analytic -1.0217e+001 7.7548e-003 -1.6285e+004 5.4711e+000 9.1931e+004 + -analytic -1.0217e+1 7.7548e-3 -1.6285e+4 5.4711e+0 9.1931e+4 # -Range: 0-300 - 2.0000 H+ + 1.0000 Sn++ + 0.5000 O2 = Sn++++ +1.0000 H2O - -llnl_gamma 11.0 - log_k +37.7020 - -delta_H -240.739 kJ/mol # Calculated enthalpy of reaction Sn+4 + 2 H+ + Sn+2 + 0.5 O2 = Sn+4 + H2O + -llnl_gamma 11 + log_k 37.702 + -delta_H -240.739 kJ/mol # Calculated enthalpy of reaction Sn+4 # Enthalpy of formation: 7.229 kcal/mol - -analytic 3.2053e+001 -9.2307e-003 1.0378e+004 -1.0666e+001 1.6193e+002 + -analytic 3.2053e+1 -9.2307e-3 1.0378e+4 -1.0666e+1 1.6193e+2 # -Range: 0-300 - 1.0000 Tb+++ + 0.5000 H2O = Tb++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -78.7754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb+2 + Tb+3 + 0.5 H2O = Tb+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -78.7754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb+2 # Enthalpy of formation: -0 kcal/mol - - 4.0000 H+ + 1.0000 TcO4- = Tc+++ +2.0000 H2O +1.0000 O2 - -llnl_gamma 5.0 - log_k -47.614 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc+3 + + 4 H+ + TcO4- = Tc+3 + 2 H2O + O2 + -llnl_gamma 5 + log_k -47.614 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc+3 # Enthalpy of formation: -0 kcal/mol - - 3.0000 H+ + 1.0000 TcO4- = TcO++ +1.5000 H2O +0.7500 O2 - -llnl_gamma 4.5 - log_k -31.5059 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO+2 + + 3 H+ + TcO4- = TcO+2 + 1.5 H2O + 0.75 O2 + -llnl_gamma 4.5 + log_k -31.5059 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO+2 # Enthalpy of formation: -0 kcal/mol - - 1.0000 TcO4- + 0.5000 H2O = TcO4-- +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.0 - log_k -31.8197 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO4-2 + + TcO4- + 0.5 H2O = TcO4-2 + H+ + 0.25 O2 + -llnl_gamma 4 + log_k -31.8197 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO4-2 # Enthalpy of formation: -0 kcal/mol - - 1.0000 TcO4- + 1.0000 H2O = TcO4--- +2.0000 H+ +0.5000 O2 - -llnl_gamma 4.0 - log_k -63.2889 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO4-3 + + TcO4- + H2O = TcO4-3 + 2 H+ + 0.5 O2 + -llnl_gamma 4 + log_k -63.2889 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO4-3 # Enthalpy of formation: -0 kcal/mol - - 2.0000 H+ + 1.0000 Tl+ + 0.5000 O2 = Tl+++ +1.0000 H2O - -llnl_gamma 5.0 - log_k -0.2751 - -delta_H -88.479 kJ/mol # Calculated enthalpy of reaction Tl+3 + + 2 H+ + Tl+ + 0.5 O2 = Tl+3 + H2O + -llnl_gamma 5 + log_k -0.2751 + -delta_H -88.479 kJ/mol # Calculated enthalpy of reaction Tl+3 # Enthalpy of formation: 47 kcal/mol - -analytic -6.7978e+001 -2.6430e-002 5.3106e+003 2.3340e+001 8.2887e+001 + -analytic -6.7978e+1 -2.643e-2 5.3106e+3 2.334e+1 8.2887e+1 # -Range: 0-300 - 1.0000 Tm+++ + 0.5000 H2O = Tm++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -58.3754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm+2 + Tm+3 + 0.5 H2O = Tm+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -58.3754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm+2 # Enthalpy of formation: -0 kcal/mol - - 1.0000 UO2++ + 1.0000 H+ = U+++ +0.7500 O2 +0.5000 H2O - -llnl_gamma 5.0 - log_k -64.8028 - -delta_H 377.881 kJ/mol # Calculated enthalpy of reaction U+3 + + UO2+2 + H+ = U+3 + 0.75 O2 + 0.5 H2O + -llnl_gamma 5 + log_k -64.8028 + -delta_H 377.881 kJ/mol # Calculated enthalpy of reaction U+3 # Enthalpy of formation: -489.1 kJ/mol - -analytic 2.5133e+001 6.4088e-003 -2.2542e+004 -8.1423e+000 3.4793e+005 + -analytic 2.5133e+1 6.4088e-3 -2.2542e+4 -8.1423e+0 3.4793e+5 # -Range: 0-300 - 2.0000 H+ + 1.0000 UO2++ = U++++ +1.0000 H2O +0.5000 O2 - -llnl_gamma 5.5 - log_k -33.9491 - -delta_H 135.895 kJ/mol # Calculated enthalpy of reaction U+4 + 2 H+ + UO2+2 = U+4 + H2O + 0.5 O2 + -llnl_gamma 5.5 + log_k -33.9491 + -delta_H 135.895 kJ/mol # Calculated enthalpy of reaction U+4 # Enthalpy of formation: -591.2 kJ/mol - -analytic 4.4837e+001 1.0129e-002 -1.1787e+004 -1.9194e+001 4.6436e+005 + -analytic 4.4837e+1 1.0129e-2 -1.1787e+4 -1.9194e+1 4.6436e+5 # -Range: 0-300 - 1.0000 UO2++ + 0.5000 H2O = UO2+ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.0 - log_k -20.0169 - -delta_H 133.759 kJ/mol # Calculated enthalpy of reaction UO2+ + UO2+2 + 0.5 H2O = UO2+ + H+ + 0.25 O2 + -llnl_gamma 4 + log_k -20.0169 + -delta_H 133.759 kJ/mol # Calculated enthalpy of reaction UO2+ # Enthalpy of formation: -1025.13 kJ/mol - -analytic 8.0480e+000 9.5845e-003 -6.5994e+003 -3.5515e+000 -1.0298e+002 + -analytic 8.048e+0 9.5845e-3 -6.5994e+3 -3.5515e+0 -1.0298e+2 # -Range: 0-300 - 1.0000 VO++ + 1.0000 H+ = V+++ +0.5000 H2O +0.2500 O2 - -llnl_gamma 5.0 - log_k -15.7191 - -delta_H 79.6069 kJ/mol # Calculated enthalpy of reaction V+3 + VO+2 + H+ = V+3 + 0.5 H2O + 0.25 O2 + -llnl_gamma 5 + log_k -15.7191 + -delta_H 79.6069 kJ/mol # Calculated enthalpy of reaction V+3 # Enthalpy of formation: -62.39 kcal/mol - -analytic 1.6167e+001 1.1963e-002 -4.2112e+003 -8.6126e+000 -6.5717e+001 + -analytic 1.6167e+1 1.1963e-2 -4.2112e+3 -8.6126e+0 -6.5717e+1 # -Range: 0-300 - 1.0000 VO++ + 0.5000 H2O + 0.2500 O2 = VO2+ +1.0000 H+ - -llnl_gamma 4.0 - log_k +4.5774 - -delta_H -17.2234 kJ/mol # Calculated enthalpy of reaction VO2+ + VO+2 + 0.5 H2O + 0.25 O2 = VO2+ + H+ + -llnl_gamma 4 + log_k 4.5774 + -delta_H -17.2234 kJ/mol # Calculated enthalpy of reaction VO2+ # Enthalpy of formation: -155.3 kcal/mol - -analytic 1.9732e+000 5.3936e-003 1.2240e+003 -1.2539e+000 1.9098e+001 + -analytic 1.9732e+0 5.3936e-3 1.224e+3 -1.2539e+0 1.9098e+1 # -Range: 0-300 - 1.0000 VO2+ + 2.0000 H2O = VO4--- +4.0000 H+ - -llnl_gamma 4.0 - log_k -28.4475 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO4-3 + VO2+ + 2 H2O = VO4-3 + 4 H+ + -llnl_gamma 4 + log_k -28.4475 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO4-3 # Enthalpy of formation: -0 kcal/mol - 1.0000 Yb+++ + 0.5000 H2O = Yb++ +1.0000 H+ +0.2500 O2 - -llnl_gamma 4.5 - log_k -39.4595 - -delta_H 280.05 kJ/mol # Calculated enthalpy of reaction Yb+2 + Yb+3 + 0.5 H2O = Yb+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -39.4595 + -delta_H 280.05 kJ/mol # Calculated enthalpy of reaction Yb+2 # Enthalpy of formation: -126.8 kcal/mol - -analytic 1.0773e+000 9.5995e-003 -1.3833e+004 1.0723e+000 3.1365e+004 + -analytic 1.0773e+0 9.5995e-3 -1.3833e+4 1.0723e+0 3.1365e+4 # -Range: 0-300 - 2.0000 H+ + 1.0000 Zr(OH)2++ = Zr++++ +2.0000 H2O - -llnl_gamma 11.0 - log_k +0.2385 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr+4 + 2 H+ + Zr(OH)2+2 = Zr+4 + 2 H2O + -llnl_gamma 11 + log_k 0.2385 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr+4 # Enthalpy of formation: -0 kcal/mol -4.0000 HS- + 4.0000 H+ + 2.0000 Sb(OH)3 + 2.0000 NH3 = (NH4)2Sb2S4 +6.0000 H2O - -llnl_gamma 3.0 - log_k +67.6490 - -delta_H -424.665 kJ/mol # Calculated enthalpy of reaction (NH4)2Sb2S4 +4 HS- + 4 H+ + 2 Sb(OH)3 + 2 NH3 = (NH4)2Sb2S4 + 6 H2O + -llnl_gamma 3 + log_k 67.649 + -delta_H -424.665 kJ/mol # Calculated enthalpy of reaction (NH4)2Sb2S4 # Enthalpy of formation: -484.321 kJ/mol - -analytic -3.9259e+002 -1.1727e-001 3.2073e+004 1.5667e+002 5.4478e+002 + -analytic -3.9259e+2 -1.1727e-1 3.2073e+4 1.5667e+2 5.4478e+2 # -Range: 0-200 -2.0000 NpO2++ + 2.0000 H2O = (NpO2)2(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -6.4 - -delta_H 45.4397 kJ/mol # Calculated enthalpy of reaction (NpO2)2(OH)2+2 +2 NpO2+2 + 2 H2O = (NpO2)2(OH)2+2 + 2 H+ + -llnl_gamma 4.5 + log_k -6.4 + -delta_H 45.4397 kJ/mol # Calculated enthalpy of reaction (NpO2)2(OH)2+2 # Enthalpy of formation: -537.092 kcal/mol - -analytic -4.7462e+001 -3.1413e-002 -2.1954e+003 2.3355e+001 -3.7424e+001 + -analytic -4.7462e+1 -3.1413e-2 -2.1954e+3 2.3355e+1 -3.7424e+1 # -Range: 25-150 -5.0000 H2O + 3.0000 NpO2++ = (NpO2)3(OH)5+ +5.0000 H+ - -llnl_gamma 4.0 - log_k -17.5 - -delta_H 112.322 kJ/mol # Calculated enthalpy of reaction (NpO2)3(OH)5+ +5 H2O + 3 NpO2+2 = (NpO2)3(OH)5+ + 5 H+ + -llnl_gamma 4 + log_k -17.5 + -delta_H 112.322 kJ/mol # Calculated enthalpy of reaction (NpO2)3(OH)5+ # Enthalpy of formation: -931.717 kcal/mol - -analytic 5.4053e+002 9.1693e-002 -2.4404e+004 -2.0349e+002 -4.1639e+002 + -analytic 5.4053e+2 9.1693e-2 -2.4404e+4 -2.0349e+2 -4.1639e+2 # -Range: 25-150 -2.0000 PuO2++ + 2.0000 H2O = (PuO2)2(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -8.2626 - -delta_H 57.8597 kJ/mol # Calculated enthalpy of reaction (PuO2)2(OH)2+2 +2 PuO2+2 + 2 H2O = (PuO2)2(OH)2+2 + 2 H+ + -llnl_gamma 4.5 + log_k -8.2626 + -delta_H 57.8597 kJ/mol # Calculated enthalpy of reaction (PuO2)2(OH)2+2 # Enthalpy of formation: -2156.97 kJ/mol - -analytic 6.5448e+001 -1.6194e-003 -5.9542e+003 -2.1522e+001 -9.2929e+001 + -analytic 6.5448e+1 -1.6194e-3 -5.9542e+3 -2.1522e+1 -9.2929e+1 # -Range: 0-300 -5.0000 H2O + 3.0000 PuO2++ = (PuO2)3(OH)5+ +5.0000 H+ - -llnl_gamma 4.0 - log_k -21.655 - -delta_H 139.617 kJ/mol # Calculated enthalpy of reaction (PuO2)3(OH)5+ +5 H2O + 3 PuO2+2 = (PuO2)3(OH)5+ + 5 H+ + -llnl_gamma 4 + log_k -21.655 + -delta_H 139.617 kJ/mol # Calculated enthalpy of reaction (PuO2)3(OH)5+ # Enthalpy of formation: -3754.31 kJ/mol - -analytic 1.6151e+002 5.8182e-003 -1.4002e+004 -5.5745e+001 -2.1854e+002 + -analytic 1.6151e+2 5.8182e-3 -1.4002e+4 -5.5745e+1 -2.1854e+2 # -Range: 0-300 -4.0000 H2O + 2.0000 TcO++ = (TcO(OH)2)2 +4.0000 H+ - -llnl_gamma 3.0 - log_k -0.1271 - -delta_H 0 # Not possible to calculate enthalpy of reaction (TcO(OH)2)2 +4 H2O + 2 TcO+2 = (TcO(OH)2)2 + 4 H+ + -llnl_gamma 3 + log_k -0.1271 + -delta_H 0 # Not possible to calculate enthalpy of reaction (TcO(OH)2)2 # Enthalpy of formation: -0 kcal/mol - -12.0000 H2O + 11.0000 UO2++ + 6.0000 HCO3- = (UO2)11(CO3)6(OH)12-2 +18.0000 H+ - -llnl_gamma 4.0 - log_k -25.7347 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)11(CO3)6(OH)12-2 + +12 H2O + 11 UO2+2 + 6 HCO3- = (UO2)11(CO3)6(OH)12-2 + 18 H+ + -llnl_gamma 4 + log_k -25.7347 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)11(CO3)6(OH)12-2 # Enthalpy of formation: -0 kcal/mol - -2.0000 UO2++ + 2.0000 H2O = (UO2)2(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -5.6346 - -delta_H 37.6127 kJ/mol # Calculated enthalpy of reaction (UO2)2(OH)2+2 + +2 UO2+2 + 2 H2O = (UO2)2(OH)2+2 + 2 H+ + -llnl_gamma 4.5 + log_k -5.6346 + -delta_H 37.6127 kJ/mol # Calculated enthalpy of reaction (UO2)2(OH)2+2 # Enthalpy of formation: -2572.06 kJ/mol - -analytic 6.4509e+001 -7.6875e-004 -4.8433e+003 -2.1689e+001 -7.5593e+001 + -analytic 6.4509e+1 -7.6875e-4 -4.8433e+3 -2.1689e+1 -7.5593e+1 # -Range: 0-300 -3.0000 H2O + 2.0000 UO2++ + 1.0000 HCO3- = (UO2)2CO3(OH)3- +4.0000 H+ - -llnl_gamma 4.0 - log_k -11.2229 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)2CO3(OH)3- +3 H2O + 2 UO2+2 + HCO3- = (UO2)2CO3(OH)3- + 4 H+ + -llnl_gamma 4 + log_k -11.2229 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)2CO3(OH)3- # Enthalpy of formation: -0 kcal/mol - -2.0000 UO2++ + 1.0000 H2O = (UO2)2OH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -2.7072 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)2OH+3 + +2 UO2+2 + H2O = (UO2)2OH+3 + H+ + -llnl_gamma 5 + log_k -2.7072 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)2OH+3 # Enthalpy of formation: -0 kcal/mol - -6.0000 HCO3- + 3.0000 UO2++ = (UO2)3(CO3)6-6 +6.0000 H+ - -llnl_gamma 4.0 - log_k -8.0601 - -delta_H 25.5204 kJ/mol # Calculated enthalpy of reaction (UO2)3(CO3)6-6 + +6 HCO3- + 3 UO2+2 = (UO2)3(CO3)6-6 + 6 H+ + -llnl_gamma 4 + log_k -8.0601 + -delta_H 25.5204 kJ/mol # Calculated enthalpy of reaction (UO2)3(CO3)6-6 # Enthalpy of formation: -7171.08 kJ/mol - -analytic 7.4044e+002 2.7299e-001 -1.7614e+004 -3.1149e+002 -2.7507e+002 + -analytic 7.4044e+2 2.7299e-1 -1.7614e+4 -3.1149e+2 -2.7507e+2 # -Range: 0-300 -4.0000 H2O + 3.0000 UO2++ = (UO2)3(OH)4++ +4.0000 H+ - -llnl_gamma 4.5 - log_k -11.929 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)4+2 +4 H2O + 3 UO2+2 = (UO2)3(OH)4+2 + 4 H+ + -llnl_gamma 4.5 + log_k -11.929 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)4+2 # Enthalpy of formation: -0 kcal/mol - -5.0000 H2O + 3.0000 UO2++ = (UO2)3(OH)5+ +5.0000 H+ - -llnl_gamma 4.0 - log_k -15.5862 - -delta_H 97.1056 kJ/mol # Calculated enthalpy of reaction (UO2)3(OH)5+ + +5 H2O + 3 UO2+2 = (UO2)3(OH)5+ + 5 H+ + -llnl_gamma 4 + log_k -15.5862 + -delta_H 97.1056 kJ/mol # Calculated enthalpy of reaction (UO2)3(OH)5+ # Enthalpy of formation: -4389.09 kJ/mol - -analytic 1.6004e+002 7.0827e-003 -1.1700e+004 -5.5973e+001 -1.8261e+002 + -analytic 1.6004e+2 7.0827e-3 -1.17e+4 -5.5973e+1 -1.8261e+2 # -Range: 0-300 -4.0000 H2O + 3.0000 UO2++ + 1.0000 HCO3- = (UO2)3(OH)5CO2+ +4.0000 H+ - -llnl_gamma 4.0 - log_k -9.6194 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)5CO2+ +4 H2O + 3 UO2+2 + HCO3- = (UO2)3(OH)5CO2+ + 4 H+ + -llnl_gamma 4 + log_k -9.6194 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)5CO2+ # Enthalpy of formation: -0 kcal/mol - -7.0000 H2O + 3.0000 UO2++ = (UO2)3(OH)7- +7.0000 H+ - -llnl_gamma 4.0 - log_k -31.0508 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)7- + +7 H2O + 3 UO2+2 = (UO2)3(OH)7- + 7 H+ + -llnl_gamma 4 + log_k -31.0508 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)7- # Enthalpy of formation: -0 kcal/mol - -3.0000 UO2++ + 3.0000 H2O + 1.0000 HCO3- = (UO2)3O(OH)2(HCO3)+ +4.0000 H+ - -llnl_gamma 4.0 - log_k -9.7129 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3O(OH)2(HCO3)+ + +3 UO2+2 + 3 H2O + HCO3- = (UO2)3O(OH)2(HCO3)+ + 4 H+ + -llnl_gamma 4 + log_k -9.7129 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3O(OH)2(HCO3)+ # Enthalpy of formation: -0 kcal/mol - -7.0000 H2O + 4.0000 UO2++ = (UO2)4(OH)7+ +7.0000 H+ - -llnl_gamma 4.0 - log_k -21.9508 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)4(OH)7+ + +7 H2O + 4 UO2+2 = (UO2)4(OH)7+ + 7 H+ + -llnl_gamma 4 + log_k -21.9508 + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)4(OH)7+ # Enthalpy of formation: -0 kcal/mol - -2.0000 VO++ + 2.0000 H2O = (VO)2(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -6.67 - -delta_H 0 # Not possible to calculate enthalpy of reaction (VO)2(OH)2+2 + +2 VO+2 + 2 H2O = (VO)2(OH)2+2 + 2 H+ + -llnl_gamma 4.5 + log_k -6.67 + -delta_H 0 # Not possible to calculate enthalpy of reaction (VO)2(OH)2+2 # Enthalpy of formation: -0 kcal/mol - -HAcetate = Acetate- + H+ - -llnl_gamma 4.5 - log_k -4.7572 - -delta_H 0 # Not possible to calculate enthalpy of reaction Acetate- + +HAcetate = Acetate- + H+ + -llnl_gamma 4.5 + log_k -4.7572 + -delta_H 0 # Not possible to calculate enthalpy of reaction Acetate- # Enthalpy of formation: -0 kcal/mol - -analytic -0.96597E+02 -0.34535E-01 0.19753E+04 0.38593E+02 0.30850E+02 + -analytic -0.96597E+2 -0.34535E-1 0.19753E+4 0.38593E+2 0.3085E+2 # Range: 0-300 -2.0000 HAcetate + 1.0000 Ag+ = Ag(Acetate)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -8.8716 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ag(Acetate)2- +2 HAcetate + Ag+ = Ag(Acetate)2- + 2 H+ + -llnl_gamma 4 + log_k -8.8716 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ag(Acetate)2- # Enthalpy of formation: -0 kcal/mol - -analytic -2.8207e+002 -5.3713e-002 9.5343e+003 1.0396e+002 1.4886e+002 + -analytic -2.8207e+2 -5.3713e-2 9.5343e+3 1.0396e+2 1.4886e+2 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Ag+ = Ag(CO3)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -18.5062 - -delta_H 1.34306 kJ/mol # Calculated enthalpy of reaction Ag(CO3)2-3 +2 HCO3- + Ag+ = Ag(CO3)2-3 + 2 H+ + -llnl_gamma 4 + log_k -18.5062 + -delta_H 1.34306 kJ/mol # Calculated enthalpy of reaction Ag(CO3)2-3 # Enthalpy of formation: -304.2 kcal/mol - -analytic -1.6671e+002 -4.5571e-002 3.7190e+003 6.0341e+001 5.8080e+001 + -analytic -1.6671e+2 -4.5571e-2 3.719e+3 6.0341e+1 5.808e+1 # -Range: 0-300 -1.0000 Ag+ + 1.0000 HAcetate = AgAcetate +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.0264 - -delta_H -3.4518 kJ/mol # Calculated enthalpy of reaction AgAcetate +Ag+ + HAcetate = AgAcetate + H+ + -llnl_gamma 3 + log_k -4.0264 + -delta_H -3.4518 kJ/mol # Calculated enthalpy of reaction AgAcetate # Enthalpy of formation: -91.65 kcal/mol - -analytic 6.9069e+000 -1.9415e-003 -1.9953e+003 -2.6175e+000 2.5092e+005 + -analytic 6.9069e+0 -1.9415e-3 -1.9953e+3 -2.6175e+0 2.5092e+5 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Ag+ = AgCO3- +1.0000 H+ - -llnl_gamma 4.0 - log_k -7.6416 - -delta_H -8.27177 kJ/mol # Calculated enthalpy of reaction AgCO3- +HCO3- + Ag+ = AgCO3- + H+ + -llnl_gamma 4 + log_k -7.6416 + -delta_H -8.27177 kJ/mol # Calculated enthalpy of reaction AgCO3- # Enthalpy of formation: -141.6 kcal/mol - -analytic 6.5598e+000 -1.6477e-004 -4.7079e+002 -5.0807e+000 -7.3484e+000 + -analytic 6.5598e+0 -1.6477e-4 -4.7079e+2 -5.0807e+0 -7.3484e+0 # -Range: 0-300 -1.0000 Cl- + 1.0000 Ag+ = AgCl - -llnl_gamma 3.0 - log_k +3.2971 - -delta_H -15.1126 kJ/mol # Calculated enthalpy of reaction AgCl +Cl- + Ag+ = AgCl + -llnl_gamma 3 + log_k 3.2971 + -delta_H -15.1126 kJ/mol # Calculated enthalpy of reaction AgCl # Enthalpy of formation: -18.27 kcal/mol - -analytic 1.0904e+002 3.5492e-002 -1.8455e+003 -4.4502e+001 -2.8830e+001 + -analytic 1.0904e+2 3.5492e-2 -1.8455e+3 -4.4502e+1 -2.883e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Ag+ = AgCl2- - -llnl_gamma 4.0 - log_k +5.2989 - -delta_H -27.3592 kJ/mol # Calculated enthalpy of reaction AgCl2- +2 Cl- + Ag+ = AgCl2- + -llnl_gamma 4 + log_k 5.2989 + -delta_H -27.3592 kJ/mol # Calculated enthalpy of reaction AgCl2- # Enthalpy of formation: -61.13 kcal/mol - -analytic 9.2164e+001 4.0261e-002 -1.6597e+002 -3.9721e+001 -2.6171e+000 + -analytic 9.2164e+1 4.0261e-2 -1.6597e+2 -3.9721e+1 -2.6171e+0 # -Range: 0-300 -3.0000 Cl- + 1.0000 Ag+ = AgCl3-- - -llnl_gamma 4.0 - log_k +5.1310 - -delta_H -47.7645 kJ/mol # Calculated enthalpy of reaction AgCl3-2 +3 Cl- + Ag+ = AgCl3-2 + -llnl_gamma 4 + log_k 5.131 + -delta_H -47.7645 kJ/mol # Calculated enthalpy of reaction AgCl3-2 # Enthalpy of formation: -105.94 kcal/mol - -analytic 4.3732e+000 2.9568e-002 3.9818e+003 -8.6428e+000 6.2131e+001 + -analytic 4.3732e+0 2.9568e-2 3.9818e+3 -8.6428e+0 6.2131e+1 # -Range: 0-300 -4.0000 Cl- + 1.0000 Ag+ = AgCl4--- - -llnl_gamma 4.0 - log_k +3.8050 - -delta_H -32.4804 kJ/mol # Calculated enthalpy of reaction AgCl4-3 +4 Cl- + Ag+ = AgCl4-3 + -llnl_gamma 4 + log_k 3.805 + -delta_H -32.4804 kJ/mol # Calculated enthalpy of reaction AgCl4-3 # Enthalpy of formation: -142.22 kcal/mol - -analytic -1.6176e+001 2.9523e-002 0.0000e+000 0.0000e+000 9.9602e+005 + -analytic -1.6176e+1 2.9523e-2 0e+0 0e+0 9.9602e+5 # -Range: 0-300 -1.0000 F- + 1.0000 Ag+ = AgF - -llnl_gamma 3.0 - log_k -0.1668 - -delta_H -9.298 kJ/mol # Calculated enthalpy of reaction AgF +F- + Ag+ = AgF + -llnl_gamma 3 + log_k -0.1668 + -delta_H -9.298 kJ/mol # Calculated enthalpy of reaction AgF # Enthalpy of formation: -238.895 kJ/mol - -analytic -6.6024e+001 -2.2350e-002 1.9514e+003 2.6663e+001 3.3160e+001 + -analytic -6.6024e+1 -2.235e-2 1.9514e+3 2.6663e+1 3.316e+1 # -Range: 0-200 -1.0000 NO3- + 1.0000 Ag+ = AgNO3 - -llnl_gamma 3.0 - log_k -0.1979 - -delta_H 4.45178 kJ/mol # Calculated enthalpy of reaction AgNO3 +NO3- + Ag+ = AgNO3 + -llnl_gamma 3 + log_k -0.1979 + -delta_H 4.45178 kJ/mol # Calculated enthalpy of reaction AgNO3 # Enthalpy of formation: -23.09 kcal/mol - -analytic 7.3866e+001 2.6050e-002 -1.5923e+003 -3.0904e+001 -2.4868e+001 + -analytic 7.3866e+1 2.605e-2 -1.5923e+3 -3.0904e+1 -2.4868e+1 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Al+++ = Al(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.595 - -delta_H -46.8566 kJ/mol # Calculated enthalpy of reaction Al(Acetate)2+ +2 HAcetate + Al+3 = Al(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -5.595 + -delta_H -46.8566 kJ/mol # Calculated enthalpy of reaction Al(Acetate)2+ # Enthalpy of formation: -372.08 kcal/mol - -analytic -4.2528e+001 2.1431e-003 3.1658e+002 1.1585e+001 5.8604e+005 + -analytic -4.2528e+1 2.1431e-3 3.1658e+2 1.1585e+1 5.8604e+5 # -Range: 0-300 -2.0000 H2O + 1.0000 Al+++ = Al(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -10.5945 - -delta_H 98.2822 kJ/mol # Calculated enthalpy of reaction Al(OH)2+ +2 H2O + Al+3 = Al(OH)2+ + 2 H+ + -llnl_gamma 4 + log_k -10.5945 + -delta_H 98.2822 kJ/mol # Calculated enthalpy of reaction Al(OH)2+ # Enthalpy of formation: -241.825 kcal/mol - -analytic 4.4036e+001 2.0168e-002 -5.5455e+003 -1.6987e+001 -8.6545e+001 + -analytic 4.4036e+1 2.0168e-2 -5.5455e+3 -1.6987e+1 -8.6545e+1 # -Range: 0-300 -2.0000 SO4-- + 1.0000 Al+++ = Al(SO4)2- - -llnl_gamma 4.0 - log_k +4.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Al(SO4)2- +2 SO4-2 + Al+3 = Al(SO4)2- + -llnl_gamma 4 + log_k 4.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction Al(SO4)2- # Enthalpy of formation: -0 kcal/mol - -28.0000 H2O + 13.0000 Al+++ = Al13O4(OH)24+7 +32.0000 H+ - -llnl_gamma 6.0 - log_k -98.73 - -delta_H 0 # Not possible to calculate enthalpy of reaction Al13O4(OH)24+7 + +28 H2O + 13 Al+3 = Al13O4(OH)24+7 + 32 H+ + -llnl_gamma 6 + log_k -98.73 + -delta_H 0 # Not possible to calculate enthalpy of reaction Al13O4(OH)24+7 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 2.0000 Al+++ = Al2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -7.6902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Al2(OH)2+4 + +2 H2O + 2 Al+3 = Al2(OH)2+4 + 2 H+ + -llnl_gamma 5.5 + log_k -7.6902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Al2(OH)2+4 # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 3.0000 Al+++ = Al3(OH)4+5 +4.0000 H+ - -llnl_gamma 6.0 - log_k -13.8803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Al3(OH)4+5 + +4 H2O + 3 Al+3 = Al3(OH)4+5 + 4 H+ + -llnl_gamma 6 + log_k -13.8803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Al3(OH)4+5 # Enthalpy of formation: -0 kcal/mol - -1.0000 Al+++ + 1.0000 HAcetate = AlAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.6923 - -delta_H -18.1962 kJ/mol # Calculated enthalpy of reaction AlAcetate+2 + +Al+3 + HAcetate = AlAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -2.6923 + -delta_H -18.1962 kJ/mol # Calculated enthalpy of reaction AlAcetate+2 # Enthalpy of formation: -249.13 kcal/mol - -analytic -1.9847e+001 2.0058e-003 -2.3653e+002 5.5454e+000 3.2362e+005 + -analytic -1.9847e+1 2.0058e-3 -2.3653e+2 5.5454e+0 3.2362e+5 # -Range: 0-300 -1.0000 F- + 1.0000 Al+++ = AlF++ - -llnl_gamma 4.5 - log_k +7.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlF+2 +F- + Al+3 = AlF+2 + -llnl_gamma 4.5 + log_k 7 + -delta_H 0 # Not possible to calculate enthalpy of reaction AlF+2 # Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 Al+++ = AlF2+ - -llnl_gamma 4.0 - log_k +12.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlF2+ + +2 F- + Al+3 = AlF2+ + -llnl_gamma 4 + log_k 12.6 + -delta_H 0 # Not possible to calculate enthalpy of reaction AlF2+ # Enthalpy of formation: -0 kcal/mol - -3.0000 F- + 1.0000 Al+++ = AlF3 - -llnl_gamma 3.0 - log_k +16.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlF3 + +3 F- + Al+3 = AlF3 + -llnl_gamma 3 + log_k 16.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction AlF3 # Enthalpy of formation: -0 kcal/mol - -4.0000 F- + 1.0000 Al+++ = AlF4- - -llnl_gamma 4.0 - log_k +19.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlF4- + +4 F- + Al+3 = AlF4- + -llnl_gamma 4 + log_k 19.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction AlF4- # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Al+++ = AlH2PO4++ - -llnl_gamma 4.5 - log_k +3.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlH2PO4+2 + +HPO4-2 + H+ + Al+3 = AlH2PO4+2 + -llnl_gamma 4.5 + log_k 3.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction AlH2PO4+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Al+++ = AlHPO4+ - -llnl_gamma 4.0 - log_k +7.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlHPO4+ + +HPO4-2 + Al+3 = AlHPO4+ + -llnl_gamma 4 + log_k 7.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction AlHPO4+ # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Al+++ = AlO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -22.8833 - -delta_H 180.899 kJ/mol # Calculated enthalpy of reaction AlO2- + +2 H2O + Al+3 = AlO2- + 4 H+ + -llnl_gamma 4 + log_k -22.8833 + -delta_H 180.899 kJ/mol # Calculated enthalpy of reaction AlO2- # Enthalpy of formation: -222.079 kcal/mol - -analytic 1.0803e+001 -3.4379e-003 -9.7391e+003 0.0000e+000 0.0000e+000 + -analytic 1.0803e+1 -3.4379e-3 -9.7391e+3 0e+0 0e+0 # -Range: 0-300 -1.0000 H2O + 1.0000 Al+++ = AlOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -4.9571 - -delta_H 49.798 kJ/mol # Calculated enthalpy of reaction AlOH+2 +H2O + Al+3 = AlOH+2 + H+ + -llnl_gamma 4.5 + log_k -4.9571 + -delta_H 49.798 kJ/mol # Calculated enthalpy of reaction AlOH+2 # Enthalpy of formation: -185.096 kcal/mol - -analytic -2.6224e-001 8.8816e-003 -1.8686e+003 -4.3195e-001 -2.9158e+001 + -analytic -2.6224e-1 8.8816e-3 -1.8686e+3 -4.3195e-1 -2.9158e+1 # -Range: 0-300 -1.0000 SO4-- + 1.0000 Al+++ = AlSO4+ - -llnl_gamma 4.0 - log_k +3.0100 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlSO4+ +SO4-2 + Al+3 = AlSO4+ + -llnl_gamma 4 + log_k 3.01 + -delta_H 0 # Not possible to calculate enthalpy of reaction AlSO4+ # Enthalpy of formation: -0 kcal/mol - -2.0000 HCO3- + 1.0000 Am+++ = Am(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -8.3868 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)2- + +2 HCO3- + Am+3 = Am(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -8.3868 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)2- # Enthalpy of formation: -0 kcal/mol - -3.0000 HCO3- + 1.0000 Am+++ = Am(CO3)3--- +3.0000 H+ - -llnl_gamma 4.0 - log_k -15.8302 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)3-3 + +3 HCO3- + Am+3 = Am(CO3)3-3 + 3 H+ + -llnl_gamma 4 + log_k -15.8302 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)3-3 # Enthalpy of formation: -0 kcal/mol - -5.0000 HCO3- + 1.0000 Am++++ = Am(CO3)5-6 +5.0000 H+ - -llnl_gamma 4.0 - log_k -12.409 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)5-6 + +5 HCO3- + Am+4 = Am(CO3)5-6 + 5 H+ + -llnl_gamma 4 + log_k -12.409 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)5-6 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Am+++ = Am(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -14.1145 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)2+ + +2 H2O + Am+3 = Am(OH)2+ + 2 H+ + -llnl_gamma 4 + log_k -14.1145 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)2+ # Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Am+++ = Am(OH)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -25.7218 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3 + +3 H2O + Am+3 = Am(OH)3 + 3 H+ + -llnl_gamma 3 + log_k -25.7218 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Am+++ = Am(SO4)2- - -llnl_gamma 4.0 - log_k +5.2407 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(SO4)2- + +2 SO4-2 + Am+3 = Am(SO4)2- + -llnl_gamma 4 + log_k 5.2407 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(SO4)2- # Enthalpy of formation: -0 kcal/mol - -1.0000 HCO3- + 1.0000 Am+++ = AmCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.5434 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmCO3+ + +HCO3- + Am+3 = AmCO3+ + H+ + -llnl_gamma 4 + log_k -2.5434 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmCO3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Cl- + 1.0000 Am+++ = AmCl++ - -llnl_gamma 4.5 - log_k +1.0374 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmCl+2 + +Cl- + Am+3 = AmCl+2 + -llnl_gamma 4.5 + log_k 1.0374 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmCl+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 F- + 1.0000 Am+++ = AmF++ - -llnl_gamma 4.5 - log_k +3.3601 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmF+2 + +F- + Am+3 = AmF+2 + -llnl_gamma 4.5 + log_k 3.3601 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmF+2 # Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 Am+++ = AmF2+ - -llnl_gamma 4.0 - log_k +5.7204 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmF2+ + +2 F- + Am+3 = AmF2+ + -llnl_gamma 4 + log_k 5.7204 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmF2+ # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Am+++ = AmH2PO4++ - -llnl_gamma 4.5 - log_k +11.4119 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmH2PO4+2 + +HPO4-2 + H+ + Am+3 = AmH2PO4+2 + -llnl_gamma 4.5 + log_k 11.4119 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmH2PO4+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 N3- + 1.0000 Am+++ = AmN3++ - -llnl_gamma 4.5 - log_k +1.6699 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmN3+2 + +N3- + Am+3 = AmN3+2 + -llnl_gamma 4.5 + log_k 1.6699 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmN3+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Am+++ = AmNO3++ - -llnl_gamma 4.5 - log_k +1.3104 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmNO3+2 + +NO3- + Am+3 = AmNO3+2 + -llnl_gamma 4.5 + log_k 1.3104 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmNO3+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Am+++ = AmOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -6.4072 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmOH+2 + +H2O + Am+3 = AmOH+2 + H+ + -llnl_gamma 4.5 + log_k -6.4072 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmOH+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Am+++ = AmSO4+ - -llnl_gamma 4.0 - log_k +3.7703 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmSO4+ + +SO4-2 + Am+3 = AmSO4+ + -llnl_gamma 4 + log_k 3.7703 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmSO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 H2AsO3- + 1.0000 H+ = As(OH)3 - -llnl_gamma 3.0 - log_k +9.2048 - -delta_H -27.4054 kJ/mol # Calculated enthalpy of reaction As(OH)3 + +H2AsO3- + H+ = As(OH)3 + -llnl_gamma 3 + log_k 9.2048 + -delta_H -27.4054 kJ/mol # Calculated enthalpy of reaction As(OH)3 # Enthalpy of formation: -742.2 kJ/mol - -analytic 1.3020e+002 4.7513e-002 -1.1999e+003 -5.2993e+001 -2.0422e+001 + -analytic 1.302e+2 4.7513e-2 -1.1999e+3 -5.2993e+1 -2.0422e+1 # -Range: 0-200 -1.0000 H2AsO3- = AsO2- +1.0000 H2O - -llnl_gamma 4.0 - log_k 0.0111 - -delta_H 0 # Not possible to calculate enthalpy of reaction AsO2- +H2AsO3- = AsO2- + H2O + -llnl_gamma 4 + log_k 0.0111 + -delta_H 0 # Not possible to calculate enthalpy of reaction AsO2- # Enthalpy of formation: -0 kcal/mol - -analytic -2.1509e+001 -1.7680e-002 -1.9261e+001 1.0841e+001 -2.9404e-001 + -analytic -2.1509e+1 -1.768e-2 -1.9261e+1 1.0841e+1 -2.9404e-1 # -Range: 0-300 -1.0000 H2AsO3- = AsO2OH-- +1.0000 H+ - -llnl_gamma 4.0 - log_k -11.0171 - -delta_H 25.514 kJ/mol # Calculated enthalpy of reaction AsO2OH-2 +H2AsO3- = AsO2OH-2 + H+ + -llnl_gamma 4 + log_k -11.0171 + -delta_H 25.514 kJ/mol # Calculated enthalpy of reaction AsO2OH-2 # Enthalpy of formation: -164.742 kcal/mol - -analytic 1.4309e+002 1.8620e-002 -6.8596e+003 -5.5222e+001 -1.0708e+002 + -analytic 1.4309e+2 1.862e-2 -6.8596e+3 -5.5222e+1 -1.0708e+2 # -Range: 0-300 -1.0000 H2AsO4- + 1.0000 F- = AsO3F-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +40.2451 - -delta_H 0 # Not possible to calculate enthalpy of reaction AsO3F-2 +H2AsO4- + F- = AsO3F-2 + H2O + -llnl_gamma 4 + log_k 40.2451 + -delta_H 0 # Not possible to calculate enthalpy of reaction AsO3F-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 H2AsO4- = AsO4--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -18.3604 - -delta_H 21.4198 kJ/mol # Calculated enthalpy of reaction AsO4-3 + +H2AsO4- = AsO4-3 + 2 H+ + -llnl_gamma 4 + log_k -18.3604 + -delta_H 21.4198 kJ/mol # Calculated enthalpy of reaction AsO4-3 # Enthalpy of formation: -888.14 kJ/mol - -analytic -2.4979e+001 -1.2761e-002 2.8369e+003 3.4878e+000 -6.8736e+005 + -analytic -2.4979e+1 -1.2761e-2 2.8369e+3 3.4878e+0 -6.8736e+5 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Au+ = Au(Acetate)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -9.0013 - -delta_H -8.91192 kJ/mol # Calculated enthalpy of reaction Au(Acetate)2- +2 HAcetate + Au+ = Au(Acetate)2- + 2 H+ + -llnl_gamma 4 + log_k -9.0013 + -delta_H -8.91192 kJ/mol # Calculated enthalpy of reaction Au(Acetate)2- # Enthalpy of formation: -186.75 kcal/mol - -analytic -2.2338e+002 -4.6312e-002 7.0942e+003 8.2606e+001 1.1076e+002 + -analytic -2.2338e+2 -4.6312e-2 7.0942e+3 8.2606e+1 1.1076e+2 # -Range: 0-300 -1.0000 Au+ + 1.0000 HAcetate = AuAcetate +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.3174 - -delta_H 0.87864 kJ/mol # Calculated enthalpy of reaction AuAcetate +Au+ + HAcetate = AuAcetate + H+ + -llnl_gamma 3 + log_k -4.3174 + -delta_H 0.87864 kJ/mol # Calculated enthalpy of reaction AuAcetate # Enthalpy of formation: -68.31 kcal/mol - -analytic -1.1812e+000 -4.1120e-003 -1.4752e+003 4.5665e-001 1.7019e+005 + -analytic -1.1812e+0 -4.112e-3 -1.4752e+3 4.5665e-1 1.7019e+5 # -Range: 0-300 -2.0000 B(OH)3 = B2O(OH)5- +1.0000 H+ - -llnl_gamma 4.0 - log_k -18.6851 - -delta_H 0 # Not possible to calculate enthalpy of reaction B2O(OH)5- +2 B(OH)3 = B2O(OH)5- + H+ + -llnl_gamma 4 + log_k -18.6851 + -delta_H 0 # Not possible to calculate enthalpy of reaction B2O(OH)5- # Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 H+ + 1.0000 B(OH)3 = BF2(OH)2- +1.0000 H2O - -llnl_gamma 4.0 - log_k +6.6174 - -delta_H 0 # Not possible to calculate enthalpy of reaction BF2(OH)2- + +2 F- + H+ + B(OH)3 = BF2(OH)2- + H2O + -llnl_gamma 4 + log_k 6.6174 + -delta_H 0 # Not possible to calculate enthalpy of reaction BF2(OH)2- # Enthalpy of formation: -0 kcal/mol - -3.0000 F- + 2.0000 H+ + 1.0000 B(OH)3 = BF3OH- +2.0000 H2O - -llnl_gamma 4.0 - log_k +13.1908 - -delta_H -178.577 kJ/mol # Calculated enthalpy of reaction BF3OH- + +3 F- + 2 H+ + B(OH)3 = BF3OH- + 2 H2O + -llnl_gamma 4 + log_k 13.1908 + -delta_H -178.577 kJ/mol # Calculated enthalpy of reaction BF3OH- # Enthalpy of formation: -403.317 kcal/mol - -analytic 3.3411e+002 -3.7303e-002 -8.6507e+003 -1.1345e+002 -1.3508e+002 + -analytic 3.3411e+2 -3.7303e-2 -8.6507e+3 -1.1345e+2 -1.3508e+2 # -Range: 0-300 -4.0000 F- + 3.0000 H+ + 1.0000 B(OH)3 = BF4- +3.0000 H2O - -llnl_gamma 4.0 - log_k +18.0049 - -delta_H -16.4473 kJ/mol # Calculated enthalpy of reaction BF4- +4 F- + 3 H+ + B(OH)3 = BF4- + 3 H2O + -llnl_gamma 4 + log_k 18.0049 + -delta_H -16.4473 kJ/mol # Calculated enthalpy of reaction BF4- # Enthalpy of formation: -376.4 kcal/mol - -analytic 2.5491e+002 1.0443e-001 -3.3332e+003 -1.0378e+002 -5.2087e+001 + -analytic 2.5491e+2 1.0443e-1 -3.3332e+3 -1.0378e+2 -5.2087e+1 # -Range: 0-300 -1.0000 B(OH)3 = BO2- +1.0000 H+ +1.0000 H2O - -llnl_gamma 4.0 - log_k -9.2449 - -delta_H 16.3302 kJ/mol # Calculated enthalpy of reaction BO2- +B(OH)3 = BO2- + H+ + H2O + -llnl_gamma 4 + log_k -9.2449 + -delta_H 16.3302 kJ/mol # Calculated enthalpy of reaction BO2- # Enthalpy of formation: -184.6 kcal/mol - -analytic -1.0500e+002 -3.3447e-002 1.4706e+003 4.0724e+001 2.2978e+001 + -analytic -1.05e+2 -3.3447e-2 1.4706e+3 4.0724e+1 2.2978e+1 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Ba++ = Ba(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -8.0118 - -delta_H 11.255 kJ/mol # Calculated enthalpy of reaction Ba(Acetate)2 +2 HAcetate + Ba+2 = Ba(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -8.0118 + -delta_H 11.255 kJ/mol # Calculated enthalpy of reaction Ba(Acetate)2 # Enthalpy of formation: -358.01 kcal/mol - -analytic -1.4566e+001 3.1394e-004 -3.9564e+003 5.1906e+000 6.1407e+005 + -analytic -1.4566e+1 3.1394e-4 -3.9564e+3 5.1906e+0 6.1407e+5 # -Range: 0-300 -1.0000 O_phthalate-2 + 1.0000 Ba++ = Ba(O_phthalate) - -llnl_gamma 3.0 - log_k +2.3300 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ba(O_phthalate) +O_phthalate-2 + Ba+2 = Ba(O_phthalate) + -llnl_gamma 3 + log_k 2.33 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ba(O_phthalate) # Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Ba++ + 1.0000 B(OH)3 = BaB(OH)4+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -7.8012 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaB(OH)4+ + +H2O + Ba+2 + B(OH)3 = BaB(OH)4+ + H+ + -llnl_gamma 4 + log_k -7.8012 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaB(OH)4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Ba++ + 1.0000 HAcetate = BaAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.7677 - -delta_H 7.322 kJ/mol # Calculated enthalpy of reaction BaAcetate+ + +Ba+2 + HAcetate = BaAcetate+ + H+ + -llnl_gamma 4 + log_k -3.7677 + -delta_H 7.322 kJ/mol # Calculated enthalpy of reaction BaAcetate+ # Enthalpy of formation: -242.85 kcal/mol - -analytic -1.5623e+001 2.9282e-003 -3.9534e+002 4.3959e+000 1.2829e+005 + -analytic -1.5623e+1 2.9282e-3 -3.9534e+2 4.3959e+0 1.2829e+5 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Ba++ = BaCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -7.6834 - -delta_H 31.5808 kJ/mol # Calculated enthalpy of reaction BaCO3 +HCO3- + Ba+2 = BaCO3 + H+ + -llnl_gamma 3 + log_k -7.6834 + -delta_H 31.5808 kJ/mol # Calculated enthalpy of reaction BaCO3 # Enthalpy of formation: -285.85 kcal/mol - -analytic 2.1878e+002 5.2368e-002 -8.2472e+003 -8.6644e+001 -1.2875e+002 + -analytic 2.1878e+2 5.2368e-2 -8.2472e+3 -8.6644e+1 -1.2875e+2 # -Range: 0-300 -1.0000 Cl- + 1.0000 Ba++ = BaCl+ - -llnl_gamma 4.0 - log_k -0.4977 - -delta_H 11.142 kJ/mol # Calculated enthalpy of reaction BaCl+ +Cl- + Ba+2 = BaCl+ + -llnl_gamma 4 + log_k -0.4977 + -delta_H 11.142 kJ/mol # Calculated enthalpy of reaction BaCl+ # Enthalpy of formation: -165.77 kcal/mol - -analytic 1.1016e+002 4.2325e-002 -2.8039e+003 -4.6010e+001 -4.3785e+001 + -analytic 1.1016e+2 4.2325e-2 -2.8039e+3 -4.601e+1 -4.3785e+1 # -Range: 0-300 -1.0000 F- + 1.0000 Ba++ = BaF+ - -llnl_gamma 4.0 - log_k -0.1833 - -delta_H 8.95376 kJ/mol # Calculated enthalpy of reaction BaF+ +F- + Ba+2 = BaF+ + -llnl_gamma 4 + log_k -0.1833 + -delta_H 8.95376 kJ/mol # Calculated enthalpy of reaction BaF+ # Enthalpy of formation: -206.51 kcal/mol - -analytic 1.0349e+002 4.0336e-002 -2.5195e+003 -4.3334e+001 -3.9346e+001 + -analytic 1.0349e+2 4.0336e-2 -2.5195e+3 -4.3334e+1 -3.9346e+1 # -Range: 0-300 -1.0000 NO3- + 1.0000 Ba++ = BaNO3+ - -llnl_gamma 4.0 - log_k +0.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaNO3+ +NO3- + Ba+2 = BaNO3+ + -llnl_gamma 4 + log_k 0.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaNO3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Ba++ = BaOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -13.47 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaOH+ + +H2O + Ba+2 = BaOH+ + H+ + -llnl_gamma 4 + log_k -13.47 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaOH+ # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Be++ = Be(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -6.8023 - -delta_H -52.4255 kJ/mol # Calculated enthalpy of reaction Be(Acetate)2 + +2 HAcetate + Be+2 = Be(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -6.8023 + -delta_H -52.4255 kJ/mol # Calculated enthalpy of reaction Be(Acetate)2 # Enthalpy of formation: -336.23 kcal/mol - -analytic -3.5242e+001 5.1285e-003 -4.8914e+002 8.2862e+000 7.1774e+005 + -analytic -3.5242e+1 5.1285e-3 -4.8914e+2 8.2862e+0 7.1774e+5 # -Range: 0-300 -1.0000 Be++ + 1.0000 HAcetate = BeAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.1079 - -delta_H -22.761 kJ/mol # Calculated enthalpy of reaction BeAcetate+ +Be+2 + HAcetate = BeAcetate+ + H+ + -llnl_gamma 4 + log_k -3.1079 + -delta_H -22.761 kJ/mol # Calculated enthalpy of reaction BeAcetate+ # Enthalpy of formation: -213.04 kcal/mol - -analytic -1.9418e+001 5.2172e-004 -8.5071e+001 5.2755e+000 3.0215e+005 + -analytic -1.9418e+1 5.2172e-4 -8.5071e+1 5.2755e+0 3.0215e+5 # -Range: 0-300 -2.0000 H2O + 1.0000 Be++ = BeO2-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -32.161 - -delta_H 163.737 kJ/mol # Calculated enthalpy of reaction BeO2-2 +2 H2O + Be+2 = BeO2-2 + 4 H+ + -llnl_gamma 4 + log_k -32.161 + -delta_H 163.737 kJ/mol # Calculated enthalpy of reaction BeO2-2 # Enthalpy of formation: -189 kcal/mol - -analytic 7.0860e+000 -3.8474e-002 -1.1400e+004 4.2138e+000 -1.7789e+002 + -analytic 7.086e+0 -3.8474e-2 -1.14e+4 4.2138e+0 -1.7789e+2 # -Range: 0-300 -2.0000 H+ + 2.0000 Br- + 0.5000 O2 = Br2 +1.0000 H2O - -llnl_gamma 3.0 - log_k +5.6834 - -delta_H 0 # Not possible to calculate enthalpy of reaction Br2 +2 H+ + 2 Br- + 0.5 O2 = Br2 + H2O + -llnl_gamma 3 + log_k 5.6834 + -delta_H 0 # Not possible to calculate enthalpy of reaction Br2 # Enthalpy of formation: -0 kcal/mol - -1.0000 HCO3- + 1.0000 H+ = CO2 +1.0000 H2O + +HCO3- + H+ = CO2 + H2O -CO2_llnl_gamma - log_k +6.3447 - -delta_H -9.7027 kJ/mol # Calculated enthalpy of reaction CO2 + log_k 6.3447 + -delta_H -9.7027 kJ/mol # Calculated enthalpy of reaction CO2 # Enthalpy of formation: -98.9 kcal/mol - -analytic -1.0534e+001 2.1746e-002 2.5216e+003 7.9125e-001 3.9351e+001 + -analytic -1.0534e+1 2.1746e-2 2.5216e+3 7.9125e-1 3.9351e+1 # -Range: 0-300 -1.0000 HCO3- = CO3-- +1.0000 H+ - -llnl_gamma 4.5 - log_k -10.3288 - -delta_H 14.6984 kJ/mol # Calculated enthalpy of reaction CO3-2 +HCO3- = CO3-2 + H+ + -llnl_gamma 4.5 + log_k -10.3288 + -delta_H 14.6984 kJ/mol # Calculated enthalpy of reaction CO3-2 # Enthalpy of formation: -161.385 kcal/mol - -analytic -6.9958e+001 -3.3526e-002 -7.0846e+001 2.8224e+001 -1.0849e+000 + -analytic -6.9958e+1 -3.3526e-2 -7.0846e+1 2.8224e+1 -1.0849e+0 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Ca++ = Ca(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.3814 - -delta_H -2.7196 kJ/mol # Calculated enthalpy of reaction Ca(Acetate)2 +2 HAcetate + Ca+2 = Ca(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -7.3814 + -delta_H -2.7196 kJ/mol # Calculated enthalpy of reaction Ca(Acetate)2 # Enthalpy of formation: -362.65 kcal/mol - -analytic -1.0320e+001 4.0012e-003 -3.6281e+003 2.4421e+000 7.0175e+005 + -analytic -1.032e+1 4.0012e-3 -3.6281e+3 2.4421e+0 7.0175e+5 # -Range: 0-300 -1.0000 O_phthalate-2 + 1.0000 Ca++ = Ca(O_phthalate) - -llnl_gamma 3.0 - log_k +2.4200 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca(O_phthalate) +O_phthalate-2 + Ca+2 = Ca(O_phthalate) + -llnl_gamma 3 + log_k 2.42 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca(O_phthalate) # Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Ca++ + 1.0000 B(OH)3 = CaB(OH)4+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -7.4222 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaB(OH)4+ + +H2O + Ca+2 + B(OH)3 = CaB(OH)4+ + H+ + -llnl_gamma 4 + log_k -7.4222 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaB(OH)4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Ca++ + 1.0000 HAcetate = CaAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.8263 - -delta_H 1.17152 kJ/mol # Calculated enthalpy of reaction CaAcetate+ + +Ca+2 + HAcetate = CaAcetate+ + H+ + -llnl_gamma 4 + log_k -3.8263 + -delta_H 1.17152 kJ/mol # Calculated enthalpy of reaction CaAcetate+ # Enthalpy of formation: -245.62 kcal/mol - -analytic -8.8826e+000 3.1672e-003 -1.0764e+003 2.0526e+000 2.3599e+005 + -analytic -8.8826e+0 3.1672e-3 -1.0764e+3 2.0526e+0 2.3599e+5 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Ca++ = CaCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -7.0017 - -delta_H 30.5767 kJ/mol # Calculated enthalpy of reaction CaCO3 +HCO3- + Ca+2 = CaCO3 + H+ + -llnl_gamma 3 + log_k -7.0017 + -delta_H 30.5767 kJ/mol # Calculated enthalpy of reaction CaCO3 # Enthalpy of formation: -287.39 kcal/mol - -analytic 2.3045e+002 5.5350e-002 -8.5056e+003 -9.1096e+001 -1.3279e+002 + -analytic 2.3045e+2 5.535e-2 -8.5056e+3 -9.1096e+1 -1.3279e+2 # -Range: 0-300 -1.0000 Cl- + 1.0000 Ca++ = CaCl+ - -llnl_gamma 4.0 - log_k -0.6956 - -delta_H 2.02087 kJ/mol # Calculated enthalpy of reaction CaCl+ +Cl- + Ca+2 = CaCl+ + -llnl_gamma 4 + log_k -0.6956 + -delta_H 2.02087 kJ/mol # Calculated enthalpy of reaction CaCl+ # Enthalpy of formation: -169.25 kcal/mol - -analytic 8.1498e+001 3.8387e-002 -1.3763e+003 -3.5968e+001 -2.1501e+001 + -analytic 8.1498e+1 3.8387e-2 -1.3763e+3 -3.5968e+1 -2.1501e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Ca++ = CaCl2 - -llnl_gamma 3.0 - log_k -0.6436 - -delta_H -5.8325 kJ/mol # Calculated enthalpy of reaction CaCl2 +2 Cl- + Ca+2 = CaCl2 + -llnl_gamma 3 + log_k -0.6436 + -delta_H -5.8325 kJ/mol # Calculated enthalpy of reaction CaCl2 # Enthalpy of formation: -211.06 kcal/mol - -analytic 1.8178e+002 7.6910e-002 -3.1088e+003 -7.8760e+001 -4.8563e+001 + -analytic 1.8178e+2 7.691e-2 -3.1088e+3 -7.876e+1 -4.8563e+1 # -Range: 0-300 -1.0000 F- + 1.0000 Ca++ = CaF+ - -llnl_gamma 4.0 - log_k +0.6817 - -delta_H 5.6484 kJ/mol # Calculated enthalpy of reaction CaF+ +F- + Ca+2 = CaF+ + -llnl_gamma 4 + log_k 0.6817 + -delta_H 5.6484 kJ/mol # Calculated enthalpy of reaction CaF+ # Enthalpy of formation: -208.6 kcal/mol - -analytic 7.8058e+001 3.8276e-002 -1.3289e+003 -3.4071e+001 -2.0759e+001 + -analytic 7.8058e+1 3.8276e-2 -1.3289e+3 -3.4071e+1 -2.0759e+1 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Ca++ = CaH2PO4+ - -llnl_gamma 4.0 - log_k +1.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaH2PO4+ +HPO4-2 + H+ + Ca+2 = CaH2PO4+ + -llnl_gamma 4 + log_k 1.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaH2PO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 HCO3- + 1.0000 Ca++ = CaHCO3+ - -llnl_gamma 4.0 - log_k +1.0467 - -delta_H 1.45603 kJ/mol # Calculated enthalpy of reaction CaHCO3+ + +HCO3- + Ca+2 = CaHCO3+ + -llnl_gamma 4 + log_k 1.0467 + -delta_H 1.45603 kJ/mol # Calculated enthalpy of reaction CaHCO3+ # Enthalpy of formation: -294.35 kcal/mol - -analytic 5.5985e+001 3.4639e-002 -3.6972e+002 -2.5864e+001 -5.7859e+000 + -analytic 5.5985e+1 3.4639e-2 -3.6972e+2 -2.5864e+1 -5.7859e+0 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 Ca++ = CaHPO4 - -llnl_gamma 3.0 - log_k +2.7400 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaHPO4 +HPO4-2 + Ca+2 = CaHPO4 + -llnl_gamma 3 + log_k 2.74 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaHPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Ca++ = CaNO3+ - -llnl_gamma 4.0 - log_k +0.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaNO3+ + +NO3- + Ca+2 = CaNO3+ + -llnl_gamma 4 + log_k 0.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaNO3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Ca++ = CaOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -12.85 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaOH+ + +H2O + Ca+2 = CaOH+ + H+ + -llnl_gamma 4 + log_k -12.85 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaOH+ # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Ca++ = CaP2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +3.0537 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaP2O7-2 + +2 HPO4-2 + Ca+2 = CaP2O7-2 + H2O + -llnl_gamma 4 + log_k 3.0537 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaP2O7-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Ca++ = CaPO4- +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.8618 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaPO4- + +HPO4-2 + Ca+2 = CaPO4- + H+ + -llnl_gamma 4 + log_k -5.8618 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaPO4- # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Ca++ = CaSO4 - -llnl_gamma 3.0 - log_k +2.1111 - -delta_H 5.4392 kJ/mol # Calculated enthalpy of reaction CaSO4 + +SO4-2 + Ca+2 = CaSO4 + -llnl_gamma 3 + log_k 2.1111 + -delta_H 5.4392 kJ/mol # Calculated enthalpy of reaction CaSO4 # Enthalpy of formation: -345.9 kcal/mol - -analytic 2.8618e+002 8.4084e-002 -7.6880e+003 -1.1449e+002 -1.2005e+002 + -analytic 2.8618e+2 8.4084e-2 -7.688e+3 -1.1449e+2 -1.2005e+2 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Cd++ = Cd(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -6.3625 - -delta_H -17.4891 kJ/mol # Calculated enthalpy of reaction Cd(Acetate)2 +2 HAcetate + Cd+2 = Cd(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -6.3625 + -delta_H -17.4891 kJ/mol # Calculated enthalpy of reaction Cd(Acetate)2 # Enthalpy of formation: -254.52 kcal/mol - -analytic -1.9344e+001 2.5894e-003 -3.2847e+003 5.8489e+000 7.8041e+005 + -analytic -1.9344e+1 2.5894e-3 -3.2847e+3 5.8489e+0 7.8041e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Cd++ = Cd(Acetate)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -10.8558 - -delta_H -40.0409 kJ/mol # Calculated enthalpy of reaction Cd(Acetate)3- +3 HAcetate + Cd+2 = Cd(Acetate)3- + 3 H+ + -llnl_gamma 4 + log_k -10.8558 + -delta_H -40.0409 kJ/mol # Calculated enthalpy of reaction Cd(Acetate)3- # Enthalpy of formation: -376.01 kcal/mol - -analytic 4.8290e+001 -3.4317e-003 -1.5122e+004 -1.3203e+001 2.2479e+006 + -analytic 4.829e+1 -3.4317e-3 -1.5122e+4 -1.3203e+1 2.2479e+6 # -Range: 0-300 -4.0000 HAcetate + 1.0000 Cd++ = Cd(Acetate)4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -16.9163 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Acetate)4-2 +4 HAcetate + Cd+2 = Cd(Acetate)4-2 + 4 H+ + -llnl_gamma 4 + log_k -16.9163 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Acetate)4-2 # Enthalpy of formation: -0 kcal/mol - - 2.0000 Cyanide- + 1.0000 Cd++ = Cd(Cyanide)2 - -llnl_gamma 3.0 - log_k +10.3551 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)2 - # Enthalpy of formation: -0 kcal/mol - - 3.0000 Cyanide- + 1.0000 Cd++ = Cd(Cyanide)3- - -llnl_gamma 4.0 - log_k +14.8191 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)3- - # Enthalpy of formation: -0 kcal/mol - - 4.0000 Cyanide- + 1.0000 Cd++ = Cd(Cyanide)4-- - -llnl_gamma 4.0 - log_k +18.2670 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)4-2 - # Enthalpy of formation: -0 kcal/mol - -2.0000 HCO3- + 1.0000 Cd++ = Cd(CO3)2-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -14.2576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(CO3)2-2 + 2 Cyanide- + Cd+2 = Cd(Cyanide)2 + -llnl_gamma 3 + log_k 10.3551 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)2 + # Enthalpy of formation: -0 kcal/mol + + 3 Cyanide- + Cd+2 = Cd(Cyanide)3- + -llnl_gamma 4 + log_k 14.8191 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)3- + # Enthalpy of formation: -0 kcal/mol + + 4 Cyanide- + Cd+2 = Cd(Cyanide)4-2 + -llnl_gamma 4 + log_k 18.267 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)4-2 + # Enthalpy of formation: -0 kcal/mol + + +2 HCO3- + Cd+2 = Cd(CO3)2-2 + 2 H+ + -llnl_gamma 4 + log_k -14.2576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(CO3)2-2 # Enthalpy of formation: -0 kcal/mol - -2.0000 N3- + 1.0000 Cd++ = Cd(N3)2 - -llnl_gamma 0.0 - log_k +2.4606 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)2 + +2 N3- + Cd+2 = Cd(N3)2 + -llnl_gamma 0 + log_k 2.4606 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)2 # Enthalpy of formation: -0 kcal/mol - -3.0000 N3- + 1.0000 Cd++ = Cd(N3)3- - -llnl_gamma 4.0 - log_k +3.1263 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)3- + +3 N3- + Cd+2 = Cd(N3)3- + -llnl_gamma 4 + log_k 3.1263 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)3- # Enthalpy of formation: -0 kcal/mol - -4.0000 N3- + 1.0000 Cd++ = Cd(N3)4-- - -llnl_gamma 4.0 - log_k +3.4942 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)4-2 + +4 N3- + Cd+2 = Cd(N3)4-2 + -llnl_gamma 4 + log_k 3.4942 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)4-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 NH3 + 1.0000 Cd++ = Cd(NH3)++ - -llnl_gamma 4.5 - log_k +2.5295 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(NH3)+2 + +NH3 + Cd+2 = Cd(NH3)+2 + -llnl_gamma 4.5 + log_k 2.5295 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(NH3)+2 # Enthalpy of formation: -0 kcal/mol - -2.0000 NH3 + 1.0000 Cd++ = Cd(NH3)2++ - -llnl_gamma 4.5 - log_k +4.8760 - -delta_H -27.6533 kJ/mol # Calculated enthalpy of reaction Cd(NH3)2+2 + +2 NH3 + Cd+2 = Cd(NH3)2+2 + -llnl_gamma 4.5 + log_k 4.876 + -delta_H -27.6533 kJ/mol # Calculated enthalpy of reaction Cd(NH3)2+2 # Enthalpy of formation: -266.225 kJ/mol - -analytic 1.0738e+002 1.6071e-003 -3.2536e+003 -3.7202e+001 -5.0801e+001 + -analytic 1.0738e+2 1.6071e-3 -3.2536e+3 -3.7202e+1 -5.0801e+1 # -Range: 0-300 -4.0000 NH3 + 1.0000 Cd++ = Cd(NH3)4++ - -llnl_gamma 4.5 - log_k +7.2914 - -delta_H -49.0684 kJ/mol # Calculated enthalpy of reaction Cd(NH3)4+2 +4 NH3 + Cd+2 = Cd(NH3)4+2 + -llnl_gamma 4.5 + log_k 7.2914 + -delta_H -49.0684 kJ/mol # Calculated enthalpy of reaction Cd(NH3)4+2 # Enthalpy of formation: -450.314 kJ/mol - -analytic 1.5670e+002 -9.4949e-003 -5.0986e+003 -5.2316e+001 -7.9603e+001 + -analytic 1.567e+2 -9.4949e-3 -5.0986e+3 -5.2316e+1 -7.9603e+1 # -Range: 0-300 -2.0000 H2O + 1.0000 Cd++ = Cd(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -20.3402 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)2 +2 H2O + Cd+2 = Cd(OH)2 + 2 H+ + -llnl_gamma 3 + log_k -20.3402 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)2 # Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Cd++ = Cd(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -33.2852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)3- + +3 H2O + Cd+2 = Cd(OH)3- + 3 H+ + -llnl_gamma 4 + log_k -33.2852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)3- # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Cd++ = Cd(OH)4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -47.3303 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)4-2 + +4 H2O + Cd+2 = Cd(OH)4-2 + 4 H+ + -llnl_gamma 4 + log_k -47.3303 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)4-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Cl- + 1.0000 Cd++ = Cd(OH)Cl +1.0000 H+ - -llnl_gamma 3.0 - log_k -7.4328 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)Cl + +H2O + Cl- + Cd+2 = Cd(OH)Cl + H+ + -llnl_gamma 3 + log_k -7.4328 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)Cl # Enthalpy of formation: -0 kcal/mol - -2.0000 Thiocyanate- + 1.0000 Cd++ = Cd(Thiocyanate)2 - -llnl_gamma 3.0 - log_k +1.8649 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Thiocyanate)2 + +2 Thiocyanate- + Cd+2 = Cd(Thiocyanate)2 + -llnl_gamma 3 + log_k 1.8649 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Thiocyanate)2 # Enthalpy of formation: -0 kcal/mol - -3.0000 Thiocyanate- + 1.0000 Cd++ = Cd(Thiocyanate)3- - -llnl_gamma 4.0 - log_k +1.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Thiocyanate)3- + +3 Thiocyanate- + Cd+2 = Cd(Thiocyanate)3- + -llnl_gamma 4 + log_k 1.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Thiocyanate)3- # Enthalpy of formation: -0 kcal/mol - -2.0000 Cd++ + 1.0000 H2O = Cd2OH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -9.3851 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd2OH+3 + +2 Cd+2 + H2O = Cd2OH+3 + H+ + -llnl_gamma 5 + log_k -9.3851 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd2OH+3 # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 4.0000 Cd++ = Cd4(OH)4++++ +4.0000 H+ - -llnl_gamma 5.5 - log_k -362.1263 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd4(OH)4+4 + +4 H2O + 4 Cd+2 = Cd4(OH)4+4 + 4 H+ + -llnl_gamma 5.5 + log_k -362.1263 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd4(OH)4+4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Cd++ + 1.0000 Br- = CdBr+ - -llnl_gamma 4.0 - log_k +2.1424 - -delta_H -3.35588 kJ/mol # Calculated enthalpy of reaction CdBr+ + +Cd+2 + Br- = CdBr+ + -llnl_gamma 4 + log_k 2.1424 + -delta_H -3.35588 kJ/mol # Calculated enthalpy of reaction CdBr+ # Enthalpy of formation: -200.757 kJ/mol - -analytic 1.4922e+002 5.0059e-002 -3.3035e+003 -6.0984e+001 -5.1593e+001 + -analytic 1.4922e+2 5.0059e-2 -3.3035e+3 -6.0984e+1 -5.1593e+1 # -Range: 0-300 -2.0000 Br- + 1.0000 Cd++ = CdBr2 - -llnl_gamma 3.0 - log_k +2.8614 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdBr2 +2 Br- + Cd+2 = CdBr2 + -llnl_gamma 3 + log_k 2.8614 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdBr2 # Enthalpy of formation: -0 kcal/mol - -3.0000 Br- + 1.0000 Cd++ = CdBr3- - -llnl_gamma 4.0 - log_k +3.0968 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdBr3- + +3 Br- + Cd+2 = CdBr3- + -llnl_gamma 4 + log_k 3.0968 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdBr3- # Enthalpy of formation: -0 kcal/mol - -1.0000 Cd++ + 1.0000 HAcetate = CdAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.8294 - -delta_H -7.02912 kJ/mol # Calculated enthalpy of reaction CdAcetate+ + +Cd+2 + HAcetate = CdAcetate+ + H+ + -llnl_gamma 4 + log_k -2.8294 + -delta_H -7.02912 kJ/mol # Calculated enthalpy of reaction CdAcetate+ # Enthalpy of formation: -135.92 kcal/mol - -analytic -8.8425e+000 1.7178e-003 -1.1758e+003 2.4435e+000 3.0321e+005 + -analytic -8.8425e+0 1.7178e-3 -1.1758e+3 2.4435e+0 3.0321e+5 # -Range: 0-300 -1.0000 Cd++ + 1.0000 Cyanide- = CdCyanide+ - -llnl_gamma 4.0 - log_k +5.3129 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdCyanide+ +Cd+2 + Cyanide- = CdCyanide+ + -llnl_gamma 4 + log_k 5.3129 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdCyanide+ # Enthalpy of formation: -0 kcal/mol - -1.0000 HCO3- + 1.0000 Cd++ = CdCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -7.3288 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdCO3 + +HCO3- + Cd+2 = CdCO3 + H+ + -llnl_gamma 3 + log_k -7.3288 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdCO3 # Enthalpy of formation: -0 kcal/mol - -1.0000 Cl- + 1.0000 Cd++ = CdCl+ - -llnl_gamma 4.0 - log_k +2.7059 - -delta_H 2.33843 kJ/mol # Calculated enthalpy of reaction CdCl+ + +Cl- + Cd+2 = CdCl+ + -llnl_gamma 4 + log_k 2.7059 + -delta_H 2.33843 kJ/mol # Calculated enthalpy of reaction CdCl+ # Enthalpy of formation: -240.639 kJ/mol -2.0000 Cl- + 1.0000 Cd++ = CdCl2 - -llnl_gamma 3.0 - log_k +3.3384 - -delta_H 5.1261 kJ/mol # Calculated enthalpy of reaction CdCl2 +2 Cl- + Cd+2 = CdCl2 + -llnl_gamma 3 + log_k 3.3384 + -delta_H 5.1261 kJ/mol # Calculated enthalpy of reaction CdCl2 # Enthalpy of formation: -404.931 kJ/mol - -analytic 1.4052e+002 4.9221e-002 -3.2625e+003 -5.6946e+001 -5.5451e+001 + -analytic 1.4052e+2 4.9221e-2 -3.2625e+3 -5.6946e+1 -5.5451e+1 # -Range: 0-200 -3.0000 Cl- + 1.0000 Cd++ = CdCl3- - -llnl_gamma 4.0 - log_k +2.7112 - -delta_H 15.9388 kJ/mol # Calculated enthalpy of reaction CdCl3- +3 Cl- + Cd+2 = CdCl3- + -llnl_gamma 4 + log_k 2.7112 + -delta_H 15.9388 kJ/mol # Calculated enthalpy of reaction CdCl3- # Enthalpy of formation: -561.198 kJ/mol - -analytic 3.5108e+002 1.0219e-001 -9.9103e+003 -1.3965e+002 -1.5474e+002 + -analytic 3.5108e+2 1.0219e-1 -9.9103e+3 -1.3965e+2 -1.5474e+2 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Cd++ = CdHCO3+ - -llnl_gamma 4.0 - log_k +1.5000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdHCO3+ +HCO3- + Cd+2 = CdHCO3+ + -llnl_gamma 4 + log_k 1.5 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdHCO3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 I- + 1.0000 Cd++ = CdI+ - -llnl_gamma 4.0 - log_k +2.0710 - -delta_H -9.02584 kJ/mol # Calculated enthalpy of reaction CdI+ + +I- + Cd+2 = CdI+ + -llnl_gamma 4 + log_k 2.071 + -delta_H -9.02584 kJ/mol # Calculated enthalpy of reaction CdI+ # Enthalpy of formation: -141.826 kJ/mol - -analytic 1.5019e+002 5.0320e-002 -3.0810e+003 -6.1738e+001 -4.8120e+001 + -analytic 1.5019e+2 5.032e-2 -3.081e+3 -6.1738e+1 -4.812e+1 # -Range: 0-300 -2.0000 I- + 1.0000 Cd++ = CdI2 - -llnl_gamma 3.0 - log_k +3.4685 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdI2 +2 I- + Cd+2 = CdI2 + -llnl_gamma 3 + log_k 3.4685 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdI2 # Enthalpy of formation: -0 kcal/mol - -3.0000 I- + 1.0000 Cd++ = CdI3- - -llnl_gamma 4.0 - log_k +4.5506 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdI3- + +3 I- + Cd+2 = CdI3- + -llnl_gamma 4 + log_k 4.5506 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdI3- # Enthalpy of formation: -0 kcal/mol - -4.0000 I- + 1.0000 Cd++ = CdI4-- - -llnl_gamma 4.0 - log_k +5.3524 - -delta_H -38.8566 kJ/mol # Calculated enthalpy of reaction CdI4-2 + +4 I- + Cd+2 = CdI4-2 + -llnl_gamma 4 + log_k 5.3524 + -delta_H -38.8566 kJ/mol # Calculated enthalpy of reaction CdI4-2 # Enthalpy of formation: -342.364 kJ/mol - -analytic 4.3154e+002 1.4257e-001 -8.4464e+003 -1.7795e+002 -1.3193e+002 + -analytic 4.3154e+2 1.4257e-1 -8.4464e+3 -1.7795e+2 -1.3193e+2 # -Range: 0-300 -1.0000 N3- + 1.0000 Cd++ = CdN3+ - -llnl_gamma 4.0 - log_k +1.4970 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdN3+ +N3- + Cd+2 = CdN3+ + -llnl_gamma 4 + log_k 1.497 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdN3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 NO2- + 1.0000 Cd++ = CdNO2+ - -llnl_gamma 4.0 - log_k +2.3700 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdNO2+ + +NO2- + Cd+2 = CdNO2+ + -llnl_gamma 4 + log_k 2.37 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdNO2+ # Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Cd++ = CdOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -10.0751 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdOH+ + +H2O + Cd+2 = CdOH+ + H+ + -llnl_gamma 4 + log_k -10.0751 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdOH+ # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Cd++ = CdP2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +4.8094 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdP2O7-2 + +2 HPO4-2 + Cd+2 = CdP2O7-2 + H2O + -llnl_gamma 4 + log_k 4.8094 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdP2O7-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Thiocyanate- + 1.0000 Cd++ = CdThiocyanate+ - -llnl_gamma 4.0 - log_k +1.3218 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdThiocyanate+ + +Thiocyanate- + Cd+2 = CdThiocyanate+ + -llnl_gamma 4 + log_k 1.3218 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdThiocyanate+ # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Cd++ = CdSO4 - -llnl_gamma 3.0 - log_k +0.0028 - -delta_H 0.20436 kJ/mol # Calculated enthalpy of reaction CdSO4 + +SO4-2 + Cd+2 = CdSO4 + -llnl_gamma 3 + log_k 0.0028 + -delta_H 0.20436 kJ/mol # Calculated enthalpy of reaction CdSO4 # Enthalpy of formation: -985.295 kJ/mol - -analytic -8.9926e+000 -1.9109e-003 2.7454e+002 3.4949e+000 4.6651e+000 + -analytic -8.9926e+0 -1.9109e-3 2.7454e+2 3.4949e+0 4.6651e+0 # -Range: 0-200 -1.0000 SeO4-- + 1.0000 Cd++ = CdSeO4 - -llnl_gamma 3.0 - log_k +2.2700 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdSeO4 +SeO4-2 + Cd+2 = CdSeO4 + -llnl_gamma 3 + log_k 2.27 + -delta_H 0 # Not possible to calculate enthalpy of reaction CdSeO4 # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Ce+++ = Ce(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.8159 - -delta_H -22.9702 kJ/mol # Calculated enthalpy of reaction Ce(Acetate)2+ + +2 HAcetate + Ce+3 = Ce(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -4.8159 + -delta_H -22.9702 kJ/mol # Calculated enthalpy of reaction Ce(Acetate)2+ # Enthalpy of formation: -405.09 kcal/mol - -analytic -3.4653e+001 2.0716e-004 -6.3400e+002 1.0678e+001 4.8922e+005 + -analytic -3.4653e+1 2.0716e-4 -6.34e+2 1.0678e+1 4.8922e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Ce+++ = Ce(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.151 - -delta_H -38.7438 kJ/mol # Calculated enthalpy of reaction Ce(Acetate)3 +3 HAcetate + Ce+3 = Ce(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -8.151 + -delta_H -38.7438 kJ/mol # Calculated enthalpy of reaction Ce(Acetate)3 # Enthalpy of formation: -524.96 kcal/mol - -analytic -2.3361e+001 2.3896e-003 -1.8035e+003 5.0888e+000 7.1021e+005 + -analytic -2.3361e+1 2.3896e-3 -1.8035e+3 5.0888e+0 7.1021e+5 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Ce+++ = Ce(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -8.1576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(CO3)2- +2 HCO3- + Ce+3 = Ce(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -8.1576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Ce+++ = Ce(HPO4)2- - -llnl_gamma 4.0 - log_k +8.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(HPO4)2- + +2 HPO4-2 + Ce+3 = Ce(HPO4)2- + -llnl_gamma 4 + log_k 8.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(HPO4)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Ce++++ = Ce(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k +2.0098 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)2+2 + +2 H2O + Ce+4 = Ce(OH)2+2 + 2 H+ + -llnl_gamma 4.5 + log_k 2.0098 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)2+2 # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Ce+++ = Ce(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -6.1437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(PO4)2-3 + +2 HPO4-2 + Ce+3 = Ce(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -6.1437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 2.0000 Ce++++ = Ce2(OH)2+6 +2.0000 H+ - -llnl_gamma 6.0 - log_k +3.0098 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2(OH)2+6 + +2 H2O + 2 Ce+4 = Ce2(OH)2+6 + 2 H+ + -llnl_gamma 6 + log_k 3.0098 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2(OH)2+6 # Enthalpy of formation: -0 kcal/mol - -5.0000 H2O + 3.0000 Ce+++ = Ce3(OH)5++++ +5.0000 H+ - -llnl_gamma 5.5 - log_k -33.4754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce3(OH)5+4 + +5 H2O + 3 Ce+3 = Ce3(OH)5+4 + 5 H+ + -llnl_gamma 5.5 + log_k -33.4754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce3(OH)5+4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Ce+++ + 1.0000 Br- = CeBr++ - -llnl_gamma 4.5 - log_k +0.3797 - -delta_H 3.0585 kJ/mol # Calculated enthalpy of reaction CeBr+2 + +Ce+3 + Br- = CeBr+2 + -llnl_gamma 4.5 + log_k 0.3797 + -delta_H 3.0585 kJ/mol # Calculated enthalpy of reaction CeBr+2 # Enthalpy of formation: -195.709 kcal/mol - -analytic 7.5790e+001 3.6040e-002 -1.2647e+003 -3.3094e+001 -1.9757e+001 + -analytic 7.579e+1 3.604e-2 -1.2647e+3 -3.3094e+1 -1.9757e+1 # -Range: 0-300 -1.0000 Ce+++ + 1.0000 HAcetate = CeAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.0304 - -delta_H -12.0918 kJ/mol # Calculated enthalpy of reaction CeAcetate+2 +Ce+3 + HAcetate = CeAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -2.0304 + -delta_H -12.0918 kJ/mol # Calculated enthalpy of reaction CeAcetate+2 # Enthalpy of formation: -286.39 kcal/mol - -analytic -1.6080e+001 6.6239e-004 -6.0721e+002 5.0845e+000 2.9512e+005 + -analytic -1.608e+1 6.6239e-4 -6.0721e+2 5.0845e+0 2.9512e+5 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Ce+++ = CeCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.9284 - -delta_H 93.345 kJ/mol # Calculated enthalpy of reaction CeCO3+ +HCO3- + Ce+3 = CeCO3+ + H+ + -llnl_gamma 4 + log_k -2.9284 + -delta_H 93.345 kJ/mol # Calculated enthalpy of reaction CeCO3+ # Enthalpy of formation: -309.988 kcal/mol - -analytic 2.3292e+002 5.3153e-002 -7.1180e+003 -9.2061e+001 -1.1114e+002 + -analytic 2.3292e+2 5.3153e-2 -7.118e+3 -9.2061e+1 -1.1114e+2 # -Range: 0-300 -1.0000 Cl- + 1.0000 Ce+++ = CeCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 14.7821 kJ/mol # Calculated enthalpy of reaction CeCl+2 +Cl- + Ce+3 = CeCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 14.7821 kJ/mol # Calculated enthalpy of reaction CeCl+2 # Enthalpy of formation: -203.8 kcal/mol - -analytic 8.3534e+001 3.8166e-002 -2.0058e+003 -3.5504e+001 -3.1324e+001 + -analytic 8.3534e+1 3.8166e-2 -2.0058e+3 -3.5504e+1 -3.1324e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Ce+++ = CeCl2+ - -llnl_gamma 4.0 - log_k +0.0308 - -delta_H 20.7777 kJ/mol # Calculated enthalpy of reaction CeCl2+ +2 Cl- + Ce+3 = CeCl2+ + -llnl_gamma 4 + log_k 0.0308 + -delta_H 20.7777 kJ/mol # Calculated enthalpy of reaction CeCl2+ # Enthalpy of formation: -242.3 kcal/mol - -analytic 2.3011e+002 8.1428e-002 -6.1292e+003 -9.4468e+001 -9.5708e+001 + -analytic 2.3011e+2 8.1428e-2 -6.1292e+3 -9.4468e+1 -9.5708e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Ce+++ = CeCl3 - -llnl_gamma 3.0 - log_k -0.3936 - -delta_H 15.4766 kJ/mol # Calculated enthalpy of reaction CeCl3 +3 Cl- + Ce+3 = CeCl3 + -llnl_gamma 3 + log_k -0.3936 + -delta_H 15.4766 kJ/mol # Calculated enthalpy of reaction CeCl3 # Enthalpy of formation: -283.5 kcal/mol - -analytic 4.4073e+002 1.2994e-001 -1.2308e+004 -1.7722e+002 -1.9218e+002 + -analytic 4.4073e+2 1.2994e-1 -1.2308e+4 -1.7722e+2 -1.9218e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 Ce+++ = CeCl4- - -llnl_gamma 4.0 - log_k -0.7447 - -delta_H -1.95811 kJ/mol # Calculated enthalpy of reaction CeCl4- +4 Cl- + Ce+3 = CeCl4- + -llnl_gamma 4 + log_k -0.7447 + -delta_H -1.95811 kJ/mol # Calculated enthalpy of reaction CeCl4- # Enthalpy of formation: -327.6 kcal/mol - -analytic 5.2230e+002 1.3490e-001 -1.4859e+004 -2.0747e+002 -2.3201e+002 + -analytic 5.223e+2 1.349e-1 -1.4859e+4 -2.0747e+2 -2.3201e+2 # -Range: 0-300 -1.0000 ClO4- + 1.0000 Ce+++ = CeClO4++ - -llnl_gamma 4.5 - log_k +1.9102 - -delta_H -49.0197 kJ/mol # Calculated enthalpy of reaction CeClO4+2 +ClO4- + Ce+3 = CeClO4+2 + -llnl_gamma 4.5 + log_k 1.9102 + -delta_H -49.0197 kJ/mol # Calculated enthalpy of reaction CeClO4+2 # Enthalpy of formation: -210.026 kcal/mol - -analytic -1.3609e+001 1.8115e-002 3.9869e+003 -1.3033e+000 6.2215e+001 + -analytic -1.3609e+1 1.8115e-2 3.9869e+3 -1.3033e+0 6.2215e+1 # -Range: 0-300 -1.0000 F- + 1.0000 Ce+++ = CeF++ - -llnl_gamma 4.5 - log_k +4.2221 - -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction CeF+2 +F- + Ce+3 = CeF+2 + -llnl_gamma 4.5 + log_k 4.2221 + -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction CeF+2 # Enthalpy of formation: -242 kcal/mol - -analytic 1.0303e+002 4.1730e-002 -2.8424e+003 -4.1094e+001 -4.4383e+001 + -analytic 1.0303e+2 4.173e-2 -2.8424e+3 -4.1094e+1 -4.4383e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Ce+++ = CeF2+ - -llnl_gamma 4.0 - log_k +7.2714 - -delta_H 15.0624 kJ/mol # Calculated enthalpy of reaction CeF2+ +2 F- + Ce+3 = CeF2+ + -llnl_gamma 4 + log_k 7.2714 + -delta_H 15.0624 kJ/mol # Calculated enthalpy of reaction CeF2+ # Enthalpy of formation: -324.1 kcal/mol - -analytic 2.5063e+002 8.5224e-002 -6.2219e+003 -1.0017e+002 -9.7160e+001 + -analytic 2.5063e+2 8.5224e-2 -6.2219e+3 -1.0017e+2 -9.716e+1 # -Range: 0-300 -3.0000 F- + 1.0000 Ce+++ = CeF3 - -llnl_gamma 3.0 - log_k +9.5144 - -delta_H -6.0668 kJ/mol # Calculated enthalpy of reaction CeF3 +3 F- + Ce+3 = CeF3 + -llnl_gamma 3 + log_k 9.5144 + -delta_H -6.0668 kJ/mol # Calculated enthalpy of reaction CeF3 # Enthalpy of formation: -409.3 kcal/mol - -analytic 4.6919e+002 1.3664e-001 -1.1745e+004 -1.8629e+002 -1.8340e+002 + -analytic 4.6919e+2 1.3664e-1 -1.1745e+4 -1.8629e+2 -1.834e+2 # -Range: 0-300 -4.0000 F- + 1.0000 Ce+++ = CeF4- - -llnl_gamma 4.0 - log_k +11.3909 - -delta_H -45.6056 kJ/mol # Calculated enthalpy of reaction CeF4- +4 F- + Ce+3 = CeF4- + -llnl_gamma 4 + log_k 11.3909 + -delta_H -45.6056 kJ/mol # Calculated enthalpy of reaction CeF4- # Enthalpy of formation: -498.9 kcal/mol - -analytic 5.3522e+002 1.3856e-001 -1.2722e+004 -2.1112e+002 -1.9868e+002 + -analytic 5.3522e+2 1.3856e-1 -1.2722e+4 -2.1112e+2 -1.9868e+2 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Ce+++ = CeH2PO4++ - -llnl_gamma 4.5 - log_k +9.6684 - -delta_H -16.2548 kJ/mol # Calculated enthalpy of reaction CeH2PO4+2 +HPO4-2 + H+ + Ce+3 = CeH2PO4+2 + -llnl_gamma 4.5 + log_k 9.6684 + -delta_H -16.2548 kJ/mol # Calculated enthalpy of reaction CeH2PO4+2 # Enthalpy of formation: -480.1 kcal/mol - -analytic 1.1338e+002 6.3771e-002 5.2908e+001 -4.9649e+001 7.9189e-001 + -analytic 1.1338e+2 6.3771e-2 5.2908e+1 -4.9649e+1 7.9189e-1 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Ce+++ = CeHCO3++ - -llnl_gamma 4.5 - log_k +1.9190 - -delta_H 8.77803 kJ/mol # Calculated enthalpy of reaction CeHCO3+2 +HCO3- + Ce+3 = CeHCO3+2 + -llnl_gamma 4.5 + log_k 1.919 + -delta_H 8.77803 kJ/mol # Calculated enthalpy of reaction CeHCO3+2 # Enthalpy of formation: -330.2 kcal/mol - -analytic 4.4441e+001 3.2077e-002 -3.0714e+002 -2.0622e+001 -4.8060e+000 + -analytic 4.4441e+1 3.2077e-2 -3.0714e+2 -2.0622e+1 -4.806e+0 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 Ce+++ = CeHPO4+ - -llnl_gamma 4.0 - log_k +5.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CeHPO4+ +HPO4-2 + Ce+3 = CeHPO4+ + -llnl_gamma 4 + log_k 5.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction CeHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 IO3- + 1.0000 Ce+++ = CeIO3++ - -llnl_gamma 4.5 - log_k +1.9000 - -delta_H -21.1627 kJ/mol # Calculated enthalpy of reaction CeIO3+2 + +IO3- + Ce+3 = CeIO3+2 + -llnl_gamma 4.5 + log_k 1.9 + -delta_H -21.1627 kJ/mol # Calculated enthalpy of reaction CeIO3+2 # Enthalpy of formation: -225.358 kcal/mol - -analytic 3.3756e+001 2.8528e-002 1.2847e+003 -1.8042e+001 2.0036e+001 + -analytic 3.3756e+1 2.8528e-2 1.2847e+3 -1.8042e+1 2.0036e+1 # -Range: 0-300 -1.0000 NO3- + 1.0000 Ce+++ = CeNO3++ - -llnl_gamma 4.5 - log_k +1.3143 - -delta_H -26.6563 kJ/mol # Calculated enthalpy of reaction CeNO3+2 +NO3- + Ce+3 = CeNO3+2 + -llnl_gamma 4.5 + log_k 1.3143 + -delta_H -26.6563 kJ/mol # Calculated enthalpy of reaction CeNO3+2 # Enthalpy of formation: -223.2 kcal/mol - -analytic 2.2772e+001 2.5931e-002 1.9950e+003 -1.4490e+001 3.1124e+001 + -analytic 2.2772e+1 2.5931e-2 1.995e+3 -1.449e+1 3.1124e+1 # -Range: 0-300 -1.0000 H2O + 1.0000 Ce+++ = CeO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.4103 - -delta_H 112.202 kJ/mol # Calculated enthalpy of reaction CeO+ +H2O + Ce+3 = CeO+ + 2 H+ + -llnl_gamma 4 + log_k -16.4103 + -delta_H 112.202 kJ/mol # Calculated enthalpy of reaction CeO+ # Enthalpy of formation: -208.9 kcal/mol - -analytic 1.9881e+002 3.1302e-002 -1.4331e+004 -7.1323e+001 -2.2368e+002 + -analytic 1.9881e+2 3.1302e-2 -1.4331e+4 -7.1323e+1 -2.2368e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Ce+++ = CeO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -38.758 - -delta_H 308.503 kJ/mol # Calculated enthalpy of reaction CeO2- +2 H2O + Ce+3 = CeO2- + 4 H+ + -llnl_gamma 4 + log_k -38.758 + -delta_H 308.503 kJ/mol # Calculated enthalpy of reaction CeO2- # Enthalpy of formation: -230.3 kcal/mol - -analytic 1.0059e+002 3.4824e-003 -1.5873e+004 -3.3056e+001 -4.7656e+005 + -analytic 1.0059e+2 3.4824e-3 -1.5873e+4 -3.3056e+1 -4.7656e+5 # -Range: 0-300 -2.0000 H2O + 1.0000 Ce+++ = CeO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -26.1503 - -delta_H 228.17 kJ/mol # Calculated enthalpy of reaction CeO2H +2 H2O + Ce+3 = CeO2H + 3 H+ + -llnl_gamma 3 + log_k -26.1503 + -delta_H 228.17 kJ/mol # Calculated enthalpy of reaction CeO2H # Enthalpy of formation: -249.5 kcal/mol - -analytic 3.5650e+002 4.6708e-002 -2.4320e+004 -1.2731e+002 -3.7959e+002 + -analytic 3.565e+2 4.6708e-2 -2.432e+4 -1.2731e+2 -3.7959e+2 # -Range: 0-300 -1.0000 H2O + 1.0000 Ce+++ = CeOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -8.4206 - -delta_H 73.2911 kJ/mol # Calculated enthalpy of reaction CeOH+2 +H2O + Ce+3 = CeOH+2 + H+ + -llnl_gamma 4.5 + log_k -8.4206 + -delta_H 73.2911 kJ/mol # Calculated enthalpy of reaction CeOH+2 # Enthalpy of formation: -218.2 kcal/mol - -analytic 7.5809e+001 1.2863e-002 -6.7244e+003 -2.6473e+001 -1.0495e+002 + -analytic 7.5809e+1 1.2863e-2 -6.7244e+3 -2.6473e+1 -1.0495e+2 # -Range: 0-300 -1.0000 H2O + 1.0000 Ce++++ = CeOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k +3.2049 - -delta_H 0 # Not possible to calculate enthalpy of reaction CeOH+3 +H2O + Ce+4 = CeOH+3 + H+ + -llnl_gamma 5 + log_k 3.2049 + -delta_H 0 # Not possible to calculate enthalpy of reaction CeOH+3 # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Ce+++ = CePO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.9718 - -delta_H 0 # Not possible to calculate enthalpy of reaction CePO4 + +HPO4-2 + Ce+3 = CePO4 + H+ + -llnl_gamma 3 + log_k -0.9718 + -delta_H 0 # Not possible to calculate enthalpy of reaction CePO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Ce+++ = CeSO4+ - -llnl_gamma 4.0 - log_k -3.687 - -delta_H 19.2464 kJ/mol # Calculated enthalpy of reaction CeSO4+ + +SO4-2 + Ce+3 = CeSO4+ + -llnl_gamma 4 + log_k -3.687 + -delta_H 19.2464 kJ/mol # Calculated enthalpy of reaction CeSO4+ # Enthalpy of formation: -380.2 kcal/mol - -analytic 3.0156e+002 8.5149e-002 -1.1025e+004 -1.1866e+002 -1.7213e+002 + -analytic 3.0156e+2 8.5149e-2 -1.1025e+4 -1.1866e+2 -1.7213e+2 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Co++ = Co(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.1468 - -delta_H -22.4262 kJ/mol # Calculated enthalpy of reaction Co(Acetate)2 +2 HAcetate + Co+2 = Co(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -7.1468 + -delta_H -22.4262 kJ/mol # Calculated enthalpy of reaction Co(Acetate)2 # Enthalpy of formation: -251.46 kcal/mol - -analytic -2.0661e+001 2.9014e-003 -2.2146e+003 5.1702e+000 6.4968e+005 + -analytic -2.0661e+1 2.9014e-3 -2.2146e+3 5.1702e+0 6.4968e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Co++ = Co(Acetate)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -11.281 - -delta_H -48.2415 kJ/mol # Calculated enthalpy of reaction Co(Acetate)3- +3 HAcetate + Co+2 = Co(Acetate)3- + 3 H+ + -llnl_gamma 4 + log_k -11.281 + -delta_H -48.2415 kJ/mol # Calculated enthalpy of reaction Co(Acetate)3- # Enthalpy of formation: -373.73 kcal/mol - -analytic 6.3384e+001 -4.0669e-003 -1.4715e+004 -1.9518e+001 2.1524e+006 + -analytic 6.3384e+1 -4.0669e-3 -1.4715e+4 -1.9518e+1 2.1524e+6 # -Range: 0-300 -2.0000 HS- + 1.0000 Co++ = Co(HS)2 - -llnl_gamma 3.0 - log_k +9.0306 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(HS)2 +2 HS- + Co+2 = Co(HS)2 + -llnl_gamma 3 + log_k 9.0306 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(HS)2 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Co++ = Co(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -18.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)2 + +2 H2O + Co+2 = Co(OH)2 + 2 H+ + -llnl_gamma 3 + log_k -18.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)2 # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Co++ = Co(OH)4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -45.7803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)4-2 + +4 H2O + Co+2 = Co(OH)4-2 + 4 H+ + -llnl_gamma 4 + log_k -45.7803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)4-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 2.0000 Co++ = Co2OH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -11.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co2OH+3 + +H2O + 2 Co+2 = Co2OH+3 + H+ + -llnl_gamma 5 + log_k -11.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co2OH+3 # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 4.0000 Co++ = Co4(OH)4++++ +4.0000 H+ - -llnl_gamma 5.5 - log_k -30.3803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co4(OH)4+4 + +4 H2O + 4 Co+2 = Co4(OH)4+4 + 4 H+ + -llnl_gamma 5.5 + log_k -30.3803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co4(OH)4+4 # Enthalpy of formation: -0 kcal/mol - -2.0000 Br- + 1.0000 Co++ = CoBr2 - -llnl_gamma 3.0 - log_k -0.0358 - -delta_H -0.56568 kJ/mol # Calculated enthalpy of reaction CoBr2 + +2 Br- + Co+2 = CoBr2 + -llnl_gamma 3 + log_k -0.0358 + -delta_H -0.56568 kJ/mol # Calculated enthalpy of reaction CoBr2 # Enthalpy of formation: -301.73 kJ/mol - -analytic 5.8731e+000 8.0908e-004 -1.8986e+002 -2.2295e+000 -3.2261e+000 + -analytic 5.8731e+0 8.0908e-4 -1.8986e+2 -2.2295e+0 -3.2261e+0 # -Range: 0-200 -1.0000 Co++ + 1.0000 HAcetate = CoAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.2985 - -delta_H -8.70272 kJ/mol # Calculated enthalpy of reaction CoAcetate+ +Co+2 + HAcetate = CoAcetate+ + H+ + -llnl_gamma 4 + log_k -3.2985 + -delta_H -8.70272 kJ/mol # Calculated enthalpy of reaction CoAcetate+ # Enthalpy of formation: -132.08 kcal/mol - -analytic -5.4858e+000 1.9147e-003 -1.1292e+003 9.0555e-001 2.8223e+005 + -analytic -5.4858e+0 1.9147e-3 -1.1292e+3 9.0555e-1 2.8223e+5 # -Range: 0-300 -1.0000 Co++ + 1.0000 Cl- = CoCl+ - -llnl_gamma 4.0 - log_k +0.1547 - -delta_H 1.71962 kJ/mol # Calculated enthalpy of reaction CoCl+ +Co+2 + Cl- = CoCl+ + -llnl_gamma 4 + log_k 0.1547 + -delta_H 1.71962 kJ/mol # Calculated enthalpy of reaction CoCl+ # Enthalpy of formation: -53.422 kcal/mol - -analytic 1.5234e+002 5.6958e-002 -3.3258e+003 -6.3849e+001 -5.1942e+001 + -analytic 1.5234e+2 5.6958e-2 -3.3258e+3 -6.3849e+1 -5.1942e+1 # -Range: 0-300 -1.0000 HS- + 1.0000 Co++ = CoHS+ - -llnl_gamma 4.0 - log_k +5.9813 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoHS+ +HS- + Co+2 = CoHS+ + -llnl_gamma 4 + log_k 5.9813 + -delta_H 0 # Not possible to calculate enthalpy of reaction CoHS+ # Enthalpy of formation: -0 kcal/mol - -2.0000 I- + 1.0000 Co++ = CoI2 - -llnl_gamma 3.0 - log_k -0.0944 - -delta_H 3.1774 kJ/mol # Calculated enthalpy of reaction CoI2 + +2 I- + Co+2 = CoI2 + -llnl_gamma 3 + log_k -0.0944 + -delta_H 3.1774 kJ/mol # Calculated enthalpy of reaction CoI2 # Enthalpy of formation: -168.785 kJ/mol - -analytic 3.6029e+001 1.0128e-002 -1.1219e+003 -1.4301e+001 -1.9064e+001 + -analytic 3.6029e+1 1.0128e-2 -1.1219e+3 -1.4301e+1 -1.9064e+1 # -Range: 0-200 -1.0000 NO3- + 1.0000 Co++ = CoNO3+ - -llnl_gamma 4.0 - log_k +0.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoNO3+ +NO3- + Co+2 = CoNO3+ + -llnl_gamma 4 + log_k 0.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction CoNO3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Co++ + S2O3-- = CoS2O3 - -llnl_gamma 3.0 - log_k 0.8063 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoS2O3 + +Co+2 + S2O3-2 = CoS2O3 + -llnl_gamma 3 + log_k 0.8063 + -delta_H 0 # Not possible to calculate enthalpy of reaction CoS2O3 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Co++ = CoSO4 - -llnl_gamma 3.0 - log_k +0.0436 - -delta_H 0.3842 kJ/mol # Calculated enthalpy of reaction CoSO4 + +SO4-2 + Co+2 = CoSO4 + -llnl_gamma 3 + log_k 0.0436 + -delta_H 0.3842 kJ/mol # Calculated enthalpy of reaction CoSO4 # Enthalpy of formation: -967.375 kJ/mol - -analytic 2.4606e+000 1.0086e-003 -6.1450e+001 -1.0148e+000 -1.0444e+000 + -analytic 2.4606e+0 1.0086e-3 -6.145e+1 -1.0148e+0 -1.0444e+0 # -Range: 0-200 -1.0000 SeO4-- + 1.0000 Co++ = CoSeO4 - -llnl_gamma 3.0 - log_k +2.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoSeO4 +SeO4-2 + Co+2 = CoSeO4 + -llnl_gamma 3 + log_k 2.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction CoSeO4 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Cr+++ = Cr(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -9.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)2+ + +2 H2O + Cr+3 = Cr(OH)2+ + 2 H+ + -llnl_gamma 4 + log_k -9.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)2+ # Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Cr+++ = Cr(OH)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -18 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)3 + +3 H2O + Cr+3 = Cr(OH)3 + 3 H+ + -llnl_gamma 3 + log_k -18 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)3 # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Cr+++ = Cr(OH)4- +4.0000 H+ - -llnl_gamma 4.0 - log_k -27.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)4- + +4 H2O + Cr+3 = Cr(OH)4- + 4 H+ + -llnl_gamma 4 + log_k -27.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)4- # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 2.0000 Cr+++ = Cr2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -5.06 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr2(OH)2+4 + +2 H2O + 2 Cr+3 = Cr2(OH)2+4 + 2 H+ + -llnl_gamma 5.5 + log_k -5.06 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr2(OH)2+4 # Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 2.0000 CrO4-- = Cr2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +14.5192 - -delta_H -13.8783 kJ/mol # Calculated enthalpy of reaction Cr2O7-2 + +2 H+ + 2 CrO4-2 = Cr2O7-2 + H2O + -llnl_gamma 4 + log_k 14.5192 + -delta_H -13.8783 kJ/mol # Calculated enthalpy of reaction Cr2O7-2 # Enthalpy of formation: -356.2 kcal/mol - -analytic 1.3749e+002 6.5773e-002 -7.9472e+002 -5.6525e+001 -1.2441e+001 + -analytic 1.3749e+2 6.5773e-2 -7.9472e+2 -5.6525e+1 -1.2441e+1 # -Range: 0-300 -4.0000 H2O + 3.0000 Cr+++ = Cr3(OH)4+5 +4.0000 H+ - -llnl_gamma 6.0 - log_k -8.15 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr3(OH)4+5 +4 H2O + 3 Cr+3 = Cr3(OH)4+5 + 4 H+ + -llnl_gamma 6 + log_k -8.15 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr3(OH)4+5 # Enthalpy of formation: -0 kcal/mol - -1.0000 Cr+++ + 1.0000 Br- = CrBr++ - -llnl_gamma 4.5 - log_k -2.7813 - -delta_H 33.564 kJ/mol # Calculated enthalpy of reaction CrBr+2 + +Cr+3 + Br- = CrBr+2 + -llnl_gamma 4.5 + log_k -2.7813 + -delta_H 33.564 kJ/mol # Calculated enthalpy of reaction CrBr+2 # Enthalpy of formation: -78.018 kcal/mol - -analytic 9.4384e+001 3.4704e-002 -3.6750e+003 -3.8461e+001 -5.7373e+001 + -analytic 9.4384e+1 3.4704e-2 -3.675e+3 -3.8461e+1 -5.7373e+1 # -Range: 0-300 -1.0000 Cr+++ + 1.0000 Cl- = CrCl++ - -llnl_gamma 4.5 - log_k -0.149 - -delta_H 0 # Not possible to calculate enthalpy of reaction CrCl+2 +Cr+3 + Cl- = CrCl+2 + -llnl_gamma 4.5 + log_k -0.149 + -delta_H 0 # Not possible to calculate enthalpy of reaction CrCl+2 # Enthalpy of formation: -0 kcal/mol - -2.0000 Cl- + 1.0000 Cr+++ = CrCl2+ - -llnl_gamma 4.0 - log_k +0.1596 - -delta_H 41.2919 kJ/mol # Calculated enthalpy of reaction CrCl2+ + +2 Cl- + Cr+3 = CrCl2+ + -llnl_gamma 4 + log_k 0.1596 + -delta_H 41.2919 kJ/mol # Calculated enthalpy of reaction CrCl2+ # Enthalpy of formation: -126.997 kcal/mol - -analytic 2.0114e+002 7.3878e-002 -6.2218e+003 -8.1677e+001 -9.7144e+001 + -analytic 2.0114e+2 7.3878e-2 -6.2218e+3 -8.1677e+1 -9.7144e+1 # -Range: 0-300 -1.0000 Cl- + 2.000 H+ + 1.0000 CrO4-- = CrO3Cl- + 1.0000 H2O - -llnl_gamma 4.0 - log_k 7.5270 - -delta_H 0 # Not possible to calculate enthalpy of reaction CrO3Cl- +Cl- + 2 H+ + CrO4-2 = CrO3Cl- + H2O + -llnl_gamma 4 + log_k 7.527 + -delta_H 0 # Not possible to calculate enthalpy of reaction CrO3Cl- # Enthalpy of formation: -0 kcal/mol - -analytic 2.7423e+002 1.0013e-001 -6.0072e+003 -1.1168e+002 -9.3817e+001 + -analytic 2.7423e+2 1.0013e-1 -6.0072e+3 -1.1168e+2 -9.3817e+1 # -Range: 0-300 -1.0000 H2O + 1.0000 Cr+++ = CrOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -4 - -delta_H 0 # Not possible to calculate enthalpy of reaction CrOH+2 +H2O + Cr+3 = CrOH+2 + H+ + -llnl_gamma 4.5 + log_k -4 + -delta_H 0 # Not possible to calculate enthalpy of reaction CrOH+2 # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Cs+ = Cs(Acetate)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -9.771 - -delta_H 1.2552 kJ/mol # Calculated enthalpy of reaction Cs(Acetate)2- + +2 HAcetate + Cs+ = Cs(Acetate)2- + 2 H+ + -llnl_gamma 4 + log_k -9.771 + -delta_H 1.2552 kJ/mol # Calculated enthalpy of reaction Cs(Acetate)2- # Enthalpy of formation: -293.57 kcal/mol - -analytic -1.6956e+002 -4.0378e-002 4.5773e+003 6.3241e+001 7.1475e+001 + -analytic -1.6956e+2 -4.0378e-2 4.5773e+3 6.3241e+1 7.1475e+1 # -Range: 0-300 -1.0000 Cs+ + 1.0000 Br- = CsBr - -llnl_gamma 3.0 - log_k -0.2712 - -delta_H 10.9621 kJ/mol # Calculated enthalpy of reaction CsBr +Cs+ + Br- = CsBr + -llnl_gamma 3 + log_k -0.2712 + -delta_H 10.9621 kJ/mol # Calculated enthalpy of reaction CsBr # Enthalpy of formation: -88.09 kcal/mol - -analytic 1.2064e+002 3.2000e-002 -3.8770e+003 -4.7458e+001 -6.0533e+001 + -analytic 1.2064e+2 3.2e-2 -3.877e+3 -4.7458e+1 -6.0533e+1 # -Range: 0-300 -1.0000 Cs+ + 1.0000 HAcetate = CsAcetate +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.7352 - -delta_H 6.0668 kJ/mol # Calculated enthalpy of reaction CsAcetate +Cs+ + HAcetate = CsAcetate + H+ + -llnl_gamma 3 + log_k -4.7352 + -delta_H 6.0668 kJ/mol # Calculated enthalpy of reaction CsAcetate # Enthalpy of formation: -176.32 kcal/mol - -analytic 2.4280e+001 -2.8642e-003 -3.1339e+003 -8.1616e+000 2.2684e+005 + -analytic 2.428e+1 -2.8642e-3 -3.1339e+3 -8.1616e+0 2.2684e+5 # -Range: 0-300 -1.0000 Cs+ + 1.0000 Cl- = CsCl - -llnl_gamma 3.0 - log_k -0.1385 - -delta_H 2.73215 kJ/mol # Calculated enthalpy of reaction CsCl +Cs+ + Cl- = CsCl + -llnl_gamma 3 + log_k -0.1385 + -delta_H 2.73215 kJ/mol # Calculated enthalpy of reaction CsCl # Enthalpy of formation: -100.95 kcal/mol - -analytic 1.2472e+002 3.3730e-002 -3.9130e+003 -4.9212e+001 -6.1096e+001 + -analytic 1.2472e+2 3.373e-2 -3.913e+3 -4.9212e+1 -6.1096e+1 # -Range: 0-300 -1.0000 I- + 1.0000 Cs+ = CsI - -llnl_gamma 3.0 - log_k +0.2639 - -delta_H -6.56888 kJ/mol # Calculated enthalpy of reaction CsI +I- + Cs+ = CsI + -llnl_gamma 3 + log_k 0.2639 + -delta_H -6.56888 kJ/mol # Calculated enthalpy of reaction CsI # Enthalpy of formation: -76.84 kcal/mol - -analytic 1.1555e+002 3.1419e-002 -3.3496e+003 -4.5828e+001 -5.2302e+001 + -analytic 1.1555e+2 3.1419e-2 -3.3496e+3 -4.5828e+1 -5.2302e+1 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Cu++ = Cu(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -5.8824 - -delta_H -25.899 kJ/mol # Calculated enthalpy of reaction Cu(Acetate)2 +2 HAcetate + Cu+2 = Cu(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -5.8824 + -delta_H -25.899 kJ/mol # Calculated enthalpy of reaction Cu(Acetate)2 # Enthalpy of formation: -222.69 kcal/mol - -analytic -2.6689e+001 1.8048e-003 -1.8244e+003 7.7008e+000 6.5408e+005 + -analytic -2.6689e+1 1.8048e-3 -1.8244e+3 7.7008e+0 6.5408e+5 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Cu+ = Cu(Acetate)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -9.2139 - -delta_H -19.5476 kJ/mol # Calculated enthalpy of reaction Cu(Acetate)2- +2 HAcetate + Cu+ = Cu(Acetate)2- + 2 H+ + -llnl_gamma 4 + log_k -9.2139 + -delta_H -19.5476 kJ/mol # Calculated enthalpy of reaction Cu(Acetate)2- # Enthalpy of formation: -219.74 kcal/mol - -analytic -3.2712e+002 -5.9087e-002 1.1386e+004 1.2017e+002 1.7777e+002 + -analytic -3.2712e+2 -5.9087e-2 1.1386e+4 1.2017e+2 1.7777e+2 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Cu++ = Cu(Acetate)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -9.3788 - -delta_H -53.2205 kJ/mol # Calculated enthalpy of reaction Cu(Acetate)3- +3 HAcetate + Cu+2 = Cu(Acetate)3- + 3 H+ + -llnl_gamma 4 + log_k -9.3788 + -delta_H -53.2205 kJ/mol # Calculated enthalpy of reaction Cu(Acetate)3- # Enthalpy of formation: -345.32 kcal/mol - -analytic 3.9475e+001 -6.2867e-003 -1.3233e+004 -1.0643e+001 2.1121e+006 + -analytic 3.9475e+1 -6.2867e-3 -1.3233e+4 -1.0643e+1 2.1121e+6 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Cu++ = Cu(CO3)2-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -10.4757 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cu(CO3)2-2 +2 HCO3- + Cu+2 = Cu(CO3)2-2 + 2 H+ + -llnl_gamma 4 + log_k -10.4757 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cu(CO3)2-2 # Enthalpy of formation: -0 kcal/mol - -2.0000 NH3 + 1.0000 Cu++ = Cu(NH3)2++ - -llnl_gamma 4.5 - log_k +7.4512 - -delta_H -45.1269 kJ/mol # Calculated enthalpy of reaction Cu(NH3)2+2 + +2 NH3 + Cu+2 = Cu(NH3)2+2 + -llnl_gamma 4.5 + log_k 7.4512 + -delta_H -45.1269 kJ/mol # Calculated enthalpy of reaction Cu(NH3)2+2 # Enthalpy of formation: -142.112 kJ/mol - -analytic 1.1526e+002 4.8192e-003 -2.5139e+003 -4.0733e+001 -3.9261e+001 + -analytic 1.1526e+2 4.8192e-3 -2.5139e+3 -4.0733e+1 -3.9261e+1 # -Range: 0-300 -3.0000 NH3 + 1.0000 Cu++ = Cu(NH3)3++ - -llnl_gamma 4.5 - log_k +10.2719 - -delta_H -67.2779 kJ/mol # Calculated enthalpy of reaction Cu(NH3)3+2 +3 NH3 + Cu+2 = Cu(NH3)3+2 + -llnl_gamma 4.5 + log_k 10.2719 + -delta_H -67.2779 kJ/mol # Calculated enthalpy of reaction Cu(NH3)3+2 # Enthalpy of formation: -245.6 kJ/mol - -analytic 1.3945e+002 -3.8236e-004 -2.8137e+003 -4.8336e+001 -4.3946e+001 + -analytic 1.3945e+2 -3.8236e-4 -2.8137e+3 -4.8336e+1 -4.3946e+1 # -Range: 0-300 -2.0000 NO2- + 1.0000 Cu++ = Cu(NO2)2 - -llnl_gamma 3.0 - log_k +3.0300 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cu(NO2)2 +2 NO2- + Cu+2 = Cu(NO2)2 + -llnl_gamma 3 + log_k 3.03 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cu(NO2)2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Cu+ + 1.0000 HAcetate = CuAcetate +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.4274 - -delta_H -4.19237 kJ/mol # Calculated enthalpy of reaction CuAcetate + +Cu+ + HAcetate = CuAcetate + H+ + -llnl_gamma 3 + log_k -4.4274 + -delta_H -4.19237 kJ/mol # Calculated enthalpy of reaction CuAcetate # Enthalpy of formation: -99.97 kcal/mol - -analytic 6.3784e+000 -4.5464e-004 -1.9995e+003 -2.8359e+000 2.7224e+005 + -analytic 6.3784e+0 -4.5464e-4 -1.9995e+3 -2.8359e+0 2.7224e+5 # -Range: 0-300 -1.0000 Cu++ + 1.0000 HAcetate = CuAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.5252 - -delta_H -11.3805 kJ/mol # Calculated enthalpy of reaction CuAcetate+ +Cu+2 + HAcetate = CuAcetate+ + H+ + -llnl_gamma 4 + log_k -2.5252 + -delta_H -11.3805 kJ/mol # Calculated enthalpy of reaction CuAcetate+ # Enthalpy of formation: -103.12 kcal/mol - -analytic -1.4930e+001 5.1278e-004 -3.4874e+002 4.3605e+000 2.3504e+005 + -analytic -1.493e+1 5.1278e-4 -3.4874e+2 4.3605e+0 2.3504e+5 # -Range: 0-300 -2.0000 H2O + 1.0000 HCO3- + 1.0000 Cu++ = CuCO3(OH)2-- +3.0000 H+ - -llnl_gamma 4.0 - log_k -23.444 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCO3(OH)2-2 +2 H2O + HCO3- + Cu+2 = CuCO3(OH)2-2 + 3 H+ + -llnl_gamma 4 + log_k -23.444 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCO3(OH)2-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 HCO3- + 1.0000 Cu++ = CuCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -3.3735 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCO3 + +HCO3- + Cu+2 = CuCO3 + H+ + -llnl_gamma 3 + log_k -3.3735 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCO3 # Enthalpy of formation: -0 kcal/mol - -1.0000 Cu++ + 1.0000 Cl- = CuCl+ - -llnl_gamma 4.0 - log_k +0.4370 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl+ + +Cu+2 + Cl- = CuCl+ + -llnl_gamma 4 + log_k 0.437 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl+ # Enthalpy of formation: -0 kcal/mol - -2.0000 Cl- + 1.0000 Cu++ = CuCl2 - -llnl_gamma 3.0 - log_k +0.1585 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl2 + +2 Cl- + Cu+2 = CuCl2 + -llnl_gamma 3 + log_k 0.1585 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl2 # Enthalpy of formation: -0 kcal/mol - -2.0000 Cl- + 1.0000 Cu+ = CuCl2- - -llnl_gamma 4.0 - log_k +4.8212 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl2- + +2 Cl- + Cu+ = CuCl2- + -llnl_gamma 4 + log_k 4.8212 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl2- # Enthalpy of formation: -0 kcal/mol - -3.0000 Cl- + 1.0000 Cu+ = CuCl3-- - -llnl_gamma 4.0 - log_k +5.6289 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl3-2 + +3 Cl- + Cu+ = CuCl3-2 + -llnl_gamma 4 + log_k 5.6289 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl3-2 # Enthalpy of formation: -0 kcal/mol - -4.0000 Cl- + 1.0000 Cu++ = CuCl4-- - -llnl_gamma 4.0 - log_k -4.5681 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl4-2 + +4 Cl- + Cu+2 = CuCl4-2 + -llnl_gamma 4 + log_k -4.5681 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl4-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 F- + 1.0000 Cu++ = CuF+ - -llnl_gamma 4.0 - log_k +1.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuF+ + +F- + Cu+2 = CuF+ + -llnl_gamma 4 + log_k 1.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuF+ # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Cu++ = CuH2PO4+ - -llnl_gamma 4.0 - log_k +8.9654 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuH2PO4+ + +HPO4-2 + H+ + Cu+2 = CuH2PO4+ + -llnl_gamma 4 + log_k 8.9654 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuH2PO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Cu++ = CuHPO4 - -llnl_gamma 3.0 - log_k +4.0600 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuHPO4 + +HPO4-2 + Cu+2 = CuHPO4 + -llnl_gamma 3 + log_k 4.06 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuHPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 NH3 + 1.0000 Cu++ = CuNH3++ - -llnl_gamma 4.5 - log_k +4.0400 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuNH3+2 + +NH3 + Cu+2 = CuNH3+2 + -llnl_gamma 4.5 + log_k 4.04 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuNH3+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 NO2- + 1.0000 Cu++ = CuNO2+ - -llnl_gamma 4.0 - log_k +2.0200 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuNO2+ + +NO2- + Cu+2 = CuNO2+ + -llnl_gamma 4 + log_k 2.02 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuNO2+ # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Cu++ = CuO2-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -39.4497 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuO2-2 + +2 H2O + Cu+2 = CuO2-2 + 4 H+ + -llnl_gamma 4 + log_k -39.4497 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuO2-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Cu++ = CuOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -7.2875 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuOH+ + +H2O + Cu+2 = CuOH+ + H+ + -llnl_gamma 4 + log_k -7.2875 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuOH+ # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Cu++ = CuPO4- +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.4718 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuPO4- + +HPO4-2 + Cu+2 = CuPO4- + H+ + -llnl_gamma 4 + log_k -2.4718 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuPO4- # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Cu++ = CuSO4 - -llnl_gamma 0.0 - log_k +2.3600 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuSO4 + +SO4-2 + Cu+2 = CuSO4 + -llnl_gamma 0 + log_k 2.36 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuSO4 # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Dy+++ = Dy(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9625 - -delta_H -29.3298 kJ/mol # Calculated enthalpy of reaction Dy(Acetate)2+ + +2 HAcetate + Dy+3 = Dy(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -4.9625 + -delta_H -29.3298 kJ/mol # Calculated enthalpy of reaction Dy(Acetate)2+ # Enthalpy of formation: -405.71 kcal/mol - -analytic -2.7249e+001 2.7507e-003 -1.7500e+003 7.9356e+000 6.8668e+005 + -analytic -2.7249e+1 2.7507e-3 -1.75e+3 7.9356e+0 6.8668e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Dy+++ = Dy(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3489 - -delta_H -49.4549 kJ/mol # Calculated enthalpy of reaction Dy(Acetate)3 +3 HAcetate + Dy+3 = Dy(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -8.3489 + -delta_H -49.4549 kJ/mol # Calculated enthalpy of reaction Dy(Acetate)3 # Enthalpy of formation: -526.62 kcal/mol - -analytic -2.4199e+001 6.2065e-003 -2.8937e+003 5.0176e+000 1.0069e+006 + -analytic -2.4199e+1 6.2065e-3 -2.8937e+3 5.0176e+0 1.0069e+6 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Dy+++ = Dy(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.4576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(CO3)2- +2 HCO3- + Dy+3 = Dy(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -7.4576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Dy+++ = Dy(HPO4)2- - -llnl_gamma 4.0 - log_k +9.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(HPO4)2- + +2 HPO4-2 + Dy+3 = Dy(HPO4)2- + -llnl_gamma 4 + log_k 9.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(HPO4)2- # Enthalpy of formation: -0 kcal/mol - + # Redundant with DyO2- #4.0000 H2O + 1.0000 Dy+++ = Dy(OH)4- +4.0000 H+ -# -llnl_gamma 4.0 +# -llnl_gamma 4.0 # log_k -33.4803 # -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)4- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Dy+++ = Dy(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.4437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(PO4)2-3 + +2 HPO4-2 + Dy+3 = Dy(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -3.4437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Dy+++ = Dy(SO4)2- - -llnl_gamma 4.0 - log_k +5.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(SO4)2- + +2 SO4-2 + Dy+3 = Dy(SO4)2- + -llnl_gamma 4 + log_k 5 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(SO4)2- # Enthalpy of formation: -0 kcal/mol - -1.0000 Dy+++ + 1.0000 HAcetate = DyAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1037 - -delta_H -14.8532 kJ/mol # Calculated enthalpy of reaction DyAcetate+2 + +Dy+3 + HAcetate = DyAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -2.1037 + -delta_H -14.8532 kJ/mol # Calculated enthalpy of reaction DyAcetate+2 # Enthalpy of formation: -286.15 kcal/mol - -analytic -1.3635e+001 1.7329e-003 -9.4636e+002 4.0900e+000 3.6282e+005 + -analytic -1.3635e+1 1.7329e-3 -9.4636e+2 4.09e+0 3.6282e+5 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Dy+++ = DyCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.3324 - -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction DyCO3+ +HCO3- + Dy+3 = DyCO3+ + H+ + -llnl_gamma 4 + log_k -2.3324 + -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction DyCO3+ # Enthalpy of formation: -310.1 kcal/mol - -analytic 2.3742e+002 5.4342e-002 -6.9953e+003 -9.3949e+001 -1.0922e+002 + -analytic 2.3742e+2 5.4342e-2 -6.9953e+3 -9.3949e+1 -1.0922e+2 # -Range: 0-300 -1.0000 Dy+++ + 1.0000 Cl- = DyCl++ - -llnl_gamma 4.5 - log_k +0.2353 - -delta_H 13.5269 kJ/mol # Calculated enthalpy of reaction DyCl+2 +Dy+3 + Cl- = DyCl+2 + -llnl_gamma 4.5 + log_k 0.2353 + -delta_H 13.5269 kJ/mol # Calculated enthalpy of reaction DyCl+2 # Enthalpy of formation: -203.2 kcal/mol - -analytic 6.9134e+001 3.7129e-002 -1.3839e+003 -3.0432e+001 -2.1615e+001 + -analytic 6.9134e+1 3.7129e-2 -1.3839e+3 -3.0432e+1 -2.1615e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Dy+++ = DyCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 17.4305 kJ/mol # Calculated enthalpy of reaction DyCl2+ +2 Cl- + Dy+3 = DyCl2+ + -llnl_gamma 4 + log_k -0.0425 + -delta_H 17.4305 kJ/mol # Calculated enthalpy of reaction DyCl2+ # Enthalpy of formation: -242.2 kcal/mol - -analytic 1.8868e+002 7.7901e-002 -4.3528e+003 -7.9735e+001 -6.7978e+001 + -analytic 1.8868e+2 7.7901e-2 -4.3528e+3 -7.9735e+1 -6.7978e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Dy+++ = DyCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 8.78222 kJ/mol # Calculated enthalpy of reaction DyCl3 +3 Cl- + Dy+3 = DyCl3 + -llnl_gamma 3 + log_k -0.4669 + -delta_H 8.78222 kJ/mol # Calculated enthalpy of reaction DyCl3 # Enthalpy of formation: -284.2 kcal/mol - -analytic 3.6761e+002 1.2471e-001 -9.0651e+003 -1.5147e+002 -1.4156e+002 + -analytic 3.6761e+2 1.2471e-1 -9.0651e+3 -1.5147e+2 -1.4156e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 Dy+++ = DyCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -14.0917 kJ/mol # Calculated enthalpy of reaction DyCl4- +4 Cl- + Dy+3 = DyCl4- + -llnl_gamma 4 + log_k -0.8913 + -delta_H -14.0917 kJ/mol # Calculated enthalpy of reaction DyCl4- # Enthalpy of formation: -329.6 kcal/mol - -analytic 3.9134e+002 1.2288e-001 -9.2351e+003 -1.6078e+002 -1.4422e+002 + -analytic 3.9134e+2 1.2288e-1 -9.2351e+3 -1.6078e+2 -1.4422e+2 # -Range: 0-300 -1.0000 F- + 1.0000 Dy+++ = DyF++ - -llnl_gamma 4.5 - log_k +4.6619 - -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction DyF+2 +F- + Dy+3 = DyF+2 + -llnl_gamma 4.5 + log_k 4.6619 + -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction DyF+2 # Enthalpy of formation: -241.1 kcal/mol - -analytic 9.1120e+001 4.1193e-002 -2.3302e+003 -3.6734e+001 -3.6388e+001 + -analytic 9.112e+1 4.1193e-2 -2.3302e+3 -3.6734e+1 -3.6388e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Dy+++ = DyF2+ - -llnl_gamma 4.0 - log_k +8.1510 - -delta_H 12.552 kJ/mol # Calculated enthalpy of reaction DyF2+ +2 F- + Dy+3 = DyF2+ + -llnl_gamma 4 + log_k 8.151 + -delta_H 12.552 kJ/mol # Calculated enthalpy of reaction DyF2+ # Enthalpy of formation: -323.8 kcal/mol - -analytic 2.1325e+002 8.2483e-002 -4.5864e+003 -8.6587e+001 -7.1629e+001 + -analytic 2.1325e+2 8.2483e-2 -4.5864e+3 -8.6587e+1 -7.1629e+1 # -Range: 0-300 -3.0000 F- + 1.0000 Dy+++ = DyF3 - -llnl_gamma 3.0 - log_k +10.7605 - -delta_H -11.9244 kJ/mol # Calculated enthalpy of reaction DyF3 +3 F- + Dy+3 = DyF3 + -llnl_gamma 3 + log_k 10.7605 + -delta_H -11.9244 kJ/mol # Calculated enthalpy of reaction DyF3 # Enthalpy of formation: -409.8 kcal/mol - -analytic 3.9766e+002 1.3143e-001 -8.5607e+003 -1.6056e+002 -1.3370e+002 + -analytic 3.9766e+2 1.3143e-1 -8.5607e+3 -1.6056e+2 -1.337e+2 # -Range: 0-300 -4.0000 F- + 1.0000 Dy+++ = DyF4- - -llnl_gamma 4.0 - log_k +12.8569 - -delta_H -57.3208 kJ/mol # Calculated enthalpy of reaction DyF4- +4 F- + Dy+3 = DyF4- + -llnl_gamma 4 + log_k 12.8569 + -delta_H -57.3208 kJ/mol # Calculated enthalpy of reaction DyF4- # Enthalpy of formation: -500.8 kcal/mol - -analytic 4.1672e+002 1.2922e-001 -7.4445e+003 -1.6867e+002 -1.1629e+002 + -analytic 4.1672e+2 1.2922e-1 -7.4445e+3 -1.6867e+2 -1.1629e+2 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Dy+++ = DyH2PO4++ - -llnl_gamma 4.5 - log_k +9.3751 - -delta_H -18.3468 kJ/mol # Calculated enthalpy of reaction DyH2PO4+2 +HPO4-2 + H+ + Dy+3 = DyH2PO4+2 + -llnl_gamma 4.5 + log_k 9.3751 + -delta_H -18.3468 kJ/mol # Calculated enthalpy of reaction DyH2PO4+2 # Enthalpy of formation: -479.7 kcal/mol - -analytic 9.8183e+001 6.2578e-002 7.1784e+002 -4.4383e+001 1.1172e+001 + -analytic 9.8183e+1 6.2578e-2 7.1784e+2 -4.4383e+1 1.1172e+1 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Dy+++ = DyHCO3++ - -llnl_gamma 4.5 - log_k +1.6991 - -delta_H 7.10443 kJ/mol # Calculated enthalpy of reaction DyHCO3+2 +HCO3- + Dy+3 = DyHCO3+2 + -llnl_gamma 4.5 + log_k 1.6991 + -delta_H 7.10443 kJ/mol # Calculated enthalpy of reaction DyHCO3+2 # Enthalpy of formation: -329.7 kcal/mol - -analytic 2.8465e+001 3.0703e-002 3.9229e+002 -1.5036e+001 6.1127e+000 + -analytic 2.8465e+1 3.0703e-2 3.9229e+2 -1.5036e+1 6.1127e+0 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 Dy+++ = DyHPO4+ - -llnl_gamma 4.0 - log_k +5.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction DyHPO4+ +HPO4-2 + Dy+3 = DyHPO4+ + -llnl_gamma 4 + log_k 5.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction DyHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Dy+++ = DyNO3++ - -llnl_gamma 4.5 - log_k +0.1415 - -delta_H -30.4219 kJ/mol # Calculated enthalpy of reaction DyNO3+2 + +NO3- + Dy+3 = DyNO3+2 + -llnl_gamma 4.5 + log_k 0.1415 + -delta_H -30.4219 kJ/mol # Calculated enthalpy of reaction DyNO3+2 # Enthalpy of formation: -223.2 kcal/mol - -analytic 6.4353e+000 2.4556e-002 2.5866e+003 -8.9975e+000 4.0359e+001 + -analytic 6.4353e+0 2.4556e-2 2.5866e+3 -8.9975e+0 4.0359e+1 # -Range: 0-300 -1.0000 H2O + 1.0000 Dy+++ = DyO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.1171 - -delta_H 108.018 kJ/mol # Calculated enthalpy of reaction DyO+ +H2O + Dy+3 = DyO+ + 2 H+ + -llnl_gamma 4 + log_k -16.1171 + -delta_H 108.018 kJ/mol # Calculated enthalpy of reaction DyO+ # Enthalpy of formation: -209 kcal/mol - -analytic 1.9069e+002 3.0358e-002 -1.3796e+004 -6.8532e+001 -2.1532e+002 + -analytic 1.9069e+2 3.0358e-2 -1.3796e+4 -6.8532e+1 -2.1532e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Dy+++ = DyO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -33.4804 - -delta_H 273.776 kJ/mol # Calculated enthalpy of reaction DyO2- +2 H2O + Dy+3 = DyO2- + 4 H+ + -llnl_gamma 4 + log_k -33.4804 + -delta_H 273.776 kJ/mol # Calculated enthalpy of reaction DyO2- # Enthalpy of formation: -237.7 kcal/mol - -analytic 7.7395e+001 4.4204e-004 -1.3570e+004 -2.4546e+001 -4.2320e+005 + -analytic 7.7395e+1 4.4204e-4 -1.357e+4 -2.4546e+1 -4.232e+5 # -Range: 0-300 -2.0000 H2O + 1.0000 Dy+++ = DyO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -24.8309 - -delta_H 217.71 kJ/mol # Calculated enthalpy of reaction DyO2H +2 H2O + Dy+3 = DyO2H + 3 H+ + -llnl_gamma 3 + log_k -24.8309 + -delta_H 217.71 kJ/mol # Calculated enthalpy of reaction DyO2H # Enthalpy of formation: -251.1 kcal/mol - -analytic 3.3576e+002 4.6004e-002 -2.2868e+004 -1.2027e+002 -3.5693e+002 + -analytic 3.3576e+2 4.6004e-2 -2.2868e+4 -1.2027e+2 -3.5693e+2 # -Range: 0-300 -1.0000 H2O + 1.0000 Dy+++ = DyOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.8342 - -delta_H 76.6383 kJ/mol # Calculated enthalpy of reaction DyOH+2 +H2O + Dy+3 = DyOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.8342 + -delta_H 76.6383 kJ/mol # Calculated enthalpy of reaction DyOH+2 # Enthalpy of formation: -216.5 kcal/mol - -analytic 7.0856e+001 1.2473e-002 -6.2419e+003 -2.4841e+001 -9.7420e+001 + -analytic 7.0856e+1 1.2473e-2 -6.2419e+3 -2.4841e+1 -9.742e+1 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 Dy+++ = DyPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.1782 - -delta_H 0 # Not possible to calculate enthalpy of reaction DyPO4 +HPO4-2 + Dy+3 = DyPO4 + H+ + -llnl_gamma 3 + log_k 0.1782 + -delta_H 0 # Not possible to calculate enthalpy of reaction DyPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Dy+++ = DySO4+ - -llnl_gamma 4.0 - log_k +3.6430 - -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction DySO4+ + +SO4-2 + Dy+3 = DySO4+ + -llnl_gamma 4 + log_k 3.643 + -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction DySO4+ # Enthalpy of formation: -379 kcal/mol - -analytic 3.0672e+002 8.6459e-002 -9.0386e+003 -1.2063e+002 -1.4113e+002 + -analytic 3.0672e+2 8.6459e-2 -9.0386e+3 -1.2063e+2 -1.4113e+2 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Er+++ = Er(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9844 - -delta_H -32.8026 kJ/mol # Calculated enthalpy of reaction Er(Acetate)2+ +2 HAcetate + Er+3 = Er(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -4.9844 + -delta_H -32.8026 kJ/mol # Calculated enthalpy of reaction Er(Acetate)2+ # Enthalpy of formation: -408.54 kcal/mol - -analytic -3.1458e+001 1.4715e-003 -1.0556e+003 9.1586e+000 6.1669e+005 + -analytic -3.1458e+1 1.4715e-3 -1.0556e+3 9.1586e+0 6.1669e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Er+++ = Er(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3783 - -delta_H -55.187 kJ/mol # Calculated enthalpy of reaction Er(Acetate)3 +3 HAcetate + Er+3 = Er(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -8.3783 + -delta_H -55.187 kJ/mol # Calculated enthalpy of reaction Er(Acetate)3 # Enthalpy of formation: -529.99 kcal/mol - -analytic -2.1575e+001 5.9740e-003 -2.0489e+003 3.3624e+000 8.8933e+005 + -analytic -2.1575e+1 5.974e-3 -2.0489e+3 3.3624e+0 8.8933e+5 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Er+++ = Er(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.2576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(CO3)2- +2 HCO3- + Er+3 = Er(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -7.2576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Er+++ = Er(HPO4)2- - -llnl_gamma 4.0 - log_k +10.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(HPO4)2- + +2 HPO4-2 + Er+3 = Er(HPO4)2- + -llnl_gamma 4 + log_k 10 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(HPO4)2- # Enthalpy of formation: -0 kcal/mol - + # Redundant with ErO2- #4.0000 H2O + 1.0000 Er+++ = Er(OH)4- +4.0000 H+ -# -llnl_gamma 4.0 +# -llnl_gamma 4.0 # log_k -32.5803 # -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)4- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Er+++ = Er(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.2437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(PO4)2-3 + +2 HPO4-2 + Er+3 = Er(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -3.2437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Er+++ = Er(SO4)2- - -llnl_gamma 4.0 - log_k +5.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(SO4)2- + +2 SO4-2 + Er+3 = Er(SO4)2- + -llnl_gamma 4 + log_k 5 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(SO4)2- # Enthalpy of formation: -0 kcal/mol - -1.0000 Er+++ + 1.0000 HAcetate = ErAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1184 - -delta_H -16.4013 kJ/mol # Calculated enthalpy of reaction ErAcetate+2 + +Er+3 + HAcetate = ErAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -2.1184 + -delta_H -16.4013 kJ/mol # Calculated enthalpy of reaction ErAcetate+2 # Enthalpy of formation: -288.52 kcal/mol - -analytic -1.2519e+001 1.5558e-003 -8.5344e+002 3.5918e+000 3.4888e+005 + -analytic -1.2519e+1 1.5558e-3 -8.5344e+2 3.5918e+0 3.4888e+5 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Er+++ = ErCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.1858 - -delta_H 87.0188 kJ/mol # Calculated enthalpy of reaction ErCO3+ +HCO3- + Er+3 = ErCO3+ + H+ + -llnl_gamma 4 + log_k -2.1858 + -delta_H 87.0188 kJ/mol # Calculated enthalpy of reaction ErCO3+ # Enthalpy of formation: -312.6 kcal/mol - -analytic 2.3838e+002 5.4549e-002 -6.9433e+003 -9.4373e+001 -1.0841e+002 + -analytic 2.3838e+2 5.4549e-2 -6.9433e+3 -9.4373e+1 -1.0841e+2 # -Range: 0-300 -1.0000 Er+++ + 1.0000 Cl- = ErCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 12.6901 kJ/mol # Calculated enthalpy of reaction ErCl+2 +Er+3 + Cl- = ErCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 12.6901 kJ/mol # Calculated enthalpy of reaction ErCl+2 # Enthalpy of formation: -205.4 kcal/mol - -analytic 7.4113e+001 3.7462e-002 -1.5300e+003 -3.2257e+001 -2.3896e+001 + -analytic 7.4113e+1 3.7462e-2 -1.53e+3 -3.2257e+1 -2.3896e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Er+++ = ErCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 15.3385 kJ/mol # Calculated enthalpy of reaction ErCl2+ +2 Cl- + Er+3 = ErCl2+ + -llnl_gamma 4 + log_k -0.0425 + -delta_H 15.3385 kJ/mol # Calculated enthalpy of reaction ErCl2+ # Enthalpy of formation: -244.7 kcal/mol - -analytic 2.0259e+002 7.8907e-002 -4.8271e+003 -8.4835e+001 -7.5382e+001 + -analytic 2.0259e+2 7.8907e-2 -4.8271e+3 -8.4835e+1 -7.5382e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Er+++ = ErCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 5.01662 kJ/mol # Calculated enthalpy of reaction ErCl3 +3 Cl- + Er+3 = ErCl3 + -llnl_gamma 3 + log_k -0.4669 + -delta_H 5.01662 kJ/mol # Calculated enthalpy of reaction ErCl3 # Enthalpy of formation: -287.1 kcal/mol - -analytic 3.9721e+002 1.2757e-001 -1.0045e+004 -1.6244e+002 -1.5686e+002 + -analytic 3.9721e+2 1.2757e-1 -1.0045e+4 -1.6244e+2 -1.5686e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 Er+++ = ErCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -20.7861 kJ/mol # Calculated enthalpy of reaction ErCl4- +4 Cl- + Er+3 = ErCl4- + -llnl_gamma 4 + log_k -0.8913 + -delta_H -20.7861 kJ/mol # Calculated enthalpy of reaction ErCl4- # Enthalpy of formation: -333.2 kcal/mol - -analytic 4.3471e+002 1.2627e-001 -1.0669e+004 -1.7677e+002 -1.6660e+002 + -analytic 4.3471e+2 1.2627e-1 -1.0669e+4 -1.7677e+2 -1.666e+2 # -Range: 0-300 -1.0000 F- + 1.0000 Er+++ = ErF++ - -llnl_gamma 4.5 - log_k +4.7352 - -delta_H 24.058 kJ/mol # Calculated enthalpy of reaction ErF+2 +F- + Er+3 = ErF+2 + -llnl_gamma 4.5 + log_k 4.7352 + -delta_H 24.058 kJ/mol # Calculated enthalpy of reaction ErF+2 # Enthalpy of formation: -242.9 kcal/mol - -analytic 9.7079e+001 4.1707e-002 -2.6028e+003 -3.8805e+001 -4.0643e+001 + -analytic 9.7079e+1 4.1707e-2 -2.6028e+3 -3.8805e+1 -4.0643e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Er+++ = ErF2+ - -llnl_gamma 4.0 - log_k +8.2976 - -delta_H 12.9704 kJ/mol # Calculated enthalpy of reaction ErF2+ +2 F- + Er+3 = ErF2+ + -llnl_gamma 4 + log_k 8.2976 + -delta_H 12.9704 kJ/mol # Calculated enthalpy of reaction ErF2+ # Enthalpy of formation: -325.7 kcal/mol - -analytic 2.2892e+002 8.3842e-002 -5.2174e+003 -9.2172e+001 -8.1481e+001 + -analytic 2.2892e+2 8.3842e-2 -5.2174e+3 -9.2172e+1 -8.1481e+1 # -Range: 0-300 -3.0000 F- + 1.0000 Er+++ = ErF3 - -llnl_gamma 3.0 - log_k +10.9071 - -delta_H -12.3428 kJ/mol # Calculated enthalpy of reaction ErF3 +3 F- + Er+3 = ErF3 + -llnl_gamma 3 + log_k 10.9071 + -delta_H -12.3428 kJ/mol # Calculated enthalpy of reaction ErF3 # Enthalpy of formation: -411.9 kcal/mol - -analytic 4.2782e+002 1.3425e-001 -9.7064e+003 -1.7148e+002 -1.5158e+002 + -analytic 4.2782e+2 1.3425e-1 -9.7064e+3 -1.7148e+2 -1.5158e+2 # -Range: 0-300 -4.0000 F- + 1.0000 Er+++ = ErF4- - -llnl_gamma 4.0 - log_k +13.0768 - -delta_H -60.2496 kJ/mol # Calculated enthalpy of reaction ErF4- +4 F- + Er+3 = ErF4- + -llnl_gamma 4 + log_k 13.0768 + -delta_H -60.2496 kJ/mol # Calculated enthalpy of reaction ErF4- # Enthalpy of formation: -503.5 kcal/mol - -analytic 4.6524e+002 1.3372e-001 -9.1895e+003 -1.8636e+002 -1.4353e+002 + -analytic 4.6524e+2 1.3372e-1 -9.1895e+3 -1.8636e+2 -1.4353e+2 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Er+++ = ErH2PO4++ - -llnl_gamma 4.5 - log_k +9.4484 - -delta_H -20.4388 kJ/mol # Calculated enthalpy of reaction ErH2PO4+2 +HPO4-2 + H+ + Er+3 = ErH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -20.4388 kJ/mol # Calculated enthalpy of reaction ErH2PO4+2 # Enthalpy of formation: -482.2 kcal/mol - -analytic 1.0254e+002 6.2786e-002 6.3590e+002 -4.6029e+001 9.8920e+000 + -analytic 1.0254e+2 6.2786e-2 6.359e+2 -4.6029e+1 9.892e+0 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Er+++ = ErHCO3++ - -llnl_gamma 4.5 - log_k +1.7724 - -delta_H 5.01243 kJ/mol # Calculated enthalpy of reaction ErHCO3+2 +HCO3- + Er+3 = ErHCO3+2 + -llnl_gamma 4.5 + log_k 1.7724 + -delta_H 5.01243 kJ/mol # Calculated enthalpy of reaction ErHCO3+2 # Enthalpy of formation: -332.2 kcal/mol - -analytic 3.2450e+001 3.0822e-002 3.1601e+002 -1.6528e+001 4.9212e+000 + -analytic 3.245e+1 3.0822e-2 3.1601e+2 -1.6528e+1 4.9212e+0 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 Er+++ = ErHPO4+ - -llnl_gamma 4.0 - log_k +5.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction ErHPO4+ +HPO4-2 + Er+3 = ErHPO4+ + -llnl_gamma 4 + log_k 5.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction ErHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Er+++ = ErNO3++ - -llnl_gamma 4.5 - log_k +0.1415 - -delta_H -33.7691 kJ/mol # Calculated enthalpy of reaction ErNO3+2 + +NO3- + Er+3 = ErNO3+2 + -llnl_gamma 4.5 + log_k 0.1415 + -delta_H -33.7691 kJ/mol # Calculated enthalpy of reaction ErNO3+2 # Enthalpy of formation: -226 kcal/mol - -analytic 1.0381e+001 2.4710e-002 2.5752e+003 -1.0596e+001 4.0181e+001 + -analytic 1.0381e+1 2.471e-2 2.5752e+3 -1.0596e+1 4.0181e+1 # -Range: 0-300 -1.0000 H2O + 1.0000 Er+++ = ErO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -15.9705 - -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction ErO+ +H2O + Er+3 = ErO+ + 2 H+ + -llnl_gamma 4 + log_k -15.9705 + -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction ErO+ # Enthalpy of formation: -211.6 kcal/mol - -analytic 1.7556e+002 2.8655e-002 -1.3134e+004 -6.3050e+001 -2.0499e+002 + -analytic 1.7556e+2 2.8655e-2 -1.3134e+4 -6.305e+1 -2.0499e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Er+++ = ErO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -32.6008 - -delta_H 266.245 kJ/mol # Calculated enthalpy of reaction ErO2- +2 H2O + Er+3 = ErO2- + 4 H+ + -llnl_gamma 4 + log_k -32.6008 + -delta_H 266.245 kJ/mol # Calculated enthalpy of reaction ErO2- # Enthalpy of formation: -241.5 kcal/mol - -analytic 1.4987e+002 9.1241e-003 -1.8521e+004 -4.9740e+001 -2.8905e+002 + -analytic 1.4987e+2 9.1241e-3 -1.8521e+4 -4.974e+1 -2.8905e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Er+++ = ErO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -24.3178 - -delta_H 212.689 kJ/mol # Calculated enthalpy of reaction ErO2H +2 H2O + Er+3 = ErO2H + 3 H+ + -llnl_gamma 3 + log_k -24.3178 + -delta_H 212.689 kJ/mol # Calculated enthalpy of reaction ErO2H # Enthalpy of formation: -254.3 kcal/mol - -analytic 3.1493e+002 4.4381e-002 -2.1821e+004 -1.1287e+002 -3.4059e+002 + -analytic 3.1493e+2 4.4381e-2 -2.1821e+4 -1.1287e+2 -3.4059e+2 # -Range: 0-300 -1.0000 H2O + 1.0000 Er+++ = ErOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.7609 - -delta_H 74.5463 kJ/mol # Calculated enthalpy of reaction ErOH+2 +H2O + Er+3 = ErOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.7609 + -delta_H 74.5463 kJ/mol # Calculated enthalpy of reaction ErOH+2 # Enthalpy of formation: -219 kcal/mol - -analytic 5.7142e+001 1.0986e-002 -5.6684e+003 -1.9867e+001 -8.8467e+001 + -analytic 5.7142e+1 1.0986e-2 -5.6684e+3 -1.9867e+1 -8.8467e+1 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 Er+++ = ErPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.3782 - -delta_H 0 # Not possible to calculate enthalpy of reaction ErPO4 +HPO4-2 + Er+3 = ErPO4 + H+ + -llnl_gamma 3 + log_k 0.3782 + -delta_H 0 # Not possible to calculate enthalpy of reaction ErPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Er+++ = ErSO4+ - -llnl_gamma 4.0 - log_k +3.5697 - -delta_H 20.3008 kJ/mol # Calculated enthalpy of reaction ErSO4+ + +SO4-2 + Er+3 = ErSO4+ + -llnl_gamma 4 + log_k 3.5697 + -delta_H 20.3008 kJ/mol # Calculated enthalpy of reaction ErSO4+ # Enthalpy of formation: -381.048 kcal/mol - -analytic 3.0363e+002 8.5667e-002 -8.9667e+003 -1.1942e+002 -1.4001e+002 + -analytic 3.0363e+2 8.5667e-2 -8.9667e+3 -1.1942e+2 -1.4001e+2 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Eu+++ = Eu(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.6912 - -delta_H -28.3257 kJ/mol # Calculated enthalpy of reaction Eu(Acetate)2+ +2 HAcetate + Eu+3 = Eu(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -4.6912 + -delta_H -28.3257 kJ/mol # Calculated enthalpy of reaction Eu(Acetate)2+ # Enthalpy of formation: -383.67 kcal/mol - -analytic -2.7589e+001 1.5772e-003 -1.1008e+003 7.9899e+000 5.6652e+005 + -analytic -2.7589e+1 1.5772e-3 -1.1008e+3 7.9899e+0 5.6652e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Eu+++ = Eu(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -7.9824 - -delta_H -47.3629 kJ/mol # Calculated enthalpy of reaction Eu(Acetate)3 +3 HAcetate + Eu+3 = Eu(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -7.9824 + -delta_H -47.3629 kJ/mol # Calculated enthalpy of reaction Eu(Acetate)3 # Enthalpy of formation: -504.32 kcal/mol - -analytic -3.7470e+001 1.9276e-003 -1.0318e+003 9.7078e+000 7.4558e+005 + -analytic -3.747e+1 1.9276e-3 -1.0318e+3 9.7078e+0 7.4558e+5 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Eu+++ = Eu(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -8.3993 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(CO3)2- +2 HCO3- + Eu+3 = Eu(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -8.3993 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(CO3)2- # Enthalpy of formation: -0 kcal/mol - -3.0000 HCO3- + 1.0000 Eu+++ = Eu(CO3)3--- +3.0000 H+ - -llnl_gamma 4.0 - log_k -16.8155 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(CO3)3-3 + +3 HCO3- + Eu+3 = Eu(CO3)3-3 + 3 H+ + -llnl_gamma 4 + log_k -16.8155 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(CO3)3-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Eu+++ = Eu(HPO4)2- - -llnl_gamma 4.0 - log_k +9.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(HPO4)2- + +2 HPO4-2 + Eu+3 = Eu(HPO4)2- + -llnl_gamma 4 + log_k 9.6 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(HPO4)2- # Enthalpy of formation: -0 kcal/mol - + # Redundant with EuO+ #2.0000 H2O + 1.0000 Eu+++ = Eu(OH)2+ +2.0000 H+ -# -llnl_gamma 4.0 +# -llnl_gamma 4.0 # log_k -14.8609 # -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2+ ## Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 HCO3- + 1.0000 Eu+++ = Eu(OH)2CO3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -17.8462 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2CO3- + +2 H2O + HCO3- + Eu+3 = Eu(OH)2CO3- + 3 H+ + -llnl_gamma 4 + log_k -17.8462 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2CO3- # Enthalpy of formation: -0 kcal/mol - + # Redundant with EuO2H #3.0000 H2O + 1.0000 Eu+++ = Eu(OH)3 +3.0000 H+ -# -llnl_gamma 3.0 +# -llnl_gamma 3.0 # log_k -24.1253 # -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)3 ## Enthalpy of formation: -0 kcal/mol - + # Redundant with EuO2- #4.0000 H2O + 1.0000 Eu+++ = Eu(OH)4- +4.0000 H+ -# -llnl_gamma 4.0 +# -llnl_gamma 4.0 # log_k -36.5958 # -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)4- ## Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Eu+++ = Eu(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.9837 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(PO4)2-3 + +2 HPO4-2 + Eu+3 = Eu(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -3.9837 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Eu+++ = Eu(SO4)2- - -llnl_gamma 4.0 - log_k +5.4693 - -delta_H 25.627 kJ/mol # Calculated enthalpy of reaction Eu(SO4)2- + +2 SO4-2 + Eu+3 = Eu(SO4)2- + -llnl_gamma 4 + log_k 5.4693 + -delta_H 25.627 kJ/mol # Calculated enthalpy of reaction Eu(SO4)2- # Enthalpy of formation: -2399 kJ/mol - -analytic 4.5178e+002 1.2285e-001 -1.3400e+004 -1.7697e+002 -2.0922e+002 + -analytic 4.5178e+2 1.2285e-1 -1.34e+4 -1.7697e+2 -2.0922e+2 # -Range: 0-300 -2.0000 H2O + 2.0000 Eu+++ = Eu2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -6.9182 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu2(OH)2+4 +2 H2O + 2 Eu+3 = Eu2(OH)2+4 + 2 H+ + -llnl_gamma 5.5 + log_k -6.9182 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu2(OH)2+4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Eu+++ + 1.0000 Br- = EuBr++ - -llnl_gamma 4.5 - log_k +0.5572 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuBr+2 + +Eu+3 + Br- = EuBr+2 + -llnl_gamma 4.5 + log_k 0.5572 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuBr+2 # Enthalpy of formation: -0 kcal/mol - -2.0000 Br- + 1.0000 Eu+++ = EuBr2+ - -llnl_gamma 4.0 - log_k +0.2145 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuBr2+ + +2 Br- + Eu+3 = EuBr2+ + -llnl_gamma 4 + log_k 0.2145 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuBr2+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Eu+++ + 1.0000 BrO3- = EuBrO3++ - -llnl_gamma 4.5 - log_k +4.5823 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuBrO3+2 + +Eu+3 + BrO3- = EuBrO3+2 + -llnl_gamma 4.5 + log_k 4.5823 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuBrO3+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Eu+++ + 1.0000 HAcetate = EuAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -1.9571 - -delta_H -14.5603 kJ/mol # Calculated enthalpy of reaction EuAcetate+2 + +Eu+3 + HAcetate = EuAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -1.9571 + -delta_H -14.5603 kJ/mol # Calculated enthalpy of reaction EuAcetate+2 # Enthalpy of formation: -264.28 kcal/mol - -analytic -1.5090e+001 1.0352e-003 -6.4435e+002 4.6225e+000 3.1649e+005 + -analytic -1.509e+1 1.0352e-3 -6.4435e+2 4.6225e+0 3.1649e+5 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Eu+++ = EuCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.4057 - -delta_H 90.7844 kJ/mol # Calculated enthalpy of reaction EuCO3+ +HCO3- + Eu+3 = EuCO3+ + H+ + -llnl_gamma 4 + log_k -2.4057 + -delta_H 90.7844 kJ/mol # Calculated enthalpy of reaction EuCO3+ # Enthalpy of formation: -287.9 kcal/mol - -analytic 2.3548e+002 5.3819e-002 -6.9908e+003 -9.3137e+001 -1.0915e+002 + -analytic 2.3548e+2 5.3819e-2 -6.9908e+3 -9.3137e+1 -1.0915e+2 # -Range: 0-300 -1.0000 Eu++ + 1.0000 Cl- = EuCl+ - -llnl_gamma 4.0 - log_k +0.3819 - -delta_H 8.50607 kJ/mol # Calculated enthalpy of reaction EuCl+ +Eu+2 + Cl- = EuCl+ + -llnl_gamma 4 + log_k 0.3819 + -delta_H 8.50607 kJ/mol # Calculated enthalpy of reaction EuCl+ # Enthalpy of formation: -164 kcal/mol - -analytic 6.8695e+001 3.7619e-002 -1.0809e+003 -3.0665e+001 -1.6887e+001 + -analytic 6.8695e+1 3.7619e-2 -1.0809e+3 -3.0665e+1 -1.6887e+1 # -Range: 0-300 -1.0000 Eu+++ + 1.0000 Cl- = EuCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction EuCl+2 +Eu+3 + Cl- = EuCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction EuCl+2 # Enthalpy of formation: -181.3 kcal/mol - -analytic 7.9275e+001 3.7878e-002 -1.7895e+003 -3.4041e+001 -2.7947e+001 + -analytic 7.9275e+1 3.7878e-2 -1.7895e+3 -3.4041e+1 -2.7947e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Eu++ = EuCl2 - -llnl_gamma 3.0 - log_k +1.2769 - -delta_H 5.71534 kJ/mol # Calculated enthalpy of reaction EuCl2 +2 Cl- + Eu+2 = EuCl2 + -llnl_gamma 3 + log_k 1.2769 + -delta_H 5.71534 kJ/mol # Calculated enthalpy of reaction EuCl2 # Enthalpy of formation: -204.6 kcal/mol - -analytic 1.0474e+002 6.7132e-002 -7.0448e+002 -4.8928e+001 -1.1024e+001 + -analytic 1.0474e+2 6.7132e-2 -7.0448e+2 -4.8928e+1 -1.1024e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Eu+++ = EuCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 18.6857 kJ/mol # Calculated enthalpy of reaction EuCl2+ +2 Cl- + Eu+3 = EuCl2+ + -llnl_gamma 4 + log_k -0.0425 + -delta_H 18.6857 kJ/mol # Calculated enthalpy of reaction EuCl2+ # Enthalpy of formation: -220.1 kcal/mol - -analytic 2.1758e+002 8.0336e-002 -5.5499e+003 -9.0087e+001 -8.6665e+001 + -analytic 2.1758e+2 8.0336e-2 -5.5499e+3 -9.0087e+1 -8.6665e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Eu+++ = EuCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 11.2926 kJ/mol # Calculated enthalpy of reaction EuCl3 +3 Cl- + Eu+3 = EuCl3 + -llnl_gamma 3 + log_k -0.4669 + -delta_H 11.2926 kJ/mol # Calculated enthalpy of reaction EuCl3 # Enthalpy of formation: -261.8 kcal/mol - -analytic 4.2075e+002 1.2890e-001 -1.1288e+004 -1.7043e+002 -1.7627e+002 + -analytic 4.2075e+2 1.289e-1 -1.1288e+4 -1.7043e+2 -1.7627e+2 # -Range: 0-300 -3.0000 Cl- + 1.0000 Eu++ = EuCl3- - -llnl_gamma 4.0 - log_k +2.0253 - -delta_H -3.76978 kJ/mol # Calculated enthalpy of reaction EuCl3- +3 Cl- + Eu+2 = EuCl3- + -llnl_gamma 4 + log_k 2.0253 + -delta_H -3.76978 kJ/mol # Calculated enthalpy of reaction EuCl3- # Enthalpy of formation: -246.8 kcal/mol - -analytic 1.1546e+001 6.4683e-002 3.7299e+003 -1.6672e+001 5.8196e+001 + -analytic 1.1546e+1 6.4683e-2 3.7299e+3 -1.6672e+1 5.8196e+1 # -Range: 0-300 -4.0000 Cl- + 1.0000 Eu+++ = EuCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -9.90771 kJ/mol # Calculated enthalpy of reaction EuCl4- +4 Cl- + Eu+3 = EuCl4- + -llnl_gamma 4 + log_k -0.8913 + -delta_H -9.90771 kJ/mol # Calculated enthalpy of reaction EuCl4- # Enthalpy of formation: -306.8 kcal/mol - -analytic 4.8122e+002 1.3081e-001 -1.2950e+004 -1.9302e+002 -2.0222e+002 + -analytic 4.8122e+2 1.3081e-1 -1.295e+4 -1.9302e+2 -2.0222e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 Eu++ = EuCl4-- - -llnl_gamma 4.0 - log_k +2.8470 - -delta_H -19.9493 kJ/mol # Calculated enthalpy of reaction EuCl4-2 +4 Cl- + Eu+2 = EuCl4-2 + -llnl_gamma 4 + log_k 2.847 + -delta_H -19.9493 kJ/mol # Calculated enthalpy of reaction EuCl4-2 # Enthalpy of formation: -290.6 kcal/mol - -analytic -1.2842e+002 5.0789e-002 9.8815e+003 3.3565e+001 1.5423e+002 + -analytic -1.2842e+2 5.0789e-2 9.8815e+3 3.3565e+1 1.5423e+2 # -Range: 0-300 -1.0000 F- + 1.0000 Eu++ = EuF+ - -llnl_gamma 4.0 - log_k -1.3487 - -delta_H 16.9452 kJ/mol # Calculated enthalpy of reaction EuF+ +F- + Eu+2 = EuF+ + -llnl_gamma 4 + log_k -1.3487 + -delta_H 16.9452 kJ/mol # Calculated enthalpy of reaction EuF+ # Enthalpy of formation: -202.2 kcal/mol - -analytic 6.2412e+001 3.5839e-002 -1.3660e+003 -2.8223e+001 -2.1333e+001 + -analytic 6.2412e+1 3.5839e-2 -1.366e+3 -2.8223e+1 -2.1333e+1 # -Range: 0-300 -1.0000 F- + 1.0000 Eu+++ = EuF++ - -llnl_gamma 4.5 - log_k +4.4420 - -delta_H 23.6396 kJ/mol # Calculated enthalpy of reaction EuF+2 +F- + Eu+3 = EuF+2 + -llnl_gamma 4.5 + log_k 4.442 + -delta_H 23.6396 kJ/mol # Calculated enthalpy of reaction EuF+2 # Enthalpy of formation: -219.2 kcal/mol - -analytic 1.0063e+002 4.1834e-002 -2.7355e+003 -4.0195e+001 -4.2714e+001 + -analytic 1.0063e+2 4.1834e-2 -2.7355e+3 -4.0195e+1 -4.2714e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Eu++ = EuF2 - -llnl_gamma 3.0 - log_k -2.0378 - -delta_H 17.5728 kJ/mol # Calculated enthalpy of reaction EuF2 +2 F- + Eu+2 = EuF2 + -llnl_gamma 3 + log_k -2.0378 + -delta_H 17.5728 kJ/mol # Calculated enthalpy of reaction EuF2 # Enthalpy of formation: -282.2 kcal/mol - -analytic 1.2065e+002 7.1705e-002 -1.7998e+003 -5.5760e+001 -2.8121e+001 + -analytic 1.2065e+2 7.1705e-2 -1.7998e+3 -5.576e+1 -2.8121e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Eu+++ = EuF2+ - -llnl_gamma 4.0 - log_k +7.7112 - -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction EuF2+ +2 F- + Eu+3 = EuF2+ + -llnl_gamma 4 + log_k 7.7112 + -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction EuF2+ # Enthalpy of formation: -301.7 kcal/mol - -analytic 2.4099e+002 8.4714e-002 -5.7702e+003 -9.6640e+001 -9.0109e+001 + -analytic 2.4099e+2 8.4714e-2 -5.7702e+3 -9.664e+1 -9.0109e+1 # -Range: 0-300 -3.0000 F- + 1.0000 Eu+++ = EuF3 - -llnl_gamma 3.0 - log_k +10.1741 - -delta_H -8.9956 kJ/mol # Calculated enthalpy of reaction EuF3 +3 F- + Eu+3 = EuF3 + -llnl_gamma 3 + log_k 10.1741 + -delta_H -8.9956 kJ/mol # Calculated enthalpy of reaction EuF3 # Enthalpy of formation: -387.3 kcal/mol - -analytic 4.5022e+002 1.3560e-001 -1.0801e+004 -1.7951e+002 -1.6867e+002 + -analytic 4.5022e+2 1.356e-1 -1.0801e+4 -1.7951e+2 -1.6867e+2 # -Range: 0-300 -3.0000 F- + 1.0000 Eu++ = EuF3- - -llnl_gamma 4.0 - log_k -2.5069 - -delta_H 3.5564 kJ/mol # Calculated enthalpy of reaction EuF3- +3 F- + Eu+2 = EuF3- + -llnl_gamma 4 + log_k -2.5069 + -delta_H 3.5564 kJ/mol # Calculated enthalpy of reaction EuF3- # Enthalpy of formation: -365.7 kcal/mol - -analytic -2.8441e+001 5.5972e-002 4.4573e+003 -2.2782e+000 6.9558e+001 + -analytic -2.8441e+1 5.5972e-2 4.4573e+3 -2.2782e+0 6.9558e+1 # -Range: 0-300 -4.0000 F- + 1.0000 Eu+++ = EuF4- - -llnl_gamma 4.0 - log_k +12.1239 - -delta_H -52.3 kJ/mol # Calculated enthalpy of reaction EuF4- +4 F- + Eu+3 = EuF4- + -llnl_gamma 4 + log_k 12.1239 + -delta_H -52.3 kJ/mol # Calculated enthalpy of reaction EuF4- # Enthalpy of formation: -477.8 kcal/mol - -analytic 5.0246e+002 1.3629e-001 -1.1092e+004 -1.9952e+002 -1.7323e+002 + -analytic 5.0246e+2 1.3629e-1 -1.1092e+4 -1.9952e+2 -1.7323e+2 # -Range: 0-300 -4.0000 F- + 1.0000 Eu++ = EuF4-- - -llnl_gamma 4.0 - log_k -2.8294 - -delta_H -37.656 kJ/mol # Calculated enthalpy of reaction EuF4-2 +4 F- + Eu+2 = EuF4-2 + -llnl_gamma 4 + log_k -2.8294 + -delta_H -37.656 kJ/mol # Calculated enthalpy of reaction EuF4-2 # Enthalpy of formation: -455.7 kcal/mol - -analytic -1.8730e+002 3.9237e-002 1.2303e+004 5.3179e+001 1.9204e+002 + -analytic -1.873e+2 3.9237e-2 1.2303e+4 5.3179e+1 1.9204e+2 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Eu+++ = EuH2PO4++ - -llnl_gamma 4.5 - log_k +9.4484 - -delta_H -17.0916 kJ/mol # Calculated enthalpy of reaction EuH2PO4+2 +HPO4-2 + H+ + Eu+3 = EuH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -17.0916 kJ/mol # Calculated enthalpy of reaction EuH2PO4+2 # Enthalpy of formation: -457.6 kcal/mol - -analytic 1.0873e+002 6.3416e-002 2.7202e+002 -4.8113e+001 4.2122e+000 + -analytic 1.0873e+2 6.3416e-2 2.7202e+2 -4.8113e+1 4.2122e+0 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Eu+++ = EuHCO3++ - -llnl_gamma 4.5 - log_k +1.6258 - -delta_H 8.77803 kJ/mol # Calculated enthalpy of reaction EuHCO3+2 +HCO3- + Eu+3 = EuHCO3+2 + -llnl_gamma 4.5 + log_k 1.6258 + -delta_H 8.77803 kJ/mol # Calculated enthalpy of reaction EuHCO3+2 # Enthalpy of formation: -307.5 kcal/mol - -analytic 3.9266e+001 3.1608e-002 -9.8731e+001 -1.8875e+001 -1.5524e+000 + -analytic 3.9266e+1 3.1608e-2 -9.8731e+1 -1.8875e+1 -1.5524e+0 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 Eu+++ = EuHPO4+ - -llnl_gamma 4.0 - log_k +5.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuHPO4+ +HPO4-2 + Eu+3 = EuHPO4+ + -llnl_gamma 4 + log_k 5.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 IO3- + 1.0000 Eu+++ = EuIO3++ - -llnl_gamma 4.5 - log_k +2.1560 - -delta_H 11.8314 kJ/mol # Calculated enthalpy of reaction EuIO3+2 + +IO3- + Eu+3 = EuIO3+2 + -llnl_gamma 4.5 + log_k 2.156 + -delta_H 11.8314 kJ/mol # Calculated enthalpy of reaction EuIO3+2 # Enthalpy of formation: -814.927 kJ/mol - -analytic 1.4970e+002 4.7369e-002 -4.1559e+003 -5.9687e+001 -6.4893e+001 + -analytic 1.497e+2 4.7369e-2 -4.1559e+3 -5.9687e+1 -6.4893e+1 # -Range: 0-300 -1.0000 NO3- + 1.0000 Eu+++ = EuNO3++ - -llnl_gamma 4.5 - log_k +0.8745 - -delta_H -32.0955 kJ/mol # Calculated enthalpy of reaction EuNO3+2 +NO3- + Eu+3 = EuNO3+2 + -llnl_gamma 4.5 + log_k 0.8745 + -delta_H -32.0955 kJ/mol # Calculated enthalpy of reaction EuNO3+2 # Enthalpy of formation: -201.8 kcal/mol - -analytic 1.7398e+001 2.5467e-002 2.2683e+003 -1.2810e+001 3.5389e+001 + -analytic 1.7398e+1 2.5467e-2 2.2683e+3 -1.281e+1 3.5389e+1 # -Range: 0-300 -1.0000 H2O + 1.0000 Eu+++ = EuO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.337 - -delta_H 110.947 kJ/mol # Calculated enthalpy of reaction EuO+ +H2O + Eu+3 = EuO+ + 2 H+ + -llnl_gamma 4 + log_k -16.337 + -delta_H 110.947 kJ/mol # Calculated enthalpy of reaction EuO+ # Enthalpy of formation: -186.5 kcal/mol - -analytic 1.8876e+002 3.0194e-002 -1.3836e+004 -6.7770e+001 -2.1595e+002 + -analytic 1.8876e+2 3.0194e-2 -1.3836e+4 -6.777e+1 -2.1595e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Eu+++ = EuO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -34.5066 - -delta_H 281.307 kJ/mol # Calculated enthalpy of reaction EuO2- +2 H2O + Eu+3 = EuO2- + 4 H+ + -llnl_gamma 4 + log_k -34.5066 + -delta_H 281.307 kJ/mol # Calculated enthalpy of reaction EuO2- # Enthalpy of formation: -214.1 kcal/mol - -analytic 7.5244e+001 3.7089e-004 -1.3587e+004 -2.3859e+001 -4.6713e+005 + -analytic 7.5244e+1 3.7089e-4 -1.3587e+4 -2.3859e+1 -4.6713e+5 # -Range: 0-300 -2.0000 H2O + 1.0000 Eu+++ = EuO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -25.4173 - -delta_H 222.313 kJ/mol # Calculated enthalpy of reaction EuO2H +2 H2O + Eu+3 = EuO2H + 3 H+ + -llnl_gamma 3 + log_k -25.4173 + -delta_H 222.313 kJ/mol # Calculated enthalpy of reaction EuO2H # Enthalpy of formation: -228.2 kcal/mol - -analytic 3.6754e+002 5.3868e-002 -2.4034e+004 -1.3272e+002 -3.7514e+002 + -analytic 3.6754e+2 5.3868e-2 -2.4034e+4 -1.3272e+2 -3.7514e+2 # -Range: 0-300 -2.0000 HCO3- + 1.0000 H2O + 1.0000 Eu+++ = EuOH(CO3)2-- +3.0000 H+ - -llnl_gamma 4.0 - log_k -15.176 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuOH(CO3)2-2 +2 HCO3- + H2O + Eu+3 = EuOH(CO3)2-2 + 3 H+ + -llnl_gamma 4 + log_k -15.176 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuOH(CO3)2-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Eu+++ = EuOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.9075 - -delta_H 78.0065 kJ/mol # Calculated enthalpy of reaction EuOH+2 + +H2O + Eu+3 = EuOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.9075 + -delta_H 78.0065 kJ/mol # Calculated enthalpy of reaction EuOH+2 # Enthalpy of formation: -194.373 kcal/mol - -analytic 6.7691e+001 1.2066e-002 -6.1871e+003 -2.3617e+001 -9.6563e+001 + -analytic 6.7691e+1 1.2066e-2 -6.1871e+3 -2.3617e+1 -9.6563e+1 # -Range: 0-300 -1.0000 HCO3- + 1.0000 H2O + 1.0000 Eu+++ = EuOHCO3 +2.0000 H+ - -llnl_gamma 3.0 - log_k -8.4941 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuOHCO3 +HCO3- + H2O + Eu+3 = EuOHCO3 + 2 H+ + -llnl_gamma 3 + log_k -8.4941 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuOHCO3 # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Eu+++ = EuPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.1218 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuPO4 + +HPO4-2 + Eu+3 = EuPO4 + H+ + -llnl_gamma 3 + log_k -0.1218 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Eu+++ = EuSO4+ - -llnl_gamma 4.0 - log_k +3.6430 - -delta_H 62.3416 kJ/mol # Calculated enthalpy of reaction EuSO4+ + +SO4-2 + Eu+3 = EuSO4+ + -llnl_gamma 4 + log_k 3.643 + -delta_H 62.3416 kJ/mol # Calculated enthalpy of reaction EuSO4+ # Enthalpy of formation: -347.2 kcal/mol - -analytic 3.0587e+002 8.6208e-002 -9.0387e+003 -1.2026e+002 -1.4113e+002 + -analytic 3.0587e+2 8.6208e-2 -9.0387e+3 -1.2026e+2 -1.4113e+2 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Fe++ = Fe(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.0295 - -delta_H -20.2924 kJ/mol # Calculated enthalpy of reaction Fe(Acetate)2 +2 HAcetate + Fe+2 = Fe(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -7.0295 + -delta_H -20.2924 kJ/mol # Calculated enthalpy of reaction Fe(Acetate)2 # Enthalpy of formation: -259.1 kcal/mol - -analytic -2.9862e+001 1.3901e-003 -1.6908e+003 8.6283e+000 6.0125e+005 + -analytic -2.9862e+1 1.3901e-3 -1.6908e+3 8.6283e+0 6.0125e+5 # -Range: 0-300 -2.0000 H2O + 1.0000 Fe++ = Fe(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -20.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)2 +2 H2O + Fe+2 = Fe(OH)2 + 2 H+ + -llnl_gamma 3 + log_k -20.6 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)2 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Fe+++ = Fe(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.67 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)2+ + +2 H2O + Fe+3 = Fe(OH)2+ + 2 H+ + -llnl_gamma 4 + log_k -5.67 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)2+ # Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Fe+++ = Fe(OH)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -12 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)3 + +3 H2O + Fe+3 = Fe(OH)3 + 3 H+ + -llnl_gamma 3 + log_k -12 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)3 # Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Fe++ = Fe(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -31 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)3- + +3 H2O + Fe+2 = Fe(OH)3- + 3 H+ + -llnl_gamma 4 + log_k -31 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)3- # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Fe+++ = Fe(OH)4- +4.0000 H+ - -llnl_gamma 4.0 - log_k -21.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)4- + +4 H2O + Fe+3 = Fe(OH)4- + 4 H+ + -llnl_gamma 4 + log_k -21.6 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)4- # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Fe++ = Fe(OH)4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -46 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)4-2 + +4 H2O + Fe+2 = Fe(OH)4-2 + 4 H+ + -llnl_gamma 4 + log_k -46 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)4-2 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Fe+++ = Fe(SO4)2- - -llnl_gamma 4.0 - log_k +3.2137 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(SO4)2- + +2 SO4-2 + Fe+3 = Fe(SO4)2- + -llnl_gamma 4 + log_k 3.2137 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(SO4)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 2.0000 Fe+++ = Fe2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -2.95 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe2(OH)2+4 + +2 H2O + 2 Fe+3 = Fe2(OH)2+4 + 2 H+ + -llnl_gamma 5.5 + log_k -2.95 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe2(OH)2+4 # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 3.0000 Fe+++ = Fe3(OH)4+5 +4.0000 H+ - -llnl_gamma 6.0 - log_k -6.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe3(OH)4+5 + +4 H2O + 3 Fe+3 = Fe3(OH)4+5 + 4 H+ + -llnl_gamma 6 + log_k -6.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe3(OH)4+5 # Enthalpy of formation: -0 kcal/mol - -1.0000 Fe++ + 1.0000 HAcetate = FeAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.4671 - -delta_H -3.80744 kJ/mol # Calculated enthalpy of reaction FeAcetate+ + +Fe+2 + HAcetate = FeAcetate+ + H+ + -llnl_gamma 4 + log_k -3.4671 + -delta_H -3.80744 kJ/mol # Calculated enthalpy of reaction FeAcetate+ # Enthalpy of formation: -139.06 kcal/mol - -analytic -1.3781e+001 9.6253e-004 -7.5310e+002 4.0135e+000 2.3416e+005 + -analytic -1.3781e+1 9.6253e-4 -7.531e+2 4.0135e+0 2.3416e+5 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Fe++ = FeCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -5.5988 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeCO3 +HCO3- + Fe+2 = FeCO3 + H+ + -llnl_gamma 3 + log_k -5.5988 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeCO3 # Enthalpy of formation: -0 kcal/mol - -1.0000 HCO3- + 1.0000 Fe+++ = FeCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -0.6088 - -delta_H -50.208 kJ/mol # Calculated enthalpy of reaction FeCO3+ + +HCO3- + Fe+3 = FeCO3+ + H+ + -llnl_gamma 4 + log_k -0.6088 + -delta_H -50.208 kJ/mol # Calculated enthalpy of reaction FeCO3+ # Enthalpy of formation: -188.748 kcal/mol - -analytic 1.7100e+002 8.0413e-002 -4.3217e+002 -7.8449e+001 -6.7948e+000 + -analytic 1.71e+2 8.0413e-2 -4.3217e+2 -7.8449e+1 -6.7948e+0 # -Range: 0-300 -1.0000 Fe++ + 1.0000 Cl- = FeCl+ - -llnl_gamma 4.0 - log_k -0.1605 - -delta_H 3.02503 kJ/mol # Calculated enthalpy of reaction FeCl+ +Fe+2 + Cl- = FeCl+ + -llnl_gamma 4 + log_k -0.1605 + -delta_H 3.02503 kJ/mol # Calculated enthalpy of reaction FeCl+ # Enthalpy of formation: -61.26 kcal/mol - -analytic 8.2435e+001 3.7755e-002 -1.4765e+003 -3.5918e+001 -2.3064e+001 + -analytic 8.2435e+1 3.7755e-2 -1.4765e+3 -3.5918e+1 -2.3064e+1 # -Range: 0-300 -1.0000 Fe+++ + 1.0000 Cl- = FeCl++ - -llnl_gamma 4.5 - log_k -0.8108 - -delta_H 36.6421 kJ/mol # Calculated enthalpy of reaction FeCl+2 +Fe+3 + Cl- = FeCl+2 + -llnl_gamma 4.5 + log_k -0.8108 + -delta_H 36.6421 kJ/mol # Calculated enthalpy of reaction FeCl+2 # Enthalpy of formation: -180.018 kJ/mol - -analytic 1.6186e+002 5.9436e-002 -5.1913e+003 -6.5852e+001 -8.1053e+001 + -analytic 1.6186e+2 5.9436e-2 -5.1913e+3 -6.5852e+1 -8.1053e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Fe++ = FeCl2 - -llnl_gamma 3.0 - log_k -2.4541 - -delta_H 6.46846 kJ/mol # Calculated enthalpy of reaction FeCl2 +2 Cl- + Fe+2 = FeCl2 + -llnl_gamma 3 + log_k -2.4541 + -delta_H 6.46846 kJ/mol # Calculated enthalpy of reaction FeCl2 # Enthalpy of formation: -100.37 kcal/mol - -analytic 1.9171e+002 7.8070e-002 -4.1048e+003 -8.2292e+001 -6.4108e+001 + -analytic 1.9171e+2 7.807e-2 -4.1048e+3 -8.2292e+1 -6.4108e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Fe+++ = FeCl2+ - -llnl_gamma 4.0 - log_k +2.1300 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl2+ +2 Cl- + Fe+3 = FeCl2+ + -llnl_gamma 4 + log_k 2.13 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl2+ # Enthalpy of formation: -0 kcal/mol - -4.0000 Cl- + 1.0000 Fe+++ = FeCl4- - -llnl_gamma 4.0 - log_k -0.79 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl4- + +4 Cl- + Fe+3 = FeCl4- + -llnl_gamma 4 + log_k -0.79 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl4- # Enthalpy of formation: -0 kcal/mol - -4.0000 Cl- + 1.0000 Fe++ = FeCl4-- - -llnl_gamma 4.0 - log_k -1.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl4-2 + +4 Cl- + Fe+2 = FeCl4-2 + -llnl_gamma 4 + log_k -1.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl4-2 # Enthalpy of formation: -0 kcal/mol - -analytic -2.4108e+002 -6.0086e-003 9.7979e+003 8.4084e+001 1.5296e+002 + -analytic -2.4108e+2 -6.0086e-3 9.7979e+3 8.4084e+1 1.5296e+2 # -Range: 0-300 -1.0000 Fe++ + 1.0000 F- = FeF+ - -llnl_gamma 4.0 - log_k +1.3600 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeF+ +Fe+2 + F- = FeF+ + -llnl_gamma 4 + log_k 1.36 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeF+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Fe+++ + 1.0000 F- = FeF++ - -llnl_gamma 4.5 - log_k +4.1365 - -delta_H 14.327 kJ/mol # Calculated enthalpy of reaction FeF+2 + +Fe+3 + F- = FeF+2 + -llnl_gamma 4.5 + log_k 4.1365 + -delta_H 14.327 kJ/mol # Calculated enthalpy of reaction FeF+2 # Enthalpy of formation: -370.601 kJ/mol - -analytic 1.7546e+002 6.3754e-002 -4.3166e+003 -7.1052e+001 -6.7408e+001 + -analytic 1.7546e+2 6.3754e-2 -4.3166e+3 -7.1052e+1 -6.7408e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Fe+++ = FeF2+ - -llnl_gamma 4.0 - log_k +8.3498 - -delta_H 23.9776 kJ/mol # Calculated enthalpy of reaction FeF2+ +2 F- + Fe+3 = FeF2+ + -llnl_gamma 4 + log_k 8.3498 + -delta_H 23.9776 kJ/mol # Calculated enthalpy of reaction FeF2+ # Enthalpy of formation: -696.298 kJ/mol - -analytic 2.9080e+002 1.0393e-001 -7.2118e+003 -1.1688e+002 -1.1262e+002 + -analytic 2.908e+2 1.0393e-1 -7.2118e+3 -1.1688e+2 -1.1262e+2 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Fe++ = FeH2PO4+ - -llnl_gamma 4.0 - log_k +2.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeH2PO4+ +HPO4-2 + H+ + Fe+2 = FeH2PO4+ + -llnl_gamma 4 + log_k 2.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeH2PO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Fe+++ = FeH2PO4++ - -llnl_gamma 4.5 - log_k +4.1700 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeH2PO4+2 + +HPO4-2 + H+ + Fe+3 = FeH2PO4+2 + -llnl_gamma 4.5 + log_k 4.17 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeH2PO4+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 HCO3- + 1.0000 Fe++ = FeHCO3+ - -llnl_gamma 4.0 - log_k +2.7200 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeHCO3+ + +HCO3- + Fe+2 = FeHCO3+ + -llnl_gamma 4 + log_k 2.72 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeHCO3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Fe++ = FeHPO4 - -llnl_gamma 3.0 - log_k +3.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeHPO4 + +HPO4-2 + Fe+2 = FeHPO4 + -llnl_gamma 3 + log_k 3.6 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeHPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Fe+++ = FeHPO4+ - -llnl_gamma 4.0 - log_k +10.1800 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeHPO4+ + +HPO4-2 + Fe+3 = FeHPO4+ + -llnl_gamma 4 + log_k 10.18 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 NO2- + 1.0000 Fe+++ = FeNO2++ - -llnl_gamma 4.5 - log_k +3.1500 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeNO2+2 + +NO2- + Fe+3 = FeNO2+2 + -llnl_gamma 4.5 + log_k 3.15 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeNO2+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Fe+++ = FeNO3++ - -llnl_gamma 4.5 - log_k +1.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeNO3+2 + +NO3- + Fe+3 = FeNO3+2 + -llnl_gamma 4.5 + log_k 1 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeNO3+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Fe++ = FeOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -9.5 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeOH+ + +H2O + Fe+2 = FeOH+ + H+ + -llnl_gamma 4 + log_k -9.5 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeOH+ # Enthalpy of formation: -0 kcal/mol - -1.0000 H2O + 1.0000 Fe+++ = FeOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.19 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeOH+2 + +H2O + Fe+3 = FeOH+2 + H+ + -llnl_gamma 4.5 + log_k -2.19 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeOH+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 Fe++ = FePO4- +1.0000 H+ - -llnl_gamma 4.0 - log_k -4.3918 - -delta_H 0 # Not possible to calculate enthalpy of reaction FePO4- + +HPO4-2 + Fe+2 = FePO4- + H+ + -llnl_gamma 4 + log_k -4.3918 + -delta_H 0 # Not possible to calculate enthalpy of reaction FePO4- # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Fe++ = FeSO4 - -llnl_gamma 3.0 - log_k +2.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeSO4 + +SO4-2 + Fe+2 = FeSO4 + -llnl_gamma 3 + log_k 2.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction FeSO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Fe+++ = FeSO4+ - -llnl_gamma 4.0 - log_k +1.9276 - -delta_H 27.181 kJ/mol # Calculated enthalpy of reaction FeSO4+ + +SO4-2 + Fe+3 = FeSO4+ + -llnl_gamma 4 + log_k 1.9276 + -delta_H 27.181 kJ/mol # Calculated enthalpy of reaction FeSO4+ # Enthalpy of formation: -932.001 kJ/mol - -analytic 2.5178e+002 1.0080e-001 -6.0977e+003 -1.0483e+002 -9.5223e+001 + -analytic 2.5178e+2 1.008e-1 -6.0977e+3 -1.0483e+2 -9.5223e+1 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Gd+++ = Gd(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9625 - -delta_H -22.3426 kJ/mol # Calculated enthalpy of reaction Gd(Acetate)2+ +2 HAcetate + Gd+3 = Gd(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -4.9625 + -delta_H -22.3426 kJ/mol # Calculated enthalpy of reaction Gd(Acetate)2+ # Enthalpy of formation: -401.74 kcal/mol - -analytic -4.3124e+001 1.2995e-004 -4.3494e+002 1.3677e+001 5.1224e+005 + -analytic -4.3124e+1 1.2995e-4 -4.3494e+2 1.3677e+1 5.1224e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Gd+++ = Gd(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3489 - -delta_H -37.9907 kJ/mol # Calculated enthalpy of reaction Gd(Acetate)3 +3 HAcetate + Gd+3 = Gd(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -8.3489 + -delta_H -37.9907 kJ/mol # Calculated enthalpy of reaction Gd(Acetate)3 # Enthalpy of formation: -521.58 kcal/mol - -analytic -8.8296e+001 -5.0939e-003 1.2268e+003 2.8513e+001 6.0745e+005 + -analytic -8.8296e+1 -5.0939e-3 1.2268e+3 2.8513e+1 6.0745e+5 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Gd+++ = Gd(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.5576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(CO3)2- +2 HCO3- + Gd+3 = Gd(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -7.5576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Gd+++ = Gd(HPO4)2- - -llnl_gamma 4.0 - log_k +9.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(HPO4)2- + +2 HPO4-2 + Gd+3 = Gd(HPO4)2- + -llnl_gamma 4 + log_k 9.6 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(HPO4)2- # Enthalpy of formation: -0 kcal/mol - + # Redundant with GdO2- #4.0000 H2O + 1.0000 Gd+++ = Gd(OH)4- +4.0000 H+ -# -llnl_gamma 4.0 +# -llnl_gamma 4.0 # log_k -33.8803 # -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)4- ## Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Gd+++ = Gd(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.9437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(PO4)2-3 + +2 HPO4-2 + Gd+3 = Gd(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -3.9437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Gd+++ = Gd(SO4)2- - -llnl_gamma 4.0 - log_k +5.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(SO4)2- + +2 SO4-2 + Gd+3 = Gd(SO4)2- + -llnl_gamma 4 + log_k 5.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(SO4)2- # Enthalpy of formation: -0 kcal/mol - -1.0000 Gd+++ + 1.0000 HAcetate = GdAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1037 - -delta_H -11.7152 kJ/mol # Calculated enthalpy of reaction GdAcetate+2 + +Gd+3 + HAcetate = GdAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -2.1037 + -delta_H -11.7152 kJ/mol # Calculated enthalpy of reaction GdAcetate+2 # Enthalpy of formation: -283.1 kcal/mol - -analytic -1.4118e+001 1.6660e-003 -7.5206e+002 4.2614e+000 3.1187e+005 + -analytic -1.4118e+1 1.666e-3 -7.5206e+2 4.2614e+0 3.1187e+5 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Gd+++ = GdCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.479 - -delta_H 89.9476 kJ/mol # Calculated enthalpy of reaction GdCO3+ +HCO3- + Gd+3 = GdCO3+ + H+ + -llnl_gamma 4 + log_k -2.479 + -delta_H 89.9476 kJ/mol # Calculated enthalpy of reaction GdCO3+ # Enthalpy of formation: -307.6 kcal/mol - -analytic 2.3628e+002 5.4100e-002 -7.0746e+003 -9.3413e+001 -1.1046e+002 + -analytic 2.3628e+2 5.41e-2 -7.0746e+3 -9.3413e+1 -1.1046e+2 # -Range: 0-300 -1.0000 Gd+++ + 1.0000 Cl- = GdCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 14.7821 kJ/mol # Calculated enthalpy of reaction GdCl+2 +Gd+3 + Cl- = GdCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 14.7821 kJ/mol # Calculated enthalpy of reaction GdCl+2 # Enthalpy of formation: -200.6 kcal/mol - -analytic 8.0750e+001 3.8524e-002 -1.8591e+003 -3.4621e+001 -2.9034e+001 + -analytic 8.075e+1 3.8524e-2 -1.8591e+3 -3.4621e+1 -2.9034e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Gd+++ = GdCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 21.1961 kJ/mol # Calculated enthalpy of reaction GdCl2+ +2 Cl- + Gd+3 = GdCl2+ + -llnl_gamma 4 + log_k -0.0425 + -delta_H 21.1961 kJ/mol # Calculated enthalpy of reaction GdCl2+ # Enthalpy of formation: -239 kcal/mol - -analytic 2.1754e+002 8.0996e-002 -5.6121e+003 -9.0067e+001 -8.7635e+001 + -analytic 2.1754e+2 8.0996e-2 -5.6121e+3 -9.0067e+1 -8.7635e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Gd+++ = GdCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 15.895 kJ/mol # Calculated enthalpy of reaction GdCl3 +3 Cl- + Gd+3 = GdCl3 + -llnl_gamma 3 + log_k -0.4669 + -delta_H 15.895 kJ/mol # Calculated enthalpy of reaction GdCl3 # Enthalpy of formation: -280.2 kcal/mol - -analytic 4.1398e+002 1.2829e-001 -1.1230e+004 -1.6770e+002 -1.7535e+002 + -analytic 4.1398e+2 1.2829e-1 -1.123e+4 -1.677e+2 -1.7535e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 Gd+++ = GdCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -1.53971 kJ/mol # Calculated enthalpy of reaction GdCl4- +4 Cl- + Gd+3 = GdCl4- + -llnl_gamma 4 + log_k -0.8913 + -delta_H -1.53971 kJ/mol # Calculated enthalpy of reaction GdCl4- # Enthalpy of formation: -324.3 kcal/mol - -analytic 4.7684e+002 1.3157e-001 -1.3068e+004 -1.9118e+002 -2.0405e+002 + -analytic 4.7684e+2 1.3157e-1 -1.3068e+4 -1.9118e+2 -2.0405e+2 # -Range: 0-300 -1.0000 Gd+++ + 1.0000 F- = GdF++ - -llnl_gamma 4.5 - log_k +4.5886 - -delta_H 21.1292 kJ/mol # Calculated enthalpy of reaction GdF+2 +Gd+3 + F- = GdF+2 + -llnl_gamma 4.5 + log_k 4.5886 + -delta_H 21.1292 kJ/mol # Calculated enthalpy of reaction GdF+2 # Enthalpy of formation: -239.3 kcal/mol - -analytic 1.0060e+002 4.2181e-002 -2.6024e+003 -4.0347e+001 -4.0637e+001 + -analytic 1.006e+2 4.2181e-2 -2.6024e+3 -4.0347e+1 -4.0637e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Gd+++ = GdF2+ - -llnl_gamma 4.0 - log_k +7.9311 - -delta_H 11.2968 kJ/mol # Calculated enthalpy of reaction GdF2+ +2 F- + Gd+3 = GdF2+ + -llnl_gamma 4 + log_k 7.9311 + -delta_H 11.2968 kJ/mol # Calculated enthalpy of reaction GdF2+ # Enthalpy of formation: -321.8 kcal/mol - -analytic 2.3793e+002 8.4732e-002 -5.4950e+003 -9.5689e+001 -8.5815e+001 + -analytic 2.3793e+2 8.4732e-2 -5.495e+3 -9.5689e+1 -8.5815e+1 # -Range: 0-300 -3.0000 F- + 1.0000 Gd+++ = GdF3 - -llnl_gamma 3.0 - log_k +10.4673 - -delta_H -11.506 kJ/mol # Calculated enthalpy of reaction GdF3 +3 F- + Gd+3 = GdF3 + -llnl_gamma 3 + log_k 10.4673 + -delta_H -11.506 kJ/mol # Calculated enthalpy of reaction GdF3 # Enthalpy of formation: -407.4 kcal/mol - -analytic 4.4257e+002 1.3500e-001 -1.0377e+004 -1.7680e+002 -1.6205e+002 + -analytic 4.4257e+2 1.35e-1 -1.0377e+4 -1.768e+2 -1.6205e+2 # -Range: 0-300 -4.0000 F- + 1.0000 Gd+++ = GdF4- - -llnl_gamma 4.0 - log_k +12.4904 - -delta_H -52.3 kJ/mol # Calculated enthalpy of reaction GdF4- +4 F- + Gd+3 = GdF4- + -llnl_gamma 4 + log_k 12.4904 + -delta_H -52.3 kJ/mol # Calculated enthalpy of reaction GdF4- # Enthalpy of formation: -497.3 kcal/mol - -analytic 4.9026e+002 1.3534e-001 -1.0586e+004 -1.9501e+002 -1.6533e+002 + -analytic 4.9026e+2 1.3534e-1 -1.0586e+4 -1.9501e+2 -1.6533e+2 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 H+ + 1.0000 Gd+++ = GdH2PO4++ - -llnl_gamma 4.5 - log_k +9.4484 - -delta_H -14.9996 kJ/mol # Calculated enthalpy of reaction GdH2PO4+2 +HPO4-2 + H+ + Gd+3 = GdH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -14.9996 kJ/mol # Calculated enthalpy of reaction GdH2PO4+2 # Enthalpy of formation: -476.6 kcal/mol - -analytic 1.1058e+002 6.4124e-002 1.3451e+002 -4.8758e+001 2.0660e+000 + -analytic 1.1058e+2 6.4124e-2 1.3451e+2 -4.8758e+1 2.066e+0 # -Range: 0-300 -1.0000 HCO3- + 1.0000 Gd+++ = GdHCO3++ - -llnl_gamma 4.5 - log_k +1.6991 - -delta_H 10.0332 kJ/mol # Calculated enthalpy of reaction GdHCO3+2 +HCO3- + Gd+3 = GdHCO3+2 + -llnl_gamma 4.5 + log_k 1.6991 + -delta_H 10.0332 kJ/mol # Calculated enthalpy of reaction GdHCO3+2 # Enthalpy of formation: -326.7 kcal/mol - -analytic 4.1973e+001 3.2521e-002 -2.3475e+002 -1.9864e+001 -3.6757e+000 + -analytic 4.1973e+1 3.2521e-2 -2.3475e+2 -1.9864e+1 -3.6757e+0 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 Gd+++ = GdHPO4+ - -llnl_gamma 4.0 - log_k -185.109 - -delta_H 0 # Not possible to calculate enthalpy of reaction GdHPO4+ +HPO4-2 + Gd+3 = GdHPO4+ + -llnl_gamma 4 + log_k -185.109 + -delta_H 0 # Not possible to calculate enthalpy of reaction GdHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Gd+++ = GdNO3++ - -llnl_gamma 4.5 - log_k +0.4347 - -delta_H -25.8195 kJ/mol # Calculated enthalpy of reaction GdNO3+2 + +NO3- + Gd+3 = GdNO3+2 + -llnl_gamma 4.5 + log_k 0.4347 + -delta_H -25.8195 kJ/mol # Calculated enthalpy of reaction GdNO3+2 # Enthalpy of formation: -219.8 kcal/mol - -analytic 2.0253e+001 2.6372e-002 1.8785e+003 -1.3723e+001 2.9306e+001 + -analytic 2.0253e+1 2.6372e-2 1.8785e+3 -1.3723e+1 2.9306e+1 # -Range: 0-300 -1.0000 H2O + 1.0000 Gd+++ = GdO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.337 - -delta_H 113.039 kJ/mol # Calculated enthalpy of reaction GdO+ +H2O + Gd+3 = GdO+ + 2 H+ + -llnl_gamma 4 + log_k -16.337 + -delta_H 113.039 kJ/mol # Calculated enthalpy of reaction GdO+ # Enthalpy of formation: -205.5 kcal/mol - -analytic 2.0599e+002 3.2521e-002 -1.4547e+004 -7.4048e+001 -2.2705e+002 + -analytic 2.0599e+2 3.2521e-2 -1.4547e+4 -7.4048e+1 -2.2705e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Gd+++ = GdO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -34.4333 - -delta_H 283.817 kJ/mol # Calculated enthalpy of reaction GdO2- +2 H2O + Gd+3 = GdO2- + 4 H+ + -llnl_gamma 4 + log_k -34.4333 + -delta_H 283.817 kJ/mol # Calculated enthalpy of reaction GdO2- # Enthalpy of formation: -233 kcal/mol - -analytic 1.2067e+002 6.6276e-003 -1.5531e+004 -4.0448e+001 -4.3587e+005 + -analytic 1.2067e+2 6.6276e-3 -1.5531e+4 -4.0448e+1 -4.3587e+5 # -Range: 0-300 -2.0000 H2O + 1.0000 Gd+++ = GdO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -25.2707 - -delta_H 224.405 kJ/mol # Calculated enthalpy of reaction GdO2H +2 H2O + Gd+3 = GdO2H + 3 H+ + -llnl_gamma 3 + log_k -25.2707 + -delta_H 224.405 kJ/mol # Calculated enthalpy of reaction GdO2H # Enthalpy of formation: -247.2 kcal/mol - -analytic 3.6324e+002 4.7938e-002 -2.4275e+004 -1.2988e+002 -3.7889e+002 + -analytic 3.6324e+2 4.7938e-2 -2.4275e+4 -1.2988e+2 -3.7889e+2 # -Range: 0-300 -1.0000 H2O + 1.0000 Gd+++ = GdOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.9075 - -delta_H 79.9855 kJ/mol # Calculated enthalpy of reaction GdOH+2 +H2O + Gd+3 = GdOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.9075 + -delta_H 79.9855 kJ/mol # Calculated enthalpy of reaction GdOH+2 # Enthalpy of formation: -213.4 kcal/mol - -analytic 8.3265e+001 1.4153e-002 -6.8229e+003 -2.9301e+001 -1.0649e+002 + -analytic 8.3265e+1 1.4153e-2 -6.8229e+3 -2.9301e+1 -1.0649e+2 # -Range: 0-300 -1.0000 HPO4-- + 1.0000 Gd+++ = GdPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.1218 - -delta_H 0 # Not possible to calculate enthalpy of reaction GdPO4 +HPO4-2 + Gd+3 = GdPO4 + H+ + -llnl_gamma 3 + log_k -0.1218 + -delta_H 0 # Not possible to calculate enthalpy of reaction GdPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Gd+++ = GdSO4+ - -llnl_gamma 4.0 - log_k -3.687 - -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction GdSO4+ + +SO4-2 + Gd+3 = GdSO4+ + -llnl_gamma 4 + log_k -3.687 + -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction GdSO4+ # Enthalpy of formation: -376.8 kcal/mol - -analytic 3.0783e+002 8.6798e-002 -1.1246e+004 -1.2109e+002 -1.7557e+002 + -analytic 3.0783e+2 8.6798e-2 -1.1246e+4 -1.2109e+2 -1.7557e+2 # -Range: 0-300 -1.0000 O_phthalate-2 + 1.0000 H+ = H(O_phthalate)- - -llnl_gamma 4.0 - log_k +5.4080 - -delta_H 0 # Not possible to calculate enthalpy of reaction H(O_phthalate)- +O_phthalate-2 + H+ = H(O_phthalate)- + -llnl_gamma 4 + log_k 5.408 + -delta_H 0 # Not possible to calculate enthalpy of reaction H(O_phthalate)- # Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 1.0000 CrO4-- = H2CrO4 - -llnl_gamma 3.0 - log_k +5.1750 - -delta_H 42.8274 kJ/mol # Calculated enthalpy of reaction H2CrO4 + +2 H+ + CrO4-2 = H2CrO4 + -llnl_gamma 3 + log_k 5.175 + -delta_H 42.8274 kJ/mol # Calculated enthalpy of reaction H2CrO4 # Enthalpy of formation: -200.364 kcal/mol - -analytic 4.2958e+002 1.4939e-001 -1.1474e+004 -1.7396e+002 -1.9499e+002 + -analytic 4.2958e+2 1.4939e-1 -1.1474e+4 -1.7396e+2 -1.9499e+2 # -Range: 0-200 -2.0000 H+ + 2.0000 F- = H2F2 - -llnl_gamma 3.0 - log_k +6.7680 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2F2 +2 H+ + 2 F- = H2F2 + -llnl_gamma 3 + log_k 6.768 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2F2 # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 2.0000 H+ = H2P2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +12.0709 - -delta_H 19.7192 kJ/mol # Calculated enthalpy of reaction H2P2O7-2 + +2 HPO4-2 + 2 H+ = H2P2O7-2 + H2O + -llnl_gamma 4 + log_k 12.0709 + -delta_H 19.7192 kJ/mol # Calculated enthalpy of reaction H2P2O7-2 # Enthalpy of formation: -544.6 kcal/mol - -analytic 1.4825e+002 6.7021e-002 -2.8329e+003 -5.9251e+001 -4.4248e+001 + -analytic 1.4825e+2 6.7021e-2 -2.8329e+3 -5.9251e+1 -4.4248e+1 # -Range: 0-300 -3.0000 H+ + 1.0000 HPO4-- + 1.0000 F- = H2PO3F +1.0000 H2O - -llnl_gamma 3.0 - log_k +12.1047 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2PO3F +3 H+ + HPO4-2 + F- = H2PO3F + H2O + -llnl_gamma 3 + log_k 12.1047 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2PO3F # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 H+ = H2PO4- - -llnl_gamma 4.0 - log_k +7.2054 - -delta_H -4.20492 kJ/mol # Calculated enthalpy of reaction H2PO4- + +HPO4-2 + H+ = H2PO4- + -llnl_gamma 4 + log_k 7.2054 + -delta_H -4.20492 kJ/mol # Calculated enthalpy of reaction H2PO4- # Enthalpy of formation: -309.82 kcal/mol - -analytic 8.2149e+001 3.4077e-002 -1.0431e+003 -3.2970e+001 -1.6301e+001 + -analytic 8.2149e+1 3.4077e-2 -1.0431e+3 -3.297e+1 -1.6301e+1 # -Range: 0-300 #1.0000 HS- + 1.0000 H+ = H2S -# -llnl_gamma 3.0 +# -llnl_gamma 3.0 # log_k +6.99 # -analytic 1.2833e+002 5.1641e-002 -1.1681e+003 -5.3665e+001 -1.8266e+001 # -Range: 0-300 -# these (above) H2S values are from +# these (above) H2S values are from # Suleimenov & Seward, Geochim. Cosmochim. Acta, v. 61, p. 5187-5198. # values below are the original Thermo.com.v8.r6.230 data from somewhere -1.0000 HS- + 1.0000 H+ = H2S - -llnl_gamma 3.0 - log_k +6.9877 - -delta_H -21.5518 kJ/mol # Calculated enthalpy of reaction H2S +HS- + H+ = H2S + -llnl_gamma 3 + log_k 6.9877 + -delta_H -21.5518 kJ/mol # Calculated enthalpy of reaction H2S # Enthalpy of formation: -9.001 kcal/mol - -analytic 3.9283e+001 2.8727e-002 1.3477e+003 -1.8331e+001 2.1018e+001 + -analytic 3.9283e+1 2.8727e-2 1.3477e+3 -1.8331e+1 2.1018e+1 # -Range: 0-300 -2.0000 H+ + 1.0000 SO3-- = H2SO3 - -llnl_gamma 3.0 - log_k +9.2132 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2SO3 +2 H+ + SO3-2 = H2SO3 + -llnl_gamma 3 + log_k 9.2132 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2SO3 # Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 1.0000 SO4-- = H2SO4 - -llnl_gamma 3.0 - log_k -1.0209 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2SO4 + +2 H+ + SO4-2 = H2SO4 + -llnl_gamma 3 + log_k -1.0209 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2SO4 # Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 1.0000 Se-- = H2Se - -llnl_gamma 3.0 - log_k +18.7606 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2Se + +2 H+ + Se-2 = H2Se + -llnl_gamma 3 + log_k 18.7606 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2Se # Enthalpy of formation: 19.412 kJ/mol - -analytic 3.6902e+002 1.2855e-001 -5.5900e+003 -1.4946e+002 -9.5054e+001 + -analytic 3.6902e+2 1.2855e-1 -5.59e+3 -1.4946e+2 -9.5054e+1 # -Range: 0-200 -2.0000 H+ + 1.0000 SeO3-- = H2SeO3 - -llnl_gamma 3.0 - log_k +9.8589 - -delta_H 1.7238 kJ/mol # Calculated enthalpy of reaction H2SeO3 +2 H+ + SeO3-2 = H2SeO3 + -llnl_gamma 3 + log_k 9.8589 + -delta_H 1.7238 kJ/mol # Calculated enthalpy of reaction H2SeO3 # Enthalpy of formation: -507.469 kJ/mol - -analytic 2.7850e+002 1.0460e-001 -5.4934e+003 -1.1371e+002 -9.3383e+001 + -analytic 2.785e+2 1.046e-1 -5.4934e+3 -1.1371e+2 -9.3383e+1 # -Range: 0-200 -2.0000 H2O + 1.0000 SiO2 = H2SiO4-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -22.96 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2SiO4-2 +2 H2O + SiO2 = H2SiO4-2 + 2 H+ + -llnl_gamma 4 + log_k -22.96 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2SiO4-2 # Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 1.0000 TcO4-- = H2TcO4 - -llnl_gamma 3.0 - log_k +9.0049 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2TcO4 + +2 H+ + TcO4-2 = H2TcO4 + -llnl_gamma 3 + log_k 9.0049 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2TcO4 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 VO2+ = H2VO4- + 2.0000 H+ - -llnl_gamma 4.0 - log_k -7.0922 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2VO4- + +2 H2O + VO2+ = H2VO4- + 2 H+ + -llnl_gamma 4 + log_k -7.0922 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2VO4- # Enthalpy of formation: -0 kcal/mol - -analytic 1.7105e+001 -1.7503e-002 -4.2671e+003 -1.8910e+000 -6.6589e+001 + -analytic 1.7105e+1 -1.7503e-2 -4.2671e+3 -1.891e+0 -6.6589e+1 # -Range: 0-300 -1.0000 H2AsO4- + 1.0000 H+ = H3AsO4 - -llnl_gamma 3.0 - log_k +2.2492 - -delta_H 7.17876 kJ/mol # Calculated enthalpy of reaction H3AsO4 +H2AsO4- + H+ = H3AsO4 + -llnl_gamma 3 + log_k 2.2492 + -delta_H 7.17876 kJ/mol # Calculated enthalpy of reaction H3AsO4 # Enthalpy of formation: -902.381 kJ/mol - -analytic 1.4043e+002 4.6288e-002 -3.5868e+003 -5.6560e+001 -6.0957e+001 + -analytic 1.4043e+2 4.6288e-2 -3.5868e+3 -5.656e+1 -6.0957e+1 # -Range: 0-200 -3.0000 H+ + 2.0000 HPO4-- = H3P2O7- +1.0000 H2O - -llnl_gamma 4.0 - log_k +14.4165 - -delta_H 21.8112 kJ/mol # Calculated enthalpy of reaction H3P2O7- +3 H+ + 2 HPO4-2 = H3P2O7- + H2O + -llnl_gamma 4 + log_k 14.4165 + -delta_H 21.8112 kJ/mol # Calculated enthalpy of reaction H3P2O7- # Enthalpy of formation: -544.1 kcal/mol - -analytic 2.3157e+002 1.0161e-001 -4.3723e+003 -9.4050e+001 -6.8295e+001 + -analytic 2.3157e+2 1.0161e-1 -4.3723e+3 -9.405e+1 -6.8295e+1 # -Range: 0-300 -2.0000 H+ + 1.0000 HPO4-- = H3PO4 - -llnl_gamma 3.0 - log_k +9.3751 - -delta_H 3.74468 kJ/mol # Calculated enthalpy of reaction H3PO4 +2 H+ + HPO4-2 = H3PO4 + -llnl_gamma 3 + log_k 9.3751 + -delta_H 3.74468 kJ/mol # Calculated enthalpy of reaction H3PO4 # Enthalpy of formation: -307.92 kcal/mol - -analytic 1.8380e+002 6.7320e-002 -3.7792e+003 -7.3463e+001 -5.9025e+001 + -analytic 1.838e+2 6.732e-2 -3.7792e+3 -7.3463e+1 -5.9025e+1 # -Range: 0-300 -8.0000 H2O + 4.0000 SiO2 = H4(H2SiO4)4---- +4.0000 H+ - -llnl_gamma 4.0 - log_k -35.94 - -delta_H 0 # Not possible to calculate enthalpy of reaction H4(H2SiO4)4-4 +8 H2O + 4 SiO2 = H4(H2SiO4)4-4 + 4 H+ + -llnl_gamma 4 + log_k -35.94 + -delta_H 0 # Not possible to calculate enthalpy of reaction H4(H2SiO4)4-4 # Enthalpy of formation: -0 kcal/mol - -4.0000 H+ + 2.0000 HPO4-- = H4P2O7 +1.0000 H2O - -llnl_gamma 3.0 - log_k +15.9263 - -delta_H 29.7226 kJ/mol # Calculated enthalpy of reaction H4P2O7 + +4 H+ + 2 HPO4-2 = H4P2O7 + H2O + -llnl_gamma 3 + log_k 15.9263 + -delta_H 29.7226 kJ/mol # Calculated enthalpy of reaction H4P2O7 # Enthalpy of formation: -2268.6 kJ/mol - -analytic 6.9026e+002 2.4309e-001 -1.6165e+004 -2.7989e+002 -2.7475e+002 + -analytic 6.9026e+2 2.4309e-1 -1.6165e+4 -2.7989e+2 -2.7475e+2 # -Range: 0-200 -8.0000 H2O + 4.0000 SiO2 = H6(H2SiO4)4-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -13.64 - -delta_H 0 # Not possible to calculate enthalpy of reaction H6(H2SiO4)4-2 +8 H2O + 4 SiO2 = H6(H2SiO4)4-2 + 2 H+ + -llnl_gamma 4 + log_k -13.64 + -delta_H 0 # Not possible to calculate enthalpy of reaction H6(H2SiO4)4-2 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Al+++ = HAlO2 +3.0000 H+ - -llnl_gamma 3.0 - log_k -16.4329 - -delta_H 144.704 kJ/mol # Calculated enthalpy of reaction HAlO2 + +2 H2O + Al+3 = HAlO2 + 3 H+ + -llnl_gamma 3 + log_k -16.4329 + -delta_H 144.704 kJ/mol # Calculated enthalpy of reaction HAlO2 # Enthalpy of formation: -230.73 kcal/mol - -analytic 4.2012e+001 1.9980e-002 -7.7847e+003 -1.5470e+001 -1.2149e+002 + -analytic 4.2012e+1 1.998e-2 -7.7847e+3 -1.547e+1 -1.2149e+2 # -Range: 0-300 -1.0000 H2AsO3- + 1.0000 H+ = HAsO2 +1.0000 H2O - -llnl_gamma 3.0 - log_k 9.2792 - -delta_H 0 # Not possible to calculate enthalpy of reaction HAsO2 +H2AsO3- + H+ = HAsO2 + H2O + -llnl_gamma 3 + log_k 9.2792 + -delta_H 0 # Not possible to calculate enthalpy of reaction HAsO2 # Enthalpy of formation: -0 kcal/mol - -analytic 3.1290e+002 9.3052e-002 -6.5052e+003 -1.2510e+002 -1.1058e+002 + -analytic 3.129e+2 9.3052e-2 -6.5052e+3 -1.251e+2 -1.1058e+2 # -Range: 0-200 -1.0000 H2AsO4- + 1.0000 H+ + 1.0000 F- = HAsO3F- +1.0000 H2O - -llnl_gamma 4.0 - log_k +46.1158 - -delta_H 0 # Not possible to calculate enthalpy of reaction HAsO3F- +H2AsO4- + H+ + F- = HAsO3F- + H2O + -llnl_gamma 4 + log_k 46.1158 + -delta_H 0 # Not possible to calculate enthalpy of reaction HAsO3F- # Enthalpy of formation: -0 kcal/mol - -1.0000 H2AsO4- = HAsO4-- +1.0000 H+ - -llnl_gamma 4.0 - log_k -6.7583 - -delta_H 3.22168 kJ/mol # Calculated enthalpy of reaction HAsO4-2 + +H2AsO4- = HAsO4-2 + H+ + -llnl_gamma 4 + log_k -6.7583 + -delta_H 3.22168 kJ/mol # Calculated enthalpy of reaction HAsO4-2 # Enthalpy of formation: -216.62 kcal/mol - -analytic -8.4546e+001 -3.4630e-002 1.1829e+003 3.3997e+001 1.8483e+001 + -analytic -8.4546e+1 -3.463e-2 1.1829e+3 3.3997e+1 1.8483e+1 # -Range: 0-300 -3.0000 H+ + 2.0000 HS- + 1.0000 H2AsO3- = HAsS2 +3.0000 H2O - -llnl_gamma 3.0 - log_k +30.4803 - -delta_H 0 # Not possible to calculate enthalpy of reaction HAsS2 +3 H+ + 2 HS- + H2AsO3- = HAsS2 + 3 H2O + -llnl_gamma 3 + log_k 30.4803 + -delta_H 0 # Not possible to calculate enthalpy of reaction HAsS2 # Enthalpy of formation: -0 kcal/mol - -1.0000 H+ + 1.0000 BrO- = HBrO - -llnl_gamma 3.0 - log_k +8.3889 - -delta_H 0 # Not possible to calculate enthalpy of reaction HBrO + +H+ + BrO- = HBrO + -llnl_gamma 3 + log_k 8.3889 + -delta_H 0 # Not possible to calculate enthalpy of reaction HBrO # Enthalpy of formation: -0 kcal/mol - -1.0000 H+ + 1.0000 Cyanide- = HCyanide - -llnl_gamma 3.0 - log_k +9.2359 - -delta_H -43.5136 kJ/mol # Calculated enthalpy of reaction HCyanide + +H+ + Cyanide- = HCyanide + -llnl_gamma 3 + log_k 9.2359 + -delta_H -43.5136 kJ/mol # Calculated enthalpy of reaction HCyanide # Enthalpy of formation: 25.6 kcal/mol - -analytic 1.0536e+001 2.3105e-002 3.3038e+003 -7.7786e+000 5.1550e+001 + -analytic 1.0536e+1 2.3105e-2 3.3038e+3 -7.7786e+0 5.155e+1 # -Range: 0-300 -1.0000 H+ + 1.0000 Cl- = HCl - -llnl_gamma 3.0 - log_k -0.67 - -delta_H 0 # Not possible to calculate enthalpy of reaction HCl +H+ + Cl- = HCl + -llnl_gamma 3 + log_k -0.67 + -delta_H 0 # Not possible to calculate enthalpy of reaction HCl # Enthalpy of formation: -0 kcal/mol - -analytic 4.1893e+002 1.1103e-001 -1.1784e+004 -1.6697e+002 -1.8400e+002 + -analytic 4.1893e+2 1.1103e-1 -1.1784e+4 -1.6697e+2 -1.84e+2 # -Range: 0-300 -1.0000 H+ + 1.0000 ClO- = HClO - -llnl_gamma 3.0 - log_k +7.5692 - -delta_H 0 # Not possible to calculate enthalpy of reaction HClO +H+ + ClO- = HClO + -llnl_gamma 3 + log_k 7.5692 + -delta_H 0 # Not possible to calculate enthalpy of reaction HClO # Enthalpy of formation: -0 kcal/mol - -1.0000 H+ + 1.0000 ClO2- = HClO2 - -llnl_gamma 3.0 - log_k +3.1698 - -delta_H 0 # Not possible to calculate enthalpy of reaction HClO2 + +H+ + ClO2- = HClO2 + -llnl_gamma 3 + log_k 3.1698 + -delta_H 0 # Not possible to calculate enthalpy of reaction HClO2 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Co++ = HCoO2- +3.0000 H+ - -llnl_gamma 4.0 - log_k -21.243 - -delta_H 0 # Not possible to calculate enthalpy of reaction HCoO2- + +2 H2O + Co+2 = HCoO2- + 3 H+ + -llnl_gamma 4 + log_k -21.243 + -delta_H 0 # Not possible to calculate enthalpy of reaction HCoO2- # Enthalpy of formation: -0 kcal/mol - -1.0000 H+ + 1.0000 CrO4-- = HCrO4- - -llnl_gamma 4.0 - log_k +6.4944 - -delta_H 2.9288 kJ/mol # Calculated enthalpy of reaction HCrO4- + +H+ + CrO4-2 = HCrO4- + -llnl_gamma 4 + log_k 6.4944 + -delta_H 2.9288 kJ/mol # Calculated enthalpy of reaction HCrO4- # Enthalpy of formation: -209.9 kcal/mol - -analytic 4.4944e+001 3.2740e-002 1.8400e+002 -1.9722e+001 2.8578e+000 + -analytic 4.4944e+1 3.274e-2 1.84e+2 -1.9722e+1 2.8578e+0 # -Range: 0-300 -1.0000 H+ + 1.0000 F- = HF - -llnl_gamma 3.0 - log_k +3.1681 - -delta_H 13.87 kJ/mol # Calculated enthalpy of reaction HF +H+ + F- = HF + -llnl_gamma 3 + log_k 3.1681 + -delta_H 13.87 kJ/mol # Calculated enthalpy of reaction HF # Enthalpy of formation: -76.835 kcal/mol - -analytic 8.6626e+001 3.2861e-002 -2.3026e+003 -3.4559e+001 -3.5956e+001 + -analytic 8.6626e+1 3.2861e-2 -2.3026e+3 -3.4559e+1 -3.5956e+1 # -Range: 0-300 -2.0000 F- + 1.0000 H+ = HF2- - -llnl_gamma 4.0 - log_k +2.5509 - -delta_H 20.7526 kJ/mol # Calculated enthalpy of reaction HF2- +2 F- + H+ = HF2- + -llnl_gamma 4 + log_k 2.5509 + -delta_H 20.7526 kJ/mol # Calculated enthalpy of reaction HF2- # Enthalpy of formation: -155.34 kcal/mol - -analytic 1.4359e+002 4.0866e-002 -4.6776e+003 -5.5574e+001 -7.3032e+001 + -analytic 1.4359e+2 4.0866e-2 -4.6776e+3 -5.5574e+1 -7.3032e+1 # -Range: 0-300 -1.0000 IO3- + 1.0000 H+ = HIO3 - -llnl_gamma 3.0 - log_k +0.4915 - -delta_H 0 # Not possible to calculate enthalpy of reaction HIO3 +IO3- + H+ = HIO3 + -llnl_gamma 3 + log_k 0.4915 + -delta_H 0 # Not possible to calculate enthalpy of reaction HIO3 # Enthalpy of formation: -0 kcal/mol - -1.0000 N3- + 1.0000 H+ = HN3 - -llnl_gamma 3.0 - log_k +4.7001 - -delta_H -15 kJ/mol # Calculated enthalpy of reaction HN3 + +N3- + H+ = HN3 + -llnl_gamma 3 + log_k 4.7001 + -delta_H -15 kJ/mol # Calculated enthalpy of reaction HN3 # Enthalpy of formation: 260.14 kJ/mol - -analytic 6.9976e+001 2.4359e-002 -7.1947e+002 -2.8339e+001 -1.2242e+001 + -analytic 6.9976e+1 2.4359e-2 -7.1947e+2 -2.8339e+1 -1.2242e+1 # -Range: 0-200 -1.0000 NO2- + 1.0000 H+ = HNO2 - -llnl_gamma 3.0 - log_k +3.2206 - -delta_H -14.782 kJ/mol # Calculated enthalpy of reaction HNO2 +NO2- + H+ = HNO2 + -llnl_gamma 3 + log_k 3.2206 + -delta_H -14.782 kJ/mol # Calculated enthalpy of reaction HNO2 # Enthalpy of formation: -119.382 kJ/mol - -analytic 1.9653e+000 -1.1603e-004 0.0000e+000 0.0000e+000 1.1569e+005 + -analytic 1.9653e+0 -1.1603e-4 0e+0 0e+0 1.1569e+5 # -Range: 0-200 -1.0000 NO3- + 1.0000 H+ = HNO3 - -llnl_gamma 3.0 - log_k -1.3025 - -delta_H 16.8155 kJ/mol # Calculated enthalpy of reaction HNO3 +NO3- + H+ = HNO3 + -llnl_gamma 3 + log_k -1.3025 + -delta_H 16.8155 kJ/mol # Calculated enthalpy of reaction HNO3 # Enthalpy of formation: -45.41 kcal/mol - -analytic 9.9744e+001 3.4866e-002 -3.0975e+003 -4.0830e+001 -4.8363e+001 + -analytic 9.9744e+1 3.4866e-2 -3.0975e+3 -4.083e+1 -4.8363e+1 # -Range: 0-300 -2.0000 HPO4-- + 1.0000 H+ = HP2O7--- +1.0000 H2O - -llnl_gamma 4.0 - log_k +5.4498 - -delta_H 23.3326 kJ/mol # Calculated enthalpy of reaction HP2O7-3 +2 HPO4-2 + H+ = HP2O7-3 + H2O + -llnl_gamma 4 + log_k 5.4498 + -delta_H 23.3326 kJ/mol # Calculated enthalpy of reaction HP2O7-3 # Enthalpy of formation: -2274.99 kJ/mol - -analytic 3.9159e+002 1.5438e-001 -8.7071e+003 -1.6283e+002 -1.3598e+002 + -analytic 3.9159e+2 1.5438e-1 -8.7071e+3 -1.6283e+2 -1.3598e+2 # -Range: 0-300 -2.0000 H+ + 1.0000 HPO4-- + 1.0000 F- = HPO3F- +1.0000 H2O - -llnl_gamma 4.0 - log_k +11.2988 - -delta_H 0 # Not possible to calculate enthalpy of reaction HPO3F- +2 H+ + HPO4-2 + F- = HPO3F- + H2O + -llnl_gamma 4 + log_k 11.2988 + -delta_H 0 # Not possible to calculate enthalpy of reaction HPO3F- # Enthalpy of formation: -0 kcal/mol - -1.0000 RuO4 + 1.0000 H2O = HRuO5- +1.0000 H+ - -llnl_gamma 4.0 - log_k -11.5244 - -delta_H 0 # Not possible to calculate enthalpy of reaction HRuO5- + +RuO4 + H2O = HRuO5- + H+ + -llnl_gamma 4 + log_k -11.5244 + -delta_H 0 # Not possible to calculate enthalpy of reaction HRuO5- # Enthalpy of formation: -0 kcal/mol - -1.0000 H+ + 1.0000 S2O3-- = HS2O3- - -llnl_gamma 4.0 - log_k 1.0139 - -delta_H 0 # Not possible to calculate enthalpy of reaction HS2O3- + +H+ + S2O3-2 = HS2O3- + -llnl_gamma 4 + log_k 1.0139 + -delta_H 0 # Not possible to calculate enthalpy of reaction HS2O3- # Enthalpy of formation: -0 kcal/mol - -1.0000 SO3-- + 1.0000 H+ = HSO3- - -llnl_gamma 4.0 - log_k +7.2054 - -delta_H 9.33032 kJ/mol # Calculated enthalpy of reaction HSO3- + +SO3-2 + H+ = HSO3- + -llnl_gamma 4 + log_k 7.2054 + -delta_H 9.33032 kJ/mol # Calculated enthalpy of reaction HSO3- # Enthalpy of formation: -149.67 kcal/mol - -analytic 5.5899e+001 3.3623e-002 -5.0120e+002 -2.3040e+001 -7.8373e+000 + -analytic 5.5899e+1 3.3623e-2 -5.012e+2 -2.304e+1 -7.8373e+0 # -Range: 0-300 -1.0000 SO4-- + 1.0000 H+ = HSO4- - -llnl_gamma 4.0 - log_k +1.9791 - -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction HSO4- +SO4-2 + H+ = HSO4- + -llnl_gamma 4 + log_k 1.9791 + -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction HSO4- # Enthalpy of formation: -212.5 kcal/mol - -analytic 4.9619e+001 3.0368e-002 -1.1558e+003 -2.1335e+001 -1.8051e+001 + -analytic 4.9619e+1 3.0368e-2 -1.1558e+3 -2.1335e+1 -1.8051e+1 # -Range: 0-300 -4.0000 HS- + 3.0000 H+ + 2.0000 Sb(OH)3 = HSb2S4- +6.0000 H2O - -llnl_gamma 4.0 - log_k +50.6100 - -delta_H 0 # Not possible to calculate enthalpy of reaction HSb2S4- +4 HS- + 3 H+ + 2 Sb(OH)3 = HSb2S4- + 6 H2O + -llnl_gamma 4 + log_k 50.61 + -delta_H 0 # Not possible to calculate enthalpy of reaction HSb2S4- # Enthalpy of formation: -0 kcal/mol - -analytic 1.7540e+002 8.2177e-002 1.0786e+004 -7.4874e+001 1.6826e+002 + -analytic 1.754e+2 8.2177e-2 1.0786e+4 -7.4874e+1 1.6826e+2 # -Range: 0-300 -1.0000 SeO3-- + 1.0000 H+ = HSeO3- - -llnl_gamma 4.0 - log_k +7.2861 - -delta_H -5.35552 kJ/mol # Calculated enthalpy of reaction HSeO3- +SeO3-2 + H+ = HSeO3- + -llnl_gamma 4 + log_k 7.2861 + -delta_H -5.35552 kJ/mol # Calculated enthalpy of reaction HSeO3- # Enthalpy of formation: -122.98 kcal/mol - -analytic 5.0427e+001 3.2250e-002 2.9603e+002 -2.1711e+001 4.6044e+000 + -analytic 5.0427e+1 3.225e-2 2.9603e+2 -2.1711e+1 4.6044e+0 # -Range: 0-300 -1.0000 SeO4-- + 1.0000 H+ = HSeO4- - -llnl_gamma 4.0 - log_k +1.9058 - -delta_H 17.5728 kJ/mol # Calculated enthalpy of reaction HSeO4- +SeO4-2 + H+ = HSeO4- + -llnl_gamma 4 + log_k 1.9058 + -delta_H 17.5728 kJ/mol # Calculated enthalpy of reaction HSeO4- # Enthalpy of formation: -139 kcal/mol - -analytic 1.4160e+002 3.9801e-002 -4.5392e+003 -5.5088e+001 -7.0872e+001 + -analytic 1.416e+2 3.9801e-2 -4.5392e+3 -5.5088e+1 -7.0872e+1 # -Range: 0-300 -1.0000 SiO2 + 1.0000 H2O = HSiO3- +1.0000 H+ - -llnl_gamma 4.0 - log_k -9.9525 - -delta_H 25.991 kJ/mol # Calculated enthalpy of reaction HSiO3- +SiO2 + H2O = HSiO3- + H+ + -llnl_gamma 4 + log_k -9.9525 + -delta_H 25.991 kJ/mol # Calculated enthalpy of reaction HSiO3- # Enthalpy of formation: -271.88 kcal/mol - -analytic 6.4211e+001 -2.4872e-002 -1.2707e+004 -1.4681e+001 1.0853e+006 + -analytic 6.4211e+1 -2.4872e-2 -1.2707e+4 -1.4681e+1 1.0853e+6 # -Range: 0-300 -1.0000 TcO4-- + 1.0000 H+ = HTcO4- - -llnl_gamma 4.0 - log_k +8.7071 - -delta_H 0 # Not possible to calculate enthalpy of reaction HTcO4- +TcO4-2 + H+ = HTcO4- + -llnl_gamma 4 + log_k 8.7071 + -delta_H 0 # Not possible to calculate enthalpy of reaction HTcO4- # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 VO2+ = HVO4-- +3.0000 H+ - -llnl_gamma 4.0 - log_k -15.1553 - -delta_H 0 # Not possible to calculate enthalpy of reaction HVO4-2 + +2 H2O + VO2+ = HVO4-2 + 3 H+ + -llnl_gamma 4 + log_k -15.1553 + -delta_H 0 # Not possible to calculate enthalpy of reaction HVO4-2 # Enthalpy of formation: -0 kcal/mol - -analytic -7.0660e+001 -5.2457e-002 -3.5380e+003 3.3534e+001 -5.5186e+001 + -analytic -7.066e+1 -5.2457e-2 -3.538e+3 3.3534e+1 -5.5186e+1 # -Range: 0-300 -5.0000 H2O + 1.0000 Hf++++ = Hf(OH)5- +5.0000 H+ - -llnl_gamma 4.0 - log_k -17.1754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(OH)5- +5 H2O + Hf+4 = Hf(OH)5- + 5 H+ + -llnl_gamma 4 + log_k -17.1754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(OH)5- # Enthalpy of formation: -0 kcal/mol - -1.0000 Hf++++ + 1.0000 H2O = HfOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -0.2951 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfOH+3 + +Hf+4 + H2O = HfOH+3 + H+ + -llnl_gamma 5 + log_k -0.2951 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfOH+3 # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Hg++ = Hg(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -2.6242 - -delta_H -30.334 kJ/mol # Calculated enthalpy of reaction Hg(Acetate)2 + +2 HAcetate + Hg+2 = Hg(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -2.6242 + -delta_H -30.334 kJ/mol # Calculated enthalpy of reaction Hg(Acetate)2 # Enthalpy of formation: -198.78 kcal/mol - -analytic -2.1959e+001 2.7774e-003 -3.2500e+003 7.7351e+000 9.1508e+005 + -analytic -2.1959e+1 2.7774e-3 -3.25e+3 7.7351e+0 9.1508e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Hg++ = Hg(Acetate)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -4.3247 - -delta_H -59.7057 kJ/mol # Calculated enthalpy of reaction Hg(Acetate)3- +3 HAcetate + Hg+2 = Hg(Acetate)3- + 3 H+ + -llnl_gamma 4 + log_k -4.3247 + -delta_H -59.7057 kJ/mol # Calculated enthalpy of reaction Hg(Acetate)3- # Enthalpy of formation: -321.9 kcal/mol - -analytic 2.1656e+001 -2.0392e-003 -1.2866e+004 -3.2932e+000 2.3073e+006 + -analytic 2.1656e+1 -2.0392e-3 -1.2866e+4 -3.2932e+0 2.3073e+6 # -Range: 0-300 -1.0000 Hg++ + 1.0000 HAcetate = HgAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -0.4691 - -delta_H -16.5686 kJ/mol # Calculated enthalpy of reaction HgAcetate+ +Hg+2 + HAcetate = HgAcetate+ + H+ + -llnl_gamma 4 + log_k -0.4691 + -delta_H -16.5686 kJ/mol # Calculated enthalpy of reaction HgAcetate+ # Enthalpy of formation: -79.39 kcal/mol - -analytic -1.6355e+001 1.9446e-003 -2.6676e+002 5.1978e+000 2.9805e+005 + -analytic -1.6355e+1 1.9446e-3 -2.6676e+2 5.1978e+0 2.9805e+5 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Ho+++ = Ho(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9844 - -delta_H -28.1583 kJ/mol # Calculated enthalpy of reaction Ho(Acetate)2+ +2 HAcetate + Ho+3 = Ho(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -4.9844 + -delta_H -28.1583 kJ/mol # Calculated enthalpy of reaction Ho(Acetate)2+ # Enthalpy of formation: -407.93 kcal/mol - -analytic -2.7925e+001 2.5599e-003 -1.4779e+003 8.0785e+000 6.3736e+005 + -analytic -2.7925e+1 2.5599e-3 -1.4779e+3 8.0785e+0 6.3736e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Ho+++ = Ho(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3783 - -delta_H -47.5721 kJ/mol # Calculated enthalpy of reaction Ho(Acetate)3 +3 HAcetate + Ho+3 = Ho(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -8.3783 + -delta_H -47.5721 kJ/mol # Calculated enthalpy of reaction Ho(Acetate)3 # Enthalpy of formation: -528.67 kcal/mol - -analytic -6.5547e+001 -1.1963e-004 -1.8887e+002 1.9796e+001 7.9041e+005 + -analytic -6.5547e+1 -1.1963e-4 -1.8887e+2 1.9796e+1 7.9041e+5 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Ho+++ = Ho(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.3576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(CO3)2- +2 HCO3- + Ho+3 = Ho(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -7.3576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Ho+++ = Ho(HPO4)2- - -llnl_gamma 4.0 - log_k +9.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(HPO4)2- + +2 HPO4-2 + Ho+3 = Ho(HPO4)2- + -llnl_gamma 4 + log_k 9.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(HPO4)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Ho+++ = Ho(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.3437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(PO4)2-3 + +2 HPO4-2 + Ho+3 = Ho(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -3.3437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Ho+++ = Ho(SO4)2- - -llnl_gamma 4.0 - log_k +4.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(SO4)2- + +2 SO4-2 + Ho+3 = Ho(SO4)2- + -llnl_gamma 4 + log_k 4.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(SO4)2- # Enthalpy of formation: -0 kcal/mol - -1.0000 Ho+++ + 1.0000 HAcetate = HoAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1184 - -delta_H -14.3093 kJ/mol # Calculated enthalpy of reaction HoAcetate+2 + +Ho+3 + HAcetate = HoAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -2.1184 + -delta_H -14.3093 kJ/mol # Calculated enthalpy of reaction HoAcetate+2 # Enthalpy of formation: -288.52 kcal/mol - -analytic -1.8265e+001 1.0753e-003 -6.0695e+002 5.7211e+000 3.3055e+005 + -analytic -1.8265e+1 1.0753e-3 -6.0695e+2 5.7211e+0 3.3055e+5 # -Range: 0-300 -1.0000 Ho+++ + 1.0000 HCO3- = HoCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.2591 - -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction HoCO3+ +Ho+3 + HCO3- = HoCO3+ + H+ + -llnl_gamma 4 + log_k -2.2591 + -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction HoCO3+ # Enthalpy of formation: -312.6 kcal/mol - -analytic 2.3773e+002 5.4448e-002 -6.9916e+003 -9.4063e+001 -1.0917e+002 + -analytic 2.3773e+2 5.4448e-2 -6.9916e+3 -9.4063e+1 -1.0917e+2 # -Range: 0-300 -1.0000 Ho+++ + 1.0000 Cl- = HoCl++ - -llnl_gamma 4.5 - log_k +0.2353 - -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction HoCl+2 +Ho+3 + Cl- = HoCl+2 + -llnl_gamma 4.5 + log_k 0.2353 + -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction HoCl+2 # Enthalpy of formation: -205.6 kcal/mol - -analytic 7.3746e+001 3.7733e-002 -1.5627e+003 -3.2126e+001 -2.4407e+001 + -analytic 7.3746e+1 3.7733e-2 -1.5627e+3 -3.2126e+1 -2.4407e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Ho+++ = HoCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 17.8489 kJ/mol # Calculated enthalpy of reaction HoCl2+ +2 Cl- + Ho+3 = HoCl2+ + -llnl_gamma 4 + log_k -0.0425 + -delta_H 17.8489 kJ/mol # Calculated enthalpy of reaction HoCl2+ # Enthalpy of formation: -244.6 kcal/mol - -analytic 1.9928e+002 7.9025e-002 -4.7775e+003 -8.3582e+001 -7.4607e+001 + -analytic 1.9928e+2 7.9025e-2 -4.7775e+3 -8.3582e+1 -7.4607e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Ho+++ = HoCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 10.0374 kJ/mol # Calculated enthalpy of reaction HoCl3 +3 Cl- + Ho+3 = HoCl3 + -llnl_gamma 3 + log_k -0.4669 + -delta_H 10.0374 kJ/mol # Calculated enthalpy of reaction HoCl3 # Enthalpy of formation: -286.4 kcal/mol - -analytic 3.8608e+002 1.2638e-001 -9.8339e+003 -1.5809e+002 -1.5356e+002 + -analytic 3.8608e+2 1.2638e-1 -9.8339e+3 -1.5809e+2 -1.5356e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 Ho+++ = HoCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -12.4181 kJ/mol # Calculated enthalpy of reaction HoCl4- +4 Cl- + Ho+3 = HoCl4- + -llnl_gamma 4 + log_k -0.8913 + -delta_H -12.4181 kJ/mol # Calculated enthalpy of reaction HoCl4- # Enthalpy of formation: -331.7 kcal/mol - -analytic 4.2179e+002 1.2576e-001 -1.0495e+004 -1.7172e+002 -1.6388e+002 + -analytic 4.2179e+2 1.2576e-1 -1.0495e+4 -1.7172e+2 -1.6388e+2 # -Range: 0-300 -1.0000 Ho+++ + 1.0000 F- = HoF++ - -llnl_gamma 4.5 - log_k +4.7352 - -delta_H 22.3844 kJ/mol # Calculated enthalpy of reaction HoF+2 +Ho+3 + F- = HoF+2 + -llnl_gamma 4.5 + log_k 4.7352 + -delta_H 22.3844 kJ/mol # Calculated enthalpy of reaction HoF+2 # Enthalpy of formation: -243.8 kcal/mol - -analytic 9.5294e+001 4.1702e-002 -2.4460e+003 -3.8296e+001 -3.8195e+001 + -analytic 9.5294e+1 4.1702e-2 -2.446e+3 -3.8296e+1 -3.8195e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Ho+++ = HoF2+ - -llnl_gamma 4.0 - log_k +8.2976 - -delta_H 11.7152 kJ/mol # Calculated enthalpy of reaction HoF2+ +2 F- + Ho+3 = HoF2+ + -llnl_gamma 4 + log_k 8.2976 + -delta_H 11.7152 kJ/mol # Calculated enthalpy of reaction HoF2+ # Enthalpy of formation: -326.5 kcal/mol - -analytic 2.2330e+002 8.3497e-002 -4.9105e+003 -9.0272e+001 -7.6690e+001 + -analytic 2.233e+2 8.3497e-2 -4.9105e+3 -9.0272e+1 -7.669e+1 # -Range: 0-300 -3.0000 F- + 1.0000 Ho+++ = HoF3 - -llnl_gamma 3.0 - log_k +10.9071 - -delta_H -12.7612 kJ/mol # Calculated enthalpy of reaction HoF3 +3 F- + Ho+3 = HoF3 + -llnl_gamma 3 + log_k 10.9071 + -delta_H -12.7612 kJ/mol # Calculated enthalpy of reaction HoF3 # Enthalpy of formation: -412.5 kcal/mol - -analytic 4.1587e+002 1.3308e-001 -9.2193e+003 -1.6717e+002 -1.4398e+002 + -analytic 4.1587e+2 1.3308e-1 -9.2193e+3 -1.6717e+2 -1.4398e+2 # -Range: 0-300 -4.0000 F- + 1.0000 Ho+++ = HoF4- - -llnl_gamma 4.0 - log_k +13.0035 - -delta_H -57.7392 kJ/mol # Calculated enthalpy of reaction HoF4- +4 F- + Ho+3 = HoF4- + -llnl_gamma 4 + log_k 13.0035 + -delta_H -57.7392 kJ/mol # Calculated enthalpy of reaction HoF4- # Enthalpy of formation: -503.4 kcal/mol - -analytic 4.4575e+002 1.3182e-001 -8.5485e+003 -1.7916e+002 -1.3352e+002 + -analytic 4.4575e+2 1.3182e-1 -8.5485e+3 -1.7916e+2 -1.3352e+2 # -Range: 0-300 -1.0000 Ho+++ + 1.0000 HPO4-- + 1.0000 H+ = HoH2PO4++ - -llnl_gamma 4.5 - log_k +9.4484 - -delta_H -17.9284 kJ/mol # Calculated enthalpy of reaction HoH2PO4+2 +Ho+3 + HPO4-2 + H+ = HoH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -17.9284 kJ/mol # Calculated enthalpy of reaction HoH2PO4+2 # Enthalpy of formation: -482.1 kcal/mol - -analytic 1.0273e+002 6.3161e-002 5.5160e+002 -4.6035e+001 8.5766e+000 + -analytic 1.0273e+2 6.3161e-2 5.516e+2 -4.6035e+1 8.5766e+0 # -Range: 0-300 -1.0000 Ho+++ + 1.0000 HCO3- = HoHCO3++ - -llnl_gamma 4.5 - log_k +1.6991 - -delta_H 7.52283 kJ/mol # Calculated enthalpy of reaction HoHCO3+2 +Ho+3 + HCO3- = HoHCO3+2 + -llnl_gamma 4.5 + log_k 1.6991 + -delta_H 7.52283 kJ/mol # Calculated enthalpy of reaction HoHCO3+2 # Enthalpy of formation: -332.1 kcal/mol - -analytic 3.3420e+001 3.1394e-002 1.9804e+002 -1.6859e+001 3.0801e+000 + -analytic 3.342e+1 3.1394e-2 1.9804e+2 -1.6859e+1 3.0801e+0 # -Range: 0-300 -1.0000 Ho+++ + 1.0000 HPO4-- = HoHPO4+ - -llnl_gamma 4.0 - log_k +5.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction HoHPO4+ +Ho+3 + HPO4-2 = HoHPO4+ + -llnl_gamma 4 + log_k 5.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction HoHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Ho+++ = HoNO3++ - -llnl_gamma 4.5 - log_k +0.2148 - -delta_H -30.0035 kJ/mol # Calculated enthalpy of reaction HoNO3+2 + +NO3- + Ho+3 = HoNO3+2 + -llnl_gamma 4.5 + log_k 0.2148 + -delta_H -30.0035 kJ/mol # Calculated enthalpy of reaction HoNO3+2 # Enthalpy of formation: -225.6 kcal/mol - -analytic 1.1069e+001 2.5142e-002 2.3943e+003 -1.0650e+001 3.7358e+001 + -analytic 1.1069e+1 2.5142e-2 2.3943e+3 -1.065e+1 3.7358e+1 # -Range: 0-300 -1.0000 Ho+++ + 1.0000 H2O = HoO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.0438 - -delta_H 108.437 kJ/mol # Calculated enthalpy of reaction HoO+ +Ho+3 + H2O = HoO+ + 2 H+ + -llnl_gamma 4 + log_k -16.0438 + -delta_H 108.437 kJ/mol # Calculated enthalpy of reaction HoO+ # Enthalpy of formation: -211.4 kcal/mol - -analytic 1.9152e+002 3.0627e-002 -1.3817e+004 -6.8846e+001 -2.1565e+002 + -analytic 1.9152e+2 3.0627e-2 -1.3817e+4 -6.8846e+1 -2.1565e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Ho+++ = HoO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -33.4804 - -delta_H 274.613 kJ/mol # Calculated enthalpy of reaction HoO2- +2 H2O + Ho+3 = HoO2- + 4 H+ + -llnl_gamma 4 + log_k -33.4804 + -delta_H 274.613 kJ/mol # Calculated enthalpy of reaction HoO2- # Enthalpy of formation: -240 kcal/mol - -analytic 1.7987e+002 1.2731e-002 -2.0007e+004 -6.0642e+001 -3.1224e+002 + -analytic 1.7987e+2 1.2731e-2 -2.0007e+4 -6.0642e+1 -3.1224e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Ho+++ = HoO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -24.5377 - -delta_H 216.873 kJ/mol # Calculated enthalpy of reaction HoO2H +2 H2O + Ho+3 = HoO2H + 3 H+ + -llnl_gamma 3 + log_k -24.5377 + -delta_H 216.873 kJ/mol # Calculated enthalpy of reaction HoO2H # Enthalpy of formation: -253.8 kcal/mol - -analytic 3.3877e+002 4.6282e-002 -2.2925e+004 -1.2133e+002 -3.5782e+002 + -analytic 3.3877e+2 4.6282e-2 -2.2925e+4 -1.2133e+2 -3.5782e+2 # -Range: 0-300 -1.0000 Ho+++ + 1.0000 H2O = HoOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.7609 - -delta_H 76.6383 kJ/mol # Calculated enthalpy of reaction HoOH+2 +Ho+3 + H2O = HoOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.7609 + -delta_H 76.6383 kJ/mol # Calculated enthalpy of reaction HoOH+2 # Enthalpy of formation: -219 kcal/mol - -analytic 7.1326e+001 1.2657e-002 -6.2461e+003 -2.5018e+001 -9.7485e+001 + -analytic 7.1326e+1 1.2657e-2 -6.2461e+3 -2.5018e+1 -9.7485e+1 # -Range: 0-300 -1.0000 Ho+++ + 1.0000 HPO4-- = HoPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.2782 - -delta_H 0 # Not possible to calculate enthalpy of reaction HoPO4 +Ho+3 + HPO4-2 = HoPO4 + H+ + -llnl_gamma 3 + log_k 0.2782 + -delta_H 0 # Not possible to calculate enthalpy of reaction HoPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Ho+++ = HoSO4+ - -llnl_gamma 4.0 - log_k +3.5697 - -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction HoSO4+ + +SO4-2 + Ho+3 = HoSO4+ + -llnl_gamma 4 + log_k 3.5697 + -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction HoSO4+ # Enthalpy of formation: -381.5 kcal/mol - -analytic 3.0709e+002 8.6579e-002 -9.0693e+003 -1.2078e+002 -1.4161e+002 + -analytic 3.0709e+2 8.6579e-2 -9.0693e+3 -1.2078e+2 -1.4161e+2 # -Range: 0-300 -2.0000 HAcetate + 1.0000 K+ = K(Acetate)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -10.2914 - -delta_H -1.79912 kJ/mol # Calculated enthalpy of reaction K(Acetate)2- +2 HAcetate + K+ = K(Acetate)2- + 2 H+ + -llnl_gamma 4 + log_k -10.2914 + -delta_H -1.79912 kJ/mol # Calculated enthalpy of reaction K(Acetate)2- # Enthalpy of formation: -292.9 kcal/mol - -analytic -2.3036e+002 -4.6369e-002 7.0305e+003 8.4997e+001 1.0977e+002 + -analytic -2.3036e+2 -4.6369e-2 7.0305e+3 8.4997e+1 1.0977e+2 # -Range: 0-300 -1.0000 K+ + 1.0000 Br- = KBr - -llnl_gamma 3.0 - log_k -1.7372 - -delta_H 12.5102 kJ/mol # Calculated enthalpy of reaction KBr +K+ + Br- = KBr + -llnl_gamma 3 + log_k -1.7372 + -delta_H 12.5102 kJ/mol # Calculated enthalpy of reaction KBr # Enthalpy of formation: -86.32 kcal/mol - -analytic 1.1320e+002 3.4227e-002 -3.6401e+003 -4.5633e+001 -5.6833e+001 + -analytic 1.132e+2 3.4227e-2 -3.6401e+3 -4.5633e+1 -5.6833e+1 # -Range: 0-300 -1.0000 K+ + 1.0000 HAcetate = KAcetate +1.0000 H+ - -llnl_gamma 3.0 - log_k -5.0211 - -delta_H 4.8116 kJ/mol # Calculated enthalpy of reaction KAcetate +K+ + HAcetate = KAcetate + H+ + -llnl_gamma 3 + log_k -5.0211 + -delta_H 4.8116 kJ/mol # Calculated enthalpy of reaction KAcetate # Enthalpy of formation: -175.22 kcal/mol - -analytic -2.6676e-001 -3.2675e-003 -1.7143e+003 -7.1907e-003 1.7726e+005 + -analytic -2.6676e-1 -3.2675e-3 -1.7143e+3 -7.1907e-3 1.7726e+5 # -Range: 0-300 -1.0000 K+ + 1.0000 Cl- = KCl - -llnl_gamma 3.0 - log_k -1.4946 - -delta_H 14.1963 kJ/mol # Calculated enthalpy of reaction KCl +K+ + Cl- = KCl + -llnl_gamma 3 + log_k -1.4946 + -delta_H 14.1963 kJ/mol # Calculated enthalpy of reaction KCl # Enthalpy of formation: -96.81 kcal/mol - -analytic 1.3650e+002 3.8405e-002 -4.4014e+003 -5.4421e+001 -6.8721e+001 + -analytic 1.365e+2 3.8405e-2 -4.4014e+3 -5.4421e+1 -6.8721e+1 # -Range: 0-300 -1.0000 K+ + 1.0000 HPO4-- = KHPO4- - -llnl_gamma 4.0 - log_k +0.7800 - -delta_H 0 # Not possible to calculate enthalpy of reaction KHPO4- +K+ + HPO4-2 = KHPO4- + -llnl_gamma 4 + log_k 0.78 + -delta_H 0 # Not possible to calculate enthalpy of reaction KHPO4- # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 K+ + 1.0000 H+ = KHSO4 - -llnl_gamma 3.0 - log_k +0.8136 - -delta_H 29.8319 kJ/mol # Calculated enthalpy of reaction KHSO4 + +SO4-2 + K+ + H+ = KHSO4 + -llnl_gamma 3 + log_k 0.8136 + -delta_H 29.8319 kJ/mol # Calculated enthalpy of reaction KHSO4 # Enthalpy of formation: -270.54 kcal/mol - -analytic 1.2620e+002 5.7349e-002 -3.3670e+003 -5.3003e+001 -5.2576e+001 + -analytic 1.262e+2 5.7349e-2 -3.367e+3 -5.3003e+1 -5.2576e+1 # -Range: 0-300 -1.0000 K+ + 1.0000 I- = KI - -llnl_gamma 3.0 - log_k -1.598 - -delta_H 9.16296 kJ/mol # Calculated enthalpy of reaction KI +K+ + I- = KI + -llnl_gamma 3 + log_k -1.598 + -delta_H 9.16296 kJ/mol # Calculated enthalpy of reaction KI # Enthalpy of formation: -71.68 kcal/mol - -analytic 1.0816e+002 3.3683e-002 -3.2143e+003 -4.4054e+001 -5.0187e+001 + -analytic 1.0816e+2 3.3683e-2 -3.2143e+3 -4.4054e+1 -5.0187e+1 # -Range: 0-300 -1.0000 K+ + 1.0000 H2O = KOH +1.0000 H+ - -llnl_gamma 3.0 - log_k -14.46 - -delta_H 0 # Not possible to calculate enthalpy of reaction KOH +K+ + H2O = KOH + H+ + -llnl_gamma 3 + log_k -14.46 + -delta_H 0 # Not possible to calculate enthalpy of reaction KOH # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 K+ = KP2O7--- +1.0000 H2O - -llnl_gamma 4.0 - log_k -1.4286 - -delta_H 34.1393 kJ/mol # Calculated enthalpy of reaction KP2O7-3 + +2 HPO4-2 + K+ = KP2O7-3 + H2O + -llnl_gamma 4 + log_k -1.4286 + -delta_H 34.1393 kJ/mol # Calculated enthalpy of reaction KP2O7-3 # Enthalpy of formation: -2516.36 kJ/mol - -analytic 4.1930e+002 1.4676e-001 -1.1169e+004 -1.7255e+002 -1.7441e+002 + -analytic 4.193e+2 1.4676e-1 -1.1169e+4 -1.7255e+2 -1.7441e+2 # -Range: 0-300 -1.0000 SO4-- + 1.0000 K+ = KSO4- - -llnl_gamma 4.0 - log_k +0.8796 - -delta_H 2.88696 kJ/mol # Calculated enthalpy of reaction KSO4- +SO4-2 + K+ = KSO4- + -llnl_gamma 4 + log_k 0.8796 + -delta_H 2.88696 kJ/mol # Calculated enthalpy of reaction KSO4- # Enthalpy of formation: -276.98 kcal/mol - -analytic 9.9073e+001 3.7817e-002 -2.1628e+003 -4.1297e+001 -3.3779e+001 + -analytic 9.9073e+1 3.7817e-2 -2.1628e+3 -4.1297e+1 -3.3779e+1 # -Range: 0-300 -2.0000 HAcetate + 1.0000 La+++ = La(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.3949 - -delta_H -23.1375 kJ/mol # Calculated enthalpy of reaction La(Acetate)2+ +2 HAcetate + La+3 = La(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -5.3949 + -delta_H -23.1375 kJ/mol # Calculated enthalpy of reaction La(Acetate)2+ # Enthalpy of formation: -407.33 kcal/mol - -analytic -1.2805e+001 2.8482e-003 -2.2521e+003 2.9108e+000 6.1659e+005 + -analytic -1.2805e+1 2.8482e-3 -2.2521e+3 2.9108e+0 6.1659e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 La+++ = La(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.5982 - -delta_H -41.9237 kJ/mol # Calculated enthalpy of reaction La(Acetate)3 +3 HAcetate + La+3 = La(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -8.5982 + -delta_H -41.9237 kJ/mol # Calculated enthalpy of reaction La(Acetate)3 # Enthalpy of formation: -527.92 kcal/mol - -analytic -3.3456e+001 1.2371e-003 -1.5978e+003 8.6343e+000 7.5717e+005 + -analytic -3.3456e+1 1.2371e-3 -1.5978e+3 8.6343e+0 7.5717e+5 # -Range: 0-300 -2.0000 HCO3- + 1.0000 La+++ = La(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -8.8576 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(CO3)2- +2 HCO3- + La+3 = La(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -8.8576 + -delta_H 0 # Not possible to calculate enthalpy of reaction La(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 La+++ = La(HPO4)2- - -llnl_gamma 4.0 - log_k +8.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(HPO4)2- + +2 HPO4-2 + La+3 = La(HPO4)2- + -llnl_gamma 4 + log_k 8.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction La(HPO4)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 La+++ = La(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.0437 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(PO4)2-3 + +2 HPO4-2 + La+3 = La(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -7.0437 + -delta_H 0 # Not possible to calculate enthalpy of reaction La(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 La+++ = La(SO4)2- - -llnl_gamma 4.0 - log_k +5.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(SO4)2- + +2 SO4-2 + La+3 = La(SO4)2- + -llnl_gamma 4 + log_k 5.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction La(SO4)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 La+++ + 2.0000 H2O = La2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -22.9902 - -delta_H 0 # Not possible to calculate enthalpy of reaction La2(OH)2+4 + +2 La+3 + 2 H2O = La2(OH)2+4 + 2 H+ + -llnl_gamma 5.5 + log_k -22.9902 + -delta_H 0 # Not possible to calculate enthalpy of reaction La2(OH)2+4 # Enthalpy of formation: -0 kcal/mol - -9.0000 H2O + 5.0000 La+++ = La5(OH)9+6 +9.0000 H+ - -llnl_gamma 6.0 - log_k -71.1557 - -delta_H 0 # Not possible to calculate enthalpy of reaction La5(OH)9+6 + +9 H2O + 5 La+3 = La5(OH)9+6 + 9 H+ + -llnl_gamma 6 + log_k -71.1557 + -delta_H 0 # Not possible to calculate enthalpy of reaction La5(OH)9+6 # Enthalpy of formation: -0 kcal/mol - -1.0000 La+++ + 1.0000 HAcetate = LaAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.2063 - -delta_H -12.5938 kJ/mol # Calculated enthalpy of reaction LaAcetate+2 + +La+3 + HAcetate = LaAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -2.2063 + -delta_H -12.5938 kJ/mol # Calculated enthalpy of reaction LaAcetate+2 # Enthalpy of formation: -288.71 kcal/mol - -analytic -1.0803e+001 8.5239e-004 -1.1143e+003 3.3273e+000 3.4305e+005 + -analytic -1.0803e+1 8.5239e-4 -1.1143e+3 3.3273e+0 3.4305e+5 # -Range: 0-300 -1.0000 La+++ + 1.0000 HCO3- = LaCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.212 - -delta_H 89.5292 kJ/mol # Calculated enthalpy of reaction LaCO3+ +La+3 + HCO3- = LaCO3+ + H+ + -llnl_gamma 4 + log_k -3.212 + -delta_H 89.5292 kJ/mol # Calculated enthalpy of reaction LaCO3+ # Enthalpy of formation: -313.1 kcal/mol - -analytic 2.3046e+002 5.2419e-002 -7.1063e+003 -9.1109e+001 -1.1095e+002 + -analytic 2.3046e+2 5.2419e-2 -7.1063e+3 -9.1109e+1 -1.1095e+2 # -Range: 0-300 -1.0000 La+++ + 1.0000 Cl- = LaCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction LaCl+2 +La+3 + Cl- = LaCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction LaCl+2 # Enthalpy of formation: -206.1 kcal/mol - -analytic 7.5802e+001 3.6641e-002 -1.7234e+003 -3.2578e+001 -2.6914e+001 + -analytic 7.5802e+1 3.6641e-2 -1.7234e+3 -3.2578e+1 -2.6914e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 La+++ = LaCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 19.1041 kJ/mol # Calculated enthalpy of reaction LaCl2+ +2 Cl- + La+3 = LaCl2+ + -llnl_gamma 4 + log_k -0.0425 + -delta_H 19.1041 kJ/mol # Calculated enthalpy of reaction LaCl2+ # Enthalpy of formation: -244.9 kcal/mol - -analytic 2.1632e+002 7.9274e-002 -5.5883e+003 -8.9400e+001 -8.7264e+001 + -analytic 2.1632e+2 7.9274e-2 -5.5883e+3 -8.94e+1 -8.7264e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 La+++ = LaCl3 - -llnl_gamma 3.0 - log_k -0.3936 - -delta_H 12.5478 kJ/mol # Calculated enthalpy of reaction LaCl3 +3 Cl- + La+3 = LaCl3 + -llnl_gamma 3 + log_k -0.3936 + -delta_H 12.5478 kJ/mol # Calculated enthalpy of reaction LaCl3 # Enthalpy of formation: -286.4 kcal/mol - -analytic 4.2210e+002 1.2792e-001 -1.1444e+004 -1.7062e+002 -1.7869e+002 + -analytic 4.221e+2 1.2792e-1 -1.1444e+4 -1.7062e+2 -1.7869e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 La+++ = LaCl4- - -llnl_gamma 4.0 - log_k -0.818 - -delta_H -7.81571 kJ/mol # Calculated enthalpy of reaction LaCl4- +4 Cl- + La+3 = LaCl4- + -llnl_gamma 4 + log_k -0.818 + -delta_H -7.81571 kJ/mol # Calculated enthalpy of reaction LaCl4- # Enthalpy of formation: -331.2 kcal/mol - -analytic 4.8802e+002 1.3053e-001 -1.3344e+004 -1.9518e+002 -2.0836e+002 + -analytic 4.8802e+2 1.3053e-1 -1.3344e+4 -1.9518e+2 -2.0836e+2 # -Range: 0-300 -1.0000 La+++ + 1.0000 F- = LaF++ - -llnl_gamma 4.5 - log_k +3.8556 - -delta_H 26.5684 kJ/mol # Calculated enthalpy of reaction LaF+2 +La+3 + F- = LaF+2 + -llnl_gamma 4.5 + log_k 3.8556 + -delta_H 26.5684 kJ/mol # Calculated enthalpy of reaction LaF+2 # Enthalpy of formation: -243.4 kcal/mol - -analytic 9.6765e+001 4.0513e-002 -2.8042e+003 -3.8617e+001 -4.3785e+001 + -analytic 9.6765e+1 4.0513e-2 -2.8042e+3 -3.8617e+1 -4.3785e+1 # -Range: 0-300 -2.0000 F- + 1.0000 La+++ = LaF2+ - -llnl_gamma 4.0 - log_k +6.6850 - -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction LaF2+ +2 F- + La+3 = LaF2+ + -llnl_gamma 4 + log_k 6.685 + -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction LaF2+ # Enthalpy of formation: -325.2 kcal/mol - -analytic 2.3923e+002 8.3559e-002 -6.0536e+003 -9.5821e+001 -9.4531e+001 + -analytic 2.3923e+2 8.3559e-2 -6.0536e+3 -9.5821e+1 -9.4531e+1 # -Range: 0-300 -3.0000 F- + 1.0000 La+++ = LaF3 - -llnl_gamma 3.0 - log_k +8.7081 - -delta_H -0.6276 kJ/mol # Calculated enthalpy of reaction LaF3 +3 F- + La+3 = LaF3 + -llnl_gamma 3 + log_k 8.7081 + -delta_H -0.6276 kJ/mol # Calculated enthalpy of reaction LaF3 # Enthalpy of formation: -410.2 kcal/mol - -analytic 4.5123e+002 1.3460e-001 -1.1334e+004 -1.7967e+002 -1.7699e+002 + -analytic 4.5123e+2 1.346e-1 -1.1334e+4 -1.7967e+2 -1.7699e+2 # -Range: 0-300 -4.0000 F- + 1.0000 La+++ = LaF4- - -llnl_gamma 4.0 - log_k +10.3647 - -delta_H -41.4216 kJ/mol # Calculated enthalpy of reaction LaF4- +4 F- + La+3 = LaF4- + -llnl_gamma 4 + log_k 10.3647 + -delta_H -41.4216 kJ/mol # Calculated enthalpy of reaction LaF4- # Enthalpy of formation: -500.1 kcal/mol - -analytic 5.0747e+002 1.3563e-001 -1.1903e+004 -2.0108e+002 -1.8588e+002 + -analytic 5.0747e+2 1.3563e-1 -1.1903e+4 -2.0108e+2 -1.8588e+2 # -Range: 0-300 -1.0000 La+++ + 1.0000 HPO4-- + 1.0000 H+ = LaH2PO4++ - -llnl_gamma 4.5 - log_k +9.7417 - -delta_H -18.3468 kJ/mol # Calculated enthalpy of reaction LaH2PO4+2 +La+3 + HPO4-2 + H+ = LaH2PO4+2 + -llnl_gamma 4.5 + log_k 9.7417 + -delta_H -18.3468 kJ/mol # Calculated enthalpy of reaction LaH2PO4+2 # Enthalpy of formation: -482.8 kcal/mol - -analytic 1.0530e+002 6.2177e-002 4.0686e+002 -4.6642e+001 6.3174e+000 + -analytic 1.053e+2 6.2177e-2 4.0686e+2 -4.6642e+1 6.3174e+0 # -Range: 0-300 -1.0000 La+++ + 1.0000 HCO3- = LaHCO3++ - -llnl_gamma 4.5 - log_k +1.9923 - -delta_H 6.68603 kJ/mol # Calculated enthalpy of reaction LaHCO3+2 +La+3 + HCO3- = LaHCO3+2 + -llnl_gamma 4.5 + log_k 1.9923 + -delta_H 6.68603 kJ/mol # Calculated enthalpy of reaction LaHCO3+2 # Enthalpy of formation: -332.9 kcal/mol - -analytic 3.6032e+001 3.0405e-002 5.1281e+001 -1.7478e+001 7.8933e-001 + -analytic 3.6032e+1 3.0405e-2 5.1281e+1 -1.7478e+1 7.8933e-1 # -Range: 0-300 -1.0000 La+++ + 1.0000 HPO4-- = LaHPO4+ - -llnl_gamma 4.0 - log_k +5.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaHPO4+ +La+3 + HPO4-2 = LaHPO4+ + -llnl_gamma 4 + log_k 5.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction LaHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 La+++ = LaNO3++ - -llnl_gamma 4.5 - log_k +0.5813 - -delta_H -29.1667 kJ/mol # Calculated enthalpy of reaction LaNO3+2 + +NO3- + La+3 = LaNO3+2 + -llnl_gamma 4.5 + log_k 0.5813 + -delta_H -29.1667 kJ/mol # Calculated enthalpy of reaction LaNO3+2 # Enthalpy of formation: -226 kcal/mol - -analytic 1.4136e+001 2.4247e-002 2.1998e+003 -1.1371e+001 3.4322e+001 + -analytic 1.4136e+1 2.4247e-2 2.1998e+3 -1.1371e+1 3.4322e+1 # -Range: 0-300 -1.0000 La+++ + 1.0000 H2O = LaO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -18.1696 - -delta_H 121.407 kJ/mol # Calculated enthalpy of reaction LaO+ +La+3 + H2O = LaO+ + 2 H+ + -llnl_gamma 4 + log_k -18.1696 + -delta_H 121.407 kJ/mol # Calculated enthalpy of reaction LaO+ # Enthalpy of formation: -208.9 kcal/mol - -analytic 1.8691e+002 2.9275e-002 -1.4385e+004 -6.6906e+001 -2.2452e+002 + -analytic 1.8691e+2 2.9275e-2 -1.4385e+4 -6.6906e+1 -2.2452e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 La+++ = LaO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -40.8105 - -delta_H 318.126 kJ/mol # Calculated enthalpy of reaction LaO2- +2 H2O + La+3 = LaO2- + 4 H+ + -llnl_gamma 4 + log_k -40.8105 + -delta_H 318.126 kJ/mol # Calculated enthalpy of reaction LaO2- # Enthalpy of formation: -230.2 kcal/mol - -analytic 1.8374e+002 1.2355e-002 -2.2472e+004 -6.1779e+001 -3.5070e+002 + -analytic 1.8374e+2 1.2355e-2 -2.2472e+4 -6.1779e+1 -3.507e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 La+++ = LaO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -27.9095 - -delta_H 237.375 kJ/mol # Calculated enthalpy of reaction LaO2H +2 H2O + La+3 = LaO2H + 3 H+ + -llnl_gamma 3 + log_k -27.9095 + -delta_H 237.375 kJ/mol # Calculated enthalpy of reaction LaO2H # Enthalpy of formation: -249.5 kcal/mol - -analytic 3.3862e+002 4.4808e-002 -2.4083e+004 -1.2088e+002 -3.7589e+002 + -analytic 3.3862e+2 4.4808e-2 -2.4083e+4 -1.2088e+2 -3.7589e+2 # -Range: 0-300 -1.0000 La+++ + 1.0000 H2O = LaOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -8.6405 - -delta_H 82.4959 kJ/mol # Calculated enthalpy of reaction LaOH+2 +La+3 + H2O = LaOH+2 + H+ + -llnl_gamma 4.5 + log_k -8.6405 + -delta_H 82.4959 kJ/mol # Calculated enthalpy of reaction LaOH+2 # Enthalpy of formation: -218.2 kcal/mol - -analytic 6.5529e+001 1.1104e-002 -6.3920e+003 -2.2646e+001 -9.9760e+001 + -analytic 6.5529e+1 1.1104e-2 -6.392e+3 -2.2646e+1 -9.976e+1 # -Range: 0-300 -1.0000 La+++ + 1.0000 HPO4-- = LaPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -1.3618 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaPO4 +La+3 + HPO4-2 = LaPO4 + H+ + -llnl_gamma 3 + log_k -1.3618 + -delta_H 0 # Not possible to calculate enthalpy of reaction LaPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 La+++ = LaSO4+ - -llnl_gamma 4.0 - log_k +3.6430 - -delta_H 18.4096 kJ/mol # Calculated enthalpy of reaction LaSO4+ + +SO4-2 + La+3 = LaSO4+ + -llnl_gamma 4 + log_k 3.643 + -delta_H 18.4096 kJ/mol # Calculated enthalpy of reaction LaSO4+ # Enthalpy of formation: -382.6 kcal/mol - -analytic 3.0657e+002 8.4093e-002 -9.1074e+003 -1.2019e+002 -1.4220e+002 + -analytic 3.0657e+2 8.4093e-2 -9.1074e+3 -1.2019e+2 -1.422e+2 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Li+ = Li(Acetate)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -9.2674 - -delta_H -24.7609 kJ/mol # Calculated enthalpy of reaction Li(Acetate)2- +2 HAcetate + Li+ = Li(Acetate)2- + 2 H+ + -llnl_gamma 4 + log_k -9.2674 + -delta_H -24.7609 kJ/mol # Calculated enthalpy of reaction Li(Acetate)2- # Enthalpy of formation: -304.67 kcal/mol - -analytic -3.3702e+002 -6.0849e-002 1.1952e+004 1.2359e+002 1.8659e+002 + -analytic -3.3702e+2 -6.0849e-2 1.1952e+4 1.2359e+2 1.8659e+2 # -Range: 0-300 -1.0000 Li+ + 1.0000 HAcetate = LiAcetate +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.4589 - -delta_H -6.64419 kJ/mol # Calculated enthalpy of reaction LiAcetate +Li+ + HAcetate = LiAcetate + H+ + -llnl_gamma 3 + log_k -4.4589 + -delta_H -6.64419 kJ/mol # Calculated enthalpy of reaction LiAcetate # Enthalpy of formation: -184.24 kcal/mol - -analytic -3.8391e+000 -7.3938e-004 -1.0829e+003 3.4134e-001 2.1318e+005 + -analytic -3.8391e+0 -7.3938e-4 -1.0829e+3 3.4134e-1 2.1318e+5 # -Range: 0-300 -1.0000 Li+ + 1.0000 Cl- = LiCl - -llnl_gamma 3.0 - log_k -1.5115 - -delta_H 3.36812 kJ/mol # Calculated enthalpy of reaction LiCl +Li+ + Cl- = LiCl + -llnl_gamma 3 + log_k -1.5115 + -delta_H 3.36812 kJ/mol # Calculated enthalpy of reaction LiCl # Enthalpy of formation: -105.68 kcal/mol - -analytic 1.2484e+002 4.1941e-002 -3.2439e+003 -5.1708e+001 -5.0655e+001 + -analytic 1.2484e+2 4.1941e-2 -3.2439e+3 -5.1708e+1 -5.0655e+1 # -Range: 0-300 -1.0000 Li+ + 1.0000 H2O = LiOH +1.0000 H+ - -llnl_gamma 3.0 - log_k -13.64 - -delta_H 0 # Not possible to calculate enthalpy of reaction LiOH +Li+ + H2O = LiOH + H+ + -llnl_gamma 3 + log_k -13.64 + -delta_H 0 # Not possible to calculate enthalpy of reaction LiOH # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Li+ = LiSO4- - -llnl_gamma 4.0 - log_k +0.7700 - -delta_H 0 # Not possible to calculate enthalpy of reaction LiSO4- + +SO4-2 + Li+ = LiSO4- + -llnl_gamma 4 + log_k 0.77 + -delta_H 0 # Not possible to calculate enthalpy of reaction LiSO4- # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Lu+++ = Lu(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9625 - -delta_H -38.5346 kJ/mol # Calculated enthalpy of reaction Lu(Acetate)2+ + +2 HAcetate + Lu+3 = Lu(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -4.9625 + -delta_H -38.5346 kJ/mol # Calculated enthalpy of reaction Lu(Acetate)2+ # Enthalpy of formation: -409.31 kcal/mol - -analytic -2.7341e+001 2.5097e-003 -1.4157e+003 7.5026e+000 6.9682e+005 + -analytic -2.7341e+1 2.5097e-3 -1.4157e+3 7.5026e+0 6.9682e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Lu+++ = Lu(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3489 - -delta_H -64.5173 kJ/mol # Calculated enthalpy of reaction Lu(Acetate)3 +3 HAcetate + Lu+3 = Lu(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -8.3489 + -delta_H -64.5173 kJ/mol # Calculated enthalpy of reaction Lu(Acetate)3 # Enthalpy of formation: -531.62 kcal/mol - -analytic -5.0225e+001 3.3508e-003 -6.2901e+002 1.3262e+001 9.0737e+005 + -analytic -5.0225e+1 3.3508e-3 -6.2901e+2 1.3262e+1 9.0737e+5 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Lu+++ = Lu(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -6.8576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(CO3)2- +2 HCO3- + Lu+3 = Lu(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -6.8576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Lu+++ = Lu(HPO4)2- - -llnl_gamma 4.0 - log_k +10.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(HPO4)2- + +2 HPO4-2 + Lu+3 = Lu(HPO4)2- + -llnl_gamma 4 + log_k 10.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(HPO4)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Lu+++ = Lu(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -2.7437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(PO4)2-3 + +2 HPO4-2 + Lu+3 = Lu(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -2.7437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Lu+++ = Lu(SO4)2- - -llnl_gamma 4.0 - log_k +5.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(SO4)2- + +2 SO4-2 + Lu+3 = Lu(SO4)2- + -llnl_gamma 4 + log_k 5.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(SO4)2- # Enthalpy of formation: -0 kcal/mol - -1.0000 Lu+++ + 1.0000 HAcetate = LuAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1037 - -delta_H -18.9703 kJ/mol # Calculated enthalpy of reaction LuAcetate+2 + +Lu+3 + HAcetate = LuAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -2.1037 + -delta_H -18.9703 kJ/mol # Calculated enthalpy of reaction LuAcetate+2 # Enthalpy of formation: -288.534 kcal/mol - -analytic -6.5982e+000 2.4512e-003 -1.2666e+003 1.4226e+000 4.0045e+005 + -analytic -6.5982e+0 2.4512e-3 -1.2666e+3 1.4226e+0 4.0045e+5 # -Range: 0-300 -1.0000 Lu+++ + 1.0000 HCO3- = LuCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.0392 - -delta_H 78.2324 kJ/mol # Calculated enthalpy of reaction LuCO3+ +Lu+3 + HCO3- = LuCO3+ + H+ + -llnl_gamma 4 + log_k -2.0392 + -delta_H 78.2324 kJ/mol # Calculated enthalpy of reaction LuCO3+ # Enthalpy of formation: -314.1 kcal/mol - -analytic 2.3840e+002 5.4774e-002 -6.8317e+003 -9.4500e+001 -1.0667e+002 + -analytic 2.384e+2 5.4774e-2 -6.8317e+3 -9.45e+1 -1.0667e+2 # -Range: 0-300 -1.0000 Lu+++ + 1.0000 Cl- = LuCl++ - -llnl_gamma 4.5 - log_k -0.0579 - -delta_H 13.5269 kJ/mol # Calculated enthalpy of reaction LuCl+2 +Lu+3 + Cl- = LuCl+2 + -llnl_gamma 4.5 + log_k -0.0579 + -delta_H 13.5269 kJ/mol # Calculated enthalpy of reaction LuCl+2 # Enthalpy of formation: -204.6 kcal/mol - -analytic 6.6161e+001 3.6521e-002 -1.2938e+003 -2.9397e+001 -2.0209e+001 + -analytic 6.6161e+1 3.6521e-2 -1.2938e+3 -2.9397e+1 -2.0209e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Lu+++ = LuCl2+ - -llnl_gamma 4.0 - log_k -0.6289 - -delta_H 15.7569 kJ/mol # Calculated enthalpy of reaction LuCl2+ +2 Cl- + Lu+3 = LuCl2+ + -llnl_gamma 4 + log_k -0.6289 + -delta_H 15.7569 kJ/mol # Calculated enthalpy of reaction LuCl2+ # Enthalpy of formation: -244 kcal/mol - -analytic 1.8608e+002 7.7283e-002 -4.2349e+003 -7.9007e+001 -6.6137e+001 + -analytic 1.8608e+2 7.7283e-2 -4.2349e+3 -7.9007e+1 -6.6137e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Lu+++ = LuCl3 - -llnl_gamma 3.0 - log_k -1.1999 - -delta_H 3.56895 kJ/mol # Calculated enthalpy of reaction LuCl3 +3 Cl- + Lu+3 = LuCl3 + -llnl_gamma 3 + log_k -1.1999 + -delta_H 3.56895 kJ/mol # Calculated enthalpy of reaction LuCl3 # Enthalpy of formation: -286.846 kcal/mol - -analytic 3.7060e+002 1.2564e-001 -8.9374e+003 -1.5325e+002 -1.3957e+002 + -analytic 3.706e+2 1.2564e-1 -8.9374e+3 -1.5325e+2 -1.3957e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 Lu+++ = LuCl4- - -llnl_gamma 4.0 - log_k -1.771 - -delta_H -25.8069 kJ/mol # Calculated enthalpy of reaction LuCl4- +4 Cl- + Lu+3 = LuCl4- + -llnl_gamma 4 + log_k -1.771 + -delta_H -25.8069 kJ/mol # Calculated enthalpy of reaction LuCl4- # Enthalpy of formation: -333.8 kcal/mol - -analytic 3.8876e+002 1.2200e-001 -8.6965e+003 -1.6071e+002 -1.3582e+002 + -analytic 3.8876e+2 1.22e-1 -8.6965e+3 -1.6071e+2 -1.3582e+2 # -Range: 0-300 -1.0000 Lu+++ + 1.0000 F- = LuF++ - -llnl_gamma 4.5 - log_k +4.8085 - -delta_H 25.7316 kJ/mol # Calculated enthalpy of reaction LuF+2 +Lu+3 + F- = LuF+2 + -llnl_gamma 4.5 + log_k 4.8085 + -delta_H 25.7316 kJ/mol # Calculated enthalpy of reaction LuF+2 # Enthalpy of formation: -241.9 kcal/mol - -analytic 9.0303e+001 4.0963e-002 -2.4140e+003 -3.6203e+001 -3.7694e+001 + -analytic 9.0303e+1 4.0963e-2 -2.414e+3 -3.6203e+1 -3.7694e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Lu+++ = LuF2+ - -llnl_gamma 4.0 - log_k +8.4442 - -delta_H 14.2256 kJ/mol # Calculated enthalpy of reaction LuF2+ +2 F- + Lu+3 = LuF2+ + -llnl_gamma 4 + log_k 8.4442 + -delta_H 14.2256 kJ/mol # Calculated enthalpy of reaction LuF2+ # Enthalpy of formation: -324.8 kcal/mol - -analytic 2.1440e+002 8.2559e-002 -4.7009e+003 -8.6790e+001 -7.3417e+001 + -analytic 2.144e+2 8.2559e-2 -4.7009e+3 -8.679e+1 -7.3417e+1 # -Range: 0-300 -3.0000 F- + 1.0000 Lu+++ = LuF3 - -llnl_gamma 3.0 - log_k +11.0999 - -delta_H -12.3428 kJ/mol # Calculated enthalpy of reaction LuF3 +3 F- + Lu+3 = LuF3 + -llnl_gamma 3 + log_k 11.0999 + -delta_H -12.3428 kJ/mol # Calculated enthalpy of reaction LuF3 # Enthalpy of formation: -411.3 kcal/mol - -analytic 4.0247e+002 1.3233e-001 -8.6775e+003 -1.6232e+002 -1.3552e+002 + -analytic 4.0247e+2 1.3233e-1 -8.6775e+3 -1.6232e+2 -1.3552e+2 # -Range: 0-300 -4.0000 F- + 1.0000 Lu+++ = LuF4- - -llnl_gamma 4.0 - log_k +13.2967 - -delta_H -64.0152 kJ/mol # Calculated enthalpy of reaction LuF4- +4 F- + Lu+3 = LuF4- + -llnl_gamma 4 + log_k 13.2967 + -delta_H -64.0152 kJ/mol # Calculated enthalpy of reaction LuF4- # Enthalpy of formation: -503.8 kcal/mol - -analytic 4.2541e+002 1.3070e-001 -7.4276e+003 -1.7220e+002 -1.1603e+002 + -analytic 4.2541e+2 1.307e-1 -7.4276e+3 -1.722e+2 -1.1603e+2 # -Range: 0-300 -1.0000 Lu+++ + 1.0000 HPO4-- + 1.0000 H+ = LuH2PO4++ - -llnl_gamma 4.5 - log_k +9.5950 - -delta_H -23.786 kJ/mol # Calculated enthalpy of reaction LuH2PO4+2 +Lu+3 + HPO4-2 + H+ = LuH2PO4+2 + -llnl_gamma 4.5 + log_k 9.595 + -delta_H -23.786 kJ/mol # Calculated enthalpy of reaction LuH2PO4+2 # Enthalpy of formation: -482.4 kcal/mol - -analytic 9.4223e+001 6.1797e-002 1.1102e+003 -4.3131e+001 1.7296e+001 + -analytic 9.4223e+1 6.1797e-2 1.1102e+3 -4.3131e+1 1.7296e+1 # -Range: 0-300 -1.0000 Lu+++ + 1.0000 HCO3- = LuHCO3++ - -llnl_gamma 4.5 - log_k +1.9190 - -delta_H 1.66523 kJ/mol # Calculated enthalpy of reaction LuHCO3+2 +Lu+3 + HCO3- = LuHCO3+2 + -llnl_gamma 4.5 + log_k 1.919 + -delta_H 1.66523 kJ/mol # Calculated enthalpy of reaction LuHCO3+2 # Enthalpy of formation: -332.4 kcal/mol - -analytic 2.3187e+001 2.9604e-002 8.1268e+002 -1.3252e+001 1.2674e+001 + -analytic 2.3187e+1 2.9604e-2 8.1268e+2 -1.3252e+1 1.2674e+1 # -Range: 0-300 -1.0000 Lu+++ + 1.0000 HPO4-- = LuHPO4+ - -llnl_gamma 4.0 - log_k +6.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction LuHPO4+ +Lu+3 + HPO4-2 = LuHPO4+ + -llnl_gamma 4 + log_k 6 + -delta_H 0 # Not possible to calculate enthalpy of reaction LuHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Lu+++ = LuNO3++ - -llnl_gamma 4.5 - log_k +0.5813 - -delta_H -41.7187 kJ/mol # Calculated enthalpy of reaction LuNO3+2 + +NO3- + Lu+3 = LuNO3+2 + -llnl_gamma 4.5 + log_k 0.5813 + -delta_H -41.7187 kJ/mol # Calculated enthalpy of reaction LuNO3+2 # Enthalpy of formation: -227.3 kcal/mol - -analytic 1.7412e+000 2.3703e-002 3.2605e+003 -7.7334e+000 5.0876e+001 + -analytic 1.7412e+0 2.3703e-2 3.2605e+3 -7.7334e+0 5.0876e+1 # -Range: 0-300 -1.0000 Lu+++ + 1.0000 H2O = LuO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -15.3108 - -delta_H 99.6503 kJ/mol # Calculated enthalpy of reaction LuO+ +Lu+3 + H2O = LuO+ + 2 H+ + -llnl_gamma 4 + log_k -15.3108 + -delta_H 99.6503 kJ/mol # Calculated enthalpy of reaction LuO+ # Enthalpy of formation: -212.4 kcal/mol - -analytic 1.5946e+002 2.6603e-002 -1.2215e+004 -5.7276e+001 -1.9065e+002 + -analytic 1.5946e+2 2.6603e-2 -1.2215e+4 -5.7276e+1 -1.9065e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Lu+++ = LuO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -31.9411 - -delta_H 258.713 kJ/mol # Calculated enthalpy of reaction LuO2- +2 H2O + Lu+3 = LuO2- + 4 H+ + -llnl_gamma 4 + log_k -31.9411 + -delta_H 258.713 kJ/mol # Calculated enthalpy of reaction LuO2- # Enthalpy of formation: -242.7 kcal/mol - -analytic 1.1522e+002 5.0221e-003 -1.6847e+004 -3.7244e+001 -2.6292e+002 + -analytic 1.1522e+2 5.0221e-3 -1.6847e+4 -3.7244e+1 -2.6292e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Lu+++ = LuO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -23.878 - -delta_H 206.832 kJ/mol # Calculated enthalpy of reaction LuO2H +2 H2O + Lu+3 = LuO2H + 3 H+ + -llnl_gamma 3 + log_k -23.878 + -delta_H 206.832 kJ/mol # Calculated enthalpy of reaction LuO2H # Enthalpy of formation: -255.1 kcal/mol - -analytic 2.8768e+002 4.2338e-002 -2.0443e+004 -1.0330e+002 -3.1907e+002 + -analytic 2.8768e+2 4.2338e-2 -2.0443e+4 -1.033e+2 -3.1907e+2 # -Range: 0-300 -1.0000 Lu+++ + 1.0000 H2O = LuOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.6143 - -delta_H 72.0359 kJ/mol # Calculated enthalpy of reaction LuOH+2 +Lu+3 + H2O = LuOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.6143 + -delta_H 72.0359 kJ/mol # Calculated enthalpy of reaction LuOH+2 # Enthalpy of formation: -219 kcal/mol - -analytic 4.2937e+001 9.2421e-003 -4.9953e+003 -1.4769e+001 -7.7960e+001 + -analytic 4.2937e+1 9.2421e-3 -4.9953e+3 -1.4769e+1 -7.796e+1 # -Range: 0-300 -1.0000 Lu+++ + 1.0000 HPO4-- = LuPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.6782 - -delta_H 0 # Not possible to calculate enthalpy of reaction LuPO4 +Lu+3 + HPO4-2 = LuPO4 + H+ + -llnl_gamma 3 + log_k 0.6782 + -delta_H 0 # Not possible to calculate enthalpy of reaction LuPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Lu+++ = LuSO4+ - -llnl_gamma 4.0 - log_k +3.5697 - -delta_H 19.5393 kJ/mol # Calculated enthalpy of reaction LuSO4+ + +SO4-2 + Lu+3 = LuSO4+ + -llnl_gamma 4 + log_k 3.5697 + -delta_H 19.5393 kJ/mol # Calculated enthalpy of reaction LuSO4+ # Enthalpy of formation: -380.63 kcal/mol - -analytic 3.0108e+002 8.5238e-002 -8.8411e+003 -1.1850e+002 -1.3805e+002 + -analytic 3.0108e+2 8.5238e-2 -8.8411e+3 -1.185e+2 -1.3805e+2 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Mg++ = Mg(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.473 - -delta_H -23.8195 kJ/mol # Calculated enthalpy of reaction Mg(Acetate)2 +2 HAcetate + Mg+2 = Mg(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -7.473 + -delta_H -23.8195 kJ/mol # Calculated enthalpy of reaction Mg(Acetate)2 # Enthalpy of formation: -349.26 kcal/mol - -analytic -4.3954e+001 -3.1842e-004 -1.2033e+003 1.3556e+001 6.3058e+005 + -analytic -4.3954e+1 -3.1842e-4 -1.2033e+3 1.3556e+1 6.3058e+5 # -Range: 0-300 -4.0000 Mg++ + 4.0000 H2O = Mg4(OH)4++++ +4.0000 H+ - -llnl_gamma 5.5 - log_k -39.75 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mg4(OH)4+4 +4 Mg+2 + 4 H2O = Mg4(OH)4+4 + 4 H+ + -llnl_gamma 5.5 + log_k -39.75 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mg4(OH)4+4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Mg++ + 1.0000 H2O + 1.0000 B(OH)3 = MgB(OH)4+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -7.3467 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgB(OH)4+ + +Mg+2 + H2O + B(OH)3 = MgB(OH)4+ + H+ + -llnl_gamma 4 + log_k -7.3467 + -delta_H 0 # Not possible to calculate enthalpy of reaction MgB(OH)4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Mg++ + 1.0000 HAcetate = MgAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.4781 - -delta_H -8.42239 kJ/mol # Calculated enthalpy of reaction MgAcetate+ + +Mg+2 + HAcetate = MgAcetate+ + H+ + -llnl_gamma 4 + log_k -3.4781 + -delta_H -8.42239 kJ/mol # Calculated enthalpy of reaction MgAcetate+ # Enthalpy of formation: -229.48 kcal/mol - -analytic -2.3548e+001 -1.6071e-003 -4.2228e+002 7.7009e+000 2.5981e+005 + -analytic -2.3548e+1 -1.6071e-3 -4.2228e+2 7.7009e+0 2.5981e+5 # -Range: 0-300 -1.0000 Mg++ + 1.0000 HCO3- = MgCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -7.3499 - -delta_H 23.8279 kJ/mol # Calculated enthalpy of reaction MgCO3 +Mg+2 + HCO3- = MgCO3 + H+ + -llnl_gamma 3 + log_k -7.3499 + -delta_H 23.8279 kJ/mol # Calculated enthalpy of reaction MgCO3 # Enthalpy of formation: -270.57 kcal/mol - -analytic 2.3465e+002 5.5538e-002 -8.3947e+003 -9.3104e+001 -1.3106e+002 + -analytic 2.3465e+2 5.5538e-2 -8.3947e+3 -9.3104e+1 -1.3106e+2 # -Range: 0-300 -1.0000 Mg++ + 1.0000 Cl- = MgCl+ - -llnl_gamma 4.0 - log_k -0.1349 - -delta_H -0.58576 kJ/mol # Calculated enthalpy of reaction MgCl+ +Mg+2 + Cl- = MgCl+ + -llnl_gamma 4 + log_k -0.1349 + -delta_H -0.58576 kJ/mol # Calculated enthalpy of reaction MgCl+ # Enthalpy of formation: -151.44 kcal/mol - -analytic 4.3363e+001 3.2858e-002 1.1878e+002 -2.1688e+001 1.8403e+000 + -analytic 4.3363e+1 3.2858e-2 1.1878e+2 -2.1688e+1 1.8403e+0 # -Range: 0-300 -1.0000 Mg++ + 1.0000 F- = MgF+ - -llnl_gamma 4.0 - log_k +1.3524 - -delta_H 2.37233 kJ/mol # Calculated enthalpy of reaction MgF+ +Mg+2 + F- = MgF+ + -llnl_gamma 4 + log_k 1.3524 + -delta_H 2.37233 kJ/mol # Calculated enthalpy of reaction MgF+ # Enthalpy of formation: -190.95 kcal/mol - -analytic 6.4311e+001 3.5184e-002 -7.3241e+002 -2.8678e+001 -1.1448e+001 + -analytic 6.4311e+1 3.5184e-2 -7.3241e+2 -2.8678e+1 -1.1448e+1 # -Range: 0-300 -1.0000 Mg++ + 1.0000 HPO4-- + 1.0000 H+ = MgH2PO4+ - -llnl_gamma 4.0 - log_k +1.6600 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgH2PO4+ +Mg+2 + HPO4-2 + H+ = MgH2PO4+ + -llnl_gamma 4 + log_k 1.66 + -delta_H 0 # Not possible to calculate enthalpy of reaction MgH2PO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Mg++ + 1.0000 HCO3- = MgHCO3+ - -llnl_gamma 4.0 - log_k +1.0357 - -delta_H 2.15476 kJ/mol # Calculated enthalpy of reaction MgHCO3+ + +Mg+2 + HCO3- = MgHCO3+ + -llnl_gamma 4 + log_k 1.0357 + -delta_H 2.15476 kJ/mol # Calculated enthalpy of reaction MgHCO3+ # Enthalpy of formation: -275.75 kcal/mol - -analytic 3.8459e+001 3.0076e-002 9.8068e+001 -1.8869e+001 1.5187e+000 + -analytic 3.8459e+1 3.0076e-2 9.8068e+1 -1.8869e+1 1.5187e+0 # -Range: 0-300 -1.0000 Mg++ + 1.0000 HPO4-- = MgHPO4 - -llnl_gamma 3.0 - log_k +2.9100 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgHPO4 +Mg+2 + HPO4-2 = MgHPO4 + -llnl_gamma 3 + log_k 2.91 + -delta_H 0 # Not possible to calculate enthalpy of reaction MgHPO4 # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Mg++ = MgP2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +3.4727 - -delta_H 38.5451 kJ/mol # Calculated enthalpy of reaction MgP2O7-2 + +2 HPO4-2 + Mg+2 = MgP2O7-2 + H2O + -llnl_gamma 4 + log_k 3.4727 + -delta_H 38.5451 kJ/mol # Calculated enthalpy of reaction MgP2O7-2 # Enthalpy of formation: -2725.74 kJ/mol - -analytic 4.8038e+002 1.2530e-001 -1.5175e+004 -1.8724e+002 -2.3693e+002 + -analytic 4.8038e+2 1.253e-1 -1.5175e+4 -1.8724e+2 -2.3693e+2 # -Range: 0-300 -1.0000 Mg++ + 1.0000 HPO4-- = MgPO4- +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.7328 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgPO4- +Mg+2 + HPO4-2 = MgPO4- + H+ + -llnl_gamma 4 + log_k -5.7328 + -delta_H 0 # Not possible to calculate enthalpy of reaction MgPO4- # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Mg++ = MgSO4 - -llnl_gamma 3.0 - log_k +2.4117 - -delta_H 19.6051 kJ/mol # Calculated enthalpy of reaction MgSO4 + +SO4-2 + Mg+2 = MgSO4 + -llnl_gamma 3 + log_k 2.4117 + -delta_H 19.6051 kJ/mol # Calculated enthalpy of reaction MgSO4 # Enthalpy of formation: -1355.96 kJ/mol - -analytic 1.7994e+002 6.4715e-002 -4.7314e+003 -7.3123e+001 -8.0408e+001 + -analytic 1.7994e+2 6.4715e-2 -4.7314e+3 -7.3123e+1 -8.0408e+1 # -Range: 0-200 -2.0000 HAcetate + 1.0000 Mn++ = Mn(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.4547 - -delta_H -11.4893 kJ/mol # Calculated enthalpy of reaction Mn(Acetate)2 +2 HAcetate + Mn+2 = Mn(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -7.4547 + -delta_H -11.4893 kJ/mol # Calculated enthalpy of reaction Mn(Acetate)2 # Enthalpy of formation: -287.67 kcal/mol - -analytic -9.0558e-001 5.9656e-003 -4.3531e+003 -1.1063e+000 8.0323e+005 + -analytic -9.0558e-1 5.9656e-3 -4.3531e+3 -1.1063e+0 8.0323e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Mn++ = Mn(Acetate)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -11.8747 - -delta_H -30.3591 kJ/mol # Calculated enthalpy of reaction Mn(Acetate)3- +3 HAcetate + Mn+2 = Mn(Acetate)3- + 3 H+ + -llnl_gamma 4 + log_k -11.8747 + -delta_H -30.3591 kJ/mol # Calculated enthalpy of reaction Mn(Acetate)3- # Enthalpy of formation: -408.28 kcal/mol - -analytic -3.8531e+000 -9.9140e-003 -1.2065e+004 5.1424e+000 2.0175e+006 + -analytic -3.8531e+0 -9.914e-3 -1.2065e+4 5.1424e+0 2.0175e+6 # -Range: 0-300 -2.0000 NO3- + 1.0000 Mn++ = Mn(NO3)2 - -llnl_gamma 3.0 - log_k +0.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(NO3)2 +2 NO3- + Mn+2 = Mn(NO3)2 + -llnl_gamma 3 + log_k 0.6 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(NO3)2 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Mn++ = Mn(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -22.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)2 + +2 H2O + Mn+2 = Mn(OH)2 + 2 H+ + -llnl_gamma 3 + log_k -22.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)2 # Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Mn++ = Mn(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -34.2278 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)3- + +3 H2O + Mn+2 = Mn(OH)3- + 3 H+ + -llnl_gamma 4 + log_k -34.2278 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)3- # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Mn++ = Mn(OH)4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -48.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)4-2 + +4 H2O + Mn+2 = Mn(OH)4-2 + 4 H+ + -llnl_gamma 4 + log_k -48.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)4-2 # Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 2.0000 Mn++ = Mn2(OH)3+ +3.0000 H+ - -llnl_gamma 4.0 - log_k -23.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn2(OH)3+ + +3 H2O + 2 Mn+2 = Mn2(OH)3+ + 3 H+ + -llnl_gamma 4 + log_k -23.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn2(OH)3+ # Enthalpy of formation: -0 kcal/mol - -2.0000 Mn++ + 1.0000 H2O = Mn2OH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -10.56 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn2OH+3 + +2 Mn+2 + H2O = Mn2OH+3 + H+ + -llnl_gamma 5 + log_k -10.56 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn2OH+3 # Enthalpy of formation: -0 kcal/mol - -1.0000 Mn++ + 1.0000 HAcetate = MnAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.5404 - -delta_H -3.07942 kJ/mol # Calculated enthalpy of reaction MnAcetate+ + +Mn+2 + HAcetate = MnAcetate+ + H+ + -llnl_gamma 4 + log_k -3.5404 + -delta_H -3.07942 kJ/mol # Calculated enthalpy of reaction MnAcetate+ # Enthalpy of formation: -169.56 kcal/mol - -analytic -1.4061e+001 1.8149e-003 -8.6438e+002 4.0354e+000 2.5831e+005 + -analytic -1.4061e+1 1.8149e-3 -8.6438e+2 4.0354e+0 2.5831e+5 # -Range: 0-300 -1.0000 Mn++ + 1.0000 HCO3- = MnCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -5.8088 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnCO3 +Mn+2 + HCO3- = MnCO3 + H+ + -llnl_gamma 3 + log_k -5.8088 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnCO3 # Enthalpy of formation: -0 kcal/mol - -1.0000 Mn++ + 1.0000 Cl- = MnCl+ - -llnl_gamma 4.0 - log_k +0.3013 - -delta_H 18.3134 kJ/mol # Calculated enthalpy of reaction MnCl+ + +Mn+2 + Cl- = MnCl+ + -llnl_gamma 4 + log_k 0.3013 + -delta_H 18.3134 kJ/mol # Calculated enthalpy of reaction MnCl+ # Enthalpy of formation: -88.28 kcal/mol - -analytic 8.7072e+001 4.0361e-002 -2.1786e+003 -3.6966e+001 -3.4022e+001 + -analytic 8.7072e+1 4.0361e-2 -2.1786e+3 -3.6966e+1 -3.4022e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Mn++ = MnCl3- - -llnl_gamma 4.0 - log_k -0.3324 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnCl3- +3 Cl- + Mn+2 = MnCl3- + -llnl_gamma 4 + log_k -0.3324 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnCl3- # Enthalpy of formation: -0 kcal/mol - -1.0000 Mn++ + 1.0000 F- = MnF+ - -llnl_gamma 4.0 - log_k +1.4300 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnF+ + +Mn+2 + F- = MnF+ + -llnl_gamma 4 + log_k 1.43 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnF+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Mn++ + 1.0000 HPO4-- + 1.0000 H+ = MnH2PO4+ - -llnl_gamma 4.0 - log_k +8.5554 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnH2PO4+ + +Mn+2 + HPO4-2 + H+ = MnH2PO4+ + -llnl_gamma 4 + log_k 8.5554 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnH2PO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Mn++ + 1.0000 HCO3- = MnHCO3+ - -llnl_gamma 4.0 - log_k +0.8816 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnHCO3+ + +Mn+2 + HCO3- = MnHCO3+ + -llnl_gamma 4 + log_k 0.8816 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnHCO3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Mn++ + 1.0000 HPO4-- = MnHPO4 - -llnl_gamma 3.0 - log_k +3.5800 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnHPO4 + +Mn+2 + HPO4-2 = MnHPO4 + -llnl_gamma 3 + log_k 3.58 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnHPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 NO3- + 1.0000 Mn++ = MnNO3+ - -llnl_gamma 4.0 - log_k +0.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnNO3+ + +NO3- + Mn+2 = MnNO3+ + -llnl_gamma 4 + log_k 0.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnNO3+ # Enthalpy of formation: -0 kcal/mol - -1.5000 H2O + 1.2500 O2 + 1.0000 Mn++ = MnO4- +3.0000 H+ - -llnl_gamma 3.5 - log_k -20.2963 - -delta_H 123.112 kJ/mol # Calculated enthalpy of reaction MnO4- + +1.5 H2O + 1.25 O2 + Mn+2 = MnO4- + 3 H+ + -llnl_gamma 3.5 + log_k -20.2963 + -delta_H 123.112 kJ/mol # Calculated enthalpy of reaction MnO4- # Enthalpy of formation: -129.4 kcal/mol - -analytic 1.8544e+001 -1.7618e-002 -6.7332e+003 -3.3193e+000 -2.4924e+005 + -analytic 1.8544e+1 -1.7618e-2 -6.7332e+3 -3.3193e+0 -2.4924e+5 # -Range: 0-300 -1.0000 Mn++ + 1.0000 H2O = MnOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -10.59 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnOH+ +Mn+2 + H2O = MnOH+ + H+ + -llnl_gamma 4 + log_k -10.59 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnOH+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Mn++ + 1.0000 HPO4-- = MnPO4- +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.1318 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnPO4- + +Mn+2 + HPO4-2 = MnPO4- + H+ + -llnl_gamma 4 + log_k -5.1318 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnPO4- # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Mn++ = MnSO4 - -llnl_gamma 3.0 - log_k +2.3529 - -delta_H 14.1168 kJ/mol # Calculated enthalpy of reaction MnSO4 + +SO4-2 + Mn+2 = MnSO4 + -llnl_gamma 3 + log_k 2.3529 + -delta_H 14.1168 kJ/mol # Calculated enthalpy of reaction MnSO4 # Enthalpy of formation: -266.75 kcal/mol - -analytic 2.9448e+002 8.5294e-002 -8.1366e+003 -1.1729e+002 -1.2705e+002 + -analytic 2.9448e+2 8.5294e-2 -8.1366e+3 -1.1729e+2 -1.2705e+2 # -Range: 0-300 -1.0000 SeO4-- + 1.0000 Mn++ = MnSeO4 - -llnl_gamma 3.0 - log_k +2.4300 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnSeO4 +SeO4-2 + Mn+2 = MnSeO4 + -llnl_gamma 3 + log_k 2.43 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnSeO4 # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 NH3 = NH4(Acetate)2- +1.0000 H+ - -llnl_gamma 4.0 - log_k -0.1928 - -delta_H -56.735 kJ/mol # Calculated enthalpy of reaction NH4(Acetate)2- + +2 HAcetate + NH3 = NH4(Acetate)2- + H+ + -llnl_gamma 4 + log_k -0.1928 + -delta_H -56.735 kJ/mol # Calculated enthalpy of reaction NH4(Acetate)2- # Enthalpy of formation: -265.2 kcal/mol - -analytic 3.7137e+001 -1.2242e-002 -8.4764e+003 -8.4308e+000 1.3883e+006 + -analytic 3.7137e+1 -1.2242e-2 -8.4764e+3 -8.4308e+0 1.3883e+6 # -Range: 0-300 -1.0000 NH3 + 1.0000 H+ = NH4+ - -llnl_gamma 2.5 - log_k +9.2410 - -delta_H -51.9234 kJ/mol # Calculated enthalpy of reaction NH4+ +NH3 + H+ = NH4+ + -llnl_gamma 2.5 + log_k 9.241 + -delta_H -51.9234 kJ/mol # Calculated enthalpy of reaction NH4+ # Enthalpy of formation: -31.85 kcal/mol - -analytic -1.4527e+001 -5.0518e-003 3.0447e+003 6.0865e+000 4.7515e+001 + -analytic -1.4527e+1 -5.0518e-3 3.0447e+3 6.0865e+0 4.7515e+1 # -Range: 0-300 -1.0000 NH3 + 1.0000 HAcetate = NH4Acetate - -llnl_gamma 3.0 - log_k +4.6964 - -delta_H -48.911 kJ/mol # Calculated enthalpy of reaction NH4Acetate +NH3 + HAcetate = NH4Acetate + -llnl_gamma 3 + log_k 4.6964 + -delta_H -48.911 kJ/mol # Calculated enthalpy of reaction NH4Acetate # Enthalpy of formation: -147.23 kcal/mol - -analytic 1.4104e+001 -4.3664e-003 -1.0746e+003 -3.6999e+000 4.1428e+005 + -analytic 1.4104e+1 -4.3664e-3 -1.0746e+3 -3.6999e+0 4.1428e+5 # -Range: 0-300 -1.0000 SO4-- + 1.0000 NH3 + 1.0000 H+ = NH4SO4- - -llnl_gamma 4.0 - log_k +0.9400 - -delta_H 0 # Not possible to calculate enthalpy of reaction NH4SO4- +SO4-2 + NH3 + H+ = NH4SO4- + -llnl_gamma 4 + log_k 0.94 + -delta_H 0 # Not possible to calculate enthalpy of reaction NH4SO4- # Enthalpy of formation: -0 kcal/mol - -1.0000 Sb(OH)3 + 1.0000 NH3 = NH4SbO2 +1.0000 H2O - -llnl_gamma 3.0 - log_k -2.5797 - -delta_H 0 # Not possible to calculate enthalpy of reaction NH4SbO2 + +Sb(OH)3 + NH3 = NH4SbO2 + H2O + -llnl_gamma 3 + log_k -2.5797 + -delta_H 0 # Not possible to calculate enthalpy of reaction NH4SbO2 # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Na+ = Na(Acetate)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -9.9989 - -delta_H -11.5771 kJ/mol # Calculated enthalpy of reaction Na(Acetate)2- + +2 HAcetate + Na+ = Na(Acetate)2- + 2 H+ + -llnl_gamma 4 + log_k -9.9989 + -delta_H -11.5771 kJ/mol # Calculated enthalpy of reaction Na(Acetate)2- # Enthalpy of formation: -292.4 kcal/mol - -analytic -2.9232e+002 -5.5708e-002 9.6601e+003 1.0772e+002 1.5082e+002 + -analytic -2.9232e+2 -5.5708e-2 9.6601e+3 1.0772e+2 1.5082e+2 # -Range: 0-300 -1.0000 O_phthalate-2 + 1.0000 Na+ = Na(O_phthalate)- - -llnl_gamma 4.0 - log_k +0.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na(O_phthalate)- +O_phthalate-2 + Na+ = Na(O_phthalate)- + -llnl_gamma 4 + log_k 0.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction Na(O_phthalate)- # Enthalpy of formation: -0 kcal/mol - -2.0000 Na+ + 2.0000 HPO4-- = Na2P2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +0.4437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na2P2O7-2 + +2 Na+ + 2 HPO4-2 = Na2P2O7-2 + H2O + -llnl_gamma 4 + log_k 0.4437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Na2P2O7-2 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Na+ + 1.0000 Al+++ = NaAlO2 +4.0000 H+ - -llnl_gamma 3.0 - log_k -23.6266 - -delta_H 190.326 kJ/mol # Calculated enthalpy of reaction NaAlO2 + +2 H2O + Na+ + Al+3 = NaAlO2 + 4 H+ + -llnl_gamma 3 + log_k -23.6266 + -delta_H 190.326 kJ/mol # Calculated enthalpy of reaction NaAlO2 # Enthalpy of formation: -277.259 kcal/mol - -analytic 1.2288e+002 3.4921e-002 -1.2808e+004 -4.6046e+001 -1.9990e+002 + -analytic 1.2288e+2 3.4921e-2 -1.2808e+4 -4.6046e+1 -1.999e+2 # -Range: 0-300 -1.0000 Na+ + 1.0000 H2O + 1.0000 B(OH)3 = NaB(OH)4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -8.974 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaB(OH)4 +Na+ + H2O + B(OH)3 = NaB(OH)4 + H+ + -llnl_gamma 3 + log_k -8.974 + -delta_H 0 # Not possible to calculate enthalpy of reaction NaB(OH)4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Na+ + 1.0000 Br- = NaBr - -llnl_gamma 3.0 - log_k -1.3568 - -delta_H 6.87431 kJ/mol # Calculated enthalpy of reaction NaBr + +Na+ + Br- = NaBr + -llnl_gamma 3 + log_k -1.3568 + -delta_H 6.87431 kJ/mol # Calculated enthalpy of reaction NaBr # Enthalpy of formation: -84.83 kcal/mol - -analytic 1.1871e+002 3.7271e-002 -3.4061e+003 -4.8386e+001 -5.3184e+001 + -analytic 1.1871e+2 3.7271e-2 -3.4061e+3 -4.8386e+1 -5.3184e+1 # -Range: 0-300 -1.0000 Na+ + 1.0000 HAcetate = NaAcetate +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.8606 - -delta_H -0.029288 kJ/mol # Calculated enthalpy of reaction NaAcetate +Na+ + HAcetate = NaAcetate + H+ + -llnl_gamma 3 + log_k -4.8606 + -delta_H -0.029288 kJ/mol # Calculated enthalpy of reaction NaAcetate # Enthalpy of formation: -173.54 kcal/mol - -analytic 6.4833e+000 -1.8739e-003 -2.0902e+003 -2.6121e+000 2.3990e+005 + -analytic 6.4833e+0 -1.8739e-3 -2.0902e+3 -2.6121e+0 2.399e+5 # -Range: 0-300 -1.0000 Na+ + 1.0000 HCO3- = NaCO3- +1.0000 H+ - -llnl_gamma 4.0 - log_k -9.8144 - -delta_H -5.6521 kJ/mol # Calculated enthalpy of reaction NaCO3- +Na+ + HCO3- = NaCO3- + H+ + -llnl_gamma 4 + log_k -9.8144 + -delta_H -5.6521 kJ/mol # Calculated enthalpy of reaction NaCO3- # Enthalpy of formation: -935.885 kJ/mol - -analytic 1.6939e+002 5.3122e-004 -7.6768e+003 -6.2078e+001 -1.1984e+002 + -analytic 1.6939e+2 5.3122e-4 -7.6768e+3 -6.2078e+1 -1.1984e+2 # -Range: 0-300 -1.0000 Na+ + 1.0000 Cl- = NaCl - -llnl_gamma 3.0 - log_k -0.777 - -delta_H 5.21326 kJ/mol # Calculated enthalpy of reaction NaCl +Na+ + Cl- = NaCl + -llnl_gamma 3 + log_k -0.777 + -delta_H 5.21326 kJ/mol # Calculated enthalpy of reaction NaCl # Enthalpy of formation: -96.12 kcal/mol - -analytic 1.1398e+002 3.6386e-002 -3.0847e+003 -4.6571e+001 -4.8167e+001 + -analytic 1.1398e+2 3.6386e-2 -3.0847e+3 -4.6571e+1 -4.8167e+1 # -Range: 0-300 -1.0000 Na+ + 1.0000 F- = NaF - -llnl_gamma 3.0 - log_k -0.9976 - -delta_H 7.20903 kJ/mol # Calculated enthalpy of reaction NaF +Na+ + F- = NaF + -llnl_gamma 3 + log_k -0.9976 + -delta_H 7.20903 kJ/mol # Calculated enthalpy of reaction NaF # Enthalpy of formation: -135.86 kcal/mol - -analytic 1.2507e+002 3.8619e-002 -3.5436e+003 -5.0787e+001 -5.5332e+001 + -analytic 1.2507e+2 3.8619e-2 -3.5436e+3 -5.0787e+1 -5.5332e+1 # -Range: 0-300 -1.0000 Na+ + 1.0000 HCO3- = NaHCO3 - -llnl_gamma 3.0 - log_k +0.1541 - -delta_H -13.7741 kJ/mol # Calculated enthalpy of reaction NaHCO3 +Na+ + HCO3- = NaHCO3 + -llnl_gamma 3 + log_k 0.1541 + -delta_H -13.7741 kJ/mol # Calculated enthalpy of reaction NaHCO3 # Enthalpy of formation: -944.007 kJ/mol - -analytic -9.0668e+001 -2.9866e-002 2.7947e+003 3.6515e+001 4.7489e+001 + -analytic -9.0668e+1 -2.9866e-2 2.7947e+3 3.6515e+1 4.7489e+1 # -Range: 0-200 -2.0000 HPO4-- + 1.0000 Na+ + 1.0000 H+ = NaHP2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +6.8498 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaHP2O7-2 +2 HPO4-2 + Na+ + H+ = NaHP2O7-2 + H2O + -llnl_gamma 4 + log_k 6.8498 + -delta_H 0 # Not possible to calculate enthalpy of reaction NaHP2O7-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Na+ + 1.0000 HPO4-- = NaHPO4- - -llnl_gamma 4.0 - log_k +0.9200 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaHPO4- + +Na+ + HPO4-2 = NaHPO4- + -llnl_gamma 4 + log_k 0.92 + -delta_H 0 # Not possible to calculate enthalpy of reaction NaHPO4- # Enthalpy of formation: -0 kcal/mol - -1.0000 SiO2 + 1.0000 Na+ + 1.0000 H2O = NaHSiO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -8.304 - -delta_H 11.6524 kJ/mol # Calculated enthalpy of reaction NaHSiO3 + +SiO2 + Na+ + H2O = NaHSiO3 + H+ + -llnl_gamma 3 + log_k -8.304 + -delta_H 11.6524 kJ/mol # Calculated enthalpy of reaction NaHSiO3 # Enthalpy of formation: -332.74 kcal/mol - -analytic 3.6045e+001 -9.0411e-003 -6.6605e+003 -1.0447e+001 5.8415e+005 + -analytic 3.6045e+1 -9.0411e-3 -6.6605e+3 -1.0447e+1 5.8415e+5 # -Range: 0-300 -1.0000 Na+ + 1.0000 I- = NaI - -llnl_gamma 3.0 - log_k -1.54 - -delta_H 7.33455 kJ/mol # Calculated enthalpy of reaction NaI +Na+ + I- = NaI + -llnl_gamma 3 + log_k -1.54 + -delta_H 7.33455 kJ/mol # Calculated enthalpy of reaction NaI # Enthalpy of formation: -69.28 kcal/mol - -analytic 9.8742e+001 3.2917e-002 -2.7576e+003 -4.0748e+001 -4.3058e+001 + -analytic 9.8742e+1 3.2917e-2 -2.7576e+3 -4.0748e+1 -4.3058e+1 # -Range: 0-300 -1.0000 Na+ + 1.0000 H2O = NaOH +1.0000 H+ - -llnl_gamma 3.0 - log_k -14.7948 - -delta_H 53.6514 kJ/mol # Calculated enthalpy of reaction NaOH +Na+ + H2O = NaOH + H+ + -llnl_gamma 3 + log_k -14.7948 + -delta_H 53.6514 kJ/mol # Calculated enthalpy of reaction NaOH # Enthalpy of formation: -112.927 kcal/mol - -analytic 8.7326e+001 2.3555e-002 -5.4770e+003 -3.6678e+001 -8.5489e+001 + -analytic 8.7326e+1 2.3555e-2 -5.477e+3 -3.6678e+1 -8.5489e+1 # -Range: 0-300 -2.0000 HPO4-- + 1.0000 Na+ = NaP2O7--- +1.0000 H2O - -llnl_gamma 4.0 - log_k -1.4563 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaP2O7-3 +2 HPO4-2 + Na+ = NaP2O7-3 + H2O + -llnl_gamma 4 + log_k -1.4563 + -delta_H 0 # Not possible to calculate enthalpy of reaction NaP2O7-3 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Na+ = NaSO4- - -llnl_gamma 4.0 - log_k +0.8200 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaSO4- + +SO4-2 + Na+ = NaSO4- + -llnl_gamma 4 + log_k 0.82 + -delta_H 0 # Not possible to calculate enthalpy of reaction NaSO4- # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Nd+++ = Nd(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9771 - -delta_H -22.6354 kJ/mol # Calculated enthalpy of reaction Nd(Acetate)2+ + +2 HAcetate + Nd+3 = Nd(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -4.9771 + -delta_H -22.6354 kJ/mol # Calculated enthalpy of reaction Nd(Acetate)2+ # Enthalpy of formation: -404.11 kcal/mol - -analytic -2.2128e+001 1.0975e-003 -7.1543e+002 5.8799e+000 4.1748e+005 + -analytic -2.2128e+1 1.0975e-3 -7.1543e+2 5.8799e+0 4.1748e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Nd+++ = Nd(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.2976 - -delta_H -38.8694 kJ/mol # Calculated enthalpy of reaction Nd(Acetate)3 +3 HAcetate + Nd+3 = Nd(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -8.2976 + -delta_H -38.8694 kJ/mol # Calculated enthalpy of reaction Nd(Acetate)3 # Enthalpy of formation: -524.09 kcal/mol - -analytic -4.5726e+001 -2.6143e-003 5.9389e+002 1.2679e+001 4.3320e+005 + -analytic -4.5726e+1 -2.6143e-3 5.9389e+2 1.2679e+1 4.332e+5 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Nd+++ = Nd(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -8.0576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(CO3)2- +2 HCO3- + Nd+3 = Nd(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -8.0576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Nd+++ = Nd(HPO4)2- - -llnl_gamma 4.0 - log_k +9.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(HPO4)2- + +2 HPO4-2 + Nd+3 = Nd(HPO4)2- + -llnl_gamma 4 + log_k 9.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(HPO4)2- # Enthalpy of formation: -0 kcal/mol - + # Redundant with NdO2- #4.0000 H2O + 1.0000 Nd+++ = Nd(OH)4- +4.0000 H+ -# -llnl_gamma 4.0 +# -llnl_gamma 4.0 # log_k -37.0803 # -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)4- ## Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Nd+++ = Nd(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.1437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(PO4)2-3 + +2 HPO4-2 + Nd+3 = Nd(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -5.1437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Nd+++ = Nd(SO4)2- - -llnl_gamma 4.0 - log_k -255.7478 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(SO4)2- + +2 SO4-2 + Nd+3 = Nd(SO4)2- + -llnl_gamma 4 + log_k -255.7478 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(SO4)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 Nd+++ + 2.0000 H2O = Nd2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -13.8902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2(OH)2+4 + +2 Nd+3 + 2 H2O = Nd2(OH)2+4 + 2 H+ + -llnl_gamma 5.5 + log_k -13.8902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2(OH)2+4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Nd+++ + 1.0000 HAcetate = NdAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.0891 - -delta_H -12.0081 kJ/mol # Calculated enthalpy of reaction NdAcetate+2 + +Nd+3 + HAcetate = NdAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -2.0891 + -delta_H -12.0081 kJ/mol # Calculated enthalpy of reaction NdAcetate+2 # Enthalpy of formation: -285.47 kcal/mol - -analytic -1.6006e+001 4.1948e-004 -3.6469e+002 4.9280e+000 2.5187e+005 + -analytic -1.6006e+1 4.1948e-4 -3.6469e+2 4.928e+0 2.5187e+5 # -Range: 0-300 -1.0000 Nd+++ + 1.0000 HCO3- = NdCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.6256 - -delta_H 91.6212 kJ/mol # Calculated enthalpy of reaction NdCO3+ +Nd+3 + HCO3- = NdCO3+ + H+ + -llnl_gamma 4 + log_k -2.6256 + -delta_H 91.6212 kJ/mol # Calculated enthalpy of reaction NdCO3+ # Enthalpy of formation: -309.5 kcal/mol - -analytic 2.3399e+002 5.3454e-002 -7.0513e+003 -9.2500e+001 -1.1010e+002 + -analytic 2.3399e+2 5.3454e-2 -7.0513e+3 -9.25e+1 -1.101e+2 # -Range: 0-300 -1.0000 Nd+++ + 1.0000 Cl- = NdCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction NdCl+2 +Nd+3 + Cl- = NdCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction NdCl+2 # Enthalpy of formation: -203 kcal/mol - -analytic 9.4587e+001 3.9331e-002 -2.4200e+003 -3.9550e+001 -3.7790e+001 + -analytic 9.4587e+1 3.9331e-2 -2.42e+3 -3.955e+1 -3.779e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Nd+++ = NdCl2+ - -llnl_gamma 4.0 - log_k +0.0308 - -delta_H 20.3593 kJ/mol # Calculated enthalpy of reaction NdCl2+ +2 Cl- + Nd+3 = NdCl2+ + -llnl_gamma 4 + log_k 0.0308 + -delta_H 20.3593 kJ/mol # Calculated enthalpy of reaction NdCl2+ # Enthalpy of formation: -241.5 kcal/mol - -analytic 2.5840e+002 8.4118e-002 -7.2056e+003 -1.0477e+002 -1.1251e+002 + -analytic 2.584e+2 8.4118e-2 -7.2056e+3 -1.0477e+2 -1.1251e+2 # -Range: 0-300 -3.0000 Cl- + 1.0000 Nd+++ = NdCl3 - -llnl_gamma 3.0 - log_k -0.3203 - -delta_H 15.0582 kJ/mol # Calculated enthalpy of reaction NdCl3 +3 Cl- + Nd+3 = NdCl3 + -llnl_gamma 3 + log_k -0.3203 + -delta_H 15.0582 kJ/mol # Calculated enthalpy of reaction NdCl3 # Enthalpy of formation: -282.7 kcal/mol - -analytic 4.9362e+002 1.3485e-001 -1.4309e+004 -1.9645e+002 -2.2343e+002 + -analytic 4.9362e+2 1.3485e-1 -1.4309e+4 -1.9645e+2 -2.2343e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 Nd+++ = NdCl4- - -llnl_gamma 4.0 - log_k -0.7447 - -delta_H -3.21331 kJ/mol # Calculated enthalpy of reaction NdCl4- +4 Cl- + Nd+3 = NdCl4- + -llnl_gamma 4 + log_k -0.7447 + -delta_H -3.21331 kJ/mol # Calculated enthalpy of reaction NdCl4- # Enthalpy of formation: -327 kcal/mol - -analytic 6.0548e+002 1.4227e-001 -1.8055e+004 -2.3765e+002 -2.8191e+002 + -analytic 6.0548e+2 1.4227e-1 -1.8055e+4 -2.3765e+2 -2.8191e+2 # -Range: 0-300 -1.0000 Nd+++ + 1.0000 F- = NdF++ - -llnl_gamma 4.5 - log_k +4.3687 - -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction NdF+2 +Nd+3 + F- = NdF+2 + -llnl_gamma 4.5 + log_k 4.3687 + -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction NdF+2 # Enthalpy of formation: -241.2 kcal/mol - -analytic 1.1461e+002 4.3014e-002 -3.2461e+003 -4.5326e+001 -5.0687e+001 + -analytic 1.1461e+2 4.3014e-2 -3.2461e+3 -4.5326e+1 -5.0687e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Nd+++ = NdF2+ - -llnl_gamma 4.0 - log_k +7.5646 - -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction NdF2+ +2 F- + Nd+3 = NdF2+ + -llnl_gamma 4 + log_k 7.5646 + -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction NdF2+ # Enthalpy of formation: -323.5 kcal/mol - -analytic 2.7901e+002 8.7910e-002 -7.2424e+003 -1.1046e+002 -1.1309e+002 + -analytic 2.7901e+2 8.791e-2 -7.2424e+3 -1.1046e+2 -1.1309e+2 # -Range: 0-300 -3.0000 F- + 1.0000 Nd+++ = NdF3 - -llnl_gamma 3.0 - log_k +9.8809 - -delta_H -8.1588 kJ/mol # Calculated enthalpy of reaction NdF3 +3 F- + Nd+3 = NdF3 + -llnl_gamma 3 + log_k 9.8809 + -delta_H -8.1588 kJ/mol # Calculated enthalpy of reaction NdF3 # Enthalpy of formation: -408.9 kcal/mol - -analytic 5.2220e+002 1.4154e-001 -1.3697e+004 -2.0551e+002 -2.1388e+002 + -analytic 5.222e+2 1.4154e-1 -1.3697e+4 -2.0551e+2 -2.1388e+2 # -Range: 0-300 -4.0000 F- + 1.0000 Nd+++ = NdF4- - -llnl_gamma 4.0 - log_k +11.8307 - -delta_H -48.5344 kJ/mol # Calculated enthalpy of reaction NdF4- +4 F- + Nd+3 = NdF4- + -llnl_gamma 4 + log_k 11.8307 + -delta_H -48.5344 kJ/mol # Calculated enthalpy of reaction NdF4- # Enthalpy of formation: -498.7 kcal/mol - -analytic 6.1972e+002 1.4620e-001 -1.5869e+004 -2.4175e+002 -2.4780e+002 + -analytic 6.1972e+2 1.462e-1 -1.5869e+4 -2.4175e+2 -2.478e+2 # -Range: 0-300 -1.0000 Nd+++ + 1.0000 HPO4-- + 1.0000 H+ = NdH2PO4++ - -llnl_gamma 4.5 - log_k +9.5152 - -delta_H -15.736 kJ/mol # Calculated enthalpy of reaction NdH2PO4+2 +Nd+3 + HPO4-2 + H+ = NdH2PO4+2 + -llnl_gamma 4.5 + log_k 9.5152 + -delta_H -15.736 kJ/mol # Calculated enthalpy of reaction NdH2PO4+2 # Enthalpy of formation: -479.076 kcal/mol - -analytic 1.2450e+002 6.4953e-002 -4.0524e+002 -5.3728e+001 -6.3603e+000 + -analytic 1.245e+2 6.4953e-2 -4.0524e+2 -5.3728e+1 -6.3603e+0 # -Range: 0-300 -1.0000 Nd+++ + 1.0000 HCO3- = NdHCO3++ - -llnl_gamma 4.5 - log_k +1.8457 - -delta_H 9.19643 kJ/mol # Calculated enthalpy of reaction NdHCO3+2 +Nd+3 + HCO3- = NdHCO3+2 + -llnl_gamma 4.5 + log_k 1.8457 + -delta_H 9.19643 kJ/mol # Calculated enthalpy of reaction NdHCO3+2 # Enthalpy of formation: -329.2 kcal/mol - -analytic 5.5530e+001 3.3254e-002 -7.3859e+002 -2.4690e+001 -1.1542e+001 + -analytic 5.553e+1 3.3254e-2 -7.3859e+2 -2.469e+1 -1.1542e+1 # -Range: 0-300 -1.0000 Nd+++ + 1.0000 HPO4-- = NdHPO4+ - -llnl_gamma 4.0 - log_k +5.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdHPO4+ +Nd+3 + HPO4-2 = NdHPO4+ + -llnl_gamma 4 + log_k 5.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction NdHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Nd+++ + 1.0000 NO3- = NdNO3++ - -llnl_gamma 4.5 - log_k +0.7902 - -delta_H -27.8529 kJ/mol # Calculated enthalpy of reaction NdNO3+2 + +Nd+3 + NO3- = NdNO3+2 + -llnl_gamma 4.5 + log_k 0.7902 + -delta_H -27.8529 kJ/mol # Calculated enthalpy of reaction NdNO3+2 # Enthalpy of formation: -222.586 kcal/mol - -analytic 3.3850e+001 2.7112e-002 1.4404e+003 -1.8570e+001 2.2466e+001 + -analytic 3.385e+1 2.7112e-2 1.4404e+3 -1.857e+1 2.2466e+1 # -Range: 0-300 -1.0000 Nd+++ + 1.0000 H2O = NdO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -17.0701 - -delta_H 116.386 kJ/mol # Calculated enthalpy of reaction NdO+ +Nd+3 + H2O = NdO+ + 2 H+ + -llnl_gamma 4 + log_k -17.0701 + -delta_H 116.386 kJ/mol # Calculated enthalpy of reaction NdO+ # Enthalpy of formation: -207 kcal/mol - -analytic 1.8961e+002 3.0563e-002 -1.4153e+004 -6.8024e+001 -2.2089e+002 + -analytic 1.8961e+2 3.0563e-2 -1.4153e+4 -6.8024e+1 -2.2089e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Nd+++ = NdO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -37.0721 - -delta_H 298.88 kJ/mol # Calculated enthalpy of reaction NdO2- +2 H2O + Nd+3 = NdO2- + 4 H+ + -llnl_gamma 4 + log_k -37.0721 + -delta_H 298.88 kJ/mol # Calculated enthalpy of reaction NdO2- # Enthalpy of formation: -231.7 kcal/mol - -analytic 1.9606e+002 1.4784e-002 -2.1838e+004 -6.6399e+001 -3.4082e+002 + -analytic 1.9606e+2 1.4784e-2 -2.1838e+4 -6.6399e+1 -3.4082e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Nd+++ = NdO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -26.3702 - -delta_H 230.681 kJ/mol # Calculated enthalpy of reaction NdO2H +2 H2O + Nd+3 = NdO2H + 3 H+ + -llnl_gamma 3 + log_k -26.3702 + -delta_H 230.681 kJ/mol # Calculated enthalpy of reaction NdO2H # Enthalpy of formation: -248 kcal/mol - -analytic 3.4617e+002 4.5955e-002 -2.3960e+004 -1.2361e+002 -3.7398e+002 + -analytic 3.4617e+2 4.5955e-2 -2.396e+4 -1.2361e+2 -3.7398e+2 # -Range: 0-300 -1.0000 Nd+++ + 1.0000 H2O = NdOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -8.1274 - -delta_H 80.8223 kJ/mol # Calculated enthalpy of reaction NdOH+2 +Nd+3 + H2O = NdOH+2 + H+ + -llnl_gamma 4.5 + log_k -8.1274 + -delta_H 80.8223 kJ/mol # Calculated enthalpy of reaction NdOH+2 # Enthalpy of formation: -215.5 kcal/mol - -analytic 6.6963e+001 1.2182e-002 -6.2797e+003 -2.3300e+001 -9.8008e+001 + -analytic 6.6963e+1 1.2182e-2 -6.2797e+3 -2.33e+1 -9.8008e+1 # -Range: 0-300 -1.0000 Nd+++ + 1.0000 HPO4-- = NdPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.5218 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdPO4 +Nd+3 + HPO4-2 = NdPO4 + H+ + -llnl_gamma 3 + log_k -0.5218 + -delta_H 0 # Not possible to calculate enthalpy of reaction NdPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Nd+++ = NdSO4+ - -llnl_gamma 4.0 - log_k +3.6430 - -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction NdSO4+ + +SO4-2 + Nd+3 = NdSO4+ + -llnl_gamma 4 + log_k 3.643 + -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction NdSO4+ # Enthalpy of formation: -379.1 kcal/mol - -analytic 3.0267e+002 8.5362e-002 -8.9211e+003 -1.1902e+002 -1.3929e+002 + -analytic 3.0267e+2 8.5362e-2 -8.9211e+3 -1.1902e+2 -1.3929e+2 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Ni++ = Ni(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.1908 - -delta_H -25.8571 kJ/mol # Calculated enthalpy of reaction Ni(Acetate)2 +2 HAcetate + Ni+2 = Ni(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -7.1908 + -delta_H -25.8571 kJ/mol # Calculated enthalpy of reaction Ni(Acetate)2 # Enthalpy of formation: -251.28 kcal/mol - -analytic -2.9660e+001 1.0643e-003 -1.0060e+003 7.9358e+000 5.2562e+005 + -analytic -2.966e+1 1.0643e-3 -1.006e+3 7.9358e+0 5.2562e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Ni++ = Ni(Acetate)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -11.3543 - -delta_H -53.6807 kJ/mol # Calculated enthalpy of reaction Ni(Acetate)3- +3 HAcetate + Ni+2 = Ni(Acetate)3- + 3 H+ + -llnl_gamma 4 + log_k -11.3543 + -delta_H -53.6807 kJ/mol # Calculated enthalpy of reaction Ni(Acetate)3- # Enthalpy of formation: -374.03 kcal/mol - -analytic 5.0850e+001 -8.2435e-003 -1.3049e+004 -1.5410e+001 1.9704e+006 + -analytic 5.085e+1 -8.2435e-3 -1.3049e+4 -1.541e+1 1.9704e+6 # -Range: 0-300 -2.0000 NH3 + 1.0000 Ni++ = Ni(NH3)2++ - -llnl_gamma 4.5 - log_k +5.0598 - -delta_H -29.7505 kJ/mol # Calculated enthalpy of reaction Ni(NH3)2+2 +2 NH3 + Ni+2 = Ni(NH3)2+2 + -llnl_gamma 4.5 + log_k 5.0598 + -delta_H -29.7505 kJ/mol # Calculated enthalpy of reaction Ni(NH3)2+2 # Enthalpy of formation: -246.398 kJ/mol - -analytic 1.0002e+002 5.2896e-003 -2.5967e+003 -3.5485e+001 -4.0548e+001 + -analytic 1.0002e+2 5.2896e-3 -2.5967e+3 -3.5485e+1 -4.0548e+1 # -Range: 0-300 -6.0000 NH3 + 1.0000 Ni++ = Ni(NH3)6++ - -llnl_gamma 4.5 - log_k +8.7344 - -delta_H -88.0436 kJ/mol # Calculated enthalpy of reaction Ni(NH3)6+2 +6 NH3 + Ni+2 = Ni(NH3)6+2 + -llnl_gamma 4.5 + log_k 8.7344 + -delta_H -88.0436 kJ/mol # Calculated enthalpy of reaction Ni(NH3)6+2 # Enthalpy of formation: -630.039 kJ/mol - -analytic 1.9406e+002 -1.3467e-002 -5.2321e+003 -6.6168e+001 -8.1699e+001 + -analytic 1.9406e+2 -1.3467e-2 -5.2321e+3 -6.6168e+1 -8.1699e+1 # -Range: 0-300 -2.0000 NO3- + 1.0000 Ni++ = Ni(NO3)2 - -llnl_gamma 3.0 - log_k +0.1899 - -delta_H -1.54153 kJ/mol # Calculated enthalpy of reaction Ni(NO3)2 +2 NO3- + Ni+2 = Ni(NO3)2 + -llnl_gamma 3 + log_k 0.1899 + -delta_H -1.54153 kJ/mol # Calculated enthalpy of reaction Ni(NO3)2 # Enthalpy of formation: -469.137 kJ/mol - -analytic -4.2544e+001 -1.0101e-002 1.3496e+003 1.6663e+001 2.2933e+001 + -analytic -4.2544e+1 -1.0101e-2 1.3496e+3 1.6663e+1 2.2933e+1 # -Range: 0-200 -2.0000 H2O + 1.0000 Ni++ = Ni(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -19.9902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni(OH)2 +2 H2O + Ni+2 = Ni(OH)2 + 2 H+ + -llnl_gamma 3 + log_k -19.9902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni(OH)2 # Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Ni++ = Ni(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -30.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni(OH)3- + +3 H2O + Ni+2 = Ni(OH)3- + 3 H+ + -llnl_gamma 4 + log_k -30.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni(OH)3- # Enthalpy of formation: -0 kcal/mol - -2.0000 Ni++ + 1.0000 H2O = Ni2OH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -10.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni2OH+3 + +2 Ni+2 + H2O = Ni2OH+3 + H+ + -llnl_gamma 5 + log_k -10.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni2OH+3 # Enthalpy of formation: -0 kcal/mol - -4.0000 Ni++ + 4.0000 H2O = Ni4(OH)4++++ +4.0000 H+ - -llnl_gamma 5.5 - log_k -27.6803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni4(OH)4+4 + +4 Ni+2 + 4 H2O = Ni4(OH)4+4 + 4 H+ + -llnl_gamma 5.5 + log_k -27.6803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni4(OH)4+4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Ni++ + 1.0000 Br- = NiBr+ - -llnl_gamma 4.0 - log_k -0.37 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiBr+ + +Ni+2 + Br- = NiBr+ + -llnl_gamma 4 + log_k -0.37 + -delta_H 0 # Not possible to calculate enthalpy of reaction NiBr+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Ni++ + 1.0000 HAcetate = NiAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.3278 - -delta_H -10.2508 kJ/mol # Calculated enthalpy of reaction NiAcetate+ + +Ni+2 + HAcetate = NiAcetate+ + H+ + -llnl_gamma 4 + log_k -3.3278 + -delta_H -10.2508 kJ/mol # Calculated enthalpy of reaction NiAcetate+ # Enthalpy of formation: -131.45 kcal/mol - -analytic -3.3110e+000 1.6895e-003 -1.0556e+003 2.7168e-002 2.6350e+005 + -analytic -3.311e+0 1.6895e-3 -1.0556e+3 2.7168e-2 2.635e+5 # -Range: 0-300 -1.0000 Ni++ + 1.0000 Cl- = NiCl+ - -llnl_gamma 4.0 - log_k -0.9962 - -delta_H 5.99567 kJ/mol # Calculated enthalpy of reaction NiCl+ +Ni+2 + Cl- = NiCl+ + -llnl_gamma 4 + log_k -0.9962 + -delta_H 5.99567 kJ/mol # Calculated enthalpy of reaction NiCl+ # Enthalpy of formation: -51.4 kcal/mol - -analytic 9.5370e+001 3.8521e-002 -2.1746e+003 -4.0629e+001 -3.3961e+001 + -analytic 9.537e+1 3.8521e-2 -2.1746e+3 -4.0629e+1 -3.3961e+1 # -Range: 0-300 -2.0000 HPO4-- + 1.0000 Ni++ + 1.0000 H+ = NiHP2O7- +1.0000 H2O - -llnl_gamma 4.0 - log_k +9.2680 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiHP2O7- +2 HPO4-2 + Ni+2 + H+ = NiHP2O7- + H2O + -llnl_gamma 4 + log_k 9.268 + -delta_H 0 # Not possible to calculate enthalpy of reaction NiHP2O7- # Enthalpy of formation: -0 kcal/mol - -1.0000 Ni++ + 1.0000 NO3- = NiNO3+ - -llnl_gamma 4.0 - log_k +0.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiNO3+ + +Ni+2 + NO3- = NiNO3+ + -llnl_gamma 4 + log_k 0.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction NiNO3+ # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Ni++ = NiP2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +3.1012 - -delta_H 9.68819 kJ/mol # Calculated enthalpy of reaction NiP2O7-2 + +2 HPO4-2 + Ni+2 = NiP2O7-2 + H2O + -llnl_gamma 4 + log_k 3.1012 + -delta_H 9.68819 kJ/mol # Calculated enthalpy of reaction NiP2O7-2 # Enthalpy of formation: -2342.61 kJ/mol - -analytic 4.6809e+002 1.0985e-001 -1.4310e+004 -1.8173e+002 -2.2344e+002 + -analytic 4.6809e+2 1.0985e-1 -1.431e+4 -1.8173e+2 -2.2344e+2 # -Range: 0-300 -1.0000 SO4-- + 1.0000 Ni++ = NiSO4 - -llnl_gamma 3.0 - log_k +2.1257 - -delta_H 2.36814 kJ/mol # Calculated enthalpy of reaction NiSO4 +SO4-2 + Ni+2 = NiSO4 + -llnl_gamma 3 + log_k 2.1257 + -delta_H 2.36814 kJ/mol # Calculated enthalpy of reaction NiSO4 # Enthalpy of formation: -229.734 kcal/mol - -analytic 6.1187e+001 2.4211e-002 -1.2180e+003 -2.5130e+001 -2.0705e+001 + -analytic 6.1187e+1 2.4211e-2 -1.218e+3 -2.513e+1 -2.0705e+1 # -Range: 0-200 -1.0000 SeO4-- + 1.0000 Ni++ = NiSeO4 - -llnl_gamma 3.0 - log_k +2.6700 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiSeO4 +SeO4-2 + Ni+2 = NiSeO4 + -llnl_gamma 3 + log_k 2.67 + -delta_H 0 # Not possible to calculate enthalpy of reaction NiSeO4 # Enthalpy of formation: -0 kcal/mol - -5.0000 HCO3- + 1.0000 Np++++ = Np(CO3)5-6 +5.0000 H+ - -llnl_gamma 4.0 - log_k -13.344 - -delta_H 92.7067 kJ/mol # Calculated enthalpy of reaction Np(CO3)5-6 + +5 HCO3- + Np+4 = Np(CO3)5-6 + 5 H+ + -llnl_gamma 4 + log_k -13.344 + -delta_H 92.7067 kJ/mol # Calculated enthalpy of reaction Np(CO3)5-6 # Enthalpy of formation: -935.22 kcal/mol - -analytic 6.3005e+002 2.3388e-001 -1.8328e+004 -2.6334e+002 -2.8618e+002 + -analytic 6.3005e+2 2.3388e-1 -1.8328e+4 -2.6334e+2 -2.8618e+2 # -Range: 0-300 -2.0000 HPO4-- + 2.0000 H+ + 1.0000 Np+++ = Np(H2PO4)2+ - -llnl_gamma 4.0 - log_k +3.7000 - -delta_H -1.55258 kJ/mol # Calculated enthalpy of reaction Np(H2PO4)2+ +2 HPO4-2 + 2 H+ + Np+3 = Np(H2PO4)2+ + -llnl_gamma 4 + log_k 3.7 + -delta_H -1.55258 kJ/mol # Calculated enthalpy of reaction Np(H2PO4)2+ # Enthalpy of formation: -743.981 kcal/mol - -analytic 7.8161e+002 2.8446e-001 -1.2330e+004 -3.3194e+002 -2.1056e+002 + -analytic 7.8161e+2 2.8446e-1 -1.233e+4 -3.3194e+2 -2.1056e+2 # -Range: 25-150 -3.0000 HPO4-- + 3.0000 H+ + 1.0000 Np+++ = Np(H2PO4)3 - -llnl_gamma 3.0 - log_k +5.6000 - -delta_H -21.8575 kJ/mol # Calculated enthalpy of reaction Np(H2PO4)3 +3 HPO4-2 + 3 H+ + Np+3 = Np(H2PO4)3 + -llnl_gamma 3 + log_k 5.6 + -delta_H -21.8575 kJ/mol # Calculated enthalpy of reaction Np(H2PO4)3 # Enthalpy of formation: -1057.65 kcal/mol - -analytic 1.5150e+003 4.4939e-001 -3.2766e+004 -6.1975e+002 -5.5934e+002 + -analytic 1.515e+3 4.4939e-1 -3.2766e+4 -6.1975e+2 -5.5934e+2 # -Range: 25-150 -2.0000 HPO4-- + 1.0000 Np++++ = Np(HPO4)2 - -llnl_gamma 3.0 - log_k +23.7000 - -delta_H -35.24 kJ/mol # Calculated enthalpy of reaction Np(HPO4)2 +2 HPO4-2 + Np+4 = Np(HPO4)2 + -llnl_gamma 3 + log_k 23.7 + -delta_H -35.24 kJ/mol # Calculated enthalpy of reaction Np(HPO4)2 # Enthalpy of formation: -758.94 kcal/mol - -analytic 4.7722e+002 2.1099e-001 -4.7296e+003 -2.0229e+002 -8.0831e+001 + -analytic 4.7722e+2 2.1099e-1 -4.7296e+3 -2.0229e+2 -8.0831e+1 # -Range: 25-150 -3.0000 HPO4-- + 1.0000 Np++++ = Np(HPO4)3-- - -llnl_gamma 4.0 - log_k +33.4000 - -delta_H -44.9093 kJ/mol # Calculated enthalpy of reaction Np(HPO4)3-2 +3 HPO4-2 + Np+4 = Np(HPO4)3-2 + -llnl_gamma 4 + log_k 33.4 + -delta_H -44.9093 kJ/mol # Calculated enthalpy of reaction Np(HPO4)3-2 # Enthalpy of formation: -1070.07 kcal/mol - -analytic -1.5951e+003 -3.6579e-001 5.1343e+004 6.3262e+002 8.7619e+002 + -analytic -1.5951e+3 -3.6579e-1 5.1343e+4 6.3262e+2 8.7619e+2 # -Range: 25-150 -4.0000 HPO4-- + 1.0000 Np++++ = Np(HPO4)4---- - -llnl_gamma 4.0 - log_k +43.2000 - -delta_H -67.0803 kJ/mol # Calculated enthalpy of reaction Np(HPO4)4-4 +4 HPO4-2 + Np+4 = Np(HPO4)4-4 + -llnl_gamma 4 + log_k 43.2 + -delta_H -67.0803 kJ/mol # Calculated enthalpy of reaction Np(HPO4)4-4 # Enthalpy of formation: -1384.18 kcal/mol - -analytic 5.8359e+003 1.5194e+000 -1.6349e+005 -2.3025e+003 -2.7903e+003 + -analytic 5.8359e+3 1.5194e+0 -1.6349e+5 -2.3025e+3 -2.7903e+3 # -Range: 25-150 -5.0000 HPO4-- + 1.0000 Np++++ = Np(HPO4)5-6 - -llnl_gamma 4.0 - log_k +52.0000 - -delta_H -83.5401 kJ/mol # Calculated enthalpy of reaction Np(HPO4)5-6 +5 HPO4-2 + Np+4 = Np(HPO4)5-6 + -llnl_gamma 4 + log_k 52 + -delta_H -83.5401 kJ/mol # Calculated enthalpy of reaction Np(HPO4)5-6 # Enthalpy of formation: -1696.93 kcal/mol - -analytic -1.8082e+003 -2.0018e-001 7.5155e+004 6.7400e+002 1.2824e+003 + -analytic -1.8082e+3 -2.0018e-1 7.5155e+4 6.74e+2 1.2824e+3 # -Range: 25-150 -2.0000 H2O + 1.0000 Np++++ = Np(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -2.8 - -delta_H 77.0669 kJ/mol # Calculated enthalpy of reaction Np(OH)2+2 +2 H2O + Np+4 = Np(OH)2+2 + 2 H+ + -llnl_gamma 4.5 + log_k -2.8 + -delta_H 77.0669 kJ/mol # Calculated enthalpy of reaction Np(OH)2+2 # Enthalpy of formation: -251.102 kcal/mol - -analytic 2.9299e+003 6.5812e-001 -9.5085e+004 -1.1356e+003 -1.6227e+003 + -analytic 2.9299e+3 6.5812e-1 -9.5085e+4 -1.1356e+3 -1.6227e+3 # -Range: 25-150 -3.0000 H2O + 1.0000 Np++++ = Np(OH)3+ +3.0000 H+ - -llnl_gamma 4.0 - log_k -5.8 - -delta_H 99.5392 kJ/mol # Calculated enthalpy of reaction Np(OH)3+ +3 H2O + Np+4 = Np(OH)3+ + 3 H+ + -llnl_gamma 4 + log_k -5.8 + -delta_H 99.5392 kJ/mol # Calculated enthalpy of reaction Np(OH)3+ # Enthalpy of formation: -314.048 kcal/mol - -analytic -4.7723e+003 -1.1810e+000 1.3545e+005 1.8850e+003 2.3117e+003 + -analytic -4.7723e+3 -1.181e+0 1.3545e+5 1.885e+3 2.3117e+3 # -Range: 25-150 -4.0000 H2O + 1.0000 Np++++ = Np(OH)4 +4.0000 H+ - -llnl_gamma 3.0 - log_k -9.6 - -delta_H 109.585 kJ/mol # Calculated enthalpy of reaction Np(OH)4 +4 H2O + Np+4 = Np(OH)4 + 4 H+ + -llnl_gamma 3 + log_k -9.6 + -delta_H 109.585 kJ/mol # Calculated enthalpy of reaction Np(OH)4 # Enthalpy of formation: -379.964 kcal/mol - -analytic -5.5904e+003 -1.3639e+000 1.6112e+005 2.2013e+003 2.7498e+003 + -analytic -5.5904e+3 -1.3639e+0 1.6112e+5 2.2013e+3 2.7498e+3 # -Range: 25-150 -2.0000 SO4-- + 1.0000 Np++++ = Np(SO4)2 - -llnl_gamma 3.0 - log_k +9.9000 - -delta_H 40.005 kJ/mol # Calculated enthalpy of reaction Np(SO4)2 +2 SO4-2 + Np+4 = Np(SO4)2 + -llnl_gamma 3 + log_k 9.9 + -delta_H 40.005 kJ/mol # Calculated enthalpy of reaction Np(SO4)2 # Enthalpy of formation: -558.126 kcal/mol - -analytic -9.0765e+002 -1.8494e-001 2.7951e+004 3.5521e+002 4.7702e+002 + -analytic -9.0765e+2 -1.8494e-1 2.7951e+4 3.5521e+2 4.7702e+2 # -Range: 25-150 -1.0000 Np++++ + 1.0000 Cl- = NpCl+++ - -llnl_gamma 5.0 - log_k +0.2000 - -delta_H 20.3737 kJ/mol # Calculated enthalpy of reaction NpCl+3 +Np+4 + Cl- = NpCl+3 + -llnl_gamma 5 + log_k 0.2 + -delta_H 20.3737 kJ/mol # Calculated enthalpy of reaction NpCl+3 # Enthalpy of formation: -167.951 kcal/mol - -analytic 8.3169e+002 2.6267e-001 -2.1618e+004 -3.3838e+002 -3.6898e+002 + -analytic 8.3169e+2 2.6267e-1 -2.1618e+4 -3.3838e+2 -3.6898e+2 # -Range: 25-150 -2.0000 Cl- + 1.0000 Np++++ = NpCl2++ - -llnl_gamma 4.5 - log_k -0.1 - -delta_H 94.5853 kJ/mol # Calculated enthalpy of reaction NpCl2+2 +2 Cl- + Np+4 = NpCl2+2 + -llnl_gamma 4.5 + log_k -0.1 + -delta_H 94.5853 kJ/mol # Calculated enthalpy of reaction NpCl2+2 # Enthalpy of formation: -190.147 kcal/mol - -analytic -1.5751e+003 -3.8759e-001 4.2054e+004 6.2619e+002 7.1777e+002 + -analytic -1.5751e+3 -3.8759e-1 4.2054e+4 6.2619e+2 7.1777e+2 # -Range: 25-150 -1.0000 Np++++ + 1.0000 F- = NpF+++ - -llnl_gamma 5.0 - log_k +8.7000 - -delta_H -3.43746 kJ/mol # Calculated enthalpy of reaction NpF+3 +Np+4 + F- = NpF+3 + -llnl_gamma 5 + log_k 8.7 + -delta_H -3.43746 kJ/mol # Calculated enthalpy of reaction NpF+3 # Enthalpy of formation: -213.859 kcal/mol - -analytic 2.7613e+000 1.3498e-003 -1.6411e+003 2.9074e+000 3.4192e+005 + -analytic 2.7613e+0 1.3498e-3 -1.6411e+3 2.9074e+0 3.4192e+5 # -Range: 25-150 -2.0000 F- + 1.0000 Np++++ = NpF2++ - -llnl_gamma 4.5 - log_k +15.4000 - -delta_H 6.03094 kJ/mol # Calculated enthalpy of reaction NpF2+2 +2 F- + Np+4 = NpF2+2 + -llnl_gamma 4.5 + log_k 15.4 + -delta_H 6.03094 kJ/mol # Calculated enthalpy of reaction NpF2+2 # Enthalpy of formation: -291.746 kcal/mol - -analytic -2.6793e+002 -4.2056e-002 9.7952e+003 1.0629e+002 1.6715e+002 + -analytic -2.6793e+2 -4.2056e-2 9.7952e+3 1.0629e+2 1.6715e+2 # -Range: 25-150 -1.0000 Np+++ + 1.0000 HPO4-- + 1.0000 H+ = NpH2PO4++ - -llnl_gamma 4.5 - log_k +2.4000 - -delta_H 6.0874 kJ/mol # Calculated enthalpy of reaction NpH2PO4+2 +Np+3 + HPO4-2 + H+ = NpH2PO4+2 + -llnl_gamma 4.5 + log_k 2.4 + -delta_H 6.0874 kJ/mol # Calculated enthalpy of reaction NpH2PO4+2 # Enthalpy of formation: -433.34 kcal/mol - -analytic 6.0731e+003 1.4733e+000 -1.7919e+005 -2.3880e+003 -3.0582e+003 + -analytic 6.0731e+3 1.4733e+0 -1.7919e+5 -2.388e+3 -3.0582e+3 # -Range: 25-150 -1.0000 Np++++ + 1.0000 HPO4-- = NpHPO4++ - -llnl_gamma 4.5 - log_k +12.9000 - -delta_H 7.54554 kJ/mol # Calculated enthalpy of reaction NpHPO4+2 +Np+4 + HPO4-2 = NpHPO4+2 + -llnl_gamma 4.5 + log_k 12.9 + -delta_H 7.54554 kJ/mol # Calculated enthalpy of reaction NpHPO4+2 # Enthalpy of formation: -439.899 kcal/mol - -analytic -7.2792e+003 -1.7476e+000 2.1770e+005 2.8624e+003 3.7154e+003 + -analytic -7.2792e+3 -1.7476e+0 2.177e+5 2.8624e+3 3.7154e+3 # -Range: 25-150 -2.0000 HCO3- + 1.0000 NpO2++ = NpO2(CO3)2-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -6.6576 - -delta_H 57.2588 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)2-2 +2 HCO3- + NpO2+2 = NpO2(CO3)2-2 + 2 H+ + -llnl_gamma 4 + log_k -6.6576 + -delta_H 57.2588 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)2-2 # Enthalpy of formation: -521.77 kcal/mol - -analytic 2.6597e+002 7.5850e-002 -9.9987e+003 -1.0576e+002 -1.5610e+002 + -analytic 2.6597e+2 7.585e-2 -9.9987e+3 -1.0576e+2 -1.561e+2 # -Range: 0-300 -2.0000 HCO3- + 1.0000 NpO2+ = NpO2(CO3)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -13.6576 - -delta_H 58.1553 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)2-3 +2 HCO3- + NpO2+ = NpO2(CO3)2-3 + 2 H+ + -llnl_gamma 4 + log_k -13.6576 + -delta_H 58.1553 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)2-3 # Enthalpy of formation: -549.642 kcal/mol - -analytic 2.6012e+002 7.3174e-002 -1.0250e+004 -1.0556e+002 -1.6002e+002 + -analytic 2.6012e+2 7.3174e-2 -1.025e+4 -1.0556e+2 -1.6002e+2 # -Range: 0-300 -3.0000 HCO3- + 1.0000 NpO2+ = NpO2(CO3)3-5 +3.0000 H+ - -llnl_gamma 4.0 - log_k -22.4864 - -delta_H 70.176 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)3-5 +3 HCO3- + NpO2+ = NpO2(CO3)3-5 + 3 H+ + -llnl_gamma 4 + log_k -22.4864 + -delta_H 70.176 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)3-5 # Enthalpy of formation: -711.667 kcal/mol - -analytic 3.7433e+002 1.2938e-001 -1.2791e+004 -1.5861e+002 -1.9970e+002 + -analytic 3.7433e+2 1.2938e-1 -1.2791e+4 -1.5861e+2 -1.997e+2 # -Range: 0-300 -3.0000 HCO3- + 1.0000 NpO2++ = NpO2(CO3)3---- +3.0000 H+ - -llnl_gamma 4.0 - log_k -10.5864 - -delta_H 3.14711 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)3-4 +3 HCO3- + NpO2+2 = NpO2(CO3)3-4 + 3 H+ + -llnl_gamma 4 + log_k -10.5864 + -delta_H 3.14711 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)3-4 # Enthalpy of formation: -699.601 kcal/mol - -analytic 3.7956e+002 1.1163e-001 -1.0607e+004 -1.5674e+002 -1.6562e+002 + -analytic 3.7956e+2 1.1163e-1 -1.0607e+4 -1.5674e+2 -1.6562e+2 # -Range: 0-300 -1.0000 NpO2+ + 1.0000 HCO3- = NpO2CO3- +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.7288 - -delta_H 69.1634 kJ/mol # Calculated enthalpy of reaction NpO2CO3- +NpO2+ + HCO3- = NpO2CO3- + H+ + -llnl_gamma 4 + log_k -5.7288 + -delta_H 69.1634 kJ/mol # Calculated enthalpy of reaction NpO2CO3- # Enthalpy of formation: -382.113 kcal/mol - -analytic 1.4634e+002 2.6576e-002 -8.2036e+003 -5.3534e+001 -1.2805e+002 + -analytic 1.4634e+2 2.6576e-2 -8.2036e+3 -5.3534e+1 -1.2805e+2 # -Range: 0-300 -1.0000 NpO2+ + 1.0000 Cl- = NpO2Cl - -llnl_gamma 3.0 - log_k -0.4 - -delta_H 15.4492 kJ/mol # Calculated enthalpy of reaction NpO2Cl +NpO2+ + Cl- = NpO2Cl + -llnl_gamma 3 + log_k -0.4 + -delta_H 15.4492 kJ/mol # Calculated enthalpy of reaction NpO2Cl # Enthalpy of formation: -269.986 kcal/mol - -analytic 4.5109e+002 9.0437e-002 -1.5453e+004 -1.7241e+002 -2.6371e+002 + -analytic 4.5109e+2 9.0437e-2 -1.5453e+4 -1.7241e+2 -2.6371e+2 # -Range: 25-150 -1.0000 NpO2++ + 1.0000 Cl- = NpO2Cl+ - -llnl_gamma 4.0 - log_k -0.2 - -delta_H 11.6239 kJ/mol # Calculated enthalpy of reaction NpO2Cl+ +NpO2+2 + Cl- = NpO2Cl+ + -llnl_gamma 4 + log_k -0.2 + -delta_H 11.6239 kJ/mol # Calculated enthalpy of reaction NpO2Cl+ # Enthalpy of formation: -242.814 kcal/mol - -analytic -1.2276e+003 -2.5435e-001 3.8507e+004 4.7447e+002 6.5715e+002 + -analytic -1.2276e+3 -2.5435e-1 3.8507e+4 4.7447e+2 6.5715e+2 # -Range: 25-150 -1.0000 NpO2+ + 1.0000 F- = NpO2F - -llnl_gamma 3.0 - log_k +1.0000 - -delta_H 34.2521 kJ/mol # Calculated enthalpy of reaction NpO2F +NpO2+ + F- = NpO2F + -llnl_gamma 3 + log_k 1 + -delta_H 34.2521 kJ/mol # Calculated enthalpy of reaction NpO2F # Enthalpy of formation: -305.709 kcal/mol - -analytic -1.9364e+002 -4.4083e-002 4.5602e+003 7.7791e+001 7.7840e+001 + -analytic -1.9364e+2 -4.4083e-2 4.5602e+3 7.7791e+1 7.784e+1 # -Range: 25-150 -1.0000 NpO2++ + 1.0000 F- = NpO2F+ - -llnl_gamma 4.0 - log_k +4.6000 - -delta_H 0.883568 kJ/mol # Calculated enthalpy of reaction NpO2F+ +NpO2+2 + F- = NpO2F+ + -llnl_gamma 4 + log_k 4.6 + -delta_H 0.883568 kJ/mol # Calculated enthalpy of reaction NpO2F+ # Enthalpy of formation: -285.598 kcal/mol - -analytic 9.6320e+002 2.4799e-001 -2.7614e+004 -3.7985e+002 -4.7128e+002 + -analytic 9.632e+2 2.4799e-1 -2.7614e+4 -3.7985e+2 -4.7128e+2 # -Range: 25-150 -2.0000 F- + 1.0000 NpO2++ = NpO2F2 - -llnl_gamma 3.0 - log_k +7.8000 - -delta_H 2.60319 kJ/mol # Calculated enthalpy of reaction NpO2F2 +2 F- + NpO2+2 = NpO2F2 + -llnl_gamma 3 + log_k 7.8 + -delta_H 2.60319 kJ/mol # Calculated enthalpy of reaction NpO2F2 # Enthalpy of formation: -365.337 kcal/mol - -analytic 1.9648e+002 6.4083e-002 -4.5601e+003 -7.7790e+001 -7.7840e+001 + -analytic 1.9648e+2 6.4083e-2 -4.5601e+3 -7.779e+1 -7.784e+1 # -Range: 25-150 -1.0000 NpO2+ + 1.0000 HPO4-- + 1.0000 H+ = NpO2H2PO4 - -llnl_gamma 3.0 - log_k +0.6000 - -delta_H 18.717 kJ/mol # Calculated enthalpy of reaction NpO2H2PO4 +NpO2+ + HPO4-2 + H+ = NpO2H2PO4 + -llnl_gamma 3 + log_k 0.6 + -delta_H 18.717 kJ/mol # Calculated enthalpy of reaction NpO2H2PO4 # Enthalpy of formation: -538.087 kcal/mol - -analytic 1.0890e+003 2.7738e-001 -3.0654e+004 -4.3171e+002 -5.2317e+002 + -analytic 1.089e+3 2.7738e-1 -3.0654e+4 -4.3171e+2 -5.2317e+2 # -Range: 25-150 -1.0000 NpO2++ + 1.0000 HPO4-- + 1.0000 H+ = NpO2H2PO4+ - -llnl_gamma 4.0 - log_k +2.3000 - -delta_H 9.31014 kJ/mol # Calculated enthalpy of reaction NpO2H2PO4+ +NpO2+2 + HPO4-2 + H+ = NpO2H2PO4+ + -llnl_gamma 4 + log_k 2.3 + -delta_H 9.31014 kJ/mol # Calculated enthalpy of reaction NpO2H2PO4+ # Enthalpy of formation: -512.249 kcal/mol - -analytic -5.6996e+003 -1.4008e+000 1.6898e+005 2.2441e+003 2.8838e+003 + -analytic -5.6996e+3 -1.4008e+0 1.6898e+5 2.2441e+3 2.8838e+3 # -Range: 25-150 -1.0000 NpO2++ + 1.0000 HPO4-- = NpO2HPO4 - -llnl_gamma 3.0 - log_k +8.2000 - -delta_H -6.47609 kJ/mol # Calculated enthalpy of reaction NpO2HPO4 +NpO2+2 + HPO4-2 = NpO2HPO4 + -llnl_gamma 3 + log_k 8.2 + -delta_H -6.47609 kJ/mol # Calculated enthalpy of reaction NpO2HPO4 # Enthalpy of formation: -516.022 kcal/mol - -analytic 4.8515e+003 1.2189e+000 -1.4069e+005 -1.9135e+003 -2.4011e+003 + -analytic 4.8515e+3 1.2189e+0 -1.4069e+5 -1.9135e+3 -2.4011e+3 # -Range: 25-150 -1.0000 NpO2+ + 1.0000 HPO4-- = NpO2HPO4- - -llnl_gamma 4.0 - log_k +3.5000 - -delta_H 49.8668 kJ/mol # Calculated enthalpy of reaction NpO2HPO4- +NpO2+ + HPO4-2 = NpO2HPO4- + -llnl_gamma 4 + log_k 3.5 + -delta_H 49.8668 kJ/mol # Calculated enthalpy of reaction NpO2HPO4- # Enthalpy of formation: -530.642 kcal/mol - -analytic -4.1705e+003 -9.9302e-001 1.2287e+005 1.6399e+003 2.0969e+003 + -analytic -4.1705e+3 -9.9302e-1 1.2287e+5 1.6399e+3 2.0969e+3 # -Range: 25-150 -1.0000 NpO2+ + 1.0000 H2O = NpO2OH +1.0000 H+ - -llnl_gamma 3.0 - log_k -8.9 - -delta_H 43.6285 kJ/mol # Calculated enthalpy of reaction NpO2OH +NpO2+ + H2O = NpO2OH + H+ + -llnl_gamma 3 + log_k -8.9 + -delta_H 43.6285 kJ/mol # Calculated enthalpy of reaction NpO2OH # Enthalpy of formation: -291.635 kcal/mol - -analytic -4.5710e+002 -1.2286e-001 1.0640e+004 1.8151e+002 1.8163e+002 + -analytic -4.571e+2 -1.2286e-1 1.064e+4 1.8151e+2 1.8163e+2 # -Range: 25-150 -1.0000 NpO2++ + 1.0000 H2O = NpO2OH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.2 - -delta_H 43.3805 kJ/mol # Calculated enthalpy of reaction NpO2OH+ +NpO2+2 + H2O = NpO2OH+ + H+ + -llnl_gamma 4 + log_k -5.2 + -delta_H 43.3805 kJ/mol # Calculated enthalpy of reaction NpO2OH+ # Enthalpy of formation: -263.608 kcal/mol - -analytic 1.7485e+002 4.0017e-002 -7.5154e+003 -6.7399e+001 -1.2823e+002 + -analytic 1.7485e+2 4.0017e-2 -7.5154e+3 -6.7399e+1 -1.2823e+2 # -Range: 25-150 -1.0000 SO4-- + 1.0000 NpO2++ = NpO2SO4 - -llnl_gamma 3.0 - log_k +3.3000 - -delta_H 19.8789 kJ/mol # Calculated enthalpy of reaction NpO2SO4 +SO4-2 + NpO2+2 = NpO2SO4 + -llnl_gamma 3 + log_k 3.3 + -delta_H 19.8789 kJ/mol # Calculated enthalpy of reaction NpO2SO4 # Enthalpy of formation: -418.308 kcal/mol - -analytic -1.5624e+002 7.3296e-003 6.7555e+003 5.4435e+001 1.1527e+002 + -analytic -1.5624e+2 7.3296e-3 6.7555e+3 5.4435e+1 1.1527e+2 # -Range: 25-150 -1.0000 SO4-- + 1.0000 NpO2+ = NpO2SO4- - -llnl_gamma 4.0 - log_k +0.4000 - -delta_H 19.1395 kJ/mol # Calculated enthalpy of reaction NpO2SO4- +SO4-2 + NpO2+ = NpO2SO4- + -llnl_gamma 4 + log_k 0.4 + -delta_H 19.1395 kJ/mol # Calculated enthalpy of reaction NpO2SO4- # Enthalpy of formation: -446.571 kcal/mol - -analytic -3.1804e+002 -9.3472e-002 7.6002e+003 1.2965e+002 1.2973e+002 + -analytic -3.1804e+2 -9.3472e-2 7.6002e+3 1.2965e+2 1.2973e+2 # -Range: 25-150 -1.0000 Np+++ + 1.0000 H2O = NpOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7 - -delta_H 50.1031 kJ/mol # Calculated enthalpy of reaction NpOH+2 +Np+3 + H2O = NpOH+2 + H+ + -llnl_gamma 4.5 + log_k -7 + -delta_H 50.1031 kJ/mol # Calculated enthalpy of reaction NpOH+2 # Enthalpy of formation: -182.322 kcal/mol - -analytic 1.4062e+002 3.2671e-002 -6.7555e+003 -5.4435e+001 -1.1526e+002 + -analytic 1.4062e+2 3.2671e-2 -6.7555e+3 -5.4435e+1 -1.1526e+2 # -Range: 25-150 -1.0000 Np++++ + 1.0000 H2O = NpOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -1 - -delta_H 51.0089 kJ/mol # Calculated enthalpy of reaction NpOH+3 +Np+4 + H2O = NpOH+3 + H+ + -llnl_gamma 5 + log_k -1 + -delta_H 51.0089 kJ/mol # Calculated enthalpy of reaction NpOH+3 # Enthalpy of formation: -189.013 kcal/mol - -analytic -1.8373e+002 -5.2443e-002 2.7025e+003 7.6503e+001 4.6154e+001 + -analytic -1.8373e+2 -5.2443e-2 2.7025e+3 7.6503e+1 4.6154e+1 # -Range: 25-150 -1.0000 SO4-- + 1.0000 Np++++ = NpSO4++ - -llnl_gamma 4.5 - log_k +5.5000 - -delta_H 20.7377 kJ/mol # Calculated enthalpy of reaction NpSO4+2 +SO4-2 + Np+4 = NpSO4+2 + -llnl_gamma 4.5 + log_k 5.5 + -delta_H 20.7377 kJ/mol # Calculated enthalpy of reaction NpSO4+2 # Enthalpy of formation: -345.331 kcal/mol - -analytic 3.9477e+002 1.1981e-001 -1.0978e+004 -1.5687e+002 -1.8736e+002 + -analytic 3.9477e+2 1.1981e-1 -1.0978e+4 -1.5687e+2 -1.8736e+2 # -Range: 25-150 -1.0000 H2O = OH- +1.0000 H+ - -llnl_gamma 3.5 - log_k -13.9951 - -delta_H 55.8146 kJ/mol # Calculated enthalpy of reaction OH- +H2O = OH- + H+ + -llnl_gamma 3.5 + log_k -13.9951 + -delta_H 55.8146 kJ/mol # Calculated enthalpy of reaction OH- # Enthalpy of formation: -54.977 kcal/mol - -analytic -6.7506e+001 -3.0619e-002 -1.9901e+003 2.8004e+001 -3.1033e+001 + -analytic -6.7506e+1 -3.0619e-2 -1.9901e+3 2.8004e+1 -3.1033e+1 # -Range: 0-300 -2.0000 HPO4-- = P2O7---- +1.0000 H2O - -llnl_gamma 4.0 - log_k -3.7463 - -delta_H 27.2256 kJ/mol # Calculated enthalpy of reaction P2O7-4 +2 HPO4-2 = P2O7-4 + H2O + -llnl_gamma 4 + log_k -3.7463 + -delta_H 27.2256 kJ/mol # Calculated enthalpy of reaction P2O7-4 # Enthalpy of formation: -2271.1 kJ/mol - -analytic 4.0885e+002 1.3243e-001 -1.1373e+004 -1.6727e+002 -1.7758e+002 + -analytic 4.0885e+2 1.3243e-1 -1.1373e+4 -1.6727e+2 -1.7758e+2 # -Range: 0-300 -3.0000 H+ + 1.0000 HPO4-- = PH4+ +2.0000 O2 - -llnl_gamma 4.0 - log_k -212.7409 - -delta_H 0 # Not possible to calculate enthalpy of reaction PH4+ +3 H+ + HPO4-2 = PH4+ + 2 O2 + -llnl_gamma 4 + log_k -212.7409 + -delta_H 0 # Not possible to calculate enthalpy of reaction PH4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- + 1.0000 H+ + 1.0000 F- = PO3F-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +7.1993 - -delta_H 0 # Not possible to calculate enthalpy of reaction PO3F-2 + +HPO4-2 + H+ + F- = PO3F-2 + H2O + -llnl_gamma 4 + log_k 7.1993 + -delta_H 0 # Not possible to calculate enthalpy of reaction PO3F-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 HPO4-- = PO4--- +1.0000 H+ - -llnl_gamma 4.0 - log_k -12.3218 - -delta_H 14.7068 kJ/mol # Calculated enthalpy of reaction PO4-3 + +HPO4-2 = PO4-3 + H+ + -llnl_gamma 4 + log_k -12.3218 + -delta_H 14.7068 kJ/mol # Calculated enthalpy of reaction PO4-3 # Enthalpy of formation: -305.3 kcal/mol - -analytic -7.6170e+001 -3.3574e-002 1.3405e+002 2.9658e+001 2.1140e+000 + -analytic -7.617e+1 -3.3574e-2 1.3405e+2 2.9658e+1 2.114e+0 # -Range: 0-300 -2.0000 BrO3- + 1.0000 Pb++ = Pb(BrO3)2 - -llnl_gamma 3.0 - log_k +5.1939 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(BrO3)2 +2 BrO3- + Pb+2 = Pb(BrO3)2 + -llnl_gamma 3 + log_k 5.1939 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(BrO3)2 # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Pb++ = Pb(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -6.1133 - -delta_H 10.5437 kJ/mol # Calculated enthalpy of reaction Pb(Acetate)2 + +2 HAcetate + Pb+2 = Pb(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -6.1133 + -delta_H 10.5437 kJ/mol # Calculated enthalpy of reaction Pb(Acetate)2 # Enthalpy of formation: -229.46 kcal/mol - -analytic -1.7315e+001 -1.0618e-003 -3.6365e+003 6.9263e+000 5.8659e+005 + -analytic -1.7315e+1 -1.0618e-3 -3.6365e+3 6.9263e+0 5.8659e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Pb++ = Pb(Acetate)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -8.972 - -delta_H -2.84512 kJ/mol # Calculated enthalpy of reaction Pb(Acetate)3- +3 HAcetate + Pb+2 = Pb(Acetate)3- + 3 H+ + -llnl_gamma 4 + log_k -8.972 + -delta_H -2.84512 kJ/mol # Calculated enthalpy of reaction Pb(Acetate)3- # Enthalpy of formation: -348.76 kcal/mol - -analytic 1.2417e+001 -3.1481e-003 -9.4152e+003 -1.6846e+000 1.3623e+006 + -analytic 1.2417e+1 -3.1481e-3 -9.4152e+3 -1.6846e+0 1.3623e+6 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Pb++ = Pb(CO3)2-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -11.2576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(CO3)2-2 +2 HCO3- + Pb+2 = Pb(CO3)2-2 + 2 H+ + -llnl_gamma 4 + log_k -11.2576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(CO3)2-2 # Enthalpy of formation: -0 kcal/mol - -2.0000 ClO3- + 1.0000 Pb++ = Pb(ClO3)2 - -llnl_gamma 3.0 - log_k -0.5133 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(ClO3)2 + +2 ClO3- + Pb+2 = Pb(ClO3)2 + -llnl_gamma 3 + log_k -0.5133 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(ClO3)2 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Pb++ = Pb(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -17.0902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)2 + +2 H2O + Pb+2 = Pb(OH)2 + 2 H+ + -llnl_gamma 3 + log_k -17.0902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)2 # Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Pb++ = Pb(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -28.0852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)3- + +3 H2O + Pb+2 = Pb(OH)3- + 3 H+ + -llnl_gamma 4 + log_k -28.0852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)3- # Enthalpy of formation: -0 kcal/mol - -2.0000 Thiocyanate- + 1.0000 Pb++ = Pb(Thiocyanate)2 - -llnl_gamma 3.0 - log_k +1.2455 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(Thiocyanate)2 + +2 Thiocyanate- + Pb+2 = Pb(Thiocyanate)2 + -llnl_gamma 3 + log_k 1.2455 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(Thiocyanate)2 # Enthalpy of formation: -0 kcal/mol - -2.0000 Pb++ + 1.0000 H2O = Pb2OH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -6.3951 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2OH+3 + +2 Pb+2 + H2O = Pb2OH+3 + H+ + -llnl_gamma 5 + log_k -6.3951 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2OH+3 # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 3.0000 Pb++ = Pb3(OH)4++ +4.0000 H+ - -llnl_gamma 4.5 - log_k -23.8803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb3(OH)4+2 + +4 H2O + 3 Pb+2 = Pb3(OH)4+2 + 4 H+ + -llnl_gamma 4.5 + log_k -23.8803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb3(OH)4+2 # Enthalpy of formation: -0 kcal/mol - -4.0000 Pb++ + 4.0000 H2O = Pb4(OH)4++++ +4.0000 H+ - -llnl_gamma 5.5 - log_k -20.8803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4(OH)4+4 + +4 Pb+2 + 4 H2O = Pb4(OH)4+4 + 4 H+ + -llnl_gamma 5.5 + log_k -20.8803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4(OH)4+4 # Enthalpy of formation: -0 kcal/mol - -8.0000 H2O + 6.0000 Pb++ = Pb6(OH)8++++ +8.0000 H+ - -llnl_gamma 5.5 - log_k -43.5606 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb6(OH)8+4 + +8 H2O + 6 Pb+2 = Pb6(OH)8+4 + 8 H+ + -llnl_gamma 5.5 + log_k -43.5606 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb6(OH)8+4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 Br- = PbBr+ - -llnl_gamma 4.0 - log_k +1.1831 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr+ + +Pb+2 + Br- = PbBr+ + -llnl_gamma 4 + log_k 1.1831 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr+ # Enthalpy of formation: -0 kcal/mol - -2.0000 Br- + 1.0000 Pb++ = PbBr2 - -llnl_gamma 3.0 - log_k +1.5062 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr2 + +2 Br- + Pb+2 = PbBr2 + -llnl_gamma 3 + log_k 1.5062 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr2 # Enthalpy of formation: -0 kcal/mol - -3.0000 Br- + 1.0000 Pb++ = PbBr3- - -llnl_gamma 4.0 - log_k +1.2336 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr3- + +3 Br- + Pb+2 = PbBr3- + -llnl_gamma 4 + log_k 1.2336 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr3- # Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 BrO3- = PbBrO3+ - -llnl_gamma 4.0 - log_k +1.9373 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBrO3+ + +Pb+2 + BrO3- = PbBrO3+ + -llnl_gamma 4 + log_k 1.9373 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBrO3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 HAcetate = PbAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.3603 - -delta_H -2.33147e-15 kJ/mol # Calculated enthalpy of reaction PbAcetate+ + +Pb+2 + HAcetate = PbAcetate+ + H+ + -llnl_gamma 4 + log_k -2.3603 + -delta_H -2.33147e-15 kJ/mol # Calculated enthalpy of reaction PbAcetate+ # Enthalpy of formation: -115.88 kcal/mol - -analytic -2.6822e+001 1.0992e-003 7.3688e+002 8.4407e+000 7.0266e+004 + -analytic -2.6822e+1 1.0992e-3 7.3688e+2 8.4407e+0 7.0266e+4 # -Range: 0-300 -1.0000 Pb++ + 1.0000 HCO3- = PbCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -3.7488 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbCO3 +Pb+2 + HCO3- = PbCO3 + H+ + -llnl_gamma 3 + log_k -3.7488 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbCO3 # Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 Cl- = PbCl+ - -llnl_gamma 4.0 - log_k +1.4374 - -delta_H 4.53127 kJ/mol # Calculated enthalpy of reaction PbCl+ + +Pb+2 + Cl- = PbCl+ + -llnl_gamma 4 + log_k 1.4374 + -delta_H 4.53127 kJ/mol # Calculated enthalpy of reaction PbCl+ # Enthalpy of formation: -38.63 kcal/mol - -analytic 1.1948e+002 4.3527e-002 -2.7666e+003 -4.9190e+001 -4.3206e+001 + -analytic 1.1948e+2 4.3527e-2 -2.7666e+3 -4.919e+1 -4.3206e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Pb++ = PbCl2 - -llnl_gamma 3.0 - log_k +2.0026 - -delta_H 8.14206 kJ/mol # Calculated enthalpy of reaction PbCl2 +2 Cl- + Pb+2 = PbCl2 + -llnl_gamma 3 + log_k 2.0026 + -delta_H 8.14206 kJ/mol # Calculated enthalpy of reaction PbCl2 # Enthalpy of formation: -77.7 kcal/mol - -analytic 2.2537e+002 7.7574e-002 -5.5112e+003 -9.2131e+001 -8.6064e+001 + -analytic 2.2537e+2 7.7574e-2 -5.5112e+3 -9.2131e+1 -8.6064e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Pb++ = PbCl3- - -llnl_gamma 4.0 - log_k +1.6881 - -delta_H 7.86174 kJ/mol # Calculated enthalpy of reaction PbCl3- +3 Cl- + Pb+2 = PbCl3- + -llnl_gamma 4 + log_k 1.6881 + -delta_H 7.86174 kJ/mol # Calculated enthalpy of reaction PbCl3- # Enthalpy of formation: -117.7 kcal/mol - -analytic 2.5254e+002 8.9159e-002 -6.0116e+003 -1.0395e+002 -9.3880e+001 + -analytic 2.5254e+2 8.9159e-2 -6.0116e+3 -1.0395e+2 -9.388e+1 # -Range: 0-300 -4.0000 Cl- + 1.0000 Pb++ = PbCl4-- - -llnl_gamma 4.0 - log_k +1.4909 - -delta_H -7.18811 kJ/mol # Calculated enthalpy of reaction PbCl4-2 +4 Cl- + Pb+2 = PbCl4-2 + -llnl_gamma 4 + log_k 1.4909 + -delta_H -7.18811 kJ/mol # Calculated enthalpy of reaction PbCl4-2 # Enthalpy of formation: -161.23 kcal/mol - -analytic 1.4048e+002 7.6332e-002 -1.1507e+003 -6.3786e+001 -1.7997e+001 + -analytic 1.4048e+2 7.6332e-2 -1.1507e+3 -6.3786e+1 -1.7997e+1 # -Range: 0-300 -1.0000 Pb++ + 1.0000 ClO3- = PbClO3+ - -llnl_gamma 4.0 - log_k -0.2208 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbClO3+ +Pb+2 + ClO3- = PbClO3+ + -llnl_gamma 4 + log_k -0.2208 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbClO3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 F- = PbF+ - -llnl_gamma 4.0 - log_k +0.8284 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbF+ + +Pb+2 + F- = PbF+ + -llnl_gamma 4 + log_k 0.8284 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbF+ # Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 Pb++ = PbF2 - -llnl_gamma 3.0 - log_k +1.6132 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbF2 + +2 F- + Pb+2 = PbF2 + -llnl_gamma 3 + log_k 1.6132 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbF2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 HPO4-- + 1.0000 H+ = PbH2PO4+ - -llnl_gamma 4.0 - log_k +1.5000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbH2PO4+ + +Pb+2 + HPO4-2 + H+ = PbH2PO4+ + -llnl_gamma 4 + log_k 1.5 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbH2PO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 HPO4-- = PbHPO4 - -llnl_gamma 3.0 - log_k +3.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbHPO4 + +Pb+2 + HPO4-2 = PbHPO4 + -llnl_gamma 3 + log_k 3.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbHPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 I- = PbI+ - -llnl_gamma 4.0 - log_k +1.9597 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbI+ + +Pb+2 + I- = PbI+ + -llnl_gamma 4 + log_k 1.9597 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbI+ # Enthalpy of formation: -0 kcal/mol - -2.0000 I- + 1.0000 Pb++ = PbI2 - -llnl_gamma 3.0 - log_k +2.7615 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbI2 + +2 I- + Pb+2 = PbI2 + -llnl_gamma 3 + log_k 2.7615 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbI2 # Enthalpy of formation: -0 kcal/mol - -3.0000 I- + 1.0000 Pb++ = PbI3- - -llnl_gamma 4.0 - log_k +3.3355 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbI3- + +3 I- + Pb+2 = PbI3- + -llnl_gamma 4 + log_k 3.3355 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbI3- # Enthalpy of formation: -0 kcal/mol - -4.0000 I- + 1.0000 Pb++ = PbI4-- - -llnl_gamma 4.0 - log_k +4.0672 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbI4-2 + +4 I- + Pb+2 = PbI4-2 + -llnl_gamma 4 + log_k 4.0672 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbI4-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 NO3- = PbNO3+ - -llnl_gamma 4.0 - log_k +1.2271 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbNO3+ + +Pb+2 + NO3- = PbNO3+ + -llnl_gamma 4 + log_k 1.2271 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbNO3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Pb++ + 1.0000 H2O = PbOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -7.6951 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbOH+ + +Pb+2 + H2O = PbOH+ + H+ + -llnl_gamma 4 + log_k -7.6951 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbOH+ # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Pb++ = PbP2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +7.4136 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbP2O7-2 + +2 HPO4-2 + Pb+2 = PbP2O7-2 + H2O + -llnl_gamma 4 + log_k 7.4136 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbP2O7-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Thiocyanate- + 1.0000 Pb++ = PbThiocyanate+ - -llnl_gamma 4.0 - log_k +0.9827 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbThiocyanate+ + +Thiocyanate- + Pb+2 = PbThiocyanate+ + -llnl_gamma 4 + log_k 0.9827 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbThiocyanate+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Pd++ + 1.0000 Cl- = PdCl+ - -llnl_gamma 4.0 - log_k +6.0993 - -delta_H -31.995 kJ/mol # Calculated enthalpy of reaction PdCl+ + +Pd+2 + Cl- = PdCl+ + -llnl_gamma 4 + log_k 6.0993 + -delta_H -31.995 kJ/mol # Calculated enthalpy of reaction PdCl+ # Enthalpy of formation: -5.5 kcal/mol - -analytic 7.2852e+001 3.6886e-002 7.3102e+002 -3.2402e+001 1.1385e+001 + -analytic 7.2852e+1 3.6886e-2 7.3102e+2 -3.2402e+1 1.1385e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Pd++ = PdCl2 - -llnl_gamma 3.0 - log_k +10.7327 - -delta_H -66.1658 kJ/mol # Calculated enthalpy of reaction PdCl2 +2 Cl- + Pd+2 = PdCl2 + -llnl_gamma 3 + log_k 10.7327 + -delta_H -66.1658 kJ/mol # Calculated enthalpy of reaction PdCl2 # Enthalpy of formation: -53.6 kcal/mol - -analytic 1.6849e+002 7.9321e-002 8.2874e+002 -7.4416e+001 1.2882e+001 + -analytic 1.6849e+2 7.9321e-2 8.2874e+2 -7.4416e+1 1.2882e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Pd++ = PdCl3- - -llnl_gamma 4.0 - log_k +13.0937 - -delta_H -101.592 kJ/mol # Calculated enthalpy of reaction PdCl3- +3 Cl- + Pd+2 = PdCl3- + -llnl_gamma 4 + log_k 13.0937 + -delta_H -101.592 kJ/mol # Calculated enthalpy of reaction PdCl3- # Enthalpy of formation: -102 kcal/mol - -analytic 4.5978e+001 6.2999e-002 6.9333e+003 -3.0257e+001 1.0817e+002 + -analytic 4.5978e+1 6.2999e-2 6.9333e+3 -3.0257e+1 1.0817e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 Pd++ = PdCl4-- - -llnl_gamma 4.0 - log_k +15.1615 - -delta_H -152.08 kJ/mol # Calculated enthalpy of reaction PdCl4-2 +4 Cl- + Pd+2 = PdCl4-2 + -llnl_gamma 4 + log_k 15.1615 + -delta_H -152.08 kJ/mol # Calculated enthalpy of reaction PdCl4-2 # Enthalpy of formation: -154 kcal/mol - -analytic -3.2209e+001 5.3432e-002 1.2180e+004 -3.7814e+000 1.9006e+002 + -analytic -3.2209e+1 5.3432e-2 1.218e+4 -3.7814e+0 1.9006e+2 # -Range: 0-300 -1.0000 Pd++ + 1.0000 H2O = PdO +2.0000 H+ - -llnl_gamma 3.0 - log_k -2.19 - -delta_H 6.43081 kJ/mol # Calculated enthalpy of reaction PdO +Pd+2 + H2O = PdO + 2 H+ + -llnl_gamma 3 + log_k -2.19 + -delta_H 6.43081 kJ/mol # Calculated enthalpy of reaction PdO # Enthalpy of formation: -24.7 kcal/mol - -analytic 1.3587e+002 2.9292e-002 -4.6645e+003 -5.2997e+001 -7.2825e+001 + -analytic 1.3587e+2 2.9292e-2 -4.6645e+3 -5.2997e+1 -7.2825e+1 # -Range: 0-300 -1.0000 Pd++ + 1.0000 H2O = PdOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -1.0905 - -delta_H -3.19239 kJ/mol # Calculated enthalpy of reaction PdOH+ +Pd+2 + H2O = PdOH+ + H+ + -llnl_gamma 4 + log_k -1.0905 + -delta_H -3.19239 kJ/mol # Calculated enthalpy of reaction PdOH+ # Enthalpy of formation: -27 kcal/mol - -analytic 1.4291e+001 5.8382e-003 -1.9881e+002 -6.6475e+000 -3.1065e+000 + -analytic 1.4291e+1 5.8382e-3 -1.9881e+2 -6.6475e+0 -3.1065e+0 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Pm+++ = Pm(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.9576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(CO3)2- +2 HCO3- + Pm+3 = Pm(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -7.9576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Pm+++ = Pm(HPO4)2- - -llnl_gamma 4.0 - log_k +9.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(HPO4)2- + +2 HPO4-2 + Pm+3 = Pm(HPO4)2- + -llnl_gamma 4 + log_k 9.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(HPO4)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Pm+++ = Pm(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.7902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)2+ + +2 H2O + Pm+3 = Pm(OH)2+ + 2 H+ + -llnl_gamma 4 + log_k -16.7902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)2+ # Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Pm+++ = Pm(OH)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -26.1852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3 + +3 H2O + Pm+3 = Pm(OH)3 + 3 H+ + -llnl_gamma 3 + log_k -26.1852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3 # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Pm+++ = Pm(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.6837 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(PO4)2-3 + +2 HPO4-2 + Pm+3 = Pm(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -4.6837 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Pm+++ = Pm(SO4)2- - -llnl_gamma 4.0 - log_k +5.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(SO4)2- + +2 SO4-2 + Pm+3 = Pm(SO4)2- + -llnl_gamma 4 + log_k 5.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(SO4)2- # Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 HCO3- = PmCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.6288 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmCO3+ + +Pm+3 + HCO3- = PmCO3+ + H+ + -llnl_gamma 4 + log_k -2.6288 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmCO3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 Cl- = PmCl++ - -llnl_gamma 4.5 - log_k +0.3400 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmCl+2 + +Pm+3 + Cl- = PmCl+2 + -llnl_gamma 4.5 + log_k 0.34 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmCl+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 F- = PmF++ - -llnl_gamma 4.5 - log_k +3.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmF+2 + +Pm+3 + F- = PmF+2 + -llnl_gamma 4.5 + log_k 3.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmF+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 HPO4-- + 1.0000 H+ = PmH2PO4++ - -llnl_gamma 4.5 - log_k +9.6054 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmH2PO4+2 + +Pm+3 + HPO4-2 + H+ = PmH2PO4+2 + -llnl_gamma 4.5 + log_k 9.6054 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmH2PO4+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 HCO3- = PmHCO3++ - -llnl_gamma 4.5 - log_k +2.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmHCO3+2 + +Pm+3 + HCO3- = PmHCO3+2 + -llnl_gamma 4.5 + log_k 2.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmHCO3+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 HPO4-- = PmHPO4+ - -llnl_gamma 4.0 - log_k +5.5000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmHPO4+ + +Pm+3 + HPO4-2 = PmHPO4+ + -llnl_gamma 4 + log_k 5.5 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 NO3- = PmNO3++ - -llnl_gamma 4.5 - log_k +1.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmNO3+2 + +Pm+3 + NO3- = PmNO3+2 + -llnl_gamma 4.5 + log_k 1.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmNO3+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 H2O = PmOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.9951 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmOH+2 + +Pm+3 + H2O = PmOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.9951 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmOH+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Pm+++ + 1.0000 HPO4-- = PmPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.3718 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmPO4 + +Pm+3 + HPO4-2 = PmPO4 + H+ + -llnl_gamma 3 + log_k -0.3718 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Pm+++ = PmSO4+ - -llnl_gamma 4.0 - log_k +3.5000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmSO4+ + +SO4-2 + Pm+3 = PmSO4+ + -llnl_gamma 4 + log_k 3.5 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmSO4+ # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Pr+++ = Pr(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.8525 - -delta_H -23.8906 kJ/mol # Calculated enthalpy of reaction Pr(Acetate)2+ + +2 HAcetate + Pr+3 = Pr(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -4.8525 + -delta_H -23.8906 kJ/mol # Calculated enthalpy of reaction Pr(Acetate)2+ # Enthalpy of formation: -406.71 kcal/mol - -analytic -1.6464e+001 6.2989e-004 -4.4771e+002 3.6947e+000 3.3816e+005 + -analytic -1.6464e+1 6.2989e-4 -4.4771e+2 3.6947e+0 3.3816e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Pr+++ = Pr(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.2023 - -delta_H -40.3756 kJ/mol # Calculated enthalpy of reaction Pr(Acetate)3 +3 HAcetate + Pr+3 = Pr(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -8.2023 + -delta_H -40.3756 kJ/mol # Calculated enthalpy of reaction Pr(Acetate)3 # Enthalpy of formation: -526.75 kcal/mol - -analytic -1.2007e+001 4.9332e-004 0.0000e+000 0.0000e+000 3.2789e+005 + -analytic -1.2007e+1 4.9332e-4 0e+0 0e+0 3.2789e+5 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Pr+++ = Pr(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -8.1076 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(CO3)2- +2 HCO3- + Pr+3 = Pr(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -8.1076 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Pr+++ = Pr(HPO4)2- - -llnl_gamma 4.0 - log_k +8.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(HPO4)2- + +2 HPO4-2 + Pr+3 = Pr(HPO4)2- + -llnl_gamma 4 + log_k 8.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(HPO4)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Pr+++ = Pr(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.5637 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(PO4)2-3 + +2 HPO4-2 + Pr+3 = Pr(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -5.5637 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Pr+++ = Pr(SO4)2- - -llnl_gamma 4.0 - log_k +4.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(SO4)2- + +2 SO4-2 + Pr+3 = Pr(SO4)2- + -llnl_gamma 4 + log_k 4.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(SO4)2- # Enthalpy of formation: -0 kcal/mol - -1.0000 Pr+++ + 1.0000 HAcetate = PrAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.0451 - -delta_H -12.4683 kJ/mol # Calculated enthalpy of reaction PrAcetate+2 + +Pr+3 + HAcetate = PrAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -2.0451 + -delta_H -12.4683 kJ/mol # Calculated enthalpy of reaction PrAcetate+2 # Enthalpy of formation: -287.88 kcal/mol - -analytic -8.5624e+000 9.3878e-004 -5.7551e+002 2.2087e+000 2.4126e+005 + -analytic -8.5624e+0 9.3878e-4 -5.7551e+2 2.2087e+0 2.4126e+5 # -Range: 0-300 -1.0000 Pr+++ + 1.0000 HCO3- = PrCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.7722 - -delta_H 92.458 kJ/mol # Calculated enthalpy of reaction PrCO3+ +Pr+3 + HCO3- = PrCO3+ + H+ + -llnl_gamma 4 + log_k -2.7722 + -delta_H 92.458 kJ/mol # Calculated enthalpy of reaction PrCO3+ # Enthalpy of formation: -311.6 kcal/mol - -analytic 2.2079e+002 5.2156e-002 -6.5821e+003 -8.7701e+001 -1.0277e+002 + -analytic 2.2079e+2 5.2156e-2 -6.5821e+3 -8.7701e+1 -1.0277e+2 # -Range: 0-300 -1.0000 Pr+++ + 1.0000 Cl- = PrCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction PrCl+2 +Pr+3 + Cl- = PrCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction PrCl+2 # Enthalpy of formation: -205.3 kcal/mol - -analytic 7.5152e+001 3.7446e-002 -1.6661e+003 -3.2490e+001 -2.6020e+001 + -analytic 7.5152e+1 3.7446e-2 -1.6661e+3 -3.249e+1 -2.602e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Pr+++ = PrCl2+ - -llnl_gamma 4.0 - log_k +0.0308 - -delta_H 20.3593 kJ/mol # Calculated enthalpy of reaction PrCl2+ +2 Cl- + Pr+3 = PrCl2+ + -llnl_gamma 4 + log_k 0.0308 + -delta_H 20.3593 kJ/mol # Calculated enthalpy of reaction PrCl2+ # Enthalpy of formation: -243.8 kcal/mol - -analytic 2.2848e+002 8.1250e-002 -6.0401e+003 -9.3909e+001 -9.4318e+001 + -analytic 2.2848e+2 8.125e-2 -6.0401e+3 -9.3909e+1 -9.4318e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Pr+++ = PrCl3 - -llnl_gamma 3.0 - log_k -0.3203 - -delta_H 14.2214 kJ/mol # Calculated enthalpy of reaction PrCl3 +3 Cl- + Pr+3 = PrCl3 + -llnl_gamma 3 + log_k -0.3203 + -delta_H 14.2214 kJ/mol # Calculated enthalpy of reaction PrCl3 # Enthalpy of formation: -285.2 kcal/mol - -analytic 4.5016e+002 1.3095e-001 -1.2588e+004 -1.8075e+002 -1.9656e+002 + -analytic 4.5016e+2 1.3095e-1 -1.2588e+4 -1.8075e+2 -1.9656e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 Pr+++ = PrCl4- - -llnl_gamma 4.0 - log_k -0.7447 - -delta_H -4.05011 kJ/mol # Calculated enthalpy of reaction PrCl4- +4 Cl- + Pr+3 = PrCl4- + -llnl_gamma 4 + log_k -0.7447 + -delta_H -4.05011 kJ/mol # Calculated enthalpy of reaction PrCl4- # Enthalpy of formation: -329.5 kcal/mol - -analytic 5.4245e+002 1.3647e-001 -1.5564e+004 -2.1485e+002 -2.4302e+002 + -analytic 5.4245e+2 1.3647e-1 -1.5564e+4 -2.1485e+2 -2.4302e+2 # -Range: 0-300 -1.0000 Pr+++ + 1.0000 F- = PrF++ - -llnl_gamma 4.5 - log_k +4.2221 - -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction PrF+2 +Pr+3 + F- = PrF+2 + -llnl_gamma 4.5 + log_k 4.2221 + -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction PrF+2 # Enthalpy of formation: -243.4 kcal/mol - -analytic 9.5146e+001 4.1115e-002 -2.5463e+003 -3.8236e+001 -3.9760e+001 + -analytic 9.5146e+1 4.1115e-2 -2.5463e+3 -3.8236e+1 -3.976e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Pr+++ = PrF2+ - -llnl_gamma 4.0 - log_k +7.3447 - -delta_H 14.644 kJ/mol # Calculated enthalpy of reaction PrF2+ +2 F- + Pr+3 = PrF2+ + -llnl_gamma 4 + log_k 7.3447 + -delta_H 14.644 kJ/mol # Calculated enthalpy of reaction PrF2+ # Enthalpy of formation: -325.6 kcal/mol - -analytic 2.4997e+002 8.5251e-002 -6.1908e+003 -9.9912e+001 -9.6675e+001 + -analytic 2.4997e+2 8.5251e-2 -6.1908e+3 -9.9912e+1 -9.6675e+1 # -Range: 0-300 -3.0000 F- + 1.0000 Pr+++ = PrF3 - -llnl_gamma 3.0 - log_k +9.6610 - -delta_H -6.4852 kJ/mol # Calculated enthalpy of reaction PrF3 +3 F- + Pr+3 = PrF3 + -llnl_gamma 3 + log_k 9.661 + -delta_H -6.4852 kJ/mol # Calculated enthalpy of reaction PrF3 # Enthalpy of formation: -410.8 kcal/mol - -analytic 4.7885e+002 1.3764e-001 -1.2080e+004 -1.8980e+002 -1.8864e+002 + -analytic 4.7885e+2 1.3764e-1 -1.208e+4 -1.898e+2 -1.8864e+2 # -Range: 0-300 -4.0000 F- + 1.0000 Pr+++ = PrF4- - -llnl_gamma 4.0 - log_k +11.5375 - -delta_H -47.2792 kJ/mol # Calculated enthalpy of reaction PrF4- +4 F- + Pr+3 = PrF4- + -llnl_gamma 4 + log_k 11.5375 + -delta_H -47.2792 kJ/mol # Calculated enthalpy of reaction PrF4- # Enthalpy of formation: -500.7 kcal/mol - -analytic 5.5774e+002 1.4067e-001 -1.3523e+004 -2.1933e+002 -2.1118e+002 + -analytic 5.5774e+2 1.4067e-1 -1.3523e+4 -2.1933e+2 -2.1118e+2 # -Range: 0-300 -1.0000 Pr+++ + 1.0000 HPO4-- + 1.0000 H+ = PrH2PO4++ - -llnl_gamma 4.5 - log_k +9.5950 - -delta_H -16.2548 kJ/mol # Calculated enthalpy of reaction PrH2PO4+2 +Pr+3 + HPO4-2 + H+ = PrH2PO4+2 + -llnl_gamma 4.5 + log_k 9.595 + -delta_H -16.2548 kJ/mol # Calculated enthalpy of reaction PrH2PO4+2 # Enthalpy of formation: -481.5 kcal/mol - -analytic 1.0501e+002 6.3059e-002 3.8161e+002 -4.6656e+001 5.9234e+000 + -analytic 1.0501e+2 6.3059e-2 3.8161e+2 -4.6656e+1 5.9234e+0 # -Range: 0-300 -1.0000 Pr+++ + 1.0000 HCO3- = PrHCO3++ - -llnl_gamma 4.5 - log_k +1.9190 - -delta_H -12.9788 kJ/mol # Calculated enthalpy of reaction PrHCO3+2 +Pr+3 + HCO3- = PrHCO3+2 + -llnl_gamma 4.5 + log_k 1.919 + -delta_H -12.9788 kJ/mol # Calculated enthalpy of reaction PrHCO3+2 # Enthalpy of formation: -336.8 kcal/mol - -analytic 2.2010e+001 2.8541e-002 1.4574e+003 -1.3522e+001 2.2734e+001 + -analytic 2.201e+1 2.8541e-2 1.4574e+3 -1.3522e+1 2.2734e+1 # -Range: 0-300 -1.0000 Pr+++ + 1.0000 HPO4-- = PrHPO4+ - -llnl_gamma 4.0 - log_k +5.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PrHPO4+ +Pr+3 + HPO4-2 = PrHPO4+ + -llnl_gamma 4 + log_k 5.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction PrHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Pr+++ + 1.0000 NO3- = PrNO3++ - -llnl_gamma 4.5 - log_k +0.6546 - -delta_H -27.9115 kJ/mol # Calculated enthalpy of reaction PrNO3+2 + +Pr+3 + NO3- = PrNO3+2 + -llnl_gamma 4.5 + log_k 0.6546 + -delta_H -27.9115 kJ/mol # Calculated enthalpy of reaction PrNO3+2 # Enthalpy of formation: -224.9 kcal/mol - -analytic 1.4297e+001 2.5214e-002 2.1756e+003 -1.1490e+001 3.3943e+001 + -analytic 1.4297e+1 2.5214e-2 2.1756e+3 -1.149e+1 3.3943e+1 # -Range: 0-300 -1.0000 Pr+++ + 1.0000 H2O = PrO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -17.29 - -delta_H 117.642 kJ/mol # Calculated enthalpy of reaction PrO+ +Pr+3 + H2O = PrO+ + 2 H+ + -llnl_gamma 4 + log_k -17.29 + -delta_H 117.642 kJ/mol # Calculated enthalpy of reaction PrO+ # Enthalpy of formation: -209 kcal/mol - -analytic 1.7927e+002 2.9467e-002 -1.3815e+004 -6.4259e+001 -2.1562e+002 + -analytic 1.7927e+2 2.9467e-2 -1.3815e+4 -6.4259e+1 -2.1562e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Pr+++ = PrO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -37.5852 - -delta_H 301.39 kJ/mol # Calculated enthalpy of reaction PrO2- +2 H2O + Pr+3 = PrO2- + 4 H+ + -llnl_gamma 4 + log_k -37.5852 + -delta_H 301.39 kJ/mol # Calculated enthalpy of reaction PrO2- # Enthalpy of formation: -233.4 kcal/mol - -analytic -4.4480e+001 -1.6327e-002 -7.9031e+003 1.9348e+001 -8.5440e+005 + -analytic -4.448e+1 -1.6327e-2 -7.9031e+3 1.9348e+1 -8.544e+5 # -Range: 0-300 -2.0000 H2O + 1.0000 Pr+++ = PrO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -26.5901 - -delta_H 231.517 kJ/mol # Calculated enthalpy of reaction PrO2H +2 H2O + Pr+3 = PrO2H + 3 H+ + -llnl_gamma 3 + log_k -26.5901 + -delta_H 231.517 kJ/mol # Calculated enthalpy of reaction PrO2H # Enthalpy of formation: -250.1 kcal/mol - -analytic 3.3930e+002 4.4894e-002 -2.3769e+004 -1.2106e+002 -3.7099e+002 + -analytic 3.393e+2 4.4894e-2 -2.3769e+4 -1.2106e+2 -3.7099e+2 # -Range: 0-300 -1.0000 Pr+++ + 1.0000 H2O = PrOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -8.274 - -delta_H 81.2407 kJ/mol # Calculated enthalpy of reaction PrOH+2 +Pr+3 + H2O = PrOH+2 + H+ + -llnl_gamma 4.5 + log_k -8.274 + -delta_H 81.2407 kJ/mol # Calculated enthalpy of reaction PrOH+2 # Enthalpy of formation: -217.7 kcal/mol - -analytic 5.6599e+001 1.1073e-002 -5.9197e+003 -1.9525e+001 -9.2388e+001 + -analytic 5.6599e+1 1.1073e-2 -5.9197e+3 -1.9525e+1 -9.2388e+1 # -Range: 0-300 -1.0000 Pr+++ + 1.0000 HPO4-- = PrPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.7218 - -delta_H 0 # Not possible to calculate enthalpy of reaction PrPO4 +Pr+3 + HPO4-2 = PrPO4 + H+ + -llnl_gamma 3 + log_k -0.7218 + -delta_H 0 # Not possible to calculate enthalpy of reaction PrPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Pr+++ = PrSO4+ - -llnl_gamma 4.0 - log_k -3.687 - -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction PrSO4+ + +SO4-2 + Pr+3 = PrSO4+ + -llnl_gamma 4 + log_k -3.687 + -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction PrSO4+ # Enthalpy of formation: -381.5 kcal/mol - -analytic 2.9156e+002 8.4671e-002 -1.0638e+004 -1.1509e+002 -1.6608e+002 + -analytic 2.9156e+2 8.4671e-2 -1.0638e+4 -1.1509e+2 -1.6608e+2 # -Range: 0-300 -2.0000 HPO4-- + 1.0000 Pu++++ = Pu(HPO4)2 - -llnl_gamma 3.0 - log_k +23.8483 - -delta_H 25.9279 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)2 +2 HPO4-2 + Pu+4 = Pu(HPO4)2 + -llnl_gamma 3 + log_k 23.8483 + -delta_H 25.9279 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)2 # Enthalpy of formation: -3094.13 kJ/mol - -analytic 9.2387e+002 3.2577e-001 -2.0881e+004 -3.7466e+002 -3.5492e+002 + -analytic 9.2387e+2 3.2577e-1 -2.0881e+4 -3.7466e+2 -3.5492e+2 # -Range: 0-200 -3.0000 HPO4-- + 1.0000 Pu++++ = Pu(HPO4)3-- - -llnl_gamma 4.0 - log_k +33.4599 - -delta_H -6.49412 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)3-2 +3 HPO4-2 + Pu+4 = Pu(HPO4)3-2 + -llnl_gamma 4 + log_k 33.4599 + -delta_H -6.49412 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)3-2 # Enthalpy of formation: -4418.63 kJ/mol - -analytic 6.4515e+002 2.3011e-001 -1.2752e+004 -2.5761e+002 -1.9917e+002 + -analytic 6.4515e+2 2.3011e-1 -1.2752e+4 -2.5761e+2 -1.9917e+2 # -Range: 0-300 -4.0000 HPO4-- + 1.0000 Pu++++ = Pu(HPO4)4---- - -llnl_gamma 4.0 - log_k +43.2467 - -delta_H -77.4832 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)4-4 +4 HPO4-2 + Pu+4 = Pu(HPO4)4-4 + -llnl_gamma 4 + log_k 43.2467 + -delta_H -77.4832 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)4-4 # Enthalpy of formation: -5781.7 kJ/mol - -analytic 8.5301e+002 3.0730e-001 -1.3644e+004 -3.4573e+002 -2.1316e+002 + -analytic 8.5301e+2 3.073e-1 -1.3644e+4 -3.4573e+2 -2.1316e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Pu++++ = Pu(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -2.3235 - -delta_H 74.3477 kJ/mol # Calculated enthalpy of reaction Pu(OH)2+2 +2 H2O + Pu+4 = Pu(OH)2+2 + 2 H+ + -llnl_gamma 4.5 + log_k -2.3235 + -delta_H 74.3477 kJ/mol # Calculated enthalpy of reaction Pu(OH)2+2 # Enthalpy of formation: -1033.22 kJ/mol - -analytic 7.5979e+001 6.8394e-003 -6.3710e+003 -2.3833e+001 -9.9435e+001 + -analytic 7.5979e+1 6.8394e-3 -6.371e+3 -2.3833e+1 -9.9435e+1 # -Range: 0-300 -3.0000 H2O + 1.0000 Pu++++ = Pu(OH)3+ +3.0000 H+ - -llnl_gamma 4.0 - log_k -5.281 - -delta_H 96.578 kJ/mol # Calculated enthalpy of reaction Pu(OH)3+ +3 H2O + Pu+4 = Pu(OH)3+ + 3 H+ + -llnl_gamma 4 + log_k -5.281 + -delta_H 96.578 kJ/mol # Calculated enthalpy of reaction Pu(OH)3+ # Enthalpy of formation: -1296.83 kJ/mol - -analytic 1.0874e+002 1.4199e-002 -8.4954e+003 -3.6278e+001 -1.3259e+002 + -analytic 1.0874e+2 1.4199e-2 -8.4954e+3 -3.6278e+1 -1.3259e+2 # -Range: 0-300 -4.0000 H2O + 1.0000 Pu++++ = Pu(OH)4 +4.0000 H+ - -llnl_gamma 3.0 - log_k -9.5174 - -delta_H 109.113 kJ/mol # Calculated enthalpy of reaction Pu(OH)4 +4 H2O + Pu+4 = Pu(OH)4 + 4 H+ + -llnl_gamma 3 + log_k -9.5174 + -delta_H 109.113 kJ/mol # Calculated enthalpy of reaction Pu(OH)4 # Enthalpy of formation: -1570.13 kJ/mol - -analytic 2.7913e+002 1.0252e-001 -1.1289e+004 -1.1369e+002 -1.9181e+002 + -analytic 2.7913e+2 1.0252e-1 -1.1289e+4 -1.1369e+2 -1.9181e+2 # -Range: 0-200 -2.0000 SO4-- + 1.0000 Pu++++ = Pu(SO4)2 - -llnl_gamma 3.0 - log_k +10.2456 - -delta_H 41.0122 kJ/mol # Calculated enthalpy of reaction Pu(SO4)2 +2 SO4-2 + Pu+4 = Pu(SO4)2 + -llnl_gamma 3 + log_k 10.2456 + -delta_H 41.0122 kJ/mol # Calculated enthalpy of reaction Pu(SO4)2 # Enthalpy of formation: -2314.08 kJ/mol - -analytic 5.3705e+002 1.9308e-001 -1.3213e+004 -2.1824e+002 -2.2457e+002 + -analytic 5.3705e+2 1.9308e-1 -1.3213e+4 -2.1824e+2 -2.2457e+2 # -Range: 0-200 -2.0000 SO4-- + 1.0000 Pu+++ = Pu(SO4)2- - -llnl_gamma 4.0 - log_k +6.3200 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pu(SO4)2- +2 SO4-2 + Pu+3 = Pu(SO4)2- + -llnl_gamma 4 + log_k 6.32 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pu(SO4)2- # Enthalpy of formation: -0 kcal/mol - -1.0000 Pu++++ + 1.0000 F- = PuF+++ - -llnl_gamma 5.0 - log_k +8.4600 - -delta_H 0 # Not possible to calculate enthalpy of reaction PuF+3 + +Pu+4 + F- = PuF+3 + -llnl_gamma 5 + log_k 8.46 + -delta_H 0 # Not possible to calculate enthalpy of reaction PuF+3 # Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 Pu++++ = PuF2++ - -llnl_gamma 4.5 - log_k +15.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PuF2+2 + +2 F- + Pu+4 = PuF2+2 + -llnl_gamma 4.5 + log_k 15.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction PuF2+2 # Enthalpy of formation: -0 kcal/mol - -3.0000 F- + 1.0000 Pu++++ = PuF3+ - -llnl_gamma 4.0 - log_k +5.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PuF3+ + +3 F- + Pu+4 = PuF3+ + -llnl_gamma 4 + log_k 5.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction PuF3+ # Enthalpy of formation: -0 kcal/mol - -4.0000 F- + 1.0000 Pu++++ = PuF4 - -llnl_gamma 3.0 - log_k +4.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PuF4 + +4 F- + Pu+4 = PuF4 + -llnl_gamma 3 + log_k 4.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction PuF4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Pu+++ + 1.0000 HPO4-- + 1.0000 H+ = PuH2PO4++ - -llnl_gamma 4.5 - log_k +9.6817 - -delta_H 28.597 kJ/mol # Calculated enthalpy of reaction PuH2PO4+2 + +Pu+3 + HPO4-2 + H+ = PuH2PO4+2 + -llnl_gamma 4.5 + log_k 9.6817 + -delta_H 28.597 kJ/mol # Calculated enthalpy of reaction PuH2PO4+2 # Enthalpy of formation: -1855.04 kJ/mol - -analytic 2.1595e+002 6.4502e-002 -6.4723e+003 -8.2341e+001 -1.0106e+002 + -analytic 2.1595e+2 6.4502e-2 -6.4723e+3 -8.2341e+1 -1.0106e+2 # -Range: 0-300 -1.0000 Pu++++ + 1.0000 HPO4-- = PuHPO4++ - -llnl_gamma 4.5 - log_k +13.0103 - -delta_H 40.306 kJ/mol # Calculated enthalpy of reaction PuHPO4+2 +Pu+4 + HPO4-2 = PuHPO4+2 + -llnl_gamma 4.5 + log_k 13.0103 + -delta_H 40.306 kJ/mol # Calculated enthalpy of reaction PuHPO4+2 # Enthalpy of formation: -1787.67 kJ/mol - -analytic 2.2662e+002 7.1073e-002 -6.9134e+003 -8.5504e+001 -1.0794e+002 + -analytic 2.2662e+2 7.1073e-2 -6.9134e+3 -8.5504e+1 -1.0794e+2 # -Range: 0-300 -2.0000 HCO3- + 1.0000 PuO2++ = PuO2(CO3)2-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.7428 - -delta_H 52.3345 kJ/mol # Calculated enthalpy of reaction PuO2(CO3)2-2 +2 HCO3- + PuO2+2 = PuO2(CO3)2-2 + 2 H+ + -llnl_gamma 4 + log_k -5.7428 + -delta_H 52.3345 kJ/mol # Calculated enthalpy of reaction PuO2(CO3)2-2 # Enthalpy of formation: -2149.11 kJ/mol - -analytic 2.6589e+002 7.6132e-002 -9.7187e+003 -1.0577e+002 -1.5173e+002 + -analytic 2.6589e+2 7.6132e-2 -9.7187e+3 -1.0577e+2 -1.5173e+2 # -Range: 0-300 -1.0000 PuO2++ + 1.0000 Cl- = PuO2Cl+ - -llnl_gamma 4.0 - log_k -0.2084 - -delta_H 11.6127 kJ/mol # Calculated enthalpy of reaction PuO2Cl+ +PuO2+2 + Cl- = PuO2Cl+ + -llnl_gamma 4 + log_k -0.2084 + -delta_H 11.6127 kJ/mol # Calculated enthalpy of reaction PuO2Cl+ # Enthalpy of formation: -977.045 kJ/mol - -analytic 9.8385e+001 3.8617e-002 -2.5210e+003 -4.1075e+001 -3.9367e+001 + -analytic 9.8385e+1 3.8617e-2 -2.521e+3 -4.1075e+1 -3.9367e+1 # -Range: 0-300 -1.0000 PuO2++ + 1.0000 F- = PuO2F+ - -llnl_gamma 4.0 - log_k +5.6674 - -delta_H -5.2094 kJ/mol # Calculated enthalpy of reaction PuO2F+ +PuO2+2 + F- = PuO2F+ + -llnl_gamma 4 + log_k 5.6674 + -delta_H -5.2094 kJ/mol # Calculated enthalpy of reaction PuO2F+ # Enthalpy of formation: -1162.13 kJ/mol - -analytic 1.1412e+002 4.1224e-002 -2.0503e+003 -4.6009e+001 -3.2027e+001 + -analytic 1.1412e+2 4.1224e-2 -2.0503e+3 -4.6009e+1 -3.2027e+1 # -Range: 0-300 -2.0000 F- + 1.0000 PuO2++ = PuO2F2 - -llnl_gamma 3.0 - log_k +10.9669 - -delta_H -15.4738 kJ/mol # Calculated enthalpy of reaction PuO2F2 +2 F- + PuO2+2 = PuO2F2 + -llnl_gamma 3 + log_k 10.9669 + -delta_H -15.4738 kJ/mol # Calculated enthalpy of reaction PuO2F2 # Enthalpy of formation: -1507.75 kJ/mol - -analytic 2.5502e+002 9.1597e-002 -4.4557e+003 -1.0362e+002 -7.5752e+001 + -analytic 2.5502e+2 9.1597e-2 -4.4557e+3 -1.0362e+2 -7.5752e+1 # -Range: 0-200 -3.0000 F- + 1.0000 PuO2++ = PuO2F3- - -llnl_gamma 4.0 - log_k +15.9160 - -delta_H -29.4032 kJ/mol # Calculated enthalpy of reaction PuO2F3- +3 F- + PuO2+2 = PuO2F3- + -llnl_gamma 4 + log_k 15.916 + -delta_H -29.4032 kJ/mol # Calculated enthalpy of reaction PuO2F3- # Enthalpy of formation: -1857.02 kJ/mol - -analytic 3.6102e+002 8.6364e-002 -8.7129e+003 -1.3805e+002 -1.3606e+002 + -analytic 3.6102e+2 8.6364e-2 -8.7129e+3 -1.3805e+2 -1.3606e+2 # -Range: 0-300 -4.0000 F- + 1.0000 PuO2++ = PuO2F4-- - -llnl_gamma 4.0 - log_k +18.7628 - -delta_H -39.9786 kJ/mol # Calculated enthalpy of reaction PuO2F4-2 +4 F- + PuO2+2 = PuO2F4-2 + -llnl_gamma 4 + log_k 18.7628 + -delta_H -39.9786 kJ/mol # Calculated enthalpy of reaction PuO2F4-2 # Enthalpy of formation: -2202.95 kJ/mol - -analytic 4.6913e+002 1.3649e-001 -9.8336e+003 -1.8510e+002 -1.5358e+002 + -analytic 4.6913e+2 1.3649e-1 -9.8336e+3 -1.851e+2 -1.5358e+2 # -Range: 0-300 -1.0000 PuO2++ + 1.0000 HPO4-- + 1.0000 H+ = PuO2H2PO4+ - -llnl_gamma 4.0 - log_k +11.2059 - -delta_H -6.63904 kJ/mol # Calculated enthalpy of reaction PuO2H2PO4+ +PuO2+2 + HPO4-2 + H+ = PuO2H2PO4+ + -llnl_gamma 4 + log_k 11.2059 + -delta_H -6.63904 kJ/mol # Calculated enthalpy of reaction PuO2H2PO4+ # Enthalpy of formation: -2120.3 kJ/mol - -analytic 2.1053e+002 6.8671e-002 -4.3390e+003 -8.2930e+001 -6.7768e+001 + -analytic 2.1053e+2 6.8671e-2 -4.339e+3 -8.293e+1 -6.7768e+1 # -Range: 0-300 -1.0000 PuO2+ + 1.0000 H2O = PuO2OH +1.0000 H+ - -llnl_gamma 3.0 - log_k -9.6674 - -delta_H 69.1763 kJ/mol # Calculated enthalpy of reaction PuO2OH +PuO2+ + H2O = PuO2OH + H+ + -llnl_gamma 3 + log_k -9.6674 + -delta_H 69.1763 kJ/mol # Calculated enthalpy of reaction PuO2OH # Enthalpy of formation: -1130.85 kJ/mol - -analytic 7.1080e+001 2.6141e-002 -5.0337e+003 -2.8956e+001 -8.5504e+001 + -analytic 7.108e+1 2.6141e-2 -5.0337e+3 -2.8956e+1 -8.5504e+1 # -Range: 0-200 -1.0000 PuO2++ + 1.0000 H2O = PuO2OH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.6379 - -delta_H 45.2823 kJ/mol # Calculated enthalpy of reaction PuO2OH+ +PuO2+2 + H2O = PuO2OH+ + H+ + -llnl_gamma 4 + log_k -5.6379 + -delta_H 45.2823 kJ/mol # Calculated enthalpy of reaction PuO2OH+ # Enthalpy of formation: -1062.13 kJ/mol - -analytic -3.9012e+000 1.1645e-003 -1.1299e+003 1.3419e+000 -1.4364e+005 + -analytic -3.9012e+0 1.1645e-3 -1.1299e+3 1.3419e+0 -1.4364e+5 # -Range: 0-300 -1.0000 SO4-- + 1.0000 PuO2++ = PuO2SO4 - -llnl_gamma 3.0 - log_k +3.2658 - -delta_H 20.0746 kJ/mol # Calculated enthalpy of reaction PuO2SO4 +SO4-2 + PuO2+2 = PuO2SO4 + -llnl_gamma 3 + log_k 3.2658 + -delta_H 20.0746 kJ/mol # Calculated enthalpy of reaction PuO2SO4 # Enthalpy of formation: -1711.11 kJ/mol - -analytic 2.0363e+002 7.3903e-002 -5.1940e+003 -8.2833e+001 -8.8273e+001 + -analytic 2.0363e+2 7.3903e-2 -5.194e+3 -8.2833e+1 -8.8273e+1 # -Range: 0-200 -1.0000 Pu+++ + 1.0000 H2O = PuOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.968 - -delta_H 53.5143 kJ/mol # Calculated enthalpy of reaction PuOH+2 +Pu+3 + H2O = PuOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.968 + -delta_H 53.5143 kJ/mol # Calculated enthalpy of reaction PuOH+2 # Enthalpy of formation: -823.876 kJ/mol - -analytic 3.0065e+000 3.0278e-003 -1.9675e+003 -1.6100e+000 -1.1524e+005 + -analytic 3.0065e+0 3.0278e-3 -1.9675e+3 -1.61e+0 -1.1524e+5 # -Range: 0-300 -1.0000 Pu++++ + 1.0000 H2O = PuOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -0.5048 - -delta_H 48.1823 kJ/mol # Calculated enthalpy of reaction PuOH+3 +Pu+4 + H2O = PuOH+3 + H+ + -llnl_gamma 5 + log_k -0.5048 + -delta_H 48.1823 kJ/mol # Calculated enthalpy of reaction PuOH+3 # Enthalpy of formation: -773.549 kJ/mol - -analytic 4.1056e+001 1.1119e-003 -3.9252e+003 -1.1609e+001 -6.1260e+001 + -analytic 4.1056e+1 1.1119e-3 -3.9252e+3 -1.1609e+1 -6.126e+1 # -Range: 0-300 -1.0000 SO4-- + 1.0000 Pu+++ = PuSO4+ - -llnl_gamma 4.0 - log_k +3.4935 - -delta_H 14.6006 kJ/mol # Calculated enthalpy of reaction PuSO4+ +SO4-2 + Pu+3 = PuSO4+ + -llnl_gamma 4 + log_k 3.4935 + -delta_H 14.6006 kJ/mol # Calculated enthalpy of reaction PuSO4+ # Enthalpy of formation: -1486.55 kJ/mol - -analytic 1.9194e+002 7.7154e-002 -4.2751e+003 -7.9646e+001 -6.6765e+001 + -analytic 1.9194e+2 7.7154e-2 -4.2751e+3 -7.9646e+1 -6.6765e+1 # -Range: 0-300 -1.0000 SO4-- + 1.0000 Pu++++ = PuSO4++ - -llnl_gamma 4.5 - log_k +5.7710 - -delta_H 12.3336 kJ/mol # Calculated enthalpy of reaction PuSO4+2 +SO4-2 + Pu+4 = PuSO4+2 + -llnl_gamma 4.5 + log_k 5.771 + -delta_H 12.3336 kJ/mol # Calculated enthalpy of reaction PuSO4+2 # Enthalpy of formation: -1433.16 kJ/mol - -analytic 1.9418e+002 7.5477e-002 -4.2767e+003 -7.9425e+001 -6.6792e+001 + -analytic 1.9418e+2 7.5477e-2 -4.2767e+3 -7.9425e+1 -6.6792e+1 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Ra++ = Ra(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.9018 - -delta_H 21.0874 kJ/mol # Calculated enthalpy of reaction Ra(Acetate)2 +2 HAcetate + Ra+2 = Ra(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -7.9018 + -delta_H 21.0874 kJ/mol # Calculated enthalpy of reaction Ra(Acetate)2 # Enthalpy of formation: -353.26 kcal/mol - -analytic 2.2767e+001 3.1254e-003 -6.4558e+003 -7.2253e+000 7.0689e+005 + -analytic 2.2767e+1 3.1254e-3 -6.4558e+3 -7.2253e+0 7.0689e+5 # -Range: 0-300 -1.0000 Ra++ + 1.0000 HAcetate = RaAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.709 - -delta_H 11.7989 kJ/mol # Calculated enthalpy of reaction RaAcetate+ +Ra+2 + HAcetate = RaAcetate+ + H+ + -llnl_gamma 4 + log_k -3.709 + -delta_H 11.7989 kJ/mol # Calculated enthalpy of reaction RaAcetate+ # Enthalpy of formation: -239.38 kcal/mol - -analytic -1.8268e+001 2.9956e-003 1.9313e+001 5.2767e+000 4.9771e+004 + -analytic -1.8268e+1 2.9956e-3 1.9313e+1 5.2767e+0 4.9771e+4 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Rb+ = Rb(Acetate)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -9.7636 - -delta_H -1.12968 kJ/mol # Calculated enthalpy of reaction Rb(Acetate)2- +2 HAcetate + Rb+ = Rb(Acetate)2- + 2 H+ + -llnl_gamma 4 + log_k -9.7636 + -delta_H -1.12968 kJ/mol # Calculated enthalpy of reaction Rb(Acetate)2- # Enthalpy of formation: -292.49 kcal/mol - -analytic -1.9198e+002 -4.2101e-002 5.5792e+003 7.1152e+001 8.7114e+001 + -analytic -1.9198e+2 -4.2101e-2 5.5792e+3 7.1152e+1 8.7114e+1 # -Range: 0-300 -1.0000 Rb+ + 1.0000 Br- = RbBr - -llnl_gamma 3.0 - log_k -1.2168 - -delta_H 13.9327 kJ/mol # Calculated enthalpy of reaction RbBr +Rb+ + Br- = RbBr + -llnl_gamma 3 + log_k -1.2168 + -delta_H 13.9327 kJ/mol # Calculated enthalpy of reaction RbBr # Enthalpy of formation: -85.73 kcal/mol - -analytic 1.2054e+002 3.3825e-002 -3.9500e+003 -4.7920e+001 -6.1671e+001 + -analytic 1.2054e+2 3.3825e-2 -3.95e+3 -4.792e+1 -6.1671e+1 # -Range: 0-300 -1.0000 Rb+ + 1.0000 HAcetate = RbAcetate +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.7279 - -delta_H 4.89528 kJ/mol # Calculated enthalpy of reaction RbAcetate +Rb+ + HAcetate = RbAcetate + H+ + -llnl_gamma 3 + log_k -4.7279 + -delta_H 4.89528 kJ/mol # Calculated enthalpy of reaction RbAcetate # Enthalpy of formation: -174.95 kcal/mol - -analytic 1.5661e+001 -2.4230e-003 -2.5280e+003 -5.4433e+000 2.0344e+005 + -analytic 1.5661e+1 -2.423e-3 -2.528e+3 -5.4433e+0 2.0344e+5 # -Range: 0-300 -1.0000 Rb+ + 1.0000 Cl- = RbCl - -llnl_gamma 3.0 - log_k -0.9595 - -delta_H 13.1922 kJ/mol # Calculated enthalpy of reaction RbCl +Rb+ + Cl- = RbCl + -llnl_gamma 3 + log_k -0.9595 + -delta_H 13.1922 kJ/mol # Calculated enthalpy of reaction RbCl # Enthalpy of formation: -96.8 kcal/mol - -analytic 1.2689e+002 3.5557e-002 -4.0822e+003 -5.0412e+001 -6.3736e+001 + -analytic 1.2689e+2 3.5557e-2 -4.0822e+3 -5.0412e+1 -6.3736e+1 # -Range: 0-300 -1.0000 Rb+ + 1.0000 F- = RbF - -llnl_gamma 3.0 - log_k +0.9602 - -delta_H 1.92464 kJ/mol # Calculated enthalpy of reaction RbF +Rb+ + F- = RbF + -llnl_gamma 3 + log_k 0.9602 + -delta_H 1.92464 kJ/mol # Calculated enthalpy of reaction RbF # Enthalpy of formation: -139.71 kcal/mol - -analytic 1.3893e+002 3.8188e-002 -3.8677e+003 -5.5109e+001 -6.0393e+001 + -analytic 1.3893e+2 3.8188e-2 -3.8677e+3 -5.5109e+1 -6.0393e+1 # -Range: 0-300 -1.0000 Rb+ + 1.0000 I- = RbI - -llnl_gamma 3.0 - log_k -0.8136 - -delta_H 7.1128 kJ/mol # Calculated enthalpy of reaction RbI +Rb+ + I- = RbI + -llnl_gamma 3 + log_k -0.8136 + -delta_H 7.1128 kJ/mol # Calculated enthalpy of reaction RbI # Enthalpy of formation: -71.92 kcal/mol - -analytic 1.1486e+002 3.3121e-002 -3.4217e+003 -4.6096e+001 -5.3426e+001 + -analytic 1.1486e+2 3.3121e-2 -3.4217e+3 -4.6096e+1 -5.3426e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Ru+++ = Ru(Cl)2+ - -llnl_gamma 4.0 - log_k +3.7527 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(Cl)2+ +2 Cl- + Ru+3 = Ru(Cl)2+ + -llnl_gamma 4 + log_k 3.7527 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(Cl)2+ # Enthalpy of formation: -0 kcal/mol - -3.0000 Cl- + 1.0000 Ru+++ = Ru(Cl)3 - -llnl_gamma 3.0 - log_k +4.2976 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(Cl)3 + +3 Cl- + Ru+3 = Ru(Cl)3 + -llnl_gamma 3 + log_k 4.2976 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(Cl)3 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Ru+++ = Ru(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.5148 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2+ + +2 H2O + Ru+3 = Ru(OH)2+ + 2 H+ + -llnl_gamma 4 + log_k -3.5148 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Ru(OH)2++ + 1.0000 Cl- = Ru(OH)2Cl+ - -llnl_gamma 4.0 - log_k +1.3858 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl+ + +Ru(OH)2+2 + Cl- = Ru(OH)2Cl+ + -llnl_gamma 4 + log_k 1.3858 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl+ # Enthalpy of formation: -0 kcal/mol - -2.0000 Cl- + 1.0000 Ru(OH)2++ = Ru(OH)2Cl2 - -llnl_gamma 3.0 - log_k +1.8081 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl2 + +2 Cl- + Ru(OH)2+2 = Ru(OH)2Cl2 + -llnl_gamma 3 + log_k 1.8081 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl2 # Enthalpy of formation: -0 kcal/mol - -3.0000 Cl- + 1.0000 Ru(OH)2++ = Ru(OH)2Cl3- - -llnl_gamma 4.0 - log_k +1.6172 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl3- + +3 Cl- + Ru(OH)2+2 = Ru(OH)2Cl3- + -llnl_gamma 4 + log_k 1.6172 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl3- # Enthalpy of formation: -0 kcal/mol - -4.0000 Cl- + 1.0000 Ru(OH)2++ = Ru(OH)2Cl4-- - -llnl_gamma 4.0 - log_k +2.7052 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl4-2 + +4 Cl- + Ru(OH)2+2 = Ru(OH)2Cl4-2 + -llnl_gamma 4 + log_k 2.7052 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl4-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Ru(OH)2++ = Ru(OH)2SO4 - -llnl_gamma 3.0 - log_k +1.7941 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2SO4 + +SO4-2 + Ru(OH)2+2 = Ru(OH)2SO4 + -llnl_gamma 3 + log_k 1.7941 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2SO4 # Enthalpy of formation: -0 kcal/mol - + #3.0000 H2O + 1.0000 Ru++ + 0.5000 O2 = Ru(OH)4 +2.0000 H+ # Ru(OH)2++ +1.0000 H2O +0.5000 O2 = 4.0000 H+ + 1.0000 RuO4-- log_k -25.2470 # 4.0000 H+ + 1.0000 RuO4-- = Ru++ +2.0000 H2O +1.0000 O2 log_k +0.1610 #1 + 2 + 3 -2H2O + Ru(OH)2++ = Ru(OH)4 + 2H+ - -llnl_gamma 3.0 +2 H2O + Ru(OH)2+2 = Ru(OH)4 + 2 H+ + -llnl_gamma 3 # log_k +18.0322 - log_k -7.0538 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)4 + log_k -7.0538 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)4 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Ru+++ = Ru(SO4)2- - -llnl_gamma 4.0 - log_k +3.0627 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(SO4)2- + +2 SO4-2 + Ru+3 = Ru(SO4)2- + -llnl_gamma 4 + log_k 3.0627 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(SO4)2- # Enthalpy of formation: -0 kcal/mol - -4.0000 Ru(OH)2++ + 4.0000 H2O = Ru4(OH)12++++ +4.0000 H+ - -llnl_gamma 5.5 - log_k +7.1960 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru4(OH)12+4 + +4 Ru(OH)2+2 + 4 H2O = Ru4(OH)12+4 + 4 H+ + -llnl_gamma 5.5 + log_k 7.196 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru4(OH)12+4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Ru++ + 1.0000 Cl- = RuCl+ - -llnl_gamma 4.0 - log_k -0.4887 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl+ + +Ru+2 + Cl- = RuCl+ + -llnl_gamma 4 + log_k -0.4887 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Ru+++ + 1.0000 Cl- = RuCl++ - -llnl_gamma 4.5 - log_k +2.1742 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl+2 + +Ru+3 + Cl- = RuCl+2 + -llnl_gamma 4.5 + log_k 2.1742 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl+2 # Enthalpy of formation: -0 kcal/mol - -4.0000 Cl- + 1.0000 Ru+++ = RuCl4- - -llnl_gamma 4.0 - log_k +4.1418 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl4- + +4 Cl- + Ru+3 = RuCl4- + -llnl_gamma 4 + log_k 4.1418 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl4- # Enthalpy of formation: -0 kcal/mol - -5.0000 Cl- + 1.0000 Ru+++ = RuCl5-- - -llnl_gamma 4.0 - log_k +3.8457 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl5-2 + +5 Cl- + Ru+3 = RuCl5-2 + -llnl_gamma 4 + log_k 3.8457 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl5-2 # Enthalpy of formation: -0 kcal/mol - -6.0000 Cl- + 1.0000 Ru+++ = RuCl6--- - -llnl_gamma 4.0 - log_k +3.4446 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl6-3 + +6 Cl- + Ru+3 = RuCl6-3 + -llnl_gamma 4 + log_k 3.4446 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl6-3 # Enthalpy of formation: -0 kcal/mol - -1.0000 Ru+++ + 1.0000 H2O = RuOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.2392 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuOH+2 + +Ru+3 + H2O = RuOH+2 + H+ + -llnl_gamma 4.5 + log_k -2.2392 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuOH+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Ru++ = RuSO4 - -llnl_gamma 3.0 - log_k +2.3547 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuSO4 + +SO4-2 + Ru+2 = RuSO4 + -llnl_gamma 3 + log_k 2.3547 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuSO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 SO4-- + 1.0000 Ru+++ = RuSO4+ - -llnl_gamma 4.0 - log_k +1.9518 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuSO4+ + +SO4-2 + Ru+3 = RuSO4+ + -llnl_gamma 4 + log_k 1.9518 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuSO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 HS- = S-- +1.0000 H+ - -llnl_gamma 5.0 - log_k -12.9351 - -delta_H 49.0364 kJ/mol # Calculated enthalpy of reaction S-2 + +HS- = S-2 + H+ + -llnl_gamma 5 + log_k -12.9351 + -delta_H 49.0364 kJ/mol # Calculated enthalpy of reaction S-2 # Enthalpy of formation: 32.928 kJ/mol - -analytic 9.7756e+001 3.2913e-002 -5.0784e+003 -4.1812e+001 -7.9273e+001 + -analytic 9.7756e+1 3.2913e-2 -5.0784e+3 -4.1812e+1 -7.9273e+1 # -Range: 0-300 -2.0000 H+ + 2.0000 SO3-- = S2O5-- + H2O - -llnl_gamma 4.0 - log_k 9.5934 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O5-2 +2 H+ + 2 SO3-2 = S2O5-2 + H2O + -llnl_gamma 4 + log_k 9.5934 + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O5-2 # Enthalpy of formation: -0 kcal/mol - -analytic 0.12262E+03 0.62883E-01 -0.18005E+04 -0.50798E+02 -0.28132E+02 + -analytic 0.12262E+3 0.62883E-1 -0.18005E+4 -0.50798E+2 -0.28132E+2 # -Range: 0-300 -2.0000 H+ + 1.0000 SO3-- = SO2 +1.0000 H2O - -llnl_gamma 3.0 - log_k +9.0656 - -delta_H 26.7316 kJ/mol # Calculated enthalpy of reaction SO2 +2 H+ + SO3-2 = SO2 + H2O + -llnl_gamma 3 + log_k 9.0656 + -delta_H 26.7316 kJ/mol # Calculated enthalpy of reaction SO2 # Enthalpy of formation: -77.194 kcal/mol - -analytic 9.4048e+001 6.2127e-002 -1.1072e+003 -4.0310e+001 -1.7305e+001 + -analytic 9.4048e+1 6.2127e-2 -1.1072e+3 -4.031e+1 -1.7305e+1 # -Range: 0-300 -1.0000 Sb(OH)3 + 1.0000 H+ = Sb(OH)2+ +1.0000 H2O - -llnl_gamma 4.0 - log_k +1.4900 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)2+ +Sb(OH)3 + H+ = Sb(OH)2+ + H2O + -llnl_gamma 4 + log_k 1.49 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)2+ # Enthalpy of formation: -0 kcal/mol - - -analytic -4.9192e+000 -1.6439e-004 1.4777e+003 6.0724e-001 2.3059e+001 + + -analytic -4.9192e+0 -1.6439e-4 1.4777e+3 6.0724e-1 2.3059e+1 # -Range: 0-300 -1.0000 Sb(OH)3 + 1.0000 H+ + 1.0000 F- = Sb(OH)2F +1.0000 H2O - -llnl_gamma 3.0 - log_k +7.1700 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)2F +Sb(OH)3 + H+ + F- = Sb(OH)2F + H2O + -llnl_gamma 3 + log_k 7.17 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)2F # Enthalpy of formation: -0 kcal/mol - - -analytic -1.6961e+002 5.7364e-002 2.7207e+004 3.7969e+001 -2.2834e+006 + + -analytic -1.6961e+2 5.7364e-2 2.7207e+4 3.7969e+1 -2.2834e+6 # -Range: 0-300 -1.0000 Sb(OH)3 + 1.0000 H2O = Sb(OH)4- +1.0000 H+ - -llnl_gamma 4.0 - log_k -11.92 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)4- +Sb(OH)3 + H2O = Sb(OH)4- + H+ + -llnl_gamma 4 + log_k -11.92 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)4- # Enthalpy of formation: -0 kcal/mol - - -analytic 4.9839e+001 -6.7112e-003 -4.8976e+003 -1.7138e+001 -8.3725e+004 + + -analytic 4.9839e+1 -6.7112e-3 -4.8976e+3 -1.7138e+1 -8.3725e+4 # -Range: 0-300 -4.0000 HS- + 2.0000 Sb(OH)3 + 2.0000 H+ = Sb2S4-- +6.0000 H2O - -llnl_gamma 4.0 - log_k +39.1100 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb2S4-2 +4 HS- + 2 Sb(OH)3 + 2 H+ = Sb2S4-2 + 6 H2O + -llnl_gamma 4 + log_k 39.11 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb2S4-2 # Enthalpy of formation: -0 kcal/mol - - -analytic 1.7631e+002 8.3686e-002 9.7091e+003 -7.8605e+001 1.5145e+002 + + -analytic 1.7631e+2 8.3686e-2 9.7091e+3 -7.8605e+1 1.5145e+2 # -Range: 0-300 -4.0000 Cl- + 3.0000 H+ + 1.0000 Sb(OH)3 = SbCl4- +3.0000 H2O - -llnl_gamma 4.0 - log_k +3.0720 - -delta_H 0 # Not possible to calculate enthalpy of reaction SbCl4- +4 Cl- + 3 H+ + Sb(OH)3 = SbCl4- + 3 H2O + -llnl_gamma 4 + log_k 3.072 + -delta_H 0 # Not possible to calculate enthalpy of reaction SbCl4- # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Sc+++ = Sc(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.7237 - -delta_H -43.1789 kJ/mol # Calculated enthalpy of reaction Sc(Acetate)2+ + +2 HAcetate + Sc+3 = Sc(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -3.7237 + -delta_H -43.1789 kJ/mol # Calculated enthalpy of reaction Sc(Acetate)2+ # Enthalpy of formation: -389.32 kcal/mol - -analytic -4.1862e+001 -3.9443e-005 2.1444e+002 1.2616e+001 5.5442e+005 + -analytic -4.1862e+1 -3.9443e-5 2.1444e+2 1.2616e+1 5.5442e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Sc+++ = Sc(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -6.6777 - -delta_H -70.0402 kJ/mol # Calculated enthalpy of reaction Sc(Acetate)3 +3 HAcetate + Sc+3 = Sc(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -6.6777 + -delta_H -70.0402 kJ/mol # Calculated enthalpy of reaction Sc(Acetate)3 # Enthalpy of formation: -511.84 kcal/mol - -analytic -5.2525e+001 1.6181e-003 7.5022e+002 1.3988e+001 7.3540e+005 + -analytic -5.2525e+1 1.6181e-3 7.5022e+2 1.3988e+1 7.354e+5 # -Range: 0-300 -1.0000 Sc+++ + 1.0000 HAcetate = ScAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -1.4294 - -delta_H -21.7568 kJ/mol # Calculated enthalpy of reaction ScAcetate+2 +Sc+3 + HAcetate = ScAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -1.4294 + -delta_H -21.7568 kJ/mol # Calculated enthalpy of reaction ScAcetate+2 # Enthalpy of formation: -268.1 kcal/mol - -analytic -2.3400e+001 1.3144e-004 1.1125e+002 7.3527e+000 3.0025e+005 + -analytic -2.34e+1 1.3144e-4 1.1125e+2 7.3527e+0 3.0025e+5 # -Range: 0-300 -6.0000 F- + 4.0000 H+ + 1.0000 SiO2 = SiF6-- +2.0000 H2O - -llnl_gamma 4.0 - log_k +26.2749 - -delta_H -70.9565 kJ/mol # Calculated enthalpy of reaction SiF6-2 +6 F- + 4 H+ + SiO2 = SiF6-2 + 2 H2O + -llnl_gamma 4 + log_k 26.2749 + -delta_H -70.9565 kJ/mol # Calculated enthalpy of reaction SiF6-2 # Enthalpy of formation: -571 kcal/mol - -analytic 2.3209e+002 1.0685e-001 5.8428e+002 -9.6798e+001 9.0486e+000 + -analytic 2.3209e+2 1.0685e-1 5.8428e+2 -9.6798e+1 9.0486e+0 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Sm+++ = Sm(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.7132 - -delta_H -25.5224 kJ/mol # Calculated enthalpy of reaction Sm(Acetate)2+ +2 HAcetate + Sm+3 = Sm(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -4.7132 + -delta_H -25.5224 kJ/mol # Calculated enthalpy of reaction Sm(Acetate)2+ # Enthalpy of formation: -403.5 kcal/mol - -analytic -1.4192e+001 2.1732e-003 -1.0267e+003 2.9516e+000 4.4389e+005 + -analytic -1.4192e+1 2.1732e-3 -1.0267e+3 2.9516e+0 4.4389e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Sm+++ = Sm(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -7.8798 - -delta_H -43.5554 kJ/mol # Calculated enthalpy of reaction Sm(Acetate)3 +3 HAcetate + Sm+3 = Sm(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -7.8798 + -delta_H -43.5554 kJ/mol # Calculated enthalpy of reaction Sm(Acetate)3 # Enthalpy of formation: -523.91 kcal/mol - -analytic -2.0765e+001 1.1047e-003 -5.1181e+002 3.4797e+000 5.0618e+005 + -analytic -2.0765e+1 1.1047e-3 -5.1181e+2 3.4797e+0 5.0618e+5 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Sm+++ = Sm(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.8576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(CO3)2- +2 HCO3- + Sm+3 = Sm(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -7.8576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Sm+++ = Sm(HPO4)2- - -llnl_gamma 4.0 - log_k +9.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(HPO4)2- + +2 HPO4-2 + Sm+3 = Sm(HPO4)2- + -llnl_gamma 4 + log_k 9.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(HPO4)2- # Enthalpy of formation: -0 kcal/mol - + # Redundant with SmO2- #4.0000 H2O + 1.0000 Sm+++ = Sm(OH)4- +4.0000 H+ -# -llnl_gamma 4.0 +# -llnl_gamma 4.0 # log_k -36.8803 # -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)4- ## Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Sm+++ = Sm(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.2437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(PO4)2-3 + +2 HPO4-2 + Sm+3 = Sm(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -4.2437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Sm+++ = Sm(SO4)2- - -llnl_gamma 4.0 - log_k +5.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(SO4)2- + +2 SO4-2 + Sm+3 = Sm(SO4)2- + -llnl_gamma 4 + log_k 5.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(SO4)2- # Enthalpy of formation: -0 kcal/mol - -1.0000 Sm+++ + 1.0000 HAcetate = SmAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -1.9205 - -delta_H -13.598 kJ/mol # Calculated enthalpy of reaction SmAcetate+2 + +Sm+3 + HAcetate = SmAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -1.9205 + -delta_H -13.598 kJ/mol # Calculated enthalpy of reaction SmAcetate+2 # Enthalpy of formation: -284.55 kcal/mol - -analytic -1.1734e+001 1.0889e-003 -5.1061e+002 3.3317e+000 2.6395e+005 + -analytic -1.1734e+1 1.0889e-3 -5.1061e+2 3.3317e+0 2.6395e+5 # -Range: 0-300 -1.0000 Sm+++ + 1.0000 HCO3- = SmCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.479 - -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction SmCO3+ +Sm+3 + HCO3- = SmCO3+ + H+ + -llnl_gamma 4 + log_k -2.479 + -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction SmCO3+ # Enthalpy of formation: -308.8 kcal/mol - -analytic 2.3486e+002 5.3703e-002 -7.0193e+003 -9.2863e+001 -1.0960e+002 + -analytic 2.3486e+2 5.3703e-2 -7.0193e+3 -9.2863e+1 -1.096e+2 # -Range: 0-300 -1.0000 Sm+++ + 1.0000 Cl- = SmCl++ - -llnl_gamma 4.5 - log_k +0.3086 - -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction SmCl+2 +Sm+3 + Cl- = SmCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction SmCl+2 # Enthalpy of formation: -201.7 kcal/mol - -analytic 9.4972e+001 3.9428e-002 -2.4198e+003 -3.9718e+001 -3.7787e+001 + -analytic 9.4972e+1 3.9428e-2 -2.4198e+3 -3.9718e+1 -3.7787e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Sm+++ = SmCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 19.9409 kJ/mol # Calculated enthalpy of reaction SmCl2+ +2 Cl- + Sm+3 = SmCl2+ + -llnl_gamma 4 + log_k -0.0425 + -delta_H 19.9409 kJ/mol # Calculated enthalpy of reaction SmCl2+ # Enthalpy of formation: -240.3 kcal/mol - -analytic 2.5872e+002 8.4154e-002 -7.2061e+003 -1.0493e+002 -1.1252e+002 + -analytic 2.5872e+2 8.4154e-2 -7.2061e+3 -1.0493e+2 -1.1252e+2 # -Range: 0-300 -3.0000 Cl- + 1.0000 Sm+++ = SmCl3 - -llnl_gamma 3.0 - log_k -0.3936 - -delta_H 13.803 kJ/mol # Calculated enthalpy of reaction SmCl3 +3 Cl- + Sm+3 = SmCl3 + -llnl_gamma 3 + log_k -0.3936 + -delta_H 13.803 kJ/mol # Calculated enthalpy of reaction SmCl3 # Enthalpy of formation: -281.7 kcal/mol - -analytic 4.9535e+002 1.3520e-001 -1.4325e+004 -1.9720e+002 -2.2367e+002 + -analytic 4.9535e+2 1.352e-1 -1.4325e+4 -1.972e+2 -2.2367e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 Sm+++ = SmCl4- - -llnl_gamma 4.0 - log_k -0.818 - -delta_H -5.30531 kJ/mol # Calculated enthalpy of reaction SmCl4- +4 Cl- + Sm+3 = SmCl4- + -llnl_gamma 4 + log_k -0.818 + -delta_H -5.30531 kJ/mol # Calculated enthalpy of reaction SmCl4- # Enthalpy of formation: -326.2 kcal/mol - -analytic 6.0562e+002 1.4212e-001 -1.7982e+004 -2.3782e+002 -2.8077e+002 + -analytic 6.0562e+2 1.4212e-1 -1.7982e+4 -2.3782e+2 -2.8077e+2 # -Range: 0-300 -1.0000 Sm+++ + 1.0000 F- = SmF++ - -llnl_gamma 4.5 - log_k +4.3687 - -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction SmF+2 +Sm+3 + F- = SmF+2 + -llnl_gamma 4.5 + log_k 4.3687 + -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction SmF+2 # Enthalpy of formation: -239.9 kcal/mol - -analytic 1.1514e+002 4.3117e-002 -3.2853e+003 -4.5499e+001 -5.1297e+001 + -analytic 1.1514e+2 4.3117e-2 -3.2853e+3 -4.5499e+1 -5.1297e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Sm+++ = SmF2+ - -llnl_gamma 4.0 - log_k +7.6379 - -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction SmF2+ +2 F- + Sm+3 = SmF2+ + -llnl_gamma 4 + log_k 7.6379 + -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction SmF2+ # Enthalpy of formation: -322.2 kcal/mol - -analytic 2.8030e+002 8.8143e-002 -7.2857e+003 -1.1092e+002 -1.1377e+002 + -analytic 2.803e+2 8.8143e-2 -7.2857e+3 -1.1092e+2 -1.1377e+2 # -Range: 0-300 -3.0000 F- + 1.0000 Sm+++ = SmF3 - -llnl_gamma 3.0 - log_k +10.0275 - -delta_H -8.5772 kJ/mol # Calculated enthalpy of reaction SmF3 +3 F- + Sm+3 = SmF3 + -llnl_gamma 3 + log_k 10.0275 + -delta_H -8.5772 kJ/mol # Calculated enthalpy of reaction SmF3 # Enthalpy of formation: -407.7 kcal/mol - -analytic 5.2425e+002 1.4191e-001 -1.3728e+004 -2.0628e+002 -2.1436e+002 + -analytic 5.2425e+2 1.4191e-1 -1.3728e+4 -2.0628e+2 -2.1436e+2 # -Range: 0-300 -4.0000 F- + 1.0000 Sm+++ = SmF4- - -llnl_gamma 4.0 - log_k +11.9773 - -delta_H -49.7896 kJ/mol # Calculated enthalpy of reaction SmF4- +4 F- + Sm+3 = SmF4- + -llnl_gamma 4 + log_k 11.9773 + -delta_H -49.7896 kJ/mol # Calculated enthalpy of reaction SmF4- # Enthalpy of formation: -497.7 kcal/mol - -analytic 6.2228e+002 1.4659e-001 -1.5887e+004 -2.4275e+002 -2.4809e+002 + -analytic 6.2228e+2 1.4659e-1 -1.5887e+4 -2.4275e+2 -2.4809e+2 # -Range: 0-300 -1.0000 Sm+++ + 1.0000 HPO4-- + 1.0000 H+ = SmH2PO4++ - -llnl_gamma 4.5 - log_k +9.4484 - -delta_H -15.8364 kJ/mol # Calculated enthalpy of reaction SmH2PO4+2 +Sm+3 + HPO4-2 + H+ = SmH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -15.8364 kJ/mol # Calculated enthalpy of reaction SmH2PO4+2 # Enthalpy of formation: -477.8 kcal/mol - -analytic 1.2451e+002 6.4959e-002 -3.9576e+002 -5.3772e+001 -6.2124e+000 + -analytic 1.2451e+2 6.4959e-2 -3.9576e+2 -5.3772e+1 -6.2124e+0 # -Range: 0-300 -1.0000 Sm+++ + 1.0000 HCO3- = SmHCO3++ - -llnl_gamma 4.5 - log_k +1.7724 - -delta_H 9.19643 kJ/mol # Calculated enthalpy of reaction SmHCO3+2 +Sm+3 + HCO3- = SmHCO3+2 + -llnl_gamma 4.5 + log_k 1.7724 + -delta_H 9.19643 kJ/mol # Calculated enthalpy of reaction SmHCO3+2 # Enthalpy of formation: -327.9 kcal/mol - -analytic 5.5520e+001 3.3265e-002 -7.3142e+002 -2.4727e+001 -1.1430e+001 + -analytic 5.552e+1 3.3265e-2 -7.3142e+2 -2.4727e+1 -1.143e+1 # -Range: 0-300 -1.0000 Sm+++ + 1.0000 HPO4-- = SmHPO4+ - -llnl_gamma 4.0 - log_k +5.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction SmHPO4+ +Sm+3 + HPO4-2 = SmHPO4+ + -llnl_gamma 4 + log_k 5.6 + -delta_H 0 # Not possible to calculate enthalpy of reaction SmHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Sm+++ + 1.0000 NO3- = SmNO3++ - -llnl_gamma 4.5 - log_k +0.8012 - -delta_H -29.1667 kJ/mol # Calculated enthalpy of reaction SmNO3+2 + +Sm+3 + NO3- = SmNO3+2 + -llnl_gamma 4.5 + log_k 0.8012 + -delta_H -29.1667 kJ/mol # Calculated enthalpy of reaction SmNO3+2 # Enthalpy of formation: -221.6 kcal/mol - -analytic 3.3782e+001 2.7125e-002 1.5091e+003 -1.8632e+001 2.3537e+001 + -analytic 3.3782e+1 2.7125e-2 1.5091e+3 -1.8632e+1 2.3537e+1 # -Range: 0-300 -1.0000 Sm+++ + 1.0000 H2O = SmO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.4837 - -delta_H 113.039 kJ/mol # Calculated enthalpy of reaction SmO+ +Sm+3 + H2O = SmO+ + 2 H+ + -llnl_gamma 4 + log_k -16.4837 + -delta_H 113.039 kJ/mol # Calculated enthalpy of reaction SmO+ # Enthalpy of formation: -206.5 kcal/mol - -analytic 1.8554e+002 3.0198e-002 -1.3791e+004 -6.6588e+001 -2.1526e+002 + -analytic 1.8554e+2 3.0198e-2 -1.3791e+4 -6.6588e+1 -2.1526e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Sm+++ = SmO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -35.0197 - -delta_H 285.909 kJ/mol # Calculated enthalpy of reaction SmO2- +2 H2O + Sm+3 = SmO2- + 4 H+ + -llnl_gamma 4 + log_k -35.0197 + -delta_H 285.909 kJ/mol # Calculated enthalpy of reaction SmO2- # Enthalpy of formation: -233.5 kcal/mol - -analytic 1.3508e+001 -8.3384e-003 -1.0325e+004 -1.5506e+000 -6.7392e+005 + -analytic 1.3508e+1 -8.3384e-3 -1.0325e+4 -1.5506e+0 -6.7392e+5 # -Range: 0-300 -2.0000 H2O + 1.0000 Sm+++ = SmO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -25.9304 - -delta_H 226.497 kJ/mol # Calculated enthalpy of reaction SmO2H +2 H2O + Sm+3 = SmO2H + 3 H+ + -llnl_gamma 3 + log_k -25.9304 + -delta_H 226.497 kJ/mol # Calculated enthalpy of reaction SmO2H # Enthalpy of formation: -247.7 kcal/mol - -analytic 3.6882e+002 5.3761e-002 -2.4317e+004 -1.3305e+002 -3.7956e+002 + -analytic 3.6882e+2 5.3761e-2 -2.4317e+4 -1.3305e+2 -3.7956e+2 # -Range: 0-300 -1.0000 Sm+++ + 1.0000 H2O = SmOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.9808 - -delta_H 79.1487 kJ/mol # Calculated enthalpy of reaction SmOH+2 +Sm+3 + H2O = SmOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.9808 + -delta_H 79.1487 kJ/mol # Calculated enthalpy of reaction SmOH+2 # Enthalpy of formation: -214.6 kcal/mol - -analytic 6.3793e+001 1.1977e-002 -6.0852e+003 -2.2198e+001 -9.4972e+001 + -analytic 6.3793e+1 1.1977e-2 -6.0852e+3 -2.2198e+1 -9.4972e+1 # -Range: 0-300 -1.0000 Sm+++ + 1.0000 HPO4-- = SmPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.2218 - -delta_H 0 # Not possible to calculate enthalpy of reaction SmPO4 +Sm+3 + HPO4-2 = SmPO4 + H+ + -llnl_gamma 3 + log_k -0.2218 + -delta_H 0 # Not possible to calculate enthalpy of reaction SmPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Sm+++ + 1.0000 SO4-- = SmSO4+ - -llnl_gamma 4.0 - log_k +3.6430 - -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction SmSO4+ + +Sm+3 + SO4-2 = SmSO4+ + -llnl_gamma 4 + log_k 3.643 + -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction SmSO4+ # Enthalpy of formation: -377.8 kcal/mol - -analytic 3.0597e+002 8.6258e-002 -9.0231e+003 -1.2032e+002 -1.4089e+002 + -analytic 3.0597e+2 8.6258e-2 -9.0231e+3 -1.2032e+2 -1.4089e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Sn++ = Sn(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.9102 - -delta_H 42.0534 kJ/mol # Calculated enthalpy of reaction Sn(OH)2 +2 H2O + Sn+2 = Sn(OH)2 + 2 H+ + -llnl_gamma 3 + log_k -7.9102 + -delta_H 42.0534 kJ/mol # Calculated enthalpy of reaction Sn(OH)2 # Enthalpy of formation: -128.683 kcal/mol - -analytic -3.7979e+001 -1.0893e-002 -1.2048e+003 1.5100e+001 -2.0445e+001 + -analytic -3.7979e+1 -1.0893e-2 -1.2048e+3 1.51e+1 -2.0445e+1 # -Range: 0-200 -2.0000 H2O + 1.0000 Sn++++ = Sn(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -0.1902 - -delta_H -2.02087 kJ/mol # Calculated enthalpy of reaction Sn(OH)2+2 +2 H2O + Sn+4 = Sn(OH)2+2 + 2 H+ + -llnl_gamma 4.5 + log_k -0.1902 + -delta_H -2.02087 kJ/mol # Calculated enthalpy of reaction Sn(OH)2+2 # Enthalpy of formation: -129.888 kcal/mol - -analytic -2.1675e+001 5.9697e-003 3.3953e+003 4.8158e+000 -3.2042e+005 + -analytic -2.1675e+1 5.9697e-3 3.3953e+3 4.8158e+0 -3.2042e+5 # -Range: 0-300 -3.0000 H2O + 1.0000 Sn++++ = Sn(OH)3+ +3.0000 H+ - -llnl_gamma 4.0 - log_k +0.5148 - -delta_H -7.59396 kJ/mol # Calculated enthalpy of reaction Sn(OH)3+ +3 H2O + Sn+4 = Sn(OH)3+ + 3 H+ + -llnl_gamma 4 + log_k 0.5148 + -delta_H -7.59396 kJ/mol # Calculated enthalpy of reaction Sn(OH)3+ # Enthalpy of formation: -199.537 kcal/mol - -analytic -3.3294e+001 8.8580e-003 5.3803e+003 7.4994e+000 -4.8389e+005 + -analytic -3.3294e+1 8.858e-3 5.3803e+3 7.4994e+0 -4.8389e+5 # -Range: 0-300 -3.0000 H2O + 1.0000 Sn++ = Sn(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -17.4052 - -delta_H 94.7007 kJ/mol # Calculated enthalpy of reaction Sn(OH)3- +3 H2O + Sn+2 = Sn(OH)3- + 3 H+ + -llnl_gamma 4 + log_k -17.4052 + -delta_H 94.7007 kJ/mol # Calculated enthalpy of reaction Sn(OH)3- # Enthalpy of formation: -184.417 kcal/mol - -analytic 1.5614e+002 1.9943e-002 -1.0700e+004 -5.8031e+001 -1.6701e+002 + -analytic 1.5614e+2 1.9943e-2 -1.07e+4 -5.8031e+1 -1.6701e+2 # -Range: 0-300 -4.0000 H2O + 1.0000 Sn++++ = Sn(OH)4 +4.0000 H+ - -llnl_gamma 3.0 - log_k +0.8497 - -delta_H -11.0583 kJ/mol # Calculated enthalpy of reaction Sn(OH)4 +4 H2O + Sn+4 = Sn(OH)4 + 4 H+ + -llnl_gamma 3 + log_k 0.8497 + -delta_H -11.0583 kJ/mol # Calculated enthalpy of reaction Sn(OH)4 # Enthalpy of formation: -268.682 kcal/mol - -analytic -7.9563e+001 -2.2641e-002 2.6682e+003 3.1614e+001 4.5337e+001 + -analytic -7.9563e+1 -2.2641e-2 2.6682e+3 3.1614e+1 4.5337e+1 # -Range: 0-200 -2.0000 SO4-- + 1.0000 Sn++++ = Sn(SO4)2 - -llnl_gamma 3.0 - log_k -0.8072 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sn(SO4)2 +2 SO4-2 + Sn+4 = Sn(SO4)2 + -llnl_gamma 3 + log_k -0.8072 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sn(SO4)2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Sn++ + 1.0000 Cl- = SnCl+ - -llnl_gamma 4.0 - log_k +1.0500 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl+ + +Sn+2 + Cl- = SnCl+ + -llnl_gamma 4 + log_k 1.05 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl+ # Enthalpy of formation: -0 kcal/mol - - -analytic 3.0558e+002 8.2458e-002 -8.9329e+003 -1.2088e+002 -1.3948e+002 + + -analytic 3.0558e+2 8.2458e-2 -8.9329e+3 -1.2088e+2 -1.3948e+2 # -Range: 0-300 -2.0000 Cl- + 1.0000 Sn++ = SnCl2 - -llnl_gamma 3.0 - log_k +1.7100 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl2 +2 Cl- + Sn+2 = SnCl2 + -llnl_gamma 3 + log_k 1.71 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl2 # Enthalpy of formation: -0 kcal/mol - - -analytic 3.6600e+002 1.0753e-001 -1.0006e+004 -1.4660e+002 -1.5624e+002 + + -analytic 3.66e+2 1.0753e-1 -1.0006e+4 -1.466e+2 -1.5624e+2 # -Range: 0-300 -3.0000 Cl- + 1.0000 Sn++ = SnCl3- - -llnl_gamma 4.0 - log_k +1.6900 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl3- +3 Cl- + Sn+2 = SnCl3- + -llnl_gamma 4 + log_k 1.69 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl3- # Enthalpy of formation: -0 kcal/mol - - -analytic 3.6019e+002 1.0602e-001 -1.0337e+004 -1.4363e+002 -1.6141e+002 + + -analytic 3.6019e+2 1.0602e-1 -1.0337e+4 -1.4363e+2 -1.6141e+2 # -Range: 0-300 -1.0000 Sn++ + 1.0000 F- = SnF+ - -llnl_gamma 4.0 - log_k +4.0800 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnF+ +Sn+2 + F- = SnF+ + -llnl_gamma 4 + log_k 4.08 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnF+ # Enthalpy of formation: -0 kcal/mol - - -analytic 3.0020e+002 7.5485e-002 -8.4231e+003 -1.1734e+002 -1.3152e+002 + + -analytic 3.002e+2 7.5485e-2 -8.4231e+3 -1.1734e+2 -1.3152e+2 # -Range: 0-300 -2.0000 F- + 1.0000 Sn++ = SnF2 - -llnl_gamma 3.0 - log_k +6.6800 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnF2 +2 F- + Sn+2 = SnF2 + -llnl_gamma 3 + log_k 6.68 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnF2 # Enthalpy of formation: -0 kcal/mol - - -analytic 4.1241e+002 1.0988e-001 -1.1151e+004 -1.6207e+002 -1.7413e+002 + + -analytic 4.1241e+2 1.0988e-1 -1.1151e+4 -1.6207e+2 -1.7413e+2 # -Range: 0-300 -3.0000 F- + 1.0000 Sn++ = SnF3- - -llnl_gamma 4.0 - log_k +9.4600 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnF3- +3 F- + Sn+2 = SnF3- + -llnl_gamma 4 + log_k 9.46 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnF3- # Enthalpy of formation: -0 kcal/mol - - -analytic 4.1793e+002 1.0898e-001 -1.1402e+004 -1.6273e+002 -1.7803e+002 + + -analytic 4.1793e+2 1.0898e-1 -1.1402e+4 -1.6273e+2 -1.7803e+2 # -Range: 0-300 -1.0000 Sn++ + 1.0000 H2O = SnOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.9851 - -delta_H 21.2045 kJ/mol # Calculated enthalpy of reaction SnOH+ +Sn+2 + H2O = SnOH+ + H+ + -llnl_gamma 4 + log_k -3.9851 + -delta_H 21.2045 kJ/mol # Calculated enthalpy of reaction SnOH+ # Enthalpy of formation: -65.349 kcal/mol - -analytic 7.7253e+001 1.9149e-002 -3.3745e+003 -3.0560e+001 -5.2679e+001 + -analytic 7.7253e+1 1.9149e-2 -3.3745e+3 -3.056e+1 -5.2679e+1 # -Range: 0-300 -1.0000 Sn++++ + 1.0000 H2O = SnOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k +0.6049 - -delta_H -5.00406 kJ/mol # Calculated enthalpy of reaction SnOH+3 +Sn+4 + H2O = SnOH+3 + H+ + -llnl_gamma 5 + log_k 0.6049 + -delta_H -5.00406 kJ/mol # Calculated enthalpy of reaction SnOH+3 # Enthalpy of formation: -62.284 kcal/mol - -analytic -1.1548e+001 2.8878e-003 1.9476e+003 2.6622e+000 -1.6274e+005 + -analytic -1.1548e+1 2.8878e-3 1.9476e+3 2.6622e+0 -1.6274e+5 # -Range: 0-300 -1.0000 Sn++++ + 1.0000 SO4-- = SnSO4++ - -llnl_gamma 4.5 - log_k -3.1094 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnSO4+2 +Sn+4 + SO4-2 = SnSO4+2 + -llnl_gamma 4.5 + log_k -3.1094 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnSO4+2 # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Sr++ = Sr(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -7.8212 - -delta_H 0.54392 kJ/mol # Calculated enthalpy of reaction Sr(Acetate)2 + +2 HAcetate + Sr+2 = Sr(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -7.8212 + -delta_H 0.54392 kJ/mol # Calculated enthalpy of reaction Sr(Acetate)2 # Enthalpy of formation: -363.74 kcal/mol - -analytic 1.2965e+001 4.7082e-003 -5.2538e+003 -5.2337e+000 7.4721e+005 + -analytic 1.2965e+1 4.7082e-3 -5.2538e+3 -5.2337e+0 7.4721e+5 # -Range: 0-300 -1.0000 Sr++ + 1.0000 HAcetate = SrAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.6724 - -delta_H 2.3012 kJ/mol # Calculated enthalpy of reaction SrAcetate+ +Sr+2 + HAcetate = SrAcetate+ + H+ + -llnl_gamma 4 + log_k -3.6724 + -delta_H 2.3012 kJ/mol # Calculated enthalpy of reaction SrAcetate+ # Enthalpy of formation: -247.22 kcal/mol - -analytic -1.4301e+001 1.2481e-003 -7.5690e+002 4.2760e+000 1.9800e+005 + -analytic -1.4301e+1 1.2481e-3 -7.569e+2 4.276e+0 1.98e+5 # -Range: 0-300 -1.0000 Sr++ + 1.0000 HCO3- = SrCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -7.4635 - -delta_H 33.2544 kJ/mol # Calculated enthalpy of reaction SrCO3 +Sr+2 + HCO3- = SrCO3 + H+ + -llnl_gamma 3 + log_k -7.4635 + -delta_H 33.2544 kJ/mol # Calculated enthalpy of reaction SrCO3 # Enthalpy of formation: -288.62 kcal/mol - -analytic 2.2303e+002 5.2582e-002 -8.4861e+003 -8.7975e+001 -1.3248e+002 + -analytic 2.2303e+2 5.2582e-2 -8.4861e+3 -8.7975e+1 -1.3248e+2 # -Range: 0-300 -1.0000 Sr++ + 1.0000 Cl- = SrCl+ - -llnl_gamma 4.0 - log_k -0.2485 - -delta_H 7.58559 kJ/mol # Calculated enthalpy of reaction SrCl+ +Sr+2 + Cl- = SrCl+ + -llnl_gamma 4 + log_k -0.2485 + -delta_H 7.58559 kJ/mol # Calculated enthalpy of reaction SrCl+ # Enthalpy of formation: -169.79 kcal/mol - -analytic 9.4568e+001 3.9042e-002 -2.1458e+003 -4.0105e+001 -3.3511e+001 + -analytic 9.4568e+1 3.9042e-2 -2.1458e+3 -4.0105e+1 -3.3511e+1 # -Range: 0-300 -1.0000 Sr++ + 1.0000 F- = SrF+ - -llnl_gamma 4.0 - log_k +0.1393 - -delta_H 4.8116 kJ/mol # Calculated enthalpy of reaction SrF+ +Sr+2 + F- = SrF+ + -llnl_gamma 4 + log_k 0.1393 + -delta_H 4.8116 kJ/mol # Calculated enthalpy of reaction SrF+ # Enthalpy of formation: -210.67 kcal/mol - -analytic 9.0295e+001 3.7609e-002 -1.9012e+003 -3.8379e+001 -2.9693e+001 + -analytic 9.0295e+1 3.7609e-2 -1.9012e+3 -3.8379e+1 -2.9693e+1 # -Range: 0-300 -1.0000 Sr++ + 1.0000 HPO4-- + 1.0000 H+ = SrH2PO4+ - -llnl_gamma 4.0 - log_k +0.7300 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrH2PO4+ +Sr+2 + HPO4-2 + H+ = SrH2PO4+ + -llnl_gamma 4 + log_k 0.73 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrH2PO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Sr++ + 1.0000 HPO4-- = SrHPO4 - -llnl_gamma 3.0 - log_k +2.0600 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrHPO4 + +Sr+2 + HPO4-2 = SrHPO4 + -llnl_gamma 3 + log_k 2.06 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrHPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Sr++ + 1.0000 NO3- = SrNO3+ - -llnl_gamma 4.0 - log_k +0.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrNO3+ + +Sr+2 + NO3- = SrNO3+ + -llnl_gamma 4 + log_k 0.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrNO3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Sr++ + 1.0000 H2O = SrOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -13.29 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrOH+ + +Sr+2 + H2O = SrOH+ + H+ + -llnl_gamma 4 + log_k -13.29 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrOH+ # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Sr++ = SrP2O7-- +1.0000 H2O - -llnl_gamma 4.0 - log_k +1.6537 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrP2O7-2 + +2 HPO4-2 + Sr+2 = SrP2O7-2 + H2O + -llnl_gamma 4 + log_k 1.6537 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrP2O7-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Sr++ + 1.0000 SO4-- = SrSO4 - -llnl_gamma 3.0 - log_k +2.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrSO4 + +Sr+2 + SO4-2 = SrSO4 + -llnl_gamma 3 + log_k 2.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrSO4 # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Tb+++ = Tb(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9625 - -delta_H -27.9491 kJ/mol # Calculated enthalpy of reaction Tb(Acetate)2+ + +2 HAcetate + Tb+3 = Tb(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -4.9625 + -delta_H -27.9491 kJ/mol # Calculated enthalpy of reaction Tb(Acetate)2+ # Enthalpy of formation: -405.78 kcal/mol - -analytic -2.3910e+001 1.3433e-003 -8.0800e+002 6.3895e+000 4.8619e+005 + -analytic -2.391e+1 1.3433e-3 -8.08e+2 6.3895e+0 4.8619e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Tb+++ = Tb(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3489 - -delta_H -47.1537 kJ/mol # Calculated enthalpy of reaction Tb(Acetate)3 +3 HAcetate + Tb+3 = Tb(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -8.3489 + -delta_H -47.1537 kJ/mol # Calculated enthalpy of reaction Tb(Acetate)3 # Enthalpy of formation: -526.47 kcal/mol - -analytic -1.0762e+001 4.2361e-003 -1.5620e+003 -3.9317e-001 6.5745e+005 + -analytic -1.0762e+1 4.2361e-3 -1.562e+3 -3.9317e-1 6.5745e+5 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Tb+++ = Tb(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.5576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(CO3)2- +2 HCO3- + Tb+3 = Tb(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -7.5576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Tb+++ = Tb(HPO4)2- - -llnl_gamma 4.0 - log_k +9.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(HPO4)2- + +2 HPO4-2 + Tb+3 = Tb(HPO4)2- + -llnl_gamma 4 + log_k 9.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(HPO4)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Tb+++ = Tb(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.6437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(PO4)2-3 + +2 HPO4-2 + Tb+3 = Tb(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -3.6437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Tb+++ = Tb(SO4)2- - -llnl_gamma 4.0 - log_k +5.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(SO4)2- + +2 SO4-2 + Tb+3 = Tb(SO4)2- + -llnl_gamma 4 + log_k 5 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(SO4)2- # Enthalpy of formation: -0 kcal/mol - -1.0000 Tb+++ + 1.0000 HAcetate = TbAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1037 - -delta_H -14.2256 kJ/mol # Calculated enthalpy of reaction TbAcetate+2 + +Tb+3 + HAcetate = TbAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -2.1037 + -delta_H -14.2256 kJ/mol # Calculated enthalpy of reaction TbAcetate+2 # Enthalpy of formation: -286.4 kcal/mol - -analytic -1.6817e+001 6.4290e-004 -3.4442e+002 5.0994e+000 2.7304e+005 + -analytic -1.6817e+1 6.429e-4 -3.4442e+2 5.0994e+0 2.7304e+5 # -Range: 0-300 -1.0000 Tb+++ + 1.0000 HCO3- = TbCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.4057 - -delta_H 89.5292 kJ/mol # Calculated enthalpy of reaction TbCO3+ +Tb+3 + HCO3- = TbCO3+ + H+ + -llnl_gamma 4 + log_k -2.4057 + -delta_H 89.5292 kJ/mol # Calculated enthalpy of reaction TbCO3+ # Enthalpy of formation: -310.4 kcal/mol - -analytic 2.2347e+002 5.4185e-002 -6.4127e+003 -8.9112e+001 -1.0013e+002 + -analytic 2.2347e+2 5.4185e-2 -6.4127e+3 -8.9112e+1 -1.0013e+2 # -Range: 0-300 -1.0000 Tb+++ + 1.0000 Cl- = TbCl++ - -llnl_gamma 4.5 - log_k +0.2353 - -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction TbCl+2 +Tb+3 + Cl- = TbCl+2 + -llnl_gamma 4.5 + log_k 0.2353 + -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction TbCl+2 # Enthalpy of formation: -203.5 kcal/mol - -analytic 7.1095e+001 3.7367e-002 -1.4676e+003 -3.1140e+001 -2.2921e+001 + -analytic 7.1095e+1 3.7367e-2 -1.4676e+3 -3.114e+1 -2.2921e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Tb+++ = TbCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 18.2673 kJ/mol # Calculated enthalpy of reaction TbCl2+ +2 Cl- + Tb+3 = TbCl2+ + -llnl_gamma 4 + log_k -0.0425 + -delta_H 18.2673 kJ/mol # Calculated enthalpy of reaction TbCl2+ # Enthalpy of formation: -242.4 kcal/mol - -analytic 2.0699e+002 7.9609e-002 -5.0958e+003 -8.6337e+001 -7.9576e+001 + -analytic 2.0699e+2 7.9609e-2 -5.0958e+3 -8.6337e+1 -7.9576e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Tb+++ = TbCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 10.0374 kJ/mol # Calculated enthalpy of reaction TbCl3 +3 Cl- + Tb+3 = TbCl3 + -llnl_gamma 3 + log_k -0.4669 + -delta_H 10.0374 kJ/mol # Calculated enthalpy of reaction TbCl3 # Enthalpy of formation: -284.3 kcal/mol - -analytic 4.0764e+002 1.2809e-001 -1.0704e+004 -1.6583e+002 -1.6715e+002 + -analytic 4.0764e+2 1.2809e-1 -1.0704e+4 -1.6583e+2 -1.6715e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 Tb+++ = TbCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -11.5813 kJ/mol # Calculated enthalpy of reaction TbCl4- +4 Cl- + Tb+3 = TbCl4- + -llnl_gamma 4 + log_k -0.8913 + -delta_H -11.5813 kJ/mol # Calculated enthalpy of reaction TbCl4- # Enthalpy of formation: -329.4 kcal/mol - -analytic 4.6247e+002 1.2926e-001 -1.2117e+004 -1.8639e+002 -1.8921e+002 + -analytic 4.6247e+2 1.2926e-1 -1.2117e+4 -1.8639e+2 -1.8921e+2 # -Range: 0-300 -1.0000 Tb+++ + 1.0000 F- = TbF++ - -llnl_gamma 4.5 - log_k +4.6619 - -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction TbF+2 +Tb+3 + F- = TbF+2 + -llnl_gamma 4.5 + log_k 4.6619 + -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction TbF+2 # Enthalpy of formation: -241.6 kcal/mol - -analytic 9.2579e+001 4.1327e-002 -2.3647e+003 -3.7293e+001 -3.6927e+001 + -analytic 9.2579e+1 4.1327e-2 -2.3647e+3 -3.7293e+1 -3.6927e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Tb+++ = TbF2+ - -llnl_gamma 4.0 - log_k +8.1510 - -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction TbF2+ +2 F- + Tb+3 = TbF2+ + -llnl_gamma 4 + log_k 8.151 + -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction TbF2+ # Enthalpy of formation: -324.3 kcal/mol - -analytic 2.3100e+002 8.4094e-002 -5.2548e+003 -9.3051e+001 -8.2065e+001 + -analytic 2.31e+2 8.4094e-2 -5.2548e+3 -9.3051e+1 -8.2065e+1 # -Range: 0-300 -3.0000 F- + 1.0000 Tb+++ = TbF3 - -llnl_gamma 3.0 - log_k +10.6872 - -delta_H -11.9244 kJ/mol # Calculated enthalpy of reaction TbF3 +3 F- + Tb+3 = TbF3 + -llnl_gamma 3 + log_k 10.6872 + -delta_H -11.9244 kJ/mol # Calculated enthalpy of reaction TbF3 # Enthalpy of formation: -410.2 kcal/mol - -analytic 4.3730e+002 1.3479e-001 -1.0128e+004 -1.7489e+002 -1.5817e+002 + -analytic 4.373e+2 1.3479e-1 -1.0128e+4 -1.7489e+2 -1.5817e+2 # -Range: 0-300 -4.0000 F- + 1.0000 Tb+++ = TbF4- - -llnl_gamma 4.0 - log_k +12.7836 - -delta_H -56.0656 kJ/mol # Calculated enthalpy of reaction TbF4- +4 F- + Tb+3 = TbF4- + -llnl_gamma 4 + log_k 12.7836 + -delta_H -56.0656 kJ/mol # Calculated enthalpy of reaction TbF4- # Enthalpy of formation: -500.9 kcal/mol - -analytic 4.8546e+002 1.3511e-001 -1.0189e+004 -1.9347e+002 -1.5913e+002 + -analytic 4.8546e+2 1.3511e-1 -1.0189e+4 -1.9347e+2 -1.5913e+2 # -Range: 0-300 -1.0000 Tb+++ + 1.0000 HPO4-- + 1.0000 H+ = TbH2PO4++ - -llnl_gamma 4.5 - log_k +9.3751 - -delta_H -17.51 kJ/mol # Calculated enthalpy of reaction TbH2PO4+2 +Tb+3 + HPO4-2 + H+ = TbH2PO4+2 + -llnl_gamma 4.5 + log_k 9.3751 + -delta_H -17.51 kJ/mol # Calculated enthalpy of reaction TbH2PO4+2 # Enthalpy of formation: -479.9 kcal/mol - -analytic 1.0042e+002 6.2886e-002 6.0975e+002 -4.5178e+001 9.4847e+000 + -analytic 1.0042e+2 6.2886e-2 6.0975e+2 -4.5178e+1 9.4847e+0 # -Range: 0-300 -1.0000 Tb+++ + 1.0000 HCO3- = TbHCO3++ - -llnl_gamma 4.5 - log_k +1.6991 - -delta_H -14.6524 kJ/mol # Calculated enthalpy of reaction TbHCO3+2 +Tb+3 + HCO3- = TbHCO3+2 + -llnl_gamma 4.5 + log_k 1.6991 + -delta_H -14.6524 kJ/mol # Calculated enthalpy of reaction TbHCO3+2 # Enthalpy of formation: -335.3 kcal/mol - -analytic 1.7376e+001 2.8365e-002 1.6982e+003 -1.2044e+001 2.6494e+001 + -analytic 1.7376e+1 2.8365e-2 1.6982e+3 -1.2044e+1 2.6494e+1 # -Range: 0-300 -1.0000 Tb+++ + 1.0000 HPO4-- = TbHPO4+ - -llnl_gamma 4.0 - log_k +5.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction TbHPO4+ +Tb+3 + HPO4-2 = TbHPO4+ + -llnl_gamma 4 + log_k 5.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction TbHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Tb+++ + 1.0000 NO3- = TbNO3++ - -llnl_gamma 4.5 - log_k +0.5080 - -delta_H -31.2587 kJ/mol # Calculated enthalpy of reaction TbNO3+2 + +Tb+3 + NO3- = TbNO3+2 + -llnl_gamma 4.5 + log_k 0.508 + -delta_H -31.2587 kJ/mol # Calculated enthalpy of reaction TbNO3+2 # Enthalpy of formation: -223.8 kcal/mol - -analytic 8.7852e+000 2.4868e-002 2.5553e+003 -9.7944e+000 3.9871e+001 + -analytic 8.7852e+0 2.4868e-2 2.5553e+3 -9.7944e+0 3.9871e+1 # -Range: 0-300 -1.0000 Tb+++ + 1.0000 H2O = TbO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.1904 - -delta_H 109.692 kJ/mol # Calculated enthalpy of reaction TbO+ +Tb+3 + H2O = TbO+ + 2 H+ + -llnl_gamma 4 + log_k -16.1904 + -delta_H 109.692 kJ/mol # Calculated enthalpy of reaction TbO+ # Enthalpy of formation: -209 kcal/mol - -analytic 1.7975e+002 2.9563e-002 -1.3407e+004 -6.4573e+001 -2.0926e+002 + -analytic 1.7975e+2 2.9563e-2 -1.3407e+4 -6.4573e+1 -2.0926e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Tb+++ = TbO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -34.2134 - -delta_H 278.797 kJ/mol # Calculated enthalpy of reaction TbO2- +2 H2O + Tb+3 = TbO2- + 4 H+ + -llnl_gamma 4 + log_k -34.2134 + -delta_H 278.797 kJ/mol # Calculated enthalpy of reaction TbO2- # Enthalpy of formation: -236.9 kcal/mol - -analytic 1.6924e+002 1.1804e-002 -1.9821e+004 -5.6781e+001 -3.0933e+002 + -analytic 1.6924e+2 1.1804e-2 -1.9821e+4 -5.6781e+1 -3.0933e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Tb+++ = TbO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -25.0508 - -delta_H 219.802 kJ/mol # Calculated enthalpy of reaction TbO2H +2 H2O + Tb+3 = TbO2H + 3 H+ + -llnl_gamma 3 + log_k -25.0508 + -delta_H 219.802 kJ/mol # Calculated enthalpy of reaction TbO2H # Enthalpy of formation: -251 kcal/mol - -analytic 3.2761e+002 4.5225e-002 -2.2652e+004 -1.1727e+002 -3.5356e+002 + -analytic 3.2761e+2 4.5225e-2 -2.2652e+4 -1.1727e+2 -3.5356e+2 # -Range: 0-300 -1.0000 Tb+++ + 1.0000 H2O = TbOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.8342 - -delta_H 77.4751 kJ/mol # Calculated enthalpy of reaction TbOH+2 +Tb+3 + H2O = TbOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.8342 + -delta_H 77.4751 kJ/mol # Calculated enthalpy of reaction TbOH+2 # Enthalpy of formation: -216.7 kcal/mol - -analytic 5.9574e+001 1.1625e-002 -5.8143e+003 -2.0759e+001 -9.0744e+001 + -analytic 5.9574e+1 1.1625e-2 -5.8143e+3 -2.0759e+1 -9.0744e+1 # -Range: 0-300 -1.0000 Tb+++ + 1.0000 HPO4-- = TbPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.0782 - -delta_H 0 # Not possible to calculate enthalpy of reaction TbPO4 +Tb+3 + HPO4-2 = TbPO4 + H+ + -llnl_gamma 3 + log_k 0.0782 + -delta_H 0 # Not possible to calculate enthalpy of reaction TbPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Tb+++ + 1.0000 SO4-- = TbSO4+ - -llnl_gamma 4.0 - log_k +3.6430 - -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction TbSO4+ + +Tb+3 + SO4-2 = TbSO4+ + -llnl_gamma 4 + log_k 3.643 + -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction TbSO4+ # Enthalpy of formation: -379.6 kcal/mol - -analytic 2.9633e+002 8.5155e-002 -8.6346e+003 -1.1682e+002 -1.3482e+002 + -analytic 2.9633e+2 8.5155e-2 -8.6346e+3 -1.1682e+2 -1.3482e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 TcO++ = TcO(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -3.3221 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO(OH)2 +2 H2O + TcO+2 = TcO(OH)2 + 2 H+ + -llnl_gamma 3 + log_k -3.3221 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO(OH)2 # Enthalpy of formation: -0 kcal/mol - -1.0000 TcO++ + 1.0000 H2O = TcOOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -1.1355 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcOOH+ + +TcO+2 + H2O = TcOOH+ + H+ + -llnl_gamma 4 + log_k -1.1355 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcOOH+ # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 2.0000 H+ + 1.0000 Th++++ = Th(H2PO4)2++ - -llnl_gamma 4.5 - log_k +23.2070 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th(H2PO4)2+2 + +2 HPO4-2 + 2 H+ + Th+4 = Th(H2PO4)2+2 + -llnl_gamma 4.5 + log_k 23.207 + -delta_H 0 # Not possible to calculate enthalpy of reaction Th(H2PO4)2+2 # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Th++++ = Th(HPO4)2 - -llnl_gamma 3.0 - log_k +22.6939 - -delta_H -13.644 kJ/mol # Calculated enthalpy of reaction Th(HPO4)2 + +2 HPO4-2 + Th+4 = Th(HPO4)2 + -llnl_gamma 3 + log_k 22.6939 + -delta_H -13.644 kJ/mol # Calculated enthalpy of reaction Th(HPO4)2 # Enthalpy of formation: -804.691 kcal/mol - -analytic 6.5208e+002 2.3099e-001 -1.2990e+004 -2.6457e+002 -2.2082e+002 + -analytic 6.5208e+2 2.3099e-1 -1.299e+4 -2.6457e+2 -2.2082e+2 # -Range: 0-200 -3.0000 HPO4-- + 1.0000 Th++++ = Th(HPO4)3-- - -llnl_gamma 4.0 - log_k +31.1894 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th(HPO4)3-2 +3 HPO4-2 + Th+4 = Th(HPO4)3-2 + -llnl_gamma 4 + log_k 31.1894 + -delta_H 0 # Not possible to calculate enthalpy of reaction Th(HPO4)3-2 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Th++++ = Th(OH)2++ +2.0000 H+ - -llnl_gamma 4.5 - log_k -7.1068 - -delta_H 58.668 kJ/mol # Calculated enthalpy of reaction Th(OH)2+2 + +2 H2O + Th+4 = Th(OH)2+2 + 2 H+ + -llnl_gamma 4.5 + log_k -7.1068 + -delta_H 58.668 kJ/mol # Calculated enthalpy of reaction Th(OH)2+2 # Enthalpy of formation: -306.412 kcal/mol - -analytic -1.1274e+001 3.4195e-003 -3.7553e+002 3.1299e+000 -2.9696e+005 + -analytic -1.1274e+1 3.4195e-3 -3.7553e+2 3.1299e+0 -2.9696e+5 # -Range: 0-300 -3.0000 H2O + 1.0000 Th++++ = Th(OH)3+ +3.0000 H+ - -llnl_gamma 4.0 - log_k -11.8623 - -delta_H 86.1318 kJ/mol # Calculated enthalpy of reaction Th(OH)3+ +3 H2O + Th+4 = Th(OH)3+ + 3 H+ + -llnl_gamma 4 + log_k -11.8623 + -delta_H 86.1318 kJ/mol # Calculated enthalpy of reaction Th(OH)3+ # Enthalpy of formation: -368.165 kcal/mol -4.0000 H2O + 1.0000 Th++++ = Th(OH)4 +4.0000 H+ - -llnl_gamma 3.0 - log_k -16.0315 - -delta_H 104.01 kJ/mol # Calculated enthalpy of reaction Th(OH)4 +4 H2O + Th+4 = Th(OH)4 + 4 H+ + -llnl_gamma 3 + log_k -16.0315 + -delta_H 104.01 kJ/mol # Calculated enthalpy of reaction Th(OH)4 # Enthalpy of formation: -432.209 kcal/mol - -analytic 2.9534e+001 1.5550e-002 -5.6680e+003 -1.2598e+001 -9.6262e+001 + -analytic 2.9534e+1 1.555e-2 -5.668e+3 -1.2598e+1 -9.6262e+1 # -Range: 0-200 -2.0000 SO4-- + 1.0000 Th++++ = Th(SO4)2 - -llnl_gamma 3.0 - log_k +9.6170 - -delta_H 32.2377 kJ/mol # Calculated enthalpy of reaction Th(SO4)2 +2 SO4-2 + Th+4 = Th(SO4)2 + -llnl_gamma 3 + log_k 9.617 + -delta_H 32.2377 kJ/mol # Calculated enthalpy of reaction Th(SO4)2 # Enthalpy of formation: -610.895 kcal/mol - -analytic 4.6425e+002 1.6769e-001 -1.1195e+004 -1.8875e+002 -1.9027e+002 + -analytic 4.6425e+2 1.6769e-1 -1.1195e+4 -1.8875e+2 -1.9027e+2 # -Range: 0-200 -3.0000 SO4-- + 1.0000 Th++++ = Th(SO4)3-- - -llnl_gamma 4.0 - log_k +10.4014 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th(SO4)3-2 +3 SO4-2 + Th+4 = Th(SO4)3-2 + -llnl_gamma 4 + log_k 10.4014 + -delta_H 0 # Not possible to calculate enthalpy of reaction Th(SO4)3-2 # Enthalpy of formation: -0 kcal/mol - -4.0000 SO4-- + 1.0000 Th++++ = Th(SO4)4---- - -llnl_gamma 4.0 - log_k +8.4003 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th(SO4)4-4 + +4 SO4-2 + Th+4 = Th(SO4)4-4 + -llnl_gamma 4 + log_k 8.4003 + -delta_H 0 # Not possible to calculate enthalpy of reaction Th(SO4)4-4 # Enthalpy of formation: -0 kcal/mol - -2.0000 Th++++ + 2.0000 H2O = Th2(OH)2+6 +2.0000 H+ - -llnl_gamma 6.0 - log_k -6.4618 - -delta_H 63.7181 kJ/mol # Calculated enthalpy of reaction Th2(OH)2+6 + +2 Th+4 + 2 H2O = Th2(OH)2+6 + 2 H+ + -llnl_gamma 6 + log_k -6.4618 + -delta_H 63.7181 kJ/mol # Calculated enthalpy of reaction Th2(OH)2+6 # Enthalpy of formation: -489.005 kcal/mol - -analytic 6.8838e+001 -4.1348e-003 -6.4415e+003 -2.1200e+001 -1.0053e+002 + -analytic 6.8838e+1 -4.1348e-3 -6.4415e+3 -2.12e+1 -1.0053e+2 # -Range: 0-300 -8.0000 H2O + 4.0000 Th++++ = Th4(OH)8+8 +8.0000 H+ - -llnl_gamma 6.0 - log_k -21.7568 - -delta_H 245.245 kJ/mol # Calculated enthalpy of reaction Th4(OH)8+8 +8 H2O + 4 Th+4 = Th4(OH)8+8 + 8 H+ + -llnl_gamma 6 + log_k -21.7568 + -delta_H 245.245 kJ/mol # Calculated enthalpy of reaction Th4(OH)8+8 # Enthalpy of formation: -1223.12 kcal/mol - -analytic 2.7826e+002 -2.3504e-003 -2.4410e+004 -8.7873e+001 -3.8097e+002 + -analytic 2.7826e+2 -2.3504e-3 -2.441e+4 -8.7873e+1 -3.8097e+2 # -Range: 0-300 -15.0000 H2O + 6.0000 Th++++ = Th6(OH)15+9 +15.0000 H+ - -llnl_gamma 6.0 - log_k -37.7027 - -delta_H 458.248 kJ/mol # Calculated enthalpy of reaction Th6(OH)15+9 +15 H2O + 6 Th+4 = Th6(OH)15+9 + 15 H+ + -llnl_gamma 6 + log_k -37.7027 + -delta_H 458.248 kJ/mol # Calculated enthalpy of reaction Th6(OH)15+9 # Enthalpy of formation: -2018.03 kcal/mol - -analytic 5.2516e+002 3.3015e-003 -4.5237e+004 -1.6654e+002 -7.0603e+002 + -analytic 5.2516e+2 3.3015e-3 -4.5237e+4 -1.6654e+2 -7.0603e+2 # -Range: 0-300 -1.0000 Th++++ + 1.0000 Cl- = ThCl+++ - -llnl_gamma 5.0 - log_k +0.9536 - -delta_H 0.06276 kJ/mol # Calculated enthalpy of reaction ThCl+3 +Th+4 + Cl- = ThCl+3 + -llnl_gamma 5 + log_k 0.9536 + -delta_H 0.06276 kJ/mol # Calculated enthalpy of reaction ThCl+3 # Enthalpy of formation: -223.718 kcal/mol - -analytic 9.7430e+001 3.9398e-002 -1.8653e+003 -4.1202e+001 -2.9135e+001 + -analytic 9.743e+1 3.9398e-2 -1.8653e+3 -4.1202e+1 -2.9135e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Th++++ = ThCl2++ - -llnl_gamma 4.5 - log_k +0.6758 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl2+2 +2 Cl- + Th+4 = ThCl2+2 + -llnl_gamma 4.5 + log_k 0.6758 + -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl2+2 # Enthalpy of formation: -0 kcal/mol - -3.0000 Cl- + 1.0000 Th++++ = ThCl3+ - -llnl_gamma 4.0 - log_k +1.4975 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl3+ + +3 Cl- + Th+4 = ThCl3+ + -llnl_gamma 4 + log_k 1.4975 + -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl3+ # Enthalpy of formation: -0 kcal/mol - -4.0000 Cl- + 1.0000 Th++++ = ThCl4 - -llnl_gamma 3.0 - log_k +1.0731 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl4 + +4 Cl- + Th+4 = ThCl4 + -llnl_gamma 3 + log_k 1.0731 + -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Th++++ + 1.0000 F- = ThF+++ - -llnl_gamma 5.0 - log_k +7.8725 - -delta_H -4.87436 kJ/mol # Calculated enthalpy of reaction ThF+3 + +Th+4 + F- = ThF+3 + -llnl_gamma 5 + log_k 7.8725 + -delta_H -4.87436 kJ/mol # Calculated enthalpy of reaction ThF+3 # Enthalpy of formation: -265.115 kcal/mol - -analytic 1.1679e+002 3.9201e-002 -2.2118e+003 -4.5736e+001 -3.4548e+001 + -analytic 1.1679e+2 3.9201e-2 -2.2118e+3 -4.5736e+1 -3.4548e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Th++++ = ThF2++ - -llnl_gamma 4.5 - log_k +14.0884 - -delta_H -7.77806 kJ/mol # Calculated enthalpy of reaction ThF2+2 +2 F- + Th+4 = ThF2+2 + -llnl_gamma 4.5 + log_k 14.0884 + -delta_H -7.77806 kJ/mol # Calculated enthalpy of reaction ThF2+2 # Enthalpy of formation: -345.959 kcal/mol - -analytic 2.3200e+002 7.9567e-002 -4.4418e+003 -9.1617e+001 -6.9379e+001 + -analytic 2.32e+2 7.9567e-2 -4.4418e+3 -9.1617e+1 -6.9379e+1 # -Range: 0-300 -3.0000 F- + 1.0000 Th++++ = ThF3+ - -llnl_gamma 4.0 - log_k +18.7357 - -delta_H -11.7068 kJ/mol # Calculated enthalpy of reaction ThF3+ +3 F- + Th+4 = ThF3+ + -llnl_gamma 4 + log_k 18.7357 + -delta_H -11.7068 kJ/mol # Calculated enthalpy of reaction ThF3+ # Enthalpy of formation: -427.048 kcal/mol - -analytic 3.4511e+002 1.2149e-001 -6.5065e+003 -1.3770e+002 -1.0163e+002 + -analytic 3.4511e+2 1.2149e-1 -6.5065e+3 -1.377e+2 -1.0163e+2 # -Range: 0-300 -4.0000 F- + 1.0000 Th++++ = ThF4 - -llnl_gamma 3.0 - log_k +22.1515 - -delta_H -14.8448 kJ/mol # Calculated enthalpy of reaction ThF4 +4 F- + Th+4 = ThF4 + -llnl_gamma 3 + log_k 22.1515 + -delta_H -14.8448 kJ/mol # Calculated enthalpy of reaction ThF4 # Enthalpy of formation: -507.948 kcal/mol - -analytic 6.1206e+002 2.1878e-001 -1.1938e+004 -2.4857e+002 -2.0294e+002 + -analytic 6.1206e+2 2.1878e-1 -1.1938e+4 -2.4857e+2 -2.0294e+2 # -Range: 0-200 -1.0000 Th++++ + 1.0000 HPO4-- + 1.0000 H+ = ThH2PO4+++ - -llnl_gamma 5.0 - log_k +11.7061 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThH2PO4+3 +Th+4 + HPO4-2 + H+ = ThH2PO4+3 + -llnl_gamma 5 + log_k 11.7061 + -delta_H 0 # Not possible to calculate enthalpy of reaction ThH2PO4+3 # Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 1.0000 Th++++ + 1.0000 HPO4-- = ThH3PO4++++ - -llnl_gamma 5.5 - log_k +11.1197 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThH3PO4+4 + +2 H+ + Th+4 + HPO4-2 = ThH3PO4+4 + -llnl_gamma 5.5 + log_k 11.1197 + -delta_H 0 # Not possible to calculate enthalpy of reaction ThH3PO4+4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Th++++ + 1.0000 HPO4-- = ThHPO4++ - -llnl_gamma 4.5 - log_k +10.6799 - -delta_H 0.1046 kJ/mol # Calculated enthalpy of reaction ThHPO4+2 + +Th+4 + HPO4-2 = ThHPO4+2 + -llnl_gamma 4.5 + log_k 10.6799 + -delta_H 0.1046 kJ/mol # Calculated enthalpy of reaction ThHPO4+2 # Enthalpy of formation: -492.59 kcal/mol -1.0000 Th++++ + 1.0000 H2O = ThOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -3.8871 - -delta_H 25.0275 kJ/mol # Calculated enthalpy of reaction ThOH+3 +Th+4 + H2O = ThOH+3 + H+ + -llnl_gamma 5 + log_k -3.8871 + -delta_H 25.0275 kJ/mol # Calculated enthalpy of reaction ThOH+3 # Enthalpy of formation: -1029.83 kJ/mol - -analytic 1.0495e+001 5.1532e-003 -8.6396e+002 -4.8420e+000 -9.2609e+004 + -analytic 1.0495e+1 5.1532e-3 -8.6396e+2 -4.842e+0 -9.2609e+4 # -Range: 0-300 -1.0000 Th++++ + 1.0000 SO4-- = ThSO4++ - -llnl_gamma 4.5 - log_k +5.3143 - -delta_H 16.3511 kJ/mol # Calculated enthalpy of reaction ThSO4+2 +Th+4 + SO4-2 = ThSO4+2 + -llnl_gamma 4.5 + log_k 5.3143 + -delta_H 16.3511 kJ/mol # Calculated enthalpy of reaction ThSO4+2 # Enthalpy of formation: -397.292 kcal/mol - -analytic 1.9443e+002 7.5245e-002 -4.5010e+003 -7.9379e+001 -7.0291e+001 + -analytic 1.9443e+2 7.5245e-2 -4.501e+3 -7.9379e+1 -7.0291e+1 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Tl+ = Tl(Acetate)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -10.0129 - -delta_H 1.2552 kJ/mol # Calculated enthalpy of reaction Tl(Acetate)2- +2 HAcetate + Tl+ = Tl(Acetate)2- + 2 H+ + -llnl_gamma 4 + log_k -10.0129 + -delta_H 1.2552 kJ/mol # Calculated enthalpy of reaction Tl(Acetate)2- # Enthalpy of formation: -230.62 kcal/mol - -analytic -1.8123e+002 -4.0616e-002 5.0741e+003 6.7216e+001 7.9229e+001 + -analytic -1.8123e+2 -4.0616e-2 5.0741e+3 6.7216e+1 7.9229e+1 # -Range: 0-300 -1.0000 Tl+ + 1.0000 HAcetate = TlAcetate +1.0000 H+ - -llnl_gamma 3.0 - log_k -4.8672 - -delta_H 6.15048 kJ/mol # Calculated enthalpy of reaction TlAcetate +Tl+ + HAcetate = TlAcetate + H+ + -llnl_gamma 3 + log_k -4.8672 + -delta_H 6.15048 kJ/mol # Calculated enthalpy of reaction TlAcetate # Enthalpy of formation: -113.35 kcal/mol - -analytic 9.2977e+000 -3.4368e-003 -2.1748e+003 -3.1454e+000 1.7273e+005 + -analytic 9.2977e+0 -3.4368e-3 -2.1748e+3 -3.1454e+0 1.7273e+5 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Tm+++ = Tm(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9844 - -delta_H -32.5934 kJ/mol # Calculated enthalpy of reaction Tm(Acetate)2+ +2 HAcetate + Tm+3 = Tm(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -4.9844 + -delta_H -32.5934 kJ/mol # Calculated enthalpy of reaction Tm(Acetate)2+ # Enthalpy of formation: -408.49 kcal/mol - -analytic -2.8983e+001 2.0256e-003 -1.1525e+003 8.2163e+000 6.1820e+005 + -analytic -2.8983e+1 2.0256e-3 -1.1525e+3 8.2163e+0 6.182e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Tm+++ = Tm(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3783 - -delta_H -54.8104 kJ/mol # Calculated enthalpy of reaction Tm(Acetate)3 +3 HAcetate + Tm+3 = Tm(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -8.3783 + -delta_H -54.8104 kJ/mol # Calculated enthalpy of reaction Tm(Acetate)3 # Enthalpy of formation: -529.9 kcal/mol - -analytic -2.8900e+001 4.9633e-003 -1.6574e+003 6.0186e+000 8.6624e+005 + -analytic -2.89e+1 4.9633e-3 -1.6574e+3 6.0186e+0 8.6624e+5 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Tm+++ = Tm(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.1576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(CO3)2- +2 HCO3- + Tm+3 = Tm(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -7.1576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Tm+++ = Tm(HPO4)2- - -llnl_gamma 4.0 - log_k +10.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(HPO4)2- + +2 HPO4-2 + Tm+3 = Tm(HPO4)2- + -llnl_gamma 4 + log_k 10.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(HPO4)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Tm+++ = Tm(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.0437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(PO4)2-3 + +2 HPO4-2 + Tm+3 = Tm(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -3.0437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Tm+++ = Tm(SO4)2- - -llnl_gamma 4.0 - log_k +5.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(SO4)2- + +2 SO4-2 + Tm+3 = Tm(SO4)2- + -llnl_gamma 4 + log_k 5.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(SO4)2- # Enthalpy of formation: -0 kcal/mol - -1.0000 Tm+++ + 1.0000 HAcetate = TmAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1184 - -delta_H -16.3176 kJ/mol # Calculated enthalpy of reaction TmAcetate+2 + +Tm+3 + HAcetate = TmAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -2.1184 + -delta_H -16.3176 kJ/mol # Calculated enthalpy of reaction TmAcetate+2 # Enthalpy of formation: -288.5 kcal/mol - -analytic -1.6068e+001 1.2043e-003 -6.2777e+002 4.8318e+000 3.3363e+005 + -analytic -1.6068e+1 1.2043e-3 -6.2777e+2 4.8318e+0 3.3363e+5 # -Range: 0-300 -1.0000 Tm+++ + 1.0000 HCO3- = TmCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.1125 - -delta_H 86.6004 kJ/mol # Calculated enthalpy of reaction TmCO3+ +Tm+3 + HCO3- = TmCO3+ + H+ + -llnl_gamma 4 + log_k -2.1125 + -delta_H 86.6004 kJ/mol # Calculated enthalpy of reaction TmCO3+ # Enthalpy of formation: -312.7 kcal/mol - -analytic 2.3889e+002 5.4733e-002 -6.9382e+003 -9.4581e+001 -1.0833e+002 + -analytic 2.3889e+2 5.4733e-2 -6.9382e+3 -9.4581e+1 -1.0833e+2 # -Range: 0-300 -1.0000 Tm+++ + 1.0000 Cl- = TmCl++ - -llnl_gamma 4.5 - log_k +0.2353 - -delta_H 13.1085 kJ/mol # Calculated enthalpy of reaction TmCl+2 +Tm+3 + Cl- = TmCl+2 + -llnl_gamma 4.5 + log_k 0.2353 + -delta_H 13.1085 kJ/mol # Calculated enthalpy of reaction TmCl+2 # Enthalpy of formation: -205.3 kcal/mol - -analytic 7.4795e+001 3.7655e-002 -1.5701e+003 -3.2531e+001 -2.4523e+001 + -analytic 7.4795e+1 3.7655e-2 -1.5701e+3 -3.2531e+1 -2.4523e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Tm+++ = TmCl2+ - -llnl_gamma 4.0 - log_k -0.0425 - -delta_H 15.7569 kJ/mol # Calculated enthalpy of reaction TmCl2+ +2 Cl- + Tm+3 = TmCl2+ + -llnl_gamma 4 + log_k -0.0425 + -delta_H 15.7569 kJ/mol # Calculated enthalpy of reaction TmCl2+ # Enthalpy of formation: -244.6 kcal/mol - -analytic 2.0352e+002 7.9173e-002 -4.8574e+003 -8.5202e+001 -7.5855e+001 + -analytic 2.0352e+2 7.9173e-2 -4.8574e+3 -8.5202e+1 -7.5855e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Tm+++ = TmCl3 - -llnl_gamma 3.0 - log_k -0.4669 - -delta_H 5.43502 kJ/mol # Calculated enthalpy of reaction TmCl3 +3 Cl- + Tm+3 = TmCl3 + -llnl_gamma 3 + log_k -0.4669 + -delta_H 5.43502 kJ/mol # Calculated enthalpy of reaction TmCl3 # Enthalpy of formation: -287 kcal/mol - -analytic 3.9793e+002 1.2777e-001 -1.0070e+004 -1.6272e+002 -1.5725e+002 + -analytic 3.9793e+2 1.2777e-1 -1.007e+4 -1.6272e+2 -1.5725e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 Tm+++ = TmCl4- - -llnl_gamma 4.0 - log_k -0.8913 - -delta_H -20.3677 kJ/mol # Calculated enthalpy of reaction TmCl4- +4 Cl- + Tm+3 = TmCl4- + -llnl_gamma 4 + log_k -0.8913 + -delta_H -20.3677 kJ/mol # Calculated enthalpy of reaction TmCl4- # Enthalpy of formation: -333.1 kcal/mol - -analytic 4.3574e+002 1.2655e-001 -1.0713e+004 -1.7716e+002 -1.6730e+002 + -analytic 4.3574e+2 1.2655e-1 -1.0713e+4 -1.7716e+2 -1.673e+2 # -Range: 0-300 -1.0000 Tm+++ + 1.0000 F- = TmF++ - -llnl_gamma 4.5 - log_k +4.8085 - -delta_H 23.6396 kJ/mol # Calculated enthalpy of reaction TmF+2 +Tm+3 + F- = TmF+2 + -llnl_gamma 4.5 + log_k 4.8085 + -delta_H 23.6396 kJ/mol # Calculated enthalpy of reaction TmF+2 # Enthalpy of formation: -243 kcal/mol - -analytic 9.7686e+001 4.1890e-002 -2.5909e+003 -3.9059e+001 -4.0457e+001 + -analytic 9.7686e+1 4.189e-2 -2.5909e+3 -3.9059e+1 -4.0457e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Tm+++ = TmF2+ - -llnl_gamma 4.0 - log_k +8.3709 - -delta_H 12.552 kJ/mol # Calculated enthalpy of reaction TmF2+ +2 F- + Tm+3 = TmF2+ + -llnl_gamma 4 + log_k 8.3709 + -delta_H 12.552 kJ/mol # Calculated enthalpy of reaction TmF2+ # Enthalpy of formation: -325.8 kcal/mol - -analytic 2.2986e+002 8.4119e-002 -5.2144e+003 -9.2558e+001 -8.1433e+001 + -analytic 2.2986e+2 8.4119e-2 -5.2144e+3 -9.2558e+1 -8.1433e+1 # -Range: 0-300 -3.0000 F- + 1.0000 Tm+++ = TmF3 - -llnl_gamma 3.0 - log_k +10.9804 - -delta_H -12.7612 kJ/mol # Calculated enthalpy of reaction TmF3 +3 F- + Tm+3 = TmF3 + -llnl_gamma 3 + log_k 10.9804 + -delta_H -12.7612 kJ/mol # Calculated enthalpy of reaction TmF3 # Enthalpy of formation: -412 kcal/mol - -analytic 4.2855e+002 1.3445e-001 -9.7045e+003 -1.7177e+002 -1.5156e+002 + -analytic 4.2855e+2 1.3445e-1 -9.7045e+3 -1.7177e+2 -1.5156e+2 # -Range: 0-300 -4.0000 F- + 1.0000 Tm+++ = TmF4- - -llnl_gamma 4.0 - log_k +13.1501 - -delta_H -60.668 kJ/mol # Calculated enthalpy of reaction TmF4- +4 F- + Tm+3 = TmF4- + -llnl_gamma 4 + log_k 13.1501 + -delta_H -60.668 kJ/mol # Calculated enthalpy of reaction TmF4- # Enthalpy of formation: -503.6 kcal/mol - -analytic 4.6559e+002 1.3386e-001 -9.1790e+003 -1.8650e+002 -1.4337e+002 + -analytic 4.6559e+2 1.3386e-1 -9.179e+3 -1.865e+2 -1.4337e+2 # -Range: 0-300 -1.0000 Tm+++ + 1.0000 HPO4-- + 1.0000 H+ = TmH2PO4++ - -llnl_gamma 4.5 - log_k +9.4484 - -delta_H -20.4388 kJ/mol # Calculated enthalpy of reaction TmH2PO4+2 +Tm+3 + HPO4-2 + H+ = TmH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -20.4388 kJ/mol # Calculated enthalpy of reaction TmH2PO4+2 # Enthalpy of formation: -482.2 kcal/mol - -analytic 1.0360e+002 6.3085e-002 6.0731e+002 -4.6456e+001 9.4456e+000 + -analytic 1.036e+2 6.3085e-2 6.0731e+2 -4.6456e+1 9.4456e+0 # -Range: 0-300 -1.0000 Tm+++ + 1.0000 HCO3- = TmHCO3++ - -llnl_gamma 4.5 - log_k +1.7724 - -delta_H 5.01243 kJ/mol # Calculated enthalpy of reaction TmHCO3+2 +Tm+3 + HCO3- = TmHCO3+2 + -llnl_gamma 4.5 + log_k 1.7724 + -delta_H 5.01243 kJ/mol # Calculated enthalpy of reaction TmHCO3+2 # Enthalpy of formation: -332.2 kcal/mol - -analytic 3.3102e+001 3.1010e-002 2.9880e+002 -1.6791e+001 4.6524e+000 + -analytic 3.3102e+1 3.101e-2 2.988e+2 -1.6791e+1 4.6524e+0 # -Range: 0-300 -1.0000 Tm+++ + 1.0000 HPO4-- = TmHPO4+ - -llnl_gamma 4.0 - log_k +5.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction TmHPO4+ +Tm+3 + HPO4-2 = TmHPO4+ + -llnl_gamma 4 + log_k 5.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction TmHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Tm+++ + 1.0000 NO3- = TmNO3++ - -llnl_gamma 4.5 - log_k +0.2148 - -delta_H -33.7691 kJ/mol # Calculated enthalpy of reaction TmNO3+2 + +Tm+3 + NO3- = TmNO3+2 + -llnl_gamma 4.5 + log_k 0.2148 + -delta_H -33.7691 kJ/mol # Calculated enthalpy of reaction TmNO3+2 # Enthalpy of formation: -226 kcal/mol - -analytic 1.1085e+001 2.4898e-002 2.5664e+003 -1.0861e+001 4.0043e+001 + -analytic 1.1085e+1 2.4898e-2 2.5664e+3 -1.0861e+1 4.0043e+1 # -Range: 0-300 -1.0000 Tm+++ + 1.0000 H2O = TmO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -15.8972 - -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction TmO+ +Tm+3 + H2O = TmO+ + 2 H+ + -llnl_gamma 4 + log_k -15.8972 + -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction TmO+ # Enthalpy of formation: -211.6 kcal/mol - -analytic 1.7572e+002 2.8756e-002 -1.3096e+004 -6.3150e+001 -2.0441e+002 + -analytic 1.7572e+2 2.8756e-2 -1.3096e+4 -6.315e+1 -2.0441e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Tm+++ = TmO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -32.6741 - -delta_H 266.663 kJ/mol # Calculated enthalpy of reaction TmO2- +2 H2O + Tm+3 = TmO2- + 4 H+ + -llnl_gamma 4 + log_k -32.6741 + -delta_H 266.663 kJ/mol # Calculated enthalpy of reaction TmO2- # Enthalpy of formation: -241.4 kcal/mol - -analytic 3.3118e+001 -5.2802e-003 -1.1318e+004 -8.4764e+000 -4.6998e+005 + -analytic 3.3118e+1 -5.2802e-3 -1.1318e+4 -8.4764e+0 -4.6998e+5 # -Range: 0-300 -2.0000 H2O + 1.0000 Tm+++ = TmO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -24.1712 - -delta_H 211.853 kJ/mol # Calculated enthalpy of reaction TmO2H +2 H2O + Tm+3 = TmO2H + 3 H+ + -llnl_gamma 3 + log_k -24.1712 + -delta_H 211.853 kJ/mol # Calculated enthalpy of reaction TmO2H # Enthalpy of formation: -254.5 kcal/mol - -analytic 3.1648e+002 4.4527e-002 -2.1821e+004 -1.1345e+002 -3.4059e+002 + -analytic 3.1648e+2 4.4527e-2 -2.1821e+4 -1.1345e+2 -3.4059e+2 # -Range: 0-300 -1.0000 Tm+++ + 1.0000 H2O = TmOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.6876 - -delta_H 74.5463 kJ/mol # Calculated enthalpy of reaction TmOH+2 +Tm+3 + H2O = TmOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.6876 + -delta_H 74.5463 kJ/mol # Calculated enthalpy of reaction TmOH+2 # Enthalpy of formation: -219 kcal/mol - -analytic 5.7572e+001 1.1162e-002 -5.6381e+003 -2.0074e+001 -8.7994e+001 + -analytic 5.7572e+1 1.1162e-2 -5.6381e+3 -2.0074e+1 -8.7994e+1 # -Range: 0-300 -1.0000 Tm+++ + 1.0000 HPO4-- = TmPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.4782 - -delta_H 0 # Not possible to calculate enthalpy of reaction TmPO4 +Tm+3 + HPO4-2 = TmPO4 + H+ + -llnl_gamma 3 + log_k 0.4782 + -delta_H 0 # Not possible to calculate enthalpy of reaction TmPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Tm+++ + 1.0000 SO4-- = TmSO4+ - -llnl_gamma 4.0 - log_k +3.5697 - -delta_H 19.9995 kJ/mol # Calculated enthalpy of reaction TmSO4+ + +Tm+3 + SO4-2 = TmSO4+ + -llnl_gamma 4 + log_k 3.5697 + -delta_H 19.9995 kJ/mol # Calculated enthalpy of reaction TmSO4+ # Enthalpy of formation: -381.12 kcal/mol - -analytic 3.0441e+002 8.6070e-002 -8.9592e+003 -1.1979e+002 -1.3989e+002 + -analytic 3.0441e+2 8.607e-2 -8.9592e+3 -1.1979e+2 -1.3989e+2 # -Range: 0-300 -4.0000 HCO3- + 1.0000 U++++ = U(CO3)4---- +4.0000 H+ - -llnl_gamma 4.0 - log_k -6.2534 - -delta_H 0 # Not possible to calculate enthalpy of reaction U(CO3)4-4 +4 HCO3- + U+4 = U(CO3)4-4 + 4 H+ + -llnl_gamma 4 + log_k -6.2534 + -delta_H 0 # Not possible to calculate enthalpy of reaction U(CO3)4-4 # Enthalpy of formation: -0 kcal/mol - -5.0000 HCO3- + 1.0000 U++++ = U(CO3)5-6 +5.0000 H+ - -llnl_gamma 4.0 - log_k -17.7169 - -delta_H 53.5172 kJ/mol # Calculated enthalpy of reaction U(CO3)5-6 + +5 HCO3- + U+4 = U(CO3)5-6 + 5 H+ + -llnl_gamma 4 + log_k -17.7169 + -delta_H 53.5172 kJ/mol # Calculated enthalpy of reaction U(CO3)5-6 # Enthalpy of formation: -3987.35 kJ/mol - -analytic 6.3020e+002 1.9391e-001 -1.9238e+004 -2.5912e+002 -3.0038e+002 + -analytic 6.302e+2 1.9391e-1 -1.9238e+4 -2.5912e+2 -3.0038e+2 # -Range: 0-300 -2.0000 NO3- + 1.0000 U++++ = U(NO3)2++ - -llnl_gamma 4.5 - log_k +2.2610 - -delta_H 0 # Not possible to calculate enthalpy of reaction U(NO3)2+2 +2 NO3- + U+4 = U(NO3)2+2 + -llnl_gamma 4.5 + log_k 2.261 + -delta_H 0 # Not possible to calculate enthalpy of reaction U(NO3)2+2 # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 U++++ = U(OH)4 +4.0000 H+ - -llnl_gamma 3.0 - log_k -4.57 - -delta_H 78.7553 kJ/mol # Calculated enthalpy of reaction U(OH)4 + +4 H2O + U+4 = U(OH)4 + 4 H+ + -llnl_gamma 3 + log_k -4.57 + -delta_H 78.7553 kJ/mol # Calculated enthalpy of reaction U(OH)4 # Enthalpy of formation: -1655.8 kJ/mol - -analytic 2.6685e+002 9.8204e-002 -9.4428e+003 -1.0871e+002 -1.6045e+002 + -analytic 2.6685e+2 9.8204e-2 -9.4428e+3 -1.0871e+2 -1.6045e+2 # -Range: 0-200 -2.0000 Thiocyanate- + 1.0000 U++++ = U(Thiocyanate)2++ - -llnl_gamma 4.5 - log_k +4.2600 - -delta_H 0 # Not possible to calculate enthalpy of reaction U(Thiocyanate)2+2 +2 Thiocyanate- + U+4 = U(Thiocyanate)2+2 + -llnl_gamma 4.5 + log_k 4.26 + -delta_H 0 # Not possible to calculate enthalpy of reaction U(Thiocyanate)2+2 # Enthalpy of formation: -456.4 kJ/mol - -analytic 6.2193e+000 2.7673e-002 2.4326e+003 -7.4158e+000 3.7957e+001 + -analytic 6.2193e+0 2.7673e-2 2.4326e+3 -7.4158e+0 3.7957e+1 # -Range: 0-300 -2.0000 SO4-- + 1.0000 U++++ = U(SO4)2 - -llnl_gamma 3.0 - log_k +10.3507 - -delta_H 33.2232 kJ/mol # Calculated enthalpy of reaction U(SO4)2 +2 SO4-2 + U+4 = U(SO4)2 + -llnl_gamma 3 + log_k 10.3507 + -delta_H 33.2232 kJ/mol # Calculated enthalpy of reaction U(SO4)2 # Enthalpy of formation: -2377.18 kJ/mol - -analytic 4.9476e+002 1.7832e-001 -1.1901e+004 -2.0111e+002 -2.0227e+002 + -analytic 4.9476e+2 1.7832e-1 -1.1901e+4 -2.0111e+2 -2.0227e+2 # -Range: 0-200 -1.0000 U++++ + 1.0000 Br- = UBr+++ - -llnl_gamma 5.0 - log_k +1.4240 - -delta_H 0 # Not possible to calculate enthalpy of reaction UBr+3 +U+4 + Br- = UBr+3 + -llnl_gamma 5 + log_k 1.424 + -delta_H 0 # Not possible to calculate enthalpy of reaction UBr+3 # Enthalpy of formation: -0 kcal/mol - -1.0000 U++++ + 1.0000 Cl- = UCl+++ - -llnl_gamma 5.0 - log_k +1.7073 - -delta_H -18.9993 kJ/mol # Calculated enthalpy of reaction UCl+3 + +U+4 + Cl- = UCl+3 + -llnl_gamma 5 + log_k 1.7073 + -delta_H -18.9993 kJ/mol # Calculated enthalpy of reaction UCl+3 # Enthalpy of formation: -777.279 kJ/mol - -analytic 9.4418e+001 4.1718e-002 -7.0675e+002 -4.1532e+001 -1.1056e+001 + -analytic 9.4418e+1 4.1718e-2 -7.0675e+2 -4.1532e+1 -1.1056e+1 # -Range: 0-300 -1.0000 U++++ + 1.0000 F- = UF+++ - -llnl_gamma 5.0 - log_k +9.2403 - -delta_H -5.6024 kJ/mol # Calculated enthalpy of reaction UF+3 +U+4 + F- = UF+3 + -llnl_gamma 5 + log_k 9.2403 + -delta_H -5.6024 kJ/mol # Calculated enthalpy of reaction UF+3 # Enthalpy of formation: -932.15 kJ/mol - -analytic 1.1828e+002 3.8097e-002 -2.2531e+003 -4.5594e+001 -3.5193e+001 + -analytic 1.1828e+2 3.8097e-2 -2.2531e+3 -4.5594e+1 -3.5193e+1 # -Range: 0-300 -2.0000 F- + 1.0000 U++++ = UF2++ - -llnl_gamma 4.5 - log_k +16.1505 - -delta_H -3.5048 kJ/mol # Calculated enthalpy of reaction UF2+2 +2 F- + U+4 = UF2+2 + -llnl_gamma 4.5 + log_k 16.1505 + -delta_H -3.5048 kJ/mol # Calculated enthalpy of reaction UF2+2 # Enthalpy of formation: -1265.4 kJ/mol - -analytic 2.3537e+002 7.7064e-002 -4.8455e+003 -9.1296e+001 -7.5679e+001 + -analytic 2.3537e+2 7.7064e-2 -4.8455e+3 -9.1296e+1 -7.5679e+1 # -Range: 0-300 -3.0000 F- + 1.0000 U++++ = UF3+ - -llnl_gamma 4.0 - log_k +21.4806 - -delta_H 0.4938 kJ/mol # Calculated enthalpy of reaction UF3+ +3 F- + U+4 = UF3+ + -llnl_gamma 4 + log_k 21.4806 + -delta_H 0.4938 kJ/mol # Calculated enthalpy of reaction UF3+ # Enthalpy of formation: -1596.75 kJ/mol - -analytic 3.5097e+002 1.1714e-001 -7.4569e+003 -1.3714e+002 -1.1646e+002 + -analytic 3.5097e+2 1.1714e-1 -7.4569e+3 -1.3714e+2 -1.1646e+2 # -Range: 0-300 -4.0000 F- + 1.0000 U++++ = UF4 - -llnl_gamma 3.0 - log_k +25.4408 - -delta_H -4.2146 kJ/mol # Calculated enthalpy of reaction UF4 +4 F- + U+4 = UF4 + -llnl_gamma 3 + log_k 25.4408 + -delta_H -4.2146 kJ/mol # Calculated enthalpy of reaction UF4 # Enthalpy of formation: -1936.81 kJ/mol - -analytic 7.8549e+002 2.7922e-001 -1.6213e+004 -3.1881e+002 -2.7559e+002 + -analytic 7.8549e+2 2.7922e-1 -1.6213e+4 -3.1881e+2 -2.7559e+2 # -Range: 0-200 -5.0000 F- + 1.0000 U++++ = UF5- - -llnl_gamma 4.0 - log_k +26.8110 - -delta_H 0 # Not possible to calculate enthalpy of reaction UF5- +5 F- + U+4 = UF5- + -llnl_gamma 4 + log_k 26.811 + -delta_H 0 # Not possible to calculate enthalpy of reaction UF5- # Enthalpy of formation: -0 kcal/mol - -6.0000 F- + 1.0000 U++++ = UF6-- - -llnl_gamma 4.0 - log_k +28.8412 - -delta_H 0 # Not possible to calculate enthalpy of reaction UF6-2 + +6 F- + U+4 = UF6-2 + -llnl_gamma 4 + log_k 28.8412 + -delta_H 0 # Not possible to calculate enthalpy of reaction UF6-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 U++++ + 1.0000 I- = UI+++ - -llnl_gamma 5.0 - log_k +1.2151 - -delta_H 0 # Not possible to calculate enthalpy of reaction UI+3 + +U+4 + I- = UI+3 + -llnl_gamma 5 + log_k 1.2151 + -delta_H 0 # Not possible to calculate enthalpy of reaction UI+3 # Enthalpy of formation: -0 kcal/mol - -1.0000 U++++ + 1.0000 NO3- = UNO3+++ - -llnl_gamma 5.0 - log_k +1.4506 - -delta_H 0 # Not possible to calculate enthalpy of reaction UNO3+3 + +U+4 + NO3- = UNO3+3 + -llnl_gamma 5 + log_k 1.4506 + -delta_H 0 # Not possible to calculate enthalpy of reaction UNO3+3 # Enthalpy of formation: -0 kcal/mol - -2.0000 HCO3- + 1.0000 UO2++ = UO2(CO3)2-- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.7467 - -delta_H 47.9065 kJ/mol # Calculated enthalpy of reaction UO2(CO3)2-2 + +2 HCO3- + UO2+2 = UO2(CO3)2-2 + 2 H+ + -llnl_gamma 4 + log_k -3.7467 + -delta_H 47.9065 kJ/mol # Calculated enthalpy of reaction UO2(CO3)2-2 # Enthalpy of formation: -2350.96 kJ/mol - -analytic 2.6569e+002 8.1552e-002 -9.0918e+003 -1.0638e+002 -1.4195e+002 + -analytic 2.6569e+2 8.1552e-2 -9.0918e+3 -1.0638e+2 -1.4195e+2 # -Range: 0-300 -3.0000 HCO3- + 1.0000 UO2+ = UO2(CO3)3-5 +3.0000 H+ - -llnl_gamma 4.0 - log_k -23.6241 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(CO3)3-5 +3 HCO3- + UO2+ = UO2(CO3)3-5 + 3 H+ + -llnl_gamma 4 + log_k -23.6241 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(CO3)3-5 # Enthalpy of formation: -0 kcal/mol - -3.0000 HCO3- + 1.0000 UO2++ = UO2(CO3)3---- +3.0000 H+ - -llnl_gamma 4.0 - log_k -9.4302 - -delta_H 4.9107 kJ/mol # Calculated enthalpy of reaction UO2(CO3)3-4 + +3 HCO3- + UO2+2 = UO2(CO3)3-4 + 3 H+ + -llnl_gamma 4 + log_k -9.4302 + -delta_H 4.9107 kJ/mol # Calculated enthalpy of reaction UO2(CO3)3-4 # Enthalpy of formation: -3083.89 kJ/mol - -analytic 3.7918e+002 1.1789e-001 -1.0233e+004 -1.5738e+002 -1.5978e+002 + -analytic 3.7918e+2 1.1789e-1 -1.0233e+4 -1.5738e+2 -1.5978e+2 # -Range: 0-300 -3.0000 H+ + 2.0000 HPO4-- + 1.0000 UO2++ = UO2(H2PO4)(H3PO4)+ - -llnl_gamma 4.0 - log_k +22.7537 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(H2PO4)(H3PO4)+ +3 H+ + 2 HPO4-2 + UO2+2 = UO2(H2PO4)(H3PO4)+ + -llnl_gamma 4 + log_k 22.7537 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(H2PO4)(H3PO4)+ # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 2.0000 H+ + 1.0000 UO2++ = UO2(H2PO4)2 - -llnl_gamma 3.0 - log_k +21.7437 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(H2PO4)2 + +2 HPO4-2 + 2 H+ + UO2+2 = UO2(H2PO4)2 + -llnl_gamma 3 + log_k 21.7437 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(H2PO4)2 # Enthalpy of formation: -0 kcal/mol - -2.0000 IO3- + 1.0000 UO2++ = UO2(IO3)2 - -llnl_gamma 3.0 - log_k +2.9969 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(IO3)2 + +2 IO3- + UO2+2 = UO2(IO3)2 + -llnl_gamma 3 + log_k 2.9969 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(IO3)2 # Enthalpy of formation: -0 kcal/mol - -2.0000 N3- + 1.0000 UO2++ = UO2(N3)2 - -llnl_gamma 3.0 - log_k +4.3301 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)2 + +2 N3- + UO2+2 = UO2(N3)2 + -llnl_gamma 3 + log_k 4.3301 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)2 # Enthalpy of formation: -0 kcal/mol - -3.0000 N3- + 1.0000 UO2++ = UO2(N3)3- - -llnl_gamma 4.0 - log_k +5.7401 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)3- + +3 N3- + UO2+2 = UO2(N3)3- + -llnl_gamma 4 + log_k 5.7401 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)3- # Enthalpy of formation: -0 kcal/mol - -4.0000 N3- + 1.0000 UO2++ = UO2(N3)4-- - -llnl_gamma 4.0 - log_k +4.9200 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)4-2 + +4 N3- + UO2+2 = UO2(N3)4-2 + -llnl_gamma 4 + log_k 4.92 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)4-2 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 UO2++ = UO2(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -10.3146 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)2 + +2 H2O + UO2+2 = UO2(OH)2 + 2 H+ + -llnl_gamma 3 + log_k -10.3146 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)2 # Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 UO2++ = UO2(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -19.2218 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)3- + +3 H2O + UO2+2 = UO2(OH)3- + 3 H+ + -llnl_gamma 4 + log_k -19.2218 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)3- # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 UO2++ = UO2(OH)4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -33.0291 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)4-2 + +4 H2O + UO2+2 = UO2(OH)4-2 + 4 H+ + -llnl_gamma 4 + log_k -33.0291 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)4-2 # Enthalpy of formation: -0 kcal/mol - -2.0000 Thiocyanate- + 1.0000 UO2++ = UO2(Thiocyanate)2 - -llnl_gamma 3.0 - log_k +1.2401 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(Thiocyanate)2 + +2 Thiocyanate- + UO2+2 = UO2(Thiocyanate)2 + -llnl_gamma 3 + log_k 1.2401 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(Thiocyanate)2 # Enthalpy of formation: -857.3 kJ/mol - -analytic 9.4216e+001 3.2840e-002 -2.4849e+003 -3.8162e+001 -4.2231e+001 + -analytic 9.4216e+1 3.284e-2 -2.4849e+3 -3.8162e+1 -4.2231e+1 # -Range: 0-200 -3.0000 Thiocyanate- + 1.0000 UO2++ = UO2(Thiocyanate)3- - -llnl_gamma 4.0 - log_k +2.1001 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(Thiocyanate)3- +3 Thiocyanate- + UO2+2 = UO2(Thiocyanate)3- + -llnl_gamma 4 + log_k 2.1001 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(Thiocyanate)3- # Enthalpy of formation: -783.8 kJ/mol - -analytic 1.6622e+001 2.2714e-002 4.9707e+002 -9.2785e+000 7.7512e+000 + -analytic 1.6622e+1 2.2714e-2 4.9707e+2 -9.2785e+0 7.7512e+0 # -Range: 0-300 -2.0000 SO3-- + 1.0000 UO2++ = UO2(SO3)2-- - -llnl_gamma 4.0 - log_k +7.9101 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(SO3)2-2 +2 SO3-2 + UO2+2 = UO2(SO3)2-2 + -llnl_gamma 4 + log_k 7.9101 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(SO3)2-2 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 UO2++ = UO2(SO4)2-- - -llnl_gamma 4.0 - log_k +3.9806 - -delta_H 35.6242 kJ/mol # Calculated enthalpy of reaction UO2(SO4)2-2 + +2 SO4-2 + UO2+2 = UO2(SO4)2-2 + -llnl_gamma 4 + log_k 3.9806 + -delta_H 35.6242 kJ/mol # Calculated enthalpy of reaction UO2(SO4)2-2 # Enthalpy of formation: -2802.58 kJ/mol - -analytic 3.9907e+002 1.3536e-001 -1.0813e+004 -1.6130e+002 -1.6884e+002 + -analytic 3.9907e+2 1.3536e-1 -1.0813e+4 -1.613e+2 -1.6884e+2 # -Range: 0-300 -1.0000 UO2++ + 1.0000 Br- = UO2Br+ - -llnl_gamma 4.0 - log_k +0.1840 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2Br+ +UO2+2 + Br- = UO2Br+ + -llnl_gamma 4 + log_k 0.184 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2Br+ # Enthalpy of formation: -0 kcal/mol - -1.0000 UO2++ + 1.0000 BrO3- = UO2BrO3+ - -llnl_gamma 4.0 - log_k +0.5510 - -delta_H 0.46952 kJ/mol # Calculated enthalpy of reaction UO2BrO3+ + +UO2+2 + BrO3- = UO2BrO3+ + -llnl_gamma 4 + log_k 0.551 + -delta_H 0.46952 kJ/mol # Calculated enthalpy of reaction UO2BrO3+ # Enthalpy of formation: -1085.6 kJ/mol - -analytic 8.2618e+001 2.6921e-002 -2.0144e+003 -3.3673e+001 -3.1457e+001 + -analytic 8.2618e+1 2.6921e-2 -2.0144e+3 -3.3673e+1 -3.1457e+1 # -Range: 0-300 -1.0000 UO2++ + 1.0000 HCO3- = UO2CO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -0.6634 - -delta_H 19.7032 kJ/mol # Calculated enthalpy of reaction UO2CO3 +UO2+2 + HCO3- = UO2CO3 + H+ + -llnl_gamma 3 + log_k -0.6634 + -delta_H 19.7032 kJ/mol # Calculated enthalpy of reaction UO2CO3 # Enthalpy of formation: -1689.23 kJ/mol - -analytic 7.3898e+001 2.8127e-002 -2.4347e+003 -3.0217e+001 -4.1371e+001 + -analytic 7.3898e+1 2.8127e-2 -2.4347e+3 -3.0217e+1 -4.1371e+1 # -Range: 0-200 -1.0000 UO2++ + 1.0000 Cl- = UO2Cl+ - -llnl_gamma 4.0 - log_k +0.1572 - -delta_H 8.00167 kJ/mol # Calculated enthalpy of reaction UO2Cl+ +UO2+2 + Cl- = UO2Cl+ + -llnl_gamma 4 + log_k 0.1572 + -delta_H 8.00167 kJ/mol # Calculated enthalpy of reaction UO2Cl+ # Enthalpy of formation: -1178.08 kJ/mol - -analytic 9.8139e+001 3.8869e-002 -2.3178e+003 -4.1133e+001 -3.6196e+001 + -analytic 9.8139e+1 3.8869e-2 -2.3178e+3 -4.1133e+1 -3.6196e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 UO2++ = UO2Cl2 - -llnl_gamma 3.0 - log_k -1.1253 - -delta_H 15.0013 kJ/mol # Calculated enthalpy of reaction UO2Cl2 +2 Cl- + UO2+2 = UO2Cl2 + -llnl_gamma 3 + log_k -1.1253 + -delta_H 15.0013 kJ/mol # Calculated enthalpy of reaction UO2Cl2 # Enthalpy of formation: -1338.16 kJ/mol - -analytic 3.4087e+001 1.3840e-002 -1.3664e+003 -1.4043e+001 -2.3216e+001 + -analytic 3.4087e+1 1.384e-2 -1.3664e+3 -1.4043e+1 -2.3216e+1 # -Range: 0-200 -1.0000 UO2++ + 1.0000 ClO3- = UO2ClO3+ - -llnl_gamma 4.0 - log_k +0.4919 - -delta_H -3.9266 kJ/mol # Calculated enthalpy of reaction UO2ClO3+ +UO2+2 + ClO3- = UO2ClO3+ + -llnl_gamma 4 + log_k 0.4919 + -delta_H -3.9266 kJ/mol # Calculated enthalpy of reaction UO2ClO3+ # Enthalpy of formation: -1126.9 kJ/mol - -analytic 9.6263e+001 2.8926e-002 -2.3068e+003 -3.9057e+001 -3.6025e+001 + -analytic 9.6263e+1 2.8926e-2 -2.3068e+3 -3.9057e+1 -3.6025e+1 # -Range: 0-300 -1.0000 UO2++ + 1.0000 F- = UO2F+ - -llnl_gamma 4.0 - log_k +5.0502 - -delta_H 1.6976 kJ/mol # Calculated enthalpy of reaction UO2F+ +UO2+2 + F- = UO2F+ + -llnl_gamma 4 + log_k 5.0502 + -delta_H 1.6976 kJ/mol # Calculated enthalpy of reaction UO2F+ # Enthalpy of formation: -1352.65 kJ/mol - -analytic 1.1476e+002 4.0682e-002 -2.4467e+003 -4.5914e+001 -3.8212e+001 + -analytic 1.1476e+2 4.0682e-2 -2.4467e+3 -4.5914e+1 -3.8212e+1 # -Range: 0-300 -2.0000 F- + 1.0000 UO2++ = UO2F2 - -llnl_gamma 3.0 - log_k +8.5403 - -delta_H 2.0962 kJ/mol # Calculated enthalpy of reaction UO2F2 +2 F- + UO2+2 = UO2F2 + -llnl_gamma 3 + log_k 8.5403 + -delta_H 2.0962 kJ/mol # Calculated enthalpy of reaction UO2F2 # Enthalpy of formation: -1687.6 kJ/mol - -analytic 2.7673e+002 9.9190e-002 -5.8371e+003 -1.1242e+002 -9.9219e+001 + -analytic 2.7673e+2 9.919e-2 -5.8371e+3 -1.1242e+2 -9.9219e+1 # -Range: 0-200 -3.0000 F- + 1.0000 UO2++ = UO2F3- - -llnl_gamma 4.0 - log_k +10.7806 - -delta_H 2.3428 kJ/mol # Calculated enthalpy of reaction UO2F3- +3 F- + UO2+2 = UO2F3- + -llnl_gamma 4 + log_k 10.7806 + -delta_H 2.3428 kJ/mol # Calculated enthalpy of reaction UO2F3- # Enthalpy of formation: -2022.7 kJ/mol - -analytic 3.3383e+002 9.2160e-002 -8.7975e+003 -1.2972e+002 -1.3738e+002 + -analytic 3.3383e+2 9.216e-2 -8.7975e+3 -1.2972e+2 -1.3738e+2 # -Range: 0-300 -4.0000 F- + 1.0000 UO2++ = UO2F4-- - -llnl_gamma 4.0 - log_k +11.5407 - -delta_H 0.2814 kJ/mol # Calculated enthalpy of reaction UO2F4-2 +4 F- + UO2+2 = UO2F4-2 + -llnl_gamma 4 + log_k 11.5407 + -delta_H 0.2814 kJ/mol # Calculated enthalpy of reaction UO2F4-2 # Enthalpy of formation: -2360.11 kJ/mol - -analytic 4.4324e+002 1.3808e-001 -1.0705e+004 -1.7657e+002 -1.6718e+002 + -analytic 4.4324e+2 1.3808e-1 -1.0705e+4 -1.7657e+2 -1.6718e+2 # -Range: 0-300 -1.0000 UO2++ + 1.0000 HPO4-- + 1.0000 H+ = UO2H2PO4+ - -llnl_gamma 4.0 - log_k +11.6719 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2H2PO4+ +UO2+2 + HPO4-2 + H+ = UO2H2PO4+ + -llnl_gamma 4 + log_k 11.6719 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2H2PO4+ # Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 1.0000 UO2++ + 1.0000 HPO4-- = UO2H3PO4++ - -llnl_gamma 4.5 - log_k +11.3119 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2H3PO4+2 + +2 H+ + UO2+2 + HPO4-2 = UO2H3PO4+2 + -llnl_gamma 4.5 + log_k 11.3119 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2H3PO4+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 UO2++ + 1.0000 HPO4-- = UO2HPO4 - -llnl_gamma 3.0 - log_k +8.4398 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2HPO4 + +UO2+2 + HPO4-2 = UO2HPO4 + -llnl_gamma 3 + log_k 8.4398 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2HPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 UO2++ + 1.0000 IO3- = UO2IO3+ - -llnl_gamma 4.0 - log_k +1.7036 - -delta_H 11.4336 kJ/mol # Calculated enthalpy of reaction UO2IO3+ + +UO2+2 + IO3- = UO2IO3+ + -llnl_gamma 4 + log_k 1.7036 + -delta_H 11.4336 kJ/mol # Calculated enthalpy of reaction UO2IO3+ # Enthalpy of formation: -1228.9 kJ/mol - -analytic 1.0428e+002 2.9620e-002 -3.2441e+003 -4.0618e+001 -5.0651e+001 + -analytic 1.0428e+2 2.962e-2 -3.2441e+3 -4.0618e+1 -5.0651e+1 # -Range: 0-300 -1.0000 UO2++ + 1.0000 N3- = UO2N3+ - -llnl_gamma 4.0 - log_k +2.5799 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2N3+ +UO2+2 + N3- = UO2N3+ + -llnl_gamma 4 + log_k 2.5799 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2N3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 UO2++ + 1.0000 NO3- = UO2NO3+ - -llnl_gamma 4.0 - log_k +0.2805 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2NO3+ + +UO2+2 + NO3- = UO2NO3+ + -llnl_gamma 4 + log_k 0.2805 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2NO3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 UO2++ + 1.0000 H2O = UO2OH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.2073 - -delta_H 43.1813 kJ/mol # Calculated enthalpy of reaction UO2OH+ + +UO2+2 + H2O = UO2OH+ + H+ + -llnl_gamma 4 + log_k -5.2073 + -delta_H 43.1813 kJ/mol # Calculated enthalpy of reaction UO2OH+ # Enthalpy of formation: -1261.66 kJ/mol - -analytic 3.4387e+001 6.0811e-003 -3.3068e+003 -1.2252e+001 -5.1609e+001 + -analytic 3.4387e+1 6.0811e-3 -3.3068e+3 -1.2252e+1 -5.1609e+1 # -Range: 0-300 -1.0000 UO2++ + 1.0000 HPO4-- = UO2PO4- +1.0000 H+ - -llnl_gamma 4.0 - log_k +2.0798 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2PO4- +UO2+2 + HPO4-2 = UO2PO4- + H+ + -llnl_gamma 4 + log_k 2.0798 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2PO4- # Enthalpy of formation: -0 kcal/mol - + #2.0000 SO3-- + 2.0000 H+ + 1.0000 UO2++ = UO2S2O3 +1.0000 H2O +1.0000 O2 #S2O3-- + O2 + H2O = 2.0000 H+ + 2.0000 SO3-- log_k 40.2906 -S2O3-- + UO2++ = UO2S2O3 - -llnl_gamma 3.0 +S2O3-2 + UO2+2 = UO2S2O3 + -llnl_gamma 3 # log_k -38.0666 log_k 2.224 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2S2O3 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2S2O3 # Enthalpy of formation: -0 kcal/mol - -1.0000 UO2++ + 1.0000 Thiocyanate- = UO2Thiocyanate+ - -llnl_gamma 4.0 - log_k +1.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2Thiocyanate+ + +UO2+2 + Thiocyanate- = UO2Thiocyanate+ + -llnl_gamma 4 + log_k 1.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2Thiocyanate+ # Enthalpy of formation: -939.38 kJ/mol - -analytic 4.7033e+000 1.2562e-002 4.9095e+002 -3.5097e+000 7.6593e+000 + -analytic 4.7033e+0 1.2562e-2 4.9095e+2 -3.5097e+0 7.6593e+0 # -Range: 0-300 -1.0000 UO2++ + 1.0000 SO3-- = UO2SO3 - -llnl_gamma 3.0 - log_k +6.7532 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2SO3 +UO2+2 + SO3-2 = UO2SO3 + -llnl_gamma 3 + log_k 6.7532 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2SO3 # Enthalpy of formation: -0 kcal/mol - -1.0000 UO2++ + 1.0000 SO4-- = UO2SO4 - -llnl_gamma 3.0 - log_k +3.0703 - -delta_H 19.7626 kJ/mol # Calculated enthalpy of reaction UO2SO4 + +UO2+2 + SO4-2 = UO2SO4 + -llnl_gamma 3 + log_k 3.0703 + -delta_H 19.7626 kJ/mol # Calculated enthalpy of reaction UO2SO4 # Enthalpy of formation: -1908.84 kJ/mol - -analytic 1.9514e+002 7.0951e-002 -4.9949e+003 -7.9394e+001 -8.4888e+001 + -analytic 1.9514e+2 7.0951e-2 -4.9949e+3 -7.9394e+1 -8.4888e+1 # -Range: 0-200 -1.0000 U++++ + 1.0000 H2O = UOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k -0.5472 - -delta_H 46.9183 kJ/mol # Calculated enthalpy of reaction UOH+3 +U+4 + H2O = UOH+3 + H+ + -llnl_gamma 5 + log_k -0.5472 + -delta_H 46.9183 kJ/mol # Calculated enthalpy of reaction UOH+3 # Enthalpy of formation: -830.12 kJ/mol - -analytic 4.0793e+001 1.3563e-003 -3.8441e+003 -1.1659e+001 -5.9996e+001 + -analytic 4.0793e+1 1.3563e-3 -3.8441e+3 -1.1659e+1 -5.9996e+1 # -Range: 0-300 -1.0000 U++++ + 1.0000 Thiocyanate- = UThiocyanate+++ - -llnl_gamma 5.0 - log_k +2.9700 - -delta_H 0 # Not possible to calculate enthalpy of reaction UThiocyanate+3 +U+4 + Thiocyanate- = UThiocyanate+3 + -llnl_gamma 5 + log_k 2.97 + -delta_H 0 # Not possible to calculate enthalpy of reaction UThiocyanate+3 # Enthalpy of formation: -541.8 kJ/mol - -analytic 4.0286e-001 1.5909e-002 2.3026e+003 -3.9973e+000 3.5929e+001 + -analytic 4.0286e-1 1.5909e-2 2.3026e+3 -3.9973e+0 3.5929e+1 # -Range: 0-300 -1.0000 U++++ + 1.0000 SO4-- = USO4++ - -llnl_gamma 4.5 - log_k +6.5003 - -delta_H 8.2616 kJ/mol # Calculated enthalpy of reaction USO4+2 +U+4 + SO4-2 = USO4+2 + -llnl_gamma 4.5 + log_k 6.5003 + -delta_H 8.2616 kJ/mol # Calculated enthalpy of reaction USO4+2 # Enthalpy of formation: -1492.54 kJ/mol - -analytic 1.9418e+002 7.5458e-002 -4.0646e+003 -7.9416e+001 -6.3482e+001 + -analytic 1.9418e+2 7.5458e-2 -4.0646e+3 -7.9416e+1 -6.3482e+1 # -Range: 0-300 -2.0000 H2O + 1.0000 V+++ = V(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.9193 - -delta_H 0 # Not possible to calculate enthalpy of reaction V(OH)2+ +2 H2O + V+3 = V(OH)2+ + 2 H+ + -llnl_gamma 4 + log_k -5.9193 + -delta_H 0 # Not possible to calculate enthalpy of reaction V(OH)2+ # Enthalpy of formation: -0 kcal/mol - -2.0000 V+++ + 2.0000 H2O = V2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -3.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction V2(OH)2+4 + +2 V+3 + 2 H2O = V2(OH)2+4 + 2 H+ + -llnl_gamma 5.5 + log_k -3.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction V2(OH)2+4 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 VO2+ = VO(OH)3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -3.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO(OH)3 + +2 H2O + VO2+ = VO(OH)3 + H+ + -llnl_gamma 3 + log_k -3.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO(OH)3 # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 VO2+ = VO2(HPO4)2--- - -llnl_gamma 4.0 - log_k +8.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2(HPO4)2-3 + +2 HPO4-2 + VO2+ = VO2(HPO4)2-3 + -llnl_gamma 4 + log_k 8.6 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2(HPO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 VO2+ = VO2(OH)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2(OH)2- + +2 H2O + VO2+ = VO2(OH)2- + 2 H+ + -llnl_gamma 4 + log_k -7.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2(OH)2- # Enthalpy of formation: -0 kcal/mol - -1.0000 VO2+ + 1.0000 F- = VO2F - -llnl_gamma 3.0 - log_k +3.3500 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2F + +VO2+ + F- = VO2F + -llnl_gamma 3 + log_k 3.35 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2F # Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 VO2+ = VO2F2- - -llnl_gamma 4.0 - log_k +5.8100 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2F2- + +2 F- + VO2+ = VO2F2- + -llnl_gamma 4 + log_k 5.81 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2F2- # Enthalpy of formation: -0 kcal/mol - -1.0000 VO2+ + 1.0000 HPO4-- + 1.0000 H+ = VO2H2PO4 - -llnl_gamma 3.0 - log_k +1.6800 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2H2PO4 + +VO2+ + HPO4-2 + H+ = VO2H2PO4 + -llnl_gamma 3 + log_k 1.68 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2H2PO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 VO2+ + 1.0000 HPO4-- = VO2HPO4- - -llnl_gamma 4.0 - log_k +5.8300 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2HPO4- + +VO2+ + HPO4-2 = VO2HPO4- + -llnl_gamma 4 + log_k 5.83 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2HPO4- # Enthalpy of formation: -0 kcal/mol - -1.0000 VO2+ + 1.0000 SO4-- = VO2SO4- - -llnl_gamma 4.0 - log_k +1.5800 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2SO4- + +VO2+ + SO4-2 = VO2SO4- + -llnl_gamma 4 + log_k 1.58 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2SO4- # Enthalpy of formation: -0 kcal/mol - -1.0000 VO4--- + 1.0000 H+ = VO3OH-- - -llnl_gamma 4.0 - log_k +14.2600 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO3OH-2 + +VO4-3 + H+ = VO3OH-2 + -llnl_gamma 4 + log_k 14.26 + -delta_H 0 # Not possible to calculate enthalpy of reaction VO3OH-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 VO++ + 1.0000 F- = VOF+ - -llnl_gamma 4.0 - log_k +4.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOF+ + +VO+2 + F- = VOF+ + -llnl_gamma 4 + log_k 4 + -delta_H 0 # Not possible to calculate enthalpy of reaction VOF+ # Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 VO++ = VOF2 - -llnl_gamma 3.0 - log_k +6.7800 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOF2 + +2 F- + VO+2 = VOF2 + -llnl_gamma 3 + log_k 6.78 + -delta_H 0 # Not possible to calculate enthalpy of reaction VOF2 # Enthalpy of formation: -0 kcal/mol - -1.0000 V+++ + 1.0000 H2O = VOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.26 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOH+2 + +V+3 + H2O = VOH+2 + H+ + -llnl_gamma 4.5 + log_k -2.26 + -delta_H 0 # Not possible to calculate enthalpy of reaction VOH+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 VO++ + 1.0000 H2O = VOOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -5.67 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOOH+ + +VO+2 + H2O = VOOH+ + H+ + -llnl_gamma 4 + log_k -5.67 + -delta_H 0 # Not possible to calculate enthalpy of reaction VOOH+ # Enthalpy of formation: -0 kcal/mol - -1.0000 VO++ + 1.0000 SO4-- = VOSO4 - -llnl_gamma 3.0 - log_k +2.4800 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOSO4 + +VO+2 + SO4-2 = VOSO4 + -llnl_gamma 3 + log_k 2.48 + -delta_H 0 # Not possible to calculate enthalpy of reaction VOSO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 V+++ + 1.0000 SO4-- = VSO4+ - -llnl_gamma 4.0 - log_k +3.3300 - -delta_H 0 # Not possible to calculate enthalpy of reaction VSO4+ + +V+3 + SO4-2 = VSO4+ + -llnl_gamma 4 + log_k 3.33 + -delta_H 0 # Not possible to calculate enthalpy of reaction VSO4+ # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Y+++ = Y(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -4.9844 - -delta_H -34.8109 kJ/mol # Calculated enthalpy of reaction Y(Acetate)2+ + +2 HAcetate + Y+3 = Y(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -4.9844 + -delta_H -34.8109 kJ/mol # Calculated enthalpy of reaction Y(Acetate)2+ # Enthalpy of formation: -411.42 kcal/mol - -analytic -3.3011e+001 6.1979e-004 -7.7468e+002 9.6380e+000 5.8814e+005 + -analytic -3.3011e+1 6.1979e-4 -7.7468e+2 9.638e+0 5.8814e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Y+++ = Y(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.3783 - -delta_H -58.4505 kJ/mol # Calculated enthalpy of reaction Y(Acetate)3 +3 HAcetate + Y+3 = Y(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -8.3783 + -delta_H -58.4505 kJ/mol # Calculated enthalpy of reaction Y(Acetate)3 # Enthalpy of formation: -533.17 kcal/mol - -analytic -3.0086e+001 4.0213e-003 -1.1444e+003 6.1794e+000 8.0827e+005 + -analytic -3.0086e+1 4.0213e-3 -1.1444e+3 6.1794e+0 8.0827e+5 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Y+++ = Y(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.3576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(CO3)2- +2 HCO3- + Y+3 = Y(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -7.3576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Y+++ = Y(HPO4)2- - -llnl_gamma 4.0 - log_k +9.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(HPO4)2- + +2 HPO4-2 + Y+3 = Y(HPO4)2- + -llnl_gamma 4 + log_k 9.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(HPO4)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 H2O + 1.0000 Y+++ = Y(OH)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -16.3902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)2+ + +2 H2O + Y+3 = Y(OH)2+ + 2 H+ + -llnl_gamma 4 + log_k -16.3902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)2+ # Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Y+++ = Y(OH)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -25.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)3 + +3 H2O + Y+3 = Y(OH)3 + 3 H+ + -llnl_gamma 3 + log_k -25.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)3 # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Y+++ = Y(OH)4- +4.0000 H+ - -llnl_gamma 4.0 - log_k -36.4803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)4- + +4 H2O + Y+3 = Y(OH)4- + 4 H+ + -llnl_gamma 4 + log_k -36.4803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)4- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Y+++ = Y(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -3.2437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(PO4)2-3 + +2 HPO4-2 + Y+3 = Y(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -3.2437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Y+++ = Y(SO4)2- - -llnl_gamma 4.0 - log_k +4.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(SO4)2- + +2 SO4-2 + Y+3 = Y(SO4)2- + -llnl_gamma 4 + log_k 4.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(SO4)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 Y+++ + 2.0000 H2O = Y2(OH)2++++ +2.0000 H+ - -llnl_gamma 5.5 - log_k -14.1902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y2(OH)2+4 + +2 Y+3 + 2 H2O = Y2(OH)2+4 + 2 H+ + -llnl_gamma 5.5 + log_k -14.1902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Y2(OH)2+4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 HAcetate = YAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.1184 - -delta_H -17.2799 kJ/mol # Calculated enthalpy of reaction YAcetate+2 + +Y+3 + HAcetate = YAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -2.1184 + -delta_H -17.2799 kJ/mol # Calculated enthalpy of reaction YAcetate+2 # Enthalpy of formation: -291.13 kcal/mol - -analytic -1.2080e+001 1.2015e-003 -8.4186e+002 3.4522e+000 3.4647e+005 + -analytic -1.208e+1 1.2015e-3 -8.4186e+2 3.4522e+0 3.4647e+5 # -Range: 0-300 -1.0000 Y+++ + 1.0000 HCO3- = YCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.2788 - -delta_H 0 # Not possible to calculate enthalpy of reaction YCO3+ +Y+3 + HCO3- = YCO3+ + H+ + -llnl_gamma 4 + log_k -2.2788 + -delta_H 0 # Not possible to calculate enthalpy of reaction YCO3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 Cl- = YCl++ - -llnl_gamma 4.5 - log_k +0.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YCl+2 + +Y+3 + Cl- = YCl+2 + -llnl_gamma 4.5 + log_k 0.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction YCl+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 F- = YF++ - -llnl_gamma 4.5 - log_k +4.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YF+2 + +Y+3 + F- = YF+2 + -llnl_gamma 4.5 + log_k 4.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction YF+2 # Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 Y+++ = YF2+ - -llnl_gamma 4.0 - log_k +7.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YF2+ + +2 F- + Y+3 = YF2+ + -llnl_gamma 4 + log_k 7.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction YF2+ # Enthalpy of formation: -0 kcal/mol - -3.0000 F- + 1.0000 Y+++ = YF3 - -llnl_gamma 3.0 - log_k +11.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YF3 + +3 F- + Y+3 = YF3 + -llnl_gamma 3 + log_k 11.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction YF3 # Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 HPO4-- + 1.0000 H+ = YH2PO4++ - -llnl_gamma 4.5 - log_k +9.6054 - -delta_H 0 # Not possible to calculate enthalpy of reaction YH2PO4+2 + +Y+3 + HPO4-2 + H+ = YH2PO4+2 + -llnl_gamma 4.5 + log_k 9.6054 + -delta_H 0 # Not possible to calculate enthalpy of reaction YH2PO4+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 HCO3- = YHCO3++ - -llnl_gamma 4.5 - log_k +2.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YHCO3+2 + +Y+3 + HCO3- = YHCO3+2 + -llnl_gamma 4.5 + log_k 2.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction YHCO3+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 HPO4-- = YHPO4+ - -llnl_gamma 4.0 - log_k +5.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YHPO4+ + +Y+3 + HPO4-2 = YHPO4+ + -llnl_gamma 4 + log_k 5.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction YHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 NO3- = YNO3++ - -llnl_gamma 4.5 - log_k +0.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YNO3+2 + +Y+3 + NO3- = YNO3+2 + -llnl_gamma 4.5 + log_k 0.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction YNO3+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 H2O = YOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.6951 - -delta_H 0 # Not possible to calculate enthalpy of reaction YOH+2 + +Y+3 + H2O = YOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.6951 + -delta_H 0 # Not possible to calculate enthalpy of reaction YOH+2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 HPO4-- = YPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.2782 - -delta_H 0 # Not possible to calculate enthalpy of reaction YPO4 + +Y+3 + HPO4-2 = YPO4 + H+ + -llnl_gamma 3 + log_k 0.2782 + -delta_H 0 # Not possible to calculate enthalpy of reaction YPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Y+++ + 1.0000 SO4-- = YSO4+ - -llnl_gamma 4.0 - log_k +3.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YSO4+ + +Y+3 + SO4-2 = YSO4+ + -llnl_gamma 4 + log_k 3.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction YSO4+ # Enthalpy of formation: -0 kcal/mol - -2.0000 HAcetate + 1.0000 Yb+++ = Yb(Acetate)2+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -5.131 - -delta_H -30.334 kJ/mol # Calculated enthalpy of reaction Yb(Acetate)2+ + +2 HAcetate + Yb+3 = Yb(Acetate)2+ + 2 H+ + -llnl_gamma 4 + log_k -5.131 + -delta_H -30.334 kJ/mol # Calculated enthalpy of reaction Yb(Acetate)2+ # Enthalpy of formation: -399.75 kcal/mol - -analytic -3.4286e+001 9.4069e-004 -6.5120e+002 1.0071e+001 5.4773e+005 + -analytic -3.4286e+1 9.4069e-4 -6.512e+2 1.0071e+1 5.4773e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Yb+++ = Yb(Acetate)3 +3.0000 H+ - -llnl_gamma 3.0 - log_k -8.5688 - -delta_H -51.4214 kJ/mol # Calculated enthalpy of reaction Yb(Acetate)3 +3 HAcetate + Yb+3 = Yb(Acetate)3 + 3 H+ + -llnl_gamma 3 + log_k -8.5688 + -delta_H -51.4214 kJ/mol # Calculated enthalpy of reaction Yb(Acetate)3 # Enthalpy of formation: -520.89 kcal/mol - -analytic -6.2211e+001 -6.1589e-004 5.9577e+002 1.7954e+001 6.6116e+005 + -analytic -6.2211e+1 -6.1589e-4 5.9577e+2 1.7954e+1 6.6116e+5 # -Range: 0-300 -2.0000 HCO3- + 1.0000 Yb+++ = Yb(CO3)2- +2.0000 H+ - -llnl_gamma 4.0 - log_k -7.0576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(CO3)2- +2 HCO3- + Yb+3 = Yb(CO3)2- + 2 H+ + -llnl_gamma 4 + log_k -7.0576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(CO3)2- # Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Yb+++ = Yb(HPO4)2- - -llnl_gamma 4.0 - log_k +10.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(HPO4)2- + +2 HPO4-2 + Yb+3 = Yb(HPO4)2- + -llnl_gamma 4 + log_k 10.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(HPO4)2- # Enthalpy of formation: -0 kcal/mol - + # Redundant with YbO2- #4.0000 H2O + 1.0000 Yb+++ = Yb(OH)4- +4.0000 H+ -# -llnl_gamma 4.0 +# -llnl_gamma 4.0 # log_k -32.6803 # -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)4- ## Enthalpy of formation: -0 kcal/mol - -2.0000 HPO4-- + 1.0000 Yb+++ = Yb(PO4)2--- +2.0000 H+ - -llnl_gamma 4.0 - log_k -2.7437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(PO4)2-3 + +2 HPO4-2 + Yb+3 = Yb(PO4)2-3 + 2 H+ + -llnl_gamma 4 + log_k -2.7437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(PO4)2-3 # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Yb+++ = Yb(SO4)2- - -llnl_gamma 4.0 - log_k +5.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(SO4)2- + +2 SO4-2 + Yb+3 = Yb(SO4)2- + -llnl_gamma 4 + log_k 5.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(SO4)2- # Enthalpy of formation: -0 kcal/mol - -1.0000 Yb+++ + 1.0000 HAcetate = YbAcetate++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -2.199 - -delta_H -15.2298 kJ/mol # Calculated enthalpy of reaction YbAcetate+2 + +Yb+3 + HAcetate = YbAcetate+2 + H+ + -llnl_gamma 4.5 + log_k -2.199 + -delta_H -15.2298 kJ/mol # Calculated enthalpy of reaction YbAcetate+2 # Enthalpy of formation: -280.04 kcal/mol - -analytic -8.5003e+000 2.2459e-003 -9.6434e+002 2.0630e+000 3.3550e+005 + -analytic -8.5003e+0 2.2459e-3 -9.6434e+2 2.063e+0 3.355e+5 # -Range: 0-300 -1.0000 Yb+++ + 1.0000 HCO3- = YbCO3+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -2.0392 - -delta_H 82.8348 kJ/mol # Calculated enthalpy of reaction YbCO3+ +Yb+3 + HCO3- = YbCO3+ + H+ + -llnl_gamma 4 + log_k -2.0392 + -delta_H 82.8348 kJ/mol # Calculated enthalpy of reaction YbCO3+ # Enthalpy of formation: -305.4 kcal/mol - -analytic 2.3533e+002 5.4436e-002 -6.7871e+003 -9.3280e+001 -1.0598e+002 + -analytic 2.3533e+2 5.4436e-2 -6.7871e+3 -9.328e+1 -1.0598e+2 # -Range: 0-300 -1.0000 Yb+++ + 1.0000 Cl- = YbCl++ - -llnl_gamma 4.5 - log_k +0.1620 - -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction YbCl+2 +Yb+3 + Cl- = YbCl+2 + -llnl_gamma 4.5 + log_k 0.162 + -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction YbCl+2 # Enthalpy of formation: -196.9 kcal/mol - -analytic 8.0452e+001 3.8343e-002 -1.8176e+003 -3.4594e+001 -2.8386e+001 + -analytic 8.0452e+1 3.8343e-2 -1.8176e+3 -3.4594e+1 -2.8386e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Yb+++ = YbCl2+ - -llnl_gamma 4.0 - log_k -0.2624 - -delta_H 17.4305 kJ/mol # Calculated enthalpy of reaction YbCl2+ +2 Cl- + Yb+3 = YbCl2+ + -llnl_gamma 4 + log_k -0.2624 + -delta_H 17.4305 kJ/mol # Calculated enthalpy of reaction YbCl2+ # Enthalpy of formation: -236 kcal/mol - -analytic 2.1708e+002 8.0550e-002 -5.4744e+003 -9.0101e+001 -8.5487e+001 + -analytic 2.1708e+2 8.055e-2 -5.4744e+3 -9.0101e+1 -8.5487e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Yb+++ = YbCl3 - -llnl_gamma 3.0 - log_k -0.7601 - -delta_H 8.36382 kJ/mol # Calculated enthalpy of reaction YbCl3 +3 Cl- + Yb+3 = YbCl3 + -llnl_gamma 3 + log_k -0.7601 + -delta_H 8.36382 kJ/mol # Calculated enthalpy of reaction YbCl3 # Enthalpy of formation: -278.1 kcal/mol - -analytic 4.0887e+002 1.2992e-001 -1.0578e+004 -1.6684e+002 -1.6518e+002 + -analytic 4.0887e+2 1.2992e-1 -1.0578e+4 -1.6684e+2 -1.6518e+2 # -Range: 0-300 -4.0000 Cl- + 1.0000 Yb+++ = YbCl4- - -llnl_gamma 4.0 - log_k -1.1845 - -delta_H -15.7653 kJ/mol # Calculated enthalpy of reaction YbCl4- +4 Cl- + Yb+3 = YbCl4- + -llnl_gamma 4 + log_k -1.1845 + -delta_H -15.7653 kJ/mol # Calculated enthalpy of reaction YbCl4- # Enthalpy of formation: -323.8 kcal/mol - -analytic 4.7560e+002 1.3032e-001 -1.2452e+004 -1.9149e+002 -1.9444e+002 + -analytic 4.756e+2 1.3032e-1 -1.2452e+4 -1.9149e+2 -1.9444e+2 # -Range: 0-300 -1.0000 Yb+++ + 1.0000 F- = YbF++ - -llnl_gamma 4.5 - log_k +4.8085 - -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction YbF+2 +Yb+3 + F- = YbF+2 + -llnl_gamma 4.5 + log_k 4.8085 + -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction YbF+2 # Enthalpy of formation: -234.9 kcal/mol - -analytic 1.0291e+002 4.2493e-002 -2.7637e+003 -4.1008e+001 -4.3156e+001 + -analytic 1.0291e+2 4.2493e-2 -2.7637e+3 -4.1008e+1 -4.3156e+1 # -Range: 0-300 -2.0000 F- + 1.0000 Yb+++ = YbF2+ - -llnl_gamma 4.0 - log_k +8.3709 - -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction YbF2+ +2 F- + Yb+3 = YbF2+ + -llnl_gamma 4 + log_k 8.3709 + -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction YbF2+ # Enthalpy of formation: -317.7 kcal/mol - -analytic 2.4281e+002 8.5385e-002 -5.6900e+003 -9.7299e+001 -8.8859e+001 + -analytic 2.4281e+2 8.5385e-2 -5.69e+3 -9.7299e+1 -8.8859e+1 # -Range: 0-300 -3.0000 F- + 1.0000 Yb+++ = YbF3 - -llnl_gamma 3.0 - log_k +11.0537 - -delta_H -13.1796 kJ/mol # Calculated enthalpy of reaction YbF3 +3 F- + Yb+3 = YbF3 + -llnl_gamma 3 + log_k 11.0537 + -delta_H -13.1796 kJ/mol # Calculated enthalpy of reaction YbF3 # Enthalpy of formation: -403.9 kcal/mol - -analytic 4.5227e+002 1.3659e-001 -1.0595e+004 -1.8038e+002 -1.6546e+002 + -analytic 4.5227e+2 1.3659e-1 -1.0595e+4 -1.8038e+2 -1.6546e+2 # -Range: 0-300 -4.0000 F- + 1.0000 Yb+++ = YbF4- - -llnl_gamma 4.0 - log_k +13.2234 - -delta_H -60.2496 kJ/mol # Calculated enthalpy of reaction YbF4- +4 F- + Yb+3 = YbF4- + -llnl_gamma 4 + log_k 13.2234 + -delta_H -60.2496 kJ/mol # Calculated enthalpy of reaction YbF4- # Enthalpy of formation: -495.3 kcal/mol - -analytic 5.0369e+002 1.3726e-001 -1.0671e+004 -2.0026e+002 -1.6666e+002 + -analytic 5.0369e+2 1.3726e-1 -1.0671e+4 -2.0026e+2 -1.6666e+2 # -Range: 0-300 -1.0000 Yb+++ + 1.0000 HPO4-- + 1.0000 H+ = YbH2PO4++ - -llnl_gamma 4.5 - log_k +9.5217 - -delta_H -20.0204 kJ/mol # Calculated enthalpy of reaction YbH2PO4+2 +Yb+3 + HPO4-2 + H+ = YbH2PO4+2 + -llnl_gamma 4.5 + log_k 9.5217 + -delta_H -20.0204 kJ/mol # Calculated enthalpy of reaction YbH2PO4+2 # Enthalpy of formation: -473.9 kcal/mol - -analytic 1.0919e+002 6.3749e-002 3.8909e+002 -4.8469e+001 6.0389e+000 + -analytic 1.0919e+2 6.3749e-2 3.8909e+2 -4.8469e+1 6.0389e+0 # -Range: 0-300 -1.0000 Yb+++ + 1.0000 HCO3- = YbHCO3++ - -llnl_gamma 4.5 - log_k +1.8398 - -delta_H 5.43083 kJ/mol # Calculated enthalpy of reaction YbHCO3+2 +Yb+3 + HCO3- = YbHCO3+2 + -llnl_gamma 4.5 + log_k 1.8398 + -delta_H 5.43083 kJ/mol # Calculated enthalpy of reaction YbHCO3+2 # Enthalpy of formation: -323.9 kcal/mol - -analytic 3.9175e+001 3.1796e-002 6.9728e+001 -1.9002e+001 1.0762e+000 + -analytic 3.9175e+1 3.1796e-2 6.9728e+1 -1.9002e+1 1.0762e+0 # -Range: 0-300 -1.0000 Yb+++ + 1.0000 HPO4-- = YbHPO4+ - -llnl_gamma 4.0 - log_k +6.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YbHPO4+ +Yb+3 + HPO4-2 = YbHPO4+ + -llnl_gamma 4 + log_k 6 + -delta_H 0 # Not possible to calculate enthalpy of reaction YbHPO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Yb+++ + 1.0000 NO3- = YbNO3++ - -llnl_gamma 4.5 - log_k +0.2148 - -delta_H -32.9323 kJ/mol # Calculated enthalpy of reaction YbNO3+2 + +Yb+3 + NO3- = YbNO3+2 + -llnl_gamma 4.5 + log_k 0.2148 + -delta_H -32.9323 kJ/mol # Calculated enthalpy of reaction YbNO3+2 # Enthalpy of formation: -217.6 kcal/mol - -analytic 1.7237e+001 2.5684e-002 2.2806e+003 -1.3055e+001 3.5581e+001 + -analytic 1.7237e+1 2.5684e-2 2.2806e+3 -1.3055e+1 3.5581e+1 # -Range: 0-300 -1.0000 Yb+++ + 1.0000 H2O = YbO+ +2.0000 H+ - -llnl_gamma 4.0 - log_k -15.7506 - -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction YbO+ +Yb+3 + H2O = YbO+ + 2 H+ + -llnl_gamma 4 + log_k -15.7506 + -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction YbO+ # Enthalpy of formation: -203.4 kcal/mol - -analytic 1.7675e+002 2.9078e-002 -1.3106e+004 -6.3534e+001 -2.0456e+002 + -analytic 1.7675e+2 2.9078e-2 -1.3106e+4 -6.3534e+1 -2.0456e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Yb+++ = YbO2- +4.0000 H+ - -llnl_gamma 4.0 - log_k -32.6741 - -delta_H 267.918 kJ/mol # Calculated enthalpy of reaction YbO2- +2 H2O + Yb+3 = YbO2- + 4 H+ + -llnl_gamma 4 + log_k -32.6741 + -delta_H 267.918 kJ/mol # Calculated enthalpy of reaction YbO2- # Enthalpy of formation: -232.9 kcal/mol - -analytic 1.5529e+002 1.0053e-002 -1.8749e+004 -5.1764e+001 -2.9260e+002 + -analytic 1.5529e+2 1.0053e-2 -1.8749e+4 -5.1764e+1 -2.926e+2 # -Range: 0-300 -2.0000 H2O + 1.0000 Yb+++ = YbO2H +3.0000 H+ - -llnl_gamma 3.0 - log_k -23.878 - -delta_H 211.016 kJ/mol # Calculated enthalpy of reaction YbO2H +2 H2O + Yb+3 = YbO2H + 3 H+ + -llnl_gamma 3 + log_k -23.878 + -delta_H 211.016 kJ/mol # Calculated enthalpy of reaction YbO2H # Enthalpy of formation: -246.5 kcal/mol - -analytic 3.2148e+002 4.4821e-002 -2.1971e+004 -1.1519e+002 -3.4293e+002 + -analytic 3.2148e+2 4.4821e-2 -2.1971e+4 -1.1519e+2 -3.4293e+2 # -Range: 0-300 -1.0000 Yb+++ + 1.0000 H2O = YbOH++ +1.0000 H+ - -llnl_gamma 4.5 - log_k -7.6143 - -delta_H 74.9647 kJ/mol # Calculated enthalpy of reaction YbOH+2 +Yb+3 + H2O = YbOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.6143 + -delta_H 74.9647 kJ/mol # Calculated enthalpy of reaction YbOH+2 # Enthalpy of formation: -210.7 kcal/mol - -analytic 5.8142e+001 1.1402e-002 -5.6488e+003 -2.0289e+001 -8.8160e+001 + -analytic 5.8142e+1 1.1402e-2 -5.6488e+3 -2.0289e+1 -8.816e+1 # -Range: 0-300 -1.0000 Yb+++ + 1.0000 HPO4-- = YbPO4 +1.0000 H+ - -llnl_gamma 3.0 - log_k +0.5782 - -delta_H 0 # Not possible to calculate enthalpy of reaction YbPO4 +Yb+3 + HPO4-2 = YbPO4 + H+ + -llnl_gamma 3 + log_k 0.5782 + -delta_H 0 # Not possible to calculate enthalpy of reaction YbPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Yb+++ + 1.0000 SO4-- = YbSO4+ - -llnl_gamma 4.0 - log_k +3.5697 - -delta_H 1424.65 kJ/mol # Calculated enthalpy of reaction YbSO4+ + +Yb+3 + SO4-2 = YbSO4+ + -llnl_gamma 4 + log_k 3.5697 + -delta_H 1424.65 kJ/mol # Calculated enthalpy of reaction YbSO4+ # Enthalpy of formation: -37.2 kcal/mol - -analytic 3.0675e+002 8.6527e-002 -9.0298e+003 -1.2069e+002 -1.4099e+002 + -analytic 3.0675e+2 8.6527e-2 -9.0298e+3 -1.2069e+2 -1.4099e+2 # -Range: 0-300 -2.0000 HAcetate + 1.0000 Zn++ = Zn(Acetate)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -6.062 - -delta_H -11.0458 kJ/mol # Calculated enthalpy of reaction Zn(Acetate)2 +2 HAcetate + Zn+2 = Zn(Acetate)2 + 2 H+ + -llnl_gamma 3 + log_k -6.062 + -delta_H -11.0458 kJ/mol # Calculated enthalpy of reaction Zn(Acetate)2 # Enthalpy of formation: -271.5 kcal/mol - -analytic -2.2038e+001 2.6133e-003 -2.7652e+003 6.8501e+000 6.7086e+005 + -analytic -2.2038e+1 2.6133e-3 -2.7652e+3 6.8501e+0 6.7086e+5 # -Range: 0-300 -3.0000 HAcetate + 1.0000 Zn++ = Zn(Acetate)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -10.0715 - -delta_H 25.355 kJ/mol # Calculated enthalpy of reaction Zn(Acetate)3- +3 HAcetate + Zn+2 = Zn(Acetate)3- + 3 H+ + -llnl_gamma 4 + log_k -10.0715 + -delta_H 25.355 kJ/mol # Calculated enthalpy of reaction Zn(Acetate)3- # Enthalpy of formation: -378.9 kcal/mol - -analytic 3.5104e+001 -6.1568e-003 -1.3379e+004 -8.7697e+000 2.0670e+006 + -analytic 3.5104e+1 -6.1568e-3 -1.3379e+4 -8.7697e+0 2.067e+6 # -Range: 0-300 -4.0000 Cyanide- + 1.0000 Zn++ = Zn(Cyanide)4-- - -llnl_gamma 4.0 - log_k +16.7040 - -delta_H -107.305 kJ/mol # Calculated enthalpy of reaction Zn(Cyanide)4-2 +4 Cyanide- + Zn+2 = Zn(Cyanide)4-2 + -llnl_gamma 4 + log_k 16.704 + -delta_H -107.305 kJ/mol # Calculated enthalpy of reaction Zn(Cyanide)4-2 # Enthalpy of formation: 341.806 kJ/mol - -analytic 3.6586e+002 1.2655e-001 -2.9546e+003 -1.5232e+002 -4.6213e+001 + -analytic 3.6586e+2 1.2655e-1 -2.9546e+3 -1.5232e+2 -4.6213e+1 # -Range: 0-300 -2.0000 N3- + 1.0000 Zn++ = Zn(N3)2 - -llnl_gamma 3.0 - log_k +1.1954 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(N3)2 +2 N3- + Zn+2 = Zn(N3)2 + -llnl_gamma 3 + log_k 1.1954 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(N3)2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 NH3 = Zn(NH3)++ - -llnl_gamma 4.5 - log_k +2.0527 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)+2 + +Zn+2 + NH3 = Zn(NH3)+2 + -llnl_gamma 4.5 + log_k 2.0527 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)+2 # Enthalpy of formation: -0 kcal/mol - -2.0000 NH3 + 1.0000 Zn++ = Zn(NH3)2++ - -llnl_gamma 4.5 - log_k +4.2590 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)2+2 + +2 NH3 + Zn+2 = Zn(NH3)2+2 + -llnl_gamma 4.5 + log_k 4.259 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)2+2 # Enthalpy of formation: -0 kcal/mol - -3.0000 NH3 + 1.0000 Zn++ = Zn(NH3)3++ - -llnl_gamma 4.5 - log_k +6.4653 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)3+2 + +3 NH3 + Zn+2 = Zn(NH3)3+2 + -llnl_gamma 4.5 + log_k 6.4653 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)3+2 # Enthalpy of formation: -0 kcal/mol - -4.0000 NH3 + 1.0000 Zn++ = Zn(NH3)4++ - -llnl_gamma 4.5 - log_k +8.3738 - -delta_H -54.9027 kJ/mol # Calculated enthalpy of reaction Zn(NH3)4+2 + +4 NH3 + Zn+2 = Zn(NH3)4+2 + -llnl_gamma 4.5 + log_k 8.3738 + -delta_H -54.9027 kJ/mol # Calculated enthalpy of reaction Zn(NH3)4+2 # Enthalpy of formation: -533.636 kJ/mol - -analytic 1.5851e+002 -6.3376e-003 -4.6783e+003 -5.3560e+001 -7.3047e+001 + -analytic 1.5851e+2 -6.3376e-3 -4.6783e+3 -5.356e+1 -7.3047e+1 # -Range: 0-300 -2.0000 H2O + 1.0000 Zn++ = Zn(OH)2 +2.0000 H+ - -llnl_gamma 3.0 - log_k -17.3282 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)2 +2 H2O + Zn+2 = Zn(OH)2 + 2 H+ + -llnl_gamma 3 + log_k -17.3282 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)2 # Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Zn++ = Zn(OH)3- +3.0000 H+ - -llnl_gamma 4.0 - log_k -28.8369 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)3- + +3 H2O + Zn+2 = Zn(OH)3- + 3 H+ + -llnl_gamma 4 + log_k -28.8369 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)3- # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Zn++ = Zn(OH)4-- +4.0000 H+ - -llnl_gamma 4.0 - log_k -41.6052 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)4-2 + +4 H2O + Zn+2 = Zn(OH)4-2 + 4 H+ + -llnl_gamma 4 + log_k -41.6052 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)4-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 H2O + 1.0000 Cl- = Zn(OH)Cl +1.0000 H+ - -llnl_gamma 3.0 - log_k -7.5417 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)Cl + +Zn+2 + H2O + Cl- = Zn(OH)Cl + H+ + -llnl_gamma 3 + log_k -7.5417 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)Cl # Enthalpy of formation: -0 kcal/mol - -2.0000 Thiocyanate- + 1.0000 Zn++ = Zn(Thiocyanate)2 - -llnl_gamma 3.0 - log_k +0.8800 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(Thiocyanate)2 + +2 Thiocyanate- + Zn+2 = Zn(Thiocyanate)2 + -llnl_gamma 3 + log_k 0.88 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(Thiocyanate)2 # Enthalpy of formation: -0 kcal/mol - -4.0000 Thiocyanate- + 1.0000 Zn++ = Zn(Thiocyanate)4-- - -llnl_gamma 4.0 - log_k +1.2479 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(Thiocyanate)4-2 + +4 Thiocyanate- + Zn+2 = Zn(Thiocyanate)4-2 + -llnl_gamma 4 + log_k 1.2479 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(Thiocyanate)4-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 Br- = ZnBr+ - -llnl_gamma 4.0 - log_k -0.6365 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr+ + +Zn+2 + Br- = ZnBr+ + -llnl_gamma 4 + log_k -0.6365 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr+ # Enthalpy of formation: -0 kcal/mol - -2.0000 Br- + 1.0000 Zn++ = ZnBr2 - -llnl_gamma 3.0 - log_k -1.0492 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr2 + +2 Br- + Zn+2 = ZnBr2 + -llnl_gamma 3 + log_k -1.0492 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr2 # Enthalpy of formation: -0 kcal/mol - -3.0000 Br- + 1.0000 Zn++ = ZnBr3- - -llnl_gamma 4.0 - log_k -1.8474 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr3- + +3 Br- + Zn+2 = ZnBr3- + -llnl_gamma 4 + log_k -1.8474 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr3- # Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 HAcetate = ZnAcetate+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -3.1519 - -delta_H -9.87424 kJ/mol # Calculated enthalpy of reaction ZnAcetate+ + +Zn+2 + HAcetate = ZnAcetate+ + H+ + -llnl_gamma 4 + log_k -3.1519 + -delta_H -9.87424 kJ/mol # Calculated enthalpy of reaction ZnAcetate+ # Enthalpy of formation: -155.12 kcal/mol - -analytic -7.9367e+000 2.8564e-003 -1.4514e+003 2.5010e+000 2.3343e+005 + -analytic -7.9367e+0 2.8564e-3 -1.4514e+3 2.501e+0 2.3343e+5 # -Range: 0-300 -1.0000 Zn++ + 1.0000 HCO3- = ZnCO3 +1.0000 H+ - -llnl_gamma 3.0 - log_k -6.4288 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnCO3 +Zn+2 + HCO3- = ZnCO3 + H+ + -llnl_gamma 3 + log_k -6.4288 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnCO3 # Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 Cl- = ZnCl+ - -llnl_gamma 4.0 - log_k +0.1986 - -delta_H 43.317 kJ/mol # Calculated enthalpy of reaction ZnCl+ + +Zn+2 + Cl- = ZnCl+ + -llnl_gamma 4 + log_k 0.1986 + -delta_H 43.317 kJ/mol # Calculated enthalpy of reaction ZnCl+ # Enthalpy of formation: -66.24 kcal/mol - -analytic 1.1235e+002 4.4461e-002 -4.1662e+003 -4.5023e+001 -6.5042e+001 + -analytic 1.1235e+2 4.4461e-2 -4.1662e+3 -4.5023e+1 -6.5042e+1 # -Range: 0-300 -2.0000 Cl- + 1.0000 Zn++ = ZnCl2 - -llnl_gamma 3.0 - log_k +0.2507 - -delta_H 31.1541 kJ/mol # Calculated enthalpy of reaction ZnCl2 +2 Cl- + Zn+2 = ZnCl2 + -llnl_gamma 3 + log_k 0.2507 + -delta_H 31.1541 kJ/mol # Calculated enthalpy of reaction ZnCl2 # Enthalpy of formation: -109.08 kcal/mol - -analytic 1.7824e+002 7.5733e-002 -4.6251e+003 -7.4770e+001 -7.2224e+001 + -analytic 1.7824e+2 7.5733e-2 -4.6251e+3 -7.477e+1 -7.2224e+1 # -Range: 0-300 -3.0000 Cl- + 1.0000 Zn++ = ZnCl3- - -llnl_gamma 4.0 - log_k -0.0198 - -delta_H 22.5894 kJ/mol # Calculated enthalpy of reaction ZnCl3- +3 Cl- + Zn+2 = ZnCl3- + -llnl_gamma 4 + log_k -0.0198 + -delta_H 22.5894 kJ/mol # Calculated enthalpy of reaction ZnCl3- # Enthalpy of formation: -151.06 kcal/mol - -analytic 1.3889e+002 7.4712e-002 -2.1527e+003 -6.2200e+001 -3.3633e+001 + -analytic 1.3889e+2 7.4712e-2 -2.1527e+3 -6.22e+1 -3.3633e+1 # -Range: 0-300 -4.0000 Cl- + 1.0000 Zn++ = ZnCl4-- - -llnl_gamma 4.0 - log_k +0.8605 - -delta_H 4.98733 kJ/mol # Calculated enthalpy of reaction ZnCl4-2 +4 Cl- + Zn+2 = ZnCl4-2 + -llnl_gamma 4 + log_k 0.8605 + -delta_H 4.98733 kJ/mol # Calculated enthalpy of reaction ZnCl4-2 # Enthalpy of formation: -195.2 kcal/mol - -analytic 8.4294e+001 7.0021e-002 3.9150e+002 -4.2664e+001 6.0834e+000 + -analytic 8.4294e+1 7.0021e-2 3.915e+2 -4.2664e+1 6.0834e+0 # -Range: 0-300 -1.0000 Zn++ + 1.0000 ClO4- = ZnClO4+ - -llnl_gamma 4.0 - log_k +1.2768 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnClO4+ +Zn+2 + ClO4- = ZnClO4+ + -llnl_gamma 4 + log_k 1.2768 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnClO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 F- = ZnF+ - -llnl_gamma 4.0 - log_k +1.1500 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnF+ + +Zn+2 + F- = ZnF+ + -llnl_gamma 4 + log_k 1.15 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnF+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 HPO4-- + 1.0000 H+ = ZnH2PO4+ - -llnl_gamma 4.0 - log_k +0.4300 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnH2PO4+ + +Zn+2 + HPO4-2 + H+ = ZnH2PO4+ + -llnl_gamma 4 + log_k 0.43 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnH2PO4+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 HCO3- = ZnHCO3+ - -llnl_gamma 4.0 - log_k +1.4200 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnHCO3+ + +Zn+2 + HCO3- = ZnHCO3+ + -llnl_gamma 4 + log_k 1.42 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnHCO3+ # Enthalpy of formation: -0 kcal/mol - -analytic 5.1115e+002 1.2911e-001 -1.5292e+004 -2.0083e+002 -2.2721e+002 + -analytic 5.1115e+2 1.2911e-1 -1.5292e+4 -2.0083e+2 -2.2721e+2 # -Range: 25-300 -1.0000 Zn++ + 1.0000 HPO4-- = ZnHPO4 - -llnl_gamma 3.0 - log_k +3.2600 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnHPO4 +Zn+2 + HPO4-2 = ZnHPO4 + -llnl_gamma 3 + log_k 3.26 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnHPO4 # Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 I- = ZnI+ - -llnl_gamma 4.0 - log_k -3.0134 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI+ + +Zn+2 + I- = ZnI+ + -llnl_gamma 4 + log_k -3.0134 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI+ # Enthalpy of formation: -0 kcal/mol - -2.0000 I- + 1.0000 Zn++ = ZnI2 - -llnl_gamma 3.0 - log_k -1.8437 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI2 + +2 I- + Zn+2 = ZnI2 + -llnl_gamma 3 + log_k -1.8437 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI2 # Enthalpy of formation: -0 kcal/mol - -3.0000 I- + 1.0000 Zn++ = ZnI3- - -llnl_gamma 4.0 - log_k -2.0054 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI3- + +3 I- + Zn+2 = ZnI3- + -llnl_gamma 4 + log_k -2.0054 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI3- # Enthalpy of formation: -0 kcal/mol - -4.0000 I- + 1.0000 Zn++ = ZnI4-- - -llnl_gamma 4.0 - log_k -2.6052 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI4-2 + +4 I- + Zn+2 = ZnI4-2 + -llnl_gamma 4 + log_k -2.6052 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI4-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 N3- = ZnN3+ - -llnl_gamma 4.0 - log_k +0.4420 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnN3+ + +Zn+2 + N3- = ZnN3+ + -llnl_gamma 4 + log_k 0.442 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnN3+ # Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 H2O = ZnOH+ +1.0000 H+ - -llnl_gamma 4.0 - log_k -8.96 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnOH+ + +Zn+2 + H2O = ZnOH+ + H+ + -llnl_gamma 4 + log_k -8.96 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnOH+ # Enthalpy of formation: -0 kcal/mol - -analytic -7.8600e-001 -2.9499e-004 -2.8673e+003 6.1892e-001 -4.2576e+001 + -analytic -7.86e-1 -2.9499e-4 -2.8673e+3 6.1892e-1 -4.2576e+1 # -Range: 25-300 -1.0000 Zn++ + 1.0000 HPO4-- = ZnPO4- +1.0000 H+ - -llnl_gamma 4.0 - log_k -4.3018 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnPO4- +Zn+2 + HPO4-2 = ZnPO4- + H+ + -llnl_gamma 4 + log_k -4.3018 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnPO4- # Enthalpy of formation: -0 kcal/mol - -1.0000 Zn++ + 1.0000 SO4-- = ZnSO4 - -llnl_gamma 3.0 - log_k +2.3062 - -delta_H 15.277 kJ/mol # Calculated enthalpy of reaction ZnSO4 + +Zn+2 + SO4-2 = ZnSO4 + -llnl_gamma 3 + log_k 2.3062 + -delta_H 15.277 kJ/mol # Calculated enthalpy of reaction ZnSO4 # Enthalpy of formation: -1047.71 kJ/mol - -analytic 1.3640e+002 5.1256e-002 -3.4422e+003 -5.5695e+001 -5.8501e+001 + -analytic 1.364e+2 5.1256e-2 -3.4422e+3 -5.5695e+1 -5.8501e+1 # -Range: 0-200 -1.0000 Zn++ + 1.0000 SeO4-- = ZnSeO4 - -llnl_gamma 3.0 - log_k +2.1900 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnSeO4 +Zn+2 + SeO4-2 = ZnSeO4 + -llnl_gamma 3 + log_k 2.19 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnSeO4 # Enthalpy of formation: -0 kcal/mol - -3.0000 H2O + 1.0000 Zr++++ = Zr(OH)3+ +3.0000 H+ - -llnl_gamma 4.0 - log_k -0.6693 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)3+ + +3 H2O + Zr+4 = Zr(OH)3+ + 3 H+ + -llnl_gamma 4 + log_k -0.6693 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)3+ # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 1.0000 Zr++++ = Zr(OH)4 +4.0000 H+ - -llnl_gamma 3.0 - log_k -1.4666 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)4 + +4 H2O + Zr+4 = Zr(OH)4 + 4 H+ + -llnl_gamma 3 + log_k -1.4666 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)4 # Enthalpy of formation: -0 kcal/mol - -5.0000 H2O + 1.0000 Zr++++ = Zr(OH)5- +5.0000 H+ - -llnl_gamma 4.0 - log_k -15.9754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)5- + +5 H2O + Zr+4 = Zr(OH)5- + 5 H+ + -llnl_gamma 4 + log_k -15.9754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)5- # Enthalpy of formation: -0 kcal/mol - -2.0000 SO4-- + 1.0000 Zr++++ = Zr(SO4)2 - -llnl_gamma 3.0 - log_k +6.2965 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(SO4)2 + +2 SO4-2 + Zr+4 = Zr(SO4)2 + -llnl_gamma 3 + log_k 6.2965 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(SO4)2 # Enthalpy of formation: -0 kcal/mol - -3.0000 SO4-- + 1.0000 Zr++++ = Zr(SO4)3-- - -llnl_gamma 4.0 - log_k +7.3007 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(SO4)3-2 + +3 SO4-2 + Zr+4 = Zr(SO4)3-2 + -llnl_gamma 4 + log_k 7.3007 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(SO4)3-2 # Enthalpy of formation: -0 kcal/mol - -4.0000 H2O + 3.0000 Zr++++ = Zr3(OH)4+8 +4.0000 H+ - -llnl_gamma 6.0 - log_k -0.5803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr3(OH)4+8 + +4 H2O + 3 Zr+4 = Zr3(OH)4+8 + 4 H+ + -llnl_gamma 6 + log_k -0.5803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr3(OH)4+8 # Enthalpy of formation: -0 kcal/mol - -8.0000 H2O + 4.0000 Zr++++ = Zr4(OH)8+8 +8.0000 H+ - -llnl_gamma 6.0 - log_k -5.9606 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr4(OH)8+8 + +8 H2O + 4 Zr+4 = Zr4(OH)8+8 + 8 H+ + -llnl_gamma 6 + log_k -5.9606 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr4(OH)8+8 # Enthalpy of formation: -0 kcal/mol - -1.0000 Zr++++ + 1.0000 F- = ZrF+++ - -llnl_gamma 5.0 - log_k +8.5835 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF+3 + +Zr+4 + F- = ZrF+3 + -llnl_gamma 5 + log_k 8.5835 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF+3 # Enthalpy of formation: -0 kcal/mol - -2.0000 F- + 1.0000 Zr++++ = ZrF2++ - -llnl_gamma 4.5 - log_k +15.7377 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF2+2 + +2 F- + Zr+4 = ZrF2+2 + -llnl_gamma 4.5 + log_k 15.7377 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF2+2 # Enthalpy of formation: -0 kcal/mol - -3.0000 F- + 1.0000 Zr++++ = ZrF3+ - -llnl_gamma 4.0 - log_k +21.2792 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF3+ + +3 F- + Zr+4 = ZrF3+ + -llnl_gamma 4 + log_k 21.2792 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF3+ # Enthalpy of formation: -0 kcal/mol - -4.0000 F- + 1.0000 Zr++++ = ZrF4 - -llnl_gamma 3.0 - log_k +25.9411 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4 + +4 F- + Zr+4 = ZrF4 + -llnl_gamma 3 + log_k 25.9411 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4 # Enthalpy of formation: -0 kcal/mol - -5.0000 F- + 1.0000 Zr++++ = ZrF5- - -llnl_gamma 4.0 - log_k +30.3098 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF5- + +5 F- + Zr+4 = ZrF5- + -llnl_gamma 4 + log_k 30.3098 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF5- # Enthalpy of formation: -0 kcal/mol - -6.0000 F- + 1.0000 Zr++++ = ZrF6-- - -llnl_gamma 4.0 - log_k +34.0188 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF6-2 + +6 F- + Zr+4 = ZrF6-2 + -llnl_gamma 4 + log_k 34.0188 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF6-2 # Enthalpy of formation: -0 kcal/mol - -1.0000 Zr++++ + 1.0000 H2O = ZrOH+++ +1.0000 H+ - -llnl_gamma 5.0 - log_k +0.0457 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrOH+3 + +Zr+4 + H2O = ZrOH+3 + H+ + -llnl_gamma 5 + log_k 0.0457 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrOH+3 # Enthalpy of formation: -0 kcal/mol - -1.0000 Zr++++ + 1.0000 SO4-- = ZrSO4++ - -llnl_gamma 4.5 - log_k +3.6064 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrSO4+2 + +Zr+4 + SO4-2 = ZrSO4+2 + -llnl_gamma 4.5 + log_k 3.6064 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrSO4+2 # Enthalpy of formation: -0 kcal/mol - -2.0000 H+ + 1.0000 O_phthalate-2 = H2O_phthalate - -llnl_gamma 3.0 - log_k +8.3580 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2O_phthalate + +2 H+ + O_phthalate-2 = H2O_phthalate + -llnl_gamma 3 + log_k 8.358 + -delta_H 0 # Not possible to calculate enthalpy of reaction H2O_phthalate # Enthalpy of formation: -0 kcal/mol - + PHASES # 1122 minerals (UO2)2As2O7 - (UO2)2As2O7 +2.0000 H+ +1.0000 H2O = + 2.0000 H2AsO4- + 2.0000 UO2++ - log_k 7.7066 - -delta_H -145.281 kJ/mol # Calculated enthalpy of reaction (UO2)2As2O7 + (UO2)2As2O7 + 2 H+ + H2O = 2 H2AsO4- + 2 UO2+2 + log_k 7.7066 + -delta_H -145.281 kJ/mol # Calculated enthalpy of reaction (UO2)2As2O7 # Enthalpy of formation: -3426 kJ/mol - -analytic -1.6147e+002 -6.3487e-002 1.0052e+004 6.2384e+001 1.5691e+002 + -analytic -1.6147e+2 -6.3487e-2 1.0052e+4 6.2384e+1 1.5691e+2 # -Range: 0-300 (UO2)2Cl3 - (UO2)2Cl3 = + 1.0000 UO2+ + 1.0000 UO2++ + 3.0000 Cl- - log_k 12.7339 - -delta_H -140.866 kJ/mol # Calculated enthalpy of reaction (UO2)2Cl3 + (UO2)2Cl3 = UO2+ + UO2+2 + 3 Cl- + log_k 12.7339 + -delta_H -140.866 kJ/mol # Calculated enthalpy of reaction (UO2)2Cl3 # Enthalpy of formation: -2404.5 kJ/mol - -analytic -2.3895e+002 -9.2925e-002 1.1722e+004 9.6999e+001 1.8298e+002 + -analytic -2.3895e+2 -9.2925e-2 1.1722e+4 9.6999e+1 1.8298e+2 # -Range: 0-300 (UO2)2P2O7 - (UO2)2P2O7 +1.0000 H2O = + 2.0000 HPO4-- + 2.0000 UO2++ - log_k -14.6827 - -delta_H -103.726 kJ/mol # Calculated enthalpy of reaction (UO2)2P2O7 + (UO2)2P2O7 + H2O = 2 HPO4-2 + 2 UO2+2 + log_k -14.6827 + -delta_H -103.726 kJ/mol # Calculated enthalpy of reaction (UO2)2P2O7 # Enthalpy of formation: -4232.6 kJ/mol - -analytic -3.4581e+002 -1.3987e-001 1.0703e+004 1.3613e+002 1.6712e+002 + -analytic -3.4581e+2 -1.3987e-1 1.0703e+4 1.3613e+2 1.6712e+2 # -Range: 0-300 (UO2)3(AsO4)2 - (UO2)3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 UO2++ - log_k 9.3177 - -delta_H -186.72 kJ/mol # Calculated enthalpy of reaction (UO2)3(AsO4)2 + (UO2)3(AsO4)2 + 4 H+ = 2 H2AsO4- + 3 UO2+2 + log_k 9.3177 + -delta_H -186.72 kJ/mol # Calculated enthalpy of reaction (UO2)3(AsO4)2 # Enthalpy of formation: -4689.4 kJ/mol - -analytic -1.9693e+002 -7.3236e-002 1.2936e+004 7.4631e+001 2.0192e+002 + -analytic -1.9693e+2 -7.3236e-2 1.2936e+4 7.4631e+1 2.0192e+2 # -Range: 0-300 (UO2)3(PO4)2 - (UO2)3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 UO2++ - log_k -14.0241 - -delta_H -149.864 kJ/mol # Calculated enthalpy of reaction (UO2)3(PO4)2 + (UO2)3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 UO2+2 + log_k -14.0241 + -delta_H -149.864 kJ/mol # Calculated enthalpy of reaction (UO2)3(PO4)2 # Enthalpy of formation: -5491.3 kJ/mol - -analytic -3.6664e+002 -1.4347e-001 1.3486e+004 1.4148e+002 2.1054e+002 + -analytic -3.6664e+2 -1.4347e-1 1.3486e+4 1.4148e+2 2.1054e+2 # -Range: 0-300 (UO2)3(PO4)2:4H2O - (UO2)3(PO4)2:4H2O +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 UO2++ + 4.0000 H2O - log_k -27.0349 - -delta_H -45.4132 kJ/mol # Calculated enthalpy of reaction (UO2)3(PO4)2:4H2O + (UO2)3(PO4)2:4H2O + 2 H+ = 2 HPO4-2 + 3 UO2+2 + 4 H2O + log_k -27.0349 + -delta_H -45.4132 kJ/mol # Calculated enthalpy of reaction (UO2)3(PO4)2:4H2O # Enthalpy of formation: -6739.1 kJ/mol - -analytic -1.5721e+002 -4.1375e-002 5.2046e+003 5.0531e+001 8.8434e+001 + -analytic -1.5721e+2 -4.1375e-2 5.2046e+3 5.0531e+1 8.8434e+1 # -Range: 0-200 (VO)3(PO4)2 - (VO)3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 VO++ - log_k 48.7864 - -delta_H 0 # Not possible to calculate enthalpy of reaction (VO)3(PO4)2 + (VO)3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 VO+2 + log_k 48.7864 + -delta_H 0 # Not possible to calculate enthalpy of reaction (VO)3(PO4)2 # Enthalpy of formation: 0 kcal/mol Acanthite - Ag2S +1.0000 H+ = + 1.0000 HS- + 2.0000 Ag+ - log_k -36.0346 - -delta_H 226.982 kJ/mol # Calculated enthalpy of reaction Acanthite + Ag2S + H+ = HS- + 2 Ag+ + log_k -36.0346 + -delta_H 226.982 kJ/mol # Calculated enthalpy of reaction Acanthite # Enthalpy of formation: -7.55 kcal/mol - -analytic -1.6067e+002 -4.7139e-002 -7.4522e+003 6.6140e+001 -1.1624e+002 + -analytic -1.6067e+2 -4.7139e-2 -7.4522e+3 6.614e+1 -1.1624e+2 # -Range: 0-300 Afwillite - Ca3Si2O4(OH)6 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 Ca++ + 6.0000 H2O - log_k 60.0452 - -delta_H -316.059 kJ/mol # Calculated enthalpy of reaction Afwillite + Ca3Si2O4(OH)6 + 6 H+ = 2 SiO2 + 3 Ca+2 + 6 H2O + log_k 60.0452 + -delta_H -316.059 kJ/mol # Calculated enthalpy of reaction Afwillite # Enthalpy of formation: -1143.31 kcal/mol - -analytic 1.8353e+001 1.9014e-003 1.8478e+004 -6.6311e+000 -4.0227e+005 + -analytic 1.8353e+1 1.9014e-3 1.8478e+4 -6.6311e+0 -4.0227e+5 # -Range: 0-300 Ag - Ag +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Ag+ - log_k 7.9937 - -delta_H -34.1352 kJ/mol # Calculated enthalpy of reaction Ag + Ag + H+ + 0.25 O2 = 0.5 H2O + Ag+ + log_k 7.9937 + -delta_H -34.1352 kJ/mol # Calculated enthalpy of reaction Ag # Enthalpy of formation: 0 kcal/mol - -analytic -1.4144e+001 -3.8466e-003 2.2642e+003 6.3388e+000 3.5334e+001 + -analytic -1.4144e+1 -3.8466e-3 2.2642e+3 6.3388e+0 3.5334e+1 # -Range: 0-300 Ag3PO4 - Ag3PO4 +1.0000 H+ = + 1.0000 HPO4-- + 3.0000 Ag+ - log_k -5.2282 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ag3PO4 + Ag3PO4 + H+ = HPO4-2 + 3 Ag+ + log_k -5.2282 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ag3PO4 # Enthalpy of formation: 0 kcal/mol Ahlfeldite - NiSeO3:2H2O = + 1.0000 Ni++ + 1.0000 SeO3-- + 2.0000 H2O - log_k -4.4894 - -delta_H -25.7902 kJ/mol # Calculated enthalpy of reaction Ahlfeldite + NiSeO3:2H2O = Ni+2 + SeO3-2 + 2 H2O + log_k -4.4894 + -delta_H -25.7902 kJ/mol # Calculated enthalpy of reaction Ahlfeldite # Enthalpy of formation: -265.07 kcal/mol - -analytic -2.6210e+001 -1.6952e-002 1.0405e+003 9.4054e+000 1.7678e+001 + -analytic -2.621e+1 -1.6952e-2 1.0405e+3 9.4054e+0 1.7678e+1 # -Range: 0-200 Akermanite - Ca2MgSi2O7 +6.0000 H+ = + 1.0000 Mg++ + 2.0000 Ca++ + 2.0000 SiO2 + 3.0000 H2O - log_k 45.3190 - -delta_H -288.575 kJ/mol # Calculated enthalpy of reaction Akermanite + Ca2MgSi2O7 + 6 H+ = Mg+2 + 2 Ca+2 + 2 SiO2 + 3 H2O + log_k 45.319 + -delta_H -288.575 kJ/mol # Calculated enthalpy of reaction Akermanite # Enthalpy of formation: -926.497 kcal/mol - -analytic -4.8295e+001 -8.5613e-003 2.0880e+004 1.3798e+001 -7.1975e+005 + -analytic -4.8295e+1 -8.5613e-3 2.088e+4 1.3798e+1 -7.1975e+5 # -Range: 0-300 Al - Al +3.0000 H+ +0.7500 O2 = + 1.0000 Al+++ + 1.5000 H2O - log_k 149.9292 - -delta_H -958.059 kJ/mol # Calculated enthalpy of reaction Al + Al + 3 H+ + 0.75 O2 = Al+3 + 1.5 H2O + log_k 149.9292 + -delta_H -958.059 kJ/mol # Calculated enthalpy of reaction Al # Enthalpy of formation: 0 kJ/mol - -analytic -1.8752e+002 -4.6187e-002 5.7127e+004 6.6270e+001 -3.8952e+005 + -analytic -1.8752e+2 -4.6187e-2 5.7127e+4 6.627e+1 -3.8952e+5 # -Range: 0-300 Al2(SO4)3 - Al2(SO4)3 = + 2.0000 Al+++ + 3.0000 SO4-- - log_k 19.0535 - -delta_H -364.566 kJ/mol # Calculated enthalpy of reaction Al2(SO4)3 + Al2(SO4)3 = 2 Al+3 + 3 SO4-2 + log_k 19.0535 + -delta_H -364.566 kJ/mol # Calculated enthalpy of reaction Al2(SO4)3 # Enthalpy of formation: -3441.04 kJ/mol - -analytic -6.1001e+002 -2.4268e-001 2.9194e+004 2.4383e+002 4.5573e+002 + -analytic -6.1001e+2 -2.4268e-1 2.9194e+4 2.4383e+2 4.5573e+2 # -Range: 0-300 Al2(SO4)3:6H2O - Al2(SO4)3:6H2O = + 2.0000 Al+++ + 3.0000 SO4-- + 6.0000 H2O - log_k 1.6849 - -delta_H -208.575 kJ/mol # Calculated enthalpy of reaction Al2(SO4)3:6H2O + Al2(SO4)3:6H2O = 2 Al+3 + 3 SO4-2 + 6 H2O + log_k 1.6849 + -delta_H -208.575 kJ/mol # Calculated enthalpy of reaction Al2(SO4)3:6H2O # Enthalpy of formation: -5312.06 kJ/mol - -analytic -7.1642e+002 -2.4552e-001 2.6064e+004 2.8441e+002 4.0691e+002 + -analytic -7.1642e+2 -2.4552e-1 2.6064e+4 2.8441e+2 4.0691e+2 # -Range: 0-300 AlF3 - AlF3 = + 1.0000 Al+++ + 3.0000 F- - log_k -17.2089 - -delta_H -34.0441 kJ/mol # Calculated enthalpy of reaction AlF3 + AlF3 = Al+3 + 3 F- + log_k -17.2089 + -delta_H -34.0441 kJ/mol # Calculated enthalpy of reaction AlF3 # Enthalpy of formation: -1510.4 kJ/mol - -analytic -3.9865e+002 -1.3388e-001 1.0211e+004 1.5642e+002 1.5945e+002 + -analytic -3.9865e+2 -1.3388e-1 1.0211e+4 1.5642e+2 1.5945e+2 # -Range: 0-300 Alabandite - MnS +1.0000 H+ = + 1.0000 HS- + 1.0000 Mn++ - log_k -0.3944 - -delta_H -23.3216 kJ/mol # Calculated enthalpy of reaction Alabandite + MnS + H+ = HS- + Mn+2 + log_k -0.3944 + -delta_H -23.3216 kJ/mol # Calculated enthalpy of reaction Alabandite # Enthalpy of formation: -51 kcal/mol - -analytic -1.5515e+002 -4.8820e-002 4.9049e+003 6.1765e+001 7.6583e+001 + -analytic -1.5515e+2 -4.882e-2 4.9049e+3 6.1765e+1 7.6583e+1 # -Range: 0-300 Alamosite - PbSiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 Pb++ + 1.0000 SiO2 - log_k 5.6733 - -delta_H -16.5164 kJ/mol # Calculated enthalpy of reaction Alamosite + PbSiO3 + 2 H+ = H2O + Pb+2 + SiO2 + log_k 5.6733 + -delta_H -16.5164 kJ/mol # Calculated enthalpy of reaction Alamosite # Enthalpy of formation: -1146.1 kJ/mol - -analytic 2.9941e+002 6.7871e-002 -8.1706e+003 -1.1582e+002 -1.3885e+002 + -analytic 2.9941e+2 6.7871e-2 -8.1706e+3 -1.1582e+2 -1.3885e+2 # -Range: 0-200 Albite - NaAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 2.0000 H2O + 3.0000 SiO2 - log_k 2.7645 - -delta_H -51.8523 kJ/mol # Calculated enthalpy of reaction Albite + NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 + log_k 2.7645 + -delta_H -51.8523 kJ/mol # Calculated enthalpy of reaction Albite # Enthalpy of formation: -939.68 kcal/mol - -analytic -1.1694e+001 1.4429e-002 1.3784e+004 -7.2866e+000 -1.6136e+006 + -analytic -1.1694e+1 1.4429e-2 1.3784e+4 -7.2866e+0 -1.6136e+6 # -Range: 0-300 Albite_high - NaAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 2.0000 H2O + 3.0000 SiO2 - log_k 4.0832 - -delta_H -62.8562 kJ/mol # Calculated enthalpy of reaction Albite_high + NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 + log_k 4.0832 + -delta_H -62.8562 kJ/mol # Calculated enthalpy of reaction Albite_high # Enthalpy of formation: -937.05 kcal/mol - -analytic -1.8957e+001 1.3726e-002 1.4801e+004 -4.9732e+000 -1.6442e+006 + -analytic -1.8957e+1 1.3726e-2 1.4801e+4 -4.9732e+0 -1.6442e+6 # -Range: 0-300 Albite_low - NaAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 2.0000 H2O + 3.0000 SiO2 - log_k 2.7645 - -delta_H -51.8523 kJ/mol # Calculated enthalpy of reaction Albite_low + NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 + log_k 2.7645 + -delta_H -51.8523 kJ/mol # Calculated enthalpy of reaction Albite_low # Enthalpy of formation: -939.68 kcal/mol - -analytic -1.2860e+001 1.4481e-002 1.3913e+004 -6.9417e+000 -1.6256e+006 + -analytic -1.286e+1 1.4481e-2 1.3913e+4 -6.9417e+0 -1.6256e+6 # -Range: 0-300 Alstonite - BaCa(CO3)2 +2.0000 H+ = + 1.0000 Ba++ + 1.0000 Ca++ + 2.0000 HCO3- - log_k 2.5843 - -delta_H 0 # Not possible to calculate enthalpy of reaction Alstonite + BaCa(CO3)2 + 2 H+ = Ba+2 + Ca+2 + 2 HCO3- + log_k 2.5843 + -delta_H 0 # Not possible to calculate enthalpy of reaction Alstonite # Enthalpy of formation: 0 kcal/mol Alum-K - KAl(SO4)2:12H2O = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 SO4-- + 12.0000 H2O - log_k -4.8818 - -delta_H 14.4139 kJ/mol # Calculated enthalpy of reaction Alum-K + KAl(SO4)2:12H2O = Al+3 + K+ + 2 SO4-2 + 12 H2O + log_k -4.8818 + -delta_H 14.4139 kJ/mol # Calculated enthalpy of reaction Alum-K # Enthalpy of formation: -1447 kcal/mol - -analytic -8.8025e+002 -2.5706e-001 2.2399e+004 3.5434e+002 3.4978e+002 + -analytic -8.8025e+2 -2.5706e-1 2.2399e+4 3.5434e+2 3.4978e+2 # -Range: 0-300 Alunite - KAl3(OH)6(SO4)2 +6.0000 H+ = + 1.0000 K+ + 2.0000 SO4-- + 3.0000 Al+++ + 6.0000 H2O - log_k -0.3479 - -delta_H -231.856 kJ/mol # Calculated enthalpy of reaction Alunite + KAl3(OH)6(SO4)2 + 6 H+ = K+ + 2 SO4-2 + 3 Al+3 + 6 H2O + log_k -0.3479 + -delta_H -231.856 kJ/mol # Calculated enthalpy of reaction Alunite # Enthalpy of formation: -1235.6 kcal/mol - -analytic -6.8581e+002 -2.2455e-001 2.6886e+004 2.6758e+002 4.1973e+002 + -analytic -6.8581e+2 -2.2455e-1 2.6886e+4 2.6758e+2 4.1973e+2 # -Range: 0-300 Am - Am +3.0000 H+ +0.7500 O2 = + 1.0000 Am+++ + 1.5000 H2O - log_k 169.3900 - -delta_H -1036.36 kJ/mol # Calculated enthalpy of reaction Am + Am + 3 H+ + 0.75 O2 = Am+3 + 1.5 H2O + log_k 169.39 + -delta_H -1036.36 kJ/mol # Calculated enthalpy of reaction Am # Enthalpy of formation: 0 kJ/mol - -analytic -6.7924e+000 -8.9873e-003 5.3327e+004 0.0000e+000 0.0000e+000 + -analytic -6.7924e+0 -8.9873e-3 5.3327e+4 0e+0 0e+0 # -Range: 0-300 Am(OH)3 - Am(OH)3 +3.0000 H+ = + 1.0000 Am+++ + 3.0000 H2O - log_k 15.2218 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3 + Am(OH)3 + 3 H+ = Am+3 + 3 H2O + log_k 15.2218 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3 # Enthalpy of formation: 0 kcal/mol Am(OH)3(am) - Am(OH)3 +3.0000 H+ = + 1.0000 Am+++ + 3.0000 H2O - log_k 17.0217 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3(am) + Am(OH)3 + 3 H+ = Am+3 + 3 H2O + log_k 17.0217 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3(am) # Enthalpy of formation: 0 kcal/mol Am2(CO3)3 - Am2(CO3)3 +3.0000 H+ = + 2.0000 Am+++ + 3.0000 HCO3- - log_k -2.3699 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am2(CO3)3 + Am2(CO3)3 + 3 H+ = 2 Am+3 + 3 HCO3- + log_k -2.3699 + -delta_H 0 # Not possible to calculate enthalpy of reaction Am2(CO3)3 # Enthalpy of formation: 0 kcal/mol Am2C3 - Am2C3 +4.5000 O2 +3.0000 H+ = + 2.0000 Am+++ + 3.0000 HCO3- - log_k 503.9594 - -delta_H -3097.6 kJ/mol # Calculated enthalpy of reaction Am2C3 + Am2C3 + 4.5 O2 + 3 H+ = 2 Am+3 + 3 HCO3- + log_k 503.9594 + -delta_H -3097.6 kJ/mol # Calculated enthalpy of reaction Am2C3 # Enthalpy of formation: -151 kJ/mol - -analytic 3.3907e+002 -4.2636e-003 1.4463e+005 -1.2891e+002 2.4559e+003 + -analytic 3.3907e+2 -4.2636e-3 1.4463e+5 -1.2891e+2 2.4559e+3 # -Range: 0-200 Am2O3 - Am2O3 +6.0000 H+ = + 2.0000 Am+++ + 3.0000 H2O - log_k 51.7905 - -delta_H -400.515 kJ/mol # Calculated enthalpy of reaction Am2O3 + Am2O3 + 6 H+ = 2 Am+3 + 3 H2O + log_k 51.7905 + -delta_H -400.515 kJ/mol # Calculated enthalpy of reaction Am2O3 # Enthalpy of formation: -1690.4 kJ/mol - -analytic -9.2044e+001 -1.8883e-002 2.3028e+004 2.9192e+001 3.5935e+002 + -analytic -9.2044e+1 -1.8883e-2 2.3028e+4 2.9192e+1 3.5935e+2 # -Range: 0-300 AmBr3 - AmBr3 = + 1.0000 Am+++ + 3.0000 Br- - log_k 21.7826 - -delta_H -171.21 kJ/mol # Calculated enthalpy of reaction AmBr3 + AmBr3 = Am+3 + 3 Br- + log_k 21.7826 + -delta_H -171.21 kJ/mol # Calculated enthalpy of reaction AmBr3 # Enthalpy of formation: -810 kJ/mol - -analytic 1.0121e+001 -3.0622e-002 6.1964e+003 0.0000e+000 0.0000e+000 + -analytic 1.0121e+1 -3.0622e-2 6.1964e+3 0e+0 0e+0 # -Range: 0-200 AmCl3 - AmCl3 = + 1.0000 Am+++ + 3.0000 Cl- - log_k 14.3513 - -delta_H -140.139 kJ/mol # Calculated enthalpy of reaction AmCl3 + AmCl3 = Am+3 + 3 Cl- + log_k 14.3513 + -delta_H -140.139 kJ/mol # Calculated enthalpy of reaction AmCl3 # Enthalpy of formation: -977.8 kJ/mol - -analytic -1.5000e+001 -3.6701e-002 5.2281e+003 9.1942e+000 8.8785e+001 + -analytic -1.5e+1 -3.6701e-2 5.2281e+3 9.1942e+0 8.8785e+1 # -Range: 0-200 AmF3 - AmF3 = + 1.0000 Am+++ + 3.0000 F- - log_k -13.1190 - -delta_H -34.7428 kJ/mol # Calculated enthalpy of reaction AmF3 + AmF3 = Am+3 + 3 F- + log_k -13.119 + -delta_H -34.7428 kJ/mol # Calculated enthalpy of reaction AmF3 # Enthalpy of formation: -1588 kJ/mol - -analytic -4.0514e+001 -3.7312e-002 4.1626e+002 1.4999e+001 7.0827e+000 + -analytic -4.0514e+1 -3.7312e-2 4.1626e+2 1.4999e+1 7.0827e+0 # -Range: 0-200 AmF4 - AmF4 = + 1.0000 Am++++ + 4.0000 F- - log_k -25.1354 - -delta_H -37.3904 kJ/mol # Calculated enthalpy of reaction AmF4 + AmF4 = Am+4 + 4 F- + log_k -25.1354 + -delta_H -37.3904 kJ/mol # Calculated enthalpy of reaction AmF4 # Enthalpy of formation: -1710 kJ/mol - -analytic -4.9592e+001 -4.5210e-002 -9.7251e+001 1.5457e+001 -1.6348e+000 + -analytic -4.9592e+1 -4.521e-2 -9.7251e+1 1.5457e+1 -1.6348e+0 # -Range: 0-200 AmH2 - AmH2 +2.0000 H+ +1.0000 O2 = + 1.0000 Am++ + 2.0000 H2O - log_k 128.4208 - -delta_H -738.376 kJ/mol # Calculated enthalpy of reaction AmH2 + AmH2 + 2 H+ + O2 = Am+2 + 2 H2O + log_k 128.4208 + -delta_H -738.376 kJ/mol # Calculated enthalpy of reaction AmH2 # Enthalpy of formation: -175.8 kJ/mol - -analytic 3.1175e+001 -1.4062e-002 3.6259e+004 -8.1600e+000 5.6578e+002 + -analytic 3.1175e+1 -1.4062e-2 3.6259e+4 -8.16e+0 5.6578e+2 # -Range: 0-300 AmI3 - AmI3 = + 1.0000 Am+++ + 3.0000 I- - log_k 24.7301 - -delta_H -175.407 kJ/mol # Calculated enthalpy of reaction AmI3 + AmI3 = Am+3 + 3 I- + log_k 24.7301 + -delta_H -175.407 kJ/mol # Calculated enthalpy of reaction AmI3 # Enthalpy of formation: -612 kJ/mol - -analytic -1.3886e+001 -3.6651e-002 7.2094e+003 1.0247e+001 1.2243e+002 + -analytic -1.3886e+1 -3.6651e-2 7.2094e+3 1.0247e+1 1.2243e+2 # -Range: 0-200 AmO2 - AmO2 +4.0000 H+ = + 1.0000 Am++++ + 2.0000 H2O - log_k -9.4203 - -delta_H -45.4767 kJ/mol # Calculated enthalpy of reaction AmO2 + AmO2 + 4 H+ = Am+4 + 2 H2O + log_k -9.4203 + -delta_H -45.4767 kJ/mol # Calculated enthalpy of reaction AmO2 # Enthalpy of formation: -932.2 kJ/mol - -analytic -7.4658e+001 -1.1661e-002 4.2059e+003 2.2070e+001 6.5650e+001 + -analytic -7.4658e+1 -1.1661e-2 4.2059e+3 2.207e+1 6.565e+1 # -Range: 0-300 AmOBr - AmOBr +2.0000 H+ = + 1.0000 Am+++ + 1.0000 Br- + 1.0000 H2O - log_k 13.7637 - -delta_H -131.042 kJ/mol # Calculated enthalpy of reaction AmOBr + AmOBr + 2 H+ = Am+3 + Br- + H2O + log_k 13.7637 + -delta_H -131.042 kJ/mol # Calculated enthalpy of reaction AmOBr # Enthalpy of formation: -893 kJ/mol - -analytic -4.4394e+001 -1.7071e-002 7.3438e+003 1.5605e+001 1.2472e+002 + -analytic -4.4394e+1 -1.7071e-2 7.3438e+3 1.5605e+1 1.2472e+2 # -Range: 0-200 AmOCl - AmOCl +2.0000 H+ = + 1.0000 Am+++ + 1.0000 Cl- + 1.0000 H2O - log_k 11.3229 - -delta_H -119.818 kJ/mol # Calculated enthalpy of reaction AmOCl + AmOCl + 2 H+ = Am+3 + Cl- + H2O + log_k 11.3229 + -delta_H -119.818 kJ/mol # Calculated enthalpy of reaction AmOCl # Enthalpy of formation: -949.8 kJ/mol - -analytic -1.2101e+002 -4.1027e-002 8.6801e+003 4.6651e+001 1.3548e+002 + -analytic -1.2101e+2 -4.1027e-2 8.6801e+3 4.6651e+1 1.3548e+2 # -Range: 0-300 AmOHCO3 - AmOHCO3 +2.0000 H+ = + 1.0000 Am+++ + 1.0000 H2O + 1.0000 HCO3- - log_k 3.1519 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmOHCO3 + AmOHCO3 + 2 H+ = Am+3 + H2O + HCO3- + log_k 3.1519 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmOHCO3 # Enthalpy of formation: 0 kcal/mol AmPO4(am) - AmPO4 +1.0000 H+ = + 1.0000 Am+++ + 1.0000 HPO4-- - log_k -12.4682 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmPO4(am) + AmPO4 + H+ = Am+3 + HPO4-2 + log_k -12.4682 + -delta_H 0 # Not possible to calculate enthalpy of reaction AmPO4(am) # Enthalpy of formation: 0 kcal/mol Amesite-14A - Mg4Al4Si2O10(OH)8 +20.0000 H+ = + 2.0000 SiO2 + 4.0000 Al+++ + 4.0000 Mg++ + 14.0000 H2O - log_k 75.4571 - -delta_H -797.098 kJ/mol # Calculated enthalpy of reaction Amesite-14A + Mg4Al4Si2O10(OH)8 + 20 H+ = 2 SiO2 + 4 Al+3 + 4 Mg+2 + 14 H2O + log_k 75.4571 + -delta_H -797.098 kJ/mol # Calculated enthalpy of reaction Amesite-14A # Enthalpy of formation: -2145.67 kcal/mol - -analytic -5.4326e+002 -1.4144e-001 5.4150e+004 1.9361e+002 8.4512e+002 + -analytic -5.4326e+2 -1.4144e-1 5.415e+4 1.9361e+2 8.4512e+2 # -Range: 0-300 Analcime - Na.96Al.96Si2.04O6:H2O +3.8400 H+ = + 0.9600 Al+++ + 0.9600 Na+ + 2.0400 SiO2 + 2.9200 H2O - log_k 6.1396 - -delta_H -75.844 kJ/mol # Calculated enthalpy of reaction Analcime + Na.96Al.96Si2.04O6:H2O + 3.84 H+ = 0.96 Al+3 + 0.96 Na+ + 2.04 SiO2 + 2.92 H2O + log_k 6.1396 + -delta_H -75.844 kJ/mol # Calculated enthalpy of reaction Analcime # Enthalpy of formation: -3296.86 kJ/mol - -analytic -6.8694e+000 6.6052e-003 9.8260e+003 -4.8540e+000 -8.8780e+005 + -analytic -6.8694e+0 6.6052e-3 9.826e+3 -4.854e+0 -8.878e+5 # -Range: 0-300 Analcime-dehy - Na.96Al.96Si2.04O6 +3.8400 H+ = + 0.9600 Al+++ + 0.9600 Na+ + 1.9200 H2O + 2.0400 SiO2 - log_k 12.5023 - -delta_H -116.641 kJ/mol # Calculated enthalpy of reaction Analcime-dehy + Na.96Al.96Si2.04O6 + 3.84 H+ = 0.96 Al+3 + 0.96 Na+ + 1.92 H2O + 2.04 SiO2 + log_k 12.5023 + -delta_H -116.641 kJ/mol # Calculated enthalpy of reaction Analcime-dehy # Enthalpy of formation: -2970.23 kJ/mol - -analytic -7.1134e+000 5.6181e-003 1.2185e+004 -5.0295e+000 -9.3890e+005 + -analytic -7.1134e+0 5.6181e-3 1.2185e+4 -5.0295e+0 -9.389e+5 # -Range: 0-300 Anatase - TiO2 +2.0000 H2O = + 1.0000 Ti(OH)4 - log_k -8.5586 - -delta_H 0 # Not possible to calculate enthalpy of reaction Anatase + TiO2 + 2 H2O = Ti(OH)4 + log_k -8.5586 + -delta_H 0 # Not possible to calculate enthalpy of reaction Anatase # Enthalpy of formation: -939.942 kJ/mol Andalusite - Al2SiO5 +6.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 3.0000 H2O - log_k 15.9445 - -delta_H -235.233 kJ/mol # Calculated enthalpy of reaction Andalusite + Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O + log_k 15.9445 + -delta_H -235.233 kJ/mol # Calculated enthalpy of reaction Andalusite # Enthalpy of formation: -615.866 kcal/mol - -analytic -7.1115e+001 -3.2234e-002 1.2308e+004 2.2357e+001 1.9208e+002 + -analytic -7.1115e+1 -3.2234e-2 1.2308e+4 2.2357e+1 1.9208e+2 # -Range: 0-300 Andradite - Ca3Fe2(SiO4)3 +12.0000 H+ = + 2.0000 Fe+++ + 3.0000 Ca++ + 3.0000 SiO2 + 6.0000 H2O - log_k 33.3352 - -delta_H -301.173 kJ/mol # Calculated enthalpy of reaction Andradite + Ca3Fe2(SiO4)3 + 12 H+ = 2 Fe+3 + 3 Ca+2 + 3 SiO2 + 6 H2O + log_k 33.3352 + -delta_H -301.173 kJ/mol # Calculated enthalpy of reaction Andradite # Enthalpy of formation: -1380.35 kcal/mol - -analytic 1.3884e+001 -2.3886e-002 1.5314e+004 -8.1606e+000 -4.2193e+005 + -analytic 1.3884e+1 -2.3886e-2 1.5314e+4 -8.1606e+0 -4.2193e+5 # -Range: 0-300 Anglesite - PbSO4 = + 1.0000 Pb++ + 1.0000 SO4-- - log_k -7.8527 - -delta_H 11.255 kJ/mol # Calculated enthalpy of reaction Anglesite + PbSO4 = Pb+2 + SO4-2 + log_k -7.8527 + -delta_H 11.255 kJ/mol # Calculated enthalpy of reaction Anglesite # Enthalpy of formation: -219.87 kcal/mol - -analytic -1.8583e+002 -7.3849e-002 2.8528e+003 7.6936e+001 4.4570e+001 + -analytic -1.8583e+2 -7.3849e-2 2.8528e+3 7.6936e+1 4.457e+1 # -Range: 0-300 Anhydrite - CaSO4 = + 1.0000 Ca++ + 1.0000 SO4-- - log_k -4.3064 - -delta_H -18.577 kJ/mol # Calculated enthalpy of reaction Anhydrite + CaSO4 = Ca+2 + SO4-2 + log_k -4.3064 + -delta_H -18.577 kJ/mol # Calculated enthalpy of reaction Anhydrite # Enthalpy of formation: -342.76 kcal/mol - -analytic -2.0986e+002 -7.8823e-002 5.0969e+003 8.5642e+001 7.9594e+001 + -analytic -2.0986e+2 -7.8823e-2 5.0969e+3 8.5642e+1 7.9594e+1 # -Range: 0-300 Annite - KFe3AlSi3O10(OH)2 +10.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 3.0000 Fe++ + 3.0000 SiO2 + 6.0000 H2O - log_k 29.4693 - -delta_H -259.964 kJ/mol # Calculated enthalpy of reaction Annite + KFe3AlSi3O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Fe+2 + 3 SiO2 + 6 H2O + log_k 29.4693 + -delta_H -259.964 kJ/mol # Calculated enthalpy of reaction Annite # Enthalpy of formation: -1232.19 kcal/mol - -analytic -4.0186e+001 -1.4238e-002 1.8929e+004 7.9859e+000 -8.4343e+005 + -analytic -4.0186e+1 -1.4238e-2 1.8929e+4 7.9859e+0 -8.4343e+5 # -Range: 0-300 Anorthite - CaAl2(SiO4)2 +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 2.0000 SiO2 + 4.0000 H2O - log_k 26.5780 - -delta_H -303.039 kJ/mol # Calculated enthalpy of reaction Anorthite + CaAl2(SiO4)2 + 8 H+ = Ca+2 + 2 Al+3 + 2 SiO2 + 4 H2O + log_k 26.578 + -delta_H -303.039 kJ/mol # Calculated enthalpy of reaction Anorthite # Enthalpy of formation: -1007.55 kcal/mol - -analytic 3.9717e-001 -1.8751e-002 1.4897e+004 -6.3078e+000 -2.3885e+005 + -analytic 3.9717e-1 -1.8751e-2 1.4897e+4 -6.3078e+0 -2.3885e+5 # -Range: 0-300 Antarcticite - CaCl2:6H2O = + 1.0000 Ca++ + 2.0000 Cl- + 6.0000 H2O - log_k 4.0933 - -delta_H 0 # Not possible to calculate enthalpy of reaction Antarcticite + CaCl2:6H2O = Ca+2 + 2 Cl- + 6 H2O + log_k 4.0933 + -delta_H 0 # Not possible to calculate enthalpy of reaction Antarcticite # Enthalpy of formation: 0 kcal/mol Anthophyllite - Mg7Si8O22(OH)2 +14.0000 H+ = + 7.0000 Mg++ + 8.0000 H2O + 8.0000 SiO2 - log_k 66.7965 - -delta_H -483.486 kJ/mol # Calculated enthalpy of reaction Anthophyllite + Mg7Si8O22(OH)2 + 14 H+ = 7 Mg+2 + 8 H2O + 8 SiO2 + log_k 66.7965 + -delta_H -483.486 kJ/mol # Calculated enthalpy of reaction Anthophyllite # Enthalpy of formation: -2888.75 kcal/mol - -analytic -1.2865e+002 1.9705e-002 5.4853e+004 1.9444e+001 -3.8080e+006 + -analytic -1.2865e+2 1.9705e-2 5.4853e+4 1.9444e+1 -3.808e+6 # -Range: 0-300 Antigorite # Mg48Si24O85(OH)62 +96.0000 H+ = + 34.0000 SiO2 + 48.0000 Mg++ + 79.0000 H2O - Mg48Si34O85(OH)62 +96.0000 H+ = + 34.0000 SiO2 + 48.0000 Mg++ + 79.0000 H2O - log_k 477.1943 - -delta_H -3364.43 kJ/mol # Calculated enthalpy of reaction Antigorite + Mg48Si34O85(OH)62 + 96 H+ = 34 SiO2 + 48 Mg+2 + 79 H2O + log_k 477.1943 + -delta_H -3364.43 kJ/mol # Calculated enthalpy of reaction Antigorite # Enthalpy of formation: -17070.9 kcal/mol - -analytic -8.1630e+002 -6.7780e-002 2.5998e+005 2.2029e+002 -9.3275e+006 + -analytic -8.163e+2 -6.778e-2 2.5998e+5 2.2029e+2 -9.3275e+6 # -Range: 0-300 Antlerite - Cu3(SO4)(OH)4 +4.0000 H+ = + 1.0000 SO4-- + 3.0000 Cu++ + 4.0000 H2O - log_k 8.7302 - -delta_H 0 # Not possible to calculate enthalpy of reaction Antlerite + Cu3(SO4)(OH)4 + 4 H+ = SO4-2 + 3 Cu+2 + 4 H2O + log_k 8.7302 + -delta_H 0 # Not possible to calculate enthalpy of reaction Antlerite # Enthalpy of formation: 0 kcal/mol Aphthitalite - NaK3(SO4)2 = + 1.0000 Na+ + 2.0000 SO4-- + 3.0000 K+ - log_k -3.8878 - -delta_H 0 # Not possible to calculate enthalpy of reaction Aphthitalite + NaK3(SO4)2 = Na+ + 2 SO4-2 + 3 K+ + log_k -3.8878 + -delta_H 0 # Not possible to calculate enthalpy of reaction Aphthitalite # Enthalpy of formation: 0 kcal/mol Aragonite - CaCO3 +1.0000 H+ = + 1.0000 Ca++ + 1.0000 HCO3- - log_k 1.9931 - -delta_H -25.8027 kJ/mol # Calculated enthalpy of reaction Aragonite + CaCO3 + H+ = Ca+2 + HCO3- + log_k 1.9931 + -delta_H -25.8027 kJ/mol # Calculated enthalpy of reaction Aragonite # Enthalpy of formation: -288.531 kcal/mol - -analytic -1.4934e+002 -4.8043e-002 4.9089e+003 6.0284e+001 7.6644e+001 + -analytic -1.4934e+2 -4.8043e-2 4.9089e+3 6.0284e+1 7.6644e+1 # -Range: 0-300 Arcanite - K2SO4 = + 1.0000 SO4-- + 2.0000 K+ - log_k -1.8008 - -delta_H 23.836 kJ/mol # Calculated enthalpy of reaction Arcanite + K2SO4 = SO4-2 + 2 K+ + log_k -1.8008 + -delta_H 23.836 kJ/mol # Calculated enthalpy of reaction Arcanite # Enthalpy of formation: -1437.78 kJ/mol - -analytic -1.6428e+002 -6.7762e-002 1.9879e+003 7.1116e+001 3.1067e+001 + -analytic -1.6428e+2 -6.7762e-2 1.9879e+3 7.1116e+1 3.1067e+1 # -Range: 0-300 Arsenolite - As2O3 +3.0000 H2O = + 2.0000 H+ + 2.0000 H2AsO3- - log_k -19.8365 - -delta_H 84.5449 kJ/mol # Calculated enthalpy of reaction Arsenolite + As2O3 + 3 H2O = 2 H+ + 2 H2AsO3- + log_k -19.8365 + -delta_H 84.5449 kJ/mol # Calculated enthalpy of reaction Arsenolite # Enthalpy of formation: -656.619 kJ/mol - -analytic 5.1917e+000 -1.9397e-002 -6.0894e+003 4.7458e-001 -1.0341e+002 + -analytic 5.1917e+0 -1.9397e-2 -6.0894e+3 4.7458e-1 -1.0341e+2 # -Range: 0-200 Arsenopyrite - FeAsS +1.5000 H2O +0.5000 H+ = + 0.5000 AsH3 + 0.5000 H2AsO3- + 1.0000 Fe++ + 1.0000 HS- - log_k -14.4453 - -delta_H 28.0187 kJ/mol # Calculated enthalpy of reaction Arsenopyrite + FeAsS + 1.5 H2O + 0.5 H+ = 0.5 AsH3 + 0.5 H2AsO3- + Fe+2 + HS- + log_k -14.4453 + -delta_H 28.0187 kJ/mol # Calculated enthalpy of reaction Arsenopyrite # Enthalpy of formation: -42.079 kJ/mol Artinite - Mg2CO3(OH)2:3H2O +3.0000 H+ = + 1.0000 HCO3- + 2.0000 Mg++ + 5.0000 H2O - log_k 19.6560 - -delta_H -130.432 kJ/mol # Calculated enthalpy of reaction Artinite + Mg2CO3(OH)2:3H2O + 3 H+ = HCO3- + 2 Mg+2 + 5 H2O + log_k 19.656 + -delta_H -130.432 kJ/mol # Calculated enthalpy of reaction Artinite # Enthalpy of formation: -698.043 kcal/mol - -analytic -2.8614e+002 -6.7344e-002 1.5230e+004 1.1104e+002 2.3773e+002 + -analytic -2.8614e+2 -6.7344e-2 1.523e+4 1.1104e+2 2.3773e+2 # -Range: 0-300 As - As +1.5000 H2O +0.7500 O2 = + 1.0000 H+ + 1.0000 H2AsO3- - log_k 42.7079 - -delta_H -276.937 kJ/mol # Calculated enthalpy of reaction As + As + 1.5 H2O + 0.75 O2 = H+ + H2AsO3- + log_k 42.7079 + -delta_H -276.937 kJ/mol # Calculated enthalpy of reaction As # Enthalpy of formation: 0 kJ/mol - -analytic -3.4700e+001 -3.1772e-002 1.3788e+004 1.6411e+001 2.1517e+002 + -analytic -3.47e+1 -3.1772e-2 1.3788e+4 1.6411e+1 2.1517e+2 # -Range: 0-300 As2O5 - As2O5 +3.0000 H2O = + 2.0000 H+ + 2.0000 H2AsO4- - log_k 2.1601 - -delta_H -36.7345 kJ/mol # Calculated enthalpy of reaction As2O5 + As2O5 + 3 H2O = 2 H+ + 2 H2AsO4- + log_k 2.1601 + -delta_H -36.7345 kJ/mol # Calculated enthalpy of reaction As2O5 # Enthalpy of formation: -924.87 kJ/mol - -analytic -1.4215e+002 -6.3459e-002 4.1222e+003 6.0369e+001 6.4365e+001 + -analytic -1.4215e+2 -6.3459e-2 4.1222e+3 6.0369e+1 6.4365e+1 # -Range: 0-300 As4O6(cubi) - As4O6 +6.0000 H2O = + 4.0000 H+ + 4.0000 H2AsO3- - log_k -39.7636 - -delta_H 169.792 kJ/mol # Calculated enthalpy of reaction As4O6(cubi) + As4O6 + 6 H2O = 4 H+ + 4 H2AsO3- + log_k -39.7636 + -delta_H 169.792 kJ/mol # Calculated enthalpy of reaction As4O6(cubi) # Enthalpy of formation: -1313.94 kJ/mol - -analytic -2.6300e+002 -1.1822e-001 -4.9004e+003 1.1108e+002 -7.6389e+001 + -analytic -2.63e+2 -1.1822e-1 -4.9004e+3 1.1108e+2 -7.6389e+1 # -Range: 0-300 As4O6(mono) - As4O6 +6.0000 H2O = + 4.0000 H+ + 4.0000 H2AsO3- - log_k -40.0375 - -delta_H 165.452 kJ/mol # Calculated enthalpy of reaction As4O6(mono) + As4O6 + 6 H2O = 4 H+ + 4 H2AsO3- + log_k -40.0375 + -delta_H 165.452 kJ/mol # Calculated enthalpy of reaction As4O6(mono) # Enthalpy of formation: -1309.6 kJ/mol - -analytic 9.2518e+000 -3.8823e-002 -1.1985e+004 9.9966e-001 -2.0352e+002 + -analytic 9.2518e+0 -3.8823e-2 -1.1985e+4 9.9966e-1 -2.0352e+2 # -Range: 0-200 Atacamite - Cu4Cl2(OH)6 +6.0000 H+ = + 2.0000 Cl- + 4.0000 Cu++ + 6.0000 H2O - log_k 14.2836 - -delta_H -132.001 kJ/mol # Calculated enthalpy of reaction Atacamite + Cu4Cl2(OH)6 + 6 H+ = 2 Cl- + 4 Cu+2 + 6 H2O + log_k 14.2836 + -delta_H -132.001 kJ/mol # Calculated enthalpy of reaction Atacamite # Enthalpy of formation: -1654.43 kJ/mol - -analytic -2.6623e+002 -4.8121e-002 1.5315e+004 9.8395e+001 2.6016e+002 + -analytic -2.6623e+2 -4.8121e-2 1.5315e+4 9.8395e+1 2.6016e+2 # -Range: 0-200 Au - Au +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Au+ - log_k -7.0864 - -delta_H 59.189 kJ/mol # Calculated enthalpy of reaction Au + Au + H+ + 0.25 O2 = 0.5 H2O + Au+ + log_k -7.0864 + -delta_H 59.189 kJ/mol # Calculated enthalpy of reaction Au # Enthalpy of formation: 0 kcal/mol - -analytic -7.6610e-001 -2.8520e-003 -3.0861e+003 1.9705e+000 -4.8156e+001 + -analytic -7.661e-1 -2.852e-3 -3.0861e+3 1.9705e+0 -4.8156e+1 # -Range: 0-300 Autunite-H - H2(UO2)2(PO4)2 = + 2.0000 HPO4-- + 2.0000 UO2++ - log_k -25.3372 - -delta_H -31.8599 kJ/mol # Calculated enthalpy of reaction Autunite-H + H2(UO2)2(PO4)2 = 2 HPO4-2 + 2 UO2+2 + log_k -25.3372 + -delta_H -31.8599 kJ/mol # Calculated enthalpy of reaction Autunite-H # Enthalpy of formation: -4590.3 kJ/mol - -analytic -3.2179e+001 -3.8038e-002 -6.8629e+002 8.2724e+000 -1.1644e+001 + -analytic -3.2179e+1 -3.8038e-2 -6.8629e+2 8.2724e+0 -1.1644e+1 # -Range: 0-200 Azurite - Cu3(CO3)2(OH)2 +4.0000 H+ = + 2.0000 H2O + 2.0000 HCO3- + 3.0000 Cu++ - log_k 9.1607 - -delta_H -122.298 kJ/mol # Calculated enthalpy of reaction Azurite + Cu3(CO3)2(OH)2 + 4 H+ = 2 H2O + 2 HCO3- + 3 Cu+2 + log_k 9.1607 + -delta_H -122.298 kJ/mol # Calculated enthalpy of reaction Azurite # Enthalpy of formation: -390.1 kcal/mol - -analytic -4.4042e+002 -1.1934e-001 1.8053e+004 1.7158e+002 2.8182e+002 + -analytic -4.4042e+2 -1.1934e-1 1.8053e+4 1.7158e+2 2.8182e+2 # -Range: 0-300 B - B +1.5000 H2O +0.7500 O2 = + 1.0000 B(OH)3 - log_k 109.5654 - -delta_H -636.677 kJ/mol # Calculated enthalpy of reaction B + B + 1.5 H2O + 0.75 O2 = B(OH)3 + log_k 109.5654 + -delta_H -636.677 kJ/mol # Calculated enthalpy of reaction B # Enthalpy of formation: 0 kJ/mol - -analytic 8.0471e+001 1.2577e-003 2.9653e+004 -2.8593e+001 4.6268e+002 + -analytic 8.0471e+1 1.2577e-3 2.9653e+4 -2.8593e+1 4.6268e+2 # -Range: 0-300 B2O3 - B2O3 +3.0000 H2O = + 2.0000 B(OH)3 - log_k 5.5464 - -delta_H -18.0548 kJ/mol # Calculated enthalpy of reaction B2O3 + B2O3 + 3 H2O = 2 B(OH)3 + log_k 5.5464 + -delta_H -18.0548 kJ/mol # Calculated enthalpy of reaction B2O3 # Enthalpy of formation: -1273.5 kJ/mol - -analytic 9.0905e+001 5.5365e-003 -2.6629e+003 -3.1553e+001 -4.1578e+001 + -analytic 9.0905e+1 5.5365e-3 -2.6629e+3 -3.1553e+1 -4.1578e+1 # -Range: 0-300 Ba - Ba +2.0000 H+ +0.5000 O2 = + 1.0000 Ba++ + 1.0000 H2O - log_k 141.2465 - -delta_H -817.416 kJ/mol # Calculated enthalpy of reaction Ba + Ba + 2 H+ + 0.5 O2 = Ba+2 + H2O + log_k 141.2465 + -delta_H -817.416 kJ/mol # Calculated enthalpy of reaction Ba # Enthalpy of formation: 0 kJ/mol - -analytic -2.5033e+001 -1.3917e-002 4.2849e+004 1.0786e+001 6.6863e+002 + -analytic -2.5033e+1 -1.3917e-2 4.2849e+4 1.0786e+1 6.6863e+2 # -Range: 0-300 Ba(OH)2:8H2O - Ba(OH)2:8H2O +2.0000 H+ = + 1.0000 Ba++ + 10.0000 H2O - log_k 24.4911 - -delta_H -55.4363 kJ/mol # Calculated enthalpy of reaction Ba(OH)2:8H2O + Ba(OH)2:8H2O + 2 H+ = Ba+2 + 10 H2O + log_k 24.4911 + -delta_H -55.4363 kJ/mol # Calculated enthalpy of reaction Ba(OH)2:8H2O # Enthalpy of formation: -3340.59 kJ/mol - -analytic -2.3888e+002 -1.5791e-003 1.4097e+004 8.7518e+001 2.3947e+002 + -analytic -2.3888e+2 -1.5791e-3 1.4097e+4 8.7518e+1 2.3947e+2 # -Range: 0-200 Ba2Si3O8 - Ba2Si3O8 +4.0000 H+ = + 2.0000 Ba++ + 2.0000 H2O + 3.0000 SiO2 - log_k 23.3284 - -delta_H -95.3325 kJ/mol # Calculated enthalpy of reaction Ba2Si3O8 + Ba2Si3O8 + 4 H+ = 2 Ba+2 + 2 H2O + 3 SiO2 + log_k 23.3284 + -delta_H -95.3325 kJ/mol # Calculated enthalpy of reaction Ba2Si3O8 # Enthalpy of formation: -4184.73 kJ/mol - -analytic -8.7226e+001 9.3125e-003 2.3147e+004 2.2012e+001 -2.1714e+006 + -analytic -8.7226e+1 9.3125e-3 2.3147e+4 2.2012e+1 -2.1714e+6 # -Range: 0-300 Ba2SiO4 - Ba2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Ba++ + 2.0000 H2O - log_k 44.5930 - -delta_H -237.206 kJ/mol # Calculated enthalpy of reaction Ba2SiO4 + Ba2SiO4 + 4 H+ = SiO2 + 2 Ba+2 + 2 H2O + log_k 44.593 + -delta_H -237.206 kJ/mol # Calculated enthalpy of reaction Ba2SiO4 # Enthalpy of formation: -2287.46 kJ/mol - -analytic -7.0350e+000 -5.1744e-003 1.4786e+004 3.1091e+000 -3.6972e+005 + -analytic -7.035e+0 -5.1744e-3 1.4786e+4 3.1091e+0 -3.6972e+5 # -Range: 0-300 Ba2U2O7 - Ba2U2O7 +6.0000 H+ = + 2.0000 Ba++ + 2.0000 UO2+ + 3.0000 H2O - log_k 36.4635 - -delta_H -243.057 kJ/mol # Calculated enthalpy of reaction Ba2U2O7 + Ba2U2O7 + 6 H+ = 2 Ba+2 + 2 UO2+ + 3 H2O + log_k 36.4635 + -delta_H -243.057 kJ/mol # Calculated enthalpy of reaction Ba2U2O7 # Enthalpy of formation: -3740 kJ/mol - -analytic -9.2562e+001 5.3866e-003 1.6852e+004 2.8647e+001 2.8621e+002 + -analytic -9.2562e+1 5.3866e-3 1.6852e+4 2.8647e+1 2.8621e+2 # -Range: 0-200 Ba3UO6 - Ba3UO6 +8.0000 H+ = + 1.0000 UO2++ + 3.0000 Ba++ + 4.0000 H2O - log_k 94.3709 - -delta_H -564.885 kJ/mol # Calculated enthalpy of reaction Ba3UO6 + Ba3UO6 + 8 H+ = UO2+2 + 3 Ba+2 + 4 H2O + log_k 94.3709 + -delta_H -564.885 kJ/mol # Calculated enthalpy of reaction Ba3UO6 # Enthalpy of formation: -3210.4 kJ/mol - -analytic -1.3001e+002 -1.7395e-002 3.3977e+004 4.6715e+001 5.7703e+002 + -analytic -1.3001e+2 -1.7395e-2 3.3977e+4 4.6715e+1 5.7703e+2 # -Range: 0-200 BaBr2 - BaBr2 = + 1.0000 Ba++ + 2.0000 Br- - log_k 5.6226 - -delta_H -23.3887 kJ/mol # Calculated enthalpy of reaction BaBr2 + BaBr2 = Ba+2 + 2 Br- + log_k 5.6226 + -delta_H -23.3887 kJ/mol # Calculated enthalpy of reaction BaBr2 # Enthalpy of formation: -757.262 kJ/mol - -analytic -1.7689e+002 -7.1918e-002 4.7187e+003 7.6010e+001 7.3683e+001 + -analytic -1.7689e+2 -7.1918e-2 4.7187e+3 7.601e+1 7.3683e+1 # -Range: 0-300 BaBr2:2H2O - BaBr2:2H2O = + 1.0000 Ba++ + 2.0000 Br- + 2.0000 H2O - log_k 2.2523 - -delta_H 13.7736 kJ/mol # Calculated enthalpy of reaction BaBr2:2H2O + BaBr2:2H2O = Ba+2 + 2 Br- + 2 H2O + log_k 2.2523 + -delta_H 13.7736 kJ/mol # Calculated enthalpy of reaction BaBr2:2H2O # Enthalpy of formation: -1366.1 kJ/mol - -analytic -1.5506e+001 -1.6281e-002 -8.5727e+002 1.0296e+001 -1.4552e+001 + -analytic -1.5506e+1 -1.6281e-2 -8.5727e+2 1.0296e+1 -1.4552e+1 # -Range: 0-200 BaCl2 - BaCl2 = + 1.0000 Ba++ + 2.0000 Cl- - log_k 2.2707 - -delta_H -13.1563 kJ/mol # Calculated enthalpy of reaction BaCl2 + BaCl2 = Ba+2 + 2 Cl- + log_k 2.2707 + -delta_H -13.1563 kJ/mol # Calculated enthalpy of reaction BaCl2 # Enthalpy of formation: -858.647 kJ/mol - -analytic -2.0393e+002 -7.8925e-002 4.8846e+003 8.6204e+001 7.6280e+001 + -analytic -2.0393e+2 -7.8925e-2 4.8846e+3 8.6204e+1 7.628e+1 # -Range: 0-300 BaCl2:2H2O - BaCl2:2H2O = + 1.0000 Ba++ + 2.0000 Cl- + 2.0000 H2O - log_k 0.2459 - -delta_H 16.558 kJ/mol # Calculated enthalpy of reaction BaCl2:2H2O + BaCl2:2H2O = Ba+2 + 2 Cl- + 2 H2O + log_k 0.2459 + -delta_H 16.558 kJ/mol # Calculated enthalpy of reaction BaCl2:2H2O # Enthalpy of formation: -1460.04 kJ/mol - -analytic -2.0350e+002 -7.3577e-002 3.7914e+003 8.6051e+001 5.9221e+001 + -analytic -2.035e+2 -7.3577e-2 3.7914e+3 8.6051e+1 5.9221e+1 # -Range: 0-300 BaCl2:H2O - BaCl2:H2O = + 1.0000 Ba++ + 1.0000 H2O + 2.0000 Cl- - log_k 0.8606 - -delta_H 2.89433 kJ/mol # Calculated enthalpy of reaction BaCl2:H2O + BaCl2:H2O = Ba+2 + H2O + 2 Cl- + log_k 0.8606 + -delta_H 2.89433 kJ/mol # Calculated enthalpy of reaction BaCl2:H2O # Enthalpy of formation: -1160.54 kJ/mol - -analytic -1.9572e+002 -7.3938e-002 4.0553e+003 8.2842e+001 6.3336e+001 + -analytic -1.9572e+2 -7.3938e-2 4.0553e+3 8.2842e+1 6.3336e+1 # -Range: 0-300 BaCrO4 - BaCrO4 = + 1.0000 Ba++ + 1.0000 CrO4-- - log_k -9.9322 - -delta_H 25.9115 kJ/mol # Calculated enthalpy of reaction BaCrO4 + BaCrO4 = Ba+2 + CrO4-2 + log_k -9.9322 + -delta_H 25.9115 kJ/mol # Calculated enthalpy of reaction BaCrO4 # Enthalpy of formation: -345.293 kcal/mol - -analytic 2.3142e+001 -1.6617e-002 -3.6883e+003 -6.3687e+000 -6.2640e+001 + -analytic 2.3142e+1 -1.6617e-2 -3.6883e+3 -6.3687e+0 -6.264e+1 # -Range: 0-200 BaHPO4 - BaHPO4 = + 1.0000 Ba++ + 1.0000 HPO4-- - log_k -7.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaHPO4 + BaHPO4 = Ba+2 + HPO4-2 + log_k -7.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaHPO4 # Enthalpy of formation: 0 kcal/mol BaI2 - BaI2 = + 1.0000 Ba++ + 2.0000 I- - log_k 11.0759 - -delta_H -46.0408 kJ/mol # Calculated enthalpy of reaction BaI2 + BaI2 = Ba+2 + 2 I- + log_k 11.0759 + -delta_H -46.0408 kJ/mol # Calculated enthalpy of reaction BaI2 # Enthalpy of formation: -605.408 kJ/mol - -analytic -1.7511e+002 -7.2206e-002 5.8696e+003 7.5974e+001 9.1641e+001 + -analytic -1.7511e+2 -7.2206e-2 5.8696e+3 7.5974e+1 9.1641e+1 # -Range: 0-300 BaMnO4 - BaMnO4 = + 1.0000 Ba++ + 1.0000 MnO4-- - log_k -10.0900 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaMnO4 + BaMnO4 = Ba+2 + MnO4-2 + log_k -10.09 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaMnO4 # Enthalpy of formation: 0 kcal/mol BaO - BaO +2.0000 H+ = + 1.0000 Ba++ + 1.0000 H2O - log_k 47.8036 - -delta_H -270.184 kJ/mol # Calculated enthalpy of reaction BaO + BaO + 2 H+ = Ba+2 + H2O + log_k 47.8036 + -delta_H -270.184 kJ/mol # Calculated enthalpy of reaction BaO # Enthalpy of formation: -553.298 kJ/mol - -analytic -7.3273e+001 -1.7149e-002 1.6811e+004 2.8560e+001 -7.7510e+004 + -analytic -7.3273e+1 -1.7149e-2 1.6811e+4 2.856e+1 -7.751e+4 # -Range: 0-300 BaS - BaS +1.0000 H+ = + 1.0000 Ba++ + 1.0000 HS- - log_k 16.2606 - -delta_H -92.9004 kJ/mol # Calculated enthalpy of reaction BaS + BaS + H+ = Ba+2 + HS- + log_k 16.2606 + -delta_H -92.9004 kJ/mol # Calculated enthalpy of reaction BaS # Enthalpy of formation: -460.852 kJ/mol - -analytic -1.1819e+002 -4.3420e-002 7.4296e+003 4.9489e+001 1.1597e+002 + -analytic -1.1819e+2 -4.342e-2 7.4296e+3 4.9489e+1 1.1597e+2 # -Range: 0-300 BaSeO3 - BaSeO3 = + 1.0000 Ba++ + 1.0000 SeO3-- - log_k -6.5615 - -delta_H -5.5658 kJ/mol # Calculated enthalpy of reaction BaSeO3 + BaSeO3 = Ba+2 + SeO3-2 + log_k -6.5615 + -delta_H -5.5658 kJ/mol # Calculated enthalpy of reaction BaSeO3 # Enthalpy of formation: -1041.27 kJ/mol - -analytic 2.9742e+001 -1.7073e-002 -2.4532e+003 -9.2936e+000 -4.1669e+001 + -analytic 2.9742e+1 -1.7073e-2 -2.4532e+3 -9.2936e+0 -4.1669e+1 # -Range: 0-200 BaSeO4 - BaSeO4 = + 1.0000 Ba++ + 1.0000 SeO4-- - log_k -7.4468 - -delta_H 8.9782 kJ/mol # Calculated enthalpy of reaction BaSeO4 + BaSeO4 = Ba+2 + SeO4-2 + log_k -7.4468 + -delta_H 8.9782 kJ/mol # Calculated enthalpy of reaction BaSeO4 # Enthalpy of formation: -1145.77 kJ/mol - -analytic 2.4274e+001 -1.6289e-002 -2.8520e+003 -6.9949e+000 -4.8439e+001 + -analytic 2.4274e+1 -1.6289e-2 -2.852e+3 -6.9949e+0 -4.8439e+1 # -Range: 0-200 BaSiF6 - BaSiF6 +2.0000 H2O = + 1.0000 Ba++ + 1.0000 SiO2 + 4.0000 H+ + 6.0000 F- - log_k -32.1771 - -delta_H 95.2555 kJ/mol # Calculated enthalpy of reaction BaSiF6 + BaSiF6 + 2 H2O = Ba+2 + SiO2 + 4 H+ + 6 F- + log_k -32.1771 + -delta_H 95.2555 kJ/mol # Calculated enthalpy of reaction BaSiF6 # Enthalpy of formation: -2951.01 kJ/mol - -analytic -6.4766e+000 -3.8410e-002 0.0000e+000 0.0000e+000 -1.2701e+006 + -analytic -6.4766e+0 -3.841e-2 0e+0 0e+0 -1.2701e+6 # -Range: 0-200 BaU2O7 - BaU2O7 +6.0000 H+ = + 1.0000 Ba++ + 2.0000 UO2++ + 3.0000 H2O - log_k 21.9576 - -delta_H -195.959 kJ/mol # Calculated enthalpy of reaction BaU2O7 + BaU2O7 + 6 H+ = Ba+2 + 2 UO2+2 + 3 H2O + log_k 21.9576 + -delta_H -195.959 kJ/mol # Calculated enthalpy of reaction BaU2O7 # Enthalpy of formation: -3237.2 kJ/mol - -analytic -1.2254e+002 -1.0941e-002 1.4452e+004 4.0125e+001 2.4546e+002 + -analytic -1.2254e+2 -1.0941e-2 1.4452e+4 4.0125e+1 2.4546e+2 # -Range: 0-200 BaUO4 - BaUO4 +4.0000 H+ = + 1.0000 Ba++ + 1.0000 UO2++ + 2.0000 H2O - log_k 18.2007 - -delta_H -134.521 kJ/mol # Calculated enthalpy of reaction BaUO4 + BaUO4 + 4 H+ = Ba+2 + UO2+2 + 2 H2O + log_k 18.2007 + -delta_H -134.521 kJ/mol # Calculated enthalpy of reaction BaUO4 # Enthalpy of formation: -1993.8 kJ/mol - -analytic -6.7113e+001 -1.6340e-002 8.7592e+003 2.4571e+001 1.3670e+002 + -analytic -6.7113e+1 -1.634e-2 8.7592e+3 2.4571e+1 1.367e+2 # -Range: 0-300 BaZrO3 - BaZrO3 +4.0000 H+ = + 1.0000 Ba++ + 1.0000 H2O + 1.0000 Zr(OH)2++ - log_k -94.4716 - -delta_H 505.159 kJ/mol # Calculated enthalpy of reaction BaZrO3 + BaZrO3 + 4 H+ = Ba+2 + H2O + Zr(OH)2+2 + log_k -94.4716 + -delta_H 505.159 kJ/mol # Calculated enthalpy of reaction BaZrO3 # Enthalpy of formation: -578.27 kcal/mol - -analytic -5.3606e+001 -1.0096e-002 -2.4894e+004 1.8446e+001 -4.2271e+002 + -analytic -5.3606e+1 -1.0096e-2 -2.4894e+4 1.8446e+1 -4.2271e+2 # -Range: 0-200 Baddeleyite - ZrO2 +2.0000 H+ = + 1.0000 Zr(OH)2++ - log_k -7.9405 - -delta_H 9.72007 kJ/mol # Calculated enthalpy of reaction Baddeleyite + ZrO2 + 2 H+ = Zr(OH)2+2 + log_k -7.9405 + -delta_H 9.72007 kJ/mol # Calculated enthalpy of reaction Baddeleyite # Enthalpy of formation: -1100.56 kJ/mol - -analytic -2.5188e-001 -4.6374e-003 -1.0635e+003 -1.1055e+000 -1.6595e+001 + -analytic -2.5188e-1 -4.6374e-3 -1.0635e+3 -1.1055e+0 -1.6595e+1 # -Range: 0-300 Barite - BaSO4 = + 1.0000 Ba++ + 1.0000 SO4-- - log_k -9.9711 - -delta_H 25.9408 kJ/mol # Calculated enthalpy of reaction Barite + BaSO4 = Ba+2 + SO4-2 + log_k -9.9711 + -delta_H 25.9408 kJ/mol # Calculated enthalpy of reaction Barite # Enthalpy of formation: -352.1 kcal/mol - -analytic -1.8747e+002 -7.5521e-002 2.0790e+003 7.7998e+001 3.2497e+001 + -analytic -1.8747e+2 -7.5521e-2 2.079e+3 7.7998e+1 3.2497e+1 # -Range: 0-300 Barytocalcite - BaCa(CO3)2 +2.0000 H+ = + 1.0000 Ba++ + 1.0000 Ca++ + 2.0000 HCO3- - log_k 2.7420 - -delta_H 0 # Not possible to calculate enthalpy of reaction Barytocalcite + BaCa(CO3)2 + 2 H+ = Ba+2 + Ca+2 + 2 HCO3- + log_k 2.742 + -delta_H 0 # Not possible to calculate enthalpy of reaction Barytocalcite # Enthalpy of formation: 0 kcal/mol Bassanite - CaSO4:0.5H2O = + 0.5000 H2O + 1.0000 Ca++ + 1.0000 SO4-- - log_k -3.6615 - -delta_H -18.711 kJ/mol # Calculated enthalpy of reaction Bassanite + CaSO4:0.5H2O = 0.5 H2O + Ca+2 + SO4-2 + log_k -3.6615 + -delta_H -18.711 kJ/mol # Calculated enthalpy of reaction Bassanite # Enthalpy of formation: -1576.89 kJ/mol - -analytic -2.2010e+002 -8.0230e-002 5.5092e+003 8.9651e+001 8.6031e+001 + -analytic -2.201e+2 -8.023e-2 5.5092e+3 8.9651e+1 8.6031e+1 # -Range: 0-300 Bassetite - Fe(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Fe++ + 2.0000 HPO4-- + 2.0000 UO2++ - log_k -17.7240 - -delta_H -114.841 kJ/mol # Calculated enthalpy of reaction Bassetite + Fe(UO2)2(PO4)2 + 2 H+ = Fe+2 + 2 HPO4-2 + 2 UO2+2 + log_k -17.724 + -delta_H -114.841 kJ/mol # Calculated enthalpy of reaction Bassetite # Enthalpy of formation: -1099.33 kcal/mol - -analytic -5.7788e+001 -4.5400e-002 4.0119e+003 1.6216e+001 6.8147e+001 + -analytic -5.7788e+1 -4.54e-2 4.0119e+3 1.6216e+1 6.8147e+1 # -Range: 0-200 Be - Be +2.0000 H+ +0.5000 O2 = + 1.0000 Be++ + 1.0000 H2O - log_k 104.2077 - -delta_H -662.608 kJ/mol # Calculated enthalpy of reaction Be + Be + 2 H+ + 0.5 O2 = Be+2 + H2O + log_k 104.2077 + -delta_H -662.608 kJ/mol # Calculated enthalpy of reaction Be # Enthalpy of formation: 0 kJ/mol - -analytic -9.3960e+001 -2.4749e-002 3.6714e+004 3.3295e+001 5.7291e+002 + -analytic -9.396e+1 -2.4749e-2 3.6714e+4 3.3295e+1 5.7291e+2 # -Range: 0-300 Be13U - Be13U +30.0000 H+ +7.5000 O2 = + 1.0000 U++++ + 13.0000 Be++ + 15.0000 H2O - log_k 1504.5350 - -delta_H -9601.04 kJ/mol # Calculated enthalpy of reaction Be13U + Be13U + 30 H+ + 7.5 O2 = U+4 + 13 Be+2 + 15 H2O + log_k 1504.535 + -delta_H -9601.04 kJ/mol # Calculated enthalpy of reaction Be13U # Enthalpy of formation: -163.6 kJ/mol - -analytic -1.2388e+003 -3.2848e-001 5.2816e+005 4.3222e+002 8.2419e+003 + -analytic -1.2388e+3 -3.2848e-1 5.2816e+5 4.3222e+2 8.2419e+3 # -Range: 0-300 Beidellite-Ca - Ca.165Al2.33Si3.67O10(OH)2 +7.3200 H+ = + 0.1650 Ca++ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O - log_k 5.5914 - -delta_H -162.403 kJ/mol # Calculated enthalpy of reaction Beidellite-Ca + Ca.165Al2.33Si3.67O10(OH)2 + 7.32 H+ = 0.165 Ca+2 + 2.33 Al+3 + 3.67 SiO2 + 4.66 H2O + log_k 5.5914 + -delta_H -162.403 kJ/mol # Calculated enthalpy of reaction Beidellite-Ca # Enthalpy of formation: -1370.66 kcal/mol - -analytic 2.3887e+001 4.4178e-003 1.5296e+004 -2.2343e+001 -1.4025e+006 + -analytic 2.3887e+1 4.4178e-3 1.5296e+4 -2.2343e+1 -1.4025e+6 # -Range: 0-300 Beidellite-Cs - Cs.33Si3.67Al2.33O10(OH)2 +7.3200 H+ = + 0.3300 Cs+ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O - log_k 5.1541 - -delta_H -149.851 kJ/mol # Calculated enthalpy of reaction Beidellite-Cs + Cs.33Si3.67Al2.33O10(OH)2 + 7.32 H+ = 0.33 Cs+ + 2.33 Al+3 + 3.67 SiO2 + 4.66 H2O + log_k 5.1541 + -delta_H -149.851 kJ/mol # Calculated enthalpy of reaction Beidellite-Cs # Enthalpy of formation: -1372.59 kcal/mol - -analytic 2.1244e+001 2.1705e-003 1.4504e+004 -2.0250e+001 -1.3712e+006 + -analytic 2.1244e+1 2.1705e-3 1.4504e+4 -2.025e+1 -1.3712e+6 # -Range: 0-300 Beidellite-H - H.33Al2.33Si3.67O10(OH)2 +6.9900 H+ = + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O - log_k 4.6335 - -delta_H -154.65 kJ/mol # Calculated enthalpy of reaction Beidellite-H + H.33Al2.33Si3.67O10(OH)2 + 6.99 H+ = 2.33 Al+3 + 3.67 SiO2 + 4.66 H2O + log_k 4.6335 + -delta_H -154.65 kJ/mol # Calculated enthalpy of reaction Beidellite-H # Enthalpy of formation: -1351.1 kcal/mol - -analytic 5.4070e+000 3.4064e-003 1.6284e+004 -1.6028e+001 -1.5014e+006 + -analytic 5.407e+0 3.4064e-3 1.6284e+4 -1.6028e+1 -1.5014e+6 # -Range: 0-300 Beidellite-K - K.33Al2.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 K+ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O - log_k 5.3088 - -delta_H -150.834 kJ/mol # Calculated enthalpy of reaction Beidellite-K + K.33Al2.33Si3.67O10(OH)2 + 7.32 H+ = 0.33 K+ + 2.33 Al+3 + 3.67 SiO2 + 4.66 H2O + log_k 5.3088 + -delta_H -150.834 kJ/mol # Calculated enthalpy of reaction Beidellite-K # Enthalpy of formation: -1371.9 kcal/mol - -analytic 1.0792e+001 3.4419e-003 1.5760e+004 -1.7333e+001 -1.4779e+006 + -analytic 1.0792e+1 3.4419e-3 1.576e+4 -1.7333e+1 -1.4779e+6 # -Range: 0-300 Beidellite-Mg - Mg.165Al2.33Si3.67O10(OH)2 +7.3200 H+ = + 0.1650 Mg++ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O - log_k 5.5537 - -delta_H -165.455 kJ/mol # Calculated enthalpy of reaction Beidellite-Mg + Mg.165Al2.33Si3.67O10(OH)2 + 7.32 H+ = 0.165 Mg+2 + 2.33 Al+3 + 3.67 SiO2 + 4.66 H2O + log_k 5.5537 + -delta_H -165.455 kJ/mol # Calculated enthalpy of reaction Beidellite-Mg # Enthalpy of formation: -1366.89 kcal/mol - -analytic 1.3375e+001 3.0420e-003 1.5947e+004 -1.8728e+001 -1.4242e+006 + -analytic 1.3375e+1 3.042e-3 1.5947e+4 -1.8728e+1 -1.4242e+6 # -Range: 0-300 Beidellite-Na - Na.33Al2.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 Na+ + 2.3300 Al+++ + 3.6700 SiO2 + 4.6600 H2O - log_k 5.6473 - -delta_H -155.846 kJ/mol # Calculated enthalpy of reaction Beidellite-Na + Na.33Al2.33Si3.67O10(OH)2 + 7.32 H+ = 0.33 Na+ + 2.33 Al+3 + 3.67 SiO2 + 4.66 H2O + log_k 5.6473 + -delta_H -155.846 kJ/mol # Calculated enthalpy of reaction Beidellite-Na # Enthalpy of formation: -1369.76 kcal/mol - -analytic 1.1504e+001 3.9871e-003 1.5818e+004 -1.7762e+001 -1.4485e+006 + -analytic 1.1504e+1 3.9871e-3 1.5818e+4 -1.7762e+1 -1.4485e+6 # -Range: 0-300 Berlinite - AlPO4 +1.0000 H+ = + 1.0000 Al+++ + 1.0000 HPO4-- - log_k -7.2087 - -delta_H -96.6313 kJ/mol # Calculated enthalpy of reaction Berlinite + AlPO4 + H+ = Al+3 + HPO4-2 + log_k -7.2087 + -delta_H -96.6313 kJ/mol # Calculated enthalpy of reaction Berlinite # Enthalpy of formation: -1733.85 kJ/mol - -analytic -2.8134e+002 -9.9933e-002 1.0308e+004 1.0883e+002 1.6094e+002 + -analytic -2.8134e+2 -9.9933e-2 1.0308e+4 1.0883e+2 1.6094e+2 # -Range: 0-300 Berndtite - SnS2 = + 1.0000 S2-- + 1.0000 Sn++ - log_k -34.5393 - -delta_H 0 # Not possible to calculate enthalpy of reaction Berndtite + SnS2 = S2-2 + Sn+2 + log_k -34.5393 + -delta_H 0 # Not possible to calculate enthalpy of reaction Berndtite # Enthalpy of formation: -36.7 kcal/mol - -analytic -2.0311e+002 -7.6462e-002 -4.9879e+003 8.4082e+001 -7.7772e+001 + -analytic -2.0311e+2 -7.6462e-2 -4.9879e+3 8.4082e+1 -7.7772e+1 # -Range: 0-300 Bieberite - CoSO4:7H2O = + 1.0000 Co++ + 1.0000 SO4-- + 7.0000 H2O - log_k -2.5051 - -delta_H 11.3885 kJ/mol # Calculated enthalpy of reaction Bieberite + CoSO4:7H2O = Co+2 + SO4-2 + 7 H2O + log_k -2.5051 + -delta_H 11.3885 kJ/mol # Calculated enthalpy of reaction Bieberite # Enthalpy of formation: -2980.02 kJ/mol - -analytic -2.6405e+002 -7.2497e-002 6.6673e+003 1.0538e+002 1.0411e+002 + -analytic -2.6405e+2 -7.2497e-2 6.6673e+3 1.0538e+2 1.0411e+2 # -Range: 0-300 Birnessite - Mn8O14:5H2O +4.0000 H+ = + 3.0000 MnO4-- + 5.0000 Mn++ + 7.0000 H2O - log_k -85.5463 - -delta_H 0 # Not possible to calculate enthalpy of reaction Birnessite + Mn8O14:5H2O + 4 H+ = 3 MnO4-2 + 5 Mn+2 + 7 H2O + log_k -85.5463 + -delta_H 0 # Not possible to calculate enthalpy of reaction Birnessite # Enthalpy of formation: 0 kcal/mol Bischofite - MgCl2:6H2O = + 1.0000 Mg++ + 2.0000 Cl- + 6.0000 H2O - log_k 4.3923 - -delta_H 0 # Not possible to calculate enthalpy of reaction Bischofite + MgCl2:6H2O = Mg+2 + 2 Cl- + 6 H2O + log_k 4.3923 + -delta_H 0 # Not possible to calculate enthalpy of reaction Bischofite # Enthalpy of formation: 0 kcal/mol Bixbyite - Mn2O3 +6.0000 H+ = + 2.0000 Mn+++ + 3.0000 H2O - log_k -0.9655 - -delta_H -190.545 kJ/mol # Calculated enthalpy of reaction Bixbyite + Mn2O3 + 6 H+ = 2 Mn+3 + 3 H2O + log_k -0.9655 + -delta_H -190.545 kJ/mol # Calculated enthalpy of reaction Bixbyite # Enthalpy of formation: -958.971 kJ/mol - -analytic -1.1600e+002 -2.8056e-003 1.3418e+004 2.8639e+001 2.0941e+002 + -analytic -1.16e+2 -2.8056e-3 1.3418e+4 2.8639e+1 2.0941e+2 # -Range: 0-300 Bloedite - Na2Mg(SO4)2:4H2O = + 1.0000 Mg++ + 2.0000 Na+ + 2.0000 SO4-- + 4.0000 H2O - log_k -2.4777 - -delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite + Na2Mg(SO4)2:4H2O = Mg+2 + 2 Na+ + 2 SO4-2 + 4 H2O + log_k -2.4777 + -delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite # Enthalpy of formation: 0 kcal/mol Boehmite - AlO2H +3.0000 H+ = + 1.0000 Al+++ + 2.0000 H2O - log_k 7.5642 - -delta_H -113.282 kJ/mol # Calculated enthalpy of reaction Boehmite + AlO2H + 3 H+ = Al+3 + 2 H2O + log_k 7.5642 + -delta_H -113.282 kJ/mol # Calculated enthalpy of reaction Boehmite # Enthalpy of formation: -238.24 kcal/mol - -analytic -1.2196e+002 -3.1138e-002 8.8643e+003 4.4075e+001 1.3835e+002 + -analytic -1.2196e+2 -3.1138e-2 8.8643e+3 4.4075e+1 1.3835e+2 # -Range: 0-300 Boltwoodite - K(H3O)(UO2)SiO4 +3.0000 H+ = + 1.0000 K+ + 1.0000 SiO2 + 1.0000 UO2++ + 3.0000 H2O - log_k 14.8857 - -delta_H 0 # Not possible to calculate enthalpy of reaction Boltwoodite + K(H3O)(UO2)SiO4 + 3 H+ = K+ + SiO2 + UO2+2 + 3 H2O + log_k 14.8857 + -delta_H 0 # Not possible to calculate enthalpy of reaction Boltwoodite # Enthalpy of formation: 0 kcal/mol Boltwoodite-Na - Na.7K.3(H3O)(UO2)SiO4:H2O +3.0000 H+ = + 0.3000 K+ + 0.7000 Na+ + 1.0000 SiO2 + 1.0000 UO2++ + 4.0000 H2O - log_k 14.5834 - -delta_H 0 # Not possible to calculate enthalpy of reaction Boltwoodite-Na + Na.7K.3(H3O)(UO2)SiO4:H2O + 3 H+ = 0.3 K+ + 0.7 Na+ + SiO2 + UO2+2 + 4 H2O + log_k 14.5834 + -delta_H 0 # Not possible to calculate enthalpy of reaction Boltwoodite-Na # Enthalpy of formation: 0 kcal/mol Borax - Na2(B4O5(OH)4):8H2O +2.0000 H+ = + 2.0000 Na+ + 4.0000 B(OH)3 + 5.0000 H2O - log_k 12.0395 - -delta_H 80.5145 kJ/mol # Calculated enthalpy of reaction Borax + Na2(B4O5(OH)4):8H2O + 2 H+ = 2 Na+ + 4 B(OH)3 + 5 H2O + log_k 12.0395 + -delta_H 80.5145 kJ/mol # Calculated enthalpy of reaction Borax # Enthalpy of formation: -6288.44 kJ/mol - -analytic 7.8374e+001 1.9328e-002 -5.3279e+003 -2.1914e+001 -8.3160e+001 + -analytic 7.8374e+1 1.9328e-2 -5.3279e+3 -2.1914e+1 -8.316e+1 # -Range: 0-300 Boric_acid - B(OH)3 = + 1.0000 B(OH)3 - log_k -0.1583 - -delta_H 20.2651 kJ/mol # Calculated enthalpy of reaction Boric_acid + B(OH)3 = B(OH)3 + log_k -0.1583 + -delta_H 20.2651 kJ/mol # Calculated enthalpy of reaction Boric_acid # Enthalpy of formation: -1094.8 kJ/mol - -analytic 3.9122e+001 6.4058e-003 -2.2525e+003 -1.3592e+001 -3.5160e+001 + -analytic 3.9122e+1 6.4058e-3 -2.2525e+3 -1.3592e+1 -3.516e+1 # -Range: 0-300 Bornite - Cu5FeS4 +4.0000 H+ = + 1.0000 Cu++ + 1.0000 Fe++ + 4.0000 Cu+ + 4.0000 HS- - log_k -102.4369 - -delta_H 530.113 kJ/mol # Calculated enthalpy of reaction Bornite + Cu5FeS4 + 4 H+ = Cu+2 + Fe+2 + 4 Cu+ + 4 HS- + log_k -102.4369 + -delta_H 530.113 kJ/mol # Calculated enthalpy of reaction Bornite # Enthalpy of formation: -79.922 kcal/mol - -analytic -7.0495e+002 -2.0082e-001 -9.1376e+003 2.8004e+002 -1.4238e+002 + -analytic -7.0495e+2 -2.0082e-1 -9.1376e+3 2.8004e+2 -1.4238e+2 # -Range: 0-300 Brezinaite - Cr3S4 +4.0000 H+ = + 1.0000 Cr++ + 2.0000 Cr+++ + 4.0000 HS- - log_k 2.7883 - -delta_H -216.731 kJ/mol # Calculated enthalpy of reaction Brezinaite + Cr3S4 + 4 H+ = Cr+2 + 2 Cr+3 + 4 HS- + log_k 2.7883 + -delta_H -216.731 kJ/mol # Calculated enthalpy of reaction Brezinaite # Enthalpy of formation: -111.9 kcal/mol - -analytic -7.0528e+001 -3.6568e-002 1.0598e+004 1.9665e+001 1.8000e+002 + -analytic -7.0528e+1 -3.6568e-2 1.0598e+4 1.9665e+1 1.8e+2 # -Range: 0-200 Brochantite - Cu4(SO4)(OH)6 +6.0000 H+ = + 1.0000 SO4-- + 4.0000 Cu++ + 6.0000 H2O - log_k 15.4363 - -delta_H -163.158 kJ/mol # Calculated enthalpy of reaction Brochantite + Cu4(SO4)(OH)6 + 6 H+ = SO4-2 + 4 Cu+2 + 6 H2O + log_k 15.4363 + -delta_H -163.158 kJ/mol # Calculated enthalpy of reaction Brochantite # Enthalpy of formation: -2198.72 kJ/mol - -analytic -2.3609e+002 -3.9046e-002 1.5970e+004 8.4701e+001 2.7127e+002 + -analytic -2.3609e+2 -3.9046e-2 1.597e+4 8.4701e+1 2.7127e+2 # -Range: 0-200 Bromellite - BeO +2.0000 H+ = + 1.0000 Be++ + 1.0000 H2O - log_k 1.1309 - -delta_H -59.2743 kJ/mol # Calculated enthalpy of reaction Bromellite + BeO + 2 H+ = Be+2 + H2O + log_k 1.1309 + -delta_H -59.2743 kJ/mol # Calculated enthalpy of reaction Bromellite # Enthalpy of formation: -609.4 kJ/mol - -analytic 1.4790e+002 -4.6004e-001 -3.2577e+004 4.0273e+001 -5.0837e+002 + -analytic 1.479e+2 -4.6004e-1 -3.2577e+4 4.0273e+1 -5.0837e+2 # -Range: 0-300 Brucite - Mg(OH)2 +2.0000 H+ = + 1.0000 Mg++ + 2.0000 H2O - log_k 16.2980 - -delta_H -111.34 kJ/mol # Calculated enthalpy of reaction Brucite + Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O + log_k 16.298 + -delta_H -111.34 kJ/mol # Calculated enthalpy of reaction Brucite # Enthalpy of formation: -221.39 kcal/mol - -analytic -1.0280e+002 -1.9759e-002 9.0180e+003 3.8282e+001 1.4075e+002 + -analytic -1.028e+2 -1.9759e-2 9.018e+3 3.8282e+1 1.4075e+2 # -Range: 0-300 Brushite - CaHPO4:2H2O = + 1.0000 Ca++ + 1.0000 HPO4-- + 2.0000 H2O - log_k 6.5500 - -delta_H 0 # Not possible to calculate enthalpy of reaction Brushite + CaHPO4:2H2O = Ca+2 + HPO4-2 + 2 H2O + log_k 6.55 + -delta_H 0 # Not possible to calculate enthalpy of reaction Brushite # Enthalpy of formation: 0 kcal/mol Bunsenite - NiO +2.0000 H+ = + 1.0000 H2O + 1.0000 Ni++ - log_k 12.4719 - -delta_H -100.069 kJ/mol # Calculated enthalpy of reaction Bunsenite + NiO + 2 H+ = H2O + Ni+2 + log_k 12.4719 + -delta_H -100.069 kJ/mol # Calculated enthalpy of reaction Bunsenite # Enthalpy of formation: -57.3 kcal/mol - -analytic -8.1664e+001 -1.9796e-002 7.4064e+003 3.0385e+001 1.1559e+002 + -analytic -8.1664e+1 -1.9796e-2 7.4064e+3 3.0385e+1 1.1559e+2 # -Range: 0-300 Burkeite - Na6CO3(SO4)2 +1.0000 H+ = + 1.0000 HCO3- + 2.0000 SO4-- + 6.0000 Na+ - log_k 9.4866 - -delta_H 0 # Not possible to calculate enthalpy of reaction Burkeite + Na6CO3(SO4)2 + H+ = HCO3- + 2 SO4-2 + 6 Na+ + log_k 9.4866 + -delta_H 0 # Not possible to calculate enthalpy of reaction Burkeite # Enthalpy of formation: 0 kcal/mol C - C +1.0000 H2O +1.0000 O2 = + 1.0000 H+ + 1.0000 HCO3- - log_k 64.1735 - -delta_H -391.961 kJ/mol # Calculated enthalpy of reaction C + C + H2O + O2 = H+ + HCO3- + log_k 64.1735 + -delta_H -391.961 kJ/mol # Calculated enthalpy of reaction C # Enthalpy of formation: 0 kcal/mol - -analytic -3.5556e+001 -3.3691e-002 1.9774e+004 1.7548e+001 3.0856e+002 + -analytic -3.5556e+1 -3.3691e-2 1.9774e+4 1.7548e+1 3.0856e+2 # -Range: 0-300 Ca - Ca +2.0000 H+ +0.5000 O2 = + 1.0000 Ca++ + 1.0000 H2O - log_k 139.8465 - -delta_H -822.855 kJ/mol # Calculated enthalpy of reaction Ca + Ca + 2 H+ + 0.5 O2 = Ca+2 + H2O + log_k 139.8465 + -delta_H -822.855 kJ/mol # Calculated enthalpy of reaction Ca # Enthalpy of formation: 0 kJ/mol - -analytic -1.1328e+002 -2.6554e-002 4.7638e+004 4.1989e+001 -2.3545e+005 + -analytic -1.1328e+2 -2.6554e-2 4.7638e+4 4.1989e+1 -2.3545e+5 # -Range: 0-300 Ca-Al_Pyroxene - CaAl2SiO6 +8.0000 H+ = + 1.0000 Ca++ + 1.0000 SiO2 + 2.0000 Al+++ + 4.0000 H2O - log_k 35.9759 - -delta_H -361.548 kJ/mol # Calculated enthalpy of reaction Ca-Al_Pyroxene + CaAl2SiO6 + 8 H+ = Ca+2 + SiO2 + 2 Al+3 + 4 H2O + log_k 35.9759 + -delta_H -361.548 kJ/mol # Calculated enthalpy of reaction Ca-Al_Pyroxene # Enthalpy of formation: -783.793 kcal/mol - -analytic -1.4664e+002 -5.0409e-002 2.1045e+004 5.1318e+001 3.2843e+002 + -analytic -1.4664e+2 -5.0409e-2 2.1045e+4 5.1318e+1 3.2843e+2 # -Range: 0-300 Ca2Al2O5:8H2O - Ca2Al2O5:8H2O +10.0000 H+ = + 2.0000 Al+++ + 2.0000 Ca++ + 13.0000 H2O - log_k 59.5687 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2Al2O5:8H2O + Ca2Al2O5:8H2O + 10 H+ = 2 Al+3 + 2 Ca+2 + 13 H2O + log_k 59.5687 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2Al2O5:8H2O # Enthalpy of formation: 0 kcal/mol Ca2Cl2(OH)2:H2O - Ca2Cl2(OH)2:H2O +2.0000 H+ = + 2.0000 Ca++ + 2.0000 Cl- + 3.0000 H2O - log_k 26.2901 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2Cl2(OH)2:H2O + Ca2Cl2(OH)2:H2O + 2 H+ = 2 Ca+2 + 2 Cl- + 3 H2O + log_k 26.2901 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2Cl2(OH)2:H2O # Enthalpy of formation: 0 kcal/mol Ca2V2O7 - Ca2V2O7 +1.0000 H2O = + 2.0000 Ca++ + 2.0000 H+ + 2.0000 VO4--- - log_k -39.7129 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2V2O7 + Ca2V2O7 + H2O = 2 Ca+2 + 2 H+ + 2 VO4-3 + log_k -39.7129 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2V2O7 # Enthalpy of formation: -3083.46 kJ/mol Ca3(AsO4)2 - Ca3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Ca++ - log_k 17.8160 - -delta_H -149.956 kJ/mol # Calculated enthalpy of reaction Ca3(AsO4)2 + Ca3(AsO4)2 + 4 H+ = 2 H2AsO4- + 3 Ca+2 + log_k 17.816 + -delta_H -149.956 kJ/mol # Calculated enthalpy of reaction Ca3(AsO4)2 # Enthalpy of formation: -3298.41 kJ/mol - -analytic -1.4011e+002 -4.2945e-002 1.0981e+004 5.4107e+001 1.8652e+002 + -analytic -1.4011e+2 -4.2945e-2 1.0981e+4 5.4107e+1 1.8652e+2 # -Range: 0-200 Ca3Al2O6 - Ca3Al2O6 +12.0000 H+ = + 2.0000 Al+++ + 3.0000 Ca++ + 6.0000 H2O - log_k 113.0460 - -delta_H -833.336 kJ/mol # Calculated enthalpy of reaction Ca3Al2O6 + Ca3Al2O6 + 12 H+ = 2 Al+3 + 3 Ca+2 + 6 H2O + log_k 113.046 + -delta_H -833.336 kJ/mol # Calculated enthalpy of reaction Ca3Al2O6 # Enthalpy of formation: -857.492 kcal/mol - -analytic -2.7163e+002 -5.2897e-002 5.0815e+004 9.2946e+001 8.6300e+002 + -analytic -2.7163e+2 -5.2897e-2 5.0815e+4 9.2946e+1 8.63e+2 # -Range: 0-200 Ca3V2O8 - Ca3V2O8 = + 2.0000 VO4--- + 3.0000 Ca++ - log_k -18.3234 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca3V2O8 + Ca3V2O8 = 2 VO4-3 + 3 Ca+2 + log_k -18.3234 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca3V2O8 # Enthalpy of formation: -3778.1 kJ/mol Ca4Al2Fe2O10 - Ca4Al2Fe2O10 +20.0000 H+ = + 2.0000 Al+++ + 2.0000 Fe+++ + 4.0000 Ca++ + 10.0000 H2O - log_k 140.5050 - -delta_H -1139.86 kJ/mol # Calculated enthalpy of reaction Ca4Al2Fe2O10 + Ca4Al2Fe2O10 + 20 H+ = 2 Al+3 + 2 Fe+3 + 4 Ca+2 + 10 H2O + log_k 140.505 + -delta_H -1139.86 kJ/mol # Calculated enthalpy of reaction Ca4Al2Fe2O10 # Enthalpy of formation: -1211 kcal/mol - -analytic -4.1808e+002 -8.2787e-002 7.0288e+004 1.4043e+002 1.1937e+003 + -analytic -4.1808e+2 -8.2787e-2 7.0288e+4 1.4043e+2 1.1937e+3 # -Range: 0-200 Ca4Al2O7:13H2O - Ca4Al2O7:13H2O +14.0000 H+ = + 2.0000 Al+++ + 4.0000 Ca++ + 20.0000 H2O - log_k 107.2537 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Al2O7:13H2O + Ca4Al2O7:13H2O + 14 H+ = 2 Al+3 + 4 Ca+2 + 20 H2O + log_k 107.2537 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Al2O7:13H2O # Enthalpy of formation: 0 kcal/mol Ca4Al2O7:19H2O - Ca4Al2O7:19H2O +14.0000 H+ = + 2.0000 Al+++ + 4.0000 Ca++ + 26.0000 H2O - log_k 103.6812 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Al2O7:19H2O + Ca4Al2O7:19H2O + 14 H+ = 2 Al+3 + 4 Ca+2 + 26 H2O + log_k 103.6812 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Al2O7:19H2O # Enthalpy of formation: 0 kcal/mol Ca4Cl2(OH)6:13H2O - Ca4Cl2(OH)6:13H2O +6.0000 H+ = + 2.0000 Cl- + 4.0000 Ca++ + 19.0000 H2O - log_k 68.3283 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Cl2(OH)6:13H2O + Ca4Cl2(OH)6:13H2O + 6 H+ = 2 Cl- + 4 Ca+2 + 19 H2O + log_k 68.3283 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Cl2(OH)6:13H2O # Enthalpy of formation: 0 kcal/mol CaAl2O4 - CaAl2O4 +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 4.0000 H2O - log_k 46.9541 - -delta_H -436.952 kJ/mol # Calculated enthalpy of reaction CaAl2O4 + CaAl2O4 + 8 H+ = Ca+2 + 2 Al+3 + 4 H2O + log_k 46.9541 + -delta_H -436.952 kJ/mol # Calculated enthalpy of reaction CaAl2O4 # Enthalpy of formation: -555.996 kcal/mol - -analytic -3.0378e+002 -7.9356e-002 3.0096e+004 1.1049e+002 4.6971e+002 + -analytic -3.0378e+2 -7.9356e-2 3.0096e+4 1.1049e+2 4.6971e+2 # -Range: 0-300 CaAl2O4:10H2O - CaAl2O4:10H2O +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 14.0000 H2O - log_k 37.9946 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaAl2O4:10H2O + CaAl2O4:10H2O + 8 H+ = Ca+2 + 2 Al+3 + 14 H2O + log_k 37.9946 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaAl2O4:10H2O # Enthalpy of formation: 0 kcal/mol CaAl4O7 - CaAl4O7 +14.0000 H+ = + 1.0000 Ca++ + 4.0000 Al+++ + 7.0000 H2O - log_k 68.6138 - -delta_H -718.464 kJ/mol # Calculated enthalpy of reaction CaAl4O7 + CaAl4O7 + 14 H+ = Ca+2 + 4 Al+3 + 7 H2O + log_k 68.6138 + -delta_H -718.464 kJ/mol # Calculated enthalpy of reaction CaAl4O7 # Enthalpy of formation: -951.026 kcal/mol - -analytic -3.1044e+002 -6.7078e-002 4.4566e+004 1.0085e+002 7.5689e+002 + -analytic -3.1044e+2 -6.7078e-2 4.4566e+4 1.0085e+2 7.5689e+2 # -Range: 0-200 CaSO4:0.5H2O(beta) - CaSO4:0.5H2O = + 0.5000 H2O + 1.0000 Ca++ + 1.0000 SO4-- - log_k -3.4934 - -delta_H -20.804 kJ/mol # Calculated enthalpy of reaction CaSO4:0.5H2O(beta) + CaSO4:0.5H2O = 0.5 H2O + Ca+2 + SO4-2 + log_k -3.4934 + -delta_H -20.804 kJ/mol # Calculated enthalpy of reaction CaSO4:0.5H2O(beta) # Enthalpy of formation: -1574.8 kJ/mol - -analytic -2.3054e+002 -8.2832e-002 5.9132e+003 9.3705e+001 9.2338e+001 + -analytic -2.3054e+2 -8.2832e-2 5.9132e+3 9.3705e+1 9.2338e+1 # -Range: 0-300 CaSeO3:2H2O - CaSeO3:2H2O = + 1.0000 Ca++ + 1.0000 SeO3-- + 2.0000 H2O - log_k -4.6213 - -delta_H -14.1963 kJ/mol # Calculated enthalpy of reaction CaSeO3:2H2O + CaSeO3:2H2O = Ca+2 + SeO3-2 + 2 H2O + log_k -4.6213 + -delta_H -14.1963 kJ/mol # Calculated enthalpy of reaction CaSeO3:2H2O # Enthalpy of formation: -384.741 kcal/mol - -analytic -4.1771e+001 -2.0735e-002 9.7870e+002 1.6180e+001 1.6634e+001 + -analytic -4.1771e+1 -2.0735e-2 9.787e+2 1.618e+1 1.6634e+1 # -Range: 0-200 CaSeO4 - CaSeO4 = + 1.0000 Ca++ + 1.0000 SeO4-- - log_k -3.0900 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaSeO4 + CaSeO4 = Ca+2 + SeO4-2 + log_k -3.09 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaSeO4 # Enthalpy of formation: 0 kcal/mol CaUO4 - CaUO4 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 UO2++ + 2.0000 H2O - log_k 15.9420 - -delta_H -131.46 kJ/mol # Calculated enthalpy of reaction CaUO4 + CaUO4 + 4 H+ = Ca+2 + UO2+2 + 2 H2O + log_k 15.942 + -delta_H -131.46 kJ/mol # Calculated enthalpy of reaction CaUO4 # Enthalpy of formation: -2002.3 kJ/mol - -analytic -8.7902e+001 -1.9810e-002 9.2354e+003 3.1832e+001 1.4414e+002 + -analytic -8.7902e+1 -1.981e-2 9.2354e+3 3.1832e+1 1.4414e+2 # -Range: 0-300 CaV2O6 - CaV2O6 +2.0000 H2O = + 1.0000 Ca++ + 2.0000 VO4--- + 4.0000 H+ - log_k -51.3617 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaV2O6 + CaV2O6 + 2 H2O = Ca+2 + 2 VO4-3 + 4 H+ + log_k -51.3617 + -delta_H 0 # Not possible to calculate enthalpy of reaction CaV2O6 # Enthalpy of formation: -2329.34 kJ/mol CaZrO3 - CaZrO3 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O + 1.0000 Zr(OH)2++ - log_k -148.5015 - -delta_H 801.282 kJ/mol # Calculated enthalpy of reaction CaZrO3 + CaZrO3 + 4 H+ = Ca+2 + H2O + Zr(OH)2+2 + log_k -148.5015 + -delta_H 801.282 kJ/mol # Calculated enthalpy of reaction CaZrO3 # Enthalpy of formation: -650.345 kcal/mol - -analytic -7.7908e+001 -1.4388e-002 -3.9635e+004 2.6932e+001 -6.7303e+002 + -analytic -7.7908e+1 -1.4388e-2 -3.9635e+4 2.6932e+1 -6.7303e+2 # -Range: 0-200 Cadmoselite - CdSe = + 1.0000 Cd++ + 1.0000 Se-- - log_k -33.8428 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cadmoselite + CdSe = Cd+2 + Se-2 + log_k -33.8428 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cadmoselite # Enthalpy of formation: -34.6 kcal/mol - -analytic -5.3432e+001 -1.3973e-002 -5.8989e+003 1.7591e+001 -9.2031e+001 + -analytic -5.3432e+1 -1.3973e-2 -5.8989e+3 1.7591e+1 -9.2031e+1 # -Range: 0-300 Calcite - CaCO3 +1.0000 H+ = + 1.0000 Ca++ + 1.0000 HCO3- - log_k 1.8487 - -delta_H -25.7149 kJ/mol # Calculated enthalpy of reaction Calcite + CaCO3 + H+ = Ca+2 + HCO3- + log_k 1.8487 + -delta_H -25.7149 kJ/mol # Calculated enthalpy of reaction Calcite # Enthalpy of formation: -288.552 kcal/mol - -analytic -1.4978e+002 -4.8370e-002 4.8974e+003 6.0458e+001 7.6464e+001 + -analytic -1.4978e+2 -4.837e-2 4.8974e+3 6.0458e+1 7.6464e+1 # -Range: 0-300 Calomel - Hg2Cl2 = + 1.0000 Hg2++ + 2.0000 Cl- - log_k -17.8241 - -delta_H 98.0267 kJ/mol # Calculated enthalpy of reaction Calomel + Hg2Cl2 = Hg2+2 + 2 Cl- + log_k -17.8241 + -delta_H 98.0267 kJ/mol # Calculated enthalpy of reaction Calomel # Enthalpy of formation: -265.37 kJ/mol - -analytic -4.8868e+001 -2.5540e-002 -2.8439e+003 1.9475e+001 -4.8277e+001 + -analytic -4.8868e+1 -2.554e-2 -2.8439e+3 1.9475e+1 -4.8277e+1 # -Range: 0-200 Carnallite - KMgCl3:6H2O = + 1.0000 K+ + 1.0000 Mg++ + 3.0000 Cl- + 6.0000 H2O - log_k 4.2721 - -delta_H 0 # Not possible to calculate enthalpy of reaction Carnallite + KMgCl3:6H2O = K+ + Mg+2 + 3 Cl- + 6 H2O + log_k 4.2721 + -delta_H 0 # Not possible to calculate enthalpy of reaction Carnallite # Enthalpy of formation: 0 kcal/mol Carnotite - K2(UO2)2(VO4)2 = + 2.0000 K+ + 2.0000 UO2++ + 2.0000 VO4--- - log_k -56.3811 - -delta_H 0 # Not possible to calculate enthalpy of reaction Carnotite + K2(UO2)2(VO4)2 = 2 K+ + 2 UO2+2 + 2 VO4-3 + log_k -56.3811 + -delta_H 0 # Not possible to calculate enthalpy of reaction Carnotite # Enthalpy of formation: -1173.9 kJ/mol Cassiterite - SnO2 +2.0000 H+ = + 0.5000 O2 + 1.0000 H2O + 1.0000 Sn++ - log_k -46.1203 - -delta_H 280.048 kJ/mol # Calculated enthalpy of reaction Cassiterite + SnO2 + 2 H+ = 0.5 O2 + H2O + Sn+2 + log_k -46.1203 + -delta_H 280.048 kJ/mol # Calculated enthalpy of reaction Cassiterite # Enthalpy of formation: -138.8 kcal/mol - -analytic -8.9264e+001 -1.5743e-002 -1.1497e+004 3.4917e+001 -1.7937e+002 + -analytic -8.9264e+1 -1.5743e-2 -1.1497e+4 3.4917e+1 -1.7937e+2 # -Range: 0-300 Cattierite - CoS2 = + 1.0000 Co++ + 1.0000 S2-- - log_k -29.9067 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cattierite + CoS2 = Co+2 + S2-2 + log_k -29.9067 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cattierite # Enthalpy of formation: -36.589 kcal/mol - -analytic -2.1970e+002 -7.8585e-002 -1.9592e+003 8.8809e+001 -3.0507e+001 + -analytic -2.197e+2 -7.8585e-2 -1.9592e+3 8.8809e+1 -3.0507e+1 # -Range: 0-300 Cd - Cd +2.0000 H+ +0.5000 O2 = + 1.0000 Cd++ + 1.0000 H2O - log_k 56.6062 - -delta_H -355.669 kJ/mol # Calculated enthalpy of reaction Cd + Cd + 2 H+ + 0.5 O2 = Cd+2 + H2O + log_k 56.6062 + -delta_H -355.669 kJ/mol # Calculated enthalpy of reaction Cd # Enthalpy of formation: 0 kJ/mol - -analytic -7.2027e+001 -2.0250e-002 2.0474e+004 2.6814e+001 -3.2348e+004 + -analytic -7.2027e+1 -2.025e-2 2.0474e+4 2.6814e+1 -3.2348e+4 # -Range: 0-300 Cd(BO2)2 - Cd(BO2)2 +2.0000 H+ +2.0000 H2O = + 1.0000 Cd++ + 2.0000 B(OH)3 - log_k 9.8299 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(BO2)2 + Cd(BO2)2 + 2 H+ + 2 H2O = Cd+2 + 2 B(OH)3 + log_k 9.8299 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(BO2)2 # Enthalpy of formation: 0 kcal/mol Cd(IO3)2 - Cd(IO3)2 = + 1.0000 Cd++ + 2.0000 IO3- - log_k -7.5848 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(IO3)2 + Cd(IO3)2 = Cd+2 + 2 IO3- + log_k -7.5848 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(IO3)2 # Enthalpy of formation: 0 kcal/mol Cd(OH)2 - Cd(OH)2 +2.0000 H+ = + 1.0000 Cd++ + 2.0000 H2O - log_k 13.7382 - -delta_H -87.0244 kJ/mol # Calculated enthalpy of reaction Cd(OH)2 + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + log_k 13.7382 + -delta_H -87.0244 kJ/mol # Calculated enthalpy of reaction Cd(OH)2 # Enthalpy of formation: -560.55 kJ/mol - -analytic -7.7001e+001 -6.9251e-003 7.4684e+003 2.7380e+001 1.2685e+002 + -analytic -7.7001e+1 -6.9251e-3 7.4684e+3 2.738e+1 1.2685e+2 # -Range: 0-200 Cd(OH)Cl - Cd(OH)Cl +1.0000 H+ = + 1.0000 Cd++ + 1.0000 Cl- + 1.0000 H2O - log_k 3.5435 - -delta_H -30.3888 kJ/mol # Calculated enthalpy of reaction Cd(OH)Cl + Cd(OH)Cl + H+ = Cd+2 + Cl- + H2O + log_k 3.5435 + -delta_H -30.3888 kJ/mol # Calculated enthalpy of reaction Cd(OH)Cl # Enthalpy of formation: -498.427 kJ/mol - -analytic -4.5477e+001 -1.5809e-002 2.5333e+003 1.8279e+001 4.3035e+001 + -analytic -4.5477e+1 -1.5809e-2 2.5333e+3 1.8279e+1 4.3035e+1 # -Range: 0-200 Cd3(AsO4)2 - Cd3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Cd++ - log_k 4.0625 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(AsO4)2 + Cd3(AsO4)2 + 4 H+ = 2 H2AsO4- + 3 Cd+2 + log_k 4.0625 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(AsO4)2 # Enthalpy of formation: 0 kcal/mol Cd3(PO4)2 - Cd3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Cd++ - log_k -7.8943 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(PO4)2 + Cd3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 Cd+2 + log_k -7.8943 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(PO4)2 # Enthalpy of formation: 0 kcal/mol Cd3(SO4)(OH)4 - Cd3(SO4)(OH)4 +4.0000 H+ = + 1.0000 SO4-- + 3.0000 Cd++ + 4.0000 H2O - log_k 22.5735 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(SO4)(OH)4 + Cd3(SO4)(OH)4 + 4 H+ = SO4-2 + 3 Cd+2 + 4 H2O + log_k 22.5735 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(SO4)(OH)4 # Enthalpy of formation: 0 kcal/mol Cd3(SO4)2(OH)2 - Cd3(SO4)2(OH)2 +2.0000 H+ = + 2.0000 H2O + 2.0000 SO4-- + 3.0000 Cd++ - log_k 6.7180 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(SO4)2(OH)2 + Cd3(SO4)2(OH)2 + 2 H+ = 2 H2O + 2 SO4-2 + 3 Cd+2 + log_k 6.718 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(SO4)2(OH)2 # Enthalpy of formation: 0 kcal/mol CdBr2 - CdBr2 = + 1.0000 Cd++ + 2.0000 Br- - log_k -1.8470 - -delta_H -2.67548 kJ/mol # Calculated enthalpy of reaction CdBr2 + CdBr2 = Cd+2 + 2 Br- + log_k -1.847 + -delta_H -2.67548 kJ/mol # Calculated enthalpy of reaction CdBr2 # Enthalpy of formation: -316.229 kJ/mol - -analytic 1.3056e+000 -2.0628e-002 -1.3318e+003 3.0126e+000 -2.2616e+001 + -analytic 1.3056e+0 -2.0628e-2 -1.3318e+3 3.0126e+0 -2.2616e+1 # -Range: 0-200 CdBr2:4H2O - CdBr2:4H2O = + 1.0000 Cd++ + 2.0000 Br- + 4.0000 H2O - log_k -2.3378 - -delta_H 30.2812 kJ/mol # Calculated enthalpy of reaction CdBr2:4H2O + CdBr2:4H2O = Cd+2 + 2 Br- + 4 H2O + log_k -2.3378 + -delta_H 30.2812 kJ/mol # Calculated enthalpy of reaction CdBr2:4H2O # Enthalpy of formation: -1492.54 kJ/mol - -analytic -1.0038e+002 -2.1045e-002 1.6896e+003 3.9864e+001 2.8726e+001 + -analytic -1.0038e+2 -2.1045e-2 1.6896e+3 3.9864e+1 2.8726e+1 # -Range: 0-200 CdCl2 - CdCl2 = + 1.0000 Cd++ + 2.0000 Cl- - log_k -0.6474 - -delta_H -18.5391 kJ/mol # Calculated enthalpy of reaction CdCl2 + CdCl2 = Cd+2 + 2 Cl- + log_k -0.6474 + -delta_H -18.5391 kJ/mol # Calculated enthalpy of reaction CdCl2 # Enthalpy of formation: -391.518 kJ/mol - -analytic -1.5230e+001 -2.4574e-002 -8.1017e+001 8.9599e+000 -1.3702e+000 + -analytic -1.523e+1 -2.4574e-2 -8.1017e+1 8.9599e+0 -1.3702e+0 # -Range: 0-200 CdCl2(NH3)2 - CdCl2(NH3)2 = + 1.0000 Cd++ + 2.0000 Cl- + 2.0000 NH3 - log_k -8.7864 - -delta_H 63.534 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)2 + CdCl2(NH3)2 = Cd+2 + 2 Cl- + 2 NH3 + log_k -8.7864 + -delta_H 63.534 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)2 # Enthalpy of formation: -636.265 kJ/mol - -analytic -5.5283e+001 -2.1791e-002 -2.1150e+003 2.4279e+001 -3.5896e+001 + -analytic -5.5283e+1 -2.1791e-2 -2.115e+3 2.4279e+1 -3.5896e+1 # -Range: 0-200 CdCl2(NH3)4 - CdCl2(NH3)4 = + 1.0000 Cd++ + 2.0000 Cl- + 4.0000 NH3 - log_k -6.8044 - -delta_H 81.7931 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)4 + CdCl2(NH3)4 = Cd+2 + 2 Cl- + 4 NH3 + log_k -6.8044 + -delta_H 81.7931 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)4 # Enthalpy of formation: -817.198 kJ/mol - -analytic -9.5682e+001 -1.8853e-002 -8.3875e+002 3.9322e+001 -1.4210e+001 + -analytic -9.5682e+1 -1.8853e-2 -8.3875e+2 3.9322e+1 -1.421e+1 # -Range: 0-200 CdCl2(NH3)6 - CdCl2(NH3)6 = + 1.0000 Cd++ + 2.0000 Cl- + 6.0000 NH3 - log_k -4.7524 - -delta_H 97.2971 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)6 + CdCl2(NH3)6 = Cd+2 + 2 Cl- + 6 NH3 + log_k -4.7524 + -delta_H 97.2971 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)6 # Enthalpy of formation: -995.376 kJ/mol - -analytic -1.3662e+002 -1.5941e-002 5.8572e+002 5.4415e+001 9.9937e+000 + -analytic -1.3662e+2 -1.5941e-2 5.8572e+2 5.4415e+1 9.9937e+0 # -Range: 0-200 CdCl2:H2O - CdCl2:H2O = + 1.0000 Cd++ + 1.0000 H2O + 2.0000 Cl- - log_k -1.6747 - -delta_H -7.44943 kJ/mol # Calculated enthalpy of reaction CdCl2:H2O + CdCl2:H2O = Cd+2 + H2O + 2 Cl- + log_k -1.6747 + -delta_H -7.44943 kJ/mol # Calculated enthalpy of reaction CdCl2:H2O # Enthalpy of formation: -688.446 kJ/mol - -analytic -4.1097e+001 -2.4685e-002 5.2687e+002 1.8188e+001 8.9615e+000 + -analytic -4.1097e+1 -2.4685e-2 5.2687e+2 1.8188e+1 8.9615e+0 # -Range: 0-200 CdCr2O4 - CdCr2O4 +8.0000 H+ = + 1.0000 Cd++ + 2.0000 Cr+++ + 4.0000 H2O - log_k 14.9969 - -delta_H -255.676 kJ/mol # Calculated enthalpy of reaction CdCr2O4 + CdCr2O4 + 8 H+ = Cd+2 + 2 Cr+3 + 4 H2O + log_k 14.9969 + -delta_H -255.676 kJ/mol # Calculated enthalpy of reaction CdCr2O4 # Enthalpy of formation: -344.3 kcal/mol - -analytic -1.7446e+002 -9.1086e-003 1.9223e+004 5.1605e+001 3.2650e+002 + -analytic -1.7446e+2 -9.1086e-3 1.9223e+4 5.1605e+1 3.265e+2 # -Range: 0-200 CdF2 - CdF2 = + 1.0000 Cd++ + 2.0000 F- - log_k -1.1464 - -delta_H -46.064 kJ/mol # Calculated enthalpy of reaction CdF2 + CdF2 = Cd+2 + 2 F- + log_k -1.1464 + -delta_H -46.064 kJ/mol # Calculated enthalpy of reaction CdF2 # Enthalpy of formation: -700.529 kJ/mol - -analytic -3.0654e+001 -2.4790e-002 1.7893e+003 1.2482e+001 3.0395e+001 + -analytic -3.0654e+1 -2.479e-2 1.7893e+3 1.2482e+1 3.0395e+1 # -Range: 0-200 CdI2 - CdI2 = + 1.0000 Cd++ + 2.0000 I- - log_k -3.4825 - -delta_H 13.7164 kJ/mol # Calculated enthalpy of reaction CdI2 + CdI2 = Cd+2 + 2 I- + log_k -3.4825 + -delta_H 13.7164 kJ/mol # Calculated enthalpy of reaction CdI2 # Enthalpy of formation: -203.419 kJ/mol - -analytic -1.5446e+001 -2.4758e-002 -1.6422e+003 1.0041e+001 -2.7882e+001 + -analytic -1.5446e+1 -2.4758e-2 -1.6422e+3 1.0041e+1 -2.7882e+1 # -Range: 0-200 CdS - CdS +1.0000 H+ = + 1.0000 Cd++ + 1.0000 HS- - log_k -15.9095 - -delta_H 70.1448 kJ/mol # Calculated enthalpy of reaction CdS + CdS + H+ = Cd+2 + HS- + log_k -15.9095 + -delta_H 70.1448 kJ/mol # Calculated enthalpy of reaction CdS # Enthalpy of formation: -162.151 kJ/mol - -analytic -2.9492e+001 -1.5181e-002 -3.4695e+003 1.2019e+001 -5.8907e+001 + -analytic -2.9492e+1 -1.5181e-2 -3.4695e+3 1.2019e+1 -5.8907e+1 # -Range: 0-200 CdSO4 - CdSO4 = + 1.0000 Cd++ + 1.0000 SO4-- - log_k -0.1061 - -delta_H -52.1304 kJ/mol # Calculated enthalpy of reaction CdSO4 + CdSO4 = Cd+2 + SO4-2 + log_k -0.1061 + -delta_H -52.1304 kJ/mol # Calculated enthalpy of reaction CdSO4 # Enthalpy of formation: -933.369 kJ/mol - -analytic 7.7104e+000 -1.7161e-002 8.7067e+002 -2.2763e+000 1.4783e+001 + -analytic 7.7104e+0 -1.7161e-2 8.7067e+2 -2.2763e+0 1.4783e+1 # -Range: 0-200 CdSO4:2.667H2O - CdSO4:2.667H2O = + 1.0000 Cd++ + 1.0000 SO4-- + 2.6670 H2O - log_k -1.8015 - -delta_H -18.5302 kJ/mol # Calculated enthalpy of reaction CdSO4:2.667H2O + CdSO4:2.667H2O = Cd+2 + SO4-2 + 2.667 H2O + log_k -1.8015 + -delta_H -18.5302 kJ/mol # Calculated enthalpy of reaction CdSO4:2.667H2O # Enthalpy of formation: -1729.3 kJ/mol - -analytic -5.0331e+001 -1.4983e-002 2.0271e+003 1.8665e+001 3.4440e+001 + -analytic -5.0331e+1 -1.4983e-2 2.0271e+3 1.8665e+1 3.444e+1 # -Range: 0-200 CdSO4:H2O - CdSO4:H2O = + 1.0000 Cd++ + 1.0000 H2O + 1.0000 SO4-- - log_k -1.6529 - -delta_H -31.6537 kJ/mol # Calculated enthalpy of reaction CdSO4:H2O + CdSO4:H2O = Cd+2 + H2O + SO4-2 + log_k -1.6529 + -delta_H -31.6537 kJ/mol # Calculated enthalpy of reaction CdSO4:H2O # Enthalpy of formation: -1239.68 kJ/mol - -analytic -1.7142e+001 -1.7295e-002 9.9184e+002 6.9943e+000 1.6849e+001 + -analytic -1.7142e+1 -1.7295e-2 9.9184e+2 6.9943e+0 1.6849e+1 # -Range: 0-200 CdSeO3 - CdSeO3 = + 1.0000 Cd++ + 1.0000 SeO3-- - log_k -8.8086 - -delta_H -9.92156 kJ/mol # Calculated enthalpy of reaction CdSeO3 + CdSeO3 = Cd+2 + SeO3-2 + log_k -8.8086 + -delta_H -9.92156 kJ/mol # Calculated enthalpy of reaction CdSeO3 # Enthalpy of formation: -575.169 kJ/mol - -analytic 7.1762e+000 -1.8892e-002 -1.4680e+003 -2.1984e+000 -2.4932e+001 + -analytic 7.1762e+0 -1.8892e-2 -1.468e+3 -2.1984e+0 -2.4932e+1 # -Range: 0-200 CdSeO4 - CdSeO4 = + 1.0000 Cd++ + 1.0000 SeO4-- - log_k -2.2132 - -delta_H -41.9836 kJ/mol # Calculated enthalpy of reaction CdSeO4 + CdSeO4 = Cd+2 + SeO4-2 + log_k -2.2132 + -delta_H -41.9836 kJ/mol # Calculated enthalpy of reaction CdSeO4 # Enthalpy of formation: -633.063 kJ/mol - -analytic -4.9901e+000 -1.9755e-002 7.3162e+002 2.5063e+000 1.2426e+001 + -analytic -4.9901e+0 -1.9755e-2 7.3162e+2 2.5063e+0 1.2426e+1 # -Range: 0-200 CdSiO3 - CdSiO3 +2.0000 H+ = + 1.0000 Cd++ + 1.0000 H2O + 1.0000 SiO2 - log_k 7.5136 - -delta_H -50.3427 kJ/mol # Calculated enthalpy of reaction CdSiO3 + CdSiO3 + 2 H+ = Cd+2 + H2O + SiO2 + log_k 7.5136 + -delta_H -50.3427 kJ/mol # Calculated enthalpy of reaction CdSiO3 # Enthalpy of formation: -1189.09 kJ/mol - -analytic 2.6419e+002 6.2488e-002 -5.3518e+003 -1.0401e+002 -9.0973e+001 + -analytic 2.6419e+2 6.2488e-2 -5.3518e+3 -1.0401e+2 -9.0973e+1 # -Range: 0-200 Ce - Ce +3.0000 H+ +0.7500 O2 = + 1.0000 Ce+++ + 1.5000 H2O - log_k 182.9563 - -delta_H -1120.06 kJ/mol # Calculated enthalpy of reaction Ce + Ce + 3 H+ + 0.75 O2 = Ce+3 + 1.5 H2O + log_k 182.9563 + -delta_H -1120.06 kJ/mol # Calculated enthalpy of reaction Ce # Enthalpy of formation: 0 kJ/mol - -analytic -5.1017e+001 -2.6149e-002 5.8511e+004 1.8382e+001 9.1302e+002 + -analytic -5.1017e+1 -2.6149e-2 5.8511e+4 1.8382e+1 9.1302e+2 # -Range: 0-300 Ce(OH)3 - Ce(OH)3 +3.0000 H+ = + 1.0000 Ce+++ + 3.0000 H2O - log_k 19.8852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)3 + Ce(OH)3 + 3 H+ = Ce+3 + 3 H2O + log_k 19.8852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)3 # Enthalpy of formation: 0 kcal/mol Ce(OH)3(am) - Ce(OH)3 +3.0000 H+ = + 1.0000 Ce+++ + 3.0000 H2O - log_k 21.1852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)3(am) + Ce(OH)3 + 3 H+ = Ce+3 + 3 H2O + log_k 21.1852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)3(am) # Enthalpy of formation: 0 kcal/mol Ce2(CO3)3:8H2O - Ce2(CO3)3:8H2O +3.0000 H+ = + 2.0000 Ce+++ + 3.0000 HCO3- + 8.0000 H2O - log_k -4.1136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2(CO3)3:8H2O + Ce2(CO3)3:8H2O + 3 H+ = 2 Ce+3 + 3 HCO3- + 8 H2O + log_k -4.1136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2(CO3)3:8H2O # Enthalpy of formation: 0 kcal/mol Ce2O3 - Ce2O3 +6.0000 H+ = + 2.0000 Ce+++ + 3.0000 H2O - log_k 62.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2O3 + Ce2O3 + 6 H+ = 2 Ce+3 + 3 H2O + log_k 62.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2O3 # Enthalpy of formation: 0 kcal/mol Ce3(PO4)4 - Ce3(PO4)4 +4.0000 H+ = + 3.0000 Ce++++ + 4.0000 HPO4-- - log_k -40.8127 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce3(PO4)4 + Ce3(PO4)4 + 4 H+ = 3 Ce+4 + 4 HPO4-2 + log_k -40.8127 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce3(PO4)4 # Enthalpy of formation: 0 kcal/mol CeF3:.5H2O - CeF3:.5H2O = + 0.5000 H2O + 1.0000 Ce+++ + 3.0000 F- - log_k -18.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction CeF3:.5H2O + CeF3:.5H2O = 0.5 H2O + Ce+3 + 3 F- + log_k -18.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction CeF3:.5H2O # Enthalpy of formation: 0 kcal/mol CeO2 - CeO2 +4.0000 H+ = + 1.0000 Ce++++ + 2.0000 H2O - log_k -8.1600 - -delta_H 0 # Not possible to calculate enthalpy of reaction CeO2 + CeO2 + 4 H+ = Ce+4 + 2 H2O + log_k -8.16 + -delta_H 0 # Not possible to calculate enthalpy of reaction CeO2 # Enthalpy of formation: 0 kcal/mol CePO4:10H2O - CePO4:10H2O +1.0000 H+ = + 1.0000 Ce+++ + 1.0000 HPO4-- + 10.0000 H2O - log_k -12.2782 - -delta_H 0 # Not possible to calculate enthalpy of reaction CePO4:10H2O + CePO4:10H2O + H+ = Ce+3 + HPO4-2 + 10 H2O + log_k -12.2782 + -delta_H 0 # Not possible to calculate enthalpy of reaction CePO4:10H2O # Enthalpy of formation: 0 kcal/mol Celadonite - KMgAlSi4O10(OH)2 +6.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 1.0000 Mg++ + 4.0000 H2O + 4.0000 SiO2 - log_k 7.4575 - -delta_H -74.3957 kJ/mol # Calculated enthalpy of reaction Celadonite + KMgAlSi4O10(OH)2 + 6 H+ = Al+3 + K+ + Mg+2 + 4 H2O + 4 SiO2 + log_k 7.4575 + -delta_H -74.3957 kJ/mol # Calculated enthalpy of reaction Celadonite # Enthalpy of formation: -1394.9 kcal/mol - -analytic -3.3097e+001 1.7989e-002 1.8919e+004 -2.1219e+000 -2.0588e+006 + -analytic -3.3097e+1 1.7989e-2 1.8919e+4 -2.1219e+0 -2.0588e+6 # -Range: 0-300 Celestite - SrSO4 = + 1.0000 SO4-- + 1.0000 Sr++ - log_k -5.6771 - -delta_H -7.40568 kJ/mol # Calculated enthalpy of reaction Celestite + SrSO4 = SO4-2 + Sr+2 + log_k -5.6771 + -delta_H -7.40568 kJ/mol # Calculated enthalpy of reaction Celestite # Enthalpy of formation: -347.3 kcal/mol - -analytic -1.9063e+002 -7.4552e-002 3.9050e+003 7.8416e+001 6.0991e+001 + -analytic -1.9063e+2 -7.4552e-2 3.905e+3 7.8416e+1 6.0991e+1 # -Range: 0-300 Cerussite - PbCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Pb++ - log_k -3.2091 - -delta_H 13.8992 kJ/mol # Calculated enthalpy of reaction Cerussite + PbCO3 + H+ = HCO3- + Pb+2 + log_k -3.2091 + -delta_H 13.8992 kJ/mol # Calculated enthalpy of reaction Cerussite # Enthalpy of formation: -168 kcal/mol - -analytic -1.2887e+002 -4.4372e-002 2.2336e+003 5.3091e+001 3.4891e+001 + -analytic -1.2887e+2 -4.4372e-2 2.2336e+3 5.3091e+1 3.4891e+1 # -Range: 0-300 Chalcanthite - CuSO4:5H2O = + 1.0000 Cu++ + 1.0000 SO4-- + 5.0000 H2O - log_k -2.6215 - -delta_H 6.57556 kJ/mol # Calculated enthalpy of reaction Chalcanthite + CuSO4:5H2O = Cu+2 + SO4-2 + 5 H2O + log_k -2.6215 + -delta_H 6.57556 kJ/mol # Calculated enthalpy of reaction Chalcanthite # Enthalpy of formation: -2279.68 kJ/mol - -analytic -1.1262e+002 -1.5544e-002 3.6176e+003 4.1420e+001 6.1471e+001 + -analytic -1.1262e+2 -1.5544e-2 3.6176e+3 4.142e+1 6.1471e+1 # -Range: 0-200 Chalcedony - SiO2 = + 1.0000 SiO2 - log_k -3.7281 - -delta_H 31.4093 kJ/mol # Calculated enthalpy of reaction Chalcedony + SiO2 = SiO2 + log_k -3.7281 + -delta_H 31.4093 kJ/mol # Calculated enthalpy of reaction Chalcedony # Enthalpy of formation: -217.282 kcal/mol - -analytic -9.0068e+000 9.3241e-003 4.0535e+003 -1.0830e+000 -7.5077e+005 + -analytic -9.0068e+0 9.3241e-3 4.0535e+3 -1.083e+0 -7.5077e+5 # -Range: 0-300 Chalcocite - Cu2S +1.0000 H+ = + 1.0000 HS- + 2.0000 Cu+ - log_k -34.7342 - -delta_H 206.748 kJ/mol # Calculated enthalpy of reaction Chalcocite + Cu2S + H+ = HS- + 2 Cu+ + log_k -34.7342 + -delta_H 206.748 kJ/mol # Calculated enthalpy of reaction Chalcocite # Enthalpy of formation: -19 kcal/mol - -analytic -1.3703e+002 -4.0727e-002 -7.1694e+003 5.5963e+001 -1.1183e+002 + -analytic -1.3703e+2 -4.0727e-2 -7.1694e+3 5.5963e+1 -1.1183e+2 # -Range: 0-300 Chalcocyanite - CuSO4 = + 1.0000 Cu++ + 1.0000 SO4-- - log_k 2.9239 - -delta_H -72.5128 kJ/mol # Calculated enthalpy of reaction Chalcocyanite + CuSO4 = Cu+2 + SO4-2 + log_k 2.9239 + -delta_H -72.5128 kJ/mol # Calculated enthalpy of reaction Chalcocyanite # Enthalpy of formation: -771.4 kJ/mol - -analytic 5.8173e+000 -1.6933e-002 2.0097e+003 -1.8583e+000 3.4126e+001 + -analytic 5.8173e+0 -1.6933e-2 2.0097e+3 -1.8583e+0 3.4126e+1 # -Range: 0-200 Chalcopyrite - CuFeS2 +2.0000 H+ = + 1.0000 Cu++ + 1.0000 Fe++ + 2.0000 HS- - log_k -32.5638 - -delta_H 127.206 kJ/mol # Calculated enthalpy of reaction Chalcopyrite + CuFeS2 + 2 H+ = Cu+2 + Fe+2 + 2 HS- + log_k -32.5638 + -delta_H 127.206 kJ/mol # Calculated enthalpy of reaction Chalcopyrite # Enthalpy of formation: -44.453 kcal/mol - -analytic -3.1575e+002 -9.8947e-002 8.3400e+002 1.2522e+002 1.3106e+001 + -analytic -3.1575e+2 -9.8947e-2 8.34e+2 1.2522e+2 1.3106e+1 # -Range: 0-300 Chamosite-7A - Fe2Al2SiO5(OH)4 +10.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 2.0000 Fe++ + 7.0000 H2O - log_k 32.8416 - -delta_H -364.213 kJ/mol # Calculated enthalpy of reaction Chamosite-7A + Fe2Al2SiO5(OH)4 + 10 H+ = SiO2 + 2 Al+3 + 2 Fe+2 + 7 H2O + log_k 32.8416 + -delta_H -364.213 kJ/mol # Calculated enthalpy of reaction Chamosite-7A # Enthalpy of formation: -902.407 kcal/mol - -analytic -2.5581e+002 -7.0890e-002 2.4619e+004 9.1789e+001 3.8424e+002 + -analytic -2.5581e+2 -7.089e-2 2.4619e+4 9.1789e+1 3.8424e+2 # -Range: 0-300 Chlorargyrite - AgCl = + 1.0000 Ag+ + 1.0000 Cl- - log_k -9.7453 - -delta_H 65.739 kJ/mol # Calculated enthalpy of reaction Chlorargyrite + AgCl = Ag+ + Cl- + log_k -9.7453 + -delta_H 65.739 kJ/mol # Calculated enthalpy of reaction Chlorargyrite # Enthalpy of formation: -30.37 kcal/mol - -analytic -9.6834e+001 -3.4624e-002 -1.1820e+003 4.0962e+001 -1.8415e+001 + -analytic -9.6834e+1 -3.4624e-2 -1.182e+3 4.0962e+1 -1.8415e+1 # -Range: 0-300 Chloromagnesite - MgCl2 = + 1.0000 Mg++ + 2.0000 Cl- - log_k 21.8604 - -delta_H -158.802 kJ/mol # Calculated enthalpy of reaction Chloromagnesite + MgCl2 = Mg+2 + 2 Cl- + log_k 21.8604 + -delta_H -158.802 kJ/mol # Calculated enthalpy of reaction Chloromagnesite # Enthalpy of formation: -641.317 kJ/mol - -analytic -2.3640e+002 -8.2017e-002 1.3480e+004 9.5963e+001 2.1042e+002 + -analytic -2.364e+2 -8.2017e-2 1.348e+4 9.5963e+1 2.1042e+2 # -Range: 0-300 Chromite - FeCr2O4 +8.0000 H+ = + 1.0000 Fe++ + 2.0000 Cr+++ + 4.0000 H2O - log_k 15.1685 - -delta_H -267.755 kJ/mol # Calculated enthalpy of reaction Chromite + FeCr2O4 + 8 H+ = Fe+2 + 2 Cr+3 + 4 H2O + log_k 15.1685 + -delta_H -267.755 kJ/mol # Calculated enthalpy of reaction Chromite # Enthalpy of formation: -1444.83 kJ/mol - -analytic -1.9060e+002 -2.5695e-002 1.9465e+004 5.9865e+001 3.0379e+002 + -analytic -1.906e+2 -2.5695e-2 1.9465e+4 5.9865e+1 3.0379e+2 # -Range: 0-300 Chrysocolla - CuSiH4O5 +2.0000 H+ = + 1.0000 Cu++ + 1.0000 SiO2 + 3.0000 H2O - log_k 6.2142 - -delta_H 0 # Not possible to calculate enthalpy of reaction Chrysocolla + CuSiH4O5 + 2 H+ = Cu+2 + SiO2 + 3 H2O + log_k 6.2142 + -delta_H 0 # Not possible to calculate enthalpy of reaction Chrysocolla # Enthalpy of formation: 0 kcal/mol Chrysotile - Mg3Si2O5(OH)4 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 Mg++ + 5.0000 H2O - log_k 31.1254 - -delta_H -218.041 kJ/mol # Calculated enthalpy of reaction Chrysotile + Mg3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Mg+2 + 5 H2O + log_k 31.1254 + -delta_H -218.041 kJ/mol # Calculated enthalpy of reaction Chrysotile # Enthalpy of formation: -1043.12 kcal/mol - -analytic -9.2462e+001 -1.1359e-002 1.8312e+004 2.9289e+001 -6.2342e+005 + -analytic -9.2462e+1 -1.1359e-2 1.8312e+4 2.9289e+1 -6.2342e+5 # -Range: 0-300 Cinnabar - HgS +1.0000 H+ = + 1.0000 HS- + 1.0000 Hg++ - log_k -38.9666 - -delta_H 207.401 kJ/mol # Calculated enthalpy of reaction Cinnabar + HgS + H+ = HS- + Hg+2 + log_k -38.9666 + -delta_H 207.401 kJ/mol # Calculated enthalpy of reaction Cinnabar # Enthalpy of formation: -12.75 kcal/mol - -analytic -1.5413e+002 -4.6846e-002 -6.9806e+003 6.1639e+001 -1.0888e+002 + -analytic -1.5413e+2 -4.6846e-2 -6.9806e+3 6.1639e+1 -1.0888e+2 # -Range: 0-300 Claudetite - As2O3 +3.0000 H2O = + 2.0000 H+ + 2.0000 H2AsO3- - log_k -19.7647 - -delta_H 82.3699 kJ/mol # Calculated enthalpy of reaction Claudetite + As2O3 + 3 H2O = 2 H+ + 2 H2AsO3- + log_k -19.7647 + -delta_H 82.3699 kJ/mol # Calculated enthalpy of reaction Claudetite # Enthalpy of formation: -654.444 kJ/mol - -analytic -1.4164e+002 -6.3704e-002 -2.1679e+003 5.9856e+001 -3.3787e+001 + -analytic -1.4164e+2 -6.3704e-2 -2.1679e+3 5.9856e+1 -3.3787e+1 # -Range: 0-300 Clausthalite - PbSe = + 1.0000 Pb++ + 1.0000 Se-- - log_k -36.2531 - -delta_H 0 # Not possible to calculate enthalpy of reaction Clausthalite + PbSe = Pb+2 + Se-2 + log_k -36.2531 + -delta_H 0 # Not possible to calculate enthalpy of reaction Clausthalite # Enthalpy of formation: -102.9 kJ/mol - -analytic -2.6473e+001 -1.0666e-002 -8.5540e+003 8.9226e+000 -1.3347e+002 + -analytic -2.6473e+1 -1.0666e-2 -8.554e+3 8.9226e+0 -1.3347e+2 # -Range: 0-300 Clinochalcomenite - CuSeO3:2H2O = + 1.0000 Cu++ + 1.0000 SeO3-- + 2.0000 H2O - log_k -6.7873 - -delta_H -31.6645 kJ/mol # Calculated enthalpy of reaction Clinochalcomenite + CuSeO3:2H2O = Cu+2 + SeO3-2 + 2 H2O + log_k -6.7873 + -delta_H -31.6645 kJ/mol # Calculated enthalpy of reaction Clinochalcomenite # Enthalpy of formation: -235.066 kcal/mol - -analytic -4.6465e+001 -1.8071e-002 2.0307e+003 1.5455e+001 3.4499e+001 + -analytic -4.6465e+1 -1.8071e-2 2.0307e+3 1.5455e+1 3.4499e+1 # -Range: 0-200 Clinochlore-14A - Mg5Al2Si3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 3.0000 SiO2 + 5.0000 Mg++ + 12.0000 H2O - log_k 67.2391 - -delta_H -612.379 kJ/mol # Calculated enthalpy of reaction Clinochlore-14A + Mg5Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Mg+2 + 12 H2O + log_k 67.2391 + -delta_H -612.379 kJ/mol # Calculated enthalpy of reaction Clinochlore-14A # Enthalpy of formation: -2116.96 kcal/mol - -analytic -2.0441e+002 -6.2268e-002 3.5388e+004 6.9239e+001 5.5225e+002 + -analytic -2.0441e+2 -6.2268e-2 3.5388e+4 6.9239e+1 5.5225e+2 # -Range: 0-300 Clinochlore-7A - Mg5Al2Si3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 3.0000 SiO2 + 5.0000 Mg++ + 12.0000 H2O - log_k 70.6124 - -delta_H -628.14 kJ/mol # Calculated enthalpy of reaction Clinochlore-7A + Mg5Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Mg+2 + 12 H2O + log_k 70.6124 + -delta_H -628.14 kJ/mol # Calculated enthalpy of reaction Clinochlore-7A # Enthalpy of formation: -2113.2 kcal/mol - -analytic -2.1644e+002 -6.4187e-002 3.6548e+004 7.4123e+001 5.7037e+002 + -analytic -2.1644e+2 -6.4187e-2 3.6548e+4 7.4123e+1 5.7037e+2 # -Range: 0-300 Clinoptilolite # Na.954K.543Ca.761Mg.124Sr.036Ba.062Mn.002Al3.45F +13.8680 H+ = + 0.0020 Mn++ + 0.0170 Fe+++ + 0.0360 Sr++ + 0.0620 Ba++ + 0.1240 Mg++ + 0.5430 K+ + 0.7610 Ca++ + 0.9540 Na+ + 3.4500 Al+++ + 14.5330 SiO2 17.8560 H2O - Na.954K.543Ca.761Mg.124Sr.036Ba.062Mn.002Al3.45Fe.017Si14.5330O46.922H21.844 +13.8680 H+ = + 0.0020 Mn++ + 0.0170 Fe+++ + 0.0360 Sr++ + 0.0620 Ba++ + 0.1240 Mg++ + 0.5430 K+ + 0.7610 Ca++ + 0.9540 Na+ + 3.4500 Al+++ + 14.5330 SiO2 + 17.8560 H2O - log_k -9.7861 - -delta_H -20.8784 kJ/mol # Calculated enthalpy of reaction Clinoptilolite + Na.954K.543Ca.761Mg.124Sr.036Ba.062Mn.002Al3.45Fe.017Si14.533O46.922H21.844 + 13.868 H+ = 0.002 Mn+2 + 0.017 Fe+3 + 0.036 Sr+2 + 0.062 Ba+2 + 0.124 Mg+2 + 0.543 K+ + 0.761 Ca+2 + 0.954 Na+ + 3.45 Al+3 + 14.533 SiO2 + 17.856 H2O + log_k -9.7861 + -delta_H -20.8784 kJ/mol # Calculated enthalpy of reaction Clinoptilolite # Enthalpy of formation: -20587.8 kJ/mol - -analytic -1.3213e+000 6.4960e-002 5.0630e+004 -4.6120e+001 -7.4699e+006 + -analytic -1.3213e+0 6.496e-2 5.063e+4 -4.612e+1 -7.4699e+6 # -Range: 0-300 Clinoptilolite-Ca - Ca1.7335Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Ca++ + 3.4500 Al+++ + 14.5330 SiO2 + 17.8560 H2O - log_k -7.0095 - -delta_H -74.6745 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Ca + Ca1.7335Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 1.7335 Ca+2 + 3.45 Al+3 + 14.533 SiO2 + 17.856 H2O + log_k -7.0095 + -delta_H -74.6745 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Ca # Enthalpy of formation: -4919.84 kcal/mol - -analytic -4.4820e+001 5.3696e-002 5.4878e+004 -3.1459e+001 -7.5491e+006 + -analytic -4.482e+1 5.3696e-2 5.4878e+4 -3.1459e+1 -7.5491e+6 # -Range: 0-300 Clinoptilolite-Cs - Cs3.467Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Cs+ + 14.5330 SiO2 + 17.8560 H2O - log_k -13.0578 - -delta_H 96.9005 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Cs + Cs3.467Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 Cs+ + 14.533 SiO2 + 17.856 H2O + log_k -13.0578 + -delta_H 96.9005 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Cs # Enthalpy of formation: -4949.65 kcal/mol - -analytic -8.4746e+000 7.1997e-002 4.9675e+004 -4.1406e+001 -8.0632e+006 + -analytic -8.4746e+0 7.1997e-2 4.9675e+4 -4.1406e+1 -8.0632e+6 # -Range: 0-300 Clinoptilolite-K - K3.467Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 K+ + 14.5330 SiO2 + 17.8560 H2O - log_k -10.9485 - -delta_H 67.4862 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-K + K3.467Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 K+ + 14.533 SiO2 + 17.856 H2O + log_k -10.9485 + -delta_H 67.4862 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-K # Enthalpy of formation: -4937.77 kcal/mol - -analytic 1.1697e+001 6.9480e-002 4.7718e+004 -4.7442e+001 -7.6907e+006 + -analytic 1.1697e+1 6.948e-2 4.7718e+4 -4.7442e+1 -7.6907e+6 # -Range: 0-300 Clinoptilolite-NH4 - (NH4)3.467Al3.45Fe.017Si14.533O36:10.922H2O +10.4010 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 NH3 + 14.5330 SiO2 + 17.8560 H2O - log_k -42.4791 - -delta_H 0 # Not possible to calculate enthalpy of reaction Clinoptilolite-NH4 + (NH4)3.467Al3.45Fe.017Si14.533O36:10.922H2O + 10.401 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 NH3 + 14.533 SiO2 + 17.856 H2O + log_k -42.4791 + -delta_H 0 # Not possible to calculate enthalpy of reaction Clinoptilolite-NH4 # Enthalpy of formation: 0 kcal/mol Clinoptilolite-Na - Na3.467Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Na+ + 14.5330 SiO2 + 17.8560 H2O - log_k -7.1363 - -delta_H 2.32824 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Na + Na3.467Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 Na+ + 14.533 SiO2 + 17.856 H2O + log_k -7.1363 + -delta_H 2.32824 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Na # Enthalpy of formation: -4912.36 kcal/mol - -analytic -3.4572e+001 6.8377e-002 5.1962e+004 -3.3426e+001 -7.5586e+006 + -analytic -3.4572e+1 6.8377e-2 5.1962e+4 -3.3426e+1 -7.5586e+6 # -Range: 0-300 Clinoptilolite-Sr - Sr1.7335Al3.45Fe.017Si14.533O36:10.922H2O +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Sr++ + 3.4500 Al+++ + 14.5330 SiO2 + 17.8560 H2O - log_k -7.1491 - -delta_H -66.2129 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Sr + Sr1.7335Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 1.7335 Sr+2 + 3.45 Al+3 + 14.533 SiO2 + 17.856 H2O + log_k -7.1491 + -delta_H -66.2129 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Sr # Enthalpy of formation: -4925.1 kcal/mol - -analytic 3.2274e+001 6.7050e-002 5.0880e+004 -5.9597e+001 -7.3876e+006 + -analytic 3.2274e+1 6.705e-2 5.088e+4 -5.9597e+1 -7.3876e+6 # -Range: 0-300 Clinoptilolite-dehy # Sr.036Mg.124Ca.761Mn.002Ba.062K.543Na.954Al3.45F +13.8680 H+ = + 0.0020 Mn++ + 0.0170 Fe+++ + 0.0360 Sr++ + 0.0620 Ba++ + 0.1240 Mg++ + 0.5430 K+ + 0.7610 Ca++ + 0.9540 Na+ + 3.4500 Al+++ + 6.9340 H2O 14.5330 SiO2 - Sr.036Mg.124Ca.761Mn.002Ba.062K.543Na.954Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0020 Mn++ + 0.0170 Fe+++ + 0.0360 Sr++ + 0.0620 Ba++ + 0.1240 Mg++ + 0.5430 K+ + 0.7610 Ca++ + 0.9540 Na+ + 3.4500 Al+++ + 6.9340 H2O + 14.5330 SiO2 - log_k 25.8490 - -delta_H -276.592 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy + Sr.036Mg.124Ca.761Mn.002Ba.062K.543Na.954Al3.45Fe.017Si14.533O36 + 13.868 H+ = 0.002 Mn+2 + 0.017 Fe+3 + 0.036 Sr+2 + 0.062 Ba+2 + 0.124 Mg+2 + 0.543 K+ + 0.761 Ca+2 + 0.954 Na+ + 3.45 Al+3 + 6.934 H2O + 14.533 SiO2 + log_k 25.849 + -delta_H -276.592 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy # Enthalpy of formation: -17210.2 kJ/mol - -analytic -2.0505e+002 6.0155e-002 8.2682e+004 1.5333e+001 -9.1369e+006 + -analytic -2.0505e+2 6.0155e-2 8.2682e+4 1.5333e+1 -9.1369e+6 # -Range: 0-300 Clinoptilolite-dehy-Ca - Ca1.7335Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Ca++ + 3.4500 Al+++ + 6.9340 H2O + 14.5330 SiO2 - log_k 28.6255 - -delta_H -329.278 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Ca + Ca1.7335Al3.45Fe.017Si14.533O36 + 13.868 H+ = 0.017 Fe+3 + 1.7335 Ca+2 + 3.45 Al+3 + 6.934 H2O + 14.533 SiO2 + log_k 28.6255 + -delta_H -329.278 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Ca # Enthalpy of formation: -4112.83 kcal/mol - -analytic -1.2948e+002 6.5698e-002 8.0229e+004 -1.2812e+001 -8.8320e+006 + -analytic -1.2948e+2 6.5698e-2 8.0229e+4 -1.2812e+1 -8.832e+6 # -Range: 0-300 Clinoptilolite-dehy-Cs - Cs3.467Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Cs+ + 6.9340 H2O + 14.5330 SiO2 - log_k 22.5771 - -delta_H -164.837 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Cs + Cs3.467Al3.45Fe.017Si14.533O36 + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 Cs+ + 6.934 H2O + 14.533 SiO2 + log_k 22.5771 + -delta_H -164.837 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Cs # Enthalpy of formation: -4140.93 kcal/mol - -analytic -1.2852e+002 7.9047e-002 7.7262e+004 -1.0422e+001 -9.4504e+006 + -analytic -1.2852e+2 7.9047e-2 7.7262e+4 -1.0422e+1 -9.4504e+6 # -Range: 0-300 Clinoptilolite-dehy-K - K3.467Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 K+ + 6.9340 H2O + 14.5330 SiO2 - log_k 24.6865 - -delta_H -191.289 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-K + K3.467Al3.45Fe.017Si14.533O36 + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 K+ + 6.934 H2O + 14.533 SiO2 + log_k 24.6865 + -delta_H -191.289 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-K # Enthalpy of formation: -4129.76 kcal/mol - -analytic -1.2241e+002 7.4761e-002 7.6067e+004 -1.1315e+001 -9.1389e+006 + -analytic -1.2241e+2 7.4761e-2 7.6067e+4 -1.1315e+1 -9.1389e+6 # -Range: 0-300 Clinoptilolite-dehy-NH4 - (NH4)3.467Al3.45Fe.017Si14.533O36 +10.4010 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 NH3 + 6.9340 H2O + 14.5330 SiO2 - log_k -6.8441 - -delta_H 0 # Not possible to calculate enthalpy of reaction Clinoptilolite-dehy-NH4 + (NH4)3.467Al3.45Fe.017Si14.533O36 + 10.401 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 NH3 + 6.934 H2O + 14.533 SiO2 + log_k -6.8441 + -delta_H 0 # Not possible to calculate enthalpy of reaction Clinoptilolite-dehy-NH4 # Enthalpy of formation: 0 kcal/mol Clinoptilolite-dehy-Na - Na3.467Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Na+ + 6.9340 H2O + 14.5330 SiO2 - log_k 28.4987 - -delta_H -253.798 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Na + Na3.467Al3.45Fe.017Si14.533O36 + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 Na+ + 6.934 H2O + 14.533 SiO2 + log_k 28.4987 + -delta_H -253.798 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Na # Enthalpy of formation: -4104.98 kcal/mol - -analytic -1.4386e+002 7.6846e-002 7.8723e+004 -5.9741e+000 -8.9159e+006 + -analytic -1.4386e+2 7.6846e-2 7.8723e+4 -5.9741e+0 -8.9159e+6 # -Range: 0-300 Clinoptilolite-dehy-Sr - Sr1.7335Al3.45Fe.017Si14.533O36 +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Sr++ + 3.4500 Al+++ + 6.9340 H2O + 14.5330 SiO2 - log_k 28.4859 - -delta_H -321.553 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Sr + Sr1.7335Al3.45Fe.017Si14.533O36 + 13.868 H+ = 0.017 Fe+3 + 1.7335 Sr+2 + 3.45 Al+3 + 6.934 H2O + 14.533 SiO2 + log_k 28.4859 + -delta_H -321.553 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Sr # Enthalpy of formation: -4117.92 kcal/mol - -analytic -1.8410e+002 6.0457e-002 8.3626e+004 6.4304e+000 -9.0962e+006 + -analytic -1.841e+2 6.0457e-2 8.3626e+4 6.4304e+0 -9.0962e+6 # -Range: 0-300 Clinoptilolite-hy-Ca # Ca1.7335Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Ca++ + 3.4500 Al+++ + 14.5330 SiO2 + 18.5790 H2O - Ca1.7335Al3.45Fe.017Si14.533O36:11.645H2O +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Ca++ + 3.4500 Al+++ + 14.5330 SiO2 + 18.5790 H2O - log_k -7.0108 - -delta_H -65.4496 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Ca + Ca1.7335Al3.45Fe.017Si14.533O36:11.645H2O + 13.868 H+ = 0.017 Fe+3 + 1.7335 Ca+2 + 3.45 Al+3 + 14.533 SiO2 + 18.579 H2O + log_k -7.0108 + -delta_H -65.4496 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Ca # Enthalpy of formation: -4971.44 kcal/mol - -analytic 8.6833e+001 7.1520e-002 4.6854e+004 -7.8023e+001 -7.0900e+006 + -analytic 8.6833e+1 7.152e-2 4.6854e+4 -7.8023e+1 -7.09e+6 # -Range: 0-300 Clinoptilolite-hy-Cs # Cs3.467Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Cs+ + 13.1640 H2O + 14.5330 SiO2 - Cs3.467Al3.45Fe.017Si14.533O36:6.23H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Cs+ + 13.1640 H2O + 14.5330 SiO2 - log_k -13.0621 - -delta_H 44.6397 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Cs + Cs3.467Al3.45Fe.017Si14.533O36:6.23H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 Cs+ + 13.164 H2O + 14.533 SiO2 + log_k -13.0621 + -delta_H 44.6397 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Cs # Enthalpy of formation: -4616.61 kcal/mol - -analytic -2.3362e+001 7.4922e-002 5.4544e+004 -4.1092e+001 -8.3387e+006 + -analytic -2.3362e+1 7.4922e-2 5.4544e+4 -4.1092e+1 -8.3387e+6 # -Range: 0-300 Clinoptilolite-hy-K # K3.467Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 K+ + 14.4330 H2O + 14.5330 SiO2 - K3.467Al3.45Fe.017Si14.533O36:7.499H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 K+ + 14.4330 H2O + 14.5330 SiO2 - log_k -10.9523 - -delta_H 29.5879 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-K + K3.467Al3.45Fe.017Si14.533O36:7.499H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 K+ + 14.433 H2O + 14.533 SiO2 + log_k -10.9523 + -delta_H 29.5879 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-K # Enthalpy of formation: -4694.86 kcal/mol - -analytic 1.6223e+001 7.3919e-002 5.0447e+004 -5.2790e+001 -7.8484e+006 + -analytic 1.6223e+1 7.3919e-2 5.0447e+4 -5.279e+1 -7.8484e+6 # -Range: 0-300 Clinoptilolite-hy-Na # Na3.467Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Na+ + 14.5330 SiO2 + 17.8110 H2O - Na3.467Al3.45Fe.017Si14.533O36:10.877H2O +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Na+ + 14.5330 SiO2 + 17.8110 H2O - log_k -7.1384 - -delta_H 1.88166 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Na + Na3.467Al3.45Fe.017Si14.533O36:10.877H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 Na+ + 14.533 SiO2 + 17.811 H2O + log_k -7.1384 + -delta_H 1.88166 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Na # Enthalpy of formation: -4909.18 kcal/mol - -analytic -8.4189e+000 7.2018e-002 5.0501e+004 -4.2851e+001 -7.4714e+006 + -analytic -8.4189e+0 7.2018e-2 5.0501e+4 -4.2851e+1 -7.4714e+6 # -Range: 0-300 Clinoptilolite-hy-Sr # Sr1.7335Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Sr++ + 3.4500 Al+++ + 14.5330 SiO2 + 20.8270 H2O - Sr1.7335Al3.45Fe.017Si14.533O36:13.893H2O +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Sr++ + 3.4500 Al+++ + 14.5330 SiO2 + 20.8270 H2O - log_k -7.1498 - -delta_H -31.6858 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Sr + Sr1.7335Al3.45Fe.017Si14.533O36:13.893H2O + 13.868 H+ = 0.017 Fe+3 + 1.7335 Sr+2 + 3.45 Al+3 + 14.533 SiO2 + 20.827 H2O + log_k -7.1498 + -delta_H -31.6858 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Sr # Enthalpy of formation: -5136.33 kcal/mol - -analytic 1.0742e-001 5.9065e-002 4.9985e+004 -4.4648e+001 -7.3382e+006 + -analytic 1.0742e-1 5.9065e-2 4.9985e+4 -4.4648e+1 -7.3382e+6 # -Range: 0-300 Clinozoisite - Ca2Al3Si3O12(OH) +13.0000 H+ = + 2.0000 Ca++ + 3.0000 Al+++ + 3.0000 SiO2 + 7.0000 H2O - log_k 43.2569 - -delta_H -457.755 kJ/mol # Calculated enthalpy of reaction Clinozoisite + Ca2Al3Si3O12(OH) + 13 H+ = 2 Ca+2 + 3 Al+3 + 3 SiO2 + 7 H2O + log_k 43.2569 + -delta_H -457.755 kJ/mol # Calculated enthalpy of reaction Clinozoisite # Enthalpy of formation: -1643.78 kcal/mol - -analytic -2.8690e+001 -3.7056e-002 2.2770e+004 3.7880e+000 -2.5834e+005 + -analytic -2.869e+1 -3.7056e-2 2.277e+4 3.788e+0 -2.5834e+5 # -Range: 0-300 Co - Co +2.0000 H+ +0.5000 O2 = + 1.0000 Co++ + 1.0000 H2O - log_k 52.5307 - -delta_H -337.929 kJ/mol # Calculated enthalpy of reaction Co + Co + 2 H+ + 0.5 O2 = Co+2 + H2O + log_k 52.5307 + -delta_H -337.929 kJ/mol # Calculated enthalpy of reaction Co # Enthalpy of formation: 0 kJ/mol - -analytic -6.2703e+001 -2.0172e-002 1.8888e+004 2.3391e+001 2.9474e+002 + -analytic -6.2703e+1 -2.0172e-2 1.8888e+4 2.3391e+1 2.9474e+2 # -Range: 0-300 Co(NO3)2 - Co(NO3)2 = + 1.0000 Co++ + 2.0000 NO3- - log_k 8.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(NO3)2 + Co(NO3)2 = Co+2 + 2 NO3- + log_k 8 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(NO3)2 # Enthalpy of formation: 0 kcal/mol Co(OH)2 - Co(OH)2 +2.0000 H+ = + 1.0000 Co++ + 2.0000 H2O - log_k 12.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)2 + Co(OH)2 + 2 H+ = Co+2 + 2 H2O + log_k 12.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)2 # Enthalpy of formation: 0 kcal/mol Co2SiO4 - Co2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Co++ + 2.0000 H2O - log_k 6.6808 - -delta_H -88.6924 kJ/mol # Calculated enthalpy of reaction Co2SiO4 + Co2SiO4 + 4 H+ = SiO2 + 2 Co+2 + 2 H2O + log_k 6.6808 + -delta_H -88.6924 kJ/mol # Calculated enthalpy of reaction Co2SiO4 # Enthalpy of formation: -353.011 kcal/mol - -analytic -3.9978e+000 -3.7985e-003 5.1554e+003 -1.5033e+000 -1.6100e+005 + -analytic -3.9978e+0 -3.7985e-3 5.1554e+3 -1.5033e+0 -1.61e+5 # -Range: 0-300 Co3(AsO4)2 - Co3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Co++ - log_k 8.5318 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co3(AsO4)2 + Co3(AsO4)2 + 4 H+ = 2 H2AsO4- + 3 Co+2 + log_k 8.5318 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co3(AsO4)2 # Enthalpy of formation: 0 kcal/mol Co3(PO4)2 - Co3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Co++ - log_k -10.0123 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co3(PO4)2 + Co3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 Co+2 + log_k -10.0123 + -delta_H 0 # Not possible to calculate enthalpy of reaction Co3(PO4)2 # Enthalpy of formation: 0 kcal/mol CoCl2 - CoCl2 = + 1.0000 Co++ + 2.0000 Cl- - log_k 8.2641 - -delta_H -79.5949 kJ/mol # Calculated enthalpy of reaction CoCl2 + CoCl2 = Co+2 + 2 Cl- + log_k 8.2641 + -delta_H -79.5949 kJ/mol # Calculated enthalpy of reaction CoCl2 # Enthalpy of formation: -312.722 kJ/mol - -analytic -2.2386e+002 -8.0936e-002 8.8631e+003 9.1528e+001 1.3837e+002 + -analytic -2.2386e+2 -8.0936e-2 8.8631e+3 9.1528e+1 1.3837e+2 # -Range: 0-300 CoCl2:2H2O - CoCl2:2H2O = + 1.0000 Co++ + 2.0000 Cl- + 2.0000 H2O - log_k 4.6661 - -delta_H -40.7876 kJ/mol # Calculated enthalpy of reaction CoCl2:2H2O + CoCl2:2H2O = Co+2 + 2 Cl- + 2 H2O + log_k 4.6661 + -delta_H -40.7876 kJ/mol # Calculated enthalpy of reaction CoCl2:2H2O # Enthalpy of formation: -923.206 kJ/mol - -analytic -5.6411e+001 -2.3390e-002 3.0519e+003 2.3361e+001 5.1845e+001 + -analytic -5.6411e+1 -2.339e-2 3.0519e+3 2.3361e+1 5.1845e+1 # -Range: 0-200 CoCl2:6H2O - CoCl2:6H2O = + 1.0000 Co++ + 2.0000 Cl- + 6.0000 H2O - log_k 2.6033 - -delta_H 8.32709 kJ/mol # Calculated enthalpy of reaction CoCl2:6H2O + CoCl2:6H2O = Co+2 + 2 Cl- + 6 H2O + log_k 2.6033 + -delta_H 8.32709 kJ/mol # Calculated enthalpy of reaction CoCl2:6H2O # Enthalpy of formation: -2115.67 kJ/mol - -analytic -1.5066e+002 -2.2132e-002 5.0591e+003 5.7743e+001 8.5962e+001 + -analytic -1.5066e+2 -2.2132e-2 5.0591e+3 5.7743e+1 8.5962e+1 # -Range: 0-200 CoF2 - CoF2 = + 1.0000 Co++ + 2.0000 F- - log_k -5.1343 - -delta_H -36.6708 kJ/mol # Calculated enthalpy of reaction CoF2 + CoF2 = Co+2 + 2 F- + log_k -5.1343 + -delta_H -36.6708 kJ/mol # Calculated enthalpy of reaction CoF2 # Enthalpy of formation: -692.182 kJ/mol - -analytic -2.5667e+002 -8.4071e-002 7.6256e+003 1.0143e+002 1.1907e+002 + -analytic -2.5667e+2 -8.4071e-2 7.6256e+3 1.0143e+2 1.1907e+2 # -Range: 0-300 CoF3 - CoF3 = + 1.0000 Co+++ + 3.0000 F- - log_k -4.9558 - -delta_H -103.136 kJ/mol # Calculated enthalpy of reaction CoF3 + CoF3 = Co+3 + 3 F- + log_k -4.9558 + -delta_H -103.136 kJ/mol # Calculated enthalpy of reaction CoF3 # Enthalpy of formation: -193.8 kcal/mol - -analytic -3.7854e+002 -1.2911e-001 1.3215e+004 1.4859e+002 2.0632e+002 + -analytic -3.7854e+2 -1.2911e-1 1.3215e+4 1.4859e+2 2.0632e+2 # -Range: 0-300 CoFe2O4 - CoFe2O4 +8.0000 H+ = + 1.0000 Co++ + 2.0000 Fe+++ + 4.0000 H2O - log_k 0.8729 - -delta_H -160.674 kJ/mol # Calculated enthalpy of reaction CoFe2O4 + CoFe2O4 + 8 H+ = Co+2 + 2 Fe+3 + 4 H2O + log_k 0.8729 + -delta_H -160.674 kJ/mol # Calculated enthalpy of reaction CoFe2O4 # Enthalpy of formation: -272.466 kcal/mol - -analytic -3.0149e+002 -7.9159e-002 1.5683e+004 1.1046e+002 2.4480e+002 + -analytic -3.0149e+2 -7.9159e-2 1.5683e+4 1.1046e+2 2.448e+2 # -Range: 0-300 CoHPO4 - CoHPO4 = + 1.0000 Co++ + 1.0000 HPO4-- - log_k -6.7223 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoHPO4 + CoHPO4 = Co+2 + HPO4-2 + log_k -6.7223 + -delta_H 0 # Not possible to calculate enthalpy of reaction CoHPO4 # Enthalpy of formation: 0 kcal/mol CoO - CoO +2.0000 H+ = + 1.0000 Co++ + 1.0000 H2O - log_k 13.5553 - -delta_H -106.05 kJ/mol # Calculated enthalpy of reaction CoO + CoO + 2 H+ = Co+2 + H2O + log_k 13.5553 + -delta_H -106.05 kJ/mol # Calculated enthalpy of reaction CoO # Enthalpy of formation: -237.946 kJ/mol - -analytic -8.4424e+001 -1.9457e-002 7.8616e+003 3.1281e+001 1.2270e+002 + -analytic -8.4424e+1 -1.9457e-2 7.8616e+3 3.1281e+1 1.227e+2 # -Range: 0-300 CoS - CoS +1.0000 H+ = + 1.0000 Co++ + 1.0000 HS- - log_k -7.3740 - -delta_H 10.1755 kJ/mol # Calculated enthalpy of reaction CoS + CoS + H+ = Co+2 + HS- + log_k -7.374 + -delta_H 10.1755 kJ/mol # Calculated enthalpy of reaction CoS # Enthalpy of formation: -20.182 kcal/mol - -analytic -1.5128e+002 -4.8484e-002 2.9553e+003 5.9983e+001 4.6158e+001 + -analytic -1.5128e+2 -4.8484e-2 2.9553e+3 5.9983e+1 4.6158e+1 # -Range: 0-300 CoSO4 - CoSO4 = + 1.0000 Co++ + 1.0000 SO4-- - log_k 2.8996 - -delta_H -79.7952 kJ/mol # Calculated enthalpy of reaction CoSO4 + CoSO4 = Co+2 + SO4-2 + log_k 2.8996 + -delta_H -79.7952 kJ/mol # Calculated enthalpy of reaction CoSO4 # Enthalpy of formation: -887.964 kJ/mol - -analytic -1.9907e+002 -7.7890e-002 7.7193e+003 8.0525e+001 1.2051e+002 + -analytic -1.9907e+2 -7.789e-2 7.7193e+3 8.0525e+1 1.2051e+2 # -Range: 0-300 CoSO4.3Co(OH)2 - CoSO4(Co(OH)2)3 +6.0000 H+ = + 1.0000 SO4-- + 4.0000 Co++ + 6.0000 H2O - log_k 33.2193 - -delta_H -379.41 kJ/mol # Calculated enthalpy of reaction CoSO4.3Co(OH)2 + CoSO4(Co(OH)2)3 + 6 H+ = SO4-2 + 4 Co+2 + 6 H2O + log_k 33.2193 + -delta_H -379.41 kJ/mol # Calculated enthalpy of reaction CoSO4.3Co(OH)2 # Enthalpy of formation: -2477.85 kJ/mol - -analytic -2.2830e+002 -4.0197e-002 2.5937e+004 7.5367e+001 4.4053e+002 + -analytic -2.283e+2 -4.0197e-2 2.5937e+4 7.5367e+1 4.4053e+2 # -Range: 0-200 CoSO4:6H2O - CoSO4:6H2O = + 1.0000 Co++ + 1.0000 SO4-- + 6.0000 H2O - log_k -2.3512 - -delta_H 1.08483 kJ/mol # Calculated enthalpy of reaction CoSO4:6H2O + CoSO4:6H2O = Co+2 + SO4-2 + 6 H2O + log_k -2.3512 + -delta_H 1.08483 kJ/mol # Calculated enthalpy of reaction CoSO4:6H2O # Enthalpy of formation: -2683.87 kJ/mol - -analytic -2.5469e+002 -7.3092e-002 6.6767e+003 1.0172e+002 1.0426e+002 + -analytic -2.5469e+2 -7.3092e-2 6.6767e+3 1.0172e+2 1.0426e+2 # -Range: 0-300 CoSO4:H2O - CoSO4:H2O = + 1.0000 Co++ + 1.0000 H2O + 1.0000 SO4-- - log_k -1.2111 - -delta_H -52.6556 kJ/mol # Calculated enthalpy of reaction CoSO4:H2O + CoSO4:H2O = Co+2 + H2O + SO4-2 + log_k -1.2111 + -delta_H -52.6556 kJ/mol # Calculated enthalpy of reaction CoSO4:H2O # Enthalpy of formation: -287.032 kcal/mol - -analytic -1.0570e+001 -1.6196e-002 1.7180e+003 3.4000e+000 2.9178e+001 + -analytic -1.057e+1 -1.6196e-2 1.718e+3 3.4e+0 2.9178e+1 # -Range: 0-200 CoSeO3 - CoSeO3 = + 1.0000 Co++ + 1.0000 SeO3-- - log_k -7.0800 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoSeO3 + CoSeO3 = Co+2 + SeO3-2 + log_k -7.08 + -delta_H 0 # Not possible to calculate enthalpy of reaction CoSeO3 # Enthalpy of formation: 0 kcal/mol CoWO4 - CoWO4 = + 1.0000 Co++ + 1.0000 WO4-- - log_k -12.2779 - -delta_H 13.6231 kJ/mol # Calculated enthalpy of reaction CoWO4 + CoWO4 = Co+2 + WO4-2 + log_k -12.2779 + -delta_H 13.6231 kJ/mol # Calculated enthalpy of reaction CoWO4 # Enthalpy of formation: -274.256 kcal/mol - -analytic -3.7731e+001 -2.4719e-002 -1.0347e+003 1.4663e+001 -1.7558e+001 + -analytic -3.7731e+1 -2.4719e-2 -1.0347e+3 1.4663e+1 -1.7558e+1 # -Range: 0-200 Coesite - SiO2 = + 1.0000 SiO2 - log_k -3.1893 - -delta_H 28.6144 kJ/mol # Calculated enthalpy of reaction Coesite + SiO2 = SiO2 + log_k -3.1893 + -delta_H 28.6144 kJ/mol # Calculated enthalpy of reaction Coesite # Enthalpy of formation: -216.614 kcal/mol - -analytic -9.7312e+000 9.1773e-003 4.2143e+003 -7.8065e-001 -7.4905e+005 + -analytic -9.7312e+0 9.1773e-3 4.2143e+3 -7.8065e-1 -7.4905e+5 # -Range: 0-300 Coffinite - USiO4 +4.0000 H+ = + 1.0000 SiO2 + 1.0000 U++++ + 2.0000 H2O - log_k -8.0530 - -delta_H -49.2493 kJ/mol # Calculated enthalpy of reaction Coffinite + USiO4 + 4 H+ = SiO2 + U+4 + 2 H2O + log_k -8.053 + -delta_H -49.2493 kJ/mol # Calculated enthalpy of reaction Coffinite # Enthalpy of formation: -1991.33 kJ/mol - -analytic 2.3126e+002 6.2389e-002 -4.6189e+003 -9.7976e+001 -7.8517e+001 + -analytic 2.3126e+2 6.2389e-2 -4.6189e+3 -9.7976e+1 -7.8517e+1 # -Range: 0-200 Colemanite - Ca2B6O11:5H2O +4.0000 H+ +2.0000 H2O = + 2.0000 Ca++ + 6.0000 B(OH)3 - log_k 21.5148 - -delta_H 0 # Not possible to calculate enthalpy of reaction Colemanite + Ca2B6O11:5H2O + 4 H+ + 2 H2O = 2 Ca+2 + 6 B(OH)3 + log_k 21.5148 + -delta_H 0 # Not possible to calculate enthalpy of reaction Colemanite # Enthalpy of formation: 0 kcal/mol Cordierite_anhyd - Mg2Al4Si5O18 +16.0000 H+ = + 2.0000 Mg++ + 4.0000 Al+++ + 5.0000 SiO2 + 8.0000 H2O - log_k 52.3035 - -delta_H -626.219 kJ/mol # Calculated enthalpy of reaction Cordierite_anhyd + Mg2Al4Si5O18 + 16 H+ = 2 Mg+2 + 4 Al+3 + 5 SiO2 + 8 H2O + log_k 52.3035 + -delta_H -626.219 kJ/mol # Calculated enthalpy of reaction Cordierite_anhyd # Enthalpy of formation: -2183.2 kcal/mol - -analytic 2.6562e+000 -2.3801e-002 3.5192e+004 -1.9911e+001 -1.0894e+006 + -analytic 2.6562e+0 -2.3801e-2 3.5192e+4 -1.9911e+1 -1.0894e+6 # -Range: 0-300 Cordierite_hydr - Mg2Al4Si5O18:H2O +16.0000 H+ = + 2.0000 Mg++ + 4.0000 Al+++ + 5.0000 SiO2 + 9.0000 H2O - log_k 49.8235 - -delta_H -608.814 kJ/mol # Calculated enthalpy of reaction Cordierite_hydr + Mg2Al4Si5O18:H2O + 16 H+ = 2 Mg+2 + 4 Al+3 + 5 SiO2 + 9 H2O + log_k 49.8235 + -delta_H -608.814 kJ/mol # Calculated enthalpy of reaction Cordierite_hydr # Enthalpy of formation: -2255.68 kcal/mol - -analytic -1.2985e+002 -4.1335e-002 4.1566e+004 2.7892e+001 -1.4819e+006 + -analytic -1.2985e+2 -4.1335e-2 4.1566e+4 2.7892e+1 -1.4819e+6 # -Range: 0-300 Corkite - PbFe3(PO4)(SO4)(OH)6 +7.0000 H+ = + 1.0000 HPO4-- + 1.0000 Pb++ + 1.0000 SO4-- + 3.0000 Fe+++ + 6.0000 H2O - log_k -9.7951 - -delta_H 0 # Not possible to calculate enthalpy of reaction Corkite + PbFe3(PO4)(SO4)(OH)6 + 7 H+ = HPO4-2 + Pb+2 + SO4-2 + 3 Fe+3 + 6 H2O + log_k -9.7951 + -delta_H 0 # Not possible to calculate enthalpy of reaction Corkite # Enthalpy of formation: 0 kcal/mol Corundum - Al2O3 +6.0000 H+ = + 2.0000 Al+++ + 3.0000 H2O - log_k 18.3121 - -delta_H -258.626 kJ/mol # Calculated enthalpy of reaction Corundum + Al2O3 + 6 H+ = 2 Al+3 + 3 H2O + log_k 18.3121 + -delta_H -258.626 kJ/mol # Calculated enthalpy of reaction Corundum # Enthalpy of formation: -400.5 kcal/mol - -analytic -1.4278e+002 -7.8519e-002 1.3776e+004 5.5881e+001 2.1501e+002 + -analytic -1.4278e+2 -7.8519e-2 1.3776e+4 5.5881e+1 2.1501e+2 # -Range: 0-300 Cotunnite - PbCl2 = + 1.0000 Pb++ + 2.0000 Cl- - log_k -4.8406 - -delta_H 26.1441 kJ/mol # Calculated enthalpy of reaction Cotunnite + PbCl2 = Pb+2 + 2 Cl- + log_k -4.8406 + -delta_H 26.1441 kJ/mol # Calculated enthalpy of reaction Cotunnite # Enthalpy of formation: -359.383 kJ/mol - -analytic 1.9624e+001 -1.9161e-002 -3.4686e+003 -2.8806e+000 -5.8909e+001 + -analytic 1.9624e+1 -1.9161e-2 -3.4686e+3 -2.8806e+0 -5.8909e+1 # -Range: 0-200 Covellite - CuS +1.0000 H+ = + 1.0000 Cu++ + 1.0000 HS- - log_k -22.8310 - -delta_H 101.88 kJ/mol # Calculated enthalpy of reaction Covellite + CuS + H+ = Cu+2 + HS- + log_k -22.831 + -delta_H 101.88 kJ/mol # Calculated enthalpy of reaction Covellite # Enthalpy of formation: -12.5 kcal/mol - -analytic -1.6068e+002 -4.9040e-002 -1.4234e+003 6.3536e+001 -2.2164e+001 + -analytic -1.6068e+2 -4.904e-2 -1.4234e+3 6.3536e+1 -2.2164e+1 # -Range: 0-300 Cr - Cr +3.0000 H+ +0.7500 O2 = + 1.0000 Cr+++ + 1.5000 H2O - log_k 98.6784 - -delta_H -658.145 kJ/mol # Calculated enthalpy of reaction Cr + Cr + 3 H+ + 0.75 O2 = Cr+3 + 1.5 H2O + log_k 98.6784 + -delta_H -658.145 kJ/mol # Calculated enthalpy of reaction Cr # Enthalpy of formation: 0 kJ/mol - -analytic -2.2488e+001 -5.5886e-003 3.4288e+004 3.1585e+000 5.3503e+002 + -analytic -2.2488e+1 -5.5886e-3 3.4288e+4 3.1585e+0 5.3503e+2 # -Range: 0-300 CrCl3 - CrCl3 = + 1.0000 Cr+++ + 3.0000 Cl- - log_k 17.9728 - -delta_H -183.227 kJ/mol # Calculated enthalpy of reaction CrCl3 + CrCl3 = Cr+3 + 3 Cl- + log_k 17.9728 + -delta_H -183.227 kJ/mol # Calculated enthalpy of reaction CrCl3 # Enthalpy of formation: -556.5 kJ/mol - -analytic -2.6348e+002 -9.5339e-002 1.4785e+004 1.0517e+002 2.3079e+002 + -analytic -2.6348e+2 -9.5339e-2 1.4785e+4 1.0517e+2 2.3079e+2 # -Range: 0-300 CrF3 - CrF3 = + 1.0000 Cr+++ + 3.0000 F- - log_k -8.5713 - -delta_H -85.5293 kJ/mol # Calculated enthalpy of reaction CrF3 + CrF3 = Cr+3 + 3 F- + log_k -8.5713 + -delta_H -85.5293 kJ/mol # Calculated enthalpy of reaction CrF3 # Enthalpy of formation: -277.008 kcal/mol - -analytic -3.2175e+002 -1.0279e-001 1.1394e+004 1.2348e+002 1.7789e+002 + -analytic -3.2175e+2 -1.0279e-1 1.1394e+4 1.2348e+2 1.7789e+2 # -Range: 0-300 CrF4 - CrF4 +2.0000 H2O = + 0.5000 Cr++ + 0.5000 CrO4-- + 4.0000 F- + 4.0000 H+ - log_k -12.3132 - -delta_H -35.2125 kJ/mol # Calculated enthalpy of reaction CrF4 + CrF4 + 2 H2O = 0.5 Cr+2 + 0.5 CrO4-2 + 4 F- + 4 H+ + log_k -12.3132 + -delta_H -35.2125 kJ/mol # Calculated enthalpy of reaction CrF4 # Enthalpy of formation: -298 kcal/mol - -analytic 4.3136e+001 -4.3783e-002 -3.6809e+003 -1.2153e+001 -6.2521e+001 + -analytic 4.3136e+1 -4.3783e-2 -3.6809e+3 -1.2153e+1 -6.2521e+1 # -Range: 0-200 CrI3 - CrI3 = + 1.0000 Cr+++ + 3.0000 I- - log_k 25.6112 - -delta_H -204.179 kJ/mol # Calculated enthalpy of reaction CrI3 + CrI3 = Cr+3 + 3 I- + log_k 25.6112 + -delta_H -204.179 kJ/mol # Calculated enthalpy of reaction CrI3 # Enthalpy of formation: -49 kcal/mol - -analytic 4.9232e+000 -2.5164e-002 8.4026e+003 0.0000e+000 0.0000e+000 + -analytic 4.9232e+0 -2.5164e-2 8.4026e+3 0e+0 0e+0 # -Range: 0-200 CrO2 - CrO2 = + 0.5000 Cr++ + 0.5000 CrO4-- - log_k -19.1332 - -delta_H 85.9812 kJ/mol # Calculated enthalpy of reaction CrO2 + CrO2 = 0.5 Cr+2 + 0.5 CrO4-2 + log_k -19.1332 + -delta_H 85.9812 kJ/mol # Calculated enthalpy of reaction CrO2 # Enthalpy of formation: -143 kcal/mol - -analytic 2.7763e+000 -7.7698e-003 -5.2893e+003 -7.4970e-001 -8.9821e+001 + -analytic 2.7763e+0 -7.7698e-3 -5.2893e+3 -7.497e-1 -8.9821e+1 # -Range: 0-200 CrO3 - CrO3 +1.0000 H2O = + 1.0000 CrO4-- + 2.0000 H+ - log_k -3.5221 - -delta_H -5.78647 kJ/mol # Calculated enthalpy of reaction CrO3 + CrO3 + H2O = CrO4-2 + 2 H+ + log_k -3.5221 + -delta_H -5.78647 kJ/mol # Calculated enthalpy of reaction CrO3 # Enthalpy of formation: -140.9 kcal/mol - -analytic -1.3262e+002 -6.1411e-002 2.2083e+003 5.6564e+001 3.4497e+001 + -analytic -1.3262e+2 -6.1411e-2 2.2083e+3 5.6564e+1 3.4497e+1 # -Range: 0-300 CrS - CrS +1.0000 H+ = + 1.0000 Cr++ + 1.0000 HS- - log_k -0.6304 - -delta_H -26.15 kJ/mol # Calculated enthalpy of reaction CrS + CrS + H+ = Cr+2 + HS- + log_k -0.6304 + -delta_H -26.15 kJ/mol # Calculated enthalpy of reaction CrS # Enthalpy of formation: -31.9 kcal/mol - -analytic -1.1134e+002 -3.5954e-002 3.8744e+003 4.3815e+001 6.0490e+001 + -analytic -1.1134e+2 -3.5954e-2 3.8744e+3 4.3815e+1 6.049e+1 # -Range: 0-300 Cristobalite(alpha) - SiO2 = + 1.0000 SiO2 - log_k -3.4488 - -delta_H 29.2043 kJ/mol # Calculated enthalpy of reaction Cristobalite(alpha) + SiO2 = SiO2 + log_k -3.4488 + -delta_H 29.2043 kJ/mol # Calculated enthalpy of reaction Cristobalite(alpha) # Enthalpy of formation: -216.755 kcal/mol - -analytic -1.1936e+001 9.0520e-003 4.3701e+003 -1.1464e-001 -7.6568e+005 + -analytic -1.1936e+1 9.052e-3 4.3701e+3 -1.1464e-1 -7.6568e+5 # -Range: 0-300 Cristobalite(beta) - SiO2 = + 1.0000 SiO2 - log_k -3.0053 - -delta_H 24.6856 kJ/mol # Calculated enthalpy of reaction Cristobalite(beta) + SiO2 = SiO2 + log_k -3.0053 + -delta_H 24.6856 kJ/mol # Calculated enthalpy of reaction Cristobalite(beta) # Enthalpy of formation: -215.675 kcal/mol - -analytic -4.7414e+000 9.7567e-003 3.8831e+003 -2.5830e+000 -6.9636e+005 + -analytic -4.7414e+0 9.7567e-3 3.8831e+3 -2.583e+0 -6.9636e+5 # -Range: 0-300 Crocoite - PbCrO4 = + 1.0000 CrO4-- + 1.0000 Pb++ - log_k -12.7177 - -delta_H 48.6181 kJ/mol # Calculated enthalpy of reaction Crocoite + PbCrO4 = CrO4-2 + Pb+2 + log_k -12.7177 + -delta_H 48.6181 kJ/mol # Calculated enthalpy of reaction Crocoite # Enthalpy of formation: -222 kcal/mol - -analytic 3.0842e+001 -1.4430e-002 -5.0292e+003 -9.0525e+000 -8.5414e+001 + -analytic 3.0842e+1 -1.443e-2 -5.0292e+3 -9.0525e+0 -8.5414e+1 # -Range: 0-200 Cronstedtite-7A - Fe2Fe2SiO5(OH)4 +10.0000 H+ = + 1.0000 SiO2 + 2.0000 Fe++ + 2.0000 Fe+++ + 7.0000 H2O - log_k 16.2603 - -delta_H -244.266 kJ/mol # Calculated enthalpy of reaction Cronstedtite-7A + Fe2Fe2SiO5(OH)4 + 10 H+ = SiO2 + 2 Fe+2 + 2 Fe+3 + 7 H2O + log_k 16.2603 + -delta_H -244.266 kJ/mol # Calculated enthalpy of reaction Cronstedtite-7A # Enthalpy of formation: -697.413 kcal/mol - -analytic -2.3783e+002 -7.1026e-002 1.7752e+004 8.7147e+001 2.7707e+002 + -analytic -2.3783e+2 -7.1026e-2 1.7752e+4 8.7147e+1 2.7707e+2 # -Range: 0-300 Cs - Cs +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Cs+ - log_k 72.5987 - -delta_H -397.913 kJ/mol # Calculated enthalpy of reaction Cs + Cs + H+ + 0.25 O2 = 0.5 H2O + Cs+ + log_k 72.5987 + -delta_H -397.913 kJ/mol # Calculated enthalpy of reaction Cs # Enthalpy of formation: 0 kJ/mol - -analytic -1.2875e+001 -7.3845e-003 2.1019e+004 6.9347e+000 3.2799e+002 + -analytic -1.2875e+1 -7.3845e-3 2.1019e+4 6.9347e+0 3.2799e+2 # -Range: 0-300 Cs2NaAmCl6 - Cs2NaAmCl6 = + 1.0000 Am+++ + 1.0000 Na+ + 2.0000 Cs+ + 6.0000 Cl- - log_k 11.7089 - -delta_H -59.7323 kJ/mol # Calculated enthalpy of reaction Cs2NaAmCl6 + Cs2NaAmCl6 = Am+3 + Na+ + 2 Cs+ + 6 Cl- + log_k 11.7089 + -delta_H -59.7323 kJ/mol # Calculated enthalpy of reaction Cs2NaAmCl6 # Enthalpy of formation: -2315.8 kJ/mol - -analytic 5.1683e+001 -5.0340e-002 -2.3205e+003 -6.9536e+000 -3.9422e+001 + -analytic 5.1683e+1 -5.034e-2 -2.3205e+3 -6.9536e+0 -3.9422e+1 # -Range: 0-200 Cs2U2O7 - Cs2U2O7 +6.0000 H+ = + 2.0000 Cs+ + 2.0000 UO2++ + 3.0000 H2O - log_k 31.0263 - -delta_H -191.57 kJ/mol # Calculated enthalpy of reaction Cs2U2O7 + Cs2U2O7 + 6 H+ = 2 Cs+ + 2 UO2+2 + 3 H2O + log_k 31.0263 + -delta_H -191.57 kJ/mol # Calculated enthalpy of reaction Cs2U2O7 # Enthalpy of formation: -3220 kJ/mol - -analytic -5.1436e+001 -7.4096e-003 1.2524e+004 1.7827e+001 -1.2899e+005 + -analytic -5.1436e+1 -7.4096e-3 1.2524e+4 1.7827e+1 -1.2899e+5 # -Range: 0-300 Cs2U4O12 - Cs2U4O12 +8.0000 H+ = + 2.0000 Cs+ + 2.0000 UO2+ + 2.0000 UO2++ + 4.0000 H2O - log_k 18.9460 - -delta_H -175.862 kJ/mol # Calculated enthalpy of reaction Cs2U4O12 + Cs2U4O12 + 8 H+ = 2 Cs+ + 2 UO2+ + 2 UO2+2 + 4 H2O + log_k 18.946 + -delta_H -175.862 kJ/mol # Calculated enthalpy of reaction Cs2U4O12 # Enthalpy of formation: -5571.8 kJ/mol - -analytic -3.3411e+001 3.6196e-003 1.0508e+004 6.5823e+000 -2.3403e+004 + -analytic -3.3411e+1 3.6196e-3 1.0508e+4 6.5823e+0 -2.3403e+4 # -Range: 0-300 Cs2UO4 - Cs2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 Cs+ + 2.0000 H2O - log_k 35.8930 - -delta_H -178.731 kJ/mol # Calculated enthalpy of reaction Cs2UO4 + Cs2UO4 + 4 H+ = UO2+2 + 2 Cs+ + 2 H2O + log_k 35.893 + -delta_H -178.731 kJ/mol # Calculated enthalpy of reaction Cs2UO4 # Enthalpy of formation: -1928 kJ/mol - -analytic -3.0950e+001 -3.5650e-003 1.0690e+004 1.2949e+001 1.6682e+002 + -analytic -3.095e+1 -3.565e-3 1.069e+4 1.2949e+1 1.6682e+2 # -Range: 0-300 Cu - Cu +2.0000 H+ +0.5000 O2 = + 1.0000 Cu++ + 1.0000 H2O - log_k 31.5118 - -delta_H -214.083 kJ/mol # Calculated enthalpy of reaction Cu + Cu + 2 H+ + 0.5 O2 = Cu+2 + H2O + log_k 31.5118 + -delta_H -214.083 kJ/mol # Calculated enthalpy of reaction Cu # Enthalpy of formation: 0 kcal/mol - -analytic -7.0719e+001 -2.0300e-002 1.2802e+004 2.6401e+001 1.9979e+002 + -analytic -7.0719e+1 -2.03e-2 1.2802e+4 2.6401e+1 1.9979e+2 # -Range: 0-300 Cu3(PO4)2 - Cu3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Cu++ - log_k -12.2247 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cu3(PO4)2 + Cu3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 Cu+2 + log_k -12.2247 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cu3(PO4)2 # Enthalpy of formation: 0 kcal/mol Cu3(PO4)2:3H2O - Cu3(PO4)2:3H2O +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Cu++ + 3.0000 H2O - log_k -10.4763 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cu3(PO4)2:3H2O + Cu3(PO4)2:3H2O + 2 H+ = 2 HPO4-2 + 3 Cu+2 + 3 H2O + log_k -10.4763 + -delta_H 0 # Not possible to calculate enthalpy of reaction Cu3(PO4)2:3H2O # Enthalpy of formation: 0 kcal/mol CuCl2 - CuCl2 = + 1.0000 Cu++ + 2.0000 Cl- - log_k 3.7308 - -delta_H -48.5965 kJ/mol # Calculated enthalpy of reaction CuCl2 + CuCl2 = Cu+2 + 2 Cl- + log_k 3.7308 + -delta_H -48.5965 kJ/mol # Calculated enthalpy of reaction CuCl2 # Enthalpy of formation: -219.874 kJ/mol - -analytic -1.7803e+001 -2.4432e-002 1.5729e+003 9.5104e+000 2.6716e+001 + -analytic -1.7803e+1 -2.4432e-2 1.5729e+3 9.5104e+0 2.6716e+1 # -Range: 0-200 CuCr2O4 - CuCr2O4 +8.0000 H+ = + 1.0000 Cu++ + 2.0000 Cr+++ + 4.0000 H2O - log_k 16.2174 - -delta_H -268.768 kJ/mol # Calculated enthalpy of reaction CuCr2O4 + CuCr2O4 + 8 H+ = Cu+2 + 2 Cr+3 + 4 H2O + log_k 16.2174 + -delta_H -268.768 kJ/mol # Calculated enthalpy of reaction CuCr2O4 # Enthalpy of formation: -307.331 kcal/mol - -analytic -1.8199e+002 -1.0254e-002 2.0123e+004 5.4062e+001 3.4178e+002 + -analytic -1.8199e+2 -1.0254e-2 2.0123e+4 5.4062e+1 3.4178e+2 # -Range: 0-200 CuF - CuF = + 1.0000 Cu+ + 1.0000 F- - log_k 7.0800 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuF + CuF = Cu+ + F- + log_k 7.08 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuF # Enthalpy of formation: 0 kcal/mol CuF2 - CuF2 = + 1.0000 Cu++ + 2.0000 F- - log_k -0.6200 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuF2 + CuF2 = Cu+2 + 2 F- + log_k -0.62 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuF2 # Enthalpy of formation: 0 kcal/mol CuF2:2H2O - CuF2:2H2O = + 1.0000 Cu++ + 2.0000 F- + 2.0000 H2O - log_k -4.5500 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuF2:2H2O + CuF2:2H2O = Cu+2 + 2 F- + 2 H2O + log_k -4.55 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuF2:2H2O # Enthalpy of formation: 0 kcal/mol CuSeO3 - CuSeO3 = + 1.0000 Cu++ + 1.0000 SeO3-- - log_k -7.6767 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuSeO3 + CuSeO3 = Cu+2 + SeO3-2 + log_k -7.6767 + -delta_H 0 # Not possible to calculate enthalpy of reaction CuSeO3 # Enthalpy of formation: 0 kcal/mol Cuprite - Cu2O +2.0000 H+ = + 1.0000 H2O + 2.0000 Cu+ - log_k -1.9031 - -delta_H 28.355 kJ/mol # Calculated enthalpy of reaction Cuprite + Cu2O + 2 H+ = H2O + 2 Cu+ + log_k -1.9031 + -delta_H 28.355 kJ/mol # Calculated enthalpy of reaction Cuprite # Enthalpy of formation: -40.83 kcal/mol - -analytic -8.6240e+001 -1.1445e-002 1.7851e+003 3.3041e+001 2.7880e+001 + -analytic -8.624e+1 -1.1445e-2 1.7851e+3 3.3041e+1 2.788e+1 # -Range: 0-300 Daphnite-14A - Fe5AlAlSi3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 3.0000 SiO2 + 5.0000 Fe++ + 12.0000 H2O - log_k 52.2821 - -delta_H -517.561 kJ/mol # Calculated enthalpy of reaction Daphnite-14A + Fe5AlAlSi3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Fe+2 + 12 H2O + log_k 52.2821 + -delta_H -517.561 kJ/mol # Calculated enthalpy of reaction Daphnite-14A # Enthalpy of formation: -1693.04 kcal/mol - -analytic -1.5261e+002 -6.1392e-002 2.8283e+004 5.1788e+001 4.4137e+002 + -analytic -1.5261e+2 -6.1392e-2 2.8283e+4 5.1788e+1 4.4137e+2 # -Range: 0-300 Daphnite-7A - Fe5AlAlSi3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 3.0000 SiO2 + 5.0000 Fe++ + 12.0000 H2O - log_k 55.6554 - -delta_H -532.326 kJ/mol # Calculated enthalpy of reaction Daphnite-7A + Fe5AlAlSi3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Fe+2 + 12 H2O + log_k 55.6554 + -delta_H -532.326 kJ/mol # Calculated enthalpy of reaction Daphnite-7A # Enthalpy of formation: -1689.51 kcal/mol - -analytic -1.6430e+002 -6.3160e-002 2.9499e+004 5.6442e+001 4.6035e+002 + -analytic -1.643e+2 -6.316e-2 2.9499e+4 5.6442e+1 4.6035e+2 # -Range: 0-300 Dawsonite - NaAlCO3(OH)2 +3.0000 H+ = + 1.0000 Al+++ + 1.0000 HCO3- + 1.0000 Na+ + 2.0000 H2O - log_k 4.3464 - -delta_H -76.3549 kJ/mol # Calculated enthalpy of reaction Dawsonite + NaAlCO3(OH)2 + 3 H+ = Al+3 + HCO3- + Na+ + 2 H2O + log_k 4.3464 + -delta_H -76.3549 kJ/mol # Calculated enthalpy of reaction Dawsonite # Enthalpy of formation: -1963.96 kJ/mol - -analytic -1.1393e+002 -2.3487e-002 7.1758e+003 4.0900e+001 1.2189e+002 + -analytic -1.1393e+2 -2.3487e-2 7.1758e+3 4.09e+1 1.2189e+2 # -Range: 0-200 Delafossite - CuFeO2 +4.0000 H+ = + 1.0000 Cu+ + 1.0000 Fe+++ + 2.0000 H2O - log_k -6.4172 - -delta_H -18.6104 kJ/mol # Calculated enthalpy of reaction Delafossite + CuFeO2 + 4 H+ = Cu+ + Fe+3 + 2 H2O + log_k -6.4172 + -delta_H -18.6104 kJ/mol # Calculated enthalpy of reaction Delafossite # Enthalpy of formation: -126.904 kcal/mol - -analytic -1.5275e+002 -3.5478e-002 5.1404e+003 5.6437e+001 8.0255e+001 + -analytic -1.5275e+2 -3.5478e-2 5.1404e+3 5.6437e+1 8.0255e+1 # -Range: 0-300 Diaspore - AlHO2 +3.0000 H+ = + 1.0000 Al+++ + 2.0000 H2O - log_k 7.1603 - -delta_H -110.42 kJ/mol # Calculated enthalpy of reaction Diaspore + AlHO2 + 3 H+ = Al+3 + 2 H2O + log_k 7.1603 + -delta_H -110.42 kJ/mol # Calculated enthalpy of reaction Diaspore # Enthalpy of formation: -238.924 kcal/mol - -analytic -1.2618e+002 -3.1671e-002 8.8737e+003 4.5669e+001 1.3850e+002 + -analytic -1.2618e+2 -3.1671e-2 8.8737e+3 4.5669e+1 1.385e+2 # -Range: 0-300 Dicalcium_silicate - Ca2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Ca++ + 2.0000 H2O - log_k 37.1725 - -delta_H -217.642 kJ/mol # Calculated enthalpy of reaction Dicalcium_silicate + Ca2SiO4 + 4 H+ = SiO2 + 2 Ca+2 + 2 H2O + log_k 37.1725 + -delta_H -217.642 kJ/mol # Calculated enthalpy of reaction Dicalcium_silicate # Enthalpy of formation: -2317.9 kJ/mol - -analytic -5.9723e+001 -1.3682e-002 1.5461e+004 2.1547e+001 -3.7732e+005 + -analytic -5.9723e+1 -1.3682e-2 1.5461e+4 2.1547e+1 -3.7732e+5 # -Range: 0-300 Diopside - CaMgSi2O6 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 2.0000 H2O + 2.0000 SiO2 - log_k 20.9643 - -delta_H -133.775 kJ/mol # Calculated enthalpy of reaction Diopside + CaMgSi2O6 + 4 H+ = Ca+2 + Mg+2 + 2 H2O + 2 SiO2 + log_k 20.9643 + -delta_H -133.775 kJ/mol # Calculated enthalpy of reaction Diopside # Enthalpy of formation: -765.378 kcal/mol - -analytic 7.1240e+001 1.5514e-002 8.1437e+003 -3.0672e+001 -5.6880e+005 + -analytic 7.124e+1 1.5514e-2 8.1437e+3 -3.0672e+1 -5.688e+5 # -Range: 0-300 Dioptase - CuSiO2(OH)2 +2.0000 H+ = + 1.0000 Cu++ + 1.0000 SiO2 + 2.0000 H2O - log_k 6.0773 - -delta_H -25.2205 kJ/mol # Calculated enthalpy of reaction Dioptase + CuSiO2(OH)2 + 2 H+ = Cu+2 + SiO2 + 2 H2O + log_k 6.0773 + -delta_H -25.2205 kJ/mol # Calculated enthalpy of reaction Dioptase # Enthalpy of formation: -1358.47 kJ/mol - -analytic 2.3913e+002 6.2669e-002 -5.4030e+003 -9.4420e+001 -9.1834e+001 + -analytic 2.3913e+2 6.2669e-2 -5.403e+3 -9.442e+1 -9.1834e+1 # -Range: 0-200 Dolomite - CaMg(CO3)2 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 2.0000 HCO3- - log_k 2.5135 - -delta_H -59.9651 kJ/mol # Calculated enthalpy of reaction Dolomite + CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- + log_k 2.5135 + -delta_H -59.9651 kJ/mol # Calculated enthalpy of reaction Dolomite # Enthalpy of formation: -556.631 kcal/mol - -analytic -3.1782e+002 -9.8179e-002 1.0845e+004 1.2657e+002 1.6932e+002 + -analytic -3.1782e+2 -9.8179e-2 1.0845e+4 1.2657e+2 1.6932e+2 # -Range: 0-300 Dolomite-dis - CaMg(CO3)2 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 2.0000 HCO3- - log_k 4.0579 - -delta_H -72.2117 kJ/mol # Calculated enthalpy of reaction Dolomite-dis + CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- + log_k 4.0579 + -delta_H -72.2117 kJ/mol # Calculated enthalpy of reaction Dolomite-dis # Enthalpy of formation: -553.704 kcal/mol - -analytic -3.1706e+002 -9.7886e-002 1.1442e+004 1.2604e+002 1.7864e+002 + -analytic -3.1706e+2 -9.7886e-2 1.1442e+4 1.2604e+2 1.7864e+2 # -Range: 0-300 Dolomite-ord - CaMg(CO3)2 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 2.0000 HCO3- - log_k 2.5135 - -delta_H -59.9651 kJ/mol # Calculated enthalpy of reaction Dolomite-ord + CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- + log_k 2.5135 + -delta_H -59.9651 kJ/mol # Calculated enthalpy of reaction Dolomite-ord # Enthalpy of formation: -556.631 kcal/mol - -analytic -3.1654e+002 -9.7902e-002 1.0805e+004 1.2607e+002 1.6870e+002 + -analytic -3.1654e+2 -9.7902e-2 1.0805e+4 1.2607e+2 1.687e+2 # -Range: 0-300 Downeyite - SeO2 +1.0000 H2O = + 1.0000 SeO3-- + 2.0000 H+ - log_k -6.7503 - -delta_H 1.74473 kJ/mol # Calculated enthalpy of reaction Downeyite + SeO2 + H2O = SeO3-2 + 2 H+ + log_k -6.7503 + -delta_H 1.74473 kJ/mol # Calculated enthalpy of reaction Downeyite # Enthalpy of formation: -53.8 kcal/mol - -analytic -1.2868e+002 -6.1183e-002 1.5802e+003 5.4490e+001 2.4696e+001 + -analytic -1.2868e+2 -6.1183e-2 1.5802e+3 5.449e+1 2.4696e+1 # -Range: 0-300 Dy - Dy +3.0000 H+ +0.7500 O2 = + 1.0000 Dy+++ + 1.5000 H2O - log_k 180.8306 - -delta_H -1116.29 kJ/mol # Calculated enthalpy of reaction Dy + Dy + 3 H+ + 0.75 O2 = Dy+3 + 1.5 H2O + log_k 180.8306 + -delta_H -1116.29 kJ/mol # Calculated enthalpy of reaction Dy # Enthalpy of formation: 0 kJ/mol - -analytic -6.8317e+001 -2.8321e-002 5.8927e+004 2.4211e+001 9.1953e+002 + -analytic -6.8317e+1 -2.8321e-2 5.8927e+4 2.4211e+1 9.1953e+2 # -Range: 0-300 Dy(OH)3 - Dy(OH)3 +3.0000 H+ = + 1.0000 Dy+++ + 3.0000 H2O - log_k 15.8852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)3 + Dy(OH)3 + 3 H+ = Dy+3 + 3 H2O + log_k 15.8852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)3 # Enthalpy of formation: 0 kcal/mol Dy(OH)3(am) - Dy(OH)3 +3.0000 H+ = + 1.0000 Dy+++ + 3.0000 H2O - log_k 17.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)3(am) + Dy(OH)3 + 3 H+ = Dy+3 + 3 H2O + log_k 17.4852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)3(am) # Enthalpy of formation: 0 kcal/mol Dy2(CO3)3 - Dy2(CO3)3 +3.0000 H+ = + 2.0000 Dy+++ + 3.0000 HCO3- - log_k -3.0136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy2(CO3)3 + Dy2(CO3)3 + 3 H+ = 2 Dy+3 + 3 HCO3- + log_k -3.0136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy2(CO3)3 # Enthalpy of formation: 0 kcal/mol Dy2O3 - Dy2O3 +6.0000 H+ = + 2.0000 Dy+++ + 3.0000 H2O - log_k 47.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy2O3 + Dy2O3 + 6 H+ = 2 Dy+3 + 3 H2O + log_k 47 + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy2O3 # Enthalpy of formation: 0 kcal/mol DyF3:.5H2O - DyF3:.5H2O = + 0.5000 H2O + 1.0000 Dy+++ + 3.0000 F- - log_k -16.5000 - -delta_H 0 # Not possible to calculate enthalpy of reaction DyF3:.5H2O + DyF3:.5H2O = 0.5 H2O + Dy+3 + 3 F- + log_k -16.5 + -delta_H 0 # Not possible to calculate enthalpy of reaction DyF3:.5H2O # Enthalpy of formation: 0 kcal/mol DyPO4:10H2O - DyPO4:10H2O +1.0000 H+ = + 1.0000 Dy+++ + 1.0000 HPO4-- + 10.0000 H2O - log_k -11.9782 - -delta_H 0 # Not possible to calculate enthalpy of reaction DyPO4:10H2O + DyPO4:10H2O + H+ = Dy+3 + HPO4-2 + 10 H2O + log_k -11.9782 + -delta_H 0 # Not possible to calculate enthalpy of reaction DyPO4:10H2O # Enthalpy of formation: 0 kcal/mol Enstatite - MgSiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 Mg++ + 1.0000 SiO2 - log_k 11.3269 - -delta_H -82.7302 kJ/mol # Calculated enthalpy of reaction Enstatite + MgSiO3 + 2 H+ = H2O + Mg+2 + SiO2 + log_k 11.3269 + -delta_H -82.7302 kJ/mol # Calculated enthalpy of reaction Enstatite # Enthalpy of formation: -369.686 kcal/mol - -analytic -4.9278e+001 -3.2832e-003 9.5205e+003 1.4437e+001 -5.4324e+005 + -analytic -4.9278e+1 -3.2832e-3 9.5205e+3 1.4437e+1 -5.4324e+5 # -Range: 0-300 Epidote - Ca2FeAl2Si3O12OH +13.0000 H+ = + 1.0000 Fe+++ + 2.0000 Al+++ + 2.0000 Ca++ + 3.0000 SiO2 + 7.0000 H2O - log_k 32.9296 - -delta_H -386.451 kJ/mol # Calculated enthalpy of reaction Epidote + Ca2FeAl2Si3O12OH + 13 H+ = Fe+3 + 2 Al+3 + 2 Ca+2 + 3 SiO2 + 7 H2O + log_k 32.9296 + -delta_H -386.451 kJ/mol # Calculated enthalpy of reaction Epidote # Enthalpy of formation: -1543.99 kcal/mol - -analytic -2.6187e+001 -3.6436e-002 1.9351e+004 3.3671e+000 -3.0319e+005 + -analytic -2.6187e+1 -3.6436e-2 1.9351e+4 3.3671e+0 -3.0319e+5 # -Range: 0-300 Epidote-ord - FeCa2Al2(OH)(SiO4)3 +13.0000 H+ = + 1.0000 Fe+++ + 2.0000 Al+++ + 2.0000 Ca++ + 3.0000 SiO2 + 7.0000 H2O - log_k 32.9296 - -delta_H -386.351 kJ/mol # Calculated enthalpy of reaction Epidote-ord + FeCa2Al2(OH)(SiO4)3 + 13 H+ = Fe+3 + 2 Al+3 + 2 Ca+2 + 3 SiO2 + 7 H2O + log_k 32.9296 + -delta_H -386.351 kJ/mol # Calculated enthalpy of reaction Epidote-ord # Enthalpy of formation: -1544.02 kcal/mol - -analytic 1.9379e+001 -3.2870e-002 1.5692e+004 -1.1901e+001 2.4485e+002 + -analytic 1.9379e+1 -3.287e-2 1.5692e+4 -1.1901e+1 2.4485e+2 # -Range: 0-300 Epsomite - MgSO4:7H2O = + 1.0000 Mg++ + 1.0000 SO4-- + 7.0000 H2O - log_k -1.9623 - -delta_H 0 # Not possible to calculate enthalpy of reaction Epsomite + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -1.9623 + -delta_H 0 # Not possible to calculate enthalpy of reaction Epsomite # Enthalpy of formation: 0 kcal/mol Er - Er +3.0000 H+ +0.7500 O2 = + 1.0000 Er+++ + 1.5000 H2O - log_k 181.7102 - -delta_H -1124.66 kJ/mol # Calculated enthalpy of reaction Er + Er + 3 H+ + 0.75 O2 = Er+3 + 1.5 H2O + log_k 181.7102 + -delta_H -1124.66 kJ/mol # Calculated enthalpy of reaction Er # Enthalpy of formation: 0 kJ/mol - -analytic -1.4459e+002 -3.8221e-002 6.4073e+004 5.1047e+001 -3.1503e+005 + -analytic -1.4459e+2 -3.8221e-2 6.4073e+4 5.1047e+1 -3.1503e+5 # -Range: 0-300 Er(OH)3 - Er(OH)3 +3.0000 H+ = + 1.0000 Er+++ + 3.0000 H2O - log_k 14.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)3 + Er(OH)3 + 3 H+ = Er+3 + 3 H2O + log_k 14.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)3 # Enthalpy of formation: 0 kcal/mol Er(OH)3(am) - Er(OH)3 +3.0000 H+ = + 1.0000 Er+++ + 3.0000 H2O - log_k 18.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)3(am) + Er(OH)3 + 3 H+ = Er+3 + 3 H2O + log_k 18.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)3(am) # Enthalpy of formation: 0 kcal/mol Er2(CO3)3 - Er2(CO3)3 +3.0000 H+ = + 2.0000 Er+++ + 3.0000 HCO3- - log_k -2.6136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er2(CO3)3 + Er2(CO3)3 + 3 H+ = 2 Er+3 + 3 HCO3- + log_k -2.6136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er2(CO3)3 # Enthalpy of formation: 0 kcal/mol Er2O3 - Er2O3 +6.0000 H+ = + 2.0000 Er+++ + 3.0000 H2O - log_k 42.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er2O3 + Er2O3 + 6 H+ = 2 Er+3 + 3 H2O + log_k 42.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction Er2O3 # Enthalpy of formation: 0 kcal/mol ErF3:.5H2O - ErF3:.5H2O = + 0.5000 H2O + 1.0000 Er+++ + 3.0000 F- - log_k -16.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction ErF3:.5H2O + ErF3:.5H2O = 0.5 H2O + Er+3 + 3 F- + log_k -16.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction ErF3:.5H2O # Enthalpy of formation: 0 kcal/mol ErPO4:10H2O - ErPO4:10H2O +1.0000 H+ = + 1.0000 Er+++ + 1.0000 HPO4-- + 10.0000 H2O - log_k -11.8782 - -delta_H 0 # Not possible to calculate enthalpy of reaction ErPO4:10H2O + ErPO4:10H2O + H+ = Er+3 + HPO4-2 + 10 H2O + log_k -11.8782 + -delta_H 0 # Not possible to calculate enthalpy of reaction ErPO4:10H2O # Enthalpy of formation: 0 kcal/mol Erythrite - Co3(AsO4)2:8H2O +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Co++ + 8.0000 H2O - log_k 6.3930 - -delta_H 0 # Not possible to calculate enthalpy of reaction Erythrite + Co3(AsO4)2:8H2O + 4 H+ = 2 H2AsO4- + 3 Co+2 + 8 H2O + log_k 6.393 + -delta_H 0 # Not possible to calculate enthalpy of reaction Erythrite # Enthalpy of formation: 0 kcal/mol Eskolaite - Cr2O3 +2.0000 H2O +1.5000 O2 = + 2.0000 CrO4-- + 4.0000 H+ - log_k -9.1306 - -delta_H -32.6877 kJ/mol # Calculated enthalpy of reaction Eskolaite + Cr2O3 + 2 H2O + 1.5 O2 = 2 CrO4-2 + 4 H+ + log_k -9.1306 + -delta_H -32.6877 kJ/mol # Calculated enthalpy of reaction Eskolaite # Enthalpy of formation: -1139.74 kJ/mol - -analytic -2.0411e+002 -1.2809e-001 2.2197e+003 9.1186e+001 3.4697e+001 + -analytic -2.0411e+2 -1.2809e-1 2.2197e+3 9.1186e+1 3.4697e+1 # -Range: 0-300 Ettringite - Ca6Al2(SO4)3(OH)12:26H2O +12.0000 H+ = + 2.0000 Al+++ + 3.0000 SO4-- + 6.0000 Ca++ + 38.0000 H2O - log_k 62.5362 - -delta_H -382.451 kJ/mol # Calculated enthalpy of reaction Ettringite + Ca6Al2(SO4)3(OH)12:26H2O + 12 H+ = 2 Al+3 + 3 SO4-2 + 6 Ca+2 + 38 H2O + log_k 62.5362 + -delta_H -382.451 kJ/mol # Calculated enthalpy of reaction Ettringite # Enthalpy of formation: -4193 kcal/mol - -analytic -1.0576e+003 -1.1585e-001 5.9580e+004 3.8585e+002 1.0121e+003 + -analytic -1.0576e+3 -1.1585e-1 5.958e+4 3.8585e+2 1.0121e+3 # -Range: 0-200 Eu - Eu +3.0000 H+ +0.7500 O2 = + 1.0000 Eu+++ + 1.5000 H2O - log_k 165.1443 - -delta_H -1025.08 kJ/mol # Calculated enthalpy of reaction Eu + Eu + 3 H+ + 0.75 O2 = Eu+3 + 1.5 H2O + log_k 165.1443 + -delta_H -1025.08 kJ/mol # Calculated enthalpy of reaction Eu # Enthalpy of formation: 0 kJ/mol - -analytic -6.5749e+001 -2.8921e-002 5.4018e+004 2.3561e+001 8.4292e+002 + -analytic -6.5749e+1 -2.8921e-2 5.4018e+4 2.3561e+1 8.4292e+2 # -Range: 0-300 Eu(IO3)3:2H2O - Eu(IO3)3:2H2O = + 1.0000 Eu+++ + 2.0000 H2O + 3.0000 IO3- - log_k -11.6999 - -delta_H 20.8847 kJ/mol # Calculated enthalpy of reaction Eu(IO3)3:2H2O + Eu(IO3)3:2H2O = Eu+3 + 2 H2O + 3 IO3- + log_k -11.6999 + -delta_H 20.8847 kJ/mol # Calculated enthalpy of reaction Eu(IO3)3:2H2O # Enthalpy of formation: -1861.99 kJ/mol - -analytic -3.4616e+001 -1.9914e-002 -1.1966e+003 1.3276e+001 -2.0308e+001 + -analytic -3.4616e+1 -1.9914e-2 -1.1966e+3 1.3276e+1 -2.0308e+1 # -Range: 0-200 Eu(NO3)3:6H2O - Eu(NO3)3:6H2O = + 1.0000 Eu+++ + 3.0000 NO3- + 6.0000 H2O - log_k 1.3082 - -delta_H 15.2254 kJ/mol # Calculated enthalpy of reaction Eu(NO3)3:6H2O + Eu(NO3)3:6H2O = Eu+3 + 3 NO3- + 6 H2O + log_k 1.3082 + -delta_H 15.2254 kJ/mol # Calculated enthalpy of reaction Eu(NO3)3:6H2O # Enthalpy of formation: -2956.11 kJ/mol - -analytic -1.3205e+002 -2.0427e-002 3.9623e+003 5.0976e+001 6.7332e+001 + -analytic -1.3205e+2 -2.0427e-2 3.9623e+3 5.0976e+1 6.7332e+1 # -Range: 0-200 Eu(OH)2.5Cl.5 - Eu(OH)2.5Cl.5 +2.5000 H+ = + 0.5000 Cl- + 1.0000 Eu+++ + 2.5000 H2O - log_k 12.5546 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2.5Cl.5 + Eu(OH)2.5Cl.5 + 2.5 H+ = 0.5 Cl- + Eu+3 + 2.5 H2O + log_k 12.5546 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2.5Cl.5 # Enthalpy of formation: 0 kcal/mol Eu(OH)2Cl - Eu(OH)2Cl +2.0000 H+ = + 1.0000 Cl- + 1.0000 Eu+++ + 2.0000 H2O - log_k 8.7974 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2Cl + Eu(OH)2Cl + 2 H+ = Cl- + Eu+3 + 2 H2O + log_k 8.7974 + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2Cl # Enthalpy of formation: 0 kcal/mol Eu(OH)3 - Eu(OH)3 +3.0000 H+ = + 1.0000 Eu+++ + 3.0000 H2O - log_k 15.3482 - -delta_H -126.897 kJ/mol # Calculated enthalpy of reaction Eu(OH)3 + Eu(OH)3 + 3 H+ = Eu+3 + 3 H2O + log_k 15.3482 + -delta_H -126.897 kJ/mol # Calculated enthalpy of reaction Eu(OH)3 # Enthalpy of formation: -1336.04 kJ/mol - -analytic -6.3077e+001 -6.1421e-003 8.7323e+003 2.0595e+001 1.4831e+002 + -analytic -6.3077e+1 -6.1421e-3 8.7323e+3 2.0595e+1 1.4831e+2 # -Range: 0-200 Eu2(CO3)3:3H2O - Eu2(CO3)3:3H2O +3.0000 H+ = + 2.0000 Eu+++ + 3.0000 H2O + 3.0000 HCO3- - log_k -5.8707 - -delta_H -137.512 kJ/mol # Calculated enthalpy of reaction Eu2(CO3)3:3H2O + Eu2(CO3)3:3H2O + 3 H+ = 2 Eu+3 + 3 H2O + 3 HCO3- + log_k -5.8707 + -delta_H -137.512 kJ/mol # Calculated enthalpy of reaction Eu2(CO3)3:3H2O # Enthalpy of formation: -4000.65 kJ/mol - -analytic -1.4134e+002 -4.0240e-002 9.5883e+003 4.6591e+001 1.6287e+002 + -analytic -1.4134e+2 -4.024e-2 9.5883e+3 4.6591e+1 1.6287e+2 # -Range: 0-200 Eu2(SO4)3:8H2O - Eu2(SO4)3:8H2O = + 2.0000 Eu+++ + 3.0000 SO4-- + 8.0000 H2O - log_k -10.8524 - -delta_H -86.59 kJ/mol # Calculated enthalpy of reaction Eu2(SO4)3:8H2O + Eu2(SO4)3:8H2O = 2 Eu+3 + 3 SO4-2 + 8 H2O + log_k -10.8524 + -delta_H -86.59 kJ/mol # Calculated enthalpy of reaction Eu2(SO4)3:8H2O # Enthalpy of formation: -6139.77 kJ/mol - -analytic -5.6582e+001 -3.8846e-002 3.3821e+003 1.8561e+001 5.7452e+001 + -analytic -5.6582e+1 -3.8846e-2 3.3821e+3 1.8561e+1 5.7452e+1 # -Range: 0-200 Eu2O3(cubic) - Eu2O3 +6.0000 H+ = + 2.0000 Eu+++ + 3.0000 H2O - log_k 51.7818 - -delta_H -406.403 kJ/mol # Calculated enthalpy of reaction Eu2O3(cubic) + Eu2O3 + 6 H+ = 2 Eu+3 + 3 H2O + log_k 51.7818 + -delta_H -406.403 kJ/mol # Calculated enthalpy of reaction Eu2O3(cubic) # Enthalpy of formation: -1661.96 kJ/mol - -analytic -5.3469e+001 -1.2554e-002 2.1925e+004 1.4324e+001 3.7233e+002 + -analytic -5.3469e+1 -1.2554e-2 2.1925e+4 1.4324e+1 3.7233e+2 # -Range: 0-200 Eu2O3(monoclinic) - Eu2O3 +6.0000 H+ = + 2.0000 Eu+++ + 3.0000 H2O - log_k 53.3936 - -delta_H -417.481 kJ/mol # Calculated enthalpy of reaction Eu2O3(monoclinic) + Eu2O3 + 6 H+ = 2 Eu+3 + 3 H2O + log_k 53.3936 + -delta_H -417.481 kJ/mol # Calculated enthalpy of reaction Eu2O3(monoclinic) # Enthalpy of formation: -1650.88 kJ/mol - -analytic -5.4022e+001 -1.2627e-002 2.2508e+004 1.4416e+001 3.8224e+002 + -analytic -5.4022e+1 -1.2627e-2 2.2508e+4 1.4416e+1 3.8224e+2 # -Range: 0-200 Eu3O4 - Eu3O4 +8.0000 H+ = + 1.0000 Eu++ + 2.0000 Eu+++ + 4.0000 H2O - log_k 87.0369 - -delta_H -611.249 kJ/mol # Calculated enthalpy of reaction Eu3O4 + Eu3O4 + 8 H+ = Eu+2 + 2 Eu+3 + 4 H2O + log_k 87.0369 + -delta_H -611.249 kJ/mol # Calculated enthalpy of reaction Eu3O4 # Enthalpy of formation: -2270.56 kJ/mol - -analytic -1.1829e+002 -2.0354e-002 3.4981e+004 3.8007e+001 5.9407e+002 + -analytic -1.1829e+2 -2.0354e-2 3.4981e+4 3.8007e+1 5.9407e+2 # -Range: 0-200 EuBr3 - EuBr3 = + 1.0000 Eu+++ + 3.0000 Br- - log_k 29.8934 - -delta_H -217.166 kJ/mol # Calculated enthalpy of reaction EuBr3 + EuBr3 = Eu+3 + 3 Br- + log_k 29.8934 + -delta_H -217.166 kJ/mol # Calculated enthalpy of reaction EuBr3 # Enthalpy of formation: -752.769 kJ/mol - -analytic 6.0207e+001 -2.5234e-002 6.6823e+003 -1.8276e+001 1.1345e+002 + -analytic 6.0207e+1 -2.5234e-2 6.6823e+3 -1.8276e+1 1.1345e+2 # -Range: 0-200 EuCl2 - EuCl2 = + 1.0000 Eu++ + 2.0000 Cl- - log_k 5.9230 - -delta_H -39.2617 kJ/mol # Calculated enthalpy of reaction EuCl2 + EuCl2 = Eu+2 + 2 Cl- + log_k 5.923 + -delta_H -39.2617 kJ/mol # Calculated enthalpy of reaction EuCl2 # Enthalpy of formation: -822.5 kJ/mol - -analytic -2.5741e+001 -2.4956e-002 1.5713e+003 1.3670e+001 2.6691e+001 + -analytic -2.5741e+1 -2.4956e-2 1.5713e+3 1.367e+1 2.6691e+1 # -Range: 0-200 EuCl3 - EuCl3 = + 1.0000 Eu+++ + 3.0000 Cl- - log_k 19.7149 - -delta_H -170.861 kJ/mol # Calculated enthalpy of reaction EuCl3 + EuCl3 = Eu+3 + 3 Cl- + log_k 19.7149 + -delta_H -170.861 kJ/mol # Calculated enthalpy of reaction EuCl3 # Enthalpy of formation: -935.803 kJ/mol - -analytic 3.2865e+001 -3.1877e-002 4.9792e+003 -8.2294e+000 8.4542e+001 + -analytic 3.2865e+1 -3.1877e-2 4.9792e+3 -8.2294e+0 8.4542e+1 # -Range: 0-200 EuCl3:6H2O - EuCl3:6H2O = + 1.0000 Eu+++ + 3.0000 Cl- + 6.0000 H2O - log_k 4.9090 - -delta_H -40.0288 kJ/mol # Calculated enthalpy of reaction EuCl3:6H2O + EuCl3:6H2O = Eu+3 + 3 Cl- + 6 H2O + log_k 4.909 + -delta_H -40.0288 kJ/mol # Calculated enthalpy of reaction EuCl3:6H2O # Enthalpy of formation: -2781.66 kJ/mol - -analytic -1.0987e+002 -2.9851e-002 4.9991e+003 4.3198e+001 8.4930e+001 + -analytic -1.0987e+2 -2.9851e-2 4.9991e+3 4.3198e+1 8.493e+1 # -Range: 0-200 EuF3:0.5H2O - EuF3:0.5H2O = + 0.5000 H2O + 1.0000 Eu+++ + 3.0000 F- - log_k -16.4847 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuF3:0.5H2O + EuF3:0.5H2O = 0.5 H2O + Eu+3 + 3 F- + log_k -16.4847 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuF3:0.5H2O # Enthalpy of formation: 0 kcal/mol EuO - EuO +2.0000 H+ = + 1.0000 Eu++ + 1.0000 H2O - log_k 37.4800 - -delta_H -221.196 kJ/mol # Calculated enthalpy of reaction EuO + EuO + 2 H+ = Eu+2 + H2O + log_k 37.48 + -delta_H -221.196 kJ/mol # Calculated enthalpy of reaction EuO # Enthalpy of formation: -592.245 kJ/mol - -analytic -8.9517e+001 -1.7523e-002 1.4385e+004 3.3933e+001 2.2449e+002 + -analytic -8.9517e+1 -1.7523e-2 1.4385e+4 3.3933e+1 2.2449e+2 # -Range: 0-300 EuOCl - EuOCl +2.0000 H+ = + 1.0000 Cl- + 1.0000 Eu+++ + 1.0000 H2O - log_k 15.6683 - -delta_H -147.173 kJ/mol # Calculated enthalpy of reaction EuOCl + EuOCl + 2 H+ = Cl- + Eu+3 + H2O + log_k 15.6683 + -delta_H -147.173 kJ/mol # Calculated enthalpy of reaction EuOCl # Enthalpy of formation: -911.17 kJ/mol - -analytic -7.7446e+000 -1.4960e-002 6.6242e+003 2.2813e+000 1.1249e+002 + -analytic -7.7446e+0 -1.496e-2 6.6242e+3 2.2813e+0 1.1249e+2 # -Range: 0-200 EuOHCO3 - EuOHCO3 +2.0000 H+ = + 1.0000 Eu+++ + 1.0000 H2O + 1.0000 HCO3- - log_k 2.5239 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuOHCO3 + EuOHCO3 + 2 H+ = Eu+3 + H2O + HCO3- + log_k 2.5239 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuOHCO3 # Enthalpy of formation: 0 kcal/mol EuPO4:10H2O - EuPO4:10H2O +1.0000 H+ = + 1.0000 Eu+++ + 1.0000 HPO4-- + 10.0000 H2O - log_k -12.0782 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuPO4:10H2O + EuPO4:10H2O + H+ = Eu+3 + HPO4-2 + 10 H2O + log_k -12.0782 + -delta_H 0 # Not possible to calculate enthalpy of reaction EuPO4:10H2O # Enthalpy of formation: 0 kcal/mol EuS - EuS +1.0000 H+ = + 1.0000 Eu++ + 1.0000 HS- - log_k 14.9068 - -delta_H -96.4088 kJ/mol # Calculated enthalpy of reaction EuS + EuS + H+ = Eu+2 + HS- + log_k 14.9068 + -delta_H -96.4088 kJ/mol # Calculated enthalpy of reaction EuS # Enthalpy of formation: -447.302 kJ/mol - -analytic -4.1026e+001 -1.5582e-002 5.7842e+003 1.6639e+001 9.8238e+001 + -analytic -4.1026e+1 -1.5582e-2 5.7842e+3 1.6639e+1 9.8238e+1 # -Range: 0-200 EuSO4 - EuSO4 = + 1.0000 Eu++ + 1.0000 SO4-- - log_k -8.8449 - -delta_H 33.873 kJ/mol # Calculated enthalpy of reaction EuSO4 + EuSO4 = Eu+2 + SO4-2 + log_k -8.8449 + -delta_H 33.873 kJ/mol # Calculated enthalpy of reaction EuSO4 # Enthalpy of formation: -1471.08 kJ/mol - -analytic 3.0262e-001 -1.7571e-002 -3.0392e+003 2.5356e+000 -5.1610e+001 + -analytic 3.0262e-1 -1.7571e-2 -3.0392e+3 2.5356e+0 -5.161e+1 # -Range: 0-200 Eucryptite - LiAlSiO4 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Li+ + 1.0000 SiO2 + 2.0000 H2O - log_k 13.6106 - -delta_H -141.818 kJ/mol # Calculated enthalpy of reaction Eucryptite + LiAlSiO4 + 4 H+ = Al+3 + Li+ + SiO2 + 2 H2O + log_k 13.6106 + -delta_H -141.818 kJ/mol # Calculated enthalpy of reaction Eucryptite # Enthalpy of formation: -2124.41 kJ/mol - -analytic -2.2213e+000 -8.2498e-003 6.4838e+003 -1.4183e+000 1.0117e+002 + -analytic -2.2213e+0 -8.2498e-3 6.4838e+3 -1.4183e+0 1.0117e+2 # -Range: 0-300 Fayalite - Fe2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Fe++ + 2.0000 H2O - log_k 19.1113 - -delta_H -152.256 kJ/mol # Calculated enthalpy of reaction Fayalite + Fe2SiO4 + 4 H+ = SiO2 + 2 Fe+2 + 2 H2O + log_k 19.1113 + -delta_H -152.256 kJ/mol # Calculated enthalpy of reaction Fayalite # Enthalpy of formation: -354.119 kcal/mol - -analytic 1.3853e+001 -3.5501e-003 7.1496e+003 -6.8710e+000 -6.3310e+004 + -analytic 1.3853e+1 -3.5501e-3 7.1496e+3 -6.871e+0 -6.331e+4 # -Range: 0-300 Fe - Fe +2.0000 H+ +0.5000 O2 = + 1.0000 Fe++ + 1.0000 H2O - log_k 59.0325 - -delta_H -372.029 kJ/mol # Calculated enthalpy of reaction Fe + Fe + 2 H+ + 0.5 O2 = Fe+2 + H2O + log_k 59.0325 + -delta_H -372.029 kJ/mol # Calculated enthalpy of reaction Fe # Enthalpy of formation: 0 kcal/mol - -analytic -6.2882e+001 -2.0379e-002 2.0690e+004 2.3673e+001 3.2287e+002 + -analytic -6.2882e+1 -2.0379e-2 2.069e+4 2.3673e+1 3.2287e+2 # -Range: 0-300 Fe(OH)2 - Fe(OH)2 +2.0000 H+ = + 1.0000 Fe++ + 2.0000 H2O - log_k 13.9045 - -delta_H -95.4089 kJ/mol # Calculated enthalpy of reaction Fe(OH)2 + Fe(OH)2 + 2 H+ = Fe+2 + 2 H2O + log_k 13.9045 + -delta_H -95.4089 kJ/mol # Calculated enthalpy of reaction Fe(OH)2 # Enthalpy of formation: -568.525 kJ/mol - -analytic -8.6666e+001 -1.8440e-002 7.5723e+003 3.2597e+001 1.1818e+002 + -analytic -8.6666e+1 -1.844e-2 7.5723e+3 3.2597e+1 1.1818e+2 # -Range: 0-300 Fe(OH)3 - Fe(OH)3 +3.0000 H+ = + 1.0000 Fe+++ + 3.0000 H2O - log_k 5.6556 - -delta_H -84.0824 kJ/mol # Calculated enthalpy of reaction Fe(OH)3 + Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O + log_k 5.6556 + -delta_H -84.0824 kJ/mol # Calculated enthalpy of reaction Fe(OH)3 # Enthalpy of formation: -823.013 kJ/mol - -analytic -1.3316e+002 -3.1284e-002 7.9753e+003 4.9052e+001 1.2449e+002 + -analytic -1.3316e+2 -3.1284e-2 7.9753e+3 4.9052e+1 1.2449e+2 # -Range: 0-300 Fe2(SO4)3 - Fe2(SO4)3 = + 2.0000 Fe+++ + 3.0000 SO4-- - log_k 3.2058 - -delta_H -250.806 kJ/mol # Calculated enthalpy of reaction Fe2(SO4)3 + Fe2(SO4)3 = 2 Fe+3 + 3 SO4-2 + log_k 3.2058 + -delta_H -250.806 kJ/mol # Calculated enthalpy of reaction Fe2(SO4)3 # Enthalpy of formation: -2577.16 kJ/mol - -analytic -5.8649e+002 -2.3718e-001 2.2736e+004 2.3601e+002 3.5495e+002 + -analytic -5.8649e+2 -2.3718e-1 2.2736e+4 2.3601e+2 3.5495e+2 # -Range: 0-300 FeF2 - FeF2 = + 1.0000 Fe++ + 2.0000 F- - log_k -2.3817 - -delta_H -51.6924 kJ/mol # Calculated enthalpy of reaction FeF2 + FeF2 = Fe+2 + 2 F- + log_k -2.3817 + -delta_H -51.6924 kJ/mol # Calculated enthalpy of reaction FeF2 # Enthalpy of formation: -711.26 kJ/mol - -analytic -2.5687e+002 -8.4091e-002 8.4262e+003 1.0154e+002 1.3156e+002 + -analytic -2.5687e+2 -8.4091e-2 8.4262e+3 1.0154e+2 1.3156e+2 # -Range: 0-300 FeF3 - FeF3 = + 1.0000 Fe+++ + 3.0000 F- - log_k -19.2388 - -delta_H -13.8072 kJ/mol # Calculated enthalpy of reaction FeF3 + FeF3 = Fe+3 + 3 F- + log_k -19.2388 + -delta_H -13.8072 kJ/mol # Calculated enthalpy of reaction FeF3 # Enthalpy of formation: -249 kcal/mol - -analytic -1.6215e+001 -3.7450e-002 -1.8926e+003 5.8485e+000 -3.2134e+001 + -analytic -1.6215e+1 -3.745e-2 -1.8926e+3 5.8485e+0 -3.2134e+1 # -Range: 0-200 FeO - FeO +2.0000 H+ = + 1.0000 Fe++ + 1.0000 H2O - log_k 13.5318 - -delta_H -106.052 kJ/mol # Calculated enthalpy of reaction FeO + FeO + 2 H+ = Fe+2 + H2O + log_k 13.5318 + -delta_H -106.052 kJ/mol # Calculated enthalpy of reaction FeO # Enthalpy of formation: -65.02 kcal/mol - -analytic -7.8750e+001 -1.8268e-002 7.6852e+003 2.9074e+001 1.1994e+002 + -analytic -7.875e+1 -1.8268e-2 7.6852e+3 2.9074e+1 1.1994e+2 # -Range: 0-300 FeSO4 - FeSO4 = + 1.0000 Fe++ + 1.0000 SO4-- - log_k 2.6565 - -delta_H -73.0878 kJ/mol # Calculated enthalpy of reaction FeSO4 + FeSO4 = Fe+2 + SO4-2 + log_k 2.6565 + -delta_H -73.0878 kJ/mol # Calculated enthalpy of reaction FeSO4 # Enthalpy of formation: -928.771 kJ/mol - -analytic -2.0794e+002 -7.6891e-002 7.8705e+003 8.3685e+001 1.2287e+002 + -analytic -2.0794e+2 -7.6891e-2 7.8705e+3 8.3685e+1 1.2287e+2 # -Range: 0-300 FeV2O4 - FeV2O4 +8.0000 H+ = + 1.0000 Fe++ + 2.0000 V+++ + 4.0000 H2O - log_k 280.5528 - -delta_H -1733.42 kJ/mol # Calculated enthalpy of reaction FeV2O4 + FeV2O4 + 8 H+ = Fe+2 + 2 V+3 + 4 H2O + log_k 280.5528 + -delta_H -1733.42 kJ/mol # Calculated enthalpy of reaction FeV2O4 # Enthalpy of formation: -5.8 kcal/mol - -analytic -1.6736e+002 -1.9398e-002 9.5736e+004 5.3582e+001 1.6258e+003 + -analytic -1.6736e+2 -1.9398e-2 9.5736e+4 5.3582e+1 1.6258e+3 # -Range: 0-200 Ferrite-Ca - CaFe2O4 +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Fe+++ + 4.0000 H2O - log_k 21.5217 - -delta_H -264.738 kJ/mol # Calculated enthalpy of reaction Ferrite-Ca + CaFe2O4 + 8 H+ = Ca+2 + 2 Fe+3 + 4 H2O + log_k 21.5217 + -delta_H -264.738 kJ/mol # Calculated enthalpy of reaction Ferrite-Ca # Enthalpy of formation: -363.494 kcal/mol - -analytic -2.8472e+002 -7.5870e-002 2.0688e+004 1.0485e+002 3.2289e+002 + -analytic -2.8472e+2 -7.587e-2 2.0688e+4 1.0485e+2 3.2289e+2 # -Range: 0-300 Ferrite-Cu - CuFe2O4 +8.0000 H+ = + 1.0000 Cu++ + 2.0000 Fe+++ + 4.0000 H2O - log_k 10.3160 - -delta_H -211.647 kJ/mol # Calculated enthalpy of reaction Ferrite-Cu + CuFe2O4 + 8 H+ = Cu+2 + 2 Fe+3 + 4 H2O + log_k 10.316 + -delta_H -211.647 kJ/mol # Calculated enthalpy of reaction Ferrite-Cu # Enthalpy of formation: -965.178 kJ/mol - -analytic -3.1271e+002 -7.9976e-002 1.8818e+004 1.1466e+002 2.9374e+002 + -analytic -3.1271e+2 -7.9976e-2 1.8818e+4 1.1466e+2 2.9374e+2 # -Range: 0-300 Ferrite-Dicalcium - Ca2Fe2O5 +10.0000 H+ = + 2.0000 Ca++ + 2.0000 Fe+++ + 5.0000 H2O - log_k 56.8331 - -delta_H -475.261 kJ/mol # Calculated enthalpy of reaction Ferrite-Dicalcium + Ca2Fe2O5 + 10 H+ = 2 Ca+2 + 2 Fe+3 + 5 H2O + log_k 56.8331 + -delta_H -475.261 kJ/mol # Calculated enthalpy of reaction Ferrite-Dicalcium # Enthalpy of formation: -2139.26 kJ/mol - -analytic -3.6277e+002 -9.5015e-002 3.3898e+004 1.3506e+002 5.2906e+002 + -analytic -3.6277e+2 -9.5015e-2 3.3898e+4 1.3506e+2 5.2906e+2 # -Range: 0-300 Ferrite-Mg - MgFe2O4 +8.0000 H+ = + 1.0000 Mg++ + 2.0000 Fe+++ + 4.0000 H2O - log_k 21.0551 - -delta_H -280.056 kJ/mol # Calculated enthalpy of reaction Ferrite-Mg + MgFe2O4 + 8 H+ = Mg+2 + 2 Fe+3 + 4 H2O + log_k 21.0551 + -delta_H -280.056 kJ/mol # Calculated enthalpy of reaction Ferrite-Mg # Enthalpy of formation: -1428.42 kJ/mol - -analytic -2.8297e+002 -7.4820e-002 2.1333e+004 1.0295e+002 3.3296e+002 + -analytic -2.8297e+2 -7.482e-2 2.1333e+4 1.0295e+2 3.3296e+2 # -Range: 0-300 Ferrite-Zn - ZnFe2O4 +8.0000 H+ = + 1.0000 Zn++ + 2.0000 Fe+++ + 4.0000 H2O - log_k 11.7342 - -delta_H -226.609 kJ/mol # Calculated enthalpy of reaction Ferrite-Zn + ZnFe2O4 + 8 H+ = Zn+2 + 2 Fe+3 + 4 H2O + log_k 11.7342 + -delta_H -226.609 kJ/mol # Calculated enthalpy of reaction Ferrite-Zn # Enthalpy of formation: -1169.29 kJ/mol - -analytic -2.9809e+002 -7.7263e-002 1.9067e+004 1.0866e+002 2.9761e+002 + -analytic -2.9809e+2 -7.7263e-2 1.9067e+4 1.0866e+2 2.9761e+2 # -Range: 0-300 Ferroselite - FeSe2 +0.5000 H2O = + 0.2500 O2 + 1.0000 Fe+++ + 1.0000 H+ + 2.0000 Se-- - log_k -80.7998 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ferroselite + FeSe2 + 0.5 H2O = 0.25 O2 + Fe+3 + H+ + 2 Se-2 + log_k -80.7998 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ferroselite # Enthalpy of formation: -25 kcal/mol - -analytic -7.2971e+001 -2.4992e-002 -1.6246e+004 2.1860e+001 -2.5348e+002 + -analytic -7.2971e+1 -2.4992e-2 -1.6246e+4 2.186e+1 -2.5348e+2 # -Range: 0-300 Ferrosilite - FeSiO3 +2.0000 H+ = + 1.0000 Fe++ + 1.0000 H2O + 1.0000 SiO2 - log_k 7.4471 - -delta_H -60.6011 kJ/mol # Calculated enthalpy of reaction Ferrosilite + FeSiO3 + 2 H+ = Fe+2 + H2O + SiO2 + log_k 7.4471 + -delta_H -60.6011 kJ/mol # Calculated enthalpy of reaction Ferrosilite # Enthalpy of formation: -285.658 kcal/mol - -analytic 9.0041e+000 3.7917e-003 5.1625e+003 -6.3009e+000 -3.9565e+005 + -analytic 9.0041e+0 3.7917e-3 5.1625e+3 -6.3009e+0 -3.9565e+5 # -Range: 0-300 Fluorapatite - Ca5(PO4)3F +3.0000 H+ = + 1.0000 F- + 3.0000 HPO4-- + 5.0000 Ca++ - log_k -24.9940 - -delta_H -90.8915 kJ/mol # Calculated enthalpy of reaction Fluorapatite + Ca5(PO4)3F + 3 H+ = F- + 3 HPO4-2 + 5 Ca+2 + log_k -24.994 + -delta_H -90.8915 kJ/mol # Calculated enthalpy of reaction Fluorapatite # Enthalpy of formation: -6836.12 kJ/mol - -analytic -9.3648e+002 -3.2688e-001 2.4398e+004 3.7461e+002 3.8098e+002 + -analytic -9.3648e+2 -3.2688e-1 2.4398e+4 3.7461e+2 3.8098e+2 # -Range: 0-300 Fluorite - CaF2 = + 1.0000 Ca++ + 2.0000 F- - log_k -10.0370 - -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction Fluorite + CaF2 = Ca+2 + 2 F- + log_k -10.037 + -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction Fluorite # Enthalpy of formation: -293 kcal/mol - -analytic -2.5036e+002 -8.4183e-002 4.9525e+003 1.0054e+002 7.7353e+001 + -analytic -2.5036e+2 -8.4183e-2 4.9525e+3 1.0054e+2 7.7353e+1 # -Range: 0-300 Forsterite - Mg2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Mg++ - log_k 27.8626 - -delta_H -205.614 kJ/mol # Calculated enthalpy of reaction Forsterite + Mg2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Mg+2 + log_k 27.8626 + -delta_H -205.614 kJ/mol # Calculated enthalpy of reaction Forsterite # Enthalpy of formation: -520 kcal/mol - -analytic -7.6195e+001 -1.4013e-002 1.4763e+004 2.5090e+001 -3.0379e+005 + -analytic -7.6195e+1 -1.4013e-2 1.4763e+4 2.509e+1 -3.0379e+5 # -Range: 0-300 Foshagite - Ca4Si3O9(OH)2:0.5H2O +8.0000 H+ = + 3.0000 SiO2 + 4.0000 Ca++ + 5.5000 H2O - log_k 65.9210 - -delta_H -359.839 kJ/mol # Calculated enthalpy of reaction Foshagite + Ca4Si3O9(OH)2:0.5H2O + 8 H+ = 3 SiO2 + 4 Ca+2 + 5.5 H2O + log_k 65.921 + -delta_H -359.839 kJ/mol # Calculated enthalpy of reaction Foshagite # Enthalpy of formation: -1438.27 kcal/mol - -analytic 2.9983e+001 5.5272e-003 2.3427e+004 -1.3879e+001 -8.9461e+005 + -analytic 2.9983e+1 5.5272e-3 2.3427e+4 -1.3879e+1 -8.9461e+5 # -Range: 0-300 Frankdicksonite - BaF2 = + 1.0000 Ba++ + 2.0000 F- - log_k -5.7600 - -delta_H 0 # Not possible to calculate enthalpy of reaction Frankdicksonite + BaF2 = Ba+2 + 2 F- + log_k -5.76 + -delta_H 0 # Not possible to calculate enthalpy of reaction Frankdicksonite # Enthalpy of formation: 0 kcal/mol Freboldite - CoSe = + 1.0000 Co++ + 1.0000 Se-- - log_k -24.3358 - -delta_H 0 # Not possible to calculate enthalpy of reaction Freboldite + CoSe = Co+2 + Se-2 + log_k -24.3358 + -delta_H 0 # Not possible to calculate enthalpy of reaction Freboldite # Enthalpy of formation: -15.295 kcal/mol - -analytic -1.3763e+001 -1.6924e-003 -3.6938e+003 9.3574e-001 -6.2723e+001 + -analytic -1.3763e+1 -1.6924e-3 -3.6938e+3 9.3574e-1 -6.2723e+1 # -Range: 0-200 Ga - Ga +3.0000 H+ +0.7500 O2 = + 1.0000 Ga+++ + 1.5000 H2O - log_k 92.3567 - -delta_H -631.368 kJ/mol # Calculated enthalpy of reaction Ga + Ga + 3 H+ + 0.75 O2 = Ga+3 + 1.5 H2O + log_k 92.3567 + -delta_H -631.368 kJ/mol # Calculated enthalpy of reaction Ga # Enthalpy of formation: 0 kJ/mol - -analytic -1.3027e+002 -3.9539e-002 3.6027e+004 4.6280e+001 -8.5461e+004 + -analytic -1.3027e+2 -3.9539e-2 3.6027e+4 4.628e+1 -8.5461e+4 # -Range: 0-300 Galena - PbS +1.0000 H+ = + 1.0000 HS- + 1.0000 Pb++ - log_k -14.8544 - -delta_H 83.1361 kJ/mol # Calculated enthalpy of reaction Galena + PbS + H+ = HS- + Pb+2 + log_k -14.8544 + -delta_H 83.1361 kJ/mol # Calculated enthalpy of reaction Galena # Enthalpy of formation: -23.5 kcal/mol - -analytic -1.2124e+002 -4.3477e-002 -1.6463e+003 5.0454e+001 -2.5654e+001 + -analytic -1.2124e+2 -4.3477e-2 -1.6463e+3 5.0454e+1 -2.5654e+1 # -Range: 0-300 Gaylussite - CaNa2(CO3)2:5H2O +2.0000 H+ = + 1.0000 Ca++ + 2.0000 HCO3- + 2.0000 Na+ + 5.0000 H2O - log_k 11.1641 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gaylussite + CaNa2(CO3)2:5H2O + 2 H+ = Ca+2 + 2 HCO3- + 2 Na+ + 5 H2O + log_k 11.1641 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gaylussite # Enthalpy of formation: 0 kcal/mol Gd - Gd +3.0000 H+ +0.7500 O2 = + 1.0000 Gd+++ + 1.5000 H2O - log_k 180.7573 - -delta_H -1106.67 kJ/mol # Calculated enthalpy of reaction Gd + Gd + 3 H+ + 0.75 O2 = Gd+3 + 1.5 H2O + log_k 180.7573 + -delta_H -1106.67 kJ/mol # Calculated enthalpy of reaction Gd # Enthalpy of formation: 0 kJ/mol - -analytic -3.3949e+002 -6.5698e-002 7.4278e+004 1.2189e+002 -9.7055e+005 + -analytic -3.3949e+2 -6.5698e-2 7.4278e+4 1.2189e+2 -9.7055e+5 # -Range: 0-300 Gd(OH)3 - Gd(OH)3 +3.0000 H+ = + 1.0000 Gd+++ + 3.0000 H2O - log_k 15.5852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)3 + Gd(OH)3 + 3 H+ = Gd+3 + 3 H2O + log_k 15.5852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)3 # Enthalpy of formation: 0 kcal/mol Gd(OH)3(am) - Gd(OH)3 +3.0000 H+ = + 1.0000 Gd+++ + 3.0000 H2O - log_k 17.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)3(am) + Gd(OH)3 + 3 H+ = Gd+3 + 3 H2O + log_k 17.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)3(am) # Enthalpy of formation: 0 kcal/mol Gd2(CO3)3 - Gd2(CO3)3 +3.0000 H+ = + 2.0000 Gd+++ + 3.0000 HCO3- - log_k -3.7136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd2(CO3)3 + Gd2(CO3)3 + 3 H+ = 2 Gd+3 + 3 HCO3- + log_k -3.7136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd2(CO3)3 # Enthalpy of formation: 0 kcal/mol Gd2O3 - Gd2O3 +6.0000 H+ = + 2.0000 Gd+++ + 3.0000 H2O - log_k 53.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd2O3 + Gd2O3 + 6 H+ = 2 Gd+3 + 3 H2O + log_k 53.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd2O3 # Enthalpy of formation: 0 kcal/mol GdF3:.5H2O - GdF3:.5H2O = + 0.5000 H2O + 1.0000 Gd+++ + 3.0000 F- - log_k -16.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction GdF3:.5H2O + GdF3:.5H2O = 0.5 H2O + Gd+3 + 3 F- + log_k -16.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction GdF3:.5H2O # Enthalpy of formation: 0 kcal/mol GdPO4:10H2O - GdPO4:10H2O +1.0000 H+ = + 1.0000 Gd+++ + 1.0000 HPO4-- + 10.0000 H2O - log_k -11.9782 - -delta_H 0 # Not possible to calculate enthalpy of reaction GdPO4:10H2O + GdPO4:10H2O + H+ = Gd+3 + HPO4-2 + 10 H2O + log_k -11.9782 + -delta_H 0 # Not possible to calculate enthalpy of reaction GdPO4:10H2O # Enthalpy of formation: 0 kcal/mol Gehlenite - Ca2Al2SiO7 +10.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 2.0000 Ca++ + 5.0000 H2O - log_k 56.2997 - -delta_H -489.934 kJ/mol # Calculated enthalpy of reaction Gehlenite + Ca2Al2SiO7 + 10 H+ = SiO2 + 2 Al+3 + 2 Ca+2 + 5 H2O + log_k 56.2997 + -delta_H -489.934 kJ/mol # Calculated enthalpy of reaction Gehlenite # Enthalpy of formation: -951.225 kcal/mol - -analytic -2.1784e+002 -6.7200e-002 2.9779e+004 7.8488e+001 4.6473e+002 + -analytic -2.1784e+2 -6.72e-2 2.9779e+4 7.8488e+1 4.6473e+2 # -Range: 0-300 Gibbsite - Al(OH)3 +3.0000 H+ = + 1.0000 Al+++ + 3.0000 H2O - log_k 7.7560 - -delta_H -102.788 kJ/mol # Calculated enthalpy of reaction Gibbsite + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 7.756 + -delta_H -102.788 kJ/mol # Calculated enthalpy of reaction Gibbsite # Enthalpy of formation: -309.065 kcal/mol - -analytic -1.1403e+002 -3.6453e-002 7.7236e+003 4.3134e+001 1.2055e+002 + -analytic -1.1403e+2 -3.6453e-2 7.7236e+3 4.3134e+1 1.2055e+2 # -Range: 0-300 Gismondine - Ca2Al4Si4O16:9H2O +16.0000 H+ = + 2.0000 Ca++ + 4.0000 Al+++ + 4.0000 SiO2 + 17.0000 H2O - log_k 41.7170 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gismondine + Ca2Al4Si4O16:9H2O + 16 H+ = 2 Ca+2 + 4 Al+3 + 4 SiO2 + 17 H2O + log_k 41.717 + -delta_H 0 # Not possible to calculate enthalpy of reaction Gismondine # Enthalpy of formation: 0 kcal/mol Glauberite - Na2Ca(SO4)2 = + 1.0000 Ca++ + 2.0000 Na+ + 2.0000 SO4-- - log_k -5.4690 - -delta_H 0 # Not possible to calculate enthalpy of reaction Glauberite + Na2Ca(SO4)2 = Ca+2 + 2 Na+ + 2 SO4-2 + log_k -5.469 + -delta_H 0 # Not possible to calculate enthalpy of reaction Glauberite # Enthalpy of formation: 0 kcal/mol Goethite - FeOOH +3.0000 H+ = + 1.0000 Fe+++ + 2.0000 H2O - log_k 0.5345 - -delta_H -61.9291 kJ/mol # Calculated enthalpy of reaction Goethite + FeOOH + 3 H+ = Fe+3 + 2 H2O + log_k 0.5345 + -delta_H -61.9291 kJ/mol # Calculated enthalpy of reaction Goethite # Enthalpy of formation: -559.328 kJ/mol - -analytic -6.0331e+001 -1.0847e-002 4.7759e+003 1.9429e+001 8.1122e+001 + -analytic -6.0331e+1 -1.0847e-2 4.7759e+3 1.9429e+1 8.1122e+1 # -Range: 0-200 Greenalite - Fe3Si2O5(OH)4 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 Fe++ + 5.0000 H2O - log_k 22.6701 - -delta_H -165.297 kJ/mol # Calculated enthalpy of reaction Greenalite + Fe3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Fe+2 + 5 H2O + log_k 22.6701 + -delta_H -165.297 kJ/mol # Calculated enthalpy of reaction Greenalite # Enthalpy of formation: -787.778 kcal/mol - -analytic -1.4187e+001 -3.8377e-003 1.1710e+004 1.6442e+000 -4.8290e+005 + -analytic -1.4187e+1 -3.8377e-3 1.171e+4 1.6442e+0 -4.829e+5 # -Range: 0-300 Grossular - Ca3Al2(SiO4)3 +12.0000 H+ = + 2.0000 Al+++ + 3.0000 Ca++ + 3.0000 SiO2 + 6.0000 H2O - log_k 51.9228 - -delta_H -432.006 kJ/mol # Calculated enthalpy of reaction Grossular + Ca3Al2(SiO4)3 + 12 H+ = 2 Al+3 + 3 Ca+2 + 3 SiO2 + 6 H2O + log_k 51.9228 + -delta_H -432.006 kJ/mol # Calculated enthalpy of reaction Grossular # Enthalpy of formation: -1582.74 kcal/mol - -analytic 2.9389e+001 -2.2478e-002 2.0323e+004 -1.4624e+001 -2.5674e+005 + -analytic 2.9389e+1 -2.2478e-2 2.0323e+4 -1.4624e+1 -2.5674e+5 # -Range: 0-300 Gypsum - CaSO4:2H2O = + 1.0000 Ca++ + 1.0000 SO4-- + 2.0000 H2O - log_k -4.4823 - -delta_H -1.66746 kJ/mol # Calculated enthalpy of reaction Gypsum + CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O + log_k -4.4823 + -delta_H -1.66746 kJ/mol # Calculated enthalpy of reaction Gypsum # Enthalpy of formation: -2022.69 kJ/mol - -analytic -2.4417e+002 -8.3329e-002 5.5958e+003 9.9301e+001 8.7389e+001 + -analytic -2.4417e+2 -8.3329e-2 5.5958e+3 9.9301e+1 8.7389e+1 # -Range: 0-300 Gyrolite - Ca2Si3O7(OH)2:1.5H2O +4.0000 H+ = + 2.0000 Ca++ + 3.0000 SiO2 + 4.5000 H2O - log_k 22.9099 - -delta_H -82.862 kJ/mol # Calculated enthalpy of reaction Gyrolite + Ca2Si3O7(OH)2:1.5H2O + 4 H+ = 2 Ca+2 + 3 SiO2 + 4.5 H2O + log_k 22.9099 + -delta_H -82.862 kJ/mol # Calculated enthalpy of reaction Gyrolite # Enthalpy of formation: -1176.55 kcal/mol - -analytic -2.4416e+001 1.4646e-002 1.6181e+004 2.3723e+000 -1.5369e+006 + -analytic -2.4416e+1 1.4646e-2 1.6181e+4 2.3723e+0 -1.5369e+6 # -Range: 0-300 HTcO4 - HTcO4 = + 1.0000 H+ + 1.0000 TcO4- - log_k 5.9566 - -delta_H -12.324 kJ/mol # Calculated enthalpy of reaction HTcO4 + HTcO4 = H+ + TcO4- + log_k 5.9566 + -delta_H -12.324 kJ/mol # Calculated enthalpy of reaction HTcO4 # Enthalpy of formation: -703.945 kJ/mol - -analytic 3.0005e+001 7.6416e-003 -5.3546e+001 -1.0568e+001 -9.1953e-001 + -analytic 3.0005e+1 7.6416e-3 -5.3546e+1 -1.0568e+1 -9.1953e-1 # -Range: 0-200 Haiweeite - Ca(UO2)2(Si2O5)3:5H2O +6.0000 H+ = + 1.0000 Ca++ + 2.0000 UO2++ + 6.0000 SiO2 + 8.0000 H2O - log_k -7.0413 - -delta_H 0 # Not possible to calculate enthalpy of reaction Haiweeite + Ca(UO2)2(Si2O5)3:5H2O + 6 H+ = Ca+2 + 2 UO2+2 + 6 SiO2 + 8 H2O + log_k -7.0413 + -delta_H 0 # Not possible to calculate enthalpy of reaction Haiweeite # Enthalpy of formation: 0 kcal/mol Halite - NaCl = + 1.0000 Cl- + 1.0000 Na+ - log_k 1.5855 - -delta_H 3.7405 kJ/mol # Calculated enthalpy of reaction Halite + NaCl = Cl- + Na+ + log_k 1.5855 + -delta_H 3.7405 kJ/mol # Calculated enthalpy of reaction Halite # Enthalpy of formation: -98.26 kcal/mol - -analytic -1.0163e+002 -3.4761e-002 2.2796e+003 4.2802e+001 3.5602e+001 + -analytic -1.0163e+2 -3.4761e-2 2.2796e+3 4.2802e+1 3.5602e+1 # -Range: 0-300 Hatrurite - Ca3SiO5 +6.0000 H+ = + 1.0000 SiO2 + 3.0000 Ca++ + 3.0000 H2O - log_k 73.4056 - -delta_H -434.684 kJ/mol # Calculated enthalpy of reaction Hatrurite + Ca3SiO5 + 6 H+ = SiO2 + 3 Ca+2 + 3 H2O + log_k 73.4056 + -delta_H -434.684 kJ/mol # Calculated enthalpy of reaction Hatrurite # Enthalpy of formation: -700.234 kcal/mol - -analytic -4.5448e+001 -1.9998e-002 2.3800e+004 1.8494e+001 -7.3385e+004 + -analytic -4.5448e+1 -1.9998e-2 2.38e+4 1.8494e+1 -7.3385e+4 # -Range: 0-300 Hausmannite - Mn3O4 +8.0000 H+ = + 1.0000 Mn++ + 2.0000 Mn+++ + 4.0000 H2O - log_k 10.1598 - -delta_H -268.121 kJ/mol # Calculated enthalpy of reaction Hausmannite + Mn3O4 + 8 H+ = Mn+2 + 2 Mn+3 + 4 H2O + log_k 10.1598 + -delta_H -268.121 kJ/mol # Calculated enthalpy of reaction Hausmannite # Enthalpy of formation: -1387.83 kJ/mol - -analytic -2.0600e+002 -2.2214e-002 2.0160e+004 6.2700e+001 3.1464e+002 + -analytic -2.06e+2 -2.2214e-2 2.016e+4 6.27e+1 3.1464e+2 # -Range: 0-300 Heazlewoodite - Ni3S2 +4.0000 H+ +0.5000 O2 = + 1.0000 H2O + 2.0000 HS- + 3.0000 Ni++ - log_k 28.2477 - -delta_H -270.897 kJ/mol # Calculated enthalpy of reaction Heazlewoodite + Ni3S2 + 4 H+ + 0.5 O2 = H2O + 2 HS- + 3 Ni+2 + log_k 28.2477 + -delta_H -270.897 kJ/mol # Calculated enthalpy of reaction Heazlewoodite # Enthalpy of formation: -203.012 kJ/mol - -analytic -3.5439e+002 -1.1740e-001 2.1811e+004 1.3919e+002 3.4044e+002 + -analytic -3.5439e+2 -1.174e-1 2.1811e+4 1.3919e+2 3.4044e+2 # -Range: 0-300 Hedenbergite - CaFe(SiO3)2 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 Fe++ + 2.0000 H2O + 2.0000 SiO2 - log_k 19.6060 - -delta_H -124.507 kJ/mol # Calculated enthalpy of reaction Hedenbergite + CaFe(SiO3)2 + 4 H+ = Ca+2 + Fe+2 + 2 H2O + 2 SiO2 + log_k 19.606 + -delta_H -124.507 kJ/mol # Calculated enthalpy of reaction Hedenbergite # Enthalpy of formation: -678.276 kcal/mol - -analytic -1.9473e+001 1.5288e-003 1.2910e+004 2.1729e+000 -9.0058e+005 + -analytic -1.9473e+1 1.5288e-3 1.291e+4 2.1729e+0 -9.0058e+5 # -Range: 0-300 Hematite - Fe2O3 +6.0000 H+ = + 2.0000 Fe+++ + 3.0000 H2O - log_k 0.1086 - -delta_H -129.415 kJ/mol # Calculated enthalpy of reaction Hematite + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k 0.1086 + -delta_H -129.415 kJ/mol # Calculated enthalpy of reaction Hematite # Enthalpy of formation: -197.72 kcal/mol - -analytic -2.2015e+002 -6.0290e-002 1.1812e+004 8.0253e+001 1.8438e+002 + -analytic -2.2015e+2 -6.029e-2 1.1812e+4 8.0253e+1 1.8438e+2 # -Range: 0-300 Hercynite - FeAl2O4 +8.0000 H+ = + 1.0000 Fe++ + 2.0000 Al+++ + 4.0000 H2O - log_k 28.8484 - -delta_H -345.961 kJ/mol # Calculated enthalpy of reaction Hercynite + FeAl2O4 + 8 H+ = Fe+2 + 2 Al+3 + 4 H2O + log_k 28.8484 + -delta_H -345.961 kJ/mol # Calculated enthalpy of reaction Hercynite # Enthalpy of formation: -1966.45 kJ/mol - -analytic -3.1848e+002 -7.9501e-002 2.5892e+004 1.1483e+002 4.0412e+002 + -analytic -3.1848e+2 -7.9501e-2 2.5892e+4 1.1483e+2 4.0412e+2 # -Range: 0-300 Herzenbergite - SnS +1.0000 H+ = + 1.0000 HS- + 1.0000 Sn++ - log_k -15.5786 - -delta_H 81.6466 kJ/mol # Calculated enthalpy of reaction Herzenbergite + SnS + H+ = HS- + Sn+2 + log_k -15.5786 + -delta_H 81.6466 kJ/mol # Calculated enthalpy of reaction Herzenbergite # Enthalpy of formation: -25.464 kcal/mol - -analytic -1.3576e+002 -4.6594e-002 -1.1572e+003 5.5740e+001 -1.8018e+001 + -analytic -1.3576e+2 -4.6594e-2 -1.1572e+3 5.574e+1 -1.8018e+1 # -Range: 0-300 Heulandite # Ba.065Sr.175Ca.585K.132Na.383Al2.165Si6.835O18:6 +8.6600 H+ = + 0.0650 Ba++ + 0.1320 K+ + 0.1750 Sr++ + 0.3830 Na+ + 0.5850 Ca++ + 2.1650 Al+++ + 6.8350 SiO2 + 10.3300 H2O - Ba.065Sr.175Ca.585K.132Na.383Al2.165Si6.835O18:6H2O +8.6600 H+ = + 0.0650 Ba++ + 0.1320 K+ + 0.1750 Sr++ + 0.3830 Na+ + 0.5850 Ca++ + 2.1650 Al+++ + 6.8350 SiO2 + 10.3300 H2O - log_k 3.3506 - -delta_H -97.2942 kJ/mol # Calculated enthalpy of reaction Heulandite + Ba.065Sr.175Ca.585K.132Na.383Al2.165Si6.835O18:6H2O + 8.66 H+ = 0.065 Ba+2 + 0.132 K+ + 0.175 Sr+2 + 0.383 Na+ + 0.585 Ca+2 + 2.165 Al+3 + 6.835 SiO2 + 10.33 H2O + log_k 3.3506 + -delta_H -97.2942 kJ/mol # Calculated enthalpy of reaction Heulandite # Enthalpy of formation: -10594.5 kJ/mol - -analytic -1.8364e+001 2.7879e-002 2.8426e+004 -1.7427e+001 -3.4723e+006 + -analytic -1.8364e+1 2.7879e-2 2.8426e+4 -1.7427e+1 -3.4723e+6 # -Range: 0-300 Hexahydrite - MgSO4:6H2O = + 1.0000 Mg++ + 1.0000 SO4-- + 6.0000 H2O - log_k -1.7268 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hexahydrite + MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O + log_k -1.7268 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hexahydrite # Enthalpy of formation: 0 kcal/mol Hf(s) - Hf +4.0000 H+ +1.0000 O2 = + 1.0000 Hf++++ + 2.0000 H2O - log_k 189.9795 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf + Hf + 4 H+ + O2 = Hf+4 + 2 H2O + log_k 189.9795 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf # Enthalpy of formation: -0.003 kJ/mol HfB2 - HfB2 +2.7500 H+ +2.2500 H2O = + 0.7500 B(OH)3 + 1.0000 Hf++++ + 1.2500 BH4- - log_k 55.7691 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfB2 + HfB2 + 2.75 H+ + 2.25 H2O = 0.75 B(OH)3 + Hf+4 + 1.25 BH4- + log_k 55.7691 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfB2 # Enthalpy of formation: -78.6 kJ/mol HfBr2 - HfBr2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hf++++ + 2.0000 Br- - log_k 114.9446 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfBr2 + HfBr2 + 2 H+ + 0.5 O2 = H2O + Hf+4 + 2 Br- + log_k 114.9446 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfBr2 # Enthalpy of formation: -98 kJ/mol HfBr4 - HfBr4 = + 1.0000 Hf++++ + 4.0000 Br- - log_k 48.2921 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfBr4 + HfBr4 = Hf+4 + 4 Br- + log_k 48.2921 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfBr4 # Enthalpy of formation: -183.1 kJ/mol HfC - HfC +3.0000 H+ +2.0000 O2 = + 1.0000 H2O + 1.0000 HCO3- + 1.0000 Hf++++ - log_k 215.0827 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfC + HfC + 3 H+ + 2 O2 = H2O + HCO3- + Hf+4 + log_k 215.0827 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfC # Enthalpy of formation: -54 kJ/mol HfCl2 - HfCl2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hf++++ + 2.0000 Cl- - log_k 109.1624 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfCl2 + HfCl2 + 2 H+ + 0.5 O2 = H2O + Hf+4 + 2 Cl- + log_k 109.1624 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfCl2 # Enthalpy of formation: -125 kJ/mol HfCl4 - HfCl4 = + 1.0000 Hf++++ + 4.0000 Cl- - log_k 38.0919 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfCl4 + HfCl4 = Hf+4 + 4 Cl- + log_k 38.0919 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfCl4 # Enthalpy of formation: -236.7 kJ/mol HfF2 - HfF2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hf++++ + 2.0000 F- - log_k 81.7647 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfF2 + HfF2 + 2 H+ + 0.5 O2 = H2O + Hf+4 + 2 F- + log_k 81.7647 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfF2 # Enthalpy of formation: -235 kJ/mol HfF4 - HfF4 = + 1.0000 Hf++++ + 4.0000 F- - log_k -19.2307 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfF4 + HfF4 = Hf+4 + 4 F- + log_k -19.2307 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfF4 # Enthalpy of formation: -461.4 kJ/mol HfI2 - HfI2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hf++++ + 2.0000 I- - log_k 117.4971 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfI2 + HfI2 + 2 H+ + 0.5 O2 = H2O + Hf+4 + 2 I- + log_k 117.4971 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfI2 # Enthalpy of formation: -65 kJ/mol HfI4 - HfI4 = + 1.0000 Hf++++ + 4.0000 I- - log_k 54.1798 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfI4 + HfI4 = Hf+4 + 4 I- + log_k 54.1798 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfI4 # Enthalpy of formation: -118 kJ/mol HfN - HfN +4.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Hf++++ + 1.0000 NH3 - log_k 69.4646 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfN + HfN + 4 H+ + 0.25 O2 = 0.5 H2O + Hf+4 + NH3 + log_k 69.4646 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfN # Enthalpy of formation: -89.3 kJ/mol HfO2 - HfO2 +4.0000 H+ = + 1.0000 Hf++++ + 2.0000 H2O - log_k 1.1829 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfO2 + HfO2 + 4 H+ = Hf+4 + 2 H2O + log_k 1.1829 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfO2 # Enthalpy of formation: -267.1 kJ/mol HfS2 - HfS2 +2.0000 H+ = + 1.0000 Hf++++ + 2.0000 HS- - log_k -1.5845 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfS2 + HfS2 + 2 H+ = Hf+4 + 2 HS- + log_k -1.5845 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfS2 # Enthalpy of formation: -140 kJ/mol HfS3 - HfS3 +1.0000 H+ = + 1.0000 HS- + 1.0000 Hf++++ + 1.0000 S2-- - log_k -18.9936 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfS3 + HfS3 + H+ = HS- + Hf+4 + S2-2 + log_k -18.9936 + -delta_H 0 # Not possible to calculate enthalpy of reaction HfS3 # Enthalpy of formation: -149 kJ/mol Hg2SO4 - Hg2SO4 = + 1.0000 Hg2++ + 1.0000 SO4-- - log_k -6.1170 - -delta_H 0.30448 kJ/mol # Calculated enthalpy of reaction Hg2SO4 + Hg2SO4 = Hg2+2 + SO4-2 + log_k -6.117 + -delta_H 0.30448 kJ/mol # Calculated enthalpy of reaction Hg2SO4 # Enthalpy of formation: -743.09 kJ/mol - -analytic -3.2342e+001 -1.9881e-002 1.6292e+003 1.0781e+001 2.7677e+001 + -analytic -3.2342e+1 -1.9881e-2 1.6292e+3 1.0781e+1 2.7677e+1 # -Range: 0-200 Hg2SeO3 - Hg2SeO3 = + 1.0000 Hg2++ + 1.0000 SeO3-- - log_k -14.2132 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hg2SeO3 + Hg2SeO3 = Hg2+2 + SeO3-2 + log_k -14.2132 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hg2SeO3 # Enthalpy of formation: 0 kcal/mol HgSeO3 - HgSeO3 = + 1.0000 Hg++ + 1.0000 SeO3-- - log_k -13.8957 - -delta_H 0 # Not possible to calculate enthalpy of reaction HgSeO3 + HgSeO3 = Hg+2 + SeO3-2 + log_k -13.8957 + -delta_H 0 # Not possible to calculate enthalpy of reaction HgSeO3 # Enthalpy of formation: 0 kcal/mol Hillebrandite - Ca2SiO3(OH)2:0.17H2O +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Ca++ + 3.1700 H2O - log_k 36.8190 - -delta_H -203.074 kJ/mol # Calculated enthalpy of reaction Hillebrandite + Ca2SiO3(OH)2:0.17H2O + 4 H+ = SiO2 + 2 Ca+2 + 3.17 H2O + log_k 36.819 + -delta_H -203.074 kJ/mol # Calculated enthalpy of reaction Hillebrandite # Enthalpy of formation: -637.404 kcal/mol - -analytic -1.9360e+001 -7.5176e-003 1.1947e+004 8.0558e+000 -1.4504e+005 + -analytic -1.936e+1 -7.5176e-3 1.1947e+4 8.0558e+0 -1.4504e+5 # -Range: 0-300 Hinsdalite - Al3PPbSO8(OH)6 +7.0000 H+ = + 1.0000 HPO4-- + 1.0000 Pb++ + 1.0000 SO4-- + 3.0000 Al+++ + 6.0000 H2O - log_k 9.8218 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hinsdalite + Al3PPbSO8(OH)6 + 7 H+ = HPO4-2 + Pb+2 + SO4-2 + 3 Al+3 + 6 H2O + log_k 9.8218 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hinsdalite # Enthalpy of formation: 0 kcal/mol Ho - Ho +3.0000 H+ +0.7500 O2 = + 1.0000 Ho+++ + 1.5000 H2O - log_k 182.8097 - -delta_H -1126.75 kJ/mol # Calculated enthalpy of reaction Ho + Ho + 3 H+ + 0.75 O2 = Ho+3 + 1.5 H2O + log_k 182.8097 + -delta_H -1126.75 kJ/mol # Calculated enthalpy of reaction Ho # Enthalpy of formation: 0 kJ/mol - -analytic -6.5903e+001 -2.8190e-002 5.9370e+004 2.3421e+001 9.2643e+002 + -analytic -6.5903e+1 -2.819e-2 5.937e+4 2.3421e+1 9.2643e+2 # -Range: 0-300 Ho(OH)3 - Ho(OH)3 +3.0000 H+ = + 1.0000 Ho+++ + 3.0000 H2O - log_k 15.3852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(OH)3 + Ho(OH)3 + 3 H+ = Ho+3 + 3 H2O + log_k 15.3852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(OH)3 # Enthalpy of formation: 0 kcal/mol Ho(OH)3(am) - Ho(OH)3 +3.0000 H+ = + 1.0000 Ho+++ + 3.0000 H2O - log_k 17.7852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(OH)3(am) + Ho(OH)3 + 3 H+ = Ho+3 + 3 H2O + log_k 17.7852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(OH)3(am) # Enthalpy of formation: 0 kcal/mol Ho2(CO3)3 - Ho2(CO3)3 +3.0000 H+ = + 2.0000 Ho+++ + 3.0000 HCO3- - log_k -2.8136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho2(CO3)3 + Ho2(CO3)3 + 3 H+ = 2 Ho+3 + 3 HCO3- + log_k -2.8136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho2(CO3)3 # Enthalpy of formation: 0 kcal/mol Ho2O3 - Ho2O3 +6.0000 H+ = + 2.0000 Ho+++ + 3.0000 H2O - log_k 47.3000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho2O3 + Ho2O3 + 6 H+ = 2 Ho+3 + 3 H2O + log_k 47.3 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho2O3 # Enthalpy of formation: 0 kcal/mol HoF3:.5H2O - HoF3:.5H2O = + 0.5000 H2O + 1.0000 Ho+++ + 3.0000 F- - log_k -16.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction HoF3:.5H2O + HoF3:.5H2O = 0.5 H2O + Ho+3 + 3 F- + log_k -16.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction HoF3:.5H2O # Enthalpy of formation: 0 kcal/mol HoPO4:10H2O - HoPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Ho+++ + 10.0000 H2O - log_k -11.8782 - -delta_H 0 # Not possible to calculate enthalpy of reaction HoPO4:10H2O + HoPO4:10H2O + H+ = HPO4-2 + Ho+3 + 10 H2O + log_k -11.8782 + -delta_H 0 # Not possible to calculate enthalpy of reaction HoPO4:10H2O # Enthalpy of formation: 0 kcal/mol Hopeite - Zn3(PO4)2:4H2O +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Zn++ + 4.0000 H2O - log_k -10.6563 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hopeite + Zn3(PO4)2:4H2O + 2 H+ = 2 HPO4-2 + 3 Zn+2 + 4 H2O + log_k -10.6563 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hopeite # Enthalpy of formation: 0 kcal/mol Huntite - CaMg3(CO3)4 +4.0000 H+ = + 1.0000 Ca++ + 3.0000 Mg++ + 4.0000 HCO3- - log_k 10.3010 - -delta_H -171.096 kJ/mol # Calculated enthalpy of reaction Huntite + CaMg3(CO3)4 + 4 H+ = Ca+2 + 3 Mg+2 + 4 HCO3- + log_k 10.301 + -delta_H -171.096 kJ/mol # Calculated enthalpy of reaction Huntite # Enthalpy of formation: -1082.6 kcal/mol - -analytic -6.5000e+002 -1.9671e-001 2.4815e+004 2.5688e+002 3.8740e+002 + -analytic -6.5e+2 -1.9671e-1 2.4815e+4 2.5688e+2 3.874e+2 # -Range: 0-300 Hydroboracite - MgCaB6O11:6H2O +4.0000 H+ +1.0000 H2O = + 1.0000 Ca++ + 1.0000 Mg++ + 6.0000 B(OH)3 - log_k 20.3631 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hydroboracite + MgCaB6O11:6H2O + 4 H+ + H2O = Ca+2 + Mg+2 + 6 B(OH)3 + log_k 20.3631 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hydroboracite # Enthalpy of formation: 0 kcal/mol Hydrocerussite - Pb3(CO3)2(OH)2 +4.0000 H+ = + 2.0000 H2O + 2.0000 HCO3- + 3.0000 Pb++ - log_k 1.8477 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hydrocerussite + Pb3(CO3)2(OH)2 + 4 H+ = 2 H2O + 2 HCO3- + 3 Pb+2 + log_k 1.8477 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hydrocerussite # Enthalpy of formation: 0 kcal/mol Hydromagnesite - Mg5(CO3)4(OH)2:4H2O +6.0000 H+ = + 4.0000 HCO3- + 5.0000 Mg++ + 6.0000 H2O - log_k 30.8539 - -delta_H -289.696 kJ/mol # Calculated enthalpy of reaction Hydromagnesite + Mg5(CO3)4(OH)2:4H2O + 6 H+ = 4 HCO3- + 5 Mg+2 + 6 H2O + log_k 30.8539 + -delta_H -289.696 kJ/mol # Calculated enthalpy of reaction Hydromagnesite # Enthalpy of formation: -1557.09 kcal/mol - -analytic -7.9288e+002 -2.1448e-001 3.6749e+004 3.0888e+002 5.7367e+002 + -analytic -7.9288e+2 -2.1448e-1 3.6749e+4 3.0888e+2 5.7367e+2 # -Range: 0-300 Hydrophilite - CaCl2 = + 1.0000 Ca++ + 2.0000 Cl- - log_k 11.7916 - -delta_H -81.4545 kJ/mol # Calculated enthalpy of reaction Hydrophilite + CaCl2 = Ca+2 + 2 Cl- + log_k 11.7916 + -delta_H -81.4545 kJ/mol # Calculated enthalpy of reaction Hydrophilite # Enthalpy of formation: -795.788 kJ/mol - -analytic -2.2278e+002 -8.1414e-002 9.0298e+003 9.2349e+001 1.4097e+002 + -analytic -2.2278e+2 -8.1414e-2 9.0298e+3 9.2349e+1 1.4097e+2 # -Range: 0-300 Hydroxylapatite - Ca5(OH)(PO4)3 +4.0000 H+ = + 1.0000 H2O + 3.0000 HPO4-- + 5.0000 Ca++ - log_k -3.0746 - -delta_H -191.982 kJ/mol # Calculated enthalpy of reaction Hydroxylapatite + Ca5(OH)(PO4)3 + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 + log_k -3.0746 + -delta_H -191.982 kJ/mol # Calculated enthalpy of reaction Hydroxylapatite # Enthalpy of formation: -6685.52 kJ/mol - -analytic -8.5221e+002 -2.9430e-001 2.8125e+004 3.4044e+002 4.3911e+002 + -analytic -8.5221e+2 -2.943e-1 2.8125e+4 3.4044e+2 4.3911e+2 # -Range: 0-300 Hydrozincite - Zn5(OH)6(CO3)2 +8.0000 H+ = + 2.0000 HCO3- + 5.0000 Zn++ + 6.0000 H2O - log_k 30.3076 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hydrozincite + Zn5(OH)6(CO3)2 + 8 H+ = 2 HCO3- + 5 Zn+2 + 6 H2O + log_k 30.3076 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hydrozincite # Enthalpy of formation: 0 kcal/mol I2 - I2 +1.0000 H2O = + 0.5000 O2 + 2.0000 H+ + 2.0000 I- - log_k -24.8084 - -delta_H 165.967 kJ/mol # Calculated enthalpy of reaction I2 + I2 + H2O = 0.5 O2 + 2 H+ + 2 I- + log_k -24.8084 + -delta_H 165.967 kJ/mol # Calculated enthalpy of reaction I2 # Enthalpy of formation: 0 kJ/mol - -analytic -1.7135e+002 -6.2810e-002 -4.7225e+003 7.3181e+001 -7.3640e+001 + -analytic -1.7135e+2 -6.281e-2 -4.7225e+3 7.3181e+1 -7.364e+1 # -Range: 0-300 Ice - H2O = + 1.0000 H2O - log_k 0.1387 - -delta_H 6.74879 kJ/mol # Calculated enthalpy of reaction Ice + H2O = H2O + log_k 0.1387 + -delta_H 6.74879 kJ/mol # Calculated enthalpy of reaction Ice # Enthalpy of formation: -69.93 kcal/mol - -analytic -2.3260e+001 4.7948e-004 7.7351e+002 8.3499e+000 1.3143e+001 + -analytic -2.326e+1 4.7948e-4 7.7351e+2 8.3499e+0 1.3143e+1 # -Range: 0-200 Illite - K0.6Mg0.25Al1.8Al0.5Si3.5O10(OH)2 +8.0000 H+ = + 0.2500 Mg++ + 0.6000 K+ + 2.3000 Al+++ + 3.5000 SiO2 + 5.0000 H2O - log_k 9.0260 - -delta_H -171.764 kJ/mol # Calculated enthalpy of reaction Illite + K0.6Mg0.25Al1.8Al0.5Si3.5O10(OH)2 + 8 H+ = 0.25 Mg+2 + 0.6 K+ + 2.3 Al+3 + 3.5 SiO2 + 5 H2O + log_k 9.026 + -delta_H -171.764 kJ/mol # Calculated enthalpy of reaction Illite # Enthalpy of formation: -1394.71 kcal/mol - -analytic 2.6069e+001 -1.2553e-003 1.3670e+004 -2.0232e+001 -1.1204e+006 + -analytic 2.6069e+1 -1.2553e-3 1.367e+4 -2.0232e+1 -1.1204e+6 # -Range: 0-300 Ilmenite - FeTiO3 +2.0000 H+ +1.0000 H2O = + 1.0000 Fe++ + 1.0000 Ti(OH)4 - log_k 0.9046 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ilmenite + FeTiO3 + 2 H+ + H2O = Fe+2 + Ti(OH)4 + log_k 0.9046 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ilmenite # Enthalpy of formation: -1236.65 kJ/mol In - In +3.0000 H+ +0.7500 O2 = + 1.0000 In+++ + 1.5000 H2O - log_k 81.6548 - -delta_H -524.257 kJ/mol # Calculated enthalpy of reaction In + In + 3 H+ + 0.75 O2 = In+3 + 1.5 H2O + log_k 81.6548 + -delta_H -524.257 kJ/mol # Calculated enthalpy of reaction In # Enthalpy of formation: 0 kJ/mol - -analytic -1.1773e+002 -3.7657e-002 3.1802e+004 4.2438e+001 -9.6348e+004 + -analytic -1.1773e+2 -3.7657e-2 3.1802e+4 4.2438e+1 -9.6348e+4 # -Range: 0-300 Jadeite - NaAl(SiO3)2 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 2.0000 H2O + 2.0000 SiO2 - log_k 8.3888 - -delta_H -84.4415 kJ/mol # Calculated enthalpy of reaction Jadeite + NaAl(SiO3)2 + 4 H+ = Al+3 + Na+ + 2 H2O + 2 SiO2 + log_k 8.3888 + -delta_H -84.4415 kJ/mol # Calculated enthalpy of reaction Jadeite # Enthalpy of formation: -722.116 kcal/mol - -analytic 1.5934e+000 5.0757e-003 9.5602e+003 -7.0164e+000 -8.4454e+005 + -analytic 1.5934e+0 5.0757e-3 9.5602e+3 -7.0164e+0 -8.4454e+5 # -Range: 0-300 Jarosite - KFe3(SO4)2(OH)6 +6.0000 H+ = + 1.0000 K+ + 2.0000 SO4-- + 3.0000 Fe+++ + 6.0000 H2O - log_k -9.3706 - -delta_H -191.343 kJ/mol # Calculated enthalpy of reaction Jarosite + KFe3(SO4)2(OH)6 + 6 H+ = K+ + 2 SO4-2 + 3 Fe+3 + 6 H2O + log_k -9.3706 + -delta_H -191.343 kJ/mol # Calculated enthalpy of reaction Jarosite # Enthalpy of formation: -894.79 kcal/mol - -analytic -1.0813e+002 -5.0381e-002 9.6893e+003 3.2832e+001 1.6457e+002 + -analytic -1.0813e+2 -5.0381e-2 9.6893e+3 3.2832e+1 1.6457e+2 # -Range: 0-200 Jarosite-Na - NaFe3(SO4)2(OH)6 +6.0000 H+ = + 1.0000 Na+ + 2.0000 SO4-- + 3.0000 Fe+++ + 6.0000 H2O - log_k -5.4482 - -delta_H 0 # Not possible to calculate enthalpy of reaction Jarosite-Na + NaFe3(SO4)2(OH)6 + 6 H+ = Na+ + 2 SO4-2 + 3 Fe+3 + 6 H2O + log_k -5.4482 + -delta_H 0 # Not possible to calculate enthalpy of reaction Jarosite-Na # Enthalpy of formation: 0 kcal/mol K - K +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 K+ - log_k 70.9861 - -delta_H -392.055 kJ/mol # Calculated enthalpy of reaction K + K + H+ + 0.25 O2 = 0.5 H2O + K+ + log_k 70.9861 + -delta_H -392.055 kJ/mol # Calculated enthalpy of reaction K # Enthalpy of formation: 0 kJ/mol - -analytic -3.1102e+001 -1.0003e-002 2.1338e+004 1.3534e+001 3.3296e+002 + -analytic -3.1102e+1 -1.0003e-2 2.1338e+4 1.3534e+1 3.3296e+2 # -Range: 0-300 K-Feldspar - KAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 H2O + 3.0000 SiO2 - log_k -0.2753 - -delta_H -23.9408 kJ/mol # Calculated enthalpy of reaction K-Feldspar + KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 + log_k -0.2753 + -delta_H -23.9408 kJ/mol # Calculated enthalpy of reaction K-Feldspar # Enthalpy of formation: -949.188 kcal/mol - -analytic -1.0684e+000 1.3111e-002 1.1671e+004 -9.9129e+000 -1.5855e+006 + -analytic -1.0684e+0 1.3111e-2 1.1671e+4 -9.9129e+0 -1.5855e+6 # -Range: 0-300 K2CO3:1.5H2O - K2CO3:1.5H2O +1.0000 H+ = + 1.0000 HCO3- + 1.5000 H2O + 2.0000 K+ - log_k 13.3785 - -delta_H 0 # Not possible to calculate enthalpy of reaction K2CO3:1.5H2O + K2CO3:1.5H2O + H+ = HCO3- + 1.5 H2O + 2 K+ + log_k 13.3785 + -delta_H 0 # Not possible to calculate enthalpy of reaction K2CO3:1.5H2O # Enthalpy of formation: 0 kcal/mol K2O - K2O +2.0000 H+ = + 1.0000 H2O + 2.0000 K+ - log_k 84.0405 - -delta_H -427.006 kJ/mol # Calculated enthalpy of reaction K2O + K2O + 2 H+ = H2O + 2 K+ + log_k 84.0405 + -delta_H -427.006 kJ/mol # Calculated enthalpy of reaction K2O # Enthalpy of formation: -86.8 kcal/mol - -analytic -1.8283e+001 -5.2255e-003 2.3184e+004 1.0553e+001 3.6177e+002 + -analytic -1.8283e+1 -5.2255e-3 2.3184e+4 1.0553e+1 3.6177e+2 # -Range: 0-300 K2Se - K2Se = + 1.0000 Se-- + 2.0000 K+ - log_k 11.2925 - -delta_H 0 # Not possible to calculate enthalpy of reaction K2Se + K2Se = Se-2 + 2 K+ + log_k 11.2925 + -delta_H 0 # Not possible to calculate enthalpy of reaction K2Se # Enthalpy of formation: -92 kcal/mol - -analytic 1.8182e+001 7.8828e-003 2.6345e+003 -7.3075e+000 4.4732e+001 + -analytic 1.8182e+1 7.8828e-3 2.6345e+3 -7.3075e+0 4.4732e+1 # -Range: 0-200 K2UO4 - K2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 K+ - log_k 33.8714 - -delta_H -174.316 kJ/mol # Calculated enthalpy of reaction K2UO4 + K2UO4 + 4 H+ = UO2+2 + 2 H2O + 2 K+ + log_k 33.8714 + -delta_H -174.316 kJ/mol # Calculated enthalpy of reaction K2UO4 # Enthalpy of formation: -1920.7 kJ/mol - -analytic -7.0905e+001 -2.5680e-003 1.2244e+004 2.6056e+001 2.0794e+002 + -analytic -7.0905e+1 -2.568e-3 1.2244e+4 2.6056e+1 2.0794e+2 # -Range: 0-200 K3H(SO4)2 - K3H(SO4)2 = + 1.0000 H+ + 2.0000 SO4-- + 3.0000 K+ - log_k -3.6233 - -delta_H 0 # Not possible to calculate enthalpy of reaction K3H(SO4)2 + K3H(SO4)2 = H+ + 2 SO4-2 + 3 K+ + log_k -3.6233 + -delta_H 0 # Not possible to calculate enthalpy of reaction K3H(SO4)2 # Enthalpy of formation: 0 kcal/mol K8H4(CO3)6:3H2O - K8H4(CO3)6:3H2O +2.0000 H+ = + 3.0000 H2O + 6.0000 HCO3- + 8.0000 K+ - log_k 27.7099 - -delta_H 0 # Not possible to calculate enthalpy of reaction K8H4(CO3)6:3H2O + K8H4(CO3)6:3H2O + 2 H+ = 3 H2O + 6 HCO3- + 8 K+ + log_k 27.7099 + -delta_H 0 # Not possible to calculate enthalpy of reaction K8H4(CO3)6:3H2O # Enthalpy of formation: 0 kcal/mol KAl(SO4)2 - KAl(SO4)2 = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 SO4-- - log_k 3.3647 - -delta_H -139.485 kJ/mol # Calculated enthalpy of reaction KAl(SO4)2 + KAl(SO4)2 = Al+3 + K+ + 2 SO4-2 + log_k 3.3647 + -delta_H -139.485 kJ/mol # Calculated enthalpy of reaction KAl(SO4)2 # Enthalpy of formation: -2470.29 kJ/mol - -analytic -4.2785e+002 -1.6303e-001 1.5311e+004 1.7312e+002 2.3904e+002 + -analytic -4.2785e+2 -1.6303e-1 1.5311e+4 1.7312e+2 2.3904e+2 # -Range: 0-300 KBr - KBr = + 1.0000 Br- + 1.0000 K+ - log_k 1.0691 - -delta_H 20.125 kJ/mol # Calculated enthalpy of reaction KBr + KBr = Br- + K+ + log_k 1.0691 + -delta_H 20.125 kJ/mol # Calculated enthalpy of reaction KBr # Enthalpy of formation: -393.798 kJ/mol - -analytic -7.3164e+001 -3.1240e-002 4.8140e+002 3.3104e+001 7.5336e+000 + -analytic -7.3164e+1 -3.124e-2 4.814e+2 3.3104e+1 7.5336e+0 # -Range: 0-300 KMgCl3 - KMgCl3 = + 1.0000 K+ + 1.0000 Mg++ + 3.0000 Cl- - log_k 21.2618 - -delta_H -132.768 kJ/mol # Calculated enthalpy of reaction KMgCl3 + KMgCl3 = K+ + Mg+2 + 3 Cl- + log_k 21.2618 + -delta_H -132.768 kJ/mol # Calculated enthalpy of reaction KMgCl3 # Enthalpy of formation: -1086.6 kJ/mol - -analytic -8.4641e+000 -3.2688e-002 5.1496e+003 8.9652e+000 8.7450e+001 + -analytic -8.4641e+0 -3.2688e-2 5.1496e+3 8.9652e+0 8.745e+1 # -Range: 0-200 KMgCl3:2H2O - KMgCl3:2H2O = + 1.0000 K+ + 1.0000 Mg++ + 2.0000 H2O + 3.0000 Cl- - log_k 13.9755 - -delta_H -76.8449 kJ/mol # Calculated enthalpy of reaction KMgCl3:2H2O + KMgCl3:2H2O = K+ + Mg+2 + 2 H2O + 3 Cl- + log_k 13.9755 + -delta_H -76.8449 kJ/mol # Calculated enthalpy of reaction KMgCl3:2H2O # Enthalpy of formation: -1714.2 kJ/mol - -analytic -5.9982e+001 -3.3015e-002 4.6174e+003 2.7602e+001 7.8431e+001 + -analytic -5.9982e+1 -3.3015e-2 4.6174e+3 2.7602e+1 7.8431e+1 # -Range: 0-200 KNaCO3:6H2O - KNaCO3:6H2O +1.0000 H+ = + 1.0000 HCO3- + 1.0000 K+ + 1.0000 Na+ + 6.0000 H2O - log_k 10.2593 - -delta_H 0 # Not possible to calculate enthalpy of reaction KNaCO3:6H2O + KNaCO3:6H2O + H+ = HCO3- + K+ + Na+ + 6 H2O + log_k 10.2593 + -delta_H 0 # Not possible to calculate enthalpy of reaction KNaCO3:6H2O # Enthalpy of formation: 0 kcal/mol KTcO4 - KTcO4 = + 1.0000 K+ + 1.0000 TcO4- - log_k -2.2667 - -delta_H 53.2363 kJ/mol # Calculated enthalpy of reaction KTcO4 + KTcO4 = K+ + TcO4- + log_k -2.2667 + -delta_H 53.2363 kJ/mol # Calculated enthalpy of reaction KTcO4 # Enthalpy of formation: -1021.67 kJ/mol - -analytic 1.8058e+001 -8.4795e-004 -2.3985e+003 -4.1788e+000 -1.5029e+005 + -analytic 1.8058e+1 -8.4795e-4 -2.3985e+3 -4.1788e+0 -1.5029e+5 # -Range: 0-300 KUO2AsO4 - KUO2AsO4 +2.0000 H+ = + 1.0000 H2AsO4- + 1.0000 K+ + 1.0000 UO2++ - log_k -4.1741 - -delta_H 0 # Not possible to calculate enthalpy of reaction KUO2AsO4 + KUO2AsO4 + 2 H+ = H2AsO4- + K+ + UO2+2 + log_k -4.1741 + -delta_H 0 # Not possible to calculate enthalpy of reaction KUO2AsO4 # Enthalpy of formation: 0 kcal/mol Kainite - KMgClSO4:3H2O = + 1.0000 Cl- + 1.0000 K+ + 1.0000 Mg++ + 1.0000 SO4-- + 3.0000 H2O - log_k -0.3114 - -delta_H 0 # Not possible to calculate enthalpy of reaction Kainite + KMgClSO4:3H2O = Cl- + K+ + Mg+2 + SO4-2 + 3 H2O + log_k -0.3114 + -delta_H 0 # Not possible to calculate enthalpy of reaction Kainite # Enthalpy of formation: 0 kcal/mol Kalicinite - KHCO3 = + 1.0000 HCO3- + 1.0000 K+ - log_k 0.2837 - -delta_H 0 # Not possible to calculate enthalpy of reaction Kalicinite + KHCO3 = HCO3- + K+ + log_k 0.2837 + -delta_H 0 # Not possible to calculate enthalpy of reaction Kalicinite # Enthalpy of formation: 0 kcal/mol Kalsilite - KAlSiO4 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 1.0000 SiO2 + 2.0000 H2O - log_k 10.8987 - -delta_H -108.583 kJ/mol # Calculated enthalpy of reaction Kalsilite + KAlSiO4 + 4 H+ = Al+3 + K+ + SiO2 + 2 H2O + log_k 10.8987 + -delta_H -108.583 kJ/mol # Calculated enthalpy of reaction Kalsilite # Enthalpy of formation: -509.408 kcal/mol - -analytic -6.7595e+000 -7.4301e-003 6.5380e+003 1.8999e-001 -2.2880e+005 + -analytic -6.7595e+0 -7.4301e-3 6.538e+3 1.8999e-1 -2.288e+5 # -Range: 0-300 Kaolinite - Al2Si2O5(OH)4 +6.0000 H+ = + 2.0000 Al+++ + 2.0000 SiO2 + 5.0000 H2O - log_k 6.8101 - -delta_H -151.779 kJ/mol # Calculated enthalpy of reaction Kaolinite + Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 SiO2 + 5 H2O + log_k 6.8101 + -delta_H -151.779 kJ/mol # Calculated enthalpy of reaction Kaolinite # Enthalpy of formation: -982.221 kcal/mol - -analytic 1.6835e+001 -7.8939e-003 7.7636e+003 -1.2190e+001 -3.2354e+005 + -analytic 1.6835e+1 -7.8939e-3 7.7636e+3 -1.219e+1 -3.2354e+5 # -Range: 0-300 Karelianite - V2O3 +6.0000 H+ = + 2.0000 V+++ + 3.0000 H2O - log_k 9.9424 - -delta_H -160.615 kJ/mol # Calculated enthalpy of reaction Karelianite + V2O3 + 6 H+ = 2 V+3 + 3 H2O + log_k 9.9424 + -delta_H -160.615 kJ/mol # Calculated enthalpy of reaction Karelianite # Enthalpy of formation: -1218.98 kJ/mol - -analytic -2.7961e+001 -7.1499e-003 6.7749e+003 5.8146e+000 2.6039e+005 + -analytic -2.7961e+1 -7.1499e-3 6.7749e+3 5.8146e+0 2.6039e+5 # -Range: 0-300 Kasolite - Pb(UO2)SiO4:H2O +4.0000 H+ = + 1.0000 Pb++ + 1.0000 SiO2 + 1.0000 UO2++ + 3.0000 H2O - log_k 7.2524 - -delta_H 0 # Not possible to calculate enthalpy of reaction Kasolite + Pb(UO2)SiO4:H2O + 4 H+ = Pb+2 + SiO2 + UO2+2 + 3 H2O + log_k 7.2524 + -delta_H 0 # Not possible to calculate enthalpy of reaction Kasolite # Enthalpy of formation: 0 kcal/mol Katoite - Ca3Al2H12O12 +12.0000 H+ = + 2.0000 Al+++ + 3.0000 Ca++ + 12.0000 H2O - log_k 78.9437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Katoite + Ca3Al2H12O12 + 12 H+ = 2 Al+3 + 3 Ca+2 + 12 H2O + log_k 78.9437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Katoite # Enthalpy of formation: 0 kcal/mol Kieserite - MgSO4:H2O = + 1.0000 H2O + 1.0000 Mg++ + 1.0000 SO4-- - log_k -0.2670 - -delta_H 0 # Not possible to calculate enthalpy of reaction Kieserite + MgSO4:H2O = H2O + Mg+2 + SO4-2 + log_k -0.267 + -delta_H 0 # Not possible to calculate enthalpy of reaction Kieserite # Enthalpy of formation: 0 kcal/mol Klockmannite - CuSe = + 1.0000 Cu++ + 1.0000 Se-- - log_k -41.6172 - -delta_H 0 # Not possible to calculate enthalpy of reaction Klockmannite + CuSe = Cu+2 + Se-2 + log_k -41.6172 + -delta_H 0 # Not possible to calculate enthalpy of reaction Klockmannite # Enthalpy of formation: -10 kcal/mol - -analytic -2.3021e+001 -2.1458e-003 -8.5938e+003 4.3900e+000 -1.4593e+002 + -analytic -2.3021e+1 -2.1458e-3 -8.5938e+3 4.39e+0 -1.4593e+2 # -Range: 0-200 Krutaite - CuSe2 +1.0000 H2O = + 0.5000 O2 + 1.0000 Cu++ + 2.0000 H+ + 2.0000 Se-- - log_k -107.6901 - -delta_H 0 # Not possible to calculate enthalpy of reaction Krutaite + CuSe2 + H2O = 0.5 O2 + Cu+2 + 2 H+ + 2 Se-2 + log_k -107.6901 + -delta_H 0 # Not possible to calculate enthalpy of reaction Krutaite # Enthalpy of formation: -11.5 kcal/mol - -analytic -3.7735e+001 -8.7548e-004 -2.6352e+004 7.5528e+000 -4.4749e+002 + -analytic -3.7735e+1 -8.7548e-4 -2.6352e+4 7.5528e+0 -4.4749e+2 # -Range: 0-200 Kyanite - Al2SiO5 +6.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 3.0000 H2O - log_k 15.6740 - -delta_H -230.919 kJ/mol # Calculated enthalpy of reaction Kyanite + Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O + log_k 15.674 + -delta_H -230.919 kJ/mol # Calculated enthalpy of reaction Kyanite # Enthalpy of formation: -616.897 kcal/mol - -analytic -7.3335e+001 -3.2853e-002 1.2166e+004 2.3412e+001 1.8986e+002 + -analytic -7.3335e+1 -3.2853e-2 1.2166e+4 2.3412e+1 1.8986e+2 # -Range: 0-300 La - La +3.0000 H+ +0.7500 O2 = + 1.0000 La+++ + 1.5000 H2O - log_k 184.7155 - -delta_H -1129.26 kJ/mol # Calculated enthalpy of reaction La + La + 3 H+ + 0.75 O2 = La+3 + 1.5 H2O + log_k 184.7155 + -delta_H -1129.26 kJ/mol # Calculated enthalpy of reaction La # Enthalpy of formation: 0 kJ/mol - -analytic -5.9508e+001 -2.7578e-002 5.9327e+004 2.1589e+001 9.2577e+002 + -analytic -5.9508e+1 -2.7578e-2 5.9327e+4 2.1589e+1 9.2577e+2 # -Range: 0-300 La(OH)3 - La(OH)3 +3.0000 H+ = + 1.0000 La+++ + 3.0000 H2O - log_k 20.2852 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(OH)3 + La(OH)3 + 3 H+ = La+3 + 3 H2O + log_k 20.2852 + -delta_H 0 # Not possible to calculate enthalpy of reaction La(OH)3 # Enthalpy of formation: 0 kcal/mol La(OH)3(am) - La(OH)3 +3.0000 H+ = + 1.0000 La+++ + 3.0000 H2O - log_k 23.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(OH)3(am) + La(OH)3 + 3 H+ = La+3 + 3 H2O + log_k 23.4852 + -delta_H 0 # Not possible to calculate enthalpy of reaction La(OH)3(am) # Enthalpy of formation: 0 kcal/mol La2(CO3)3:8H2O - La2(CO3)3:8H2O +3.0000 H+ = + 2.0000 La+++ + 3.0000 HCO3- + 8.0000 H2O - log_k -4.3136 - -delta_H 0 # Not possible to calculate enthalpy of reaction La2(CO3)3:8H2O + La2(CO3)3:8H2O + 3 H+ = 2 La+3 + 3 HCO3- + 8 H2O + log_k -4.3136 + -delta_H 0 # Not possible to calculate enthalpy of reaction La2(CO3)3:8H2O # Enthalpy of formation: 0 kcal/mol La2O3 - La2O3 +6.0000 H+ = + 2.0000 La+++ + 3.0000 H2O - log_k 66.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction La2O3 + La2O3 + 6 H+ = 2 La+3 + 3 H2O + log_k 66.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction La2O3 # Enthalpy of formation: 0 kcal/mol LaCl3 - LaCl3 = + 1.0000 La+++ + 3.0000 Cl- - log_k 14.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaCl3 + LaCl3 = La+3 + 3 Cl- + log_k 14.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction LaCl3 # Enthalpy of formation: 0 kcal/mol LaCl3:7H2O - LaCl3:7H2O = + 1.0000 La+++ + 3.0000 Cl- + 7.0000 H2O - log_k 4.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaCl3:7H2O + LaCl3:7H2O = La+3 + 3 Cl- + 7 H2O + log_k 4.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction LaCl3:7H2O # Enthalpy of formation: 0 kcal/mol LaF3:.5H2O - LaF3:.5H2O = + 0.5000 H2O + 1.0000 La+++ + 3.0000 F- - log_k -18.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaF3:.5H2O + LaF3:.5H2O = 0.5 H2O + La+3 + 3 F- + log_k -18.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction LaF3:.5H2O # Enthalpy of formation: 0 kcal/mol LaPO4:10H2O - LaPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 La+++ + 10.0000 H2O - log_k -12.3782 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaPO4:10H2O + LaPO4:10H2O + H+ = HPO4-2 + La+3 + 10 H2O + log_k -12.3782 + -delta_H 0 # Not possible to calculate enthalpy of reaction LaPO4:10H2O # Enthalpy of formation: 0 kcal/mol Lammerite - Cu3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Cu++ - log_k 1.5542 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lammerite + Cu3(AsO4)2 + 4 H+ = 2 H2AsO4- + 3 Cu+2 + log_k 1.5542 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lammerite # Enthalpy of formation: 0 kcal/mol Lanarkite - Pb2(SO4)O +2.0000 H+ = + 1.0000 H2O + 1.0000 SO4-- + 2.0000 Pb++ - log_k -0.4692 - -delta_H -22.014 kJ/mol # Calculated enthalpy of reaction Lanarkite + Pb2(SO4)O + 2 H+ = H2O + SO4-2 + 2 Pb+2 + log_k -0.4692 + -delta_H -22.014 kJ/mol # Calculated enthalpy of reaction Lanarkite # Enthalpy of formation: -1171.59 kJ/mol - -analytic 5.1071e+000 -1.6655e-002 0.0000e+000 0.0000e+000 -5.5660e+004 + -analytic 5.1071e+0 -1.6655e-2 0e+0 0e+0 -5.566e+4 # -Range: 0-200 Lansfordite - MgCO3:5H2O +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Mg++ + 5.0000 H2O - log_k 4.8409 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lansfordite + MgCO3:5H2O + H+ = HCO3- + Mg+2 + 5 H2O + log_k 4.8409 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lansfordite # Enthalpy of formation: 0 kcal/mol Larnite - Ca2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 Ca++ + 2.0000 H2O - log_k 38.4665 - -delta_H -227.061 kJ/mol # Calculated enthalpy of reaction Larnite + Ca2SiO4 + 4 H+ = SiO2 + 2 Ca+2 + 2 H2O + log_k 38.4665 + -delta_H -227.061 kJ/mol # Calculated enthalpy of reaction Larnite # Enthalpy of formation: -551.74 kcal/mol - -analytic 2.6900e+001 -2.1833e-003 1.0900e+004 -9.5257e+000 -7.2537e+004 + -analytic 2.69e+1 -2.1833e-3 1.09e+4 -9.5257e+0 -7.2537e+4 # -Range: 0-300 Laumontite - CaAl2Si4O12:4H2O +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 4.0000 SiO2 + 8.0000 H2O - log_k 13.6667 - -delta_H -184.657 kJ/mol # Calculated enthalpy of reaction Laumontite + CaAl2Si4O12:4H2O + 8 H+ = Ca+2 + 2 Al+3 + 4 SiO2 + 8 H2O + log_k 13.6667 + -delta_H -184.657 kJ/mol # Calculated enthalpy of reaction Laumontite # Enthalpy of formation: -1728.66 kcal/mol - -analytic 1.1904e+000 8.1763e-003 1.9005e+004 -1.4561e+001 -1.5851e+006 + -analytic 1.1904e+0 8.1763e-3 1.9005e+4 -1.4561e+1 -1.5851e+6 # -Range: 0-300 Laurite - RuS2 = + 1.0000 Ru++ + 1.0000 S2-- - log_k -73.2649 - -delta_H 0 # Not possible to calculate enthalpy of reaction Laurite + RuS2 = Ru+2 + S2-2 + log_k -73.2649 + -delta_H 0 # Not possible to calculate enthalpy of reaction Laurite # Enthalpy of formation: -199.586 kJ/mol Lawrencite - FeCl2 = + 1.0000 Fe++ + 2.0000 Cl- - log_k 9.0945 - -delta_H -84.7665 kJ/mol # Calculated enthalpy of reaction Lawrencite + FeCl2 = Fe+2 + 2 Cl- + log_k 9.0945 + -delta_H -84.7665 kJ/mol # Calculated enthalpy of reaction Lawrencite # Enthalpy of formation: -341.65 kJ/mol - -analytic -2.2798e+002 -8.1819e-002 9.2620e+003 9.3097e+001 1.4459e+002 + -analytic -2.2798e+2 -8.1819e-2 9.262e+3 9.3097e+1 1.4459e+2 # -Range: 0-300 Lawsonite - CaAl2Si2O7(OH)2:H2O +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 2.0000 SiO2 + 6.0000 H2O - log_k 22.2132 - -delta_H -244.806 kJ/mol # Calculated enthalpy of reaction Lawsonite + CaAl2Si2O7(OH)2:H2O + 8 H+ = Ca+2 + 2 Al+3 + 2 SiO2 + 6 H2O + log_k 22.2132 + -delta_H -244.806 kJ/mol # Calculated enthalpy of reaction Lawsonite # Enthalpy of formation: -1158.1 kcal/mol - -analytic 1.3995e+001 -1.7668e-002 1.0119e+004 -8.3100e+000 1.5789e+002 + -analytic 1.3995e+1 -1.7668e-2 1.0119e+4 -8.31e+0 1.5789e+2 # -Range: 0-300 Leonite - K2Mg(SO4)2:4H2O = + 1.0000 Mg++ + 2.0000 K+ + 2.0000 SO4-- + 4.0000 H2O - log_k -4.1123 - -delta_H 0 # Not possible to calculate enthalpy of reaction Leonite + K2Mg(SO4)2:4H2O = Mg+2 + 2 K+ + 2 SO4-2 + 4 H2O + log_k -4.1123 + -delta_H 0 # Not possible to calculate enthalpy of reaction Leonite # Enthalpy of formation: 0 kcal/mol Li - Li +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Li+ - log_k 72.7622 - -delta_H -418.339 kJ/mol # Calculated enthalpy of reaction Li + Li + H+ + 0.25 O2 = 0.5 H2O + Li+ + log_k 72.7622 + -delta_H -418.339 kJ/mol # Calculated enthalpy of reaction Li # Enthalpy of formation: 0 kJ/mol - -analytic -1.0227e+002 -1.8118e-002 2.6262e+004 3.8056e+001 -1.6166e+005 + -analytic -1.0227e+2 -1.8118e-2 2.6262e+4 3.8056e+1 -1.6166e+5 # -Range: 0-300 Li2Se - Li2Se +1.5000 O2 = + 1.0000 SeO3-- + 2.0000 Li+ - log_k 102.8341 - -delta_H -646.236 kJ/mol # Calculated enthalpy of reaction Li2Se + Li2Se + 1.5 O2 = SeO3-2 + 2 Li+ + log_k 102.8341 + -delta_H -646.236 kJ/mol # Calculated enthalpy of reaction Li2Se # Enthalpy of formation: -96 kcal/mol - -analytic 1.1933e+002 -6.9663e-003 2.7509e+004 -4.3124e+001 4.6710e+002 + -analytic 1.1933e+2 -6.9663e-3 2.7509e+4 -4.3124e+1 4.671e+2 # -Range: 0-200 Li2UO4 - Li2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 Li+ - log_k 27.8421 - -delta_H -179.384 kJ/mol # Calculated enthalpy of reaction Li2UO4 + Li2UO4 + 4 H+ = UO2+2 + 2 H2O + 2 Li+ + log_k 27.8421 + -delta_H -179.384 kJ/mol # Calculated enthalpy of reaction Li2UO4 # Enthalpy of formation: -1968.2 kJ/mol - -analytic -1.4470e+002 -1.2024e-002 1.4899e+004 5.0984e+001 2.5306e+002 + -analytic -1.447e+2 -1.2024e-2 1.4899e+4 5.0984e+1 2.5306e+2 # -Range: 0-200 LiUO2AsO4 - LiUO2AsO4 +2.0000 H+ = + 1.0000 H2AsO4- + 1.0000 Li+ + 1.0000 UO2++ - log_k -0.7862 - -delta_H 0 # Not possible to calculate enthalpy of reaction LiUO2AsO4 + LiUO2AsO4 + 2 H+ = H2AsO4- + Li+ + UO2+2 + log_k -0.7862 + -delta_H 0 # Not possible to calculate enthalpy of reaction LiUO2AsO4 # Enthalpy of formation: 0 kcal/mol Lime - CaO +2.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O - log_k 32.5761 - -delta_H -193.832 kJ/mol # Calculated enthalpy of reaction Lime + CaO + 2 H+ = Ca+2 + H2O + log_k 32.5761 + -delta_H -193.832 kJ/mol # Calculated enthalpy of reaction Lime # Enthalpy of formation: -151.79 kcal/mol - -analytic -7.2686e+001 -1.7654e-002 1.2199e+004 2.8128e+001 1.9037e+002 + -analytic -7.2686e+1 -1.7654e-2 1.2199e+4 2.8128e+1 1.9037e+2 # -Range: 0-300 Linnaeite - Co3S4 +4.0000 H+ = + 1.0000 Co++ + 2.0000 Co+++ + 4.0000 HS- - log_k -106.9017 - -delta_H 420.534 kJ/mol # Calculated enthalpy of reaction Linnaeite + Co3S4 + 4 H+ = Co+2 + 2 Co+3 + 4 HS- + log_k -106.9017 + -delta_H 420.534 kJ/mol # Calculated enthalpy of reaction Linnaeite # Enthalpy of formation: -85.81 kcal/mol - -analytic -6.0034e+002 -2.0179e-001 -9.2145e+003 2.3618e+002 -1.4361e+002 + -analytic -6.0034e+2 -2.0179e-1 -9.2145e+3 2.3618e+2 -1.4361e+2 # -Range: 0-300 Litharge - PbO +2.0000 H+ = + 1.0000 H2O + 1.0000 Pb++ - log_k 12.6388 - -delta_H -65.9118 kJ/mol # Calculated enthalpy of reaction Litharge + PbO + 2 H+ = H2O + Pb+2 + log_k 12.6388 + -delta_H -65.9118 kJ/mol # Calculated enthalpy of reaction Litharge # Enthalpy of formation: -219.006 kJ/mol - -analytic -1.8683e+001 -2.0211e-003 4.1876e+003 7.2239e+000 7.1118e+001 + -analytic -1.8683e+1 -2.0211e-3 4.1876e+3 7.2239e+0 7.1118e+1 # -Range: 0-200 Lopezite - K2Cr2O7 +1.0000 H2O = + 2.0000 CrO4-- + 2.0000 H+ + 2.0000 K+ - log_k -17.4366 - -delta_H 81.9227 kJ/mol # Calculated enthalpy of reaction Lopezite + K2Cr2O7 + H2O = 2 CrO4-2 + 2 H+ + 2 K+ + log_k -17.4366 + -delta_H 81.9227 kJ/mol # Calculated enthalpy of reaction Lopezite # Enthalpy of formation: -493.003 kcal/mol - -analytic 7.8359e+001 -2.2908e-002 -9.3812e+003 -2.3245e+001 -1.5933e+002 + -analytic 7.8359e+1 -2.2908e-2 -9.3812e+3 -2.3245e+1 -1.5933e+2 # -Range: 0-200 Lu - Lu +3.0000 H+ +0.7500 O2 = + 1.0000 Lu+++ + 1.5000 H2O - log_k 181.3437 - -delta_H -1122.15 kJ/mol # Calculated enthalpy of reaction Lu + Lu + 3 H+ + 0.75 O2 = Lu+3 + 1.5 H2O + log_k 181.3437 + -delta_H -1122.15 kJ/mol # Calculated enthalpy of reaction Lu # Enthalpy of formation: 0 kJ/mol - -analytic -6.8950e+001 -2.8643e-002 5.9209e+004 2.4332e+001 9.2392e+002 + -analytic -6.895e+1 -2.8643e-2 5.9209e+4 2.4332e+1 9.2392e+2 # -Range: 0-300 Lu(OH)3 - Lu(OH)3 +3.0000 H+ = + 1.0000 Lu+++ + 3.0000 H2O - log_k 14.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(OH)3 + Lu(OH)3 + 3 H+ = Lu+3 + 3 H2O + log_k 14.4852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(OH)3 # Enthalpy of formation: 0 kcal/mol Lu(OH)3(am) - Lu(OH)3 +3.0000 H+ = + 1.0000 Lu+++ + 3.0000 H2O - log_k 18.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(OH)3(am) + Lu(OH)3 + 3 H+ = Lu+3 + 3 H2O + log_k 18.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(OH)3(am) # Enthalpy of formation: 0 kcal/mol Lu2(CO3)3 - Lu2(CO3)3 +3.0000 H+ = + 2.0000 Lu+++ + 3.0000 HCO3- - log_k -2.0136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu2(CO3)3 + Lu2(CO3)3 + 3 H+ = 2 Lu+3 + 3 HCO3- + log_k -2.0136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu2(CO3)3 # Enthalpy of formation: 0 kcal/mol Lu2O3 - Lu2O3 +6.0000 H+ = + 2.0000 Lu+++ + 3.0000 H2O - log_k 45.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu2O3 + Lu2O3 + 6 H+ = 2 Lu+3 + 3 H2O + log_k 45 + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu2O3 # Enthalpy of formation: 0 kcal/mol LuF3:.5H2O - LuF3:.5H2O = + 0.5000 H2O + 1.0000 Lu+++ + 3.0000 F- - log_k -15.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction LuF3:.5H2O + LuF3:.5H2O = 0.5 H2O + Lu+3 + 3 F- + log_k -15.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction LuF3:.5H2O # Enthalpy of formation: 0 kcal/mol LuPO4:10H2O - LuPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Lu+++ + 10.0000 H2O - log_k -11.6782 - -delta_H 0 # Not possible to calculate enthalpy of reaction LuPO4:10H2O + LuPO4:10H2O + H+ = HPO4-2 + Lu+3 + 10 H2O + log_k -11.6782 + -delta_H 0 # Not possible to calculate enthalpy of reaction LuPO4:10H2O # Enthalpy of formation: 0 kcal/mol Magnesiochromite - MgCr2O4 +8.0000 H+ = + 1.0000 Mg++ + 2.0000 Cr+++ + 4.0000 H2O - log_k 21.6927 - -delta_H -302.689 kJ/mol # Calculated enthalpy of reaction Magnesiochromite + MgCr2O4 + 8 H+ = Mg+2 + 2 Cr+3 + 4 H2O + log_k 21.6927 + -delta_H -302.689 kJ/mol # Calculated enthalpy of reaction Magnesiochromite # Enthalpy of formation: -1783.6 kJ/mol - -analytic -1.7376e+002 -8.7429e-003 2.1600e+004 5.0762e+001 3.6685e+002 + -analytic -1.7376e+2 -8.7429e-3 2.16e+4 5.0762e+1 3.6685e+2 # -Range: 0-200 Magnesite - MgCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Mg++ - log_k 2.2936 - -delta_H -44.4968 kJ/mol # Calculated enthalpy of reaction Magnesite + MgCO3 + H+ = HCO3- + Mg+2 + log_k 2.2936 + -delta_H -44.4968 kJ/mol # Calculated enthalpy of reaction Magnesite # Enthalpy of formation: -265.63 kcal/mol - -analytic -1.6665e+002 -4.9469e-002 6.4344e+003 6.5506e+001 1.0045e+002 + -analytic -1.6665e+2 -4.9469e-2 6.4344e+3 6.5506e+1 1.0045e+2 # -Range: 0-300 Magnetite - Fe3O4 +8.0000 H+ = + 1.0000 Fe++ + 2.0000 Fe+++ + 4.0000 H2O - log_k 10.4724 - -delta_H -216.597 kJ/mol # Calculated enthalpy of reaction Magnetite + Fe3O4 + 8 H+ = Fe+2 + 2 Fe+3 + 4 H2O + log_k 10.4724 + -delta_H -216.597 kJ/mol # Calculated enthalpy of reaction Magnetite # Enthalpy of formation: -267.25 kcal/mol - -analytic -3.0510e+002 -7.9919e-002 1.8709e+004 1.1178e+002 2.9203e+002 + -analytic -3.051e+2 -7.9919e-2 1.8709e+4 1.1178e+2 2.9203e+2 # -Range: 0-300 Malachite - Cu2CO3(OH)2 +3.0000 H+ = + 1.0000 HCO3- + 2.0000 Cu++ + 2.0000 H2O - log_k 5.9399 - -delta_H -76.2827 kJ/mol # Calculated enthalpy of reaction Malachite + Cu2CO3(OH)2 + 3 H+ = HCO3- + 2 Cu+2 + 2 H2O + log_k 5.9399 + -delta_H -76.2827 kJ/mol # Calculated enthalpy of reaction Malachite # Enthalpy of formation: -251.9 kcal/mol - -analytic -2.7189e+002 -6.9454e-002 1.1451e+004 1.0511e+002 1.7877e+002 + -analytic -2.7189e+2 -6.9454e-2 1.1451e+4 1.0511e+2 1.7877e+2 # -Range: 0-300 Manganite - MnO(OH) +3.0000 H+ = + 1.0000 Mn+++ + 2.0000 H2O - log_k -0.1646 - -delta_H 0 # Not possible to calculate enthalpy of reaction Manganite + MnO(OH) + 3 H+ = Mn+3 + 2 H2O + log_k -0.1646 + -delta_H 0 # Not possible to calculate enthalpy of reaction Manganite # Enthalpy of formation: 0 kcal/mol Manganosite - MnO +2.0000 H+ = + 1.0000 H2O + 1.0000 Mn++ - log_k 17.9240 - -delta_H -121.215 kJ/mol # Calculated enthalpy of reaction Manganosite + MnO + 2 H+ = H2O + Mn+2 + log_k 17.924 + -delta_H -121.215 kJ/mol # Calculated enthalpy of reaction Manganosite # Enthalpy of formation: -92.07 kcal/mol - -analytic -8.4114e+001 -1.8490e-002 8.7792e+003 3.1561e+001 1.3702e+002 + -analytic -8.4114e+1 -1.849e-2 8.7792e+3 3.1561e+1 1.3702e+2 # -Range: 0-300 Margarite - CaAl4Si2O10(OH)2 +14.0000 H+ = + 1.0000 Ca++ + 2.0000 SiO2 + 4.0000 Al+++ + 8.0000 H2O - log_k 41.0658 - -delta_H -522.192 kJ/mol # Calculated enthalpy of reaction Margarite + CaAl4Si2O10(OH)2 + 14 H+ = Ca+2 + 2 SiO2 + 4 Al+3 + 8 H2O + log_k 41.0658 + -delta_H -522.192 kJ/mol # Calculated enthalpy of reaction Margarite # Enthalpy of formation: -1485.8 kcal/mol - -analytic -2.3138e+002 -8.2788e-002 3.0154e+004 7.9148e+001 4.7060e+002 + -analytic -2.3138e+2 -8.2788e-2 3.0154e+4 7.9148e+1 4.706e+2 # -Range: 0-300 Massicot - PbO +2.0000 H+ = + 1.0000 H2O + 1.0000 Pb++ - log_k 12.8210 - -delta_H -67.6078 kJ/mol # Calculated enthalpy of reaction Massicot + PbO + 2 H+ = H2O + Pb+2 + log_k 12.821 + -delta_H -67.6078 kJ/mol # Calculated enthalpy of reaction Massicot # Enthalpy of formation: -217.31 kJ/mol - -analytic -1.8738e+001 -2.0125e-003 4.2739e+003 7.2018e+000 7.2584e+001 + -analytic -1.8738e+1 -2.0125e-3 4.2739e+3 7.2018e+0 7.2584e+1 # -Range: 0-200 Matlockite - PbFCl = + 1.0000 Cl- + 1.0000 F- + 1.0000 Pb++ - log_k -9.4300 - -delta_H 0 # Not possible to calculate enthalpy of reaction Matlockite + PbFCl = Cl- + F- + Pb+2 + log_k -9.43 + -delta_H 0 # Not possible to calculate enthalpy of reaction Matlockite # Enthalpy of formation: 0 kcal/mol Maximum_Microcline - KAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 H2O + 3.0000 SiO2 - log_k -0.2753 - -delta_H -23.9408 kJ/mol # Calculated enthalpy of reaction Maximum_Microcline + KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 + log_k -0.2753 + -delta_H -23.9408 kJ/mol # Calculated enthalpy of reaction Maximum_Microcline # Enthalpy of formation: -949.188 kcal/mol - -analytic -9.4387e+000 1.3561e-002 1.2656e+004 -7.4925e+000 -1.6795e+006 + -analytic -9.4387e+0 1.3561e-2 1.2656e+4 -7.4925e+0 -1.6795e+6 # -Range: 0-300 Mayenite - Ca12Al14O33 +66.0000 H+ = + 12.0000 Ca++ + 14.0000 Al+++ + 33.0000 H2O - log_k 494.2199 - -delta_H -4056.77 kJ/mol # Calculated enthalpy of reaction Mayenite + Ca12Al14O33 + 66 H+ = 12 Ca+2 + 14 Al+3 + 33 H2O + log_k 494.2199 + -delta_H -4056.77 kJ/mol # Calculated enthalpy of reaction Mayenite # Enthalpy of formation: -4644 kcal/mol - -analytic -1.4778e+003 -2.9898e-001 2.4918e+005 4.9518e+002 4.2319e+003 + -analytic -1.4778e+3 -2.9898e-1 2.4918e+5 4.9518e+2 4.2319e+3 # -Range: 0-200 Melanterite - FeSO4:7H2O = + 1.0000 Fe++ + 1.0000 SO4-- + 7.0000 H2O - log_k -2.3490 - -delta_H 11.7509 kJ/mol # Calculated enthalpy of reaction Melanterite + FeSO4:7H2O = Fe+2 + SO4-2 + 7 H2O + log_k -2.349 + -delta_H 11.7509 kJ/mol # Calculated enthalpy of reaction Melanterite # Enthalpy of formation: -3014.48 kJ/mol - -analytic -2.6230e+002 -7.2469e-002 6.5854e+003 1.0484e+002 1.0284e+002 + -analytic -2.623e+2 -7.2469e-2 6.5854e+3 1.0484e+2 1.0284e+2 # -Range: 0-300 Mercallite - KHSO4 = + 1.0000 H+ + 1.0000 K+ + 1.0000 SO4-- - log_k -1.4389 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mercallite + KHSO4 = H+ + K+ + SO4-2 + log_k -1.4389 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mercallite # Enthalpy of formation: 0 kcal/mol Merwinite - MgCa3(SiO4)2 +8.0000 H+ = + 1.0000 Mg++ + 2.0000 SiO2 + 3.0000 Ca++ + 4.0000 H2O - log_k 68.5140 - -delta_H -430.069 kJ/mol # Calculated enthalpy of reaction Merwinite + MgCa3(SiO4)2 + 8 H+ = Mg+2 + 2 SiO2 + 3 Ca+2 + 4 H2O + log_k 68.514 + -delta_H -430.069 kJ/mol # Calculated enthalpy of reaction Merwinite # Enthalpy of formation: -1090.8 kcal/mol - -analytic -2.2524e+002 -4.2525e-002 3.5619e+004 7.9984e+001 -9.8259e+005 + -analytic -2.2524e+2 -4.2525e-2 3.5619e+4 7.9984e+1 -9.8259e+5 # -Range: 0-300 Mesolite - Na.676Ca.657Al1.99Si3.01O10:2.647H2O +7.9600 H+ = + 0.6570 Ca++ + 0.6760 Na+ + 1.9900 Al+++ + 3.0100 SiO2 + 6.6270 H2O - log_k 13.6191 - -delta_H -179.744 kJ/mol # Calculated enthalpy of reaction Mesolite + Na.676Ca.657Al1.99Si3.01O10:2.647H2O + 7.96 H+ = 0.657 Ca+2 + 0.676 Na+ + 1.99 Al+3 + 3.01 SiO2 + 6.627 H2O + log_k 13.6191 + -delta_H -179.744 kJ/mol # Calculated enthalpy of reaction Mesolite # Enthalpy of formation: -5947.05 kJ/mol - -analytic 7.1993e+000 5.9356e-003 1.4717e+004 -1.3627e+001 -9.8863e+005 + -analytic 7.1993e+0 5.9356e-3 1.4717e+4 -1.3627e+1 -9.8863e+5 # -Range: 0-300 Metacinnabar - HgS +1.0000 H+ = + 1.0000 HS- + 1.0000 Hg++ - log_k -38.5979 - -delta_H 203.426 kJ/mol # Calculated enthalpy of reaction Metacinnabar + HgS + H+ = HS- + Hg+2 + log_k -38.5979 + -delta_H 203.426 kJ/mol # Calculated enthalpy of reaction Metacinnabar # Enthalpy of formation: -11.8 kcal/mol - -analytic -1.5399e+002 -4.6740e-002 -6.7875e+003 6.1456e+001 -1.0587e+002 + -analytic -1.5399e+2 -4.674e-2 -6.7875e+3 6.1456e+1 -1.0587e+2 # -Range: 0-300 Mg - Mg +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Mg++ - log_k 122.5365 - -delta_H -745.731 kJ/mol # Calculated enthalpy of reaction Mg + Mg + 2 H+ + 0.5 O2 = H2O + Mg+2 + log_k 122.5365 + -delta_H -745.731 kJ/mol # Calculated enthalpy of reaction Mg # Enthalpy of formation: 0 kJ/mol - -analytic -6.5988e+001 -1.9356e-002 4.0318e+004 2.3862e+001 6.2914e+002 + -analytic -6.5988e+1 -1.9356e-2 4.0318e+4 2.3862e+1 6.2914e+2 # -Range: 0-300 Mg1.25SO4(OH)0.5:0.5H2O - Mg1.25SO4(OH)0.5:0.5H2O +0.5000 H+ = + 1.0000 H2O + 1.0000 SO4-- + 1.2500 Mg++ - log_k 5.2600 - -delta_H -97.1054 kJ/mol # Calculated enthalpy of reaction Mg1.25SO4(OH)0.5:0.5H2O + Mg1.25SO4(OH)0.5:0.5H2O + 0.5 H+ = H2O + SO4-2 + 1.25 Mg+2 + log_k 5.26 + -delta_H -97.1054 kJ/mol # Calculated enthalpy of reaction Mg1.25SO4(OH)0.5:0.5H2O # Enthalpy of formation: -401.717 kcal/mol - -analytic -2.6791e+002 -8.7078e-002 1.1090e+004 1.0583e+002 1.7312e+002 + -analytic -2.6791e+2 -8.7078e-2 1.109e+4 1.0583e+2 1.7312e+2 # -Range: 0-300 Mg1.5SO4(OH) - Mg1.5SO4(OH) +1.0000 H+ = + 1.0000 H2O + 1.0000 SO4-- + 1.5000 Mg++ - log_k 9.2551 - -delta_H -125.832 kJ/mol # Calculated enthalpy of reaction Mg1.5SO4(OH) + Mg1.5SO4(OH) + H+ = H2O + SO4-2 + 1.5 Mg+2 + log_k 9.2551 + -delta_H -125.832 kJ/mol # Calculated enthalpy of reaction Mg1.5SO4(OH) # Enthalpy of formation: -422.693 kcal/mol - -analytic -2.8698e+002 -9.1970e-002 1.3088e+004 1.1304e+002 2.0432e+002 + -analytic -2.8698e+2 -9.197e-2 1.3088e+4 1.1304e+2 2.0432e+2 # -Range: 0-300 Mg2V2O7 - Mg2V2O7 +1.0000 H2O = + 2.0000 H+ + 2.0000 Mg++ + 2.0000 VO4--- - log_k -30.9025 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mg2V2O7 + Mg2V2O7 + H2O = 2 H+ + 2 Mg+2 + 2 VO4-3 + log_k -30.9025 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mg2V2O7 # Enthalpy of formation: -2836.23 kJ/mol MgBr2 - MgBr2 = + 1.0000 Mg++ + 2.0000 Br- - log_k 28.5302 - -delta_H -190.15 kJ/mol # Calculated enthalpy of reaction MgBr2 + MgBr2 = Mg+2 + 2 Br- + log_k 28.5302 + -delta_H -190.15 kJ/mol # Calculated enthalpy of reaction MgBr2 # Enthalpy of formation: -124 kcal/mol - -analytic -2.1245e+002 -7.6168e-002 1.4466e+004 8.6940e+001 2.2579e+002 + -analytic -2.1245e+2 -7.6168e-2 1.4466e+4 8.694e+1 2.2579e+2 # -Range: 0-300 MgBr2:6H2O - MgBr2:6H2O = + 1.0000 Mg++ + 2.0000 Br- + 6.0000 H2O - log_k 5.1656 - -delta_H -14.2682 kJ/mol # Calculated enthalpy of reaction MgBr2:6H2O + MgBr2:6H2O = Mg+2 + 2 Br- + 6 H2O + log_k 5.1656 + -delta_H -14.2682 kJ/mol # Calculated enthalpy of reaction MgBr2:6H2O # Enthalpy of formation: -2409.73 kJ/mol - -analytic -1.3559e+002 -1.6479e-002 5.8571e+003 5.0924e+001 9.9508e+001 + -analytic -1.3559e+2 -1.6479e-2 5.8571e+3 5.0924e+1 9.9508e+1 # -Range: 0-200 MgCl2:2H2O - MgCl2:2H2O = + 1.0000 Mg++ + 2.0000 Cl- + 2.0000 H2O - log_k 12.7763 - -delta_H -92.0895 kJ/mol # Calculated enthalpy of reaction MgCl2:2H2O + MgCl2:2H2O = Mg+2 + 2 Cl- + 2 H2O + log_k 12.7763 + -delta_H -92.0895 kJ/mol # Calculated enthalpy of reaction MgCl2:2H2O # Enthalpy of formation: -1279.71 kJ/mol - -analytic -2.5409e+002 -8.1413e-002 1.0941e+004 1.0281e+002 1.7080e+002 + -analytic -2.5409e+2 -8.1413e-2 1.0941e+4 1.0281e+2 1.708e+2 # -Range: 0-300 MgCl2:4H2O - MgCl2:4H2O = + 1.0000 Mg++ + 2.0000 Cl- + 4.0000 H2O - log_k 7.3581 - -delta_H -44.4602 kJ/mol # Calculated enthalpy of reaction MgCl2:4H2O + MgCl2:4H2O = Mg+2 + 2 Cl- + 4 H2O + log_k 7.3581 + -delta_H -44.4602 kJ/mol # Calculated enthalpy of reaction MgCl2:4H2O # Enthalpy of formation: -1899.01 kJ/mol - -analytic -2.7604e+002 -8.1648e-002 9.5501e+003 1.1140e+002 1.4910e+002 + -analytic -2.7604e+2 -8.1648e-2 9.5501e+3 1.114e+2 1.491e+2 # -Range: 0-300 MgCl2:H2O - MgCl2:H2O = + 1.0000 H2O + 1.0000 Mg++ + 2.0000 Cl- - log_k 16.1187 - -delta_H -119.326 kJ/mol # Calculated enthalpy of reaction MgCl2:H2O + MgCl2:H2O = H2O + Mg+2 + 2 Cl- + log_k 16.1187 + -delta_H -119.326 kJ/mol # Calculated enthalpy of reaction MgCl2:H2O # Enthalpy of formation: -966.631 kJ/mol - -analytic -2.4414e+002 -8.1310e-002 1.1862e+004 9.8878e+001 1.8516e+002 + -analytic -2.4414e+2 -8.131e-2 1.1862e+4 9.8878e+1 1.8516e+2 # -Range: 0-300 MgOHCl - MgOHCl +1.0000 H+ = + 1.0000 Cl- + 1.0000 H2O + 1.0000 Mg++ - log_k 15.9138 - -delta_H -118.897 kJ/mol # Calculated enthalpy of reaction MgOHCl + MgOHCl + H+ = Cl- + H2O + Mg+2 + log_k 15.9138 + -delta_H -118.897 kJ/mol # Calculated enthalpy of reaction MgOHCl # Enthalpy of formation: -191.2 kcal/mol - -analytic -1.6614e+002 -4.9715e-002 1.0311e+004 6.5578e+001 1.6093e+002 + -analytic -1.6614e+2 -4.9715e-2 1.0311e+4 6.5578e+1 1.6093e+2 # -Range: 0-300 MgSO4 - MgSO4 = + 1.0000 Mg++ + 1.0000 SO4-- - log_k 4.8781 - -delta_H -90.6421 kJ/mol # Calculated enthalpy of reaction MgSO4 + MgSO4 = Mg+2 + SO4-2 + log_k 4.8781 + -delta_H -90.6421 kJ/mol # Calculated enthalpy of reaction MgSO4 # Enthalpy of formation: -1284.92 kJ/mol - -analytic -2.2439e+002 -7.9688e-002 9.3058e+003 8.9622e+001 1.4527e+002 + -analytic -2.2439e+2 -7.9688e-2 9.3058e+3 8.9622e+1 1.4527e+2 # -Range: 0-300 MgSeO3 - MgSeO3 = + 1.0000 Mg++ + 1.0000 SeO3-- - log_k 1.7191 - -delta_H -74.9647 kJ/mol # Calculated enthalpy of reaction MgSeO3 + MgSeO3 = Mg+2 + SeO3-2 + log_k 1.7191 + -delta_H -74.9647 kJ/mol # Calculated enthalpy of reaction MgSeO3 # Enthalpy of formation: -215.15 kcal/mol - -analytic -2.2593e+002 -8.1045e-002 8.4609e+003 9.0278e+001 1.3209e+002 + -analytic -2.2593e+2 -8.1045e-2 8.4609e+3 9.0278e+1 1.3209e+2 # -Range: 0-300 MgSeO3:6H2O - MgSeO3:6H2O = + 1.0000 Mg++ + 1.0000 SeO3-- + 6.0000 H2O - log_k -3.4222 - -delta_H 11.7236 kJ/mol # Calculated enthalpy of reaction MgSeO3:6H2O + MgSeO3:6H2O = Mg+2 + SeO3-2 + 6 H2O + log_k -3.4222 + -delta_H 11.7236 kJ/mol # Calculated enthalpy of reaction MgSeO3:6H2O # Enthalpy of formation: -645.771 kcal/mol - -analytic -1.2807e+002 -1.5418e-002 4.0565e+003 4.6728e+001 6.8929e+001 + -analytic -1.2807e+2 -1.5418e-2 4.0565e+3 4.6728e+1 6.8929e+1 # -Range: 0-200 MgUO4 - MgUO4 +4.0000 H+ = + 1.0000 Mg++ + 1.0000 UO2++ + 2.0000 H2O - log_k 23.0023 - -delta_H -199.336 kJ/mol # Calculated enthalpy of reaction MgUO4 + MgUO4 + 4 H+ = Mg+2 + UO2+2 + 2 H2O + log_k 23.0023 + -delta_H -199.336 kJ/mol # Calculated enthalpy of reaction MgUO4 # Enthalpy of formation: -1857.3 kJ/mol - -analytic -9.9954e+001 -2.0142e-002 1.3078e+004 3.4386e+001 2.0410e+002 + -analytic -9.9954e+1 -2.0142e-2 1.3078e+4 3.4386e+1 2.041e+2 # -Range: 0-300 MgV2O6 - MgV2O6 +2.0000 H2O = + 1.0000 Mg++ + 2.0000 VO4--- + 4.0000 H+ - log_k -45.8458 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgV2O6 + MgV2O6 + 2 H2O = Mg+2 + 2 VO4-3 + 4 H+ + log_k -45.8458 + -delta_H 0 # Not possible to calculate enthalpy of reaction MgV2O6 # Enthalpy of formation: -2201.88 kJ/mol Millerite - NiS +1.0000 H+ = + 1.0000 HS- + 1.0000 Ni++ - log_k -8.0345 - -delta_H 12.089 kJ/mol # Calculated enthalpy of reaction Millerite + NiS + H+ = HS- + Ni+2 + log_k -8.0345 + -delta_H 12.089 kJ/mol # Calculated enthalpy of reaction Millerite # Enthalpy of formation: -82.171 kJ/mol - -analytic -1.4848e+002 -4.8834e-002 2.6981e+003 5.8976e+001 4.2145e+001 + -analytic -1.4848e+2 -4.8834e-2 2.6981e+3 5.8976e+1 4.2145e+1 # -Range: 0-300 Minium - Pb3O4 +8.0000 H+ = + 1.0000 Pb++++ + 2.0000 Pb++ + 4.0000 H2O - log_k 16.2585 - -delta_H 0 # Not possible to calculate enthalpy of reaction Minium + Pb3O4 + 8 H+ = Pb+4 + 2 Pb+2 + 4 H2O + log_k 16.2585 + -delta_H 0 # Not possible to calculate enthalpy of reaction Minium # Enthalpy of formation: -718.493 kJ/mol Minnesotaite - Fe3Si4O10(OH)2 +6.0000 H+ = + 3.0000 Fe++ + 4.0000 H2O + 4.0000 SiO2 - log_k 13.9805 - -delta_H -105.211 kJ/mol # Calculated enthalpy of reaction Minnesotaite + Fe3Si4O10(OH)2 + 6 H+ = 3 Fe+2 + 4 H2O + 4 SiO2 + log_k 13.9805 + -delta_H -105.211 kJ/mol # Calculated enthalpy of reaction Minnesotaite # Enthalpy of formation: -1153.37 kcal/mol - -analytic -1.8812e+001 1.7261e-002 1.9804e+004 -6.4410e+000 -2.0433e+006 + -analytic -1.8812e+1 1.7261e-2 1.9804e+4 -6.441e+0 -2.0433e+6 # -Range: 0-300 Mirabilite - Na2SO4:10H2O = + 1.0000 SO4-- + 2.0000 Na+ + 10.0000 H2O - log_k -1.1398 - -delta_H 79.4128 kJ/mol # Calculated enthalpy of reaction Mirabilite + Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O + log_k -1.1398 + -delta_H 79.4128 kJ/mol # Calculated enthalpy of reaction Mirabilite # Enthalpy of formation: -4328 kJ/mol - -analytic -2.1877e+002 -3.6692e-003 5.9214e+003 8.0361e+001 1.0063e+002 + -analytic -2.1877e+2 -3.6692e-3 5.9214e+3 8.0361e+1 1.0063e+2 # -Range: 0-200 Misenite - K8H6(SO4)7 = + 6.0000 H+ + 7.0000 SO4-- + 8.0000 K+ - log_k -11.0757 - -delta_H 0 # Not possible to calculate enthalpy of reaction Misenite + K8H6(SO4)7 = 6 H+ + 7 SO4-2 + 8 K+ + log_k -11.0757 + -delta_H 0 # Not possible to calculate enthalpy of reaction Misenite # Enthalpy of formation: 0 kcal/mol Mn - Mn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Mn++ - log_k 82.9505 - -delta_H -500.369 kJ/mol # Calculated enthalpy of reaction Mn + Mn + 2 H+ + 0.5 O2 = H2O + Mn+2 + log_k 82.9505 + -delta_H -500.369 kJ/mol # Calculated enthalpy of reaction Mn # Enthalpy of formation: 0 kJ/mol - -analytic -6.5558e+001 -2.0429e-002 2.7571e+004 2.5098e+001 4.3024e+002 + -analytic -6.5558e+1 -2.0429e-2 2.7571e+4 2.5098e+1 4.3024e+2 # -Range: 0-300 Mn(OH)2(am) - Mn(OH)2 +2.0000 H+ = + 1.0000 Mn++ + 2.0000 H2O - log_k 15.3102 - -delta_H -97.1779 kJ/mol # Calculated enthalpy of reaction Mn(OH)2(am) + Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O + log_k 15.3102 + -delta_H -97.1779 kJ/mol # Calculated enthalpy of reaction Mn(OH)2(am) # Enthalpy of formation: -695.096 kJ/mol - -analytic -7.8518e+001 -7.5357e-003 8.0198e+003 2.7955e+001 1.3621e+002 + -analytic -7.8518e+1 -7.5357e-3 8.0198e+3 2.7955e+1 1.3621e+2 # -Range: 0-200 Mn(OH)3 - Mn(OH)3 +3.0000 H+ = + 1.0000 Mn+++ + 3.0000 H2O - log_k 6.3412 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)3 + Mn(OH)3 + 3 H+ = Mn+3 + 3 H2O + log_k 6.3412 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)3 # Enthalpy of formation: 0 kcal/mol Mn3(PO4)2 - Mn3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Mn++ - log_k 0.8167 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn3(PO4)2 + Mn3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 Mn+2 + log_k 0.8167 + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn3(PO4)2 # Enthalpy of formation: 0 kcal/mol MnCl2:2H2O - MnCl2:2H2O = + 1.0000 Mn++ + 2.0000 Cl- + 2.0000 H2O - log_k 4.0067 - -delta_H -34.4222 kJ/mol # Calculated enthalpy of reaction MnCl2:2H2O + MnCl2:2H2O = Mn+2 + 2 Cl- + 2 H2O + log_k 4.0067 + -delta_H -34.4222 kJ/mol # Calculated enthalpy of reaction MnCl2:2H2O # Enthalpy of formation: -1092.01 kJ/mol - -analytic -6.2823e+001 -2.3959e-002 2.9931e+003 2.5834e+001 5.0850e+001 + -analytic -6.2823e+1 -2.3959e-2 2.9931e+3 2.5834e+1 5.085e+1 # -Range: 0-200 MnCl2:4H2O - MnCl2:4H2O = + 1.0000 Mn++ + 2.0000 Cl- + 4.0000 H2O - log_k 2.7563 - -delta_H -10.7019 kJ/mol # Calculated enthalpy of reaction MnCl2:4H2O + MnCl2:4H2O = Mn+2 + 2 Cl- + 4 H2O + log_k 2.7563 + -delta_H -10.7019 kJ/mol # Calculated enthalpy of reaction MnCl2:4H2O # Enthalpy of formation: -1687.41 kJ/mol - -analytic -1.1049e+002 -2.3376e-002 4.0458e+003 4.3097e+001 6.8742e+001 + -analytic -1.1049e+2 -2.3376e-2 4.0458e+3 4.3097e+1 6.8742e+1 # -Range: 0-200 MnCl2:H2O - MnCl2:H2O = + 1.0000 H2O + 1.0000 Mn++ + 2.0000 Cl- - log_k 5.5517 - -delta_H -50.8019 kJ/mol # Calculated enthalpy of reaction MnCl2:H2O + MnCl2:H2O = H2O + Mn+2 + 2 Cl- + log_k 5.5517 + -delta_H -50.8019 kJ/mol # Calculated enthalpy of reaction MnCl2:H2O # Enthalpy of formation: -789.793 kJ/mol - -analytic -4.5051e+001 -2.5923e-002 2.8739e+003 1.9674e+001 4.8818e+001 + -analytic -4.5051e+1 -2.5923e-2 2.8739e+3 1.9674e+1 4.8818e+1 # -Range: 0-200 MnHPO4 - MnHPO4 = + 1.0000 HPO4-- + 1.0000 Mn++ - log_k -12.9470 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnHPO4 + MnHPO4 = HPO4-2 + Mn+2 + log_k -12.947 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnHPO4 # Enthalpy of formation: 0 kcal/mol MnO2(gamma) - MnO2 = + 0.5000 Mn++ + 0.5000 MnO4-- - log_k -16.1261 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnO2(gamma) + MnO2 = 0.5 Mn+2 + 0.5 MnO4-2 + log_k -16.1261 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnO2(gamma) # Enthalpy of formation: 0 kcal/mol MnSO4 - MnSO4 = + 1.0000 Mn++ + 1.0000 SO4-- - log_k 2.6561 - -delta_H -64.8718 kJ/mol # Calculated enthalpy of reaction MnSO4 + MnSO4 = Mn+2 + SO4-2 + log_k 2.6561 + -delta_H -64.8718 kJ/mol # Calculated enthalpy of reaction MnSO4 # Enthalpy of formation: -1065.33 kJ/mol - -analytic -2.3088e+002 -8.2694e-002 8.1653e+003 9.3256e+001 1.2748e+002 + -analytic -2.3088e+2 -8.2694e-2 8.1653e+3 9.3256e+1 1.2748e+2 # -Range: 0-300 MnSe - MnSe = + 1.0000 Mn++ + 1.0000 Se-- - log_k -10.6848 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnSe + MnSe = Mn+2 + Se-2 + log_k -10.6848 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnSe # Enthalpy of formation: -37 kcal/mol - -analytic -5.9960e+001 -1.5963e-002 1.2813e+003 2.0095e+001 2.0010e+001 + -analytic -5.996e+1 -1.5963e-2 1.2813e+3 2.0095e+1 2.001e+1 # -Range: 0-300 MnSeO3 - MnSeO3 = + 1.0000 Mn++ + 1.0000 SeO3-- - log_k -7.2700 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnSeO3 + MnSeO3 = Mn+2 + SeO3-2 + log_k -7.27 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnSeO3 # Enthalpy of formation: 0 kcal/mol MnSeO3:2H2O - MnSeO3:2H2O = + 1.0000 Mn++ + 1.0000 SeO3-- + 2.0000 H2O - log_k -6.3219 - -delta_H 14.0792 kJ/mol # Calculated enthalpy of reaction MnSeO3:2H2O + MnSeO3:2H2O = Mn+2 + SeO3-2 + 2 H2O + log_k -6.3219 + -delta_H 14.0792 kJ/mol # Calculated enthalpy of reaction MnSeO3:2H2O # Enthalpy of formation: -314.423 kcal/mol - -analytic -4.3625e+001 -2.0426e-002 -2.5368e+002 1.7876e+001 -4.2927e+000 + -analytic -4.3625e+1 -2.0426e-2 -2.5368e+2 1.7876e+1 -4.2927e+0 # -Range: 0-200 MnV2O6 - MnV2O6 +2.0000 H2O = + 1.0000 Mn++ + 2.0000 VO4--- + 4.0000 H+ - log_k -52.0751 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnV2O6 + MnV2O6 + 2 H2O = Mn+2 + 2 VO4-3 + 4 H+ + log_k -52.0751 + -delta_H 0 # Not possible to calculate enthalpy of reaction MnV2O6 # Enthalpy of formation: -447.9 kcal/mol Mo - Mo +1.5000 O2 +1.0000 H2O = + 1.0000 MoO4-- + 2.0000 H+ - log_k 109.3230 - -delta_H -693.845 kJ/mol # Calculated enthalpy of reaction Mo + Mo + 1.5 O2 + H2O = MoO4-2 + 2 H+ + log_k 109.323 + -delta_H -693.845 kJ/mol # Calculated enthalpy of reaction Mo # Enthalpy of formation: 0 kJ/mol - -analytic -2.0021e+002 -8.3006e-002 4.1629e+004 8.0219e+001 -3.4570e+005 + -analytic -2.0021e+2 -8.3006e-2 4.1629e+4 8.0219e+1 -3.457e+5 # -Range: 0-300 MoSe2 - MoSe2 +3.0000 H2O +0.5000 O2 = + 1.0000 MoO4-- + 2.0000 Se-- + 6.0000 H+ - log_k -55.1079 - -delta_H 0 # Not possible to calculate enthalpy of reaction MoSe2 + MoSe2 + 3 H2O + 0.5 O2 = MoO4-2 + 2 Se-2 + 6 H+ + log_k -55.1079 + -delta_H 0 # Not possible to calculate enthalpy of reaction MoSe2 # Enthalpy of formation: -47 kcal/mol - -analytic 1.3882e+002 -1.8590e-003 -1.7231e+004 -5.4797e+001 -2.9265e+002 + -analytic 1.3882e+2 -1.859e-3 -1.7231e+4 -5.4797e+1 -2.9265e+2 # -Range: 0-200 Modderite - CoAs +3.0000 H+ = + 1.0000 AsH3 + 1.0000 Co+++ - log_k -49.5512 - -delta_H 189.016 kJ/mol # Calculated enthalpy of reaction Modderite + CoAs + 3 H+ = AsH3 + Co+3 + log_k -49.5512 + -delta_H 189.016 kJ/mol # Calculated enthalpy of reaction Modderite # Enthalpy of formation: -12.208 kcal/mol Molysite - FeCl3 = + 1.0000 Fe+++ + 3.0000 Cl- - log_k 13.5517 - -delta_H -151.579 kJ/mol # Calculated enthalpy of reaction Molysite + FeCl3 = Fe+3 + 3 Cl- + log_k 13.5517 + -delta_H -151.579 kJ/mol # Calculated enthalpy of reaction Molysite # Enthalpy of formation: -399.24 kJ/mol - -analytic -3.1810e+002 -1.2357e-001 1.3860e+004 1.3010e+002 2.1637e+002 + -analytic -3.181e+2 -1.2357e-1 1.386e+4 1.301e+2 2.1637e+2 # -Range: 0-300 Monohydrocalcite - CaCO3:H2O +1.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O + 1.0000 HCO3- - log_k 2.6824 - -delta_H -20.5648 kJ/mol # Calculated enthalpy of reaction Monohydrocalcite + CaCO3:H2O + H+ = Ca+2 + H2O + HCO3- + log_k 2.6824 + -delta_H -20.5648 kJ/mol # Calculated enthalpy of reaction Monohydrocalcite # Enthalpy of formation: -1498.29 kJ/mol - -analytic -7.2614e+001 -1.7217e-002 3.1850e+003 2.8185e+001 5.4111e+001 + -analytic -7.2614e+1 -1.7217e-2 3.185e+3 2.8185e+1 5.4111e+1 # -Range: 0-200 Monteponite - CdO +2.0000 H+ = + 1.0000 Cd++ + 1.0000 H2O - log_k 15.0972 - -delta_H -103.386 kJ/mol # Calculated enthalpy of reaction Monteponite + CdO + 2 H+ = Cd+2 + H2O + log_k 15.0972 + -delta_H -103.386 kJ/mol # Calculated enthalpy of reaction Monteponite # Enthalpy of formation: -258.35 kJ/mol - -analytic -5.0057e+001 -6.3629e-003 7.0898e+003 1.7486e+001 1.2041e+002 + -analytic -5.0057e+1 -6.3629e-3 7.0898e+3 1.7486e+1 1.2041e+2 # -Range: 0-200 Monticellite - CaMgSiO4 +4.0000 H+ = + 1.0000 Ca++ + 1.0000 Mg++ + 1.0000 SiO2 + 2.0000 H2O - log_k 29.5852 - -delta_H -195.711 kJ/mol # Calculated enthalpy of reaction Monticellite + CaMgSiO4 + 4 H+ = Ca+2 + Mg+2 + SiO2 + 2 H2O + log_k 29.5852 + -delta_H -195.711 kJ/mol # Calculated enthalpy of reaction Monticellite # Enthalpy of formation: -540.8 kcal/mol - -analytic 1.5730e+001 -3.5567e-003 9.0789e+003 -6.3007e+000 1.4166e+002 + -analytic 1.573e+1 -3.5567e-3 9.0789e+3 -6.3007e+0 1.4166e+2 # -Range: 0-300 Montmor-Ca - Ca.165Mg.33Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.1650 Ca++ + 0.3300 Mg++ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 - log_k 2.4952 - -delta_H -100.154 kJ/mol # Calculated enthalpy of reaction Montmor-Ca + Ca.165Mg.33Al1.67Si4O10(OH)2 + 6 H+ = 0.165 Ca+2 + 0.33 Mg+2 + 1.67 Al+3 + 4 H2O + 4 SiO2 + log_k 2.4952 + -delta_H -100.154 kJ/mol # Calculated enthalpy of reaction Montmor-Ca # Enthalpy of formation: -1361.5 kcal/mol - -analytic 6.0725e+000 1.0644e-002 1.6024e+004 -1.6334e+001 -1.7982e+006 + -analytic 6.0725e+0 1.0644e-2 1.6024e+4 -1.6334e+1 -1.7982e+6 # -Range: 0-300 Montmor-Cs - Cs.33Mg.33Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.3300 Cs+ + 0.3300 Mg++ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 - log_k 1.9913 - -delta_H -87.2259 kJ/mol # Calculated enthalpy of reaction Montmor-Cs + Cs.33Mg.33Al1.67Si4O10(OH)2 + 6 H+ = 0.33 Cs+ + 0.33 Mg+2 + 1.67 Al+3 + 4 H2O + 4 SiO2 + log_k 1.9913 + -delta_H -87.2259 kJ/mol # Calculated enthalpy of reaction Montmor-Cs # Enthalpy of formation: -1363.52 kcal/mol - -analytic 9.9136e+000 1.2496e-002 1.5650e+004 -1.7601e+001 -1.8434e+006 + -analytic 9.9136e+0 1.2496e-2 1.565e+4 -1.7601e+1 -1.8434e+6 # -Range: 0-300 Montmor-K - K.33Mg.33Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.3300 K+ + 0.3300 Mg++ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 - log_k 2.1423 - -delta_H -88.184 kJ/mol # Calculated enthalpy of reaction Montmor-K + K.33Mg.33Al1.67Si4O10(OH)2 + 6 H+ = 0.33 K+ + 0.33 Mg+2 + 1.67 Al+3 + 4 H2O + 4 SiO2 + log_k 2.1423 + -delta_H -88.184 kJ/mol # Calculated enthalpy of reaction Montmor-K # Enthalpy of formation: -1362.83 kcal/mol - -analytic 8.4757e+000 1.1219e-002 1.5654e+004 -1.6833e+001 -1.8386e+006 + -analytic 8.4757e+0 1.1219e-2 1.5654e+4 -1.6833e+1 -1.8386e+6 # -Range: 0-300 Montmor-Mg - Mg.495Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.4950 Mg++ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 - log_k 2.3879 - -delta_H -102.608 kJ/mol # Calculated enthalpy of reaction Montmor-Mg + Mg.495Al1.67Si4O10(OH)2 + 6 H+ = 0.495 Mg+2 + 1.67 Al+3 + 4 H2O + 4 SiO2 + log_k 2.3879 + -delta_H -102.608 kJ/mol # Calculated enthalpy of reaction Montmor-Mg # Enthalpy of formation: -1357.87 kcal/mol - -analytic -6.8505e+000 9.0710e-003 1.6817e+004 -1.1887e+001 -1.8323e+006 + -analytic -6.8505e+0 9.071e-3 1.6817e+4 -1.1887e+1 -1.8323e+6 # -Range: 0-300 Montmor-Na - Na.33Mg.33Al1.67Si4O10(OH)2 +6.0000 H+ = + 0.3300 Mg++ + 0.3300 Na+ + 1.6700 Al+++ + 4.0000 H2O + 4.0000 SiO2 - log_k 2.4844 - -delta_H -93.2165 kJ/mol # Calculated enthalpy of reaction Montmor-Na + Na.33Mg.33Al1.67Si4O10(OH)2 + 6 H+ = 0.33 Mg+2 + 0.33 Na+ + 1.67 Al+3 + 4 H2O + 4 SiO2 + log_k 2.4844 + -delta_H -93.2165 kJ/mol # Calculated enthalpy of reaction Montmor-Na # Enthalpy of formation: -1360.69 kcal/mol - -analytic 1.9601e+000 1.1342e-002 1.6051e+004 -1.4718e+001 -1.8160e+006 + -analytic 1.9601e+0 1.1342e-2 1.6051e+4 -1.4718e+1 -1.816e+6 # -Range: 0-300 Montroydite - HgO +2.0000 H+ = + 1.0000 H2O + 1.0000 Hg++ - log_k 2.4486 - -delta_H -24.885 kJ/mol # Calculated enthalpy of reaction Montroydite + HgO + 2 H+ = H2O + Hg+2 + log_k 2.4486 + -delta_H -24.885 kJ/mol # Calculated enthalpy of reaction Montroydite # Enthalpy of formation: -90.79 kJ/mol - -analytic -8.7302e+001 -1.7618e-002 4.0086e+003 3.2957e+001 6.2576e+001 + -analytic -8.7302e+1 -1.7618e-2 4.0086e+3 3.2957e+1 6.2576e+1 # -Range: 0-300 Mordenite - Ca.2895Na.361Al.94Si5.06O12:3.468H2O +3.7600 H+ = + 0.2895 Ca++ + 0.3610 Na+ + 0.9400 Al+++ + 5.0600 SiO2 + 5.3480 H2O - log_k -5.1969 - -delta_H 16.7517 kJ/mol # Calculated enthalpy of reaction Mordenite + Ca.2895Na.361Al.94Si5.06O12:3.468H2O + 3.76 H+ = 0.2895 Ca+2 + 0.361 Na+ + 0.94 Al+3 + 5.06 SiO2 + 5.348 H2O + log_k -5.1969 + -delta_H 16.7517 kJ/mol # Calculated enthalpy of reaction Mordenite # Enthalpy of formation: -6736.64 kJ/mol - -analytic -5.4675e+001 3.2513e-002 2.3412e+004 -1.0419e+000 -3.2292e+006 + -analytic -5.4675e+1 3.2513e-2 2.3412e+4 -1.0419e+0 -3.2292e+6 # -Range: 0-300 Mordenite-dehy - Ca.2895Na.361Al.94Si5.06O12 +3.7600 H+ = + 0.2895 Ca++ + 0.3610 Na+ + 0.9400 Al+++ + 1.8800 H2O + 5.0600 SiO2 - log_k 9.9318 - -delta_H -86.159 kJ/mol # Calculated enthalpy of reaction Mordenite-dehy + Ca.2895Na.361Al.94Si5.06O12 + 3.76 H+ = 0.2895 Ca+2 + 0.361 Na+ + 0.94 Al+3 + 1.88 H2O + 5.06 SiO2 + log_k 9.9318 + -delta_H -86.159 kJ/mol # Calculated enthalpy of reaction Mordenite-dehy # Enthalpy of formation: -5642.44 kJ/mol - -analytic -5.0841e+001 2.5405e-002 2.7621e+004 -1.6331e+000 -3.1618e+006 + -analytic -5.0841e+1 2.5405e-2 2.7621e+4 -1.6331e+0 -3.1618e+6 # -Range: 0-300 Morenosite - NiSO4:7H2O = + 1.0000 Ni++ + 1.0000 SO4-- + 7.0000 H2O - log_k -2.0140 - -delta_H 12.0185 kJ/mol # Calculated enthalpy of reaction Morenosite + NiSO4:7H2O = Ni+2 + SO4-2 + 7 H2O + log_k -2.014 + -delta_H 12.0185 kJ/mol # Calculated enthalpy of reaction Morenosite # Enthalpy of formation: -2976.46 kJ/mol - -analytic -2.6654e+002 -7.2132e-002 6.7983e+003 1.0636e+002 1.0616e+002 + -analytic -2.6654e+2 -7.2132e-2 6.7983e+3 1.0636e+2 1.0616e+2 # -Range: 0-300 Muscovite - KAl3Si3O10(OH)2 +10.0000 H+ = + 1.0000 K+ + 3.0000 Al+++ + 3.0000 SiO2 + 6.0000 H2O - log_k 13.5858 - -delta_H -243.224 kJ/mol # Calculated enthalpy of reaction Muscovite + KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 SiO2 + 6 H2O + log_k 13.5858 + -delta_H -243.224 kJ/mol # Calculated enthalpy of reaction Muscovite # Enthalpy of formation: -1427.41 kcal/mol - -analytic 3.3085e+001 -1.2425e-002 1.2477e+004 -2.0865e+001 -5.4692e+005 + -analytic 3.3085e+1 -1.2425e-2 1.2477e+4 -2.0865e+1 -5.4692e+5 # -Range: 0-300 NH4HSe - NH4HSe = + 1.0000 NH3 + 1.0000 Se-- + 2.0000 H+ - log_k -22.0531 - -delta_H 0 # Not possible to calculate enthalpy of reaction NH4HSe + NH4HSe = NH3 + Se-2 + 2 H+ + log_k -22.0531 + -delta_H 0 # Not possible to calculate enthalpy of reaction NH4HSe # Enthalpy of formation: -133.041 kJ/mol - -analytic -8.8685e+000 6.7342e-003 -5.3028e+003 1.0468e+000 -9.0046e+001 + -analytic -8.8685e+0 6.7342e-3 -5.3028e+3 1.0468e+0 -9.0046e+1 # -Range: 0-200 Na - Na +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Na+ - log_k 67.3804 - -delta_H -380.185 kJ/mol # Calculated enthalpy of reaction Na + Na + H+ + 0.25 O2 = 0.5 H2O + Na+ + log_k 67.3804 + -delta_H -380.185 kJ/mol # Calculated enthalpy of reaction Na # Enthalpy of formation: 0 kJ/mol - -analytic -4.0458e+001 -8.7899e-003 2.1223e+004 1.5927e+001 -1.2715e+004 + -analytic -4.0458e+1 -8.7899e-3 2.1223e+4 1.5927e+1 -1.2715e+4 # -Range: 0-300 Na2CO3 - Na2CO3 +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Na+ - log_k 11.1822 - -delta_H -39.8526 kJ/mol # Calculated enthalpy of reaction Na2CO3 + Na2CO3 + H+ = HCO3- + 2 Na+ + log_k 11.1822 + -delta_H -39.8526 kJ/mol # Calculated enthalpy of reaction Na2CO3 # Enthalpy of formation: -1130.68 kJ/mol - -analytic -1.5495e+002 -4.3374e-002 6.4821e+003 6.3571e+001 1.0119e+002 + -analytic -1.5495e+2 -4.3374e-2 6.4821e+3 6.3571e+1 1.0119e+2 # -Range: 0-300 Na2CO3:7H2O - Na2CO3:7H2O +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Na+ + 7.0000 H2O - log_k 9.9459 - -delta_H 27.7881 kJ/mol # Calculated enthalpy of reaction Na2CO3:7H2O + Na2CO3:7H2O + H+ = HCO3- + 2 Na+ + 7 H2O + log_k 9.9459 + -delta_H 27.7881 kJ/mol # Calculated enthalpy of reaction Na2CO3:7H2O # Enthalpy of formation: -3199.19 kJ/mol - -analytic -2.0593e+002 -3.4509e-003 8.1601e+003 7.6594e+001 1.3864e+002 + -analytic -2.0593e+2 -3.4509e-3 8.1601e+3 7.6594e+1 1.3864e+2 # -Range: 0-200 Na2Cr2O7 - Na2Cr2O7 +1.0000 H2O = + 2.0000 CrO4-- + 2.0000 H+ + 2.0000 Na+ - log_k -10.1597 - -delta_H 21.9702 kJ/mol # Calculated enthalpy of reaction Na2Cr2O7 + Na2Cr2O7 + H2O = 2 CrO4-2 + 2 H+ + 2 Na+ + log_k -10.1597 + -delta_H 21.9702 kJ/mol # Calculated enthalpy of reaction Na2Cr2O7 # Enthalpy of formation: -473 kcal/mol - -analytic 4.4885e+001 -2.4919e-002 -5.0321e+003 -1.2430e+001 -8.5468e+001 + -analytic 4.4885e+1 -2.4919e-2 -5.0321e+3 -1.243e+1 -8.5468e+1 # -Range: 0-200 Na2CrO4 - Na2CrO4 = + 1.0000 CrO4-- + 2.0000 Na+ - log_k 2.9103 - -delta_H -19.5225 kJ/mol # Calculated enthalpy of reaction Na2CrO4 + Na2CrO4 = CrO4-2 + 2 Na+ + log_k 2.9103 + -delta_H -19.5225 kJ/mol # Calculated enthalpy of reaction Na2CrO4 # Enthalpy of formation: -320.8 kcal/mol - -analytic 5.4985e+000 -9.9008e-003 1.0510e+002 0.0000e+000 0.0000e+000 + -analytic 5.4985e+0 -9.9008e-3 1.051e+2 0e+0 0e+0 # -Range: 0-200 Na2O - Na2O +2.0000 H+ = + 1.0000 H2O + 2.0000 Na+ - log_k 67.4269 - -delta_H -351.636 kJ/mol # Calculated enthalpy of reaction Na2O + Na2O + 2 H+ = H2O + 2 Na+ + log_k 67.4269 + -delta_H -351.636 kJ/mol # Calculated enthalpy of reaction Na2O # Enthalpy of formation: -99.14 kcal/mol - -analytic -6.3585e+001 -8.4695e-003 2.0923e+004 2.5601e+001 3.2651e+002 + -analytic -6.3585e+1 -8.4695e-3 2.0923e+4 2.5601e+1 3.2651e+2 # -Range: 0-300 Na2Se - Na2Se = + 1.0000 Se-- + 2.0000 Na+ - log_k 11.8352 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na2Se + Na2Se = Se-2 + 2 Na+ + log_k 11.8352 + -delta_H 0 # Not possible to calculate enthalpy of reaction Na2Se # Enthalpy of formation: -81.9 kcal/mol - -analytic -6.0070e+000 8.2821e-003 4.5816e+003 0.0000e+000 0.0000e+000 + -analytic -6.007e+0 8.2821e-3 4.5816e+3 0e+0 0e+0 # -Range: 0-200 Na2Se2 - Na2Se2 +1.0000 H2O = + 0.5000 O2 + 2.0000 H+ + 2.0000 Na+ + 2.0000 Se-- - log_k -61.3466 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na2Se2 + Na2Se2 + H2O = 0.5 O2 + 2 H+ + 2 Na+ + 2 Se-2 + log_k -61.3466 + -delta_H 0 # Not possible to calculate enthalpy of reaction Na2Se2 # Enthalpy of formation: -92.8 kcal/mol - -analytic -2.7836e+001 7.7035e-003 -1.5040e+004 5.9131e+000 -2.5539e+002 + -analytic -2.7836e+1 7.7035e-3 -1.504e+4 5.9131e+0 -2.5539e+2 # -Range: 0-200 Na2SiO3 - Na2SiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 SiO2 + 2.0000 Na+ - log_k 22.2418 - -delta_H -82.7093 kJ/mol # Calculated enthalpy of reaction Na2SiO3 + Na2SiO3 + 2 H+ = H2O + SiO2 + 2 Na+ + log_k 22.2418 + -delta_H -82.7093 kJ/mol # Calculated enthalpy of reaction Na2SiO3 # Enthalpy of formation: -373.19 kcal/mol - -analytic -3.4928e+001 5.6905e-003 1.0284e+004 1.1197e+001 -6.0134e+005 + -analytic -3.4928e+1 5.6905e-3 1.0284e+4 1.1197e+1 -6.0134e+5 # -Range: 0-300 Na2U2O7 - Na2U2O7 +6.0000 H+ = + 2.0000 Na+ + 2.0000 UO2++ + 3.0000 H2O - log_k 22.5917 - -delta_H -172.314 kJ/mol # Calculated enthalpy of reaction Na2U2O7 + Na2U2O7 + 6 H+ = 2 Na+ + 2 UO2+2 + 3 H2O + log_k 22.5917 + -delta_H -172.314 kJ/mol # Calculated enthalpy of reaction Na2U2O7 # Enthalpy of formation: -3203.8 kJ/mol - -analytic -8.6640e+001 -1.0903e-002 1.1841e+004 2.9406e+001 1.8479e+002 + -analytic -8.664e+1 -1.0903e-2 1.1841e+4 2.9406e+1 1.8479e+2 # -Range: 0-300 Na2UO4(alpha) - Na2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 Na+ - log_k 30.0231 - -delta_H -173.576 kJ/mol # Calculated enthalpy of reaction Na2UO4(alpha) + Na2UO4 + 4 H+ = UO2+2 + 2 H2O + 2 Na+ + log_k 30.0231 + -delta_H -173.576 kJ/mol # Calculated enthalpy of reaction Na2UO4(alpha) # Enthalpy of formation: -1897.7 kJ/mol - -analytic -7.9767e+001 -1.0253e-002 1.1963e+004 2.9386e+001 1.8669e+002 + -analytic -7.9767e+1 -1.0253e-2 1.1963e+4 2.9386e+1 1.8669e+2 # -Range: 0-300 Na3H(SO4)2 - Na3H(SO4)2 = + 1.0000 H+ + 2.0000 SO4-- + 3.0000 Na+ - log_k -0.8906 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na3H(SO4)2 + Na3H(SO4)2 = H+ + 2 SO4-2 + 3 Na+ + log_k -0.8906 + -delta_H 0 # Not possible to calculate enthalpy of reaction Na3H(SO4)2 # Enthalpy of formation: 0 kcal/mol Na3UO4 - Na3UO4 +4.0000 H+ = + 1.0000 UO2+ + 2.0000 H2O + 3.0000 Na+ - log_k 56.2574 - -delta_H -293.703 kJ/mol # Calculated enthalpy of reaction Na3UO4 + Na3UO4 + 4 H+ = UO2+ + 2 H2O + 3 Na+ + log_k 56.2574 + -delta_H -293.703 kJ/mol # Calculated enthalpy of reaction Na3UO4 # Enthalpy of formation: -2024 kJ/mol - -analytic -9.6724e+001 -6.2485e-003 1.9469e+004 3.6180e+001 3.0382e+002 + -analytic -9.6724e+1 -6.2485e-3 1.9469e+4 3.618e+1 3.0382e+2 # -Range: 0-300 Na4Ca(SO4)3:2H2O - Na4Ca(SO4)3:2H2O = + 1.0000 Ca++ + 2.0000 H2O + 3.0000 SO4-- + 4.0000 Na+ - log_k -5.8938 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na4Ca(SO4)3:2H2O + Na4Ca(SO4)3:2H2O = Ca+2 + 2 H2O + 3 SO4-2 + 4 Na+ + log_k -5.8938 + -delta_H 0 # Not possible to calculate enthalpy of reaction Na4Ca(SO4)3:2H2O # Enthalpy of formation: 0 kcal/mol Na4SiO4 - Na4SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 4.0000 Na+ - log_k 70.6449 - -delta_H -327.779 kJ/mol # Calculated enthalpy of reaction Na4SiO4 + Na4SiO4 + 4 H+ = SiO2 + 2 H2O + 4 Na+ + log_k 70.6449 + -delta_H -327.779 kJ/mol # Calculated enthalpy of reaction Na4SiO4 # Enthalpy of formation: -497.8 kcal/mol - -analytic -1.1969e+002 -6.5032e-003 2.6469e+004 4.4626e+001 -6.2007e+005 + -analytic -1.1969e+2 -6.5032e-3 2.6469e+4 4.4626e+1 -6.2007e+5 # -Range: 0-300 Na4UO2(CO3)3 - Na4UO2(CO3)3 +3.0000 H+ = + 1.0000 UO2++ + 3.0000 HCO3- + 4.0000 Na+ - log_k 4.0395 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na4UO2(CO3)3 + Na4UO2(CO3)3 + 3 H+ = UO2+2 + 3 HCO3- + 4 Na+ + log_k 4.0395 + -delta_H 0 # Not possible to calculate enthalpy of reaction Na4UO2(CO3)3 # Enthalpy of formation: 0 kcal/mol Na6Si2O7 - Na6Si2O7 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 H2O + 6.0000 Na+ - log_k 101.6199 - -delta_H -471.951 kJ/mol # Calculated enthalpy of reaction Na6Si2O7 + Na6Si2O7 + 6 H+ = 2 SiO2 + 3 H2O + 6 Na+ + log_k 101.6199 + -delta_H -471.951 kJ/mol # Calculated enthalpy of reaction Na6Si2O7 # Enthalpy of formation: -856.3 kcal/mol - -analytic -1.0590e+002 4.5576e-003 3.6830e+004 3.8030e+001 -1.0276e+006 + -analytic -1.059e+2 4.5576e-3 3.683e+4 3.803e+1 -1.0276e+6 # -Range: 0-300 NaBr - NaBr = + 1.0000 Br- + 1.0000 Na+ - log_k 2.9739 - -delta_H -0.741032 kJ/mol # Calculated enthalpy of reaction NaBr + NaBr = Br- + Na+ + log_k 2.9739 + -delta_H -0.741032 kJ/mol # Calculated enthalpy of reaction NaBr # Enthalpy of formation: -361.062 kJ/mol - -analytic -9.3227e+001 -3.2780e-002 2.2910e+003 3.9713e+001 3.5777e+001 + -analytic -9.3227e+1 -3.278e-2 2.291e+3 3.9713e+1 3.5777e+1 # -Range: 0-300 NaBr:2H2O - NaBr:2H2O = + 1.0000 Br- + 1.0000 Na+ + 2.0000 H2O - log_k 2.1040 - -delta_H 18.4883 kJ/mol # Calculated enthalpy of reaction NaBr:2H2O + NaBr:2H2O = Br- + Na+ + 2 H2O + log_k 2.104 + -delta_H 18.4883 kJ/mol # Calculated enthalpy of reaction NaBr:2H2O # Enthalpy of formation: -951.968 kJ/mol - -analytic -4.1855e+001 -4.6170e-003 8.3883e+002 1.7182e+001 1.4259e+001 + -analytic -4.1855e+1 -4.617e-3 8.3883e+2 1.7182e+1 1.4259e+1 # -Range: 0-200 NaFeO2 - NaFeO2 +4.0000 H+ = + 1.0000 Fe+++ + 1.0000 Na+ + 2.0000 H2O - log_k 19.8899 - -delta_H -163.339 kJ/mol # Calculated enthalpy of reaction NaFeO2 + NaFeO2 + 4 H+ = Fe+3 + Na+ + 2 H2O + log_k 19.8899 + -delta_H -163.339 kJ/mol # Calculated enthalpy of reaction NaFeO2 # Enthalpy of formation: -698.218 kJ/mol - -analytic -7.0047e+001 -9.6226e-003 1.0647e+004 2.3071e+001 1.8082e+002 + -analytic -7.0047e+1 -9.6226e-3 1.0647e+4 2.3071e+1 1.8082e+2 # -Range: 0-200 NaNpO2CO3:3.5H2O - NaNpO2CO3:3.5H2O +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Na+ + 1.0000 NpO2+ + 3.5000 H2O - log_k -1.2342 - -delta_H 27.0979 kJ/mol # Calculated enthalpy of reaction NaNpO2CO3:3.5H2O + NaNpO2CO3:3.5H2O + H+ = HCO3- + Na+ + NpO2+ + 3.5 H2O + log_k -1.2342 + -delta_H 27.0979 kJ/mol # Calculated enthalpy of reaction NaNpO2CO3:3.5H2O # Enthalpy of formation: -2935.76 kJ/mol - -analytic -1.4813e+002 -2.7355e-002 3.6537e+003 5.7701e+001 5.7055e+001 + -analytic -1.4813e+2 -2.7355e-2 3.6537e+3 5.7701e+1 5.7055e+1 # -Range: 0-300 NaTcO4 - NaTcO4 = + 1.0000 Na+ + 1.0000 TcO4- - log_k 1.5208 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaTcO4 + NaTcO4 = Na+ + TcO4- + log_k 1.5208 + -delta_H 0 # Not possible to calculate enthalpy of reaction NaTcO4 # Enthalpy of formation: 0 kcal/mol NaUO3 - NaUO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 Na+ + 1.0000 UO2+ - log_k 8.3371 - -delta_H -56.365 kJ/mol # Calculated enthalpy of reaction NaUO3 + NaUO3 + 2 H+ = H2O + Na+ + UO2+ + log_k 8.3371 + -delta_H -56.365 kJ/mol # Calculated enthalpy of reaction NaUO3 # Enthalpy of formation: -1494.9 kJ/mol - -analytic -3.6363e+001 7.0505e-004 4.5359e+003 1.1828e+001 7.0790e+001 + -analytic -3.6363e+1 7.0505e-4 4.5359e+3 1.1828e+1 7.079e+1 # -Range: 0-300 Nahcolite - NaHCO3 = + 1.0000 HCO3- + 1.0000 Na+ - log_k -0.1118 - -delta_H 17.0247 kJ/mol # Calculated enthalpy of reaction Nahcolite + NaHCO3 = HCO3- + Na+ + log_k -0.1118 + -delta_H 17.0247 kJ/mol # Calculated enthalpy of reaction Nahcolite # Enthalpy of formation: -226.4 kcal/mol - -analytic -2.2282e+002 -5.9693e-002 5.4887e+003 8.9744e+001 8.5712e+001 + -analytic -2.2282e+2 -5.9693e-2 5.4887e+3 8.9744e+1 8.5712e+1 # -Range: 0-300 Nantokite - CuCl = + 1.0000 Cl- + 1.0000 Cu+ - log_k -6.7623 - -delta_H 41.9296 kJ/mol # Calculated enthalpy of reaction Nantokite + CuCl = Cl- + Cu+ + log_k -6.7623 + -delta_H 41.9296 kJ/mol # Calculated enthalpy of reaction Nantokite # Enthalpy of formation: -137.329 kJ/mol - -analytic -2.2442e+001 -1.1201e-002 -1.8709e+003 1.0221e+001 -3.1763e+001 + -analytic -2.2442e+1 -1.1201e-2 -1.8709e+3 1.0221e+1 -3.1763e+1 # -Range: 0-200 Natrolite - Na2Al2Si3O10:2H2O +8.0000 H+ = + 2.0000 Al+++ + 2.0000 Na+ + 3.0000 SiO2 + 6.0000 H2O - log_k 18.5204 - -delta_H -186.971 kJ/mol # Calculated enthalpy of reaction Natrolite + Na2Al2Si3O10:2H2O + 8 H+ = 2 Al+3 + 2 Na+ + 3 SiO2 + 6 H2O + log_k 18.5204 + -delta_H -186.971 kJ/mol # Calculated enthalpy of reaction Natrolite # Enthalpy of formation: -5718.56 kJ/mol - -analytic -2.7712e+001 -2.7963e-003 1.6075e+004 1.5332e+000 -9.5765e+005 + -analytic -2.7712e+1 -2.7963e-3 1.6075e+4 1.5332e+0 -9.5765e+5 # -Range: 0-300 Natron - Na2CO3:10H2O +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Na+ + 10.0000 H2O - log_k 9.6102 - -delta_H 50.4781 kJ/mol # Calculated enthalpy of reaction Natron + Na2CO3:10H2O + H+ = HCO3- + 2 Na+ + 10 H2O + log_k 9.6102 + -delta_H 50.4781 kJ/mol # Calculated enthalpy of reaction Natron # Enthalpy of formation: -4079.39 kJ/mol - -analytic -1.9981e+002 -2.9247e-002 5.2937e+003 8.0973e+001 8.2662e+001 + -analytic -1.9981e+2 -2.9247e-2 5.2937e+3 8.0973e+1 8.2662e+1 # -Range: 0-300 Natrosilite - Na2Si2O5 +2.0000 H+ = + 1.0000 H2O + 2.0000 Na+ + 2.0000 SiO2 - log_k 18.1337 - -delta_H -51.7686 kJ/mol # Calculated enthalpy of reaction Natrosilite + Na2Si2O5 + 2 H+ = H2O + 2 Na+ + 2 SiO2 + log_k 18.1337 + -delta_H -51.7686 kJ/mol # Calculated enthalpy of reaction Natrosilite # Enthalpy of formation: -590.36 kcal/mol - -analytic -2.7628e+001 1.6865e-002 1.3302e+004 4.2356e+000 -1.2828e+006 + -analytic -2.7628e+1 1.6865e-2 1.3302e+4 4.2356e+0 -1.2828e+6 # -Range: 0-300 Naumannite - Ag2Se = + 1.0000 Se-- + 2.0000 Ag+ - log_k -57.4427 - -delta_H 0 # Not possible to calculate enthalpy of reaction Naumannite + Ag2Se = Se-2 + 2 Ag+ + log_k -57.4427 + -delta_H 0 # Not possible to calculate enthalpy of reaction Naumannite # Enthalpy of formation: -37.441 kJ/mol - -analytic -5.3844e+001 -1.0965e-002 -1.4739e+004 1.9842e+001 -2.2998e+002 + -analytic -5.3844e+1 -1.0965e-2 -1.4739e+4 1.9842e+1 -2.2998e+2 # -Range: 0-300 Nd - Nd +3.0000 H+ +0.7500 O2 = + 1.0000 Nd+++ + 1.5000 H2O - log_k 182.2233 - -delta_H -1116.29 kJ/mol # Calculated enthalpy of reaction Nd + Nd + 3 H+ + 0.75 O2 = Nd+3 + 1.5 H2O + log_k 182.2233 + -delta_H -1116.29 kJ/mol # Calculated enthalpy of reaction Nd # Enthalpy of formation: 0 kJ/mol - -analytic -2.7390e+002 -5.6545e-002 7.1502e+004 9.7969e+001 -8.2482e+005 + -analytic -2.739e+2 -5.6545e-2 7.1502e+4 9.7969e+1 -8.2482e+5 # -Range: 0-300 Nd(OH)3 - Nd(OH)3 +3.0000 H+ = + 1.0000 Nd+++ + 3.0000 H2O - log_k 18.0852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3 + Nd(OH)3 + 3 H+ = Nd+3 + 3 H2O + log_k 18.0852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3 # Enthalpy of formation: 0 kcal/mol Nd(OH)3(am) - Nd(OH)3 +3.0000 H+ = + 1.0000 Nd+++ + 3.0000 H2O - log_k 20.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3(am) + Nd(OH)3 + 3 H+ = Nd+3 + 3 H2O + log_k 20.4852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3(am) # Enthalpy of formation: 0 kcal/mol Nd(OH)3(c) - Nd(OH)3 +3.0000 H+ = + 1.0000 Nd+++ + 3.0000 H2O - log_k 15.7852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3(c) + Nd(OH)3 + 3 H+ = Nd+3 + 3 H2O + log_k 15.7852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3(c) # Enthalpy of formation: 0 kcal/mol Nd2(CO3)3 - Nd2(CO3)3 +3.0000 H+ = + 2.0000 Nd+++ + 3.0000 HCO3- - log_k -3.6636 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2(CO3)3 + Nd2(CO3)3 + 3 H+ = 2 Nd+3 + 3 HCO3- + log_k -3.6636 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2(CO3)3 # Enthalpy of formation: 0 kcal/mol Nd2O3 - Nd2O3 +6.0000 H+ = + 2.0000 Nd+++ + 3.0000 H2O - log_k 58.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2O3 + Nd2O3 + 6 H+ = 2 Nd+3 + 3 H2O + log_k 58.6 + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2O3 # Enthalpy of formation: 0 kcal/mol NdF3:.5H2O - NdF3:.5H2O = + 0.5000 H2O + 1.0000 Nd+++ + 3.0000 F- - log_k -18.6000 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdF3:.5H2O + NdF3:.5H2O = 0.5 H2O + Nd+3 + 3 F- + log_k -18.6 + -delta_H 0 # Not possible to calculate enthalpy of reaction NdF3:.5H2O # Enthalpy of formation: 0 kcal/mol NdOHCO3 - NdOHCO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 HCO3- + 1.0000 Nd+++ - log_k 2.8239 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdOHCO3 + NdOHCO3 + 2 H+ = H2O + HCO3- + Nd+3 + log_k 2.8239 + -delta_H 0 # Not possible to calculate enthalpy of reaction NdOHCO3 # Enthalpy of formation: 0 kcal/mol NdPO4:10H2O - NdPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Nd+++ + 10.0000 H2O - log_k -12.1782 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdPO4:10H2O + NdPO4:10H2O + H+ = HPO4-2 + Nd+3 + 10 H2O + log_k -12.1782 + -delta_H 0 # Not possible to calculate enthalpy of reaction NdPO4:10H2O # Enthalpy of formation: 0 kcal/mol Nepheline - NaAlSiO4 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Na+ + 1.0000 SiO2 + 2.0000 H2O - log_k 13.8006 - -delta_H -135.068 kJ/mol # Calculated enthalpy of reaction Nepheline + NaAlSiO4 + 4 H+ = Al+3 + Na+ + SiO2 + 2 H2O + log_k 13.8006 + -delta_H -135.068 kJ/mol # Calculated enthalpy of reaction Nepheline # Enthalpy of formation: -500.241 kcal/mol - -analytic -2.4856e+001 -8.8171e-003 8.5653e+003 6.0904e+000 -2.2786e+005 + -analytic -2.4856e+1 -8.8171e-3 8.5653e+3 6.0904e+0 -2.2786e+5 # -Range: 0-300 Nesquehonite - MgCO3:3H2O +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Mg++ + 3.0000 H2O - log_k 4.9955 - -delta_H -36.1498 kJ/mol # Calculated enthalpy of reaction Nesquehonite + MgCO3:3H2O + H+ = HCO3- + Mg+2 + 3 H2O + log_k 4.9955 + -delta_H -36.1498 kJ/mol # Calculated enthalpy of reaction Nesquehonite # Enthalpy of formation: -472.576 kcal/mol - -analytic 1.3771e+002 -6.0397e-002 -3.5049e+004 -1.8831e+001 4.4213e+006 + -analytic 1.3771e+2 -6.0397e-2 -3.5049e+4 -1.8831e+1 4.4213e+6 # -Range: 0-300 Ni - Ni +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Ni++ - log_k 50.9914 - -delta_H -333.745 kJ/mol # Calculated enthalpy of reaction Ni + Ni + 2 H+ + 0.5 O2 = H2O + Ni+2 + log_k 50.9914 + -delta_H -333.745 kJ/mol # Calculated enthalpy of reaction Ni # Enthalpy of formation: 0 kcal/mol - -analytic -5.8308e+001 -2.0133e-002 1.8444e+004 2.1590e+001 2.8781e+002 + -analytic -5.8308e+1 -2.0133e-2 1.8444e+4 2.159e+1 2.8781e+2 # -Range: 0-300 Ni(OH)2 - Ni(OH)2 +2.0000 H+ = + 1.0000 Ni++ + 2.0000 H2O - log_k 12.7485 - -delta_H -95.6523 kJ/mol # Calculated enthalpy of reaction Ni(OH)2 + Ni(OH)2 + 2 H+ = Ni+2 + 2 H2O + log_k 12.7485 + -delta_H -95.6523 kJ/mol # Calculated enthalpy of reaction Ni(OH)2 # Enthalpy of formation: -529.998 kJ/mol - -analytic -6.5279e+001 -5.9499e-003 7.3471e+003 2.2290e+001 1.2479e+002 + -analytic -6.5279e+1 -5.9499e-3 7.3471e+3 2.229e+1 1.2479e+2 # -Range: 0-200 Ni2P2O7 - Ni2P2O7 +1.0000 H2O = + 2.0000 HPO4-- + 2.0000 Ni++ - log_k -8.8991 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni2P2O7 + Ni2P2O7 + H2O = 2 HPO4-2 + 2 Ni+2 + log_k -8.8991 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni2P2O7 # Enthalpy of formation: 0 kcal/mol Ni2SiO4 - Ni2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Ni++ - log_k 14.3416 - -delta_H -127.629 kJ/mol # Calculated enthalpy of reaction Ni2SiO4 + Ni2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Ni+2 + log_k 14.3416 + -delta_H -127.629 kJ/mol # Calculated enthalpy of reaction Ni2SiO4 # Enthalpy of formation: -341.705 kcal/mol - -analytic -4.0414e+001 -1.1194e-002 9.6515e+003 1.2026e+001 -3.6336e+005 + -analytic -4.0414e+1 -1.1194e-2 9.6515e+3 1.2026e+1 -3.6336e+5 # -Range: 0-300 Ni3(PO4)2 - Ni3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Ni++ - log_k -6.6414 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni3(PO4)2 + Ni3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 Ni+2 + log_k -6.6414 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni3(PO4)2 # Enthalpy of formation: 0 kcal/mol NiCO3 - NiCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Ni++ - log_k 3.5118 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiCO3 + NiCO3 + H+ = HCO3- + Ni+2 + log_k 3.5118 + -delta_H 0 # Not possible to calculate enthalpy of reaction NiCO3 # Enthalpy of formation: 0 kcal/mol NiCl2 - NiCl2 = + 1.0000 Ni++ + 2.0000 Cl- - log_k 8.6113 - -delta_H -82.7969 kJ/mol # Calculated enthalpy of reaction NiCl2 + NiCl2 = Ni+2 + 2 Cl- + log_k 8.6113 + -delta_H -82.7969 kJ/mol # Calculated enthalpy of reaction NiCl2 # Enthalpy of formation: -305.336 kJ/mol - -analytic -1.2416e+000 -2.3139e-002 2.6529e+003 3.1696e+000 4.5052e+001 + -analytic -1.2416e+0 -2.3139e-2 2.6529e+3 3.1696e+0 4.5052e+1 # -Range: 0-200 NiCl2:2H2O - NiCl2:2H2O = + 1.0000 Ni++ + 2.0000 Cl- + 2.0000 H2O - log_k 3.9327 - -delta_H -37.6746 kJ/mol # Calculated enthalpy of reaction NiCl2:2H2O + NiCl2:2H2O = Ni+2 + 2 Cl- + 2 H2O + log_k 3.9327 + -delta_H -37.6746 kJ/mol # Calculated enthalpy of reaction NiCl2:2H2O # Enthalpy of formation: -922.135 kJ/mol - -analytic -4.8814e+001 -2.2602e-002 2.5951e+003 2.0518e+001 4.4086e+001 + -analytic -4.8814e+1 -2.2602e-2 2.5951e+3 2.0518e+1 4.4086e+1 # -Range: 0-200 NiCl2:4H2O - NiCl2:4H2O = + 1.0000 Ni++ + 2.0000 Cl- + 4.0000 H2O - log_k 3.8561 - -delta_H -15.4373 kJ/mol # Calculated enthalpy of reaction NiCl2:4H2O + NiCl2:4H2O = Ni+2 + 2 Cl- + 4 H2O + log_k 3.8561 + -delta_H -15.4373 kJ/mol # Calculated enthalpy of reaction NiCl2:4H2O # Enthalpy of formation: -1516.05 kJ/mol - -analytic -1.0545e+002 -2.4691e-002 3.9978e+003 4.1727e+001 6.7926e+001 + -analytic -1.0545e+2 -2.4691e-2 3.9978e+3 4.1727e+1 6.7926e+1 # -Range: 0-200 NiF2 - NiF2 = + 1.0000 Ni++ + 2.0000 F- - log_k 0.8772 - -delta_H -73.1438 kJ/mol # Calculated enthalpy of reaction NiF2 + NiF2 = Ni+2 + 2 F- + log_k 0.8772 + -delta_H -73.1438 kJ/mol # Calculated enthalpy of reaction NiF2 # Enthalpy of formation: -651.525 kJ/mol - -analytic -2.5291e+002 -8.4179e-002 9.3429e+003 1.0002e+002 1.4586e+002 + -analytic -2.5291e+2 -8.4179e-2 9.3429e+3 1.0002e+2 1.4586e+2 # -Range: 0-300 NiF2:4H2O - NiF2:4H2O = + 1.0000 Ni++ + 2.0000 F- + 4.0000 H2O - log_k -4.0588 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiF2:4H2O + NiF2:4H2O = Ni+2 + 2 F- + 4 H2O + log_k -4.0588 + -delta_H 0 # Not possible to calculate enthalpy of reaction NiF2:4H2O # Enthalpy of formation: 0 kcal/mol NiSO4 - NiSO4 = + 1.0000 Ni++ + 1.0000 SO4-- - log_k 5.3197 - -delta_H -90.5092 kJ/mol # Calculated enthalpy of reaction NiSO4 + NiSO4 = Ni+2 + SO4-2 + log_k 5.3197 + -delta_H -90.5092 kJ/mol # Calculated enthalpy of reaction NiSO4 # Enthalpy of formation: -873.066 kJ/mol - -analytic -1.8878e+002 -7.6403e-002 7.9412e+003 7.6866e+001 1.2397e+002 + -analytic -1.8878e+2 -7.6403e-2 7.9412e+3 7.6866e+1 1.2397e+2 # -Range: 0-300 NiSO4:6H2O(alpha) - NiSO4:6H2O = + 1.0000 Ni++ + 1.0000 SO4-- + 6.0000 H2O - log_k -2.0072 - -delta_H 4.37983 kJ/mol # Calculated enthalpy of reaction NiSO4:6H2O(alpha) + NiSO4:6H2O = Ni+2 + SO4-2 + 6 H2O + log_k -2.0072 + -delta_H 4.37983 kJ/mol # Calculated enthalpy of reaction NiSO4:6H2O(alpha) # Enthalpy of formation: -2682.99 kJ/mol - -analytic -1.1937e+002 -1.3785e-002 4.1543e+003 4.3454e+001 7.0587e+001 + -analytic -1.1937e+2 -1.3785e-2 4.1543e+3 4.3454e+1 7.0587e+1 # -Range: 0-200 Nickelbischofite - NiCl2:6H2O = + 1.0000 Ni++ + 2.0000 Cl- + 6.0000 H2O - log_k 3.1681 - -delta_H 0.064088 kJ/mol # Calculated enthalpy of reaction Nickelbischofite + NiCl2:6H2O = Ni+2 + 2 Cl- + 6 H2O + log_k 3.1681 + -delta_H 0.064088 kJ/mol # Calculated enthalpy of reaction Nickelbischofite # Enthalpy of formation: -2103.23 kJ/mol - -analytic -1.4340e+002 -2.1257e-002 5.1858e+003 5.4759e+001 8.8112e+001 + -analytic -1.434e+2 -2.1257e-2 5.1858e+3 5.4759e+1 8.8112e+1 # -Range: 0-200 Ningyoite - CaUP2O8:2H2O +2.0000 H+ = + 1.0000 Ca++ + 1.0000 U++++ + 2.0000 H2O + 2.0000 HPO4-- - log_k -29.7931 - -delta_H -36.4769 kJ/mol # Calculated enthalpy of reaction Ningyoite + CaUP2O8:2H2O + 2 H+ = Ca+2 + U+4 + 2 H2O + 2 HPO4-2 + log_k -29.7931 + -delta_H -36.4769 kJ/mol # Calculated enthalpy of reaction Ningyoite # Enthalpy of formation: -1016.65 kcal/mol - -analytic -1.0274e+002 -4.9041e-002 1.7779e+003 3.2973e+001 3.0227e+001 + -analytic -1.0274e+2 -4.9041e-2 1.7779e+3 3.2973e+1 3.0227e+1 # -Range: 0-200 Niter - KNO3 = + 1.0000 K+ + 1.0000 NO3- - log_k -0.2061 - -delta_H 35.4794 kJ/mol # Calculated enthalpy of reaction Niter + KNO3 = K+ + NO3- + log_k -0.2061 + -delta_H 35.4794 kJ/mol # Calculated enthalpy of reaction Niter # Enthalpy of formation: -494.46 kJ/mol - -analytic -6.5607e+001 -2.8165e-002 -4.0131e+002 3.0361e+001 -6.2425e+000 + -analytic -6.5607e+1 -2.8165e-2 -4.0131e+2 3.0361e+1 -6.2425e+0 # -Range: 0-300 Nitrobarite - Ba(NO3)2 = + 1.0000 Ba++ + 2.0000 NO3- - log_k -2.4523 - -delta_H 40.8161 kJ/mol # Calculated enthalpy of reaction Nitrobarite + Ba(NO3)2 = Ba+2 + 2 NO3- + log_k -2.4523 + -delta_H 40.8161 kJ/mol # Calculated enthalpy of reaction Nitrobarite # Enthalpy of formation: -992.082 kJ/mol - -analytic -1.6179e+002 -6.5831e-002 1.2142e+003 7.0664e+001 1.8995e+001 + -analytic -1.6179e+2 -6.5831e-2 1.2142e+3 7.0664e+1 1.8995e+1 # -Range: 0-300 Nontronite-Ca - Ca.165Fe2Al.33Si3.67H2O12 +7.3200 H+ = + 0.1650 Ca++ + 0.3300 Al+++ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O - log_k -11.5822 - -delta_H -38.138 kJ/mol # Calculated enthalpy of reaction Nontronite-Ca + Ca.165Fe2Al.33Si3.67H2O12 + 7.32 H+ = 0.165 Ca+2 + 0.33 Al+3 + 2 Fe+3 + 3.67 SiO2 + 4.66 H2O + log_k -11.5822 + -delta_H -38.138 kJ/mol # Calculated enthalpy of reaction Nontronite-Ca # Enthalpy of formation: -1166.7 kcal/mol - -analytic 1.6291e+001 4.3557e-003 1.0221e+004 -1.8690e+001 -1.5427e+006 + -analytic 1.6291e+1 4.3557e-3 1.0221e+4 -1.869e+1 -1.5427e+6 # -Range: 0-300 Nontronite-Cs - Cs.33Si4Fe1.67Mg.33H2O12 +6.0000 H+ = + 0.3300 Cs+ + 0.3300 Mg++ + 1.6700 Fe+++ + 4.0000 H2O + 4.0000 SiO2 - log_k 5.7975 - -delta_H -86.6996 kJ/mol # Calculated enthalpy of reaction Nontronite-Cs + Cs.33Si4Fe1.67Mg.33H2O12 + 6 H+ = 0.33 Cs+ + 0.33 Mg+2 + 1.67 Fe+3 + 4 H2O + 4 SiO2 + log_k 5.7975 + -delta_H -86.6996 kJ/mol # Calculated enthalpy of reaction Nontronite-Cs # Enthalpy of formation: -1168.54 kcal/mol - -analytic -1.1646e+001 1.0033e-002 1.7668e+004 -9.0129e+000 -2.0143e+006 + -analytic -1.1646e+1 1.0033e-2 1.7668e+4 -9.0129e+0 -2.0143e+6 # -Range: 0-300 Nontronite-H - H.33Fe2Al.33Si3.67H2O12 +6.9900 H+ = + 0.3300 Al+++ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O - log_k -12.5401 - -delta_H -30.452 kJ/mol # Calculated enthalpy of reaction Nontronite-H + H.33Fe2Al.33Si3.67H2O12 + 6.99 H+ = 0.33 Al+3 + 2 Fe+3 + 3.67 SiO2 + 4.66 H2O + log_k -12.5401 + -delta_H -30.452 kJ/mol # Calculated enthalpy of reaction Nontronite-H # Enthalpy of formation: -1147.12 kcal/mol - -analytic 9.7794e+001 1.4055e-002 4.7440e+003 -4.7272e+001 -1.2103e+006 + -analytic 9.7794e+1 1.4055e-2 4.744e+3 -4.7272e+1 -1.2103e+6 # -Range: 0-300 Nontronite-K - K.33Fe2Al.33Si3.67H2O12 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 K+ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O - log_k -11.8648 - -delta_H -26.5822 kJ/mol # Calculated enthalpy of reaction Nontronite-K + K.33Fe2Al.33Si3.67H2O12 + 7.32 H+ = 0.33 Al+3 + 0.33 K+ + 2 Fe+3 + 3.67 SiO2 + 4.66 H2O + log_k -11.8648 + -delta_H -26.5822 kJ/mol # Calculated enthalpy of reaction Nontronite-K # Enthalpy of formation: -1167.93 kcal/mol - -analytic 1.3630e+001 4.7708e-003 1.0073e+004 -1.7407e+001 -1.5803e+006 + -analytic 1.363e+1 4.7708e-3 1.0073e+4 -1.7407e+1 -1.5803e+6 # -Range: 0-300 Nontronite-Mg - Mg.165Fe2Al.33Si3.67H2O12 +7.3200 H+ = + 0.1650 Mg++ + 0.3300 Al+++ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O - log_k -11.6200 - -delta_H -41.1779 kJ/mol # Calculated enthalpy of reaction Nontronite-Mg + Mg.165Fe2Al.33Si3.67H2O12 + 7.32 H+ = 0.165 Mg+2 + 0.33 Al+3 + 2 Fe+3 + 3.67 SiO2 + 4.66 H2O + log_k -11.62 + -delta_H -41.1779 kJ/mol # Calculated enthalpy of reaction Nontronite-Mg # Enthalpy of formation: -1162.93 kcal/mol - -analytic 5.5961e+001 1.0139e-002 8.0777e+003 -3.3164e+001 -1.4031e+006 + -analytic 5.5961e+1 1.0139e-2 8.0777e+3 -3.3164e+1 -1.4031e+6 # -Range: 0-300 Nontronite-Na - Na.33Fe2Al.33Si3.67H2O12 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 Na+ + 2.0000 Fe+++ + 3.6700 SiO2 + 4.6600 H2O - log_k -11.5263 - -delta_H -31.5687 kJ/mol # Calculated enthalpy of reaction Nontronite-Na + Na.33Fe2Al.33Si3.67H2O12 + 7.32 H+ = 0.33 Al+3 + 0.33 Na+ + 2 Fe+3 + 3.67 SiO2 + 4.66 H2O + log_k -11.5263 + -delta_H -31.5687 kJ/mol # Calculated enthalpy of reaction Nontronite-Na # Enthalpy of formation: -1165.8 kcal/mol - -analytic 6.7915e+001 1.2851e-002 7.1218e+003 -3.7112e+001 -1.3758e+006 + -analytic 6.7915e+1 1.2851e-2 7.1218e+3 -3.7112e+1 -1.3758e+6 # -Range: 0-300 Np - Np +4.0000 H+ +1.0000 O2 = + 1.0000 Np++++ + 2.0000 H2O - log_k 174.1077 - -delta_H -1115.54 kJ/mol # Calculated enthalpy of reaction Np + Np + 4 H+ + O2 = Np+4 + 2 H2O + log_k 174.1077 + -delta_H -1115.54 kJ/mol # Calculated enthalpy of reaction Np # Enthalpy of formation: 0 kJ/mol - -analytic -3.2136e+001 -1.4340e-002 5.7853e+004 6.6512e+000 9.0275e+002 + -analytic -3.2136e+1 -1.434e-2 5.7853e+4 6.6512e+0 9.0275e+2 # -Range: 0-300 Np(HPO4)2 - Np(HPO4)2 = + 1.0000 Np++++ + 2.0000 HPO4-- - log_k -30.9786 - -delta_H -18.6219 kJ/mol # Calculated enthalpy of reaction Np(HPO4)2 + Np(HPO4)2 = Np+4 + 2 HPO4-2 + log_k -30.9786 + -delta_H -18.6219 kJ/mol # Calculated enthalpy of reaction Np(HPO4)2 # Enthalpy of formation: -3121.54 kJ/mol - -analytic -3.6627e+002 -1.3955e-001 7.1370e+003 1.4261e+002 1.1147e+002 + -analytic -3.6627e+2 -1.3955e-1 7.137e+3 1.4261e+2 1.1147e+2 # -Range: 0-300 Np(OH)4 - Np(OH)4 +4.0000 H+ = + 1.0000 Np++++ + 4.0000 H2O - log_k 0.8103 - -delta_H -78.4963 kJ/mol # Calculated enthalpy of reaction Np(OH)4 + Np(OH)4 + 4 H+ = Np+4 + 4 H2O + log_k 0.8103 + -delta_H -78.4963 kJ/mol # Calculated enthalpy of reaction Np(OH)4 # Enthalpy of formation: -1620.86 kJ/mol - -analytic -9.5122e+001 -1.0532e-002 7.1132e+003 3.0398e+001 1.1102e+002 + -analytic -9.5122e+1 -1.0532e-2 7.1132e+3 3.0398e+1 1.1102e+2 # -Range: 0-300 Np2O5 - Np2O5 +2.0000 H+ = + 1.0000 H2O + 2.0000 NpO2+ - log_k 9.5000 - -delta_H -94.4576 kJ/mol # Calculated enthalpy of reaction Np2O5 + Np2O5 + 2 H+ = H2O + 2 NpO2+ + log_k 9.5 + -delta_H -94.4576 kJ/mol # Calculated enthalpy of reaction Np2O5 # Enthalpy of formation: -513.232 kcal/mol - -analytic 5.9974e+003 1.4553e+000 -1.7396e+005 -2.3595e+003 -2.9689e+003 + -analytic 5.9974e+3 1.4553e+0 -1.7396e+5 -2.3595e+3 -2.9689e+3 # -Range: 25-150 NpO2 - NpO2 +4.0000 H+ = + 1.0000 Np++++ + 2.0000 H2O - log_k -7.8026 - -delta_H -53.6087 kJ/mol # Calculated enthalpy of reaction NpO2 + NpO2 + 4 H+ = Np+4 + 2 H2O + log_k -7.8026 + -delta_H -53.6087 kJ/mol # Calculated enthalpy of reaction NpO2 # Enthalpy of formation: -1074.07 kJ/mol - -analytic -7.0053e+001 -1.1017e-002 4.4742e+003 2.0421e+001 6.9836e+001 + -analytic -7.0053e+1 -1.1017e-2 4.4742e+3 2.0421e+1 6.9836e+1 # -Range: 0-300 NpO2(OH)2 - NpO2(OH)2 +2.0000 H+ = + 1.0000 NpO2++ + 2.0000 H2O - log_k 5.9851 - -delta_H -54.9977 kJ/mol # Calculated enthalpy of reaction NpO2(OH)2 + NpO2(OH)2 + 2 H+ = NpO2+2 + 2 H2O + log_k 5.9851 + -delta_H -54.9977 kJ/mol # Calculated enthalpy of reaction NpO2(OH)2 # Enthalpy of formation: -1377.16 kJ/mol - -analytic -2.7351e+001 -1.5987e-003 3.8301e+003 8.4735e+000 5.9773e+001 + -analytic -2.7351e+1 -1.5987e-3 3.8301e+3 8.4735e+0 5.9773e+1 # -Range: 0-300 NpO2OH(am) - NpO2OH +1.0000 H+ = + 1.0000 H2O + 1.0000 NpO2+ - log_k 4.2364 - -delta_H -39.6673 kJ/mol # Calculated enthalpy of reaction NpO2OH(am) + NpO2OH + H+ = H2O + NpO2+ + log_k 4.2364 + -delta_H -39.6673 kJ/mol # Calculated enthalpy of reaction NpO2OH(am) # Enthalpy of formation: -1224.16 kJ/mol - -analytic -3.8824e+000 6.7122e-003 2.5390e+003 -9.7040e-001 3.9619e+001 + -analytic -3.8824e+0 6.7122e-3 2.539e+3 -9.704e-1 3.9619e+1 # -Range: 0-300 Okenite - CaSi2O4(OH)2:H2O +2.0000 H+ = + 1.0000 Ca++ + 2.0000 SiO2 + 3.0000 H2O - log_k 10.3816 - -delta_H -19.4974 kJ/mol # Calculated enthalpy of reaction Okenite + CaSi2O4(OH)2:H2O + 2 H+ = Ca+2 + 2 SiO2 + 3 H2O + log_k 10.3816 + -delta_H -19.4974 kJ/mol # Calculated enthalpy of reaction Okenite # Enthalpy of formation: -749.641 kcal/mol - -analytic -7.7353e+001 1.5091e-002 1.3023e+004 2.1337e+001 -1.1831e+006 + -analytic -7.7353e+1 1.5091e-2 1.3023e+4 2.1337e+1 -1.1831e+6 # -Range: 0-300 Orpiment - As2S3 +6.0000 H2O = + 2.0000 H2AsO3- + 3.0000 HS- + 5.0000 H+ - log_k -79.4159 - -delta_H 406.539 kJ/mol # Calculated enthalpy of reaction Orpiment + As2S3 + 6 H2O = 2 H2AsO3- + 3 HS- + 5 H+ + log_k -79.4159 + -delta_H 406.539 kJ/mol # Calculated enthalpy of reaction Orpiment # Enthalpy of formation: -169.423 kJ/mol - -analytic -3.3964e+002 -1.4977e-001 -1.5711e+004 1.4448e+002 -2.4505e+002 + -analytic -3.3964e+2 -1.4977e-1 -1.5711e+4 1.4448e+2 -2.4505e+2 # -Range: 0-300 Otavite - CdCO3 +1.0000 H+ = + 1.0000 Cd++ + 1.0000 HCO3- - log_k -1.7712 - -delta_H 0 # Not possible to calculate enthalpy of reaction Otavite + CdCO3 + H+ = Cd+2 + HCO3- + log_k -1.7712 + -delta_H 0 # Not possible to calculate enthalpy of reaction Otavite # Enthalpy of formation: 0 kcal/mol Ottemannite - Sn2S3 +3.0000 H+ = + 1.0000 Sn++ + 1.0000 Sn++++ + 3.0000 HS- - log_k -46.2679 - -delta_H 236.727 kJ/mol # Calculated enthalpy of reaction Ottemannite + Sn2S3 + 3 H+ = Sn+2 + Sn+4 + 3 HS- + log_k -46.2679 + -delta_H 236.727 kJ/mol # Calculated enthalpy of reaction Ottemannite # Enthalpy of formation: -63 kcal/mol - -analytic -6.2863e+001 -5.9171e-002 -1.3469e+004 3.2092e+001 -2.2870e+002 + -analytic -6.2863e+1 -5.9171e-2 -1.3469e+4 3.2092e+1 -2.287e+2 # -Range: 0-200 Oxychloride-Mg - Mg2Cl(OH)3:4H2O +3.0000 H+ = + 1.0000 Cl- + 2.0000 Mg++ + 7.0000 H2O - log_k 25.8319 - -delta_H 0 # Not possible to calculate enthalpy of reaction Oxychloride-Mg + Mg2Cl(OH)3:4H2O + 3 H+ = Cl- + 2 Mg+2 + 7 H2O + log_k 25.8319 + -delta_H 0 # Not possible to calculate enthalpy of reaction Oxychloride-Mg # Enthalpy of formation: 0 kcal/mol P - P +1.5000 H2O +1.2500 O2 = + 1.0000 HPO4-- + 2.0000 H+ - log_k 132.1032 - -delta_H -848.157 kJ/mol # Calculated enthalpy of reaction P + P + 1.5 H2O + 1.25 O2 = HPO4-2 + 2 H+ + log_k 132.1032 + -delta_H -848.157 kJ/mol # Calculated enthalpy of reaction P # Enthalpy of formation: 0 kJ/mol - -analytic -9.2727e+001 -6.8342e-002 4.3465e+004 4.0156e+001 6.7826e+002 + -analytic -9.2727e+1 -6.8342e-2 4.3465e+4 4.0156e+1 6.7826e+2 # -Range: 0-300 Paragonite - NaAl3Si3O10(OH)2 +10.0000 H+ = + 1.0000 Na+ + 3.0000 Al+++ + 3.0000 SiO2 + 6.0000 H2O - log_k 17.5220 - -delta_H -275.056 kJ/mol # Calculated enthalpy of reaction Paragonite + NaAl3Si3O10(OH)2 + 10 H+ = Na+ + 3 Al+3 + 3 SiO2 + 6 H2O + log_k 17.522 + -delta_H -275.056 kJ/mol # Calculated enthalpy of reaction Paragonite # Enthalpy of formation: -1416.96 kcal/mol - -analytic 3.5507e+001 -1.0720e-002 1.3519e+004 -2.2283e+001 -4.5657e+005 + -analytic 3.5507e+1 -1.072e-2 1.3519e+4 -2.2283e+1 -4.5657e+5 # -Range: 0-300 Paralaurionite - PbClOH +1.0000 H+ = + 1.0000 Cl- + 1.0000 H2O + 1.0000 Pb++ - log_k 0.2035 - -delta_H 8.41948 kJ/mol # Calculated enthalpy of reaction Paralaurionite + PbClOH + H+ = Cl- + H2O + Pb+2 + log_k 0.2035 + -delta_H 8.41948 kJ/mol # Calculated enthalpy of reaction Paralaurionite # Enthalpy of formation: -460.417 kJ/mol - -analytic -1.1245e+001 -1.0520e-002 -5.3551e+002 6.6175e+000 -9.0896e+000 + -analytic -1.1245e+1 -1.052e-2 -5.3551e+2 6.6175e+0 -9.0896e+0 # -Range: 0-200 Pargasite - NaCa2Al3Mg4Si6O22(OH)2 +22.0000 H+ = + 1.0000 Na+ + 2.0000 Ca++ + 3.0000 Al+++ + 4.0000 Mg++ + 6.0000 SiO2 + 12.0000 H2O - log_k 101.9939 - -delta_H -880.205 kJ/mol # Calculated enthalpy of reaction Pargasite + NaCa2Al3Mg4Si6O22(OH)2 + 22 H+ = Na+ + 2 Ca+2 + 3 Al+3 + 4 Mg+2 + 6 SiO2 + 12 H2O + log_k 101.9939 + -delta_H -880.205 kJ/mol # Calculated enthalpy of reaction Pargasite # Enthalpy of formation: -3016.62 kcal/mol - -analytic -6.7889e+001 -3.7817e-002 5.0493e+004 9.2705e+000 -1.0163e+006 + -analytic -6.7889e+1 -3.7817e-2 5.0493e+4 9.2705e+0 -1.0163e+6 # -Range: 0-300 Parsonsite - Pb2UO2(PO4)2:2H2O +2.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 HPO4-- + 2.0000 Pb++ - log_k -27.7911 - -delta_H 0 # Not possible to calculate enthalpy of reaction Parsonsite + Pb2UO2(PO4)2:2H2O + 2 H+ = UO2+2 + 2 H2O + 2 HPO4-2 + 2 Pb+2 + log_k -27.7911 + -delta_H 0 # Not possible to calculate enthalpy of reaction Parsonsite # Enthalpy of formation: 0 kcal/mol Pb - Pb +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Pb++ - log_k 47.1871 - -delta_H -278.851 kJ/mol # Calculated enthalpy of reaction Pb + Pb + 2 H+ + 0.5 O2 = H2O + Pb+2 + log_k 47.1871 + -delta_H -278.851 kJ/mol # Calculated enthalpy of reaction Pb # Enthalpy of formation: 0 kJ/mol - -analytic -3.1784e+001 -1.4816e-002 1.4984e+004 1.3383e+001 2.3381e+002 + -analytic -3.1784e+1 -1.4816e-2 1.4984e+4 1.3383e+1 2.3381e+2 # -Range: 0-300 Pb(H2PO4)2 - Pb(H2PO4)2 = + 1.0000 Pb++ + 2.0000 H+ + 2.0000 HPO4-- - log_k -9.8400 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(H2PO4)2 + Pb(H2PO4)2 = Pb+2 + 2 H+ + 2 HPO4-2 + log_k -9.84 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(H2PO4)2 # Enthalpy of formation: 0 kcal/mol Pb(IO3)2 - Pb(IO3)2 = + 1.0000 Pb++ + 2.0000 IO3- - log_k -12.5173 - -delta_H 53.7783 kJ/mol # Calculated enthalpy of reaction Pb(IO3)2 + Pb(IO3)2 = Pb+2 + 2 IO3- + log_k -12.5173 + -delta_H 53.7783 kJ/mol # Calculated enthalpy of reaction Pb(IO3)2 # Enthalpy of formation: -495.525 kJ/mol - -analytic -5.3573e+000 -1.4164e-002 -3.6236e+003 3.7209e+000 -6.1532e+001 + -analytic -5.3573e+0 -1.4164e-2 -3.6236e+3 3.7209e+0 -6.1532e+1 # -Range: 0-200 Pb(N3)2(mono) - Pb(N3)2 = + 1.0000 Pb++ + 2.0000 N3- - log_k -8.3583 - -delta_H 72.9495 kJ/mol # Calculated enthalpy of reaction Pb(N3)2(mono) + Pb(N3)2 = Pb+2 + 2 N3- + log_k -8.3583 + -delta_H 72.9495 kJ/mol # Calculated enthalpy of reaction Pb(N3)2(mono) # Enthalpy of formation: 478.251 kJ/mol - -analytic 6.0051e+001 -1.1168e-002 -7.0041e+003 -1.6812e+001 -1.1896e+002 + -analytic 6.0051e+1 -1.1168e-2 -7.0041e+3 -1.6812e+1 -1.1896e+2 # -Range: 0-200 Pb(N3)2(orth) - Pb(N3)2 = + 1.0000 Pb++ + 2.0000 N3- - log_k -8.7963 - -delta_H 75.0615 kJ/mol # Calculated enthalpy of reaction Pb(N3)2(orth) + Pb(N3)2 = Pb+2 + 2 N3- + log_k -8.7963 + -delta_H 75.0615 kJ/mol # Calculated enthalpy of reaction Pb(N3)2(orth) # Enthalpy of formation: 476.139 kJ/mol - -analytic 5.9779e+001 -1.1215e-002 -7.1081e+003 -1.6732e+001 -1.2073e+002 + -analytic 5.9779e+1 -1.1215e-2 -7.1081e+3 -1.6732e+1 -1.2073e+2 # -Range: 0-200 Pb(Thiocyanate)2 - Pb(Thiocyanate)2 = + 1.0000 Pb++ + 2.0000 Thiocyanate- - log_k -0.0910 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(Thiocyanate)2 + Pb(Thiocyanate)2 = Pb+2 + 2 Thiocyanate- + log_k -0.091 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(Thiocyanate)2 # Enthalpy of formation: 151.212 kJ/mol - -analytic 7.4247e+000 -1.6226e-002 0.0000e+000 0.0000e+000 -2.3938e+005 + -analytic 7.4247e+0 -1.6226e-2 0e+0 0e+0 -2.3938e+5 # -Range: 0-200 Pb2Cl2CO3 - Pb2Cl2CO3 +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Cl- + 2.0000 Pb++ - log_k -9.6180 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2Cl2CO3 + Pb2Cl2CO3 + H+ = HCO3- + 2 Cl- + 2 Pb+2 + log_k -9.618 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2Cl2CO3 # Enthalpy of formation: 0 kcal/mol Pb2Cl5NH4 - Pb2Cl5NH4 = + 1.0000 H+ + 1.0000 NH3 + 2.0000 Pb++ + 5.0000 Cl- - log_k -19.6100 - -delta_H 119.617 kJ/mol # Calculated enthalpy of reaction Pb2Cl5NH4 + Pb2Cl5NH4 = H+ + NH3 + 2 Pb+2 + 5 Cl- + log_k -19.61 + -delta_H 119.617 kJ/mol # Calculated enthalpy of reaction Pb2Cl5NH4 # Enthalpy of formation: -1034.51 kJ/mol - -analytic 1.3149e+001 -4.8598e-002 -9.8473e+003 5.9552e+000 -1.6723e+002 + -analytic 1.3149e+1 -4.8598e-2 -9.8473e+3 5.9552e+0 -1.6723e+2 # -Range: 0-200 Pb2O(N3)2 - Pb2O(N3)2 +2.0000 H+ = + 1.0000 H2O + 2.0000 N3- + 2.0000 Pb++ - log_k -13.7066 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2O(N3)2 + Pb2O(N3)2 + 2 H+ = H2O + 2 N3- + 2 Pb+2 + log_k -13.7066 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2O(N3)2 # Enthalpy of formation: 0 kcal/mol Pb2SiO4 - Pb2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Pb++ - log_k 18.0370 - -delta_H -83.9883 kJ/mol # Calculated enthalpy of reaction Pb2SiO4 + Pb2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Pb+2 + log_k 18.037 + -delta_H -83.9883 kJ/mol # Calculated enthalpy of reaction Pb2SiO4 # Enthalpy of formation: -1363.55 kJ/mol - -analytic 2.7287e+002 6.3875e-002 -3.7001e+003 -1.0568e+002 -6.2927e+001 + -analytic 2.7287e+2 6.3875e-2 -3.7001e+3 -1.0568e+2 -6.2927e+1 # -Range: 0-200 Pb3(PO4)2 - Pb3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Pb++ - log_k -19.9744 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb3(PO4)2 + Pb3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 Pb+2 + log_k -19.9744 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb3(PO4)2 # Enthalpy of formation: 0 kcal/mol Pb3SO6 - Pb3SO6 +4.0000 H+ = + 1.0000 SO4-- + 2.0000 H2O + 3.0000 Pb++ - log_k 10.5981 - -delta_H -79.3438 kJ/mol # Calculated enthalpy of reaction Pb3SO6 + Pb3SO6 + 4 H+ = SO4-2 + 2 H2O + 3 Pb+2 + log_k 10.5981 + -delta_H -79.3438 kJ/mol # Calculated enthalpy of reaction Pb3SO6 # Enthalpy of formation: -1399.17 kJ/mol - -analytic -5.3308e+000 -1.8639e-002 3.0245e+003 4.5760e+000 5.1362e+001 + -analytic -5.3308e+0 -1.8639e-2 3.0245e+3 4.576e+0 5.1362e+1 # -Range: 0-200 Pb4Cl2(OH)6 - Pb4Cl2(OH)6 +6.0000 H+ = + 2.0000 Cl- + 4.0000 Pb++ + 6.0000 H2O - log_k 17.2793 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4Cl2(OH)6 + Pb4Cl2(OH)6 + 6 H+ = 2 Cl- + 4 Pb+2 + 6 H2O + log_k 17.2793 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4Cl2(OH)6 # Enthalpy of formation: 0 kcal/mol Pb4O(PO4)2 - Pb4O(PO4)2 +4.0000 H+ = + 1.0000 H2O + 2.0000 HPO4-- + 4.0000 Pb++ - log_k -12.5727 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4O(PO4)2 + Pb4O(PO4)2 + 4 H+ = H2O + 2 HPO4-2 + 4 Pb+2 + log_k -12.5727 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4O(PO4)2 # Enthalpy of formation: 0 kcal/mol Pb4SO7 - Pb4SO7 +6.0000 H+ = + 1.0000 SO4-- + 3.0000 H2O + 4.0000 Pb++ - log_k 21.7354 - -delta_H -136.566 kJ/mol # Calculated enthalpy of reaction Pb4SO7 + Pb4SO7 + 6 H+ = SO4-2 + 3 H2O + 4 Pb+2 + log_k 21.7354 + -delta_H -136.566 kJ/mol # Calculated enthalpy of reaction Pb4SO7 # Enthalpy of formation: -1626.87 kJ/mol - -analytic -2.6884e+001 -2.1429e-002 6.8390e+003 1.2951e+001 1.1614e+002 + -analytic -2.6884e+1 -2.1429e-2 6.839e+3 1.2951e+1 1.1614e+2 # -Range: 0-200 PbBr2 - PbBr2 = + 1.0000 Pb++ + 2.0000 Br- - log_k -5.2413 - -delta_H 36.3838 kJ/mol # Calculated enthalpy of reaction PbBr2 + PbBr2 = Pb+2 + 2 Br- + log_k -5.2413 + -delta_H 36.3838 kJ/mol # Calculated enthalpy of reaction PbBr2 # Enthalpy of formation: -278.47 kJ/mol - -analytic 3.0977e+001 -1.6567e-002 -4.2879e+003 -6.8329e+000 -7.2825e+001 + -analytic 3.0977e+1 -1.6567e-2 -4.2879e+3 -6.8329e+0 -7.2825e+1 # -Range: 0-200 PbBrF - PbBrF = + 1.0000 Br- + 1.0000 F- + 1.0000 Pb++ - log_k -8.0418 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBrF + PbBrF = Br- + F- + Pb+2 + log_k -8.0418 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBrF # Enthalpy of formation: 0 kcal/mol PbCO3.PbO - PbCO3.PbO +3.0000 H+ = + 1.0000 H2O + 1.0000 HCO3- + 2.0000 Pb++ - log_k 9.6711 - -delta_H -55.4286 kJ/mol # Calculated enthalpy of reaction PbCO3.PbO + PbCO3PbO + 3 H+ = H2O + HCO3- + 2 Pb+2 + log_k 9.6711 + -delta_H -55.4286 kJ/mol # Calculated enthalpy of reaction PbCO3.PbO # Enthalpy of formation: -918.502 kJ/mol - -analytic -4.2160e+001 -1.4124e-002 3.8661e+003 1.7404e+001 6.5667e+001 + -analytic -4.216e+1 -1.4124e-2 3.8661e+3 1.7404e+1 6.5667e+1 # -Range: 0-200 PbF2 - PbF2 = + 1.0000 Pb++ + 2.0000 F- - log_k -5.2047 - -delta_H -5.83772 kJ/mol # Calculated enthalpy of reaction PbF2 + PbF2 = Pb+2 + 2 F- + log_k -5.2047 + -delta_H -5.83772 kJ/mol # Calculated enthalpy of reaction PbF2 # Enthalpy of formation: -663.937 kJ/mol - -analytic -2.2712e+002 -7.9552e-002 5.2198e+003 9.2173e+001 8.1516e+001 + -analytic -2.2712e+2 -7.9552e-2 5.2198e+3 9.2173e+1 8.1516e+1 # -Range: 0-300 PbFCl - PbFCl = + 1.0000 Cl- + 1.0000 F- + 1.0000 Pb++ - log_k -8.9820 - -delta_H 33.1852 kJ/mol # Calculated enthalpy of reaction PbFCl + PbFCl = Cl- + F- + Pb+2 + log_k -8.982 + -delta_H 33.1852 kJ/mol # Calculated enthalpy of reaction PbFCl # Enthalpy of formation: -534.692 kJ/mol - -analytic 6.1688e+000 -2.0732e-002 -3.4666e+003 1.0697e+000 -5.8869e+001 + -analytic 6.1688e+0 -2.0732e-2 -3.4666e+3 1.0697e+0 -5.8869e+1 # -Range: 0-200 PbHPO4 - PbHPO4 = + 1.0000 HPO4-- + 1.0000 Pb++ - log_k -15.7275 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbHPO4 + PbHPO4 = HPO4-2 + Pb+2 + log_k -15.7275 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbHPO4 # Enthalpy of formation: 0 kcal/mol PbI2 - PbI2 = + 1.0000 Pb++ + 2.0000 I- - log_k -8.0418 - -delta_H 62.5717 kJ/mol # Calculated enthalpy of reaction PbI2 + PbI2 = Pb+2 + 2 I- + log_k -8.0418 + -delta_H 62.5717 kJ/mol # Calculated enthalpy of reaction PbI2 # Enthalpy of formation: -175.456 kJ/mol - -analytic 1.5277e+001 -2.0582e-002 -5.1256e+003 0.0000e+000 0.0000e+000 + -analytic 1.5277e+1 -2.0582e-2 -5.1256e+3 0e+0 0e+0 # -Range: 0-200 PbSO4(NH3)2 - PbSO4(NH3)2 = + 1.0000 Pb++ + 1.0000 SO4-- + 2.0000 NH3 - log_k -2.0213 - -delta_H 28.284 kJ/mol # Calculated enthalpy of reaction PbSO4(NH3)2 + PbSO4(NH3)2 = Pb+2 + SO4-2 + 2 NH3 + log_k -2.0213 + -delta_H 28.284 kJ/mol # Calculated enthalpy of reaction PbSO4(NH3)2 # Enthalpy of formation: -1099.64 kJ/mol - -analytic 3.5718e-001 -1.0192e-002 -2.0095e+003 2.9853e+000 -3.4124e+001 + -analytic 3.5718e-1 -1.0192e-2 -2.0095e+3 2.9853e+0 -3.4124e+1 # -Range: 0-200 PbSO4(NH3)4 - PbSO4(NH3)4 = + 1.0000 Pb++ + 1.0000 SO4-- + 4.0000 NH3 - log_k 1.5024 - -delta_H 31.155 kJ/mol # Calculated enthalpy of reaction PbSO4(NH3)4 + PbSO4(NH3)4 = Pb+2 + SO4-2 + 4 NH3 + log_k 1.5024 + -delta_H 31.155 kJ/mol # Calculated enthalpy of reaction PbSO4(NH3)4 # Enthalpy of formation: -1265.18 kJ/mol - -analytic -4.1080e+001 -7.2307e-003 6.6637e+001 1.7984e+001 1.1460e+000 + -analytic -4.108e+1 -7.2307e-3 6.6637e+1 1.7984e+1 1.146e+0 # -Range: 0-200 PbSeO4 - PbSeO4 = + 1.0000 Pb++ + 1.0000 SeO4-- - log_k -6.9372 - -delta_H 10.8967 kJ/mol # Calculated enthalpy of reaction PbSeO4 + PbSeO4 = Pb+2 + SeO4-2 + log_k -6.9372 + -delta_H 10.8967 kJ/mol # Calculated enthalpy of reaction PbSeO4 # Enthalpy of formation: -609.125 kJ/mol - -analytic 3.1292e+001 -1.4192e-002 -3.0980e+003 -9.5448e+000 -5.2618e+001 + -analytic 3.1292e+1 -1.4192e-2 -3.098e+3 -9.5448e+0 -5.2618e+1 # -Range: 0-200 Pd - Pd +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Pd++ - log_k 12.0688 - -delta_H -103.709 kJ/mol # Calculated enthalpy of reaction Pd + Pd + 2 H+ + 0.5 O2 = H2O + Pd+2 + log_k 12.0688 + -delta_H -103.709 kJ/mol # Calculated enthalpy of reaction Pd # Enthalpy of formation: 0 kcal/mol - -analytic -6.2530e+001 -1.9774e-002 6.7013e+003 2.3441e+001 1.0459e+002 + -analytic -6.253e+1 -1.9774e-2 6.7013e+3 2.3441e+1 1.0459e+2 # -Range: 0-300 PdO - PdO +2.0000 H+ = + 1.0000 H2O + 1.0000 Pd++ - log_k 0.0643 - -delta_H -24.422 kJ/mol # Calculated enthalpy of reaction PdO + PdO + 2 H+ = H2O + Pd+2 + log_k 0.0643 + -delta_H -24.422 kJ/mol # Calculated enthalpy of reaction PdO # Enthalpy of formation: -20.4 kcal/mol - -analytic -8.8921e+001 -1.9031e-002 3.8537e+003 3.3028e+001 6.0159e+001 + -analytic -8.8921e+1 -1.9031e-2 3.8537e+3 3.3028e+1 6.0159e+1 # -Range: 0-300 Penroseite - NiSe2 +1.0000 H2O = + 0.5000 O2 + 1.0000 Ni++ + 2.0000 H+ + 2.0000 Se-- - log_k -98.8004 - -delta_H 0 # Not possible to calculate enthalpy of reaction Penroseite + NiSe2 + H2O = 0.5 O2 + Ni+2 + 2 H+ + 2 Se-2 + log_k -98.8004 + -delta_H 0 # Not possible to calculate enthalpy of reaction Penroseite # Enthalpy of formation: -26 kcal/mol - -analytic -4.7339e+001 -1.2035e-002 -2.3589e+004 1.2624e+001 -3.6808e+002 + -analytic -4.7339e+1 -1.2035e-2 -2.3589e+4 1.2624e+1 -3.6808e+2 # -Range: 0-300 Pentahydrite - MgSO4:5H2O = + 1.0000 Mg++ + 1.0000 SO4-- + 5.0000 H2O - log_k -1.3872 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pentahydrite + MgSO4:5H2O = Mg+2 + SO4-2 + 5 H2O + log_k -1.3872 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pentahydrite # Enthalpy of formation: 0 kcal/mol Periclase - MgO +2.0000 H+ = + 1.0000 H2O + 1.0000 Mg++ - log_k 21.3354 - -delta_H -150.139 kJ/mol # Calculated enthalpy of reaction Periclase + MgO + 2 H+ = H2O + Mg+2 + log_k 21.3354 + -delta_H -150.139 kJ/mol # Calculated enthalpy of reaction Periclase # Enthalpy of formation: -143.8 kcal/mol - -analytic -8.8465e+001 -1.8390e-002 1.0414e+004 3.2469e+001 1.6253e+002 + -analytic -8.8465e+1 -1.839e-2 1.0414e+4 3.2469e+1 1.6253e+2 # -Range: 0-300 Petalite - LiAlSi4O10 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Li+ + 2.0000 H2O + 4.0000 SiO2 - log_k -3.8153 - -delta_H -13.1739 kJ/mol # Calculated enthalpy of reaction Petalite + LiAlSi4O10 + 4 H+ = Al+3 + Li+ + 2 H2O + 4 SiO2 + log_k -3.8153 + -delta_H -13.1739 kJ/mol # Calculated enthalpy of reaction Petalite # Enthalpy of formation: -4886.15 kJ/mol - -analytic -6.6355e+000 2.4316e-002 1.5949e+004 -1.3341e+001 -2.2265e+006 + -analytic -6.6355e+0 2.4316e-2 1.5949e+4 -1.3341e+1 -2.2265e+6 # -Range: 0-300 Phlogopite - KAlMg3Si3O10(OH)2 +10.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 3.0000 Mg++ + 3.0000 SiO2 + 6.0000 H2O - log_k 37.4400 - -delta_H -310.503 kJ/mol # Calculated enthalpy of reaction Phlogopite + KAlMg3Si3O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Mg+2 + 3 SiO2 + 6 H2O + log_k 37.44 + -delta_H -310.503 kJ/mol # Calculated enthalpy of reaction Phlogopite # Enthalpy of formation: -1488.07 kcal/mol - -analytic -8.7730e+001 -1.7253e-002 2.3748e+004 2.4465e+001 -8.9045e+005 + -analytic -8.773e+1 -1.7253e-2 2.3748e+4 2.4465e+1 -8.9045e+5 # -Range: 0-300 Phosgenite - Pb2(CO3)Cl2 +1.0000 H+ = + 1.0000 HCO3- + 2.0000 Cl- + 2.0000 Pb++ - log_k -9.6355 - -delta_H 49.0844 kJ/mol # Calculated enthalpy of reaction Phosgenite + Pb2(CO3)Cl2 + H+ = HCO3- + 2 Cl- + 2 Pb+2 + log_k -9.6355 + -delta_H 49.0844 kJ/mol # Calculated enthalpy of reaction Phosgenite # Enthalpy of formation: -1071.34 kJ/mol - -analytic 3.4909e+000 -2.9365e-002 -4.6327e+003 4.5068e+000 -7.8671e+001 + -analytic 3.4909e+0 -2.9365e-2 -4.6327e+3 4.5068e+0 -7.8671e+1 # -Range: 0-200 Picromerite - K2Mg(SO4)2:6H2O = + 1.0000 Mg++ + 2.0000 K+ + 2.0000 SO4-- + 6.0000 H2O - log_k -4.4396 - -delta_H 0 # Not possible to calculate enthalpy of reaction Picromerite + K2Mg(SO4)2:6H2O = Mg+2 + 2 K+ + 2 SO4-2 + 6 H2O + log_k -4.4396 + -delta_H 0 # Not possible to calculate enthalpy of reaction Picromerite # Enthalpy of formation: 0 kcal/mol Pirssonite - Na2Ca(CO3)2:2H2O +2.0000 H+ = + 1.0000 Ca++ + 2.0000 H2O + 2.0000 HCO3- + 2.0000 Na+ - log_k 11.3230 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pirssonite + Na2Ca(CO3)2:2H2O + 2 H+ = Ca+2 + 2 H2O + 2 HCO3- + 2 Na+ + log_k 11.323 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pirssonite # Enthalpy of formation: 0 kcal/mol Plattnerite - PbO2 +4.0000 H+ = + 1.0000 Pb++++ + 2.0000 H2O - log_k -7.9661 - -delta_H 0 # Not possible to calculate enthalpy of reaction Plattnerite + PbO2 + 4 H+ = Pb+4 + 2 H2O + log_k -7.9661 + -delta_H 0 # Not possible to calculate enthalpy of reaction Plattnerite # Enthalpy of formation: -277.363 kJ/mol Plumbogummite - PbAl3(PO4)2(OH)5:H2O +7.0000 H+ = + 1.0000 Pb++ + 2.0000 HPO4-- + 3.0000 Al+++ + 6.0000 H2O - log_k -8.1463 - -delta_H 0 # Not possible to calculate enthalpy of reaction Plumbogummite + PbAl3(PO4)2(OH)5:H2O + 7 H+ = Pb+2 + 2 HPO4-2 + 3 Al+3 + 6 H2O + log_k -8.1463 + -delta_H 0 # Not possible to calculate enthalpy of reaction Plumbogummite # Enthalpy of formation: 0 kcal/mol Pm - Pm +3.0000 H+ +0.7500 O2 = + 1.0000 Pm+++ + 1.5000 H2O - log_k 180.6737 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm + Pm + 3 H+ + 0.75 O2 = Pm+3 + 1.5 H2O + log_k 180.6737 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm # Enthalpy of formation: 0 kcal/mol Pm(OH)3 - Pm(OH)3 +3.0000 H+ = + 1.0000 Pm+++ + 3.0000 H2O - log_k 17.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3 + Pm(OH)3 + 3 H+ = Pm+3 + 3 H2O + log_k 17.4852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3 # Enthalpy of formation: 0 kcal/mol Pm(OH)3(am) - Pm(OH)3 +3.0000 H+ = + 1.0000 Pm+++ + 3.0000 H2O - log_k 18.2852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3(am) + Pm(OH)3 + 3 H+ = Pm+3 + 3 H2O + log_k 18.2852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3(am) # Enthalpy of formation: 0 kcal/mol Pm2(CO3)3 - Pm2(CO3)3 +3.0000 H+ = + 2.0000 Pm+++ + 3.0000 HCO3- - log_k -3.5636 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm2(CO3)3 + Pm2(CO3)3 + 3 H+ = 2 Pm+3 + 3 HCO3- + log_k -3.5636 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm2(CO3)3 # Enthalpy of formation: 0 kcal/mol Pm2O3 - Pm2O3 +6.0000 H+ = + 2.0000 Pm+++ + 3.0000 H2O - log_k 48.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm2O3 + Pm2O3 + 6 H+ = 2 Pm+3 + 3 H2O + log_k 48.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm2O3 # Enthalpy of formation: 0 kcal/mol PmF3:.5H2O - PmF3:.5H2O = + 0.5000 H2O + 1.0000 Pm+++ + 3.0000 F- - log_k -18.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmF3:.5H2O + PmF3:.5H2O = 0.5 H2O + Pm+3 + 3 F- + log_k -18.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmF3:.5H2O # Enthalpy of formation: 0 kcal/mol PmPO4:10H2O - PmPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Pm+++ + 10.0000 H2O - log_k -12.1782 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmPO4:10H2O + PmPO4:10H2O + H+ = HPO4-2 + Pm+3 + 10 H2O + log_k -12.1782 + -delta_H 0 # Not possible to calculate enthalpy of reaction PmPO4:10H2O # Enthalpy of formation: 0 kcal/mol Polydymite - Ni3S4 +2.0000 H+ = + 1.0000 S2-- + 2.0000 HS- + 3.0000 Ni++ - log_k -48.9062 - -delta_H 0 # Not possible to calculate enthalpy of reaction Polydymite + Ni3S4 + 2 H+ = S2-2 + 2 HS- + 3 Ni+2 + log_k -48.9062 + -delta_H 0 # Not possible to calculate enthalpy of reaction Polydymite # Enthalpy of formation: -78.014 kcal/mol - -analytic -1.8030e+001 -4.6945e-002 -1.1557e+004 8.8339e+000 -1.9625e+002 + -analytic -1.803e+1 -4.6945e-2 -1.1557e+4 8.8339e+0 -1.9625e+2 # -Range: 0-200 Polyhalite - K2MgCa2(SO4)4:2H2O = + 1.0000 Mg++ + 2.0000 Ca++ + 2.0000 H2O + 2.0000 K+ + 4.0000 SO4-- - log_k -14.3124 - -delta_H 0 # Not possible to calculate enthalpy of reaction Polyhalite + K2MgCa2(SO4)4:2H2O = Mg+2 + 2 Ca+2 + 2 H2O + 2 K+ + 4 SO4-2 + log_k -14.3124 + -delta_H 0 # Not possible to calculate enthalpy of reaction Polyhalite # Enthalpy of formation: 0 kcal/mol Portlandite - Ca(OH)2 +2.0000 H+ = + 1.0000 Ca++ + 2.0000 H2O - log_k 22.5552 - -delta_H -128.686 kJ/mol # Calculated enthalpy of reaction Portlandite + Ca(OH)2 + 2 H+ = Ca+2 + 2 H2O + log_k 22.5552 + -delta_H -128.686 kJ/mol # Calculated enthalpy of reaction Portlandite # Enthalpy of formation: -986.074 kJ/mol - -analytic -8.3848e+001 -1.8373e-002 9.3154e+003 3.2584e+001 1.4538e+002 + -analytic -8.3848e+1 -1.8373e-2 9.3154e+3 3.2584e+1 1.4538e+2 # -Range: 0-300 Pr - Pr +3.0000 H+ +0.7500 O2 = + 1.0000 Pr+++ + 1.5000 H2O - log_k 183.6893 - -delta_H -1125.92 kJ/mol # Calculated enthalpy of reaction Pr + Pr + 3 H+ + 0.75 O2 = Pr+3 + 1.5 H2O + log_k 183.6893 + -delta_H -1125.92 kJ/mol # Calculated enthalpy of reaction Pr # Enthalpy of formation: 0 kJ/mol - -analytic -4.1136e+002 -7.5853e-002 7.9974e+004 1.4718e+002 -1.3148e+006 + -analytic -4.1136e+2 -7.5853e-2 7.9974e+4 1.4718e+2 -1.3148e+6 # -Range: 0-300 Pr(OH)3 - Pr(OH)3 +3.0000 H+ = + 1.0000 Pr+++ + 3.0000 H2O - log_k 19.5852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(OH)3 + Pr(OH)3 + 3 H+ = Pr+3 + 3 H2O + log_k 19.5852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(OH)3 # Enthalpy of formation: 0 kcal/mol Pr(OH)3(am) - Pr(OH)3 +3.0000 H+ = + 1.0000 Pr+++ + 3.0000 H2O - log_k 21.0852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(OH)3(am) + Pr(OH)3 + 3 H+ = Pr+3 + 3 H2O + log_k 21.0852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(OH)3(am) # Enthalpy of formation: 0 kcal/mol Pr2(CO3)3 - Pr2(CO3)3 +3.0000 H+ = + 2.0000 Pr+++ + 3.0000 HCO3- - log_k -3.8136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr2(CO3)3 + Pr2(CO3)3 + 3 H+ = 2 Pr+3 + 3 HCO3- + log_k -3.8136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr2(CO3)3 # Enthalpy of formation: 0 kcal/mol Pr2O3 - Pr2O3 +6.0000 H+ = + 2.0000 Pr+++ + 3.0000 H2O - log_k 61.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr2O3 + Pr2O3 + 6 H+ = 2 Pr+3 + 3 H2O + log_k 61.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr2O3 # Enthalpy of formation: 0 kcal/mol PrF3:.5H2O - PrF3:.5H2O = + 0.5000 H2O + 1.0000 Pr+++ + 3.0000 F- - log_k -18.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction PrF3:.5H2O + PrF3:.5H2O = 0.5 H2O + Pr+3 + 3 F- + log_k -18.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction PrF3:.5H2O # Enthalpy of formation: 0 kcal/mol PrPO4:10H2O - PrPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Pr+++ + 10.0000 H2O - log_k -12.2782 - -delta_H 0 # Not possible to calculate enthalpy of reaction PrPO4:10H2O + PrPO4:10H2O + H+ = HPO4-2 + Pr+3 + 10 H2O + log_k -12.2782 + -delta_H 0 # Not possible to calculate enthalpy of reaction PrPO4:10H2O # Enthalpy of formation: 0 kcal/mol Prehnite - Ca2Al2Si3O10(OH)2 +10.0000 H+ = + 2.0000 Al+++ + 2.0000 Ca++ + 3.0000 SiO2 + 6.0000 H2O - log_k 32.9305 - -delta_H -311.875 kJ/mol # Calculated enthalpy of reaction Prehnite + Ca2Al2Si3O10(OH)2 + 10 H+ = 2 Al+3 + 2 Ca+2 + 3 SiO2 + 6 H2O + log_k 32.9305 + -delta_H -311.875 kJ/mol # Calculated enthalpy of reaction Prehnite # Enthalpy of formation: -1481.65 kcal/mol - -analytic -3.5763e+001 -2.1396e-002 2.0167e+004 6.3554e+000 -7.4967e+005 + -analytic -3.5763e+1 -2.1396e-2 2.0167e+4 6.3554e+0 -7.4967e+5 # -Range: 0-300 Przhevalskite - Pb(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Pb++ + 2.0000 HPO4-- + 2.0000 UO2++ - log_k -20.0403 - -delta_H -71.1058 kJ/mol # Calculated enthalpy of reaction Przhevalskite + Pb(UO2)2(PO4)2 + 2 H+ = Pb+2 + 2 HPO4-2 + 2 UO2+2 + log_k -20.0403 + -delta_H -71.1058 kJ/mol # Calculated enthalpy of reaction Przhevalskite # Enthalpy of formation: -1087.51 kcal/mol - -analytic -2.9817e+001 -4.0756e-002 1.0077e+003 7.4885e+000 1.7122e+001 + -analytic -2.9817e+1 -4.0756e-2 1.0077e+3 7.4885e+0 1.7122e+1 # -Range: 0-200 Pseudowollastonite - CaSiO3 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O + 1.0000 SiO2 - log_k 13.9997 - -delta_H -79.4625 kJ/mol # Calculated enthalpy of reaction Pseudowollastonite + CaSiO3 + 2 H+ = Ca+2 + H2O + SiO2 + log_k 13.9997 + -delta_H -79.4625 kJ/mol # Calculated enthalpy of reaction Pseudowollastonite # Enthalpy of formation: -388.9 kcal/mol - -analytic 2.6691e+001 6.3323e-003 5.5723e+003 -1.1822e+001 -3.6038e+005 + -analytic 2.6691e+1 6.3323e-3 5.5723e+3 -1.1822e+1 -3.6038e+5 # -Range: 0-300 Pu - Pu +4.0000 H+ +1.0000 O2 = + 1.0000 Pu++++ + 2.0000 H2O - log_k 170.3761 - -delta_H -1095.44 kJ/mol # Calculated enthalpy of reaction Pu + Pu + 4 H+ + O2 = Pu+4 + 2 H2O + log_k 170.3761 + -delta_H -1095.44 kJ/mol # Calculated enthalpy of reaction Pu # Enthalpy of formation: 0 kJ/mol - -analytic -1.9321e+002 -3.4314e-002 6.6737e+004 6.3552e+001 -6.4737e+005 + -analytic -1.9321e+2 -3.4314e-2 6.6737e+4 6.3552e+1 -6.4737e+5 # -Range: 0-300 Pu(HPO4)2 - Pu(HPO4)2 = + 1.0000 Pu++++ + 2.0000 HPO4-- - log_k -27.7025 - -delta_H -33.4449 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)2 + Pu(HPO4)2 = Pu+4 + 2 HPO4-2 + log_k -27.7025 + -delta_H -33.4449 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)2 # Enthalpy of formation: -3086.61 kJ/mol - -analytic -3.6565e+002 -1.3961e-001 7.9105e+003 1.4265e+002 1.2354e+002 + -analytic -3.6565e+2 -1.3961e-1 7.9105e+3 1.4265e+2 1.2354e+2 # -Range: 0-300 Pu(OH)3 - Pu(OH)3 +3.0000 H+ = + 1.0000 Pu+++ + 3.0000 H2O - log_k 22.4499 - -delta_H -148.067 kJ/mol # Calculated enthalpy of reaction Pu(OH)3 + Pu(OH)3 + 3 H+ = Pu+3 + 3 H2O + log_k 22.4499 + -delta_H -148.067 kJ/mol # Calculated enthalpy of reaction Pu(OH)3 # Enthalpy of formation: -1301 kJ/mol - -analytic -6.1342e+001 -8.6952e-003 9.7733e+003 2.1664e+001 1.5252e+002 + -analytic -6.1342e+1 -8.6952e-3 9.7733e+3 2.1664e+1 1.5252e+2 # -Range: 0-300 Pu(OH)4 - Pu(OH)4 +4.0000 H+ = + 1.0000 Pu++++ + 4.0000 H2O - log_k 0.7578 - -delta_H -68.6543 kJ/mol # Calculated enthalpy of reaction Pu(OH)4 + Pu(OH)4 + 4 H+ = Pu+4 + 4 H2O + log_k 0.7578 + -delta_H -68.6543 kJ/mol # Calculated enthalpy of reaction Pu(OH)4 # Enthalpy of formation: -1610.59 kJ/mol - -analytic -9.3473e+001 -1.0579e-002 6.5974e+003 3.0415e+001 1.0297e+002 + -analytic -9.3473e+1 -1.0579e-2 6.5974e+3 3.0415e+1 1.0297e+2 # -Range: 0-300 Pu2O3 - Pu2O3 +6.0000 H+ = + 2.0000 Pu+++ + 3.0000 H2O - log_k 48.1332 - -delta_H -360.26 kJ/mol # Calculated enthalpy of reaction Pu2O3 + Pu2O3 + 6 H+ = 2 Pu+3 + 3 H2O + log_k 48.1332 + -delta_H -360.26 kJ/mol # Calculated enthalpy of reaction Pu2O3 # Enthalpy of formation: -1680.36 kJ/mol - -analytic -8.7831e+001 -1.9784e-002 2.0832e+004 2.9096e+001 3.2509e+002 + -analytic -8.7831e+1 -1.9784e-2 2.0832e+4 2.9096e+1 3.2509e+2 # -Range: 0-300 PuF3 - PuF3 = + 1.0000 Pu+++ + 3.0000 F- - log_k -10.1872 - -delta_H -46.2608 kJ/mol # Calculated enthalpy of reaction PuF3 + PuF3 = Pu+3 + 3 F- + log_k -10.1872 + -delta_H -46.2608 kJ/mol # Calculated enthalpy of reaction PuF3 # Enthalpy of formation: -1551.33 kJ/mol - -analytic -3.1104e+002 -1.0854e-001 8.7435e+003 1.2279e+002 1.3653e+002 + -analytic -3.1104e+2 -1.0854e-1 8.7435e+3 1.2279e+2 1.3653e+2 # -Range: 0-300 PuF4 - PuF4 = + 1.0000 Pu++++ + 4.0000 F- - log_k -13.2091 - -delta_H -100.039 kJ/mol # Calculated enthalpy of reaction PuF4 + PuF4 = Pu+4 + 4 F- + log_k -13.2091 + -delta_H -100.039 kJ/mol # Calculated enthalpy of reaction PuF4 # Enthalpy of formation: -1777.24 kJ/mol - -analytic -4.3072e+002 -1.4500e-001 1.4076e+004 1.6709e+002 2.1977e+002 + -analytic -4.3072e+2 -1.45e-1 1.4076e+4 1.6709e+2 2.1977e+2 # -Range: 0-300 PuO2 - PuO2 +4.0000 H+ = + 1.0000 Pu++++ + 2.0000 H2O - log_k -7.3646 - -delta_H -51.8827 kJ/mol # Calculated enthalpy of reaction PuO2 + PuO2 + 4 H+ = Pu+4 + 2 H2O + log_k -7.3646 + -delta_H -51.8827 kJ/mol # Calculated enthalpy of reaction PuO2 # Enthalpy of formation: -1055.69 kJ/mol - -analytic -7.1933e+001 -1.1841e-002 4.4494e+003 2.1491e+001 6.9450e+001 + -analytic -7.1933e+1 -1.1841e-2 4.4494e+3 2.1491e+1 6.945e+1 # -Range: 0-300 PuO2(OH)2 - PuO2(OH)2 +2.0000 H+ = + 1.0000 PuO2++ + 2.0000 H2O - log_k 3.5499 - -delta_H -35.7307 kJ/mol # Calculated enthalpy of reaction PuO2(OH)2 + PuO2(OH)2 + 2 H+ = PuO2+2 + 2 H2O + log_k 3.5499 + -delta_H -35.7307 kJ/mol # Calculated enthalpy of reaction PuO2(OH)2 # Enthalpy of formation: -1357.52 kJ/mol - -analytic -2.6536e+001 -1.6542e-003 2.8262e+003 8.5277e+000 4.4108e+001 + -analytic -2.6536e+1 -1.6542e-3 2.8262e+3 8.5277e+0 4.4108e+1 # -Range: 0-300 PuO2HPO4 - PuO2HPO4 = + 1.0000 HPO4-- + 1.0000 PuO2++ - log_k -12.6074 - -delta_H -10.108 kJ/mol # Calculated enthalpy of reaction PuO2HPO4 + PuO2HPO4 = HPO4-2 + PuO2+2 + log_k -12.6074 + -delta_H -10.108 kJ/mol # Calculated enthalpy of reaction PuO2HPO4 # Enthalpy of formation: -2103.55 kJ/mol - -analytic -1.6296e+002 -6.6166e-002 3.0557e+003 6.4577e+001 4.7729e+001 + -analytic -1.6296e+2 -6.6166e-2 3.0557e+3 6.4577e+1 4.7729e+1 # -Range: 0-300 PuO2OH(am) - PuO2OH +1.0000 H+ = + 1.0000 H2O + 1.0000 PuO2+ - log_k 5.4628 - -delta_H -42.4933 kJ/mol # Calculated enthalpy of reaction PuO2OH(am) + PuO2OH + H+ = H2O + PuO2+ + log_k 5.4628 + -delta_H -42.4933 kJ/mol # Calculated enthalpy of reaction PuO2OH(am) # Enthalpy of formation: -1157.53 kJ/mol - -analytic -3.1316e+000 6.7573e-003 2.6884e+003 -9.8622e-001 4.1951e+001 + -analytic -3.1316e+0 6.7573e-3 2.6884e+3 -9.8622e-1 4.1951e+1 # -Range: 0-300 Pyrite - FeS2 +1.0000 H2O = + 0.2500 H+ + 0.2500 SO4-- + 1.0000 Fe++ + 1.7500 HS- - log_k -24.6534 - -delta_H 109.535 kJ/mol # Calculated enthalpy of reaction Pyrite + FeS2 + H2O = 0.25 H+ + 0.25 SO4-2 + Fe+2 + 1.75 HS- + log_k -24.6534 + -delta_H 109.535 kJ/mol # Calculated enthalpy of reaction Pyrite # Enthalpy of formation: -41 kcal/mol - -analytic -2.4195e+002 -8.7948e-002 -6.2911e+002 9.9248e+001 -9.7454e+000 + -analytic -2.4195e+2 -8.7948e-2 -6.2911e+2 9.9248e+1 -9.7454e+0 # -Range: 0-300 Pyrolusite - MnO2 = + 0.5000 Mn++ + 0.5000 MnO4-- - log_k -17.6439 - -delta_H 83.3804 kJ/mol # Calculated enthalpy of reaction Pyrolusite + MnO2 = 0.5 Mn+2 + 0.5 MnO4-2 + log_k -17.6439 + -delta_H 83.3804 kJ/mol # Calculated enthalpy of reaction Pyrolusite # Enthalpy of formation: -520.031 kJ/mol - -analytic -1.1541e+002 -4.1665e-002 -1.8960e+003 4.7094e+001 -2.9551e+001 + -analytic -1.1541e+2 -4.1665e-2 -1.896e+3 4.7094e+1 -2.9551e+1 # -Range: 0-300 Pyromorphite - Pb5(PO4)3Cl +3.0000 H+ = + 1.0000 Cl- + 3.0000 HPO4-- + 5.0000 Pb++ - log_k -47.8954 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite + Pb5(PO4)3Cl + 3 H+ = Cl- + 3 HPO4-2 + 5 Pb+2 + log_k -47.8954 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite # Enthalpy of formation: 0 kcal/mol Pyromorphite-OH - Pb5(OH)(PO4)3 +4.0000 H+ = + 1.0000 H2O + 3.0000 HPO4-- + 5.0000 Pb++ - log_k -26.2653 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite-OH + Pb5(OH)(PO4)3 + 4 H+ = H2O + 3 HPO4-2 + 5 Pb+2 + log_k -26.2653 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite-OH # Enthalpy of formation: 0 kcal/mol Pyrophyllite - Al2Si4O10(OH)2 +6.0000 H+ = + 2.0000 Al+++ + 4.0000 H2O + 4.0000 SiO2 - log_k 0.4397 - -delta_H -102.161 kJ/mol # Calculated enthalpy of reaction Pyrophyllite + Al2Si4O10(OH)2 + 6 H+ = 2 Al+3 + 4 H2O + 4 SiO2 + log_k 0.4397 + -delta_H -102.161 kJ/mol # Calculated enthalpy of reaction Pyrophyllite # Enthalpy of formation: -1345.31 kcal/mol - -analytic 1.1066e+001 1.2707e-002 1.6417e+004 -1.9596e+001 -1.8791e+006 + -analytic 1.1066e+1 1.2707e-2 1.6417e+4 -1.9596e+1 -1.8791e+6 # -Range: 0-300 Pyrrhotite - FeS +1.0000 H+ = + 1.0000 Fe++ + 1.0000 HS- - log_k -3.7193 - -delta_H -7.9496 kJ/mol # Calculated enthalpy of reaction Pyrrhotite + FeS + H+ = Fe+2 + HS- + log_k -3.7193 + -delta_H -7.9496 kJ/mol # Calculated enthalpy of reaction Pyrrhotite # Enthalpy of formation: -24 kcal/mol - -analytic -1.5785e+002 -5.2258e-002 3.9711e+003 6.3195e+001 6.2012e+001 + -analytic -1.5785e+2 -5.2258e-2 3.9711e+3 6.3195e+1 6.2012e+1 # -Range: 0-300 Quartz - SiO2 = + 1.0000 SiO2 - log_k -3.9993 - -delta_H 32.949 kJ/mol # Calculated enthalpy of reaction Quartz + SiO2 = SiO2 + log_k -3.9993 + -delta_H 32.949 kJ/mol # Calculated enthalpy of reaction Quartz # Enthalpy of formation: -217.65 kcal/mol - -analytic 7.7698e-002 1.0612e-002 3.4651e+003 -4.3551e+000 -7.2138e+005 + -analytic 7.7698e-2 1.0612e-2 3.4651e+3 -4.3551e+0 -7.2138e+5 # -Range: 0-300 Ra - Ra +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Ra++ - log_k 141.3711 - -delta_H -807.374 kJ/mol # Calculated enthalpy of reaction Ra + Ra + 2 H+ + 0.5 O2 = H2O + Ra+2 + log_k 141.3711 + -delta_H -807.374 kJ/mol # Calculated enthalpy of reaction Ra # Enthalpy of formation: 0 kJ/mol - -analytic 4.9867e+001 5.9412e-003 4.0293e+004 -1.8356e+001 6.8421e+002 + -analytic 4.9867e+1 5.9412e-3 4.0293e+4 -1.8356e+1 6.8421e+2 # -Range: 0-200 Ra(NO3)2 - Ra(NO3)2 = + 1.0000 Ra++ + 2.0000 NO3- - log_k -2.2419 - -delta_H 50.4817 kJ/mol # Calculated enthalpy of reaction Ra(NO3)2 + Ra(NO3)2 = Ra+2 + 2 NO3- + log_k -2.2419 + -delta_H 50.4817 kJ/mol # Calculated enthalpy of reaction Ra(NO3)2 # Enthalpy of formation: -991.706 kJ/mol - -analytic 2.2001e+001 -9.5263e-003 -3.9389e+003 -3.3143e+000 -6.6896e+001 + -analytic 2.2001e+1 -9.5263e-3 -3.9389e+3 -3.3143e+0 -6.6896e+1 # -Range: 0-200 RaCl2:2H2O - RaCl2:2H2O = + 1.0000 Ra++ + 2.0000 Cl- + 2.0000 H2O - log_k -0.7647 - -delta_H 32.6266 kJ/mol # Calculated enthalpy of reaction RaCl2:2H2O + RaCl2:2H2O = Ra+2 + 2 Cl- + 2 H2O + log_k -0.7647 + -delta_H 32.6266 kJ/mol # Calculated enthalpy of reaction RaCl2:2H2O # Enthalpy of formation: -1466.07 kJ/mol - -analytic -2.5033e+001 -1.8918e-002 -1.5713e+003 1.4213e+001 -2.6673e+001 + -analytic -2.5033e+1 -1.8918e-2 -1.5713e+3 1.4213e+1 -2.6673e+1 # -Range: 0-200 RaSO4 - RaSO4 = + 1.0000 Ra++ + 1.0000 SO4-- - log_k -10.4499 - -delta_H 40.309 kJ/mol # Calculated enthalpy of reaction RaSO4 + RaSO4 = Ra+2 + SO4-2 + log_k -10.4499 + -delta_H 40.309 kJ/mol # Calculated enthalpy of reaction RaSO4 # Enthalpy of formation: -1477.51 kJ/mol - -analytic 4.8025e+001 -1.1376e-002 -5.1347e+003 -1.5306e+001 -8.7211e+001 + -analytic 4.8025e+1 -1.1376e-2 -5.1347e+3 -1.5306e+1 -8.7211e+1 # -Range: 0-200 Rankinite - Ca3Si2O7 +6.0000 H+ = + 2.0000 SiO2 + 3.0000 Ca++ + 3.0000 H2O - log_k 51.9078 - -delta_H -302.089 kJ/mol # Calculated enthalpy of reaction Rankinite + Ca3Si2O7 + 6 H+ = 2 SiO2 + 3 Ca+2 + 3 H2O + log_k 51.9078 + -delta_H -302.089 kJ/mol # Calculated enthalpy of reaction Rankinite # Enthalpy of formation: -941.7 kcal/mol - -analytic -9.6393e+001 -1.6592e-002 2.4832e+004 3.2541e+001 -9.4630e+005 + -analytic -9.6393e+1 -1.6592e-2 2.4832e+4 3.2541e+1 -9.463e+5 # -Range: 0-300 Rb - Rb +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Rb+ - log_k 71.1987 - -delta_H -391.009 kJ/mol # Calculated enthalpy of reaction Rb + Rb + H+ + 0.25 O2 = 0.5 H2O + Rb+ + log_k 71.1987 + -delta_H -391.009 kJ/mol # Calculated enthalpy of reaction Rb # Enthalpy of formation: 0 kJ/mol - -analytic -2.1179e+001 -8.7978e-003 2.0934e+004 1.0011e+001 3.2667e+002 + -analytic -2.1179e+1 -8.7978e-3 2.0934e+4 1.0011e+1 3.2667e+2 # -Range: 0-300 Rb2UO4 - Rb2UO4 +4.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 Rb+ - log_k 34.0089 - -delta_H -170.224 kJ/mol # Calculated enthalpy of reaction Rb2UO4 + Rb2UO4 + 4 H+ = UO2+2 + 2 H2O + 2 Rb+ + log_k 34.0089 + -delta_H -170.224 kJ/mol # Calculated enthalpy of reaction Rb2UO4 # Enthalpy of formation: -1922.7 kJ/mol - -analytic -3.8205e+001 3.1862e-003 1.0973e+004 1.3925e+001 1.8636e+002 + -analytic -3.8205e+1 3.1862e-3 1.0973e+4 1.3925e+1 1.8636e+2 # -Range: 0-200 Re - Re +1.7500 O2 +0.5000 H2O = + 1.0000 H+ + 1.0000 ReO4- - log_k 105.9749 - -delta_H -623.276 kJ/mol # Calculated enthalpy of reaction Re + Re + 1.75 O2 + 0.5 H2O = H+ + ReO4- + log_k 105.9749 + -delta_H -623.276 kJ/mol # Calculated enthalpy of reaction Re # Enthalpy of formation: 0 kJ/mol - -analytic 1.4535e+001 -2.9877e-002 2.9910e+004 0.0000e+000 0.0000e+000 + -analytic 1.4535e+1 -2.9877e-2 2.991e+4 0e+0 0e+0 # -Range: 0-300 Realgar - AsS +2.0000 H2O = + 0.5000 S2O4-- + 1.0000 AsH3 + 1.0000 H+ - log_k -60.2768 - -delta_H 0 # Not possible to calculate enthalpy of reaction Realgar + AsS + 2 H2O = 0.5 S2O4-2 + AsH3 + H+ + log_k -60.2768 + -delta_H 0 # Not possible to calculate enthalpy of reaction Realgar # Enthalpy of formation: -71.406 kJ/mol Rhodochrosite - MnCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Mn++ - log_k -0.1928 - -delta_H -21.3426 kJ/mol # Calculated enthalpy of reaction Rhodochrosite + MnCO3 + H+ = HCO3- + Mn+2 + log_k -0.1928 + -delta_H -21.3426 kJ/mol # Calculated enthalpy of reaction Rhodochrosite # Enthalpy of formation: -212.521 kcal/mol - -analytic -1.6195e+002 -4.9344e-002 5.0937e+003 6.4402e+001 7.9531e+001 + -analytic -1.6195e+2 -4.9344e-2 5.0937e+3 6.4402e+1 7.9531e+1 # -Range: 0-300 Rhodonite - MnSiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 Mn++ + 1.0000 SiO2 - log_k 9.7301 - -delta_H -64.7121 kJ/mol # Calculated enthalpy of reaction Rhodonite + MnSiO3 + 2 H+ = H2O + Mn+2 + SiO2 + log_k 9.7301 + -delta_H -64.7121 kJ/mol # Calculated enthalpy of reaction Rhodonite # Enthalpy of formation: -1319.42 kJ/mol - -analytic 2.0585e+001 4.9941e-003 4.5816e+003 -9.8212e+000 -3.0658e+005 + -analytic 2.0585e+1 4.9941e-3 4.5816e+3 -9.8212e+0 -3.0658e+5 # -Range: 0-300 Ripidolite-14A - Mg3Fe2Al2Si3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 2.0000 Fe++ + 3.0000 Mg++ + 3.0000 SiO2 + 12.0000 H2O - log_k 60.9638 - -delta_H -572.472 kJ/mol # Calculated enthalpy of reaction Ripidolite-14A + Mg3Fe2Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 2 Fe+2 + 3 Mg+2 + 3 SiO2 + 12 H2O + log_k 60.9638 + -delta_H -572.472 kJ/mol # Calculated enthalpy of reaction Ripidolite-14A # Enthalpy of formation: -1947.87 kcal/mol - -analytic -1.8376e+002 -6.1934e-002 3.2458e+004 6.2290e+001 5.0653e+002 + -analytic -1.8376e+2 -6.1934e-2 3.2458e+4 6.229e+1 5.0653e+2 # -Range: 0-300 Ripidolite-7A - Mg3Fe2Al2Si3O10(OH)8 +16.0000 H+ = + 2.0000 Al+++ + 2.0000 Fe++ + 3.0000 Mg++ + 3.0000 SiO2 + 12.0000 H2O - log_k 64.3371 - -delta_H -586.325 kJ/mol # Calculated enthalpy of reaction Ripidolite-7A + Mg3Fe2Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 2 Fe+2 + 3 Mg+2 + 3 SiO2 + 12 H2O + log_k 64.3371 + -delta_H -586.325 kJ/mol # Calculated enthalpy of reaction Ripidolite-7A # Enthalpy of formation: -1944.56 kcal/mol - -analytic -1.9557e+002 -6.3779e-002 3.3634e+004 6.7057e+001 5.2489e+002 + -analytic -1.9557e+2 -6.3779e-2 3.3634e+4 6.7057e+1 5.2489e+2 # -Range: 0-300 Romarchite - SnO +2.0000 H+ = + 1.0000 H2O + 1.0000 Sn++ - log_k 1.3625 - -delta_H -8.69017 kJ/mol # Calculated enthalpy of reaction Romarchite + SnO + 2 H+ = H2O + Sn+2 + log_k 1.3625 + -delta_H -8.69017 kJ/mol # Calculated enthalpy of reaction Romarchite # Enthalpy of formation: -68.34 kcal/mol - -analytic -6.3187e+001 -1.5821e-002 2.2786e+003 2.4900e+001 3.5574e+001 + -analytic -6.3187e+1 -1.5821e-2 2.2786e+3 2.49e+1 3.5574e+1 # -Range: 0-300 Ru - Ru +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Ru++ - log_k 16.6701 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru + Ru + 2 H+ + 0.5 O2 = H2O + Ru+2 + log_k 16.6701 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru # Enthalpy of formation: 0 kJ/mol Ru(OH)3:H2O(am) - Ru(OH)3:H2O +3.0000 H+ = + 1.0000 Ru+++ + 4.0000 H2O - log_k 1.6338 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)3:H2O(am) + Ru(OH)3:H2O + 3 H+ = Ru+3 + 4 H2O + log_k 1.6338 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)3:H2O(am) # Enthalpy of formation: 0 kcal/mol RuBr3 - RuBr3 = + 1.0000 Ru+++ + 3.0000 Br- - log_k 3.1479 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuBr3 + RuBr3 = Ru+3 + 3 Br- + log_k 3.1479 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuBr3 # Enthalpy of formation: -147.76 kJ/mol RuCl3 - RuCl3 = + 1.0000 Ru+++ + 3.0000 Cl- - log_k 10.8215 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl3 + RuCl3 = Ru+3 + 3 Cl- + log_k 10.8215 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl3 # Enthalpy of formation: -221.291 kJ/mol RuI3 - RuI3 = + 1.0000 Ru+++ + 3.0000 I- - log_k -12.4614 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuI3 + RuI3 = Ru+3 + 3 I- + log_k -12.4614 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuI3 # Enthalpy of formation: -58.425 kJ/mol RuO2 - RuO2 +2.0000 H+ = + 1.0000 Ru(OH)2++ - log_k -5.4835 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuO2 + RuO2 + 2 H+ = Ru(OH)2+2 + log_k -5.4835 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuO2 # Enthalpy of formation: -307.233 kJ/mol RuO2:2H2O(am) - RuO2:2H2O +2.0000 H+ = + 1.0000 Ru(OH)2++ + 2.0000 H2O - log_k 0.9045 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuO2:2H2O(am) + RuO2:2H2O + 2 H+ = Ru(OH)2+2 + 2 H2O + log_k 0.9045 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuO2:2H2O(am) # Enthalpy of formation: 0 kcal/mol RuO4 - RuO4 = + 1.0000 RuO4 - log_k -0.9636 - -delta_H 6.305 kJ/mol # Calculated enthalpy of reaction RuO4 + RuO4 = RuO4 + log_k -0.9636 + -delta_H 6.305 kJ/mol # Calculated enthalpy of reaction RuO4 # Enthalpy of formation: -244.447 kJ/mol RuSe2 - RuSe2 +2.0000 H2O = + 1.0000 Ru(OH)2++ + 2.0000 H+ + 2.0000 Se-- - log_k -113.7236 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuSe2 + RuSe2 + 2 H2O = Ru(OH)2+2 + 2 H+ + 2 Se-2 + log_k -113.7236 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuSe2 # Enthalpy of formation: -146.274 kJ/mol Rutherfordine - UO2CO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 UO2++ - log_k -4.1064 - -delta_H -19.4032 kJ/mol # Calculated enthalpy of reaction Rutherfordine + UO2CO3 + H+ = HCO3- + UO2+2 + log_k -4.1064 + -delta_H -19.4032 kJ/mol # Calculated enthalpy of reaction Rutherfordine # Enthalpy of formation: -1689.53 kJ/mol - -analytic -8.8224e+001 -3.1434e-002 2.6675e+003 3.4161e+001 4.1650e+001 + -analytic -8.8224e+1 -3.1434e-2 2.6675e+3 3.4161e+1 4.165e+1 # -Range: 0-300 Rutile - TiO2 +2.0000 H2O = + 1.0000 Ti(OH)4 - log_k -9.6452 - -delta_H 0 # Not possible to calculate enthalpy of reaction Rutile + TiO2 + 2 H2O = Ti(OH)4 + log_k -9.6452 + -delta_H 0 # Not possible to calculate enthalpy of reaction Rutile # Enthalpy of formation: -226.107 kcal/mol S - S +1.0000 H2O = + 0.5000 O2 + 1.0000 H+ + 1.0000 HS- - log_k -45.0980 - -delta_H 263.663 kJ/mol # Calculated enthalpy of reaction S + S + H2O = 0.5 O2 + H+ + HS- + log_k -45.098 + -delta_H 263.663 kJ/mol # Calculated enthalpy of reaction S # Enthalpy of formation: 0 kJ/mol - -analytic -8.8928e+001 -2.8454e-002 -1.1516e+004 3.6747e+001 -1.7966e+002 + -analytic -8.8928e+1 -2.8454e-2 -1.1516e+4 3.6747e+1 -1.7966e+2 # -Range: 0-300 Safflorite - CoAs2 +2.0000 H2O +1.0000 H+ +0.5000 O2 = + 1.0000 AsH3 + 1.0000 Co++ + 1.0000 H2AsO3- - log_k -3.6419 - -delta_H -52.7226 kJ/mol # Calculated enthalpy of reaction Safflorite + CoAs2 + 2 H2O + H+ + 0.5 O2 = AsH3 + Co+2 + H2AsO3- + log_k -3.6419 + -delta_H -52.7226 kJ/mol # Calculated enthalpy of reaction Safflorite # Enthalpy of formation: -23.087 kcal/mol Saleeite - Mg(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Mg++ + 2.0000 HPO4-- + 2.0000 UO2++ - log_k -19.4575 - -delta_H -110.816 kJ/mol # Calculated enthalpy of reaction Saleeite + Mg(UO2)2(PO4)2 + 2 H+ = Mg+2 + 2 HPO4-2 + 2 UO2+2 + log_k -19.4575 + -delta_H -110.816 kJ/mol # Calculated enthalpy of reaction Saleeite # Enthalpy of formation: -1189.61 kcal/mol - -analytic -6.0028e+001 -4.4391e-002 3.9168e+003 1.6428e+001 6.6533e+001 + -analytic -6.0028e+1 -4.4391e-2 3.9168e+3 1.6428e+1 6.6533e+1 # -Range: 0-200 Sanbornite - BaSi2O5 +2.0000 H+ = + 1.0000 Ba++ + 1.0000 H2O + 2.0000 SiO2 - log_k 9.4753 - -delta_H -31.0845 kJ/mol # Calculated enthalpy of reaction Sanbornite + BaSi2O5 + 2 H+ = Ba+2 + H2O + 2 SiO2 + log_k 9.4753 + -delta_H -31.0845 kJ/mol # Calculated enthalpy of reaction Sanbornite # Enthalpy of formation: -2547.8 kJ/mol - -analytic -2.5381e+001 1.2999e-002 1.2330e+004 2.1053e+000 -1.3913e+006 + -analytic -2.5381e+1 1.2999e-2 1.233e+4 2.1053e+0 -1.3913e+6 # -Range: 0-300 Sanidine_high - KAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 H2O + 3.0000 SiO2 - log_k 0.9239 - -delta_H -35.0284 kJ/mol # Calculated enthalpy of reaction Sanidine_high + KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 + log_k 0.9239 + -delta_H -35.0284 kJ/mol # Calculated enthalpy of reaction Sanidine_high # Enthalpy of formation: -946.538 kcal/mol - -analytic -3.4889e+000 1.4495e-002 1.2856e+004 -9.8978e+000 -1.6572e+006 + -analytic -3.4889e+0 1.4495e-2 1.2856e+4 -9.8978e+0 -1.6572e+6 # -Range: 0-300 Saponite-Ca - Ca.165Mg3Al.33Si3.67O10(OH)2 +7.3200 H+ = + 0.1650 Ca++ + 0.3300 Al+++ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O - log_k 26.2900 - -delta_H -207.971 kJ/mol # Calculated enthalpy of reaction Saponite-Ca + Ca.165Mg3Al.33Si3.67O10(OH)2 + 7.32 H+ = 0.165 Ca+2 + 0.33 Al+3 + 3 Mg+2 + 3.67 SiO2 + 4.66 H2O + log_k 26.29 + -delta_H -207.971 kJ/mol # Calculated enthalpy of reaction Saponite-Ca # Enthalpy of formation: -1436.51 kcal/mol - -analytic -4.6904e+001 6.2555e-003 2.2572e+004 5.3198e+000 -1.5725e+006 + -analytic -4.6904e+1 6.2555e-3 2.2572e+4 5.3198e+0 -1.5725e+6 # -Range: 0-300 Saponite-Cs - Cs.33Si3.67Al.33Mg3O10(OH)2 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 Cs+ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O - log_k 25.8528 - -delta_H -195.407 kJ/mol # Calculated enthalpy of reaction Saponite-Cs + Cs.33Si3.67Al.33Mg3O10(OH)2 + 7.32 H+ = 0.33 Al+3 + 0.33 Cs+ + 3 Mg+2 + 3.67 SiO2 + 4.66 H2O + log_k 25.8528 + -delta_H -195.407 kJ/mol # Calculated enthalpy of reaction Saponite-Cs # Enthalpy of formation: -1438.44 kcal/mol - -analytic -7.7732e+001 -3.6418e-005 2.3346e+004 1.7578e+001 -1.6319e+006 + -analytic -7.7732e+1 -3.6418e-5 2.3346e+4 1.7578e+1 -1.6319e+6 # -Range: 0-300 Saponite-H - H.33Mg3Al.33Si3.67O10(OH)2 +6.9900 H+ = + 0.3300 Al+++ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O - log_k 25.3321 - -delta_H -200.235 kJ/mol # Calculated enthalpy of reaction Saponite-H + H.33Mg3Al.33Si3.67O10(OH)2 + 6.99 H+ = 0.33 Al+3 + 3 Mg+2 + 3.67 SiO2 + 4.66 H2O + log_k 25.3321 + -delta_H -200.235 kJ/mol # Calculated enthalpy of reaction Saponite-H # Enthalpy of formation: -1416.94 kcal/mol - -analytic -3.9828e+001 8.9566e-003 2.2165e+004 2.3941e+000 -1.5933e+006 + -analytic -3.9828e+1 8.9566e-3 2.2165e+4 2.3941e+0 -1.5933e+6 # -Range: 0-300 Saponite-K - K.33Mg3Al.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 K+ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O - log_k 26.0075 - -delta_H -196.402 kJ/mol # Calculated enthalpy of reaction Saponite-K + K.33Mg3Al.33Si3.67O10(OH)2 + 7.32 H+ = 0.33 Al+3 + 0.33 K+ + 3 Mg+2 + 3.67 SiO2 + 4.66 H2O + log_k 26.0075 + -delta_H -196.402 kJ/mol # Calculated enthalpy of reaction Saponite-K # Enthalpy of formation: -1437.74 kcal/mol - -analytic 3.2113e+001 1.8392e-002 1.7918e+004 -2.2874e+001 -1.3542e+006 + -analytic 3.2113e+1 1.8392e-2 1.7918e+4 -2.2874e+1 -1.3542e+6 # -Range: 0-300 Saponite-Mg - Mg3.165Al.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 Al+++ + 3.1650 Mg++ + 3.6700 SiO2 + 4.6600 H2O - log_k 26.2523 - -delta_H -210.822 kJ/mol # Calculated enthalpy of reaction Saponite-Mg + Mg3.165Al.33Si3.67O10(OH)2 + 7.32 H+ = 0.33 Al+3 + 3.165 Mg+2 + 3.67 SiO2 + 4.66 H2O + log_k 26.2523 + -delta_H -210.822 kJ/mol # Calculated enthalpy of reaction Saponite-Mg # Enthalpy of formation: -1432.79 kcal/mol - -analytic 9.8888e+000 1.4320e-002 1.9418e+004 -1.5259e+001 -1.3716e+006 + -analytic 9.8888e+0 1.432e-2 1.9418e+4 -1.5259e+1 -1.3716e+6 # -Range: 0-300 Saponite-Na - Na.33Mg3Al.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 Al+++ + 0.3300 Na+ + 3.0000 Mg++ + 3.6700 SiO2 + 4.6600 H2O - log_k 26.3459 - -delta_H -201.401 kJ/mol # Calculated enthalpy of reaction Saponite-Na + Na.33Mg3Al.33Si3.67O10(OH)2 + 7.32 H+ = 0.33 Al+3 + 0.33 Na+ + 3 Mg+2 + 3.67 SiO2 + 4.66 H2O + log_k 26.3459 + -delta_H -201.401 kJ/mol # Calculated enthalpy of reaction Saponite-Na # Enthalpy of formation: -1435.61 kcal/mol - -analytic -6.7611e+001 4.7327e-003 2.3586e+004 1.2868e+001 -1.6493e+006 + -analytic -6.7611e+1 4.7327e-3 2.3586e+4 1.2868e+1 -1.6493e+6 # -Range: 0-300 Sb - Sb +1.5000 H2O +0.7500 O2 = + 1.0000 Sb(OH)3 - log_k 52.7918 - -delta_H -335.931 kJ/mol # Calculated enthalpy of reaction Sb + Sb + 1.5 H2O + 0.75 O2 = Sb(OH)3 + log_k 52.7918 + -delta_H -335.931 kJ/mol # Calculated enthalpy of reaction Sb # Enthalpy of formation: 0 kJ/mol Sb(OH)3 - Sb(OH)3 = + 1.0000 Sb(OH)3 - log_k -7.0953 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)3 + Sb(OH)3 = Sb(OH)3 + log_k -7.0953 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)3 # Enthalpy of formation: 0 kcal/mol Sb2O3 - Sb2O3 +3.0000 H2O = + 2.0000 Sb(OH)3 - log_k -8.9600 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb2O3 + Sb2O3 + 3 H2O = 2 Sb(OH)3 + log_k -8.96 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb2O3 # Enthalpy of formation: 0 kcal/mol - -analytic 2.3982e+000 -7.6326e-005 -3.3787e+003 0.0000e+000 0.0000e+000 + -analytic 2.3982e+0 -7.6326e-5 -3.3787e+3 0e+0 0e+0 # -Range: 0-300 Sb2O4 - Sb2O4 +3.0000 H2O = + 0.5000 O2 + 2.0000 Sb(OH)3 - log_k -39.6139 - -delta_H 211.121 kJ/mol # Calculated enthalpy of reaction Sb2O4 + Sb2O4 + 3 H2O = 0.5 O2 + 2 Sb(OH)3 + log_k -39.6139 + -delta_H 211.121 kJ/mol # Calculated enthalpy of reaction Sb2O4 # Enthalpy of formation: -907.251 kJ/mol Sb2O5 - Sb2O5 +3.0000 H2O = + 1.0000 O2 + 2.0000 Sb(OH)3 - log_k -46.9320 - -delta_H 269.763 kJ/mol # Calculated enthalpy of reaction Sb2O5 + Sb2O5 + 3 H2O = O2 + 2 Sb(OH)3 + log_k -46.932 + -delta_H 269.763 kJ/mol # Calculated enthalpy of reaction Sb2O5 # Enthalpy of formation: -971.96 kJ/mol Sb4O6(cubic) - Sb4O6 +6.0000 H2O = + 4.0000 Sb(OH)3 - log_k -19.6896 - -delta_H 59.898 kJ/mol # Calculated enthalpy of reaction Sb4O6(cubic) + Sb4O6 + 6 H2O = 4 Sb(OH)3 + log_k -19.6896 + -delta_H 59.898 kJ/mol # Calculated enthalpy of reaction Sb4O6(cubic) # Enthalpy of formation: -1440.02 kJ/mol Sb4O6(orthorhombic) - Sb4O6 +6.0000 H2O = + 4.0000 Sb(OH)3 - log_k -17.0442 - -delta_H 37.314 kJ/mol # Calculated enthalpy of reaction Sb4O6(orthorhombic) + Sb4O6 + 6 H2O = 4 Sb(OH)3 + log_k -17.0442 + -delta_H 37.314 kJ/mol # Calculated enthalpy of reaction Sb4O6(orthorhombic) # Enthalpy of formation: -1417.44 kJ/mol SbBr3 - SbBr3 +3.0000 H2O = + 1.0000 Sb(OH)3 + 3.0000 Br- + 3.0000 H+ - log_k 1.0554 - -delta_H -21.5871 kJ/mol # Calculated enthalpy of reaction SbBr3 + SbBr3 + 3 H2O = Sb(OH)3 + 3 Br- + 3 H+ + log_k 1.0554 + -delta_H -21.5871 kJ/mol # Calculated enthalpy of reaction SbBr3 # Enthalpy of formation: -259.197 kJ/mol SbCl3 - SbCl3 +3.0000 H2O = + 1.0000 Sb(OH)3 + 3.0000 Cl- + 3.0000 H+ - log_k 0.5878 - -delta_H -35.393 kJ/mol # Calculated enthalpy of reaction SbCl3 + SbCl3 + 3 H2O = Sb(OH)3 + 3 Cl- + 3 H+ + log_k 0.5878 + -delta_H -35.393 kJ/mol # Calculated enthalpy of reaction SbCl3 # Enthalpy of formation: -382.12 kJ/mol Sc - Sc +3.0000 H+ +0.7500 O2 = + 1.0000 Sc+++ + 1.5000 H2O - log_k 167.2700 - -delta_H -1033.87 kJ/mol # Calculated enthalpy of reaction Sc + Sc + 3 H+ + 0.75 O2 = Sc+3 + 1.5 H2O + log_k 167.27 + -delta_H -1033.87 kJ/mol # Calculated enthalpy of reaction Sc # Enthalpy of formation: 0 kJ/mol - -analytic -6.6922e+001 -2.9150e-002 5.4559e+004 2.4189e+001 8.5137e+002 + -analytic -6.6922e+1 -2.915e-2 5.4559e+4 2.4189e+1 8.5137e+2 # -Range: 0-300 Scacchite - MnCl2 = + 1.0000 Mn++ + 2.0000 Cl- - log_k 8.7785 - -delta_H -73.4546 kJ/mol # Calculated enthalpy of reaction Scacchite + MnCl2 = Mn+2 + 2 Cl- + log_k 8.7785 + -delta_H -73.4546 kJ/mol # Calculated enthalpy of reaction Scacchite # Enthalpy of formation: -481.302 kJ/mol - -analytic -2.3476e+002 -8.2437e-002 9.0088e+003 9.6128e+001 1.4064e+002 + -analytic -2.3476e+2 -8.2437e-2 9.0088e+3 9.6128e+1 1.4064e+2 # -Range: 0-300 Schoepite - UO3:2H2O +2.0000 H+ = + 1.0000 UO2++ + 3.0000 H2O - log_k 4.8333 - -delta_H -50.415 kJ/mol # Calculated enthalpy of reaction Schoepite + UO3:2H2O + 2 H+ = UO2+2 + 3 H2O + log_k 4.8333 + -delta_H -50.415 kJ/mol # Calculated enthalpy of reaction Schoepite # Enthalpy of formation: -1826.1 kJ/mol - -analytic 1.3645e+001 1.0884e-002 2.5412e+003 -8.3167e+000 3.9649e+001 + -analytic 1.3645e+1 1.0884e-2 2.5412e+3 -8.3167e+0 3.9649e+1 # -Range: 0-300 Schoepite-dehy(.393) - UO3:.393H2O +2.0000 H+ = + 1.0000 UO2++ + 1.3930 H2O - log_k 6.7243 - -delta_H -69.2728 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.393) + UO3:.393H2O + 2 H+ = UO2+2 + 1.393 H2O + log_k 6.7243 + -delta_H -69.2728 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.393) # Enthalpy of formation: -1347.9 kJ/mol - -analytic -5.6487e+001 -3.0358e-003 5.7044e+003 1.8179e+001 9.6887e+001 + -analytic -5.6487e+1 -3.0358e-3 5.7044e+3 1.8179e+1 9.6887e+1 # -Range: 0-200 Schoepite-dehy(.648) - UO3:.648H2O +2.0000 H+ = + 1.0000 UO2++ + 1.6480 H2O - log_k 6.2063 - -delta_H -65.4616 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.648) + UO3:.648H2O + 2 H+ = UO2+2 + 1.648 H2O + log_k 6.2063 + -delta_H -65.4616 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.648) # Enthalpy of formation: -1424.6 kJ/mol - -analytic -6.3010e+001 -3.0276e-003 5.8033e+003 2.0471e+001 9.8569e+001 + -analytic -6.301e+1 -3.0276e-3 5.8033e+3 2.0471e+1 9.8569e+1 # -Range: 0-200 Schoepite-dehy(.85) - UO3:.85H2O +2.0000 H+ = + 1.0000 UO2++ + 1.8500 H2O - log_k 5.0970 - -delta_H -56.4009 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.85) + UO3:.85H2O + 2 H+ = UO2+2 + 1.85 H2O + log_k 5.097 + -delta_H -56.4009 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.85) # Enthalpy of formation: -1491.4 kJ/mol - -analytic -6.7912e+001 -3.0420e-003 5.5690e+003 2.2323e+001 9.4593e+001 + -analytic -6.7912e+1 -3.042e-3 5.569e+3 2.2323e+1 9.4593e+1 # -Range: 0-200 Schoepite-dehy(.9) - UO3:.9H2O +2.0000 H+ = + 1.0000 UO2++ + 1.9000 H2O - log_k 5.0167 - -delta_H -55.7928 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.9) + UO3:.9H2O + 2 H+ = UO2+2 + 1.9 H2O + log_k 5.0167 + -delta_H -55.7928 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.9) # Enthalpy of formation: -1506.3 kJ/mol - -analytic -1.5998e+001 -2.0144e-003 3.2910e+003 4.2751e+000 5.1358e+001 + -analytic -1.5998e+1 -2.0144e-3 3.291e+3 4.2751e+0 5.1358e+1 # -Range: 0-300 Schoepite-dehy(1.0) - UO3:H2O +2.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O - log_k 5.1031 - -delta_H -57.4767 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(1.0) + UO3:H2O + 2 H+ = UO2+2 + 2 H2O + log_k 5.1031 + -delta_H -57.4767 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(1.0) # Enthalpy of formation: -1533.2 kJ/mol - -analytic -7.2080e+001 -3.0503e-003 5.8024e+003 2.3695e+001 9.8557e+001 + -analytic -7.208e+1 -3.0503e-3 5.8024e+3 2.3695e+1 9.8557e+1 # -Range: 0-200 Scolecite - CaAl2Si3O10:3H2O +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 3.0000 SiO2 + 7.0000 H2O - log_k 15.8767 - -delta_H -204.93 kJ/mol # Calculated enthalpy of reaction Scolecite + CaAl2Si3O10:3H2O + 8 H+ = Ca+2 + 2 Al+3 + 3 SiO2 + 7 H2O + log_k 15.8767 + -delta_H -204.93 kJ/mol # Calculated enthalpy of reaction Scolecite # Enthalpy of formation: -6048.92 kJ/mol - -analytic 5.0656e+001 -3.1485e-003 1.0574e+004 -2.5663e+001 -5.2769e+005 + -analytic 5.0656e+1 -3.1485e-3 1.0574e+4 -2.5663e+1 -5.2769e+5 # -Range: 0-300 Se - Se +1.0000 H2O +1.0000 O2 = + 1.0000 SeO3-- + 2.0000 H+ - log_k 26.1436 - -delta_H -211.221 kJ/mol # Calculated enthalpy of reaction Se + Se + H2O + O2 = SeO3-2 + 2 H+ + log_k 26.1436 + -delta_H -211.221 kJ/mol # Calculated enthalpy of reaction Se # Enthalpy of formation: 0 kJ/mol - -analytic -9.5144e+001 -6.5681e-002 1.0736e+004 4.2358e+001 1.6755e+002 + -analytic -9.5144e+1 -6.5681e-2 1.0736e+4 4.2358e+1 1.6755e+2 # -Range: 0-300 Se2O5 - Se2O5 +2.0000 H2O = + 1.0000 SeO3-- + 1.0000 SeO4-- + 4.0000 H+ - log_k 9.5047 - -delta_H -123.286 kJ/mol # Calculated enthalpy of reaction Se2O5 + Se2O5 + 2 H2O = SeO3-2 + SeO4-2 + 4 H+ + log_k 9.5047 + -delta_H -123.286 kJ/mol # Calculated enthalpy of reaction Se2O5 # Enthalpy of formation: -98.8 kcal/mol - -analytic 1.1013e+002 -2.4491e-002 -5.6147e+002 -3.6960e+001 -9.5719e+000 + -analytic 1.1013e+2 -2.4491e-2 -5.6147e+2 -3.696e+1 -9.5719e+0 # -Range: 0-200 SeCl4 - SeCl4 +3.0000 H2O = + 1.0000 SeO3-- + 4.0000 Cl- + 6.0000 H+ - log_k 14.4361 - -delta_H -131.298 kJ/mol # Calculated enthalpy of reaction SeCl4 + SeCl4 + 3 H2O = SeO3-2 + 4 Cl- + 6 H+ + log_k 14.4361 + -delta_H -131.298 kJ/mol # Calculated enthalpy of reaction SeCl4 # Enthalpy of formation: -45.1 kcal/mol - -analytic -4.0215e+002 -1.8323e-001 1.3074e+004 1.7267e+002 2.0413e+002 + -analytic -4.0215e+2 -1.8323e-1 1.3074e+4 1.7267e+2 2.0413e+2 # -Range: 0-300 SeO3 - SeO3 +1.0000 H2O = + 1.0000 SeO4-- + 2.0000 H+ - log_k 19.2015 - -delta_H -143.022 kJ/mol # Calculated enthalpy of reaction SeO3 + SeO3 + H2O = SeO4-2 + 2 H+ + log_k 19.2015 + -delta_H -143.022 kJ/mol # Calculated enthalpy of reaction SeO3 # Enthalpy of formation: -40.7 kcal/mol - -analytic -1.4199e+002 -6.4398e-002 9.5505e+003 5.9941e+001 1.4907e+002 + -analytic -1.4199e+2 -6.4398e-2 9.5505e+3 5.9941e+1 1.4907e+2 # -Range: 0-300 Sellaite - MgF2 = + 1.0000 Mg++ + 2.0000 F- - log_k -9.3843 - -delta_H -12.4547 kJ/mol # Calculated enthalpy of reaction Sellaite + MgF2 = Mg+2 + 2 F- + log_k -9.3843 + -delta_H -12.4547 kJ/mol # Calculated enthalpy of reaction Sellaite # Enthalpy of formation: -1124.2 kJ/mol - -analytic -2.6901e+002 -8.5487e-002 6.8237e+003 1.0595e+002 1.0656e+002 + -analytic -2.6901e+2 -8.5487e-2 6.8237e+3 1.0595e+2 1.0656e+2 # -Range: 0-300 Sepiolite - Mg4Si6O15(OH)2:6H2O +8.0000 H+ = + 4.0000 Mg++ + 6.0000 SiO2 + 11.0000 H2O - log_k 30.4439 - -delta_H -157.339 kJ/mol # Calculated enthalpy of reaction Sepiolite + Mg4Si6O15(OH)2:6H2O + 8 H+ = 4 Mg+2 + 6 SiO2 + 11 H2O + log_k 30.4439 + -delta_H -157.339 kJ/mol # Calculated enthalpy of reaction Sepiolite # Enthalpy of formation: -2418 kcal/mol - -analytic 1.8690e+001 4.7544e-002 2.6765e+004 -2.5301e+001 -2.6498e+006 + -analytic 1.869e+1 4.7544e-2 2.6765e+4 -2.5301e+1 -2.6498e+6 # -Range: 0-300 Shcherbinaite - V2O5 +2.0000 H+ = + 1.0000 H2O + 2.0000 VO2+ - log_k -1.4520 - -delta_H -34.7917 kJ/mol # Calculated enthalpy of reaction Shcherbinaite + V2O5 + 2 H+ = H2O + 2 VO2+ + log_k -1.452 + -delta_H -34.7917 kJ/mol # Calculated enthalpy of reaction Shcherbinaite # Enthalpy of formation: -1550.6 kJ/mol - -analytic -1.4791e+002 -2.2464e-002 6.6865e+003 5.2832e+001 1.0438e+002 + -analytic -1.4791e+2 -2.2464e-2 6.6865e+3 5.2832e+1 1.0438e+2 # -Range: 0-300 Si - Si +1.0000 O2 = + 1.0000 SiO2 - log_k 148.9059 - -delta_H -865.565 kJ/mol # Calculated enthalpy of reaction Si + Si + O2 = SiO2 + log_k 148.9059 + -delta_H -865.565 kJ/mol # Calculated enthalpy of reaction Si # Enthalpy of formation: 0 kJ/mol - -analytic -5.7245e+002 -7.6302e-002 8.3516e+004 2.0045e+002 -2.8494e+006 + -analytic -5.7245e+2 -7.6302e-2 8.3516e+4 2.0045e+2 -2.8494e+6 # -Range: 0-300 SiO2(am) - SiO2 = + 1.0000 SiO2 - log_k -2.7136 - -delta_H 20.0539 kJ/mol # Calculated enthalpy of reaction SiO2(am) + SiO2 = SiO2 + log_k -2.7136 + -delta_H 20.0539 kJ/mol # Calculated enthalpy of reaction SiO2(am) # Enthalpy of formation: -214.568 kcal/mol - -analytic 1.2109e+000 7.0767e-003 2.3634e+003 -3.4449e+000 -4.8591e+005 + -analytic 1.2109e+0 7.0767e-3 2.3634e+3 -3.4449e+0 -4.8591e+5 # -Range: 0-300 Siderite - FeCO3 +1.0000 H+ = + 1.0000 Fe++ + 1.0000 HCO3- - log_k -0.1920 - -delta_H -32.5306 kJ/mol # Calculated enthalpy of reaction Siderite + FeCO3 + H+ = Fe+2 + HCO3- + log_k -0.192 + -delta_H -32.5306 kJ/mol # Calculated enthalpy of reaction Siderite # Enthalpy of formation: -179.173 kcal/mol - -analytic -1.5990e+002 -4.9361e-002 5.4947e+003 6.3032e+001 8.5787e+001 + -analytic -1.599e+2 -4.9361e-2 5.4947e+3 6.3032e+1 8.5787e+1 # -Range: 0-300 Sillimanite - Al2SiO5 +6.0000 H+ = + 1.0000 SiO2 + 2.0000 Al+++ + 3.0000 H2O - log_k 16.3080 - -delta_H -238.442 kJ/mol # Calculated enthalpy of reaction Sillimanite + Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O + log_k 16.308 + -delta_H -238.442 kJ/mol # Calculated enthalpy of reaction Sillimanite # Enthalpy of formation: -615.099 kcal/mol - -analytic -7.1610e+001 -3.2196e-002 1.2493e+004 2.2449e+001 1.9496e+002 + -analytic -7.161e+1 -3.2196e-2 1.2493e+4 2.2449e+1 1.9496e+2 # -Range: 0-300 Sklodowskite - Mg(H3O)2(UO2)2(SiO4)2:4H2O +6.0000 H+ = + 1.0000 Mg++ + 2.0000 SiO2 + 2.0000 UO2++ + 10.0000 H2O - log_k 13.7915 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sklodowskite + Mg(H3O)2(UO2)2(SiO4)2:4H2O + 6 H+ = Mg+2 + 2 SiO2 + 2 UO2+2 + 10 H2O + log_k 13.7915 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sklodowskite # Enthalpy of formation: 0 kcal/mol Sm - Sm +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Sm++ - log_k 133.1614 - -delta_H -783.944 kJ/mol # Calculated enthalpy of reaction Sm + Sm + 2 H+ + 0.5 O2 = H2O + Sm+2 + log_k 133.1614 + -delta_H -783.944 kJ/mol # Calculated enthalpy of reaction Sm # Enthalpy of formation: 0 kJ/mol - -analytic -7.1599e+001 -2.0083e-002 4.2693e+004 2.7291e+001 6.6621e+002 + -analytic -7.1599e+1 -2.0083e-2 4.2693e+4 2.7291e+1 6.6621e+2 # -Range: 0-300 Sm(OH)3 - Sm(OH)3 +3.0000 H+ = + 1.0000 Sm+++ + 3.0000 H2O - log_k 16.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)3 + Sm(OH)3 + 3 H+ = Sm+3 + 3 H2O + log_k 16.4852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)3 # Enthalpy of formation: 0 kcal/mol Sm(OH)3(am) - Sm(OH)3 +3.0000 H+ = + 1.0000 Sm+++ + 3.0000 H2O - log_k 18.5852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)3(am) + Sm(OH)3 + 3 H+ = Sm+3 + 3 H2O + log_k 18.5852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)3(am) # Enthalpy of formation: 0 kcal/mol Sm2(CO3)3 - Sm2(CO3)3 +3.0000 H+ = + 2.0000 Sm+++ + 3.0000 HCO3- - log_k -3.5136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2(CO3)3 + Sm2(CO3)3 + 3 H+ = 2 Sm+3 + 3 HCO3- + log_k -3.5136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2(CO3)3 # Enthalpy of formation: 0 kcal/mol Sm2(SO4)3 - Sm2(SO4)3 = + 2.0000 Sm+++ + 3.0000 SO4-- - log_k -9.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2(SO4)3 + Sm2(SO4)3 = 2 Sm+3 + 3 SO4-2 + log_k -9.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2(SO4)3 # Enthalpy of formation: 0 kcal/mol Sm2O3 - Sm2O3 +6.0000 H+ = + 2.0000 Sm+++ + 3.0000 H2O - log_k 42.9000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2O3 + Sm2O3 + 6 H+ = 2 Sm+3 + 3 H2O + log_k 42.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2O3 # Enthalpy of formation: 0 kcal/mol SmF3:.5H2O - SmF3:.5H2O = + 0.5000 H2O + 1.0000 Sm+++ + 3.0000 F- - log_k -17.5000 - -delta_H 0 # Not possible to calculate enthalpy of reaction SmF3:.5H2O + SmF3:.5H2O = 0.5 H2O + Sm+3 + 3 F- + log_k -17.5 + -delta_H 0 # Not possible to calculate enthalpy of reaction SmF3:.5H2O # Enthalpy of formation: 0 kcal/mol SmPO4:10H2O - SmPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Sm+++ + 10.0000 H2O - log_k -12.1782 - -delta_H 0 # Not possible to calculate enthalpy of reaction SmPO4:10H2O + SmPO4:10H2O + H+ = HPO4-2 + Sm+3 + 10 H2O + log_k -12.1782 + -delta_H 0 # Not possible to calculate enthalpy of reaction SmPO4:10H2O # Enthalpy of formation: 0 kcal/mol Smectite-high-Fe-Mg # Ca.025Na.1K.2Fe++.5Fe+++.2Mg1.15Al1.25Si3.5H2O12 +8.0000 H+ = + 0.0250 Ca++ + 0.1000 Na+ + 0.2000 Fe+++ + 0.2000 K+ + 0.5000 Fe++ + 1.1500 Mg++ + 1.2500 Al+++ + 3.5000 SiO2 + 5.0000 H2O - Ca.025Na.1K.2Fe.5Fe.2Mg1.15Al1.25Si3.5H2O12 +8.0000 H+ = + 0.0250 Ca++ + 0.1000 Na+ + 0.2000 Fe+++ + 0.2000 K+ + 0.5000 Fe++ + 1.1500 Mg++ + 1.2500 Al+++ + 3.5000 SiO2 + 5.0000 H2O - log_k 17.4200 - -delta_H -199.841 kJ/mol # Calculated enthalpy of reaction Smectite-high-Fe-Mg + Ca.025Na.1K.2Fe.5Fe.2Mg1.15Al1.25Si3.5H2O12 + 8 H+ = 0.025 Ca+2 + 0.1 Na+ + 0.2 Fe+3 + 0.2 K+ + 0.5 Fe+2 + 1.15 Mg+2 + 1.25 Al+3 + 3.5 SiO2 + 5 H2O + log_k 17.42 + -delta_H -199.841 kJ/mol # Calculated enthalpy of reaction Smectite-high-Fe-Mg # Enthalpy of formation: -1351.39 kcal/mol - -analytic -9.6102e+000 1.2551e-003 1.8157e+004 -7.9862e+000 -1.3005e+006 + -analytic -9.6102e+0 1.2551e-3 1.8157e+4 -7.9862e+0 -1.3005e+6 # -Range: 0-300 Smectite-low-Fe-Mg # Ca.02Na.15K.2Fe++.29Fe+++.16Mg.9Al1.25Si3.75H2O1 +7.0000 H+ = + 0.0200 Ca++ + 0.1500 Na+ + 0.1600 Fe+++ + 0.2000 K+ + 0.2900 Fe++ + 0.9000 Mg++ + 1.2500 Al+++ + 3.7500 SiO2 + 4.5000 H2O - Ca.02Na.15K.2Fe.29Fe.16Mg.9Al1.25Si3.75H2O12 +7.0000 H+ = + 0.0200 Ca++ + 0.1500 Na+ + 0.1600 Fe+++ + 0.2000 K+ + 0.2900 Fe++ + 0.9000 Mg++ + 1.2500 Al+++ + 3.7500 SiO2 + 4.5000 H2O - log_k 11.0405 - -delta_H -144.774 kJ/mol # Calculated enthalpy of reaction Smectite-low-Fe-Mg + Ca.02Na.15K.2Fe.29Fe.16Mg.9Al1.25Si3.75H2O12 + 7 H+ = 0.02 Ca+2 + 0.15 Na+ + 0.16 Fe+3 + 0.2 K+ + 0.29 Fe+2 + 0.9 Mg+2 + 1.25 Al+3 + 3.75 SiO2 + 4.5 H2O + log_k 11.0405 + -delta_H -144.774 kJ/mol # Calculated enthalpy of reaction Smectite-low-Fe-Mg # Enthalpy of formation: -1352.12 kcal/mol - -analytic -1.7003e+001 6.9848e-003 1.8359e+004 -6.8896e+000 -1.6637e+006 + -analytic -1.7003e+1 6.9848e-3 1.8359e+4 -6.8896e+0 -1.6637e+6 # -Range: 0-300 Smithsonite - ZnCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Zn++ - log_k 0.4633 - -delta_H -30.5348 kJ/mol # Calculated enthalpy of reaction Smithsonite + ZnCO3 + H+ = HCO3- + Zn+2 + log_k 0.4633 + -delta_H -30.5348 kJ/mol # Calculated enthalpy of reaction Smithsonite # Enthalpy of formation: -194.26 kcal/mol - -analytic -1.6452e+002 -5.0231e-002 5.5925e+003 6.5139e+001 8.7314e+001 + -analytic -1.6452e+2 -5.0231e-2 5.5925e+3 6.5139e+1 8.7314e+1 # -Range: 0-300 Sn - Sn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Sn++ - log_k 47.8615 - -delta_H -288.558 kJ/mol # Calculated enthalpy of reaction Sn + Sn + 2 H+ + 0.5 O2 = H2O + Sn+2 + log_k 47.8615 + -delta_H -288.558 kJ/mol # Calculated enthalpy of reaction Sn # Enthalpy of formation: 0 kcal/mol - -analytic -1.3075e+002 -3.3807e-002 1.9548e+004 5.0382e+001 -1.3868e+005 + -analytic -1.3075e+2 -3.3807e-2 1.9548e+4 5.0382e+1 -1.3868e+5 # -Range: 0-300 Sn(OH)2 - Sn(OH)2 +2.0000 H+ = + 1.0000 Sn++ + 2.0000 H2O - log_k 1.8400 - -delta_H -19.6891 kJ/mol # Calculated enthalpy of reaction Sn(OH)2 + Sn(OH)2 + 2 H+ = Sn+2 + 2 H2O + log_k 1.84 + -delta_H -19.6891 kJ/mol # Calculated enthalpy of reaction Sn(OH)2 # Enthalpy of formation: -560.774 kJ/mol - -analytic -6.1677e+001 -5.3258e-003 3.3656e+003 2.1748e+001 5.7174e+001 + -analytic -6.1677e+1 -5.3258e-3 3.3656e+3 2.1748e+1 5.7174e+1 # -Range: 0-200 Sn(SO4)2 - Sn(SO4)2 = + 1.0000 Sn++++ + 2.0000 SO4-- - log_k 16.0365 - -delta_H -159.707 kJ/mol # Calculated enthalpy of reaction Sn(SO4)2 + Sn(SO4)2 = Sn+4 + 2 SO4-2 + log_k 16.0365 + -delta_H -159.707 kJ/mol # Calculated enthalpy of reaction Sn(SO4)2 # Enthalpy of formation: -389.4 kcal/mol - -analytic 1.7787e+001 -5.1758e-002 3.7671e+003 4.1861e-001 6.3965e+001 + -analytic 1.7787e+1 -5.1758e-2 3.7671e+3 4.1861e-1 6.3965e+1 # -Range: 0-200 Sn3S4 - Sn3S4 +4.0000 H+ = + 1.0000 Sn++++ + 2.0000 Sn++ + 4.0000 HS- - log_k -61.9790 - -delta_H 318.524 kJ/mol # Calculated enthalpy of reaction Sn3S4 + Sn3S4 + 4 H+ = Sn+4 + 2 Sn+2 + 4 HS- + log_k -61.979 + -delta_H 318.524 kJ/mol # Calculated enthalpy of reaction Sn3S4 # Enthalpy of formation: -88.5 kcal/mol - -analytic -8.1325e+001 -7.4589e-002 -1.7953e+004 4.1138e+001 -3.0484e+002 + -analytic -8.1325e+1 -7.4589e-2 -1.7953e+4 4.1138e+1 -3.0484e+2 # -Range: 0-200 SnBr2 - SnBr2 = + 1.0000 Sn++ + 2.0000 Br- - log_k -1.4369 - -delta_H 8.24248 kJ/mol # Calculated enthalpy of reaction SnBr2 + SnBr2 = Sn+2 + 2 Br- + log_k -1.4369 + -delta_H 8.24248 kJ/mol # Calculated enthalpy of reaction SnBr2 # Enthalpy of formation: -62.15 kcal/mol - -analytic 2.5384e+001 -1.7350e-002 -2.6653e+003 -5.1400e+000 -4.5269e+001 + -analytic 2.5384e+1 -1.735e-2 -2.6653e+3 -5.14e+0 -4.5269e+1 # -Range: 0-200 SnBr4 - SnBr4 = + 1.0000 Sn++++ + 4.0000 Br- - log_k 11.1272 - -delta_H -78.3763 kJ/mol # Calculated enthalpy of reaction SnBr4 + SnBr4 = Sn+4 + 4 Br- + log_k 11.1272 + -delta_H -78.3763 kJ/mol # Calculated enthalpy of reaction SnBr4 # Enthalpy of formation: -377.391 kJ/mol - -analytic 1.3516e+001 -5.5193e-002 -8.1888e+001 5.7935e+000 -1.3940e+000 + -analytic 1.3516e+1 -5.5193e-2 -8.1888e+1 5.7935e+0 -1.394e+0 # -Range: 0-200 SnCl2 - SnCl2 = + 1.0000 Sn++ + 2.0000 Cl- - log_k 0.3225 - -delta_H -11.9913 kJ/mol # Calculated enthalpy of reaction SnCl2 + SnCl2 = Sn+2 + 2 Cl- + log_k 0.3225 + -delta_H -11.9913 kJ/mol # Calculated enthalpy of reaction SnCl2 # Enthalpy of formation: -79.1 kcal/mol - -analytic 7.9717e+000 -2.1475e-002 -1.1676e+003 1.0749e+000 -1.9829e+001 + -analytic 7.9717e+0 -2.1475e-2 -1.1676e+3 1.0749e+0 -1.9829e+1 # -Range: 0-200 SnSO4 - SnSO4 = + 1.0000 SO4-- + 1.0000 Sn++ - log_k -23.9293 - -delta_H 96.232 kJ/mol # Calculated enthalpy of reaction SnSO4 + SnSO4 = SO4-2 + Sn+2 + log_k -23.9293 + -delta_H 96.232 kJ/mol # Calculated enthalpy of reaction SnSO4 # Enthalpy of formation: -242.5 kcal/mol - -analytic 3.0046e+001 -1.4238e-002 -7.5915e+003 -9.8122e+000 -1.2892e+002 + -analytic 3.0046e+1 -1.4238e-2 -7.5915e+3 -9.8122e+0 -1.2892e+2 # -Range: 0-200 SnSe - SnSe = + 1.0000 Se-- + 1.0000 Sn++ - log_k -32.9506 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnSe + SnSe = Se-2 + Sn+2 + log_k -32.9506 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnSe # Enthalpy of formation: -21.2 kcal/mol - -analytic 4.2342e+000 9.5462e-004 -8.0009e+003 -4.2997e+000 -1.3587e+002 + -analytic 4.2342e+0 9.5462e-4 -8.0009e+3 -4.2997e+0 -1.3587e+2 # -Range: 0-200 SnSe2 - SnSe2 = + 1.0000 Sn++++ + 2.0000 Se-- - log_k -66.6570 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnSe2 + SnSe2 = Sn+4 + 2 Se-2 + log_k -66.657 + -delta_H 0 # Not possible to calculate enthalpy of reaction SnSe2 # Enthalpy of formation: -29.8 kcal/mol - -analytic -3.6819e+001 -2.0966e-002 -1.5197e+004 1.1070e+001 -2.5806e+002 + -analytic -3.6819e+1 -2.0966e-2 -1.5197e+4 1.107e+1 -2.5806e+2 # -Range: 0-200 Soddyite - (UO2)2SiO4:2H2O +4.0000 H+ = + 1.0000 SiO2 + 2.0000 UO2++ + 4.0000 H2O - log_k 0.3920 - -delta_H 0 # Not possible to calculate enthalpy of reaction Soddyite + (UO2)2SiO4:2H2O + 4 H+ = SiO2 + 2 UO2+2 + 4 H2O + log_k 0.392 + -delta_H 0 # Not possible to calculate enthalpy of reaction Soddyite # Enthalpy of formation: 0 kcal/mol Sphaerocobaltite - CoCO3 +1.0000 H+ = + 1.0000 Co++ + 1.0000 HCO3- - log_k -0.2331 - -delta_H -30.7064 kJ/mol # Calculated enthalpy of reaction Sphaerocobaltite + CoCO3 + H+ = Co+2 + HCO3- + log_k -0.2331 + -delta_H -30.7064 kJ/mol # Calculated enthalpy of reaction Sphaerocobaltite # Enthalpy of formation: -171.459 kcal/mol - -analytic -1.5709e+002 -4.8957e-002 5.3158e+003 6.2075e+001 8.2995e+001 + -analytic -1.5709e+2 -4.8957e-2 5.3158e+3 6.2075e+1 8.2995e+1 # -Range: 0-300 Sphalerite - ZnS +1.0000 H+ = + 1.0000 HS- + 1.0000 Zn++ - log_k -11.4400 - -delta_H 35.5222 kJ/mol # Calculated enthalpy of reaction Sphalerite + ZnS + H+ = HS- + Zn+2 + log_k -11.44 + -delta_H 35.5222 kJ/mol # Calculated enthalpy of reaction Sphalerite # Enthalpy of formation: -49 kcal/mol - -analytic -1.5497e+002 -4.8953e-002 1.7850e+003 6.1472e+001 2.7899e+001 + -analytic -1.5497e+2 -4.8953e-2 1.785e+3 6.1472e+1 2.7899e+1 # -Range: 0-300 Spinel - Al2MgO4 +8.0000 H+ = + 1.0000 Mg++ + 2.0000 Al+++ + 4.0000 H2O - log_k 37.6295 - -delta_H -398.108 kJ/mol # Calculated enthalpy of reaction Spinel + Al2MgO4 + 8 H+ = Mg+2 + 2 Al+3 + 4 H2O + log_k 37.6295 + -delta_H -398.108 kJ/mol # Calculated enthalpy of reaction Spinel # Enthalpy of formation: -546.847 kcal/mol - -analytic -3.3895e+002 -8.3595e-002 2.9251e+004 1.2260e+002 4.5654e+002 + -analytic -3.3895e+2 -8.3595e-2 2.9251e+4 1.226e+2 4.5654e+2 # -Range: 0-300 Spinel-Co - Co3O4 +8.0000 H+ = + 1.0000 Co++ + 2.0000 Co+++ + 4.0000 H2O - log_k -6.4852 - -delta_H -126.415 kJ/mol # Calculated enthalpy of reaction Spinel-Co + Co3O4 + 8 H+ = Co+2 + 2 Co+3 + 4 H2O + log_k -6.4852 + -delta_H -126.415 kJ/mol # Calculated enthalpy of reaction Spinel-Co # Enthalpy of formation: -891 kJ/mol - -analytic -3.2239e+002 -8.0782e-002 1.4635e+004 1.1755e+002 2.2846e+002 + -analytic -3.2239e+2 -8.0782e-2 1.4635e+4 1.1755e+2 2.2846e+2 # -Range: 0-300 Spodumene - LiAlSi2O6 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 Li+ + 2.0000 H2O + 2.0000 SiO2 - log_k 6.9972 - -delta_H -89.1817 kJ/mol # Calculated enthalpy of reaction Spodumene + LiAlSi2O6 + 4 H+ = Al+3 + Li+ + 2 H2O + 2 SiO2 + log_k 6.9972 + -delta_H -89.1817 kJ/mol # Calculated enthalpy of reaction Spodumene # Enthalpy of formation: -3054.75 kJ/mol - -analytic -9.8111e+000 2.1191e-003 9.6920e+003 -3.0484e+000 -7.8822e+005 + -analytic -9.8111e+0 2.1191e-3 9.692e+3 -3.0484e+0 -7.8822e+5 # -Range: 0-300 Sr - Sr +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Sr++ - log_k 141.7816 - -delta_H -830.679 kJ/mol # Calculated enthalpy of reaction Sr + Sr + 2 H+ + 0.5 O2 = H2O + Sr+2 + log_k 141.7816 + -delta_H -830.679 kJ/mol # Calculated enthalpy of reaction Sr # Enthalpy of formation: 0 kJ/mol - -analytic -1.6271e+002 -3.1212e-002 5.1520e+004 5.9178e+001 -4.8390e+005 + -analytic -1.6271e+2 -3.1212e-2 5.152e+4 5.9178e+1 -4.839e+5 # -Range: 0-300 Sr(NO3)2 - Sr(NO3)2 = + 1.0000 Sr++ + 2.0000 NO3- - log_k 1.1493 - -delta_H 13.7818 kJ/mol # Calculated enthalpy of reaction Sr(NO3)2 + Sr(NO3)2 = Sr+2 + 2 NO3- + log_k 1.1493 + -delta_H 13.7818 kJ/mol # Calculated enthalpy of reaction Sr(NO3)2 # Enthalpy of formation: -978.311 kJ/mol - -analytic 2.8914e+000 -1.2487e-002 -1.4872e+003 2.8124e+000 -2.5256e+001 + -analytic 2.8914e+0 -1.2487e-2 -1.4872e+3 2.8124e+0 -2.5256e+1 # -Range: 0-200 Sr(NO3)2:4H2O - Sr(NO3)2:4H2O = + 1.0000 Sr++ + 2.0000 NO3- + 4.0000 H2O - log_k 0.6976 - -delta_H 47.9045 kJ/mol # Calculated enthalpy of reaction Sr(NO3)2:4H2O + Sr(NO3)2:4H2O = Sr+2 + 2 NO3- + 4 H2O + log_k 0.6976 + -delta_H 47.9045 kJ/mol # Calculated enthalpy of reaction Sr(NO3)2:4H2O # Enthalpy of formation: -2155.79 kJ/mol - -analytic -8.4518e+001 -9.1155e-003 1.0856e+003 3.4061e+001 1.8464e+001 + -analytic -8.4518e+1 -9.1155e-3 1.0856e+3 3.4061e+1 1.8464e+1 # -Range: 0-200 Sr(OH)2 - Sr(OH)2 +2.0000 H+ = + 1.0000 Sr++ + 2.0000 H2O - log_k 27.5229 - -delta_H -153.692 kJ/mol # Calculated enthalpy of reaction Sr(OH)2 + Sr(OH)2 + 2 H+ = Sr+2 + 2 H2O + log_k 27.5229 + -delta_H -153.692 kJ/mol # Calculated enthalpy of reaction Sr(OH)2 # Enthalpy of formation: -968.892 kJ/mol - -analytic -5.1871e+001 -2.9123e-003 1.0175e+004 1.8643e+001 1.7280e+002 + -analytic -5.1871e+1 -2.9123e-3 1.0175e+4 1.8643e+1 1.728e+2 # -Range: 0-200 Sr2SiO4 - Sr2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Sr++ - log_k 42.8076 - -delta_H -244.583 kJ/mol # Calculated enthalpy of reaction Sr2SiO4 + Sr2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Sr+2 + log_k 42.8076 + -delta_H -244.583 kJ/mol # Calculated enthalpy of reaction Sr2SiO4 # Enthalpy of formation: -2306.61 kJ/mol - -analytic 3.0319e+001 2.0204e-003 1.2729e+004 -1.1584e+001 -1.9480e+005 + -analytic 3.0319e+1 2.0204e-3 1.2729e+4 -1.1584e+1 -1.948e+5 # -Range: 0-300 Sr3(AsO4)2 - Sr3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Sr++ - log_k 20.6256 - -delta_H -152.354 kJ/mol # Calculated enthalpy of reaction Sr3(AsO4)2 + Sr3(AsO4)2 + 4 H+ = 2 H2AsO4- + 3 Sr+2 + log_k 20.6256 + -delta_H -152.354 kJ/mol # Calculated enthalpy of reaction Sr3(AsO4)2 # Enthalpy of formation: -3319.49 kJ/mol - -analytic -8.4749e+001 -2.9367e-002 9.5849e+003 3.3126e+001 1.6279e+002 + -analytic -8.4749e+1 -2.9367e-2 9.5849e+3 3.3126e+1 1.6279e+2 # -Range: 0-200 SrBr2 - SrBr2 = + 1.0000 Sr++ + 2.0000 Br- - log_k 13.1128 - -delta_H -75.106 kJ/mol # Calculated enthalpy of reaction SrBr2 + SrBr2 = Sr+2 + 2 Br- + log_k 13.1128 + -delta_H -75.106 kJ/mol # Calculated enthalpy of reaction SrBr2 # Enthalpy of formation: -718.808 kJ/mol - -analytic -1.8512e+002 -7.2423e-002 7.6861e+003 7.8401e+001 1.1999e+002 + -analytic -1.8512e+2 -7.2423e-2 7.6861e+3 7.8401e+1 1.1999e+2 # -Range: 0-300 SrBr2:6H2O - SrBr2:6H2O = + 1.0000 Sr++ + 2.0000 Br- + 6.0000 H2O - log_k 3.6678 - -delta_H 23.367 kJ/mol # Calculated enthalpy of reaction SrBr2:6H2O + SrBr2:6H2O = Sr+2 + 2 Br- + 6 H2O + log_k 3.6678 + -delta_H 23.367 kJ/mol # Calculated enthalpy of reaction SrBr2:6H2O # Enthalpy of formation: -2532.31 kJ/mol - -analytic -2.2470e+002 -6.7920e-002 4.9432e+003 9.3758e+001 7.7200e+001 + -analytic -2.247e+2 -6.792e-2 4.9432e+3 9.3758e+1 7.72e+1 # -Range: 0-300 SrBr2:H2O - SrBr2:H2O = + 1.0000 H2O + 1.0000 Sr++ + 2.0000 Br- - log_k 9.6057 - -delta_H -47.5853 kJ/mol # Calculated enthalpy of reaction SrBr2:H2O + SrBr2:H2O = H2O + Sr+2 + 2 Br- + log_k 9.6057 + -delta_H -47.5853 kJ/mol # Calculated enthalpy of reaction SrBr2:H2O # Enthalpy of formation: -1032.17 kJ/mol - -analytic -1.9103e+002 -7.1402e-002 6.6358e+003 8.0673e+001 1.0360e+002 + -analytic -1.9103e+2 -7.1402e-2 6.6358e+3 8.0673e+1 1.036e+2 # -Range: 0-300 SrCl2 - SrCl2 = + 1.0000 Sr++ + 2.0000 Cl- - log_k 7.9389 - -delta_H -55.0906 kJ/mol # Calculated enthalpy of reaction SrCl2 + SrCl2 = Sr+2 + 2 Cl- + log_k 7.9389 + -delta_H -55.0906 kJ/mol # Calculated enthalpy of reaction SrCl2 # Enthalpy of formation: -829.976 kJ/mol - -analytic -2.0097e+002 -7.6193e-002 7.0396e+003 8.4050e+001 1.0991e+002 + -analytic -2.0097e+2 -7.6193e-2 7.0396e+3 8.405e+1 1.0991e+2 # -Range: 0-300 SrCl2:2H2O - SrCl2:2H2O = + 1.0000 Sr++ + 2.0000 Cl- + 2.0000 H2O - log_k 3.3248 - -delta_H -17.7313 kJ/mol # Calculated enthalpy of reaction SrCl2:2H2O + SrCl2:2H2O = Sr+2 + 2 Cl- + 2 H2O + log_k 3.3248 + -delta_H -17.7313 kJ/mol # Calculated enthalpy of reaction SrCl2:2H2O # Enthalpy of formation: -1439.01 kJ/mol - -analytic -2.1551e+002 -7.4349e-002 5.9400e+003 8.9330e+001 9.2752e+001 + -analytic -2.1551e+2 -7.4349e-2 5.94e+3 8.933e+1 9.2752e+1 # -Range: 0-300 SrCl2:6H2O - SrCl2:6H2O = + 1.0000 Sr++ + 2.0000 Cl- + 6.0000 H2O - log_k 1.5038 - -delta_H 24.6964 kJ/mol # Calculated enthalpy of reaction SrCl2:6H2O + SrCl2:6H2O = Sr+2 + 2 Cl- + 6 H2O + log_k 1.5038 + -delta_H 24.6964 kJ/mol # Calculated enthalpy of reaction SrCl2:6H2O # Enthalpy of formation: -2624.79 kJ/mol - -analytic -1.3225e+002 -1.8260e-002 3.7077e+003 5.1224e+001 6.3008e+001 + -analytic -1.3225e+2 -1.826e-2 3.7077e+3 5.1224e+1 6.3008e+1 # -Range: 0-200 SrCl2:H2O - SrCl2:H2O = + 1.0000 H2O + 1.0000 Sr++ + 2.0000 Cl- - log_k 4.7822 - -delta_H -33.223 kJ/mol # Calculated enthalpy of reaction SrCl2:H2O + SrCl2:H2O = H2O + Sr+2 + 2 Cl- + log_k 4.7822 + -delta_H -33.223 kJ/mol # Calculated enthalpy of reaction SrCl2:H2O # Enthalpy of formation: -1137.68 kJ/mol - -analytic -2.1825e+002 -7.7851e-002 6.5957e+003 9.0555e+001 1.0298e+002 + -analytic -2.1825e+2 -7.7851e-2 6.5957e+3 9.0555e+1 1.0298e+2 # -Range: 0-300 SrCrO4 - SrCrO4 = + 1.0000 CrO4-- + 1.0000 Sr++ - log_k -3.8849 - -delta_H -1.73636 kJ/mol # Calculated enthalpy of reaction SrCrO4 + SrCrO4 = CrO4-2 + Sr+2 + log_k -3.8849 + -delta_H -1.73636 kJ/mol # Calculated enthalpy of reaction SrCrO4 # Enthalpy of formation: -341.855 kcal/mol - -analytic 2.3424e+001 -1.5589e-002 -2.1393e+003 -6.2628e+000 -3.6337e+001 + -analytic 2.3424e+1 -1.5589e-2 -2.1393e+3 -6.2628e+0 -3.6337e+1 # -Range: 0-200 SrF2 - SrF2 = + 1.0000 Sr++ + 2.0000 F- - log_k -8.5400 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrF2 + SrF2 = Sr+2 + 2 F- + log_k -8.54 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrF2 # Enthalpy of formation: 0 kcal/mol SrHPO4 - SrHPO4 = + 1.0000 HPO4-- + 1.0000 Sr++ - log_k -6.2416 - -delta_H -19.7942 kJ/mol # Calculated enthalpy of reaction SrHPO4 + SrHPO4 = HPO4-2 + Sr+2 + log_k -6.2416 + -delta_H -19.7942 kJ/mol # Calculated enthalpy of reaction SrHPO4 # Enthalpy of formation: -1823.19 kJ/mol - -analytic 5.4057e+000 -1.8533e-002 -8.2021e+002 -1.3667e+000 -1.3930e+001 + -analytic 5.4057e+0 -1.8533e-2 -8.2021e+2 -1.3667e+0 -1.393e+1 # -Range: 0-200 SrI2 - SrI2 = + 1.0000 Sr++ + 2.0000 I- - log_k 19.2678 - -delta_H -103.218 kJ/mol # Calculated enthalpy of reaction SrI2 + SrI2 = Sr+2 + 2 I- + log_k 19.2678 + -delta_H -103.218 kJ/mol # Calculated enthalpy of reaction SrI2 # Enthalpy of formation: -561.494 kJ/mol - -analytic -1.8168e+002 -7.2083e-002 9.0759e+003 7.7577e+001 1.4167e+002 + -analytic -1.8168e+2 -7.2083e-2 9.0759e+3 7.7577e+1 1.4167e+2 # -Range: 0-300 SrO - SrO +2.0000 H+ = + 1.0000 H2O + 1.0000 Sr++ - log_k 41.8916 - -delta_H -243.875 kJ/mol # Calculated enthalpy of reaction SrO + SrO + 2 H+ = H2O + Sr+2 + log_k 41.8916 + -delta_H -243.875 kJ/mol # Calculated enthalpy of reaction SrO # Enthalpy of formation: -592.871 kJ/mol - -analytic -5.8463e+001 -1.4240e-002 1.4417e+004 2.2725e+001 2.2499e+002 + -analytic -5.8463e+1 -1.424e-2 1.4417e+4 2.2725e+1 2.2499e+2 # -Range: 0-300 SrS - SrS +1.0000 H+ = + 1.0000 HS- + 1.0000 Sr++ - log_k 14.7284 - -delta_H -93.3857 kJ/mol # Calculated enthalpy of reaction SrS + SrS + H+ = HS- + Sr+2 + log_k 14.7284 + -delta_H -93.3857 kJ/mol # Calculated enthalpy of reaction SrS # Enthalpy of formation: -473.63 kJ/mol - -analytic -1.3048e+002 -4.4837e-002 7.8429e+003 5.3442e+001 1.2242e+002 + -analytic -1.3048e+2 -4.4837e-2 7.8429e+3 5.3442e+1 1.2242e+2 # -Range: 0-300 SrSeO4 - SrSeO4 = + 1.0000 SeO4-- + 1.0000 Sr++ - log_k -4.4000 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrSeO4 + SrSeO4 = SeO4-2 + Sr+2 + log_k -4.4 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrSeO4 # Enthalpy of formation: 0 kcal/mol SrSiO3 - SrSiO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 SiO2 + 1.0000 Sr++ - log_k 14.8438 - -delta_H -79.6112 kJ/mol # Calculated enthalpy of reaction SrSiO3 + SrSiO3 + 2 H+ = H2O + SiO2 + Sr+2 + log_k 14.8438 + -delta_H -79.6112 kJ/mol # Calculated enthalpy of reaction SrSiO3 # Enthalpy of formation: -1634.83 kJ/mol - -analytic 2.2592e+001 6.0821e-003 5.9982e+003 -1.0213e+001 -3.9529e+005 + -analytic 2.2592e+1 6.0821e-3 5.9982e+3 -1.0213e+1 -3.9529e+5 # -Range: 0-300 SrUO4(alpha) - SrUO4 +4.0000 H+ = + 1.0000 Sr++ + 1.0000 UO2++ + 2.0000 H2O - log_k 19.1650 - -delta_H -151.984 kJ/mol # Calculated enthalpy of reaction SrUO4(alpha) + SrUO4 + 4 H+ = Sr+2 + UO2+2 + 2 H2O + log_k 19.165 + -delta_H -151.984 kJ/mol # Calculated enthalpy of reaction SrUO4(alpha) # Enthalpy of formation: -1989.6 kJ/mol - -analytic -7.4169e+001 -1.6686e-002 9.8721e+003 2.6345e+001 1.5407e+002 + -analytic -7.4169e+1 -1.6686e-2 9.8721e+3 2.6345e+1 1.5407e+2 # -Range: 0-300 SrZrO3 - SrZrO3 +4.0000 H+ = + 1.0000 H2O + 1.0000 Sr++ + 1.0000 Zr(OH)2++ - log_k -131.4664 - -delta_H 706.983 kJ/mol # Calculated enthalpy of reaction SrZrO3 + SrZrO3 + 4 H+ = H2O + Sr+2 + Zr(OH)2+2 + log_k -131.4664 + -delta_H 706.983 kJ/mol # Calculated enthalpy of reaction SrZrO3 # Enthalpy of formation: -629.677 kcal/mol - -analytic -5.8512e+001 -9.5738e-003 -3.5254e+004 1.9459e+001 -5.9865e+002 + -analytic -5.8512e+1 -9.5738e-3 -3.5254e+4 1.9459e+1 -5.9865e+2 # -Range: 0-200 Starkeyite - MgSO4:4H2O = + 1.0000 Mg++ + 1.0000 SO4-- + 4.0000 H2O - log_k -0.9999 - -delta_H 0 # Not possible to calculate enthalpy of reaction Starkeyite + MgSO4:4H2O = Mg+2 + SO4-2 + 4 H2O + log_k -0.9999 + -delta_H 0 # Not possible to calculate enthalpy of reaction Starkeyite # Enthalpy of formation: 0 kcal/mol Stibnite - Sb2S3 +6.0000 H2O = + 2.0000 Sb(OH)3 + 3.0000 H+ + 3.0000 HS- - log_k -53.1100 - -delta_H 0 # Not possible to calculate enthalpy of reaction Stibnite + Sb2S3 + 6 H2O = 2 Sb(OH)3 + 3 H+ + 3 HS- + log_k -53.11 + -delta_H 0 # Not possible to calculate enthalpy of reaction Stibnite # Enthalpy of formation: 0 kcal/mol - -analytic 2.5223e+001 -5.9186e-002 -2.0860e+004 3.6892e+000 -3.2551e+002 + -analytic 2.5223e+1 -5.9186e-2 -2.086e+4 3.6892e+0 -3.2551e+2 # -Range: 0-300 Stilbite - Ca1.019Na.136K.006Al2.18Si6.82O18:7.33H2O +8.7200 H+ = + 0.0060 K+ + 0.1360 Na+ + 1.0190 Ca++ + 2.1800 Al+++ + 6.8200 SiO2 + 11.6900 H2O - log_k 1.0545 - -delta_H -83.0019 kJ/mol # Calculated enthalpy of reaction Stilbite + Ca1.019Na.136K.006Al2.18Si6.82O18:7.33H2O + 8.72 H+ = 0.006 K+ + 0.136 Na+ + 1.019 Ca+2 + 2.18 Al+3 + 6.82 SiO2 + 11.69 H2O + log_k 1.0545 + -delta_H -83.0019 kJ/mol # Calculated enthalpy of reaction Stilbite # Enthalpy of formation: -11005.7 kJ/mol - -analytic -2.4483e+001 3.0987e-002 2.8013e+004 -1.5802e+001 -3.4491e+006 + -analytic -2.4483e+1 3.0987e-2 2.8013e+4 -1.5802e+1 -3.4491e+6 # -Range: 0-300 Stilleite - ZnSe = + 1.0000 Se-- + 1.0000 Zn++ - log_k -23.9693 - -delta_H 0 # Not possible to calculate enthalpy of reaction Stilleite + ZnSe = Se-2 + Zn+2 + log_k -23.9693 + -delta_H 0 # Not possible to calculate enthalpy of reaction Stilleite # Enthalpy of formation: -37.97 kcal/mol - -analytic -6.1948e+001 -1.7004e-002 -2.4498e+003 2.0712e+001 -3.8209e+001 + -analytic -6.1948e+1 -1.7004e-2 -2.4498e+3 2.0712e+1 -3.8209e+1 # -Range: 0-300 Strengite - FePO4:2H2O +1.0000 H+ = + 1.0000 Fe+++ + 1.0000 HPO4-- + 2.0000 H2O - log_k -11.3429 - -delta_H -37.107 kJ/mol # Calculated enthalpy of reaction Strengite + FePO4:2H2O + H+ = Fe+3 + HPO4-2 + 2 H2O + log_k -11.3429 + -delta_H -37.107 kJ/mol # Calculated enthalpy of reaction Strengite # Enthalpy of formation: -1876.23 kJ/mol - -analytic -2.7752e+002 -9.4014e-002 7.6862e+003 1.0846e+002 1.2002e+002 + -analytic -2.7752e+2 -9.4014e-2 7.6862e+3 1.0846e+2 1.2002e+2 # -Range: 0-300 Strontianite - SrCO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 Sr++ - log_k -0.3137 - -delta_H -8.23411 kJ/mol # Calculated enthalpy of reaction Strontianite + SrCO3 + H+ = HCO3- + Sr+2 + log_k -0.3137 + -delta_H -8.23411 kJ/mol # Calculated enthalpy of reaction Strontianite # Enthalpy of formation: -294.6 kcal/mol - -analytic -1.3577e+002 -4.4884e-002 3.5729e+003 5.5296e+001 5.5791e+001 + -analytic -1.3577e+2 -4.4884e-2 3.5729e+3 5.5296e+1 5.5791e+1 # -Range: 0-300 Sylvite - KCl = + 1.0000 Cl- + 1.0000 K+ - log_k 0.8459 - -delta_H 17.4347 kJ/mol # Calculated enthalpy of reaction Sylvite + KCl = Cl- + K+ + log_k 0.8459 + -delta_H 17.4347 kJ/mol # Calculated enthalpy of reaction Sylvite # Enthalpy of formation: -104.37 kcal/mol - -analytic -8.1204e+001 -3.3074e-002 8.2819e+002 3.6014e+001 1.2947e+001 + -analytic -8.1204e+1 -3.3074e-2 8.2819e+2 3.6014e+1 1.2947e+1 # -Range: 0-300 Syngenite - K2Ca(SO4)2:H2O = + 1.0000 Ca++ + 1.0000 H2O + 2.0000 K+ + 2.0000 SO4-- - log_k -7.6001 - -delta_H 0 # Not possible to calculate enthalpy of reaction Syngenite + K2Ca(SO4)2:H2O = Ca+2 + H2O + 2 K+ + 2 SO4-2 + log_k -7.6001 + -delta_H 0 # Not possible to calculate enthalpy of reaction Syngenite # Enthalpy of formation: 0 kcal/mol Tachyhydrite - Mg2CaCl6:12H2O = + 1.0000 Ca++ + 2.0000 Mg++ + 6.0000 Cl- + 12.0000 H2O - log_k 17.1439 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tachyhydrite + Mg2CaCl6:12H2O = Ca+2 + 2 Mg+2 + 6 Cl- + 12 H2O + log_k 17.1439 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tachyhydrite # Enthalpy of formation: 0 kcal/mol Talc - Mg3Si4O10(OH)2 +6.0000 H+ = + 3.0000 Mg++ + 4.0000 H2O + 4.0000 SiO2 - log_k 21.1383 - -delta_H -148.737 kJ/mol # Calculated enthalpy of reaction Talc + Mg3Si4O10(OH)2 + 6 H+ = 3 Mg+2 + 4 H2O + 4 SiO2 + log_k 21.1383 + -delta_H -148.737 kJ/mol # Calculated enthalpy of reaction Talc # Enthalpy of formation: -1410.92 kcal/mol - -analytic 1.1164e+001 2.4724e-002 1.9810e+004 -1.7568e+001 -1.8241e+006 + -analytic 1.1164e+1 2.4724e-2 1.981e+4 -1.7568e+1 -1.8241e+6 # -Range: 0-300 Tarapacaite - K2CrO4 = + 1.0000 CrO4-- + 2.0000 K+ - log_k -0.4037 - -delta_H 17.8238 kJ/mol # Calculated enthalpy of reaction Tarapacaite + K2CrO4 = CrO4-2 + 2 K+ + log_k -0.4037 + -delta_H 17.8238 kJ/mol # Calculated enthalpy of reaction Tarapacaite # Enthalpy of formation: -335.4 kcal/mol - -analytic 2.7953e+001 -1.0863e-002 -2.7589e+003 -6.4154e+000 -4.6859e+001 + -analytic 2.7953e+1 -1.0863e-2 -2.7589e+3 -6.4154e+0 -4.6859e+1 # -Range: 0-200 Tb - Tb +3.0000 H+ +0.7500 O2 = + 1.0000 Tb+++ + 1.5000 H2O - log_k 181.4170 - -delta_H -1117.97 kJ/mol # Calculated enthalpy of reaction Tb + Tb + 3 H+ + 0.75 O2 = Tb+3 + 1.5 H2O + log_k 181.417 + -delta_H -1117.97 kJ/mol # Calculated enthalpy of reaction Tb # Enthalpy of formation: 0 kJ/mol - -analytic -5.2354e+001 -2.6920e-002 5.8391e+004 1.8555e+001 9.1115e+002 + -analytic -5.2354e+1 -2.692e-2 5.8391e+4 1.8555e+1 9.1115e+2 # -Range: 0-300 Tb(OH)3 - Tb(OH)3 +3.0000 H+ = + 1.0000 Tb+++ + 3.0000 H2O - log_k 15.6852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(OH)3 + Tb(OH)3 + 3 H+ = Tb+3 + 3 H2O + log_k 15.6852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(OH)3 # Enthalpy of formation: 0 kcal/mol Tb(OH)3(am) - Tb(OH)3 +3.0000 H+ = + 1.0000 Tb+++ + 3.0000 H2O - log_k 18.7852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(OH)3(am) + Tb(OH)3 + 3 H+ = Tb+3 + 3 H2O + log_k 18.7852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(OH)3(am) # Enthalpy of formation: 0 kcal/mol Tb2(CO3)3 - Tb2(CO3)3 +3.0000 H+ = + 2.0000 Tb+++ + 3.0000 HCO3- - log_k -3.2136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb2(CO3)3 + Tb2(CO3)3 + 3 H+ = 2 Tb+3 + 3 HCO3- + log_k -3.2136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb2(CO3)3 # Enthalpy of formation: 0 kcal/mol Tb2O3 - Tb2O3 +6.0000 H+ = + 2.0000 Tb+++ + 3.0000 H2O - log_k 47.1000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb2O3 + Tb2O3 + 6 H+ = 2 Tb+3 + 3 H2O + log_k 47.1 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb2O3 # Enthalpy of formation: 0 kcal/mol TbF3:.5H2O - TbF3:.5H2O = + 0.5000 H2O + 1.0000 Tb+++ + 3.0000 F- - log_k -16.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction TbF3:.5H2O + TbF3:.5H2O = 0.5 H2O + Tb+3 + 3 F- + log_k -16.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction TbF3:.5H2O # Enthalpy of formation: 0 kcal/mol TbPO4:10H2O - TbPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Tb+++ + 10.0000 H2O - log_k -11.9782 - -delta_H 0 # Not possible to calculate enthalpy of reaction TbPO4:10H2O + TbPO4:10H2O + H+ = HPO4-2 + Tb+3 + 10 H2O + log_k -11.9782 + -delta_H 0 # Not possible to calculate enthalpy of reaction TbPO4:10H2O # Enthalpy of formation: 0 kcal/mol Tc - Tc +1.7500 O2 +0.5000 H2O = + 1.0000 H+ + 1.0000 TcO4- - log_k 93.5811 - -delta_H -552.116 kJ/mol # Calculated enthalpy of reaction Tc + Tc + 1.75 O2 + 0.5 H2O = H+ + TcO4- + log_k 93.5811 + -delta_H -552.116 kJ/mol # Calculated enthalpy of reaction Tc # Enthalpy of formation: 0 kJ/mol - -analytic 2.2670e+001 -1.2050e-002 3.0174e+004 -8.4053e+000 -5.2577e+005 + -analytic 2.267e+1 -1.205e-2 3.0174e+4 -8.4053e+0 -5.2577e+5 # -Range: 0-300 Tc(OH)2 - Tc(OH)2 +3.0000 H+ +0.2500 O2 = + 1.0000 Tc+++ + 2.5000 H2O - log_k 5.2714 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc(OH)2 + Tc(OH)2 + 3 H+ + 0.25 O2 = Tc+3 + 2.5 H2O + log_k 5.2714 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc(OH)2 # Enthalpy of formation: 0 kcal/mol Tc(OH)3 - Tc(OH)3 +3.0000 H+ = + 1.0000 Tc+++ + 3.0000 H2O - log_k -9.2425 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc(OH)3 + Tc(OH)3 + 3 H+ = Tc+3 + 3 H2O + log_k -9.2425 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc(OH)3 # Enthalpy of formation: 0 kcal/mol Tc2O7 - Tc2O7 +1.0000 H2O = + 2.0000 H+ + 2.0000 TcO4- - log_k 13.1077 - -delta_H -26.5357 kJ/mol # Calculated enthalpy of reaction Tc2O7 + Tc2O7 + H2O = 2 H+ + 2 TcO4- + log_k 13.1077 + -delta_H -26.5357 kJ/mol # Calculated enthalpy of reaction Tc2O7 # Enthalpy of formation: -1120.16 kJ/mol - -analytic 8.7535e+001 1.5366e-002 -1.1919e+003 -3.0317e+001 -2.0271e+001 + -analytic 8.7535e+1 1.5366e-2 -1.1919e+3 -3.0317e+1 -2.0271e+1 # -Range: 0-200 Tc2S7 - Tc2S7 +8.0000 H2O = + 2.0000 TcO4- + 7.0000 HS- + 9.0000 H+ - log_k -230.2410 - -delta_H 1356.41 kJ/mol # Calculated enthalpy of reaction Tc2S7 + Tc2S7 + 8 H2O = 2 TcO4- + 7 HS- + 9 H+ + log_k -230.241 + -delta_H 1356.41 kJ/mol # Calculated enthalpy of reaction Tc2S7 # Enthalpy of formation: -615 kJ/mol - -analytic 2.4560e+002 -4.3355e-002 -8.4192e+004 -7.2967e+001 -1.4298e+003 + -analytic 2.456e+2 -4.3355e-2 -8.4192e+4 -7.2967e+1 -1.4298e+3 # -Range: 0-200 Tc3O4 - Tc3O4 +9.0000 H+ +0.2500 O2 = + 3.0000 Tc+++ + 4.5000 H2O - log_k -19.2271 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc3O4 + Tc3O4 + 9 H+ + 0.25 O2 = 3 Tc+3 + 4.5 H2O + log_k -19.2271 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc3O4 # Enthalpy of formation: 0 kcal/mol Tc4O7 - Tc4O7 +10.0000 H+ = + 2.0000 Tc+++ + 2.0000 TcO++ + 5.0000 H2O - log_k -26.0149 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc4O7 + Tc4O7 + 10 H+ = 2 Tc+3 + 2 TcO+2 + 5 H2O + log_k -26.0149 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc4O7 # Enthalpy of formation: 0 kcal/mol TcO2:2H2O(am) - TcO2:2H2O +2.0000 H+ = + 1.0000 TcO++ + 3.0000 H2O - log_k -4.2319 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO2:2H2O(am) + TcO2:2H2O + 2 H+ = TcO+2 + 3 H2O + log_k -4.2319 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO2:2H2O(am) # Enthalpy of formation: 0 kcal/mol TcO3 - TcO3 +1.0000 H2O = + 1.0000 TcO4-- + 2.0000 H+ - log_k -23.1483 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO3 + TcO3 + H2O = TcO4-2 + 2 H+ + log_k -23.1483 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO3 # Enthalpy of formation: -540 kJ/mol TcOH - TcOH +3.0000 H+ +0.5000 O2 = + 1.0000 Tc+++ + 2.0000 H2O - log_k 24.9009 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcOH + TcOH + 3 H+ + 0.5 O2 = Tc+3 + 2 H2O + log_k 24.9009 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcOH # Enthalpy of formation: 0 kcal/mol TcS2 - TcS2 +1.0000 H2O = + 1.0000 TcO++ + 2.0000 HS- - log_k -65.9742 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcS2 + TcS2 + H2O = TcO+2 + 2 HS- + log_k -65.9742 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcS2 # Enthalpy of formation: -224 kJ/mol TcS3 - TcS3 +4.0000 H2O = + 1.0000 TcO4-- + 3.0000 HS- + 5.0000 H+ - log_k -119.5008 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcS3 + TcS3 + 4 H2O = TcO4-2 + 3 HS- + 5 H+ + log_k -119.5008 + -delta_H 0 # Not possible to calculate enthalpy of reaction TcS3 # Enthalpy of formation: -276 kJ/mol Tenorite - CuO +2.0000 H+ = + 1.0000 Cu++ + 1.0000 H2O - log_k 7.6560 - -delta_H -64.5047 kJ/mol # Calculated enthalpy of reaction Tenorite + CuO + 2 H+ = Cu+2 + H2O + log_k 7.656 + -delta_H -64.5047 kJ/mol # Calculated enthalpy of reaction Tenorite # Enthalpy of formation: -37.2 kcal/mol - -analytic -8.9899e+001 -1.8886e-002 6.0346e+003 3.3517e+001 9.4191e+001 + -analytic -8.9899e+1 -1.8886e-2 6.0346e+3 3.3517e+1 9.4191e+1 # -Range: 0-300 Tephroite - Mn2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Mn++ - log_k 23.0781 - -delta_H -160.1 kJ/mol # Calculated enthalpy of reaction Tephroite + Mn2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Mn+2 + log_k 23.0781 + -delta_H -160.1 kJ/mol # Calculated enthalpy of reaction Tephroite # Enthalpy of formation: -1730.47 kJ/mol - -analytic -3.2440e+001 -1.1023e-002 8.8910e+003 1.1691e+001 1.3875e+002 + -analytic -3.244e+1 -1.1023e-2 8.891e+3 1.1691e+1 1.3875e+2 # -Range: 0-300 Th - Th +4.0000 H+ +1.0000 O2 = + 1.0000 Th++++ + 2.0000 H2O - log_k 209.6028 - -delta_H -1328.56 kJ/mol # Calculated enthalpy of reaction Th + Th + 4 H+ + O2 = Th+4 + 2 H2O + log_k 209.6028 + -delta_H -1328.56 kJ/mol # Calculated enthalpy of reaction Th # Enthalpy of formation: 0 kJ/mol - -analytic -2.8256e+001 -1.1963e-002 6.8870e+004 4.2068e+000 1.0747e+003 + -analytic -2.8256e+1 -1.1963e-2 6.887e+4 4.2068e+0 1.0747e+3 # -Range: 0-300 Th(NO3)4:5H2O - Th(NO3)4:5H2O = + 1.0000 Th++++ + 4.0000 NO3- + 5.0000 H2O - log_k 1.7789 - -delta_H -18.1066 kJ/mol # Calculated enthalpy of reaction Th(NO3)4:5H2O + Th(NO3)4:5H2O = Th+4 + 4 NO3- + 5 H2O + log_k 1.7789 + -delta_H -18.1066 kJ/mol # Calculated enthalpy of reaction Th(NO3)4:5H2O # Enthalpy of formation: -3007.35 kJ/mol - -analytic -1.2480e+002 -2.0405e-002 5.1601e+003 4.6613e+001 8.7669e+001 + -analytic -1.248e+2 -2.0405e-2 5.1601e+3 4.6613e+1 8.7669e+1 # -Range: 0-200 Th(OH)4 - Th(OH)4 +4.0000 H+ = + 1.0000 Th++++ + 4.0000 H2O - log_k 9.6543 - -delta_H -140.336 kJ/mol # Calculated enthalpy of reaction Th(OH)4 + Th(OH)4 + 4 H+ = Th+4 + 4 H2O + log_k 9.6543 + -delta_H -140.336 kJ/mol # Calculated enthalpy of reaction Th(OH)4 # Enthalpy of formation: -423.527 kcal/mol - -analytic -1.4031e+002 -9.2493e-003 1.2345e+004 4.4990e+001 2.0968e+002 + -analytic -1.4031e+2 -9.2493e-3 1.2345e+4 4.499e+1 2.0968e+2 # -Range: 0-200 Th(SO4)2 - Th(SO4)2 = + 1.0000 Th++++ + 2.0000 SO4-- - log_k -20.3006 - -delta_H -46.1064 kJ/mol # Calculated enthalpy of reaction Th(SO4)2 + Th(SO4)2 = Th+4 + 2 SO4-2 + log_k -20.3006 + -delta_H -46.1064 kJ/mol # Calculated enthalpy of reaction Th(SO4)2 # Enthalpy of formation: -2542.12 kJ/mol - -analytic -8.4525e+000 -3.5442e-002 0.0000e+000 0.0000e+000 -1.1540e+005 + -analytic -8.4525e+0 -3.5442e-2 0e+0 0e+0 -1.154e+5 # -Range: 0-200 Th2S3 - Th2S3 +5.0000 H+ +0.5000 O2 = + 1.0000 H2O + 2.0000 Th++++ + 3.0000 HS- - log_k 95.2290 - -delta_H -783.243 kJ/mol # Calculated enthalpy of reaction Th2S3 + Th2S3 + 5 H+ + 0.5 O2 = H2O + 2 Th+4 + 3 HS- + log_k 95.229 + -delta_H -783.243 kJ/mol # Calculated enthalpy of reaction Th2S3 # Enthalpy of formation: -1082.89 kJ/mol - -analytic -3.2969e+002 -1.1090e-001 4.6877e+004 1.2152e+002 7.3157e+002 + -analytic -3.2969e+2 -1.109e-1 4.6877e+4 1.2152e+2 7.3157e+2 # -Range: 0-300 Th2Se3 - Th2Se3 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 2.0000 Th++++ + 3.0000 Se-- - log_k 59.1655 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th2Se3 + Th2Se3 + 2 H+ + 0.5 O2 = H2O + 2 Th+4 + 3 Se-2 + log_k 59.1655 + -delta_H 0 # Not possible to calculate enthalpy of reaction Th2Se3 # Enthalpy of formation: -224 kcal/mol - -analytic -1.0083e+001 6.0240e-003 3.4039e+004 -1.8884e+001 5.7804e+002 + -analytic -1.0083e+1 6.024e-3 3.4039e+4 -1.8884e+1 5.7804e+2 # -Range: 0-200 Th7S12 - Th7S12 +16.0000 H+ +1.0000 O2 = + 2.0000 H2O + 7.0000 Th++++ + 12.0000 HS- - log_k 204.0740 - -delta_H -1999.4 kJ/mol # Calculated enthalpy of reaction Th7S12 + Th7S12 + 16 H+ + O2 = 2 H2O + 7 Th+4 + 12 HS- + log_k 204.074 + -delta_H -1999.4 kJ/mol # Calculated enthalpy of reaction Th7S12 # Enthalpy of formation: -4136.58 kJ/mol - -analytic -2.1309e+002 -1.4149e-001 9.8550e+004 5.2042e+001 1.6736e+003 + -analytic -2.1309e+2 -1.4149e-1 9.855e+4 5.2042e+1 1.6736e+3 # -Range: 0-200 ThBr4 - ThBr4 = + 1.0000 Th++++ + 4.0000 Br- - log_k 34.0803 - -delta_H -290.23 kJ/mol # Calculated enthalpy of reaction ThBr4 + ThBr4 = Th+4 + 4 Br- + log_k 34.0803 + -delta_H -290.23 kJ/mol # Calculated enthalpy of reaction ThBr4 # Enthalpy of formation: -964.803 kJ/mol - -analytic 2.9902e+001 -3.3109e-002 1.0988e+004 -9.2209e+000 1.8657e+002 + -analytic 2.9902e+1 -3.3109e-2 1.0988e+4 -9.2209e+0 1.8657e+2 # -Range: 0-200 ThCl4 - ThCl4 = + 1.0000 Th++++ + 4.0000 Cl- - log_k 23.8491 - -delta_H -251.094 kJ/mol # Calculated enthalpy of reaction ThCl4 + ThCl4 = Th+4 + 4 Cl- + log_k 23.8491 + -delta_H -251.094 kJ/mol # Calculated enthalpy of reaction ThCl4 # Enthalpy of formation: -283.519 kcal/mol - -analytic -5.9340e+000 -4.1640e-002 9.8623e+003 3.6804e+000 1.6748e+002 + -analytic -5.934e+0 -4.164e-2 9.8623e+3 3.6804e+0 1.6748e+2 # -Range: 0-200 ThF4 - ThF4 = + 1.0000 Th++++ + 4.0000 F- - log_k -29.9946 - -delta_H -12.6733 kJ/mol # Calculated enthalpy of reaction ThF4 + ThF4 = Th+4 + 4 F- + log_k -29.9946 + -delta_H -12.6733 kJ/mol # Calculated enthalpy of reaction ThF4 # Enthalpy of formation: -501.371 kcal/mol - -analytic -4.2622e+002 -1.4222e-001 9.4201e+003 1.6446e+002 1.4712e+002 + -analytic -4.2622e+2 -1.4222e-1 9.4201e+3 1.6446e+2 1.4712e+2 # -Range: 0-300 ThF4:2.5H2O - ThF4:2.5H2O = + 1.0000 Th++++ + 2.5000 H2O + 4.0000 F- - log_k -31.8568 - -delta_H 22.6696 kJ/mol # Calculated enthalpy of reaction ThF4:2.5H2O + ThF4:2.5H2O = Th+4 + 2.5 H2O + 4 F- + log_k -31.8568 + -delta_H 22.6696 kJ/mol # Calculated enthalpy of reaction ThF4:2.5H2O # Enthalpy of formation: -2847.68 kJ/mol - -analytic -1.1284e+002 -4.5422e-002 -2.5781e+002 3.8547e+001 -4.3396e+000 + -analytic -1.1284e+2 -4.5422e-2 -2.5781e+2 3.8547e+1 -4.3396e+0 # -Range: 0-200 ThI4 - ThI4 = + 1.0000 Th++++ + 4.0000 I- - log_k 45.1997 - -delta_H -332.818 kJ/mol # Calculated enthalpy of reaction ThI4 + ThI4 = Th+4 + 4 I- + log_k 45.1997 + -delta_H -332.818 kJ/mol # Calculated enthalpy of reaction ThI4 # Enthalpy of formation: -663.811 kJ/mol - -analytic 1.4224e+000 -4.0379e-002 1.4193e+004 3.3137e+000 2.4102e+002 + -analytic 1.4224e+0 -4.0379e-2 1.4193e+4 3.3137e+0 2.4102e+2 # -Range: 0-200 ThS - ThS +3.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 HS- + 1.0000 Th++++ - log_k 96.0395 - -delta_H -669.906 kJ/mol # Calculated enthalpy of reaction ThS + ThS + 3 H+ + 0.5 O2 = H2O + HS- + Th+4 + log_k 96.0395 + -delta_H -669.906 kJ/mol # Calculated enthalpy of reaction ThS # Enthalpy of formation: -394.993 kJ/mol - -analytic -1.3919e+001 -1.2372e-002 3.3883e+004 0.0000e+000 0.0000e+000 + -analytic -1.3919e+1 -1.2372e-2 3.3883e+4 0e+0 0e+0 # -Range: 0-200 ThS2 - ThS2 +2.0000 H+ = + 1.0000 Th++++ + 2.0000 HS- - log_k 10.7872 - -delta_H -175.369 kJ/mol # Calculated enthalpy of reaction ThS2 + ThS2 + 2 H+ = Th+4 + 2 HS- + log_k 10.7872 + -delta_H -175.369 kJ/mol # Calculated enthalpy of reaction ThS2 # Enthalpy of formation: -625.867 kJ/mol - -analytic -3.7691e+001 -2.3714e-002 8.4673e+003 1.0970e+001 1.4380e+002 + -analytic -3.7691e+1 -2.3714e-2 8.4673e+3 1.097e+1 1.438e+2 # -Range: 0-200 Thenardite - Na2SO4 = + 1.0000 SO4-- + 2.0000 Na+ - log_k -0.3091 - -delta_H -2.33394 kJ/mol # Calculated enthalpy of reaction Thenardite + Na2SO4 = SO4-2 + 2 Na+ + log_k -0.3091 + -delta_H -2.33394 kJ/mol # Calculated enthalpy of reaction Thenardite # Enthalpy of formation: -1387.87 kJ/mol - -analytic -2.1202e+002 -7.1613e-002 5.1083e+003 8.7244e+001 7.9773e+001 + -analytic -2.1202e+2 -7.1613e-2 5.1083e+3 8.7244e+1 7.9773e+1 # -Range: 0-300 Thermonatrite - Na2CO3:H2O +1.0000 H+ = + 1.0000 H2O + 1.0000 HCO3- + 2.0000 Na+ - log_k 10.9623 - -delta_H -27.5869 kJ/mol # Calculated enthalpy of reaction Thermonatrite + Na2CO3:H2O + H+ = H2O + HCO3- + 2 Na+ + log_k 10.9623 + -delta_H -27.5869 kJ/mol # Calculated enthalpy of reaction Thermonatrite # Enthalpy of formation: -1428.78 kJ/mol - -analytic -1.4030e+002 -3.5263e-002 5.7840e+003 5.7528e+001 9.0295e+001 + -analytic -1.403e+2 -3.5263e-2 5.784e+3 5.7528e+1 9.0295e+1 # -Range: 0-300 Thorianite - ThO2 +4.0000 H+ = + 1.0000 Th++++ + 2.0000 H2O - log_k 1.8624 - -delta_H -114.296 kJ/mol # Calculated enthalpy of reaction Thorianite + ThO2 + 4 H+ = Th+4 + 2 H2O + log_k 1.8624 + -delta_H -114.296 kJ/mol # Calculated enthalpy of reaction Thorianite # Enthalpy of formation: -1226.4 kJ/mol - -analytic -1.4249e+001 -2.4645e-003 4.3110e+003 -1.6605e-002 2.1598e+005 + -analytic -1.4249e+1 -2.4645e-3 4.311e+3 -1.6605e-2 2.1598e+5 # -Range: 0-300 Ti - Ti +2.0000 H2O +1.0000 O2 = + 1.0000 Ti(OH)4 - log_k 149.2978 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti + Ti + 2 H2O + O2 = Ti(OH)4 + log_k 149.2978 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti # Enthalpy of formation: 0 kJ/mol Ti2O3 - Ti2O3 +4.0000 H2O +0.5000 O2 = + 2.0000 Ti(OH)4 - log_k 42.9866 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti2O3 + Ti2O3 + 4 H2O + 0.5 O2 = 2 Ti(OH)4 + log_k 42.9866 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti2O3 # Enthalpy of formation: -1520.78 kJ/mol Ti3O5 - Ti3O5 +6.0000 H2O +0.5000 O2 = + 3.0000 Ti(OH)4 - log_k 34.6557 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti3O5 + Ti3O5 + 6 H2O + 0.5 O2 = 3 Ti(OH)4 + log_k 34.6557 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti3O5 # Enthalpy of formation: -2459.24 kJ/mol TiB2 - TiB2 +5.0000 H2O +2.5000 O2 = + 1.0000 Ti(OH)4 + 2.0000 B(OH)3 - log_k 312.4194 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiB2 + TiB2 + 5 H2O + 2.5 O2 = Ti(OH)4 + 2 B(OH)3 + log_k 312.4194 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiB2 # Enthalpy of formation: -323.883 kJ/mol TiBr3 - TiBr3 +3.5000 H2O +0.2500 O2 = + 1.0000 Ti(OH)4 + 3.0000 Br- + 3.0000 H+ - log_k 47.7190 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr3 + TiBr3 + 3.5 H2O + 0.25 O2 = Ti(OH)4 + 3 Br- + 3 H+ + log_k 47.719 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr3 # Enthalpy of formation: -548.378 kJ/mol TiBr4 - TiBr4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 Br- + 4.0000 H+ - log_k 32.9379 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr4 + TiBr4 + 4 H2O = Ti(OH)4 + 4 Br- + 4 H+ + log_k 32.9379 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr4 # Enthalpy of formation: -616.822 kJ/mol TiC - TiC +3.0000 H2O +2.0000 O2 = + 1.0000 H+ + 1.0000 HCO3- + 1.0000 Ti(OH)4 - log_k 181.8139 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiC + TiC + 3 H2O + 2 O2 = H+ + HCO3- + Ti(OH)4 + log_k 181.8139 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiC # Enthalpy of formation: -184.346 kJ/mol TiCl2 - TiCl2 +3.0000 H2O +0.5000 O2 = + 1.0000 Ti(OH)4 + 2.0000 Cl- + 2.0000 H+ - log_k 70.9386 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl2 + TiCl2 + 3 H2O + 0.5 O2 = Ti(OH)4 + 2 Cl- + 2 H+ + log_k 70.9386 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl2 # Enthalpy of formation: -514.012 kJ/mol TiCl3 - TiCl3 +3.5000 H2O +0.2500 O2 = + 1.0000 Ti(OH)4 + 3.0000 Cl- + 3.0000 H+ - log_k 39.3099 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl3 + TiCl3 + 3.5 H2O + 0.25 O2 = Ti(OH)4 + 3 Cl- + 3 H+ + log_k 39.3099 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl3 # Enthalpy of formation: -720.775 kJ/mol TiF4(am) - TiF4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 F- + 4.0000 H+ - log_k -12.4409 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiF4(am) + TiF4 + 4 H2O = Ti(OH)4 + 4 F- + 4 H+ + log_k -12.4409 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiF4(am) # Enthalpy of formation: -1649.44 kJ/mol TiI4 - TiI4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 H+ + 4.0000 I- - log_k 34.5968 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiI4 + TiI4 + 4 H2O = Ti(OH)4 + 4 H+ + 4 I- + log_k 34.5968 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiI4 # Enthalpy of formation: -375.555 kJ/mol TiN - TiN +3.5000 H2O +0.2500 O2 = + 1.0000 NH3 + 1.0000 Ti(OH)4 - log_k 35.2344 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiN + TiN + 3.5 H2O + 0.25 O2 = NH3 + Ti(OH)4 + log_k 35.2344 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiN # Enthalpy of formation: -338.304 kJ/mol TiO(alpha) - TiO +2.0000 H2O +0.5000 O2 = + 1.0000 Ti(OH)4 - log_k 61.1282 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiO(alpha) + TiO + 2 H2O + 0.5 O2 = Ti(OH)4 + log_k 61.1282 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiO(alpha) # Enthalpy of formation: -519.835 kJ/mol Tiemannite - HgSe = + 1.0000 Hg++ + 1.0000 Se-- - log_k -58.2188 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tiemannite + HgSe = Hg+2 + Se-2 + log_k -58.2188 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tiemannite # Enthalpy of formation: -10.4 kcal/mol - -analytic -5.7618e+001 -1.3891e-002 -1.3223e+004 1.9351e+001 -2.0632e+002 + -analytic -5.7618e+1 -1.3891e-2 -1.3223e+4 1.9351e+1 -2.0632e+2 # -Range: 0-300 Titanite - CaTiSiO5 +2.0000 H+ +1.0000 H2O = + 1.0000 Ca++ + 1.0000 SiO2 + 1.0000 Ti(OH)4 - log_k 719.5839 - -delta_H 0 # Not possible to calculate enthalpy of reaction Titanite + CaTiSiO5 + 2 H+ + H2O = Ca+2 + SiO2 + Ti(OH)4 + log_k 719.5839 + -delta_H 0 # Not possible to calculate enthalpy of reaction Titanite # Enthalpy of formation: 0 kcal/mol Tl - Tl +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Tl+ - log_k 27.1743 - -delta_H -134.53 kJ/mol # Calculated enthalpy of reaction Tl + Tl + H+ + 0.25 O2 = 0.5 H2O + Tl+ + log_k 27.1743 + -delta_H -134.53 kJ/mol # Calculated enthalpy of reaction Tl # Enthalpy of formation: 0 kJ/mol - -analytic -3.7066e+001 -7.8341e-003 9.4594e+003 1.4896e+001 -1.7904e+005 + -analytic -3.7066e+1 -7.8341e-3 9.4594e+3 1.4896e+1 -1.7904e+5 # -Range: 0-300 Tm - Tm +3.0000 H+ +0.7500 O2 = + 1.0000 Tm+++ + 1.5000 H2O - log_k 181.7102 - -delta_H -1124.66 kJ/mol # Calculated enthalpy of reaction Tm + Tm + 3 H+ + 0.75 O2 = Tm+3 + 1.5 H2O + log_k 181.7102 + -delta_H -1124.66 kJ/mol # Calculated enthalpy of reaction Tm # Enthalpy of formation: 0 kJ/mol - -analytic -6.7440e+001 -2.8476e-002 5.9332e+004 2.3715e+001 -5.9611e+003 + -analytic -6.744e+1 -2.8476e-2 5.9332e+4 2.3715e+1 -5.9611e+3 # -Range: 0-300 Tm(OH)3 - Tm(OH)3 +3.0000 H+ = + 1.0000 Tm+++ + 3.0000 H2O - log_k 14.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(OH)3 + Tm(OH)3 + 3 H+ = Tm+3 + 3 H2O + log_k 14.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(OH)3 # Enthalpy of formation: 0 kcal/mol Tm(OH)3(am) - Tm(OH)3 +3.0000 H+ = + 1.0000 Tm+++ + 3.0000 H2O - log_k 17.2852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(OH)3(am) + Tm(OH)3 + 3 H+ = Tm+3 + 3 H2O + log_k 17.2852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(OH)3(am) # Enthalpy of formation: 0 kcal/mol Tm2(CO3)3 - Tm2(CO3)3 +3.0000 H+ = + 2.0000 Tm+++ + 3.0000 HCO3- - log_k -2.4136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm2(CO3)3 + Tm2(CO3)3 + 3 H+ = 2 Tm+3 + 3 HCO3- + log_k -2.4136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm2(CO3)3 # Enthalpy of formation: 0 kcal/mol Tm2O3 - Tm2O3 +6.0000 H+ = + 2.0000 Tm+++ + 3.0000 H2O - log_k 44.7000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm2O3 + Tm2O3 + 6 H+ = 2 Tm+3 + 3 H2O + log_k 44.7 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm2O3 # Enthalpy of formation: 0 kcal/mol TmF3:.5H2O - TmF3:.5H2O = + 0.5000 H2O + 1.0000 Tm+++ + 3.0000 F- - log_k -16.2000 - -delta_H 0 # Not possible to calculate enthalpy of reaction TmF3:.5H2O + TmF3:.5H2O = 0.5 H2O + Tm+3 + 3 F- + log_k -16.2 + -delta_H 0 # Not possible to calculate enthalpy of reaction TmF3:.5H2O # Enthalpy of formation: 0 kcal/mol TmPO4:10H2O - TmPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Tm+++ + 10.0000 H2O - log_k -11.8782 - -delta_H 0 # Not possible to calculate enthalpy of reaction TmPO4:10H2O + TmPO4:10H2O + H+ = HPO4-2 + Tm+3 + 10 H2O + log_k -11.8782 + -delta_H 0 # Not possible to calculate enthalpy of reaction TmPO4:10H2O # Enthalpy of formation: 0 kcal/mol Tobermorite-11A - Ca5Si6H11O22.5 +10.0000 H+ = + 5.0000 Ca++ + 6.0000 SiO2 + 10.5000 H2O - log_k 65.6121 - -delta_H -286.861 kJ/mol # Calculated enthalpy of reaction Tobermorite-11A + Ca5Si6H11O22.5 + 10 H+ = 5 Ca+2 + 6 SiO2 + 10.5 H2O + log_k 65.6121 + -delta_H -286.861 kJ/mol # Calculated enthalpy of reaction Tobermorite-11A # Enthalpy of formation: -2556.42 kcal/mol - -analytic 7.9123e+001 3.9150e-002 2.9429e+004 -3.9191e+001 -2.4122e+006 + -analytic 7.9123e+1 3.915e-2 2.9429e+4 -3.9191e+1 -2.4122e+6 # -Range: 0-300 Tobermorite-14A - Ca5Si6H21O27.5 +10.0000 H+ = + 5.0000 Ca++ + 6.0000 SiO2 + 15.5000 H2O - log_k 63.8445 - -delta_H -230.959 kJ/mol # Calculated enthalpy of reaction Tobermorite-14A + Ca5Si6H21O27.5 + 10 H+ = 5 Ca+2 + 6 SiO2 + 15.5 H2O + log_k 63.8445 + -delta_H -230.959 kJ/mol # Calculated enthalpy of reaction Tobermorite-14A # Enthalpy of formation: -2911.36 kcal/mol - -analytic -2.0789e+002 5.2472e-003 3.9698e+004 6.7797e+001 -2.7532e+006 + -analytic -2.0789e+2 5.2472e-3 3.9698e+4 6.7797e+1 -2.7532e+6 # -Range: 0-300 Tobermorite-9A - Ca5Si6H6O20 +10.0000 H+ = + 5.0000 Ca++ + 6.0000 SiO2 + 8.0000 H2O - log_k 69.0798 - -delta_H -329.557 kJ/mol # Calculated enthalpy of reaction Tobermorite-9A + Ca5Si6H6O20 + 10 H+ = 5 Ca+2 + 6 SiO2 + 8 H2O + log_k 69.0798 + -delta_H -329.557 kJ/mol # Calculated enthalpy of reaction Tobermorite-9A # Enthalpy of formation: -2375.42 kcal/mol - -analytic -6.3384e+001 1.1722e-002 3.8954e+004 1.2268e+001 -2.8681e+006 + -analytic -6.3384e+1 1.1722e-2 3.8954e+4 1.2268e+1 -2.8681e+6 # -Range: 0-300 Todorokite - Mn7O12:3H2O +16.0000 H+ = + 1.0000 MnO4-- + 6.0000 Mn+++ + 11.0000 H2O - log_k -45.8241 - -delta_H 0 # Not possible to calculate enthalpy of reaction Todorokite + Mn7O12:3H2O + 16 H+ = MnO4-2 + 6 Mn+3 + 11 H2O + log_k -45.8241 + -delta_H 0 # Not possible to calculate enthalpy of reaction Todorokite # Enthalpy of formation: 0 kcal/mol Torbernite - Cu(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Cu++ + 2.0000 HPO4-- + 2.0000 UO2++ - log_k -20.3225 - -delta_H -97.4022 kJ/mol # Calculated enthalpy of reaction Torbernite + Cu(UO2)2(PO4)2 + 2 H+ = Cu+2 + 2 HPO4-2 + 2 UO2+2 + log_k -20.3225 + -delta_H -97.4022 kJ/mol # Calculated enthalpy of reaction Torbernite # Enthalpy of formation: -1065.74 kcal/mol - -analytic -6.7128e+001 -4.5878e-002 3.5071e+003 1.9682e+001 5.9579e+001 + -analytic -6.7128e+1 -4.5878e-2 3.5071e+3 1.9682e+1 5.9579e+1 # -Range: 0-200 Tremolite - Ca2Mg5Si8O22(OH)2 +14.0000 H+ = + 2.0000 Ca++ + 5.0000 Mg++ + 8.0000 H2O + 8.0000 SiO2 - log_k 61.2367 - -delta_H -406.404 kJ/mol # Calculated enthalpy of reaction Tremolite + Ca2Mg5Si8O22(OH)2 + 14 H+ = 2 Ca+2 + 5 Mg+2 + 8 H2O + 8 SiO2 + log_k 61.2367 + -delta_H -406.404 kJ/mol # Calculated enthalpy of reaction Tremolite # Enthalpy of formation: -2944.04 kcal/mol - -analytic 8.5291e+001 4.6337e-002 3.9465e+004 -5.4414e+001 -3.1913e+006 + -analytic 8.5291e+1 4.6337e-2 3.9465e+4 -5.4414e+1 -3.1913e+6 # -Range: 0-300 Trevorite - NiFe2O4 +8.0000 H+ = + 1.0000 Ni++ + 2.0000 Fe+++ + 4.0000 H2O - log_k 9.7876 - -delta_H -215.338 kJ/mol # Calculated enthalpy of reaction Trevorite + NiFe2O4 + 8 H+ = Ni+2 + 2 Fe+3 + 4 H2O + log_k 9.7876 + -delta_H -215.338 kJ/mol # Calculated enthalpy of reaction Trevorite # Enthalpy of formation: -1081.15 kJ/mol - -analytic -1.4322e+002 -2.9429e-002 1.4518e+004 4.5698e+001 2.4658e+002 + -analytic -1.4322e+2 -2.9429e-2 1.4518e+4 4.5698e+1 2.4658e+2 # -Range: 0-200 Tridymite - SiO2 = + 1.0000 SiO2 - log_k -3.8278 - -delta_H 31.3664 kJ/mol # Calculated enthalpy of reaction Tridymite + SiO2 = SiO2 + log_k -3.8278 + -delta_H 31.3664 kJ/mol # Calculated enthalpy of reaction Tridymite # Enthalpy of formation: -909.065 kJ/mol - -analytic 3.1594e+002 6.9315e-002 -1.1358e+004 -1.2219e+002 -1.9299e+002 + -analytic 3.1594e+2 6.9315e-2 -1.1358e+4 -1.2219e+2 -1.9299e+2 # -Range: 0-200 Troilite - FeS +1.0000 H+ = + 1.0000 Fe++ + 1.0000 HS- - log_k -3.8184 - -delta_H -7.3296 kJ/mol # Calculated enthalpy of reaction Troilite + FeS + H+ = Fe+2 + HS- + log_k -3.8184 + -delta_H -7.3296 kJ/mol # Calculated enthalpy of reaction Troilite # Enthalpy of formation: -101.036 kJ/mol - -analytic -1.6146e+002 -5.3170e-002 4.0461e+003 6.4620e+001 6.3183e+001 + -analytic -1.6146e+2 -5.317e-2 4.0461e+3 6.462e+1 6.3183e+1 # -Range: 0-300 Trona-K - K2NaH(CO3)2:2H2O +1.0000 H+ = + 1.0000 Na+ + 2.0000 H2O + 2.0000 HCO3- + 2.0000 K+ - log_k 11.5891 - -delta_H 0 # Not possible to calculate enthalpy of reaction Trona-K + K2NaH(CO3)2:2H2O + H+ = Na+ + 2 H2O + 2 HCO3- + 2 K+ + log_k 11.5891 + -delta_H 0 # Not possible to calculate enthalpy of reaction Trona-K # Enthalpy of formation: 0 kcal/mol Tsumebite - Pb2Cu(PO4)(OH)3:3H2O +4.0000 H+ = + 1.0000 Cu++ + 1.0000 HPO4-- + 2.0000 Pb++ + 6.0000 H2O - log_k 2.5318 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tsumebite + Pb2Cu(PO4)(OH)3:3H2O + 4 H+ = Cu+2 + HPO4-2 + 2 Pb+2 + 6 H2O + log_k 2.5318 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tsumebite # Enthalpy of formation: 0 kcal/mol Tyuyamunite - Ca(UO2)2(VO4)2 = + 1.0000 Ca++ + 2.0000 UO2++ + 2.0000 VO4--- - log_k -53.3757 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tyuyamunite + Ca(UO2)2(VO4)2 = Ca+2 + 2 UO2+2 + 2 VO4-3 + log_k -53.3757 + -delta_H 0 # Not possible to calculate enthalpy of reaction Tyuyamunite # Enthalpy of formation: -1164.52 kcal/mol U - U +2.0000 H+ +1.5000 O2 = + 1.0000 H2O + 1.0000 UO2++ - log_k 212.7800 - -delta_H -1286.64 kJ/mol # Calculated enthalpy of reaction U + U + 2 H+ + 1.5 O2 = H2O + UO2+2 + log_k 212.78 + -delta_H -1286.64 kJ/mol # Calculated enthalpy of reaction U # Enthalpy of formation: 0 kJ/mol - -analytic -2.4912e+002 -4.7104e-002 8.1115e+004 8.7008e+001 -1.0158e+006 + -analytic -2.4912e+2 -4.7104e-2 8.1115e+4 8.7008e+1 -1.0158e+6 # -Range: 0-300 U(CO3)2 - U(CO3)2 +2.0000 H+ = + 1.0000 U++++ + 2.0000 HCO3- - log_k 7.5227 - -delta_H -170.691 kJ/mol # Calculated enthalpy of reaction U(CO3)2 + U(CO3)2 + 2 H+ = U+4 + 2 HCO3- + log_k 7.5227 + -delta_H -170.691 kJ/mol # Calculated enthalpy of reaction U(CO3)2 # Enthalpy of formation: -1800.38 kJ/mol - -analytic -8.5952e+001 -2.5086e-002 1.0177e+004 2.7002e+001 1.7285e+002 + -analytic -8.5952e+1 -2.5086e-2 1.0177e+4 2.7002e+1 1.7285e+2 # -Range: 0-200 U(HPO4)2:4H2O - U(HPO4)2:4H2O = + 1.0000 U++++ + 2.0000 HPO4-- + 4.0000 H2O - log_k -32.8650 - -delta_H 16.1008 kJ/mol # Calculated enthalpy of reaction U(HPO4)2:4H2O + U(HPO4)2:4H2O = U+4 + 2 HPO4-2 + 4 H2O + log_k -32.865 + -delta_H 16.1008 kJ/mol # Calculated enthalpy of reaction U(HPO4)2:4H2O # Enthalpy of formation: -4334.82 kJ/mol - -analytic -3.8694e+002 -1.3874e-001 6.4882e+003 1.5099e+002 1.0136e+002 + -analytic -3.8694e+2 -1.3874e-1 6.4882e+3 1.5099e+2 1.0136e+2 # -Range: 0-300 U(OH)2SO4 - U(OH)2SO4 +2.0000 H+ = + 1.0000 SO4-- + 1.0000 U++++ + 2.0000 H2O - log_k -3.0731 - -delta_H 0 # Not possible to calculate enthalpy of reaction U(OH)2SO4 + U(OH)2SO4 + 2 H+ = SO4-2 + U+4 + 2 H2O + log_k -3.0731 + -delta_H 0 # Not possible to calculate enthalpy of reaction U(OH)2SO4 # Enthalpy of formation: 0 kcal/mol U(SO3)2 - U(SO3)2 = + 1.0000 U++++ + 2.0000 SO3-- - log_k -36.7499 - -delta_H 20.7008 kJ/mol # Calculated enthalpy of reaction U(SO3)2 + U(SO3)2 = U+4 + 2 SO3-2 + log_k -36.7499 + -delta_H 20.7008 kJ/mol # Calculated enthalpy of reaction U(SO3)2 # Enthalpy of formation: -1883 kJ/mol - -analytic 5.8113e+001 -2.9981e-002 -7.0503e+003 -2.5175e+001 -1.1974e+002 + -analytic 5.8113e+1 -2.9981e-2 -7.0503e+3 -2.5175e+1 -1.1974e+2 # -Range: 0-200 U(SO4)2 - U(SO4)2 = + 1.0000 U++++ + 2.0000 SO4-- - log_k -11.5178 - -delta_H -100.803 kJ/mol # Calculated enthalpy of reaction U(SO4)2 + U(SO4)2 = U+4 + 2 SO4-2 + log_k -11.5178 + -delta_H -100.803 kJ/mol # Calculated enthalpy of reaction U(SO4)2 # Enthalpy of formation: -2309.6 kJ/mol - -analytic 3.2215e+001 -2.8662e-002 7.1066e+002 -1.5190e+001 1.2057e+001 + -analytic 3.2215e+1 -2.8662e-2 7.1066e+2 -1.519e+1 1.2057e+1 # -Range: 0-200 U(SO4)2:4H2O - U(SO4)2:4H2O = + 1.0000 U++++ + 2.0000 SO4-- + 4.0000 H2O - log_k -11.5287 - -delta_H -70.5565 kJ/mol # Calculated enthalpy of reaction U(SO4)2:4H2O + U(SO4)2:4H2O = U+4 + 2 SO4-2 + 4 H2O + log_k -11.5287 + -delta_H -70.5565 kJ/mol # Calculated enthalpy of reaction U(SO4)2:4H2O # Enthalpy of formation: -3483.2 kJ/mol - -analytic -6.9548e+001 -2.9094e-002 3.8763e+003 2.1692e+001 6.5849e+001 + -analytic -6.9548e+1 -2.9094e-2 3.8763e+3 2.1692e+1 6.5849e+1 # -Range: 0-200 U(SO4)2:8H2O - U(SO4)2:8H2O = + 1.0000 U++++ + 2.0000 SO4-- + 8.0000 H2O - log_k -12.5558 - -delta_H -34.5098 kJ/mol # Calculated enthalpy of reaction U(SO4)2:8H2O + U(SO4)2:8H2O = U+4 + 2 SO4-2 + 8 H2O + log_k -12.5558 + -delta_H -34.5098 kJ/mol # Calculated enthalpy of reaction U(SO4)2:8H2O # Enthalpy of formation: -4662.6 kJ/mol - -analytic -1.7141e+002 -2.9548e-002 6.7423e+003 5.8614e+001 1.1455e+002 + -analytic -1.7141e+2 -2.9548e-2 6.7423e+3 5.8614e+1 1.1455e+2 # -Range: 0-200 U2C3 - U2C3 +4.5000 O2 +3.0000 H+ = + 2.0000 U+++ + 3.0000 HCO3- - log_k 455.3078 - -delta_H -2810.1 kJ/mol # Calculated enthalpy of reaction U2C3 + U2C3 + 4.5 O2 + 3 H+ = 2 U+3 + 3 HCO3- + log_k 455.3078 + -delta_H -2810.1 kJ/mol # Calculated enthalpy of reaction U2C3 # Enthalpy of formation: -183.3 kJ/mol - -analytic -3.8340e+002 -1.5374e-001 1.5922e+005 1.4643e+002 -1.0584e+006 + -analytic -3.834e+2 -1.5374e-1 1.5922e+5 1.4643e+2 -1.0584e+6 # -Range: 0-300 U2F9 - U2F9 +2.0000 H2O = + 1.0000 U++++ + 1.0000 UO2+ + 4.0000 H+ + 9.0000 F- - log_k -45.5022 - -delta_H -46.8557 kJ/mol # Calculated enthalpy of reaction U2F9 + U2F9 + 2 H2O = U+4 + UO2+ + 4 H+ + 9 F- + log_k -45.5022 + -delta_H -46.8557 kJ/mol # Calculated enthalpy of reaction U2F9 # Enthalpy of formation: -4015.92 kJ/mol - -analytic -8.8191e+002 -3.0477e-001 2.0493e+004 3.4690e+002 3.2003e+002 + -analytic -8.8191e+2 -3.0477e-1 2.0493e+4 3.469e+2 3.2003e+2 # -Range: 0-300 U2O2Cl5 - U2O2Cl5 = + 1.0000 U++++ + 1.0000 UO2+ + 5.0000 Cl- - log_k 19.2752 - -delta_H -254.325 kJ/mol # Calculated enthalpy of reaction U2O2Cl5 + U2O2Cl5 = U+4 + UO2+ + 5 Cl- + log_k 19.2752 + -delta_H -254.325 kJ/mol # Calculated enthalpy of reaction U2O2Cl5 # Enthalpy of formation: -2197.4 kJ/mol - -analytic -4.3945e+002 -1.6239e-001 2.1694e+004 1.7551e+002 3.3865e+002 + -analytic -4.3945e+2 -1.6239e-1 2.1694e+4 1.7551e+2 3.3865e+2 # -Range: 0-300 U2O3F6 - U2O3F6 +1.0000 H2O = + 2.0000 H+ + 2.0000 UO2++ + 6.0000 F- - log_k -2.5066 - -delta_H -185.047 kJ/mol # Calculated enthalpy of reaction U2O3F6 + U2O3F6 + H2O = 2 H+ + 2 UO2+2 + 6 F- + log_k -2.5066 + -delta_H -185.047 kJ/mol # Calculated enthalpy of reaction U2O3F6 # Enthalpy of formation: -3579.2 kJ/mol - -analytic -3.2332e+001 -5.9519e-002 5.7857e+003 1.1372e+001 9.8260e+001 + -analytic -3.2332e+1 -5.9519e-2 5.7857e+3 1.1372e+1 9.826e+1 # -Range: 0-200 U2S3 - U2S3 +3.0000 H+ = + 2.0000 U+++ + 3.0000 HS- - log_k 6.5279 - -delta_H -147.525 kJ/mol # Calculated enthalpy of reaction U2S3 + U2S3 + 3 H+ = 2 U+3 + 3 HS- + log_k 6.5279 + -delta_H -147.525 kJ/mol # Calculated enthalpy of reaction U2S3 # Enthalpy of formation: -879 kJ/mol - -analytic -3.0494e+002 -1.0983e-001 1.3647e+004 1.2059e+002 2.1304e+002 + -analytic -3.0494e+2 -1.0983e-1 1.3647e+4 1.2059e+2 2.1304e+2 # -Range: 0-300 U2Se3 - U2Se3 +4.5000 O2 = + 2.0000 U+++ + 3.0000 SeO3-- - log_k 248.0372 - -delta_H -1740.18 kJ/mol # Calculated enthalpy of reaction U2Se3 + U2Se3 + 4.5 O2 = 2 U+3 + 3 SeO3-2 + log_k 248.0372 + -delta_H -1740.18 kJ/mol # Calculated enthalpy of reaction U2Se3 # Enthalpy of formation: -711 kJ/mol - -analytic 4.9999e+002 -1.6488e-002 6.4991e+004 -1.8795e+002 1.1035e+003 + -analytic 4.9999e+2 -1.6488e-2 6.4991e+4 -1.8795e+2 1.1035e+3 # -Range: 0-200 U3As4 - U3As4 +5.2500 O2 +5.0000 H+ +1.5000 H2O = + 3.0000 U+++ + 4.0000 H2AsO3- - log_k 487.6802 - -delta_H -3114.02 kJ/mol # Calculated enthalpy of reaction U3As4 + U3As4 + 5.25 O2 + 5 H+ + 1.5 H2O = 3 U+3 + 4 H2AsO3- + log_k 487.6802 + -delta_H -3114.02 kJ/mol # Calculated enthalpy of reaction U3As4 # Enthalpy of formation: -720 kJ/mol - -analytic -9.0215e+002 -2.5804e-001 1.9974e+005 3.3331e+002 -2.4911e+006 + -analytic -9.0215e+2 -2.5804e-1 1.9974e+5 3.3331e+2 -2.4911e+6 # -Range: 0-300 U3O5F8 - U3O5F8 +1.0000 H2O = + 2.0000 H+ + 3.0000 UO2++ + 8.0000 F- - log_k -2.7436 - -delta_H -260.992 kJ/mol # Calculated enthalpy of reaction U3O5F8 + U3O5F8 + H2O = 2 H+ + 3 UO2+2 + 8 F- + log_k -2.7436 + -delta_H -260.992 kJ/mol # Calculated enthalpy of reaction U3O5F8 # Enthalpy of formation: -5192.95 kJ/mol - -analytic -7.7653e+002 -2.7294e-001 2.9180e+004 3.0599e+002 4.5556e+002 + -analytic -7.7653e+2 -2.7294e-1 2.918e+4 3.0599e+2 4.5556e+2 # -Range: 0-300 U3P4 - U3P4 +7.2500 O2 +1.5000 H2O +1.0000 H+ = + 3.0000 U+++ + 4.0000 HPO4-- - log_k 827.5586 - -delta_H -5275.9 kJ/mol # Calculated enthalpy of reaction U3P4 + U3P4 + 7.25 O2 + 1.5 H2O + H+ = 3 U+3 + 4 HPO4-2 + log_k 827.5586 + -delta_H -5275.9 kJ/mol # Calculated enthalpy of reaction U3P4 # Enthalpy of formation: -843 kJ/mol - -analytic -2.7243e+003 -6.2927e-001 4.0130e+005 1.0021e+003 -7.6720e+006 + -analytic -2.7243e+3 -6.2927e-1 4.013e+5 1.0021e+3 -7.672e+6 # -Range: 0-300 U3S5 - U3S5 +5.0000 H+ = + 1.0000 U++++ + 2.0000 U+++ + 5.0000 HS- - log_k -0.3680 - -delta_H -218.942 kJ/mol # Calculated enthalpy of reaction U3S5 + U3S5 + 5 H+ = U+4 + 2 U+3 + 5 HS- + log_k -0.368 + -delta_H -218.942 kJ/mol # Calculated enthalpy of reaction U3S5 # Enthalpy of formation: -1431 kJ/mol - -analytic -1.1011e+002 -6.7959e-002 1.0369e+004 3.8481e+001 1.7611e+002 + -analytic -1.1011e+2 -6.7959e-2 1.0369e+4 3.8481e+1 1.7611e+2 # -Range: 0-200 U3Sb4 - U3Sb4 +9.0000 H+ +5.2500 O2 +1.5000 H2O = + 3.0000 U+++ + 4.0000 Sb(OH)3 - log_k 575.0349 - -delta_H -3618.1 kJ/mol # Calculated enthalpy of reaction U3Sb4 + U3Sb4 + 9 H+ + 5.25 O2 + 1.5 H2O = 3 U+3 + 4 Sb(OH)3 + log_k 575.0349 + -delta_H -3618.1 kJ/mol # Calculated enthalpy of reaction U3Sb4 # Enthalpy of formation: -451.9 kJ/mol U3Se4 - U3Se4 +6.2500 O2 +1.0000 H+ = + 0.5000 H2O + 3.0000 U+++ + 4.0000 SeO3-- - log_k 375.2823 - -delta_H -2588.16 kJ/mol # Calculated enthalpy of reaction U3Se4 + U3Se4 + 6.25 O2 + H+ = 0.5 H2O + 3 U+3 + 4 SeO3-2 + log_k 375.2823 + -delta_H -2588.16 kJ/mol # Calculated enthalpy of reaction U3Se4 # Enthalpy of formation: -983 kJ/mol - -analytic 6.7219e+002 -2.2708e-002 1.0025e+005 -2.5317e+002 1.7021e+003 + -analytic 6.7219e+2 -2.2708e-2 1.0025e+5 -2.5317e+2 1.7021e+3 # -Range: 0-200 U3Se5 - U3Se5 +7.2500 O2 +0.5000 H2O = + 1.0000 H+ + 3.0000 U+++ + 5.0000 SeO3-- - log_k 376.5747 - -delta_H -2652.38 kJ/mol # Calculated enthalpy of reaction U3Se5 + U3Se5 + 7.25 O2 + 0.5 H2O = H+ + 3 U+3 + 5 SeO3-2 + log_k 376.5747 + -delta_H -2652.38 kJ/mol # Calculated enthalpy of reaction U3Se5 # Enthalpy of formation: -1130 kJ/mol - -analytic 8.3306e+002 -2.6526e-002 9.5737e+004 -3.1109e+002 1.6255e+003 + -analytic 8.3306e+2 -2.6526e-2 9.5737e+4 -3.1109e+2 1.6255e+3 # -Range: 0-200 U4F17 - U4F17 +2.0000 H2O = + 1.0000 UO2+ + 3.0000 U++++ + 4.0000 H+ + 17.0000 F- - log_k -104.7657 - -delta_H -78.2955 kJ/mol # Calculated enthalpy of reaction U4F17 + U4F17 + 2 H2O = UO2+ + 3 U+4 + 4 H+ + 17 F- + log_k -104.7657 + -delta_H -78.2955 kJ/mol # Calculated enthalpy of reaction U4F17 # Enthalpy of formation: -7849.66 kJ/mol - -analytic -1.7466e+003 -5.9186e-001 4.0017e+004 6.8046e+002 6.2494e+002 + -analytic -1.7466e+3 -5.9186e-1 4.0017e+4 6.8046e+2 6.2494e+2 # -Range: 0-300 U5O12Cl - U5O12Cl +4.0000 H+ = + 1.0000 Cl- + 2.0000 H2O + 5.0000 UO2+ - log_k -18.7797 - -delta_H -9.99133 kJ/mol # Calculated enthalpy of reaction U5O12Cl + U5O12Cl + 4 H+ = Cl- + 2 H2O + 5 UO2+ + log_k -18.7797 + -delta_H -9.99133 kJ/mol # Calculated enthalpy of reaction U5O12Cl # Enthalpy of formation: -5854.4 kJ/mol - -analytic -7.3802e+001 2.9180e-002 4.6804e+003 1.2371e+001 7.9503e+001 + -analytic -7.3802e+1 2.918e-2 4.6804e+3 1.2371e+1 7.9503e+1 # -Range: 0-200 UAs - UAs +2.0000 H+ +1.5000 O2 = + 1.0000 H2AsO3- + 1.0000 U+++ - log_k 149.0053 - -delta_H -951.394 kJ/mol # Calculated enthalpy of reaction UAs + UAs + 2 H+ + 1.5 O2 = H2AsO3- + U+3 + log_k 149.0053 + -delta_H -951.394 kJ/mol # Calculated enthalpy of reaction UAs # Enthalpy of formation: -234.3 kJ/mol - -analytic -5.0217e+001 -4.2992e-002 4.8480e+004 1.9964e+001 7.5650e+002 + -analytic -5.0217e+1 -4.2992e-2 4.848e+4 1.9964e+1 7.565e+2 # -Range: 0-300 UAs2 - UAs2 +2.2500 O2 +1.5000 H2O +1.0000 H+ = + 1.0000 U+++ + 2.0000 H2AsO3- - log_k 189.1058 - -delta_H -1210.63 kJ/mol # Calculated enthalpy of reaction UAs2 + UAs2 + 2.25 O2 + 1.5 H2O + H+ = U+3 + 2 H2AsO3- + log_k 189.1058 + -delta_H -1210.63 kJ/mol # Calculated enthalpy of reaction UAs2 # Enthalpy of formation: -252 kJ/mol - -analytic -8.7361e+001 -7.5252e-002 6.1445e+004 3.7485e+001 9.5881e+002 + -analytic -8.7361e+1 -7.5252e-2 6.1445e+4 3.7485e+1 9.5881e+2 # -Range: 0-300 UBr2Cl - UBr2Cl = + 1.0000 Cl- + 1.0000 U+++ + 2.0000 Br- - log_k 17.7796 - -delta_H -148.586 kJ/mol # Calculated enthalpy of reaction UBr2Cl + UBr2Cl = Cl- + U+3 + 2 Br- + log_k 17.7796 + -delta_H -148.586 kJ/mol # Calculated enthalpy of reaction UBr2Cl # Enthalpy of formation: -750.6 kJ/mol - -analytic 3.0364e+000 -3.2187e-002 5.2314e+003 2.7418e+000 8.8836e+001 + -analytic 3.0364e+0 -3.2187e-2 5.2314e+3 2.7418e+0 8.8836e+1 # -Range: 0-200 UBr2Cl2 - UBr2Cl2 = + 1.0000 U++++ + 2.0000 Br- + 2.0000 Cl- - log_k 26.2185 - -delta_H -260.466 kJ/mol # Calculated enthalpy of reaction UBr2Cl2 + UBr2Cl2 = U+4 + 2 Br- + 2 Cl- + log_k 26.2185 + -delta_H -260.466 kJ/mol # Calculated enthalpy of reaction UBr2Cl2 # Enthalpy of formation: -907.9 kJ/mol - -analytic 3.8089e+000 -3.8781e-002 1.0125e+004 0.0000e+000 0.0000e+000 + -analytic 3.8089e+0 -3.8781e-2 1.0125e+4 0e+0 0e+0 # -Range: 0-200 UBr3 - UBr3 = + 1.0000 U+++ + 3.0000 Br- - log_k 20.2249 - -delta_H -154.91 kJ/mol # Calculated enthalpy of reaction UBr3 + UBr3 = U+3 + 3 Br- + log_k 20.2249 + -delta_H -154.91 kJ/mol # Calculated enthalpy of reaction UBr3 # Enthalpy of formation: -698.7 kJ/mol - -analytic -2.4366e+002 -9.8651e-002 1.2538e+004 1.0151e+002 1.9572e+002 + -analytic -2.4366e+2 -9.8651e-2 1.2538e+4 1.0151e+2 1.9572e+2 # -Range: 0-300 UBr3Cl - UBr3Cl = + 1.0000 Cl- + 1.0000 U++++ + 3.0000 Br- - log_k 29.1178 - -delta_H -270.49 kJ/mol # Calculated enthalpy of reaction UBr3Cl + UBr3Cl = Cl- + U+4 + 3 Br- + log_k 29.1178 + -delta_H -270.49 kJ/mol # Calculated enthalpy of reaction UBr3Cl # Enthalpy of formation: -852.3 kJ/mol - -analytic 1.1204e+001 -3.7109e-002 1.0473e+004 -2.4905e+000 1.7784e+002 + -analytic 1.1204e+1 -3.7109e-2 1.0473e+4 -2.4905e+0 1.7784e+2 # -Range: 0-200 UBr4 - UBr4 = + 1.0000 U++++ + 4.0000 Br- - log_k 31.2904 - -delta_H -275.113 kJ/mol # Calculated enthalpy of reaction UBr4 + UBr4 = U+4 + 4 Br- + log_k 31.2904 + -delta_H -275.113 kJ/mol # Calculated enthalpy of reaction UBr4 # Enthalpy of formation: -802.1 kJ/mol - -analytic -3.3800e+002 -1.2940e-001 2.0674e+004 1.3678e+002 3.2270e+002 + -analytic -3.38e+2 -1.294e-1 2.0674e+4 1.3678e+2 3.227e+2 # -Range: 0-300 UBr5 - UBr5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 Br- - log_k 41.6312 - -delta_H -250.567 kJ/mol # Calculated enthalpy of reaction UBr5 + UBr5 + 2 H2O = UO2+ + 4 H+ + 5 Br- + log_k 41.6312 + -delta_H -250.567 kJ/mol # Calculated enthalpy of reaction UBr5 # Enthalpy of formation: -810.4 kJ/mol - -analytic -3.2773e+002 -1.4356e-001 1.8709e+004 1.4117e+002 2.9204e+002 + -analytic -3.2773e+2 -1.4356e-1 1.8709e+4 1.4117e+2 2.9204e+2 # -Range: 0-300 UBrCl2 - UBrCl2 = + 1.0000 Br- + 1.0000 U+++ + 2.0000 Cl- - log_k 14.5048 - -delta_H -132.663 kJ/mol # Calculated enthalpy of reaction UBrCl2 + UBrCl2 = Br- + U+3 + 2 Cl- + log_k 14.5048 + -delta_H -132.663 kJ/mol # Calculated enthalpy of reaction UBrCl2 # Enthalpy of formation: -812.1 kJ/mol - -analytic -5.3713e+000 -3.4256e-002 4.6251e+003 5.8875e+000 7.8542e+001 + -analytic -5.3713e+0 -3.4256e-2 4.6251e+3 5.8875e+0 7.8542e+1 # -Range: 0-200 UBrCl3 - UBrCl3 = + 1.0000 Br- + 1.0000 U++++ + 3.0000 Cl- - log_k 23.5258 - -delta_H -246.642 kJ/mol # Calculated enthalpy of reaction UBrCl3 + UBrCl3 = Br- + U+4 + 3 Cl- + log_k 23.5258 + -delta_H -246.642 kJ/mol # Calculated enthalpy of reaction UBrCl3 # Enthalpy of formation: -967.3 kJ/mol - -analytic -5.6867e+000 -4.1166e-002 9.6664e+003 3.6579e+000 1.6415e+002 + -analytic -5.6867e+0 -4.1166e-2 9.6664e+3 3.6579e+0 1.6415e+2 # -Range: 0-200 UC - UC +2.0000 H+ +1.7500 O2 = + 0.5000 H2O + 1.0000 HCO3- + 1.0000 U+++ - log_k 194.8241 - -delta_H -1202.82 kJ/mol # Calculated enthalpy of reaction UC + UC + 2 H+ + 1.75 O2 = 0.5 H2O + HCO3- + U+3 + log_k 194.8241 + -delta_H -1202.82 kJ/mol # Calculated enthalpy of reaction UC # Enthalpy of formation: -97.9 kJ/mol - -analytic -4.6329e+001 -4.4600e-002 6.1417e+004 1.9566e+001 9.5836e+002 + -analytic -4.6329e+1 -4.46e-2 6.1417e+4 1.9566e+1 9.5836e+2 # -Range: 0-300 UC1.94(alpha) - UC1.94 +2.6900 O2 +1.0600 H+ +0.4400 H2O = + 1.0000 U+++ + 1.9400 HCO3- - log_k 257.1619 - -delta_H -1583.84 kJ/mol # Calculated enthalpy of reaction UC1.94(alpha) + UC1.94 + 2.69 O2 + 1.06 H+ + 0.44 H2O = U+3 + 1.94 HCO3- + log_k 257.1619 + -delta_H -1583.84 kJ/mol # Calculated enthalpy of reaction UC1.94(alpha) # Enthalpy of formation: -85.324 kJ/mol - -analytic -5.8194e+002 -1.4610e-001 1.0917e+005 2.1638e+002 -1.6852e+006 + -analytic -5.8194e+2 -1.461e-1 1.0917e+5 2.1638e+2 -1.6852e+6 # -Range: 0-300 UCl2F2 - UCl2F2 = + 1.0000 U++++ + 2.0000 Cl- + 2.0000 F- - log_k -3.5085 - -delta_H -130.055 kJ/mol # Calculated enthalpy of reaction UCl2F2 + UCl2F2 = U+4 + 2 Cl- + 2 F- + log_k -3.5085 + -delta_H -130.055 kJ/mol # Calculated enthalpy of reaction UCl2F2 # Enthalpy of formation: -1466 kJ/mol - -analytic -3.9662e+002 -1.3879e-001 1.4710e+004 1.5562e+002 2.2965e+002 + -analytic -3.9662e+2 -1.3879e-1 1.471e+4 1.5562e+2 2.2965e+2 # -Range: 0-300 UCl2I2 - UCl2I2 = + 1.0000 U++++ + 2.0000 Cl- + 2.0000 I- - log_k 30.2962 - -delta_H -270.364 kJ/mol # Calculated enthalpy of reaction UCl2I2 + UCl2I2 = U+4 + 2 Cl- + 2 I- + log_k 30.2962 + -delta_H -270.364 kJ/mol # Calculated enthalpy of reaction UCl2I2 # Enthalpy of formation: -768.8 kJ/mol - -analytic -1.2922e+001 -4.3178e-002 1.1219e+004 7.4562e+000 1.9052e+002 + -analytic -1.2922e+1 -4.3178e-2 1.1219e+4 7.4562e+0 1.9052e+2 # -Range: 0-200 UCl3 - UCl3 = + 1.0000 U+++ + 3.0000 Cl- - log_k 13.0062 - -delta_H -126.639 kJ/mol # Calculated enthalpy of reaction UCl3 + UCl3 = U+3 + 3 Cl- + log_k 13.0062 + -delta_H -126.639 kJ/mol # Calculated enthalpy of reaction UCl3 # Enthalpy of formation: -863.7 kJ/mol - -analytic -2.6388e+002 -1.0241e-001 1.1629e+004 1.0846e+002 1.8155e+002 + -analytic -2.6388e+2 -1.0241e-1 1.1629e+4 1.0846e+2 1.8155e+2 # -Range: 0-300 UCl3F - UCl3F = + 1.0000 F- + 1.0000 U++++ + 3.0000 Cl- - log_k 10.3200 - -delta_H -184.787 kJ/mol # Calculated enthalpy of reaction UCl3F + UCl3F = F- + U+4 + 3 Cl- + log_k 10.32 + -delta_H -184.787 kJ/mol # Calculated enthalpy of reaction UCl3F # Enthalpy of formation: -1243 kJ/mol - -analytic -3.7971e+002 -1.3681e-001 1.7127e+004 1.5086e+002 2.6736e+002 + -analytic -3.7971e+2 -1.3681e-1 1.7127e+4 1.5086e+2 2.6736e+2 # -Range: 0-300 UCl3I - UCl3I = + 1.0000 I- + 1.0000 U++++ + 3.0000 Cl- - log_k 25.5388 - -delta_H -251.041 kJ/mol # Calculated enthalpy of reaction UCl3I + UCl3I = I- + U+4 + 3 Cl- + log_k 25.5388 + -delta_H -251.041 kJ/mol # Calculated enthalpy of reaction UCl3I # Enthalpy of formation: -898.3 kJ/mol - -analytic -1.3362e+001 -4.3214e-002 1.0167e+004 7.1426e+000 1.7265e+002 + -analytic -1.3362e+1 -4.3214e-2 1.0167e+4 7.1426e+0 1.7265e+2 # -Range: 0-200 UCl4 - UCl4 = + 1.0000 U++++ + 4.0000 Cl- - log_k 21.9769 - -delta_H -240.719 kJ/mol # Calculated enthalpy of reaction UCl4 + UCl4 = U+4 + 4 Cl- + log_k 21.9769 + -delta_H -240.719 kJ/mol # Calculated enthalpy of reaction UCl4 # Enthalpy of formation: -1018.8 kJ/mol - -analytic -3.6881e+002 -1.3618e-001 1.9685e+004 1.4763e+002 3.0727e+002 + -analytic -3.6881e+2 -1.3618e-1 1.9685e+4 1.4763e+2 3.0727e+2 # -Range: 0-300 UCl5 - UCl5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 Cl- - log_k 37.3147 - -delta_H -249.849 kJ/mol # Calculated enthalpy of reaction UCl5 + UCl5 + 2 H2O = UO2+ + 4 H+ + 5 Cl- + log_k 37.3147 + -delta_H -249.849 kJ/mol # Calculated enthalpy of reaction UCl5 # Enthalpy of formation: -1039 kJ/mol - -analytic -3.6392e+002 -1.5133e-001 1.9617e+004 1.5376e+002 3.0622e+002 + -analytic -3.6392e+2 -1.5133e-1 1.9617e+4 1.5376e+2 3.0622e+2 # -Range: 0-300 UCl6 - UCl6 +2.0000 H2O = + 1.0000 UO2++ + 4.0000 H+ + 6.0000 Cl- - log_k 57.5888 - -delta_H -383.301 kJ/mol # Calculated enthalpy of reaction UCl6 + UCl6 + 2 H2O = UO2+2 + 4 H+ + 6 Cl- + log_k 57.5888 + -delta_H -383.301 kJ/mol # Calculated enthalpy of reaction UCl6 # Enthalpy of formation: -1066.5 kJ/mol - -analytic -4.5589e+002 -1.9203e-001 2.8029e+004 1.9262e+002 4.3750e+002 + -analytic -4.5589e+2 -1.9203e-1 2.8029e+4 1.9262e+2 4.375e+2 # -Range: 0-300 UClF3 - UClF3 = + 1.0000 Cl- + 1.0000 U++++ + 3.0000 F- - log_k -17.5122 - -delta_H -74.3225 kJ/mol # Calculated enthalpy of reaction UClF3 + UClF3 = Cl- + U+4 + 3 F- + log_k -17.5122 + -delta_H -74.3225 kJ/mol # Calculated enthalpy of reaction UClF3 # Enthalpy of formation: -1690 kJ/mol - -analytic -4.1346e+002 -1.4077e-001 1.2237e+004 1.6036e+002 1.9107e+002 + -analytic -4.1346e+2 -1.4077e-1 1.2237e+4 1.6036e+2 1.9107e+2 # -Range: 0-300 UClI3 - UClI3 = + 1.0000 Cl- + 1.0000 U++++ + 3.0000 I- - log_k 35.2367 - -delta_H -285.187 kJ/mol # Calculated enthalpy of reaction UClI3 + UClI3 = Cl- + U+4 + 3 I- + log_k 35.2367 + -delta_H -285.187 kJ/mol # Calculated enthalpy of reaction UClI3 # Enthalpy of formation: -643.8 kJ/mol - -analytic -1.1799e+001 -4.3208e-002 1.2045e+004 7.8829e+000 2.0455e+002 + -analytic -1.1799e+1 -4.3208e-2 1.2045e+4 7.8829e+0 2.0455e+2 # -Range: 0-200 UF3 - UF3 = + 1.0000 U+++ + 3.0000 F- - log_k -19.4125 - -delta_H 6.2572 kJ/mol # Calculated enthalpy of reaction UF3 + UF3 = U+3 + 3 F- + log_k -19.4125 + -delta_H 6.2572 kJ/mol # Calculated enthalpy of reaction UF3 # Enthalpy of formation: -1501.4 kJ/mol - -analytic -3.1530e+002 -1.0945e-001 6.1335e+003 1.2443e+002 9.5799e+001 + -analytic -3.153e+2 -1.0945e-1 6.1335e+3 1.2443e+2 9.5799e+1 # -Range: 0-300 UF4 - UF4 = + 1.0000 U++++ + 4.0000 F- - log_k -29.2004 - -delta_H -18.3904 kJ/mol # Calculated enthalpy of reaction UF4 + UF4 = U+4 + 4 F- + log_k -29.2004 + -delta_H -18.3904 kJ/mol # Calculated enthalpy of reaction UF4 # Enthalpy of formation: -1914.2 kJ/mol - -analytic -4.2411e+002 -1.4147e-001 9.6621e+003 1.6352e+002 1.5089e+002 + -analytic -4.2411e+2 -1.4147e-1 9.6621e+3 1.6352e+2 1.5089e+2 # -Range: 0-300 UF4:2.5H2O - UF4:2.5H2O = + 1.0000 U++++ + 2.5000 H2O + 4.0000 F- - log_k -33.3685 - -delta_H 24.2888 kJ/mol # Calculated enthalpy of reaction UF4:2.5H2O + UF4:2.5H2O = U+4 + 2.5 H2O + 4 F- + log_k -33.3685 + -delta_H 24.2888 kJ/mol # Calculated enthalpy of reaction UF4:2.5H2O # Enthalpy of formation: -2671.47 kJ/mol - -analytic -4.4218e+002 -1.4305e-001 8.2922e+003 1.7118e+002 1.2952e+002 + -analytic -4.4218e+2 -1.4305e-1 8.2922e+3 1.7118e+2 1.2952e+2 # -Range: 0-300 UF5(alpha) - UF5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 F- - log_k -12.8376 - -delta_H -54.8883 kJ/mol # Calculated enthalpy of reaction UF5(alpha) + UF5 + 2 H2O = UO2+ + 4 H+ + 5 F- + log_k -12.8376 + -delta_H -54.8883 kJ/mol # Calculated enthalpy of reaction UF5(alpha) # Enthalpy of formation: -2075.3 kJ/mol - -analytic -4.5126e+002 -1.6121e-001 1.1997e+004 1.8030e+002 1.8733e+002 + -analytic -4.5126e+2 -1.6121e-1 1.1997e+4 1.803e+2 1.8733e+2 # -Range: 0-300 UF5(beta) - UF5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 F- - log_k -13.1718 - -delta_H -46.9883 kJ/mol # Calculated enthalpy of reaction UF5(beta) + UF5 + 2 H2O = UO2+ + 4 H+ + 5 F- + log_k -13.1718 + -delta_H -46.9883 kJ/mol # Calculated enthalpy of reaction UF5(beta) # Enthalpy of formation: -2083.2 kJ/mol - -analytic -4.5020e+002 -1.6121e-001 1.1584e+004 1.8030e+002 1.8089e+002 + -analytic -4.502e+2 -1.6121e-1 1.1584e+4 1.803e+2 1.8089e+2 # -Range: 0-300 UF6 - UF6 +2.0000 H2O = + 1.0000 UO2++ + 4.0000 H+ + 6.0000 F- - log_k 17.4292 - -delta_H -261.709 kJ/mol # Calculated enthalpy of reaction UF6 + UF6 + 2 H2O = UO2+2 + 4 H+ + 6 F- + log_k 17.4292 + -delta_H -261.709 kJ/mol # Calculated enthalpy of reaction UF6 # Enthalpy of formation: -2197.7 kJ/mol - -analytic -5.8427e+002 -2.1223e-001 2.5296e+004 2.3440e+002 3.9489e+002 + -analytic -5.8427e+2 -2.1223e-1 2.5296e+4 2.344e+2 3.9489e+2 # -Range: 0-300 UH3(beta) - UH3 +3.0000 H+ +1.5000 O2 = + 1.0000 U+++ + 3.0000 H2O - log_k 199.7683 - -delta_H -1201.43 kJ/mol # Calculated enthalpy of reaction UH3(beta) + UH3 + 3 H+ + 1.5 O2 = U+3 + 3 H2O + log_k 199.7683 + -delta_H -1201.43 kJ/mol # Calculated enthalpy of reaction UH3(beta) # Enthalpy of formation: -126.98 kJ/mol - -analytic 5.2870e+001 4.2151e-003 6.0167e+004 -2.2701e+001 1.0217e+003 + -analytic 5.287e+1 4.2151e-3 6.0167e+4 -2.2701e+1 1.0217e+3 # -Range: 0-200 UI3 - UI3 = + 1.0000 U+++ + 3.0000 I- - log_k 29.0157 - -delta_H -192.407 kJ/mol # Calculated enthalpy of reaction UI3 + UI3 = U+3 + 3 I- + log_k 29.0157 + -delta_H -192.407 kJ/mol # Calculated enthalpy of reaction UI3 # Enthalpy of formation: -467.4 kJ/mol - -analytic -2.4505e+002 -9.9867e-002 1.4579e+004 1.0301e+002 2.2757e+002 + -analytic -2.4505e+2 -9.9867e-2 1.4579e+4 1.0301e+2 2.2757e+2 # -Range: 0-300 UI4 - UI4 = + 1.0000 U++++ + 4.0000 I- - log_k 39.3102 - -delta_H -300.01 kJ/mol # Calculated enthalpy of reaction UI4 + UI4 = U+4 + 4 I- + log_k 39.3102 + -delta_H -300.01 kJ/mol # Calculated enthalpy of reaction UI4 # Enthalpy of formation: -518.8 kJ/mol - -analytic -3.4618e+002 -1.3227e-001 2.2320e+004 1.4145e+002 3.4839e+002 + -analytic -3.4618e+2 -1.3227e-1 2.232e+4 1.4145e+2 3.4839e+2 # -Range: 0-300 UN - UN +3.0000 H+ = + 1.0000 NH3 + 1.0000 U+++ - log_k 41.7130 - -delta_H -280.437 kJ/mol # Calculated enthalpy of reaction UN + UN + 3 H+ = NH3 + U+3 + log_k 41.713 + -delta_H -280.437 kJ/mol # Calculated enthalpy of reaction UN # Enthalpy of formation: -290 kJ/mol - -analytic -1.6393e+002 -1.1679e-003 2.8845e+003 6.5637e+001 3.0122e+006 + -analytic -1.6393e+2 -1.1679e-3 2.8845e+3 6.5637e+1 3.0122e+6 # -Range: 0-300 UN1.59(alpha) - UN1.59 +1.8850 H2O +1.0000 H+ +0.0575 O2 = + 1.0000 UO2+ + 1.5900 NH3 - log_k 38.3930 - -delta_H -235.75 kJ/mol # Calculated enthalpy of reaction UN1.59(alpha) + UN1.59 + 1.885 H2O + H+ + 0.0575 O2 = UO2+ + 1.59 NH3 + log_k 38.393 + -delta_H -235.75 kJ/mol # Calculated enthalpy of reaction UN1.59(alpha) # Enthalpy of formation: -379.2 kJ/mol - -analytic 1.8304e+001 1.1109e-002 1.2064e+004 -9.5741e+000 2.0485e+002 + -analytic 1.8304e+1 1.1109e-2 1.2064e+4 -9.5741e+0 2.0485e+2 # -Range: 0-200 UN1.73(alpha) - UN1.73 +2.0950 H2O +1.0000 H+ = + 0.0475 O2 + 1.0000 UO2+ + 1.7300 NH3 - log_k 27.2932 - -delta_H -169.085 kJ/mol # Calculated enthalpy of reaction UN1.73(alpha) + UN1.73 + 2.095 H2O + H+ = 0.0475 O2 + UO2+ + 1.73 NH3 + log_k 27.2932 + -delta_H -169.085 kJ/mol # Calculated enthalpy of reaction UN1.73(alpha) # Enthalpy of formation: -398.5 kJ/mol - -analytic 1.0012e+001 1.0398e-002 8.9348e+003 -6.3817e+000 1.5172e+002 + -analytic 1.0012e+1 1.0398e-2 8.9348e+3 -6.3817e+0 1.5172e+2 # -Range: 0-200 UO2(AsO3)2 - UO2(AsO3)2 +2.0000 H2O = + 1.0000 UO2++ + 2.0000 H2AsO4- - log_k 6.9377 - -delta_H -109.843 kJ/mol # Calculated enthalpy of reaction UO2(AsO3)2 + UO2(AsO3)2 + 2 H2O = UO2+2 + 2 H2AsO4- + log_k 6.9377 + -delta_H -109.843 kJ/mol # Calculated enthalpy of reaction UO2(AsO3)2 # Enthalpy of formation: -2156.6 kJ/mol - -analytic -1.6050e+002 -6.6472e-002 8.2129e+003 6.4533e+001 1.2820e+002 + -analytic -1.605e+2 -6.6472e-2 8.2129e+3 6.4533e+1 1.282e+2 # -Range: 0-300 UO2(IO3)2 - UO2(IO3)2 = + 1.0000 UO2++ + 2.0000 IO3- - log_k -7.2871 - -delta_H -0.3862 kJ/mol # Calculated enthalpy of reaction UO2(IO3)2 + UO2(IO3)2 = UO2+2 + 2 IO3- + log_k -7.2871 + -delta_H -0.3862 kJ/mol # Calculated enthalpy of reaction UO2(IO3)2 # Enthalpy of formation: -1461.28 kJ/mol - -analytic -2.7047e+001 -1.4267e-002 -1.5055e+001 9.7226e+000 -2.4640e-001 + -analytic -2.7047e+1 -1.4267e-2 -1.5055e+1 9.7226e+0 -2.464e-1 # -Range: 0-200 UO2(NO3)2 - UO2(NO3)2 = + 1.0000 UO2++ + 2.0000 NO3- - log_k 11.9598 - -delta_H -81.6219 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2 + UO2(NO3)2 = UO2+2 + 2 NO3- + log_k 11.9598 + -delta_H -81.6219 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2 # Enthalpy of formation: -1351 kJ/mol - -analytic -1.2216e+001 -1.1261e-002 3.9895e+003 5.7166e+000 6.7751e+001 + -analytic -1.2216e+1 -1.1261e-2 3.9895e+3 5.7166e+0 6.7751e+1 # -Range: 0-200 UO2(NO3)2:2H2O - UO2(NO3)2:2H2O = + 1.0000 UO2++ + 2.0000 H2O + 2.0000 NO3- - log_k 4.9446 - -delta_H -25.5995 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:2H2O + UO2(NO3)2:2H2O = UO2+2 + 2 H2O + 2 NO3- + log_k 4.9446 + -delta_H -25.5995 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:2H2O # Enthalpy of formation: -1978.7 kJ/mol - -analytic -1.3989e+002 -5.2130e-002 4.3758e+003 5.8868e+001 6.8322e+001 + -analytic -1.3989e+2 -5.213e-2 4.3758e+3 5.8868e+1 6.8322e+1 # -Range: 0-300 UO2(NO3)2:3H2O - UO2(NO3)2:3H2O = + 1.0000 UO2++ + 2.0000 NO3- + 3.0000 H2O - log_k 3.7161 - -delta_H -9.73686 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:3H2O + UO2(NO3)2:3H2O = UO2+2 + 2 NO3- + 3 H2O + log_k 3.7161 + -delta_H -9.73686 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:3H2O # Enthalpy of formation: -2280.4 kJ/mol - -analytic -1.5037e+002 -5.2234e-002 4.0783e+003 6.3024e+001 6.3682e+001 + -analytic -1.5037e+2 -5.2234e-2 4.0783e+3 6.3024e+1 6.3682e+1 # -Range: 0-300 UO2(NO3)2:6H2O - UO2(NO3)2:6H2O = + 1.0000 UO2++ + 2.0000 NO3- + 6.0000 H2O - log_k 2.3189 - -delta_H 19.8482 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:6H2O + UO2(NO3)2:6H2O = UO2+2 + 2 NO3- + 6 H2O + log_k 2.3189 + -delta_H 19.8482 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:6H2O # Enthalpy of formation: -3167.5 kJ/mol - -analytic -1.4019e+002 -4.3682e-002 2.7842e+003 5.9070e+001 4.3486e+001 + -analytic -1.4019e+2 -4.3682e-2 2.7842e+3 5.907e+1 4.3486e+1 # -Range: 0-300 UO2(NO3)2:H2O - UO2(NO3)2:H2O = + 1.0000 H2O + 1.0000 UO2++ + 2.0000 NO3- - log_k 8.5103 - -delta_H -54.4602 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:H2O + UO2(NO3)2:H2O = H2O + UO2+2 + 2 NO3- + log_k 8.5103 + -delta_H -54.4602 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:H2O # Enthalpy of formation: -1664 kJ/mol - -analytic -3.7575e+001 -1.1342e-002 3.7548e+003 1.4899e+001 6.3776e+001 + -analytic -3.7575e+1 -1.1342e-2 3.7548e+3 1.4899e+1 6.3776e+1 # -Range: 0-200 UO2(OH)2(beta) - UO2(OH)2 +2.0000 H+ = + 1.0000 UO2++ + 2.0000 H2O - log_k 4.9457 - -delta_H -56.8767 kJ/mol # Calculated enthalpy of reaction UO2(OH)2(beta) + UO2(OH)2 + 2 H+ = UO2+2 + 2 H2O + log_k 4.9457 + -delta_H -56.8767 kJ/mol # Calculated enthalpy of reaction UO2(OH)2(beta) # Enthalpy of formation: -1533.8 kJ/mol - -analytic -1.7478e+001 -1.6806e-003 3.4226e+003 4.6260e+000 5.3412e+001 + -analytic -1.7478e+1 -1.6806e-3 3.4226e+3 4.626e+0 5.3412e+1 # -Range: 0-300 UO2(PO3)2 - UO2(PO3)2 +2.0000 H2O = + 1.0000 UO2++ + 2.0000 H+ + 2.0000 HPO4-- - log_k -16.2805 - -delta_H -58.4873 kJ/mol # Calculated enthalpy of reaction UO2(PO3)2 + UO2(PO3)2 + 2 H2O = UO2+2 + 2 H+ + 2 HPO4-2 + log_k -16.2805 + -delta_H -58.4873 kJ/mol # Calculated enthalpy of reaction UO2(PO3)2 # Enthalpy of formation: -2973 kJ/mol - -analytic -3.2995e+002 -1.3747e-001 8.0652e+003 1.3237e+002 1.2595e+002 + -analytic -3.2995e+2 -1.3747e-1 8.0652e+3 1.3237e+2 1.2595e+2 # -Range: 0-300 UO2(am) - UO2 +4.0000 H+ = + 1.0000 U++++ + 2.0000 H2O - log_k 0.1091 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(am) + UO2 + 4 H+ = U+4 + 2 H2O + log_k 0.1091 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(am) # Enthalpy of formation: 0 kcal/mol UO2.25 - UO2.25 +2.5000 H+ = + 0.5000 U++++ + 0.5000 UO2+ + 1.2500 H2O - log_k -4.8193 - -delta_H -37.1614 kJ/mol # Calculated enthalpy of reaction UO2.25 + UO2.25 + 2.5 H+ = 0.5 U+4 + 0.5 UO2+ + 1.25 H2O + log_k -4.8193 + -delta_H -37.1614 kJ/mol # Calculated enthalpy of reaction UO2.25 # Enthalpy of formation: -1128.3 kJ/mol - -analytic -1.9073e+002 -4.1793e-002 7.3391e+003 7.0213e+001 1.1457e+002 + -analytic -1.9073e+2 -4.1793e-2 7.3391e+3 7.0213e+1 1.1457e+2 # -Range: 0-300 UO2.25(beta) - UO2.25 +2.5000 H+ = + 0.5000 U++++ + 0.5000 UO2+ + 1.2500 H2O - log_k -4.7593 - -delta_H -38.0614 kJ/mol # Calculated enthalpy of reaction UO2.25(beta) + UO2.25 + 2.5 H+ = 0.5 U+4 + 0.5 UO2+ + 1.25 H2O + log_k -4.7593 + -delta_H -38.0614 kJ/mol # Calculated enthalpy of reaction UO2.25(beta) # Enthalpy of formation: -1127.4 kJ/mol - -analytic -3.6654e+001 -2.4013e-003 2.9632e+003 9.1625e+000 4.6249e+001 + -analytic -3.6654e+1 -2.4013e-3 2.9632e+3 9.1625e+0 4.6249e+1 # -Range: 0-300 UO2.3333(beta) # UO2.3333 +8.0000 H+ = + 0.3333 O2 + 2.0000 U++++ + 4.0000 H2O - (UO2.3333)2 + 8.0000 H+ = 0.3333 O2 + 2.0000 U++++ + 4.0000 H2O - log_k -27.7177 - -delta_H -1187.8 kJ/mol # Calculated enthalpy of reaction UO2.3333(beta) + (UO2.3333)2 + 8 H+ = 0.3333 O2 + 2 U+4 + 4 H2O + log_k -27.7177 + -delta_H -1187.8 kJ/mol # Calculated enthalpy of reaction UO2.3333(beta) # Enthalpy of formation: -1142 kJ/mol - -analytic -7.4790e+000 -6.8382e-004 -2.7277e+003 -7.2107e+000 6.1873e+005 + -analytic -7.479e+0 -6.8382e-4 -2.7277e+3 -7.2107e+0 6.1873e+5 # -Range: 0-300 UO2.6667 # UO2.6667 +8.0000 H+ = + 0.6667 O2 + 2.0000 U++++ + 4.0000 H2O - (UO2.6667)2 +8.0000 H+ = + 0.6667 O2 + 2.0000 U++++ + 4.0000 H2O - log_k -43.6051 - -delta_H -1142.24 kJ/mol # Calculated enthalpy of reaction UO2.6667 + (UO2.6667)2 + 8 H+ = 0.6667 O2 + 2 U+4 + 4 H2O + log_k -43.6051 + -delta_H -1142.24 kJ/mol # Calculated enthalpy of reaction UO2.6667 # Enthalpy of formation: -1191.6 kJ/mol - -analytic 1.2095e+002 2.0118e-002 -1.4968e+004 -5.3552e+001 1.0813e+006 + -analytic 1.2095e+2 2.0118e-2 -1.4968e+4 -5.3552e+1 1.0813e+6 # -Range: 0-300 UO2Br2 - UO2Br2 = + 1.0000 UO2++ + 2.0000 Br- - log_k 16.5103 - -delta_H -124.607 kJ/mol # Calculated enthalpy of reaction UO2Br2 + UO2Br2 = UO2+2 + 2 Br- + log_k 16.5103 + -delta_H -124.607 kJ/mol # Calculated enthalpy of reaction UO2Br2 # Enthalpy of formation: -1137.4 kJ/mol - -analytic -1.4876e+002 -6.2715e-002 9.0200e+003 6.2108e+001 1.4079e+002 + -analytic -1.4876e+2 -6.2715e-2 9.02e+3 6.2108e+1 1.4079e+2 # -Range: 0-300 UO2Br2:3H2O - UO2Br2:3H2O = + 1.0000 UO2++ + 2.0000 Br- + 3.0000 H2O - log_k 9.4113 - -delta_H -61.5217 kJ/mol # Calculated enthalpy of reaction UO2Br2:3H2O + UO2Br2:3H2O = UO2+2 + 2 Br- + 3 H2O + log_k 9.4113 + -delta_H -61.5217 kJ/mol # Calculated enthalpy of reaction UO2Br2:3H2O # Enthalpy of formation: -2058 kJ/mol - -analytic -6.8507e+001 -1.6834e-002 5.1409e+003 2.6546e+001 8.7324e+001 + -analytic -6.8507e+1 -1.6834e-2 5.1409e+3 2.6546e+1 8.7324e+1 # -Range: 0-200 UO2Br2:H2O - UO2Br2:H2O = + 1.0000 H2O + 1.0000 UO2++ + 2.0000 Br- - log_k 12.1233 - -delta_H -91.945 kJ/mol # Calculated enthalpy of reaction UO2Br2:H2O + UO2Br2:H2O = H2O + UO2+2 + 2 Br- + log_k 12.1233 + -delta_H -91.945 kJ/mol # Calculated enthalpy of reaction UO2Br2:H2O # Enthalpy of formation: -1455.9 kJ/mol - -analytic -1.7519e+001 -1.6603e-002 4.3544e+003 8.0748e+000 7.3950e+001 + -analytic -1.7519e+1 -1.6603e-2 4.3544e+3 8.0748e+0 7.395e+1 # -Range: 0-200 UO2BrOH:2H2O - UO2BrOH:2H2O +1.0000 H+ = + 1.0000 Br- + 1.0000 UO2++ + 3.0000 H2O - log_k 4.2026 - -delta_H -39.8183 kJ/mol # Calculated enthalpy of reaction UO2BrOH:2H2O + UO2BrOH:2H2O + H+ = Br- + UO2+2 + 3 H2O + log_k 4.2026 + -delta_H -39.8183 kJ/mol # Calculated enthalpy of reaction UO2BrOH:2H2O # Enthalpy of formation: -1958.2 kJ/mol - -analytic -8.3411e+001 -1.0024e-002 5.0411e+003 2.9781e+001 8.5633e+001 + -analytic -8.3411e+1 -1.0024e-2 5.0411e+3 2.9781e+1 8.5633e+1 # -Range: 0-200 UO2CO3 - UO2CO3 +1.0000 H+ = + 1.0000 HCO3- + 1.0000 UO2++ - log_k -4.1267 - -delta_H -19.2872 kJ/mol # Calculated enthalpy of reaction UO2CO3 + UO2CO3 + H+ = HCO3- + UO2+2 + log_k -4.1267 + -delta_H -19.2872 kJ/mol # Calculated enthalpy of reaction UO2CO3 # Enthalpy of formation: -1689.65 kJ/mol - -analytic -4.4869e+001 -1.1541e-002 1.9475e+003 1.5215e+001 3.3086e+001 + -analytic -4.4869e+1 -1.1541e-2 1.9475e+3 1.5215e+1 3.3086e+1 # -Range: 0-200 UO2Cl - UO2Cl = + 1.0000 Cl- + 1.0000 UO2+ - log_k -0.5154 - -delta_H -21.1067 kJ/mol # Calculated enthalpy of reaction UO2Cl + UO2Cl = Cl- + UO2+ + log_k -0.5154 + -delta_H -21.1067 kJ/mol # Calculated enthalpy of reaction UO2Cl # Enthalpy of formation: -1171.1 kJ/mol - -analytic -7.3291e+001 -2.5940e-002 2.5753e+003 2.9038e+001 4.0207e+001 + -analytic -7.3291e+1 -2.594e-2 2.5753e+3 2.9038e+1 4.0207e+1 # -Range: 0-300 UO2Cl2 - UO2Cl2 = + 1.0000 UO2++ + 2.0000 Cl- - log_k 12.1394 - -delta_H -109.559 kJ/mol # Calculated enthalpy of reaction UO2Cl2 + UO2Cl2 = UO2+2 + 2 Cl- + log_k 12.1394 + -delta_H -109.559 kJ/mol # Calculated enthalpy of reaction UO2Cl2 # Enthalpy of formation: -1243.6 kJ/mol - -analytic -1.6569e+002 -6.6249e-002 8.6920e+003 6.8055e+001 1.3568e+002 + -analytic -1.6569e+2 -6.6249e-2 8.692e+3 6.8055e+1 1.3568e+2 # -Range: 0-300 UO2Cl2:3H2O - UO2Cl2:3H2O = + 1.0000 UO2++ + 2.0000 Cl- + 3.0000 H2O - log_k 5.6163 - -delta_H -45.8743 kJ/mol # Calculated enthalpy of reaction UO2Cl2:3H2O + UO2Cl2:3H2O = UO2+2 + 2 Cl- + 3 H2O + log_k 5.6163 + -delta_H -45.8743 kJ/mol # Calculated enthalpy of reaction UO2Cl2:3H2O # Enthalpy of formation: -2164.8 kJ/mol - -analytic -8.4932e+001 -2.0867e-002 4.7594e+003 3.2654e+001 8.0850e+001 + -analytic -8.4932e+1 -2.0867e-2 4.7594e+3 3.2654e+1 8.085e+1 # -Range: 0-200 UO2Cl2:H2O - UO2Cl2:H2O = + 1.0000 H2O + 1.0000 UO2++ + 2.0000 Cl- - log_k 8.2880 - -delta_H -79.1977 kJ/mol # Calculated enthalpy of reaction UO2Cl2:H2O + UO2Cl2:H2O = H2O + UO2+2 + 2 Cl- + log_k 8.288 + -delta_H -79.1977 kJ/mol # Calculated enthalpy of reaction UO2Cl2:H2O # Enthalpy of formation: -1559.8 kJ/mol - -analytic -3.4458e+001 -2.0630e-002 4.1231e+003 1.4170e+001 7.0029e+001 + -analytic -3.4458e+1 -2.063e-2 4.1231e+3 1.417e+1 7.0029e+1 # -Range: 0-200 UO2ClOH:2H2O - UO2ClOH:2H2O +1.0000 H+ = + 1.0000 Cl- + 1.0000 UO2++ + 3.0000 H2O - log_k 2.3064 - -delta_H -33.1947 kJ/mol # Calculated enthalpy of reaction UO2ClOH:2H2O + UO2ClOH:2H2O + H+ = Cl- + UO2+2 + 3 H2O + log_k 2.3064 + -delta_H -33.1947 kJ/mol # Calculated enthalpy of reaction UO2ClOH:2H2O # Enthalpy of formation: -2010.4 kJ/mol - -analytic -9.1834e+001 -1.2041e-002 4.9131e+003 3.2835e+001 8.3462e+001 + -analytic -9.1834e+1 -1.2041e-2 4.9131e+3 3.2835e+1 8.3462e+1 # -Range: 0-200 UO2F2 - UO2F2 = + 1.0000 UO2++ + 2.0000 F- - log_k -7.2302 - -delta_H -36.1952 kJ/mol # Calculated enthalpy of reaction UO2F2 + UO2F2 = UO2+2 + 2 F- + log_k -7.2302 + -delta_H -36.1952 kJ/mol # Calculated enthalpy of reaction UO2F2 # Enthalpy of formation: -1653.5 kJ/mol - -analytic -2.0303e+002 -7.1028e-002 5.9356e+003 7.9627e+001 9.2679e+001 + -analytic -2.0303e+2 -7.1028e-2 5.9356e+3 7.9627e+1 9.2679e+1 # -Range: 0-300 UO2F2:3H2O - UO2F2:3H2O = + 1.0000 UO2++ + 2.0000 F- + 3.0000 H2O - log_k -7.3692 - -delta_H -12.8202 kJ/mol # Calculated enthalpy of reaction UO2F2:3H2O + UO2F2:3H2O = UO2+2 + 2 F- + 3 H2O + log_k -7.3692 + -delta_H -12.8202 kJ/mol # Calculated enthalpy of reaction UO2F2:3H2O # Enthalpy of formation: -2534.39 kJ/mol - -analytic -1.0286e+002 -2.1223e-002 3.4855e+003 3.6420e+001 5.9224e+001 + -analytic -1.0286e+2 -2.1223e-2 3.4855e+3 3.642e+1 5.9224e+1 # -Range: 0-200 UO2FOH - UO2FOH +1.0000 H+ = + 1.0000 F- + 1.0000 H2O + 1.0000 UO2++ - log_k -1.8426 - -delta_H -41.7099 kJ/mol # Calculated enthalpy of reaction UO2FOH + UO2FOH + H+ = F- + H2O + UO2+2 + log_k -1.8426 + -delta_H -41.7099 kJ/mol # Calculated enthalpy of reaction UO2FOH # Enthalpy of formation: -1598.48 kJ/mol - -analytic -4.9229e+001 -1.1984e-002 3.2086e+003 1.6244e+001 5.4503e+001 + -analytic -4.9229e+1 -1.1984e-2 3.2086e+3 1.6244e+1 5.4503e+1 # -Range: 0-200 UO2FOH:2H2O - UO2FOH:2H2O +1.0000 H+ = + 1.0000 F- + 1.0000 UO2++ + 3.0000 H2O - log_k -2.6606 - -delta_H -21.8536 kJ/mol # Calculated enthalpy of reaction UO2FOH:2H2O + UO2FOH:2H2O + H+ = F- + UO2+2 + 3 H2O + log_k -2.6606 + -delta_H -21.8536 kJ/mol # Calculated enthalpy of reaction UO2FOH:2H2O # Enthalpy of formation: -2190.01 kJ/mol - -analytic -1.0011e+002 -1.2203e-002 4.5446e+003 3.4690e+001 7.7208e+001 + -analytic -1.0011e+2 -1.2203e-2 4.5446e+3 3.469e+1 7.7208e+1 # -Range: 0-200 UO2FOH:H2O - UO2FOH:H2O +1.0000 H+ = + 1.0000 F- + 1.0000 UO2++ + 2.0000 H2O - log_k -2.2838 - -delta_H -31.5243 kJ/mol # Calculated enthalpy of reaction UO2FOH:H2O + UO2FOH:H2O + H+ = F- + UO2+2 + 2 H2O + log_k -2.2838 + -delta_H -31.5243 kJ/mol # Calculated enthalpy of reaction UO2FOH:H2O # Enthalpy of formation: -1894.5 kJ/mol - -analytic -7.4628e+001 -1.2086e-002 3.8625e+003 2.5456e+001 6.5615e+001 + -analytic -7.4628e+1 -1.2086e-2 3.8625e+3 2.5456e+1 6.5615e+1 # -Range: 0-200 UO2HPO4 - UO2HPO4 = + 1.0000 HPO4-- + 1.0000 UO2++ - log_k -12.6782 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2HPO4 + UO2HPO4 = HPO4-2 + UO2+2 + log_k -12.6782 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2HPO4 # Enthalpy of formation: 0 kcal/mol UO2HPO4:4H2O - UO2HPO4:4H2O = + 1.0000 HPO4-- + 1.0000 UO2++ + 4.0000 H2O - log_k -13.0231 - -delta_H 15.5327 kJ/mol # Calculated enthalpy of reaction UO2HPO4:4H2O + UO2HPO4:4H2O = HPO4-2 + UO2+2 + 4 H2O + log_k -13.0231 + -delta_H 15.5327 kJ/mol # Calculated enthalpy of reaction UO2HPO4:4H2O # Enthalpy of formation: -3469.97 kJ/mol - -analytic -1.1784e+002 -1.9418e-002 2.7547e+003 4.0963e+001 4.6818e+001 + -analytic -1.1784e+2 -1.9418e-2 2.7547e+3 4.0963e+1 4.6818e+1 # -Range: 0-200 UO2SO3 - UO2SO3 = + 1.0000 SO3-- + 1.0000 UO2++ - log_k -15.9812 - -delta_H 6.4504 kJ/mol # Calculated enthalpy of reaction UO2SO3 + UO2SO3 = SO3-2 + UO2+2 + log_k -15.9812 + -delta_H 6.4504 kJ/mol # Calculated enthalpy of reaction UO2SO3 # Enthalpy of formation: -1661 kJ/mol - -analytic 2.5751e+001 -1.3871e-002 -3.0305e+003 -1.1090e+001 -5.1470e+001 + -analytic 2.5751e+1 -1.3871e-2 -3.0305e+3 -1.109e+1 -5.147e+1 # -Range: 0-200 UO2SO4 - UO2SO4 = + 1.0000 SO4-- + 1.0000 UO2++ - log_k 1.9681 - -delta_H -83.4616 kJ/mol # Calculated enthalpy of reaction UO2SO4 + UO2SO4 = SO4-2 + UO2+2 + log_k 1.9681 + -delta_H -83.4616 kJ/mol # Calculated enthalpy of reaction UO2SO4 # Enthalpy of formation: -1845.14 kJ/mol - -analytic -1.5677e+002 -6.5310e-002 6.7411e+003 6.2867e+001 1.0523e+002 + -analytic -1.5677e+2 -6.531e-2 6.7411e+3 6.2867e+1 1.0523e+2 # -Range: 0-300 UO2SO4:2.5H2O - UO2SO4:2.5H2O = + 1.0000 SO4-- + 1.0000 UO2++ + 2.5000 H2O - log_k -1.4912 - -delta_H -36.1984 kJ/mol # Calculated enthalpy of reaction UO2SO4:2.5H2O + UO2SO4:2.5H2O = SO4-2 + UO2+2 + 2.5 H2O + log_k -1.4912 + -delta_H -36.1984 kJ/mol # Calculated enthalpy of reaction UO2SO4:2.5H2O # Enthalpy of formation: -2607 kJ/mol - -analytic -4.8908e+001 -1.3445e-002 2.8658e+003 1.6894e+001 4.8683e+001 + -analytic -4.8908e+1 -1.3445e-2 2.8658e+3 1.6894e+1 4.8683e+1 # -Range: 0-200 UO2SO4:3.5H2O - UO2SO4:3.5H2O = + 1.0000 SO4-- + 1.0000 UO2++ + 3.5000 H2O - log_k -1.4805 - -delta_H -27.4367 kJ/mol # Calculated enthalpy of reaction UO2SO4:3.5H2O + UO2SO4:3.5H2O = SO4-2 + UO2+2 + 3.5 H2O + log_k -1.4805 + -delta_H -27.4367 kJ/mol # Calculated enthalpy of reaction UO2SO4:3.5H2O # Enthalpy of formation: -2901.6 kJ/mol - -analytic -7.4180e+001 -1.3565e-002 3.5963e+003 2.6136e+001 6.1096e+001 + -analytic -7.418e+1 -1.3565e-2 3.5963e+3 2.6136e+1 6.1096e+1 # -Range: 0-200 UO2SO4:3H2O - UO2SO4:3H2O = + 1.0000 SO4-- + 1.0000 UO2++ + 3.0000 H2O - log_k -1.4028 - -delta_H -34.6176 kJ/mol # Calculated enthalpy of reaction UO2SO4:3H2O + UO2SO4:3H2O = SO4-2 + UO2+2 + 3 H2O + log_k -1.4028 + -delta_H -34.6176 kJ/mol # Calculated enthalpy of reaction UO2SO4:3H2O # Enthalpy of formation: -2751.5 kJ/mol - -analytic -5.0134e+001 -1.0321e-002 3.0505e+003 1.6799e+001 5.1818e+001 + -analytic -5.0134e+1 -1.0321e-2 3.0505e+3 1.6799e+1 5.1818e+1 # -Range: 0-200 UO2SO4:H2O - UO2SO4:H2O = + 1.0000 H2O + 1.0000 SO4-- + 1.0000 UO2++ - log_k -6.0233 - -delta_H -39.1783 kJ/mol # Calculated enthalpy of reaction UO2SO4:H2O + UO2SO4:H2O = H2O + SO4-2 + UO2+2 + log_k -6.0233 + -delta_H -39.1783 kJ/mol # Calculated enthalpy of reaction UO2SO4:H2O # Enthalpy of formation: -519.9 kcal/mol - -analytic -1.8879e+002 -6.9827e-002 5.5636e+003 7.4717e+001 8.6870e+001 + -analytic -1.8879e+2 -6.9827e-2 5.5636e+3 7.4717e+1 8.687e+1 # -Range: 0-300 UO3(alpha) - UO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 UO2++ - log_k 8.6391 - -delta_H -87.3383 kJ/mol # Calculated enthalpy of reaction UO3(alpha) + UO3 + 2 H+ = H2O + UO2+2 + log_k 8.6391 + -delta_H -87.3383 kJ/mol # Calculated enthalpy of reaction UO3(alpha) # Enthalpy of formation: -1217.5 kJ/mol - -analytic -1.4099e+001 -1.9063e-003 4.7742e+003 2.9478e+000 7.4501e+001 + -analytic -1.4099e+1 -1.9063e-3 4.7742e+3 2.9478e+0 7.4501e+1 # -Range: 0-300 UO3(beta) - UO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 UO2++ - log_k 8.3095 - -delta_H -84.5383 kJ/mol # Calculated enthalpy of reaction UO3(beta) + UO3 + 2 H+ = H2O + UO2+2 + log_k 8.3095 + -delta_H -84.5383 kJ/mol # Calculated enthalpy of reaction UO3(beta) # Enthalpy of formation: -1220.3 kJ/mol - -analytic -1.2298e+001 -1.7800e-003 4.5621e+003 2.3593e+000 7.1191e+001 + -analytic -1.2298e+1 -1.78e-3 4.5621e+3 2.3593e+0 7.1191e+1 # -Range: 0-300 UO3(gamma) - UO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 UO2++ - log_k 7.7073 - -delta_H -81.0383 kJ/mol # Calculated enthalpy of reaction UO3(gamma) + UO3 + 2 H+ = H2O + UO2+2 + log_k 7.7073 + -delta_H -81.0383 kJ/mol # Calculated enthalpy of reaction UO3(gamma) # Enthalpy of formation: -1223.8 kJ/mol - -analytic -1.1573e+001 -2.3560e-003 4.3124e+003 2.2305e+000 6.7294e+001 + -analytic -1.1573e+1 -2.356e-3 4.3124e+3 2.2305e+0 6.7294e+1 # -Range: 0-300 UO3:.9H2O(alpha) - UO3:.9H2O +2.0000 H+ = + 1.0000 UO2++ + 1.9000 H2O - log_k 5.0167 - -delta_H -55.7928 kJ/mol # Calculated enthalpy of reaction UO3:.9H2O(alpha) + UO3:.9H2O + 2 H+ = UO2+2 + 1.9 H2O + log_k 5.0167 + -delta_H -55.7928 kJ/mol # Calculated enthalpy of reaction UO3:.9H2O(alpha) # Enthalpy of formation: -1506.3 kJ/mol - -analytic -6.9286e+001 -3.0624e-003 5.5984e+003 2.2809e+001 9.5092e+001 + -analytic -6.9286e+1 -3.0624e-3 5.5984e+3 2.2809e+1 9.5092e+1 # -Range: 0-200 UO3:2H2O - UO3:2H2O +2.0000 H+ = + 1.0000 UO2++ + 3.0000 H2O - log_k 4.8333 - -delta_H -50.415 kJ/mol # Calculated enthalpy of reaction UO3:2H2O + UO3:2H2O + 2 H+ = UO2+2 + 3 H2O + log_k 4.8333 + -delta_H -50.415 kJ/mol # Calculated enthalpy of reaction UO3:2H2O # Enthalpy of formation: -1826.1 kJ/mol - -analytic -5.9530e+001 -9.8107e-003 4.4975e+003 2.1098e+001 7.0196e+001 + -analytic -5.953e+1 -9.8107e-3 4.4975e+3 2.1098e+1 7.0196e+1 # -Range: 0-300 UOBr2 - UOBr2 +2.0000 H+ = + 1.0000 H2O + 1.0000 U++++ + 2.0000 Br- - log_k 7.9722 - -delta_H -146.445 kJ/mol # Calculated enthalpy of reaction UOBr2 + UOBr2 + 2 H+ = H2O + U+4 + 2 Br- + log_k 7.9722 + -delta_H -146.445 kJ/mol # Calculated enthalpy of reaction UOBr2 # Enthalpy of formation: -973.6 kJ/mol - -analytic -2.0747e+002 -7.0500e-002 1.1746e+004 7.9629e+001 1.8334e+002 + -analytic -2.0747e+2 -7.05e-2 1.1746e+4 7.9629e+1 1.8334e+2 # -Range: 0-300 UOBr3 - UOBr3 +1.0000 H2O = + 1.0000 UO2+ + 2.0000 H+ + 3.0000 Br- - log_k 23.5651 - -delta_H -149.799 kJ/mol # Calculated enthalpy of reaction UOBr3 + UOBr3 + H2O = UO2+ + 2 H+ + 3 Br- + log_k 23.5651 + -delta_H -149.799 kJ/mol # Calculated enthalpy of reaction UOBr3 # Enthalpy of formation: -954 kJ/mol - -analytic -2.0001e+002 -8.4632e-002 1.1381e+004 8.5102e+001 1.7765e+002 + -analytic -2.0001e+2 -8.4632e-2 1.1381e+4 8.5102e+1 1.7765e+2 # -Range: 0-300 UOCl - UOCl +2.0000 H+ = + 1.0000 Cl- + 1.0000 H2O + 1.0000 U+++ - log_k 10.3872 - -delta_H -108.118 kJ/mol # Calculated enthalpy of reaction UOCl + UOCl + 2 H+ = Cl- + H2O + U+3 + log_k 10.3872 + -delta_H -108.118 kJ/mol # Calculated enthalpy of reaction UOCl # Enthalpy of formation: -833.9 kJ/mol - -analytic -1.1989e+002 -4.0791e-002 8.0834e+003 4.6600e+001 1.2617e+002 + -analytic -1.1989e+2 -4.0791e-2 8.0834e+3 4.66e+1 1.2617e+2 # -Range: 0-300 UOCl2 - UOCl2 +2.0000 H+ = + 1.0000 H2O + 1.0000 U++++ + 2.0000 Cl- - log_k 5.4559 - -delta_H -141.898 kJ/mol # Calculated enthalpy of reaction UOCl2 + UOCl2 + 2 H+ = H2O + U+4 + 2 Cl- + log_k 5.4559 + -delta_H -141.898 kJ/mol # Calculated enthalpy of reaction UOCl2 # Enthalpy of formation: -1069.3 kJ/mol - -analytic -2.2096e+002 -7.3329e-002 1.1858e+004 8.4250e+001 1.8509e+002 + -analytic -2.2096e+2 -7.3329e-2 1.1858e+4 8.425e+1 1.8509e+2 # -Range: 0-300 UOCl3 - UOCl3 +1.0000 H2O = + 1.0000 UO2+ + 2.0000 H+ + 3.0000 Cl- - log_k 12.6370 - -delta_H -100.528 kJ/mol # Calculated enthalpy of reaction UOCl3 + UOCl3 + H2O = UO2+ + 2 H+ + 3 Cl- + log_k 12.637 + -delta_H -100.528 kJ/mol # Calculated enthalpy of reaction UOCl3 # Enthalpy of formation: -1140 kJ/mol - -analytic -2.1934e+002 -8.8639e-002 9.3198e+003 9.1775e+001 1.4549e+002 + -analytic -2.1934e+2 -8.8639e-2 9.3198e+3 9.1775e+1 1.4549e+2 # -Range: 0-300 UOF2 - UOF2 +2.0000 H+ = + 1.0000 H2O + 1.0000 U++++ + 2.0000 F- - log_k -18.1473 - -delta_H -43.1335 kJ/mol # Calculated enthalpy of reaction UOF2 + UOF2 + 2 H+ = H2O + U+4 + 2 F- + log_k -18.1473 + -delta_H -43.1335 kJ/mol # Calculated enthalpy of reaction UOF2 # Enthalpy of formation: -1504.6 kJ/mol - -analytic -6.9471e+001 -2.6188e-002 2.5576e+003 2.0428e+001 4.3454e+001 + -analytic -6.9471e+1 -2.6188e-2 2.5576e+3 2.0428e+1 4.3454e+1 # -Range: 0-200 UOF2:H2O - UOF2:H2O +2.0000 H+ = + 1.0000 U++++ + 2.0000 F- + 2.0000 H2O - log_k -18.7019 - -delta_H -31.5719 kJ/mol # Calculated enthalpy of reaction UOF2:H2O + UOF2:H2O + 2 H+ = U+4 + 2 F- + 2 H2O + log_k -18.7019 + -delta_H -31.5719 kJ/mol # Calculated enthalpy of reaction UOF2:H2O # Enthalpy of formation: -1802 kJ/mol - -analytic -9.5010e+001 -2.6355e-002 3.1474e+003 2.9746e+001 5.3480e+001 + -analytic -9.501e+1 -2.6355e-2 3.1474e+3 2.9746e+1 5.348e+1 # -Range: 0-200 UOF4 - UOF4 +1.0000 H2O = + 1.0000 UO2++ + 2.0000 H+ + 4.0000 F- - log_k 4.5737 - -delta_H -149.952 kJ/mol # Calculated enthalpy of reaction UOF4 + UOF4 + H2O = UO2+2 + 2 H+ + 4 F- + log_k 4.5737 + -delta_H -149.952 kJ/mol # Calculated enthalpy of reaction UOF4 # Enthalpy of formation: -1924.6 kJ/mol - -analytic -5.9731e+000 -3.8581e-002 4.6903e+003 2.5464e+000 7.9649e+001 + -analytic -5.9731e+0 -3.8581e-2 4.6903e+3 2.5464e+0 7.9649e+1 # -Range: 0-200 UOFOH - UOFOH +3.0000 H+ = + 1.0000 F- + 1.0000 U++++ + 2.0000 H2O - log_k -8.9274 - -delta_H -71.5243 kJ/mol # Calculated enthalpy of reaction UOFOH + UOFOH + 3 H+ = F- + U+4 + 2 H2O + log_k -8.9274 + -delta_H -71.5243 kJ/mol # Calculated enthalpy of reaction UOFOH # Enthalpy of formation: -1426.7 kJ/mol - -analytic -9.2412e+001 -1.7293e-002 5.8150e+003 2.7940e+001 9.8779e+001 + -analytic -9.2412e+1 -1.7293e-2 5.815e+3 2.794e+1 9.8779e+1 # -Range: 0-200 UOFOH:.5H2O - UOFOH:.5H2O +1.0000 H+ +0.5000 O2 = + 1.0000 F- + 1.0000 UO2++ + 1.5000 H2O - log_k 24.5669 - -delta_H -200.938 kJ/mol # Calculated enthalpy of reaction UOFOH:.5H2O + UOFOH:.5H2O + H+ + 0.5 O2 = F- + UO2+2 + 1.5 H2O + log_k 24.5669 + -delta_H -200.938 kJ/mol # Calculated enthalpy of reaction UOFOH:.5H2O # Enthalpy of formation: -1576.1 kJ/mol - -analytic -1.1024e+001 -7.7180e-003 1.0019e+004 1.7305e+000 1.7014e+002 + -analytic -1.1024e+1 -7.718e-3 1.0019e+4 1.7305e+0 1.7014e+2 # -Range: 0-200 UP - UP +2.0000 O2 +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 U+++ - log_k 233.4928 - -delta_H -1487.11 kJ/mol # Calculated enthalpy of reaction UP + UP + 2 O2 + H+ = HPO4-2 + U+3 + log_k 233.4928 + -delta_H -1487.11 kJ/mol # Calculated enthalpy of reaction UP # Enthalpy of formation: -269.8 kJ/mol - -analytic -2.1649e+002 -9.0873e-002 8.3804e+004 8.1649e+001 -5.4044e+005 + -analytic -2.1649e+2 -9.0873e-2 8.3804e+4 8.1649e+1 -5.4044e+5 # -Range: 0-300 UP2 - UP2 +3.2500 O2 +1.5000 H2O = + 1.0000 H+ + 1.0000 U+++ + 2.0000 HPO4-- - log_k 360.5796 - -delta_H -2301.07 kJ/mol # Calculated enthalpy of reaction UP2 + UP2 + 3.25 O2 + 1.5 H2O = H+ + U+3 + 2 HPO4-2 + log_k 360.5796 + -delta_H -2301.07 kJ/mol # Calculated enthalpy of reaction UP2 # Enthalpy of formation: -304 kJ/mol - -analytic -2.4721e+002 -1.5005e-001 1.2243e+005 9.9521e+001 -3.9706e+005 + -analytic -2.4721e+2 -1.5005e-1 1.2243e+5 9.9521e+1 -3.9706e+5 # -Range: 0-300 UP2O7 - UP2O7 +1.0000 H2O = + 1.0000 U++++ + 2.0000 HPO4-- - log_k -32.9922 - -delta_H -37.5256 kJ/mol # Calculated enthalpy of reaction UP2O7 + UP2O7 + H2O = U+4 + 2 HPO4-2 + log_k -32.9922 + -delta_H -37.5256 kJ/mol # Calculated enthalpy of reaction UP2O7 # Enthalpy of formation: -2852 kJ/mol - -analytic -3.5910e+002 -1.3819e-001 7.6509e+003 1.3804e+002 1.1949e+002 + -analytic -3.591e+2 -1.3819e-1 7.6509e+3 1.3804e+2 1.1949e+2 # -Range: 0-300 UP2O7:20H2O - UP2O7:20H2O = + 1.0000 U++++ + 2.0000 HPO4-- + 19.0000 H2O - log_k -28.6300 - -delta_H 0 # Not possible to calculate enthalpy of reaction UP2O7:20H2O + UP2O7:20H2O = U+4 + 2 HPO4-2 + 19 H2O + log_k -28.63 + -delta_H 0 # Not possible to calculate enthalpy of reaction UP2O7:20H2O # Enthalpy of formation: 0 kcal/mol UPO5 - UPO5 +1.0000 H2O = + 1.0000 H+ + 1.0000 HPO4-- + 1.0000 UO2+ - log_k -19.5754 - -delta_H 32.6294 kJ/mol # Calculated enthalpy of reaction UPO5 + UPO5 + H2O = H+ + HPO4-2 + UO2+ + log_k -19.5754 + -delta_H 32.6294 kJ/mol # Calculated enthalpy of reaction UPO5 # Enthalpy of formation: -2064 kJ/mol - -analytic -1.5316e+002 -6.0911e-002 7.3255e+002 6.0317e+001 1.1476e+001 + -analytic -1.5316e+2 -6.0911e-2 7.3255e+2 6.0317e+1 1.1476e+1 # -Range: 0-300 US - US +2.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 HS- + 1.0000 U+++ - log_k 46.6547 - -delta_H -322.894 kJ/mol # Calculated enthalpy of reaction US + US + 2 H+ + 0.25 O2 = 0.5 H2O + HS- + U+3 + log_k 46.6547 + -delta_H -322.894 kJ/mol # Calculated enthalpy of reaction US # Enthalpy of formation: -322.2 kJ/mol - -analytic -1.0845e+002 -4.0538e-002 1.8749e+004 4.2147e+001 2.9259e+002 + -analytic -1.0845e+2 -4.0538e-2 1.8749e+4 4.2147e+1 2.9259e+2 # -Range: 0-300 US1.9 - US1.9 +1.9000 H+ = + 0.2000 U+++ + 0.8000 U++++ + 1.9000 HS- - log_k -2.2816 - -delta_H -91.486 kJ/mol # Calculated enthalpy of reaction US1.9 + US1.9 + 1.9 H+ = 0.2 U+3 + 0.8 U+4 + 1.9 HS- + log_k -2.2816 + -delta_H -91.486 kJ/mol # Calculated enthalpy of reaction US1.9 # Enthalpy of formation: -509.9 kJ/mol - -analytic -2.0534e+002 -6.8390e-002 8.8888e+003 7.8243e+001 1.3876e+002 + -analytic -2.0534e+2 -6.839e-2 8.8888e+3 7.8243e+1 1.3876e+2 # -Range: 0-300 US2 - US2 +2.0000 H+ = + 1.0000 U++++ + 2.0000 HS- - log_k -2.3324 - -delta_H -103.017 kJ/mol # Calculated enthalpy of reaction US2 + US2 + 2 H+ = U+4 + 2 HS- + log_k -2.3324 + -delta_H -103.017 kJ/mol # Calculated enthalpy of reaction US2 # Enthalpy of formation: -520.4 kJ/mol - -analytic -2.1819e+002 -7.1522e-002 9.7782e+003 8.2586e+001 1.5264e+002 + -analytic -2.1819e+2 -7.1522e-2 9.7782e+3 8.2586e+1 1.5264e+2 # -Range: 0-300 US3 - US3 +2.0000 H2O = + 1.0000 H+ + 1.0000 UO2++ + 3.0000 HS- - log_k -16.6370 - -delta_H 43.9515 kJ/mol # Calculated enthalpy of reaction US3 + US3 + 2 H2O = H+ + UO2+2 + 3 HS- + log_k -16.637 + -delta_H 43.9515 kJ/mol # Calculated enthalpy of reaction US3 # Enthalpy of formation: -539.6 kJ/mol - -analytic -2.3635e+002 -9.5877e-002 1.9170e+003 9.7726e+001 2.9982e+001 + -analytic -2.3635e+2 -9.5877e-2 1.917e+3 9.7726e+1 2.9982e+1 # -Range: 0-300 USb - USb +3.0000 H+ +1.5000 O2 = + 1.0000 Sb(OH)3 + 1.0000 U+++ - log_k 176.0723 - -delta_H -1106.19 kJ/mol # Calculated enthalpy of reaction USb + USb + 3 H+ + 1.5 O2 = Sb(OH)3 + U+3 + log_k 176.0723 + -delta_H -1106.19 kJ/mol # Calculated enthalpy of reaction USb # Enthalpy of formation: -138.5 kJ/mol USb2 - USb2 +3.0000 H+ +2.2500 O2 +1.5000 H2O = + 1.0000 U+++ + 2.0000 Sb(OH)3 - log_k 223.1358 - -delta_H -1407.02 kJ/mol # Calculated enthalpy of reaction USb2 + USb2 + 3 H+ + 2.25 O2 + 1.5 H2O = U+3 + 2 Sb(OH)3 + log_k 223.1358 + -delta_H -1407.02 kJ/mol # Calculated enthalpy of reaction USb2 # Enthalpy of formation: -173.6 kJ/mol Uranium-selenide - 1.0USe +1.7500 O2 +1.0000 H+ = + 0.5000 H2O + 1.0000 SeO3-- + 1.0000 U+++ - log_k 125.6086 - -delta_H -844.278 kJ/mol # Calculated enthalpy of reaction Uranium-selenide + 1 USe + 1.75 O2 + H+ = 0.5 H2O + SeO3-2 + U+3 + log_k 125.6086 + -delta_H -844.278 kJ/mol # Calculated enthalpy of reaction Uranium-selenide # Enthalpy of formation: -275.7 kJ/mol - -analytic -1.0853e+002 -7.6251e-002 4.3230e+004 4.5189e+001 6.7460e+002 + -analytic -1.0853e+2 -7.6251e-2 4.323e+4 4.5189e+1 6.746e+2 # -Range: 0-300 USe2(alpha) - USe2 +2.7500 O2 +0.5000 H2O = + 1.0000 H+ + 1.0000 U+++ + 2.0000 SeO3-- - log_k 125.4445 - -delta_H -904.199 kJ/mol # Calculated enthalpy of reaction USe2(alpha) + USe2 + 2.75 O2 + 0.5 H2O = H+ + U+3 + 2 SeO3-2 + log_k 125.4445 + -delta_H -904.199 kJ/mol # Calculated enthalpy of reaction USe2(alpha) # Enthalpy of formation: -427 kJ/mol - -analytic -2.0454e+002 -1.4191e-001 4.6114e+004 8.7906e+001 7.1963e+002 + -analytic -2.0454e+2 -1.4191e-1 4.6114e+4 8.7906e+1 7.1963e+2 # -Range: 0-300 USe2(beta) - USe2 +2.7500 O2 +0.5000 H2O = + 1.0000 H+ + 1.0000 U+++ + 2.0000 SeO3-- - log_k 125.2868 - -delta_H -904.199 kJ/mol # Calculated enthalpy of reaction USe2(beta) + USe2 + 2.75 O2 + 0.5 H2O = H+ + U+3 + 2 SeO3-2 + log_k 125.2868 + -delta_H -904.199 kJ/mol # Calculated enthalpy of reaction USe2(beta) # Enthalpy of formation: -427 kJ/mol - -analytic -2.0334e+002 -1.4147e-001 4.6082e+004 8.7349e+001 7.1913e+002 + -analytic -2.0334e+2 -1.4147e-1 4.6082e+4 8.7349e+1 7.1913e+2 # -Range: 0-300 USe3 - USe3 +3.7500 O2 +1.5000 H2O = + 1.0000 U+++ + 3.0000 H+ + 3.0000 SeO3-- - log_k 147.2214 - -delta_H -1090.42 kJ/mol # Calculated enthalpy of reaction USe3 + USe3 + 3.75 O2 + 1.5 H2O = U+3 + 3 H+ + 3 SeO3-2 + log_k 147.2214 + -delta_H -1090.42 kJ/mol # Calculated enthalpy of reaction USe3 # Enthalpy of formation: -452 kJ/mol - -analytic 4.9201e+002 -1.3720e-002 3.2168e+004 -1.8131e+002 5.4609e+002 + -analytic 4.9201e+2 -1.372e-2 3.2168e+4 -1.8131e+2 5.4609e+2 # -Range: 0-200 Umangite - Cu3Se2 = + 1.0000 Cu++ + 2.0000 Cu+ + 2.0000 Se-- - log_k -93.8412 - -delta_H 0 # Not possible to calculate enthalpy of reaction Umangite + Cu3Se2 = Cu+2 + 2 Cu+ + 2 Se-2 + log_k -93.8412 + -delta_H 0 # Not possible to calculate enthalpy of reaction Umangite # Enthalpy of formation: -25 kcal/mol - -analytic -7.2308e+001 -2.2566e-003 -2.0738e+004 1.9677e+001 -3.5214e+002 + -analytic -7.2308e+1 -2.2566e-3 -2.0738e+4 1.9677e+1 -3.5214e+2 # -Range: 0-200 Uraninite - UO2 +4.0000 H+ = + 1.0000 U++++ + 2.0000 H2O - log_k -4.8372 - -delta_H -77.8767 kJ/mol # Calculated enthalpy of reaction Uraninite + UO2 + 4 H+ = U+4 + 2 H2O + log_k -4.8372 + -delta_H -77.8767 kJ/mol # Calculated enthalpy of reaction Uraninite # Enthalpy of formation: -1085 kJ/mol - -analytic -7.5776e+001 -1.0558e-002 5.9677e+003 2.1853e+001 9.3142e+001 + -analytic -7.5776e+1 -1.0558e-2 5.9677e+3 2.1853e+1 9.3142e+1 # -Range: 0-300 Uranocircite - Ba(UO2)2(PO4)2 +2.0000 H+ = + 1.0000 Ba++ + 2.0000 HPO4-- + 2.0000 UO2++ - log_k -19.8057 - -delta_H -72.3317 kJ/mol # Calculated enthalpy of reaction Uranocircite + Ba(UO2)2(PO4)2 + 2 H+ = Ba+2 + 2 HPO4-2 + 2 UO2+2 + log_k -19.8057 + -delta_H -72.3317 kJ/mol # Calculated enthalpy of reaction Uranocircite # Enthalpy of formation: -1215.94 kcal/mol - -analytic -3.6843e+001 -4.3076e-002 1.2427e+003 1.0384e+001 2.1115e+001 + -analytic -3.6843e+1 -4.3076e-2 1.2427e+3 1.0384e+1 2.1115e+1 # -Range: 0-200 Uranophane - Ca(UO2)2(SiO3)2(OH)2 +6.0000 H+ = + 1.0000 Ca++ + 2.0000 SiO2 + 2.0000 UO2++ + 4.0000 H2O - log_k 17.2850 - -delta_H 0 # Not possible to calculate enthalpy of reaction Uranophane + Ca(UO2)2(SiO3)2(OH)2 + 6 H+ = Ca+2 + 2 SiO2 + 2 UO2+2 + 4 H2O + log_k 17.285 + -delta_H 0 # Not possible to calculate enthalpy of reaction Uranophane # Enthalpy of formation: 0 kcal/mol V - V +3.0000 H+ +0.7500 O2 = + 1.0000 V+++ + 1.5000 H2O - log_k 106.9435 - -delta_H -680.697 kJ/mol # Calculated enthalpy of reaction V + V + 3 H+ + 0.75 O2 = V+3 + 1.5 H2O + log_k 106.9435 + -delta_H -680.697 kJ/mol # Calculated enthalpy of reaction V # Enthalpy of formation: 0 kJ/mol - -analytic -1.0508e+002 -2.1334e-002 4.0364e+004 3.5012e+001 -3.2290e+005 + -analytic -1.0508e+2 -2.1334e-2 4.0364e+4 3.5012e+1 -3.229e+5 # -Range: 0-300 V2O4 - V2O4 +4.0000 H+ = + 2.0000 H2O + 2.0000 VO++ - log_k 8.5719 - -delta_H -117.564 kJ/mol # Calculated enthalpy of reaction V2O4 + V2O4 + 4 H+ = 2 H2O + 2 VO+2 + log_k 8.5719 + -delta_H -117.564 kJ/mol # Calculated enthalpy of reaction V2O4 # Enthalpy of formation: -1427.31 kJ/mol - -analytic -1.4429e+002 -3.7423e-002 9.7046e+003 5.3125e+001 1.5147e+002 + -analytic -1.4429e+2 -3.7423e-2 9.7046e+3 5.3125e+1 1.5147e+2 # -Range: 0-300 V3O5 - V3O5 +8.0000 H+ = + 1.0000 VO++ + 2.0000 V+++ + 4.0000 H2O - log_k 13.4312 - -delta_H -218.857 kJ/mol # Calculated enthalpy of reaction V3O5 + V3O5 + 8 H+ = VO+2 + 2 V+3 + 4 H2O + log_k 13.4312 + -delta_H -218.857 kJ/mol # Calculated enthalpy of reaction V3O5 # Enthalpy of formation: -1933.17 kJ/mol - -analytic -1.7652e+002 -2.1959e-002 1.6814e+004 5.6618e+001 2.8559e+002 + -analytic -1.7652e+2 -2.1959e-2 1.6814e+4 5.6618e+1 2.8559e+2 # -Range: 0-200 V4O7 - V4O7 +10.0000 H+ = + 2.0000 V+++ + 2.0000 VO++ + 5.0000 H2O - log_k 18.7946 - -delta_H -284.907 kJ/mol # Calculated enthalpy of reaction V4O7 + V4O7 + 10 H+ = 2 V+3 + 2 VO+2 + 5 H2O + log_k 18.7946 + -delta_H -284.907 kJ/mol # Calculated enthalpy of reaction V4O7 # Enthalpy of formation: -2639.56 kJ/mol - -analytic -2.2602e+002 -3.0261e-002 2.1667e+004 7.3214e+001 3.6800e+002 + -analytic -2.2602e+2 -3.0261e-2 2.1667e+4 7.3214e+1 3.68e+2 # -Range: 0-200 Vaesite - NiS2 +1.0000 H2O = + 0.2500 H+ + 0.2500 SO4-- + 1.0000 Ni++ + 1.7500 HS- - log_k -26.7622 - -delta_H 110.443 kJ/mol # Calculated enthalpy of reaction Vaesite + NiS2 + H2O = 0.25 H+ + 0.25 SO4-2 + Ni+2 + 1.75 HS- + log_k -26.7622 + -delta_H 110.443 kJ/mol # Calculated enthalpy of reaction Vaesite # Enthalpy of formation: -32.067 kcal/mol - -analytic 1.6172e+001 -2.2673e-002 -8.2514e+003 -3.4392e+000 -1.4013e+002 + -analytic 1.6172e+1 -2.2673e-2 -8.2514e+3 -3.4392e+0 -1.4013e+2 # -Range: 0-200 Vivianite - Fe3(PO4)2:8H2O +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Fe++ + 8.0000 H2O - log_k -4.7237 - -delta_H 0 # Not possible to calculate enthalpy of reaction Vivianite + Fe3(PO4)2:8H2O + 2 H+ = 2 HPO4-2 + 3 Fe+2 + 8 H2O + log_k -4.7237 + -delta_H 0 # Not possible to calculate enthalpy of reaction Vivianite # Enthalpy of formation: 0 kcal/mol W - W +1.5000 O2 +1.0000 H2O = + 1.0000 WO4-- + 2.0000 H+ - log_k 123.4334 - -delta_H -771.668 kJ/mol # Calculated enthalpy of reaction W + W + 1.5 O2 + H2O = WO4-2 + 2 H+ + log_k 123.4334 + -delta_H -771.668 kJ/mol # Calculated enthalpy of reaction W # Enthalpy of formation: 0 kJ/mol - -analytic -1.0433e+002 -6.9470e-002 4.0134e+004 4.5993e+001 6.2629e+002 + -analytic -1.0433e+2 -6.947e-2 4.0134e+4 4.5993e+1 6.2629e+2 # -Range: 0-300 Wairakite - CaAl2Si4O10(OH)4 +8.0000 H+ = + 1.0000 Ca++ + 2.0000 Al+++ + 4.0000 SiO2 + 6.0000 H2O - log_k 18.0762 - -delta_H -237.781 kJ/mol # Calculated enthalpy of reaction Wairakite + CaAl2Si4O10(OH)4 + 8 H+ = Ca+2 + 2 Al+3 + 4 SiO2 + 6 H2O + log_k 18.0762 + -delta_H -237.781 kJ/mol # Calculated enthalpy of reaction Wairakite # Enthalpy of formation: -1579.33 kcal/mol - -analytic -1.7914e+001 3.2944e-003 2.2782e+004 -9.0981e+000 -1.6934e+006 + -analytic -1.7914e+1 3.2944e-3 2.2782e+4 -9.0981e+0 -1.6934e+6 # -Range: 0-300 Weeksite - K2(UO2)2(Si2O5)3:4H2O +6.0000 H+ = + 2.0000 K+ + 2.0000 UO2++ + 6.0000 SiO2 + 7.0000 H2O - log_k 15.3750 - -delta_H 0 # Not possible to calculate enthalpy of reaction Weeksite + K2(UO2)2(Si2O5)3:4H2O + 6 H+ = 2 K+ + 2 UO2+2 + 6 SiO2 + 7 H2O + log_k 15.375 + -delta_H 0 # Not possible to calculate enthalpy of reaction Weeksite # Enthalpy of formation: 0 kcal/mol Whitlockite - Ca3(PO4)2 +2.0000 H+ = + 2.0000 HPO4-- + 3.0000 Ca++ - log_k -4.2249 - -delta_H -116.645 kJ/mol # Calculated enthalpy of reaction Whitlockite + Ca3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 Ca+2 + log_k -4.2249 + -delta_H -116.645 kJ/mol # Calculated enthalpy of reaction Whitlockite # Enthalpy of formation: -4096.77 kJ/mol - -analytic -5.3543e+002 -1.8842e-001 1.7176e+004 2.1406e+002 2.6817e+002 + -analytic -5.3543e+2 -1.8842e-1 1.7176e+4 2.1406e+2 2.6817e+2 # -Range: 0-300 Wilkmanite - Ni3Se4 +1.0000 H2O = + 0.5000 O2 + 2.0000 H+ + 3.0000 Ni++ + 4.0000 Se-- - log_k -152.8793 - -delta_H 0 # Not possible to calculate enthalpy of reaction Wilkmanite + Ni3Se4 + H2O = 0.5 O2 + 2 H+ + 3 Ni+2 + 4 Se-2 + log_k -152.8793 + -delta_H 0 # Not possible to calculate enthalpy of reaction Wilkmanite # Enthalpy of formation: -60.285 kcal/mol - -analytic -1.9769e+002 -4.9968e-002 -2.8208e+004 6.2863e+001 -1.1322e+005 + -analytic -1.9769e+2 -4.9968e-2 -2.8208e+4 6.2863e+1 -1.1322e+5 # -Range: 0-300 Witherite - BaCO3 +1.0000 H+ = + 1.0000 Ba++ + 1.0000 HCO3- - log_k -2.9965 - -delta_H 17.1628 kJ/mol # Calculated enthalpy of reaction Witherite + BaCO3 + H+ = Ba+2 + HCO3- + log_k -2.9965 + -delta_H 17.1628 kJ/mol # Calculated enthalpy of reaction Witherite # Enthalpy of formation: -297.5 kcal/mol - -analytic -1.2585e+002 -4.4315e-002 2.0227e+003 5.2239e+001 3.1600e+001 + -analytic -1.2585e+2 -4.4315e-2 2.0227e+3 5.2239e+1 3.16e+1 # -Range: 0-300 Wollastonite - CaSiO3 +2.0000 H+ = + 1.0000 Ca++ + 1.0000 H2O + 1.0000 SiO2 - log_k 13.7605 - -delta_H -76.5756 kJ/mol # Calculated enthalpy of reaction Wollastonite + CaSiO3 + 2 H+ = Ca+2 + H2O + SiO2 + log_k 13.7605 + -delta_H -76.5756 kJ/mol # Calculated enthalpy of reaction Wollastonite # Enthalpy of formation: -389.59 kcal/mol - -analytic 3.0931e+001 6.7466e-003 5.1749e+003 -1.3209e+001 -3.4579e+005 + -analytic 3.0931e+1 6.7466e-3 5.1749e+3 -1.3209e+1 -3.4579e+5 # -Range: 0-300 Wurtzite - ZnS +1.0000 H+ = + 1.0000 HS- + 1.0000 Zn++ - log_k -9.1406 - -delta_H 22.3426 kJ/mol # Calculated enthalpy of reaction Wurtzite + ZnS + H+ = HS- + Zn+2 + log_k -9.1406 + -delta_H 22.3426 kJ/mol # Calculated enthalpy of reaction Wurtzite # Enthalpy of formation: -45.85 kcal/mol - -analytic -1.5446e+002 -4.8874e-002 2.4551e+003 6.1278e+001 3.8355e+001 + -analytic -1.5446e+2 -4.8874e-2 2.4551e+3 6.1278e+1 3.8355e+1 # -Range: 0-300 Wustite - Fe.947O +2.0000 H+ = + 0.1060 Fe+++ + 0.8410 Fe++ + 1.0000 H2O - log_k 12.4113 - -delta_H -102.417 kJ/mol # Calculated enthalpy of reaction Wustite + Fe.947O + 2 H+ = 0.106 Fe+3 + 0.841 Fe+2 + H2O + log_k 12.4113 + -delta_H -102.417 kJ/mol # Calculated enthalpy of reaction Wustite # Enthalpy of formation: -266.265 kJ/mol - -analytic -7.6919e+001 -1.8433e-002 7.3823e+003 2.8312e+001 1.1522e+002 + -analytic -7.6919e+1 -1.8433e-2 7.3823e+3 2.8312e+1 1.1522e+2 # -Range: 0-300 Xonotlite - Ca6Si6O17(OH)2 +12.0000 H+ = + 6.0000 Ca++ + 6.0000 SiO2 + 7.0000 H2O - log_k 91.8267 - -delta_H -495.457 kJ/mol # Calculated enthalpy of reaction Xonotlite + Ca6Si6O17(OH)2 + 12 H+ = 6 Ca+2 + 6 SiO2 + 7 H2O + log_k 91.8267 + -delta_H -495.457 kJ/mol # Calculated enthalpy of reaction Xonotlite # Enthalpy of formation: -2397.25 kcal/mol - -analytic 1.6080e+003 3.7309e-001 -2.2548e+004 -6.2716e+002 -3.8346e+002 + -analytic 1.608e+3 3.7309e-1 -2.2548e+4 -6.2716e+2 -3.8346e+2 # -Range: 0-200 Y - Y +3.0000 H+ +0.7500 O2 = + 1.0000 Y+++ + 1.5000 H2O - log_k 184.5689 - -delta_H -1134.7 kJ/mol # Calculated enthalpy of reaction Y + Y + 3 H+ + 0.75 O2 = Y+3 + 1.5 H2O + log_k 184.5689 + -delta_H -1134.7 kJ/mol # Calculated enthalpy of reaction Y # Enthalpy of formation: 0 kJ/mol - -analytic -6.2641e+001 -2.8062e-002 5.9667e+004 2.2394e+001 9.3107e+002 + -analytic -6.2641e+1 -2.8062e-2 5.9667e+4 2.2394e+1 9.3107e+2 # -Range: 0-300 Yb - Yb +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Yb++ - log_k 137.1930 - -delta_H -810.303 kJ/mol # Calculated enthalpy of reaction Yb + Yb + 2 H+ + 0.5 O2 = H2O + Yb+2 + log_k 137.193 + -delta_H -810.303 kJ/mol # Calculated enthalpy of reaction Yb # Enthalpy of formation: 0 kJ/mol - -analytic -7.4712e+001 -2.0993e-002 4.4129e+004 2.8341e+001 6.8862e+002 + -analytic -7.4712e+1 -2.0993e-2 4.4129e+4 2.8341e+1 6.8862e+2 # -Range: 0-300 Yb(OH)3 - Yb(OH)3 +3.0000 H+ = + 1.0000 Yb+++ + 3.0000 H2O - log_k 14.6852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)3 + Yb(OH)3 + 3 H+ = Yb+3 + 3 H2O + log_k 14.6852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)3 # Enthalpy of formation: 0 kcal/mol Yb(OH)3(am) - Yb(OH)3 +3.0000 H+ = + 1.0000 Yb+++ + 3.0000 H2O - log_k 18.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)3(am) + Yb(OH)3 + 3 H+ = Yb+3 + 3 H2O + log_k 18.9852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)3(am) # Enthalpy of formation: 0 kcal/mol Yb2(CO3)3 - Yb2(CO3)3 +3.0000 H+ = + 2.0000 Yb+++ + 3.0000 HCO3- - log_k -2.3136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb2(CO3)3 + Yb2(CO3)3 + 3 H+ = 2 Yb+3 + 3 HCO3- + log_k -2.3136 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb2(CO3)3 # Enthalpy of formation: 0 kcal/mol Yb2O3 - Yb2O3 +6.0000 H+ = + 2.0000 Yb+++ + 3.0000 H2O - log_k 47.8000 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb2O3 + Yb2O3 + 6 H+ = 2 Yb+3 + 3 H2O + log_k 47.8 + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb2O3 # Enthalpy of formation: 0 kcal/mol YbF3:.5H2O - YbF3:.5H2O = + 0.5000 H2O + 1.0000 Yb+++ + 3.0000 F- - log_k -16.0000 - -delta_H 0 # Not possible to calculate enthalpy of reaction YbF3:.5H2O + YbF3:.5H2O = 0.5 H2O + Yb+3 + 3 F- + log_k -16 + -delta_H 0 # Not possible to calculate enthalpy of reaction YbF3:.5H2O # Enthalpy of formation: 0 kcal/mol YbPO4:10H2O - YbPO4:10H2O +1.0000 H+ = + 1.0000 HPO4-- + 1.0000 Yb+++ + 10.0000 H2O - log_k -11.7782 - -delta_H 0 # Not possible to calculate enthalpy of reaction YbPO4:10H2O + YbPO4:10H2O + H+ = HPO4-2 + Yb+3 + 10 H2O + log_k -11.7782 + -delta_H 0 # Not possible to calculate enthalpy of reaction YbPO4:10H2O # Enthalpy of formation: 0 kcal/mol Zincite - ZnO +2.0000 H+ = + 1.0000 H2O + 1.0000 Zn++ - log_k 11.2087 - -delta_H -88.7638 kJ/mol # Calculated enthalpy of reaction Zincite + ZnO + 2 H+ = H2O + Zn+2 + log_k 11.2087 + -delta_H -88.7638 kJ/mol # Calculated enthalpy of reaction Zincite # Enthalpy of formation: -350.46 kJ/mol - -analytic -8.6681e+001 -1.9324e-002 7.1034e+003 3.2256e+001 1.1087e+002 + -analytic -8.6681e+1 -1.9324e-2 7.1034e+3 3.2256e+1 1.1087e+2 # -Range: 0-300 Zircon - ZrSiO4 +2.0000 H+ = + 1.0000 SiO2 + 1.0000 Zr(OH)2++ - log_k -15.4193 - -delta_H 64.8635 kJ/mol # Calculated enthalpy of reaction Zircon + ZrSiO4 + 2 H+ = SiO2 + Zr(OH)2+2 + log_k -15.4193 + -delta_H 64.8635 kJ/mol # Calculated enthalpy of reaction Zircon # Enthalpy of formation: -2033.4 kJ/mol - -analytic 9.2639e+000 6.5416e-003 5.0759e+002 -8.4547e+000 -6.6155e+005 + -analytic 9.2639e+0 6.5416e-3 5.0759e+2 -8.4547e+0 -6.6155e+5 # -Range: 0-300 Zn - Zn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Zn++ - log_k 68.8035 - -delta_H -433.157 kJ/mol # Calculated enthalpy of reaction Zn + Zn + 2 H+ + 0.5 O2 = H2O + Zn+2 + log_k 68.8035 + -delta_H -433.157 kJ/mol # Calculated enthalpy of reaction Zn # Enthalpy of formation: 0 kJ/mol - -analytic -6.4131e+001 -2.0009e-002 2.3921e+004 2.3702e+001 3.7329e+002 + -analytic -6.4131e+1 -2.0009e-2 2.3921e+4 2.3702e+1 3.7329e+2 # -Range: 0-300 Zn(BO2)2 - Zn(BO2)2 +2.0000 H+ +2.0000 H2O = + 1.0000 Zn++ + 2.0000 B(OH)3 - log_k 8.3130 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(BO2)2 + Zn(BO2)2 + 2 H+ + 2 H2O = Zn+2 + 2 B(OH)3 + log_k 8.313 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(BO2)2 # Enthalpy of formation: 0 kcal/mol Zn(ClO4)2:6H2O - Zn(ClO4)2:6H2O = + 1.0000 Zn++ + 2.0000 ClO4- + 6.0000 H2O - log_k 5.6474 - -delta_H 6.31871 kJ/mol # Calculated enthalpy of reaction Zn(ClO4)2:6H2O + Zn(ClO4)2:6H2O = Zn+2 + 2 ClO4- + 6 H2O + log_k 5.6474 + -delta_H 6.31871 kJ/mol # Calculated enthalpy of reaction Zn(ClO4)2:6H2O # Enthalpy of formation: -2133.39 kJ/mol - -analytic -1.8191e+002 -9.1383e-003 7.4822e+003 6.6751e+001 1.2712e+002 + -analytic -1.8191e+2 -9.1383e-3 7.4822e+3 6.6751e+1 1.2712e+2 # -Range: 0-200 Zn(IO3)2 - Zn(IO3)2 = + 1.0000 Zn++ + 2.0000 IO3- - log_k -5.3193 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(IO3)2 + Zn(IO3)2 = Zn+2 + 2 IO3- + log_k -5.3193 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(IO3)2 # Enthalpy of formation: 0 kcal/mol Zn(NO3)2:6H2O - Zn(NO3)2:6H2O = + 1.0000 Zn++ + 2.0000 NO3- + 6.0000 H2O - log_k 3.4102 - -delta_H 24.7577 kJ/mol # Calculated enthalpy of reaction Zn(NO3)2:6H2O + Zn(NO3)2:6H2O = Zn+2 + 2 NO3- + 6 H2O + log_k 3.4102 + -delta_H 24.7577 kJ/mol # Calculated enthalpy of reaction Zn(NO3)2:6H2O # Enthalpy of formation: -2306.8 kJ/mol - -analytic -1.7152e+002 -1.6875e-002 5.6291e+003 6.5094e+001 9.5649e+001 + -analytic -1.7152e+2 -1.6875e-2 5.6291e+3 6.5094e+1 9.5649e+1 # -Range: 0-200 Zn(OH)2(beta) - Zn(OH)2 +2.0000 H+ = + 1.0000 Zn++ + 2.0000 H2O - log_k 11.9341 - -delta_H -83.2111 kJ/mol # Calculated enthalpy of reaction Zn(OH)2(beta) + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.9341 + -delta_H -83.2111 kJ/mol # Calculated enthalpy of reaction Zn(OH)2(beta) # Enthalpy of formation: -641.851 kJ/mol - -analytic -7.7810e+001 -7.8548e-003 7.1994e+003 2.7455e+001 1.2228e+002 + -analytic -7.781e+1 -7.8548e-3 7.1994e+3 2.7455e+1 1.2228e+2 # -Range: 0-200 Zn(OH)2(epsilon) - Zn(OH)2 +2.0000 H+ = + 1.0000 Zn++ + 2.0000 H2O - log_k 11.6625 - -delta_H -81.7811 kJ/mol # Calculated enthalpy of reaction Zn(OH)2(epsilon) + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.6625 + -delta_H -81.7811 kJ/mol # Calculated enthalpy of reaction Zn(OH)2(epsilon) # Enthalpy of formation: -643.281 kJ/mol - -analytic -7.7938e+001 -7.8767e-003 7.1282e+003 2.7496e+001 1.2107e+002 + -analytic -7.7938e+1 -7.8767e-3 7.1282e+3 2.7496e+1 1.2107e+2 # -Range: 0-200 Zn(OH)2(gamma) - Zn(OH)2 +2.0000 H+ = + 1.0000 Zn++ + 2.0000 H2O - log_k 11.8832 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)2(gamma) + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.8832 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)2(gamma) # Enthalpy of formation: 0 kcal/mol Zn2(OH)3Cl - Zn2(OH)3Cl +3.0000 H+ = + 1.0000 Cl- + 2.0000 Zn++ + 3.0000 H2O - log_k 15.2921 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2(OH)3Cl + Zn2(OH)3Cl + 3 H+ = Cl- + 2 Zn+2 + 3 H2O + log_k 15.2921 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2(OH)3Cl # Enthalpy of formation: 0 kcal/mol Zn2SO4(OH)2 - Zn2SO4(OH)2 +2.0000 H+ = + 1.0000 SO4-- + 2.0000 H2O + 2.0000 Zn++ - log_k 7.5816 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2SO4(OH)2 + Zn2SO4(OH)2 + 2 H+ = SO4-2 + 2 H2O + 2 Zn+2 + log_k 7.5816 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2SO4(OH)2 # Enthalpy of formation: 0 kcal/mol Zn2SiO4 - Zn2SiO4 +4.0000 H+ = + 1.0000 SiO2 + 2.0000 H2O + 2.0000 Zn++ - log_k 13.8695 - -delta_H -119.399 kJ/mol # Calculated enthalpy of reaction Zn2SiO4 + Zn2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Zn+2 + log_k 13.8695 + -delta_H -119.399 kJ/mol # Calculated enthalpy of reaction Zn2SiO4 # Enthalpy of formation: -1636.75 kJ/mol - -analytic 2.0970e+002 5.3663e-002 -1.2724e+002 -8.5445e+001 -2.2336e+000 + -analytic 2.097e+2 5.3663e-2 -1.2724e+2 -8.5445e+1 -2.2336e+0 # -Range: 0-200 Zn2TiO4 - Zn2TiO4 +4.0000 H+ = + 1.0000 Ti(OH)4 + 2.0000 Zn++ - log_k 12.3273 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2TiO4 + Zn2TiO4 + 4 H+ = Ti(OH)4 + 2 Zn+2 + log_k 12.3273 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2TiO4 # Enthalpy of formation: -1647.85 kJ/mol Zn3(AsO4)2 - Zn3(AsO4)2 +4.0000 H+ = + 2.0000 H2AsO4- + 3.0000 Zn++ - log_k 9.3122 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn3(AsO4)2 + Zn3(AsO4)2 + 4 H+ = 2 H2AsO4- + 3 Zn+2 + log_k 9.3122 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn3(AsO4)2 # Enthalpy of formation: 0 kcal/mol Zn3O(SO4)2 - Zn3O(SO4)2 +2.0000 H+ = + 1.0000 H2O + 2.0000 SO4-- + 3.0000 Zn++ - log_k 19.1188 - -delta_H -258.253 kJ/mol # Calculated enthalpy of reaction Zn3O(SO4)2 + Zn3O(SO4)2 + 2 H+ = H2O + 2 SO4-2 + 3 Zn+2 + log_k 19.1188 + -delta_H -258.253 kJ/mol # Calculated enthalpy of reaction Zn3O(SO4)2 # Enthalpy of formation: -2306.95 kJ/mol - -analytic -3.9661e+001 -4.3860e-002 1.1301e+004 1.3709e+001 1.9193e+002 + -analytic -3.9661e+1 -4.386e-2 1.1301e+4 1.3709e+1 1.9193e+2 # -Range: 0-200 Zn5(NO3)2(OH)8 - Zn5(NO3)2(OH)8 +8.0000 H+ = + 2.0000 NO3- + 5.0000 Zn++ + 8.0000 H2O - log_k 42.6674 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn5(NO3)2(OH)8 + Zn5(NO3)2(OH)8 + 8 H+ = 2 NO3- + 5 Zn+2 + 8 H2O + log_k 42.6674 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn5(NO3)2(OH)8 # Enthalpy of formation: 0 kcal/mol ZnBr2 - ZnBr2 = + 1.0000 Zn++ + 2.0000 Br- - log_k 7.5787 - -delta_H -67.7622 kJ/mol # Calculated enthalpy of reaction ZnBr2 + ZnBr2 = Zn+2 + 2 Br- + log_k 7.5787 + -delta_H -67.7622 kJ/mol # Calculated enthalpy of reaction ZnBr2 # Enthalpy of formation: -328.63 kJ/mol - -analytic 6.5789e-002 -2.1477e-002 1.9840e+003 2.9302e+000 3.3691e+001 + -analytic 6.5789e-2 -2.1477e-2 1.984e+3 2.9302e+0 3.3691e+1 # -Range: 0-200 ZnBr2:2H2O - ZnBr2:2H2O = + 1.0000 Zn++ + 2.0000 Br- + 2.0000 H2O - log_k 5.2999 - -delta_H -30.9268 kJ/mol # Calculated enthalpy of reaction ZnBr2:2H2O + ZnBr2:2H2O = Zn+2 + 2 Br- + 2 H2O + log_k 5.2999 + -delta_H -30.9268 kJ/mol # Calculated enthalpy of reaction ZnBr2:2H2O # Enthalpy of formation: -937.142 kJ/mol - -analytic -4.9260e+001 -2.1682e-002 2.4325e+003 2.1360e+001 4.1324e+001 + -analytic -4.926e+1 -2.1682e-2 2.4325e+3 2.136e+1 4.1324e+1 # -Range: 0-200 ZnCO3:H2O - ZnCO3:H2O +1.0000 H+ = + 1.0000 H2O + 1.0000 HCO3- + 1.0000 Zn++ - log_k 0.1398 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnCO3:H2O + ZnCO3:H2O + H+ = H2O + HCO3- + Zn+2 + log_k 0.1398 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnCO3:H2O # Enthalpy of formation: 0 kcal/mol ZnCl2 - ZnCl2 = + 1.0000 Zn++ + 2.0000 Cl- - log_k 7.0880 - -delta_H -72.4548 kJ/mol # Calculated enthalpy of reaction ZnCl2 + ZnCl2 = Zn+2 + 2 Cl- + log_k 7.088 + -delta_H -72.4548 kJ/mol # Calculated enthalpy of reaction ZnCl2 # Enthalpy of formation: -415.09 kJ/mol - -analytic -1.6157e+001 -2.5405e-002 2.6505e+003 8.8584e+000 4.5015e+001 + -analytic -1.6157e+1 -2.5405e-2 2.6505e+3 8.8584e+0 4.5015e+1 # -Range: 0-200 ZnCl2(NH3)2 - ZnCl2(NH3)2 = + 1.0000 Zn++ + 2.0000 Cl- + 2.0000 NH3 - log_k -6.9956 - -delta_H 27.2083 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)2 + ZnCl2(NH3)2 = Zn+2 + 2 Cl- + 2 NH3 + log_k -6.9956 + -delta_H 27.2083 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)2 # Enthalpy of formation: -677.427 kJ/mol - -analytic -5.9409e+001 -2.2698e-002 -2.9178e+002 2.4308e+001 -4.9341e+000 + -analytic -5.9409e+1 -2.2698e-2 -2.9178e+2 2.4308e+1 -4.9341e+0 # -Range: 0-200 ZnCl2(NH3)4 - ZnCl2(NH3)4 = + 1.0000 Zn++ + 2.0000 Cl- + 4.0000 NH3 - log_k -6.6955 - -delta_H 56.2004 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)4 + ZnCl2(NH3)4 = Zn+2 + 2 Cl- + 4 NH3 + log_k -6.6955 + -delta_H 56.2004 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)4 # Enthalpy of formation: -869.093 kJ/mol - -analytic -9.9769e+001 -1.9793e-002 4.2916e+002 3.9412e+001 7.3223e+000 + -analytic -9.9769e+1 -1.9793e-2 4.2916e+2 3.9412e+1 7.3223e+0 # -Range: 0-200 ZnCl2(NH3)6 - ZnCl2(NH3)6 = + 1.0000 Zn++ + 2.0000 Cl- + 6.0000 NH3 - log_k -4.7311 - -delta_H 77.4225 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)6 + ZnCl2(NH3)6 = Zn+2 + 2 Cl- + 6 NH3 + log_k -4.7311 + -delta_H 77.4225 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)6 # Enthalpy of formation: -1052.99 kJ/mol - -analytic -1.3984e+002 -1.6896e-002 1.5559e+003 5.4524e+001 2.6470e+001 + -analytic -1.3984e+2 -1.6896e-2 1.5559e+3 5.4524e+1 2.647e+1 # -Range: 0-200 ZnCr2O4 - ZnCr2O4 +8.0000 H+ = + 1.0000 Zn++ + 2.0000 Cr+++ + 4.0000 H2O - log_k 7.9161 - -delta_H -221.953 kJ/mol # Calculated enthalpy of reaction ZnCr2O4 + ZnCr2O4 + 8 H+ = Zn+2 + 2 Cr+3 + 4 H2O + log_k 7.9161 + -delta_H -221.953 kJ/mol # Calculated enthalpy of reaction ZnCr2O4 # Enthalpy of formation: -370.88 kcal/mol - -analytic -1.7603e+002 -1.0217e-002 1.7414e+004 5.1966e+001 2.9577e+002 + -analytic -1.7603e+2 -1.0217e-2 1.7414e+4 5.1966e+1 2.9577e+2 # -Range: 0-200 ZnF2 - ZnF2 = + 1.0000 Zn++ + 2.0000 F- - log_k -0.4418 - -delta_H -59.8746 kJ/mol # Calculated enthalpy of reaction ZnF2 + ZnF2 = Zn+2 + 2 F- + log_k -0.4418 + -delta_H -59.8746 kJ/mol # Calculated enthalpy of reaction ZnF2 # Enthalpy of formation: -764.206 kJ/mol - -analytic -2.6085e+002 -8.4594e-002 9.0240e+003 1.0318e+002 1.4089e+002 + -analytic -2.6085e+2 -8.4594e-2 9.024e+3 1.0318e+2 1.4089e+2 # -Range: 0-300 ZnI2 - ZnI2 = + 1.0000 Zn++ + 2.0000 I- - log_k 7.3885 - -delta_H -59.2332 kJ/mol # Calculated enthalpy of reaction ZnI2 + ZnI2 = Zn+2 + 2 I- + log_k 7.3885 + -delta_H -59.2332 kJ/mol # Calculated enthalpy of reaction ZnI2 # Enthalpy of formation: -207.957 kJ/mol - -analytic -1.6472e+001 -2.5573e-002 2.0796e+003 9.9013e+000 3.5320e+001 + -analytic -1.6472e+1 -2.5573e-2 2.0796e+3 9.9013e+0 3.532e+1 # -Range: 0-200 ZnSO4 - ZnSO4 = + 1.0000 SO4-- + 1.0000 Zn++ - log_k 3.5452 - -delta_H -80.132 kJ/mol # Calculated enthalpy of reaction ZnSO4 + ZnSO4 = SO4-2 + Zn+2 + log_k 3.5452 + -delta_H -80.132 kJ/mol # Calculated enthalpy of reaction ZnSO4 # Enthalpy of formation: -982.855 kJ/mol - -analytic 6.9905e+000 -1.8046e-002 2.2566e+003 -2.2819e+000 3.8318e+001 + -analytic 6.9905e+0 -1.8046e-2 2.2566e+3 -2.2819e+0 3.8318e+1 # -Range: 0-200 ZnSO4:6H2O - ZnSO4:6H2O = + 1.0000 SO4-- + 1.0000 Zn++ + 6.0000 H2O - log_k -1.6846 - -delta_H -0.412008 kJ/mol # Calculated enthalpy of reaction ZnSO4:6H2O + ZnSO4:6H2O = SO4-2 + Zn+2 + 6 H2O + log_k -1.6846 + -delta_H -0.412008 kJ/mol # Calculated enthalpy of reaction ZnSO4:6H2O # Enthalpy of formation: -2777.61 kJ/mol - -analytic -1.4506e+002 -1.8736e-002 5.2179e+003 5.3121e+001 8.8657e+001 + -analytic -1.4506e+2 -1.8736e-2 5.2179e+3 5.3121e+1 8.8657e+1 # -Range: 0-200 ZnSO4:7H2O - ZnSO4:7H2O = + 1.0000 SO4-- + 1.0000 Zn++ + 7.0000 H2O - log_k -1.8683 - -delta_H 14.0417 kJ/mol # Calculated enthalpy of reaction ZnSO4:7H2O + ZnSO4:7H2O = SO4-2 + Zn+2 + 7 H2O + log_k -1.8683 + -delta_H 14.0417 kJ/mol # Calculated enthalpy of reaction ZnSO4:7H2O # Enthalpy of formation: -3077.9 kJ/mol - -analytic -1.6943e+002 -1.8833e-002 5.6484e+003 6.2326e+001 9.5975e+001 + -analytic -1.6943e+2 -1.8833e-2 5.6484e+3 6.2326e+1 9.5975e+1 # -Range: 0-200 ZnSO4:H2O - ZnSO4:H2O = + 1.0000 H2O + 1.0000 SO4-- + 1.0000 Zn++ - log_k -0.5383 - -delta_H -44.2824 kJ/mol # Calculated enthalpy of reaction ZnSO4:H2O + ZnSO4:H2O = H2O + SO4-2 + Zn+2 + log_k -0.5383 + -delta_H -44.2824 kJ/mol # Calculated enthalpy of reaction ZnSO4:H2O # Enthalpy of formation: -1304.54 kJ/mol - -analytic -1.7908e+001 -1.8228e-002 1.5811e+003 7.0677e+000 2.6856e+001 + -analytic -1.7908e+1 -1.8228e-2 1.5811e+3 7.0677e+0 2.6856e+1 # -Range: 0-200 ZnSeO3:H2O - ZnSeO3:H2O = + 1.0000 H2O + 1.0000 SeO3-- + 1.0000 Zn++ - log_k -6.7408 - -delta_H -17.9056 kJ/mol # Calculated enthalpy of reaction ZnSeO3:H2O + ZnSeO3:H2O = H2O + SeO3-2 + Zn+2 + log_k -6.7408 + -delta_H -17.9056 kJ/mol # Calculated enthalpy of reaction ZnSeO3:H2O # Enthalpy of formation: -930.511 kJ/mol - -analytic -1.8569e+001 -1.9929e-002 6.4377e+001 7.0892e+000 1.0996e+000 + -analytic -1.8569e+1 -1.9929e-2 6.4377e+1 7.0892e+0 1.0996e+0 # -Range: 0-200 Zoisite - Ca2Al3(SiO4)3OH +13.0000 H+ = + 2.0000 Ca++ + 3.0000 Al+++ + 3.0000 SiO2 + 7.0000 H2O - log_k 43.3017 - -delta_H -458.131 kJ/mol # Calculated enthalpy of reaction Zoisite + Ca2Al3(SiO4)3OH + 13 H+ = 2 Ca+2 + 3 Al+3 + 3 SiO2 + 7 H2O + log_k 43.3017 + -delta_H -458.131 kJ/mol # Calculated enthalpy of reaction Zoisite # Enthalpy of formation: -1643.69 kcal/mol - -analytic 2.5321e+000 -3.5886e-002 1.9902e+004 -6.2443e+000 3.1055e+002 + -analytic 2.5321e+0 -3.5886e-2 1.9902e+4 -6.2443e+0 3.1055e+2 # -Range: 0-300 Zr - Zr +2.0000 H+ +1.0000 O2 = + 1.0000 Zr(OH)2++ - log_k 177.6471 - -delta_H -1078.71 kJ/mol # Calculated enthalpy of reaction Zr + Zr + 2 H+ + O2 = Zr(OH)2+2 + log_k 177.6471 + -delta_H -1078.71 kJ/mol # Calculated enthalpy of reaction Zr # Enthalpy of formation: 0 kJ/mol - -analytic -2.8360e+001 -1.5214e-002 5.8045e+004 7.8012e+000 -3.0657e+005 + -analytic -2.836e+1 -1.5214e-2 5.8045e+4 7.8012e+0 -3.0657e+5 # -Range: 0-300 ZrB2 - ZrB2 +3.0000 H+ +2.0000 H2O +0.5000 O2 = + 1.0000 B(OH)3 + 1.0000 BH4- + 1.0000 Zr++++ - log_k 103.4666 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrB2 + ZrB2 + 3 H+ + 2 H2O + 0.5 O2 = B(OH)3 + BH4- + Zr+4 + log_k 103.4666 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrB2 # Enthalpy of formation: -326.628 kJ/mol ZrC - ZrC +3.0000 H+ +2.0000 O2 = + 1.0000 H2O + 1.0000 HCO3- + 1.0000 Zr++++ - log_k 207.0906 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrC + ZrC + 3 H+ + 2 O2 = H2O + HCO3- + Zr+4 + log_k 207.0906 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrC # Enthalpy of formation: -203.008 kJ/mol ZrCl - ZrCl +3.0000 H+ +0.7500 O2 = + 1.0000 Cl- + 1.0000 Zr++++ + 1.5000 H2O - log_k 130.9450 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl + ZrCl + 3 H+ + 0.75 O2 = Cl- + Zr+4 + 1.5 H2O + log_k 130.945 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl # Enthalpy of formation: -303.211 kJ/mol ZrCl2 - ZrCl2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Zr++++ + 2.0000 Cl- - log_k 96.3205 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl2 + ZrCl2 + 2 H+ + 0.5 O2 = H2O + Zr+4 + 2 Cl- + log_k 96.3205 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl2 # Enthalpy of formation: -531.021 kJ/mol ZrCl3 - ZrCl3 +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Zr++++ + 3.0000 Cl- - log_k 62.4492 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl3 + ZrCl3 + H+ + 0.25 O2 = 0.5 H2O + Zr+4 + 3 Cl- + log_k 62.4492 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl3 # Enthalpy of formation: -754.997 kJ/mol ZrCl4 - ZrCl4 = + 1.0000 Zr++++ + 4.0000 Cl- - log_k 27.9824 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl4 + ZrCl4 = Zr+4 + 4 Cl- + log_k 27.9824 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl4 # Enthalpy of formation: -980.762 kJ/mol ZrF4(beta) - ZrF4 = + 1.0000 Zr++++ + 4.0000 F- - log_k -27.7564 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4(beta) + ZrF4 = Zr+4 + 4 F- + log_k -27.7564 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4(beta) # Enthalpy of formation: -1911.26 kJ/mol ZrH2 - ZrH2 +4.0000 H+ +1.5000 O2 = + 1.0000 Zr++++ + 3.0000 H2O - log_k 198.3224 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrH2 + ZrH2 + 4 H+ + 1.5 O2 = Zr+4 + 3 H2O + log_k 198.3224 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrH2 # Enthalpy of formation: -168.946 kJ/mol ZrN - ZrN +4.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 NH3 + 1.0000 Zr++++ - log_k 59.1271 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrN + ZrN + 4 H+ + 0.25 O2 = 0.5 H2O + NH3 + Zr+4 + log_k 59.1271 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrN # Enthalpy of formation: -365 kJ/mol O-phthalic_acid - H2O_phthalate = + 1.0000 O_phthalate-2 + 2.0000 H+ - log_k -9.7755 - -delta_H 0 # Not possible to calculate enthalpy of reaction O-phthalic_acid + H2O_phthalate = O_phthalate-2 + 2 H+ + log_k -9.7755 + -delta_H 0 # Not possible to calculate enthalpy of reaction O-phthalic_acid # Enthalpy of formation: -186.88 kJ/mol - -analytic 7.3450e+001 1.9477e-002 -3.6511e+003 -3.1035e+001 -6.2027e+001 + -analytic 7.345e+1 1.9477e-2 -3.6511e+3 -3.1035e+1 -6.2027e+1 # -Range: 0-200 Br2(l) - Br2 +1.0000 H2O = + 0.5000 O2 + 2.0000 Br- + 2.0000 H+ - log_k -6.5419 - -delta_H 36.7648 kJ/mol # Calculated enthalpy of reaction Br2(l) + Br2 + H2O = 0.5 O2 + 2 Br- + 2 H+ + log_k -6.5419 + -delta_H 36.7648 kJ/mol # Calculated enthalpy of reaction Br2(l) # Enthalpy of formation: 0 kJ/mol - -analytic -1.5875e+002 -5.8039e-002 1.5583e+003 6.6381e+001 2.4362e+001 + -analytic -1.5875e+2 -5.8039e-2 1.5583e+3 6.6381e+1 2.4362e+1 # -Range: 0-300 Hg(l) - Hg +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hg++ - log_k 14.1505 - -delta_H -109.608 kJ/mol # Calculated enthalpy of reaction Hg(l) + Hg + 2 H+ + 0.5 O2 = H2O + Hg+2 + log_k 14.1505 + -delta_H -109.608 kJ/mol # Calculated enthalpy of reaction Hg(l) # Enthalpy of formation: 0 kcal/mol - -analytic -6.6462e+001 -1.8504e-002 7.3141e+003 2.4888e+001 1.1415e+002 + -analytic -6.6462e+1 -1.8504e-2 7.3141e+3 2.4888e+1 1.1415e+2 # -Range: 0-300 Ag(g) - Ag +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Ag+ - log_k 51.0924 - -delta_H -319.035 kJ/mol # Calculated enthalpy of reaction Ag(g) + Ag + H+ + 0.25 O2 = 0.5 H2O + Ag+ + log_k 51.0924 + -delta_H -319.035 kJ/mol # Calculated enthalpy of reaction Ag(g) # Enthalpy of formation: 284.9 kJ/mol - -analytic -5.8006e+000 1.7178e-003 1.6809e+004 0.0000e+000 0.0000e+000 + -analytic -5.8006e+0 1.7178e-3 1.6809e+4 0e+0 0e+0 # -Range: 0-200 Al(g) - Al +3.0000 H+ +0.7500 O2 = + 1.0000 Al+++ + 1.5000 H2O - log_k 200.6258 - -delta_H -1288.06 kJ/mol # Calculated enthalpy of reaction Al(g) + Al + 3 H+ + 0.75 O2 = Al+3 + 1.5 H2O + log_k 200.6258 + -delta_H -1288.06 kJ/mol # Calculated enthalpy of reaction Al(g) # Enthalpy of formation: 330 kJ/mol - -analytic 9.6402e+000 -6.9301e-003 6.5270e+004 -1.0461e+001 1.1084e+003 + -analytic 9.6402e+0 -6.9301e-3 6.527e+4 -1.0461e+1 1.1084e+3 # -Range: 0-200 Am(g) - Am +3.0000 H+ +0.7500 O2 = + 1.0000 Am+++ + 1.5000 H2O - log_k 211.7865 - -delta_H -1320.16 kJ/mol # Calculated enthalpy of reaction Am(g) + Am + 3 H+ + 0.75 O2 = Am+3 + 1.5 H2O + log_k 211.7865 + -delta_H -1320.16 kJ/mol # Calculated enthalpy of reaction Am(g) # Enthalpy of formation: 283.8 kJ/mol - -analytic -1.4236e+001 -8.7560e-003 6.8166e+004 0.0000e+000 0.0000e+000 + -analytic -1.4236e+1 -8.756e-3 6.8166e+4 0e+0 0e+0 # -Range: 0-300 AmF3(g) - AmF3 = + 1.0000 Am+++ + 3.0000 F- - log_k 49.8631 - -delta_H -455.843 kJ/mol # Calculated enthalpy of reaction AmF3(g) + AmF3 = Am+3 + 3 F- + log_k 49.8631 + -delta_H -455.843 kJ/mol # Calculated enthalpy of reaction AmF3(g) # Enthalpy of formation: -1166.9 kJ/mol - -analytic -4.7209e+001 -3.6440e-002 2.2278e+004 1.3418e+001 3.7833e+002 + -analytic -4.7209e+1 -3.644e-2 2.2278e+4 1.3418e+1 3.7833e+2 # -Range: 0-200 Ar(g) - Ar = + 1.0000 Ar - log_k -2.8587 - -delta_H -12.0081 kJ/mol # Calculated enthalpy of reaction Ar(g) + Ar = Ar + log_k -2.8587 + -delta_H -12.0081 kJ/mol # Calculated enthalpy of reaction Ar(g) # Enthalpy of formation: 0 kcal/mol - -analytic -7.4387e+000 7.8991e-003 0.0000e+000 0.0000e+000 1.9830e+005 + -analytic -7.4387e+0 7.8991e-3 0e+0 0e+0 1.983e+5 # -Range: 0-300 B(g) - B +1.5000 H2O +0.7500 O2 = + 1.0000 B(OH)3 - log_k 200.8430 - -delta_H -1201.68 kJ/mol # Calculated enthalpy of reaction B(g) + B + 1.5 H2O + 0.75 O2 = B(OH)3 + log_k 200.843 + -delta_H -1201.68 kJ/mol # Calculated enthalpy of reaction B(g) # Enthalpy of formation: 565 kJ/mol - -analytic 1.0834e+002 1.0606e-002 5.8150e+004 -4.2720e+001 9.8743e+002 + -analytic 1.0834e+2 1.0606e-2 5.815e+4 -4.272e+1 9.8743e+2 # -Range: 0-200 BF3(g) - BF3 +3.0000 H2O = + 1.0000 B(OH)3 + 3.0000 F- + 3.0000 H+ - log_k -2.9664 - -delta_H -87.0627 kJ/mol # Calculated enthalpy of reaction BF3(g) + BF3 + 3 H2O = B(OH)3 + 3 F- + 3 H+ + log_k -2.9664 + -delta_H -87.0627 kJ/mol # Calculated enthalpy of reaction BF3(g) # Enthalpy of formation: -1136 kJ/mol - -analytic 5.2848e+001 -2.4617e-002 -1.8159e+002 -1.9350e+001 -3.1018e+000 + -analytic 5.2848e+1 -2.4617e-2 -1.8159e+2 -1.935e+1 -3.1018e+0 # -Range: 0-200 Be(g) - Be +2.0000 H+ +0.5000 O2 = + 1.0000 Be++ + 1.0000 H2O - log_k 361.9343 - -delta_H 0 # Not possible to calculate enthalpy of reaction Be(g) + Be + 2 H+ + 0.5 O2 = Be+2 + H2O + log_k 361.9343 + -delta_H 0 # Not possible to calculate enthalpy of reaction Be(g) # Enthalpy of formation: 0 kcal/mol Br2(g) - Br2 +1.0000 H2O = + 0.5000 O2 + 2.0000 Br- + 2.0000 H+ - log_k -5.9979 - -delta_H 5.85481 kJ/mol # Calculated enthalpy of reaction Br2(g) + Br2 + H2O = 0.5 O2 + 2 Br- + 2 H+ + log_k -5.9979 + -delta_H 5.85481 kJ/mol # Calculated enthalpy of reaction Br2(g) # Enthalpy of formation: 30.91 kJ/mol - -analytic -3.2403e+000 -1.7609e-002 -1.4941e+003 3.0300e+000 -2.5370e+001 + -analytic -3.2403e+0 -1.7609e-2 -1.4941e+3 3.03e+0 -2.537e+1 # -Range: 0-200 C(g) - C +1.0000 H2O +1.0000 O2 = + 1.0000 H+ + 1.0000 HCO3- - log_k 181.7723 - -delta_H -1108.64 kJ/mol # Calculated enthalpy of reaction C(g) + C + H2O + O2 = H+ + HCO3- + log_k 181.7723 + -delta_H -1108.64 kJ/mol # Calculated enthalpy of reaction C(g) # Enthalpy of formation: 716.68 kJ/mol - -analytic 1.0485e+002 1.7907e-003 5.2768e+004 -4.0661e+001 8.9605e+002 + -analytic 1.0485e+2 1.7907e-3 5.2768e+4 -4.0661e+1 8.9605e+2 # -Range: 0-200 Ethylene(g) - Ethylene = + 1.0000 Ethylene - log_k -2.3236 - -delta_H -16.4431 kJ/mol # Calculated enthalpy of reaction Ethylene(g) + Ethylene = Ethylene + log_k -2.3236 + -delta_H -16.4431 kJ/mol # Calculated enthalpy of reaction Ethylene(g) # Enthalpy of formation: 12.5 kcal/mol - -analytic -7.5368e+000 8.4676e-003 0.0000e+000 0.0000e+000 2.3971e+005 + -analytic -7.5368e+0 8.4676e-3 0e+0 0e+0 2.3971e+5 # -Range: 0-300 CH4(g) - CH4 = + 1.0000 CH4 - log_k -2.8502 - -delta_H -13.0959 kJ/mol # Calculated enthalpy of reaction CH4(g) + CH4 = CH4 + log_k -2.8502 + -delta_H -13.0959 kJ/mol # Calculated enthalpy of reaction CH4(g) # Enthalpy of formation: -17.88 kcal/mol - -analytic -2.4027e+001 4.7146e-003 3.7227e+002 6.4264e+000 2.3362e+005 + -analytic -2.4027e+1 4.7146e-3 3.7227e+2 6.4264e+0 2.3362e+5 # -Range: 0-300 CO(g) -# CO +1.0000 H2O +0.5000 O2 = + 1.0000 H+ + 1.0000 HCO3- +# CO +1.0000 H2O +0.5000 O2 = + 1.0000 H+ + 1.0000 HCO3- # log_k 38.6934 # -analytic -6.1217e+001 -3.1388e-002 1.5283e+004 2.3433e+001 2.3850e+002 # -Range: 0-300 CO = CO - log_k -3.0068 - -delta_H -10.4349 kJ/mol # Calculated enthalpy of reaction CO(g) + log_k -3.0068 + -delta_H -10.4349 kJ/mol # Calculated enthalpy of reaction CO(g) # Enthalpy of formation: -26.416 kcal/mol - -analytic -8.0849e+000 9.2114e-003 0.0000e+000 0.0000e+000 2.0813e+005 + -analytic -8.0849e+0 9.2114e-3 0e+0 0e+0 2.0813e+5 # -Range: 0-300 CO2(g) - CO2 +1.0000 H2O = + 1.0000 H+ + 1.0000 HCO3- - log_k -7.8136 - -delta_H -10.5855 kJ/mol # Calculated enthalpy of reaction CO2(g) + CO2 + H2O = H+ + HCO3- + log_k -7.8136 + -delta_H -10.5855 kJ/mol # Calculated enthalpy of reaction CO2(g) # Enthalpy of formation: -94.051 kcal/mol - -analytic -8.5938e+001 -3.0431e-002 2.0702e+003 3.2427e+001 3.2328e+001 + -analytic -8.5938e+1 -3.0431e-2 2.0702e+3 3.2427e+1 3.2328e+1 # -Range: 0-300 Ca(g) - Ca +2.0000 H+ +0.5000 O2 = + 1.0000 Ca++ + 1.0000 H2O - log_k 165.0778 - -delta_H -1000.65 kJ/mol # Calculated enthalpy of reaction Ca(g) + Ca + 2 H+ + 0.5 O2 = Ca+2 + H2O + log_k 165.0778 + -delta_H -1000.65 kJ/mol # Calculated enthalpy of reaction Ca(g) # Enthalpy of formation: 177.8 kJ/mol - -analytic -7.3029e+000 -4.8208e-003 5.1822e+004 0.0000e+000 0.0000e+000 + -analytic -7.3029e+0 -4.8208e-3 5.1822e+4 0e+0 0e+0 # -Range: 0-200 Cd(g) - Cd +2.0000 H+ +0.5000 O2 = + 1.0000 Cd++ + 1.0000 H2O - log_k 70.1363 - -delta_H -467.469 kJ/mol # Calculated enthalpy of reaction Cd(g) + Cd + 2 H+ + 0.5 O2 = Cd+2 + H2O + log_k 70.1363 + -delta_H -467.469 kJ/mol # Calculated enthalpy of reaction Cd(g) # Enthalpy of formation: 111.8 kJ/mol - -analytic -9.8665e+000 -3.0921e-003 2.4126e+004 0.0000e+000 0.0000e+000 + -analytic -9.8665e+0 -3.0921e-3 2.4126e+4 0e+0 0e+0 # -Range: 0-200 Cl2(g) - Cl2 +1.0000 H2O = + 0.5000 O2 + 2.0000 Cl- + 2.0000 H+ - log_k 3.0004 - -delta_H -54.3878 kJ/mol # Calculated enthalpy of reaction Cl2(g) + Cl2 + H2O = 0.5 O2 + 2 Cl- + 2 H+ + log_k 3.0004 + -delta_H -54.3878 kJ/mol # Calculated enthalpy of reaction Cl2(g) # Enthalpy of formation: 0 kJ/mol - -analytic -1.9456e+001 -2.1491e-002 2.0652e+003 8.8629e+000 3.5076e+001 + -analytic -1.9456e+1 -2.1491e-2 2.0652e+3 8.8629e+0 3.5076e+1 # -Range: 0-200 Cs(g) - Cs +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Cs+ - log_k 81.2805 - -delta_H -474.413 kJ/mol # Calculated enthalpy of reaction Cs(g) + Cs + H+ + 0.25 O2 = 0.5 H2O + Cs+ + log_k 81.2805 + -delta_H -474.413 kJ/mol # Calculated enthalpy of reaction Cs(g) # Enthalpy of formation: 76.5 kJ/mol - -analytic 4.1676e+001 9.1952e-003 2.3401e+004 -1.6824e+001 3.9736e+002 + -analytic 4.1676e+1 9.1952e-3 2.3401e+4 -1.6824e+1 3.9736e+2 # -Range: 0-200 Cu(g) - Cu +2.0000 H+ +0.5000 O2 = + 1.0000 Cu++ + 1.0000 H2O - log_k 83.6618 - -delta_H -551.483 kJ/mol # Calculated enthalpy of reaction Cu(g) + Cu + 2 H+ + 0.5 O2 = Cu+2 + H2O + log_k 83.6618 + -delta_H -551.483 kJ/mol # Calculated enthalpy of reaction Cu(g) # Enthalpy of formation: 337.4 kJ/mol - -analytic -1.1249e+001 -2.7585e-003 2.8541e+004 0.0000e+000 0.0000e+000 + -analytic -1.1249e+1 -2.7585e-3 2.8541e+4 0e+0 0e+0 # -Range: 0-200 F2(g) - F2 +1.0000 H2O = + 0.5000 O2 + 2.0000 F- + 2.0000 H+ - log_k 55.7197 - -delta_H -390.924 kJ/mol # Calculated enthalpy of reaction F2(g) + F2 + H2O = 0.5 O2 + 2 F- + 2 H+ + log_k 55.7197 + -delta_H -390.924 kJ/mol # Calculated enthalpy of reaction F2(g) # Enthalpy of formation: 0 kJ/mol - -analytic -3.2664e+001 -2.1035e-002 1.9974e+004 1.1174e+001 3.3920e+002 + -analytic -3.2664e+1 -2.1035e-2 1.9974e+4 1.1174e+1 3.392e+2 # -Range: 0-200 H2(g) -# H2 +0.5000 O2 = + 1.0000 H2O +# H2 +0.5000 O2 = + 1.0000 H2O # log_k 43.0016 # -analytic -1.1609e+001 -3.7580e-003 1.5068e+004 2.4198e+000 -7.0997e+004 # -Range: 0-300 H2 = H2 - log_k -3.1050 - -delta_H -4.184 kJ/mol # Calculated enthalpy of reaction H2(g) + log_k -3.105 + -delta_H -4.184 kJ/mol # Calculated enthalpy of reaction H2(g) # Enthalpy of formation: 0 kcal/mol - -analytic -9.3114e+000 4.6473e-003 -4.9335e+001 1.4341e+000 1.2815e+005 + -analytic -9.3114e+0 4.6473e-3 -4.9335e+1 1.4341e+0 1.2815e+5 # -Range: 0-300 H2O(g) - H2O = + 1.0000 H2O - log_k 1.5854 - -delta_H -43.4383 kJ/mol # Calculated enthalpy of reaction H2O(g) + H2O = H2O + log_k 1.5854 + -delta_H -43.4383 kJ/mol # Calculated enthalpy of reaction H2O(g) # Enthalpy of formation: -57.935 kcal/mol - -analytic -1.4782e+001 1.0752e-003 2.7519e+003 2.7548e+000 4.2945e+001 + -analytic -1.4782e+1 1.0752e-3 2.7519e+3 2.7548e+0 4.2945e+1 # -Range: 0-300 H2S(g) - H2S = + 1.0000 H+ + 1.0000 HS- - log_k -7.9759 - -delta_H 4.5229 kJ/mol # Calculated enthalpy of reaction H2S(g) + H2S = H+ + HS- + log_k -7.9759 + -delta_H 4.5229 kJ/mol # Calculated enthalpy of reaction H2S(g) # Enthalpy of formation: -4.931 kcal/mol - -analytic -9.7354e+001 -3.1576e-002 1.8285e+003 3.7440e+001 2.8560e+001 + -analytic -9.7354e+1 -3.1576e-2 1.8285e+3 3.744e+1 2.856e+1 # -Range: 0-300 HBr(g) - HBr = + 1.0000 Br- + 1.0000 H+ - log_k 8.8815 - -delta_H -85.2134 kJ/mol # Calculated enthalpy of reaction HBr(g) + HBr = Br- + H+ + log_k 8.8815 + -delta_H -85.2134 kJ/mol # Calculated enthalpy of reaction HBr(g) # Enthalpy of formation: -36.29 kJ/mol - -analytic 8.1303e+000 -6.6641e-003 3.3951e+003 -3.4973e+000 5.7651e+001 + -analytic 8.1303e+0 -6.6641e-3 3.3951e+3 -3.4973e+0 5.7651e+1 # -Range: 0-200 HCl(g) - HCl = + 1.0000 Cl- + 1.0000 H+ - log_k 6.3055 - -delta_H -74.7697 kJ/mol # Calculated enthalpy of reaction HCl(g) + HCl = Cl- + H+ + log_k 6.3055 + -delta_H -74.7697 kJ/mol # Calculated enthalpy of reaction HCl(g) # Enthalpy of formation: -92.31 kJ/mol - -analytic -2.8144e-001 -8.6776e-003 3.0668e+003 -4.5105e-001 5.2078e+001 + -analytic -2.8144e-1 -8.6776e-3 3.0668e+3 -4.5105e-1 5.2078e+1 # -Range: 0-200 HF(g) - HF = + 1.0000 F- + 1.0000 H+ - log_k 1.1126 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(g) + HF = F- + H+ + log_k 1.1126 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(g) # Enthalpy of formation: 619.234 kJ/mol - -analytic -8.5783e+000 -8.8440e-003 2.6279e+003 1.4180e+000 4.4628e+001 + -analytic -8.5783e+0 -8.844e-3 2.6279e+3 1.418e+0 4.4628e+1 # -Range: 0-200 HI(g) - HI = + 1.0000 H+ + 1.0000 I- - log_k 9.3944 - -delta_H -83.4024 kJ/mol # Calculated enthalpy of reaction HI(g) + HI = H+ + I- + log_k 9.3944 + -delta_H -83.4024 kJ/mol # Calculated enthalpy of reaction HI(g) # Enthalpy of formation: 26.5 kJ/mol - -analytic 5.8250e-003 -8.7146e-003 3.5728e+003 0.0000e+000 0.0000e+000 + -analytic 5.825e-3 -8.7146e-3 3.5728e+3 0e+0 0e+0 # -Range: 0-200 He(g) - He = + 1.0000 He - log_k -3.4143 - -delta_H -0.6276 kJ/mol # Calculated enthalpy of reaction He(g) + He = He + log_k -3.4143 + -delta_H -0.6276 kJ/mol # Calculated enthalpy of reaction He(g) # Enthalpy of formation: 0 kcal/mol - -analytic -1.3402e+001 4.6358e-003 1.8295e+002 2.8070e+000 9.3373e+004 + -analytic -1.3402e+1 4.6358e-3 1.8295e+2 2.807e+0 9.3373e+4 # -Range: 0-300 Hf(g) - Hf +4.0000 H+ +1.0000 O2 = + 1.0000 Hf++++ + 2.0000 H2O - log_k 290.9782 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(g) + Hf + 4 H+ + O2 = Hf+4 + 2 H2O + log_k 290.9782 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(g) # Enthalpy of formation: 0 kJ/mol Hg(g) - Hg +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Hg++ - log_k 19.7290 - -delta_H -170.988 kJ/mol # Calculated enthalpy of reaction Hg(g) + Hg + 2 H+ + 0.5 O2 = H2O + Hg+2 + log_k 19.729 + -delta_H -170.988 kJ/mol # Calculated enthalpy of reaction Hg(g) # Enthalpy of formation: 61.38 kJ/mol - -analytic -1.6232e+001 -3.2863e-003 8.9831e+003 2.7505e+000 1.5255e+002 + -analytic -1.6232e+1 -3.2863e-3 8.9831e+3 2.7505e+0 1.5255e+2 # -Range: 0-200 I2(g) - I2 +1.0000 H2O = + 0.5000 O2 + 2.0000 H+ + 2.0000 I- - log_k -21.4231 - -delta_H 103.547 kJ/mol # Calculated enthalpy of reaction I2(g) + I2 + H2O = 0.5 O2 + 2 H+ + 2 I- + log_k -21.4231 + -delta_H 103.547 kJ/mol # Calculated enthalpy of reaction I2(g) # Enthalpy of formation: 62.42 kJ/mol - -analytic -2.0271e+001 -2.1890e-002 -6.0267e+003 1.0339e+001 -1.0233e+002 + -analytic -2.0271e+1 -2.189e-2 -6.0267e+3 1.0339e+1 -1.0233e+2 # -Range: 0-200 K(g) - K +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 K+ - log_k 81.5815 - -delta_H -481.055 kJ/mol # Calculated enthalpy of reaction K(g) + K + H+ + 0.25 O2 = 0.5 H2O + K+ + log_k 81.5815 + -delta_H -481.055 kJ/mol # Calculated enthalpy of reaction K(g) # Enthalpy of formation: 89 kJ/mol - -analytic 1.0278e+001 3.0700e-003 2.4729e+004 -5.0763e+000 4.1994e+002 + -analytic 1.0278e+1 3.07e-3 2.4729e+4 -5.0763e+0 4.1994e+2 # -Range: 0-200 Kr(g) - Kr = + 1.0000 Kr - log_k -2.6051 - -delta_H -15.2716 kJ/mol # Calculated enthalpy of reaction Kr(g) + Kr = Kr + log_k -2.6051 + -delta_H -15.2716 kJ/mol # Calculated enthalpy of reaction Kr(g) # Enthalpy of formation: 0 kcal/mol - -analytic -2.1251e+001 4.8308e-003 4.2971e+002 5.3591e+000 2.2304e+005 + -analytic -2.1251e+1 4.8308e-3 4.2971e+2 5.3591e+0 2.2304e+5 # -Range: 0-300 Li(g) - Li +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Li+ - log_k 94.9423 - -delta_H -577.639 kJ/mol # Calculated enthalpy of reaction Li(g) + Li + H+ + 0.25 O2 = 0.5 H2O + Li+ + log_k 94.9423 + -delta_H -577.639 kJ/mol # Calculated enthalpy of reaction Li(g) # Enthalpy of formation: 159.3 kJ/mol - -analytic -2.5692e+001 -1.4385e-003 3.0936e+004 6.9899e+000 5.2535e+002 + -analytic -2.5692e+1 -1.4385e-3 3.0936e+4 6.9899e+0 5.2535e+2 # -Range: 0-200 Mg(g) - Mg +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Mg++ - log_k 142.2494 - -delta_H -892.831 kJ/mol # Calculated enthalpy of reaction Mg(g) + Mg + 2 H+ + 0.5 O2 = H2O + Mg+2 + log_k 142.2494 + -delta_H -892.831 kJ/mol # Calculated enthalpy of reaction Mg(g) # Enthalpy of formation: 147.1 kJ/mol - -analytic -1.3470e+000 -7.7402e-004 4.5992e+004 -4.2207e+000 7.8101e+002 + -analytic -1.347e+0 -7.7402e-4 4.5992e+4 -4.2207e+0 7.8101e+2 # -Range: 0-200 N2(g) -# N2 +3.0000 H2O = + 1.5000 O2 + 2.0000 NH3 +# N2 +3.0000 H2O = + 1.5000 O2 + 2.0000 NH3 # log_k -119.6473 # -analytic 2.4168e+001 1.6489e-002 -3.6869e+004 -1.1181e+001 2.3178e+005 # -Range: 0-300 N2 = N2 - log_k -3.1864 - -delta_H -10.4391 kJ/mol # Calculated enthalpy of reaction N2(g) + log_k -3.1864 + -delta_H -10.4391 kJ/mol # Calculated enthalpy of reaction N2(g) # Enthalpy of formation: 0 kcal/mol - -analytic -7.6452e+000 7.9606e-003 0.0000e+000 0.0000e+000 1.8604e+005 + -analytic -7.6452e+0 7.9606e-3 0e+0 0e+0 1.8604e+5 # -Range: 0-300 NH3(g) - NH3 = + 1.0000 NH3 - log_k 1.7966 - -delta_H -35.2251 kJ/mol # Calculated enthalpy of reaction NH3(g) + NH3 = NH3 + log_k 1.7966 + -delta_H -35.2251 kJ/mol # Calculated enthalpy of reaction NH3(g) # Enthalpy of formation: -11.021 kcal/mol - -analytic -1.8758e+001 3.3670e-004 2.5113e+003 4.8619e+000 3.9192e+001 + -analytic -1.8758e+1 3.367e-4 2.5113e+3 4.8619e+0 3.9192e+1 # -Range: 0-300 NO(g) - NO +0.5000 H2O +0.2500 O2 = + 1.0000 H+ + 1.0000 NO2- - log_k 0.7554 - -delta_H -48.8884 kJ/mol # Calculated enthalpy of reaction NO(g) + NO + 0.5 H2O + 0.25 O2 = H+ + NO2- + log_k 0.7554 + -delta_H -48.8884 kJ/mol # Calculated enthalpy of reaction NO(g) # Enthalpy of formation: 90.241 kJ/mol - -analytic 8.2147e+000 -1.2708e-001 -6.0593e+003 2.0504e+001 -9.4551e+001 + -analytic 8.2147e+0 -1.2708e-1 -6.0593e+3 2.0504e+1 -9.4551e+1 # -Range: 0-300 NO2(g) - NO2 +0.5000 H2O +0.2500 O2 = + 1.0000 H+ + 1.0000 NO3- - log_k 8.3673 - -delta_H -94.0124 kJ/mol # Calculated enthalpy of reaction NO2(g) + NO2 + 0.5 H2O + 0.25 O2 = H+ + NO3- + log_k 8.3673 + -delta_H -94.0124 kJ/mol # Calculated enthalpy of reaction NO2(g) # Enthalpy of formation: 33.154 kJ/mol - -analytic 9.4389e+001 -2.7511e-001 -1.6783e+004 2.1127e+001 -2.6191e+002 + -analytic 9.4389e+1 -2.7511e-1 -1.6783e+4 2.1127e+1 -2.6191e+2 # -Range: 0-300 Na(g) - Na +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Na+ - log_k 80.8640 - -delta_H -487.685 kJ/mol # Calculated enthalpy of reaction Na(g) + Na + H+ + 0.25 O2 = 0.5 H2O + Na+ + log_k 80.864 + -delta_H -487.685 kJ/mol # Calculated enthalpy of reaction Na(g) # Enthalpy of formation: 107.5 kJ/mol - -analytic -6.0156e+000 2.4712e-003 2.5682e+004 0.0000e+000 0.0000e+000 + -analytic -6.0156e+0 2.4712e-3 2.5682e+4 0e+0 0e+0 # -Range: 0-200 Ne(g) - Ne = + 1.0000 Ne - log_k -3.3462 - -delta_H -3.64008 kJ/mol # Calculated enthalpy of reaction Ne(g) + Ne = Ne + log_k -3.3462 + -delta_H -3.64008 kJ/mol # Calculated enthalpy of reaction Ne(g) # Enthalpy of formation: 0 kcal/mol - -analytic -6.5169e+000 6.3991e-003 0.0000e+000 0.0000e+000 1.1271e+005 + -analytic -6.5169e+0 6.3991e-3 0e+0 0e+0 1.1271e+5 # -Range: 0-300 O2(g) - O2 = + 1.0000 O2 - log_k -2.8983 - -delta_H -12.1336 kJ/mol # Calculated enthalpy of reaction O2(g) + O2 = O2 + log_k -2.8983 + -delta_H -12.1336 kJ/mol # Calculated enthalpy of reaction O2(g) # Enthalpy of formation: 0 kcal/mol - -analytic -7.5001e+000 7.8981e-003 0.0000e+000 0.0000e+000 2.0027e+005 + -analytic -7.5001e+0 7.8981e-3 0e+0 0e+0 2.0027e+5 # -Range: 0-300 Pb(g) - Pb +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Pb++ - log_k 75.6090 - -delta_H -474.051 kJ/mol # Calculated enthalpy of reaction Pb(g) + Pb + 2 H+ + 0.5 O2 = H2O + Pb+2 + log_k 75.609 + -delta_H -474.051 kJ/mol # Calculated enthalpy of reaction Pb(g) # Enthalpy of formation: 195.2 kJ/mol - -analytic 2.5752e+001 2.1307e-003 2.3397e+004 -1.1825e+001 3.9730e+002 + -analytic 2.5752e+1 2.1307e-3 2.3397e+4 -1.1825e+1 3.973e+2 # -Range: 0-200 Rb(g) - Rb +1.0000 H+ +0.2500 O2 = + 0.5000 H2O + 1.0000 Rb+ - log_k 80.4976 - -delta_H -471.909 kJ/mol # Calculated enthalpy of reaction Rb(g) + Rb + H+ + 0.25 O2 = 0.5 H2O + Rb+ + log_k 80.4976 + -delta_H -471.909 kJ/mol # Calculated enthalpy of reaction Rb(g) # Enthalpy of formation: 80.9 kJ/mol - -analytic 2.6839e+001 5.9775e-003 2.3720e+004 -1.1189e+001 4.0279e+002 + -analytic 2.6839e+1 5.9775e-3 2.372e+4 -1.1189e+1 4.0279e+2 # -Range: 0-200 Rn(g) - Rn = + 1.0000 Rn - log_k -2.0451 - -delta_H -20.92 kJ/mol # Calculated enthalpy of reaction Rn(g) + Rn = Rn + log_k -2.0451 + -delta_H -20.92 kJ/mol # Calculated enthalpy of reaction Rn(g) # Enthalpy of formation: 0 kcal/mol - -analytic -3.0258e+001 4.9893e-003 1.4118e+002 8.8798e+000 3.8095e+005 + -analytic -3.0258e+1 4.9893e-3 1.4118e+2 8.8798e+0 3.8095e+5 # -Range: 0-300 RuCl3(g) - RuCl3 = + 1.0000 Ru+++ + 3.0000 Cl- - log_k 41.5503 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl3(g) + RuCl3 = Ru+3 + 3 Cl- + log_k 41.5503 + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl3(g) # Enthalpy of formation: 16.84 kJ/mol RuO3(g) - RuO3 +1.0000 H2O = + 1.0000 RuO4-- + 2.0000 H+ - log_k 2.3859 - -delta_H -100.369 kJ/mol # Calculated enthalpy of reaction RuO3(g) + RuO3 + H2O = RuO4-2 + 2 H+ + log_k 2.3859 + -delta_H -100.369 kJ/mol # Calculated enthalpy of reaction RuO3(g) # Enthalpy of formation: -70.868 kJ/mol - -analytic 1.1106e+002 1.7191e-002 6.8526e+002 -4.6922e+001 1.1598e+001 + -analytic 1.1106e+2 1.7191e-2 6.8526e+2 -4.6922e+1 1.1598e+1 # -Range: 0-200 S2(g) - S2 +2.0000 H2O = + 0.5000 SO4-- + 1.5000 HS- + 2.5000 H+ - log_k -7.1449 - -delta_H -35.656 kJ/mol # Calculated enthalpy of reaction S2(g) + S2 + 2 H2O = 0.5 SO4-2 + 1.5 HS- + 2.5 H+ + log_k -7.1449 + -delta_H -35.656 kJ/mol # Calculated enthalpy of reaction S2(g) # Enthalpy of formation: 30.681 kcal/mol - -analytic -1.8815e+002 -7.7069e-002 4.8816e+003 7.5802e+001 7.6228e+001 + -analytic -1.8815e+2 -7.7069e-2 4.8816e+3 7.5802e+1 7.6228e+1 # -Range: 0-300 SO2(g) SO2 = SO2 - log_k 0.1700 - -delta_H 0 # Not possible to calculate enthalpy of reaction SO2(g) + log_k 0.17 + -delta_H 0 # Not possible to calculate enthalpy of reaction SO2(g) # Enthalpy of formation: 0 kcal/mol - -analytic -2.0205e+001 2.8861e-003 1.4862e+003 5.2958e+000 1.2721e+005 + -analytic -2.0205e+1 2.8861e-3 1.4862e+3 5.2958e+0 1.2721e+5 # -Range: 0-300 Si(g) - Si +1.0000 O2 = + 1.0000 SiO2 - log_k 219.9509 - -delta_H -1315.57 kJ/mol # Calculated enthalpy of reaction Si(g) + Si + O2 = SiO2 + log_k 219.9509 + -delta_H -1315.57 kJ/mol # Calculated enthalpy of reaction Si(g) # Enthalpy of formation: 450 kJ/mol - -analytic 4.1998e+002 8.0113e-002 5.4468e+004 -1.6433e+002 9.2480e+002 + -analytic 4.1998e+2 8.0113e-2 5.4468e+4 -1.6433e+2 9.248e+2 # -Range: 0-200 SiF4(g) - SiF4 +2.0000 H2O = + 1.0000 SiO2 + 4.0000 F- + 4.0000 H+ - log_k -15.1931 - -delta_H -32.4123 kJ/mol # Calculated enthalpy of reaction SiF4(g) + SiF4 + 2 H2O = SiO2 + 4 F- + 4 H+ + log_k -15.1931 + -delta_H -32.4123 kJ/mol # Calculated enthalpy of reaction SiF4(g) # Enthalpy of formation: -1615 kJ/mol - -analytic 3.4941e+002 3.3668e-002 -1.2780e+004 -1.3410e+002 -2.1714e+002 + -analytic 3.4941e+2 3.3668e-2 -1.278e+4 -1.341e+2 -2.1714e+2 # -Range: 0-200 Sn(g) - Sn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Sn++ - log_k 94.5019 - -delta_H -589.758 kJ/mol # Calculated enthalpy of reaction Sn(g) + Sn + 2 H+ + 0.5 O2 = H2O + Sn+2 + log_k 94.5019 + -delta_H -589.758 kJ/mol # Calculated enthalpy of reaction Sn(g) # Enthalpy of formation: 301.2 kJ/mol - -analytic 1.4875e+001 -5.6877e-005 2.9728e+004 -8.1131e+000 5.0482e+002 + -analytic 1.4875e+1 -5.6877e-5 2.9728e+4 -8.1131e+0 5.0482e+2 # -Range: 0-200 Tc2O7(g) - Tc2O7 +1.0000 H2O = + 2.0000 H+ + 2.0000 TcO4- - log_k 21.3593 - -delta_H -158.131 kJ/mol # Calculated enthalpy of reaction Tc2O7(g) + Tc2O7 + H2O = 2 H+ + 2 TcO4- + log_k 21.3593 + -delta_H -158.131 kJ/mol # Calculated enthalpy of reaction Tc2O7(g) # Enthalpy of formation: -988.569 kJ/mol - -analytic 7.4140e+001 1.5668e-002 5.6360e+003 -3.0860e+001 9.5682e+001 + -analytic 7.414e+1 1.5668e-2 5.636e+3 -3.086e+1 9.5682e+1 # -Range: 0-200 Th(g) - Th +4.0000 H+ +1.0000 O2 = + 1.0000 Th++++ + 2.0000 H2O - log_k 307.8413 - -delta_H -1930.56 kJ/mol # Calculated enthalpy of reaction Th(g) + Th + 4 H+ + O2 = Th+4 + 2 H2O + log_k 307.8413 + -delta_H -1930.56 kJ/mol # Calculated enthalpy of reaction Th(g) # Enthalpy of formation: 602 kJ/mol - -analytic 1.8496e+001 2.7318e-003 9.8807e+004 -1.7332e+001 1.6779e+003 + -analytic 1.8496e+1 2.7318e-3 9.8807e+4 -1.7332e+1 1.6779e+3 # -Range: 0-200 Ti(g) - Ti +2.0000 H2O +1.0000 O2 = + 1.0000 Ti(OH)4 - log_k 224.3510 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti(g) + Ti + 2 H2O + O2 = Ti(OH)4 + log_k 224.351 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti(g) # Enthalpy of formation: 473 kJ/mol TiBr4(g) - TiBr4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 Br- + 4.0000 H+ - log_k 36.6695 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr4(g) + TiBr4 + 4 H2O = Ti(OH)4 + 4 Br- + 4 H+ + log_k 36.6695 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr4(g) # Enthalpy of formation: -549.339 kJ/mol TiCl4(g) - TiCl4 +4.0000 H2O = + 1.0000 Ti(OH)4 + 4.0000 Cl- + 4.0000 H+ - log_k 28.0518 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl4(g) + TiCl4 + 4 H2O = Ti(OH)4 + 4 Cl- + 4 H+ + log_k 28.0518 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl4(g) # Enthalpy of formation: -763.2 kJ/mol TiO(g) - TiO +2.0000 H2O +0.5000 O2 = + 1.0000 Ti(OH)4 - log_k 145.5711 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiO(g) + TiO + 2 H2O + 0.5 O2 = Ti(OH)4 + log_k 145.5711 + -delta_H 0 # Not possible to calculate enthalpy of reaction TiO(g) # Enthalpy of formation: 17.144 kJ/mol U(g) - U +2.0000 H+ +1.5000 O2 = + 1.0000 H2O + 1.0000 UO2++ - log_k 298.3441 - -delta_H -1819.64 kJ/mol # Calculated enthalpy of reaction U(g) + U + 2 H+ + 1.5 O2 = H2O + UO2+2 + log_k 298.3441 + -delta_H -1819.64 kJ/mol # Calculated enthalpy of reaction U(g) # Enthalpy of formation: 533 kJ/mol - -analytic 3.7536e+001 -6.3804e-003 9.2048e+004 -1.8614e+001 1.4363e+003 + -analytic 3.7536e+1 -6.3804e-3 9.2048e+4 -1.8614e+1 1.4363e+3 # -Range: 0-300 U2Cl10(g) - U2Cl10 +4.0000 H2O = + 2.0000 UO2+ + 8.0000 H+ + 10.0000 Cl- - log_k 82.7621 - -delta_H -609.798 kJ/mol # Calculated enthalpy of reaction U2Cl10(g) + U2Cl10 + 4 H2O = 2 UO2+ + 8 H+ + 10 Cl- + log_k 82.7621 + -delta_H -609.798 kJ/mol # Calculated enthalpy of reaction U2Cl10(g) # Enthalpy of formation: -1967.9 kJ/mol - -analytic -7.5513e+002 -3.0070e-001 4.5824e+004 3.1267e+002 7.1526e+002 + -analytic -7.5513e+2 -3.007e-1 4.5824e+4 3.1267e+2 7.1526e+2 # -Range: 0-300 U2Cl8(g) - U2Cl8 = + 2.0000 U++++ + 8.0000 Cl- - log_k 82.4059 - -delta_H -769.437 kJ/mol # Calculated enthalpy of reaction U2Cl8(g) + U2Cl8 = 2 U+4 + 8 Cl- + log_k 82.4059 + -delta_H -769.437 kJ/mol # Calculated enthalpy of reaction U2Cl8(g) # Enthalpy of formation: -1749.6 kJ/mol - -analytic -7.4441e+002 -2.6943e-001 5.4358e+004 2.9287e+002 8.4843e+002 + -analytic -7.4441e+2 -2.6943e-1 5.4358e+4 2.9287e+2 8.4843e+2 # -Range: 0-300 U2F10(g) - U2F10 +4.0000 H2O = + 2.0000 UO2+ + 8.0000 H+ + 10.0000 F- - log_k -12.2888 - -delta_H -239.377 kJ/mol # Calculated enthalpy of reaction U2F10(g) + U2F10 + 4 H2O = 2 UO2+ + 8 H+ + 10 F- + log_k -12.2888 + -delta_H -239.377 kJ/mol # Calculated enthalpy of reaction U2F10(g) # Enthalpy of formation: -4021 kJ/mol - -analytic -9.1542e+002 -3.2040e-001 3.1047e+004 3.6143e+002 4.8473e+002 + -analytic -9.1542e+2 -3.204e-1 3.1047e+4 3.6143e+2 4.8473e+2 # -Range: 0-300 UBr(g) - UBr +1.0000 O2 = + 1.0000 Br- + 1.0000 UO2+ - log_k 224.8412 - -delta_H -1381.5 kJ/mol # Calculated enthalpy of reaction UBr(g) + UBr + O2 = Br- + UO2+ + log_k 224.8412 + -delta_H -1381.5 kJ/mol # Calculated enthalpy of reaction UBr(g) # Enthalpy of formation: 247 kJ/mol - -analytic -3.1193e+002 -6.3059e-002 8.7633e+004 1.1032e+002 -1.0104e+006 + -analytic -3.1193e+2 -6.3059e-2 8.7633e+4 1.1032e+2 -1.0104e+6 # -Range: 0-300 UBr2(g) - UBr2 +1.0000 O2 = + 1.0000 UO2++ + 2.0000 Br- - log_k 192.6278 - -delta_H -1218.87 kJ/mol # Calculated enthalpy of reaction UBr2(g) + UBr2 + O2 = UO2+2 + 2 Br- + log_k 192.6278 + -delta_H -1218.87 kJ/mol # Calculated enthalpy of reaction UBr2(g) # Enthalpy of formation: -31 kJ/mol - -analytic -1.2277e+002 -6.4613e-002 6.4196e+004 4.8209e+001 1.0018e+003 + -analytic -1.2277e+2 -6.4613e-2 6.4196e+4 4.8209e+1 1.0018e+3 # -Range: 0-300 UBr3(g) - UBr3 = + 1.0000 U+++ + 3.0000 Br- - log_k 67.8918 - -delta_H -489.61 kJ/mol # Calculated enthalpy of reaction UBr3(g) + UBr3 = U+3 + 3 Br- + log_k 67.8918 + -delta_H -489.61 kJ/mol # Calculated enthalpy of reaction UBr3(g) # Enthalpy of formation: -364 kJ/mol - -analytic -2.5784e+002 -9.7583e-002 3.0225e+004 1.0240e+002 4.7171e+002 + -analytic -2.5784e+2 -9.7583e-2 3.0225e+4 1.024e+2 4.7171e+2 # -Range: 0-300 UBr4(g) - UBr4 = + 1.0000 U++++ + 4.0000 Br- - log_k 54.2926 - -delta_H -467.113 kJ/mol # Calculated enthalpy of reaction UBr4(g) + UBr4 = U+4 + 4 Br- + log_k 54.2926 + -delta_H -467.113 kJ/mol # Calculated enthalpy of reaction UBr4(g) # Enthalpy of formation: -610.1 kJ/mol - -analytic -3.5205e+002 -1.2867e-001 3.0898e+004 1.3781e+002 4.8223e+002 + -analytic -3.5205e+2 -1.2867e-1 3.0898e+4 1.3781e+2 4.8223e+2 # -Range: 0-300 UBr5(g) - UBr5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 Br- - log_k 61.4272 - -delta_H -423.222 kJ/mol # Calculated enthalpy of reaction UBr5(g) + UBr5 + 2 H2O = UO2+ + 4 H+ + 5 Br- + log_k 61.4272 + -delta_H -423.222 kJ/mol # Calculated enthalpy of reaction UBr5(g) # Enthalpy of formation: -637.745 kJ/mol - -analytic -3.4693e+002 -1.4298e-001 2.8151e+004 1.4406e+002 4.3938e+002 + -analytic -3.4693e+2 -1.4298e-1 2.8151e+4 1.4406e+2 4.3938e+2 # -Range: 0-300 UCl(g) - UCl +1.0000 O2 = + 1.0000 Cl- + 1.0000 UO2+ - log_k 221.7887 - -delta_H -1368.27 kJ/mol # Calculated enthalpy of reaction UCl(g) + UCl + O2 = Cl- + UO2+ + log_k 221.7887 + -delta_H -1368.27 kJ/mol # Calculated enthalpy of reaction UCl(g) # Enthalpy of formation: 188.2 kJ/mol - -analytic -4.1941e+001 -2.7879e-002 7.0800e+004 1.3954e+001 1.1048e+003 + -analytic -4.1941e+1 -2.7879e-2 7.08e+4 1.3954e+1 1.1048e+3 # -Range: 0-300 UCl2(g) - UCl2 +1.0000 O2 = + 1.0000 UO2++ + 2.0000 Cl- - log_k 183.7912 - -delta_H -1178.03 kJ/mol # Calculated enthalpy of reaction UCl2(g) + UCl2 + O2 = UO2+2 + 2 Cl- + log_k 183.7912 + -delta_H -1178.03 kJ/mol # Calculated enthalpy of reaction UCl2(g) # Enthalpy of formation: -163 kJ/mol - -analytic -1.3677e+002 -6.7829e-002 6.2413e+004 5.3100e+001 9.7394e+002 + -analytic -1.3677e+2 -6.7829e-2 6.2413e+4 5.31e+1 9.7394e+2 # -Range: 0-300 UCl3(g) - UCl3 = + 1.0000 U+++ + 3.0000 Cl- - log_k 58.6335 - -delta_H -453.239 kJ/mol # Calculated enthalpy of reaction UCl3(g) + UCl3 = U+3 + 3 Cl- + log_k 58.6335 + -delta_H -453.239 kJ/mol # Calculated enthalpy of reaction UCl3(g) # Enthalpy of formation: -537.1 kJ/mol - -analytic -2.7942e+002 -1.0243e-001 2.8859e+004 1.0982e+002 4.5040e+002 + -analytic -2.7942e+2 -1.0243e-1 2.8859e+4 1.0982e+2 4.504e+2 # -Range: 0-300 UCl4(g) - UCl4 = + 1.0000 U++++ + 4.0000 Cl- - log_k 46.3988 - -delta_H -441.419 kJ/mol # Calculated enthalpy of reaction UCl4(g) + UCl4 = U+4 + 4 Cl- + log_k 46.3988 + -delta_H -441.419 kJ/mol # Calculated enthalpy of reaction UCl4(g) # Enthalpy of formation: -818.1 kJ/mol - -analytic -3.7971e+002 -1.3504e-001 3.0243e+004 1.4746e+002 4.7202e+002 + -analytic -3.7971e+2 -1.3504e-1 3.0243e+4 1.4746e+2 4.7202e+2 # -Range: 0-300 UCl5(g) - UCl5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 Cl- - log_k 54.5311 - -delta_H -406.349 kJ/mol # Calculated enthalpy of reaction UCl5(g) + UCl5 + 2 H2O = UO2+ + 4 H+ + 5 Cl- + log_k 54.5311 + -delta_H -406.349 kJ/mol # Calculated enthalpy of reaction UCl5(g) # Enthalpy of formation: -882.5 kJ/mol - -analytic -3.8234e+002 -1.5109e-001 2.8170e+004 1.5654e+002 4.3968e+002 + -analytic -3.8234e+2 -1.5109e-1 2.817e+4 1.5654e+2 4.3968e+2 # -Range: 0-300 UCl6(g) - UCl6 +2.0000 H2O = + 1.0000 UO2++ + 4.0000 H+ + 6.0000 Cl- - log_k 63.4791 - -delta_H -462.301 kJ/mol # Calculated enthalpy of reaction UCl6(g) + UCl6 + 2 H2O = UO2+2 + 4 H+ + 6 Cl- + log_k 63.4791 + -delta_H -462.301 kJ/mol # Calculated enthalpy of reaction UCl6(g) # Enthalpy of formation: -987.5 kJ/mol - -analytic -4.7128e+002 -1.9133e-001 3.2528e+004 1.9503e+002 5.0771e+002 + -analytic -4.7128e+2 -1.9133e-1 3.2528e+4 1.9503e+2 5.0771e+2 # -Range: 0-300 UF(g) - UF +1.0000 O2 = + 1.0000 F- + 1.0000 UO2+ - log_k 206.2684 - -delta_H -1296.34 kJ/mol # Calculated enthalpy of reaction UF(g) + UF + O2 = F- + UO2+ + log_k 206.2684 + -delta_H -1296.34 kJ/mol # Calculated enthalpy of reaction UF(g) # Enthalpy of formation: -52 kJ/mol - -analytic -6.1248e+001 -3.0360e-002 6.7619e+004 2.0095e+001 1.0551e+003 + -analytic -6.1248e+1 -3.036e-2 6.7619e+4 2.0095e+1 1.0551e+3 # -Range: 0-300 UF2(g) - UF2 +1.0000 O2 = + 1.0000 UO2++ + 2.0000 F- - log_k 172.3563 - -delta_H -1147.56 kJ/mol # Calculated enthalpy of reaction UF2(g) + UF2 + O2 = UO2+2 + 2 F- + log_k 172.3563 + -delta_H -1147.56 kJ/mol # Calculated enthalpy of reaction UF2(g) # Enthalpy of formation: -530 kJ/mol - -analytic -4.3462e+002 -1.0881e-001 7.6778e+004 1.5835e+002 -8.8536e+005 + -analytic -4.3462e+2 -1.0881e-1 7.6778e+4 1.5835e+2 -8.8536e+5 # -Range: 0-300 UF3(g) - UF3 = + 1.0000 U+++ + 3.0000 F- - log_k 47.2334 - -delta_H -440.943 kJ/mol # Calculated enthalpy of reaction UF3(g) + UF3 = U+3 + 3 F- + log_k 47.2334 + -delta_H -440.943 kJ/mol # Calculated enthalpy of reaction UF3(g) # Enthalpy of formation: -1054.2 kJ/mol - -analytic -3.3058e+002 -1.0866e-001 2.9694e+004 1.2551e+002 4.6344e+002 + -analytic -3.3058e+2 -1.0866e-1 2.9694e+4 1.2551e+2 4.6344e+2 # -Range: 0-300 UF4(g) - UF4 = + 1.0000 U++++ + 4.0000 F- - log_k 14.5980 - -delta_H -331.39 kJ/mol # Calculated enthalpy of reaction UF4(g) + UF4 = U+4 + 4 F- + log_k 14.598 + -delta_H -331.39 kJ/mol # Calculated enthalpy of reaction UF4(g) # Enthalpy of formation: -1601.2 kJ/mol - -analytic -4.4692e+002 -1.4314e-001 2.6427e+004 1.6791e+002 4.1250e+002 + -analytic -4.4692e+2 -1.4314e-1 2.6427e+4 1.6791e+2 4.125e+2 # -Range: 0-300 UF5(g) - UF5 +2.0000 H2O = + 1.0000 UO2+ + 4.0000 H+ + 5.0000 F- - log_k 6.3801 - -delta_H -220.188 kJ/mol # Calculated enthalpy of reaction UF5(g) + UF5 + 2 H2O = UO2+ + 4 H+ + 5 F- + log_k 6.3801 + -delta_H -220.188 kJ/mol # Calculated enthalpy of reaction UF5(g) # Enthalpy of formation: -1910 kJ/mol - -analytic -4.6981e+002 -1.6177e-001 2.0986e+004 1.8345e+002 3.2760e+002 + -analytic -4.6981e+2 -1.6177e-1 2.0986e+4 1.8345e+2 3.276e+2 # -Range: 0-300 UF6(g) - UF6 +2.0000 H2O = + 1.0000 UO2++ + 4.0000 H+ + 6.0000 F- - log_k 18.2536 - -delta_H -310.809 kJ/mol # Calculated enthalpy of reaction UF6(g) + UF6 + 2 H2O = UO2+2 + 4 H+ + 6 F- + log_k 18.2536 + -delta_H -310.809 kJ/mol # Calculated enthalpy of reaction UF6(g) # Enthalpy of formation: -2148.6 kJ/mol - -analytic -5.7661e+002 -2.0409e-001 2.7680e+004 2.2743e+002 4.3209e+002 + -analytic -5.7661e+2 -2.0409e-1 2.768e+4 2.2743e+2 4.3209e+2 # -Range: 0-300 UI(g) - UI +1.0000 O2 = + 1.0000 I- + 1.0000 UO2+ - log_k 230.8161 - -delta_H -1410.9 kJ/mol # Calculated enthalpy of reaction UI(g) + UI + O2 = I- + UO2+ + log_k 230.8161 + -delta_H -1410.9 kJ/mol # Calculated enthalpy of reaction UI(g) # Enthalpy of formation: 341 kJ/mol - -analytic -3.5819e+001 -2.6631e-002 7.2899e+004 1.2133e+001 1.1375e+003 + -analytic -3.5819e+1 -2.6631e-2 7.2899e+4 1.2133e+1 1.1375e+3 # -Range: 0-300 UI2(g) - UI2 +1.0000 O2 = + 1.0000 UO2++ + 2.0000 I- - log_k 194.5395 - -delta_H -1220.67 kJ/mol # Calculated enthalpy of reaction UI2(g) + UI2 + O2 = UO2+2 + 2 I- + log_k 194.5395 + -delta_H -1220.67 kJ/mol # Calculated enthalpy of reaction UI2(g) # Enthalpy of formation: 100 kJ/mol - -analytic -3.3543e+002 -9.5116e-002 7.6218e+004 1.2543e+002 -6.8683e+005 + -analytic -3.3543e+2 -9.5116e-2 7.6218e+4 1.2543e+2 -6.8683e+5 # -Range: 0-300 UI3(g) - UI3 = + 1.0000 U+++ + 3.0000 I- - log_k 75.6033 - -delta_H -519.807 kJ/mol # Calculated enthalpy of reaction UI3(g) + UI3 = U+3 + 3 I- + log_k 75.6033 + -delta_H -519.807 kJ/mol # Calculated enthalpy of reaction UI3(g) # Enthalpy of formation: -140 kJ/mol - -analytic -2.6095e+002 -9.8782e-002 3.1972e+004 1.0456e+002 4.9897e+002 + -analytic -2.6095e+2 -9.8782e-2 3.1972e+4 1.0456e+2 4.9897e+2 # -Range: 0-300 UI4(g) - UI4 = + 1.0000 U++++ + 4.0000 I- - log_k 64.3272 - -delta_H -510.01 kJ/mol # Calculated enthalpy of reaction UI4(g) + UI4 = U+4 + 4 I- + log_k 64.3272 + -delta_H -510.01 kJ/mol # Calculated enthalpy of reaction UI4(g) # Enthalpy of formation: -308.8 kJ/mol - -analytic -3.5645e+002 -1.3022e-001 3.3347e+004 1.4051e+002 5.2046e+002 + -analytic -3.5645e+2 -1.3022e-1 3.3347e+4 1.4051e+2 5.2046e+2 # -Range: 0-300 UO(g) - UO +2.0000 H+ +1.0000 O2 = + 1.0000 H2O + 1.0000 UO2++ - log_k 211.6585 - -delta_H -1323.2 kJ/mol # Calculated enthalpy of reaction UO(g) + UO + 2 H+ + O2 = H2O + UO2+2 + log_k 211.6585 + -delta_H -1323.2 kJ/mol # Calculated enthalpy of reaction UO(g) # Enthalpy of formation: 30.5 kJ/mol - -analytic -1.8007e+002 -3.1985e-002 7.8469e+004 5.8892e+001 -6.8071e+005 + -analytic -1.8007e+2 -3.1985e-2 7.8469e+4 5.8892e+1 -6.8071e+5 # -Range: 0-300 UO2(g) - UO2 +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 UO2++ - log_k 125.6027 - -delta_H -820.972 kJ/mol # Calculated enthalpy of reaction UO2(g) + UO2 + 2 H+ + 0.5 O2 = H2O + UO2+2 + log_k 125.6027 + -delta_H -820.972 kJ/mol # Calculated enthalpy of reaction UO2(g) # Enthalpy of formation: -477.8 kJ/mol - -analytic -5.2789e+000 -3.5754e-003 4.2074e+004 -3.7117e+000 6.5653e+002 + -analytic -5.2789e+0 -3.5754e-3 4.2074e+4 -3.7117e+0 6.5653e+2 # -Range: 0-300 UO2Cl2(g) - UO2Cl2 = + 1.0000 UO2++ + 2.0000 Cl- - log_k 47.9630 - -delta_H -381.559 kJ/mol # Calculated enthalpy of reaction UO2Cl2(g) + UO2Cl2 = UO2+2 + 2 Cl- + log_k 47.963 + -delta_H -381.559 kJ/mol # Calculated enthalpy of reaction UO2Cl2(g) # Enthalpy of formation: -971.6 kJ/mol - -analytic -1.8035e+002 -6.5574e-002 2.3064e+004 6.8894e+001 3.5994e+002 + -analytic -1.8035e+2 -6.5574e-2 2.3064e+4 6.8894e+1 3.5994e+2 # -Range: 0-300 UO2F2(g) - UO2F2 = + 1.0000 UO2++ + 2.0000 F- - log_k 34.6675 - -delta_H -337.195 kJ/mol # Calculated enthalpy of reaction UO2F2(g) + UO2F2 = UO2+2 + 2 F- + log_k 34.6675 + -delta_H -337.195 kJ/mol # Calculated enthalpy of reaction UO2F2(g) # Enthalpy of formation: -1352.5 kJ/mol - -analytic -2.1498e+002 -6.9882e-002 2.1774e+004 7.9780e+001 3.3983e+002 + -analytic -2.1498e+2 -6.9882e-2 2.1774e+4 7.978e+1 3.3983e+2 # -Range: 0-300 UO3(g) - UO3 +2.0000 H+ = + 1.0000 H2O + 1.0000 UO2++ - log_k 70.9480 - -delta_H -505.638 kJ/mol # Calculated enthalpy of reaction UO3(g) + UO3 + 2 H+ = H2O + UO2+2 + log_k 70.948 + -delta_H -505.638 kJ/mol # Calculated enthalpy of reaction UO3(g) # Enthalpy of formation: -799.2 kJ/mol - -analytic -3.2820e+001 -2.6807e-003 2.6914e+004 5.7767e+000 4.1997e+002 + -analytic -3.282e+1 -2.6807e-3 2.6914e+4 5.7767e+0 4.1997e+2 # -Range: 0-300 UOF4(g) - UOF4 +1.0000 H2O = + 1.0000 UO2++ + 2.0000 H+ + 4.0000 F- - log_k 24.2848 - -delta_H -312.552 kJ/mol # Calculated enthalpy of reaction UOF4(g) + UOF4 + H2O = UO2+2 + 2 H+ + 4 F- + log_k 24.2848 + -delta_H -312.552 kJ/mol # Calculated enthalpy of reaction UOF4(g) # Enthalpy of formation: -1762 kJ/mol - -analytic -3.9592e+002 -1.3699e-001 2.4127e+004 1.5359e+002 3.7660e+002 + -analytic -3.9592e+2 -1.3699e-1 2.4127e+4 1.5359e+2 3.766e+2 # -Range: 0-300 Xe(g) - Xe = + 1.0000 Xe - log_k -2.3640 - -delta_H -18.8698 kJ/mol # Calculated enthalpy of reaction Xe(g) + Xe = Xe + log_k -2.364 + -delta_H -18.8698 kJ/mol # Calculated enthalpy of reaction Xe(g) # Enthalpy of formation: 0 kcal/mol - -analytic -2.0636e+001 5.1389e-003 2.0490e+002 5.1913e+000 2.8556e+005 + -analytic -2.0636e+1 5.1389e-3 2.049e+2 5.1913e+0 2.8556e+5 # -Range: 0-300 Zn(g) - Zn +2.0000 H+ +0.5000 O2 = + 1.0000 H2O + 1.0000 Zn++ - log_k 85.4140 - -delta_H -563.557 kJ/mol # Calculated enthalpy of reaction Zn(g) + Zn + 2 H+ + 0.5 O2 = H2O + Zn+2 + log_k 85.414 + -delta_H -563.557 kJ/mol # Calculated enthalpy of reaction Zn(g) # Enthalpy of formation: 130.4 kJ/mol - -analytic -1.0898e+001 -3.9871e-003 2.9068e+004 0.0000e+000 0.0000e+000 + -analytic -1.0898e+1 -3.9871e-3 2.9068e+4 0e+0 0e+0 # -Range: 0-200 Zr(g) - Zr +4.0000 H+ +1.0000 O2 = + 1.0000 Zr++++ + 2.0000 H2O - log_k 277.1324 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(g) + Zr + 4 H+ + O2 = Zr+4 + 2 H2O + log_k 277.1324 + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(g) # Enthalpy of formation: 608.948 kJ/mol ZrF4(g) - ZrF4 = + 1.0000 Zr++++ + 4.0000 F- - log_k 142.9515 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4(g) + ZrF4 = Zr+4 + 4 F- + log_k 142.9515 + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4(g) # Enthalpy of formation: -858.24 kJ/mol EXCHANGE_MASTER_SPECIES - X X- + X X- EXCHANGE_SPECIES X- = X- - log_k 0.0 + log_k 0 Na+ + X- = NaX - log_k 0.0 - -llnl_gamma 4.0 + log_k 0 + -llnl_gamma 4 K+ + X- = KX - log_k 0.7 - -llnl_gamma 3.0 - delta_h -4.3 # Jardine & Sparks, 1984 + log_k 0.7 + -llnl_gamma 3 + delta_h -4.3 # Jardine & Sparks, 1984 Li+ + X- = LiX - log_k -0.08 - -llnl_gamma 6.0 - delta_h 1.4 # Merriam & Thomas, 1956 + log_k -0.08 + -llnl_gamma 6 + delta_h 1.4 # Merriam & Thomas, 1956 NH4+ + X- = NH4X - log_k 0.6 - -llnl_gamma 2.5 - delta_h -2.4 # Laudelout et al., 1968 + log_k 0.6 + -llnl_gamma 2.5 + delta_h -2.4 # Laudelout et al., 1968 - Ca+2 + 2X- = CaX2 - log_k 0.8 - -llnl_gamma 6.0 - delta_h 7.2 # Van Bladel & Gheyl, 1980 + Ca+2 + 2 X- = CaX2 + log_k 0.8 + -llnl_gamma 6 + delta_h 7.2 # Van Bladel & Gheyl, 1980 - Mg+2 + 2X- = MgX2 - log_k 0.6 - -llnl_gamma 8.0 - delta_h 7.4 # Laudelout et al., 1968 + Mg+2 + 2 X- = MgX2 + log_k 0.6 + -llnl_gamma 8 + delta_h 7.4 # Laudelout et al., 1968 - Sr+2 + 2X- = SrX2 - log_k 0.91 - -llnl_gamma 5.0 - delta_h 5.5 # Laudelout et al., 1968 + Sr+2 + 2 X- = SrX2 + log_k 0.91 + -llnl_gamma 5 + delta_h 5.5 # Laudelout et al., 1968 - Ba+2 + 2X- = BaX2 - log_k 0.91 - -llnl_gamma 5.0 - delta_h 4.5 # Laudelout et al., 1968 + Ba+2 + 2 X- = BaX2 + log_k 0.91 + -llnl_gamma 5 + delta_h 4.5 # Laudelout et al., 1968 - Mn+2 + 2X- = MnX2 - log_k 0.52 - -llnl_gamma 6.0 + Mn+2 + 2 X- = MnX2 + log_k 0.52 + -llnl_gamma 6 - Fe+2 + 2X- = FeX2 - log_k 0.44 - -llnl_gamma 6.0 + Fe+2 + 2 X- = FeX2 + log_k 0.44 + -llnl_gamma 6 - Cu+2 + 2X- = CuX2 - log_k 0.6 - -llnl_gamma 6.0 + Cu+2 + 2 X- = CuX2 + log_k 0.6 + -llnl_gamma 6 - Zn+2 + 2X- = ZnX2 - log_k 0.8 - -llnl_gamma 6.0 + Zn+2 + 2 X- = ZnX2 + log_k 0.8 + -llnl_gamma 6 - Cd+2 + 2X- = CdX2 - log_k 0.8 - -llnl_gamma 5.0 + Cd+2 + 2 X- = CdX2 + log_k 0.8 + -llnl_gamma 5 - Pb+2 + 2X- = PbX2 - log_k 1.05 - -llnl_gamma 4.5 + Pb+2 + 2 X- = PbX2 + log_k 1.05 + -llnl_gamma 4.5 - Al+3 + 3X- = AlX3 - log_k 0.41 - -llnl_gamma 9.0 + Al+3 + 3 X- = AlX3 + log_k 0.41 + -llnl_gamma 9 - AlOH+2 + 2X- = AlOHX2 - log_k 0.89 - -llnl_gamma 4.5 + AlOH+2 + 2 X- = AlOHX2 + log_k 0.89 + -llnl_gamma 4.5 SURFACE_MASTER_SPECIES - Hfo_s Hfo_sOH - Hfo_w Hfo_wOH + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH SURFACE_SPECIES # All surface data from # Dzombak and Morel, 1990 @@ -18884,24 +18888,24 @@ SURFACE_SPECIES # strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH - log_k 0.0 + log_k 0 - Hfo_sOH + H+ = Hfo_sOH2+ - log_k 7.29 # = pKa1,int + Hfo_sOH + H+ = Hfo_sOH2+ + log_k 7.29 # = pKa1,int Hfo_sOH = Hfo_sO- + H+ - log_k -8.93 # = -pKa2,int + log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH - log_k 0.0 + log_k 0 - Hfo_wOH + H+ = Hfo_wOH2+ - log_k 7.29 # = pKa1,int + Hfo_wOH + H+ = Hfo_wOH2+ + log_k 7.29 # = pKa1,int Hfo_wOH = Hfo_wO- + H+ - log_k -8.93 # = -pKa2,int + log_k -8.93 # = -pKa2,int ############################################### # CATIONS # @@ -18911,52 +18915,52 @@ SURFACE_SPECIES # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - log_k 4.97 + log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ log_k -5.85 # Strontium Hfo_sOH + Sr+2 = Hfo_sOHSr+2 - log_k 5.01 + log_k 5.01 Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ log_k -6.58 - Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+ - log_k -17.60 + Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2 H+ + log_k -17.6 # Barium Hfo_sOH + Ba+2 = Hfo_sOHBa+2 - log_k 5.46 + log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - log_k -7.2 # table 10.5 + log_k -7.2 # table 10.5 # # Cations from table 10.2 # # Cadmium Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ - log_k 0.47 + log_k 0.47 Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ - log_k -2.91 + log_k -2.91 # Zinc Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ - log_k 0.99 + log_k 0.99 Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ - log_k -1.99 + log_k -1.99 # Copper Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ - log_k 2.89 + log_k 2.89 Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ - log_k 0.6 # table 10.5 + log_k 0.6 # table 10.5 # Lead Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ - log_k 4.65 + log_k 4.65 Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ - log_k 0.3 # table 10.5 + log_k 0.3 # table 10.5 # # Derived constants table 10.5 # @@ -18965,16 +18969,16 @@ SURFACE_SPECIES log_k -4.6 # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ - log_k -0.4 # table 10.5 + log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ - log_k -3.5 # table 10.5 + log_k -3.5 # table 10.5 # Iron Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ - log_k 0.7 # LFER using table 10.5 + log_k 0.7 # LFER using table 10.5 Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ - log_k -2.5 # LFER using table 10.5 + log_k -2.5 # LFER using table 10.5 ############################################### # ANIONS # @@ -18983,44 +18987,44 @@ SURFACE_SPECIES # Anions from table 10.6 # # Phosphate - Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O - log_k 31.29 + Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O + log_k 31.29 - Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O - log_k 25.39 + Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O + log_k 25.39 Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O - log_k 17.72 + log_k 17.72 # # Anions from table 10.7 # # Borate Hfo_wOH + B(OH)3 = Hfo_wH2BO3 + H2O - log_k 0.62 + log_k 0.62 # # Anions from table 10.8 # # Sulfate Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O - log_k 7.78 + log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - log_k 0.79 + log_k 0.79 # # Derived constants table 10.10 # Hfo_wOH + F- + H+ = Hfo_wF + H2O - log_k 8.7 + log_k 8.7 Hfo_wOH + F- = Hfo_wOHF- - log_k 1.6 + log_k 1.6 # # Carbonate: Van Geen et al., 1994 reoptimized for HFO # 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L # # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O # log_k 12.56 -# +# # Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O # log_k 20.62 @@ -19070,38 +19074,38 @@ RATES K-feldspar -start -1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 -2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar -3 REM PARM(2) = Adjusts lab rate to field rate -4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) -5 REM K-Feldspar parameters -10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 -20 RESTORE 10 -30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH -40 DATA 3500, 2000, 2500, 2000 -50 RESTORE 40 -60 READ e_H, e_H2O, e_OH, e_CO2 -70 pk_CO2 = 13 -80 n_CO2 = 0.6 +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM K-Feldspar parameters +10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp -150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis -170 pk_H2O = pk_H2O + e_H2O * dif_temp +170 pk_H2O = pk_H2O + e_H2O * dif_temp 180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) 190 REM rate by OH- -200 pk_OH = pk_OH + e_OH * dif_temp -210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH 220 REM rate by CO2 -230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) -280 moles = rate * TIME +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) +280 moles = rate * TIME 290 SAVE moles -end @@ -19145,38 +19149,38 @@ K-feldspar Albite -start -1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 -2 REM PARM(1) = Specific area of Albite m^2/mol Albite -3 REM PARM(2) = Adjusts lab rate to field rate -4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) -5 REM Albite parameters -10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 -20 RESTORE 10 -30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH -40 DATA 3500, 2000, 2500, 2000 -50 RESTORE 40 -60 READ e_H, e_H2O, e_OH, e_CO2 -70 pk_CO2 = 13 -80 n_CO2 = 0.6 +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Albite m^2/mol Albite +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM Albite parameters +10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp -150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis -170 pk_H2O = pk_H2O + e_H2O * dif_temp +170 pk_H2O = pk_H2O + e_H2O * dif_temp 180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) 190 REM rate by OH- -200 pk_OH = pk_OH + e_OH * dif_temp -210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH 220 REM rate by CO2 -230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("Albite")) -280 moles = rate * TIME +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("Albite")) +280 moles = rate * TIME 290 SAVE moles -end @@ -19184,7 +19188,7 @@ Albite #Calcite ######## # Example of KINETICS data block for calcite rate, -# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257. +# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257 # KINETICS 1 # Calcite # -tol 1e-8 @@ -19195,16 +19199,16 @@ Albite Calcite -start -1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite -2 REM PARM(2) = exponent for M/M0 +1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite +2 REM PARM(2) = exponent for M/M0 -10 si_cc = SI("Calcite") -20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 -30 k1 = 10^(0.198 - 444.0 / TK ) -40 k2 = 10^(2.84 - 2177.0 /TK ) -50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317.0 / TK) -60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737.0 / TK ) -80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M +10 si_cc = SI("Calcite") +20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 +30 k1 = 10^(0.198 - 444 / TK ) +40 k2 = 10^(2.84 - 2177 /TK ) +50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317 / TK) +60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737 / TK ) +80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M 110 rate = area * (k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O")) 120 rate = rate * (1 - 10^(2/3*si_cc)) 130 moles = rate * 0.001 * TIME # convert from mmol to mol @@ -19229,18 +19233,18 @@ Calcite # -time 1 day in 10 Pyrite -start -1 REM Williamson and Rimstidt, 1994 -2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) -3 REM PARM(2) = exp for (M/M0) -4 REM PARM(3) = exp for O2 -5 REM PARM(4) = exp for H+ +1 REM Williamson and Rimstidt, 1994 +2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) +3 REM PARM(2) = exp for (M/M0) +4 REM PARM(3) = exp for O2 +5 REM PARM(4) = exp for H+ -10 REM Dissolution in presence of DO -20 if (M <= 0) THEN GOTO 200 -30 if (SI("Pyrite") >= 0) THEN GOTO 200 -40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") -50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) -60 moles = 10^(log_area + log_rate) * TIME +10 REM Dissolution in presence of DO +20 if (M <= 0) THEN GOTO 200 +30 if (SI("Pyrite") >= 0) THEN GOTO 200 +40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") +50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) +60 moles = 10^(log_area + log_rate) * TIME 200 SAVE moles -end @@ -19257,19 +19261,19 @@ Pyrite # -time 30 year in 15 Organic_C -start -1 REM Additive Monod kinetics for SOC (sediment organic carbon) -2 REM Electron acceptors: O2, NO3, and SO4 +1 REM Additive Monod kinetics for SOC (sediment organic carbon) +2 REM Electron acceptors: O2, NO3, and SO4 -10 if (M <= 0) THEN GOTO 200 -20 mO2 = MOL("O2") -30 mNO3 = TOT("N(5)") -40 mSO4 = TOT("S(6)") -50 k_O2 = 1.57e-9 # 1/sec -60 k_NO3 = 1.67e-11 # 1/sec -70 k_SO4 = 1.e-13 # 1/sec -80 rate = k_O2 * mO2/(2.94e-4 + mO2) -90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) -100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) +10 if (M <= 0) THEN GOTO 200 +20 mO2 = MOL("O2") +30 mNO3 = TOT("N(5)") +40 mSO4 = TOT("S(6)") +50 k_O2 = 1.57e-9 # 1/sec +60 k_NO3 = 1.67e-11 # 1/sec +70 k_SO4 = 1.e-13 # 1/sec +80 rate = k_O2 * mO2/(2.94e-4 + mO2) +90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) +100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) 110 moles = rate * M * (M/M0) * TIME 200 SAVE moles -end @@ -19290,14 +19294,14 @@ Organic_C # -time 0.5 day in 10 Pyrolusite -start -10 if (M <= 0) THEN GOTO 200 -20 sr_pl = SR("Pyrolusite") -30 if (sr_pl > 1) THEN GOTO 100 -40 REM sr_pl <= 1, undersaturated -50 Fe_t = TOT("Fe(2)") -60 if Fe_t < 1e-8 then goto 200 -70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) -80 GOTO 200 +10 if (M <= 0) THEN GOTO 200 +20 sr_pl = SR("Pyrolusite") +30 if (sr_pl > 1) THEN GOTO 100 +40 REM sr_pl <= 1, undersaturated +50 Fe_t = TOT("Fe(2)") +60 if Fe_t < 1e-8 then goto 200 +70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) +80 GOTO 200 100 REM sr_pl > 1, supersaturated 110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME 200 SAVE moles * SOLN_VOL diff --git a/minimum.dat b/minimum.dat index 9234591c..6f9d3b05 100644 --- a/minimum.dat +++ b/minimum.dat @@ -1,66 +1,70 @@ +# File 1 = C:\GitPrograms\phreeqc3-1\database\minimum.dat, 19/11/2023 20:31, 66 lines, 2360 bytes, md5=7edb88ba80cce39d28c29b0da2e5527d +# Created 17 May 2024 14:30:40 +# c:\3rdParty\lsp\lsp.exe -f2 -k="asis" -ts "minimum.dat" + SOLUTION_MASTER_SPECIES -H H+ -1.0 H 1.008 -H(0) H2 0 H -H(1) H+ -1.0 0 1 -E e- 0 0.0 0 -O H2O 0 O 16.0 -O(0) O2 0 O -O(-2) H2O 0 0 -C CO3-2 2.0 HCO3 12.0111 60 12 -Ca Ca+2 0 40.08 40.08 -Al Al+3 0 27 27 -Si H4SiO4 0 SiO2 28.0843 +H H+ -1 H 1.008 +H(0) H2 0 H +H(1) H+ -1 0 1 +E e- 1 0 0 +O H2O 0 O 16 +O(0) O2 0 O +O(-2) H2O 0 0 +C CO3-2 2 HCO3 12.0111 +Ca Ca+2 0 40.08 40.08 +Al Al+3 0 27 27 +Si H4SiO4 0 SiO2 28.0843 SOLUTION_SPECIES H+ = H+ - -gamma 9.0 0 - -dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 3. + -gamma 9 0 + -dw 9.31e-9 1000 0.46 1e-10 # The dw parameters are defined in ref. 3 # Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc # Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |z_H+| * I^0.5 / (1 + DH_B * I^0.5 * 1e-10 / (1 + I^0.75))) e- = e- H2O = H2O # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence Ca+2 = Ca+2 - -gamma 5.0 0.1650 - -dw 0.793e-9 97 3.4 24.6 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 + -gamma 5 0.165 + -dw 0.793e-9 97 3.4 24.6 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.6 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 Al+3 = Al+3 - -gamma 9.0 0 - -dw 0.559e-9 - -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353. + -gamma 9 0 + -dw 0.559e-9 + -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353 H4SiO4 = H4SiO4 - -dw 1.10e-9 - -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 + -dw 1.1e-9 + -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt 2*H2O in a1 H2O = OH- + H+ - -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 - -gamma 3.5 0 - -dw 5.27e-9 548 0.52 1e-10 - -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 + -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 + -gamma 3.5 0 + -dw 5.27e-9 548 0.52 1e-10 + -Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1 2 H2O = O2 + 4 H+ + 4 e- - -log_k -86.08 + -log_k -86.08 -delta_h 134.79 kcal - -dw 2.35e-9 - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt 2 H+ + 2 e- = H2 - -log_k -3.15 + -log_k -3.15 -delta_h -1.759 kcal - -dw 5.13e-9 - -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 + -Vm 6.52 0.78 0.12 # supcrt CO3-2 = CO3-2 - -gamma 5.4 0 - -dw 0.955e-9 28.9 14.3 98.1 - -Vm 8.69 -10.2 -20.31 -0.131 4.65 0 3.75 0 -4.04e-2 0.678 + -gamma 5.4 0 + -dw 0.955e-9 28.9 14.3 98.1 + -Vm 8.69 -10.2 -20.31 -0.131 4.65 0 3.75 0 -4.04e-2 0.678 CO3-2 + H+ = HCO3- - -log_k 10.329 - -delta_h -3.561 kcal - -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 - -gamma 5.4 0 - -dw 1.18e-9 -182 0.351 -4.94 - -Vm 9.03 -7.03e-2 -13.38 0 2.05 0 0 128 0 0.8242 + -log_k 10.329 + -delta_h -3.561 kcal + -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 + -dw 1.18e-9 -182 0.351 -4.94 + -Vm 9.03 -7.03e-2 -13.38 0 2.05 0 0 128 0 0.8242 CO3-2 + 2 H+ = CO2 + H2O - -log_k 16.681 - -delta_h -5.738 kcal - -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 - -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 + -log_k 16.681 + -delta_h -5.738 kcal + -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 + -Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171 -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 END diff --git a/minteq.dat b/minteq.dat index d2c70653..2a356840 100644 --- a/minteq.dat +++ b/minteq.dat @@ -1,1834 +1,1838 @@ +# File 1 = C:\GitPrograms\phreeqc3-1\database\minteq.dat, 15/03/2024 15:27, 5650 lines, 159592 bytes, md5=4c6f21f3073c15690f089901794039db +# Created 17 May 2024 14:30:40 +# c:\3rdParty\lsp\lsp.exe -f2 -k="asis" -ts "minteq.dat" + # $Id: minteq.dat 11091 2016-04-21 15:20:05Z dlpark $ SOLUTION_MASTER_SPECIES ####################################################### # essential definitions ####################################################### -Alkalinity CO3-2 2.0 61.0173 61.0173 -E e- 0 0 0 -H H+ -1. 1.008 1.008 -H(0) H2 0.0 1.008 -H(1) H+ -1. 1.008 -O H2O 0 16.00 16.00 -O(-2) H2O 0 16.00 16.00 -O(0) O2 0 16.00 16.00 +Alkalinity CO3-2 2 61.0173 61.0173 +E e- 1 0 0 +H H+ -1 1.008 1.008 +H(0) H2 0 1.008 +H(1) H+ -1 1.008 +O H2O 0 16 16 +O(-2) H2O 0 16 16 +O(0) O2 0 16 16 ####################################################### -Ag Ag+ 0 107.868 107.868 -Al Al+3 0 26.9815 26.9815 -As H3AsO4 -1.0 74.9216 74.9216 -As(+3) H3AsO3 0.0 74.9216 -As(+5) H3AsO4 -1.0 74.9216 -B H3BO3 0.0 10.81 10.81 -Ba Ba+2 0 137.34 137.34 -Be Be+2 0 9.0122 9.0122 -Br Br- 0 79.904 79.904 -C CO3-2 2.0 61.0173 12.0111 -C(+4) CO3-2 2.0 61.0173 +Ag Ag+ 0 107.868 107.868 +Al Al+3 0 26.9815 26.9815 +As H3AsO4 -1 74.9216 74.9216 +As(+3) H3AsO3 0 74.9216 +As(+5) H3AsO4 -1 74.9216 +B H3BO3 0 10.81 10.81 +Ba Ba+2 0 137.34 137.34 +Be Be+2 0 9.0122 9.0122 +Br Br- 0 79.904 79.904 +C CO3-2 2 61.0173 12.0111 +C(+4) CO3-2 2 61.0173 #C(-4) CH4 0.0 16.042 -Cyanide Cyanide- 0 26.018 26.018 -Cyanate Cyanate- 0 42.017 42.017 +Cyanide Cyanide- 0 26.018 26.018 +Cyanate Cyanate- 0 42.017 42.017 #DOM DOM-2.8 0 0 0 #ClIG2 ClIG2 0 0 0 -Ca Ca+2 0 40.08 40.08 -Cd Cd+2 0 112.399 112.399 -Cl Cl- 0 35.453 35.453 -Cr CrO4-2 1 51.996 51.996 -Cr(2) Cr+2 0 51.996 -Cr(3) Cr(OH)2+ 1 51.996 -Cr(6) CrO4-2 1 51.996 -Cu Cu+2 0 63.546 63.546 -Cu(1) Cu+ 0 63.546 -Cu(2) Cu+2 0 63.546 -F F- 0 18.9984 18.9984 -Fe Fe+3 0.0 55.847 55.847 -Fe(+2) Fe+2 0.0 55.847 -Fe(+3) Fe+3 -2.0 55.847 -Hg Hg(OH)2 0 200.59 200.59 -Hg(2) Hg(OH)2 0 200.59 -Hg(1) Hg2+2 0 200.59 -Hg(0) Hg 0 200.59 -I I- 0 126.904 126.904 -K K+ 0 39.102 39.102 -Li Li+ 0 6.939 6.939 -Mg Mg+2 0 24.312 24.312 -Mn Mn+3 0.0 54.938 54.938 -Mn(2) Mn+2 0.0 54.938 -Mn(3) Mn+3 0.0 54.938 -Mn(6) MnO4-2 0.0 54.938 -Mn(7) MnO4- 0.0 54.938 -N NO3- 0.0 14.0067 14.0067 -N(-3) NH4+ 0.0 14.0067 +Ca Ca+2 0 40.08 40.08 +Cd Cd+2 0 112.399 112.399 +Cl Cl- 0 35.453 35.453 +Cr CrO4-2 1 51.996 51.996 +Cr(2) Cr+2 0 51.996 +Cr(3) Cr(OH)2+ 1 51.996 +Cr(6) CrO4-2 1 51.996 +Cu Cu+2 0 63.546 63.546 +Cu(1) Cu+ 0 63.546 +Cu(2) Cu+2 0 63.546 +F F- 0 18.9984 18.9984 +Fe Fe+3 0 55.847 55.847 +Fe(+2) Fe+2 0 55.847 +Fe(+3) Fe+3 -2 55.847 +Hg Hg(OH)2 0 200.59 200.59 +Hg(2) Hg(OH)2 0 200.59 +Hg(1) Hg2+2 0 200.59 +Hg(0) Hg 0 200.59 +I I- 0 126.904 126.904 +K K+ 0 39.102 39.102 +Li Li+ 0 6.939 6.939 +Mg Mg+2 0 24.312 24.312 +Mn Mn+3 0 54.938 54.938 +Mn(2) Mn+2 0 54.938 +Mn(3) Mn+3 0 54.938 +Mn(6) MnO4-2 0 54.938 +Mn(7) MnO4- 0 54.938 +N NO3- 0 14.0067 14.0067 +N(-3) NH4+ 0 14.0067 #N(0) N2 0.0 14.0067 -N(+3) NO2- 0.0 14.0067 -N(+5) NO3- 0.0 14.0067 -Na Na+ 0 22.9898 22.9898 -Ni Ni+2 0 58.71 58.71 -P PO4-3 2.0 30.9738 30.9738 -Pb Pb+2 0 207.19 207.19 -Rb Rb+ 0 85.4699 85.4699 -S SO4-2 0.0 96.0616 32.064 -S(-2) HS- 1.0 32.064 -S(6) SO4-2 0.0 96.0616 -Sb Sb(OH)6- 0. Sb 121.75 -Sb(3) Sb(OH)3 0. Sb -Sb(5) Sb(OH)6- 0 Sb -Se SeO4-2 0.0 78.96 78.96 -Se(-2) HSe- 0.0 78.96 -Se(4) SeO3-2 0.0 78.96 -Se(6) SeO4-2 0.0 78.96 -Si H4SiO4 0 96.1155 28.0843 -Sr Sr+2 0 87.62 87.62 -Tl Tl(OH)3 0 204.37 204.37 -Tl(1) Tl+ 0 204.37 -Tl(3) Tl(OH)3 0 204.37 -U UO2+2 0.0 238.0290 238.0290 -U(3) U+3 0.0 238.0290 -U(4) U+4 0.0 238.0290 -U(5) UO2+ 0.0 238.0290 -U(6) UO2+2 0.0 238.0290 -V VO2+ -2.0 50.94 50.94 -V(2) V+2 0 50.94 -V(3) V+3 -3.0 50.94 -V(4) VO+2 0 50.94 -V(5) VO2+ -2.0 50.94 -Zn Zn+2 0 65.37 65.37 -Benzoate Benzoate- 0 121.12 121.12 -Para_acetate Para_acetate- 1 134.14 134.14 -Isophthalate Isophthalate-2 1 164.12 164.12 -Diethylamine Diethylamine 0 73 73 -Nbutylamine Nbutylamine 1 73 73 -Methylamine Methylamine 1 31.018 31.018 -Dimethylamine Dimethylamine 1 45.028 45.028 -Tributylphosphate Tributylphosphate 0 265.97 265.97 -Hexylamine Hexylamine 1 101 101 -Ethylenediamine Ethylenediamine 2 60.12 60.12 -Npropylamine Npropylamine 1 59.04 59.04 -Isopropylamine Isopropylamine 1 59.04 59.04 -Trimethylamine Trimethylamine 1 59.04 59.04 -Citrate Citrate-3 2 189.06 189.06 -Nta Nta-3 1 188.06 188.06 -Edta Edta-4 2 276 276 -Propanoate Propanoate- 1 73.032 73.032 -Butanoate Butanoate- 0 87.043 87.043 -Isobutyrate Isobutyrate- 1 87.043 87.043 -Two_methylpyridine Two_methylpyridine 1 94 94 -Three_methylpyridine Three_methylpyridine 1 94 94 -Four_methylpyridine Four_methylpyridine 1 94 94 -Formate Formate- 0 45.02 45.02 -Isovalerate Isovalerate- 1 101.13 101.13 -Valerate Valerate- 1 101.13 101.13 -Acetate Acetate- 1 59.05 59.05 -Tartrate Tartrate-2 0 148.09 148.09 -Glycine Glycine- 1 74.07 74.07 -Salicylate Salicylate-2 1 136.12 136.12 -Glutamate Glutamate-2 1 145.13 145.13 -Phthalate Phthalate-2 1 164.13 164.13 +N(+3) NO2- 0 14.0067 +N(+5) NO3- 0 14.0067 +Na Na+ 0 22.9898 22.9898 +Ni Ni+2 0 58.71 58.71 +P PO4-3 2 30.9738 30.9738 +Pb Pb+2 0 207.19 207.19 +Rb Rb+ 0 85.4699 85.4699 +S SO4-2 0 96.0616 32.064 +S(-2) HS- 1 32.064 +S(6) SO4-2 0 96.0616 +Sb Sb(OH)6- 0 Sb 121.75 +Sb(3) Sb(OH)3 0 Sb +Sb(5) Sb(OH)6- 0 Sb +Se SeO4-2 0 78.96 78.96 +Se(-2) HSe- 0 78.96 +Se(4) SeO3-2 0 78.96 +Se(6) SeO4-2 0 78.96 +Si H4SiO4 0 96.1155 28.0843 +Sr Sr+2 0 87.62 87.62 +Tl Tl(OH)3 0 204.37 204.37 +Tl(1) Tl+ 0 204.37 +Tl(3) Tl(OH)3 0 204.37 +U UO2+2 0 238.029 238.029 +U(3) U+3 0 238.029 +U(4) U+4 0 238.029 +U(5) UO2+ 0 238.029 +U(6) UO2+2 0 238.029 +V VO2+ -2 50.94 50.94 +V(2) V+2 0 50.94 +V(3) V+3 -3 50.94 +V(4) VO+2 0 50.94 +V(5) VO2+ -2 50.94 +Zn Zn+2 0 65.37 65.37 +Benzoate Benzoate- 0 121.12 121.12 +Para_acetate Para_acetate- 1 134.14 134.14 +Isophthalate Isophthalate-2 1 164.12 164.12 +Diethylamine Diethylamine 0 73 73 +Nbutylamine Nbutylamine 1 73 73 +Methylamine Methylamine 1 31.018 31.018 +Dimethylamine Dimethylamine 1 45.028 45.028 +Tributylphosphate Tributylphosphate 0 265.97 265.97 +Hexylamine Hexylamine 1 101 101 +Ethylenediamine Ethylenediamine 2 60.12 60.12 +Npropylamine Npropylamine 1 59.04 59.04 +Isopropylamine Isopropylamine 1 59.04 59.04 +Trimethylamine Trimethylamine 1 59.04 59.04 +Citrate Citrate-3 2 189.06 189.06 +Nta Nta-3 1 188.06 188.06 +Edta Edta-4 2 276 276 +Propanoate Propanoate- 1 73.032 73.032 +Butanoate Butanoate- 0 87.043 87.043 +Isobutyrate Isobutyrate- 1 87.043 87.043 +Two_methylpyridine Two_methylpyridine 1 94 94 +Three_methylpyridine Three_methylpyridine 1 94 94 +Four_methylpyridine Four_methylpyridine 1 94 94 +Formate Formate- 0 45.02 45.02 +Isovalerate Isovalerate- 1 101.13 101.13 +Valerate Valerate- 1 101.13 101.13 +Acetate Acetate- 1 59.05 59.05 +Tartrate Tartrate-2 0 148.09 148.09 +Glycine Glycine- 1 74.07 74.07 +Salicylate Salicylate-2 1 136.12 136.12 +Glutamate Glutamate-2 1 145.13 145.13 +Phthalate Phthalate-2 1 164.13 164.13 SOLUTION_SPECIES ####################################################### # essential definitions ####################################################### e- = e- - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal H+ = H+ - log_k 0 - delta_h 0 kcal - -gamma 9.0 0.0 + log_k 0 + delta_h 0 kcal + -gamma 9 0 H2O = H2O - log_k 0 - delta_h 0 kcal -2H2O = O2 + 4H+ + 4e- - log_k -86.08 + log_k 0 + delta_h 0 kcal +2 H2O = O2 + 4 H+ + 4 e- + log_k -86.08 delta_h 134.79 kcal 2 H+ + 2 e- = H2 - log_k -3.15 - delta_h -1.759 kcal + log_k -3.15 + delta_h -1.759 kcal CO3-2 = CO3-2 - log_k 0 - delta_h 0 kcal - -gamma 5.4 0.0 + log_k 0 + delta_h 0 kcal + -gamma 5.4 0 ####################################################### Ag+ = Ag+ - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Al+3 = Al+3 - log_k 0 - delta_h 0 kcal - -gamma 9.0 0.0 + log_k 0 + delta_h 0 kcal + -gamma 9 0 H3AsO4 = H3AsO4 - log_k 0 - delta_h 0 kcal -H3AsO4 + 2e- + 2H+ = H3AsO3 + H2O - log_k 19.444 + log_k 0 + delta_h 0 kcal +H3AsO4 + 2 e- + 2 H+ = H3AsO3 + H2O + log_k 19.444 delta_h -30.015 kcal H3BO3 = H3BO3 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Ba+2 = Ba+2 - log_k 0 - delta_h 0 kcal - -gamma 5.0 0.0 + log_k 0 + delta_h 0 kcal + -gamma 5 0 Be+2 = Be+2 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Br- = Br- - log_k 0 - delta_h 0 kcal - -gamma 4.0 0.0 + log_k 0 + delta_h 0 kcal + -gamma 4 0 Cyanide- = Cyanide- - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Cyanate- = Cyanate- - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Ca+2 = Ca+2 - log_k 0 - delta_h 0 kcal - -gamma 6.0 .165 + log_k 0 + delta_h 0 kcal + -gamma 6 .165 Cd+2 = Cd+2 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Cl- = Cl- - log_k 0 - delta_h 0 kcal - -gamma 3.0 .015 + log_k 0 + delta_h 0 kcal + -gamma 3 .015 CrO4-2 = CrO4-2 - log_k 0 - delta_h 0 kcal - -gamma 4.0 0.0 -Cr(OH)2+ + 2H+ + e- = Cr+2 + 2H2O - log_k 2.947 - delta_h 6.36 kcal -CrO4-2 + 6H+ + 3e- = Cr(OH)2+ + 2H2O - log_k 67.376 - delta_h -103 kcal + log_k 0 + delta_h 0 kcal + -gamma 4 0 +Cr(OH)2+ + 2 H+ + e- = Cr+2 + 2 H2O + log_k 2.947 + delta_h 6.36 kcal +CrO4-2 + 6 H+ + 3 e- = Cr(OH)2+ + 2 H2O + log_k 67.376 + delta_h -103 kcal Cu+2 = Cu+2 - log_k 0 - delta_h 0 kcal - -gamma 2.5 0.0 + log_k 0 + delta_h 0 kcal + -gamma 2.5 0 Cu+2 + e- = Cu+ - log_k 2.72 - delta_h 1.65 kcal - -gamma 2.5 0.0 + log_k 2.72 + delta_h 1.65 kcal + -gamma 2.5 0 F- = F- - log_k 0 - delta_h 0 kcal - -gamma 3.5 0.0 + log_k 0 + delta_h 0 kcal + -gamma 3.5 0 Fe+3 = Fe+3 - log_k 0 - delta_h 0 kcal - -gamma 9.0 0.0 + log_k 0 + delta_h 0 kcal + -gamma 9 0 Fe+3 + e- = Fe+2 - log_k 13.032 - delta_h -10 kcal - -gamma 6.0 0.0 + log_k 13.032 + delta_h -10 kcal + -gamma 6 0 Hg(OH)2 = Hg(OH)2 - log_k 0 - delta_h 0 kcal -2Hg(OH)2 + 4H+ + 2e- = Hg2+2 + 4H2O - log_k 42.987 - delta_h -63.59 kcal - -gamma 4.0 0.0 -0.5Hg2+2 + e- = Hg - log_k 6.9316 + log_k 0 + delta_h 0 kcal +2 Hg(OH)2 + 4 H+ + 2 e- = Hg2+2 + 4 H2O + log_k 42.987 + delta_h -63.59 kcal + -gamma 4 0 +0.5 Hg2+2 + e- = Hg + log_k 6.9316 delta_h -16.605 kcal I- = I- - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal K+ = K+ - log_k 0 - delta_h 0 kcal - -gamma 3.0 .015 + log_k 0 + delta_h 0 kcal + -gamma 3 .015 Li+ = Li+ - log_k 0 - delta_h 0 kcal - -gamma 6.0 0.0 + log_k 0 + delta_h 0 kcal + -gamma 6 0 Mg+2 = Mg+2 - log_k 0 - delta_h 0 kcal - -gamma 6.5 .20 -Mn+2 + 4H2O = MnO4- + 8H+ + 5e- - log_k -127.824 - delta_h 176.62 kcal - -gamma 3.0 0 -Mn+2 + 4H2O = MnO4-2 + 8H+ + 4e- - log_k -118.44 - delta_h 150.02 kcal - -gamma 5.0 0 + log_k 0 + delta_h 0 kcal + -gamma 6.5 .2 +Mn+2 + 4 H2O = MnO4- + 8 H+ + 5 e- + log_k -127.824 + delta_h 176.62 kcal + -gamma 3 0 +Mn+2 + 4 H2O = MnO4-2 + 8 H+ + 4 e- + log_k -118.44 + delta_h 150.02 kcal + -gamma 5 0 Mn+3 = Mn+3 - log_k 0 - delta_h 0 kcal - -gamma 9.0 0.0 + log_k 0 + delta_h 0 kcal + -gamma 9 0 Mn+3 + e- = Mn+2 - log_k 25.507 - delta_h 25.76 kcal - -gamma 6.0 0.0 + log_k 25.507 + delta_h 25.76 kcal + -gamma 6 0 NO3- = NO3- - log_k 0 - delta_h 0 kcal - -gamma 3.0 0.0 -NO3- + 2H+ + 2e- = NO2- + H2O - log_k 28.57 - delta_h -43.76 kcal -NO3- + 10H+ + 8e- = NH4+ + 3H2O - log_k 119.077 - delta_h -187.055 kcal - -gamma 2.5 0.0 + log_k 0 + delta_h 0 kcal + -gamma 3 0 +NO3- + 2 H+ + 2 e- = NO2- + H2O + log_k 28.57 + delta_h -43.76 kcal +NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O + log_k 119.077 + delta_h -187.055 kcal + -gamma 2.5 0 Na+ = Na+ - log_k 0 - delta_h 0 kcal - -gamma 4.0 .075 + log_k 0 + delta_h 0 kcal + -gamma 4 .075 Ni+2 = Ni+2 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal PO4-3 = PO4-3 - log_k 0 - delta_h 0 kcal - -gamma 5.0 0.0 + log_k 0 + delta_h 0 kcal + -gamma 5 0 Pb+2 = Pb+2 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Rb+ = Rb+ - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal SO4-2 = SO4-2 - log_k 0 - delta_h 0 kcal - -gamma 4.0 -.04 -SO4-2 + 9H+ + 8e- = HS- + 4H2O - log_k 33.66 - delta_h -60.14 kcal - -gamma 3.5 0.0 + log_k 0 + delta_h 0 kcal + -gamma 4 -.04 +SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O + log_k 33.66 + delta_h -60.14 kcal + -gamma 3.5 0 Sb(OH)6- = Sb(OH)6- - log_k 0 - delta_h 0 kcal -Sb(OH)6- + 2e- + 3H+ = Sb(OH)3 + 3H2O - log_k 25.7791 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal +Sb(OH)6- + 2 e- + 3 H+ = Sb(OH)3 + 3 H2O + log_k 25.7791 + delta_h 0 kcal SeO4-2 = SeO4-2 - log_k 0 - delta_h 0 kcal - -gamma 4.0 0.0 -HSeO3- + 6e- + 6H+ = HSe- + 3H2O - log_k 35.38 - delta_h -78.17 kcal -SeO4-2 + 2e- + 3H+ = HSeO3- + H2O - log_k 36.319 + log_k 0 + delta_h 0 kcal + -gamma 4 0 +HSeO3- + 6 e- + 6 H+ = HSe- + 3 H2O + log_k 35.38 + delta_h -78.17 kcal +SeO4-2 + 2 e- + 3 H+ = HSeO3- + H2O + log_k 36.319 delta_h -48.095 kcal H4SiO4 = H4SiO4 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Sr+2 = Sr+2 - log_k 0 - delta_h 0 kcal - -gamma 5.0 0.0 + log_k 0 + delta_h 0 kcal + -gamma 5 0 Tl(OH)3 = Tl(OH)3 - log_k 0 - delta_h 0 kcal -Tl(OH)3 + 2e- + 3H+ = Tl+ + 3H2O - log_k 48.0178 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal +Tl(OH)3 + 2 e- + 3 H+ = Tl+ + 3 H2O + log_k 48.0178 + delta_h 0 kcal UO2+2 = UO2+2 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal UO2+2 + e- = UO2+ - log_k 2.785 - delta_h -3.3 kcal -UO2+2 + 2e- + 4H+ = U+4 + 2H2O - log_k 9.216 - delta_h -34.43 kcal -UO2+2 + 3e- + 4H+ = U+3 + 2H2O - log_k 0.42 - delta_h -10.03 kcal + log_k 2.785 + delta_h -3.3 kcal +UO2+2 + 2 e- + 4 H+ = U+4 + 2 H2O + log_k 9.216 + delta_h -34.43 kcal +UO2+2 + 3 e- + 4 H+ = U+3 + 2 H2O + log_k 0.42 + delta_h -10.03 kcal VO2+ = VO2+ - log_k 0 - delta_h 0 kcal -VO2+ + e- + 2H+ = VO+2 + H2O - log_k 16.93 - delta_h -29.32 kcal -VO2+ + 2e- + 4H+ = V+3 + 2H2O - log_k 22.61 - delta_h -44.23 kcal -VO2+ + 3e- + 4H+ = V+2 + 2H2O - log_k 18.38 - delta_h -35.33 kcal + log_k 0 + delta_h 0 kcal +VO2+ + e- + 2 H+ = VO+2 + H2O + log_k 16.93 + delta_h -29.32 kcal +VO2+ + 2 e- + 4 H+ = V+3 + 2 H2O + log_k 22.61 + delta_h -44.23 kcal +VO2+ + 3 e- + 4 H+ = V+2 + 2 H2O + log_k 18.38 + delta_h -35.33 kcal Zn+2 = Zn+2 - log_k 0 - delta_h 0 kcal - -gamma 6.0 0.0 + log_k 0 + delta_h 0 kcal + -gamma 6 0 Benzoate- = Benzoate- - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Para_acetate- = Para_acetate- - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Isophthalate-2 = Isophthalate-2 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Diethylamine = Diethylamine - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Nbutylamine = Nbutylamine - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Methylamine = Methylamine - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Dimethylamine = Dimethylamine - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Tributylphosphate = Tributylphosphate - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Hexylamine = Hexylamine - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Ethylenediamine = Ethylenediamine - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Npropylamine = Npropylamine - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Isopropylamine = Isopropylamine - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Trimethylamine = Trimethylamine - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Citrate-3 = Citrate-3 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Nta-3 = Nta-3 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Edta-4 = Edta-4 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Propanoate- = Propanoate- - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Butanoate- = Butanoate- - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Isobutyrate- = Isobutyrate- - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Two_methylpyridine = Two_methylpyridine - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Three_methylpyridine = Three_methylpyridine - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Four_methylpyridine = Four_methylpyridine - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Formate- = Formate- - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Isovalerate- = Isovalerate- - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Valerate- = Valerate- - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Acetate- = Acetate- - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Tartrate-2 = Tartrate-2 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Glycine- = Glycine- - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Salicylate-2 = Salicylate-2 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Glutamate-2 = Glutamate-2 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal Phthalate-2 = Phthalate-2 - log_k 0 - delta_h 0 kcal + log_k 0 + delta_h 0 kcal SOLUTION_SPECIES H2O = OH- + H+ - log_k -13.998 - delta_h 13.345 kcal - -gamma 3.5 0 + log_k -13.998 + delta_h 13.345 kcal + -gamma 3.5 0 H4SiO4 = H3SiO4- + H+ - log_k -9.93 - delta_h 8.935 kcal - -gamma 4 0 - -analytical 6.368 -0.016346 -3405.9 -H4SiO4 = H2SiO4-2 + 2H+ - log_k -21.619 - delta_h 29.714 kcal - -gamma 5.4 0 - -analytical 39.478 -0.065927 -12355.1 -H4SiO4 + 6F- + 4H+ = SiF6-2 + 4H2O - log_k 30.18 - delta_h -16.26 kcal - -gamma 5 0 + log_k -9.93 + delta_h 8.935 kcal + -gamma 4 0 + -analytical 6.368 -0.016346 -3405.9 +H4SiO4 = H2SiO4-2 + 2 H+ + log_k -21.619 + delta_h 29.714 kcal + -gamma 5.4 0 + -analytical 39.478 -0.065927 -12355.1 +H4SiO4 + 6 F- + 4 H+ = SiF6-2 + 4 H2O + log_k 30.18 + delta_h -16.26 kcal + -gamma 5 0 H3BO3 = H2BO3- + H+ - log_k -9.24 - delta_h 3.224 kcal - -gamma 2.5 0 - -analytical 24.3919 0.012078 -1343.9 -13.2258 + log_k -9.24 + delta_h 3.224 kcal + -gamma 2.5 0 + -analytical 24.3919 0.012078 -1343.9 -13.2258 H3BO3 + F- = BF(OH)3- - log_k -0.399 - delta_h 1.85 kcal - -gamma 2.5 0 -H3BO3 + 2F- + H+ = BF2(OH)2- + H2O - log_k 7.63 - delta_h 1.635 kcal - -gamma 2.5 0 -H3BO3 + 3F- + 2H+ = BF3OH- + 2H2O - log_k 13.667 - delta_h -1.58 kcal - -gamma 2.5 0 -H3BO3 + 4F- + 3H+ = BF4- + 3H2O - log_k 20.274 - delta_h -1.795 kcal - -gamma 2.5 0 + log_k -0.399 + delta_h 1.85 kcal + -gamma 2.5 0 +H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O + log_k 7.63 + delta_h 1.635 kcal + -gamma 2.5 0 +H3BO3 + 3 F- + 2 H+ = BF3OH- + 2 H2O + log_k 13.667 + delta_h -1.58 kcal + -gamma 2.5 0 +H3BO3 + 4 F- + 3 H+ = BF4- + 3 H2O + log_k 20.274 + delta_h -1.795 kcal + -gamma 2.5 0 NH4+ = NH3 + H+ - log_k -9.252 - delta_h 12.48 kcal - -analytical 0.6322 -0.001225 -2835.76 + log_k -9.252 + delta_h 12.48 kcal + -analytical 0.6322 -0.001225 -2835.76 NH4+ + SO4-2 = NH4SO4- - log_k 1.11 - delta_h 0 kcal - -gamma 5 0 + log_k 1.11 + delta_h 0 kcal + -gamma 5 0 Mg+2 + H2O = MgOH+ + H+ - log_k -11.79 - delta_h 15.935 kcal - -gamma 6.5 0 - -analytical -3.53 0.00513 -2917.1 + log_k -11.79 + delta_h 15.935 kcal + -gamma 6.5 0 + -analytical -3.53 0.00513 -2917.1 Mg+2 + F- = MgF+ - log_k 1.82 - delta_h 4.674 kcal - -gamma 4.5 0 + log_k 1.82 + delta_h 4.674 kcal + -gamma 4.5 0 Mg+2 + CO3-2 = MgCO3 - log_k 2.98 - delta_h 2.022 kcal - -analytical 0.991 0.00667 + log_k 2.98 + delta_h 2.022 kcal + -analytical 0.991 0.00667 Mg+2 + CO3-2 + H+ = MgHCO3+ - log_k 11.4 - delta_h -2.43 kcal - -gamma 4 0 -# Minteq a_e has more constants than phreeqc, can not use + log_k 11.4 + delta_h -2.43 kcal + -gamma 4 0 +# Minteq a_e has more constants than phreeqc, can not use # -analytical_expression -4.179 0.012734 2902.39 0.0 2.29812E-5 Mg+2 + SO4-2 = MgSO4 - log_k 2.25 - delta_h 1.399 kcal + log_k 2.25 + delta_h 1.399 kcal Mg+2 + PO4-3 = MgPO4- - log_k 6.589 - delta_h 3.1 kcal - -gamma 5.4 0 -Mg+2 + PO4-3 + 2H+ = MgH2PO4+ - log_k 21.066 - delta_h -1.12 kcal - -gamma 5.4 0 + log_k 6.589 + delta_h 3.1 kcal + -gamma 5.4 0 +Mg+2 + PO4-3 + 2 H+ = MgH2PO4+ + log_k 21.066 + delta_h -1.12 kcal + -gamma 5.4 0 Mg+2 + PO4-3 + H+ = MgHPO4 - log_k 15.22 - delta_h -0.23 kcal + log_k 15.22 + delta_h -0.23 kcal Ca+2 + H2O = CaOH+ + H+ - log_k -12.598 - delta_h 14.535 kcal - -gamma 6 0 + log_k -12.598 + delta_h 14.535 kcal + -gamma 6 0 Ca+2 + CO3-2 + H+ = CaHCO3+ - log_k 11.33 - delta_h 1.79 kcal - -gamma 6 0 - -analytical -9.448 0.03709 2902.39 + log_k 11.33 + delta_h 1.79 kcal + -gamma 6 0 + -analytical -9.448 0.03709 2902.39 Ca+2 + CO3-2 = CaCO3 - log_k 3.15 - delta_h 4.03 kcal - -analytical -27.393 0.05617 4114.0 + log_k 3.15 + delta_h 4.03 kcal + -analytical -27.393 0.05617 4114 Ca+2 + SO4-2 = CaSO4 - log_k 2.309 - delta_h 1.47 kcal + log_k 2.309 + delta_h 1.47 kcal Ca+2 + PO4-3 + H+ = CaHPO4 - log_k 15.085 - delta_h -0.23 kcal + log_k 15.085 + delta_h -0.23 kcal Ca+2 + PO4-3 = CaPO4- - log_k 6.459 - delta_h 3.1 kcal - -gamma 5.4 0 -Ca+2 + PO4-3 + 2H+ = CaH2PO4+ - log_k 20.96 - delta_h -1.12 kcal - -gamma 5.4 0 + log_k 6.459 + delta_h 3.1 kcal + -gamma 5.4 0 +Ca+2 + PO4-3 + 2 H+ = CaH2PO4+ + log_k 20.96 + delta_h -1.12 kcal + -gamma 5.4 0 Ca+2 + F- = CaF+ - log_k 0.94 - delta_h 3.798 kcal - -gamma 5 0 + log_k 0.94 + delta_h 3.798 kcal + -gamma 5 0 Na+ + CO3-2 = NaCO3- - log_k 1.268 - delta_h 8.911 kcal - -gamma 5.4 0 + log_k 1.268 + delta_h 8.911 kcal + -gamma 5.4 0 Na+ + CO3-2 + H+ = NaHCO3 - log_k 10.08 - delta_h 0 kcal + log_k 10.08 + delta_h 0 kcal Na+ + SO4-2 = NaSO4- - log_k 0.7 - delta_h 1.12 kcal - -gamma 5.4 0 + log_k 0.7 + delta_h 1.12 kcal + -gamma 5.4 0 Na+ + PO4-3 + H+ = NaHPO4- - log_k 12.636 - delta_h 0 kcal - -gamma 5.4 0 + log_k 12.636 + delta_h 0 kcal + -gamma 5.4 0 Na+ + F- = NaF - log_k -0.79 - delta_h 0 kcal + log_k -0.79 + delta_h 0 kcal K+ + SO4-2 = KSO4- - log_k 0.85 - delta_h 2.25 kcal - -gamma 5.4 0 - -analytical 3.106 0.00 -673.6 + log_k 0.85 + delta_h 2.25 kcal + -gamma 5.4 0 + -analytical 3.106 0 -673.6 K+ + PO4-3 + H+ = KHPO4- - log_k 12.64 - -gamma 5.4 0 - delta_h 0 kcal + log_k 12.64 + -gamma 5.4 0 + delta_h 0 kcal Al+3 + H2O = AlOH+2 + H+ - log_k -4.99 - delta_h 11.899 kcal - -gamma 5.4 0 -Al+3 + 2H2O = Al(OH)2+ + 2H+ - log_k -10.1 - delta_h 0 kcal - -gamma 5.4 0 -Al+3 + 4H2O = Al(OH)4- + 4H+ - log_k -23 - delta_h 44.06 kcal - -gamma 4.5 0 + log_k -4.99 + delta_h 11.899 kcal + -gamma 5.4 0 +Al+3 + 2 H2O = Al(OH)2+ + 2 H+ + log_k -10.1 + delta_h 0 kcal + -gamma 5.4 0 +Al+3 + 4 H2O = Al(OH)4- + 4 H+ + log_k -23 + delta_h 44.06 kcal + -gamma 4.5 0 Al+3 + F- = AlF+2 - log_k 7.01 - delta_h 0 kcal - -gamma 5.4 0 -Al+3 + 2F- = AlF2+ - log_k 12.75 - delta_h 20 kcal - -gamma 5.4 0 -Al+3 + 3F- = AlF3 - log_k 17.02 - delta_h 2.5 kcal -Al+3 + 4F- = AlF4- - log_k 19.72 - delta_h 0 kcal - -gamma 4.5 0 + log_k 7.01 + delta_h 0 kcal + -gamma 5.4 0 +Al+3 + 2 F- = AlF2+ + log_k 12.75 + delta_h 20 kcal + -gamma 5.4 0 +Al+3 + 3 F- = AlF3 + log_k 17.02 + delta_h 2.5 kcal +Al+3 + 4 F- = AlF4- + log_k 19.72 + delta_h 0 kcal + -gamma 4.5 0 Al+3 + SO4-2 = AlSO4+ - log_k 3.02 - delta_h 2.15 kcal - -gamma 4.5 0 -Al+3 + 2SO4-2 = Al(SO4)2- - log_k 4.92 - delta_h 2.84 kcal - -gamma 4.5 0 -Al+3 + 3H2O = Al(OH)3 + 3H+ - log_k -16 - delta_h 0 kcal + log_k 3.02 + delta_h 2.15 kcal + -gamma 4.5 0 +Al+3 + 2 SO4-2 = Al(SO4)2- + log_k 4.92 + delta_h 2.84 kcal + -gamma 4.5 0 +Al+3 + 3 H2O = Al(OH)3 + 3 H+ + log_k -16 + delta_h 0 kcal Fe+2 + H2O = FeOH+ + H+ - log_k -9.5 - delta_h 13.199 kcal - -gamma 5 0 -Fe+2 + 3H2O = Fe(OH)3- + 3H+ - log_k -31 - delta_h 30.3 kcal - -gamma 5 0 + log_k -9.5 + delta_h 13.199 kcal + -gamma 5 0 +Fe+2 + 3 H2O = Fe(OH)3- + 3 H+ + log_k -31 + delta_h 30.3 kcal + -gamma 5 0 Fe+2 + SO4-2 = FeSO4 - log_k 2.25 - delta_h 3.23 kcal -Fe+2 + PO4-3 + 2H+ = FeH2PO4+ - log_k 22.253 - delta_h 0 kcal - -gamma 5.4 0 -Fe+2 + 2H2O = Fe(OH)2 + 2H+ - log_k -20.57 - delta_h 28.565 kcal + log_k 2.25 + delta_h 3.23 kcal +Fe+2 + PO4-3 + 2 H+ = FeH2PO4+ + log_k 22.253 + delta_h 0 kcal + -gamma 5.4 0 +Fe+2 + 2 H2O = Fe(OH)2 + 2 H+ + log_k -20.57 + delta_h 28.565 kcal Fe+2 + PO4-3 + H+ = FeHPO4 - log_k 15.95 - delta_h 0 kcal -Fe+2 + 2HS- = Fe(HS)2 - log_k 8.95 - delta_h 0 kcal -Fe+2 + 3HS- = Fe(HS)3- - log_k 10.987 - delta_h 0 kcal + log_k 15.95 + delta_h 0 kcal +Fe+2 + 2 HS- = Fe(HS)2 + log_k 8.95 + delta_h 0 kcal +Fe+2 + 3 HS- = Fe(HS)3- + log_k 10.987 + delta_h 0 kcal Fe+3 + H2O = FeOH+2 + H+ - log_k -2.19 - delta_h 10.399 kcal - -gamma 5 0 + log_k -2.19 + delta_h 10.399 kcal + -gamma 5 0 Fe+3 + PO4-3 + H+ = FeHPO4+ - log_k 17.78 - delta_h -7.3 kcal - -gamma 5.4 0 + log_k 17.78 + delta_h -7.3 kcal + -gamma 5.4 0 Fe+3 + SO4-2 = FeSO4+ - log_k 3.92 - delta_h 3.91 kcal - -gamma 5 0 + log_k 3.92 + delta_h 3.91 kcal + -gamma 5 0 Fe+3 + Cl- = FeCl+2 - log_k 1.48 - delta_h 5.6 kcal - -gamma 5 0 -Fe+3 + 2Cl- = FeCl2+ - log_k 2.13 - delta_h 0 kcal - -gamma 5 0 -Fe+3 + 3Cl- = FeCl3 - log_k 1.13 - delta_h 0 kcal -Fe+3 + 2H2O = Fe(OH)2+ + 2H+ - log_k -5.67 - delta_h 0 kcal - -gamma 5.4 0 -Fe+3 + 3H2O = Fe(OH)3 + 3H+ - log_k -13.6 - delta_h 0 kcal -Fe+3 + 4H2O = Fe(OH)4- + 4H+ - log_k -21.6 - delta_h 0 kcal - -gamma 5.4 0 -Fe+3 + PO4-3 + 2H+ = FeH2PO4+2 - log_k 24.98 - delta_h 0 kcal - -gamma 5.4 0 + log_k 1.48 + delta_h 5.6 kcal + -gamma 5 0 +Fe+3 + 2 Cl- = FeCl2+ + log_k 2.13 + delta_h 0 kcal + -gamma 5 0 +Fe+3 + 3 Cl- = FeCl3 + log_k 1.13 + delta_h 0 kcal +Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ + log_k -5.67 + delta_h 0 kcal + -gamma 5.4 0 +Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ + log_k -13.6 + delta_h 0 kcal +Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ + log_k -21.6 + delta_h 0 kcal + -gamma 5.4 0 +Fe+3 + PO4-3 + 2 H+ = FeH2PO4+2 + log_k 24.98 + delta_h 0 kcal + -gamma 5.4 0 Fe+3 + F- = FeF+2 - log_k 6.199 - delta_h 2.699 kcal - -gamma 5 0 -Fe+3 + 2F- = FeF2+ - log_k 10.8 - delta_h 4.8 kcal - -gamma 5 0 -Fe+3 + 3F- = FeF3 - log_k 14 - delta_h 5.399 kcal -Fe+3 + 2SO4-2 = Fe(SO4)2- - log_k 5.42 - delta_h 4.6 kcal -2Fe+3 + 2H2O = Fe2(OH)2+4 + 2H+ - log_k -2.95 - delta_h 13.5 kcal -3Fe+3 + 4H2O = Fe3(OH)4+5 + 4H+ - log_k -6.3 - delta_h 14.3 kcal + log_k 6.199 + delta_h 2.699 kcal + -gamma 5 0 +Fe+3 + 2 F- = FeF2+ + log_k 10.8 + delta_h 4.8 kcal + -gamma 5 0 +Fe+3 + 3 F- = FeF3 + log_k 14 + delta_h 5.399 kcal +Fe+3 + 2 SO4-2 = Fe(SO4)2- + log_k 5.42 + delta_h 4.6 kcal +2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ + log_k -2.95 + delta_h 13.5 kcal +3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ + log_k -6.3 + delta_h 14.3 kcal Li+ + SO4-2 = LiSO4- - log_k 0.64 - delta_h 0 kcal - -gamma 5 0 + log_k 0.64 + delta_h 0 kcal + -gamma 5 0 Sr+2 + H2O = SrOH+ + H+ - log_k -13.178 - delta_h 14.495 kcal - -gamma 5 0 + log_k -13.178 + delta_h 14.495 kcal + -gamma 5 0 Ba+2 + H2O = BaOH+ + H+ - log_k -13.358 - delta_h 15.095 kcal - -gamma 5 0 + log_k -13.358 + delta_h 15.095 kcal + -gamma 5 0 Mn+2 + Cl- = MnCl+ - log_k 0.607 - delta_h 0 kcal - -gamma 5 0 -Mn+2 + 2Cl- = MnCl2 - log_k 0.041 - delta_h 0 kcal -Mn+2 + 3Cl- = MnCl3- - log_k -0.305 - delta_h 0 kcal - -gamma 5 0 + log_k 0.607 + delta_h 0 kcal + -gamma 5 0 +Mn+2 + 2 Cl- = MnCl2 + log_k 0.041 + delta_h 0 kcal +Mn+2 + 3 Cl- = MnCl3- + log_k -0.305 + delta_h 0 kcal + -gamma 5 0 Mn+2 + H2O = MnOH+ + H+ - log_k -10.59 - delta_h 14.399 kcal - -gamma 5 0 -Mn+2 + 3H2O = Mn(OH)3- + 3H+ - log_k -34.8 - delta_h 0 kcal - -gamma 5 0 + log_k -10.59 + delta_h 14.399 kcal + -gamma 5 0 +Mn+2 + 3 H2O = Mn(OH)3- + 3 H+ + log_k -34.8 + delta_h 0 kcal + -gamma 5 0 Mn+2 + F- = MnF+ - log_k 0.85 - delta_h 0 kcal - -gamma 5 0 + log_k 0.85 + delta_h 0 kcal + -gamma 5 0 Mn+2 + SO4-2 = MnSO4 - log_k 2.26 - delta_h 2.17 kcal -Mn+2 + 2NO3- = Mn(NO3)2 - log_k 0.6 - delta_h -0.396 kcal + log_k 2.26 + delta_h 2.17 kcal +Mn+2 + 2 NO3- = Mn(NO3)2 + log_k 0.6 + delta_h -0.396 kcal Mn+2 + CO3-2 + H+ = MnHCO3+ - log_k 11.6 - delta_h 0 kcal - -gamma 5 0 -Cu+ + 2Cl- = CuCl2- - log_k 5.5 - delta_h -0.42 kcal - -gamma 4 0 -Cu+ + 3Cl- = CuCl3-2 - log_k 5.7 - delta_h 0.26 kcal - -gamma 5 0 -Cu+ + 2HS- = Cu(S4)2-3 + 2H+ - log_k 3.39 - delta_h 0 kcal - -gamma 23 0 + log_k 11.6 + delta_h 0 kcal + -gamma 5 0 +Cu+ + 2 Cl- = CuCl2- + log_k 5.5 + delta_h -0.42 kcal + -gamma 4 0 +Cu+ + 3 Cl- = CuCl3-2 + log_k 5.7 + delta_h 0.26 kcal + -gamma 5 0 +Cu+ + 2 HS- = Cu(S4)2-3 + 2 H+ + log_k 3.39 + delta_h 0 kcal + -gamma 23 0 -no_check -mass_balance Cu(1)(S(-2)4)2 -Cu+ + 2HS- = CuS4S5-3 + 2H+ - log_k 2.66 - delta_h 0 kcal - -gamma 25 0 +Cu+ + 2 HS- = CuS4S5-3 + 2 H+ + log_k 2.66 + delta_h 0 kcal + -gamma 25 0 -no_check -mass_balance Cu(1)S(-2)4S(-2)5 Cu+2 + Acetate- = CuAcetate+ - log_k 2.22 - delta_h 0 kcal + log_k 2.22 + delta_h 0 kcal Cu+2 + Glycine- = CuGlycine+ - log_k 8.62 - delta_h 0 kcal -2Cu+2 + Glycine- = Cu2Glycine+3 - log_k 15.64 - delta_h 0 kcal + log_k 8.62 + delta_h 0 kcal +2 Cu+2 + Glycine- = Cu2Glycine+3 + log_k 15.64 + delta_h 0 kcal Cu+2 + Salicylate-2 = CuSalicylate - log_k 10.64 - delta_h 0 kcal -2Cu+2 + Salicylate-2 = Cu2Salicylate+2 - log_k 16.94 - delta_h 0 kcal + log_k 10.64 + delta_h 0 kcal +2 Cu+2 + Salicylate-2 = Cu2Salicylate+2 + log_k 16.94 + delta_h 0 kcal Cu+2 + Glutamate-2 = CuGlutamate - log_k 8.33 - delta_h 0 kcal -2Cu+2 + Glutamate-2 = Cu2Glutamate+2 - log_k 14.84 - delta_h 0 kcal -2Cu+2 + Phthalate-2 = Cu2Phthalate+2 - log_k 5.3 - delta_h 0 kcal + log_k 8.33 + delta_h 0 kcal +2 Cu+2 + Glutamate-2 = Cu2Glutamate+2 + log_k 14.84 + delta_h 0 kcal +2 Cu+2 + Phthalate-2 = Cu2Phthalate+2 + log_k 5.3 + delta_h 0 kcal Cu+2 + CO3-2 = CuCO3 - log_k 6.73 - delta_h 0 kcal -Cu+2 + 2CO3-2 = Cu(CO3)2-2 - log_k 9.83 - delta_h 0 kcal + log_k 6.73 + delta_h 0 kcal +Cu+2 + 2 CO3-2 = Cu(CO3)2-2 + log_k 9.83 + delta_h 0 kcal Cu+2 + Cl- = CuCl+ - log_k 0.43 - delta_h 8.65 kcal - -gamma 4 0 -Cu+2 + 2Cl- = CuCl2 - log_k 0.16 - delta_h 10.56 kcal -Cu+2 + 3Cl- = CuCl3- - log_k -2.29 - delta_h 13.69 kcal - -gamma 4 0 -Cu+2 + 4Cl- = CuCl4-2 - log_k -4.59 - delta_h 7.78 kcal - -gamma 5 0 + log_k 0.43 + delta_h 8.65 kcal + -gamma 4 0 +Cu+2 + 2 Cl- = CuCl2 + log_k 0.16 + delta_h 10.56 kcal +Cu+2 + 3 Cl- = CuCl3- + log_k -2.29 + delta_h 13.69 kcal + -gamma 4 0 +Cu+2 + 4 Cl- = CuCl4-2 + log_k -4.59 + delta_h 7.78 kcal + -gamma 5 0 Cu+2 + F- = CuF+ - log_k 1.26 - delta_h 1.62 kcal + log_k 1.26 + delta_h 1.62 kcal Cu+2 + H2O = CuOH+ + H+ - log_k -8 - delta_h 0 kcal - -gamma 4 0 -Cu+2 + 2H2O = Cu(OH)2 + 2H+ - log_k -13.68 - delta_h 0 kcal -Cu+2 + 3H2O = Cu(OH)3- + 3H+ - log_k -26.899 - delta_h 0 kcal -Cu+2 + 4H2O = Cu(OH)4-2 + 4H+ - log_k -39.6 - delta_h 0 kcal -2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ - log_k -10.359 - delta_h 17.539 kcal - -analytical 2.497 0.0 -3833.0 + log_k -8 + delta_h 0 kcal + -gamma 4 0 +Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ + log_k -13.68 + delta_h 0 kcal +Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ + log_k -26.899 + delta_h 0 kcal +Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ + log_k -39.6 + delta_h 0 kcal +2 Cu+2 + 2 H2O = Cu2(OH)2+2 + 2 H+ + log_k -10.359 + delta_h 17.539 kcal + -analytical 2.497 0 -3833 Cu+2 + SO4-2 = CuSO4 - log_k 2.31 - delta_h 1.22 kcal -Cu+2 + 3HS- = Cu(HS)3- - log_k 25.899 - delta_h 0 kcal + log_k 2.31 + delta_h 1.22 kcal +Cu+2 + 3 HS- = Cu(HS)3- + log_k 25.899 + delta_h 0 kcal Cu+2 + CO3-2 + H+ = CuHCO3+ - log_k 13 - delta_h 0 kcal + log_k 13 + delta_h 0 kcal Zn+2 + Cl- = ZnCl+ - log_k 0.43 - delta_h 7.79 kcal - -gamma 4 0 -Zn+2 + 2Cl- = ZnCl2 - log_k 0.45 - delta_h 8.5 kcal -Zn+2 + 3Cl- = ZnCl3- - log_k 0.5 - delta_h 9.56 kcal - -gamma 4 0 -Zn+2 + 4Cl- = ZnCl4-2 - log_k 0.199 - delta_h 10.96 kcal - -gamma 5 0 + log_k 0.43 + delta_h 7.79 kcal + -gamma 4 0 +Zn+2 + 2 Cl- = ZnCl2 + log_k 0.45 + delta_h 8.5 kcal +Zn+2 + 3 Cl- = ZnCl3- + log_k 0.5 + delta_h 9.56 kcal + -gamma 4 0 +Zn+2 + 4 Cl- = ZnCl4-2 + log_k 0.199 + delta_h 10.96 kcal + -gamma 5 0 Zn+2 + F- = ZnF+ - log_k 1.15 - delta_h 2.22 kcal + log_k 1.15 + delta_h 2.22 kcal Zn+2 + H2O = ZnOH+ + H+ - log_k -8.96 - delta_h 13.399 kcal -Zn+2 + 2H2O = Zn(OH)2 + 2H+ - log_k -16.899 - delta_h 0 kcal -Zn+2 + 3H2O = Zn(OH)3- + 3H+ - log_k -28.399 - delta_h 0 kcal -Zn+2 + 4H2O = Zn(OH)4-2 + 4H+ - log_k -41.199 - delta_h 0 kcal + log_k -8.96 + delta_h 13.399 kcal +Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ + log_k -16.899 + delta_h 0 kcal +Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ + log_k -28.399 + delta_h 0 kcal +Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ + log_k -41.199 + delta_h 0 kcal Zn+2 + H2O + Cl- = ZnOHCl + H+ - log_k -7.48 - delta_h 0 kcal -Zn+2 + 2HS- = Zn(HS)2 - log_k 14.94 - delta_h 0 kcal -Zn+2 + 3HS- = Zn(HS)3- - log_k 16.1 - delta_h 0 kcal + log_k -7.48 + delta_h 0 kcal +Zn+2 + 2 HS- = Zn(HS)2 + log_k 14.94 + delta_h 0 kcal +Zn+2 + 3 HS- = Zn(HS)3- + log_k 16.1 + delta_h 0 kcal Zn+2 + SO4-2 = ZnSO4 - log_k 2.37 - delta_h 1.36 kcal -Zn+2 + 2SO4-2 = Zn(SO4)2-2 - log_k 3.28 - delta_h 0 kcal + log_k 2.37 + delta_h 1.36 kcal +Zn+2 + 2 SO4-2 = Zn(SO4)2-2 + log_k 3.28 + delta_h 0 kcal Zn+2 + Br- = ZnBr+ - log_k -0.58 - delta_h 0 kcal -Zn+2 + 2Br- = ZnBr2 - log_k -0.98 - delta_h 0 kcal + log_k -0.58 + delta_h 0 kcal +Zn+2 + 2 Br- = ZnBr2 + log_k -0.98 + delta_h 0 kcal Zn+2 + I- = ZnI+ - log_k -2.91 - delta_h 0 kcal -Zn+2 + 2I- = ZnI2 - log_k -1.69 - delta_h 0 kcal + log_k -2.91 + delta_h 0 kcal +Zn+2 + 2 I- = ZnI2 + log_k -1.69 + delta_h 0 kcal Zn+2 + CO3-2 + H+ = ZnHCO3+ - log_k 12.4 - delta_h 0 kcal + log_k 12.4 + delta_h 0 kcal Zn+2 + CO3-2 = ZnCO3 - log_k 5.3 - delta_h 0 kcal -Zn+2 + 2CO3-2 = Zn(CO3)2-2 - log_k 9.63 - delta_h 0 kcal + log_k 5.3 + delta_h 0 kcal +Zn+2 + 2 CO3-2 = Zn(CO3)2-2 + log_k 9.63 + delta_h 0 kcal Cd+2 + Cl- = CdCl+ - log_k 1.98 - delta_h 0.59 kcal -Cd+2 + 2Cl- = CdCl2 - log_k 2.6 - delta_h 1.24 kcal -Cd+2 + 3Cl- = CdCl3- - log_k 2.399 - delta_h 3.9 kcal + log_k 1.98 + delta_h 0.59 kcal +Cd+2 + 2 Cl- = CdCl2 + log_k 2.6 + delta_h 1.24 kcal +Cd+2 + 3 Cl- = CdCl3- + log_k 2.399 + delta_h 3.9 kcal Cd+2 + F- = CdF+ - log_k 1.1 - delta_h 0 kcal -Cd+2 + 2F- = CdF2 - log_k 1.5 - delta_h 0 kcal -Cd+2 + 3CO3-2 = Cd(CO3)3-4 - log_k 6.22 - delta_h 0 kcal + log_k 1.1 + delta_h 0 kcal +Cd+2 + 2 F- = CdF2 + log_k 1.5 + delta_h 0 kcal +Cd+2 + 3 CO3-2 = Cd(CO3)3-4 + log_k 6.22 + delta_h 0 kcal Cd+2 + H2O = CdOH+ + H+ - log_k -10.08 - delta_h 13.1 kcal -Cd+2 + 2H2O = Cd(OH)2 + 2H+ - log_k -20.35 - delta_h 0 kcal -Cd+2 + 3H2O = Cd(OH)3- + 3H+ - log_k -33.3 - delta_h 0 kcal -Cd+2 + 4H2O = Cd(OH)4-2 + 4H+ - log_k -47.35 - delta_h 0 kcal -2Cd+2 + H2O = Cd2OH+3 + H+ - log_k -9.39 - delta_h 10.899 kcal + log_k -10.08 + delta_h 13.1 kcal +Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ + log_k -20.35 + delta_h 0 kcal +Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ + log_k -33.3 + delta_h 0 kcal +Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ + log_k -47.35 + delta_h 0 kcal +2 Cd+2 + H2O = Cd2OH+3 + H+ + log_k -9.39 + delta_h 10.899 kcal Cd+2 + H2O + Cl- = CdOHCl + H+ - log_k -7.404 - delta_h 4.355 kcal + log_k -7.404 + delta_h 4.355 kcal Cd+2 + NO3- = CdNO3+ - log_k 0.399 - delta_h -5.2 kcal + log_k 0.399 + delta_h -5.2 kcal Cd+2 + SO4-2 = CdSO4 - log_k 2.46 - delta_h 1.08 kcal + log_k 2.46 + delta_h 1.08 kcal Cd+2 + HS- = CdHS+ - log_k 10.17 - delta_h 0 kcal -Cd+2 + 2HS- = Cd(HS)2 - log_k 16.53 - delta_h 0 kcal -Cd+2 + 3HS- = Cd(HS)3- - log_k 18.71 - delta_h 0 kcal -Cd+2 + 4HS- = Cd(HS)4-2 - log_k 20.9 - delta_h 0 kcal + log_k 10.17 + delta_h 0 kcal +Cd+2 + 2 HS- = Cd(HS)2 + log_k 16.53 + delta_h 0 kcal +Cd+2 + 3 HS- = Cd(HS)3- + log_k 18.71 + delta_h 0 kcal +Cd+2 + 4 HS- = Cd(HS)4-2 + log_k 20.9 + delta_h 0 kcal Cd+2 + Br- = CdBr+ - log_k 2.17 - delta_h -0.81 kcal -Cd+2 + 2Br- = CdBr2 - log_k 2.899 - delta_h 0 kcal + log_k 2.17 + delta_h -0.81 kcal +Cd+2 + 2 Br- = CdBr2 + log_k 2.899 + delta_h 0 kcal Cd+2 + I- = CdI+ - log_k 2.15 - delta_h -2.37 kcal -Cd+2 + 2I- = CdI2 - log_k 3.59 - delta_h 0 kcal + log_k 2.15 + delta_h -2.37 kcal +Cd+2 + 2 I- = CdI2 + log_k 3.59 + delta_h 0 kcal Cd+2 + CO3-2 + H+ = CdHCO3+ - log_k 12.4 - delta_h 0 kcal + log_k 12.4 + delta_h 0 kcal Cd+2 + CO3-2 = CdCO3 - log_k 5.399 - delta_h 0 kcal -Cd+2 + 2SO4-2 = Cd(SO4)2-2 - log_k 3.5 - delta_h 0 kcal + log_k 5.399 + delta_h 0 kcal +Cd+2 + 2 SO4-2 = Cd(SO4)2-2 + log_k 3.5 + delta_h 0 kcal Pb+2 + Cl- = PbCl+ - log_k 1.6 - delta_h 4.38 kcal -Pb+2 + 2Cl- = PbCl2 - log_k 1.8 - delta_h 1.08 kcal -Pb+2 + 3Cl- = PbCl3- - log_k 1.699 - delta_h 2.17 kcal -Pb+2 + 4Cl- = PbCl4-2 - log_k 1.38 - delta_h 3.53 kcal -Pb+2 + 2CO3-2 = Pb(CO3)2-2 - log_k 10.64 - delta_h 0 kcal + log_k 1.6 + delta_h 4.38 kcal +Pb+2 + 2 Cl- = PbCl2 + log_k 1.8 + delta_h 1.08 kcal +Pb+2 + 3 Cl- = PbCl3- + log_k 1.699 + delta_h 2.17 kcal +Pb+2 + 4 Cl- = PbCl4-2 + log_k 1.38 + delta_h 3.53 kcal +Pb+2 + 2 CO3-2 = Pb(CO3)2-2 + log_k 10.64 + delta_h 0 kcal Pb+2 + F- = PbF+ - log_k 1.25 - delta_h 0 kcal -Pb+2 + 2F- = PbF2 - log_k 2.56 - delta_h 0 kcal -Pb+2 + 3F- = PbF3- - log_k 3.42 - delta_h 0 kcal -Pb+2 + 4F- = PbF4-2 - log_k 3.1 - delta_h 0 kcal + log_k 1.25 + delta_h 0 kcal +Pb+2 + 2 F- = PbF2 + log_k 2.56 + delta_h 0 kcal +Pb+2 + 3 F- = PbF3- + log_k 3.42 + delta_h 0 kcal +Pb+2 + 4 F- = PbF4-2 + log_k 3.1 + delta_h 0 kcal Pb+2 + H2O = PbOH+ + H+ - log_k -7.71 - delta_h 0 kcal -Pb+2 + 2H2O = Pb(OH)2 + 2H+ - log_k -17.12 - delta_h 0 kcal -Pb+2 + 3H2O = Pb(OH)3- + 3H+ - log_k -28.06 - delta_h 0 kcal -2Pb+2 + H2O = Pb2OH+3 + H+ - log_k -6.36 - delta_h 0 kcal + log_k -7.71 + delta_h 0 kcal +Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ + log_k -17.12 + delta_h 0 kcal +Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ + log_k -28.06 + delta_h 0 kcal +2 Pb+2 + H2O = Pb2OH+3 + H+ + log_k -6.36 + delta_h 0 kcal Pb+2 + NO3- = PbNO3+ - log_k 1.17 - delta_h 0 kcal + log_k 1.17 + delta_h 0 kcal Pb+2 + SO4-2 = PbSO4 - log_k 2.75 - delta_h 0 kcal -Pb+2 + 2HS- = Pb(HS)2 - log_k 15.27 - delta_h 0 kcal -Pb+2 + 3HS- = Pb(HS)3- - log_k 16.57 - delta_h 0 kcal -3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ - log_k -23.88 - delta_h 26.5 kcal + log_k 2.75 + delta_h 0 kcal +Pb+2 + 2 HS- = Pb(HS)2 + log_k 15.27 + delta_h 0 kcal +Pb+2 + 3 HS- = Pb(HS)3- + log_k 16.57 + delta_h 0 kcal +3 Pb+2 + 4 H2O = Pb3(OH)4+2 + 4 H+ + log_k -23.88 + delta_h 26.5 kcal Pb+2 + Br- = PbBr+ - log_k 1.77 - delta_h 2.88 kcal -Pb+2 + 2Br- = PbBr2 - log_k 1.44 - delta_h 0 kcal + log_k 1.77 + delta_h 2.88 kcal +Pb+2 + 2 Br- = PbBr2 + log_k 1.44 + delta_h 0 kcal Pb+2 + I- = PbI+ - log_k 1.94 - delta_h 0 kcal -Pb+2 + 2I- = PbI2 - log_k 3.199 - delta_h 0 kcal + log_k 1.94 + delta_h 0 kcal +Pb+2 + 2 I- = PbI2 + log_k 3.199 + delta_h 0 kcal Pb+2 + CO3-2 = PbCO3 - log_k 7.24 - delta_h 0 kcal -Pb+2 + 4H2O = Pb(OH)4-2 + 4H+ - log_k -39.699 - delta_h 0 kcal -Pb+2 + 2SO4-2 = Pb(SO4)2-2 - log_k 3.47 - delta_h 0 kcal + log_k 7.24 + delta_h 0 kcal +Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ + log_k -39.699 + delta_h 0 kcal +Pb+2 + 2 SO4-2 = Pb(SO4)2-2 + log_k 3.47 + delta_h 0 kcal Pb+2 + CO3-2 + H+ = PbHCO3+ - log_k 13.2 - delta_h 0 kcal + log_k 13.2 + delta_h 0 kcal Ni+2 + Br- = NiBr+ - log_k 0.5 - delta_h 0 kcal + log_k 0.5 + delta_h 0 kcal Ni+2 + Cl- = NiCl+ - log_k 0.399 - delta_h 0 kcal + log_k 0.399 + delta_h 0 kcal Ni+2 + F- = NiF+ - log_k 1.3 - delta_h 0 kcal + log_k 1.3 + delta_h 0 kcal Ni+2 + H2O = NiOH+ + H+ - log_k -9.86 - delta_h 12.42 kcal -Ni+2 + 2H2O = Ni(OH)2 + 2H+ - log_k -19 - delta_h 0 kcal -Ni+2 + 3H2O = Ni(OH)3- + 3H+ - log_k -30 - delta_h 0 kcal + log_k -9.86 + delta_h 12.42 kcal +Ni+2 + 2 H2O = Ni(OH)2 + 2 H+ + log_k -19 + delta_h 0 kcal +Ni+2 + 3 H2O = Ni(OH)3- + 3 H+ + log_k -30 + delta_h 0 kcal Ni+2 + SO4-2 = NiSO4 - log_k 2.29 - delta_h 1.52 kcal -Ni+2 + 2Cl- = NiCl2 - log_k 0.96 - delta_h 0 kcal + log_k 2.29 + delta_h 1.52 kcal +Ni+2 + 2 Cl- = NiCl2 + log_k 0.96 + delta_h 0 kcal Ni+2 + CO3-2 + H+ = NiHCO3+ - log_k 12.47 - delta_h 0 kcal + log_k 12.47 + delta_h 0 kcal Ni+2 + CO3-2 = NiCO3 - log_k 6.87 - delta_h 0 kcal -Ni+2 + 2CO3-2 = Ni(CO3)2-2 - log_k 10.11 - delta_h 0 kcal -Ni+2 + 2SO4-2 = Ni(SO4)2-2 - log_k 1.02 - delta_h 0 kcal + log_k 6.87 + delta_h 0 kcal +Ni+2 + 2 CO3-2 = Ni(CO3)2-2 + log_k 10.11 + delta_h 0 kcal +Ni+2 + 2 SO4-2 = Ni(SO4)2-2 + log_k 1.02 + delta_h 0 kcal Ni+2 + Acetate- = NiAcetate+ - log_k 1.43 - delta_h 0 kcal + log_k 1.43 + delta_h 0 kcal Ni+2 + Glycine- = NiGlycine+ - log_k 6.18 - delta_h 0 kcal -2Ni+2 + Glycine- = Ni2Glycine+3 - log_k 11.13 - delta_h 0 kcal + log_k 6.18 + delta_h 0 kcal +2 Ni+2 + Glycine- = Ni2Glycine+3 + log_k 11.13 + delta_h 0 kcal Ni+2 + Salicylate-2 = NiSalicylate - log_k 6.95 - delta_h 0 kcal -2Ni+2 + Salicylate-2 = Ni2Salicylate+2 - log_k 11.75 - delta_h 0 kcal + log_k 6.95 + delta_h 0 kcal +2 Ni+2 + Salicylate-2 = Ni2Salicylate+2 + log_k 11.75 + delta_h 0 kcal Ni+2 + Glutamate-2 = NiGlutamate - log_k 5.9 - delta_h 0 kcal -2Ni+2 + Glutamate-2 = Ni2Glutamate+2 - log_k 10.34 - delta_h 0 kcal + log_k 5.9 + delta_h 0 kcal +2 Ni+2 + Glutamate-2 = Ni2Glutamate+2 + log_k 10.34 + delta_h 0 kcal Ni+2 + Phthalate-2 = NiPhthalate - log_k 2.95 - delta_h 0 kcal + log_k 2.95 + delta_h 0 kcal Ag+ + Br- = AgBr - log_k 4.24 - delta_h 0 kcal -Ag+ + 2Br- = AgBr2- - log_k 7.28 - delta_h 0 kcal + log_k 4.24 + delta_h 0 kcal +Ag+ + 2 Br- = AgBr2- + log_k 7.28 + delta_h 0 kcal Ag+ + Cl- = AgCl - log_k 3.27 - delta_h -2.68 kcal -Ag+ + 2Cl- = AgCl2- - log_k 5.27 - delta_h -3.93 kcal -Ag+ + 3Cl- = AgCl3-2 - log_k 5.29 - delta_h 0 kcal -Ag+ + 4Cl- = AgCl4-3 - log_k 5.51 - delta_h 0 kcal + log_k 3.27 + delta_h -2.68 kcal +Ag+ + 2 Cl- = AgCl2- + log_k 5.27 + delta_h -3.93 kcal +Ag+ + 3 Cl- = AgCl3-2 + log_k 5.29 + delta_h 0 kcal +Ag+ + 4 Cl- = AgCl4-3 + log_k 5.51 + delta_h 0 kcal Ag+ + F- = AgF - log_k 0.36 - delta_h -2.83 kcal + log_k 0.36 + delta_h -2.83 kcal Ag+ + HS- = AgHS - log_k 14.05 - delta_h 0 kcal -Ag+ + 2HS- = Ag(HS)2- - log_k 18.45 - delta_h 0 kcal + log_k 14.05 + delta_h 0 kcal +Ag+ + 2 HS- = Ag(HS)2- + log_k 18.45 + delta_h 0 kcal Ag+ + I- = AgI - log_k 6.6 - delta_h 0 kcal -Ag+ + 2I- = AgI2- - log_k 10.68 - delta_h 0 kcal + log_k 6.6 + delta_h 0 kcal +Ag+ + 2 I- = AgI2- + log_k 10.68 + delta_h 0 kcal Ag+ + H2O = AgOH + H+ - log_k -12 - delta_h 0 kcal -Ag+ + 2H2O = Ag(OH)2- + 2H+ - log_k -24 - delta_h 0 kcal + log_k -12 + delta_h 0 kcal +Ag+ + 2 H2O = Ag(OH)2- + 2 H+ + log_k -24 + delta_h 0 kcal Ag+ + SO4-2 = AgSO4- - log_k 1.29 - delta_h 1.49 kcal + log_k 1.29 + delta_h 1.49 kcal Ag+ + NO3- = AgNO3 - log_k -0.29 - delta_h 0 kcal -Ag+ + 2NO2- = Ag(NO2)2- - log_k 2.22 - delta_h 0 kcal -Ag+ + 3Br- = AgBr3-2 - log_k 8.71 - delta_h 0 kcal -Ag+ + 3I- = AgI3-2 - log_k 13.37 - delta_h -27.03 kcal -Ag+ + 4I- = AgI4-3 - log_k 14.08 - delta_h 0 kcal -Ag+ + 2HS- = Ag(S4)2-3 + 2H+ - log_k 0.991 - delta_h 0 kcal - -gamma 22 0 + log_k -0.29 + delta_h 0 kcal +Ag+ + 2 NO2- = Ag(NO2)2- + log_k 2.22 + delta_h 0 kcal +Ag+ + 3 Br- = AgBr3-2 + log_k 8.71 + delta_h 0 kcal +Ag+ + 3 I- = AgI3-2 + log_k 13.37 + delta_h -27.03 kcal +Ag+ + 4 I- = AgI4-3 + log_k 14.08 + delta_h 0 kcal +Ag+ + 2 HS- = Ag(S4)2-3 + 2 H+ + log_k 0.991 + delta_h 0 kcal + -gamma 22 0 -no_check -mass_balance Ag(S(-2)4)2 -Ag+ + 2HS- = AgS4S5-3 + 2H+ - log_k 0.68 - delta_h 0 kcal - -gamma 24 0 +Ag+ + 2 HS- = AgS4S5-3 + 2 H+ + log_k 0.68 + delta_h 0 kcal + -gamma 24 0 -no_check -mass_balance AgS(-2)4S(-2)5 -Ag+ + 2HS- = Ag(HS)S4-2 + H+ - log_k 10.431 - delta_h 0 kcal - -gamma 15 0 +Ag+ + 2 HS- = Ag(HS)S4-2 + H+ + log_k 10.431 + delta_h 0 kcal + -gamma 15 0 -no_check -mass_balance Ag(HS(-2))S(-2)4 H3AsO3 = H2AsO3- + H+ - log_k -9.228 - delta_h 6.56 kcal -H3AsO3 = HAsO3-2 + 2H+ - log_k -21.33 - delta_h 14.199 kcal -H3AsO3 = AsO3-3 + 3H+ - log_k -34.744 - delta_h 20.25 kcal + log_k -9.228 + delta_h 6.56 kcal +H3AsO3 = HAsO3-2 + 2 H+ + log_k -21.33 + delta_h 14.199 kcal +H3AsO3 = AsO3-3 + 3 H+ + log_k -34.744 + delta_h 20.25 kcal H3AsO3 + H+ = H4AsO3+ - log_k -0.305 - delta_h 0 kcal + log_k -0.305 + delta_h 0 kcal H3AsO4 = H2AsO4- + H+ - log_k -2.243 - delta_h -1.69 kcal -H3AsO4 = HAsO4-2 + 2H+ - log_k -9.001 - delta_h -0.92 kcal -H3AsO4 = AsO4-3 + 3H+ - log_k -20.597 - delta_h 3.43 kcal + log_k -2.243 + delta_h -1.69 kcal +H3AsO4 = HAsO4-2 + 2 H+ + log_k -9.001 + delta_h -0.92 kcal +H3AsO4 = AsO4-3 + 3 H+ + log_k -20.597 + delta_h 3.43 kcal Sb(OH)3 = HSbO2 + H2O - log_k -0.0073 - delta_h -0.015 kcal -Sb(OH)3 + F- + H+ = SbOF + 2H2O - log_k 6.1864 - delta_h 0 kcal + log_k -0.0073 + delta_h -0.015 kcal +Sb(OH)3 + F- + H+ = SbOF + 2 H2O + log_k 6.1864 + delta_h 0 kcal Sb(OH)3 + F- + H+ = Sb(OH)2F + H2O - log_k 6.1937 - delta_h 0 kcal -Sb(OH)3 + H+ = SbO+ + 2H2O - log_k 0.9228 - delta_h 1.97 kcal + log_k 6.1937 + delta_h 0 kcal +Sb(OH)3 + H+ = SbO+ + 2 H2O + log_k 0.9228 + delta_h 1.97 kcal Sb(OH)3 = SbO2- + H2O + H+ - log_k -11.8011 - delta_h 16.775 kcal + log_k -11.8011 + delta_h 16.775 kcal Sb(OH)3 + H+ = Sb(OH)2+ + H2O - log_k 1.3853 - delta_h 0 kcal -2Sb(OH)3 + 4HS- + 2H+ = Sb2S4-2 + 6H2O - log_k 49.3005 - delta_h -75.68 kcal -Sb(OH)6- = SbO3- + 3H2O - log_k 2.9319 - delta_h 0 kcal -Sb(OH)6- + 2H+ = SbO2+ + 4H2O - log_k 2.3895 - delta_h 0 kcal + log_k 1.3853 + delta_h 0 kcal +2 Sb(OH)3 + 4 HS- + 2 H+ = Sb2S4-2 + 6 H2O + log_k 49.3005 + delta_h -75.68 kcal +Sb(OH)6- = SbO3- + 3 H2O + log_k 2.9319 + delta_h 0 kcal +Sb(OH)6- + 2 H+ = SbO2+ + 4 H2O + log_k 2.3895 + delta_h 0 kcal Sb(OH)3 + H2O = Sb(OH)4- + H+ - log_k -12.0429 - delta_h 16.695 kcal + log_k -12.0429 + delta_h 16.695 kcal CO3-2 + H+ = HCO3- - log_k 10.33 - delta_h -3.617 kcal - -gamma 5.4 0 - -analytical -6.498 0.02379 2902.39 -CO3-2 + 2H+ = H2CO3 - log_k 16.681 - delta_h -2.247 kcal + log_k 10.33 + delta_h -3.617 kcal + -gamma 5.4 0 + -analytical -6.498 0.02379 2902.39 +CO3-2 + 2 H+ = H2CO3 + log_k 16.681 + delta_h -2.247 kcal SO4-2 + H+ = HSO4- - log_k 1.987 - delta_h 4.91 kcal - -gamma 4.5 0 - -analytical -5.3505 0.0183412 557.2461 + log_k 1.987 + delta_h 4.91 kcal + -gamma 4.5 0 + -analytical -5.3505 0.0183412 557.2461 F- + H+ = HF - log_k 3.169 - delta_h 3.46 kcal -2F- + H+ = HF2- - log_k 3.749 - delta_h 4.55 kcal - -gamma 3.5 0 -2F- + 2H+ = H2F2 - log_k 6.768 - delta_h 0 kcal + log_k 3.169 + delta_h 3.46 kcal +2 F- + H+ = HF2- + log_k 3.749 + delta_h 4.55 kcal + -gamma 3.5 0 +2 F- + 2 H+ = H2F2 + log_k 6.768 + delta_h 0 kcal PO4-3 + H+ = HPO4-2 - log_k 12.346 - delta_h -3.53 kcal - -gamma 5 0 -PO4-3 + 2H+ = H2PO4- - log_k 19.553 - delta_h -4.52 kcal - -gamma 5.4 0 -PO4-3 + 3H+ = H3PO4 - log_k 21.7 - delta_h 0 kcal + log_k 12.346 + delta_h -3.53 kcal + -gamma 5 0 +PO4-3 + 2 H+ = H2PO4- + log_k 19.553 + delta_h -4.52 kcal + -gamma 5.4 0 +PO4-3 + 3 H+ = H3PO4 + log_k 21.7 + delta_h 0 kcal HS- + H+ = H2S - log_k 6.994 - delta_h -5.3 kcal - -analytical -11.17 0.02386 3279.0 + log_k 6.994 + delta_h -5.3 kcal + -analytical -11.17 0.02386 3279 HS- = S-2 + H+ - log_k -12.918 - delta_h 12.1 kcal - -gamma 5 0 + log_k -12.918 + delta_h 12.1 kcal + -gamma 5 0 U+4 + H2O = UOH+3 + H+ - log_k -0.656 - delta_h 11.715 kcal - -analytical -9.16 0.0285 -U+4 + 2H2O = U(OH)2+2 + 2H+ - log_k -2.27 - delta_h 17.73 kcal -U+4 + 3H2O = U(OH)3+ + 3H+ - log_k -4.935 - delta_h 22.645 kcal -U+4 + 4H2O = U(OH)4 + 4H+ - log_k -8.498 - delta_h 24.76 kcal -U+4 + 5H2O = U(OH)5- + 5H+ - log_k -13.12 - delta_h 27.575 kcal -6U+4 + 15H2O = U6(OH)15+9 + 15H+ - log_k -17.229 - delta_h 0 kcal + log_k -0.656 + delta_h 11.715 kcal + -analytical -9.16 0.0285 +U+4 + 2 H2O = U(OH)2+2 + 2 H+ + log_k -2.27 + delta_h 17.73 kcal +U+4 + 3 H2O = U(OH)3+ + 3 H+ + log_k -4.935 + delta_h 22.645 kcal +U+4 + 4 H2O = U(OH)4 + 4 H+ + log_k -8.498 + delta_h 24.76 kcal +U+4 + 5 H2O = U(OH)5- + 5 H+ + log_k -13.12 + delta_h 27.575 kcal +6 U+4 + 15 H2O = U6(OH)15+9 + 15 H+ + log_k -17.229 + delta_h 0 kcal U+4 + F- = UF+3 - log_k 8.659 - delta_h 5.05 kcal -U+4 + 2F- = UF2+2 - log_k 14.457 - delta_h 7.2 kcal -U+4 + 3F- = UF3+ - log_k 19.115 - delta_h 7.15 kcal -U+4 + 4F- = UF4 - log_k 23.64 - delta_h 4.6 kcal -U+4 + 5F- = UF5- - log_k 25.238 - delta_h 4.85 kcal -U+4 + 6F- = UF6-2 - log_k 27.718 - delta_h 3.3 kcal + log_k 8.659 + delta_h 5.05 kcal +U+4 + 2 F- = UF2+2 + log_k 14.457 + delta_h 7.2 kcal +U+4 + 3 F- = UF3+ + log_k 19.115 + delta_h 7.15 kcal +U+4 + 4 F- = UF4 + log_k 23.64 + delta_h 4.6 kcal +U+4 + 5 F- = UF5- + log_k 25.238 + delta_h 4.85 kcal +U+4 + 6 F- = UF6-2 + log_k 27.718 + delta_h 3.3 kcal U+4 + Cl- = UCl+3 - log_k 1.338 - delta_h 9.933 kcal + log_k 1.338 + delta_h 9.933 kcal U+4 + SO4-2 = USO4+2 - log_k 5.461 - delta_h 3.7 kcal -U+4 + 2SO4-2 = U(SO4)2 - log_k 9.749 - delta_h 7.6 kcal + log_k 5.461 + delta_h 3.7 kcal +U+4 + 2 SO4-2 = U(SO4)2 + log_k 9.749 + delta_h 7.6 kcal U+4 + PO4-3 + H+ = UHPO4+2 - log_k 24.443 - delta_h 7.5 kcal -U+4 + 2PO4-3 + 2H+ = U(HPO4)2 - log_k 46.833 - delta_h 1.7 kcal -U+4 + 3PO4-3 + 3H+ = U(HPO4)3-2 - log_k 67.564 - delta_h -7.8 kcal -U+4 + 4PO4-3 + 4H+ = U(HPO4)4-4 - log_k 88.483 - delta_h -26.5 kcal + log_k 24.443 + delta_h 7.5 kcal +U+4 + 2 PO4-3 + 2 H+ = U(HPO4)2 + log_k 46.833 + delta_h 1.7 kcal +U+4 + 3 PO4-3 + 3 H+ = U(HPO4)3-2 + log_k 67.564 + delta_h -7.8 kcal +U+4 + 4 PO4-3 + 4 H+ = U(HPO4)4-4 + log_k 88.483 + delta_h -26.5 kcal UO2+2 + H2O = UO2OH+ + H+ - log_k -5.09 - delta_h 10.216 kcal -2UO2+2 + 2H2O = (UO2)2(OH)2+2 + 2H+ - log_k -5.645 - delta_h 10.23 kcal -3UO2+2 + 5H2O = (UO2)3(OH)5+ + 5H+ - log_k -15.593 - delta_h 25.075 kcal + log_k -5.09 + delta_h 10.216 kcal +2 UO2+2 + 2 H2O = (UO2)2(OH)2+2 + 2 H+ + log_k -5.645 + delta_h 10.23 kcal +3 UO2+2 + 5 H2O = (UO2)3(OH)5+ + 5 H+ + log_k -15.593 + delta_h 25.075 kcal UO2+2 + CO3-2 = UO2CO3 - log_k 10.071 - delta_h 0.84 kcal - -analytical -9.56 0.03434 2809.0 -UO2+2 + 2CO3-2 = UO2(CO3)2-2 - log_k 17.008 - delta_h 3.48 kcal - -analytical 14.14 0.0096 -UO2+2 + 3CO3-2 = UO2(CO3)3-4 - log_k 21.384 - delta_h -8.78 kcal + log_k 10.071 + delta_h 0.84 kcal + -analytical -9.56 0.03434 2809 +UO2+2 + 2 CO3-2 = UO2(CO3)2-2 + log_k 17.008 + delta_h 3.48 kcal + -analytical 14.14 0.0096 +UO2+2 + 3 CO3-2 = UO2(CO3)3-4 + log_k 21.384 + delta_h -8.78 kcal UO2+2 + F- = UO2F+ - log_k 5.105 - delta_h -0.45 kcal -UO2+2 + 2F- = UO2F2 - log_k 8.92 - delta_h -0.9 kcal -UO2+2 + 3F- = UO2F3- - log_k 11.364 - delta_h -0.85 kcal -UO2+2 + 4F- = UO2F4-2 - log_k 12.607 - delta_h -1.1 kcal + log_k 5.105 + delta_h -0.45 kcal +UO2+2 + 2 F- = UO2F2 + log_k 8.92 + delta_h -0.9 kcal +UO2+2 + 3 F- = UO2F3- + log_k 11.364 + delta_h -0.85 kcal +UO2+2 + 4 F- = UO2F4-2 + log_k 12.607 + delta_h -1.1 kcal UO2+2 + Cl- = UO2Cl+ - log_k 0.22 - delta_h 1.233 kcal + log_k 0.22 + delta_h 1.233 kcal UO2+2 + SO4-2 = UO2SO4 - log_k 2.709 - delta_h 5.1 kcal -# Minteq a_e has more constants than phreeqc, can not use + log_k 2.709 + delta_h 5.1 kcal +# Minteq a_e has more constants than phreeqc, can not use # -analytical 11.384 -0.07088 0.0 0.0 1.40277E-4 -UO2+2 + 2SO4-2 = UO2(SO4)2-2 - log_k 4.183 - delta_h 6.1 kcal -# Minteq a_e has more constants than phreeqc, can not use +UO2+2 + 2 SO4-2 = UO2(SO4)2-2 + log_k 4.183 + delta_h 6.1 kcal +# Minteq a_e has more constants than phreeqc, can not use # -analytical 12.130 -0.068297 0.0 0.0 1.3987E-04 UO2+2 + PO4-3 + H+ = UO2HPO4 - log_k 20.814 - delta_h -2.1 kcal -UO2+2 + 2PO4-3 + 2H+ = UO2(HPO4)2-2 - log_k 42.988 + log_k 20.814 + delta_h -2.1 kcal +UO2+2 + 2 PO4-3 + 2 H+ = UO2(HPO4)2-2 + log_k 42.988 delta_h -11.399 kcal -UO2+2 + PO4-3 + 2H+ = UO2H2PO4+ - log_k 22.643 - delta_h -3.7 kcal -UO2+2 + 2PO4-3 + 4H+ = UO2(H2PO4)2 - log_k 44.7 - delta_h -16.5 kcal -UO2+2 + 3PO4-3 + 6H+ = UO2(H2PO4)3- - log_k 66.245 - delta_h -28.6 kcal +UO2+2 + PO4-3 + 2 H+ = UO2H2PO4+ + log_k 22.643 + delta_h -3.7 kcal +UO2+2 + 2 PO4-3 + 4 H+ = UO2(H2PO4)2 + log_k 44.7 + delta_h -16.5 kcal +UO2+2 + 3 PO4-3 + 6 H+ = UO2(H2PO4)3- + log_k 66.245 + delta_h -28.6 kcal UO2+2 + H4SiO4 = UO2H3SiO4+ + H+ - log_k -2.4 - delta_h 0 kcal -HS- = S2-2 + H+ - log_k -14.528 - delta_h 11.4 kcal + log_k -2.4 + delta_h 0 kcal +HS- = S2-2 + H+ + log_k -14.528 + delta_h 11.4 kcal -no_check -mass_balance S(-2)2 -HS- = S3-2 + H+ - log_k -13.282 - delta_h 10.4 kcal +HS- = S3-2 + H+ + log_k -13.282 + delta_h 10.4 kcal -no_check -mass_balance S(-2)3 -HS- = S4-2 + H+ - log_k -9.829 - delta_h 9.7 kcal +HS- = S4-2 + H+ + log_k -9.829 + delta_h 9.7 kcal -no_check -mass_balance S(-2)4 -HS- = S5-2 + H+ - log_k -9.595 - delta_h 9.3 kcal +HS- = S5-2 + H+ + log_k -9.595 + delta_h 9.3 kcal -no_check -mass_balance S(-2)5 -HS- = S6-2 + H+ - log_k -9.881 - delta_h 0 kcal +HS- = S6-2 + H+ + log_k -9.881 + delta_h 0 kcal -no_check -mass_balance S(-2)6 V+2 + H2O = VOH+ + H+ - log_k -5.64 - delta_h 0 kcal + log_k -5.64 + delta_h 0 kcal V+3 + H2O = VOH+2 + H+ - log_k -2.3 - delta_h 9.35 kcal -V+3 + 2H2O = V(OH)2+ + 2H+ - log_k -5.83 - delta_h 0 kcal -V+3 + 3H2O = V(OH)3 + 3H+ - log_k -11.02 - delta_h 0 kcal + log_k -2.3 + delta_h 9.35 kcal +V+3 + 2 H2O = V(OH)2+ + 2 H+ + log_k -5.83 + delta_h 0 kcal +V+3 + 3 H2O = V(OH)3 + 3 H+ + log_k -11.02 + delta_h 0 kcal V+3 + SO4-2 = VSO4+ - log_k 1.44 - delta_h 0 kcal -2V+3 + 3H2O = V2(OH)3+3 + 3H+ - log_k -7.5 - delta_h 0 kcal -2V+3 + 2H2O = V2(OH)2+4 + 2H+ - log_k -3.75 - delta_h 0 kcal -VO+2 + 2H2O = V(OH)3+ + H+ - log_k -5.67 - delta_h 0 kcal -2VO+2 + 2H2O = H2V2O4+2 + 2H+ - log_k -6.44 - delta_h 0 kcal + log_k 1.44 + delta_h 0 kcal +2 V+3 + 3 H2O = V2(OH)3+3 + 3 H+ + log_k -7.5 + delta_h 0 kcal +2 V+3 + 2 H2O = V2(OH)2+4 + 2 H+ + log_k -3.75 + delta_h 0 kcal +VO+2 + 2 H2O = V(OH)3+ + H+ + log_k -5.67 + delta_h 0 kcal +2 VO+2 + 2 H2O = H2V2O4+2 + 2 H+ + log_k -6.44 + delta_h 0 kcal VO+2 + F- = VOF+ - log_k 3.34 - delta_h 1.9 kcal -VO+2 + 2F- = VOF2 - log_k 5.74 - delta_h 3.5 kcal -VO+2 + 3F- = VOF3- - log_k 7.3 - delta_h 4.9 kcal -VO+2 + 4F- = VOF4-2 - log_k 8.11 - delta_h 6.4 kcal + log_k 3.34 + delta_h 1.9 kcal +VO+2 + 2 F- = VOF2 + log_k 5.74 + delta_h 3.5 kcal +VO+2 + 3 F- = VOF3- + log_k 7.3 + delta_h 4.9 kcal +VO+2 + 4 F- = VOF4-2 + log_k 8.11 + delta_h 6.4 kcal VO+2 + SO4-2 = VOSO4 - log_k 2.45 - delta_h 3.72 kcal + log_k 2.45 + delta_h 3.72 kcal VO+2 + Cl- = VOCl+ - log_k 0.02 - delta_h 0 kcal -VO2+ + 2H2O = H3VO4 + H+ - log_k -3.3 - delta_h 10.63 kcal -VO2+ + 2H2O = H2VO4- + 2H+ - log_k -7.09 - delta_h 11.33 kcal -VO2+ + 2H2O = HVO4-2 + 3H+ - log_k -15.15 - delta_h 14.93 kcal -VO2+ + 2H2O = VO4-3 + 4H+ - log_k -28.4 - delta_h 19.53 kcal -2VO2+ + 3H2O = V2O7-4 + 6H+ - log_k -29.08 - delta_h 0 kcal -2VO2+ + 3H2O = HV2O7-3 + 5H+ - log_k -16.32 - delta_h 0 kcal -2VO2+ + 3H2O = H3V2O7- + 3H+ - log_k -3.79 - delta_h 0 kcal -3VO2+ + 3H2O = V3O9-3 + 6H+ - log_k -15.88 - delta_h 0 kcal -4VO2+ + 4H2O = V4O12-4 + 8H+ - log_k -20.79 - delta_h 0 kcal -10VO2+ + 8H2O = V10O28-6 + 16H+ - log_k -17.53 - delta_h 0 kcal -10VO2+ + 8H2O = HV10O28-5 + 15H+ - log_k -11.35 - delta_h 21.52 kcal -10VO2+ + 8H2O = H2V10O28-4 + 14H+ - log_k -7.71 - delta_h 0 kcal + log_k 0.02 + delta_h 0 kcal +VO2+ + 2 H2O = H3VO4 + H+ + log_k -3.3 + delta_h 10.63 kcal +VO2+ + 2 H2O = H2VO4- + 2 H+ + log_k -7.09 + delta_h 11.33 kcal +VO2+ + 2 H2O = HVO4-2 + 3 H+ + log_k -15.15 + delta_h 14.93 kcal +VO2+ + 2 H2O = VO4-3 + 4 H+ + log_k -28.4 + delta_h 19.53 kcal +2 VO2+ + 3 H2O = V2O7-4 + 6 H+ + log_k -29.08 + delta_h 0 kcal +2 VO2+ + 3 H2O = HV2O7-3 + 5 H+ + log_k -16.32 + delta_h 0 kcal +2 VO2+ + 3 H2O = H3V2O7- + 3 H+ + log_k -3.79 + delta_h 0 kcal +3 VO2+ + 3 H2O = V3O9-3 + 6 H+ + log_k -15.88 + delta_h 0 kcal +4 VO2+ + 4 H2O = V4O12-4 + 8 H+ + log_k -20.79 + delta_h 0 kcal +10 VO2+ + 8 H2O = V10O28-6 + 16 H+ + log_k -17.53 + delta_h 0 kcal +10 VO2+ + 8 H2O = HV10O28-5 + 15 H+ + log_k -11.35 + delta_h 21.52 kcal +10 VO2+ + 8 H2O = H2V10O28-4 + 14 H+ + log_k -7.71 + delta_h 0 kcal VO2+ + F- = VO2F - log_k 3.12 - delta_h 0 kcal -VO2+ + 2F- = VO2F2- - log_k 5.67 - delta_h 0 kcal -VO2+ + 3F- = VO2F3-2 - log_k 6.97 - delta_h 0 kcal -VO2+ + 4F- = VO2F4-3 - log_k 7.07 - delta_h 0 kcal + log_k 3.12 + delta_h 0 kcal +VO2+ + 2 F- = VO2F2- + log_k 5.67 + delta_h 0 kcal +VO2+ + 3 F- = VO2F3-2 + log_k 6.97 + delta_h 0 kcal +VO2+ + 4 F- = VO2F4-3 + log_k 7.07 + delta_h 0 kcal VO2+ + SO4-2 = VO2SO4- - log_k 1.71 - delta_h 0 kcal + log_k 1.71 + delta_h 0 kcal VO2+ + NO3- = VO2NO3 - log_k -0.43 - delta_h 0 kcal + log_k -0.43 + delta_h 0 kcal Tl+ + H2O = TlOH + H+ - log_k -13.1717 - delta_h 13.935 kcal + log_k -13.1717 + delta_h 13.935 kcal Tl+ + F- = TlF - log_k -0.4251 - delta_h 0 kcal + log_k -0.4251 + delta_h 0 kcal Tl+ + Cl- = TlCl - log_k 0.6824 - delta_h -1.147 kcal -Tl+ + 2Cl- = TlCl2- - log_k 0.2434 - delta_h 0 kcal + log_k 0.6824 + delta_h -1.147 kcal +Tl+ + 2 Cl- = TlCl2- + log_k 0.2434 + delta_h 0 kcal Tl+ + Br- = TlBr - log_k 0.9477 - delta_h -2.461 kcal -Tl+ + 2Br- = TlBr2- - log_k 0.9719 - delta_h 2.998 kcal + log_k 0.9477 + delta_h -2.461 kcal +Tl+ + 2 Br- = TlBr2- + log_k 0.9719 + delta_h 2.998 kcal Tl+ + Br- + Cl- = TlBrCl- - log_k 0.8165 - delta_h 0 kcal + log_k 0.8165 + delta_h 0 kcal Tl+ + I- = TlI - log_k 1.4279 - delta_h 0 kcal -Tl+ + 2I- = TlI2- - log_k 1.8588 - delta_h 0 kcal + log_k 1.4279 + delta_h 0 kcal +Tl+ + 2 I- = TlI2- + log_k 1.8588 + delta_h 0 kcal Tl+ + I- + Br- = TlIBr- - log_k 2.185 - delta_h 0 kcal + log_k 2.185 + delta_h 0 kcal Tl+ + SO4-2 = TlSO4- - log_k 1.3853 - delta_h -0.22 kcal + log_k 1.3853 + delta_h -0.22 kcal Tl+ + NO3- = TlNO3 - log_k 0.3665 - delta_h -0.65 kcal + log_k 0.3665 + delta_h -0.65 kcal Tl+ + NO2- = TlNO2 - log_k 0.9969 - delta_h 0 kcal + log_k 0.9969 + delta_h 0 kcal Tl+ + HS- = TlHS - log_k 1.8178 - delta_h 0 kcal -2Tl+ + HS- = Tl2HS+ - log_k 7.6979 - delta_h 0 kcal -2Tl+ + 3HS- + H2O = Tl2OH(HS)3-2 + H+ - log_k 1.0044 - delta_h 0 kcal -2Tl+ + 2HS- + 2H2O = Tl2(OH)2(HS)2-2 + 2H+ - log_k -11.0681 - delta_h 0 kcal -Tl(OH)3 + 3H+ = Tl+3 + 3H2O - log_k 4.7424 - delta_h 0 kcal -Tl(OH)3 + 2H+ = TlOH+2 + 2H2O - log_k 3.577 - delta_h 0 kcal + log_k 1.8178 + delta_h 0 kcal +2 Tl+ + HS- = Tl2HS+ + log_k 7.6979 + delta_h 0 kcal +2 Tl+ + 3 HS- + H2O = Tl2OH(HS)3-2 + H+ + log_k 1.0044 + delta_h 0 kcal +2 Tl+ + 2 HS- + 2 H2O = Tl2(OH)2(HS)2-2 + 2 H+ + log_k -11.0681 + delta_h 0 kcal +Tl(OH)3 + 3 H+ = Tl+3 + 3 H2O + log_k 4.7424 + delta_h 0 kcal +Tl(OH)3 + 2 H+ = TlOH+2 + 2 H2O + log_k 3.577 + delta_h 0 kcal Tl(OH)3 + H+ = Tl(OH)2+ + H2O - log_k 2.1183 - delta_h 0 kcal + log_k 2.1183 + delta_h 0 kcal Tl(OH)3 + H2O = Tl(OH)4- + H+ - log_k -10.2545 - delta_h 0 kcal -Tl(OH)3 + Cl- + 3H+ = TlCl+2 + 3H2O - log_k 12.2342 - delta_h 0 kcal -Tl(OH)3 + 2Cl- + 3H+ = TlCl2+ + 3H2O - log_k 18.0402 - delta_h 0 kcal -Tl(OH)3 + 3Cl- + 3H+ = TlCl3 + 3H2O - log_k 21.4273 - delta_h 0 kcal -Tl(OH)3 + 4Cl- + 3H+ = TlCl4- + 3H2O - log_k 24.2281 - delta_h 0 kcal -Tl(OH)3 + Br- + 3H+ = TlBr+2 + 3H2O - log_k 14.2221 - delta_h 0 kcal -Tl(OH)3 + 2Br- + 3H+ = TlBr2+ + 3H2O - log_k 21.5761 - delta_h 0 kcal -Tl(OH)3 + 3Br- + 3H+ = TlBr3 + 3H2O - log_k 27.0244 - delta_h 0 kcal -Tl(OH)3 + 4Br- + 3H+ = TlBr4- + 3H2O - log_k 31.1533 - delta_h 0 kcal -Tl(OH)3 + 4I- + 3H+ = TlI4- + 3H2O - log_k 34.7596 - delta_h 0 kcal -Tl(OH)3 + NO3- + 3H+ = TlNO3+2 + 3H2O - log_k 7.0073 - delta_h 0 kcal -Tl(OH)3 + Cl- + 2H+ = TlOHCl+ + 2H2O - log_k 10.629 - delta_h 0 kcal + log_k -10.2545 + delta_h 0 kcal +Tl(OH)3 + Cl- + 3 H+ = TlCl+2 + 3 H2O + log_k 12.2342 + delta_h 0 kcal +Tl(OH)3 + 2 Cl- + 3 H+ = TlCl2+ + 3 H2O + log_k 18.0402 + delta_h 0 kcal +Tl(OH)3 + 3 Cl- + 3 H+ = TlCl3 + 3 H2O + log_k 21.4273 + delta_h 0 kcal +Tl(OH)3 + 4 Cl- + 3 H+ = TlCl4- + 3 H2O + log_k 24.2281 + delta_h 0 kcal +Tl(OH)3 + Br- + 3 H+ = TlBr+2 + 3 H2O + log_k 14.2221 + delta_h 0 kcal +Tl(OH)3 + 2 Br- + 3 H+ = TlBr2+ + 3 H2O + log_k 21.5761 + delta_h 0 kcal +Tl(OH)3 + 3 Br- + 3 H+ = TlBr3 + 3 H2O + log_k 27.0244 + delta_h 0 kcal +Tl(OH)3 + 4 Br- + 3 H+ = TlBr4- + 3 H2O + log_k 31.1533 + delta_h 0 kcal +Tl(OH)3 + 4 I- + 3 H+ = TlI4- + 3 H2O + log_k 34.7596 + delta_h 0 kcal +Tl(OH)3 + NO3- + 3 H+ = TlNO3+2 + 3 H2O + log_k 7.0073 + delta_h 0 kcal +Tl(OH)3 + Cl- + 2 H+ = TlOHCl+ + 2 H2O + log_k 10.629 + delta_h 0 kcal HSe- = Se-2 + H+ - log_k -14.9529 - delta_h 11.5 kcal + log_k -14.9529 + delta_h 11.5 kcal HSe- + H+ = H2Se - log_k 3.8115 - delta_h 0.8 kcal + log_k 3.8115 + delta_h 0.8 kcal HSe- + Mn+2 = MnSe + H+ - log_k -6.7435 - delta_h 0 kcal -HSe- + 2Ag+ = Ag2Se + H+ - log_k 34.0677 - delta_h 0 kcal -2HSe- + Ag+ + H2O = AgOH(Se)2-4 + 3H+ - log_k -18.6237 - delta_h 0 kcal + log_k -6.7435 + delta_h 0 kcal +HSe- + 2 Ag+ = Ag2Se + H+ + log_k 34.0677 + delta_h 0 kcal +2 HSe- + Ag+ + H2O = AgOH(Se)2-4 + 3 H+ + log_k -18.6237 + delta_h 0 kcal HSeO3- = SeO3-2 + H+ - log_k -8.48 - delta_h 1.28 kcal + log_k -8.48 + delta_h 1.28 kcal HSeO3- + H+ = H2SeO3 - log_k 2.65 - delta_h 1.69 kcal + log_k 2.65 + delta_h 1.69 kcal HSeO3- + Fe+3 = FeHSeO3+2 - log_k 3.61 - delta_h 0 kcal + log_k 3.61 + delta_h 0 kcal HSeO3- + Ag+ = AgSeO3- + H+ - log_k -5.5985 - delta_h 0 kcal -2HSeO3- + Ag+ = Ag(SeO3)2-3 + 2H+ - log_k -13.2 - delta_h 0 kcal -2HSeO3- + Cd+2 = Cd(SeO3)2-2 + 2H+ - log_k -11.189 - delta_h 0 kcal + log_k -5.5985 + delta_h 0 kcal +2 HSeO3- + Ag+ = Ag(SeO3)2-3 + 2 H+ + log_k -13.2 + delta_h 0 kcal +2 HSeO3- + Cd+2 = Cd(SeO3)2-2 + 2 H+ + log_k -11.189 + delta_h 0 kcal SeO4-2 + H+ = HSeO4- - log_k 1.9058 - delta_h 4.2 kcal + log_k 1.9058 + delta_h 4.2 kcal SeO4-2 + Mn+2 = MnSeO4 - log_k 2.4188 - delta_h 3.46 kcal + log_k 2.4188 + delta_h 3.46 kcal SeO4-2 + Ni+2 = NiSeO4 - log_k 2.6387 - delta_h 3.5 kcal + log_k 2.6387 + delta_h 3.5 kcal SeO4-2 + Cd+2 = CdSeO4 - log_k 2.2415 - delta_h 0 kcal + log_k 2.2415 + delta_h 0 kcal SeO4-2 + Zn+2 = ZnSeO4 - log_k 2.2019 - delta_h 0 kcal -2SeO4-2 + Zn+2 = Zn(SeO4)2-2 - log_k -0.0704 - delta_h 0 kcal -Hg(OH)2 + 2H+ = Hg+2 + 2H2O - log_k 6.097 - delta_h -11.06 kcal -Hg(OH)2 + Br- + 2H+ = HgBr+ + 2H2O - log_k 15.8347 - delta_h 0 kcal -Hg(OH)2 + 2Br- + 2H+ = HgBr2 + 2H2O - log_k 23.6065 + log_k 2.2019 + delta_h 0 kcal +2 SeO4-2 + Zn+2 = Zn(SeO4)2-2 + log_k -0.0704 + delta_h 0 kcal +Hg(OH)2 + 2 H+ = Hg+2 + 2 H2O + log_k 6.097 + delta_h -11.06 kcal +Hg(OH)2 + Br- + 2 H+ = HgBr+ + 2 H2O + log_k 15.8347 + delta_h 0 kcal +Hg(OH)2 + 2 Br- + 2 H+ = HgBr2 + 2 H2O + log_k 23.6065 delta_h -30.832 kcal -Hg(OH)2 + 2H+ + 3Br- = HgBr3- + 2H2O - log_k 25.7857 - delta_h 0 kcal -Hg(OH)2 + 2H+ + 4Br- = HgBr4-2 + 2H2O - log_k 27.0633 - delta_h 0 kcal -Hg(OH)2 + Br- + Cl- + 2H+ = HgBrCl + 2H2O - log_k 22.0145 - delta_h 0 kcal -Hg(OH)2 + Br- + I- + 2H+ = HgBrI + 2H2O - log_k 27.1212 - delta_h 0 kcal -Hg(OH)2 + Br- + 3I- + 2H+ = HgBrI3-2 + 2H2O - log_k 34.2135 - delta_h 0 kcal -Hg(OH)2 + 2Br- + 2I- + 2H+ = HgBr2I2-2 + 2H2O - log_k 32.3994 - delta_h 0 kcal -Hg(OH)2 + 3Br- + I- + 2H+ = HgBr3I-2 + 2H2O - log_k 30.1528 - delta_h 0 kcal +Hg(OH)2 + 2 H+ + 3 Br- = HgBr3- + 2 H2O + log_k 25.7857 + delta_h 0 kcal +Hg(OH)2 + 2 H+ + 4 Br- = HgBr4-2 + 2 H2O + log_k 27.0633 + delta_h 0 kcal +Hg(OH)2 + Br- + Cl- + 2 H+ = HgBrCl + 2 H2O + log_k 22.0145 + delta_h 0 kcal +Hg(OH)2 + Br- + I- + 2 H+ = HgBrI + 2 H2O + log_k 27.1212 + delta_h 0 kcal +Hg(OH)2 + Br- + 3 I- + 2 H+ = HgBrI3-2 + 2 H2O + log_k 34.2135 + delta_h 0 kcal +Hg(OH)2 + 2 Br- + 2 I- + 2 H+ = HgBr2I2-2 + 2 H2O + log_k 32.3994 + delta_h 0 kcal +Hg(OH)2 + 3 Br- + I- + 2 H+ = HgBr3I-2 + 2 H2O + log_k 30.1528 + delta_h 0 kcal Hg(OH)2 + Br- + H+ = HgBrOH + H2O - log_k 11.598 - delta_h 0 kcal -Hg(OH)2 + Cl- + 2H+ = HgCl+ + 2H2O - log_k 12.85 - delta_h 0 kcal -Hg(OH)2 + 2Cl- + 2H+ = HgCl2 + 2H2O - log_k 19.2203 - delta_h 0 kcal -Hg(OH)2 + 3Cl- + 2H+ = HgCl3- + 2H2O - log_k 20.1226 - delta_h 0 kcal -Hg(OH)2 + 4Cl- + 2H+ = HgCl4-2 + 2H2O - log_k 20.5338 - delta_h 0 kcal -Hg(OH)2 + Cl- + I- + 2H+ = HgClI + 2H2O - log_k 25.3532 - delta_h 0 kcal + log_k 11.598 + delta_h 0 kcal +Hg(OH)2 + Cl- + 2 H+ = HgCl+ + 2 H2O + log_k 12.85 + delta_h 0 kcal +Hg(OH)2 + 2 Cl- + 2 H+ = HgCl2 + 2 H2O + log_k 19.2203 + delta_h 0 kcal +Hg(OH)2 + 3 Cl- + 2 H+ = HgCl3- + 2 H2O + log_k 20.1226 + delta_h 0 kcal +Hg(OH)2 + 4 Cl- + 2 H+ = HgCl4-2 + 2 H2O + log_k 20.5338 + delta_h 0 kcal +Hg(OH)2 + Cl- + I- + 2 H+ = HgClI + 2 H2O + log_k 25.3532 + delta_h 0 kcal Hg(OH)2 + Cl- + H+ = HgClOH + H2O - log_k 9.317 + log_k 9.317 delta_h -12.482 kcal -Hg(OH)2 + F- + 2H+ = HgF+ + 2H2O - log_k 8.0848 - delta_h 0 kcal -Hg(OH)2 + I- + 2H+ = HgI+ + 2H2O - log_k 18.8949 - delta_h 0 kcal -Hg(OH)2 + 2I- + 2H+ = HgI2 + 2H2O - log_k 30.1081 +Hg(OH)2 + F- + 2 H+ = HgF+ + 2 H2O + log_k 8.0848 + delta_h 0 kcal +Hg(OH)2 + I- + 2 H+ = HgI+ + 2 H2O + log_k 18.8949 + delta_h 0 kcal +Hg(OH)2 + 2 I- + 2 H+ = HgI2 + 2 H2O + log_k 30.1081 delta_h -44.522 kcal -Hg(OH)2 + 3I- + 2H+ = HgI3- + 2H2O - log_k 33.7935 +Hg(OH)2 + 3 I- + 2 H+ = HgI3- + 2 H2O + log_k 33.7935 delta_h -47.943 kcal -Hg(OH)2 + 4I- + 2H+ = HgI4-2 + 2H2O - log_k 35.7858 - delta_h 0 kcal -Hg(OH)2 + NH4+ + H+ = HgNH3+2 + 2H2O - log_k 5.6139 - delta_h 0 kcal -Hg(OH)2 + 2NH4+ = Hg(NH3)2+2 + 2H2O - log_k 5.0341 - delta_h 0 kcal -Hg(OH)2 + 3NH4+ = Hg(NH3)3+2 + H+ + 2H2O - log_k -3.2493 - delta_h 0 kcal -Hg(OH)2 + 4NH4+ = Hg(NH3)4+2 + 2H+ + 2H2O - log_k -11.7307 - delta_h 0 kcal -Hg(OH)2 + NO3- + 2H+ = HgNO3+ + 2H2O - log_k 6.4503 - delta_h 0 kcal -Hg(OH)2 + 2NO3- + 2H+ = Hg(NO3)2 + 2H2O - log_k 4.7791 - delta_h 0 kcal +Hg(OH)2 + 4 I- + 2 H+ = HgI4-2 + 2 H2O + log_k 35.7858 + delta_h 0 kcal +Hg(OH)2 + NH4+ + H+ = HgNH3+2 + 2 H2O + log_k 5.6139 + delta_h 0 kcal +Hg(OH)2 + 2 NH4+ = Hg(NH3)2+2 + 2 H2O + log_k 5.0341 + delta_h 0 kcal +Hg(OH)2 + 3 NH4+ = Hg(NH3)3+2 + H+ + 2 H2O + log_k -3.2493 + delta_h 0 kcal +Hg(OH)2 + 4 NH4+ = Hg(NH3)4+2 + 2 H+ + 2 H2O + log_k -11.7307 + delta_h 0 kcal +Hg(OH)2 + NO3- + 2 H+ = HgNO3+ + 2 H2O + log_k 6.4503 + delta_h 0 kcal +Hg(OH)2 + 2 NO3- + 2 H+ = Hg(NO3)2 + 2 H2O + log_k 4.7791 + delta_h 0 kcal Hg(OH)2 + H+ = HgOH+ + H2O - log_k 2.6974 - delta_h 0 kcal + log_k 2.6974 + delta_h 0 kcal Hg(OH)2 + H2O = Hg(OH)3- + H+ - log_k -15.0042 - delta_h 0 kcal -Hg(OH)2 + 2HS- = HgS2-2 + 2H2O - log_k 31.2398 - delta_h 0 kcal -Hg(OH)2 + 2HS- + 2H+ = Hg(HS)2 + 2H2O - log_k 43.8178 - delta_h 0 kcal -Hg(OH)2 + SO4-2 + 2H+ = HgSO4 + 2H2O - log_k 7.4911 - delta_h 0 kcal -Cr(OH)2+ + 2H+ = Cr+3 + 2H2O - log_k 9.62 - delta_h -20.14 kcal + log_k -15.0042 + delta_h 0 kcal +Hg(OH)2 + 2 HS- = HgS2-2 + 2 H2O + log_k 31.2398 + delta_h 0 kcal +Hg(OH)2 + 2 HS- + 2 H+ = Hg(HS)2 + 2 H2O + log_k 43.8178 + delta_h 0 kcal +Hg(OH)2 + SO4-2 + 2 H+ = HgSO4 + 2 H2O + log_k 7.4911 + delta_h 0 kcal +Cr(OH)2+ + 2 H+ = Cr+3 + 2 H2O + log_k 9.62 + delta_h -20.14 kcal Cr(OH)2+ + H+ = Cr(OH)+2 + H2O - log_k 5.62 - delta_h 0 kcal + log_k 5.62 + delta_h 0 kcal Cr(OH)2+ + H2O = Cr(OH)3 + H+ - log_k -7.13 - delta_h 0 kcal -Cr(OH)2+ + 2H2O = Cr(OH)4- + 2H+ - log_k -18.15 - delta_h 0 kcal -Cr(OH)2+ = CrO2- + 2H+ - log_k -17.7456 - delta_h 0 kcal -Cr(OH)2+ + Br- + 2H+ = CrBr+2 + 2H2O - log_k 7.5519 + log_k -7.13 + delta_h 0 kcal +Cr(OH)2+ + 2 H2O = Cr(OH)4- + 2 H+ + log_k -18.15 + delta_h 0 kcal +Cr(OH)2+ = CrO2- + 2 H+ + log_k -17.7456 + delta_h 0 kcal +Cr(OH)2+ + Br- + 2 H+ = CrBr+2 + 2 H2O + log_k 7.5519 delta_h -11.211 kcal -Cr(OH)2+ + Cl- + 2H+ = CrCl+2 + 2H2O - log_k 9.3683 +Cr(OH)2+ + Cl- + 2 H+ = CrCl+2 + 2 H2O + log_k 9.3683 delta_h -13.847 kcal -Cr(OH)2+ + 2Cl- + 2H+ = CrCl2+ + 2H2O - log_k 8.658 - delta_h -9.374 kcal -Cr(OH)2+ + 2Cl- + H+ = CrOHCl2 + H2O - log_k 2.9627 - delta_h 0 kcal -Cr(OH)2+ + F- + 2H+ = CrF+2 + 2H2O - log_k 14.5424 +Cr(OH)2+ + 2 Cl- + 2 H+ = CrCl2+ + 2 H2O + log_k 8.658 + delta_h -9.374 kcal +Cr(OH)2+ + 2 Cl- + H+ = CrOHCl2 + H2O + log_k 2.9627 + delta_h 0 kcal +Cr(OH)2+ + F- + 2 H+ = CrF+2 + 2 H2O + log_k 14.5424 delta_h -16.789 kcal -Cr(OH)2+ + I- + 2H+ = CrI+2 + 2H2O - log_k 4.8289 - delta_h 0 kcal -Cr(OH)2+ + 6NH4+ = Cr(NH3)6+3 + 4H+ + 2H2O - log_k -32.5709 - delta_h 0 kcal -Cr(OH)2+ + 5NH4+ = Cr(NH3)5OH+2 + 4H+ + H2O - log_k -30.2759 - delta_h 0 kcal -Cr(OH)2+ + 4NH4+ = Cr(NH3)4(OH)2+ + 4H+ - log_k -29.8574 - delta_h 0 kcal +Cr(OH)2+ + I- + 2 H+ = CrI+2 + 2 H2O + log_k 4.8289 + delta_h 0 kcal +Cr(OH)2+ + 6 NH4+ = Cr(NH3)6+3 + 4 H+ + 2 H2O + log_k -32.5709 + delta_h 0 kcal +Cr(OH)2+ + 5 NH4+ = Cr(NH3)5OH+2 + 4 H+ + H2O + log_k -30.2759 + delta_h 0 kcal +Cr(OH)2+ + 4 NH4+ = Cr(NH3)4(OH)2+ + 4 H+ + log_k -29.8574 + delta_h 0 kcal # Don't know difference with previous species # MINTEQ had "CCrNH3)4OH2" for one and "TCrNH3)4OH2" # Equations were the same. @@ -1836,364 +1840,364 @@ Cr(OH)2+ + 4NH4+ = Cr(NH3)4(OH)2+ + 4H+ #Cr(OH)2+ + 4NH4+ = Cr(NH3)4(OH)2+ + 4H+ # log_k -30.5537 # delta_h 0 kcal -Cr(OH)2+ + 6NH4+ + Cl- = Cr(NH3)6Cl+2 + 2H2O + 4H+ - log_k -31.7932 - delta_h 0 kcal -Cr(OH)2+ + 6NH4+ + Br- = Cr(NH3)6Br+2 + 4H+ + 2H2O - log_k -31.887 - delta_h 0 kcal -Cr(OH)2+ + 6NH4+ + I- = Cr(NH3)6I+2 + 4H+ + 2H2O - log_k -32.008 - delta_h 0 kcal -Cr(OH)2+ + NO3- + 2H+ = CrNO3+2 + 2H2O - log_k 8.2094 - delta_h -15.64 kcal -Cr(OH)2+ + 4H+ + PO4-3 = CrH2PO4+2 + 2H2O - log_k 31.9068 - delta_h 0 kcal -Cr(OH)2+ + SO4-2 + 2H+ = CrSO4+ + 2H2O - log_k 10.9654 - delta_h -12.62 kcal +Cr(OH)2+ + 6 NH4+ + Cl- = Cr(NH3)6Cl+2 + 2 H2O + 4 H+ + log_k -31.7932 + delta_h 0 kcal +Cr(OH)2+ + 6 NH4+ + Br- = Cr(NH3)6Br+2 + 4 H+ + 2 H2O + log_k -31.887 + delta_h 0 kcal +Cr(OH)2+ + 6 NH4+ + I- = Cr(NH3)6I+2 + 4 H+ + 2 H2O + log_k -32.008 + delta_h 0 kcal +Cr(OH)2+ + NO3- + 2 H+ = CrNO3+2 + 2 H2O + log_k 8.2094 + delta_h -15.64 kcal +Cr(OH)2+ + 4 H+ + PO4-3 = CrH2PO4+2 + 2 H2O + log_k 31.9068 + delta_h 0 kcal +Cr(OH)2+ + SO4-2 + 2 H+ = CrSO4+ + 2 H2O + log_k 10.9654 + delta_h -12.62 kcal Cr(OH)2+ + SO4-2 + H+ = CrOHSO4 + H2O - log_k 8.2754 - delta_h 0 kcal -2Cr(OH)2+ + 2SO4-2 + 2H+ = Cr2(OH)2(SO4)2 + 2H2O - log_k 14.5278 - delta_h 0 kcal + log_k 8.2754 + delta_h 0 kcal +2 Cr(OH)2+ + 2 SO4-2 + 2 H+ = Cr2(OH)2(SO4)2 + 2 H2O + log_k 14.5278 + delta_h 0 kcal # Not sure about these two species # One was "Cr2OH2SO4)S" other was "Cr2OH2SO42" # Equation was the same #2Cr(OH)2+ + 2SO4-2 + 2H+ = Cr2(OH)2(SO4)2 + 2H2O # log_k 17.9288 # delta_h 0 kcal -2Cr(OH)2+ + SO4-2 + 2H+ = Cr2(OH)2SO4+2 + 2H2O - log_k 16.155 - delta_h 0 kcal +2 Cr(OH)2+ + SO4-2 + 2 H+ = Cr2(OH)2SO4+2 + 2 H2O + log_k 16.155 + delta_h 0 kcal CrO4-2 + H+ = HCrO4- - log_k 6.5089 - delta_h 0.9 kcal -CrO4-2 + 2H+ = H2CrO4 - log_k 5.6513 - delta_h 0 kcal -2CrO4-2 + 2H+ = Cr2O7-2 + H2O - log_k 14.5571 - delta_h -2.995 kcal -CrO4-2 + Cl- + 2H+ = CrO3Cl- + H2O - log_k 7.3086 - delta_h 0 kcal -CrO4-2 + 4H+ + PO4-3 = CrO3H2PO4- + H2O - log_k 29.3634 - delta_h 0 kcal -CrO4-2 + 3H+ + PO4-3 = CrO3HPO4-2 + H2O - log_k 26.6806 - delta_h 0 kcal -CrO4-2 + SO4-2 + 2H+ = CrO3SO4-2 + H2O - log_k 8.9937 - delta_h 0 kcal + log_k 6.5089 + delta_h 0.9 kcal +CrO4-2 + 2 H+ = H2CrO4 + log_k 5.6513 + delta_h 0 kcal +2 CrO4-2 + 2 H+ = Cr2O7-2 + H2O + log_k 14.5571 + delta_h -2.995 kcal +CrO4-2 + Cl- + 2 H+ = CrO3Cl- + H2O + log_k 7.3086 + delta_h 0 kcal +CrO4-2 + 4 H+ + PO4-3 = CrO3H2PO4- + H2O + log_k 29.3634 + delta_h 0 kcal +CrO4-2 + 3 H+ + PO4-3 = CrO3HPO4-2 + H2O + log_k 26.6806 + delta_h 0 kcal +CrO4-2 + SO4-2 + 2 H+ = CrO3SO4-2 + H2O + log_k 8.9937 + delta_h 0 kcal CrO4-2 + Na+ = NaCrO4- - log_k 0.6963 - delta_h 0 kcal + log_k 0.6963 + delta_h 0 kcal CrO4-2 + K+ = KCrO4- - log_k 0.799 - delta_h 0 kcal -Ba+2 + Fe+3 + 6Cyanide- = BaFe(Cyanide)6- - log_k 55.4356 - delta_h -69.68 kcal -Ca+2 + H+ + Fe+2 + 6Cyanide- + e- = CaHFe(Cyanide)6-2 - log_k 52.7097 - delta_h -82 kcal -K+ + Fe+2 + 6Cyanide- = KFe(Cyanide)6-3 - log_k 48.1204 - delta_h -84 kcal -2K+ + Fe+2 + 6Cyanide- = K2Fe(Cyanide)6-2 - log_k 48.978 - delta_h -77.3 kcal -K+ + H+ + Fe+2 + 6Cyanide- = KHFe(Cyanide)6-2 - log_k 51.4702 - delta_h -78.1 kcal -2Li+ + Fe+2 + 6Cyanide- = Li2Fe(Cyanide)6-2 - log_k 48.5338 + log_k 0.799 + delta_h 0 kcal +Ba+2 + Fe+3 + 6 Cyanide- = BaFe(Cyanide)6- + log_k 55.4356 + delta_h -69.68 kcal +Ca+2 + H+ + Fe+2 + 6 Cyanide- + e- = CaHFe(Cyanide)6-2 + log_k 52.7097 + delta_h -82 kcal +K+ + Fe+2 + 6 Cyanide- = KFe(Cyanide)6-3 + log_k 48.1204 + delta_h -84 kcal +2 K+ + Fe+2 + 6 Cyanide- = K2Fe(Cyanide)6-2 + log_k 48.978 + delta_h -77.3 kcal +K+ + H+ + Fe+2 + 6 Cyanide- = KHFe(Cyanide)6-2 + log_k 51.4702 + delta_h -78.1 kcal +2 Li+ + Fe+2 + 6 Cyanide- = Li2Fe(Cyanide)6-2 + log_k 48.5338 delta_h -83.498 kcal -Li+ + H+ + Fe+2 + 6Cyanide- = LiHFe(Cyanide)6-2 - log_k 51.2188 +Li+ + H+ + Fe+2 + 6 Cyanide- = LiHFe(Cyanide)6-2 + log_k 51.2188 delta_h -80.999 kcal -NH4+ + Fe+2 + 6Cyanide- = NH4Fe(Cyanide)6-3 - log_k 48.0684 - delta_h -84.5 kcal -NH4+ + H+ + Fe+2 + 6Cyanide- = NH5Fe(Cyanide)6-2 - log_k 51.4035 - delta_h -83.9 kcal -Na+ + Fe+2 + 6Cyanide- = NaFe(Cyanide)6-3 - log_k 47.9885 - delta_h -84.9 kcal -2Na+ + Fe+2 + 6Cyanide- = Na2Fe(Cyanide)6-2 - log_k 48.7435 - delta_h -85 kcal -Na+ + H+ + Fe+2 + 6Cyanide- = NaHFe(Cyanide)6-2 - log_k 51.4335 - delta_h -85.6 kcal -2NH4+ + Fe+2 + 6Cyanide- = (NH4)2FeCyanide6-2 - log_k 48.8666 - delta_h -83 kcal +NH4+ + Fe+2 + 6 Cyanide- = NH4Fe(Cyanide)6-3 + log_k 48.0684 + delta_h -84.5 kcal +NH4+ + H+ + Fe+2 + 6 Cyanide- = NH5Fe(Cyanide)6-2 + log_k 51.4035 + delta_h -83.9 kcal +Na+ + Fe+2 + 6 Cyanide- = NaFe(Cyanide)6-3 + log_k 47.9885 + delta_h -84.9 kcal +2 Na+ + Fe+2 + 6 Cyanide- = Na2Fe(Cyanide)6-2 + log_k 48.7435 + delta_h -85 kcal +Na+ + H+ + Fe+2 + 6 Cyanide- = NaHFe(Cyanide)6-2 + log_k 51.4335 + delta_h -85.6 kcal +2 NH4+ + Fe+2 + 6 Cyanide- = (NH4)2FeCyanide6-2 + log_k 48.8666 + delta_h -83 kcal Cyanide- + Ag+ + H2O = Ag(Cyanide)OH- + H+ - log_k -0.56 - delta_h 0 kcal -2Cyanide- + Ag+ = Ag(Cyanide)2- - log_k 20.3814 + log_k -0.56 + delta_h 0 kcal +2 Cyanide- + Ag+ = Ag(Cyanide)2- + log_k 20.3814 delta_h -32.675 kcal -6Cyanide- + 2K+ + 2H+ + Fe+2 = K2H2Fe(Cyanide)6 - log_k 52.3058 - delta_h -85.86 kcal -6Cyanide- + Ca+2 + Fe+3 = CaFe(Cyanide)6- - log_k 55.473 - delta_h -69.5 kcal -6Cyanide- + Ca+2 + Fe+2 = CaFe(Cyanide)6-2 - log_k 49.6898 - delta_h -83.1 kcal -6Cyanide- + 2Ca+2 + Fe+2 = Ca2Fe(Cyanide)6 - log_k 50.9952 - delta_h -83.7 kcal +6 Cyanide- + 2 K+ + 2 H+ + Fe+2 = K2H2Fe(Cyanide)6 + log_k 52.3058 + delta_h -85.86 kcal +6 Cyanide- + Ca+2 + Fe+3 = CaFe(Cyanide)6- + log_k 55.473 + delta_h -69.5 kcal +6 Cyanide- + Ca+2 + Fe+2 = CaFe(Cyanide)6-2 + log_k 49.6898 + delta_h -83.1 kcal +6 Cyanide- + 2 Ca+2 + Fe+2 = Ca2Fe(Cyanide)6 + log_k 50.9952 + delta_h -83.7 kcal Cyanide- + Cd+2 = CdCyanide+ - log_k 5.32 - delta_h 0 kcal -2Cyanide- + Cd+2 = Cd(Cyanide)2 - log_k 10.3703 - delta_h -13 kcal -3Cyanide- + Cd+2 = Cd(Cyanide)3- - log_k 14.8341 - delta_h -21.6 kcal -4Cyanide- + Cd+2 = Cd(Cyanide)4-2 - log_k 18.2938 - delta_h -23.56 kcal -4Cyanide- + Cu+ = Cu(Cyanide)4-3 - log_k 30.3456 - delta_h -51.4 kcal -2Cyanide- + Cu+ = Cu(Cyanide)2- - log_k 24.0272 - delta_h -29.1 kcal -3Cyanide- + Cu+ = Cu(Cyanide)3-2 - log_k 28.6524 - delta_h -40.2 kcal -6Cyanide- + Fe+2 = Fe(Cyanide)6-4 - log_k 45.6063 - delta_h -85.8 kcal -6Cyanide- + Fe+2 + H+ = HFe(Cyanide)6-3 - log_k 49.9969 - delta_h -84.16 kcal -6Cyanide- + 2H+ + Fe+2 = H2Fe(Cyanide)6-2 - log_k 52.445 - delta_h -83.1 kcal -6Cyanide- + Fe+3 = Fe(Cyanide)6-3 - log_k 52.6283 - delta_h -70.1 kcal + log_k 5.32 + delta_h 0 kcal +2 Cyanide- + Cd+2 = Cd(Cyanide)2 + log_k 10.3703 + delta_h -13 kcal +3 Cyanide- + Cd+2 = Cd(Cyanide)3- + log_k 14.8341 + delta_h -21.6 kcal +4 Cyanide- + Cd+2 = Cd(Cyanide)4-2 + log_k 18.2938 + delta_h -23.56 kcal +4 Cyanide- + Cu+ = Cu(Cyanide)4-3 + log_k 30.3456 + delta_h -51.4 kcal +2 Cyanide- + Cu+ = Cu(Cyanide)2- + log_k 24.0272 + delta_h -29.1 kcal +3 Cyanide- + Cu+ = Cu(Cyanide)3-2 + log_k 28.6524 + delta_h -40.2 kcal +6 Cyanide- + Fe+2 = Fe(Cyanide)6-4 + log_k 45.6063 + delta_h -85.8 kcal +6 Cyanide- + Fe+2 + H+ = HFe(Cyanide)6-3 + log_k 49.9969 + delta_h -84.16 kcal +6 Cyanide- + 2 H+ + Fe+2 = H2Fe(Cyanide)6-2 + log_k 52.445 + delta_h -83.1 kcal +6 Cyanide- + Fe+3 = Fe(Cyanide)6-3 + log_k 52.6283 + delta_h -70.1 kcal Cyanide- + H+ = HCyanide - log_k 9.2356 - delta_h -10.4 kcal + log_k 9.2356 + delta_h -10.4 kcal Cyanate- + H+ = HCyanate - log_k 3.445 - delta_h -2 kcal -Cyanide- + Hg(OH)2 + 2H+ = HgCyanide+ + 2H2O - log_k 24.1738 - delta_h -33.83 kcal -2Cyanide- + Hg(OH)2 + 2H+ = Hg(Cyanide)2 + 2H2O - log_k 40.6513 - delta_h -57.24 kcal -3Cyanide- + Hg(OH)2 + 2H+ = Hg(Cyanide)3- + 2H2O - log_k 44.4042 - delta_h -64.83 kcal -4Cyanide- + Hg(OH)2 + 2H+ = Hg(Cyanide)4-2 + 2H2O - log_k 47.4094 - delta_h -69.93 kcal -2Cyanide- + Cl- + Hg(OH)2 + 2H+ = Hg(Cyanide)2Cl- + 2H2O - log_k 40.3735 - delta_h 0 kcal -3Cyanide- + Cl- + Hg(OH)2 + 2H+ = Hg(Cyanide)3Cl-2 + 2H2O - log_k 43.8332 - delta_h 0 kcal -3Cyanide- + Br- + Hg(OH)2 + 2H+ = Hg(Cyanide)3Br-2 + 2H2O - log_k 44.9415 - delta_h 0 kcal -Cyanide- + 2I- = I2Cyanide- + 2e- - log_k -11.848 - delta_h 0 kcal -2Cyanide- + I- = I(Cyanide)2- + 2e- - log_k -11.458 - delta_h 0 kcal -6Cyanide- + 3K+ + H+ + Fe+2 = K3HFe(Cyanide)6 - log_k 50.2241 - delta_h -85.99 kcal -6Cyanide- + Li+ + Fe+2 = LiFe(Cyanide)6-3 - log_k 47.6858 + log_k 3.445 + delta_h -2 kcal +Cyanide- + Hg(OH)2 + 2 H+ = HgCyanide+ + 2 H2O + log_k 24.1738 + delta_h -33.83 kcal +2 Cyanide- + Hg(OH)2 + 2 H+ = Hg(Cyanide)2 + 2 H2O + log_k 40.6513 + delta_h -57.24 kcal +3 Cyanide- + Hg(OH)2 + 2 H+ = Hg(Cyanide)3- + 2 H2O + log_k 44.4042 + delta_h -64.83 kcal +4 Cyanide- + Hg(OH)2 + 2 H+ = Hg(Cyanide)4-2 + 2 H2O + log_k 47.4094 + delta_h -69.93 kcal +2 Cyanide- + Cl- + Hg(OH)2 + 2 H+ = Hg(Cyanide)2Cl- + 2 H2O + log_k 40.3735 + delta_h 0 kcal +3 Cyanide- + Cl- + Hg(OH)2 + 2 H+ = Hg(Cyanide)3Cl-2 + 2 H2O + log_k 43.8332 + delta_h 0 kcal +3 Cyanide- + Br- + Hg(OH)2 + 2 H+ = Hg(Cyanide)3Br-2 + 2 H2O + log_k 44.9415 + delta_h 0 kcal +Cyanide- + 2 I- = I2Cyanide- + 2 e- + log_k -11.848 + delta_h 0 kcal +2 Cyanide- + I- = I(Cyanide)2- + 2 e- + log_k -11.458 + delta_h 0 kcal +6 Cyanide- + 3 K+ + H+ + Fe+2 = K3HFe(Cyanide)6 + log_k 50.2241 + delta_h -85.99 kcal +6 Cyanide- + Li+ + Fe+2 = LiFe(Cyanide)6-3 + log_k 47.6858 delta_h -80.149 kcal -6Cyanide- + Mg+2 + Fe+3 = MgFe(Cyanide)6- - log_k 55.3916 - delta_h -69.31 kcal -6Cyanide- + Mg+2 + Fe+2 = MgFe(Cyanide)6-2 - log_k 49.4251 - delta_h 0 kcal -4Cyanide- + Ni+2 = Ni(Cyanide)4-2 - log_k 30.1257 - delta_h -43.19 kcal -Sr+2 + Fe+3 + 6Cyanide- = SrFe(Cyanide)6- - log_k 55.6181 - delta_h -69.83 kcal -4Cyanide- + Tl+ = Tl(Cyanide)4- + 2e- - log_k -8.0189 - delta_h 0 kcal -6Cyanide- + Tl+ + Fe+2 = TlFe(Cyanide)6-3 - log_k 48.7508 - delta_h -84.88 kcal -4Cyanide- + Zn+2 = Zn(Cyanide)4-2 - log_k 16.715 +6 Cyanide- + Mg+2 + Fe+3 = MgFe(Cyanide)6- + log_k 55.3916 + delta_h -69.31 kcal +6 Cyanide- + Mg+2 + Fe+2 = MgFe(Cyanide)6-2 + log_k 49.4251 + delta_h 0 kcal +4 Cyanide- + Ni+2 = Ni(Cyanide)4-2 + log_k 30.1257 + delta_h -43.19 kcal +Sr+2 + Fe+3 + 6 Cyanide- = SrFe(Cyanide)6- + log_k 55.6181 + delta_h -69.83 kcal +4 Cyanide- + Tl+ = Tl(Cyanide)4- + 2 e- + log_k -8.0189 + delta_h 0 kcal +6 Cyanide- + Tl+ + Fe+2 = TlFe(Cyanide)6-3 + log_k 48.7508 + delta_h -84.88 kcal +4 Cyanide- + Zn+2 = Zn(Cyanide)4-2 + log_k 16.715 delta_h -25.539 kcal -3Cyanide- + Zn+2 = Zn(Cyanide)3- - log_k 16.048 +3 Cyanide- + Zn+2 = Zn(Cyanide)3- + log_k 16.048 delta_h -20.199 kcal -2Cyanide- + Zn+2 = Zn(Cyanide)2 - log_k 11.071 +2 Cyanide- + Zn+2 = Zn(Cyanide)2 + log_k 11.071 delta_h -10.999 kcal -3Cyanide- + Ni+2 = Ni(Cyanide)3- - log_k 22.6346 - delta_h 0 kcal -4Cyanide- + Ni+2 + H+ = NiH(Cyanide)4- - log_k 36.7482 - delta_h 0 kcal -4Cyanide- + Ni+2 + 2H+ = NiH2Cyanide4 - log_k 41.4576 - delta_h 0 kcal -4Cyanide- + Ni+2 + 3H+ = NiH3(Cyanide)4+ - log_k 43.9498 - delta_h 0 kcal -2Cyanide- + Ni+2 = Ni(Cyanide)2 - log_k 14.5864 - delta_h 0 kcal -6Cyanide- + 2Fe+3 = Fe2(Cyanide)6 - log_k 56.9822 - delta_h 0 kcal -2Cyanate- + Ag+ = Ag(Cyanate)2- - log_k 5.0034 - delta_h 0 kcal -3Cyanide- + Ag+ = Ag(Cyanide)3-2 - log_k 21.4002 +3 Cyanide- + Ni+2 = Ni(Cyanide)3- + log_k 22.6346 + delta_h 0 kcal +4 Cyanide- + Ni+2 + H+ = NiH(Cyanide)4- + log_k 36.7482 + delta_h 0 kcal +4 Cyanide- + Ni+2 + 2 H+ = NiH2Cyanide4 + log_k 41.4576 + delta_h 0 kcal +4 Cyanide- + Ni+2 + 3 H+ = NiH3(Cyanide)4+ + log_k 43.9498 + delta_h 0 kcal +2 Cyanide- + Ni+2 = Ni(Cyanide)2 + log_k 14.5864 + delta_h 0 kcal +6 Cyanide- + 2 Fe+3 = Fe2(Cyanide)6 + log_k 56.9822 + delta_h 0 kcal +2 Cyanate- + Ag+ = Ag(Cyanate)2- + log_k 5.0034 + delta_h 0 kcal +3 Cyanide- + Ag+ = Ag(Cyanide)3-2 + log_k 21.4002 delta_h -33.495 kcal -6Cyanide- + Fe+2 + Ba+2 = BaFe(Cyanide)6-2 - log_k 49.4032 - delta_h 0 kcal +6 Cyanide- + Fe+2 + Ba+2 = BaFe(Cyanide)6-2 + log_k 49.4032 + delta_h 0 kcal Acetate- + H+ = HAcetate - log_k 4.76 - delta_h 0 kcal - -gamma 0 0.06 + log_k 4.76 + delta_h 0 kcal + -gamma 0 0.06 Tartrate-2 + H+ = HTartrate- - log_k 4.16 - delta_h 0 kcal - -gamma 0 0.01 -Tartrate-2 + 2H+ = H2Tartrate - log_k 6.67 - delta_h 0 kcal - -gamma 0 0.01 + log_k 4.16 + delta_h 0 kcal + -gamma 0 0.01 +Tartrate-2 + 2 H+ = H2Tartrate + log_k 6.67 + delta_h 0 kcal + -gamma 0 0.01 Glycine- + H+ = HGlycine - log_k 9.78 - delta_h 0 kcal - -gamma 0 0.07 -Glycine- + 2H+ = H2Glycine+ - log_k 12.12 - delta_h 0 kcal - -gamma 0 0.07 + log_k 9.78 + delta_h 0 kcal + -gamma 0 0.07 +Glycine- + 2 H+ = H2Glycine+ + log_k 12.12 + delta_h 0 kcal + -gamma 0 0.07 Salicylate-2 + H+ = HSalicylate- - log_k 13.4 - delta_h 0 kcal - -gamma 0 0.01 -Salicylate-2 + 2H+ = H2Salicylate - log_k 16.4 - delta_h 0 kcal - -gamma 0 0.01 + log_k 13.4 + delta_h 0 kcal + -gamma 0 0.01 +Salicylate-2 + 2 H+ = H2Salicylate + log_k 16.4 + delta_h 0 kcal + -gamma 0 0.01 Glutamate-2 + H+ = HGlutamate- - log_k 9.95 - delta_h 0 kcal - -gamma 0 0.01 -Glutamate-2 + 2H+ = H2Glutamate - log_k 14.37 - delta_h 0 kcal - -gamma 0 0.01 + log_k 9.95 + delta_h 0 kcal + -gamma 0 0.01 +Glutamate-2 + 2 H+ = H2Glutamate + log_k 14.37 + delta_h 0 kcal + -gamma 0 0.01 Phthalate-2 + H+ = HPhthalate- - log_k 5.4 - delta_h 0 kcal - -gamma 0 0.01 -Phthalate-2 + 2H+ = H2Phthalate - log_k 8.35 - delta_h 0 kcal - -gamma 0 0.01 + log_k 5.4 + delta_h 0 kcal + -gamma 0 0.01 +Phthalate-2 + 2 H+ = H2Phthalate + log_k 8.35 + delta_h 0 kcal + -gamma 0 0.01 Cd+2 + Acetate- = CdAcetate+ - log_k 1.93 - delta_h 0 kcal - -gamma 0 0.01 + log_k 1.93 + delta_h 0 kcal + -gamma 0 0.01 Cd+2 + Tartrate-2 = CdTartrate - log_k 3.9 - delta_h 0 kcal - -gamma 0 0.02 + log_k 3.9 + delta_h 0 kcal + -gamma 0 0.02 Cd+2 + Glycine- = CdGlycine+ - log_k 4.8 - delta_h 0 kcal -Cd+2 + 2Glycine- = CdGlycine2 - log_k 8.4 - delta_h 0 kcal + log_k 4.8 + delta_h 0 kcal +Cd+2 + 2 Glycine- = CdGlycine2 + log_k 8.4 + delta_h 0 kcal Cd+2 + Glutamate-2 = CdGlutamate - log_k 4.78 - delta_h 0 kcal -Cd+2 + 2Glutamate-2 = CdGlutamate2-2 - log_k 2.78 - delta_h 0 kcal + log_k 4.78 + delta_h 0 kcal +Cd+2 + 2 Glutamate-2 = CdGlutamate2-2 + log_k 2.78 + delta_h 0 kcal Cd+2 + Phthalate-2 = CdPhthalate - log_k 2.5 - delta_h 0 kcal + log_k 2.5 + delta_h 0 kcal Pb+2 + Tartrate-2 = PbTartrate - log_k 3.78 - delta_h 0 kcal + log_k 3.78 + delta_h 0 kcal Pb+2 + Glycine- = PbGlycine+ - log_k 5.47 - delta_h 0 kcal -Pb+2 + 2Glycine- = PbGlycine2 - log_k 8.32 - delta_h 0 kcal + log_k 5.47 + delta_h 0 kcal +Pb+2 + 2 Glycine- = PbGlycine2 + log_k 8.32 + delta_h 0 kcal Ba+2 + Acetate- = BaAcetate+ - log_k 1.07 - delta_h 0 kcal + log_k 1.07 + delta_h 0 kcal Ba+2 + Tartrate-2 = BaTartrate - log_k 2.54 - delta_h 0 kcal + log_k 2.54 + delta_h 0 kcal Ba+2 + Glycine- = BaGlycine+ - log_k 0.77 - delta_h 0 kcal + log_k 0.77 + delta_h 0 kcal Ba+2 + Salicylate-2 = BaSalicylate - log_k 0.21 - delta_h 0 kcal + log_k 0.21 + delta_h 0 kcal Ba+2 + Glutamate-2 = BaGlutamate - log_k 1.28 - delta_h 0 kcal + log_k 1.28 + delta_h 0 kcal Ba+2 + Phthalate-2 = BaPhthalate - log_k 2.33 - delta_h 0 kcal + log_k 2.33 + delta_h 0 kcal Ag+ + Acetate- = AgAcetate - log_k 0.73 - delta_h 0 kcal -Ag+ + 2Acetate- = AgAcetate2- - log_k 0.64 - delta_h 0 kcal + log_k 0.73 + delta_h 0 kcal +Ag+ + 2 Acetate- = AgAcetate2- + log_k 0.64 + delta_h 0 kcal Ag+ + Glycine- = AgGlycine - log_k 3.51 - delta_h 0 kcal -Ag+ + 2Glycine- = AgGlycine2- - log_k 3.38 - delta_h 0 kcal -Cr(OH)2+ + Acetate- + 2H+ = CrAcetate+2 + 2H2O - log_k 14.25 - delta_h 0 kcal -Cr(OH)2+ + 2Acetate- + 2H+ = CrAcetate2+ + 2H2O - log_k 16.68 - delta_h 0 kcal -Cr(OH)2+ + 3Acetate- + 2H+ = CrAcetate3 + 2H2O - log_k 19.2 - delta_h 0 kcal + log_k 3.51 + delta_h 0 kcal +Ag+ + 2 Glycine- = AgGlycine2- + log_k 3.38 + delta_h 0 kcal +Cr(OH)2+ + Acetate- + 2 H+ = CrAcetate+2 + 2 H2O + log_k 14.25 + delta_h 0 kcal +Cr(OH)2+ + 2 Acetate- + 2 H+ = CrAcetate2+ + 2 H2O + log_k 16.68 + delta_h 0 kcal +Cr(OH)2+ + 3 Acetate- + 2 H+ = CrAcetate3 + 2 H2O + log_k 19.2 + delta_h 0 kcal # Could not interpret MINTEQ data #Cr(OH)2+ + Glycine- = CrGlycine+2 # log_k 8.4 @@ -2204,2654 +2208,2654 @@ Cr(OH)2+ + 3Acetate- + 2H+ = CrAcetate3 + 2H2O #Cr(OH)2+ + 3Glycine- = CrGlycine3- # log_k 5.7 # delta_h 0 kcal -Cr(OH)2+ + Phthalate-2 + 2H+ = CrPhthalate+ + 2H2O - log_k 15.14 - delta_h 0 kcal -Cr(OH)2+ + 2Phthalate-2 + 2H+ = CrPhthalate2- + 2H2O - log_k 19.62 - delta_h 0 kcal -Cr(OH)2+ + 3Phthalate-2 + 2H+ = CrPhthalate3-3 + 2H2O - log_k 22.1 - delta_h 0 kcal +Cr(OH)2+ + Phthalate-2 + 2 H+ = CrPhthalate+ + 2 H2O + log_k 15.14 + delta_h 0 kcal +Cr(OH)2+ + 2 Phthalate-2 + 2 H+ = CrPhthalate2- + 2 H2O + log_k 19.62 + delta_h 0 kcal +Cr(OH)2+ + 3 Phthalate-2 + 2 H+ = CrPhthalate3-3 + 2 H2O + log_k 22.1 + delta_h 0 kcal Tl+ + Tartrate-2 = TlTartrate- - log_k 1.39 - delta_h 0 kcal + log_k 1.39 + delta_h 0 kcal Hg2+2 + Glycine- = Hg2Glycine+ - log_k 10.8 - delta_h 0 kcal -Hg2+2 + 2Glycine- = Hg2Glycine2 - log_k 20 - delta_h 0 kcal + log_k 10.8 + delta_h 0 kcal +Hg2+2 + 2 Glycine- = Hg2Glycine2 + log_k 20 + delta_h 0 kcal Cd+2 + Butanoate- = CdButanoate+ - log_k 1.25 - delta_h 0 kcal + log_k 1.25 + delta_h 0 kcal Cd+2 + Citrate-3 = CdCitrate- - log_k 5.3 - delta_h 0 kcal -Cd+2 + Citrate-3 + 2H+ = CdH2Citrate+ - log_k 2.05 - delta_h 0 kcal + log_k 5.3 + delta_h 0 kcal +Cd+2 + Citrate-3 + 2 H+ = CdH2Citrate+ + log_k 2.05 + delta_h 0 kcal Cd+2 + Citrate-3 + H+ = CdHCitrate - log_k 3.37 - delta_h 0 kcal -Cd+2 + 2Citrate-3 = CdCitrate2-4 - log_k 5.34 - delta_h 0 kcal + log_k 3.37 + delta_h 0 kcal +Cd+2 + 2 Citrate-3 = CdCitrate2-4 + log_k 5.34 + delta_h 0 kcal Cd+2 + Edta-4 + H+ = CdHEdta- - log_k 2.9 - delta_h 0 kcal -Cd+2 + 2Acetate- = CdAcetate2 - log_k 3.15 - delta_h 0 kcal -Cd+2 + 3Acetate- = CdAcetate3- - log_k 2.17 - delta_h 0 kcal -Cd+2 + 4Acetate- = CdAcetate4-2 - log_k 2.04 - delta_h 0 kcal + log_k 2.9 + delta_h 0 kcal +Cd+2 + 2 Acetate- = CdAcetate2 + log_k 3.15 + delta_h 0 kcal +Cd+2 + 3 Acetate- = CdAcetate3- + log_k 2.17 + delta_h 0 kcal +Cd+2 + 4 Acetate- = CdAcetate4-2 + log_k 2.04 + delta_h 0 kcal Cd+2 + Diethylamine = CdDiethylamine+2 - log_k 2.62 - delta_h 0 kcal -Cd+2 + 2Diethylamine = CdDiethylamine2+2 - log_k 4.86 - delta_h 0 kcal -Cd+2 + 3Diethylamine = CdDiethylamine3+2 - log_k 6.36 - delta_h 0 kcal -Cd+2 + 4Diethylamine = CdDiethylamine4+2 - log_k 7.31 - delta_h 0 kcal + log_k 2.62 + delta_h 0 kcal +Cd+2 + 2 Diethylamine = CdDiethylamine2+2 + log_k 4.86 + delta_h 0 kcal +Cd+2 + 3 Diethylamine = CdDiethylamine3+2 + log_k 6.36 + delta_h 0 kcal +Cd+2 + 4 Diethylamine = CdDiethylamine4+2 + log_k 7.31 + delta_h 0 kcal Cd+2 + Propanoate- = CdPropanoate+ - log_k 1.19 - delta_h 0 kcal -Cd+2 + 2Propanoate- = CdPropanoate2 - log_k 1.86 - delta_h 0 kcal -Cd+2 + 3Propanoate- = CdPropanoate3- - log_k 2.345 - delta_h 0 kcal -Cd+2 + 4Propanoate- = CdPropanoate4-2 - log_k 1.98 - delta_h 0 kcal -Cd+2 + 2Butanoate- = CdButanoate2 - log_k 1.98 - delta_h 0 kcal -Cd+2 + 3Butanoate- = CdButanoate3- - log_k 2.34 - delta_h 0 kcal -Cd+2 + 4Butanoate- = CdButanoate4-2 - log_k 1.98 - delta_h 0 kcal + log_k 1.19 + delta_h 0 kcal +Cd+2 + 2 Propanoate- = CdPropanoate2 + log_k 1.86 + delta_h 0 kcal +Cd+2 + 3 Propanoate- = CdPropanoate3- + log_k 2.345 + delta_h 0 kcal +Cd+2 + 4 Propanoate- = CdPropanoate4-2 + log_k 1.98 + delta_h 0 kcal +Cd+2 + 2 Butanoate- = CdButanoate2 + log_k 1.98 + delta_h 0 kcal +Cd+2 + 3 Butanoate- = CdButanoate3- + log_k 2.34 + delta_h 0 kcal +Cd+2 + 4 Butanoate- = CdButanoate4-2 + log_k 1.98 + delta_h 0 kcal Cd+2 + Npropylamine = CdNpropylamine+2 - log_k 2.62 - delta_h 0 kcal -Cd+2 + 2Npropylamine = CdNpropylamine2+2 - log_k 4.64 - delta_h 0 kcal -Cd+2 + 3Npropylamine = CdNpropylamine3+2 - log_k 6.03 - delta_h 0 kcal + log_k 2.62 + delta_h 0 kcal +Cd+2 + 2 Npropylamine = CdNpropylamine2+2 + log_k 4.64 + delta_h 0 kcal +Cd+2 + 3 Npropylamine = CdNpropylamine3+2 + log_k 6.03 + delta_h 0 kcal Cd+2 + Isopropylamine = CdIsopropylamine+2 - log_k 2.55 - delta_h 0 kcal -Cd+2 + 2Isopropylamine = CdIsopropylamine2+2 - log_k 4.57 - delta_h 0 kcal -Cd+2 + 3Isopropylamine = CdIsopropylamine3+2 - log_k 6.07 - delta_h 0 kcal -Cd+2 + 4Isopropylamine = CdIsopropylamine4+2 - log_k 6.9 - delta_h 0 kcal + log_k 2.55 + delta_h 0 kcal +Cd+2 + 2 Isopropylamine = CdIsopropylamine2+2 + log_k 4.57 + delta_h 0 kcal +Cd+2 + 3 Isopropylamine = CdIsopropylamine3+2 + log_k 6.07 + delta_h 0 kcal +Cd+2 + 4 Isopropylamine = CdIsopropylamine4+2 + log_k 6.9 + delta_h 0 kcal Benzoate- + H+ = HBenzoate - log_k 4.2 - delta_h 0 kcal -Para_acetate- + 2H+ = H2Para_acetate+ - log_k 4.31 - delta_h 0 kcal + log_k 4.2 + delta_h 0 kcal +Para_acetate- + 2 H+ = H2Para_acetate+ + log_k 4.31 + delta_h 0 kcal Isophthalate-2 + H+ = HIsophthalate- - log_k 3.5 - delta_h 0 kcal -Isophthalate-2 + 2H+ = H2Isophthalate - log_k 8 - delta_h 0 kcal + log_k 3.5 + delta_h 0 kcal +Isophthalate-2 + 2 H+ = H2Isophthalate + log_k 8 + delta_h 0 kcal Propanoate- + Fe+3 = FePropanoate+2 - log_k 3.4 - delta_h 0 kcal + log_k 3.4 + delta_h 0 kcal Isobutyrate- + Fe+3 = FeIsobutyrate+2 - log_k 3.6 - delta_h 0 kcal + log_k 3.6 + delta_h 0 kcal Butanoate- + Fe+3 = FeButanoate+2 - log_k 5.56 - delta_h 0 kcal + log_k 5.56 + delta_h 0 kcal Isovalerate- + Fe+3 = FeIsovalerate+2 - log_k 5.58 - delta_h 0 kcal + log_k 5.58 + delta_h 0 kcal Valerate- + Fe+3 = FeValerate+2 - log_k 5.58 - delta_h 0 kcal + log_k 5.58 + delta_h 0 kcal Benzoate- + Cu+2 = CuBenzoate+ - log_k 2.1 - delta_h 0 kcal + log_k 2.1 + delta_h 0 kcal Para_acetate- + Cu+2 = CuPara_acetate+ - log_k 1.97 - delta_h 0 kcal + log_k 1.97 + delta_h 0 kcal Isobutyrate- + Ba+2 = BaIsobutyrate+ - log_k 0.64 - delta_h 0 kcal + log_k 0.64 + delta_h 0 kcal Isovalerate- + Ba+2 = BaIsovalerate+ - log_k 0.68 - delta_h 0 kcal + log_k 0.68 + delta_h 0 kcal Valerate- + Ba+2 = BaValerate+ - log_k 0.66 - delta_h 0 kcal + log_k 0.66 + delta_h 0 kcal Isophthalate-2 + Ba+2 = BaIsophthalate - log_k 1.55 - delta_h 0 kcal + log_k 1.55 + delta_h 0 kcal Isobutyrate- + Cd+2 = CdIsobutyrate+ - log_k 1.17 - delta_h 0 kcal + log_k 1.17 + delta_h 0 kcal Valerate- + Cd+2 = CdValerate+ - log_k 1.19 - delta_h 0 kcal + log_k 1.19 + delta_h 0 kcal Benzoate- + Cd+2 = CdBenzoate+ - log_k 1.9 - delta_h 0 kcal -2Benzoate- + Cd+2 = CdBenzoate2 - log_k 1.65 - delta_h 0 kcal + log_k 1.9 + delta_h 0 kcal +2 Benzoate- + Cd+2 = CdBenzoate2 + log_k 1.65 + delta_h 0 kcal Para_acetate- + Zn+2 = ZnPara_acetate+ - log_k 1.67 - delta_h 0 kcal + log_k 1.67 + delta_h 0 kcal Para_acetate- + Cd+2 = CdPara_acetate+ - log_k 1.15 - delta_h 0 kcal -2Para_acetate- + Cd+2 = CdPara_acetate2 - log_k 1.92 - delta_h 0 kcal + log_k 1.15 + delta_h 0 kcal +2 Para_acetate- + Cd+2 = CdPara_acetate2 + log_k 1.92 + delta_h 0 kcal Isophthalate-2 + Cd+2 = CdIsophthalate - log_k 1.33 - delta_h 0 kcal -2Isophthalate-2 + Cd+2 = CdIsophthalate2-2 - log_k 2.17 - delta_h 0 kcal -2Isophthalate-2 + Cd+2 + H+ = CdIsophthalate2H- - log_k 5.32 - delta_h 0 kcal -2H+ + Isobutyrate- + Cr(OH)2+ = CrIsobutyrate+2 + 2H2O - log_k 12.73 - delta_h 0 kcal -2H+ + Butanoate- + Cr(OH)2+ = CrButanoate+2 + 2H2O - log_k 12.74 - delta_h 0 kcal -2H+ + Isovalerate- + Cr(OH)2+ = CrIsovalerate+2 + 2H2O - log_k 12.76 - delta_h 0 kcal -2H+ + Valerate- + Cr(OH)2+ = CrValerate+2 + 2H2O - log_k 12.75 - delta_h 0 kcal + log_k 1.33 + delta_h 0 kcal +2 Isophthalate-2 + Cd+2 = CdIsophthalate2-2 + log_k 2.17 + delta_h 0 kcal +2 Isophthalate-2 + Cd+2 + H+ = CdIsophthalate2H- + log_k 5.32 + delta_h 0 kcal +2 H+ + Isobutyrate- + Cr(OH)2+ = CrIsobutyrate+2 + 2 H2O + log_k 12.73 + delta_h 0 kcal +2 H+ + Butanoate- + Cr(OH)2+ = CrButanoate+2 + 2 H2O + log_k 12.74 + delta_h 0 kcal +2 H+ + Isovalerate- + Cr(OH)2+ = CrIsovalerate+2 + 2 H2O + log_k 12.76 + delta_h 0 kcal +2 H+ + Valerate- + Cr(OH)2+ = CrValerate+2 + 2 H2O + log_k 12.75 + delta_h 0 kcal Isobutyrate- + Pb+2 = PbIsobutyrate+ - log_k 2.67 - delta_h 0 kcal + log_k 2.67 + delta_h 0 kcal Isovalerate- + Pb+2 = PbIsovalerate+ - log_k 2.05 - delta_h 0 kcal + log_k 2.05 + delta_h 0 kcal Valerate- + Pb+2 = PbValerate+ - log_k 2.06 - delta_h 0 kcal + log_k 2.06 + delta_h 0 kcal Benzoate- + Pb+2 = PbBenzoate+ - log_k 2.5 - delta_h 0 kcal + log_k 2.5 + delta_h 0 kcal Benzoate- + Mg+2 = MgBenzoate+ - log_k 0.1 - delta_h 0 kcal + log_k 0.1 + delta_h 0 kcal Benzoate- + Ca+2 = CaBenzoate+ - log_k 0.2 - delta_h 0 kcal + log_k 0.2 + delta_h 0 kcal Benzoate- + Zn+2 = ZnBenzoate+ - log_k 1.4 - delta_h 0 kcal + log_k 1.4 + delta_h 0 kcal Isophthalate-2 + Pb+2 = PbIsophthalate - log_k 2.17 - delta_h 0 kcal -2Isophthalate-2 + Pb+2 = PbIsophthalate2-2 - log_k 3.36 - delta_h 0 kcal + log_k 2.17 + delta_h 0 kcal +2 Isophthalate-2 + Pb+2 = PbIsophthalate2-2 + log_k 3.36 + delta_h 0 kcal Isophthalate-2 + Pb+2 + H+ = PbIsophthalateH+ - log_k 6.28 - delta_h 0 kcal -2H+ + Isobutyrate- + Hg(OH)2 = HgIsobutyrate+ + 2H2O - log_k 10.687 - delta_h 0 kcal -2H+ + Butanoate- + Hg(OH)2 = HgButanoate+ + 2H2O - log_k 10.097 - delta_h 0 kcal -2H+ + Isovalerate- + Hg(OH)2 = HgIsovalerate+ + 2H2O - log_k 10.717 - delta_h 0 kcal -2H+ + Valerate- + Hg(OH)2 = HgValerate+ + 2H2O - log_k 10.727 - delta_h 0 kcal -2H+ + Phthalate-2 + Hg(OH)2 = HgPhthalate + 2H2O - log_k 10.997 - delta_h 0 kcal + log_k 6.28 + delta_h 0 kcal +2 H+ + Isobutyrate- + Hg(OH)2 = HgIsobutyrate+ + 2 H2O + log_k 10.687 + delta_h 0 kcal +2 H+ + Butanoate- + Hg(OH)2 = HgButanoate+ + 2 H2O + log_k 10.097 + delta_h 0 kcal +2 H+ + Isovalerate- + Hg(OH)2 = HgIsovalerate+ + 2 H2O + log_k 10.717 + delta_h 0 kcal +2 H+ + Valerate- + Hg(OH)2 = HgValerate+ + 2 H2O + log_k 10.727 + delta_h 0 kcal +2 H+ + Phthalate-2 + Hg(OH)2 = HgPhthalate + 2 H2O + log_k 10.997 + delta_h 0 kcal Isobutyrate- + Ni+2 = NiIsobutyrate+ - log_k 1.23 - delta_h 0 kcal + log_k 1.23 + delta_h 0 kcal Isovalerate- + Ni+2 = NiIsovalerate+ - log_k 1.27 - delta_h 0 kcal + log_k 1.27 + delta_h 0 kcal Valerate- + Ni+2 = NiValerate+ - log_k 1.26 - delta_h 0 kcal + log_k 1.26 + delta_h 0 kcal Benzoate- + Ni+2 = NiBenzoate+ - log_k 1.4 - delta_h 0 kcal + log_k 1.4 + delta_h 0 kcal Para_acetate- + Ni+2 = NiPara_acetate+ - log_k 0.65 - delta_h 0 kcal -2Para_acetate- + Ni+2 = NiPara_acetate2 - log_k 0.99 - delta_h 0 kcal + log_k 0.65 + delta_h 0 kcal +2 Para_acetate- + Ni+2 = NiPara_acetate2 + log_k 0.99 + delta_h 0 kcal Phthalate-2 + Ni+2 + H+ = NiPhthalateH+ - log_k 6.1 - delta_h 0 kcal + log_k 6.1 + delta_h 0 kcal Cr+2 + Edta-4 + H+ = CrHEdta- - log_k 6.1 - delta_h 0 kcal -Cr(OH)2+ + Propanoate- + 2H+ = CrPropanoate+2 + 2H2O - log_k 14.32 - delta_h 0 kcal -Cr(OH)2+ + 2Propanoate- + 2H+ = CrPropanoate2+ + 2H2O - log_k 16.66 - delta_h 0 kcal -Cr(OH)2+ + 3Propanoate- + 2H+ = CrPropanoate3 + 2H2O - log_k 19.32 - delta_h 0 kcal + log_k 6.1 + delta_h 0 kcal +Cr(OH)2+ + Propanoate- + 2 H+ = CrPropanoate+2 + 2 H2O + log_k 14.32 + delta_h 0 kcal +Cr(OH)2+ + 2 Propanoate- + 2 H+ = CrPropanoate2+ + 2 H2O + log_k 16.66 + delta_h 0 kcal +Cr(OH)2+ + 3 Propanoate- + 2 H+ = CrPropanoate3 + 2 H2O + log_k 19.32 + delta_h 0 kcal Cr+2 + Acetate- = CrAcetate+ - log_k 1.8 - delta_h 0 kcal -Cr+2 + 2Acetate- = CrAcetate2 - log_k 2.92 - delta_h 0 kcal + log_k 1.8 + delta_h 0 kcal +Cr+2 + 2 Acetate- = CrAcetate2 + log_k 2.92 + delta_h 0 kcal Cu+2 + Edta-4 = CuEdta-2 - log_k 18.785 - delta_h 0 kcal + log_k 18.785 + delta_h 0 kcal Cu+2 + Edta-4 + H+ = CuHEdta- - log_k 11.195 - delta_h 0 kcal -Cu+2 + 2Acetate- = CuAcetate2 - log_k 3.63 - delta_h 0 kcal -Cu+2 + 3Acetate- = CuAcetate3- - log_k 3.1 - delta_h 0 kcal -Cu+2 + 4Acetate- = CuAcetate4-2 - log_k 2.9 - delta_h 0 kcal + log_k 11.195 + delta_h 0 kcal +Cu+2 + 2 Acetate- = CuAcetate2 + log_k 3.63 + delta_h 0 kcal +Cu+2 + 3 Acetate- = CuAcetate3- + log_k 3.1 + delta_h 0 kcal +Cu+2 + 4 Acetate- = CuAcetate4-2 + log_k 2.9 + delta_h 0 kcal Cu+2 + Propanoate- = CuPropanoate+ - log_k 2.22 - delta_h 0 kcal -Cu+2 + 2Propanoate- = CuPropanoate2 - log_k 2.62 - delta_h 0 kcal -Cu+2 + 3Propanoate- = CuPropanoate3- - log_k 2.3 - delta_h 0 kcal -Cu+2 + 4Propanoate- = CuPropanoate4-2 - log_k 2.7 - delta_h 0 kcal -Cu+2 + 2Methylamine = CuMethylamine2+2 - log_k 7.51 - delta_h 0 kcal + log_k 2.22 + delta_h 0 kcal +Cu+2 + 2 Propanoate- = CuPropanoate2 + log_k 2.62 + delta_h 0 kcal +Cu+2 + 3 Propanoate- = CuPropanoate3- + log_k 2.3 + delta_h 0 kcal +Cu+2 + 4 Propanoate- = CuPropanoate4-2 + log_k 2.7 + delta_h 0 kcal +Cu+2 + 2 Methylamine = CuMethylamine2+2 + log_k 7.51 + delta_h 0 kcal Cu+2 + Dimethylamine = CuDimethylamine+2 - log_k 3.21 - delta_h 0 kcal -Cu+2 + 2Dimethylamine = CuDimethylamine2+2 - log_k 5.66 - delta_h 0 kcal -Cu+2 + 3Dimethylamine = CuDimethylamine3+2 - log_k 7.26 - delta_h 0 kcal + log_k 3.21 + delta_h 0 kcal +Cu+2 + 2 Dimethylamine = CuDimethylamine2+2 + log_k 5.66 + delta_h 0 kcal +Cu+2 + 3 Dimethylamine = CuDimethylamine3+2 + log_k 7.26 + delta_h 0 kcal Cu+2 + Butanoate- = CuButanoate+ - log_k 2.14 - delta_h 0 kcal -Cu+2 + 2Butanoate- = CuButanoate2 - log_k 2.6 - delta_h 0 kcal -Cu+2 + 3Butanoate- = CuButanoate3- - log_k 2.3 - delta_h 0 kcal -Cu+2 + 4Butanoate- = CuButanoate4-2 - log_k 2.95 - delta_h 0 kcal + log_k 2.14 + delta_h 0 kcal +Cu+2 + 2 Butanoate- = CuButanoate2 + log_k 2.6 + delta_h 0 kcal +Cu+2 + 3 Butanoate- = CuButanoate3- + log_k 2.3 + delta_h 0 kcal +Cu+2 + 4 Butanoate- = CuButanoate4-2 + log_k 2.95 + delta_h 0 kcal Cu+2 + Isobutyrate- = CuIsobutyrate+ - log_k 2.17 - delta_h 0 kcal -Cu+2 + 2Isobutyrate- = CuIsobutyrate2 - log_k 2.7 - delta_h 0 kcal + log_k 2.17 + delta_h 0 kcal +Cu+2 + 2 Isobutyrate- = CuIsobutyrate2 + log_k 2.7 + delta_h 0 kcal Pb+2 + Citrate-3 = PbCitrate- - log_k 4.34 - delta_h 0 kcal -Pb+2 + 2Citrate-3 = PbCitrate2-4 - log_k 6.08 - delta_h 0 kcal -Pb+2 + 3Citrate-3 = PbCitrate3-7 - log_k 6.97 - delta_h 0 kcal + log_k 4.34 + delta_h 0 kcal +Pb+2 + 2 Citrate-3 = PbCitrate2-4 + log_k 6.08 + delta_h 0 kcal +Pb+2 + 3 Citrate-3 = PbCitrate3-7 + log_k 6.97 + delta_h 0 kcal Pb+2 + Nta-3 = PbNta- - log_k 11.6233 - delta_h 0 kcal + log_k 11.6233 + delta_h 0 kcal Pb+2 + Nta-3 + H+ = PbHNta - log_k 3.795 - delta_h 0 kcal + log_k 3.795 + delta_h 0 kcal Pb+2 + Edta-4 + H+ = PbHEdta- - log_k 9.68 - delta_h 0 kcal -Pb+2 + Edta-4 + 2H+ = PbH2Edta - log_k 6.22 - delta_h 0 kcal + log_k 9.68 + delta_h 0 kcal +Pb+2 + Edta-4 + 2 H+ = PbH2Edta + log_k 6.22 + delta_h 0 kcal Pb+2 + Acetate- = PbAcetate+ - log_k 2.87 - delta_h 0 kcal -Pb+2 + 2Acetate- = PbAcetate2 - log_k 4.08 - delta_h 0 kcal -Pb+2 + 3Acetate- = PbAcetate3- - log_k 3.59 - delta_h 0 kcal + log_k 2.87 + delta_h 0 kcal +Pb+2 + 2 Acetate- = PbAcetate2 + log_k 4.08 + delta_h 0 kcal +Pb+2 + 3 Acetate- = PbAcetate3- + log_k 3.59 + delta_h 0 kcal Pb+2 + Propanoate- = PbPropanoate+ - log_k 2.64 - delta_h 0 kcal -Pb+2 + 2Propanoate- = PbPropanoate2 - log_k 4.15 - delta_h 0 kcal -Pb+2 + 3Propanoate- = PbPropanoate3- - log_k 2.99 - delta_h 0 kcal -Pb+2 + 4Propanoate- = PbPropanoate4-2 - log_k 4.18 - delta_h 0 kcal + log_k 2.64 + delta_h 0 kcal +Pb+2 + 2 Propanoate- = PbPropanoate2 + log_k 4.15 + delta_h 0 kcal +Pb+2 + 3 Propanoate- = PbPropanoate3- + log_k 2.99 + delta_h 0 kcal +Pb+2 + 4 Propanoate- = PbPropanoate4-2 + log_k 4.18 + delta_h 0 kcal Pb+2 + Butanoate- = PbButanoate+ - log_k 2.125 - delta_h 0 kcal -Pb+2 + 2Butanoate- = PbButanoate2 - log_k 3.735 - delta_h 0 kcal -Pb+2 + 3Butanoate- = PbButanoate3- - log_k 4.125 - delta_h 0 kcal -Pb+2 + 4Butanoate- = PbButanoate4-2 - log_k 4.43 - delta_h 0 kcal + log_k 2.125 + delta_h 0 kcal +Pb+2 + 2 Butanoate- = PbButanoate2 + log_k 3.735 + delta_h 0 kcal +Pb+2 + 3 Butanoate- = PbButanoate3- + log_k 4.125 + delta_h 0 kcal +Pb+2 + 4 Butanoate- = PbButanoate4-2 + log_k 4.43 + delta_h 0 kcal Ni+2 + Citrate-3 = NiCitrate- - log_k 6.62 - delta_h 0 kcal + log_k 6.62 + delta_h 0 kcal Ni+2 + Citrate-3 + H+ = NiCitrateH - log_k 4.09 - delta_h 0 kcal -Ni+2 + Citrate-3 + 2H+ = NiCitrateH2+ - log_k 2.13 - delta_h 0 kcal + log_k 4.09 + delta_h 0 kcal +Ni+2 + Citrate-3 + 2 H+ = NiCitrateH2+ + log_k 2.13 + delta_h 0 kcal Ni+2 + Edta-4 = NiEdta-2 - log_k 20.33 - delta_h 0 kcal + log_k 20.33 + delta_h 0 kcal Ni+2 + Edta-4 + H+ = NiHEdta- - log_k 11.56 - delta_h 0 kcal + log_k 11.56 + delta_h 0 kcal Ni+2 + Propanoate- = NiPropanoate+ - log_k 0.73 - delta_h 0 kcal -Ni+2 + 2Propanoate- = NiPropanoate2 - log_k 0.8 - delta_h 0 kcal -Ni+2 + 3Propanoate- = NiPropanoate3- - log_k 0.97 - delta_h 0 kcal + log_k 0.73 + delta_h 0 kcal +Ni+2 + 2 Propanoate- = NiPropanoate2 + log_k 0.8 + delta_h 0 kcal +Ni+2 + 3 Propanoate- = NiPropanoate3- + log_k 0.97 + delta_h 0 kcal Ni+2 + Butanoate- = NiButanoate+ - log_k 0.77 - delta_h 0 kcal -Ni+2 + 2Butanoate- = NiButanoate2 - log_k 0.85 - delta_h 0 kcal -Ni+2 + 3Butanoate- = NiButanoate3- - log_k 1.34 - delta_h 0 kcal + log_k 0.77 + delta_h 0 kcal +Ni+2 + 2 Butanoate- = NiButanoate2 + log_k 0.85 + delta_h 0 kcal +Ni+2 + 3 Butanoate- = NiButanoate3- + log_k 1.34 + delta_h 0 kcal Ni+2 + Npropylamine = NiNpropylamine+2 - log_k 2.81 - delta_h 0 kcal -Ni+2 + 2Npropylamine = NiNpropylamine2+2 - log_k 5.02 - delta_h 0 kcal -Ni+2 + 3Npropylamine = NiNpropylamine3+2 - log_k 6.79 - delta_h 0 kcal -Ni+2 + 4Npropylamine = NiNpropylamine4+2 - log_k 8.31 - delta_h 0 kcal + log_k 2.81 + delta_h 0 kcal +Ni+2 + 2 Npropylamine = NiNpropylamine2+2 + log_k 5.02 + delta_h 0 kcal +Ni+2 + 3 Npropylamine = NiNpropylamine3+2 + log_k 6.79 + delta_h 0 kcal +Ni+2 + 4 Npropylamine = NiNpropylamine4+2 + log_k 8.31 + delta_h 0 kcal Ni+2 + Isopropylamine = NiIsopropylamine+2 - log_k 2.71 - delta_h 0 kcal -Ni+2 + 2Isopropylamine = NiIsopropylamine2+2 - log_k 4.86 - delta_h 0 kcal -Ni+2 + 3Isopropylamine = NiIsopropylamine3+2 - log_k 6.57 - delta_h 0 kcal -Ni+2 + 4Isopropylamine = NiIsopropylamine4+2 - log_k 7.83 - delta_h 0 kcal -Ni+2 + 5Isopropylamine = NiIsopropylamine5+2 - log_k 8.43 - delta_h 0 kcal + log_k 2.71 + delta_h 0 kcal +Ni+2 + 2 Isopropylamine = NiIsopropylamine2+2 + log_k 4.86 + delta_h 0 kcal +Ni+2 + 3 Isopropylamine = NiIsopropylamine3+2 + log_k 6.57 + delta_h 0 kcal +Ni+2 + 4 Isopropylamine = NiIsopropylamine4+2 + log_k 7.83 + delta_h 0 kcal +Ni+2 + 5 Isopropylamine = NiIsopropylamine5+2 + log_k 8.43 + delta_h 0 kcal Ag+ + Diethylamine = AgDiethylamine+ - log_k 3.965 - delta_h 0 kcal -Ag+ + 2Diethylamine = AgDiethylamine2+ - log_k 7.02 - delta_h 0 kcal + log_k 3.965 + delta_h 0 kcal +Ag+ + 2 Diethylamine = AgDiethylamine2+ + log_k 7.02 + delta_h 0 kcal Ag+ + Methylamine = AgMethylamine+ - log_k 3.18 - delta_h 0 kcal -Ag+ + 2Methylamine = AgMethylamine2+ - log_k 7.14 - delta_h 0 kcal + log_k 3.18 + delta_h 0 kcal +Ag+ + 2 Methylamine = AgMethylamine2+ + log_k 7.14 + delta_h 0 kcal Ag+ + Hexylamine = AgHexylamine+ - log_k 3.66 - delta_h 0 kcal -Ag+ + 2Hexylamine = AgHexylamine2+ - log_k 7.35 - delta_h 0 kcal + log_k 3.66 + delta_h 0 kcal +Ag+ + 2 Hexylamine = AgHexylamine2+ + log_k 7.35 + delta_h 0 kcal Ag+ + Isopropylamine = AgIsopropylamine+ - log_k 3.19 - delta_h 0 kcal -Ag+ + 2Isopropylamine = AgIsopropylamine2+ - log_k 6.85 - delta_h 0 kcal + log_k 3.19 + delta_h 0 kcal +Ag+ + 2 Isopropylamine = AgIsopropylamine2+ + log_k 6.85 + delta_h 0 kcal Ag+ + Nbutylamine = AgNbutylamine+ - log_k 3.55 - delta_h 0 kcal -Ag+ + 2Nbutylamine = AgNbutylamine2+ - log_k 7.77 - delta_h 0 kcal + log_k 3.55 + delta_h 0 kcal +Ag+ + 2 Nbutylamine = AgNbutylamine2+ + log_k 7.77 + delta_h 0 kcal Ag+ + Glutamate-2 = AgGlutamate- - log_k 3.79 - delta_h 0 kcal -Ag+ + 2Glutamate-2 = AgGlutamate2-3 - log_k 6.55 - delta_h 0 kcal + log_k 3.79 + delta_h 0 kcal +Ag+ + 2 Glutamate-2 = AgGlutamate2-3 + log_k 6.55 + delta_h 0 kcal Ag+ + Nta-3 = AgNta-2 - log_k 5.36 - delta_h 0 kcal + log_k 5.36 + delta_h 0 kcal Ag+ + Edta-4 = AgEdta-3 - log_k 7.355 - delta_h 0 kcal -Ag+ + 2Edta-4 = AgEdta2-7 - log_k 11.355 - delta_h 0 kcal + log_k 7.355 + delta_h 0 kcal +Ag+ + 2 Edta-4 = AgEdta2-7 + log_k 11.355 + delta_h 0 kcal Ag+ + Edta-4 + H+ = AgHEdta-2 - log_k 3.36 - delta_h 0 kcal + log_k 3.36 + delta_h 0 kcal Ag+ + Two_methylpyridine = AgTwo_methylpyridine+ - log_k 2.32 - delta_h 0 kcal -Ag+ + 2Two_methylpyridine = AgTwo_methylpyridine2+ - log_k 4.68 - delta_h 0 kcal + log_k 2.32 + delta_h 0 kcal +Ag+ + 2 Two_methylpyridine = AgTwo_methylpyridine2+ + log_k 4.68 + delta_h 0 kcal Ag+ + Three_methylpyridine = AgThree_methylpyridine+ - log_k 2.2 - delta_h 0 kcal -Ag+ + 2Three_methylpyridine = AgThree_methylpyridine2+ - log_k 4.46 - delta_h 0 kcal + log_k 2.2 + delta_h 0 kcal +Ag+ + 2 Three_methylpyridine = AgThree_methylpyridine2+ + log_k 4.46 + delta_h 0 kcal Ag+ + Four_methylpyridine = AgFour_methylpyridine+ - log_k 2.21 - delta_h 0 kcal -Ag+ + 2Four_methylpyridine = AgFour_methylpyridine2+ - log_k 4.67 - delta_h 0 kcal + log_k 2.21 + delta_h 0 kcal +Ag+ + 2 Four_methylpyridine = AgFour_methylpyridine2+ + log_k 4.67 + delta_h 0 kcal Ag+ + Npropylamine = AgNpropylamine+ - log_k 3.47 - delta_h 0 kcal -Ag+ + 2Npropylamine = AgNpropylamine2+ - log_k 7.51 - delta_h 0 kcal + log_k 3.47 + delta_h 0 kcal +Ag+ + 2 Npropylamine = AgNpropylamine2+ + log_k 7.51 + delta_h 0 kcal Zn+2 + Glutamate-2 = ZnGlutamate - log_k 3.79 - delta_h 0 kcal -Zn+2 + 2Glutamate-2 = ZnGlutamate2-2 - log_k 8.25 - delta_h 0 kcal -Zn+2 + 3Glutamate-2 = ZnGlutamate3-4 - log_k 9.8 - delta_h 0 kcal + log_k 3.79 + delta_h 0 kcal +Zn+2 + 2 Glutamate-2 = ZnGlutamate2-2 + log_k 8.25 + delta_h 0 kcal +Zn+2 + 3 Glutamate-2 = ZnGlutamate3-4 + log_k 9.8 + delta_h 0 kcal Zn+2 + Three_methylpyridine = ZnThree_methylpyridine+2 - log_k 1 - delta_h 0 kcal -Zn+2 + 2Three_methylpyridine = ZnThree_methylpyridine2+2 - log_k 2.1 - delta_h 0 kcal -Zn+2 + 3Three_methylpyridine = ZnThree_methylpyridine3+2 - log_k 2.6 - delta_h 0 kcal -Zn+2 + 4Three_methylpyridine = ZnThree_methylpyridine4+2 - log_k 3.7 - delta_h 0 kcal + log_k 1 + delta_h 0 kcal +Zn+2 + 2 Three_methylpyridine = ZnThree_methylpyridine2+2 + log_k 2.1 + delta_h 0 kcal +Zn+2 + 3 Three_methylpyridine = ZnThree_methylpyridine3+2 + log_k 2.6 + delta_h 0 kcal +Zn+2 + 4 Three_methylpyridine = ZnThree_methylpyridine4+2 + log_k 3.7 + delta_h 0 kcal Zn+2 + Glycine- = ZnGlycine+ - log_k 5.38 - delta_h 0 kcal -Zn+2 + 2Glycine- = ZnGlycine2 - log_k 9.81 - delta_h 0 kcal -Zn+2 + 3Glycine- = ZnGlycine3- - log_k 12.3 - delta_h 0 kcal + log_k 5.38 + delta_h 0 kcal +Zn+2 + 2 Glycine- = ZnGlycine2 + log_k 9.81 + delta_h 0 kcal +Zn+2 + 3 Glycine- = ZnGlycine3- + log_k 12.3 + delta_h 0 kcal Zn+2 + Citrate-3 = ZnCitrate- - log_k 6.1 - delta_h 0 kcal -Zn+2 + 2Citrate-3 = ZnCitrate2-4 - log_k 6.7 - delta_h 0 kcal + log_k 6.1 + delta_h 0 kcal +Zn+2 + 2 Citrate-3 = ZnCitrate2-4 + log_k 6.7 + delta_h 0 kcal Zn+2 + Citrate-3 + H+ = ZnCitrateH - log_k 3.78 - delta_h 0 kcal -Zn+2 + Citrate-3 + 2H+ = ZnCitrateH2+ - log_k 1.68 - delta_h 0 kcal + log_k 3.78 + delta_h 0 kcal +Zn+2 + Citrate-3 + 2 H+ = ZnCitrateH2+ + log_k 1.68 + delta_h 0 kcal Zn+2 + Phthalate-2 = ZnPhthalate - log_k 2.91 - delta_h 0 kcal -Zn+2 + 2Phthalate-2 = ZnPhthalate2-2 - log_k 4.2 - delta_h 0 kcal + log_k 2.91 + delta_h 0 kcal +Zn+2 + 2 Phthalate-2 = ZnPhthalate2-2 + log_k 4.2 + delta_h 0 kcal Pb+2 + Glutamate-2 = PbGlutamate - log_k 4.7 - delta_h 0 kcal -Pb+2 + 2Glutamate-2 = PbGlutamate2-2 - log_k 7.55 - delta_h 0 kcal + log_k 4.7 + delta_h 0 kcal +Pb+2 + 2 Glutamate-2 = PbGlutamate2-2 + log_k 7.55 + delta_h 0 kcal Pb+2 + Edta-4 = PbEdta-2 - log_k 17.88 - delta_h 0 kcal + log_k 17.88 + delta_h 0 kcal Pb+2 + Phthalate-2 = PbPhthalate - log_k 2.78 - delta_h 0 kcal -Pb+2 + 2Phthalate-2 = PbPhthalate2-2 - log_k 4.01 - delta_h 0 kcal + log_k 2.78 + delta_h 0 kcal +Pb+2 + 2 Phthalate-2 = PbPhthalate2-2 + log_k 4.01 + delta_h 0 kcal Pb+2 + Phthalate-2 + H+ = PbPhthalateH+ - log_k 6.56 - delta_h 0 kcal -Pb+2 + 4Acetate- = PbAcetate4-2 - log_k 3.4 - delta_h 0 kcal + log_k 6.56 + delta_h 0 kcal +Pb+2 + 4 Acetate- = PbAcetate4-2 + log_k 3.4 + delta_h 0 kcal Cu+2 + Nta-3 = CuNta- - log_k 13.1 - delta_h 0 kcal -Cu+2 + 2Nta-3 = CuNta2-4 - log_k 17.5 - delta_h 0 kcal + log_k 13.1 + delta_h 0 kcal +Cu+2 + 2 Nta-3 = CuNta2-4 + log_k 17.5 + delta_h 0 kcal Cu+2 + Methylamine = CuMethylamine+2 - log_k 4.11 - delta_h 0 kcal -Cu+2 + 3Methylamine = CuMethylamine3+2 - log_k 10.21 - delta_h 0 kcal -Cu+2 + 4Methylamine = CuMethylamine4+2 - log_k 12.08 - delta_h 0 kcal + log_k 4.11 + delta_h 0 kcal +Cu+2 + 3 Methylamine = CuMethylamine3+2 + log_k 10.21 + delta_h 0 kcal +Cu+2 + 4 Methylamine = CuMethylamine4+2 + log_k 12.08 + delta_h 0 kcal Cu+2 + Three_methylpyridine = CuThree_methylpyridine+2 - log_k 2.74 - delta_h 0 kcal -Cu+2 + 2Three_methylpyridine = CuThree_methylpyridine2+2 - log_k 4.8 - delta_h 0 kcal -Cu+2 + 3Three_methylpyridine = CuThree_methylpyridine3+2 - log_k 6.3 - delta_h 0 kcal -Cu+2 + 4Three_methylpyridine = CuThree_methylpyridine4+2 - log_k 7.2 - delta_h 0 kcal + log_k 2.74 + delta_h 0 kcal +Cu+2 + 2 Three_methylpyridine = CuThree_methylpyridine2+2 + log_k 4.8 + delta_h 0 kcal +Cu+2 + 3 Three_methylpyridine = CuThree_methylpyridine3+2 + log_k 6.3 + delta_h 0 kcal +Cu+2 + 4 Three_methylpyridine = CuThree_methylpyridine4+2 + log_k 7.2 + delta_h 0 kcal Cu+2 + Four_methylpyridine = CuFour_methylpyridine+2 - log_k 2.88 - delta_h 0 kcal -Cu+2 + 2Four_methylpyridine = CuFour_methylpyridine2+2 - log_k 5.16 - delta_h 0 kcal -Cu+2 + 3Four_methylpyridine = CuFour_methylpyridine3+2 - log_k 6.77 - delta_h 0 kcal -Cu+2 + 4Four_methylpyridine = CuFour_methylpyridine4+2 - log_k 8.08 - delta_h 0 kcal -Cu+2 + 5Four_methylpyridine = CuFour_methylpyridine5+2 - log_k 8.3 - delta_h 0 kcal + log_k 2.88 + delta_h 0 kcal +Cu+2 + 2 Four_methylpyridine = CuFour_methylpyridine2+2 + log_k 5.16 + delta_h 0 kcal +Cu+2 + 3 Four_methylpyridine = CuFour_methylpyridine3+2 + log_k 6.77 + delta_h 0 kcal +Cu+2 + 4 Four_methylpyridine = CuFour_methylpyridine4+2 + log_k 8.08 + delta_h 0 kcal +Cu+2 + 5 Four_methylpyridine = CuFour_methylpyridine5+2 + log_k 8.3 + delta_h 0 kcal # Duplicate entry #Cu+2 + Glutamate-2 = CuGlutamate # log_k 8.33 # delta_h 0 kcal Cu+2 + Citrate-3 = CuCitrate- - log_k 7.26 - delta_h 0 kcal -Cu+2 + 2Citrate-3 = CuCitrate2-4 - log_k 8.72 - delta_h 0 kcal + log_k 7.26 + delta_h 0 kcal +Cu+2 + 2 Citrate-3 = CuCitrate2-4 + log_k 8.72 + delta_h 0 kcal Cu+2 + Citrate-3 + H+ = CuHCitrate - log_k 4.27 - delta_h 0 kcal -Cu+2 + Citrate-3 + 2H+ = CuH2Citrate+ - log_k 2.2 - delta_h 0 kcal + log_k 4.27 + delta_h 0 kcal +Cu+2 + Citrate-3 + 2 H+ = CuH2Citrate+ + log_k 2.2 + delta_h 0 kcal Cu+2 + Isovalerate- = CuIsovalerate+ - log_k 2.08 - delta_h 0 kcal + log_k 2.08 + delta_h 0 kcal Cu+2 + Phthalate-2 = CuPhthalate - log_k 4.04 - delta_h 0 kcal + log_k 4.04 + delta_h 0 kcal Cu+2 + Phthalate-2 + H+ = CuPhthalateH+ - log_k 6.74 - delta_h 0 kcal - -gamma 4 0 + log_k 6.74 + delta_h 0 kcal + -gamma 4 0 Cu+2 + Valerate- = CuValerate+ - log_k 2.12 - delta_h 0 kcal -Cu+2 + 2Valerate- = CuValerate2 - log_k 3 - delta_h 0 kcal + log_k 2.12 + delta_h 0 kcal +Cu+2 + 2 Valerate- = CuValerate2 + log_k 3 + delta_h 0 kcal Ba+2 + Edta-4 = BaEdta-2 - log_k 8 - delta_h 0 kcal + log_k 8 + delta_h 0 kcal Ba+2 + Citrate-3 = BaCitrate- - log_k 4.06 - delta_h 0 kcal + log_k 4.06 + delta_h 0 kcal Ba+2 + Citrate-3 + H+ = BaCitrateH - log_k 2.7 - delta_h 0 kcal -Ba+2 + Citrate-3 + 2H+ = BaCitrateH2+ - log_k 1.27 - delta_h 0 kcal + log_k 2.7 + delta_h 0 kcal +Ba+2 + Citrate-3 + 2 H+ = BaCitrateH2+ + log_k 1.27 + delta_h 0 kcal Ba+2 + Propanoate- = BaPropanoate+ - log_k 0.34 - delta_h 0 kcal + log_k 0.34 + delta_h 0 kcal Ba+2 + Butanoate- = BaButanoate+ - log_k 0.94 - delta_h 0 kcal + log_k 0.94 + delta_h 0 kcal Cr+2 + Edta-4 = CrEdta-2 - log_k 13.61 - delta_h 0 kcal + log_k 13.61 + delta_h 0 kcal Ni+2 + Two_methylpyridine = NiTwo_methylpyridine+2 - log_k 0.4 - delta_h 0 kcal + log_k 0.4 + delta_h 0 kcal Ni+2 + Three_methylpyridine = NiThree_methylpyridine+2 - log_k 2.02 - delta_h 0 kcal -Ni+2 + 2Three_methylpyridine = NiThree_methylpyridine2+2 - log_k 3.3 - delta_h 0 kcal -Ni+2 + 3Three_methylpyridine = NiThree_methylpyridine3+2 - log_k 4.1 - delta_h 0 kcal -Ni+2 + 4Three_methylpyridine = NiThree_methylpyridine4+2 - log_k 4.6 - delta_h 0 kcal + log_k 2.02 + delta_h 0 kcal +Ni+2 + 2 Three_methylpyridine = NiThree_methylpyridine2+2 + log_k 3.3 + delta_h 0 kcal +Ni+2 + 3 Three_methylpyridine = NiThree_methylpyridine3+2 + log_k 4.1 + delta_h 0 kcal +Ni+2 + 4 Three_methylpyridine = NiThree_methylpyridine4+2 + log_k 4.6 + delta_h 0 kcal Ni+2 + Four_methylpyridine = NiFour_methylpyridine+2 - log_k 2.11 - delta_h 0 kcal -Ni+2 + 2Four_methylpyridine = NiFour_methylpyridine2+2 - log_k 3.59 - delta_h 0 kcal -Ni+2 + 3Four_methylpyridine = NiFour_methylpyridine3+2 - log_k 4.34 - delta_h 0 kcal -Ni+2 + 4Four_methylpyridine = NiFour_methylpyridine4+2 - log_k 4.7 - delta_h 0 kcal - -gamma 0 0.04 -Ni+2 + Diethylamine = NiDiethylamine1+2 - log_k 2.78 - delta_h 0 kcal -Ni+2 + 2Diethylamine = NiDiethylamine2+2 - log_k 4.97 - delta_h 0 kcal -Ni+2 + 3Diethylamine = NiDiethylamine3+2 - log_k 6.72 - delta_h 0 kcal -Ni+2 + 4Diethylamine = NiDiethylamine4+2 - log_k 7.93 - delta_h 0 kcal -Ni+2 + 5Diethylamine = NiDiethylamine5+2 - log_k 8.87 - delta_h 0 kcal -Ni+2 + 3Glycine- = NiGlycine3- - log_k 14.2 - delta_h 0 kcal + log_k 2.11 + delta_h 0 kcal +Ni+2 + 2 Four_methylpyridine = NiFour_methylpyridine2+2 + log_k 3.59 + delta_h 0 kcal +Ni+2 + 3 Four_methylpyridine = NiFour_methylpyridine3+2 + log_k 4.34 + delta_h 0 kcal +Ni+2 + 4 Four_methylpyridine = NiFour_methylpyridine4+2 + log_k 4.7 + delta_h 0 kcal + -gamma 0 0.04 +Ni+2 + Diethylamine = NiDiethylamine+2 + log_k 2.78 + delta_h 0 kcal +Ni+2 + 2 Diethylamine = NiDiethylamine2+2 + log_k 4.97 + delta_h 0 kcal +Ni+2 + 3 Diethylamine = NiDiethylamine3+2 + log_k 6.72 + delta_h 0 kcal +Ni+2 + 4 Diethylamine = NiDiethylamine4+2 + log_k 7.93 + delta_h 0 kcal +Ni+2 + 5 Diethylamine = NiDiethylamine5+2 + log_k 8.87 + delta_h 0 kcal +Ni+2 + 3 Glycine- = NiGlycine3- + log_k 14.2 + delta_h 0 kcal Cd+2 + Three_methylpyridine = CdThree_methylpyridine+2 - log_k 1.62 - delta_h 0 kcal -Cd+2 + 2Three_methylpyridine = CdThree_methylpyridine2+2 - log_k 2.8 - delta_h 0 kcal -Cd+2 + 3Three_methylpyridine = CdThree_methylpyridine3+2 - log_k 3.6 - delta_h 0 kcal -Cd+2 + 4Three_methylpyridine = CdThree_methylpyridine4+2 - log_k 4 - delta_h 0 kcal + log_k 1.62 + delta_h 0 kcal +Cd+2 + 2 Three_methylpyridine = CdThree_methylpyridine2+2 + log_k 2.8 + delta_h 0 kcal +Cd+2 + 3 Three_methylpyridine = CdThree_methylpyridine3+2 + log_k 3.6 + delta_h 0 kcal +Cd+2 + 4 Three_methylpyridine = CdThree_methylpyridine4+2 + log_k 4 + delta_h 0 kcal Cd+2 + Four_methylpyridine = CdFour_methylpyridine+2 - log_k 1.51 - delta_h 0 kcal -Cd+2 + 2Four_methylpyridine = CdFour_methylpyridine2+2 - log_k 2.5 - delta_h 0 kcal -Cd+2 + 3Four_methylpyridine = CdFour_methylpyridine3+2 - log_k 2.9 - delta_h 0 kcal -Cd+2 + 4Four_methylpyridine = CdFour_methylpyridine4+2 - log_k 4 - delta_h 0 kcal -Cd+2 + 3Glycine- = CdGlycine3- - log_k 10.7 - delta_h 0 kcal -Cd+2 + 2Phthalate-2 = CdPhthalate2-2 - log_k 2.88 - delta_h 0 kcal + log_k 1.51 + delta_h 0 kcal +Cd+2 + 2 Four_methylpyridine = CdFour_methylpyridine2+2 + log_k 2.5 + delta_h 0 kcal +Cd+2 + 3 Four_methylpyridine = CdFour_methylpyridine3+2 + log_k 2.9 + delta_h 0 kcal +Cd+2 + 4 Four_methylpyridine = CdFour_methylpyridine4+2 + log_k 4 + delta_h 0 kcal +Cd+2 + 3 Glycine- = CdGlycine3- + log_k 10.7 + delta_h 0 kcal +Cd+2 + 2 Phthalate-2 = CdPhthalate2-2 + log_k 2.88 + delta_h 0 kcal Cd+2 + Phthalate-2 + H+ = CdPhthalateH+ - log_k 5.88 - delta_h 0 kcal + log_k 5.88 + delta_h 0 kcal Cd+2 + Isovalerate- = CdIsovalerate+ - log_k 1.34 - delta_h 0 kcal -Cd+2 + 2Isovalerate- = CdIsovalerate2 - log_k 2.3 - delta_h 0 kcal -Cd+2 + 3Isovalerate- = CdIsovalerate3- - log_k 2.5 - delta_h 0 kcal -Cd+2 + 4Isovalerate- = CdIsovalerate4-2 - log_k 2 - delta_h 0 kcal -0.5Hg2+2 + Formate- = HgFormate - log_k 2.94 - delta_h 0 kcal -0.5Hg2+2 + 2Formate- = HgFormate2- - log_k 5.45 - delta_h 0 kcal -0.5Hg2+2 + Acetate- = HgAcetate - log_k 7.14 - delta_h 0 kcal -0.5Hg2+2 + 2Acetate- = HgAcetate2- - log_k 13.26 - delta_h 0 kcal -0.5Hg2+2 + Propanoate- = HgPropanoate - log_k 3.72 - delta_h 0 kcal -0.5Hg2+2 + 2Propanoate- = HgPropanoate2- - log_k 6.99 - delta_h 0 kcal -Hg(OH)2 + Propanoate- + 2H+ = HgPropanoate+ + 2H2O - log_k 9.417 - delta_h 0 kcal -Hg(OH)2 + 2Propanoate- + 2H+ = HgPropanoate2 + 2H2O - log_k 13.107 - delta_h 0 kcal + log_k 1.34 + delta_h 0 kcal +Cd+2 + 2 Isovalerate- = CdIsovalerate2 + log_k 2.3 + delta_h 0 kcal +Cd+2 + 3 Isovalerate- = CdIsovalerate3- + log_k 2.5 + delta_h 0 kcal +Cd+2 + 4 Isovalerate- = CdIsovalerate4-2 + log_k 2 + delta_h 0 kcal +0.5 Hg2+2 + Formate- = HgFormate + log_k 2.94 + delta_h 0 kcal +0.5 Hg2+2 + 2 Formate- = HgFormate2- + log_k 5.45 + delta_h 0 kcal +0.5 Hg2+2 + Acetate- = HgAcetate + log_k 7.14 + delta_h 0 kcal +0.5 Hg2+2 + 2 Acetate- = HgAcetate2- + log_k 13.26 + delta_h 0 kcal +0.5 Hg2+2 + Propanoate- = HgPropanoate + log_k 3.72 + delta_h 0 kcal +0.5 Hg2+2 + 2 Propanoate- = HgPropanoate2- + log_k 6.99 + delta_h 0 kcal +Hg(OH)2 + Propanoate- + 2 H+ = HgPropanoate+ + 2 H2O + log_k 9.417 + delta_h 0 kcal +Hg(OH)2 + 2 Propanoate- + 2 H+ = HgPropanoate2 + 2 H2O + log_k 13.107 + delta_h 0 kcal Tl+ + Citrate-3 = TlCitrate-2 - log_k 1.61 - delta_h 0 kcal + log_k 1.61 + delta_h 0 kcal Tl+ + Nta-3 = TlNta-2 - log_k 4.71 - delta_h 0 kcal + log_k 4.71 + delta_h 0 kcal Tl+ + Edta-4 = TlEdta-3 - log_k 6.41 - delta_h 0 kcal + log_k 6.41 + delta_h 0 kcal Tl+ + Acetate- = TlAcetate - log_k -0.11 - delta_h 0 kcal + log_k -0.11 + delta_h 0 kcal Zn+2 + Edta-4 = ZnEdta-2 - log_k 16.44 - delta_h 0 kcal + log_k 16.44 + delta_h 0 kcal Zn+2 + Edta-4 + H+ = ZnHEdta- - log_k 9 - delta_h 0 kcal + log_k 9 + delta_h 0 kcal Zn+2 + Acetate- = ZnAcetate+ - log_k 1.57 - delta_h 0 kcal -Zn+2 + 2Acetate- = ZnAcetate2 - log_k 1.9 - delta_h 0 kcal -Zn+2 + 3Acetate- = ZnAcetate3- - log_k 1.57 - delta_h 0 kcal -Zn+2 + 4Acetate- = ZnAcetate4-2 - log_k 1.36 - delta_h 0 kcal + log_k 1.57 + delta_h 0 kcal +Zn+2 + 2 Acetate- = ZnAcetate2 + log_k 1.9 + delta_h 0 kcal +Zn+2 + 3 Acetate- = ZnAcetate3- + log_k 1.57 + delta_h 0 kcal +Zn+2 + 4 Acetate- = ZnAcetate4-2 + log_k 1.36 + delta_h 0 kcal Zn+2 + Diethylamine = ZnDiethylamine+2 - log_k 2.51 - delta_h 0 kcal -Zn+2 + 2Diethylamine = ZnDiethylamine2+2 - log_k 4.96 - delta_h 20 kcal -Zn+2 + 3Diethylamine = ZnDiethylamine3+2 - log_k 7.49 - delta_h 0 kcal -Zn+2 + 4Diethylamine = ZnDiethylamine4+2 - log_k 9.83 - delta_h 0 kcal + log_k 2.51 + delta_h 0 kcal +Zn+2 + 2 Diethylamine = ZnDiethylamine2+2 + log_k 4.96 + delta_h 20 kcal +Zn+2 + 3 Diethylamine = ZnDiethylamine3+2 + log_k 7.49 + delta_h 0 kcal +Zn+2 + 4 Diethylamine = ZnDiethylamine4+2 + log_k 9.83 + delta_h 0 kcal Zn+2 + Propanoate- = ZnPropanoate+ - log_k 0.72 - delta_h 0 kcal -Zn+2 + 2Propanoate- = ZnPropanoate2 - log_k 1.23 - delta_h 0 kcal -Zn+2 + 3Propanoate- = ZnPropanoate3- - log_k 1.82 - delta_h 0 kcal -Zn+2 + 4Propanoate- = ZnPropanoate4-2 - log_k 1.36 - delta_h 0 kcal + log_k 0.72 + delta_h 0 kcal +Zn+2 + 2 Propanoate- = ZnPropanoate2 + log_k 1.23 + delta_h 0 kcal +Zn+2 + 3 Propanoate- = ZnPropanoate3- + log_k 1.82 + delta_h 0 kcal +Zn+2 + 4 Propanoate- = ZnPropanoate4-2 + log_k 1.36 + delta_h 0 kcal Zn+2 + Butanoate- = ZnButanoate+ - log_k 0.983 - delta_h 0 kcal -Zn+2 + 2Butanoate- = ZnButanoate2 - log_k 1.65 - delta_h 0 kcal -Zn+2 + 3Butanoate- = ZnButanoate3- - log_k 1.69 - delta_h 0 kcal -Zn+2 + 4Butanoate- = ZnButanoate4-2 - log_k 2.05 - delta_h 0 kcal + log_k 0.983 + delta_h 0 kcal +Zn+2 + 2 Butanoate- = ZnButanoate2 + log_k 1.65 + delta_h 0 kcal +Zn+2 + 3 Butanoate- = ZnButanoate3- + log_k 1.69 + delta_h 0 kcal +Zn+2 + 4 Butanoate- = ZnButanoate4-2 + log_k 2.05 + delta_h 0 kcal Zn+2 + Npropylamine = ZnNpropylamine+2 - log_k 2.42 - delta_h 0 kcal -Zn+2 + 2Npropylamine = ZnNpropylamine2+2 - log_k 4.85 - delta_h 0 kcal -Zn+2 + 3Npropylamine = ZnNpropylamine3+2 - log_k 7.38 - delta_h 0 kcal -Zn+2 + 4Npropylamine = ZnNpropylamine4+2 - log_k 9.49 - delta_h 0 kcal -Zn+2 + Isopropylamine = ZnIsopropylamine1+2 - log_k 2.37 - delta_h 0 kcal -Zn+2 + 2Isopropylamine = ZnIsopropylamine2+2 - log_k 4.67 - delta_h 0 kcal -Zn+2 + 3Isopropylamine = ZnIsopropylamine3+2 - log_k 7.14 - delta_h 0 kcal -Zn+2 + 4Isopropylamine = ZnIsopropylamine4+2 - log_k 9.44 - delta_h 0 kcal + log_k 2.42 + delta_h 0 kcal +Zn+2 + 2 Npropylamine = ZnNpropylamine2+2 + log_k 4.85 + delta_h 0 kcal +Zn+2 + 3 Npropylamine = ZnNpropylamine3+2 + log_k 7.38 + delta_h 0 kcal +Zn+2 + 4 Npropylamine = ZnNpropylamine4+2 + log_k 9.49 + delta_h 0 kcal +Zn+2 + Isopropylamine = ZnIsopropylamine+2 + log_k 2.37 + delta_h 0 kcal +Zn+2 + 2 Isopropylamine = ZnIsopropylamine2+2 + log_k 4.67 + delta_h 0 kcal +Zn+2 + 3 Isopropylamine = ZnIsopropylamine3+2 + log_k 7.14 + delta_h 0 kcal +Zn+2 + 4 Isopropylamine = ZnIsopropylamine4+2 + log_k 9.44 + delta_h 0 kcal H+ + Citrate-3 = CitrateH-2 - log_k 6.33 - delta_h 0 kcal -2H+ + Citrate-3 = CitrateH2- - log_k 11.05 - delta_h 0 kcal -3H+ + Citrate-3 = CitrateH3 - log_k 14.18 - delta_h 0 kcal + log_k 6.33 + delta_h 0 kcal +2 H+ + Citrate-3 = CitrateH2- + log_k 11.05 + delta_h 0 kcal +3 H+ + Citrate-3 = CitrateH3 + log_k 14.18 + delta_h 0 kcal Ca+2 + Citrate-3 = CaCitrate- - log_k 4.73 - delta_h 0 kcal + log_k 4.73 + delta_h 0 kcal Ca+2 + Citrate-3 + H+ = CaCitrateH - log_k 3.02 - delta_h 0 kcal -Ca+2 + Citrate-3 + 2H+ = CaCitrateH2+ - log_k 1.29 - delta_h 0 kcal + log_k 3.02 + delta_h 0 kcal +Ca+2 + Citrate-3 + 2 H+ = CaCitrateH2+ + log_k 1.29 + delta_h 0 kcal Mn+2 + Citrate-3 = MnCitrate- - log_k 5.28 - delta_h 0 kcal + log_k 5.28 + delta_h 0 kcal Mn+2 + Citrate-3 + H+ = MnCitrateH - log_k 3.02 - delta_h 0 kcal + log_k 3.02 + delta_h 0 kcal Fe+2 + Citrate-3 = FeCitrate- - log_k 5.7 - delta_h 0 kcal + log_k 5.7 + delta_h 0 kcal Fe+2 + Citrate-3 + H+ = FeCitrateH - log_k 3.5 - delta_h 0 kcal + log_k 3.5 + delta_h 0 kcal Fe+3 + Citrate-3 = FeCitrate - log_k 12.55 - delta_h 0 kcal + log_k 12.55 + delta_h 0 kcal Fe+3 + Citrate-3 + H+ = FeCitrateH+ - log_k 19.8 - delta_h 0 kcal + log_k 19.8 + delta_h 0 kcal H+ + Ethylenediamine = HEthylenediamine+ - log_k 9.96 - delta_h 0 kcal -2H+ + Ethylenediamine = H2Ethylenediamine+2 - log_k 16.85 - delta_h 0 kcal + log_k 9.96 + delta_h 0 kcal +2 H+ + Ethylenediamine = H2Ethylenediamine+2 + log_k 16.85 + delta_h 0 kcal Cu+2 + Ethylenediamine = CuEthylenediamine+2 - log_k 10.49 - delta_h 0 kcal -Cu+2 + 2Ethylenediamine = CuEthylenediamine2+2 - log_k 19.62 - delta_h 0 kcal + log_k 10.49 + delta_h 0 kcal +Cu+2 + 2 Ethylenediamine = CuEthylenediamine2+2 + log_k 19.62 + delta_h 0 kcal Cd+2 + Ethylenediamine = CdEthylenediamine+2 - log_k 5.61 - delta_h 0 kcal -Cd+2 + 2Ethylenediamine = CdEthylenediamine2+2 - log_k 10.34 - delta_h 0 kcal -Cd+2 + 3Ethylenediamine = CdEthylenediamine3+2 - log_k 12.26 - delta_h 0 kcal + log_k 5.61 + delta_h 0 kcal +Cd+2 + 2 Ethylenediamine = CdEthylenediamine2+2 + log_k 10.34 + delta_h 0 kcal +Cd+2 + 3 Ethylenediamine = CdEthylenediamine3+2 + log_k 12.26 + delta_h 0 kcal Ag+ + Ethylenediamine = AgEthylenediamine+ - log_k 4.7 - delta_h 0 kcal -Ag+ + 2Ethylenediamine = AgEthylenediamine2+ - log_k 7.7 - delta_h 0 kcal + log_k 4.7 + delta_h 0 kcal +Ag+ + 2 Ethylenediamine = AgEthylenediamine2+ + log_k 7.7 + delta_h 0 kcal Ag+ + Ethylenediamine + H+ = AgEthylenediamineH+2 - log_k 7.31 - delta_h 0 kcal -2Ag+ + Ethylenediamine = Ag2Ethylenediamine+2 - log_k 1.43 - delta_h 0 kcal -2Ag+ + 2Ethylenediamine = Ag2Ethylenediamine2+2 - log_k 12.73 - delta_h 0 kcal + log_k 7.31 + delta_h 0 kcal +2 Ag+ + Ethylenediamine = Ag2Ethylenediamine+2 + log_k 1.43 + delta_h 0 kcal +2 Ag+ + 2 Ethylenediamine = Ag2Ethylenediamine2+2 + log_k 12.73 + delta_h 0 kcal Ni+2 + Ethylenediamine = NiEthylenediamine+2 - log_k 7.24 - delta_h 0 kcal -Ni+2 + 2Ethylenediamine = NiEthylenediamine2+2 - log_k 13.36 - delta_h 0 kcal -Ni+2 + 3Ethylenediamine = NiEthylenediamine3+2 - log_k 17.54 - delta_h 0 kcal + log_k 7.24 + delta_h 0 kcal +Ni+2 + 2 Ethylenediamine = NiEthylenediamine2+2 + log_k 13.36 + delta_h 0 kcal +Ni+2 + 3 Ethylenediamine = NiEthylenediamine3+2 + log_k 17.54 + delta_h 0 kcal Pb+2 + Ethylenediamine = PbEthylenediamine+2 - log_k 7 - delta_h 0 kcal -Pb+2 + 2Ethylenediamine = PbEthylenediamine2+2 - log_k 8.45 - delta_h 0 kcal + log_k 7 + delta_h 0 kcal +Pb+2 + 2 Ethylenediamine = PbEthylenediamine2+2 + log_k 8.45 + delta_h 0 kcal Zn+2 + Ethylenediamine = ZnEthylenediamine+2 - log_k 5.65 - delta_h 0 kcal -Zn+2 + 2Ethylenediamine = ZnEthylenediamine2+2 - log_k 10.62 - delta_h 0 kcal -Zn+2 + 3Ethylenediamine = ZnEthylenediamine3+2 - log_k 13.83 - delta_h 0 kcal + log_k 5.65 + delta_h 0 kcal +Zn+2 + 2 Ethylenediamine = ZnEthylenediamine2+2 + log_k 10.62 + delta_h 0 kcal +Zn+2 + 3 Ethylenediamine = ZnEthylenediamine3+2 + log_k 13.83 + delta_h 0 kcal Mn+2 + Ethylenediamine = MnEthylenediamine+2 - log_k 2.67 - delta_h 0 kcal -Mn+2 + 2Ethylenediamine = MnEthylenediamine2+2 - log_k 4.2 - delta_h 0 kcal + log_k 2.67 + delta_h 0 kcal +Mn+2 + 2 Ethylenediamine = MnEthylenediamine2+2 + log_k 4.2 + delta_h 0 kcal Fe+2 + Ethylenediamine = FeEthylenediamine+2 - log_k 4.36 - delta_h 0 kcal -Fe+2 + 2Ethylenediamine = FeEthylenediamine2+2 - log_k 7.65 - delta_h 0 kcal -Fe+2 + 3Ethylenediamine = FeEthylenediamine3+2 - log_k 9.68 - delta_h 0 kcal + log_k 4.36 + delta_h 0 kcal +Fe+2 + 2 Ethylenediamine = FeEthylenediamine2+2 + log_k 7.65 + delta_h 0 kcal +Fe+2 + 3 Ethylenediamine = FeEthylenediamine3+2 + log_k 9.68 + delta_h 0 kcal H+ + Nta-3 = NtaH-2 - log_k 10.334 - delta_h 0 kcal -2H+ + Nta-3 = NtaH2- - log_k 13.27 - delta_h 0 kcal -3H+ + Nta-3 = NtaH3 - log_k 14.12 - delta_h 0 kcal + log_k 10.334 + delta_h 0 kcal +2 H+ + Nta-3 = NtaH2- + log_k 13.27 + delta_h 0 kcal +3 H+ + Nta-3 = NtaH3 + log_k 14.12 + delta_h 0 kcal H+ + Edta-4 = EdtaH-3 - log_k 9.96 - delta_h 0 kcal -2H+ + Edta-4 = EdtaH2-2 - log_k 16.21 - delta_h 0 kcal -3H+ + Edta-4 = EdtaH3- - log_k 18.86 - delta_h 0 kcal -4H+ + Edta-4 = EdtaH4 - log_k 20.93 - delta_h 0 kcal + log_k 9.96 + delta_h 0 kcal +2 H+ + Edta-4 = EdtaH2-2 + log_k 16.21 + delta_h 0 kcal +3 H+ + Edta-4 = EdtaH3- + log_k 18.86 + delta_h 0 kcal +4 H+ + Edta-4 = EdtaH4 + log_k 20.93 + delta_h 0 kcal H+ + Propanoate- = PropanoateH - log_k 4.874 - delta_h 0 kcal + log_k 4.874 + delta_h 0 kcal H+ + Methylamine = MethylamineH+ - log_k 10.72 - delta_h 0 kcal + log_k 10.72 + delta_h 0 kcal H+ + Hexylamine = HexylamineH+ - log_k 10.63 - delta_h 0 kcal + log_k 10.63 + delta_h 0 kcal H+ + Butanoate- = ButanoateH - log_k 4.73 - delta_h 0 kcal -4H+ + Nta-3 = NtaH4+ - log_k 16.224 - delta_h 0 kcal -5H+ + Edta-4 = EdtaH5+ - log_k 23.464 - delta_h 0 kcal + log_k 4.73 + delta_h 0 kcal +4 H+ + Nta-3 = NtaH4+ + log_k 16.224 + delta_h 0 kcal +5 H+ + Edta-4 = EdtaH5+ + log_k 23.464 + delta_h 0 kcal H+ + Diethylamine = DiethylamineH+ - log_k 10.774 - delta_h 0 kcal + log_k 10.774 + delta_h 0 kcal H+ + Trimethylamine = TrimethylamineH+ - log_k 9.8 - delta_h 0 kcal + log_k 9.8 + delta_h 0 kcal H+ + Two_methylpyridine = Two_methylpyridineH+ - log_k 5.95 - delta_h 0 kcal + log_k 5.95 + delta_h 0 kcal H+ + Three_methylpyridine = Three_methylpyridineH+ - log_k 5.7 - delta_h 0 kcal + log_k 5.7 + delta_h 0 kcal H+ + Four_methylpyridine = Four_methylpyridineH+ - log_k 6 - delta_h 0 kcal + log_k 6 + delta_h 0 kcal H+ + Npropylamine = NpropylamineH+ - log_k 10.8 - delta_h 0 kcal -3H+ + Glutamate-2 = GlutamateH3+ - log_k 16.6 - delta_h 0 kcal + log_k 10.8 + delta_h 0 kcal +3 H+ + Glutamate-2 = GlutamateH3+ + log_k 16.6 + delta_h 0 kcal H+ + Formate- = FormateH - log_k 3.745 - delta_h 0 kcal + log_k 3.745 + delta_h 0 kcal H+ + Isovalerate- = IsovalerateH - log_k 4.781 - delta_h 0 kcal + log_k 4.781 + delta_h 0 kcal H+ + Isobutyrate- = IsobutyrateH - log_k 4.849 - delta_h 0 kcal + log_k 4.849 + delta_h 0 kcal H+ + Valerate- = ValerateH - log_k 4.843 - delta_h 0 kcal + log_k 4.843 + delta_h 0 kcal Cd+2 + Edta-4 = CdEdta-2 - log_k 16.275 - delta_h 0 kcal + log_k 16.275 + delta_h 0 kcal Cd+2 + Nta-3 = CdNta- - log_k 9.4 - delta_h 0 kcal -Cd+2 + 2Nta-3 = CdNta2-4 - log_k 14.3 - delta_h 0 kcal + log_k 9.4 + delta_h 0 kcal +Cd+2 + 2 Nta-3 = CdNta2-4 + log_k 14.3 + delta_h 0 kcal Mg+2 + Ethylenediamine = MgEthylenediamine+2 - log_k 0.37 - delta_h 0 kcal + log_k 0.37 + delta_h 0 kcal Ca+2 + Ethylenediamine = CaEthylenediamine+2 - log_k 0.1 - delta_h 0 kcal + log_k 0.1 + delta_h 0 kcal Mg+2 + Citrate-3 = MgCitrate- - log_k 3.37 - delta_h 0 kcal + log_k 3.37 + delta_h 0 kcal Mg+2 + Citrate-3 + H+ = MgCitrateH - log_k 8.17 - delta_h 0 kcal -Mg+2 + Citrate-3 + 2H+ = MgCitrateH2+ - log_k 11.59 - delta_h 0 kcal + log_k 8.17 + delta_h 0 kcal +Mg+2 + Citrate-3 + 2 H+ = MgCitrateH2+ + log_k 11.59 + delta_h 0 kcal Na+ + Acetate- = NaAcetate - log_k -0.18 - delta_h 0 kcal + log_k -0.18 + delta_h 0 kcal Na+ + Phthalate-2 = NaPhthalate- - log_k 0.7 - delta_h 0 kcal + log_k 0.7 + delta_h 0 kcal Mg+2 + Acetate- = MgAcetate+ - log_k 1.27 - delta_h 0 kcal + log_k 1.27 + delta_h 0 kcal Mg+2 + Propanoate- = MgPropanoate+ - log_k 0.54 - delta_h 0 kcal + log_k 0.54 + delta_h 0 kcal Mg+2 + Butanoate- = MgButanoate+ - log_k 0.53 - delta_h 0 kcal + log_k 0.53 + delta_h 0 kcal Ca+2 + Acetate- = CaAcetate+ - log_k 1.18 - delta_h 0 kcal + log_k 1.18 + delta_h 0 kcal Ca+2 + Isophthalate-2 = CaIsophthalate - log_k 2 - delta_h 0 kcal + log_k 2 + delta_h 0 kcal Ca+2 + Propanoate- = CaPropanoate+ - log_k 0.5 - delta_h 0 kcal + log_k 0.5 + delta_h 0 kcal Ca+2 + Butanoate- = CaButanoate+ - log_k 0.51 - delta_h 0 kcal + log_k 0.51 + delta_h 0 kcal Ca+2 + Phthalate-2 = CaPhthalate - log_k 2.42 - delta_h 0 kcal + log_k 2.42 + delta_h 0 kcal Mn+2 + Acetate- = MnAcetate+ - log_k 1.4 - delta_h 0 kcal + log_k 1.4 + delta_h 0 kcal Fe+2 + Acetate- = FeAcetate+ - log_k 1.4 - delta_h 0 kcal -Hg(OH)2 + Acetate- + 2H+ = HgAcetate+ + 2H2O - log_k 9.417 - delta_h 0 kcal -Hg(OH)2 + 2Acetate- + 2H+ = HgAcetate2 + 2H2O - log_k 13.11 - delta_h 0 kcal -Hg(OH)2 + 3Acetate- + 2H+ = HgAcetate3- + 2H2O - log_k 19.38 - delta_h 0 kcal -Hg(OH)2 + 4Acetate- + 2H+ = HgAcetate4-2 + 2H2O - log_k 23.16 - delta_h 0 kcal + log_k 1.4 + delta_h 0 kcal +Hg(OH)2 + Acetate- + 2 H+ = HgAcetate+ + 2 H2O + log_k 9.417 + delta_h 0 kcal +Hg(OH)2 + 2 Acetate- + 2 H+ = HgAcetate2 + 2 H2O + log_k 13.11 + delta_h 0 kcal +Hg(OH)2 + 3 Acetate- + 2 H+ = HgAcetate3- + 2 H2O + log_k 19.38 + delta_h 0 kcal +Hg(OH)2 + 4 Acetate- + 2 H+ = HgAcetate4-2 + 2 H2O + log_k 23.16 + delta_h 0 kcal Fe+3 + Acetate- = FeAcetate+2 - log_k 3.21 - delta_h 0 kcal -Fe+3 + 2Acetate- = FeAcetate2+ - log_k 6.5 - delta_h 0 kcal -Fe+3 + 3Acetate- = FeAcetate3 - log_k 8.3 - delta_h 0 kcal + log_k 3.21 + delta_h 0 kcal +Fe+3 + 2 Acetate- = FeAcetate2+ + log_k 6.5 + delta_h 0 kcal +Fe+3 + 3 Acetate- = FeAcetate3 + log_k 8.3 + delta_h 0 kcal Ca+2 + Edta-4 = CaEdta-2 - log_k 12.4 - delta_h 0 kcal + log_k 12.4 + delta_h 0 kcal Ca+2 + Edta-4 + H+ = CaHEdta- - log_k 16 - delta_h 0 kcal + log_k 16 + delta_h 0 kcal Mg+2 + Edta-4 = MgEdta-2 - log_k 10.6 - delta_h 0 kcal + log_k 10.6 + delta_h 0 kcal Mg+2 + Edta-4 + H+ = MgHEdta- - log_k 15.1 - delta_h 0 kcal + log_k 15.1 + delta_h 0 kcal Fe+3 + Edta-4 = FeEdta- - log_k 27.7 - delta_h 0 kcal + log_k 27.7 + delta_h 0 kcal Fe+2 + Edta-4 = FeEdta-2 - log_k 16.1 - delta_h 0 kcal + log_k 16.1 + delta_h 0 kcal Fe+3 + Edta-4 + H+ = FeHEdta - log_k 29.2 - delta_h 0 kcal + log_k 29.2 + delta_h 0 kcal Fe+2 + Edta-4 + H+ = FeHEdta- - log_k 19.3 - delta_h 0 kcal + log_k 19.3 + delta_h 0 kcal Fe+3 + Edta-4 + H2O = FeOHEdta-2 + H+ - log_k 19.8 - delta_h 0 kcal -Fe+3 + Edta-4 + 2H2O = Fe(OH)2Edta-3 + 2H+ - log_k 9.7 - delta_h 0 kcal + log_k 19.8 + delta_h 0 kcal +Fe+3 + Edta-4 + 2 H2O = Fe(OH)2Edta-3 + 2 H+ + log_k 9.7 + delta_h 0 kcal Fe+2 + Edta-4 + H2O = FeOHEdta-3 + H+ - log_k 6.4 - delta_h 0 kcal -Fe+2 + Edta-4 + 2H2O = Fe(OH)2Edta-4 + 2H+ - log_k -4.3 - delta_h 0 kcal + log_k 6.4 + delta_h 0 kcal +Fe+2 + Edta-4 + 2 H2O = Fe(OH)2Edta-4 + 2 H+ + log_k -4.3 + delta_h 0 kcal Al+3 + Edta-4 = AlEdta- - log_k 18.9 - delta_h 0 kcal + log_k 18.9 + delta_h 0 kcal Al+3 + Edta-4 + H+ = AlHEdta - log_k 21.6 - delta_h 0 kcal + log_k 21.6 + delta_h 0 kcal K+ + Edta-4 = KEdta-3 - log_k 1.7 - delta_h 0 kcal + log_k 1.7 + delta_h 0 kcal Na+ + Edta-4 = NaEdta-3 - log_k 2.5 - delta_h 0 kcal + log_k 2.5 + delta_h 0 kcal PHASES Uraninite - UO2 + 4H+ = U+4 + 2H2O - log_k -4.7 - delta_h -18.63 kcal + UO2 + 4 H+ = U+4 + 2 H2O + log_k -4.7 + delta_h -18.63 kcal UO2(am) - UO2 + 4H+ = U+4 + 2H2O - log_k 0.934 - delta_h -26.23 kcal + UO2 + 4 H+ = U+4 + 2 H2O + log_k 0.934 + delta_h -26.23 kcal U4O9(C) - U4O9 + 18H+ + 2e- = 4U+4 + 9H2O - log_k -3.384 - delta_h -101.235 kcal + U4O9 + 18 H+ + 2 e- = 4 U+4 + 9 H2O + log_k -3.384 + delta_h -101.235 kcal U3O8(C) - U3O8 + 16H+ + 4e- = 3U+4 + 8H2O - log_k 21.107 + U3O8 + 16 H+ + 4 e- = 3 U+4 + 8 H2O + log_k 21.107 delta_h -116.02 kcal USiO4(C) - USiO4 + 4H+ = U+4 + H4SiO4 - log_k -7.62 + USiO4 + 4 H+ = U+4 + H4SiO4 + log_k -7.62 delta_h -14.548 kcal UF4(C) - UF4 = U+4 + 4F- - log_k -18.606 - delta_h -18.9 kcal + UF4 = U+4 + 4 F- + log_k -18.606 + delta_h -18.9 kcal UF4:2.5H2O - UF4:2.5H2O = U+4 + 4F- + 2.5H2O - log_k -27.57 - delta_h -0.588 kcal + UF4:2.5H2O = U+4 + 4 F- + 2.5 H2O + log_k -27.57 + delta_h -0.588 kcal U(HPO4)2 # Minteq equation: # U(HPO4)2 = U+4 + 2PO4-3 + 2H+ + 4H2O - U(HPO4)2 = U+4 + 2PO4-3 + 2H+ - log_k -51.584 - delta_h 3.84 kcal + U(HPO4)2 = U+4 + 2 PO4-3 + 2 H+ + log_k -51.584 + delta_h 3.84 kcal Ningyoite - CaU(PO4)2:2H2O = U+4 + Ca+2 + 2PO4-3 + 2H2O - log_k -53.906 - delta_h -2.27 kcal + CaU(PO4)2:2H2O = U+4 + Ca+2 + 2 PO4-3 + 2 H2O + log_k -53.906 + delta_h -2.27 kcal UO3(C) - UO3 + 2H+ = UO2+2 + H2O - log_k 7.719 + UO3 + 2 H+ = UO2+2 + H2O + log_k 7.719 delta_h -19.315 kcal Gummite - UO3 + 2H+ = UO2+2 + H2O - log_k 10.403 + UO3 + 2 H+ = UO2+2 + H2O + log_k 10.403 delta_h -23.015 kcal B_UO2(OH)2 - UO2(OH)2 + 2H+ = UO2+2 + 2H2O - log_k 5.544 - delta_h -13.73 kcal + UO2(OH)2 + 2 H+ = UO2+2 + 2 H2O + log_k 5.544 + delta_h -13.73 kcal Schoepite - UO2(OH)2:H2O + 2H+ = UO2+2 + 3H2O - log_k 5.404 + UO2(OH)2:H2O + 2 H+ = UO2+2 + 3 H2O + log_k 5.404 delta_h -12.045 kcal Rutherfordine UO2CO3 = UO2+2 + CO3-2 - log_k -14.439 - delta_h -1.44 kcal - -analytical 4.54 -0.03318 -2716.0 + log_k -14.439 + delta_h -1.44 kcal + -analytical 4.54 -0.03318 -2716 (UO2)3(PO4)2 - (UO2)3(PO4)2 = 3UO2+2 + 2PO4-3 - log_k -49.037 - delta_h 94.9 kcal + (UO2)3(PO4)2 = 3 UO2+2 + 2 PO4-3 + log_k -49.037 + delta_h 94.9 kcal H-Autunite - H2(UO2)2(PO4)2 = 2H+ + 2UO2+2 + 2PO4-3 - log_k -47.931 - delta_h -3.6 kcal + H2(UO2)2(PO4)2 = 2 H+ + 2 UO2+2 + 2 PO4-3 + log_k -47.931 + delta_h -3.6 kcal Na-Autunite - Na2(UO2)2(PO4)2 = 2Na+ + 2UO2+2 + 2PO4-3 - log_k -47.409 - delta_h -0.46 kcal + Na2(UO2)2(PO4)2 = 2 Na+ + 2 UO2+2 + 2 PO4-3 + log_k -47.409 + delta_h -0.46 kcal K-Autunite - K2(UO2)2(PO4)2 = 2K+ + 2UO2+2 + 2PO4-3 - log_k -48.244 - delta_h 5.86 kcal + K2(UO2)2(PO4)2 = 2 K+ + 2 UO2+2 + 2 PO4-3 + log_k -48.244 + delta_h 5.86 kcal Uramphite - (NH4)2(UO2)2(PO4)2 = 2UO2+2 + 2NH4+ + 2PO4-3 - log_k -51.749 - delta_h 9.7 kcal + (NH4)2(UO2)2(PO4)2 = 2 UO2+2 + 2 NH4+ + 2 PO4-3 + log_k -51.749 + delta_h 9.7 kcal Saleeite - Mg(UO2)2(PO4)2 = 2UO2+2 + Mg+2 + 2PO4-3 - log_k -43.646 - delta_h -20.18 kcal + Mg(UO2)2(PO4)2 = 2 UO2+2 + Mg+2 + 2 PO4-3 + log_k -43.646 + delta_h -20.18 kcal Autunite - Ca(UO2)2(PO4)2 = 2UO2+2 + Ca+2 + 2PO4-3 - log_k -43.927 - delta_h -14.34 kcal + Ca(UO2)2(PO4)2 = 2 UO2+2 + Ca+2 + 2 PO4-3 + log_k -43.927 + delta_h -14.34 kcal Sr-Autunite - Sr(UO2)2(PO4)2 = 2UO2+2 + Sr+2 + 2PO4-3 - log_k -44.457 - delta_h -13.05 kcal + Sr(UO2)2(PO4)2 = 2 UO2+2 + Sr+2 + 2 PO4-3 + log_k -44.457 + delta_h -13.05 kcal Uranocircite - Ba(UO2)2(PO4)2 = 2UO2+2 + Ba+2 + 2PO4-3 - log_k -44.631 - delta_h -10.1 kcal + Ba(UO2)2(PO4)2 = 2 UO2+2 + Ba+2 + 2 PO4-3 + log_k -44.631 + delta_h -10.1 kcal Bassetite - Fe(UO2)2(PO4)2 = 2UO2+2 + Fe+2 + 2PO4-3 - log_k -44.485 - delta_h -19.9 kcal + Fe(UO2)2(PO4)2 = 2 UO2+2 + Fe+2 + 2 PO4-3 + log_k -44.485 + delta_h -19.9 kcal Torbernite - Cu(UO2)2(PO4)2 = 2UO2+2 + Cu+2 + 2PO4-3 - log_k -45.279 - delta_h -15.9 kcal + Cu(UO2)2(PO4)2 = 2 UO2+2 + Cu+2 + 2 PO4-3 + log_k -45.279 + delta_h -15.9 kcal Przhevalskite - Pb(UO2)2(PO4)2 = 2UO2+2 + Pb+2 + 2PO4-3 - log_k -44.365 - delta_h -11 kcal + Pb(UO2)2(PO4)2 = 2 UO2+2 + Pb+2 + 2 PO4-3 + log_k -44.365 + delta_h -11 kcal Uranophane - Ca(UO2)2(SiO3OH)2 + 6H+ = 2UO2+2 + Ca+2 + 2H4SiO4 - log_k 17.49 - delta_h -0 kcal + Ca(UO2)2(SiO3OH)2 + 6 H+ = 2 UO2+2 + Ca+2 + 2 H4SiO4 + log_k 17.49 + delta_h -0 kcal UO2(NO3)2 - UO2(NO3)2 = UO2+2 + 2NO3- - log_k 12.369 - delta_h -20.14 kcal + UO2(NO3)2 = UO2+2 + 2 NO3- + log_k 12.369 + delta_h -20.14 kcal UO2(NO3)2:2H2O - UO2(NO3)2:2H2O = UO2+2 + 2NO3- + 2H2O - log_k 4.851 - delta_h -6.06 kcal + UO2(NO3)2:2H2O = UO2+2 + 2 NO3- + 2 H2O + log_k 4.851 + delta_h -6.06 kcal UO2(NO3)2:3H2O - UO2(NO3)2:3H2O = UO2+2 + 2NO3- + 3H2O - log_k 3.642 - delta_h -2.405 kcal + UO2(NO3)2:3H2O = UO2+2 + 2 NO3- + 3 H2O + log_k 3.642 + delta_h -2.405 kcal UO2(NO3)2:6H2O - UO2(NO3)2:6H2O = UO2+2 + 2NO3- + 6H2O - log_k 2.3 - delta_h 4.77 kcal + UO2(NO3)2:6H2O = UO2+2 + 2 NO3- + 6 H2O + log_k 2.3 + delta_h 4.77 kcal Al(OH)3(a) - Al(OH)3 + 3H+ = Al+3 + 3H2O - log_k 10.38 + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 10.38 delta_h -27.045 kcal AlOHSO4 AlOHSO4 + H+ = Al+3 + SO4-2 + H2O - log_k -3.23 - delta_h -0 kcal + log_k -3.23 + delta_h -0 kcal Al4(OH)10SO4 - Al4(OH)10SO4 + 10H+ = 4Al+3 + SO4-2 + 10H2O - log_k 22.7 - delta_h -0 kcal + Al4(OH)10SO4 + 10 H+ = 4 Al+3 + SO4-2 + 10 H2O + log_k 22.7 + delta_h -0 kcal AlumK - KAl(SO4)2:12H2O = K+ + Al+3 + 2SO4-2 + 12H2O - log_k -5.17 - delta_h 7.22 kcal + KAl(SO4)2:12H2O = K+ + Al+3 + 2 SO4-2 + 12 H2O + log_k -5.17 + delta_h 7.22 kcal Alunite - KAl3(SO4)2(OH)6 + 6H+ = K+ + 3Al+3 + 2SO4-2 + 6H2O - log_k -1.346 - delta_h 3.918 kcal + KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O + log_k -1.346 + delta_h 3.918 kcal Anhydrite CaSO4 = Ca+2 + SO4-2 - log_k -4.637 - delta_h -3.769 kcal + log_k -4.637 + delta_h -3.769 kcal Aragonite CaCO3 = Ca+2 + CO3-2 - log_k -8.36 - delta_h -2.615 kcal -# Minteq a_e has more constants than phreeqc, can not use + log_k -8.36 + delta_h -2.615 kcal +# Minteq a_e has more constants than phreeqc, can not use # -analytical_expression 10.21 -0.0217 0.0 0.0 5.170E-005 # This a_e is from wateq4f - -analytical -171.9773 -0.077993 2903.293 71.595 0.0 + -analytical -171.9773 -0.077993 2903.293 71.595 0 Artinite - MgCO3:Mg(OH)2:3H2O + 2H+ = 2Mg+2 + CO3-2 + 5H2O - log_k 9.6 + MgCO3:Mg(OH)2:3H2O + 2 H+ = 2 Mg+2 + CO3-2 + 5 H2O + log_k 9.6 delta_h -28.742 kcal BaF2 - BaF2 = Ba+2 + 2F- - log_k -5.76 - delta_h 1 kcal + BaF2 = Ba+2 + 2 F- + log_k -5.76 + delta_h 1 kcal Barite BaSO4 = Ba+2 + SO4-2 - log_k -9.976 - delta_h 6.28 kcal + log_k -9.976 + delta_h 6.28 kcal Boehmite - AlOOH + 3H+ = Al+3 + 2H2O - log_k 8.578 - delta_h -28.13 kcal + AlOOH + 3 H+ = Al+3 + 2 H2O + log_k 8.578 + delta_h -28.13 kcal Brucite - Mg(OH)2 + 2H+ = Mg+2 + 2H2O - log_k 16.792 - delta_h -25.84 kcal + Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O + log_k 16.792 + delta_h -25.84 kcal Calcite CaCO3 = Ca+2 + CO3-2 - log_k -8.475 - delta_h -2.585 kcal - -analytical_expression 13.543 -0.0401 -3000.0 + log_k -8.475 + delta_h -2.585 kcal + -analytical_expression 13.543 -0.0401 -3000 Celestite SrSO4 = Sr+2 + SO4-2 - log_k -6.465 - delta_h -0.47 kcal + log_k -6.465 + delta_h -0.47 kcal Chalcedony - SiO2 + 2H2O = H4SiO4 - log_k -3.523 - delta_h 4.615 kcal + SiO2 + 2 H2O = H4SiO4 + log_k -3.523 + delta_h 4.615 kcal Chrysotile - Mg3Si2O5(OH)4 + 6H+ = 3Mg+2 + 2H4SiO4 + H2O - log_k 32.188 + Mg3Si2O5(OH)4 + 6 H+ = 3 Mg+2 + 2 H4SiO4 + H2O + log_k 32.188 delta_h -52.485 kcal Clinoenstatite - MgSiO3 + H2O + 2H+ = Mg+2 + H4SiO4 - log_k 11.338 + MgSiO3 + H2O + 2 H+ = Mg+2 + H4SiO4 + log_k 11.338 delta_h -20.015 kcal Cristobalite - SiO2 + 2H2O = H4SiO4 - log_k -3.587 - delta_h 5.5 kcal + SiO2 + 2 H2O = H4SiO4 + log_k -3.587 + delta_h 5.5 kcal Diaspore - AlOOH + 3H+ = Al+3 + 2H2O - log_k 6.873 - delta_h -24.63 kcal + AlOOH + 3 H+ = Al+3 + 2 H2O + log_k 6.873 + delta_h -24.63 kcal Diopside - CaMgSi2O6 + 2H2O + 4H+ = Ca+2 + Mg+2 + 2H4SiO4 - log_k 19.886 - delta_h -32.28 kcal + CaMgSi2O6 + 2 H2O + 4 H+ = Ca+2 + Mg+2 + 2 H4SiO4 + log_k 19.886 + delta_h -32.28 kcal Dolomite - CaMg(CO3)2 = Ca+2 + Mg+2 + 2CO3-2 - log_k -17 - delta_h -8.29 kcal + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + log_k -17 + delta_h -8.29 kcal Epsomite - MgSO4:7H2O = Mg+2 + SO4-2 + 7H2O - log_k -2.14 - delta_h 2.82 kcal + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -2.14 + delta_h 2.82 kcal Sepiolite(c) - Mg2Si3O7.5OH:3H2O + 0.5H2O + 4H+ = 2Mg+2 + 3H4SiO4 - log_k 15.913 + Mg2Si3O7.5OH:3H2O + 0.5 H2O + 4 H+ = 2 Mg+2 + 3 H4SiO4 + log_k 15.913 delta_h -27.268 kcal Ferrihydrite - Fe(OH)3 + 3H+ = Fe+3 + 3H2O - log_k 4.891 - delta_h -0 kcal + Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O + log_k 4.891 + delta_h -0 kcal Fe3(OH)8 - Fe3(OH)8 + 8H+ = 2Fe+3 + Fe+2 + 8H2O - log_k 20.222 - delta_h -0 kcal + Fe3(OH)8 + 8 H+ = 2 Fe+3 + Fe+2 + 8 H2O + log_k 20.222 + delta_h -0 kcal Fe(OH)2.7Cl0.3 - Fe(OH)2.7Cl0.3 + 2.7H+ = Fe+3 + 2.7H2O + 0.3Cl- - log_k -3.04 - delta_h -0 kcal + Fe(OH)2.7Cl0.3 + 2.7 H+ = Fe+3 + 2.7 H2O + 0.3 Cl- + log_k -3.04 + delta_h -0 kcal FeS(ppt) FeS + H+ = Fe+2 + HS- - log_k -3.915 - delta_h -0 kcal + log_k -3.915 + delta_h -0 kcal Fe2(SO4)3 - Fe2(SO4)3 = 2Fe+3 + 3SO4-2 - log_k 3.58 - delta_h -59.12 kcal + Fe2(SO4)3 = 2 Fe+3 + 3 SO4-2 + log_k 3.58 + delta_h -59.12 kcal Hydroxyapatite - Ca5(PO4)3OH + H+ = 5Ca+2 + 3PO4-3 + H2O - log_k -44.199 - delta_h -0 kcal + Ca5(PO4)3OH + H+ = 5 Ca+2 + 3 PO4-3 + H2O + log_k -44.199 + delta_h -0 kcal FCO3Apatite # FCO3APATITE = 9.496Ca+2 + 0.36Na+ + 0.144Mg+2 + 4.8PO4-3 + 1.2CO3-2 + 2.48F- - Ca9.316Na0.36Mg0.144(PO4)4.8(CO3)1.2F2.48 = 9.316Ca+2 + 0.36Na+ + 0.144Mg+2 + 4.8PO4-3 + 1.2CO3-2 + 2.48F- - log_k -114.4 - delta_h 39.39 kcal + Ca9.316Na0.36Mg0.144(PO4)4.8(CO3)1.2F2.48 = 9.316 Ca+2 + 0.36 Na+ + 0.144 Mg+2 + 4.8 PO4-3 + 1.2 CO3-2 + 2.48 F- + log_k -114.4 + delta_h 39.39 kcal Fluorite - CaF2 = Ca+2 + 2F- - log_k -10.96 - delta_h 4.71 kcal -# Minteq a_e has more constants than phreeqc, can not use + CaF2 = Ca+2 + 2 F- + log_k -10.96 + delta_h 4.71 kcal +# Minteq a_e has more constants than phreeqc, can not use # -analytical_expression -109.25 -0.0024 3120.98 37.624 4.900E-007 2088.47 298.4 # This a_e is from wateq4f - -analytical 66.348 0.0 -4298.2 -25.271 0.0 + -analytical 66.348 0 -4298.2 -25.271 0 Forsterite - Mg2SiO4 + 4H+ = 2Mg+2 + H4SiO4 - log_k 28.298 - delta_h -48.51 kcal + Mg2SiO4 + 4 H+ = 2 Mg+2 + H4SiO4 + log_k 28.298 + delta_h -48.51 kcal Gibbsite(C) - Al(OH)3 + 3H+ = Al+3 + 3H2O - log_k 8.77 - delta_h -22.8 kcal + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 8.77 + delta_h -22.8 kcal Al2O3 - Al2O3 + 6H+ = 2Al+3 + 3H2O - log_k 22.98 - delta_h -0 kcal + Al2O3 + 6 H+ = 2 Al+3 + 3 H2O + log_k 22.98 + delta_h -0 kcal Goethite - FeOOH + 3H+ = Fe+3 + 2H2O - log_k 0.5 - delta_h -14.48 kcal + FeOOH + 3 H+ = Fe+3 + 2 H2O + log_k 0.5 + delta_h -14.48 kcal Greenalite - Fe3Si2O5(OH)4 + 6H+ = 3Fe+2 + 2H4SiO4 + H2O - log_k 20.81 - delta_h -0 kcal + Fe3Si2O5(OH)4 + 6 H+ = 3 Fe+2 + 2 H4SiO4 + H2O + log_k 20.81 + delta_h -0 kcal Greigite - Fe3S4 + 4H+ = 2Fe+3 + Fe+2 + 4HS- - log_k -45.035 - delta_h -0 kcal + Fe3S4 + 4 H+ = 2 Fe+3 + Fe+2 + 4 HS- + log_k -45.035 + delta_h -0 kcal Gypsum - CaSO4:2H2O = Ca+2 + SO4-2 + 2H2O + CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O # # Log K gives too small a solubility < 10 mmol/L # # D. Parkhurst 7/13/09, Replacing log K with minteq version 4 log K -# log_k -4.848 +# log_k -4.848 # delta_h 0.261 kcal - log_k -4.61 - delta_h 1 kJ + log_k -4.61 + delta_h 1 kJ Halite NaCl = Na+ + Cl- - log_k 1.582 - delta_h 0.918 kcal + log_k 1.582 + delta_h 0.918 kcal Hematite - Fe2O3 + 6H+ = 2Fe+3 + 3H2O - log_k -4.008 + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k -4.008 delta_h -30.845 kcal Huntite - CaMg3(CO3)4 = 3Mg+2 + Ca+2 + 4CO3-2 - log_k -29.968 - delta_h -25.76 kcal + CaMg3(CO3)4 = 3 Mg+2 + Ca+2 + 4 CO3-2 + log_k -29.968 + delta_h -25.76 kcal Hydromagnesite - Mg5(CO3)4(OH)2:4H2O + 2H+ = 5Mg+2 + 4CO3-2 + 6H2O - log_k -8.766 - delta_h -52.21 kcal + Mg5(CO3)4(OH)2:4H2O + 2 H+ = 5 Mg+2 + 4 CO3-2 + 6 H2O + log_k -8.766 + delta_h -52.21 kcal Jarosite-Na - NaFe3(SO4)2(OH)6 + 6H+ = Na+ + 3Fe+3 + 2SO4-2 + 6H2O - log_k -11.2 - delta_h -36.18 kcal + NaFe3(SO4)2(OH)6 + 6 H+ = Na+ + 3 Fe+3 + 2 SO4-2 + 6 H2O + log_k -11.2 + delta_h -36.18 kcal Jarosite-K - KFe3(SO4)2(OH)6 + 6H+ = K+ + 3Fe+3 + 2SO4-2 + 6H2O - log_k -14.8 - delta_h -31.28 kcal + KFe3(SO4)2(OH)6 + 6 H+ = K+ + 3 Fe+3 + 2 SO4-2 + 6 H2O + log_k -14.8 + delta_h -31.28 kcal Jarosite-H - (H3O)Fe3(SO4)2(OH)6 + 5H+ = 3Fe+3 + 2SO4-2 + 7H2O - log_k -12.1 - delta_h -55.15 kcal + (H3O)Fe3(SO4)2(OH)6 + 5 H+ = 3 Fe+3 + 2 SO4-2 + 7 H2O + log_k -12.1 + delta_h -55.15 kcal Mackinawite FeS + H+ = Fe+2 + HS- - log_k -4.648 - delta_h -0 kcal + log_k -4.648 + delta_h -0 kcal Magadiite - NaSi7O13(OH)3:3H2O + H+ + 9H2O = Na+ + 7H4SiO4 - log_k -14.3 - delta_h -0 kcal + NaSi7O13(OH)3:3H2O + H+ + 9 H2O = Na+ + 7 H4SiO4 + log_k -14.3 + delta_h -0 kcal Maghemite - Fe2O3 + 6H+ = 2Fe+3 + 3H2O - log_k 6.386 - delta_h -0 kcal + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k 6.386 + delta_h -0 kcal Magnesite MgCO3 = Mg+2 + CO3-2 - log_k -8.029 - delta_h -6.169 kcal + log_k -8.029 + delta_h -6.169 kcal Magnetite - Fe3O4 + 8H+ = 2Fe+3 + Fe+2 + 4H2O - log_k 3.737 - delta_h -50.46 kcal + Fe3O4 + 8 H+ = 2 Fe+3 + Fe+2 + 4 H2O + log_k 3.737 + delta_h -50.46 kcal Melanterite - FeSO4:7H2O = Fe+2 + SO4-2 + 7H2O - log_k -2.47 - delta_h 2.86 kcal + FeSO4:7H2O = Fe+2 + SO4-2 + 7 H2O + log_k -2.47 + delta_h 2.86 kcal Mirabilite - Na2SO4:10H2O = 2Na+ + SO4-2 + 10H2O - log_k -1.114 - delta_h 18.987 kcal + Na2SO4:10H2O = 2 Na+ + SO4-2 + 10 H2O + log_k -1.114 + delta_h 18.987 kcal Natron - Na2CO3:10H2O = 2Na+ + CO3-2 + 10H2O - log_k -1.311 - delta_h 15.745 kcal + Na2CO3:10H2O = 2 Na+ + CO3-2 + 10 H2O + log_k -1.311 + delta_h 15.745 kcal Nesquehonite - MgCO3:3H2O = Mg+2 + CO3-2 + 3H2O - log_k -5.621 - delta_h -5.789 kcal + MgCO3:3H2O = Mg+2 + CO3-2 + 3 H2O + log_k -5.621 + delta_h -5.789 kcal Phlogopite - KMg3AlSi3O10(OH)2 + 10H+ = K+ + 3Mg+2 + Al+3 + 3H4SiO4 - log_k 66.3 - delta_h -86.36 kcal + KMg3AlSi3O10(OH)2 + 10 H+ = K+ + 3 Mg+2 + Al+3 + 3 H4SiO4 + log_k 66.3 + delta_h -86.36 kcal Pyrite - FeS2 + 2H+ + 2e- = Fe+2 + 2HS- - log_k -18.479 - delta_h 11.3 kcal + FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- + log_k -18.479 + delta_h 11.3 kcal Quartz - SiO2 + 2H2O = H4SiO4 - log_k -4.006 - delta_h 6.22 kcal + SiO2 + 2 H2O = H4SiO4 + log_k -4.006 + delta_h 6.22 kcal Sepiolite(a) - Mg2Si3O7.5OH:3H2O + 0.5H2O + 4H+ = 2Mg+2 + 3H4SiO4 - log_k 18.78 - delta_h -0 kcal + Mg2Si3O7.5OH:3H2O + 0.5 H2O + 4 H+ = 2 Mg+2 + 3 H4SiO4 + log_k 18.78 + delta_h -0 kcal Siderite FeCO3 = Fe+2 + CO3-2 - log_k -10.55 - delta_h -5.328 kcal + log_k -10.55 + delta_h -5.328 kcal SiO2(a) - SiO2 + 2H2O = H4SiO4 - log_k -3.018 - delta_h 4.44 kcal + SiO2 + 2 H2O = H4SiO4 + log_k -3.018 + delta_h 4.44 kcal SiO2(am) - SiO2 + 2H2O = H4SiO4 - log_k -2.71 - delta_h 3.91 kcal + SiO2 + 2 H2O = H4SiO4 + log_k -2.71 + delta_h 3.91 kcal SrF2 - SrF2 = Sr+2 + 2F- - log_k -8.54 - delta_h 1.25 kcal + SrF2 = Sr+2 + 2 F- + log_k -8.54 + delta_h 1.25 kcal Strengite - FePO4:2H2O = Fe+3 + PO4-3 + 2H2O - log_k -26.4 - delta_h -2.03 kcal + FePO4:2H2O = Fe+3 + PO4-3 + 2 H2O + log_k -26.4 + delta_h -2.03 kcal Strontianite SrCO3 = Sr+2 + CO3-2 - log_k -9.25 - delta_h -0.69 kcal + log_k -9.25 + delta_h -0.69 kcal Talc - Mg3Si4O10(OH)2 + 4H2O + 6H+ = 3Mg+2 + 4H4SiO4 - log_k 23.055 + Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 + log_k 23.055 delta_h -35.005 kcal Thenardite - Na2SO4 = 2Na+ + SO4-2 - log_k -0.179 - delta_h -0.572 kcal + Na2SO4 = 2 Na+ + SO4-2 + log_k -0.179 + delta_h -0.572 kcal Thermonatrite - Na2CO3:H2O = 2Na+ + CO3-2 + H2O - log_k 0.125 - delta_h -2.802 kcal + Na2CO3:H2O = 2 Na+ + CO3-2 + H2O + log_k 0.125 + delta_h -2.802 kcal Tremolite - Ca2Mg5Si8O22(OH)2 + 8H2O + 14H+ = 2Ca+2 + 5Mg+2 + 8H4SiO4 - log_k 56.546 + Ca2Mg5Si8O22(OH)2 + 8 H2O + 14 H+ = 2 Ca+2 + 5 Mg+2 + 8 H4SiO4 + log_k 56.546 delta_h -96.615 kcal Vivianite - Fe3(PO4)2:8H2O = 3Fe+2 + 2PO4-3 + 8H2O - log_k -36 - delta_h -0 kcal + Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O + log_k -36 + delta_h -0 kcal Witherite BaCO3 = Ba+2 + CO3-2 - log_k -8.585 - delta_h 0.36 kcal + log_k -8.585 + delta_h 0.36 kcal Pyrolusite - MnO2 + 4H+ + e- = Mn+3 + 2H2O - log_k 15.861 - delta_h -29.18 kcal + MnO2 + 4 H+ + e- = Mn+3 + 2 H2O + log_k 15.861 + delta_h -29.18 kcal Birnessite - MnO2 + 4H+ + e- = Mn+3 + 2H2O - log_k 18.091 - delta_h -0 kcal + MnO2 + 4 H+ + e- = Mn+3 + 2 H2O + log_k 18.091 + delta_h -0 kcal Nsutite - MnO2 + 4H+ + e- = Mn+3 + 2H2O - log_k 17.504 - delta_h -0 kcal + MnO2 + 4 H+ + e- = Mn+3 + 2 H2O + log_k 17.504 + delta_h -0 kcal Bixbyite - Mn2O3 + 6H+ = 2Mn+3 + 3H2O - log_k -0.611 + Mn2O3 + 6 H+ = 2 Mn+3 + 3 H2O + log_k -0.611 delta_h -15.245 kcal Hausmannite - Mn3O4 + 8H+ + 2e- = 3Mn+2 + 4H2O - log_k 61.54 - delta_h -80.14 kcal + Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O + log_k 61.54 + delta_h -80.14 kcal Pyrocroite - Mn(OH)2 + 2H+ = Mn+2 + 2H2O - log_k 15.088 - delta_h -22.59 kcal + Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O + log_k 15.088 + delta_h -22.59 kcal Manganite - MnOOH + 3H+ = Mn+3 + 2H2O - log_k -0.238 - delta_h -0 kcal + MnOOH + 3 H+ = Mn+3 + 2 H2O + log_k -0.238 + delta_h -0 kcal Rhodochrosite MnCO3 = Mn+2 + CO3-2 - log_k -10.41 - delta_h -2.079 kcal + log_k -10.41 + delta_h -2.079 kcal MnCl2:4H2O - MnCl2:4H2O = Mn+2 + 2Cl- + 4H2O - log_k 2.71 - delta_h 17.38 kcal + MnCl2:4H2O = Mn+2 + 2 Cl- + 4 H2O + log_k 2.71 + delta_h 17.38 kcal MnS(Green) MnS + H+ = Mn+2 + HS- - log_k 3.8 - delta_h -5.79 kcal + log_k 3.8 + delta_h -5.79 kcal MnSO4 MnSO4 = Mn+2 + SO4-2 - log_k 2.669 - delta_h -15.48 kcal + log_k 2.669 + delta_h -15.48 kcal Mn2(SO4)3 - Mn2(SO4)3 = 2Mn+3 + 3SO4-2 - log_k -5.711 - delta_h -39.06 kcal + Mn2(SO4)3 = 2 Mn+3 + 3 SO4-2 + log_k -5.711 + delta_h -39.06 kcal Mn3(PO4)2 - Mn3(PO4)2 = 3Mn+2 + 2PO4-3 - log_k -23.827 - delta_h 2.12 kcal + Mn3(PO4)2 = 3 Mn+2 + 2 PO4-3 + log_k -23.827 + delta_h 2.12 kcal CuMetal Cu = Cu+ + e- - log_k -8.76 - delta_h 17.13 kcal + log_k -8.76 + delta_h 17.13 kcal Nantokite CuCl = Cu+ + Cl- - log_k -6.76 - delta_h 9.98 kcal + log_k -6.76 + delta_h 9.98 kcal CuF CuF = Cu+ + F- - log_k 7.08 - delta_h -12.37 kcal + log_k 7.08 + delta_h -12.37 kcal Cuprite - Cu2O + 2H+ = 2Cu+ + H2O - log_k -1.55 - delta_h 6.245 kcal + Cu2O + 2 H+ = 2 Cu+ + H2O + log_k -1.55 + delta_h 6.245 kcal Chalcocite - Cu2S + H+ = 2Cu+ + HS- - log_k -34.619 - delta_h 49.35 kcal + Cu2S + H+ = 2 Cu+ + HS- + log_k -34.619 + delta_h 49.35 kcal Djurleite - Cu0.066Cu1.868S + H+ = 0.066Cu+2 + 1.868Cu+ + HS- - log_k -33.92 - delta_h 47.881 kcal + Cu0.066Cu1.868S + H+ = 0.066 Cu+2 + 1.868 Cu+ + HS- + log_k -33.92 + delta_h 47.881 kcal Anilite - Cu0.25Cu1.5S + H+ = 0.25Cu+2 + 1.5Cu+ + HS- - log_k -31.878 - delta_h 43.535 kcal + Cu0.25Cu1.5S + H+ = 0.25 Cu+2 + 1.5 Cu+ + HS- + log_k -31.878 + delta_h 43.535 kcal BlaubleiII - Cu0.6Cu0.8S + H+ = 0.6Cu+2 + 0.8Cu+ + HS- - log_k -27.279 - delta_h -0 kcal + Cu0.6Cu0.8S + H+ = 0.6 Cu+2 + 0.8 Cu+ + HS- + log_k -27.279 + delta_h -0 kcal BlaubleiI - Cu0.9Cu0.2S + H+ = 0.9Cu+2 + 0.2Cu+ + HS- - log_k -24.162 - delta_h -0 kcal + Cu0.9Cu0.2S + H+ = 0.9 Cu+2 + 0.2 Cu+ + HS- + log_k -24.162 + delta_h -0 kcal Covellite CuS + H+ = Cu+2 + HS- - log_k -23.038 - delta_h 24.01 kcal + log_k -23.038 + delta_h 24.01 kcal Cu2SO4 - Cu2SO4 = 2Cu+ + SO4-2 - log_k -1.95 - delta_h -4.56 kcal + Cu2SO4 = 2 Cu+ + SO4-2 + log_k -1.95 + delta_h -4.56 kcal CuprousFerrite - CuFeO2 + 4H+ = Cu+ + Fe+3 + 2H2O - log_k -8.92 - delta_h -3.8 kcal + CuFeO2 + 4 H+ = Cu+ + Fe+3 + 2 H2O + log_k -8.92 + delta_h -3.8 kcal Melanothallite - CuCl2 = Cu+2 + 2Cl- - log_k 3.73 - delta_h -12.32 kcal + CuCl2 = Cu+2 + 2 Cl- + log_k 3.73 + delta_h -12.32 kcal CuCO3 CuCO3 = Cu+2 + CO3-2 - log_k -9.63 - delta_h -0 kcal + log_k -9.63 + delta_h -0 kcal CuF2 - CuF2 = Cu+2 + 2F- - log_k -0.62 - delta_h -13.32 kcal + CuF2 = Cu+2 + 2 F- + log_k -0.62 + delta_h -13.32 kcal CuF2:2H2O - CuF2:2H2O = Cu+2 + 2F- + 2H2O - log_k -4.55 - delta_h -3.65 kcal + CuF2:2H2O = Cu+2 + 2 F- + 2 H2O + log_k -4.55 + delta_h -3.65 kcal Cu(OH)2 - Cu(OH)2 + 2H+ = Cu+2 + 2H2O - log_k 8.64 - delta_h -15.25 kcal + Cu(OH)2 + 2 H+ = Cu+2 + 2 H2O + log_k 8.64 + delta_h -15.25 kcal Atacamite - Cu2(OH)3Cl + 3H+ = 2Cu+2 + 3H2O + Cl- - log_k 7.34 - delta_h -18.69 kcal + Cu2(OH)3Cl + 3 H+ = 2 Cu+2 + 3 H2O + Cl- + log_k 7.34 + delta_h -18.69 kcal Cu2(OH)3NO3 - Cu2(OH)3NO3 + 3H+ = 2Cu+2 + 3H2O + NO3- - log_k 9.24 - delta_h -17.35 kcal + Cu2(OH)3NO3 + 3 H+ = 2 Cu+2 + 3 H2O + NO3- + log_k 9.24 + delta_h -17.35 kcal Antlerite - Cu3(OH)4SO4 + 4H+ = 3Cu+2 + 4H2O + SO4-2 - log_k 8.29 - delta_h -0 kcal + Cu3(OH)4SO4 + 4 H+ = 3 Cu+2 + 4 H2O + SO4-2 + log_k 8.29 + delta_h -0 kcal Brochantite - Cu4(OH)6SO4 + 6H+ = 4Cu+2 + 6H2O + SO4-2 - log_k 15.34 - delta_h -0 kcal + Cu4(OH)6SO4 + 6 H+ = 4 Cu+2 + 6 H2O + SO4-2 + log_k 15.34 + delta_h -0 kcal Langite - Cu4(OH)6SO4:H2O + 6H+ = 4Cu+2 + 7H2O + SO4-2 - log_k 16.79 - delta_h -39.61 kcal + Cu4(OH)6SO4:H2O + 6 H+ = 4 Cu+2 + 7 H2O + SO4-2 + log_k 16.79 + delta_h -39.61 kcal Tenorite - CuO + 2H+ = Cu+2 + H2O - log_k 7.62 - delta_h -15.24 kcal + CuO + 2 H+ = Cu+2 + H2O + log_k 7.62 + delta_h -15.24 kcal CuOCuSO4 - CuO:CuSO4 + 2H+ = 2Cu+2 + H2O + SO4-2 - log_k 11.53 + CuO:CuSO4 + 2 H+ = 2 Cu+2 + H2O + SO4-2 + log_k 11.53 delta_h -35.575 kcal Cu3(PO4)2 - Cu3(PO4)2 = 3Cu+2 + 2PO4-3 - log_k -36.85 - delta_h -0 kcal + Cu3(PO4)2 = 3 Cu+2 + 2 PO4-3 + log_k -36.85 + delta_h -0 kcal Cu3(PO4)2:3H2O - Cu3(PO4)2:3H2O = 3Cu+2 + 2PO4-3 + 3H2O - log_k -35.12 - delta_h -0 kcal + Cu3(PO4)2:3H2O = 3 Cu+2 + 2 PO4-3 + 3 H2O + log_k -35.12 + delta_h -0 kcal CuSO4 CuSO4 = Cu+2 + SO4-2 - log_k 3.01 - delta_h -18.14 kcal + log_k 3.01 + delta_h -18.14 kcal Chalcanthite - CuSO4:5H2O = Cu+2 + SO4-2 + 5H2O - log_k -2.64 - delta_h 1.44 kcal + CuSO4:5H2O = Cu+2 + SO4-2 + 5 H2O + log_k -2.64 + delta_h 1.44 kcal Dioptase - CuSiO3:H2O + 2H+ = Cu+2 + H4SiO4 - log_k 6.5 - delta_h -8.96 kcal + CuSiO3:H2O + 2 H+ = Cu+2 + H4SiO4 + log_k 6.5 + delta_h -8.96 kcal CupricFerrite - CuFe2O4 + 8H+ = Cu+2 + 2Fe+3 + 4H2O - log_k 5.88 - delta_h -38.69 kcal + CuFe2O4 + 8 H+ = Cu+2 + 2 Fe+3 + 4 H2O + log_k 5.88 + delta_h -38.69 kcal Chalcopyrite - CuFeS2 + 2H+ = Cu+2 + Fe+2 + 2HS- - log_k -35.27 - delta_h 35.48 kcal + CuFeS2 + 2 H+ = Cu+2 + Fe+2 + 2 HS- + log_k -35.27 + delta_h 35.48 kcal CuBr CuBr = Cu+ + Br- - log_k -8.21 - delta_h 13.08 kcal + log_k -8.21 + delta_h 13.08 kcal CuI CuI = Cu+ + I- - log_k -11.89 - delta_h 20.14 kcal + log_k -11.89 + delta_h 20.14 kcal ZnMetal - Zn = Zn+2 + 2e- - log_k 25.757 - delta_h -36.78 kcal + Zn = Zn+2 + 2 e- + log_k 25.757 + delta_h -36.78 kcal ZnCl2 - ZnCl2 = Zn+2 + 2Cl- - log_k 7.03 - delta_h -17.48 kcal + ZnCl2 = Zn+2 + 2 Cl- + log_k 7.03 + delta_h -17.48 kcal Smithsonite ZnCO3 = Zn+2 + CO3-2 - log_k -10 - delta_h -4.36 kcal + log_k -10 + delta_h -4.36 kcal ZnCO3:H2O ZnCO3:H2O = Zn+2 + CO3-2 + H2O - log_k -10.26 - delta_h -0 kcal + log_k -10.26 + delta_h -0 kcal ZnF2 - ZnF2 = Zn+2 + 2F- - log_k -1.52 - delta_h -13.08 kcal + ZnF2 = Zn+2 + 2 F- + log_k -1.52 + delta_h -13.08 kcal Zn(OH)2(A) - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 12.45 - delta_h -0 kcal + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 12.45 + delta_h -0 kcal Zn(OH)2(C) - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 12.2 - delta_h -0 kcal + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 12.2 + delta_h -0 kcal Zn(OH)2(B) - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.75 - delta_h -0 kcal + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.75 + delta_h -0 kcal Zn(OH)2(G) - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.71 - delta_h -0 kcal + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.71 + delta_h -0 kcal Zn(OH)2(E) - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.5 - delta_h -0 kcal + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.5 + delta_h -0 kcal Zn2(OH)3Cl - Zn2(OH)3Cl + 3H+ = 2Zn+2 + 3H2O + Cl- - log_k 15.2 - delta_h -0 kcal + Zn2(OH)3Cl + 3 H+ = 2 Zn+2 + 3 H2O + Cl- + log_k 15.2 + delta_h -0 kcal Zn5(OH)8Cl2 - Zn5(OH)8Cl2 + 8H+ = 5Zn+2 + 8H2O + 2Cl- - log_k 38.5 - delta_h -0 kcal + Zn5(OH)8Cl2 + 8 H+ = 5 Zn+2 + 8 H2O + 2 Cl- + log_k 38.5 + delta_h -0 kcal Zn2(OH)2SO4 - Zn2(OH)2SO4 + 2H+ = 2Zn+2 + 2H2O + SO4-2 - log_k 7.5 - delta_h -0 kcal + Zn2(OH)2SO4 + 2 H+ = 2 Zn+2 + 2 H2O + SO4-2 + log_k 7.5 + delta_h -0 kcal Zn4(OH)6SO4 - Zn4(OH)6SO4 + 6H+ = 4Zn+2 + 6H2O + SO4-2 - log_k 28.4 - delta_h -0 kcal + Zn4(OH)6SO4 + 6 H+ = 4 Zn+2 + 6 H2O + SO4-2 + log_k 28.4 + delta_h -0 kcal Zn(NO3)2:6H2O - Zn(NO3)2:6H2O = Zn+2 + 2NO3- + 6H2O - log_k 3.44 - delta_h 5.51 kcal + Zn(NO3)2:6H2O = Zn+2 + 2 NO3- + 6 H2O + log_k 3.44 + delta_h 5.51 kcal ZnO(Active) - ZnO + 2H+ = Zn+2 + H2O - log_k 11.31 - delta_h -0 kcal + ZnO + 2 H+ = Zn+2 + H2O + log_k 11.31 + delta_h -0 kcal Zincite - ZnO + 2H+ = Zn+2 + H2O - log_k 11.14 - delta_h -21.86 kcal + ZnO + 2 H+ = Zn+2 + H2O + log_k 11.14 + delta_h -21.86 kcal Zn3O(SO4)2 - Zn3O(SO4)2 + 2H+ = 3Zn+2 + 2SO4-2 + H2O - log_k 19.02 - delta_h -62 kcal + Zn3O(SO4)2 + 2 H+ = 3 Zn+2 + 2 SO4-2 + H2O + log_k 19.02 + delta_h -62 kcal Zn3(PO4)2:4H2O - Zn3(PO4)2:4H2O = 3Zn+2 + 2PO4-3 + 4H2O - log_k -32.04 - delta_h -0 kcal + Zn3(PO4)2:4H2O = 3 Zn+2 + 2 PO4-3 + 4 H2O + log_k -32.04 + delta_h -0 kcal ZnS(A) ZnS + H+ = Zn+2 + HS- - log_k -9.052 - delta_h 3.67 kcal + log_k -9.052 + delta_h 3.67 kcal Sphalerite ZnS + H+ = Zn+2 + HS- - log_k -11.618 - delta_h 8.25 kcal + log_k -11.618 + delta_h 8.25 kcal Wurtzite ZnS + H+ = Zn+2 + HS- - log_k -9.682 - delta_h 5.06 kcal + log_k -9.682 + delta_h 5.06 kcal ZnSiO3 - ZnSiO3 + 2H+ + H2O = Zn+2 + H4SiO4 - log_k 2.93 - delta_h -18.27 kcal + ZnSiO3 + 2 H+ + H2O = Zn+2 + H4SiO4 + log_k 2.93 + delta_h -18.27 kcal Willemite - Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4 - log_k 15.33 - delta_h -33.37 kcal + Zn2SiO4 + 4 H+ = 2 Zn+2 + H4SiO4 + log_k 15.33 + delta_h -33.37 kcal Zincosite ZnSO4 = Zn+2 + SO4-2 - log_k 3.01 - delta_h -19.2 kcal + log_k 3.01 + delta_h -19.2 kcal ZnSO4:H2O ZnSO4:H2O = Zn+2 + SO4-2 + H2O - log_k -0.57 - delta_h -10.64 kcal + log_k -0.57 + delta_h -10.64 kcal Bianchite - ZnSO4:6H2O = Zn+2 + SO4-2 + 6H2O - log_k -1.765 - delta_h -0.16 kcal + ZnSO4:6H2O = Zn+2 + SO4-2 + 6 H2O + log_k -1.765 + delta_h -0.16 kcal Goslarite - ZnSO4:7H2O = Zn+2 + SO4-2 + 7H2O - log_k -1.96 - delta_h 3.3 kcal + ZnSO4:7H2O = Zn+2 + SO4-2 + 7 H2O + log_k -1.96 + delta_h 3.3 kcal ZnBr2:2H2O - ZnBr2:2H2O = Zn+2 + 2Br- + 2H2O - log_k 5.21 - delta_h -7.51 kcal + ZnBr2:2H2O = Zn+2 + 2 Br- + 2 H2O + log_k 5.21 + delta_h -7.51 kcal ZnI2 - ZnI2 = Zn+2 + 2I- - log_k 7.23 - delta_h -13.44 kcal + ZnI2 = Zn+2 + 2 I- + log_k 7.23 + delta_h -13.44 kcal CdMetal - Cd = Cd+2 + 2e- - log_k 13.49 - delta_h -18 kcal + Cd = Cd+2 + 2 e- + log_k 13.49 + delta_h -18 kcal Cd(Gamma) - Cd = Cd+2 + 2e- - log_k 13.59 - delta_h -18.14 kcal + Cd = Cd+2 + 2 e- + log_k 13.59 + delta_h -18.14 kcal Otavite CdCO3 = Cd+2 + CO3-2 - log_k -13.74 - delta_h -0.58 kcal + log_k -13.74 + delta_h -0.58 kcal CdCl2 - CdCl2 = Cd+2 + 2Cl- - log_k -0.68 - delta_h -4.47 kcal + CdCl2 = Cd+2 + 2 Cl- + log_k -0.68 + delta_h -4.47 kcal CdCl2:H2O - CdCl2:H2O = Cd+2 + 2Cl- + H2O - log_k -1.71 - delta_h -1.82 kcal + CdCl2:H2O = Cd+2 + 2 Cl- + H2O + log_k -1.71 + delta_h -1.82 kcal CdCl2:2.5H2O - CdCl2:2.5H2O = Cd+2 + 2Cl- + 2.5H2O - log_k -1.94 - delta_h 1.71 kcal + CdCl2:2.5H2O = Cd+2 + 2 Cl- + 2.5 H2O + log_k -1.94 + delta_h 1.71 kcal CdF2 - CdF2 = Cd+2 + 2F- - log_k -2.98 - delta_h -9.72 kcal + CdF2 = Cd+2 + 2 F- + log_k -2.98 + delta_h -9.72 kcal Cd(OH)2(A) - Cd(OH)2 + 2H+ = Cd+2 + 2H2O - log_k 13.73 - delta_h -20.77 kcal + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + log_k 13.73 + delta_h -20.77 kcal Cd(OH)2(C) - Cd(OH)2 + 2H+ = Cd+2 + 2H2O - log_k 13.65 - delta_h -0 kcal + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + log_k 13.65 + delta_h -0 kcal CdOHCl CdOHCl + H+ = Cd+2 + H2O + Cl- - log_k 3.52 - delta_h -7.407 kcal + log_k 3.52 + delta_h -7.407 kcal Cd3(OH)4SO4 - Cd3(OH)4SO4 + 4H+ = 3Cd+2 + 4H2O + SO4-2 - log_k 22.56 - delta_h -0 kcal + Cd3(OH)4SO4 + 4 H+ = 3 Cd+2 + 4 H2O + SO4-2 + log_k 22.56 + delta_h -0 kcal Cd3(OH)2(SO4)2 - Cd3(OH)2(SO4)2 + 2H+ = 3Cd+2 + 2H2O + 2SO4-2 - log_k 6.71 - delta_h -0 kcal + Cd3(OH)2(SO4)2 + 2 H+ = 3 Cd+2 + 2 H2O + 2 SO4-2 + log_k 6.71 + delta_h -0 kcal Cd4(OH)6SO4 - Cd4(OH)6SO4 + 6H+ = 4Cd+2 + 6H2O + SO4-2 - log_k 28.4 - delta_h -0 kcal + Cd4(OH)6SO4 + 6 H+ = 4 Cd+2 + 6 H2O + SO4-2 + log_k 28.4 + delta_h -0 kcal Monteponite - CdO + 2H+ = Cd+2 + H2O - log_k 15.12 - delta_h -24.76 kcal + CdO + 2 H+ = Cd+2 + H2O + log_k 15.12 + delta_h -24.76 kcal Cd3(PO4)2 - Cd3(PO4)2 = 3Cd+2 + 2PO4-3 - log_k -32.6 - delta_h -0 kcal + Cd3(PO4)2 = 3 Cd+2 + 2 PO4-3 + log_k -32.6 + delta_h -0 kcal CdSiO3 - CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4 - log_k 9.06 - delta_h -16.63 kcal + CdSiO3 + H2O + 2 H+ = Cd+2 + H4SiO4 + log_k 9.06 + delta_h -16.63 kcal CdSO4 CdSO4 = Cd+2 + SO4-2 - log_k -0.1 - delta_h -14.74 kcal + log_k -0.1 + delta_h -14.74 kcal CdSO4:H2O CdSO4:H2O = Cd+2 + SO4-2 + H2O - log_k -1.657 - delta_h -7.52 kcal + log_k -1.657 + delta_h -7.52 kcal CdSO4:2.67H2O - CdSO4:2.67H2O = Cd+2 + SO4-2 + 2.67H2O - log_k -1.873 - delta_h -4.3 kcal + CdSO4:2.67H2O = Cd+2 + SO4-2 + 2.67 H2O + log_k -1.873 + delta_h -4.3 kcal Greenockite CdS + H+ = Cd+2 + HS- - log_k -15.93 - delta_h 16.36 kcal + log_k -15.93 + delta_h 16.36 kcal CdBr2:4H2O - CdBr2:4H2O = Cd+2 + 2Br- + 4H2O - log_k -2.42 - delta_h 7.23 kcal + CdBr2:4H2O = Cd+2 + 2 Br- + 4 H2O + log_k -2.42 + delta_h 7.23 kcal CdI2 - CdI2 = Cd+2 + 2I- - log_k -3.61 - delta_h 4.08 kcal + CdI2 = Cd+2 + 2 I- + log_k -3.61 + delta_h 4.08 kcal PbMetal - Pb = Pb+2 + 2e- - log_k 4.27 - delta_h 0.4 kcal + Pb = Pb+2 + 2 e- + log_k 4.27 + delta_h 0.4 kcal Cotunnite - PbCl2 = Pb+2 + 2Cl- - log_k -4.77 - delta_h 5.6 kcal + PbCl2 = Pb+2 + 2 Cl- + log_k -4.77 + delta_h 5.6 kcal Matlockite PbClF = Pb+2 + Cl- + F- - log_k -9.43 - delta_h 7.95 kcal + log_k -9.43 + delta_h 7.95 kcal Phosgenite - PbCl2:PbCO3 = 2Pb+2 + 2Cl- + CO3-2 - log_k -19.81 - delta_h -0 kcal + PbCl2:PbCO3 = 2 Pb+2 + 2 Cl- + CO3-2 + log_k -19.81 + delta_h -0 kcal Cerussite PbCO3 = Pb+2 + CO3-2 - log_k -13.13 - delta_h 4.86 kcal + log_k -13.13 + delta_h 4.86 kcal PbF2 - PbF2 = Pb+2 + 2F- - log_k -7.44 - delta_h -0.7 kcal + PbF2 = Pb+2 + 2 F- + log_k -7.44 + delta_h -0.7 kcal Massicot - PbO + 2H+ = Pb+2 + H2O - log_k 12.91 - delta_h -16.78 kcal + PbO + 2 H+ = Pb+2 + H2O + log_k 12.91 + delta_h -16.78 kcal Litharge - PbO + 2H+ = Pb+2 + H2O - log_k 12.72 - delta_h -16.38 kcal + PbO + 2 H+ = Pb+2 + H2O + log_k 12.72 + delta_h -16.38 kcal PbO:0.3H2O - PbO:0.33H2O + 2H+ = Pb+2 + 1.33H2O - log_k 12.98 - delta_h -0 kcal + PbO:0.33H2O + 2 H+ = Pb+2 + 1.33 H2O + log_k 12.98 + delta_h -0 kcal Pb2OCO3 - Pb2OCO3 + 2H+ = 2Pb+2 + H2O + CO3-2 - log_k -0.5 - delta_h -11.46 kcal + Pb2OCO3 + 2 H+ = 2 Pb+2 + H2O + CO3-2 + log_k -0.5 + delta_h -11.46 kcal Larnakite - PbO:PbSO4 + 2H+ = 2Pb+2 + SO4-2 + H2O - log_k -0.28 - delta_h -6.44 kcal + PbO:PbSO4 + 2 H+ = 2 Pb+2 + SO4-2 + H2O + log_k -0.28 + delta_h -6.44 kcal Pb3O2SO4 - Pb3O2SO4 + 4H+ = 3Pb+2 + SO4-2 + 2H2O - log_k 10.4 - delta_h -20.75 kcal + Pb3O2SO4 + 4 H+ = 3 Pb+2 + SO4-2 + 2 H2O + log_k 10.4 + delta_h -20.75 kcal Pb4O3SO4 - Pb4O3SO4 + 6H+ = 4Pb+2 + SO4-2 + 3H2O - log_k 22.1 - delta_h -35.07 kcal + Pb4O3SO4 + 6 H+ = 4 Pb+2 + SO4-2 + 3 H2O + log_k 22.1 + delta_h -35.07 kcal ClPyromorphite - Pb5(PO4)3Cl = 5Pb+2 + 3PO4-3 + Cl- - log_k -84.43 - delta_h -0 kcal + Pb5(PO4)3Cl = 5 Pb+2 + 3 PO4-3 + Cl- + log_k -84.43 + delta_h -0 kcal Hxypyromorphite - Pb5(PO4)3OH + H+ = 5Pb+2 + 3PO4-3 + H2O - log_k -62.79 - delta_h -0 kcal + Pb5(PO4)3OH + H+ = 5 Pb+2 + 3 PO4-3 + H2O + log_k -62.79 + delta_h -0 kcal Pb3O2CO3 - Pb3O2CO3 + 4H+ = 3Pb+2 + CO3-2 + 2H2O - log_k 11.02 - delta_h -26.43 kcal + Pb3O2CO3 + 4 H+ = 3 Pb+2 + CO3-2 + 2 H2O + log_k 11.02 + delta_h -26.43 kcal Plumbogummite - PbAl3(PO4)2(OH)5:H2O + 5H+ = Pb+2 + 3Al+3 + 2PO4-3 + 6H2O - log_k -32.79 - delta_h -0 kcal + PbAl3(PO4)2(OH)5:H2O + 5 H+ = Pb+2 + 3 Al+3 + 2 PO4-3 + 6 H2O + log_k -32.79 + delta_h -0 kcal Hinsdalite - PbAl3PO4SO4(OH)6 + 6H+ = Pb+2 + 3Al+3 + PO4-3 + SO4-2 + 6H2O - log_k -2.5 - delta_h -0 kcal + PbAl3PO4SO4(OH)6 + 6 H+ = Pb+2 + 3 Al+3 + PO4-3 + SO4-2 + 6 H2O + log_k -2.5 + delta_h -0 kcal Tsumebite - Pb2CuPO4(OH)3:3H2O + 3H+ = 2Pb+2 + Cu+2 + PO4-3 + 6H2O - log_k -9.79 - delta_h -0 kcal + Pb2CuPO4(OH)3:3H2O + 3 H+ = 2 Pb+2 + Cu+2 + PO4-3 + 6 H2O + log_k -9.79 + delta_h -0 kcal PbSiO3 - PbSiO3 + H2O + 2H+ = Pb+2 + H4SiO4 - log_k 7.32 - delta_h -9.26 kcal + PbSiO3 + H2O + 2 H+ = Pb+2 + H4SiO4 + log_k 7.32 + delta_h -9.26 kcal Pb2SiO4 - Pb2SiO4 + 4H+ = 2Pb+2 + H4SiO4 - log_k 19.76 - delta_h -26 kcal + Pb2SiO4 + 4 H+ = 2 Pb+2 + H4SiO4 + log_k 19.76 + delta_h -26 kcal Anglesite PbSO4 = Pb+2 + SO4-2 - log_k -7.79 - delta_h 2.15 kcal + log_k -7.79 + delta_h 2.15 kcal Galena PbS + H+ = Pb+2 + HS- - log_k -15.132 - delta_h 19.4 kcal + log_k -15.132 + delta_h 19.4 kcal Plattnerite - PbO2 + 4H+ + 2e- = Pb+2 + 2H2O - log_k 49.3 - delta_h -70.73 kcal + PbO2 + 4 H+ + 2 e- = Pb+2 + 2 H2O + log_k 49.3 + delta_h -70.73 kcal Pb2O3 - Pb2O3 + 6H+ + 2e- = 2Pb+2 + 3H2O - log_k 61.04 - delta_h -0 kcal + Pb2O3 + 6 H+ + 2 e- = 2 Pb+2 + 3 H2O + log_k 61.04 + delta_h -0 kcal Minium - Pb3O4 + 8H+ + 2e- = 3Pb+2 + 4H2O - log_k 73.69 + Pb3O4 + 8 H+ + 2 e- = 3 Pb+2 + 4 H2O + log_k 73.69 delta_h -102.76 kcal Pb(OH)2(C) - Pb(OH)2 + 2H+ = Pb+2 + 2H2O - log_k 8.15 - delta_h -13.99 kcal + Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O + log_k 8.15 + delta_h -13.99 kcal Laurionite PbOHCl + H+ = Pb+2 + Cl- + H2O - log_k 0.623 - delta_h -0 kcal + log_k 0.623 + delta_h -0 kcal Pb2(OH)3Cl - Pb2(OH)3Cl + 3H+ = 2Pb+2 + 3H2O + Cl- - log_k 8.793 - delta_h -0 kcal + Pb2(OH)3Cl + 3 H+ = 2 Pb+2 + 3 H2O + Cl- + log_k 8.793 + delta_h -0 kcal Hydcerussite - Pb(OH)2:2PbCO3 + 2H+ = 3Pb+2 + 2CO3-2 + 2H2O - log_k -17.46 - delta_h -0 kcal + Pb(OH)2:2PbCO3 + 2 H+ = 3 Pb+2 + 2 CO3-2 + 2 H2O + log_k -17.46 + delta_h -0 kcal Pb2O(OH)2 - Pb2O(OH)2 + 4H+ = 2Pb+2 + 3H2O - log_k 26.2 - delta_h -0 kcal + Pb2O(OH)2 + 4 H+ = 2 Pb+2 + 3 H2O + log_k 26.2 + delta_h -0 kcal PbBr2 - PbBr2 = Pb+2 + 2Br- - log_k -5.18 - delta_h 8.1 kcal + PbBr2 = Pb+2 + 2 Br- + log_k -5.18 + delta_h 8.1 kcal PbBrF PbBrF = Pb+2 + Br- + F- - log_k -8.49 - delta_h -0 kcal + log_k -8.49 + delta_h -0 kcal PbI2 - PbI2 = Pb+2 + 2I- - log_k -8.07 - delta_h 15.16 kcal + PbI2 = Pb+2 + 2 I- + log_k -8.07 + delta_h 15.16 kcal Pb4(OH)6SO4 - Pb4(OH)6SO4 + 6H+ = 4Pb+2 + SO4-2 + 6H2O - log_k 21.1 - delta_h -0 kcal + Pb4(OH)6SO4 + 6 H+ = 4 Pb+2 + SO4-2 + 6 H2O + log_k 21.1 + delta_h -0 kcal NiCO3 NiCO3 = Ni+2 + CO3-2 - log_k -6.84 - delta_h -9.94 kcal + log_k -6.84 + delta_h -9.94 kcal Ni(OH)2 - Ni(OH)2 + 2H+ = Ni+2 + 2H2O - log_k 10.8 - delta_h 30.45 kcal + Ni(OH)2 + 2 H+ = Ni+2 + 2 H2O + log_k 10.8 + delta_h 30.45 kcal Ni4(OH)6SO4 - Ni4(OH)6SO4 + 6H+ = 4Ni+2 + SO4-2 + 6H2O - log_k 32 - delta_h -0 kcal + Ni4(OH)6SO4 + 6 H+ = 4 Ni+2 + SO4-2 + 6 H2O + log_k 32 + delta_h -0 kcal Bunsenite - NiO + 2H+ = Ni+2 + H2O - log_k 12.45 - delta_h -23.92 kcal + NiO + 2 H+ = Ni+2 + H2O + log_k 12.45 + delta_h -23.92 kcal Ni3(PO4)2 - Ni3(PO4)2 = 3Ni+2 + 2PO4-3 - log_k -31.3 - delta_h -0 kcal + Ni3(PO4)2 = 3 Ni+2 + 2 PO4-3 + log_k -31.3 + delta_h -0 kcal Millerite NiS + H+ = Ni+2 + HS- - log_k -8.042 - delta_h 2.5 kcal + log_k -8.042 + delta_h 2.5 kcal Retgersite - NiSO4:6H2O = Ni+2 + SO4-2 + 6H2O - log_k -2.04 - delta_h 1.1 kcal + NiSO4:6H2O = Ni+2 + SO4-2 + 6 H2O + log_k -2.04 + delta_h 1.1 kcal Morenosite - NiSO4:7H2O = Ni+2 + SO4-2 + 7H2O - log_k -2.36 - delta_h 2.94 kcal + NiSO4:7H2O = Ni+2 + SO4-2 + 7 H2O + log_k -2.36 + delta_h 2.94 kcal Ni2SiO4 - Ni2SiO4 + 4H+ = 2Ni+2 + H4SiO4 - log_k 14.54 - delta_h -33.36 kcal + Ni2SiO4 + 4 H+ = 2 Ni+2 + H4SiO4 + log_k 14.54 + delta_h -33.36 kcal AgMetal Ag = Ag+ + e- - log_k -13.51 - delta_h 25.234 kcal + log_k -13.51 + delta_h 25.234 kcal Bromyrite AgBr = Ag+ + Br- - log_k -12.27 - delta_h 20.17 kcal + log_k -12.27 + delta_h 20.17 kcal Cerargyrite AgCl = Ag+ + Cl- - log_k -9.75 - delta_h 15.652 kcal + log_k -9.75 + delta_h 15.652 kcal Ag2CO3 - Ag2CO3 = 2Ag+ + CO3-2 - log_k -11.07 - delta_h 9.53 kcal + Ag2CO3 = 2 Ag+ + CO3-2 + log_k -11.07 + delta_h 9.53 kcal AgF:4H2O - AgF:4H2O = Ag+ + F- + 4H2O - log_k 0.55 - delta_h 4.27 kcal + AgF:4H2O = Ag+ + F- + 4 H2O + log_k 0.55 + delta_h 4.27 kcal Iodyrite AgI = Ag+ + I- - log_k -16.07 - delta_h 26.82 kcal + log_k -16.07 + delta_h 26.82 kcal Ag2O - Ag2O + 2H+ = 2Ag+ + H2O - log_k 12.58 - delta_h -10.43 kcal + Ag2O + 2 H+ = 2 Ag+ + H2O + log_k 12.58 + delta_h -10.43 kcal Ag3PO4 - Ag3PO4 = 3Ag+ + PO4-3 - log_k -17.55 - delta_h -0 kcal + Ag3PO4 = 3 Ag+ + PO4-3 + log_k -17.55 + delta_h -0 kcal Acanthite - Ag2S + H+ = 2Ag+ + HS- - log_k -36.05 - delta_h 53.3 kcal + Ag2S + H+ = 2 Ag+ + HS- + log_k -36.05 + delta_h 53.3 kcal Ag2SO4 - Ag2SO4 = 2Ag+ + SO4-2 - log_k -4.92 - delta_h 4.25 kcal + Ag2SO4 = 2 Ag+ + SO4-2 + log_k -4.92 + delta_h 4.25 kcal Analcime - NaAlSi2O6:H2O + H2O + 4H+ = Na+ + Al+3 + 2H4SiO4 - log_k 6.719 - delta_h -22.84 kcal + NaAlSi2O6:H2O + H2O + 4 H+ = Na+ + Al+3 + 2 H4SiO4 + log_k 6.719 + delta_h -22.84 kcal Halloysite - Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O - log_k 8.994 - delta_h -39.73 kcal + Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 H4SiO4 + H2O + log_k 8.994 + delta_h -39.73 kcal Kaolinite - Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O - log_k 5.726 - delta_h -35.28 kcal + Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 H4SiO4 + H2O + log_k 5.726 + delta_h -35.28 kcal Leonhardite - Ca2Al4Si8O24:7H2O + H2O + 16H+ = 2Ca+2 + 8H4SiO4 + 4Al+3 - log_k 16.49 - delta_h -85.36 kcal + Ca2Al4Si8O24:7H2O + H2O + 16 H+ = 2 Ca+2 + 8 H4SiO4 + 4 Al+3 + log_k 16.49 + delta_h -85.36 kcal Albite(low) - NaAlSi3O8 + 4H+ + 4H2O = Na+ + Al+3 + 3H4SiO4 - log_k 2.592 - delta_h -17.4 kcal + NaAlSi3O8 + 4 H+ + 4 H2O = Na+ + Al+3 + 3 H4SiO4 + log_k 2.592 + delta_h -17.4 kcal Albite - NaAlSi3O8 + 4H+ + 4H2O = Na+ + Al+3 + 3H4SiO4 - log_k 3.506 - delta_h -20 kcal + NaAlSi3O8 + 4 H+ + 4 H2O = Na+ + Al+3 + 3 H4SiO4 + log_k 3.506 + delta_h -20 kcal Muscovite - KAl3Si3O10(OH)2 + 10H+ = K+ + 3Al+3 + 3H4SiO4 - log_k 12.99 - delta_h -59.34 kcal + KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 + log_k 12.99 + delta_h -59.34 kcal Annite - KFe3AlSi3O10(OH)2 + 10H+ = K+ + 3Fe+2 + Al+3 + 3H4SiO4 - log_k 23.29 - delta_h -65.72 kcal + KFe3AlSi3O10(OH)2 + 10 H+ = K+ + 3 Fe+2 + Al+3 + 3 H4SiO4 + log_k 23.29 + delta_h -65.72 kcal Anorthite - CaAl2Si2O8 + 8H+ = Ca+2 + 2Al+3 + 2H4SiO4 - log_k 25.43 - delta_h -70.66 kcal + CaAl2Si2O8 + 8 H+ = Ca+2 + 2 Al+3 + 2 H4SiO4 + log_k 25.43 + delta_h -70.66 kcal Pyrophyllite - Al2Si4O10(OH)2 + 4H2O + 6H+ = 2Al+3 + 4H4SiO4 - log_k -1.598 - delta_h -0 kcal + Al2Si4O10(OH)2 + 4 H2O + 6 H+ = 2 Al+3 + 4 H4SiO4 + log_k -1.598 + delta_h -0 kcal Laumontite - CaAl2Si4O12:4H2O + 8H+ = Ca+2 + 2Al+3 + 4H4SiO4 - log_k 14.46 - delta_h -50.45 kcal + CaAl2Si4O12:4H2O + 8 H+ = Ca+2 + 2 Al+3 + 4 H4SiO4 + log_k 14.46 + delta_h -50.45 kcal Wairakite - CaAl2Si4O12:2H2O + 8H+ + 2H2O = Ca+2 + 2Al+3 + 4H4SiO4 - log_k 18.87 - delta_h -63.15 kcal + CaAl2Si4O12:2H2O + 8 H+ + 2 H2O = Ca+2 + 2 Al+3 + 4 H4SiO4 + log_k 18.87 + delta_h -63.15 kcal Malachite - Cu2(OH)2CO3 + 2H+ = 2Cu+2 + 2H2O + CO3-2 - log_k -5.18 - delta_h -15.61 kcal + Cu2(OH)2CO3 + 2 H+ = 2 Cu+2 + 2 H2O + CO3-2 + log_k -5.18 + delta_h -15.61 kcal Azurite - Cu3(OH)2(CO3)2 + 2H+ = 3Cu+2 + 2H2O + 2CO3-2 - log_k -16.92 - delta_h -23.77 kcal + Cu3(OH)2(CO3)2 + 2 H+ = 3 Cu+2 + 2 H2O + 2 CO3-2 + log_k -16.92 + delta_h -23.77 kcal Arsenolite - As4O6 + 6H2O = 4H3AsO3 - log_k -2.801 - delta_h 14.33 kcal + As4O6 + 6 H2O = 4 H3AsO3 + log_k -2.801 + delta_h 14.33 kcal Claudetite - As4O6 + 6H2O = 4H3AsO3 - log_k -3.065 - delta_h 13.29 kcal + As4O6 + 6 H2O = 4 H3AsO3 + log_k -3.065 + delta_h 13.29 kcal AsI3 - AsI3 + 3H2O = H3AsO3 + 3I- + 3H+ - log_k 4.155 - delta_h 1.875 kcal + AsI3 + 3 H2O = H3AsO3 + 3 I- + 3 H+ + log_k 4.155 + delta_h 1.875 kcal Oripment - As2S3 + 6H2O = 2H3AsO3 + 3HS- + 3H+ - log_k -60.971 - delta_h 82.89 kcal + As2S3 + 6 H2O = 2 H3AsO3 + 3 HS- + 3 H+ + log_k -60.971 + delta_h 82.89 kcal Realgar - AsS + 3H2O = H3AsO3 + HS- + 2H+ + e- - log_k -19.747 - delta_h 30.545 kcal + AsS + 3 H2O = H3AsO3 + HS- + 2 H+ + e- + log_k -19.747 + delta_h 30.545 kcal As2O5 - As2O5 + 3H2O = 2H3AsO4 - log_k 6.699 - delta_h -5.405 kcal + As2O5 + 3 H2O = 2 H3AsO4 + log_k 6.699 + delta_h -5.405 kcal Sb - Sb + 3H2O = Sb(OH)3 + 3H+ + 3e- - log_k -11.7058 - delta_h 20.045 kcal + Sb + 3 H2O = Sb(OH)3 + 3 H+ + 3 e- + log_k -11.7058 + delta_h 20.045 kcal Stibnite - Sb2S3 + 6H2O = 2Sb(OH)3 + 3HS- + 3H+ - log_k -60.156 - delta_h 69.29 kcal + Sb2S3 + 6 H2O = 2 Sb(OH)3 + 3 HS- + 3 H+ + log_k -60.156 + delta_h 69.29 kcal Sb2Se3 - Sb2Se3 + 6H2O = 2Sb(OH)3 + 3HSe- + 3H+ - log_k -67.7571 - delta_h 81.99 kcal + Sb2Se3 + 6 H2O = 2 Sb(OH)3 + 3 HSe- + 3 H+ + log_k -67.7571 + delta_h 81.99 kcal NiSb - NiSb + 3H2O = Sb(OH)3 + 5e- + 3H+ + Ni+2 - log_k -18.5225 - delta_h 22.945 kcal + NiSb + 3 H2O = Sb(OH)3 + 5 e- + 3 H+ + Ni+2 + log_k -18.5225 + delta_h 22.945 kcal ZnSb - ZnSb + 3H2O = Sb(OH)3 + 5e- + Zn+2 + 3H+ - log_k 11.0138 + ZnSb + 3 H2O = Sb(OH)3 + 5 e- + Zn+2 + 3 H+ + log_k 11.0138 delta_h -13.116 kcal AlSb - AlSb + 3H2O = Sb(OH)3 + 6e- + Al+3 + 3H+ - log_k 65.6241 - delta_h -0 kcal + AlSb + 3 H2O = Sb(OH)3 + 6 e- + Al+3 + 3 H+ + log_k 65.6241 + delta_h -0 kcal CdSb - CdSb + 3H2O = Sb(OH)3 + 5e- + 3H+ + Cd+2 - log_k -0.3943 - delta_h 5.345 kcal + CdSb + 3 H2O = Sb(OH)3 + 5 e- + 3 H+ + Cd+2 + log_k -0.3943 + delta_h 5.345 kcal Mg2Sb3 - Mg2Sb3 + 9H2O = 2Mg+2 + 3Sb(OH)3 + 9H+ + 13e- - log_k 74.6838 - delta_h -0 kcal + Mg2Sb3 + 9 H2O = 2 Mg+2 + 3 Sb(OH)3 + 9 H+ + 13 e- + log_k 74.6838 + delta_h -0 kcal Ag3Sb - Ag3Sb + 3H2O = Sb(OH)3 + 6e- + 3Ag+ + 3H+ - log_k -56.1818 - delta_h -0 kcal + Ag3Sb + 3 H2O = Sb(OH)3 + 6 e- + 3 Ag+ + 3 H+ + log_k -56.1818 + delta_h -0 kcal Na3Sb - Na3Sb + 3H2O = 3Na+ + Sb(OH)3 + 3H+ + 6e- - log_k 94.4084 - delta_h -103.245 kcal + Na3Sb + 3 H2O = 3 Na+ + Sb(OH)3 + 3 H+ + 6 e- + log_k 94.4084 + delta_h -103.245 kcal NaSb - NaSb + 3H2O = Na+ + Sb(OH)3 + 3H+ + 4e- - log_k 23.177 + NaSb + 3 H2O = Na+ + Sb(OH)3 + 3 H+ + 4 e- + log_k 23.177 delta_h -22.385 kcal Mn2Sb - Mn2Sb + 3H2O = 2Mn+2 + Sb(OH)3 + 7e- + 3H+ - log_k 61.0796 - delta_h -0 kcal + Mn2Sb + 3 H2O = 2 Mn+2 + Sb(OH)3 + 7 e- + 3 H+ + log_k 61.0796 + delta_h -0 kcal Ca3Sb2 - Ca3Sb2 + 6H2O = 3Ca+2 + 2Sb(OH)3 + 6H+ + 12e- - log_k 142.974 + Ca3Sb2 + 6 H2O = 3 Ca+2 + 2 Sb(OH)3 + 6 H+ + 12 e- + log_k 142.974 delta_h -175.13 kcal USb2 - USb2 + 8H2O = UO2+2 + 2Sb(OH)3 + 12e- + 10H+ - log_k 29.5246 - delta_h -24.68 kcal + USb2 + 8 H2O = UO2+2 + 2 Sb(OH)3 + 12 e- + 10 H+ + log_k 29.5246 + delta_h -24.68 kcal Cu2Sb - Cu2Sb + 3H2O = Sb(OH)3 + 6e- + 3H+ + Cu+ + Cu+2 - log_k -34.8827 - delta_h 55.745 kcal + Cu2Sb + 3 H2O = Sb(OH)3 + 6 e- + 3 H+ + Cu+ + Cu+2 + log_k -34.8827 + delta_h 55.745 kcal MnSb - MnSb + 3H2O = Mn+3 + Sb(OH)3 + 6e- + 3H+ - log_k -2.9099 - delta_h 5.045 kcal + MnSb + 3 H2O = Mn+3 + Sb(OH)3 + 6 e- + 3 H+ + log_k -2.9099 + delta_h 5.045 kcal Cu3Sb - Cu3Sb + 3H2O = Sb(OH)3 + 6e- + 3H+ + 3Cu+ - log_k -42.5937 - delta_h 73.645 kcal + Cu3Sb + 3 H2O = Sb(OH)3 + 6 e- + 3 H+ + 3 Cu+ + log_k -42.5937 + delta_h 73.645 kcal U3Sb4 - U3Sb4 + 12H2O = 3U+4 + 4Sb(OH)3 + 24e- + 12H+ - log_k 152.329 + U3Sb4 + 12 H2O = 3 U+4 + 4 Sb(OH)3 + 24 e- + 12 H+ + log_k 152.329 delta_h -235.72 kcal Sb2O4 - Sb2O4 + 2H2O + 2H+ + 2e- = 2Sb(OH)3 - log_k 3.4597 - delta_h -16.27 kcal + Sb2O4 + 2 H2O + 2 H+ + 2 e- = 2 Sb(OH)3 + log_k 3.4597 + delta_h -16.27 kcal Sb4O6II - Sb4O6 + 6H2O = 4Sb(OH)3 - log_k -19.6586 - delta_h 14.6 kcal + Sb4O6 + 6 H2O = 4 Sb(OH)3 + log_k -19.6586 + delta_h 14.6 kcal Sb4O6I - Sb4O6 + 6H2O = 4Sb(OH)3 - log_k -17.0346 - delta_h 8.99 kcal + Sb4O6 + 6 H2O = 4 Sb(OH)3 + log_k -17.0346 + delta_h 8.99 kcal Sb(OH)3(s) Sb(OH)3 = Sb(OH)3 - log_k -7.1099 - delta_h 7.2 kcal + log_k -7.1099 + delta_h 7.2 kcal Cu(SbO3)2 - Cu(SbO3)2 + 6H+ + 4e- = 2Sb(OH)3 + Cu+2 - log_k 45.2105 - delta_h -0 kcal + Cu(SbO3)2 + 6 H+ + 4 e- = 2 Sb(OH)3 + Cu+2 + log_k 45.2105 + delta_h -0 kcal Sb2O3 - Sb2O3 + 3H2O = 2Sb(OH)3 - log_k -12.3654 - delta_h 7.325 kcal + Sb2O3 + 3 H2O = 2 Sb(OH)3 + log_k -12.3654 + delta_h 7.325 kcal Sb2O3 - Sb2O3 + 3H2O = 2Sb(OH)3 - log_k -8.4806 - delta_h 4.545 kcal + Sb2O3 + 3 H2O = 2 Sb(OH)3 + log_k -8.4806 + delta_h 4.545 kcal Sb2O5 - Sb2O5 + 7H2O = 2Sb(OH)6- + 2H+ - log_k -12.4827 - delta_h -0 kcal + Sb2O5 + 7 H2O = 2 Sb(OH)6- + 2 H+ + log_k -12.4827 + delta_h -0 kcal SbO2 - SbO2 + 4H2O = Sb(OH)6- + e- + 2H+ - log_k -27.8241 - delta_h -0 kcal + SbO2 + 4 H2O = Sb(OH)6- + e- + 2 H+ + log_k -27.8241 + delta_h -0 kcal SbBr3 - SbBr3 + 3H2O = Sb(OH)3 + 3Br- + 3H+ - log_k 1.0562 - delta_h -5.072 kcal + SbBr3 + 3 H2O = Sb(OH)3 + 3 Br- + 3 H+ + log_k 1.0562 + delta_h -5.072 kcal SbCl3 - SbCl3 + 3H2O = Sb(OH)3 + 3Cl- + 3H+ - log_k 0.5915 - delta_h -8.414 kcal + SbCl3 + 3 H2O = Sb(OH)3 + 3 Cl- + 3 H+ + log_k 0.5915 + delta_h -8.414 kcal SbF3 - SbF3 + 3H2O = Sb(OH)3 + 3H+ + 3F- - log_k -10.2251 - delta_h -1.608 kcal + SbF3 + 3 H2O = Sb(OH)3 + 3 H+ + 3 F- + log_k -10.2251 + delta_h -1.608 kcal SbI3 - SbI3 + 3H2O = Sb(OH)3 + 3H+ + 3I- - log_k -0.538 - delta_h 3.248 kcal + SbI3 + 3 H2O = Sb(OH)3 + 3 H+ + 3 I- + log_k -0.538 + delta_h 3.248 kcal Zn(BO2)2 - Zn(BO2)2 + 2H2O + 2H+ = Zn+2 + 2H3BO3 - log_k 8.29 - delta_h -0 kcal + Zn(BO2)2 + 2 H2O + 2 H+ = Zn+2 + 2 H3BO3 + log_k 8.29 + delta_h -0 kcal Cd(BO2)2 - Cd(BO2)2 + 2H2O + 2H+ = Cd+2 + 2H3BO3 - log_k 9.84 - delta_h -0 kcal + Cd(BO2)2 + 2 H2O + 2 H+ = Cd+2 + 2 H3BO3 + log_k 9.84 + delta_h -0 kcal Pb(BO2)2 - Pb(BO2)2 + 2H2O + 2H+ = Pb+2 + 2H3BO3 - log_k 7.61 - delta_h -5.8 kcal + Pb(BO2)2 + 2 H2O + 2 H+ = Pb+2 + 2 H3BO3 + log_k 7.61 + delta_h -5.8 kcal MnHPO4(C) MnHPO4 = Mn+2 + PO4-3 + H+ - log_k -25.4 - delta_h -0 kcal + log_k -25.4 + delta_h -0 kcal PbHPO4 PbHPO4 = Pb+2 + PO4-3 + H+ - log_k -23.9 - delta_h -0 kcal + log_k -23.9 + delta_h -0 kcal Pb3(PO4)2 - Pb3(PO4)2 = 3Pb+2 + 2PO4-3 - log_k -44.5 - delta_h -0 kcal + Pb3(PO4)2 = 3 Pb+2 + 2 PO4-3 + log_k -44.5 + delta_h -0 kcal Sulfur - S + H+ + 2e- = HS- - log_k -2.11 - delta_h -4.2 kcal + S + H+ + 2 e- = HS- + log_k -2.11 + delta_h -4.2 kcal AlAsO4:2H2O - AlAsO4:2H2O + 3H+ = Al+3 + H3AsO4 + 2H2O - log_k 4.8 - delta_h -0 kcal + AlAsO4:2H2O + 3 H+ = Al+3 + H3AsO4 + 2 H2O + log_k 4.8 + delta_h -0 kcal Ca3(AsO4)2:6H2O - Ca3(AsO4)2:6H2O + 6H+ = 3Ca+2 + 2H3AsO4 + 6H2O - log_k 22.3 - delta_h -0 kcal + Ca3(AsO4)2:6H2O + 6 H+ = 3 Ca+2 + 2 H3AsO4 + 6 H2O + log_k 22.3 + delta_h -0 kcal Cu3(AsO4)2:6H2O - Cu3(AsO4)2:6H2O + 6H+ = 3Cu+2 + 2H3AsO4 + 6H2O - log_k 6.1 - delta_h -0 kcal + Cu3(AsO4)2:6H2O + 6 H+ = 3 Cu+2 + 2 H3AsO4 + 6 H2O + log_k 6.1 + delta_h -0 kcal FeAsO4:2H2O - FeAsO4:2H2O + 3H+ = Fe+3 + H3AsO4 + 2H2O - log_k 0.4 - delta_h -0 kcal + FeAsO4:2H2O + 3 H+ = Fe+3 + H3AsO4 + 2 H2O + log_k 0.4 + delta_h -0 kcal Mn3(AsO4)2:8H2O - Mn3(AsO4)2:8H2O + 6H+ = 3Mn+2 + 2H3AsO4 + 8H2O - log_k 12.5 - delta_h -0 kcal + Mn3(AsO4)2:8H2O + 6 H+ = 3 Mn+2 + 2 H3AsO4 + 8 H2O + log_k 12.5 + delta_h -0 kcal Ni3(AsO4)2:8H2O - Ni3(AsO4)2:8H2O + 6H+ = 3Ni+2 + 2H3AsO4 + 8H2O - log_k 15.7 - delta_h -0 kcal + Ni3(AsO4)2:8H2O + 6 H+ = 3 Ni+2 + 2 H3AsO4 + 8 H2O + log_k 15.7 + delta_h -0 kcal Pb3(AsO4)2 - Pb3(AsO4)2 + 6H+ = 3Pb+2 + 2H3AsO4 - log_k 5.8 - delta_h -0 kcal + Pb3(AsO4)2 + 6 H+ = 3 Pb+2 + 2 H3AsO4 + log_k 5.8 + delta_h -0 kcal Zn3(AsO4)2:2.5H2O - Zn3(AsO4)2:2.5H2O + 6H+ = 3Zn+2 + 2H3AsO4 + 2.5H2O - log_k 13.65 - delta_h -0 kcal + Zn3(AsO4)2:2.5H2O + 6 H+ = 3 Zn+2 + 2 H3AsO4 + 2.5 H2O + log_k 13.65 + delta_h -0 kcal Ba3(AsO4)2 - Ba3(AsO4)2 + 6H+ = 3Ba+2 + 2H3AsO4 - log_k -8.91 - delta_h 2.64 kcal + Ba3(AsO4)2 + 6 H+ = 3 Ba+2 + 2 H3AsO4 + log_k -8.91 + delta_h 2.64 kcal VMetal - V = V+3 + 3e- - log_k 42.35 - delta_h -62.9 kcal + V = V+3 + 3 e- + log_k 42.35 + delta_h -62.9 kcal VO - VO + 2H+ = V+3 + H2O + e- - log_k 13.08 - delta_h -28.02 kcal + VO + 2 H+ = V+3 + H2O + e- + log_k 13.08 + delta_h -28.02 kcal VCl2 - VCl2 = V+3 + 2Cl- + e- - log_k 17.97 - delta_h -35.8 kcal + VCl2 = V+3 + 2 Cl- + e- + log_k 17.97 + delta_h -35.8 kcal V2O3 - VO1.5 + 3H+ = V+3 + 1.5H2O - log_k 4.9 - delta_h -19.72 kcal + VO1.5 + 3 H+ = V+3 + 1.5 H2O + log_k 4.9 + delta_h -19.72 kcal V(OH)3 - V(OH)3 + 3H+ = V+3 + 3H2O - log_k 7.65 - delta_h -0 kcal + V(OH)3 + 3 H+ = V+3 + 3 H2O + log_k 7.65 + delta_h -0 kcal VCl3 - VCl3 = V+3 + 3Cl- - log_k 21.73 - delta_h -43.96 kcal + VCl3 = V+3 + 3 Cl- + log_k 21.73 + delta_h -43.96 kcal VOCl - VOCl + 2H+ = V+3 + Cl- + H2O - log_k 9.41 - delta_h -26.17 kcal + VOCl + 2 H+ = V+3 + Cl- + H2O + log_k 9.41 + delta_h -26.17 kcal V2O4 - VO2 + 2H+ = VO+2 + H2O - log_k 4.27 - delta_h -14.07 kcal + VO2 + 2 H+ = VO+2 + H2O + log_k 4.27 + delta_h -14.07 kcal VO(OH)2 - VO(OH)2 + 2H+ = VO+2 + 2H2O - log_k 5.85 - delta_h -0 kcal + VO(OH)2 + 2 H+ = VO+2 + 2 H2O + log_k 5.85 + delta_h -0 kcal VF4 - VF4 + H2O = VO+2 + 4F- + 2H+ - log_k 14.93 - delta_h -47.59 kcal + VF4 + H2O = VO+2 + 4 F- + 2 H+ + log_k 14.93 + delta_h -47.59 kcal VOSO4(C) VOSO4 = VO+2 + SO4-2 - log_k 3.57 - delta_h -20.72 kcal + log_k 3.57 + delta_h -20.72 kcal # equation does not balance #(VO)3(PO4)2 # (VO)3(PO4)2 = VO+2 + 0.667PO4-3 # log_k -8.37 # delta_h -0 kcal VOCl2 - VOCl2 = VO+2 + 2Cl- - log_k 12.79 - delta_h -28.2 kcal + VOCl2 = VO+2 + 2 Cl- + log_k 12.79 + delta_h -28.2 kcal V2O5 - VO2.5 + H+ = VO2+ + 0.5H2O - log_k -0.72 - delta_h -4.16 kcal + VO2.5 + H+ = VO2+ + 0.5 H2O + log_k -0.72 + delta_h -4.16 kcal Tyuyamunite - Ca0.5UO2VO4 + 4H+ = 0.5Ca+2 + UO2+2 + VO2+ + 2H2O - log_k 2.04 - delta_h -18.3 kcal + Ca0.5UO2VO4 + 4 H+ = 0.5 Ca+2 + UO2+2 + VO2+ + 2 H2O + log_k 2.04 + delta_h -18.3 kcal Ca_Vanadate - Ca0.5VO3 + 2H+ = 0.5Ca+2 + VO2+ + H2O - log_k 2.83 - delta_h -10.13 kcal + Ca0.5VO3 + 2 H+ = 0.5 Ca+2 + VO2+ + H2O + log_k 2.83 + delta_h -10.13 kcal Ca3(VO4)2 - Ca1.5VO4 + 4H+ = 1.5Ca+2 + VO2+ + 2H2O - log_k 19.48 - delta_h -35.07 kcal + Ca1.5VO4 + 4 H+ = 1.5 Ca+2 + VO2+ + 2 H2O + log_k 19.48 + delta_h -35.07 kcal Ca2V2O7 - CaVO3.5 + 3H+ = Ca+2 + VO2+ + 1.5H2O - log_k 8.75 - delta_h -19.06 kcal + CaVO3.5 + 3 H+ = Ca+2 + VO2+ + 1.5 H2O + log_k 8.75 + delta_h -19.06 kcal Fe_Vanadate - Fe0.5VO3 + 2H+ = 0.5Fe+2 + VO2+ + H2O - log_k -1.86 - delta_h -7.37 kcal + Fe0.5VO3 + 2 H+ = 0.5 Fe+2 + VO2+ + H2O + log_k -1.86 + delta_h -7.37 kcal Mg_Vanadate - Mg0.5VO3 + 2H+ = 0.5Mg+2 + VO2+ + H2O - log_k 5.64 - delta_h -16.33 kcal + Mg0.5VO3 + 2 H+ = 0.5 Mg+2 + VO2+ + H2O + log_k 5.64 + delta_h -16.33 kcal Mg2V2O7 - MgVO3.5 + 3H+ = Mg+2 + VO2+ + 1.5H2O - log_k 13.18 - delta_h -30.5 kcal + MgVO3.5 + 3 H+ = Mg+2 + VO2+ + 1.5 H2O + log_k 13.18 + delta_h -30.5 kcal Mn_Vanadate - Mn0.5VO3 + 2H+ = 0.5Mn+2 + VO2+ + H2O - log_k 2.45 - delta_h -11.05 kcal + Mn0.5VO3 + 2 H+ = 0.5 Mn+2 + VO2+ + H2O + log_k 2.45 + delta_h -11.05 kcal NH4VO3 - NH4VO3 + 2H+ = NH4+ + VO2+ + H2O - log_k 2.69 - delta_h -3.77 kcal + NH4VO3 + 2 H+ = NH4+ + VO2+ + H2O + log_k 2.69 + delta_h -3.77 kcal Na_Vanadate - NaVO3 + 2H+ = Na+ + VO2+ + H2O - log_k 3.71 - delta_h -7.01 kcal + NaVO3 + 2 H+ = Na+ + VO2+ + H2O + log_k 3.71 + delta_h -7.01 kcal Na3VO4 - Na3VO4 + 4H+ = 3Na+ + VO2+ + 2H2O - log_k 36.94 - delta_h -44.42 kcal + Na3VO4 + 4 H+ = 3 Na+ + VO2+ + 2 H2O + log_k 36.94 + delta_h -44.42 kcal Na4V2O7 - Na2VO3.5 + 3H+ = 2Na+ + VO2+ + 1.5H2O - log_k 18.7 - delta_h -24.03 kcal + Na2VO3.5 + 3 H+ = 2 Na+ + VO2+ + 1.5 H2O + log_k 18.7 + delta_h -24.03 kcal Pb3(VO4)2 - Pb1.5VO4 + 4H+ = 1.5Pb+2 + VO2+ + 2H2O - log_k 3.07 - delta_h -8.68 kcal + Pb1.5VO4 + 4 H+ = 1.5 Pb+2 + VO2+ + 2 H2O + log_k 3.07 + delta_h -8.68 kcal Pb2V2O7 - PbVO3.5 + 3H+ = Pb+2 + VO2+ + 1.5H2O - log_k -0.95 - delta_h -3.22 kcal + PbVO3.5 + 3 H+ = Pb+2 + VO2+ + 1.5 H2O + log_k -0.95 + delta_h -3.22 kcal Carnotite - KUO2VO4 + 4H+ = K+ + UO2+2 + VO2+ + 2H2O - log_k 0.23 - delta_h -8.7 kcal + KUO2VO4 + 4 H+ = K+ + UO2+2 + VO2+ + 2 H2O + log_k 0.23 + delta_h -8.7 kcal Ag_Vanadate - AgVO3 + 2H+ = Ag+ + VO2+ + H2O - log_k 0.77 - delta_h -0 kcal + AgVO3 + 2 H+ = Ag+ + VO2+ + H2O + log_k 0.77 + delta_h -0 kcal Ag2HVO4 - Ag2HVO4 + 3H+ = 2Ag+ + VO2+ + 2H2O - log_k 1.48 - delta_h -0 kcal + Ag2HVO4 + 3 H+ = 2 Ag+ + VO2+ + 2 H2O + log_k 1.48 + delta_h -0 kcal Ag3H2VO5 - Ag3H2VO5 + 4H+ = 3Ag+ + VO2+ + 3H2O - log_k 5.18 - delta_h -0 kcal + Ag3H2VO5 + 4 H+ = 3 Ag+ + VO2+ + 3 H2O + log_k 5.18 + delta_h -0 kcal VO2Cl VO2Cl = VO2+ + Cl- - log_k 2.81 - delta_h -9.65 kcal + log_k 2.81 + delta_h -9.65 kcal V3O5 - V3O5 + 4H+ = 3VO+2 + 2H2O + 2e- - log_k 1.87 - delta_h -23.53 kcal + V3O5 + 4 H+ = 3 VO+2 + 2 H2O + 2 e- + log_k 1.87 + delta_h -23.53 kcal V4O7 - V4O7 + 6H+ = 4VO+2 + 3H2O + 2e- - log_k 7.14 - delta_h -39.15 kcal + V4O7 + 6 H+ = 4 VO+2 + 3 H2O + 2 e- + log_k 7.14 + delta_h -39.15 kcal V6O13 - V6O13 + 2H+ = 6VO2+ + H2O + 4e- - log_k -60.86 - delta_h 64.89 kcal + V6O13 + 2 H+ = 6 VO2+ + H2O + 4 e- + log_k -60.86 + delta_h 64.89 kcal Lime - CaO + 2H+ = Ca+2 + H2O - log_k 32.797 + CaO + 2 H+ = Ca+2 + H2O + log_k 32.797 delta_h -46.265 kcal Portlandite - Ca(OH)2 + 2H+ = Ca+2 + 2H2O - log_k 22.675 - delta_h -30.69 kcal + Ca(OH)2 + 2 H+ = Ca+2 + 2 H2O + log_k 22.675 + delta_h -30.69 kcal # not balanced #Wustite @@ -4859,213 +4863,213 @@ Portlandite # log_k 11.687 # delta_h -24.846 kcal Periclase - MgO + 2H+ = Mg+2 + H2O - log_k 21.51 + MgO + 2 H+ = Mg+2 + H2O + log_k 21.51 delta_h -36.135 kcal Hercynite - FeAl2O4 + 8H+ = Fe+2 + 2Al+3 + 4H2O - log_k 27.162 - delta_h -78.36 kcal + FeAl2O4 + 8 H+ = Fe+2 + 2 Al+3 + 4 H2O + log_k 27.162 + delta_h -78.36 kcal Spinel - MgAl2O4 + 8H+ = Mg+2 + 2Al+3 + 4H2O - log_k 36.333 + MgAl2O4 + 8 H+ = Mg+2 + 2 Al+3 + 4 H2O + log_k 36.333 delta_h -89.089 kcal Mg-Ferrite - MgFe2O4 + 8H+ = Mg+2 + 2Fe+3 + 4H2O - log_k 16.765 + MgFe2O4 + 8 H+ = Mg+2 + 2 Fe+3 + 4 H2O + log_k 16.765 delta_h -66.639 kcal Cryolite - Na3AlF6 = Al+3 + 3Na+ + 6F- - log_k -31.49 - delta_h 10.904 kcal + Na3AlF6 = Al+3 + 3 Na+ + 6 F- + log_k -31.49 + delta_h 10.904 kcal Wollastonite - CaSiO3 + H2O + 2H+ = H4SiO4 + Ca+2 - log_k 12.996 + CaSiO3 + H2O + 2 H+ = H4SiO4 + Ca+2 + log_k 12.996 delta_h -19.498 kcal P-Wollstanite - CaSiO3 + H2O + 2H+ = H4SiO4 + Ca+2 - log_k 13.846 + CaSiO3 + H2O + 2 H+ = H4SiO4 + Ca+2 + log_k 13.846 delta_h -21.068 kcal Ca-Olivine - Ca2SiO4 + 4H+ = H4SiO4 + 2Ca+2 - log_k 37.649 + Ca2SiO4 + 4 H+ = H4SiO4 + 2 Ca+2 + log_k 37.649 delta_h -54.695 kcal Larnite - Ca2SiO4 + 4H+ = H4SiO4 + 2Ca+2 - log_k 39.141 + Ca2SiO4 + 4 H+ = H4SiO4 + 2 Ca+2 + log_k 39.141 delta_h -57.238 kcal Ca3SiO5 - Ca3SiO5 + 6H+ = H4SiO4 + 3Ca+2 + H2O - log_k 73.867 - delta_h -106.335 kcal + Ca3SiO5 + 6 H+ = H4SiO4 + 3 Ca+2 + H2O + log_k 73.867 + delta_h -106.335 kcal Monticellite - CaMgSiO4 + 4H+ = H4SiO4 + Ca+2 + Mg+2 - log_k 30.272 + CaMgSiO4 + 4 H+ = H4SiO4 + Ca+2 + Mg+2 + log_k 30.272 delta_h -49.421 kcal Akerminite - Ca2MgSi2O7 + H2O + 6H+ = 2H4SiO4 + 2Ca+2 + Mg+2 - log_k 47.472 + Ca2MgSi2O7 + H2O + 6 H+ = 2 H4SiO4 + 2 Ca+2 + Mg+2 + log_k 47.472 delta_h -76.445 kcal Merwinite - Ca3MgSi2O8 + 8H+ = 2H4SiO4 + Mg+2 + 3Ca+2 - log_k 68.543 - delta_h -107.111 kcal + Ca3MgSi2O8 + 8 H+ = 2 H4SiO4 + Mg+2 + 3 Ca+2 + log_k 68.543 + delta_h -107.111 kcal Kalsilite - KAlSiO4 + 4H+ = H4SiO4 + Al+3 + K+ - log_k 12.838 + KAlSiO4 + 4 H+ = H4SiO4 + Al+3 + K+ + log_k 12.838 delta_h -28.919 kcal Leucite - KAlSi2O6 + 2H2O + 4H+ = 2H4SiO4 + Al+3 + K+ - log_k 6.423 + KAlSi2O6 + 2 H2O + 4 H+ = 2 H4SiO4 + Al+3 + K+ + log_k 6.423 delta_h -22.085 kcal Microcline - KAlSi3O8 + 4H2O + 4H+ = 3H4SiO4 + Al+3 + K+ - log_k 0.616 + KAlSi3O8 + 4 H2O + 4 H+ = 3 H4SiO4 + Al+3 + K+ + log_k 0.616 delta_h -12.309 kcal Sanidine(H) - KAlSi3O8 + 4H2O + 4H+ = 3H4SiO4 + Al+3 + K+ - log_k 1.062 + KAlSi3O8 + 4 H2O + 4 H+ = 3 H4SiO4 + Al+3 + K+ + log_k 1.062 delta_h -14.252 kcal Nepheline - NaAlSiO4 + 4H+ = H4SiO4 + Al+3 + Na+ - log_k 14.218 + NaAlSiO4 + 4 H+ = H4SiO4 + Al+3 + Na+ + log_k 14.218 delta_h -33.204 kcal Gehlenite - Ca2Al2SiO7 + 10H+ = 2Al+3 + H4SiO4 + 2Ca+2 + 3H2O - log_k 56.822 - delta_h -116.125 kcal + Ca2Al2SiO7 + 10 H+ = 2 Al+3 + H4SiO4 + 2 Ca+2 + 3 H2O + log_k 56.822 + delta_h -116.125 kcal Lepidocrocite - FeOOH + 3H+ = Fe+3 + 2H2O - log_k 1.371 - delta_h -0 kcal + FeOOH + 3 H+ = Fe+3 + 2 H2O + log_k 1.371 + delta_h -0 kcal Na-Nontronite - Fe2Al.33Si3.67O10(OH)2Na0.33 + 7.32H+ + 2.68H2O = 0.33Al+3 + 2Fe+3 + 0.33Na+ + 3.67H4SiO4 - log_k -14.504 - delta_h -0 kcal + Fe2Al.33Si3.67O10(OH)2Na0.33 + 7.32 H+ + 2.68 H2O = 0.33 Al+3 + 2 Fe+3 + 0.33 Na+ + 3.67 H4SiO4 + log_k -14.504 + delta_h -0 kcal K-Nontronite - Fe2Al.33Si3.67O10(OH)2K0.33 + 7.32H+ + 2.68H2O = 0.33Al+3 + 2Fe+3 + 0.33K+ + 3.67H4SiO4 - log_k -15.549 - delta_h -0 kcal + Fe2Al.33Si3.67O10(OH)2K0.33 + 7.32 H+ + 2.68 H2O = 0.33 Al+3 + 2 Fe+3 + 0.33 K+ + 3.67 H4SiO4 + log_k -15.549 + delta_h -0 kcal Ca-Nontronite - Fe2Al.33Si3.67O10(OH)2Ca0.165 + 7.32H+ + 2.68H2O = 0.33Al+3 + 2Fe+3 + 0.165Ca+2 + 3.67H4SiO4 - log_k -20.889 - delta_h -0 kcal + Fe2Al.33Si3.67O10(OH)2Ca0.165 + 7.32 H+ + 2.68 H2O = 0.33 Al+3 + 2 Fe+3 + 0.165 Ca+2 + 3.67 H4SiO4 + log_k -20.889 + delta_h -0 kcal Mg-Nontronite - Fe2Al.33Si3.67O10(OH)2Mg0.165 + 7.32H+ + 2.68H2O = 0.33Al+3 + 2Fe+3 + 0.165Mg+2 + 3.67H4SiO4 - log_k -20.589 - delta_h -0 kcal + Fe2Al.33Si3.67O10(OH)2Mg0.165 + 7.32 H+ + 2.68 H2O = 0.33 Al+3 + 2 Fe+3 + 0.165 Mg+2 + 3.67 H4SiO4 + log_k -20.589 + delta_h -0 kcal Montmorillonite - Mg0.485Fe.22Al1.71Si3.81O10(OH)2 + 6.76H+ + 3.24H2O = 3.81H4SiO4 + 0.485Mg+2 + 0.22Fe+3 + 1.71Al+3 - log_k 2.67 - delta_h -0 kcal + Mg0.485Fe.22Al1.71Si3.81O10(OH)2 + 6.76 H+ + 3.24 H2O = 3.81 H4SiO4 + 0.485 Mg+2 + 0.22 Fe+3 + 1.71 Al+3 + log_k 2.67 + delta_h -0 kcal TlMetal Tl = Tl+ + e- - log_k 5.6733 - delta_h 1.28 kcal + log_k 5.6733 + delta_h 1.28 kcal Tl2O - Tl2O + 2H+ = 2Tl+ + H2O - log_k 27.0984 + Tl2O + 2 H+ = 2 Tl+ + H2O + log_k 27.0984 delta_h -23.055 kcal TlOH TlOH + H+ = Tl+ + H2O - log_k 12.9225 - delta_h -9.935 kcal + log_k 12.9225 + delta_h -9.935 kcal TlCl TlCl = Tl+ + Cl- - log_k -3.7243 - delta_h 10.137 kcal + log_k -3.7243 + delta_h 10.137 kcal TlBr TlBr = Tl+ + Br- - log_k -5.419 - delta_h 13.641 kcal + log_k -5.419 + delta_h 13.641 kcal TlI TlI = Tl+ + I- - log_k -7.1964 - delta_h 17.281 kcal + log_k -7.1964 + delta_h 17.281 kcal Tl2S - Tl2S + H+ = 2Tl+ + HS- - log_k -7.1832 - delta_h 21.56 kcal + Tl2S + H+ = 2 Tl+ + HS- + log_k -7.1832 + delta_h 21.56 kcal Tl2SO4 - Tl2SO4 = 2Tl+ + SO4-2 - log_k -3.6942 - delta_h 7.94 kcal + Tl2SO4 = 2 Tl+ + SO4-2 + log_k -3.6942 + delta_h 7.94 kcal Tl2Se - Tl2Se + H+ = 2Tl+ + HSe- - log_k -6.6848 - delta_h 20.36 kcal + Tl2Se + H+ = 2 Tl+ + HSe- + log_k -6.6848 + delta_h 20.36 kcal Tl2SeO4 - Tl2SeO4 = 2Tl+ + SeO4-2 - log_k -4.0168 - delta_h 9.76 kcal + Tl2SeO4 = 2 Tl+ + SeO4-2 + log_k -4.0168 + delta_h 9.76 kcal TlNO3 TlNO3 = Tl+ + NO3- - log_k -1.5319 - delta_h 10.02 kcal + log_k -1.5319 + delta_h 10.02 kcal Tl2CO3 - Tl2CO3 = 2Tl+ + CO3-2 - log_k -3.8482 - delta_h 8.02 kcal + Tl2CO3 = 2 Tl+ + CO3-2 + log_k -3.8482 + delta_h 8.02 kcal Tl(OH)3 Tl(OH)3 = Tl(OH)3 - log_k -6.4503 - delta_h -0 kcal + log_k -6.4503 + delta_h -0 kcal Avicennite - Tl2O3 + 3H2O = 2Tl(OH)3 - log_k -16.3236 - delta_h -0 kcal + Tl2O3 + 3 H2O = 2 Tl(OH)3 + log_k -16.3236 + delta_h -0 kcal Se(hex) - Se + H+ + 2e- = HSe- - log_k -7.6963 - delta_h 3.8 kcal + Se + H+ + 2 e- = HSe- + log_k -7.6963 + delta_h 3.8 kcal Se(A) - Se + H+ + 2e- = HSe- - log_k -7.1099 - delta_h 2.6 kcal + Se + H+ + 2 e- = HSe- + log_k -7.1099 + delta_h 2.6 kcal Ferroselite - FeSe2 + 2H+ + 2e- = 2HSe- + Fe+2 - log_k -18.5959 - delta_h 11.3 kcal + FeSe2 + 2 H+ + 2 e- = 2 HSe- + Fe+2 + log_k -18.5959 + delta_h 11.3 kcal Clausthalite PbSe + H+ = HSe- + Pb+2 - log_k -21.2162 - delta_h 28 kcal + log_k -21.2162 + delta_h 28 kcal Ag2Se - Ag2Se + H+ = HSe- + 2Ag+ - log_k -43.6448 - delta_h 64.95 kcal + Ag2Se + H+ = HSe- + 2 Ag+ + log_k -43.6448 + delta_h 64.95 kcal CdSe CdSe + H+ = HSe- + Cd+2 - log_k -18.0739 - delta_h 18.16 kcal + log_k -18.0739 + delta_h 18.16 kcal CuSe CuSe + H+ = HSe- + Cu+2 - log_k -26.5121 - delta_h 28.95 kcal + log_k -26.5121 + delta_h 28.95 kcal Cu2Se(alpha) - Cu2Se + H+ = HSe- + 2Cu+ - log_k -36.0922 - delta_h 51.21 kcal + Cu2Se + H+ = HSe- + 2 Cu+ + log_k -36.0922 + delta_h 51.21 kcal CuSe2 - CuSe2 + 2H+ + 2e- = 2HSe- + Cu+2 - log_k -33.3655 - delta_h 33.6 kcal + CuSe2 + 2 H+ + 2 e- = 2 HSe- + Cu+2 + log_k -33.3655 + delta_h 33.6 kcal Cu3Se2 - Cu3Se2 + 2H+ = 2HSe- + 2Cu+ + Cu+2 - log_k -63.4911 - delta_h 81.34 kcal + Cu3Se2 + 2 H+ = 2 HSe- + 2 Cu+ + Cu+2 + log_k -63.4911 + delta_h 81.34 kcal FeSe FeSe + H+ = HSe- + Fe+2 - log_k -7.1466 - delta_h 0.5 kcal + log_k -7.1466 + delta_h 0.5 kcal MnSe MnSe + H+ = HSe- + Mn+2 - log_k 5.3508 - delta_h -13.46 kcal + log_k 5.3508 + delta_h -13.46 kcal ZnSe ZnSe + H+ = HSe- + Zn+2 - log_k -11.3642 - delta_h 6.439 kcal + log_k -11.3642 + delta_h 6.439 kcal # cobalt not defined #CoSe @@ -5075,52 +5079,52 @@ ZnSe NiSe NiSe + H+ = HSe- + Ni+2 - log_k -17.7382 - delta_h -0 kcal + log_k -17.7382 + delta_h -0 kcal SeO2 SeO2 + H2O = HSeO3- + H+ - log_k 0.1246 - delta_h 0.335 kcal + log_k 0.1246 + delta_h 0.335 kcal BaSeO3 BaSeO3 + H+ = HSeO3- + Ba+2 - log_k 4.1634 - delta_h -6.28 kcal + log_k 4.1634 + delta_h -6.28 kcal CaSeO3:2H2O - CaSeO3:2H2O + H+ = HSeO3- + Ca+2 + 2H2O - log_k 2.8139 - delta_h -4.65 kcal + CaSeO3:2H2O + H+ = HSeO3- + Ca+2 + 2 H2O + log_k 2.8139 + delta_h -4.65 kcal CuSeO3:2H2O - CuSeO3:2H2O + H+ = HSeO3- + Cu+2 + 2H2O - log_k 0.4838 - delta_h -8.81 kcal + CuSeO3:2H2O + H+ = HSeO3- + Cu+2 + 2 H2O + log_k 0.4838 + delta_h -8.81 kcal Fe2(SeO3)3:2H2O - Fe2(SeO3)3:2H2O + 3H+ = 3HSeO3- + 2Fe+3 + 2H2O - log_k -20.6262 - delta_h -0 kcal + Fe2(SeO3)3:2H2O + 3 H+ = 3 HSeO3- + 2 Fe+3 + 2 H2O + log_k -20.6262 + delta_h -0 kcal Fe2(OH)4SeO3 - Fe2(OH)4SeO3 + 5H+ = HSeO3- + 2Fe+3 + 4H2O - log_k 1.5539 - delta_h -0 kcal + Fe2(OH)4SeO3 + 5 H+ = HSeO3- + 2 Fe+3 + 4 H2O + log_k 1.5539 + delta_h -0 kcal MgSeO3:6H2O - MgSeO3:6H2O + H+ = HSeO3- + Mg+2 + 6H2O - log_k 4.0314 - delta_h 1.25 kcal + MgSeO3:6H2O + H+ = HSeO3- + Mg+2 + 6 H2O + log_k 4.0314 + delta_h 1.25 kcal MnSeO3:2H2O - MnSeO3:2H2O + H+ = HSeO3- + Mn+2 + 2H2O - log_k 0.9822 - delta_h 2.03 kcal + MnSeO3:2H2O + H+ = HSeO3- + Mn+2 + 2 H2O + log_k 0.9822 + delta_h 2.03 kcal NiSeO3:2H2O - NiSeO3:2H2O + H+ = HSeO3- + Ni+2 + 2H2O - log_k 2.8147 - delta_h -7.41 kcal + NiSeO3:2H2O + H+ = HSeO3- + Ni+2 + 2 H2O + log_k 2.8147 + delta_h -7.41 kcal SrSeO3 SrSeO3 + H+ = HSeO3- + Sr+2 - log_k 0.1034 - delta_h -0 kcal + log_k 0.1034 + delta_h -0 kcal MnSeO3 MnSeO3 + H+ = HSeO3- + Mn+2 - log_k 1.21 - delta_h -0 kcal + log_k 1.21 + delta_h -0 kcal # cobalt not defined #CoSeO3 @@ -5128,181 +5132,181 @@ MnSeO3 # log_k 0.1906 # delta_h -0 kcal Ag2SeO3 - Ag2SeO3 + H+ = HSeO3- + 2Ag+ - log_k -7.07 - delta_h 9.47 kcal + Ag2SeO3 + H+ = HSeO3- + 2 Ag+ + log_k -7.07 + delta_h 9.47 kcal SeO3 - SeO3 + H2O = SeO4-2 + 2H+ - log_k 21.044 + SeO3 + H2O = SeO4-2 + 2 H+ + log_k 21.044 delta_h -34.985 kcal Ag2SeO4 - Ag2SeO4 = SeO4-2 + 2Ag+ - log_k -8.9014 - delta_h 10.45 kcal + Ag2SeO4 = SeO4-2 + 2 Ag+ + log_k -8.9014 + delta_h 10.45 kcal BaSeO4 BaSeO4 = SeO4-2 + Ba+2 - log_k -5.1895 - delta_h 2 kcal + log_k -5.1895 + delta_h 2 kcal CaSeO4:2H2O - CaSeO4:2H2O = SeO4-2 + Ca+2 + 2H2O - log_k -2.9473 - delta_h 0.88 kcal + CaSeO4:2H2O = SeO4-2 + Ca+2 + 2 H2O + log_k -2.9473 + delta_h 0.88 kcal PbSeO4 PbSeO4 = SeO4-2 + Pb+2 - log_k -6.8387 - delta_h 3.8 kcal + log_k -6.8387 + delta_h 3.8 kcal SrSeO4 SrSeO4 = SeO4-2 + Sr+2 - log_k -6.8747 - delta_h 2.69 kcal + log_k -6.8747 + delta_h 2.69 kcal HgMetal - Hg = 0.5Hg2+2 + e- - log_k -13.4552 - delta_h 19.935 kcal + Hg = 0.5 Hg2+2 + e- + log_k -13.4552 + delta_h 19.935 kcal Hg2Br2 - Hg2Br2 = Hg2+2 + 2Br- - log_k -22.2091 - delta_h 31.252 kcal + Hg2Br2 = Hg2+2 + 2 Br- + log_k -22.2091 + delta_h 31.252 kcal Hg2CO3 Hg2CO3 = Hg2+2 + CO3-2 - log_k -13.9586 - delta_h -0 kcal + log_k -13.9586 + delta_h -0 kcal Calomel - Hg2Cl2 = Hg2+2 + 2Cl- - log_k -17.8427 - delta_h 23.444 kcal + Hg2Cl2 = Hg2+2 + 2 Cl- + log_k -17.8427 + delta_h 23.444 kcal Hg2F2 - Hg2F2 = Hg2+2 + 2F- - log_k -3.0811 - delta_h -4.432 kcal + Hg2F2 = Hg2+2 + 2 F- + log_k -3.0811 + delta_h -4.432 kcal Hg2I2 - Hg2I2 = Hg2+2 + 2I- - log_k -28.2782 - delta_h -0 kcal + Hg2I2 = Hg2+2 + 2 I- + log_k -28.2782 + delta_h -0 kcal Hg2(OH)2 - Hg2(OH)2 + 2H+ = Hg2+2 + 2H2O - log_k 5.2603 - delta_h -0 kcal + Hg2(OH)2 + 2 H+ = Hg2+2 + 2 H2O + log_k 5.2603 + delta_h -0 kcal Hg2HPO4 Hg2HPO4 = Hg2+2 + H+ + PO4-3 - log_k -25.9795 - delta_h -0 kcal + log_k -25.9795 + delta_h -0 kcal Hg2S Hg2S + H+ = Hg2+2 + HS- - log_k -11.6765 - delta_h 16.67 kcal + log_k -11.6765 + delta_h 16.67 kcal Hg2SO4 Hg2SO4 = Hg2+2 + SO4-2 - log_k -6.1593 - delta_h 0.23 kcal + log_k -6.1593 + delta_h 0.23 kcal Hg2SeO3 Hg2SeO3 + H+ = Hg2+2 + HSeO3- - log_k -4.657 - delta_h -0 kcal + log_k -4.657 + delta_h -0 kcal HgBr2 - HgBr2 + 2H2O = Hg(OH)2 + 2Br- + 2H+ - log_k -25.373 - delta_h 34.452 kcal + HgBr2 + 2 H2O = Hg(OH)2 + 2 Br- + 2 H+ + log_k -25.373 + delta_h 34.452 kcal HgCO3 - HgCO3 + 2H2O = Hg(OH)2 + CO3-2 + 2H+ - log_k -28.6817 - delta_h 22.13 kcal + HgCO3 + 2 H2O = Hg(OH)2 + CO3-2 + 2 H+ + log_k -28.6817 + delta_h 22.13 kcal HgCl2 - HgCl2 + 2H2O = Hg(OH)2 + 2Cl- + 2H+ - log_k -21.7858 - delta_h 27.264 kcal + HgCl2 + 2 H2O = Hg(OH)2 + 2 Cl- + 2 H+ + log_k -21.7858 + delta_h 27.264 kcal Coccinite - HgI2 + 2H2O = Hg(OH)2 + 2I- + 2H+ - log_k -34.6599 - delta_h 49.732 kcal + HgI2 + 2 H2O = Hg(OH)2 + 2 I- + 2 H+ + log_k -34.6599 + delta_h 49.732 kcal Montroydite HgO + H2O = Hg(OH)2 - log_k -3.6503 - delta_h 5.115 kcal + log_k -3.6503 + delta_h 5.115 kcal Hg(OH)2 Hg(OH)2 = Hg(OH)2 - log_k -3.4963 - delta_h -0 kcal + log_k -3.4963 + delta_h -0 kcal Cinnabar - HgS + 2H2O = Hg(OH)2 + HS- + H+ - log_k -45.1885 - delta_h 60.43 kcal + HgS + 2 H2O = Hg(OH)2 + HS- + H+ + log_k -45.1885 + delta_h 60.43 kcal Metacinnabar - HgS + 2H2O = Hg(OH)2 + HS- + H+ - log_k -44.822 - delta_h 59.53 kcal + HgS + 2 H2O = Hg(OH)2 + HS- + H+ + log_k -44.822 + delta_h 59.53 kcal HgSO4 - HgSO4 + 2H2O = Hg(OH)2 + SO4-2 + 2H+ - log_k -9.4189 - delta_h 3.51 kcal + HgSO4 + 2 H2O = Hg(OH)2 + SO4-2 + 2 H+ + log_k -9.4189 + delta_h 3.51 kcal HgSeO3 - HgSeO3 + 2H2O = Hg(OH)2 + HSeO3- + H+ - log_k -12.6953 - delta_h -0 kcal + HgSeO3 + 2 H2O = Hg(OH)2 + HSeO3- + H+ + log_k -12.6953 + delta_h -0 kcal HgI2:2NH3 - HgI2:2NH3 + 2H2O = Hg(OH)2 + 2I- + 2NH4+ - log_k -16.1066 - delta_h 32.632 kcal + HgI2:2NH3 + 2 H2O = Hg(OH)2 + 2 I- + 2 NH4+ + log_k -16.1066 + delta_h 32.632 kcal HgI2:6NH3 - HgI2:6NH3 + 2H2O + 4H+ = Hg(OH)2 + 2I- + 6NH4+ - log_k 33.8566 + HgI2:6NH3 + 2 H2O + 4 H+ = Hg(OH)2 + 2 I- + 6 NH4+ + log_k 33.8566 delta_h -20.568 kcal Cr(OH)2 - Cr(OH)2 + 2H+ = Cr+2 + 2H2O - log_k 10.8189 - delta_h -8.51 kcal + Cr(OH)2 + 2 H+ = Cr+2 + 2 H2O + log_k 10.8189 + delta_h -8.51 kcal CrBr3 - CrBr3 + 2H2O = Cr(OH)2+ + 3Br- + 2H+ - log_k 19.9086 + CrBr3 + 2 H2O = Cr(OH)2+ + 3 Br- + 2 H+ + log_k 19.9086 delta_h -33.777 kcal CrCl3 - CrCl3 + 2H2O = Cr(OH)2+ + 3Cl- + 2H+ - log_k 13.5067 + CrCl3 + 2 H2O = Cr(OH)2+ + 3 Cl- + 2 H+ + log_k 13.5067 delta_h -27.509 kcal CrF3 - CrF3 + 2H2O = Cr(OH)2+ + 3F- + 2H+ - log_k -13.2597 - delta_h -4.363 kcal + CrF3 + 2 H2O = Cr(OH)2+ + 3 F- + 2 H+ + log_k -13.2597 + delta_h -4.363 kcal CrI3 - CrI3 + 2H2O = Cr(OH)2+ + 3I- + 2H+ - log_k 20.4767 + CrI3 + 2 H2O = Cr(OH)2+ + 3 I- + 2 H+ + log_k 20.4767 delta_h -32.127 kcal FeCr2O4 - FeCr2O4 + 4H+ = 2Cr(OH)2+ + Fe+2 - log_k -0.9016 - delta_h -24.86 kcal + FeCr2O4 + 4 H+ = 2 Cr(OH)2+ + Fe+2 + log_k -0.9016 + delta_h -24.86 kcal MgCr2O4 - MgCr2O4 + 4H+ = 2Cr(OH)2+ + Mg+2 - log_k 12.0796 - delta_h -39.86 kcal + MgCr2O4 + 4 H+ = 2 Cr(OH)2+ + Mg+2 + log_k 12.0796 + delta_h -39.86 kcal CrMetal - Cr = Cr+2 + 2e- - log_k 32.244 - delta_h -34.3 kcal + Cr = Cr+2 + 2 e- + log_k 32.244 + delta_h -34.3 kcal Cr2O3 - Cr2O3 + 2H+ + H2O = 2Cr(OH)2+ - log_k -3.3937 + Cr2O3 + 2 H+ + H2O = 2 Cr(OH)2+ + log_k -3.3937 delta_h -12.125 kcal Cr(OH)3(A) Cr(OH)3 + H+ = Cr(OH)2+ + H2O - log_k -0.75 - delta_h -0 kcal + log_k -0.75 + delta_h -0 kcal Cr(OH)3(C) Cr(OH)3 + H+ = Cr(OH)2+ + H2O - log_k 1.7005 - delta_h -7.115 kcal + log_k 1.7005 + delta_h -7.115 kcal CrCl2 - CrCl2 = Cr+2 + 2Cl- - log_k 15.8676 + CrCl2 = Cr+2 + 2 Cl- + log_k 15.8676 delta_h -19.666 kcal Ag2CrO4 - Ag2CrO4 = CrO4-2 + 2Ag+ - log_k -11.5548 - delta_h 14.04 kcal + Ag2CrO4 = CrO4-2 + 2 Ag+ + log_k -11.5548 + delta_h 14.04 kcal BaCrO4 BaCrO4 = CrO4-2 + Ba+2 - log_k -9.6681 - delta_h 6.39 kcal + log_k -9.6681 + delta_h 6.39 kcal # Cesium not defined #Cs2CrO4 @@ -5316,335 +5320,335 @@ BaCrO4 CuCrO4 CuCrO4 = CrO4-2 + Cu+2 - log_k -5.4754 - delta_h -0 kcal + log_k -5.4754 + delta_h -0 kcal K2CrO4 - K2CrO4 = CrO4-2 + 2K+ - log_k 0.0073 - delta_h 4.25 kcal + K2CrO4 = CrO4-2 + 2 K+ + log_k 0.0073 + delta_h 4.25 kcal K2Cr2O7 - K2Cr2O7 + H2O = 2CrO4-2 + 2K+ + 2H+ - log_k -15.6712 - delta_h 18.125 kcal + K2Cr2O7 + H2O = 2 CrO4-2 + 2 K+ + 2 H+ + log_k -15.6712 + delta_h 18.125 kcal Li2CrO4 - Li2CrO4 = CrO4-2 + 2Li+ - log_k 4.8568 + Li2CrO4 = CrO4-2 + 2 Li+ + log_k 4.8568 delta_h -10.822 kcal MgCrO4 MgCrO4 = CrO4-2 + Mg+2 - log_k 5.3801 - delta_h -21.26 kcal + log_k 5.3801 + delta_h -21.26 kcal (NH4)2CrO4 - (NH4)2CrO4 = CrO4-2 + 2NH4+ - log_k 0.4046 - delta_h 2.19 kcal + (NH4)2CrO4 = CrO4-2 + 2 NH4+ + log_k 0.4046 + delta_h 2.19 kcal Na2CrO4 - Na2CrO4 = CrO4-2 + 2Na+ - log_k 3.2618 - delta_h -4.61 kcal + Na2CrO4 = CrO4-2 + 2 Na+ + log_k 3.2618 + delta_h -4.61 kcal Na2Cr2O7 - Na2Cr2O7 + H2O = 2CrO4-2 + 2Na+ + 2H+ - log_k -9.8953 - delta_h 5.305 kcal + Na2Cr2O7 + H2O = 2 CrO4-2 + 2 Na+ + 2 H+ + log_k -9.8953 + delta_h 5.305 kcal PbCrO4 PbCrO4 = CrO4-2 + Pb+2 - log_k -13.6848 - delta_h 10.23 kcal + log_k -13.6848 + delta_h 10.23 kcal Rb2CrO4 - Rb2CrO4 = CrO4-2 + 2Rb+ - log_k -0.0968 - delta_h 5.892 kcal + Rb2CrO4 = CrO4-2 + 2 Rb+ + log_k -0.0968 + delta_h 5.892 kcal SrCrO4 SrCrO4 = CrO4-2 + Sr+2 - log_k -4.8443 - delta_h -2.42 kcal + log_k -4.8443 + delta_h -2.42 kcal CrO3 - CrO3 + H2O = CrO4-2 + 2H+ - log_k -3.2105 - delta_h -1.245 kcal + CrO3 + H2O = CrO4-2 + 2 H+ + log_k -3.2105 + delta_h -1.245 kcal CaCrO4 CaCrO4 = Ca+2 + CrO4-2 - log_k -2.2657 - delta_h -6.44 kcal + log_k -2.2657 + delta_h -6.44 kcal Hg2CrO4 Hg2CrO4 = Hg2+2 + CrO4-2 - log_k -8.7031 - delta_h -0 kcal + log_k -8.7031 + delta_h -0 kcal Tl2CrO4 - Tl2CrO4 = 2Tl+ + CrO4-2 - log_k -12.0136 - delta_h 25.31 kcal + Tl2CrO4 = 2 Tl+ + CrO4-2 + log_k -12.0136 + delta_h 25.31 kcal Ag4FeCyanide6:H2O - Ag4FeCyanide6:H2O = 6Cyanide- + 4Ag+ + Fe+2 + H2O - log_k -89.6909 - delta_h -0 kcal + Ag4FeCyanide6:H2O = 6 Cyanide- + 4 Ag+ + Fe+2 + H2O + log_k -89.6909 + delta_h -0 kcal AgCyanide AgCyanide = Cyanide- + Ag+ - log_k -16.218 - delta_h 26.385 kcal + log_k -16.218 + delta_h 26.385 kcal Cd2FeCyanide6:7H2O - Cd2FeCyanide6:7H2O = 6Cyanide- + 2Cd+2 + Fe+2 + 7H2O - log_k -62.9824 - delta_h -0 kcal + Cd2FeCyanide6:7H2O = 6 Cyanide- + 2 Cd+2 + Fe+2 + 7 H2O + log_k -62.9824 + delta_h -0 kcal CrCyanide CrCyanide = Cyanide- + Cr+2 + e- - log_k 23.888 - delta_h -0 kcal + log_k 23.888 + delta_h -0 kcal Cr2Cyanide - Cr2Cyanide = Cyanide- + 2Cr+2 + 3e- - log_k 56.645 - delta_h -0 kcal + Cr2Cyanide = Cyanide- + 2 Cr+2 + 3 e- + log_k 56.645 + delta_h -0 kcal CuCyanide CuCyanide = Cyanide- + Cu+ - log_k -19.4974 - delta_h 30.2 kcal + log_k -19.4974 + delta_h 30.2 kcal Cu2FeCyanide6 - Cu2FeCyanide6 = 6Cyanide- + 2Cu+2 + Fe+2 - log_k -61.4168 - delta_h -0 kcal + Cu2FeCyanide6 = 6 Cyanide- + 2 Cu+2 + Fe+2 + log_k -61.4168 + delta_h -0 kcal CyanideI - CyanideI + 2e- = Cyanide- + I- - log_k 11.3114 + CyanideI + 2 e- = Cyanide- + I- + log_k 11.3114 delta_h -17.309 kcal K12Ni8(FeCyanide6)7 - K12Ni8(FeCyanide6)7 = 42Cyanide- + 12K+ + 8Ni+2 + 7Fe+2 - log_k -431.09 - delta_h -0 kcal + K12Ni8(FeCyanide6)7 = 42 Cyanide- + 12 K+ + 8 Ni+2 + 7 Fe+2 + log_k -431.09 + delta_h -0 kcal KCyanide(I) KCyanide = Cyanide- + K+ - log_k 1.4403 - delta_h 2.74 kcal + log_k 1.4403 + delta_h 2.74 kcal K2CdFeCyanide6 - K2CdFeCyanide6 = 6Cyanide- + 2K+ + Cd+2 + Fe+2 - log_k -63.0279 - delta_h -0 kcal + K2CdFeCyanide6 = 6 Cyanide- + 2 K+ + Cd+2 + Fe+2 + log_k -63.0279 + delta_h -0 kcal K4Ni4(FeCyanide6)3 - K4Ni4(FeCyanide6)3 = 18Cyanide- + 4K+ + 4Ni+2 + 3Fe+2 - log_k -183.547 - delta_h -0 kcal + K4Ni4(FeCyanide6)3 = 18 Cyanide- + 4 K+ + 4 Ni+2 + 3 Fe+2 + log_k -183.547 + delta_h -0 kcal K4FeCyanide6 - K4FeCyanide6 = 6Cyanide- + 4K+ + Fe+2 - log_k -48.8241 - delta_h 95.62 kcal + K4FeCyanide6 = 6 Cyanide- + 4 K+ + Fe+2 + log_k -48.8241 + delta_h 95.62 kcal K2Mn3(FeCyanide6)2 - K2Mn3(FeCyanide6)2 = 12Cyanide- + 2K+ + 3Mn+2 + 2Fe+2 - log_k -121.001 - delta_h -0 kcal + K2Mn3(FeCyanide6)2 = 12 Cyanide- + 2 K+ + 3 Mn+2 + 2 Fe+2 + log_k -121.001 + delta_h -0 kcal K2Ni3(FeCyanide6)2 - K2Ni3(FeCyanide6)2 = 12Cyanide- + 2K+ + 3Ni+2 + 2Fe+2 - log_k -123.127 - delta_h -0 kcal + K2Ni3(FeCyanide6)2 = 12 Cyanide- + 2 K+ + 3 Ni+2 + 2 Fe+2 + log_k -123.127 + delta_h -0 kcal K4FeCyanide6:3H2O - K4FeCyanide6:3H2O = 6Cyanide- + 4K+ + Fe+2 + 3H2O - log_k -49.5424 - delta_h 99.175 kcal + K4FeCyanide6:3H2O = 6 Cyanide- + 4 K+ + Fe+2 + 3 H2O + log_k -49.5424 + delta_h 99.175 kcal K12Cd8(FeCyanide6)7 - K12Cd8(FeCyanide6)7 = 42Cyanide- + 12K+ + 8Cd+2 + 7Fe+2 - log_k -441.985 - delta_h -0 kcal + K12Cd8(FeCyanide6)7 = 42 Cyanide- + 12 K+ + 8 Cd+2 + 7 Fe+2 + log_k -441.985 + delta_h -0 kcal KZn1.5FeCyanide6 - KZn1.5FeCyanide6 = 6Cyanide- + K+ + 1.5Zn+2 + Fe+2 - log_k -66.8086 - delta_h -0 kcal + KZn1.5FeCyanide6 = 6 Cyanide- + K+ + 1.5 Zn+2 + Fe+2 + log_k -66.8086 + delta_h -0 kcal K3FeCyanide6 - K3FeCyanide6 = 6Cyanide- + 3K+ + Fe+3 - log_k -54.644 - delta_h 83.29 kcal + K3FeCyanide6 = 6 Cyanide- + 3 K+ + Fe+3 + log_k -54.644 + delta_h 83.29 kcal K8Mn6(FeCyanide6)5 - K8Mn6(FeCyanide6)5 = 30Cyanide- + 8K+ + 6Mn+2 + 5Fe+2 - log_k -293.685 - delta_h -0 kcal + K8Mn6(FeCyanide6)5 = 30 Cyanide- + 8 K+ + 6 Mn+2 + 5 Fe+2 + log_k -293.685 + delta_h -0 kcal K2Cu2FeCyanide6 - K2Cu2FeCyanide6 = 6Cyanide- + 2K+ + 2Cu+ + Fe+2 - log_k -72.5142 - delta_h -0 kcal + K2Cu2FeCyanide6 = 6 Cyanide- + 2 K+ + 2 Cu+ + Fe+2 + log_k -72.5142 + delta_h -0 kcal Mn2FeCyanide6 - Mn2FeCyanide6 = 6Cyanide- + 2Mn+2 + Fe+2 - log_k -59.0272 - delta_h -0 kcal + Mn2FeCyanide6 = 6 Cyanide- + 2 Mn+2 + Fe+2 + log_k -59.0272 + delta_h -0 kcal NaCyanide NaCyanide = Cyanide- + Na+ - log_k 2.2869 - delta_h -0.52 kcal + log_k 2.2869 + delta_h -0.52 kcal Pb2FeCyanide6:3H2O - Pb2FeCyanide6:3H2O = 6Cyanide- + 2Pb+2 + Fe+2 + 3H2O - log_k -63.6011 - delta_h -0 kcal + Pb2FeCyanide6:3H2O = 6 Cyanide- + 2 Pb+2 + Fe+2 + 3 H2O + log_k -63.6011 + delta_h -0 kcal Tl4FeCyanide6:2H2O - Tl4FeCyanide6:2H2O = 6Cyanide- + 4Tl+ + Fe+2 + 2H2O - log_k -56.9162 - delta_h -0 kcal + Tl4FeCyanide6:2H2O = 6 Cyanide- + 4 Tl+ + Fe+2 + 2 H2O + log_k -56.9162 + delta_h -0 kcal Zn2FeCyanide6:2H2O - Zn2FeCyanide6:2H2O = 6Cyanide- + 2Zn+2 + Fe+2 + 2H2O - log_k -61.2321 - delta_h -0 kcal + Zn2FeCyanide6:2H2O = 6 Cyanide- + 2 Zn+2 + Fe+2 + 2 H2O + log_k -61.2321 + delta_h -0 kcal AgCyanate AgCyanate = Cyanate- + Ag+ - log_k -6.6159 - delta_h 13.175 kcal + log_k -6.6159 + delta_h 13.175 kcal Ag4Fe(Cyanide)6 - Ag4Fe(Cyanide)6 = 6Cyanide- + 4Ag+ + Fe+2 - log_k -193.914 - delta_h 260.91 kcal + Ag4Fe(Cyanide)6 = 6 Cyanide- + 4 Ag+ + Fe+2 + log_k -193.914 + delta_h 260.91 kcal Cd2Fe(Cyanide)6 - Cd2Fe(Cyanide)6 = 6Cyanide- + 2Cd+2 + Fe+2 - log_k -28.2243 - delta_h -0 kcal + Cd2Fe(Cyanide)6 = 6 Cyanide- + 2 Cd+2 + Fe+2 + log_k -28.2243 + delta_h -0 kcal Hg(Cyanide)2 - Hg(Cyanide)2 + 2H2O = Hg(OH)2 + 2Cyanide- + 2H+ - log_k -45.3791 - delta_h 60.73 kcal + Hg(Cyanide)2 + 2 H2O = Hg(OH)2 + 2 Cyanide- + 2 H+ + log_k -45.3791 + delta_h 60.73 kcal Pb2Fe(Cyanide)6 - Pb2Fe(Cyanide)6 = 6Cyanide- + 2Pb+2 + Fe+2 - log_k -27.5895 - delta_h -0 kcal + Pb2Fe(Cyanide)6 = 6 Cyanide- + 2 Pb+2 + Fe+2 + log_k -27.5895 + delta_h -0 kcal Zn2Fe(Cyanide)6 - Zn2Fe(Cyanide)6 = 6Cyanide- + 2Zn+2 + Fe+2 - log_k -29.9263 - delta_h -0 kcal + Zn2Fe(Cyanide)6 = 6 Cyanide- + 2 Zn+2 + Fe+2 + log_k -29.9263 + delta_h -0 kcal CH4(g) - CH4 + 3H2O = CO3-2 + 8e- + 10H+ - log_k -40.1 - delta_h 61 kcal + CH4 + 3 H2O = CO3-2 + 8 e- + 10 H+ + log_k -40.1 + delta_h 61 kcal CO2(g) - CO2 + H2O = CO3-2 + 2H+ - log_k -18.16 - delta_h 0.53 kcal + CO2 + H2O = CO3-2 + 2 H+ + log_k -18.16 + delta_h 0.53 kcal O2(g) - O2 + 4H+ + 4e- = 2H2O - log_k 83.12 + O2 + 4 H+ + 4 e- = 2 H2O + log_k 83.12 delta_h -133.83 kcal Hg(g) - Hg = 0.5Hg2+2 + e- - log_k -7.8708 - delta_h 5.265 kcal + Hg = 0.5 Hg2+2 + e- + log_k -7.8708 + delta_h 5.265 kcal Hg2(g) - Hg2 = Hg2+2 + 2e- - log_k -14.963 - delta_h 13.87 kcal + Hg2 = Hg2+2 + 2 e- + log_k -14.963 + delta_h 13.87 kcal Hg(CH3)2(g) - Hg(CH3)2 + 8H2O = Hg(OH)2 + 2CO3-2 + 16e- + 20H+ - log_k -73.724 - delta_h 115.4 kcal + Hg(CH3)2 + 8 H2O = Hg(OH)2 + 2 CO3-2 + 16 e- + 20 H+ + log_k -73.724 + delta_h 115.4 kcal HgBr(g) - HgBr = 0.5Hg2+2 + Br- - log_k 16.79 + HgBr = 0.5 Hg2+2 + Br- + log_k 16.79 delta_h -34.004 kcal HgCl(g) - HgCl = 0.5Hg2+2 + Cl- - log_k 20.5 + HgCl = 0.5 Hg2+2 + Cl- + log_k 20.5 delta_h -40.098 kcal HgF(g) - HgF = 0.5Hg2+2 + F- - log_k 32.72 + HgF = 0.5 Hg2+2 + F- + log_k 32.72 delta_h -60.916 kcal HgI(g) - HgI = 0.5Hg2+2 + I- - log_k 11.15 + HgI = 0.5 Hg2+2 + I- + log_k 11.15 delta_h -25.264 kcal HgBr2(g) - HgBr2 + 2H2O = Hg(OH)2 + 2Br- + 2H+ - log_k -18.47 - delta_h 14.35 kcal + HgBr2 + 2 H2O = Hg(OH)2 + 2 Br- + 2 H+ + log_k -18.47 + delta_h 14.35 kcal HgF2(g) - HgF2 + 2H2O = Hg(OH)2 + 2F- + 2H+ - log_k 0.38 - delta_h -0 kcal + HgF2 + 2 H2O = Hg(OH)2 + 2 F- + 2 H+ + log_k 0.38 + delta_h -0 kcal HgI2(g) - HgI2 + 2H2O = Hg(OH)2 + 2I- + 2H+ - log_k -27.28 - delta_h 28.63 kcal + HgI2 + 2 H2O = Hg(OH)2 + 2 I- + 2 H+ + log_k -27.28 + delta_h 28.63 kcal SURFACE_MASTER_SPECIES - Hfo_s Hfo_sOH - Hfo_w Hfo_wOH + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH SURFACE_SPECIES -Hfo_wOH = Hfo_wOH - log_k 0.0 -Hfo_sOH = Hfo_sOH - log_k 0.0 -Hfo_wOH = Hfo_wO- + H+ - log_k -8.93 -Hfo_wOH + H+ = Hfo_wOH2+ - log_k 7.29 -Hfo_sOH = Hfo_sO- + H+ - log_k -8.93 -Hfo_sOH + H+ = Hfo_sOH2+ - log_k 7.29 -Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ - log_k -1.99 -Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ - log_k 0.97 -Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ - log_k -2.9 -Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ - log_k 0.43 -Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ - log_k 2.85 -Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ - log_k 0.6 -Hfo_sOH + Be+2 = Hfo_sOBe+ + H+ - log_k 1.898 -Hfo_wOH + Be+2 = Hfo_wOBe+ + H+ - log_k -0.8626 -Hfo_sOH + Ni+2 = Hfo_sONi+ + H+ - log_k 0.15 -Hfo_wOH + Ni+2 = Hfo_wONi+ + H+ - log_k -2.5 -Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ - log_k 4.71 -Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ - log_k 0.3 -Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ - log_k -5.85 +Hfo_wOH = Hfo_wOH + log_k 0 +Hfo_sOH = Hfo_sOH + log_k 0 +Hfo_wOH = Hfo_wO- + H+ + log_k -8.93 +Hfo_wOH + H+ = Hfo_wOH2+ + log_k 7.29 +Hfo_sOH = Hfo_sO- + H+ + log_k -8.93 +Hfo_sOH + H+ = Hfo_sOH2+ + log_k 7.29 +Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ + log_k -1.99 +Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ + log_k 0.97 +Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ + log_k -2.9 +Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ + log_k 0.43 +Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ + log_k 2.85 +Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ + log_k 0.6 +Hfo_sOH + Be+2 = Hfo_sOBe+ + H+ + log_k 1.898 +Hfo_wOH + Be+2 = Hfo_wOBe+ + H+ + log_k -0.8626 +Hfo_sOH + Ni+2 = Hfo_sONi+ + H+ + log_k 0.15 +Hfo_wOH + Ni+2 = Hfo_wONi+ + H+ + log_k -2.5 +Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ + log_k 4.71 +Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ + log_k 0.3 +Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ + log_k -5.85 Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - log_k 4.97 + log_k 4.97 Hfo_sOH + Ba+2 = Hfo_sOHBa+2 - log_k 5.46 + log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - log_k -7.2 -Hfo_sOH + H+ + SO4-2 = Hfo_sSO4- + H2O - log_k 7.78 -Hfo_wOH + H+ + SO4-2 = Hfo_wSO4- + H2O - log_k 7.78 + log_k -7.2 +Hfo_sOH + H+ + SO4-2 = Hfo_sSO4- + H2O + log_k 7.78 +Hfo_wOH + H+ + SO4-2 = Hfo_wSO4- + H2O + log_k 7.78 Hfo_sOH + SO4-2 = Hfo_sOHSO4-2 - log_k 0.79 + log_k 0.79 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - log_k 0.79 -Hfo_sOH + PO4-3 + 3H+ = Hfo_sH2PO4 + H2O - log_k 31.29 -Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O - log_k 31.29 -Hfo_sOH + PO4-3 + 2H+ = Hfo_sHPO4- + H2O - log_k 25.39 -Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O - log_k 25.39 + log_k 0.79 +Hfo_sOH + PO4-3 + 3 H+ = Hfo_sH2PO4 + H2O + log_k 31.29 +Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O + log_k 31.29 +Hfo_sOH + PO4-3 + 2 H+ = Hfo_sHPO4- + H2O + log_k 25.39 +Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O + log_k 25.39 Hfo_sOH + PO4-3 + H+ = Hfo_sPO4-2 + H2O - log_k 17.72 + log_k 17.72 Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O - log_k 17.72 + log_k 17.72 Hfo_sOH + H3AsO3 = Hfo_sH2AsO3 + H2O - log_k 5.41 + log_k 5.41 Hfo_wOH + H3AsO3 = Hfo_wH2AsO3 + H2O - log_k 5.41 + log_k 5.41 Hfo_sOH + H3AsO4 = Hfo_sH2AsO4 + H2O - log_k 8.67 + log_k 8.67 Hfo_wOH + H3AsO4 = Hfo_wH2AsO4 + H2O - log_k 8.67 -Hfo_sOH + H3AsO4 = Hfo_sHAsO4- + H2O + H+ - log_k 2.99 -Hfo_wOH + H3AsO4 = Hfo_wHAsO4- + H2O + H+ - log_k 2.99 -Hfo_sOH + H3AsO4 = Hfo_sAsO4-2 + H2O + 2H+ - log_k -4.7 -Hfo_wOH + H3AsO4 = Hfo_wAsO4-2 + H2O + 2H+ - log_k -4.7 -Hfo_sOH + H3AsO4 = Hfo_sOHAsO4-3 + 3H+ - log_k -10.15 -Hfo_wOH + H3AsO4 = Hfo_wOHAsO4-3 + 3H+ - log_k -10.15 + log_k 8.67 +Hfo_sOH + H3AsO4 = Hfo_sHAsO4- + H2O + H+ + log_k 2.99 +Hfo_wOH + H3AsO4 = Hfo_wHAsO4- + H2O + H+ + log_k 2.99 +Hfo_sOH + H3AsO4 = Hfo_sAsO4-2 + H2O + 2 H+ + log_k -4.7 +Hfo_wOH + H3AsO4 = Hfo_wAsO4-2 + H2O + 2 H+ + log_k -4.7 +Hfo_sOH + H3AsO4 = Hfo_sOHAsO4-3 + 3 H+ + log_k -10.15 +Hfo_wOH + H3AsO4 = Hfo_wOHAsO4-3 + 3 H+ + log_k -10.15 Hfo_sOH + H3BO3 = Hfo_sH2BO3 + H2O - log_k 0.62 + log_k 0.62 Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O - log_k 0.62 + log_k 0.62 END diff --git a/minteq.v4.dat b/minteq.v4.dat index 48f51bca..3e81fd8f 100644 --- a/minteq.v4.dat +++ b/minteq.v4.dat @@ -1,127 +1,131 @@ +# File 1 = C:\GitPrograms\phreeqc3-1\database\minteq.v4.dat, 15/03/2024 15:27, 13208 lines, 399299 bytes, md5=fa307060a8f8affd6f41cb15d2225ff6 +# Created 17 May 2024 14:30:41 +# c:\3rdParty\lsp\lsp.exe -f2 -k="asis" -ts "minteq.v4.dat" + # $Id: minteq.v4.dat 11091 2016-04-21 15:20:05Z dlpark $ SOLUTION_MASTER_SPECIES -Alkalinity CO3-2 2.0 HCO3 61.0173 -E e- 0 0 0 -O H2O 0 O 16.00 -O(-2) H2O 0 O -O(0) O2 0 O -Ag Ag+ 0.0 Ag 107.868 -Al Al+3 0.0 Al 26.9815 -As H3AsO4 -1.0 As 74.9216 -As(3) H3AsO3 0.0 As -As(5) H3AsO4 -1.0 As -B H3BO3 0.0 B 10.81 -Ba Ba+2 0.0 Ba 137.33 -Be Be+2 0.0 Be 9.0122 -Br Br- 0.0 Br 79.904 -C CO3-2 2.0 CO3 12.0111 -C(4) CO3-2 2.0 CO3 12.0111 -Cyanide Cyanide- 1.0 Cyanide 26.0177 -Dom_a Dom_a 0.0 C 12.0111 -Dom_b Dom_b 0.0 C 12.0111 -Dom_c Dom_c 0.0 C 12.0111 -Ca Ca+2 0.0 Ca 40.078 -Cd Cd+2 0.0 Cd 112.41 -Cl Cl- 0.0 Cl 35.453 -Co Co+3 -1.0 Co 58.9332 -Co(2) Co+2 0.0 Co -Co(3) Co+3 -1.0 Co -Cr CrO4-2 1.0 Cr 51.996 -Cr(2) Cr+2 0.0 Cr -Cr(3) Cr(OH)2+ 0.0 Cr -Cr(6) CrO4-2 1.0 Cr -Cu Cu+2 0.0 Cu 63.546 -Cu(1) Cu+ 0.0 Cu -Cu(2) Cu+2 0.0 Cu -F F- 0.0 F 18.9984 -Fe Fe+3 -2.0 Fe 55.847 -Fe(2) Fe+2 0.0 Fe -Fe(3) Fe+3 -2.0 Fe -H H+ -1.0 H 1.0079 -H(0) H2 0 H -H(1) H+ -1.0 H -Hg Hg(OH)2 0.0 Hg 200.59 -Hg(0) Hg 0.0 Hg -Hg(1) Hg2+2 0.0 Hg -Hg(2) Hg(OH)2 0.0 Hg -I I- 0.0 I 126.904 -K K+ 0.0 K 39.0983 -Li Li+ 0.0 Li 6.941 -Mg Mg+2 0.0 Mg 24.305 -Mn Mn+3 0.0 Mn 54.938 -Mn(2) Mn+2 0.0 Mn -Mn(3) Mn+3 0.0 Mn -Mn(6) MnO4-2 0.0 Mn -Mn(7) MnO4- 0.0 Mn -Mo MoO4-2 0.0 Mo 95.94 -N NO3- 0.0 N 14.0067 -N(-3) NH4+ 0.0 N -N(3) NO2- 0.0 N -N(5) NO3- 0.0 N -Na Na+ 0.0 Na 22.9898 -Ni Ni+2 0.0 Ni 58.69 -P PO4-3 2.0 P 30.9738 -Pb Pb+2 0.0 Pb 207.2 -S SO4-2 0.0 SO4 32.066 -S(-2) HS- 1.0 S +Alkalinity CO3-2 2 HCO3 61.0173 +E e- 1 0 0 +O H2O 0 O 16 +O(-2) H2O 0 O +O(0) O2 0 O +Ag Ag+ 0 Ag 107.868 +Al Al+3 0 Al 26.9815 +As H3AsO4 -1 As 74.9216 +As(3) H3AsO3 0 As +As(5) H3AsO4 -1 As +B H3BO3 0 B 10.81 +Ba Ba+2 0 Ba 137.33 +Be Be+2 0 Be 9.0122 +Br Br- 0 Br 79.904 +C CO3-2 2 CO3 12.0111 +C(4) CO3-2 2 CO3 12.0111 +Cyanide Cyanide- 1 Cyanide 26.0177 +Dom_a Dom_a 0 C 12.0111 +Dom_b Dom_b 0 C 12.0111 +Dom_c Dom_c 0 C 12.0111 +Ca Ca+2 0 Ca 40.078 +Cd Cd+2 0 Cd 112.41 +Cl Cl- 0 Cl 35.453 +Co Co+3 -1 Co 58.9332 +Co(2) Co+2 0 Co +Co(3) Co+3 -1 Co +Cr CrO4-2 1 Cr 51.996 +Cr(2) Cr+2 0 Cr +Cr(3) Cr(OH)2+ 0 Cr +Cr(6) CrO4-2 1 Cr +Cu Cu+2 0 Cu 63.546 +Cu(1) Cu+ 0 Cu +Cu(2) Cu+2 0 Cu +F F- 0 F 18.9984 +Fe Fe+3 -2 Fe 55.847 +Fe(2) Fe+2 0 Fe +Fe(3) Fe+3 -2 Fe +H H+ -1 H 1.0079 +H(0) H2 0 H +H(1) H+ -1 H +Hg Hg(OH)2 0 Hg 200.59 +Hg(0) Hg 0 Hg +Hg(1) Hg2+2 0 Hg +Hg(2) Hg(OH)2 0 Hg +I I- 0 I 126.904 +K K+ 0 K 39.0983 +Li Li+ 0 Li 6.941 +Mg Mg+2 0 Mg 24.305 +Mn Mn+3 0 Mn 54.938 +Mn(2) Mn+2 0 Mn +Mn(3) Mn+3 0 Mn +Mn(6) MnO4-2 0 Mn +Mn(7) MnO4- 0 Mn +Mo MoO4-2 0 Mo 95.94 +N NO3- 0 N 14.0067 +N(-3) NH4+ 0 N +N(3) NO2- 0 N +N(5) NO3- 0 N +Na Na+ 0 Na 22.9898 +Ni Ni+2 0 Ni 58.69 +P PO4-3 2 P 30.9738 +Pb Pb+2 0 Pb 207.2 +S SO4-2 0 SO4 32.066 +S(-2) HS- 1 S #S(0) S 0.0 S -S(6) SO4-2 0.0 SO4 -Sb Sb(OH)6- 0.0 Sb 121.75 -Sb(3) Sb(OH)3 0.0 Sb -Sb(5) Sb(OH)6- 0.0 Sb -Se SeO4-2 0.0 Se 78.96 -Se(-2) HSe- 0.0 Se -Se(4) HSeO3- 0.0 Se -Se(6) SeO4-2 0.0 Se -Si H4SiO4 0.0 SiO2 28.0843 -Sn Sn(OH)6-2 0.0 Sn 118.71 -Sn(2) Sn(OH)2 0.0 Sn -Sn(4) Sn(OH)6-2 0.0 Sn -Sr Sr+2 0.0 Sr 87.62 -Tl Tl(OH)3 0.0 Tl 204.383 -Tl(1) Tl+ 0.0 Tl -Tl(3) Tl(OH)3 0.0 Tl -U UO2+2 0.0 U 238.029 -U(3) U+3 0.0 U -U(4) U+4 -4.0 U -U(5) UO2+ 0.0 U -U(6) UO2+2 0.0 U -V VO2+ -2.0 V 50.94 -V(2) V+2 0.0 V -V(3) V+3 -3.0 V -V(4) VO+2 0.0 V -V(5) VO2+ -2.0 V -Zn Zn+2 0.0 Zn 65.39 -Benzoate Benzoate- 0.0 121.116 121.116 -Phenylacetate Phenylacetate- 0.0 135.142 135.142 -Isophthalate Isophthalate-2 0.0 164.117 164.117 -Diethylamine Diethylamine 1.0 73.138 73.138 -Butylamine Butylamine 1.0 73.138 73.138 -Methylamine Methylamine 1.0 31.057 31.057 -Dimethylamine Dimethylamine 1.0 45.084 45.084 -Hexylamine Hexylamine 1.0 101.192 101.192 -Ethylenediamine Ethylenediamine 2.0 60.099 60.099 -Propylamine Propylamine 1.0 59.111 59.111 -Isopropylamine Isopropylamine 1.0 59.111 59.111 -Trimethylamine Trimethylamine 1.0 59.111 59.111 -Citrate Citrate-3 2.0 189.102 189.102 -Nta Nta-3 1.0 188.117 188.117 -Edta Edta-4 2.0 288.214 288.214 -Propionate Propionate- 1.0 73.072 73.072 -Butyrate Butyrate- 1.0 87.098 87.098 -Isobutyrate Isobutyrate- 1.0 87.098 87.098 -Two_picoline Two_picoline 1.0 93.128 93.128 -Three_picoline Three_picoline 1.0 93.128 93.128 -Four_picoline Four_picoline 1.0 93.128 93.128 -Formate Formate- 0.0 45.018 45.018 -Isovalerate Isovalerate- 1.0 101.125 101.125 -Valerate Valerate- 1.0 101.125 101.125 -Acetate Acetate- 1.0 59.045 59.045 -Tartarate Tartarate-2 0.0 148.072 148.072 -Glycine Glycine- 1.0 74.059 74.059 -Salicylate Salicylate-2 1.0 136.107 136.107 -Glutamate Glutamate-2 1.0 145.115 145.115 -Phthalate Phthalate-2 1.0 164.117 164.117 +S(6) SO4-2 0 SO4 +Sb Sb(OH)6- 0 Sb 121.75 +Sb(3) Sb(OH)3 0 Sb +Sb(5) Sb(OH)6- 0 Sb +Se SeO4-2 0 Se 78.96 +Se(-2) HSe- 0 Se +Se(4) HSeO3- 0 Se +Se(6) SeO4-2 0 Se +Si H4SiO4 0 SiO2 28.0843 +Sn Sn(OH)6-2 0 Sn 118.71 +Sn(2) Sn(OH)2 0 Sn +Sn(4) Sn(OH)6-2 0 Sn +Sr Sr+2 0 Sr 87.62 +Tl Tl(OH)3 0 Tl 204.383 +Tl(1) Tl+ 0 Tl +Tl(3) Tl(OH)3 0 Tl +U UO2+2 0 U 238.029 +U(3) U+3 0 U +U(4) U+4 -4 U +U(5) UO2+ 0 U +U(6) UO2+2 0 U +V VO2+ -2 V 50.94 +V(2) V+2 0 V +V(3) V+3 -3 V +V(4) VO+2 0 V +V(5) VO2+ -2 V +Zn Zn+2 0 Zn 65.39 +Benzoate Benzoate- 0 121.116 121.116 +Phenylacetate Phenylacetate- 0 135.142 135.142 +Isophthalate Isophthalate-2 0 164.117 164.117 +Diethylamine Diethylamine 1 73.138 73.138 +Butylamine Butylamine 1 73.138 73.138 +Methylamine Methylamine 1 31.057 31.057 +Dimethylamine Dimethylamine 1 45.084 45.084 +Hexylamine Hexylamine 1 101.192 101.192 +Ethylenediamine Ethylenediamine 2 60.099 60.099 +Propylamine Propylamine 1 59.111 59.111 +Isopropylamine Isopropylamine 1 59.111 59.111 +Trimethylamine Trimethylamine 1 59.111 59.111 +Citrate Citrate-3 2 189.102 189.102 +Nta Nta-3 1 188.117 188.117 +Edta Edta-4 2 288.214 288.214 +Propionate Propionate- 1 73.072 73.072 +Butyrate Butyrate- 1 87.098 87.098 +Isobutyrate Isobutyrate- 1 87.098 87.098 +Two_picoline Two_picoline 1 93.128 93.128 +Three_picoline Three_picoline 1 93.128 93.128 +Four_picoline Four_picoline 1 93.128 93.128 +Formate Formate- 0 45.018 45.018 +Isovalerate Isovalerate- 1 101.125 101.125 +Valerate Valerate- 1 101.125 101.125 +Acetate Acetate- 1 59.045 59.045 +Tartarate Tartarate-2 0 148.072 148.072 +Glycine Glycine- 1 74.059 74.059 +Salicylate Salicylate-2 1 136.107 136.107 +Glutamate Glutamate-2 1 145.115 145.115 +Phthalate Phthalate-2 1 164.117 164.117 SOLUTION_SPECIES e- = e- log_k 0 @@ -143,7 +147,7 @@ Br- = Br- log_k 0 CO3-2 = CO3-2 log_k 0 -Cyanide- = Cyanide- +Cyanide- = Cyanide- log_k 0 Dom_a = Dom_a log_k 0 @@ -275,12933 +279,12933 @@ Phthalate-2 = Phthalate-2 log_k 0 SOLUTION_SPECIES Fe+3 + e- = Fe+2 - log_k 13.032 - delta_h -42.7 kJ - -gamma 0 0 + log_k 13.032 + delta_h -42.7 kJ + -gamma 0 0 # Id: 2802810 - # log K source: Bard85 - # Delta H source: Bard85 - #T and ionic strength: -H3AsO4 + 2e- + 2H+ = H3AsO3 + H2O - log_k 18.898 - delta_h -125.6 kJ - -gamma 0 0 + # log K source: Bard85 + # Delta H source: Bard85 + #T and ionic strength: +H3AsO4 + 2 e- + 2 H+ = H3AsO3 + H2O + log_k 18.898 + delta_h -125.6 kJ + -gamma 0 0 # Id: 600610 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -Sb(OH)6- + 2e- + 3H+ = Sb(OH)3 + 3H2O - log_k 24.31 - delta_h 0 kJ - -gamma 0 0 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +Sb(OH)6- + 2 e- + 3 H+ = Sb(OH)3 + 3 H2O + log_k 24.31 + delta_h 0 kJ + -gamma 0 0 # Id: 7407410 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -UO2+2 + 3e- + 4H+ = U+3 + 2H2O - log_k 0.42 - delta_h -42 kJ - -gamma 0 0 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +UO2+2 + 3 e- + 4 H+ = U+3 + 2 H2O + log_k 0.42 + delta_h -42 kJ + -gamma 0 0 # Id: 8908930 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -UO2+2 + 2e- + 4H+ = U+4 + 2H2O - log_k 9.216 - delta_h -144.1 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +UO2+2 + 2 e- + 4 H+ = U+4 + 2 H2O + log_k 9.216 + delta_h -144.1 kJ + -gamma 0 0 # Id: 8918930 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: UO2+2 + e- = UO2+ - log_k 2.785 - delta_h -13.8 kJ - -gamma 0 0 + log_k 2.785 + delta_h -13.8 kJ + -gamma 0 0 # Id: 8928930 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: e- + Mn+3 = Mn+2 - log_k 25.35 - delta_h -107.8 kJ - -gamma 0 0 + log_k 25.35 + delta_h -107.8 kJ + -gamma 0 0 # Id: 4704710 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: Co+3 + e- = Co+2 - log_k 32.4 - delta_h 0 kJ - -gamma 0 0 + log_k 32.4 + delta_h 0 kJ + -gamma 0 0 # Id: 2002010 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: Cu+2 + e- = Cu+ - log_k 2.69 - delta_h 6.9 kJ - -gamma 0 0 + log_k 2.69 + delta_h 6.9 kJ + -gamma 0 0 # Id: 2302310 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: V+3 + e- = V+2 - log_k -4.31 - delta_h 0 kJ - -gamma 0 0 + log_k -4.31 + delta_h 0 kJ + -gamma 0 0 # Id: 9009010 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -VO+2 + e- + 2H+ = V+3 + H2O - log_k 5.696 - delta_h 0 kJ - -gamma 0 0 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +VO+2 + e- + 2 H+ = V+3 + H2O + log_k 5.696 + delta_h 0 kJ + -gamma 0 0 # Id: 9019020 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -VO2+ + e- + 2H+ = VO+2 + H2O - log_k 16.903 - delta_h -122.7 kJ - -gamma 0 0 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +VO2+ + e- + 2 H+ = VO+2 + H2O + log_k 16.903 + delta_h -122.7 kJ + -gamma 0 0 # Id: 9029030 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -SO4-2 + 9H+ + 8e- = HS- + 4H2O - log_k 33.66 - delta_h -60.14 kJ - -gamma 0 0 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O + log_k 33.66 + delta_h -60.14 kJ + -gamma 0 0 # Id: 7307320 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Sn(OH)6-2 + 2e- + 4H+ = Sn(OH)2 + 4H2O - log_k 19.2 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Sn(OH)6-2 + 2 e- + 4 H+ = Sn(OH)2 + 4 H2O + log_k 19.2 + delta_h 0 kJ + -gamma 0 0 # Id: 7907910 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -Tl(OH)3 + 2e- + 3H+ = Tl+ + 3H2O - log_k 45.55 - delta_h 0 kJ - -gamma 0 0 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +Tl(OH)3 + 2 e- + 3 H+ = Tl+ + 3 H2O + log_k 45.55 + delta_h 0 kJ + -gamma 0 0 # Id: 8708710 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -HSeO3- + 6e- + 6H+ = HSe- + 3H2O - log_k 44.86 - delta_h 0 kJ - -gamma 0 0 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +HSeO3- + 6 e- + 6 H+ = HSe- + 3 H2O + log_k 44.86 + delta_h 0 kJ + -gamma 0 0 # Id: 7607610 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -SeO4-2 + 2e- + 3H+ = HSeO3- + H2O - log_k 36.308 - delta_h -201.2 kJ - -gamma 0 0 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +SeO4-2 + 2 e- + 3 H+ = HSeO3- + H2O + log_k 36.308 + delta_h -201.2 kJ + -gamma 0 0 # Id: 7617620 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -0.5Hg2+2 + e- = Hg - log_k 6.5667 - delta_h -45.735 kJ - -gamma 0 0 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +0.5 Hg2+2 + e- = Hg + log_k 6.5667 + delta_h -45.735 kJ + -gamma 0 0 # Id: 3600000 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: -2Hg(OH)2 + 4H+ + 2e- = Hg2+2 + 4H2O - log_k 43.185 - delta_h -63.59 kJ - -gamma 0 0 +2 Hg(OH)2 + 4 H+ + 2 e- = Hg2+2 + 4 H2O + log_k 43.185 + delta_h -63.59 kJ + -gamma 0 0 # Id: 3603610 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cr(OH)2+ + 2H+ + e- = Cr+2 + 2H2O - log_k 2.947 - delta_h 6.36 kJ - -gamma 0 0 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cr(OH)2+ + 2 H+ + e- = Cr+2 + 2 H2O + log_k 2.947 + delta_h 6.36 kJ + -gamma 0 0 # Id: 2102110 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -CrO4-2 + 6H+ + 3e- = Cr(OH)2+ + 2H2O - log_k 67.376 - delta_h -103 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +CrO4-2 + 6 H+ + 3 e- = Cr(OH)2+ + 2 H2O + log_k 67.376 + delta_h -103 kJ + -gamma 0 0 # Id: 2112120 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: -2H2O = O2 + 4H+ + 4e- +2 H2O = O2 + 4 H+ + 4 e- # Adjusted for equation to aqueous species - log_k -85.9951 - -analytic 38.0229 7.99407E-03 -2.7655e+004 -1.4506e+001 199838.45 + log_k -85.9951 + -analytic 38.0229 7.99407E-3 -2.7655e+4 -1.4506e+1 199838.45 2 H+ + 2 e- = H2 - log_k -3.15 + log_k -3.15 delta_h -1.759 kcal NO3- + 2 H+ + 2 e- = NO2- + H2O - log_k 28.570 - delta_h -43.760 kcal - -gamma 3.0000 0.0000 + log_k 28.57 + delta_h -43.76 kcal + -gamma 3 0 NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O - log_k 119.077 - delta_h -187.055 kcal - -gamma 2.5000 0.0000 + log_k 119.077 + delta_h -187.055 kcal + -gamma 2.5 0 -Mn+2 + 4H2O = MnO4- + 8H+ + 5e- - log_k -127.794 - delta_h 822.67 kJ - -gamma 3 0 +Mn+2 + 4 H2O = MnO4- + 8 H+ + 5 e- + log_k -127.794 + delta_h 822.67 kJ + -gamma 3 0 # Id: 4700020 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Mn+2 + 4H2O = MnO4-2 + 8H+ + 4e- - log_k -118.422 - delta_h 711.07 kJ - -gamma 5 0 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Mn+2 + 4 H2O = MnO4-2 + 8 H+ + 4 e- + log_k -118.422 + delta_h 711.07 kJ + -gamma 5 0 # Id: 4700021 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: HS- = S-2 + H+ - log_k -17.3 - delta_h 49.4 kJ - -gamma 5 0 + log_k -17.3 + delta_h 49.4 kJ + -gamma 5 0 # Id: 3307301 - # log K source: LMa1987 - # Delta H source: NIST2.1.1 + # log K source: LMa1987 + # Delta H source: NIST2.1.1 #T and ionic strength: 0.00 25.0 HSe- = Se-2 + H+ - log_k -15 - delta_h 48.116 kJ - -gamma 0 0 + log_k -15 + delta_h 48.116 kJ + -gamma 0 0 # Id: 3307601 - # log K source: SCD3.02 (1968 DKa) - # Delta H source: MTQ3.11 + # log K source: SCD3.02 (1968 DKa) + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Tl(OH)3 + 3H+ = Tl+3 + 3H2O - log_k 3.291 - delta_h 0 kJ - -gamma 0 0 +Tl(OH)3 + 3 H+ = Tl+3 + 3 H2O + log_k 3.291 + delta_h 0 kJ + -gamma 0 0 # Id: 8713300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -0.5Hg2+2 + e- = Hg - log_k 6.5667 - delta_h -45.735 kJ - -gamma 0 0 +0.5 Hg2+2 + e- = Hg + log_k 6.5667 + delta_h -45.735 kJ + -gamma 0 0 # Id: 3600000 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Hg(OH)2 + 2H+ = Hg+2 + 2H2O - log_k 6.194 - delta_h -39.72 kJ - -gamma 0 0 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Hg(OH)2 + 2 H+ = Hg+2 + 2 H2O + log_k 6.194 + delta_h -39.72 kJ + -gamma 0 0 # Id: 3613300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + 2H+ = Cr+3 + 2H2O - log_k 9.5688 - delta_h -129.62 kJ - -gamma 0 0 +Cr(OH)2+ + 2 H+ = Cr+3 + 2 H2O + log_k 9.5688 + delta_h -129.62 kJ + -gamma 0 0 # Id: 2113300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.10 20.0 H2O = OH- + H+ - log_k -13.997 - delta_h 55.81 kJ - -gamma 3.5 0 + log_k -13.997 + delta_h 55.81 kJ + -gamma 3.5 0 # Id: 3300020 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ = Sn+2 + 2H2O - log_k 7.094 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 2 H+ = Sn+2 + 2 H2O + log_k 7.094 + delta_h 0 kJ + -gamma 0 0 # Id: 7903301 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Sn(OH)2 + H+ = SnOH+ + H2O - log_k 3.697 - delta_h 0 kJ - -gamma 0 0 + log_k 3.697 + delta_h 0 kJ + -gamma 0 0 # Id: 7903302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Sn(OH)2 + H2O = Sn(OH)3- + H+ - log_k -9.497 - delta_h 0 kJ - -gamma 0 0 + log_k -9.497 + delta_h 0 kJ + -gamma 0 0 # Id: 7903303 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -2Sn(OH)2 + 2H+ = Sn2(OH)2+2 + 2H2O - log_k 9.394 - delta_h 0 kJ - -gamma 0 0 +2 Sn(OH)2 + 2 H+ = Sn2(OH)2+2 + 2 H2O + log_k 9.394 + delta_h 0 kJ + -gamma 0 0 # Id: 7903304 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -3Sn(OH)2 + 2H+ = Sn3(OH)4+2 + 2H2O - log_k 14.394 - delta_h 0 kJ - -gamma 0 0 +3 Sn(OH)2 + 2 H+ = Sn3(OH)4+2 + 2 H2O + log_k 14.394 + delta_h 0 kJ + -gamma 0 0 # Id: 7903305 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Sn(OH)2 = HSnO2- + H+ - log_k -8.9347 - delta_h 0 kJ - -gamma 0 0 + log_k -8.9347 + delta_h 0 kJ + -gamma 0 0 # Id: 7903306 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -Sn(OH)6-2 + 6H+ = Sn+4 + 6H2O - log_k 21.2194 - delta_h 0 kJ - -gamma 0 0 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +Sn(OH)6-2 + 6 H+ = Sn+4 + 6 H2O + log_k 21.2194 + delta_h 0 kJ + -gamma 0 0 # Id: 7913301 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: -Sn(OH)6-2 = SnO3-2 + 3H2O - log_k -2.2099 - delta_h 0 kJ - -gamma 0 0 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: +Sn(OH)6-2 = SnO3-2 + 3 H2O + log_k -2.2099 + delta_h 0 kJ + -gamma 0 0 # Id: 7913302 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: Pb+2 + H2O = PbOH+ + H+ - log_k -7.597 - delta_h 0 kJ - -gamma 0 0 + log_k -7.597 + delta_h 0 kJ + -gamma 0 0 # Id: 6003300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Pb+2 + 2H2O = Pb(OH)2 + 2H+ - log_k -17.094 - delta_h 0 kJ - -gamma 0 0 +Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ + log_k -17.094 + delta_h 0 kJ + -gamma 0 0 # Id: 6003301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Pb+2 + 3H2O = Pb(OH)3- + 3H+ - log_k -28.091 - delta_h 0 kJ - -gamma 0 0 +Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ + log_k -28.091 + delta_h 0 kJ + -gamma 0 0 # Id: 6003302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -2Pb+2 + H2O = Pb2OH+3 + H+ - log_k -6.397 - delta_h 0 kJ - -gamma 0 0 +2 Pb+2 + H2O = Pb2OH+3 + H+ + log_k -6.397 + delta_h 0 kJ + -gamma 0 0 # Id: 6003303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ - log_k -23.888 - delta_h 115.24 kJ - -gamma 0 0 +3 Pb+2 + 4 H2O = Pb3(OH)4+2 + 4 H+ + log_k -23.888 + delta_h 115.24 kJ + -gamma 0 0 # Id: 6003304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Pb+2 + 4H2O = Pb(OH)4-2 + 4H+ - log_k -39.699 - delta_h 0 kJ - -gamma 0 0 +Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ + log_k -39.699 + delta_h 0 kJ + -gamma 0 0 # Id: 6003305 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -4Pb+2 + 4H2O = Pb4(OH)4+4 + 4H+ - log_k -19.988 - delta_h 88.24 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +4 Pb+2 + 4 H2O = Pb4(OH)4+4 + 4 H+ + log_k -19.988 + delta_h 88.24 kJ + -gamma 0 0 # Id: 6003306 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 H3BO3 + F- = BF(OH)3- - log_k -0.399 - delta_h 7.7404 kJ - -gamma 2.5 0 + log_k -0.399 + delta_h 7.7404 kJ + -gamma 2.5 0 # Id: 902700 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -H3BO3 + 2F- + H+ = BF2(OH)2- + H2O - log_k 7.63 - delta_h 6.8408 kJ - -gamma 2.5 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O + log_k 7.63 + delta_h 6.8408 kJ + -gamma 2.5 0 # Id: 902701 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -H3BO3 + 3F- + 2H+ = BF3OH- + 2H2O - log_k 13.22 - delta_h -20.4897 kJ - -gamma 2.5 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +H3BO3 + 3 F- + 2 H+ = BF3OH- + 2 H2O + log_k 13.22 + delta_h -20.4897 kJ + -gamma 2.5 0 # Id: 902702 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Al+3 + H2O = AlOH+2 + H+ - log_k -4.997 - delta_h 47.81 kJ - -gamma 5.4 0 + log_k -4.997 + delta_h 47.81 kJ + -gamma 5.4 0 # Id: 303300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Al+3 + 2H2O = Al(OH)2+ + 2H+ - log_k -10.094 - delta_h 0 kJ - -gamma 5.4 0 +Al+3 + 2 H2O = Al(OH)2+ + 2 H+ + log_k -10.094 + delta_h 0 kJ + -gamma 5.4 0 # Id: 303301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Al+3 + 3H2O = Al(OH)3 + 3H+ - log_k -16.791 - delta_h 0 kJ - -gamma 0 0 +Al+3 + 3 H2O = Al(OH)3 + 3 H+ + log_k -16.791 + delta_h 0 kJ + -gamma 0 0 # Id: 303303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Al+3 + 4H2O = Al(OH)4- + 4H+ - log_k -22.688 - delta_h 173.24 kJ - -gamma 4.5 0 +Al+3 + 4 H2O = Al(OH)4- + 4 H+ + log_k -22.688 + delta_h 173.24 kJ + -gamma 4.5 0 # Id: 303302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Tl+ + H2O = TlOH + H+ - log_k -13.207 - delta_h 56.81 kJ - -gamma 0 0 + log_k -13.207 + delta_h 56.81 kJ + -gamma 0 0 # Id: 8703300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Tl(OH)3 + 2H+ = TlOH+2 + 2H2O - log_k 2.694 - delta_h 0 kJ - -gamma 0 0 +Tl(OH)3 + 2 H+ = TlOH+2 + 2 H2O + log_k 2.694 + delta_h 0 kJ + -gamma 0 0 # Id: 8713301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Tl(OH)3 + H+ = Tl(OH)2+ + H2O - log_k 1.897 - delta_h 0 kJ - -gamma 0 0 + log_k 1.897 + delta_h 0 kJ + -gamma 0 0 # Id: 8713302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Tl(OH)3 + H2O = Tl(OH)4- + H+ - log_k -11.697 - delta_h 0 kJ - -gamma 0 0 + log_k -11.697 + delta_h 0 kJ + -gamma 0 0 # Id: 8713303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Zn+2 + H2O = ZnOH+ + H+ - log_k -8.997 - delta_h 55.81 kJ - -gamma 0 0 + log_k -8.997 + delta_h 55.81 kJ + -gamma 0 0 # Id: 9503300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Zn+2 + 2H2O = Zn(OH)2 + 2H+ - log_k -17.794 - delta_h 0 kJ - -gamma 0 0 +Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ + log_k -17.794 + delta_h 0 kJ + -gamma 0 0 # Id: 9503301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Zn+2 + 3H2O = Zn(OH)3- + 3H+ - log_k -28.091 - delta_h 0 kJ - -gamma 0 0 +Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ + log_k -28.091 + delta_h 0 kJ + -gamma 0 0 # Id: 9503302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Zn+2 + 4H2O = Zn(OH)4-2 + 4H+ - log_k -40.488 - delta_h 0 kJ - -gamma 0 0 +Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ + log_k -40.488 + delta_h 0 kJ + -gamma 0 0 # Id: 9503303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Cd+2 + H2O = CdOH+ + H+ - log_k -10.097 - delta_h 54.81 kJ - -gamma 0 0 + log_k -10.097 + delta_h 54.81 kJ + -gamma 0 0 # Id: 1603300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Cd+2 + 2H2O = Cd(OH)2 + 2H+ - log_k -20.294 - delta_h 0 kJ - -gamma 0 0 +Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ + log_k -20.294 + delta_h 0 kJ + -gamma 0 0 # Id: 1603301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Cd+2 + 3H2O = Cd(OH)3- + 3H+ - log_k -32.505 - delta_h 0 kJ - -gamma 0 0 +Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ + log_k -32.505 + delta_h 0 kJ + -gamma 0 0 # Id: 1603302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 3.00 25.0 -Cd+2 + 4H2O = Cd(OH)4-2 + 4H+ - log_k -47.288 - delta_h 0 kJ - -gamma 0 0 +Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ + log_k -47.288 + delta_h 0 kJ + -gamma 0 0 # Id: 1603303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -2Cd+2 + H2O = Cd2OH+3 + H+ - log_k -9.397 - delta_h 45.81 kJ - -gamma 0 0 +2 Cd+2 + H2O = Cd2OH+3 + H+ + log_k -9.397 + delta_h 45.81 kJ + -gamma 0 0 # Id: 1603304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Hg(OH)2 + H+ = HgOH+ + H2O - log_k 2.797 - delta_h -18.91 kJ - -gamma 0 0 + log_k 2.797 + delta_h -18.91 kJ + -gamma 0 0 # Id: 3613302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Hg(OH)2 + H2O = Hg(OH)3- + H+ - log_k -14.897 - delta_h 0 kJ - -gamma 0 0 + log_k -14.897 + delta_h 0 kJ + -gamma 0 0 # Id: 3613303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Cu+2 + H2O = CuOH+ + H+ - log_k -7.497 - delta_h 35.81 kJ - -gamma 4 0 + log_k -7.497 + delta_h 35.81 kJ + -gamma 4 0 # Id: 2313300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Cu+2 + 2H2O = Cu(OH)2 + 2H+ - log_k -16.194 - delta_h 0 kJ - -gamma 0 0 +Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ + log_k -16.194 + delta_h 0 kJ + -gamma 0 0 # Id: 2313301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Cu+2 + 3H2O = Cu(OH)3- + 3H+ - log_k -26.879 - delta_h 0 kJ - -gamma 0 0 +Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ + log_k -26.879 + delta_h 0 kJ + -gamma 0 0 # Id: 2313302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Cu+2 + 4H2O = Cu(OH)4-2 + 4H+ - log_k -39.98 - delta_h 0 kJ - -gamma 0 0 +Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ + log_k -39.98 + delta_h 0 kJ + -gamma 0 0 # Id: 2313303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ - log_k -10.594 - delta_h 76.62 kJ - -gamma 0 0 +2 Cu+2 + 2 H2O = Cu2(OH)2+2 + 2 H+ + log_k -10.594 + delta_h 76.62 kJ + -gamma 0 0 # Id: 2313304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ag+ + H2O = AgOH + H+ - log_k -11.997 - delta_h 0 kJ - -gamma 0 0 + log_k -11.997 + delta_h 0 kJ + -gamma 0 0 # Id: 203300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Ag+ + 2H2O = Ag(OH)2- + 2H+ - log_k -24.004 - delta_h 0 kJ - -gamma 0 0 +Ag+ + 2 H2O = Ag(OH)2- + 2 H+ + log_k -24.004 + delta_h 0 kJ + -gamma 0 0 # Id: 203301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Ni+2 + H2O = NiOH+ + H+ - log_k -9.897 - delta_h 51.81 kJ - -gamma 0 0 + log_k -9.897 + delta_h 51.81 kJ + -gamma 0 0 # Id: 5403300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Ni+2 + 2H2O = Ni(OH)2 + 2H+ - log_k -18.994 - delta_h 0 kJ - -gamma 0 0 +Ni+2 + 2 H2O = Ni(OH)2 + 2 H+ + log_k -18.994 + delta_h 0 kJ + -gamma 0 0 # Id: 5403301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Ni+2 + 3H2O = Ni(OH)3- + 3H+ - log_k -29.991 - delta_h 0 kJ - -gamma 0 0 +Ni+2 + 3 H2O = Ni(OH)3- + 3 H+ + log_k -29.991 + delta_h 0 kJ + -gamma 0 0 # Id: 5403302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Co+2 + H2O = CoOH+ + H+ - log_k -9.697 - delta_h 0 kJ - -gamma 0 0 + log_k -9.697 + delta_h 0 kJ + -gamma 0 0 # Id: 2003300 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Co+2 + 2H2O = Co(OH)2 + 2H+ - log_k -18.794 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 2 H2O = Co(OH)2 + 2 H+ + log_k -18.794 + delta_h 0 kJ + -gamma 0 0 # Id: 2003301 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Co+2 + 3H2O = Co(OH)3- + 3H+ - log_k -31.491 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 3 H2O = Co(OH)3- + 3 H+ + log_k -31.491 + delta_h 0 kJ + -gamma 0 0 # Id: 2003302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Co+2 + 4H2O = Co(OH)4-2 + 4H+ - log_k -46.288 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 4 H2O = Co(OH)4-2 + 4 H+ + log_k -46.288 + delta_h 0 kJ + -gamma 0 0 # Id: 2003303 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -2Co+2 + H2O = Co2OH+3 + H+ - log_k -10.997 - delta_h 0 kJ - -gamma 0 0 +2 Co+2 + H2O = Co2OH+3 + H+ + log_k -10.997 + delta_h 0 kJ + -gamma 0 0 # Id: 2003304 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -4Co+2 + 4H2O = Co4(OH)4+4 + 4H+ - log_k -30.488 - delta_h 0 kJ - -gamma 0 0 +4 Co+2 + 4 H2O = Co4(OH)4+4 + 4 H+ + log_k -30.488 + delta_h 0 kJ + -gamma 0 0 # Id: 2003306 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Co+2 + 2H2O = CoOOH- + 3H+ - log_k -32.0915 - delta_h 260.454 kJ - -gamma 0 0 +Co+2 + 2 H2O = CoOOH- + 3 H+ + log_k -32.0915 + delta_h 260.454 kJ + -gamma 0 0 # Id: 2003305 - # log K source: NIST2.1.1 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: NIST2.1.1 + # Delta H source: MTQ3.11 + #T and ionic strength: Co+3 + H2O = CoOH+2 + H+ - log_k -1.291 - delta_h 0 kJ - -gamma 0 0 + log_k -1.291 + delta_h 0 kJ + -gamma 0 0 # Id: 2013300 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 3.00 25.0 Fe+2 + H2O = FeOH+ + H+ - log_k -9.397 - delta_h 55.81 kJ - -gamma 5 0 + log_k -9.397 + delta_h 55.81 kJ + -gamma 5 0 # Id: 2803300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Fe+2 + 2H2O = Fe(OH)2 + 2H+ - log_k -20.494 - delta_h 119.62 kJ - -gamma 0 0 +Fe+2 + 2 H2O = Fe(OH)2 + 2 H+ + log_k -20.494 + delta_h 119.62 kJ + -gamma 0 0 # Id: 2803302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Fe+2 + 3H2O = Fe(OH)3- + 3H+ - log_k -28.991 - delta_h 126.43 kJ - -gamma 5 0 +Fe+2 + 3 H2O = Fe(OH)3- + 3 H+ + log_k -28.991 + delta_h 126.43 kJ + -gamma 5 0 # Id: 2803301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Fe+3 + H2O = FeOH+2 + H+ - log_k -2.187 - delta_h 41.81 kJ - -gamma 5 0 + log_k -2.187 + delta_h 41.81 kJ + -gamma 5 0 # Id: 2813300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Fe+3 + 2H2O = Fe(OH)2+ + 2H+ - log_k -4.594 - delta_h 0 kJ - -gamma 5.4 0 +Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ + log_k -4.594 + delta_h 0 kJ + -gamma 5.4 0 # Id: 2813301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Fe+3 + 3H2O = Fe(OH)3 + 3H+ - log_k -12.56 - delta_h 103.8 kJ - -gamma 0 0 +Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ + log_k -12.56 + delta_h 103.8 kJ + -gamma 0 0 # Id: 2813302 - # log K source: Nord90 - # Delta H source: Nord90 + # log K source: Nord90 + # Delta H source: Nord90 #T and ionic strength: 0.00 25.0 -Fe+3 + 4H2O = Fe(OH)4- + 4H+ - log_k -21.588 - delta_h 0 kJ - -gamma 5.4 0 +Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ + log_k -21.588 + delta_h 0 kJ + -gamma 5.4 0 # Id: 2813303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -2Fe+3 + 2H2O = Fe2(OH)2+4 + 2H+ - log_k -2.854 - delta_h 57.62 kJ - -gamma 0 0 +2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ + log_k -2.854 + delta_h 57.62 kJ + -gamma 0 0 # Id: 2813304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -3Fe+3 + 4H2O = Fe3(OH)4+5 + 4H+ - log_k -6.288 - delta_h 65.24 kJ - -gamma 0 0 +3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ + log_k -6.288 + delta_h 65.24 kJ + -gamma 0 0 # Id: 2813305 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Mn+2 + H2O = MnOH+ + H+ - log_k -10.597 - delta_h 55.81 kJ - -gamma 5 0 + log_k -10.597 + delta_h 55.81 kJ + -gamma 5 0 # Id: 4703300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Mn+2 + 3H2O = Mn(OH)3- + 3H+ - log_k -34.8 - delta_h 0 kJ - -gamma 5 0 +Mn+2 + 3 H2O = Mn(OH)3- + 3 H+ + log_k -34.8 + delta_h 0 kJ + -gamma 5 0 # Id: 4703301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Mn+2 + 4H2O = Mn(OH)4-2 + 4H+ - log_k -48.288 - delta_h 0 kJ - -gamma 5 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Mn+2 + 4 H2O = Mn(OH)4-2 + 4 H+ + log_k -48.288 + delta_h 0 kJ + -gamma 5 0 # Id: 4703302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Mn+2 + 4H2O = MnO4- + 8H+ + 5e- - log_k -127.794 - delta_h 822.67 kJ - -gamma 3 0 +Mn+2 + 4 H2O = MnO4- + 8 H+ + 5 e- + log_k -127.794 + delta_h 822.67 kJ + -gamma 3 0 # Id: 4700020 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Mn+2 + 4H2O = MnO4-2 + 8H+ + 4e- - log_k -118.422 - delta_h 711.07 kJ - -gamma 5 0 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Mn+2 + 4 H2O = MnO4-2 + 8 H+ + 4 e- + log_k -118.422 + delta_h 711.07 kJ + -gamma 5 0 # Id: 4700021 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Cr(OH)2+ + H+ = Cr(OH)+2 + H2O - log_k 5.9118 - delta_h -77.91 kJ - -gamma 0 0 + log_k 5.9118 + delta_h -77.91 kJ + -gamma 0 0 # Id: 2113301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Cr(OH)2+ + H2O = Cr(OH)3 + H+ - log_k -8.4222 - delta_h 0 kJ - -gamma 0 0 + log_k -8.4222 + delta_h 0 kJ + -gamma 0 0 # Id: 2113302 - # log K source: SCD3.02 (1983 RCa) - # Delta H source: MTQ3.11 + # log K source: SCD3.02 (1983 RCa) + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + 2H2O = Cr(OH)4- + 2H+ - log_k -17.8192 - delta_h 0 kJ - -gamma 0 0 +Cr(OH)2+ + 2 H2O = Cr(OH)4- + 2 H+ + log_k -17.8192 + delta_h 0 kJ + -gamma 0 0 # Id: 2113303 - # log K source: SCD3.02 (1983 RCa) - # Delta H source: MTQ3.11 + # log K source: SCD3.02 (1983 RCa) + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Cr(OH)2+ = CrO2- + 2H+ - log_k -17.7456 - delta_h 0 kJ - -gamma 0 0 +Cr(OH)2+ = CrO2- + 2 H+ + log_k -17.7456 + delta_h 0 kJ + -gamma 0 0 # Id: 2113304 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: V+2 + H2O = VOH+ + H+ - log_k -6.487 - delta_h 59.81 kJ - -gamma 0 0 + log_k -6.487 + delta_h 59.81 kJ + -gamma 0 0 # Id: 9003300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 V+3 + H2O = VOH+2 + H+ - log_k -2.297 - delta_h 43.81 kJ - -gamma 0 0 + log_k -2.297 + delta_h 43.81 kJ + -gamma 0 0 # Id: 9013300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -V+3 + 2H2O = V(OH)2+ + 2H+ - log_k -6.274 - delta_h 0 kJ - -gamma 0 0 +V+3 + 2 H2O = V(OH)2+ + 2 H+ + log_k -6.274 + delta_h 0 kJ + -gamma 0 0 # Id: 9013301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 20.0 -V+3 + 3H2O = V(OH)3 + 3H+ - log_k -3.0843 - delta_h 0 kJ - -gamma 0 0 +V+3 + 3 H2O = V(OH)3 + 3 H+ + log_k -3.0843 + delta_h 0 kJ + -gamma 0 0 # Id: 9013302 - # log K source: SCD3.02 (1978 TKa) - # Delta H source: MTQ3.11 + # log K source: SCD3.02 (1978 TKa) + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 20.0 -2V+3 + 2H2O = V2(OH)2+4 + 2H+ - log_k -3.794 - delta_h 0 kJ - -gamma 0 0 +2 V+3 + 2 H2O = V2(OH)2+4 + 2 H+ + log_k -3.794 + delta_h 0 kJ + -gamma 0 0 # Id: 9013304 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -2V+3 + 3H2O = V2(OH)3+3 + 3H+ - log_k -10.1191 - delta_h 0 kJ - -gamma 0 0 +2 V+3 + 3 H2O = V2(OH)3+3 + 3 H+ + log_k -10.1191 + delta_h 0 kJ + -gamma 0 0 # Id: 9013303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 3.00 25.0 -VO+2 + 2H2O = V(OH)3+ + H+ - log_k -5.697 - delta_h 0 kJ - -gamma 0 0 +VO+2 + 2 H2O = V(OH)3+ + H+ + log_k -5.697 + delta_h 0 kJ + -gamma 0 0 # Id: 9023300 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -2VO+2 + 2H2O = H2V2O4+2 + 2H+ - log_k -6.694 - delta_h 53.62 kJ - -gamma 0 0 +2 VO+2 + 2 H2O = H2V2O4+2 + 2 H+ + log_k -6.694 + delta_h 53.62 kJ + -gamma 0 0 # Id: 9023301 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 U+4 + H2O = UOH+3 + H+ - log_k -0.597 - delta_h 47.81 kJ - -gamma 0 0 + log_k -0.597 + delta_h 47.81 kJ + -gamma 0 0 # Id: 8913300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -U+4 + 2H2O = U(OH)2+2 + 2H+ - log_k -2.27 - delta_h 74.1823 kJ - -gamma 0 0 +U+4 + 2 H2O = U(OH)2+2 + 2 H+ + log_k -2.27 + delta_h 74.1823 kJ + -gamma 0 0 # Id: 8913301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 3H2O = U(OH)3+ + 3H+ - log_k -4.935 - delta_h 94.7467 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 3 H2O = U(OH)3+ + 3 H+ + log_k -4.935 + delta_h 94.7467 kJ + -gamma 0 0 # Id: 8913302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 4H2O = U(OH)4 + 4H+ - log_k -8.498 - delta_h 103.596 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 4 H2O = U(OH)4 + 4 H+ + log_k -8.498 + delta_h 103.596 kJ + -gamma 0 0 # Id: 8913303 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 5H2O = U(OH)5- + 5H+ - log_k -13.12 - delta_h 115.374 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 5 H2O = U(OH)5- + 5 H+ + log_k -13.12 + delta_h 115.374 kJ + -gamma 0 0 # Id: 8913304 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -6U+4 + 15H2O = U6(OH)15+9 + 15H+ - log_k -17.155 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +6 U+4 + 15 H2O = U6(OH)15+9 + 15 H+ + log_k -17.155 + delta_h 0 kJ + -gamma 0 0 # Id: 8913305 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 UO2+2 + H2O = UO2OH+ + H+ - log_k -5.897 - delta_h 47.81 kJ - -gamma 0 0 + log_k -5.897 + delta_h 47.81 kJ + -gamma 0 0 # Id: 8933300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -2UO2+2 + 2H2O = (UO2)2(OH)2+2 + 2H+ - log_k -5.574 - delta_h 41.82 kJ - -gamma 0 0 +2 UO2+2 + 2 H2O = (UO2)2(OH)2+2 + 2 H+ + log_k -5.574 + delta_h 41.82 kJ + -gamma 0 0 # Id: 8933301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -3UO2+2 + 5H2O = (UO2)3(OH)5+ + 5H+ - log_k -15.585 - delta_h 108.05 kJ - -gamma 0 0 +3 UO2+2 + 5 H2O = (UO2)3(OH)5+ + 5 H+ + log_k -15.585 + delta_h 108.05 kJ + -gamma 0 0 # Id: 8933302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Be+2 + H2O = BeOH+ + H+ - log_k -5.397 - delta_h 0 kJ - -gamma 6.5 0 + log_k -5.397 + delta_h 0 kJ + -gamma 6.5 0 # Id: 1103301 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Be+2 + 2H2O = Be(OH)2 + 2H+ - log_k -13.594 - delta_h 0 kJ - -gamma 6.5 0 +Be+2 + 2 H2O = Be(OH)2 + 2 H+ + log_k -13.594 + delta_h 0 kJ + -gamma 6.5 0 # Id: 1103302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Be+2 + 3H2O = Be(OH)3- + 3H+ - log_k -23.191 - delta_h 0 kJ - -gamma 6.5 0 +Be+2 + 3 H2O = Be(OH)3- + 3 H+ + log_k -23.191 + delta_h 0 kJ + -gamma 6.5 0 # Id: 1103303 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Be+2 + 4H2O = Be(OH)4-2 + 4H+ - log_k -37.388 - delta_h 0 kJ - -gamma 6.5 0 +Be+2 + 4 H2O = Be(OH)4-2 + 4 H+ + log_k -37.388 + delta_h 0 kJ + -gamma 6.5 0 # Id: 1103304 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -2Be+2 + H2O = Be2OH+3 + H+ - log_k -3.177 - delta_h 0 kJ - -gamma 6.5 0 +2 Be+2 + H2O = Be2OH+3 + H+ + log_k -3.177 + delta_h 0 kJ + -gamma 6.5 0 # Id: 1103305 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 25.0 -3Be+2 + 3H2O = Be3(OH)3+3 + 3H+ - log_k -8.8076 - delta_h 0 kJ - -gamma 6.5 0 +3 Be+2 + 3 H2O = Be3(OH)3+3 + 3 H+ + log_k -8.8076 + delta_h 0 kJ + -gamma 6.5 0 # Id: 1103306 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 25.0 Mg+2 + H2O = MgOH+ + H+ - log_k -11.397 - delta_h 67.81 kJ - -gamma 6.5 0 + log_k -11.397 + delta_h 67.81 kJ + -gamma 6.5 0 # Id: 4603300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ca+2 + H2O = CaOH+ + H+ - log_k -12.697 - delta_h 64.11 kJ - -gamma 6 0 + log_k -12.697 + delta_h 64.11 kJ + -gamma 6 0 # Id: 1503300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Sr+2 + H2O = SrOH+ + H+ - log_k -13.177 - delta_h 60.81 kJ - -gamma 5 0 + log_k -13.177 + delta_h 60.81 kJ + -gamma 5 0 # Id: 8003300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ba+2 + H2O = BaOH+ + H+ - log_k -13.357 - delta_h 60.81 kJ - -gamma 5 0 + log_k -13.357 + delta_h 60.81 kJ + -gamma 5 0 # Id: 1003300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 H+ + F- = HF - log_k 3.17 - delta_h 13.3 kJ - -gamma 0 0 + log_k 3.17 + delta_h 13.3 kJ + -gamma 0 0 # Id: 3302700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -H+ + 2F- = HF2- - log_k 3.75 - delta_h 17.4 kJ - -gamma 3.5 0 +H+ + 2 F- = HF2- + log_k 3.75 + delta_h 17.4 kJ + -gamma 3.5 0 # Id: 3302701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -2F- + 2H+ = H2F2 - log_k 6.768 - delta_h 0 kJ - -gamma 0 0 +2 F- + 2 H+ = H2F2 + log_k 6.768 + delta_h 0 kJ + -gamma 0 0 # Id: 3302702 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Sb(OH)3 + F- + H+ = SbOF + 2H2O - log_k 6.1864 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Sb(OH)3 + F- + H+ = SbOF + 2 H2O + log_k 6.1864 + delta_h 0 kJ + -gamma 0 0 # Id: 7402700 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: Sb(OH)3 + F- + H+ = Sb(OH)2F + H2O - log_k 6.1937 - delta_h 0 kJ - -gamma 0 0 + log_k 6.1937 + delta_h 0 kJ + -gamma 0 0 # Id: 7402702 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: -H4SiO4 + 4H+ + 6F- = SiF6-2 + 4H2O - log_k 30.18 - delta_h -68 kJ - -gamma 5 0 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: +H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O + log_k 30.18 + delta_h -68 kJ + -gamma 5 0 # Id: 7702700 - # log K source: Nord90 - # Delta H source: Nord90 + # log K source: Nord90 + # Delta H source: Nord90 #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ + F- = SnF+ + 2H2O - log_k 11.582 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 2 H+ + F- = SnF+ + 2 H2O + log_k 11.582 + delta_h 0 kJ + -gamma 0 0 # Id: 7902701 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Sn(OH)2 + 2H+ + 2F- = SnF2 + 2H2O - log_k 14.386 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 2 H+ + 2 F- = SnF2 + 2 H2O + log_k 14.386 + delta_h 0 kJ + -gamma 0 0 # Id: 7902702 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Sn(OH)2 + 2H+ + 3F- = SnF3- + 2H2O - log_k 17.206 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 2 H+ + 3 F- = SnF3- + 2 H2O + log_k 17.206 + delta_h 0 kJ + -gamma 0 0 # Id: 7902703 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Sn(OH)6-2 + 6H+ + 6F- = SnF6-2 + 6H2O - log_k 33.5844 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)6-2 + 6 H+ + 6 F- = SnF6-2 + 6 H2O + log_k 33.5844 + delta_h 0 kJ + -gamma 0 0 # Id: 7912701 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: Pb+2 + F- = PbF+ - log_k 1.848 - delta_h 0 kJ - -gamma 0 0 + log_k 1.848 + delta_h 0 kJ + -gamma 0 0 # Id: 6002700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Pb+2 + 2F- = PbF2 - log_k 3.142 - delta_h 0 kJ - -gamma 0 0 +Pb+2 + 2 F- = PbF2 + log_k 3.142 + delta_h 0 kJ + -gamma 0 0 # Id: 6002701 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Pb+2 + 3F- = PbF3- - log_k 3.42 - delta_h 0 kJ - -gamma 0 0 +Pb+2 + 3 F- = PbF3- + log_k 3.42 + delta_h 0 kJ + -gamma 0 0 # Id: 6002702 - # log K source: SCD3.02 (1956 TKa) - # Delta H source: MTQ3.11 + # log K source: SCD3.02 (1956 TKa) + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Pb+2 + 4F- = PbF4-2 - log_k 3.1 - delta_h 0 kJ - -gamma 0 0 +Pb+2 + 4 F- = PbF4-2 + log_k 3.1 + delta_h 0 kJ + -gamma 0 0 # Id: 6002703 - # log K source: SCD3.02 (1956 TKa) - # Delta H source: MTQ3.11 + # log K source: SCD3.02 (1956 TKa) + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -H3BO3 + 3H+ + 4F- = BF4- + 3H2O - log_k 19.912 - delta_h -18.67 kJ - -gamma 2.5 0 +H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O + log_k 19.912 + delta_h -18.67 kJ + -gamma 2.5 0 # Id: 902703 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 #T and ionic strength: 1.00 25.0 Al+3 + F- = AlF+2 - log_k 7 - delta_h 4.6 kJ - -gamma 5.4 0 + log_k 7 + delta_h 4.6 kJ + -gamma 5.4 0 # Id: 302700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Al+3 + 2F- = AlF2+ - log_k 12.6 - delta_h 8.3 kJ - -gamma 5.4 0 +Al+3 + 2 F- = AlF2+ + log_k 12.6 + delta_h 8.3 kJ + -gamma 5.4 0 # Id: 302701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Al+3 + 3F- = AlF3 - log_k 16.7 - delta_h 8.7 kJ - -gamma 0 0 +Al+3 + 3 F- = AlF3 + log_k 16.7 + delta_h 8.7 kJ + -gamma 0 0 # Id: 302702 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Al+3 + 4F- = AlF4- - log_k 19.4 - delta_h 8.7 kJ - -gamma 4.5 0 +Al+3 + 4 F- = AlF4- + log_k 19.4 + delta_h 8.7 kJ + -gamma 4.5 0 # Id: 302703 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Tl+ + F- = TlF - log_k 0.1 - delta_h 0 kJ - -gamma 0 0 + log_k 0.1 + delta_h 0 kJ + -gamma 0 0 # Id: 8702700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Zn+2 + F- = ZnF+ - log_k 1.3 - delta_h 11 kJ - -gamma 0 0 + log_k 1.3 + delta_h 11 kJ + -gamma 0 0 # Id: 9502700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Cd+2 + F- = CdF+ - log_k 1.2 - delta_h 5 kJ - -gamma 0 0 + log_k 1.2 + delta_h 5 kJ + -gamma 0 0 # Id: 1602700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Cd+2 + 2F- = CdF2 - log_k 1.5 - delta_h 0 kJ - -gamma 0 0 +Cd+2 + 2 F- = CdF2 + log_k 1.5 + delta_h 0 kJ + -gamma 0 0 # Id: 1602701 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Hg(OH)2 + 2H+ + F- = HgF+ + 2H2O - log_k 7.763 - delta_h -35.72 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Hg(OH)2 + 2 H+ + F- = HgF+ + 2 H2O + log_k 7.763 + delta_h -35.72 kJ + -gamma 0 0 # Id: 3612701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.50 25.0 Cu+2 + F- = CuF+ - log_k 1.8 - delta_h 13 kJ - -gamma 0 0 + log_k 1.8 + delta_h 13 kJ + -gamma 0 0 # Id: 2312700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ag+ + F- = AgF - log_k 0.4 - delta_h 12 kJ - -gamma 0 0 + log_k 0.4 + delta_h 12 kJ + -gamma 0 0 # Id: 202700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ni+2 + F- = NiF+ - log_k 1.4 - delta_h 7.1 kJ - -gamma 0 0 + log_k 1.4 + delta_h 7.1 kJ + -gamma 0 0 # Id: 5402700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Co+2 + F- = CoF+ - log_k 1.5 - delta_h 9.2 kJ - -gamma 0 0 + log_k 1.5 + delta_h 9.2 kJ + -gamma 0 0 # Id: 2002700 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Fe+3 + F- = FeF+2 - log_k 6.04 - delta_h 10 kJ - -gamma 5 0 + log_k 6.04 + delta_h 10 kJ + -gamma 5 0 # Id: 2812700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Fe+3 + 2F- = FeF2+ - log_k 10.4675 - delta_h 17 kJ - -gamma 5 0 +Fe+3 + 2 F- = FeF2+ + log_k 10.4675 + delta_h 17 kJ + -gamma 5 0 # Id: 2812701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.50 25.0 -Fe+3 + 3F- = FeF3 - log_k 13.617 - delta_h 29 kJ - -gamma 0 0 +Fe+3 + 3 F- = FeF3 + log_k 13.617 + delta_h 29 kJ + -gamma 0 0 # Id: 2812702 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.50 25.0 Mn+2 + F- = MnF+ - log_k 1.6 - delta_h 11 kJ - -gamma 5 0 + log_k 1.6 + delta_h 11 kJ + -gamma 5 0 # Id: 4702700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + 2H+ + F- = CrF+2 + 2H2O - log_k 14.7688 - delta_h -70.2452 kJ - -gamma 0 0 +Cr(OH)2+ + 2 H+ + F- = CrF+2 + 2 H2O + log_k 14.7688 + delta_h -70.2452 kJ + -gamma 0 0 # Id: 2112700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 VO+2 + F- = VOF+ - log_k 3.778 - delta_h 7.9 kJ - -gamma 0 0 + log_k 3.778 + delta_h 7.9 kJ + -gamma 0 0 # Id: 9022700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 1.00 25.0 -VO+2 + 2F- = VOF2 - log_k 6.352 - delta_h 14 kJ - -gamma 0 0 +VO+2 + 2 F- = VOF2 + log_k 6.352 + delta_h 14 kJ + -gamma 0 0 # Id: 9022701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 1.00 25.0 -VO+2 + 3F- = VOF3- - log_k 7.902 - delta_h 20 kJ - -gamma 0 0 +VO+2 + 3 F- = VOF3- + log_k 7.902 + delta_h 20 kJ + -gamma 0 0 # Id: 9022702 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 1.00 25.0 -VO+2 + 4F- = VOF4-2 - log_k 8.508 - delta_h 26 kJ - -gamma 0 0 +VO+2 + 4 F- = VOF4-2 + log_k 8.508 + delta_h 26 kJ + -gamma 0 0 # Id: 9022703 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 1.00 25.0 VO2+ + F- = VO2F - log_k 3.244 - delta_h 0 kJ - -gamma 0 0 + log_k 3.244 + delta_h 0 kJ + -gamma 0 0 # Id: 9032700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -VO2+ + 2F- = VO2F2- - log_k 5.804 - delta_h 0 kJ - -gamma 0 0 +VO2+ + 2 F- = VO2F2- + log_k 5.804 + delta_h 0 kJ + -gamma 0 0 # Id: 9032701 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 20.0 -VO2+ + 3F- = VO2F3-2 - log_k 6.9 - delta_h 0 kJ - -gamma 0 0 +VO2+ + 3 F- = VO2F3-2 + log_k 6.9 + delta_h 0 kJ + -gamma 0 0 # Id: 9032702 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 20.0 -VO2+ + 4F- = VO2F4-3 - log_k 6.592 - delta_h 0 kJ - -gamma 0 0 +VO2+ + 4 F- = VO2F4-3 + log_k 6.592 + delta_h 0 kJ + -gamma 0 0 # Id: 9032703 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 20.0 U+4 + F- = UF+3 - log_k 9.3 - delta_h 21.1292 kJ - -gamma 0 0 + log_k 9.3 + delta_h 21.1292 kJ + -gamma 0 0 # Id: 8912700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -U+4 + 2F- = UF2+2 - log_k 16.4 - delta_h 30.1248 kJ - -gamma 0 0 +U+4 + 2 F- = UF2+2 + log_k 16.4 + delta_h 30.1248 kJ + -gamma 0 0 # Id: 8912701 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -U+4 + 3F- = UF3+ - log_k 21.6 - delta_h 29.9156 kJ - -gamma 0 0 +U+4 + 3 F- = UF3+ + log_k 21.6 + delta_h 29.9156 kJ + -gamma 0 0 # Id: 8912702 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -U+4 + 4F- = UF4 - log_k 23.64 - delta_h 19.2464 kJ - -gamma 0 0 +U+4 + 4 F- = UF4 + log_k 23.64 + delta_h 19.2464 kJ + -gamma 0 0 # Id: 8912703 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 5F- = UF5- - log_k 25.238 - delta_h 20.2924 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 5 F- = UF5- + log_k 25.238 + delta_h 20.2924 kJ + -gamma 0 0 # Id: 8912704 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 6F- = UF6-2 - log_k 27.718 - delta_h 13.8072 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 6 F- = UF6-2 + log_k 27.718 + delta_h 13.8072 kJ + -gamma 0 0 # Id: 8912705 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: UO2+2 + F- = UO2F+ - log_k 5.14 - delta_h 1 kJ - -gamma 0 0 + log_k 5.14 + delta_h 1 kJ + -gamma 0 0 # Id: 8932700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -UO2+2 + 2F- = UO2F2 - log_k 8.6 - delta_h 2 kJ - -gamma 0 0 +UO2+2 + 2 F- = UO2F2 + log_k 8.6 + delta_h 2 kJ + -gamma 0 0 # Id: 8932701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -UO2+2 + 3F- = UO2F3- - log_k 11 - delta_h 2 kJ - -gamma 0 0 +UO2+2 + 3 F- = UO2F3- + log_k 11 + delta_h 2 kJ + -gamma 0 0 # Id: 8932702 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -UO2+2 + 4F- = UO2F4-2 - log_k 11.9 - delta_h 0.4 kJ - -gamma 0 0 +UO2+2 + 4 F- = UO2F4-2 + log_k 11.9 + delta_h 0.4 kJ + -gamma 0 0 # Id: 8932703 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Be+2 + F- = BeF+ - log_k 5.249 - delta_h 0 kJ - -gamma 0 0 + log_k 5.249 + delta_h 0 kJ + -gamma 0 0 # Id: 1102701 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 -Be+2 + 2F- = BeF2 - log_k 9.1285 - delta_h -4 kJ - -gamma 0 0 +Be+2 + 2 F- = BeF2 + log_k 9.1285 + delta_h -4 kJ + -gamma 0 0 # Id: 1102702 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 -Be+2 + 3F- = BeF3- - log_k 11.9085 - delta_h -8 kJ - -gamma 0 0 +Be+2 + 3 F- = BeF3- + log_k 11.9085 + delta_h -8 kJ + -gamma 0 0 # Id: 1102703 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 Mg+2 + F- = MgF+ - log_k 2.05 - delta_h 13 kJ - -gamma 4.5 0 + log_k 2.05 + delta_h 13 kJ + -gamma 4.5 0 # Id: 4602700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ca+2 + F- = CaF+ - log_k 1.038 - delta_h 14 kJ - -gamma 5 0 + log_k 1.038 + delta_h 14 kJ + -gamma 5 0 # Id: 1502700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 1.00 25.0 Sr+2 + F- = SrF+ - log_k 0.548 - delta_h 16 kJ - -gamma 0 0 + log_k 0.548 + delta_h 16 kJ + -gamma 0 0 # Id: 8002701 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 1.00 25.0 Na+ + F- = NaF - log_k -0.2 - delta_h 12 kJ - -gamma 0 0 + log_k -0.2 + delta_h 12 kJ + -gamma 0 0 # Id: 5002700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ + Cl- = SnCl+ + 2H2O - log_k 8.734 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 2 H+ + Cl- = SnCl+ + 2 H2O + log_k 8.734 + delta_h 0 kJ + -gamma 0 0 # Id: 7901801 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ + 2Cl- = SnCl2 + 2H2O - log_k 9.524 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 2 H+ + 2 Cl- = SnCl2 + 2 H2O + log_k 9.524 + delta_h 0 kJ + -gamma 0 0 # Id: 7901802 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ + 3Cl- = SnCl3- + 2H2O - log_k 8.3505 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 2 H+ + 3 Cl- = SnCl3- + 2 H2O + log_k 8.3505 + delta_h 0 kJ + -gamma 0 0 # Id: 7901803 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 2.00 25.0 Pb+2 + Cl- = PbCl+ - log_k 1.55 - delta_h 8.7 kJ - -gamma 0 0 + log_k 1.55 + delta_h 8.7 kJ + -gamma 0 0 # Id: 6001800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Pb+2 + 2Cl- = PbCl2 - log_k 2.2 - delta_h 12 kJ - -gamma 0 0 +Pb+2 + 2 Cl- = PbCl2 + log_k 2.2 + delta_h 12 kJ + -gamma 0 0 # Id: 6001801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Pb+2 + 3Cl- = PbCl3- - log_k 1.8 - delta_h 4 kJ - -gamma 0 0 +Pb+2 + 3 Cl- = PbCl3- + log_k 1.8 + delta_h 4 kJ + -gamma 0 0 # Id: 6001802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Pb+2 + 4Cl- = PbCl4-2 - log_k 1.46 - delta_h 14.7695 kJ - -gamma 0 0 +Pb+2 + 4 Cl- = PbCl4-2 + log_k 1.46 + delta_h 14.7695 kJ + -gamma 0 0 # Id: 6001803 - # log K source: SCD3.02 (1984 SEa) - # Delta H source: MTQ3.11 + # log K source: SCD3.02 (1984 SEa) + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Tl+ + Cl- = TlCl - log_k 0.51 - delta_h -6.2 kJ - -gamma 0 0 + log_k 0.51 + delta_h -6.2 kJ + -gamma 0 0 # Id: 8701800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Tl+ + 2Cl- = TlCl2- - log_k 0.28 - delta_h 0 kJ - -gamma 0 0 +Tl+ + 2 Cl- = TlCl2- + log_k 0.28 + delta_h 0 kJ + -gamma 0 0 # Id: 8701801 - # log K source: SCD3.02 (1992 RAb) - # Delta H source: MTQ3.11 + # log K source: SCD3.02 (1992 RAb) + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Tl(OH)3 + 3H+ + Cl- = TlCl+2 + 3H2O - log_k 11.011 - delta_h 0 kJ - -gamma 0 0 +Tl(OH)3 + 3 H+ + Cl- = TlCl+2 + 3 H2O + log_k 11.011 + delta_h 0 kJ + -gamma 0 0 # Id: 8711800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Tl(OH)3 + 3H+ + 2Cl- = TlCl2+ + 3H2O - log_k 16.771 - delta_h 0 kJ - -gamma 0 0 +Tl(OH)3 + 3 H+ + 2 Cl- = TlCl2+ + 3 H2O + log_k 16.771 + delta_h 0 kJ + -gamma 0 0 # Id: 8711801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Tl(OH)3 + 3H+ + 3Cl- = TlCl3 + 3H2O - log_k 19.791 - delta_h 0 kJ - -gamma 0 0 +Tl(OH)3 + 3 H+ + 3 Cl- = TlCl3 + 3 H2O + log_k 19.791 + delta_h 0 kJ + -gamma 0 0 # Id: 8711802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Tl(OH)3 + 3H+ + 4Cl- = TlCl4- + 3H2O - log_k 21.591 - delta_h 0 kJ - -gamma 0 0 +Tl(OH)3 + 3 H+ + 4 Cl- = TlCl4- + 3 H2O + log_k 21.591 + delta_h 0 kJ + -gamma 0 0 # Id: 8711803 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Tl(OH)3 + Cl- + 2H+ = TlOHCl+ + 2H2O - log_k 10.629 - delta_h 0 kJ - -gamma 0 0 +Tl(OH)3 + Cl- + 2 H+ = TlOHCl+ + 2 H2O + log_k 10.629 + delta_h 0 kJ + -gamma 0 0 # Id: 8711804 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Zn+2 + Cl- = ZnCl+ - log_k 0.4 - delta_h 5.4 kJ - -gamma 4 0 + log_k 0.4 + delta_h 5.4 kJ + -gamma 4 0 # Id: 9501800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Zn+2 + 2Cl- = ZnCl2 - log_k 0.6 - delta_h 37 kJ - -gamma 0 0 +Zn+2 + 2 Cl- = ZnCl2 + log_k 0.6 + delta_h 37 kJ + -gamma 0 0 # Id: 9501801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Zn+2 + 3Cl- = ZnCl3- - log_k 0.5 - delta_h 39.999 kJ - -gamma 4 0 +Zn+2 + 3 Cl- = ZnCl3- + log_k 0.5 + delta_h 39.999 kJ + -gamma 4 0 # Id: 9501802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Zn+2 + 4Cl- = ZnCl4-2 - log_k 0.199 - delta_h 45.8566 kJ - -gamma 5 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Zn+2 + 4 Cl- = ZnCl4-2 + log_k 0.199 + delta_h 45.8566 kJ + -gamma 5 0 # Id: 9501803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Zn+2 + H2O + Cl- = ZnOHCl + H+ - log_k -7.48 - delta_h 0 kJ - -gamma 0 0 + log_k -7.48 + delta_h 0 kJ + -gamma 0 0 # Id: 9501804 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cd+2 + Cl- = CdCl+ - log_k 1.98 - delta_h 1 kJ - -gamma 0 0 + log_k 1.98 + delta_h 1 kJ + -gamma 0 0 # Id: 1601800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Cd+2 + 2Cl- = CdCl2 - log_k 2.6 - delta_h 3 kJ - -gamma 0 0 +Cd+2 + 2 Cl- = CdCl2 + log_k 2.6 + delta_h 3 kJ + -gamma 0 0 # Id: 1601801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Cd+2 + 3Cl- = CdCl3- - log_k 2.4 - delta_h 10 kJ - -gamma 0 0 +Cd+2 + 3 Cl- = CdCl3- + log_k 2.4 + delta_h 10 kJ + -gamma 0 0 # Id: 1601802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Cd+2 + H2O + Cl- = CdOHCl + H+ - log_k -7.404 - delta_h 18.2213 kJ - -gamma 0 0 + log_k -7.404 + delta_h 18.2213 kJ + -gamma 0 0 # Id: 1601803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Hg(OH)2 + 2H+ + Cl- = HgCl+ + 2H2O - log_k 13.494 - delta_h -62.72 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Hg(OH)2 + 2 H+ + Cl- = HgCl+ + 2 H2O + log_k 13.494 + delta_h -62.72 kJ + -gamma 0 0 # Id: 3611800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + 2Cl- = HgCl2 + 2H2O - log_k 20.194 - delta_h -92.42 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 2 Cl- = HgCl2 + 2 H2O + log_k 20.194 + delta_h -92.42 kJ + -gamma 0 0 # Id: 3611801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + 3Cl- = HgCl3- + 2H2O - log_k 21.194 - delta_h -94.02 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 3 Cl- = HgCl3- + 2 H2O + log_k 21.194 + delta_h -94.02 kJ + -gamma 0 0 # Id: 3611802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + 4Cl- = HgCl4-2 + 2H2O - log_k 21.794 - delta_h -100.72 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 4 Cl- = HgCl4-2 + 2 H2O + log_k 21.794 + delta_h -100.72 kJ + -gamma 0 0 # Id: 3611803 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + Cl- + I- + 2H+ = HgClI + 2H2O - log_k 25.532 - delta_h -135.3 kJ - -gamma 0 0 +Hg(OH)2 + Cl- + I- + 2 H+ = HgClI + 2 H2O + log_k 25.532 + delta_h -135.3 kJ + -gamma 0 0 # Id: 3611804 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Hg(OH)2 + H+ + Cl- = HgClOH + H2O - log_k 10.444 - delta_h -42.72 kJ - -gamma 0 0 + log_k 10.444 + delta_h -42.72 kJ + -gamma 0 0 # Id: 3611805 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 1.00 25.0 Cu+2 + Cl- = CuCl+ - log_k 0.2 - delta_h 8.3 kJ - -gamma 4 0 + log_k 0.2 + delta_h 8.3 kJ + -gamma 4 0 # Id: 2311800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Cu+2 + 2Cl- = CuCl2 - log_k -0.26 - delta_h 44.183 kJ - -gamma 0 0 +Cu+2 + 2 Cl- = CuCl2 + log_k -0.26 + delta_h 44.183 kJ + -gamma 0 0 # Id: 2311801 - # log K source: SCD3.02 (1989 IPa) - # Delta H source: MTQ3.11 + # log K source: SCD3.02 (1989 IPa) + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Cu+2 + 3Cl- = CuCl3- - log_k -2.29 - delta_h 57.279 kJ - -gamma 4 0 +Cu+2 + 3 Cl- = CuCl3- + log_k -2.29 + delta_h 57.279 kJ + -gamma 4 0 # Id: 2311802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cu+2 + 4Cl- = CuCl4-2 - log_k -4.59 - delta_h 32.5515 kJ - -gamma 5 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cu+2 + 4 Cl- = CuCl4-2 + log_k -4.59 + delta_h 32.5515 kJ + -gamma 5 0 # Id: 2311803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cu+ + 2Cl- = CuCl2- - log_k 5.42 - delta_h -1.7573 kJ - -gamma 4 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cu+ + 2 Cl- = CuCl2- + log_k 5.42 + delta_h -1.7573 kJ + -gamma 4 0 # Id: 2301800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Cu+ + 3Cl- = CuCl3-2 - log_k 4.75 - delta_h 1.0878 kJ - -gamma 5 0 +Cu+ + 3 Cl- = CuCl3-2 + log_k 4.75 + delta_h 1.0878 kJ + -gamma 5 0 # Id: 2301801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Cu+ + Cl- = CuCl - log_k 3.1 - delta_h 0 kJ - -gamma 0 0 + log_k 3.1 + delta_h 0 kJ + -gamma 0 0 # Id: 2301802 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Ag+ + Cl- = AgCl - log_k 3.31 - delta_h -12 kJ - -gamma 0 0 + log_k 3.31 + delta_h -12 kJ + -gamma 0 0 # Id: 201800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Ag+ + 2Cl- = AgCl2- - log_k 5.25 - delta_h -16 kJ - -gamma 0 0 +Ag+ + 2 Cl- = AgCl2- + log_k 5.25 + delta_h -16 kJ + -gamma 0 0 # Id: 201801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Ag+ + 3Cl- = AgCl3-2 - log_k 5.2 - delta_h 0 kJ - -gamma 0 0 +Ag+ + 3 Cl- = AgCl3-2 + log_k 5.2 + delta_h 0 kJ + -gamma 0 0 # Id: 201802 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Ag+ + 4Cl- = AgCl4-3 - log_k 5.51 - delta_h 0 kJ - -gamma 0 0 +Ag+ + 4 Cl- = AgCl4-3 + log_k 5.51 + delta_h 0 kJ + -gamma 0 0 # Id: 201803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Ni+2 + Cl- = NiCl+ - log_k 0.408 - delta_h 2 kJ - -gamma 0 0 + log_k 0.408 + delta_h 2 kJ + -gamma 0 0 # Id: 5401800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 1.00 25.0 -Ni+2 + 2Cl- = NiCl2 - log_k -1.89 - delta_h 0 kJ - -gamma 0 0 +Ni+2 + 2 Cl- = NiCl2 + log_k -1.89 + delta_h 0 kJ + -gamma 0 0 # Id: 5401801 - # log K source: SCD3.02 (1989 IPa) - # Delta H source: MTQ3.11 + # log K source: SCD3.02 (1989 IPa) + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Co+2 + Cl- = CoCl+ - log_k 0.539 - delta_h 2 kJ - -gamma 0 0 + log_k 0.539 + delta_h 2 kJ + -gamma 0 0 # Id: 2001800 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 Co+3 + Cl- = CoCl+2 - log_k 2.3085 - delta_h 16 kJ - -gamma 0 0 + log_k 2.3085 + delta_h 16 kJ + -gamma 0 0 # Id: 2011800 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 Fe+3 + Cl- = FeCl+2 - log_k 1.48 - delta_h 23 kJ - -gamma 5 0 + log_k 1.48 + delta_h 23 kJ + -gamma 5 0 # Id: 2811800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Fe+3 + 2Cl- = FeCl2+ - log_k 2.13 - delta_h 0 kJ - -gamma 5 0 +Fe+3 + 2 Cl- = FeCl2+ + log_k 2.13 + delta_h 0 kJ + -gamma 5 0 # Id: 2811801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Fe+3 + 3Cl- = FeCl3 - log_k 1.13 - delta_h 0 kJ - -gamma 0 0 +Fe+3 + 3 Cl- = FeCl3 + log_k 1.13 + delta_h 0 kJ + -gamma 0 0 # Id: 2811802 - # log K source: Nord90 - # Delta H source: MTQ3.11 + # log K source: Nord90 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Mn+2 + Cl- = MnCl+ - log_k 0.1 - delta_h 0 kJ - -gamma 5 0 + log_k 0.1 + delta_h 0 kJ + -gamma 5 0 # Id: 4701800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 20.0 -Mn+2 + 2Cl- = MnCl2 - log_k 0.25 - delta_h 0 kJ - -gamma 0 0 +Mn+2 + 2 Cl- = MnCl2 + log_k 0.25 + delta_h 0 kJ + -gamma 0 0 # Id: 4701801 - # log K source: Nord90 - # Delta H source: MTQ3.11 + # log K source: Nord90 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Mn+2 + 3Cl- = MnCl3- - log_k -0.31 - delta_h 0 kJ - -gamma 5 0 +Mn+2 + 3 Cl- = MnCl3- + log_k -0.31 + delta_h 0 kJ + -gamma 5 0 # Id: 4701802 - # log K source: Nord90 - # Delta H source: MTQ3.11 + # log K source: Nord90 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + 2H+ + Cl- = CrCl+2 + 2H2O - log_k 9.6808 - delta_h -103.62 kJ - -gamma 0 0 +Cr(OH)2+ + 2 H+ + Cl- = CrCl+2 + 2 H2O + log_k 9.6808 + delta_h -103.62 kJ + -gamma 0 0 # Id: 2111800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 1.00 25.0 -Cr(OH)2+ + 2Cl- + 2H+ = CrCl2+ + 2H2O - log_k 8.658 - delta_h -39.2208 kJ - -gamma 0 0 +Cr(OH)2+ + 2 Cl- + 2 H+ = CrCl2+ + 2 H2O + log_k 8.658 + delta_h -39.2208 kJ + -gamma 0 0 # Id: 2111801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cr(OH)2+ + 2Cl- + H+ = CrOHCl2 + H2O - log_k 2.9627 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cr(OH)2+ + 2 Cl- + H+ = CrOHCl2 + H2O + log_k 2.9627 + delta_h 0 kJ + -gamma 0 0 # Id: 2111802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: VO+2 + Cl- = VOCl+ - log_k 0.448 - delta_h 0 kJ - -gamma 0 0 + log_k 0.448 + delta_h 0 kJ + -gamma 0 0 # Id: 9021800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 20.0 U+4 + Cl- = UCl+3 - log_k 1.7 - delta_h -20 kJ - -gamma 0 0 + log_k 1.7 + delta_h -20 kJ + -gamma 0 0 # Id: 8911800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 UO2+2 + Cl- = UO2Cl+ - log_k 0.21 - delta_h 16 kJ - -gamma 0 0 + log_k 0.21 + delta_h 16 kJ + -gamma 0 0 # Id: 8931800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Be+2 + Cl- = BeCl+ - log_k 0.2009 - delta_h 0 kJ - -gamma 5 0 + log_k 0.2009 + delta_h 0 kJ + -gamma 5 0 # Id: 1101801 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.70 20.0 -Sn(OH)2 + 2H+ + Br- = SnBr+ + 2H2O - log_k 8.254 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 2 H+ + Br- = SnBr+ + 2 H2O + log_k 8.254 + delta_h 0 kJ + -gamma 0 0 # Id: 7901301 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ + 2Br- = SnBr2 + 2H2O - log_k 8.794 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 2 H+ + 2 Br- = SnBr2 + 2 H2O + log_k 8.794 + delta_h 0 kJ + -gamma 0 0 # Id: 7901302 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ + 3Br- = SnBr3- + 2H2O - log_k 7.48 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 2 H+ + 3 Br- = SnBr3- + 2 H2O + log_k 7.48 + delta_h 0 kJ + -gamma 0 0 # Id: 7901303 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 3.00 25.0 Pb+2 + Br- = PbBr+ - log_k 1.7 - delta_h 8 kJ - -gamma 0 0 + log_k 1.7 + delta_h 8 kJ + -gamma 0 0 # Id: 6001300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Pb+2 + 2Br- = PbBr2 - log_k 2.6 - delta_h -4 kJ - -gamma 0 0 +Pb+2 + 2 Br- = PbBr2 + log_k 2.6 + delta_h -4 kJ + -gamma 0 0 # Id: 6001301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Tl+ + Br- = TlBr - log_k 0.91 - delta_h -12 kJ - -gamma 0 0 + log_k 0.91 + delta_h -12 kJ + -gamma 0 0 # Id: 8701300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Tl+ + 2Br- = TlBr2- - log_k -0.384 - delta_h 12.36 kJ - -gamma 0 0 +Tl+ + 2 Br- = TlBr2- + log_k -0.384 + delta_h 12.36 kJ + -gamma 0 0 # Id: 8701301 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 #T and ionic strength: 4.00 25.0 Tl+ + Br- + Cl- = TlBrCl- - log_k 0.8165 - delta_h 0 kJ - -gamma 0 0 + log_k 0.8165 + delta_h 0 kJ + -gamma 0 0 # Id: 8701302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Tl+ + I- + Br- = TlIBr- - log_k 2.185 - delta_h 0 kJ - -gamma 0 0 + log_k 2.185 + delta_h 0 kJ + -gamma 0 0 # Id: 8703802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Tl(OH)3 + 3H+ + Br- = TlBr+2 + 3H2O - log_k 12.803 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Tl(OH)3 + 3 H+ + Br- = TlBr+2 + 3 H2O + log_k 12.803 + delta_h 0 kJ + -gamma 0 0 # Id: 8711300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Tl(OH)3 + 3H+ + 2Br- = TlBr2+ + 3H2O - log_k 20.711 - delta_h 0 kJ - -gamma 0 0 +Tl(OH)3 + 3 H+ + 2 Br- = TlBr2+ + 3 H2O + log_k 20.711 + delta_h 0 kJ + -gamma 0 0 # Id: 8711301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Tl(OH)3 + 3Br- + 3H+ = TlBr3 + 3H2O - log_k 27.0244 - delta_h 0 kJ - -gamma 0 0 +Tl(OH)3 + 3 Br- + 3 H+ = TlBr3 + 3 H2O + log_k 27.0244 + delta_h 0 kJ + -gamma 0 0 # Id: 8711302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Tl(OH)3 + 4Br- + 3H+ = TlBr4- + 3H2O - log_k 31.1533 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Tl(OH)3 + 4 Br- + 3 H+ = TlBr4- + 3 H2O + log_k 31.1533 + delta_h 0 kJ + -gamma 0 0 # Id: 8711303 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Zn+2 + Br- = ZnBr+ - log_k -0.07 - delta_h 1 kJ - -gamma 0 0 + log_k -0.07 + delta_h 1 kJ + -gamma 0 0 # Id: 9501300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Zn+2 + 2Br- = ZnBr2 - log_k -0.98 - delta_h 0 kJ - -gamma 0 0 +Zn+2 + 2 Br- = ZnBr2 + log_k -0.98 + delta_h 0 kJ + -gamma 0 0 # Id: 9501301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cd+2 + Br- = CdBr+ - log_k 2.15 - delta_h -3 kJ - -gamma 0 0 + log_k 2.15 + delta_h -3 kJ + -gamma 0 0 # Id: 1601300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Cd+2 + 2Br- = CdBr2 - log_k 3 - delta_h -3 kJ - -gamma 0 0 +Cd+2 + 2 Br- = CdBr2 + log_k 3 + delta_h -3 kJ + -gamma 0 0 # Id: 1601301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + Br- = HgBr+ + 2H2O - log_k 15.803 - delta_h -81.92 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + Br- = HgBr+ + 2 H2O + log_k 15.803 + delta_h -81.92 kJ + -gamma 0 0 # Id: 3611301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 2H+ + 2Br- = HgBr2 + 2H2O - log_k 24.2725 - delta_h -127.12 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 2 Br- = HgBr2 + 2 H2O + log_k 24.2725 + delta_h -127.12 kJ + -gamma 0 0 # Id: 3611302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 2H+ + 3Br- = HgBr3- + 2H2O - log_k 26.7025 - delta_h -138.82 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 3 Br- = HgBr3- + 2 H2O + log_k 26.7025 + delta_h -138.82 kJ + -gamma 0 0 # Id: 3611303 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 2H+ + 4Br- = HgBr4-2 + 2H2O - log_k 27.933 - delta_h -153.72 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 4 Br- = HgBr4-2 + 2 H2O + log_k 27.933 + delta_h -153.72 kJ + -gamma 0 0 # Id: 3611304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.50 25.0 -Hg(OH)2 + Br- + Cl- + 2H+ = HgBrCl + 2H2O - log_k 22.1811 - delta_h -113.77 kJ - -gamma 0 0 +Hg(OH)2 + Br- + Cl- + 2 H+ = HgBrCl + 2 H2O + log_k 22.1811 + delta_h -113.77 kJ + -gamma 0 0 # Id: 3611305 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Hg(OH)2 + Br- + I- + 2H+ = HgBrI + 2H2O - log_k 27.3133 - delta_h -151.27 kJ - -gamma 0 0 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Hg(OH)2 + Br- + I- + 2 H+ = HgBrI + 2 H2O + log_k 27.3133 + delta_h -151.27 kJ + -gamma 0 0 # Id: 3611306 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Hg(OH)2 + Br- + 3I- + 2H+ = HgBrI3-2 + 2H2O - log_k 34.2135 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Hg(OH)2 + Br- + 3 I- + 2 H+ = HgBrI3-2 + 2 H2O + log_k 34.2135 + delta_h 0 kJ + -gamma 0 0 # Id: 3611307 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Hg(OH)2 + 2Br- + 2I- + 2H+ = HgBr2I2-2 + 2H2O - log_k 32.3994 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Hg(OH)2 + 2 Br- + 2 I- + 2 H+ = HgBr2I2-2 + 2 H2O + log_k 32.3994 + delta_h 0 kJ + -gamma 0 0 # Id: 3611308 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Hg(OH)2 + 3Br- + I- + 2H+ = HgBr3I-2 + 2H2O - log_k 30.1528 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Hg(OH)2 + 3 Br- + I- + 2 H+ = HgBr3I-2 + 2 H2O + log_k 30.1528 + delta_h 0 kJ + -gamma 0 0 # Id: 3611309 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Hg(OH)2 + H+ + Br- = HgBrOH + H2O - log_k 12.433 - delta_h 0 kJ - -gamma 0 0 + log_k 12.433 + delta_h 0 kJ + -gamma 0 0 # Id: 3613301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Ag+ + Br- = AgBr - log_k 4.6 - delta_h 0 kJ - -gamma 0 0 + log_k 4.6 + delta_h 0 kJ + -gamma 0 0 # Id: 201300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Ag+ + 2Br- = AgBr2- - log_k 7.5 - delta_h 0 kJ - -gamma 0 0 +Ag+ + 2 Br- = AgBr2- + log_k 7.5 + delta_h 0 kJ + -gamma 0 0 # Id: 201301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Ag+ + 3Br- = AgBr3-2 - log_k 8.1 - delta_h 0 kJ - -gamma 0 0 +Ag+ + 3 Br- = AgBr3-2 + log_k 8.1 + delta_h 0 kJ + -gamma 0 0 # Id: 201302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Ni+2 + Br- = NiBr+ - log_k 0.5 - delta_h 0 kJ - -gamma 0 0 + log_k 0.5 + delta_h 0 kJ + -gamma 0 0 # Id: 5401300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cr(OH)2+ + Br- + 2H+ = CrBr+2 + 2H2O - log_k 7.5519 - delta_h -46.9068 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cr(OH)2+ + Br- + 2 H+ = CrBr+2 + 2 H2O + log_k 7.5519 + delta_h -46.9068 kJ + -gamma 0 0 # Id: 2111300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Be+2 + Br- = BeBr+ - log_k 0.1009 - delta_h 0 kJ - -gamma 5 0 + log_k 0.1009 + delta_h 0 kJ + -gamma 5 0 # Id: 1101301 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.70 20.0 Pb+2 + I- = PbI+ - log_k 2 - delta_h 0 kJ - -gamma 0 0 + log_k 2 + delta_h 0 kJ + -gamma 0 0 # Id: 6003800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Pb+2 + 2I- = PbI2 - log_k 3.2 - delta_h 0 kJ - -gamma 0 0 +Pb+2 + 2 I- = PbI2 + log_k 3.2 + delta_h 0 kJ + -gamma 0 0 # Id: 6003801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Tl+ + I- = TlI - log_k 1.4279 - delta_h 0 kJ - -gamma 0 0 + log_k 1.4279 + delta_h 0 kJ + -gamma 0 0 # Id: 8703800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Tl+ + 2I- = TlI2- - log_k 1.8588 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Tl+ + 2 I- = TlI2- + log_k 1.8588 + delta_h 0 kJ + -gamma 0 0 # Id: 8703801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Tl(OH)3 + 4I- + 3H+ = TlI4- + 3H2O - log_k 34.7596 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Tl(OH)3 + 4 I- + 3 H+ = TlI4- + 3 H2O + log_k 34.7596 + delta_h 0 kJ + -gamma 0 0 # Id: 8713800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Zn+2 + I- = ZnI+ - log_k -2.0427 - delta_h -4 kJ - -gamma 0 0 + log_k -2.0427 + delta_h -4 kJ + -gamma 0 0 # Id: 9503800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 3.00 25.0 -Zn+2 + 2I- = ZnI2 - log_k -1.69 - delta_h 0 kJ - -gamma 0 0 +Zn+2 + 2 I- = ZnI2 + log_k -1.69 + delta_h 0 kJ + -gamma 0 0 # Id: 9503801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cd+2 + I- = CdI+ - log_k 2.28 - delta_h -9.6 kJ - -gamma 0 0 + log_k 2.28 + delta_h -9.6 kJ + -gamma 0 0 # Id: 1603800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Cd+2 + 2I- = CdI2 - log_k 3.92 - delta_h -12 kJ - -gamma 0 0 +Cd+2 + 2 I- = CdI2 + log_k 3.92 + delta_h -12 kJ + -gamma 0 0 # Id: 1603801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + I- = HgI+ + 2H2O - log_k 19.603 - delta_h -111.22 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + I- = HgI+ + 2 H2O + log_k 19.603 + delta_h -111.22 kJ + -gamma 0 0 # Id: 3613801 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 2H+ + 2I- = HgI2 + 2H2O - log_k 30.8225 - delta_h -182.72 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 2 I- = HgI2 + 2 H2O + log_k 30.8225 + delta_h -182.72 kJ + -gamma 0 0 # Id: 3613802 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 2H+ + 3I- = HgI3- + 2H2O - log_k 34.6025 - delta_h -194.22 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 3 I- = HgI3- + 2 H2O + log_k 34.6025 + delta_h -194.22 kJ + -gamma 0 0 # Id: 3613803 - # log K source: NIST46.4 - # Delta H source: NIST2.1.1 + # log K source: NIST46.4 + # Delta H source: NIST2.1.1 #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 2H+ + 4I- = HgI4-2 + 2H2O - log_k 36.533 - delta_h -220.72 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 4 I- = HgI4-2 + 2 H2O + log_k 36.533 + delta_h -220.72 kJ + -gamma 0 0 # Id: 3613804 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 Ag+ + I- = AgI - log_k 6.6 - delta_h 0 kJ - -gamma 0 0 + log_k 6.6 + delta_h 0 kJ + -gamma 0 0 # Id: 203800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 18.0 -Ag+ + 2I- = AgI2- - log_k 11.7 - delta_h 0 kJ - -gamma 0 0 +Ag+ + 2 I- = AgI2- + log_k 11.7 + delta_h 0 kJ + -gamma 0 0 # Id: 203801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 18.0 -Ag+ + 3I- = AgI3-2 - log_k 12.6 - delta_h -122 kJ - -gamma 0 0 +Ag+ + 3 I- = AgI3-2 + log_k 12.6 + delta_h -122 kJ + -gamma 0 0 # Id: 203802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Ag+ + 4I- = AgI4-3 - log_k 14.229 - delta_h 0 kJ - -gamma 0 0 +Ag+ + 4 I- = AgI4-3 + log_k 14.229 + delta_h 0 kJ + -gamma 0 0 # Id: 203803 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 2.00 25.0 -Cr(OH)2+ + I- + 2H+ = CrI+2 + 2H2O - log_k 4.8289 - delta_h 0 kJ - -gamma 0 0 +Cr(OH)2+ + I- + 2 H+ = CrI+2 + 2 H2O + log_k 4.8289 + delta_h 0 kJ + -gamma 0 0 # Id: 2113800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: H+ + HS- = H2S - log_k 7.02 - delta_h -22 kJ - -gamma 0 0 + log_k 7.02 + delta_h -22 kJ + -gamma 0 0 # Id: 3307300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Pb+2 + 2HS- = Pb(HS)2 - log_k 15.27 - delta_h 0 kJ - -gamma 0 0 +Pb+2 + 2 HS- = Pb(HS)2 + log_k 15.27 + delta_h 0 kJ + -gamma 0 0 # Id: 6007300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Pb+2 + 3HS- = Pb(HS)3- - log_k 16.57 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Pb+2 + 3 HS- = Pb(HS)3- + log_k 16.57 + delta_h 0 kJ + -gamma 0 0 # Id: 6007301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Tl+ + HS- = TlHS - log_k 2.474 - delta_h 0 kJ - -gamma 0 0 + log_k 2.474 + delta_h 0 kJ + -gamma 0 0 # Id: 8707300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -2Tl+ + HS- = Tl2HS+ - log_k 5.974 - delta_h 0 kJ - -gamma 0 0 +2 Tl+ + HS- = Tl2HS+ + log_k 5.974 + delta_h 0 kJ + -gamma 0 0 # Id: 8707301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -2Tl+ + 3HS- + H2O = Tl2OH(HS)3-2 + H+ - log_k 1.0044 - delta_h 0 kJ - -gamma 0 0 +2 Tl+ + 3 HS- + H2O = Tl2OH(HS)3-2 + H+ + log_k 1.0044 + delta_h 0 kJ + -gamma 0 0 # Id: 8707302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -2Tl+ + 2HS- + 2H2O = Tl2(OH)2(HS)2-2 + 2H+ - log_k -11.0681 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +2 Tl+ + 2 HS- + 2 H2O = Tl2(OH)2(HS)2-2 + 2 H+ + log_k -11.0681 + delta_h 0 kJ + -gamma 0 0 # Id: 8707303 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Zn+2 + 2HS- = Zn(HS)2 - log_k 12.82 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Zn+2 + 2 HS- = Zn(HS)2 + log_k 12.82 + delta_h 0 kJ + -gamma 0 0 # Id: 9507300 - # log K source: DHa1993 - # Delta H source: MTQ3.11 + # log K source: DHa1993 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Zn+2 + 3HS- = Zn(HS)3- - log_k 16.1 - delta_h 0 kJ - -gamma 0 0 +Zn+2 + 3 HS- = Zn(HS)3- + log_k 16.1 + delta_h 0 kJ + -gamma 0 0 # Id: 9507301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Zn+2 + 3HS- = ZnS(HS)2-2 + H+ - log_k 6.12 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Zn+2 + 3 HS- = ZnS(HS)2-2 + H+ + log_k 6.12 + delta_h 0 kJ + -gamma 0 0 # Id: 9507302 - # log K source: DHa1993 - # Delta H source: MTQ3.11 + # log K source: DHa1993 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Zn+2 + 2HS- + 2HS- = Zn(HS)4-2 - log_k 14.64 - delta_h 0 kJ - -gamma 0 0 +Zn+2 + 2 HS- + 2 HS- = Zn(HS)4-2 + log_k 14.64 + delta_h 0 kJ + -gamma 0 0 # Id: 9507303 - # log K source: DHa1993 - # Delta H source: MTQ3.11 + # log K source: DHa1993 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Zn+2 + 2HS- = ZnS(HS)- + H+ - log_k 6.81 - delta_h 0 kJ - -gamma 0 0 +Zn+2 + 2 HS- = ZnS(HS)- + H+ + log_k 6.81 + delta_h 0 kJ + -gamma 0 0 # Id: 9507304 - # log K source: DHa1993 - # Delta H source: MTQ3.11 + # log K source: DHa1993 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Cd+2 + HS- = CdHS+ - log_k 8.008 - delta_h 0 kJ - -gamma 0 0 + log_k 8.008 + delta_h 0 kJ + -gamma 0 0 # Id: 1607300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Cd+2 + 2HS- = Cd(HS)2 - log_k 15.212 - delta_h 0 kJ - -gamma 0 0 +Cd+2 + 2 HS- = Cd(HS)2 + log_k 15.212 + delta_h 0 kJ + -gamma 0 0 # Id: 1607301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Cd+2 + 3HS- = Cd(HS)3- - log_k 17.112 - delta_h 0 kJ - -gamma 0 0 +Cd+2 + 3 HS- = Cd(HS)3- + log_k 17.112 + delta_h 0 kJ + -gamma 0 0 # Id: 1607302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Cd+2 + 4HS- = Cd(HS)4-2 - log_k 19.308 - delta_h 0 kJ - -gamma 0 0 +Cd+2 + 4 HS- = Cd(HS)4-2 + log_k 19.308 + delta_h 0 kJ + -gamma 0 0 # Id: 1607303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Hg(OH)2 + 2HS- = HgS2-2 + 2H2O - log_k 29.414 - delta_h 0 kJ - -gamma 0 0 +Hg(OH)2 + 2 HS- = HgS2-2 + 2 H2O + log_k 29.414 + delta_h 0 kJ + -gamma 0 0 # Id: 3617300 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 20.0 -Hg(OH)2 + 2H+ + 2HS- = Hg(HS)2 + 2H2O - log_k 44.516 - delta_h 0 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 2 HS- = Hg(HS)2 + 2 H2O + log_k 44.516 + delta_h 0 kJ + -gamma 0 0 # Id: 3617301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 20.0 -Hg(OH)2 + H+ + 2HS- = HgHS2- + 2H2O - log_k 38.122 - delta_h 0 kJ - -gamma 0 0 +Hg(OH)2 + H+ + 2 HS- = HgHS2- + 2 H2O + log_k 38.122 + delta_h 0 kJ + -gamma 0 0 # Id: 3617302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 20.0 -Cu+2 + 3HS- = Cu(HS)3- - log_k 25.899 - delta_h 0 kJ - -gamma 0 0 +Cu+2 + 3 HS- = Cu(HS)3- + log_k 25.899 + delta_h 0 kJ + -gamma 0 0 # Id: 2317300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Ag+ + HS- = AgHS - log_k 13.8145 - delta_h 0 kJ - -gamma 0 0 + log_k 13.8145 + delta_h 0 kJ + -gamma 0 0 # Id: 207300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 20.0 -Ag+ + 2HS- = Ag(HS)2- - log_k 17.9145 - delta_h 0 kJ - -gamma 0 0 +Ag+ + 2 HS- = Ag(HS)2- + log_k 17.9145 + delta_h 0 kJ + -gamma 0 0 # Id: 207301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 20.0 -Fe+2 + 2HS- = Fe(HS)2 - log_k 8.95 - delta_h 0 kJ - -gamma 0 0 +Fe+2 + 2 HS- = Fe(HS)2 + log_k 8.95 + delta_h 0 kJ + -gamma 0 0 # Id: 2807300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Fe+2 + 3HS- = Fe(HS)3- - log_k 10.987 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Fe+2 + 3 HS- = Fe(HS)3- + log_k 10.987 + delta_h 0 kJ + -gamma 0 0 # Id: 2807301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: HS- = S2-2 + H+ - log_k -11.7828 - delta_h 46.4 kJ - -gamma 0 0 + log_k -11.7828 + delta_h 46.4 kJ + -gamma 0 0 -no_check # Id: 7317300 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: HS- = S3-2 + H+ - log_k -10.7667 - delta_h 42.2 kJ - -gamma 0 0 + log_k -10.7667 + delta_h 42.2 kJ + -gamma 0 0 -no_check # Id: 7317301 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: HS- = S4-2 + H+ - log_k -9.9608 - delta_h 39.3 kJ - -gamma 0 0 + log_k -9.9608 + delta_h 39.3 kJ + -gamma 0 0 -no_check # Id: 7317302 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: HS- = S5-2 + H+ - log_k -9.3651 - delta_h 37.6 kJ - -gamma 0 0 + log_k -9.3651 + delta_h 37.6 kJ + -gamma 0 0 -no_check # Id: 7317303 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: HS- = S6-2 + H+ - log_k -9.881 - delta_h 0 kJ - -gamma 0 0 + log_k -9.881 + delta_h 0 kJ + -gamma 0 0 -no_check # Id: 7317304 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -2Sb(OH)3 + 4HS- + 2H+ = Sb2S4-2 + 6H2O - log_k 49.3886 - delta_h -321.78 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +2 Sb(OH)3 + 4 HS- + 2 H+ = Sb2S4-2 + 6 H2O + log_k 49.3886 + delta_h -321.78 kJ + -gamma 0 0 # Id: 7407300 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Cu+ + 2HS- = Cu(S4)2-3 + 2H+ - log_k 3.39 - delta_h 0 kJ - -gamma 23 0 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Cu+ + 2 HS- = Cu(S4)2-3 + 2 H+ + log_k 3.39 + delta_h 0 kJ + -gamma 23 0 -no_check # Id: 2307300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cu+ + 2HS- = CuS4S5-3 + 2H+ - log_k 2.66 - delta_h 0 kJ - -gamma 25 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cu+ + 2 HS- = CuS4S5-3 + 2 H+ + log_k 2.66 + delta_h 0 kJ + -gamma 25 0 -no_check # Id: 2307301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Ag+ + 2HS- = Ag(S4)2-3 + 2H+ - log_k 0.991 - delta_h 0 kJ - -gamma 22 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Ag+ + 2 HS- = Ag(S4)2-3 + 2 H+ + log_k 0.991 + delta_h 0 kJ + -gamma 22 0 -no_check # Id: 207302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Ag+ + 2HS- = AgS4S5-3 + 2H+ - log_k 0.68 - delta_h 0 kJ - -gamma 24 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Ag+ + 2 HS- = AgS4S5-3 + 2 H+ + log_k 0.68 + delta_h 0 kJ + -gamma 24 0 -no_check # Id: 207303 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Ag+ + 2HS- = Ag(HS)S4-2 + H+ - log_k 10.431 - delta_h 0 kJ - -gamma 15 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Ag+ + 2 HS- = Ag(HS)S4-2 + H+ + log_k 10.431 + delta_h 0 kJ + -gamma 15 0 -no_check # Id: 207304 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: H+ + SO4-2 = HSO4- - log_k 1.99 - delta_h 22 kJ - -gamma 4.5 0 + log_k 1.99 + delta_h 22 kJ + -gamma 4.5 0 # Id: 3307320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 NH4+ + SO4-2 = NH4SO4- - log_k 1.03 - delta_h 0 kJ - -gamma 5 0 + log_k 1.03 + delta_h 0 kJ + -gamma 5 0 # Id: 4907320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Pb+2 + SO4-2 = PbSO4 - log_k 2.69 - delta_h 0 kJ - -gamma 0 0 + log_k 2.69 + delta_h 0 kJ + -gamma 0 0 # Id: 6007320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Pb+2 + 2SO4-2 = Pb(SO4)2-2 - log_k 3.47 - delta_h 0 kJ - -gamma 0 0 +Pb+2 + 2 SO4-2 = Pb(SO4)2-2 + log_k 3.47 + delta_h 0 kJ + -gamma 0 0 # Id: 6007321 - # log K source: SCD3.02 (1960 RKa) - # Delta H source: MTQ3.11 + # log K source: SCD3.02 (1960 RKa) + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Al+3 + SO4-2 = AlSO4+ - log_k 3.89 - delta_h 28 kJ - -gamma 4.5 0 + log_k 3.89 + delta_h 28 kJ + -gamma 4.5 0 # Id: 307320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Al+3 + 2SO4-2 = Al(SO4)2- - log_k 4.92 - delta_h 11.9 kJ - -gamma 4.5 0 +Al+3 + 2 SO4-2 = Al(SO4)2- + log_k 4.92 + delta_h 11.9 kJ + -gamma 4.5 0 # Id: 307321 - # log K source: Nord90 - # Delta H source: Nord90 + # log K source: Nord90 + # Delta H source: Nord90 #T and ionic strength: 0.00 25.0 Tl+ + SO4-2 = TlSO4- - log_k 1.37 - delta_h -0.8 kJ - -gamma 0 0 + log_k 1.37 + delta_h -0.8 kJ + -gamma 0 0 # Id: 8707320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Zn+2 + SO4-2 = ZnSO4 - log_k 2.34 - delta_h 6.2 kJ - -gamma 0 0 + log_k 2.34 + delta_h 6.2 kJ + -gamma 0 0 # Id: 9507320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Zn+2 + 2SO4-2 = Zn(SO4)2-2 - log_k 3.28 - delta_h 0 kJ - -gamma 0 0 +Zn+2 + 2 SO4-2 = Zn(SO4)2-2 + log_k 3.28 + delta_h 0 kJ + -gamma 0 0 # Id: 9507321 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cd+2 + SO4-2 = CdSO4 - log_k 2.37 - delta_h 8.7 kJ - -gamma 0 0 + log_k 2.37 + delta_h 8.7 kJ + -gamma 0 0 # Id: 1607320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Cd+2 + 2SO4-2 = Cd(SO4)2-2 - log_k 3.5 - delta_h 0 kJ - -gamma 0 0 +Cd+2 + 2 SO4-2 = Cd(SO4)2-2 + log_k 3.5 + delta_h 0 kJ + -gamma 0 0 # Id: 1607321 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Hg(OH)2 + 2H+ + SO4-2 = HgSO4 + 2H2O - log_k 8.612 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Hg(OH)2 + 2 H+ + SO4-2 = HgSO4 + 2 H2O + log_k 8.612 + delta_h 0 kJ + -gamma 0 0 # Id: 3617320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Cu+2 + SO4-2 = CuSO4 - log_k 2.36 - delta_h 8.7 kJ - -gamma 0 0 + log_k 2.36 + delta_h 8.7 kJ + -gamma 0 0 # Id: 2317320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ag+ + SO4-2 = AgSO4- - log_k 1.3 - delta_h 6.2 kJ - -gamma 0 0 + log_k 1.3 + delta_h 6.2 kJ + -gamma 0 0 # Id: 207320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ni+2 + SO4-2 = NiSO4 - log_k 2.3 - delta_h 5.8 kJ - -gamma 0 0 + log_k 2.3 + delta_h 5.8 kJ + -gamma 0 0 # Id: 5407320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Ni+2 + 2SO4-2 = Ni(SO4)2-2 - log_k 0.82 - delta_h 0 kJ - -gamma 0 0 +Ni+2 + 2 SO4-2 = Ni(SO4)2-2 + log_k 0.82 + delta_h 0 kJ + -gamma 0 0 # Id: 5407321 - # log K source: SCD3.02 (1978 BLa) - # Delta H source: MTQ3.11 + # log K source: SCD3.02 (1978 BLa) + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Co+2 + SO4-2 = CoSO4 - log_k 2.3 - delta_h 6.2 kJ - -gamma 0 0 + log_k 2.3 + delta_h 6.2 kJ + -gamma 0 0 # Id: 2007320 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Fe+2 + SO4-2 = FeSO4 - log_k 2.39 - delta_h 8 kJ - -gamma 0 0 + log_k 2.39 + delta_h 8 kJ + -gamma 0 0 # Id: 2807320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Fe+3 + SO4-2 = FeSO4+ - log_k 4.05 - delta_h 25 kJ - -gamma 5 0 + log_k 4.05 + delta_h 25 kJ + -gamma 5 0 # Id: 2817320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Fe+3 + 2SO4-2 = Fe(SO4)2- - log_k 5.38 - delta_h 19.2 kJ - -gamma 0 0 +Fe+3 + 2 SO4-2 = Fe(SO4)2- + log_k 5.38 + delta_h 19.2 kJ + -gamma 0 0 # Id: 2817321 - # log K source: Nord90 - # Delta H source: Nord90 + # log K source: Nord90 + # Delta H source: Nord90 #T and ionic strength: 0.00 25.0 Mn+2 + SO4-2 = MnSO4 - log_k 2.25 - delta_h 8.7 kJ - -gamma 0 0 + log_k 2.25 + delta_h 8.7 kJ + -gamma 0 0 # Id: 4707320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + 2H+ + SO4-2 = CrSO4+ + 2H2O - log_k 12.9371 - delta_h -98.62 kJ - -gamma 0 0 +Cr(OH)2+ + 2 H+ + SO4-2 = CrSO4+ + 2 H2O + log_k 12.9371 + delta_h -98.62 kJ + -gamma 0 0 # Id: 2117320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 1.00 50.0 Cr(OH)2+ + H+ + SO4-2 = CrOHSO4 + H2O - log_k 8.2871 - delta_h 0 kJ - -gamma 0 0 + log_k 8.2871 + delta_h 0 kJ + -gamma 0 0 # Id: 2117321 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 25.0 -2Cr(OH)2+ + SO4-2 + 2H+ = Cr2(OH)2SO4+2 + 2H2O - log_k 16.155 - delta_h 0 kJ - -gamma 0 0 +2 Cr(OH)2+ + SO4-2 + 2 H+ = Cr2(OH)2SO4+2 + 2 H2O + log_k 16.155 + delta_h 0 kJ + -gamma 0 0 # Id: 2117323 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -2Cr(OH)2+ + 2SO4-2 + 2H+ = Cr2(OH)2(SO4)2 + 2H2O - log_k 17.9288 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +2 Cr(OH)2+ + 2 SO4-2 + 2 H+ = Cr2(OH)2(SO4)2 + 2 H2O + log_k 17.9288 + delta_h 0 kJ + -gamma 0 0 # Id: 2117324 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: U+4 + SO4-2 = USO4+2 - log_k 6.6 - delta_h 8 kJ - -gamma 0 0 + log_k 6.6 + delta_h 8 kJ + -gamma 0 0 # Id: 8917320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -U+4 + 2SO4-2 = U(SO4)2 - log_k 10.5 - delta_h 33 kJ - -gamma 0 0 +U+4 + 2 SO4-2 = U(SO4)2 + log_k 10.5 + delta_h 33 kJ + -gamma 0 0 # Id: 8917321 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 UO2+2 + SO4-2 = UO2SO4 - log_k 3.18 - delta_h 20 kJ - -gamma 0 0 + log_k 3.18 + delta_h 20 kJ + -gamma 0 0 # Id: 8937320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -UO2+2 + 2SO4-2 = UO2(SO4)2-2 - log_k 4.3 - delta_h 38 kJ - -gamma 0 0 +UO2+2 + 2 SO4-2 = UO2(SO4)2-2 + log_k 4.3 + delta_h 38 kJ + -gamma 0 0 # Id: 8937321 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 V+3 + SO4-2 = VSO4+ - log_k 2.674 - delta_h 0 kJ - -gamma 0 0 + log_k 2.674 + delta_h 0 kJ + -gamma 0 0 # Id: 9017320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 VO+2 + SO4-2 = VOSO4 - log_k 2.44 - delta_h 17 kJ - -gamma 0 0 + log_k 2.44 + delta_h 17 kJ + -gamma 0 0 # Id: 9027320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 VO2+ + SO4-2 = VO2SO4- - log_k 1.378 - delta_h 0 kJ - -gamma 0 0 + log_k 1.378 + delta_h 0 kJ + -gamma 0 0 # Id: 9037320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 20.0 Be+2 + SO4-2 = BeSO4 - log_k 2.19 - delta_h 29 kJ - -gamma 0 0 + log_k 2.19 + delta_h 29 kJ + -gamma 0 0 # Id: 1107321 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Be+2 + 2SO4-2 = Be(SO4)2-2 - log_k 2.596 - delta_h 0 kJ - -gamma 0 0 +Be+2 + 2 SO4-2 = Be(SO4)2-2 + log_k 2.596 + delta_h 0 kJ + -gamma 0 0 # Id: 1107322 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Mg+2 + SO4-2 = MgSO4 - log_k 2.26 - delta_h 5.8 kJ - -gamma 0 0 + log_k 2.26 + delta_h 5.8 kJ + -gamma 0 0 # Id: 4607320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ca+2 + SO4-2 = CaSO4 - log_k 2.36 - delta_h 7.1 kJ - -gamma 0 0 + log_k 2.36 + delta_h 7.1 kJ + -gamma 0 0 # Id: 1507320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Sr+2 + SO4-2 = SrSO4 - log_k 2.3 - delta_h 8 kJ - -gamma 0 0 + log_k 2.3 + delta_h 8 kJ + -gamma 0 0 # Id: 8007321 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Li+ + SO4-2 = LiSO4- - log_k 0.64 - delta_h 0 kJ - -gamma 5 0 + log_k 0.64 + delta_h 0 kJ + -gamma 5 0 # Id: 4407320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Na+ + SO4-2 = NaSO4- - log_k 0.73 - delta_h 1 kJ - -gamma 5.4 0 + log_k 0.73 + delta_h 1 kJ + -gamma 5.4 0 # Id: 5007320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 K+ + SO4-2 = KSO4- - log_k 0.85 - delta_h 4.1 kJ - -gamma 5.4 0 + log_k 0.85 + delta_h 4.1 kJ + -gamma 5.4 0 # Id: 4107320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 HSe- + H+ = H2Se - log_k 3.89 - delta_h 3.3 kJ - -gamma 0 0 + log_k 3.89 + delta_h 3.3 kJ + -gamma 0 0 # Id: 3307600 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 #T and ionic strength: 0.00 25.0 -2Ag+ + HSe- = Ag2Se + H+ - log_k 34.911 - delta_h 0 kJ - -gamma 0 0 +2 Ag+ + HSe- = Ag2Se + H+ + log_k 34.911 + delta_h 0 kJ + -gamma 0 0 # Id: 207600 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Ag+ + H2O + 2HSe- = AgOH(Se)2-4 + 3H+ - log_k -20.509 - delta_h 0 kJ - -gamma 0 0 +Ag+ + H2O + 2 HSe- = AgOH(Se)2-4 + 3 H+ + log_k -20.509 + delta_h 0 kJ + -gamma 0 0 # Id: 207601 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Mn+2 + HSe- = MnSe + H+ - log_k -5.385 - delta_h 0 kJ - -gamma 0 0 + log_k -5.385 + delta_h 0 kJ + -gamma 0 0 # Id: 4707600 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 HSeO3- = SeO3-2 + H+ - log_k -8.4 - delta_h 5.02 kJ - -gamma 0 0 + log_k -8.4 + delta_h 5.02 kJ + -gamma 0 0 # Id: 3307611 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 HSeO3- + H+ = H2SeO3 - log_k 2.63 - delta_h 6.2 kJ - -gamma 0 0 + log_k 2.63 + delta_h 6.2 kJ + -gamma 0 0 # Id: 3307610 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Cd+2 + 2HSeO3- = Cd(SeO3)2-2 + 2H+ - log_k -10.884 - delta_h 0 kJ - -gamma 0 0 +Cd+2 + 2 HSeO3- = Cd(SeO3)2-2 + 2 H+ + log_k -10.884 + delta_h 0 kJ + -gamma 0 0 # Id: 1607610 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Ag+ + HSeO3- = AgSeO3- + H+ - log_k -5.592 - delta_h 0 kJ - -gamma 0 0 + log_k -5.592 + delta_h 0 kJ + -gamma 0 0 # Id: 207610 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Ag+ + 2HSeO3- = Ag(SeO3)2-3 + 2H+ - log_k -13.04 - delta_h 0 kJ - -gamma 0 0 +Ag+ + 2 HSeO3- = Ag(SeO3)2-3 + 2 H+ + log_k -13.04 + delta_h 0 kJ + -gamma 0 0 # Id: 207611 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Fe+3 + HSeO3- = FeHSeO3+2 - log_k 3.422 - delta_h 25 kJ - -gamma 0 0 + log_k 3.422 + delta_h 25 kJ + -gamma 0 0 # Id: 2817610 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 1.00 25.0 SeO4-2 + H+ = HSeO4- - log_k 1.7 - delta_h 23 kJ - -gamma 0 0 + log_k 1.7 + delta_h 23 kJ + -gamma 0 0 # Id: 3307620 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Zn+2 + SeO4-2 = ZnSeO4 - log_k 2.19 - delta_h 0 kJ - -gamma 0 0 + log_k 2.19 + delta_h 0 kJ + -gamma 0 0 # Id: 9507620 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Zn+2 + 2SeO4-2 = Zn(SeO4)2-2 - log_k 2.196 - delta_h 0 kJ - -gamma 0 0 +Zn+2 + 2 SeO4-2 = Zn(SeO4)2-2 + log_k 2.196 + delta_h 0 kJ + -gamma 0 0 # Id: 9507621 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Cd+2 + SeO4-2 = CdSeO4 - log_k 2.27 - delta_h 0 kJ - -gamma 0 0 + log_k 2.27 + delta_h 0 kJ + -gamma 0 0 # Id: 1607620 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Ni+2 + SeO4-2 = NiSeO4 - log_k 2.67 - delta_h 14 kJ - -gamma 0 0 + log_k 2.67 + delta_h 14 kJ + -gamma 0 0 # Id: 5407620 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Co+2 + SeO4-2 = CoSeO4 - log_k 2.7 - delta_h 12 kJ - -gamma 0 0 + log_k 2.7 + delta_h 12 kJ + -gamma 0 0 # Id: 2007621 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Mn+2 + SeO4-2 = MnSeO4 - log_k 2.43 - delta_h 14 kJ - -gamma 0 0 + log_k 2.43 + delta_h 14 kJ + -gamma 0 0 # Id: 4707620 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 NH4+ = NH3 + H+ - log_k -9.244 - delta_h 52 kJ - -gamma 0 0 + log_k -9.244 + delta_h 52 kJ + -gamma 0 0 # Id: 3304900 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ag+ + NH4+ = AgNH3+ + H+ - log_k -5.934 - delta_h -72 kJ - -gamma 0 0 + log_k -5.934 + delta_h -72 kJ + -gamma 0 0 # Id: 204901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Ag+ + 2NH4+ = Ag(NH3)2+ + 2H+ - log_k -11.268 - delta_h -160 kJ - -gamma 0 0 +Ag+ + 2 NH4+ = Ag(NH3)2+ + 2 H+ + log_k -11.268 + delta_h -160 kJ + -gamma 0 0 # Id: 204902 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + H+ + NH4+ = HgNH3+2 + 2H2O - log_k 5.75 - delta_h 0 kJ - -gamma 0 0 +Hg(OH)2 + H+ + NH4+ = HgNH3+2 + 2 H2O + log_k 5.75 + delta_h 0 kJ + -gamma 0 0 # Id: 3614900 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 2.00 22.0 -Hg(OH)2 + 2NH4+ = Hg(NH3)2+2 + 2H2O - log_k 5.506 - delta_h -246.72 kJ - -gamma 0 0 +Hg(OH)2 + 2 NH4+ = Hg(NH3)2+2 + 2 H2O + log_k 5.506 + delta_h -246.72 kJ + -gamma 0 0 # Id: 3614901 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 1.00 25.0 -Hg(OH)2 + 3NH4+ = Hg(NH3)3+2 + 2H2O + H+ - log_k -3.138 - delta_h -312.72 kJ - -gamma 0 0 +Hg(OH)2 + 3 NH4+ = Hg(NH3)3+2 + 2 H2O + H+ + log_k -3.138 + delta_h -312.72 kJ + -gamma 0 0 # Id: 3614902 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 2.00 25.0 -Hg(OH)2 + 4NH4+ = Hg(NH3)4+2 + 2H2O + 2H+ - log_k -11.482 - delta_h -379.72 kJ - -gamma 0 0 +Hg(OH)2 + 4 NH4+ = Hg(NH3)4+2 + 2 H2O + 2 H+ + log_k -11.482 + delta_h -379.72 kJ + -gamma 0 0 # Id: 3614903 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.10 25.0 Cu+2 + NH4+ = CuNH3+2 + H+ - log_k -5.234 - delta_h -72 kJ - -gamma 0 0 + log_k -5.234 + delta_h -72 kJ + -gamma 0 0 # Id: 2314901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ni+2 + NH4+ = NiNH3+2 + H+ - log_k -6.514 - delta_h -67 kJ - -gamma 0 0 + log_k -6.514 + delta_h -67 kJ + -gamma 0 0 # Id: 5404901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 -Ni+2 + 2NH4+ = Ni(NH3)2+2 + 2H+ - log_k -13.598 - delta_h -111.6 kJ - -gamma 0 0 +Ni+2 + 2 NH4+ = Ni(NH3)2+2 + 2 H+ + log_k -13.598 + delta_h -111.6 kJ + -gamma 0 0 # Id: 5404902 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Co+2 + NH4+ = Co(NH3)+2 + H+ - log_k -7.164 - delta_h -65 kJ - -gamma 0 0 + log_k -7.164 + delta_h -65 kJ + -gamma 0 0 # Id: 2004900 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 -Co+2 + 2NH4+ = Co(NH3)2+2 + 2H+ - log_k -14.778 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 2 NH4+ = Co(NH3)2+2 + 2 H+ + log_k -14.778 + delta_h 0 kJ + -gamma 0 0 # Id: 2004901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 2.00 25.0 -Co+2 + 3NH4+ = Co(NH3)3+2 + 3H+ - log_k -22.922 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 3 NH4+ = Co(NH3)3+2 + 3 H+ + log_k -22.922 + delta_h 0 kJ + -gamma 0 0 # Id: 2004902 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 2.00 25.0 -Co+2 + 4NH4+ = Co(NH3)4+2 + 4H+ - log_k -31.446 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 4 NH4+ = Co(NH3)4+2 + 4 H+ + log_k -31.446 + delta_h 0 kJ + -gamma 0 0 # Id: 2004903 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 2.00 30.0 -Co+2 + 5NH4+ = Co(NH3)5+2 + 5H+ - log_k -40.47 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 5 NH4+ = Co(NH3)5+2 + 5 H+ + log_k -40.47 + delta_h 0 kJ + -gamma 0 0 # Id: 2004904 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 2.00 30.0 -Co+3 + 6NH4+ + H2O = Co(NH3)6OH+2 + 7H+ - log_k -43.7148 - delta_h 0 kJ - -gamma 0 0 +Co+3 + 6 NH4+ + H2O = Co(NH3)6OH+2 + 7 H+ + log_k -43.7148 + delta_h 0 kJ + -gamma 0 0 # Id: 2014901 - # log K source: NIST2.1.1 - # Delta H source: MTQ3.11 - #T and ionic strength: -Co+3 + 5NH4+ + Cl- = Co(NH3)5Cl+2 + 5H+ - log_k -17.9584 - delta_h 113.38 kJ - -gamma 0 0 + # log K source: NIST2.1.1 + # Delta H source: MTQ3.11 + #T and ionic strength: +Co+3 + 5 NH4+ + Cl- = Co(NH3)5Cl+2 + 5 H+ + log_k -17.9584 + delta_h 113.38 kJ + -gamma 0 0 # Id: 2014902 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Co+3 + 6NH4+ + Cl- = Co(NH3)6Cl+2 + 6H+ - log_k -33.9179 - delta_h 104.34 kJ - -gamma 0 0 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Co+3 + 6 NH4+ + Cl- = Co(NH3)6Cl+2 + 6 H+ + log_k -33.9179 + delta_h 104.34 kJ + -gamma 0 0 # Id: 2014903 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Co+3 + 6NH4+ + Br- = Co(NH3)6Br+2 + 6H+ - log_k -33.8884 - delta_h 110.57 kJ - -gamma 0 0 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Co+3 + 6 NH4+ + Br- = Co(NH3)6Br+2 + 6 H+ + log_k -33.8884 + delta_h 110.57 kJ + -gamma 0 0 # Id: 2014904 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Co+3 + 6NH4+ + I- = Co(NH3)6I+2 + 6H+ - log_k -33.4808 - delta_h 115.44 kJ - -gamma 0 0 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Co+3 + 6 NH4+ + I- = Co(NH3)6I+2 + 6 H+ + log_k -33.4808 + delta_h 115.44 kJ + -gamma 0 0 # Id: 2014905 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Co+3 + 6NH4+ + SO4-2 = Co(NH3)6SO4+ + 6H+ - log_k -28.9926 - delta_h 124.5 kJ - -gamma 0 0 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Co+3 + 6 NH4+ + SO4-2 = Co(NH3)6SO4+ + 6 H+ + log_k -28.9926 + delta_h 124.5 kJ + -gamma 0 0 # Id: 2014906 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: -Cr(OH)2+ + 6NH4+ = Cr(NH3)6+3 + 2H2O + 4H+ - log_k -32.8952 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: +Cr(OH)2+ + 6 NH4+ = Cr(NH3)6+3 + 2 H2O + 4 H+ + log_k -32.8952 + delta_h 0 kJ + -gamma 0 0 # Id: 2114900 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 4.50 25.0 -Cr(OH)2+ + 5NH4+ = Cr(NH3)5OH+2 + 4H+ + H2O - log_k -30.2759 - delta_h 0 kJ - -gamma 0 0 +Cr(OH)2+ + 5 NH4+ = Cr(NH3)5OH+2 + 4 H+ + H2O + log_k -30.2759 + delta_h 0 kJ + -gamma 0 0 # Id: 2114901 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cr(OH)2+ + 6NH4+ + Cl- = Cr(NH3)6Cl+2 + 2H2O + 4H+ - log_k -31.7932 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cr(OH)2+ + 6 NH4+ + Cl- = Cr(NH3)6Cl+2 + 2 H2O + 4 H+ + log_k -31.7932 + delta_h 0 kJ + -gamma 0 0 # Id: 2114904 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cr(OH)2+ + 6NH4+ + Br- = Cr(NH3)6Br+2 + 4H+ + 2H2O - log_k -31.887 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cr(OH)2+ + 6 NH4+ + Br- = Cr(NH3)6Br+2 + 4 H+ + 2 H2O + log_k -31.887 + delta_h 0 kJ + -gamma 0 0 # Id: 2114905 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -Cr(OH)2+ + 6NH4+ + I- = Cr(NH3)6I+2 + 4H+ + 2H2O - log_k -32.008 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +Cr(OH)2+ + 6 NH4+ + I- = Cr(NH3)6I+2 + 4 H+ + 2 H2O + log_k -32.008 + delta_h 0 kJ + -gamma 0 0 # Id: 2114906 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: #Cr(OH)2+ + 4NH4+ = cis+ + 4H+ # log_k -29.8574 # delta_h 0 kJ # -gamma 0 0 # # Id: 4902113 -# # log K source: MTQ3.11 -# # Delta H source: MTQ3.11 -# #T and ionic strength: +# # log K source: MTQ3.11 +# # Delta H source: MTQ3.11 +# #T and ionic strength: #Cr(OH)2+ + 4NH4+ = trans+ + 4H+ # log_k -30.5537 # delta_h 0 kJ # -gamma 0 0 # # Id: 4902114 -# # log K source: MTQ3.11 -# # Delta H source: MTQ3.11 -# #T and ionic strength: +# # log K source: MTQ3.11 +# # Delta H source: MTQ3.11 +# #T and ionic strength: Ca+2 + NH4+ = CaNH3+2 + H+ - log_k -9.144 - delta_h 0 kJ - -gamma 0 0 + log_k -9.144 + delta_h 0 kJ + -gamma 0 0 # Id: 1504901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 -Ca+2 + 2NH4+ = Ca(NH3)2+2 + 2H+ - log_k -18.788 - delta_h 0 kJ - -gamma 0 0 +Ca+2 + 2 NH4+ = Ca(NH3)2+2 + 2 H+ + log_k -18.788 + delta_h 0 kJ + -gamma 0 0 # Id: 1504902 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Sr+2 + NH4+ = SrNH3+2 + H+ - log_k -9.344 - delta_h 0 kJ - -gamma 0 0 + log_k -9.344 + delta_h 0 kJ + -gamma 0 0 # Id: 8004901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Ba+2 + NH4+ = BaNH3+2 + H+ - log_k -9.444 - delta_h 0 kJ - -gamma 0 0 + log_k -9.444 + delta_h 0 kJ + -gamma 0 0 # Id: 1004901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Tl+ + NO2- = TlNO2 - log_k 0.83 - delta_h 0 kJ - -gamma 0 0 + log_k 0.83 + delta_h 0 kJ + -gamma 0 0 # Id: 8704910 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Ag+ + NO2- = AgNO2 - log_k 2.32 - delta_h -29 kJ - -gamma 0 0 + log_k 2.32 + delta_h -29 kJ + -gamma 0 0 # Id: 204911 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Ag+ + 2NO2- = Ag(NO2)2- - log_k 2.51 - delta_h -46 kJ - -gamma 0 0 +Ag+ + 2 NO2- = Ag(NO2)2- + log_k 2.51 + delta_h -46 kJ + -gamma 0 0 # Id: 204910 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Cu+2 + NO2- = CuNO2+ - log_k 2.02 - delta_h 0 kJ - -gamma 0 0 + log_k 2.02 + delta_h 0 kJ + -gamma 0 0 # Id: 2314911 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Cu+2 + 2NO2- = Cu(NO2)2 - log_k 3.03 - delta_h 0 kJ - -gamma 0 0 +Cu+2 + 2 NO2- = Cu(NO2)2 + log_k 3.03 + delta_h 0 kJ + -gamma 0 0 # Id: 2314912 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Co+2 + NO2- = CoNO2+ - log_k 0.848 - delta_h 0 kJ - -gamma 0 0 + log_k 0.848 + delta_h 0 kJ + -gamma 0 0 # Id: 2004911 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Sn(OH)2 + 2H+ + NO3- = SnNO3+ + 2H2O - log_k 7.942 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 2 H+ + NO3- = SnNO3+ + 2 H2O + log_k 7.942 + delta_h 0 kJ + -gamma 0 0 # Id: 7904921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Pb+2 + NO3- = PbNO3+ - log_k 1.17 - delta_h 2 kJ - -gamma 0 0 + log_k 1.17 + delta_h 2 kJ + -gamma 0 0 # Id: 6004920 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Pb+2 + 2NO3- = Pb(NO3)2 - log_k 1.4 - delta_h -6.6 kJ - -gamma 0 0 +Pb+2 + 2 NO3- = Pb(NO3)2 + log_k 1.4 + delta_h -6.6 kJ + -gamma 0 0 # Id: 6004921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Tl+ + NO3- = TlNO3 - log_k 0.33 - delta_h -2 kJ - -gamma 0 0 + log_k 0.33 + delta_h -2 kJ + -gamma 0 0 # Id: 8704920 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Tl(OH)3 + NO3- + 3H+ = TlNO3+2 + 3H2O - log_k 7.0073 - delta_h 0 kJ - -gamma 0 0 +Tl(OH)3 + NO3- + 3 H+ = TlNO3+2 + 3 H2O + log_k 7.0073 + delta_h 0 kJ + -gamma 0 0 # Id: 8714920 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cd+2 + NO3- = CdNO3+ - log_k 0.5 - delta_h -21 kJ - -gamma 0 0 + log_k 0.5 + delta_h -21 kJ + -gamma 0 0 # Id: 1604920 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -Cd+2 + 2NO3- = Cd(NO3)2 - log_k 0.2 - delta_h 0 kJ - -gamma 0 0 +Cd+2 + 2 NO3- = Cd(NO3)2 + log_k 0.2 + delta_h 0 kJ + -gamma 0 0 # Id: 1604921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + NO3- = HgNO3+ + 2H2O - log_k 5.7613 - delta_h 0 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + NO3- = HgNO3+ + 2 H2O + log_k 5.7613 + delta_h 0 kJ + -gamma 0 0 # Id: 3614920 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 3.00 25.0 -Hg(OH)2 + 2H+ + 2NO3- = Hg(NO3)2 + 2H2O - log_k 5.38 - delta_h 0 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 2 NO3- = Hg(NO3)2 + 2 H2O + log_k 5.38 + delta_h 0 kJ + -gamma 0 0 # Id: 3614921 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 3.00 25.0 Cu+2 + NO3- = CuNO3+ - log_k 0.5 - delta_h -4.1 kJ - -gamma 0 0 + log_k 0.5 + delta_h -4.1 kJ + -gamma 0 0 # Id: 2314921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Cu+2 + 2NO3- = Cu(NO3)2 - log_k -0.4 - delta_h 0 kJ - -gamma 0 0 +Cu+2 + 2 NO3- = Cu(NO3)2 + log_k -0.4 + delta_h 0 kJ + -gamma 0 0 # Id: 2314922 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Zn+2 + NO3- = ZnNO3+ - log_k 0.4 - delta_h -4.6 kJ - -gamma 0 0 + log_k 0.4 + delta_h -4.6 kJ + -gamma 0 0 # Id: 9504921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Zn+2 + 2NO3- = Zn(NO3)2 - log_k -0.3 - delta_h 0 kJ - -gamma 0 0 +Zn+2 + 2 NO3- = Zn(NO3)2 + log_k -0.3 + delta_h 0 kJ + -gamma 0 0 # Id: 9504922 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Ag+ + NO3- = AgNO3 - log_k -0.1 - delta_h 22.6 kJ - -gamma 0 0 + log_k -0.1 + delta_h 22.6 kJ + -gamma 0 0 # Id: 204920 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ni+2 + NO3- = NiNO3+ - log_k 0.4 - delta_h 0 kJ - -gamma 0 0 + log_k 0.4 + delta_h 0 kJ + -gamma 0 0 # Id: 5404921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Co+2 + NO3- = CoNO3+ - log_k 0.2 - delta_h 0 kJ - -gamma 0 0 + log_k 0.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2004921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Co+2 + 2NO3- = Co(NO3)2 - log_k 0.5085 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 2 NO3- = Co(NO3)2 + log_k 0.5085 + delta_h 0 kJ + -gamma 0 0 # Id: 2004922 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Fe+3 + NO3- = FeNO3+2 - log_k 1 - delta_h -37 kJ - -gamma 0 0 + log_k 1 + delta_h -37 kJ + -gamma 0 0 # Id: 2814921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Mn+2 + NO3- = MnNO3+ - log_k 0.2 - delta_h 0 kJ - -gamma 0 0 + log_k 0.2 + delta_h 0 kJ + -gamma 0 0 # Id: 4704921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Mn+2 + 2NO3- = Mn(NO3)2 - log_k 0.6 - delta_h -1.6569 kJ - -gamma 0 0 +Mn+2 + 2 NO3- = Mn(NO3)2 + log_k 0.6 + delta_h -1.6569 kJ + -gamma 0 0 # Id: 4704920 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + NO3- + 2H+ = CrNO3+2 + 2H2O - log_k 8.2094 - delta_h -65.4378 kJ - -gamma 0 0 +Cr(OH)2+ + NO3- + 2 H+ = CrNO3+2 + 2 H2O + log_k 8.2094 + delta_h -65.4378 kJ + -gamma 0 0 # Id: 2114920 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: UO2+2 + NO3- = UO2NO3+ - log_k 0.3 - delta_h -12 kJ - -gamma 0 0 + log_k 0.3 + delta_h -12 kJ + -gamma 0 0 # Id: 8934921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 VO2+ + NO3- = VO2NO3 - log_k -0.296 - delta_h 0 kJ - -gamma 0 0 + log_k -0.296 + delta_h 0 kJ + -gamma 0 0 # Id: 9034920 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 20.0 Ca+2 + NO3- = CaNO3+ - log_k 0.5 - delta_h -5.4 kJ - -gamma 0 0 + log_k 0.5 + delta_h -5.4 kJ + -gamma 0 0 # Id: 1504921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Sr+2 + NO3- = SrNO3+ - log_k 0.6 - delta_h -10 kJ - -gamma 0 0 + log_k 0.6 + delta_h -10 kJ + -gamma 0 0 # Id: 8004921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ba+2 + NO3- = BaNO3+ - log_k 0.7 - delta_h -13 kJ - -gamma 0 0 + log_k 0.7 + delta_h -13 kJ + -gamma 0 0 # Id: 1004921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 H+ + Cyanide- = HCyanide - log_k 9.21 - delta_h -43.63 kJ - -gamma 0 0 + log_k 9.21 + delta_h -43.63 kJ + -gamma 0 0 # Id: 3301431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Cd+2 + Cyanide- = CdCyanide+ - log_k 6.01 - delta_h -30 kJ - -gamma 0 0 + log_k 6.01 + delta_h -30 kJ + -gamma 0 0 # Id: 1601431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Cd+2 + 2Cyanide- = Cd(Cyanide)2 - log_k 11.12 - delta_h -54.3 kJ - -gamma 0 0 +Cd+2 + 2 Cyanide- = Cd(Cyanide)2 + log_k 11.12 + delta_h -54.3 kJ + -gamma 0 0 # Id: 1601432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Cd+2 + 3Cyanide- = Cd(Cyanide)3- - log_k 15.65 - delta_h -90.3 kJ - -gamma 0 0 +Cd+2 + 3 Cyanide- = Cd(Cyanide)3- + log_k 15.65 + delta_h -90.3 kJ + -gamma 0 0 # Id: 1601433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Cd+2 + 4Cyanide- = Cd(Cyanide)4-2 - log_k 17.92 - delta_h -112 kJ - -gamma 0 0 +Cd+2 + 4 Cyanide- = Cd(Cyanide)4-2 + log_k 17.92 + delta_h -112 kJ + -gamma 0 0 # Id: 1601434 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + Cyanide- = HgCyanide+ + 2H2O - log_k 23.194 - delta_h -136.72 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + Cyanide- = HgCyanide+ + 2 H2O + log_k 23.194 + delta_h -136.72 kJ + -gamma 0 0 # Id: 3611431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + 2Cyanide- = Hg(Cyanide)2 + 2H2O - log_k 38.944 - delta_h 154.28 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 2 Cyanide- = Hg(Cyanide)2 + 2 H2O + log_k 38.944 + delta_h 154.28 kJ + -gamma 0 0 # Id: 3611432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + 3Cyanide- = Hg(Cyanide)3- + 2H2O - log_k 42.504 - delta_h -262.72 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 3 Cyanide- = Hg(Cyanide)3- + 2 H2O + log_k 42.504 + delta_h -262.72 kJ + -gamma 0 0 # Id: 3611433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + 4Cyanide- = Hg(Cyanide)4-2 + 2H2O - log_k 45.164 - delta_h -288.72 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 4 Cyanide- = Hg(Cyanide)4-2 + 2 H2O + log_k 45.164 + delta_h -288.72 kJ + -gamma 0 0 # Id: 3611434 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Cu+ + 2Cyanide- = Cu(Cyanide)2- - log_k 21.9145 - delta_h -121 kJ - -gamma 0 0 +Cu+ + 2 Cyanide- = Cu(Cyanide)2- + log_k 21.9145 + delta_h -121 kJ + -gamma 0 0 # Id: 2301432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 -Cu+ + 3Cyanide- = Cu(Cyanide)3-2 - log_k 27.2145 - delta_h -167.4 kJ - -gamma 0 0 +Cu+ + 3 Cyanide- = Cu(Cyanide)3-2 + log_k 27.2145 + delta_h -167.4 kJ + -gamma 0 0 # Id: 2301433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Cu+ + 4Cyanide- = Cu(Cyanide)4-3 - log_k 28.7145 - delta_h -214.2 kJ - -gamma 0 0 +Cu+ + 4 Cyanide- = Cu(Cyanide)4-3 + log_k 28.7145 + delta_h -214.2 kJ + -gamma 0 0 # Id: 2301431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Ag+ + 2Cyanide- = Ag(Cyanide)2- - log_k 20.48 - delta_h -137 kJ - -gamma 0 0 +Ag+ + 2 Cyanide- = Ag(Cyanide)2- + log_k 20.48 + delta_h -137 kJ + -gamma 0 0 # Id: 201432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Ag+ + 3Cyanide- = Ag(Cyanide)3-2 - log_k 21.7 - delta_h -140 kJ - -gamma 0 0 +Ag+ + 3 Cyanide- = Ag(Cyanide)3-2 + log_k 21.7 + delta_h -140 kJ + -gamma 0 0 # Id: 201433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ag+ + H2O + Cyanide- = Ag(Cyanide)OH- + H+ - log_k -0.777 - delta_h 0 kJ - -gamma 0 0 + log_k -0.777 + delta_h 0 kJ + -gamma 0 0 # Id: 201431 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Ni+2 + 4Cyanide- = Ni(Cyanide)4-2 - log_k 30.2 - delta_h -180 kJ - -gamma 0 0 +Ni+2 + 4 Cyanide- = Ni(Cyanide)4-2 + log_k 30.2 + delta_h -180 kJ + -gamma 0 0 # Id: 5401431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Ni+2 + 4Cyanide- + H+ = NiH(Cyanide)4- - log_k 36.0289 - delta_h 0 kJ - -gamma 0 0 +Ni+2 + 4 Cyanide- + H+ = NiH(Cyanide)4- + log_k 36.0289 + delta_h 0 kJ + -gamma 0 0 # Id: 5401432 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 25.0 -Ni+2 + 4Cyanide- + 2H+ = NiH2Cyanide4 - log_k 40.7434 - delta_h 0 kJ - -gamma 0 0 +Ni+2 + 4 Cyanide- + 2 H+ = NiH2Cyanide4 + log_k 40.7434 + delta_h 0 kJ + -gamma 0 0 # Id: 5401433 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 25.0 -Ni+2 + 4Cyanide- + 3H+ = NiH3(Cyanide)4+ - log_k 43.3434 - delta_h 0 kJ - -gamma 0 0 +Ni+2 + 4 Cyanide- + 3 H+ = NiH3(Cyanide)4+ + log_k 43.3434 + delta_h 0 kJ + -gamma 0 0 # Id: 5401434 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 25.0 -Co+2 + 3Cyanide- = Co(Cyanide)3- - log_k 14.312 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 3 Cyanide- = Co(Cyanide)3- + log_k 14.312 + delta_h 0 kJ + -gamma 0 0 # Id: 2001431 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 -Co+2 + 5Cyanide- = Co(Cyanide)5-3 - log_k 23 - delta_h -257 kJ - -gamma 0 0 +Co+2 + 5 Cyanide- = Co(Cyanide)5-3 + log_k 23 + delta_h -257 kJ + -gamma 0 0 # Id: 2001432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 1.00 25.0 -Fe+2 + 6Cyanide- = Fe(Cyanide)6-4 - log_k 35.4 - delta_h -358 kJ - -gamma 0 0 +Fe+2 + 6 Cyanide- = Fe(Cyanide)6-4 + log_k 35.4 + delta_h -358 kJ + -gamma 0 0 # Id: 2801431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -H+ + Fe+2 + 6Cyanide- = HFe(Cyanide)6-3 - log_k 39.71 - delta_h -356 kJ - -gamma 0 0 +H+ + Fe+2 + 6 Cyanide- = HFe(Cyanide)6-3 + log_k 39.71 + delta_h -356 kJ + -gamma 0 0 # Id: 2801432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -2H+ + Fe+2 + 6Cyanide- = H2Fe(Cyanide)6-2 - log_k 42.11 - delta_h -352 kJ - -gamma 0 0 +2 H+ + Fe+2 + 6 Cyanide- = H2Fe(Cyanide)6-2 + log_k 42.11 + delta_h -352 kJ + -gamma 0 0 # Id: 2801433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Fe+3 + 6Cyanide- = Fe(Cyanide)6-3 - log_k 43.6 - delta_h -293 kJ - -gamma 0 0 +Fe+3 + 6 Cyanide- = Fe(Cyanide)6-3 + log_k 43.6 + delta_h -293 kJ + -gamma 0 0 # Id: 2811431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -2Fe+3 + 6Cyanide- = Fe2(Cyanide)6 - log_k 47.6355 - delta_h -218 kJ - -gamma 0 0 +2 Fe+3 + 6 Cyanide- = Fe2(Cyanide)6 + log_k 47.6355 + delta_h -218 kJ + -gamma 0 0 # Id: 2811432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 -Sn(OH)2 + Fe+3 + 6Cyanide- + 2H+ = SnFe(Cyanide)6- + 2H2O - log_k 53.54 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + Fe+3 + 6 Cyanide- + 2 H+ = SnFe(Cyanide)6- + 2 H2O + log_k 53.54 + delta_h 0 kJ + -gamma 0 0 # Id: 7901431 - # log K source: Ba1987 - # Delta H source: + # log K source: Ba1987 + # Delta H source: #T and ionic strength: 0.00 25.0 -NH4+ + Fe+2 + 6Cyanide- = NH4Fe(Cyanide)6-3 - log_k 37.7 - delta_h -354 kJ - -gamma 0 0 +NH4+ + Fe+2 + 6 Cyanide- = NH4Fe(Cyanide)6-3 + log_k 37.7 + delta_h -354 kJ + -gamma 0 0 # Id: 4901431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Tl+ + Fe+2 + 6Cyanide- = TlFe(Cyanide)6-3 - log_k 38.4 - delta_h -365.5 kJ - -gamma 0 0 +Tl+ + Fe+2 + 6 Cyanide- = TlFe(Cyanide)6-3 + log_k 38.4 + delta_h -365.5 kJ + -gamma 0 0 # Id: 8701432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Mg+2 + Fe+3 + 6Cyanide- = MgFe(Cyanide)6- - log_k 46.39 - delta_h -290 kJ - -gamma 0 0 +Mg+2 + Fe+3 + 6 Cyanide- = MgFe(Cyanide)6- + log_k 46.39 + delta_h -290 kJ + -gamma 0 0 # Id: 4601431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Mg+2 + Fe+2 + 6Cyanide- = MgFe(Cyanide)6-2 - log_k 39.21 - delta_h -346 kJ - -gamma 0 0 +Mg+2 + Fe+2 + 6 Cyanide- = MgFe(Cyanide)6-2 + log_k 39.21 + delta_h -346 kJ + -gamma 0 0 # Id: 4601432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Ca+2 + Fe+3 + 6Cyanide- = CaFe(Cyanide)6- - log_k 46.43 - delta_h -291 kJ - -gamma 0 0 +Ca+2 + Fe+3 + 6 Cyanide- = CaFe(Cyanide)6- + log_k 46.43 + delta_h -291 kJ + -gamma 0 0 # Id: 1501431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Ca+2 + Fe+2 + 6Cyanide- = CaFe(Cyanide)6-2 - log_k 39.1 - delta_h -347 kJ - -gamma 0 0 +Ca+2 + Fe+2 + 6 Cyanide- = CaFe(Cyanide)6-2 + log_k 39.1 + delta_h -347 kJ + -gamma 0 0 # Id: 1501432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -2Ca+2 + Fe+2 + 6Cyanide- = Ca2Fe(Cyanide)6 - log_k 40.6 - delta_h -350.201 kJ - -gamma 0 0 +2 Ca+2 + Fe+2 + 6 Cyanide- = Ca2Fe(Cyanide)6 + log_k 40.6 + delta_h -350.201 kJ + -gamma 0 0 # Id: 1501433 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Sr+2 + Fe+3 + 6Cyanide- = SrFe(Cyanide)6- - log_k 46.45 - delta_h -292 kJ - -gamma 0 0 +Sr+2 + Fe+3 + 6 Cyanide- = SrFe(Cyanide)6- + log_k 46.45 + delta_h -292 kJ + -gamma 0 0 # Id: 8001431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Sr+2 + Fe+2 + 6Cyanide- = SrFe(Cyanide)6-2 - log_k 39.1 - delta_h -350 kJ - -gamma 0 0 +Sr+2 + Fe+2 + 6 Cyanide- = SrFe(Cyanide)6-2 + log_k 39.1 + delta_h -350 kJ + -gamma 0 0 # Id: 8001432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Ba+2 + Fe+2 + 6Cyanide- = BaFe(Cyanide)6-2 - log_k 39.19 - delta_h -342 kJ - -gamma 0 0 +Ba+2 + Fe+2 + 6 Cyanide- = BaFe(Cyanide)6-2 + log_k 39.19 + delta_h -342 kJ + -gamma 0 0 # Id: 1001430 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Ba+2 + Fe+3 + 6Cyanide- = BaFe(Cyanide)6- - log_k 46.48 - delta_h -292 kJ - -gamma 0 0 +Ba+2 + Fe+3 + 6 Cyanide- = BaFe(Cyanide)6- + log_k 46.48 + delta_h -292 kJ + -gamma 0 0 # Id: 1001431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Na+ + Fe+2 + 6Cyanide- = NaFe(Cyanide)6-3 - log_k 37.6 - delta_h -354 kJ - -gamma 0 0 +Na+ + Fe+2 + 6 Cyanide- = NaFe(Cyanide)6-3 + log_k 37.6 + delta_h -354 kJ + -gamma 0 0 # Id: 5001431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -K+ + Fe+2 + 6Cyanide- = KFe(Cyanide)6-3 - log_k 37.75 - delta_h -353.9 kJ - -gamma 0 0 +K+ + Fe+2 + 6 Cyanide- = KFe(Cyanide)6-3 + log_k 37.75 + delta_h -353.9 kJ + -gamma 0 0 # Id: 4101433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -K+ + Fe+3 + 6Cyanide- = KFe(Cyanide)6-2 - log_k 45.04 - delta_h -291 kJ - -gamma 0 0 +K+ + Fe+3 + 6 Cyanide- = KFe(Cyanide)6-2 + log_k 45.04 + delta_h -291 kJ + -gamma 0 0 # Id: 4101430 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 H+ + PO4-3 = HPO4-2 - log_k 12.375 - delta_h -15 kJ - -gamma 5 0 + log_k 12.375 + delta_h -15 kJ + -gamma 5 0 # Id: 3305800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -2H+ + PO4-3 = H2PO4- - log_k 19.573 - delta_h -18 kJ - -gamma 5.4 0 +2 H+ + PO4-3 = H2PO4- + log_k 19.573 + delta_h -18 kJ + -gamma 5.4 0 # Id: 3305801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -3H+ + PO4-3 = H3PO4 - log_k 21.721 - delta_h -10.1 kJ - -gamma 0 0 +3 H+ + PO4-3 = H3PO4 + log_k 21.721 + delta_h -10.1 kJ + -gamma 0 0 # Id: 3305802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Co+2 + H+ + PO4-3 = CoHPO4 - log_k 15.4128 - delta_h 0 kJ - -gamma 0 0 + log_k 15.4128 + delta_h 0 kJ + -gamma 0 0 # Id: 2005800 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 25.0 -Fe+2 + 2H+ + PO4-3 = FeH2PO4+ - log_k 22.273 - delta_h 0 kJ - -gamma 5.4 0 +Fe+2 + 2 H+ + PO4-3 = FeH2PO4+ + log_k 22.273 + delta_h 0 kJ + -gamma 5.4 0 # Id: 2805800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Fe+2 + H+ + PO4-3 = FeHPO4 - log_k 15.975 - delta_h 0 kJ - -gamma 0 0 + log_k 15.975 + delta_h 0 kJ + -gamma 0 0 # Id: 2805801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Fe+3 + 2H+ + PO4-3 = FeH2PO4+2 - log_k 23.8515 - delta_h 0 kJ - -gamma 5.4 0 +Fe+3 + 2 H+ + PO4-3 = FeH2PO4+2 + log_k 23.8515 + delta_h 0 kJ + -gamma 5.4 0 # Id: 2815801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Fe+3 + H+ + PO4-3 = FeHPO4+ - log_k 22.292 - delta_h -30.5432 kJ - -gamma 5.4 0 + log_k 22.292 + delta_h -30.5432 kJ + -gamma 5.4 0 # Id: 2815800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 -Cr(OH)2+ + 4H+ + PO4-3 = CrH2PO4+2 + 2H2O - log_k 31.9068 - delta_h 0 kJ - -gamma 0 0 +Cr(OH)2+ + 4 H+ + PO4-3 = CrH2PO4+2 + 2 H2O + log_k 31.9068 + delta_h 0 kJ + -gamma 0 0 # Id: 2115800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: U+4 + PO4-3 + H+ = UHPO4+2 - log_k 24.443 - delta_h 31.38 kJ - -gamma 0 0 + log_k 24.443 + delta_h 31.38 kJ + -gamma 0 0 # Id: 8915800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 2PO4-3 + 2H+ = U(HPO4)2 - log_k 46.833 - delta_h 7.1128 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 2 PO4-3 + 2 H+ = U(HPO4)2 + log_k 46.833 + delta_h 7.1128 kJ + -gamma 0 0 # Id: 8915801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 3PO4-3 + 3H+ = U(HPO4)3-2 - log_k 67.564 - delta_h -32.6352 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 3 PO4-3 + 3 H+ = U(HPO4)3-2 + log_k 67.564 + delta_h -32.6352 kJ + -gamma 0 0 # Id: 8915802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -U+4 + 4PO4-3 + 4H+ = U(HPO4)4-4 - log_k 88.483 - delta_h -110.876 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +U+4 + 4 PO4-3 + 4 H+ = U(HPO4)4-4 + log_k 88.483 + delta_h -110.876 kJ + -gamma 0 0 # Id: 8915803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: UO2+2 + H+ + PO4-3 = UO2HPO4 - log_k 19.655 - delta_h -8.7864 kJ - -gamma 0 0 + log_k 19.655 + delta_h -8.7864 kJ + -gamma 0 0 # Id: 8935800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -UO2+2 + 2PO4-3 + 2H+ = UO2(HPO4)2-2 - log_k 42.988 - delta_h -47.6934 kJ - -gamma 0 0 +UO2+2 + 2 PO4-3 + 2 H+ = UO2(HPO4)2-2 + log_k 42.988 + delta_h -47.6934 kJ + -gamma 0 0 # Id: 8935801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -UO2+2 + 2H+ + PO4-3 = UO2H2PO4+ - log_k 22.833 - delta_h -15.4808 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +UO2+2 + 2 H+ + PO4-3 = UO2H2PO4+ + log_k 22.833 + delta_h -15.4808 kJ + -gamma 0 0 # Id: 8935802 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -UO2+2 + 2PO4-3 + 4H+ = UO2(H2PO4)2 - log_k 44.7 - delta_h -69.036 kJ - -gamma 0 0 +UO2+2 + 2 PO4-3 + 4 H+ = UO2(H2PO4)2 + log_k 44.7 + delta_h -69.036 kJ + -gamma 0 0 # Id: 8935803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -UO2+2 + 3PO4-3 + 6H+ = UO2(H2PO4)3- - log_k 66.245 - delta_h -119.662 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +UO2+2 + 3 PO4-3 + 6 H+ = UO2(H2PO4)3- + log_k 66.245 + delta_h -119.662 kJ + -gamma 0 0 # Id: 8935804 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: UO2+2 + PO4-3 = UO2PO4- - log_k 13.25 - delta_h 0 kJ - -gamma 0 0 + log_k 13.25 + delta_h 0 kJ + -gamma 0 0 # Id: 8935805 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Mg+2 + PO4-3 = MgPO4- - log_k 4.654 - delta_h 12.9704 kJ - -gamma 5.4 0 + log_k 4.654 + delta_h 12.9704 kJ + -gamma 5.4 0 # Id: 4605800 - # log K source: SCD3.02 (1993 GMa) - # Delta H source: MTQ3.11 + # log K source: SCD3.02 (1993 GMa) + # Delta H source: MTQ3.11 #T and ionic strength: 0.20 25.0 -Mg+2 + 2H+ + PO4-3 = MgH2PO4+ - log_k 21.2561 - delta_h -4.6861 kJ - -gamma 5.4 0 +Mg+2 + 2 H+ + PO4-3 = MgH2PO4+ + log_k 21.2561 + delta_h -4.6861 kJ + -gamma 5.4 0 # Id: 4605801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 37.0 Mg+2 + H+ + PO4-3 = MgHPO4 - log_k 15.175 - delta_h -3 kJ - -gamma 0 0 + log_k 15.175 + delta_h -3 kJ + -gamma 0 0 # Id: 4605802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ca+2 + H+ + PO4-3 = CaHPO4 - log_k 15.035 - delta_h -3 kJ - -gamma 0 0 + log_k 15.035 + delta_h -3 kJ + -gamma 0 0 # Id: 1505800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ca+2 + PO4-3 = CaPO4- - log_k 6.46 - delta_h 12.9704 kJ - -gamma 5.4 0 + log_k 6.46 + delta_h 12.9704 kJ + -gamma 5.4 0 # Id: 1505801 - # log K source: SCD3.02 (1993 GMa) - # Delta H source: MTQ3.11 + # log K source: SCD3.02 (1993 GMa) + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Ca+2 + 2H+ + PO4-3 = CaH2PO4+ - log_k 20.923 - delta_h -6 kJ - -gamma 5.4 0 +Ca+2 + 2 H+ + PO4-3 = CaH2PO4+ + log_k 20.923 + delta_h -6 kJ + -gamma 5.4 0 # Id: 1505802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Sr+2 + H+ + PO4-3 = SrHPO4 - log_k 14.8728 - delta_h 0 kJ - -gamma 0 0 + log_k 14.8728 + delta_h 0 kJ + -gamma 0 0 # Id: 8005800 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 25.0 -Sr+2 + 2H+ + PO4-3 = SrH2PO4+ - log_k 20.4019 - delta_h 0 kJ - -gamma 0 0 +Sr+2 + 2 H+ + PO4-3 = SrH2PO4+ + log_k 20.4019 + delta_h 0 kJ + -gamma 0 0 # Id: 8005801 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 20.0 Na+ + H+ + PO4-3 = NaHPO4- - log_k 13.445 - delta_h 0 kJ - -gamma 5.4 0 + log_k 13.445 + delta_h 0 kJ + -gamma 5.4 0 # Id: 5005800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 K+ + H+ + PO4-3 = KHPO4- - log_k 13.255 - delta_h 0 kJ - -gamma 5.4 0 + log_k 13.255 + delta_h 0 kJ + -gamma 5.4 0 # Id: 4105800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -H3AsO3 = AsO3-3 + 3H+ - log_k -34.744 - delta_h 84.726 kJ - -gamma 0 0 +H3AsO3 = AsO3-3 + 3 H+ + log_k -34.744 + delta_h 84.726 kJ + -gamma 0 0 # Id: 3300602 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -H3AsO3 = HAsO3-2 + 2H+ - log_k -21.33 - delta_h 59.4086 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +H3AsO3 = HAsO3-2 + 2 H+ + log_k -21.33 + delta_h 59.4086 kJ + -gamma 0 0 # Id: 3300601 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: H3AsO3 = H2AsO3- + H+ - log_k -9.29 - delta_h 27.41 kJ - -gamma 0 0 + log_k -9.29 + delta_h 27.41 kJ + -gamma 0 0 # Id: 3300600 - # log K source: NIST46.4 - # Delta H source: NIST2.1.1 + # log K source: NIST46.4 + # Delta H source: NIST2.1.1 #T and ionic strength: 0.00 25.0 H3AsO3 + H+ = H4AsO3+ - log_k -0.305 - delta_h 0 kJ - -gamma 0 0 + log_k -0.305 + delta_h 0 kJ + -gamma 0 0 # Id: 3300603 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -H3AsO4 = AsO4-3 + 3H+ - log_k -20.7 - delta_h 12.9 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +H3AsO4 = AsO4-3 + 3 H+ + log_k -20.7 + delta_h 12.9 kJ + -gamma 0 0 # Id: 3300613 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -H3AsO4 = HAsO4-2 + 2H+ - log_k -9.2 - delta_h -4.1 kJ - -gamma 0 0 +H3AsO4 = HAsO4-2 + 2 H+ + log_k -9.2 + delta_h -4.1 kJ + -gamma 0 0 # Id: 3300612 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 H3AsO4 = H2AsO4- + H+ - log_k -2.24 - delta_h -7.1 kJ - -gamma 0 0 + log_k -2.24 + delta_h -7.1 kJ + -gamma 0 0 # Id: 3300611 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Sb(OH)3 + H2O = Sb(OH)4- + H+ - log_k -12.0429 - delta_h 69.8519 kJ - -gamma 0 0 + log_k -12.0429 + delta_h 69.8519 kJ + -gamma 0 0 # Id: 7400020 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: Sb(OH)3 + H+ = Sb(OH)2+ + H2O - log_k 1.3853 - delta_h 0 kJ - -gamma 0 0 + log_k 1.3853 + delta_h 0 kJ + -gamma 0 0 # Id: 7403302 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: Sb(OH)3 = HSbO2 + H2O - log_k -0.0105 - delta_h -0.13 kJ - -gamma 0 0 + log_k -0.0105 + delta_h -0.13 kJ + -gamma 0 0 # Id: 7400021 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Sb(OH)3 = SbO2- + H2O + H+ - log_k -11.8011 - delta_h 70.1866 kJ - -gamma 0 0 + log_k -11.8011 + delta_h 70.1866 kJ + -gamma 0 0 # Id: 7403301 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: -Sb(OH)3 + H+ = SbO+ + 2H2O - log_k 0.9228 - delta_h 8.2425 kJ - -gamma 0 0 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: +Sb(OH)3 + H+ = SbO+ + 2 H2O + log_k 0.9228 + delta_h 8.2425 kJ + -gamma 0 0 # Id: 7403300 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: -Sb(OH)6- = SbO3- + 3H2O - log_k 2.9319 - delta_h 0 kJ - -gamma 0 0 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: +Sb(OH)6- = SbO3- + 3 H2O + log_k 2.9319 + delta_h 0 kJ + -gamma 0 0 # Id: 7410021 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: -Sb(OH)6- + 2H+ = SbO2+ + 4H2O - log_k 2.3895 - delta_h 0 kJ - -gamma 0 0 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: +Sb(OH)6- + 2 H+ = SbO2+ + 4 H2O + log_k 2.3895 + delta_h 0 kJ + -gamma 0 0 # Id: 7413300 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: H+ + CO3-2 = HCO3- - log_k 10.329 - delta_h -14.6 kJ - -gamma 5.4 0 + log_k 10.329 + delta_h -14.6 kJ + -gamma 5.4 0 # Id: 3301400 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -2H+ + CO3-2 = H2CO3 - log_k 16.681 - delta_h -23.76 kJ - -gamma 0 0 +2 H+ + CO3-2 = H2CO3 + log_k 16.681 + delta_h -23.76 kJ + -gamma 0 0 # Id: 3301401 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Pb+2 + 2CO3-2 = Pb(CO3)2-2 - log_k 9.938 - delta_h 0 kJ - -gamma 0 0 +Pb+2 + 2 CO3-2 = Pb(CO3)2-2 + log_k 9.938 + delta_h 0 kJ + -gamma 0 0 # Id: 6001400 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Pb+2 + CO3-2 = PbCO3 - log_k 6.478 - delta_h 0 kJ - -gamma 0 0 + log_k 6.478 + delta_h 0 kJ + -gamma 0 0 # Id: 6001401 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Pb+2 + CO3-2 + H+ = PbHCO3+ - log_k 13.2 - delta_h 0 kJ - -gamma 0 0 + log_k 13.2 + delta_h 0 kJ + -gamma 0 0 # Id: 6001402 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Zn+2 + CO3-2 = ZnCO3 - log_k 4.76 - delta_h 0 kJ - -gamma 0 0 + log_k 4.76 + delta_h 0 kJ + -gamma 0 0 # Id: 9501401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Zn+2 + H+ + CO3-2 = ZnHCO3+ - log_k 11.829 - delta_h 0 kJ - -gamma 0 0 + log_k 11.829 + delta_h 0 kJ + -gamma 0 0 # Id: 9501400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + CO3-2 = HgCO3 + 2H2O - log_k 18.272 - delta_h 0 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + CO3-2 = HgCO3 + 2 H2O + log_k 18.272 + delta_h 0 kJ + -gamma 0 0 # Id: 3611401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 2H+ + 2CO3-2 = Hg(CO3)2-2 + 2H2O - log_k 21.772 - delta_h 0 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 2 CO3-2 = Hg(CO3)2-2 + 2 H2O + log_k 21.772 + delta_h 0 kJ + -gamma 0 0 # Id: 3611402 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 -Hg(OH)2 + 3H+ + CO3-2 = HgHCO3+ + 2H2O - log_k 22.542 - delta_h 0 kJ - -gamma 0 0 +Hg(OH)2 + 3 H+ + CO3-2 = HgHCO3+ + 2 H2O + log_k 22.542 + delta_h 0 kJ + -gamma 0 0 # Id: 3611403 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Cd+2 + CO3-2 = CdCO3 - log_k 4.3578 - delta_h 0 kJ - -gamma 0 0 + log_k 4.3578 + delta_h 0 kJ + -gamma 0 0 # Id: 1601401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 25.0 Cd+2 + H+ + CO3-2 = CdHCO3+ - log_k 10.6863 - delta_h 0 kJ - -gamma 0 0 + log_k 10.6863 + delta_h 0 kJ + -gamma 0 0 # Id: 1601400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 3.00 25.0 -Cd+2 + 2CO3-2 = Cd(CO3)2-2 - log_k 7.2278 - delta_h 0 kJ - -gamma 0 0 +Cd+2 + 2 CO3-2 = Cd(CO3)2-2 + log_k 7.2278 + delta_h 0 kJ + -gamma 0 0 # Id: 1601403 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 20.0 Cu+2 + CO3-2 = CuCO3 - log_k 6.77 - delta_h 0 kJ - -gamma 0 0 + log_k 6.77 + delta_h 0 kJ + -gamma 0 0 # Id: 2311400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Cu+2 + H+ + CO3-2 = CuHCO3+ - log_k 12.129 - delta_h 0 kJ - -gamma 0 0 + log_k 12.129 + delta_h 0 kJ + -gamma 0 0 # Id: 2311402 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -Cu+2 + 2CO3-2 = Cu(CO3)2-2 - log_k 10.2 - delta_h 0 kJ - -gamma 0 0 +Cu+2 + 2 CO3-2 = Cu(CO3)2-2 + log_k 10.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2311401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Ni+2 + CO3-2 = NiCO3 - log_k 4.5718 - delta_h 0 kJ - -gamma 0 0 + log_k 4.5718 + delta_h 0 kJ + -gamma 0 0 # Id: 5401401 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.70 25.0 Ni+2 + H+ + CO3-2 = NiHCO3+ - log_k 12.4199 - delta_h 0 kJ - -gamma 0 0 + log_k 12.4199 + delta_h 0 kJ + -gamma 0 0 # Id: 5401400 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.70 25.0 Co+2 + CO3-2 = CoCO3 - log_k 4.228 - delta_h 0 kJ - -gamma 0 0 + log_k 4.228 + delta_h 0 kJ + -gamma 0 0 # Id: 2001400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Co+2 + H+ + CO3-2 = CoHCO3+ - log_k 12.2199 - delta_h 0 kJ - -gamma 0 0 + log_k 12.2199 + delta_h 0 kJ + -gamma 0 0 # Id: 2001401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.70 25.0 Fe+2 + H+ + CO3-2 = FeHCO3+ - log_k 11.429 - delta_h 0 kJ - -gamma 6 0 + log_k 11.429 + delta_h 0 kJ + -gamma 6 0 # Id: 2801400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Mn+2 + H+ + CO3-2 = MnHCO3+ - log_k 11.629 - delta_h -10.6 kJ - -gamma 5 0 + log_k 11.629 + delta_h -10.6 kJ + -gamma 5 0 # Id: 4701400 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 UO2+2 + CO3-2 = UO2CO3 - log_k 9.6 - delta_h 4 kJ - -gamma 0 0 + log_k 9.6 + delta_h 4 kJ + -gamma 0 0 # Id: 8931400 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -UO2+2 + 2CO3-2 = UO2(CO3)2-2 - log_k 16.9 - delta_h 16 kJ - -gamma 0 0 +UO2+2 + 2 CO3-2 = UO2(CO3)2-2 + log_k 16.9 + delta_h 16 kJ + -gamma 0 0 # Id: 8931401 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -UO2+2 + 3CO3-2 = UO2(CO3)3-4 - log_k 21.6 - delta_h -40 kJ - -gamma 0 0 +UO2+2 + 3 CO3-2 = UO2(CO3)3-4 + log_k 21.6 + delta_h -40 kJ + -gamma 0 0 # Id: 8931402 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Be+2 + CO3-2 = BeCO3 - log_k 6.2546 - delta_h 0 kJ - -gamma 0 0 + log_k 6.2546 + delta_h 0 kJ + -gamma 0 0 # Id: 1101401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 3.00 25.0 Mg+2 + CO3-2 = MgCO3 - log_k 2.92 - delta_h 12 kJ - -gamma 0 0 + log_k 2.92 + delta_h 12 kJ + -gamma 0 0 # Id: 4601400 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Mg+2 + H+ + CO3-2 = MgHCO3+ - log_k 11.339 - delta_h -10.6 kJ - -gamma 4 0 + log_k 11.339 + delta_h -10.6 kJ + -gamma 4 0 # Id: 4601401 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ca+2 + H+ + CO3-2 = CaHCO3+ - log_k 11.599 - delta_h 5.4 kJ - -gamma 6 0 + log_k 11.599 + delta_h 5.4 kJ + -gamma 6 0 # Id: 1501400 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 CO3-2 + Ca+2 = CaCO3 - log_k 3.2 - delta_h 16 kJ - -gamma 0 0 + log_k 3.2 + delta_h 16 kJ + -gamma 0 0 # Id: 1501401 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Sr+2 + CO3-2 = SrCO3 - log_k 2.81 - delta_h 20 kJ - -gamma 0 0 + log_k 2.81 + delta_h 20 kJ + -gamma 0 0 # Id: 8001401 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Sr+2 + H+ + CO3-2 = SrHCO3+ - log_k 11.539 - delta_h 10.4 kJ - -gamma 6 0 + log_k 11.539 + delta_h 10.4 kJ + -gamma 6 0 # Id: 8001400 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ba+2 + CO3-2 = BaCO3 - log_k 2.71 - delta_h 16 kJ - -gamma 0 0 + log_k 2.71 + delta_h 16 kJ + -gamma 0 0 # Id: 1001401 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ba+2 + H+ + CO3-2 = BaHCO3+ - log_k 11.309 - delta_h 10.4 kJ - -gamma 6 0 + log_k 11.309 + delta_h 10.4 kJ + -gamma 6 0 # Id: 1001400 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Na+ + CO3-2 = NaCO3- - log_k 1.27 - delta_h -20.35 kJ - -gamma 5.4 0 + log_k 1.27 + delta_h -20.35 kJ + -gamma 5.4 0 # Id: 5001400 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 #T and ionic strength: 0.00 25.0 Na+ + H+ + CO3-2 = NaHCO3 - log_k 10.079 - delta_h -28.3301 kJ - -gamma 0 0 + log_k 10.079 + delta_h -28.3301 kJ + -gamma 0 0 # Id: 5001401 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 #T and ionic strength: 0.00 25.0 -H4SiO4 = H2SiO4-2 + 2H+ - log_k -23.04 - delta_h 61 kJ - -gamma 5.4 0 +H4SiO4 = H2SiO4-2 + 2 H+ + log_k -23.04 + delta_h 61 kJ + -gamma 5.4 0 # Id: 3307701 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 H4SiO4 = H3SiO4- + H+ - log_k -9.84 - delta_h 20 kJ - -gamma 4 0 + log_k -9.84 + delta_h 20 kJ + -gamma 4 0 # Id: 3307700 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 UO2+2 + H4SiO4 = UO2H3SiO4+ + H+ - log_k -1.9111 - delta_h 0 kJ - -gamma 0 0 + log_k -1.9111 + delta_h 0 kJ + -gamma 0 0 # Id: 8937700 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 25.0 H3BO3 = H2BO3- + H+ - log_k -9.236 - delta_h 13 kJ - -gamma 2.5 0 + log_k -9.236 + delta_h 13 kJ + -gamma 2.5 0 # Id: 3300900 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -2H3BO3 = H5(BO3)2- + H+ - log_k -9.306 - delta_h 8.4 kJ - -gamma 2.5 0 +2 H3BO3 = H5(BO3)2- + H+ + log_k -9.306 + delta_h 8.4 kJ + -gamma 2.5 0 # Id: 3300901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -3H3BO3 = H8(BO3)3- + H+ - log_k -7.306 - delta_h 29.4 kJ - -gamma 2.5 0 +3 H3BO3 = H8(BO3)3- + H+ + log_k -7.306 + delta_h 29.4 kJ + -gamma 2.5 0 # Id: 3300902 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ag+ + H3BO3 = AgH2BO3 + H+ - log_k -8.036 - delta_h 0 kJ - -gamma 2.5 0 + log_k -8.036 + delta_h 0 kJ + -gamma 2.5 0 # Id: 200901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Mg+2 + H3BO3 = MgH2BO3+ + H+ - log_k -7.696 - delta_h 13 kJ - -gamma 2.5 0 + log_k -7.696 + delta_h 13 kJ + -gamma 2.5 0 # Id: 4600901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ca+2 + H3BO3 = CaH2BO3+ + H+ - log_k -7.476 - delta_h 17 kJ - -gamma 2.5 0 + log_k -7.476 + delta_h 17 kJ + -gamma 2.5 0 # Id: 1500901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Sr+2 + H3BO3 = SrH2BO3+ + H+ - log_k -7.686 - delta_h 17 kJ - -gamma 2.5 0 + log_k -7.686 + delta_h 17 kJ + -gamma 2.5 0 # Id: 8000901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ba+2 + H3BO3 = BaH2BO3+ + H+ - log_k -7.746 - delta_h 17 kJ - -gamma 2.5 0 + log_k -7.746 + delta_h 17 kJ + -gamma 2.5 0 # Id: 1000901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Na+ + H3BO3 = NaH2BO3 + H+ - log_k -9.036 - delta_h 0 kJ - -gamma 2.5 0 + log_k -9.036 + delta_h 0 kJ + -gamma 2.5 0 # Id: 5000901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 CrO4-2 + H+ = HCrO4- - log_k 6.51 - delta_h 2 kJ - -gamma 0 0 + log_k 6.51 + delta_h 2 kJ + -gamma 0 0 # Id: 2123300 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -CrO4-2 + 2H+ = H2CrO4 - log_k 6.4188 - delta_h 39 kJ - -gamma 0 0 +CrO4-2 + 2 H+ = H2CrO4 + log_k 6.4188 + delta_h 39 kJ + -gamma 0 0 # Id: 2123301 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 20.0 -2CrO4-2 + 2H+ = Cr2O7-2 + H2O - log_k 14.56 - delta_h -15 kJ - -gamma 0 0 +2 CrO4-2 + 2 H+ = Cr2O7-2 + H2O + log_k 14.56 + delta_h -15 kJ + -gamma 0 0 # Id: 2123302 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -CrO4-2 + Cl- + 2H+ = CrO3Cl- + H2O - log_k 7.3086 - delta_h 0 kJ - -gamma 0 0 +CrO4-2 + Cl- + 2 H+ = CrO3Cl- + H2O + log_k 7.3086 + delta_h 0 kJ + -gamma 0 0 # Id: 2121800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -CrO4-2 + SO4-2 + 2H+ = CrO3SO4-2 + H2O - log_k 8.9937 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +CrO4-2 + SO4-2 + 2 H+ = CrO3SO4-2 + H2O + log_k 8.9937 + delta_h 0 kJ + -gamma 0 0 # Id: 2127320 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -CrO4-2 + 4H+ + PO4-3 = CrO3H2PO4- + H2O - log_k 29.3634 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +CrO4-2 + 4 H+ + PO4-3 = CrO3H2PO4- + H2O + log_k 29.3634 + delta_h 0 kJ + -gamma 0 0 # Id: 2125800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -CrO4-2 + 3H+ + PO4-3 = CrO3HPO4-2 + H2O - log_k 26.6806 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +CrO4-2 + 3 H+ + PO4-3 = CrO3HPO4-2 + H2O + log_k 26.6806 + delta_h 0 kJ + -gamma 0 0 # Id: 2125801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: CrO4-2 + Na+ = NaCrO4- - log_k 0.6963 - delta_h 0 kJ - -gamma 0 0 + log_k 0.6963 + delta_h 0 kJ + -gamma 0 0 # Id: 5002120 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: K+ + CrO4-2 = KCrO4- - log_k 0.57 - delta_h 0 kJ - -gamma 0 0 + log_k 0.57 + delta_h 0 kJ + -gamma 0 0 # Id: 4102120 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 18.0 MoO4-2 + H+ = HMoO4- - log_k 4.2988 - delta_h 20 kJ - -gamma 0 0 + log_k 4.2988 + delta_h 20 kJ + -gamma 0 0 # Id: 3304801 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 20.0 -MoO4-2 + 2H+ = H2MoO4 - log_k 8.1636 - delta_h -26 kJ - -gamma 0 0 +MoO4-2 + 2 H+ = H2MoO4 + log_k 8.1636 + delta_h -26 kJ + -gamma 0 0 # Id: 3304802 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 20.0 -7MoO4-2 + 8H+ = Mo7O24-6 + 4H2O - log_k 52.99 - delta_h -228 kJ - -gamma 0 0 +7 MoO4-2 + 8 H+ = Mo7O24-6 + 4 H2O + log_k 52.99 + delta_h -228 kJ + -gamma 0 0 # Id: 3304803 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 -7MoO4-2 + 9H+ = HMo7O24-5 + 4H2O - log_k 59.3768 - delta_h -218 kJ - -gamma 0 0 +7 MoO4-2 + 9 H+ = HMo7O24-5 + 4 H2O + log_k 59.3768 + delta_h -218 kJ + -gamma 0 0 # Id: 3304804 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 -7MoO4-2 + 10H+ = H2Mo7O24-4 + 4H2O - log_k 64.159 - delta_h -215 kJ - -gamma 0 0 +7 MoO4-2 + 10 H+ = H2Mo7O24-4 + 4 H2O + log_k 64.159 + delta_h -215 kJ + -gamma 0 0 # Id: 3304805 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 -7MoO4-2 + 11H+ = H3Mo7O24-3 + 4H2O - log_k 67.405 - delta_h -217 kJ - -gamma 0 0 +7 MoO4-2 + 11 H+ = H3Mo7O24-3 + 4 H2O + log_k 67.405 + delta_h -217 kJ + -gamma 0 0 # Id: 3304806 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 1.00 25.0 -6MoO4-2 + Al+3 + 6H+ = AlMo6O21-3 + 3H2O - log_k 54.9925 - delta_h 0 kJ - -gamma 0 0 +6 MoO4-2 + Al+3 + 6 H+ = AlMo6O21-3 + 3 H2O + log_k 54.9925 + delta_h 0 kJ + -gamma 0 0 # Id: 304801 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 -MoO4-2 + 2Ag+ = Ag2MoO4 - log_k -0.4219 - delta_h -1.18 kJ - -gamma 0 0 +MoO4-2 + 2 Ag+ = Ag2MoO4 + log_k -0.4219 + delta_h -1.18 kJ + -gamma 0 0 # Id: 204801 - # log K source: Bard85 - # Delta H source: Bard85 - #T and ionic strength: -VO2+ + 2H2O = VO4-3 + 4H+ - log_k -30.2 - delta_h -25 kJ - -gamma 0 0 + # log K source: Bard85 + # Delta H source: Bard85 + #T and ionic strength: +VO2+ + 2 H2O = VO4-3 + 4 H+ + log_k -30.2 + delta_h -25 kJ + -gamma 0 0 # Id: 9033303 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -VO2+ + 2H2O = HVO4-2 + 3H+ - log_k -15.9 - delta_h 0 kJ - -gamma 0 0 +VO2+ + 2 H2O = HVO4-2 + 3 H+ + log_k -15.9 + delta_h 0 kJ + -gamma 0 0 # Id: 9033302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -VO2+ + 2H2O = H2VO4- + 2H+ - log_k -7.3 - delta_h 0 kJ - -gamma 0 0 +VO2+ + 2 H2O = H2VO4- + 2 H+ + log_k -7.3 + delta_h 0 kJ + -gamma 0 0 # Id: 9033301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -VO2+ + 2H2O = H3VO4 + H+ - log_k -3.3 - delta_h 44.4759 kJ - -gamma 0 0 +VO2+ + 2 H2O = H3VO4 + H+ + log_k -3.3 + delta_h 44.4759 kJ + -gamma 0 0 # Id: 9033300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -2VO2+ + 3H2O = V2O7-4 + 6H+ - log_k -31.24 - delta_h -28 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +2 VO2+ + 3 H2O = V2O7-4 + 6 H+ + log_k -31.24 + delta_h -28 kJ + -gamma 0 0 # Id: 9030020 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -2VO2+ + 3H2O = HV2O7-3 + 5H+ - log_k -20.67 - delta_h 0 kJ - -gamma 0 0 +2 VO2+ + 3 H2O = HV2O7-3 + 5 H+ + log_k -20.67 + delta_h 0 kJ + -gamma 0 0 # Id: 9030021 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 -2VO2+ + 3H2O = H3V2O7- + 3H+ - log_k -3.79 - delta_h 0 kJ - -gamma 0 0 +2 VO2+ + 3 H2O = H3V2O7- + 3 H+ + log_k -3.79 + delta_h 0 kJ + -gamma 0 0 # Id: 9030022 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -3VO2+ + 3H2O = V3O9-3 + 6H+ - log_k -15.88 - delta_h 0 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +3 VO2+ + 3 H2O = V3O9-3 + 6 H+ + log_k -15.88 + delta_h 0 kJ + -gamma 0 0 # Id: 9030023 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: -4VO2+ + 4H2O = V4O12-4 + 8H+ - log_k -20.56 - delta_h -87 kJ - -gamma 0 0 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: +4 VO2+ + 4 H2O = V4O12-4 + 8 H+ + log_k -20.56 + delta_h -87 kJ + -gamma 0 0 # Id: 9030024 - # log K source: NIST46.3 - # Delta H source: NIST46.3 + # log K source: NIST46.3 + # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 -10VO2+ + 8H2O = V10O28-6 + 16H+ - log_k -24.0943 - delta_h 0 kJ - -gamma 0 0 +10 VO2+ + 8 H2O = V10O28-6 + 16 H+ + log_k -24.0943 + delta_h 0 kJ + -gamma 0 0 # Id: 9030025 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 20.0 -10VO2+ + 8H2O = HV10O28-5 + 15H+ - log_k -15.9076 - delta_h 90.0397 kJ - -gamma 0 0 +10 VO2+ + 8 H2O = HV10O28-5 + 15 H+ + log_k -15.9076 + delta_h 90.0397 kJ + -gamma 0 0 # Id: 9030026 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 #T and ionic strength: 0.10 20.0 -10VO2+ + 8H2O = H2V10O28-4 + 14H+ - log_k -10.7 - delta_h 0 kJ - -gamma 0 0 +10 VO2+ + 8 H2O = H2V10O28-4 + 14 H+ + log_k -10.7 + delta_h 0 kJ + -gamma 0 0 # Id: 9030027 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Benzoate- + H+ = H(Benzoate) - log_k 4.202 - delta_h -0.4602 kJ - -gamma 0 0 + log_k 4.202 + delta_h -0.4602 kJ + -gamma 0 0 # Id: 3309171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Benzoate- + Pb+2 = Pb(Benzoate)+ - log_k 2.4 - delta_h 0 kJ - -gamma 0 0 + log_k 2.4 + delta_h 0 kJ + -gamma 0 0 # Id: 6009171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Benzoate- + Al+3 = Al(Benzoate)+2 - log_k 2.05 - delta_h 0 kJ - -gamma 0 0 + log_k 2.05 + delta_h 0 kJ + -gamma 0 0 # Id: 309171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Benzoate- + Al+3 + H2O = AlOH(Benzoate)+ + H+ - log_k -0.56 - delta_h 0 kJ - -gamma 0 0 + log_k -0.56 + delta_h 0 kJ + -gamma 0 0 # Id: 309172 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Benzoate- + Zn+2 = Zn(Benzoate)+ - log_k 1.7 - delta_h 0 kJ - -gamma 0 0 + log_k 1.7 + delta_h 0 kJ + -gamma 0 0 # Id: 9509171 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Benzoate- + Cd+2 = Cd(Benzoate)+ - log_k 1.8 - delta_h 0 kJ - -gamma 0 0 + log_k 1.8 + delta_h 0 kJ + -gamma 0 0 # Id: 1609171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2Benzoate- + Cd+2 = Cd(Benzoate)2 - log_k 1.82 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2 Benzoate- + Cd+2 = Cd(Benzoate)2 + log_k 1.82 + delta_h 0 kJ + -gamma 0 0 # Id: 1609172 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Benzoate- + Cu+2 = Cu(Benzoate)+ - log_k 2.19 - delta_h 0 kJ - -gamma 0 0 + log_k 2.19 + delta_h 0 kJ + -gamma 0 0 # Id: 2319171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Benzoate- + Ag+ = Ag(Benzoate) - log_k 0.91 - delta_h 0 kJ - -gamma 0 0 + log_k 0.91 + delta_h 0 kJ + -gamma 0 0 # Id: 209171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Benzoate- + Ni+2 = Ni(Benzoate)+ - log_k 1.86 - delta_h 0 kJ - -gamma 0 0 + log_k 1.86 + delta_h 0 kJ + -gamma 0 0 # Id: 5409171 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Co+2 + Benzoate- = Co(Benzoate)+ - log_k 1.0537 - delta_h 12 kJ - -gamma 0 0 + log_k 1.0537 + delta_h 12 kJ + -gamma 0 0 # Id: 2009171 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.50 30.0 Benzoate- + Mn+2 = Mn(Benzoate)+ - log_k 2.06 - delta_h 0 kJ - -gamma 0 0 + log_k 2.06 + delta_h 0 kJ + -gamma 0 0 # Id: 4709171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Benzoate- + Mg+2 = Mg(Benzoate)+ - log_k 1.26 - delta_h 0 kJ - -gamma 0 0 + log_k 1.26 + delta_h 0 kJ + -gamma 0 0 # Id: 4609171 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Benzoate- + Ca+2 = Ca(Benzoate)+ - log_k 1.55 - delta_h 0 kJ - -gamma 0 0 + log_k 1.55 + delta_h 0 kJ + -gamma 0 0 # Id: 1509171 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Phenylacetate- + H+ = H(Phenylacetate) - log_k 4.31 - delta_h 2.1757 kJ - -gamma 0 0 + log_k 4.31 + delta_h 2.1757 kJ + -gamma 0 0 # Id: 3309181 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Phenylacetate- + Zn+2 = Zn(Phenylacetate)+ - log_k 1.57 - delta_h 0 kJ - -gamma 0 0 + log_k 1.57 + delta_h 0 kJ + -gamma 0 0 # Id: 9509181 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Phenylacetate- + Cu+2 = Cu(Phenylacetate)+ - log_k 1.97 - delta_h 0 kJ - -gamma 0 0 + log_k 1.97 + delta_h 0 kJ + -gamma 0 0 # Id: 2319181 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Phenylacetate- = Co(Phenylacetate)+ - log_k 0.591 - delta_h 0 kJ - -gamma 0 0 + log_k 0.591 + delta_h 0 kJ + -gamma 0 0 # Id: 2009181 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 2.00 25.0 -Co+2 + 2Phenylacetate- = Co(Phenylacetate)2 - log_k 0.4765 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 2 Phenylacetate- = Co(Phenylacetate)2 + log_k 0.4765 + delta_h 0 kJ + -gamma 0 0 # Id: 2009182 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 2.00 25.0 Isophthalate-2 + H+ = H(Isophthalate)- - log_k 4.5 - delta_h 1.6736 kJ - -gamma 0 0 + log_k 4.5 + delta_h 1.6736 kJ + -gamma 0 0 # Id: 3309201 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Isophthalate-2 + 2H+ = H2(Isophthalate) - log_k 8 - delta_h 1.6736 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Isophthalate-2 + 2 H+ = H2(Isophthalate) + log_k 8 + delta_h 1.6736 kJ + -gamma 0 0 # Id: 3309202 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Isophthalate-2 + Pb+2 = Pb(Isophthalate) - log_k 2.99 - delta_h 0 kJ - -gamma 0 0 + log_k 2.99 + delta_h 0 kJ + -gamma 0 0 # Id: 6009201 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2Isophthalate-2 + Pb+2 = Pb(Isophthalate)2-2 - log_k 4.18 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2 Isophthalate-2 + Pb+2 = Pb(Isophthalate)2-2 + log_k 4.18 + delta_h 0 kJ + -gamma 0 0 # Id: 6009202 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Isophthalate-2 + Pb+2 + H+ = PbH(Isophthalate)+ - log_k 6.69 - delta_h 0 kJ - -gamma 0 0 + log_k 6.69 + delta_h 0 kJ + -gamma 0 0 # Id: 6009203 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Isophthalate-2 + Cd+2 = Cd(Isophthalate) - log_k 2.15 - delta_h 0 kJ - -gamma 0 0 + log_k 2.15 + delta_h 0 kJ + -gamma 0 0 # Id: 1609201 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2Isophthalate-2 + Cd+2 = Cd(Isophthalate)2-2 - log_k 2.99 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2 Isophthalate-2 + Cd+2 = Cd(Isophthalate)2-2 + log_k 2.99 + delta_h 0 kJ + -gamma 0 0 # Id: 1609202 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Isophthalate-2 + Cd+2 + H+ = CdH(Isophthalate)+ - log_k 5.73 - delta_h 0 kJ - -gamma 0 0 + log_k 5.73 + delta_h 0 kJ + -gamma 0 0 # Id: 1609203 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Isophthalate-2 + Ca+2 = Ca(Isophthalate) - log_k 2 - delta_h 0 kJ - -gamma 0 0 + log_k 2 + delta_h 0 kJ + -gamma 0 0 # Id: 1509200 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Isophthalate-2 + Ba+2 = Ba(Isophthalate) - log_k 1.55 - delta_h 0 kJ - -gamma 0 0 + log_k 1.55 + delta_h 0 kJ + -gamma 0 0 # Id: 1009201 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Diethylamine = H(Diethylamine)+ - log_k 10.933 - delta_h -53.1368 kJ - -gamma 0 0 + log_k 10.933 + delta_h -53.1368 kJ + -gamma 0 0 # Id: 3309551 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Diethylamine = Zn(Diethylamine)+2 - log_k 2.74 - delta_h 0 kJ - -gamma 0 0 + log_k 2.74 + delta_h 0 kJ + -gamma 0 0 # Id: 9509551 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 2Diethylamine = Zn(Diethylamine)2+2 - log_k 5.27 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 2 Diethylamine = Zn(Diethylamine)2+2 + log_k 5.27 + delta_h 0 kJ + -gamma 0 0 # Id: 9509552 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 3Diethylamine = Zn(Diethylamine)3+2 - log_k 7.71 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 3 Diethylamine = Zn(Diethylamine)3+2 + log_k 7.71 + delta_h 0 kJ + -gamma 0 0 # Id: 9509553 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 4Diethylamine = Zn(Diethylamine)4+2 - log_k 9.84 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 4 Diethylamine = Zn(Diethylamine)4+2 + log_k 9.84 + delta_h 0 kJ + -gamma 0 0 # Id: 9509554 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + Diethylamine = Cd(Diethylamine)+2 - log_k 2.73 - delta_h 0 kJ - -gamma 0 0 + log_k 2.73 + delta_h 0 kJ + -gamma 0 0 # Id: 1609551 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 2Diethylamine = Cd(Diethylamine)2+2 - log_k 4.86 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 2 Diethylamine = Cd(Diethylamine)2+2 + log_k 4.86 + delta_h 0 kJ + -gamma 0 0 # Id: 1609552 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 3Diethylamine = Cd(Diethylamine)3+2 - log_k 6.37 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 3 Diethylamine = Cd(Diethylamine)3+2 + log_k 6.37 + delta_h 0 kJ + -gamma 0 0 # Id: 1609553 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 4Diethylamine = Cd(Diethylamine)4+2 - log_k 7.32 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 4 Diethylamine = Cd(Diethylamine)4+2 + log_k 7.32 + delta_h 0 kJ + -gamma 0 0 # Id: 1609554 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ag+ + Diethylamine = Ag(Diethylamine)+ - log_k 2.98 - delta_h 0 kJ - -gamma 0 0 + log_k 2.98 + delta_h 0 kJ + -gamma 0 0 # Id: 209551 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Diethylamine = Ag(Diethylamine)2+ - log_k 6.38 - delta_h -44.7688 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Diethylamine = Ag(Diethylamine)2+ + log_k 6.38 + delta_h -44.7688 kJ + -gamma 0 0 # Id: 209552 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Diethylamine = Ni(Diethylamine)+2 - log_k 2.78 - delta_h 0 kJ - -gamma 0 0 + log_k 2.78 + delta_h 0 kJ + -gamma 0 0 # Id: 5409551 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 2Diethylamine = Ni(Diethylamine)2+2 - log_k 4.97 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 2 Diethylamine = Ni(Diethylamine)2+2 + log_k 4.97 + delta_h 0 kJ + -gamma 0 0 # Id: 5409552 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 3Diethylamine = Ni(Diethylamine)3+2 - log_k 6.72 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 3 Diethylamine = Ni(Diethylamine)3+2 + log_k 6.72 + delta_h 0 kJ + -gamma 0 0 # Id: 5409553 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 4Diethylamine = Ni(Diethylamine)4+2 - log_k 7.93 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 4 Diethylamine = Ni(Diethylamine)4+2 + log_k 7.93 + delta_h 0 kJ + -gamma 0 0 # Id: 5409554 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 5Diethylamine = Ni(Diethylamine)5+2 - log_k 8.87 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 5 Diethylamine = Ni(Diethylamine)5+2 + log_k 8.87 + delta_h 0 kJ + -gamma 0 0 # Id: 5409555 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Butylamine = H(Butylamine)+ - log_k 10.64 - delta_h -58.2831 kJ - -gamma 0 0 + log_k 10.64 + delta_h -58.2831 kJ + -gamma 0 0 # Id: 3309561 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Butylamine + 2H+ = Hg(Butylamine)+2 + 2H2O - log_k 14.84 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Butylamine + 2 H+ = Hg(Butylamine)+2 + 2 H2O + log_k 14.84 + delta_h 0 kJ + -gamma 0 0 # Id: 3619561 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 2Butylamine + 2H+ = Hg(Butylamine)2+2 + 2H2O - log_k 24.24 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 2 Butylamine + 2 H+ = Hg(Butylamine)2+2 + 2 H2O + log_k 24.24 + delta_h 0 kJ + -gamma 0 0 # Id: 3619562 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 3Butylamine + 2H+ = Hg(Butylamine)3+2 + 2H2O - log_k 25.1 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 3 Butylamine + 2 H+ = Hg(Butylamine)3+2 + 2 H2O + log_k 25.1 + delta_h 0 kJ + -gamma 0 0 # Id: 3619563 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 4Butylamine + 2H+ = Hg(Butylamine)4+2 + 2H2O - log_k 26.1 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 4 Butylamine + 2 H+ = Hg(Butylamine)4+2 + 2 H2O + log_k 26.1 + delta_h 0 kJ + -gamma 0 0 # Id: 3619564 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Butylamine = Ag(Butylamine)+ - log_k 3.42 - delta_h -16.736 kJ - -gamma 0 0 + log_k 3.42 + delta_h -16.736 kJ + -gamma 0 0 # Id: 209561 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Butylamine = Ag(Butylamine)2+ - log_k 7.47 - delta_h -52.7184 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Butylamine = Ag(Butylamine)2+ + log_k 7.47 + delta_h -52.7184 kJ + -gamma 0 0 # Id: 209562 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Methylamine = H(Methylamine)+ - log_k 10.64 - delta_h -55.2288 kJ - -gamma 0 0 + log_k 10.64 + delta_h -55.2288 kJ + -gamma 0 0 # Id: 3309581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Methylamine = Cd(Methylamine)+2 - log_k 2.75 - delta_h 0 kJ - -gamma 0 0 + log_k 2.75 + delta_h 0 kJ + -gamma 0 0 # Id: 1609581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Methylamine = Cd(Methylamine)2+2 - log_k 4.81 - delta_h -29.288 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2 Methylamine = Cd(Methylamine)2+2 + log_k 4.81 + delta_h -29.288 kJ + -gamma 0 0 # Id: 1609582 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 3Methylamine = Cd(Methylamine)3+2 - log_k 5.94 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 3 Methylamine = Cd(Methylamine)3+2 + log_k 5.94 + delta_h 0 kJ + -gamma 0 0 # Id: 1609583 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 4Methylamine = Cd(Methylamine)4+2 - log_k 6.55 - delta_h -58.576 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 4 Methylamine = Cd(Methylamine)4+2 + log_k 6.55 + delta_h -58.576 kJ + -gamma 0 0 # Id: 1609584 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Methylamine + 2H+ = Hg(Methylamine)+2 + 2H2O - log_k 14.76 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Methylamine + 2 H+ = Hg(Methylamine)+2 + 2 H2O + log_k 14.76 + delta_h 0 kJ + -gamma 0 0 # Id: 3619581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 2Methylamine + 2H+ = Hg(Methylamine)2+2 + 2H2O - log_k 23.96 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 2 Methylamine + 2 H+ = Hg(Methylamine)2+2 + 2 H2O + log_k 23.96 + delta_h 0 kJ + -gamma 0 0 # Id: 3619582 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 3Methylamine + 2H+ = Hg(Methylamine)3+2 + 2H2O - log_k 24.3 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 3 Methylamine + 2 H+ = Hg(Methylamine)3+2 + 2 H2O + log_k 24.3 + delta_h 0 kJ + -gamma 0 0 # Id: 3619583 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 4Methylamine + 2H+ = Hg(Methylamine)4+2 + 2H2O - log_k 24.6 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 4 Methylamine + 2 H+ = Hg(Methylamine)4+2 + 2 H2O + log_k 24.6 + delta_h 0 kJ + -gamma 0 0 # Id: 3619584 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Methylamine = Cu(Methylamine)+2 - log_k 4.11 - delta_h 0 kJ - -gamma 0 0 + log_k 4.11 + delta_h 0 kJ + -gamma 0 0 # Id: 2319581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Methylamine = Cu(Methylamine)2+2 - log_k 7.51 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2 Methylamine = Cu(Methylamine)2+2 + log_k 7.51 + delta_h 0 kJ + -gamma 0 0 # Id: 2319582 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 3Methylamine = Cu(Methylamine)3+2 - log_k 10.21 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 3 Methylamine = Cu(Methylamine)3+2 + log_k 10.21 + delta_h 0 kJ + -gamma 0 0 # Id: 2319583 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 4Methylamine = Cu(Methylamine)4+2 - log_k 12.08 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 4 Methylamine = Cu(Methylamine)4+2 + log_k 12.08 + delta_h 0 kJ + -gamma 0 0 # Id: 2319584 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Methylamine = Ag(Methylamine)+ - log_k 3.07 - delta_h -12.552 kJ - -gamma 0 0 + log_k 3.07 + delta_h -12.552 kJ + -gamma 0 0 # Id: 209581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Methylamine = Ag(Methylamine)2+ - log_k 6.89 - delta_h -48.9528 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Methylamine = Ag(Methylamine)2+ + log_k 6.89 + delta_h -48.9528 kJ + -gamma 0 0 # Id: 209582 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Methylamine = Ni(Methylamine)+2 - log_k 2.23 - delta_h 0 kJ - -gamma 0 0 + log_k 2.23 + delta_h 0 kJ + -gamma 0 0 # Id: 5409581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Dimethylamine = H(Dimethylamine)+ - log_k 10.774 - delta_h -50.208 kJ - -gamma 0 0 + log_k 10.774 + delta_h -50.208 kJ + -gamma 0 0 # Id: 3309591 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Dimethylamine = Ag(Dimethylamine)2+ - log_k 5.37 - delta_h -40.5848 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Dimethylamine = Ag(Dimethylamine)2+ + log_k 5.37 + delta_h -40.5848 kJ + -gamma 0 0 # Id: 209591 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Dimethylamine = Ni(Dimethylamine)+2 - log_k 1.47 - delta_h 0 kJ - -gamma 0 0 + log_k 1.47 + delta_h 0 kJ + -gamma 0 0 # Id: 5409591 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Hexylamine = H(Hexylamine)+ - log_k 10.63 - delta_h -58.576 kJ - -gamma 0 0 + log_k 10.63 + delta_h -58.576 kJ + -gamma 0 0 # Id: 3309611 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Hexylamine = Ag(Hexylamine)+ - log_k 3.54 - delta_h -25.104 kJ - -gamma 0 0 + log_k 3.54 + delta_h -25.104 kJ + -gamma 0 0 # Id: 209611 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Hexylamine = Ag(Hexylamine)2+ - log_k 7.55 - delta_h -53.1368 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Hexylamine = Ag(Hexylamine)2+ + log_k 7.55 + delta_h -53.1368 kJ + -gamma 0 0 # Id: 209612 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Ethylenediamine = H(Ethylenediamine)+ - log_k 9.928 - delta_h -49.7896 kJ - -gamma 0 0 + log_k 9.928 + delta_h -49.7896 kJ + -gamma 0 0 # Id: 3309631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Ethylenediamine = H2(Ethylenediamine)+2 - log_k 16.776 - delta_h -95.3952 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2 H+ + Ethylenediamine = H2(Ethylenediamine)+2 + log_k 16.776 + delta_h -95.3952 kJ + -gamma 0 0 # Id: 3309632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Ethylenediamine = Pb(Ethylenediamine)+2 - log_k 5.04 - delta_h 0 kJ - -gamma 0 0 + log_k 5.04 + delta_h 0 kJ + -gamma 0 0 # Id: 6009631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + 2Ethylenediamine = Pb(Ethylenediamine)2+2 - log_k 8.5 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + 2 Ethylenediamine = Pb(Ethylenediamine)2+2 + log_k 8.5 + delta_h 0 kJ + -gamma 0 0 # Id: 6009632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Ethylenediamine = Zn(Ethylenediamine)+2 - log_k 5.66 - delta_h -29.288 kJ - -gamma 0 0 + log_k 5.66 + delta_h -29.288 kJ + -gamma 0 0 # Id: 9509631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Ethylenediamine = Zn(Ethylenediamine)2+2 - log_k 10.6 - delta_h -48.116 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2 Ethylenediamine = Zn(Ethylenediamine)2+2 + log_k 10.6 + delta_h -48.116 kJ + -gamma 0 0 # Id: 9509632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 3Ethylenediamine = Zn(Ethylenediamine)3+2 - log_k 13.9 - delta_h -71.5464 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 3 Ethylenediamine = Zn(Ethylenediamine)3+2 + log_k 13.9 + delta_h -71.5464 kJ + -gamma 0 0 # Id: 9509633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Ethylenediamine = Cd(Ethylenediamine)+2 - log_k 5.41 - delta_h -28.4512 kJ - -gamma 0 0 + log_k 5.41 + delta_h -28.4512 kJ + -gamma 0 0 # Id: 1609631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Ethylenediamine = Cd(Ethylenediamine)2+2 - log_k 9.9 - delta_h -55.6472 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2 Ethylenediamine = Cd(Ethylenediamine)2+2 + log_k 9.9 + delta_h -55.6472 kJ + -gamma 0 0 # Id: 1609632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 3Ethylenediamine = Cd(Ethylenediamine)3+2 - log_k 11.6 - delta_h -82.4248 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 3 Ethylenediamine = Cd(Ethylenediamine)3+2 + log_k 11.6 + delta_h -82.4248 kJ + -gamma 0 0 # Id: 1609633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Ethylenediamine + 2H+ = Hg(Ethylenediamine)+2 + 2H2O - log_k 20.4 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Ethylenediamine + 2 H+ = Hg(Ethylenediamine)+2 + 2 H2O + log_k 20.4 + delta_h 0 kJ + -gamma 0 0 # Id: 3619631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 2Ethylenediamine + 2H+ = Hg(Ethylenediamine)2+2 + 2H2O - log_k 29.3 - delta_h -173.218 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 2 Ethylenediamine + 2 H+ = Hg(Ethylenediamine)2+2 + 2 H2O + log_k 29.3 + delta_h -173.218 kJ + -gamma 0 0 # Id: 3619632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 2Ethylenediamine + 3H+ = HgH(Ethylenediamine)2+3 + 2H2O - log_k 34.7 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 2 Ethylenediamine + 3 H+ = HgH(Ethylenediamine)2+3 + 2 H2O + log_k 34.7 + delta_h 0 kJ + -gamma 0 0 # Id: 3619633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 2Ethylenediamine = Cu(Ethylenediamine)2+ - log_k 11.2 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 2 Ethylenediamine = Cu(Ethylenediamine)2+ + log_k 11.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2309631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Ethylenediamine = Cu(Ethylenediamine)+2 - log_k 10.5 - delta_h -52.7184 kJ - -gamma 0 0 + log_k 10.5 + delta_h -52.7184 kJ + -gamma 0 0 # Id: 2319631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Ethylenediamine = Cu(Ethylenediamine)2+2 - log_k 19.6 - delta_h -105.437 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2 Ethylenediamine = Cu(Ethylenediamine)2+2 + log_k 19.6 + delta_h -105.437 kJ + -gamma 0 0 # Id: 2319632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Ethylenediamine = Ag(Ethylenediamine)+ - log_k 4.6 - delta_h -48.9528 kJ - -gamma 0 0 + log_k 4.6 + delta_h -48.9528 kJ + -gamma 0 0 # Id: 209631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Ethylenediamine = Ag(Ethylenediamine)2+ - log_k 7.5 - delta_h -52.3 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Ethylenediamine = Ag(Ethylenediamine)2+ + log_k 7.5 + delta_h -52.3 kJ + -gamma 0 0 # Id: 209632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Ethylenediamine + H+ = AgH(Ethylenediamine)+2 - log_k 11.99 - delta_h -75.312 kJ - -gamma 0 0 + log_k 11.99 + delta_h -75.312 kJ + -gamma 0 0 # Id: 209633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2Ag+ + Ethylenediamine = Ag2(Ethylenediamine)+2 - log_k 6.5 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2 Ag+ + Ethylenediamine = Ag2(Ethylenediamine)+2 + log_k 6.5 + delta_h 0 kJ + -gamma 0 0 # Id: 209634 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2Ag+ + 2Ethylenediamine = Ag2(Ethylenediamine)2+2 - log_k 12.7 - delta_h -97.0688 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2 Ag+ + 2 Ethylenediamine = Ag2(Ethylenediamine)2+2 + log_k 12.7 + delta_h -97.0688 kJ + -gamma 0 0 # Id: 209635 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Ethylenediamine + 2H+ = Ag(HEthylenediamine)2+3 - log_k 24 - delta_h -150.206 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Ethylenediamine + 2 H+ = Ag(HEthylenediamine)2+3 + log_k 24 + delta_h -150.206 kJ + -gamma 0 0 # Id: 209636 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Ethylenediamine + H+ = AgH(Ethylenediamine)2+2 - log_k 8.4 - delta_h -47.6976 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Ethylenediamine + H+ = AgH(Ethylenediamine)2+2 + log_k 8.4 + delta_h -47.6976 kJ + -gamma 0 0 # Id: 209637 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Ethylenediamine = Ni(Ethylenediamine)+2 - log_k 7.32 - delta_h -37.656 kJ - -gamma 0 0 + log_k 7.32 + delta_h -37.656 kJ + -gamma 0 0 # Id: 5409631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Ethylenediamine = Ni(Ethylenediamine)2+2 - log_k 13.5 - delta_h -76.5672 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2 Ethylenediamine = Ni(Ethylenediamine)2+2 + log_k 13.5 + delta_h -76.5672 kJ + -gamma 0 0 # Id: 5409632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 3Ethylenediamine = Ni(Ethylenediamine)3+2 - log_k 17.6 - delta_h -117.152 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 3 Ethylenediamine = Ni(Ethylenediamine)3+2 + log_k 17.6 + delta_h -117.152 kJ + -gamma 0 0 # Id: 5409633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Ethylenediamine = Co(Ethylenediamine)+2 - log_k 5.5 - delta_h -28 kJ - -gamma 0 0 + log_k 5.5 + delta_h -28 kJ + -gamma 0 0 # Id: 2009631 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 -Co+2 + 2Ethylenediamine = Co(Ethylenediamine)2+2 - log_k 10.1 - delta_h -58.5 kJ - -gamma 0 0 +Co+2 + 2 Ethylenediamine = Co(Ethylenediamine)2+2 + log_k 10.1 + delta_h -58.5 kJ + -gamma 0 0 # Id: 2009632 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 -Co+2 + 3Ethylenediamine = Co(Ethylenediamine)3+2 - log_k 13.2 - delta_h -92.8 kJ - -gamma 0 0 +Co+2 + 3 Ethylenediamine = Co(Ethylenediamine)3+2 + log_k 13.2 + delta_h -92.8 kJ + -gamma 0 0 # Id: 2009633 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 -Co+3 + 2Ethylenediamine = Co(Ethylenediamine)2+3 - log_k 34.7 - delta_h 0 kJ - -gamma 0 0 +Co+3 + 2 Ethylenediamine = Co(Ethylenediamine)2+3 + log_k 34.7 + delta_h 0 kJ + -gamma 0 0 # Id: 2019631 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 1.00 25.0 -Co+3 + 3Ethylenediamine = Co(Ethylenediamine)3+3 - log_k 48.69 - delta_h 0 kJ - -gamma 0 0 +Co+3 + 3 Ethylenediamine = Co(Ethylenediamine)3+3 + log_k 48.69 + delta_h 0 kJ + -gamma 0 0 # Id: 2019632 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 1.50 30.0 Fe+2 + Ethylenediamine = Fe(Ethylenediamine)+2 - log_k 4.26 - delta_h 0 kJ - -gamma 0 0 + log_k 4.26 + delta_h 0 kJ + -gamma 0 0 # Id: 2809631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + 2Ethylenediamine = Fe(Ethylenediamine)2+2 - log_k 7.73 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + 2 Ethylenediamine = Fe(Ethylenediamine)2+2 + log_k 7.73 + delta_h 0 kJ + -gamma 0 0 # Id: 2809632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + 3Ethylenediamine = Fe(Ethylenediamine)3+2 - log_k 10.17 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + 3 Ethylenediamine = Fe(Ethylenediamine)3+2 + log_k 10.17 + delta_h 0 kJ + -gamma 0 0 # Id: 2809633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Ethylenediamine = Mn(Ethylenediamine)+2 - log_k 2.74 - delta_h -11.7152 kJ - -gamma 0 0 + log_k 2.74 + delta_h -11.7152 kJ + -gamma 0 0 # Id: 4709631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + 2Ethylenediamine = Mn(Ethylenediamine)2+2 - log_k 4.8 - delta_h -25.104 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + 2 Ethylenediamine = Mn(Ethylenediamine)2+2 + log_k 4.8 + delta_h -25.104 kJ + -gamma 0 0 # Id: 4709632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr(OH)2+ + 2Ethylenediamine + 2H+ = Cr(Ethylenediamine)2+3 + 2H2O - log_k 22.57 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr(OH)2+ + 2 Ethylenediamine + 2 H+ = Cr(Ethylenediamine)2+3 + 2 H2O + log_k 22.57 + delta_h 0 kJ + -gamma 0 0 # Id: 2119631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr(OH)2+ + 3Ethylenediamine + 2H+ = Cr(Ethylenediamine)3+3 + 2H2O - log_k 29 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr(OH)2+ + 3 Ethylenediamine + 2 H+ = Cr(Ethylenediamine)3+3 + 2 H2O + log_k 29 + delta_h 0 kJ + -gamma 0 0 # Id: 2119632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Ethylenediamine = Mg(Ethylenediamine)+2 - log_k 0.37 - delta_h 0 kJ - -gamma 0 0 + log_k 0.37 + delta_h 0 kJ + -gamma 0 0 # Id: 4609631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Ethylenediamine = Ca(Ethylenediamine)+2 - log_k 0.11 - delta_h 0 kJ - -gamma 0 0 + log_k 0.11 + delta_h 0 kJ + -gamma 0 0 # Id: 1509631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Propylamine = H(Propylamine)+ - log_k 10.566 - delta_h -57.53 kJ - -gamma 0 0 + log_k 10.566 + delta_h -57.53 kJ + -gamma 0 0 # Id: 3309641 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Propylamine = Zn(Propylamine)+2 - log_k 2.42 - delta_h 0 kJ - -gamma 0 0 + log_k 2.42 + delta_h 0 kJ + -gamma 0 0 # Id: 9509641 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 2Propylamine = Zn(Propylamine)2+2 - log_k 4.85 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 2 Propylamine = Zn(Propylamine)2+2 + log_k 4.85 + delta_h 0 kJ + -gamma 0 0 # Id: 9509642 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 3Propylamine = Zn(Propylamine)3+2 - log_k 7.38 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 3 Propylamine = Zn(Propylamine)3+2 + log_k 7.38 + delta_h 0 kJ + -gamma 0 0 # Id: 9509643 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 4Propylamine = Zn(Propylamine)4+2 - log_k 9.49 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 4 Propylamine = Zn(Propylamine)4+2 + log_k 9.49 + delta_h 0 kJ + -gamma 0 0 # Id: 9509644 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + Propylamine = Cd(Propylamine)+2 - log_k 2.62 - delta_h 0 kJ - -gamma 0 0 + log_k 2.62 + delta_h 0 kJ + -gamma 0 0 # Id: 1609641 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 2Propylamine = Cd(Propylamine)2+2 - log_k 4.64 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 2 Propylamine = Cd(Propylamine)2+2 + log_k 4.64 + delta_h 0 kJ + -gamma 0 0 # Id: 1609642 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 3Propylamine = Cd(Propylamine)3+2 - log_k 6.03 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 3 Propylamine = Cd(Propylamine)3+2 + log_k 6.03 + delta_h 0 kJ + -gamma 0 0 # Id: 1609643 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ag+ + Propylamine = Ag(Propylamine)+ - log_k 3.45 - delta_h -12.552 kJ - -gamma 0 0 + log_k 3.45 + delta_h -12.552 kJ + -gamma 0 0 # Id: 209641 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Propylamine = Ag(Propylamine)2+ - log_k 7.44 - delta_h -53.1368 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Propylamine = Ag(Propylamine)2+ + log_k 7.44 + delta_h -53.1368 kJ + -gamma 0 0 # Id: 209642 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Propylamine = Ni(Propylamine)+2 - log_k 2.81 - delta_h 0 kJ - -gamma 0 0 + log_k 2.81 + delta_h 0 kJ + -gamma 0 0 # Id: 5409641 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 2Propylamine = Ni(Propylamine)2+2 - log_k 5.02 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 2 Propylamine = Ni(Propylamine)2+2 + log_k 5.02 + delta_h 0 kJ + -gamma 0 0 # Id: 5409642 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 3Propylamine = Ni(Propylamine)3+2 - log_k 6.79 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 3 Propylamine = Ni(Propylamine)3+2 + log_k 6.79 + delta_h 0 kJ + -gamma 0 0 # Id: 5409643 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 4Propylamine = Ni(Propylamine)4+2 - log_k 8.31 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 4 Propylamine = Ni(Propylamine)4+2 + log_k 8.31 + delta_h 0 kJ + -gamma 0 0 # Id: 5409644 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Isopropylamine = H(Isopropylamine)+ - log_k 10.67 - delta_h -58.3668 kJ - -gamma 0 0 + log_k 10.67 + delta_h -58.3668 kJ + -gamma 0 0 # Id: 3309651 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Isopropylamine = Zn(Isopropylamine)+2 - log_k 2.37 - delta_h 0 kJ - -gamma 0 0 + log_k 2.37 + delta_h 0 kJ + -gamma 0 0 # Id: 9509651 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 2Isopropylamine = Zn(Isopropylamine)2+2 - log_k 4.67 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 2 Isopropylamine = Zn(Isopropylamine)2+2 + log_k 4.67 + delta_h 0 kJ + -gamma 0 0 # Id: 9509652 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 3Isopropylamine = Zn(Isopropylamine)3+2 - log_k 7.14 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 3 Isopropylamine = Zn(Isopropylamine)3+2 + log_k 7.14 + delta_h 0 kJ + -gamma 0 0 # Id: 9509653 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 4Isopropylamine = Zn(Isopropylamine)4+2 - log_k 9.44 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 4 Isopropylamine = Zn(Isopropylamine)4+2 + log_k 9.44 + delta_h 0 kJ + -gamma 0 0 # Id: 9509654 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + Isopropylamine = Cd(Isopropylamine)+2 - log_k 2.55 - delta_h 0 kJ - -gamma 0 0 + log_k 2.55 + delta_h 0 kJ + -gamma 0 0 # Id: 1609651 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 2Isopropylamine = Cd(Isopropylamine)2+2 - log_k 4.57 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 2 Isopropylamine = Cd(Isopropylamine)2+2 + log_k 4.57 + delta_h 0 kJ + -gamma 0 0 # Id: 1609652 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 3Isopropylamine = Cd(Isopropylamine)3+2 - log_k 6.07 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 3 Isopropylamine = Cd(Isopropylamine)3+2 + log_k 6.07 + delta_h 0 kJ + -gamma 0 0 # Id: 1609653 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 4Isopropylamine = Cd(Isopropylamine)4+2 - log_k 6.9 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 4 Isopropylamine = Cd(Isopropylamine)4+2 + log_k 6.9 + delta_h 0 kJ + -gamma 0 0 # Id: 1609654 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Hg(OH)2 + Isopropylamine + 2H+ = Hg(Isopropylamine)+2 + 2H2O - log_k 14.85 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Hg(OH)2 + Isopropylamine + 2 H+ = Hg(Isopropylamine)+2 + 2 H2O + log_k 14.85 + delta_h 0 kJ + -gamma 0 0 # Id: 3619651 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + 2Isopropylamine + 2H+ = Hg(Isopropylamine)2+2 + 2H2O - log_k 24.37 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + 2 Isopropylamine + 2 H+ = Hg(Isopropylamine)2+2 + 2 H2O + log_k 24.37 + delta_h 0 kJ + -gamma 0 0 # Id: 3619652 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Isopropylamine = Ag(Isopropylamine)+ - log_k 3.67 - delta_h -23.8488 kJ - -gamma 0 0 + log_k 3.67 + delta_h -23.8488 kJ + -gamma 0 0 # Id: 209651 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Isopropylamine = Ag(Isopropylamine)2+ - log_k 7.77 - delta_h -59.8312 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Isopropylamine = Ag(Isopropylamine)2+ + log_k 7.77 + delta_h -59.8312 kJ + -gamma 0 0 # Id: 209652 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Isopropylamine = Ni(Isopropylamine)+2 - log_k 2.71 - delta_h 0 kJ - -gamma 0 0 + log_k 2.71 + delta_h 0 kJ + -gamma 0 0 # Id: 5409651 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 2Isopropylamine = Ni(Isopropylamine)2+2 - log_k 4.86 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 2 Isopropylamine = Ni(Isopropylamine)2+2 + log_k 4.86 + delta_h 0 kJ + -gamma 0 0 # Id: 5409652 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 3Isopropylamine = Ni(Isopropylamine)3+2 - log_k 6.57 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 3 Isopropylamine = Ni(Isopropylamine)3+2 + log_k 6.57 + delta_h 0 kJ + -gamma 0 0 # Id: 5409653 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 4Isopropylamine = Ni(Isopropylamine)4+2 - log_k 7.83 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 4 Isopropylamine = Ni(Isopropylamine)4+2 + log_k 7.83 + delta_h 0 kJ + -gamma 0 0 # Id: 5409654 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Ni+2 + 5Isopropylamine = Ni(Isopropylamine)5+2 - log_k 8.43 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Ni+2 + 5 Isopropylamine = Ni(Isopropylamine)5+2 + log_k 8.43 + delta_h 0 kJ + -gamma 0 0 # Id: 5409655 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Trimethylamine = H(Trimethylamine)+ - log_k 9.8 - delta_h -36.8192 kJ - -gamma 0 0 + log_k 9.8 + delta_h -36.8192 kJ + -gamma 0 0 # Id: 3309661 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Trimethylamine = Ag(Trimethylamine)+ - log_k 1.701 - delta_h 0 kJ - -gamma 0 0 + log_k 1.701 + delta_h 0 kJ + -gamma 0 0 # Id: 209661 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Citrate-3 = H(Citrate)-2 - log_k 6.396 - delta_h 3.3472 kJ - -gamma 0 0 + log_k 6.396 + delta_h 3.3472 kJ + -gamma 0 0 # Id: 3309671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Citrate-3 = H2(Citrate)- - log_k 11.157 - delta_h 1.297 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2 H+ + Citrate-3 = H2(Citrate)- + log_k 11.157 + delta_h 1.297 kJ + -gamma 0 0 # Id: 3309672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -3H+ + Citrate-3 = H3(Citrate) - log_k 14.285 - delta_h -2.7614 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +3 H+ + Citrate-3 = H3(Citrate) + log_k 14.285 + delta_h -2.7614 kJ + -gamma 0 0 # Id: 3309673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Citrate-3 = Pb(Citrate)- - log_k 7.27 - delta_h 0 kJ - -gamma 0 0 + log_k 7.27 + delta_h 0 kJ + -gamma 0 0 # Id: 6009671 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Pb+2 + 2Citrate-3 = Pb(Citrate)2-4 - log_k 6.53 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Pb+2 + 2 Citrate-3 = Pb(Citrate)2-4 + log_k 6.53 + delta_h 0 kJ + -gamma 0 0 # Id: 6009672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Citrate-3 = Al(Citrate) - log_k 9.97 - delta_h 0 kJ - -gamma 0 0 + log_k 9.97 + delta_h 0 kJ + -gamma 0 0 # Id: 309671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + 2Citrate-3 = Al(Citrate)2-3 - log_k 14.8 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + 2 Citrate-3 = Al(Citrate)2-3 + log_k 14.8 + delta_h 0 kJ + -gamma 0 0 # Id: 309672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Citrate-3 + H+ = AlH(Citrate)+ - log_k 12.85 - delta_h 0 kJ - -gamma 0 0 + log_k 12.85 + delta_h 0 kJ + -gamma 0 0 # Id: 309673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Tl+ + Citrate-3 = Tl(Citrate)-2 - log_k 1.48 - delta_h 0 kJ - -gamma 0 0 + log_k 1.48 + delta_h 0 kJ + -gamma 0 0 # Id: 8709671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Citrate-3 = Zn(Citrate)- - log_k 6.21 - delta_h 8.368 kJ - -gamma 0 0 + log_k 6.21 + delta_h 8.368 kJ + -gamma 0 0 # Id: 9509671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Citrate-3 = Zn(Citrate)2-4 - log_k 7.4 - delta_h 25.104 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2 Citrate-3 = Zn(Citrate)2-4 + log_k 7.4 + delta_h 25.104 kJ + -gamma 0 0 # Id: 9509672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Citrate-3 + H+ = ZnH(Citrate) - log_k 10.2 - delta_h 3.3472 kJ - -gamma 0 0 + log_k 10.2 + delta_h 3.3472 kJ + -gamma 0 0 # Id: 9509673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + Citrate-3 + 2H+ = ZnH2(Citrate)+ - log_k 12.84 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + Citrate-3 + 2 H+ = ZnH2(Citrate)+ + log_k 12.84 + delta_h 0 kJ + -gamma 0 0 # Id: 9509674 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + Citrate-3 = Cd(Citrate)- - log_k 4.98 - delta_h 8.368 kJ - -gamma 0 0 + log_k 4.98 + delta_h 8.368 kJ + -gamma 0 0 # Id: 1609671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Citrate-3 + H+ = CdH(Citrate) - log_k 9.44 - delta_h 3.3472 kJ - -gamma 0 0 + log_k 9.44 + delta_h 3.3472 kJ + -gamma 0 0 # Id: 1609672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + Citrate-3 + 2H+ = CdH2(Citrate)+ - log_k 12.9 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + Citrate-3 + 2 H+ = CdH2(Citrate)+ + log_k 12.9 + delta_h 0 kJ + -gamma 0 0 # Id: 1609673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Citrate-3 = Cd(Citrate)2-4 - log_k 5.9 - delta_h 20.92 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2 Citrate-3 = Cd(Citrate)2-4 + log_k 5.9 + delta_h 20.92 kJ + -gamma 0 0 # Id: 1609674 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Citrate-3 + 2H+ = Hg(Citrate)- + 2H2O - log_k 18.3 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Citrate-3 + 2 H+ = Hg(Citrate)- + 2 H2O + log_k 18.3 + delta_h 0 kJ + -gamma 0 0 # Id: 3619671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Citrate-3 = Cu(Citrate)- - log_k 7.57 - delta_h 0 kJ - -gamma 0 0 + log_k 7.57 + delta_h 0 kJ + -gamma 0 0 # Id: 2319671 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cu+2 + 2Citrate-3 = Cu(Citrate)2-4 - log_k 8.9 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cu+2 + 2 Citrate-3 = Cu(Citrate)2-4 + log_k 8.9 + delta_h 0 kJ + -gamma 0 0 # Id: 2319672 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cu+2 + Citrate-3 + H+ = CuH(Citrate) - log_k 10.87 - delta_h 11.7152 kJ - -gamma 0 0 + log_k 10.87 + delta_h 11.7152 kJ + -gamma 0 0 # Id: 2319673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Citrate-3 + 2H+ = CuH2(Citrate)+ - log_k 13.23 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Citrate-3 + 2 H+ = CuH2(Citrate)+ + log_k 13.23 + delta_h 0 kJ + -gamma 0 0 # Id: 2319674 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -2Cu+2 + 2Citrate-3 = Cu2(Citrate)2-2 - log_k 16.9 - delta_h 41.84 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +2 Cu+2 + 2 Citrate-3 = Cu2(Citrate)2-2 + log_k 16.9 + delta_h 41.84 kJ + -gamma 0 0 # Id: 2319675 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Citrate-3 = Ni(Citrate)- - log_k 6.59 - delta_h 16.736 kJ - -gamma 0 0 + log_k 6.59 + delta_h 16.736 kJ + -gamma 0 0 # Id: 5409671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Citrate-3 + H+ = NiH(Citrate) - log_k 10.5 - delta_h 15.8992 kJ - -gamma 0 0 + log_k 10.5 + delta_h 15.8992 kJ + -gamma 0 0 # Id: 5409672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + Citrate-3 + 2H+ = NiH2(Citrate)+ - log_k 13.3 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + Citrate-3 + 2 H+ = NiH2(Citrate)+ + log_k 13.3 + delta_h 0 kJ + -gamma 0 0 # Id: 5409673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Citrate-3 = Ni(Citrate)2-4 - log_k 8.77 - delta_h 12.552 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2 Citrate-3 = Ni(Citrate)2-4 + log_k 8.77 + delta_h 12.552 kJ + -gamma 0 0 # Id: 5409674 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Citrate-3 + H+ = NiH(Citrate)2-3 - log_k 14.9 - delta_h 32.6352 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2 Citrate-3 + H+ = NiH(Citrate)2-3 + log_k 14.9 + delta_h 32.6352 kJ + -gamma 0 0 # Id: 5409675 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Citrate-3 = Co(Citrate)- - log_k 6.1867 - delta_h 0 kJ - -gamma 0 0 + log_k 6.1867 + delta_h 0 kJ + -gamma 0 0 # Id: 2009671 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Co+2 + H+ + Citrate-3 = CoHCitrate - log_k 10.4438 - delta_h 0 kJ - -gamma 0 0 + log_k 10.4438 + delta_h 0 kJ + -gamma 0 0 # Id: 2009672 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 -Co+2 + 2H+ + Citrate-3 = CoH2Citrate+ - log_k 12.7859 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 2 H+ + Citrate-3 = CoH2Citrate+ + log_k 12.7859 + delta_h 0 kJ + -gamma 0 0 # Id: 2009673 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 20.0 Fe+2 + Citrate-3 = Fe(Citrate)- - log_k 6.1 - delta_h 0 kJ - -gamma 0 0 + log_k 6.1 + delta_h 0 kJ + -gamma 0 0 # Id: 2809671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + Citrate-3 + H+ = FeH(Citrate) - log_k 10.2 - delta_h 0 kJ - -gamma 0 0 + log_k 10.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2809672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Citrate-3 = Fe(Citrate) - log_k 13.1 - delta_h 0 kJ - -gamma 0 0 + log_k 13.1 + delta_h 0 kJ + -gamma 0 0 # Id: 2819671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Citrate-3 + H+ = FeH(Citrate)+ - log_k 14.4 - delta_h 0 kJ - -gamma 0 0 + log_k 14.4 + delta_h 0 kJ + -gamma 0 0 # Id: 2819672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Citrate-3 = Mn(Citrate)- - log_k 4.28 - delta_h 0 kJ - -gamma 0 0 + log_k 4.28 + delta_h 0 kJ + -gamma 0 0 # Id: 4709671 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Mn+2 + Citrate-3 + H+ = MnH(Citrate) - log_k 9.6 - delta_h 0 kJ - -gamma 0 0 + log_k 9.6 + delta_h 0 kJ + -gamma 0 0 # Id: 4709672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Be+2 + Citrate-3 = Be(Citrate)- - log_k 5.534 - delta_h 0 kJ - -gamma 0 0 + log_k 5.534 + delta_h 0 kJ + -gamma 0 0 # Id: 1109671 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 1.00 25.0 Be+2 + H+ + Citrate-3 = BeH(Citrate) - log_k 9.442 - delta_h 0 kJ - -gamma 0 0 + log_k 9.442 + delta_h 0 kJ + -gamma 0 0 # Id: 1109672 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 1.00 25.0 Ca+2 + Citrate-3 = Ca(Citrate)- - log_k 4.87 - delta_h -8.368 kJ - -gamma 0 0 + log_k 4.87 + delta_h -8.368 kJ + -gamma 0 0 # Id: 1509671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Citrate-3 + H+ = CaH(Citrate) - log_k 9.26 - delta_h -0.8368 kJ - -gamma 0 0 + log_k 9.26 + delta_h -0.8368 kJ + -gamma 0 0 # Id: 1509672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + Citrate-3 + 2H+ = CaH2(Citrate)+ - log_k 12.257 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + Citrate-3 + 2 H+ = CaH2(Citrate)+ + log_k 12.257 + delta_h 0 kJ + -gamma 0 0 # Id: 1509673 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Mg+2 + Citrate-3 = Mg(Citrate)- - log_k 4.89 - delta_h 8.368 kJ - -gamma 0 0 + log_k 4.89 + delta_h 8.368 kJ + -gamma 0 0 # Id: 4609671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Citrate-3 + H+ = MgH(Citrate) - log_k 8.91 - delta_h 3.3472 kJ - -gamma 0 0 + log_k 8.91 + delta_h 3.3472 kJ + -gamma 0 0 # Id: 4609672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mg+2 + Citrate-3 + 2H+ = MgH2(Citrate)+ - log_k 12.2 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mg+2 + Citrate-3 + 2 H+ = MgH2(Citrate)+ + log_k 12.2 + delta_h 0 kJ + -gamma 0 0 # Id: 4609673 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Sr+2 + Citrate-3 = Sr(Citrate)- - log_k 4.3367 - delta_h 0 kJ - -gamma 0 0 + log_k 4.3367 + delta_h 0 kJ + -gamma 0 0 # Id: 8009671 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Sr+2 + H+ + Citrate-3 = SrH(Citrate) - log_k 8.9738 - delta_h 0 kJ - -gamma 0 0 + log_k 8.9738 + delta_h 0 kJ + -gamma 0 0 # Id: 8009672 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 -Sr+2 + 2H+ + Citrate-3 = SrH2(Citrate)+ - log_k 12.4859 - delta_h 0 kJ - -gamma 0 0 +Sr+2 + 2 H+ + Citrate-3 = SrH2(Citrate)+ + log_k 12.4859 + delta_h 0 kJ + -gamma 0 0 # Id: 8009673 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Ba+2 + Citrate-3 = Ba(Citrate)- - log_k 4.1 - delta_h 0 kJ - -gamma 0 0 + log_k 4.1 + delta_h 0 kJ + -gamma 0 0 # Id: 1009671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ba+2 + Citrate-3 + H+ = BaH(Citrate) - log_k 8.74 - delta_h 0 kJ - -gamma 0 0 + log_k 8.74 + delta_h 0 kJ + -gamma 0 0 # Id: 1009672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ba+2 + Citrate-3 + 2H+ = BaH2(Citrate)+ - log_k 12.3 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ba+2 + Citrate-3 + 2 H+ = BaH2(Citrate)+ + log_k 12.3 + delta_h 0 kJ + -gamma 0 0 # Id: 1009673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Na+ + Citrate-3 = Na(Citrate)-2 - log_k 1.03 - delta_h -2.8033 kJ - -gamma 0 0 + log_k 1.03 + delta_h -2.8033 kJ + -gamma 0 0 # Id: 5009671 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -2Na+ + Citrate-3 = Na2(Citrate)- - log_k 1.5 - delta_h -5.1045 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +2 Na+ + Citrate-3 = Na2(Citrate)- + log_k 1.5 + delta_h -5.1045 kJ + -gamma 0 0 # Id: 5009672 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Na+ + Citrate-3 + H+ = NaH(Citrate)- - log_k 6.45 - delta_h -3.5982 kJ - -gamma 0 0 + log_k 6.45 + delta_h -3.5982 kJ + -gamma 0 0 # Id: 5009673 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: K+ + Citrate-3 = K(Citrate)-2 - log_k 1.1 - delta_h 5.4392 kJ - -gamma 0 0 + log_k 1.1 + delta_h 5.4392 kJ + -gamma 0 0 # Id: 4109671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Nta-3 = H(Nta)-2 - log_k 10.278 - delta_h -18.828 kJ - -gamma 0 0 + log_k 10.278 + delta_h -18.828 kJ + -gamma 0 0 # Id: 3309681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Nta-3 = H2(Nta)- - log_k 13.22 - delta_h -17.9912 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2 H+ + Nta-3 = H2(Nta)- + log_k 13.22 + delta_h -17.9912 kJ + -gamma 0 0 # Id: 3309682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -3H+ + Nta-3 = H3(Nta) - log_k 15.22 - delta_h -16.3176 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +3 H+ + Nta-3 = H3(Nta) + log_k 15.22 + delta_h -16.3176 kJ + -gamma 0 0 # Id: 3309683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -4H+ + Nta-3 = H4(Nta)+ - log_k 16.22 - delta_h -16.3176 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +4 H+ + Nta-3 = H4(Nta)+ + log_k 16.22 + delta_h -16.3176 kJ + -gamma 0 0 # Id: 3309684 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Nta-3 = Pb(Nta)- - log_k 12.7 - delta_h -15.8992 kJ - -gamma 0 0 + log_k 12.7 + delta_h -15.8992 kJ + -gamma 0 0 # Id: 6009681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Nta-3 + H+ = PbH(Nta) - log_k 15.3 - delta_h 0 kJ - -gamma 0 0 + log_k 15.3 + delta_h 0 kJ + -gamma 0 0 # Id: 6009682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Nta-3 = Al(Nta) - log_k 13.3 - delta_h 0 kJ - -gamma 0 0 + log_k 13.3 + delta_h 0 kJ + -gamma 0 0 # Id: 309681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Nta-3 + H+ = AlH(Nta)+ - log_k 15.2 - delta_h 0 kJ - -gamma 0 0 + log_k 15.2 + delta_h 0 kJ + -gamma 0 0 # Id: 309682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Nta-3 + H2O = AlOH(Nta)- + H+ - log_k 8 - delta_h 0 kJ - -gamma 0 0 + log_k 8 + delta_h 0 kJ + -gamma 0 0 # Id: 309683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Tl+ + Nta-3 = Tl(Nta)-2 - log_k 5.39 - delta_h 0 kJ - -gamma 0 0 + log_k 5.39 + delta_h 0 kJ + -gamma 0 0 # Id: 8709681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Nta-3 = Zn(Nta)- - log_k 11.95 - delta_h -3.7656 kJ - -gamma 0 0 + log_k 11.95 + delta_h -3.7656 kJ + -gamma 0 0 # Id: 9509681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Nta-3 = Zn(Nta)2-4 - log_k 14.88 - delta_h -15.0624 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2 Nta-3 = Zn(Nta)2-4 + log_k 14.88 + delta_h -15.0624 kJ + -gamma 0 0 # Id: 9509682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Nta-3 + H2O = ZnOH(Nta)-2 + H+ - log_k 1.46 - delta_h 46.4424 kJ - -gamma 0 0 + log_k 1.46 + delta_h 46.4424 kJ + -gamma 0 0 # Id: 9509683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Nta-3 = Cd(Nta)- - log_k 11.07 - delta_h -16.736 kJ - -gamma 0 0 + log_k 11.07 + delta_h -16.736 kJ + -gamma 0 0 # Id: 1609681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Nta-3 = Cd(Nta)2-4 - log_k 15.03 - delta_h -38.0744 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2 Nta-3 = Cd(Nta)2-4 + log_k 15.03 + delta_h -38.0744 kJ + -gamma 0 0 # Id: 1609682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Nta-3 + H2O = CdOH(Nta)-2 + H+ - log_k -0.61 - delta_h 29.288 kJ - -gamma 0 0 + log_k -0.61 + delta_h 29.288 kJ + -gamma 0 0 # Id: 1609683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Nta-3 + 2H+ = Hg(Nta)- + 2H2O - log_k 21.7 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Nta-3 + 2 H+ = Hg(Nta)- + 2 H2O + log_k 21.7 + delta_h 0 kJ + -gamma 0 0 # Id: 3619681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Nta-3 = Cu(Nta)- - log_k 14.4 - delta_h -7.9496 kJ - -gamma 0 0 + log_k 14.4 + delta_h -7.9496 kJ + -gamma 0 0 # Id: 2319681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Nta-3 = Cu(Nta)2-4 - log_k 18.1 - delta_h -37.2376 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2 Nta-3 = Cu(Nta)2-4 + log_k 18.1 + delta_h -37.2376 kJ + -gamma 0 0 # Id: 2319682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Nta-3 + H+ = CuH(Nta) - log_k 16.2 - delta_h 0 kJ - -gamma 0 0 + log_k 16.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2319683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Nta-3 + H2O = CuOH(Nta)-2 + H+ - log_k 4.8 - delta_h 25.5224 kJ - -gamma 0 0 + log_k 4.8 + delta_h 25.5224 kJ + -gamma 0 0 # Id: 2319684 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Nta-3 = Ag(Nta)-2 - log_k 6 - delta_h -26.3592 kJ - -gamma 0 0 + log_k 6 + delta_h -26.3592 kJ + -gamma 0 0 # Id: 209681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Nta-3 = Ni(Nta)- - log_k 12.79 - delta_h -10.0416 kJ - -gamma 0 0 + log_k 12.79 + delta_h -10.0416 kJ + -gamma 0 0 # Id: 5409681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Nta-3 = Ni(Nta)2-4 - log_k 16.96 - delta_h -32.6352 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2 Nta-3 = Ni(Nta)2-4 + log_k 16.96 + delta_h -32.6352 kJ + -gamma 0 0 # Id: 5409682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Nta-3 + H2O = NiOH(Nta)-2 + H+ - log_k 1.5 - delta_h 15.0624 kJ - -gamma 0 0 + log_k 1.5 + delta_h 15.0624 kJ + -gamma 0 0 # Id: 5409683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Nta-3 = Co(Nta)- - log_k 11.6667 - delta_h -0.4 kJ - -gamma 0 0 + log_k 11.6667 + delta_h -0.4 kJ + -gamma 0 0 # Id: 2009681 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 -Co+2 + 2Nta-3 = Co(Nta)2-4 - log_k 14.9734 - delta_h -20 kJ - -gamma 0 0 +Co+2 + 2 Nta-3 = Co(Nta)2-4 + log_k 14.9734 + delta_h -20 kJ + -gamma 0 0 # Id: 2009682 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Co+2 + Nta-3 + H2O = CoOH(Nta)-2 + H+ - log_k 0.4378 - delta_h 45.6 kJ - -gamma 0 0 + log_k 0.4378 + delta_h 45.6 kJ + -gamma 0 0 # Id: 2009683 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Fe+2 + Nta-3 = Fe(Nta)- - log_k 10.19 - delta_h 0 kJ - -gamma 0 0 + log_k 10.19 + delta_h 0 kJ + -gamma 0 0 # Id: 2809681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + 2Nta-3 = Fe(Nta)2-4 - log_k 12.62 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + 2 Nta-3 = Fe(Nta)2-4 + log_k 12.62 + delta_h 0 kJ + -gamma 0 0 # Id: 2809682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + Nta-3 + H+ = FeH(Nta) - log_k 12.29 - delta_h 0 kJ - -gamma 0 0 + log_k 12.29 + delta_h 0 kJ + -gamma 0 0 # Id: 2809683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + Nta-3 + H2O = FeOH(Nta)-2 + H+ - log_k -1.06 - delta_h 0 kJ - -gamma 0 0 + log_k -1.06 + delta_h 0 kJ + -gamma 0 0 # Id: 2809684 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Nta-3 = Fe(Nta) - log_k 17.8 - delta_h 13.3888 kJ - -gamma 0 0 + log_k 17.8 + delta_h 13.3888 kJ + -gamma 0 0 # Id: 2819681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + 2Nta-3 = Fe(Nta)2-3 - log_k 25.9 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + 2 Nta-3 = Fe(Nta)2-3 + log_k 25.9 + delta_h 0 kJ + -gamma 0 0 # Id: 2819682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Nta-3 + H2O = FeOH(Nta)- + H+ - log_k 13.23 - delta_h 0 kJ - -gamma 0 0 + log_k 13.23 + delta_h 0 kJ + -gamma 0 0 # Id: 2819683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Nta-3 = Mn(Nta)- - log_k 8.573 - delta_h 5.8576 kJ - -gamma 0 0 + log_k 8.573 + delta_h 5.8576 kJ + -gamma 0 0 # Id: 4709681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + 2Nta-3 = Mn(Nta)2-4 - log_k 11.58 - delta_h -17.1544 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + 2 Nta-3 = Mn(Nta)2-4 + log_k 11.58 + delta_h -17.1544 kJ + -gamma 0 0 # Id: 4709682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr(OH)2+ + Nta-3 + 2H+ = Cr(Nta) + 2H2O - log_k 21.2 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr(OH)2+ + Nta-3 + 2 H+ = Cr(Nta) + 2 H2O + log_k 21.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2119681 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + 2Nta-3 + 2H+ = Cr(Nta)2-3 + 2H2O - log_k 29.5 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + 2 Nta-3 + 2 H+ = Cr(Nta)2-3 + 2 H2O + log_k 29.5 + delta_h 0 kJ + -gamma 0 0 # Id: 2119682 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -MoO4-2 + 2H+ + Nta-3 = MoO3(Nta)-3 + H2O - log_k 19.5434 - delta_h -69 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +MoO4-2 + 2 H+ + Nta-3 = MoO3(Nta)-3 + H2O + log_k 19.5434 + delta_h -69 kJ + -gamma 0 0 # Id: 4809681 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 -MoO4-2 + 3H+ + Nta-3 = MoO3H(Nta)-2 + H2O - log_k 23.3954 - delta_h -71 kJ - -gamma 0 0 +MoO4-2 + 3 H+ + Nta-3 = MoO3H(Nta)-2 + H2O + log_k 23.3954 + delta_h -71 kJ + -gamma 0 0 # Id: 4809682 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 1.00 25.0 -MoO4-2 + 4H+ + Nta-3 = MoO3H2(Nta)- + H2O - log_k 25.3534 - delta_h -71 kJ - -gamma 0 0 +MoO4-2 + 4 H+ + Nta-3 = MoO3H2(Nta)- + H2O + log_k 25.3534 + delta_h -71 kJ + -gamma 0 0 # Id: 4809683 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 1.00 25.0 Be+2 + Nta-3 = Be(Nta)- - log_k 9.0767 - delta_h 25 kJ - -gamma 0 0 + log_k 9.0767 + delta_h 25 kJ + -gamma 0 0 # Id: 1109681 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Mg+2 + Nta-3 = Mg(Nta)- - log_k 6.5 - delta_h 17.9912 kJ - -gamma 0 0 + log_k 6.5 + delta_h 17.9912 kJ + -gamma 0 0 # Id: 4609681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Nta-3 = Ca(Nta)- - log_k 7.608 - delta_h -5.6902 kJ - -gamma 0 0 + log_k 7.608 + delta_h -5.6902 kJ + -gamma 0 0 # Id: 1509681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ca+2 + 2Nta-3 = Ca(Nta)2-4 - log_k 8.81 - delta_h -32.6352 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ca+2 + 2 Nta-3 = Ca(Nta)2-4 + log_k 8.81 + delta_h -32.6352 kJ + -gamma 0 0 # Id: 1509682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Sr+2 + Nta-3 = Sr(Nta)- - log_k 6.2767 - delta_h -2.2 kJ - -gamma 0 0 + log_k 6.2767 + delta_h -2.2 kJ + -gamma 0 0 # Id: 8009681 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Ba+2 + Nta-3 = Ba(Nta)- - log_k 5.875 - delta_h -6.025 kJ - -gamma 0 0 + log_k 5.875 + delta_h -6.025 kJ + -gamma 0 0 # Id: 1009681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Edta-4 = H(Edta)-3 - log_k 10.948 - delta_h -23.4304 kJ - -gamma 0 0 + log_k 10.948 + delta_h -23.4304 kJ + -gamma 0 0 # Id: 3309691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Edta-4 = H2(Edta)-2 - log_k 17.221 - delta_h -41.0032 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2 H+ + Edta-4 = H2(Edta)-2 + log_k 17.221 + delta_h -41.0032 kJ + -gamma 0 0 # Id: 3309692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -3H+ + Edta-4 = H3(Edta)- - log_k 20.34 - delta_h -35.564 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +3 H+ + Edta-4 = H3(Edta)- + log_k 20.34 + delta_h -35.564 kJ + -gamma 0 0 # Id: 3309693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -4H+ + Edta-4 = H4(Edta) - log_k 22.5 - delta_h -34.3088 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +4 H+ + Edta-4 = H4(Edta) + log_k 22.5 + delta_h -34.3088 kJ + -gamma 0 0 # Id: 3309694 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -5H+ + Edta-4 = H5(Edta)+ - log_k 24 - delta_h -32.2168 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +5 H+ + Edta-4 = H5(Edta)+ + log_k 24 + delta_h -32.2168 kJ + -gamma 0 0 # Id: 3309695 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Sn(OH)2 + 2H+ + Edta-4 = Sn(Edta)-2 + 2H2O - log_k 27.026 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Sn(OH)2 + 2 H+ + Edta-4 = Sn(Edta)-2 + 2 H2O + log_k 27.026 + delta_h 0 kJ + -gamma 0 0 # Id: 7909691 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 1.00 20.0 -Sn(OH)2 + 3H+ + Edta-4 = SnH(Edta)- + 2H2O - log_k 29.934 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 3 H+ + Edta-4 = SnH(Edta)- + 2 H2O + log_k 29.934 + delta_h 0 kJ + -gamma 0 0 # Id: 7909692 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 1.00 20.0 -Sn(OH)2 + 4H+ + Edta-4 = SnH2(Edta) + 2H2O - log_k 31.638 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 4 H+ + Edta-4 = SnH2(Edta) + 2 H2O + log_k 31.638 + delta_h 0 kJ + -gamma 0 0 # Id: 7909693 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 1.00 20.0 Pb+2 + Edta-4 = Pb(Edta)-2 - log_k 19.8 - delta_h -54.8104 kJ - -gamma 0 0 + log_k 19.8 + delta_h -54.8104 kJ + -gamma 0 0 # Id: 6009691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Edta-4 + H+ = PbH(Edta)- - log_k 23 - delta_h 0 kJ - -gamma 0 0 + log_k 23 + delta_h 0 kJ + -gamma 0 0 # Id: 6009692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + Edta-4 + 2H+ = PbH2(Edta) - log_k 24.9 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + Edta-4 + 2 H+ = PbH2(Edta) + log_k 24.9 + delta_h 0 kJ + -gamma 0 0 # Id: 6009693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Edta-4 = Al(Edta)- - log_k 19.1 - delta_h 52.7184 kJ - -gamma 0 0 + log_k 19.1 + delta_h 52.7184 kJ + -gamma 0 0 # Id: 309690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Edta-4 + H+ = AlH(Edta) - log_k 21.8 - delta_h 36.4008 kJ - -gamma 0 0 + log_k 21.8 + delta_h 36.4008 kJ + -gamma 0 0 # Id: 309691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Edta-4 + H2O = AlOH(Edta)-2 + H+ - log_k 12.8 - delta_h 73.6384 kJ - -gamma 0 0 + log_k 12.8 + delta_h 73.6384 kJ + -gamma 0 0 # Id: 309692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Tl+ + Edta-4 = Tl(Edta)-3 - log_k 7.27 - delta_h -43.5136 kJ - -gamma 0 0 + log_k 7.27 + delta_h -43.5136 kJ + -gamma 0 0 # Id: 8709691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Tl+ + Edta-4 + H+ = TlH(Edta)-2 - log_k 13.68 - delta_h 0 kJ - -gamma 0 0 + log_k 13.68 + delta_h 0 kJ + -gamma 0 0 # Id: 8709692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Edta-4 = Zn(Edta)-2 - log_k 18 - delta_h -19.2464 kJ - -gamma 0 0 + log_k 18 + delta_h -19.2464 kJ + -gamma 0 0 # Id: 9509691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Edta-4 + H+ = ZnH(Edta)- - log_k 21.4 - delta_h -28.4512 kJ - -gamma 0 0 + log_k 21.4 + delta_h -28.4512 kJ + -gamma 0 0 # Id: 9509692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Edta-4 + H2O = ZnOH(Edta)-3 + H+ - log_k 5.8 - delta_h 0 kJ - -gamma 0 0 + log_k 5.8 + delta_h 0 kJ + -gamma 0 0 # Id: 9509693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Edta-4 = Cd(Edta)-2 - log_k 18.2 - delta_h -38.0744 kJ - -gamma 0 0 + log_k 18.2 + delta_h -38.0744 kJ + -gamma 0 0 # Id: 1609691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Edta-4 + H+ = CdH(Edta)- - log_k 21.5 - delta_h -39.748 kJ - -gamma 0 0 + log_k 21.5 + delta_h -39.748 kJ + -gamma 0 0 # Id: 1609692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Edta-4 + 2H+ = Hg(Edta)-2 + 2H2O - log_k 29.3 - delta_h -125.102 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Edta-4 + 2 H+ = Hg(Edta)-2 + 2 H2O + log_k 29.3 + delta_h -125.102 kJ + -gamma 0 0 # Id: 3619691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Edta-4 + 3H+ = HgH(Edta)- + 2H2O - log_k 32.9 - delta_h -128.449 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Edta-4 + 3 H+ = HgH(Edta)- + 2 H2O + log_k 32.9 + delta_h -128.449 kJ + -gamma 0 0 # Id: 3619692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Edta-4 = Cu(Edta)-2 - log_k 20.5 - delta_h -34.7272 kJ - -gamma 0 0 + log_k 20.5 + delta_h -34.7272 kJ + -gamma 0 0 # Id: 2319691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Edta-4 + H+ = CuH(Edta)- - log_k 24 - delta_h -43.0952 kJ - -gamma 0 0 + log_k 24 + delta_h -43.0952 kJ + -gamma 0 0 # Id: 2319692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + Edta-4 + 2H+ = CuH2(Edta) - log_k 26.2 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + Edta-4 + 2 H+ = CuH2(Edta) + log_k 26.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2319693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Edta-4 + H2O = CuOH(Edta)-3 + H+ - log_k 8.5 - delta_h 0 kJ - -gamma 0 0 + log_k 8.5 + delta_h 0 kJ + -gamma 0 0 # Id: 2319694 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Edta-4 = Ag(Edta)-3 - log_k 8.08 - delta_h -31.38 kJ - -gamma 0 0 + log_k 8.08 + delta_h -31.38 kJ + -gamma 0 0 # Id: 209691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Edta-4 + H+ = AgH(Edta)-2 - log_k 15.21 - delta_h 0 kJ - -gamma 0 0 + log_k 15.21 + delta_h 0 kJ + -gamma 0 0 # Id: 209693 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ni+2 + Edta-4 = Ni(Edta)-2 - log_k 20.1 - delta_h -30.9616 kJ - -gamma 0 0 + log_k 20.1 + delta_h -30.9616 kJ + -gamma 0 0 # Id: 5409691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Edta-4 + H+ = NiH(Edta)- - log_k 23.6 - delta_h -38.4928 kJ - -gamma 0 0 + log_k 23.6 + delta_h -38.4928 kJ + -gamma 0 0 # Id: 5409692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Edta-4 + H2O = NiOH(Edta)-3 + H+ - log_k 7.6 - delta_h 0 kJ - -gamma 0 0 + log_k 7.6 + delta_h 0 kJ + -gamma 0 0 # Id: 5409693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Edta-4 = Co(Edta)-2 - log_k 18.1657 - delta_h -15 kJ - -gamma 0 0 + log_k 18.1657 + delta_h -15 kJ + -gamma 0 0 # Id: 2009691 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Co+2 + Edta-4 + H+ = CoH(Edta)- - log_k 21.5946 - delta_h -22.9 kJ - -gamma 0 0 + log_k 21.5946 + delta_h -22.9 kJ + -gamma 0 0 # Id: 2009692 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 -Co+2 + Edta-4 + 2H+ = CoH2(Edta) - log_k 23.4986 - delta_h 0 kJ - -gamma 0 0 +Co+2 + Edta-4 + 2 H+ = CoH2(Edta) + log_k 23.4986 + delta_h 0 kJ + -gamma 0 0 # Id: 2009693 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 1.00 25.0 Co+3 + Edta-4 = Co(Edta)- - log_k 43.9735 - delta_h 0 kJ - -gamma 0 0 + log_k 43.9735 + delta_h 0 kJ + -gamma 0 0 # Id: 2019691 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Co+3 + Edta-4 + H+ = CoH(Edta) - log_k 47.168 - delta_h 0 kJ - -gamma 0 0 + log_k 47.168 + delta_h 0 kJ + -gamma 0 0 # Id: 2019692 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 20.0 Fe+2 + Edta-4 = Fe(Edta)-2 - log_k 16 - delta_h -16.736 kJ - -gamma 0 0 + log_k 16 + delta_h -16.736 kJ + -gamma 0 0 # Id: 2809690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + Edta-4 + H+ = FeH(Edta)- - log_k 19.06 - delta_h -27.6144 kJ - -gamma 0 0 + log_k 19.06 + delta_h -27.6144 kJ + -gamma 0 0 # Id: 2809691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + Edta-4 + H2O = FeOH(Edta)-3 + H+ - log_k 6.5 - delta_h 0 kJ - -gamma 0 0 + log_k 6.5 + delta_h 0 kJ + -gamma 0 0 # Id: 2809692 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Fe+2 + Edta-4 + 2H2O = Fe(OH)2(Edta)-4 + 2H+ - log_k -4 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Fe+2 + Edta-4 + 2 H2O = Fe(OH)2(Edta)-4 + 2 H+ + log_k -4 + delta_h 0 kJ + -gamma 0 0 # Id: 2809693 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Fe+3 + Edta-4 = Fe(Edta)- - log_k 27.7 - delta_h -11.2968 kJ - -gamma 0 0 + log_k 27.7 + delta_h -11.2968 kJ + -gamma 0 0 # Id: 2819690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Edta-4 + H+ = FeH(Edta) - log_k 29.2 - delta_h -11.7152 kJ - -gamma 0 0 + log_k 29.2 + delta_h -11.7152 kJ + -gamma 0 0 # Id: 2819691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Edta-4 + H2O = FeOH(Edta)-2 + H+ - log_k 19.9 - delta_h 0 kJ - -gamma 0 0 + log_k 19.9 + delta_h 0 kJ + -gamma 0 0 # Id: 2819692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + Edta-4 + 2H2O = Fe(OH)2(Edta)-3 + 2H+ - log_k 9.85 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + Edta-4 + 2 H2O = Fe(OH)2(Edta)-3 + 2 H+ + log_k 9.85 + delta_h 0 kJ + -gamma 0 0 # Id: 2819693 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Mn+2 + Edta-4 = Mn(Edta)-2 - log_k 15.6 - delta_h -19.2464 kJ - -gamma 0 0 + log_k 15.6 + delta_h -19.2464 kJ + -gamma 0 0 # Id: 4709691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Edta-4 + H+ = MnH(Edta)- - log_k 19.1 - delta_h -24.2672 kJ - -gamma 0 0 + log_k 19.1 + delta_h -24.2672 kJ + -gamma 0 0 # Id: 4709692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cr+2 + Edta-4 = Cr(Edta)-2 - log_k 15.3 - delta_h 0 kJ - -gamma 0 0 + log_k 15.3 + delta_h 0 kJ + -gamma 0 0 # Id: 2109691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cr+2 + Edta-4 + H+ = CrH(Edta)- - log_k 19.1 - delta_h 0 kJ - -gamma 0 0 + log_k 19.1 + delta_h 0 kJ + -gamma 0 0 # Id: 2109692 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + Edta-4 + 2H+ = Cr(Edta)- + 2H2O - log_k 35.5 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + Edta-4 + 2 H+ = Cr(Edta)- + 2 H2O + log_k 35.5 + delta_h 0 kJ + -gamma 0 0 # Id: 2119691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr(OH)2+ + Edta-4 + 3H+ = CrH(Edta) + 2H2O - log_k 37.4 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr(OH)2+ + Edta-4 + 3 H+ = CrH(Edta) + 2 H2O + log_k 37.4 + delta_h 0 kJ + -gamma 0 0 # Id: 2119692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cr(OH)2+ + Edta-4 + H+ = CrOH(Edta)-2 + H2O - log_k 27.7 - delta_h 0 kJ - -gamma 0 0 + log_k 27.7 + delta_h 0 kJ + -gamma 0 0 # Id: 2119693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Be+2 + Edta-4 = Be(Edta)-2 - log_k 11.4157 - delta_h 41 kJ - -gamma 0 0 + log_k 11.4157 + delta_h 41 kJ + -gamma 0 0 # Id: 1109691 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Mg+2 + Edta-4 = Mg(Edta)-2 - log_k 10.57 - delta_h 13.8072 kJ - -gamma 0 0 + log_k 10.57 + delta_h 13.8072 kJ + -gamma 0 0 # Id: 4609690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Edta-4 + H+ = MgH(Edta)- - log_k 14.97 - delta_h 0 kJ - -gamma 0 0 + log_k 14.97 + delta_h 0 kJ + -gamma 0 0 # Id: 4609691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Edta-4 = Ca(Edta)-2 - log_k 12.42 - delta_h -25.5224 kJ - -gamma 0 0 + log_k 12.42 + delta_h -25.5224 kJ + -gamma 0 0 # Id: 1509690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Edta-4 + H+ = CaH(Edta)- - log_k 15.9 - delta_h 0 kJ - -gamma 0 0 + log_k 15.9 + delta_h 0 kJ + -gamma 0 0 # Id: 1509691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Sr+2 + Edta-4 = Sr(Edta)-2 - log_k 10.4357 - delta_h -17 kJ - -gamma 0 0 + log_k 10.4357 + delta_h -17 kJ + -gamma 0 0 # Id: 8009691 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Sr+2 + Edta-4 + H+ = SrH(Edta)- - log_k 14.7946 - delta_h 0 kJ - -gamma 0 0 + log_k 14.7946 + delta_h 0 kJ + -gamma 0 0 # Id: 8009692 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 20.0 Ba+2 + Edta-4 = Ba(Edta)-2 - log_k 7.72 - delta_h -20.5016 kJ - -gamma 0 0 + log_k 7.72 + delta_h -20.5016 kJ + -gamma 0 0 # Id: 1009691 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Na+ + Edta-4 = Na(Edta)-3 - log_k 2.7 - delta_h -5.8576 kJ - -gamma 0 0 + log_k 2.7 + delta_h -5.8576 kJ + -gamma 0 0 # Id: 5009690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: K+ + Edta-4 = K(Edta)-3 - log_k 1.7 - delta_h 0 kJ - -gamma 0 0 + log_k 1.7 + delta_h 0 kJ + -gamma 0 0 # Id: 4109690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Propionate- = H(Propionate) - log_k 4.874 - delta_h 0.66 kJ - -gamma 0 0 + log_k 4.874 + delta_h 0.66 kJ + -gamma 0 0 # Id: 3309711 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Pb+2 + Propionate- = Pb(Propionate)+ - log_k 2.64 - delta_h 0 kJ - -gamma 0 0 + log_k 2.64 + delta_h 0 kJ + -gamma 0 0 # Id: 6009711 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 0.00 35.0 -Pb+2 + 2Propionate- = Pb(Propionate)2 - log_k 3.1765 - delta_h 0 kJ - -gamma 0 0 +Pb+2 + 2 Propionate- = Pb(Propionate)2 + log_k 3.1765 + delta_h 0 kJ + -gamma 0 0 # Id: 6009712 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 2.00 25.0 Zn+2 + Propionate- = Zn(Propionate)+ - log_k 1.4389 - delta_h 0 kJ - -gamma 0 0 + log_k 1.4389 + delta_h 0 kJ + -gamma 0 0 # Id: 9509711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 -Zn+2 + 2Propionate- = Zn(Propionate)2 - log_k 1.842 - delta_h 0 kJ - -gamma 0 0 +Zn+2 + 2 Propionate- = Zn(Propionate)2 + log_k 1.842 + delta_h 0 kJ + -gamma 0 0 # Id: 9509712 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 1.00 25.0 Cd+2 + Propionate- = Cd(Propionate)+ - log_k 1.598 - delta_h 0 kJ - -gamma 0 0 + log_k 1.598 + delta_h 0 kJ + -gamma 0 0 # Id: 1609711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 1.00 25.0 -Cd+2 + 2Propionate- = Cd(Propionate)2 - log_k 2.472 - delta_h 0 kJ - -gamma 0 0 +Cd+2 + 2 Propionate- = Cd(Propionate)2 + log_k 2.472 + delta_h 0 kJ + -gamma 0 0 # Id: 1609712 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 1.00 25.0 -Hg(OH)2 + 2H+ + Propionate- = Hg(Propionate)+ + 2H2O - log_k 10.594 - delta_h 0 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + Propionate- = Hg(Propionate)+ + 2 H2O + log_k 10.594 + delta_h 0 kJ + -gamma 0 0 # Id: 3619711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Cu+2 + Propionate- = Cu(Propionate)+ - log_k 2.22 - delta_h 4.1 kJ - -gamma 0 0 + log_k 2.22 + delta_h 4.1 kJ + -gamma 0 0 # Id: 2319711 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Cu+2 + 2Propionate- = Cu(Propionate)2 - log_k 3.5 - delta_h 0 kJ - -gamma 0 0 +Cu+2 + 2 Propionate- = Cu(Propionate)2 + log_k 3.5 + delta_h 0 kJ + -gamma 0 0 # Id: 2319712 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Ni+2 + Propionate- = Ni(Propionate)+ - log_k 0.908 - delta_h 0 kJ - -gamma 0 0 + log_k 0.908 + delta_h 0 kJ + -gamma 0 0 # Id: 5409711 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 1.00 25.0 Co+2 + Propionate- = Co(Propionate)+ - log_k 0.671 - delta_h 4.6 kJ - -gamma 0 0 + log_k 0.671 + delta_h 4.6 kJ + -gamma 0 0 # Id: 2009711 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 2.00 25.0 -Co+2 + 2Propionate- = Co(Propionate)2 - log_k 0.5565 - delta_h 16 kJ - -gamma 0 0 +Co+2 + 2 Propionate- = Co(Propionate)2 + log_k 0.5565 + delta_h 16 kJ + -gamma 0 0 # Id: 2009712 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 2.00 25.0 Fe+3 + Propionate- = Fe(Propionate)+2 - log_k 4.012 - delta_h 0 kJ - -gamma 0 0 + log_k 4.012 + delta_h 0 kJ + -gamma 0 0 # Id: 2819711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 1.00 20.0 -Cr(OH)2+ + 2H+ + Propionate- = Cr(Propionate)+2 + 2H2O - log_k 15.0773 - delta_h 0 kJ - -gamma 0 0 +Cr(OH)2+ + 2 H+ + Propionate- = Cr(Propionate)+2 + 2 H2O + log_k 15.0773 + delta_h 0 kJ + -gamma 0 0 # Id: 2119711 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 0.50 25.0 -Cr(OH)2+ + 2H+ + 2Propionate- = Cr(Propionate)2+ + 2H2O - log_k 17.9563 - delta_h 0 kJ - -gamma 0 0 +Cr(OH)2+ + 2 H+ + 2 Propionate- = Cr(Propionate)2+ + 2 H2O + log_k 17.9563 + delta_h 0 kJ + -gamma 0 0 # Id: 2119712 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 0.50 25.0 -Cr(OH)2+ + 2H+ + 3Propionate- = Cr(Propionate)3 + 2H2O - log_k 20.8858 - delta_h 0 kJ - -gamma 0 0 +Cr(OH)2+ + 2 H+ + 3 Propionate- = Cr(Propionate)3 + 2 H2O + log_k 20.8858 + delta_h 0 kJ + -gamma 0 0 # Id: 2119713 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 0.50 25.0 Mg+2 + Propionate- = Mg(Propionate)+ - log_k 0.9689 - delta_h 4.2677 kJ - -gamma 0 0 + log_k 0.9689 + delta_h 4.2677 kJ + -gamma 0 0 # Id: 4609710 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 0.10 25.0 Ca+2 + Propionate- = Ca(Propionate)+ - log_k 0.9289 - delta_h 3.3472 kJ - -gamma 0 0 + log_k 0.9289 + delta_h 3.3472 kJ + -gamma 0 0 # Id: 1509710 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 0.10 25.0 Sr+2 + Propionate- = Sr(Propionate)+ - log_k 0.8589 - delta_h 0 kJ - -gamma 0 0 + log_k 0.8589 + delta_h 0 kJ + -gamma 0 0 # Id: 8009711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Ba+2 + Propionate- = Ba(Propionate)+ - log_k 0.7689 - delta_h 0 kJ - -gamma 0 0 + log_k 0.7689 + delta_h 0 kJ + -gamma 0 0 # Id: 1009711 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 0.10 25.0 -Ba+2 + 2Propionate- = Ba(Propionate)2 - log_k 0.9834 - delta_h 0 kJ - -gamma 0 0 +Ba+2 + 2 Propionate- = Ba(Propionate)2 + log_k 0.9834 + delta_h 0 kJ + -gamma 0 0 # Id: 1009712 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 0.10 25.0 H+ + Butyrate- = H(Butyrate) - log_k 4.819 - delta_h 2.8 kJ - -gamma 0 0 + log_k 4.819 + delta_h 2.8 kJ + -gamma 0 0 # Id: 3309721 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Pb+2 + Butyrate- = Pb(Butyrate)+ - log_k 2.101 - delta_h 0 kJ - -gamma 0 0 + log_k 2.101 + delta_h 0 kJ + -gamma 0 0 # Id: 6009721 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 2.00 25.0 Zn+2 + Butyrate- = Zn(Butyrate)+ - log_k 1.4289 - delta_h 0 kJ - -gamma 0 0 + log_k 1.4289 + delta_h 0 kJ + -gamma 0 0 # Id: 9509721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 -Hg(OH)2 + 2H+ + Butyrate- = Hg(Butyrate)+ + 2H2O - log_k 10.3529 - delta_h 0 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + Butyrate- = Hg(Butyrate)+ + 2 H2O + log_k 10.3529 + delta_h 0 kJ + -gamma 0 0 # Id: 3619721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Cu+2 + Butyrate- = Cu(Butyrate)+ - log_k 2.14 - delta_h 0 kJ - -gamma 0 0 + log_k 2.14 + delta_h 0 kJ + -gamma 0 0 # Id: 2319721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Ni+2 + Butyrate- = Ni(Butyrate)+ - log_k 0.691 - delta_h 0 kJ - -gamma 0 0 + log_k 0.691 + delta_h 0 kJ + -gamma 0 0 # Id: 5409721 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 2.00 25.0 Co+2 + Butyrate- = Co(Butyrate)+ - log_k 0.591 - delta_h 0 kJ - -gamma 0 0 + log_k 0.591 + delta_h 0 kJ + -gamma 0 0 # Id: 2009721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 2.00 25.0 -Co+2 + 2Butyrate- = Co(Butyrate)2 - log_k 0.7765 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 2 Butyrate- = Co(Butyrate)2 + log_k 0.7765 + delta_h 0 kJ + -gamma 0 0 # Id: 2009722 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 2.00 25.0 Mg+2 + Butyrate- = Mg(Butyrate)+ - log_k 0.9589 - delta_h 0 kJ - -gamma 0 0 + log_k 0.9589 + delta_h 0 kJ + -gamma 0 0 # Id: 4609720 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 0.10 25.0 Ca+2 + Butyrate- = Ca(Butyrate)+ - log_k 0.9389 - delta_h 3.3472 kJ - -gamma 0 0 + log_k 0.9389 + delta_h 3.3472 kJ + -gamma 0 0 # Id: 1509720 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 0.10 25.0 Sr+2 + Butyrate- = Sr(Butyrate)+ - log_k 0.7889 - delta_h 0 kJ - -gamma 0 0 + log_k 0.7889 + delta_h 0 kJ + -gamma 0 0 # Id: 8009721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Ba+2 + Butyrate- = Ba(Butyrate)+ - log_k 0.7389 - delta_h 0 kJ - -gamma 0 0 + log_k 0.7389 + delta_h 0 kJ + -gamma 0 0 # Id: 1009721 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 0.10 25.0 -Ba+2 + 2Butyrate- = Ba(Butyrate)2 - log_k 0.88 - delta_h 0 kJ - -gamma 0 0 +Ba+2 + 2 Butyrate- = Ba(Butyrate)2 + log_k 0.88 + delta_h 0 kJ + -gamma 0 0 # Id: 1009722 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Isobutyrate- = H(Isobutyrate) - log_k 4.849 - delta_h 3.2217 kJ - -gamma 0 0 + log_k 4.849 + delta_h 3.2217 kJ + -gamma 0 0 # Id: 3309731 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Isobutyrate- = Zn(Isobutyrate)+ - log_k 1.44 - delta_h 0 kJ - -gamma 0 0 + log_k 1.44 + delta_h 0 kJ + -gamma 0 0 # Id: 9509731 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Isobutyrate- = Cu(Isobutyrate)+ - log_k 2.17 - delta_h 0 kJ - -gamma 0 0 + log_k 2.17 + delta_h 0 kJ + -gamma 0 0 # Id: 2319731 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Isobutyrate- = Cu(Isobutyrate)2 - log_k 3.3 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2 Isobutyrate- = Cu(Isobutyrate)2 + log_k 3.3 + delta_h 0 kJ + -gamma 0 0 # Id: 2319732 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Isobutyrate- = Fe(Isobutyrate)+2 - log_k 4.2 - delta_h 0 kJ - -gamma 0 0 + log_k 4.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2819731 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Isobutyrate- = Ca(Isobutyrate)+ - log_k 0.51 - delta_h 0 kJ - -gamma 0 0 + log_k 0.51 + delta_h 0 kJ + -gamma 0 0 # Id: 1509731 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Two_picoline = H(Two_picoline)+ - log_k 5.95 - delta_h -25.5224 kJ - -gamma 0 0 + log_k 5.95 + delta_h -25.5224 kJ + -gamma 0 0 # Id: 3309801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Two_picoline = Cu(Two_picoline)+2 - log_k 1.3 - delta_h 0 kJ - -gamma 0 0 + log_k 1.3 + delta_h 0 kJ + -gamma 0 0 # Id: 2319801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Two_picoline = Cu(Two_picoline)2+2 - log_k 2.8 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2 Two_picoline = Cu(Two_picoline)2+2 + log_k 2.8 + delta_h 0 kJ + -gamma 0 0 # Id: 2319802 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + Two_picoline = Cu(Two_picoline)+ - log_k 5.4 - delta_h 0 kJ - -gamma 0 0 + log_k 5.4 + delta_h 0 kJ + -gamma 0 0 # Id: 2309801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 2Two_picoline = Cu(Two_picoline)2+ - log_k 7.65 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 2 Two_picoline = Cu(Two_picoline)2+ + log_k 7.65 + delta_h 0 kJ + -gamma 0 0 # Id: 2309802 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 3Two_picoline = Cu(Two_picoline)3+ - log_k 8.5 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 3 Two_picoline = Cu(Two_picoline)3+ + log_k 8.5 + delta_h 0 kJ + -gamma 0 0 # Id: 2309803 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Two_picoline = Ag(Two_picoline)+ - log_k 2.32 - delta_h -24.2672 kJ - -gamma 0 0 + log_k 2.32 + delta_h -24.2672 kJ + -gamma 0 0 # Id: 209801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Two_picoline = Ag(Two_picoline)2+ - log_k 4.68 - delta_h -42.6768 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Two_picoline = Ag(Two_picoline)2+ + log_k 4.68 + delta_h -42.6768 kJ + -gamma 0 0 # Id: 209802 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Two_picoline = Ni(Two_picoline)+2 - log_k 0.4 - delta_h 0 kJ - -gamma 0 0 + log_k 0.4 + delta_h 0 kJ + -gamma 0 0 # Id: 5409801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Three_picoline = H(Three_picoline)+ - log_k 5.7 - delta_h -23.8488 kJ - -gamma 0 0 + log_k 5.7 + delta_h -23.8488 kJ + -gamma 0 0 # Id: 3309811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Three_picoline = Zn(Three_picoline)+2 - log_k 1 - delta_h 0 kJ - -gamma 0 0 + log_k 1 + delta_h 0 kJ + -gamma 0 0 # Id: 9509811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Three_picoline = Zn(Three_picoline)2+2 - log_k 2.1 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2 Three_picoline = Zn(Three_picoline)2+2 + log_k 2.1 + delta_h 0 kJ + -gamma 0 0 # Id: 9509812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 3Three_picoline = Zn(Three_picoline)3+2 - log_k 2.6 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 3 Three_picoline = Zn(Three_picoline)3+2 + log_k 2.6 + delta_h 0 kJ + -gamma 0 0 # Id: 9509813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 4Three_picoline = Zn(Three_picoline)4+2 - log_k 3.7 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 4 Three_picoline = Zn(Three_picoline)4+2 + log_k 3.7 + delta_h 0 kJ + -gamma 0 0 # Id: 9509814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Three_picoline = Cd(Three_picoline)+2 - log_k 1.42 - delta_h 0 kJ - -gamma 0 0 + log_k 1.42 + delta_h 0 kJ + -gamma 0 0 # Id: 1609811 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 2Three_picoline = Cd(Three_picoline)2+2 - log_k 2.27 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 2 Three_picoline = Cd(Three_picoline)2+2 + log_k 2.27 + delta_h 0 kJ + -gamma 0 0 # Id: 1609812 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 3Three_picoline = Cd(Three_picoline)3+2 - log_k 3.6 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 3 Three_picoline = Cd(Three_picoline)3+2 + log_k 3.6 + delta_h 0 kJ + -gamma 0 0 # Id: 1609813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 4Three_picoline = Cd(Three_picoline)4+2 - log_k 4 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 4 Three_picoline = Cd(Three_picoline)4+2 + log_k 4 + delta_h 0 kJ + -gamma 0 0 # Id: 1609814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + Three_picoline = Cu(Three_picoline)+ - log_k 5.6 - delta_h 0 kJ - -gamma 0 0 + log_k 5.6 + delta_h 0 kJ + -gamma 0 0 # Id: 2309811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 2Three_picoline = Cu(Three_picoline)2+ - log_k 7.78 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 2 Three_picoline = Cu(Three_picoline)2+ + log_k 7.78 + delta_h 0 kJ + -gamma 0 0 # Id: 2309812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 3Three_picoline = Cu(Three_picoline)3+ - log_k 8.6 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 3 Three_picoline = Cu(Three_picoline)3+ + log_k 8.6 + delta_h 0 kJ + -gamma 0 0 # Id: 2309813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 4Three_picoline = Cu(Three_picoline)4+ - log_k 9 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 4 Three_picoline = Cu(Three_picoline)4+ + log_k 9 + delta_h 0 kJ + -gamma 0 0 # Id: 2309814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Three_picoline = Cu(Three_picoline)+2 - log_k 2.77 - delta_h 0 kJ - -gamma 0 0 + log_k 2.77 + delta_h 0 kJ + -gamma 0 0 # Id: 2319811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Three_picoline = Cu(Three_picoline)2+2 - log_k 4.8 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2 Three_picoline = Cu(Three_picoline)2+2 + log_k 4.8 + delta_h 0 kJ + -gamma 0 0 # Id: 2319812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 3Three_picoline = Cu(Three_picoline)3+2 - log_k 6.3 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 3 Three_picoline = Cu(Three_picoline)3+2 + log_k 6.3 + delta_h 0 kJ + -gamma 0 0 # Id: 2319813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 4Three_picoline = Cu(Three_picoline)4+2 - log_k 7.2 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 4 Three_picoline = Cu(Three_picoline)4+2 + log_k 7.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2319814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Three_picoline = Ag(Three_picoline)+ - log_k 2.2 - delta_h -21.7568 kJ - -gamma 0 0 + log_k 2.2 + delta_h -21.7568 kJ + -gamma 0 0 # Id: 209811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Three_picoline = Ag(Three_picoline)2+ - log_k 4.46 - delta_h -49.7896 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Three_picoline = Ag(Three_picoline)2+ + log_k 4.46 + delta_h -49.7896 kJ + -gamma 0 0 # Id: 209812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Three_picoline = Ni(Three_picoline)+2 - log_k 1.87 - delta_h 0 kJ - -gamma 0 0 + log_k 1.87 + delta_h 0 kJ + -gamma 0 0 # Id: 5409811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Three_picoline = Ni(Three_picoline)2+2 - log_k 3.3 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2 Three_picoline = Ni(Three_picoline)2+2 + log_k 3.3 + delta_h 0 kJ + -gamma 0 0 # Id: 5409812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 3Three_picoline = Ni(Three_picoline)3+2 - log_k 4.1 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 3 Three_picoline = Ni(Three_picoline)3+2 + log_k 4.1 + delta_h 0 kJ + -gamma 0 0 # Id: 5409813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 4Three_picoline = Ni(Three_picoline)4+2 - log_k 4.6 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 4 Three_picoline = Ni(Three_picoline)4+2 + log_k 4.6 + delta_h 0 kJ + -gamma 0 0 # Id: 5409814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Three_picoline = Co(Three_picoline)+2 - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 # Id: 2009811 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.50 25.0 -Co+2 + 2Three_picoline = Co(Three_picoline)2+2 - log_k 2.2 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 2 Three_picoline = Co(Three_picoline)2+2 + log_k 2.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2009812 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.50 25.0 -Co+2 + 3Three_picoline = Co(Three_picoline)3+2 - log_k 2.5 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 3 Three_picoline = Co(Three_picoline)3+2 + log_k 2.5 + delta_h 0 kJ + -gamma 0 0 # Id: 2009813 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.50 25.0 H+ + Four_picoline = H(Four_picoline)+ - log_k 6.03 - delta_h -25.3132 kJ - -gamma 0 0 + log_k 6.03 + delta_h -25.3132 kJ + -gamma 0 0 # Id: 3309821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Four_picoline = Zn(Four_picoline)+2 - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 # Id: 9509821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Four_picoline = Zn(Four_picoline)2+2 - log_k 2.11 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2 Four_picoline = Zn(Four_picoline)2+2 + log_k 2.11 + delta_h 0 kJ + -gamma 0 0 # Id: 9509822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 3Four_picoline = Zn(Four_picoline)3+2 - log_k 2.85 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 3 Four_picoline = Zn(Four_picoline)3+2 + log_k 2.85 + delta_h 0 kJ + -gamma 0 0 # Id: 9509823 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Four_picoline = Cd(Four_picoline)+2 - log_k 1.59 - delta_h 0 kJ - -gamma 0 0 + log_k 1.59 + delta_h 0 kJ + -gamma 0 0 # Id: 1609821 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 2Four_picoline = Cd(Four_picoline)2+2 - log_k 2.4 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 2 Four_picoline = Cd(Four_picoline)2+2 + log_k 2.4 + delta_h 0 kJ + -gamma 0 0 # Id: 1609822 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 3Four_picoline = Cd(Four_picoline)3+2 - log_k 3.18 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 3 Four_picoline = Cd(Four_picoline)3+2 + log_k 3.18 + delta_h 0 kJ + -gamma 0 0 # Id: 1609823 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cd+2 + 4Four_picoline = Cd(Four_picoline)4+2 - log_k 4 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cd+2 + 4 Four_picoline = Cd(Four_picoline)4+2 + log_k 4 + delta_h 0 kJ + -gamma 0 0 # Id: 1609824 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + Four_picoline = Cu(Four_picoline)+ - log_k 5.65 - delta_h 0 kJ - -gamma 0 0 + log_k 5.65 + delta_h 0 kJ + -gamma 0 0 # Id: 2309821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 2Four_picoline = Cu(Four_picoline)2+ - log_k 8.2 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 2 Four_picoline = Cu(Four_picoline)2+ + log_k 8.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2309822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 3Four_picoline = Cu(Four_picoline)3+ - log_k 8.8 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 3 Four_picoline = Cu(Four_picoline)3+ + log_k 8.8 + delta_h 0 kJ + -gamma 0 0 # Id: 2309823 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+ + 4Four_picoline = Cu(Four_picoline)4+ - log_k 9.2 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+ + 4 Four_picoline = Cu(Four_picoline)4+ + log_k 9.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2309824 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Four_picoline = Cu(Four_picoline)+2 - log_k 2.88 - delta_h 0 kJ - -gamma 0 0 + log_k 2.88 + delta_h 0 kJ + -gamma 0 0 # Id: 2319821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Four_picoline = Cu(Four_picoline)2+2 - log_k 5.16 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2 Four_picoline = Cu(Four_picoline)2+2 + log_k 5.16 + delta_h 0 kJ + -gamma 0 0 # Id: 2319822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 3Four_picoline = Cu(Four_picoline)3+2 - log_k 6.77 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 3 Four_picoline = Cu(Four_picoline)3+2 + log_k 6.77 + delta_h 0 kJ + -gamma 0 0 # Id: 2319823 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 4Four_picoline = Cu(Four_picoline)4+2 - log_k 8.08 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 4 Four_picoline = Cu(Four_picoline)4+2 + log_k 8.08 + delta_h 0 kJ + -gamma 0 0 # Id: 2319824 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 5Four_picoline = Cu(Four_picoline)5+2 - log_k 8.3 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 5 Four_picoline = Cu(Four_picoline)5+2 + log_k 8.3 + delta_h 0 kJ + -gamma 0 0 # Id: 2319825 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Four_picoline = Ag(Four_picoline)+ - log_k 2.03 - delta_h -25.5224 kJ - -gamma 0 0 + log_k 2.03 + delta_h -25.5224 kJ + -gamma 0 0 # Id: 209821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Four_picoline = Ag(Four_picoline)2+ - log_k 4.39 - delta_h -53.5552 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Four_picoline = Ag(Four_picoline)2+ + log_k 4.39 + delta_h -53.5552 kJ + -gamma 0 0 # Id: 209822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Four_picoline = Ni(Four_picoline)+2 - log_k 2.11 - delta_h 0 kJ - -gamma 0 0 + log_k 2.11 + delta_h 0 kJ + -gamma 0 0 # Id: 5409821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Four_picoline = Ni(Four_picoline)2+2 - log_k 3.59 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2 Four_picoline = Ni(Four_picoline)2+2 + log_k 3.59 + delta_h 0 kJ + -gamma 0 0 # Id: 5409822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 3Four_picoline = Ni(Four_picoline)3+2 - log_k 4.34 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 3 Four_picoline = Ni(Four_picoline)3+2 + log_k 4.34 + delta_h 0 kJ + -gamma 0 0 # Id: 5409823 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 4Four_picoline = Ni(Four_picoline)4+2 - log_k 4.7 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 4 Four_picoline = Ni(Four_picoline)4+2 + log_k 4.7 + delta_h 0 kJ + -gamma 0 0 # Id: 5409824 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Four_picoline = Co(Four_picoline)+2 - log_k 1.56 - delta_h 0 kJ - -gamma 0 0 + log_k 1.56 + delta_h 0 kJ + -gamma 0 0 # Id: 2009821 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.50 25.0 -Co+2 + 2Four_picoline = Co(Four_picoline)2+2 - log_k 2.51 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 2 Four_picoline = Co(Four_picoline)2+2 + log_k 2.51 + delta_h 0 kJ + -gamma 0 0 # Id: 2009822 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.50 25.0 -Co+2 + 3Four_picoline = Co(Four_picoline)3+2 - log_k 2.94 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 3 Four_picoline = Co(Four_picoline)3+2 + log_k 2.94 + delta_h 0 kJ + -gamma 0 0 # Id: 2009823 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.50 25.0 -Co+2 + 4Four_picoline = Co(Four_picoline)4+2 - log_k 3.17 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 4 Four_picoline = Co(Four_picoline)4+2 + log_k 3.17 + delta_h 0 kJ + -gamma 0 0 # Id: 2009824 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.50 25.0 H+ + Formate- = H(Formate) - log_k 3.745 - delta_h 0.1674 kJ - -gamma 0 0 + log_k 3.745 + delta_h 0.1674 kJ + -gamma 0 0 # Id: 3309831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Formate- = Pb(Formate)+ - log_k 2.2 - delta_h 0 kJ - -gamma 0 0 + log_k 2.2 + delta_h 0 kJ + -gamma 0 0 # Id: 6009831 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + Formate- = Zn(Formate)+ - log_k 1.44 - delta_h 0 kJ - -gamma 0 0 + log_k 1.44 + delta_h 0 kJ + -gamma 0 0 # Id: 9509831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Formate- = Cd(Formate)+ - log_k 1.7 - delta_h 0 kJ - -gamma 0 0 + log_k 1.7 + delta_h 0 kJ + -gamma 0 0 # Id: 1609831 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Hg(OH)2 + Formate- + 2H+ = Hg(Formate)+ + 2H2O - log_k 9.6 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Hg(OH)2 + Formate- + 2 H+ = Hg(Formate)+ + 2 H2O + log_k 9.6 + delta_h 0 kJ + -gamma 0 0 # Id: 3619831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Formate- = Cu(Formate)+ - log_k 2 - delta_h 0 kJ - -gamma 0 0 + log_k 2 + delta_h 0 kJ + -gamma 0 0 # Id: 2319831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Formate- = Ni(Formate)+ - log_k 1.22 - delta_h 0 kJ - -gamma 0 0 + log_k 1.22 + delta_h 0 kJ + -gamma 0 0 # Id: 5409831 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Co+2 + Formate- = Co(Formate)+ - log_k 1.209 - delta_h 0 kJ - -gamma 0 0 + log_k 1.209 + delta_h 0 kJ + -gamma 0 0 # Id: 2009831 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.50 30.0 -Co+2 + 2Formate- = Co(Formate)2 - log_k 1.1365 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 2 Formate- = Co(Formate)2 + log_k 1.1365 + delta_h 0 kJ + -gamma 0 0 # Id: 2009832 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 2.00 25.0 Cr+2 + Formate- = Cr(Formate)+ - log_k 1.07 - delta_h 0 kJ - -gamma 0 0 + log_k 1.07 + delta_h 0 kJ + -gamma 0 0 # Id: 2109831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Formate- = Mg(Formate)+ - log_k 1.43 - delta_h 0 kJ - -gamma 0 0 + log_k 1.43 + delta_h 0 kJ + -gamma 0 0 # Id: 4609831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Formate- = Ca(Formate)+ - log_k 1.43 - delta_h 4.184 kJ - -gamma 0 0 + log_k 1.43 + delta_h 4.184 kJ + -gamma 0 0 # Id: 1509831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Sr+2 + Formate- = Sr(Formate)+ - log_k 1.39 - delta_h 4 kJ - -gamma 0 0 + log_k 1.39 + delta_h 4 kJ + -gamma 0 0 # Id: 8009831 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ba+2 + Formate- = Ba(Formate)+ - log_k 1.38 - delta_h 0 kJ - -gamma 0 0 + log_k 1.38 + delta_h 0 kJ + -gamma 0 0 # Id: 1009831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Isovalerate- = H(Isovalerate) - log_k 4.781 - delta_h 4.5606 kJ - -gamma 0 0 + log_k 4.781 + delta_h 4.5606 kJ + -gamma 0 0 # Id: 3309841 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Isovalerate- = Zn(Isovalerate)+ - log_k 1.39 - delta_h 0 kJ - -gamma 0 0 + log_k 1.39 + delta_h 0 kJ + -gamma 0 0 # Id: 9509841 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Isovalerate- = Cu(Isovalerate)+ - log_k 2.08 - delta_h 0 kJ - -gamma 0 0 + log_k 2.08 + delta_h 0 kJ + -gamma 0 0 # Id: 2319841 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Isovalerate- = Ca(Isovalerate)+ - log_k 0.2 - delta_h 0 kJ - -gamma 0 0 + log_k 0.2 + delta_h 0 kJ + -gamma 0 0 # Id: 1509841 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Valerate- = H(Valerate) - log_k 4.843 - delta_h 2.887 kJ - -gamma 0 0 + log_k 4.843 + delta_h 2.887 kJ + -gamma 0 0 # Id: 3309851 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Valerate- = Cu(Valerate)+ - log_k 2.12 - delta_h 0 kJ - -gamma 0 0 + log_k 2.12 + delta_h 0 kJ + -gamma 0 0 # Id: 2319851 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Valerate- = Ca(Valerate)+ - log_k 0.3 - delta_h 0 kJ - -gamma 0 0 + log_k 0.3 + delta_h 0 kJ + -gamma 0 0 # Id: 1509851 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ba+2 + Valerate- = Ba(Valerate)+ - log_k -0.2 - delta_h 0 kJ - -gamma 0 0 + log_k -0.2 + delta_h 0 kJ + -gamma 0 0 # Id: 1009851 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Acetate- = H(Acetate) - log_k 4.757 - delta_h 0.41 kJ - -gamma 0 0 + log_k 4.757 + delta_h 0.41 kJ + -gamma 0 0 # Id: 3309921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Sn(OH)2 + 2H+ + Acetate- = Sn(Acetate)+ + 2H2O - log_k 10.0213 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 2 H+ + Acetate- = Sn(Acetate)+ + 2 H2O + log_k 10.0213 + delta_h 0 kJ + -gamma 0 0 # Id: 7909921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 3.00 25.0 -Sn(OH)2 + 2H+ + 2Acetate- = Sn(Acetate)2 + 2H2O - log_k 12.32 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 2 H+ + 2 Acetate- = Sn(Acetate)2 + 2 H2O + log_k 12.32 + delta_h 0 kJ + -gamma 0 0 # Id: 7909922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 3.00 25.0 -Sn(OH)2 + 2H+ + 3Acetate- = Sn(Acetate)3- + 2H2O - log_k 13.55 - delta_h 0 kJ - -gamma 0 0 +Sn(OH)2 + 2 H+ + 3 Acetate- = Sn(Acetate)3- + 2 H2O + log_k 13.55 + delta_h 0 kJ + -gamma 0 0 # Id: 7909923 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 3.00 25.0 Pb+2 + Acetate- = Pb(Acetate)+ - log_k 2.68 - delta_h -0.4 kJ - -gamma 0 0 + log_k 2.68 + delta_h -0.4 kJ + -gamma 0 0 # Id: 6009921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Pb+2 + 2Acetate- = Pb(Acetate)2 - log_k 4.08 - delta_h -0.8 kJ - -gamma 0 0 +Pb+2 + 2 Acetate- = Pb(Acetate)2 + log_k 4.08 + delta_h -0.8 kJ + -gamma 0 0 # Id: 6009922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Tl+ + Acetate- = Tl(Acetate) - log_k -0.11 - delta_h 0 kJ - -gamma 0 0 + log_k -0.11 + delta_h 0 kJ + -gamma 0 0 # Id: 8709921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Zn+2 + Acetate- = Zn(Acetate)+ - log_k 1.58 - delta_h 8.3 kJ - -gamma 0 0 + log_k 1.58 + delta_h 8.3 kJ + -gamma 0 0 # Id: 9509921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Zn+2 + 2Acetate- = Zn(Acetate)2 - log_k 2.6434 - delta_h 22 kJ - -gamma 0 0 +Zn+2 + 2 Acetate- = Zn(Acetate)2 + log_k 2.6434 + delta_h 22 kJ + -gamma 0 0 # Id: 9509922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Cd+2 + Acetate- = Cd(Acetate)+ - log_k 1.93 - delta_h 9.6 kJ - -gamma 0 0 + log_k 1.93 + delta_h 9.6 kJ + -gamma 0 0 # Id: 1609921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Cd+2 + 2Acetate- = Cd(Acetate)2 - log_k 2.86 - delta_h 15 kJ - -gamma 0 0 +Cd+2 + 2 Acetate- = Cd(Acetate)2 + log_k 2.86 + delta_h 15 kJ + -gamma 0 0 # Id: 1609922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + Acetate- = Hg(Acetate)+ + 2H2O - log_k 10.494 - delta_h 0 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + Acetate- = Hg(Acetate)+ + 2 H2O + log_k 10.494 + delta_h 0 kJ + -gamma 0 0 # Id: 3619920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 -Hg(OH)2 + 2H+ + 2Acetate- = Hg(Acetate)2 + 2H2O - log_k 13.83 - delta_h 0 kJ - -gamma 0 0 +Hg(OH)2 + 2 H+ + 2 Acetate- = Hg(Acetate)2 + 2 H2O + log_k 13.83 + delta_h 0 kJ + -gamma 0 0 # Id: 3619921 - # log K source: NIST46.4 - # Delta H source: SCD2.62 + # log K source: NIST46.4 + # Delta H source: SCD2.62 #T and ionic strength: 3.00 25.0 Cu+2 + Acetate- = Cu(Acetate)+ - log_k 2.21 - delta_h 7.1 kJ - -gamma 0 0 + log_k 2.21 + delta_h 7.1 kJ + -gamma 0 0 # Id: 2319921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Cu+2 + 2Acetate- = Cu(Acetate)2 - log_k 3.4 - delta_h 12 kJ - -gamma 0 0 +Cu+2 + 2 Acetate- = Cu(Acetate)2 + log_k 3.4 + delta_h 12 kJ + -gamma 0 0 # Id: 2319922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Cu+2 + 3Acetate- = Cu(Acetate)3- - log_k 3.9434 - delta_h 6.2 kJ - -gamma 0 0 +Cu+2 + 3 Acetate- = Cu(Acetate)3- + log_k 3.9434 + delta_h 6.2 kJ + -gamma 0 0 # Id: 2319923 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Ag+ + Acetate- = Ag(Acetate) - log_k 0.73 - delta_h 3 kJ - -gamma 0 0 + log_k 0.73 + delta_h 3 kJ + -gamma 0 0 # Id: 209921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Ag+ + 2Acetate- = Ag(Acetate)2- - log_k 0.64 - delta_h 3 kJ - -gamma 0 0 +Ag+ + 2 Acetate- = Ag(Acetate)2- + log_k 0.64 + delta_h 3 kJ + -gamma 0 0 # Id: 209922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ni+2 + Acetate- = Ni(Acetate)+ - log_k 1.37 - delta_h 8.7 kJ - -gamma 0 0 + log_k 1.37 + delta_h 8.7 kJ + -gamma 0 0 # Id: 5409921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Ni+2 + 2Acetate- = Ni(Acetate)2 - log_k 2.1 - delta_h 10 kJ - -gamma 0 0 +Ni+2 + 2 Acetate- = Ni(Acetate)2 + log_k 2.1 + delta_h 10 kJ + -gamma 0 0 # Id: 5409922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Co+2 + Acetate- = Co(Acetate)+ - log_k 1.38 - delta_h 0 kJ - -gamma 0 0 + log_k 1.38 + delta_h 0 kJ + -gamma 0 0 # Id: 2009921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 -Co+2 + 2Acetate- = Co(Acetate)2 - log_k 0.7565 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 2 Acetate- = Co(Acetate)2 + log_k 0.7565 + delta_h 0 kJ + -gamma 0 0 # Id: 2009922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 2.00 25.0 Fe+2 + Acetate- = Fe(Acetate)+ - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 # Id: 2809920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Fe+3 + Acetate- = Fe(Acetate)+2 - log_k 4.0234 - delta_h 0 kJ - -gamma 0 0 + log_k 4.0234 + delta_h 0 kJ + -gamma 0 0 # Id: 2819920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 20.0 -Fe+3 + 2Acetate- = Fe(Acetate)2+ - log_k 7.5723 - delta_h 0 kJ - -gamma 0 0 +Fe+3 + 2 Acetate- = Fe(Acetate)2+ + log_k 7.5723 + delta_h 0 kJ + -gamma 0 0 # Id: 2819921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 20.0 -Fe+3 + 3Acetate- = Fe(Acetate)3 - log_k 9.5867 - delta_h 0 kJ - -gamma 0 0 +Fe+3 + 3 Acetate- = Fe(Acetate)3 + log_k 9.5867 + delta_h 0 kJ + -gamma 0 0 # Id: 2819922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 20.0 Mn+2 + Acetate- = Mn(Acetate)+ - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 # Id: 4709920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Cr+2 + Acetate- = Cr(Acetate)+ - log_k 1.8 - delta_h 0 kJ - -gamma 0 0 + log_k 1.8 + delta_h 0 kJ + -gamma 0 0 # Id: 2109921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 -Cr+2 + 2Acetate- = Cr(Acetate)2 - log_k 2.92 - delta_h 0 kJ - -gamma 0 0 +Cr+2 + 2 Acetate- = Cr(Acetate)2 + log_k 2.92 + delta_h 0 kJ + -gamma 0 0 # Id: 2109922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 -Cr(OH)2+ + 2H+ + Acetate- = Cr(Acetate)+2 + 2H2O - log_k 15.0073 - delta_h -125.62 kJ - -gamma 0 0 +Cr(OH)2+ + 2 H+ + Acetate- = Cr(Acetate)+2 + 2 H2O + log_k 15.0073 + delta_h -125.62 kJ + -gamma 0 0 # Id: 2119921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 -Cr(OH)2+ + 2H+ + 2Acetate- = Cr(Acetate)2+ + 2H2O - log_k 17.9963 - delta_h -117.62 kJ - -gamma 0 0 +Cr(OH)2+ + 2 H+ + 2 Acetate- = Cr(Acetate)2+ + 2 H2O + log_k 17.9963 + delta_h -117.62 kJ + -gamma 0 0 # Id: 2119922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 -Cr(OH)2+ + 2H+ + 3Acetate- = Cr(Acetate)3 + 2H2O - log_k 20.7858 - delta_h -96.62 kJ - -gamma 0 0 +Cr(OH)2+ + 2 H+ + 3 Acetate- = Cr(Acetate)3 + 2 H2O + log_k 20.7858 + delta_h -96.62 kJ + -gamma 0 0 # Id: 2119923 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 Be+2 + Acetate- = Be(Acetate)+ - log_k 2.0489 - delta_h 0 kJ - -gamma 0 0 + log_k 2.0489 + delta_h 0 kJ + -gamma 0 0 # Id: 1109921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 -Be+2 + 2Acetate- = Be(Acetate)2 - log_k 3.0034 - delta_h 0 kJ - -gamma 0 0 +Be+2 + 2 Acetate- = Be(Acetate)2 + log_k 3.0034 + delta_h 0 kJ + -gamma 0 0 # Id: 1109922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Mg+2 + Acetate- = Mg(Acetate)+ - log_k 1.27 - delta_h 0 kJ - -gamma 0 0 + log_k 1.27 + delta_h 0 kJ + -gamma 0 0 # Id: 4609920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Ca+2 + Acetate- = Ca(Acetate)+ - log_k 1.18 - delta_h 4 kJ - -gamma 0 0 + log_k 1.18 + delta_h 4 kJ + -gamma 0 0 # Id: 1509920 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Sr+2 + Acetate- = Sr(Acetate)+ - log_k 1.14 - delta_h 0 kJ - -gamma 0 0 + log_k 1.14 + delta_h 0 kJ + -gamma 0 0 # Id: 8009921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Ba+2 + Acetate- = Ba(Acetate)+ - log_k 1.07 - delta_h 0 kJ - -gamma 0 0 + log_k 1.07 + delta_h 0 kJ + -gamma 0 0 # Id: 1009921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Na+ + Acetate- = Na(Acetate) - log_k -0.18 - delta_h 12 kJ - -gamma 0 0 + log_k -0.18 + delta_h 12 kJ + -gamma 0 0 # Id: 5009920 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 K+ + Acetate- = K(Acetate) - log_k -0.1955 - delta_h 4.184 kJ - -gamma 0 0 + log_k -0.1955 + delta_h 4.184 kJ + -gamma 0 0 # Id: 4109921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 H+ + Tartarate-2 = H(Tartarate)- - log_k 4.366 - delta_h -0.7531 kJ - -gamma 0 0 + log_k 4.366 + delta_h -0.7531 kJ + -gamma 0 0 # Id: 3309931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Tartarate-2 = H2(Tartarate) - log_k 7.402 - delta_h -3.6819 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2 H+ + Tartarate-2 = H2(Tartarate) + log_k 7.402 + delta_h -3.6819 kJ + -gamma 0 0 # Id: 3309932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Sn(OH)2 + 2H+ + Tartarate-2 = Sn(Tartarate) + 2H2O - log_k 13.1518 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Sn(OH)2 + 2 H+ + Tartarate-2 = Sn(Tartarate) + 2 H2O + log_k 13.1518 + delta_h 0 kJ + -gamma 0 0 # Id: 7909931 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 20.0 Pb+2 + Tartarate-2 = Pb(Tartarate) - log_k 3.98 - delta_h 0 kJ - -gamma 0 0 + log_k 3.98 + delta_h 0 kJ + -gamma 0 0 # Id: 6009931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + 2Tartarate-2 = Al(Tartarate)2- - log_k 9.37 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + 2 Tartarate-2 = Al(Tartarate)2- + log_k 9.37 + delta_h 0 kJ + -gamma 0 0 # Id: 309931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Tl+ + Tartarate-2 = Tl(Tartarate)- - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 # Id: 8709931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Tl+ + Tartarate-2 + H+ = TlH(Tartarate) - log_k 4.8 - delta_h 0 kJ - -gamma 0 0 + log_k 4.8 + delta_h 0 kJ + -gamma 0 0 # Id: 8709932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Tartarate-2 = Zn(Tartarate) - log_k 3.43 - delta_h 0 kJ - -gamma 0 0 + log_k 3.43 + delta_h 0 kJ + -gamma 0 0 # Id: 9509931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Tartarate-2 = Zn(Tartarate)2-2 - log_k 5.5 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2 Tartarate-2 = Zn(Tartarate)2-2 + log_k 5.5 + delta_h 0 kJ + -gamma 0 0 # Id: 9509932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Tartarate-2 + H+ = ZnH(Tartarate)+ - log_k 5.9 - delta_h 0 kJ - -gamma 0 0 + log_k 5.9 + delta_h 0 kJ + -gamma 0 0 # Id: 9509933 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Tartarate-2 = Cd(Tartarate) - log_k 2.7 - delta_h 0 kJ - -gamma 0 0 + log_k 2.7 + delta_h 0 kJ + -gamma 0 0 # Id: 1609931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Tartarate-2 = Cd(Tartarate)2-2 - log_k 4.1 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2 Tartarate-2 = Cd(Tartarate)2-2 + log_k 4.1 + delta_h 0 kJ + -gamma 0 0 # Id: 1609932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Tartarate-2 + 2H+ = Hg(Tartarate) + 2H2O - log_k 14 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Tartarate-2 + 2 H+ = Hg(Tartarate) + 2 H2O + log_k 14 + delta_h 0 kJ + -gamma 0 0 # Id: 3619931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Tartarate-2 = Cu(Tartarate) - log_k 3.97 - delta_h 0 kJ - -gamma 0 0 + log_k 3.97 + delta_h 0 kJ + -gamma 0 0 # Id: 2319931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Tartarate-2 + H+ = CuH(Tartarate)+ - log_k 6.7 - delta_h 0 kJ - -gamma 0 0 + log_k 6.7 + delta_h 0 kJ + -gamma 0 0 # Id: 2319932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Tartarate-2 = Ni(Tartarate) - log_k 3.46 - delta_h 0 kJ - -gamma 0 0 + log_k 3.46 + delta_h 0 kJ + -gamma 0 0 # Id: 5409931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Tartarate-2 + H+ = NiH(Tartarate)+ - log_k 5.89 - delta_h 0 kJ - -gamma 0 0 + log_k 5.89 + delta_h 0 kJ + -gamma 0 0 # Id: 5409932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Tartarate-2 = Co(Tartarate) - log_k 3.05 - delta_h 0 kJ - -gamma 0 0 + log_k 3.05 + delta_h 0 kJ + -gamma 0 0 # Id: 2009931 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 -Co+2 + 2Tartarate-2 = Co(Tartarate)2-2 - log_k 4 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 2 Tartarate-2 = Co(Tartarate)2-2 + log_k 4 + delta_h 0 kJ + -gamma 0 0 # Id: 2009932 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Co+2 + H+ + Tartarate-2 = CoH(Tartarate)+ - log_k 5.754 - delta_h 0 kJ - -gamma 0 0 + log_k 5.754 + delta_h 0 kJ + -gamma 0 0 # Id: 2009933 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 1.00 20.0 Fe+2 + Tartarate-2 = Fe(Tartarate) - log_k 3.1 - delta_h 0 kJ - -gamma 0 0 + log_k 3.1 + delta_h 0 kJ + -gamma 0 0 # Id: 2809931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Tartarate-2 = Fe(Tartarate)+ - log_k 7.78 - delta_h 0 kJ - -gamma 0 0 + log_k 7.78 + delta_h 0 kJ + -gamma 0 0 # Id: 2819931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Tartarate-2 = Mn(Tartarate) - log_k 3.38 - delta_h 0 kJ - -gamma 0 0 + log_k 3.38 + delta_h 0 kJ + -gamma 0 0 # Id: 4709931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Tartarate-2 + H+ = MnH(Tartarate)+ - log_k 6 - delta_h 0 kJ - -gamma 0 0 + log_k 6 + delta_h 0 kJ + -gamma 0 0 # Id: 4709932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Tartarate-2 = Mg(Tartarate) - log_k 2.3 - delta_h 0 kJ - -gamma 0 0 + log_k 2.3 + delta_h 0 kJ + -gamma 0 0 # Id: 4609931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Tartarate-2 + H+ = MgH(Tartarate)+ - log_k 5.75 - delta_h 0 kJ - -gamma 0 0 + log_k 5.75 + delta_h 0 kJ + -gamma 0 0 # Id: 4609932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Be+2 + Tartarate-2 = Be(Tartarate) - log_k 2.768 - delta_h 0 kJ - -gamma 0 0 + log_k 2.768 + delta_h 0 kJ + -gamma 0 0 # Id: 1109931 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.50 25.0 -Be+2 + 2Tartarate-2 = Be(Tartarate)2-2 - log_k 4.008 - delta_h 0 kJ - -gamma 0 0 +Be+2 + 2 Tartarate-2 = Be(Tartarate)2-2 + log_k 4.008 + delta_h 0 kJ + -gamma 0 0 # Id: 1109932 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.50 25.0 Ca+2 + Tartarate-2 = Ca(Tartarate) - log_k 2.8 - delta_h -8.368 kJ - -gamma 0 0 + log_k 2.8 + delta_h -8.368 kJ + -gamma 0 0 # Id: 1509931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Tartarate-2 + H+ = CaH(Tartarate)+ - log_k 5.86 - delta_h -9.1211 kJ - -gamma 0 0 + log_k 5.86 + delta_h -9.1211 kJ + -gamma 0 0 # Id: 1509932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Sr+2 + Tartarate-2 = Sr(Tartarate) - log_k 2.55 - delta_h 0 kJ - -gamma 0 0 + log_k 2.55 + delta_h 0 kJ + -gamma 0 0 # Id: 8009931 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 20.0 Sr+2 + H+ + Tartarate-2 = SrH(Tartarate)+ - log_k 5.8949 - delta_h 0 kJ - -gamma 0 0 + log_k 5.8949 + delta_h 0 kJ + -gamma 0 0 # Id: 8009932 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Ba+2 + Tartarate-2 = Ba(Tartarate) - log_k 2.54 - delta_h 0 kJ - -gamma 0 0 + log_k 2.54 + delta_h 0 kJ + -gamma 0 0 # Id: 1009931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ba+2 + Tartarate-2 + H+ = BaH(Tartarate)+ - log_k 5.77 - delta_h 0 kJ - -gamma 0 0 + log_k 5.77 + delta_h 0 kJ + -gamma 0 0 # Id: 1009932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Na+ + Tartarate-2 = Na(Tartarate)- - log_k 0.9 - delta_h -0.8368 kJ - -gamma 0 0 + log_k 0.9 + delta_h -0.8368 kJ + -gamma 0 0 # Id: 5009931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Na+ + Tartarate-2 + H+ = NaH(Tartarate) - log_k 4.58 - delta_h -2.8451 kJ - -gamma 0 0 + log_k 4.58 + delta_h -2.8451 kJ + -gamma 0 0 # Id: 5009932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: K+ + Tartarate-2 = K(Tartarate)- - log_k 0.8 - delta_h 0 kJ - -gamma 0 0 + log_k 0.8 + delta_h 0 kJ + -gamma 0 0 # Id: 4109931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Glycine- = H(Glycine) - log_k 9.778 - delta_h -44.3504 kJ - -gamma 0 0 + log_k 9.778 + delta_h -44.3504 kJ + -gamma 0 0 # Id: 3309941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Glycine- = H2(Glycine)+ - log_k 12.128 - delta_h -48.4507 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2 H+ + Glycine- = H2(Glycine)+ + log_k 12.128 + delta_h -48.4507 kJ + -gamma 0 0 # Id: 3309942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Glycine- = Pb(Glycine)+ - log_k 5.47 - delta_h 0 kJ - -gamma 0 0 + log_k 5.47 + delta_h 0 kJ + -gamma 0 0 # Id: 6009941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Pb+2 + 2Glycine- = Pb(Glycine)2 - log_k 8.86 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Pb+2 + 2 Glycine- = Pb(Glycine)2 + log_k 8.86 + delta_h 0 kJ + -gamma 0 0 # Id: 6009942 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Tl+ + Glycine- = Tl(Glycine) - log_k 1.72 - delta_h 0 kJ - -gamma 0 0 + log_k 1.72 + delta_h 0 kJ + -gamma 0 0 # Id: 8709941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Glycine- = Zn(Glycine)+ - log_k 5.38 - delta_h -11.7152 kJ - -gamma 0 0 + log_k 5.38 + delta_h -11.7152 kJ + -gamma 0 0 # Id: 9509941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Glycine- = Zn(Glycine)2 - log_k 9.81 - delta_h -24.2672 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2 Glycine- = Zn(Glycine)2 + log_k 9.81 + delta_h -24.2672 kJ + -gamma 0 0 # Id: 9509942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 3Glycine- = Zn(Glycine)3- - log_k 12.3 - delta_h -39.748 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 3 Glycine- = Zn(Glycine)3- + log_k 12.3 + delta_h -39.748 kJ + -gamma 0 0 # Id: 9509943 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Glycine- = Cd(Glycine)+ - log_k 4.69 - delta_h -8.7864 kJ - -gamma 0 0 + log_k 4.69 + delta_h -8.7864 kJ + -gamma 0 0 # Id: 1609941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Glycine- = Cd(Glycine)2 - log_k 8.4 - delta_h -22.5936 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2 Glycine- = Cd(Glycine)2 + log_k 8.4 + delta_h -22.5936 kJ + -gamma 0 0 # Id: 1609942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 3Glycine- = Cd(Glycine)3- - log_k 10.7 - delta_h -35.9824 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 3 Glycine- = Cd(Glycine)3- + log_k 10.7 + delta_h -35.9824 kJ + -gamma 0 0 # Id: 1609943 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Glycine- + 2H+ = Hg(Glycine)+ + 2H2O - log_k 17 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Glycine- + 2 H+ = Hg(Glycine)+ + 2 H2O + log_k 17 + delta_h 0 kJ + -gamma 0 0 # Id: 3619941 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Hg(OH)2 + 2Glycine- + 2H+ = Hg(Glycine)2 + 2H2O - log_k 25.8 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Hg(OH)2 + 2 Glycine- + 2 H+ = Hg(Glycine)2 + 2 H2O + log_k 25.8 + delta_h 0 kJ + -gamma 0 0 # Id: 3619942 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cu+ + 2Glycine- = Cu(Glycine)2- - log_k 10.3 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cu+ + 2 Glycine- = Cu(Glycine)2- + log_k 10.3 + delta_h 0 kJ + -gamma 0 0 # Id: 2309941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Glycine- = Cu(Glycine)+ - log_k 8.57 - delta_h -25.104 kJ - -gamma 0 0 + log_k 8.57 + delta_h -25.104 kJ + -gamma 0 0 # Id: 2319941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Glycine- = Cu(Glycine)2 - log_k 15.7 - delta_h -54.8104 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2 Glycine- = Cu(Glycine)2 + log_k 15.7 + delta_h -54.8104 kJ + -gamma 0 0 # Id: 2319942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Glycine- = Ag(Glycine) - log_k 3.51 - delta_h -19.2464 kJ - -gamma 0 0 + log_k 3.51 + delta_h -19.2464 kJ + -gamma 0 0 # Id: 209941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Glycine- = Ag(Glycine)2- - log_k 6.89 - delta_h -48.116 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Glycine- = Ag(Glycine)2- + log_k 6.89 + delta_h -48.116 kJ + -gamma 0 0 # Id: 209942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Glycine- = Ni(Glycine)+ - log_k 6.15 - delta_h -18.828 kJ - -gamma 0 0 + log_k 6.15 + delta_h -18.828 kJ + -gamma 0 0 # Id: 5409941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Glycine- = Ni(Glycine)2 - log_k 11.12 - delta_h -38.0744 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2 Glycine- = Ni(Glycine)2 + log_k 11.12 + delta_h -38.0744 kJ + -gamma 0 0 # Id: 5409942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 3Glycine- = Ni(Glycine)3- - log_k 14.63 - delta_h -62.3416 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 3 Glycine- = Ni(Glycine)3- + log_k 14.63 + delta_h -62.3416 kJ + -gamma 0 0 # Id: 5409943 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Co+2 + Glycine- = Co(Glycine)+ - log_k 5.07 - delta_h -12 kJ - -gamma 0 0 + log_k 5.07 + delta_h -12 kJ + -gamma 0 0 # Id: 2009941 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Co+2 + 2Glycine- = Co(Glycine)2 - log_k 9.07 - delta_h -26 kJ - -gamma 0 0 +Co+2 + 2 Glycine- = Co(Glycine)2 + log_k 9.07 + delta_h -26 kJ + -gamma 0 0 # Id: 2009942 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 -Co+2 + 3Glycine- = Co(Glycine)3- - log_k 11.6 - delta_h -41 kJ - -gamma 0 0 +Co+2 + 3 Glycine- = Co(Glycine)3- + log_k 11.6 + delta_h -41 kJ + -gamma 0 0 # Id: 2009943 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Co+2 + Glycine- + H2O = CoOH(Glycine) + H+ - log_k -5.02 - delta_h 0 kJ - -gamma 0 0 + log_k -5.02 + delta_h 0 kJ + -gamma 0 0 # Id: 2009944 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Fe+2 + Glycine- = Fe(Glycine)+ - log_k 4.31 - delta_h -15.0624 kJ - -gamma 0 0 + log_k 4.31 + delta_h -15.0624 kJ + -gamma 0 0 # Id: 2809941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + 2Glycine- = Fe(Glycine)2 - log_k 8.29 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + 2 Glycine- = Fe(Glycine)2 + log_k 8.29 + delta_h 0 kJ + -gamma 0 0 # Id: 2809942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Glycine- = Fe(Glycine)+2 - log_k 9.38 - delta_h 0 kJ - -gamma 0 0 + log_k 9.38 + delta_h 0 kJ + -gamma 0 0 # Id: 2819941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Glycine- + H+ = FeH(Glycine)+3 - log_k 11.55 - delta_h 0 kJ - -gamma 0 0 + log_k 11.55 + delta_h 0 kJ + -gamma 0 0 # Id: 2819942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Glycine- = Mn(Glycine)+ - log_k 3.19 - delta_h -1.2552 kJ - -gamma 0 0 + log_k 3.19 + delta_h -1.2552 kJ + -gamma 0 0 # Id: 4709941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + 2Glycine- = Mn(Glycine)2 - log_k 5.4 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + 2 Glycine- = Mn(Glycine)2 + log_k 5.4 + delta_h 0 kJ + -gamma 0 0 # Id: 4709942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr(OH)2+ + Glycine- + 2H+ = Cr(Glycine)+2 + 2H2O - log_k 18.7 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr(OH)2+ + Glycine- + 2 H+ = Cr(Glycine)+2 + 2 H2O + log_k 18.7 + delta_h 0 kJ + -gamma 0 0 # Id: 2119941 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + 2Glycine- + 2H+ = Cr(Glycine)2+ + 2H2O - log_k 25.6 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + 2 Glycine- + 2 H+ = Cr(Glycine)2+ + 2 H2O + log_k 25.6 + delta_h 0 kJ + -gamma 0 0 # Id: 2119942 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + 3Glycine- + 2H+ = Cr(Glycine)3 + 2H2O - log_k 31.6 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + 3 Glycine- + 2 H+ = Cr(Glycine)3 + 2 H2O + log_k 31.6 + delta_h 0 kJ + -gamma 0 0 # Id: 2119943 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Mg+2 + Glycine- = Mg(Glycine)+ - log_k 2.08 - delta_h 4.184 kJ - -gamma 0 0 + log_k 2.08 + delta_h 4.184 kJ + -gamma 0 0 # Id: 4609941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Glycine- = Ca(Glycine)+ - log_k 1.39 - delta_h -4.184 kJ - -gamma 0 0 + log_k 1.39 + delta_h -4.184 kJ + -gamma 0 0 # Id: 1509941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Glycine- + H+ = CaH(Glycine)+2 - log_k 10.1 - delta_h -35.9824 kJ - -gamma 0 0 + log_k 10.1 + delta_h -35.9824 kJ + -gamma 0 0 # Id: 1509942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Sr+2 + Glycine- = Sr(Glycine)+ - log_k 0.91 - delta_h 0 kJ - -gamma 0 0 + log_k 0.91 + delta_h 0 kJ + -gamma 0 0 # Id: 8009941 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Ba+2 + Glycine- = Ba(Glycine)+ - log_k 0.77 - delta_h 0 kJ - -gamma 0 0 + log_k 0.77 + delta_h 0 kJ + -gamma 0 0 # Id: 1009941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Salicylate-2 = H(Salicylate)- - log_k 13.7 - delta_h -35.7732 kJ - -gamma 0 0 + log_k 13.7 + delta_h -35.7732 kJ + -gamma 0 0 # Id: 3309951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Salicylate-2 = H2(Salicylate) - log_k 16.8 - delta_h -38.7857 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2 H+ + Salicylate-2 = H2(Salicylate) + log_k 16.8 + delta_h -38.7857 kJ + -gamma 0 0 # Id: 3309952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Salicylate-2 = Zn(Salicylate) - log_k 7.71 - delta_h 0 kJ - -gamma 0 0 + log_k 7.71 + delta_h 0 kJ + -gamma 0 0 # Id: 9509951 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + Salicylate-2 + H+ = ZnH(Salicylate)+ - log_k 15.5 - delta_h 0 kJ - -gamma 0 0 + log_k 15.5 + delta_h 0 kJ + -gamma 0 0 # Id: 9509952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Salicylate-2 = Cd(Salicylate) - log_k 6.2 - delta_h 0 kJ - -gamma 0 0 + log_k 6.2 + delta_h 0 kJ + -gamma 0 0 # Id: 1609951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Salicylate-2 + H+ = CdH(Salicylate)+ - log_k 16 - delta_h 0 kJ - -gamma 0 0 + log_k 16 + delta_h 0 kJ + -gamma 0 0 # Id: 1609952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Salicylate-2 = Cu(Salicylate) - log_k 11.3 - delta_h -17.9912 kJ - -gamma 0 0 + log_k 11.3 + delta_h -17.9912 kJ + -gamma 0 0 # Id: 2319951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Salicylate-2 = Cu(Salicylate)2-2 - log_k 19.3 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2 Salicylate-2 = Cu(Salicylate)2-2 + log_k 19.3 + delta_h 0 kJ + -gamma 0 0 # Id: 2319952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Salicylate-2 + H+ = CuH(Salicylate)+ - log_k 14.8 - delta_h 0 kJ - -gamma 0 0 + log_k 14.8 + delta_h 0 kJ + -gamma 0 0 # Id: 2319953 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Salicylate-2 = Ni(Salicylate) - log_k 8.2 - delta_h 0 kJ - -gamma 0 0 + log_k 8.2 + delta_h 0 kJ + -gamma 0 0 # Id: 5409951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Salicylate-2 = Ni(Salicylate)2-2 - log_k 12.64 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2 Salicylate-2 = Ni(Salicylate)2-2 + log_k 12.64 + delta_h 0 kJ + -gamma 0 0 # Id: 5409952 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Co+2 + Salicylate-2 = Co(Salicylate) - log_k 7.4289 - delta_h 0 kJ - -gamma 0 0 + log_k 7.4289 + delta_h 0 kJ + -gamma 0 0 # Id: 2009951 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 20.0 -Co+2 + 2Salicylate-2 = Co(Salicylate)2-2 - log_k 11.8 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 2 Salicylate-2 = Co(Salicylate)2-2 + log_k 11.8 + delta_h 0 kJ + -gamma 0 0 # Id: 2009952 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 20.0 Fe+2 + Salicylate-2 = Fe(Salicylate) - log_k 7.2 - delta_h 0 kJ - -gamma 0 0 + log_k 7.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2809951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+2 + 2Salicylate-2 = Fe(Salicylate)2-2 - log_k 11.6 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+2 + 2 Salicylate-2 = Fe(Salicylate)2-2 + log_k 11.6 + delta_h 0 kJ + -gamma 0 0 # Id: 2809952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Salicylate-2 = Fe(Salicylate)+ - log_k 17.6 - delta_h 0 kJ - -gamma 0 0 + log_k 17.6 + delta_h 0 kJ + -gamma 0 0 # Id: 2819951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Fe+3 + 2Salicylate-2 = Fe(Salicylate)2- - log_k 29.3 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Fe+3 + 2 Salicylate-2 = Fe(Salicylate)2- + log_k 29.3 + delta_h 0 kJ + -gamma 0 0 # Id: 2819952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Salicylate-2 = Mn(Salicylate) - log_k 6.5 - delta_h 0 kJ - -gamma 0 0 + log_k 6.5 + delta_h 0 kJ + -gamma 0 0 # Id: 4709951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Mn+2 + 2Salicylate-2 = Mn(Salicylate)2-2 - log_k 10.1 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Mn+2 + 2 Salicylate-2 = Mn(Salicylate)2-2 + log_k 10.1 + delta_h 0 kJ + -gamma 0 0 # Id: 4709952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Be+2 + Salicylate-2 = Be(Salicylate) - log_k 13.3889 - delta_h -31.7732 kJ - -gamma 0 0 + log_k 13.3889 + delta_h -31.7732 kJ + -gamma 0 0 # Id: 1109951 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 -Be+2 + 2Salicylate-2 = Be(Salicylate)2-2 - log_k 23.25 - delta_h 0 kJ - -gamma 0 0 +Be+2 + 2 Salicylate-2 = Be(Salicylate)2-2 + log_k 23.25 + delta_h 0 kJ + -gamma 0 0 # Id: 1109952 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Mg+2 + Salicylate-2 = Mg(Salicylate) - log_k 5.76 - delta_h 0 kJ - -gamma 0 0 + log_k 5.76 + delta_h 0 kJ + -gamma 0 0 # Id: 4609951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Salicylate-2 + H+ = MgH(Salicylate)+ - log_k 15.3 - delta_h 0 kJ - -gamma 0 0 + log_k 15.3 + delta_h 0 kJ + -gamma 0 0 # Id: 4609952 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ca+2 + Salicylate-2 = Ca(Salicylate) - log_k 4.05 - delta_h 0 kJ - -gamma 0 0 + log_k 4.05 + delta_h 0 kJ + -gamma 0 0 # Id: 1509951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Salicylate-2 + H+ = CaH(Salicylate)+ - log_k 14.3 - delta_h 0 kJ - -gamma 0 0 + log_k 14.3 + delta_h 0 kJ + -gamma 0 0 # Id: 1509952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ba+2 + Salicylate-2 + H+ = BaH(Salicylate)+ - log_k 13.9 - delta_h 0 kJ - -gamma 0 0 + log_k 13.9 + delta_h 0 kJ + -gamma 0 0 # Id: 1009951 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Glutamate-2 = H(Glutamate)- - log_k 9.96 - delta_h -41.0032 kJ - -gamma 0 0 + log_k 9.96 + delta_h -41.0032 kJ + -gamma 0 0 # Id: 3309961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Glutamate-2 = H2(Glutamate) - log_k 14.26 - delta_h -43.5136 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2 H+ + Glutamate-2 = H2(Glutamate) + log_k 14.26 + delta_h -43.5136 kJ + -gamma 0 0 # Id: 3309962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -3H+ + Glutamate-2 = H3(Glutamate)+ - log_k 16.42 - delta_h -46.8608 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +3 H+ + Glutamate-2 = H3(Glutamate)+ + log_k 16.42 + delta_h -46.8608 kJ + -gamma 0 0 # Id: 3309963 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Glutamate-2 = Pb(Glutamate) - log_k 6.43 - delta_h 0 kJ - -gamma 0 0 + log_k 6.43 + delta_h 0 kJ + -gamma 0 0 # Id: 6009961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Pb+2 + 2Glutamate-2 = Pb(Glutamate)2-2 - log_k 8.61 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Pb+2 + 2 Glutamate-2 = Pb(Glutamate)2-2 + log_k 8.61 + delta_h 0 kJ + -gamma 0 0 # Id: 6009962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Pb+2 + Glutamate-2 + H+ = PbH(Glutamate)+ - log_k 14.08 - delta_h 0 kJ - -gamma 0 0 + log_k 14.08 + delta_h 0 kJ + -gamma 0 0 # Id: 6009963 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Al+3 + Glutamate-2 + H+ = AlH(Glutamate)+2 - log_k 13.07 - delta_h 0 kJ - -gamma 0 0 + log_k 13.07 + delta_h 0 kJ + -gamma 0 0 # Id: 309961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Glutamate-2 = Zn(Glutamate) - log_k 6.2 - delta_h 0 kJ - -gamma 0 0 + log_k 6.2 + delta_h 0 kJ + -gamma 0 0 # Id: 9509961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 2Glutamate-2 = Zn(Glutamate)2-2 - log_k 9.13 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 2 Glutamate-2 = Zn(Glutamate)2-2 + log_k 9.13 + delta_h 0 kJ + -gamma 0 0 # Id: 9509962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Zn+2 + 3Glutamate-2 = Zn(Glutamate)3-4 - log_k 9.8 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Zn+2 + 3 Glutamate-2 = Zn(Glutamate)3-4 + log_k 9.8 + delta_h 0 kJ + -gamma 0 0 # Id: 9509963 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + Glutamate-2 = Cd(Glutamate) - log_k 4.7 - delta_h 0 kJ - -gamma 0 0 + log_k 4.7 + delta_h 0 kJ + -gamma 0 0 # Id: 1609961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Glutamate-2 = Cd(Glutamate)2-2 - log_k 7.59 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2 Glutamate-2 = Cd(Glutamate)2-2 + log_k 7.59 + delta_h 0 kJ + -gamma 0 0 # Id: 1609962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Hg(OH)2 + Glutamate-2 + 2H+ = Hg(Glutamate) + 2H2O - log_k 19.8 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Hg(OH)2 + Glutamate-2 + 2 H+ = Hg(Glutamate) + 2 H2O + log_k 19.8 + delta_h 0 kJ + -gamma 0 0 # Id: 3619961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Hg(OH)2 + 2Glutamate-2 + 2H+ = Hg(Glutamate)2-2 + 2H2O - log_k 26.2 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Hg(OH)2 + 2 Glutamate-2 + 2 H+ = Hg(Glutamate)2-2 + 2 H2O + log_k 26.2 + delta_h 0 kJ + -gamma 0 0 # Id: 3619962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cu+2 + Glutamate-2 = Cu(Glutamate) - log_k 9.17 - delta_h -20.92 kJ - -gamma 0 0 + log_k 9.17 + delta_h -20.92 kJ + -gamma 0 0 # Id: 2319961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Glutamate-2 = Cu(Glutamate)2-2 - log_k 15.78 - delta_h -48.116 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2 Glutamate-2 = Cu(Glutamate)2-2 + log_k 15.78 + delta_h -48.116 kJ + -gamma 0 0 # Id: 2319962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Glutamate-2 + H+ = CuH(Glutamate)+ - log_k 13.3 - delta_h -28.0328 kJ - -gamma 0 0 + log_k 13.3 + delta_h -28.0328 kJ + -gamma 0 0 # Id: 2319963 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Glutamate-2 = Ag(Glutamate)- - log_k 4.22 - delta_h 0 kJ - -gamma 0 0 + log_k 4.22 + delta_h 0 kJ + -gamma 0 0 # Id: 209961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ag+ + 2Glutamate-2 = Ag(Glutamate)2-3 - log_k 7.36 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ag+ + 2 Glutamate-2 = Ag(Glutamate)2-3 + log_k 7.36 + delta_h 0 kJ + -gamma 0 0 # Id: 209962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -2Ag+ + Glutamate-2 = Ag2(Glutamate) - log_k 3.4 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +2 Ag+ + Glutamate-2 = Ag2(Glutamate) + log_k 3.4 + delta_h 0 kJ + -gamma 0 0 # Id: 209963 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Glutamate-2 = Ni(Glutamate) - log_k 6.47 - delta_h 0 kJ - -gamma 0 0 + log_k 6.47 + delta_h 0 kJ + -gamma 0 0 # Id: 5409961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Ni+2 + 2Glutamate-2 = Ni(Glutamate)2-2 - log_k 10.7 - delta_h -30.9616 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Ni+2 + 2 Glutamate-2 = Ni(Glutamate)2-2 + log_k 10.7 + delta_h -30.9616 kJ + -gamma 0 0 # Id: 5409962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Glutamate-2 = Co(Glutamate) - log_k 5.4178 - delta_h 0 kJ - -gamma 0 0 + log_k 5.4178 + delta_h 0 kJ + -gamma 0 0 # Id: 2009961 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 -Co+2 + 2Glutamate-2 = Co(Glutamate)2-2 - log_k 8.7178 - delta_h 0 kJ - -gamma 0 0 +Co+2 + 2 Glutamate-2 = Co(Glutamate)2-2 + log_k 8.7178 + delta_h 0 kJ + -gamma 0 0 # Id: 2009962 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Mn+2 + Glutamate-2 = Mn(Glutamate) - log_k 4.95 - delta_h 0 kJ - -gamma 0 0 + log_k 4.95 + delta_h 0 kJ + -gamma 0 0 # Id: 4709961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Mn+2 + 2Glutamate-2 = Mn(Glutamate)2-2 - log_k 8.48 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Mn+2 + 2 Glutamate-2 = Mn(Glutamate)2-2 + log_k 8.48 + delta_h 0 kJ + -gamma 0 0 # Id: 4709962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + Glutamate-2 + 2H+ = Cr(Glutamate)+ + 2H2O - log_k 22.6 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + Glutamate-2 + 2 H+ = Cr(Glutamate)+ + 2 H2O + log_k 22.6 + delta_h 0 kJ + -gamma 0 0 # Id: 2119961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + 2Glutamate-2 + 2H+ = Cr(Glutamate)2- + 2H2O - log_k 30.7 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + 2 Glutamate-2 + 2 H+ = Cr(Glutamate)2- + 2 H2O + log_k 30.7 + delta_h 0 kJ + -gamma 0 0 # Id: 2119962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + Glutamate-2 + 3H+ = CrH(Glutamate)+2 + 2H2O - log_k 25.2 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + Glutamate-2 + 3 H+ = CrH(Glutamate)+2 + 2 H2O + log_k 25.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2119963 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Mg+2 + Glutamate-2 = Mg(Glutamate) - log_k 2.8 - delta_h 0 kJ - -gamma 0 0 + log_k 2.8 + delta_h 0 kJ + -gamma 0 0 # Id: 4609961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Glutamate-2 = Ca(Glutamate) - log_k 2.06 - delta_h 0 kJ - -gamma 0 0 + log_k 2.06 + delta_h 0 kJ + -gamma 0 0 # Id: 1509961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Glutamate-2 + H+ = CaH(Glutamate)+ - log_k 11.13 - delta_h 0 kJ - -gamma 0 0 + log_k 11.13 + delta_h 0 kJ + -gamma 0 0 # Id: 1509962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Sr+2 + Glutamate-2 = Sr(Glutamate) - log_k 2.2278 - delta_h 0 kJ - -gamma 0 0 + log_k 2.2278 + delta_h 0 kJ + -gamma 0 0 # Id: 8009961 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Ba+2 + Glutamate-2 = Ba(Glutamate) - log_k 2.14 - delta_h 0 kJ - -gamma 0 0 + log_k 2.14 + delta_h 0 kJ + -gamma 0 0 # Id: 1009961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Phthalate-2 = H(Phthalate)- - log_k 5.408 - delta_h 2.1757 kJ - -gamma 0 0 + log_k 5.408 + delta_h 2.1757 kJ + -gamma 0 0 # Id: 3309971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -2H+ + Phthalate-2 = H2(Phthalate) - log_k 8.358 - delta_h 4.8534 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +2 H+ + Phthalate-2 = H2(Phthalate) + log_k 8.358 + delta_h 4.8534 kJ + -gamma 0 0 # Id: 3309972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Phthalate-2 = Pb(Phthalate) - log_k 4.26 - delta_h 0 kJ - -gamma 0 0 + log_k 4.26 + delta_h 0 kJ + -gamma 0 0 # Id: 6009971 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Pb+2 + 2Phthalate-2 = Pb(Phthalate)2-2 - log_k 4.83 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Pb+2 + 2 Phthalate-2 = Pb(Phthalate)2-2 + log_k 4.83 + delta_h 0 kJ + -gamma 0 0 # Id: 6009972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Phthalate-2 + H+ = PbH(Phthalate)+ - log_k 6.98 - delta_h 0 kJ - -gamma 0 0 + log_k 6.98 + delta_h 0 kJ + -gamma 0 0 # Id: 6009973 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Phthalate-2 = Al(Phthalate)+ - log_k 4.56 - delta_h 0 kJ - -gamma 0 0 + log_k 4.56 + delta_h 0 kJ + -gamma 0 0 # Id: 309971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Al+3 + 2Phthalate-2 = Al(Phthalate)2- - log_k 7.2 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Al+3 + 2 Phthalate-2 = Al(Phthalate)2- + log_k 7.2 + delta_h 0 kJ + -gamma 0 0 # Id: 309972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Phthalate-2 = Zn(Phthalate) - log_k 2.91 - delta_h 13.3888 kJ - -gamma 0 0 + log_k 2.91 + delta_h 13.3888 kJ + -gamma 0 0 # Id: 9509971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Zn+2 + 2Phthalate-2 = Zn(Phthalate)2-2 - log_k 4.2 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Zn+2 + 2 Phthalate-2 = Zn(Phthalate)2-2 + log_k 4.2 + delta_h 0 kJ + -gamma 0 0 # Id: 9509972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Phthalate-2 = Cd(Phthalate) - log_k 3.43 - delta_h 0 kJ - -gamma 0 0 + log_k 3.43 + delta_h 0 kJ + -gamma 0 0 # Id: 1609971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Phthalate-2 + H+ = CdH(Phthalate)+ - log_k 6.3 - delta_h 0 kJ - -gamma 0 0 + log_k 6.3 + delta_h 0 kJ + -gamma 0 0 # Id: 1609973 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cd+2 + 2Phthalate-2 = Cd(Phthalate)2-2 - log_k 3.7 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cd+2 + 2 Phthalate-2 = Cd(Phthalate)2-2 + log_k 3.7 + delta_h 0 kJ + -gamma 0 0 # Id: 1609972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Phthalate-2 = Cu(Phthalate) - log_k 4.02 - delta_h 8.368 kJ - -gamma 0 0 + log_k 4.02 + delta_h 8.368 kJ + -gamma 0 0 # Id: 2319971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Phthalate-2 + H+ = CuH(Phthalate)+ - log_k 7.1 - delta_h 3.8493 kJ - -gamma 0 0 + log_k 7.1 + delta_h 3.8493 kJ + -gamma 0 0 # Id: 2319970 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cu+2 + 2Phthalate-2 = Cu(Phthalate)2-2 - log_k 5.3 - delta_h 15.8992 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cu+2 + 2 Phthalate-2 = Cu(Phthalate)2-2 + log_k 5.3 + delta_h 15.8992 kJ + -gamma 0 0 # Id: 2319972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Phthalate-2 = Ni(Phthalate) - log_k 2.95 - delta_h 7.5312 kJ - -gamma 0 0 + log_k 2.95 + delta_h 7.5312 kJ + -gamma 0 0 # Id: 5409971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Phthalate-2 + H+ = NiH(Phthalate)+ - log_k 6.6 - delta_h 0 kJ - -gamma 0 0 + log_k 6.6 + delta_h 0 kJ + -gamma 0 0 # Id: 5409972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Phthalate-2 = Co(Phthalate) - log_k 2.83 - delta_h 7.9 kJ - -gamma 0 0 + log_k 2.83 + delta_h 7.9 kJ + -gamma 0 0 # Id: 2009971 - # log K source: NIST46.4 - # Delta H source: NIST46.4 + # log K source: NIST46.4 + # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Co+2 + H+ + Phthalate-2 = CoH(Phthalate)+ - log_k 7.227 - delta_h 0 kJ - -gamma 0 0 + log_k 7.227 + delta_h 0 kJ + -gamma 0 0 # Id: 2009972 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.50 25.0 Mn+2 + Phthalate-2 = Mn(Phthalate) - log_k 2.74 - delta_h 10.0416 kJ - -gamma 0 0 + log_k 2.74 + delta_h 10.0416 kJ + -gamma 0 0 # Id: 4709971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: -Cr(OH)2+ + Phthalate-2 + 2H+ = Cr(Phthalate)+ + 2H2O - log_k 16.3 - delta_h 0 kJ - -gamma 0 0 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: +Cr(OH)2+ + Phthalate-2 + 2 H+ = Cr(Phthalate)+ + 2 H2O + log_k 16.3 + delta_h 0 kJ + -gamma 0 0 # Id: 2119971 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + 2Phthalate-2 + 2H+ = Cr(Phthalate)2- + 2H2O - log_k 21.2 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + 2 Phthalate-2 + 2 H+ = Cr(Phthalate)2- + 2 H2O + log_k 21.2 + delta_h 0 kJ + -gamma 0 0 # Id: 2119972 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: -Cr(OH)2+ + 3Phthalate-2 + 2H+ = Cr(Phthalate)3-3 + 2H2O - log_k 23.3 - delta_h 0 kJ - -gamma 0 0 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: +Cr(OH)2+ + 3 Phthalate-2 + 2 H+ = Cr(Phthalate)3-3 + 2 H2O + log_k 23.3 + delta_h 0 kJ + -gamma 0 0 # Id: 2119973 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Be+2 + Phthalate-2 = Be(Phthalate) - log_k 4.8278 - delta_h 0 kJ - -gamma 0 0 + log_k 4.8278 + delta_h 0 kJ + -gamma 0 0 # Id: 1109971 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 -Be+2 + 2Phthalate-2 = Be(Phthalate)2-2 - log_k 6.5478 - delta_h 0 kJ - -gamma 0 0 +Be+2 + 2 Phthalate-2 = Be(Phthalate)2-2 + log_k 6.5478 + delta_h 0 kJ + -gamma 0 0 # Id: 1109972 - # log K source: NIST46.4 - # Delta H source: NIST46.2 + # log K source: NIST46.4 + # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Mg+2 + Phthalate-2 = Mg(Phthalate) - log_k 2.49 - delta_h 0 kJ - -gamma 0 0 + log_k 2.49 + delta_h 0 kJ + -gamma 0 0 # Id: 4609971 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ca+2 + Phthalate-2 = Ca(Phthalate) - log_k 2.45 - delta_h 0 kJ - -gamma 0 0 + log_k 2.45 + delta_h 0 kJ + -gamma 0 0 # Id: 1509970 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Phthalate-2 + H+ = CaH(Phthalate)+ - log_k 6.43 - delta_h 0 kJ - -gamma 0 0 + log_k 6.43 + delta_h 0 kJ + -gamma 0 0 # Id: 1509971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ba+2 + Phthalate-2 = Ba(Phthalate) - log_k 2.33 - delta_h 0 kJ - -gamma 0 0 + log_k 2.33 + delta_h 0 kJ + -gamma 0 0 # Id: 1009971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Na+ + Phthalate-2 = Na(Phthalate)- - log_k 0.8 - delta_h 4.184 kJ - -gamma 0 0 + log_k 0.8 + delta_h 4.184 kJ + -gamma 0 0 # Id: 5009970 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: K+ + Phthalate-2 = K(Phthalate)- - log_k 0.7 - delta_h 3.7656 kJ - -gamma 0 0 + log_k 0.7 + delta_h 3.7656 kJ + -gamma 0 0 # Id: 4109971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: PHASES Sulfur - S + H+ + 2e- = HS- - log_k -2.1449 - delta_h -16.3 kJ + S + H+ + 2 e- = HS- + log_k -2.1449 + delta_h -16.3 kJ Semetal(hex - Se + H+ + 2e- = HSe- - log_k -7.7084 - delta_h 15.9 kJ + Se + H+ + 2 e- = HSe- + log_k -7.7084 + delta_h 15.9 kJ Semetal(am) - Se + H+ + 2e- = HSe- - log_k -7.1099 - delta_h 10.8784 kJ + Se + H+ + 2 e- = HSe- + log_k -7.1099 + delta_h 10.8784 kJ Sbmetal - Sb + 3H2O = Sb(OH)3 + 3H+ + 3e- - log_k -11.6889 - delta_h 83.89 kJ + Sb + 3 H2O = Sb(OH)3 + 3 H+ + 3 e- + log_k -11.6889 + delta_h 83.89 kJ Snmetal(wht) - Sn + 2H2O = Sn(OH)2 + 2H+ + 2e- - log_k -2.3266 - delta_h -0 kJ + Sn + 2 H2O = Sn(OH)2 + 2 H+ + 2 e- + log_k -2.3266 + delta_h -0 kJ Pbmetal - Pb = Pb+2 + 2e- - log_k 4.2462 - delta_h 0.92 kJ + Pb = Pb+2 + 2 e- + log_k 4.2462 + delta_h 0.92 kJ Tlmetal Tl = Tl+ + e- - log_k 5.6762 - delta_h 5.36 kJ + log_k 5.6762 + delta_h 5.36 kJ Znmetal - Zn = Zn+2 + 2e- - log_k 25.7886 - delta_h -153.39 kJ + Zn = Zn+2 + 2 e- + log_k 25.7886 + delta_h -153.39 kJ Cdmetal(alpha) - Cd = Cd+2 + 2e- - log_k 13.5147 - delta_h -75.33 kJ + Cd = Cd+2 + 2 e- + log_k 13.5147 + delta_h -75.33 kJ Cdmetal(gamma) - Cd = Cd+2 + 2e- - log_k 13.618 - delta_h -75.92 kJ + Cd = Cd+2 + 2 e- + log_k 13.618 + delta_h -75.92 kJ Hgmetal(l) - Hg = 0.5Hg2+2 + e- - log_k -13.4517 - delta_h 83.435 kJ + Hg = 0.5 Hg2+2 + e- + log_k -13.4517 + delta_h 83.435 kJ Cumetal Cu = Cu+ + e- - log_k -8.756 - delta_h 71.67 kJ + log_k -8.756 + delta_h 71.67 kJ Agmetal Ag = Ag+ + e- - log_k -13.5065 - delta_h 105.79 kJ + log_k -13.5065 + delta_h 105.79 kJ Crmetal - Cr = Cr+2 + 2e- - log_k 30.4831 - delta_h -172 kJ + Cr = Cr+2 + 2 e- + log_k 30.4831 + delta_h -172 kJ Vmetal - V = V+3 + 3e- - log_k 44.0253 - delta_h -259 kJ + V = V+3 + 3 e- + log_k 44.0253 + delta_h -259 kJ Stibnite - Sb2S3 + 6H2O = 2Sb(OH)3 + 3H+ + 3HS- - log_k -50.46 - delta_h 293.78 kJ + Sb2S3 + 6 H2O = 2 Sb(OH)3 + 3 H+ + 3 HS- + log_k -50.46 + delta_h 293.78 kJ Orpiment - As2S3 + 6H2O = 2H3AsO3 + 3HS- + 3H+ - log_k -61.0663 - delta_h 350.68 kJ + As2S3 + 6 H2O = 2 H3AsO3 + 3 HS- + 3 H+ + log_k -61.0663 + delta_h 350.68 kJ Realgar - AsS + 3H2O = H3AsO3 + HS- + 2H+ + e- - log_k -19.747 - delta_h 127.8 kJ + AsS + 3 H2O = H3AsO3 + HS- + 2 H+ + e- + log_k -19.747 + delta_h 127.8 kJ SnS - SnS + 2H2O = Sn(OH)2 + H+ + HS- - log_k -19.114 - delta_h -0 kJ + SnS + 2 H2O = Sn(OH)2 + H+ + HS- + log_k -19.114 + delta_h -0 kJ SnS2 - SnS2 + 6H2O = Sn(OH)6-2 + 4H+ + 2HS- - log_k -57.4538 - delta_h -0 kJ + SnS2 + 6 H2O = Sn(OH)6-2 + 4 H+ + 2 HS- + log_k -57.4538 + delta_h -0 kJ Galena PbS + H+ = Pb+2 + HS- - log_k -13.97 - delta_h 80 kJ + log_k -13.97 + delta_h 80 kJ Tl2S - Tl2S + H+ = 2Tl+ + HS- - log_k -7.19 - delta_h 91.52 kJ + Tl2S + H+ = 2 Tl+ + HS- + log_k -7.19 + delta_h 91.52 kJ ZnS(am) ZnS + H+ = Zn+2 + HS- - log_k -9.052 - delta_h 15.3553 kJ + log_k -9.052 + delta_h 15.3553 kJ Sphalerite ZnS + H+ = Zn+2 + HS- - log_k -11.45 - delta_h 30 kJ + log_k -11.45 + delta_h 30 kJ Wurtzite ZnS + H+ = Zn+2 + HS- - log_k -8.95 - delta_h 21.171 kJ + log_k -8.95 + delta_h 21.171 kJ Greenockite CdS + H+ = Cd+2 + HS- - log_k -14.36 - delta_h 55 kJ + log_k -14.36 + delta_h 55 kJ Hg2S Hg2S + H+ = Hg2+2 + HS- - log_k -11.6765 - delta_h 69.7473 kJ + log_k -11.6765 + delta_h 69.7473 kJ Cinnabar - HgS + 2H2O = Hg(OH)2 + H+ + HS- - log_k -45.694 - delta_h 253.76 kJ + HgS + 2 H2O = Hg(OH)2 + H+ + HS- + log_k -45.694 + delta_h 253.76 kJ Metacinnabar - HgS + 2H2O = Hg(OH)2 + H+ + HS- - log_k -45.094 - delta_h 253.72 kJ + HgS + 2 H2O = Hg(OH)2 + H+ + HS- + log_k -45.094 + delta_h 253.72 kJ Chalcocite - Cu2S + H+ = 2Cu+ + HS- - log_k -34.92 - delta_h 168 kJ + Cu2S + H+ = 2 Cu+ + HS- + log_k -34.92 + delta_h 168 kJ Djurleite - Cu0.066Cu1.868S + H+ = 0.066Cu+2 + 1.868Cu+ + HS- - log_k -33.92 - delta_h 200.334 kJ + Cu0.066Cu1.868S + H+ = 0.066 Cu+2 + 1.868 Cu+ + HS- + log_k -33.92 + delta_h 200.334 kJ Anilite - Cu0.25Cu1.5S + H+ = 0.25Cu+2 + 1.5Cu+ + HS- - log_k -31.878 - delta_h 182.15 kJ + Cu0.25Cu1.5S + H+ = 0.25 Cu+2 + 1.5 Cu+ + HS- + log_k -31.878 + delta_h 182.15 kJ BlaubleiII - Cu0.6Cu0.8S + H+ = 0.6Cu+2 + 0.8Cu+ + HS- - log_k -27.279 - delta_h -0 kJ + Cu0.6Cu0.8S + H+ = 0.6 Cu+2 + 0.8 Cu+ + HS- + log_k -27.279 + delta_h -0 kJ BlaubleiI - Cu0.9Cu0.2S + H+ = 0.9Cu+2 + 0.2Cu+ + HS- - log_k -24.162 - delta_h -0 kJ + Cu0.9Cu0.2S + H+ = 0.9 Cu+2 + 0.2 Cu+ + HS- + log_k -24.162 + delta_h -0 kJ Covellite CuS + H+ = Cu+2 + HS- - log_k -22.3 - delta_h 97 kJ + log_k -22.3 + delta_h 97 kJ Chalcopyrite - CuFeS2 + 2H+ = Cu+2 + Fe+2 + 2HS- - log_k -35.27 - delta_h 148.448 kJ + CuFeS2 + 2 H+ = Cu+2 + Fe+2 + 2 HS- + log_k -35.27 + delta_h 148.448 kJ Acanthite - Ag2S + H+ = 2Ag+ + HS- - log_k -36.22 - delta_h 227 kJ + Ag2S + H+ = 2 Ag+ + HS- + log_k -36.22 + delta_h 227 kJ NiS(alpha) NiS + H+ = Ni+2 + HS- - log_k -5.6 - delta_h -0 kJ + log_k -5.6 + delta_h -0 kJ NiS(beta) NiS + H+ = Ni+2 + HS- - log_k -11.1 - delta_h -0 kJ + log_k -11.1 + delta_h -0 kJ NiS(gamma) NiS + H+ = Ni+2 + HS- - log_k -12.8 - delta_h -0 kJ + log_k -12.8 + delta_h -0 kJ CoS(alpha) CoS + H+ = Co+2 + HS- - log_k -7.44 - delta_h -0 kJ + log_k -7.44 + delta_h -0 kJ CoS(beta) CoS + H+ = Co+2 + HS- - log_k -11.07 - delta_h -0 kJ + log_k -11.07 + delta_h -0 kJ FeS(ppt) FeS + H+ = Fe+2 + HS- - log_k -2.95 - delta_h -11 kJ + log_k -2.95 + delta_h -11 kJ Greigite - Fe3S4 + 4H+ = 2Fe+3 + Fe+2 + 4HS- - log_k -45.035 - delta_h -0 kJ + Fe3S4 + 4 H+ = 2 Fe+3 + Fe+2 + 4 HS- + log_k -45.035 + delta_h -0 kJ Mackinawite FeS + H+ = Fe+2 + HS- - log_k -3.6 - delta_h -0 kJ + log_k -3.6 + delta_h -0 kJ Pyrite - FeS2 + 2H+ + 2e- = Fe+2 + 2HS- - log_k -18.5082 - delta_h 49.844 kJ + FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- + log_k -18.5082 + delta_h 49.844 kJ MnS(grn) MnS + H+ = Mn+2 + HS- - log_k 0.17 - delta_h -32 kJ + log_k 0.17 + delta_h -32 kJ MnS(pnk) MnS + H+ = Mn+2 + HS- - log_k 3.34 - delta_h -0 kJ + log_k 3.34 + delta_h -0 kJ MoS2 - MoS2 + 4H2O = MoO4-2 + 6H+ + 2HS- + 2e- - log_k -70.2596 - delta_h 389.02 kJ + MoS2 + 4 H2O = MoO4-2 + 6 H+ + 2 HS- + 2 e- + log_k -70.2596 + delta_h 389.02 kJ BeS BeS + H+ = Be+2 + HS- - log_k 19.38 - delta_h -0 kJ + log_k 19.38 + delta_h -0 kJ BaS BaS + H+ = Ba+2 + HS- - log_k 16.18 - delta_h -0 kJ + log_k 16.18 + delta_h -0 kJ Hg2(Cyanide)2 - Hg2(Cyanide)2 = Hg2+2 + 2Cyanide- - log_k -39.3 - delta_h -0 kJ + Hg2(Cyanide)2 = Hg2+2 + 2 Cyanide- + log_k -39.3 + delta_h -0 kJ CuCyanide CuCyanide = Cu+ + Cyanide- - log_k -19.5 - delta_h -19 kJ + log_k -19.5 + delta_h -19 kJ AgCyanide AgCyanide = Ag+ + Cyanide- - log_k -15.74 - delta_h 110.395 kJ + log_k -15.74 + delta_h 110.395 kJ Ag2(Cyanide)2 - Ag2(Cyanide)2 = 2Ag+ + 2Cyanide- - log_k -11.3289 - delta_h -0 kJ + Ag2(Cyanide)2 = 2 Ag+ + 2 Cyanide- + log_k -11.3289 + delta_h -0 kJ NaCyanide(cubic) NaCyanide = Cyanide- + Na+ - log_k 1.6012 - delta_h 0.969 kJ + log_k 1.6012 + delta_h 0.969 kJ KCyanide(cubic) KCyanide = Cyanide- + K+ - log_k 1.4188 - delta_h 11.93 kJ + log_k 1.4188 + delta_h 11.93 kJ Pb2Fe(Cyanide)6 - Pb2Fe(Cyanide)6 = 2Pb+2 + Fe+2 + 6Cyanide- - log_k -53.42 - delta_h -0 kJ + Pb2Fe(Cyanide)6 = 2 Pb+2 + Fe+2 + 6 Cyanide- + log_k -53.42 + delta_h -0 kJ Zn2Fe(Cyanide)6 - Zn2Fe(Cyanide)6 = 2Zn+2 + Fe+2 + 6Cyanide- - log_k -51.08 - delta_h -0 kJ + Zn2Fe(Cyanide)6 = 2 Zn+2 + Fe+2 + 6 Cyanide- + log_k -51.08 + delta_h -0 kJ Cd2Fe(Cyanide)6 - Cd2Fe(Cyanide)6 = 2Cd+2 + Fe+2 + 6Cyanide- - log_k -52.78 - delta_h -0 kJ + Cd2Fe(Cyanide)6 = 2 Cd+2 + Fe+2 + 6 Cyanide- + log_k -52.78 + delta_h -0 kJ Ag4Fe(Cyanide)6 - Ag4Fe(Cyanide)6 = 4Ag+ + Fe+2 + 6Cyanide- - log_k -79.47 - delta_h -0 kJ + Ag4Fe(Cyanide)6 = 4 Ag+ + Fe+2 + 6 Cyanide- + log_k -79.47 + delta_h -0 kJ Ag3Fe(Cyanide)6 - Ag3Fe(Cyanide)6 = 3Ag+ + Fe+3 + 6Cyanide- - log_k -72.7867 - delta_h -0 kJ + Ag3Fe(Cyanide)6 = 3 Ag+ + Fe+3 + 6 Cyanide- + log_k -72.7867 + delta_h -0 kJ Mn3(Fe(Cyanide)6)2 - Mn3(Fe(Cyanide)6)2 = 3Mn+2 + 2Fe+3 + 12Cyanide- - log_k -105.4 - delta_h -0 kJ + Mn3(Fe(Cyanide)6)2 = 3 Mn+2 + 2 Fe+3 + 12 Cyanide- + log_k -105.4 + delta_h -0 kJ Sb2Se3 - Sb2Se3 + 6H2O = 2Sb(OH)3 + 3HSe- + 3H+ - log_k -67.7571 - delta_h 343.046 kJ + Sb2Se3 + 6 H2O = 2 Sb(OH)3 + 3 HSe- + 3 H+ + log_k -67.7571 + delta_h 343.046 kJ SnSe - SnSe + 2H2O = Sn(OH)2 + H+ + HSe- - log_k -30.494 - delta_h -0 kJ + SnSe + 2 H2O = Sn(OH)2 + H+ + HSe- + log_k -30.494 + delta_h -0 kJ SnSe2 - SnSe2 + 6H2O = Sn(OH)6-2 + 4H+ + 2HSe- - log_k -65.1189 - delta_h -0 kJ + SnSe2 + 6 H2O = Sn(OH)6-2 + 4 H+ + 2 HSe- + log_k -65.1189 + delta_h -0 kJ Clausthalite PbSe + H+ = Pb+2 + HSe- - log_k -27.1 - delta_h 119.72 kJ + log_k -27.1 + delta_h 119.72 kJ Tl2Se - Tl2Se + H+ = 2Tl+ + HSe- - log_k -18.1 - delta_h 85.62 kJ + Tl2Se + H+ = 2 Tl+ + HSe- + log_k -18.1 + delta_h 85.62 kJ ZnSe ZnSe + H+ = Zn+2 + HSe- - log_k -14.4 - delta_h 25.51 kJ + log_k -14.4 + delta_h 25.51 kJ CdSe CdSe + H+ = Cd+2 + HSe- - log_k -20.2 - delta_h 75.9814 kJ + log_k -20.2 + delta_h 75.9814 kJ HgSe - HgSe + 2H2O = Hg(OH)2 + H+ + HSe- - log_k -55.694 - delta_h -0 kJ + HgSe + 2 H2O = Hg(OH)2 + H+ + HSe- + log_k -55.694 + delta_h -0 kJ Cu2Se(alpha) - Cu2Se + H+ = 2Cu+ + HSe- - log_k -45.8 - delta_h 214.263 kJ + Cu2Se + H+ = 2 Cu+ + HSe- + log_k -45.8 + delta_h 214.263 kJ Cu3Se2 - Cu3Se2 + 2H+ = 2HSe- + 2Cu+ + Cu+2 - log_k -63.4911 - delta_h 340.327 kJ + Cu3Se2 + 2 H+ = 2 HSe- + 2 Cu+ + Cu+2 + log_k -63.4911 + delta_h 340.327 kJ CuSe CuSe + H+ = Cu+2 + HSe- - log_k -33.1 - delta_h 121.127 kJ + log_k -33.1 + delta_h 121.127 kJ CuSe2 - CuSe2 + 2H+ + 2e- = 2HSe- + Cu+2 - log_k -33.3655 - delta_h 140.582 kJ + CuSe2 + 2 H+ + 2 e- = 2 HSe- + Cu+2 + log_k -33.3655 + delta_h 140.582 kJ Ag2Se - Ag2Se + H+ = 2Ag+ + HSe- - log_k -48.7 - delta_h 265.48 kJ + Ag2Se + H+ = 2 Ag+ + HSe- + log_k -48.7 + delta_h 265.48 kJ NiSe NiSe + H+ = Ni+2 + HSe- - log_k -17.7 - delta_h -0 kJ + log_k -17.7 + delta_h -0 kJ CoSe CoSe + H+ = Co+2 + HSe- - log_k -16.2 - delta_h -0 kJ + log_k -16.2 + delta_h -0 kJ FeSe FeSe + H+ = Fe+2 + HSe- - log_k -11 - delta_h 2.092 kJ + log_k -11 + delta_h 2.092 kJ Ferroselite - FeSe2 + 2H+ + 2e- = 2HSe- + Fe+2 - log_k -18.5959 - delta_h 47.2792 kJ + FeSe2 + 2 H+ + 2 e- = 2 HSe- + Fe+2 + log_k -18.5959 + delta_h 47.2792 kJ MnSe MnSe + H+ = Mn+2 + HSe- - log_k 3.5 - delta_h -98.15 kJ + log_k 3.5 + delta_h -98.15 kJ AlSb - AlSb + 3H2O = Sb(OH)3 + 6e- + Al+3 + 3H+ - log_k 65.6241 - delta_h -0 kJ + AlSb + 3 H2O = Sb(OH)3 + 6 e- + Al+3 + 3 H+ + log_k 65.6241 + delta_h -0 kJ ZnSb - ZnSb + 3H2O = Sb(OH)3 + 5e- + Zn+2 + 3H+ - log_k 11.0138 - delta_h -54.8773 kJ + ZnSb + 3 H2O = Sb(OH)3 + 5 e- + Zn+2 + 3 H+ + log_k 11.0138 + delta_h -54.8773 kJ CdSb - CdSb + 3H2O = Sb(OH)3 + 5e- + 3H+ + Cd+2 - log_k -0.3501 - delta_h 22.36 kJ + CdSb + 3 H2O = Sb(OH)3 + 5 e- + 3 H+ + Cd+2 + log_k -0.3501 + delta_h 22.36 kJ Cu2Sb:3H2O - Cu2Sb:3H2O = Sb(OH)3 + 6e- + 3H+ + Cu+ + Cu+2 - log_k -34.8827 - delta_h 233.237 kJ + Cu2Sb:3H2O = Sb(OH)3 + 6 e- + 3 H+ + Cu+ + Cu+2 + log_k -34.8827 + delta_h 233.237 kJ Cu3Sb - Cu3Sb + 3H2O = Sb(OH)3 + 6e- + 3H+ + 3Cu+ - log_k -42.5937 - delta_h 308.131 kJ + Cu3Sb + 3 H2O = Sb(OH)3 + 6 e- + 3 H+ + 3 Cu+ + log_k -42.5937 + delta_h 308.131 kJ #Ag4Sb # Ag4Sb + 3H2O = Sb(OH)3 + 6e- + 3Ag+ + 3H+ # log_k -56.1818 # delta_h -0 kJ Breithauptite - NiSb + 3H2O = Sb(OH)3 + 5e- + 3H+ + Ni+2 - log_k -18.5225 - delta_h 96.0019 kJ + NiSb + 3 H2O = Sb(OH)3 + 5 e- + 3 H+ + Ni+2 + log_k -18.5225 + delta_h 96.0019 kJ MnSb - MnSb + 3H2O = Mn+3 + Sb(OH)3 + 6e- + 3H+ - log_k -2.9099 - delta_h 21.1083 kJ + MnSb + 3 H2O = Mn+3 + Sb(OH)3 + 6 e- + 3 H+ + log_k -2.9099 + delta_h 21.1083 kJ Mn2Sb - Mn2Sb + 3H2O = 2Mn+2 + Sb(OH)3 + 7e- + 3H+ - log_k 61.0796 - delta_h -0 kJ + Mn2Sb + 3 H2O = 2 Mn+2 + Sb(OH)3 + 7 e- + 3 H+ + log_k 61.0796 + delta_h -0 kJ USb2 - USb2 + 8H2O = UO2+2 + 2Sb(OH)3 + 12e- + 10H+ - log_k 29.5771 - delta_h -103.56 kJ + USb2 + 8 H2O = UO2+2 + 2 Sb(OH)3 + 12 e- + 10 H+ + log_k 29.5771 + delta_h -103.56 kJ U3Sb4 - U3Sb4 + 12H2O = 3U+4 + 4Sb(OH)3 + 24e- + 12H+ - log_k 152.383 - delta_h -986.04 kJ + U3Sb4 + 12 H2O = 3 U+4 + 4 Sb(OH)3 + 24 e- + 12 H+ + log_k 152.383 + delta_h -986.04 kJ Mg2Sb3 - Mg2Sb3 + 9H2O = 2Mg+2 + 3Sb(OH)3 + 9H+ + 13e- - log_k 74.6838 - delta_h -0 kJ + Mg2Sb3 + 9 H2O = 2 Mg+2 + 3 Sb(OH)3 + 9 H+ + 13 e- + log_k 74.6838 + delta_h -0 kJ Ca3Sb2 - Ca3Sb2 + 6H2O = 3Ca+2 + 2Sb(OH)3 + 6H+ + 12e- - log_k 142.974 - delta_h -732.744 kJ + Ca3Sb2 + 6 H2O = 3 Ca+2 + 2 Sb(OH)3 + 6 H+ + 12 e- + log_k 142.974 + delta_h -732.744 kJ NaSb - NaSb + 3H2O = Na+ + Sb(OH)3 + 3H+ + 4e- - log_k 23.1658 - delta_h -93.45 kJ + NaSb + 3 H2O = Na+ + Sb(OH)3 + 3 H+ + 4 e- + log_k 23.1658 + delta_h -93.45 kJ Na3Sb - Na3Sb + 3H2O = 3Na+ + Sb(OH)3 + 3H+ + 6e- - log_k 94.4517 - delta_h -432.13 kJ + Na3Sb + 3 H2O = 3 Na+ + Sb(OH)3 + 3 H+ + 6 e- + log_k 94.4517 + delta_h -432.13 kJ SeO2 SeO2 + H2O = HSeO3- + H+ - log_k 0.1246 - delta_h 1.4016 kJ + log_k 0.1246 + delta_h 1.4016 kJ SeO3 - SeO3 + H2O = SeO4-2 + 2H+ - log_k 21.044 - delta_h -146.377 kJ + SeO3 + H2O = SeO4-2 + 2 H+ + log_k 21.044 + delta_h -146.377 kJ Sb2O5 - Sb2O5 + 7H2O = 2Sb(OH)6- + 2H+ - log_k -9.6674 - delta_h -0 kJ + Sb2O5 + 7 H2O = 2 Sb(OH)6- + 2 H+ + log_k -9.6674 + delta_h -0 kJ SbO2 - SbO2 + 4H2O = Sb(OH)6- + e- + 2H+ - log_k -27.8241 - delta_h -0 kJ + SbO2 + 4 H2O = Sb(OH)6- + e- + 2 H+ + log_k -27.8241 + delta_h -0 kJ Sb2O4 - Sb2O4 + 2H2O + 2H+ + 2e- = 2Sb(OH)3 - log_k 3.4021 - delta_h -68.04 kJ + Sb2O4 + 2 H2O + 2 H+ + 2 e- = 2 Sb(OH)3 + log_k 3.4021 + delta_h -68.04 kJ Sb4O6(cubic) - Sb4O6 + 6H2O = 4Sb(OH)3 - log_k -18.2612 - delta_h 61.1801 kJ + Sb4O6 + 6 H2O = 4 Sb(OH)3 + log_k -18.2612 + delta_h 61.1801 kJ Sb4O6(orth) - Sb4O6 + 6H2O = 4Sb(OH)3 - log_k -17.9012 - delta_h 37.6801 kJ + Sb4O6 + 6 H2O = 4 Sb(OH)3 + log_k -17.9012 + delta_h 37.6801 kJ Sb(OH)3 Sb(OH)3 = Sb(OH)3 - log_k -7.1099 - delta_h 30.1248 kJ + log_k -7.1099 + delta_h 30.1248 kJ Senarmontite - Sb2O3 + 3H2O = 2Sb(OH)3 - log_k -12.3654 - delta_h 30.6478 kJ + Sb2O3 + 3 H2O = 2 Sb(OH)3 + log_k -12.3654 + delta_h 30.6478 kJ Valentinite - Sb2O3 + 3H2O = 2Sb(OH)3 - log_k -8.4806 - delta_h 19.0163 kJ + Sb2O3 + 3 H2O = 2 Sb(OH)3 + log_k -8.4806 + delta_h 19.0163 kJ Chalcedony - SiO2 + 2H2O = H4SiO4 - log_k -3.55 - delta_h 19.7 kJ + SiO2 + 2 H2O = H4SiO4 + log_k -3.55 + delta_h 19.7 kJ Cristobalite - SiO2 + 2H2O = H4SiO4 - log_k -3.35 - delta_h 20.006 kJ + SiO2 + 2 H2O = H4SiO4 + log_k -3.35 + delta_h 20.006 kJ Quartz - SiO2 + 2H2O = H4SiO4 - log_k -4 - delta_h 22.36 kJ + SiO2 + 2 H2O = H4SiO4 + log_k -4 + delta_h 22.36 kJ SiO2(am-gel) - SiO2 + 2H2O = H4SiO4 - log_k -2.71 - delta_h 14 kJ + SiO2 + 2 H2O = H4SiO4 + log_k -2.71 + delta_h 14 kJ SiO2(am-ppt) - SiO2 + 2H2O = H4SiO4 - log_k -2.74 - delta_h 15.15 kJ + SiO2 + 2 H2O = H4SiO4 + log_k -2.74 + delta_h 15.15 kJ SnO SnO + H2O = Sn(OH)2 - log_k -4.9141 - delta_h -0 kJ + log_k -4.9141 + delta_h -0 kJ SnO2 - SnO2 + 4H2O = Sn(OH)6-2 + 2H+ - log_k -28.9749 - delta_h -0 kJ + SnO2 + 4 H2O = Sn(OH)6-2 + 2 H+ + log_k -28.9749 + delta_h -0 kJ Sn(OH)2 Sn(OH)2 = Sn(OH)2 - log_k -5.4309 - delta_h -0 kJ + log_k -5.4309 + delta_h -0 kJ Sn(OH)4 - Sn(OH)4 + 2H2O = Sn(OH)6-2 + 2H+ - log_k -22.2808 - delta_h -0 kJ + Sn(OH)4 + 2 H2O = Sn(OH)6-2 + 2 H+ + log_k -22.2808 + delta_h -0 kJ H2Sn(OH)6 - H2Sn(OH)6 = Sn(OH)6-2 + 2H+ - log_k -23.5281 - delta_h -0 kJ + H2Sn(OH)6 = Sn(OH)6-2 + 2 H+ + log_k -23.5281 + delta_h -0 kJ Massicot - PbO + 2H+ = Pb+2 + H2O - log_k 12.894 - delta_h -66.848 kJ + PbO + 2 H+ = Pb+2 + H2O + log_k 12.894 + delta_h -66.848 kJ Litharge - PbO + 2H+ = Pb+2 + H2O - log_k 12.694 - delta_h -65.501 kJ + PbO + 2 H+ = Pb+2 + H2O + log_k 12.694 + delta_h -65.501 kJ PbO:0.3H2O - PbO:0.33H2O + 2H+ = Pb+2 + 1.33H2O - log_k 12.98 - delta_h -0 kJ + PbO:0.33H2O + 2 H+ = Pb+2 + 1.33 H2O + log_k 12.98 + delta_h -0 kJ Plattnerite - PbO2 + 4H+ + 2e- = Pb+2 + 2H2O - log_k 49.6001 - delta_h -296.27 kJ + PbO2 + 4 H+ + 2 e- = Pb+2 + 2 H2O + log_k 49.6001 + delta_h -296.27 kJ Pb(OH)2 - Pb(OH)2 + 2H+ = Pb+2 + 2H2O - log_k 8.15 - delta_h -58.5342 kJ + Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O + log_k 8.15 + delta_h -58.5342 kJ Pb2O(OH)2 - Pb2O(OH)2 + 4H+ = 2Pb+2 + 3H2O - log_k 26.188 - delta_h -0 kJ + Pb2O(OH)2 + 4 H+ = 2 Pb+2 + 3 H2O + log_k 26.188 + delta_h -0 kJ Al(OH)3(am) - Al(OH)3 + 3H+ = Al+3 + 3H2O - log_k 10.8 - delta_h -111 kJ + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 10.8 + delta_h -111 kJ Boehmite - AlOOH + 3H+ = Al+3 + 2H2O - log_k 8.578 - delta_h -117.696 kJ + AlOOH + 3 H+ = Al+3 + 2 H2O + log_k 8.578 + delta_h -117.696 kJ Diaspore - AlOOH + 3H+ = Al+3 + 2H2O - log_k 6.873 - delta_h -103.052 kJ + AlOOH + 3 H+ = Al+3 + 2 H2O + log_k 6.873 + delta_h -103.052 kJ Gibbsite - Al(OH)3 + 3H+ = Al+3 + 3H2O - log_k 8.291 - delta_h -95.3952 kJ + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 8.291 + delta_h -95.3952 kJ Tl2O - Tl2O + 2H+ = 2Tl+ + H2O - log_k 27.0915 - delta_h -96.41 kJ + Tl2O + 2 H+ = 2 Tl+ + H2O + log_k 27.0915 + delta_h -96.41 kJ TlOH TlOH + H+ = Tl+ + H2O - log_k 12.9186 - delta_h -41.57 kJ + log_k 12.9186 + delta_h -41.57 kJ Avicennite - Tl2O3 + 3H2O = 2Tl(OH)3 - log_k -13 - delta_h -0 kJ + Tl2O3 + 3 H2O = 2 Tl(OH)3 + log_k -13 + delta_h -0 kJ Tl(OH)3 Tl(OH)3 = Tl(OH)3 - log_k -5.441 - delta_h -0 kJ + log_k -5.441 + delta_h -0 kJ Zn(OH)2(am) - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 12.474 - delta_h -80.62 kJ + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 12.474 + delta_h -80.62 kJ Zn(OH)2 - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 12.2 - delta_h -0 kJ + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 12.2 + delta_h -0 kJ Zn(OH)2(beta) - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.754 - delta_h -83.14 kJ + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.754 + delta_h -83.14 kJ Zn(OH)2(gamma) - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.734 - delta_h -0 kJ + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.734 + delta_h -0 kJ Zn(OH)2(epsilon) - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.534 - delta_h -81.8 kJ + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.534 + delta_h -81.8 kJ ZnO(active) - ZnO + 2H+ = Zn+2 + H2O - log_k 11.1884 - delta_h -88.76 kJ + ZnO + 2 H+ = Zn+2 + H2O + log_k 11.1884 + delta_h -88.76 kJ Zincite - ZnO + 2H+ = Zn+2 + H2O - log_k 11.334 - delta_h -89.62 kJ + ZnO + 2 H+ = Zn+2 + H2O + log_k 11.334 + delta_h -89.62 kJ Cd(OH)2(am) - Cd(OH)2 + 2H+ = Cd+2 + 2H2O - log_k 13.73 - delta_h -86.9017 kJ + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + log_k 13.73 + delta_h -86.9017 kJ Cd(OH)2 - Cd(OH)2 + 2H+ = Cd+2 + 2H2O - log_k 13.644 - delta_h -94.62 kJ + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + log_k 13.644 + delta_h -94.62 kJ Monteponite - CdO + 2H+ = Cd+2 + H2O - log_k 15.1034 - delta_h -103.4 kJ + CdO + 2 H+ = Cd+2 + H2O + log_k 15.1034 + delta_h -103.4 kJ Hg2(OH)2 - Hg2(OH)2 + 2H+ = Hg2+2 + 2H2O - log_k 5.2603 - delta_h -0 kJ + Hg2(OH)2 + 2 H+ = Hg2+2 + 2 H2O + log_k 5.2603 + delta_h -0 kJ Montroydite HgO + H2O = Hg(OH)2 - log_k -3.64 - delta_h -38.9 kJ + log_k -3.64 + delta_h -38.9 kJ Hg(OH)2 Hg(OH)2 = Hg(OH)2 - log_k -3.4963 - delta_h -0 kJ + log_k -3.4963 + delta_h -0 kJ Cuprite - Cu2O + 2H+ = 2Cu+ + H2O - log_k -1.406 - delta_h -124.02 kJ + Cu2O + 2 H+ = 2 Cu+ + H2O + log_k -1.406 + delta_h -124.02 kJ Cu(OH)2 - Cu(OH)2 + 2H+ = Cu+2 + 2H2O - log_k 8.674 - delta_h -56.42 kJ + Cu(OH)2 + 2 H+ = Cu+2 + 2 H2O + log_k 8.674 + delta_h -56.42 kJ Tenorite - CuO + 2H+ = Cu+2 + H2O - log_k 7.644 - delta_h -64.867 kJ + CuO + 2 H+ = Cu+2 + H2O + log_k 7.644 + delta_h -64.867 kJ Ag2O - Ag2O + 2H+ = 2Ag+ + H2O - log_k 12.574 - delta_h -45.62 kJ + Ag2O + 2 H+ = 2 Ag+ + H2O + log_k 12.574 + delta_h -45.62 kJ Ni(OH)2 - Ni(OH)2 + 2H+ = Ni+2 + 2H2O - log_k 12.794 - delta_h -95.96 kJ + Ni(OH)2 + 2 H+ = Ni+2 + 2 H2O + log_k 12.794 + delta_h -95.96 kJ Bunsenite - NiO + 2H+ = Ni+2 + H2O - log_k 12.4456 - delta_h -100.13 kJ + NiO + 2 H+ = Ni+2 + H2O + log_k 12.4456 + delta_h -100.13 kJ CoO - CoO + 2H+ = Co+2 + H2O - log_k 13.5864 - delta_h -106.295 kJ + CoO + 2 H+ = Co+2 + H2O + log_k 13.5864 + delta_h -106.295 kJ Co(OH)2 - Co(OH)2 + 2H+ = Co+2 + 2H2O - log_k 13.094 - delta_h -0 kJ + Co(OH)2 + 2 H+ = Co+2 + 2 H2O + log_k 13.094 + delta_h -0 kJ Co(OH)3 - Co(OH)3 + 3H+ = Co+3 + 3H2O - log_k -2.309 - delta_h -92.43 kJ + Co(OH)3 + 3 H+ = Co+3 + 3 H2O + log_k -2.309 + delta_h -92.43 kJ #Wustite-0.11 # WUSTITE-0.11 + 2H+ = 0.947Fe+2 + H2O # log_k 11.6879 # delta_h -103.938 kJ Fe(OH)2 - Fe(OH)2 + 2H+ = Fe+2 + 2H2O - log_k 13.564 - delta_h -0 kJ + Fe(OH)2 + 2 H+ = Fe+2 + 2 H2O + log_k 13.564 + delta_h -0 kJ Ferrihydrite - Fe(OH)3 + 3H+ = Fe+3 + 3H2O - log_k 3.191 - delta_h -73.374 kJ + Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O + log_k 3.191 + delta_h -73.374 kJ Fe3(OH)8 - Fe3(OH)8 + 8H+ = 2Fe+3 + Fe+2 + 8H2O - log_k 20.222 - delta_h -0 kJ + Fe3(OH)8 + 8 H+ = 2 Fe+3 + Fe+2 + 8 H2O + log_k 20.222 + delta_h -0 kJ Goethite - FeOOH + 3H+ = Fe+3 + 2H2O - log_k 0.491 - delta_h -60.5843 kJ + FeOOH + 3 H+ = Fe+3 + 2 H2O + log_k 0.491 + delta_h -60.5843 kJ Pyrolusite - MnO2 + 4H+ + 2e- = Mn+2 + 2H2O - log_k 41.38 - delta_h -272 kJ + MnO2 + 4 H+ + 2 e- = Mn+2 + 2 H2O + log_k 41.38 + delta_h -272 kJ Birnessite - MnO2 + 4H+ + e- = Mn+3 + 2H2O - log_k 18.091 - delta_h -0 kJ + MnO2 + 4 H+ + e- = Mn+3 + 2 H2O + log_k 18.091 + delta_h -0 kJ Nsutite - MnO2 + 4H+ + e- = Mn+3 + 2H2O - log_k 17.504 - delta_h -0 kJ + MnO2 + 4 H+ + e- = Mn+3 + 2 H2O + log_k 17.504 + delta_h -0 kJ Pyrochroite - Mn(OH)2 + 2H+ = Mn+2 + 2H2O - log_k 15.194 - delta_h -97.0099 kJ + Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O + log_k 15.194 + delta_h -97.0099 kJ Manganite - MnOOH + 3H+ + e- = Mn+2 + 2H2O - log_k 25.34 - delta_h -0 kJ + MnOOH + 3 H+ + e- = Mn+2 + 2 H2O + log_k 25.34 + delta_h -0 kJ Cr(OH)2 - Cr(OH)2 + 2H+ = Cr+2 + 2H2O - log_k 10.8189 - delta_h -35.6058 kJ + Cr(OH)2 + 2 H+ = Cr+2 + 2 H2O + log_k 10.8189 + delta_h -35.6058 kJ Cr(OH)3(am) Cr(OH)3 + H+ = Cr(OH)2+ + H2O - log_k -0.75 - delta_h -0 kJ + log_k -0.75 + delta_h -0 kJ Cr(OH)3 Cr(OH)3 + H+ = Cr(OH)2+ + H2O - log_k 1.3355 - delta_h -29.7692 kJ + log_k 1.3355 + delta_h -29.7692 kJ CrO3 - CrO3 + H2O = CrO4-2 + 2H+ - log_k -3.2105 - delta_h -5.2091 kJ + CrO3 + H2O = CrO4-2 + 2 H+ + log_k -3.2105 + delta_h -5.2091 kJ MoO3 - MoO3 + H2O = MoO4-2 + 2H+ - log_k -8 - delta_h -0 kJ + MoO3 + H2O = MoO4-2 + 2 H+ + log_k -8 + delta_h -0 kJ VO - VO + 2H+ = V+3 + H2O + e- - log_k 14.7563 - delta_h -113.041 kJ + VO + 2 H+ = V+3 + H2O + e- + log_k 14.7563 + delta_h -113.041 kJ V(OH)3 - V(OH)3 + 3H+ = V+3 + 3H2O - log_k 7.591 - delta_h -0 kJ + V(OH)3 + 3 H+ = V+3 + 3 H2O + log_k 7.591 + delta_h -0 kJ VO(OH)2 - VO(OH)2 + 2H+ = VO+2 + 2H2O - log_k 5.1506 - delta_h -0 kJ + VO(OH)2 + 2 H+ = VO+2 + 2 H2O + log_k 5.1506 + delta_h -0 kJ Uraninite - UO2 + 4H+ = U+4 + 2H2O - log_k -4.6693 - delta_h -77.86 kJ + UO2 + 4 H+ = U+4 + 2 H2O + log_k -4.6693 + delta_h -77.86 kJ UO2(am) - UO2 + 4H+ = U+4 + 2H2O - log_k 0.934 - delta_h -109.746 kJ + UO2 + 4 H+ = U+4 + 2 H2O + log_k 0.934 + delta_h -109.746 kJ UO3 - UO3 + 2H+ = UO2+2 + H2O - log_k 7.7 - delta_h -81.0299 kJ + UO3 + 2 H+ = UO2+2 + H2O + log_k 7.7 + delta_h -81.0299 kJ Gummite - UO3 + 2H+ = UO2+2 + H2O - log_k 7.6718 - delta_h -81.0299 kJ + UO3 + 2 H+ = UO2+2 + H2O + log_k 7.6718 + delta_h -81.0299 kJ UO2(OH)2(beta) - UO2(OH)2 + 2H+ = UO2+2 + 2H2O - log_k 5.6116 - delta_h -56.7599 kJ + UO2(OH)2 + 2 H+ = UO2+2 + 2 H2O + log_k 5.6116 + delta_h -56.7599 kJ Schoepite - UO2(OH)2:H2O + 2H+ = UO2+2 + 3H2O - log_k 5.994 - delta_h -49.79 kJ + UO2(OH)2:H2O + 2 H+ = UO2+2 + 3 H2O + log_k 5.994 + delta_h -49.79 kJ Be(OH)2(am) - Be(OH)2 + 2H+ = Be+2 + 2H2O - log_k 7.194 - delta_h -0 kJ + Be(OH)2 + 2 H+ = Be+2 + 2 H2O + log_k 7.194 + delta_h -0 kJ Be(OH)2(alpha) - Be(OH)2 + 2H+ = Be+2 + 2H2O - log_k 6.894 - delta_h -0 kJ + Be(OH)2 + 2 H+ = Be+2 + 2 H2O + log_k 6.894 + delta_h -0 kJ Be(OH)2(beta) - Be(OH)2 + 2H+ = Be+2 + 2H2O - log_k 6.494 - delta_h -0 kJ + Be(OH)2 + 2 H+ = Be+2 + 2 H2O + log_k 6.494 + delta_h -0 kJ Brucite - Mg(OH)2 + 2H+ = Mg+2 + 2H2O - log_k 16.844 - delta_h -113.996 kJ + Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O + log_k 16.844 + delta_h -113.996 kJ Periclase - MgO + 2H+ = Mg+2 + H2O - log_k 21.5841 - delta_h -151.23 kJ + MgO + 2 H+ = Mg+2 + H2O + log_k 21.5841 + delta_h -151.23 kJ Mg(OH)2(active) - Mg(OH)2 + 2H+ = Mg+2 + 2H2O - log_k 18.794 - delta_h -0 kJ + Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O + log_k 18.794 + delta_h -0 kJ Lime - CaO + 2H+ = Ca+2 + H2O - log_k 32.6993 - delta_h -193.91 kJ + CaO + 2 H+ = Ca+2 + H2O + log_k 32.6993 + delta_h -193.91 kJ Portlandite - Ca(OH)2 + 2H+ = Ca+2 + 2H2O - log_k 22.804 - delta_h -128.62 kJ + Ca(OH)2 + 2 H+ = Ca+2 + 2 H2O + log_k 22.804 + delta_h -128.62 kJ Ba(OH)2:8H2O - Ba(OH)2:8H2O + 2H+ = Ba+2 + 10H2O - log_k 24.394 - delta_h -54.32 kJ + Ba(OH)2:8H2O + 2 H+ = Ba+2 + 10 H2O + log_k 24.394 + delta_h -54.32 kJ Cu(SbO3)2 - Cu(SbO3)2 + 6H+ + 4e- = 2Sb(OH)3 + Cu+2 - log_k 45.2105 - delta_h -0 kJ + Cu(SbO3)2 + 6 H+ + 4 e- = 2 Sb(OH)3 + Cu+2 + log_k 45.2105 + delta_h -0 kJ Arsenolite - As4O6 + 6H2O = 4H3AsO3 - log_k -2.76 - delta_h 59.9567 kJ + As4O6 + 6 H2O = 4 H3AsO3 + log_k -2.76 + delta_h 59.9567 kJ Claudetite - As4O6 + 6H2O = 4H3AsO3 - log_k -3.065 - delta_h 55.6054 kJ + As4O6 + 6 H2O = 4 H3AsO3 + log_k -3.065 + delta_h 55.6054 kJ As2O5 - As2O5 + 3H2O = 2H3AsO4 - log_k 6.7061 - delta_h -22.64 kJ + As2O5 + 3 H2O = 2 H3AsO4 + log_k 6.7061 + delta_h -22.64 kJ Pb2O3 - Pb2O3 + 6H+ + 2e- = 2Pb+2 + 3H2O - log_k 61.04 - delta_h -0 kJ + Pb2O3 + 6 H+ + 2 e- = 2 Pb+2 + 3 H2O + log_k 61.04 + delta_h -0 kJ Minium - Pb3O4 + 8H+ + 2e- = 3Pb+2 + 4H2O - log_k 73.5219 - delta_h -421.874 kJ + Pb3O4 + 8 H+ + 2 e- = 3 Pb+2 + 4 H2O + log_k 73.5219 + delta_h -421.874 kJ Al2O3 - Al2O3 + 6H+ = 2Al+3 + 3H2O - log_k 19.6524 - delta_h -258.59 kJ + Al2O3 + 6 H+ = 2 Al+3 + 3 H2O + log_k 19.6524 + delta_h -258.59 kJ Co3O4 - Co3O4 + 8H+ = Co+2 + 2Co+3 + 4H2O - log_k -10.4956 - delta_h -107.5 kJ + Co3O4 + 8 H+ = Co+2 + 2 Co+3 + 4 H2O + log_k -10.4956 + delta_h -107.5 kJ CoFe2O4 - CoFe2O4 + 8H+ = Co+2 + 2Fe+3 + 4H2O - log_k -3.5281 - delta_h -158.82 kJ + CoFe2O4 + 8 H+ = Co+2 + 2 Fe+3 + 4 H2O + log_k -3.5281 + delta_h -158.82 kJ Magnetite - Fe3O4 + 8H+ = 2Fe+3 + Fe+2 + 4H2O - log_k 3.4028 - delta_h -208.526 kJ + Fe3O4 + 8 H+ = 2 Fe+3 + Fe+2 + 4 H2O + log_k 3.4028 + delta_h -208.526 kJ Hercynite - FeAl2O4 + 8H+ = Fe+2 + 2Al+3 + 4H2O - log_k 22.893 - delta_h -313.92 kJ + FeAl2O4 + 8 H+ = Fe+2 + 2 Al+3 + 4 H2O + log_k 22.893 + delta_h -313.92 kJ Hematite - Fe2O3 + 6H+ = 2Fe+3 + 3H2O - log_k -1.418 - delta_h -128.987 kJ + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k -1.418 + delta_h -128.987 kJ Maghemite - Fe2O3 + 6H+ = 2Fe+3 + 3H2O - log_k 6.386 - delta_h -0 kJ + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k 6.386 + delta_h -0 kJ Lepidocrocite - FeOOH + 3H+ = Fe+3 + 2H2O - log_k 1.371 - delta_h -0 kJ + FeOOH + 3 H+ = Fe+3 + 2 H2O + log_k 1.371 + delta_h -0 kJ Hausmannite - Mn3O4 + 8H+ + 2e- = 3Mn+2 + 4H2O - log_k 61.03 - delta_h -421 kJ + Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O + log_k 61.03 + delta_h -421 kJ Bixbyite - Mn2O3 + 6H+ = 2Mn+3 + 3H2O - log_k -0.6445 - delta_h -124.49 kJ + Mn2O3 + 6 H+ = 2 Mn+3 + 3 H2O + log_k -0.6445 + delta_h -124.49 kJ Cr2O3 - Cr2O3 + H2O + 2H+ = 2Cr(OH)2+ - log_k -2.3576 - delta_h -50.731 kJ + Cr2O3 + H2O + 2 H+ = 2 Cr(OH)2+ + log_k -2.3576 + delta_h -50.731 kJ #V2O3 # V2O3 + 3H+ = V+3 + 1.5H2O # log_k 4.9 # delta_h -82.5085 kJ V3O5 - V3O5 + 4H+ = 3VO+2 + 2H2O + 2e- - log_k 1.8361 - delta_h -98.46 kJ + V3O5 + 4 H+ = 3 VO+2 + 2 H2O + 2 e- + log_k 1.8361 + delta_h -98.46 kJ #V2O4 # V2O4 + 2H+ = VO+2 + H2O # log_k 4.27 # delta_h -58.8689 kJ V4O7 - V4O7 + 6H+ = 4VO+2 + 3H2O + 2e- - log_k 7.1865 - delta_h -163.89 kJ + V4O7 + 6 H+ = 4 VO+2 + 3 H2O + 2 e- + log_k 7.1865 + delta_h -163.89 kJ V6O13 - V6O13 + 2H+ = 6VO2+ + H2O + 4e- - log_k -60.86 - delta_h 271.5 kJ + V6O13 + 2 H+ = 6 VO2+ + H2O + 4 e- + log_k -60.86 + delta_h 271.5 kJ V2O5 - V2O5 + 2H+ = 2VO2+ + H2O - log_k -1.36 - delta_h 34 kJ + V2O5 + 2 H+ = 2 VO2+ + H2O + log_k -1.36 + delta_h 34 kJ U4O9 - U4O9 + 18H+ + 2e- = 4U+4 + 9H2O - log_k -3.0198 - delta_h -426.87 kJ + U4O9 + 18 H+ + 2 e- = 4 U+4 + 9 H2O + log_k -3.0198 + delta_h -426.87 kJ U3O8 - U3O8 + 16H+ + 4e- = 3U+4 + 8H2O - log_k 21.0834 - delta_h -485.44 kJ + U3O8 + 16 H+ + 4 e- = 3 U+4 + 8 H2O + log_k 21.0834 + delta_h -485.44 kJ Spinel - MgAl2O4 + 8H+ = Mg+2 + 2Al+3 + 4H2O - log_k 36.8476 - delta_h -388.012 kJ + MgAl2O4 + 8 H+ = Mg+2 + 2 Al+3 + 4 H2O + log_k 36.8476 + delta_h -388.012 kJ Magnesioferrite - Fe2MgO4 + 8H+ = Mg+2 + 2Fe+3 + 4H2O - log_k 16.8597 - delta_h -278.92 kJ + Fe2MgO4 + 8 H+ = Mg+2 + 2 Fe+3 + 4 H2O + log_k 16.8597 + delta_h -278.92 kJ Natron - Na2CO3:10H2O = 2Na+ + CO3-2 + 10H2O - log_k -1.311 - delta_h 65.8771 kJ + Na2CO3:10H2O = 2 Na+ + CO3-2 + 10 H2O + log_k -1.311 + delta_h 65.8771 kJ Cuprousferrite - CuFeO2 + 4H+ = Cu+ + Fe+3 + 2H2O - log_k -8.9171 - delta_h -15.89 kJ + CuFeO2 + 4 H+ = Cu+ + Fe+3 + 2 H2O + log_k -8.9171 + delta_h -15.89 kJ Cupricferrite - CuFe2O4 + 8H+ = Cu+2 + 2Fe+3 + 4H2O - log_k 5.9882 - delta_h -210.21 kJ + CuFe2O4 + 8 H+ = Cu+2 + 2 Fe+3 + 4 H2O + log_k 5.9882 + delta_h -210.21 kJ FeCr2O4 - FeCr2O4 + 4H+ = 2Cr(OH)2+ + Fe+2 - log_k 7.2003 - delta_h -140.4 kJ + FeCr2O4 + 4 H+ = 2 Cr(OH)2+ + Fe+2 + log_k 7.2003 + delta_h -140.4 kJ MgCr2O4 - MgCr2O4 + 4H+ = 2Cr(OH)2+ + Mg+2 - log_k 16.2007 - delta_h -179.4 kJ + MgCr2O4 + 4 H+ = 2 Cr(OH)2+ + Mg+2 + log_k 16.2007 + delta_h -179.4 kJ SbF3 - SbF3 + 3H2O = Sb(OH)3 + 3H+ + 3F- - log_k -10.2251 - delta_h -6.7279 kJ + SbF3 + 3 H2O = Sb(OH)3 + 3 H+ + 3 F- + log_k -10.2251 + delta_h -6.7279 kJ PbF2 - PbF2 = Pb+2 + 2F- - log_k -7.44 - delta_h 20 kJ + PbF2 = Pb+2 + 2 F- + log_k -7.44 + delta_h 20 kJ ZnF2 - ZnF2 = Zn+2 + 2F- - log_k -0.5343 - delta_h -59.69 kJ + ZnF2 = Zn+2 + 2 F- + log_k -0.5343 + delta_h -59.69 kJ CdF2 - CdF2 = Cd+2 + 2F- - log_k -1.2124 - delta_h -46.22 kJ + CdF2 = Cd+2 + 2 F- + log_k -1.2124 + delta_h -46.22 kJ Hg2F2 - Hg2F2 = Hg2+2 + 2F- - log_k -10.3623 - delta_h -18.486 kJ + Hg2F2 = Hg2+2 + 2 F- + log_k -10.3623 + delta_h -18.486 kJ CuF CuF = Cu+ + F- - log_k -4.9056 - delta_h 16.648 kJ + log_k -4.9056 + delta_h 16.648 kJ CuF2 - CuF2 = Cu+2 + 2F- - log_k 1.115 - delta_h -66.901 kJ + CuF2 = Cu+2 + 2 F- + log_k 1.115 + delta_h -66.901 kJ CuF2:2H2O - CuF2:2H2O = Cu+2 + 2F- + 2H2O - log_k -4.55 - delta_h -15.2716 kJ + CuF2:2H2O = Cu+2 + 2 F- + 2 H2O + log_k -4.55 + delta_h -15.2716 kJ AgF:4H2O - AgF:4H2O = Ag+ + F- + 4H2O - log_k 1.0491 - delta_h 15.4202 kJ + AgF:4H2O = Ag+ + F- + 4 H2O + log_k 1.0491 + delta_h 15.4202 kJ CoF2 - CoF2 = Co+2 + 2F- - log_k -1.5969 - delta_h -57.368 kJ + CoF2 = Co+2 + 2 F- + log_k -1.5969 + delta_h -57.368 kJ CoF3 - CoF3 = Co+3 + 3F- - log_k -1.4581 - delta_h -123.692 kJ + CoF3 = Co+3 + 3 F- + log_k -1.4581 + delta_h -123.692 kJ CrF3 - CrF3 + 2H2O = Cr(OH)2+ + 3F- + 2H+ - log_k -11.3367 - delta_h -23.3901 kJ + CrF3 + 2 H2O = Cr(OH)2+ + 3 F- + 2 H+ + log_k -11.3367 + delta_h -23.3901 kJ VF4 - VF4 + H2O = VO+2 + 4F- + 2H+ - log_k 14.93 - delta_h -199.117 kJ + VF4 + H2O = VO+2 + 4 F- + 2 H+ + log_k 14.93 + delta_h -199.117 kJ UF4 - UF4 = U+4 + 4F- - log_k -29.5371 - delta_h -79.0776 kJ + UF4 = U+4 + 4 F- + log_k -29.5371 + delta_h -79.0776 kJ UF4:2.5H2O - UF4:2.5H2O = U+4 + 4F- + 2.5H2O - log_k -32.7179 - delta_h 24.325 kJ + UF4:2.5H2O = U+4 + 4 F- + 2.5 H2O + log_k -32.7179 + delta_h 24.325 kJ MgF2 - MgF2 = Mg+2 + 2F- - log_k -8.13 - delta_h -8 kJ + MgF2 = Mg+2 + 2 F- + log_k -8.13 + delta_h -8 kJ Fluorite - CaF2 = Ca+2 + 2F- - log_k -10.5 - delta_h 8 kJ + CaF2 = Ca+2 + 2 F- + log_k -10.5 + delta_h 8 kJ SrF2 - SrF2 = Sr+2 + 2F- - log_k -8.58 - delta_h 4 kJ + SrF2 = Sr+2 + 2 F- + log_k -8.58 + delta_h 4 kJ BaF2 - BaF2 = Ba+2 + 2F- - log_k -5.82 - delta_h 4 kJ + BaF2 = Ba+2 + 2 F- + log_k -5.82 + delta_h 4 kJ Cryolite - Na3AlF6 = 3Na+ + Al+3 + 6F- - log_k -33.84 - delta_h 38 kJ + Na3AlF6 = 3 Na+ + Al+3 + 6 F- + log_k -33.84 + delta_h 38 kJ SbCl3 - SbCl3 + 3H2O = Sb(OH)3 + 3Cl- + 3H+ - log_k 0.5719 - delta_h -35.18 kJ + SbCl3 + 3 H2O = Sb(OH)3 + 3 Cl- + 3 H+ + log_k 0.5719 + delta_h -35.18 kJ SnCl2 - SnCl2 + 2H2O = Sn(OH)2 + 2H+ + 2Cl- - log_k -9.2752 - delta_h -0 kJ + SnCl2 + 2 H2O = Sn(OH)2 + 2 H+ + 2 Cl- + log_k -9.2752 + delta_h -0 kJ Cotunnite - PbCl2 = Pb+2 + 2Cl- - log_k -4.78 - delta_h 26.166 kJ + PbCl2 = Pb+2 + 2 Cl- + log_k -4.78 + delta_h 26.166 kJ Matlockite PbClF = Pb+2 + Cl- + F- - log_k -8.9733 - delta_h 33.19 kJ + log_k -8.9733 + delta_h 33.19 kJ Phosgenite - PbCl2:PbCO3 = 2Pb+2 + 2Cl- + CO3-2 - log_k -19.81 - delta_h -0 kJ + PbCl2:PbCO3 = 2 Pb+2 + 2 Cl- + CO3-2 + log_k -19.81 + delta_h -0 kJ Laurionite PbOHCl + H+ = Pb+2 + Cl- + H2O - log_k 0.623 - delta_h -0 kJ + log_k 0.623 + delta_h -0 kJ Pb2(OH)3Cl - Pb2(OH)3Cl + 3H+ = 2Pb+2 + 3H2O + Cl- - log_k 8.793 - delta_h -0 kJ + Pb2(OH)3Cl + 3 H+ = 2 Pb+2 + 3 H2O + Cl- + log_k 8.793 + delta_h -0 kJ TlCl TlCl = Tl+ + Cl- - log_k -3.74 - delta_h 41 kJ + log_k -3.74 + delta_h 41 kJ ZnCl2 - ZnCl2 = Zn+2 + 2Cl- - log_k 7.05 - delta_h -72.5 kJ + ZnCl2 = Zn+2 + 2 Cl- + log_k 7.05 + delta_h -72.5 kJ Zn2(OH)3Cl - Zn2(OH)3Cl + 3H+ = 2Zn+2 + 3H2O + Cl- - log_k 15.191 - delta_h -0 kJ + Zn2(OH)3Cl + 3 H+ = 2 Zn+2 + 3 H2O + Cl- + log_k 15.191 + delta_h -0 kJ Zn5(OH)8Cl2 - Zn5(OH)8Cl2 + 8H+ = 5Zn+2 + 8H2O + 2Cl- - log_k 38.5 - delta_h -0 kJ + Zn5(OH)8Cl2 + 8 H+ = 5 Zn+2 + 8 H2O + 2 Cl- + log_k 38.5 + delta_h -0 kJ CdCl2 - CdCl2 = Cd+2 + 2Cl- - log_k -0.6588 - delta_h -18.58 kJ + CdCl2 = Cd+2 + 2 Cl- + log_k -0.6588 + delta_h -18.58 kJ CdCl2:1H2O - CdCl2:1H2O = Cd+2 + 2Cl- + H2O - log_k -1.6932 - delta_h -7.47 kJ + CdCl2:H2O = Cd+2 + 2 Cl- + H2O + log_k -1.6932 + delta_h -7.47 kJ CdCl2:2.5H2O - CdCl2:2.5H2O = Cd+2 + 2Cl- + 2.5H2O - log_k -1.913 - delta_h 7.2849 kJ + CdCl2:2.5H2O = Cd+2 + 2 Cl- + 2.5 H2O + log_k -1.913 + delta_h 7.2849 kJ CdOHCl CdOHCl + H+ = Cd+2 + H2O + Cl- - log_k 3.5373 - delta_h -30.93 kJ + log_k 3.5373 + delta_h -30.93 kJ Calomel - Hg2Cl2 = Hg2+2 + 2Cl- - log_k -17.91 - delta_h 92 kJ + Hg2Cl2 = Hg2+2 + 2 Cl- + log_k -17.91 + delta_h 92 kJ HgCl2 - HgCl2 + 2H2O = Hg(OH)2 + 2Cl- + 2H+ - log_k -21.2621 - delta_h 107.82 kJ + HgCl2 + 2 H2O = Hg(OH)2 + 2 Cl- + 2 H+ + log_k -21.2621 + delta_h 107.82 kJ Nantokite CuCl = Cu+ + Cl- - log_k -6.73 - delta_h 42.662 kJ + log_k -6.73 + delta_h 42.662 kJ Melanothallite - CuCl2 = Cu+2 + 2Cl- - log_k 6.2572 - delta_h -63.407 kJ + CuCl2 = Cu+2 + 2 Cl- + log_k 6.2572 + delta_h -63.407 kJ Atacamite - Cu2(OH)3Cl + 3H+ = 2Cu+2 + 3H2O + Cl- - log_k 7.391 - delta_h -93.43 kJ + Cu2(OH)3Cl + 3 H+ = 2 Cu+2 + 3 H2O + Cl- + log_k 7.391 + delta_h -93.43 kJ Cerargyrite AgCl = Ag+ + Cl- - log_k -9.75 - delta_h 65.2 kJ + log_k -9.75 + delta_h 65.2 kJ CoCl2 - CoCl2 = Co+2 + 2Cl- - log_k 8.2672 - delta_h -79.815 kJ + CoCl2 = Co+2 + 2 Cl- + log_k 8.2672 + delta_h -79.815 kJ CoCl2:6H2O - CoCl2:6H2O = Co+2 + 2Cl- + 6H2O - log_k 2.5365 - delta_h 8.0598 kJ + CoCl2:6H2O = Co+2 + 2 Cl- + 6 H2O + log_k 2.5365 + delta_h 8.0598 kJ (Co(NH3)6)Cl3 - (Co(NH3)6)Cl3 + 6H+ = Co+3 + 6NH4+ + 3Cl- - log_k 20.0317 - delta_h -33.1 kJ + (Co(NH3)6)Cl3 + 6 H+ = Co+3 + 6 NH4+ + 3 Cl- + log_k 20.0317 + delta_h -33.1 kJ (Co(NH3)5OH2)Cl3 - (Co(NH3)5OH2)Cl3 + 5H+ = Co+3 + 5NH4+ + 3Cl- + H2O - log_k 11.7351 - delta_h -25.37 kJ + (Co(NH3)5OH2)Cl3 + 5 H+ = Co+3 + 5 NH4+ + 3 Cl- + H2O + log_k 11.7351 + delta_h -25.37 kJ (Co(NH3)5Cl)Cl2 - (Co(NH3)5Cl)Cl2 + 5H+ = Co+3 + 5NH4+ + 3Cl- - log_k 4.5102 - delta_h -10.74 kJ + (Co(NH3)5Cl)Cl2 + 5 H+ = Co+3 + 5 NH4+ + 3 Cl- + log_k 4.5102 + delta_h -10.74 kJ Fe(OH)2.7Cl.3 - Fe(OH)2.7Cl.3 + 2.7H+ = Fe+3 + 2.7H2O + 0.3Cl- - log_k -3.04 - delta_h -0 kJ + Fe(OH)2.7Cl.3 + 2.7 H+ = Fe+3 + 2.7 H2O + 0.3 Cl- + log_k -3.04 + delta_h -0 kJ MnCl2:4H2O - MnCl2:4H2O = Mn+2 + 2Cl- + 4H2O - log_k 2.7151 - delta_h -10.83 kJ + MnCl2:4H2O = Mn+2 + 2 Cl- + 4 H2O + log_k 2.7151 + delta_h -10.83 kJ CrCl2 - CrCl2 = Cr+2 + 2Cl- - log_k 14.0917 - delta_h -110.76 kJ + CrCl2 = Cr+2 + 2 Cl- + log_k 14.0917 + delta_h -110.76 kJ CrCl3 - CrCl3 + 2H2O = Cr(OH)2+ + 3Cl- + 2H+ - log_k 15.1145 - delta_h -121.08 kJ + CrCl3 + 2 H2O = Cr(OH)2+ + 3 Cl- + 2 H+ + log_k 15.1145 + delta_h -121.08 kJ VCl2 - VCl2 = V+3 + 2Cl- + e- - log_k 18.8744 - delta_h -141.16 kJ + VCl2 = V+3 + 2 Cl- + e- + log_k 18.8744 + delta_h -141.16 kJ VCl3 - VCl3 = V+3 + 3Cl- - log_k 23.4326 - delta_h -179.54 kJ + VCl3 = V+3 + 3 Cl- + log_k 23.4326 + delta_h -179.54 kJ VOCl - VOCl + 2H+ = V+3 + Cl- + H2O - log_k 11.1524 - delta_h -104.91 kJ + VOCl + 2 H+ = V+3 + Cl- + H2O + log_k 11.1524 + delta_h -104.91 kJ VOCl2 - VOCl2 = VO+2 + 2Cl- - log_k 12.7603 - delta_h -117.76 kJ + VOCl2 = VO+2 + 2 Cl- + log_k 12.7603 + delta_h -117.76 kJ VO2Cl VO2Cl = VO2+ + Cl- - log_k 2.8413 - delta_h -40.28 kJ + log_k 2.8413 + delta_h -40.28 kJ Halite NaCl = Na+ + Cl- - log_k 1.6025 - delta_h 3.7 kJ + log_k 1.6025 + delta_h 3.7 kJ SbBr3 - SbBr3 + 3H2O = Sb(OH)3 + 3Br- + 3H+ - log_k 0.9689 - delta_h -20.94 kJ + SbBr3 + 3 H2O = Sb(OH)3 + 3 Br- + 3 H+ + log_k 0.9689 + delta_h -20.94 kJ SnBr2 - SnBr2 + 2H2O = Sn(OH)2 + 2H+ + 2Br- - log_k -9.5443 - delta_h -0 kJ + SnBr2 + 2 H2O = Sn(OH)2 + 2 H+ + 2 Br- + log_k -9.5443 + delta_h -0 kJ SnBr4 - SnBr4 + 6H2O = Sn(OH)6-2 + 6H+ + 4Br- - log_k -28.8468 - delta_h -0 kJ + SnBr4 + 6 H2O = Sn(OH)6-2 + 6 H+ + 4 Br- + log_k -28.8468 + delta_h -0 kJ PbBr2 - PbBr2 = Pb+2 + 2Br- - log_k -5.3 - delta_h 35.499 kJ + PbBr2 = Pb+2 + 2 Br- + log_k -5.3 + delta_h 35.499 kJ PbBrF PbBrF = Pb+2 + Br- + F- - log_k -8.49 - delta_h -0 kJ + log_k -8.49 + delta_h -0 kJ TlBr TlBr = Tl+ + Br- - log_k -5.44 - delta_h 54 kJ + log_k -5.44 + delta_h 54 kJ ZnBr2:2H2O - ZnBr2:2H2O = Zn+2 + 2Br- + 2H2O - log_k 5.2005 - delta_h -30.67 kJ + ZnBr2:2H2O = Zn+2 + 2 Br- + 2 H2O + log_k 5.2005 + delta_h -30.67 kJ CdBr2:4H2O - CdBr2:4H2O = Cd+2 + 2Br- + 4H2O - log_k -2.425 - delta_h 30.5001 kJ + CdBr2:4H2O = Cd+2 + 2 Br- + 4 H2O + log_k -2.425 + delta_h 30.5001 kJ Hg2Br2 - Hg2Br2 = Hg2+2 + 2Br- - log_k -22.25 - delta_h 133 kJ + Hg2Br2 = Hg2+2 + 2 Br- + log_k -22.25 + delta_h 133 kJ HgBr2 - HgBr2 + 2H2O = Hg(OH)2 + 2Br- + 2H+ - log_k -25.2734 - delta_h 138.492 kJ + HgBr2 + 2 H2O = Hg(OH)2 + 2 Br- + 2 H+ + log_k -25.2734 + delta_h 138.492 kJ CuBr CuBr = Cu+ + Br- - log_k -8.3 - delta_h 54.86 kJ + log_k -8.3 + delta_h 54.86 kJ Cu2(OH)3Br - Cu2(OH)3Br + 3H+ = 2Cu+2 + 3H2O + Br- - log_k 7.9085 - delta_h -93.43 kJ + Cu2(OH)3Br + 3 H+ = 2 Cu+2 + 3 H2O + Br- + log_k 7.9085 + delta_h -93.43 kJ Bromyrite AgBr = Ag+ + Br- - log_k -12.3 - delta_h 84.5 kJ + log_k -12.3 + delta_h 84.5 kJ (Co(NH3)6)Br3 - (Co(NH3)6)Br3 + 6H+ = Co+3 + 6NH4+ + 3Br- - log_k 18.3142 - delta_h -21.1899 kJ + (Co(NH3)6)Br3 + 6 H+ = Co+3 + 6 NH4+ + 3 Br- + log_k 18.3142 + delta_h -21.1899 kJ (Co(NH3)5Cl)Br2 - (Co(NH3)5Cl)Br2 + 5H+ = Co+3 + 5NH4+ + Cl- + 2Br- - log_k 5.0295 - delta_h -6.4 kJ + (Co(NH3)5Cl)Br2 + 5 H+ = Co+3 + 5 NH4+ + Cl- + 2 Br- + log_k 5.0295 + delta_h -6.4 kJ CrBr3 - CrBr3 + 2H2O = Cr(OH)2+ + 3Br- + 2H+ - log_k 19.9086 - delta_h -141.323 kJ + CrBr3 + 2 H2O = Cr(OH)2+ + 3 Br- + 2 H+ + log_k 19.9086 + delta_h -141.323 kJ AsI3 - AsI3 + 3H2O = H3AsO3 + 3I- + 3H+ - log_k 4.2307 - delta_h 3.15 kJ + AsI3 + 3 H2O = H3AsO3 + 3 I- + 3 H+ + log_k 4.2307 + delta_h 3.15 kJ SbI3 - SbI3 + 3H2O = Sb(OH)3 + 3H+ + 3I- - log_k -0.538 - delta_h 13.5896 kJ + SbI3 + 3 H2O = Sb(OH)3 + 3 H+ + 3 I- + log_k -0.538 + delta_h 13.5896 kJ PbI2 - PbI2 = Pb+2 + 2I- - log_k -8.1 - delta_h 62 kJ + PbI2 = Pb+2 + 2 I- + log_k -8.1 + delta_h 62 kJ TlI TlI = Tl+ + I- - log_k -7.23 - delta_h 75 kJ + log_k -7.23 + delta_h 75 kJ ZnI2 - ZnI2 = Zn+2 + 2I- - log_k 7.3055 - delta_h -58.92 kJ + ZnI2 = Zn+2 + 2 I- + log_k 7.3055 + delta_h -58.92 kJ CdI2 - CdI2 = Cd+2 + 2I- - log_k -3.5389 - delta_h 13.82 kJ + CdI2 = Cd+2 + 2 I- + log_k -3.5389 + delta_h 13.82 kJ Hg2I2 - Hg2I2 = Hg2+2 + 2I- - log_k -28.34 - delta_h 163 kJ + Hg2I2 = Hg2+2 + 2 I- + log_k -28.34 + delta_h 163 kJ Coccinite - HgI2 + 2H2O = Hg(OH)2 + 2H+ + 2I- - log_k -34.9525 - delta_h 210.72 kJ + HgI2 + 2 H2O = Hg(OH)2 + 2 H+ + 2 I- + log_k -34.9525 + delta_h 210.72 kJ HgI2:2NH3 - HgI2:2NH3 + 2H2O = Hg(OH)2 + 2I- + 2NH4+ - log_k -16.2293 - delta_h 132.18 kJ + HgI2:2NH3 + 2 H2O = Hg(OH)2 + 2 I- + 2 NH4+ + log_k -16.2293 + delta_h 132.18 kJ HgI2:6NH3 - HgI2:6NH3 + 2H2O + 4H+ = Hg(OH)2 + 2I- + 6NH4+ - log_k 33.7335 - delta_h -90.3599 kJ + HgI2:6NH3 + 2 H2O + 4 H+ = Hg(OH)2 + 2 I- + 6 NH4+ + log_k 33.7335 + delta_h -90.3599 kJ CuI CuI = Cu+ + I- - log_k -12 - delta_h 82.69 kJ + log_k -12 + delta_h 82.69 kJ Iodyrite AgI = Ag+ + I- - log_k -16.08 - delta_h 110 kJ + log_k -16.08 + delta_h 110 kJ (Co(NH3)6)I3 - (Co(NH3)6)I3 + 6H+ = Co+3 + 6NH4+ + 3I- - log_k 16.5831 - delta_h -9.6999 kJ + (Co(NH3)6)I3 + 6 H+ = Co+3 + 6 NH4+ + 3 I- + log_k 16.5831 + delta_h -9.6999 kJ (Co(NH3)5Cl)I2 - (Co(NH3)5Cl)I2 + 5H+ = Co+3 + 5NH4+ + Cl- + 2I- - log_k 5.5981 - delta_h 0.66 kJ + (Co(NH3)5Cl)I2 + 5 H+ = Co+3 + 5 NH4+ + Cl- + 2 I- + log_k 5.5981 + delta_h 0.66 kJ CrI3 - CrI3 + 2H2O = Cr(OH)2+ + 3I- + 2H+ - log_k 20.4767 - delta_h -134.419 kJ + CrI3 + 2 H2O = Cr(OH)2+ + 3 I- + 2 H+ + log_k 20.4767 + delta_h -134.419 kJ Cerussite PbCO3 = Pb+2 + CO3-2 - log_k -13.13 - delta_h 24.79 kJ + log_k -13.13 + delta_h 24.79 kJ Pb2OCO3 - Pb2OCO3 + 2H+ = 2Pb+2 + H2O + CO3-2 - log_k -0.5578 - delta_h -40.8199 kJ + Pb2OCO3 + 2 H+ = 2 Pb+2 + H2O + CO3-2 + log_k -0.5578 + delta_h -40.8199 kJ Pb3O2CO3 - Pb3O2CO3 + 4H+ = 3Pb+2 + CO3-2 + 2H2O - log_k 11.02 - delta_h -110.583 kJ + Pb3O2CO3 + 4 H+ = 3 Pb+2 + CO3-2 + 2 H2O + log_k 11.02 + delta_h -110.583 kJ Hydrocerussite - Pb3(OH)2(CO3)2 + 2H+ = 3Pb+2 + 2H2O + 2CO3-2 - log_k -18.7705 - delta_h -0 kJ + Pb3(OH)2(CO3)2 + 2 H+ = 3 Pb+2 + 2 H2O + 2 CO3-2 + log_k -18.7705 + delta_h -0 kJ Pb10(OH)6O(CO3)6 - Pb10(OH)6O(CO3)6 + 8H+ = 10Pb+2 + 6CO3-2 + 7H2O - log_k -8.76 - delta_h -0 kJ + Pb10(OH)6O(CO3)6 + 8 H+ = 10 Pb+2 + 6 CO3-2 + 7 H2O + log_k -8.76 + delta_h -0 kJ Tl2CO3 - Tl2CO3 = 2Tl+ + CO3-2 - log_k -3.8367 - delta_h 35.49 kJ + Tl2CO3 = 2 Tl+ + CO3-2 + log_k -3.8367 + delta_h 35.49 kJ Smithsonite ZnCO3 = Zn+2 + CO3-2 - log_k -10 - delta_h -15.84 kJ + log_k -10 + delta_h -15.84 kJ ZnCO3:1H2O - ZnCO3:1H2O = Zn+2 + CO3-2 + H2O - log_k -10.26 - delta_h -0 kJ + ZnCO3:H2O = Zn+2 + CO3-2 + H2O + log_k -10.26 + delta_h -0 kJ Otavite CdCO3 = Cd+2 + CO3-2 - log_k -12 - delta_h -0.55 kJ + log_k -12 + delta_h -0.55 kJ Hg2CO3 Hg2CO3 = Hg2+2 + CO3-2 - log_k -16.05 - delta_h 45.14 kJ + log_k -16.05 + delta_h 45.14 kJ Hg3O2CO3 - Hg3O2CO3 + 4H2O = 3Hg(OH)2 + 2H+ + CO3-2 - log_k -29.682 - delta_h -0 kJ + Hg3O2CO3 + 4 H2O = 3 Hg(OH)2 + 2 H+ + CO3-2 + log_k -29.682 + delta_h -0 kJ CuCO3 CuCO3 = Cu+2 + CO3-2 - log_k -11.5 - delta_h -0 kJ + log_k -11.5 + delta_h -0 kJ Malachite - Cu2(OH)2CO3 + 2H+ = 2Cu+2 + 2H2O + CO3-2 - log_k -5.306 - delta_h 76.38 kJ + Cu2(OH)2CO3 + 2 H+ = 2 Cu+2 + 2 H2O + CO3-2 + log_k -5.306 + delta_h 76.38 kJ Azurite - Cu3(OH)2(CO3)2 + 2H+ = 3Cu+2 + 2H2O + 2CO3-2 - log_k -16.906 - delta_h -95.22 kJ + Cu3(OH)2(CO3)2 + 2 H+ = 3 Cu+2 + 2 H2O + 2 CO3-2 + log_k -16.906 + delta_h -95.22 kJ Ag2CO3 - Ag2CO3 = 2Ag+ + CO3-2 - log_k -11.09 - delta_h 42.15 kJ + Ag2CO3 = 2 Ag+ + CO3-2 + log_k -11.09 + delta_h 42.15 kJ NiCO3 NiCO3 = Ni+2 + CO3-2 - log_k -6.87 - delta_h -41.589 kJ + log_k -6.87 + delta_h -41.589 kJ CoCO3 CoCO3 = Co+2 + CO3-2 - log_k -9.98 - delta_h -12.7612 kJ + log_k -9.98 + delta_h -12.7612 kJ Siderite FeCO3 = Fe+2 + CO3-2 - log_k -10.24 - delta_h -16 kJ + log_k -10.24 + delta_h -16 kJ Rhodochrosite MnCO3 = Mn+2 + CO3-2 - log_k -10.58 - delta_h -1.88 kJ + log_k -10.58 + delta_h -1.88 kJ Rutherfordine UO2CO3 = UO2+2 + CO3-2 - log_k -14.5 - delta_h -3.03 kJ + log_k -14.5 + delta_h -3.03 kJ Artinite - MgCO3:Mg(OH)2:3H2O + 2H+ = 2Mg+2 + CO3-2 + 5H2O - log_k 9.6 - delta_h -120.257 kJ + MgCO3:Mg(OH)2:3H2O + 2 H+ = 2 Mg+2 + CO3-2 + 5 H2O + log_k 9.6 + delta_h -120.257 kJ Hydromagnesite - Mg5(CO3)4(OH)2:4H2O + 2H+ = 5Mg+2 + 4CO3-2 + 6H2O - log_k -8.766 - delta_h -218.447 kJ + Mg5(CO3)4(OH)2:4H2O + 2 H+ = 5 Mg+2 + 4 CO3-2 + 6 H2O + log_k -8.766 + delta_h -218.447 kJ Magnesite MgCO3 = Mg+2 + CO3-2 - log_k -7.46 - delta_h 20 kJ + log_k -7.46 + delta_h 20 kJ Nesquehonite - MgCO3:3H2O = Mg+2 + CO3-2 + 3H2O - log_k -4.67 - delta_h -24.2212 kJ + MgCO3:3H2O = Mg+2 + CO3-2 + 3 H2O + log_k -4.67 + delta_h -24.2212 kJ Aragonite CaCO3 = Ca+2 + CO3-2 - log_k -8.3 - delta_h -12 kJ + log_k -8.3 + delta_h -12 kJ Calcite CaCO3 = Ca+2 + CO3-2 - log_k -8.48 - delta_h -8 kJ + log_k -8.48 + delta_h -8 kJ Dolomite(ordered) - CaMg(CO3)2 = Ca+2 + Mg+2 + 2CO3-2 - log_k -17.09 - delta_h -39.5 kJ + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + log_k -17.09 + delta_h -39.5 kJ Dolomite(disordered) - CaMg(CO3)2 = Ca+2 + Mg+2 + 2CO3-2 - log_k -16.54 - delta_h -46.4 kJ + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + log_k -16.54 + delta_h -46.4 kJ Huntite - CaMg3(CO3)4 = 3Mg+2 + Ca+2 + 4CO3-2 - log_k -29.968 - delta_h -107.78 kJ + CaMg3(CO3)4 = 3 Mg+2 + Ca+2 + 4 CO3-2 + log_k -29.968 + delta_h -107.78 kJ Strontianite SrCO3 = Sr+2 + CO3-2 - log_k -9.27 - delta_h -0 kJ + log_k -9.27 + delta_h -0 kJ Witherite BaCO3 = Ba+2 + CO3-2 - log_k -8.57 - delta_h 4 kJ + log_k -8.57 + delta_h 4 kJ Thermonatrite - Na2CO3:H2O = 2Na+ + CO3-2 + H2O - log_k 0.637 - delta_h -10.4799 kJ + Na2CO3:H2O = 2 Na+ + CO3-2 + H2O + log_k 0.637 + delta_h -10.4799 kJ TlNO3 TlNO3 = Tl+ + NO3- - log_k -1.6127 - delta_h 42.44 kJ + log_k -1.6127 + delta_h 42.44 kJ Zn(NO3)2:6H2O - Zn(NO3)2:6H2O = Zn+2 + 2NO3- + 6H2O - log_k 3.3153 - delta_h 24.5698 kJ + Zn(NO3)2:6H2O = Zn+2 + 2 NO3- + 6 H2O + log_k 3.3153 + delta_h 24.5698 kJ Cu2(OH)3NO3 - Cu2(OH)3NO3 + 3H+ = 2Cu+2 + 3H2O + NO3- - log_k 9.251 - delta_h -72.5924 kJ + Cu2(OH)3NO3 + 3 H+ = 2 Cu+2 + 3 H2O + NO3- + log_k 9.251 + delta_h -72.5924 kJ (Co(NH3)6)(NO3)3 - (Co(NH3)6)(NO3)3 + 6H+ = Co+3 + 6NH4+ + 3NO3- - log_k 17.9343 - delta_h 1.59 kJ + (Co(NH3)6)(NO3)3 + 6 H+ = Co+3 + 6 NH4+ + 3 NO3- + log_k 17.9343 + delta_h 1.59 kJ (Co(NH3)5Cl)(NO3)2 - (Co(NH3)5Cl)(NO3)2 + 5H+ = Co+3 + 5NH4+ + Cl- + 2NO3- - log_k 6.2887 - delta_h 6.4199 kJ + (Co(NH3)5Cl)(NO3)2 + 5 H+ = Co+3 + 5 NH4+ + Cl- + 2 NO3- + log_k 6.2887 + delta_h 6.4199 kJ UO2(NO3)2 - UO2(NO3)2 = UO2+2 + 2NO3- - log_k 12.1476 - delta_h -83.3999 kJ + UO2(NO3)2 = UO2+2 + 2 NO3- + log_k 12.1476 + delta_h -83.3999 kJ UO2(NO3)2:2H2O - UO2(NO3)2:2H2O = UO2+2 + 2NO3- + 2H2O - log_k 4.851 - delta_h -25.355 kJ + UO2(NO3)2:2H2O = UO2+2 + 2 NO3- + 2 H2O + log_k 4.851 + delta_h -25.355 kJ UO2(NO3)2:3H2O - UO2(NO3)2:3H2O = UO2+2 + 2NO3- + 3H2O - log_k 3.39 - delta_h -9.1599 kJ + UO2(NO3)2:3H2O = UO2+2 + 2 NO3- + 3 H2O + log_k 3.39 + delta_h -9.1599 kJ UO2(NO3)2:6H2O - UO2(NO3)2:6H2O = UO2+2 + 2NO3- + 6H2O - log_k 2.0464 - delta_h 20.8201 kJ + UO2(NO3)2:6H2O = UO2+2 + 2 NO3- + 6 H2O + log_k 2.0464 + delta_h 20.8201 kJ Pb(BO2)2 - Pb(BO2)2 + 2H2O + 2H+ = Pb+2 + 2H3BO3 - log_k 6.5192 - delta_h -15.6119 kJ + Pb(BO2)2 + 2 H2O + 2 H+ = Pb+2 + 2 H3BO3 + log_k 6.5192 + delta_h -15.6119 kJ Zn(BO2)2 - Zn(BO2)2 + 2H2O + 2H+ = Zn+2 + 2H3BO3 - log_k 8.29 - delta_h -0 kJ + Zn(BO2)2 + 2 H2O + 2 H+ = Zn+2 + 2 H3BO3 + log_k 8.29 + delta_h -0 kJ Cd(BO2)2 - Cd(BO2)2 + 2H2O + 2H+ = Cd+2 + 2H3BO3 - log_k 9.84 - delta_h -0 kJ + Cd(BO2)2 + 2 H2O + 2 H+ = Cd+2 + 2 H3BO3 + log_k 9.84 + delta_h -0 kJ Co(BO2)2 - Co(BO2)2 + 2H2O + 2H+ = Co+2 + 2H3BO3 - log_k 27.0703 - delta_h -0 kJ + Co(BO2)2 + 2 H2O + 2 H+ = Co+2 + 2 H3BO3 + log_k 27.0703 + delta_h -0 kJ SnSO4 - SnSO4 + 2H2O = Sn(OH)2 + 2H+ + SO4-2 - log_k -56.9747 - delta_h -0 kJ + SnSO4 + 2 H2O = Sn(OH)2 + 2 H+ + SO4-2 + log_k -56.9747 + delta_h -0 kJ Sn(SO4)2 - Sn(SO4)2 + 6H2O = Sn(OH)6-2 + 6H+ + 2SO4-2 - log_k -15.2123 - delta_h -0 kJ + Sn(SO4)2 + 6 H2O = Sn(OH)6-2 + 6 H+ + 2 SO4-2 + log_k -15.2123 + delta_h -0 kJ Larnakite - PbO:PbSO4 + 2H+ = 2Pb+2 + SO4-2 + H2O - log_k -0.4344 - delta_h -21.83 kJ + PbO:PbSO4 + 2 H+ = 2 Pb+2 + SO4-2 + H2O + log_k -0.4344 + delta_h -21.83 kJ Pb3O2SO4 - Pb3O2SO4 + 4H+ = 3Pb+2 + SO4-2 + 2H2O - log_k 10.6864 - delta_h -79.14 kJ + Pb3O2SO4 + 4 H+ = 3 Pb+2 + SO4-2 + 2 H2O + log_k 10.6864 + delta_h -79.14 kJ Pb4O3SO4 - Pb4O3SO4 + 6H+ = 4Pb+2 + SO4-2 + 3H2O - log_k 21.8772 - delta_h -136.45 kJ + Pb4O3SO4 + 6 H+ = 4 Pb+2 + SO4-2 + 3 H2O + log_k 21.8772 + delta_h -136.45 kJ Anglesite PbSO4 = Pb+2 + SO4-2 - log_k -7.79 - delta_h 12 kJ + log_k -7.79 + delta_h 12 kJ Pb4(OH)6SO4 - Pb4(OH)6SO4 + 6H+ = 4Pb+2 + SO4-2 + 6H2O - log_k 21.1 - delta_h -0 kJ + Pb4(OH)6SO4 + 6 H+ = 4 Pb+2 + SO4-2 + 6 H2O + log_k 21.1 + delta_h -0 kJ AlOHSO4 AlOHSO4 + H+ = Al+3 + SO4-2 + H2O - log_k -3.23 - delta_h -0 kJ + log_k -3.23 + delta_h -0 kJ Al4(OH)10SO4 - Al4(OH)10SO4 + 10H+ = 4Al+3 + SO4-2 + 10H2O - log_k 22.7 - delta_h -0 kJ + Al4(OH)10SO4 + 10 H+ = 4 Al+3 + SO4-2 + 10 H2O + log_k 22.7 + delta_h -0 kJ Tl2SO4 - Tl2SO4 = 2Tl+ + SO4-2 - log_k -3.7868 - delta_h 33.1799 kJ + Tl2SO4 = 2 Tl+ + SO4-2 + log_k -3.7868 + delta_h 33.1799 kJ Zn2(OH)2SO4 - Zn2(OH)2SO4 + 2H+ = 2Zn+2 + 2H2O + SO4-2 - log_k 7.5 - delta_h -0 kJ + Zn2(OH)2SO4 + 2 H+ = 2 Zn+2 + 2 H2O + SO4-2 + log_k 7.5 + delta_h -0 kJ Zn4(OH)6SO4 - Zn4(OH)6SO4 + 6H+ = 4Zn+2 + 6H2O + SO4-2 - log_k 28.4 - delta_h -0 kJ + Zn4(OH)6SO4 + 6 H+ = 4 Zn+2 + 6 H2O + SO4-2 + log_k 28.4 + delta_h -0 kJ Zn3O(SO4)2 - Zn3O(SO4)2 + 2H+ = 3Zn+2 + 2SO4-2 + H2O - log_k 18.9135 - delta_h -258.08 kJ + Zn3O(SO4)2 + 2 H+ = 3 Zn+2 + 2 SO4-2 + H2O + log_k 18.9135 + delta_h -258.08 kJ Zincosite ZnSO4 = Zn+2 + SO4-2 - log_k 3.9297 - delta_h -82.586 kJ + log_k 3.9297 + delta_h -82.586 kJ ZnSO4:1H2O - ZnSO4:1H2O = Zn+2 + SO4-2 + H2O - log_k -0.638 - delta_h -44.0699 kJ + ZnSO4:H2O = Zn+2 + SO4-2 + H2O + log_k -0.638 + delta_h -44.0699 kJ Bianchite - ZnSO4:6H2O = Zn+2 + SO4-2 + 6H2O - log_k -1.765 - delta_h -0.6694 kJ + ZnSO4:6H2O = Zn+2 + SO4-2 + 6 H2O + log_k -1.765 + delta_h -0.6694 kJ Goslarite - ZnSO4:7H2O = Zn+2 + SO4-2 + 7H2O - log_k -2.0112 - delta_h 14.21 kJ + ZnSO4:7H2O = Zn+2 + SO4-2 + 7 H2O + log_k -2.0112 + delta_h 14.21 kJ Cd3(OH)4SO4 - Cd3(OH)4SO4 + 4H+ = 3Cd+2 + 4H2O + SO4-2 - log_k 22.56 - delta_h -0 kJ + Cd3(OH)4SO4 + 4 H+ = 3 Cd+2 + 4 H2O + SO4-2 + log_k 22.56 + delta_h -0 kJ Cd3(OH)2(SO4)2 - Cd3(OH)2(SO4)2 + 2H+ = 3Cd+2 + 2H2O + 2SO4-2 - log_k 6.71 - delta_h -0 kJ + Cd3(OH)2(SO4)2 + 2 H+ = 3 Cd+2 + 2 H2O + 2 SO4-2 + log_k 6.71 + delta_h -0 kJ Cd4(OH)6SO4 - Cd4(OH)6SO4 + 6H+ = 4Cd+2 + 6H2O + SO4-2 - log_k 28.4 - delta_h -0 kJ + Cd4(OH)6SO4 + 6 H+ = 4 Cd+2 + 6 H2O + SO4-2 + log_k 28.4 + delta_h -0 kJ CdSO4 CdSO4 = Cd+2 + SO4-2 - log_k -0.1722 - delta_h -51.98 kJ + log_k -0.1722 + delta_h -51.98 kJ CdSO4:1H2O - CdSO4:1H2O = Cd+2 + SO4-2 + H2O - log_k -1.7261 - delta_h -31.5399 kJ + CdSO4:H2O = Cd+2 + SO4-2 + H2O + log_k -1.7261 + delta_h -31.5399 kJ CdSO4:2.67H2O - CdSO4:2.67H2O = Cd+2 + SO4-2 + 2.67H2O - log_k -1.873 - delta_h -17.9912 kJ + CdSO4:2.67H2O = Cd+2 + SO4-2 + 2.67 H2O + log_k -1.873 + delta_h -17.9912 kJ Hg2SO4 Hg2SO4 = Hg2+2 + SO4-2 - log_k -6.13 - delta_h 5.4 kJ + log_k -6.13 + delta_h 5.4 kJ HgSO4 - HgSO4 + 2H2O = Hg(OH)2 + SO4-2 + 2H+ - log_k -9.4189 - delta_h 14.6858 kJ + HgSO4 + 2 H2O = Hg(OH)2 + SO4-2 + 2 H+ + log_k -9.4189 + delta_h 14.6858 kJ Cu2SO4 - Cu2SO4 = 2Cu+ + SO4-2 - log_k -1.95 - delta_h -19.079 kJ + Cu2SO4 = 2 Cu+ + SO4-2 + log_k -1.95 + delta_h -19.079 kJ Antlerite - Cu3(OH)4SO4 + 4H+ = 3Cu+2 + 4H2O + SO4-2 - log_k 8.788 - delta_h -0 kJ + Cu3(OH)4SO4 + 4 H+ = 3 Cu+2 + 4 H2O + SO4-2 + log_k 8.788 + delta_h -0 kJ Brochantite - Cu4(OH)6SO4 + 6H+ = 4Cu+2 + 6H2O + SO4-2 - log_k 15.222 - delta_h -202.86 kJ + Cu4(OH)6SO4 + 6 H+ = 4 Cu+2 + 6 H2O + SO4-2 + log_k 15.222 + delta_h -202.86 kJ Langite - Cu4(OH)6SO4:H2O + 6H+ = 4Cu+2 + 7H2O + SO4-2 - log_k 17.4886 - delta_h -165.55 kJ + Cu4(OH)6SO4:H2O + 6 H+ = 4 Cu+2 + 7 H2O + SO4-2 + log_k 17.4886 + delta_h -165.55 kJ CuOCuSO4 - CuOCuSO4 + 2H+ = 2Cu+2 + H2O + SO4-2 - log_k 10.3032 - delta_h -137.777 kJ + CuOCuSO4 + 2 H+ = 2 Cu+2 + H2O + SO4-2 + log_k 10.3032 + delta_h -137.777 kJ CuSO4 CuSO4 = Cu+2 + SO4-2 - log_k 2.9395 - delta_h -73.04 kJ + log_k 2.9395 + delta_h -73.04 kJ Chalcanthite - CuSO4:5H2O = Cu+2 + SO4-2 + 5H2O - log_k -2.64 - delta_h 6.025 kJ + CuSO4:5H2O = Cu+2 + SO4-2 + 5 H2O + log_k -2.64 + delta_h 6.025 kJ Ag2SO4 - Ag2SO4 = 2Ag+ + SO4-2 - log_k -4.82 - delta_h 17 kJ + Ag2SO4 = 2 Ag+ + SO4-2 + log_k -4.82 + delta_h 17 kJ Ni4(OH)6SO4 - Ni4(OH)6SO4 + 6H+ = 4Ni+2 + SO4-2 + 6H2O - log_k 32 - delta_h -0 kJ + Ni4(OH)6SO4 + 6 H+ = 4 Ni+2 + SO4-2 + 6 H2O + log_k 32 + delta_h -0 kJ Retgersite - NiSO4:6H2O = Ni+2 + SO4-2 + 6H2O - log_k -2.04 - delta_h 4.6024 kJ + NiSO4:6H2O = Ni+2 + SO4-2 + 6 H2O + log_k -2.04 + delta_h 4.6024 kJ Morenosite - NiSO4:7H2O = Ni+2 + SO4-2 + 7H2O - log_k -2.1449 - delta_h 12.1802 kJ + NiSO4:7H2O = Ni+2 + SO4-2 + 7 H2O + log_k -2.1449 + delta_h 12.1802 kJ CoSO4 CoSO4 = Co+2 + SO4-2 - log_k 2.8024 - delta_h -79.277 kJ + log_k 2.8024 + delta_h -79.277 kJ CoSO4:6H2O - CoSO4:6H2O = Co+2 + SO4-2 + 6H2O - log_k -2.4726 - delta_h 1.0801 kJ + CoSO4:6H2O = Co+2 + SO4-2 + 6 H2O + log_k -2.4726 + delta_h 1.0801 kJ Melanterite - FeSO4:7H2O = Fe+2 + SO4-2 + 7H2O - log_k -2.209 - delta_h 20.5 kJ + FeSO4:7H2O = Fe+2 + SO4-2 + 7 H2O + log_k -2.209 + delta_h 20.5 kJ Fe2(SO4)3 - Fe2(SO4)3 = 2Fe+3 + 3SO4-2 - log_k -3.7343 - delta_h -242.028 kJ + Fe2(SO4)3 = 2 Fe+3 + 3 SO4-2 + log_k -3.7343 + delta_h -242.028 kJ H-Jarosite - (H3O)Fe3(SO4)2(OH)6 + 5H+ = 3Fe+3 + 2SO4-2 + 7H2O - log_k -12.1 - delta_h -230.748 kJ + (H3O)Fe3(SO4)2(OH)6 + 5 H+ = 3 Fe+3 + 2 SO4-2 + 7 H2O + log_k -12.1 + delta_h -230.748 kJ Na-Jarosite - NaFe3(SO4)2(OH)6 + 6H+ = Na+ + 3Fe+3 + 2SO4-2 + 6H2O - log_k -11.2 - delta_h -151.377 kJ + NaFe3(SO4)2(OH)6 + 6 H+ = Na+ + 3 Fe+3 + 2 SO4-2 + 6 H2O + log_k -11.2 + delta_h -151.377 kJ K-Jarosite - KFe3(SO4)2(OH)6 + 6H+ = K+ + 3Fe+3 + 2SO4-2 + 6H2O - log_k -14.8 - delta_h -130.875 kJ + KFe3(SO4)2(OH)6 + 6 H+ = K+ + 3 Fe+3 + 2 SO4-2 + 6 H2O + log_k -14.8 + delta_h -130.875 kJ MnSO4 MnSO4 = Mn+2 + SO4-2 - log_k 2.5831 - delta_h -64.8401 kJ + log_k 2.5831 + delta_h -64.8401 kJ Mn2(SO4)3 - Mn2(SO4)3 = 2Mn+3 + 3SO4-2 - log_k -5.711 - delta_h -163.427 kJ + Mn2(SO4)3 = 2 Mn+3 + 3 SO4-2 + log_k -5.711 + delta_h -163.427 kJ VOSO4 VOSO4 = VO+2 + SO4-2 - log_k 3.6097 - delta_h -86.7401 kJ + log_k 3.6097 + delta_h -86.7401 kJ Epsomite - MgSO4:7H2O = Mg+2 + SO4-2 + 7H2O - log_k -2.1265 - delta_h 11.5601 kJ + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -2.1265 + delta_h 11.5601 kJ Anhydrite CaSO4 = Ca+2 + SO4-2 - log_k -4.36 - delta_h -7.2 kJ + log_k -4.36 + delta_h -7.2 kJ Gypsum - CaSO4:2H2O = Ca+2 + SO4-2 + 2H2O - log_k -4.61 - delta_h 1 kJ + CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O + log_k -4.61 + delta_h 1 kJ Celestite SrSO4 = Sr+2 + SO4-2 - log_k -6.62 - delta_h 2 kJ + log_k -6.62 + delta_h 2 kJ Barite BaSO4 = Ba+2 + SO4-2 - log_k -9.98 - delta_h 23 kJ + log_k -9.98 + delta_h 23 kJ Mirabilite - Na2SO4:10H2O = 2Na+ + SO4-2 + 10H2O - log_k -1.114 - delta_h 79.4416 kJ + Na2SO4:10H2O = 2 Na+ + SO4-2 + 10 H2O + log_k -1.114 + delta_h 79.4416 kJ Thenardite - Na2SO4 = 2Na+ + SO4-2 - log_k 0.3217 - delta_h -9.121 kJ + Na2SO4 = 2 Na+ + SO4-2 + log_k 0.3217 + delta_h -9.121 kJ K-Alum - KAl(SO4)2:12H2O = K+ + Al+3 + 2SO4-2 + 12H2O - log_k -5.17 - delta_h 30.2085 kJ + KAl(SO4)2:12H2O = K+ + Al+3 + 2 SO4-2 + 12 H2O + log_k -5.17 + delta_h 30.2085 kJ Alunite - KAl3(SO4)2(OH)6 + 6H+ = K+ + 3Al+3 + 2SO4-2 + 6H2O - log_k -1.4 - delta_h -210 kJ + KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O + log_k -1.4 + delta_h -210 kJ (NH4)2CrO4 - (NH4)2CrO4 = CrO4-2 + 2NH4+ - log_k 0.4046 - delta_h 9.163 kJ + (NH4)2CrO4 = CrO4-2 + 2 NH4+ + log_k 0.4046 + delta_h 9.163 kJ PbCrO4 PbCrO4 = Pb+2 + CrO4-2 - log_k -12.6 - delta_h 44.18 kJ + log_k -12.6 + delta_h 44.18 kJ Tl2CrO4 - Tl2CrO4 = 2Tl+ + CrO4-2 - log_k -12.01 - delta_h 74.27 kJ + Tl2CrO4 = 2 Tl+ + CrO4-2 + log_k -12.01 + delta_h 74.27 kJ Hg2CrO4 Hg2CrO4 = Hg2+2 + CrO4-2 - log_k -8.7 - delta_h -0 kJ + log_k -8.7 + delta_h -0 kJ CuCrO4 CuCrO4 = Cu+2 + CrO4-2 - log_k -5.44 - delta_h -0 kJ + log_k -5.44 + delta_h -0 kJ Ag2CrO4 - Ag2CrO4 = 2Ag+ + CrO4-2 - log_k -11.59 - delta_h 62 kJ + Ag2CrO4 = 2 Ag+ + CrO4-2 + log_k -11.59 + delta_h 62 kJ MgCrO4 MgCrO4 = CrO4-2 + Mg+2 - log_k 5.3801 - delta_h -88.9518 kJ + log_k 5.3801 + delta_h -88.9518 kJ CaCrO4 CaCrO4 = Ca+2 + CrO4-2 - log_k -2.2657 - delta_h -26.945 kJ + log_k -2.2657 + delta_h -26.945 kJ SrCrO4 SrCrO4 = Sr+2 + CrO4-2 - log_k -4.65 - delta_h -10.1253 kJ + log_k -4.65 + delta_h -10.1253 kJ BaCrO4 BaCrO4 = Ba+2 + CrO4-2 - log_k -9.67 - delta_h 33 kJ + log_k -9.67 + delta_h 33 kJ Li2CrO4 - Li2CrO4 = CrO4-2 + 2Li+ - log_k 4.8568 - delta_h -45.2792 kJ + Li2CrO4 = CrO4-2 + 2 Li+ + log_k 4.8568 + delta_h -45.2792 kJ Na2CrO4 - Na2CrO4 = CrO4-2 + 2Na+ - log_k 2.9302 - delta_h -19.6301 kJ + Na2CrO4 = CrO4-2 + 2 Na+ + log_k 2.9302 + delta_h -19.6301 kJ Na2Cr2O7 - Na2Cr2O7 + H2O = 2CrO4-2 + 2Na+ + 2H+ - log_k -9.8953 - delta_h 22.1961 kJ + Na2Cr2O7 + H2O = 2 CrO4-2 + 2 Na+ + 2 H+ + log_k -9.8953 + delta_h 22.1961 kJ K2CrO4 - K2CrO4 = CrO4-2 + 2K+ - log_k -0.5134 - delta_h 18.2699 kJ + K2CrO4 = CrO4-2 + 2 K+ + log_k -0.5134 + delta_h 18.2699 kJ K2Cr2O7 - K2Cr2O7 + H2O = 2CrO4-2 + 2K+ + 2H+ - log_k -17.2424 - delta_h 80.7499 kJ + K2Cr2O7 + H2O = 2 CrO4-2 + 2 K+ + 2 H+ + log_k -17.2424 + delta_h 80.7499 kJ Hg2SeO3 Hg2SeO3 + H+ = Hg2+2 + HSeO3- - log_k -4.657 - delta_h -0 kJ + log_k -4.657 + delta_h -0 kJ HgSeO3 - HgSeO3 + 2H2O = Hg(OH)2 + H+ + HSeO3- - log_k -12.43 - delta_h -0 kJ + HgSeO3 + 2 H2O = Hg(OH)2 + H+ + HSeO3- + log_k -12.43 + delta_h -0 kJ Ag2SeO3 - Ag2SeO3 + H+ = 2Ag+ + HSeO3- - log_k -7.15 - delta_h 39.68 kJ + Ag2SeO3 + H+ = 2 Ag+ + HSeO3- + log_k -7.15 + delta_h 39.68 kJ CuSeO3:2H2O - CuSeO3:2H2O + H+ = Cu+2 + HSeO3- + 2H2O - log_k 0.5116 - delta_h -36.861 kJ + CuSeO3:2H2O + H+ = Cu+2 + HSeO3- + 2 H2O + log_k 0.5116 + delta_h -36.861 kJ NiSeO3:2H2O - NiSeO3:2H2O + H+ = HSeO3- + Ni+2 + 2H2O - log_k 2.8147 - delta_h -31.0034 kJ + NiSeO3:2H2O + H+ = HSeO3- + Ni+2 + 2 H2O + log_k 2.8147 + delta_h -31.0034 kJ CoSeO3 CoSeO3 + H+ = Co+2 + HSeO3- - log_k 1.32 - delta_h -0 kJ + log_k 1.32 + delta_h -0 kJ Fe2(SeO3)3:2H2O - Fe2(SeO3)3:2H2O + 3H+ = 3HSeO3- + 2Fe+3 + 2H2O - log_k -20.6262 - delta_h -0 kJ + Fe2(SeO3)3:2H2O + 3 H+ = 3 HSeO3- + 2 Fe+3 + 2 H2O + log_k -20.6262 + delta_h -0 kJ Fe2(OH)4SeO3 - Fe2(OH)4SeO3 + 5H+ = HSeO3- + 2Fe+3 + 4H2O - log_k 1.5539 - delta_h -0 kJ + Fe2(OH)4SeO3 + 5 H+ = HSeO3- + 2 Fe+3 + 4 H2O + log_k 1.5539 + delta_h -0 kJ MnSeO3 MnSeO3 + H+ = Mn+2 + HSeO3- - log_k 1.13 - delta_h -0 kJ + log_k 1.13 + delta_h -0 kJ MnSeO3:2H2O - MnSeO3:2H2O + H+ = HSeO3- + Mn+2 + 2H2O - log_k 0.9822 - delta_h 8.4935 kJ + MnSeO3:2H2O + H+ = HSeO3- + Mn+2 + 2 H2O + log_k 0.9822 + delta_h 8.4935 kJ MgSeO3:6H2O - MgSeO3:6H2O + H+ = Mg+2 + HSeO3- + 6H2O - log_k 3.0554 - delta_h 5.23 kJ + MgSeO3:6H2O + H+ = Mg+2 + HSeO3- + 6 H2O + log_k 3.0554 + delta_h 5.23 kJ CaSeO3:2H2O - CaSeO3:2H2O + H+ = HSeO3- + Ca+2 + 2H2O - log_k 2.8139 - delta_h -19.4556 kJ + CaSeO3:2H2O + H+ = HSeO3- + Ca+2 + 2 H2O + log_k 2.8139 + delta_h -19.4556 kJ SrSeO3 SrSeO3 + H+ = Sr+2 + HSeO3- - log_k 2.3 - delta_h -0 kJ + log_k 2.3 + delta_h -0 kJ BaSeO3 BaSeO3 + H+ = Ba+2 + HSeO3- - log_k 1.83 - delta_h 11.98 kJ + log_k 1.83 + delta_h 11.98 kJ Na2SeO3:5H2O - Na2SeO3:5H2O + H+ = 2Na+ + HSeO3- + 5H2O - log_k 10.3 - delta_h -0 kJ + Na2SeO3:5H2O + H+ = 2 Na+ + HSeO3- + 5 H2O + log_k 10.3 + delta_h -0 kJ PbSeO4 PbSeO4 = Pb+2 + SeO4-2 - log_k -6.84 - delta_h 15 kJ + log_k -6.84 + delta_h 15 kJ Tl2SeO4 - Tl2SeO4 = 2Tl+ + SeO4-2 - log_k -4.1 - delta_h 43 kJ + Tl2SeO4 = 2 Tl+ + SeO4-2 + log_k -4.1 + delta_h 43 kJ ZnSeO4:6H2O - ZnSeO4:6H2O = Zn+2 + SeO4-2 + 6H2O - log_k -1.52 - delta_h -0 kJ + ZnSeO4:6H2O = Zn+2 + SeO4-2 + 6 H2O + log_k -1.52 + delta_h -0 kJ CdSeO4:2H2O - CdSeO4:2H2O = Cd+2 + SeO4-2 + 2H2O - log_k -1.85 - delta_h -0 kJ + CdSeO4:2H2O = Cd+2 + SeO4-2 + 2 H2O + log_k -1.85 + delta_h -0 kJ Ag2SeO4 - Ag2SeO4 = 2Ag+ + SeO4-2 - log_k -8.91 - delta_h -43.5 kJ + Ag2SeO4 = 2 Ag+ + SeO4-2 + log_k -8.91 + delta_h -43.5 kJ CuSeO4:5H2O - CuSeO4:5H2O = Cu+2 + SeO4-2 + 5H2O - log_k -2.44 - delta_h -0 kJ + CuSeO4:5H2O = Cu+2 + SeO4-2 + 5 H2O + log_k -2.44 + delta_h -0 kJ NiSeO4:6H2O - NiSeO4:6H2O = Ni+2 + SeO4-2 + 6H2O - log_k -1.52 - delta_h -0 kJ + NiSeO4:6H2O = Ni+2 + SeO4-2 + 6 H2O + log_k -1.52 + delta_h -0 kJ CoSeO4:6H2O - CoSeO4:6H2O = Co+2 + SeO4-2 + 6H2O - log_k -1.53 - delta_h -0 kJ + CoSeO4:6H2O = Co+2 + SeO4-2 + 6 H2O + log_k -1.53 + delta_h -0 kJ MnSeO4:5H2O - MnSeO4:5H2O = Mn+2 + SeO4-2 + 5H2O - log_k -2.05 - delta_h -0 kJ + MnSeO4:5H2O = Mn+2 + SeO4-2 + 5 H2O + log_k -2.05 + delta_h -0 kJ UO2SeO4:4H2O - UO2SeO4:4H2O = UO2+2 + SeO4-2 + 4H2O - log_k -2.25 - delta_h -0 kJ + UO2SeO4:4H2O = UO2+2 + SeO4-2 + 4 H2O + log_k -2.25 + delta_h -0 kJ MgSeO4:6H2O - MgSeO4:6H2O = Mg+2 + SeO4-2 + 6H2O - log_k -1.2 - delta_h -0 kJ + MgSeO4:6H2O = Mg+2 + SeO4-2 + 6 H2O + log_k -1.2 + delta_h -0 kJ CaSeO4:2H2O - CaSeO4:2H2O = Ca+2 + SeO4-2 + 2H2O - log_k -3.02 - delta_h -8.3 kJ + CaSeO4:2H2O = Ca+2 + SeO4-2 + 2 H2O + log_k -3.02 + delta_h -8.3 kJ SrSeO4 SrSeO4 = Sr+2 + SeO4-2 - log_k -4.4 - delta_h 0.4 kJ + log_k -4.4 + delta_h 0.4 kJ BaSeO4 BaSeO4 = Ba+2 + SeO4-2 - log_k -7.46 - delta_h 22 kJ + log_k -7.46 + delta_h 22 kJ BeSeO4:4H2O - BeSeO4:4H2O = Be+2 + SeO4-2 + 4H2O - log_k -2.94 - delta_h -0 kJ + BeSeO4:4H2O = Be+2 + SeO4-2 + 4 H2O + log_k -2.94 + delta_h -0 kJ Na2SeO4 - Na2SeO4 = 2Na+ + SeO4-2 - log_k 1.28 - delta_h -0 kJ + Na2SeO4 = 2 Na+ + SeO4-2 + log_k 1.28 + delta_h -0 kJ K2SeO4 - K2SeO4 = 2K+ + SeO4-2 - log_k -0.73 - delta_h -0 kJ + K2SeO4 = 2 K+ + SeO4-2 + log_k -0.73 + delta_h -0 kJ (NH4)2SeO4 - (NH4)2SeO4 = 2NH4+ + SeO4-2 - log_k 0.45 - delta_h -0 kJ + (NH4)2SeO4 = 2 NH4+ + SeO4-2 + log_k 0.45 + delta_h -0 kJ H2MoO4 - H2MoO4 = MoO4-2 + 2H+ - log_k -12.8765 - delta_h 49 kJ + H2MoO4 = MoO4-2 + 2 H+ + log_k -12.8765 + delta_h 49 kJ PbMoO4 PbMoO4 = Pb+2 + MoO4-2 - log_k -15.62 - delta_h 53.93 kJ + log_k -15.62 + delta_h 53.93 kJ Al2(MoO4)3 - Al2(MoO4)3 = 3MoO4-2 + 2Al+3 - log_k 2.3675 - delta_h -260.8 kJ + Al2(MoO4)3 = 3 MoO4-2 + 2 Al+3 + log_k 2.3675 + delta_h -260.8 kJ Tl2MoO4 - Tl2MoO4 = MoO4-2 + 2Tl+ - log_k -7.9887 - delta_h -0 kJ + Tl2MoO4 = MoO4-2 + 2 Tl+ + log_k -7.9887 + delta_h -0 kJ ZnMoO4 ZnMoO4 = MoO4-2 + Zn+2 - log_k -10.1254 - delta_h -10.6901 kJ + log_k -10.1254 + delta_h -10.6901 kJ CdMoO4 CdMoO4 = MoO4-2 + Cd+2 - log_k -14.1497 - delta_h 19.48 kJ + log_k -14.1497 + delta_h 19.48 kJ CuMoO4 CuMoO4 = MoO4-2 + Cu+2 - log_k -13.0762 - delta_h 12.2 kJ + log_k -13.0762 + delta_h 12.2 kJ Ag2MoO4 - Ag2MoO4 = 2Ag+ + MoO4-2 - log_k -11.55 - delta_h 52.7 kJ + Ag2MoO4 = 2 Ag+ + MoO4-2 + log_k -11.55 + delta_h 52.7 kJ NiMoO4 NiMoO4 = MoO4-2 + Ni+2 - log_k -11.1421 - delta_h 1.3 kJ + log_k -11.1421 + delta_h 1.3 kJ CoMoO4 CoMoO4 = MoO4-2 + Co+2 - log_k -7.7609 - delta_h -23.3999 kJ + log_k -7.7609 + delta_h -23.3999 kJ FeMoO4 FeMoO4 = MoO4-2 + Fe+2 - log_k -10.091 - delta_h -11.1 kJ + log_k -10.091 + delta_h -11.1 kJ BeMoO4 BeMoO4 = MoO4-2 + Be+2 - log_k -1.7817 - delta_h -56.4 kJ + log_k -1.7817 + delta_h -56.4 kJ MgMoO4 MgMoO4 = Mg+2 + MoO4-2 - log_k -1.85 - delta_h -0 kJ + log_k -1.85 + delta_h -0 kJ CaMoO4 CaMoO4 = Ca+2 + MoO4-2 - log_k -7.95 - delta_h -2 kJ + log_k -7.95 + delta_h -2 kJ BaMoO4 BaMoO4 = MoO4-2 + Ba+2 - log_k -6.9603 - delta_h 10.96 kJ + log_k -6.9603 + delta_h 10.96 kJ Li2MoO4 - Li2MoO4 = MoO4-2 + 2Li+ - log_k 2.4416 - delta_h -33.9399 kJ + Li2MoO4 = MoO4-2 + 2 Li+ + log_k 2.4416 + delta_h -33.9399 kJ Na2MoO4 - Na2MoO4 = MoO4-2 + 2Na+ - log_k 1.4901 - delta_h -9.98 kJ + Na2MoO4 = MoO4-2 + 2 Na+ + log_k 1.4901 + delta_h -9.98 kJ Na2MoO4:2H2O - Na2MoO4:2H2O = MoO4-2 + 2Na+ + 2H2O - log_k 1.224 - delta_h -0 kJ + Na2MoO4:2H2O = MoO4-2 + 2 Na+ + 2 H2O + log_k 1.224 + delta_h -0 kJ Na2Mo2O7 - Na2Mo2O7 + H2O = 2MoO4-2 + 2Na+ + 2H+ - log_k -16.5966 - delta_h 56.2502 kJ + Na2Mo2O7 + H2O = 2 MoO4-2 + 2 Na+ + 2 H+ + log_k -16.5966 + delta_h 56.2502 kJ K2MoO4 - K2MoO4 = MoO4-2 + 2K+ - log_k 3.2619 - delta_h -3.38 kJ + K2MoO4 = MoO4-2 + 2 K+ + log_k 3.2619 + delta_h -3.38 kJ PbHPO4 PbHPO4 = Pb+2 + H+ + PO4-3 - log_k -23.805 - delta_h -0 kJ + log_k -23.805 + delta_h -0 kJ Pb3(PO4)2 - Pb3(PO4)2 = 3Pb+2 + 2PO4-3 - log_k -43.53 - delta_h -0 kJ + Pb3(PO4)2 = 3 Pb+2 + 2 PO4-3 + log_k -43.53 + delta_h -0 kJ Pyromorphite - Pb5(PO4)3Cl = 5Pb+2 + 3PO4-3 + Cl- - log_k -84.43 - delta_h -0 kJ + Pb5(PO4)3Cl = 5 Pb+2 + 3 PO4-3 + Cl- + log_k -84.43 + delta_h -0 kJ Hydroxylpyromorphite - Pb5(PO4)3OH + H+ = 5Pb+2 + 3PO4-3 + H2O - log_k -62.79 - delta_h -0 kJ + Pb5(PO4)3OH + H+ = 5 Pb+2 + 3 PO4-3 + H2O + log_k -62.79 + delta_h -0 kJ Plumbgummite - PbAl3(PO4)2(OH)5:H2O + 5H+ = Pb+2 + 3Al+3 + 2PO4-3 + 6H2O - log_k -32.79 - delta_h -0 kJ + PbAl3(PO4)2(OH)5:H2O + 5 H+ = Pb+2 + 3 Al+3 + 2 PO4-3 + 6 H2O + log_k -32.79 + delta_h -0 kJ Hinsdalite - PbAl3PO4SO4(OH)6 + 6H+ = Pb+2 + 3Al+3 + PO4-3 + SO4-2 + 6H2O - log_k -2.5 - delta_h -0 kJ + PbAl3PO4SO4(OH)6 + 6 H+ = Pb+2 + 3 Al+3 + PO4-3 + SO4-2 + 6 H2O + log_k -2.5 + delta_h -0 kJ Tsumebite - Pb2CuPO4(OH)3:3H2O + 3H+ = 2Pb+2 + Cu+2 + PO4-3 + 6H2O - log_k -9.79 - delta_h -0 kJ + Pb2CuPO4(OH)3:3H2O + 3 H+ = 2 Pb+2 + Cu+2 + PO4-3 + 6 H2O + log_k -9.79 + delta_h -0 kJ Zn3(PO4)2:4H2O - Zn3(PO4)2:4H2O = 3Zn+2 + 2PO4-3 + 4H2O - log_k -35.42 - delta_h -0 kJ + Zn3(PO4)2:4H2O = 3 Zn+2 + 2 PO4-3 + 4 H2O + log_k -35.42 + delta_h -0 kJ Cd3(PO4)2 - Cd3(PO4)2 = 3Cd+2 + 2PO4-3 - log_k -32.6 - delta_h -0 kJ + Cd3(PO4)2 = 3 Cd+2 + 2 PO4-3 + log_k -32.6 + delta_h -0 kJ Hg2HPO4 Hg2HPO4 = Hg2+2 + H+ + PO4-3 - log_k -24.775 - delta_h -0 kJ + log_k -24.775 + delta_h -0 kJ Cu3(PO4)2 - Cu3(PO4)2 = 3Cu+2 + 2PO4-3 - log_k -36.85 - delta_h -0 kJ + Cu3(PO4)2 = 3 Cu+2 + 2 PO4-3 + log_k -36.85 + delta_h -0 kJ Cu3(PO4)2:3H2O - Cu3(PO4)2:3H2O = 3Cu+2 + 2PO4-3 + 3H2O - log_k -35.12 - delta_h -0 kJ + Cu3(PO4)2:3H2O = 3 Cu+2 + 2 PO4-3 + 3 H2O + log_k -35.12 + delta_h -0 kJ Ag3PO4 - Ag3PO4 = 3Ag+ + PO4-3 - log_k -17.59 - delta_h -0 kJ + Ag3PO4 = 3 Ag+ + PO4-3 + log_k -17.59 + delta_h -0 kJ Ni3(PO4)2 - Ni3(PO4)2 = 3Ni+2 + 2PO4-3 - log_k -31.3 - delta_h -0 kJ + Ni3(PO4)2 = 3 Ni+2 + 2 PO4-3 + log_k -31.3 + delta_h -0 kJ CoHPO4 CoHPO4 = Co+2 + PO4-3 + H+ - log_k -19.0607 - delta_h -0 kJ + log_k -19.0607 + delta_h -0 kJ Co3(PO4)2 - Co3(PO4)2 = 3Co+2 + 2PO4-3 - log_k -34.6877 - delta_h -0 kJ + Co3(PO4)2 = 3 Co+2 + 2 PO4-3 + log_k -34.6877 + delta_h -0 kJ Vivianite - Fe3(PO4)2:8H2O = 3Fe+2 + 2PO4-3 + 8H2O - log_k -36 - delta_h -0 kJ + Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O + log_k -36 + delta_h -0 kJ Strengite - FePO4:2H2O = Fe+3 + PO4-3 + 2H2O - log_k -26.4 - delta_h -9.3601 kJ + FePO4:2H2O = Fe+3 + PO4-3 + 2 H2O + log_k -26.4 + delta_h -9.3601 kJ Mn3(PO4)2 - Mn3(PO4)2 = 3Mn+2 + 2PO4-3 - log_k -23.827 - delta_h 8.8701 kJ + Mn3(PO4)2 = 3 Mn+2 + 2 PO4-3 + log_k -23.827 + delta_h 8.8701 kJ MnHPO4 MnHPO4 = Mn+2 + PO4-3 + H+ - log_k -25.4 - delta_h -0 kJ + log_k -25.4 + delta_h -0 kJ (VO)3(PO4)2 - (VO)3(PO4)2 = 3VO+2 + 2PO4-3 - log_k -25.1 - delta_h -0 kJ + (VO)3(PO4)2 = 3 VO+2 + 2 PO4-3 + log_k -25.1 + delta_h -0 kJ Mg3(PO4)2 - Mg3(PO4)2 = 3Mg+2 + 2PO4-3 - log_k -23.28 - delta_h -0 kJ + Mg3(PO4)2 = 3 Mg+2 + 2 PO4-3 + log_k -23.28 + delta_h -0 kJ MgHPO4:3H2O - MgHPO4:3H2O = Mg+2 + H+ + PO4-3 + 3H2O - log_k -18.175 - delta_h -0 kJ + MgHPO4:3H2O = Mg+2 + H+ + PO4-3 + 3 H2O + log_k -18.175 + delta_h -0 kJ FCO3Apatite - Ca9.316Na0.36Mg0.144(PO4)4.8(CO3)1.2F2.48 = 9.316Ca+2 + 0.36Na+ + 0.144Mg+2 + 4.8PO4-3 + 1.2CO3-2 + 2.48F- - log_k -114.4 - delta_h 164.808 kJ + Ca9.316Na0.36Mg0.144(PO4)4.8(CO3)1.2F2.48 = 9.316 Ca+2 + 0.36 Na+ + 0.144 Mg+2 + 4.8 PO4-3 + 1.2 CO3-2 + 2.48 F- + log_k -114.4 + delta_h 164.808 kJ Hydroxylapatite - Ca5(PO4)3OH + H+ = 5Ca+2 + 3PO4-3 + H2O - log_k -44.333 - delta_h -0 kJ + Ca5(PO4)3OH + H+ = 5 Ca+2 + 3 PO4-3 + H2O + log_k -44.333 + delta_h -0 kJ CaHPO4:2H2O - CaHPO4:2H2O = Ca+2 + H+ + PO4-3 + 2H2O - log_k -18.995 - delta_h 23 kJ + CaHPO4:2H2O = Ca+2 + H+ + PO4-3 + 2 H2O + log_k -18.995 + delta_h 23 kJ CaHPO4 CaHPO4 = Ca+2 + H+ + PO4-3 - log_k -19.275 - delta_h 31 kJ + log_k -19.275 + delta_h 31 kJ Ca3(PO4)2(beta) - Ca3(PO4)2 = 3Ca+2 + 2PO4-3 - log_k -28.92 - delta_h 54 kJ + Ca3(PO4)2 = 3 Ca+2 + 2 PO4-3 + log_k -28.92 + delta_h 54 kJ Ca4H(PO4)3:3H2O - Ca4H(PO4)3:3H2O = 4Ca+2 + H+ + 3PO4-3 + 3H2O - log_k -47.08 - delta_h -0 kJ + Ca4H(PO4)3:3H2O = 4 Ca+2 + H+ + 3 PO4-3 + 3 H2O + log_k -47.08 + delta_h -0 kJ SrHPO4 SrHPO4 = Sr+2 + H+ + PO4-3 - log_k -19.295 - delta_h -0 kJ + log_k -19.295 + delta_h -0 kJ BaHPO4 BaHPO4 = Ba+2 + H+ + PO4-3 - log_k -19.775 - delta_h -0 kJ + log_k -19.775 + delta_h -0 kJ U(HPO4)2:4H2O - U(HPO4)2:4H2O = U+4 + 2PO4-3 + 2H+ + 4H2O - log_k -51.584 - delta_h 16.0666 kJ + U(HPO4)2:4H2O = U+4 + 2 PO4-3 + 2 H+ + 4 H2O + log_k -51.584 + delta_h 16.0666 kJ (UO2)3(PO4)2 - (UO2)3(PO4)2 = 3UO2+2 + 2PO4-3 - log_k -49.4 - delta_h 397.062 kJ + (UO2)3(PO4)2 = 3 UO2+2 + 2 PO4-3 + log_k -49.4 + delta_h 397.062 kJ UO2HPO4 UO2HPO4 = UO2+2 + H+ + PO4-3 - log_k -24.225 - delta_h -0 kJ + log_k -24.225 + delta_h -0 kJ Uramphite - (NH4)2(UO2)2(PO4)2 = 2UO2+2 + 2NH4+ + 2PO4-3 - log_k -51.749 - delta_h 40.5848 kJ + (NH4)2(UO2)2(PO4)2 = 2 UO2+2 + 2 NH4+ + 2 PO4-3 + log_k -51.749 + delta_h 40.5848 kJ Przhevalskite - Pb(UO2)2(PO4)2 = 2UO2+2 + Pb+2 + 2PO4-3 - log_k -44.365 - delta_h -46.024 kJ + Pb(UO2)2(PO4)2 = 2 UO2+2 + Pb+2 + 2 PO4-3 + log_k -44.365 + delta_h -46.024 kJ Torbernite - Cu(UO2)2(PO4)2 = 2UO2+2 + Cu+2 + 2PO4-3 - log_k -45.279 - delta_h -66.5256 kJ + Cu(UO2)2(PO4)2 = 2 UO2+2 + Cu+2 + 2 PO4-3 + log_k -45.279 + delta_h -66.5256 kJ Bassetite - Fe(UO2)2(PO4)2 = 2UO2+2 + Fe+2 + 2PO4-3 - log_k -44.485 - delta_h -83.2616 kJ + Fe(UO2)2(PO4)2 = 2 UO2+2 + Fe+2 + 2 PO4-3 + log_k -44.485 + delta_h -83.2616 kJ Saleeite - Mg(UO2)2(PO4)2 = 2UO2+2 + Mg+2 + 2PO4-3 - log_k -43.646 - delta_h -84.4331 kJ + Mg(UO2)2(PO4)2 = 2 UO2+2 + Mg+2 + 2 PO4-3 + log_k -43.646 + delta_h -84.4331 kJ Ningyoite - CaU(PO4)2:2H2O = U+4 + Ca+2 + 2PO4-3 + 2H2O - log_k -53.906 - delta_h -9.4977 kJ + CaU(PO4)2:2H2O = U+4 + Ca+2 + 2 PO4-3 + 2 H2O + log_k -53.906 + delta_h -9.4977 kJ H-Autunite - H2(UO2)2(PO4)2 = 2UO2+2 + 2H+ + 2PO4-3 - log_k -47.931 - delta_h -15.0624 kJ + H2(UO2)2(PO4)2 = 2 UO2+2 + 2 H+ + 2 PO4-3 + log_k -47.931 + delta_h -15.0624 kJ Autunite - Ca(UO2)2(PO4)2 = 2UO2+2 + Ca+2 + 2PO4-3 - log_k -43.927 - delta_h -59.9986 kJ + Ca(UO2)2(PO4)2 = 2 UO2+2 + Ca+2 + 2 PO4-3 + log_k -43.927 + delta_h -59.9986 kJ Sr-Autunite - Sr(UO2)2(PO4)2 = 2UO2+2 + Sr+2 + 2PO4-3 - log_k -44.457 - delta_h -54.6012 kJ + Sr(UO2)2(PO4)2 = 2 UO2+2 + Sr+2 + 2 PO4-3 + log_k -44.457 + delta_h -54.6012 kJ Na-Autunite - Na2(UO2)2(PO4)2 = 2UO2+2 + 2Na+ + 2PO4-3 - log_k -47.409 - delta_h -1.9246 kJ + Na2(UO2)2(PO4)2 = 2 UO2+2 + 2 Na+ + 2 PO4-3 + log_k -47.409 + delta_h -1.9246 kJ K-Autunite - K2(UO2)2(PO4)2 = 2UO2+2 + 2K+ + 2PO4-3 - log_k -48.244 - delta_h 24.5182 kJ + K2(UO2)2(PO4)2 = 2 UO2+2 + 2 K+ + 2 PO4-3 + log_k -48.244 + delta_h 24.5182 kJ Uranocircite - Ba(UO2)2(PO4)2 = 2UO2+2 + Ba+2 + 2PO4-3 - log_k -44.631 - delta_h -42.2584 kJ + Ba(UO2)2(PO4)2 = 2 UO2+2 + Ba+2 + 2 PO4-3 + log_k -44.631 + delta_h -42.2584 kJ Pb3(AsO4)2 - Pb3(AsO4)2 + 6H+ = 3Pb+2 + 2H3AsO4 - log_k 5.8 - delta_h -0 kJ + Pb3(AsO4)2 + 6 H+ = 3 Pb+2 + 2 H3AsO4 + log_k 5.8 + delta_h -0 kJ AlAsO4:2H2O - AlAsO4:2H2O + 3H+ = Al+3 + H3AsO4 + 2H2O - log_k 4.8 - delta_h -0 kJ + AlAsO4:2H2O + 3 H+ = Al+3 + H3AsO4 + 2 H2O + log_k 4.8 + delta_h -0 kJ Zn3(AsO4)2:2.5H2O - Zn3(AsO4)2:2.5H2O + 6H+ = 3Zn+2 + 2H3AsO4 + 2.5H2O - log_k 13.65 - delta_h -0 kJ + Zn3(AsO4)2:2.5H2O + 6 H+ = 3 Zn+2 + 2 H3AsO4 + 2.5 H2O + log_k 13.65 + delta_h -0 kJ Cu3(AsO4)2:2H2O - Cu3(AsO4)2:2H2O + 6H+ = 3Cu+2 + 2H3AsO4 + 2H2O - log_k 6.1 - delta_h -0 kJ + Cu3(AsO4)2:2H2O + 6 H+ = 3 Cu+2 + 2 H3AsO4 + 2 H2O + log_k 6.1 + delta_h -0 kJ Ag3AsO3 - Ag3AsO3 + 3H+ = 3Ag+ + H3AsO3 - log_k 2.1573 - delta_h -0 kJ + Ag3AsO3 + 3 H+ = 3 Ag+ + H3AsO3 + log_k 2.1573 + delta_h -0 kJ Ag3AsO4 - Ag3AsO4 + 3H+ = 3Ag+ + H3AsO4 - log_k -2.7867 - delta_h -0 kJ + Ag3AsO4 + 3 H+ = 3 Ag+ + H3AsO4 + log_k -2.7867 + delta_h -0 kJ Ni3(AsO4)2:8H2O - Ni3(AsO4)2:8H2O + 6H+ = 3Ni+2 + 2H3AsO4 + 8H2O - log_k 15.7 - delta_h -0 kJ + Ni3(AsO4)2:8H2O + 6 H+ = 3 Ni+2 + 2 H3AsO4 + 8 H2O + log_k 15.7 + delta_h -0 kJ Co3(AsO4)2 - Co3(AsO4)2 + 6H+ = 3Co+2 + 2H3AsO4 - log_k 13.0341 - delta_h -0 kJ + Co3(AsO4)2 + 6 H+ = 3 Co+2 + 2 H3AsO4 + log_k 13.0341 + delta_h -0 kJ FeAsO4:2H2O - FeAsO4:2H2O + 3H+ = Fe+3 + H3AsO4 + 2H2O - log_k 0.4 - delta_h -0 kJ + FeAsO4:2H2O + 3 H+ = Fe+3 + H3AsO4 + 2 H2O + log_k 0.4 + delta_h -0 kJ Mn3(AsO4)2:8H2O - Mn3(AsO4)2:8H2O + 6H+ = 3Mn+2 + 2H3AsO4 + 8H2O - log_k 12.5 - delta_h -0 kJ + Mn3(AsO4)2:8H2O + 6 H+ = 3 Mn+2 + 2 H3AsO4 + 8 H2O + log_k 12.5 + delta_h -0 kJ Ca3(AsO4)2:4H2O - Ca3(AsO4)2:4H2O + 6H+ = 3Ca+2 + 2H3AsO4 + 4H2O - log_k 22.3 - delta_h -0 kJ + Ca3(AsO4)2:4H2O + 6 H+ = 3 Ca+2 + 2 H3AsO4 + 4 H2O + log_k 22.3 + delta_h -0 kJ Ba3(AsO4)2 - Ba3(AsO4)2 + 6H+ = 3Ba+2 + 2H3AsO4 - log_k -8.91 - delta_h 11.0458 kJ + Ba3(AsO4)2 + 6 H+ = 3 Ba+2 + 2 H3AsO4 + log_k -8.91 + delta_h 11.0458 kJ #NH4VO3 # NH4VO3 + 2H+ = 2VO2+ + H2O # log_k 3.8 # delta_h 30 kJ Pb3(VO4)2 - Pb3(VO4)2 + 8H+ = 3Pb+2 + 2VO2+ + 4H2O - log_k 6.14 - delta_h -72.6342 kJ + Pb3(VO4)2 + 8 H+ = 3 Pb+2 + 2 VO2+ + 4 H2O + log_k 6.14 + delta_h -72.6342 kJ Pb2V2O7 - Pb2V2O7 + 6H+ = 2Pb+2 + 2VO2+ + 3H2O - log_k -1.9 - delta_h -26.945 kJ + Pb2V2O7 + 6 H+ = 2 Pb+2 + 2 VO2+ + 3 H2O + log_k -1.9 + delta_h -26.945 kJ AgVO3 - AgVO3 + 2H+ = Ag+ + VO2+ + H2O - log_k 0.77 - delta_h -0 kJ + AgVO3 + 2 H+ = Ag+ + VO2+ + H2O + log_k 0.77 + delta_h -0 kJ Ag2HVO4 - Ag2HVO4 + 3H+ = 2Ag+ + VO2+ + 2H2O - log_k 1.48 - delta_h -0 kJ + Ag2HVO4 + 3 H+ = 2 Ag+ + VO2+ + 2 H2O + log_k 1.48 + delta_h -0 kJ Ag3H2VO5 - Ag3H2VO5 + 4H+ = 3Ag+ + VO2+ + 3H2O - log_k 5.18 - delta_h -0 kJ + Ag3H2VO5 + 4 H+ = 3 Ag+ + VO2+ + 3 H2O + log_k 5.18 + delta_h -0 kJ Fe(VO3)2 - Fe(VO3)2 + 4H+ = Fe+2 + 2VO2+ + 2H2O - log_k -3.72 - delta_h -61.6722 kJ + Fe(VO3)2 + 4 H+ = Fe+2 + 2 VO2+ + 2 H2O + log_k -3.72 + delta_h -61.6722 kJ Mn(VO3)2 - Mn(VO3)2 + 4H+ = Mn+2 + 2VO2+ + 2H2O - log_k 4.9 - delta_h -92.4664 kJ + Mn(VO3)2 + 4 H+ = Mn+2 + 2 VO2+ + 2 H2O + log_k 4.9 + delta_h -92.4664 kJ Mg(VO3)2 - Mg(VO3)2 + 4H+ = Mg+2 + 2VO2+ + 2H2O - log_k 11.28 - delta_h -136.649 kJ + Mg(VO3)2 + 4 H+ = Mg+2 + 2 VO2+ + 2 H2O + log_k 11.28 + delta_h -136.649 kJ Mg2V2O7 - Mg2V2O7 + 6H+ = 2Mg+2 + 2VO2+ + 3H2O - log_k 26.36 - delta_h -255.224 kJ + Mg2V2O7 + 6 H+ = 2 Mg+2 + 2 VO2+ + 3 H2O + log_k 26.36 + delta_h -255.224 kJ Carnotite - KUO2VO4 + 4H+ = K+ + UO2+2 + VO2+ + 2H2O - log_k 0.23 - delta_h -36.4008 kJ + KUO2VO4 + 4 H+ = K+ + UO2+2 + VO2+ + 2 H2O + log_k 0.23 + delta_h -36.4008 kJ Tyuyamunite - Ca(UO2)2(VO4)2 + 8H+ = Ca+2 + 2UO2+2 + 2VO2+ + 4H2O - log_k 4.08 - delta_h -153.134 kJ + Ca(UO2)2(VO4)2 + 8 H+ = Ca+2 + 2 UO2+2 + 2 VO2+ + 4 H2O + log_k 4.08 + delta_h -153.134 kJ Ca(VO3)2 - Ca(VO3)2 + 4H+ = Ca+2 + 2VO2+ + 2H2O - log_k 5.66 - delta_h -84.7678 kJ + Ca(VO3)2 + 4 H+ = Ca+2 + 2 VO2+ + 2 H2O + log_k 5.66 + delta_h -84.7678 kJ Ca3(VO4)2 - Ca3(VO4)2 + 8H+ = 3Ca+2 + 2VO2+ + 4H2O - log_k 38.96 - delta_h -293.466 kJ + Ca3(VO4)2 + 8 H+ = 3 Ca+2 + 2 VO2+ + 4 H2O + log_k 38.96 + delta_h -293.466 kJ Ca2V2O7 - Ca2V2O7 + 6H+ = 2Ca+2 + 2VO2+ + 3H2O - log_k 17.5 - delta_h -159.494 kJ + Ca2V2O7 + 6 H+ = 2 Ca+2 + 2 VO2+ + 3 H2O + log_k 17.5 + delta_h -159.494 kJ Ca3(VO4)2:4H2O - Ca3(VO4)2:4H2O + 8H+ = 3Ca+2 + 2VO2+ + 8H2O - log_k 39.86 - delta_h -0 kJ + Ca3(VO4)2:4H2O + 8 H+ = 3 Ca+2 + 2 VO2+ + 8 H2O + log_k 39.86 + delta_h -0 kJ Ca2V2O7:2H2O - Ca2V2O7:2H2O + 6H+ = 2Ca+2 + 2VO2+ + 5H2O - log_k 21.552 - delta_h -0 kJ + Ca2V2O7:2H2O + 6 H+ = 2 Ca+2 + 2 VO2+ + 5 H2O + log_k 21.552 + delta_h -0 kJ Ba3(VO4)2:4H2O - Ba3(VO4)2:4H2O + 8H+ = 3Ba+2 + 2VO2+ + 8H2O - log_k 32.94 - delta_h -0 kJ + Ba3(VO4)2:4H2O + 8 H+ = 3 Ba+2 + 2 VO2+ + 8 H2O + log_k 32.94 + delta_h -0 kJ Ba2V2O7:2H2O - Ba2V2O7:2H2O + 6H+ = 2Ba+2 + 2VO2+ + 5H2O - log_k 15.872 - delta_h -0 kJ + Ba2V2O7:2H2O + 6 H+ = 2 Ba+2 + 2 VO2+ + 5 H2O + log_k 15.872 + delta_h -0 kJ NaVO3 - NaVO3 + 2H+ = Na+ + VO2+ + H2O - log_k 3.8582 - delta_h -30.1799 kJ + NaVO3 + 2 H+ = Na+ + VO2+ + H2O + log_k 3.8582 + delta_h -30.1799 kJ Na3VO4 - Na3VO4 + 4H+ = 3Na+ + VO2+ + 2H2O - log_k 36.6812 - delta_h -184.61 kJ + Na3VO4 + 4 H+ = 3 Na+ + VO2+ + 2 H2O + log_k 36.6812 + delta_h -184.61 kJ Na4V2O7 - Na4V2O7 + 6H+ = 4Na+ + 2VO2+ + 3H2O - log_k 37.4 - delta_h -201.083 kJ + Na4V2O7 + 6 H+ = 4 Na+ + 2 VO2+ + 3 H2O + log_k 37.4 + delta_h -201.083 kJ Halloysite - Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O - log_k 9.5749 - delta_h -181.43 kJ + Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 H4SiO4 + H2O + log_k 9.5749 + delta_h -181.43 kJ Kaolinite - Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O - log_k 7.435 - delta_h -148 kJ + Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 H4SiO4 + H2O + log_k 7.435 + delta_h -148 kJ Greenalite - Fe3Si2O5(OH)4 + 6H+ = 3Fe+2 + 2H4SiO4 + H2O - log_k 20.81 - delta_h -0 kJ + Fe3Si2O5(OH)4 + 6 H+ = 3 Fe+2 + 2 H4SiO4 + H2O + log_k 20.81 + delta_h -0 kJ Chrysotile - Mg3Si2O5(OH)4 + 6H+ = 3Mg+2 + 2H4SiO4 + H2O - log_k 32.2 - delta_h -196 kJ + Mg3Si2O5(OH)4 + 6 H+ = 3 Mg+2 + 2 H4SiO4 + H2O + log_k 32.2 + delta_h -196 kJ Sepiolite - Mg2Si3O7.5OH:3H2O + 4H+ + 0.5H2O = 2Mg+2 + 3H4SiO4 - log_k 15.76 - delta_h -114.089 kJ + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 + log_k 15.76 + delta_h -114.089 kJ Sepiolite(A) - Mg2Si3O7.5OH:3H2O + 0.5H2O + 4H+ = 2Mg+2 + 3H4SiO4 - log_k 18.78 - delta_h -0 kJ + Mg2Si3O7.5OH:3H2O + 0.5 H2O + 4 H+ = 2 Mg+2 + 3 H4SiO4 + log_k 18.78 + delta_h -0 kJ PHASES O2(g) - O2 + 4H+ + 4e- = 2H2O - log_k 83.0894 - delta_h -571.66 kJ + O2 + 4 H+ + 4 e- = 2 H2O + log_k 83.0894 + delta_h -571.66 kJ CH4(g) - CH4 + 3H2O = CO3-2 + 8e- + 10H+ - log_k -41.0452 - delta_h 257.133 kJ + CH4 + 3 H2O = CO3-2 + 8 e- + 10 H+ + log_k -41.0452 + delta_h 257.133 kJ CO2(g) - CO2 + H2O = 2H+ + CO3-2 - log_k -18.147 - delta_h 4.06 kJ + CO2 + H2O = 2 H+ + CO3-2 + log_k -18.147 + delta_h 4.06 kJ H2S(g) H2S = H+ + HS- - log_k -8.01 - delta_h -0 kJ + log_k -8.01 + delta_h -0 kJ H2Se(g) H2Se = HSe- + H+ - log_k -4.96 - delta_h -15.3 kJ + log_k -4.96 + delta_h -15.3 kJ Hg(g) - Hg = 0.5Hg2+2 + e- - log_k -7.8733 - delta_h 22.055 kJ + Hg = 0.5 Hg2+2 + e- + log_k -7.8733 + delta_h 22.055 kJ Hg2(g) - Hg2 = Hg2+2 + 2e- - log_k -14.9554 - delta_h 58.07 kJ + Hg2 = Hg2+2 + 2 e- + log_k -14.9554 + delta_h 58.07 kJ Hg(CH3)2(g) - Hg(CH3)2 + 8H2O = Hg(OH)2 + 2CO3-2 + 16e- + 20H+ - log_k -73.7066 - delta_h 481.99 kJ + Hg(CH3)2 + 8 H2O = Hg(OH)2 + 2 CO3-2 + 16 e- + 20 H+ + log_k -73.7066 + delta_h 481.99 kJ HgF(g) - HgF = 0.5Hg2+2 + F- - log_k 32.6756 - delta_h -254.844 kJ + HgF = 0.5 Hg2+2 + F- + log_k 32.6756 + delta_h -254.844 kJ HgF2(g) - HgF2 + 2H2O = Hg(OH)2 + 2F- + 2H+ - log_k 12.5652 - delta_h -165.186 kJ + HgF2 + 2 H2O = Hg(OH)2 + 2 F- + 2 H+ + log_k 12.5652 + delta_h -165.186 kJ HgCl(g) - HgCl = 0.5Hg2+2 + Cl- - log_k 19.4966 - delta_h -162.095 kJ + HgCl = 0.5 Hg2+2 + Cl- + log_k 19.4966 + delta_h -162.095 kJ HgBr(g) - HgBr = 0.5Hg2+2 + Br- - log_k 16.7566 - delta_h -142.157 kJ + HgBr = 0.5 Hg2+2 + Br- + log_k 16.7566 + delta_h -142.157 kJ HgBr2(g) - HgBr2 + 2H2O = Hg(OH)2 + 2Br- + 2H+ - log_k -18.3881 - delta_h 54.494 kJ + HgBr2 + 2 H2O = Hg(OH)2 + 2 Br- + 2 H+ + log_k -18.3881 + delta_h 54.494 kJ HgI(g) - HgI = 0.5Hg2+2 + I- - log_k 11.3322 - delta_h -106.815 kJ + HgI = 0.5 Hg2+2 + I- + log_k 11.3322 + delta_h -106.815 kJ HgI2(g) - HgI2 + 2H2O = Hg(OH)2 + 2I- + 2H+ - log_k -27.2259 - delta_h 114.429 kJ + HgI2 + 2 H2O = Hg(OH)2 + 2 I- + 2 H+ + log_k -27.2259 + delta_h 114.429 kJ SURFACE_MASTER_SPECIES - Hfo_s Hfo_sOH - Hfo_w Hfo_wOH + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH SURFACE_SPECIES -Hfo_wOH = Hfo_wOH - log_k 0.0 -Hfo_sOH = Hfo_sOH - log_k 0.0 +Hfo_wOH = Hfo_wOH + log_k 0 +Hfo_sOH = Hfo_sOH + log_k 0 Hfo_sOH + H+ = Hfo_sOH2+ - log_k 7.29 - delta_h 0 kJ + log_k 7.29 + delta_h 0 kJ # Id: 8113302 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH = Hfo_sO- + H+ - log_k -8.93 - delta_h 0 kJ + log_k -8.93 + delta_h 0 kJ # Id: 8113301 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + H+ = Hfo_wOH2+ - log_k 7.29 - delta_h 0 kJ + log_k 7.29 + delta_h 0 kJ # Id: 8123302 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH = Hfo_wO- + H+ - log_k -8.93 - delta_h 0 kJ + log_k -8.93 + delta_h 0 kJ # Id: 8123301 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + Ba+2 = Hfo_sOHBa+2 - log_k 5.46 - delta_h 0 kJ + log_k 5.46 + delta_h 0 kJ # Id: 8111000 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - log_k -7.2 - delta_h 0 kJ + log_k -7.2 + delta_h 0 kJ # Id: 8121000 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - log_k 4.97 - delta_h 0 kJ + log_k 4.97 + delta_h 0 kJ # Id: 8111500 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ - log_k -5.85 - delta_h 0 kJ + log_k -5.85 + delta_h 0 kJ # Id: 8121500 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ - log_k -4.6 - delta_h 0 kJ + log_k -4.6 + delta_h 0 kJ # Id: 8124600 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + Ag+ = Hfo_sOAg + H+ - log_k -1.72 - delta_h 0 kJ + log_k -1.72 + delta_h 0 kJ # Id: 8110200 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + Ag+ = Hfo_wOAg + H+ - log_k -5.3 - delta_h 0 kJ + log_k -5.3 + delta_h 0 kJ # Id: 8120200 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + Ni+2 = Hfo_sONi+ + H+ - log_k 0.37 - delta_h 0 kJ + log_k 0.37 + delta_h 0 kJ # Id: 8115400 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + Ni+2 = Hfo_wONi+ + H+ - log_k -2.5 - delta_h 0 kJ + log_k -2.5 + delta_h 0 kJ # Id: 8125400 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ - log_k 0.47 - delta_h 0 kJ + log_k 0.47 + delta_h 0 kJ # Id: 8111600 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ - log_k -2.9 - delta_h 0 kJ + log_k -2.9 + delta_h 0 kJ # Id: 8121600 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + Co+2 = Hfo_sOCo+ + H+ - log_k -0.46 - delta_h 0 kJ + log_k -0.46 + delta_h 0 kJ # Id: 8112000 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + Co+2 = Hfo_wOCo+ + H+ - log_k -3.01 - delta_h 0 kJ + log_k -3.01 + delta_h 0 kJ # Id: 8122000 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ - log_k 0.99 - delta_h 0 kJ + log_k 0.99 + delta_h 0 kJ # Id: 8119500 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ - log_k -1.99 - delta_h 0 kJ + log_k -1.99 + delta_h 0 kJ # Id: 8129500 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ - log_k 2.89 - delta_h 0 kJ + log_k 2.89 + delta_h 0 kJ # Id: 8112310 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ - log_k 0.6 - delta_h 0 kJ + log_k 0.6 + delta_h 0 kJ # Id: 8123100 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ - log_k 4.65 - delta_h 0 kJ + log_k 4.65 + delta_h 0 kJ # Id: 8116000 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ - log_k 0.3 - delta_h 0 kJ + log_k 0.3 + delta_h 0 kJ # Id: 8126000 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + Be+2 = Hfo_sOBe+ + H+ - log_k 5.7 - delta_h 0 kJ + log_k 5.7 + delta_h 0 kJ # Id: 8111100 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + Be+2 = Hfo_wOBe+ + H+ - log_k 3.3 - delta_h 0 kJ + log_k 3.3 + delta_h 0 kJ # Id: 8121100 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: -Hfo_sOH + Hg(OH)2 + H+ = Hfo_sOHg+ + 2H2O - log_k 13.95 - delta_h 0 kJ +Hfo_sOH + Hg(OH)2 + H+ = Hfo_sOHg+ + 2 H2O + log_k 13.95 + delta_h 0 kJ # Id: 8113610 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: -Hfo_wOH + Hg(OH)2 + H+ = Hfo_wOHg+ + 2H2O - log_k 12.64 - delta_h 0 kJ +Hfo_wOH + Hg(OH)2 + H+ = Hfo_wOHg+ + 2 H2O + log_k 12.64 + delta_h 0 kJ # Id: 8123610 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: -Hfo_sOH + Sn(OH)2 + H+ = Hfo_sOSn+ + 2H2O - log_k 15.1 - delta_h 0 kJ +Hfo_sOH + Sn(OH)2 + H+ = Hfo_sOSn+ + 2 H2O + log_k 15.1 + delta_h 0 kJ # Id: 8117900 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: -Hfo_wOH + Sn(OH)2 + H+ = Hfo_wOSn+ + 2H2O - log_k 13 - delta_h 0 kJ +Hfo_wOH + Sn(OH)2 + H+ = Hfo_wOSn+ + 2 H2O + log_k 13 + delta_h 0 kJ # Id: 8127900 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + Cr(OH)2+ = Hfo_sOCrOH+ + H2O - log_k 11.63 - delta_h 0 kJ + log_k 11.63 + delta_h 0 kJ # Id: 8112110 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + H3AsO3 = Hfo_sH2AsO3 + H2O - log_k 5.41 - delta_h 0 kJ + log_k 5.41 + delta_h 0 kJ # Id: 8110600 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + H3AsO3 = Hfo_wH2AsO3 + H2O - log_k 5.41 - delta_h 0 kJ + log_k 5.41 + delta_h 0 kJ # Id: 8120600 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + H3BO3 = Hfo_sH2BO3 + H2O - log_k 0.62 - delta_h 0 kJ + log_k 0.62 + delta_h 0 kJ # Id: 8110900 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O - log_k 0.62 - delta_h 0 kJ + log_k 0.62 + delta_h 0 kJ # Id: 8120900 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: -Hfo_sOH + PO4-3 + 3H+ = Hfo_sH2PO4 + H2O - log_k 31.29 - delta_h 0 kJ +Hfo_sOH + PO4-3 + 3 H+ = Hfo_sH2PO4 + H2O + log_k 31.29 + delta_h 0 kJ # Id: 8115800 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: -Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O - log_k 31.29 - delta_h 0 kJ +Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O + log_k 31.29 + delta_h 0 kJ # Id: 8125800 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: -Hfo_sOH + PO4-3 + 2H+ = Hfo_sHPO4- + H2O - log_k 25.39 - delta_h 0 kJ +Hfo_sOH + PO4-3 + 2 H+ = Hfo_sHPO4- + H2O + log_k 25.39 + delta_h 0 kJ # Id: 8115801 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: -Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O - log_k 25.39 - delta_h 0 kJ +Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O + log_k 25.39 + delta_h 0 kJ # Id: 8125801 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + PO4-3 + H+ = Hfo_sPO4-2 + H2O - log_k 17.72 - delta_h 0 kJ + log_k 17.72 + delta_h 0 kJ # Id: 8115802 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O - log_k 17.72 - delta_h 0 kJ + log_k 17.72 + delta_h 0 kJ # Id: 8125802 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + H3AsO4 = Hfo_sH2AsO4 + H2O - log_k 8.61 - delta_h 0 kJ + log_k 8.61 + delta_h 0 kJ # Id: 8110610 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + H3AsO4 = Hfo_wH2AsO4 + H2O - log_k 8.61 - delta_h 0 kJ + log_k 8.61 + delta_h 0 kJ # Id: 8120610 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + H3AsO4 = Hfo_sHAsO4- + H2O + H+ - log_k 2.81 - delta_h 0 kJ + log_k 2.81 + delta_h 0 kJ # Id: 8110611 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + H3AsO4 = Hfo_wHAsO4- + H2O + H+ - log_k 2.81 - delta_h 0 kJ + log_k 2.81 + delta_h 0 kJ # Id: 8120611 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: -Hfo_sOH + H3AsO4 = Hfo_sOHAsO4-3 + 3H+ - log_k -10.12 - delta_h 0 kJ +Hfo_sOH + H3AsO4 = Hfo_sOHAsO4-3 + 3 H+ + log_k -10.12 + delta_h 0 kJ # Id: 8110613 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: -Hfo_wOH + H3AsO4 = Hfo_wOHAsO4-3 + 3H+ - log_k -10.12 - delta_h 0 kJ +Hfo_wOH + H3AsO4 = Hfo_wOHAsO4-3 + 3 H+ + log_k -10.12 + delta_h 0 kJ # Id: 8120613 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: -Hfo_sOH + VO2+ + 2H2O = Hfo_sOHVO4-3 + 4H+ - log_k -16.63 - delta_h 0 kJ +Hfo_sOH + VO2+ + 2 H2O = Hfo_sOHVO4-3 + 4 H+ + log_k -16.63 + delta_h 0 kJ # Id: 8119031 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: -Hfo_wOH + VO2+ + 2H2O = Hfo_wOHVO4-3 + 4H+ - log_k -16.63 - delta_h 0 kJ +Hfo_wOH + VO2+ + 2 H2O = Hfo_wOHVO4-3 + 4 H+ + log_k -16.63 + delta_h 0 kJ # Id: 8129031 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + SO4-2 + H+ = Hfo_sSO4- + H2O - log_k 7.78 - delta_h 0 kJ + log_k 7.78 + delta_h 0 kJ # Id: 8117320 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O - log_k 7.78 - delta_h 0 kJ + log_k 7.78 + delta_h 0 kJ # Id: 8127320 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + SO4-2 = Hfo_sOHSO4-2 - log_k 0.79 - delta_h 0 kJ + log_k 0.79 + delta_h 0 kJ # Id: 8117321 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - log_k 0.79 - delta_h 0 kJ + log_k 0.79 + delta_h 0 kJ # Id: 8127321 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + HSeO3- = Hfo_sSeO3- + H2O - log_k 4.29 - delta_h 0 kJ + log_k 4.29 + delta_h 0 kJ # Id: 8117610 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + HSeO3- = Hfo_wSeO3- + H2O - log_k 4.29 - delta_h 0 kJ + log_k 4.29 + delta_h 0 kJ # Id: 8127610 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + HSeO3- = Hfo_sOHSeO3-2 + H+ - log_k -3.23 - delta_h 0 kJ + log_k -3.23 + delta_h 0 kJ # Id: 8117611 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + HSeO3- = Hfo_wOHSeO3-2 + H+ - log_k -3.23 - delta_h 0 kJ + log_k -3.23 + delta_h 0 kJ # Id: 8127611 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + SeO4-2 + H+ = Hfo_sSeO4- + H2O - log_k 7.73 - delta_h 0 kJ + log_k 7.73 + delta_h 0 kJ # Id: 8117620 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + SeO4-2 + H+ = Hfo_wSeO4- + H2O - log_k 7.73 - delta_h 0 kJ + log_k 7.73 + delta_h 0 kJ # Id: 8127620 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + SeO4-2 = Hfo_sOHSeO4-2 - log_k 0.8 - delta_h 0 kJ + log_k 0.8 + delta_h 0 kJ # Id: 8117621 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + SeO4-2 = Hfo_wOHSeO4-2 - log_k 0.8 - delta_h 0 kJ + log_k 0.8 + delta_h 0 kJ # Id: 8127621 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + CrO4-2 + H+ = Hfo_sCrO4- + H2O - log_k 10.85 - delta_h 0 kJ + log_k 10.85 + delta_h 0 kJ # Id: 8112120 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + CrO4-2 + H+ = Hfo_wCrO4- + H2O - log_k 10.85 - delta_h 0 kJ + log_k 10.85 + delta_h 0 kJ # Id: 8122120 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + CrO4-2 = Hfo_sOHCrO4-2 - log_k 3.9 - delta_h 0 kJ + log_k 3.9 + delta_h 0 kJ # Id: 8112121 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + CrO4-2 = Hfo_wOHCrO4-2 - log_k 3.9 - delta_h 0 kJ + log_k 3.9 + delta_h 0 kJ # Id: 8122121 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + MoO4-2 + H+ = Hfo_sMoO4- + H2O - log_k 9.5 - delta_h 0 kJ + log_k 9.5 + delta_h 0 kJ # Id: 8114800 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + MoO4-2 + H+ = Hfo_wMoO4- + H2O - log_k 9.5 - delta_h 0 kJ + log_k 9.5 + delta_h 0 kJ # Id: 8124800 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + MoO4-2 = Hfo_sOHMoO4-2 - log_k 2.4 - delta_h 0 kJ + log_k 2.4 + delta_h 0 kJ # Id: 8114801 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + MoO4-2 = Hfo_wOHMoO4-2 - log_k 2.4 - delta_h 0 kJ + log_k 2.4 + delta_h 0 kJ # Id: 8124801 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: -Hfo_sOH + Sb(OH)6- + H+ = Hfo_sSbO(OH)4 + 2H2O - log_k 8.4 - delta_h 0 kJ +Hfo_sOH + Sb(OH)6- + H+ = Hfo_sSbO(OH)4 + 2 H2O + log_k 8.4 + delta_h 0 kJ # Id: 8117410 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: -Hfo_wOH + Sb(OH)6- + H+ = Hfo_wSbO(OH)4 + 2H2O - log_k 8.4 - delta_h 0 kJ +Hfo_wOH + Sb(OH)6- + H+ = Hfo_wSbO(OH)4 + 2 H2O + log_k 8.4 + delta_h 0 kJ # Id: 8127410 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + Sb(OH)6- = Hfo_sOHSbO(OH)4- + H2O - log_k 1.3 - delta_h 0 kJ + log_k 1.3 + delta_h 0 kJ # Id: 8117411 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + Sb(OH)6- = Hfo_wOHSbO(OH)4- + H2O - log_k 1.3 - delta_h 0 kJ + log_k 1.3 + delta_h 0 kJ # Id: 8127411 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + Cyanide- + H+ = Hfo_sCyanide + H2O - log_k 13 - delta_h 0 kJ + log_k 13 + delta_h 0 kJ # Id: 8111430 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + Cyanide- + H+ = Hfo_wCyanide + H2O - log_k 13 - delta_h 0 kJ + log_k 13 + delta_h 0 kJ # Id: 8121430 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_sOH + Cyanide- = Hfo_sOHCyanide- - log_k 5.7 - delta_h 0 kJ + log_k 5.7 + delta_h 0 kJ # Id: 8111431 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: Hfo_wOH + Cyanide- = Hfo_wOHCyanide- - log_k 5.7 - delta_h 0 kJ + log_k 5.7 + delta_h 0 kJ # Id: 8121431 - # log K source: - # Delta H source: + # log K source: + # Delta H source: #T and ionic strength: END diff --git a/phreeqc.dat b/phreeqc.dat index 6bfc87cd..5fe91c4a 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -1,69 +1,73 @@ +# File 1 = C:\GitPrograms\phreeqc3-1\database\phreeqc.dat, 07/05/2024 14:37, 1961 lines, 56151 bytes, md5=996b3d979d94f4baeb9d27addf2b91a4 +# Created 17 May 2024 14:30:43 +# c:\3rdParty\lsp\lsp.exe -f2 -k="asis" -ts "phreeqc.dat" + # PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: # diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. # Details are given at the end of this file. SOLUTION_MASTER_SPECIES # -#element species alk gfw_formula element_gfw +#element species alk gfw_formula element_gfw # -H H+ -1.0 H 1.008 -H(0) H2 0 H -H(1) H+ -1.0 H -E e- 0 0 0 -O H2O 0 O 16.0 -O(0) O2 0 O -O(-2) H2O 0 0 -Ca Ca+2 0 Ca 40.08 -Mg Mg+2 0 Mg 24.312 -Na Na+ 0 Na 22.9898 -K K+ 0 K 39.102 -Fe Fe+2 0 Fe 55.847 -Fe(+2) Fe+2 0 Fe -Fe(+3) Fe+3 -2.0 Fe -Mn Mn+2 0 Mn 54.938 -Mn(+2) Mn+2 0 Mn -Mn(+3) Mn+3 0 Mn -Al Al+3 0 Al 26.9815 -Ba Ba+2 0 Ba 137.34 -Sr Sr+2 0 Sr 87.62 -Si H4SiO4 0 SiO2 28.0843 -Cl Cl- 0 Cl 35.453 -C CO3-2 2.0 HCO3 12.0111 -C(+4) CO3-2 2.0 HCO3 -C(-4) CH4 0 CH4 -Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05 -S SO4-2 0 SO4 32.064 -S(6) SO4-2 0 SO4 -S(-2) HS- 1.0 S -N NO3- 0 N 14.0067 -N(+5) NO3- 0 N -N(+3) NO2- 0 N -N(0) N2 0 N -N(-3) NH4+ 0 N 14.0067 -#Amm AmmH+ 0 AmmH 17.031 -B H3BO3 0 B 10.81 -P PO4-3 2.0 P 30.9738 -F F- 0 F 18.9984 -Li Li+ 0 Li 6.939 -Br Br- 0 Br 79.904 -Zn Zn+2 0 Zn 65.37 -Cd Cd+2 0 Cd 112.4 -Pb Pb+2 0 Pb 207.19 -Cu Cu+2 0 Cu 63.546 -Cu(+2) Cu+2 0 Cu -Cu(+1) Cu+1 0 Cu -# redox-uncoupled gases -Hdg Hdg 0 Hdg 2.016 # H2 gas -Oxg Oxg 0 Oxg 32 # O2 gas -Mtg Mtg 0 Mtg 16.032 # CH4 gas -Sg H2Sg 0.0 H2Sg 32.064 # H2S gas -Ntg Ntg 0 Ntg 28.0134 # N2 gas +H H+ -1 H 1.008 +H(0) H2 0 H +H(1) H+ -1 H +E e- 1 0 0 +O H2O 0 O 16 +O(0) O2 0 O +O(-2) H2O 0 0 +Ca Ca+2 0 Ca 40.08 +Mg Mg+2 0 Mg 24.312 +Na Na+ 0 Na 22.9898 +K K+ 0 K 39.102 +Fe Fe+2 0 Fe 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2 Fe +Mn Mn+2 0 Mn 54.938 +Mn(+2) Mn+2 0 Mn +Mn(+3) Mn+3 0 Mn +Al Al+3 0 Al 26.9815 +Ba Ba+2 0 Ba 137.34 +Sr Sr+2 0 Sr 87.62 +Si H4SiO4 0 SiO2 28.0843 +Cl Cl- 0 Cl 35.453 +C CO3-2 2 HCO3 12.0111 +C(+4) CO3-2 2 HCO3 +C(-4) CH4 0 CH4 +Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05 +S SO4-2 0 SO4 32.064 +S(6) SO4-2 0 SO4 +S(-2) HS- 1 S +N NO3- 0 N 14.0067 +N(+5) NO3- 0 N +N(+3) NO2- 0 N +N(0) N2 0 N +N(-3) NH4+ 0 N 14.0067 +#Amm AmmH+ 0 AmmH 17.031 +B H3BO3 0 B 10.81 +P PO4-3 2 P 30.9738 +F F- 0 F 18.9984 +Li Li+ 0 Li 6.939 +Br Br- 0 Br 79.904 +Zn Zn+2 0 Zn 65.37 +Cd Cd+2 0 Cd 112.4 +Pb Pb+2 0 Pb 207.19 +Cu Cu+2 0 Cu 63.546 +Cu(+2) Cu+2 0 Cu +Cu(+1) Cu+1 0 Cu +# redox-uncoupled gases +Hdg Hdg 0 Hdg 2.016 # H2 gas +Oxg Oxg 0 Oxg 32 # O2 gas +Mtg Mtg 0 Mtg 16.032 # CH4 gas +Sg H2Sg 0 H2Sg 32.064 # H2S gas +Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ - -gamma 9.0 0 - -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 - -dw 9.31e-9 838 16.315 0 2.376 24.01 0 + -gamma 9 0 + -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 + -dw 9.31e-9 838 16.315 0 2.376 24.01 0 # Dw(25 C) dw_T a a2 visc a3 a_v_dif # Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc # a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif @@ -76,243 +80,243 @@ H+ = H+ # If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. e- = e- H2O = H2O - -dw 2.299e-9 -254 + -dw 2.299e-9 -254 # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence Li+ = Li+ - -gamma 6.0 0 # The apparent volume parameters are defined in ref. 1 & 2 - -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 - -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl - -dw 1.03e-9 -14 4.03 0.8341 1.679 + -gamma 6 0 # The apparent volume parameters are defined in ref. 1 & 2 + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 + -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl + -dw 1.03e-9 -14 4.03 0.8341 1.679 Na+ = Na+ - -gamma 4.0 0.075 - -gamma 4.08 0.082 # halite solubility - -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 + -gamma 4 0.075 + -gamma 4.08 0.082 # halite solubility + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 # for densities (rho) when I > 3. - -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 - -dw 1.33e-9 75 3.627 0 0.7037 + -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 + -dw 1.33e-9 75 3.627 0 0.7037 K+ = K+ - -gamma 3.5 0.015 - -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 - -viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028 - -dw 1.96e-9 254 3.484 0 0.1964 + -gamma 3.5 0.015 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 + -viscosity 0.116 -0.191 1.52e-2 1.4e-2 2.59e-2 0.9028 + -dw 1.96e-9 254 3.484 0 0.1964 Mg+2 = Mg+2 - -gamma 5.5 0.20 - -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 - -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 - -dw 0.705e-9 -4 5.569 0 1.047 + -gamma 5.5 0.2 + -Vm -1.41 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 + -dw 0.705e-9 -4 5.569 0 1.047 Ca+2 = Ca+2 - -gamma 5.0 0.1650 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 - -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M - -dw 0.792e-9 34 5.411 0 1.046 + -gamma 5 0.165 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.6 -57.1 -6.12e-3 1 + -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.3 # ref. 4, CaCl2 < 6 M + -dw 0.792e-9 34 5.411 0 1.046 Sr+2 = Sr+2 - -gamma 5.260 0.121 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 - -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 - -dw 0.794e-9 160 0.680 0.767 1e-9 0.912 + -gamma 5.26 0.121 + -Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97 + -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 + -dw 0.794e-9 160 0.68 0.767 1e-9 0.912 Ba+2 = Ba+2 - -gamma 5.0 0 - -gamma 4.0 0.153 # Barite solubility - -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 - -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 - -dw 0.848e-9 174 10.53 0 3.0 + -gamma 5 0 + -gamma 4 0.153 # Barite solubility + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 + -dw 0.848e-9 174 10.53 0 3 Fe+2 = Fe+2 - -gamma 6.0 0 - -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 - -dw 0.719e-9 + -gamma 6 0 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -dw 0.719e-9 Mn+2 = Mn+2 - -gamma 6.0 0 - -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 - -dw 0.688e-9 + -gamma 6 0 + -Vm -1.1 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 + -dw 0.688e-9 Al+3 = Al+3 - -gamma 9.0 0 - -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353. - -dw 0.559e-9 + -gamma 9 0 + -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353 + -dw 0.559e-9 H4SiO4 = H4SiO4 - -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 - -dw 1.10e-9 + -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt 2*H2O in a1 + -dw 1.1e-9 Cl- = Cl- - -gamma 3.5 0.015 - -gamma 3.63 0.017 # cf. pitzer.dat - -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 - -viscosity 0 0 0 0 0 0 1 # the reference solute - -dw 2.033e-9 216 3.160 0.2071 0.7432 + -gamma 3.5 0.015 + -gamma 3.63 0.017 # cf. pitzer.dat + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -viscosity 0 0 0 0 0 0 1 # the reference solute + -dw 2.033e-9 216 3.16 0.2071 0.7432 CO3-2 = CO3-2 - -gamma 5.4 0 - -Vm 6.09 -2.78 -0.405 -5.30 5.02 0 0.169 101 -1.38e-2 0.9316 - -viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147 - -dw 0.955e-9 -103 2.246 7.13e-2 0.3686 + -gamma 5.4 0 + -Vm 6.09 -2.78 -0.405 -5.3 5.02 0 0.169 101 -1.38e-2 0.9316 + -viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147 + -dw 0.955e-9 -103 2.246 7.13e-2 0.3686 SO4-2 = SO4-2 - -gamma 5.0 -0.04 - -Vm -7.77 43.17 176 -51.45 3.794 0 42.99 -541 -0.145 0.45 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC - -viscosity -0.30 0.501 2.57e-3 0.195 3.14e-2 2.015 0.605 - -dw 1.07e-9 -114 17 6.02e-2 4.94e-2 + -gamma 5 -0.04 + -Vm -7.77 43.17 176 -51.45 3.794 0 42.99 -541 -0.145 0.45 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC + -viscosity -0.3 0.501 2.57e-3 0.195 3.14e-2 2.015 0.605 + -dw 1.07e-9 -114 17 6.02e-2 4.94e-2 NO3- = NO3- - -gamma 3.0 0 - -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 - -viscosity 8.37e-2 -0.458 1.54e-2 0.340 1.79e-2 5.02e-2 0.7381 - -dw 1.90e-9 104 1.11 + -gamma 3 0 + -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 + -viscosity 8.37e-2 -0.458 1.54e-2 0.34 1.79e-2 5.02e-2 0.7381 + -dw 1.9e-9 104 1.11 #AmmH+ = AmmH+ # -gamma 2.5 0 # -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 # -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 # -dw 1.98e-9 178 3.747 0 1.220 H3BO3 = H3BO3 - -Vm 7.0643 8.8547 3.5844 -3.1451 -0.20 # supcrt - -dw 1.1e-9 + -Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt + -dw 1.1e-9 PO4-3 = PO4-3 - -gamma 4.0 0 - -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 - -dw 0.612e-9 + -gamma 4 0 + -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 + -dw 0.612e-9 F- = F- - -gamma 3.5 0 - -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 - -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 - -dw 1.46e-9 -36 4.352 + -gamma 3.5 0 + -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 + -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 + -dw 1.46e-9 -36 4.352 Br- = Br- - -gamma 3.0 0 - -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 - -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.820 - -dw 2.01e-9 139 2.94 0 1.304 + -gamma 3 0 + -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 + -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.82 + -dw 2.01e-9 139 2.94 0 1.304 Zn+2 = Zn+2 - -gamma 5.0 0 - -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 - -dw 0.715e-9 + -gamma 5 0 + -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 + -dw 0.715e-9 Cd+2 = Cd+2 - -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 - -dw 0.717e-9 + -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 + -dw 0.717e-9 Pb+2 = Pb+2 - -Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt - -dw 0.945e-9 + -Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt + -dw 0.945e-9 Cu+2 = Cu+2 - -gamma 6.0 0 - -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 - -dw 0.733e-9 + -gamma 6 0 + -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 + -dw 0.733e-9 # redox-uncoupled gases Hdg = Hdg # H2 - -Vm 6.52 0.78 0.12 # supcrt - -dw 5.13e-9 + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 Oxg = Oxg # O2 - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt - -dw 2.35e-9 + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 Mtg = Mtg # CH4 - -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 - -dw 1.85e-9 + -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 Ntg = Ntg # N2 - -Vm 7 # Pray et al., 1952, IEC 44. 1146 - -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 + -Vm 7 # Pray et al., 1952, IEC 44 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 H2Sg = H2Sg # H2S - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 - -dw 2.1e-9 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 # aqueous species H2O = OH- + H+ - -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 - -gamma 3.5 0 - -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 - -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH - -dw 5.27e-9 478 0.8695 + -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 + -gamma 3.5 0 + -Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1 + -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH + -dw 5.27e-9 478 0.8695 2 H2O = O2 + 4 H+ + 4 e- - -log_k -86.08 + -log_k -86.08 -delta_h 134.79 kcal - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt - -dw 2.35e-9 + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 2 H+ + 2 e- = H2 - -log_k -3.15 + -log_k -3.15 -delta_h -1.759 kcal - -Vm 6.52 0.78 0.12 # supcrt - -dw 5.13e-9 + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 H+ + Cl- = HCl - -log_k -0.5 - -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50C - -gamma 0 0.4256 - -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 + -log_k -0.5 + -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50C + -gamma 0 0.4256 + -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 CO3-2 + H+ = HCO3- - -log_k 10.329; -delta_h -3.561 kcal - -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 - -gamma 5.4 0 - -Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144 - -viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253 - -dw 1.18e-9 -190 11.386 + -log_k 10.329; -delta_h -3.561 kcal + -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 + -Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144 + -viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253 + -dw 1.18e-9 -190 11.386 CO3-2 + 2 H+ = CO2 + H2O - -log_k 16.681 + -log_k 16.681 -delta_h -5.738 kcal - -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 - -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 - -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 -2CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T - -log_k -1.8 - -analytical_expression 8.68 -0.0103 -2190 - -Vm 14.58 1.84 4.14 -2.46 -3.20 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 + -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171 + -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 +2 CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T + -log_k -1.8 + -analytical_expression 8.68 -0.0103 -2190 + -Vm 14.58 1.84 4.14 -2.46 -3.2 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O - -log_k 41.071 + -log_k 41.071 -delta_h -61.039 kcal - -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 - -dw 1.85e-9 + -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 SO4-2 + H+ = HSO4- - -log_k 1.988; -delta_h 3.85 kcal - -analytic -56.889 0.006473 2307.9 19.8858 - -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 - -viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987 - -dw 1.22e-9 1000 15.0 2.861 + -log_k 1.988; -delta_h 3.85 kcal + -analytic -56.889 0.006473 2307.9 19.8858 + -Vm 8.2 9.259 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987 + -dw 1.22e-9 1000 15 2.861 HS- = S-2 + H+ - -log_k -12.918 - -delta_h 12.1 kcal - -gamma 5.0 0 - -dw 0.731e-9 + -log_k -12.918 + -delta_h 12.1 kcal + -gamma 5 0 + -dw 0.731e-9 SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O - -log_k 33.65 - -delta_h -60.140 kcal - -gamma 3.5 0 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt - -dw 1.73e-9 + -log_k 33.65 + -delta_h -60.14 kcal + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt + -dw 1.73e-9 HS- + H+ = H2S - -log_k 6.994; -delta_h -5.30 kcal - -analytical -11.17 0.02386 3279.0 - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 - -dw 2.1e-9 -2H2S = (H2S)2 # activity correction for H2S solubility at high P, T - -analytical_expression 10.227 -0.01384 -2200 - -Vm 36.41 -71.95 0 0 2.58 - -dw 2.1e-9 + -log_k 6.994; -delta_h -5.3 kcal + -analytical -11.17 0.02386 3279 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 +2 H2S = (H2S)2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 H2Sg = HSg- + H+ - -log_k -6.994; -delta_h 5.30 kcal - -analytical_expression 11.17 -0.02386 -3279.0 - -gamma 3.5 0 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt - -dw 1.73e-9 -2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T - -analytical_expression 10.227 -0.01384 -2200 - -Vm 36.41 -71.95 0 0 2.58 - -dw 2.1e-9 + -log_k -6.994; -delta_h 5.3 kcal + -analytical_expression 11.17 -0.02386 -3279 + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt + -dw 1.73e-9 +2 H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 NO3- + 2 H+ + 2 e- = NO2- + H2O - -log_k 28.570 - -delta_h -43.760 kcal - -gamma 3.0 0 - -Vm 5.5864 5.8590 3.4472 -3.0212 1.1847 # supcrt - -dw 1.91e-9 + -log_k 28.57 + -delta_h -43.76 kcal + -gamma 3 0 + -Vm 5.5864 5.859 3.4472 -3.0212 1.1847 # supcrt + -dw 1.91e-9 2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O - -log_k 207.08 - -delta_h -312.130 kcal - -Vm 7 # Pray et al., 1952, IEC 44. 1146 - -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 + -log_k 207.08 + -delta_h -312.13 kcal + -Vm 7 # Pray et al., 1952, IEC 44 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O - -log_k 119.077 - -delta_h -187.055 kcal - -gamma 2.5 0 - -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 - -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 - -dw 1.98e-9 178 3.747 0 1.220 + -log_k 119.077 + -delta_h -187.055 kcal + -gamma 2.5 0 + -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 + -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -dw 1.98e-9 178 3.747 0 1.22 #AmmH+ = Amm + H+ NH4+ = NH3 + H+ - -log_k -9.252 - -delta_h 12.48 kcal - -analytic 0.6322 -0.001225 -2835.76 - -Vm 6.69 2.8 3.58 -2.88 1.43 - -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 - -dw 2.28e-9 + -log_k -9.252 + -delta_h 12.48 kcal + -analytic 0.6322 -0.001225 -2835.76 + -Vm 6.69 2.8 3.58 -2.88 1.43 + -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -dw 2.28e-9 #NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O # -log_k 119.077 # -delta_h -187.055 kcal @@ -320,351 +324,351 @@ NH4+ = NH3 + H+ # -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 #AmmH+ + SO4-2 = AmmHSO4- NH4+ + SO4-2 = NH4SO4- - -gamma 6.54 -0.08 - -log_k 1.106; -delta_h 4.30 kcal - -Vm -3.23 0 -68.42 0 -14.27 0 68.51 0 -0.4099 0.2339 - -viscosity 0.24 0 0 3.3e-3 -0.10 0.528 0.748 - -dw 1.35e-9 500 12.50 3.0 -1 + -gamma 6.54 -0.08 + -log_k 1.106; -delta_h 4.3 kcal + -Vm -3.23 0 -68.42 0 -14.27 0 68.51 0 -0.4099 0.2339 + -viscosity 0.24 0 0 3.3e-3 -0.1 0.528 0.748 + -dw 1.35e-9 500 12.5 3 -1 H3BO3 = H2BO3- + H+ - -log_k -9.24 - -delta_h 3.224 kcal + -log_k -9.24 + -delta_h 3.224 kcal H3BO3 + F- = BF(OH)3- - -log_k -0.4 - -delta_h 1.850 kcal + -log_k -0.4 + -delta_h 1.85 kcal H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O - -log_k 7.63 - -delta_h 1.618 kcal + -log_k 7.63 + -delta_h 1.618 kcal H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O - -log_k 13.67 + -log_k 13.67 -delta_h -1.614 kcal H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O - -log_k 20.28 + -log_k 20.28 -delta_h -1.846 kcal PO4-3 + H+ = HPO4-2 - -log_k 12.346 - -delta_h -3.530 kcal - -gamma 5.0 0 - -dw 0.69e-9 - -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 + -log_k 12.346 + -delta_h -3.53 kcal + -gamma 5 0 + -dw 0.69e-9 + -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 PO4-3 + 2 H+ = H2PO4- - -log_k 19.553 - -delta_h -4.520 kcal - -gamma 5.4 0 - -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 - -dw 0.846e-9 -PO4-3 + 3H+ = H3PO4 - log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 - delta_h -10.1 kJ - -Vm 7.47 12.4 6.29 -3.29 0 + -log_k 19.553 + -delta_h -4.52 kcal + -gamma 5.4 0 + -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 + -dw 0.846e-9 +PO4-3 + 3 H+ = H3PO4 + log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 + delta_h -10.1 kJ + -Vm 7.47 12.4 6.29 -3.29 0 H+ + F- = HF - -log_k 3.18 - -delta_h 3.18 kcal - -analytic -2.033 0.012645 429.01 - -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt + -log_k 3.18 + -delta_h 3.18 kcal + -analytic -2.033 0.012645 429.01 + -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt H+ + 2 F- = HF2- - -log_k 3.76 - -delta_h 4.550 kcal - -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt + -log_k 3.76 + -delta_h 4.55 kcal + -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt Ca+2 + H2O = CaOH+ + H+ - -log_k -12.78 + -log_k -12.78 Ca+2 + CO3-2 = CaCO3 - -log_k 3.224; -delta_h 3.545 kcal - -analytic -1228.732 -0.299440 35512.75 485.818 - -dw 4.46e-10 # complexes: calc'd with the Pikal formula - -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt + -log_k 3.224; -delta_h 3.545 kcal + -analytic -1228.732 -0.29944 35512.75 485.818 + -dw 4.46e-10 # complexes: calc'd with the Pikal formula + -Vm -.243 -8.3748 9.0417 -2.4328 -.03 # supcrt Ca+2 + CO3-2 + H+ = CaHCO3+ - -log_k 10.91; -delta_h 4.38 kcal - -analytic -6.009 3.377e-2 2044 - -gamma 6.0 0 - -Vm 30.19 .010 5.75 -2.78 .308 5.4 - -dw 5.06e-10 + -log_k 10.91; -delta_h 4.38 kcal + -analytic -6.009 3.377e-2 2044 + -gamma 6 0 + -Vm 30.19 .01 5.75 -2.78 .308 5.4 + -dw 5.06e-10 Ca+2 + SO4-2 = CaSO4 - -log_k 2.25 - -delta_h 1.325 kcal + -log_k 2.25 + -delta_h 1.325 kcal -dw 4.71e-10 - -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # supcrt + -Vm 2.791 -.9666 6.13 -2.739 -.001 # supcrt Ca+2 + HSO4- = CaHSO4+ - -log_k 1.08 + -log_k 1.08 Ca+2 + PO4-3 = CaPO4- - -log_k 6.459 - -delta_h 3.10 kcal - -gamma 5.4 0.0 + -log_k 6.459 + -delta_h 3.1 kcal + -gamma 5.4 0 Ca+2 + HPO4-2 = CaHPO4 - -log_k 2.739 + -log_k 2.739 -delta_h 3.3 kcal Ca+2 + H2PO4- = CaH2PO4+ - -log_k 1.408 + -log_k 1.408 -delta_h 3.4 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 # Ca+2 + F- = CaF+ # -log_k 0.94 # -delta_h 4.120 kcal # -gamma 5.5 0.0 # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt Mg+2 + H2O = MgOH+ + H+ - -log_k -11.44 + -log_k -11.44 -delta_h 15.952 kcal - -gamma 6.5 0 + -gamma 6.5 0 Mg+2 + CO3-2 = MgCO3 - -log_k 2.98 - -delta_h 2.713 kcal - -analytic 0.9910 0.00667 - -Vm -0.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt - -dw 4.21e-10 + -log_k 2.98 + -delta_h 2.713 kcal + -analytic 0.991 0.00667 + -Vm -0.5837 -9.2067 9.3687 -2.3984 -.03 # supcrt + -dw 4.21e-10 Mg+2 + H+ + CO3-2 = MgHCO3+ - -log_k 11.399 + -log_k 11.399 -delta_h -2.771 kcal - -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 - -gamma 4.0 0 - -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt - -dw 4.78e-10 + -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 + -gamma 4 0 + -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt + -dw 4.78e-10 Mg+2 + SO4-2 = MgSO4 - -gamma 0 0.20 - -log_k 2.42; -delta_h 19.0 kJ - -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -Vm 8.65 -10.21 29.58 -18.60 1.061 - -viscosity 0.318 -5.4e-4 -3.42e-2 0.708 3.70e-3 0.696 - -dw 4.45e-10 + -gamma 0 0.2 + -log_k 2.42; -delta_h 19 kJ + -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm 8.65 -10.21 29.58 -18.6 1.061 + -viscosity 0.318 -5.4e-4 -3.42e-2 0.708 3.7e-3 0.696 + -dw 4.45e-10 SO4-2 + MgSO4 = Mg(SO4)2-2 - -gamma 7 0.047 - -log_k 0.52; -delta_h -13.6 kJ - -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -Vm -8.14 -62.20 -15.96 3.29 -3.01 0 150 0 0.153 3.79e-2 - -viscosity -0.169 5e-4 -5.69e-2 0.110 2.03e-3 2.027 -1e-3 - -dw 0.845e-9 -200 8.0 0 0.965 + -gamma 7 0.047 + -log_k 0.52; -delta_h -13.6 kJ + -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm -8.14 -62.2 -15.96 3.29 -3.01 0 150 0 0.153 3.79e-2 + -viscosity -0.169 5e-4 -5.69e-2 0.11 2.03e-3 2.027 -1e-3 + -dw 0.845e-9 -200 8 0 0.965 Mg+2 + PO4-3 = MgPO4- - -log_k 6.589 - -delta_h 3.10 kcal - -gamma 5.4 0 + -log_k 6.589 + -delta_h 3.1 kcal + -gamma 5.4 0 Mg+2 + HPO4-2 = MgHPO4 - -log_k 2.87 + -log_k 2.87 -delta_h 3.3 kcal Mg+2 + H2PO4- = MgH2PO4+ - -log_k 1.513 + -log_k 1.513 -delta_h 3.4 kcal - -gamma 5.4 0 + -gamma 5.4 0 Mg+2 + F- = MgF+ - -log_k 1.82 - -delta_h 3.20 kcal - -gamma 4.5 0 - -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt + -log_k 1.82 + -delta_h 3.2 kcal + -gamma 4.5 0 + -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt Na+ + OH- = NaOH - -log_k -10 # remove this complex + -log_k -10 # remove this complex Na+ + HCO3- = NaHCO3 - -log_k -0.06; -delta_h 21 kJ - -gamma 0 0.2 - -Vm 7.95 0 0 0 0.609 - -viscosity -4e-2 -2.717 1.67e-5 - -dw 6.73e-10 + -log_k -0.06; -delta_h 21 kJ + -gamma 0 0.2 + -Vm 7.95 0 0 0 0.609 + -viscosity -4e-2 -2.717 1.67e-5 + -dw 6.73e-10 Na+ + SO4-2 = NaSO4- - -gamma 5.5 0 - -log_k 0.6; -delta_h -14.4 kJ - -analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC - -Vm 1.99 -10.78 21.88 -12.70 1.601 5 32.38 501 1.565e-2 0.2325 - -viscosity 0.20 -5.93e-2 -4.0e-4 8.46e-3 1.78e-3 2.308 -0.208 - -dw 1.13e-9 -23 8.50 0.392 0.521 + -gamma 5.5 0 + -log_k 0.6; -delta_h -14.4 kJ + -analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC + -Vm 1.99 -10.78 21.88 -12.7 1.601 5 32.38 501 1.565e-2 0.2325 + -viscosity 0.2 -5.93e-2 -4e-4 8.46e-3 1.78e-3 2.308 -0.208 + -dw 1.13e-9 -23 8.5 0.392 0.521 Na+ + HPO4-2 = NaHPO4- - -log_k 0.29 - -gamma 5.4 0 - -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 Na+ + F- = NaF - -log_k -0.24 - -Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt + -log_k -0.24 + -Vm 2.7483 -1.0708 6.1709 -2.7347 -.03 # supcrt K+ + HCO3- = KHCO3 - -log_k -0.35; -delta_h 12 kJ - -gamma 0 9.4e-3 - -Vm 9.48 0 0 0 -0.542 - -viscosity 0.7 -1.289 9e-2 + -log_k -0.35; -delta_h 12 kJ + -gamma 0 9.4e-3 + -Vm 9.48 0 0 0 -0.542 + -viscosity 0.7 -1.289 9e-2 K+ + SO4-2 = KSO4- - -gamma 5.4 0.19 - -log_k 0.6; -delta_h -10.4 kJ - -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC - -Vm 13.48 -18.03 61.74 -19.60 2.046 5.4 -17.32 0 0.1522 1.919 - -viscosity -1.0 1.06 1e-4 -0.464 3.78e-2 0.539 -0.690 - -dw 0.90e-9 63 8.48 0 1.80 + -gamma 5.4 0.19 + -log_k 0.6; -delta_h -10.4 kJ + -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC + -Vm 13.48 -18.03 61.74 -19.6 2.046 5.4 -17.32 0 0.1522 1.919 + -viscosity -1 1.06 1e-4 -0.464 3.78e-2 0.539 -0.69 + -dw 0.9e-9 63 8.48 0 1.8 K+ + HPO4-2 = KHPO4- - -log_k 0.29 - -gamma 5.4 0 - -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 Fe+2 + H2O = FeOH+ + H+ - -log_k -9.5 - -delta_h 13.20 kcal - -gamma 5.0 0 -Fe+2 + 3H2O = Fe(OH)3- + 3H+ - -log_k -31.0 + -log_k -9.5 + -delta_h 13.2 kcal + -gamma 5 0 +Fe+2 + 3 H2O = Fe(OH)3- + 3 H+ + -log_k -31 -delta_h 30.3 kcal - -gamma 5.0 0 + -gamma 5 0 Fe+2 + Cl- = FeCl+ - -log_k 0.14 + -log_k 0.14 Fe+2 + CO3-2 = FeCO3 - -log_k 4.38 + -log_k 4.38 Fe+2 + HCO3- = FeHCO3+ - -log_k 2.0 + -log_k 2 Fe+2 + SO4-2 = FeSO4 - -log_k 2.25 - -delta_h 3.230 kcal - -Vm -13 0 123 + -log_k 2.25 + -delta_h 3.23 kcal + -Vm -13 0 123 Fe+2 + HSO4- = FeHSO4+ - -log_k 1.08 -Fe+2 + 2HS- = Fe(HS)2 - -log_k 8.95 -Fe+2 + 3HS- = Fe(HS)3- - -log_k 10.987 + -log_k 1.08 +Fe+2 + 2 HS- = Fe(HS)2 + -log_k 8.95 +Fe+2 + 3 HS- = Fe(HS)3- + -log_k 10.987 Fe+2 + HPO4-2 = FeHPO4 - -log_k 3.6 + -log_k 3.6 Fe+2 + H2PO4- = FeH2PO4+ - -log_k 2.7 - -gamma 5.4 0 + -log_k 2.7 + -gamma 5.4 0 Fe+2 + F- = FeF+ - -log_k 1.0 + -log_k 1 Fe+2 = Fe+3 + e- - -log_k -13.02 - -delta_h 9.680 kcal - -gamma 9.0 0 + -log_k -13.02 + -delta_h 9.68 kcal + -gamma 9 0 Fe+3 + H2O = FeOH+2 + H+ - -log_k -2.19 - -delta_h 10.4 kcal - -gamma 5.0 0 + -log_k -2.19 + -delta_h 10.4 kcal + -gamma 5 0 Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ - -log_k -5.67 - -delta_h 17.1 kcal - -gamma 5.4 0 + -log_k -5.67 + -delta_h 17.1 kcal + -gamma 5.4 0 Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ - -log_k -12.56 - -delta_h 24.8 kcal + -log_k -12.56 + -delta_h 24.8 kcal Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ - -log_k -21.6 - -delta_h 31.9 kcal - -gamma 5.4 0 -Fe+2 + 2H2O = Fe(OH)2 + 2H+ - -log_k -20.57 + -log_k -21.6 + -delta_h 31.9 kcal + -gamma 5.4 0 +Fe+2 + 2 H2O = Fe(OH)2 + 2 H+ + -log_k -20.57 -delta_h 28.565 kcal 2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ - -log_k -2.95 - -delta_h 13.5 kcal + -log_k -2.95 + -delta_h 13.5 kcal 3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ - -log_k -6.3 - -delta_h 14.3 kcal + -log_k -6.3 + -delta_h 14.3 kcal Fe+3 + Cl- = FeCl+2 - -log_k 1.48 - -delta_h 5.6 kcal - -gamma 5.0 0 + -log_k 1.48 + -delta_h 5.6 kcal + -gamma 5 0 Fe+3 + 2 Cl- = FeCl2+ - -log_k 2.13 - -gamma 5.0 0 + -log_k 2.13 + -gamma 5 0 Fe+3 + 3 Cl- = FeCl3 - -log_k 1.13 + -log_k 1.13 Fe+3 + SO4-2 = FeSO4+ - -log_k 4.04 - -delta_h 3.91 kcal - -gamma 5.0 0 + -log_k 4.04 + -delta_h 3.91 kcal + -gamma 5 0 Fe+3 + HSO4- = FeHSO4+2 - -log_k 2.48 + -log_k 2.48 Fe+3 + 2 SO4-2 = Fe(SO4)2- - -log_k 5.38 - -delta_h 4.60 kcal + -log_k 5.38 + -delta_h 4.6 kcal Fe+3 + HPO4-2 = FeHPO4+ - -log_k 5.43 - -delta_h 5.76 kcal - -gamma 5.0 0 + -log_k 5.43 + -delta_h 5.76 kcal + -gamma 5 0 Fe+3 + H2PO4- = FeH2PO4+2 - -log_k 5.43 - -gamma 5.4 0 + -log_k 5.43 + -gamma 5.4 0 Fe+3 + F- = FeF+2 - -log_k 6.2 - -delta_h 2.7 kcal - -gamma 5.0 0 + -log_k 6.2 + -delta_h 2.7 kcal + -gamma 5 0 Fe+3 + 2 F- = FeF2+ - -log_k 10.8 - -delta_h 4.8 kcal - -gamma 5.0 0 + -log_k 10.8 + -delta_h 4.8 kcal + -gamma 5 0 Fe+3 + 3 F- = FeF3 - -log_k 14.0 - -delta_h 5.4 kcal + -log_k 14 + -delta_h 5.4 kcal Mn+2 + H2O = MnOH+ + H+ - -log_k -10.59 - -delta_h 14.40 kcal - -gamma 5.0 0 -Mn+2 + 3H2O = Mn(OH)3- + 3H+ - -log_k -34.8 - -gamma 5.0 0 + -log_k -10.59 + -delta_h 14.4 kcal + -gamma 5 0 +Mn+2 + 3 H2O = Mn(OH)3- + 3 H+ + -log_k -34.8 + -gamma 5 0 Mn+2 + Cl- = MnCl+ - -log_k 0.61 - -gamma 5.0 0 - -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 + -log_k 0.61 + -gamma 5 0 + -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 Mn+2 + 2 Cl- = MnCl2 - -log_k 0.25 - -Vm 1e-5 0 144 + -log_k 0.25 + -Vm 1e-5 0 144 Mn+2 + 3 Cl- = MnCl3- - -log_k -0.31 - -gamma 5.0 0 - -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 + -log_k -0.31 + -gamma 5 0 + -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 Mn+2 + CO3-2 = MnCO3 - -log_k 4.9 + -log_k 4.9 Mn+2 + HCO3- = MnHCO3+ - -log_k 1.95 - -gamma 5.0 0 + -log_k 1.95 + -gamma 5 0 Mn+2 + SO4-2 = MnSO4 - -log_k 2.25 - -delta_h 3.370 kcal - -Vm -1.31 -1.83 62.3 -2.7 + -log_k 2.25 + -delta_h 3.37 kcal + -Vm -1.31 -1.83 62.3 -2.7 Mn+2 + 2 NO3- = Mn(NO3)2 - -log_k 0.6 + -log_k 0.6 -delta_h -0.396 kcal - -Vm 6.16 0 29.4 0 0.9 + -Vm 6.16 0 29.4 0 0.9 Mn+2 + F- = MnF+ - -log_k 0.84 - -gamma 5.0 0 + -log_k 0.84 + -gamma 5 0 Mn+2 = Mn+3 + e- - -log_k -25.51 - -delta_h 25.80 kcal - -gamma 9.0 0 + -log_k -25.51 + -delta_h 25.8 kcal + -gamma 9 0 Al+3 + H2O = AlOH+2 + H+ - -log_k -5.0 - -delta_h 11.49 kcal - -analytic -38.253 0.0 -656.27 14.327 - -gamma 5.4 0 - -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353. + -log_k -5 + -delta_h 11.49 kcal + -analytic -38.253 0 -656.27 14.327 + -gamma 5.4 0 + -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353 Al+3 + 2 H2O = Al(OH)2+ + 2 H+ - -log_k -10.1 - -delta_h 26.90 kcal - -gamma 5.4 0 - -analytic 88.50 0.0 -9391.6 -27.121 + -log_k -10.1 + -delta_h 26.9 kcal + -gamma 5.4 0 + -analytic 88.5 0 -9391.6 -27.121 Al+3 + 3 H2O = Al(OH)3 + 3 H+ - -log_k -16.9 - -delta_h 39.89 kcal - -analytic 226.374 0.0 -18247.8 -73.597 + -log_k -16.9 + -delta_h 39.89 kcal + -analytic 226.374 0 -18247.8 -73.597 Al+3 + 4 H2O = Al(OH)4- + 4 H+ - -log_k -22.7 - -delta_h 42.30 kcal - -analytic 51.578 0.0 -11168.9 -14.865 - -gamma 4.5 0 + -log_k -22.7 + -delta_h 42.3 kcal + -analytic 51.578 0 -11168.9 -14.865 + -gamma 4.5 0 -dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959 Al+3 + SO4-2 = AlSO4+ - -log_k 3.5 + -log_k 3.5 -delta_h 2.29 kcal - -gamma 4.5 0 -Al+3 + 2SO4-2 = Al(SO4)2- - -log_k 5.0 + -gamma 4.5 0 +Al+3 + 2 SO4-2 = Al(SO4)2- + -log_k 5 -delta_h 3.11 kcal - -gamma 4.5 0 + -gamma 4.5 0 Al+3 + HSO4- = AlHSO4+2 - -log_k 0.46 + -log_k 0.46 Al+3 + F- = AlF+2 - -log_k 7.0 - -delta_h 1.060 kcal - -gamma 5.4 0 + -log_k 7 + -delta_h 1.06 kcal + -gamma 5.4 0 Al+3 + 2 F- = AlF2+ - -log_k 12.7 - -delta_h 1.980 kcal - -gamma 5.4 0 + -log_k 12.7 + -delta_h 1.98 kcal + -gamma 5.4 0 Al+3 + 3 F- = AlF3 - -log_k 16.8 - -delta_h 2.160 kcal + -log_k 16.8 + -delta_h 2.16 kcal Al+3 + 4 F- = AlF4- - -log_k 19.4 - -delta_h 2.20 kcal - -gamma 4.5 0 + -log_k 19.4 + -delta_h 2.2 kcal + -gamma 4.5 0 # Al+3 + 5 F- = AlF5-2 # log_k 20.6 # delta_h 1.840 kcal @@ -672,681 +676,681 @@ Al+3 + 4 F- = AlF4- # log_k 20.6 # delta_h -1.670 kcal H4SiO4 = H3SiO4- + H+ - -log_k -9.83 - -delta_h 6.12 kcal - -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 - -gamma 4 0 - -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 + -log_k -9.83 + -delta_h 6.12 kcal + -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669 + -gamma 4 0 + -Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt H2O in a1 H4SiO4 = H2SiO4-2 + 2 H+ - -log_k -23.0 - -delta_h 17.6 kcal - -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 - -gamma 5.4 0 + -log_k -23 + -delta_h 17.6 kcal + -analytic -294.0184 -0.07265 11204.49 108.18466 -1119669 + -gamma 5.4 0 H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O - -log_k 30.18 - -delta_h -16.260 kcal - -gamma 5.0 0 - -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt + -log_k 30.18 + -delta_h -16.26 kcal + -gamma 5 0 + -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt Ba+2 + H2O = BaOH+ + H+ - -log_k -13.47 - -gamma 5.0 0 + -log_k -13.47 + -gamma 5 0 Ba+2 + CO3-2 = BaCO3 - -log_k 2.71 - -delta_h 3.55 kcal - -analytic 0.113 0.008721 - -Vm .2907 -7.0717 8.5295 -2.4867 -.0300 # supcrt + -log_k 2.71 + -delta_h 3.55 kcal + -analytic 0.113 0.008721 + -Vm .2907 -7.0717 8.5295 -2.4867 -.03 # supcrt Ba+2 + HCO3- = BaHCO3+ - -log_k 0.982 + -log_k 0.982 -delta_h 5.56 kcal - -analytic -3.0938 0.013669 + -analytic -3.0938 0.013669 Ba+2 + SO4-2 = BaSO4 - -log_k 2.7 + -log_k 2.7 Sr+2 + H2O = SrOH+ + H+ - -log_k -13.29 - -gamma 5.0 0 + -log_k -13.29 + -gamma 5 0 Sr+2 + CO3-2 + H+ = SrHCO3+ - -log_k 11.509 - -delta_h 2.489 kcal - -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 - -gamma 5.4 0 + -log_k 11.509 + -delta_h 2.489 kcal + -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 Sr+2 + CO3-2 = SrCO3 - -log_k 2.81 - -delta_h 5.22 kcal - -analytic -1.019 0.012826 - -Vm -.1787 -8.2177 8.9799 -2.4393 -.0300 # supcrt + -log_k 2.81 + -delta_h 5.22 kcal + -analytic -1.019 0.012826 + -Vm -.1787 -8.2177 8.9799 -2.4393 -.03 # supcrt Sr+2 + SO4-2 = SrSO4 - -log_k 2.29 - -delta_h 2.08 kcal - -Vm 6.7910 -.9666 6.1300 -2.7390 -.0010 # celestite solubility + -log_k 2.29 + -delta_h 2.08 kcal + -Vm 6.791 -.9666 6.13 -2.739 -.001 # celestite solubility Li+ + SO4-2 = LiSO4- - -log_k 0.64 - -gamma 5.0 0 + -log_k 0.64 + -gamma 5 0 Cu+2 + e- = Cu+ - -log_k 2.72 - -delta_h 1.65 kcal - -gamma 2.5 0 -Cu+ + 2Cl- = CuCl2- - -log_k 5.50 + -log_k 2.72 + -delta_h 1.65 kcal + -gamma 2.5 0 +Cu+ + 2 Cl- = CuCl2- + -log_k 5.5 -delta_h -0.42 kcal - -gamma 4.0 0 -Cu+ + 3Cl- = CuCl3-2 - -log_k 5.70 + -gamma 4 0 +Cu+ + 3 Cl- = CuCl3-2 + -log_k 5.7 -delta_h 0.26 kcal - -gamma 5.0 0.0 + -gamma 5 0 Cu+2 + CO3-2 = CuCO3 - -log_k 6.73 -Cu+2 + 2CO3-2 = Cu(CO3)2-2 - -log_k 9.83 + -log_k 6.73 +Cu+2 + 2 CO3-2 = Cu(CO3)2-2 + -log_k 9.83 Cu+2 + HCO3- = CuHCO3+ - -log_k 2.7 + -log_k 2.7 Cu+2 + Cl- = CuCl+ - -log_k 0.43 + -log_k 0.43 -delta_h 8.65 kcal - -gamma 4.0 0 - -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 -Cu+2 + 2Cl- = CuCl2 - -log_k 0.16 + -gamma 4 0 + -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 +Cu+2 + 2 Cl- = CuCl2 + -log_k 0.16 -delta_h 10.56 kcal - -Vm 26.8 0 -136 -Cu+2 + 3Cl- = CuCl3- - -log_k -2.29 + -Vm 26.8 0 -136 +Cu+2 + 3 Cl- = CuCl3- + -log_k -2.29 -delta_h 13.69 kcal - -gamma 4.0 0 -Cu+2 + 4Cl- = CuCl4-2 - -log_k -4.59 + -gamma 4 0 +Cu+2 + 4 Cl- = CuCl4-2 + -log_k -4.59 -delta_h 17.78 kcal - -gamma 5.0 0 + -gamma 5 0 Cu+2 + F- = CuF+ - -log_k 1.26 + -log_k 1.26 -delta_h 1.62 kcal Cu+2 + H2O = CuOH+ + H+ - -log_k -8.0 - -gamma 4.0 0 + -log_k -8 + -gamma 4 0 Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ - -log_k -13.68 + -log_k -13.68 Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ - -log_k -26.9 + -log_k -26.9 Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ - -log_k -39.6 -2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ - -log_k -10.359 + -log_k -39.6 +2 Cu+2 + 2 H2O = Cu2(OH)2+2 + 2 H+ + -log_k -10.359 -delta_h 17.539 kcal - -analytical 2.497 0.0 -3833.0 + -analytical 2.497 0 -3833 Cu+2 + SO4-2 = CuSO4 - -log_k 2.31 - -delta_h 1.220 kcal - -Vm 5.21 0 -14.6 -Cu+2 + 3HS- = Cu(HS)3- - -log_k 25.9 + -log_k 2.31 + -delta_h 1.22 kcal + -Vm 5.21 0 -14.6 +Cu+2 + 3 HS- = Cu(HS)3- + -log_k 25.9 Zn+2 + H2O = ZnOH+ + H+ - -log_k -8.96 + -log_k -8.96 -delta_h 13.4 kcal Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ - -log_k -16.9 + -log_k -16.9 Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ - -log_k -28.4 + -log_k -28.4 Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ - -log_k -41.2 + -log_k -41.2 Zn+2 + Cl- = ZnCl+ - -log_k 0.43 + -log_k 0.43 -delta_h 7.79 kcal - -gamma 4.0 0 - -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 + -gamma 4 0 + -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 Zn+2 + 2 Cl- = ZnCl2 - -log_k 0.45 + -log_k 0.45 -delta_h 8.5 kcal - -Vm -10.1 4.57 241 -2.97 -1e-3 -Zn+2 + 3Cl- = ZnCl3- - -log_k 0.5 + -Vm -10.1 4.57 241 -2.97 -1e-3 +Zn+2 + 3 Cl- = ZnCl3- + -log_k 0.5 -delta_h 9.56 kcal - -gamma 4.0 0 - -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 -Zn+2 + 4Cl- = ZnCl4-2 - -log_k 0.2 + -gamma 4 0 + -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 +Zn+2 + 4 Cl- = ZnCl4-2 + -log_k 0.2 -delta_h 10.96 kcal - -gamma 5.0 0 - -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 + -gamma 5 0 + -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 Zn+2 + H2O + Cl- = ZnOHCl + H+ - -log_k -7.48 -Zn+2 + 2HS- = Zn(HS)2 - -log_k 14.94 -Zn+2 + 3HS- = Zn(HS)3- - -log_k 16.1 + -log_k -7.48 +Zn+2 + 2 HS- = Zn(HS)2 + -log_k 14.94 +Zn+2 + 3 HS- = Zn(HS)3- + -log_k 16.1 Zn+2 + CO3-2 = ZnCO3 - -log_k 5.3 -Zn+2 + 2CO3-2 = Zn(CO3)2-2 - -log_k 9.63 + -log_k 5.3 +Zn+2 + 2 CO3-2 = Zn(CO3)2-2 + -log_k 9.63 Zn+2 + HCO3- = ZnHCO3+ - -log_k 2.1 + -log_k 2.1 Zn+2 + SO4-2 = ZnSO4 - -log_k 2.37 + -log_k 2.37 -delta_h 1.36 kcal - -Vm 2.51 0 18.8 -Zn+2 + 2SO4-2 = Zn(SO4)2-2 - -log_k 3.28 - -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 + -Vm 2.51 0 18.8 +Zn+2 + 2 SO4-2 = Zn(SO4)2-2 + -log_k 3.28 + -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 Zn+2 + Br- = ZnBr+ - -log_k -0.58 -Zn+2 + 2Br- = ZnBr2 - -log_k -0.98 + -log_k -0.58 +Zn+2 + 2 Br- = ZnBr2 + -log_k -0.98 Zn+2 + F- = ZnF+ - -log_k 1.15 + -log_k 1.15 -delta_h 2.22 kcal Cd+2 + H2O = CdOH+ + H+ - -log_k -10.08 + -log_k -10.08 -delta_h 13.1 kcal Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ - -log_k -20.35 + -log_k -20.35 Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ - -log_k -33.3 + -log_k -33.3 Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ - -log_k -47.35 -2Cd+2 + H2O = Cd2OH+3 + H+ - -log_k -9.39 + -log_k -47.35 +2 Cd+2 + H2O = Cd2OH+3 + H+ + -log_k -9.39 -delta_h 10.9 kcal Cd+2 + H2O + Cl- = CdOHCl + H+ - -log_k -7.404 + -log_k -7.404 -delta_h 4.355 kcal Cd+2 + NO3- = CdNO3+ - -log_k 0.4 + -log_k 0.4 -delta_h -5.2 kcal - -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 + -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 Cd+2 + Cl- = CdCl+ - -log_k 1.98 + -log_k 1.98 -delta_h 0.59 kcal - -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 + -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 Cd+2 + 2 Cl- = CdCl2 - -log_k 2.6 + -log_k 2.6 -delta_h 1.24 kcal - -Vm 5.53 + -Vm 5.53 Cd+2 + 3 Cl- = CdCl3- - -log_k 2.4 + -log_k 2.4 -delta_h 3.9 kcal - -Vm 4.6 0 83.9 0 0 0 0 0 0 1 + -Vm 4.6 0 83.9 0 0 0 0 0 0 1 Cd+2 + CO3-2 = CdCO3 - -log_k 2.9 -Cd+2 + 2CO3-2 = Cd(CO3)2-2 - -log_k 6.4 + -log_k 2.9 +Cd+2 + 2 CO3-2 = Cd(CO3)2-2 + -log_k 6.4 Cd+2 + HCO3- = CdHCO3+ - -log_k 1.5 + -log_k 1.5 Cd+2 + SO4-2 = CdSO4 - -log_k 2.46 + -log_k 2.46 -delta_h 1.08 kcal - -Vm 10.4 0 57.9 -Cd+2 + 2SO4-2 = Cd(SO4)2-2 - -log_k 3.5 - -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 + -Vm 10.4 0 57.9 +Cd+2 + 2 SO4-2 = Cd(SO4)2-2 + -log_k 3.5 + -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 Cd+2 + Br- = CdBr+ - -log_k 2.17 + -log_k 2.17 -delta_h -0.81 kcal -Cd+2 + 2Br- = CdBr2 - -log_k 2.9 +Cd+2 + 2 Br- = CdBr2 + -log_k 2.9 Cd+2 + F- = CdF+ - -log_k 1.1 -Cd+2 + 2F- = CdF2 - -log_k 1.5 + -log_k 1.1 +Cd+2 + 2 F- = CdF2 + -log_k 1.5 Cd+2 + HS- = CdHS+ - -log_k 10.17 -Cd+2 + 2HS- = Cd(HS)2 - -log_k 16.53 -Cd+2 + 3HS- = Cd(HS)3- - -log_k 18.71 -Cd+2 + 4HS- = Cd(HS)4-2 - -log_k 20.9 + -log_k 10.17 +Cd+2 + 2 HS- = Cd(HS)2 + -log_k 16.53 +Cd+2 + 3 HS- = Cd(HS)3- + -log_k 18.71 +Cd+2 + 4 HS- = Cd(HS)4-2 + -log_k 20.9 Pb+2 + H2O = PbOH+ + H+ - -log_k -7.71 + -log_k -7.71 Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ - -log_k -17.12 + -log_k -17.12 Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ - -log_k -28.06 + -log_k -28.06 Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ - -log_k -39.7 + -log_k -39.7 2 Pb+2 + H2O = Pb2OH+3 + H+ - -log_k -6.36 + -log_k -6.36 Pb+2 + Cl- = PbCl+ - -log_k 1.6 + -log_k 1.6 -delta_h 4.38 kcal - -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt + -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt Pb+2 + 2 Cl- = PbCl2 - -log_k 1.8 + -log_k 1.8 -delta_h 1.08 kcal - -Vm 6.5402 8.1879 2.5318 -3.1175 -.0300 # supcrt + -Vm 6.5402 8.1879 2.5318 -3.1175 -.03 # supcrt Pb+2 + 3 Cl- = PbCl3- - -log_k 1.7 + -log_k 1.7 -delta_h 2.17 kcal - -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt + -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt Pb+2 + 4 Cl- = PbCl4-2 - -log_k 1.38 + -log_k 1.38 -delta_h 3.53 kcal - -Vm 16.4150 32.2997 -6.9452 -4.1143 2.3118 # supcrt + -Vm 16.415 32.2997 -6.9452 -4.1143 2.3118 # supcrt Pb+2 + CO3-2 = PbCO3 - -log_k 7.24 + -log_k 7.24 Pb+2 + 2 CO3-2 = Pb(CO3)2-2 - -log_k 10.64 + -log_k 10.64 Pb+2 + HCO3- = PbHCO3+ - -log_k 2.9 + -log_k 2.9 Pb+2 + SO4-2 = PbSO4 - -log_k 2.75 + -log_k 2.75 Pb+2 + 2 SO4-2 = Pb(SO4)2-2 - -log_k 3.47 -Pb+2 + 2HS- = Pb(HS)2 - -log_k 15.27 -Pb+2 + 3HS- = Pb(HS)3- - -log_k 16.57 -3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ - -log_k -23.88 + -log_k 3.47 +Pb+2 + 2 HS- = Pb(HS)2 + -log_k 15.27 +Pb+2 + 3 HS- = Pb(HS)3- + -log_k 16.57 +3 Pb+2 + 4 H2O = Pb3(OH)4+2 + 4 H+ + -log_k -23.88 -delta_h 26.5 kcal Pb+2 + NO3- = PbNO3+ - -log_k 1.17 + -log_k 1.17 Pb+2 + Br- = PbBr+ - -log_k 1.77 + -log_k 1.77 -delta_h 2.88 kcal -Pb+2 + 2Br- = PbBr2 - -log_k 1.44 +Pb+2 + 2 Br- = PbBr2 + -log_k 1.44 Pb+2 + F- = PbF+ - -log_k 1.25 -Pb+2 + 2F- = PbF2 - -log_k 2.56 -Pb+2 + 3F- = PbF3- - -log_k 3.42 -Pb+2 + 4F- = PbF4-2 - -log_k 3.1 + -log_k 1.25 +Pb+2 + 2 F- = PbF2 + -log_k 2.56 +Pb+2 + 3 F- = PbF3- + -log_k 3.42 +Pb+2 + 4 F- = PbF4-2 + -log_k 3.1 PHASES Calcite CaCO3 = CO3-2 + Ca+2 - -log_k -8.48 + -log_k -8.48 -delta_h -2.297 kcal - -analytic 17.118 -0.046528 -3496 # 0 - 250C, Ellis, 1959, Plummer and Busenberg, 1982 + -analytic 17.118 -0.046528 -3496 # 0 - 250C, Ellis, 1959, Plummer and Busenberg, 1982 -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3) Aragonite CaCO3 = CO3-2 + Ca+2 - -log_k -8.336 + -log_k -8.336 -delta_h -2.589 kcal - -analytic -171.9773 -0.077993 2903.293 71.595 + -analytic -171.9773 -0.077993 2903.293 71.595 -Vm 34.04 Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 - -log_k -17.09 - -delta_h -9.436 kcal - -analytic 31.283 -0.0898 -6438 # 25C: Hemingway and Robie, 1994; 50175C: Bnzeth et al., 2018, GCA 224, 262-275. + -log_k -17.09 + -delta_h -9.436 kcal + -analytic 31.283 -0.0898 -6438 # 25C: Hemingway and Robie, 1994; 50175C: Bnzeth et al., 2018, GCA 224, 262-275 -Vm 64.5 Siderite FeCO3 = Fe+2 + CO3-2 - -log_k -10.89 - -delta_h -2.480 kcal + -log_k -10.89 + -delta_h -2.48 kcal -Vm 29.2 Rhodochrosite MnCO3 = Mn+2 + CO3-2 - -log_k -11.13 - -delta_h -1.430 kcal + -log_k -11.13 + -delta_h -1.43 kcal -Vm 31.1 Strontianite SrCO3 = Sr+2 + CO3-2 - -log_k -9.271 - -delta_h -0.400 kcal - -analytic 155.0305 0.0 -7239.594 -56.58638 + -log_k -9.271 + -delta_h -0.4 kcal + -analytic 155.0305 0 -7239.594 -56.58638 -Vm 39.69 Witherite BaCO3 = Ba+2 + CO3-2 - -log_k -8.562 - -delta_h 0.703 kcal - -analytic 607.642 0.121098 -20011.25 -236.4948 + -log_k -8.562 + -delta_h 0.703 kcal + -analytic 607.642 0.121098 -20011.25 -236.4948 -Vm 46 Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O - -log_k -4.58 + -log_k -4.58 -delta_h -0.109 kcal - -analytic 68.2401 0.0 -3221.51 -25.0627 - -analytical_expression 93.7 5.99E-03 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 - -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) + -analytic 68.2401 0 -3221.51 -25.0627 + -analytical_expression 93.7 5.99E-3 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 + -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) Anhydrite CaSO4 = Ca+2 + SO4-2 - -log_k -4.36 - -delta_h -1.710 kcal - -analytic 84.90 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323. + -log_k -4.36 + -delta_h -1.71 kcal + -analytic 84.9 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323 -Vm 46.1 # 136.14 / 2.95 Celestite SrSO4 = Sr+2 + SO4-2 - -log_k -6.63 + -log_k -6.63 -delta_h -4.037 kcal # -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 - -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464. + -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464 -Vm 46.4 Barite BaSO4 = Ba+2 + SO4-2 - -log_k -9.97 - -delta_h 6.35 kcal - -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 + -log_k -9.97 + -delta_h 6.35 kcal + -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 -Vm 52.9 Arcanite - K2SO4 = SO4-2 + 2 K+ - log_k -1.776; -delta_h 5 kcal - -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 + K2SO4 = SO4-2 + 2 K+ + log_k -1.776; -delta_h 5 kcal + -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 # Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06 -Vm 65.5 Mirabilite - Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O - -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 + Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O + -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 Vm 216 Thenardite Na2SO4 = 2 Na+ + SO4-2 - -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 + -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 -Vm 52.9 Epsomite - MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O - log_k -1.74; -delta_h 10.57 kJ - -analytical_expression -3.59 6.21e-3 + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -1.74; -delta_h 10.57 kJ + -analytical_expression -3.59 6.21e-3 Vm 147 Hexahydrite - MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O - log_k -1.57; -delta_h 2.35 kJ - -analytical_expression -1.978 1.38e-3 + MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O + log_k -1.57; -delta_h 2.35 kJ + -analytical_expression -1.978 1.38e-3 Vm 132 Kieserite - MgSO4:H2O = Mg+2 + SO4-2 + H2O - log_k -1.16; -delta_h 9.22 kJ - -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 + MgSO4:H2O = Mg+2 + SO4-2 + H2O + log_k -1.16; -delta_h 9.22 kJ + -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 Vm 53.8 Hydroxyapatite Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 - -log_k -3.421 + -log_k -3.421 -delta_h -36.155 kcal -Vm 128.9 Fluorite CaF2 = Ca+2 + 2 F- - -log_k -10.6 - -delta_h 4.69 kcal - -analytic 66.348 0.0 -4298.2 -25.271 + -log_k -10.6 + -delta_h 4.69 kcal + -analytic 66.348 0 -4298.2 -25.271 -Vm 15.7 SiO2(a) SiO2 + 2 H2O = H4SiO4 - -log_k -2.71 - -delta_h 3.340 kcal - -analytic -0.26 0.0 -731.0 + -log_k -2.71 + -delta_h 3.34 kcal + -analytic -0.26 0 -731 Chalcedony SiO2 + 2 H2O = H4SiO4 - -log_k -3.55 - -delta_h 4.720 kcal - -analytic -0.09 0.0 -1032.0 + -log_k -3.55 + -delta_h 4.72 kcal + -analytic -0.09 0 -1032 -Vm 23.1 Quartz SiO2 + 2 H2O = H4SiO4 - -log_k -3.98 - -delta_h 5.990 kcal - -analytic 0.41 0.0 -1309.0 + -log_k -3.98 + -delta_h 5.99 kcal + -analytic 0.41 0 -1309 -Vm 22.67 Gibbsite Al(OH)3 + 3 H+ = Al+3 + 3 H2O - -log_k 8.11 - -delta_h -22.800 kcal + -log_k 8.11 + -delta_h -22.8 kcal -Vm 32.22 Al(OH)3(a) Al(OH)3 + 3 H+ = Al+3 + 3 H2O - -log_k 10.8 - -delta_h -26.500 kcal + -log_k 10.8 + -delta_h -26.5 kcal Kaolinite Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 - -log_k 7.435 - -delta_h -35.300 kcal + -log_k 7.435 + -delta_h -35.3 kcal -Vm 99.35 Albite NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 - -log_k -18.002 + -log_k -18.002 -delta_h 25.896 kcal -Vm 101.31 Anorthite CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 - -log_k -19.714 - -delta_h 11.580 kcal + -log_k -19.714 + -delta_h 11.58 kcal -Vm 105.05 K-feldspar KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 - -log_k -20.573 - -delta_h 30.820 kcal + -log_k -20.573 + -delta_h 30.82 kcal -Vm 108.15 K-mica KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 - -log_k 12.703 + -log_k 12.703 -delta_h -59.376 kcal Chlorite(14A) - Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O - -log_k 68.38 + Mg5Al2Si3O10(OH)8 + 16 H+ = 5 Mg+2 + 2 Al+3 + 3 H4SiO4 + 6 H2O + -log_k 68.38 -delta_h -151.494 kcal Ca-Montmorillonite - Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ - -log_k -45.027 + Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165 Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ + -log_k -45.027 -delta_h 58.373 kcal -Vm 156.16 Talc Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 - -log_k 21.399 + -log_k 21.399 -delta_h -46.352 kcal -Vm 68.34 Illite - K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+ - -log_k -40.267 + K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2 H2O = 0.6 K+ + 0.25 Mg+2 + 2.3 Al(OH)4- + 3.5 H4SiO4 + 1.2 H+ + -log_k -40.267 -delta_h 54.684 kcal -Vm 141.48 Chrysotile Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 - -log_k 32.2 - -delta_h -46.800 kcal - -analytic 13.248 0.0 10217.1 -6.1894 - -Vm 106.5808 # 277.11/2.60 + -log_k 32.2 + -delta_h -46.8 kcal + -analytic 13.248 0 10217.1 -6.1894 + -Vm 106.5808 # 277.11/2.60 Sepiolite - Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 - -log_k 15.760 - -delta_h -10.700 kcal + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 + -log_k 15.76 + -delta_h -10.7 kcal -Vm 143.765 Sepiolite(d) - Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 - -log_k 18.66 + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 + -log_k 18.66 Hematite Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O - -log_k -4.008 + -log_k -4.008 -delta_h -30.845 kcal -Vm 30.39 Goethite FeOOH + 3 H+ = Fe+3 + 2 H2O - -log_k -1.0 - -delta_h -14.48 kcal + -log_k -1 + -delta_h -14.48 kcal -Vm 20.84 Fe(OH)3(a) Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O - -log_k 4.891 + -log_k 4.891 Pyrite FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- - -log_k -18.479 - -delta_h 11.300 kcal + -log_k -18.479 + -delta_h 11.3 kcal -Vm 23.48 FeS(ppt) FeS + H+ = Fe+2 + HS- - -log_k -3.915 + -log_k -3.915 Mackinawite FeS + H+ = Fe+2 + HS- - -log_k -4.648 + -log_k -4.648 -Vm 20.45 Sulfur - S + 2H+ + 2e- = H2S - -log_k 4.882 + S + 2 H+ + 2 e- = H2S + -log_k 4.882 -delta_h -9.5 kcal Vivianite Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O - -log_k -36.0 -Pyrolusite # H2O added for surface calc's + -log_k -36 +Pyrolusite # H2O added for surface calc's MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O - -log_k 41.38 - -delta_h -65.110 kcal + -log_k 41.38 + -delta_h -65.11 kcal Hausmannite Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O - -log_k 61.03 - -delta_h -100.640 kcal + -log_k 61.03 + -delta_h -100.64 kcal Manganite MnOOH + 3 H+ + e- = Mn+2 + 2 H2O - -log_k 25.34 + -log_k 25.34 Pyrochroite Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O - -log_k 15.2 + -log_k 15.2 Halite - NaCl = Cl- + Na+ - log_k 1.570 - -delta_h 1.37 + NaCl = Cl- + Na+ + log_k 1.57 + -delta_h 1.37 #-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915. -Vm 27.1 Sylvite - KCl = K+ + Cl- - log_k 0.900 - -delta_h 8.5 + KCl = K+ + Cl- + log_k 0.9 + -delta_h 8.5 # -analytic 3.984 0.0 -919.55 Vm 37.5 # Gases... CO2(g) CO2 = CO2 - -log_k -1.468 + -log_k -1.468 -delta_h -4.776 kcal - -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 - -T_c 304.2 # critical T, K - -P_c 72.86 # critical P, atm + -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 + -T_c 304.2 # critical T, K + -P_c 72.86 # critical P, atm -Omega 0.225 # acentric factor H2O(g) H2O = H2O - -log_k 1.506; delta_h -44.03 kJ - -T_c 647.3; -P_c 217.60; -Omega 0.344 - -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 + -log_k 1.506; delta_h -44.03 kJ + -T_c 647.3; -P_c 217.6; -Omega 0.344 + -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 O2(g) O2 = O2 - -log_k -2.8983 - -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 - -T_c 154.6; -P_c 49.80; -Omega 0.021 + -log_k -2.8983 + -analytic -7.5001 7.8981e-3 0 0 2.0027e5 + -T_c 154.6; -P_c 49.8; -Omega 0.021 H2(g) H2 = H2 - -log_k -3.1050 - -delta_h -4.184 kJ - -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 - -T_c 33.2; -P_c 12.80; -Omega -0.225 + -log_k -3.105 + -delta_h -4.184 kJ + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + -T_c 33.2; -P_c 12.8; -Omega -0.225 N2(g) N2 = N2 - -log_k -3.1864 - -analytic -58.453 1.818e-3 3199 17.909 -27460 - -T_c 126.2; -P_c 33.50; -Omega 0.039 + -log_k -3.1864 + -analytic -58.453 1.818e-3 3199 17.909 -27460 + -T_c 126.2; -P_c 33.5; -Omega 0.039 H2S(g) - H2S = H+ + HS- - log_k -7.93 - -delta_h 9.1 - -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 - -T_c 373.2; -P_c 88.20; -Omega 0.1 + H2S = H+ + HS- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2; -P_c 88.2; -Omega 0.1 CH4(g) CH4 = CH4 -log_k -2.8 - -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100C - -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100C + -T_c 190.6; -P_c 45.4; -Omega 0.008 #Amm(g) # Amm = Amm NH3(g) NH3 = NH3 - -log_k 1.7966 - -analytic -18.758 3.3670e-4 2.5113e3 4.8619 39.192 - -T_c 405.6; -P_c 111.3; -Omega 0.25 + -log_k 1.7966 + -analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192 + -T_c 405.6; -P_c 111.3; -Omega 0.25 # redox-uncoupled gases Oxg(g) Oxg = Oxg - -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 - -T_c 154.6 ; -P_c 49.80 ; -Omega 0.021 + -analytic -7.5001 7.8981e-3 0 0 2.0027e5 + -T_c 154.6; -P_c 49.8; -Omega 0.021 Hdg(g) Hdg = Hdg - -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 - -T_c 33.2 ; -P_c 12.80 ; -Omega -0.225 + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + -T_c 33.2; -P_c 12.8; -Omega -0.225 Ntg(g) Ntg = Ntg - -analytic -58.453 1.81800e-3 3199 17.909 -27460 - T_c 126.2 ; -P_c 33.50 ; -Omega 0.039 + -analytic -58.453 1.818e-3 3199 17.909 -27460 + T_c 126.2; -P_c 33.5; -Omega 0.039 Mtg(g) Mtg = Mtg -log_k -2.8 - -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100C - -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100C + -T_c 190.6; -P_c 45.4; -Omega 0.008 H2Sg(g) - H2Sg = H+ + HSg- - log_k -7.93 - -delta_h 9.1 - -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 - -T_c 373.2 ; -P_c 88.20 ; -Omega 0.1 + H2Sg = H+ + HSg- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2; -P_c 88.2; -Omega 0.1 Melanterite FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 - -log_k -2.209 - -delta_h 4.910 kcal - -analytic 1.447 -0.004153 0.0 0.0 -214949.0 + -log_k -2.209 + -delta_h 4.91 kcal + -analytic 1.447 -0.004153 0 0 -214949 Alunite - KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6H2O - -log_k -1.4 - -delta_h -50.250 kcal + KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O + -log_k -1.4 + -delta_h -50.25 kcal Jarosite-K KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2 - -log_k -9.21 - -delta_h -31.280 kcal + -log_k -9.21 + -delta_h -31.28 kcal Zn(OH)2(e) Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O - -log_k 11.5 + -log_k 11.5 Smithsonite ZnCO3 = Zn+2 + CO3-2 - -log_k -10.0 - -delta_h -4.36 kcal + -log_k -10 + -delta_h -4.36 kcal Sphalerite ZnS + H+ = Zn+2 + HS- - -log_k -11.618 - -delta_h 8.250 kcal -Willemite 289 - Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4 - -log_k 15.33 + -log_k -11.618 + -delta_h 8.25 kcal +Willemite 289 + Zn2SiO4 + 4 H+ = 2 Zn+2 + H4SiO4 + -log_k 15.33 -delta_h -33.37 kcal Cd(OH)2 Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O - -log_k 13.65 + -log_k 13.65 Otavite 315 CdCO3 = Cd+2 + CO3-2 - -log_k -12.1 + -log_k -12.1 -delta_h -0.019 kcal -CdSiO3 328 - CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4 - -log_k 9.06 +CdSiO3 328 + CdSiO3 + H2O + 2 H+ = Cd+2 + H4SiO4 + -log_k 9.06 -delta_h -16.63 kcal -CdSO4 329 +CdSO4 329 CdSO4 = Cd+2 + SO4-2 - -log_k -0.1 + -log_k -0.1 -delta_h -14.74 kcal -Cerussite 365 +Cerussite 365 PbCO3 = Pb+2 + CO3-2 - -log_k -13.13 - -delta_h 4.86 kcal -Anglesite 384 + -log_k -13.13 + -delta_h 4.86 kcal +Anglesite 384 PbSO4 = Pb+2 + SO4-2 - -log_k -7.79 - -delta_h 2.15 kcal + -log_k -7.79 + -delta_h 2.15 kcal Pb(OH)2 389 - Pb(OH)2 + 2H+ = Pb+2 + 2H2O - -log_k 8.15 + Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O + -log_k 8.15 -delta_h -13.99 kcal EXCHANGE_MASTER_SPECIES - X X- + X X- EXCHANGE_SPECIES X- = X- - -log_k 0.0 + -log_k 0 Na+ + X- = NaX - -log_k 0.0 - -gamma 4.08 0.082 + -log_k 0 + -gamma 4.08 0.082 K+ + X- = KX - -log_k 0.7 - -gamma 3.5 0.015 - -delta_h -4.3 # Jardine & Sparks, 1984 + -log_k 0.7 + -gamma 3.5 0.015 + -delta_h -4.3 # Jardine & Sparks, 1984 Li+ + X- = LiX - -log_k -0.08 - -gamma 6.0 0 - -delta_h 1.4 # Merriam & Thomas, 1956 + -log_k -0.08 + -gamma 6 0 + -delta_h 1.4 # Merriam & Thomas, 1956 # !!!!! # H+ + X- = HX @@ -1355,65 +1359,65 @@ EXCHANGE_SPECIES # AmmH+ + X- = AmmHX NH4+ + X- = NH4X - -log_k 0.6 - -gamma 2.5 0 - -delta_h -2.4 # Laudelout et al., 1968 + -log_k 0.6 + -gamma 2.5 0 + -delta_h -2.4 # Laudelout et al., 1968 - Ca+2 + 2X- = CaX2 - -log_k 0.8 - -gamma 5.0 0.165 - -delta_h 7.2 # Van Bladel & Gheyl, 1980 + Ca+2 + 2 X- = CaX2 + -log_k 0.8 + -gamma 5 0.165 + -delta_h 7.2 # Van Bladel & Gheyl, 1980 - Mg+2 + 2X- = MgX2 - -log_k 0.6 - -gamma 5.5 0.2 - -delta_h 7.4 # Laudelout et al., 1968 + Mg+2 + 2 X- = MgX2 + -log_k 0.6 + -gamma 5.5 0.2 + -delta_h 7.4 # Laudelout et al., 1968 - Sr+2 + 2X- = SrX2 - -log_k 0.91 - -gamma 5.26 0.121 - -delta_h 5.5 # Laudelout et al., 1968 + Sr+2 + 2 X- = SrX2 + -log_k 0.91 + -gamma 5.26 0.121 + -delta_h 5.5 # Laudelout et al., 1968 - Ba+2 + 2X- = BaX2 - -log_k 0.91 - -gamma 4.0 0.153 - -delta_h 4.5 # Laudelout et al., 1968 + Ba+2 + 2 X- = BaX2 + -log_k 0.91 + -gamma 4 0.153 + -delta_h 4.5 # Laudelout et al., 1968 - Mn+2 + 2X- = MnX2 - -log_k 0.52 - -gamma 6.0 0 + Mn+2 + 2 X- = MnX2 + -log_k 0.52 + -gamma 6 0 - Fe+2 + 2X- = FeX2 - -log_k 0.44 - -gamma 6.0 0 + Fe+2 + 2 X- = FeX2 + -log_k 0.44 + -gamma 6 0 - Cu+2 + 2X- = CuX2 - -log_k 0.6 - -gamma 6.0 0 + Cu+2 + 2 X- = CuX2 + -log_k 0.6 + -gamma 6 0 - Zn+2 + 2X- = ZnX2 - -log_k 0.8 - -gamma 5.0 0 + Zn+2 + 2 X- = ZnX2 + -log_k 0.8 + -gamma 5 0 - Cd+2 + 2X- = CdX2 - -log_k 0.8 - -gamma 0.0 0 + Cd+2 + 2 X- = CdX2 + -log_k 0.8 + -gamma 0 0 - Pb+2 + 2X- = PbX2 - -log_k 1.05 - -gamma 0.0 0 + Pb+2 + 2 X- = PbX2 + -log_k 1.05 + -gamma 0 0 - Al+3 + 3X- = AlX3 - -log_k 0.41 - -gamma 9.0 0 + Al+3 + 3 X- = AlX3 + -log_k 0.41 + -gamma 9 0 - AlOH+2 + 2X- = AlOHX2 - -log_k 0.89 - -gamma 0.0 0 + AlOH+2 + 2 X- = AlOHX2 + -log_k 0.89 + -gamma 0 0 SURFACE_MASTER_SPECIES - Hfo_s Hfo_sOH - Hfo_w Hfo_wOH + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH SURFACE_SPECIES # All surface data from # Dzombak and Morel, 1990 @@ -1424,24 +1428,24 @@ SURFACE_SPECIES # strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH - -log_k 0 + -log_k 0 Hfo_sOH + H+ = Hfo_sOH2+ - -log_k 7.29 # = pKa1,int + -log_k 7.29 # = pKa1,int Hfo_sOH = Hfo_sO- + H+ - -log_k -8.93 # = -pKa2,int + -log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH - -log_k 0 + -log_k 0 Hfo_wOH + H+ = Hfo_wOH2+ - -log_k 7.29 # = pKa1,int + -log_k 7.29 # = pKa1,int Hfo_wOH = Hfo_wO- + H+ - -log_k -8.93 # = -pKa2,int + -log_k -8.93 # = -pKa2,int ############################################### # CATIONS # ############################################### @@ -1450,52 +1454,52 @@ SURFACE_SPECIES # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - -log_k 4.97 + -log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ -log_k -5.85 # Strontium Hfo_sOH + Sr+2 = Hfo_sOHSr+2 - -log_k 5.01 + -log_k 5.01 Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ -log_k -6.58 - Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+ + Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2 H+ -log_k -17.6 # Barium Hfo_sOH + Ba+2 = Hfo_sOHBa+2 - -log_k 5.46 + -log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - -log_k -7.2 # table 10.5 + -log_k -7.2 # table 10.5 # # Cations from table 10.2 # # Cadmium Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ - -log_k 0.47 + -log_k 0.47 Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ - -log_k -2.91 + -log_k -2.91 # Zinc Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ - -log_k 0.99 + -log_k 0.99 Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ - -log_k -1.99 + -log_k -1.99 # Copper Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ - -log_k 2.89 + -log_k 2.89 Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ - -log_k 0.6 # table 10.5 + -log_k 0.6 # table 10.5 # Lead Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ - -log_k 4.65 + -log_k 4.65 Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ - -log_k 0.3 # table 10.5 + -log_k 0.3 # table 10.5 # # Derived constants table 10.5 # @@ -1504,18 +1508,18 @@ SURFACE_SPECIES -log_k -4.6 # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ - -log_k -0.4 # table 10.5 + -log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ - -log_k -3.5 # table 10.5 + -log_k -3.5 # table 10.5 # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096 Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ - -log_k -0.95 + -log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ -log_k -2.98 - Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+ + Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2 H+ -log_k -11.55 ############################################### # ANIONS # @@ -1524,51 +1528,51 @@ SURFACE_SPECIES # Anions from table 10.6 # # Phosphate - Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O - -log_k 31.29 + Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O + -log_k 31.29 - Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O - -log_k 25.39 + Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O + -log_k 25.39 Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O - -log_k 17.72 + -log_k 17.72 # # Anions from table 10.7 # # Borate Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O - -log_k 0.62 + -log_k 0.62 # # Anions from table 10.8 # # Sulfate Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O - -log_k 7.78 + -log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - -log_k 0.79 + -log_k 0.79 # # Derived constants table 10.10 # Hfo_wOH + F- + H+ = Hfo_wF + H2O - -log_k 8.7 + -log_k 8.7 Hfo_wOH + F- = Hfo_wOHF- - -log_k 1.6 + -log_k 1.6 # # Carbonate: Van Geen et al., 1994 reoptimized for D&M model # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O - -log_k 12.56 + -log_k 12.56 - Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O - -log_k 20.62 + Hfo_wOH + CO3-2 + 2 H+ = Hfo_wHCO3 + H2O + -log_k 20.62 # # Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422. # - Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 - Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 - Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69 + Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 + Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O; log_K -3.22 + Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2 H+ + H2O; log_K -11.69 MEAN_GAMMAS CaCl2 Ca+2 1 Cl- 2 @@ -1610,15 +1614,15 @@ RATES Quartz -start -1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 -2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol -3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) -4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz -5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 +1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 +2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol +3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) +4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz +5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 10 dif_temp = 1/TK - 1/298 20 pk_w = 13.7 + 4700.4 * dif_temp -40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) +40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) # Integrate... 50 SAVE moles * TIME -end @@ -1663,38 +1667,38 @@ Quartz K-feldspar -start -1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 -2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar -3 REM PARM(2) = Adjusts lab rate to field rate -4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) -5 REM K-Feldspar parameters -10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 -20 RESTORE 10 -30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH -40 DATA 3500, 2000, 2500, 2000 -50 RESTORE 40 -60 READ e_H, e_H2O, e_OH, e_CO2 -70 pk_CO2 = 13 -80 n_CO2 = 0.6 +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM K-Feldspar parameters +10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp -150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis -170 pk_H2O = pk_H2O + e_H2O * dif_temp +170 pk_H2O = pk_H2O + e_H2O * dif_temp 180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) 190 REM rate by OH- -200 pk_OH = pk_OH + e_OH * dif_temp -210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH 220 REM rate by CO2 -230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) -280 moles = rate * TIME +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) +280 moles = rate * TIME 290 SAVE moles -end @@ -1738,38 +1742,38 @@ K-feldspar Albite -start -1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 -2 REM PARM(1) = Specific area of Albite m^2/mol Albite -3 REM PARM(2) = Adjusts lab rate to field rate -4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) -5 REM Albite parameters -10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 -20 RESTORE 10 -30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH -40 DATA 3500, 2000, 2500, 2000 -50 RESTORE 40 -60 READ e_H, e_H2O, e_OH, e_CO2 -70 pk_CO2 = 13 -80 n_CO2 = 0.6 +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Albite m^2/mol Albite +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM Albite parameters +10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp -150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis -170 pk_H2O = pk_H2O + e_H2O * dif_temp +170 pk_H2O = pk_H2O + e_H2O * dif_temp 180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) 190 REM rate by OH- -200 pk_OH = pk_OH + e_OH * dif_temp -210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH 220 REM rate by CO2 -230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("Albite")) -280 moles = rate * TIME +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("Albite")) +280 moles = rate * TIME 290 SAVE moles -end @@ -1777,7 +1781,7 @@ Albite #Calcite ######## # Example of KINETICS data block for calcite rate, -# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257. +# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257 # KINETICS 1 # Calcite # -tol 1e-8 @@ -1788,16 +1792,16 @@ Albite Calcite -start -1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite -2 REM PARM(2) = exponent for M/M0 +1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite +2 REM PARM(2) = exponent for M/M0 -10 si_cc = SI("Calcite") -20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 -30 k1 = 10^(0.198 - 444.0 / TK ) -40 k2 = 10^(2.84 - 2177.0 /TK ) -50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317.0 / TK) -60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737.0 / TK ) -80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M +10 si_cc = SI("Calcite") +20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 +30 k1 = 10^(0.198 - 444 / TK ) +40 k2 = 10^(2.84 - 2177 /TK ) +50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317 / TK) +60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737 / TK ) +80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M 110 rate = area * (k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O")) 120 rate = rate * (1 - 10^(2/3*si_cc)) 130 moles = rate * 0.001 * TIME # convert from mmol to mol @@ -1822,18 +1826,18 @@ Calcite # -time 1 day in 10 Pyrite -start -1 REM Williamson and Rimstidt, 1994 -2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) -3 REM PARM(2) = exp for (M/M0) -4 REM PARM(3) = exp for O2 -5 REM PARM(4) = exp for H+ +1 REM Williamson and Rimstidt, 1994 +2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) +3 REM PARM(2) = exp for (M/M0) +4 REM PARM(3) = exp for O2 +5 REM PARM(4) = exp for H+ -10 REM Dissolution in presence of DO -20 if (M <= 0) THEN GOTO 200 -30 if (SI("Pyrite") >= 0) THEN GOTO 200 -40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") -50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) -60 moles = 10^(log_area + log_rate) * TIME +10 REM Dissolution in presence of DO +20 if (M <= 0) THEN GOTO 200 +30 if (SI("Pyrite") >= 0) THEN GOTO 200 +40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") +50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) +60 moles = 10^(log_area + log_rate) * TIME 200 SAVE moles -end @@ -1850,19 +1854,19 @@ Pyrite # -time 30 year in 15 Organic_C -start -1 REM Additive Monod kinetics for SOC (sediment organic carbon) -2 REM Electron acceptors: O2, NO3, and SO4 +1 REM Additive Monod kinetics for SOC (sediment organic carbon) +2 REM Electron acceptors: O2, NO3, and SO4 -10 if (M <= 0) THEN GOTO 200 -20 mO2 = MOL("O2") -30 mNO3 = TOT("N(5)") -40 mSO4 = TOT("S(6)") -50 k_O2 = 1.57e-9 # 1/sec -60 k_NO3 = 1.67e-11 # 1/sec -70 k_SO4 = 1.e-13 # 1/sec -80 rate = k_O2 * mO2/(2.94e-4 + mO2) -90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) -100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) +10 if (M <= 0) THEN GOTO 200 +20 mO2 = MOL("O2") +30 mNO3 = TOT("N(5)") +40 mSO4 = TOT("S(6)") +50 k_O2 = 1.57e-9 # 1/sec +60 k_NO3 = 1.67e-11 # 1/sec +70 k_SO4 = 1.e-13 # 1/sec +80 rate = k_O2 * mO2/(2.94e-4 + mO2) +90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) +100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) 110 moles = rate * M * (M/M0) * TIME 200 SAVE moles -end @@ -1883,14 +1887,14 @@ Organic_C # -time 0.5 day in 10 Pyrolusite -start -10 if (M <= 0) THEN GOTO 200 -20 sr_pl = SR("Pyrolusite") -30 if (sr_pl > 1) THEN GOTO 100 -40 REM sr_pl <= 1, undersaturated -50 Fe_t = TOT("Fe(2)") -60 if Fe_t < 1e-8 then goto 200 -70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) -80 GOTO 200 +10 if (M <= 0) THEN GOTO 200 +20 sr_pl = SR("Pyrolusite") +30 if (sr_pl > 1) THEN GOTO 100 +40 REM sr_pl <= 1, undersaturated +50 Fe_t = TOT("Fe(2)") +60 if Fe_t < 1e-8 then goto 200 +70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) +80 GOTO 200 100 REM sr_pl > 1, supersaturated 110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME 200 SAVE moles * SOLN_VOL @@ -1898,11 +1902,11 @@ Pyrolusite END # ============================================================================================= -#(a) means amorphous. (d) means disordered, or less crystalline. -#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt), -#precipitated, indicates an initial precipitate that is less crystalline. +#(a) means amorphous. (d) means disordered, or less crystalline. +#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt), +#precipitated, indicates an initial precipitate that is less crystalline. #Zn(OH)2(e) indicates a specific crystal form, epsilon. -# ============================================================================================= +# ============================================================================================= # For the reaction aA + bB = cC + dD, # with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B), # PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT). diff --git a/phreeqc_rates.dat b/phreeqc_rates.dat index 6dfc1de9..96df4d41 100644 --- a/phreeqc_rates.dat +++ b/phreeqc_rates.dat @@ -1,3 +1,7 @@ +# File 1 = C:\GitPrograms\phreeqc3-1\database\phreeqc_rates.dat, 16/05/2024 09:28, 3160 lines, 110660 bytes, md5=d5a6c0cc3a36342ad14ea953f26a23ec +# Created 17 May 2024 14:30:43 +# c:\3rdParty\lsp\lsp.exe -f2 -k="asis" -ts "phreeqc_rates.dat" + # PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Augmented with kinetic rates for minerals from compilations. Based on: # diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. # Details are given at the end of this file. @@ -6,64 +10,64 @@ SOLUTION_MASTER_SPECIES # #element species alk gfw_formula element_gfw # -H H+ -1.0 H 1.008 -H(0) H2 0 H -H(1) H+ -1.0 H -E e- 0 0 0 -O H2O 0 O 16.0 -O(0) O2 0 O -O(-2) H2O 0 0 -Ca Ca+2 0 Ca 40.08 -Mg Mg+2 0 Mg 24.312 -Na Na+ 0 Na 22.9898 -K K+ 0 K 39.102 -Fe Fe+2 0 Fe 55.847 -Fe(+2) Fe+2 0 Fe -Fe(+3) Fe+3 -2.0 Fe -Mn Mn+2 0 Mn 54.938 -Mn(+2) Mn+2 0 Mn -Mn(+3) Mn+3 0 Mn -Al Al+3 0 Al 26.9815 -Ba Ba+2 0 Ba 137.34 -Sr Sr+2 0 Sr 87.62 -Si H4SiO4 0 SiO2 28.0843 -Cl Cl- 0 Cl 35.453 -C CO3-2 2.0 HCO3 12.0111 -C(+4) CO3-2 2.0 HCO3 -C(-4) CH4 0 CH4 -Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05 -S SO4-2 0 SO4 32.064 -S(6) SO4-2 0 SO4 -S(-2) HS- 1.0 S -N NO3- 0 N 14.0067 -N(+5) NO3- 0 N -N(+3) NO2- 0 N -N(0) N2 0 N -N(-3) NH4+ 0 N 14.0067 -#Amm AmmH+ 0 AmmH 17.031 -B H3BO3 0 B 10.81 -P PO4-3 2.0 P 30.9738 -F F- 0 F 18.9984 -Li Li+ 0 Li 6.939 -Br Br- 0 Br 79.904 -Zn Zn+2 0 Zn 65.37 -Cd Cd+2 0 Cd 112.4 -Pb Pb+2 0 Pb 207.19 -Cu Cu+2 0 Cu 63.546 -Cu(+2) Cu+2 0 Cu -Cu(+1) Cu+1 0 Cu -# redox-uncoupled gases -Hdg Hdg 0 Hdg 2.016 # H2 gas -Oxg Oxg 0 Oxg 32 # O2 gas -Mtg Mtg 0 Mtg 16.032 # CH4 gas -Sg H2Sg 0.0 H2Sg 32.064 # H2S gas -Ntg Ntg 0 Ntg 28.0134 # N2 gas - +H H+ -1 H 1.008 +H(0) H2 0 H +H(1) H+ -1 H +E e- 1 0 0 +O H2O 0 O 16 +O(0) O2 0 O +O(-2) H2O 0 0 +Ca Ca+2 0 Ca 40.08 +Mg Mg+2 0 Mg 24.312 +Na Na+ 0 Na 22.9898 +K K+ 0 K 39.102 +Fe Fe+2 0 Fe 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2 Fe +Mn Mn+2 0 Mn 54.938 +Mn(+2) Mn+2 0 Mn +Mn(+3) Mn+3 0 Mn +Al Al+3 0 Al 26.9815 +Ba Ba+2 0 Ba 137.34 +Sr Sr+2 0 Sr 87.62 +Si H4SiO4 0 SiO2 28.0843 +Cl Cl- 0 Cl 35.453 +C CO3-2 2 HCO3 12.0111 +C(+4) CO3-2 2 HCO3 +C(-4) CH4 0 CH4 +Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05 +S SO4-2 0 SO4 32.064 +S(6) SO4-2 0 SO4 +S(-2) HS- 1 S +N NO3- 0 N 14.0067 +N(+5) NO3- 0 N +N(+3) NO2- 0 N +N(0) N2 0 N +N(-3) NH4+ 0 N 14.0067 +#Amm AmmH+ 0 AmmH 17.031 +B H3BO3 0 B 10.81 +P PO4-3 2 P 30.9738 +F F- 0 F 18.9984 +Li Li+ 0 Li 6.939 +Br Br- 0 Br 79.904 +Zn Zn+2 0 Zn 65.37 +Cd Cd+2 0 Cd 112.4 +Pb Pb+2 0 Pb 207.19 +Cu Cu+2 0 Cu 63.546 +Cu(+2) Cu+2 0 Cu +Cu(+1) Cu+1 0 Cu +# redox-uncoupled gases +Hdg Hdg 0 Hdg 2.016 # H2 gas +Oxg Oxg 0 Oxg 32 # O2 gas +Mtg Mtg 0 Mtg 16.032 # CH4 gas +Sg H2Sg 0 H2Sg 32.064 # H2S gas +Ntg Ntg 0 Ntg 28.0134 # N2 gas + SOLUTION_SPECIES H+ = H+ - -gamma 9.0 0 - -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 - -dw 9.31e-9 838 16.315 0 2.376 24.01 0 + -gamma 9 0 + -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 + -dw 9.31e-9 838 16.315 0 2.376 24.01 0 # Dw(25 C) dw_T a a2 visc a3 a_v_dif # Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc # a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif @@ -76,243 +80,243 @@ H+ = H+ # If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. e- = e- H2O = H2O - -dw 2.299e-9 -254 + -dw 2.299e-9 -254 # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence Li+ = Li+ - -gamma 6.0 0 # The apparent volume parameters are defined in ref. 1 & 2 - -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 - -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl - -dw 1.03e-9 -14 4.03 0.8341 1.679 + -gamma 6 0 # The apparent volume parameters are defined in ref. 1 & 2 + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 + -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl + -dw 1.03e-9 -14 4.03 0.8341 1.679 Na+ = Na+ - -gamma 4.0 0.075 - -gamma 4.08 0.082 # halite solubility - -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 + -gamma 4 0.075 + -gamma 4.08 0.082 # halite solubility + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 # for densities (rho) when I > 3. - -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 - -dw 1.33e-9 75 3.627 0 0.7037 + -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 + -dw 1.33e-9 75 3.627 0 0.7037 K+ = K+ - -gamma 3.5 0.015 - -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 - -viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028 - -dw 1.96e-9 254 3.484 0 0.1964 + -gamma 3.5 0.015 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 + -viscosity 0.116 -0.191 1.52e-2 1.4e-2 2.59e-2 0.9028 + -dw 1.96e-9 254 3.484 0 0.1964 Mg+2 = Mg+2 - -gamma 5.5 0.20 - -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 - -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 - -dw 0.705e-9 -4 5.569 0 1.047 + -gamma 5.5 0.2 + -Vm -1.41 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 + -dw 0.705e-9 -4 5.569 0 1.047 Ca+2 = Ca+2 - -gamma 5.0 0.1650 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 - -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M - -dw 0.792e-9 34 5.411 0 1.046 + -gamma 5 0.165 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.6 -57.1 -6.12e-3 1 + -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.3 # ref. 4, CaCl2 < 6 M + -dw 0.792e-9 34 5.411 0 1.046 Sr+2 = Sr+2 - -gamma 5.260 0.121 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 - -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 - -dw 0.794e-9 160 0.680 0.767 1e-9 0.912 + -gamma 5.26 0.121 + -Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97 + -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 + -dw 0.794e-9 160 0.68 0.767 1e-9 0.912 Ba+2 = Ba+2 - -gamma 5.0 0 - -gamma 4.0 0.153 # Barite solubility - -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 - -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 - -dw 0.848e-9 174 10.53 0 3.0 + -gamma 5 0 + -gamma 4 0.153 # Barite solubility + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 + -dw 0.848e-9 174 10.53 0 3 Fe+2 = Fe+2 - -gamma 6.0 0 - -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 - -dw 0.719e-9 + -gamma 6 0 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -dw 0.719e-9 Mn+2 = Mn+2 - -gamma 6.0 0 - -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 - -dw 0.688e-9 + -gamma 6 0 + -Vm -1.1 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 + -dw 0.688e-9 Al+3 = Al+3 - -gamma 9.0 0 - -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353. - -dw 0.559e-9 + -gamma 9 0 + -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353 + -dw 0.559e-9 H4SiO4 = H4SiO4 - -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 - -dw 1.10e-9 + -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt 2*H2O in a1 + -dw 1.1e-9 Cl- = Cl- - -gamma 3.5 0.015 - -gamma 3.63 0.017 # cf. pitzer.dat - -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 - -viscosity 0 0 0 0 0 0 1 # the reference solute - -dw 2.033e-9 216 3.160 0.2071 0.7432 + -gamma 3.5 0.015 + -gamma 3.63 0.017 # cf. pitzer.dat + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -viscosity 0 0 0 0 0 0 1 # the reference solute + -dw 2.033e-9 216 3.16 0.2071 0.7432 CO3-2 = CO3-2 - -gamma 5.4 0 - -Vm 6.09 -2.78 -0.405 -5.30 5.02 0 0.169 101 -1.38e-2 0.9316 - -viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147 - -dw 0.955e-9 -103 2.246 7.13e-2 0.3686 + -gamma 5.4 0 + -Vm 6.09 -2.78 -0.405 -5.3 5.02 0 0.169 101 -1.38e-2 0.9316 + -viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147 + -dw 0.955e-9 -103 2.246 7.13e-2 0.3686 SO4-2 = SO4-2 - -gamma 5.0 -0.04 - -Vm -7.77 43.17 176 -51.45 3.794 0 42.99 -541 -0.145 0.45 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC - -viscosity -0.30 0.501 2.57e-3 0.195 3.14e-2 2.015 0.605 - -dw 1.07e-9 -114 17 6.02e-2 4.94e-2 + -gamma 5 -0.04 + -Vm -7.77 43.17 176 -51.45 3.794 0 42.99 -541 -0.145 0.45 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC + -viscosity -0.3 0.501 2.57e-3 0.195 3.14e-2 2.015 0.605 + -dw 1.07e-9 -114 17 6.02e-2 4.94e-2 NO3- = NO3- - -gamma 3.0 0 - -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 - -viscosity 8.37e-2 -0.458 1.54e-2 0.340 1.79e-2 5.02e-2 0.7381 - -dw 1.90e-9 104 1.11 + -gamma 3 0 + -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 + -viscosity 8.37e-2 -0.458 1.54e-2 0.34 1.79e-2 5.02e-2 0.7381 + -dw 1.9e-9 104 1.11 #AmmH+ = AmmH+ # -gamma 2.5 0 # -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 # -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 # -dw 1.98e-9 178 3.747 0 1.220 H3BO3 = H3BO3 - -Vm 7.0643 8.8547 3.5844 -3.1451 -0.20 # supcrt - -dw 1.1e-9 + -Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt + -dw 1.1e-9 PO4-3 = PO4-3 - -gamma 4.0 0 - -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 - -dw 0.612e-9 + -gamma 4 0 + -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 + -dw 0.612e-9 F- = F- - -gamma 3.5 0 - -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 - -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 - -dw 1.46e-9 -36 4.352 + -gamma 3.5 0 + -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 + -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 + -dw 1.46e-9 -36 4.352 Br- = Br- - -gamma 3.0 0 - -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 - -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.820 - -dw 2.01e-9 139 2.94 0 1.304 + -gamma 3 0 + -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 + -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.82 + -dw 2.01e-9 139 2.94 0 1.304 Zn+2 = Zn+2 - -gamma 5.0 0 - -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 - -dw 0.715e-9 + -gamma 5 0 + -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 + -dw 0.715e-9 Cd+2 = Cd+2 - -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 - -dw 0.717e-9 + -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 + -dw 0.717e-9 Pb+2 = Pb+2 - -Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt - -dw 0.945e-9 + -Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt + -dw 0.945e-9 Cu+2 = Cu+2 - -gamma 6.0 0 - -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 - -dw 0.733e-9 + -gamma 6 0 + -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 + -dw 0.733e-9 # redox-uncoupled gases Hdg = Hdg # H2 - -Vm 6.52 0.78 0.12 # supcrt - -dw 5.13e-9 + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 Oxg = Oxg # O2 - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt - -dw 2.35e-9 + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 Mtg = Mtg # CH4 - -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 - -dw 1.85e-9 + -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 Ntg = Ntg # N2 - -Vm 7 # Pray et al., 1952, IEC 44. 1146 - -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 + -Vm 7 # Pray et al., 1952, IEC 44 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 H2Sg = H2Sg # H2S - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 - -dw 2.1e-9 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 # aqueous species H2O = OH- + H+ - -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 - -gamma 3.5 0 - -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 - -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH - -dw 5.27e-9 478 0.8695 + -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 + -gamma 3.5 0 + -Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1 + -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH + -dw 5.27e-9 478 0.8695 2 H2O = O2 + 4 H+ + 4 e- - -log_k -86.08 + -log_k -86.08 -delta_h 134.79 kcal - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt - -dw 2.35e-9 + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 2 H+ + 2 e- = H2 - -log_k -3.15 + -log_k -3.15 -delta_h -1.759 kcal - -Vm 6.52 0.78 0.12 # supcrt - -dw 5.13e-9 + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 H+ + Cl- = HCl - -log_k -0.5 - -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50C - -gamma 0 0.4256 - -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 + -log_k -0.5 + -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50C + -gamma 0 0.4256 + -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 CO3-2 + H+ = HCO3- - -log_k 10.329; -delta_h -3.561 kcal - -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 - -gamma 5.4 0 - -Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144 - -viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253 - -dw 1.18e-9 -190 11.386 + -log_k 10.329; -delta_h -3.561 kcal + -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 + -Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144 + -viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253 + -dw 1.18e-9 -190 11.386 CO3-2 + 2 H+ = CO2 + H2O - -log_k 16.681 + -log_k 16.681 -delta_h -5.738 kcal - -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 - -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 - -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 -2CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T - -log_k -1.8 - -analytical_expression 8.68 -0.0103 -2190 - -Vm 14.58 1.84 4.14 -2.46 -3.20 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 + -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171 + -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 +2 CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T + -log_k -1.8 + -analytical_expression 8.68 -0.0103 -2190 + -Vm 14.58 1.84 4.14 -2.46 -3.2 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O - -log_k 41.071 + -log_k 41.071 -delta_h -61.039 kcal - -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 - -dw 1.85e-9 + -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 SO4-2 + H+ = HSO4- - -log_k 1.988; -delta_h 3.85 kcal - -analytic -56.889 0.006473 2307.9 19.8858 - -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 - -viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987 - -dw 1.22e-9 1000 15.0 2.861 + -log_k 1.988; -delta_h 3.85 kcal + -analytic -56.889 0.006473 2307.9 19.8858 + -Vm 8.2 9.259 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987 + -dw 1.22e-9 1000 15 2.861 HS- = S-2 + H+ - -log_k -12.918 - -delta_h 12.1 kcal - -gamma 5.0 0 - -dw 0.731e-9 + -log_k -12.918 + -delta_h 12.1 kcal + -gamma 5 0 + -dw 0.731e-9 SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O - -log_k 33.65 - -delta_h -60.140 kcal - -gamma 3.5 0 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt - -dw 1.73e-9 + -log_k 33.65 + -delta_h -60.14 kcal + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt + -dw 1.73e-9 HS- + H+ = H2S - -log_k 6.994; -delta_h -5.30 kcal - -analytical -11.17 0.02386 3279.0 - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 - -dw 2.1e-9 -2H2S = (H2S)2 # activity correction for H2S solubility at high P, T - -analytical_expression 10.227 -0.01384 -2200 - -Vm 36.41 -71.95 0 0 2.58 - -dw 2.1e-9 + -log_k 6.994; -delta_h -5.3 kcal + -analytical -11.17 0.02386 3279 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 +2 H2S = (H2S)2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 H2Sg = HSg- + H+ - -log_k -6.994; -delta_h 5.30 kcal - -analytical_expression 11.17 -0.02386 -3279.0 - -gamma 3.5 0 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt - -dw 1.73e-9 -2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T - -analytical_expression 10.227 -0.01384 -2200 - -Vm 36.41 -71.95 0 0 2.58 - -dw 2.1e-9 + -log_k -6.994; -delta_h 5.3 kcal + -analytical_expression 11.17 -0.02386 -3279 + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt + -dw 1.73e-9 +2 H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 NO3- + 2 H+ + 2 e- = NO2- + H2O - -log_k 28.570 - -delta_h -43.760 kcal - -gamma 3.0 0 - -Vm 5.5864 5.8590 3.4472 -3.0212 1.1847 # supcrt - -dw 1.91e-9 + -log_k 28.57 + -delta_h -43.76 kcal + -gamma 3 0 + -Vm 5.5864 5.859 3.4472 -3.0212 1.1847 # supcrt + -dw 1.91e-9 2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O - -log_k 207.08 - -delta_h -312.130 kcal - -Vm 7 # Pray et al., 1952, IEC 44. 1146 - -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 + -log_k 207.08 + -delta_h -312.13 kcal + -Vm 7 # Pray et al., 1952, IEC 44 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O - -log_k 119.077 - -delta_h -187.055 kcal - -gamma 2.5 0 - -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 - -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 - -dw 1.98e-9 178 3.747 0 1.220 + -log_k 119.077 + -delta_h -187.055 kcal + -gamma 2.5 0 + -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 + -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -dw 1.98e-9 178 3.747 0 1.22 #AmmH+ = Amm + H+ NH4+ = NH3 + H+ - -log_k -9.252 - -delta_h 12.48 kcal - -analytic 0.6322 -0.001225 -2835.76 - -Vm 6.69 2.8 3.58 -2.88 1.43 - -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 - -dw 2.28e-9 + -log_k -9.252 + -delta_h 12.48 kcal + -analytic 0.6322 -0.001225 -2835.76 + -Vm 6.69 2.8 3.58 -2.88 1.43 + -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -dw 2.28e-9 #NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O # -log_k 119.077 # -delta_h -187.055 kcal @@ -320,351 +324,351 @@ NH4+ = NH3 + H+ # -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 #AmmH+ + SO4-2 = AmmHSO4- NH4+ + SO4-2 = NH4SO4- - -gamma 6.54 -0.08 - -log_k 1.106; -delta_h 4.30 kcal - -Vm -3.23 0 -68.42 0 -14.27 0 68.51 0 -0.4099 0.2339 - -viscosity 0.24 0 0 3.3e-3 -0.10 0.528 0.748 - -dw 1.35e-9 500 12.50 3.0 -1 + -gamma 6.54 -0.08 + -log_k 1.106; -delta_h 4.3 kcal + -Vm -3.23 0 -68.42 0 -14.27 0 68.51 0 -0.4099 0.2339 + -viscosity 0.24 0 0 3.3e-3 -0.1 0.528 0.748 + -dw 1.35e-9 500 12.5 3 -1 H3BO3 = H2BO3- + H+ - -log_k -9.24 - -delta_h 3.224 kcal + -log_k -9.24 + -delta_h 3.224 kcal H3BO3 + F- = BF(OH)3- - -log_k -0.4 - -delta_h 1.850 kcal + -log_k -0.4 + -delta_h 1.85 kcal H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O - -log_k 7.63 - -delta_h 1.618 kcal + -log_k 7.63 + -delta_h 1.618 kcal H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O - -log_k 13.67 + -log_k 13.67 -delta_h -1.614 kcal H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O - -log_k 20.28 + -log_k 20.28 -delta_h -1.846 kcal PO4-3 + H+ = HPO4-2 - -log_k 12.346 - -delta_h -3.530 kcal - -gamma 5.0 0 - -dw 0.69e-9 - -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 + -log_k 12.346 + -delta_h -3.53 kcal + -gamma 5 0 + -dw 0.69e-9 + -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 PO4-3 + 2 H+ = H2PO4- - -log_k 19.553 - -delta_h -4.520 kcal - -gamma 5.4 0 - -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 - -dw 0.846e-9 -PO4-3 + 3H+ = H3PO4 - log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 - delta_h -10.1 kJ - -Vm 7.47 12.4 6.29 -3.29 0 + -log_k 19.553 + -delta_h -4.52 kcal + -gamma 5.4 0 + -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 + -dw 0.846e-9 +PO4-3 + 3 H+ = H3PO4 + log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 + delta_h -10.1 kJ + -Vm 7.47 12.4 6.29 -3.29 0 H+ + F- = HF - -log_k 3.18 - -delta_h 3.18 kcal - -analytic -2.033 0.012645 429.01 - -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt + -log_k 3.18 + -delta_h 3.18 kcal + -analytic -2.033 0.012645 429.01 + -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt H+ + 2 F- = HF2- - -log_k 3.76 - -delta_h 4.550 kcal - -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt + -log_k 3.76 + -delta_h 4.55 kcal + -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt Ca+2 + H2O = CaOH+ + H+ - -log_k -12.78 + -log_k -12.78 Ca+2 + CO3-2 = CaCO3 - -log_k 3.224; -delta_h 3.545 kcal - -analytic -1228.732 -0.299440 35512.75 485.818 - -dw 4.46e-10 # complexes: calc'd with the Pikal formula - -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt + -log_k 3.224; -delta_h 3.545 kcal + -analytic -1228.732 -0.29944 35512.75 485.818 + -dw 4.46e-10 # complexes: calc'd with the Pikal formula + -Vm -.243 -8.3748 9.0417 -2.4328 -.03 # supcrt Ca+2 + CO3-2 + H+ = CaHCO3+ - -log_k 10.91; -delta_h 4.38 kcal - -analytic -6.009 3.377e-2 2044 - -gamma 6.0 0 - -Vm 30.19 .010 5.75 -2.78 .308 5.4 - -dw 5.06e-10 + -log_k 10.91; -delta_h 4.38 kcal + -analytic -6.009 3.377e-2 2044 + -gamma 6 0 + -Vm 30.19 .01 5.75 -2.78 .308 5.4 + -dw 5.06e-10 Ca+2 + SO4-2 = CaSO4 - -log_k 2.25 - -delta_h 1.325 kcal + -log_k 2.25 + -delta_h 1.325 kcal -dw 4.71e-10 - -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # supcrt + -Vm 2.791 -.9666 6.13 -2.739 -.001 # supcrt Ca+2 + HSO4- = CaHSO4+ - -log_k 1.08 + -log_k 1.08 Ca+2 + PO4-3 = CaPO4- - -log_k 6.459 - -delta_h 3.10 kcal - -gamma 5.4 0.0 + -log_k 6.459 + -delta_h 3.1 kcal + -gamma 5.4 0 Ca+2 + HPO4-2 = CaHPO4 - -log_k 2.739 + -log_k 2.739 -delta_h 3.3 kcal Ca+2 + H2PO4- = CaH2PO4+ - -log_k 1.408 + -log_k 1.408 -delta_h 3.4 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 # Ca+2 + F- = CaF+ # -log_k 0.94 # -delta_h 4.120 kcal # -gamma 5.5 0.0 # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt Mg+2 + H2O = MgOH+ + H+ - -log_k -11.44 + -log_k -11.44 -delta_h 15.952 kcal - -gamma 6.5 0 + -gamma 6.5 0 Mg+2 + CO3-2 = MgCO3 - -log_k 2.98 - -delta_h 2.713 kcal - -analytic 0.9910 0.00667 - -Vm -0.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt - -dw 4.21e-10 + -log_k 2.98 + -delta_h 2.713 kcal + -analytic 0.991 0.00667 + -Vm -0.5837 -9.2067 9.3687 -2.3984 -.03 # supcrt + -dw 4.21e-10 Mg+2 + H+ + CO3-2 = MgHCO3+ - -log_k 11.399 + -log_k 11.399 -delta_h -2.771 kcal - -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 - -gamma 4.0 0 - -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt - -dw 4.78e-10 + -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 + -gamma 4 0 + -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt + -dw 4.78e-10 Mg+2 + SO4-2 = MgSO4 - -gamma 0 0.20 - -log_k 2.42; -delta_h 19.0 kJ - -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -Vm 8.65 -10.21 29.58 -18.60 1.061 - -viscosity 0.318 -5.4e-4 -3.42e-2 0.708 3.70e-3 0.696 - -dw 4.45e-10 + -gamma 0 0.2 + -log_k 2.42; -delta_h 19 kJ + -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm 8.65 -10.21 29.58 -18.6 1.061 + -viscosity 0.318 -5.4e-4 -3.42e-2 0.708 3.7e-3 0.696 + -dw 4.45e-10 SO4-2 + MgSO4 = Mg(SO4)2-2 - -gamma 7 0.047 - -log_k 0.52; -delta_h -13.6 kJ - -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -Vm -8.14 -62.20 -15.96 3.29 -3.01 0 150 0 0.153 3.79e-2 - -viscosity -0.169 5e-4 -5.69e-2 0.110 2.03e-3 2.027 -1e-3 - -dw 0.845e-9 -200 8.0 0 0.965 + -gamma 7 0.047 + -log_k 0.52; -delta_h -13.6 kJ + -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm -8.14 -62.2 -15.96 3.29 -3.01 0 150 0 0.153 3.79e-2 + -viscosity -0.169 5e-4 -5.69e-2 0.11 2.03e-3 2.027 -1e-3 + -dw 0.845e-9 -200 8 0 0.965 Mg+2 + PO4-3 = MgPO4- - -log_k 6.589 - -delta_h 3.10 kcal - -gamma 5.4 0 + -log_k 6.589 + -delta_h 3.1 kcal + -gamma 5.4 0 Mg+2 + HPO4-2 = MgHPO4 - -log_k 2.87 + -log_k 2.87 -delta_h 3.3 kcal Mg+2 + H2PO4- = MgH2PO4+ - -log_k 1.513 + -log_k 1.513 -delta_h 3.4 kcal - -gamma 5.4 0 + -gamma 5.4 0 Mg+2 + F- = MgF+ - -log_k 1.82 - -delta_h 3.20 kcal - -gamma 4.5 0 - -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt + -log_k 1.82 + -delta_h 3.2 kcal + -gamma 4.5 0 + -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt Na+ + OH- = NaOH - -log_k -10 # remove this complex + -log_k -10 # remove this complex Na+ + HCO3- = NaHCO3 - -log_k -0.06; -delta_h 21 kJ - -gamma 0 0.2 - -Vm 7.95 0 0 0 0.609 - -viscosity -4e-2 -2.717 1.67e-5 - -dw 6.73e-10 + -log_k -0.06; -delta_h 21 kJ + -gamma 0 0.2 + -Vm 7.95 0 0 0 0.609 + -viscosity -4e-2 -2.717 1.67e-5 + -dw 6.73e-10 Na+ + SO4-2 = NaSO4- - -gamma 5.5 0 - -log_k 0.6; -delta_h -14.4 kJ - -analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC - -Vm 1.99 -10.78 21.88 -12.70 1.601 5 32.38 501 1.565e-2 0.2325 - -viscosity 0.20 -5.93e-2 -4.0e-4 8.46e-3 1.78e-3 2.308 -0.208 - -dw 1.13e-9 -23 8.50 0.392 0.521 + -gamma 5.5 0 + -log_k 0.6; -delta_h -14.4 kJ + -analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC + -Vm 1.99 -10.78 21.88 -12.7 1.601 5 32.38 501 1.565e-2 0.2325 + -viscosity 0.2 -5.93e-2 -4e-4 8.46e-3 1.78e-3 2.308 -0.208 + -dw 1.13e-9 -23 8.5 0.392 0.521 Na+ + HPO4-2 = NaHPO4- - -log_k 0.29 - -gamma 5.4 0 - -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 Na+ + F- = NaF - -log_k -0.24 - -Vm 2.7483 -1.0708 6.1709 -2.7347 -.030 # supcrt + -log_k -0.24 + -Vm 2.7483 -1.0708 6.1709 -2.7347 -.03 # supcrt K+ + HCO3- = KHCO3 - -log_k -0.35; -delta_h 12 kJ - -gamma 0 9.4e-3 - -Vm 9.48 0 0 0 -0.542 - -viscosity 0.7 -1.289 9e-2 + -log_k -0.35; -delta_h 12 kJ + -gamma 0 9.4e-3 + -Vm 9.48 0 0 0 -0.542 + -viscosity 0.7 -1.289 9e-2 K+ + SO4-2 = KSO4- - -gamma 5.4 0.19 - -log_k 0.6; -delta_h -10.4 kJ - -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC - -Vm 13.48 -18.03 61.74 -19.60 2.046 5.4 -17.32 0 0.1522 1.919 - -viscosity -1.0 1.06 1e-4 -0.464 3.78e-2 0.539 -0.690 - -dw 0.90e-9 63 8.48 0 1.80 + -gamma 5.4 0.19 + -log_k 0.6; -delta_h -10.4 kJ + -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC + -Vm 13.48 -18.03 61.74 -19.6 2.046 5.4 -17.32 0 0.1522 1.919 + -viscosity -1 1.06 1e-4 -0.464 3.78e-2 0.539 -0.69 + -dw 0.9e-9 63 8.48 0 1.8 K+ + HPO4-2 = KHPO4- - -log_k 0.29 - -gamma 5.4 0 - -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 Fe+2 + H2O = FeOH+ + H+ - -log_k -9.5 - -delta_h 13.20 kcal - -gamma 5.0 0 -Fe+2 + 3H2O = Fe(OH)3- + 3H+ - -log_k -31.0 + -log_k -9.5 + -delta_h 13.2 kcal + -gamma 5 0 +Fe+2 + 3 H2O = Fe(OH)3- + 3 H+ + -log_k -31 -delta_h 30.3 kcal - -gamma 5.0 0 + -gamma 5 0 Fe+2 + Cl- = FeCl+ - -log_k 0.14 + -log_k 0.14 Fe+2 + CO3-2 = FeCO3 - -log_k 4.38 + -log_k 4.38 Fe+2 + HCO3- = FeHCO3+ - -log_k 2.0 + -log_k 2 Fe+2 + SO4-2 = FeSO4 - -log_k 2.25 - -delta_h 3.230 kcal - -Vm -13 0 123 + -log_k 2.25 + -delta_h 3.23 kcal + -Vm -13 0 123 Fe+2 + HSO4- = FeHSO4+ - -log_k 1.08 -Fe+2 + 2HS- = Fe(HS)2 - -log_k 8.95 -Fe+2 + 3HS- = Fe(HS)3- - -log_k 10.987 + -log_k 1.08 +Fe+2 + 2 HS- = Fe(HS)2 + -log_k 8.95 +Fe+2 + 3 HS- = Fe(HS)3- + -log_k 10.987 Fe+2 + HPO4-2 = FeHPO4 - -log_k 3.6 + -log_k 3.6 Fe+2 + H2PO4- = FeH2PO4+ - -log_k 2.7 - -gamma 5.4 0 + -log_k 2.7 + -gamma 5.4 0 Fe+2 + F- = FeF+ - -log_k 1.0 + -log_k 1 Fe+2 = Fe+3 + e- - -log_k -13.02 - -delta_h 9.680 kcal - -gamma 9.0 0 + -log_k -13.02 + -delta_h 9.68 kcal + -gamma 9 0 Fe+3 + H2O = FeOH+2 + H+ - -log_k -2.19 - -delta_h 10.4 kcal - -gamma 5.0 0 + -log_k -2.19 + -delta_h 10.4 kcal + -gamma 5 0 Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ - -log_k -5.67 - -delta_h 17.1 kcal - -gamma 5.4 0 + -log_k -5.67 + -delta_h 17.1 kcal + -gamma 5.4 0 Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ - -log_k -12.56 - -delta_h 24.8 kcal + -log_k -12.56 + -delta_h 24.8 kcal Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ - -log_k -21.6 - -delta_h 31.9 kcal - -gamma 5.4 0 -Fe+2 + 2H2O = Fe(OH)2 + 2H+ - -log_k -20.57 + -log_k -21.6 + -delta_h 31.9 kcal + -gamma 5.4 0 +Fe+2 + 2 H2O = Fe(OH)2 + 2 H+ + -log_k -20.57 -delta_h 28.565 kcal 2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ - -log_k -2.95 - -delta_h 13.5 kcal + -log_k -2.95 + -delta_h 13.5 kcal 3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ - -log_k -6.3 - -delta_h 14.3 kcal + -log_k -6.3 + -delta_h 14.3 kcal Fe+3 + Cl- = FeCl+2 - -log_k 1.48 - -delta_h 5.6 kcal - -gamma 5.0 0 + -log_k 1.48 + -delta_h 5.6 kcal + -gamma 5 0 Fe+3 + 2 Cl- = FeCl2+ - -log_k 2.13 - -gamma 5.0 0 + -log_k 2.13 + -gamma 5 0 Fe+3 + 3 Cl- = FeCl3 - -log_k 1.13 + -log_k 1.13 Fe+3 + SO4-2 = FeSO4+ - -log_k 4.04 - -delta_h 3.91 kcal - -gamma 5.0 0 + -log_k 4.04 + -delta_h 3.91 kcal + -gamma 5 0 Fe+3 + HSO4- = FeHSO4+2 - -log_k 2.48 + -log_k 2.48 Fe+3 + 2 SO4-2 = Fe(SO4)2- - -log_k 5.38 - -delta_h 4.60 kcal + -log_k 5.38 + -delta_h 4.6 kcal Fe+3 + HPO4-2 = FeHPO4+ - -log_k 5.43 - -delta_h 5.76 kcal - -gamma 5.0 0 + -log_k 5.43 + -delta_h 5.76 kcal + -gamma 5 0 Fe+3 + H2PO4- = FeH2PO4+2 - -log_k 5.43 - -gamma 5.4 0 + -log_k 5.43 + -gamma 5.4 0 Fe+3 + F- = FeF+2 - -log_k 6.2 - -delta_h 2.7 kcal - -gamma 5.0 0 + -log_k 6.2 + -delta_h 2.7 kcal + -gamma 5 0 Fe+3 + 2 F- = FeF2+ - -log_k 10.8 - -delta_h 4.8 kcal - -gamma 5.0 0 + -log_k 10.8 + -delta_h 4.8 kcal + -gamma 5 0 Fe+3 + 3 F- = FeF3 - -log_k 14.0 - -delta_h 5.4 kcal + -log_k 14 + -delta_h 5.4 kcal Mn+2 + H2O = MnOH+ + H+ - -log_k -10.59 - -delta_h 14.40 kcal - -gamma 5.0 0 -Mn+2 + 3H2O = Mn(OH)3- + 3H+ - -log_k -34.8 - -gamma 5.0 0 + -log_k -10.59 + -delta_h 14.4 kcal + -gamma 5 0 +Mn+2 + 3 H2O = Mn(OH)3- + 3 H+ + -log_k -34.8 + -gamma 5 0 Mn+2 + Cl- = MnCl+ - -log_k 0.61 - -gamma 5.0 0 - -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 + -log_k 0.61 + -gamma 5 0 + -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 Mn+2 + 2 Cl- = MnCl2 - -log_k 0.25 - -Vm 1e-5 0 144 + -log_k 0.25 + -Vm 1e-5 0 144 Mn+2 + 3 Cl- = MnCl3- - -log_k -0.31 - -gamma 5.0 0 - -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 + -log_k -0.31 + -gamma 5 0 + -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 Mn+2 + CO3-2 = MnCO3 - -log_k 4.9 + -log_k 4.9 Mn+2 + HCO3- = MnHCO3+ - -log_k 1.95 - -gamma 5.0 0 + -log_k 1.95 + -gamma 5 0 Mn+2 + SO4-2 = MnSO4 - -log_k 2.25 - -delta_h 3.370 kcal - -Vm -1.31 -1.83 62.3 -2.7 + -log_k 2.25 + -delta_h 3.37 kcal + -Vm -1.31 -1.83 62.3 -2.7 Mn+2 + 2 NO3- = Mn(NO3)2 - -log_k 0.6 + -log_k 0.6 -delta_h -0.396 kcal - -Vm 6.16 0 29.4 0 0.9 + -Vm 6.16 0 29.4 0 0.9 Mn+2 + F- = MnF+ - -log_k 0.84 - -gamma 5.0 0 + -log_k 0.84 + -gamma 5 0 Mn+2 = Mn+3 + e- - -log_k -25.51 - -delta_h 25.80 kcal - -gamma 9.0 0 + -log_k -25.51 + -delta_h 25.8 kcal + -gamma 9 0 Al+3 + H2O = AlOH+2 + H+ - -log_k -5.0 - -delta_h 11.49 kcal - -analytic -38.253 0.0 -656.27 14.327 - -gamma 5.4 0 - -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353. + -log_k -5 + -delta_h 11.49 kcal + -analytic -38.253 0 -656.27 14.327 + -gamma 5.4 0 + -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353 Al+3 + 2 H2O = Al(OH)2+ + 2 H+ - -log_k -10.1 - -delta_h 26.90 kcal - -gamma 5.4 0 - -analytic 88.50 0.0 -9391.6 -27.121 + -log_k -10.1 + -delta_h 26.9 kcal + -gamma 5.4 0 + -analytic 88.5 0 -9391.6 -27.121 Al+3 + 3 H2O = Al(OH)3 + 3 H+ - -log_k -16.9 - -delta_h 39.89 kcal - -analytic 226.374 0.0 -18247.8 -73.597 + -log_k -16.9 + -delta_h 39.89 kcal + -analytic 226.374 0 -18247.8 -73.597 Al+3 + 4 H2O = Al(OH)4- + 4 H+ - -log_k -22.7 - -delta_h 42.30 kcal - -analytic 51.578 0.0 -11168.9 -14.865 - -gamma 4.5 0 + -log_k -22.7 + -delta_h 42.3 kcal + -analytic 51.578 0 -11168.9 -14.865 + -gamma 4.5 0 -dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959 Al+3 + SO4-2 = AlSO4+ - -log_k 3.5 + -log_k 3.5 -delta_h 2.29 kcal - -gamma 4.5 0 -Al+3 + 2SO4-2 = Al(SO4)2- - -log_k 5.0 + -gamma 4.5 0 +Al+3 + 2 SO4-2 = Al(SO4)2- + -log_k 5 -delta_h 3.11 kcal - -gamma 4.5 0 + -gamma 4.5 0 Al+3 + HSO4- = AlHSO4+2 - -log_k 0.46 + -log_k 0.46 Al+3 + F- = AlF+2 - -log_k 7.0 - -delta_h 1.060 kcal - -gamma 5.4 0 + -log_k 7 + -delta_h 1.06 kcal + -gamma 5.4 0 Al+3 + 2 F- = AlF2+ - -log_k 12.7 - -delta_h 1.980 kcal - -gamma 5.4 0 + -log_k 12.7 + -delta_h 1.98 kcal + -gamma 5.4 0 Al+3 + 3 F- = AlF3 - -log_k 16.8 - -delta_h 2.160 kcal + -log_k 16.8 + -delta_h 2.16 kcal Al+3 + 4 F- = AlF4- - -log_k 19.4 - -delta_h 2.20 kcal - -gamma 4.5 0 + -log_k 19.4 + -delta_h 2.2 kcal + -gamma 4.5 0 # Al+3 + 5 F- = AlF5-2 # log_k 20.6 # delta_h 1.840 kcal @@ -672,681 +676,681 @@ Al+3 + 4 F- = AlF4- # log_k 20.6 # delta_h -1.670 kcal H4SiO4 = H3SiO4- + H+ - -log_k -9.83 - -delta_h 6.12 kcal - -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 - -gamma 4 0 - -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 + -log_k -9.83 + -delta_h 6.12 kcal + -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669 + -gamma 4 0 + -Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt H2O in a1 H4SiO4 = H2SiO4-2 + 2 H+ - -log_k -23.0 - -delta_h 17.6 kcal - -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 - -gamma 5.4 0 + -log_k -23 + -delta_h 17.6 kcal + -analytic -294.0184 -0.07265 11204.49 108.18466 -1119669 + -gamma 5.4 0 H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O - -log_k 30.18 - -delta_h -16.260 kcal - -gamma 5.0 0 - -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt + -log_k 30.18 + -delta_h -16.26 kcal + -gamma 5 0 + -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt Ba+2 + H2O = BaOH+ + H+ - -log_k -13.47 - -gamma 5.0 0 + -log_k -13.47 + -gamma 5 0 Ba+2 + CO3-2 = BaCO3 - -log_k 2.71 - -delta_h 3.55 kcal - -analytic 0.113 0.008721 - -Vm .2907 -7.0717 8.5295 -2.4867 -.0300 # supcrt + -log_k 2.71 + -delta_h 3.55 kcal + -analytic 0.113 0.008721 + -Vm .2907 -7.0717 8.5295 -2.4867 -.03 # supcrt Ba+2 + HCO3- = BaHCO3+ - -log_k 0.982 + -log_k 0.982 -delta_h 5.56 kcal - -analytic -3.0938 0.013669 + -analytic -3.0938 0.013669 Ba+2 + SO4-2 = BaSO4 - -log_k 2.7 + -log_k 2.7 Sr+2 + H2O = SrOH+ + H+ - -log_k -13.29 - -gamma 5.0 0 + -log_k -13.29 + -gamma 5 0 Sr+2 + CO3-2 + H+ = SrHCO3+ - -log_k 11.509 - -delta_h 2.489 kcal - -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 - -gamma 5.4 0 + -log_k 11.509 + -delta_h 2.489 kcal + -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 Sr+2 + CO3-2 = SrCO3 - -log_k 2.81 - -delta_h 5.22 kcal - -analytic -1.019 0.012826 - -Vm -.1787 -8.2177 8.9799 -2.4393 -.0300 # supcrt + -log_k 2.81 + -delta_h 5.22 kcal + -analytic -1.019 0.012826 + -Vm -.1787 -8.2177 8.9799 -2.4393 -.03 # supcrt Sr+2 + SO4-2 = SrSO4 - -log_k 2.29 - -delta_h 2.08 kcal - -Vm 6.7910 -.9666 6.1300 -2.7390 -.0010 # celestite solubility + -log_k 2.29 + -delta_h 2.08 kcal + -Vm 6.791 -.9666 6.13 -2.739 -.001 # celestite solubility Li+ + SO4-2 = LiSO4- - -log_k 0.64 - -gamma 5.0 0 + -log_k 0.64 + -gamma 5 0 Cu+2 + e- = Cu+ - -log_k 2.72 - -delta_h 1.65 kcal - -gamma 2.5 0 -Cu+ + 2Cl- = CuCl2- - -log_k 5.50 + -log_k 2.72 + -delta_h 1.65 kcal + -gamma 2.5 0 +Cu+ + 2 Cl- = CuCl2- + -log_k 5.5 -delta_h -0.42 kcal - -gamma 4.0 0 -Cu+ + 3Cl- = CuCl3-2 - -log_k 5.70 + -gamma 4 0 +Cu+ + 3 Cl- = CuCl3-2 + -log_k 5.7 -delta_h 0.26 kcal - -gamma 5.0 0.0 + -gamma 5 0 Cu+2 + CO3-2 = CuCO3 - -log_k 6.73 -Cu+2 + 2CO3-2 = Cu(CO3)2-2 - -log_k 9.83 + -log_k 6.73 +Cu+2 + 2 CO3-2 = Cu(CO3)2-2 + -log_k 9.83 Cu+2 + HCO3- = CuHCO3+ - -log_k 2.7 + -log_k 2.7 Cu+2 + Cl- = CuCl+ - -log_k 0.43 + -log_k 0.43 -delta_h 8.65 kcal - -gamma 4.0 0 - -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 -Cu+2 + 2Cl- = CuCl2 - -log_k 0.16 + -gamma 4 0 + -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 +Cu+2 + 2 Cl- = CuCl2 + -log_k 0.16 -delta_h 10.56 kcal - -Vm 26.8 0 -136 -Cu+2 + 3Cl- = CuCl3- - -log_k -2.29 + -Vm 26.8 0 -136 +Cu+2 + 3 Cl- = CuCl3- + -log_k -2.29 -delta_h 13.69 kcal - -gamma 4.0 0 -Cu+2 + 4Cl- = CuCl4-2 - -log_k -4.59 + -gamma 4 0 +Cu+2 + 4 Cl- = CuCl4-2 + -log_k -4.59 -delta_h 17.78 kcal - -gamma 5.0 0 + -gamma 5 0 Cu+2 + F- = CuF+ - -log_k 1.26 + -log_k 1.26 -delta_h 1.62 kcal Cu+2 + H2O = CuOH+ + H+ - -log_k -8.0 - -gamma 4.0 0 + -log_k -8 + -gamma 4 0 Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ - -log_k -13.68 + -log_k -13.68 Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ - -log_k -26.9 + -log_k -26.9 Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ - -log_k -39.6 -2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ - -log_k -10.359 + -log_k -39.6 +2 Cu+2 + 2 H2O = Cu2(OH)2+2 + 2 H+ + -log_k -10.359 -delta_h 17.539 kcal - -analytical 2.497 0.0 -3833.0 + -analytical 2.497 0 -3833 Cu+2 + SO4-2 = CuSO4 - -log_k 2.31 - -delta_h 1.220 kcal - -Vm 5.21 0 -14.6 -Cu+2 + 3HS- = Cu(HS)3- - -log_k 25.9 + -log_k 2.31 + -delta_h 1.22 kcal + -Vm 5.21 0 -14.6 +Cu+2 + 3 HS- = Cu(HS)3- + -log_k 25.9 Zn+2 + H2O = ZnOH+ + H+ - -log_k -8.96 + -log_k -8.96 -delta_h 13.4 kcal Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ - -log_k -16.9 + -log_k -16.9 Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ - -log_k -28.4 + -log_k -28.4 Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ - -log_k -41.2 + -log_k -41.2 Zn+2 + Cl- = ZnCl+ - -log_k 0.43 + -log_k 0.43 -delta_h 7.79 kcal - -gamma 4.0 0 - -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 + -gamma 4 0 + -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 Zn+2 + 2 Cl- = ZnCl2 - -log_k 0.45 + -log_k 0.45 -delta_h 8.5 kcal - -Vm -10.1 4.57 241 -2.97 -1e-3 -Zn+2 + 3Cl- = ZnCl3- - -log_k 0.5 + -Vm -10.1 4.57 241 -2.97 -1e-3 +Zn+2 + 3 Cl- = ZnCl3- + -log_k 0.5 -delta_h 9.56 kcal - -gamma 4.0 0 - -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 -Zn+2 + 4Cl- = ZnCl4-2 - -log_k 0.2 + -gamma 4 0 + -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 +Zn+2 + 4 Cl- = ZnCl4-2 + -log_k 0.2 -delta_h 10.96 kcal - -gamma 5.0 0 - -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 + -gamma 5 0 + -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 Zn+2 + H2O + Cl- = ZnOHCl + H+ - -log_k -7.48 -Zn+2 + 2HS- = Zn(HS)2 - -log_k 14.94 -Zn+2 + 3HS- = Zn(HS)3- - -log_k 16.1 + -log_k -7.48 +Zn+2 + 2 HS- = Zn(HS)2 + -log_k 14.94 +Zn+2 + 3 HS- = Zn(HS)3- + -log_k 16.1 Zn+2 + CO3-2 = ZnCO3 - -log_k 5.3 -Zn+2 + 2CO3-2 = Zn(CO3)2-2 - -log_k 9.63 + -log_k 5.3 +Zn+2 + 2 CO3-2 = Zn(CO3)2-2 + -log_k 9.63 Zn+2 + HCO3- = ZnHCO3+ - -log_k 2.1 + -log_k 2.1 Zn+2 + SO4-2 = ZnSO4 - -log_k 2.37 + -log_k 2.37 -delta_h 1.36 kcal - -Vm 2.51 0 18.8 -Zn+2 + 2SO4-2 = Zn(SO4)2-2 - -log_k 3.28 - -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 + -Vm 2.51 0 18.8 +Zn+2 + 2 SO4-2 = Zn(SO4)2-2 + -log_k 3.28 + -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 Zn+2 + Br- = ZnBr+ - -log_k -0.58 -Zn+2 + 2Br- = ZnBr2 - -log_k -0.98 + -log_k -0.58 +Zn+2 + 2 Br- = ZnBr2 + -log_k -0.98 Zn+2 + F- = ZnF+ - -log_k 1.15 + -log_k 1.15 -delta_h 2.22 kcal Cd+2 + H2O = CdOH+ + H+ - -log_k -10.08 + -log_k -10.08 -delta_h 13.1 kcal Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ - -log_k -20.35 + -log_k -20.35 Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ - -log_k -33.3 + -log_k -33.3 Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ - -log_k -47.35 -2Cd+2 + H2O = Cd2OH+3 + H+ - -log_k -9.39 + -log_k -47.35 +2 Cd+2 + H2O = Cd2OH+3 + H+ + -log_k -9.39 -delta_h 10.9 kcal Cd+2 + H2O + Cl- = CdOHCl + H+ - -log_k -7.404 + -log_k -7.404 -delta_h 4.355 kcal Cd+2 + NO3- = CdNO3+ - -log_k 0.4 + -log_k 0.4 -delta_h -5.2 kcal - -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 + -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 Cd+2 + Cl- = CdCl+ - -log_k 1.98 + -log_k 1.98 -delta_h 0.59 kcal - -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 + -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 Cd+2 + 2 Cl- = CdCl2 - -log_k 2.6 + -log_k 2.6 -delta_h 1.24 kcal - -Vm 5.53 + -Vm 5.53 Cd+2 + 3 Cl- = CdCl3- - -log_k 2.4 + -log_k 2.4 -delta_h 3.9 kcal - -Vm 4.6 0 83.9 0 0 0 0 0 0 1 + -Vm 4.6 0 83.9 0 0 0 0 0 0 1 Cd+2 + CO3-2 = CdCO3 - -log_k 2.9 -Cd+2 + 2CO3-2 = Cd(CO3)2-2 - -log_k 6.4 + -log_k 2.9 +Cd+2 + 2 CO3-2 = Cd(CO3)2-2 + -log_k 6.4 Cd+2 + HCO3- = CdHCO3+ - -log_k 1.5 + -log_k 1.5 Cd+2 + SO4-2 = CdSO4 - -log_k 2.46 + -log_k 2.46 -delta_h 1.08 kcal - -Vm 10.4 0 57.9 -Cd+2 + 2SO4-2 = Cd(SO4)2-2 - -log_k 3.5 - -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 + -Vm 10.4 0 57.9 +Cd+2 + 2 SO4-2 = Cd(SO4)2-2 + -log_k 3.5 + -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 Cd+2 + Br- = CdBr+ - -log_k 2.17 + -log_k 2.17 -delta_h -0.81 kcal -Cd+2 + 2Br- = CdBr2 - -log_k 2.9 +Cd+2 + 2 Br- = CdBr2 + -log_k 2.9 Cd+2 + F- = CdF+ - -log_k 1.1 -Cd+2 + 2F- = CdF2 - -log_k 1.5 + -log_k 1.1 +Cd+2 + 2 F- = CdF2 + -log_k 1.5 Cd+2 + HS- = CdHS+ - -log_k 10.17 -Cd+2 + 2HS- = Cd(HS)2 - -log_k 16.53 -Cd+2 + 3HS- = Cd(HS)3- - -log_k 18.71 -Cd+2 + 4HS- = Cd(HS)4-2 - -log_k 20.9 + -log_k 10.17 +Cd+2 + 2 HS- = Cd(HS)2 + -log_k 16.53 +Cd+2 + 3 HS- = Cd(HS)3- + -log_k 18.71 +Cd+2 + 4 HS- = Cd(HS)4-2 + -log_k 20.9 Pb+2 + H2O = PbOH+ + H+ - -log_k -7.71 + -log_k -7.71 Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ - -log_k -17.12 + -log_k -17.12 Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ - -log_k -28.06 + -log_k -28.06 Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ - -log_k -39.7 + -log_k -39.7 2 Pb+2 + H2O = Pb2OH+3 + H+ - -log_k -6.36 + -log_k -6.36 Pb+2 + Cl- = PbCl+ - -log_k 1.6 + -log_k 1.6 -delta_h 4.38 kcal - -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt + -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt Pb+2 + 2 Cl- = PbCl2 - -log_k 1.8 + -log_k 1.8 -delta_h 1.08 kcal - -Vm 6.5402 8.1879 2.5318 -3.1175 -.0300 # supcrt + -Vm 6.5402 8.1879 2.5318 -3.1175 -.03 # supcrt Pb+2 + 3 Cl- = PbCl3- - -log_k 1.7 + -log_k 1.7 -delta_h 2.17 kcal - -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt + -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt Pb+2 + 4 Cl- = PbCl4-2 - -log_k 1.38 + -log_k 1.38 -delta_h 3.53 kcal - -Vm 16.4150 32.2997 -6.9452 -4.1143 2.3118 # supcrt + -Vm 16.415 32.2997 -6.9452 -4.1143 2.3118 # supcrt Pb+2 + CO3-2 = PbCO3 - -log_k 7.24 + -log_k 7.24 Pb+2 + 2 CO3-2 = Pb(CO3)2-2 - -log_k 10.64 + -log_k 10.64 Pb+2 + HCO3- = PbHCO3+ - -log_k 2.9 + -log_k 2.9 Pb+2 + SO4-2 = PbSO4 - -log_k 2.75 + -log_k 2.75 Pb+2 + 2 SO4-2 = Pb(SO4)2-2 - -log_k 3.47 -Pb+2 + 2HS- = Pb(HS)2 - -log_k 15.27 -Pb+2 + 3HS- = Pb(HS)3- - -log_k 16.57 -3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ - -log_k -23.88 + -log_k 3.47 +Pb+2 + 2 HS- = Pb(HS)2 + -log_k 15.27 +Pb+2 + 3 HS- = Pb(HS)3- + -log_k 16.57 +3 Pb+2 + 4 H2O = Pb3(OH)4+2 + 4 H+ + -log_k -23.88 -delta_h 26.5 kcal Pb+2 + NO3- = PbNO3+ - -log_k 1.17 + -log_k 1.17 Pb+2 + Br- = PbBr+ - -log_k 1.77 + -log_k 1.77 -delta_h 2.88 kcal -Pb+2 + 2Br- = PbBr2 - -log_k 1.44 +Pb+2 + 2 Br- = PbBr2 + -log_k 1.44 Pb+2 + F- = PbF+ - -log_k 1.25 -Pb+2 + 2F- = PbF2 - -log_k 2.56 -Pb+2 + 3F- = PbF3- - -log_k 3.42 -Pb+2 + 4F- = PbF4-2 - -log_k 3.1 + -log_k 1.25 +Pb+2 + 2 F- = PbF2 + -log_k 2.56 +Pb+2 + 3 F- = PbF3- + -log_k 3.42 +Pb+2 + 4 F- = PbF4-2 + -log_k 3.1 PHASES Calcite CaCO3 = CO3-2 + Ca+2 - -log_k -8.48 + -log_k -8.48 -delta_h -2.297 kcal - -analytic 17.118 -0.046528 -3496 # 0 - 250C, Ellis, 1959, Plummer and Busenberg, 1982 + -analytic 17.118 -0.046528 -3496 # 0 - 250C, Ellis, 1959, Plummer and Busenberg, 1982 -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3) Aragonite CaCO3 = CO3-2 + Ca+2 - -log_k -8.336 + -log_k -8.336 -delta_h -2.589 kcal - -analytic -171.9773 -0.077993 2903.293 71.595 + -analytic -171.9773 -0.077993 2903.293 71.595 -Vm 34.04 Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 - -log_k -17.09 - -delta_h -9.436 kcal - -analytic 31.283 -0.0898 -6438 # 25C: Hemingway and Robie, 1994; 50175C: Bnzeth et al., 2018, GCA 224, 262-275. + -log_k -17.09 + -delta_h -9.436 kcal + -analytic 31.283 -0.0898 -6438 # 25C: Hemingway and Robie, 1994; 50175C: Bnzeth et al., 2018, GCA 224, 262-275 -Vm 64.5 Siderite FeCO3 = Fe+2 + CO3-2 - -log_k -10.89 - -delta_h -2.480 kcal + -log_k -10.89 + -delta_h -2.48 kcal -Vm 29.2 Rhodochrosite MnCO3 = Mn+2 + CO3-2 - -log_k -11.13 - -delta_h -1.430 kcal + -log_k -11.13 + -delta_h -1.43 kcal -Vm 31.1 Strontianite SrCO3 = Sr+2 + CO3-2 - -log_k -9.271 - -delta_h -0.400 kcal - -analytic 155.0305 0.0 -7239.594 -56.58638 + -log_k -9.271 + -delta_h -0.4 kcal + -analytic 155.0305 0 -7239.594 -56.58638 -Vm 39.69 Witherite BaCO3 = Ba+2 + CO3-2 - -log_k -8.562 - -delta_h 0.703 kcal - -analytic 607.642 0.121098 -20011.25 -236.4948 + -log_k -8.562 + -delta_h 0.703 kcal + -analytic 607.642 0.121098 -20011.25 -236.4948 -Vm 46 Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O - -log_k -4.58 + -log_k -4.58 -delta_h -0.109 kcal - -analytic 68.2401 0.0 -3221.51 -25.0627 - -analytical_expression 93.7 5.99E-03 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 - -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) + -analytic 68.2401 0 -3221.51 -25.0627 + -analytical_expression 93.7 5.99E-3 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 + -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) Anhydrite CaSO4 = Ca+2 + SO4-2 - -log_k -4.36 - -delta_h -1.710 kcal - -analytic 84.90 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323. + -log_k -4.36 + -delta_h -1.71 kcal + -analytic 84.9 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323 -Vm 46.1 # 136.14 / 2.95 Celestite SrSO4 = Sr+2 + SO4-2 - -log_k -6.63 + -log_k -6.63 -delta_h -4.037 kcal # -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 - -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464. + -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464 -Vm 46.4 Barite BaSO4 = Ba+2 + SO4-2 - -log_k -9.97 - -delta_h 6.35 kcal - -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 + -log_k -9.97 + -delta_h 6.35 kcal + -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 -Vm 52.9 Arcanite - K2SO4 = SO4-2 + 2 K+ - log_k -1.776; -delta_h 5 kcal - -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 + K2SO4 = SO4-2 + 2 K+ + log_k -1.776; -delta_h 5 kcal + -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 # Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06 -Vm 65.5 Mirabilite - Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O - -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 + Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O + -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 Vm 216 Thenardite Na2SO4 = 2 Na+ + SO4-2 - -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 + -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 -Vm 52.9 Epsomite - MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O - log_k -1.74; -delta_h 10.57 kJ - -analytical_expression -3.59 6.21e-3 + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -1.74; -delta_h 10.57 kJ + -analytical_expression -3.59 6.21e-3 Vm 147 Hexahydrite - MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O - log_k -1.57; -delta_h 2.35 kJ - -analytical_expression -1.978 1.38e-3 + MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O + log_k -1.57; -delta_h 2.35 kJ + -analytical_expression -1.978 1.38e-3 Vm 132 Kieserite - MgSO4:H2O = Mg+2 + SO4-2 + H2O - log_k -1.16; -delta_h 9.22 kJ - -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 + MgSO4:H2O = Mg+2 + SO4-2 + H2O + log_k -1.16; -delta_h 9.22 kJ + -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 Vm 53.8 Hydroxyapatite Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 - -log_k -3.421 + -log_k -3.421 -delta_h -36.155 kcal -Vm 128.9 Fluorite CaF2 = Ca+2 + 2 F- - -log_k -10.6 - -delta_h 4.69 kcal - -analytic 66.348 0.0 -4298.2 -25.271 + -log_k -10.6 + -delta_h 4.69 kcal + -analytic 66.348 0 -4298.2 -25.271 -Vm 15.7 SiO2(a) SiO2 + 2 H2O = H4SiO4 - -log_k -2.71 - -delta_h 3.340 kcal - -analytic -0.26 0.0 -731.0 + -log_k -2.71 + -delta_h 3.34 kcal + -analytic -0.26 0 -731 Chalcedony SiO2 + 2 H2O = H4SiO4 - -log_k -3.55 - -delta_h 4.720 kcal - -analytic -0.09 0.0 -1032.0 + -log_k -3.55 + -delta_h 4.72 kcal + -analytic -0.09 0 -1032 -Vm 23.1 Quartz SiO2 + 2 H2O = H4SiO4 - -log_k -3.98 - -delta_h 5.990 kcal - -analytic 0.41 0.0 -1309.0 + -log_k -3.98 + -delta_h 5.99 kcal + -analytic 0.41 0 -1309 -Vm 22.67 Gibbsite Al(OH)3 + 3 H+ = Al+3 + 3 H2O - -log_k 8.11 - -delta_h -22.800 kcal + -log_k 8.11 + -delta_h -22.8 kcal -Vm 32.22 Al(OH)3(a) Al(OH)3 + 3 H+ = Al+3 + 3 H2O - -log_k 10.8 - -delta_h -26.500 kcal + -log_k 10.8 + -delta_h -26.5 kcal Kaolinite Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 - -log_k 7.435 - -delta_h -35.300 kcal + -log_k 7.435 + -delta_h -35.3 kcal -Vm 99.35 Albite NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 - -log_k -18.002 + -log_k -18.002 -delta_h 25.896 kcal -Vm 101.31 Anorthite CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 - -log_k -19.714 - -delta_h 11.580 kcal + -log_k -19.714 + -delta_h 11.58 kcal -Vm 105.05 K-feldspar KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 - -log_k -20.573 - -delta_h 30.820 kcal + -log_k -20.573 + -delta_h 30.82 kcal -Vm 108.15 K-mica KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 - -log_k 12.703 + -log_k 12.703 -delta_h -59.376 kcal Chlorite(14A) - Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O - -log_k 68.38 + Mg5Al2Si3O10(OH)8 + 16 H+ = 5 Mg+2 + 2 Al+3 + 3 H4SiO4 + 6 H2O + -log_k 68.38 -delta_h -151.494 kcal Ca-Montmorillonite - Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ - -log_k -45.027 + Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165 Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ + -log_k -45.027 -delta_h 58.373 kcal -Vm 156.16 Talc Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 - -log_k 21.399 + -log_k 21.399 -delta_h -46.352 kcal -Vm 68.34 Illite - K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+ - -log_k -40.267 + K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2 H2O = 0.6 K+ + 0.25 Mg+2 + 2.3 Al(OH)4- + 3.5 H4SiO4 + 1.2 H+ + -log_k -40.267 -delta_h 54.684 kcal -Vm 141.48 Chrysotile Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 - -log_k 32.2 - -delta_h -46.800 kcal - -analytic 13.248 0.0 10217.1 -6.1894 - -Vm 106.5808 # 277.11/2.60 + -log_k 32.2 + -delta_h -46.8 kcal + -analytic 13.248 0 10217.1 -6.1894 + -Vm 106.5808 # 277.11/2.60 Sepiolite - Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 - -log_k 15.760 - -delta_h -10.700 kcal + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 + -log_k 15.76 + -delta_h -10.7 kcal -Vm 143.765 Sepiolite(d) - Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 - -log_k 18.66 + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 + -log_k 18.66 Hematite Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O - -log_k -4.008 + -log_k -4.008 -delta_h -30.845 kcal -Vm 30.39 Goethite FeOOH + 3 H+ = Fe+3 + 2 H2O - -log_k -1.0 - -delta_h -14.48 kcal + -log_k -1 + -delta_h -14.48 kcal -Vm 20.84 Fe(OH)3(a) Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O - -log_k 4.891 + -log_k 4.891 Pyrite FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- - -log_k -18.479 - -delta_h 11.300 kcal + -log_k -18.479 + -delta_h 11.3 kcal -Vm 23.48 FeS(ppt) FeS + H+ = Fe+2 + HS- - -log_k -3.915 + -log_k -3.915 Mackinawite FeS + H+ = Fe+2 + HS- - -log_k -4.648 + -log_k -4.648 -Vm 20.45 Sulfur - S + 2H+ + 2e- = H2S - -log_k 4.882 + S + 2 H+ + 2 e- = H2S + -log_k 4.882 -delta_h -9.5 kcal Vivianite Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O - -log_k -36.0 -Pyrolusite # H2O added for surface calc's + -log_k -36 +Pyrolusite # H2O added for surface calc's MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O - -log_k 41.38 - -delta_h -65.110 kcal + -log_k 41.38 + -delta_h -65.11 kcal Hausmannite Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O - -log_k 61.03 - -delta_h -100.640 kcal + -log_k 61.03 + -delta_h -100.64 kcal Manganite MnOOH + 3 H+ + e- = Mn+2 + 2 H2O - -log_k 25.34 + -log_k 25.34 Pyrochroite Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O - -log_k 15.2 + -log_k 15.2 Halite - NaCl = Cl- + Na+ - log_k 1.570 - -delta_h 1.37 + NaCl = Cl- + Na+ + log_k 1.57 + -delta_h 1.37 #-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915. -Vm 27.1 Sylvite - KCl = K+ + Cl- - log_k 0.900 - -delta_h 8.5 + KCl = K+ + Cl- + log_k 0.9 + -delta_h 8.5 # -analytic 3.984 0.0 -919.55 Vm 37.5 # Gases... CO2(g) CO2 = CO2 - -log_k -1.468 + -log_k -1.468 -delta_h -4.776 kcal - -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 - -T_c 304.2 # critical T, K - -P_c 72.86 # critical P, atm + -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 + -T_c 304.2 # critical T, K + -P_c 72.86 # critical P, atm -Omega 0.225 # acentric factor H2O(g) H2O = H2O - -log_k 1.506; delta_h -44.03 kJ - -T_c 647.3; -P_c 217.60; -Omega 0.344 - -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 + -log_k 1.506; delta_h -44.03 kJ + -T_c 647.3; -P_c 217.6; -Omega 0.344 + -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 O2(g) O2 = O2 - -log_k -2.8983 - -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 - -T_c 154.6; -P_c 49.80; -Omega 0.021 + -log_k -2.8983 + -analytic -7.5001 7.8981e-3 0 0 2.0027e5 + -T_c 154.6; -P_c 49.8; -Omega 0.021 H2(g) H2 = H2 - -log_k -3.1050 - -delta_h -4.184 kJ - -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 - -T_c 33.2; -P_c 12.80; -Omega -0.225 + -log_k -3.105 + -delta_h -4.184 kJ + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + -T_c 33.2; -P_c 12.8; -Omega -0.225 N2(g) N2 = N2 - -log_k -3.1864 - -analytic -58.453 1.818e-3 3199 17.909 -27460 - -T_c 126.2; -P_c 33.50; -Omega 0.039 + -log_k -3.1864 + -analytic -58.453 1.818e-3 3199 17.909 -27460 + -T_c 126.2; -P_c 33.5; -Omega 0.039 H2S(g) - H2S = H+ + HS- - log_k -7.93 - -delta_h 9.1 - -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 - -T_c 373.2; -P_c 88.20; -Omega 0.1 + H2S = H+ + HS- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2; -P_c 88.2; -Omega 0.1 CH4(g) CH4 = CH4 -log_k -2.8 - -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100C - -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100C + -T_c 190.6; -P_c 45.4; -Omega 0.008 #Amm(g) # Amm = Amm NH3(g) NH3 = NH3 - -log_k 1.7966 - -analytic -18.758 3.3670e-4 2.5113e3 4.8619 39.192 - -T_c 405.6; -P_c 111.3; -Omega 0.25 + -log_k 1.7966 + -analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192 + -T_c 405.6; -P_c 111.3; -Omega 0.25 # redox-uncoupled gases Oxg(g) Oxg = Oxg - -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 - -T_c 154.6 ; -P_c 49.80 ; -Omega 0.021 + -analytic -7.5001 7.8981e-3 0 0 2.0027e5 + -T_c 154.6; -P_c 49.8; -Omega 0.021 Hdg(g) Hdg = Hdg - -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 - -T_c 33.2 ; -P_c 12.80 ; -Omega -0.225 + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + -T_c 33.2; -P_c 12.8; -Omega -0.225 Ntg(g) Ntg = Ntg - -analytic -58.453 1.81800e-3 3199 17.909 -27460 - T_c 126.2 ; -P_c 33.50 ; -Omega 0.039 + -analytic -58.453 1.818e-3 3199 17.909 -27460 + T_c 126.2; -P_c 33.5; -Omega 0.039 Mtg(g) Mtg = Mtg -log_k -2.8 - -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100C - -T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100C + -T_c 190.6; -P_c 45.4; -Omega 0.008 H2Sg(g) - H2Sg = H+ + HSg- - log_k -7.93 - -delta_h 9.1 - -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 - -T_c 373.2 ; -P_c 88.20 ; -Omega 0.1 + H2Sg = H+ + HSg- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2; -P_c 88.2; -Omega 0.1 Melanterite FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 - -log_k -2.209 - -delta_h 4.910 kcal - -analytic 1.447 -0.004153 0.0 0.0 -214949.0 + -log_k -2.209 + -delta_h 4.91 kcal + -analytic 1.447 -0.004153 0 0 -214949 Alunite - KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6H2O - -log_k -1.4 - -delta_h -50.250 kcal + KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O + -log_k -1.4 + -delta_h -50.25 kcal Jarosite-K KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2 - -log_k -9.21 - -delta_h -31.280 kcal + -log_k -9.21 + -delta_h -31.28 kcal Zn(OH)2(e) Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O - -log_k 11.5 + -log_k 11.5 Smithsonite ZnCO3 = Zn+2 + CO3-2 - -log_k -10.0 - -delta_h -4.36 kcal + -log_k -10 + -delta_h -4.36 kcal Sphalerite ZnS + H+ = Zn+2 + HS- - -log_k -11.618 - -delta_h 8.250 kcal -Willemite 289 - Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4 - -log_k 15.33 + -log_k -11.618 + -delta_h 8.25 kcal +Willemite 289 + Zn2SiO4 + 4 H+ = 2 Zn+2 + H4SiO4 + -log_k 15.33 -delta_h -33.37 kcal Cd(OH)2 Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O - -log_k 13.65 + -log_k 13.65 Otavite 315 CdCO3 = Cd+2 + CO3-2 - -log_k -12.1 + -log_k -12.1 -delta_h -0.019 kcal -CdSiO3 328 - CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4 - -log_k 9.06 +CdSiO3 328 + CdSiO3 + H2O + 2 H+ = Cd+2 + H4SiO4 + -log_k 9.06 -delta_h -16.63 kcal -CdSO4 329 +CdSO4 329 CdSO4 = Cd+2 + SO4-2 - -log_k -0.1 + -log_k -0.1 -delta_h -14.74 kcal -Cerussite 365 +Cerussite 365 PbCO3 = Pb+2 + CO3-2 - -log_k -13.13 - -delta_h 4.86 kcal -Anglesite 384 + -log_k -13.13 + -delta_h 4.86 kcal +Anglesite 384 PbSO4 = Pb+2 + SO4-2 - -log_k -7.79 - -delta_h 2.15 kcal + -log_k -7.79 + -delta_h 2.15 kcal Pb(OH)2 389 - Pb(OH)2 + 2H+ = Pb+2 + 2H2O - -log_k 8.15 + Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O + -log_k 8.15 -delta_h -13.99 kcal EXCHANGE_MASTER_SPECIES - X X- + X X- EXCHANGE_SPECIES X- = X- - -log_k 0.0 + -log_k 0 Na+ + X- = NaX - -log_k 0.0 - -gamma 4.08 0.082 + -log_k 0 + -gamma 4.08 0.082 K+ + X- = KX - -log_k 0.7 - -gamma 3.5 0.015 - -delta_h -4.3 # Jardine & Sparks, 1984 + -log_k 0.7 + -gamma 3.5 0.015 + -delta_h -4.3 # Jardine & Sparks, 1984 Li+ + X- = LiX - -log_k -0.08 - -gamma 6.0 0 - -delta_h 1.4 # Merriam & Thomas, 1956 + -log_k -0.08 + -gamma 6 0 + -delta_h 1.4 # Merriam & Thomas, 1956 # !!!!! # H+ + X- = HX @@ -1355,65 +1359,65 @@ EXCHANGE_SPECIES # AmmH+ + X- = AmmHX NH4+ + X- = NH4X - -log_k 0.6 - -gamma 2.5 0 - -delta_h -2.4 # Laudelout et al., 1968 + -log_k 0.6 + -gamma 2.5 0 + -delta_h -2.4 # Laudelout et al., 1968 - Ca+2 + 2X- = CaX2 - -log_k 0.8 - -gamma 5.0 0.165 - -delta_h 7.2 # Van Bladel & Gheyl, 1980 + Ca+2 + 2 X- = CaX2 + -log_k 0.8 + -gamma 5 0.165 + -delta_h 7.2 # Van Bladel & Gheyl, 1980 - Mg+2 + 2X- = MgX2 - -log_k 0.6 - -gamma 5.5 0.2 - -delta_h 7.4 # Laudelout et al., 1968 + Mg+2 + 2 X- = MgX2 + -log_k 0.6 + -gamma 5.5 0.2 + -delta_h 7.4 # Laudelout et al., 1968 - Sr+2 + 2X- = SrX2 - -log_k 0.91 - -gamma 5.26 0.121 - -delta_h 5.5 # Laudelout et al., 1968 + Sr+2 + 2 X- = SrX2 + -log_k 0.91 + -gamma 5.26 0.121 + -delta_h 5.5 # Laudelout et al., 1968 - Ba+2 + 2X- = BaX2 - -log_k 0.91 - -gamma 4.0 0.153 - -delta_h 4.5 # Laudelout et al., 1968 + Ba+2 + 2 X- = BaX2 + -log_k 0.91 + -gamma 4 0.153 + -delta_h 4.5 # Laudelout et al., 1968 - Mn+2 + 2X- = MnX2 - -log_k 0.52 - -gamma 6.0 0 + Mn+2 + 2 X- = MnX2 + -log_k 0.52 + -gamma 6 0 - Fe+2 + 2X- = FeX2 - -log_k 0.44 - -gamma 6.0 0 + Fe+2 + 2 X- = FeX2 + -log_k 0.44 + -gamma 6 0 - Cu+2 + 2X- = CuX2 - -log_k 0.6 - -gamma 6.0 0 + Cu+2 + 2 X- = CuX2 + -log_k 0.6 + -gamma 6 0 - Zn+2 + 2X- = ZnX2 - -log_k 0.8 - -gamma 5.0 0 + Zn+2 + 2 X- = ZnX2 + -log_k 0.8 + -gamma 5 0 - Cd+2 + 2X- = CdX2 - -log_k 0.8 - -gamma 0.0 0 + Cd+2 + 2 X- = CdX2 + -log_k 0.8 + -gamma 0 0 - Pb+2 + 2X- = PbX2 - -log_k 1.05 - -gamma 0.0 0 + Pb+2 + 2 X- = PbX2 + -log_k 1.05 + -gamma 0 0 - Al+3 + 3X- = AlX3 - -log_k 0.41 - -gamma 9.0 0 + Al+3 + 3 X- = AlX3 + -log_k 0.41 + -gamma 9 0 - AlOH+2 + 2X- = AlOHX2 - -log_k 0.89 - -gamma 0.0 0 + AlOH+2 + 2 X- = AlOHX2 + -log_k 0.89 + -gamma 0 0 SURFACE_MASTER_SPECIES - Hfo_s Hfo_sOH - Hfo_w Hfo_wOH + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH SURFACE_SPECIES # All surface data from # Dzombak and Morel, 1990 @@ -1424,24 +1428,24 @@ SURFACE_SPECIES # strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH - -log_k 0 + -log_k 0 Hfo_sOH + H+ = Hfo_sOH2+ - -log_k 7.29 # = pKa1,int + -log_k 7.29 # = pKa1,int Hfo_sOH = Hfo_sO- + H+ - -log_k -8.93 # = -pKa2,int + -log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH - -log_k 0 + -log_k 0 Hfo_wOH + H+ = Hfo_wOH2+ - -log_k 7.29 # = pKa1,int + -log_k 7.29 # = pKa1,int Hfo_wOH = Hfo_wO- + H+ - -log_k -8.93 # = -pKa2,int + -log_k -8.93 # = -pKa2,int ############################################### # CATIONS # ############################################### @@ -1450,52 +1454,52 @@ SURFACE_SPECIES # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - -log_k 4.97 + -log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ -log_k -5.85 # Strontium Hfo_sOH + Sr+2 = Hfo_sOHSr+2 - -log_k 5.01 + -log_k 5.01 Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ -log_k -6.58 - Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+ + Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2 H+ -log_k -17.6 # Barium Hfo_sOH + Ba+2 = Hfo_sOHBa+2 - -log_k 5.46 + -log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - -log_k -7.2 # table 10.5 + -log_k -7.2 # table 10.5 # # Cations from table 10.2 # # Cadmium Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ - -log_k 0.47 + -log_k 0.47 Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ - -log_k -2.91 + -log_k -2.91 # Zinc Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ - -log_k 0.99 + -log_k 0.99 Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ - -log_k -1.99 + -log_k -1.99 # Copper Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ - -log_k 2.89 + -log_k 2.89 Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ - -log_k 0.6 # table 10.5 + -log_k 0.6 # table 10.5 # Lead Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ - -log_k 4.65 + -log_k 4.65 Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ - -log_k 0.3 # table 10.5 + -log_k 0.3 # table 10.5 # # Derived constants table 10.5 # @@ -1504,18 +1508,18 @@ SURFACE_SPECIES -log_k -4.6 # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ - -log_k -0.4 # table 10.5 + -log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ - -log_k -3.5 # table 10.5 + -log_k -3.5 # table 10.5 # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096 Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ - -log_k -0.95 + -log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ -log_k -2.98 - Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+ + Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2 H+ -log_k -11.55 ############################################### # ANIONS # @@ -1524,51 +1528,51 @@ SURFACE_SPECIES # Anions from table 10.6 # # Phosphate - Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O - -log_k 31.29 + Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O + -log_k 31.29 - Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O - -log_k 25.39 + Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O + -log_k 25.39 Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O - -log_k 17.72 + -log_k 17.72 # # Anions from table 10.7 # # Borate Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O - -log_k 0.62 + -log_k 0.62 # # Anions from table 10.8 # # Sulfate Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O - -log_k 7.78 + -log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - -log_k 0.79 + -log_k 0.79 # # Derived constants table 10.10 # Hfo_wOH + F- + H+ = Hfo_wF + H2O - -log_k 8.7 + -log_k 8.7 Hfo_wOH + F- = Hfo_wOHF- - -log_k 1.6 + -log_k 1.6 # # Carbonate: Van Geen et al., 1994 reoptimized for D&M model # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O - -log_k 12.56 + -log_k 12.56 - Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O - -log_k 20.62 + Hfo_wOH + CO3-2 + 2 H+ = Hfo_wHCO3 + H2O + -log_k 20.62 # # Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422. # - Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 - Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 - Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69 + Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 + Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O; log_K -3.22 + Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2 H+ + H2O; log_K -11.69 MEAN_GAMMAS CaCl2 Ca+2 1 Cl- 2 @@ -1610,15 +1614,15 @@ RATES Quartz -start -1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 -2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol -3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) -4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz -5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 +1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 +2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol +3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) +4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz +5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 10 dif_temp = 1/TK - 1/298 20 pk_w = 13.7 + 4700.4 * dif_temp -40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) +40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) # Integrate... 50 SAVE moles * TIME -end @@ -1663,38 +1667,38 @@ Quartz K-feldspar -start -1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 -2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar -3 REM PARM(2) = Adjusts lab rate to field rate -4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) -5 REM K-Feldspar parameters -10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 -20 RESTORE 10 -30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH -40 DATA 3500, 2000, 2500, 2000 -50 RESTORE 40 -60 READ e_H, e_H2O, e_OH, e_CO2 -70 pk_CO2 = 13 -80 n_CO2 = 0.6 +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM K-Feldspar parameters +10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp -150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis -170 pk_H2O = pk_H2O + e_H2O * dif_temp +170 pk_H2O = pk_H2O + e_H2O * dif_temp 180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) 190 REM rate by OH- -200 pk_OH = pk_OH + e_OH * dif_temp -210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH 220 REM rate by CO2 -230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) -280 moles = rate * TIME +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) +280 moles = rate * TIME 290 SAVE moles -end @@ -1738,38 +1742,38 @@ K-feldspar Albite -start -1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 -2 REM PARM(1) = Specific area of Albite m^2/mol Albite -3 REM PARM(2) = Adjusts lab rate to field rate -4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) -5 REM Albite parameters -10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 -20 RESTORE 10 -30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH -40 DATA 3500, 2000, 2500, 2000 -50 RESTORE 40 -60 READ e_H, e_H2O, e_OH, e_CO2 -70 pk_CO2 = 13 -80 n_CO2 = 0.6 +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Albite m^2/mol Albite +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM Albite parameters +10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp -150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis -170 pk_H2O = pk_H2O + e_H2O * dif_temp +170 pk_H2O = pk_H2O + e_H2O * dif_temp 180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) 190 REM rate by OH- -200 pk_OH = pk_OH + e_OH * dif_temp -210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH 220 REM rate by CO2 -230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("Albite")) -280 moles = rate * TIME +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("Albite")) +280 moles = rate * TIME 290 SAVE moles -end @@ -1777,7 +1781,7 @@ Albite #Calcite ######## # Example of KINETICS data block for calcite rate, -# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257. +# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257 # KINETICS 1 # Calcite # -tol 1e-8 @@ -1788,16 +1792,16 @@ Albite Calcite -start -1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite -2 REM PARM(2) = exponent for M/M0 +1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite +2 REM PARM(2) = exponent for M/M0 -10 si_cc = SI("Calcite") -20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 -30 k1 = 10^(0.198 - 444.0 / TK ) -40 k2 = 10^(2.84 - 2177.0 /TK ) -50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317.0 / TK) -60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737.0 / TK ) -80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M +10 si_cc = SI("Calcite") +20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 +30 k1 = 10^(0.198 - 444 / TK ) +40 k2 = 10^(2.84 - 2177 /TK ) +50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317 / TK) +60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737 / TK ) +80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M 110 rate = area * (k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O")) 120 rate = rate * (1 - 10^(2/3*si_cc)) 130 moles = rate * 0.001 * TIME # convert from mmol to mol @@ -1822,18 +1826,18 @@ Calcite # -time 1 day in 10 Pyrite -start -1 REM Williamson and Rimstidt, 1994 -2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) -3 REM PARM(2) = exp for (M/M0) -4 REM PARM(3) = exp for O2 -5 REM PARM(4) = exp for H+ +1 REM Williamson and Rimstidt, 1994 +2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) +3 REM PARM(2) = exp for (M/M0) +4 REM PARM(3) = exp for O2 +5 REM PARM(4) = exp for H+ -10 REM Dissolution in presence of DO -20 if (M <= 0) THEN GOTO 200 -30 if (SI("Pyrite") >= 0) THEN GOTO 200 -40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") -50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) -60 moles = 10^(log_area + log_rate) * TIME +10 REM Dissolution in presence of DO +20 if (M <= 0) THEN GOTO 200 +30 if (SI("Pyrite") >= 0) THEN GOTO 200 +40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") +50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) +60 moles = 10^(log_area + log_rate) * TIME 200 SAVE moles -end @@ -1850,19 +1854,19 @@ Pyrite # -time 30 year in 15 Organic_C -start -1 REM Additive Monod kinetics for SOC (sediment organic carbon) -2 REM Electron acceptors: O2, NO3, and SO4 +1 REM Additive Monod kinetics for SOC (sediment organic carbon) +2 REM Electron acceptors: O2, NO3, and SO4 -10 if (M <= 0) THEN GOTO 200 -20 mO2 = MOL("O2") -30 mNO3 = TOT("N(5)") -40 mSO4 = TOT("S(6)") -50 k_O2 = 1.57e-9 # 1/sec -60 k_NO3 = 1.67e-11 # 1/sec -70 k_SO4 = 1.e-13 # 1/sec -80 rate = k_O2 * mO2/(2.94e-4 + mO2) -90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) -100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) +10 if (M <= 0) THEN GOTO 200 +20 mO2 = MOL("O2") +30 mNO3 = TOT("N(5)") +40 mSO4 = TOT("S(6)") +50 k_O2 = 1.57e-9 # 1/sec +60 k_NO3 = 1.67e-11 # 1/sec +70 k_SO4 = 1.e-13 # 1/sec +80 rate = k_O2 * mO2/(2.94e-4 + mO2) +90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) +100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) 110 moles = rate * M * (M/M0) * TIME 200 SAVE moles -end @@ -1883,14 +1887,14 @@ Organic_C # -time 0.5 day in 10 Pyrolusite -start -10 if (M <= 0) THEN GOTO 200 -20 sr_pl = SR("Pyrolusite") -30 if (sr_pl > 1) THEN GOTO 100 -40 REM sr_pl <= 1, undersaturated -50 Fe_t = TOT("Fe(2)") -60 if Fe_t < 1e-8 then goto 200 -70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) -80 GOTO 200 +10 if (M <= 0) THEN GOTO 200 +20 sr_pl = SR("Pyrolusite") +30 if (sr_pl > 1) THEN GOTO 100 +40 REM sr_pl <= 1, undersaturated +50 Fe_t = TOT("Fe(2)") +60 if Fe_t < 1e-8 then goto 200 +70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) +80 GOTO 200 100 REM sr_pl > 1, supersaturated 110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME 200 SAVE moles * SOLN_VOL @@ -1914,12 +1918,12 @@ Pyrolusite # Calcite # Plummer, Wigley, Parkhurst 1978, AJS 278, 179-216. # Quartz_PK # Palandri and Kharaka # Quartz_Svd # Sverdrup -# Quartz_Hermanska # +# Quartz_Hermanska # # Quartz_Rimstidt_Barnes # Montmorillonite # Na, K, Mg, Ca exchange, Hermanska rate for the TOT layer # PHASES # defined for formulas and affinities of kinetic (mostly) dissolving minerals -# Unless noted otherwise, data from ThermoddemV1.10_15Dec2020.dat, +# Unless noted otherwise, data from ThermoddemV1.10_15Dec2020.dat, # tidied with lsp.exe from https://phreeplot.org/lsp/lsp.html Actinolite # Hornblende, Ferroactinolite @@ -2692,31 +2696,31 @@ Wollastonite -6.97 700 56 0.4 0 0 # 20 rate = RATE_PK("Albite") # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # 40 SAVE area * rate * affinity * TIME -# -end +# -end # KINETICS 1 # Albite_PK -# -formula NaAlSi3O8; -parms 0 1 1 0.67 +# -formula NaAlSi3O8; -parms 0 1 1 0.67 # -m0 1; -time 1 # default # END # SOLUTION 1 -# PHASES - # Fix_pH; H+ = H+ - # LiBr; LiBr = Li+ + Br-; -log_k -20 # (very) unsoluble phase with base cation and acid anion, permits to use HBr or LiOH as reactant +# PHASES + # Fix_pH; H+ = H+ + # LiBr; LiBr = Li+ + Br-; -log_k -20 # (very) unsoluble phase with base cation and acid anion, permits to use HBr or LiOH as reactant # SELECTED_OUTPUT 1 - # -file kinetic_rates_pH.inc - # -reset false -# USER_PUNCH 1 # write out the pH's to equilibrate... + # -file kinetic_rates_pH.inc + # -reset false +# USER_PUNCH 1 # write out the pH's to equilibrate... # 10 FOR i = 0 to 14 STEP 0.5 - # 20 punch EOL$ + 'USE solution 1' - # 30 punch EOL$ + 'EQUILIBRIUM_PHASES 1' - # 40 punch EOL$ + ' LiBr' - # 50 punch EOL$ + ' Fix_pH ' + TRIM(STR$(-i)) + ' LiOH 10' # ...or HBr as reactant - # 60 punch EOL$ + 'USE kinetics 1' - # 70 punch EOL$ + 'END' - # 80 NEXT i -# END + # 20 punch EOL$ + 'USE solution 1' + # 30 punch EOL$ + 'EQUILIBRIUM_PHASES 1' + # 40 punch EOL$ + ' LiBr' + # 50 punch EOL$ + ' Fix_pH ' + TRIM(STR$(-i)) + ' LiOH 10' # ...or HBr as reactant + # 60 punch EOL$ + 'USE kinetics 1' + # 70 punch EOL$ + 'END' + # 80 NEXT i +# END # PRINT; -reset false # SELECTED_OUTPUT 1; -active false @@ -2725,7 +2729,7 @@ Wollastonite -6.97 700 56 0.4 0 0 # -axis_scale x_axis 0 14 # 10 graph_x -la("H+") # 20 graph_sy log10(tot("Al")) -# INCLUDE$ kinetic_rates_pH.inc +# INCLUDE$ kinetic_rates_pH.inc # END # RATES @@ -2735,18 +2739,18 @@ Wollastonite -6.97 700 56 0.4 0 0 # 20 rate = RATE_SVD("Albite") # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # 40 SAVE area * rate * affinity * TIME -# -end +# -end # KINETICS 1 # Albite_Svd -# -formula NaAlSi3O8; -parms 0 1 20 0.67 # roughness = 20 +# -formula NaAlSi3O8; -parms 0 1 20 0.67 # roughness = 20 # USER_GRAPH 1; -headings pH Sverdup*20 # INCLUDE$ kinetic_rates_pH.inc # END # KINETICS 1 # Albite # from Sverdrup and Warfvinge, 1995 -# -formula NaAlSi3O8; -parms 1 20 # roughness = 20 +# -formula NaAlSi3O8; -parms 1 20 # roughness = 20 # USER_GRAPH 1; -headings pH Sverdup`95*20 # INCLUDE$ kinetic_rates_pH.inc # END @@ -2758,18 +2762,18 @@ Wollastonite -6.97 700 56 0.4 0 0 # 20 rate = RATE_HERMANSKA("Albite") # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # 40 SAVE area * rate * affinity * TIME -# -end +# -end # KINETICS 1 # Albite_Hermanska -# -formula NaAlSi3O8; -parms 0 1 1 0.67 +# -formula NaAlSi3O8; -parms 0 1 1 0.67 # USER_GRAPH 1; -headings pH Hermanska # INCLUDE$ kinetic_rates_pH.inc # END # USE solution 1 # REACTION_TEMPERATURE 1; 25 25 in 21 -# USER_GRAPH 1; -headings Albite_data +# USER_GRAPH 1; -headings Albite_data # 10 data 1.1, 2.05, 2.45, 2.9, 3, 3.5, 4.1, 5.1, 5.35, 5.47, 5.63, 5.63, 5.73, 7.73, 9.95, 9.95, 9.95, 10.6, 11.2, 11.55, 12.3 # 20 data -10.25, -10.55, -10.82, -11.25, -11.1, -11.4, -11.47, -11.82, -11.75, -11.65, -11.83, -11.92, -11.92, -11.83, -10.97, -11.05, -11.13, -10.95, -10.55, -10.6, -10.38 # Chou, L., Wollast, R., 1985. Steady-state kinetics and dissolution mechanisms of albite. Am. J. Sci. 285, 963993. # 30 restore 10 : dim ph(21) : for i = 1 to step_no : read ph(i) : next i @@ -2791,13 +2795,13 @@ Wollastonite -6.97 700 56 0.4 0 0 # 20 rate = RATE_PK("calcite") # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # 40 SAVE area * rate * affinity * TIME -# -end +# -end # SOLUTION 1 # pH 7 charge; C(4) 1 CO2(g) -2.5 # KINETICS 1 # calcite_PK -# -formula CaCO3; -parms 0 1e-2 1 0.67 +# -formula CaCO3; -parms 0 1e-2 1 0.67 # -time 0.1 10*1 hour # INCREMENTAL_REACTIONS true # USER_GRAPH 2; -headings h Palandri_SI(CO2_g).=.-2.5 @@ -2844,7 +2848,7 @@ Wollastonite -6.97 700 56 0.4 0 0 # 20 rate = RATE_PK("Quartz") # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # 40 SAVE area * rate * affinity * TIME -# -end +# -end # SOLUTION 1 # pH 7 charge @@ -2860,13 +2864,13 @@ Wollastonite -6.97 700 56 0.4 0 0 # END # RATES -# Quartz_Hermanska # +# Quartz_Hermanska # # 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END # 20 rate = RATE_HERMANSKA("Quartz") # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # 40 SAVE area * rate * affinity * TIME -# -end +# -end # USE solution 1 # KINETICS 1 @@ -2885,7 +2889,7 @@ Wollastonite -6.97 700 56 0.4 0 0 # 20 rate = RATE_SVD("Quartz") # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # 40 SAVE area * rate * affinity * TIME -# -end +# -end # USE solution 1 # KINETICS 1 @@ -2939,12 +2943,12 @@ Wollastonite -6.97 700 56 0.4 0 0 # END # # Example input file for calculating kinetic dissolution of Montmorillonite, -# # a solid solution with exchangeable cations reacting fast; +# # a solid solution with exchangeable cations reacting fast # # their ratios are related to the changing solution composition, # # and their amounts are connected to the kinetic reacting TOT layer. # # # # The affinity is related to a solid solution member, given by the fraction of the -# # exchangeable cation (here Na+ or Ca+2). For the Gapon exchange formula, +# # exchangeable cation (here Na+ or Ca+2). For the Gapon exchange formula, # # the exchange species and their log_k`s are from the solid solution members in ThermoddemV1 # # For the Gaines Thomas formula, the Mg+2 and Ca+2 species are redefined. # # It also shows how the default X exchanger can be invkoed. @@ -2973,17 +2977,17 @@ Wollastonite -6.97 700 56 0.4 0 0 # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # 40 SAVE area * rate * affinity * TIME -# -end +# -end # EXCHANGE_MASTER_SPECIES # X_montm_mg X_montm_mg-0.34 # EXCHANGE_SPECIES # # The Gapon formulation is easiest... # X_montm_mg-0.34 = X_montm_mg-0.34 -# 0.34 Na+ + X_montm_mg-0.34 = Na0.34X_montm_mg; log_k -3.411 # 0 # -# 0.34 K+ + X_montm_mg-0.34 = K0.34X_montm_mg; log_k -2.830 # 0.581 # -# 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -3.708 # -0.297 # -# 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -4.222 # -0.811 # +# 0.34 Na+ + X_montm_mg-0.34 = Na0.34X_montm_mg; log_k -3.411 # 0 # +# 0.34 K+ + X_montm_mg-0.34 = K0.34X_montm_mg; log_k -2.83 # 0.581 # +# 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -3.708 # -0.297 # +# 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -4.222 # -0.811 # # # # The divalent cations have rather low log_k, cf. A&P, p.254, log_k Ca0.5X ~ log_k KX # # # uncomment the following lines to see the effect... @@ -3004,8 +3008,8 @@ Wollastonite -6.97 700 56 0.4 0 0 # # 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -3.708e10 # # 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -4.222e10 # # # write the Gaines-Thomas formulas... -# # 0.34 Mg+2 + 2 X_montm_mg-0.34 = Mg0.34X_montm_mg2 ; log_k -7.416 # -0.297 # -# # 0.34 Ca+2 + 2 X_montm_mg-0.34 = Ca0.34X_montm_mg2 ; log_k -8.444 # -0.811 # +# # 0.34 Mg+2 + 2 X_montm_mg-0.34 = Mg0.34X_montm_mg2 ; log_k -7.416 # -0.297 # +# # 0.34 Ca+2 + 2 X_montm_mg-0.34 = Ca0.34X_montm_mg2 ; log_k -8.444 # -0.811 # # # # The default exchanger X can be used, uncomment the follwing lines # # # redefine f_Na in the rate... @@ -3017,7 +3021,7 @@ Wollastonite -6.97 700 56 0.4 0 0 # # 20 rate = RATE_HERMANSKA("Montmorillonite") / f_Na # # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # # 40 SAVE area * rate * affinity * TIME -# # -end +# # -end # # # adapt log_k`s of the solids with default exchanger X: # # PHASES # # Montmorillonite(MgK) @@ -3033,7 +3037,7 @@ Wollastonite -6.97 700 56 0.4 0 0 # END # SOLUTION 1 -# pH 7 charge; +# pH 7 charge # Na 1e-5 # K 1e-5 # Mg 1e-5 @@ -3069,7 +3073,7 @@ Wollastonite -6.97 700 56 0.4 0 0 # X_montm_mg Montmorillonite kin 1; -equil 99 # comment in KINETICS: # X_montm_mg -1 # # X Montmorillonite kin 0.34; -equil 99 # default exchanger X, comment in KINETICS: # X_montm_mg -1 # KINETICS 1 -# Montmorillonite +# Montmorillonite # -formula Mg0.34Al1.66Si4O10(OH)2 1 # X_montm_mg -1 # -m 4e-2 # -parms 0 2.5e5 1 0.67 @@ -3088,20 +3092,20 @@ Wollastonite -6.97 700 56 0.4 0 0 # 20 GRAPH_Y TOT("Na"), TOT("K"), mg, ca # 30 GRAPH_SY (4e-2 - kin("Montmorillonite")) * 1e3 # END -# USE solution 99; REACTION +# USE solution 99; REACTION # USER_GRAPH 4; -connect_simulations false; -headings Solution_99 # 1 t = get(1) -# 10 plot_xy t, tot("Na"), symbol = Circle , symbol_size = 15, color = Red -# 20 plot_xy t, tot("K"), symbol = Circle , symbol_size = 15, color = Green -# 30 plot_xy t, tot("Mg"), symbol = Circle , symbol_size = 15, color = Blue -# 40 plot_xy t, tot("Ca"), symbol = Circle , symbol_size = 15, color = Orange +# 10 plot_xy t, tot("Na"), symbol = Circle , symbol_size = 15, color = Red +# 20 plot_xy t, tot("K"), symbol = Circle , symbol_size = 15, color = Green +# 30 plot_xy t, tot("Mg"), symbol = Circle , symbol_size = 15, color = Blue +# 40 plot_xy t, tot("Ca"), symbol = Circle , symbol_size = 15, color = Orange # ============================================================================================= -#(a) means amorphous. (d) means disordered, or less crystalline. -#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt), -#precipitated, indicates an initial precipitate that is less crystalline. +#(a) means amorphous. (d) means disordered, or less crystalline. +#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt), +#precipitated, indicates an initial precipitate that is less crystalline. #Zn(OH)2(e) indicates a specific crystal form, epsilon. -# ============================================================================================= +# ============================================================================================= # For the reaction aA + bB = cC + dD, # with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B), # PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT). @@ -3157,4 +3161,4 @@ Wollastonite -6.97 700 56 0.4 0 0 # # ============================================================================================= # It remains the responsibility of the user to check the calculated results, for example with -# measured solubilities as a function of (P, T). \ No newline at end of file +# measured solubilities as a function of (P, T). diff --git a/pitzer.dat b/pitzer.dat index fa4ef2e8..66e86614 100644 --- a/pitzer.dat +++ b/pitzer.dat @@ -1,42 +1,46 @@ +# File 1 = C:\GitPrograms\phreeqc3-1\database\pitzer.dat, 07/05/2024 14:37, 1032 lines, 37439 bytes, md5=8c8a391e10b8f6a9fabafe33d779565e +# Created 17 May 2024 14:30:44 +# c:\3rdParty\lsp\lsp.exe -f2 -k="asis" -ts "pitzer.dat" + # Pitzer.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution, using # diffusion coefficients of species, molal volumina of aqueous species and minerals, and critical temperatures and pressures of gases used in Peng-Robinson's EOS. # Details are given at the end of this file. SOLUTION_MASTER_SPECIES -Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05 -B B(OH)3 0 B 10.81 -Ba Ba+2 0 Ba 137.33 -Br Br- 0 Br 79.904 -C CO3-2 2 HCO3 12.0111 -C(4) CO3-2 2 HCO3 12.0111 -Ca Ca+2 0 Ca 40.08 -Cl Cl- 0 Cl 35.453 -E e- 0 0.0 0.0 -Fe Fe+2 0 Fe 55.847 -H H+ -1 H 1.008 -H(1) H+ -1 0.0 -K K+ 0 K 39.0983 -Li Li+ 0 Li 6.941 -Mg Mg+2 0 Mg 24.305 -Mn Mn+2 0 Mn 54.938 -Na Na+ 0 Na 22.9898 -O H2O 0 O 16.00 -O(-2) H2O 0 0.0 -S SO4-2 0 SO4 32.064 -S(6) SO4-2 0 SO4 -Si H4SiO4 0 SiO2 28.0843 -Sr Sr+2 0 Sr 87.62 -# redox-uncoupled gases -Hdg Hdg 0 Hdg 2.016 # H2 gas -Oxg Oxg 0 Oxg 32 # Oxygen gas -Mtg Mtg 0 Mtg 16.032 # CH4 gas -Sg H2Sg 0 H2Sg 32.064 # H2S gas -Ntg Ntg 0 Ntg 28.0134 # N2 gas +Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.05 +B B(OH)3 0 B 10.81 +Ba Ba+2 0 Ba 137.33 +Br Br- 0 Br 79.904 +C CO3-2 2 HCO3 12.0111 +C(4) CO3-2 2 HCO3 12.0111 +Ca Ca+2 0 Ca 40.08 +Cl Cl- 0 Cl 35.453 +E e- 1 0.0 0.0 +Fe Fe+2 0 Fe 55.847 +H H+ -1 H 1.008 +H(1) H+ -1 0.0 +K K+ 0 K 39.0983 +Li Li+ 0 Li 6.941 +Mg Mg+2 0 Mg 24.305 +Mn Mn+2 0 Mn 54.938 +Na Na+ 0 Na 22.9898 +O H2O 0 O 16.00 +O(-2) H2O 0 0.0 +S SO4-2 0 SO4 32.064 +S(6) SO4-2 0 SO4 +Si H4SiO4 0 SiO2 28.0843 +Sr Sr+2 0 Sr 87.62 +# redox-uncoupled gases +Hdg Hdg 0 Hdg 2.016 # H2 gas +Oxg Oxg 0 Oxg 32 # Oxygen gas +Mtg Mtg 0 Mtg 16.032 # CH4 gas +Sg H2Sg 0 H2Sg 32.064 # H2S gas +Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ - -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 # for viscosity parameters see ref. 4 - -dw 9.31e-9 823 5.55 0 3.07 24.01 0 + -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 + -dw 9.31e-9 823 5.55 0 3.07 24.01 0 # Dw(25 C) dw_T a a2 visc a3 a_v_dif # Dw(TK) = 9.31e-9 * exp(823 / TK - 823 / 298.15) * viscos_0_25 / viscos_0_tc # a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif @@ -49,130 +53,130 @@ H+ = H+ # If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. e- = e- H2O = H2O - -dw 2.299e-9 -254 + -dw 2.299e-9 -254 Li+ = Li+ - -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # The apparent volume parameters are defined in ref. 1 & 2. For Li+ additional data from Ellis, 1968, J. Chem. Soc. A, 1138 - -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl - -dw 1.03e-9 -14 4.03 0.8341 1.679 + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # The apparent volume parameters are defined in ref. 1 & 2 For Li+ additional data from Ellis, 1968, J. Chem. Soc. A, 1138 + -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl + -dw 1.03e-9 -14 4.03 0.8341 1.679 Na+ = Na+ - -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # for calculating densities (rho) when I > 3... # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 - -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 - -dw 1.33e-9 75 3.627 0 0.7037 + -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 + -dw 1.33e-9 75 3.627 0 0.7037 K+ = K+ - -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 - -viscosity 0.116 -0.191 1.52e-2 1.40e-2 2.59e-2 0.9028 - -dw 1.96e-9 254 3.484 0 0.1964 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 + -viscosity 0.116 -0.191 1.52e-2 1.4e-2 2.59e-2 0.9028 + -dw 1.96e-9 254 3.484 0 0.1964 Mg+2 = Mg+2 - -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 - -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 - -dw 0.705e-9 -4 5.569 0 1.047 + -Vm -1.41 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 + -dw 0.705e-9 -4 5.569 0 1.047 Ca+2 = Ca+2 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 - -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.30 # ref. 4, CaCl2 < 6 M - -dw 0.792e-9 34 5.411 0 1.046 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.6 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 + -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.3 # ref. 4, CaCl2 < 6 M + -dw 0.792e-9 34 5.411 0 1.046 Sr+2 = Sr+2 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.860 5.26 0.859 -27.0 -4.1e-3 1.97 - -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 - -dw 0.794e-9 160 0.680 0.767 1e-9 0.912 + -Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97 + -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 + -dw 0.794e-9 160 0.68 0.767 1e-9 0.912 Ba+2 = Ba+2 - -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 - -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 - -dw 0.848e-9 174 10.53 0 3.0 + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 + -dw 0.848e-9 174 10.53 0 3 Mn+2 = Mn+2 - -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # ref. 2 - -dw 0.688e-9 + -Vm -1.1 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # ref. 2 + -dw 0.688e-9 Fe+2 = Fe+2 - -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 - -dw 0.719e-9 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -dw 0.719e-9 Cl- = Cl- - -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 - -viscosity 0 0 0 0 0 0 1 # the reference solute - -dw 2.033e-9 216 3.160 0.2071 0.7432 + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -viscosity 0 0 0 0 0 0 1 # the reference solute + -dw 2.033e-9 216 3.16 0.2071 0.7432 CO3-2 = CO3-2 - -Vm 8.569 -10.40 -19.38 3e-4 4.61 0 2.99 0 -3.23e-2 0.872 - -viscosity 0 0.296 3.63e-2 2e-4 -1.90e-2 1.881 -1.754 - -dw 0.955e-9 -60 2.257 0.1022 0.4136 + -Vm 8.569 -10.4 -19.38 3e-4 4.61 0 2.99 0 -3.23e-2 0.872 + -viscosity 0 0.296 3.63e-2 2e-4 -1.9e-2 1.881 -1.754 + -dw 0.955e-9 -60 2.257 0.1022 0.4136 SO4-2 = SO4-2 - -Vm -7.77 43.17 176 -51.45 3.794 0 4.97 20.5 -5.77e-2 0.45 - -viscosity -4.10e-2 0.1735 1.308e-2 2.16e-4 2.83e-2 3.375 0.210 - -dw 1.07e-9 -63 0.397 0.982 1.01 + -Vm -7.77 43.17 176 -51.45 3.794 0 4.97 20.5 -5.77e-2 0.45 + -viscosity -4.1e-2 0.1735 1.308e-2 2.16e-4 2.83e-2 3.375 0.21 + -dw 1.07e-9 -63 0.397 0.982 1.01 B(OH)3 = B(OH)3 - -Vm 7.0643 8.8547 3.5844 -3.1451 -.2000 # supcrt - -dw 1.1e-9 + -Vm 7.0643 8.8547 3.5844 -3.1451 -.2 # supcrt + -dw 1.1e-9 Br- = Br- - -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 - -viscosity -1.16e-2 -5.23e-2 5.54e-2 1.22e-2 0.119 0.9969 0.818 - -dw 2.01e-9 139 2.949 0 1.321 + -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 + -viscosity -1.16e-2 -5.23e-2 5.54e-2 1.22e-2 0.119 0.9969 0.818 + -dw 2.01e-9 139 2.949 0 1.321 H4SiO4 = H4SiO4 - -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt + 2*H2O in a1 - -dw 1.10e-9 + -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt 2*H2O in a1 + -dw 1.1e-9 # redox-uncoupled gases Hdg = Hdg # H2 - -Vm 6.52 0.78 0.12 # supcrt - -dw 5.13e-9 + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 Oxg = Oxg # O2 - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt - -dw 2.35e-9 + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 Mtg = Mtg # CH4 - -Vm 9.01 -1.11 0 -1.85 -1.50 # Hnedkovsky et al., 1996, JCT 28, 125 - -dw 1.85e-9 + -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 Ntg = Ntg # N2 - -Vm 7 # Pray et al., 1952, IEC 44. 1146 - -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 + -Vm 7 # Pray et al., 1952, IEC 44 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 H2Sg = H2Sg # H2S - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 - -dw 2.1e-9 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 # aqueous species H2O = OH- + H+ - -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 - -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 - -viscosity -5.45e-2 0.142 1.45e-2 -3e-5 0 3.231 -1.791 # < 5 M Li,Na,KOH - -dw 5.27e-9 491 1.851 0 0.3256 + -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 + -Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1 + -viscosity -5.45e-2 0.142 1.45e-2 -3e-5 0 3.231 -1.791 # < 5 M Li,Na,KOH + -dw 5.27e-9 491 1.851 0 0.3256 CO3-2 + H+ = HCO3- - log_k 10.3393; delta_h -3.561 kcal - -analytic 107.8975 0.03252849 -5151.79 -38.92561 563713.9 - -Vm 9.463 -2.49 -11.92 0 1.63 0 0 130 0 0.691 - -viscosity 0 0.633 7.2e-3 0 0 0 1.087 - -dw 1.18e-9 -108 9.955 0 1.4928 + log_k 10.3393; delta_h -3.561 kcal + -analytic 107.8975 0.03252849 -5151.79 -38.92561 563713.9 + -Vm 9.463 -2.49 -11.92 0 1.63 0 0 130 0 0.691 + -viscosity 0 0.633 7.2e-3 0 0 0 1.087 + -dw 1.18e-9 -108 9.955 0 1.4928 CO3-2 + 2 H+ = CO2 + H2O - log_k 16.6767 - delta_h -5.738 kcal - -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 - -Vm 7.29 0.92 2.07 -1.23 -1.60 # McBride et al. 2015, JCED 60, 171 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 + log_k 16.6767 + delta_h -5.738 kcal + -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 SO4-2 + H+ = HSO4- - -log_k 1.988; -delta_h 3.85 kcal - -analytic -56.889 0.006473 2307.9 19.8858 - -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 - -viscosity 3.29e-2 -4.86e-2 0.409 1e-5 4.23e-2 1.069 0.7371 - -dw 0.731e-9 1e3 7.082 3.0 0.860 + -log_k 1.988; -delta_h 3.85 kcal + -analytic -56.889 0.006473 2307.9 19.8858 + -Vm 8.2 9.259 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -viscosity 3.29e-2 -4.86e-2 0.409 1e-5 4.23e-2 1.069 0.7371 + -dw 0.731e-9 1e3 7.082 3 0.86 H2Sg = HSg- + H+ - log_k -6.994 - delta_h 5.30 kcal - -analytical 11.17 -0.02386 -3279.0 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.4410 # supcrt - -dw 1.73e-9 -2H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T - -analytical 10.227 -0.01384 -2200 - -Vm 36.41 -71.95 0 0 2.58 - -dw 2.1e-9 + log_k -6.994 + delta_h 5.3 kcal + -analytical 11.17 -0.02386 -3279 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt + -dw 1.73e-9 +2 H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T + -analytical 10.227 -0.01384 -2200 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 B(OH)3 + H2O = B(OH)4- + H+ - log_k -9.239 - delta_h 0 kcal -3B(OH)3 = B3O3(OH)4- + 2H2O + H+ - log_k -7.528 - delta_h 0 kcal -4B(OH)3 = B4O5(OH)4-2 + 3H2O + 2H+ - log_k -16.134 - delta_h 0 kcal + log_k -9.239 + delta_h 0 kcal +3 B(OH)3 = B3O3(OH)4- + 2 H2O + H+ + log_k -7.528 + delta_h 0 kcal +4 B(OH)3 = B4O5(OH)4-2 + 3 H2O + 2 H+ + log_k -16.134 + delta_h 0 kcal Ca+2 + B(OH)3 + H2O = CaB(OH)4+ + H+ - log_k -7.589 - delta_h 0 kcal + log_k -7.589 + delta_h 0 kcal Mg+2 + B(OH)3 + H2O = MgB(OH)4+ + H+ - log_k -7.840 - delta_h 0 kcal + log_k -7.84 + delta_h 0 kcal # Ca+2 + CO3-2 = CaCO3 # log_k 3.151 # delta_h 3.547 kcal @@ -180,650 +184,650 @@ Mg+2 + B(OH)3 + H2O = MgB(OH)4+ + H+ # -dw 4.46e-10 # complexes: calc'd with the Pikal formula # -Vm -.2430 -8.3748 9.0417 -2.4328 -.0300 # supcrt Mg+2 + H2O = MgOH+ + H+ - log_k -11.809 + log_k -11.809 delta_h 15.419 kcal Mg+2 + CO3-2 = MgCO3 - log_k 2.928 - delta_h 2.535 kcal - -analytic -32.225 0.0 1093.486 12.72433 - -dw 4.21e-10 - -Vm -.5837 -9.2067 9.3687 -2.3984 -.0300 # supcrt + log_k 2.928 + delta_h 2.535 kcal + -analytic -32.225 0 1093.486 12.72433 + -dw 4.21e-10 + -Vm -.5837 -9.2067 9.3687 -2.3984 -.03 # supcrt H4SiO4 = H3SiO4- + H+ - -log_k -9.83; -delta_h 6.12 kcal - -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 - -Vm 7.94 1.0881 5.3224 -2.8240 1.4767 # supcrt + H2O in a1 + -log_k -9.83; -delta_h 6.12 kcal + -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669 + -Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt H2O in a1 H4SiO4 = H2SiO4-2 + 2 H+ - -log_k -23.0; -delta_h 17.6 kcal - -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 + -log_k -23; -delta_h 17.6 kcal + -analytic -294.0184 -0.07265 11204.49 108.18466 -1119669 PHASES Akermanite - Ca2MgSi2O7 + 6 H+ = Mg+2 + 2 Ca+2 + 2 H4SiO4 - H2O # llnl.dat - log_k 45.23 - -delta_H -289 kJ/mol + Ca2MgSi2O7 + 6 H+ = Mg+2 + 2 Ca+2 + 2 H4SiO4 - H2O # llnl.dat + log_k 45.23 + -delta_H -289 kJ/mol Vm 92.6 Anhydrite CaSO4 = Ca+2 + SO4-2 - log_k -4.362 - -analytical_expression 5.009 -2.21e-2 -796.4 # ref. 3 - -Vm 46.1 # 136.14 / 2.95 + log_k -4.362 + -analytical_expression 5.009 -2.21e-2 -796.4 # ref. 3 + -Vm 46.1 # 136.14 / 2.95 Anthophyllite - Mg7Si8O22(OH)2 + 14 H+ = 7 Mg+2 - 8 H2O + 8 H4SiO4 # llnl.dat - log_k 66.80 - -delta_H -483 kJ/mol + Mg7Si8O22(OH)2 + 14 H+ = 7 Mg+2 - 8 H2O + 8 H4SiO4 # llnl.dat + log_k 66.8 + -delta_H -483 kJ/mol Vm 269 Antigorite - Mg48Si34O85(OH)62 + 96 H+ = 34 H4SiO4 + 48 Mg+2 + 11 H2O # llnl.dat - log_k 477.19 - -delta_H -3364 kJ/mol + Mg48Si34O85(OH)62 + 96 H+ = 34 H4SiO4 + 48 Mg+2 + 11 H2O # llnl.dat + log_k 477.19 + -delta_H -3364 kJ/mol Vm 1745 Aragonite CaCO3 = CO3-2 + Ca+2 - log_k -8.336 + log_k -8.336 delta_h -2.589 kcal - -analytic -171.8607 -.077993 2903.293 71.595 - -Vm 34.04 + -analytic -171.8607 -.077993 2903.293 71.595 + -Vm 34.04 Arcanite - K2SO4 = SO4-2 + 2 K+ - log_k -1.776; -delta_h 5 kcal - -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 + K2SO4 = SO4-2 + 2 K+ + log_k -1.776; -delta_h 5 kcal + -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 # Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06 - -Vm 65.5 + -Vm 65.5 Artinite - Mg2CO3(OH)2:3H2O + 3 H+ = HCO3- + 2 Mg+2 + 5 H2O # llnl.dat - log_k 19.66 - -delta_H -130 kJ/mol + Mg2CO3(OH)2:3H2O + 3 H+ = HCO3- + 2 Mg+2 + 5 H2O # llnl.dat + log_k 19.66 + -delta_H -130 kJ/mol Vm 97.4 Barite BaSO4 = Ba+2 + SO4-2 - log_k -9.97; delta_h 6.35 kcal - -analytical_expression -282.43 -8.972e-2 5822 113.08 # ref. 3 - -Vm 52.9 + log_k -9.97; delta_h 6.35 kcal + -analytical_expression -282.43 -8.972e-2 5822 113.08 # ref. 3 + -Vm 52.9 Bischofite - MgCl2:6H2O = Mg+2 + 2 Cl- + 6 H2O - log_k 4.455 - -analytical_expression 7.526 -1.114e-2 115.7 # ref. 3 + MgCl2:6H2O = Mg+2 + 2 Cl- + 6 H2O + log_k 4.455 + -analytical_expression 7.526 -1.114e-2 115.7 # ref. 3 Vm 127.1 Bloedite - Na2Mg(SO4)2:4H2O = Mg++ + 2 Na+ + 2 SO4-- + 4 H2O - log_k -2.347 - -delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite + Na2Mg(SO4)2:4H2O = Mg+2 + 2 Na+ + 2 SO4-2 + 4 H2O + log_k -2.347 + -delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite Vm 147 Brucite - Mg(OH)2 = Mg++ + 2 OH- - log_k -10.88 - -delta_H 4.85 kcal/mol + Mg(OH)2 = Mg+2 + 2 OH- + log_k -10.88 + -delta_H 4.85 kcal/mol Vm 24.6 Burkeite - Na6CO3(SO4)2 = CO3-2 + 2 SO4-- + 6 Na+ - log_k -0.772 + Na6CO3(SO4)2 = CO3-2 + 2 SO4-2 + 6 Na+ + log_k -0.772 Vm 152 Calcite CaCO3 = CO3-2 + Ca+2 - log_k -8.406 + log_k -8.406 delta_h -2.297 kcal - -analytic 8.481 -0.032644 -2133 # ref. 3 with data from Ellis, 1959, Plummer and Busenberg, 1982 - -Vm 36.9 + -analytic 8.481 -0.032644 -2133 # ref. 3 with data from Ellis, 1959, Plummer and Busenberg, 1982 + -Vm 36.9 Carnallite - KMgCl3:6H2O = K+ + Mg+2 + 3Cl- + 6H2O - log_k 4.35; -delta_h 1.17 - -analytical_expression 24.06 -3.11e-2 -3.09e3 # ref. 3 + KMgCl3:6H2O = K+ + Mg+2 + 3 Cl- + 6 H2O + log_k 4.35; -delta_h 1.17 + -analytical_expression 24.06 -3.11e-2 -3.09e3 # ref. 3 Vm 173.7 Celestite SrSO4 = Sr+2 + SO4-2 - log_k -6.630 - -analytic -7.14 6.11E-03 75 0 0 -1.79E-05 # ref. 3 - -Vm 46.4 + log_k -6.63 + -analytic -7.14 6.11E-3 75 0 0 -1.79E-5 # ref. 3 + -Vm 46.4 Chalcedony SiO2 + 2 H2O = H4SiO4 - -log_k -3.55; -delta_h 4.720 kcal - -Vm 23.1 + -log_k -3.55; -delta_h 4.72 kcal + -Vm 23.1 Chrysotile Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 # phreeqc.dat - -log_k 32.2 - -delta_h -46.800 kcal - -analytic 13.248 0.0 10217.1 -6.1894 - -Vm 110 + -log_k 32.2 + -delta_h -46.8 kcal + -analytic 13.248 0 10217.1 -6.1894 + -Vm 110 Diopside - CaMgSi2O6 + 4 H+ = Ca+2 + Mg+2 - 2 H2O + 2 H4SiO4 # llnl.dat - log_k 20.96 - -delta_H -134 kJ/mol + CaMgSi2O6 + 4 H+ = Ca+2 + Mg+2 - 2 H2O + 2 H4SiO4 # llnl.dat + log_k 20.96 + -delta_H -134 kJ/mol Vm 67.2 Dolomite CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 - log_k -17.09 + log_k -17.09 delta_h -9.436 kcal - -analytic -120.63 -0.1051 0 54.509 # 50175C, Bnzeth et al., 2018, GCA 224, 262-275. - -Vm 64.5 + -analytic -120.63 -0.1051 0 54.509 # 50175C, Bnzeth et al., 2018, GCA 224, 262-275 + -Vm 64.5 Enstatite - MgSiO3 + 2 H+ = - H2O + Mg+2 + H4SiO4 # llnl.dat - log_k 11.33 - -delta_H -83 kJ/mol + MgSiO3 + 2 H+ = - H2O + Mg+2 + H4SiO4 # llnl.dat + log_k 11.33 + -delta_H -83 kJ/mol Vm 31.3 Epsomite - MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O - log_k -1.881 - -analytical_expression 4.479 -6.99e-3 -1.265e3 # ref. 3 + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -1.881 + -analytical_expression 4.479 -6.99e-3 -1.265e3 # ref. 3 Vm 147 Forsterite - Mg2SiO4 + 4 H+ = H4SiO4 + 2 Mg+2 # llnl.dat - log_k 27.86 - -delta_H -206 kJ/mol + Mg2SiO4 + 4 H+ = H4SiO4 + 2 Mg+2 # llnl.dat + log_k 27.86 + -delta_H -206 kJ/mol Vm 43.7 Gaylussite CaNa2(CO3)2:5H2O = Ca+2 + 2 CO3-2 + 2 Na+ + 5 H2O - log_k -9.421 + log_k -9.421 Glaserite - NaK3(SO4)2 = Na+ + 3K+ + 2SO4-2 - log_k -3.803; -delta_h 25 - -Vm 123 + NaK3(SO4)2 = Na+ + 3 K+ + 2 SO4-2 + log_k -3.803; -delta_h 25 + -Vm 123 Glauberite - Na2Ca(SO4)2 = Ca+2 + 2 Na+ + 2 SO4-2 - log_k -5.31 - -analytical_expression 218.142 0 -9285 -77.735 # ref. 3 + Na2Ca(SO4)2 = Ca+2 + 2 Na+ + 2 SO4-2 + log_k -5.31 + -analytical_expression 218.142 0 -9285 -77.735 # ref. 3 Vm 100.4 Goergeyite - K2Ca5(SO4)6H2O = 2K+ + 5Ca+2 + 6SO4-2 + H2O + K2Ca5(SO4)6H2O = 2 K+ + 5 Ca+2 + 6 SO4-2 + H2O log_k -29.5 - -analytical_expression 1056.787 0 -52300 -368.06 # ref. 3 - -Vm 295.9 + -analytical_expression 1056.787 0 -52300 -368.06 # ref. 3 + -Vm 295.9 Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O - -log_k -4.58; -delta_h -0.109 kcal - -analytical_expression 82.381 0 -3804.5 -29.9952 # ref. 3 - -Vm 73.9 + -log_k -4.58; -delta_h -0.109 kcal + -analytical_expression 82.381 0 -3804.5 -29.9952 # ref. 3 + -Vm 73.9 Halite - NaCl = Cl- + Na+ - log_k 1.570 - -analytical_expression 159.605 8.4294e-2 -3975.6 -66.857 0 -4.9364e-5 # ref. 3 - -Vm 27.1 + NaCl = Cl- + Na+ + log_k 1.57 + -analytical_expression 159.605 8.4294e-2 -3975.6 -66.857 0 -4.9364e-5 # ref. 3 + -Vm 27.1 Hexahydrite - MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O - log_k -1.635 - -analytical_expression -0.733 -2.80e-3 -8.57e-3 # ref. 3 + MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O + log_k -1.635 + -analytical_expression -0.733 -2.8e-3 -8.57e-3 # ref. 3 Vm 132 Huntite - CaMg3(CO3)4 + 4 H+ = Ca+2 + 3 Mg+2 + 4 HCO3- # llnl.dat - log_k 10.30 - -analytical_expression -1.145e3 -3.249e-1 3.941e4 4.526e2 + CaMg3(CO3)4 + 4 H+ = Ca+2 + 3 Mg+2 + 4 HCO3- # llnl.dat + log_k 10.3 + -analytical_expression -1.145e3 -3.249e-1 3.941e4 4.526e2 Vm 130.8 Kainite - KMgClSO4:3H2O = Cl- + K+ + Mg+2 + SO4-2 + 3 H2O - log_k -0.193 + KMgClSO4:3H2O = Cl- + K+ + Mg+2 + SO4-2 + 3 H2O + log_k -0.193 Kalicinite - KHCO3 = K+ + H+ + CO3-2 - log_k -9.94 # Harvie et al., 1984 + KHCO3 = K+ + H+ + CO3-2 + log_k -9.94 # Harvie et al., 1984 Kieserite - MgSO4:H2O = Mg+2 + SO4-2 + H2O - log_k -0.123 - -analytical_expression 47.24 -0.12077 -5.356e3 0 0 7.272e-5 # ref. 3 + MgSO4:H2O = Mg+2 + SO4-2 + H2O + log_k -0.123 + -analytical_expression 47.24 -0.12077 -5.356e3 0 0 7.272e-5 # ref. 3 Vm 53.8 Labile_S - Na4Ca(SO4)3:2H2O = 4Na+ + Ca+2 + 3SO4-2 + 2H2O - log_k -5.672 + Na4Ca(SO4)3:2H2O = 4 Na+ + Ca+2 + 3 SO4-2 + 2 H2O + log_k -5.672 Leonhardite - MgSO4:4H2O = Mg+2 + SO4-2 + 4H2O - log_k -0.887 + MgSO4:4H2O = Mg+2 + SO4-2 + 4 H2O + log_k -0.887 Leonite - K2Mg(SO4)2:4H2O = Mg+2 + 2 K+ + 2 SO4-2 + 4 H2O - log_k -3.979 + K2Mg(SO4)2:4H2O = Mg+2 + 2 K+ + 2 SO4-2 + 4 H2O + log_k -3.979 Magnesite - MgCO3 = CO3-2 + Mg+2 - log_k -7.834 - delta_h -6.169 + MgCO3 = CO3-2 + Mg+2 + log_k -7.834 + delta_h -6.169 Vm 28.3 MgCl2_2H2O - MgCl2:2H2O = Mg+2 + 2 Cl- + 2 H2O - -analytical_expression -10.273 0 7.403e3 # ref. 3 + MgCl2:2H2O = Mg+2 + 2 Cl- + 2 H2O + -analytical_expression -10.273 0 7.403e3 # ref. 3 MgCl2_4H2O - MgCl2:4H2O = Mg+2 + 2 Cl- + 4 H2O - -analytical_expression 12.98 -2.013e-2 # ref. 3 + MgCl2:4H2O = Mg+2 + 2 Cl- + 4 H2O + -analytical_expression 12.98 -2.013e-2 # ref. 3 Mirabilite - Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O - -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 + Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O + -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 Vm 216 Misenite - K8H6(SO4)7 = 6 H+ + 7 SO4-2 + 8 K+ - log_k -10.806 + K8H6(SO4)7 = 6 H+ + 7 SO4-2 + 8 K+ + log_k -10.806 Nahcolite - NaHCO3 = CO3-2 + H+ + Na+ - log_k -10.742 - Vm 38.0 + NaHCO3 = CO3-2 + H+ + Na+ + log_k -10.742 + Vm 38 Natron Na2CO3:10H2O = CO3-2 + 2 Na+ + 10 H2O - log_k -0.825 + log_k -0.825 Nesquehonite - MgCO3:3H2O = CO3-2 + Mg+2 + 3 H2O - log_k -5.167 + MgCO3:3H2O = CO3-2 + Mg+2 + 3 H2O + log_k -5.167 Pentahydrite - MgSO4:5H2O = Mg+2 + SO4-2 + 5 H2O - log_k -1.285 + MgSO4:5H2O = Mg+2 + SO4-2 + 5 H2O + log_k -1.285 Pirssonite - Na2Ca(CO3)2:2H2O = 2Na+ + Ca+2 + 2CO3-2 + 2 H2O - log_k -9.234 + Na2Ca(CO3)2:2H2O = 2 Na+ + Ca+2 + 2 CO3-2 + 2 H2O + log_k -9.234 Polyhalite - K2MgCa2(SO4)4:2H2O = 2K+ + Mg+2 + 2 Ca+2 + 4SO4-2 + 2 H2O - log_k -13.744 + K2MgCa2(SO4)4:2H2O = 2 K+ + Mg+2 + 2 Ca+2 + 4 SO4-2 + 2 H2O + log_k -13.744 Vm 218 Portlandite - Ca(OH)2 = Ca+2 + 2 OH- - log_k -5.190 + Ca(OH)2 = Ca+2 + 2 OH- + log_k -5.19 Quartz SiO2 + 2 H2O = H4SiO4 - -log_k -3.98; -delta_h 5.990 kcal - -Vm 22.67 + -log_k -3.98; -delta_h 5.99 kcal + -Vm 22.67 Schoenite - K2Mg(SO4)2:6H2O = 2K+ + Mg+2 + 2 SO4-2 + 6H2O - log_k -4.328 + K2Mg(SO4)2:6H2O = 2 K+ + Mg+2 + 2 SO4-2 + 6 H2O + log_k -4.328 Sepiolite(d) - Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 # phreeqc.dat - -log_k 18.66 - -Vm 162 + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 # phreeqc.dat + -log_k 18.66 + -Vm 162 Sepiolite - Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 # phreeqc.dat - -log_k 15.760 - -delta_h -10.700 kcal - -Vm 154 + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 # phreeqc.dat + -log_k 15.76 + -delta_h -10.7 kcal + -Vm 154 SiO2(a) SiO2 + 2 H2O = H4SiO4 - -log_k -2.71; -delta_h 3.340 kcal - -analytic 20.42 3.107e-3 -1492 -7.68 # ref. 3 - -Vm 25.7 + -log_k -2.71; -delta_h 3.34 kcal + -analytic 20.42 3.107e-3 -1492 -7.68 # ref. 3 + -Vm 25.7 Sylvite - KCl = K+ + Cl- - log_k 0.90; -delta_h 8 - -analytical_expression -50.571 9.8815e-2 1.3135e4 0 -1.3754e6 -7.393e-5 # ref. 3 + KCl = K+ + Cl- + log_k 0.9; -delta_h 8 + -analytical_expression -50.571 9.8815e-2 1.3135e4 0 -1.3754e6 -7.393e-5 # ref. 3 Vm 37.5 Syngenite - K2Ca(SO4)2:H2O = 2K+ + Ca+2 + 2SO4-2 + H2O - log_k -6.43; -delta_h -32.65 # ref. 3 - -Vm 127.3 + K2Ca(SO4)2:H2O = 2 K+ + Ca+2 + 2 SO4-2 + H2O + log_k -6.43; -delta_h -32.65 # ref. 3 + -Vm 127.3 Talc Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 # phreeqc.dat - -log_k 21.399 + -log_k 21.399 -delta_h -46.352 kcal - -Vm 140 + -Vm 140 Thenardite Na2SO4 = 2 Na+ + SO4-2 - -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 - -Vm 52.9 + -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 + -Vm 52.9 Trona - Na3H(CO3)2:2H2O = 3 Na+ + H+ + 2CO3-2 + 2H2O - log_k -11.384 + Na3H(CO3)2:2H2O = 3 Na+ + H+ + 2 CO3-2 + 2 H2O + log_k -11.384 Vm 106 Borax - Na2(B4O5(OH)4):8H2O + 2 H+ = 4 B(OH)3 + 2 Na+ + 5 H2O - log_k 12.464 + Na2(B4O5(OH)4):8H2O + 2 H+ = 4 B(OH)3 + 2 Na+ + 5 H2O + log_k 12.464 Vm 223 Boric_acid,s - B(OH)3 = B(OH)3 - log_k -0.030 + B(OH)3 = B(OH)3 + log_k -0.03 KB5O8:4H2O - KB5O8:4H2O + 3H2O + H+ = 5B(OH)3 + K+ - log_k 4.671 + KB5O8:4H2O + 3 H2O + H+ = 5 B(OH)3 + K+ + log_k 4.671 K2B4O7:4H2O - K2B4O7:4H2O + H2O + 2H+ = 4B(OH)3 + 2K+ - log_k 13.906 + K2B4O7:4H2O + H2O + 2 H+ = 4 B(OH)3 + 2 K+ + log_k 13.906 NaBO2:4H2O - NaBO2:4H2O + H+ = B(OH)3 + Na+ + 3H2O - log_k 9.568 + NaBO2:4H2O + H+ = B(OH)3 + Na+ + 3 H2O + log_k 9.568 NaB5O8:5H2O - NaB5O8:5H2O + 2H2O + H+ = 5B(OH)3 + Na+ - log_k 5.895 + NaB5O8:5H2O + 2 H2O + H+ = 5 B(OH)3 + Na+ + log_k 5.895 Teepleite - Na2B(OH)4Cl + H+ = B(OH)3 + 2Na+ + Cl- + H2O - log_k 10.840 + Na2B(OH)4Cl + H+ = B(OH)3 + 2 Na+ + Cl- + H2O + log_k 10.84 CO2(g) CO2 = CO2 - log_k -1.468 + log_k -1.468 delta_h -4.776 kcal - -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 - -T_c 304.2 # critical T, K - -P_c 72.80 # critical P, atm + -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 + -T_c 304.2 # critical T, K + -P_c 72.8 # critical P, atm -Omega 0.225 # acentric factor H2O(g) H2O = H2O - log_k 1.506; delta_h -44.03 kJ - -T_c 647.3 # critical T, K - -P_c 217.60 # critical P, atm - -Omega 0.344 # acentric factor - -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 + log_k 1.506; delta_h -44.03 kJ + -T_c 647.3 # critical T, K + -P_c 217.6 # critical P, atm + -Omega 0.344 # acentric factor + -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 # redox-uncoupled gases Oxg(g) Oxg = Oxg - -analytic -7.5001 7.8981e-003 0.0 0.0 2.0027e+005 - T_c 154.6 ; -P_c 49.80 ; -Omega 0.021 + -analytic -7.5001 7.8981e-3 0 0 2.0027e+5 + T_c 154.6; -P_c 49.8; -Omega 0.021 Hdg(g) Hdg = Hdg - -analytic -9.3114e+000 4.6473e-003 -4.9335e+001 1.4341e+000 1.2815e+005 - -T_c 33.2 ; -P_c 12.80 ; -Omega -0.225 + -analytic -9.3114e+0 4.6473e-3 -4.9335e+1 1.4341e+0 1.2815e+5 + -T_c 33.2; -P_c 12.8; -Omega -0.225 Ntg(g) Ntg = Ntg - -analytic -58.453 1.81800E-03 3199 17.909 -27460 - T_c 126.2 ; -P_c 33.50 ; -Omega 0.039 + -analytic -58.453 1.818E-3 3199 17.909 -27460 + T_c 126.2; -P_c 33.5; -Omega 0.039 Mtg(g) Mtg = Mtg - -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100C - T_c 190.6 ; -P_c 45.40 ; -Omega 0.008 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100C + T_c 190.6; -P_c 45.4; -Omega 0.008 H2Sg(g) - H2Sg = H+ + HSg- - -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 - T_c 373.2 ; -P_c 88.20 ; -Omega 0.1 + H2Sg = H+ + HSg- + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + T_c 373.2; -P_c 88.2; -Omega 0.1 PITZER -B0 - B(OH)4- K+ 0.035 - B(OH)4- Na+ -0.0427 - B3O3(OH)4- K+ -0.13 - B3O3(OH)4- Na+ -0.056 - B4O5(OH)4-2 K+ -0.022 - B4O5(OH)4-2 Na+ -0.11 - Ba+2 Br- 0.31455 0 0 -0.33825E-3 - Ba+2 Cl- 0.5268 0 0 0 0 4.75e4 # ref. 3 - Ba+2 OH- 0.17175 - Br- H+ 0.1960 0 0 -2.049E-4 - Br- K+ 0.0569 0 0 7.39E-4 - Br- Li+ 0.1748 0 0 -1.819E-4 - Br- Mg+2 0.4327 0 0 -5.625E-5 - Br- Na+ 0.0973 0 0 7.692E-4 - Br- Sr+2 0.331125 0 0 -0.32775E-3 - Ca+2 Br- 0.3816 0 0 -5.2275E-4 - Ca+2 Cl- 0.3159 0 0 -3.27e-4 1.4e-7 # ref. 3 - Ca+2 HCO3- 0.4 - Ca+2 HSO4- 0.2145 - Ca+2 OH- -0.1747 - Ca+2 SO4-2 0 # ref. 3 - CaB(OH)4+ Cl- 0.12 - Cl- Fe+2 0.335925 - Cl- H+ 0.1775 0 0 -3.081E-4 - Cl- K+ 0.04808 -758.48 -4.7062 0.010072 -3.7599e-6 # ref. 3 - Cl- Li+ 0.1494 0 0 -1.685E-4 - Cl- Mg+2 0.351 0 0 -9.32e-4 5.94e-7 # ref. 3 - Cl- MgB(OH)4+ 0.16 - Cl- MgOH+ -0.1 - Cl- Mn+2 0.327225 - Cl- Na+ 7.534e-2 9598.4 35.48 -5.8731e-2 1.798e-5 -5e5 # ref. 3 - Cl- Sr+2 0.2858 0 0 0.717E-3 - CO3-2 K+ 0.1488 0 0 1.788E-3 - CO3-2 Na+ 0.0399 0 0 1.79E-3 - Fe+2 HSO4- 0.4273 - Fe+2 SO4-2 0.2568 - H+ HSO4- 0.2065 - H+ SO4-2 0.0298 - HCO3- K+ 0.0296 0 0 0.996E-3 - HCO3- Mg+2 0.329 - HCO3- Na+ -0.018 # ref. 3 + new -analytic for calcite - HCO3- Sr+2 0.12 - HSO4- K+ -0.0003 - HSO4- Mg+2 0.4746 - HSO4- Na+ 0.0454 - K+ OH- 0.1298 - K+ SO4-2 3.17e-2 0 0 9.28e-4 # ref. 3 - Li+ OH- 0.015 - Li+ SO4-2 0.136275 0 0 0.5055E-3 - Mg+2 SO4-2 0.2135 -951 0 -2.34e-2 2.28e-5 # ref. 3 - Mn+2 SO4-2 0.2065 - Na+ OH- 0.0864 0 0 7.00E-4 - Na+ SO4-2 2.73e-2 0 -5.8 9.89e-3 0 -1.563e5 # ref. 3 - SO4-2 Sr+2 0.200 0 0 -2.9E-3 + B(OH)4- K+ 0.035 + B(OH)4- Na+ -0.0427 + B3O3(OH)4- K+ -0.13 + B3O3(OH)4- Na+ -0.056 + B4O5(OH)4-2 K+ -0.022 + B4O5(OH)4-2 Na+ -0.11 + Ba+2 Br- 0.31455 0 0 -0.33825E-3 + Ba+2 Cl- 0.5268 0 0 0 0 4.75e4 # ref. 3 + Ba+2 OH- 0.17175 + Br- H+ 0.196 0 0 -2.049E-4 + Br- K+ 0.0569 0 0 7.39E-4 + Br- Li+ 0.1748 0 0 -1.819E-4 + Br- Mg+2 0.4327 0 0 -5.625E-5 + Br- Na+ 0.0973 0 0 7.692E-4 + Br- Sr+2 0.331125 0 0 -0.32775E-3 + Ca+2 Br- 0.3816 0 0 -5.2275E-4 + Ca+2 Cl- 0.3159 0 0 -3.27e-4 1.4e-7 # ref. 3 + Ca+2 HCO3- 0.4 + Ca+2 HSO4- 0.2145 + Ca+2 OH- -0.1747 + Ca+2 SO4-2 0 # ref. 3 + CaB(OH)4+ Cl- 0.12 + Cl- Fe+2 0.335925 + Cl- H+ 0.1775 0 0 -3.081E-4 + Cl- K+ 0.04808 -758.48 -4.7062 0.010072 -3.7599e-6 # ref. 3 + Cl- Li+ 0.1494 0 0 -1.685E-4 + Cl- Mg+2 0.351 0 0 -9.32e-4 5.94e-7 # ref. 3 + Cl- MgB(OH)4+ 0.16 + Cl- MgOH+ -0.1 + Cl- Mn+2 0.327225 + Cl- Na+ 7.534e-2 9598.4 35.48 -5.8731e-2 1.798e-5 -5e5 # ref. 3 + Cl- Sr+2 0.2858 0 0 0.717E-3 + CO3-2 K+ 0.1488 0 0 1.788E-3 + CO3-2 Na+ 0.0399 0 0 1.79E-3 + Fe+2 HSO4- 0.4273 + Fe+2 SO4-2 0.2568 + H+ HSO4- 0.2065 + H+ SO4-2 0.0298 + HCO3- K+ 0.0296 0 0 0.996E-3 + HCO3- Mg+2 0.329 + HCO3- Na+ -0.018 # ref. 3 new -analytic for calcite + HCO3- Sr+2 0.12 + HSO4- K+ -0.0003 + HSO4- Mg+2 0.4746 + HSO4- Na+ 0.0454 + K+ OH- 0.1298 + K+ SO4-2 3.17e-2 0 0 9.28e-4 # ref. 3 + Li+ OH- 0.015 + Li+ SO4-2 0.136275 0 0 0.5055E-3 + Mg+2 SO4-2 0.2135 -951 0 -2.34e-2 2.28e-5 # ref. 3 + Mn+2 SO4-2 0.2065 + Na+ OH- 0.0864 0 0 7E-4 + Na+ SO4-2 2.73e-2 0 -5.8 9.89e-3 0 -1.563e5 # ref. 3 + SO4-2 Sr+2 0.2 0 0 -2.9E-3 -B1 - B(OH)4- K+ 0.14 - B(OH)4- Na+ 0.089 - B3O3(OH)4- Na+ -0.910 - B4O5(OH)4-2 Na+ -0.40 - Ba+2 Br- 1.56975 0 0 6.78E-3 - Ba+2 Cl- 0.687 0 0 1.417e-2 # ref. 3 - Ba+2 OH- 1.2 - Br- H+ 0.3564 0 0 4.467E-4 - Br- K+ 0.2212 0 0 17.40E-4 - Br- Li+ 0.2547 0 0 6.636E-4 - Br- Mg+2 1.753 0 0 3.8625E-3 - Br- Na+ 0.2791 0 0 10.79E-4 - Br- Sr+2 1.7115 0 0 6.5325E-3 - Ca+2 Br- 1.613 0 0 6.0375E-3 - Ca+2 Cl- 1.614 0 0 7.63e-3 -8.19e-7 # ref. 3 - Ca+2 HCO3- 2.977 # ref. 3 + new -analytic for calcite - Ca+2 HSO4- 2.53 - Ca+2 OH- -0.2303 - Ca+2 SO4-2 3.546 0 0 5.77e-3 # ref. 3 - Cl- Fe+2 1.53225 - Cl- H+ 0.2945 0 0 1.419E-4 - Cl- K+ 0.2168 0 -6.895 2.262e-2 -9.293e-6 -1e5 # ref. 3 - Cl- Li+ 0.3074 0 0 5.366E-4 - Cl- Mg+2 1.65 0 0 -1.09e-2 2.60e-5 # ref. 3 - Cl- MgOH+ 1.658 - Cl- Mn+2 1.55025 - Cl- Na+ 0.2769 1.377e4 46.8 -6.9512e-2 2e-5 -7.4823e5 # ref. 3 - Cl- Sr+2 1.667 0 0 2.8425E-3 - CO3-2 K+ 1.43 0 0 2.051E-3 - CO3-2 Na+ 1.389 0 0 2.05E-3 - Fe+2 HSO4- 3.48 - Fe+2 SO4-2 3.063 - H+ HSO4- 0.5556 - HCO3- K+ 0.25 0 0 1.104E-3 # ref. 3 - HCO3- Mg+2 0.6072 - HCO3- Na+ 0 # ref. 3 + new -analytic for calcite - HSO4- K+ 0.1735 - HSO4- Mg+2 1.729 - HSO4- Na+ 0.398 - K+ OH- 0.32 - K+ SO4-2 0.756 -1.514e4 -80.3 0.1091 # ref. 3 - Li+ OH- 0.14 - Li+ SO4-2 1.2705 0 0 1.41E-3 - Mg+2 SO4-2 3.367 -5.78e3 0 -1.48e-1 1.576e-4 # ref. 3 - Mn+2 SO4-2 2.9511 - Na+ OH- 0.253 0 0 1.34E-4 - Na+ SO4-2 0.956 2.663e3 0 1.158e-2 0 -3.194e5 # ref. 3 - SO4-2 Sr+2 3.1973 0 0 27e-3 + B(OH)4- K+ 0.14 + B(OH)4- Na+ 0.089 + B3O3(OH)4- Na+ -0.91 + B4O5(OH)4-2 Na+ -0.4 + Ba+2 Br- 1.56975 0 0 6.78E-3 + Ba+2 Cl- 0.687 0 0 1.417e-2 # ref. 3 + Ba+2 OH- 1.2 + Br- H+ 0.3564 0 0 4.467E-4 + Br- K+ 0.2212 0 0 17.4E-4 + Br- Li+ 0.2547 0 0 6.636E-4 + Br- Mg+2 1.753 0 0 3.8625E-3 + Br- Na+ 0.2791 0 0 10.79E-4 + Br- Sr+2 1.7115 0 0 6.5325E-3 + Ca+2 Br- 1.613 0 0 6.0375E-3 + Ca+2 Cl- 1.614 0 0 7.63e-3 -8.19e-7 # ref. 3 + Ca+2 HCO3- 2.977 # ref. 3 new -analytic for calcite + Ca+2 HSO4- 2.53 + Ca+2 OH- -0.2303 + Ca+2 SO4-2 3.546 0 0 5.77e-3 # ref. 3 + Cl- Fe+2 1.53225 + Cl- H+ 0.2945 0 0 1.419E-4 + Cl- K+ 0.2168 0 -6.895 2.262e-2 -9.293e-6 -1e5 # ref. 3 + Cl- Li+ 0.3074 0 0 5.366E-4 + Cl- Mg+2 1.65 0 0 -1.09e-2 2.6e-5 # ref. 3 + Cl- MgOH+ 1.658 + Cl- Mn+2 1.55025 + Cl- Na+ 0.2769 1.377e4 46.8 -6.9512e-2 2e-5 -7.4823e5 # ref. 3 + Cl- Sr+2 1.667 0 0 2.8425E-3 + CO3-2 K+ 1.43 0 0 2.051E-3 + CO3-2 Na+ 1.389 0 0 2.05E-3 + Fe+2 HSO4- 3.48 + Fe+2 SO4-2 3.063 + H+ HSO4- 0.5556 + HCO3- K+ 0.25 0 0 1.104E-3 # ref. 3 + HCO3- Mg+2 0.6072 + HCO3- Na+ 0 # ref. 3 new -analytic for calcite + HSO4- K+ 0.1735 + HSO4- Mg+2 1.729 + HSO4- Na+ 0.398 + K+ OH- 0.32 + K+ SO4-2 0.756 -1.514e4 -80.3 0.1091 # ref. 3 + Li+ OH- 0.14 + Li+ SO4-2 1.2705 0 0 1.41E-3 + Mg+2 SO4-2 3.367 -5.78e3 0 -1.48e-1 1.576e-4 # ref. 3 + Mn+2 SO4-2 2.9511 + Na+ OH- 0.253 0 0 1.34E-4 + Na+ SO4-2 0.956 2.663e3 0 1.158e-2 0 -3.194e5 # ref. 3 + SO4-2 Sr+2 3.1973 0 0 27e-3 -B2 - Ca+2 Cl- -1.13 0 0 -0.0476 # ref. 3 - Ca+2 OH- -5.72 - Ca+2 SO4-2 -59.3 0 0 -0.443 -3.96e-6 # ref. 3 - Fe+2 SO4-2 -42.0 - HCO3- Na+ 8.22 0 0 -0.049 # ref. 3 + new -analytic for calcite - Mg+2 SO4-2 -32.45 0 -3.236e3 21.812 -1.8859e-2 # ref. 3 - Mn+2 SO4-2 -40.0 - SO4-2 Sr+2 -54.24 0 0 -0.42 + Ca+2 Cl- -1.13 0 0 -0.0476 # ref. 3 + Ca+2 OH- -5.72 + Ca+2 SO4-2 -59.3 0 0 -0.443 -3.96e-6 # ref. 3 + Fe+2 SO4-2 -42 + HCO3- Na+ 8.22 0 0 -0.049 # ref. 3 new -analytic for calcite + Mg+2 SO4-2 -32.45 0 -3.236e3 21.812 -1.8859e-2 # ref. 3 + Mn+2 SO4-2 -40 + SO4-2 Sr+2 -54.24 0 0 -0.42 -C0 - B(OH)4- Na+ 0.0114 - Ba+2 Br- -0.0159576 - Ba+2 Cl- -0.143 -114.5 # ref. 3 - Br- Ca+2 -0.00257 - Br- H+ 0.00827 0 0 -5.685E-5 - Br- K+ -0.00180 0 0 -7.004E-5 - Br- Li+ 0.0053 0 0 -2.813E-5 - Br- Mg+2 0.00312 - Br- Na+ 0.00116 0 0 -9.30E-5 - Br- Sr+2 0.00122506 - Ca+2 Cl- 1.4e-4 -57 -0.098 -7.83e-4 7.18e-7 # ref. 3 - Ca+2 SO4-2 0.114 # ref. 3 - Cl- Fe+2 -0.00860725 - Cl- H+ 0.0008 0 0 6.213E-5 - Cl- K+ -7.88e-4 91.27 0.58643 -1.298e-3 4.9567e-7 # ref. 3 - Cl- Li+ 0.00359 0 0 -4.520E-5 - Cl- Mg+2 0.00651 0 0 -2.50e-4 2.418e-7 # ref. 3 - Cl- Mn+2 -0.0204972 - Cl- Na+ 1.48e-3 -120.5 -0.2081 0 1.166e-7 11121 # ref. 3 - Cl- Sr+2 -0.00130 - CO3-2 K+ -0.0015 - CO3-2 Na+ 0.0044 - Fe+2 SO4-2 0.0209 - H+ SO4-2 0.0438 - HCO3- K+ -0.008 - K+ OH- 0.0041 - K+ SO4-2 8.18e-3 -625 -3.30 4.06e-3 # ref. 3 - Li+ SO4-2 -0.00399338 0 0 -2.33345e-4 - Mg+2 SO4-2 2.875e-2 0 -2.084 1.1428e-2 -8.228e-6 # ref. 3 - Mn+2 SO4-2 0.01636 - Na+ OH- 0.0044 0 0 -18.94E-5 - Na+ SO4-2 3.418e-3 -384 0 -8.451e-4 0 5.177e4 # ref. 3 + B(OH)4- Na+ 0.0114 + Ba+2 Br- -0.0159576 + Ba+2 Cl- -0.143 -114.5 # ref. 3 + Br- Ca+2 -0.00257 + Br- H+ 0.00827 0 0 -5.685E-5 + Br- K+ -0.0018 0 0 -7.004E-5 + Br- Li+ 0.0053 0 0 -2.813E-5 + Br- Mg+2 0.00312 + Br- Na+ 0.00116 0 0 -9.3E-5 + Br- Sr+2 0.00122506 + Ca+2 Cl- 1.4e-4 -57 -0.098 -7.83e-4 7.18e-7 # ref. 3 + Ca+2 SO4-2 0.114 # ref. 3 + Cl- Fe+2 -0.00860725 + Cl- H+ 0.0008 0 0 6.213E-5 + Cl- K+ -7.88e-4 91.27 0.58643 -1.298e-3 4.9567e-7 # ref. 3 + Cl- Li+ 0.00359 0 0 -4.52E-5 + Cl- Mg+2 0.00651 0 0 -2.5e-4 2.418e-7 # ref. 3 + Cl- Mn+2 -0.0204972 + Cl- Na+ 1.48e-3 -120.5 -0.2081 0 1.166e-7 11121 # ref. 3 + Cl- Sr+2 -0.0013 + CO3-2 K+ -0.0015 + CO3-2 Na+ 0.0044 + Fe+2 SO4-2 0.0209 + H+ SO4-2 0.0438 + HCO3- K+ -0.008 + K+ OH- 0.0041 + K+ SO4-2 8.18e-3 -625 -3.3 4.06e-3 # ref. 3 + Li+ SO4-2 -0.00399338 0 0 -2.33345e-4 + Mg+2 SO4-2 2.875e-2 0 -2.084 1.1428e-2 -8.228e-6 # ref. 3 + Mn+2 SO4-2 0.01636 + Na+ OH- 0.0044 0 0 -18.94E-5 + Na+ SO4-2 3.418e-3 -384 0 -8.451e-4 0 5.177e4 # ref. 3 -THETA - B(OH)4- Cl- -0.065 - B(OH)4- SO4-2 -0.012 - B3O3(OH)4- Cl- 0.12 - B3O3(OH)4- HCO3- -0.10 - B3O3(OH)4- SO4-2 0.10 - B4O5(OH)4-2 Cl- 0.074 - B4O5(OH)4-2 HCO3- -0.087 - B4O5(OH)4-2 SO4-2 0.12 - Ba+2 Na+ 0.07 # ref. 3 - Br- OH- -0.065 - Ca+2 H+ 0.092 - Ca+2 K+ -5.35e-3 0 0 3.08e-4 # ref. 3 - Ca+2 Mg+2 0.007 - Ca+2 Na+ 9.22e-2 0 0 -4.29e-4 1.21e-6 # ref. 3 - Cl- CO3-2 -0.02 - Cl- HCO3- 0.03 - Cl- HSO4- -0.006 - Cl- OH- -0.05 - Cl- SO4-2 0.03 # ref. 3 - CO3-2 OH- 0.1 - CO3-2 SO4-2 0.02 - H+ K+ 0.005 - H+ Mg+2 0.1 - H+ Na+ 0.036 - HCO3- CO3-2 -0.04 - HCO3- SO4-2 0.01 - K+ Na+ -0.012 - Mg+2 Na+ 0.07 - Na+ Sr+2 0.051 - OH- SO4-2 -0.013 + B(OH)4- Cl- -0.065 + B(OH)4- SO4-2 -0.012 + B3O3(OH)4- Cl- 0.12 + B3O3(OH)4- HCO3- -0.1 + B3O3(OH)4- SO4-2 0.1 + B4O5(OH)4-2 Cl- 0.074 + B4O5(OH)4-2 HCO3- -0.087 + B4O5(OH)4-2 SO4-2 0.12 + Ba+2 Na+ 0.07 # ref. 3 + Br- OH- -0.065 + Ca+2 H+ 0.092 + Ca+2 K+ -5.35e-3 0 0 3.08e-4 # ref. 3 + Ca+2 Mg+2 0.007 + Ca+2 Na+ 9.22e-2 0 0 -4.29e-4 1.21e-6 # ref. 3 + Cl- CO3-2 -0.02 + Cl- HCO3- 0.03 + Cl- HSO4- -0.006 + Cl- OH- -0.05 + Cl- SO4-2 0.03 # ref. 3 + CO3-2 OH- 0.1 + CO3-2 SO4-2 0.02 + H+ K+ 0.005 + H+ Mg+2 0.1 + H+ Na+ 0.036 + HCO3- CO3-2 -0.04 + HCO3- SO4-2 0.01 + K+ Na+ -0.012 + Mg+2 Na+ 0.07 + Na+ Sr+2 0.051 + OH- SO4-2 -0.013 -LAMDA - B(OH)3 Cl- 0.091 - B(OH)3 K+ -0.14 - B(OH)3 Na+ -0.097 - B(OH)3 SO4-2 0.018 - B3O3(OH)4- B(OH)3 -0.20 - Ca+2 CO2 0.183 - Ca+2 H4SiO4 0.238 # ref. 3 - Cl- CO2 -0.005 - Cl- H2Sg -0.005 - Cl- (H2Sg)2 -0.005 - CO2 CO2 -1.34e-2 348 0.803 # new VM("CO2"), CO2 solubilities at high P, 0 - 150C - CO2 HSO4- -0.003 - CO2 K+ 0.051 - CO2 Mg+2 0.183 - CO2 Na+ 0.085 - CO2 SO4-2 0.075 # Rumpf and Maurer, 1993. - H2Sg Na+ 0.1047 0 -0.0413 # Xia et al., 2000, Ind. Eng. Chem. Res. 39, 1064 - H2Sg SO4-2 0 0 0.679 - (H2Sg)2 Na+ 0.0123 0 0.256 - H4SiO4 K+ 0.0298 # ref. 3 - H4SiO4 Li+ 0.143 # ref. 3 - H4SiO4 Mg+2 0.238 -1788 -9.023 0.0103 # ref. 3 - H4SiO4 Na+ 0.0566 75.3 0.115 # ref. 3 - H4SiO4 SO4-2 -0.085 0 0.28 -8.25e-4 # ref. 3 + B(OH)3 Cl- 0.091 + B(OH)3 K+ -0.14 + B(OH)3 Na+ -0.097 + B(OH)3 SO4-2 0.018 + B3O3(OH)4- B(OH)3 -0.2 + Ca+2 CO2 0.183 + Ca+2 H4SiO4 0.238 # ref. 3 + Cl- CO2 -0.005 + Cl- H2Sg -0.005 + Cl- (H2Sg)2 -0.005 + CO2 CO2 -1.34e-2 348 0.803 # new VM("CO2"), CO2 solubilities at high P, 0 - 150C + CO2 HSO4- -0.003 + CO2 K+ 0.051 + CO2 Mg+2 0.183 + CO2 Na+ 0.085 + CO2 SO4-2 0.075 # Rumpf and Maurer, 1993 + H2Sg Na+ 0.1047 0 -0.0413 # Xia et al., 2000, Ind. Eng. Chem. Res. 39, 1064 + H2Sg SO4-2 0 0 0.679 + (H2Sg)2 Na+ 0.0123 0 0.256 + H4SiO4 K+ 0.0298 # ref. 3 + H4SiO4 Li+ 0.143 # ref. 3 + H4SiO4 Mg+2 0.238 -1788 -9.023 0.0103 # ref. 3 + H4SiO4 Na+ 0.0566 75.3 0.115 # ref. 3 + H4SiO4 SO4-2 -0.085 0 0.28 -8.25e-4 # ref. 3 -ZETA - B(OH)3 Cl- H+ -0.0102 - B(OH)3 Na+ SO4-2 0.046 - Cl- H4SiO4 K+ -0.0153 # ref. 3 - Cl- H4SiO4 Li+ -0.0196 # ref. 3 - CO2 Na+ SO4-2 -0.015 - H2Sg Cl- Na+ -0.0123 # Xia et al., 2000, Ind. Eng. Chem. Res. 39, 1064 - H2Sg Na+ SO4-2 0.157 - (H2Sg)2 Cl- Na+ 0.0119 - (H2Sg)2 Na+ SO4-2 -0.167 + B(OH)3 Cl- H+ -0.0102 + B(OH)3 Na+ SO4-2 0.046 + Cl- H4SiO4 K+ -0.0153 # ref. 3 + Cl- H4SiO4 Li+ -0.0196 # ref. 3 + CO2 Na+ SO4-2 -0.015 + H2Sg Cl- Na+ -0.0123 # Xia et al., 2000, Ind. Eng. Chem. Res. 39, 1064 + H2Sg Na+ SO4-2 0.157 + (H2Sg)2 Cl- Na+ 0.0119 + (H2Sg)2 Na+ SO4-2 -0.167 -PSI - B(OH)4- Cl- Na+ -0.0073 - B3O3(OH)4- Cl- Na+ -0.024 - B4O5(OH)4-2 Cl- Na+ 0.026 - Br- K+ Na+ -0.0022 - Br- K+ OH- -0.014 - Br- Na+ H+ -0.012 - Br- Na+ OH- -0.018 - Ca+2 Cl- H+ -0.015 - Ca+2 Cl- K+ -0.025 - Ca+2 Cl- Mg+2 -0.012 - Ca+2 Cl- Na+ -1.48e-2 0 0 -5.2e-6 # ref. 3 - Ca+2 Cl- OH- -0.025 - Ca+2 Cl- SO4-2 -0.122 0 0 -1.21e-3 # ref. 3 - Ca+2 K+ SO4-2 -0.0365 # ref. 3 - Ca+2 Mg+2 SO4-2 0.024 - Ca+2 Na+ SO4-2 -0.055 17.2 # ref. 3 - Cl- Br- K+ 0 - Cl- CO3-2 K+ 0.004 - Cl- CO3-2 Na+ 0.0085 - Cl- H+ K+ -0.011 - Cl- H+ Mg+2 -0.011 - Cl- H+ Na+ -0.004 - Cl- HCO3- Mg+2 -0.096 - Cl- HCO3- Na+ 0 # ref. 3 + new -analytic for calcite - Cl- HSO4- H+ 0.013 - Cl- HSO4- Na+ -0.006 - Cl- K+ Mg+2 -0.022 -14.27 # ref. 3 - Cl- K+ Na+ -0.0015 0 0 1.8e-5 # ref. 3 - Cl- K+ OH- -0.006 - Cl- K+ SO4-2 -1e-3 # ref. 3 - Cl- Mg+2 MgOH+ 0.028 - Cl- Mg+2 Na+ -0.012 -9.51 # ref. 3 - Cl- Mg+2 SO4-2 -0.008 32.63 # ref. 3 - Cl- Na+ OH- -0.006 - Cl- Na+ SO4-2 0 # ref. 3 - Cl- Na+ Sr+2 -0.0021 - CO3-2 HCO3- K+ 0.012 - CO3-2 HCO3- Na+ 0.002 - CO3-2 K+ Na+ 0.003 - CO3-2 K+ OH- -0.01 - CO3-2 K+ SO4-2 -0.009 - CO3-2 Na+ OH- -0.017 - CO3-2 Na+ SO4-2 -0.005 - H+ HSO4- K+ -0.0265 - H+ HSO4- Mg+2 -0.0178 - H+ HSO4- Na+ -0.0129 - H+ K+ Br- -0.021 - H+ K+ SO4-2 0.197 - HCO3- K+ Na+ -0.003 - HCO3- Mg+2 SO4-2 -0.161 - HCO3- Na+ SO4-2 -0.005 - HSO4- K+ SO4-2 -0.0677 - HSO4- Mg+2 SO4-2 -0.0425 - HSO4- Na+ SO4-2 -0.0094 - K+ Mg+2 SO4-2 -0.048 - K+ Na+ SO4-2 -0.010 - K+ OH- SO4-2 -0.050 - Mg+2 Na+ SO4-2 -0.015 - Na+ OH- SO4-2 -0.009 + B(OH)4- Cl- Na+ -0.0073 + B3O3(OH)4- Cl- Na+ -0.024 + B4O5(OH)4-2 Cl- Na+ 0.026 + Br- K+ Na+ -0.0022 + Br- K+ OH- -0.014 + Br- Na+ H+ -0.012 + Br- Na+ OH- -0.018 + Ca+2 Cl- H+ -0.015 + Ca+2 Cl- K+ -0.025 + Ca+2 Cl- Mg+2 -0.012 + Ca+2 Cl- Na+ -1.48e-2 0 0 -5.2e-6 # ref. 3 + Ca+2 Cl- OH- -0.025 + Ca+2 Cl- SO4-2 -0.122 0 0 -1.21e-3 # ref. 3 + Ca+2 K+ SO4-2 -0.0365 # ref. 3 + Ca+2 Mg+2 SO4-2 0.024 + Ca+2 Na+ SO4-2 -0.055 17.2 # ref. 3 + Cl- Br- K+ 0 + Cl- CO3-2 K+ 0.004 + Cl- CO3-2 Na+ 0.0085 + Cl- H+ K+ -0.011 + Cl- H+ Mg+2 -0.011 + Cl- H+ Na+ -0.004 + Cl- HCO3- Mg+2 -0.096 + Cl- HCO3- Na+ 0 # ref. 3 new -analytic for calcite + Cl- HSO4- H+ 0.013 + Cl- HSO4- Na+ -0.006 + Cl- K+ Mg+2 -0.022 -14.27 # ref. 3 + Cl- K+ Na+ -0.0015 0 0 1.8e-5 # ref. 3 + Cl- K+ OH- -0.006 + Cl- K+ SO4-2 -1e-3 # ref. 3 + Cl- Mg+2 MgOH+ 0.028 + Cl- Mg+2 Na+ -0.012 -9.51 # ref. 3 + Cl- Mg+2 SO4-2 -0.008 32.63 # ref. 3 + Cl- Na+ OH- -0.006 + Cl- Na+ SO4-2 0 # ref. 3 + Cl- Na+ Sr+2 -0.0021 + CO3-2 HCO3- K+ 0.012 + CO3-2 HCO3- Na+ 0.002 + CO3-2 K+ Na+ 0.003 + CO3-2 K+ OH- -0.01 + CO3-2 K+ SO4-2 -0.009 + CO3-2 Na+ OH- -0.017 + CO3-2 Na+ SO4-2 -0.005 + H+ HSO4- K+ -0.0265 + H+ HSO4- Mg+2 -0.0178 + H+ HSO4- Na+ -0.0129 + H+ K+ Br- -0.021 + H+ K+ SO4-2 0.197 + HCO3- K+ Na+ -0.003 + HCO3- Mg+2 SO4-2 -0.161 + HCO3- Na+ SO4-2 -0.005 + HSO4- K+ SO4-2 -0.0677 + HSO4- Mg+2 SO4-2 -0.0425 + HSO4- Na+ SO4-2 -0.0094 + K+ Mg+2 SO4-2 -0.048 + K+ Na+ SO4-2 -0.01 + K+ OH- SO4-2 -0.05 + Mg+2 Na+ SO4-2 -0.015 + Na+ OH- SO4-2 -0.009 EXCHANGE_MASTER_SPECIES - X X- + X X- EXCHANGE_SPECIES X- = X- - log_k 0.0 + log_k 0 Na+ + X- = NaX - log_k 0.0 + log_k 0 K+ + X- = KX - log_k 0.7 - delta_h -4.3 # Jardine & Sparks, 1984 + log_k 0.7 + delta_h -4.3 # Jardine & Sparks, 1984 Li+ + X- = LiX - log_k -0.08 - delta_h 1.4 # Merriam & Thomas, 1956 + log_k -0.08 + delta_h 1.4 # Merriam & Thomas, 1956 - Ca+2 + 2X- = CaX2 - log_k 0.8 - delta_h 7.2 # Van Bladel & Gheyl, 1980 + Ca+2 + 2 X- = CaX2 + log_k 0.8 + delta_h 7.2 # Van Bladel & Gheyl, 1980 - Mg+2 + 2X- = MgX2 - log_k 0.6 - delta_h 7.4 # Laudelout et al., 1968 + Mg+2 + 2 X- = MgX2 + log_k 0.6 + delta_h 7.4 # Laudelout et al., 1968 - Sr+2 + 2X- = SrX2 - log_k 0.91 - delta_h 5.5 # Laudelout et al., 1968 + Sr+2 + 2 X- = SrX2 + log_k 0.91 + delta_h 5.5 # Laudelout et al., 1968 - Ba+2 + 2X- = BaX2 - log_k 0.91 - delta_h 4.5 # Laudelout et al., 1968 + Ba+2 + 2 X- = BaX2 + log_k 0.91 + delta_h 4.5 # Laudelout et al., 1968 - Mn+2 + 2X- = MnX2 - log_k 0.52 + Mn+2 + 2 X- = MnX2 + log_k 0.52 - Fe+2 + 2X- = FeX2 - log_k 0.44 + Fe+2 + 2 X- = FeX2 + log_k 0.44 SURFACE_MASTER_SPECIES - Hfo_s Hfo_sOH - Hfo_w Hfo_wOH + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH SURFACE_SPECIES # All surface data from # Dzombak and Morel, 1990 @@ -834,24 +838,24 @@ SURFACE_SPECIES # strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH - log_k 0.0 + log_k 0 - Hfo_sOH + H+ = Hfo_sOH2+ - log_k 7.29 # = pKa1,int + Hfo_sOH + H+ = Hfo_sOH2+ + log_k 7.29 # = pKa1,int Hfo_sOH = Hfo_sO- + H+ - log_k -8.93 # = -pKa2,int + log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH - log_k 0.0 + log_k 0 - Hfo_wOH + H+ = Hfo_wOH2+ - log_k 7.29 # = pKa1,int + Hfo_wOH + H+ = Hfo_wOH2+ + log_k 7.29 # = pKa1,int Hfo_wOH = Hfo_wO- + H+ - log_k -8.93 # = -pKa2,int + log_k -8.93 # = -pKa2,int ############################################### # CATIONS # @@ -861,25 +865,25 @@ SURFACE_SPECIES # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - log_k 4.97 + log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ log_k -5.85 # Strontium Hfo_sOH + Sr+2 = Hfo_sOHSr+2 - log_k 5.01 + log_k 5.01 Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ log_k -6.58 - Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+ - log_k -17.60 + Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2 H+ + log_k -17.6 # Barium Hfo_sOH + Ba+2 = Hfo_sOHBa+2 - log_k 5.46 + log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - log_k -7.2 # table 10.5 + log_k -7.2 # table 10.5 # # Derived constants table 10.5 # @@ -888,10 +892,10 @@ SURFACE_SPECIES log_k -4.6 # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ - log_k -0.4 # table 10.5 + log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ - log_k -3.5 # table 10.5 + log_k -3.5 # table 10.5 # Iron # Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ # log_k 0.7 # LFER using table 10.5 @@ -901,12 +905,12 @@ SURFACE_SPECIES # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, subm. Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ - log_k -0.95 + log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ log_k -2.98 - Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+ + Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2 H+ log_k -11.55 ############################################### @@ -920,31 +924,31 @@ SURFACE_SPECIES # # Borate Hfo_wOH + B(OH)3 = Hfo_wH2BO3 + H2O - log_k 0.62 + log_k 0.62 # # Anions from table 10.8 # # Sulfate Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O - log_k 7.78 + log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - log_k 0.79 + log_k 0.79 # # Carbonate: Van Geen et al., 1994 reoptimized for HFO # 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O - log_k 12.56 + log_k 12.56 - Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O - log_k 20.62 + Hfo_wOH + CO3-2 + 2 H+ = Hfo_wHCO3 + H2O + log_k 20.62 # # Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422. # - Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 - Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 - Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69 + Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O; log_K 4.28 + Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O; log_K -3.22 + Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2 H+ + H2O; log_K -11.69 MEAN_GAMMAS CaCl2 Ca+2 1 Cl- 2 diff --git a/sit.dat b/sit.dat index 2e019ce2..a14fc99d 100644 --- a/sit.dat +++ b/sit.dat @@ -7,10 +7,12 @@ SOLUTION_SPECIES # Database date: 22/08/2023 0:00:00 # Generated by XCheck Tool v5.2.0 # Comment: tidied with lsp.exe from https://phreeplot.org/lsp/lsp.html - +# Redox states modified by David Parkhurst May 18, 2024 +# GFW of S(6) and Si modified by David Parkhurst May 18, 2024 SOLUTION_MASTER_SPECIES #element species alk gfw_formula element_gfw -E e- 0 0 0 +E e- 1 0 0 +# DLP: Set Alkalinity to 1 to account for non-master species with e- in equations Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.0436 Adipate Adipate-2 1 Adipate 144.0700 Acetate Acetate- 1 Acetate 59.0100 @@ -29,13 +31,17 @@ B B(OH)4- 1 B 10.8110 Ba Ba+2 0 Ba 137.3270 Be Be+2 0 Be 9.0122 Br Br- 0 Br 79.9040 -C CO3-2 2 C 12.0110 +C CO3-2 2 C 12.0110 +C(2) CO 0 C # DLP C(+4) CO3-2 2 C 12.0110 C(-4) CH4 0 C 12.0110 Ca Ca+2 0 Ca 40.0780 Cd Cd+2 -1 Cd 112.4110 Cit Cit-3 1 Cit 189.1013 -Cl Cl- 0 Cl 35.4527 +Cl Cl- 0 Cl 35.4527 +Cl(-1) Cl- 0 Cl # DLP +Cl(0) Cl2 0 Cl # DLP +Cl(7) ClO4- 0 Cl # DLP Cm Cm+3 0 Cm 247.0000 Co Co+2 0 Co 58.9332 Cr CrO4-2 1 Cr 51.9961 @@ -64,15 +70,24 @@ Hg(+2) Hg+2 -2 Hg 200.5900 Hg(+1) Hg2+2 0 Hg 200.5900 Ho Ho+3 0 Ho 164.9303 I I- 0 I 126.9045 -I(-1) I- 0 I 126.9045 -I(+5) IO3- 0 I 126.9045 +I(-1) I- 0 I 126.9045 +I(1) IO- 0 I # DLP +I(+5) IO3- 0 I 126.9045 +I(7) IO4- 0 I # DLP Isa HIsa- 0 Isa 178.1421 K K+ 0 K 39.0983 Li Li+ 0 Li 6.9410 Malonate Malonate-2 1 Malonate 102.0464 Mg Mg+2 0 Mg 24.3050 -Mn Mn+2 0 Mn 54.9380 -Mo MoO4-2 0 Mo 95.9400 +Mn Mn+2 0 Mn 54.9380 +Mn(+2) Mn+2 0 Mn # DLP +Mn(+3) Mn+3 0 Mn # DLP +Mn(+5) MnO4-3 0 Mn # DLP +Mn(+6) MnO4-2 0 Mn # DLP +Mn(+7) MnO4- 0 Mn # DLP +Mo MoO4-2 0 Mo 95.9400 +Mo(6) MoO4-2 0 Mo # DLP +Mo(3) Mo+3 0 Mo # DLP N NO3- 0 N 14.0067 N(+5) NO3- 0 N 14.0067 N(-3) NH3 1 N 14.0067 @@ -105,11 +120,12 @@ Pyrophos Pyrophos-4 2 Pyrophos 173.9500 Ra Ra+2 0 Ra 226.0250 Rb Rb+ 0 Rb 85.4678 S SO4-2 0 S 32.0660 -S(+6) SO4-2 0 S 32.0660 +S(+6) SO4-2 0 SO4 32.0660 # DLP S(-2) HS- 1 S 32.0660 S(+2) S2O3-2 0 S 32.0660 S(+3) S2O4-2 0 S 32.0660 -S(+4) SO3-2 1 S 32.0660 +S(+4) SO3-2 1 S 32.0660 +S(8) HSO5- 0 S # DLP Sb Sb(OH)3 0 Sb 121.7600 Sb(+3) Sb(OH)3 0 Sb 121.7600 Sb(+5) Sb(OH)5 -6 Sb 121.7600 @@ -117,7 +133,7 @@ Se SeO4-2 0 Se 78.9600 Se(+6) SeO4-2 0 Se 78.9600 Se(-2) HSe- -1 Se 78.9600 Se(+4) SeO3-2 1 Se 78.9600 -Si H4(SiO4) 0 Si 28.0855 +Si H4(SiO4) 0 SiO2 28.0855 # DLP Sm Sm+3 0 Sm 150.3600 Sn Sn+2 -2 Sn 118.7100 Sn(+2) Sn+2 -2 Sn 118.7100 @@ -1782,6 +1798,7 @@ Am+3 + 3 CO3-2 = Am(CO3)3-3 -analytic 14.6E+0 00E+0 00E+0 00E+0 00E+0 Am+3 - e- + 5 CO3-2 = Am(CO3)5-6 +# This reaction should be written with Am+4 log_k -5.1 #03GUI/FAN -analytic -51E-1 00E+0 00E+0 00E+0 00E+0 @@ -4525,15 +4542,17 @@ H+ + S2O4-2 = HS2O4- -analytic 13.29025E+0 00E+0 -21.9141E+3 00E+0 00E+0 - 2 e- + 3 I- = I3- +# DLP: This species will be in the I(-1) mole balance log_k -18.17 delta_h 118.877 #kJ/mol # Enthalpy of formation: -51.463 kJ/mol 92JOH/OEL -analytic 26.56356E-1 00E+0 -62.09378E+2 00E+0 00E+0 - + - 2 e- + 2 Cl- + I- = ICl2- +# DLP: This species will be in the I(-1) and Cl(-1) mole balances log_k -26.8 #96FAL/REA -analytic -26.8E+0 00E+0 00E+0 00E+0 00E+0 - + - 2 H+ - 2 e- + I- + H2O = IO- log_k -44 #96FAL/REA -analytic -44E+0 00E+0 00E+0 00E+0 00E+0 @@ -6618,36 +6637,42 @@ I- + Rb+ = RbI -analytic -42.62245E-1 00E+0 -38.27577E+2 00E+0 00E+0 - 2 H+ - 2 e- + 2 HS- = S2-2 +# DLP: This species will be in the S(-2) mole balance log_k -10.54 delta_h 67.64 #kJ/mol # Enthalpy of formation: +35.040 kJ/mol 04CHI -analytic 13.10019E-1 00E+0 -35.33083E+2 00E+0 00E+0 2 H+ + 2 SO3-2 - H2O = S2O5-2 +# DLP: This species will be in the S(4) mole balance log_k 12.85 #85GOL/PAR delta_h 2.606 #kJ/mol # Enthalpy of formation: -973.684 kJ/mol -analytic 13.30655E+0 00E+0 -13.61209E+1 00E+0 00E+0 - 2 e- + 2 SO4-2 = S2O8-2 +# DLP: This species will be in the S(6) mole balance log_k -65.38 delta_h 473.98 #kJ/mol # Enthalpy of formation: -1344.700 kJ/mol 82WAG/EVA -analytic 17.65773E+0 00E+0 -24.7577E+3 00E+0 00E+0 - 3 H+ - 4 e- + 3 HS- = S3-2 +# DLP: This species will be in the S(-2) mole balance log_k -6.51 delta_h 74.84 #kJ/mol # Enthalpy of formation: +25.940 kJ/mol 74NAU/RYZ -analytic 66.01405E-1 00E+0 -39.09165E+2 00E+0 00E+0 6 H+ + 2 e- + 3 SO3-2 - 3 H2O = S3O6-2 +# DLP: This species will be in the S(4) mole balance log_k 36.82 delta_h -131.646 #kJ/mol # Enthalpy of formation: -1167.336 kJ/mol 04CHI -analytic 13.75661E+0 00E+0 68.76349E+2 00E+0 00E+0 - 4 H+ - 6 e- + 4 HS- = S4-2 +# DLP: This species will be in the S(-2) mole balance log_k -3.58 delta_h 88.21 #kJ/mol # Enthalpy of formation: +23.010 kJ/mol 74NAU/RYZ @@ -6660,12 +6685,14 @@ I- + Rb+ = RbI -analytic 18.09898E+0 00E+0 21.67581E+3 00E+0 00E+0 - 5 H+ - 8 e- + 5 HS- = S5-2 +# DLP: This species will be in the S(-2) mole balance log_k -0.87 delta_h 102.84 #kJ/mol # Enthalpy of formation: +21.340 kJ/mol 74NAU/RYZ -analytic 17.14679E+0 00E+0 -53.71707E+2 00E+0 00E+0 18 H+ + 10 e- + 5 SO3-2 - 9 H2O = S5O6-2 +# DLP: This species will be in the S(4) mole balance log_k 115.39 delta_h -592.874 #kJ/mol # Enthalpy of formation: -1175.704 kJ/mol 04CHI @@ -6748,14 +6775,17 @@ H+ + Sb(OH)5 - H2O = Sb(OH)4+ -analytic -14.91E+0 00E+0 00E+0 00E+0 00E+0 - 2 H+ - 2 e- + 2 HSe- = Se2-2 +# DLP: This species will be in the Se(-2) mole balance log_k -4.5 #05OLI/NOL -analytic -45E-1 00E+0 00E+0 00E+0 00E+0 - 3 H+ - 4 e- + 3 HSe- = Se3-2 +# DLP: This species will be in the Se(-2) mole balance log_k 5.24 #05OLI/NOL -analytic 52.4E-1 00E+0 00E+0 00E+0 00E+0 - 4 H+ - 6 e- + 4 HSe- = Se4-2 +# DLP: This species will be in the Se(-2) mole balance log_k 13.38 #05OLI/NOL -analytic 13.38E+0 00E+0 00E+0 00E+0 00E+0 @@ -7956,6 +7986,7 @@ UO2+2 + H+ + SeO3-2 = UO2HSeO3+ -analytic 11.63E+0 00E+0 00E+0 00E+0 00E+0 UO2+2 - 6 H+ - 6 e- + I- + 3 H2O = UO2IO3+ +# DLP: This species will be in the U(6) and I(-1) mole balance log_k -109.56 #92GRE/FUG delta_h 704.37 #kJ/mol 92GRE/FUG # Enthalpy of formation: -1228.900 kJ/mol diff --git a/wateq4f.dat b/wateq4f.dat index 8461c4bb..3e69cd86 100644 --- a/wateq4f.dat +++ b/wateq4f.dat @@ -1,1397 +1,1401 @@ -# $Id$ +# File 1 = C:\GitPrograms\phreeqc3-1\database\wateq4f.dat, 15/03/2024 15:31, 4032 lines, 106804 bytes, md5=b01313c8049bbc106fe5ce9b15afa3e2 +# Created 17 May 2024 14:30:45 +# c:\3rdParty\lsp\lsp.exe -f2 -k="asis" -ts "wateq4f.dat" + +# $Id$ # Revised arsenic data from Archer and Nordstrom (2002) SOLUTION_MASTER_SPECIES -Ag Ag+ 0.0 107.868 107.868 -Al Al+3 0.0 26.9815 26.9815 -Alkalinity CO3-2 1.0 50.05 50.05 -As H3AsO4 -1.0 74.9216 74.9216 -As(+3) H3AsO3 0.0 74.9216 74.9216 -As(+5) H3AsO4 -1.0 74.9216 -B H3BO3 0.0 10.81 10.81 -Ba Ba+2 0.0 137.34 137.34 -Br Br- 0.0 79.904 79.904 -C CO3-2 2.0 61.0173 12.0111 -C(+4) CO3-2 2.0 61.0173 -C(-4) CH4 0.0 16.042 -Ca Ca+2 0.0 40.08 40.08 -Cd Cd+2 0.0 112.4 112.4 -Cl Cl- 0.0 35.453 35.453 -Cs Cs+ 0.0 132.905 132.905 -Cu Cu+2 0.0 63.546 63.546 -Cu(+1) Cu+1 0.0 63.546 -Cu(+2) Cu+2 0.0 63.546 -E e- 0.0 0.0 0.0 -F F- 0.0 18.9984 18.9984 -Fe Fe+2 0.0 55.847 55.847 -Fe(+2) Fe+2 0.0 55.847 -Fe(+3) Fe+3 -2.0 55.847 -Fulvate Fulvate-2 0.0 650. 650. -H H+ -1. 1.008 1.008 -H(0) H2 0.0 1.008 -H(1) H+ -1. 1.008 -Humate Humate-2 0.0 2000. 2000. -I I- 0.0 126.9044 126.9044 -K K+ 0.0 39.102 39.102 -Li Li+ 0.0 6.939 6.939 -Mg Mg+2 0.0 24.312 24.312 -Mn Mn+2 0.0 54.938 54.938 -Mn(2) Mn+2 0.0 54.938 -Mn(3) Mn+3 0.0 54.938 -Mn(6) MnO4-2 0.0 54.938 -Mn(7) MnO4- 0.0 54.938 -N NO3- 0.0 14.0067 14.0067 -N(-3) NH4+ 0.0 14.0067 -N(0) N2 0.0 14.0067 -N(+3) NO2- 0.0 14.0067 -N(+5) NO3- 0.0 14.0067 -Na Na+ 0.0 22.9898 22.9898 -Ni Ni+2 0.0 58.71 58.71 -O H2O 0.0 16.00 16.00 -O(-2) H2O 0.0 18.016 -O(0) O2 0.0 16.00 -P PO4-3 2.0 30.9738 30.9738 -Pb Pb+2 0.0 207.19 207.19 -Rb Rb+ 0.0 85.47 85.47 -S SO4-2 0.0 96.0616 32.064 -S(-2) H2S 0.0 32.064 -S(6) SO4-2 0.0 96.0616 -Se SeO4-2 0.0 78.96 78.96 -Se(-2) HSe- 0.0 78.96 -Se(4) SeO3-2 0.0 78.96 -Se(6) SeO4-2 0.0 78.96 -Si H4SiO4 0.0 60.0843 28.0843 -Sr Sr+2 0.0 87.62 87.62 -Zn Zn+2 0.0 65.37 65.37 -U UO2+2 0.0 238.0290 238.0290 -U(3) U+3 0.0 238.0290 238.0290 -U(4) U+4 0.0 238.0290 238.0290 -U(5) UO2+ 0.0 238.0290 238.0290 -U(6) UO2+2 0.0 238.0290 238.0290 +Ag Ag+ 0 107.868 107.868 +Al Al+3 0 26.9815 26.9815 +Alkalinity CO3-2 1 50.05 50.05 +As H3AsO4 -1 74.9216 74.9216 +As(+3) H3AsO3 0 74.9216 74.9216 +As(+5) H3AsO4 -1 74.9216 +B H3BO3 0 10.81 10.81 +Ba Ba+2 0 137.34 137.34 +Br Br- 0 79.904 79.904 +C CO3-2 2 61.0173 12.0111 +C(+4) CO3-2 2 61.0173 +C(-4) CH4 0 16.042 +Ca Ca+2 0 40.08 40.08 +Cd Cd+2 0 112.4 112.4 +Cl Cl- 0 35.453 35.453 +Cs Cs+ 0 132.905 132.905 +Cu Cu+2 0 63.546 63.546 +Cu(+1) Cu+1 0 63.546 +Cu(+2) Cu+2 0 63.546 +E e- 1 0 0 +F F- 0 18.9984 18.9984 +Fe Fe+2 0 55.847 55.847 +Fe(+2) Fe+2 0 55.847 +Fe(+3) Fe+3 -2 55.847 +Fulvate Fulvate-2 0 650 650 +H H+ -1 1.008 1.008 +H(0) H2 0 1.008 +H(1) H+ -1 1.008 +Humate Humate-2 0 2000 2000 +I I- 0 126.9044 126.9044 +K K+ 0 39.102 39.102 +Li Li+ 0 6.939 6.939 +Mg Mg+2 0 24.312 24.312 +Mn Mn+2 0 54.938 54.938 +Mn(2) Mn+2 0 54.938 +Mn(3) Mn+3 0 54.938 +Mn(6) MnO4-2 0 54.938 +Mn(7) MnO4- 0 54.938 +N NO3- 0 14.0067 14.0067 +N(-3) NH4+ 0 14.0067 +N(0) N2 0 14.0067 +N(+3) NO2- 0 14.0067 +N(+5) NO3- 0 14.0067 +Na Na+ 0 22.9898 22.9898 +Ni Ni+2 0 58.71 58.71 +O H2O 0 16 16 +O(-2) H2O 0 18.016 +O(0) O2 0 16 +P PO4-3 2 30.9738 30.9738 +Pb Pb+2 0 207.19 207.19 +Rb Rb+ 0 85.47 85.47 +S SO4-2 0 96.0616 32.064 +S(-2) H2S 0 32.064 +S(6) SO4-2 0 96.0616 +Se SeO4-2 0 78.96 78.96 +Se(-2) HSe- 0 78.96 +Se(4) SeO3-2 0 78.96 +Se(6) SeO4-2 0 78.96 +Si H4SiO4 0 60.0843 28.0843 +Sr Sr+2 0 87.62 87.62 +Zn Zn+2 0 65.37 65.37 +U UO2+2 0 238.029 238.029 +U(3) U+3 0 238.029 238.029 +U(4) U+4 0 238.029 238.029 +U(5) UO2+ 0 238.029 238.029 +U(6) UO2+2 0 238.029 238.029 SOLUTION_SPECIES #H+ primary master species H+ = H+ - log_k 0.0 - -gamma 9.0 0.0 + log_k 0 + -gamma 9 0 #e- primary master species e- = e- - log_k 0.0 + log_k 0 #H2O primary master species H2O = H2O - log_k 0.0 + log_k 0 #Ag+ primary master species Ag+ = Ag+ - log_k 0.0 + log_k 0 #Al+3 primary master species Al+3 = Al+3 - log_k 0.0 - -gamma 9.0 0.0 + log_k 0 + -gamma 9 0 #H3AsO4 primary master species H3AsO4 = H3AsO4 - log_k 0.0 + log_k 0 #H3BO3 primary master species H3BO3 = H3BO3 - log_k 0.0 + log_k 0 #Ba+2 primary master species Ba+2 = Ba+2 - log_k 0.0 - -gamma 5.0 0.0 + log_k 0 + -gamma 5 0 #Br- primary master species Br- = Br- - log_k 0.0 + log_k 0 #CO3-2 primary master species CO3-2 = CO3-2 - log_k 0.0 - -gamma 5.4 0.0 + log_k 0 + -gamma 5.4 0 #Ca+2 primary master species Ca+2 = Ca+2 - log_k 0.0 - -gamma 5.0 0.165 + log_k 0 + -gamma 5 0.165 #Cd+2 primary master species Cd+2 = Cd+2 - log_k 0.0 + log_k 0 #Cl- primary master species Cl- = Cl- - log_k 0.0 - -gamma 3.5 0.015 + log_k 0 + -gamma 3.5 0.015 #Cs+ primary master species Cs+ = Cs+ - log_k 0.0 + log_k 0 #Cu+2 primary master species Cu+2 = Cu+2 - log_k 0.0 - -gamma 6.0 0.0 + log_k 0 + -gamma 6 0 #F- primary master species F- = F- - log_k 0.0 - -gamma 3.5 0.0 + log_k 0 + -gamma 3.5 0 #Fe+2 primary master species Fe+2 = Fe+2 - log_k 0.0 - -gamma 6.0 0.0 - + log_k 0 + -gamma 6 0 + #Fulvate-2 primary master species Fulvate-2 = Fulvate-2 - log_k 0.0 + log_k 0 #Humate-2 primary master species Humate-2 = Humate-2 - log_k 0.0 + log_k 0 #I- primary master species I- = I- - log_k 0.0 + log_k 0 #K+ primary master species K+ = K+ - log_k 0.0 - -gamma 3.5 0.015 + log_k 0 + -gamma 3.5 0.015 #Li+ primary master species Li+ = Li+ - log_k 0.0 - -gamma 6.0 0.0 + log_k 0 + -gamma 6 0 #Mg+2 primary master species Mg+2 = Mg+2 - log_k 0.0 - -gamma 5.5 0.200 + log_k 0 + -gamma 5.5 0.2 #Mn+2 primary master species Mn+2 = Mn+2 - log_k 0.0 - -gamma 6.0 0.0 + log_k 0 + -gamma 6 0 #NO3- primary master species NO3- = NO3- - log_k 0.0 - -gamma 3.0 0.0 + log_k 0 + -gamma 3 0 #Na+ primary master species Na+ = Na+ - log_k 0.0 - -gamma 4.0 0.075 + log_k 0 + -gamma 4 0.075 #Ni+2 primary master species Ni+2 = Ni+2 - log_k 0.0 + log_k 0 #PO4-3 primary master species PO4-3 = PO4-3 - log_k 0.0 - -gamma 5.0 0.0 + log_k 0 + -gamma 5 0 #Pb+2 primary master species Pb+2 = Pb+2 - log_k 0.0 + log_k 0 #Rb+ primary master species Rb+ = Rb+ - log_k 0.0 + log_k 0 #SO4-2 primary master species SO4-2 = SO4-2 - log_k 0.0 - -gamma 5.0 -0.040 + log_k 0 + -gamma 5 -0.04 #SeO4-2 primary master species SeO4-2 = SeO4-2 - log_k 0.0 + log_k 0 #H4SiO4 primary master species H4SiO4 = H4SiO4 - log_k 0.0 + log_k 0 #Sr+2 primary master species Sr+2 = Sr+2 - log_k 0.0 - -gamma 5.26 0.121 + log_k 0 + -gamma 5.26 0.121 #UO2+2 primary master species UO2+2 = UO2+2 - log_k 0.0 + log_k 0 #Zn+2 primary master species Zn+2 = Zn+2 - log_k 0.0 - -gamma 6.0 0.0 + log_k 0 + -gamma 6 0 #Fe+3 secondary master species 0 - Fe+2 = Fe+3 + e- - log_k -13.020 - delta_h 9.680 kcal - -gamma 9.0 0.0 + Fe+2 = Fe+3 + e- + log_k -13.02 + delta_h 9.68 kcal + -gamma 9 0 #FeOH+2 1 - Fe+3 + H2O = FeOH+2 + H+ - log_k -2.19 + Fe+3 + H2O = FeOH+2 + H+ + log_k -2.19 delta_h 10.4 kcal - -gamma 5.0 0.0 + -gamma 5 0 #FeOH+ 2 - Fe+2 + H2O = FeOH+ + H+ - log_k -9.5 + Fe+2 + H2O = FeOH+ + H+ + log_k -9.5 delta_h 13.2 kcal - -gamma 5.0 0.0 + -gamma 5 0 #Fe(OH)3- 3 - Fe+2 + 3H2O = Fe(OH)3- + 3H+ - log_k -31.0 + Fe+2 + 3 H2O = Fe(OH)3- + 3 H+ + log_k -31 delta_h 30.3 kcal - -gamma 5.0 0.0 + -gamma 5 0 #FeSO4+ 4 - Fe+3 + SO4-2 = FeSO4+ - log_k 4.04 + Fe+3 + SO4-2 = FeSO4+ + log_k 4.04 delta_h 3.91 kcal - -gamma 5.0 0.0 + -gamma 5 0 #FeCl+2 5 - Fe+3 + Cl- = FeCl+2 - log_k 1.48 + Fe+3 + Cl- = FeCl+2 + log_k 1.48 delta_h 5.6 kcal - -gamma 5.0 0.0 + -gamma 5 0 #FeCl2+ 6 - Fe+3 + 2Cl- = FeCl2+ - log_k 2.13 + Fe+3 + 2 Cl- = FeCl2+ + log_k 2.13 #FeCl3 7 - Fe+3 + 3Cl- = FeCl3 - log_k 1.13 + Fe+3 + 3 Cl- = FeCl3 + log_k 1.13 #FeSO4 8 - Fe+2 + SO4-2 = FeSO4 - log_k 2.25 + Fe+2 + SO4-2 = FeSO4 + log_k 2.25 delta_h 3.23 kcal #H3SiO4- 13 - H4SiO4 = H3SiO4- + H+ - log_k -9.83 + H4SiO4 = H3SiO4- + H+ + log_k -9.83 delta_h 6.12 kcal - -analytical -302.3724 -0.050698 15669.69 108.18466 -1119669.0 - -gamma 4.0 0.0 + -analytical -302.3724 -0.050698 15669.69 108.18466 -1119669 + -gamma 4 0 #H2SiO4-2 14 - H4SiO4 = H2SiO4-2 + 2H+ - log_k -23.0 + H4SiO4 = H2SiO4-2 + 2 H+ + log_k -23 delta_h 17.6 kcal - -analytical -294.0184 -0.07265 11204.49 108.18466 -1119669.0 - -gamma 5.4 0.0 + -analytical -294.0184 -0.07265 11204.49 108.18466 -1119669 + -gamma 5.4 0 #HPO4-2 15 H+ + PO4-3 = HPO4-2 - log_k 12.346 + log_k 12.346 delta_h -3.53 kcal - -gamma 5.0 0.0 + -gamma 5 0 #H2PO4- 16 - 2H+ + PO4-3 = H2PO4- - log_k 19.553 + 2 H+ + PO4-3 = H2PO4- + log_k 19.553 delta_h -4.52 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #MgF+ 22 - Mg+2 + F- = MgF+ - log_k 1.82 + Mg+2 + F- = MgF+ + log_k 1.82 delta_h 3.2 kcal - -gamma 4.5 0.0 + -gamma 4.5 0 #CaSO4 23 - Ca+2 + SO4-2 = CaSO4 - log_k 2.3 + Ca+2 + SO4-2 = CaSO4 + log_k 2.3 delta_h 1.65 kcal #MgOH+ 24 - Mg+2 + H2O = MgOH+ + H+ - log_k -11.44 + Mg+2 + H2O = MgOH+ + H+ + log_k -11.44 delta_h 15.952 kcal - -gamma 6.5 0.0 + -gamma 6.5 0 #H3BO3 25 H3BO3 = H2BO3- + H+ - log_k -9.24 + log_k -9.24 delta_h 3.224 kcal # -analytical 24.3919 0.012078 -1343.9 -13.2258 - -gamma 2.5 0.0 + -gamma 2.5 0 #NH3 26 - NH4+ = NH3 + H+ - log_k -9.252 + NH4+ = NH3 + H+ + log_k -9.252 delta_h 12.48 kcal - -analytic 0.6322 -0.001225 -2835.76 - -gamma 2.5 0.0 + -analytic 0.6322 -0.001225 -2835.76 + -gamma 2.5 0 #NaHPO4- 30 Na+ + HPO4-2 = NaHPO4- - log_k 0.29 - -gamma 5.4 0.0 + log_k 0.29 + -gamma 5.4 0 #KHPO4- 32 K+ + HPO4-2 = KHPO4- - log_k 0.29 - -gamma 5.4 0.0 + log_k 0.29 + -gamma 5.4 0 #MgHPO4 33 - Mg+2 + HPO4-2 = MgHPO4 - log_k 2.87 + Mg+2 + HPO4-2 = MgHPO4 + log_k 2.87 delta_h 3.3 kcal #CaHPO4 34 - Ca+2 + HPO4-2 = CaHPO4 - log_k 2.739 + Ca+2 + HPO4-2 = CaHPO4 + log_k 2.739 delta_h 3.3 kcal #CH4 secondary master species CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O - log_k 41.071 - delta_h -61.039 kcal + log_k 41.071 + delta_h -61.039 kcal #H2CO3 35 -# HCO3- + H+ = H2CO3 +# HCO3- + H+ = H2CO3 # log_k 6.351 # delta_h -2.247 kcal # -analytical 356.3094 0.06091960 -21834.37 -126.8339 1684915.0 #CO2 could be used instead of H2CO3 CO3-2 + 2 H+ = CO2 + H2O - log_k 16.681 + log_k 16.681 delta_h -5.738 kcal - -analytical 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -analytical 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 #HCO3- 68 - H+ + CO3-2 = HCO3- - log_k 10.329 + H+ + CO3-2 = HCO3- + log_k 10.329 delta_h -3.561 kcal - -analytical 107.8871 0.03252849 -5151.79 -38.92561 563713.9 - -gamma 5.4 0.0 + -analytical 107.8871 0.03252849 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 #NaCO3- 69 - Na+ + CO3-2 = NaCO3- - log_k 1.27 + Na+ + CO3-2 = NaCO3- + log_k 1.27 delta_h 8.91 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #NaHCO3 70 - Na+ + HCO3- = NaHCO3 - log_k -0.25 + Na+ + HCO3- = NaHCO3 + log_k -0.25 #NaSO4- 71 Na+ + SO4-2 = NaSO4- - log_k 0.7 + log_k 0.7 delta_h 1.12 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #KSO4- 72 K+ + SO4-2 = KSO4- - log_k 0.85 + log_k 0.85 delta_h 2.25 kcal - -analytical 3.106 0.0 -673.6 - -gamma 5.4 0.0 + -analytical 3.106 0 -673.6 + -gamma 5.4 0 #MgCO3 73 - Mg+2 + CO3-2 = MgCO3 - log_k 2.98 + Mg+2 + CO3-2 = MgCO3 + log_k 2.98 delta_h 2.713 kcal - -analytical 0.9910 0.00667 + -analytical 0.991 0.00667 #MgHCO3+ 74 Mg+2 + HCO3- = MgHCO3+ - log_k 1.07 + log_k 1.07 delta_h 0.79 kcal - -analytical -59.215 0.0 2537.455 20.92298 0.0 - -gamma 4.0 0.0 + -analytical -59.215 0 2537.455 20.92298 0 + -gamma 4 0 #MgSO4 75 - Mg+2 + SO4-2 = MgSO4 - log_k 2.37 + Mg+2 + SO4-2 = MgSO4 + log_k 2.37 delta_h 4.55 kcal #CaOH+ 76 - Ca+2 + H2O = CaOH+ + H+ - log_k -12.78 - -gamma 6.0 0.0 + Ca+2 + H2O = CaOH+ + H+ + log_k -12.78 + -gamma 6 0 #CaHCO3+ 77 Ca+2 + HCO3- = CaHCO3+ - log_k 1.106 + log_k 1.106 delta_h 2.69 kcal - -analytical 1209.12 0.31294 -34765.05 -478.782 0.0 - -gamma 6.0 0.0 + -analytical 1209.12 0.31294 -34765.05 -478.782 0 + -gamma 6 0 #CaCO3 78 - Ca+2 + CO3-2 = CaCO3 - log_k 3.224 + Ca+2 + CO3-2 = CaCO3 + log_k 3.224 delta_h 3.545 kcal - -analytical -1228.732 -0.299444 35512.75 485.818 0.0 + -analytical -1228.732 -0.299444 35512.75 485.818 0 #SrHCO3+ 79 - Sr+2 + HCO3- = SrHCO3+ - log_k 1.18 + Sr+2 + HCO3- = SrHCO3+ + log_k 1.18 delta_h 6.05 kcal - -analytical -3.248 0.014867 0.0 0.0 0.0 - -gamma 5.4 0.0 + -analytical -3.248 0.014867 0 0 0 + -gamma 5.4 0 #AlOH+2 80 - Al+3 + H2O = AlOH+2 + H+ - log_k -5.0 + Al+3 + H2O = AlOH+2 + H+ + log_k -5 delta_h 11.49 kcal - -analytical -38.253 0.0 -656.27 14.327 0.0 - -gamma 5.4 0.0 + -analytical -38.253 0 -656.27 14.327 0 + -gamma 5.4 0 #Al(OH)2+ 81 - Al+3 + 2H2O = Al(OH)2+ + 2H+ - log_k -10.1 + Al+3 + 2 H2O = Al(OH)2+ + 2 H+ + log_k -10.1 delta_h 26.9 kcal - -analytical 88.5 0.0 -9391.6 -27.121 0.0 - -gamma 5.4 0.0 + -analytical 88.5 0 -9391.6 -27.121 0 + -gamma 5.4 0 #Al(OH)3 336 - Al+3 + 3H2O = Al(OH)3 + 3H+ - log_k -16.9 + Al+3 + 3 H2O = Al(OH)3 + 3 H+ + log_k -16.9 delta_h 39.89 kcal - -analytical 226.374 0.0 -18247.8 -73.597 0.0 + -analytical 226.374 0 -18247.8 -73.597 0 #Al(OH)4- 82 - Al+3 + 4H2O = Al(OH)4- + 4H+ - log_k -22.7 + Al+3 + 4 H2O = Al(OH)4- + 4 H+ + log_k -22.7 delta_h 42.3 kcal - -analytical 51.578 0.0 -11168.9 -14.865 0.0 - -gamma 4.5 0.0 + -analytical 51.578 0 -11168.9 -14.865 0 + -gamma 4.5 0 #AlF+2 83 - Al+3 + F- = AlF+2 - log_k 7.0 + Al+3 + F- = AlF+2 + log_k 7 delta_h 1.06 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #AlF2+ 84 - Al+3 + 2F- = AlF2+ - log_k 12.7 + Al+3 + 2 F- = AlF2+ + log_k 12.7 delta_h 1.98 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #AlF3 85 - Al+3 + 3F- = AlF3 - log_k 16.8 + Al+3 + 3 F- = AlF3 + log_k 16.8 delta_h 2.16 kcal #AlF4- 86 - Al+3 + 4F- = AlF4- - log_k 19.4 + Al+3 + 4 F- = AlF4- + log_k 19.4 delta_h 2.2 kcal - -gamma 4.5 0.0 + -gamma 4.5 0 #AlSO4+ 87 Al+3 + SO4-2 = AlSO4+ - log_k 3.5 + log_k 3.5 delta_h 2.29 kcal - -gamma 4.5 0.0 + -gamma 4.5 0 #Al(SO4)2- 88 - Al+3 + 2SO4-2 = Al(SO4)2- - log_k 5.0 + Al+3 + 2 SO4-2 = Al(SO4)2- + log_k 5 delta_h 3.11 kcal - -gamma 4.5 0.0 + -gamma 4.5 0 #HSO4- 89 - H+ + SO4-2 = HSO4- - log_k 1.988 + H+ + SO4-2 = HSO4- + log_k 1.988 delta_h 3.85 kcal - -analytical -56.889 0.006473 2307.9 19.8858 0.0 - -gamma 4.5 0.0 + -analytical -56.889 0.006473 2307.9 19.8858 0 + -gamma 4.5 0 #H2S secondary master species 90 - SO4-2 + 10H+ + 8e- = H2S + 4H2O - log_k 40.644 + SO4-2 + 10 H+ + 8 e- = H2S + 4 H2O + log_k 40.644 delta_h -65.44 kcal #HS- 91 - H2S = HS- + H+ - log_k -6.994 + H2S = HS- + H+ + log_k -6.994 delta_h 5.3 kcal - -analytical 11.17 -0.02386 -3279.0 - -gamma 3.5 0.0 + -analytical 11.17 -0.02386 -3279 + -gamma 3.5 0 #S-2 92 - HS- = S-2 + H+ - log_k -12.918 + HS- = S-2 + H+ + log_k -12.918 delta_h 12.1 kcal - -gamma 5.0 0.0 + -gamma 5 0 #oxy 93 -# 0.5H2O = 0.25O2 + H+ + e- +# 0.5H2O = 0.25O2 + H+ + e- # log_k -20.780 # delta_h 34.157000 kcal #O2 secondary master species - 2H2O = O2 + 4H+ + 4e- - log_k -86.08 + 2 H2O = O2 + 4 H+ + 4 e- + log_k -86.08 delta_h 134.79 kcal #H2 secondary master species 2 H+ + 2 e- = H2 - log_k -3.15 + log_k -3.15 delta_h -1.759 kcal #Fe(OH)2+ 102 - Fe+3 + 2H2O = Fe(OH)2+ + 2H+ - log_k -5.67 + Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ + log_k -5.67 delta_h 17.1 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #Fe(OH)3 103 - Fe+3 + 3H2O = Fe(OH)3 + 3H+ - log_k -12.56 + Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ + log_k -12.56 delta_h 24.8 kcal #Fe(OH)4- 104 - Fe+3 + 4H2O = Fe(OH)4- + 4H+ - log_k -21.6 + Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ + log_k -21.6 delta_h 31.9 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #Fe(OH)2 105 - Fe+2 + 2H2O = Fe(OH)2 + 2H+ - log_k -20.57 + Fe+2 + 2 H2O = Fe(OH)2 + 2 H+ + log_k -20.57 delta_h 28.565 kcal #FeH2PO4+ 120 - Fe+2 + H2PO4- = FeH2PO4+ - log_k 2.7 - -gamma 5.4 0.0 + Fe+2 + H2PO4- = FeH2PO4+ + log_k 2.7 + -gamma 5.4 0 #CaPO4- 121 Ca+2 + PO4-3 = CaPO4- - log_k 6.459 + log_k 6.459 delta_h 3.1 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #CaH2PO4+ 122 Ca+2 + H2PO4- = CaH2PO4+ - log_k 1.408 + log_k 1.408 delta_h 3.4 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #MgPO4- 123 Mg+2 + PO4-3 = MgPO4- - log_k 6.589 + log_k 6.589 delta_h 3.1 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #MgH2PO4+ 124 Mg+2 + H2PO4- = MgH2PO4+ - log_k 1.513 + log_k 1.513 delta_h 3.4 kcal - -gamma 5.4 0.0 + -gamma 5.4 0 #LiSO4- 126 Li+ + SO4-2 = LiSO4- - log_k 0.64 - -gamma 5.0 0.0 + log_k 0.64 + -gamma 5 0 #N2 secondary master species 2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O - log_k 207.080 - delta_h -312.130 kcal + log_k 207.08 + delta_h -312.13 kcal #NH4 secondary master species 127 - NO3- + 10H+ + 8e- = NH4+ + 3H2O - log_k 119.077 + NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O + log_k 119.077 delta_h -187.055 kcal #SrOH+ 129 - Sr+2 + H2O = SrOH+ + H+ - log_k -13.29 - -gamma 5.0 0.0 + Sr+2 + H2O = SrOH+ + H+ + log_k -13.29 + -gamma 5 0 #BaOH+ 130 - Ba+2 + H2O = BaOH+ + H+ - log_k -13.47 - -gamma 5.0 0.0 + Ba+2 + H2O = BaOH+ + H+ + log_k -13.47 + -gamma 5 0 #NH4SO4- 131 - NH4+ + SO4-2 = NH4SO4- - log_k 1.11 - -gamma 5.0 0.0 + NH4+ + SO4-2 = NH4SO4- + log_k 1.11 + -gamma 5 0 #SrCO3 135 - Sr+2 + CO3-2 = SrCO3 - log_k 2.81 + Sr+2 + CO3-2 = SrCO3 + log_k 2.81 delta_h 5.22 kcal - -analytical -1.019 0.012826 0.0 0.0 0.0 - -gamma 5.0 0.0 + -analytical -1.019 0.012826 0 0 0 + -gamma 5 0 #O2Sato 136 -# 0.5H2O = 0.25O2(aq) + H+ + e- +# 0.5H2O = 0.25O2(aq) + H+ + e- # log_k -11.385 #CO2 137 -# CO2 (g) + H2O = H2CO3 +# CO2 (g) + H2O = H2CO3 # -1.468 -4.776 108.38650 0.01985076 -6919.530 -40.45154 -669365.0 #FeHPO4 138 Fe+2 + HPO4-2 = FeHPO4 - log_k 3.6 + log_k 3.6 #FeHPO4+ 139 - Fe+3 + HPO4-2 = FeHPO4+ - log_k 5.43 + Fe+3 + HPO4-2 = FeHPO4+ + log_k 5.43 delta_h 5.76 kcal - -gamma 5.5 0.0 + -gamma 5.5 0 #FeHSO4+ 148 Fe+2 + HSO4- = FeHSO4+ - log_k 1.08 + log_k 1.08 #O2calc 151 -# 0.5H2O = 0.25O2(aq) + H+ + e- +# 0.5H2O = 0.25O2(aq) + H+ + e- # log_k -20.780 # delta_h 33.457 kcal #OH- 152 - H2O = OH- + H+ - log_k -14.0 + H2O = OH- + H+ + log_k -14 delta_h 13.362 kcal - -analytical -283.971 -0.05069842 13323.0 102.24447 -1119669.0 - -gamma 3.5 0.0 + -analytical -283.971 -0.05069842 13323 102.24447 -1119669 + -gamma 3.5 0 #FeH2PO4+2 156 Fe+3 + H2PO4- = FeH2PO4+2 - log_k 5.43 - -gamma 5.4 0.0 + log_k 5.43 + -gamma 5.4 0 #FeHSO4+2 159 - Fe+3 + HSO4- = FeHSO4+2 - log_k 2.48 + Fe+3 + HSO4- = FeHSO4+2 + log_k 2.48 #CaF+ 160 - Ca+2 + F- = CaF+ - log_k 0.94 + Ca+2 + F- = CaF+ + log_k 0.94 delta_h 4.12 kcal - -gamma 5.5 0.0 + -gamma 5.5 0 #BF(OH)3- 161 H3BO3 + F- = BF(OH)3- - log_k -0.4 + log_k -0.4 delta_h 1.85 kcal - -gamma 2.5 0.0 + -gamma 2.5 0 #BF2(OH)2- 162 - H3BO3 + H+ + 2F- = BF2(OH)2- + H2O - log_k 7.63 + H3BO3 + H+ + 2 F- = BF2(OH)2- + H2O + log_k 7.63 delta_h 1.618 kcal - -gamma 2.5 0.0 + -gamma 2.5 0 #BF3OH- 163 - H3BO3 + 2H+ + 3F- = BF3OH- + 2H2O - log_k 13.67 + H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O + log_k 13.67 delta_h -1.614 kcal - -gamma 2.5 0.0 + -gamma 2.5 0 #BF4- 164 - H3BO3 + 3H+ + 4F- = BF4- + 3H2O - log_k 20.28 + H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O + log_k 20.28 delta_h -1.846 kcal - -gamma 2.5 0.0 + -gamma 2.5 0 #FeF+2 165 - Fe+3 + F- = FeF+2 - log_k 6.2 + Fe+3 + F- = FeF+2 + log_k 6.2 delta_h 2.7 kcal - -gamma 5.0 0.0 + -gamma 5 0 #FeF2+ 166 - Fe+3 + 2F- = FeF2+ - log_k 10.8 + Fe+3 + 2 F- = FeF2+ + log_k 10.8 delta_h 4.8 kcal - -gamma 5.0 0.0 + -gamma 5 0 #FeF3 167 - Fe+3 + 3F- = FeF3 - log_k 14.0 + Fe+3 + 3 F- = FeF3 + log_k 14 delta_h 5.4 kcal #CaHSO4+ 168 - Ca+2 + HSO4- = CaHSO4+ - log_k 1.08 + Ca+2 + HSO4- = CaHSO4+ + log_k 1.08 #Mn+3 secondary master species 169 - Mn+2 = Mn+3 + e- - log_k -25.51 + Mn+2 = Mn+3 + e- + log_k -25.51 delta_h 25.8 kcal - -gamma 9.0 0.0 + -gamma 9 0 #MnCl+ 170 - Mn+2 + Cl- = MnCl+ - log_k 0.61 - -gamma 5.0 0.0 + Mn+2 + Cl- = MnCl+ + log_k 0.61 + -gamma 5 0 #MnCl2 171 - Mn+2 + 2Cl- = MnCl2 - log_k 0.25 + Mn+2 + 2 Cl- = MnCl2 + log_k 0.25 #MnCl3- 172 - Mn+2 + 3Cl- = MnCl3- - log_k -0.31 - -gamma 5.0 0.0 + Mn+2 + 3 Cl- = MnCl3- + log_k -0.31 + -gamma 5 0 #MnOH+ 173 - Mn+2 + H2O = MnOH+ + H+ - log_k -10.59 + Mn+2 + H2O = MnOH+ + H+ + log_k -10.59 delta_h 14.4 kcal - -gamma 5.0 0.0 + -gamma 5 0 #Mn(OH)3- 174 - Mn+2 + 3H2O = Mn(OH)3- + 3H+ - log_k -34.8 - -gamma 5.0 0.0 + Mn+2 + 3 H2O = Mn(OH)3- + 3 H+ + log_k -34.8 + -gamma 5 0 #MnF+ 175 - Mn+2 + F- = MnF+ - log_k 0.84 - -gamma 5.0 0.0 + Mn+2 + F- = MnF+ + log_k 0.84 + -gamma 5 0 #MnSO4 176 - Mn+2 + SO4-2 = MnSO4 - log_k 2.25 + Mn+2 + SO4-2 = MnSO4 + log_k 2.25 delta_h 3.37 kcal #Mn(NO3)2 177 - Mn+2 + 2NO3- = Mn(NO3)2 - log_k 0.6 + Mn+2 + 2 NO3- = Mn(NO3)2 + log_k 0.6 delta_h -0.396 kcal #MnHCO3+ 178 Mn+2 + HCO3- = MnHCO3+ - log_k 1.95 - -gamma 5.0 0.0 + log_k 1.95 + -gamma 5 0 #MnO4- secondary master species 179 - Mn+2 + 4H2O = MnO4- + 8H+ + 5e- - log_k -127.824 + Mn+2 + 4 H2O = MnO4- + 8 H+ + 5 e- + log_k -127.824 delta_h 176.62 kcal - -gamma 3.0 0.0 + -gamma 3 0 #MnO4-2 secondary master species 180 - Mn+2 + 4H2O = MnO4-2 + 8H+ + 4e- - log_k -118.44 + Mn+2 + 4 H2O = MnO4-2 + 8 H+ + 4 e- + log_k -118.44 delta_h 150.02 kcal - -gamma 5.0 0.0 + -gamma 5 0 #SiF6-2 201 - H4SiO4 + 4H+ + 6F- = SiF6-2 + 4H2O - log_k 30.18 + H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O + log_k 30.18 delta_h -16.26 kcal - -gamma 5.0 0.0 + -gamma 5 0 #HF 202 - H+ + F- = HF - log_k 3.18 + H+ + F- = HF + log_k 3.18 delta_h 3.18 kcal - -analytical -2.033 0.012645 429.01 0.0 0.0 + -analytical -2.033 0.012645 429.01 0 0 #HF2- 203 - H+ + 2F- = HF2- - log_k 3.76 + H+ + 2 F- = HF2- + log_k 3.76 delta_h 4.55 kcal - -gamma 3.5 0.0 + -gamma 3.5 0 #CuCl2- 206 # Cu+2 + 2Cl- + e- = CuCl2- # log_k 8.220 # delta_h 1.230 kcal - Cu+ + 2Cl- = CuCl2- - log_k 5.50 + Cu+ + 2 Cl- = CuCl2- + log_k 5.5 delta_h -0.42 kcal - -gamma 4.0 0.0 + -gamma 4 0 #CuCl3-2 207 -# Cu+2 + 3Cl- + e- = CuCl3-2 +# Cu+2 + 3Cl- + e- = CuCl3-2 # log_k 8.420 # delta_h 1.910 kcal - Cu+ + 3Cl- = CuCl3-2 - log_k 5.70 + Cu+ + 3 Cl- = CuCl3-2 + log_k 5.7 delta_h 0.26 kcal - -gamma 5.0 0.0 + -gamma 5 0 #Cu+ secondary master species 208 - Cu+2 + e- = Cu+ - log_k 2.72 + Cu+2 + e- = Cu+ + log_k 2.72 delta_h 1.65 kcal - -gamma 2.5 0.0 + -gamma 2.5 0 #CuCO3 209 - Cu+2 + CO3-2 = CuCO3 - log_k 6.73 + Cu+2 + CO3-2 = CuCO3 + log_k 6.73 #Cu(CO3)2-2 210 - Cu+2 + 2CO3-2 = Cu(CO3)2-2 - log_k 9.83 + Cu+2 + 2 CO3-2 = Cu(CO3)2-2 + log_k 9.83 #CuCl+ 211 - Cu+2 + Cl- = CuCl+ - log_k 0.43 + Cu+2 + Cl- = CuCl+ + log_k 0.43 delta_h 8.65 kcal - -gamma 4.0 0.0 + -gamma 4 0 #CuCl2 212 - Cu+2 + 2Cl- = CuCl2 - log_k 0.16 + Cu+2 + 2 Cl- = CuCl2 + log_k 0.16 delta_h 10.56 kcal #CuCl3- 213 - Cu+2 + 3Cl- = CuCl3- - log_k -2.29 + Cu+2 + 3 Cl- = CuCl3- + log_k -2.29 delta_h 13.69 kcal - -gamma 4.0 0.0 + -gamma 4 0 #CuCl4-2 214 - Cu+2 + 4Cl- = CuCl4-2 - log_k -4.59 + Cu+2 + 4 Cl- = CuCl4-2 + log_k -4.59 delta_h 17.78 kcal - -gamma 5.0 0.0 + -gamma 5 0 #CuF+ 215 - Cu+2 + F- = CuF+ - log_k 1.26 + Cu+2 + F- = CuF+ + log_k 1.26 delta_h 1.62 kcal #CuOH+ 216 - Cu+2 + H2O = CuOH+ + H+ - log_k -8.0 - -gamma 4.0 0.0 + Cu+2 + H2O = CuOH+ + H+ + log_k -8 + -gamma 4 0 #Cu(OH)2 217 - Cu+2 + 2H2O = Cu(OH)2 + 2H+ - log_k -13.68 + Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ + log_k -13.68 #Cu(OH)3- 218 - Cu+2 + 3H2O = Cu(OH)3- + 3H+ - log_k -26.9 + Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ + log_k -26.9 #Cu(OH)4-2 219 - Cu+2 + 4H2O = Cu(OH)4-2 + 4H+ - log_k -39.6 + Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ + log_k -39.6 #Cu2(OH)2+2 220 - 2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ - log_k -10.359 + 2 Cu+2 + 2 H2O = Cu2(OH)2+2 + 2 H+ + log_k -10.359 delta_h 17.539 kcal - -analytical 2.497 0.0 -3833.0 0.0 0.0 + -analytical 2.497 0 -3833 0 0 #CuSO4 221 - Cu+2 + SO4-2 = CuSO4 - log_k 2.31 + Cu+2 + SO4-2 = CuSO4 + log_k 2.31 delta_h 1.22 kcal #Cu(HS)3- 222 - Cu+2 + 3HS- = Cu(HS)3- - log_k 25.9 + Cu+2 + 3 HS- = Cu(HS)3- + log_k 25.9 #ZnCl+ 251 - Zn+2 + Cl- = ZnCl+ - log_k 0.43 + Zn+2 + Cl- = ZnCl+ + log_k 0.43 delta_h 7.79 kcal - -gamma 4.0 0.0 + -gamma 4 0 #ZnCl2 252 - Zn+2 + 2Cl- = ZnCl2 - log_k 0.45 + Zn+2 + 2 Cl- = ZnCl2 + log_k 0.45 delta_h 8.5 kcal #ZnCl3- 253 - Zn+2 + 3Cl- = ZnCl3- - log_k 0.5 + Zn+2 + 3 Cl- = ZnCl3- + log_k 0.5 delta_h 9.56 kcal - -gamma 4.0 0.0 + -gamma 4 0 #ZnCl4-2 254 - Zn+2 + 4Cl- = ZnCl4-2 - log_k 0.2 + Zn+2 + 4 Cl- = ZnCl4-2 + log_k 0.2 delta_h 10.96 kcal - -gamma 5.0 0.0 + -gamma 5 0 #ZnF+ 255 - Zn+2 + F- = ZnF+ - log_k 1.15 + Zn+2 + F- = ZnF+ + log_k 1.15 delta_h 2.22 kcal #ZnOH+ 256 - Zn+2 + H2O = ZnOH+ + H+ - log_k -8.96 + Zn+2 + H2O = ZnOH+ + H+ + log_k -8.96 delta_h 13.4 kcal #Zn(OH)2 257 - Zn+2 + 2H2O = Zn(OH)2 + 2H+ - log_k -16.9 + Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ + log_k -16.9 #Zn(OH)3- 258 - Zn+2 + 3H2O = Zn(OH)3- + 3H+ - log_k -28.4 + Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ + log_k -28.4 #Zn(OH)4-2 259 - Zn+2 + 4H2O = Zn(OH)4-2 + 4H+ - log_k -41.2 + Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ + log_k -41.2 #ZnOHCl 260 - Zn+2 + H2O + Cl- = ZnOHCl + H+ - log_k -7.48 + Zn+2 + H2O + Cl- = ZnOHCl + H+ + log_k -7.48 #Zn(HS)2 261 - Zn+2 + 2HS- = Zn(HS)2 - log_k 14.94 + Zn+2 + 2 HS- = Zn(HS)2 + log_k 14.94 #Zn(HS)3- 262 - Zn+2 + 3HS- = Zn(HS)3- - log_k 16.1 + Zn+2 + 3 HS- = Zn(HS)3- + log_k 16.1 #ZnSO4 263 - Zn+2 + SO4-2 = ZnSO4 - log_k 2.37 + Zn+2 + SO4-2 = ZnSO4 + log_k 2.37 delta_h 1.36 kcal #Zn(SO4)2-2 264 - Zn+2 + 2SO4-2 = Zn(SO4)2-2 - log_k 3.28 + Zn+2 + 2 SO4-2 = Zn(SO4)2-2 + log_k 3.28 #CdCl+ 294 - Cd+2 + Cl- = CdCl+ - log_k 1.98 + Cd+2 + Cl- = CdCl+ + log_k 1.98 delta_h 0.59 kcal #CdCl2 295 - Cd+2 + 2Cl- = CdCl2 - log_k 2.6 + Cd+2 + 2 Cl- = CdCl2 + log_k 2.6 delta_h 1.24 kcal #CdCl3- 296 - Cd+2 + 3Cl- = CdCl3- - log_k 2.4 + Cd+2 + 3 Cl- = CdCl3- + log_k 2.4 delta_h 3.9 kcal #CdF+ 297 - Cd+2 + F- = CdF+ - log_k 1.1 + Cd+2 + F- = CdF+ + log_k 1.1 #CdF2 298 - Cd+2 + 2F- = CdF2 - log_k 1.5 + Cd+2 + 2 F- = CdF2 + log_k 1.5 #Cd(CO3)2-2 299 - Cd+2 + 2CO3-2 = Cd(CO3)2-2 - log_k 6.4 + Cd+2 + 2 CO3-2 = Cd(CO3)2-2 + log_k 6.4 #CdOH+ 300 - Cd+2 + H2O = CdOH+ + H+ - log_k -10.08 + Cd+2 + H2O = CdOH+ + H+ + log_k -10.08 delta_h 13.1 kcal #Cd(OH)2 301 - Cd+2 + 2H2O = Cd(OH)2 + 2H+ - log_k -20.35 + Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ + log_k -20.35 #Cd(OH)3- 302 - Cd+2 + 3H2O = Cd(OH)3- + 3H+ - log_k -33.3 + Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ + log_k -33.3 #Cd(OH)4-2 303 - Cd+2 + 4H2O = Cd(OH)4-2 + 4H+ - log_k -47.35 + Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ + log_k -47.35 #Cd2OH+3 304 - 2Cd+2 + H2O = Cd2OH+3 + H+ - log_k -9.39 + 2 Cd+2 + H2O = Cd2OH+3 + H+ + log_k -9.39 delta_h 10.9 kcal #CdOHCl 305 - Cd+2 + H2O + Cl- = CdOHCl + H+ - log_k -7.404 + Cd+2 + H2O + Cl- = CdOHCl + H+ + log_k -7.404 delta_h 4.355 kcal #CdNO3+ 306 Cd+2 + NO3- = CdNO3+ - log_k 0.4 + log_k 0.4 delta_h -5.2 kcal #CdSO4 307 - Cd+2 + SO4-2 = CdSO4 - log_k 2.46 + Cd+2 + SO4-2 = CdSO4 + log_k 2.46 delta_h 1.08 kcal #CdHS+ 308 - Cd+2 + HS- = CdHS+ - log_k 10.17 + Cd+2 + HS- = CdHS+ + log_k 10.17 #Cd(HS)2 309 - Cd+2 + 2HS- = Cd(HS)2 - log_k 16.53 + Cd+2 + 2 HS- = Cd(HS)2 + log_k 16.53 #Cd(HS)3- 310 - Cd+2 + 3HS- = Cd(HS)3- - log_k 18.71 + Cd+2 + 3 HS- = Cd(HS)3- + log_k 18.71 #Cd(HS)4-2 311 - Cd+2 + 4HS- = Cd(HS)4-2 - log_k 20.9 + Cd+2 + 4 HS- = Cd(HS)4-2 + log_k 20.9 #Fe(SO4)2- 333 - Fe+3 + 2SO4-2 = Fe(SO4)2- - log_k 5.38 + Fe+3 + 2 SO4-2 = Fe(SO4)2- + log_k 5.38 delta_h 4.6 kcal #Fe2(OH)2+4 334 - 2Fe+3 + 2H2O = Fe2(OH)2+4 + 2H+ - log_k -2.95 + 2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ + log_k -2.95 delta_h 13.5 kcal #Fe3(OH)4+5 335 - 3Fe+3 + 4H2O = Fe3(OH)4+5 + 4H+ - log_k -6.3 + 3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ + log_k -6.3 delta_h 14.3 kcal #PbCl+ 341 - Pb+2 + Cl- = PbCl+ - log_k 1.6 + Pb+2 + Cl- = PbCl+ + log_k 1.6 delta_h 4.38 kcal #PbCl2 342 - Pb+2 + 2Cl- = PbCl2 - log_k 1.8 + Pb+2 + 2 Cl- = PbCl2 + log_k 1.8 delta_h 1.08 kcal #PbCl3- 343 - Pb+2 + 3Cl- = PbCl3- - log_k 1.7 + Pb+2 + 3 Cl- = PbCl3- + log_k 1.7 delta_h 2.17 kcal #PbCl4-2 344 - Pb+2 + 4Cl- = PbCl4-2 - log_k 1.38 + Pb+2 + 4 Cl- = PbCl4-2 + log_k 1.38 delta_h 3.53 kcal #Pb(CO3)2-2 345 - Pb+2 + 2CO3-2 = Pb(CO3)2-2 - log_k 10.64 + Pb+2 + 2 CO3-2 = Pb(CO3)2-2 + log_k 10.64 #PbF+ 346 - Pb+2 + F- = PbF+ - log_k 1.25 + Pb+2 + F- = PbF+ + log_k 1.25 #PbF2 347 - Pb+2 + 2F- = PbF2 - log_k 2.56 + Pb+2 + 2 F- = PbF2 + log_k 2.56 #PbF3- 348 - Pb+2 + 3F- = PbF3- - log_k 3.42 + Pb+2 + 3 F- = PbF3- + log_k 3.42 #PbF4-2 349 - Pb+2 + 4F- = PbF4-2 - log_k 3.1 + Pb+2 + 4 F- = PbF4-2 + log_k 3.1 #PbOH+ 350 - Pb+2 + H2O = PbOH+ + H+ - log_k -7.71 + Pb+2 + H2O = PbOH+ + H+ + log_k -7.71 #Pb(OH)2 351 - Pb+2 + 2H2O = Pb(OH)2 + 2H+ - log_k -17.12 + Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ + log_k -17.12 #Pb(OH)3- 352 - Pb+2 + 3H2O = Pb(OH)3- + 3H+ - log_k -28.06 + Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ + log_k -28.06 #Pb2OH+3 353 - 2Pb+2 + H2O = Pb2OH+3 + H+ - log_k -6.36 + 2 Pb+2 + H2O = Pb2OH+3 + H+ + log_k -6.36 #PbNO3+ 354 Pb+2 + NO3- = PbNO3+ - log_k 1.17 + log_k 1.17 #PbSO4 355 - Pb+2 + SO4-2 = PbSO4 - log_k 2.75 + Pb+2 + SO4-2 = PbSO4 + log_k 2.75 #Pb(HS)2 356 - Pb+2 + 2HS- = Pb(HS)2 - log_k 15.27 + Pb+2 + 2 HS- = Pb(HS)2 + log_k 15.27 #Pb(HS)3- 357 - Pb+2 + 3HS- = Pb(HS)3- - log_k 16.57 + Pb+2 + 3 HS- = Pb(HS)3- + log_k 16.57 #Pb3(OH)4+2 358 - 3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ - log_k -23.88 + 3 Pb+2 + 4 H2O = Pb3(OH)4+2 + 4 H+ + log_k -23.88 delta_h 26.5 kcal #FeF+ 359 - Fe+2 + F- = FeF+ - log_k 1.0 + Fe+2 + F- = FeF+ + log_k 1 #AlHSO4+2 397 - Al+3 + HSO4- = AlHSO4+2 - log_k 0.46 + Al+3 + HSO4- = AlHSO4+2 + log_k 0.46 #NO2 secondary master species 400 - NO3- + 2H+ + 2e- = NO2- + H2O - log_k 28.57 + NO3- + 2 H+ + 2 e- = NO2- + H2O + log_k 28.57 delta_h -43.76 kcal #NiBr+ 403 - Ni+2 + Br- = NiBr+ - log_k 0.5 + Ni+2 + Br- = NiBr+ + log_k 0.5 #NiCl+ 404 - Ni+2 + Cl- = NiCl+ - log_k 0.4 + Ni+2 + Cl- = NiCl+ + log_k 0.4 #NiF+ 405 - Ni+2 + F- = NiF+ - log_k 1.3 + Ni+2 + F- = NiF+ + log_k 1.3 #NiOH+ 406 - Ni+2 + H2O = NiOH+ + H+ - log_k -9.86 + Ni+2 + H2O = NiOH+ + H+ + log_k -9.86 delta_h 12.42 kcal #Ni(OH)2 407 - Ni+2 + 2H2O = Ni(OH)2 + 2H+ - log_k -19.0 + Ni+2 + 2 H2O = Ni(OH)2 + 2 H+ + log_k -19 #Ni(OH)3- 408 - Ni+2 + 3H2O = Ni(OH)3- + 3H+ - log_k -30.0 + Ni+2 + 3 H2O = Ni(OH)3- + 3 H+ + log_k -30 #NiSO4 409 - Ni+2 + SO4-2 = NiSO4 - log_k 2.29 + Ni+2 + SO4-2 = NiSO4 + log_k 2.29 delta_h 1.52 kcal #AgBr 421 Ag+ + Br- = AgBr - log_k 4.24 + log_k 4.24 #AgBr2- 422 - Ag+ + 2Br- = AgBr2- - log_k 7.28 + Ag+ + 2 Br- = AgBr2- + log_k 7.28 #AgCl 423 Ag+ + Cl- = AgCl - log_k 3.27 + log_k 3.27 delta_h -2.68 kcal #AgCl2- 424 - Ag+ + 2Cl- = AgCl2- - log_k 5.27 + Ag+ + 2 Cl- = AgCl2- + log_k 5.27 delta_h -3.93 kcal #AgCl3-2 425 - Ag+ + 3Cl- = AgCl3-2 - log_k 5.29 + Ag+ + 3 Cl- = AgCl3-2 + log_k 5.29 #AgCl4-3 426 - Ag+ + 4Cl- = AgCl4-3 - log_k 5.51 + Ag+ + 4 Cl- = AgCl4-3 + log_k 5.51 #AgF 427 Ag+ + F- = AgF - log_k 0.36 + log_k 0.36 delta_h -2.83 kcal #AgHS 428 - Ag+ + HS- = AgHS - log_k 14.05 + Ag+ + HS- = AgHS + log_k 14.05 #Ag(HS)2- 429 - Ag+ + 2HS- = Ag(HS)2- - log_k 18.45 + Ag+ + 2 HS- = Ag(HS)2- + log_k 18.45 #AgI 430 Ag+ + I- = AgI - log_k 6.6 + log_k 6.6 #AgI2- 431 - Ag+ + 2I- = AgI2- - log_k 10.68 + Ag+ + 2 I- = AgI2- + log_k 10.68 #AgOH 432 - Ag+ + H2O = AgOH + H+ - log_k -12.0 + Ag+ + H2O = AgOH + H+ + log_k -12 #Ag(OH)2- 433 - Ag+ + 2H2O = Ag(OH)2- + 2H+ - log_k -24.0 + Ag+ + 2 H2O = Ag(OH)2- + 2 H+ + log_k -24 #AgSO4- 434 Ag+ + SO4-2 = AgSO4- - log_k 1.29 + log_k 1.29 delta_h 1.49 kcal #AgNO3 435 Ag+ + NO3- = AgNO3 - log_k -0.29 + log_k -0.29 #Ag(NO2)2- 436 - Ag+ + 2NO2- = Ag(NO2)2- - log_k 2.22 + Ag+ + 2 NO2- = Ag(NO2)2- + log_k 2.22 #ZnBr+ 447 - Zn+2 + Br- = ZnBr+ - log_k -0.58 + Zn+2 + Br- = ZnBr+ + log_k -0.58 #ZnBr2 448 - Zn+2 + 2Br- = ZnBr2 - log_k -0.98 + Zn+2 + 2 Br- = ZnBr2 + log_k -0.98 #ZnI+ 449 - Zn+2 + I- = ZnI+ - log_k -2.91 + Zn+2 + I- = ZnI+ + log_k -2.91 #ZnI2 450 - Zn+2 + 2I- = ZnI2 - log_k -1.69 + Zn+2 + 2 I- = ZnI2 + log_k -1.69 #CdBr+ 451 - Cd+2 + Br- = CdBr+ - log_k 2.17 + Cd+2 + Br- = CdBr+ + log_k 2.17 delta_h -0.81 kcal #CdBr2 452 - Cd+2 + 2Br- = CdBr2 - log_k 2.9 + Cd+2 + 2 Br- = CdBr2 + log_k 2.9 #CdI+ 453 - Cd+2 + I- = CdI+ - log_k 2.15 + Cd+2 + I- = CdI+ + log_k 2.15 delta_h -2.37 kcal #CdI2 454 - Cd+2 + 2I- = CdI2 - log_k 3.59 + Cd+2 + 2 I- = CdI2 + log_k 3.59 #PbBr+ 455 - Pb+2 + Br- = PbBr+ - log_k 1.77 + Pb+2 + Br- = PbBr+ + log_k 1.77 delta_h 2.88 kcal #PbBr2 456 - Pb+2 + 2Br- = PbBr2 - log_k 1.44 + Pb+2 + 2 Br- = PbBr2 + log_k 1.44 #PbI+ 457 - Pb+2 + I- = PbI+ - log_k 1.94 + Pb+2 + I- = PbI+ + log_k 1.94 #PbI2 458 - Pb+2 + 2I- = PbI2 - log_k 3.2 + Pb+2 + 2 I- = PbI2 + log_k 3.2 #PbCO3 468 - Pb+2 + CO3-2 = PbCO3 - log_k 7.24 + Pb+2 + CO3-2 = PbCO3 + log_k 7.24 #Pb(OH)4-2 469 - Pb+2 + 4H2O = Pb(OH)4-2 + 4H+ - log_k -39.7 + Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ + log_k -39.7 #Pb(SO4)2-2 470 - Pb+2 + 2SO4-2 = Pb(SO4)2-2 - log_k 3.47 + Pb+2 + 2 SO4-2 = Pb(SO4)2-2 + log_k 3.47 #AgBr3-2 473 - Ag+ + 3Br- = AgBr3-2 - log_k 8.71 + Ag+ + 3 Br- = AgBr3-2 + log_k 8.71 #AgI3-2 474 - Ag+ + 3I- = AgI3-2 - log_k 13.37 + Ag+ + 3 I- = AgI3-2 + log_k 13.37 delta_h -27.03 kcal #AgI4-3 475 - Ag+ + 4I- = AgI4-3 - log_k 14.08 + Ag+ + 4 I- = AgI4-3 + log_k 14.08 #Fe(HS)2 476 - Fe+2 + 2HS- = Fe(HS)2 - log_k 8.95 + Fe+2 + 2 HS- = Fe(HS)2 + log_k 8.95 #Fe(HS)3- 477 - Fe+2 + 3HS- = Fe(HS)3- - log_k 10.987 + Fe+2 + 3 HS- = Fe(HS)3- + log_k 10.987 #H2AsO3- 478 H3AsO3 = H2AsO3- + H+ - log_k -9.15 - delta_h 27.54 kJ + log_k -9.15 + delta_h 27.54 kJ #HAsO3-2 479 - H3AsO3 = HAsO3-2 + 2H+ - log_k -23.85 - delta_h 59.41 kJ + H3AsO3 = HAsO3-2 + 2 H+ + log_k -23.85 + delta_h 59.41 kJ #AsO3-3 480 - H3AsO3 = AsO3-3 + 3H+ - log_k -39.55 - delta_h 84.73 kJ + H3AsO3 = AsO3-3 + 3 H+ + log_k -39.55 + delta_h 84.73 kJ #H4AsO3+ 481 - H3AsO3 + H+ = H4AsO3+ - log_k -0.305 + H3AsO3 + H+ = H4AsO3+ + log_k -0.305 #H2AsO4- 482 H3AsO4 = H2AsO4- + H+ - log_k -2.3 - delta_h -7.066 kJ + log_k -2.3 + delta_h -7.066 kJ #HAsO4-2 483 - H3AsO4 = HAsO4-2 + 2H+ - log_k -9.46 - delta_h -3.846 kJ + H3AsO4 = HAsO4-2 + 2 H+ + log_k -9.46 + delta_h -3.846 kJ #AsO43- 484 - H3AsO4 = AsO4-3 + 3H+ - log_k -21.11 - delta_h 14.354 kJ + H3AsO4 = AsO4-3 + 3 H+ + log_k -21.11 + delta_h 14.354 kJ #As3 secondary master species 487 H3AsO4 + H2 = H3AsO3 + H2O - log_k 22.5 - delta_h -117.480344 kJ + log_k 22.5 + delta_h -117.480344 kJ #As3S4(HS)-2 631 - 3H3AsO3 + 6HS- + 5H+ = As3S4(HS)2- + 9H2O - log_k 72.314 - -gamma 5.0 0.0 + 3 H3AsO3 + 6 HS- + 5 H+ = As3S4(HS)2- + 9 H2O + log_k 72.314 + -gamma 5 0 #AsS(OH)(HS)- 637 - H3AsO3 + 2HS- + H+ = AsS(OH)(HS)- + 2H2O - log_k 18.038 - -gamma 5.0 0.0 + H3AsO3 + 2 HS- + H+ = AsS(OH)(HS)- + 2 H2O + log_k 18.038 + -gamma 5 0 # -# TURNING OFF CHECKING FOR EQUATION BALANCE FOR +# TURNING OFF CHECKING FOR EQUATION BALANCE FOR # POLYSULFIDES # @@ -1406,73 +1410,73 @@ SOLUTION_SPECIES # Cu+2 + 2HS- + e- = CuS4S5-3 + 2H+ # (lhs) +7S # log_k 5.382 # -no_check -# -mass_balance CuS(-2)9 +# -mass_balance CuS(-2)9 # -gamma 25.0 0.0 #As3/As5 487 -# H3AsO3 + H2O = H3AsO4 + 2H+ + 2e- +# H3AsO3 + H2O = H3AsO4 + 2H+ + 2e- # log_k -18.897 # delta_h 30.015 kcal #S2-2 502 - HS- = S2-2 + H+ # (lhs) +S - log_k -14.528 + HS- = S2-2 + H+ # (lhs) +S + log_k -14.528 delta_h 11.4 kcal -no_check - -mass_balance S(-2)2 - -gamma 6.5 0.0 + -mass_balance S(-2)2 + -gamma 6.5 0 #S3-2 503 - HS- = S3-2 + H+ # (lhs) +2S - log_k -13.282 + HS- = S3-2 + H+ # (lhs) +2S + log_k -13.282 delta_h 10.4 kcal -no_check - -mass_balance S(-2)3 - -gamma 8.0 0.0 + -mass_balance S(-2)3 + -gamma 8 0 #S4-2 504 - HS- = S4-2 + H+ # (lhs) +3S - log_k -9.829 + HS- = S4-2 + H+ # (lhs) +3S + log_k -9.829 delta_h 9.7 kcal -no_check - -mass_balance S(-2)4 - -gamma 10.0 0.0 + -mass_balance S(-2)4 + -gamma 10 0 #S5-2 505 - HS- = S5-2 + H+ # (lhs) +4S - log_k -9.595 + HS- = S5-2 + H+ # (lhs) +4S + log_k -9.595 delta_h 9.3 kcal -no_check - -mass_balance S(-2)5 - -gamma 12.0 0.0 + -mass_balance S(-2)5 + -gamma 12 0 #S6-2 506 - HS- = S6-2 + H+ # (lhs) +5S - log_k -9.881 + HS- = S6-2 + H+ # (lhs) +5S + log_k -9.881 -no_check - -mass_balance S(-2)6 - -gamma 14.0 0.0 + -mass_balance S(-2)6 + -gamma 14 0 #Ag(S4)2-3 507 - Ag+ + 2HS- = Ag(S4)2-3 + 2H+ # (lhs) +6S - log_k 0.991 + Ag+ + 2 HS- = Ag(S4)2-3 + 2 H+ # (lhs) +6S + log_k 0.991 -no_check - -mass_balance AgS(-2)8 - -gamma 22.0 0.0 + -mass_balance AgS(-2)8 + -gamma 22 0 #Ag(S4)S5-3 508 - Ag+ + 2HS- = Ag(S4)S5-3 + 2H+ # (lhs) +7S - log_k 0.68 + Ag+ + 2 HS- = Ag(S4)S5-3 + 2 H+ # (lhs) +7S + log_k 0.68 -no_check - -mass_balance AgS(-2)9 - -gamma 24.0 0.0 + -mass_balance AgS(-2)9 + -gamma 24 0 #AgHS(S4)-2 509 # (lhs) +3S - Ag+ + 2HS- = AgHS(S4)-2 + H+ - log_k 10.43 + Ag+ + 2 HS- = AgHS(S4)-2 + H+ + log_k 10.43 -no_check - -mass_balance AgHS(-2)5 - -gamma 15.0 0.0 + -mass_balance AgHS(-2)5 + -gamma 15 0 # # END OF POLYSULFIDES @@ -1480,99 +1484,99 @@ SOLUTION_SPECIES #CuHCO3+ 510 Cu+2 + HCO3- = CuHCO3+ - log_k 2.7 + log_k 2.7 #ZnHCO3+ 511 Zn+2 + HCO3- = ZnHCO3+ - log_k 2.1 + log_k 2.1 #ZnCO3 512 - Zn+2 + CO3-2 = ZnCO3 - log_k 5.3 + Zn+2 + CO3-2 = ZnCO3 + log_k 5.3 #Zn(CO3)2-2 513 - Zn+2 + 2CO3-2 = Zn(CO3)2-2 - log_k 9.63 + Zn+2 + 2 CO3-2 = Zn(CO3)2-2 + log_k 9.63 #CdHCO3 514 Cd+2 + HCO3- = CdHCO3+ - log_k 1.5 + log_k 1.5 #CdCO3 515 - Cd+2 + CO3-2 = CdCO3 - log_k 2.9 + Cd+2 + CO3-2 = CdCO3 + log_k 2.9 #Cd(SO4)2-2 516 - Cd+2 + 2SO4-2 = Cd(SO4)2-2 - log_k 3.5 + Cd+2 + 2 SO4-2 = Cd(SO4)2-2 + log_k 3.5 #PbHCO3+ 517 Pb+2 + HCO3- = PbHCO3+ - log_k 2.9 + log_k 2.9 #NiCl2 518 - Ni+2 + 2Cl- = NiCl2 - log_k 0.96 + Ni+2 + 2 Cl- = NiCl2 + log_k 0.96 #NiHCO3+ 519 Ni+2 + HCO3- = NiHCO3+ - log_k 2.14 + log_k 2.14 #NiCO3 520 - Ni+2 + CO3-2 = NiCO3 - log_k 6.87 + Ni+2 + CO3-2 = NiCO3 + log_k 6.87 #Ni(CO3)2-2 521 - Ni+2 + 2CO3-2 = Ni(CO3)2-2 - log_k 10.11 + Ni+2 + 2 CO3-2 = Ni(CO3)2-2 + log_k 10.11 #Ni(SO4)2-2 522 - Ni+2 + 2SO4-2 = Ni(SO4)2-2 - log_k 1.02 + Ni+2 + 2 SO4-2 = Ni(SO4)2-2 + log_k 1.02 #HFulvate 523 - H+ + Fulvate-2 = HFulvate- - log_k 4.27 + H+ + Fulvate-2 = HFulvate- + log_k 4.27 #HHumate 524 - H+ + Humate-2 = HHumate- - log_k 4.27 + H+ + Humate-2 = HHumate- + log_k 4.27 #FeFulvate 525 - Fe+3 + Fulvate-2 = FeFulvate+ - log_k 9.4 + Fe+3 + Fulvate-2 = FeFulvate+ + log_k 9.4 #FeHumate 526 - Fe+3 + Humate-2 = FeHumate+ - log_k 9.4 + Fe+3 + Humate-2 = FeHumate+ + log_k 9.4 #CuFulvate 527 Cu+2 + Fulvate-2 = CuFulvate - log_k 6.2 + log_k 6.2 #CuHumate 528 Cu+2 + Humate-2 = CuHumate - log_k 6.2 + log_k 6.2 #CdFulvate 529 Cd+2 + Fulvate-2 = CdFulvate - log_k 3.5 + log_k 3.5 #CdHumate 530 Cd+2 + Humate-2 = CdHumate - log_k 3.5 + log_k 3.5 #AgFulvate 531 - Ag+ + Fulvate-2 = AgFulvate- - log_k 2.4 + Ag+ + Fulvate-2 = AgFulvate- + log_k 2.4 #AgHumate 532 - Ag+ + Humate-2 = AgHumate- - log_k 2.4 + Ag+ + Humate-2 = AgHumate- + log_k 2.4 #H2F2 537 - 2H+ + 2F- = H2F2 - log_k 6.768 + 2 H+ + 2 F- = H2F2 + log_k 6.768 #peS/H2S 538 # S + 2H+ + 2e- = H2S @@ -1580,1969 +1584,1969 @@ SOLUTION_SPECIES #NaF 540 Na+ + F- = NaF - log_k -0.24 + log_k -0.24 #FeCl+ 542 - Fe+2 + Cl- = FeCl+ - log_k 0.14 - -gamma 5.0 0.0 + Fe+2 + Cl- = FeCl+ + log_k 0.14 + -gamma 5 0 #BaSO4 543 - Ba+2 + SO4-2 = BaSO4 - log_k 2.7 + Ba+2 + SO4-2 = BaSO4 + log_k 2.7 #HSe- secondary master species 549 - SeO3-2 + 7H+ + 6e- = HSe- + 3H2O - log_k 42.514 + SeO3-2 + 7 H+ + 6 e- = HSe- + 3 H2O + log_k 42.514 #H2Se 544 - HSe- + H+ = H2Se - log_k 3.8 + HSe- + H+ = H2Se + log_k 3.8 delta_h -5.3 kcal #SeO3-2 secondary master species 548 - SeO4-2 + 2H+ + 2e- = SeO3-2 + H2O - log_k 30.256 + SeO4-2 + 2 H+ + 2 e- = SeO3-2 + H2O + log_k 30.256 #H2SeO3 545 - SeO3-2 + 2H+ = H2SeO3 - log_k 11.25 + SeO3-2 + 2 H+ = H2SeO3 + log_k 11.25 #HSeO3- 546 SeO3-2 + H+ = HSeO3- - log_k 8.5 + log_k 8.5 #HSeO4- 547 SeO4-2 + H+ = HSeO4- - log_k 1.66 + log_k 1.66 delta_h 4.91 kcal #Se4/Se6 548 -# SeO3-2 + H2O = SeO4-2 + 2H+ + 2e- +# SeO3-2 + H2O = SeO4-2 + 2H+ + 2e- # -30.256 0.0 #Se4/Se-2 549 -# SeO3-2 + 7H+ + 6e- = HSe- + 3H2O +# SeO3-2 + 7H+ + 6e- = HSe- + 3H2O # 42.514 0.0 #As3/As 557 -# H3AsO3 + 3H+ + 3e- = As + 3H2O +# H3AsO3 + 3H+ + 3e- = As + 3H2O # 12.170 0.0 #FeHCO3+ 558 Fe+2 + HCO3- = FeHCO3+ - log_k 2.0 + log_k 2 #FeCO3 559 - Fe+2 + CO3-2 = FeCO3 - log_k 4.38 + Fe+2 + CO3-2 = FeCO3 + log_k 4.38 #MnCO3 560 - Mn+2 + CO3-2 = MnCO3 - log_k 4.9 + Mn+2 + CO3-2 = MnCO3 + log_k 4.9 #BaHCO3+ 561 Ba+2 + HCO3- = BaHCO3+ - log_k 0.982 + log_k 0.982 delta_h 5.56 kcal - -analytical -3.0938 0.013669 0.0 0.0 0.0 + -analytical -3.0938 0.013669 0 0 0 #BaCO3 562 - Ba+2 + CO3-2 = BaCO3 - log_k 2.71 + Ba+2 + CO3-2 = BaCO3 + log_k 2.71 delta_h 3.55 kcal - -analytical 0.113 0.008721 0.0 0.0 0.0 + -analytical 0.113 0.008721 0 0 0 #SrSO4 563 - Sr+2 + SO4-2 = SrSO4 - log_k 2.29 + Sr+2 + SO4-2 = SrSO4 + log_k 2.29 delta_h 2.08 kcal #U+4 secondary master species 565 - UO2+2 + 4H+ + 2e- = U+4 + 2H2O - log_k 9.04 + UO2+2 + 4 H+ + 2 e- = U+4 + 2 H2O + log_k 9.04 delta_h -34.43 kcal #U+3 secondary master species 566 - U+4 + e- = U+3 - log_k -8.796 + U+4 + e- = U+3 + log_k -8.796 delta_h 24.4 kcal #UOH+3 567 - U+4 + H2O = UOH+3 + H+ - log_k -0.54 + U+4 + H2O = UOH+3 + H+ + log_k -0.54 delta_h 11.21 kcal #U(OH)2+2 568 - U+4 + 2H2O = U(OH)2+2 + 2H+ - log_k -2.27 + U+4 + 2 H2O = U(OH)2+2 + 2 H+ + log_k -2.27 delta_h 17.73 kcal #U(OH)3+ 569 - U+4 + 3H2O = U(OH)3+ + 3H+ - log_k -4.935 + U+4 + 3 H2O = U(OH)3+ + 3 H+ + log_k -4.935 delta_h 22.645 kcal #U(OH)4 570 - U+4 + 4H2O = U(OH)4 + 4H+ - log_k -8.498 + U+4 + 4 H2O = U(OH)4 + 4 H+ + log_k -8.498 delta_h 24.76 kcal #U6(OH)15+9 572 - 6U+4 + 15H2O = U6(OH)15+9 + 15H+ - log_k -17.2 + 6 U+4 + 15 H2O = U6(OH)15+9 + 15 H+ + log_k -17.2 #UF+3 578 - U+4 + F- = UF+3 - log_k 9.3 + U+4 + F- = UF+3 + log_k 9.3 delta_h -1.3 kcal #UF2+2 579 - U+4 + 2F- = UF2+2 - log_k 16.22 + U+4 + 2 F- = UF2+2 + log_k 16.22 delta_h -0.8 kcal #UF3+ 580 - U+4 + 3F- = UF3+ - log_k 21.6 + U+4 + 3 F- = UF3+ + log_k 21.6 delta_h 0.1 kcal #UF4 581 - U+4 + 4F- = UF4 - log_k 25.5 + U+4 + 4 F- = UF4 + log_k 25.5 delta_h -0.87 kcal #UF5- 582 - U+4 + 5F- = UF5- - log_k 27.01 + U+4 + 5 F- = UF5- + log_k 27.01 delta_h 4.85 kcal #UF6-2 583 - U+4 + 6F- = UF6-2 - log_k 29.1 + U+4 + 6 F- = UF6-2 + log_k 29.1 delta_h 3.3 kcal #UCl+3 586 - U+4 + Cl- = UCl+3 - log_k 1.72 + U+4 + Cl- = UCl+3 + log_k 1.72 delta_h -4.54 kcal #USO4+2 587 - U+4 + SO4-2 = USO4+2 - log_k 6.58 + U+4 + SO4-2 = USO4+2 + log_k 6.58 delta_h 1.9 kcal #U(SO4)2 588 - U+4 + 2SO4-2 = U(SO4)2 - log_k 10.5 + U+4 + 2 SO4-2 = U(SO4)2 + log_k 10.5 delta_h 7.8 kcal #U(CO3)4-4 589 - U+4 + 4CO3-2 = U(CO3)4-4 - log_k 32.9 + U+4 + 4 CO3-2 = U(CO3)4-4 + log_k 32.9 #U(CO3)5-6 590 - U+4 + 5CO3-2 = U(CO3)5-6 - log_k 34.0 - delta_h 20.0 kcal + U+4 + 5 CO3-2 = U(CO3)5-6 + log_k 34 + delta_h 20 kcal #UO2+ secondary master species 595 - UO2+2 + e- = UO2+ - log_k 1.49 + UO2+2 + e- = UO2+ + log_k 1.49 delta_h -3.3 kcal #UO2OH+ 596 - UO2+2 + H2O = UO2OH+ + H+ - log_k -5.2 + UO2+2 + H2O = UO2OH+ + H+ + log_k -5.2 delta_h 11.015 kcal #(UO2)2(OH)2+2 597 - 2UO2+2 + 2H2O = (UO2)2(OH)2+2 + 2H+ - log_k -5.62 + 2 UO2+2 + 2 H2O = (UO2)2(OH)2+2 + 2 H+ + log_k -5.62 delta_h 10.23 kcal #(UO2)3(OH)5+ 598 - 3UO2+2 + 5H2O = (UO2)3(OH)5+ + 5H+ - log_k -15.55 + 3 UO2+2 + 5 H2O = (UO2)3(OH)5+ + 5 H+ + log_k -15.55 delta_h 25.075 kcal #UO2CO3 603 - UO2+2 + CO3-2 = UO2CO3 - log_k 9.63 + UO2+2 + CO3-2 = UO2CO3 + log_k 9.63 delta_h 1.2 kcal #UO2(CO3)2-2 604 - UO2+2 + 2CO3-2 = UO2(CO3)2-2 - log_k 17.0 + UO2+2 + 2 CO3-2 = UO2(CO3)2-2 + log_k 17 delta_h 4.42 kcal #UO2(CO3)3-4 605 - UO2+2 + 3CO3-2 = UO2(CO3)3-4 - log_k 21.63 + UO2+2 + 3 CO3-2 = UO2(CO3)3-4 + log_k 21.63 delta_h -9.13 kcal #UO2F+ 607 - UO2+2 + F- = UO2F+ - log_k 5.09 + UO2+2 + F- = UO2F+ + log_k 5.09 delta_h 0.41 kcal #UO2F2 608 - UO2+2 + 2F- = UO2F2 - log_k 8.62 + UO2+2 + 2 F- = UO2F2 + log_k 8.62 delta_h 0.5 kcal #UO2F3- 609 - UO2+2 + 3F- = UO2F3- - log_k 10.9 + UO2+2 + 3 F- = UO2F3- + log_k 10.9 delta_h 0.56 kcal #UO2F4-2 610 - UO2+2 + 4F- = UO2F4-2 - log_k 11.7 + UO2+2 + 4 F- = UO2F4-2 + log_k 11.7 delta_h 0.07 kcal #UO2Cl+ 611 - UO2+2 + Cl- = UO2Cl+ - log_k 0.17 + UO2+2 + Cl- = UO2Cl+ + log_k 0.17 delta_h 1.9 kcal #UO2SO4 612 - UO2+2 + SO4-2 = UO2SO4 - log_k 3.15 + UO2+2 + SO4-2 = UO2SO4 + log_k 3.15 delta_h 4.7 kcal #UO2(SO4)2-2 613 - UO2+2 + 2SO4-2 = UO2(SO4)2-2 - log_k 4.14 + UO2+2 + 2 SO4-2 = UO2(SO4)2-2 + log_k 4.14 delta_h 8.4 kcal #UO2HPO4 614 - UO2+2 + PO4-3 + H+ = UO2HPO4 - log_k 20.21 + UO2+2 + PO4-3 + H+ = UO2HPO4 + log_k 20.21 delta_h -2.1 kcal #UO2(HPO4)2-2 615 - UO2+2 + 2PO4-3 + 2H+ = UO2(HPO4)2-2 - log_k 43.441 + UO2+2 + 2 PO4-3 + 2 H+ = UO2(HPO4)2-2 + log_k 43.441 delta_h -11.8 kcal #UO2H2PO4+ 616 - UO2+2 + PO4-3 + 2H+ = UO2H2PO4+ - log_k 22.87 + UO2+2 + PO4-3 + 2 H+ = UO2H2PO4+ + log_k 22.87 delta_h -3.7 kcal #UO2H2PO4)2 617 - UO2+2 + 2PO4-3 + 4H+ = UO2(H2PO4)2 - log_k 44.38 + UO2+2 + 2 PO4-3 + 4 H+ = UO2(H2PO4)2 + log_k 44.38 delta_h -16.5 kcal #UO2H2PO4)3- 618 - UO2+2 + 3PO4-3 + 6H+ = UO2(H2PO4)3- - log_k 66.245 + UO2+2 + 3 PO4-3 + 6 H+ = UO2(H2PO4)3- + log_k 66.245 delta_h -28.6 kcal #UBr+3 633 - U+4 + Br- = UBr+3 - log_k 1.5 + U+4 + Br- = UBr+3 + log_k 1.5 #UI+3 634 - U+4 + I- = UI+3 - log_k 1.3 + U+4 + I- = UI+3 + log_k 1.3 #UNO3+3 635 - U+4 + NO3- = UNO3+3 - log_k 1.47 + U+4 + NO3- = UNO3+3 + log_k 1.47 #U(NO3)2+2 636 - U+4 + 2NO3- = U(NO3)2+2 - log_k 2.3 + U+4 + 2 NO3- = U(NO3)2+2 + log_k 2.3 #UO2(OH)3- 638 - UO2+2 + 3H2O = UO2(OH)3- + 3H+ - log_k -19.2 + UO2+2 + 3 H2O = UO2(OH)3- + 3 H+ + log_k -19.2 #UO2(OH)4-2 639 - UO2+2 + 4H2O = UO2(OH)4-2 + 4H+ - log_k -33.0 + UO2+2 + 4 H2O = UO2(OH)4-2 + 4 H+ + log_k -33 #(UO2)2OH+3 640 - 2UO2+2 + H2O = (UO2)2OH+3 + H+ - log_k -2.7 + 2 UO2+2 + H2O = (UO2)2OH+3 + H+ + log_k -2.7 #(UO2)3(OH)4+2 641 - 3UO2+2 + 4H2O = (UO2)3(OH)4+2 + 4H+ - log_k -11.9 + 3 UO2+2 + 4 H2O = (UO2)3(OH)4+2 + 4 H+ + log_k -11.9 #(UO2)3(OH)7- 642 - 3UO2+2 + 7H2O = (UO2)3(OH)7- + 7H+ - log_k -31.0 + 3 UO2+2 + 7 H2O = (UO2)3(OH)7- + 7 H+ + log_k -31 #(UO2)4(OH)7+ 643 - 4UO2+2 + 7H2O = (UO2)4(OH)7+ + 7H+ - log_k -21.9 + 4 UO2+2 + 7 H2O = (UO2)4(OH)7+ + 7 H+ + log_k -21.9 #UO2Cl2 644 - UO2+2 + 2Cl- = UO2Cl2 - log_k -1.1 + UO2+2 + 2 Cl- = UO2Cl2 + log_k -1.1 delta_h 3.6 kcal #UO2Br+ 645 - UO2+2 + Br- = UO2Br+ - log_k 0.22 + UO2+2 + Br- = UO2Br+ + log_k 0.22 #UO2NO3+ 646 - UO2+2 + NO3- = UO2NO3+ - log_k 0.3 + UO2+2 + NO3- = UO2NO3+ + log_k 0.3 #UO2H3PO4+2 647 - UO2+2 + PO4-3 + 3H+ = UO2H3PO4+2 - log_k 22.813 + UO2+2 + PO4-3 + 3 H+ = UO2H3PO4+2 + log_k 22.813 #(UO2)3(CO3)6-6 648 - 3UO2+2 + 6CO3-2 = (UO2)3(CO3)6-6 - log_k 54.0 + 3 UO2+2 + 6 CO3-2 = (UO2)3(CO3)6-6 + log_k 54 #UO2PO4- 649 UO2+2 + PO4-3 = UO2PO4- - log_k 13.69 + log_k 13.69 #UO2(CO3)3-5 650 -# UO2+2 + 3CO3-2 + e- = UO2(CO3)3-5 +# UO2+2 + 3CO3-2 + e- = UO2(CO3)3-5 # log_k 8.920 - UO2+ + 3CO3-2 = UO2(CO3)3-5 - log_k 7.43 + UO2+ + 3 CO3-2 = UO2(CO3)3-5 + log_k 7.43 delta_h 3.33 kcal PHASES H2O(g) H2O = H2O - log_k 1.51 - delta_h -44.03 kJ + log_k 1.51 + delta_h -44.03 kJ # Stumm and Morgan, from NBS and Robie, Hemmingway, and Fischer (1978) -Siderite(d)(3) 9 - FeCO3 = Fe+2 + CO3-2 - log_k -10.45 +Siderite(d)(3) 9 + FeCO3 = Fe+2 + CO3-2 + log_k -10.45 -Magnesite 10 - MgCO3 = Mg+2 + CO3-2 - log_k -8.029 +Magnesite 10 + MgCO3 = Mg+2 + CO3-2 + log_k -8.029 delta_h -6.169 kcal -Dolomite(d) 11 - CaMg(CO3)2 = Ca+2 + Mg+2 + 2CO3-2 - log_k -16.54 +Dolomite(d) 11 + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + log_k -16.54 delta_h -11.09 kcal -Calcite 12 - CaCO3 = Ca+2 + CO3-2 - log_k -8.48 +Calcite 12 + CaCO3 = Ca+2 + CO3-2 + log_k -8.48 delta_h -2.297 kcal - -analytical -171.9065 -0.077993 2839.319 71.595 0.0 + -analytical -171.9065 -0.077993 2839.319 71.595 0 -Anhydrite 17 - CaSO4 = Ca+2 + SO4-2 - log_k -4.36 +Anhydrite 17 + CaSO4 = Ca+2 + SO4-2 + log_k -4.36 delta_h -1.71 kcal - -analytical 197.52 0.0 -8669.8 -69.835 0.0 + -analytical 197.52 0 -8669.8 -69.835 0 -Gypsum 18 - CaSO4:2H2O = Ca+2 + SO4-2 + 2H2O - log_k -4.58 +Gypsum 18 + CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O + log_k -4.58 delta_h -0.109 kcal - -analytical 68.2401 0.0 -3221.51 -25.0627 0.0 + -analytical 68.2401 0 -3221.51 -25.0627 0 -Brucite 19 - Mg(OH)2 + 2H+ = Mg+2 + 2H2O - log_k 16.84 +Brucite 19 + Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O + log_k 16.84 delta_h -27.1 kcal -Chrysotile 20 - Mg3Si2O5(OH)4 + 6H+ = 3Mg+2 + 2H4SiO4 + H2O - log_k 32.2 +Chrysotile 20 + Mg3Si2O5(OH)4 + 6 H+ = 3 Mg+2 + 2 H4SiO4 + H2O + log_k 32.2 delta_h -46.8 kcal - -analytical 13.248 0.0 10217.1 -6.1894 0.0 + -analytical 13.248 0 10217.1 -6.1894 0 -Aragonite 21 - CaCO3 = Ca+2 + CO3-2 - log_k -8.336 +Aragonite 21 + CaCO3 = Ca+2 + CO3-2 + log_k -8.336 delta_h -2.589 kcal - -analytical -171.9773 -0.077993 2903.293 71.595 0.0 + -analytical -171.9773 -0.077993 2903.293 71.595 0 -Forsterite 27 - Mg2SiO4 + 4H+ = 2Mg+2 + H4SiO4 - log_k 28.306 +Forsterite 27 + Mg2SiO4 + 4 H+ = 2 Mg+2 + H4SiO4 + log_k 28.306 delta_h -48.578 kcal -Diopside 28 - CaMgSi2O6 + 4H+ + 2H2O = Ca+2 + Mg+2 + 2H4SiO4 - log_k 19.894 +Diopside 28 + CaMgSi2O6 + 4 H+ + 2 H2O = Ca+2 + Mg+2 + 2 H4SiO4 + log_k 19.894 delta_h -32.348 kcal -Clinoenstatite 29 - MgSiO3 + 2H+ + H2O = Mg+2 + H4SiO4 - log_k 11.342 +Clinoenstatite 29 + MgSiO3 + 2 H+ + H2O = Mg+2 + H4SiO4 + log_k 11.342 delta_h -20.049 kcal -Tremolite 31 - Ca2Mg5Si8O22(OH)2+14H+ +8H2O = 2Ca+2 +5Mg+2 +8H4SiO4 - log_k 56.574 +Tremolite 31 + Ca2Mg5Si8O22(OH)2 + 14 H+ + 8 H2O = 2 Ca+2 + 5 Mg+2 + 8 H4SiO4 + log_k 56.574 delta_h -96.853 kcal -Sepiolite 36 - Mg2Si3O7.5OH:3H2O+0.5H2O+4H+ = 2Mg+2 +3H4SiO4 - log_k 15.76 +Sepiolite 36 + Mg2Si3O7.5OH:3H2O + 0.5 H2O + 4 H+ = 2 Mg+2 + 3 H4SiO4 + log_k 15.76 delta_h -10.7 kcal -Talc 37 - Mg3Si4O10(OH)2+4H2O+6H+=3Mg+2 +4H4SiO4 - log_k 21.399 +Talc 37 + Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 + log_k 21.399 delta_h -46.352 kcal -Hydromagnesite 38 - Mg5(CO3)4(OH)2:4H2O + 2H+ = 5Mg+2 + 4CO3-2 + 6H2O - log_k -8.762 +Hydromagnesite 38 + Mg5(CO3)4(OH)2:4H2O + 2 H+ = 5 Mg+2 + 4 CO3-2 + 6 H2O + log_k -8.762 delta_h -52.244 kcal -Adularia 39 - KAlSi3O8 + 8H2O = K+ + Al(OH)4- + 3H4SiO4 - log_k -20.573 +Adularia 39 + KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 + log_k -20.573 delta_h 30.82 kcal -Albite 40 - NaAlSi3O8 + 8H2O = Na+ + Al(OH)4- + 3H4SiO4 - log_k -18.002 +Albite 40 + NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 + log_k -18.002 delta_h 25.896 kcal -Anorthite 41 - CaAl2Si2O8 + 8H2O = Ca+2 + 2Al(OH)4- + 2H4SiO4 - log_k -19.714 +Anorthite 41 + CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 + log_k -19.714 delta_h 11.58 kcal -Analcime 42 - NaAlSi2O6:H2O + 5H2O = Na+ + Al(OH)4- + 2H4SiO4 - log_k -12.701 +Analcime 42 + NaAlSi2O6:H2O + 5 H2O = Na+ + Al(OH)4- + 2 H4SiO4 + log_k -12.701 delta_h 18.206 kcal -Kmica 43 - KAl3Si3O10(OH)2+10H+=K+ +3Al+3 +3H4SiO4 - log_k 12.703 +Kmica 43 + KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 + log_k 12.703 delta_h -59.376 kcal -Phlogopite 44 - KMg3AlSi3O10(OH)2 + 10H+ = K+ + 3Mg+2 + Al+3 + 3H4SiO4 - log_k 43.3 - delta_h -42.30 kcal +Phlogopite 44 + KMg3AlSi3O10(OH)2 + 10 H+ = K+ + 3 Mg+2 + Al+3 + 3 H4SiO4 + log_k 43.3 + delta_h -42.3 kcal -Illite 45 - K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ +0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+ - log_k -40.267 +Illite 45 + K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2 H2O = 0.6 K+ + 0.25 Mg+2 + 2.3 Al(OH)4- + 3.5 H4SiO4 + 1.2 H+ + log_k -40.267 delta_h 54.684 kcal -Kaolinite 46 - Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O - log_k 7.435 +Kaolinite 46 + Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 H4SiO4 + H2O + log_k 7.435 delta_h -35.3 kcal -Halloysite 47 - Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O - log_k 12.498 - delta_h -39.920 kcal +Halloysite 47 + Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 H4SiO4 + H2O + log_k 12.498 + delta_h -39.92 kcal -Beidellite 48 - (NaKMg0.5)0.11Al2.33Si3.67O10(OH)2 + 12H2O = 0.11Na+ + 0.11K+ + 0.055Mg+2 + 2.33Al(OH)4- + 3.67H4SiO4 + 2H+ - log_k -45.272 +Beidellite 48 + (NaKMg0.5)0.11Al2.33Si3.67O10(OH)2 + 12 H2O = 0.11 Na+ + 0.11 K+ + 0.055 Mg+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ + log_k -45.272 delta_h 60.355 kcal -Chlorite14A 49 - Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O - log_k 68.38 +Chlorite14A 49 + Mg5Al2Si3O10(OH)8 + 16 H+ = 5 Mg+2 + 2 Al+3 + 3 H4SiO4 + 6 H2O + log_k 68.38 delta_h -151.494 kcal -Alunite 50 - KAl3(SO4)2(OH)6 + 6H+ = K+ + 3Al+3 + 2SO4-2 + 6H2O - log_k -1.4 +Alunite 50 + KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O + log_k -1.4 delta_h -50.25 kcal -Gibbsite 51 - Al(OH)3 + 3H+ = Al+3 + 3H2O - log_k 8.11 +Gibbsite 51 + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 8.11 delta_h -22.8 kcal -Boehmite 52 - AlOOH + 3H+ = Al+3 + 2H2O - log_k 8.584 +Boehmite 52 + AlOOH + 3 H+ = Al+3 + 2 H2O + log_k 8.584 delta_h -28.181 kcal -Pyrophyllite 53 - Al2Si4O10(OH)2 + 12H2O = 2Al(OH)4- + 4H4SiO4 + 2H+ - log_k -48.314 +Pyrophyllite 53 + Al2Si4O10(OH)2 + 12 H2O = 2 Al(OH)4- + 4 H4SiO4 + 2 H+ + log_k -48.314 -Phillipsite 54 - Na0.5K0.5AlSi3O8:H2O + 7H2O = 0.5Na+ +0.5K+ + Al(OH)4- + 3H4SiO4 - log_k -19.874 +Phillipsite 54 + Na0.5K0.5AlSi3O8:H2O + 7 H2O = 0.5 Na+ + 0.5 K+ + Al(OH)4- + 3 H4SiO4 + log_k -19.874 -Nahcolite 58 +Nahcolite 58 NaHCO3 = Na+ + HCO3- - log_k -0.548 - delta_h 3.720 kcal + log_k -0.548 + delta_h 3.72 kcal -Trona 59 - NaHCO3:Na2CO3:2H2O = 2H2O + 3Na+ + CO3-2 + HCO3- - log_k -0.795 - delta_h -18.0 kcal +Trona 59 + NaHCO3:Na2CO3:2H2O = 2 H2O + 3 Na+ + CO3-2 + HCO3- + log_k -0.795 + delta_h -18 kcal -Natron 60 - Na2CO3:10H2O = 2Na+ + CO3-2 + 10H2O - log_k -1.311 +Natron 60 + Na2CO3:10H2O = 2 Na+ + CO3-2 + 10 H2O + log_k -1.311 delta_h 15.745 kcal -Thermonatrite 61 - Na2CO3:H2O = 2Na+ + CO3-2 + H2O - log_k 0.125 +Thermonatrite 61 + Na2CO3:H2O = 2 Na+ + CO3-2 + H2O + log_k 0.125 delta_h -2.802 kcal -Fluorite 62 - CaF2 = Ca+2 + 2F- - log_k -10.6 +Fluorite 62 + CaF2 = Ca+2 + 2 F- + log_k -10.6 delta_h 4.69 kcal - -analytical 66.348 0.0 -4298.2 -25.271 0.0 + -analytical 66.348 0 -4298.2 -25.271 0 -Montmorillonite-Ca 63 - Ca0.165Al2.33Si3.67O10(OH)2 + 12H2O = 0.165Ca+2 + 2.33Al(OH)4- + 3.67H4SiO4 + 2H+ - log_k -45.027 +Montmorillonite-Ca 63 + Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165 Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ + log_k -45.027 delta_h 58.373 kcal -Halite 64 - NaCl = Na+ + Cl- - log_k 1.582 +Halite 64 + NaCl = Na+ + Cl- + log_k 1.582 delta_h 0.918 kcal -Thenardite 65 - Na2SO4 = 2Na+ + SO4-2 - log_k -0.179 +Thenardite 65 + Na2SO4 = 2 Na+ + SO4-2 + log_k -0.179 delta_h -0.572 kcal -Mirabilite 66 - Na2SO4:10H2O = 2Na+ + SO4-2 + 10H2O - log_k -1.114 +Mirabilite 66 + Na2SO4:10H2O = 2 Na+ + SO4-2 + 10 H2O + log_k -1.114 delta_h 18.987 kcal -Mackinawite 67 - FeS + H+ = Fe+2 + HS- - log_k -4.648 +Mackinawite 67 + FeS + H+ = Fe+2 + HS- + log_k -4.648 -Siderite 94 - FeCO3 = Fe+2 + CO3-2 - log_k -10.89 +Siderite 94 + FeCO3 = Fe+2 + CO3-2 + log_k -10.89 delta_h -2.48 kcal -Hydroxyapatite 95 - Ca5(PO4)3OH + 4H+ = 5Ca+2 + 3HPO4-2 + H2O - log_k -3.421 +Hydroxyapatite 95 + Ca5(PO4)3OH + 4 H+ = 5 Ca+2 + 3 HPO4-2 + H2O + log_k -3.421 delta_h -36.155 kcal -Fluorapatite 96 - Ca5(PO4)3F + 3H+ = 5Ca+2 + 3HPO4-2 + F- - log_k -17.6 - delta_h -20.070 kcal +Fluorapatite 96 + Ca5(PO4)3F + 3 H+ = 5 Ca+2 + 3 HPO4-2 + F- + log_k -17.6 + delta_h -20.07 kcal -Chalcedony 97 - SiO2 + 2H2O = H4SiO4 - log_k -3.55 +Chalcedony 97 + SiO2 + 2 H2O = H4SiO4 + log_k -3.55 delta_h 4.72 kcal - -analytical -0.09 0.0 -1032.0 0.0 0.0 + -analytical -0.09 0 -1032 0 0 -Magadiite 98 - NaSi7O13(OH)3:3H2O + H+ + 9H2O = Na+ + 7H4SiO4 - log_k -14.3 +Magadiite 98 + NaSi7O13(OH)3:3H2O + H+ + 9 H2O = Na+ + 7 H4SiO4 + log_k -14.3 -Cristobalite 99 - SiO2 + 2H2O = H4SiO4 - log_k -3.587 +Cristobalite 99 + SiO2 + 2 H2O = H4SiO4 + log_k -3.587 delta_h 5.5 kcal -Silicagel 100 - SiO2 + 2H2O = H4SiO4 - log_k -3.018 - delta_h 4.440 kcal +Silicagel 100 + SiO2 + 2 H2O = H4SiO4 + log_k -3.018 + delta_h 4.44 kcal -Quartz 101 - SiO2 + 2H2O = H4SiO4 - log_k -3.98 +Quartz 101 + SiO2 + 2 H2O = H4SiO4 + log_k -3.98 delta_h 5.99 kcal - -analytical 0.41 0.0 -1309.0 0.0 0.0 + -analytical 0.41 0 -1309 0 0 -Vivianite 106 - Fe3(PO4)2:8H2O = 3Fe+2 + 2PO4-3 + 8H2O - log_k -36.0 +Vivianite 106 + Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O + log_k -36 -Magnetite 107 - Fe3O4 + 8H+ = 2Fe+3 + Fe+2 + 4H2O - log_k 3.737 - delta_h -50.460 kcal +Magnetite 107 + Fe3O4 + 8 H+ = 2 Fe+3 + Fe+2 + 4 H2O + log_k 3.737 + delta_h -50.46 kcal -Hematite 108 - Fe2O3 + 6H+ = 2Fe+3 + 3H2O - log_k -4.008 +Hematite 108 + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k -4.008 delta_h -30.845 kcal -Maghemite 109 - Fe2O3 + 6H+ = 2Fe+3 + 3H2O - log_k 6.386 +Maghemite 109 + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k 6.386 -Goethite 110 - FeOOH + 3H+ = Fe+3 + 2H2O - log_k -1.0 - delta_h -14.48 kcal +Goethite 110 + FeOOH + 3 H+ = Fe+3 + 2 H2O + log_k -1 + delta_h -14.48 kcal -Greenalite 111 - Fe3Si2O5(OH)4 + 6H+ = 3Fe+2 + 2 H4SiO4 + H2O - log_k 20.810 +Greenalite 111 + Fe3Si2O5(OH)4 + 6 H+ = 3 Fe+2 + 2 H4SiO4 + H2O + log_k 20.81 -Fe(OH)3(a) 112 - Fe(OH)3 + 3H+ = Fe+3 + 3H2O - log_k 4.891 +Fe(OH)3(a) 112 + Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O + log_k 4.891 -Annite 113 - KFe3AlSi3O10(OH)2 + 10H2O = K+ + 3Fe+2 + Al(OH)4- + 3H4SiO4 + 6OH- - log_k -85.645 - delta_h 62.480 kcal +Annite 113 + KFe3AlSi3O10(OH)2 + 10 H2O = K+ + 3 Fe+2 + Al(OH)4- + 3 H4SiO4 + 6 OH- + log_k -85.645 + delta_h 62.48 kcal -Pyrite 114 - FeS2 + 2H+ + 2e- = Fe+2 + 2HS- - log_k -18.479 +Pyrite 114 + FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- + log_k -18.479 delta_h 11.3 kcal -Montmorillonite-BelleFourche 115 - (HNaK)0.09Mg0.29Fe0.24Al1.57Si3.93O10(OH)2 + 10H2O = 0.09H+ + 0.09Na+ + 0.09K+ + 0.29Mg+2 + 0.24Fe+3 + 1.57Al(OH)4- + 3.93H4SiO4 - log_k -34.913 +Montmorillonite-BelleFourche 115 + (HNaK)0.09Mg0.29Fe0.24Al1.57Si3.93O10(OH)2 + 10 H2O = 0.09 H+ + 0.09 Na+ + 0.09 K+ + 0.29 Mg+2 + 0.24 Fe+3 + 1.57 Al(OH)4- + 3.93 H4SiO4 + log_k -34.913 -Montmorillonite-Aberdeen 116 - (HNaK)0.14Mg0.45Fe0.33Al1.47Si3.82O10(OH)2 + 9.16H2O + 0.84H+ = 0.14H+ + 0.14Na+ + 0.14K+ + 0.45Mg+2 + 0.33Fe+3 + 1.47Al(OH)4- + 3.82H4SiO4 - log_k -29.688 +Montmorillonite-Aberdeen 116 + (HNaK)0.14Mg0.45Fe0.33Al1.47Si3.82O10(OH)2 + 9.16 H2O + 0.84 H+ = 0.14 H+ + 0.14 Na+ + 0.14 K+ + 0.45 Mg+2 + 0.33 Fe+3 + 1.47 Al(OH)4- + 3.82 H4SiO4 + log_k -29.688 -Huntite 117 - CaMg3(CO3)4 = 3Mg+2 + Ca+2 + 4CO3-2 - log_k -29.968 - delta_h -25.760 kcal +Huntite 117 + CaMg3(CO3)4 = 3 Mg+2 + Ca+2 + 4 CO3-2 + log_k -29.968 + delta_h -25.76 kcal -Greigite 118 - Fe3S4 + 4H+ = 2Fe+3 + Fe+2 + 4HS- - log_k -45.035 +Greigite 118 + Fe3S4 + 4 H+ = 2 Fe+3 + Fe+2 + 4 HS- + log_k -45.035 -FeS(ppt) 119 - FeS + H+ = Fe+2 + HS- - log_k -3.915 +FeS(ppt) 119 + FeS + H+ = Fe+2 + HS- + log_k -3.915 -Chlorite7A 125 - Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 +3H4SiO4 + 6H2O - log_k 71.752 +Chlorite7A 125 + Mg5Al2Si3O10(OH)8 + 16 H+ = 5 Mg+2 + 2 Al+3 + 3 H4SiO4 + 6 H2O + log_k 71.752 delta_h -155.261 kcal -Laumontite 128 - CaAl2Si4O12:4H2O + 8H2O = Ca+2 + 2Al(OH)4- + 4H4SiO4 - log_k -30.960 - delta_h 39.610 kcal +Laumontite 128 + CaAl2Si4O12:4H2O + 8 H2O = Ca+2 + 2 Al(OH)4- + 4 H4SiO4 + log_k -30.96 + delta_h 39.61 kcal -Jarosite(ss) 133 - (K0.77Na0.03H0.2)Fe3(SO4)2(OH)6 + 5.8H+ = 0.77K+ + 0.03Na+ + 3Fe+3 + 2SO4-2 + 6H2O - log_k -9.83 # WATEQ4F, Alpers and others, 1989 +Jarosite(ss) 133 + (K0.77Na0.03H0.2)Fe3(SO4)2(OH)6 + 5.8 H+ = 0.77 K+ + 0.03 Na+ + 3 Fe+3 + 2 SO4-2 + 6 H2O + log_k -9.83 # WATEQ4F, Alpers and others, 1989 -Mn2(SO4)3 134 - Mn2(SO4)3 = 2Mn+3 + 3SO4-2 - log_k -5.711 - delta_h -39.060 kcal +Mn2(SO4)3 134 + Mn2(SO4)3 = 2 Mn+3 + 3 SO4-2 + log_k -5.711 + delta_h -39.06 kcal -Al(OH)3(a) 140 - Al(OH)3 + 3H+ = Al+3 + 3H2O - log_k 10.8 +Al(OH)3(a) 140 + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 10.8 delta_h -26.5 kcal -Prehnite 141 - Ca2Al2Si3O10(OH)2 + 8H2O + 2H+ = 2Ca+2 + 2Al(OH)4- + 3H4SiO4 - log_k -11.695 - delta_h 10.390 kcal +Prehnite 141 + Ca2Al2Si3O10(OH)2 + 8 H2O + 2 H+ = 2 Ca+2 + 2 Al(OH)4- + 3 H4SiO4 + log_k -11.695 + delta_h 10.39 kcal -Strontianite 142 - SrCO3 = Sr+2 + CO3-2 - log_k -9.271 +Strontianite 142 + SrCO3 = Sr+2 + CO3-2 + log_k -9.271 delta_h -0.4 kcal - -analytical 155.0305 0.0 -7239.594 -56.58638 0.0 + -analytical 155.0305 0 -7239.594 -56.58638 0 -Celestite 143 - SrSO4 = Sr+2 + SO4-2 - log_k -6.63 +Celestite 143 + SrSO4 = Sr+2 + SO4-2 + log_k -6.63 delta_h -1.037 kcal - -analytical -14805.9622 -2.4660924 756968.533 5436.3588 -40553604. + -analytical -14805.9622 -2.4660924 756968.533 5436.3588 -40553604 -Barite 144 - BaSO4 = Ba+2 + SO4-2 - log_k -9.97 +Barite 144 + BaSO4 = Ba+2 + SO4-2 + log_k -9.97 delta_h 6.35 kcal - -analytical 136.035 0.0 -7680.41 -48.595 0.0 + -analytical 136.035 0 -7680.41 -48.595 0 -Witherite 145 - BaCO3 = Ba+2 + CO3-2 - log_k -8.562 +Witherite 145 + BaCO3 = Ba+2 + CO3-2 + log_k -8.562 delta_h 0.703 kcal - -analytical 607.642 0.121098 -20011.25 -236.4948 0.0 + -analytical 607.642 0.121098 -20011.25 -236.4948 0 -Strengite 146 - FePO4:2H2O = Fe+3 + PO4-3 + 2H2O - log_k -26.4 - delta_h -2.030 kcal +Strengite 146 + FePO4:2H2O = Fe+3 + PO4-3 + 2 H2O + log_k -26.4 + delta_h -2.03 kcal -Leonhardite 147 - Ca2Al4Si8O24:7H2O + 17H2O = 2Ca+2 + 4Al(OH)4- + 8H4SiO4 - log_k -69.756 - delta_h 90.070 kcal +Leonhardite 147 + Ca2Al4Si8O24:7H2O + 17 H2O = 2 Ca+2 + 4 Al(OH)4- + 8 H4SiO4 + log_k -69.756 + delta_h 90.07 kcal -Nesquehonite 149 - MgCO3:3H2O = Mg+2 + CO3-2 + 3H2O - log_k -5.621 +Nesquehonite 149 + MgCO3:3H2O = Mg+2 + CO3-2 + 3 H2O + log_k -5.621 delta_h -5.789 kcal -Artinite 150 - MgCO3:Mg(OH)2:3H2O + 2H+ = 2Mg+2 + CO3-2 + 5H2O - log_k 9.6 +Artinite 150 + MgCO3:Mg(OH)2:3H2O + 2 H+ = 2 Mg+2 + CO3-2 + 5 H2O + log_k 9.6 delta_h -28.742 kcal -Sepiolite(d) 153 - Mg2Si3O7.5OH:3H2O+0.5H2O+4H+=2Mg+2 +3H4SiO4 - log_k 18.66 +Sepiolite(d) 153 + Mg2Si3O7.5OH:3H2O + 0.5 H2O + 4 H+ = 2 Mg+2 + 3 H4SiO4 + log_k 18.66 -Diaspore 154 - AlOOH + 3H+ = Al+3 + 2H2O - log_k 6.879 +Diaspore 154 + AlOOH + 3 H+ = Al+3 + 2 H2O + log_k 6.879 delta_h -24.681 kcal -Wairakite 155 - CaAl2Si4O12:2H2O + 10H2O = Ca+2 + 2Al(OH)4- + 4H4SiO4 - log_k -26.708 - delta_h 26.140 kcal +Wairakite 155 + CaAl2Si4O12:2H2O + 10 H2O = Ca+2 + 2 Al(OH)4- + 4 H4SiO4 + log_k -26.708 + delta_h 26.14 kcal -Fe(OH)2.7Cl.3 181 - Fe(OH)2.7Cl0.3 + 2.7H+ = Fe+3 + 2.7H2O + 0.3 Cl- - log_k -3.040 +Fe(OH)2.7Cl.3 181 + Fe(OH)2.7Cl0.3 + 2.7 H+ = Fe+3 + 2.7 H2O + 0.3 Cl- + log_k -3.04 -MnSO4 182 - MnSO4 = Mn+2 + SO4-2 - log_k 2.669 - delta_h -15.480 kcal +MnSO4 182 + MnSO4 = Mn+2 + SO4-2 + log_k 2.669 + delta_h -15.48 kcal -Pyrolusite 183 - MnO2 + 4H+ + 2e- = Mn+2 + 2H2O - log_k 41.38 +Pyrolusite 183 + MnO2 + 4 H+ + 2 e- = Mn+2 + 2 H2O + log_k 41.38 delta_h -65.11 kcal -Birnessite 184 - MnO2 + 4H+ + 2e- = Mn+2 + 2H2O - log_k 43.601 +Birnessite 184 + MnO2 + 4 H+ + 2 e- = Mn+2 + 2 H2O + log_k 43.601 -Nsutite 185 - MnO2 + 4H+ + 2e- = Mn+2 + 2H2O - log_k 42.564 +Nsutite 185 + MnO2 + 4 H+ + 2 e- = Mn+2 + 2 H2O + log_k 42.564 -Bixbyite 186 - Mn2O3 + 6H+ = 2Mn+3 + 3H2O - log_k -0.611 +Bixbyite 186 + Mn2O3 + 6 H+ = 2 Mn+3 + 3 H2O + log_k -0.611 delta_h -15.245 kcal -Hausmannite 187 - Mn3O4 + 8H+ + 2e- = 3Mn+2 + 4H2O - log_k 61.03 +Hausmannite 187 + Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O + log_k 61.03 delta_h -100.64 kcal -Pyrochroite 188 - Mn(OH)2 + 2H+ = Mn+2 + 2H2O - log_k 15.2 +Pyrochroite 188 + Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O + log_k 15.2 -Manganite 189 - MnOOH + 3H+ + e- = Mn+2 + 2H2O - log_k 25.340 +Manganite 189 + MnOOH + 3 H+ + e- = Mn+2 + 2 H2O + log_k 25.34 -Rhodochrosite(d) 190 - MnCO3 = Mn+2 + CO3-2 - log_k -10.390 +Rhodochrosite(d) 190 + MnCO3 = Mn+2 + CO3-2 + log_k -10.39 -MnCl2:4H2O 191 - MnCl2:4H2O = Mn+2 + 2Cl- + 4H2O - log_k 2.710 - delta_h 17.380 kcal +MnCl2:4H2O 191 + MnCl2:4H2O = Mn+2 + 2 Cl- + 4 H2O + log_k 2.71 + delta_h 17.38 kcal -MnS(Green) 192 - MnS + H+ = Mn+2 + HS- - log_k 3.8 - delta_h -5.790 kcal +MnS(Green) 192 + MnS + H+ = Mn+2 + HS- + log_k 3.8 + delta_h -5.79 kcal -Mn3(PO4)2 193 - Mn3(PO4)2 = 3Mn+2 + 2PO4-3 - log_k -23.827 - delta_h 2.120 kcal +Mn3(PO4)2 193 + Mn3(PO4)2 = 3 Mn+2 + 2 PO4-3 + log_k -23.827 + delta_h 2.12 kcal -MnHPO4 194 - MnHPO4 = Mn+2 + HPO4-2 - log_k -12.947 +MnHPO4 194 + MnHPO4 = Mn+2 + HPO4-2 + log_k -12.947 -Jarosite-Na 204 - NaFe3(SO4)2(OH)6 + 6H+ = Na+ + 3Fe+3 + 2SO4-2 + 6H2O - log_k -5.280 - delta_h -36.180 kcal +Jarosite-Na 204 + NaFe3(SO4)2(OH)6 + 6 H+ = Na+ + 3 Fe+3 + 2 SO4-2 + 6 H2O + log_k -5.28 + delta_h -36.18 kcal -Jarosite-K 205 - KFe3(SO4)2(OH)6 + 6H+ = K+ + 3Fe+3 + 2SO4-2 + 6H2O - log_k -9.21 +Jarosite-K 205 + KFe3(SO4)2(OH)6 + 6 H+ = K+ + 3 Fe+3 + 2 SO4-2 + 6 H2O + log_k -9.21 delta_h -31.28 kcal -CuMetal 223 - Cu = Cu+ + e- - log_k -8.760 - delta_h 17.130 kcal +CuMetal 223 + Cu = Cu+ + e- + log_k -8.76 + delta_h 17.13 kcal -Nantokite 224 - CuCl = Cu+ + Cl- - log_k -6.760 - delta_h 9.980 kcal +Nantokite 224 + CuCl = Cu+ + Cl- + log_k -6.76 + delta_h 9.98 kcal -CuF 225 - CuF = Cu+ + F- - log_k 7.080 - delta_h -12.370 kcal +CuF 225 + CuF = Cu+ + F- + log_k 7.08 + delta_h -12.37 kcal -Cuprite 226 - Cu2O + 2H+ = 2Cu+ + H2O - log_k -1.550 +Cuprite 226 + Cu2O + 2 H+ = 2 Cu+ + H2O + log_k -1.55 delta_h 6.245 kcal -Chalcocite 227 - Cu2S + H+ = 2Cu+ + HS- - log_k -34.619 - delta_h 49.350 kcal +Chalcocite 227 + Cu2S + H+ = 2 Cu+ + HS- + log_k -34.619 + delta_h 49.35 kcal -Cu2SO4 228 - Cu2SO4 = 2Cu+ + SO4-2 - log_k -1.950 - delta_h -4.560 kcal +Cu2SO4 228 + Cu2SO4 = 2 Cu+ + SO4-2 + log_k -1.95 + delta_h -4.56 kcal -CuprousFerrite 229 - CuFeO2 + 4H+ = Cu+ + Fe+3 + 2H2O - log_k -8.920 +CuprousFerrite 229 + CuFeO2 + 4 H+ = Cu+ + Fe+3 + 2 H2O + log_k -8.92 delta_h -3.8 kcal -Melanothallite 230 - CuCl2 = Cu+2 + 2Cl- - log_k 3.730 - delta_h -12.320 kcal +Melanothallite 230 + CuCl2 = Cu+2 + 2 Cl- + log_k 3.73 + delta_h -12.32 kcal -CuCO3 231 - CuCO3 = Cu+2 + CO3-2 - log_k -9.630 +CuCO3 231 + CuCO3 = Cu+2 + CO3-2 + log_k -9.63 -CuF2 232 - CuF2 = Cu+2 + 2F- - log_k -0.620 - delta_h -13.320 kcal +CuF2 232 + CuF2 = Cu+2 + 2 F- + log_k -0.62 + delta_h -13.32 kcal -CuF2:2H2O 233 - CuF2:2H2O = Cu+2 + 2F- + 2H2O - log_k -4.550 - delta_h -3.650 kcal +CuF2:2H2O 233 + CuF2:2H2O = Cu+2 + 2 F- + 2 H2O + log_k -4.55 + delta_h -3.65 kcal -Cu(OH)2 234 - Cu(OH)2 + 2H+ = Cu+2 + 2H2O - log_k 8.640 - delta_h -15.250 kcal +Cu(OH)2 234 + Cu(OH)2 + 2 H+ = Cu+2 + 2 H2O + log_k 8.64 + delta_h -15.25 kcal -Malachite 235 - Cu2(OH)2CO3 + 3H+ = 2Cu+2 + 2H2O + HCO3- - log_k 5.150 - delta_h -19.760 kcal +Malachite 235 + Cu2(OH)2CO3 + 3 H+ = 2 Cu+2 + 2 H2O + HCO3- + log_k 5.15 + delta_h -19.76 kcal -Azurite 236 - Cu3(OH)2(CO3)2 + 4H+ = 3Cu+2 + 2H2O + 2HCO3- - log_k 3.750 - delta_h -30.870 kcal +Azurite 236 + Cu3(OH)2(CO3)2 + 4 H+ = 3 Cu+2 + 2 H2O + 2 HCO3- + log_k 3.75 + delta_h -30.87 kcal -Atacamite 237 - Cu2(OH)3Cl + 3H+ = 2Cu+2 + 3H2O + Cl- - log_k 7.340 - delta_h -18.690 kcal +Atacamite 237 + Cu2(OH)3Cl + 3 H+ = 2 Cu+2 + 3 H2O + Cl- + log_k 7.34 + delta_h -18.69 kcal -Cu2(OH)3NO3 238 - Cu2(OH)3NO3 + 3H+ = 2Cu+2 + 3H2O + NO3- - log_k 9.240 - delta_h -17.350 kcal +Cu2(OH)3NO3 238 + Cu2(OH)3NO3 + 3 H+ = 2 Cu+2 + 3 H2O + NO3- + log_k 9.24 + delta_h -17.35 kcal -Antlerite 239 - Cu3(OH)4SO4 + 4H+ = 3Cu+2 + 4H2O + SO4-2 - log_k 8.290 +Antlerite 239 + Cu3(OH)4SO4 + 4 H+ = 3 Cu+2 + 4 H2O + SO4-2 + log_k 8.29 -Brochantite 240 - Cu4(OH)6SO4 + 6H+ = 4Cu+2 + 6H2O + SO4-2 - log_k 15.340 +Brochantite 240 + Cu4(OH)6SO4 + 6 H+ = 4 Cu+2 + 6 H2O + SO4-2 + log_k 15.34 -Langite 241 - Cu4(OH)6SO4:H2O + 6H+ = 4Cu+2 + 7H2O + SO4-2 - log_k 16.790 - delta_h -39.610 kcal +Langite 241 + Cu4(OH)6SO4:H2O + 6 H+ = 4 Cu+2 + 7 H2O + SO4-2 + log_k 16.79 + delta_h -39.61 kcal -Tenorite 242 - CuO + 2H+ = Cu+2 + H2O - log_k 7.620 - delta_h -15.240 kcal +Tenorite 242 + CuO + 2 H+ = Cu+2 + H2O + log_k 7.62 + delta_h -15.24 kcal -CuOCuSO4 243 - CuO:CuSO4 + 2H+ = 2Cu+2 + H2O + SO4-2 - log_k 11.530 +CuOCuSO4 243 + CuO:CuSO4 + 2 H+ = 2 Cu+2 + H2O + SO4-2 + log_k 11.53 delta_h -35.575 kcal -Cu3(PO4)2 244 - Cu3(PO4)2 = 3Cu+2 + 2PO4-3 - log_k -36.850 +Cu3(PO4)2 244 + Cu3(PO4)2 = 3 Cu+2 + 2 PO4-3 + log_k -36.85 -Cu3(PO4)2:3H2O 245 - Cu3(PO4)2:3H2O = 3Cu+2 + 2PO4-3 + 3H2O - log_k -35.120 +Cu3(PO4)2:3H2O 245 + Cu3(PO4)2:3H2O = 3 Cu+2 + 2 PO4-3 + 3 H2O + log_k -35.12 -Covellite 246 - CuS + H+ = Cu+2 + HS- - log_k -22.270 - delta_h 24.010 kcal +Covellite 246 + CuS + H+ = Cu+2 + HS- + log_k -22.27 + delta_h 24.01 kcal -CuSO4 247 - CuSO4 = Cu+2 + SO4-2 - log_k 3.010 - delta_h -18.140 kcal +CuSO4 247 + CuSO4 = Cu+2 + SO4-2 + log_k 3.01 + delta_h -18.14 kcal -Chalcanthite 248 - CuSO4:5H2O = Cu+2 + SO4-2 + 5H2O - log_k -2.640 - delta_h 1.440 kcal +Chalcanthite 248 + CuSO4:5H2O = Cu+2 + SO4-2 + 5 H2O + log_k -2.64 + delta_h 1.44 kcal -CupricFerrite 249 - CuFe2O4 + 8H+ = Cu+2 + 2Fe+3 + 4H2O - log_k 5.880 - delta_h -38.690 kcal +CupricFerrite 249 + CuFe2O4 + 8 H+ = Cu+2 + 2 Fe+3 + 4 H2O + log_k 5.88 + delta_h -38.69 kcal -Chalcopyrite 250 - CuFeS2 + 2H+ = Cu+2 + Fe+2 + 2HS- - log_k -35.270 - delta_h 35.480 kcal +Chalcopyrite 250 + CuFeS2 + 2 H+ = Cu+2 + Fe+2 + 2 HS- + log_k -35.27 + delta_h 35.48 kcal -ZnMetal 265 - Zn = Zn+2 + 2e- - log_k 25.757 - delta_h -36.780 kcal +ZnMetal 265 + Zn = Zn+2 + 2 e- + log_k 25.757 + delta_h -36.78 kcal -Zn(BO2)2 266 - Zn(BO2)2 + 2H2O + 2H+ = Zn+2 + 2H3BO3 - log_k 8.290 +Zn(BO2)2 266 + Zn(BO2)2 + 2 H2O + 2 H+ = Zn+2 + 2 H3BO3 + log_k 8.29 -ZnCl2 267 - ZnCl2 = Zn+2 + 2Cl- - log_k 7.030 - delta_h -17.480 kcal +ZnCl2 267 + ZnCl2 = Zn+2 + 2 Cl- + log_k 7.03 + delta_h -17.48 kcal -Smithsonite 268 - ZnCO3 = Zn+2 + CO3-2 - log_k -10.0 +Smithsonite 268 + ZnCO3 = Zn+2 + CO3-2 + log_k -10 delta_h -4.36 kcal -ZnCO3:H2O 269 - ZnCO3:H2O = Zn+2 + CO3-2 + H2O - log_k -10.260 +ZnCO3:H2O 269 + ZnCO3:H2O = Zn+2 + CO3-2 + H2O + log_k -10.26 -ZnF2 270 - ZnF2 = Zn+2 + 2F- - log_k -1.520 - delta_h -13.080 kcal +ZnF2 270 + ZnF2 = Zn+2 + 2 F- + log_k -1.52 + delta_h -13.08 kcal -Zn(OH)2-a 271 - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 12.450 +Zn(OH)2-a 271 + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 12.45 -Zn(OH)2-c 272 - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 12.2 +Zn(OH)2-c 272 + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 12.2 -Zn(OH)2-b 273 - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.750 +Zn(OH)2-b 273 + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.75 -Zn(OH)2-g 274 - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.710 +Zn(OH)2-g 274 + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.71 -Zn(OH)2-e 275 - Zn(OH)2 + 2H+ = Zn+2 + 2H2O - log_k 11.5 +Zn(OH)2-e 275 + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.5 -Zn2(OH)3Cl 276 - Zn2(OH)3Cl + 3H+= 2Zn+2 + 3H2O + Cl- - log_k 15.2 +Zn2(OH)3Cl 276 + Zn2(OH)3Cl + 3 H+ = 2 Zn+2 + 3 H2O + Cl- + log_k 15.2 -Zn5(OH)8Cl2 277 - Zn5(OH)8Cl2 + 8H+ = 5Zn+2 + 8H2O + 2Cl- - log_k 38.5 +Zn5(OH)8Cl2 277 + Zn5(OH)8Cl2 + 8 H+ = 5 Zn+2 + 8 H2O + 2 Cl- + log_k 38.5 -Zn2(OH)2SO4 278 - Zn2(OH)2SO4 + 2H+ = 2Zn+2 + 2H2O + SO4-2 - log_k 7.5 +Zn2(OH)2SO4 278 + Zn2(OH)2SO4 + 2 H+ = 2 Zn+2 + 2 H2O + SO4-2 + log_k 7.5 -Zn4(OH)6SO4 279 - Zn4(OH)6SO4 + 6H+ = 4Zn+2 + 6H2O + SO4-2 - log_k 28.4 +Zn4(OH)6SO4 279 + Zn4(OH)6SO4 + 6 H+ = 4 Zn+2 + 6 H2O + SO4-2 + log_k 28.4 -Zn(NO3)2:6H2O 280 - Zn(NO3)2:6H2O = Zn+2 + 2NO3- + 6H2O - log_k 3.440 - delta_h 5.510 kcal +Zn(NO3)2:6H2O 280 + Zn(NO3)2:6H2O = Zn+2 + 2 NO3- + 6 H2O + log_k 3.44 + delta_h 5.51 kcal -ZnO(a) 281 - ZnO + 2H+ = Zn+2 + H2O - log_k 11.310 +ZnO(a) 281 + ZnO + 2 H+ = Zn+2 + H2O + log_k 11.31 -Zincite(c) 282 - ZnO + 2H+ = Zn+2 + H2O - log_k 11.140 - delta_h -21.860 kcal +Zincite(c) 282 + ZnO + 2 H+ = Zn+2 + H2O + log_k 11.14 + delta_h -21.86 kcal -Zn3O(SO4)2 283 - ZnO:2ZnSO4 + 2H+ = 3Zn+2 + 2SO4-2 + H2O - log_k 19.020 - delta_h -62.0 kcal +Zn3O(SO4)2 283 + ZnO:2ZnSO4 + 2 H+ = 3 Zn+2 + 2 SO4-2 + H2O + log_k 19.02 + delta_h -62 kcal -Zn3(PO4)2:4w 284 - Zn3(PO4)2:4H2O = 3Zn+2 + 2PO4-3 + 4H2O - log_k -32.040 +Zn3(PO4)2:4w 284 + Zn3(PO4)2:4H2O = 3 Zn+2 + 2 PO4-3 + 4 H2O + log_k -32.04 -ZnS(a) 285 - ZnS + H+ = Zn+2 + HS- - log_k -9.052 - delta_h 3.670 kcal +ZnS(a) 285 + ZnS + H+ = Zn+2 + HS- + log_k -9.052 + delta_h 3.67 kcal -Sphalerite 286 - ZnS + H+ = Zn+2 + HS- - log_k -11.618 +Sphalerite 286 + ZnS + H+ = Zn+2 + HS- + log_k -11.618 delta_h 8.25 kcal -Wurtzite 287 - ZnS + H+ = Zn+2 + HS- - log_k -9.682 - delta_h 5.060 kcal +Wurtzite 287 + ZnS + H+ = Zn+2 + HS- + log_k -9.682 + delta_h 5.06 kcal -ZnSiO3 288 - ZnSiO3 + 2H+ + H2O = Zn+2 + H4SiO4 - log_k 2.930 - delta_h -18.270 kcal +ZnSiO3 288 + ZnSiO3 + 2 H+ + H2O = Zn+2 + H4SiO4 + log_k 2.93 + delta_h -18.27 kcal -Willemite 289 - Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4 - log_k 15.33 +Willemite 289 + Zn2SiO4 + 4 H+ = 2 Zn+2 + H4SiO4 + log_k 15.33 delta_h -33.37 kcal -Zincosite 290 - ZnSO4 = Zn+2 + SO4-2 - log_k 3.010 +Zincosite 290 + ZnSO4 = Zn+2 + SO4-2 + log_k 3.01 delta_h -19.2 kcal -ZnSO4:H2O 291 - ZnSO4:H2O = Zn+2 + SO4-2 + H2O - log_k -0.570 - delta_h -10.640 kcal +ZnSO4:H2O 291 + ZnSO4:H2O = Zn+2 + SO4-2 + H2O + log_k -0.57 + delta_h -10.64 kcal -Bianchite 292 - ZnSO4:6H2O = Zn+2 + SO4-2 + 6H2O - log_k -1.765 - delta_h -0.160 kcal +Bianchite 292 + ZnSO4:6H2O = Zn+2 + SO4-2 + 6 H2O + log_k -1.765 + delta_h -0.16 kcal -Goslarite 293 - ZnSO4:7H2O = Zn+2 + SO4-2 + 7H2O - log_k -1.960 +Goslarite 293 + ZnSO4:7H2O = Zn+2 + SO4-2 + 7 H2O + log_k -1.96 delta_h 3.3 kcal -CdMetal 312 - Cd = Cd+2 + 2e- - log_k 13.490 - delta_h -18.0 kcal +CdMetal 312 + Cd = Cd+2 + 2 e- + log_k 13.49 + delta_h -18 kcal -Cd(gamma) 313 - Cd = Cd+2 + 2e- - log_k 13.590 - delta_h -18.140 kcal +Cd(gamma) 313 + Cd = Cd+2 + 2 e- + log_k 13.59 + delta_h -18.14 kcal -Cd(BO2)2 314 - Cd(BO2)2 + 2H2O + 2H+ = Cd+2 + 2H3BO3 - log_k 9.840 +Cd(BO2)2 314 + Cd(BO2)2 + 2 H2O + 2 H+ = Cd+2 + 2 H3BO3 + log_k 9.84 -Otavite 315 - CdCO3 = Cd+2 + CO3-2 - log_k -12.1 +Otavite 315 + CdCO3 = Cd+2 + CO3-2 + log_k -12.1 delta_h -0.019 kcal -CdCl2 316 - CdCl2 = Cd+2 + 2Cl- - log_k -0.68 +CdCl2 316 + CdCl2 = Cd+2 + 2 Cl- + log_k -0.68 delta_h -4.47 kcal -CdCl2:H2O 317 - CdCl2:H2O = Cd+2 + 2Cl- + H2O - log_k -1.71 +CdCl2:H2O 317 + CdCl2:H2O = Cd+2 + 2 Cl- + H2O + log_k -1.71 delta_h -1.82 kcal -CdCl2:2.5H2O 318 - CdCl2:2.5H2O = Cd+2 + 2Cl- + 2.5H2O - log_k -1.940 - delta_h 1.710 kcal +CdCl2:2.5H2O 318 + CdCl2:2.5H2O = Cd+2 + 2 Cl- + 2.5 H2O + log_k -1.94 + delta_h 1.71 kcal -CdF2 319 - CdF2 = Cd+2 + 2F- - log_k -2.980 - delta_h -9.720 kcal +CdF2 319 + CdF2 = Cd+2 + 2 F- + log_k -2.98 + delta_h -9.72 kcal -Cd(OH)2(a) 320 - Cd(OH)2 + 2H+ = Cd+2 + 2H2O - log_k 13.730 - delta_h -20.770 kcal +Cd(OH)2(a) 320 + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + log_k 13.73 + delta_h -20.77 kcal -Cd(OH)2 321 - Cd(OH)2 + 2H+ = Cd+2 + 2H2O - log_k 13.65 +Cd(OH)2 321 + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + log_k 13.65 -CdOHCl 322 - CdOHCl + H+ = Cd+2 + H2O + Cl- - log_k 3.520 +CdOHCl 322 + CdOHCl + H+ = Cd+2 + H2O + Cl- + log_k 3.52 delta_h -7.407 kcal -Cd3(OH)4SO4 323 - Cd3(OH)4SO4 + 4H+ = 3Cd+2 + 4H2O + SO4-2 - log_k 22.560 +Cd3(OH)4SO4 323 + Cd3(OH)4SO4 + 4 H+ = 3 Cd+2 + 4 H2O + SO4-2 + log_k 22.56 -Cd3(OH)2(SO4)2 324 - Cd3(OH)2(SO4)2 + 2H+ = 3Cd+2 + 2H2O + 2SO4-2 - log_k 6.710 +Cd3(OH)2(SO4)2 324 + Cd3(OH)2(SO4)2 + 2 H+ = 3 Cd+2 + 2 H2O + 2 SO4-2 + log_k 6.71 -Cd4(OH)6SO4 325 - Cd4(OH)6SO4 + 6H+ = 4Cd+2 + 6H2O + SO4-2 - log_k 28.4 +Cd4(OH)6SO4 325 + Cd4(OH)6SO4 + 6 H+ = 4 Cd+2 + 6 H2O + SO4-2 + log_k 28.4 -Monteponite 326 - CdO + 2H+ = Cd+2 + H2O - log_k 13.770 - delta_h -24.760 kcal +Monteponite 326 + CdO + 2 H+ = Cd+2 + H2O + log_k 13.77 + delta_h -24.76 kcal -Cd3(PO4)2 327 - Cd3(PO4)2 = 3Cd+2 + 2PO4-3 - log_k -32.6 +Cd3(PO4)2 327 + Cd3(PO4)2 = 3 Cd+2 + 2 PO4-3 + log_k -32.6 -CdSiO3 328 - CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4 - log_k 9.06 +CdSiO3 328 + CdSiO3 + H2O + 2 H+ = Cd+2 + H4SiO4 + log_k 9.06 delta_h -16.63 kcal -CdSO4 329 - CdSO4 = Cd+2 + SO4-2 - log_k -0.1 +CdSO4 329 + CdSO4 = Cd+2 + SO4-2 + log_k -0.1 delta_h -14.74 kcal -CdSO4:H2O 330 - CdSO4:H2O = Cd+2 + SO4-2 + H2O - log_k -1.657 - delta_h -7.520 kcal +CdSO4:H2O 330 + CdSO4:H2O = Cd+2 + SO4-2 + H2O + log_k -1.657 + delta_h -7.52 kcal -CdSO4:2.7H2O 331 - CdSO4:2.67H2O = Cd+2 + SO4-2 + 2.67H2O - log_k -1.873 +CdSO4:2.7H2O 331 + CdSO4:2.67H2O = Cd+2 + SO4-2 + 2.67 H2O + log_k -1.873 delta_h -4.3 kcal -Greenockite 332 - CdS + H+ = Cd+2 + HS- - log_k -15.930 - delta_h 16.360 kcal +Greenockite 332 + CdS + H+ = Cd+2 + HS- + log_k -15.93 + delta_h 16.36 kcal -JarositeH 337 - (H3O)Fe3(SO4)2(OH)6 + 5H+ = 3Fe+3 + 2SO4-2 + 7H2O - log_k -5.390 - delta_h -55.150 kcal +JarositeH 337 + (H3O)Fe3(SO4)2(OH)6 + 5 H+ = 3 Fe+3 + 2 SO4-2 + 7 H2O + log_k -5.39 + delta_h -55.15 kcal -AlumK 338 - KAl(SO4)2:12H2O = K+ + Al+3 + 2SO4-2 + 12H2O - log_k -5.170 - delta_h 7.220 kcal +AlumK 338 + KAl(SO4)2:12H2O = K+ + Al+3 + 2 SO4-2 + 12 H2O + log_k -5.17 + delta_h 7.22 kcal -Melanterite 339 - FeSO4:7H2O = Fe+2 + SO4-2 + 7H2O - log_k -2.209 +Melanterite 339 + FeSO4:7H2O = Fe+2 + SO4-2 + 7 H2O + log_k -2.209 delta_h 4.91 kcal - -analytical 1.447 -0.004153 0.0 0.0 -214949.0 + -analytical 1.447 -0.004153 0 0 -214949 -Epsomite 340 - MgSO4:7H2O = Mg+2 + SO4-2 + 7H2O - log_k -2.140 - delta_h 2.820 kcal +Epsomite 340 + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -2.14 + delta_h 2.82 kcal -PbMetal 360 - Pb = Pb+2 + 2e- - log_k 4.270 +PbMetal 360 + Pb = Pb+2 + 2 e- + log_k 4.27 delta_h 0.4 kcal -Pb(BO2)2 361 - Pb(BO2)2 + 2H2O + 2H+ = Pb+2 + 2H3BO3 - log_k 7.610 +Pb(BO2)2 361 + Pb(BO2)2 + 2 H2O + 2 H+ = Pb+2 + 2 H3BO3 + log_k 7.61 delta_h -5.8 kcal -Cotunnite 362 - PbCl2 = Pb+2 + 2Cl- - log_k -4.770 +Cotunnite 362 + PbCl2 = Pb+2 + 2 Cl- + log_k -4.77 delta_h 5.6 kcal -Matlockite 363 - PbClF = Pb+2 + Cl- + F- - log_k -9.430 - delta_h 7.950 kcal +Matlockite 363 + PbClF = Pb+2 + Cl- + F- + log_k -9.43 + delta_h 7.95 kcal -Phosgenite 364 - PbCl2:PbCO3 = 2Pb+2 + 2Cl- + CO3-2 - log_k -19.810 +Phosgenite 364 + PbCl2:PbCO3 = 2 Pb+2 + 2 Cl- + CO3-2 + log_k -19.81 -Cerussite 365 - PbCO3 = Pb+2 + CO3-2 - log_k -13.13 +Cerussite 365 + PbCO3 = Pb+2 + CO3-2 + log_k -13.13 delta_h 4.86 kcal -PbF2 366 - PbF2 = Pb+2 + 2F- - log_k -7.440 +PbF2 366 + PbF2 = Pb+2 + 2 F- + log_k -7.44 delta_h -0.7 kcal -Massicot 367 - PbO + 2H+ = Pb+2 + H2O - log_k 12.910 - delta_h -16.780 kcal +Massicot 367 + PbO + 2 H+ = Pb+2 + H2O + log_k 12.91 + delta_h -16.78 kcal -Litharge 368 - PbO + 2H+ = Pb+2 + H2O - log_k 12.720 - delta_h -16.380 kcal +Litharge 368 + PbO + 2 H+ = Pb+2 + H2O + log_k 12.72 + delta_h -16.38 kcal -PbO:0.3H2O 369 - PbO:0.33H2O + 2H+ = Pb+2 + 1.33H2O - log_k 12.980 +PbO:0.3H2O 369 + PbO:0.33H2O + 2 H+ = Pb+2 + 1.33 H2O + log_k 12.98 -Pb2OCO3 370 - PbO:PbCO3 + 2H+ = 2Pb+2 + CO3-2 + H2O - log_k -0.5 - delta_h -11.460 kcal +Pb2OCO3 370 + PbO:PbCO3 + 2 H+ = 2 Pb+2 + CO3-2 + H2O + log_k -0.5 + delta_h -11.46 kcal -Larnakite 371 - PbO:PbSO4 + 2H+ = 2Pb+2 + SO4-2 + H2O - log_k -0.280 - delta_h -6.440 kcal +Larnakite 371 + PbO:PbSO4 + 2 H+ = 2 Pb+2 + SO4-2 + H2O + log_k -0.28 + delta_h -6.44 kcal -Pb3O2SO4 372 - PbSO4:2PbO + 4H+ = 3Pb+2 + SO4-2 + 2H2O - log_k 10.4 - delta_h -20.750 kcal +Pb3O2SO4 372 + PbSO4:2PbO + 4 H+ = 3 Pb+2 + SO4-2 + 2 H2O + log_k 10.4 + delta_h -20.75 kcal -Pb4O3SO4 373 - PbSO4:3PbO + 6H+ = 4Pb+2 + SO4-2 + 3H2O - log_k 22.1 - delta_h -35.070 kcal +Pb4O3SO4 373 + PbSO4:3PbO + 6 H+ = 4 Pb+2 + SO4-2 + 3 H2O + log_k 22.1 + delta_h -35.07 kcal -PbHPO4 374 - PbHPO4 = Pb+2 + HPO4-2 - log_k -11.460 - delta_h 7.040 kcal +PbHPO4 374 + PbHPO4 = Pb+2 + HPO4-2 + log_k -11.46 + delta_h 7.04 kcal -Pb3(PO4)2 375 - Pb3(PO4)2 + 2H+ = 3Pb+2 + 2HPO4-2 - log_k -19.670 - delta_h -1.670 kcal +Pb3(PO4)2 375 + Pb3(PO4)2 + 2 H+ = 3 Pb+2 + 2 HPO4-2 + log_k -19.67 + delta_h -1.67 kcal -Clpyromorphite 376 - Pb5(PO4)3Cl = 5Pb+2 + 3PO4-3 + Cl- - log_k -84.430 +Clpyromorphite 376 + Pb5(PO4)3Cl = 5 Pb+2 + 3 PO4-3 + Cl- + log_k -84.43 -Hxypyromorphite 377 - Pb5(PO4)3OH + H+ = 5Pb+2 + 3PO4-3 + H2O - log_k -62.790 +Hxypyromorphite 377 + Pb5(PO4)3OH + H+ = 5 Pb+2 + 3 PO4-3 + H2O + log_k -62.79 -Pb3O2CO3 378 - PbCO3:2PbO + 4H+ = 3Pb+2 + CO3-2 + 2H2O - log_k 11.020 - delta_h -26.430 kcal +Pb3O2CO3 378 + PbCO3:2PbO + 4 H+ = 3 Pb+2 + CO3-2 + 2 H2O + log_k 11.02 + delta_h -26.43 kcal -Plumbogummite 379 - PbAl3(PO4)2(OH)5:H2O + 5H+ = Pb+2 + 3Al+3 + 2PO4-3 + 6H2O - log_k -32.790 +Plumbogummite 379 + PbAl3(PO4)2(OH)5:H2O + 5 H+ = Pb+2 + 3 Al+3 + 2 PO4-3 + 6 H2O + log_k -32.79 -Hinsdalite 380 - PbAl3PO4SO4(OH)6 + 6H+ = Pb+2 + 3Al+3 + PO4-3 + SO4-2 + 6H2O - log_k -2.5 +Hinsdalite 380 + PbAl3PO4SO4(OH)6 + 6 H+ = Pb+2 + 3 Al+3 + PO4-3 + SO4-2 + 6 H2O + log_k -2.5 -Tsumebite 381 - Pb2CuPO4(OH)3:3H2O + 3H+ = 2Pb+2 + Cu+2 + PO4-3 + 6H2O - log_k -9.790 +Tsumebite 381 + Pb2CuPO4(OH)3:3H2O + 3 H+ = 2 Pb+2 + Cu+2 + PO4-3 + 6 H2O + log_k -9.79 -PbSiO3 382 - PbSiO3 + H2O + 2H+ = Pb+2 + H4SiO4 - log_k 7.320 - delta_h -9.260 kcal +PbSiO3 382 + PbSiO3 + H2O + 2 H+ = Pb+2 + H4SiO4 + log_k 7.32 + delta_h -9.26 kcal -Pb2SiO4 383 - Pb2SiO4 + 4H+ = 2Pb+2 + H4SiO4 - log_k 19.760 - delta_h -26.0 kcal +Pb2SiO4 383 + Pb2SiO4 + 4 H+ = 2 Pb+2 + H4SiO4 + log_k 19.76 + delta_h -26 kcal -Anglesite 384 - PbSO4 = Pb+2 + SO4-2 - log_k -7.79 +Anglesite 384 + PbSO4 = Pb+2 + SO4-2 + log_k -7.79 delta_h 2.15 kcal -Galena 385 - PbS + H+ = Pb+2 + HS- - log_k -12.780 +Galena 385 + PbS + H+ = Pb+2 + HS- + log_k -12.78 delta_h 19.4 kcal -Plattnerite 386 - PbO2 + 4H+ + 2e- = Pb+2 + 2H2O - log_k 49.3 - delta_h -70.730 kcal +Plattnerite 386 + PbO2 + 4 H+ + 2 e- = Pb+2 + 2 H2O + log_k 49.3 + delta_h -70.73 kcal -Pb2O3 387 - Pb2O3 + 6H+ + 2e- = 2Pb+2 + 3H2O - log_k 61.040 +Pb2O3 387 + Pb2O3 + 6 H+ + 2 e- = 2 Pb+2 + 3 H2O + log_k 61.04 -Minium 388 - Pb3O4 + 8H+ + 2e- = 3Pb+2 + 4H2O - log_k 73.690 - delta_h -102.760 kcal +Minium 388 + Pb3O4 + 8 H+ + 2 e- = 3 Pb+2 + 4 H2O + log_k 73.69 + delta_h -102.76 kcal -Pb(OH)2 389 - Pb(OH)2 + 2H+ = Pb+2 + 2H2O - log_k 8.15 +Pb(OH)2 389 + Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O + log_k 8.15 delta_h -13.99 kcal -Laurionite 390 - PbOHCl + H+ = Pb+2 + Cl- + H2O - log_k 0.623 +Laurionite 390 + PbOHCl + H+ = Pb+2 + Cl- + H2O + log_k 0.623 -Pb2(OH)3Cl 391 - Pb2(OH)3Cl + 3H+ = 2Pb+2 + 3H2O + Cl- - log_k 8.793 +Pb2(OH)3Cl 391 + Pb2(OH)3Cl + 3 H+ = 2 Pb+2 + 3 H2O + Cl- + log_k 8.793 -Hydrocerussite 392 - Pb(OH)2:2PbCO3 + 2H+ = 3Pb+2 + 2CO3-2 + 2H2O - log_k -17.460 +Hydrocerussite 392 + Pb(OH)2:2PbCO3 + 2 H+ = 3 Pb+2 + 2 CO3-2 + 2 H2O + log_k -17.46 -Pb2O(OH)2 393 - PbO:Pb(OH)2 + 4H+ = 2Pb+2 + 3H2O - log_k 26.2 +Pb2O(OH)2 393 + PbO:Pb(OH)2 + 4 H+ = 2 Pb+2 + 3 H2O + log_k 26.2 -Pb4(OH)6SO4 394 - Pb4(OH)6SO4 + 6H+ = 4Pb+2 + SO4-2 + 6H2O - log_k 21.1 +Pb4(OH)6SO4 394 + Pb4(OH)6SO4 + 6 H+ = 4 Pb+2 + SO4-2 + 6 H2O + log_k 21.1 -SiO2(a) 395 - SiO2 + 2H2O = H4SiO4 - log_k -2.71 +SiO2(a) 395 + SiO2 + 2 H2O = H4SiO4 + log_k -2.71 delta_h 3.34 kcal - -analytical -0.26 0.0 -731.0 0.0 0.0 + -analytical -0.26 0 -731 0 0 -FCO3Apatite 396 - Ca9.316Na0.36Mg0.144(PO4)4.8(CO3)1.2F2.48 = 9.316Ca+2 + 0.36Na+ + 0.144Mg+2 + 4.8PO4-3 + 1.2CO3-2 + 2.48F- - log_k -114.4 - delta_h 39.390 kcal +FCO3Apatite 396 + Ca9.316Na0.36Mg0.144(PO4)4.8(CO3)1.2F2.48 = 9.316 Ca+2 + 0.36 Na+ + 0.144 Mg+2 + 4.8 PO4-3 + 1.2 CO3-2 + 2.48 F- + log_k -114.4 + delta_h 39.39 kcal -BaF2 398 - BaF2 = Ba+2 + 2F- - log_k -5.760 - delta_h 1.0 kcal +BaF2 398 + BaF2 = Ba+2 + 2 F- + log_k -5.76 + delta_h 1 kcal -SrF2 399 - SrF2 = Sr+2 + 2F- - log_k -8.540 - delta_h 1.250 kcal +SrF2 399 + SrF2 = Sr+2 + 2 F- + log_k -8.54 + delta_h 1.25 kcal -Dolomite 401 - CaMg(CO3)2 = Ca+2 + Mg+2 + 2CO3-2 - log_k -17.09 +Dolomite 401 + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + log_k -17.09 delta_h -9.436 kcal -Sulfur 402 - S + 2e- = S-2 - log_k -15.026 +Sulfur 402 + S + 2 e- = S-2 + log_k -15.026 delta_h 7.9 kcal -NiCO3 410 - NiCO3 = Ni+2 + CO3-2 - log_k -6.840 - delta_h -9.940 kcal +NiCO3 410 + NiCO3 = Ni+2 + CO3-2 + log_k -6.84 + delta_h -9.94 kcal -Ni(OH)2 411 - Ni(OH)2 + 2H+ = Ni+2 + 2H2O - log_k 10.8 - delta_h 30.450 kcal +Ni(OH)2 411 + Ni(OH)2 + 2 H+ = Ni+2 + 2 H2O + log_k 10.8 + delta_h 30.45 kcal -Ni4(OH)6SO4 412 - Ni4(OH)6SO4 + 6H+ = 4Ni+2 + SO4-2 + 6H2O - log_k 32.0 +Ni4(OH)6SO4 412 + Ni4(OH)6SO4 + 6 H+ = 4 Ni+2 + SO4-2 + 6 H2O + log_k 32 -Bunsenite 413 - NiO + 2H+ = Ni+2 + H2O - log_k 12.450 - delta_h -23.920 kcal +Bunsenite 413 + NiO + 2 H+ = Ni+2 + H2O + log_k 12.45 + delta_h -23.92 kcal -Ni3(PO4)2 414 - Ni3(PO4)2 = 3Ni+2 + 2PO4-3 - log_k -31.3 +Ni3(PO4)2 414 + Ni3(PO4)2 = 3 Ni+2 + 2 PO4-3 + log_k -31.3 -Millerite 415 - NiS + H+ = Ni+2 + HS- - log_k -8.042 +Millerite 415 + NiS + H+ = Ni+2 + HS- + log_k -8.042 delta_h 2.5 kcal -Retgersite 416 - NiSO4:6H2O = Ni+2 + SO4-2 + 6H2O - log_k -2.040 +Retgersite 416 + NiSO4:6H2O = Ni+2 + SO4-2 + 6 H2O + log_k -2.04 delta_h 1.1 kcal -Morenosite 417 - NiSO4:7H2O = Ni+2 + SO4-2 + 7H2O - log_k -2.360 - delta_h 2.940 kcal +Morenosite 417 + NiSO4:7H2O = Ni+2 + SO4-2 + 7 H2O + log_k -2.36 + delta_h 2.94 kcal -Ni2SiO4 418 - Ni2SiO4 + 4H+ = 2Ni+2 + H4SiO4 - log_k 14.540 - delta_h -33.360 kcal +Ni2SiO4 418 + Ni2SiO4 + 4 H+ = 2 Ni+2 + H4SiO4 + log_k 14.54 + delta_h -33.36 kcal -Fe3(OH)8 419 - Fe3(OH)8 + 8H+ = 2Fe+3 + Fe+2 + 8H2O - log_k 20.222 +Fe3(OH)8 419 + Fe3(OH)8 + 8 H+ = 2 Fe+3 + Fe+2 + 8 H2O + log_k 20.222 -Dioptase 420 - CuSiO3:H2O + 2H+ = Cu+2 + H4SiO4 - log_k 6.5 - delta_h -8.960 kcal +Dioptase 420 + CuSiO3:H2O + 2 H+ = Cu+2 + H4SiO4 + log_k 6.5 + delta_h -8.96 kcal -AgMetal 437 - Ag = Ag+ + e- - log_k -13.510 +AgMetal 437 + Ag = Ag+ + e- + log_k -13.51 delta_h 25.234 kcal -Bromyrite 438 - AgBr = Ag+ + Br- - log_k -12.270 - delta_h 20.170 kcal +Bromyrite 438 + AgBr = Ag+ + Br- + log_k -12.27 + delta_h 20.17 kcal -Cerargyrite 439 - AgCl = Ag+ + Cl- - log_k -9.750 +Cerargyrite 439 + AgCl = Ag+ + Cl- + log_k -9.75 delta_h 15.652 kcal -Ag2CO3 440 - Ag2CO3 = 2Ag+ + CO3-2 - log_k -11.070 - delta_h 9.530 kcal +Ag2CO3 440 + Ag2CO3 = 2 Ag+ + CO3-2 + log_k -11.07 + delta_h 9.53 kcal -AgF:4H2O 441 - AgF:4H2O = Ag+ + F- + 4H2O - log_k 0.550 - delta_h 4.270 kcal +AgF:4H2O 441 + AgF:4H2O = Ag+ + F- + 4 H2O + log_k 0.55 + delta_h 4.27 kcal -Iodyrite 442 - AgI = Ag+ + I- - log_k -16.070 - delta_h 26.820 kcal +Iodyrite 442 + AgI = Ag+ + I- + log_k -16.07 + delta_h 26.82 kcal -Ag2O 443 - Ag2O + 2H+ = 2Ag+ + H2O - log_k 12.580 - delta_h -10.430 kcal +Ag2O 443 + Ag2O + 2 H+ = 2 Ag+ + H2O + log_k 12.58 + delta_h -10.43 kcal -Ag3PO4 444 - Ag3PO4 = 3Ag+ + PO4-3 - log_k -17.550 +Ag3PO4 444 + Ag3PO4 = 3 Ag+ + PO4-3 + log_k -17.55 -Acanthite 445 - Ag2S + H+ = 2Ag+ + HS- - log_k -36.050 +Acanthite 445 + Ag2S + H+ = 2 Ag+ + HS- + log_k -36.05 delta_h 53.3 kcal -Ag2SO4 446 - Ag2SO4 = 2Ag+ + SO4-2 - log_k -4.920 - delta_h 4.250 kcal +Ag2SO4 446 + Ag2SO4 = 2 Ag+ + SO4-2 + log_k -4.92 + delta_h 4.25 kcal -CuBr 459 - CuBr = Cu+ + Br- - log_k -8.210 - delta_h 13.080 kcal +CuBr 459 + CuBr = Cu+ + Br- + log_k -8.21 + delta_h 13.08 kcal -CuI 460 - CuI = Cu+ + I- - log_k -11.890 - delta_h 20.140 kcal +CuI 460 + CuI = Cu+ + I- + log_k -11.89 + delta_h 20.14 kcal -ZnBr2:2H2O 461 - ZnBr2:2H2O = Zn+2 + 2Br- + 2H2O - log_k 5.210 - delta_h -7.510 kcal +ZnBr2:2H2O 461 + ZnBr2:2H2O = Zn+2 + 2 Br- + 2 H2O + log_k 5.21 + delta_h -7.51 kcal -ZnI2 462 - ZnI2 = Zn+2 + 2I- - log_k 7.230 - delta_h -13.440 kcal +ZnI2 462 + ZnI2 = Zn+2 + 2 I- + log_k 7.23 + delta_h -13.44 kcal -CdBr2:4H2O 463 - CdBr2:4H2O = Cd+2 + 2Br- + 4H2O - log_k -2.420 - delta_h 7.230 kcal +CdBr2:4H2O 463 + CdBr2:4H2O = Cd+2 + 2 Br- + 4 H2O + log_k -2.42 + delta_h 7.23 kcal -CdI2 464 - CdI2 = Cd+2 + 2I- - log_k -3.610 - delta_h 4.080 kcal +CdI2 464 + CdI2 = Cd+2 + 2 I- + log_k -3.61 + delta_h 4.08 kcal -PbBr2 465 - PbBr2 = Pb+2 + 2Br- - log_k -5.180 +PbBr2 465 + PbBr2 = Pb+2 + 2 Br- + log_k -5.18 delta_h 8.1 kcal -PbBrF 466 - PbBrF = Pb+2 + Br- + F- - log_k -8.490 +PbBrF 466 + PbBrF = Pb+2 + Br- + F- + log_k -8.49 -PbI2 467 - PbI2 = Pb+2 + 2I- - log_k -8.070 - delta_h 15.160 kcal +PbI2 467 + PbI2 = Pb+2 + 2 I- + log_k -8.07 + delta_h 15.16 kcal -Jurbanite 471 - AlOHSO4 + H+ = Al+3 + SO4-2 + H2O - log_k -3.230 +Jurbanite 471 + AlOHSO4 + H+ = Al+3 + SO4-2 + H2O + log_k -3.23 -Basaluminite 472 - Al4(OH)10SO4 + 10H+ = 4Al+3 + SO4-2 + 10H2O - log_k 22.7 +Basaluminite 472 + Al4(OH)10SO4 + 10 H+ = 4 Al+3 + SO4-2 + 10 H2O + log_k 22.7 -As_native 557 - As + 3H2O = H3AsO3 + 3H+ + 3e- - log_k -12.532 - delta_h 115.131 kJ +As_native 557 + As + 3 H2O = H3AsO3 + 3 H+ + 3 e- + log_k -12.532 + delta_h 115.131 kJ -As2O5(cr) 488 - As2O5 + 3H2O = 2H3AsO4 - log_k 8.228 - delta_h -31.619 kJ +As2O5(cr) 488 + As2O5 + 3 H2O = 2 H3AsO4 + log_k 8.228 + delta_h -31.619 kJ -AlAsO4:2H2O 489 - AlAsO4:2H2O = Al+3 + AsO4-3 + 2H2O - log_k -15.837 +AlAsO4:2H2O 489 + AlAsO4:2H2O = Al+3 + AsO4-3 + 2 H2O + log_k -15.837 -Ca3(AsO4)2:4w 490 - Ca3(AsO4)2:4H2O = 3Ca+2 + 2AsO4-3 + 4H2O - log_k -18.905 +Ca3(AsO4)2:4w 490 + Ca3(AsO4)2:4H2O = 3 Ca+2 + 2 AsO4-3 + 4 H2O + log_k -18.905 -Cu3(AsO4)2:6w 491 - Cu3(AsO4)2:6H2O = 3Cu+2 + 2AsO4-3 + 6H2O - log_k -35.123 +Cu3(AsO4)2:6w 491 + Cu3(AsO4)2:6H2O = 3 Cu+2 + 2 AsO4-3 + 6 H2O + log_k -35.123 -Scorodite 492 - FeAsO4:2H2O = Fe+3 + AsO4-3 + 2H2O - log_k -20.249 +Scorodite 492 + FeAsO4:2H2O = Fe+3 + AsO4-3 + 2 H2O + log_k -20.249 -Mn3(AsO4)2:8H2O 493 - Mn3(AsO4)2:8H2O = 3Mn+2 + 2AsO4-3 + 8H2O - log_k -28.707 +Mn3(AsO4)2:8H2O 493 + Mn3(AsO4)2:8H2O = 3 Mn+2 + 2 AsO4-3 + 8 H2O + log_k -28.707 -Ni3(AsO4)2:8H2O 494 - Ni3(AsO4)2:8H2O = 3Ni+2 + 2AsO4-3 + 8H2O - log_k -25.511 +Ni3(AsO4)2:8H2O 494 + Ni3(AsO4)2:8H2O = 3 Ni+2 + 2 AsO4-3 + 8 H2O + log_k -25.511 -Pb3(AsO4)2 495 - Pb3(AsO4)2 = 3Pb+2 + 2AsO4-3 - log_k -35.403 +Pb3(AsO4)2 495 + Pb3(AsO4)2 = 3 Pb+2 + 2 AsO4-3 + log_k -35.403 -Zn3(AsO4)2:2.5w 496 - Zn3(AsO4)2:2.5H2O = 3Zn+2 + 2AsO4-3 + 2.5H2O - log_k -27.546 +Zn3(AsO4)2:2.5w 496 + Zn3(AsO4)2:2.5H2O = 3 Zn+2 + 2 AsO4-3 + 2.5 H2O + log_k -27.546 -Arsenolite 497 -# As4O6 + 6H2O = 4H3AsO3 +Arsenolite 497 +# As4O6 + 6H2O = 4H3AsO3 # log_k -2.801 # delta_h 14.330 kcal - As2O3 + 3H2O = 2H3AsO3 - log_k -1.38 - delta_h 30.041 kJ + As2O3 + 3 H2O = 2 H3AsO3 + log_k -1.38 + delta_h 30.041 kJ -Claudetite 498 -# As4O6 + 6H2O = 4H3AsO3 +Claudetite 498 +# As4O6 + 6H2O = 4H3AsO3 # log_k -3.065 # delta_h 13.290 kcal - As2O3 + 3H2O = 2H3AsO3 - log_k -1.34 - delta_h 28.443 kJ + As2O3 + 3 H2O = 2 H3AsO3 + log_k -1.34 + delta_h 28.443 kJ -AsI3 499 - AsI3 + 3H2O = H3AsO3 + 3I- + 3H+ - log_k 4.155 +AsI3 499 + AsI3 + 3 H2O = H3AsO3 + 3 I- + 3 H+ + log_k 4.155 delta_h 1.875 kcal -Orpiment 500 - As2S3 + 6H2O = 2H3AsO3 + 3HS- + 3H+ +Orpiment 500 + As2S3 + 6 H2O = 2 H3AsO3 + 3 HS- + 3 H+ # log_k -60.971 # delta_h 82.890 kcal - log_k -46.3 - delta_h 263.1 kJ + log_k -46.3 + delta_h 263.1 kJ -As2S3(am) 132 - As2S3 + 6H2O = 2H3AsO3 + 3HS- + 3H+ - log_k -44.9 - delta_h 244.2 kJ +As2S3(am) 132 + As2S3 + 6 H2O = 2 H3AsO3 + 3 HS- + 3 H+ + log_k -44.9 + delta_h 244.2 kJ -Realgar 501 - AsS + 3H2O = H3AsO3 + HS- + 2H+ + e- +Realgar 501 + AsS + 3 H2O = H3AsO3 + HS- + 2 H+ + e- # log_k -19.747 # delta_h 30.545 kcal - log_k -19.944 - delta_h 129.2625 kJ + log_k -19.944 + delta_h 129.2625 kJ -BlaubleiI 533 - Cu0.9Cu0.2S + H+ = 0.9Cu+2 + 0.2Cu+ + HS- - log_k -24.162 +BlaubleiI 533 + Cu0.9Cu0.2S + H+ = 0.9 Cu+2 + 0.2 Cu+ + HS- + log_k -24.162 -BlaubleiII 534 - Cu0.6Cu0.8S + H+ = 0.6Cu+2 + 0.8Cu+ + HS- - log_k -27.279 +BlaubleiII 534 + Cu0.6Cu0.8S + H+ = 0.6 Cu+2 + 0.8 Cu+ + HS- + log_k -27.279 -Anilite 535 - Cu0.25Cu1.5S + H+ = 0.25Cu+2 + 1.5Cu+ + HS- - log_k -31.878 +Anilite 535 + Cu0.25Cu1.5S + H+ = 0.25 Cu+2 + 1.5 Cu+ + HS- + log_k -31.878 delta_h 43.535 kcal -Djurleite 536 - Cu0.066Cu1.868S + H+ = 0.066Cu+2 + 1.868Cu+ + HS- - log_k -33.920 +Djurleite 536 + Cu0.066Cu1.868S + H+ = 0.066 Cu+2 + 1.868 Cu+ + HS- + log_k -33.92 delta_h 47.881 kcal -Portlandite 539 - Ca(OH)2 + 2H+ = Ca+2 + 2H2O - log_k 22.8 - delta_h -31.0 kcal +Portlandite 539 + Ca(OH)2 + 2 H+ = Ca+2 + 2 H2O + log_k 22.8 + delta_h -31 kcal -Ba3(AsO4)2 541 - Ba3(AsO4)2 = 3Ba+2 + 2AsO4-3 - log_k -50.110 +Ba3(AsO4)2 541 + Ba3(AsO4)2 = 3 Ba+2 + 2 AsO4-3 + log_k -50.11 delta_h 9.5 kcal -Se(s) 550 - Se + H+ + 2e- = HSe- - log_k -17.322 +Se(s) 550 + Se + H+ + 2 e- = HSe- + log_k -17.322 #SemetalSe4 551 -# Se + 3H2O = SeO3-2 + 6H+ + 4e- +# Se + 3H2O = SeO3-2 + 6H+ + 4e- # log_k -59.836 -FeSe2 552 - FeSe2 + 2H+ + 2e- = Fe+2 + 2HSe- - log_k -18.580 +FeSe2 552 + FeSe2 + 2 H+ + 2 e- = Fe+2 + 2 HSe- + log_k -18.58 -SeO2 553 - SeO2 + H2O = SeO3-2 + 2H+ - log_k -8.380 +SeO2 553 + SeO2 + H2O = SeO3-2 + 2 H+ + log_k -8.38 -CaSeO3 554 - CaSeO3 = Ca+2 + SeO3-2 - log_k -5.6 +CaSeO3 554 + CaSeO3 = Ca+2 + SeO3-2 + log_k -5.6 -BaSeO3 555 - BaSeO3 = Ba+2 + SeO3-2 - log_k -6.390 +BaSeO3 555 + BaSeO3 = Ba+2 + SeO3-2 + log_k -6.39 -Fe2(SeO3)3 556 - Fe2(SeO3)3 = 2Fe+3 + 3SeO3-2 - log_k -35.430 +Fe2(SeO3)3 556 + Fe2(SeO3)3 = 2 Fe+3 + 3 SeO3-2 + log_k -35.43 -Rhodochrosite 564 - MnCO3 = Mn+2 + CO3-2 - log_k -11.13 +Rhodochrosite 564 + MnCO3 = Mn+2 + CO3-2 + log_k -11.13 delta_h -1.43 kcal -Na4UO2(CO3)3 571 - Na4UO2(CO3)3 = 4Na+ + UO2+2 + 3CO3-2 - log_k -16.290 +Na4UO2(CO3)3 571 + Na4UO2(CO3)3 = 4 Na+ + UO2+2 + 3 CO3-2 + log_k -16.29 -Uraninite(c) 573 - UO2 + 4H+ = U+4 + 2H2O - log_k -4.8 - delta_h -18.610 kcal +Uraninite(c) 573 + UO2 + 4 H+ = U+4 + 2 H2O + log_k -4.8 + delta_h -18.61 kcal -UO2(a) 574 - UO2 + 4H+ = U+4 + 2H2O - log_k 0.1 +UO2(a) 574 + UO2 + 4 H+ = U+4 + 2 H2O + log_k 0.1 -U4O9(c) 575 - U4O9 + 18H+ + 2e- = 4U+4 + 9H2O - log_k -3.384 +U4O9(c) 575 + U4O9 + 18 H+ + 2 e- = 4 U+4 + 9 H2O + log_k -3.384 delta_h -101.235 kcal -U3O8(c) 576 - U3O8 + 16H+ + 4e- = 3U+4 + 8H2O - log_k 20.530 - delta_h -116.0 kcal +U3O8(c) 576 + U3O8 + 16 H+ + 4 e- = 3 U+4 + 8 H2O + log_k 20.53 + delta_h -116 kcal -Coffinite 577 - USiO4 + 4H+ = U+4 + H4SiO4 - log_k -7.670 +Coffinite 577 + USiO4 + 4 H+ = U+4 + H4SiO4 + log_k -7.67 delta_h -11.6 kcal -UF4(c) 584 - UF4 = U+4 + 4F- - log_k -18.606 +UF4(c) 584 + UF4 = U+4 + 4 F- + log_k -18.606 delta_h -18.9 kcal -UF4:2.5H2O 585 - UF4:2.5H2O = U+4 + 4F- + 2.5H2O - log_k -27.570 +UF4:2.5H2O 585 + UF4:2.5H2O = U+4 + 4 F- + 2.5 H2O + log_k -27.57 delta_h -0.588 kcal -U(OH)2SO4 591 - U(OH)2SO4 + 2H+ = U+4 + SO4-2 + 2H2O - log_k -3.2 +U(OH)2SO4 591 + U(OH)2SO4 + 2 H+ = U+4 + SO4-2 + 2 H2O + log_k -3.2 -UO2HPO4:4H2O 592 - UO2HPO4:4H2O = UO2+2 + HPO4-2 + 4H2O - log_k -11.850 +UO2HPO4:4H2O 592 + UO2HPO4:4H2O = UO2+2 + HPO4-2 + 4 H2O + log_k -11.85 -U(HPO4)2:4H2O 593 - U(HPO4)2:4H2O = U+4 + 2PO4-3 + 2H+ + 4H2O - log_k -55.3 - delta_h 3.840 kcal +U(HPO4)2:4H2O 593 + U(HPO4)2:4H2O = U+4 + 2 PO4-3 + 2 H+ + 4 H2O + log_k -55.3 + delta_h 3.84 kcal -Ningyoite 594 - CaU(PO4)2:2H2O = U+4 + Ca+2 + 2PO4-3 + 2H2O - log_k -53.906 - delta_h -2.270 kcal +Ningyoite 594 + CaU(PO4)2:2H2O = U+4 + Ca+2 + 2 PO4-3 + 2 H2O + log_k -53.906 + delta_h -2.27 kcal -UO3(gamma) 599 - UO3 + 2H+ = UO2+2 + H2O - log_k 7.719 +UO3(gamma) 599 + UO3 + 2 H+ = UO2+2 + H2O + log_k 7.719 delta_h -19.315 kcal -Gummite 600 - UO3 + 2H+ = UO2+2 + H2O - log_k 10.403 +Gummite 600 + UO3 + 2 H+ = UO2+2 + H2O + log_k 10.403 delta_h -23.015 kcal -B-UO2(OH)2 601 - UO2(OH)2 + 2H+ = UO2+2 + 2H2O - log_k 5.544 - delta_h -13.730 kcal +B-UO2(OH)2 601 + UO2(OH)2 + 2 H+ = UO2+2 + 2 H2O + log_k 5.544 + delta_h -13.73 kcal -Schoepite 602 - UO2(OH)2:H2O + 2H+ = UO2+2 + 3H2O - log_k 5.404 +Schoepite 602 + UO2(OH)2:H2O + 2 H+ = UO2+2 + 3 H2O + log_k 5.404 delta_h -12.045 kcal -Rutherfordine 606 - UO2CO3 = UO2+2 + CO3-2 - log_k -14.450 - delta_h -1.440 kcal +Rutherfordine 606 + UO2CO3 = UO2+2 + CO3-2 + log_k -14.45 + delta_h -1.44 kcal -(UO2)3(PO4)2:4w 619 - (UO2)3(PO4)2:4H2O = 3UO2+2 + 2PO4-3 + 4H2O - log_k -37.4 +(UO2)3(PO4)2:4w 619 + (UO2)3(PO4)2:4H2O = 3 UO2+2 + 2 PO4-3 + 4 H2O + log_k -37.4 delta_h 41.5 kcal -H-Autunite 620 - H2(UO2)2(PO4)2 = 2H+ + 2UO2+2 + 2PO4-3 - log_k -47.931 +H-Autunite 620 + H2(UO2)2(PO4)2 = 2 H+ + 2 UO2+2 + 2 PO4-3 + log_k -47.931 delta_h -3.6 kcal -Na-Autunite 621 - Na2(UO2)2(PO4)2 = 2Na+ + 2UO2+2 + 2PO4-3 - log_k -47.409 - delta_h -0.460 kcal +Na-Autunite 621 + Na2(UO2)2(PO4)2 = 2 Na+ + 2 UO2+2 + 2 PO4-3 + log_k -47.409 + delta_h -0.46 kcal -K-Autunite 622 - K2(UO2)2(PO4)2 = 2K+ + 2UO2+2 + 2PO4-3 - log_k -48.244 - delta_h 5.860 kcal +K-Autunite 622 + K2(UO2)2(PO4)2 = 2 K+ + 2 UO2+2 + 2 PO4-3 + log_k -48.244 + delta_h 5.86 kcal -Uramphite 623 - (NH4)2(UO2)2(PO4)2 = 2NH4+ + 2UO2+2 + 2PO4-3 - log_k -51.749 +Uramphite 623 + (NH4)2(UO2)2(PO4)2 = 2 NH4+ + 2 UO2+2 + 2 PO4-3 + log_k -51.749 delta_h 9.7 kcal -Saleeite 624 - Mg(UO2)2(PO4)2 = Mg+2 + 2UO2+2 + 2PO4-3 - log_k -43.646 - delta_h -20.180 kcal +Saleeite 624 + Mg(UO2)2(PO4)2 = Mg+2 + 2 UO2+2 + 2 PO4-3 + log_k -43.646 + delta_h -20.18 kcal -Autunite 625 - Ca(UO2)2(PO4)2 = Ca+2 + 2UO2+2 + 2PO4-3 - log_k -43.927 - delta_h -14.340 kcal +Autunite 625 + Ca(UO2)2(PO4)2 = Ca+2 + 2 UO2+2 + 2 PO4-3 + log_k -43.927 + delta_h -14.34 kcal -Sr-Autunite 626 - Sr(UO2)2(PO4)2 = Sr+2 + 2UO2+2 + 2PO4-3 - log_k -44.457 - delta_h -13.050 kcal +Sr-Autunite 626 + Sr(UO2)2(PO4)2 = Sr+2 + 2 UO2+2 + 2 PO4-3 + log_k -44.457 + delta_h -13.05 kcal -Uranocircite 627 - Ba(UO2)2(PO4)2 = Ba+2 + 2UO2+2 + 2PO4-3 - log_k -44.631 +Uranocircite 627 + Ba(UO2)2(PO4)2 = Ba+2 + 2 UO2+2 + 2 PO4-3 + log_k -44.631 delta_h -10.1 kcal -Bassetite 628 - Fe(UO2)2(PO4)2 = Fe+2 + 2UO2+2 + 2PO4-3 - log_k -44.485 +Bassetite 628 + Fe(UO2)2(PO4)2 = Fe+2 + 2 UO2+2 + 2 PO4-3 + log_k -44.485 delta_h -19.9 kcal -Torbernite 629 - Cu(UO2)2(PO4)2 = Cu+2 + 2UO2+2 + 2PO4-3 - log_k -45.279 +Torbernite 629 + Cu(UO2)2(PO4)2 = Cu+2 + 2 UO2+2 + 2 PO4-3 + log_k -45.279 delta_h -15.9 kcal -Przhevalskite 630 - Pb(UO2)2(PO4)2 = Pb+2 + 2UO2+2 + 2PO4-3 - log_k -44.365 - delta_h -11.0 kcal +Przhevalskite 630 + Pb(UO2)2(PO4)2 = Pb+2 + 2 UO2+2 + 2 PO4-3 + log_k -44.365 + delta_h -11 kcal -Uranophane 632 - Ca(UO2)2(SiO3OH)2 + 6H+ = Ca+2 + 2UO2+2 + 2H4SiO4 - log_k 17.489 +Uranophane 632 + Ca(UO2)2(SiO3OH)2 + 6 H+ = Ca+2 + 2 UO2+2 + 2 H4SiO4 + log_k 17.489 -CO2(g) - CO2 = CO2 - log_k -1.468 +CO2(g) + CO2 = CO2 + log_k -1.468 delta_h -4.776 kcal - -analytical 108.3865 0.01985076 -6919.53 -40.45154 669365.0 + -analytical 108.3865 0.01985076 -6919.53 -40.45154 669365 O2(g) - O2 = O2 + O2 = O2 # log_k -2.960 # delta_h -1.844 kcal # log K from llnl.dat Aug 23, 2005 - log_k -2.8983 - -analytic -7.5001e+000 7.8981e-003 0.0000e+000 0.0000e+000 2.0027e+005 + log_k -2.8983 + -analytic -7.5001e+0 7.8981e-3 0e+0 0e+0 2.0027e+5 H2(g) - H2 = H2 - log_k -3.150 + H2 = H2 + log_k -3.15 delta_h -1.759 kcal N2(g) - N2 = N2 - log_k -3.260 + N2 = N2 + log_k -3.26 delta_h -1.358 kcal H2S(g) - H2S = H2S - log_k -0.997 - delta_h -4.570 kcal + H2S = H2S + log_k -0.997 + delta_h -4.57 kcal CH4(g) - CH4 = CH4 - log_k -2.860 + CH4 = CH4 + log_k -2.86 delta_h -3.373 kcal NH3(g) - NH3 = NH3 - log_k 1.770 - delta_h -8.170 kcal + NH3 = NH3 + log_k 1.77 + delta_h -8.17 kcal EXCHANGE_MASTER_SPECIES - X X- + X X- EXCHANGE_SPECIES X- = X- - log_k 0.0 + log_k 0 Na+ + X- = NaX - log_k 0.0 + log_k 0 K+ + X- = KX - log_k 0.7 + log_k 0.7 Li+ + X- = LiX - log_k -0.08 + log_k -0.08 H+ + X- = HX - log_k 1.0 + log_k 1 NH4+ + X- = NH4X - log_k 0.6 + log_k 0.6 - Ca+2 + 2X- = CaX2 - log_k 0.8 + Ca+2 + 2 X- = CaX2 + log_k 0.8 - Mg+2 + 2X- = MgX2 - log_k 0.6 + Mg+2 + 2 X- = MgX2 + log_k 0.6 - Sr+2 + 2X- = SrX2 - log_k 0.91 + Sr+2 + 2 X- = SrX2 + log_k 0.91 - Ba+2 + 2X- = BaX2 - log_k 0.91 + Ba+2 + 2 X- = BaX2 + log_k 0.91 - Mn+2 + 2X- = MnX2 - log_k 0.52 + Mn+2 + 2 X- = MnX2 + log_k 0.52 - Fe+2 + 2X- = FeX2 - log_k 0.44 + Fe+2 + 2 X- = FeX2 + log_k 0.44 - Cu+2 + 2X- = CuX2 - log_k 0.6 + Cu+2 + 2 X- = CuX2 + log_k 0.6 - Zn+2 + 2X- = ZnX2 - log_k 0.8 + Zn+2 + 2 X- = ZnX2 + log_k 0.8 - Cd+2 + 2X- = CdX2 - log_k 0.8 + Cd+2 + 2 X- = CdX2 + log_k 0.8 - Pb+2 + 2X- = PbX2 - log_k 1.05 + Pb+2 + 2 X- = PbX2 + log_k 1.05 - Al+3 + 3X- = AlX3 - log_k 0.67 + Al+3 + 3 X- = AlX3 + log_k 0.67 SURFACE_MASTER_SPECIES - Hfo_s Hfo_sOH - Hfo_w Hfo_wOH + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH SURFACE_SPECIES -# All surface data from +# All surface data from # Dzombak and Morel, 1990 # # # Acid-base data from table 5.7 # -# strong binding site--Hfo_s, +# strong binding site--Hfo_s, Hfo_sOH = Hfo_sOH - log_k 0.0 + log_k 0 - Hfo_sOH + H+ = Hfo_sOH2+ - log_k 7.29 # = pKa1,int + Hfo_sOH + H+ = Hfo_sOH2+ + log_k 7.29 # = pKa1,int Hfo_sOH = Hfo_sO- + H+ - log_k -8.93 # = -pKa2,int + log_k -8.93 # = -pKa2,int # weak binding site--Hfo_w Hfo_wOH = Hfo_wOH - log_k 0.0 + log_k 0 - Hfo_wOH + H+ = Hfo_wOH2+ - log_k 7.29 # = pKa1,int + Hfo_wOH + H+ = Hfo_wOH2+ + log_k 7.29 # = pKa1,int Hfo_wOH = Hfo_wO- + H+ - log_k -8.93 # = -pKa2,int + log_k -8.93 # = -pKa2,int ############################################### # CATIONS # @@ -3552,64 +3556,64 @@ SURFACE_SPECIES # # Calcium Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - log_k 4.97 + log_k 4.97 Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ log_k -5.85 # Strontium Hfo_sOH + Sr+2 = Hfo_sOHSr+2 - log_k 5.01 + log_k 5.01 Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ log_k -6.58 - Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+ - log_k -17.60 + Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2 H+ + log_k -17.6 # Barium Hfo_sOH + Ba+2 = Hfo_sOHBa+2 - log_k 5.46 + log_k 5.46 Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - log_k -7.2 # table 10.5 + log_k -7.2 # table 10.5 # # Cations from table 10.2 # # Silver Hfo_sOH + Ag+ = Hfo_sOAg + H+ - log_k -1.72 + log_k -1.72 Hfo_wOH + Ag+ = Hfo_wOAg + H+ - log_k -5.3 # table 10.5 + log_k -5.3 # table 10.5 # Nickel Hfo_sOH + Ni+2 = Hfo_sONi+ + H+ - log_k 0.37 + log_k 0.37 Hfo_wOH + Ni+2 = Hfo_wONi+ + H+ - log_k -2.5 # table 10.5 + log_k -2.5 # table 10.5 # Cadmium Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ - log_k 0.47 + log_k 0.47 Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ - log_k -2.91 + log_k -2.91 # Zinc Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ - log_k 0.99 + log_k 0.99 Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ - log_k -1.99 + log_k -1.99 # Copper Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ - log_k 2.89 + log_k 2.89 Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ - log_k 0.6 # table 10.5 + log_k 0.6 # table 10.5 # Lead Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ - log_k 4.65 + log_k 4.65 Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ - log_k 0.3 # table 10.5 + log_k 0.3 # table 10.5 # # Derived constants table 10.5 # @@ -3619,17 +3623,17 @@ SURFACE_SPECIES # Manganese Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ - log_k -0.4 # table 10.5 + log_k -0.4 # table 10.5 Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ - log_k -3.5 # table 10.5 + log_k -3.5 # table 10.5 # Uranyl Hfo_sOH + UO2+2 = Hfo_sOUO2+ + H+ - log_k 5.2 # table 10.5 + log_k 5.2 # table 10.5 Hfo_wOH + UO2+2 = Hfo_wOUO2+ + H+ - log_k 2.8 # table 10.5 + log_k 2.8 # table 10.5 # Iron # Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ @@ -3641,91 +3645,91 @@ SURFACE_SPECIES # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, subm. Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ - log_k -0.95 + log_k -0.95 # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ log_k -2.98 - Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+ + Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2 H+ log_k -11.55 ############################################### # ANIONS # ############################################### # -# Anions from table 10.6 +# Anions from table 10.6 # # Phosphate - Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O - log_k 31.29 + Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O + log_k 31.29 - Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O - log_k 25.39 + Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O + log_k 25.39 Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O - log_k 17.72 + log_k 17.72 # Arsenate - Hfo_wOH + AsO4-3 + 3H+ = Hfo_wH2AsO4 + H2O - log_k 29.31 + Hfo_wOH + AsO4-3 + 3 H+ = Hfo_wH2AsO4 + H2O + log_k 29.31 - Hfo_wOH + AsO4-3 + 2H+ = Hfo_wHAsO4- + H2O - log_k 23.51 + Hfo_wOH + AsO4-3 + 2 H+ = Hfo_wHAsO4- + H2O + log_k 23.51 Hfo_wOH + AsO4-3 = Hfo_wOHAsO4-3 - log_k 10.58 + log_k 10.58 # # Anions from table 10.7 # # Arsenite Hfo_wOH + H3AsO3 = Hfo_wH2AsO3 + H2O - log_k 5.41 + log_k 5.41 # Borate Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O - log_k 0.62 + log_k 0.62 # # Anions from table 10.8 # # Sulfate Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O - log_k 7.78 + log_k 7.78 Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - log_k 0.79 + log_k 0.79 # Selenate Hfo_wOH + SeO4-2 + H+ = Hfo_wSeO4- + H2O - log_k 7.73 + log_k 7.73 Hfo_wOH + SeO4-2 = Hfo_wOHSeO4-2 - log_k 0.80 + log_k 0.8 # Selenite Hfo_wOH + SeO3-2 + H+ = Hfo_wSeO3- + H2O - log_k 12.69 + log_k 12.69 Hfo_wOH + SeO3-2 = Hfo_wOHSeO3-2 - log_k 5.17 + log_k 5.17 # # Derived constants table 10.10 # Hfo_wOH + F- + H+ = Hfo_wF + H2O - log_k 8.7 + log_k 8.7 Hfo_wOH + F- = Hfo_wOHF- - log_k 1.6 + log_k 1.6 # # Carbonate: Van Geen et al., 1994 reoptimized for HFO # 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O - log_k 12.56 + log_k 12.56 - Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O - log_k 20.62 + Hfo_wOH + CO3-2 + 2 H+ = Hfo_wHCO3 + H2O + log_k 20.62 # # Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research, 33, 3413-3422. # - Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 - Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O ; log_K -3.22 - Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2H+ + H2O ; log_K -11.69 + Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O; log_K 4.28 + Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O; log_K -3.22 + Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2 H+ + H2O; log_K -11.69 RATES ########### @@ -3743,15 +3747,15 @@ RATES Quartz -start -1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 -2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol -3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) -4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz -5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 +1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 +2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol +3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) +4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz +5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 10 dif_temp = 1/TK - 1/298 20 pk_w = 13.7 + 4700.4 * dif_temp -40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) +40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) # Integrate... 50 SAVE moles * TIME -end @@ -3796,38 +3800,38 @@ Quartz K-feldspar -start -1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 -2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar -3 REM PARM(2) = Adjusts lab rate to field rate -4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) -5 REM K-Feldspar parameters -10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 -20 RESTORE 10 -30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH -40 DATA 3500, 2000, 2500, 2000 -50 RESTORE 40 -60 READ e_H, e_H2O, e_OH, e_CO2 -70 pk_CO2 = 13 -80 n_CO2 = 0.6 +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM K-Feldspar parameters +10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp -150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis -170 pk_H2O = pk_H2O + e_H2O * dif_temp +170 pk_H2O = pk_H2O + e_H2O * dif_temp 180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) 190 REM rate by OH- -200 pk_OH = pk_OH + e_OH * dif_temp -210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH 220 REM rate by CO2 -230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) -280 moles = rate * TIME +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) +280 moles = rate * TIME 290 SAVE moles -end @@ -3871,38 +3875,38 @@ K-feldspar Albite -start -1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 -2 REM PARM(1) = Specific area of Albite m^2/mol Albite -3 REM PARM(2) = Adjusts lab rate to field rate -4 REM temp corr: from A&P, p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) -5 REM Albite parameters -10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 -20 RESTORE 10 -30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH -40 DATA 3500, 2000, 2500, 2000 -50 RESTORE 40 -60 READ e_H, e_H2O, e_OH, e_CO2 -70 pk_CO2 = 13 -80 n_CO2 = 0.6 +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Albite m^2/mol Albite +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM Albite parameters +10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 100 REM Generic rate follows 110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") 130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp -150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) 160 REM rate by hydrolysis -170 pk_H2O = pk_H2O + e_H2O * dif_temp +170 pk_H2O = pk_H2O + e_H2O * dif_temp 180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) 190 REM rate by OH- -200 pk_OH = pk_OH + e_OH * dif_temp -210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH 220 REM rate by CO2 -230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp 240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("Albite")) -280 moles = rate * TIME +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("Albite")) +280 moles = rate * TIME 290 SAVE moles -end @@ -3910,7 +3914,7 @@ Albite #Calcite ######## # Example of KINETICS data block for calcite rate, -# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257. +# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257 # KINETICS 1 # Calcite # -tol 1e-8 @@ -3921,16 +3925,16 @@ Albite Calcite -start -1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite -2 REM PARM(2) = exponent for M/M0 +1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite +2 REM PARM(2) = exponent for M/M0 -10 si_cc = SI("Calcite") -20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 -30 k1 = 10^(0.198 - 444.0 / TK ) -40 k2 = 10^(2.84 - 2177.0 /TK ) -50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317.0 / TK) -60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737.0 / TK ) -80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M +10 si_cc = SI("Calcite") +20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 +30 k1 = 10^(0.198 - 444 / TK ) +40 k2 = 10^(2.84 - 2177 /TK ) +50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317 / TK) +60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737 / TK ) +80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M 110 rate = area * (k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O")) 120 rate = rate * (1 - 10^(2/3*si_cc)) 130 moles = rate * 0.001 * TIME # convert from mmol to mol @@ -3955,18 +3959,18 @@ Calcite # -time 1 day in 10 Pyrite -start -1 REM Williamson and Rimstidt, 1994 -2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) -3 REM PARM(2) = exp for (M/M0) -4 REM PARM(3) = exp for O2 -5 REM PARM(4) = exp for H+ +1 REM Williamson and Rimstidt, 1994 +2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) +3 REM PARM(2) = exp for (M/M0) +4 REM PARM(3) = exp for O2 +5 REM PARM(4) = exp for H+ -10 REM Dissolution in presence of DO -20 if (M <= 0) THEN GOTO 200 -30 if (SI("Pyrite") >= 0) THEN GOTO 200 -40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") -50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) -60 moles = 10^(log_area + log_rate) * TIME +10 REM Dissolution in presence of DO +20 if (M <= 0) THEN GOTO 200 +30 if (SI("Pyrite") >= 0) THEN GOTO 200 +40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") +50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) +60 moles = 10^(log_area + log_rate) * TIME 200 SAVE moles -end @@ -3983,19 +3987,19 @@ Pyrite # -time 30 year in 15 Organic_C -start -1 REM Additive Monod kinetics for SOC (sediment organic carbon) -2 REM Electron acceptors: O2, NO3, and SO4 +1 REM Additive Monod kinetics for SOC (sediment organic carbon) +2 REM Electron acceptors: O2, NO3, and SO4 -10 if (M <= 0) THEN GOTO 200 -20 mO2 = MOL("O2") -30 mNO3 = TOT("N(5)") -40 mSO4 = TOT("S(6)") -50 k_O2 = 1.57e-9 # 1/sec -60 k_NO3 = 1.67e-11 # 1/sec -70 k_SO4 = 1.e-13 # 1/sec -80 rate = k_O2 * mO2/(2.94e-4 + mO2) -90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) -100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) +10 if (M <= 0) THEN GOTO 200 +20 mO2 = MOL("O2") +30 mNO3 = TOT("N(5)") +40 mSO4 = TOT("S(6)") +50 k_O2 = 1.57e-9 # 1/sec +60 k_NO3 = 1.67e-11 # 1/sec +70 k_SO4 = 1.e-13 # 1/sec +80 rate = k_O2 * mO2/(2.94e-4 + mO2) +90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) +100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) 110 moles = rate * M * (M/M0) * TIME 200 SAVE moles -end @@ -4016,14 +4020,14 @@ Organic_C # -time 0.5 day in 10 Pyrolusite -start -10 if (M <= 0) THEN GOTO 200 -20 sr_pl = SR("Pyrolusite") -30 if (sr_pl > 1) THEN GOTO 100 -40 REM sr_pl <= 1, undersaturated -50 Fe_t = TOT("Fe(2)") -60 if Fe_t < 1e-8 then goto 200 -70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) -80 GOTO 200 +10 if (M <= 0) THEN GOTO 200 +20 sr_pl = SR("Pyrolusite") +30 if (sr_pl > 1) THEN GOTO 100 +40 REM sr_pl <= 1, undersaturated +50 Fe_t = TOT("Fe(2)") +60 if Fe_t < 1e-8 then goto 200 +70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) +80 GOTO 200 100 REM sr_pl > 1, supersaturated 110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME 200 SAVE moles * SOLN_VOL From 92562d5d331295e5eb67e7b4fbd32cb3616a0c45 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Sun, 19 May 2024 22:32:41 -0600 Subject: [PATCH 166/384] lsp of databases, changed alk of e- to 1.0 in all databases, modified sit.dat --- RELEASE.TXT | 11 +++++++++++ 1 file changed, 11 insertions(+) diff --git a/RELEASE.TXT b/RELEASE.TXT index 92a3d4aa..3d5ca8e4 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,4 +1,15 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + + ----------------- + May 18, 2024 + ----------------- + DATABASES: + sit.dat was updated to version 12a (Aug 22, 2023) from www.thermochimie-tdb.com. + + Amm.dat, iso.dat, llnl.dat, minteq.dat, minteq.v4.dat, phreeqc.dat, + phreeqc_rates.dat, pitzer.dat. Tipping_Hurley.dat, and wateq4f.dat were + reformatted by using the lsp utility by David Kinniburgh from phreeplot.org. + ----------------- May 3, 2024 ----------------- From 939517fc0818ddae742ce4462d88b1c0e0242db9 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Wed, 22 May 2024 20:45:16 -0600 Subject: [PATCH 167/384] Tonys changes to Br in phreeqc.dat, amm.dat, and pitzer.dat. New test case NaK_ClBr. --- Amm.dat | 9 +++++---- phreeqc.dat | 8 ++++---- pitzer.dat | 9 ++++----- 3 files changed, 13 insertions(+), 13 deletions(-) diff --git a/Amm.dat b/Amm.dat index 8c8c4701..2ae946d5 100644 --- a/Amm.dat +++ b/Amm.dat @@ -1,6 +1,6 @@ -# File 1 = C:\GitPrograms\phreeqc3-1\database\Amm.dat, 17/05/2024 14:30, 1947 lines, 55811 bytes, md5=f11f0d8a8ca35e2b27e82514f241db82 -# Created 17 May 2024 14:30:37 -# c:\3rdParty\lsp\lsp.exe -f2 -k="asis" -ts "Amm.dat" +# File 1 = C:\GitPrograms\phreeqc3-1\database\Amm.dat, 22/05/2024 19:38, 1948 lines, 55817 bytes, md5=78b3659799b73ddca128328b6ee7533b +# Created 22 May 2024 19:55:37 +# C:\3rdParty\lsp\lsp.exe -f2 -k=asis -ts Amm.dat # PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: # diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. @@ -176,7 +176,7 @@ Br- = Br- -gamma 3 0 -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.82 - -dw 2.01e-9 139 2.94 0 1.304 + -dw 2.09e-9 208 3.5 0 0.5737 Zn+2 = Zn+2 -gamma 5 0 -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 @@ -1887,6 +1887,7 @@ Pyrolusite 200 SAVE moles * SOLN_VOL -end +END # ============================================================================================= #(a) means amorphous. (d) means disordered, or less crystalline. #(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt), diff --git a/phreeqc.dat b/phreeqc.dat index 5fe91c4a..c8e0f4c7 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -1,6 +1,6 @@ -# File 1 = C:\GitPrograms\phreeqc3-1\database\phreeqc.dat, 07/05/2024 14:37, 1961 lines, 56151 bytes, md5=996b3d979d94f4baeb9d27addf2b91a4 -# Created 17 May 2024 14:30:43 -# c:\3rdParty\lsp\lsp.exe -f2 -k="asis" -ts "phreeqc.dat" +# File 1 = C:\GitPrograms\phreeqc3-1\database\Amm.dat, 22/05/2024 19:38, 1948 lines, 55817 bytes, md5=78b3659799b73ddca128328b6ee7533b +# Created 22 May 2024 19:55:37 +# C:\3rdParty\lsp\lsp.exe -f2 -k=asis -ts Amm.dat # PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: # diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. @@ -177,7 +177,7 @@ Br- = Br- -gamma 3 0 -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.82 - -dw 2.01e-9 139 2.94 0 1.304 + -dw 2.09e-9 208 3.5 0 0.5737 Zn+2 = Zn+2 -gamma 5 0 -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 diff --git a/pitzer.dat b/pitzer.dat index 66e86614..c77909a7 100644 --- a/pitzer.dat +++ b/pitzer.dat @@ -1,6 +1,6 @@ -# File 1 = C:\GitPrograms\phreeqc3-1\database\pitzer.dat, 07/05/2024 14:37, 1032 lines, 37439 bytes, md5=8c8a391e10b8f6a9fabafe33d779565e -# Created 17 May 2024 14:30:44 -# c:\3rdParty\lsp\lsp.exe -f2 -k="asis" -ts "pitzer.dat" +# File 1 = C:\GitPrograms\phreeqc3-1\database\pitzer.dat, 22/05/2024 19:46, 1033 lines, 38088 bytes, md5=d70476773ed110a269ebbcaf334f1133 +# Created 22 May 2024 19:49:25 +# C:\3rdParty\lsp\lsp.exe -f2 -k=asis -ts pitzer.dat # Pitzer.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution, using # diffusion coefficients of species, molal volumina of aqueous species and minerals, and critical temperatures and pressures of gases used in Peng-Robinson's EOS. @@ -108,7 +108,7 @@ B(OH)3 = B(OH)3 Br- = Br- -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 -viscosity -1.16e-2 -5.23e-2 5.54e-2 1.22e-2 0.119 0.9969 0.818 - -dw 2.01e-9 139 2.949 0 1.321 + -dw 2.09e-9 208 3.5 0 0.5737 H4SiO4 = H4SiO4 -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt 2*H2O in a1 -dw 1.1e-9 @@ -972,7 +972,6 @@ KOH K+ 1 OH- 1 HCl H+ 1 Cl- 1 H2SO4 H+ 2 SO4-2 1 HBr H+ 1 Br- 1 - END # For the reaction aA + bB = cC + dD, From e39a5d3c5e703dbad6f91400acee67bb270de636 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Fri, 24 May 2024 02:02:32 -0600 Subject: [PATCH 168/384] fixed Br- in phreeqc_rates.dat --- phreeqc_rates.dat | 208 +++++++++++++++++++++++----------------------- 1 file changed, 104 insertions(+), 104 deletions(-) diff --git a/phreeqc_rates.dat b/phreeqc_rates.dat index 96df4d41..d11dd870 100644 --- a/phreeqc_rates.dat +++ b/phreeqc_rates.dat @@ -1,6 +1,6 @@ -# File 1 = C:\GitPrograms\phreeqc3-1\database\phreeqc_rates.dat, 16/05/2024 09:28, 3160 lines, 110660 bytes, md5=d5a6c0cc3a36342ad14ea953f26a23ec -# Created 17 May 2024 14:30:43 -# c:\3rdParty\lsp\lsp.exe -f2 -k="asis" -ts "phreeqc_rates.dat" +# File 1 = C:\GitPrograms\phreeqc3-1\database\phreeqc_rates.dat, 24/05/2024 01:41, 3147 lines, 110328 bytes, md5=7fc916311a573d0ad7ce880f996a9bbf +# Created 24 May 2024 01:58:45 +# C:\3rdParty\lsp\lsp.exe -f2 -k=asis -ts phreeqc_rates.dat # PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Augmented with kinetic rates for minerals from compilations. Based on: # diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. @@ -62,7 +62,7 @@ Oxg Oxg 0 Oxg 32 # O2 gas Mtg Mtg 0 Mtg 16.032 # CH4 gas Sg H2Sg 0 H2Sg 32.064 # H2S gas Ntg Ntg 0 Ntg 28.0134 # N2 gas - + SOLUTION_SPECIES H+ = H+ -gamma 9 0 @@ -177,7 +177,7 @@ Br- = Br- -gamma 3 0 -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.82 - -dw 2.01e-9 139 2.94 0 1.304 + -dw 2.09e-9 208 3.5 0 0.5737 Zn+2 = Zn+2 -gamma 5 0 -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 @@ -1575,27 +1575,27 @@ SURFACE_SPECIES Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2 H+ + H2O; log_K -11.69 MEAN_GAMMAS -CaCl2 Ca+2 1 Cl- 2 -CaSO4 Ca+2 1 SO4-2 1 -CaCO3 Ca+2 1 CO3-2 1 -Ca(OH)2 Ca+2 1 OH- 2 -MgCl2 Mg+2 1 Cl- 2 -MgSO4 Mg+2 1 SO4-2 1 -MgCO3 Mg+2 1 CO3-2 1 -Mg(OH)2 Mg+2 1 OH- 2 -NaCl Na+ 1 Cl- 1 -Na2SO4 Na+ 2 SO4-2 1 -NaHCO3 Na+ 1 HCO3- 1 -Na2CO3 Na+ 2 CO3-2 1 -NaOH Na+ 1 OH- 1 -KCl K+ 1 Cl- 1 -K2SO4 K+ 2 SO4-2 1 -HCO3 K+ 1 HCO3- 1 -K2CO3 K+ 2 CO3-2 1 -KOH K+ 1 OH- 1 -HCl H+ 1 Cl- 1 -H2SO4 H+ 2 SO4-2 1 -HBr H+ 1 Br- 1 +CaCl2 Ca+2 1 Cl- 2 +CaSO4 Ca+2 1 SO4-2 1 +CaCO3 Ca+2 1 CO3-2 1 +Ca(OH)2 Ca+2 1 OH- 2 +MgCl2 Mg+2 1 Cl- 2 +MgSO4 Mg+2 1 SO4-2 1 +MgCO3 Mg+2 1 CO3-2 1 +Mg(OH)2 Mg+2 1 OH- 2 +NaCl Na+ 1 Cl- 1 +Na2SO4 Na+ 2 SO4-2 1 +NaHCO3 Na+ 1 HCO3- 1 +Na2CO3 Na+ 2 CO3-2 1 +NaOH Na+ 1 OH- 1 +KCl K+ 1 Cl- 1 +K2SO4 K+ 2 SO4-2 1 +HCO3 K+ 1 HCO3- 1 +K2CO3 K+ 2 CO3-2 1 +KOH K+ 1 OH- 1 +HCl H+ 1 Cl- 1 +H2SO4 H+ 2 SO4-2 1 +HBr H+ 1 Br- 1 RATES @@ -2512,113 +2512,113 @@ RATE_PARAMETERS_PK # Acid Neutral Base # log K E n(H+) log K E log K E n(OH-) # ================================================================ -Quartz -30 0 0 -13.4 90.9 -30 0 0 # Table 4 +Quartz -30 0 0 -13.4 90.9 -30 0 0 # Table 4 # -SiO2(a) -30 0 0 -12.31 76 -30 0 0 # Table 6 -Cristobalite -30 0 0 -12.31 65 -30 0 0 +SiO2(a) -30 0 0 -12.31 76 -30 0 0 # Table 6 +Cristobalite -30 0 0 -12.31 65 -30 0 0 # -Albite -10.16 65 0.317 -12.56 65 -15.6 66.5 -0.471 # Table 1 -Oligoclase -9.67 65 0.457 -11.84 69.8 -30 0 0 # Table 13 -Andesine -8.88 53.5 0.541 -11.47 57.4 -30 0 0 -Labradorite -7.87 42.1 0.626 -10.91 45.2 -30 0 0 -Bytownite -5.85 29.3 1.018 -9.82 31.5 -30 0 0 -Anorthite -3.5 16.6 1.411 -9.12 17.8 -30 0 0 +Albite -10.16 65 0.317 -12.56 65 -15.6 66.5 -0.471 # Table 1 +Oligoclase -9.67 65 0.457 -11.84 69.8 -30 0 0 # Table 13 +Andesine -8.88 53.5 0.541 -11.47 57.4 -30 0 0 +Labradorite -7.87 42.1 0.626 -10.91 45.2 -30 0 0 +Bytownite -5.85 29.3 1.018 -9.82 31.5 -30 0 0 +Anorthite -3.5 16.6 1.411 -9.12 17.8 -30 0 0 # -K-feldspar -10.06 51.7 0.5 -12.41 38 -21.2 94.1 -0.823 # Table 14 +K-feldspar -10.06 51.7 0.5 -12.41 38 -21.2 94.1 -0.823 # Table 14 # -Nepheline -2.73 62.9 1.13 -8.56 65.4 -10.76 37.8 -0.2 # Table 18 -Leucite -6 132.2 0.7 -9.2 75.5 -10.66 56.6 -0.2 +Nepheline -2.73 62.9 1.13 -8.56 65.4 -10.76 37.8 -0.2 # Table 18 +Leucite -6 132.2 0.7 -9.2 75.5 -10.66 56.6 -0.2 # -Forsterite -6.85 67.2 0.47 -10.64 79 -30 0 0 # Table 23 -Fayalite -4.8 94.4 0 -12.8 94.4 -30 0 0 -Almandine -5.2 94.4 1 -10.7 103.8 -13.71 37.8 -0.35 -Grossular -5.1 85 1 -10.7 103.8 -30 0 0 -Andradite -5.2 94.4 1 -10.7 103.8 -30 0 0 -Kyanite -10.17 -53.9 1.268 -17.44 53.9 -30 0 0 -Staurolite -6.9 18.9 1 -12.2 56.6 -14.9 47.2 -0.3 -Epidote -10.6 71.1 0.338 -11.99 70.7 -17.33 79.1 -0.556 -Zoisite -7.5 66.1 0.5 -11.2 66.1 -30 0 0 +Forsterite -6.85 67.2 0.47 -10.64 79 -30 0 0 # Table 23 +Fayalite -4.8 94.4 0 -12.8 94.4 -30 0 0 +Almandine -5.2 94.4 1 -10.7 103.8 -13.71 37.8 -0.35 +Grossular -5.1 85 1 -10.7 103.8 -30 0 0 +Andradite -5.2 94.4 1 -10.7 103.8 -30 0 0 +Kyanite -10.17 -53.9 1.268 -17.44 53.9 -30 0 0 +Staurolite -6.9 18.9 1 -12.2 56.6 -14.9 47.2 -0.3 +Epidote -10.6 71.1 0.338 -11.99 70.7 -17.33 79.1 -0.556 +Zoisite -7.5 66.1 0.5 -11.2 66.1 -30 0 0 # -Cordierite -3.8 113.3 1 -11.2 28.3 -30 0 0 # Table 25 -Tourmaline -6.5 75.5 1 -11.2 85 -30 0 0 +Cordierite -3.8 113.3 1 -11.2 28.3 -30 0 0 # Table 25 +Tourmaline -6.5 75.5 1 -11.2 85 -30 0 0 # -augite -6.82 78 0.7 -11.97 78 -30 0 0 # Table 26 -bronzite -8.3 47.2 0.65 -11.7 66.1 -30 0 0 -diopside -6.36 96.1 0.71 -11.11 40.6 -30 0 0 -enstatite -9.02 80 0.6 -12.72 80 -30 0 0 -jadeite -6 132.2 0.7 -9.5 94.4 -30 0 0 -spodumene -4.6 94.4 0.7 -9.3 66.1 -30 0 0 -wollastonite -5.37 54.7 0.4 -8.88 54.7 -30 0 0 +augite -6.82 78 0.7 -11.97 78 -30 0 0 # Table 26 +bronzite -8.3 47.2 0.65 -11.7 66.1 -30 0 0 +diopside -6.36 96.1 0.71 -11.11 40.6 -30 0 0 +enstatite -9.02 80 0.6 -12.72 80 -30 0 0 +jadeite -6 132.2 0.7 -9.5 94.4 -30 0 0 +spodumene -4.6 94.4 0.7 -9.3 66.1 -30 0 0 +wollastonite -5.37 54.7 0.4 -8.88 54.7 -30 0 0 # -anthophyllite -11.94 51 0.44 -14.24 51 -30 0 0 # Table 27 -glaucophane -5.6 85 0.7 -10.1 94.4 -30 0 0 -hornblende -7 75.5 0.6 -10.3 94.4 -30 0 0 -riebeckite -7.7 56.6 0.7 -12.2 47.2 -30 0 0 -tremolite -8.4 18.9 0.7 -10.6 94.4 -30 0 0 +anthophyllite -11.94 51 0.44 -14.24 51 -30 0 0 # Table 27 +glaucophane -5.6 85 0.7 -10.1 94.4 -30 0 0 +hornblende -7 75.5 0.6 -10.3 94.4 -30 0 0 +riebeckite -7.7 56.6 0.7 -12.2 47.2 -30 0 0 +tremolite -8.4 18.9 0.7 -10.6 94.4 -30 0 0 # -biotite -9.84 22 0.525 -12.55 22 -30 0 0 # Table 28 -glauconite -4.8 85 0.7 -9.1 85 -30 0 0 -muscovite -11.85 22 0.37 -13.55 22 -14.55 22 -0.22 -muscovite -30 0 0 -13 22 -30 0 0 -paragonite -30 0 0 -13 22 -30 0 0 -phlogopite -30 0 0 -12.4 29 -30 0 0 -pyrophyllite -30 0 0 -12.4 29 -30 0 0 +biotite -9.84 22 0.525 -12.55 22 -30 0 0 # Table 28 +glauconite -4.8 85 0.7 -9.1 85 -30 0 0 +muscovite -11.85 22 0.37 -13.55 22 -14.55 22 -0.22 +muscovite -30 0 0 -13 22 -30 0 0 +paragonite -30 0 0 -13 22 -30 0 0 +phlogopite -30 0 0 -12.4 29 -30 0 0 +pyrophyllite -30 0 0 -12.4 29 -30 0 0 # -kaolinite -11.31 65.9 0.777 -13.18 22.2 -17.05 17.9 -0.472 # Table 29 -montmorillonite -12.71 48 0.22 -14.41 48 -14.41 48 -0.13 # Montmorillonite, K0.318(Si3.975Al0.025)(Al1.509Fe0.205Mg0.283)(OH)2. -smectite -10.98 23.6 0.34 -12.78 35 -16.52 58.9 -0.4 # Smectite, K0.04Ca0.5(Al2.8Fe0.53Mg0.7)(Si7.65Al0.35)O20(OH)4. +kaolinite -11.31 65.9 0.777 -13.18 22.2 -17.05 17.9 -0.472 # Table 29 +montmorillonite -12.71 48 0.22 -14.41 48 -14.41 48 -0.13 # Montmorillonite, K0.318(Si3.975Al0.025)(Al1.509Fe0.205Mg0.283)(OH)2. +smectite -10.98 23.6 0.34 -12.78 35 -16.52 58.9 -0.4 # Smectite, K0.04Ca0.5(Al2.8Fe0.53Mg0.7)(Si7.65Al0.35)O20(OH)4. # -lizardite -5.7 75.5 0.8 -12.4 56.6 -30 0 0 # Table 30 -chrysotile -30 0 0 -12 73.5 -13.58 73.5 -0.23 -chlorite(14A) -11.11 88 0.5 -12.52 88 -30 0 0 -talc -30 0 0 -12 42 -30 0 0 -prehnite -10.66 80.5 0.256 -13.16 93.4 -14.86 93.4 -0.2 +lizardite -5.7 75.5 0.8 -12.4 56.6 -30 0 0 # Table 30 +chrysotile -30 0 0 -12 73.5 -13.58 73.5 -0.23 +chlorite(14A) -11.11 88 0.5 -12.52 88 -30 0 0 +talc -30 0 0 -12 42 -30 0 0 +prehnite -10.66 80.5 0.256 -13.16 93.4 -14.86 93.4 -0.2 # -goethite -30 0 0 -7.94 86.5 -30 0 0 # Table 31 -hematite -9.39 66.2 1 -14.6 66.2 -30 0 0 -magnetite -8.59 18.6 0.279 -10.78 18.6 -30 0 0 -ilmenite -8.35 37.9 0.421 -11.16 37.9 -30 0 0 -uraninite -30 0 0 -7.98 32 -30 0 0 +goethite -30 0 0 -7.94 86.5 -30 0 0 # Table 31 +hematite -9.39 66.2 1 -14.6 66.2 -30 0 0 +magnetite -8.59 18.6 0.279 -10.78 18.6 -30 0 0 +ilmenite -8.35 37.9 0.421 -11.16 37.9 -30 0 0 +uraninite -30 0 0 -7.98 32 -30 0 0 # -brucite -4.73 59 0.5 -8.24 42 -30 0 0 # Table 32 -gibbsite -7.65 47.5 0.992 -11.5 61.2 -16.65 80.1 -0.784 -diaspore -30 0 0 -13.33 47.5 -23.6 47.5 -1.503 +brucite -4.73 59 0.5 -8.24 42 -30 0 0 # Table 32 +gibbsite -7.65 47.5 0.992 -11.5 61.2 -16.65 80.1 -0.784 +diaspore -30 0 0 -13.33 47.5 -23.6 47.5 -1.503 # -anglesite -5.58 31.3 0.298 -6.5 31.3 -30 0 0 # Table 34 -anhydrite -30 0 0 -3.19 14.3 -30 0 0 -gypsum -30 0 0 -2.79 0 -30 0 0 -barite -6.9 30.8 0.22 -7.9 30.8 -30 0 0 -celestite -5.66 23.8 0.109 -30 0 -30 0 0 +anglesite -5.58 31.3 0.298 -6.5 31.3 -30 0 0 # Table 34 +anhydrite -30 0 0 -3.19 14.3 -30 0 0 +gypsum -30 0 0 -2.79 0 -30 0 0 +barite -6.9 30.8 0.22 -7.9 30.8 -30 0 0 +celestite -5.66 23.8 0.109 -30 0 -30 0 0 # -hydroxyapatite -4.29 250 0.171 -6 250 -30 0 0 # Table 36 -fluorapatite -3.73 250 0.613 -8 250 -30 0 0 +hydroxyapatite -4.29 250 0.171 -6 250 -30 0 0 # Table 36 +fluorapatite -3.73 250 0.613 -8 250 -30 0 0 # -halite -30 0 0 -0.21 7.4 -30 0 0 # Table 37 -fluorite -7.14 73 1 -13.79 73 -30 0 0 +halite -30 0 0 -0.21 7.4 -30 0 0 # Table 37 +fluorite -7.14 73 1 -13.79 73 -30 0 0 # # Acid Neutral P_CO2 # log K E n(H+) log K E log K E n(P_CO2) Table # ================================================================================ -calcite -0.3 14.4 1 -5.81 23.5 -3.48 35.4 1 33 # specify Table number for P_CO2^n(P_CO2) -dawsonite -30 0 0 -7 62.8 -30 0 0 33 -dolomite(d) -3.19 36.1 0.5 -7.53 52.2 -5.11 34.8 0.5 33 -dolomite -3.76 56.7 0.5 -8.6 95.3 -5.37 45.7 0.5 33 -magnesite -6.38 14.4 1 -9.34 23.5 -5.22 62.8 1 33 +calcite -0.3 14.4 1 -5.81 23.5 -3.48 35.4 1 33 # specify Table number for P_CO2^n(P_CO2) +dawsonite -30 0 0 -7 62.8 -30 0 0 33 +dolomite(d) -3.19 36.1 0.5 -7.53 52.2 -5.11 34.8 0.5 33 +dolomite -3.76 56.7 0.5 -8.6 95.3 -5.37 45.7 0.5 33 +magnesite -6.38 14.4 1 -9.34 23.5 -5.22 62.8 1 33 # # Acid and Fe+3 Neutral and O2 Base # log K E n(H+) n(Fe+3) log K E n(O2) log K E n(OH-) Table # ========================================================================================= -pyrite -7.52 56.9 -0.5 0.5 -4.55 56.9 0.5 -30 0 0 35 # specify Table number for Fe+3 and O2 -pyrrhotite(Mc) -8.04 50.8 -0.597 0.355 -30 0 0 -30 0 0 35 -pyrrhotite(Hx) -6.79 63 -0.09 0.356 -30 0 0 -30 0 0 35 -As2S3(a) -30 0 0 0 -9.83 8.7 0.18 -17.39 8.7 -1.208 35 +pyrite -7.52 56.9 -0.5 0.5 -4.55 56.9 0.5 -30 0 0 35 # specify Table number for Fe+3 and O2 +pyrrhotite(Mc) -8.04 50.8 -0.597 0.355 -30 0 0 -30 0 0 35 +pyrrhotite(Hx) -6.79 63 -0.09 0.356 -30 0 0 -30 0 0 35 +As2S3(a) -30 0 0 0 -9.83 8.7 0.18 -17.39 8.7 -1.208 35 RATE_PARAMETERS_SVD # Table 4: E's Table 3: H+-reaction H2O-reaction CO2-reaction Organic_acids OH--reaction Table 5 # H+ H2O CO2 Organic acids OH- pkH nH yAl CAl xBC CBC pkH2O yAl CAl xBC CBC zSi CSi pkCO2 nCO2 pkOrg nOrg COrg pkOH- wOH- yAl CAl xBC CBC zSi CSi # Num Mineral Formula # ================================================================================================================================================================================================================================================================================================= -Albite 3350 2500 1680 1200 3100 14.6 0.5 0.4 0.4 0.4 0.5 16.8 0.15 4 0.15 200 3 900 16.05 0.6 14.7 0.5 5 15.4 0.3 0.1 12 0.5 5 3 900 # 1.6 Albite NaAlSi3O8 -Quartz 3890 0 2200 2000 3320 18.4 0.3 0.3 5 0 500 17.8 0 5 0 5000 4 900 18 0.5 16.3 0.5 5 14.1 0.3 0.4 200 0 5000 1 900 # 8.3 Quartz SiO2 +Albite 3350 2500 1680 1200 3100 14.6 0.5 0.4 0.4 0.4 0.5 16.8 0.15 4 0.15 200 3 900 16.05 0.6 14.7 0.5 5 15.4 0.3 0.1 12 0.5 5 3 900 # 1.6 Albite NaAlSi3O8 +Quartz 3890 0 2200 2000 3320 18.4 0.3 0.3 5 0 500 17.8 0 5 0 5000 4 900 18 0.5 16.3 0.5 5 14.1 0.3 0.4 200 0 5000 1 900 # 8.3 Quartz SiO2 RATE_PARAMETERS_HERMANSKA From b3aa6834f5840bcfd5df4e6b54207c79ed962f03 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Fri, 24 May 2024 20:20:57 -0600 Subject: [PATCH 169/384] [phreeqc3] Updated ctest outputs --- ex1.out | 188 +- ex10.out | 5556 ++++++++++++++++++++++++++-------------------------- ex10.sel | 1240 ++++++------ ex11.out | 2 +- ex12.out | 2 +- ex12a.out | 2 +- ex13a.out | 2 +- ex13ac.out | 2 +- ex13b.out | 2 +- ex13c.out | 2 +- ex14.out | 530 ++--- ex14.sel | 402 ++-- ex16.out | 180 +- ex17.out | 5 +- ex17b.out | 49 +- ex18.out | 336 ++-- ex19.out | 2 +- ex19b.out | 2 +- ex2.out | 2 +- ex21.out | 6 +- ex22.out | 2 +- ex2b.out | 2 +- ex3.out | 554 +++--- ex4.out | 14 +- ex5.out | 876 ++++----- ex5.sel | 12 +- ex6.out | 2 +- ex7.out | 1566 +++++++-------- ex7.sel | 52 +- ex8.out | 2 +- ex9.out | 2 +- 31 files changed, 5797 insertions(+), 5799 deletions(-) diff --git a/ex1.out b/ex1.out index 0b4be6c4..1e5dee3b 100644 --- a/ex1.out +++ b/ex1.out @@ -13,7 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES - CALCULATE_VALUES + MEAN_GAMMAS RATES END ------------------------------------ @@ -121,21 +121,21 @@ Initial solution 1. SEAWATER FROM NORDSTROM AND OTHERS (1979) pH = 8.220 pe = 8.451 - Specific Conductance (µS/cm, 25°C) = 52855 + Specific Conductance (µS/cm, 25°C) = 52856 Density (g/cm³) = 1.02328 Volume (L) = 1.01278 - Viscosity (mPa s) = 0.96027 + Viscosity (mPa s) = 0.96029 Activity of water = 0.981 Ionic strength (mol/kgw) = 6.704e-01 Mass of water (kg) = 1.000e+00 - Total carbon (mol/kg) = 2.240e-03 - Total CO2 (mol/kg) = 2.240e-03 + Total carbon (mol/kg) = 2.238e-03 + Total CO2 (mol/kg) = 2.238e-03 Temperature (°C) = 25.00 Electrical balance (eq) = 7.936e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.07 Iterations = 7 Total H = 1.110148e+02 - Total O = 5.563072e+01 + Total O = 5.563071e+01 ---------------------------------Redox couples--------------------------------- @@ -149,50 +149,50 @@ Initial solution 1. SEAWATER FROM NORDSTROM AND OTHERS (1979) Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 2.703e-06 1.647e-06 -5.568 -5.783 -0.215 -2.64 + OH- 2.703e-06 1.647e-06 -5.568 -5.783 -0.215 -2.63 H+ 7.981e-09 6.026e-09 -8.098 -8.220 -0.122 0.00 H2O 5.551e+01 9.806e-01 1.744 -0.008 0.000 18.07 -C(4) 2.240e-03 - HCO3- 1.520e-03 1.027e-03 -2.818 -2.988 -0.170 25.99 - MgHCO3+ 2.745e-04 1.727e-04 -3.562 -3.763 -0.201 5.82 - NaHCO3 2.221e-04 3.024e-04 -3.653 -3.519 0.134 31.73 - MgCO3 9.394e-05 1.096e-04 -4.027 -3.960 0.067 -17.09 - CaHCO3+ 4.703e-05 3.256e-05 -4.328 -4.487 -0.160 9.96 - CO3-2 3.835e-05 7.992e-06 -4.416 -5.097 -0.681 -0.52 - CaCO3 2.859e-05 3.336e-05 -4.544 -4.477 0.067 -14.60 - CO2 1.281e-05 1.419e-05 -4.892 -4.848 0.044 34.43 - KHCO3 2.929e-06 2.972e-06 -5.533 -5.527 0.006 41.03 - UO2(CO3)3-4 1.257e-08 1.167e-10 -7.901 -9.933 -2.032 (0) - UO2(CO3)2-2 1.788e-09 5.550e-10 -8.748 -9.256 -0.508 (0) - MnCO3 2.657e-10 3.100e-10 -9.576 -9.509 0.067 (0) - MnHCO3+ 6.735e-11 4.469e-11 -10.172 -10.350 -0.178 (0) - UO2CO3 7.271e-12 8.484e-12 -11.138 -11.071 0.067 (0) - (CO2)2 3.166e-12 3.694e-12 -11.500 -11.432 0.067 68.87 - FeCO3 1.840e-20 2.147e-20 -19.735 -19.668 0.067 (0) - FeHCO3+ 1.541e-20 1.150e-20 -19.812 -19.939 -0.127 (0) +C(4) 2.238e-03 + HCO3- 1.541e-03 1.041e-03 -2.812 -2.983 -0.170 25.99 + MgHCO3+ 2.782e-04 1.751e-04 -3.556 -3.757 -0.201 5.82 + NaHCO3 2.252e-04 3.066e-04 -3.647 -3.513 0.134 31.73 + MgCO3 9.523e-05 1.111e-04 -4.021 -3.954 0.067 -17.09 + CO3-2 3.888e-05 8.103e-06 -4.410 -5.091 -0.681 -0.52 + CaCO3 2.908e-05 3.393e-05 -4.536 -4.469 0.067 -14.60 + CaHCO3+ 1.446e-05 1.001e-05 -4.840 -5.000 -0.160 122.92 + CO2 1.299e-05 1.438e-05 -4.886 -4.842 0.044 34.43 + KHCO3 2.969e-06 3.013e-06 -5.527 -5.521 0.006 41.03 + UO2(CO3)3-4 1.259e-08 1.169e-10 -7.900 -9.932 -2.032 (0) + UO2(CO3)2-2 1.767e-09 5.484e-10 -8.753 -9.261 -0.508 (0) + MnCO3 2.690e-10 3.139e-10 -9.570 -9.503 0.067 (0) + MnHCO3+ 6.820e-11 4.526e-11 -10.166 -10.344 -0.178 (0) + UO2CO3 7.086e-12 8.269e-12 -11.150 -11.083 0.067 (0) + (CO2)2 3.254e-12 3.797e-12 -11.488 -11.421 0.067 68.87 + FeCO3 1.866e-20 2.177e-20 -19.729 -19.662 0.067 (0) + FeHCO3+ 1.562e-20 1.166e-20 -19.806 -19.933 -0.127 (0) Ca 1.066e-02 - Ca+2 9.933e-03 2.485e-03 -2.003 -2.605 -0.602 -16.70 - CaSO4 6.518e-04 7.606e-04 -3.186 -3.119 0.067 7.50 - CaHCO3+ 4.703e-05 3.256e-05 -4.328 -4.487 -0.160 9.96 - CaCO3 2.859e-05 3.336e-05 -4.544 -4.477 0.067 -14.60 - CaOH+ 8.992e-08 6.712e-08 -7.046 -7.173 -0.127 (0) - CaHSO4+ 4.036e-11 3.012e-11 -10.394 -10.521 -0.127 (0) + Ca+2 9.964e-03 2.493e-03 -2.002 -2.603 -0.602 -16.70 + CaSO4 6.537e-04 7.628e-04 -3.185 -3.118 0.067 7.50 + CaCO3 2.908e-05 3.393e-05 -4.536 -4.469 0.067 -14.60 + CaHCO3+ 1.446e-05 1.001e-05 -4.840 -5.000 -0.160 122.92 + CaOH+ 9.020e-08 6.732e-08 -7.045 -7.172 -0.127 (0) + CaHSO4+ 4.048e-11 3.021e-11 -10.393 -10.520 -0.127 (0) Cl 5.657e-01 Cl- 5.657e-01 3.570e-01 -0.247 -0.447 -0.200 18.79 - MnCl+ 1.070e-09 7.103e-10 -8.970 -9.149 -0.178 -2.79 + MnCl+ 1.069e-09 7.094e-10 -8.971 -9.149 -0.178 -2.79 HCl 3.842e-10 7.411e-10 -9.415 -9.130 0.285 (0) - MnCl2 9.486e-11 1.107e-10 -10.023 -9.956 0.067 85.89 - MnCl3- 1.640e-11 1.089e-11 -10.785 -10.963 -0.178 45.78 + MnCl2 9.474e-11 1.106e-10 -10.023 -9.956 0.067 85.89 + MnCl3- 1.638e-11 1.087e-11 -10.786 -10.964 -0.178 45.78 FeCl+2 1.515e-18 2.938e-19 -17.820 -18.532 -0.712 (0) FeCl2+ 7.061e-19 4.686e-19 -18.151 -18.329 -0.178 (0) FeCl+ 7.395e-20 5.520e-20 -19.131 -19.258 -0.127 (0) FeCl3 1.434e-20 1.673e-20 -19.844 -19.777 0.067 (0) -Fe(2) 6.337e-19 - Fe+2 4.878e-19 1.120e-19 -18.312 -18.951 -0.639 -20.72 +Fe(2) 6.342e-19 + Fe+2 4.879e-19 1.120e-19 -18.312 -18.951 -0.639 -20.72 FeCl+ 7.395e-20 5.520e-20 -19.131 -19.258 -0.127 (0) - FeSO4 2.938e-20 3.428e-20 -19.532 -19.465 0.067 18.97 - FeCO3 1.840e-20 2.147e-20 -19.735 -19.668 0.067 (0) - FeHCO3+ 1.541e-20 1.150e-20 -19.812 -19.939 -0.127 (0) + FeSO4 2.937e-20 3.428e-20 -19.532 -19.465 0.067 18.97 + FeCO3 1.866e-20 2.177e-20 -19.729 -19.662 0.067 (0) + FeHCO3+ 1.562e-20 1.166e-20 -19.806 -19.933 -0.127 (0) FeOH+ 8.686e-21 5.764e-21 -20.061 -20.239 -0.178 (0) Fe(OH)2 6.842e-24 7.984e-24 -23.165 -23.098 0.067 (0) Fe(OH)3- 7.275e-26 4.828e-26 -25.138 -25.316 -0.178 (0) @@ -205,7 +205,7 @@ Fe(3) 3.711e-08 FeCl+2 1.515e-18 2.938e-19 -17.820 -18.532 -0.712 (0) FeSO4+ 7.749e-19 5.142e-19 -18.111 -18.289 -0.178 (0) FeCl2+ 7.061e-19 4.686e-19 -18.151 -18.329 -0.178 (0) - Fe+3 3.420e-19 2.725e-20 -18.466 -19.565 -1.099 (0) + Fe+3 3.421e-19 2.725e-20 -18.466 -19.565 -1.099 (0) Fe(SO4)2- 2.594e-20 1.936e-20 -19.586 -19.713 -0.127 (0) FeCl3 1.434e-20 1.673e-20 -19.844 -19.777 0.067 (0) Fe2(OH)2+4 2.378e-24 2.207e-26 -23.624 -25.656 -2.032 (0) @@ -215,55 +215,55 @@ H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.469 -44.402 0.067 28.61 K 1.058e-02 K+ 1.039e-02 6.478e-03 -1.983 -2.189 -0.205 9.66 - KSO4- 1.873e-04 1.697e-04 -3.728 -3.770 -0.043 11.35 - KHCO3 2.929e-06 2.972e-06 -5.533 -5.527 0.006 41.03 + KSO4- 1.873e-04 1.696e-04 -3.728 -3.770 -0.043 11.34 + KHCO3 2.969e-06 3.013e-06 -5.527 -5.521 0.006 41.03 Mg 5.507e-02 - Mg+2 4.980e-02 1.437e-02 -1.303 -1.842 -0.540 -20.42 - MgSO4 4.757e-03 6.477e-03 -2.323 -2.189 0.134 -7.92 - MgHCO3+ 2.745e-04 1.727e-04 -3.562 -3.763 -0.201 5.82 - Mg(SO4)2-2 1.297e-04 3.672e-05 -3.887 -4.435 -0.548 32.91 - MgCO3 9.394e-05 1.096e-04 -4.027 -3.960 0.067 -17.09 + Mg+2 4.979e-02 1.437e-02 -1.303 -1.842 -0.540 -20.42 + MgSO4 4.756e-03 6.476e-03 -2.323 -2.189 0.134 -7.92 + MgHCO3+ 2.782e-04 1.751e-04 -3.556 -3.757 -0.201 5.82 + Mg(SO4)2-2 1.296e-04 3.671e-05 -3.887 -4.435 -0.548 32.91 + MgCO3 9.523e-05 1.111e-04 -4.021 -3.954 0.067 -17.09 MgOH+ 1.205e-05 8.493e-06 -4.919 -5.071 -0.152 (0) Mn(2) 3.773e-09 - Mn+2 2.127e-09 4.883e-10 -8.672 -9.311 -0.639 -16.37 - MnCl+ 1.070e-09 7.103e-10 -8.970 -9.149 -0.178 -2.79 - MnCO3 2.657e-10 3.100e-10 -9.576 -9.509 0.067 (0) - MnSO4 1.281e-10 1.495e-10 -9.893 -9.825 0.067 22.54 - MnCl2 9.486e-11 1.107e-10 -10.023 -9.956 0.067 85.89 - MnHCO3+ 6.735e-11 4.469e-11 -10.172 -10.350 -0.178 (0) - MnCl3- 1.640e-11 1.089e-11 -10.785 -10.963 -0.178 45.78 - MnOH+ 3.078e-12 2.043e-12 -11.512 -11.690 -0.178 (0) - Mn(OH)3- 5.027e-20 3.336e-20 -19.299 -19.477 -0.178 (0) - Mn(NO3)2 1.350e-20 1.576e-20 -19.870 -19.802 0.067 41.04 -Mn(3) 5.351e-26 - Mn+3 5.351e-26 4.263e-27 -25.272 -26.370 -1.099 (0) + Mn+2 2.125e-09 4.877e-10 -8.673 -9.312 -0.639 -16.37 + MnCl+ 1.069e-09 7.094e-10 -8.971 -9.149 -0.178 -2.79 + MnCO3 2.690e-10 3.139e-10 -9.570 -9.503 0.067 (0) + MnSO4 1.279e-10 1.493e-10 -9.893 -9.826 0.067 22.54 + MnCl2 9.474e-11 1.106e-10 -10.023 -9.956 0.067 85.89 + MnHCO3+ 6.820e-11 4.526e-11 -10.166 -10.344 -0.178 (0) + MnCl3- 1.638e-11 1.087e-11 -10.786 -10.964 -0.178 45.78 + MnOH+ 3.075e-12 2.040e-12 -11.512 -11.690 -0.178 (0) + Mn(OH)3- 5.021e-20 3.332e-20 -19.299 -19.477 -0.178 (0) + Mn(NO3)2 1.349e-20 1.574e-20 -19.870 -19.803 0.067 41.04 +Mn(3) 5.345e-26 + Mn+3 5.345e-26 4.258e-27 -25.272 -26.371 -1.099 (0) N(-3) 1.724e-06 NH4+ 1.618e-06 9.103e-07 -5.791 -6.041 -0.250 18.48 NH3 7.378e-08 8.610e-08 -7.132 -7.065 0.067 24.42 NH4SO4- 3.206e-08 2.000e-08 -7.494 -7.699 -0.205 18.66 N(5) 4.847e-06 NO3- 4.847e-06 2.847e-06 -5.314 -5.546 -0.231 30.29 - Mn(NO3)2 1.350e-20 1.576e-20 -19.870 -19.802 0.067 41.04 + Mn(NO3)2 1.349e-20 1.574e-20 -19.870 -19.803 0.067 41.04 Na 4.854e-01 Na+ 4.712e-01 3.381e-01 -0.327 -0.471 -0.144 -0.51 - NaSO4- 1.396e-02 9.474e-03 -1.855 -2.023 -0.168 8.22 - NaHCO3 2.221e-04 3.024e-04 -3.653 -3.519 0.134 31.73 + NaSO4- 1.396e-02 9.473e-03 -1.855 -2.024 -0.168 8.22 + NaHCO3 2.252e-04 3.066e-04 -3.647 -3.513 0.134 31.73 NaOH 4.773e-17 5.570e-17 -16.321 -16.254 0.067 (0) O(0) 4.381e-04 O2 2.190e-04 2.556e-04 -3.659 -3.592 0.067 30.40 S(6) 2.926e-02 - NaSO4- 1.396e-02 9.474e-03 -1.855 -2.023 -0.168 8.22 - SO4-2 9.440e-03 1.721e-03 -2.025 -2.764 -0.739 38.41 - MgSO4 4.757e-03 6.477e-03 -2.323 -2.189 0.134 -7.92 - CaSO4 6.518e-04 7.606e-04 -3.186 -3.119 0.067 7.50 - KSO4- 1.873e-04 1.697e-04 -3.728 -3.770 -0.043 11.35 - Mg(SO4)2-2 1.297e-04 3.672e-05 -3.887 -4.435 -0.548 32.91 + NaSO4- 1.396e-02 9.473e-03 -1.855 -2.024 -0.168 8.22 + SO4-2 9.440e-03 1.721e-03 -2.025 -2.764 -0.739 38.42 + MgSO4 4.756e-03 6.476e-03 -2.323 -2.189 0.134 -7.92 + CaSO4 6.537e-04 7.628e-04 -3.185 -3.118 0.067 7.50 + KSO4- 1.873e-04 1.696e-04 -3.728 -3.770 -0.043 11.34 + Mg(SO4)2-2 1.296e-04 3.671e-05 -3.887 -4.435 -0.548 32.91 NH4SO4- 3.206e-08 2.000e-08 -7.494 -7.699 -0.205 18.66 HSO4- 1.351e-09 1.008e-09 -8.869 -8.996 -0.127 40.96 - MnSO4 1.281e-10 1.495e-10 -9.893 -9.825 0.067 22.54 - CaHSO4+ 4.036e-11 3.012e-11 -10.394 -10.521 -0.127 (0) + MnSO4 1.279e-10 1.493e-10 -9.893 -9.826 0.067 22.54 + CaHSO4+ 4.048e-11 3.021e-11 -10.393 -10.520 -0.127 (0) FeSO4+ 7.749e-19 5.142e-19 -18.111 -18.289 -0.178 (0) - FeSO4 2.938e-20 3.428e-20 -19.532 -19.465 0.067 18.97 + FeSO4 2.937e-20 3.428e-20 -19.532 -19.465 0.067 18.97 Fe(SO4)2- 2.594e-20 1.936e-20 -19.586 -19.713 -0.127 (0) FeHSO4+2 2.673e-26 8.297e-27 -25.573 -26.081 -0.508 (0) FeHSO4+ 1.819e-27 1.358e-27 -26.740 -26.867 -0.127 (0) @@ -271,37 +271,37 @@ Si 7.382e-05 H4SiO4 7.062e-05 8.241e-05 -4.151 -4.084 0.067 52.08 H3SiO4- 3.205e-06 2.017e-06 -5.494 -5.695 -0.201 28.72 H2SiO4-2 1.092e-10 2.276e-11 -9.962 -10.643 -0.681 (0) -U(4) 1.010e-21 - U(OH)5- 1.009e-21 7.535e-22 -20.996 -21.123 -0.127 (0) - U(OH)4 1.613e-25 1.882e-25 -24.792 -24.725 0.067 (0) - U+4 0.000e+00 0.000e+00 -47.001 -49.033 -2.032 (0) -U(5) 1.582e-18 - UO2+ 1.582e-18 1.181e-18 -17.801 -17.928 -0.127 (0) +U(4) 9.706e-22 + U(OH)5- 9.704e-22 7.243e-22 -21.013 -21.140 -0.127 (0) + U(OH)4 1.550e-25 1.809e-25 -24.810 -24.743 0.067 (0) + U+4 0.000e+00 0.000e+00 -47.018 -49.051 -2.032 (0) +U(5) 1.521e-18 + UO2+ 1.521e-18 1.135e-18 -17.818 -17.945 -0.127 (0) U(6) 1.437e-08 - UO2(CO3)3-4 1.257e-08 1.167e-10 -7.901 -9.933 -2.032 (0) - UO2(CO3)2-2 1.788e-09 5.550e-10 -8.748 -9.256 -0.508 (0) - UO2CO3 7.271e-12 8.484e-12 -11.138 -11.071 0.067 (0) - UO2OH+ 3.300e-14 2.463e-14 -13.481 -13.609 -0.127 (0) - UO2+2 2.952e-16 9.161e-17 -15.530 -16.038 -0.508 (0) - (UO2)2(OH)2+2 1.695e-21 5.259e-22 -20.771 -21.279 -0.508 (0) - (UO2)3(OH)5+ 2.688e-23 2.006e-23 -22.571 -22.698 -0.127 (0) + UO2(CO3)3-4 1.259e-08 1.169e-10 -7.900 -9.932 -2.032 (0) + UO2(CO3)2-2 1.767e-09 5.484e-10 -8.753 -9.261 -0.508 (0) + UO2CO3 7.086e-12 8.269e-12 -11.150 -11.083 0.067 (0) + UO2OH+ 3.172e-14 2.368e-14 -13.499 -13.626 -0.127 (0) + UO2+2 2.837e-16 8.807e-17 -15.547 -16.055 -0.508 (0) + (UO2)2(OH)2+2 1.566e-21 4.860e-22 -20.805 -21.313 -0.508 (0) + (UO2)3(OH)5+ 2.388e-23 1.782e-23 -22.622 -22.749 -0.127 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) Anhydrite -1.09 -5.37 -4.28 CaSO4 - Aragonite 0.63 -7.70 -8.34 CaCO3 + Aragonite 0.64 -7.69 -8.34 CaCO3 Arcanite -5.26 -7.14 -1.88 K2SO4 - Calcite 0.78 -7.70 -8.48 CaCO3 + Calcite 0.79 -7.69 -8.48 CaCO3 Chalcedony -0.52 -4.07 -3.55 SiO2 - Chrysotile 3.42 35.62 32.20 Mg3Si2O5(OH)4 - CO2(g) -3.38 -4.85 -1.47 CO2 - Dolomite 2.44 -14.64 -17.08 CaMg(CO3)2 + Chrysotile 3.41 35.62 32.20 Mg3Si2O5(OH)4 + CO2(g) -3.37 -4.84 -1.47 CO2 + Dolomite 2.46 -14.63 -17.08 CaMg(CO3)2 Epsomite -2.93 -4.67 -1.74 MgSO4:7H2O Fe(OH)3(a) 0.18 5.07 4.89 Fe(OH)3 Goethite 6.08 5.08 -1.00 FeOOH - Gypsum -0.80 -5.39 -4.58 CaSO4:2H2O + Gypsum -0.80 -5.38 -4.58 CaSO4:2H2O H2(g) -41.30 -44.40 -3.10 H2 H2O(g) -1.51 -0.01 1.50 H2O Halite -2.49 -0.92 1.57 NaCl @@ -316,17 +316,17 @@ U(6) 1.437e-08 NH3(g) -8.86 -7.07 1.80 NH3 O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000 Pyrochroite -8.09 7.11 15.20 Mn(OH)2 - Pyrolusite 6.98 48.36 41.38 MnO2:H2O + Pyrolusite 6.97 48.35 41.38 MnO2:H2O Quartz -0.09 -4.07 -3.98 SiO2 - Rhodochrosite -3.28 -14.41 -11.13 MnCO3 + Rhodochrosite -3.27 -14.40 -11.13 MnCO3 Sepiolite 1.19 16.95 15.76 Mg2Si3O7.5OH:3H2O Sepiolite(d) -1.71 16.95 18.66 Mg2Si3O7.5OH:3H2O - Siderite -13.16 -24.05 -10.89 FeCO3 + Siderite -13.15 -24.04 -10.89 FeCO3 SiO2(a) -1.36 -4.07 -2.71 SiO2 Sylvite -3.54 -2.64 0.90 KCl Talc 6.09 27.49 21.40 Mg3Si4O10(OH)2 Thenardite -3.41 -3.71 -0.30 Na2SO4 - Uraninite -12.68 -16.17 -3.49 UO2 + Uraninite -12.70 -16.19 -3.49 UO2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. diff --git a/ex10.out b/ex10.out index 95629a1f..a4bf78c6 100644 --- a/ex10.out +++ b/ex10.out @@ -13,7 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES - CALCULATE_VALUES + MEAN_GAMMAS RATES END ------------------------------------ @@ -118,21 +118,21 @@ Initial solution 1. ----------------------------Description of solution---------------------------- - pH = 7.969 Charge balance + pH = 7.963 Charge balance pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 686 + Specific Conductance (µS/cm, 25°C) = 701 Density (g/cm³) = 0.99755 - Volume (L) = 1.00309 - Viscosity (mPa s) = 0.89426 + Volume (L) = 1.00310 + Viscosity (mPa s) = 0.89435 Activity of water = 1.000 - Ionic strength (mol/kgw) = 1.105e-02 + Ionic strength (mol/kgw) = 1.134e-02 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 7.864e-03 Total CO2 (mol/kg) = 7.864e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = -5.424e-15 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 8 + Electrical balance (eq) = 6.473e-12 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 7 Total H = 1.110200e+02 Total O = 5.552965e+01 @@ -141,39 +141,39 @@ Initial solution 1. Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.052e-06 9.419e-07 -5.978 -6.026 -0.048 -4.03 - H+ 1.180e-08 1.074e-08 -7.928 -7.969 -0.041 0.00 + OH- 1.039e-06 9.295e-07 -5.983 -6.032 -0.048 -4.03 + H+ 1.197e-08 1.089e-08 -7.922 -7.963 -0.041 0.00 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -75.159 -75.158 0.001 35.46 + CH4 0.000e+00 0.000e+00 -75.099 -75.098 0.001 35.46 C(4) 7.864e-03 - HCO3- 7.326e-03 6.602e-03 -2.135 -2.180 -0.045 24.65 - CaHCO3+ 2.211e-04 1.996e-04 -3.655 -3.700 -0.044 9.73 - CO2 1.592e-04 1.595e-04 -3.798 -3.797 0.001 34.43 - CaCO3 1.144e-04 1.147e-04 -3.941 -3.940 0.001 -14.60 - CO3-2 4.369e-05 2.882e-05 -4.360 -4.540 -0.181 -3.65 - (CO2)2 4.657e-10 4.669e-10 -9.332 -9.331 0.001 68.87 + HCO3- 7.466e-03 6.720e-03 -2.127 -2.173 -0.046 24.65 + CO2 1.643e-04 1.645e-04 -3.784 -3.784 0.001 34.43 + CaCO3 1.191e-04 1.194e-04 -3.924 -3.923 0.001 -14.60 + CaHCO3+ 7.058e-05 6.365e-05 -4.151 -4.196 -0.045 122.69 + CO3-2 4.409e-05 2.895e-05 -4.356 -4.538 -0.183 -3.64 + (CO2)2 4.956e-10 4.969e-10 -9.305 -9.304 0.001 68.87 Ca 3.932e-03 - Ca+2 3.596e-03 2.370e-03 -2.444 -2.625 -0.181 -17.91 - CaHCO3+ 2.211e-04 1.996e-04 -3.655 -3.700 -0.044 9.73 - CaCO3 1.144e-04 1.147e-04 -3.941 -3.940 0.001 -14.60 - CaOH+ 4.077e-08 3.661e-08 -7.390 -7.436 -0.047 (0) -H(0) 1.630e-27 - H2 8.150e-28 8.171e-28 -27.089 -27.088 0.001 28.61 -O(0) 1.245e-38 - O2 6.225e-39 6.241e-39 -38.206 -38.205 0.001 30.40 + Ca+2 3.742e-03 2.455e-03 -2.427 -2.610 -0.183 -17.91 + CaCO3 1.191e-04 1.194e-04 -3.924 -3.923 0.001 -14.60 + CaHCO3+ 7.058e-05 6.365e-05 -4.151 -4.196 -0.045 122.69 + CaOH+ 4.173e-08 3.742e-08 -7.380 -7.427 -0.047 (0) +H(0) 1.674e-27 + H2 8.369e-28 8.391e-28 -27.077 -27.076 0.001 28.61 +O(0) 1.181e-38 + O2 5.903e-39 5.918e-39 -38.229 -38.228 0.001 30.40 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Aragonite 1.17 -7.17 -8.34 CaCO3 - Calcite 1.31 -7.17 -8.48 CaCO3 - CH4(g) -72.36 -75.16 -2.80 CH4 - CO2(g) -2.33 -3.80 -1.47 CO2 - H2(g) -23.99 -27.09 -3.10 H2 + Aragonite 1.19 -7.15 -8.34 CaCO3 + Calcite 1.33 -7.15 -8.48 CaCO3 + CH4(g) -72.30 -75.10 -2.80 CH4 + CO2(g) -2.32 -3.78 -1.47 CO2 + H2(g) -23.98 -27.08 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - O2(g) -35.31 -38.20 -2.89 O2 + O2(g) -35.34 -38.23 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -192,62 +192,62 @@ Using pure phase assemblage 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Aragonite 0.00 -8.34 -8.34 1.000e+01 9.993e+00 -6.582e-03 -CO2(g) -0.01 -1.48 -1.47 1.000e+01 9.961e+00 -3.934e-02 +Aragonite 0.00 -8.34 -8.34 1.000e+01 9.994e+00 -5.997e-03 +CO2(g) -0.01 -1.48 -1.47 1.000e+01 9.961e+00 -3.875e-02 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 5.379e-02 5.378e-02 - Ca 1.051e-02 1.051e-02 + C 5.262e-02 5.261e-02 + Ca 9.930e-03 9.929e-03 ----------------------------Description of solution---------------------------- - pH = 6.064 Charge balance - pe = 11.815 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 1721 - Density (g/cm³) = 0.99872 - Volume (L) = 1.00431 - Viscosity (mPa s) = 0.89965 + pH = 6.058 Charge balance + pe = 11.902 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 1708 + Density (g/cm³) = 0.99860 + Volume (L) = 1.00434 + Viscosity (mPa s) = 0.89962 Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.901e-02 + Ionic strength (mol/kgw) = 2.900e-02 Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 2.103e-02 - Total CO2 (mol/kg) = 5.379e-02 + Total alkalinity (eq/kg) = 1.986e-02 + Total CO2 (mol/kg) = 5.262e-02 Temperature (°C) = 25.00 - Electrical balance (eq) = 2.316e-12 + Electrical balance (eq) = 1.002e-11 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 10 Total H = 1.110200e+02 - Total O = 5.562807e+01 + Total O = 5.562514e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.847e-07 8.621e-07 -6.007 -6.064 -0.058 0.00 - OH- 1.386e-08 1.173e-08 -7.858 -7.931 -0.073 -3.95 + H+ 9.999e-07 8.753e-07 -6.000 -6.058 -0.058 0.00 + OH- 1.365e-08 1.155e-08 -7.865 -7.937 -0.073 -3.95 H2O 5.551e+01 9.989e-01 1.744 -0.000 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.128 -120.125 0.003 35.46 -C(4) 5.379e-02 + CH4 0.000e+00 0.000e+00 -120.774 -120.771 0.003 35.46 +C(4) 5.262e-02 CO2 3.273e-02 3.287e-02 -1.485 -1.483 0.002 34.43 - HCO3- 1.976e-02 1.694e-02 -1.704 -1.771 -0.067 24.73 - CaHCO3+ 1.257e-03 1.082e-03 -2.901 -2.966 -0.065 9.77 + HCO3- 1.946e-02 1.669e-02 -1.711 -1.778 -0.067 24.73 + CaHCO3+ 3.858e-04 3.321e-04 -3.414 -3.479 -0.065 122.73 (CO2)2 1.970e-05 1.984e-05 -4.705 -4.703 0.003 68.87 CaCO3 7.698e-06 7.750e-06 -5.114 -5.111 0.003 -14.60 - CO3-2 1.704e-06 9.217e-07 -5.769 -6.035 -0.267 -3.39 -Ca 1.051e-02 - Ca+2 9.251e-03 5.005e-03 -2.034 -2.301 -0.267 -17.74 - CaHCO3+ 1.257e-03 1.082e-03 -2.901 -2.966 -0.065 9.77 + CO3-2 1.652e-06 8.940e-07 -5.782 -6.049 -0.267 -3.39 +Ca 9.930e-03 + Ca+2 9.536e-03 5.160e-03 -2.021 -2.287 -0.267 -17.74 + CaHCO3+ 3.858e-04 3.321e-04 -3.414 -3.479 -0.065 122.73 CaCO3 7.698e-06 7.750e-06 -5.114 -5.111 0.003 -14.60 - CaOH+ 1.130e-09 9.625e-10 -8.947 -9.017 -0.070 (0) -H(0) 2.454e-39 - H2 1.227e-39 1.235e-39 -38.911 -38.908 0.003 28.61 -O(0) 5.417e-15 - O2 2.709e-15 2.727e-15 -14.567 -14.564 0.003 30.40 + CaOH+ 1.148e-09 9.773e-10 -8.940 -9.010 -0.070 (0) +H(0) 1.692e-39 + H2 8.460e-40 8.517e-40 -39.073 -39.070 0.003 28.61 +O(0) 1.139e-14 + O2 5.697e-15 5.735e-15 -14.244 -14.241 0.003 30.40 ------------------------------Saturation indices------------------------------- @@ -255,11 +255,11 @@ O(0) 5.417e-15 Aragonite 0.00 -8.34 -8.34 CaCO3 Calcite 0.14 -8.34 -8.48 CaCO3 - CH4(g) -117.32 -120.13 -2.80 CH4 + CH4(g) -117.97 -120.77 -2.80 CH4 CO2(g) -0.01 -1.48 -1.47 CO2 Pressure 1.0 atm, phi 0.995 - H2(g) -35.81 -38.91 -3.10 H2 + H2(g) -35.97 -39.07 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - O2(g) -11.67 -14.56 -2.89 O2 + O2(g) -11.35 -14.24 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -356,9 +356,9 @@ Reaction step number: 1 SrCO3 added: 1.0000e-05 Log Sigma pi: -8.3356e+00 XAragonite: 9.9996e-01 -XStrontianite: 4.2174e-05 -XCa: 9.9905e-01 -XSr: 9.5081e-04 +XStrontianite: 4.0997e-05 +XCa: 9.9899e-01 +XSr: 1.0068e-03 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -369,9 +369,9 @@ Reaction step number: 2 SrCO3 added: 2.0000e-05 Log Sigma pi: -8.3352e+00 XAragonite: 9.9992e-01 -XStrontianite: 8.4457e-05 -XCa: 9.9810e-01 -XSr: 1.9009e-03 +XStrontianite: 8.2099e-05 +XCa: 9.9799e-01 +XSr: 2.0128e-03 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -380,11 +380,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 3 SrCO3 added: 3.0000e-05 -Log Sigma pi: -8.3348e+00 -XAragonite: 9.9987e-01 -XStrontianite: 1.2685e-04 -XCa: 9.9715e-01 -XSr: 2.8504e-03 +Log Sigma pi: -8.3349e+00 +XAragonite: 9.9988e-01 +XStrontianite: 1.2331e-04 +XCa: 9.9698e-01 +XSr: 3.0181e-03 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -394,10 +394,10 @@ Simulation number: 4 Reaction step number: 4 SrCO3 added: 4.0000e-05 Log Sigma pi: -8.3345e+00 -XAragonite: 9.9983e-01 -XStrontianite: 1.6936e-04 -XCa: 9.9620e-01 -XSr: 3.7992e-03 +XAragonite: 9.9984e-01 +XStrontianite: 1.6462e-04 +XCa: 9.9598e-01 +XSr: 4.0226e-03 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -408,9 +408,9 @@ Reaction step number: 5 SrCO3 added: 5.0000e-05 Log Sigma pi: -8.3341e+00 XAragonite: 9.9979e-01 -XStrontianite: 2.1197e-04 -XCa: 9.9525e-01 -XSr: 4.7473e-03 +XStrontianite: 2.0605e-04 +XCa: 9.9497e-01 +XSr: 5.0263e-03 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -421,9 +421,9 @@ Reaction step number: 6 SrCO3 added: 6.0000e-05 Log Sigma pi: -8.3337e+00 XAragonite: 9.9975e-01 -XStrontianite: 2.5470e-04 -XCa: 9.9431e-01 -XSr: 5.6947e-03 +XStrontianite: 2.4757e-04 +XCa: 9.9397e-01 +XSr: 6.0292e-03 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -432,11 +432,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 7 SrCO3 added: 7.0000e-05 -Log Sigma pi: -8.3333e+00 -XAragonite: 9.9970e-01 -XStrontianite: 2.9754e-04 -XCa: 9.9336e-01 -XSr: 6.6414e-03 +Log Sigma pi: -8.3334e+00 +XAragonite: 9.9971e-01 +XStrontianite: 2.8921e-04 +XCa: 9.9297e-01 +XSr: 7.0313e-03 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -445,11 +445,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 8 SrCO3 added: 8.0000e-05 -Log Sigma pi: -8.3329e+00 -XAragonite: 9.9966e-01 -XStrontianite: 3.4049e-04 -XCa: 9.9241e-01 -XSr: 7.5875e-03 +Log Sigma pi: -8.3330e+00 +XAragonite: 9.9967e-01 +XStrontianite: 3.3096e-04 +XCa: 9.9197e-01 +XSr: 8.0327e-03 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -458,11 +458,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 9 SrCO3 added: 9.0000e-05 -Log Sigma pi: -8.3325e+00 -XAragonite: 9.9962e-01 -XStrontianite: 3.8355e-04 -XCa: 9.9147e-01 -XSr: 8.5329e-03 +Log Sigma pi: -8.3326e+00 +XAragonite: 9.9963e-01 +XStrontianite: 3.7281e-04 +XCa: 9.9097e-01 +XSr: 9.0333e-03 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -471,11 +471,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 10 SrCO3 added: 1.0000e-04 -Log Sigma pi: -8.3321e+00 -XAragonite: 9.9957e-01 -XStrontianite: 4.2673e-04 -XCa: 9.9052e-01 -XSr: 9.4776e-03 +Log Sigma pi: -8.3322e+00 +XAragonite: 9.9959e-01 +XStrontianite: 4.1478e-04 +XCa: 9.8997e-01 +XSr: 1.0033e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -484,11 +484,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 11 SrCO3 added: 1.1000e-04 -Log Sigma pi: -8.3317e+00 -XAragonite: 9.9953e-01 -XStrontianite: 4.7002e-04 -XCa: 9.8958e-01 -XSr: 1.0422e-02 +Log Sigma pi: -8.3319e+00 +XAragonite: 9.9954e-01 +XStrontianite: 4.5685e-04 +XCa: 9.8897e-01 +XSr: 1.1032e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -497,11 +497,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 12 SrCO3 added: 1.2000e-04 -Log Sigma pi: -8.3314e+00 -XAragonite: 9.9949e-01 -XStrontianite: 5.1343e-04 -XCa: 9.8864e-01 -XSr: 1.1365e-02 +Log Sigma pi: -8.3315e+00 +XAragonite: 9.9950e-01 +XStrontianite: 4.9903e-04 +XCa: 9.8797e-01 +XSr: 1.2030e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -510,11 +510,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 13 SrCO3 added: 1.3000e-04 -Log Sigma pi: -8.3310e+00 -XAragonite: 9.9944e-01 -XStrontianite: 5.5695e-04 -XCa: 9.8769e-01 -XSr: 1.2308e-02 +Log Sigma pi: -8.3311e+00 +XAragonite: 9.9946e-01 +XStrontianite: 5.4133e-04 +XCa: 9.8697e-01 +XSr: 1.3028e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -523,11 +523,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 14 SrCO3 added: 1.4000e-04 -Log Sigma pi: -8.3306e+00 -XAragonite: 9.9940e-01 -XStrontianite: 6.0059e-04 -XCa: 9.8675e-01 -XSr: 1.3250e-02 +Log Sigma pi: -8.3307e+00 +XAragonite: 9.9942e-01 +XStrontianite: 5.8373e-04 +XCa: 9.8598e-01 +XSr: 1.4025e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -536,11 +536,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 15 SrCO3 added: 1.5000e-04 -Log Sigma pi: -8.3302e+00 -XAragonite: 9.9936e-01 -XStrontianite: 6.4434e-04 -XCa: 9.8581e-01 -XSr: 1.4191e-02 +Log Sigma pi: -8.3304e+00 +XAragonite: 9.9937e-01 +XStrontianite: 6.2625e-04 +XCa: 9.8498e-01 +XSr: 1.5021e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -549,11 +549,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 16 SrCO3 added: 1.6000e-04 -Log Sigma pi: -8.3298e+00 -XAragonite: 9.9931e-01 -XStrontianite: 6.8821e-04 -XCa: 9.8487e-01 -XSr: 1.5132e-02 +Log Sigma pi: -8.3300e+00 +XAragonite: 9.9933e-01 +XStrontianite: 6.6888e-04 +XCa: 9.8398e-01 +XSr: 1.6016e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -562,11 +562,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 17 SrCO3 added: 1.7000e-04 -Log Sigma pi: -8.3294e+00 -XAragonite: 9.9927e-01 -XStrontianite: 7.3220e-04 -XCa: 9.8393e-01 -XSr: 1.6072e-02 +Log Sigma pi: -8.3296e+00 +XAragonite: 9.9929e-01 +XStrontianite: 7.1162e-04 +XCa: 9.8299e-01 +XSr: 1.7010e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -575,11 +575,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 18 SrCO3 added: 1.8000e-04 -Log Sigma pi: -8.3290e+00 -XAragonite: 9.9922e-01 -XStrontianite: 7.7630e-04 -XCa: 9.8299e-01 -XSr: 1.7011e-02 +Log Sigma pi: -8.3292e+00 +XAragonite: 9.9925e-01 +XStrontianite: 7.5447e-04 +XCa: 9.8200e-01 +XSr: 1.8004e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -588,11 +588,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 19 SrCO3 added: 1.9000e-04 -Log Sigma pi: -8.3286e+00 -XAragonite: 9.9918e-01 -XStrontianite: 8.2052e-04 -XCa: 9.8205e-01 -XSr: 1.7950e-02 +Log Sigma pi: -8.3288e+00 +XAragonite: 9.9920e-01 +XStrontianite: 7.9744e-04 +XCa: 9.8100e-01 +XSr: 1.8997e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -601,11 +601,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 20 SrCO3 added: 2.0000e-04 -Log Sigma pi: -8.3283e+00 -XAragonite: 9.9914e-01 -XStrontianite: 8.6487e-04 -XCa: 9.8111e-01 -XSr: 1.8887e-02 +Log Sigma pi: -8.3285e+00 +XAragonite: 9.9916e-01 +XStrontianite: 8.4052e-04 +XCa: 9.8001e-01 +XSr: 1.9989e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -614,11 +614,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 21 SrCO3 added: 2.1000e-04 -Log Sigma pi: -8.3279e+00 -XAragonite: 9.9909e-01 -XStrontianite: 9.0932e-04 -XCa: 9.8018e-01 -XSr: 1.9825e-02 +Log Sigma pi: -8.3281e+00 +XAragonite: 9.9912e-01 +XStrontianite: 8.8372e-04 +XCa: 9.7902e-01 +XSr: 2.0980e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -627,11 +627,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 22 SrCO3 added: 2.2000e-04 -Log Sigma pi: -8.3275e+00 -XAragonite: 9.9905e-01 -XStrontianite: 9.5390e-04 -XCa: 9.7924e-01 -XSr: 2.0761e-02 +Log Sigma pi: -8.3277e+00 +XAragonite: 9.9907e-01 +XStrontianite: 9.2703e-04 +XCa: 9.7803e-01 +XSr: 2.1970e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -640,11 +640,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 23 SrCO3 added: 2.3000e-04 -Log Sigma pi: -8.3271e+00 -XAragonite: 9.9900e-01 -XStrontianite: 9.9860e-04 -XCa: 9.7830e-01 -XSr: 2.1697e-02 +Log Sigma pi: -8.3273e+00 +XAragonite: 9.9903e-01 +XStrontianite: 9.7045e-04 +XCa: 9.7704e-01 +XSr: 2.2960e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -653,11 +653,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 24 SrCO3 added: 2.4000e-04 -Log Sigma pi: -8.3267e+00 -XAragonite: 9.9896e-01 -XStrontianite: 1.0434e-03 -XCa: 9.7737e-01 -XSr: 2.2633e-02 +Log Sigma pi: -8.3270e+00 +XAragonite: 9.9899e-01 +XStrontianite: 1.0140e-03 +XCa: 9.7605e-01 +XSr: 2.3949e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -666,11 +666,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 25 SrCO3 added: 2.5000e-04 -Log Sigma pi: -8.3263e+00 -XAragonite: 9.9891e-01 -XStrontianite: 1.0884e-03 -XCa: 9.7643e-01 -XSr: 2.3567e-02 +Log Sigma pi: -8.3266e+00 +XAragonite: 9.9894e-01 +XStrontianite: 1.0577e-03 +XCa: 9.7506e-01 +XSr: 2.4937e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -679,11 +679,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 26 SrCO3 added: 2.6000e-04 -Log Sigma pi: -8.3259e+00 -XAragonite: 9.9887e-01 -XStrontianite: 1.1334e-03 -XCa: 9.7550e-01 -XSr: 2.4501e-02 +Log Sigma pi: -8.3262e+00 +XAragonite: 9.9890e-01 +XStrontianite: 1.1014e-03 +XCa: 9.7408e-01 +XSr: 2.5925e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -692,11 +692,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 27 SrCO3 added: 2.7000e-04 -Log Sigma pi: -8.3255e+00 -XAragonite: 9.9882e-01 -XStrontianite: 1.1786e-03 -XCa: 9.7457e-01 -XSr: 2.5434e-02 +Log Sigma pi: -8.3258e+00 +XAragonite: 9.9885e-01 +XStrontianite: 1.1453e-03 +XCa: 9.7309e-01 +XSr: 2.6911e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -705,11 +705,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 28 SrCO3 added: 2.8000e-04 -Log Sigma pi: -8.3252e+00 -XAragonite: 9.9878e-01 -XStrontianite: 1.2239e-03 -XCa: 9.7363e-01 -XSr: 2.6367e-02 +Log Sigma pi: -8.3254e+00 +XAragonite: 9.9881e-01 +XStrontianite: 1.1893e-03 +XCa: 9.7210e-01 +XSr: 2.7897e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -718,11 +718,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 29 SrCO3 added: 2.9000e-04 -Log Sigma pi: -8.3248e+00 -XAragonite: 9.9873e-01 -XStrontianite: 1.2693e-03 -XCa: 9.7270e-01 -XSr: 2.7299e-02 +Log Sigma pi: -8.3251e+00 +XAragonite: 9.9877e-01 +XStrontianite: 1.2335e-03 +XCa: 9.7112e-01 +XSr: 2.8882e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -731,11 +731,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 30 SrCO3 added: 3.0000e-04 -Log Sigma pi: -8.3244e+00 -XAragonite: 9.9869e-01 -XStrontianite: 1.3149e-03 -XCa: 9.7177e-01 -XSr: 2.8230e-02 +Log Sigma pi: -8.3247e+00 +XAragonite: 9.9872e-01 +XStrontianite: 1.2777e-03 +XCa: 9.7013e-01 +XSr: 2.9866e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -744,11 +744,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 31 SrCO3 added: 3.1000e-04 -Log Sigma pi: -8.3240e+00 -XAragonite: 9.9864e-01 -XStrontianite: 1.3606e-03 -XCa: 9.7084e-01 -XSr: 2.9160e-02 +Log Sigma pi: -8.3243e+00 +XAragonite: 9.9868e-01 +XStrontianite: 1.3221e-03 +XCa: 9.6915e-01 +XSr: 3.0850e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -757,11 +757,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 32 SrCO3 added: 3.2000e-04 -Log Sigma pi: -8.3236e+00 -XAragonite: 9.9859e-01 -XStrontianite: 1.4064e-03 -XCa: 9.6991e-01 -XSr: 3.0090e-02 +Log Sigma pi: -8.3239e+00 +XAragonite: 9.9863e-01 +XStrontianite: 1.3666e-03 +XCa: 9.6817e-01 +XSr: 3.1833e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -770,11 +770,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 33 SrCO3 added: 3.3000e-04 -Log Sigma pi: -8.3232e+00 -XAragonite: 9.9855e-01 -XStrontianite: 1.4523e-03 -XCa: 9.6898e-01 -XSr: 3.1019e-02 +Log Sigma pi: -8.3236e+00 +XAragonite: 9.9859e-01 +XStrontianite: 1.4112e-03 +XCa: 9.6719e-01 +XSr: 3.2815e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -783,11 +783,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 34 SrCO3 added: 3.4000e-04 -Log Sigma pi: -8.3228e+00 -XAragonite: 9.9850e-01 -XStrontianite: 1.4984e-03 -XCa: 9.6805e-01 -XSr: 3.1948e-02 +Log Sigma pi: -8.3232e+00 +XAragonite: 9.9854e-01 +XStrontianite: 1.4559e-03 +XCa: 9.6620e-01 +XSr: 3.3796e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -796,11 +796,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 35 SrCO3 added: 3.5000e-04 -Log Sigma pi: -8.3224e+00 -XAragonite: 9.9846e-01 -XStrontianite: 1.5445e-03 -XCa: 9.6712e-01 -XSr: 3.2876e-02 +Log Sigma pi: -8.3228e+00 +XAragonite: 9.9850e-01 +XStrontianite: 1.5007e-03 +XCa: 9.6522e-01 +XSr: 3.4776e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -809,11 +809,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 36 SrCO3 added: 3.6000e-04 -Log Sigma pi: -8.3220e+00 -XAragonite: 9.9841e-01 -XStrontianite: 1.5909e-03 -XCa: 9.6620e-01 -XSr: 3.3803e-02 +Log Sigma pi: -8.3224e+00 +XAragonite: 9.9845e-01 +XStrontianite: 1.5457e-03 +XCa: 9.6424e-01 +XSr: 3.5756e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -822,11 +822,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 37 SrCO3 added: 3.7000e-04 -Log Sigma pi: -8.3217e+00 -XAragonite: 9.9836e-01 -XStrontianite: 1.6373e-03 -XCa: 9.6527e-01 -XSr: 3.4729e-02 +Log Sigma pi: -8.3220e+00 +XAragonite: 9.9841e-01 +XStrontianite: 1.5908e-03 +XCa: 9.6327e-01 +XSr: 3.6735e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -835,11 +835,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 38 SrCO3 added: 3.8000e-04 -Log Sigma pi: -8.3213e+00 -XAragonite: 9.9832e-01 -XStrontianite: 1.6839e-03 -XCa: 9.6435e-01 -XSr: 3.5655e-02 +Log Sigma pi: -8.3217e+00 +XAragonite: 9.9836e-01 +XStrontianite: 1.6360e-03 +XCa: 9.6229e-01 +XSr: 3.7713e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -848,11 +848,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 39 SrCO3 added: 3.9000e-04 -Log Sigma pi: -8.3209e+00 -XAragonite: 9.9827e-01 -XStrontianite: 1.7305e-03 -XCa: 9.6342e-01 -XSr: 3.6580e-02 +Log Sigma pi: -8.3213e+00 +XAragonite: 9.9832e-01 +XStrontianite: 1.6814e-03 +XCa: 9.6131e-01 +XSr: 3.8690e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -861,11 +861,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 40 SrCO3 added: 4.0000e-04 -Log Sigma pi: -8.3205e+00 -XAragonite: 9.9822e-01 -XStrontianite: 1.7774e-03 -XCa: 9.6250e-01 -XSr: 3.7504e-02 +Log Sigma pi: -8.3209e+00 +XAragonite: 9.9827e-01 +XStrontianite: 1.7268e-03 +XCa: 9.6033e-01 +XSr: 3.9667e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -874,11 +874,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 41 SrCO3 added: 4.1000e-04 -Log Sigma pi: -8.3201e+00 -XAragonite: 9.9818e-01 -XStrontianite: 1.8243e-03 -XCa: 9.6157e-01 -XSr: 3.8428e-02 +Log Sigma pi: -8.3205e+00 +XAragonite: 9.9823e-01 +XStrontianite: 1.7724e-03 +XCa: 9.5936e-01 +XSr: 4.0643e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -887,11 +887,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 42 SrCO3 added: 4.2000e-04 -Log Sigma pi: -8.3197e+00 -XAragonite: 9.9813e-01 -XStrontianite: 1.8714e-03 -XCa: 9.6065e-01 -XSr: 3.9351e-02 +Log Sigma pi: -8.3201e+00 +XAragonite: 9.9818e-01 +XStrontianite: 1.8182e-03 +XCa: 9.5838e-01 +XSr: 4.1618e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -900,11 +900,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 43 SrCO3 added: 4.3000e-04 -Log Sigma pi: -8.3193e+00 -XAragonite: 9.9808e-01 -XStrontianite: 1.9186e-03 -XCa: 9.5973e-01 -XSr: 4.0274e-02 +Log Sigma pi: -8.3198e+00 +XAragonite: 9.9814e-01 +XStrontianite: 1.8640e-03 +XCa: 9.5741e-01 +XSr: 4.2592e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -913,11 +913,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 44 SrCO3 added: 4.4000e-04 -Log Sigma pi: -8.3189e+00 -XAragonite: 9.9803e-01 -XStrontianite: 1.9660e-03 -XCa: 9.5880e-01 -XSr: 4.1195e-02 +Log Sigma pi: -8.3194e+00 +XAragonite: 9.9809e-01 +XStrontianite: 1.9100e-03 +XCa: 9.5643e-01 +XSr: 4.3566e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -926,11 +926,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 45 SrCO3 added: 4.5000e-04 -Log Sigma pi: -8.3185e+00 -XAragonite: 9.9799e-01 -XStrontianite: 2.0134e-03 -XCa: 9.5788e-01 -XSr: 4.2117e-02 +Log Sigma pi: -8.3190e+00 +XAragonite: 9.9804e-01 +XStrontianite: 1.9561e-03 +XCa: 9.5546e-01 +XSr: 4.4538e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -939,11 +939,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 46 SrCO3 added: 4.6000e-04 -Log Sigma pi: -8.3182e+00 -XAragonite: 9.9794e-01 -XStrontianite: 2.0611e-03 -XCa: 9.5696e-01 -XSr: 4.3037e-02 +Log Sigma pi: -8.3186e+00 +XAragonite: 9.9800e-01 +XStrontianite: 2.0023e-03 +XCa: 9.5449e-01 +XSr: 4.5510e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -952,11 +952,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 47 SrCO3 added: 4.7000e-04 -Log Sigma pi: -8.3178e+00 -XAragonite: 9.9789e-01 -XStrontianite: 2.1088e-03 -XCa: 9.5604e-01 -XSr: 4.3957e-02 +Log Sigma pi: -8.3183e+00 +XAragonite: 9.9795e-01 +XStrontianite: 2.0486e-03 +XCa: 9.5352e-01 +XSr: 4.6481e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -965,11 +965,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 48 SrCO3 added: 4.8000e-04 -Log Sigma pi: -8.3174e+00 -XAragonite: 9.9784e-01 -XStrontianite: 2.1567e-03 -XCa: 9.5512e-01 -XSr: 4.4876e-02 +Log Sigma pi: -8.3179e+00 +XAragonite: 9.9790e-01 +XStrontianite: 2.0951e-03 +XCa: 9.5255e-01 +XSr: 4.7452e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -978,11 +978,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 49 SrCO3 added: 4.9000e-04 -Log Sigma pi: -8.3170e+00 -XAragonite: 9.9780e-01 -XStrontianite: 2.2047e-03 -XCa: 9.5421e-01 -XSr: 4.5794e-02 +Log Sigma pi: -8.3175e+00 +XAragonite: 9.9786e-01 +XStrontianite: 2.1417e-03 +XCa: 9.5158e-01 +XSr: 4.8422e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -991,11 +991,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 50 SrCO3 added: 5.0000e-04 -Log Sigma pi: -8.3166e+00 -XAragonite: 9.9775e-01 -XStrontianite: 2.2528e-03 -XCa: 9.5329e-01 -XSr: 4.6712e-02 +Log Sigma pi: -8.3171e+00 +XAragonite: 9.9781e-01 +XStrontianite: 2.1885e-03 +XCa: 9.5061e-01 +XSr: 4.9390e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1004,11 +1004,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 51 SrCO3 added: 5.1000e-04 -Log Sigma pi: -8.3162e+00 -XAragonite: 9.9770e-01 -XStrontianite: 2.3011e-03 -XCa: 9.5237e-01 -XSr: 4.7629e-02 +Log Sigma pi: -8.3167e+00 +XAragonite: 9.9776e-01 +XStrontianite: 2.2353e-03 +XCa: 9.4964e-01 +XSr: 5.0358e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1017,11 +1017,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 52 SrCO3 added: 5.2000e-04 -Log Sigma pi: -8.3158e+00 -XAragonite: 9.9765e-01 -XStrontianite: 2.3496e-03 -XCa: 9.5146e-01 -XSr: 4.8545e-02 +Log Sigma pi: -8.3164e+00 +XAragonite: 9.9772e-01 +XStrontianite: 2.2823e-03 +XCa: 9.4867e-01 +XSr: 5.1326e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1030,11 +1030,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 53 SrCO3 added: 5.3000e-04 -Log Sigma pi: -8.3154e+00 -XAragonite: 9.9760e-01 -XStrontianite: 2.3981e-03 -XCa: 9.5054e-01 -XSr: 4.9461e-02 +Log Sigma pi: -8.3160e+00 +XAragonite: 9.9767e-01 +XStrontianite: 2.3295e-03 +XCa: 9.4771e-01 +XSr: 5.2292e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1043,11 +1043,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 54 SrCO3 added: 5.4000e-04 -Log Sigma pi: -8.3150e+00 -XAragonite: 9.9755e-01 -XStrontianite: 2.4468e-03 -XCa: 9.4962e-01 -XSr: 5.0376e-02 +Log Sigma pi: -8.3156e+00 +XAragonite: 9.9762e-01 +XStrontianite: 2.3767e-03 +XCa: 9.4674e-01 +XSr: 5.3258e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1056,11 +1056,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 55 SrCO3 added: 5.5000e-04 -Log Sigma pi: -8.3146e+00 -XAragonite: 9.9750e-01 -XStrontianite: 2.4956e-03 -XCa: 9.4871e-01 -XSr: 5.1290e-02 +Log Sigma pi: -8.3152e+00 +XAragonite: 9.9758e-01 +XStrontianite: 2.4241e-03 +XCa: 9.4578e-01 +XSr: 5.4223e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1069,11 +1069,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 56 SrCO3 added: 5.6000e-04 -Log Sigma pi: -8.3143e+00 -XAragonite: 9.9746e-01 -XStrontianite: 2.5446e-03 -XCa: 9.4780e-01 -XSr: 5.2204e-02 +Log Sigma pi: -8.3148e+00 +XAragonite: 9.9753e-01 +XStrontianite: 2.4717e-03 +XCa: 9.4481e-01 +XSr: 5.5187e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1082,11 +1082,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 57 SrCO3 added: 5.7000e-04 -Log Sigma pi: -8.3139e+00 -XAragonite: 9.9741e-01 -XStrontianite: 2.5937e-03 -XCa: 9.4688e-01 -XSr: 5.3117e-02 +Log Sigma pi: -8.3145e+00 +XAragonite: 9.9748e-01 +XStrontianite: 2.5193e-03 +XCa: 9.4385e-01 +XSr: 5.6151e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1095,11 +1095,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 58 SrCO3 added: 5.8000e-04 -Log Sigma pi: -8.3135e+00 -XAragonite: 9.9736e-01 -XStrontianite: 2.6430e-03 -XCa: 9.4597e-01 -XSr: 5.4029e-02 +Log Sigma pi: -8.3141e+00 +XAragonite: 9.9743e-01 +XStrontianite: 2.5671e-03 +XCa: 9.4289e-01 +XSr: 5.7114e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1108,11 +1108,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 59 SrCO3 added: 5.9000e-04 -Log Sigma pi: -8.3131e+00 -XAragonite: 9.9731e-01 -XStrontianite: 2.6924e-03 -XCa: 9.4506e-01 -XSr: 5.4940e-02 +Log Sigma pi: -8.3137e+00 +XAragonite: 9.9738e-01 +XStrontianite: 2.6151e-03 +XCa: 9.4192e-01 +XSr: 5.8076e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1121,11 +1121,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 60 SrCO3 added: 6.0000e-04 -Log Sigma pi: -8.3127e+00 -XAragonite: 9.9726e-01 -XStrontianite: 2.7419e-03 -XCa: 9.4415e-01 -XSr: 5.5851e-02 +Log Sigma pi: -8.3133e+00 +XAragonite: 9.9734e-01 +XStrontianite: 2.6631e-03 +XCa: 9.4096e-01 +XSr: 5.9037e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1134,11 +1134,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 61 SrCO3 added: 6.1000e-04 -Log Sigma pi: -8.3123e+00 -XAragonite: 9.9721e-01 -XStrontianite: 2.7916e-03 -XCa: 9.4324e-01 -XSr: 5.6762e-02 +Log Sigma pi: -8.3129e+00 +XAragonite: 9.9729e-01 +XStrontianite: 2.7114e-03 +XCa: 9.4000e-01 +XSr: 5.9997e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1147,11 +1147,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 62 SrCO3 added: 6.2000e-04 -Log Sigma pi: -8.3119e+00 -XAragonite: 9.9716e-01 -XStrontianite: 2.8414e-03 -XCa: 9.4233e-01 -XSr: 5.7671e-02 +Log Sigma pi: -8.3126e+00 +XAragonite: 9.9724e-01 +XStrontianite: 2.7597e-03 +XCa: 9.3904e-01 +XSr: 6.0957e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1160,11 +1160,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 63 SrCO3 added: 6.3000e-04 -Log Sigma pi: -8.3115e+00 -XAragonite: 9.9711e-01 -XStrontianite: 2.8914e-03 -XCa: 9.4142e-01 -XSr: 5.8580e-02 +Log Sigma pi: -8.3122e+00 +XAragonite: 9.9719e-01 +XStrontianite: 2.8082e-03 +XCa: 9.3808e-01 +XSr: 6.1916e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1173,11 +1173,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 64 SrCO3 added: 6.4000e-04 -Log Sigma pi: -8.3111e+00 -XAragonite: 9.9706e-01 -XStrontianite: 2.9415e-03 -XCa: 9.4051e-01 -XSr: 5.9488e-02 +Log Sigma pi: -8.3118e+00 +XAragonite: 9.9714e-01 +XStrontianite: 2.8568e-03 +XCa: 9.3713e-01 +XSr: 6.2874e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1186,11 +1186,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 65 SrCO3 added: 6.5000e-04 -Log Sigma pi: -8.3107e+00 -XAragonite: 9.9701e-01 -XStrontianite: 2.9918e-03 -XCa: 9.3960e-01 -XSr: 6.0396e-02 +Log Sigma pi: -8.3114e+00 +XAragonite: 9.9709e-01 +XStrontianite: 2.9056e-03 +XCa: 9.3617e-01 +XSr: 6.3831e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1199,11 +1199,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 66 SrCO3 added: 6.6000e-04 -Log Sigma pi: -8.3104e+00 -XAragonite: 9.9696e-01 -XStrontianite: 3.0422e-03 -XCa: 9.3870e-01 -XSr: 6.1303e-02 +Log Sigma pi: -8.3110e+00 +XAragonite: 9.9705e-01 +XStrontianite: 2.9545e-03 +XCa: 9.3521e-01 +XSr: 6.4788e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1212,11 +1212,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 67 SrCO3 added: 6.7000e-04 -Log Sigma pi: -8.3100e+00 -XAragonite: 9.9691e-01 -XStrontianite: 3.0927e-03 -XCa: 9.3779e-01 -XSr: 6.2209e-02 +Log Sigma pi: -8.3106e+00 +XAragonite: 9.9700e-01 +XStrontianite: 3.0035e-03 +XCa: 9.3426e-01 +XSr: 6.5743e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1225,11 +1225,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 68 SrCO3 added: 6.8000e-04 -Log Sigma pi: -8.3096e+00 -XAragonite: 9.9686e-01 -XStrontianite: 3.1434e-03 -XCa: 9.3689e-01 -XSr: 6.3115e-02 +Log Sigma pi: -8.3103e+00 +XAragonite: 9.9695e-01 +XStrontianite: 3.0527e-03 +XCa: 9.3330e-01 +XSr: 6.6698e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1238,11 +1238,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 69 SrCO3 added: 6.9000e-04 -Log Sigma pi: -8.3092e+00 -XAragonite: 9.9681e-01 -XStrontianite: 3.1943e-03 -XCa: 9.3598e-01 -XSr: 6.4019e-02 +Log Sigma pi: -8.3099e+00 +XAragonite: 9.9690e-01 +XStrontianite: 3.1020e-03 +XCa: 9.3235e-01 +XSr: 6.7653e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1251,11 +1251,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 70 SrCO3 added: 7.0000e-04 -Log Sigma pi: -8.3088e+00 -XAragonite: 9.9675e-01 -XStrontianite: 3.2453e-03 -XCa: 9.3508e-01 -XSr: 6.4924e-02 +Log Sigma pi: -8.3095e+00 +XAragonite: 9.9685e-01 +XStrontianite: 3.1515e-03 +XCa: 9.3139e-01 +XSr: 6.8606e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1264,11 +1264,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 71 SrCO3 added: 7.1000e-04 -Log Sigma pi: -8.3084e+00 -XAragonite: 9.9670e-01 -XStrontianite: 3.2964e-03 -XCa: 9.3417e-01 -XSr: 6.5827e-02 +Log Sigma pi: -8.3091e+00 +XAragonite: 9.9680e-01 +XStrontianite: 3.2011e-03 +XCa: 9.3044e-01 +XSr: 6.9559e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1277,11 +1277,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 72 SrCO3 added: 7.2000e-04 -Log Sigma pi: -8.3080e+00 -XAragonite: 9.9665e-01 -XStrontianite: 3.3477e-03 -XCa: 9.3327e-01 -XSr: 6.6730e-02 +Log Sigma pi: -8.3087e+00 +XAragonite: 9.9675e-01 +XStrontianite: 3.2509e-03 +XCa: 9.2949e-01 +XSr: 7.0511e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1290,11 +1290,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 73 SrCO3 added: 7.3000e-04 -Log Sigma pi: -8.3076e+00 -XAragonite: 9.9660e-01 -XStrontianite: 3.3992e-03 -XCa: 9.3237e-01 -XSr: 6.7632e-02 +Log Sigma pi: -8.3084e+00 +XAragonite: 9.9670e-01 +XStrontianite: 3.3008e-03 +XCa: 9.2854e-01 +XSr: 7.1462e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1303,11 +1303,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 74 SrCO3 added: 7.4000e-04 -Log Sigma pi: -8.3072e+00 -XAragonite: 9.9655e-01 -XStrontianite: 3.4508e-03 -XCa: 9.3147e-01 -XSr: 6.8534e-02 +Log Sigma pi: -8.3080e+00 +XAragonite: 9.9665e-01 +XStrontianite: 3.3508e-03 +XCa: 9.2759e-01 +XSr: 7.2412e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1316,11 +1316,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 75 SrCO3 added: 7.5000e-04 -Log Sigma pi: -8.3068e+00 -XAragonite: 9.9650e-01 -XStrontianite: 3.5025e-03 -XCa: 9.3057e-01 -XSr: 6.9434e-02 +Log Sigma pi: -8.3076e+00 +XAragonite: 9.9660e-01 +XStrontianite: 3.4010e-03 +XCa: 9.2664e-01 +XSr: 7.3362e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1329,11 +1329,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 76 SrCO3 added: 7.6000e-04 -Log Sigma pi: -8.3064e+00 -XAragonite: 9.9645e-01 -XStrontianite: 3.5544e-03 -XCa: 9.2967e-01 -XSr: 7.0335e-02 +Log Sigma pi: -8.3072e+00 +XAragonite: 9.9655e-01 +XStrontianite: 3.4514e-03 +XCa: 9.2569e-01 +XSr: 7.4311e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1342,11 +1342,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 77 SrCO3 added: 7.7000e-04 -Log Sigma pi: -8.3061e+00 -XAragonite: 9.9639e-01 -XStrontianite: 3.6065e-03 -XCa: 9.2877e-01 -XSr: 7.1234e-02 +Log Sigma pi: -8.3068e+00 +XAragonite: 9.9650e-01 +XStrontianite: 3.5018e-03 +XCa: 9.2474e-01 +XSr: 7.5259e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1355,11 +1355,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 78 SrCO3 added: 7.8000e-04 -Log Sigma pi: -8.3057e+00 -XAragonite: 9.9634e-01 -XStrontianite: 3.6587e-03 -XCa: 9.2787e-01 -XSr: 7.2133e-02 +Log Sigma pi: -8.3065e+00 +XAragonite: 9.9645e-01 +XStrontianite: 3.5525e-03 +XCa: 9.2379e-01 +XSr: 7.6206e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1368,11 +1368,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 79 SrCO3 added: 7.9000e-04 -Log Sigma pi: -8.3053e+00 -XAragonite: 9.9629e-01 -XStrontianite: 3.7111e-03 -XCa: 9.2697e-01 -XSr: 7.3031e-02 +Log Sigma pi: -8.3061e+00 +XAragonite: 9.9640e-01 +XStrontianite: 3.6033e-03 +XCa: 9.2285e-01 +XSr: 7.7153e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1381,11 +1381,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 80 SrCO3 added: 8.0000e-04 -Log Sigma pi: -8.3049e+00 -XAragonite: 9.9624e-01 -XStrontianite: 3.7636e-03 -XCa: 9.2607e-01 -XSr: 7.3928e-02 +Log Sigma pi: -8.3057e+00 +XAragonite: 9.9635e-01 +XStrontianite: 3.6542e-03 +XCa: 9.2190e-01 +XSr: 7.8099e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1394,11 +1394,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 81 SrCO3 added: 8.1000e-04 -Log Sigma pi: -8.3045e+00 -XAragonite: 9.9618e-01 -XStrontianite: 3.8163e-03 -XCa: 9.2517e-01 -XSr: 7.4825e-02 +Log Sigma pi: -8.3053e+00 +XAragonite: 9.9629e-01 +XStrontianite: 3.7053e-03 +XCa: 9.2096e-01 +XSr: 7.9044e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1407,11 +1407,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 82 SrCO3 added: 8.2000e-04 -Log Sigma pi: -8.3041e+00 -XAragonite: 9.9613e-01 -XStrontianite: 3.8691e-03 -XCa: 9.2428e-01 -XSr: 7.5721e-02 +Log Sigma pi: -8.3049e+00 +XAragonite: 9.9624e-01 +XStrontianite: 3.7565e-03 +XCa: 9.2001e-01 +XSr: 7.9988e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1420,11 +1420,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 83 SrCO3 added: 8.3000e-04 -Log Sigma pi: -8.3037e+00 -XAragonite: 9.9608e-01 -XStrontianite: 3.9221e-03 -XCa: 9.2338e-01 -XSr: 7.6617e-02 +Log Sigma pi: -8.3045e+00 +XAragonite: 9.9619e-01 +XStrontianite: 3.8079e-03 +XCa: 9.1907e-01 +XSr: 8.0931e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1433,11 +1433,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 84 SrCO3 added: 8.4000e-04 -Log Sigma pi: -8.3033e+00 -XAragonite: 9.9602e-01 -XStrontianite: 3.9753e-03 -XCa: 9.2249e-01 -XSr: 7.7511e-02 +Log Sigma pi: -8.3042e+00 +XAragonite: 9.9614e-01 +XStrontianite: 3.8595e-03 +XCa: 9.1813e-01 +XSr: 8.1874e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1446,11 +1446,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 85 SrCO3 added: 8.5000e-04 -Log Sigma pi: -8.3029e+00 -XAragonite: 9.9597e-01 -XStrontianite: 4.0286e-03 -XCa: 9.2159e-01 -XSr: 7.8406e-02 +Log Sigma pi: -8.3038e+00 +XAragonite: 9.9609e-01 +XStrontianite: 3.9111e-03 +XCa: 9.1718e-01 +XSr: 8.2816e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1459,11 +1459,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 86 SrCO3 added: 8.6000e-04 -Log Sigma pi: -8.3025e+00 -XAragonite: 9.9592e-01 -XStrontianite: 4.0821e-03 -XCa: 9.2070e-01 -XSr: 7.9299e-02 +Log Sigma pi: -8.3034e+00 +XAragonite: 9.9604e-01 +XStrontianite: 3.9630e-03 +XCa: 9.1624e-01 +XSr: 8.3757e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1472,11 +1472,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 87 SrCO3 added: 8.7000e-04 -Log Sigma pi: -8.3021e+00 -XAragonite: 9.9586e-01 -XStrontianite: 4.1358e-03 -XCa: 9.1981e-01 -XSr: 8.0192e-02 +Log Sigma pi: -8.3030e+00 +XAragonite: 9.9599e-01 +XStrontianite: 4.0150e-03 +XCa: 9.1530e-01 +XSr: 8.4698e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1485,11 +1485,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 88 SrCO3 added: 8.8000e-04 -Log Sigma pi: -8.3017e+00 -XAragonite: 9.9581e-01 -XStrontianite: 4.1896e-03 -XCa: 9.1892e-01 -XSr: 8.1084e-02 +Log Sigma pi: -8.3026e+00 +XAragonite: 9.9593e-01 +XStrontianite: 4.0672e-03 +XCa: 9.1436e-01 +XSr: 8.5638e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1498,11 +1498,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 89 SrCO3 added: 8.9000e-04 -Log Sigma pi: -8.3014e+00 -XAragonite: 9.9576e-01 -XStrontianite: 4.2435e-03 -XCa: 9.1802e-01 -XSr: 8.1975e-02 +Log Sigma pi: -8.3023e+00 +XAragonite: 9.9588e-01 +XStrontianite: 4.1195e-03 +XCa: 9.1342e-01 +XSr: 8.6576e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1511,11 +1511,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 90 SrCO3 added: 9.0000e-04 -Log Sigma pi: -8.3010e+00 -XAragonite: 9.9570e-01 -XStrontianite: 4.2977e-03 -XCa: 9.1713e-01 -XSr: 8.2866e-02 +Log Sigma pi: -8.3019e+00 +XAragonite: 9.9583e-01 +XStrontianite: 4.1719e-03 +XCa: 9.1249e-01 +XSr: 8.7515e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1524,11 +1524,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 91 SrCO3 added: 9.1000e-04 -Log Sigma pi: -8.3006e+00 -XAragonite: 9.9565e-01 -XStrontianite: 4.3520e-03 -XCa: 9.1624e-01 -XSr: 8.3756e-02 +Log Sigma pi: -8.3015e+00 +XAragonite: 9.9578e-01 +XStrontianite: 4.2246e-03 +XCa: 9.1155e-01 +XSr: 8.8452e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1537,11 +1537,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 92 SrCO3 added: 9.2000e-04 -Log Sigma pi: -8.3002e+00 -XAragonite: 9.9559e-01 -XStrontianite: 4.4064e-03 -XCa: 9.1535e-01 -XSr: 8.4645e-02 +Log Sigma pi: -8.3011e+00 +XAragonite: 9.9572e-01 +XStrontianite: 4.2774e-03 +XCa: 9.1061e-01 +XSr: 8.9389e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1550,11 +1550,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 93 SrCO3 added: 9.3000e-04 -Log Sigma pi: -8.2998e+00 -XAragonite: 9.9554e-01 -XStrontianite: 4.4611e-03 -XCa: 9.1447e-01 -XSr: 8.5534e-02 +Log Sigma pi: -8.3007e+00 +XAragonite: 9.9567e-01 +XStrontianite: 4.3303e-03 +XCa: 9.0968e-01 +XSr: 9.0324e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1563,11 +1563,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 94 SrCO3 added: 9.4000e-04 -Log Sigma pi: -8.2994e+00 -XAragonite: 9.9548e-01 -XStrontianite: 4.5159e-03 -XCa: 9.1358e-01 -XSr: 8.6422e-02 +Log Sigma pi: -8.3003e+00 +XAragonite: 9.9562e-01 +XStrontianite: 4.3834e-03 +XCa: 9.0874e-01 +XSr: 9.1260e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1576,11 +1576,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 95 SrCO3 added: 9.5000e-04 -Log Sigma pi: -8.2990e+00 -XAragonite: 9.9543e-01 -XStrontianite: 4.5708e-03 -XCa: 9.1269e-01 -XSr: 8.7309e-02 +Log Sigma pi: -8.3000e+00 +XAragonite: 9.9556e-01 +XStrontianite: 4.4367e-03 +XCa: 9.0781e-01 +XSr: 9.2194e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1589,11 +1589,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 96 SrCO3 added: 9.6000e-04 -Log Sigma pi: -8.2986e+00 -XAragonite: 9.9537e-01 -XStrontianite: 4.6260e-03 -XCa: 9.1180e-01 -XSr: 8.8196e-02 +Log Sigma pi: -8.2996e+00 +XAragonite: 9.9551e-01 +XStrontianite: 4.4901e-03 +XCa: 9.0687e-01 +XSr: 9.3127e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1602,11 +1602,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 97 SrCO3 added: 9.7000e-04 -Log Sigma pi: -8.2982e+00 -XAragonite: 9.9532e-01 -XStrontianite: 4.6813e-03 -XCa: 9.1092e-01 -XSr: 8.9082e-02 +Log Sigma pi: -8.2992e+00 +XAragonite: 9.9546e-01 +XStrontianite: 4.5437e-03 +XCa: 9.0594e-01 +XSr: 9.4060e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1615,11 +1615,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 98 SrCO3 added: 9.8000e-04 -Log Sigma pi: -8.2978e+00 -XAragonite: 9.9526e-01 -XStrontianite: 4.7368e-03 -XCa: 9.1003e-01 -XSr: 8.9967e-02 +Log Sigma pi: -8.2988e+00 +XAragonite: 9.9540e-01 +XStrontianite: 4.5975e-03 +XCa: 9.0501e-01 +XSr: 9.4992e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1628,11 +1628,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 99 SrCO3 added: 9.9000e-04 -Log Sigma pi: -8.2974e+00 -XAragonite: 9.9521e-01 -XStrontianite: 4.7924e-03 -XCa: 9.0915e-01 -XSr: 9.0852e-02 +Log Sigma pi: -8.2984e+00 +XAragonite: 9.9535e-01 +XStrontianite: 4.6514e-03 +XCa: 9.0408e-01 +XSr: 9.5924e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1641,11 +1641,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 100 SrCO3 added: 1.0000e-03 -Log Sigma pi: -8.2974e+00 -XAragonite: 9.8284e-01 -XStrontianite: 1.7161e-02 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +Log Sigma pi: -8.2980e+00 +XAragonite: 9.9529e-01 +XStrontianite: 4.7055e-03 +XCa: 9.0315e-01 +XSr: 9.6854e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1654,11 +1654,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 101 SrCO3 added: 1.0100e-03 -Log Sigma pi: -8.2974e+00 -XAragonite: 9.6795e-01 -XStrontianite: 3.2055e-02 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +Log Sigma pi: -8.2977e+00 +XAragonite: 9.9524e-01 +XStrontianite: 4.7598e-03 +XCa: 9.0222e-01 +XSr: 9.7784e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1668,10 +1668,10 @@ Simulation number: 4 Reaction step number: 102 SrCO3 added: 1.0200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 9.5350e-01 -XStrontianite: 4.6504e-02 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 9.9210e-01 +XStrontianite: 7.9009e-03 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1681,10 +1681,10 @@ Simulation number: 4 Reaction step number: 103 SrCO3 added: 1.0300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 9.3947e-01 -XStrontianite: 6.0528e-02 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 9.7702e-01 +XStrontianite: 2.2983e-02 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1694,10 +1694,10 @@ Simulation number: 4 Reaction step number: 104 SrCO3 added: 1.0400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 9.2585e-01 -XStrontianite: 7.4146e-02 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 9.6239e-01 +XStrontianite: 3.7613e-02 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1707,10 +1707,10 @@ Simulation number: 4 Reaction step number: 105 SrCO3 added: 1.0500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 9.1263e-01 -XStrontianite: 8.7374e-02 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 9.4819e-01 +XStrontianite: 5.1812e-02 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1720,10 +1720,10 @@ Simulation number: 4 Reaction step number: 106 SrCO3 added: 1.0600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 8.9977e-01 -XStrontianite: 1.0023e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 9.3440e-01 +XStrontianite: 6.5598e-02 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1733,10 +1733,10 @@ Simulation number: 4 Reaction step number: 107 SrCO3 added: 1.0700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 8.8727e-01 -XStrontianite: 1.1273e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 9.2101e-01 +XStrontianite: 7.8988e-02 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1746,10 +1746,10 @@ Simulation number: 4 Reaction step number: 108 SrCO3 added: 1.0800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 8.7512e-01 -XStrontianite: 1.2488e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 9.0800e-01 +XStrontianite: 9.2000e-02 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1759,10 +1759,10 @@ Simulation number: 4 Reaction step number: 109 SrCO3 added: 1.0900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 8.6329e-01 -XStrontianite: 1.3671e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 8.9535e-01 +XStrontianite: 1.0465e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1772,10 +1772,10 @@ Simulation number: 4 Reaction step number: 110 SrCO3 added: 1.1000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 8.5178e-01 -XStrontianite: 1.4822e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 8.8305e-01 +XStrontianite: 1.1695e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1785,10 +1785,10 @@ Simulation number: 4 Reaction step number: 111 SrCO3 added: 1.1100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 8.4057e-01 -XStrontianite: 1.5943e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 8.7108e-01 +XStrontianite: 1.2892e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1798,10 +1798,10 @@ Simulation number: 4 Reaction step number: 112 SrCO3 added: 1.1200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 8.2965e-01 -XStrontianite: 1.7035e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 8.5943e-01 +XStrontianite: 1.4057e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1811,10 +1811,10 @@ Simulation number: 4 Reaction step number: 113 SrCO3 added: 1.1300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 8.1901e-01 -XStrontianite: 1.8099e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 8.4809e-01 +XStrontianite: 1.5191e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1824,10 +1824,10 @@ Simulation number: 4 Reaction step number: 114 SrCO3 added: 1.1400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 8.0864e-01 -XStrontianite: 1.9136e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 8.3704e-01 +XStrontianite: 1.6296e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1837,10 +1837,10 @@ Simulation number: 4 Reaction step number: 115 SrCO3 added: 1.1500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.9853e-01 -XStrontianite: 2.0147e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 8.2628e-01 +XStrontianite: 1.7372e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1850,10 +1850,10 @@ Simulation number: 4 Reaction step number: 116 SrCO3 added: 1.1600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.8867e-01 -XStrontianite: 2.1133e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 8.1579e-01 +XStrontianite: 1.8421e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1863,10 +1863,10 @@ Simulation number: 4 Reaction step number: 117 SrCO3 added: 1.1700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.7905e-01 -XStrontianite: 2.2095e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 8.0557e-01 +XStrontianite: 1.9443e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1876,10 +1876,10 @@ Simulation number: 4 Reaction step number: 118 SrCO3 added: 1.1800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.6967e-01 -XStrontianite: 2.3033e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 7.9560e-01 +XStrontianite: 2.0440e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1889,10 +1889,10 @@ Simulation number: 4 Reaction step number: 119 SrCO3 added: 1.1900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.6050e-01 -XStrontianite: 2.3950e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 7.8587e-01 +XStrontianite: 2.1413e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1902,10 +1902,10 @@ Simulation number: 4 Reaction step number: 120 SrCO3 added: 1.2000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.5155e-01 -XStrontianite: 2.4845e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 7.7637e-01 +XStrontianite: 2.2363e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1915,10 +1915,10 @@ Simulation number: 4 Reaction step number: 121 SrCO3 added: 1.2100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.4281e-01 -XStrontianite: 2.5719e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 7.6711e-01 +XStrontianite: 2.3289e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1928,10 +1928,10 @@ Simulation number: 4 Reaction step number: 122 SrCO3 added: 1.2200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.3428e-01 -XStrontianite: 2.6572e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 7.5806e-01 +XStrontianite: 2.4194e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1941,10 +1941,10 @@ Simulation number: 4 Reaction step number: 123 SrCO3 added: 1.2300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.2593e-01 -XStrontianite: 2.7407e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 7.4922e-01 +XStrontianite: 2.5078e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1954,10 +1954,10 @@ Simulation number: 4 Reaction step number: 124 SrCO3 added: 1.2400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.1777e-01 -XStrontianite: 2.8223e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 7.4059e-01 +XStrontianite: 2.5941e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1967,10 +1967,10 @@ Simulation number: 4 Reaction step number: 125 SrCO3 added: 1.2500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.0980e-01 -XStrontianite: 2.9020e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 7.3215e-01 +XStrontianite: 2.6785e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1980,10 +1980,10 @@ Simulation number: 4 Reaction step number: 126 SrCO3 added: 1.2600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 7.0200e-01 -XStrontianite: 2.9800e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 7.2390e-01 +XStrontianite: 2.7610e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -1993,10 +1993,10 @@ Simulation number: 4 Reaction step number: 127 SrCO3 added: 1.2700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.9436e-01 -XStrontianite: 3.0564e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 7.1584e-01 +XStrontianite: 2.8416e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2006,10 +2006,10 @@ Simulation number: 4 Reaction step number: 128 SrCO3 added: 1.2800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.8690e-01 -XStrontianite: 3.1310e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 7.0796e-01 +XStrontianite: 2.9204e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2019,10 +2019,10 @@ Simulation number: 4 Reaction step number: 129 SrCO3 added: 1.2900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.7959e-01 -XStrontianite: 3.2041e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 7.0024e-01 +XStrontianite: 2.9976e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2032,10 +2032,10 @@ Simulation number: 4 Reaction step number: 130 SrCO3 added: 1.3000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.7243e-01 -XStrontianite: 3.2757e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.9270e-01 +XStrontianite: 3.0730e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2045,10 +2045,10 @@ Simulation number: 4 Reaction step number: 131 SrCO3 added: 1.3100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.6543e-01 -XStrontianite: 3.3457e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.8531e-01 +XStrontianite: 3.1469e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2058,10 +2058,10 @@ Simulation number: 4 Reaction step number: 132 SrCO3 added: 1.3200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.5857e-01 -XStrontianite: 3.4143e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.7808e-01 +XStrontianite: 3.2192e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2071,10 +2071,10 @@ Simulation number: 4 Reaction step number: 133 SrCO3 added: 1.3300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.5185e-01 -XStrontianite: 3.4815e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.7100e-01 +XStrontianite: 3.2900e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2084,10 +2084,10 @@ Simulation number: 4 Reaction step number: 134 SrCO3 added: 1.3400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.4526e-01 -XStrontianite: 3.5474e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.6407e-01 +XStrontianite: 3.3593e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2097,10 +2097,10 @@ Simulation number: 4 Reaction step number: 135 SrCO3 added: 1.3500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.3881e-01 -XStrontianite: 3.6119e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.5727e-01 +XStrontianite: 3.4273e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2110,10 +2110,10 @@ Simulation number: 4 Reaction step number: 136 SrCO3 added: 1.3600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.3248e-01 -XStrontianite: 3.6752e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.5062e-01 +XStrontianite: 3.4938e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2123,10 +2123,10 @@ Simulation number: 4 Reaction step number: 137 SrCO3 added: 1.3700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.2628e-01 -XStrontianite: 3.7372e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.4410e-01 +XStrontianite: 3.5590e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2136,10 +2136,10 @@ Simulation number: 4 Reaction step number: 138 SrCO3 added: 1.3800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.2020e-01 -XStrontianite: 3.7980e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.3771e-01 +XStrontianite: 3.6229e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2149,10 +2149,10 @@ Simulation number: 4 Reaction step number: 139 SrCO3 added: 1.3900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.1424e-01 -XStrontianite: 3.8576e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.3144e-01 +XStrontianite: 3.6856e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2162,10 +2162,10 @@ Simulation number: 4 Reaction step number: 140 SrCO3 added: 1.4000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.0839e-01 -XStrontianite: 3.9161e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.2530e-01 +XStrontianite: 3.7470e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2175,10 +2175,10 @@ Simulation number: 4 Reaction step number: 141 SrCO3 added: 1.4100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 6.0265e-01 -XStrontianite: 3.9735e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.1927e-01 +XStrontianite: 3.8073e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2188,10 +2188,10 @@ Simulation number: 4 Reaction step number: 142 SrCO3 added: 1.4200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.9701e-01 -XStrontianite: 4.0299e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.1336e-01 +XStrontianite: 3.8664e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2201,10 +2201,10 @@ Simulation number: 4 Reaction step number: 143 SrCO3 added: 1.4300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.9149e-01 -XStrontianite: 4.0851e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.0757e-01 +XStrontianite: 3.9243e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2214,10 +2214,10 @@ Simulation number: 4 Reaction step number: 144 SrCO3 added: 1.4400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.8606e-01 -XStrontianite: 4.1394e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 6.0188e-01 +XStrontianite: 3.9812e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2227,10 +2227,10 @@ Simulation number: 4 Reaction step number: 145 SrCO3 added: 1.4500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.8073e-01 -XStrontianite: 4.1927e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.9629e-01 +XStrontianite: 4.0371e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2240,10 +2240,10 @@ Simulation number: 4 Reaction step number: 146 SrCO3 added: 1.4600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.7550e-01 -XStrontianite: 4.2450e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.9081e-01 +XStrontianite: 4.0919e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2253,10 +2253,10 @@ Simulation number: 4 Reaction step number: 147 SrCO3 added: 1.4700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.7036e-01 -XStrontianite: 4.2964e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.8543e-01 +XStrontianite: 4.1457e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2266,10 +2266,10 @@ Simulation number: 4 Reaction step number: 148 SrCO3 added: 1.4800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.6531e-01 -XStrontianite: 4.3469e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.8014e-01 +XStrontianite: 4.1986e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2279,10 +2279,10 @@ Simulation number: 4 Reaction step number: 149 SrCO3 added: 1.4900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.6035e-01 -XStrontianite: 4.3965e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.7495e-01 +XStrontianite: 4.2505e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2292,10 +2292,10 @@ Simulation number: 4 Reaction step number: 150 SrCO3 added: 1.5000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.5548e-01 -XStrontianite: 4.4452e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.6986e-01 +XStrontianite: 4.3014e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2305,10 +2305,10 @@ Simulation number: 4 Reaction step number: 151 SrCO3 added: 1.5100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.5069e-01 -XStrontianite: 4.4931e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.6485e-01 +XStrontianite: 4.3515e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2318,10 +2318,10 @@ Simulation number: 4 Reaction step number: 152 SrCO3 added: 1.5200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.4598e-01 -XStrontianite: 4.5402e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.5993e-01 +XStrontianite: 4.4007e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2331,10 +2331,10 @@ Simulation number: 4 Reaction step number: 153 SrCO3 added: 1.5300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.4136e-01 -XStrontianite: 4.5864e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.5509e-01 +XStrontianite: 4.4491e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2344,10 +2344,10 @@ Simulation number: 4 Reaction step number: 154 SrCO3 added: 1.5400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.3681e-01 -XStrontianite: 4.6319e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.5034e-01 +XStrontianite: 4.4966e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2357,10 +2357,10 @@ Simulation number: 4 Reaction step number: 155 SrCO3 added: 1.5500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.3233e-01 -XStrontianite: 4.6767e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.4566e-01 +XStrontianite: 4.5434e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2370,10 +2370,10 @@ Simulation number: 4 Reaction step number: 156 SrCO3 added: 1.5600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.2793e-01 -XStrontianite: 4.7207e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.4107e-01 +XStrontianite: 4.5893e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2383,10 +2383,10 @@ Simulation number: 4 Reaction step number: 157 SrCO3 added: 1.5700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.2360e-01 -XStrontianite: 4.7640e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.3655e-01 +XStrontianite: 4.6345e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2396,10 +2396,10 @@ Simulation number: 4 Reaction step number: 158 SrCO3 added: 1.5800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.1935e-01 -XStrontianite: 4.8065e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.3211e-01 +XStrontianite: 4.6789e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2409,10 +2409,10 @@ Simulation number: 4 Reaction step number: 159 SrCO3 added: 1.5900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.1516e-01 -XStrontianite: 4.8484e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.2774e-01 +XStrontianite: 4.7226e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2422,10 +2422,10 @@ Simulation number: 4 Reaction step number: 160 SrCO3 added: 1.6000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.1104e-01 -XStrontianite: 4.8896e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.2344e-01 +XStrontianite: 4.7656e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2435,10 +2435,10 @@ Simulation number: 4 Reaction step number: 161 SrCO3 added: 1.6100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.0698e-01 -XStrontianite: 4.9302e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.1921e-01 +XStrontianite: 4.8079e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2448,10 +2448,10 @@ Simulation number: 4 Reaction step number: 162 SrCO3 added: 1.6200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 5.0299e-01 -XStrontianite: 4.9701e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.1505e-01 +XStrontianite: 4.8495e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2461,10 +2461,10 @@ Simulation number: 4 Reaction step number: 163 SrCO3 added: 1.6300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.9906e-01 -XStrontianite: 5.0094e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.1096e-01 +XStrontianite: 4.8904e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2474,10 +2474,10 @@ Simulation number: 4 Reaction step number: 164 SrCO3 added: 1.6400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.9519e-01 -XStrontianite: 5.0481e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.0693e-01 +XStrontianite: 4.9307e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2487,10 +2487,10 @@ Simulation number: 4 Reaction step number: 165 SrCO3 added: 1.6500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.9138e-01 -XStrontianite: 5.0862e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 5.0296e-01 +XStrontianite: 4.9704e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2500,10 +2500,10 @@ Simulation number: 4 Reaction step number: 166 SrCO3 added: 1.6600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.8763e-01 -XStrontianite: 5.1237e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.9906e-01 +XStrontianite: 5.0094e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2513,10 +2513,10 @@ Simulation number: 4 Reaction step number: 167 SrCO3 added: 1.6700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.8393e-01 -XStrontianite: 5.1607e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.9521e-01 +XStrontianite: 5.0479e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2526,10 +2526,10 @@ Simulation number: 4 Reaction step number: 168 SrCO3 added: 1.6800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.8030e-01 -XStrontianite: 5.1970e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.9142e-01 +XStrontianite: 5.0858e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2539,10 +2539,10 @@ Simulation number: 4 Reaction step number: 169 SrCO3 added: 1.6900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.7671e-01 -XStrontianite: 5.2329e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.8769e-01 +XStrontianite: 5.1231e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2552,10 +2552,10 @@ Simulation number: 4 Reaction step number: 170 SrCO3 added: 1.7000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.7318e-01 -XStrontianite: 5.2682e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.8402e-01 +XStrontianite: 5.1598e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2565,10 +2565,10 @@ Simulation number: 4 Reaction step number: 171 SrCO3 added: 1.7100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.6970e-01 -XStrontianite: 5.3030e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.8040e-01 +XStrontianite: 5.1960e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2578,10 +2578,10 @@ Simulation number: 4 Reaction step number: 172 SrCO3 added: 1.7200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.6627e-01 -XStrontianite: 5.3373e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.7684e-01 +XStrontianite: 5.2316e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2591,10 +2591,10 @@ Simulation number: 4 Reaction step number: 173 SrCO3 added: 1.7300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.6289e-01 -XStrontianite: 5.3711e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.7333e-01 +XStrontianite: 5.2667e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2604,10 +2604,10 @@ Simulation number: 4 Reaction step number: 174 SrCO3 added: 1.7400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.5956e-01 -XStrontianite: 5.4044e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.6987e-01 +XStrontianite: 5.3013e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2617,10 +2617,10 @@ Simulation number: 4 Reaction step number: 175 SrCO3 added: 1.7500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.5628e-01 -XStrontianite: 5.4372e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.6646e-01 +XStrontianite: 5.3354e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2630,10 +2630,10 @@ Simulation number: 4 Reaction step number: 176 SrCO3 added: 1.7600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.5304e-01 -XStrontianite: 5.4696e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.6310e-01 +XStrontianite: 5.3690e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2643,10 +2643,10 @@ Simulation number: 4 Reaction step number: 177 SrCO3 added: 1.7700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.4985e-01 -XStrontianite: 5.5015e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.5978e-01 +XStrontianite: 5.4022e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2656,10 +2656,10 @@ Simulation number: 4 Reaction step number: 178 SrCO3 added: 1.7800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.4671e-01 -XStrontianite: 5.5329e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.5652e-01 +XStrontianite: 5.4348e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2669,10 +2669,10 @@ Simulation number: 4 Reaction step number: 179 SrCO3 added: 1.7900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.4360e-01 -XStrontianite: 5.5640e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.5330e-01 +XStrontianite: 5.4670e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2682,10 +2682,10 @@ Simulation number: 4 Reaction step number: 180 SrCO3 added: 1.8000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.4054e-01 -XStrontianite: 5.5946e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.5012e-01 +XStrontianite: 5.4988e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2695,10 +2695,10 @@ Simulation number: 4 Reaction step number: 181 SrCO3 added: 1.8100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.3753e-01 -XStrontianite: 5.6247e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.4699e-01 +XStrontianite: 5.5301e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2708,10 +2708,10 @@ Simulation number: 4 Reaction step number: 182 SrCO3 added: 1.8200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.3455e-01 -XStrontianite: 5.6545e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.4390e-01 +XStrontianite: 5.5610e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2721,10 +2721,10 @@ Simulation number: 4 Reaction step number: 183 SrCO3 added: 1.8300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.3161e-01 -XStrontianite: 5.6839e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.4086e-01 +XStrontianite: 5.5914e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2734,10 +2734,10 @@ Simulation number: 4 Reaction step number: 184 SrCO3 added: 1.8400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.2872e-01 -XStrontianite: 5.7128e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.3786e-01 +XStrontianite: 5.6214e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2747,10 +2747,10 @@ Simulation number: 4 Reaction step number: 185 SrCO3 added: 1.8500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.2586e-01 -XStrontianite: 5.7414e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.3489e-01 +XStrontianite: 5.6511e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2760,10 +2760,10 @@ Simulation number: 4 Reaction step number: 186 SrCO3 added: 1.8600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.2304e-01 -XStrontianite: 5.7696e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.3197e-01 +XStrontianite: 5.6803e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2773,10 +2773,10 @@ Simulation number: 4 Reaction step number: 187 SrCO3 added: 1.8700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.2025e-01 -XStrontianite: 5.7975e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.2909e-01 +XStrontianite: 5.7091e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2786,10 +2786,10 @@ Simulation number: 4 Reaction step number: 188 SrCO3 added: 1.8800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.1751e-01 -XStrontianite: 5.8249e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.2624e-01 +XStrontianite: 5.7376e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2799,10 +2799,10 @@ Simulation number: 4 Reaction step number: 189 SrCO3 added: 1.8900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.1480e-01 -XStrontianite: 5.8520e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.2343e-01 +XStrontianite: 5.7657e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2812,10 +2812,10 @@ Simulation number: 4 Reaction step number: 190 SrCO3 added: 1.9000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.1212e-01 -XStrontianite: 5.8788e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.2066e-01 +XStrontianite: 5.7934e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2825,10 +2825,10 @@ Simulation number: 4 Reaction step number: 191 SrCO3 added: 1.9100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.0948e-01 -XStrontianite: 5.9052e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.1792e-01 +XStrontianite: 5.8208e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2838,10 +2838,10 @@ Simulation number: 4 Reaction step number: 192 SrCO3 added: 1.9200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.0687e-01 -XStrontianite: 5.9313e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.1522e-01 +XStrontianite: 5.8478e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2851,10 +2851,10 @@ Simulation number: 4 Reaction step number: 193 SrCO3 added: 1.9300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.0429e-01 -XStrontianite: 5.9571e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.1256e-01 +XStrontianite: 5.8744e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2864,10 +2864,10 @@ Simulation number: 4 Reaction step number: 194 SrCO3 added: 1.9400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 4.0175e-01 -XStrontianite: 5.9825e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.0993e-01 +XStrontianite: 5.9007e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2877,10 +2877,10 @@ Simulation number: 4 Reaction step number: 195 SrCO3 added: 1.9500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.9924e-01 -XStrontianite: 6.0076e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.0733e-01 +XStrontianite: 5.9267e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2890,10 +2890,10 @@ Simulation number: 4 Reaction step number: 196 SrCO3 added: 1.9600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.9676e-01 -XStrontianite: 6.0324e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.0476e-01 +XStrontianite: 5.9524e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2903,10 +2903,10 @@ Simulation number: 4 Reaction step number: 197 SrCO3 added: 1.9700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.9431e-01 -XStrontianite: 6.0569e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 4.0223e-01 +XStrontianite: 5.9777e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2916,10 +2916,10 @@ Simulation number: 4 Reaction step number: 198 SrCO3 added: 1.9800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.9189e-01 -XStrontianite: 6.0811e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.9973e-01 +XStrontianite: 6.0027e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2929,10 +2929,10 @@ Simulation number: 4 Reaction step number: 199 SrCO3 added: 1.9900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.8950e-01 -XStrontianite: 6.1050e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.9726e-01 +XStrontianite: 6.0274e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2942,10 +2942,10 @@ Simulation number: 4 Reaction step number: 200 SrCO3 added: 2.0000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.8714e-01 -XStrontianite: 6.1286e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.9482e-01 +XStrontianite: 6.0518e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2955,10 +2955,10 @@ Simulation number: 4 Reaction step number: 201 SrCO3 added: 2.0100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.8481e-01 -XStrontianite: 6.1519e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.9241e-01 +XStrontianite: 6.0759e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2968,10 +2968,10 @@ Simulation number: 4 Reaction step number: 202 SrCO3 added: 2.0200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.8250e-01 -XStrontianite: 6.1750e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.9003e-01 +XStrontianite: 6.0997e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2981,10 +2981,10 @@ Simulation number: 4 Reaction step number: 203 SrCO3 added: 2.0300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.8023e-01 -XStrontianite: 6.1977e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.8767e-01 +XStrontianite: 6.1233e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -2994,10 +2994,10 @@ Simulation number: 4 Reaction step number: 204 SrCO3 added: 2.0400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.7798e-01 -XStrontianite: 6.2202e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.8535e-01 +XStrontianite: 6.1465e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3007,10 +3007,10 @@ Simulation number: 4 Reaction step number: 205 SrCO3 added: 2.0500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.7575e-01 -XStrontianite: 6.2425e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.8305e-01 +XStrontianite: 6.1695e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3020,10 +3020,10 @@ Simulation number: 4 Reaction step number: 206 SrCO3 added: 2.0600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.7356e-01 -XStrontianite: 6.2644e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.8078e-01 +XStrontianite: 6.1922e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3033,10 +3033,10 @@ Simulation number: 4 Reaction step number: 207 SrCO3 added: 2.0700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.7138e-01 -XStrontianite: 6.2862e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.7854e-01 +XStrontianite: 6.2146e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3046,10 +3046,10 @@ Simulation number: 4 Reaction step number: 208 SrCO3 added: 2.0800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.6924e-01 -XStrontianite: 6.3076e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.7632e-01 +XStrontianite: 6.2368e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3059,10 +3059,10 @@ Simulation number: 4 Reaction step number: 209 SrCO3 added: 2.0900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.6712e-01 -XStrontianite: 6.3288e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.7413e-01 +XStrontianite: 6.2587e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3072,10 +3072,10 @@ Simulation number: 4 Reaction step number: 210 SrCO3 added: 2.1000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.6502e-01 -XStrontianite: 6.3498e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.7197e-01 +XStrontianite: 6.2803e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3085,10 +3085,10 @@ Simulation number: 4 Reaction step number: 211 SrCO3 added: 2.1100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.6294e-01 -XStrontianite: 6.3706e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.6983e-01 +XStrontianite: 6.3017e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3098,10 +3098,10 @@ Simulation number: 4 Reaction step number: 212 SrCO3 added: 2.1200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.6089e-01 -XStrontianite: 6.3911e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.6771e-01 +XStrontianite: 6.3229e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3111,10 +3111,10 @@ Simulation number: 4 Reaction step number: 213 SrCO3 added: 2.1300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.5887e-01 -XStrontianite: 6.4113e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.6562e-01 +XStrontianite: 6.3438e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3124,10 +3124,10 @@ Simulation number: 4 Reaction step number: 214 SrCO3 added: 2.1400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.5686e-01 -XStrontianite: 6.4314e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.6355e-01 +XStrontianite: 6.3645e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3137,10 +3137,10 @@ Simulation number: 4 Reaction step number: 215 SrCO3 added: 2.1500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.5488e-01 -XStrontianite: 6.4512e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.6151e-01 +XStrontianite: 6.3849e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3150,10 +3150,10 @@ Simulation number: 4 Reaction step number: 216 SrCO3 added: 2.1600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.5292e-01 -XStrontianite: 6.4708e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.5948e-01 +XStrontianite: 6.4052e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3163,10 +3163,10 @@ Simulation number: 4 Reaction step number: 217 SrCO3 added: 2.1700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.5098e-01 -XStrontianite: 6.4902e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.5748e-01 +XStrontianite: 6.4252e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3176,10 +3176,10 @@ Simulation number: 4 Reaction step number: 218 SrCO3 added: 2.1800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.4906e-01 -XStrontianite: 6.5094e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.5551e-01 +XStrontianite: 6.4449e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3189,10 +3189,10 @@ Simulation number: 4 Reaction step number: 219 SrCO3 added: 2.1900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.4716e-01 -XStrontianite: 6.5284e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.5355e-01 +XStrontianite: 6.4645e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3202,10 +3202,10 @@ Simulation number: 4 Reaction step number: 220 SrCO3 added: 2.2000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.4529e-01 -XStrontianite: 6.5471e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.5162e-01 +XStrontianite: 6.4838e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3215,10 +3215,10 @@ Simulation number: 4 Reaction step number: 221 SrCO3 added: 2.2100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.4343e-01 -XStrontianite: 6.5657e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.4970e-01 +XStrontianite: 6.5030e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3228,10 +3228,10 @@ Simulation number: 4 Reaction step number: 222 SrCO3 added: 2.2200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.4159e-01 -XStrontianite: 6.5841e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.4781e-01 +XStrontianite: 6.5219e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3241,10 +3241,10 @@ Simulation number: 4 Reaction step number: 223 SrCO3 added: 2.2300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.3978e-01 -XStrontianite: 6.6022e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.4594e-01 +XStrontianite: 6.5406e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3254,10 +3254,10 @@ Simulation number: 4 Reaction step number: 224 SrCO3 added: 2.2400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.3798e-01 -XStrontianite: 6.6202e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.4409e-01 +XStrontianite: 6.5591e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3267,10 +3267,10 @@ Simulation number: 4 Reaction step number: 225 SrCO3 added: 2.2500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.3620e-01 -XStrontianite: 6.6380e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.4225e-01 +XStrontianite: 6.5775e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3280,10 +3280,10 @@ Simulation number: 4 Reaction step number: 226 SrCO3 added: 2.2600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.3444e-01 -XStrontianite: 6.6556e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.4044e-01 +XStrontianite: 6.5956e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3293,10 +3293,10 @@ Simulation number: 4 Reaction step number: 227 SrCO3 added: 2.2700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.3270e-01 -XStrontianite: 6.6730e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.3865e-01 +XStrontianite: 6.6135e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3306,10 +3306,10 @@ Simulation number: 4 Reaction step number: 228 SrCO3 added: 2.2800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.3097e-01 -XStrontianite: 6.6903e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.3687e-01 +XStrontianite: 6.6313e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3319,10 +3319,10 @@ Simulation number: 4 Reaction step number: 229 SrCO3 added: 2.2900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.2927e-01 -XStrontianite: 6.7073e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.3512e-01 +XStrontianite: 6.6488e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3332,10 +3332,10 @@ Simulation number: 4 Reaction step number: 230 SrCO3 added: 2.3000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.2758e-01 -XStrontianite: 6.7242e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.3338e-01 +XStrontianite: 6.6662e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3345,10 +3345,10 @@ Simulation number: 4 Reaction step number: 231 SrCO3 added: 2.3100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.2591e-01 -XStrontianite: 6.7409e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.3166e-01 +XStrontianite: 6.6834e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3358,10 +3358,10 @@ Simulation number: 4 Reaction step number: 232 SrCO3 added: 2.3200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.2425e-01 -XStrontianite: 6.7575e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.2995e-01 +XStrontianite: 6.7005e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3371,10 +3371,10 @@ Simulation number: 4 Reaction step number: 233 SrCO3 added: 2.3300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.2261e-01 -XStrontianite: 6.7739e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.2827e-01 +XStrontianite: 6.7173e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3384,10 +3384,10 @@ Simulation number: 4 Reaction step number: 234 SrCO3 added: 2.3400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.2099e-01 -XStrontianite: 6.7901e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.2660e-01 +XStrontianite: 6.7340e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3397,10 +3397,10 @@ Simulation number: 4 Reaction step number: 235 SrCO3 added: 2.3500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.1939e-01 -XStrontianite: 6.8061e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.2495e-01 +XStrontianite: 6.7505e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3410,10 +3410,10 @@ Simulation number: 4 Reaction step number: 236 SrCO3 added: 2.3600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.1780e-01 -XStrontianite: 6.8220e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.2331e-01 +XStrontianite: 6.7669e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3423,10 +3423,10 @@ Simulation number: 4 Reaction step number: 237 SrCO3 added: 2.3700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.1623e-01 -XStrontianite: 6.8377e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.2170e-01 +XStrontianite: 6.7830e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3436,10 +3436,10 @@ Simulation number: 4 Reaction step number: 238 SrCO3 added: 2.3800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.1467e-01 -XStrontianite: 6.8533e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.2009e-01 +XStrontianite: 6.7991e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3449,10 +3449,10 @@ Simulation number: 4 Reaction step number: 239 SrCO3 added: 2.3900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.1313e-01 -XStrontianite: 6.8687e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.1851e-01 +XStrontianite: 6.8149e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3462,10 +3462,10 @@ Simulation number: 4 Reaction step number: 240 SrCO3 added: 2.4000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.1160e-01 -XStrontianite: 6.8840e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.1694e-01 +XStrontianite: 6.8306e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3475,10 +3475,10 @@ Simulation number: 4 Reaction step number: 241 SrCO3 added: 2.4100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.1009e-01 -XStrontianite: 6.8991e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.1538e-01 +XStrontianite: 6.8462e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3488,10 +3488,10 @@ Simulation number: 4 Reaction step number: 242 SrCO3 added: 2.4200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.0859e-01 -XStrontianite: 6.9141e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.1384e-01 +XStrontianite: 6.8616e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3501,10 +3501,10 @@ Simulation number: 4 Reaction step number: 243 SrCO3 added: 2.4300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.0710e-01 -XStrontianite: 6.9290e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.1232e-01 +XStrontianite: 6.8768e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3514,10 +3514,10 @@ Simulation number: 4 Reaction step number: 244 SrCO3 added: 2.4400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.0563e-01 -XStrontianite: 6.9437e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.1081e-01 +XStrontianite: 6.8919e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3527,10 +3527,10 @@ Simulation number: 4 Reaction step number: 245 SrCO3 added: 2.4500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.0418e-01 -XStrontianite: 6.9582e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.0931e-01 +XStrontianite: 6.9069e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3540,10 +3540,10 @@ Simulation number: 4 Reaction step number: 246 SrCO3 added: 2.4600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.0274e-01 -XStrontianite: 6.9726e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.0783e-01 +XStrontianite: 6.9217e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3553,10 +3553,10 @@ Simulation number: 4 Reaction step number: 247 SrCO3 added: 2.4700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 3.0131e-01 -XStrontianite: 6.9869e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.0636e-01 +XStrontianite: 6.9364e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3566,10 +3566,10 @@ Simulation number: 4 Reaction step number: 248 SrCO3 added: 2.4800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.9989e-01 -XStrontianite: 7.0011e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.0491e-01 +XStrontianite: 6.9509e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3579,10 +3579,10 @@ Simulation number: 4 Reaction step number: 249 SrCO3 added: 2.4900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.9849e-01 -XStrontianite: 7.0151e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.0347e-01 +XStrontianite: 6.9653e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3592,10 +3592,10 @@ Simulation number: 4 Reaction step number: 250 SrCO3 added: 2.5000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.9710e-01 -XStrontianite: 7.0290e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.0204e-01 +XStrontianite: 6.9796e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3605,10 +3605,10 @@ Simulation number: 4 Reaction step number: 251 SrCO3 added: 2.5100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.9573e-01 -XStrontianite: 7.0427e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 3.0063e-01 +XStrontianite: 6.9937e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3618,10 +3618,10 @@ Simulation number: 4 Reaction step number: 252 SrCO3 added: 2.5200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.9437e-01 -XStrontianite: 7.0563e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.9923e-01 +XStrontianite: 7.0077e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3631,10 +3631,10 @@ Simulation number: 4 Reaction step number: 253 SrCO3 added: 2.5300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.9302e-01 -XStrontianite: 7.0698e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.9784e-01 +XStrontianite: 7.0216e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3644,10 +3644,10 @@ Simulation number: 4 Reaction step number: 254 SrCO3 added: 2.5400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.9168e-01 -XStrontianite: 7.0832e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.9647e-01 +XStrontianite: 7.0353e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3657,10 +3657,10 @@ Simulation number: 4 Reaction step number: 255 SrCO3 added: 2.5500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.9035e-01 -XStrontianite: 7.0965e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.9511e-01 +XStrontianite: 7.0489e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3670,10 +3670,10 @@ Simulation number: 4 Reaction step number: 256 SrCO3 added: 2.5600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.8904e-01 -XStrontianite: 7.1096e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.9376e-01 +XStrontianite: 7.0624e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3683,10 +3683,10 @@ Simulation number: 4 Reaction step number: 257 SrCO3 added: 2.5700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.8774e-01 -XStrontianite: 7.1226e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.9242e-01 +XStrontianite: 7.0758e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3696,10 +3696,10 @@ Simulation number: 4 Reaction step number: 258 SrCO3 added: 2.5800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.8645e-01 -XStrontianite: 7.1355e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.9110e-01 +XStrontianite: 7.0890e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3709,10 +3709,10 @@ Simulation number: 4 Reaction step number: 259 SrCO3 added: 2.5900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.8517e-01 -XStrontianite: 7.1483e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.8978e-01 +XStrontianite: 7.1022e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3722,10 +3722,10 @@ Simulation number: 4 Reaction step number: 260 SrCO3 added: 2.6000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.8390e-01 -XStrontianite: 7.1610e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.8848e-01 +XStrontianite: 7.1152e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3735,10 +3735,10 @@ Simulation number: 4 Reaction step number: 261 SrCO3 added: 2.6100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.8264e-01 -XStrontianite: 7.1736e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.8719e-01 +XStrontianite: 7.1281e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3748,10 +3748,10 @@ Simulation number: 4 Reaction step number: 262 SrCO3 added: 2.6200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.8140e-01 -XStrontianite: 7.1860e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.8592e-01 +XStrontianite: 7.1408e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3761,10 +3761,10 @@ Simulation number: 4 Reaction step number: 263 SrCO3 added: 2.6300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.8016e-01 -XStrontianite: 7.1984e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.8465e-01 +XStrontianite: 7.1535e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3774,10 +3774,10 @@ Simulation number: 4 Reaction step number: 264 SrCO3 added: 2.6400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.7894e-01 -XStrontianite: 7.2106e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.8340e-01 +XStrontianite: 7.1660e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3787,10 +3787,10 @@ Simulation number: 4 Reaction step number: 265 SrCO3 added: 2.6500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.7773e-01 -XStrontianite: 7.2227e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.8215e-01 +XStrontianite: 7.1785e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3800,10 +3800,10 @@ Simulation number: 4 Reaction step number: 266 SrCO3 added: 2.6600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.7652e-01 -XStrontianite: 7.2348e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.8092e-01 +XStrontianite: 7.1908e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3813,10 +3813,10 @@ Simulation number: 4 Reaction step number: 267 SrCO3 added: 2.6700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.7533e-01 -XStrontianite: 7.2467e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.7970e-01 +XStrontianite: 7.2030e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3826,10 +3826,10 @@ Simulation number: 4 Reaction step number: 268 SrCO3 added: 2.6800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.7415e-01 -XStrontianite: 7.2585e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.7848e-01 +XStrontianite: 7.2152e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3839,10 +3839,10 @@ Simulation number: 4 Reaction step number: 269 SrCO3 added: 2.6900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.7298e-01 -XStrontianite: 7.2702e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.7728e-01 +XStrontianite: 7.2272e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3852,10 +3852,10 @@ Simulation number: 4 Reaction step number: 270 SrCO3 added: 2.7000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.7182e-01 -XStrontianite: 7.2818e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.7609e-01 +XStrontianite: 7.2391e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3865,10 +3865,10 @@ Simulation number: 4 Reaction step number: 271 SrCO3 added: 2.7100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.7067e-01 -XStrontianite: 7.2933e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.7491e-01 +XStrontianite: 7.2509e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3878,10 +3878,10 @@ Simulation number: 4 Reaction step number: 272 SrCO3 added: 2.7200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.6952e-01 -XStrontianite: 7.3048e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.7374e-01 +XStrontianite: 7.2626e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3891,10 +3891,10 @@ Simulation number: 4 Reaction step number: 273 SrCO3 added: 2.7300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.6839e-01 -XStrontianite: 7.3161e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.7258e-01 +XStrontianite: 7.2742e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3904,10 +3904,10 @@ Simulation number: 4 Reaction step number: 274 SrCO3 added: 2.7400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.6727e-01 -XStrontianite: 7.3273e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.7143e-01 +XStrontianite: 7.2857e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3917,10 +3917,10 @@ Simulation number: 4 Reaction step number: 275 SrCO3 added: 2.7500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.6615e-01 -XStrontianite: 7.3385e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.7029e-01 +XStrontianite: 7.2971e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3930,10 +3930,10 @@ Simulation number: 4 Reaction step number: 276 SrCO3 added: 2.7600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.6505e-01 -XStrontianite: 7.3495e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.6915e-01 +XStrontianite: 7.3085e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3943,10 +3943,10 @@ Simulation number: 4 Reaction step number: 277 SrCO3 added: 2.7700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.6395e-01 -XStrontianite: 7.3605e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.6803e-01 +XStrontianite: 7.3197e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3956,10 +3956,10 @@ Simulation number: 4 Reaction step number: 278 SrCO3 added: 2.7800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.6287e-01 -XStrontianite: 7.3713e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.6692e-01 +XStrontianite: 7.3308e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3969,10 +3969,10 @@ Simulation number: 4 Reaction step number: 279 SrCO3 added: 2.7900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.6179e-01 -XStrontianite: 7.3821e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.6581e-01 +XStrontianite: 7.3419e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3982,10 +3982,10 @@ Simulation number: 4 Reaction step number: 280 SrCO3 added: 2.8000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.6072e-01 -XStrontianite: 7.3928e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.6472e-01 +XStrontianite: 7.3528e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -3995,10 +3995,10 @@ Simulation number: 4 Reaction step number: 281 SrCO3 added: 2.8100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5966e-01 -XStrontianite: 7.4034e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.6363e-01 +XStrontianite: 7.3637e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4008,10 +4008,10 @@ Simulation number: 4 Reaction step number: 282 SrCO3 added: 2.8200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5861e-01 -XStrontianite: 7.4139e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.6256e-01 +XStrontianite: 7.3744e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4021,10 +4021,10 @@ Simulation number: 4 Reaction step number: 283 SrCO3 added: 2.8300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5757e-01 -XStrontianite: 7.4243e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.6149e-01 +XStrontianite: 7.3851e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4034,10 +4034,10 @@ Simulation number: 4 Reaction step number: 284 SrCO3 added: 2.8400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5653e-01 -XStrontianite: 7.4347e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.6043e-01 +XStrontianite: 7.3957e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4047,10 +4047,10 @@ Simulation number: 4 Reaction step number: 285 SrCO3 added: 2.8500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5551e-01 -XStrontianite: 7.4449e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.5938e-01 +XStrontianite: 7.4062e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4060,10 +4060,10 @@ Simulation number: 4 Reaction step number: 286 SrCO3 added: 2.8600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5449e-01 -XStrontianite: 7.4551e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.5833e-01 +XStrontianite: 7.4167e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4073,10 +4073,10 @@ Simulation number: 4 Reaction step number: 287 SrCO3 added: 2.8700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5348e-01 -XStrontianite: 7.4652e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.5730e-01 +XStrontianite: 7.4270e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4086,10 +4086,10 @@ Simulation number: 4 Reaction step number: 288 SrCO3 added: 2.8800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5248e-01 -XStrontianite: 7.4752e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.5627e-01 +XStrontianite: 7.4373e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4099,10 +4099,10 @@ Simulation number: 4 Reaction step number: 289 SrCO3 added: 2.8900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5148e-01 -XStrontianite: 7.4852e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.5526e-01 +XStrontianite: 7.4474e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4112,10 +4112,10 @@ Simulation number: 4 Reaction step number: 290 SrCO3 added: 2.9000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.5050e-01 -XStrontianite: 7.4950e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.5425e-01 +XStrontianite: 7.4575e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4125,10 +4125,10 @@ Simulation number: 4 Reaction step number: 291 SrCO3 added: 2.9100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4952e-01 -XStrontianite: 7.5048e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.5324e-01 +XStrontianite: 7.4676e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4138,10 +4138,10 @@ Simulation number: 4 Reaction step number: 292 SrCO3 added: 2.9200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4855e-01 -XStrontianite: 7.5145e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.5225e-01 +XStrontianite: 7.4775e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4151,10 +4151,10 @@ Simulation number: 4 Reaction step number: 293 SrCO3 added: 2.9300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4758e-01 -XStrontianite: 7.5242e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.5126e-01 +XStrontianite: 7.4874e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4164,10 +4164,10 @@ Simulation number: 4 Reaction step number: 294 SrCO3 added: 2.9400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4663e-01 -XStrontianite: 7.5337e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.5029e-01 +XStrontianite: 7.4971e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4177,10 +4177,10 @@ Simulation number: 4 Reaction step number: 295 SrCO3 added: 2.9500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4568e-01 -XStrontianite: 7.5432e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.4932e-01 +XStrontianite: 7.5068e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4190,10 +4190,10 @@ Simulation number: 4 Reaction step number: 296 SrCO3 added: 2.9600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4474e-01 -XStrontianite: 7.5526e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.4835e-01 +XStrontianite: 7.5165e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4203,10 +4203,10 @@ Simulation number: 4 Reaction step number: 297 SrCO3 added: 2.9700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4380e-01 -XStrontianite: 7.5620e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.4740e-01 +XStrontianite: 7.5260e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4216,10 +4216,10 @@ Simulation number: 4 Reaction step number: 298 SrCO3 added: 2.9800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4288e-01 -XStrontianite: 7.5712e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.4645e-01 +XStrontianite: 7.5355e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4229,10 +4229,10 @@ Simulation number: 4 Reaction step number: 299 SrCO3 added: 2.9900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4196e-01 -XStrontianite: 7.5804e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.4551e-01 +XStrontianite: 7.5449e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4242,10 +4242,10 @@ Simulation number: 4 Reaction step number: 300 SrCO3 added: 3.0000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4104e-01 -XStrontianite: 7.5896e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.4457e-01 +XStrontianite: 7.5543e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4255,10 +4255,10 @@ Simulation number: 4 Reaction step number: 301 SrCO3 added: 3.0100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.4014e-01 -XStrontianite: 7.5986e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.4364e-01 +XStrontianite: 7.5636e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4268,10 +4268,10 @@ Simulation number: 4 Reaction step number: 302 SrCO3 added: 3.0200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3924e-01 -XStrontianite: 7.6076e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.4272e-01 +XStrontianite: 7.5728e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4281,10 +4281,10 @@ Simulation number: 4 Reaction step number: 303 SrCO3 added: 3.0300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3835e-01 -XStrontianite: 7.6165e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.4181e-01 +XStrontianite: 7.5819e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4294,10 +4294,10 @@ Simulation number: 4 Reaction step number: 304 SrCO3 added: 3.0400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3746e-01 -XStrontianite: 7.6254e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.4090e-01 +XStrontianite: 7.5910e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4307,10 +4307,10 @@ Simulation number: 4 Reaction step number: 305 SrCO3 added: 3.0500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3658e-01 -XStrontianite: 7.6342e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.4000e-01 +XStrontianite: 7.6000e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4320,10 +4320,10 @@ Simulation number: 4 Reaction step number: 306 SrCO3 added: 3.0600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3571e-01 -XStrontianite: 7.6429e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.3911e-01 +XStrontianite: 7.6089e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4333,10 +4333,10 @@ Simulation number: 4 Reaction step number: 307 SrCO3 added: 3.0700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3484e-01 -XStrontianite: 7.6516e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.3823e-01 +XStrontianite: 7.6177e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4346,10 +4346,10 @@ Simulation number: 4 Reaction step number: 308 SrCO3 added: 3.0800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3398e-01 -XStrontianite: 7.6602e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.3735e-01 +XStrontianite: 7.6265e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4359,10 +4359,10 @@ Simulation number: 4 Reaction step number: 309 SrCO3 added: 3.0900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3313e-01 -XStrontianite: 7.6687e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.3647e-01 +XStrontianite: 7.6353e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4372,10 +4372,10 @@ Simulation number: 4 Reaction step number: 310 SrCO3 added: 3.1000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3228e-01 -XStrontianite: 7.6772e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.3561e-01 +XStrontianite: 7.6439e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4385,10 +4385,10 @@ Simulation number: 4 Reaction step number: 311 SrCO3 added: 3.1100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3144e-01 -XStrontianite: 7.6856e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.3474e-01 +XStrontianite: 7.6526e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4398,10 +4398,10 @@ Simulation number: 4 Reaction step number: 312 SrCO3 added: 3.1200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.3060e-01 -XStrontianite: 7.6940e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.3389e-01 +XStrontianite: 7.6611e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4411,10 +4411,10 @@ Simulation number: 4 Reaction step number: 313 SrCO3 added: 3.1300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2977e-01 -XStrontianite: 7.7023e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.3304e-01 +XStrontianite: 7.6696e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4424,10 +4424,10 @@ Simulation number: 4 Reaction step number: 314 SrCO3 added: 3.1400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2895e-01 -XStrontianite: 7.7105e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.3220e-01 +XStrontianite: 7.6780e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4437,10 +4437,10 @@ Simulation number: 4 Reaction step number: 315 SrCO3 added: 3.1500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2813e-01 -XStrontianite: 7.7187e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.3136e-01 +XStrontianite: 7.6864e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4450,10 +4450,10 @@ Simulation number: 4 Reaction step number: 316 SrCO3 added: 3.1600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2732e-01 -XStrontianite: 7.7268e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.3053e-01 +XStrontianite: 7.6947e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4463,10 +4463,10 @@ Simulation number: 4 Reaction step number: 317 SrCO3 added: 3.1700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2651e-01 -XStrontianite: 7.7349e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.2971e-01 +XStrontianite: 7.7029e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4476,10 +4476,10 @@ Simulation number: 4 Reaction step number: 318 SrCO3 added: 3.1800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2571e-01 -XStrontianite: 7.7429e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.2889e-01 +XStrontianite: 7.7111e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4489,10 +4489,10 @@ Simulation number: 4 Reaction step number: 319 SrCO3 added: 3.1900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2492e-01 -XStrontianite: 7.7508e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.2808e-01 +XStrontianite: 7.7192e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4502,10 +4502,10 @@ Simulation number: 4 Reaction step number: 320 SrCO3 added: 3.2000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2413e-01 -XStrontianite: 7.7587e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.2727e-01 +XStrontianite: 7.7273e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4515,10 +4515,10 @@ Simulation number: 4 Reaction step number: 321 SrCO3 added: 3.2100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2334e-01 -XStrontianite: 7.7666e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.2647e-01 +XStrontianite: 7.7353e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4528,10 +4528,10 @@ Simulation number: 4 Reaction step number: 322 SrCO3 added: 3.2200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2257e-01 -XStrontianite: 7.7743e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.2568e-01 +XStrontianite: 7.7432e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4541,10 +4541,10 @@ Simulation number: 4 Reaction step number: 323 SrCO3 added: 3.2300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2179e-01 -XStrontianite: 7.7821e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.2489e-01 +XStrontianite: 7.7511e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4554,10 +4554,10 @@ Simulation number: 4 Reaction step number: 324 SrCO3 added: 3.2400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2103e-01 -XStrontianite: 7.7897e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.2410e-01 +XStrontianite: 7.7590e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4567,10 +4567,10 @@ Simulation number: 4 Reaction step number: 325 SrCO3 added: 3.2500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.2026e-01 -XStrontianite: 7.7974e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.2333e-01 +XStrontianite: 7.7667e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4580,10 +4580,10 @@ Simulation number: 4 Reaction step number: 326 SrCO3 added: 3.2600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1951e-01 -XStrontianite: 7.8049e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.2255e-01 +XStrontianite: 7.7745e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4593,10 +4593,10 @@ Simulation number: 4 Reaction step number: 327 SrCO3 added: 3.2700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1876e-01 -XStrontianite: 7.8124e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.2178e-01 +XStrontianite: 7.7822e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4606,10 +4606,10 @@ Simulation number: 4 Reaction step number: 328 SrCO3 added: 3.2800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1801e-01 -XStrontianite: 7.8199e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.2102e-01 +XStrontianite: 7.7898e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4619,10 +4619,10 @@ Simulation number: 4 Reaction step number: 329 SrCO3 added: 3.2900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1727e-01 -XStrontianite: 7.8273e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.2026e-01 +XStrontianite: 7.7974e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4632,10 +4632,10 @@ Simulation number: 4 Reaction step number: 330 SrCO3 added: 3.3000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1653e-01 -XStrontianite: 7.8347e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.1951e-01 +XStrontianite: 7.8049e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4645,10 +4645,10 @@ Simulation number: 4 Reaction step number: 331 SrCO3 added: 3.3100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1580e-01 -XStrontianite: 7.8420e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.1876e-01 +XStrontianite: 7.8124e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4658,10 +4658,10 @@ Simulation number: 4 Reaction step number: 332 SrCO3 added: 3.3200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1507e-01 -XStrontianite: 7.8493e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.1802e-01 +XStrontianite: 7.8198e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4671,10 +4671,10 @@ Simulation number: 4 Reaction step number: 333 SrCO3 added: 3.3300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1435e-01 -XStrontianite: 7.8565e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.1728e-01 +XStrontianite: 7.8272e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4684,10 +4684,10 @@ Simulation number: 4 Reaction step number: 334 SrCO3 added: 3.3400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1363e-01 -XStrontianite: 7.8637e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.1655e-01 +XStrontianite: 7.8345e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4697,10 +4697,10 @@ Simulation number: 4 Reaction step number: 335 SrCO3 added: 3.3500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1292e-01 -XStrontianite: 7.8708e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.1583e-01 +XStrontianite: 7.8417e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4710,10 +4710,10 @@ Simulation number: 4 Reaction step number: 336 SrCO3 added: 3.3600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1221e-01 -XStrontianite: 7.8779e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.1510e-01 +XStrontianite: 7.8490e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4723,10 +4723,10 @@ Simulation number: 4 Reaction step number: 337 SrCO3 added: 3.3700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1151e-01 -XStrontianite: 7.8849e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.1439e-01 +XStrontianite: 7.8561e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4736,10 +4736,10 @@ Simulation number: 4 Reaction step number: 338 SrCO3 added: 3.3800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1081e-01 -XStrontianite: 7.8919e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.1367e-01 +XStrontianite: 7.8633e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4749,10 +4749,10 @@ Simulation number: 4 Reaction step number: 339 SrCO3 added: 3.3900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.1012e-01 -XStrontianite: 7.8988e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.1296e-01 +XStrontianite: 7.8704e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4762,10 +4762,10 @@ Simulation number: 4 Reaction step number: 340 SrCO3 added: 3.4000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0943e-01 -XStrontianite: 7.9057e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.1226e-01 +XStrontianite: 7.8774e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4775,10 +4775,10 @@ Simulation number: 4 Reaction step number: 341 SrCO3 added: 3.4100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0875e-01 -XStrontianite: 7.9125e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.1156e-01 +XStrontianite: 7.8844e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4788,10 +4788,10 @@ Simulation number: 4 Reaction step number: 342 SrCO3 added: 3.4200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0807e-01 -XStrontianite: 7.9193e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.1087e-01 +XStrontianite: 7.8913e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4801,10 +4801,10 @@ Simulation number: 4 Reaction step number: 343 SrCO3 added: 3.4300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0739e-01 -XStrontianite: 7.9261e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.1018e-01 +XStrontianite: 7.8982e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4814,10 +4814,10 @@ Simulation number: 4 Reaction step number: 344 SrCO3 added: 3.4400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0672e-01 -XStrontianite: 7.9328e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0949e-01 +XStrontianite: 7.9051e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4827,10 +4827,10 @@ Simulation number: 4 Reaction step number: 345 SrCO3 added: 3.4500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0605e-01 -XStrontianite: 7.9395e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0881e-01 +XStrontianite: 7.9119e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4840,10 +4840,10 @@ Simulation number: 4 Reaction step number: 346 SrCO3 added: 3.4600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0539e-01 -XStrontianite: 7.9461e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0814e-01 +XStrontianite: 7.9186e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4853,10 +4853,10 @@ Simulation number: 4 Reaction step number: 347 SrCO3 added: 3.4700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0473e-01 -XStrontianite: 7.9527e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0746e-01 +XStrontianite: 7.9254e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4866,10 +4866,10 @@ Simulation number: 4 Reaction step number: 348 SrCO3 added: 3.4800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0408e-01 -XStrontianite: 7.9592e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0680e-01 +XStrontianite: 7.9320e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4879,10 +4879,10 @@ Simulation number: 4 Reaction step number: 349 SrCO3 added: 3.4900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0343e-01 -XStrontianite: 7.9657e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0613e-01 +XStrontianite: 7.9387e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4892,10 +4892,10 @@ Simulation number: 4 Reaction step number: 350 SrCO3 added: 3.5000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0278e-01 -XStrontianite: 7.9722e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0548e-01 +XStrontianite: 7.9452e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4905,10 +4905,10 @@ Simulation number: 4 Reaction step number: 351 SrCO3 added: 3.5100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0214e-01 -XStrontianite: 7.9786e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0482e-01 +XStrontianite: 7.9518e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4918,10 +4918,10 @@ Simulation number: 4 Reaction step number: 352 SrCO3 added: 3.5200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0150e-01 -XStrontianite: 7.9850e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0417e-01 +XStrontianite: 7.9583e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4931,10 +4931,10 @@ Simulation number: 4 Reaction step number: 353 SrCO3 added: 3.5300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0087e-01 -XStrontianite: 7.9913e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0352e-01 +XStrontianite: 7.9648e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4944,10 +4944,10 @@ Simulation number: 4 Reaction step number: 354 SrCO3 added: 3.5400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 2.0024e-01 -XStrontianite: 7.9976e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0288e-01 +XStrontianite: 7.9712e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4957,10 +4957,10 @@ Simulation number: 4 Reaction step number: 355 SrCO3 added: 3.5500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9961e-01 -XStrontianite: 8.0039e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0224e-01 +XStrontianite: 7.9776e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4970,10 +4970,10 @@ Simulation number: 4 Reaction step number: 356 SrCO3 added: 3.5600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9899e-01 -XStrontianite: 8.0101e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0161e-01 +XStrontianite: 7.9839e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4983,10 +4983,10 @@ Simulation number: 4 Reaction step number: 357 SrCO3 added: 3.5700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9837e-01 -XStrontianite: 8.0163e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0098e-01 +XStrontianite: 7.9902e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -4996,10 +4996,10 @@ Simulation number: 4 Reaction step number: 358 SrCO3 added: 3.5800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9776e-01 -XStrontianite: 8.0224e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 2.0035e-01 +XStrontianite: 7.9965e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5009,10 +5009,10 @@ Simulation number: 4 Reaction step number: 359 SrCO3 added: 3.5900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9715e-01 -XStrontianite: 8.0285e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9973e-01 +XStrontianite: 8.0027e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5022,10 +5022,10 @@ Simulation number: 4 Reaction step number: 360 SrCO3 added: 3.6000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9654e-01 -XStrontianite: 8.0346e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9911e-01 +XStrontianite: 8.0089e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5035,10 +5035,10 @@ Simulation number: 4 Reaction step number: 361 SrCO3 added: 3.6100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9594e-01 -XStrontianite: 8.0406e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9849e-01 +XStrontianite: 8.0151e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5048,10 +5048,10 @@ Simulation number: 4 Reaction step number: 362 SrCO3 added: 3.6200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9534e-01 -XStrontianite: 8.0466e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9788e-01 +XStrontianite: 8.0212e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5061,10 +5061,10 @@ Simulation number: 4 Reaction step number: 363 SrCO3 added: 3.6300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9474e-01 -XStrontianite: 8.0526e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9728e-01 +XStrontianite: 8.0272e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5074,10 +5074,10 @@ Simulation number: 4 Reaction step number: 364 SrCO3 added: 3.6400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9415e-01 -XStrontianite: 8.0585e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9667e-01 +XStrontianite: 8.0333e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5087,10 +5087,10 @@ Simulation number: 4 Reaction step number: 365 SrCO3 added: 3.6500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9356e-01 -XStrontianite: 8.0644e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9607e-01 +XStrontianite: 8.0393e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5100,10 +5100,10 @@ Simulation number: 4 Reaction step number: 366 SrCO3 added: 3.6600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9298e-01 -XStrontianite: 8.0702e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9548e-01 +XStrontianite: 8.0452e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5113,10 +5113,10 @@ Simulation number: 4 Reaction step number: 367 SrCO3 added: 3.6700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9240e-01 -XStrontianite: 8.0760e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9488e-01 +XStrontianite: 8.0512e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5126,10 +5126,10 @@ Simulation number: 4 Reaction step number: 368 SrCO3 added: 3.6800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9182e-01 -XStrontianite: 8.0818e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9429e-01 +XStrontianite: 8.0571e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5139,10 +5139,10 @@ Simulation number: 4 Reaction step number: 369 SrCO3 added: 3.6900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9125e-01 -XStrontianite: 8.0875e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9371e-01 +XStrontianite: 8.0629e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5152,10 +5152,10 @@ Simulation number: 4 Reaction step number: 370 SrCO3 added: 3.7000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9068e-01 -XStrontianite: 8.0932e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9313e-01 +XStrontianite: 8.0687e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5165,10 +5165,10 @@ Simulation number: 4 Reaction step number: 371 SrCO3 added: 3.7100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.9011e-01 -XStrontianite: 8.0989e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9255e-01 +XStrontianite: 8.0745e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5178,10 +5178,10 @@ Simulation number: 4 Reaction step number: 372 SrCO3 added: 3.7200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8954e-01 -XStrontianite: 8.1046e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9197e-01 +XStrontianite: 8.0803e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5191,10 +5191,10 @@ Simulation number: 4 Reaction step number: 373 SrCO3 added: 3.7300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8898e-01 -XStrontianite: 8.1102e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9140e-01 +XStrontianite: 8.0860e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5204,10 +5204,10 @@ Simulation number: 4 Reaction step number: 374 SrCO3 added: 3.7400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8843e-01 -XStrontianite: 8.1157e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9083e-01 +XStrontianite: 8.0917e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5217,10 +5217,10 @@ Simulation number: 4 Reaction step number: 375 SrCO3 added: 3.7500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8787e-01 -XStrontianite: 8.1213e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.9027e-01 +XStrontianite: 8.0973e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5230,10 +5230,10 @@ Simulation number: 4 Reaction step number: 376 SrCO3 added: 3.7600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8732e-01 -XStrontianite: 8.1268e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8971e-01 +XStrontianite: 8.1029e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5243,10 +5243,10 @@ Simulation number: 4 Reaction step number: 377 SrCO3 added: 3.7700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8677e-01 -XStrontianite: 8.1323e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8915e-01 +XStrontianite: 8.1085e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5256,10 +5256,10 @@ Simulation number: 4 Reaction step number: 378 SrCO3 added: 3.7800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8623e-01 -XStrontianite: 8.1377e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8859e-01 +XStrontianite: 8.1141e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5269,10 +5269,10 @@ Simulation number: 4 Reaction step number: 379 SrCO3 added: 3.7900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8569e-01 -XStrontianite: 8.1431e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8804e-01 +XStrontianite: 8.1196e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5282,10 +5282,10 @@ Simulation number: 4 Reaction step number: 380 SrCO3 added: 3.8000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8515e-01 -XStrontianite: 8.1485e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8749e-01 +XStrontianite: 8.1251e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5295,10 +5295,10 @@ Simulation number: 4 Reaction step number: 381 SrCO3 added: 3.8100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8461e-01 -XStrontianite: 8.1539e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8695e-01 +XStrontianite: 8.1305e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5308,10 +5308,10 @@ Simulation number: 4 Reaction step number: 382 SrCO3 added: 3.8200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8408e-01 -XStrontianite: 8.1592e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8640e-01 +XStrontianite: 8.1360e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5321,10 +5321,10 @@ Simulation number: 4 Reaction step number: 383 SrCO3 added: 3.8300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8355e-01 -XStrontianite: 8.1645e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8587e-01 +XStrontianite: 8.1413e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5334,10 +5334,10 @@ Simulation number: 4 Reaction step number: 384 SrCO3 added: 3.8400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8303e-01 -XStrontianite: 8.1697e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8533e-01 +XStrontianite: 8.1467e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5347,10 +5347,10 @@ Simulation number: 4 Reaction step number: 385 SrCO3 added: 3.8500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8250e-01 -XStrontianite: 8.1750e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8480e-01 +XStrontianite: 8.1520e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5360,10 +5360,10 @@ Simulation number: 4 Reaction step number: 386 SrCO3 added: 3.8600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8198e-01 -XStrontianite: 8.1802e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8427e-01 +XStrontianite: 8.1573e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5373,10 +5373,10 @@ Simulation number: 4 Reaction step number: 387 SrCO3 added: 3.8700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8147e-01 -XStrontianite: 8.1853e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8374e-01 +XStrontianite: 8.1626e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5386,10 +5386,10 @@ Simulation number: 4 Reaction step number: 388 SrCO3 added: 3.8800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8095e-01 -XStrontianite: 8.1905e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8322e-01 +XStrontianite: 8.1678e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5399,10 +5399,10 @@ Simulation number: 4 Reaction step number: 389 SrCO3 added: 3.8900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.8044e-01 -XStrontianite: 8.1956e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8270e-01 +XStrontianite: 8.1730e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5412,10 +5412,10 @@ Simulation number: 4 Reaction step number: 390 SrCO3 added: 3.9000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7993e-01 -XStrontianite: 8.2007e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8218e-01 +XStrontianite: 8.1782e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5425,10 +5425,10 @@ Simulation number: 4 Reaction step number: 391 SrCO3 added: 3.9100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7943e-01 -XStrontianite: 8.2057e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8166e-01 +XStrontianite: 8.1834e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5438,10 +5438,10 @@ Simulation number: 4 Reaction step number: 392 SrCO3 added: 3.9200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7892e-01 -XStrontianite: 8.2108e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8115e-01 +XStrontianite: 8.1885e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5451,10 +5451,10 @@ Simulation number: 4 Reaction step number: 393 SrCO3 added: 3.9300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7842e-01 -XStrontianite: 8.2158e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8064e-01 +XStrontianite: 8.1936e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5464,10 +5464,10 @@ Simulation number: 4 Reaction step number: 394 SrCO3 added: 3.9400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7793e-01 -XStrontianite: 8.2207e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.8013e-01 +XStrontianite: 8.1987e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5477,10 +5477,10 @@ Simulation number: 4 Reaction step number: 395 SrCO3 added: 3.9500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7743e-01 -XStrontianite: 8.2257e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7963e-01 +XStrontianite: 8.2037e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5490,10 +5490,10 @@ Simulation number: 4 Reaction step number: 396 SrCO3 added: 3.9600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7694e-01 -XStrontianite: 8.2306e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7913e-01 +XStrontianite: 8.2087e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5503,10 +5503,10 @@ Simulation number: 4 Reaction step number: 397 SrCO3 added: 3.9700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7645e-01 -XStrontianite: 8.2355e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7863e-01 +XStrontianite: 8.2137e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5516,10 +5516,10 @@ Simulation number: 4 Reaction step number: 398 SrCO3 added: 3.9800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7597e-01 -XStrontianite: 8.2403e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7814e-01 +XStrontianite: 8.2186e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5529,10 +5529,10 @@ Simulation number: 4 Reaction step number: 399 SrCO3 added: 3.9900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7548e-01 -XStrontianite: 8.2452e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7765e-01 +XStrontianite: 8.2235e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5542,10 +5542,10 @@ Simulation number: 4 Reaction step number: 400 SrCO3 added: 4.0000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7500e-01 -XStrontianite: 8.2500e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7716e-01 +XStrontianite: 8.2284e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5555,10 +5555,10 @@ Simulation number: 4 Reaction step number: 401 SrCO3 added: 4.0100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7452e-01 -XStrontianite: 8.2548e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7667e-01 +XStrontianite: 8.2333e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5568,10 +5568,10 @@ Simulation number: 4 Reaction step number: 402 SrCO3 added: 4.0200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7405e-01 -XStrontianite: 8.2595e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7618e-01 +XStrontianite: 8.2382e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5581,10 +5581,10 @@ Simulation number: 4 Reaction step number: 403 SrCO3 added: 4.0300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7358e-01 -XStrontianite: 8.2642e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7570e-01 +XStrontianite: 8.2430e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5594,10 +5594,10 @@ Simulation number: 4 Reaction step number: 404 SrCO3 added: 4.0400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7311e-01 -XStrontianite: 8.2689e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7522e-01 +XStrontianite: 8.2478e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5607,10 +5607,10 @@ Simulation number: 4 Reaction step number: 405 SrCO3 added: 4.0500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7264e-01 -XStrontianite: 8.2736e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7475e-01 +XStrontianite: 8.2525e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5620,10 +5620,10 @@ Simulation number: 4 Reaction step number: 406 SrCO3 added: 4.0600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7217e-01 -XStrontianite: 8.2783e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7427e-01 +XStrontianite: 8.2573e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5633,10 +5633,10 @@ Simulation number: 4 Reaction step number: 407 SrCO3 added: 4.0700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7171e-01 -XStrontianite: 8.2829e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7380e-01 +XStrontianite: 8.2620e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5646,10 +5646,10 @@ Simulation number: 4 Reaction step number: 408 SrCO3 added: 4.0800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7125e-01 -XStrontianite: 8.2875e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7333e-01 +XStrontianite: 8.2667e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5659,10 +5659,10 @@ Simulation number: 4 Reaction step number: 409 SrCO3 added: 4.0900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7079e-01 -XStrontianite: 8.2921e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7287e-01 +XStrontianite: 8.2713e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5672,10 +5672,10 @@ Simulation number: 4 Reaction step number: 410 SrCO3 added: 4.1000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.7034e-01 -XStrontianite: 8.2966e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7240e-01 +XStrontianite: 8.2760e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5685,10 +5685,10 @@ Simulation number: 4 Reaction step number: 411 SrCO3 added: 4.1100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6988e-01 -XStrontianite: 8.3012e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7194e-01 +XStrontianite: 8.2806e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5698,10 +5698,10 @@ Simulation number: 4 Reaction step number: 412 SrCO3 added: 4.1200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6943e-01 -XStrontianite: 8.3057e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7148e-01 +XStrontianite: 8.2852e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5711,10 +5711,10 @@ Simulation number: 4 Reaction step number: 413 SrCO3 added: 4.1300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6898e-01 -XStrontianite: 8.3102e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7103e-01 +XStrontianite: 8.2897e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5724,10 +5724,10 @@ Simulation number: 4 Reaction step number: 414 SrCO3 added: 4.1400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6854e-01 -XStrontianite: 8.3146e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7057e-01 +XStrontianite: 8.2943e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5737,10 +5737,10 @@ Simulation number: 4 Reaction step number: 415 SrCO3 added: 4.1500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6809e-01 -XStrontianite: 8.3191e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.7012e-01 +XStrontianite: 8.2988e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5750,10 +5750,10 @@ Simulation number: 4 Reaction step number: 416 SrCO3 added: 4.1600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6765e-01 -XStrontianite: 8.3235e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6967e-01 +XStrontianite: 8.3033e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5763,10 +5763,10 @@ Simulation number: 4 Reaction step number: 417 SrCO3 added: 4.1700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6721e-01 -XStrontianite: 8.3279e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6923e-01 +XStrontianite: 8.3077e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5776,10 +5776,10 @@ Simulation number: 4 Reaction step number: 418 SrCO3 added: 4.1800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6678e-01 -XStrontianite: 8.3322e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6878e-01 +XStrontianite: 8.3122e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5789,10 +5789,10 @@ Simulation number: 4 Reaction step number: 419 SrCO3 added: 4.1900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6634e-01 -XStrontianite: 8.3366e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6834e-01 +XStrontianite: 8.3166e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5802,10 +5802,10 @@ Simulation number: 4 Reaction step number: 420 SrCO3 added: 4.2000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6591e-01 -XStrontianite: 8.3409e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6790e-01 +XStrontianite: 8.3210e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5815,10 +5815,10 @@ Simulation number: 4 Reaction step number: 421 SrCO3 added: 4.2100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6548e-01 -XStrontianite: 8.3452e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6746e-01 +XStrontianite: 8.3254e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5828,10 +5828,10 @@ Simulation number: 4 Reaction step number: 422 SrCO3 added: 4.2200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6505e-01 -XStrontianite: 8.3495e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6703e-01 +XStrontianite: 8.3297e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5841,10 +5841,10 @@ Simulation number: 4 Reaction step number: 423 SrCO3 added: 4.2300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6463e-01 -XStrontianite: 8.3537e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6659e-01 +XStrontianite: 8.3341e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5854,10 +5854,10 @@ Simulation number: 4 Reaction step number: 424 SrCO3 added: 4.2400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6421e-01 -XStrontianite: 8.3579e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6616e-01 +XStrontianite: 8.3384e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5867,10 +5867,10 @@ Simulation number: 4 Reaction step number: 425 SrCO3 added: 4.2500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6378e-01 -XStrontianite: 8.3622e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6573e-01 +XStrontianite: 8.3427e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5880,10 +5880,10 @@ Simulation number: 4 Reaction step number: 426 SrCO3 added: 4.2600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6337e-01 -XStrontianite: 8.3663e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6531e-01 +XStrontianite: 8.3469e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5893,10 +5893,10 @@ Simulation number: 4 Reaction step number: 427 SrCO3 added: 4.2700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6295e-01 -XStrontianite: 8.3705e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6488e-01 +XStrontianite: 8.3512e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5906,10 +5906,10 @@ Simulation number: 4 Reaction step number: 428 SrCO3 added: 4.2800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6253e-01 -XStrontianite: 8.3747e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6446e-01 +XStrontianite: 8.3554e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5919,10 +5919,10 @@ Simulation number: 4 Reaction step number: 429 SrCO3 added: 4.2900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6212e-01 -XStrontianite: 8.3788e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6404e-01 +XStrontianite: 8.3596e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5932,10 +5932,10 @@ Simulation number: 4 Reaction step number: 430 SrCO3 added: 4.3000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6171e-01 -XStrontianite: 8.3829e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6362e-01 +XStrontianite: 8.3638e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5945,10 +5945,10 @@ Simulation number: 4 Reaction step number: 431 SrCO3 added: 4.3100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6130e-01 -XStrontianite: 8.3870e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6321e-01 +XStrontianite: 8.3679e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5958,10 +5958,10 @@ Simulation number: 4 Reaction step number: 432 SrCO3 added: 4.3200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6090e-01 -XStrontianite: 8.3910e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6280e-01 +XStrontianite: 8.3720e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5971,10 +5971,10 @@ Simulation number: 4 Reaction step number: 433 SrCO3 added: 4.3300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6049e-01 -XStrontianite: 8.3951e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6238e-01 +XStrontianite: 8.3762e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5984,10 +5984,10 @@ Simulation number: 4 Reaction step number: 434 SrCO3 added: 4.3400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.6009e-01 -XStrontianite: 8.3991e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6198e-01 +XStrontianite: 8.3802e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -5997,10 +5997,10 @@ Simulation number: 4 Reaction step number: 435 SrCO3 added: 4.3500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5969e-01 -XStrontianite: 8.4031e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6157e-01 +XStrontianite: 8.3843e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6010,10 +6010,10 @@ Simulation number: 4 Reaction step number: 436 SrCO3 added: 4.3600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5929e-01 -XStrontianite: 8.4071e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6116e-01 +XStrontianite: 8.3884e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6023,10 +6023,10 @@ Simulation number: 4 Reaction step number: 437 SrCO3 added: 4.3700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5890e-01 -XStrontianite: 8.4110e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6076e-01 +XStrontianite: 8.3924e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6036,10 +6036,10 @@ Simulation number: 4 Reaction step number: 438 SrCO3 added: 4.3800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5850e-01 -XStrontianite: 8.4150e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.6036e-01 +XStrontianite: 8.3964e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6049,10 +6049,10 @@ Simulation number: 4 Reaction step number: 439 SrCO3 added: 4.3900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5811e-01 -XStrontianite: 8.4189e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5996e-01 +XStrontianite: 8.4004e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6062,10 +6062,10 @@ Simulation number: 4 Reaction step number: 440 SrCO3 added: 4.4000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5772e-01 -XStrontianite: 8.4228e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5956e-01 +XStrontianite: 8.4044e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6075,10 +6075,10 @@ Simulation number: 4 Reaction step number: 441 SrCO3 added: 4.4100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5733e-01 -XStrontianite: 8.4267e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5917e-01 +XStrontianite: 8.4083e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6088,10 +6088,10 @@ Simulation number: 4 Reaction step number: 442 SrCO3 added: 4.4200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5694e-01 -XStrontianite: 8.4306e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5877e-01 +XStrontianite: 8.4123e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6101,10 +6101,10 @@ Simulation number: 4 Reaction step number: 443 SrCO3 added: 4.4300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5656e-01 -XStrontianite: 8.4344e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5838e-01 +XStrontianite: 8.4162e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6114,10 +6114,10 @@ Simulation number: 4 Reaction step number: 444 SrCO3 added: 4.4400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5618e-01 -XStrontianite: 8.4382e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5799e-01 +XStrontianite: 8.4201e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6127,10 +6127,10 @@ Simulation number: 4 Reaction step number: 445 SrCO3 added: 4.4500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5579e-01 -XStrontianite: 8.4421e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5761e-01 +XStrontianite: 8.4239e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6140,10 +6140,10 @@ Simulation number: 4 Reaction step number: 446 SrCO3 added: 4.4600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5542e-01 -XStrontianite: 8.4458e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5722e-01 +XStrontianite: 8.4278e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6153,10 +6153,10 @@ Simulation number: 4 Reaction step number: 447 SrCO3 added: 4.4700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5504e-01 -XStrontianite: 8.4496e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5684e-01 +XStrontianite: 8.4316e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6166,10 +6166,10 @@ Simulation number: 4 Reaction step number: 448 SrCO3 added: 4.4800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5466e-01 -XStrontianite: 8.4534e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5645e-01 +XStrontianite: 8.4355e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6179,10 +6179,10 @@ Simulation number: 4 Reaction step number: 449 SrCO3 added: 4.4900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5429e-01 -XStrontianite: 8.4571e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5607e-01 +XStrontianite: 8.4393e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6192,10 +6192,10 @@ Simulation number: 4 Reaction step number: 450 SrCO3 added: 4.5000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5392e-01 -XStrontianite: 8.4608e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5570e-01 +XStrontianite: 8.4430e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6205,10 +6205,10 @@ Simulation number: 4 Reaction step number: 451 SrCO3 added: 4.5100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5355e-01 -XStrontianite: 8.4645e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5532e-01 +XStrontianite: 8.4468e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6218,10 +6218,10 @@ Simulation number: 4 Reaction step number: 452 SrCO3 added: 4.5200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5318e-01 -XStrontianite: 8.4682e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5495e-01 +XStrontianite: 8.4505e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6231,10 +6231,10 @@ Simulation number: 4 Reaction step number: 453 SrCO3 added: 4.5300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5281e-01 -XStrontianite: 8.4719e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5457e-01 +XStrontianite: 8.4543e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6244,10 +6244,10 @@ Simulation number: 4 Reaction step number: 454 SrCO3 added: 4.5400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5245e-01 -XStrontianite: 8.4755e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5420e-01 +XStrontianite: 8.4580e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6257,10 +6257,10 @@ Simulation number: 4 Reaction step number: 455 SrCO3 added: 4.5500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5209e-01 -XStrontianite: 8.4791e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5383e-01 +XStrontianite: 8.4617e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6270,10 +6270,10 @@ Simulation number: 4 Reaction step number: 456 SrCO3 added: 4.5600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5172e-01 -XStrontianite: 8.4828e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5347e-01 +XStrontianite: 8.4653e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6283,10 +6283,10 @@ Simulation number: 4 Reaction step number: 457 SrCO3 added: 4.5700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5136e-01 -XStrontianite: 8.4864e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5310e-01 +XStrontianite: 8.4690e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6296,10 +6296,10 @@ Simulation number: 4 Reaction step number: 458 SrCO3 added: 4.5800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5101e-01 -XStrontianite: 8.4899e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5274e-01 +XStrontianite: 8.4726e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6309,10 +6309,10 @@ Simulation number: 4 Reaction step number: 459 SrCO3 added: 4.5900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5065e-01 -XStrontianite: 8.4935e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5237e-01 +XStrontianite: 8.4763e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6322,10 +6322,10 @@ Simulation number: 4 Reaction step number: 460 SrCO3 added: 4.6000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.5030e-01 -XStrontianite: 8.4970e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5201e-01 +XStrontianite: 8.4799e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6335,10 +6335,10 @@ Simulation number: 4 Reaction step number: 461 SrCO3 added: 4.6100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4994e-01 -XStrontianite: 8.5006e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5166e-01 +XStrontianite: 8.4834e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6348,10 +6348,10 @@ Simulation number: 4 Reaction step number: 462 SrCO3 added: 4.6200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4959e-01 -XStrontianite: 8.5041e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5130e-01 +XStrontianite: 8.4870e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6361,10 +6361,10 @@ Simulation number: 4 Reaction step number: 463 SrCO3 added: 4.6300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4924e-01 -XStrontianite: 8.5076e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5094e-01 +XStrontianite: 8.4906e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6374,10 +6374,10 @@ Simulation number: 4 Reaction step number: 464 SrCO3 added: 4.6400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4889e-01 -XStrontianite: 8.5111e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5059e-01 +XStrontianite: 8.4941e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6387,10 +6387,10 @@ Simulation number: 4 Reaction step number: 465 SrCO3 added: 4.6500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4855e-01 -XStrontianite: 8.5145e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.5024e-01 +XStrontianite: 8.4976e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6400,10 +6400,10 @@ Simulation number: 4 Reaction step number: 466 SrCO3 added: 4.6600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4820e-01 -XStrontianite: 8.5180e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4989e-01 +XStrontianite: 8.5011e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6413,10 +6413,10 @@ Simulation number: 4 Reaction step number: 467 SrCO3 added: 4.6700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4786e-01 -XStrontianite: 8.5214e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4954e-01 +XStrontianite: 8.5046e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6426,10 +6426,10 @@ Simulation number: 4 Reaction step number: 468 SrCO3 added: 4.6800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4752e-01 -XStrontianite: 8.5248e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4919e-01 +XStrontianite: 8.5081e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6439,10 +6439,10 @@ Simulation number: 4 Reaction step number: 469 SrCO3 added: 4.6900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4718e-01 -XStrontianite: 8.5282e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4885e-01 +XStrontianite: 8.5115e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6452,10 +6452,10 @@ Simulation number: 4 Reaction step number: 470 SrCO3 added: 4.7000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4684e-01 -XStrontianite: 8.5316e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4850e-01 +XStrontianite: 8.5150e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6465,10 +6465,10 @@ Simulation number: 4 Reaction step number: 471 SrCO3 added: 4.7100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4650e-01 -XStrontianite: 8.5350e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4816e-01 +XStrontianite: 8.5184e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6478,10 +6478,10 @@ Simulation number: 4 Reaction step number: 472 SrCO3 added: 4.7200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4617e-01 -XStrontianite: 8.5383e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4782e-01 +XStrontianite: 8.5218e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6491,10 +6491,10 @@ Simulation number: 4 Reaction step number: 473 SrCO3 added: 4.7300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4584e-01 -XStrontianite: 8.5416e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4748e-01 +XStrontianite: 8.5252e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6504,10 +6504,10 @@ Simulation number: 4 Reaction step number: 474 SrCO3 added: 4.7400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4550e-01 -XStrontianite: 8.5450e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4714e-01 +XStrontianite: 8.5286e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6517,10 +6517,10 @@ Simulation number: 4 Reaction step number: 475 SrCO3 added: 4.7500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4517e-01 -XStrontianite: 8.5483e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4681e-01 +XStrontianite: 8.5319e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6530,10 +6530,10 @@ Simulation number: 4 Reaction step number: 476 SrCO3 added: 4.7600e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4484e-01 -XStrontianite: 8.5516e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4647e-01 +XStrontianite: 8.5353e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6543,10 +6543,10 @@ Simulation number: 4 Reaction step number: 477 SrCO3 added: 4.7700e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4452e-01 -XStrontianite: 8.5548e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4614e-01 +XStrontianite: 8.5386e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6556,10 +6556,10 @@ Simulation number: 4 Reaction step number: 478 SrCO3 added: 4.7800e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4419e-01 -XStrontianite: 8.5581e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4581e-01 +XStrontianite: 8.5419e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6569,10 +6569,10 @@ Simulation number: 4 Reaction step number: 479 SrCO3 added: 4.7900e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4386e-01 -XStrontianite: 8.5614e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4548e-01 +XStrontianite: 8.5452e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6582,10 +6582,10 @@ Simulation number: 4 Reaction step number: 480 SrCO3 added: 4.8000e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4354e-01 -XStrontianite: 8.5646e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4515e-01 +XStrontianite: 8.5485e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6595,10 +6595,10 @@ Simulation number: 4 Reaction step number: 481 SrCO3 added: 4.8100e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4322e-01 -XStrontianite: 8.5678e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4482e-01 +XStrontianite: 8.5518e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6608,10 +6608,10 @@ Simulation number: 4 Reaction step number: 482 SrCO3 added: 4.8200e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4290e-01 -XStrontianite: 8.5710e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4450e-01 +XStrontianite: 8.5550e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6621,10 +6621,10 @@ Simulation number: 4 Reaction step number: 483 SrCO3 added: 4.8300e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4258e-01 -XStrontianite: 8.5742e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4417e-01 +XStrontianite: 8.5583e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6634,10 +6634,10 @@ Simulation number: 4 Reaction step number: 484 SrCO3 added: 4.8400e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4226e-01 -XStrontianite: 8.5774e-01 -XCa: 9.0898e-01 -XSr: 9.1023e-02 +XAragonite: 1.4385e-01 +XStrontianite: 8.5615e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6647,10 +6647,10 @@ Simulation number: 4 Reaction step number: 485 SrCO3 added: 4.8500e-03 Log Sigma pi: -8.2974e+00 -XAragonite: 1.4211e-01 -XStrontianite: 8.5789e-01 -XCa: 9.0896e-01 -XSr: 9.1042e-02 +XAragonite: 1.4353e-01 +XStrontianite: 8.5647e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6659,11 +6659,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 486 SrCO3 added: 4.8600e-03 -Log Sigma pi: -8.2976e+00 -XAragonite: 1.4207e-01 -XStrontianite: 8.5793e-01 -XCa: 9.0893e-01 -XSr: 9.1074e-02 +Log Sigma pi: -8.2974e+00 +XAragonite: 1.4321e-01 +XStrontianite: 8.5679e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6672,11 +6672,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 487 SrCO3 added: 4.8700e-03 -Log Sigma pi: -8.2977e+00 -XAragonite: 1.4203e-01 -XStrontianite: 8.5797e-01 -XCa: 9.0889e-01 -XSr: 9.1106e-02 +Log Sigma pi: -8.2974e+00 +XAragonite: 1.4289e-01 +XStrontianite: 8.5711e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6685,11 +6685,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 488 SrCO3 added: 4.8800e-03 -Log Sigma pi: -8.2978e+00 -XAragonite: 1.4198e-01 -XStrontianite: 8.5802e-01 -XCa: 9.0886e-01 -XSr: 9.1138e-02 +Log Sigma pi: -8.2974e+00 +XAragonite: 1.4257e-01 +XStrontianite: 8.5743e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6698,11 +6698,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 489 SrCO3 added: 4.8900e-03 -Log Sigma pi: -8.2980e+00 -XAragonite: 1.4194e-01 -XStrontianite: 8.5806e-01 -XCa: 9.0883e-01 -XSr: 9.1170e-02 +Log Sigma pi: -8.2974e+00 +XAragonite: 1.4226e-01 +XStrontianite: 8.5774e-01 +XCa: 9.0147e-01 +XSr: 9.8526e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6711,11 +6711,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 490 SrCO3 added: 4.9000e-03 -Log Sigma pi: -8.2981e+00 -XAragonite: 1.4190e-01 -XStrontianite: 8.5810e-01 -XCa: 9.0880e-01 -XSr: 9.1202e-02 +Log Sigma pi: -8.2974e+00 +XAragonite: 1.4211e-01 +XStrontianite: 8.5789e-01 +XCa: 9.0145e-01 +XSr: 9.8548e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6724,11 +6724,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 491 SrCO3 added: 4.9100e-03 -Log Sigma pi: -8.2982e+00 -XAragonite: 1.4186e-01 -XStrontianite: 8.5814e-01 -XCa: 9.0877e-01 -XSr: 9.1234e-02 +Log Sigma pi: -8.2976e+00 +XAragonite: 1.4206e-01 +XStrontianite: 8.5794e-01 +XCa: 9.0142e-01 +XSr: 9.8584e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6737,11 +6737,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 492 SrCO3 added: 4.9200e-03 -Log Sigma pi: -8.2983e+00 -XAragonite: 1.4181e-01 -XStrontianite: 8.5819e-01 -XCa: 9.0873e-01 -XSr: 9.1266e-02 +Log Sigma pi: -8.2977e+00 +XAragonite: 1.4202e-01 +XStrontianite: 8.5798e-01 +XCa: 9.0138e-01 +XSr: 9.8620e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6750,11 +6750,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 493 SrCO3 added: 4.9300e-03 -Log Sigma pi: -8.2985e+00 -XAragonite: 1.4177e-01 -XStrontianite: 8.5823e-01 -XCa: 9.0870e-01 -XSr: 9.1298e-02 +Log Sigma pi: -8.2979e+00 +XAragonite: 1.4197e-01 +XStrontianite: 8.5803e-01 +XCa: 9.0134e-01 +XSr: 9.8656e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6763,11 +6763,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 494 SrCO3 added: 4.9400e-03 -Log Sigma pi: -8.2986e+00 -XAragonite: 1.4173e-01 -XStrontianite: 8.5827e-01 -XCa: 9.0867e-01 -XSr: 9.1330e-02 +Log Sigma pi: -8.2980e+00 +XAragonite: 1.4193e-01 +XStrontianite: 8.5807e-01 +XCa: 9.0131e-01 +XSr: 9.8692e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6776,11 +6776,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 495 SrCO3 added: 4.9500e-03 -Log Sigma pi: -8.2987e+00 -XAragonite: 1.4169e-01 -XStrontianite: 8.5831e-01 -XCa: 9.0864e-01 -XSr: 9.1362e-02 +Log Sigma pi: -8.2981e+00 +XAragonite: 1.4188e-01 +XStrontianite: 8.5812e-01 +XCa: 9.0127e-01 +XSr: 9.8728e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6789,11 +6789,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 496 SrCO3 added: 4.9600e-03 -Log Sigma pi: -8.2989e+00 -XAragonite: 1.4165e-01 -XStrontianite: 8.5835e-01 -XCa: 9.0861e-01 -XSr: 9.1394e-02 +Log Sigma pi: -8.2983e+00 +XAragonite: 1.4184e-01 +XStrontianite: 8.5816e-01 +XCa: 9.0124e-01 +XSr: 9.8764e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6802,11 +6802,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 497 SrCO3 added: 4.9700e-03 -Log Sigma pi: -8.2990e+00 -XAragonite: 1.4160e-01 -XStrontianite: 8.5840e-01 -XCa: 9.0857e-01 -XSr: 9.1426e-02 +Log Sigma pi: -8.2984e+00 +XAragonite: 1.4179e-01 +XStrontianite: 8.5821e-01 +XCa: 9.0120e-01 +XSr: 9.8800e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6815,11 +6815,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 498 SrCO3 added: 4.9800e-03 -Log Sigma pi: -8.2991e+00 -XAragonite: 1.4156e-01 -XStrontianite: 8.5844e-01 -XCa: 9.0854e-01 -XSr: 9.1458e-02 +Log Sigma pi: -8.2985e+00 +XAragonite: 1.4175e-01 +XStrontianite: 8.5825e-01 +XCa: 9.0116e-01 +XSr: 9.8836e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6828,11 +6828,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 499 SrCO3 added: 4.9900e-03 -Log Sigma pi: -8.2992e+00 -XAragonite: 1.4152e-01 -XStrontianite: 8.5848e-01 -XCa: 9.0851e-01 -XSr: 9.1490e-02 +Log Sigma pi: -8.2987e+00 +XAragonite: 1.4170e-01 +XStrontianite: 8.5830e-01 +XCa: 9.0113e-01 +XSr: 9.8872e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6841,11 +6841,11 @@ Misc 2: 8.5786e-01 Simulation number: 4 Reaction step number: 500 SrCO3 added: 5.0000e-03 -Log Sigma pi: -8.2994e+00 -XAragonite: 1.4148e-01 -XStrontianite: 8.5852e-01 -XCa: 9.0848e-01 -XSr: 9.1522e-02 +Log Sigma pi: -8.2988e+00 +XAragonite: 1.4166e-01 +XStrontianite: 8.5834e-01 +XCa: 9.0109e-01 +XSr: 9.8908e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6860,11 +6860,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 1 SrCO3 added: 5.0000e-03 -Log Sigma pi: -8.2994e+00 -XAragonite: 1.4148e-01 -XStrontianite: 8.5852e-01 -XCa: 9.0848e-01 -XSr: 9.1522e-02 +Log Sigma pi: -8.2988e+00 +XAragonite: 1.4166e-01 +XStrontianite: 8.5834e-01 +XCa: 9.0109e-01 +XSr: 9.8908e-02 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6873,11 +6873,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 2 SrCO3 added: 1.0000e-02 -Log Sigma pi: -8.3561e+00 -XAragonite: 1.2425e-01 -XStrontianite: 8.7575e-01 -XCa: 8.9342e-01 -XSr: 1.0658e-01 +Log Sigma pi: -8.3590e+00 +XAragonite: 1.2345e-01 +XStrontianite: 8.7655e-01 +XCa: 8.8423e-01 +XSr: 1.1577e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6886,11 +6886,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 3 SrCO3 added: 1.5000e-02 -Log Sigma pi: -8.4019e+00 -XAragonite: 1.1192e-01 -XStrontianite: 8.8808e-01 -XCa: 8.7973e-01 -XSr: 1.2027e-01 +Log Sigma pi: -8.4069e+00 +XAragonite: 1.1064e-01 +XStrontianite: 8.8936e-01 +XCa: 8.6904e-01 +XSr: 1.3096e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6899,22 +6899,9 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 4 SrCO3 added: 2.0000e-02 -Log Sigma pi: -8.4405e+00 -XAragonite: 1.0242e-01 -XStrontianite: 8.9758e-01 -XCa: 8.6700e-01 -XSr: 1.3300e-01 -Misc 1: 4.8032e-03 -Misc 2: 8.5786e-01 - -----------------------------------User print----------------------------------- - -Simulation number: 5 -Reaction step number: 5 -SrCO3 added: 2.5000e-02 -Log Sigma pi: -8.4739e+00 -XAragonite: 9.4788e-02 -XStrontianite: 9.0521e-01 +Log Sigma pi: -8.4471e+00 +XAragonite: 1.0088e-01 +XStrontianite: 8.9912e-01 XCa: 8.5501e-01 XSr: 1.4499e-01 Misc 1: 4.8032e-03 @@ -6922,14 +6909,27 @@ Misc 2: 8.5786e-01 ----------------------------------User print----------------------------------- +Simulation number: 5 +Reaction step number: 5 +SrCO3 added: 2.5000e-02 +Log Sigma pi: -8.4816e+00 +XAragonite: 9.3095e-02 +XStrontianite: 9.0690e-01 +XCa: 8.4188e-01 +XSr: 1.5812e-01 +Misc 1: 4.8032e-03 +Misc 2: 8.5786e-01 + +----------------------------------User print----------------------------------- + Simulation number: 5 Reaction step number: 6 SrCO3 added: 3.0000e-02 -Log Sigma pi: -8.5033e+00 -XAragonite: 8.8454e-02 -XStrontianite: 9.1155e-01 -XCa: 8.4365e-01 -XSr: 1.5635e-01 +Log Sigma pi: -8.5119e+00 +XAragonite: 8.6674e-02 +XStrontianite: 9.1333e-01 +XCa: 8.2947e-01 +XSr: 1.7053e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6938,11 +6938,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 7 SrCO3 added: 3.5000e-02 -Log Sigma pi: -8.5296e+00 -XAragonite: 8.3084e-02 -XStrontianite: 9.1692e-01 -XCa: 8.3281e-01 -XSr: 1.6719e-01 +Log Sigma pi: -8.5389e+00 +XAragonite: 8.1255e-02 +XStrontianite: 9.1874e-01 +XCa: 8.1770e-01 +XSr: 1.8230e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6951,11 +6951,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 8 SrCO3 added: 4.0000e-02 -Log Sigma pi: -8.5534e+00 -XAragonite: 7.8452e-02 -XStrontianite: 9.2155e-01 -XCa: 8.2242e-01 -XSr: 1.7758e-01 +Log Sigma pi: -8.5632e+00 +XAragonite: 7.6600e-02 +XStrontianite: 9.2340e-01 +XCa: 8.0646e-01 +XSr: 1.9354e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6964,11 +6964,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 9 SrCO3 added: 4.5000e-02 -Log Sigma pi: -8.5751e+00 -XAragonite: 7.4402e-02 -XStrontianite: 9.2560e-01 -XCa: 8.1245e-01 -XSr: 1.8755e-01 +Log Sigma pi: -8.5853e+00 +XAragonite: 7.2542e-02 +XStrontianite: 9.2746e-01 +XCa: 7.9570e-01 +XSr: 2.0430e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6977,11 +6977,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 10 SrCO3 added: 5.0000e-02 -Log Sigma pi: -8.5949e+00 -XAragonite: 7.0821e-02 -XStrontianite: 9.2918e-01 -XCa: 8.0284e-01 -XSr: 1.9716e-01 +Log Sigma pi: -8.6055e+00 +XAragonite: 6.8965e-02 +XStrontianite: 9.3104e-01 +XCa: 7.8538e-01 +XSr: 2.1462e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -6990,11 +6990,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 11 SrCO3 added: 5.5000e-02 -Log Sigma pi: -8.6133e+00 -XAragonite: 6.7625e-02 -XStrontianite: 9.3237e-01 -XCa: 7.9357e-01 -XSr: 2.0643e-01 +Log Sigma pi: -8.6242e+00 +XAragonite: 6.5780e-02 +XStrontianite: 9.3422e-01 +XCa: 7.7545e-01 +XSr: 2.2455e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7003,11 +7003,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 12 SrCO3 added: 6.0000e-02 -Log Sigma pi: -8.6303e+00 -XAragonite: 6.4751e-02 -XStrontianite: 9.3525e-01 -XCa: 7.8460e-01 -XSr: 2.1540e-01 +Log Sigma pi: -8.6414e+00 +XAragonite: 6.2922e-02 +XStrontianite: 9.3708e-01 +XCa: 7.6587e-01 +XSr: 2.3413e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7016,11 +7016,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 13 SrCO3 added: 6.5000e-02 -Log Sigma pi: -8.6462e+00 -XAragonite: 6.2147e-02 -XStrontianite: 9.3785e-01 -XCa: 7.7593e-01 -XSr: 2.2407e-01 +Log Sigma pi: -8.6575e+00 +XAragonite: 6.0338e-02 +XStrontianite: 9.3966e-01 +XCa: 7.5663e-01 +XSr: 2.4337e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7029,11 +7029,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 14 SrCO3 added: 7.0000e-02 -Log Sigma pi: -8.6610e+00 -XAragonite: 5.9776e-02 -XStrontianite: 9.4022e-01 -XCa: 7.6751e-01 -XSr: 2.3249e-01 +Log Sigma pi: -8.6725e+00 +XAragonite: 5.7989e-02 +XStrontianite: 9.4201e-01 +XCa: 7.4769e-01 +XSr: 2.5231e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7042,11 +7042,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 15 SrCO3 added: 7.5000e-02 -Log Sigma pi: -8.6750e+00 -XAragonite: 5.7604e-02 -XStrontianite: 9.4240e-01 -XCa: 7.5935e-01 -XSr: 2.4065e-01 +Log Sigma pi: -8.6866e+00 +XAragonite: 5.5841e-02 +XStrontianite: 9.4416e-01 +XCa: 7.3903e-01 +XSr: 2.6097e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7055,11 +7055,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 16 SrCO3 added: 8.0000e-02 -Log Sigma pi: -8.6881e+00 -XAragonite: 5.5606e-02 -XStrontianite: 9.4439e-01 -XCa: 7.5142e-01 -XSr: 2.4858e-01 +Log Sigma pi: -8.6998e+00 +XAragonite: 5.3868e-02 +XStrontianite: 9.4613e-01 +XCa: 7.3065e-01 +XSr: 2.6935e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7068,11 +7068,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 17 SrCO3 added: 8.5000e-02 -Log Sigma pi: -8.7005e+00 -XAragonite: 5.3761e-02 -XStrontianite: 9.4624e-01 -XCa: 7.4370e-01 -XSr: 2.5630e-01 +Log Sigma pi: -8.7122e+00 +XAragonite: 5.2047e-02 +XStrontianite: 9.4795e-01 +XCa: 7.2251e-01 +XSr: 2.7749e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7081,11 +7081,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 18 SrCO3 added: 9.0000e-02 -Log Sigma pi: -8.7122e+00 -XAragonite: 5.2050e-02 -XStrontianite: 9.4795e-01 -XCa: 7.3619e-01 -XSr: 2.6381e-01 +Log Sigma pi: -8.7240e+00 +XAragonite: 5.0361e-02 +XStrontianite: 9.4964e-01 +XCa: 7.1460e-01 +XSr: 2.8540e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7094,11 +7094,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 19 SrCO3 added: 9.5000e-02 -Log Sigma pi: -8.7234e+00 -XAragonite: 5.0457e-02 -XStrontianite: 9.4954e-01 -XCa: 7.2888e-01 -XSr: 2.7112e-01 +Log Sigma pi: -8.7352e+00 +XAragonite: 4.8794e-02 +XStrontianite: 9.5121e-01 +XCa: 7.0692e-01 +XSr: 2.9308e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7107,11 +7107,11 @@ Misc 2: 8.5786e-01 Simulation number: 5 Reaction step number: 20 SrCO3 added: 1.0000e-01 -Log Sigma pi: -8.7339e+00 -XAragonite: 4.8972e-02 -XStrontianite: 9.5103e-01 -XCa: 7.2176e-01 -XSr: 2.7824e-01 +Log Sigma pi: -8.7458e+00 +XAragonite: 4.7333e-02 +XStrontianite: 9.5267e-01 +XCa: 6.9945e-01 +XSr: 3.0055e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7126,11 +7126,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 1 SrCO3 added: 1.0000e-01 -Log Sigma pi: -8.7339e+00 -XAragonite: 4.8972e-02 -XStrontianite: 9.5103e-01 -XCa: 7.2176e-01 -XSr: 2.7824e-01 +Log Sigma pi: -8.7458e+00 +XAragonite: 4.7333e-02 +XStrontianite: 9.5267e-01 +XCa: 6.9945e-01 +XSr: 3.0055e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7139,11 +7139,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 2 SrCO3 added: 2.0000e-01 -Log Sigma pi: -8.8751e+00 -XAragonite: 3.1476e-02 -XStrontianite: 9.6852e-01 -XCa: 6.0792e-01 -XSr: 3.9208e-01 +Log Sigma pi: -8.8865e+00 +XAragonite: 3.0238e-02 +XStrontianite: 9.6976e-01 +XCa: 5.8188e-01 +XSr: 4.1812e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7152,11 +7152,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 3 SrCO3 added: 3.0000e-01 -Log Sigma pi: -8.9520e+00 -XAragonite: 2.3569e-02 -XStrontianite: 9.7643e-01 -XCa: 5.2858e-01 -XSr: 4.7142e-01 +Log Sigma pi: -8.9624e+00 +XAragonite: 2.2575e-02 +XStrontianite: 9.7743e-01 +XCa: 5.0176e-01 +XSr: 4.9824e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7165,11 +7165,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 4 SrCO3 added: 4.0000e-01 -Log Sigma pi: -9.0019e+00 -XAragonite: 1.8957e-02 -XStrontianite: 9.8104e-01 -XCa: 4.6899e-01 -XSr: 5.3101e-01 +Log Sigma pi: -9.0114e+00 +XAragonite: 1.8122e-02 +XStrontianite: 9.8188e-01 +XCa: 4.4247e-01 +XSr: 5.5753e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7178,11 +7178,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 5 SrCO3 added: 5.0000e-01 -Log Sigma pi: -9.0375e+00 -XAragonite: 1.5904e-02 -XStrontianite: 9.8410e-01 -XCa: 4.2219e-01 -XSr: 5.7781e-01 +Log Sigma pi: -9.0462e+00 +XAragonite: 1.5184e-02 +XStrontianite: 9.8482e-01 +XCa: 3.9641e-01 +XSr: 6.0359e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7191,11 +7191,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 6 SrCO3 added: 6.0000e-01 -Log Sigma pi: -9.0643e+00 -XAragonite: 1.3723e-02 -XStrontianite: 9.8628e-01 -XCa: 3.8427e-01 -XSr: 6.1573e-01 +Log Sigma pi: -9.0724e+00 +XAragonite: 1.3087e-02 +XStrontianite: 9.8691e-01 +XCa: 3.5942e-01 +XSr: 6.4058e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7204,11 +7204,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 7 SrCO3 added: 7.0000e-01 -Log Sigma pi: -9.0854e+00 -XAragonite: 1.2081e-02 -XStrontianite: 9.8792e-01 -XCa: 3.5284e-01 -XSr: 6.4716e-01 +Log Sigma pi: -9.0929e+00 +XAragonite: 1.1512e-02 +XStrontianite: 9.8849e-01 +XCa: 3.2896e-01 +XSr: 6.7104e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7217,11 +7217,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 8 SrCO3 added: 8.0000e-01 -Log Sigma pi: -9.1024e+00 -XAragonite: 1.0798e-02 -XStrontianite: 9.8920e-01 -XCa: 3.2631e-01 -XSr: 6.7369e-01 +Log Sigma pi: -9.1094e+00 +XAragonite: 1.0282e-02 +XStrontianite: 9.8972e-01 +XCa: 3.0340e-01 +XSr: 6.9660e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7230,11 +7230,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 9 SrCO3 added: 9.0000e-01 -Log Sigma pi: -9.1165e+00 -XAragonite: 9.7659e-03 -XStrontianite: 9.9023e-01 -XCa: 3.0358e-01 -XSr: 6.9642e-01 +Log Sigma pi: -9.1231e+00 +XAragonite: 9.2937e-03 +XStrontianite: 9.9071e-01 +XCa: 2.8162e-01 +XSr: 7.1838e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7243,11 +7243,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 10 SrCO3 added: 1 -Log Sigma pi: -9.1284e+00 -XAragonite: 8.9171e-03 -XStrontianite: 9.9108e-01 -XCa: 2.8389e-01 -XSr: 7.1611e-01 +Log Sigma pi: -9.1345e+00 +XAragonite: 8.4817e-03 +XStrontianite: 9.9152e-01 +XCa: 2.6282e-01 +XSr: 7.3718e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7256,11 +7256,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 11 SrCO3 added: 1.1000e+00 -Log Sigma pi: -9.1385e+00 -XAragonite: 8.2062e-03 -XStrontianite: 9.9179e-01 -XCa: 2.6664e-01 -XSr: 7.3336e-01 +Log Sigma pi: -9.1443e+00 +XAragonite: 7.8020e-03 +XStrontianite: 9.9220e-01 +XCa: 2.4642e-01 +XSr: 7.5358e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7269,11 +7269,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 12 SrCO3 added: 1.2000e+00 -Log Sigma pi: -9.1472e+00 -XAragonite: 7.6017e-03 -XStrontianite: 9.9240e-01 -XCa: 2.5140e-01 -XSr: 7.4860e-01 +Log Sigma pi: -9.1528e+00 +XAragonite: 7.2245e-03 +XStrontianite: 9.9278e-01 +XCa: 2.3197e-01 +XSr: 7.6803e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7282,11 +7282,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 13 SrCO3 added: 1.3000e+00 -Log Sigma pi: -9.1549e+00 -XAragonite: 7.0811e-03 -XStrontianite: 9.9292e-01 -XCa: 2.3784e-01 -XSr: 7.6216e-01 +Log Sigma pi: -9.1601e+00 +XAragonite: 6.7275e-03 +XStrontianite: 9.9327e-01 +XCa: 2.1915e-01 +XSr: 7.8085e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7295,11 +7295,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 14 SrCO3 added: 1.4000e+00 -Log Sigma pi: -9.1616e+00 -XAragonite: 6.6281e-03 -XStrontianite: 9.9337e-01 -XCa: 2.2568e-01 -XSr: 7.7432e-01 +Log Sigma pi: -9.1666e+00 +XAragonite: 6.2951e-03 +XStrontianite: 9.9370e-01 +XCa: 2.0769e-01 +XSr: 7.9231e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7308,11 +7308,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 15 SrCO3 added: 1.5000e+00 -Log Sigma pi: -9.1676e+00 -XAragonite: 6.2301e-03 -XStrontianite: 9.9377e-01 -XCa: 2.1472e-01 -XSr: 7.8528e-01 +Log Sigma pi: -9.1724e+00 +XAragonite: 5.9155e-03 +XStrontianite: 9.9408e-01 +XCa: 1.9738e-01 +XSr: 8.0262e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7321,11 +7321,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 16 SrCO3 added: 1.6000e+00 -Log Sigma pi: -9.1730e+00 -XAragonite: 5.8776e-03 -XStrontianite: 9.9412e-01 -XCa: 2.0479e-01 -XSr: 7.9521e-01 +Log Sigma pi: -9.1775e+00 +XAragonite: 5.5795e-03 +XStrontianite: 9.9442e-01 +XCa: 1.8805e-01 +XSr: 8.1195e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7334,11 +7334,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 17 SrCO3 added: 1.7000e+00 -Log Sigma pi: -9.1778e+00 -XAragonite: 5.5632e-03 -XStrontianite: 9.9444e-01 -XCa: 1.9574e-01 -XSr: 8.0426e-01 +Log Sigma pi: -9.1822e+00 +XAragonite: 5.2798e-03 +XStrontianite: 9.9472e-01 +XCa: 1.7958e-01 +XSr: 8.2042e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7347,11 +7347,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 18 SrCO3 added: 1.8000e+00 -Log Sigma pi: -9.1822e+00 -XAragonite: 5.2810e-03 -XStrontianite: 9.9472e-01 -XCa: 1.8747e-01 -XSr: 8.1253e-01 +Log Sigma pi: -9.1864e+00 +XAragonite: 5.0109e-03 +XStrontianite: 9.9499e-01 +XCa: 1.7184e-01 +XSr: 8.2816e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7360,11 +7360,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 19 SrCO3 added: 1.9000e+00 -Log Sigma pi: -9.1861e+00 -XAragonite: 5.0263e-03 -XStrontianite: 9.9497e-01 -XCa: 1.7987e-01 -XSr: 8.2013e-01 +Log Sigma pi: -9.1902e+00 +XAragonite: 4.7683e-03 +XStrontianite: 9.9523e-01 +XCa: 1.6475e-01 +XSr: 8.3525e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7373,11 +7373,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 20 SrCO3 added: 2 -Log Sigma pi: -9.1898e+00 -XAragonite: 4.7951e-03 -XStrontianite: 9.9520e-01 -XCa: 1.7287e-01 -XSr: 8.2713e-01 +Log Sigma pi: -9.1937e+00 +XAragonite: 4.5482e-03 +XStrontianite: 9.9545e-01 +XCa: 1.5822e-01 +XSr: 8.4178e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7386,11 +7386,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 21 SrCO3 added: 2.1000e+00 -Log Sigma pi: -9.1931e+00 -XAragonite: 4.5844e-03 -XStrontianite: 9.9542e-01 -XCa: 1.6640e-01 -XSr: 8.3360e-01 +Log Sigma pi: -9.1969e+00 +XAragonite: 4.3477e-03 +XStrontianite: 9.9565e-01 +XCa: 1.5219e-01 +XSr: 8.4781e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7399,11 +7399,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 22 SrCO3 added: 2.2000e+00 -Log Sigma pi: -9.1962e+00 -XAragonite: 4.3916e-03 -XStrontianite: 9.9561e-01 -XCa: 1.6040e-01 -XSr: 8.3960e-01 +Log Sigma pi: -9.1998e+00 +XAragonite: 4.1641e-03 +XStrontianite: 9.9584e-01 +XCa: 1.4661e-01 +XSr: 8.5339e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7412,11 +7412,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 23 SrCO3 added: 2.3000e+00 -Log Sigma pi: -9.1990e+00 -XAragonite: 4.2144e-03 -XStrontianite: 9.9579e-01 -XCa: 1.5481e-01 -XSr: 8.4519e-01 +Log Sigma pi: -9.2025e+00 +XAragonite: 3.9956e-03 +XStrontianite: 9.9600e-01 +XCa: 1.4143e-01 +XSr: 8.5857e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7425,11 +7425,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 24 SrCO3 added: 2.4000e+00 -Log Sigma pi: -9.2016e+00 -XAragonite: 4.0510e-03 -XStrontianite: 9.9595e-01 -XCa: 1.4961e-01 -XSr: 8.5039e-01 +Log Sigma pi: -9.2050e+00 +XAragonite: 3.8402e-03 +XStrontianite: 9.9616e-01 +XCa: 1.3660e-01 +XSr: 8.6340e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7438,11 +7438,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 25 SrCO3 added: 2.5000e+00 -Log Sigma pi: -9.2040e+00 -XAragonite: 3.8999e-03 -XStrontianite: 9.9610e-01 -XCa: 1.4475e-01 -XSr: 8.5525e-01 +Log Sigma pi: -9.2073e+00 +XAragonite: 3.6964e-03 +XStrontianite: 9.9630e-01 +XCa: 1.3209e-01 +XSr: 8.6791e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7451,11 +7451,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 26 SrCO3 added: 2.6000e+00 -Log Sigma pi: -9.2063e+00 -XAragonite: 3.7597e-03 -XStrontianite: 9.9624e-01 -XCa: 1.4019e-01 -XSr: 8.5981e-01 +Log Sigma pi: -9.2095e+00 +XAragonite: 3.5631e-03 +XStrontianite: 9.9644e-01 +XCa: 1.2787e-01 +XSr: 8.7213e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7464,11 +7464,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 27 SrCO3 added: 2.7000e+00 -Log Sigma pi: -9.2084e+00 -XAragonite: 3.6292e-03 -XStrontianite: 9.9637e-01 -XCa: 1.3591e-01 -XSr: 8.6409e-01 +Log Sigma pi: -9.2115e+00 +XAragonite: 3.4392e-03 +XStrontianite: 9.9656e-01 +XCa: 1.2391e-01 +XSr: 8.7609e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7477,11 +7477,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 28 SrCO3 added: 2.8000e+00 -Log Sigma pi: -9.2104e+00 -XAragonite: 3.5076e-03 -XStrontianite: 9.9649e-01 -XCa: 1.3189e-01 -XSr: 8.6811e-01 +Log Sigma pi: -9.2134e+00 +XAragonite: 3.3235e-03 +XStrontianite: 9.9668e-01 +XCa: 1.2020e-01 +XSr: 8.7980e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7490,11 +7490,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 29 SrCO3 added: 2.9000e+00 -Log Sigma pi: -9.2123e+00 -XAragonite: 3.3939e-03 -XStrontianite: 9.9661e-01 -XCa: 1.2810e-01 -XSr: 8.7190e-01 +Log Sigma pi: -9.2152e+00 +XAragonite: 3.2155e-03 +XStrontianite: 9.9678e-01 +XCa: 1.1670e-01 +XSr: 8.8330e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7503,11 +7503,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 30 SrCO3 added: 3 -Log Sigma pi: -9.2140e+00 -XAragonite: 3.2873e-03 -XStrontianite: 9.9671e-01 -XCa: 1.2452e-01 -XSr: 8.7548e-01 +Log Sigma pi: -9.2169e+00 +XAragonite: 3.1142e-03 +XStrontianite: 9.9689e-01 +XCa: 1.1339e-01 +XSr: 8.8661e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7516,11 +7516,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 31 SrCO3 added: 3.1000e+00 -Log Sigma pi: -9.2157e+00 -XAragonite: 3.1873e-03 -XStrontianite: 9.9681e-01 -XCa: 1.2114e-01 -XSr: 8.7886e-01 +Log Sigma pi: -9.2185e+00 +XAragonite: 3.0192e-03 +XStrontianite: 9.9698e-01 +XCa: 1.1027e-01 +XSr: 8.8973e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7529,11 +7529,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 32 SrCO3 added: 3.2000e+00 -Log Sigma pi: -9.2172e+00 -XAragonite: 3.0931e-03 -XStrontianite: 9.9691e-01 -XCa: 1.1794e-01 -XSr: 8.8206e-01 +Log Sigma pi: -9.2199e+00 +XAragonite: 2.9298e-03 +XStrontianite: 9.9707e-01 +XCa: 1.0732e-01 +XSr: 8.9268e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7542,11 +7542,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 33 SrCO3 added: 3.3000e+00 -Log Sigma pi: -9.2187e+00 -XAragonite: 3.0044e-03 -XStrontianite: 9.9700e-01 -XCa: 1.1490e-01 -XSr: 8.8510e-01 +Log Sigma pi: -9.2213e+00 +XAragonite: 2.8456e-03 +XStrontianite: 9.9715e-01 +XCa: 1.0453e-01 +XSr: 8.9547e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7555,11 +7555,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 34 SrCO3 added: 3.4000e+00 -Log Sigma pi: -9.2201e+00 -XAragonite: 2.9207e-03 -XStrontianite: 9.9708e-01 -XCa: 1.1202e-01 -XSr: 8.8798e-01 +Log Sigma pi: -9.2227e+00 +XAragonite: 2.7661e-03 +XStrontianite: 9.9723e-01 +XCa: 1.0187e-01 +XSr: 8.9813e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7568,11 +7568,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 35 SrCO3 added: 3.5000e+00 -Log Sigma pi: -9.2214e+00 -XAragonite: 2.8415e-03 -XStrontianite: 9.9716e-01 -XCa: 1.0927e-01 -XSr: 8.9073e-01 +Log Sigma pi: -9.2239e+00 +XAragonite: 2.6909e-03 +XStrontianite: 9.9731e-01 +XCa: 9.9347e-02 +XSr: 9.0065e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7581,11 +7581,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 36 SrCO3 added: 3.6000e+00 -Log Sigma pi: -9.2227e+00 -XAragonite: 2.7665e-03 -XStrontianite: 9.9723e-01 -XCa: 1.0666e-01 -XSr: 8.9334e-01 +Log Sigma pi: -9.2251e+00 +XAragonite: 2.6197e-03 +XStrontianite: 9.9738e-01 +XCa: 9.6947e-02 +XSr: 9.0305e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7594,11 +7594,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 37 SrCO3 added: 3.7000e+00 -Log Sigma pi: -9.2239e+00 -XAragonite: 2.6954e-03 -XStrontianite: 9.9730e-01 -XCa: 1.0417e-01 -XSr: 8.9583e-01 +Log Sigma pi: -9.2263e+00 +XAragonite: 2.5522e-03 +XStrontianite: 9.9745e-01 +XCa: 9.4659e-02 +XSr: 9.0534e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7607,11 +7607,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 38 SrCO3 added: 3.8000e+00 -Log Sigma pi: -9.2250e+00 -XAragonite: 2.6278e-03 -XStrontianite: 9.9737e-01 -XCa: 1.0180e-01 -XSr: 8.9820e-01 +Log Sigma pi: -9.2273e+00 +XAragonite: 2.4881e-03 +XStrontianite: 9.9751e-01 +XCa: 9.2478e-02 +XSr: 9.0752e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7620,11 +7620,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 39 SrCO3 added: 3.9000e+00 -Log Sigma pi: -9.2261e+00 -XAragonite: 2.5636e-03 -XStrontianite: 9.9744e-01 -XCa: 9.9529e-02 -XSr: 9.0047e-01 +Log Sigma pi: -9.2284e+00 +XAragonite: 2.4271e-03 +XStrontianite: 9.9757e-01 +XCa: 9.0395e-02 +XSr: 9.0961e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7633,11 +7633,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 40 SrCO3 added: 4 -Log Sigma pi: -9.2271e+00 -XAragonite: 2.5024e-03 -XStrontianite: 9.9750e-01 -XCa: 9.7359e-02 -XSr: 9.0264e-01 +Log Sigma pi: -9.2294e+00 +XAragonite: 2.3690e-03 +XStrontianite: 9.9763e-01 +XCa: 8.8404e-02 +XSr: 9.1160e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7646,11 +7646,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 41 SrCO3 added: 4.1000e+00 -Log Sigma pi: -9.2281e+00 -XAragonite: 2.4441e-03 -XStrontianite: 9.9756e-01 -XCa: 9.5282e-02 -XSr: 9.0472e-01 +Log Sigma pi: -9.2303e+00 +XAragonite: 2.3137e-03 +XStrontianite: 9.9769e-01 +XCa: 8.6499e-02 +XSr: 9.1350e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7659,11 +7659,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 42 SrCO3 added: 4.2000e+00 -Log Sigma pi: -9.2290e+00 -XAragonite: 2.3884e-03 -XStrontianite: 9.9761e-01 -XCa: 9.3292e-02 -XSr: 9.0671e-01 +Log Sigma pi: -9.2312e+00 +XAragonite: 2.2609e-03 +XStrontianite: 9.9774e-01 +XCa: 8.4674e-02 +XSr: 9.1533e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7672,11 +7672,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 43 SrCO3 added: 4.3000e+00 -Log Sigma pi: -9.2299e+00 -XAragonite: 2.3353e-03 -XStrontianite: 9.9766e-01 -XCa: 9.1384e-02 -XSr: 9.0862e-01 +Log Sigma pi: -9.2320e+00 +XAragonite: 2.2105e-03 +XStrontianite: 9.9779e-01 +XCa: 8.2925e-02 +XSr: 9.1707e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7685,11 +7685,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 44 SrCO3 added: 4.4000e+00 -Log Sigma pi: -9.2308e+00 -XAragonite: 2.2844e-03 -XStrontianite: 9.9772e-01 -XCa: 8.9552e-02 -XSr: 9.1045e-01 +Log Sigma pi: -9.2329e+00 +XAragonite: 2.1623e-03 +XStrontianite: 9.9784e-01 +XCa: 8.1247e-02 +XSr: 9.1875e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7698,11 +7698,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 45 SrCO3 added: 4.5000e+00 -Log Sigma pi: -9.2316e+00 -XAragonite: 2.2358e-03 -XStrontianite: 9.9776e-01 -XCa: 8.7792e-02 -XSr: 9.1221e-01 +Log Sigma pi: -9.2337e+00 +XAragonite: 2.1161e-03 +XStrontianite: 9.9788e-01 +XCa: 7.9636e-02 +XSr: 9.2036e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7711,11 +7711,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 46 SrCO3 added: 4.6000e+00 -Log Sigma pi: -9.2324e+00 -XAragonite: 2.1891e-03 -XStrontianite: 9.9781e-01 -XCa: 8.6101e-02 -XSr: 9.1390e-01 +Log Sigma pi: -9.2344e+00 +XAragonite: 2.0719e-03 +XStrontianite: 9.9793e-01 +XCa: 7.8087e-02 +XSr: 9.2191e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7724,11 +7724,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 47 SrCO3 added: 4.7000e+00 -Log Sigma pi: -9.2332e+00 -XAragonite: 2.1444e-03 -XStrontianite: 9.9786e-01 -XCa: 8.4473e-02 -XSr: 9.1553e-01 +Log Sigma pi: -9.2351e+00 +XAragonite: 2.0294e-03 +XStrontianite: 9.9797e-01 +XCa: 7.6598e-02 +XSr: 9.2340e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7737,11 +7737,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 48 SrCO3 added: 4.8000e+00 -Log Sigma pi: -9.2339e+00 -XAragonite: 2.1014e-03 -XStrontianite: 9.9790e-01 -XCa: 8.2906e-02 -XSr: 9.1709e-01 +Log Sigma pi: -9.2358e+00 +XAragonite: 1.9887e-03 +XStrontianite: 9.9801e-01 +XCa: 7.5164e-02 +XSr: 9.2484e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7750,11 +7750,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 49 SrCO3 added: 4.9000e+00 -Log Sigma pi: -9.2346e+00 -XAragonite: 2.0602e-03 -XStrontianite: 9.9794e-01 -XCa: 8.1396e-02 -XSr: 9.1860e-01 +Log Sigma pi: -9.2365e+00 +XAragonite: 1.9496e-03 +XStrontianite: 9.9805e-01 +XCa: 7.3784e-02 +XSr: 9.2622e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7763,11 +7763,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 50 SrCO3 added: 5 -Log Sigma pi: -9.2353e+00 -XAragonite: 2.0205e-03 -XStrontianite: 9.9798e-01 -XCa: 7.9940e-02 -XSr: 9.2006e-01 +Log Sigma pi: -9.2371e+00 +XAragonite: 1.9120e-03 +XStrontianite: 9.9809e-01 +XCa: 7.2453e-02 +XSr: 9.2755e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7776,11 +7776,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 51 SrCO3 added: 5.1000e+00 -Log Sigma pi: -9.2359e+00 -XAragonite: 1.9824e-03 -XStrontianite: 9.9802e-01 -XCa: 7.8535e-02 -XSr: 9.2146e-01 +Log Sigma pi: -9.2378e+00 +XAragonite: 1.8758e-03 +XStrontianite: 9.9812e-01 +XCa: 7.1169e-02 +XSr: 9.2883e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7789,11 +7789,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 52 SrCO3 added: 5.2000e+00 -Log Sigma pi: -9.2366e+00 -XAragonite: 1.9456e-03 -XStrontianite: 9.9805e-01 -XCa: 7.7179e-02 -XSr: 9.2282e-01 +Log Sigma pi: -9.2384e+00 +XAragonite: 1.8410e-03 +XStrontianite: 9.9816e-01 +XCa: 6.9930e-02 +XSr: 9.3007e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7802,11 +7802,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 53 SrCO3 added: 5.3000e+00 -Log Sigma pi: -9.2372e+00 -XAragonite: 1.9102e-03 -XStrontianite: 9.9809e-01 -XCa: 7.5869e-02 -XSr: 9.2413e-01 +Log Sigma pi: -9.2389e+00 +XAragonite: 1.8074e-03 +XStrontianite: 9.9819e-01 +XCa: 6.8733e-02 +XSr: 9.3127e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7815,11 +7815,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 54 SrCO3 added: 5.4000e+00 -Log Sigma pi: -9.2378e+00 -XAragonite: 1.8761e-03 -XStrontianite: 9.9812e-01 -XCa: 7.4603e-02 -XSr: 9.2540e-01 +Log Sigma pi: -9.2395e+00 +XAragonite: 1.7751e-03 +XStrontianite: 9.9822e-01 +XCa: 6.7577e-02 +XSr: 9.3242e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7828,11 +7828,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 55 SrCO3 added: 5.5000e+00 -Log Sigma pi: -9.2383e+00 -XAragonite: 1.8432e-03 -XStrontianite: 9.9816e-01 -XCa: 7.3379e-02 -XSr: 9.2662e-01 +Log Sigma pi: -9.2400e+00 +XAragonite: 1.7439e-03 +XStrontianite: 9.9826e-01 +XCa: 6.6459e-02 +XSr: 9.3354e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7841,11 +7841,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 56 SrCO3 added: 5.6000e+00 -Log Sigma pi: -9.2389e+00 -XAragonite: 1.8114e-03 -XStrontianite: 9.9819e-01 -XCa: 7.2194e-02 -XSr: 9.2781e-01 +Log Sigma pi: -9.2406e+00 +XAragonite: 1.7137e-03 +XStrontianite: 9.9829e-01 +XCa: 6.5378e-02 +XSr: 9.3462e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7854,11 +7854,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 57 SrCO3 added: 5.7000e+00 -Log Sigma pi: -9.2394e+00 -XAragonite: 1.7806e-03 -XStrontianite: 9.9822e-01 -XCa: 7.1046e-02 -XSr: 9.2895e-01 +Log Sigma pi: -9.2411e+00 +XAragonite: 1.6846e-03 +XStrontianite: 9.9832e-01 +XCa: 6.4331e-02 +XSr: 9.3567e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7867,11 +7867,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 58 SrCO3 added: 5.8000e+00 -Log Sigma pi: -9.2399e+00 -XAragonite: 1.7509e-03 -XStrontianite: 9.9825e-01 -XCa: 6.9935e-02 -XSr: 9.3006e-01 +Log Sigma pi: -9.2415e+00 +XAragonite: 1.6565e-03 +XStrontianite: 9.9834e-01 +XCa: 6.3317e-02 +XSr: 9.3668e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7880,11 +7880,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 59 SrCO3 added: 5.9000e+00 -Log Sigma pi: -9.2404e+00 -XAragonite: 1.7222e-03 -XStrontianite: 9.9828e-01 -XCa: 6.8858e-02 -XSr: 9.3114e-01 +Log Sigma pi: -9.2420e+00 +XAragonite: 1.6293e-03 +XStrontianite: 9.9837e-01 +XCa: 6.2335e-02 +XSr: 9.3766e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7893,11 +7893,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 60 SrCO3 added: 6 -Log Sigma pi: -9.2409e+00 -XAragonite: 1.6944e-03 -XStrontianite: 9.9831e-01 -XCa: 6.7814e-02 -XSr: 9.3219e-01 +Log Sigma pi: -9.2425e+00 +XAragonite: 1.6029e-03 +XStrontianite: 9.9840e-01 +XCa: 6.1383e-02 +XSr: 9.3862e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7906,11 +7906,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 61 SrCO3 added: 6.1000e+00 -Log Sigma pi: -9.2414e+00 -XAragonite: 1.6675e-03 -XStrontianite: 9.9833e-01 -XCa: 6.6801e-02 -XSr: 9.3320e-01 +Log Sigma pi: -9.2429e+00 +XAragonite: 1.5774e-03 +XStrontianite: 9.9842e-01 +XCa: 6.0459e-02 +XSr: 9.3954e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7919,11 +7919,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 62 SrCO3 added: 6.2000e+00 -Log Sigma pi: -9.2418e+00 -XAragonite: 1.6415e-03 -XStrontianite: 9.9836e-01 -XCa: 6.5817e-02 -XSr: 9.3418e-01 +Log Sigma pi: -9.2433e+00 +XAragonite: 1.5527e-03 +XStrontianite: 9.9845e-01 +XCa: 5.9563e-02 +XSr: 9.4044e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7932,11 +7932,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 63 SrCO3 added: 6.3000e+00 -Log Sigma pi: -9.2422e+00 -XAragonite: 1.6162e-03 -XStrontianite: 9.9838e-01 -XCa: 6.4863e-02 -XSr: 9.3514e-01 +Log Sigma pi: -9.2438e+00 +XAragonite: 1.5288e-03 +XStrontianite: 9.9847e-01 +XCa: 5.8693e-02 +XSr: 9.4131e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7945,11 +7945,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 64 SrCO3 added: 6.4000e+00 -Log Sigma pi: -9.2427e+00 -XAragonite: 1.5917e-03 -XStrontianite: 9.9841e-01 -XCa: 6.3935e-02 -XSr: 9.3606e-01 +Log Sigma pi: -9.2442e+00 +XAragonite: 1.5056e-03 +XStrontianite: 9.9849e-01 +XCa: 5.7848e-02 +XSr: 9.4215e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7958,11 +7958,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 65 SrCO3 added: 6.5000e+00 -Log Sigma pi: -9.2431e+00 -XAragonite: 1.5680e-03 -XStrontianite: 9.9843e-01 -XCa: 6.3034e-02 -XSr: 9.3697e-01 +Log Sigma pi: -9.2446e+00 +XAragonite: 1.4831e-03 +XStrontianite: 9.9852e-01 +XCa: 5.7027e-02 +XSr: 9.4297e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7971,11 +7971,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 66 SrCO3 added: 6.6000e+00 -Log Sigma pi: -9.2435e+00 -XAragonite: 1.5449e-03 -XStrontianite: 9.9846e-01 -XCa: 6.2158e-02 -XSr: 9.3784e-01 +Log Sigma pi: -9.2449e+00 +XAragonite: 1.4612e-03 +XStrontianite: 9.9854e-01 +XCa: 5.6230e-02 +XSr: 9.4377e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7984,11 +7984,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 67 SrCO3 added: 6.7000e+00 -Log Sigma pi: -9.2439e+00 -XAragonite: 1.5225e-03 -XStrontianite: 9.9848e-01 -XCa: 6.1306e-02 -XSr: 9.3869e-01 +Log Sigma pi: -9.2453e+00 +XAragonite: 1.4400e-03 +XStrontianite: 9.9856e-01 +XCa: 5.5454e-02 +XSr: 9.4455e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -7997,11 +7997,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 68 SrCO3 added: 6.8000e+00 -Log Sigma pi: -9.2442e+00 -XAragonite: 1.5007e-03 -XStrontianite: 9.9850e-01 -XCa: 6.0477e-02 -XSr: 9.3952e-01 +Log Sigma pi: -9.2457e+00 +XAragonite: 1.4194e-03 +XStrontianite: 9.9858e-01 +XCa: 5.4699e-02 +XSr: 9.4530e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8010,11 +8010,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 69 SrCO3 added: 6.9000e+00 -Log Sigma pi: -9.2446e+00 -XAragonite: 1.4796e-03 -XStrontianite: 9.9852e-01 -XCa: 5.9670e-02 -XSr: 9.4033e-01 +Log Sigma pi: -9.2460e+00 +XAragonite: 1.3994e-03 +XStrontianite: 9.9860e-01 +XCa: 5.3965e-02 +XSr: 9.4604e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8023,11 +8023,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 70 SrCO3 added: 7 -Log Sigma pi: -9.2450e+00 -XAragonite: 1.4591e-03 -XStrontianite: 9.9854e-01 -XCa: 5.8885e-02 -XSr: 9.4112e-01 +Log Sigma pi: -9.2464e+00 +XAragonite: 1.3799e-03 +XStrontianite: 9.9862e-01 +XCa: 5.3250e-02 +XSr: 9.4675e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8036,11 +8036,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 71 SrCO3 added: 7.1000e+00 -Log Sigma pi: -9.2453e+00 -XAragonite: 1.4391e-03 -XStrontianite: 9.9856e-01 -XCa: 5.8119e-02 -XSr: 9.4188e-01 +Log Sigma pi: -9.2467e+00 +XAragonite: 1.3610e-03 +XStrontianite: 9.9864e-01 +XCa: 5.2553e-02 +XSr: 9.4745e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8049,11 +8049,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 72 SrCO3 added: 7.2000e+00 -Log Sigma pi: -9.2457e+00 -XAragonite: 1.4196e-03 -XStrontianite: 9.9858e-01 -XCa: 5.7374e-02 -XSr: 9.4263e-01 +Log Sigma pi: -9.2470e+00 +XAragonite: 1.3426e-03 +XStrontianite: 9.9866e-01 +XCa: 5.1875e-02 +XSr: 9.4812e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8062,11 +8062,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 73 SrCO3 added: 7.3000e+00 -Log Sigma pi: -9.2460e+00 -XAragonite: 1.4007e-03 -XStrontianite: 9.9860e-01 -XCa: 5.6647e-02 -XSr: 9.4335e-01 +Log Sigma pi: -9.2473e+00 +XAragonite: 1.3247e-03 +XStrontianite: 9.9868e-01 +XCa: 5.1214e-02 +XSr: 9.4879e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8075,11 +8075,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 74 SrCO3 added: 7.4000e+00 -Log Sigma pi: -9.2463e+00 -XAragonite: 1.3823e-03 -XStrontianite: 9.9862e-01 -XCa: 5.5939e-02 -XSr: 9.4406e-01 +Log Sigma pi: -9.2476e+00 +XAragonite: 1.3072e-03 +XStrontianite: 9.9869e-01 +XCa: 5.0570e-02 +XSr: 9.4943e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8088,11 +8088,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 75 SrCO3 added: 7.5000e+00 -Log Sigma pi: -9.2466e+00 -XAragonite: 1.3643e-03 -XStrontianite: 9.9864e-01 -XCa: 5.5248e-02 -XSr: 9.4475e-01 +Log Sigma pi: -9.2479e+00 +XAragonite: 1.2902e-03 +XStrontianite: 9.9871e-01 +XCa: 4.9942e-02 +XSr: 9.5006e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8101,11 +8101,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 76 SrCO3 added: 7.6000e+00 -Log Sigma pi: -9.2469e+00 -XAragonite: 1.3468e-03 -XStrontianite: 9.9865e-01 -XCa: 5.4574e-02 -XSr: 9.4543e-01 +Log Sigma pi: -9.2482e+00 +XAragonite: 1.2737e-03 +XStrontianite: 9.9873e-01 +XCa: 4.9329e-02 +XSr: 9.5067e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8114,11 +8114,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 77 SrCO3 added: 7.7000e+00 -Log Sigma pi: -9.2472e+00 -XAragonite: 1.3298e-03 -XStrontianite: 9.9867e-01 -XCa: 5.3916e-02 -XSr: 9.4608e-01 +Log Sigma pi: -9.2485e+00 +XAragonite: 1.2575e-03 +XStrontianite: 9.9874e-01 +XCa: 4.8731e-02 +XSr: 9.5127e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8127,11 +8127,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 78 SrCO3 added: 7.8000e+00 -Log Sigma pi: -9.2475e+00 -XAragonite: 1.3131e-03 -XStrontianite: 9.9869e-01 -XCa: 5.3274e-02 -XSr: 9.4673e-01 +Log Sigma pi: -9.2488e+00 +XAragonite: 1.2418e-03 +XStrontianite: 9.9876e-01 +XCa: 4.8147e-02 +XSr: 9.5185e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8140,11 +8140,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 79 SrCO3 added: 7.9000e+00 -Log Sigma pi: -9.2478e+00 -XAragonite: 1.2969e-03 -XStrontianite: 9.9870e-01 -XCa: 5.2647e-02 -XSr: 9.4735e-01 +Log Sigma pi: -9.2490e+00 +XAragonite: 1.2264e-03 +XStrontianite: 9.9877e-01 +XCa: 4.7577e-02 +XSr: 9.5242e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8153,11 +8153,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 80 SrCO3 added: 8 -Log Sigma pi: -9.2481e+00 -XAragonite: 1.2811e-03 -XStrontianite: 9.9872e-01 -XCa: 5.2035e-02 -XSr: 9.4797e-01 +Log Sigma pi: -9.2493e+00 +XAragonite: 1.2114e-03 +XStrontianite: 9.9879e-01 +XCa: 4.7021e-02 +XSr: 9.5298e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8166,11 +8166,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 81 SrCO3 added: 8.1000e+00 -Log Sigma pi: -9.2484e+00 -XAragonite: 1.2657e-03 -XStrontianite: 9.9873e-01 -XCa: 5.1436e-02 -XSr: 9.4856e-01 +Log Sigma pi: -9.2496e+00 +XAragonite: 1.1968e-03 +XStrontianite: 9.9880e-01 +XCa: 4.6477e-02 +XSr: 9.5352e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8179,11 +8179,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 82 SrCO3 added: 8.2000e+00 -Log Sigma pi: -9.2486e+00 -XAragonite: 1.2506e-03 -XStrontianite: 9.9875e-01 -XCa: 5.0852e-02 -XSr: 9.4915e-01 +Log Sigma pi: -9.2498e+00 +XAragonite: 1.1826e-03 +XStrontianite: 9.9882e-01 +XCa: 4.5946e-02 +XSr: 9.5405e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8192,11 +8192,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 83 SrCO3 added: 8.3000e+00 -Log Sigma pi: -9.2489e+00 -XAragonite: 1.2359e-03 -XStrontianite: 9.9876e-01 -XCa: 5.0280e-02 -XSr: 9.4972e-01 +Log Sigma pi: -9.2501e+00 +XAragonite: 1.1686e-03 +XStrontianite: 9.9883e-01 +XCa: 4.5427e-02 +XSr: 9.5457e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8205,11 +8205,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 84 SrCO3 added: 8.4000e+00 -Log Sigma pi: -9.2491e+00 -XAragonite: 1.2215e-03 -XStrontianite: 9.9878e-01 -XCa: 4.9721e-02 -XSr: 9.5028e-01 +Log Sigma pi: -9.2503e+00 +XAragonite: 1.1550e-03 +XStrontianite: 9.9884e-01 +XCa: 4.4919e-02 +XSr: 9.5508e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8218,11 +8218,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 85 SrCO3 added: 8.5000e+00 -Log Sigma pi: -9.2494e+00 -XAragonite: 1.2075e-03 -XStrontianite: 9.9879e-01 -XCa: 4.9175e-02 -XSr: 9.5083e-01 +Log Sigma pi: -9.2505e+00 +XAragonite: 1.1418e-03 +XStrontianite: 9.9886e-01 +XCa: 4.4423e-02 +XSr: 9.5558e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8231,11 +8231,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 86 SrCO3 added: 8.6000e+00 -Log Sigma pi: -9.2496e+00 -XAragonite: 1.1938e-03 -XStrontianite: 9.9881e-01 -XCa: 4.8640e-02 -XSr: 9.5136e-01 +Log Sigma pi: -9.2508e+00 +XAragonite: 1.1288e-03 +XStrontianite: 9.9887e-01 +XCa: 4.3937e-02 +XSr: 9.5606e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8244,11 +8244,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 87 SrCO3 added: 8.7000e+00 -Log Sigma pi: -9.2499e+00 -XAragonite: 1.1804e-03 -XStrontianite: 9.9882e-01 -XCa: 4.8117e-02 -XSr: 9.5188e-01 +Log Sigma pi: -9.2510e+00 +XAragonite: 1.1161e-03 +XStrontianite: 9.9888e-01 +XCa: 4.3462e-02 +XSr: 9.5654e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8257,11 +8257,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 88 SrCO3 added: 8.8000e+00 -Log Sigma pi: -9.2501e+00 -XAragonite: 1.1673e-03 -XStrontianite: 9.9883e-01 -XCa: 4.7605e-02 -XSr: 9.5239e-01 +Log Sigma pi: -9.2512e+00 +XAragonite: 1.1037e-03 +XStrontianite: 9.9890e-01 +XCa: 4.2997e-02 +XSr: 9.5700e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8270,11 +8270,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 89 SrCO3 added: 8.9000e+00 -Log Sigma pi: -9.2503e+00 -XAragonite: 1.1544e-03 -XStrontianite: 9.9885e-01 -XCa: 4.7104e-02 -XSr: 9.5290e-01 +Log Sigma pi: -9.2514e+00 +XAragonite: 1.0915e-03 +XStrontianite: 9.9891e-01 +XCa: 4.2542e-02 +XSr: 9.5746e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8283,11 +8283,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 90 SrCO3 added: 9 -Log Sigma pi: -9.2505e+00 -XAragonite: 1.1419e-03 -XStrontianite: 9.9886e-01 -XCa: 4.6613e-02 -XSr: 9.5339e-01 +Log Sigma pi: -9.2516e+00 +XAragonite: 1.0796e-03 +XStrontianite: 9.9892e-01 +XCa: 4.2097e-02 +XSr: 9.5790e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8296,11 +8296,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 91 SrCO3 added: 9.1000e+00 -Log Sigma pi: -9.2507e+00 -XAragonite: 1.1296e-03 -XStrontianite: 9.9887e-01 -XCa: 4.6132e-02 -XSr: 9.5387e-01 +Log Sigma pi: -9.2518e+00 +XAragonite: 1.0680e-03 +XStrontianite: 9.9893e-01 +XCa: 4.1661e-02 +XSr: 9.5834e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8309,11 +8309,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 92 SrCO3 added: 9.2000e+00 -Log Sigma pi: -9.2510e+00 -XAragonite: 1.1176e-03 -XStrontianite: 9.9888e-01 -XCa: 4.5662e-02 -XSr: 9.5434e-01 +Log Sigma pi: -9.2520e+00 +XAragonite: 1.0566e-03 +XStrontianite: 9.9894e-01 +XCa: 4.1234e-02 +XSr: 9.5877e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8322,11 +8322,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 93 SrCO3 added: 9.3000e+00 -Log Sigma pi: -9.2512e+00 -XAragonite: 1.1058e-03 -XStrontianite: 9.9889e-01 -XCa: 4.5200e-02 -XSr: 9.5480e-01 +Log Sigma pi: -9.2522e+00 +XAragonite: 1.0455e-03 +XStrontianite: 9.9895e-01 +XCa: 4.0815e-02 +XSr: 9.5919e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8335,11 +8335,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 94 SrCO3 added: 9.4000e+00 -Log Sigma pi: -9.2514e+00 -XAragonite: 1.0943e-03 -XStrontianite: 9.9891e-01 -XCa: 4.4748e-02 -XSr: 9.5525e-01 +Log Sigma pi: -9.2524e+00 +XAragonite: 1.0346e-03 +XStrontianite: 9.9897e-01 +XCa: 4.0405e-02 +XSr: 9.5960e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8348,11 +8348,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 95 SrCO3 added: 9.5000e+00 -Log Sigma pi: -9.2516e+00 -XAragonite: 1.0830e-03 -XStrontianite: 9.9892e-01 -XCa: 4.4305e-02 -XSr: 9.5569e-01 +Log Sigma pi: -9.2526e+00 +XAragonite: 1.0239e-03 +XStrontianite: 9.9898e-01 +XCa: 4.0003e-02 +XSr: 9.6000e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8361,11 +8361,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 96 SrCO3 added: 9.6000e+00 -Log Sigma pi: -9.2518e+00 -XAragonite: 1.0720e-03 -XStrontianite: 9.9893e-01 -XCa: 4.3871e-02 -XSr: 9.5613e-01 +Log Sigma pi: -9.2528e+00 +XAragonite: 1.0135e-03 +XStrontianite: 9.9899e-01 +XCa: 3.9609e-02 +XSr: 9.6039e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8374,11 +8374,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 97 SrCO3 added: 9.7000e+00 -Log Sigma pi: -9.2519e+00 -XAragonite: 1.0612e-03 -XStrontianite: 9.9894e-01 -XCa: 4.3445e-02 -XSr: 9.5656e-01 +Log Sigma pi: -9.2530e+00 +XAragonite: 1.0032e-03 +XStrontianite: 9.9900e-01 +XCa: 3.9222e-02 +XSr: 9.6078e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8387,11 +8387,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 98 SrCO3 added: 9.8000e+00 -Log Sigma pi: -9.2521e+00 -XAragonite: 1.0506e-03 -XStrontianite: 9.9895e-01 -XCa: 4.3027e-02 -XSr: 9.5697e-01 +Log Sigma pi: -9.2531e+00 +XAragonite: 9.9320e-04 +XStrontianite: 9.9901e-01 +XCa: 3.8843e-02 +XSr: 9.6116e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8400,11 +8400,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 99 SrCO3 added: 9.9000e+00 -Log Sigma pi: -9.2523e+00 -XAragonite: 1.0402e-03 -XStrontianite: 9.9896e-01 -XCa: 4.2617e-02 -XSr: 9.5738e-01 +Log Sigma pi: -9.2533e+00 +XAragonite: 9.8336e-04 +XStrontianite: 9.9902e-01 +XCa: 3.8472e-02 +XSr: 9.6153e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 @@ -8413,11 +8413,11 @@ Misc 2: 8.5786e-01 Simulation number: 6 Reaction step number: 100 SrCO3 added: 10 -Log Sigma pi: -9.2525e+00 -XAragonite: 1.0300e-03 -XStrontianite: 9.9897e-01 -XCa: 4.2215e-02 -XSr: 9.5778e-01 +Log Sigma pi: -9.2535e+00 +XAragonite: 9.7371e-04 +XStrontianite: 9.9903e-01 +XCa: 3.8107e-02 +XSr: 9.6189e-01 Misc 1: 4.8032e-03 Misc 2: 8.5786e-01 diff --git a/ex10.sel b/ex10.sel index 4d715b9c..447aec12 100644 --- a/ex10.sel +++ b/ex10.sel @@ -1,621 +1,621 @@ reaction lg_SigmaPi X_Arag X_Stront X_Ca_aq X_Sr_aq mol_Misc1 mol_Misc2 mol_Arag mol_Stront - 1.0000e-05 -8.3356e+00 9.9996e-01 4.2174e-05 9.9905e-01 9.5081e-04 1.0000e-10 1.0000e-10 6.5452e-06 2.7605e-10 - 2.0000e-05 -8.3352e+00 9.9992e-01 8.4457e-05 9.9810e-01 1.9009e-03 1.0000e-10 1.0000e-10 1.3088e-05 1.1055e-09 - 3.0000e-05 -8.3348e+00 9.9987e-01 1.2685e-04 9.9715e-01 2.8504e-03 1.0000e-10 1.0000e-10 1.9629e-05 2.4903e-09 - 4.0000e-05 -8.3345e+00 9.9983e-01 1.6936e-04 9.9620e-01 3.7992e-03 1.0000e-10 1.0000e-10 2.6168e-05 4.4324e-09 - 5.0000e-05 -8.3341e+00 9.9979e-01 2.1197e-04 9.9525e-01 4.7473e-03 1.0000e-10 1.0000e-10 3.2705e-05 6.9339e-09 - 6.0000e-05 -8.3337e+00 9.9975e-01 2.5470e-04 9.9431e-01 5.6947e-03 1.0000e-10 1.0000e-10 3.9239e-05 9.9967e-09 - 7.0000e-05 -8.3333e+00 9.9970e-01 2.9754e-04 9.9336e-01 6.6414e-03 1.0000e-10 1.0000e-10 4.5772e-05 1.3623e-08 - 8.0000e-05 -8.3329e+00 9.9966e-01 3.4049e-04 9.9241e-01 7.5875e-03 1.0000e-10 1.0000e-10 5.2302e-05 1.7814e-08 - 9.0000e-05 -8.3325e+00 9.9962e-01 3.8355e-04 9.9147e-01 8.5329e-03 1.0000e-10 1.0000e-10 5.8831e-05 2.2573e-08 - 1.0000e-04 -8.3321e+00 9.9957e-01 4.2673e-04 9.9052e-01 9.4776e-03 1.0000e-10 1.0000e-10 6.5357e-05 2.7902e-08 - 1.1000e-04 -8.3317e+00 9.9953e-01 4.7002e-04 9.8958e-01 1.0422e-02 1.0000e-10 1.0000e-10 7.1881e-05 3.3801e-08 - 1.2000e-04 -8.3314e+00 9.9949e-01 5.1343e-04 9.8864e-01 1.1365e-02 1.0000e-10 1.0000e-10 7.8402e-05 4.0275e-08 - 1.3000e-04 -8.3310e+00 9.9944e-01 5.5695e-04 9.8769e-01 1.2308e-02 1.0000e-10 1.0000e-10 8.4922e-05 4.7324e-08 - 1.4000e-04 -8.3306e+00 9.9940e-01 6.0059e-04 9.8675e-01 1.3250e-02 1.0000e-10 1.0000e-10 9.1440e-05 5.4951e-08 - 1.5000e-04 -8.3302e+00 9.9936e-01 6.4434e-04 9.8581e-01 1.4191e-02 1.0000e-10 1.0000e-10 9.7955e-05 6.3157e-08 - 1.6000e-04 -8.3298e+00 9.9931e-01 6.8821e-04 9.8487e-01 1.5132e-02 1.0000e-10 1.0000e-10 1.0447e-04 7.1946e-08 - 1.7000e-04 -8.3294e+00 9.9927e-01 7.3220e-04 9.8393e-01 1.6072e-02 1.0000e-10 1.0000e-10 1.1098e-04 8.1319e-08 - 1.8000e-04 -8.3290e+00 9.9922e-01 7.7630e-04 9.8299e-01 1.7011e-02 1.0000e-10 1.0000e-10 1.1749e-04 9.1278e-08 - 1.9000e-04 -8.3286e+00 9.9918e-01 8.2052e-04 9.8205e-01 1.7950e-02 1.0000e-10 1.0000e-10 1.2400e-04 1.0183e-07 - 2.0000e-04 -8.3283e+00 9.9914e-01 8.6487e-04 9.8111e-01 1.8887e-02 1.0000e-10 1.0000e-10 1.3050e-04 1.1296e-07 - 2.1000e-04 -8.3279e+00 9.9909e-01 9.0932e-04 9.8018e-01 1.9825e-02 1.0000e-10 1.0000e-10 1.3700e-04 1.2469e-07 - 2.2000e-04 -8.3275e+00 9.9905e-01 9.5390e-04 9.7924e-01 2.0761e-02 1.0000e-10 1.0000e-10 1.4350e-04 1.3702e-07 - 2.3000e-04 -8.3271e+00 9.9900e-01 9.9860e-04 9.7830e-01 2.1697e-02 1.0000e-10 1.0000e-10 1.5000e-04 1.4994e-07 - 2.4000e-04 -8.3267e+00 9.9896e-01 1.0434e-03 9.7737e-01 2.2633e-02 1.0000e-10 1.0000e-10 1.5650e-04 1.6346e-07 - 2.5000e-04 -8.3263e+00 9.9891e-01 1.0884e-03 9.7643e-01 2.3567e-02 1.0000e-10 1.0000e-10 1.6299e-04 1.7759e-07 - 2.6000e-04 -8.3259e+00 9.9887e-01 1.1334e-03 9.7550e-01 2.4501e-02 1.0000e-10 1.0000e-10 1.6948e-04 1.9232e-07 - 2.7000e-04 -8.3255e+00 9.9882e-01 1.1786e-03 9.7457e-01 2.5434e-02 1.0000e-10 1.0000e-10 1.7597e-04 2.0765e-07 - 2.8000e-04 -8.3252e+00 9.9878e-01 1.2239e-03 9.7363e-01 2.6367e-02 1.0000e-10 1.0000e-10 1.8246e-04 2.2359e-07 - 2.9000e-04 -8.3248e+00 9.9873e-01 1.2693e-03 9.7270e-01 2.7299e-02 1.0000e-10 1.0000e-10 1.8895e-04 2.4014e-07 - 3.0000e-04 -8.3244e+00 9.9869e-01 1.3149e-03 9.7177e-01 2.8230e-02 1.0000e-10 1.0000e-10 1.9543e-04 2.5731e-07 - 3.1000e-04 -8.3240e+00 9.9864e-01 1.3606e-03 9.7084e-01 2.9160e-02 1.0000e-10 1.0000e-10 2.0191e-04 2.7509e-07 - 3.2000e-04 -8.3236e+00 9.9859e-01 1.4064e-03 9.6991e-01 3.0090e-02 1.0000e-10 1.0000e-10 2.0839e-04 2.9349e-07 - 3.3000e-04 -8.3232e+00 9.9855e-01 1.4523e-03 9.6898e-01 3.1019e-02 1.0000e-10 1.0000e-10 2.1487e-04 3.1251e-07 - 3.4000e-04 -8.3228e+00 9.9850e-01 1.4984e-03 9.6805e-01 3.1948e-02 1.0000e-10 1.0000e-10 2.2134e-04 3.3215e-07 - 3.5000e-04 -8.3224e+00 9.9846e-01 1.5445e-03 9.6712e-01 3.2876e-02 1.0000e-10 1.0000e-10 2.2782e-04 3.5242e-07 - 3.6000e-04 -8.3220e+00 9.9841e-01 1.5909e-03 9.6620e-01 3.3803e-02 1.0000e-10 1.0000e-10 2.3429e-04 3.7331e-07 - 3.7000e-04 -8.3217e+00 9.9836e-01 1.6373e-03 9.6527e-01 3.4729e-02 1.0000e-10 1.0000e-10 2.4075e-04 3.9483e-07 - 3.8000e-04 -8.3213e+00 9.9832e-01 1.6839e-03 9.6435e-01 3.5655e-02 1.0000e-10 1.0000e-10 2.4722e-04 4.1699e-07 - 3.9000e-04 -8.3209e+00 9.9827e-01 1.7305e-03 9.6342e-01 3.6580e-02 1.0000e-10 1.0000e-10 2.5368e-04 4.3977e-07 - 4.0000e-04 -8.3205e+00 9.9822e-01 1.7774e-03 9.6250e-01 3.7504e-02 1.0000e-10 1.0000e-10 2.6015e-04 4.6320e-07 - 4.1000e-04 -8.3201e+00 9.9818e-01 1.8243e-03 9.6157e-01 3.8428e-02 1.0000e-10 1.0000e-10 2.6661e-04 4.8726e-07 - 4.2000e-04 -8.3197e+00 9.9813e-01 1.8714e-03 9.6065e-01 3.9351e-02 1.0000e-10 1.0000e-10 2.7306e-04 5.1197e-07 - 4.3000e-04 -8.3193e+00 9.9808e-01 1.9186e-03 9.5973e-01 4.0274e-02 1.0000e-10 1.0000e-10 2.7952e-04 5.3732e-07 - 4.4000e-04 -8.3189e+00 9.9803e-01 1.9660e-03 9.5880e-01 4.1195e-02 1.0000e-10 1.0000e-10 2.8597e-04 5.6332e-07 - 4.5000e-04 -8.3185e+00 9.9799e-01 2.0134e-03 9.5788e-01 4.2117e-02 1.0000e-10 1.0000e-10 2.9242e-04 5.8997e-07 - 4.6000e-04 -8.3182e+00 9.9794e-01 2.0611e-03 9.5696e-01 4.3037e-02 1.0000e-10 1.0000e-10 2.9887e-04 6.1726e-07 - 4.7000e-04 -8.3178e+00 9.9789e-01 2.1088e-03 9.5604e-01 4.3957e-02 1.0000e-10 1.0000e-10 3.0532e-04 6.4522e-07 - 4.8000e-04 -8.3174e+00 9.9784e-01 2.1567e-03 9.5512e-01 4.4876e-02 1.0000e-10 1.0000e-10 3.1176e-04 6.7383e-07 - 4.9000e-04 -8.3170e+00 9.9780e-01 2.2047e-03 9.5421e-01 4.5794e-02 1.0000e-10 1.0000e-10 3.1821e-04 7.0310e-07 - 5.0000e-04 -8.3166e+00 9.9775e-01 2.2528e-03 9.5329e-01 4.6712e-02 1.0000e-10 1.0000e-10 3.2465e-04 7.3303e-07 - 5.1000e-04 -8.3162e+00 9.9770e-01 2.3011e-03 9.5237e-01 4.7629e-02 1.0000e-10 1.0000e-10 3.3108e-04 7.6362e-07 - 5.2000e-04 -8.3158e+00 9.9765e-01 2.3496e-03 9.5146e-01 4.8545e-02 1.0000e-10 1.0000e-10 3.3752e-04 7.9489e-07 - 5.3000e-04 -8.3154e+00 9.9760e-01 2.3981e-03 9.5054e-01 4.9461e-02 1.0000e-10 1.0000e-10 3.4395e-04 8.2682e-07 - 5.4000e-04 -8.3150e+00 9.9755e-01 2.4468e-03 9.4962e-01 5.0376e-02 1.0000e-10 1.0000e-10 3.5038e-04 8.5943e-07 - 5.5000e-04 -8.3146e+00 9.9750e-01 2.4956e-03 9.4871e-01 5.1290e-02 1.0000e-10 1.0000e-10 3.5681e-04 8.9271e-07 - 5.6000e-04 -8.3143e+00 9.9746e-01 2.5446e-03 9.4780e-01 5.2204e-02 1.0000e-10 1.0000e-10 3.6324e-04 9.2667e-07 - 5.7000e-04 -8.3139e+00 9.9741e-01 2.5937e-03 9.4688e-01 5.3117e-02 1.0000e-10 1.0000e-10 3.6967e-04 9.6131e-07 - 5.8000e-04 -8.3135e+00 9.9736e-01 2.6430e-03 9.4597e-01 5.4029e-02 1.0000e-10 1.0000e-10 3.7609e-04 9.9663e-07 - 5.9000e-04 -8.3131e+00 9.9731e-01 2.6924e-03 9.4506e-01 5.4940e-02 1.0000e-10 1.0000e-10 3.8251e-04 1.0326e-06 - 6.0000e-04 -8.3127e+00 9.9726e-01 2.7419e-03 9.4415e-01 5.5851e-02 1.0000e-10 1.0000e-10 3.8893e-04 1.0693e-06 - 6.1000e-04 -8.3123e+00 9.9721e-01 2.7916e-03 9.4324e-01 5.6762e-02 1.0000e-10 1.0000e-10 3.9534e-04 1.1067e-06 - 6.2000e-04 -8.3119e+00 9.9716e-01 2.8414e-03 9.4233e-01 5.7671e-02 1.0000e-10 1.0000e-10 4.0176e-04 1.1448e-06 - 6.3000e-04 -8.3115e+00 9.9711e-01 2.8914e-03 9.4142e-01 5.8580e-02 1.0000e-10 1.0000e-10 4.0817e-04 1.1836e-06 - 6.4000e-04 -8.3111e+00 9.9706e-01 2.9415e-03 9.4051e-01 5.9488e-02 1.0000e-10 1.0000e-10 4.1458e-04 1.2231e-06 - 6.5000e-04 -8.3107e+00 9.9701e-01 2.9918e-03 9.3960e-01 6.0396e-02 1.0000e-10 1.0000e-10 4.2099e-04 1.2633e-06 - 6.6000e-04 -8.3104e+00 9.9696e-01 3.0422e-03 9.3870e-01 6.1303e-02 1.0000e-10 1.0000e-10 4.2739e-04 1.3042e-06 - 6.7000e-04 -8.3100e+00 9.9691e-01 3.0927e-03 9.3779e-01 6.2209e-02 1.0000e-10 1.0000e-10 4.3379e-04 1.3458e-06 - 6.8000e-04 -8.3096e+00 9.9686e-01 3.1434e-03 9.3689e-01 6.3115e-02 1.0000e-10 1.0000e-10 4.4019e-04 1.3881e-06 - 6.9000e-04 -8.3092e+00 9.9681e-01 3.1943e-03 9.3598e-01 6.4019e-02 1.0000e-10 1.0000e-10 4.4659e-04 1.4311e-06 - 7.0000e-04 -8.3088e+00 9.9675e-01 3.2453e-03 9.3508e-01 6.4924e-02 1.0000e-10 1.0000e-10 4.5299e-04 1.4749e-06 - 7.1000e-04 -8.3084e+00 9.9670e-01 3.2964e-03 9.3417e-01 6.5827e-02 1.0000e-10 1.0000e-10 4.5938e-04 1.5193e-06 - 7.2000e-04 -8.3080e+00 9.9665e-01 3.3477e-03 9.3327e-01 6.6730e-02 1.0000e-10 1.0000e-10 4.6578e-04 1.5645e-06 - 7.3000e-04 -8.3076e+00 9.9660e-01 3.3992e-03 9.3237e-01 6.7632e-02 1.0000e-10 1.0000e-10 4.7217e-04 1.6105e-06 - 7.4000e-04 -8.3072e+00 9.9655e-01 3.4508e-03 9.3147e-01 6.8534e-02 1.0000e-10 1.0000e-10 4.7855e-04 1.6571e-06 - 7.5000e-04 -8.3068e+00 9.9650e-01 3.5025e-03 9.3057e-01 6.9434e-02 1.0000e-10 1.0000e-10 4.8494e-04 1.7045e-06 - 7.6000e-04 -8.3064e+00 9.9645e-01 3.5544e-03 9.2967e-01 7.0335e-02 1.0000e-10 1.0000e-10 4.9132e-04 1.7526e-06 - 7.7000e-04 -8.3061e+00 9.9639e-01 3.6065e-03 9.2877e-01 7.1234e-02 1.0000e-10 1.0000e-10 4.9770e-04 1.8015e-06 - 7.8000e-04 -8.3057e+00 9.9634e-01 3.6587e-03 9.2787e-01 7.2133e-02 1.0000e-10 1.0000e-10 5.0408e-04 1.8511e-06 - 7.9000e-04 -8.3053e+00 9.9629e-01 3.7111e-03 9.2697e-01 7.3031e-02 1.0000e-10 1.0000e-10 5.1046e-04 1.9014e-06 - 8.0000e-04 -8.3049e+00 9.9624e-01 3.7636e-03 9.2607e-01 7.3928e-02 1.0000e-10 1.0000e-10 5.1683e-04 1.9525e-06 - 8.1000e-04 -8.3045e+00 9.9618e-01 3.8163e-03 9.2517e-01 7.4825e-02 1.0000e-10 1.0000e-10 5.2320e-04 2.0044e-06 - 8.2000e-04 -8.3041e+00 9.9613e-01 3.8691e-03 9.2428e-01 7.5721e-02 1.0000e-10 1.0000e-10 5.2957e-04 2.0570e-06 - 8.3000e-04 -8.3037e+00 9.9608e-01 3.9221e-03 9.2338e-01 7.6617e-02 1.0000e-10 1.0000e-10 5.3594e-04 2.1103e-06 - 8.4000e-04 -8.3033e+00 9.9602e-01 3.9753e-03 9.2249e-01 7.7511e-02 1.0000e-10 1.0000e-10 5.4231e-04 2.1644e-06 - 8.5000e-04 -8.3029e+00 9.9597e-01 4.0286e-03 9.2159e-01 7.8406e-02 1.0000e-10 1.0000e-10 5.4867e-04 2.2193e-06 - 8.6000e-04 -8.3025e+00 9.9592e-01 4.0821e-03 9.2070e-01 7.9299e-02 1.0000e-10 1.0000e-10 5.5503e-04 2.2750e-06 - 8.7000e-04 -8.3021e+00 9.9586e-01 4.1358e-03 9.1981e-01 8.0192e-02 1.0000e-10 1.0000e-10 5.6139e-04 2.3314e-06 - 8.8000e-04 -8.3017e+00 9.9581e-01 4.1896e-03 9.1892e-01 8.1084e-02 1.0000e-10 1.0000e-10 5.6775e-04 2.3886e-06 - 8.9000e-04 -8.3014e+00 9.9576e-01 4.2435e-03 9.1802e-01 8.1975e-02 1.0000e-10 1.0000e-10 5.7410e-04 2.4466e-06 - 9.0000e-04 -8.3010e+00 9.9570e-01 4.2977e-03 9.1713e-01 8.2866e-02 1.0000e-10 1.0000e-10 5.8045e-04 2.5054e-06 - 9.1000e-04 -8.3006e+00 9.9565e-01 4.3520e-03 9.1624e-01 8.3756e-02 1.0000e-10 1.0000e-10 5.8680e-04 2.5649e-06 - 9.2000e-04 -8.3002e+00 9.9559e-01 4.4064e-03 9.1535e-01 8.4645e-02 1.0000e-10 1.0000e-10 5.9315e-04 2.6253e-06 - 9.3000e-04 -8.2998e+00 9.9554e-01 4.4611e-03 9.1447e-01 8.5534e-02 1.0000e-10 1.0000e-10 5.9950e-04 2.6864e-06 - 9.4000e-04 -8.2994e+00 9.9548e-01 4.5159e-03 9.1358e-01 8.6422e-02 1.0000e-10 1.0000e-10 6.0584e-04 2.7483e-06 - 9.5000e-04 -8.2990e+00 9.9543e-01 4.5708e-03 9.1269e-01 8.7309e-02 1.0000e-10 1.0000e-10 6.1218e-04 2.8110e-06 - 9.6000e-04 -8.2986e+00 9.9537e-01 4.6260e-03 9.1180e-01 8.8196e-02 1.0000e-10 1.0000e-10 6.1852e-04 2.8746e-06 - 9.7000e-04 -8.2982e+00 9.9532e-01 4.6813e-03 9.1092e-01 8.9082e-02 1.0000e-10 1.0000e-10 6.2485e-04 2.9389e-06 - 9.8000e-04 -8.2978e+00 9.9526e-01 4.7368e-03 9.1003e-01 8.9967e-02 1.0000e-10 1.0000e-10 6.3119e-04 3.0040e-06 - 9.9000e-04 -8.2974e+00 9.9521e-01 4.7924e-03 9.0915e-01 9.0852e-02 1.0000e-10 1.0000e-10 6.3752e-04 3.0700e-06 - 1.0000e-03 -8.2974e+00 9.8284e-01 1.7161e-02 9.0898e-01 9.1023e-02 6.4048e-04 9.4144e-06 6.3874e-04 1.1153e-05 - 1.0100e-03 -8.2974e+00 9.6795e-01 3.2055e-02 9.0898e-01 9.1023e-02 6.3881e-04 2.1081e-05 6.3874e-04 2.1153e-05 - 1.0200e-03 -8.2974e+00 9.5350e-01 4.6504e-02 9.0898e-01 9.1023e-02 6.3715e-04 3.2747e-05 6.3874e-04 3.1153e-05 - 1.0300e-03 -8.2974e+00 9.3947e-01 6.0528e-02 9.0898e-01 9.1023e-02 6.3548e-04 4.4413e-05 6.3874e-04 4.1153e-05 - 1.0400e-03 -8.2974e+00 9.2585e-01 7.4146e-02 9.0898e-01 9.1023e-02 6.3382e-04 5.6079e-05 6.3874e-04 5.1153e-05 - 1.0500e-03 -8.2974e+00 9.1263e-01 8.7374e-02 9.0898e-01 9.1023e-02 6.3215e-04 6.7745e-05 6.3874e-04 6.1153e-05 - 1.0600e-03 -8.2974e+00 8.9977e-01 1.0023e-01 9.0898e-01 9.1023e-02 6.3048e-04 7.9412e-05 6.3874e-04 7.1153e-05 - 1.0700e-03 -8.2974e+00 8.8727e-01 1.1273e-01 9.0898e-01 9.1023e-02 6.2882e-04 9.1078e-05 6.3874e-04 8.1153e-05 - 1.0800e-03 -8.2974e+00 8.7512e-01 1.2488e-01 9.0898e-01 9.1023e-02 6.2715e-04 1.0274e-04 6.3874e-04 9.1153e-05 - 1.0900e-03 -8.2974e+00 8.6329e-01 1.3671e-01 9.0898e-01 9.1023e-02 6.2549e-04 1.1441e-04 6.3874e-04 1.0115e-04 - 1.1000e-03 -8.2974e+00 8.5178e-01 1.4822e-01 9.0898e-01 9.1023e-02 6.2382e-04 1.2608e-04 6.3874e-04 1.1115e-04 - 1.1100e-03 -8.2974e+00 8.4057e-01 1.5943e-01 9.0898e-01 9.1023e-02 6.2215e-04 1.3774e-04 6.3874e-04 1.2115e-04 - 1.1200e-03 -8.2974e+00 8.2965e-01 1.7035e-01 9.0898e-01 9.1023e-02 6.2049e-04 1.4941e-04 6.3874e-04 1.3115e-04 - 1.1300e-03 -8.2974e+00 8.1901e-01 1.8099e-01 9.0898e-01 9.1023e-02 6.1882e-04 1.6108e-04 6.3874e-04 1.4115e-04 - 1.1400e-03 -8.2974e+00 8.0864e-01 1.9136e-01 9.0898e-01 9.1023e-02 6.1715e-04 1.7274e-04 6.3874e-04 1.5115e-04 - 1.1500e-03 -8.2974e+00 7.9853e-01 2.0147e-01 9.0898e-01 9.1023e-02 6.1549e-04 1.8441e-04 6.3874e-04 1.6115e-04 - 1.1600e-03 -8.2974e+00 7.8867e-01 2.1133e-01 9.0898e-01 9.1023e-02 6.1382e-04 1.9607e-04 6.3874e-04 1.7115e-04 - 1.1700e-03 -8.2974e+00 7.7905e-01 2.2095e-01 9.0898e-01 9.1023e-02 6.1216e-04 2.0774e-04 6.3874e-04 1.8115e-04 - 1.1800e-03 -8.2974e+00 7.6967e-01 2.3033e-01 9.0898e-01 9.1023e-02 6.1049e-04 2.1941e-04 6.3874e-04 1.9115e-04 - 1.1900e-03 -8.2974e+00 7.6050e-01 2.3950e-01 9.0898e-01 9.1023e-02 6.0882e-04 2.3107e-04 6.3874e-04 2.0115e-04 - 1.2000e-03 -8.2974e+00 7.5155e-01 2.4845e-01 9.0898e-01 9.1023e-02 6.0716e-04 2.4274e-04 6.3874e-04 2.1115e-04 - 1.2100e-03 -8.2974e+00 7.4281e-01 2.5719e-01 9.0898e-01 9.1023e-02 6.0549e-04 2.5440e-04 6.3874e-04 2.2115e-04 - 1.2200e-03 -8.2974e+00 7.3428e-01 2.6572e-01 9.0898e-01 9.1023e-02 6.0382e-04 2.6607e-04 6.3874e-04 2.3115e-04 - 1.2300e-03 -8.2974e+00 7.2593e-01 2.7407e-01 9.0898e-01 9.1023e-02 6.0216e-04 2.7774e-04 6.3874e-04 2.4115e-04 - 1.2400e-03 -8.2974e+00 7.1777e-01 2.8223e-01 9.0898e-01 9.1023e-02 6.0049e-04 2.8940e-04 6.3874e-04 2.5115e-04 - 1.2500e-03 -8.2974e+00 7.0980e-01 2.9020e-01 9.0898e-01 9.1023e-02 5.9883e-04 3.0107e-04 6.3874e-04 2.6115e-04 - 1.2600e-03 -8.2974e+00 7.0200e-01 2.9800e-01 9.0898e-01 9.1023e-02 5.9716e-04 3.1274e-04 6.3874e-04 2.7115e-04 - 1.2700e-03 -8.2974e+00 6.9436e-01 3.0564e-01 9.0898e-01 9.1023e-02 5.9549e-04 3.2440e-04 6.3874e-04 2.8115e-04 - 1.2800e-03 -8.2974e+00 6.8690e-01 3.1310e-01 9.0898e-01 9.1023e-02 5.9383e-04 3.3607e-04 6.3874e-04 2.9115e-04 - 1.2900e-03 -8.2974e+00 6.7959e-01 3.2041e-01 9.0898e-01 9.1023e-02 5.9216e-04 3.4773e-04 6.3874e-04 3.0115e-04 - 1.3000e-03 -8.2974e+00 6.7243e-01 3.2757e-01 9.0898e-01 9.1023e-02 5.9049e-04 3.5940e-04 6.3874e-04 3.1115e-04 - 1.3100e-03 -8.2974e+00 6.6543e-01 3.3457e-01 9.0898e-01 9.1023e-02 5.8883e-04 3.7107e-04 6.3874e-04 3.2115e-04 - 1.3200e-03 -8.2974e+00 6.5857e-01 3.4143e-01 9.0898e-01 9.1023e-02 5.8716e-04 3.8273e-04 6.3874e-04 3.3115e-04 - 1.3300e-03 -8.2974e+00 6.5185e-01 3.4815e-01 9.0898e-01 9.1023e-02 5.8550e-04 3.9440e-04 6.3874e-04 3.4115e-04 - 1.3400e-03 -8.2974e+00 6.4526e-01 3.5474e-01 9.0898e-01 9.1023e-02 5.8383e-04 4.0607e-04 6.3874e-04 3.5115e-04 - 1.3500e-03 -8.2974e+00 6.3881e-01 3.6119e-01 9.0898e-01 9.1023e-02 5.8216e-04 4.1773e-04 6.3874e-04 3.6115e-04 - 1.3600e-03 -8.2974e+00 6.3248e-01 3.6752e-01 9.0898e-01 9.1023e-02 5.8050e-04 4.2940e-04 6.3874e-04 3.7115e-04 - 1.3700e-03 -8.2974e+00 6.2628e-01 3.7372e-01 9.0898e-01 9.1023e-02 5.7883e-04 4.4106e-04 6.3874e-04 3.8115e-04 - 1.3800e-03 -8.2974e+00 6.2020e-01 3.7980e-01 9.0898e-01 9.1023e-02 5.7717e-04 4.5273e-04 6.3874e-04 3.9115e-04 - 1.3900e-03 -8.2974e+00 6.1424e-01 3.8576e-01 9.0898e-01 9.1023e-02 5.7550e-04 4.6440e-04 6.3874e-04 4.0115e-04 - 1.4000e-03 -8.2974e+00 6.0839e-01 3.9161e-01 9.0898e-01 9.1023e-02 5.7383e-04 4.7606e-04 6.3874e-04 4.1115e-04 - 1.4100e-03 -8.2974e+00 6.0265e-01 3.9735e-01 9.0898e-01 9.1023e-02 5.7217e-04 4.8773e-04 6.3874e-04 4.2115e-04 - 1.4200e-03 -8.2974e+00 5.9701e-01 4.0299e-01 9.0898e-01 9.1023e-02 5.7050e-04 4.9939e-04 6.3874e-04 4.3115e-04 - 1.4300e-03 -8.2974e+00 5.9149e-01 4.0851e-01 9.0898e-01 9.1023e-02 5.6883e-04 5.1106e-04 6.3874e-04 4.4115e-04 - 1.4400e-03 -8.2974e+00 5.8606e-01 4.1394e-01 9.0898e-01 9.1023e-02 5.6717e-04 5.2273e-04 6.3874e-04 4.5115e-04 - 1.4500e-03 -8.2974e+00 5.8073e-01 4.1927e-01 9.0898e-01 9.1023e-02 5.6550e-04 5.3439e-04 6.3874e-04 4.6115e-04 - 1.4600e-03 -8.2974e+00 5.7550e-01 4.2450e-01 9.0898e-01 9.1023e-02 5.6384e-04 5.4606e-04 6.3874e-04 4.7115e-04 - 1.4700e-03 -8.2974e+00 5.7036e-01 4.2964e-01 9.0898e-01 9.1023e-02 5.6217e-04 5.5773e-04 6.3874e-04 4.8115e-04 - 1.4800e-03 -8.2974e+00 5.6531e-01 4.3469e-01 9.0898e-01 9.1023e-02 5.6050e-04 5.6939e-04 6.3874e-04 4.9115e-04 - 1.4900e-03 -8.2974e+00 5.6035e-01 4.3965e-01 9.0898e-01 9.1023e-02 5.5884e-04 5.8106e-04 6.3874e-04 5.0115e-04 - 1.5000e-03 -8.2974e+00 5.5548e-01 4.4452e-01 9.0898e-01 9.1023e-02 5.5717e-04 5.9272e-04 6.3874e-04 5.1115e-04 - 1.5100e-03 -8.2974e+00 5.5069e-01 4.4931e-01 9.0898e-01 9.1023e-02 5.5550e-04 6.0439e-04 6.3874e-04 5.2115e-04 - 1.5200e-03 -8.2974e+00 5.4598e-01 4.5402e-01 9.0898e-01 9.1023e-02 5.5384e-04 6.1606e-04 6.3874e-04 5.3115e-04 - 1.5300e-03 -8.2974e+00 5.4136e-01 4.5864e-01 9.0898e-01 9.1023e-02 5.5217e-04 6.2772e-04 6.3874e-04 5.4115e-04 - 1.5400e-03 -8.2974e+00 5.3681e-01 4.6319e-01 9.0898e-01 9.1023e-02 5.5051e-04 6.3939e-04 6.3874e-04 5.5115e-04 - 1.5500e-03 -8.2974e+00 5.3233e-01 4.6767e-01 9.0898e-01 9.1023e-02 5.4884e-04 6.5106e-04 6.3874e-04 5.6115e-04 - 1.5600e-03 -8.2974e+00 5.2793e-01 4.7207e-01 9.0898e-01 9.1023e-02 5.4717e-04 6.6272e-04 6.3874e-04 5.7115e-04 - 1.5700e-03 -8.2974e+00 5.2360e-01 4.7640e-01 9.0898e-01 9.1023e-02 5.4551e-04 6.7439e-04 6.3874e-04 5.8115e-04 - 1.5800e-03 -8.2974e+00 5.1935e-01 4.8065e-01 9.0898e-01 9.1023e-02 5.4384e-04 6.8605e-04 6.3874e-04 5.9115e-04 - 1.5900e-03 -8.2974e+00 5.1516e-01 4.8484e-01 9.0898e-01 9.1023e-02 5.4218e-04 6.9772e-04 6.3874e-04 6.0115e-04 - 1.6000e-03 -8.2974e+00 5.1104e-01 4.8896e-01 9.0898e-01 9.1023e-02 5.4051e-04 7.0939e-04 6.3874e-04 6.1115e-04 - 1.6100e-03 -8.2974e+00 5.0698e-01 4.9302e-01 9.0898e-01 9.1023e-02 5.3884e-04 7.2105e-04 6.3874e-04 6.2115e-04 - 1.6200e-03 -8.2974e+00 5.0299e-01 4.9701e-01 9.0898e-01 9.1023e-02 5.3718e-04 7.3272e-04 6.3874e-04 6.3115e-04 - 1.6300e-03 -8.2974e+00 4.9906e-01 5.0094e-01 9.0898e-01 9.1023e-02 5.3551e-04 7.4439e-04 6.3874e-04 6.4115e-04 - 1.6400e-03 -8.2974e+00 4.9519e-01 5.0481e-01 9.0898e-01 9.1023e-02 5.3384e-04 7.5605e-04 6.3874e-04 6.5115e-04 - 1.6500e-03 -8.2974e+00 4.9138e-01 5.0862e-01 9.0898e-01 9.1023e-02 5.3218e-04 7.6772e-04 6.3874e-04 6.6115e-04 - 1.6600e-03 -8.2974e+00 4.8763e-01 5.1237e-01 9.0898e-01 9.1023e-02 5.3051e-04 7.7938e-04 6.3874e-04 6.7115e-04 - 1.6700e-03 -8.2974e+00 4.8393e-01 5.1607e-01 9.0898e-01 9.1023e-02 5.2885e-04 7.9105e-04 6.3874e-04 6.8115e-04 - 1.6800e-03 -8.2974e+00 4.8030e-01 5.1970e-01 9.0898e-01 9.1023e-02 5.2718e-04 8.0272e-04 6.3874e-04 6.9115e-04 - 1.6900e-03 -8.2974e+00 4.7671e-01 5.2329e-01 9.0898e-01 9.1023e-02 5.2551e-04 8.1438e-04 6.3874e-04 7.0115e-04 - 1.7000e-03 -8.2974e+00 4.7318e-01 5.2682e-01 9.0898e-01 9.1023e-02 5.2385e-04 8.2605e-04 6.3874e-04 7.1115e-04 - 1.7100e-03 -8.2974e+00 4.6970e-01 5.3030e-01 9.0898e-01 9.1023e-02 5.2218e-04 8.3771e-04 6.3874e-04 7.2115e-04 - 1.7200e-03 -8.2974e+00 4.6627e-01 5.3373e-01 9.0898e-01 9.1023e-02 5.2051e-04 8.4938e-04 6.3874e-04 7.3115e-04 - 1.7300e-03 -8.2974e+00 4.6289e-01 5.3711e-01 9.0898e-01 9.1023e-02 5.1885e-04 8.6105e-04 6.3874e-04 7.4115e-04 - 1.7400e-03 -8.2974e+00 4.5956e-01 5.4044e-01 9.0898e-01 9.1023e-02 5.1718e-04 8.7271e-04 6.3874e-04 7.5115e-04 - 1.7500e-03 -8.2974e+00 4.5628e-01 5.4372e-01 9.0898e-01 9.1023e-02 5.1552e-04 8.8438e-04 6.3874e-04 7.6115e-04 - 1.7600e-03 -8.2974e+00 4.5304e-01 5.4696e-01 9.0898e-01 9.1023e-02 5.1385e-04 8.9605e-04 6.3874e-04 7.7115e-04 - 1.7700e-03 -8.2974e+00 4.4985e-01 5.5015e-01 9.0898e-01 9.1023e-02 5.1218e-04 9.0771e-04 6.3874e-04 7.8115e-04 - 1.7800e-03 -8.2974e+00 4.4671e-01 5.5329e-01 9.0898e-01 9.1023e-02 5.1052e-04 9.1938e-04 6.3874e-04 7.9115e-04 - 1.7900e-03 -8.2974e+00 4.4360e-01 5.5640e-01 9.0898e-01 9.1023e-02 5.0885e-04 9.3104e-04 6.3874e-04 8.0115e-04 - 1.8000e-03 -8.2974e+00 4.4054e-01 5.5946e-01 9.0898e-01 9.1023e-02 5.0718e-04 9.4271e-04 6.3874e-04 8.1115e-04 - 1.8100e-03 -8.2974e+00 4.3753e-01 5.6247e-01 9.0898e-01 9.1023e-02 5.0552e-04 9.5438e-04 6.3874e-04 8.2115e-04 - 1.8200e-03 -8.2974e+00 4.3455e-01 5.6545e-01 9.0898e-01 9.1023e-02 5.0385e-04 9.6604e-04 6.3874e-04 8.3115e-04 - 1.8300e-03 -8.2974e+00 4.3161e-01 5.6839e-01 9.0898e-01 9.1023e-02 5.0219e-04 9.7771e-04 6.3874e-04 8.4115e-04 - 1.8400e-03 -8.2974e+00 4.2872e-01 5.7128e-01 9.0898e-01 9.1023e-02 5.0052e-04 9.8938e-04 6.3874e-04 8.5115e-04 - 1.8500e-03 -8.2974e+00 4.2586e-01 5.7414e-01 9.0898e-01 9.1023e-02 4.9885e-04 1.0010e-03 6.3874e-04 8.6115e-04 - 1.8600e-03 -8.2974e+00 4.2304e-01 5.7696e-01 9.0898e-01 9.1023e-02 4.9719e-04 1.0127e-03 6.3874e-04 8.7115e-04 - 1.8700e-03 -8.2974e+00 4.2025e-01 5.7975e-01 9.0898e-01 9.1023e-02 4.9552e-04 1.0244e-03 6.3874e-04 8.8115e-04 - 1.8800e-03 -8.2974e+00 4.1751e-01 5.8249e-01 9.0898e-01 9.1023e-02 4.9386e-04 1.0360e-03 6.3874e-04 8.9115e-04 - 1.8900e-03 -8.2974e+00 4.1480e-01 5.8520e-01 9.0898e-01 9.1023e-02 4.9219e-04 1.0477e-03 6.3874e-04 9.0115e-04 - 1.9000e-03 -8.2974e+00 4.1212e-01 5.8788e-01 9.0898e-01 9.1023e-02 4.9052e-04 1.0594e-03 6.3874e-04 9.1115e-04 - 1.9100e-03 -8.2974e+00 4.0948e-01 5.9052e-01 9.0898e-01 9.1023e-02 4.8886e-04 1.0710e-03 6.3874e-04 9.2115e-04 - 1.9200e-03 -8.2974e+00 4.0687e-01 5.9313e-01 9.0898e-01 9.1023e-02 4.8719e-04 1.0827e-03 6.3874e-04 9.3115e-04 - 1.9300e-03 -8.2974e+00 4.0429e-01 5.9571e-01 9.0898e-01 9.1023e-02 4.8552e-04 1.0944e-03 6.3874e-04 9.4115e-04 - 1.9400e-03 -8.2974e+00 4.0175e-01 5.9825e-01 9.0898e-01 9.1023e-02 4.8386e-04 1.1060e-03 6.3874e-04 9.5115e-04 - 1.9500e-03 -8.2974e+00 3.9924e-01 6.0076e-01 9.0898e-01 9.1023e-02 4.8219e-04 1.1177e-03 6.3874e-04 9.6115e-04 - 1.9600e-03 -8.2974e+00 3.9676e-01 6.0324e-01 9.0898e-01 9.1023e-02 4.8053e-04 1.1294e-03 6.3874e-04 9.7115e-04 - 1.9700e-03 -8.2974e+00 3.9431e-01 6.0569e-01 9.0898e-01 9.1023e-02 4.7886e-04 1.1410e-03 6.3874e-04 9.8115e-04 - 1.9800e-03 -8.2974e+00 3.9189e-01 6.0811e-01 9.0898e-01 9.1023e-02 4.7719e-04 1.1527e-03 6.3874e-04 9.9115e-04 - 1.9900e-03 -8.2974e+00 3.8950e-01 6.1050e-01 9.0898e-01 9.1023e-02 4.7553e-04 1.1644e-03 6.3874e-04 1.0012e-03 - 2.0000e-03 -8.2974e+00 3.8714e-01 6.1286e-01 9.0898e-01 9.1023e-02 4.7386e-04 1.1760e-03 6.3874e-04 1.0112e-03 - 2.0100e-03 -8.2974e+00 3.8481e-01 6.1519e-01 9.0898e-01 9.1023e-02 4.7219e-04 1.1877e-03 6.3874e-04 1.0212e-03 - 2.0200e-03 -8.2974e+00 3.8250e-01 6.1750e-01 9.0898e-01 9.1023e-02 4.7053e-04 1.1994e-03 6.3874e-04 1.0312e-03 - 2.0300e-03 -8.2974e+00 3.8023e-01 6.1977e-01 9.0898e-01 9.1023e-02 4.6886e-04 1.2110e-03 6.3874e-04 1.0412e-03 - 2.0400e-03 -8.2974e+00 3.7798e-01 6.2202e-01 9.0898e-01 9.1023e-02 4.6720e-04 1.2227e-03 6.3874e-04 1.0512e-03 - 2.0500e-03 -8.2974e+00 3.7575e-01 6.2425e-01 9.0898e-01 9.1023e-02 4.6553e-04 1.2344e-03 6.3874e-04 1.0612e-03 - 2.0600e-03 -8.2974e+00 3.7356e-01 6.2644e-01 9.0898e-01 9.1023e-02 4.6386e-04 1.2460e-03 6.3874e-04 1.0712e-03 - 2.0700e-03 -8.2974e+00 3.7138e-01 6.2862e-01 9.0898e-01 9.1023e-02 4.6220e-04 1.2577e-03 6.3874e-04 1.0812e-03 - 2.0800e-03 -8.2974e+00 3.6924e-01 6.3076e-01 9.0898e-01 9.1023e-02 4.6053e-04 1.2694e-03 6.3874e-04 1.0912e-03 - 2.0900e-03 -8.2974e+00 3.6712e-01 6.3288e-01 9.0898e-01 9.1023e-02 4.5887e-04 1.2810e-03 6.3874e-04 1.1012e-03 - 2.1000e-03 -8.2974e+00 3.6502e-01 6.3498e-01 9.0898e-01 9.1023e-02 4.5720e-04 1.2927e-03 6.3874e-04 1.1112e-03 - 2.1100e-03 -8.2974e+00 3.6294e-01 6.3706e-01 9.0898e-01 9.1023e-02 4.5553e-04 1.3044e-03 6.3874e-04 1.1212e-03 - 2.1200e-03 -8.2974e+00 3.6089e-01 6.3911e-01 9.0898e-01 9.1023e-02 4.5387e-04 1.3160e-03 6.3874e-04 1.1312e-03 - 2.1300e-03 -8.2974e+00 3.5887e-01 6.4113e-01 9.0898e-01 9.1023e-02 4.5220e-04 1.3277e-03 6.3874e-04 1.1412e-03 - 2.1400e-03 -8.2974e+00 3.5686e-01 6.4314e-01 9.0898e-01 9.1023e-02 4.5053e-04 1.3394e-03 6.3874e-04 1.1512e-03 - 2.1500e-03 -8.2974e+00 3.5488e-01 6.4512e-01 9.0898e-01 9.1023e-02 4.4887e-04 1.3510e-03 6.3874e-04 1.1612e-03 - 2.1600e-03 -8.2974e+00 3.5292e-01 6.4708e-01 9.0898e-01 9.1023e-02 4.4720e-04 1.3627e-03 6.3874e-04 1.1712e-03 - 2.1700e-03 -8.2974e+00 3.5098e-01 6.4902e-01 9.0898e-01 9.1023e-02 4.4554e-04 1.3744e-03 6.3874e-04 1.1812e-03 - 2.1800e-03 -8.2974e+00 3.4906e-01 6.5094e-01 9.0898e-01 9.1023e-02 4.4387e-04 1.3860e-03 6.3874e-04 1.1912e-03 - 2.1900e-03 -8.2974e+00 3.4716e-01 6.5284e-01 9.0898e-01 9.1023e-02 4.4220e-04 1.3977e-03 6.3874e-04 1.2012e-03 - 2.2000e-03 -8.2974e+00 3.4529e-01 6.5471e-01 9.0898e-01 9.1023e-02 4.4054e-04 1.4094e-03 6.3874e-04 1.2112e-03 - 2.2100e-03 -8.2974e+00 3.4343e-01 6.5657e-01 9.0898e-01 9.1023e-02 4.3887e-04 1.4210e-03 6.3874e-04 1.2212e-03 - 2.2200e-03 -8.2974e+00 3.4159e-01 6.5841e-01 9.0898e-01 9.1023e-02 4.3720e-04 1.4327e-03 6.3874e-04 1.2312e-03 - 2.2300e-03 -8.2974e+00 3.3978e-01 6.6022e-01 9.0898e-01 9.1023e-02 4.3554e-04 1.4444e-03 6.3874e-04 1.2412e-03 - 2.2400e-03 -8.2974e+00 3.3798e-01 6.6202e-01 9.0898e-01 9.1023e-02 4.3387e-04 1.4560e-03 6.3874e-04 1.2512e-03 - 2.2500e-03 -8.2974e+00 3.3620e-01 6.6380e-01 9.0898e-01 9.1023e-02 4.3221e-04 1.4677e-03 6.3874e-04 1.2612e-03 - 2.2600e-03 -8.2974e+00 3.3444e-01 6.6556e-01 9.0898e-01 9.1023e-02 4.3054e-04 1.4794e-03 6.3874e-04 1.2712e-03 - 2.2700e-03 -8.2974e+00 3.3270e-01 6.6730e-01 9.0898e-01 9.1023e-02 4.2887e-04 1.4910e-03 6.3874e-04 1.2812e-03 - 2.2800e-03 -8.2974e+00 3.3097e-01 6.6903e-01 9.0898e-01 9.1023e-02 4.2721e-04 1.5027e-03 6.3874e-04 1.2912e-03 - 2.2900e-03 -8.2974e+00 3.2927e-01 6.7073e-01 9.0898e-01 9.1023e-02 4.2554e-04 1.5144e-03 6.3874e-04 1.3012e-03 - 2.3000e-03 -8.2974e+00 3.2758e-01 6.7242e-01 9.0898e-01 9.1023e-02 4.2387e-04 1.5260e-03 6.3874e-04 1.3112e-03 - 2.3100e-03 -8.2974e+00 3.2591e-01 6.7409e-01 9.0898e-01 9.1023e-02 4.2221e-04 1.5377e-03 6.3874e-04 1.3212e-03 - 2.3200e-03 -8.2974e+00 3.2425e-01 6.7575e-01 9.0898e-01 9.1023e-02 4.2054e-04 1.5494e-03 6.3874e-04 1.3312e-03 - 2.3300e-03 -8.2974e+00 3.2261e-01 6.7739e-01 9.0898e-01 9.1023e-02 4.1888e-04 1.5610e-03 6.3874e-04 1.3412e-03 - 2.3400e-03 -8.2974e+00 3.2099e-01 6.7901e-01 9.0898e-01 9.1023e-02 4.1721e-04 1.5727e-03 6.3874e-04 1.3512e-03 - 2.3500e-03 -8.2974e+00 3.1939e-01 6.8061e-01 9.0898e-01 9.1023e-02 4.1554e-04 1.5844e-03 6.3874e-04 1.3612e-03 - 2.3600e-03 -8.2974e+00 3.1780e-01 6.8220e-01 9.0898e-01 9.1023e-02 4.1388e-04 1.5960e-03 6.3874e-04 1.3712e-03 - 2.3700e-03 -8.2974e+00 3.1623e-01 6.8377e-01 9.0898e-01 9.1023e-02 4.1221e-04 1.6077e-03 6.3874e-04 1.3812e-03 - 2.3800e-03 -8.2974e+00 3.1467e-01 6.8533e-01 9.0898e-01 9.1023e-02 4.1055e-04 1.6194e-03 6.3874e-04 1.3912e-03 - 2.3900e-03 -8.2974e+00 3.1313e-01 6.8687e-01 9.0898e-01 9.1023e-02 4.0888e-04 1.6310e-03 6.3874e-04 1.4012e-03 - 2.4000e-03 -8.2974e+00 3.1160e-01 6.8840e-01 9.0898e-01 9.1023e-02 4.0721e-04 1.6427e-03 6.3874e-04 1.4112e-03 - 2.4100e-03 -8.2974e+00 3.1009e-01 6.8991e-01 9.0898e-01 9.1023e-02 4.0555e-04 1.6543e-03 6.3874e-04 1.4212e-03 - 2.4200e-03 -8.2974e+00 3.0859e-01 6.9141e-01 9.0898e-01 9.1023e-02 4.0388e-04 1.6660e-03 6.3874e-04 1.4312e-03 - 2.4300e-03 -8.2974e+00 3.0710e-01 6.9290e-01 9.0898e-01 9.1023e-02 4.0221e-04 1.6777e-03 6.3874e-04 1.4412e-03 - 2.4400e-03 -8.2974e+00 3.0563e-01 6.9437e-01 9.0898e-01 9.1023e-02 4.0055e-04 1.6893e-03 6.3874e-04 1.4512e-03 - 2.4500e-03 -8.2974e+00 3.0418e-01 6.9582e-01 9.0898e-01 9.1023e-02 3.9888e-04 1.7010e-03 6.3874e-04 1.4612e-03 - 2.4600e-03 -8.2974e+00 3.0274e-01 6.9726e-01 9.0898e-01 9.1023e-02 3.9722e-04 1.7127e-03 6.3874e-04 1.4712e-03 - 2.4700e-03 -8.2974e+00 3.0131e-01 6.9869e-01 9.0898e-01 9.1023e-02 3.9555e-04 1.7243e-03 6.3874e-04 1.4812e-03 - 2.4800e-03 -8.2974e+00 2.9989e-01 7.0011e-01 9.0898e-01 9.1023e-02 3.9388e-04 1.7360e-03 6.3874e-04 1.4912e-03 - 2.4900e-03 -8.2974e+00 2.9849e-01 7.0151e-01 9.0898e-01 9.1023e-02 3.9222e-04 1.7477e-03 6.3874e-04 1.5012e-03 - 2.5000e-03 -8.2974e+00 2.9710e-01 7.0290e-01 9.0898e-01 9.1023e-02 3.9055e-04 1.7593e-03 6.3874e-04 1.5112e-03 - 2.5100e-03 -8.2974e+00 2.9573e-01 7.0427e-01 9.0898e-01 9.1023e-02 3.8888e-04 1.7710e-03 6.3874e-04 1.5212e-03 - 2.5200e-03 -8.2974e+00 2.9437e-01 7.0563e-01 9.0898e-01 9.1023e-02 3.8722e-04 1.7827e-03 6.3874e-04 1.5312e-03 - 2.5300e-03 -8.2974e+00 2.9302e-01 7.0698e-01 9.0898e-01 9.1023e-02 3.8555e-04 1.7943e-03 6.3874e-04 1.5412e-03 - 2.5400e-03 -8.2974e+00 2.9168e-01 7.0832e-01 9.0898e-01 9.1023e-02 3.8389e-04 1.8060e-03 6.3874e-04 1.5512e-03 - 2.5500e-03 -8.2974e+00 2.9035e-01 7.0965e-01 9.0898e-01 9.1023e-02 3.8222e-04 1.8177e-03 6.3874e-04 1.5612e-03 - 2.5600e-03 -8.2974e+00 2.8904e-01 7.1096e-01 9.0898e-01 9.1023e-02 3.8055e-04 1.8293e-03 6.3874e-04 1.5712e-03 - 2.5700e-03 -8.2974e+00 2.8774e-01 7.1226e-01 9.0898e-01 9.1023e-02 3.7889e-04 1.8410e-03 6.3874e-04 1.5812e-03 - 2.5800e-03 -8.2974e+00 2.8645e-01 7.1355e-01 9.0898e-01 9.1023e-02 3.7722e-04 1.8527e-03 6.3874e-04 1.5912e-03 - 2.5900e-03 -8.2974e+00 2.8517e-01 7.1483e-01 9.0898e-01 9.1023e-02 3.7555e-04 1.8643e-03 6.3874e-04 1.6012e-03 - 2.6000e-03 -8.2974e+00 2.8390e-01 7.1610e-01 9.0898e-01 9.1023e-02 3.7389e-04 1.8760e-03 6.3874e-04 1.6112e-03 - 2.6100e-03 -8.2974e+00 2.8264e-01 7.1736e-01 9.0898e-01 9.1023e-02 3.7222e-04 1.8877e-03 6.3874e-04 1.6212e-03 - 2.6200e-03 -8.2974e+00 2.8140e-01 7.1860e-01 9.0898e-01 9.1023e-02 3.7056e-04 1.8993e-03 6.3874e-04 1.6312e-03 - 2.6300e-03 -8.2974e+00 2.8016e-01 7.1984e-01 9.0898e-01 9.1023e-02 3.6889e-04 1.9110e-03 6.3874e-04 1.6412e-03 - 2.6400e-03 -8.2974e+00 2.7894e-01 7.2106e-01 9.0898e-01 9.1023e-02 3.6722e-04 1.9227e-03 6.3874e-04 1.6512e-03 - 2.6500e-03 -8.2974e+00 2.7773e-01 7.2227e-01 9.0898e-01 9.1023e-02 3.6556e-04 1.9343e-03 6.3874e-04 1.6612e-03 - 2.6600e-03 -8.2974e+00 2.7652e-01 7.2348e-01 9.0898e-01 9.1023e-02 3.6389e-04 1.9460e-03 6.3874e-04 1.6712e-03 - 2.6700e-03 -8.2974e+00 2.7533e-01 7.2467e-01 9.0898e-01 9.1023e-02 3.6223e-04 1.9577e-03 6.3874e-04 1.6812e-03 - 2.6800e-03 -8.2974e+00 2.7415e-01 7.2585e-01 9.0898e-01 9.1023e-02 3.6056e-04 1.9693e-03 6.3874e-04 1.6912e-03 - 2.6900e-03 -8.2974e+00 2.7298e-01 7.2702e-01 9.0898e-01 9.1023e-02 3.5889e-04 1.9810e-03 6.3874e-04 1.7012e-03 - 2.7000e-03 -8.2974e+00 2.7182e-01 7.2818e-01 9.0898e-01 9.1023e-02 3.5723e-04 1.9927e-03 6.3874e-04 1.7112e-03 - 2.7100e-03 -8.2974e+00 2.7067e-01 7.2933e-01 9.0898e-01 9.1023e-02 3.5556e-04 2.0043e-03 6.3874e-04 1.7212e-03 - 2.7200e-03 -8.2974e+00 2.6952e-01 7.3048e-01 9.0898e-01 9.1023e-02 3.5389e-04 2.0160e-03 6.3874e-04 1.7312e-03 - 2.7300e-03 -8.2974e+00 2.6839e-01 7.3161e-01 9.0898e-01 9.1023e-02 3.5223e-04 2.0277e-03 6.3874e-04 1.7412e-03 - 2.7400e-03 -8.2974e+00 2.6727e-01 7.3273e-01 9.0898e-01 9.1023e-02 3.5056e-04 2.0393e-03 6.3874e-04 1.7512e-03 - 2.7500e-03 -8.2974e+00 2.6615e-01 7.3385e-01 9.0898e-01 9.1023e-02 3.4890e-04 2.0510e-03 6.3874e-04 1.7612e-03 - 2.7600e-03 -8.2974e+00 2.6505e-01 7.3495e-01 9.0898e-01 9.1023e-02 3.4723e-04 2.0627e-03 6.3874e-04 1.7712e-03 - 2.7700e-03 -8.2974e+00 2.6395e-01 7.3605e-01 9.0898e-01 9.1023e-02 3.4556e-04 2.0743e-03 6.3874e-04 1.7812e-03 - 2.7800e-03 -8.2974e+00 2.6287e-01 7.3713e-01 9.0898e-01 9.1023e-02 3.4390e-04 2.0860e-03 6.3874e-04 1.7912e-03 - 2.7900e-03 -8.2974e+00 2.6179e-01 7.3821e-01 9.0898e-01 9.1023e-02 3.4223e-04 2.0977e-03 6.3874e-04 1.8012e-03 - 2.8000e-03 -8.2974e+00 2.6072e-01 7.3928e-01 9.0898e-01 9.1023e-02 3.4056e-04 2.1093e-03 6.3874e-04 1.8112e-03 - 2.8100e-03 -8.2974e+00 2.5966e-01 7.4034e-01 9.0898e-01 9.1023e-02 3.3890e-04 2.1210e-03 6.3874e-04 1.8212e-03 - 2.8200e-03 -8.2974e+00 2.5861e-01 7.4139e-01 9.0898e-01 9.1023e-02 3.3723e-04 2.1327e-03 6.3874e-04 1.8312e-03 - 2.8300e-03 -8.2974e+00 2.5757e-01 7.4243e-01 9.0898e-01 9.1023e-02 3.3557e-04 2.1443e-03 6.3874e-04 1.8412e-03 - 2.8400e-03 -8.2974e+00 2.5653e-01 7.4347e-01 9.0898e-01 9.1023e-02 3.3390e-04 2.1560e-03 6.3874e-04 1.8512e-03 - 2.8500e-03 -8.2974e+00 2.5551e-01 7.4449e-01 9.0898e-01 9.1023e-02 3.3223e-04 2.1677e-03 6.3874e-04 1.8612e-03 - 2.8600e-03 -8.2974e+00 2.5449e-01 7.4551e-01 9.0898e-01 9.1023e-02 3.3057e-04 2.1793e-03 6.3874e-04 1.8712e-03 - 2.8700e-03 -8.2974e+00 2.5348e-01 7.4652e-01 9.0898e-01 9.1023e-02 3.2890e-04 2.1910e-03 6.3874e-04 1.8812e-03 - 2.8800e-03 -8.2974e+00 2.5248e-01 7.4752e-01 9.0898e-01 9.1023e-02 3.2724e-04 2.2027e-03 6.3874e-04 1.8912e-03 - 2.8900e-03 -8.2974e+00 2.5148e-01 7.4852e-01 9.0898e-01 9.1023e-02 3.2557e-04 2.2143e-03 6.3874e-04 1.9012e-03 - 2.9000e-03 -8.2974e+00 2.5050e-01 7.4950e-01 9.0898e-01 9.1023e-02 3.2390e-04 2.2260e-03 6.3874e-04 1.9112e-03 - 2.9100e-03 -8.2974e+00 2.4952e-01 7.5048e-01 9.0898e-01 9.1023e-02 3.2224e-04 2.2377e-03 6.3874e-04 1.9212e-03 - 2.9200e-03 -8.2974e+00 2.4855e-01 7.5145e-01 9.0898e-01 9.1023e-02 3.2057e-04 2.2493e-03 6.3874e-04 1.9312e-03 - 2.9300e-03 -8.2974e+00 2.4758e-01 7.5242e-01 9.0898e-01 9.1023e-02 3.1890e-04 2.2610e-03 6.3874e-04 1.9412e-03 - 2.9400e-03 -8.2974e+00 2.4663e-01 7.5337e-01 9.0898e-01 9.1023e-02 3.1724e-04 2.2727e-03 6.3874e-04 1.9512e-03 - 2.9500e-03 -8.2974e+00 2.4568e-01 7.5432e-01 9.0898e-01 9.1023e-02 3.1557e-04 2.2843e-03 6.3874e-04 1.9612e-03 - 2.9600e-03 -8.2974e+00 2.4474e-01 7.5526e-01 9.0898e-01 9.1023e-02 3.1391e-04 2.2960e-03 6.3874e-04 1.9712e-03 - 2.9700e-03 -8.2974e+00 2.4380e-01 7.5620e-01 9.0898e-01 9.1023e-02 3.1224e-04 2.3077e-03 6.3874e-04 1.9812e-03 - 2.9800e-03 -8.2974e+00 2.4288e-01 7.5712e-01 9.0898e-01 9.1023e-02 3.1057e-04 2.3193e-03 6.3874e-04 1.9912e-03 - 2.9900e-03 -8.2974e+00 2.4196e-01 7.5804e-01 9.0898e-01 9.1023e-02 3.0891e-04 2.3310e-03 6.3874e-04 2.0012e-03 - 3.0000e-03 -8.2974e+00 2.4104e-01 7.5896e-01 9.0898e-01 9.1023e-02 3.0724e-04 2.3427e-03 6.3874e-04 2.0112e-03 - 3.0100e-03 -8.2974e+00 2.4014e-01 7.5986e-01 9.0898e-01 9.1023e-02 3.0557e-04 2.3543e-03 6.3874e-04 2.0212e-03 - 3.0200e-03 -8.2974e+00 2.3924e-01 7.6076e-01 9.0898e-01 9.1023e-02 3.0391e-04 2.3660e-03 6.3874e-04 2.0312e-03 - 3.0300e-03 -8.2974e+00 2.3835e-01 7.6165e-01 9.0898e-01 9.1023e-02 3.0224e-04 2.3777e-03 6.3874e-04 2.0412e-03 - 3.0400e-03 -8.2974e+00 2.3746e-01 7.6254e-01 9.0898e-01 9.1023e-02 3.0058e-04 2.3893e-03 6.3874e-04 2.0512e-03 - 3.0500e-03 -8.2974e+00 2.3658e-01 7.6342e-01 9.0898e-01 9.1023e-02 2.9891e-04 2.4010e-03 6.3874e-04 2.0612e-03 - 3.0600e-03 -8.2974e+00 2.3571e-01 7.6429e-01 9.0898e-01 9.1023e-02 2.9724e-04 2.4127e-03 6.3874e-04 2.0712e-03 - 3.0700e-03 -8.2974e+00 2.3484e-01 7.6516e-01 9.0898e-01 9.1023e-02 2.9558e-04 2.4243e-03 6.3874e-04 2.0812e-03 - 3.0800e-03 -8.2974e+00 2.3398e-01 7.6602e-01 9.0898e-01 9.1023e-02 2.9391e-04 2.4360e-03 6.3874e-04 2.0912e-03 - 3.0900e-03 -8.2974e+00 2.3313e-01 7.6687e-01 9.0898e-01 9.1023e-02 2.9224e-04 2.4477e-03 6.3874e-04 2.1012e-03 - 3.1000e-03 -8.2974e+00 2.3228e-01 7.6772e-01 9.0898e-01 9.1023e-02 2.9058e-04 2.4593e-03 6.3874e-04 2.1112e-03 - 3.1100e-03 -8.2974e+00 2.3144e-01 7.6856e-01 9.0898e-01 9.1023e-02 2.8891e-04 2.4710e-03 6.3874e-04 2.1212e-03 - 3.1200e-03 -8.2974e+00 2.3060e-01 7.6940e-01 9.0898e-01 9.1023e-02 2.8725e-04 2.4826e-03 6.3874e-04 2.1312e-03 - 3.1300e-03 -8.2974e+00 2.2977e-01 7.7023e-01 9.0898e-01 9.1023e-02 2.8558e-04 2.4943e-03 6.3874e-04 2.1412e-03 - 3.1400e-03 -8.2974e+00 2.2895e-01 7.7105e-01 9.0898e-01 9.1023e-02 2.8391e-04 2.5060e-03 6.3874e-04 2.1512e-03 - 3.1500e-03 -8.2974e+00 2.2813e-01 7.7187e-01 9.0898e-01 9.1023e-02 2.8225e-04 2.5176e-03 6.3874e-04 2.1612e-03 - 3.1600e-03 -8.2974e+00 2.2732e-01 7.7268e-01 9.0898e-01 9.1023e-02 2.8058e-04 2.5293e-03 6.3874e-04 2.1712e-03 - 3.1700e-03 -8.2974e+00 2.2651e-01 7.7349e-01 9.0898e-01 9.1023e-02 2.7892e-04 2.5410e-03 6.3874e-04 2.1812e-03 - 3.1800e-03 -8.2974e+00 2.2571e-01 7.7429e-01 9.0898e-01 9.1023e-02 2.7725e-04 2.5526e-03 6.3874e-04 2.1912e-03 - 3.1900e-03 -8.2974e+00 2.2492e-01 7.7508e-01 9.0898e-01 9.1023e-02 2.7558e-04 2.5643e-03 6.3874e-04 2.2012e-03 - 3.2000e-03 -8.2974e+00 2.2413e-01 7.7587e-01 9.0898e-01 9.1023e-02 2.7392e-04 2.5760e-03 6.3874e-04 2.2112e-03 - 3.2100e-03 -8.2974e+00 2.2334e-01 7.7666e-01 9.0898e-01 9.1023e-02 2.7225e-04 2.5876e-03 6.3874e-04 2.2212e-03 - 3.2200e-03 -8.2974e+00 2.2257e-01 7.7743e-01 9.0898e-01 9.1023e-02 2.7058e-04 2.5993e-03 6.3874e-04 2.2312e-03 - 3.2300e-03 -8.2974e+00 2.2179e-01 7.7821e-01 9.0898e-01 9.1023e-02 2.6892e-04 2.6110e-03 6.3874e-04 2.2412e-03 - 3.2400e-03 -8.2974e+00 2.2103e-01 7.7897e-01 9.0898e-01 9.1023e-02 2.6725e-04 2.6226e-03 6.3874e-04 2.2512e-03 - 3.2500e-03 -8.2974e+00 2.2026e-01 7.7974e-01 9.0898e-01 9.1023e-02 2.6559e-04 2.6343e-03 6.3874e-04 2.2612e-03 - 3.2600e-03 -8.2974e+00 2.1951e-01 7.8049e-01 9.0898e-01 9.1023e-02 2.6392e-04 2.6460e-03 6.3874e-04 2.2712e-03 - 3.2700e-03 -8.2974e+00 2.1876e-01 7.8124e-01 9.0898e-01 9.1023e-02 2.6225e-04 2.6576e-03 6.3874e-04 2.2812e-03 - 3.2800e-03 -8.2974e+00 2.1801e-01 7.8199e-01 9.0898e-01 9.1023e-02 2.6059e-04 2.6693e-03 6.3874e-04 2.2912e-03 - 3.2900e-03 -8.2974e+00 2.1727e-01 7.8273e-01 9.0898e-01 9.1023e-02 2.5892e-04 2.6810e-03 6.3874e-04 2.3012e-03 - 3.3000e-03 -8.2974e+00 2.1653e-01 7.8347e-01 9.0898e-01 9.1023e-02 2.5725e-04 2.6926e-03 6.3874e-04 2.3112e-03 - 3.3100e-03 -8.2974e+00 2.1580e-01 7.8420e-01 9.0898e-01 9.1023e-02 2.5559e-04 2.7043e-03 6.3874e-04 2.3212e-03 - 3.3200e-03 -8.2974e+00 2.1507e-01 7.8493e-01 9.0898e-01 9.1023e-02 2.5392e-04 2.7160e-03 6.3874e-04 2.3312e-03 - 3.3300e-03 -8.2974e+00 2.1435e-01 7.8565e-01 9.0898e-01 9.1023e-02 2.5226e-04 2.7276e-03 6.3874e-04 2.3412e-03 - 3.3400e-03 -8.2974e+00 2.1363e-01 7.8637e-01 9.0898e-01 9.1023e-02 2.5059e-04 2.7393e-03 6.3874e-04 2.3512e-03 - 3.3500e-03 -8.2974e+00 2.1292e-01 7.8708e-01 9.0898e-01 9.1023e-02 2.4892e-04 2.7510e-03 6.3874e-04 2.3612e-03 - 3.3600e-03 -8.2974e+00 2.1221e-01 7.8779e-01 9.0898e-01 9.1023e-02 2.4726e-04 2.7626e-03 6.3874e-04 2.3712e-03 - 3.3700e-03 -8.2974e+00 2.1151e-01 7.8849e-01 9.0898e-01 9.1023e-02 2.4559e-04 2.7743e-03 6.3874e-04 2.3812e-03 - 3.3800e-03 -8.2974e+00 2.1081e-01 7.8919e-01 9.0898e-01 9.1023e-02 2.4392e-04 2.7860e-03 6.3874e-04 2.3912e-03 - 3.3900e-03 -8.2974e+00 2.1012e-01 7.8988e-01 9.0898e-01 9.1023e-02 2.4226e-04 2.7976e-03 6.3874e-04 2.4012e-03 - 3.4000e-03 -8.2974e+00 2.0943e-01 7.9057e-01 9.0898e-01 9.1023e-02 2.4059e-04 2.8093e-03 6.3874e-04 2.4112e-03 - 3.4100e-03 -8.2974e+00 2.0875e-01 7.9125e-01 9.0898e-01 9.1023e-02 2.3893e-04 2.8210e-03 6.3874e-04 2.4212e-03 - 3.4200e-03 -8.2974e+00 2.0807e-01 7.9193e-01 9.0898e-01 9.1023e-02 2.3726e-04 2.8326e-03 6.3874e-04 2.4312e-03 - 3.4300e-03 -8.2974e+00 2.0739e-01 7.9261e-01 9.0898e-01 9.1023e-02 2.3559e-04 2.8443e-03 6.3874e-04 2.4412e-03 - 3.4400e-03 -8.2974e+00 2.0672e-01 7.9328e-01 9.0898e-01 9.1023e-02 2.3393e-04 2.8560e-03 6.3874e-04 2.4512e-03 - 3.4500e-03 -8.2974e+00 2.0605e-01 7.9395e-01 9.0898e-01 9.1023e-02 2.3226e-04 2.8676e-03 6.3874e-04 2.4612e-03 - 3.4600e-03 -8.2974e+00 2.0539e-01 7.9461e-01 9.0898e-01 9.1023e-02 2.3060e-04 2.8793e-03 6.3874e-04 2.4712e-03 - 3.4700e-03 -8.2974e+00 2.0473e-01 7.9527e-01 9.0898e-01 9.1023e-02 2.2893e-04 2.8910e-03 6.3874e-04 2.4812e-03 - 3.4800e-03 -8.2974e+00 2.0408e-01 7.9592e-01 9.0898e-01 9.1023e-02 2.2726e-04 2.9026e-03 6.3874e-04 2.4912e-03 - 3.4900e-03 -8.2974e+00 2.0343e-01 7.9657e-01 9.0898e-01 9.1023e-02 2.2560e-04 2.9143e-03 6.3874e-04 2.5012e-03 - 3.5000e-03 -8.2974e+00 2.0278e-01 7.9722e-01 9.0898e-01 9.1023e-02 2.2393e-04 2.9260e-03 6.3874e-04 2.5112e-03 - 3.5100e-03 -8.2974e+00 2.0214e-01 7.9786e-01 9.0898e-01 9.1023e-02 2.2226e-04 2.9376e-03 6.3874e-04 2.5212e-03 - 3.5200e-03 -8.2974e+00 2.0150e-01 7.9850e-01 9.0898e-01 9.1023e-02 2.2060e-04 2.9493e-03 6.3874e-04 2.5312e-03 - 3.5300e-03 -8.2974e+00 2.0087e-01 7.9913e-01 9.0898e-01 9.1023e-02 2.1893e-04 2.9610e-03 6.3874e-04 2.5412e-03 - 3.5400e-03 -8.2974e+00 2.0024e-01 7.9976e-01 9.0898e-01 9.1023e-02 2.1727e-04 2.9726e-03 6.3874e-04 2.5512e-03 - 3.5500e-03 -8.2974e+00 1.9961e-01 8.0039e-01 9.0898e-01 9.1023e-02 2.1560e-04 2.9843e-03 6.3874e-04 2.5612e-03 - 3.5600e-03 -8.2974e+00 1.9899e-01 8.0101e-01 9.0898e-01 9.1023e-02 2.1393e-04 2.9960e-03 6.3874e-04 2.5712e-03 - 3.5700e-03 -8.2974e+00 1.9837e-01 8.0163e-01 9.0898e-01 9.1023e-02 2.1227e-04 3.0076e-03 6.3874e-04 2.5812e-03 - 3.5800e-03 -8.2974e+00 1.9776e-01 8.0224e-01 9.0898e-01 9.1023e-02 2.1060e-04 3.0193e-03 6.3874e-04 2.5912e-03 - 3.5900e-03 -8.2974e+00 1.9715e-01 8.0285e-01 9.0898e-01 9.1023e-02 2.0893e-04 3.0310e-03 6.3874e-04 2.6012e-03 - 3.6000e-03 -8.2974e+00 1.9654e-01 8.0346e-01 9.0898e-01 9.1023e-02 2.0727e-04 3.0426e-03 6.3874e-04 2.6112e-03 - 3.6100e-03 -8.2974e+00 1.9594e-01 8.0406e-01 9.0898e-01 9.1023e-02 2.0560e-04 3.0543e-03 6.3874e-04 2.6212e-03 - 3.6200e-03 -8.2974e+00 1.9534e-01 8.0466e-01 9.0898e-01 9.1023e-02 2.0394e-04 3.0660e-03 6.3874e-04 2.6312e-03 - 3.6300e-03 -8.2974e+00 1.9474e-01 8.0526e-01 9.0898e-01 9.1023e-02 2.0227e-04 3.0776e-03 6.3874e-04 2.6412e-03 - 3.6400e-03 -8.2974e+00 1.9415e-01 8.0585e-01 9.0898e-01 9.1023e-02 2.0060e-04 3.0893e-03 6.3874e-04 2.6512e-03 - 3.6500e-03 -8.2974e+00 1.9356e-01 8.0644e-01 9.0898e-01 9.1023e-02 1.9894e-04 3.1010e-03 6.3874e-04 2.6612e-03 - 3.6600e-03 -8.2974e+00 1.9298e-01 8.0702e-01 9.0898e-01 9.1023e-02 1.9727e-04 3.1126e-03 6.3874e-04 2.6712e-03 - 3.6700e-03 -8.2974e+00 1.9240e-01 8.0760e-01 9.0898e-01 9.1023e-02 1.9561e-04 3.1243e-03 6.3874e-04 2.6812e-03 - 3.6800e-03 -8.2974e+00 1.9182e-01 8.0818e-01 9.0898e-01 9.1023e-02 1.9394e-04 3.1360e-03 6.3874e-04 2.6912e-03 - 3.6900e-03 -8.2974e+00 1.9125e-01 8.0875e-01 9.0898e-01 9.1023e-02 1.9227e-04 3.1476e-03 6.3874e-04 2.7012e-03 - 3.7000e-03 -8.2974e+00 1.9068e-01 8.0932e-01 9.0898e-01 9.1023e-02 1.9061e-04 3.1593e-03 6.3874e-04 2.7112e-03 - 3.7100e-03 -8.2974e+00 1.9011e-01 8.0989e-01 9.0898e-01 9.1023e-02 1.8894e-04 3.1710e-03 6.3874e-04 2.7212e-03 - 3.7200e-03 -8.2974e+00 1.8954e-01 8.1046e-01 9.0898e-01 9.1023e-02 1.8727e-04 3.1826e-03 6.3874e-04 2.7312e-03 - 3.7300e-03 -8.2974e+00 1.8898e-01 8.1102e-01 9.0898e-01 9.1023e-02 1.8561e-04 3.1943e-03 6.3874e-04 2.7412e-03 - 3.7400e-03 -8.2974e+00 1.8843e-01 8.1157e-01 9.0898e-01 9.1023e-02 1.8394e-04 3.2060e-03 6.3874e-04 2.7512e-03 - 3.7500e-03 -8.2974e+00 1.8787e-01 8.1213e-01 9.0898e-01 9.1023e-02 1.8228e-04 3.2176e-03 6.3874e-04 2.7612e-03 - 3.7600e-03 -8.2974e+00 1.8732e-01 8.1268e-01 9.0898e-01 9.1023e-02 1.8061e-04 3.2293e-03 6.3874e-04 2.7712e-03 - 3.7700e-03 -8.2974e+00 1.8677e-01 8.1323e-01 9.0898e-01 9.1023e-02 1.7894e-04 3.2410e-03 6.3874e-04 2.7812e-03 - 3.7800e-03 -8.2974e+00 1.8623e-01 8.1377e-01 9.0898e-01 9.1023e-02 1.7728e-04 3.2526e-03 6.3874e-04 2.7912e-03 - 3.7900e-03 -8.2974e+00 1.8569e-01 8.1431e-01 9.0898e-01 9.1023e-02 1.7561e-04 3.2643e-03 6.3874e-04 2.8012e-03 - 3.8000e-03 -8.2974e+00 1.8515e-01 8.1485e-01 9.0898e-01 9.1023e-02 1.7394e-04 3.2760e-03 6.3874e-04 2.8112e-03 - 3.8100e-03 -8.2974e+00 1.8461e-01 8.1539e-01 9.0898e-01 9.1023e-02 1.7228e-04 3.2876e-03 6.3874e-04 2.8212e-03 - 3.8200e-03 -8.2974e+00 1.8408e-01 8.1592e-01 9.0898e-01 9.1023e-02 1.7061e-04 3.2993e-03 6.3874e-04 2.8312e-03 - 3.8300e-03 -8.2974e+00 1.8355e-01 8.1645e-01 9.0898e-01 9.1023e-02 1.6895e-04 3.3109e-03 6.3874e-04 2.8412e-03 - 3.8400e-03 -8.2974e+00 1.8303e-01 8.1697e-01 9.0898e-01 9.1023e-02 1.6728e-04 3.3226e-03 6.3874e-04 2.8512e-03 - 3.8500e-03 -8.2974e+00 1.8250e-01 8.1750e-01 9.0898e-01 9.1023e-02 1.6561e-04 3.3343e-03 6.3874e-04 2.8612e-03 - 3.8600e-03 -8.2974e+00 1.8198e-01 8.1802e-01 9.0898e-01 9.1023e-02 1.6395e-04 3.3459e-03 6.3874e-04 2.8712e-03 - 3.8700e-03 -8.2974e+00 1.8147e-01 8.1853e-01 9.0898e-01 9.1023e-02 1.6228e-04 3.3576e-03 6.3874e-04 2.8812e-03 - 3.8800e-03 -8.2974e+00 1.8095e-01 8.1905e-01 9.0898e-01 9.1023e-02 1.6061e-04 3.3693e-03 6.3874e-04 2.8912e-03 - 3.8900e-03 -8.2974e+00 1.8044e-01 8.1956e-01 9.0898e-01 9.1023e-02 1.5895e-04 3.3809e-03 6.3874e-04 2.9012e-03 - 3.9000e-03 -8.2974e+00 1.7993e-01 8.2007e-01 9.0898e-01 9.1023e-02 1.5728e-04 3.3926e-03 6.3874e-04 2.9112e-03 - 3.9100e-03 -8.2974e+00 1.7943e-01 8.2057e-01 9.0898e-01 9.1023e-02 1.5562e-04 3.4043e-03 6.3874e-04 2.9212e-03 - 3.9200e-03 -8.2974e+00 1.7892e-01 8.2108e-01 9.0898e-01 9.1023e-02 1.5395e-04 3.4159e-03 6.3874e-04 2.9312e-03 - 3.9300e-03 -8.2974e+00 1.7842e-01 8.2158e-01 9.0898e-01 9.1023e-02 1.5228e-04 3.4276e-03 6.3874e-04 2.9412e-03 - 3.9400e-03 -8.2974e+00 1.7793e-01 8.2207e-01 9.0898e-01 9.1023e-02 1.5062e-04 3.4393e-03 6.3874e-04 2.9512e-03 - 3.9500e-03 -8.2974e+00 1.7743e-01 8.2257e-01 9.0898e-01 9.1023e-02 1.4895e-04 3.4509e-03 6.3874e-04 2.9612e-03 - 3.9600e-03 -8.2974e+00 1.7694e-01 8.2306e-01 9.0898e-01 9.1023e-02 1.4729e-04 3.4626e-03 6.3874e-04 2.9712e-03 - 3.9700e-03 -8.2974e+00 1.7645e-01 8.2355e-01 9.0898e-01 9.1023e-02 1.4562e-04 3.4743e-03 6.3874e-04 2.9812e-03 - 3.9800e-03 -8.2974e+00 1.7597e-01 8.2403e-01 9.0898e-01 9.1023e-02 1.4395e-04 3.4859e-03 6.3874e-04 2.9912e-03 - 3.9900e-03 -8.2974e+00 1.7548e-01 8.2452e-01 9.0898e-01 9.1023e-02 1.4229e-04 3.4976e-03 6.3874e-04 3.0012e-03 - 4.0000e-03 -8.2974e+00 1.7500e-01 8.2500e-01 9.0898e-01 9.1023e-02 1.4062e-04 3.5093e-03 6.3874e-04 3.0112e-03 - 4.0100e-03 -8.2974e+00 1.7452e-01 8.2548e-01 9.0898e-01 9.1023e-02 1.3895e-04 3.5209e-03 6.3874e-04 3.0212e-03 - 4.0200e-03 -8.2974e+00 1.7405e-01 8.2595e-01 9.0898e-01 9.1023e-02 1.3729e-04 3.5326e-03 6.3874e-04 3.0312e-03 - 4.0300e-03 -8.2974e+00 1.7358e-01 8.2642e-01 9.0898e-01 9.1023e-02 1.3562e-04 3.5443e-03 6.3874e-04 3.0412e-03 - 4.0400e-03 -8.2974e+00 1.7311e-01 8.2689e-01 9.0898e-01 9.1023e-02 1.3396e-04 3.5559e-03 6.3874e-04 3.0512e-03 - 4.0500e-03 -8.2974e+00 1.7264e-01 8.2736e-01 9.0898e-01 9.1023e-02 1.3229e-04 3.5676e-03 6.3874e-04 3.0612e-03 - 4.0600e-03 -8.2974e+00 1.7217e-01 8.2783e-01 9.0898e-01 9.1023e-02 1.3062e-04 3.5793e-03 6.3874e-04 3.0712e-03 - 4.0700e-03 -8.2974e+00 1.7171e-01 8.2829e-01 9.0898e-01 9.1023e-02 1.2896e-04 3.5909e-03 6.3874e-04 3.0812e-03 - 4.0800e-03 -8.2974e+00 1.7125e-01 8.2875e-01 9.0898e-01 9.1023e-02 1.2729e-04 3.6026e-03 6.3874e-04 3.0912e-03 - 4.0900e-03 -8.2974e+00 1.7079e-01 8.2921e-01 9.0898e-01 9.1023e-02 1.2562e-04 3.6143e-03 6.3874e-04 3.1012e-03 - 4.1000e-03 -8.2974e+00 1.7034e-01 8.2966e-01 9.0898e-01 9.1023e-02 1.2396e-04 3.6259e-03 6.3874e-04 3.1112e-03 - 4.1100e-03 -8.2974e+00 1.6988e-01 8.3012e-01 9.0898e-01 9.1023e-02 1.2229e-04 3.6376e-03 6.3874e-04 3.1212e-03 - 4.1200e-03 -8.2974e+00 1.6943e-01 8.3057e-01 9.0898e-01 9.1023e-02 1.2063e-04 3.6493e-03 6.3874e-04 3.1312e-03 - 4.1300e-03 -8.2974e+00 1.6898e-01 8.3102e-01 9.0898e-01 9.1023e-02 1.1896e-04 3.6609e-03 6.3874e-04 3.1412e-03 - 4.1400e-03 -8.2974e+00 1.6854e-01 8.3146e-01 9.0898e-01 9.1023e-02 1.1729e-04 3.6726e-03 6.3874e-04 3.1512e-03 - 4.1500e-03 -8.2974e+00 1.6809e-01 8.3191e-01 9.0898e-01 9.1023e-02 1.1563e-04 3.6843e-03 6.3874e-04 3.1612e-03 - 4.1600e-03 -8.2974e+00 1.6765e-01 8.3235e-01 9.0898e-01 9.1023e-02 1.1396e-04 3.6959e-03 6.3874e-04 3.1712e-03 - 4.1700e-03 -8.2974e+00 1.6721e-01 8.3279e-01 9.0898e-01 9.1023e-02 1.1230e-04 3.7076e-03 6.3874e-04 3.1812e-03 - 4.1800e-03 -8.2974e+00 1.6678e-01 8.3322e-01 9.0898e-01 9.1023e-02 1.1063e-04 3.7193e-03 6.3874e-04 3.1912e-03 - 4.1900e-03 -8.2974e+00 1.6634e-01 8.3366e-01 9.0898e-01 9.1023e-02 1.0896e-04 3.7309e-03 6.3874e-04 3.2012e-03 - 4.2000e-03 -8.2974e+00 1.6591e-01 8.3409e-01 9.0898e-01 9.1023e-02 1.0730e-04 3.7426e-03 6.3874e-04 3.2112e-03 - 4.2100e-03 -8.2974e+00 1.6548e-01 8.3452e-01 9.0898e-01 9.1023e-02 1.0563e-04 3.7543e-03 6.3874e-04 3.2212e-03 - 4.2200e-03 -8.2974e+00 1.6505e-01 8.3495e-01 9.0898e-01 9.1023e-02 1.0396e-04 3.7659e-03 6.3874e-04 3.2312e-03 - 4.2300e-03 -8.2974e+00 1.6463e-01 8.3537e-01 9.0898e-01 9.1023e-02 1.0230e-04 3.7776e-03 6.3874e-04 3.2412e-03 - 4.2400e-03 -8.2974e+00 1.6421e-01 8.3579e-01 9.0898e-01 9.1023e-02 1.0063e-04 3.7893e-03 6.3874e-04 3.2512e-03 - 4.2500e-03 -8.2974e+00 1.6378e-01 8.3622e-01 9.0898e-01 9.1023e-02 9.8965e-05 3.8009e-03 6.3874e-04 3.2612e-03 - 4.2600e-03 -8.2974e+00 1.6337e-01 8.3663e-01 9.0898e-01 9.1023e-02 9.7299e-05 3.8126e-03 6.3874e-04 3.2712e-03 - 4.2700e-03 -8.2974e+00 1.6295e-01 8.3705e-01 9.0898e-01 9.1023e-02 9.5633e-05 3.8243e-03 6.3874e-04 3.2812e-03 - 4.2800e-03 -8.2974e+00 1.6253e-01 8.3747e-01 9.0898e-01 9.1023e-02 9.3967e-05 3.8359e-03 6.3874e-04 3.2912e-03 - 4.2900e-03 -8.2974e+00 1.6212e-01 8.3788e-01 9.0898e-01 9.1023e-02 9.2301e-05 3.8476e-03 6.3874e-04 3.3012e-03 - 4.3000e-03 -8.2974e+00 1.6171e-01 8.3829e-01 9.0898e-01 9.1023e-02 9.0634e-05 3.8593e-03 6.3874e-04 3.3112e-03 - 4.3100e-03 -8.2974e+00 1.6130e-01 8.3870e-01 9.0898e-01 9.1023e-02 8.8968e-05 3.8709e-03 6.3874e-04 3.3212e-03 - 4.3200e-03 -8.2974e+00 1.6090e-01 8.3910e-01 9.0898e-01 9.1023e-02 8.7302e-05 3.8826e-03 6.3874e-04 3.3312e-03 - 4.3300e-03 -8.2974e+00 1.6049e-01 8.3951e-01 9.0898e-01 9.1023e-02 8.5636e-05 3.8943e-03 6.3874e-04 3.3412e-03 - 4.3400e-03 -8.2974e+00 1.6009e-01 8.3991e-01 9.0898e-01 9.1023e-02 8.3970e-05 3.9059e-03 6.3874e-04 3.3512e-03 - 4.3500e-03 -8.2974e+00 1.5969e-01 8.4031e-01 9.0898e-01 9.1023e-02 8.2303e-05 3.9176e-03 6.3874e-04 3.3612e-03 - 4.3600e-03 -8.2974e+00 1.5929e-01 8.4071e-01 9.0898e-01 9.1023e-02 8.0637e-05 3.9293e-03 6.3874e-04 3.3712e-03 - 4.3700e-03 -8.2974e+00 1.5890e-01 8.4110e-01 9.0898e-01 9.1023e-02 7.8971e-05 3.9409e-03 6.3874e-04 3.3812e-03 - 4.3800e-03 -8.2974e+00 1.5850e-01 8.4150e-01 9.0898e-01 9.1023e-02 7.7305e-05 3.9526e-03 6.3874e-04 3.3912e-03 - 4.3900e-03 -8.2974e+00 1.5811e-01 8.4189e-01 9.0898e-01 9.1023e-02 7.5639e-05 3.9643e-03 6.3874e-04 3.4012e-03 - 4.4000e-03 -8.2974e+00 1.5772e-01 8.4228e-01 9.0898e-01 9.1023e-02 7.3972e-05 3.9759e-03 6.3874e-04 3.4112e-03 - 4.4100e-03 -8.2974e+00 1.5733e-01 8.4267e-01 9.0898e-01 9.1023e-02 7.2306e-05 3.9876e-03 6.3874e-04 3.4212e-03 - 4.4200e-03 -8.2974e+00 1.5694e-01 8.4306e-01 9.0898e-01 9.1023e-02 7.0640e-05 3.9993e-03 6.3874e-04 3.4312e-03 - 4.4300e-03 -8.2974e+00 1.5656e-01 8.4344e-01 9.0898e-01 9.1023e-02 6.8974e-05 4.0109e-03 6.3874e-04 3.4412e-03 - 4.4400e-03 -8.2974e+00 1.5618e-01 8.4382e-01 9.0898e-01 9.1023e-02 6.7308e-05 4.0226e-03 6.3874e-04 3.4512e-03 - 4.4500e-03 -8.2974e+00 1.5579e-01 8.4421e-01 9.0898e-01 9.1023e-02 6.5641e-05 4.0343e-03 6.3874e-04 3.4612e-03 - 4.4600e-03 -8.2974e+00 1.5542e-01 8.4458e-01 9.0898e-01 9.1023e-02 6.3975e-05 4.0459e-03 6.3874e-04 3.4712e-03 - 4.4700e-03 -8.2974e+00 1.5504e-01 8.4496e-01 9.0898e-01 9.1023e-02 6.2309e-05 4.0576e-03 6.3874e-04 3.4812e-03 - 4.4800e-03 -8.2974e+00 1.5466e-01 8.4534e-01 9.0898e-01 9.1023e-02 6.0643e-05 4.0693e-03 6.3874e-04 3.4912e-03 - 4.4900e-03 -8.2974e+00 1.5429e-01 8.4571e-01 9.0898e-01 9.1023e-02 5.8977e-05 4.0809e-03 6.3874e-04 3.5012e-03 - 4.5000e-03 -8.2974e+00 1.5392e-01 8.4608e-01 9.0898e-01 9.1023e-02 5.7310e-05 4.0926e-03 6.3874e-04 3.5112e-03 - 4.5100e-03 -8.2974e+00 1.5355e-01 8.4645e-01 9.0898e-01 9.1023e-02 5.5644e-05 4.1043e-03 6.3874e-04 3.5212e-03 - 4.5200e-03 -8.2974e+00 1.5318e-01 8.4682e-01 9.0898e-01 9.1023e-02 5.3978e-05 4.1159e-03 6.3874e-04 3.5312e-03 - 4.5300e-03 -8.2974e+00 1.5281e-01 8.4719e-01 9.0898e-01 9.1023e-02 5.2312e-05 4.1276e-03 6.3874e-04 3.5412e-03 - 4.5400e-03 -8.2974e+00 1.5245e-01 8.4755e-01 9.0898e-01 9.1023e-02 5.0646e-05 4.1392e-03 6.3874e-04 3.5512e-03 - 4.5500e-03 -8.2974e+00 1.5209e-01 8.4791e-01 9.0898e-01 9.1023e-02 4.8979e-05 4.1509e-03 6.3874e-04 3.5612e-03 - 4.5600e-03 -8.2974e+00 1.5172e-01 8.4828e-01 9.0898e-01 9.1023e-02 4.7313e-05 4.1626e-03 6.3874e-04 3.5712e-03 - 4.5700e-03 -8.2974e+00 1.5136e-01 8.4864e-01 9.0898e-01 9.1023e-02 4.5647e-05 4.1742e-03 6.3874e-04 3.5812e-03 - 4.5800e-03 -8.2974e+00 1.5101e-01 8.4899e-01 9.0898e-01 9.1023e-02 4.3981e-05 4.1859e-03 6.3874e-04 3.5912e-03 - 4.5900e-03 -8.2974e+00 1.5065e-01 8.4935e-01 9.0898e-01 9.1023e-02 4.2315e-05 4.1976e-03 6.3874e-04 3.6012e-03 - 4.6000e-03 -8.2974e+00 1.5030e-01 8.4970e-01 9.0898e-01 9.1023e-02 4.0648e-05 4.2092e-03 6.3874e-04 3.6112e-03 - 4.6100e-03 -8.2974e+00 1.4994e-01 8.5006e-01 9.0898e-01 9.1023e-02 3.8982e-05 4.2209e-03 6.3874e-04 3.6212e-03 - 4.6200e-03 -8.2974e+00 1.4959e-01 8.5041e-01 9.0898e-01 9.1023e-02 3.7316e-05 4.2326e-03 6.3874e-04 3.6312e-03 - 4.6300e-03 -8.2974e+00 1.4924e-01 8.5076e-01 9.0898e-01 9.1023e-02 3.5650e-05 4.2442e-03 6.3874e-04 3.6412e-03 - 4.6400e-03 -8.2974e+00 1.4889e-01 8.5111e-01 9.0898e-01 9.1023e-02 3.3984e-05 4.2559e-03 6.3874e-04 3.6512e-03 - 4.6500e-03 -8.2974e+00 1.4855e-01 8.5145e-01 9.0898e-01 9.1023e-02 3.2317e-05 4.2676e-03 6.3874e-04 3.6612e-03 - 4.6600e-03 -8.2974e+00 1.4820e-01 8.5180e-01 9.0898e-01 9.1023e-02 3.0651e-05 4.2792e-03 6.3874e-04 3.6712e-03 - 4.6700e-03 -8.2974e+00 1.4786e-01 8.5214e-01 9.0898e-01 9.1023e-02 2.8985e-05 4.2909e-03 6.3874e-04 3.6812e-03 - 4.6800e-03 -8.2974e+00 1.4752e-01 8.5248e-01 9.0898e-01 9.1023e-02 2.7319e-05 4.3026e-03 6.3874e-04 3.6912e-03 - 4.6900e-03 -8.2974e+00 1.4718e-01 8.5282e-01 9.0898e-01 9.1023e-02 2.5653e-05 4.3142e-03 6.3874e-04 3.7012e-03 - 4.7000e-03 -8.2974e+00 1.4684e-01 8.5316e-01 9.0898e-01 9.1023e-02 2.3986e-05 4.3259e-03 6.3874e-04 3.7112e-03 - 4.7100e-03 -8.2974e+00 1.4650e-01 8.5350e-01 9.0898e-01 9.1023e-02 2.2320e-05 4.3376e-03 6.3874e-04 3.7212e-03 - 4.7200e-03 -8.2974e+00 1.4617e-01 8.5383e-01 9.0898e-01 9.1023e-02 2.0654e-05 4.3492e-03 6.3874e-04 3.7312e-03 - 4.7300e-03 -8.2974e+00 1.4584e-01 8.5416e-01 9.0898e-01 9.1023e-02 1.8988e-05 4.3609e-03 6.3874e-04 3.7412e-03 - 4.7400e-03 -8.2974e+00 1.4550e-01 8.5450e-01 9.0898e-01 9.1023e-02 1.7321e-05 4.3726e-03 6.3874e-04 3.7512e-03 - 4.7500e-03 -8.2974e+00 1.4517e-01 8.5483e-01 9.0898e-01 9.1023e-02 1.5655e-05 4.3842e-03 6.3874e-04 3.7612e-03 - 4.7600e-03 -8.2974e+00 1.4484e-01 8.5516e-01 9.0898e-01 9.1023e-02 1.3989e-05 4.3959e-03 6.3874e-04 3.7712e-03 - 4.7700e-03 -8.2974e+00 1.4452e-01 8.5548e-01 9.0898e-01 9.1023e-02 1.2323e-05 4.4076e-03 6.3874e-04 3.7812e-03 - 4.7800e-03 -8.2974e+00 1.4419e-01 8.5581e-01 9.0898e-01 9.1023e-02 1.0657e-05 4.4192e-03 6.3874e-04 3.7912e-03 - 4.7900e-03 -8.2974e+00 1.4386e-01 8.5614e-01 9.0898e-01 9.1023e-02 8.9905e-06 4.4309e-03 6.3874e-04 3.8012e-03 - 4.8000e-03 -8.2974e+00 1.4354e-01 8.5646e-01 9.0898e-01 9.1023e-02 7.3243e-06 4.4426e-03 6.3874e-04 3.8112e-03 - 4.8100e-03 -8.2974e+00 1.4322e-01 8.5678e-01 9.0898e-01 9.1023e-02 5.6581e-06 4.4542e-03 6.3874e-04 3.8212e-03 - 4.8200e-03 -8.2974e+00 1.4290e-01 8.5710e-01 9.0898e-01 9.1023e-02 3.9919e-06 4.4659e-03 6.3874e-04 3.8312e-03 - 4.8300e-03 -8.2974e+00 1.4258e-01 8.5742e-01 9.0898e-01 9.1023e-02 2.3257e-06 4.4776e-03 6.3874e-04 3.8412e-03 - 4.8400e-03 -8.2974e+00 1.4226e-01 8.5774e-01 9.0898e-01 9.1023e-02 6.5947e-07 4.4892e-03 6.3874e-04 3.8512e-03 - 4.8500e-03 -8.2974e+00 1.4211e-01 8.5789e-01 9.0896e-01 9.1042e-02 1.0000e-10 1.0000e-10 6.3958e-04 3.8610e-03 - 4.8600e-03 -8.2976e+00 1.4207e-01 8.5793e-01 9.0893e-01 9.1074e-02 1.0000e-10 1.0000e-10 6.4098e-04 3.8708e-03 - 4.8700e-03 -8.2977e+00 1.4203e-01 8.5797e-01 9.0889e-01 9.1106e-02 1.0000e-10 1.0000e-10 6.4237e-04 3.8805e-03 - 4.8800e-03 -8.2978e+00 1.4198e-01 8.5802e-01 9.0886e-01 9.1138e-02 1.0000e-10 1.0000e-10 6.4376e-04 3.8903e-03 - 4.8900e-03 -8.2980e+00 1.4194e-01 8.5806e-01 9.0883e-01 9.1170e-02 1.0000e-10 1.0000e-10 6.4515e-04 3.9000e-03 - 4.9000e-03 -8.2981e+00 1.4190e-01 8.5810e-01 9.0880e-01 9.1202e-02 1.0000e-10 1.0000e-10 6.4654e-04 3.9098e-03 - 4.9100e-03 -8.2982e+00 1.4186e-01 8.5814e-01 9.0877e-01 9.1234e-02 1.0000e-10 1.0000e-10 6.4793e-04 3.9195e-03 - 4.9200e-03 -8.2983e+00 1.4181e-01 8.5819e-01 9.0873e-01 9.1266e-02 1.0000e-10 1.0000e-10 6.4932e-04 3.9293e-03 - 4.9300e-03 -8.2985e+00 1.4177e-01 8.5823e-01 9.0870e-01 9.1298e-02 1.0000e-10 1.0000e-10 6.5070e-04 3.9391e-03 - 4.9400e-03 -8.2986e+00 1.4173e-01 8.5827e-01 9.0867e-01 9.1330e-02 1.0000e-10 1.0000e-10 6.5209e-04 3.9488e-03 - 4.9500e-03 -8.2987e+00 1.4169e-01 8.5831e-01 9.0864e-01 9.1362e-02 1.0000e-10 1.0000e-10 6.5347e-04 3.9586e-03 - 4.9600e-03 -8.2989e+00 1.4165e-01 8.5835e-01 9.0861e-01 9.1394e-02 1.0000e-10 1.0000e-10 6.5486e-04 3.9683e-03 - 4.9700e-03 -8.2990e+00 1.4160e-01 8.5840e-01 9.0857e-01 9.1426e-02 1.0000e-10 1.0000e-10 6.5624e-04 3.9781e-03 - 4.9800e-03 -8.2991e+00 1.4156e-01 8.5844e-01 9.0854e-01 9.1458e-02 1.0000e-10 1.0000e-10 6.5762e-04 3.9878e-03 - 4.9900e-03 -8.2992e+00 1.4152e-01 8.5848e-01 9.0851e-01 9.1490e-02 1.0000e-10 1.0000e-10 6.5900e-04 3.9976e-03 - 5.0000e-03 -8.2994e+00 1.4148e-01 8.5852e-01 9.0848e-01 9.1522e-02 1.0000e-10 1.0000e-10 6.6038e-04 4.0074e-03 - 5.0000e-03 -8.2994e+00 1.4148e-01 8.5852e-01 9.0848e-01 9.1522e-02 1.0000e-10 1.0000e-10 6.6038e-04 4.0074e-03 - 1.0000e-02 -8.3561e+00 1.2425e-01 8.7575e-01 8.9342e-01 1.0658e-01 1.0000e-10 1.0000e-10 1.2622e-03 8.8963e-03 - 1.5000e-02 -8.4019e+00 1.1192e-01 8.8808e-01 8.7973e-01 1.2027e-01 1.0000e-10 1.0000e-10 1.7391e-03 1.3800e-02 - 2.0000e-02 -8.4405e+00 1.0242e-01 8.9758e-01 8.6700e-01 1.3300e-01 1.0000e-10 1.0000e-10 2.1356e-03 1.8715e-02 - 2.5000e-02 -8.4739e+00 9.4788e-02 9.0521e-01 8.5501e-01 1.4499e-01 1.0000e-10 1.0000e-10 2.4751e-03 2.3637e-02 - 3.0000e-02 -8.5033e+00 8.8454e-02 9.1155e-01 8.4365e-01 1.5635e-01 1.0000e-10 1.0000e-10 2.7719e-03 2.8565e-02 - 3.5000e-02 -8.5296e+00 8.3084e-02 9.1692e-01 8.3281e-01 1.6719e-01 1.0000e-10 1.0000e-10 3.0354e-03 3.3499e-02 - 4.0000e-02 -8.5534e+00 7.8452e-02 9.2155e-01 8.2242e-01 1.7758e-01 1.0000e-10 1.0000e-10 3.2721e-03 3.8436e-02 - 4.5000e-02 -8.5751e+00 7.4402e-02 9.2560e-01 8.1245e-01 1.8755e-01 1.0000e-10 1.0000e-10 3.4868e-03 4.3378e-02 - 5.0000e-02 -8.5949e+00 7.0821e-02 9.2918e-01 8.0284e-01 1.9716e-01 1.0000e-10 1.0000e-10 3.6831e-03 4.8323e-02 - 5.5000e-02 -8.6133e+00 6.7625e-02 9.3237e-01 7.9357e-01 2.0643e-01 1.0000e-10 1.0000e-10 3.8637e-03 5.3270e-02 - 6.0000e-02 -8.6303e+00 6.4751e-02 9.3525e-01 7.8460e-01 2.1540e-01 1.0000e-10 1.0000e-10 4.0308e-03 5.8220e-02 - 6.5000e-02 -8.6462e+00 6.2147e-02 9.3785e-01 7.7593e-01 2.2407e-01 1.0000e-10 1.0000e-10 4.1862e-03 6.3173e-02 - 7.0000e-02 -8.6610e+00 5.9776e-02 9.4022e-01 7.6751e-01 2.3249e-01 1.0000e-10 1.0000e-10 4.3313e-03 6.8127e-02 - 7.5000e-02 -8.6750e+00 5.7604e-02 9.4240e-01 7.5935e-01 2.4065e-01 1.0000e-10 1.0000e-10 4.4673e-03 7.3084e-02 - 8.0000e-02 -8.6881e+00 5.5606e-02 9.4439e-01 7.5142e-01 2.4858e-01 1.0000e-10 1.0000e-10 4.5952e-03 7.8042e-02 - 8.5000e-02 -8.7005e+00 5.3761e-02 9.4624e-01 7.4370e-01 2.5630e-01 1.0000e-10 1.0000e-10 4.7158e-03 8.3002e-02 - 9.0000e-02 -8.7122e+00 5.2050e-02 9.4795e-01 7.3619e-01 2.6381e-01 1.0000e-10 1.0000e-10 4.8298e-03 8.7963e-02 - 9.5000e-02 -8.7234e+00 5.0457e-02 9.4954e-01 7.2888e-01 2.7112e-01 1.0000e-10 1.0000e-10 4.9380e-03 9.2926e-02 - 1.0000e-01 -8.7339e+00 4.8972e-02 9.5103e-01 7.2176e-01 2.7824e-01 1.0000e-10 1.0000e-10 5.0407e-03 9.7890e-02 - 1.0000e-01 -8.7339e+00 4.8972e-02 9.5103e-01 7.2176e-01 2.7824e-01 1.0000e-10 1.0000e-10 5.0407e-03 9.7890e-02 - 2.0000e-01 -8.8751e+00 3.1476e-02 9.6852e-01 6.0792e-01 3.9208e-01 1.0000e-10 1.0000e-10 6.4139e-03 1.9736e-01 - 3.0000e-01 -8.9520e+00 2.3569e-02 9.7643e-01 5.2858e-01 4.7142e-01 1.0000e-10 1.0000e-10 7.1693e-03 2.9702e-01 - 4.0000e-01 -9.0019e+00 1.8957e-02 9.8104e-01 4.6899e-01 5.3101e-01 1.0000e-10 1.0000e-10 7.6669e-03 3.9678e-01 - 5.0000e-01 -9.0375e+00 1.5904e-02 9.8410e-01 4.2219e-01 5.7781e-01 1.0000e-10 1.0000e-10 8.0256e-03 4.9659e-01 - 6.0000e-01 -9.0643e+00 1.3723e-02 9.8628e-01 3.8427e-01 6.1573e-01 1.0000e-10 1.0000e-10 8.2990e-03 5.9645e-01 - 7.0000e-01 -9.0854e+00 1.2081e-02 9.8792e-01 3.5284e-01 6.4716e-01 1.0000e-10 1.0000e-10 8.5154e-03 6.9633e-01 - 8.0000e-01 -9.1024e+00 1.0798e-02 9.8920e-01 3.2631e-01 6.7369e-01 1.0000e-10 1.0000e-10 8.6916e-03 7.9624e-01 - 9.0000e-01 -9.1165e+00 9.7659e-03 9.9023e-01 3.0358e-01 6.9642e-01 1.0000e-10 1.0000e-10 8.8381e-03 8.9616e-01 - 1.0000e+00 -9.1284e+00 8.9171e-03 9.9108e-01 2.8389e-01 7.1611e-01 1.0000e-10 1.0000e-10 8.9621e-03 9.9609e-01 - 1.1000e+00 -9.1385e+00 8.2062e-03 9.9179e-01 2.6664e-01 7.3336e-01 1.0000e-10 1.0000e-10 9.0686e-03 1.0960e+00 - 1.2000e+00 -9.1472e+00 7.6017e-03 9.9240e-01 2.5140e-01 7.4860e-01 1.0000e-10 1.0000e-10 9.1610e-03 1.1960e+00 - 1.3000e+00 -9.1549e+00 7.0811e-03 9.9292e-01 2.3784e-01 7.6216e-01 1.0000e-10 1.0000e-10 9.2421e-03 1.2959e+00 - 1.4000e+00 -9.1616e+00 6.6281e-03 9.9337e-01 2.2568e-01 7.7432e-01 1.0000e-10 1.0000e-10 9.3138e-03 1.3959e+00 - 1.5000e+00 -9.1676e+00 6.2301e-03 9.9377e-01 2.1472e-01 7.8528e-01 1.0000e-10 1.0000e-10 9.3777e-03 1.4958e+00 - 1.6000e+00 -9.1730e+00 5.8776e-03 9.9412e-01 2.0479e-01 7.9521e-01 1.0000e-10 1.0000e-10 9.4351e-03 1.5958e+00 - 1.7000e+00 -9.1778e+00 5.5632e-03 9.9444e-01 1.9574e-01 8.0426e-01 1.0000e-10 1.0000e-10 9.4868e-03 1.6958e+00 - 1.8000e+00 -9.1822e+00 5.2810e-03 9.9472e-01 1.8747e-01 8.1253e-01 1.0000e-10 1.0000e-10 9.5338e-03 1.7958e+00 - 1.9000e+00 -9.1861e+00 5.0263e-03 9.9497e-01 1.7987e-01 8.2013e-01 1.0000e-10 1.0000e-10 9.5766e-03 1.8957e+00 - 2.0000e+00 -9.1898e+00 4.7951e-03 9.9520e-01 1.7287e-01 8.2713e-01 1.0000e-10 1.0000e-10 9.6157e-03 1.9957e+00 - 2.1000e+00 -9.1931e+00 4.5844e-03 9.9542e-01 1.6640e-01 8.3360e-01 1.0000e-10 1.0000e-10 9.6517e-03 2.0957e+00 - 2.2000e+00 -9.1962e+00 4.3916e-03 9.9561e-01 1.6040e-01 8.3960e-01 1.0000e-10 1.0000e-10 9.6849e-03 2.1957e+00 - 2.3000e+00 -9.1990e+00 4.2144e-03 9.9579e-01 1.5481e-01 8.4519e-01 1.0000e-10 1.0000e-10 9.7156e-03 2.2956e+00 - 2.4000e+00 -9.2016e+00 4.0510e-03 9.9595e-01 1.4961e-01 8.5039e-01 1.0000e-10 1.0000e-10 9.7441e-03 2.3956e+00 - 2.5000e+00 -9.2040e+00 3.8999e-03 9.9610e-01 1.4475e-01 8.5525e-01 1.0000e-10 1.0000e-10 9.7707e-03 2.4956e+00 - 2.6000e+00 -9.2063e+00 3.7597e-03 9.9624e-01 1.4019e-01 8.5981e-01 1.0000e-10 1.0000e-10 9.7954e-03 2.5956e+00 - 2.7000e+00 -9.2084e+00 3.6292e-03 9.9637e-01 1.3591e-01 8.6409e-01 1.0000e-10 1.0000e-10 9.8185e-03 2.6956e+00 - 2.8000e+00 -9.2104e+00 3.5076e-03 9.9649e-01 1.3189e-01 8.6811e-01 1.0000e-10 1.0000e-10 9.8402e-03 2.7956e+00 - 2.9000e+00 -9.2123e+00 3.3939e-03 9.9661e-01 1.2810e-01 8.7190e-01 1.0000e-10 1.0000e-10 9.8606e-03 2.8956e+00 - 3.0000e+00 -9.2140e+00 3.2873e-03 9.9671e-01 1.2452e-01 8.7548e-01 1.0000e-10 1.0000e-10 9.8797e-03 2.9955e+00 - 3.1000e+00 -9.2157e+00 3.1873e-03 9.9681e-01 1.2114e-01 8.7886e-01 1.0000e-10 1.0000e-10 9.8978e-03 3.0955e+00 - 3.2000e+00 -9.2172e+00 3.0931e-03 9.9691e-01 1.1794e-01 8.8206e-01 1.0000e-10 1.0000e-10 9.9148e-03 3.1955e+00 - 3.3000e+00 -9.2187e+00 3.0044e-03 9.9700e-01 1.1490e-01 8.8510e-01 1.0000e-10 1.0000e-10 9.9310e-03 3.2955e+00 - 3.4000e+00 -9.2201e+00 2.9207e-03 9.9708e-01 1.1202e-01 8.8798e-01 1.0000e-10 1.0000e-10 9.9462e-03 3.3955e+00 - 3.5000e+00 -9.2214e+00 2.8415e-03 9.9716e-01 1.0927e-01 8.9073e-01 1.0000e-10 1.0000e-10 9.9607e-03 3.4955e+00 - 3.6000e+00 -9.2227e+00 2.7665e-03 9.9723e-01 1.0666e-01 8.9334e-01 1.0000e-10 1.0000e-10 9.9745e-03 3.5955e+00 - 3.7000e+00 -9.2239e+00 2.6954e-03 9.9730e-01 1.0417e-01 8.9583e-01 1.0000e-10 1.0000e-10 9.9876e-03 3.6955e+00 - 3.8000e+00 -9.2250e+00 2.6278e-03 9.9737e-01 1.0180e-01 8.9820e-01 1.0000e-10 1.0000e-10 1.0000e-02 3.7955e+00 - 3.9000e+00 -9.2261e+00 2.5636e-03 9.9744e-01 9.9529e-02 9.0047e-01 1.0000e-10 1.0000e-10 1.0012e-02 3.8955e+00 - 4.0000e+00 -9.2271e+00 2.5024e-03 9.9750e-01 9.7359e-02 9.0264e-01 1.0000e-10 1.0000e-10 1.0023e-02 3.9955e+00 - 4.1000e+00 -9.2281e+00 2.4441e-03 9.9756e-01 9.5282e-02 9.0472e-01 1.0000e-10 1.0000e-10 1.0034e-02 4.0954e+00 - 4.2000e+00 -9.2290e+00 2.3884e-03 9.9761e-01 9.3292e-02 9.0671e-01 1.0000e-10 1.0000e-10 1.0045e-02 4.1954e+00 - 4.3000e+00 -9.2299e+00 2.3353e-03 9.9766e-01 9.1384e-02 9.0862e-01 1.0000e-10 1.0000e-10 1.0055e-02 4.2954e+00 - 4.4000e+00 -9.2308e+00 2.2844e-03 9.9772e-01 8.9552e-02 9.1045e-01 1.0000e-10 1.0000e-10 1.0064e-02 4.3954e+00 - 4.5000e+00 -9.2316e+00 2.2358e-03 9.9776e-01 8.7792e-02 9.1221e-01 1.0000e-10 1.0000e-10 1.0073e-02 4.4954e+00 - 4.6000e+00 -9.2324e+00 2.1891e-03 9.9781e-01 8.6101e-02 9.1390e-01 1.0000e-10 1.0000e-10 1.0082e-02 4.5954e+00 - 4.7000e+00 -9.2332e+00 2.1444e-03 9.9786e-01 8.4473e-02 9.1553e-01 1.0000e-10 1.0000e-10 1.0090e-02 4.6954e+00 - 4.8000e+00 -9.2339e+00 2.1014e-03 9.9790e-01 8.2906e-02 9.1709e-01 1.0000e-10 1.0000e-10 1.0098e-02 4.7954e+00 - 4.9000e+00 -9.2346e+00 2.0602e-03 9.9794e-01 8.1396e-02 9.1860e-01 1.0000e-10 1.0000e-10 1.0106e-02 4.8954e+00 - 5.0000e+00 -9.2353e+00 2.0205e-03 9.9798e-01 7.9940e-02 9.2006e-01 1.0000e-10 1.0000e-10 1.0114e-02 4.9954e+00 - 5.1000e+00 -9.2359e+00 1.9824e-03 9.9802e-01 7.8535e-02 9.2146e-01 1.0000e-10 1.0000e-10 1.0121e-02 5.0954e+00 - 5.2000e+00 -9.2366e+00 1.9456e-03 9.9805e-01 7.7179e-02 9.2282e-01 1.0000e-10 1.0000e-10 1.0128e-02 5.1954e+00 - 5.3000e+00 -9.2372e+00 1.9102e-03 9.9809e-01 7.5869e-02 9.2413e-01 1.0000e-10 1.0000e-10 1.0135e-02 5.2954e+00 - 5.4000e+00 -9.2378e+00 1.8761e-03 9.9812e-01 7.4603e-02 9.2540e-01 1.0000e-10 1.0000e-10 1.0141e-02 5.3954e+00 - 5.5000e+00 -9.2383e+00 1.8432e-03 9.9816e-01 7.3379e-02 9.2662e-01 1.0000e-10 1.0000e-10 1.0148e-02 5.4954e+00 - 5.6000e+00 -9.2389e+00 1.8114e-03 9.9819e-01 7.2194e-02 9.2781e-01 1.0000e-10 1.0000e-10 1.0154e-02 5.5954e+00 - 5.7000e+00 -9.2394e+00 1.7806e-03 9.9822e-01 7.1046e-02 9.2895e-01 1.0000e-10 1.0000e-10 1.0159e-02 5.6954e+00 - 5.8000e+00 -9.2399e+00 1.7509e-03 9.9825e-01 6.9935e-02 9.3006e-01 1.0000e-10 1.0000e-10 1.0165e-02 5.7954e+00 - 5.9000e+00 -9.2404e+00 1.7222e-03 9.9828e-01 6.8858e-02 9.3114e-01 1.0000e-10 1.0000e-10 1.0171e-02 5.8954e+00 - 6.0000e+00 -9.2409e+00 1.6944e-03 9.9831e-01 6.7814e-02 9.3219e-01 1.0000e-10 1.0000e-10 1.0176e-02 5.9954e+00 - 6.1000e+00 -9.2414e+00 1.6675e-03 9.9833e-01 6.6801e-02 9.3320e-01 1.0000e-10 1.0000e-10 1.0181e-02 6.0954e+00 - 6.2000e+00 -9.2418e+00 1.6415e-03 9.9836e-01 6.5817e-02 9.3418e-01 1.0000e-10 1.0000e-10 1.0186e-02 6.1954e+00 - 6.3000e+00 -9.2422e+00 1.6162e-03 9.9838e-01 6.4863e-02 9.3514e-01 1.0000e-10 1.0000e-10 1.0191e-02 6.2953e+00 - 6.4000e+00 -9.2427e+00 1.5917e-03 9.9841e-01 6.3935e-02 9.3606e-01 1.0000e-10 1.0000e-10 1.0196e-02 6.3953e+00 - 6.5000e+00 -9.2431e+00 1.5680e-03 9.9843e-01 6.3034e-02 9.3697e-01 1.0000e-10 1.0000e-10 1.0200e-02 6.4953e+00 - 6.6000e+00 -9.2435e+00 1.5449e-03 9.9846e-01 6.2158e-02 9.3784e-01 1.0000e-10 1.0000e-10 1.0205e-02 6.5953e+00 - 6.7000e+00 -9.2439e+00 1.5225e-03 9.9848e-01 6.1306e-02 9.3869e-01 1.0000e-10 1.0000e-10 1.0209e-02 6.6953e+00 - 6.8000e+00 -9.2442e+00 1.5007e-03 9.9850e-01 6.0477e-02 9.3952e-01 1.0000e-10 1.0000e-10 1.0213e-02 6.7953e+00 - 6.9000e+00 -9.2446e+00 1.4796e-03 9.9852e-01 5.9670e-02 9.4033e-01 1.0000e-10 1.0000e-10 1.0217e-02 6.8953e+00 - 7.0000e+00 -9.2450e+00 1.4591e-03 9.9854e-01 5.8885e-02 9.4112e-01 1.0000e-10 1.0000e-10 1.0221e-02 6.9953e+00 - 7.1000e+00 -9.2453e+00 1.4391e-03 9.9856e-01 5.8119e-02 9.4188e-01 1.0000e-10 1.0000e-10 1.0225e-02 7.0953e+00 - 7.2000e+00 -9.2457e+00 1.4196e-03 9.9858e-01 5.7374e-02 9.4263e-01 1.0000e-10 1.0000e-10 1.0229e-02 7.1953e+00 - 7.3000e+00 -9.2460e+00 1.4007e-03 9.9860e-01 5.6647e-02 9.4335e-01 1.0000e-10 1.0000e-10 1.0233e-02 7.2953e+00 - 7.4000e+00 -9.2463e+00 1.3823e-03 9.9862e-01 5.5939e-02 9.4406e-01 1.0000e-10 1.0000e-10 1.0236e-02 7.3953e+00 - 7.5000e+00 -9.2466e+00 1.3643e-03 9.9864e-01 5.5248e-02 9.4475e-01 1.0000e-10 1.0000e-10 1.0240e-02 7.4953e+00 - 7.6000e+00 -9.2469e+00 1.3468e-03 9.9865e-01 5.4574e-02 9.4543e-01 1.0000e-10 1.0000e-10 1.0243e-02 7.5953e+00 - 7.7000e+00 -9.2472e+00 1.3298e-03 9.9867e-01 5.3916e-02 9.4608e-01 1.0000e-10 1.0000e-10 1.0247e-02 7.6953e+00 - 7.8000e+00 -9.2475e+00 1.3131e-03 9.9869e-01 5.3274e-02 9.4673e-01 1.0000e-10 1.0000e-10 1.0250e-02 7.7953e+00 - 7.9000e+00 -9.2478e+00 1.2969e-03 9.9870e-01 5.2647e-02 9.4735e-01 1.0000e-10 1.0000e-10 1.0253e-02 7.8953e+00 - 8.0000e+00 -9.2481e+00 1.2811e-03 9.9872e-01 5.2035e-02 9.4797e-01 1.0000e-10 1.0000e-10 1.0256e-02 7.9953e+00 - 8.1000e+00 -9.2484e+00 1.2657e-03 9.9873e-01 5.1436e-02 9.4856e-01 1.0000e-10 1.0000e-10 1.0259e-02 8.0953e+00 - 8.2000e+00 -9.2486e+00 1.2506e-03 9.9875e-01 5.0852e-02 9.4915e-01 1.0000e-10 1.0000e-10 1.0262e-02 8.1953e+00 - 8.3000e+00 -9.2489e+00 1.2359e-03 9.9876e-01 5.0280e-02 9.4972e-01 1.0000e-10 1.0000e-10 1.0265e-02 8.2953e+00 - 8.4000e+00 -9.2491e+00 1.2215e-03 9.9878e-01 4.9721e-02 9.5028e-01 1.0000e-10 1.0000e-10 1.0268e-02 8.3953e+00 - 8.5000e+00 -9.2494e+00 1.2075e-03 9.9879e-01 4.9175e-02 9.5083e-01 1.0000e-10 1.0000e-10 1.0271e-02 8.4953e+00 - 8.6000e+00 -9.2496e+00 1.1938e-03 9.9881e-01 4.8640e-02 9.5136e-01 1.0000e-10 1.0000e-10 1.0273e-02 8.5953e+00 - 8.7000e+00 -9.2499e+00 1.1804e-03 9.9882e-01 4.8117e-02 9.5188e-01 1.0000e-10 1.0000e-10 1.0276e-02 8.6953e+00 - 8.8000e+00 -9.2501e+00 1.1673e-03 9.9883e-01 4.7605e-02 9.5239e-01 1.0000e-10 1.0000e-10 1.0278e-02 8.7953e+00 - 8.9000e+00 -9.2503e+00 1.1544e-03 9.9885e-01 4.7104e-02 9.5290e-01 1.0000e-10 1.0000e-10 1.0281e-02 8.8953e+00 - 9.0000e+00 -9.2505e+00 1.1419e-03 9.9886e-01 4.6613e-02 9.5339e-01 1.0000e-10 1.0000e-10 1.0283e-02 8.9953e+00 - 9.1000e+00 -9.2507e+00 1.1296e-03 9.9887e-01 4.6132e-02 9.5387e-01 1.0000e-10 1.0000e-10 1.0286e-02 9.0953e+00 - 9.2000e+00 -9.2510e+00 1.1176e-03 9.9888e-01 4.5662e-02 9.5434e-01 1.0000e-10 1.0000e-10 1.0288e-02 9.1953e+00 - 9.3000e+00 -9.2512e+00 1.1058e-03 9.9889e-01 4.5200e-02 9.5480e-01 1.0000e-10 1.0000e-10 1.0291e-02 9.2953e+00 - 9.4000e+00 -9.2514e+00 1.0943e-03 9.9891e-01 4.4748e-02 9.5525e-01 1.0000e-10 1.0000e-10 1.0293e-02 9.3953e+00 - 9.5000e+00 -9.2516e+00 1.0830e-03 9.9892e-01 4.4305e-02 9.5569e-01 1.0000e-10 1.0000e-10 1.0295e-02 9.4953e+00 - 9.6000e+00 -9.2518e+00 1.0720e-03 9.9893e-01 4.3871e-02 9.5613e-01 1.0000e-10 1.0000e-10 1.0297e-02 9.5953e+00 - 9.7000e+00 -9.2519e+00 1.0612e-03 9.9894e-01 4.3445e-02 9.5656e-01 1.0000e-10 1.0000e-10 1.0299e-02 9.6953e+00 - 9.8000e+00 -9.2521e+00 1.0506e-03 9.9895e-01 4.3027e-02 9.5697e-01 1.0000e-10 1.0000e-10 1.0301e-02 9.7953e+00 - 9.9000e+00 -9.2523e+00 1.0402e-03 9.9896e-01 4.2617e-02 9.5738e-01 1.0000e-10 1.0000e-10 1.0303e-02 9.8953e+00 - 1.0000e+01 -9.2525e+00 1.0300e-03 9.9897e-01 4.2215e-02 9.5778e-01 1.0000e-10 1.0000e-10 1.0305e-02 9.9953e+00 + 1.0000e-05 -8.3356e+00 9.9996e-01 4.0997e-05 9.9899e-01 1.0068e-03 1.0000e-10 1.0000e-10 6.4233e-06 2.6335e-10 + 2.0000e-05 -8.3352e+00 9.9992e-01 8.2099e-05 9.9799e-01 2.0128e-03 1.0000e-10 1.0000e-10 1.2844e-05 1.0546e-09 + 3.0000e-05 -8.3349e+00 9.9988e-01 1.2331e-04 9.9698e-01 3.0181e-03 1.0000e-10 1.0000e-10 1.9263e-05 2.3756e-09 + 4.0000e-05 -8.3345e+00 9.9984e-01 1.6462e-04 9.9598e-01 4.0226e-03 1.0000e-10 1.0000e-10 2.5680e-05 4.2283e-09 + 5.0000e-05 -8.3341e+00 9.9979e-01 2.0605e-04 9.9497e-01 5.0263e-03 1.0000e-10 1.0000e-10 3.2095e-05 6.6144e-09 + 6.0000e-05 -8.3337e+00 9.9975e-01 2.4757e-04 9.9397e-01 6.0292e-03 1.0000e-10 1.0000e-10 3.8508e-05 9.5359e-09 + 7.0000e-05 -8.3334e+00 9.9971e-01 2.8921e-04 9.9297e-01 7.0313e-03 1.0000e-10 1.0000e-10 4.4918e-05 1.2995e-08 + 8.0000e-05 -8.3330e+00 9.9967e-01 3.3096e-04 9.9197e-01 8.0327e-03 1.0000e-10 1.0000e-10 5.1326e-05 1.6993e-08 + 9.0000e-05 -8.3326e+00 9.9963e-01 3.7281e-04 9.9097e-01 9.0333e-03 1.0000e-10 1.0000e-10 5.7733e-05 2.1531e-08 + 1.0000e-04 -8.3322e+00 9.9959e-01 4.1478e-04 9.8997e-01 1.0033e-02 1.0000e-10 1.0000e-10 6.4137e-05 2.6613e-08 + 1.1000e-04 -8.3319e+00 9.9954e-01 4.5685e-04 9.8897e-01 1.1032e-02 1.0000e-10 1.0000e-10 7.0538e-05 3.2240e-08 + 1.2000e-04 -8.3315e+00 9.9950e-01 4.9903e-04 9.8797e-01 1.2030e-02 1.0000e-10 1.0000e-10 7.6938e-05 3.8414e-08 + 1.3000e-04 -8.3311e+00 9.9946e-01 5.4133e-04 9.8697e-01 1.3028e-02 1.0000e-10 1.0000e-10 8.3336e-05 4.5136e-08 + 1.4000e-04 -8.3307e+00 9.9942e-01 5.8373e-04 9.8598e-01 1.4025e-02 1.0000e-10 1.0000e-10 8.9731e-05 5.2409e-08 + 1.5000e-04 -8.3304e+00 9.9937e-01 6.2625e-04 9.8498e-01 1.5021e-02 1.0000e-10 1.0000e-10 9.6124e-05 6.0235e-08 + 1.6000e-04 -8.3300e+00 9.9933e-01 6.6888e-04 9.8398e-01 1.6016e-02 1.0000e-10 1.0000e-10 1.0252e-04 6.8616e-08 + 1.7000e-04 -8.3296e+00 9.9929e-01 7.1162e-04 9.8299e-01 1.7010e-02 1.0000e-10 1.0000e-10 1.0890e-04 7.7553e-08 + 1.8000e-04 -8.3292e+00 9.9925e-01 7.5447e-04 9.8200e-01 1.8004e-02 1.0000e-10 1.0000e-10 1.1529e-04 8.7050e-08 + 1.9000e-04 -8.3288e+00 9.9920e-01 7.9744e-04 9.8100e-01 1.8997e-02 1.0000e-10 1.0000e-10 1.2168e-04 9.7106e-08 + 2.0000e-04 -8.3285e+00 9.9916e-01 8.4052e-04 9.8001e-01 1.9989e-02 1.0000e-10 1.0000e-10 1.2806e-04 1.0773e-07 + 2.1000e-04 -8.3281e+00 9.9912e-01 8.8372e-04 9.7902e-01 2.0980e-02 1.0000e-10 1.0000e-10 1.3444e-04 1.1891e-07 + 2.2000e-04 -8.3277e+00 9.9907e-01 9.2703e-04 9.7803e-01 2.1970e-02 1.0000e-10 1.0000e-10 1.4082e-04 1.3066e-07 + 2.3000e-04 -8.3273e+00 9.9903e-01 9.7045e-04 9.7704e-01 2.2960e-02 1.0000e-10 1.0000e-10 1.4719e-04 1.4298e-07 + 2.4000e-04 -8.3270e+00 9.9899e-01 1.0140e-03 9.7605e-01 2.3949e-02 1.0000e-10 1.0000e-10 1.5357e-04 1.5587e-07 + 2.5000e-04 -8.3266e+00 9.9894e-01 1.0577e-03 9.7506e-01 2.4937e-02 1.0000e-10 1.0000e-10 1.5994e-04 1.6934e-07 + 2.6000e-04 -8.3262e+00 9.9890e-01 1.1014e-03 9.7408e-01 2.5925e-02 1.0000e-10 1.0000e-10 1.6631e-04 1.8338e-07 + 2.7000e-04 -8.3258e+00 9.9885e-01 1.1453e-03 9.7309e-01 2.6911e-02 1.0000e-10 1.0000e-10 1.7267e-04 1.9799e-07 + 2.8000e-04 -8.3254e+00 9.9881e-01 1.1893e-03 9.7210e-01 2.7897e-02 1.0000e-10 1.0000e-10 1.7904e-04 2.1319e-07 + 2.9000e-04 -8.3251e+00 9.9877e-01 1.2335e-03 9.7112e-01 2.8882e-02 1.0000e-10 1.0000e-10 1.8540e-04 2.2897e-07 + 3.0000e-04 -8.3247e+00 9.9872e-01 1.2777e-03 9.7013e-01 2.9866e-02 1.0000e-10 1.0000e-10 1.9176e-04 2.4533e-07 + 3.1000e-04 -8.3243e+00 9.9868e-01 1.3221e-03 9.6915e-01 3.0850e-02 1.0000e-10 1.0000e-10 1.9812e-04 2.6228e-07 + 3.2000e-04 -8.3239e+00 9.9863e-01 1.3666e-03 9.6817e-01 3.1833e-02 1.0000e-10 1.0000e-10 2.0448e-04 2.7981e-07 + 3.3000e-04 -8.3236e+00 9.9859e-01 1.4112e-03 9.6719e-01 3.2815e-02 1.0000e-10 1.0000e-10 2.1083e-04 2.9794e-07 + 3.4000e-04 -8.3232e+00 9.9854e-01 1.4559e-03 9.6620e-01 3.3796e-02 1.0000e-10 1.0000e-10 2.1718e-04 3.1666e-07 + 3.5000e-04 -8.3228e+00 9.9850e-01 1.5007e-03 9.6522e-01 3.4776e-02 1.0000e-10 1.0000e-10 2.2353e-04 3.3597e-07 + 3.6000e-04 -8.3224e+00 9.9845e-01 1.5457e-03 9.6424e-01 3.5756e-02 1.0000e-10 1.0000e-10 2.2988e-04 3.5588e-07 + 3.7000e-04 -8.3220e+00 9.9841e-01 1.5908e-03 9.6327e-01 3.6735e-02 1.0000e-10 1.0000e-10 2.3623e-04 3.7639e-07 + 3.8000e-04 -8.3217e+00 9.9836e-01 1.6360e-03 9.6229e-01 3.7713e-02 1.0000e-10 1.0000e-10 2.4257e-04 3.9750e-07 + 3.9000e-04 -8.3213e+00 9.9832e-01 1.6814e-03 9.6131e-01 3.8690e-02 1.0000e-10 1.0000e-10 2.4891e-04 4.1922e-07 + 4.0000e-04 -8.3209e+00 9.9827e-01 1.7268e-03 9.6033e-01 3.9667e-02 1.0000e-10 1.0000e-10 2.5525e-04 4.4154e-07 + 4.1000e-04 -8.3205e+00 9.9823e-01 1.7724e-03 9.5936e-01 4.0643e-02 1.0000e-10 1.0000e-10 2.6159e-04 4.6447e-07 + 4.2000e-04 -8.3201e+00 9.9818e-01 1.8182e-03 9.5838e-01 4.1618e-02 1.0000e-10 1.0000e-10 2.6792e-04 4.8801e-07 + 4.3000e-04 -8.3198e+00 9.9814e-01 1.8640e-03 9.5741e-01 4.2592e-02 1.0000e-10 1.0000e-10 2.7425e-04 5.1216e-07 + 4.4000e-04 -8.3194e+00 9.9809e-01 1.9100e-03 9.5643e-01 4.3566e-02 1.0000e-10 1.0000e-10 2.8058e-04 5.3693e-07 + 4.5000e-04 -8.3190e+00 9.9804e-01 1.9561e-03 9.5546e-01 4.4538e-02 1.0000e-10 1.0000e-10 2.8691e-04 5.6232e-07 + 4.6000e-04 -8.3186e+00 9.9800e-01 2.0023e-03 9.5449e-01 4.5510e-02 1.0000e-10 1.0000e-10 2.9324e-04 5.8832e-07 + 4.7000e-04 -8.3183e+00 9.9795e-01 2.0486e-03 9.5352e-01 4.6481e-02 1.0000e-10 1.0000e-10 2.9956e-04 6.1495e-07 + 4.8000e-04 -8.3179e+00 9.9790e-01 2.0951e-03 9.5255e-01 4.7452e-02 1.0000e-10 1.0000e-10 3.0588e-04 6.4221e-07 + 4.9000e-04 -8.3175e+00 9.9786e-01 2.1417e-03 9.5158e-01 4.8422e-02 1.0000e-10 1.0000e-10 3.1220e-04 6.7009e-07 + 5.0000e-04 -8.3171e+00 9.9781e-01 2.1885e-03 9.5061e-01 4.9390e-02 1.0000e-10 1.0000e-10 3.1852e-04 6.9860e-07 + 5.1000e-04 -8.3167e+00 9.9776e-01 2.2353e-03 9.4964e-01 5.0358e-02 1.0000e-10 1.0000e-10 3.2483e-04 7.2774e-07 + 5.2000e-04 -8.3164e+00 9.9772e-01 2.2823e-03 9.4867e-01 5.1326e-02 1.0000e-10 1.0000e-10 3.3115e-04 7.5752e-07 + 5.3000e-04 -8.3160e+00 9.9767e-01 2.3295e-03 9.4771e-01 5.2292e-02 1.0000e-10 1.0000e-10 3.3746e-04 7.8793e-07 + 5.4000e-04 -8.3156e+00 9.9762e-01 2.3767e-03 9.4674e-01 5.3258e-02 1.0000e-10 1.0000e-10 3.4377e-04 8.1899e-07 + 5.5000e-04 -8.3152e+00 9.9758e-01 2.4241e-03 9.4578e-01 5.4223e-02 1.0000e-10 1.0000e-10 3.5007e-04 8.5068e-07 + 5.6000e-04 -8.3148e+00 9.9753e-01 2.4717e-03 9.4481e-01 5.5187e-02 1.0000e-10 1.0000e-10 3.5638e-04 8.8302e-07 + 5.7000e-04 -8.3145e+00 9.9748e-01 2.5193e-03 9.4385e-01 5.6151e-02 1.0000e-10 1.0000e-10 3.6268e-04 9.1601e-07 + 5.8000e-04 -8.3141e+00 9.9743e-01 2.5671e-03 9.4289e-01 5.7114e-02 1.0000e-10 1.0000e-10 3.6898e-04 9.4965e-07 + 5.9000e-04 -8.3137e+00 9.9738e-01 2.6151e-03 9.4192e-01 5.8076e-02 1.0000e-10 1.0000e-10 3.7527e-04 9.8394e-07 + 6.0000e-04 -8.3133e+00 9.9734e-01 2.6631e-03 9.4096e-01 5.9037e-02 1.0000e-10 1.0000e-10 3.8157e-04 1.0189e-06 + 6.1000e-04 -8.3129e+00 9.9729e-01 2.7114e-03 9.4000e-01 5.9997e-02 1.0000e-10 1.0000e-10 3.8786e-04 1.0545e-06 + 6.2000e-04 -8.3126e+00 9.9724e-01 2.7597e-03 9.3904e-01 6.0957e-02 1.0000e-10 1.0000e-10 3.9415e-04 1.0908e-06 + 6.3000e-04 -8.3122e+00 9.9719e-01 2.8082e-03 9.3808e-01 6.1916e-02 1.0000e-10 1.0000e-10 4.0044e-04 1.1277e-06 + 6.4000e-04 -8.3118e+00 9.9714e-01 2.8568e-03 9.3713e-01 6.2874e-02 1.0000e-10 1.0000e-10 4.0673e-04 1.1653e-06 + 6.5000e-04 -8.3114e+00 9.9709e-01 2.9056e-03 9.3617e-01 6.3831e-02 1.0000e-10 1.0000e-10 4.1301e-04 1.2035e-06 + 6.6000e-04 -8.3110e+00 9.9705e-01 2.9545e-03 9.3521e-01 6.4788e-02 1.0000e-10 1.0000e-10 4.1929e-04 1.2425e-06 + 6.7000e-04 -8.3106e+00 9.9700e-01 3.0035e-03 9.3426e-01 6.5743e-02 1.0000e-10 1.0000e-10 4.2557e-04 1.2821e-06 + 6.8000e-04 -8.3103e+00 9.9695e-01 3.0527e-03 9.3330e-01 6.6698e-02 1.0000e-10 1.0000e-10 4.3185e-04 1.3223e-06 + 6.9000e-04 -8.3099e+00 9.9690e-01 3.1020e-03 9.3235e-01 6.7653e-02 1.0000e-10 1.0000e-10 4.3812e-04 1.3633e-06 + 7.0000e-04 -8.3095e+00 9.9685e-01 3.1515e-03 9.3139e-01 6.8606e-02 1.0000e-10 1.0000e-10 4.4440e-04 1.4049e-06 + 7.1000e-04 -8.3091e+00 9.9680e-01 3.2011e-03 9.3044e-01 6.9559e-02 1.0000e-10 1.0000e-10 4.5067e-04 1.4473e-06 + 7.2000e-04 -8.3087e+00 9.9675e-01 3.2509e-03 9.2949e-01 7.0511e-02 1.0000e-10 1.0000e-10 4.5693e-04 1.4903e-06 + 7.3000e-04 -8.3084e+00 9.9670e-01 3.3008e-03 9.2854e-01 7.1462e-02 1.0000e-10 1.0000e-10 4.6320e-04 1.5340e-06 + 7.4000e-04 -8.3080e+00 9.9665e-01 3.3508e-03 9.2759e-01 7.2412e-02 1.0000e-10 1.0000e-10 4.6946e-04 1.5784e-06 + 7.5000e-04 -8.3076e+00 9.9660e-01 3.4010e-03 9.2664e-01 7.3362e-02 1.0000e-10 1.0000e-10 4.7573e-04 1.6235e-06 + 7.6000e-04 -8.3072e+00 9.9655e-01 3.4514e-03 9.2569e-01 7.4311e-02 1.0000e-10 1.0000e-10 4.8198e-04 1.6693e-06 + 7.7000e-04 -8.3068e+00 9.9650e-01 3.5018e-03 9.2474e-01 7.5259e-02 1.0000e-10 1.0000e-10 4.8824e-04 1.7158e-06 + 7.8000e-04 -8.3065e+00 9.9645e-01 3.5525e-03 9.2379e-01 7.6206e-02 1.0000e-10 1.0000e-10 4.9450e-04 1.7630e-06 + 7.9000e-04 -8.3061e+00 9.9640e-01 3.6033e-03 9.2285e-01 7.7153e-02 1.0000e-10 1.0000e-10 5.0075e-04 1.8109e-06 + 8.0000e-04 -8.3057e+00 9.9635e-01 3.6542e-03 9.2190e-01 7.8099e-02 1.0000e-10 1.0000e-10 5.0700e-04 1.8595e-06 + 8.1000e-04 -8.3053e+00 9.9629e-01 3.7053e-03 9.2096e-01 7.9044e-02 1.0000e-10 1.0000e-10 5.1325e-04 1.9088e-06 + 8.2000e-04 -8.3049e+00 9.9624e-01 3.7565e-03 9.2001e-01 7.9988e-02 1.0000e-10 1.0000e-10 5.1949e-04 1.9588e-06 + 8.3000e-04 -8.3045e+00 9.9619e-01 3.8079e-03 9.1907e-01 8.0931e-02 1.0000e-10 1.0000e-10 5.2574e-04 2.0096e-06 + 8.4000e-04 -8.3042e+00 9.9614e-01 3.8595e-03 9.1813e-01 8.1874e-02 1.0000e-10 1.0000e-10 5.3198e-04 2.0611e-06 + 8.5000e-04 -8.3038e+00 9.9609e-01 3.9111e-03 9.1718e-01 8.2816e-02 1.0000e-10 1.0000e-10 5.3822e-04 2.1133e-06 + 8.6000e-04 -8.3034e+00 9.9604e-01 3.9630e-03 9.1624e-01 8.3757e-02 1.0000e-10 1.0000e-10 5.4445e-04 2.1663e-06 + 8.7000e-04 -8.3030e+00 9.9599e-01 4.0150e-03 9.1530e-01 8.4698e-02 1.0000e-10 1.0000e-10 5.5069e-04 2.2199e-06 + 8.8000e-04 -8.3026e+00 9.9593e-01 4.0672e-03 9.1436e-01 8.5638e-02 1.0000e-10 1.0000e-10 5.5692e-04 2.2743e-06 + 8.9000e-04 -8.3023e+00 9.9588e-01 4.1195e-03 9.1342e-01 8.6576e-02 1.0000e-10 1.0000e-10 5.6315e-04 2.3295e-06 + 9.0000e-04 -8.3019e+00 9.9583e-01 4.1719e-03 9.1249e-01 8.7515e-02 1.0000e-10 1.0000e-10 5.6938e-04 2.3854e-06 + 9.1000e-04 -8.3015e+00 9.9578e-01 4.2246e-03 9.1155e-01 8.8452e-02 1.0000e-10 1.0000e-10 5.7560e-04 2.4420e-06 + 9.2000e-04 -8.3011e+00 9.9572e-01 4.2774e-03 9.1061e-01 8.9389e-02 1.0000e-10 1.0000e-10 5.8183e-04 2.4994e-06 + 9.3000e-04 -8.3007e+00 9.9567e-01 4.3303e-03 9.0968e-01 9.0324e-02 1.0000e-10 1.0000e-10 5.8805e-04 2.5575e-06 + 9.4000e-04 -8.3003e+00 9.9562e-01 4.3834e-03 9.0874e-01 9.1260e-02 1.0000e-10 1.0000e-10 5.9427e-04 2.6164e-06 + 9.5000e-04 -8.3000e+00 9.9556e-01 4.4367e-03 9.0781e-01 9.2194e-02 1.0000e-10 1.0000e-10 6.0048e-04 2.6760e-06 + 9.6000e-04 -8.2996e+00 9.9551e-01 4.4901e-03 9.0687e-01 9.3127e-02 1.0000e-10 1.0000e-10 6.0670e-04 2.7364e-06 + 9.7000e-04 -8.2992e+00 9.9546e-01 4.5437e-03 9.0594e-01 9.4060e-02 1.0000e-10 1.0000e-10 6.1291e-04 2.7976e-06 + 9.8000e-04 -8.2988e+00 9.9540e-01 4.5975e-03 9.0501e-01 9.4992e-02 1.0000e-10 1.0000e-10 6.1912e-04 2.8595e-06 + 9.9000e-04 -8.2984e+00 9.9535e-01 4.6514e-03 9.0408e-01 9.5924e-02 1.0000e-10 1.0000e-10 6.2533e-04 2.9222e-06 + 1.0000e-03 -8.2980e+00 9.9529e-01 4.7055e-03 9.0315e-01 9.6854e-02 1.0000e-10 1.0000e-10 6.3153e-04 2.9857e-06 + 1.0100e-03 -8.2977e+00 9.9524e-01 4.7598e-03 9.0222e-01 9.7784e-02 1.0000e-10 1.0000e-10 6.3774e-04 3.0500e-06 + 1.0200e-03 -8.2974e+00 9.9210e-01 7.9009e-03 9.0147e-01 9.8526e-02 6.4545e-04 2.3524e-06 6.4269e-04 5.1183e-06 + 1.0300e-03 -8.2974e+00 9.7702e-01 2.2983e-02 9.0147e-01 9.8526e-02 6.4379e-04 1.4019e-05 6.4269e-04 1.5118e-05 + 1.0400e-03 -8.2974e+00 9.6239e-01 3.7613e-02 9.0147e-01 9.8526e-02 6.4212e-04 2.5685e-05 6.4269e-04 2.5118e-05 + 1.0500e-03 -8.2974e+00 9.4819e-01 5.1812e-02 9.0147e-01 9.8526e-02 6.4045e-04 3.7351e-05 6.4269e-04 3.5118e-05 + 1.0600e-03 -8.2974e+00 9.3440e-01 6.5598e-02 9.0147e-01 9.8526e-02 6.3879e-04 4.9017e-05 6.4269e-04 4.5118e-05 + 1.0700e-03 -8.2974e+00 9.2101e-01 7.8988e-02 9.0147e-01 9.8526e-02 6.3712e-04 6.0683e-05 6.4269e-04 5.5118e-05 + 1.0800e-03 -8.2974e+00 9.0800e-01 9.2000e-02 9.0147e-01 9.8526e-02 6.3545e-04 7.2350e-05 6.4269e-04 6.5118e-05 + 1.0900e-03 -8.2974e+00 8.9535e-01 1.0465e-01 9.0147e-01 9.8526e-02 6.3379e-04 8.4016e-05 6.4269e-04 7.5118e-05 + 1.1000e-03 -8.2974e+00 8.8305e-01 1.1695e-01 9.0147e-01 9.8526e-02 6.3212e-04 9.5682e-05 6.4269e-04 8.5118e-05 + 1.1100e-03 -8.2974e+00 8.7108e-01 1.2892e-01 9.0147e-01 9.8526e-02 6.3046e-04 1.0735e-04 6.4269e-04 9.5118e-05 + 1.1200e-03 -8.2974e+00 8.5943e-01 1.4057e-01 9.0147e-01 9.8526e-02 6.2879e-04 1.1901e-04 6.4269e-04 1.0512e-04 + 1.1300e-03 -8.2974e+00 8.4809e-01 1.5191e-01 9.0147e-01 9.8526e-02 6.2712e-04 1.3068e-04 6.4269e-04 1.1512e-04 + 1.1400e-03 -8.2974e+00 8.3704e-01 1.6296e-01 9.0147e-01 9.8526e-02 6.2546e-04 1.4235e-04 6.4269e-04 1.2512e-04 + 1.1500e-03 -8.2974e+00 8.2628e-01 1.7372e-01 9.0147e-01 9.8526e-02 6.2379e-04 1.5401e-04 6.4269e-04 1.3512e-04 + 1.1600e-03 -8.2974e+00 8.1579e-01 1.8421e-01 9.0147e-01 9.8526e-02 6.2212e-04 1.6568e-04 6.4269e-04 1.4512e-04 + 1.1700e-03 -8.2974e+00 8.0557e-01 1.9443e-01 9.0147e-01 9.8526e-02 6.2046e-04 1.7735e-04 6.4269e-04 1.5512e-04 + 1.1800e-03 -8.2974e+00 7.9560e-01 2.0440e-01 9.0147e-01 9.8526e-02 6.1879e-04 1.8901e-04 6.4269e-04 1.6512e-04 + 1.1900e-03 -8.2974e+00 7.8587e-01 2.1413e-01 9.0147e-01 9.8526e-02 6.1713e-04 2.0068e-04 6.4269e-04 1.7512e-04 + 1.2000e-03 -8.2974e+00 7.7637e-01 2.2363e-01 9.0147e-01 9.8526e-02 6.1546e-04 2.1234e-04 6.4269e-04 1.8512e-04 + 1.2100e-03 -8.2974e+00 7.6711e-01 2.3289e-01 9.0147e-01 9.8526e-02 6.1379e-04 2.2401e-04 6.4269e-04 1.9512e-04 + 1.2200e-03 -8.2974e+00 7.5806e-01 2.4194e-01 9.0147e-01 9.8526e-02 6.1213e-04 2.3568e-04 6.4269e-04 2.0512e-04 + 1.2300e-03 -8.2974e+00 7.4922e-01 2.5078e-01 9.0147e-01 9.8526e-02 6.1046e-04 2.4734e-04 6.4269e-04 2.1512e-04 + 1.2400e-03 -8.2974e+00 7.4059e-01 2.5941e-01 9.0147e-01 9.8526e-02 6.0880e-04 2.5901e-04 6.4269e-04 2.2512e-04 + 1.2500e-03 -8.2974e+00 7.3215e-01 2.6785e-01 9.0147e-01 9.8526e-02 6.0713e-04 2.7068e-04 6.4269e-04 2.3512e-04 + 1.2600e-03 -8.2974e+00 7.2390e-01 2.7610e-01 9.0147e-01 9.8526e-02 6.0546e-04 2.8234e-04 6.4269e-04 2.4512e-04 + 1.2700e-03 -8.2974e+00 7.1584e-01 2.8416e-01 9.0147e-01 9.8526e-02 6.0380e-04 2.9401e-04 6.4269e-04 2.5512e-04 + 1.2800e-03 -8.2974e+00 7.0796e-01 2.9204e-01 9.0147e-01 9.8526e-02 6.0213e-04 3.0567e-04 6.4269e-04 2.6512e-04 + 1.2900e-03 -8.2974e+00 7.0024e-01 2.9976e-01 9.0147e-01 9.8526e-02 6.0046e-04 3.1734e-04 6.4269e-04 2.7512e-04 + 1.3000e-03 -8.2974e+00 6.9270e-01 3.0730e-01 9.0147e-01 9.8526e-02 5.9880e-04 3.2901e-04 6.4269e-04 2.8512e-04 + 1.3100e-03 -8.2974e+00 6.8531e-01 3.1469e-01 9.0147e-01 9.8526e-02 5.9713e-04 3.4067e-04 6.4269e-04 2.9512e-04 + 1.3200e-03 -8.2974e+00 6.7808e-01 3.2192e-01 9.0147e-01 9.8526e-02 5.9547e-04 3.5234e-04 6.4269e-04 3.0512e-04 + 1.3300e-03 -8.2974e+00 6.7100e-01 3.2900e-01 9.0147e-01 9.8526e-02 5.9380e-04 3.6400e-04 6.4269e-04 3.1512e-04 + 1.3400e-03 -8.2974e+00 6.6407e-01 3.3593e-01 9.0147e-01 9.8526e-02 5.9213e-04 3.7567e-04 6.4269e-04 3.2512e-04 + 1.3500e-03 -8.2974e+00 6.5727e-01 3.4273e-01 9.0147e-01 9.8526e-02 5.9047e-04 3.8734e-04 6.4269e-04 3.3512e-04 + 1.3600e-03 -8.2974e+00 6.5062e-01 3.4938e-01 9.0147e-01 9.8526e-02 5.8880e-04 3.9900e-04 6.4269e-04 3.4512e-04 + 1.3700e-03 -8.2974e+00 6.4410e-01 3.5590e-01 9.0147e-01 9.8526e-02 5.8713e-04 4.1067e-04 6.4269e-04 3.5512e-04 + 1.3800e-03 -8.2974e+00 6.3771e-01 3.6229e-01 9.0147e-01 9.8526e-02 5.8547e-04 4.2234e-04 6.4269e-04 3.6512e-04 + 1.3900e-03 -8.2974e+00 6.3144e-01 3.6856e-01 9.0147e-01 9.8526e-02 5.8380e-04 4.3400e-04 6.4269e-04 3.7512e-04 + 1.4000e-03 -8.2974e+00 6.2530e-01 3.7470e-01 9.0147e-01 9.8526e-02 5.8214e-04 4.4567e-04 6.4269e-04 3.8512e-04 + 1.4100e-03 -8.2974e+00 6.1927e-01 3.8073e-01 9.0147e-01 9.8526e-02 5.8047e-04 4.5733e-04 6.4269e-04 3.9512e-04 + 1.4200e-03 -8.2974e+00 6.1336e-01 3.8664e-01 9.0147e-01 9.8526e-02 5.7880e-04 4.6900e-04 6.4269e-04 4.0512e-04 + 1.4300e-03 -8.2974e+00 6.0757e-01 3.9243e-01 9.0147e-01 9.8526e-02 5.7714e-04 4.8067e-04 6.4269e-04 4.1512e-04 + 1.4400e-03 -8.2974e+00 6.0188e-01 3.9812e-01 9.0147e-01 9.8526e-02 5.7547e-04 4.9233e-04 6.4269e-04 4.2512e-04 + 1.4500e-03 -8.2974e+00 5.9629e-01 4.0371e-01 9.0147e-01 9.8526e-02 5.7380e-04 5.0400e-04 6.4269e-04 4.3512e-04 + 1.4600e-03 -8.2974e+00 5.9081e-01 4.0919e-01 9.0147e-01 9.8526e-02 5.7214e-04 5.1567e-04 6.4269e-04 4.4512e-04 + 1.4700e-03 -8.2974e+00 5.8543e-01 4.1457e-01 9.0147e-01 9.8526e-02 5.7047e-04 5.2733e-04 6.4269e-04 4.5512e-04 + 1.4800e-03 -8.2974e+00 5.8014e-01 4.1986e-01 9.0147e-01 9.8526e-02 5.6881e-04 5.3900e-04 6.4269e-04 4.6512e-04 + 1.4900e-03 -8.2974e+00 5.7495e-01 4.2505e-01 9.0147e-01 9.8526e-02 5.6714e-04 5.5066e-04 6.4269e-04 4.7512e-04 + 1.5000e-03 -8.2974e+00 5.6986e-01 4.3014e-01 9.0147e-01 9.8526e-02 5.6547e-04 5.6233e-04 6.4269e-04 4.8512e-04 + 1.5100e-03 -8.2974e+00 5.6485e-01 4.3515e-01 9.0147e-01 9.8526e-02 5.6381e-04 5.7400e-04 6.4269e-04 4.9512e-04 + 1.5200e-03 -8.2974e+00 5.5993e-01 4.4007e-01 9.0147e-01 9.8526e-02 5.6214e-04 5.8566e-04 6.4269e-04 5.0512e-04 + 1.5300e-03 -8.2974e+00 5.5509e-01 4.4491e-01 9.0147e-01 9.8526e-02 5.6048e-04 5.9733e-04 6.4269e-04 5.1512e-04 + 1.5400e-03 -8.2974e+00 5.5034e-01 4.4966e-01 9.0147e-01 9.8526e-02 5.5881e-04 6.0899e-04 6.4269e-04 5.2512e-04 + 1.5500e-03 -8.2974e+00 5.4566e-01 4.5434e-01 9.0147e-01 9.8526e-02 5.5714e-04 6.2066e-04 6.4269e-04 5.3512e-04 + 1.5600e-03 -8.2974e+00 5.4107e-01 4.5893e-01 9.0147e-01 9.8526e-02 5.5548e-04 6.3233e-04 6.4269e-04 5.4512e-04 + 1.5700e-03 -8.2974e+00 5.3655e-01 4.6345e-01 9.0147e-01 9.8526e-02 5.5381e-04 6.4399e-04 6.4269e-04 5.5512e-04 + 1.5800e-03 -8.2974e+00 5.3211e-01 4.6789e-01 9.0147e-01 9.8526e-02 5.5214e-04 6.5566e-04 6.4269e-04 5.6512e-04 + 1.5900e-03 -8.2974e+00 5.2774e-01 4.7226e-01 9.0147e-01 9.8526e-02 5.5048e-04 6.6733e-04 6.4269e-04 5.7512e-04 + 1.6000e-03 -8.2974e+00 5.2344e-01 4.7656e-01 9.0147e-01 9.8526e-02 5.4881e-04 6.7899e-04 6.4269e-04 5.8512e-04 + 1.6100e-03 -8.2974e+00 5.1921e-01 4.8079e-01 9.0147e-01 9.8526e-02 5.4715e-04 6.9066e-04 6.4269e-04 5.9512e-04 + 1.6200e-03 -8.2974e+00 5.1505e-01 4.8495e-01 9.0147e-01 9.8526e-02 5.4548e-04 7.0232e-04 6.4269e-04 6.0512e-04 + 1.6300e-03 -8.2974e+00 5.1096e-01 4.8904e-01 9.0147e-01 9.8526e-02 5.4381e-04 7.1399e-04 6.4269e-04 6.1512e-04 + 1.6400e-03 -8.2974e+00 5.0693e-01 4.9307e-01 9.0147e-01 9.8526e-02 5.4215e-04 7.2566e-04 6.4269e-04 6.2512e-04 + 1.6500e-03 -8.2974e+00 5.0296e-01 4.9704e-01 9.0147e-01 9.8526e-02 5.4048e-04 7.3732e-04 6.4269e-04 6.3512e-04 + 1.6600e-03 -8.2974e+00 4.9906e-01 5.0094e-01 9.0147e-01 9.8526e-02 5.3881e-04 7.4899e-04 6.4269e-04 6.4512e-04 + 1.6700e-03 -8.2974e+00 4.9521e-01 5.0479e-01 9.0147e-01 9.8526e-02 5.3715e-04 7.6066e-04 6.4269e-04 6.5512e-04 + 1.6800e-03 -8.2974e+00 4.9142e-01 5.0858e-01 9.0147e-01 9.8526e-02 5.3548e-04 7.7232e-04 6.4269e-04 6.6512e-04 + 1.6900e-03 -8.2974e+00 4.8769e-01 5.1231e-01 9.0147e-01 9.8526e-02 5.3382e-04 7.8399e-04 6.4269e-04 6.7512e-04 + 1.7000e-03 -8.2974e+00 4.8402e-01 5.1598e-01 9.0147e-01 9.8526e-02 5.3215e-04 7.9565e-04 6.4269e-04 6.8512e-04 + 1.7100e-03 -8.2974e+00 4.8040e-01 5.1960e-01 9.0147e-01 9.8526e-02 5.3048e-04 8.0732e-04 6.4269e-04 6.9512e-04 + 1.7200e-03 -8.2974e+00 4.7684e-01 5.2316e-01 9.0147e-01 9.8526e-02 5.2882e-04 8.1899e-04 6.4269e-04 7.0512e-04 + 1.7300e-03 -8.2974e+00 4.7333e-01 5.2667e-01 9.0147e-01 9.8526e-02 5.2715e-04 8.3065e-04 6.4269e-04 7.1512e-04 + 1.7400e-03 -8.2974e+00 4.6987e-01 5.3013e-01 9.0147e-01 9.8526e-02 5.2549e-04 8.4232e-04 6.4269e-04 7.2512e-04 + 1.7500e-03 -8.2974e+00 4.6646e-01 5.3354e-01 9.0147e-01 9.8526e-02 5.2382e-04 8.5399e-04 6.4269e-04 7.3512e-04 + 1.7600e-03 -8.2974e+00 4.6310e-01 5.3690e-01 9.0147e-01 9.8526e-02 5.2215e-04 8.6565e-04 6.4269e-04 7.4512e-04 + 1.7700e-03 -8.2974e+00 4.5978e-01 5.4022e-01 9.0147e-01 9.8526e-02 5.2049e-04 8.7732e-04 6.4269e-04 7.5512e-04 + 1.7800e-03 -8.2974e+00 4.5652e-01 5.4348e-01 9.0147e-01 9.8526e-02 5.1882e-04 8.8898e-04 6.4269e-04 7.6512e-04 + 1.7900e-03 -8.2974e+00 4.5330e-01 5.4670e-01 9.0147e-01 9.8526e-02 5.1715e-04 9.0065e-04 6.4269e-04 7.7512e-04 + 1.8000e-03 -8.2974e+00 4.5012e-01 5.4988e-01 9.0147e-01 9.8526e-02 5.1549e-04 9.1232e-04 6.4269e-04 7.8512e-04 + 1.8100e-03 -8.2974e+00 4.4699e-01 5.5301e-01 9.0147e-01 9.8526e-02 5.1382e-04 9.2398e-04 6.4269e-04 7.9512e-04 + 1.8200e-03 -8.2974e+00 4.4390e-01 5.5610e-01 9.0147e-01 9.8526e-02 5.1216e-04 9.3565e-04 6.4269e-04 8.0512e-04 + 1.8300e-03 -8.2974e+00 4.4086e-01 5.5914e-01 9.0147e-01 9.8526e-02 5.1049e-04 9.4731e-04 6.4269e-04 8.1512e-04 + 1.8400e-03 -8.2974e+00 4.3786e-01 5.6214e-01 9.0147e-01 9.8526e-02 5.0882e-04 9.5898e-04 6.4269e-04 8.2512e-04 + 1.8500e-03 -8.2974e+00 4.3489e-01 5.6511e-01 9.0147e-01 9.8526e-02 5.0716e-04 9.7065e-04 6.4269e-04 8.3512e-04 + 1.8600e-03 -8.2974e+00 4.3197e-01 5.6803e-01 9.0147e-01 9.8526e-02 5.0549e-04 9.8231e-04 6.4269e-04 8.4512e-04 + 1.8700e-03 -8.2974e+00 4.2909e-01 5.7091e-01 9.0147e-01 9.8526e-02 5.0382e-04 9.9398e-04 6.4269e-04 8.5512e-04 + 1.8800e-03 -8.2974e+00 4.2624e-01 5.7376e-01 9.0147e-01 9.8526e-02 5.0216e-04 1.0056e-03 6.4269e-04 8.6512e-04 + 1.8900e-03 -8.2974e+00 4.2343e-01 5.7657e-01 9.0147e-01 9.8526e-02 5.0049e-04 1.0173e-03 6.4269e-04 8.7512e-04 + 1.9000e-03 -8.2974e+00 4.2066e-01 5.7934e-01 9.0147e-01 9.8526e-02 4.9883e-04 1.0290e-03 6.4269e-04 8.8512e-04 + 1.9100e-03 -8.2974e+00 4.1792e-01 5.8208e-01 9.0147e-01 9.8526e-02 4.9716e-04 1.0406e-03 6.4269e-04 8.9512e-04 + 1.9200e-03 -8.2974e+00 4.1522e-01 5.8478e-01 9.0147e-01 9.8526e-02 4.9549e-04 1.0523e-03 6.4269e-04 9.0512e-04 + 1.9300e-03 -8.2974e+00 4.1256e-01 5.8744e-01 9.0147e-01 9.8526e-02 4.9383e-04 1.0640e-03 6.4269e-04 9.1512e-04 + 1.9400e-03 -8.2974e+00 4.0993e-01 5.9007e-01 9.0147e-01 9.8526e-02 4.9216e-04 1.0756e-03 6.4269e-04 9.2512e-04 + 1.9500e-03 -8.2974e+00 4.0733e-01 5.9267e-01 9.0147e-01 9.8526e-02 4.9049e-04 1.0873e-03 6.4269e-04 9.3512e-04 + 1.9600e-03 -8.2974e+00 4.0476e-01 5.9524e-01 9.0147e-01 9.8526e-02 4.8883e-04 1.0990e-03 6.4269e-04 9.4512e-04 + 1.9700e-03 -8.2974e+00 4.0223e-01 5.9777e-01 9.0147e-01 9.8526e-02 4.8716e-04 1.1106e-03 6.4269e-04 9.5512e-04 + 1.9800e-03 -8.2974e+00 3.9973e-01 6.0027e-01 9.0147e-01 9.8526e-02 4.8550e-04 1.1223e-03 6.4269e-04 9.6512e-04 + 1.9900e-03 -8.2974e+00 3.9726e-01 6.0274e-01 9.0147e-01 9.8526e-02 4.8383e-04 1.1340e-03 6.4269e-04 9.7512e-04 + 2.0000e-03 -8.2974e+00 3.9482e-01 6.0518e-01 9.0147e-01 9.8526e-02 4.8216e-04 1.1456e-03 6.4269e-04 9.8512e-04 + 2.0100e-03 -8.2974e+00 3.9241e-01 6.0759e-01 9.0147e-01 9.8526e-02 4.8050e-04 1.1573e-03 6.4269e-04 9.9512e-04 + 2.0200e-03 -8.2974e+00 3.9003e-01 6.0997e-01 9.0147e-01 9.8526e-02 4.7883e-04 1.1690e-03 6.4269e-04 1.0051e-03 + 2.0300e-03 -8.2974e+00 3.8767e-01 6.1233e-01 9.0147e-01 9.8526e-02 4.7717e-04 1.1806e-03 6.4269e-04 1.0151e-03 + 2.0400e-03 -8.2974e+00 3.8535e-01 6.1465e-01 9.0147e-01 9.8526e-02 4.7550e-04 1.1923e-03 6.4269e-04 1.0251e-03 + 2.0500e-03 -8.2974e+00 3.8305e-01 6.1695e-01 9.0147e-01 9.8526e-02 4.7383e-04 1.2040e-03 6.4269e-04 1.0351e-03 + 2.0600e-03 -8.2974e+00 3.8078e-01 6.1922e-01 9.0147e-01 9.8526e-02 4.7217e-04 1.2156e-03 6.4269e-04 1.0451e-03 + 2.0700e-03 -8.2974e+00 3.7854e-01 6.2146e-01 9.0147e-01 9.8526e-02 4.7050e-04 1.2273e-03 6.4269e-04 1.0551e-03 + 2.0800e-03 -8.2974e+00 3.7632e-01 6.2368e-01 9.0147e-01 9.8526e-02 4.6883e-04 1.2390e-03 6.4269e-04 1.0651e-03 + 2.0900e-03 -8.2974e+00 3.7413e-01 6.2587e-01 9.0147e-01 9.8526e-02 4.6717e-04 1.2506e-03 6.4269e-04 1.0751e-03 + 2.1000e-03 -8.2974e+00 3.7197e-01 6.2803e-01 9.0147e-01 9.8526e-02 4.6550e-04 1.2623e-03 6.4269e-04 1.0851e-03 + 2.1100e-03 -8.2974e+00 3.6983e-01 6.3017e-01 9.0147e-01 9.8526e-02 4.6384e-04 1.2740e-03 6.4269e-04 1.0951e-03 + 2.1200e-03 -8.2974e+00 3.6771e-01 6.3229e-01 9.0147e-01 9.8526e-02 4.6217e-04 1.2856e-03 6.4269e-04 1.1051e-03 + 2.1300e-03 -8.2974e+00 3.6562e-01 6.3438e-01 9.0147e-01 9.8526e-02 4.6050e-04 1.2973e-03 6.4269e-04 1.1151e-03 + 2.1400e-03 -8.2974e+00 3.6355e-01 6.3645e-01 9.0147e-01 9.8526e-02 4.5884e-04 1.3090e-03 6.4269e-04 1.1251e-03 + 2.1500e-03 -8.2974e+00 3.6151e-01 6.3849e-01 9.0147e-01 9.8526e-02 4.5717e-04 1.3206e-03 6.4269e-04 1.1351e-03 + 2.1600e-03 -8.2974e+00 3.5948e-01 6.4052e-01 9.0147e-01 9.8526e-02 4.5550e-04 1.3323e-03 6.4269e-04 1.1451e-03 + 2.1700e-03 -8.2974e+00 3.5748e-01 6.4252e-01 9.0147e-01 9.8526e-02 4.5384e-04 1.3440e-03 6.4269e-04 1.1551e-03 + 2.1800e-03 -8.2974e+00 3.5551e-01 6.4449e-01 9.0147e-01 9.8526e-02 4.5217e-04 1.3556e-03 6.4269e-04 1.1651e-03 + 2.1900e-03 -8.2974e+00 3.5355e-01 6.4645e-01 9.0147e-01 9.8526e-02 4.5051e-04 1.3673e-03 6.4269e-04 1.1751e-03 + 2.2000e-03 -8.2974e+00 3.5162e-01 6.4838e-01 9.0147e-01 9.8526e-02 4.4884e-04 1.3790e-03 6.4269e-04 1.1851e-03 + 2.2100e-03 -8.2974e+00 3.4970e-01 6.5030e-01 9.0147e-01 9.8526e-02 4.4717e-04 1.3906e-03 6.4269e-04 1.1951e-03 + 2.2200e-03 -8.2974e+00 3.4781e-01 6.5219e-01 9.0147e-01 9.8526e-02 4.4551e-04 1.4023e-03 6.4269e-04 1.2051e-03 + 2.2300e-03 -8.2974e+00 3.4594e-01 6.5406e-01 9.0147e-01 9.8526e-02 4.4384e-04 1.4140e-03 6.4269e-04 1.2151e-03 + 2.2400e-03 -8.2974e+00 3.4409e-01 6.5591e-01 9.0147e-01 9.8526e-02 4.4217e-04 1.4256e-03 6.4269e-04 1.2251e-03 + 2.2500e-03 -8.2974e+00 3.4225e-01 6.5775e-01 9.0147e-01 9.8526e-02 4.4051e-04 1.4373e-03 6.4269e-04 1.2351e-03 + 2.2600e-03 -8.2974e+00 3.4044e-01 6.5956e-01 9.0147e-01 9.8526e-02 4.3884e-04 1.4490e-03 6.4269e-04 1.2451e-03 + 2.2700e-03 -8.2974e+00 3.3865e-01 6.6135e-01 9.0147e-01 9.8526e-02 4.3718e-04 1.4606e-03 6.4269e-04 1.2551e-03 + 2.2800e-03 -8.2974e+00 3.3687e-01 6.6313e-01 9.0147e-01 9.8526e-02 4.3551e-04 1.4723e-03 6.4269e-04 1.2651e-03 + 2.2900e-03 -8.2974e+00 3.3512e-01 6.6488e-01 9.0147e-01 9.8526e-02 4.3384e-04 1.4840e-03 6.4269e-04 1.2751e-03 + 2.3000e-03 -8.2974e+00 3.3338e-01 6.6662e-01 9.0147e-01 9.8526e-02 4.3218e-04 1.4956e-03 6.4269e-04 1.2851e-03 + 2.3100e-03 -8.2974e+00 3.3166e-01 6.6834e-01 9.0147e-01 9.8526e-02 4.3051e-04 1.5073e-03 6.4269e-04 1.2951e-03 + 2.3200e-03 -8.2974e+00 3.2995e-01 6.7005e-01 9.0147e-01 9.8526e-02 4.2885e-04 1.5190e-03 6.4269e-04 1.3051e-03 + 2.3300e-03 -8.2974e+00 3.2827e-01 6.7173e-01 9.0147e-01 9.8526e-02 4.2718e-04 1.5306e-03 6.4269e-04 1.3151e-03 + 2.3400e-03 -8.2974e+00 3.2660e-01 6.7340e-01 9.0147e-01 9.8526e-02 4.2551e-04 1.5423e-03 6.4269e-04 1.3251e-03 + 2.3500e-03 -8.2974e+00 3.2495e-01 6.7505e-01 9.0147e-01 9.8526e-02 4.2385e-04 1.5540e-03 6.4269e-04 1.3351e-03 + 2.3600e-03 -8.2974e+00 3.2331e-01 6.7669e-01 9.0147e-01 9.8526e-02 4.2218e-04 1.5656e-03 6.4269e-04 1.3451e-03 + 2.3700e-03 -8.2974e+00 3.2170e-01 6.7830e-01 9.0147e-01 9.8526e-02 4.2051e-04 1.5773e-03 6.4269e-04 1.3551e-03 + 2.3800e-03 -8.2974e+00 3.2009e-01 6.7991e-01 9.0147e-01 9.8526e-02 4.1885e-04 1.5890e-03 6.4269e-04 1.3651e-03 + 2.3900e-03 -8.2974e+00 3.1851e-01 6.8149e-01 9.0147e-01 9.8526e-02 4.1718e-04 1.6006e-03 6.4269e-04 1.3751e-03 + 2.4000e-03 -8.2974e+00 3.1694e-01 6.8306e-01 9.0147e-01 9.8526e-02 4.1552e-04 1.6123e-03 6.4269e-04 1.3851e-03 + 2.4100e-03 -8.2974e+00 3.1538e-01 6.8462e-01 9.0147e-01 9.8526e-02 4.1385e-04 1.6240e-03 6.4269e-04 1.3951e-03 + 2.4200e-03 -8.2974e+00 3.1384e-01 6.8616e-01 9.0147e-01 9.8526e-02 4.1218e-04 1.6356e-03 6.4269e-04 1.4051e-03 + 2.4300e-03 -8.2974e+00 3.1232e-01 6.8768e-01 9.0147e-01 9.8526e-02 4.1052e-04 1.6473e-03 6.4269e-04 1.4151e-03 + 2.4400e-03 -8.2974e+00 3.1081e-01 6.8919e-01 9.0147e-01 9.8526e-02 4.0885e-04 1.6590e-03 6.4269e-04 1.4251e-03 + 2.4500e-03 -8.2974e+00 3.0931e-01 6.9069e-01 9.0147e-01 9.8526e-02 4.0718e-04 1.6706e-03 6.4269e-04 1.4351e-03 + 2.4600e-03 -8.2974e+00 3.0783e-01 6.9217e-01 9.0147e-01 9.8526e-02 4.0552e-04 1.6823e-03 6.4269e-04 1.4451e-03 + 2.4700e-03 -8.2974e+00 3.0636e-01 6.9364e-01 9.0147e-01 9.8526e-02 4.0385e-04 1.6940e-03 6.4269e-04 1.4551e-03 + 2.4800e-03 -8.2974e+00 3.0491e-01 6.9509e-01 9.0147e-01 9.8526e-02 4.0219e-04 1.7056e-03 6.4269e-04 1.4651e-03 + 2.4900e-03 -8.2974e+00 3.0347e-01 6.9653e-01 9.0147e-01 9.8526e-02 4.0052e-04 1.7173e-03 6.4269e-04 1.4751e-03 + 2.5000e-03 -8.2974e+00 3.0204e-01 6.9796e-01 9.0147e-01 9.8526e-02 3.9885e-04 1.7290e-03 6.4269e-04 1.4851e-03 + 2.5100e-03 -8.2974e+00 3.0063e-01 6.9937e-01 9.0147e-01 9.8526e-02 3.9719e-04 1.7406e-03 6.4269e-04 1.4951e-03 + 2.5200e-03 -8.2974e+00 2.9923e-01 7.0077e-01 9.0147e-01 9.8526e-02 3.9552e-04 1.7523e-03 6.4269e-04 1.5051e-03 + 2.5300e-03 -8.2974e+00 2.9784e-01 7.0216e-01 9.0147e-01 9.8526e-02 3.9386e-04 1.7639e-03 6.4269e-04 1.5151e-03 + 2.5400e-03 -8.2974e+00 2.9647e-01 7.0353e-01 9.0147e-01 9.8526e-02 3.9219e-04 1.7756e-03 6.4269e-04 1.5251e-03 + 2.5500e-03 -8.2974e+00 2.9511e-01 7.0489e-01 9.0147e-01 9.8526e-02 3.9052e-04 1.7873e-03 6.4269e-04 1.5351e-03 + 2.5600e-03 -8.2974e+00 2.9376e-01 7.0624e-01 9.0147e-01 9.8526e-02 3.8886e-04 1.7989e-03 6.4269e-04 1.5451e-03 + 2.5700e-03 -8.2974e+00 2.9242e-01 7.0758e-01 9.0147e-01 9.8526e-02 3.8719e-04 1.8106e-03 6.4269e-04 1.5551e-03 + 2.5800e-03 -8.2974e+00 2.9110e-01 7.0890e-01 9.0147e-01 9.8526e-02 3.8552e-04 1.8223e-03 6.4269e-04 1.5651e-03 + 2.5900e-03 -8.2974e+00 2.8978e-01 7.1022e-01 9.0147e-01 9.8526e-02 3.8386e-04 1.8339e-03 6.4269e-04 1.5751e-03 + 2.6000e-03 -8.2974e+00 2.8848e-01 7.1152e-01 9.0147e-01 9.8526e-02 3.8219e-04 1.8456e-03 6.4269e-04 1.5851e-03 + 2.6100e-03 -8.2974e+00 2.8719e-01 7.1281e-01 9.0147e-01 9.8526e-02 3.8053e-04 1.8573e-03 6.4269e-04 1.5951e-03 + 2.6200e-03 -8.2974e+00 2.8592e-01 7.1408e-01 9.0147e-01 9.8526e-02 3.7886e-04 1.8689e-03 6.4269e-04 1.6051e-03 + 2.6300e-03 -8.2974e+00 2.8465e-01 7.1535e-01 9.0147e-01 9.8526e-02 3.7719e-04 1.8806e-03 6.4269e-04 1.6151e-03 + 2.6400e-03 -8.2974e+00 2.8340e-01 7.1660e-01 9.0147e-01 9.8526e-02 3.7553e-04 1.8923e-03 6.4269e-04 1.6251e-03 + 2.6500e-03 -8.2974e+00 2.8215e-01 7.1785e-01 9.0147e-01 9.8526e-02 3.7386e-04 1.9039e-03 6.4269e-04 1.6351e-03 + 2.6600e-03 -8.2974e+00 2.8092e-01 7.1908e-01 9.0147e-01 9.8526e-02 3.7219e-04 1.9156e-03 6.4269e-04 1.6451e-03 + 2.6700e-03 -8.2974e+00 2.7970e-01 7.2030e-01 9.0147e-01 9.8526e-02 3.7053e-04 1.9273e-03 6.4269e-04 1.6551e-03 + 2.6800e-03 -8.2974e+00 2.7848e-01 7.2152e-01 9.0147e-01 9.8526e-02 3.6886e-04 1.9389e-03 6.4269e-04 1.6651e-03 + 2.6900e-03 -8.2974e+00 2.7728e-01 7.2272e-01 9.0147e-01 9.8526e-02 3.6720e-04 1.9506e-03 6.4269e-04 1.6751e-03 + 2.7000e-03 -8.2974e+00 2.7609e-01 7.2391e-01 9.0147e-01 9.8526e-02 3.6553e-04 1.9623e-03 6.4269e-04 1.6851e-03 + 2.7100e-03 -8.2974e+00 2.7491e-01 7.2509e-01 9.0147e-01 9.8526e-02 3.6386e-04 1.9739e-03 6.4269e-04 1.6951e-03 + 2.7200e-03 -8.2974e+00 2.7374e-01 7.2626e-01 9.0147e-01 9.8526e-02 3.6220e-04 1.9856e-03 6.4269e-04 1.7051e-03 + 2.7300e-03 -8.2974e+00 2.7258e-01 7.2742e-01 9.0147e-01 9.8526e-02 3.6053e-04 1.9973e-03 6.4269e-04 1.7151e-03 + 2.7400e-03 -8.2974e+00 2.7143e-01 7.2857e-01 9.0147e-01 9.8526e-02 3.5886e-04 2.0089e-03 6.4269e-04 1.7251e-03 + 2.7500e-03 -8.2974e+00 2.7029e-01 7.2971e-01 9.0147e-01 9.8526e-02 3.5720e-04 2.0206e-03 6.4269e-04 1.7351e-03 + 2.7600e-03 -8.2974e+00 2.6915e-01 7.3085e-01 9.0147e-01 9.8526e-02 3.5553e-04 2.0323e-03 6.4269e-04 1.7451e-03 + 2.7700e-03 -8.2974e+00 2.6803e-01 7.3197e-01 9.0147e-01 9.8526e-02 3.5387e-04 2.0439e-03 6.4269e-04 1.7551e-03 + 2.7800e-03 -8.2974e+00 2.6692e-01 7.3308e-01 9.0147e-01 9.8526e-02 3.5220e-04 2.0556e-03 6.4269e-04 1.7651e-03 + 2.7900e-03 -8.2974e+00 2.6581e-01 7.3419e-01 9.0147e-01 9.8526e-02 3.5053e-04 2.0673e-03 6.4269e-04 1.7751e-03 + 2.8000e-03 -8.2974e+00 2.6472e-01 7.3528e-01 9.0147e-01 9.8526e-02 3.4887e-04 2.0789e-03 6.4269e-04 1.7851e-03 + 2.8100e-03 -8.2974e+00 2.6363e-01 7.3637e-01 9.0147e-01 9.8526e-02 3.4720e-04 2.0906e-03 6.4269e-04 1.7951e-03 + 2.8200e-03 -8.2974e+00 2.6256e-01 7.3744e-01 9.0147e-01 9.8526e-02 3.4554e-04 2.1023e-03 6.4269e-04 1.8051e-03 + 2.8300e-03 -8.2974e+00 2.6149e-01 7.3851e-01 9.0147e-01 9.8526e-02 3.4387e-04 2.1139e-03 6.4269e-04 1.8151e-03 + 2.8400e-03 -8.2974e+00 2.6043e-01 7.3957e-01 9.0147e-01 9.8526e-02 3.4220e-04 2.1256e-03 6.4269e-04 1.8251e-03 + 2.8500e-03 -8.2974e+00 2.5938e-01 7.4062e-01 9.0147e-01 9.8526e-02 3.4054e-04 2.1373e-03 6.4269e-04 1.8351e-03 + 2.8600e-03 -8.2974e+00 2.5833e-01 7.4167e-01 9.0147e-01 9.8526e-02 3.3887e-04 2.1489e-03 6.4269e-04 1.8451e-03 + 2.8700e-03 -8.2974e+00 2.5730e-01 7.4270e-01 9.0147e-01 9.8526e-02 3.3720e-04 2.1606e-03 6.4269e-04 1.8551e-03 + 2.8800e-03 -8.2974e+00 2.5627e-01 7.4373e-01 9.0147e-01 9.8526e-02 3.3554e-04 2.1723e-03 6.4269e-04 1.8651e-03 + 2.8900e-03 -8.2974e+00 2.5526e-01 7.4474e-01 9.0147e-01 9.8526e-02 3.3387e-04 2.1839e-03 6.4269e-04 1.8751e-03 + 2.9000e-03 -8.2974e+00 2.5425e-01 7.4575e-01 9.0147e-01 9.8526e-02 3.3221e-04 2.1956e-03 6.4269e-04 1.8851e-03 + 2.9100e-03 -8.2974e+00 2.5324e-01 7.4676e-01 9.0147e-01 9.8526e-02 3.3054e-04 2.2073e-03 6.4269e-04 1.8951e-03 + 2.9200e-03 -8.2974e+00 2.5225e-01 7.4775e-01 9.0147e-01 9.8526e-02 3.2887e-04 2.2189e-03 6.4269e-04 1.9051e-03 + 2.9300e-03 -8.2974e+00 2.5126e-01 7.4874e-01 9.0147e-01 9.8526e-02 3.2721e-04 2.2306e-03 6.4269e-04 1.9151e-03 + 2.9400e-03 -8.2974e+00 2.5029e-01 7.4971e-01 9.0147e-01 9.8526e-02 3.2554e-04 2.2423e-03 6.4269e-04 1.9251e-03 + 2.9500e-03 -8.2974e+00 2.4932e-01 7.5068e-01 9.0147e-01 9.8526e-02 3.2387e-04 2.2539e-03 6.4269e-04 1.9351e-03 + 2.9600e-03 -8.2974e+00 2.4835e-01 7.5165e-01 9.0147e-01 9.8526e-02 3.2221e-04 2.2656e-03 6.4269e-04 1.9451e-03 + 2.9700e-03 -8.2974e+00 2.4740e-01 7.5260e-01 9.0147e-01 9.8526e-02 3.2054e-04 2.2773e-03 6.4269e-04 1.9551e-03 + 2.9800e-03 -8.2974e+00 2.4645e-01 7.5355e-01 9.0147e-01 9.8526e-02 3.1888e-04 2.2889e-03 6.4269e-04 1.9651e-03 + 2.9900e-03 -8.2974e+00 2.4551e-01 7.5449e-01 9.0147e-01 9.8526e-02 3.1721e-04 2.3006e-03 6.4269e-04 1.9751e-03 + 3.0000e-03 -8.2974e+00 2.4457e-01 7.5543e-01 9.0147e-01 9.8526e-02 3.1554e-04 2.3123e-03 6.4269e-04 1.9851e-03 + 3.0100e-03 -8.2974e+00 2.4364e-01 7.5636e-01 9.0147e-01 9.8526e-02 3.1388e-04 2.3239e-03 6.4269e-04 1.9951e-03 + 3.0200e-03 -8.2974e+00 2.4272e-01 7.5728e-01 9.0147e-01 9.8526e-02 3.1221e-04 2.3356e-03 6.4269e-04 2.0051e-03 + 3.0300e-03 -8.2974e+00 2.4181e-01 7.5819e-01 9.0147e-01 9.8526e-02 3.1054e-04 2.3473e-03 6.4269e-04 2.0151e-03 + 3.0400e-03 -8.2974e+00 2.4090e-01 7.5910e-01 9.0147e-01 9.8526e-02 3.0888e-04 2.3589e-03 6.4269e-04 2.0251e-03 + 3.0500e-03 -8.2974e+00 2.4000e-01 7.6000e-01 9.0147e-01 9.8526e-02 3.0721e-04 2.3706e-03 6.4269e-04 2.0351e-03 + 3.0600e-03 -8.2974e+00 2.3911e-01 7.6089e-01 9.0147e-01 9.8526e-02 3.0555e-04 2.3823e-03 6.4269e-04 2.0451e-03 + 3.0700e-03 -8.2974e+00 2.3823e-01 7.6177e-01 9.0147e-01 9.8526e-02 3.0388e-04 2.3939e-03 6.4269e-04 2.0551e-03 + 3.0800e-03 -8.2974e+00 2.3735e-01 7.6265e-01 9.0147e-01 9.8526e-02 3.0221e-04 2.4056e-03 6.4269e-04 2.0651e-03 + 3.0900e-03 -8.2974e+00 2.3647e-01 7.6353e-01 9.0147e-01 9.8526e-02 3.0055e-04 2.4173e-03 6.4269e-04 2.0751e-03 + 3.1000e-03 -8.2974e+00 2.3561e-01 7.6439e-01 9.0147e-01 9.8526e-02 2.9888e-04 2.4289e-03 6.4269e-04 2.0851e-03 + 3.1100e-03 -8.2974e+00 2.3474e-01 7.6526e-01 9.0147e-01 9.8526e-02 2.9722e-04 2.4406e-03 6.4269e-04 2.0951e-03 + 3.1200e-03 -8.2974e+00 2.3389e-01 7.6611e-01 9.0147e-01 9.8526e-02 2.9555e-04 2.4523e-03 6.4269e-04 2.1051e-03 + 3.1300e-03 -8.2974e+00 2.3304e-01 7.6696e-01 9.0147e-01 9.8526e-02 2.9388e-04 2.4639e-03 6.4269e-04 2.1151e-03 + 3.1400e-03 -8.2974e+00 2.3220e-01 7.6780e-01 9.0147e-01 9.8526e-02 2.9222e-04 2.4756e-03 6.4269e-04 2.1251e-03 + 3.1500e-03 -8.2974e+00 2.3136e-01 7.6864e-01 9.0147e-01 9.8526e-02 2.9055e-04 2.4873e-03 6.4269e-04 2.1351e-03 + 3.1600e-03 -8.2974e+00 2.3053e-01 7.6947e-01 9.0147e-01 9.8526e-02 2.8888e-04 2.4989e-03 6.4269e-04 2.1451e-03 + 3.1700e-03 -8.2974e+00 2.2971e-01 7.7029e-01 9.0147e-01 9.8526e-02 2.8722e-04 2.5106e-03 6.4269e-04 2.1551e-03 + 3.1800e-03 -8.2974e+00 2.2889e-01 7.7111e-01 9.0147e-01 9.8526e-02 2.8555e-04 2.5223e-03 6.4269e-04 2.1651e-03 + 3.1900e-03 -8.2974e+00 2.2808e-01 7.7192e-01 9.0147e-01 9.8526e-02 2.8389e-04 2.5339e-03 6.4269e-04 2.1751e-03 + 3.2000e-03 -8.2974e+00 2.2727e-01 7.7273e-01 9.0147e-01 9.8526e-02 2.8222e-04 2.5456e-03 6.4269e-04 2.1851e-03 + 3.2100e-03 -8.2974e+00 2.2647e-01 7.7353e-01 9.0147e-01 9.8526e-02 2.8055e-04 2.5573e-03 6.4269e-04 2.1951e-03 + 3.2200e-03 -8.2974e+00 2.2568e-01 7.7432e-01 9.0147e-01 9.8526e-02 2.7889e-04 2.5689e-03 6.4269e-04 2.2051e-03 + 3.2300e-03 -8.2974e+00 2.2489e-01 7.7511e-01 9.0147e-01 9.8526e-02 2.7722e-04 2.5806e-03 6.4269e-04 2.2151e-03 + 3.2400e-03 -8.2974e+00 2.2410e-01 7.7590e-01 9.0147e-01 9.8526e-02 2.7555e-04 2.5922e-03 6.4269e-04 2.2251e-03 + 3.2500e-03 -8.2974e+00 2.2333e-01 7.7667e-01 9.0147e-01 9.8526e-02 2.7389e-04 2.6039e-03 6.4269e-04 2.2351e-03 + 3.2600e-03 -8.2974e+00 2.2255e-01 7.7745e-01 9.0147e-01 9.8526e-02 2.7222e-04 2.6156e-03 6.4269e-04 2.2451e-03 + 3.2700e-03 -8.2974e+00 2.2178e-01 7.7822e-01 9.0147e-01 9.8526e-02 2.7056e-04 2.6272e-03 6.4269e-04 2.2551e-03 + 3.2800e-03 -8.2974e+00 2.2102e-01 7.7898e-01 9.0147e-01 9.8526e-02 2.6889e-04 2.6389e-03 6.4269e-04 2.2651e-03 + 3.2900e-03 -8.2974e+00 2.2026e-01 7.7974e-01 9.0147e-01 9.8526e-02 2.6722e-04 2.6506e-03 6.4269e-04 2.2751e-03 + 3.3000e-03 -8.2974e+00 2.1951e-01 7.8049e-01 9.0147e-01 9.8526e-02 2.6556e-04 2.6622e-03 6.4269e-04 2.2851e-03 + 3.3100e-03 -8.2974e+00 2.1876e-01 7.8124e-01 9.0147e-01 9.8526e-02 2.6389e-04 2.6739e-03 6.4269e-04 2.2951e-03 + 3.3200e-03 -8.2974e+00 2.1802e-01 7.8198e-01 9.0147e-01 9.8526e-02 2.6223e-04 2.6856e-03 6.4269e-04 2.3051e-03 + 3.3300e-03 -8.2974e+00 2.1728e-01 7.8272e-01 9.0147e-01 9.8526e-02 2.6056e-04 2.6972e-03 6.4269e-04 2.3151e-03 + 3.3400e-03 -8.2974e+00 2.1655e-01 7.8345e-01 9.0147e-01 9.8526e-02 2.5889e-04 2.7089e-03 6.4269e-04 2.3251e-03 + 3.3500e-03 -8.2974e+00 2.1583e-01 7.8417e-01 9.0147e-01 9.8526e-02 2.5723e-04 2.7206e-03 6.4269e-04 2.3351e-03 + 3.3600e-03 -8.2974e+00 2.1510e-01 7.8490e-01 9.0147e-01 9.8526e-02 2.5556e-04 2.7322e-03 6.4269e-04 2.3451e-03 + 3.3700e-03 -8.2974e+00 2.1439e-01 7.8561e-01 9.0147e-01 9.8526e-02 2.5389e-04 2.7439e-03 6.4269e-04 2.3551e-03 + 3.3800e-03 -8.2974e+00 2.1367e-01 7.8633e-01 9.0147e-01 9.8526e-02 2.5223e-04 2.7556e-03 6.4269e-04 2.3651e-03 + 3.3900e-03 -8.2974e+00 2.1296e-01 7.8704e-01 9.0147e-01 9.8526e-02 2.5056e-04 2.7672e-03 6.4269e-04 2.3751e-03 + 3.4000e-03 -8.2974e+00 2.1226e-01 7.8774e-01 9.0147e-01 9.8526e-02 2.4890e-04 2.7789e-03 6.4269e-04 2.3851e-03 + 3.4100e-03 -8.2974e+00 2.1156e-01 7.8844e-01 9.0147e-01 9.8526e-02 2.4723e-04 2.7906e-03 6.4269e-04 2.3951e-03 + 3.4200e-03 -8.2974e+00 2.1087e-01 7.8913e-01 9.0147e-01 9.8526e-02 2.4556e-04 2.8022e-03 6.4269e-04 2.4051e-03 + 3.4300e-03 -8.2974e+00 2.1018e-01 7.8982e-01 9.0147e-01 9.8526e-02 2.4390e-04 2.8139e-03 6.4269e-04 2.4151e-03 + 3.4400e-03 -8.2974e+00 2.0949e-01 7.9051e-01 9.0147e-01 9.8526e-02 2.4223e-04 2.8256e-03 6.4269e-04 2.4251e-03 + 3.4500e-03 -8.2974e+00 2.0881e-01 7.9119e-01 9.0147e-01 9.8526e-02 2.4056e-04 2.8372e-03 6.4269e-04 2.4351e-03 + 3.4600e-03 -8.2974e+00 2.0814e-01 7.9186e-01 9.0147e-01 9.8526e-02 2.3890e-04 2.8489e-03 6.4269e-04 2.4451e-03 + 3.4700e-03 -8.2974e+00 2.0746e-01 7.9254e-01 9.0147e-01 9.8526e-02 2.3723e-04 2.8606e-03 6.4269e-04 2.4551e-03 + 3.4800e-03 -8.2974e+00 2.0680e-01 7.9320e-01 9.0147e-01 9.8526e-02 2.3557e-04 2.8722e-03 6.4269e-04 2.4651e-03 + 3.4900e-03 -8.2974e+00 2.0613e-01 7.9387e-01 9.0147e-01 9.8526e-02 2.3390e-04 2.8839e-03 6.4269e-04 2.4751e-03 + 3.5000e-03 -8.2974e+00 2.0548e-01 7.9452e-01 9.0147e-01 9.8526e-02 2.3223e-04 2.8956e-03 6.4269e-04 2.4851e-03 + 3.5100e-03 -8.2974e+00 2.0482e-01 7.9518e-01 9.0147e-01 9.8526e-02 2.3057e-04 2.9072e-03 6.4269e-04 2.4951e-03 + 3.5200e-03 -8.2974e+00 2.0417e-01 7.9583e-01 9.0147e-01 9.8526e-02 2.2890e-04 2.9189e-03 6.4269e-04 2.5051e-03 + 3.5300e-03 -8.2974e+00 2.0352e-01 7.9648e-01 9.0147e-01 9.8526e-02 2.2723e-04 2.9306e-03 6.4269e-04 2.5151e-03 + 3.5400e-03 -8.2974e+00 2.0288e-01 7.9712e-01 9.0147e-01 9.8526e-02 2.2557e-04 2.9422e-03 6.4269e-04 2.5251e-03 + 3.5500e-03 -8.2974e+00 2.0224e-01 7.9776e-01 9.0147e-01 9.8526e-02 2.2390e-04 2.9539e-03 6.4269e-04 2.5351e-03 + 3.5600e-03 -8.2974e+00 2.0161e-01 7.9839e-01 9.0147e-01 9.8526e-02 2.2224e-04 2.9656e-03 6.4269e-04 2.5451e-03 + 3.5700e-03 -8.2974e+00 2.0098e-01 7.9902e-01 9.0147e-01 9.8526e-02 2.2057e-04 2.9772e-03 6.4269e-04 2.5551e-03 + 3.5800e-03 -8.2974e+00 2.0035e-01 7.9965e-01 9.0147e-01 9.8526e-02 2.1890e-04 2.9889e-03 6.4269e-04 2.5651e-03 + 3.5900e-03 -8.2974e+00 1.9973e-01 8.0027e-01 9.0147e-01 9.8526e-02 2.1724e-04 3.0006e-03 6.4269e-04 2.5751e-03 + 3.6000e-03 -8.2974e+00 1.9911e-01 8.0089e-01 9.0147e-01 9.8526e-02 2.1557e-04 3.0122e-03 6.4269e-04 2.5851e-03 + 3.6100e-03 -8.2974e+00 1.9849e-01 8.0151e-01 9.0147e-01 9.8526e-02 2.1391e-04 3.0239e-03 6.4269e-04 2.5951e-03 + 3.6200e-03 -8.2974e+00 1.9788e-01 8.0212e-01 9.0147e-01 9.8526e-02 2.1224e-04 3.0356e-03 6.4269e-04 2.6051e-03 + 3.6300e-03 -8.2974e+00 1.9728e-01 8.0272e-01 9.0147e-01 9.8526e-02 2.1057e-04 3.0472e-03 6.4269e-04 2.6151e-03 + 3.6400e-03 -8.2974e+00 1.9667e-01 8.0333e-01 9.0147e-01 9.8526e-02 2.0891e-04 3.0589e-03 6.4269e-04 2.6251e-03 + 3.6500e-03 -8.2974e+00 1.9607e-01 8.0393e-01 9.0147e-01 9.8526e-02 2.0724e-04 3.0706e-03 6.4269e-04 2.6351e-03 + 3.6600e-03 -8.2974e+00 1.9548e-01 8.0452e-01 9.0147e-01 9.8526e-02 2.0557e-04 3.0822e-03 6.4269e-04 2.6451e-03 + 3.6700e-03 -8.2974e+00 1.9488e-01 8.0512e-01 9.0147e-01 9.8526e-02 2.0391e-04 3.0939e-03 6.4269e-04 2.6551e-03 + 3.6800e-03 -8.2974e+00 1.9429e-01 8.0571e-01 9.0147e-01 9.8526e-02 2.0224e-04 3.1056e-03 6.4269e-04 2.6651e-03 + 3.6900e-03 -8.2974e+00 1.9371e-01 8.0629e-01 9.0147e-01 9.8526e-02 2.0058e-04 3.1172e-03 6.4269e-04 2.6751e-03 + 3.7000e-03 -8.2974e+00 1.9313e-01 8.0687e-01 9.0147e-01 9.8526e-02 1.9891e-04 3.1289e-03 6.4269e-04 2.6851e-03 + 3.7100e-03 -8.2974e+00 1.9255e-01 8.0745e-01 9.0147e-01 9.8526e-02 1.9724e-04 3.1406e-03 6.4269e-04 2.6951e-03 + 3.7200e-03 -8.2974e+00 1.9197e-01 8.0803e-01 9.0147e-01 9.8526e-02 1.9558e-04 3.1522e-03 6.4269e-04 2.7051e-03 + 3.7300e-03 -8.2974e+00 1.9140e-01 8.0860e-01 9.0147e-01 9.8526e-02 1.9391e-04 3.1639e-03 6.4269e-04 2.7151e-03 + 3.7400e-03 -8.2974e+00 1.9083e-01 8.0917e-01 9.0147e-01 9.8526e-02 1.9224e-04 3.1756e-03 6.4269e-04 2.7251e-03 + 3.7500e-03 -8.2974e+00 1.9027e-01 8.0973e-01 9.0147e-01 9.8526e-02 1.9058e-04 3.1872e-03 6.4269e-04 2.7351e-03 + 3.7600e-03 -8.2974e+00 1.8971e-01 8.1029e-01 9.0147e-01 9.8526e-02 1.8891e-04 3.1989e-03 6.4269e-04 2.7451e-03 + 3.7700e-03 -8.2974e+00 1.8915e-01 8.1085e-01 9.0147e-01 9.8526e-02 1.8725e-04 3.2106e-03 6.4269e-04 2.7551e-03 + 3.7800e-03 -8.2974e+00 1.8859e-01 8.1141e-01 9.0147e-01 9.8526e-02 1.8558e-04 3.2222e-03 6.4269e-04 2.7651e-03 + 3.7900e-03 -8.2974e+00 1.8804e-01 8.1196e-01 9.0147e-01 9.8526e-02 1.8391e-04 3.2339e-03 6.4269e-04 2.7751e-03 + 3.8000e-03 -8.2974e+00 1.8749e-01 8.1251e-01 9.0147e-01 9.8526e-02 1.8225e-04 3.2456e-03 6.4269e-04 2.7851e-03 + 3.8100e-03 -8.2974e+00 1.8695e-01 8.1305e-01 9.0147e-01 9.8526e-02 1.8058e-04 3.2572e-03 6.4269e-04 2.7951e-03 + 3.8200e-03 -8.2974e+00 1.8640e-01 8.1360e-01 9.0147e-01 9.8526e-02 1.7891e-04 3.2689e-03 6.4269e-04 2.8051e-03 + 3.8300e-03 -8.2974e+00 1.8587e-01 8.1413e-01 9.0147e-01 9.8526e-02 1.7725e-04 3.2806e-03 6.4269e-04 2.8151e-03 + 3.8400e-03 -8.2974e+00 1.8533e-01 8.1467e-01 9.0147e-01 9.8526e-02 1.7558e-04 3.2922e-03 6.4269e-04 2.8251e-03 + 3.8500e-03 -8.2974e+00 1.8480e-01 8.1520e-01 9.0147e-01 9.8526e-02 1.7392e-04 3.3039e-03 6.4269e-04 2.8351e-03 + 3.8600e-03 -8.2974e+00 1.8427e-01 8.1573e-01 9.0147e-01 9.8526e-02 1.7225e-04 3.3156e-03 6.4269e-04 2.8451e-03 + 3.8700e-03 -8.2974e+00 1.8374e-01 8.1626e-01 9.0147e-01 9.8526e-02 1.7058e-04 3.3272e-03 6.4269e-04 2.8551e-03 + 3.8800e-03 -8.2974e+00 1.8322e-01 8.1678e-01 9.0147e-01 9.8526e-02 1.6892e-04 3.3389e-03 6.4269e-04 2.8651e-03 + 3.8900e-03 -8.2974e+00 1.8270e-01 8.1730e-01 9.0147e-01 9.8526e-02 1.6725e-04 3.3506e-03 6.4269e-04 2.8751e-03 + 3.9000e-03 -8.2974e+00 1.8218e-01 8.1782e-01 9.0147e-01 9.8526e-02 1.6559e-04 3.3622e-03 6.4269e-04 2.8851e-03 + 3.9100e-03 -8.2974e+00 1.8166e-01 8.1834e-01 9.0147e-01 9.8526e-02 1.6392e-04 3.3739e-03 6.4269e-04 2.8951e-03 + 3.9200e-03 -8.2974e+00 1.8115e-01 8.1885e-01 9.0147e-01 9.8526e-02 1.6225e-04 3.3856e-03 6.4269e-04 2.9051e-03 + 3.9300e-03 -8.2974e+00 1.8064e-01 8.1936e-01 9.0147e-01 9.8526e-02 1.6059e-04 3.3972e-03 6.4269e-04 2.9151e-03 + 3.9400e-03 -8.2974e+00 1.8013e-01 8.1987e-01 9.0147e-01 9.8526e-02 1.5892e-04 3.4089e-03 6.4269e-04 2.9251e-03 + 3.9500e-03 -8.2974e+00 1.7963e-01 8.2037e-01 9.0147e-01 9.8526e-02 1.5725e-04 3.4205e-03 6.4269e-04 2.9351e-03 + 3.9600e-03 -8.2974e+00 1.7913e-01 8.2087e-01 9.0147e-01 9.8526e-02 1.5559e-04 3.4322e-03 6.4269e-04 2.9451e-03 + 3.9700e-03 -8.2974e+00 1.7863e-01 8.2137e-01 9.0147e-01 9.8526e-02 1.5392e-04 3.4439e-03 6.4269e-04 2.9551e-03 + 3.9800e-03 -8.2974e+00 1.7814e-01 8.2186e-01 9.0147e-01 9.8526e-02 1.5226e-04 3.4555e-03 6.4269e-04 2.9651e-03 + 3.9900e-03 -8.2974e+00 1.7765e-01 8.2235e-01 9.0147e-01 9.8526e-02 1.5059e-04 3.4672e-03 6.4269e-04 2.9751e-03 + 4.0000e-03 -8.2974e+00 1.7716e-01 8.2284e-01 9.0147e-01 9.8526e-02 1.4892e-04 3.4789e-03 6.4269e-04 2.9851e-03 + 4.0100e-03 -8.2974e+00 1.7667e-01 8.2333e-01 9.0147e-01 9.8526e-02 1.4726e-04 3.4905e-03 6.4269e-04 2.9951e-03 + 4.0200e-03 -8.2974e+00 1.7618e-01 8.2382e-01 9.0147e-01 9.8526e-02 1.4559e-04 3.5022e-03 6.4269e-04 3.0051e-03 + 4.0300e-03 -8.2974e+00 1.7570e-01 8.2430e-01 9.0147e-01 9.8526e-02 1.4392e-04 3.5139e-03 6.4269e-04 3.0151e-03 + 4.0400e-03 -8.2974e+00 1.7522e-01 8.2478e-01 9.0147e-01 9.8526e-02 1.4226e-04 3.5255e-03 6.4269e-04 3.0251e-03 + 4.0500e-03 -8.2974e+00 1.7475e-01 8.2525e-01 9.0147e-01 9.8526e-02 1.4059e-04 3.5372e-03 6.4269e-04 3.0351e-03 + 4.0600e-03 -8.2974e+00 1.7427e-01 8.2573e-01 9.0147e-01 9.8526e-02 1.3893e-04 3.5489e-03 6.4269e-04 3.0451e-03 + 4.0700e-03 -8.2974e+00 1.7380e-01 8.2620e-01 9.0147e-01 9.8526e-02 1.3726e-04 3.5605e-03 6.4269e-04 3.0551e-03 + 4.0800e-03 -8.2974e+00 1.7333e-01 8.2667e-01 9.0147e-01 9.8526e-02 1.3559e-04 3.5722e-03 6.4269e-04 3.0651e-03 + 4.0900e-03 -8.2974e+00 1.7287e-01 8.2713e-01 9.0147e-01 9.8526e-02 1.3393e-04 3.5839e-03 6.4269e-04 3.0751e-03 + 4.1000e-03 -8.2974e+00 1.7240e-01 8.2760e-01 9.0147e-01 9.8526e-02 1.3226e-04 3.5955e-03 6.4269e-04 3.0851e-03 + 4.1100e-03 -8.2974e+00 1.7194e-01 8.2806e-01 9.0147e-01 9.8526e-02 1.3060e-04 3.6072e-03 6.4269e-04 3.0951e-03 + 4.1200e-03 -8.2974e+00 1.7148e-01 8.2852e-01 9.0147e-01 9.8526e-02 1.2893e-04 3.6189e-03 6.4269e-04 3.1051e-03 + 4.1300e-03 -8.2974e+00 1.7103e-01 8.2897e-01 9.0147e-01 9.8526e-02 1.2726e-04 3.6305e-03 6.4269e-04 3.1151e-03 + 4.1400e-03 -8.2974e+00 1.7057e-01 8.2943e-01 9.0147e-01 9.8526e-02 1.2560e-04 3.6422e-03 6.4269e-04 3.1251e-03 + 4.1500e-03 -8.2974e+00 1.7012e-01 8.2988e-01 9.0147e-01 9.8526e-02 1.2393e-04 3.6539e-03 6.4269e-04 3.1351e-03 + 4.1600e-03 -8.2974e+00 1.6967e-01 8.3033e-01 9.0147e-01 9.8526e-02 1.2226e-04 3.6655e-03 6.4269e-04 3.1451e-03 + 4.1700e-03 -8.2974e+00 1.6923e-01 8.3077e-01 9.0147e-01 9.8526e-02 1.2060e-04 3.6772e-03 6.4269e-04 3.1551e-03 + 4.1800e-03 -8.2974e+00 1.6878e-01 8.3122e-01 9.0147e-01 9.8526e-02 1.1893e-04 3.6889e-03 6.4269e-04 3.1651e-03 + 4.1900e-03 -8.2974e+00 1.6834e-01 8.3166e-01 9.0147e-01 9.8526e-02 1.1727e-04 3.7005e-03 6.4269e-04 3.1751e-03 + 4.2000e-03 -8.2974e+00 1.6790e-01 8.3210e-01 9.0147e-01 9.8526e-02 1.1560e-04 3.7122e-03 6.4269e-04 3.1851e-03 + 4.2100e-03 -8.2974e+00 1.6746e-01 8.3254e-01 9.0147e-01 9.8526e-02 1.1393e-04 3.7239e-03 6.4269e-04 3.1951e-03 + 4.2200e-03 -8.2974e+00 1.6703e-01 8.3297e-01 9.0147e-01 9.8526e-02 1.1227e-04 3.7355e-03 6.4269e-04 3.2051e-03 + 4.2300e-03 -8.2974e+00 1.6659e-01 8.3341e-01 9.0147e-01 9.8526e-02 1.1060e-04 3.7472e-03 6.4269e-04 3.2151e-03 + 4.2400e-03 -8.2974e+00 1.6616e-01 8.3384e-01 9.0147e-01 9.8526e-02 1.0893e-04 3.7589e-03 6.4269e-04 3.2251e-03 + 4.2500e-03 -8.2974e+00 1.6573e-01 8.3427e-01 9.0147e-01 9.8526e-02 1.0727e-04 3.7705e-03 6.4269e-04 3.2351e-03 + 4.2600e-03 -8.2974e+00 1.6531e-01 8.3469e-01 9.0147e-01 9.8526e-02 1.0560e-04 3.7822e-03 6.4269e-04 3.2451e-03 + 4.2700e-03 -8.2974e+00 1.6488e-01 8.3512e-01 9.0147e-01 9.8526e-02 1.0394e-04 3.7939e-03 6.4269e-04 3.2551e-03 + 4.2800e-03 -8.2974e+00 1.6446e-01 8.3554e-01 9.0147e-01 9.8526e-02 1.0227e-04 3.8055e-03 6.4269e-04 3.2651e-03 + 4.2900e-03 -8.2974e+00 1.6404e-01 8.3596e-01 9.0147e-01 9.8526e-02 1.0060e-04 3.8172e-03 6.4269e-04 3.2751e-03 + 4.3000e-03 -8.2974e+00 1.6362e-01 8.3638e-01 9.0147e-01 9.8526e-02 9.8937e-05 3.8289e-03 6.4269e-04 3.2851e-03 + 4.3100e-03 -8.2974e+00 1.6321e-01 8.3679e-01 9.0147e-01 9.8526e-02 9.7271e-05 3.8405e-03 6.4269e-04 3.2951e-03 + 4.3200e-03 -8.2974e+00 1.6280e-01 8.3720e-01 9.0147e-01 9.8526e-02 9.5605e-05 3.8522e-03 6.4269e-04 3.3051e-03 + 4.3300e-03 -8.2974e+00 1.6238e-01 8.3762e-01 9.0147e-01 9.8526e-02 9.3939e-05 3.8639e-03 6.4269e-04 3.3151e-03 + 4.3400e-03 -8.2974e+00 1.6198e-01 8.3802e-01 9.0147e-01 9.8526e-02 9.2272e-05 3.8755e-03 6.4269e-04 3.3251e-03 + 4.3500e-03 -8.2974e+00 1.6157e-01 8.3843e-01 9.0147e-01 9.8526e-02 9.0606e-05 3.8872e-03 6.4269e-04 3.3351e-03 + 4.3600e-03 -8.2974e+00 1.6116e-01 8.3884e-01 9.0147e-01 9.8526e-02 8.8940e-05 3.8989e-03 6.4269e-04 3.3451e-03 + 4.3700e-03 -8.2974e+00 1.6076e-01 8.3924e-01 9.0147e-01 9.8526e-02 8.7274e-05 3.9105e-03 6.4269e-04 3.3551e-03 + 4.3800e-03 -8.2974e+00 1.6036e-01 8.3964e-01 9.0147e-01 9.8526e-02 8.5608e-05 3.9222e-03 6.4269e-04 3.3651e-03 + 4.3900e-03 -8.2974e+00 1.5996e-01 8.4004e-01 9.0147e-01 9.8526e-02 8.3941e-05 3.9339e-03 6.4269e-04 3.3751e-03 + 4.4000e-03 -8.2974e+00 1.5956e-01 8.4044e-01 9.0147e-01 9.8526e-02 8.2275e-05 3.9455e-03 6.4269e-04 3.3851e-03 + 4.4100e-03 -8.2974e+00 1.5917e-01 8.4083e-01 9.0147e-01 9.8526e-02 8.0609e-05 3.9572e-03 6.4269e-04 3.3951e-03 + 4.4200e-03 -8.2974e+00 1.5877e-01 8.4123e-01 9.0147e-01 9.8526e-02 7.8943e-05 3.9689e-03 6.4269e-04 3.4051e-03 + 4.4300e-03 -8.2974e+00 1.5838e-01 8.4162e-01 9.0147e-01 9.8526e-02 7.7277e-05 3.9805e-03 6.4269e-04 3.4151e-03 + 4.4400e-03 -8.2974e+00 1.5799e-01 8.4201e-01 9.0147e-01 9.8526e-02 7.5610e-05 3.9922e-03 6.4269e-04 3.4251e-03 + 4.4500e-03 -8.2974e+00 1.5761e-01 8.4239e-01 9.0147e-01 9.8526e-02 7.3944e-05 4.0039e-03 6.4269e-04 3.4351e-03 + 4.4600e-03 -8.2974e+00 1.5722e-01 8.4278e-01 9.0147e-01 9.8526e-02 7.2278e-05 4.0155e-03 6.4269e-04 3.4451e-03 + 4.4700e-03 -8.2974e+00 1.5684e-01 8.4316e-01 9.0147e-01 9.8526e-02 7.0612e-05 4.0272e-03 6.4269e-04 3.4551e-03 + 4.4800e-03 -8.2974e+00 1.5645e-01 8.4355e-01 9.0147e-01 9.8526e-02 6.8946e-05 4.0389e-03 6.4269e-04 3.4651e-03 + 4.4900e-03 -8.2974e+00 1.5607e-01 8.4393e-01 9.0147e-01 9.8526e-02 6.7279e-05 4.0505e-03 6.4269e-04 3.4751e-03 + 4.5000e-03 -8.2974e+00 1.5570e-01 8.4430e-01 9.0147e-01 9.8526e-02 6.5613e-05 4.0622e-03 6.4269e-04 3.4851e-03 + 4.5100e-03 -8.2974e+00 1.5532e-01 8.4468e-01 9.0147e-01 9.8526e-02 6.3947e-05 4.0739e-03 6.4269e-04 3.4951e-03 + 4.5200e-03 -8.2974e+00 1.5495e-01 8.4505e-01 9.0147e-01 9.8526e-02 6.2281e-05 4.0855e-03 6.4269e-04 3.5051e-03 + 4.5300e-03 -8.2974e+00 1.5457e-01 8.4543e-01 9.0147e-01 9.8526e-02 6.0615e-05 4.0972e-03 6.4269e-04 3.5151e-03 + 4.5400e-03 -8.2974e+00 1.5420e-01 8.4580e-01 9.0147e-01 9.8526e-02 5.8948e-05 4.1089e-03 6.4269e-04 3.5251e-03 + 4.5500e-03 -8.2974e+00 1.5383e-01 8.4617e-01 9.0147e-01 9.8526e-02 5.7282e-05 4.1205e-03 6.4269e-04 3.5351e-03 + 4.5600e-03 -8.2974e+00 1.5347e-01 8.4653e-01 9.0147e-01 9.8526e-02 5.5616e-05 4.1322e-03 6.4269e-04 3.5451e-03 + 4.5700e-03 -8.2974e+00 1.5310e-01 8.4690e-01 9.0147e-01 9.8526e-02 5.3950e-05 4.1439e-03 6.4269e-04 3.5551e-03 + 4.5800e-03 -8.2974e+00 1.5274e-01 8.4726e-01 9.0147e-01 9.8526e-02 5.2284e-05 4.1555e-03 6.4269e-04 3.5651e-03 + 4.5900e-03 -8.2974e+00 1.5237e-01 8.4763e-01 9.0147e-01 9.8526e-02 5.0617e-05 4.1672e-03 6.4269e-04 3.5751e-03 + 4.6000e-03 -8.2974e+00 1.5201e-01 8.4799e-01 9.0147e-01 9.8526e-02 4.8951e-05 4.1789e-03 6.4269e-04 3.5851e-03 + 4.6100e-03 -8.2974e+00 1.5166e-01 8.4834e-01 9.0147e-01 9.8526e-02 4.7285e-05 4.1905e-03 6.4269e-04 3.5951e-03 + 4.6200e-03 -8.2974e+00 1.5130e-01 8.4870e-01 9.0147e-01 9.8526e-02 4.5619e-05 4.2022e-03 6.4269e-04 3.6051e-03 + 4.6300e-03 -8.2974e+00 1.5094e-01 8.4906e-01 9.0147e-01 9.8526e-02 4.3953e-05 4.2139e-03 6.4269e-04 3.6151e-03 + 4.6400e-03 -8.2974e+00 1.5059e-01 8.4941e-01 9.0147e-01 9.8526e-02 4.2286e-05 4.2255e-03 6.4269e-04 3.6251e-03 + 4.6500e-03 -8.2974e+00 1.5024e-01 8.4976e-01 9.0147e-01 9.8526e-02 4.0620e-05 4.2372e-03 6.4269e-04 3.6351e-03 + 4.6600e-03 -8.2974e+00 1.4989e-01 8.5011e-01 9.0147e-01 9.8526e-02 3.8954e-05 4.2488e-03 6.4269e-04 3.6451e-03 + 4.6700e-03 -8.2974e+00 1.4954e-01 8.5046e-01 9.0147e-01 9.8526e-02 3.7288e-05 4.2605e-03 6.4269e-04 3.6551e-03 + 4.6800e-03 -8.2974e+00 1.4919e-01 8.5081e-01 9.0147e-01 9.8526e-02 3.5622e-05 4.2722e-03 6.4269e-04 3.6651e-03 + 4.6900e-03 -8.2974e+00 1.4885e-01 8.5115e-01 9.0147e-01 9.8526e-02 3.3955e-05 4.2838e-03 6.4269e-04 3.6751e-03 + 4.7000e-03 -8.2974e+00 1.4850e-01 8.5150e-01 9.0147e-01 9.8526e-02 3.2289e-05 4.2955e-03 6.4269e-04 3.6851e-03 + 4.7100e-03 -8.2974e+00 1.4816e-01 8.5184e-01 9.0147e-01 9.8526e-02 3.0623e-05 4.3072e-03 6.4269e-04 3.6951e-03 + 4.7200e-03 -8.2974e+00 1.4782e-01 8.5218e-01 9.0147e-01 9.8526e-02 2.8957e-05 4.3188e-03 6.4269e-04 3.7051e-03 + 4.7300e-03 -8.2974e+00 1.4748e-01 8.5252e-01 9.0147e-01 9.8526e-02 2.7291e-05 4.3305e-03 6.4269e-04 3.7151e-03 + 4.7400e-03 -8.2974e+00 1.4714e-01 8.5286e-01 9.0147e-01 9.8526e-02 2.5624e-05 4.3422e-03 6.4269e-04 3.7251e-03 + 4.7500e-03 -8.2974e+00 1.4681e-01 8.5319e-01 9.0147e-01 9.8526e-02 2.3958e-05 4.3538e-03 6.4269e-04 3.7351e-03 + 4.7600e-03 -8.2974e+00 1.4647e-01 8.5353e-01 9.0147e-01 9.8526e-02 2.2292e-05 4.3655e-03 6.4269e-04 3.7451e-03 + 4.7700e-03 -8.2974e+00 1.4614e-01 8.5386e-01 9.0147e-01 9.8526e-02 2.0626e-05 4.3772e-03 6.4269e-04 3.7551e-03 + 4.7800e-03 -8.2974e+00 1.4581e-01 8.5419e-01 9.0147e-01 9.8526e-02 1.8960e-05 4.3888e-03 6.4269e-04 3.7651e-03 + 4.7900e-03 -8.2974e+00 1.4548e-01 8.5452e-01 9.0147e-01 9.8526e-02 1.7293e-05 4.4005e-03 6.4269e-04 3.7751e-03 + 4.8000e-03 -8.2974e+00 1.4515e-01 8.5485e-01 9.0147e-01 9.8526e-02 1.5627e-05 4.4122e-03 6.4269e-04 3.7851e-03 + 4.8100e-03 -8.2974e+00 1.4482e-01 8.5518e-01 9.0147e-01 9.8526e-02 1.3961e-05 4.4238e-03 6.4269e-04 3.7951e-03 + 4.8200e-03 -8.2974e+00 1.4450e-01 8.5550e-01 9.0147e-01 9.8526e-02 1.2295e-05 4.4355e-03 6.4269e-04 3.8051e-03 + 4.8300e-03 -8.2974e+00 1.4417e-01 8.5583e-01 9.0147e-01 9.8526e-02 1.0629e-05 4.4472e-03 6.4269e-04 3.8151e-03 + 4.8400e-03 -8.2974e+00 1.4385e-01 8.5615e-01 9.0147e-01 9.8526e-02 8.9624e-06 4.4588e-03 6.4269e-04 3.8251e-03 + 4.8500e-03 -8.2974e+00 1.4353e-01 8.5647e-01 9.0147e-01 9.8526e-02 7.2962e-06 4.4705e-03 6.4269e-04 3.8351e-03 + 4.8600e-03 -8.2974e+00 1.4321e-01 8.5679e-01 9.0147e-01 9.8526e-02 5.6300e-06 4.4822e-03 6.4269e-04 3.8451e-03 + 4.8700e-03 -8.2974e+00 1.4289e-01 8.5711e-01 9.0147e-01 9.8526e-02 3.9638e-06 4.4938e-03 6.4269e-04 3.8551e-03 + 4.8800e-03 -8.2974e+00 1.4257e-01 8.5743e-01 9.0147e-01 9.8526e-02 2.2976e-06 4.5055e-03 6.4269e-04 3.8651e-03 + 4.8900e-03 -8.2974e+00 1.4226e-01 8.5774e-01 9.0147e-01 9.8526e-02 6.3139e-07 4.5172e-03 6.4269e-04 3.8751e-03 + 4.9000e-03 -8.2974e+00 1.4211e-01 8.5789e-01 9.0145e-01 9.8548e-02 1.0000e-10 1.0000e-10 6.4354e-04 3.8850e-03 + 4.9100e-03 -8.2976e+00 1.4206e-01 8.5794e-01 9.0142e-01 9.8584e-02 1.0000e-10 1.0000e-10 6.4491e-04 3.8947e-03 + 4.9200e-03 -8.2977e+00 1.4202e-01 8.5798e-01 9.0138e-01 9.8620e-02 1.0000e-10 1.0000e-10 6.4629e-04 3.9044e-03 + 4.9300e-03 -8.2979e+00 1.4197e-01 8.5803e-01 9.0134e-01 9.8656e-02 1.0000e-10 1.0000e-10 6.4766e-04 3.9142e-03 + 4.9400e-03 -8.2980e+00 1.4193e-01 8.5807e-01 9.0131e-01 9.8692e-02 1.0000e-10 1.0000e-10 6.4903e-04 3.9239e-03 + 4.9500e-03 -8.2981e+00 1.4188e-01 8.5812e-01 9.0127e-01 9.8728e-02 1.0000e-10 1.0000e-10 6.5040e-04 3.9336e-03 + 4.9600e-03 -8.2983e+00 1.4184e-01 8.5816e-01 9.0124e-01 9.8764e-02 1.0000e-10 1.0000e-10 6.5177e-04 3.9434e-03 + 4.9700e-03 -8.2984e+00 1.4179e-01 8.5821e-01 9.0120e-01 9.8800e-02 1.0000e-10 1.0000e-10 6.5314e-04 3.9531e-03 + 4.9800e-03 -8.2985e+00 1.4175e-01 8.5825e-01 9.0116e-01 9.8836e-02 1.0000e-10 1.0000e-10 6.5450e-04 3.9629e-03 + 4.9900e-03 -8.2987e+00 1.4170e-01 8.5830e-01 9.0113e-01 9.8872e-02 1.0000e-10 1.0000e-10 6.5587e-04 3.9726e-03 + 5.0000e-03 -8.2988e+00 1.4166e-01 8.5834e-01 9.0109e-01 9.8908e-02 1.0000e-10 1.0000e-10 6.5724e-04 3.9823e-03 + 5.0000e-03 -8.2988e+00 1.4166e-01 8.5834e-01 9.0109e-01 9.8908e-02 1.0000e-10 1.0000e-10 6.5724e-04 3.9823e-03 + 1.0000e-02 -8.3590e+00 1.2345e-01 8.7655e-01 8.8423e-01 1.1577e-01 1.0000e-10 1.0000e-10 1.2483e-03 8.8635e-03 + 1.5000e-02 -8.4069e+00 1.1064e-01 8.8936e-01 8.6904e-01 1.3096e-01 1.0000e-10 1.0000e-10 1.7120e-03 1.3762e-02 + 2.0000e-02 -8.4471e+00 1.0088e-01 8.9912e-01 8.5501e-01 1.4499e-01 1.0000e-10 1.0000e-10 2.0950e-03 1.8672e-02 + 2.5000e-02 -8.4816e+00 9.3095e-02 9.0690e-01 8.4188e-01 1.5812e-01 1.0000e-10 1.0000e-10 2.4215e-03 2.3590e-02 + 3.0000e-02 -8.5119e+00 8.6674e-02 9.1333e-01 8.2947e-01 1.7053e-01 1.0000e-10 1.0000e-10 2.7061e-03 2.8515e-02 + 3.5000e-02 -8.5389e+00 8.1255e-02 9.1874e-01 8.1770e-01 1.8230e-01 1.0000e-10 1.0000e-10 2.9580e-03 3.3446e-02 + 4.0000e-02 -8.5632e+00 7.6600e-02 9.2340e-01 8.0646e-01 1.9354e-01 1.0000e-10 1.0000e-10 3.1839e-03 3.8381e-02 + 4.5000e-02 -8.5853e+00 7.2542e-02 9.2746e-01 7.9570e-01 2.0430e-01 1.0000e-10 1.0000e-10 3.3884e-03 4.3321e-02 + 5.0000e-02 -8.6055e+00 6.8965e-02 9.3104e-01 7.8538e-01 2.1462e-01 1.0000e-10 1.0000e-10 3.5750e-03 4.8264e-02 + 5.5000e-02 -8.6242e+00 6.5780e-02 9.3422e-01 7.7545e-01 2.2455e-01 1.0000e-10 1.0000e-10 3.7466e-03 5.3210e-02 + 6.0000e-02 -8.6414e+00 6.2922e-02 9.3708e-01 7.6587e-01 2.3413e-01 1.0000e-10 1.0000e-10 3.9052e-03 5.8159e-02 + 6.5000e-02 -8.6575e+00 6.0338e-02 9.3966e-01 7.5663e-01 2.4337e-01 1.0000e-10 1.0000e-10 4.0525e-03 6.3110e-02 + 7.0000e-02 -8.6725e+00 5.7989e-02 9.4201e-01 7.4769e-01 2.5231e-01 1.0000e-10 1.0000e-10 4.1899e-03 6.8063e-02 + 7.5000e-02 -8.6866e+00 5.5841e-02 9.4416e-01 7.3903e-01 2.6097e-01 1.0000e-10 1.0000e-10 4.3186e-03 7.3019e-02 + 8.0000e-02 -8.6998e+00 5.3868e-02 9.4613e-01 7.3065e-01 2.6935e-01 1.0000e-10 1.0000e-10 4.4395e-03 7.7976e-02 + 8.5000e-02 -8.7122e+00 5.2047e-02 9.4795e-01 7.2251e-01 2.7749e-01 1.0000e-10 1.0000e-10 4.5535e-03 8.2936e-02 + 9.0000e-02 -8.7240e+00 5.0361e-02 9.4964e-01 7.1460e-01 2.8540e-01 1.0000e-10 1.0000e-10 4.6613e-03 8.7896e-02 + 9.5000e-02 -8.7352e+00 4.8794e-02 9.5121e-01 7.0692e-01 2.9308e-01 1.0000e-10 1.0000e-10 4.7634e-03 9.2859e-02 + 1.0000e-01 -8.7458e+00 4.7333e-02 9.5267e-01 6.9945e-01 3.0055e-01 1.0000e-10 1.0000e-10 4.8603e-03 9.7822e-02 + 1.0000e-01 -8.7458e+00 4.7333e-02 9.5267e-01 6.9945e-01 3.0055e-01 1.0000e-10 1.0000e-10 4.8603e-03 9.7822e-02 + 2.0000e-01 -8.8865e+00 3.0238e-02 9.6976e-01 5.8188e-01 4.1812e-01 1.0000e-10 1.0000e-10 6.1516e-03 1.9729e-01 + 3.0000e-01 -8.9624e+00 2.2575e-02 9.7743e-01 5.0176e-01 4.9824e-01 1.0000e-10 1.0000e-10 6.8584e-03 2.9695e-01 + 4.0000e-01 -9.0114e+00 1.8122e-02 9.8188e-01 4.4247e-01 5.5753e-01 1.0000e-10 1.0000e-10 7.3222e-03 3.9672e-01 + 5.0000e-01 -9.0462e+00 1.5184e-02 9.8482e-01 3.9641e-01 6.0359e-01 1.0000e-10 1.0000e-10 7.6555e-03 4.9654e-01 + 6.0000e-01 -9.0724e+00 1.3087e-02 9.8691e-01 3.5942e-01 6.4058e-01 1.0000e-10 1.0000e-10 7.9088e-03 5.9640e-01 + 7.0000e-01 -9.0929e+00 1.1512e-02 9.8849e-01 3.2896e-01 6.7104e-01 1.0000e-10 1.0000e-10 8.1089e-03 6.9629e-01 + 8.0000e-01 -9.1094e+00 1.0282e-02 9.8972e-01 3.0340e-01 6.9660e-01 1.0000e-10 1.0000e-10 8.2714e-03 7.9620e-01 + 9.0000e-01 -9.1231e+00 9.2937e-03 9.9071e-01 2.8162e-01 7.1838e-01 1.0000e-10 1.0000e-10 8.4064e-03 8.9612e-01 + 1.0000e+00 -9.1345e+00 8.4817e-03 9.9152e-01 2.6282e-01 7.3718e-01 1.0000e-10 1.0000e-10 8.5204e-03 9.9605e-01 + 1.1000e+00 -9.1443e+00 7.8020e-03 9.9220e-01 2.4642e-01 7.5358e-01 1.0000e-10 1.0000e-10 8.6182e-03 1.0960e+00 + 1.2000e+00 -9.1528e+00 7.2245e-03 9.9278e-01 2.3197e-01 7.6803e-01 1.0000e-10 1.0000e-10 8.7029e-03 1.1959e+00 + 1.3000e+00 -9.1601e+00 6.7275e-03 9.9327e-01 2.1915e-01 7.8085e-01 1.0000e-10 1.0000e-10 8.7772e-03 1.2959e+00 + 1.4000e+00 -9.1666e+00 6.2951e-03 9.9370e-01 2.0769e-01 7.9231e-01 1.0000e-10 1.0000e-10 8.8428e-03 1.3959e+00 + 1.5000e+00 -9.1724e+00 5.9155e-03 9.9408e-01 1.9738e-01 8.0262e-01 1.0000e-10 1.0000e-10 8.9012e-03 1.4958e+00 + 1.6000e+00 -9.1775e+00 5.5795e-03 9.9442e-01 1.8805e-01 8.1195e-01 1.0000e-10 1.0000e-10 8.9536e-03 1.5958e+00 + 1.7000e+00 -9.1822e+00 5.2798e-03 9.9472e-01 1.7958e-01 8.2042e-01 1.0000e-10 1.0000e-10 9.0008e-03 1.6958e+00 + 1.8000e+00 -9.1864e+00 5.0109e-03 9.9499e-01 1.7184e-01 8.2816e-01 1.0000e-10 1.0000e-10 9.0436e-03 1.7957e+00 + 1.9000e+00 -9.1902e+00 4.7683e-03 9.9523e-01 1.6475e-01 8.3525e-01 1.0000e-10 1.0000e-10 9.0826e-03 1.8957e+00 + 2.0000e+00 -9.1937e+00 4.5482e-03 9.9545e-01 1.5822e-01 8.4178e-01 1.0000e-10 1.0000e-10 9.1183e-03 1.9957e+00 + 2.1000e+00 -9.1969e+00 4.3477e-03 9.9565e-01 1.5219e-01 8.4781e-01 1.0000e-10 1.0000e-10 9.1510e-03 2.0957e+00 + 2.2000e+00 -9.1998e+00 4.1641e-03 9.9584e-01 1.4661e-01 8.5339e-01 1.0000e-10 1.0000e-10 9.1812e-03 2.1957e+00 + 2.3000e+00 -9.2025e+00 3.9956e-03 9.9600e-01 1.4143e-01 8.5857e-01 1.0000e-10 1.0000e-10 9.2091e-03 2.2956e+00 + 2.4000e+00 -9.2050e+00 3.8402e-03 9.9616e-01 1.3660e-01 8.6340e-01 1.0000e-10 1.0000e-10 9.2350e-03 2.3956e+00 + 2.5000e+00 -9.2073e+00 3.6964e-03 9.9630e-01 1.3209e-01 8.6791e-01 1.0000e-10 1.0000e-10 9.2591e-03 2.4956e+00 + 2.6000e+00 -9.2095e+00 3.5631e-03 9.9644e-01 1.2787e-01 8.7213e-01 1.0000e-10 1.0000e-10 9.2815e-03 2.5956e+00 + 2.7000e+00 -9.2115e+00 3.4392e-03 9.9656e-01 1.2391e-01 8.7609e-01 1.0000e-10 1.0000e-10 9.3025e-03 2.6956e+00 + 2.8000e+00 -9.2134e+00 3.3235e-03 9.9668e-01 1.2020e-01 8.7980e-01 1.0000e-10 1.0000e-10 9.3222e-03 2.7956e+00 + 2.9000e+00 -9.2152e+00 3.2155e-03 9.9678e-01 1.1670e-01 8.8330e-01 1.0000e-10 1.0000e-10 9.3406e-03 2.8956e+00 + 3.0000e+00 -9.2169e+00 3.1142e-03 9.9689e-01 1.1339e-01 8.8661e-01 1.0000e-10 1.0000e-10 9.3580e-03 2.9955e+00 + 3.1000e+00 -9.2185e+00 3.0192e-03 9.9698e-01 1.1027e-01 8.8973e-01 1.0000e-10 1.0000e-10 9.3743e-03 3.0955e+00 + 3.2000e+00 -9.2199e+00 2.9298e-03 9.9707e-01 1.0732e-01 8.9268e-01 1.0000e-10 1.0000e-10 9.3898e-03 3.1955e+00 + 3.3000e+00 -9.2213e+00 2.8456e-03 9.9715e-01 1.0453e-01 8.9547e-01 1.0000e-10 1.0000e-10 9.4044e-03 3.2955e+00 + 3.4000e+00 -9.2227e+00 2.7661e-03 9.9723e-01 1.0187e-01 8.9813e-01 1.0000e-10 1.0000e-10 9.4182e-03 3.3955e+00 + 3.5000e+00 -9.2239e+00 2.6909e-03 9.9731e-01 9.9347e-02 9.0065e-01 1.0000e-10 1.0000e-10 9.4313e-03 3.4955e+00 + 3.6000e+00 -9.2251e+00 2.6197e-03 9.9738e-01 9.6947e-02 9.0305e-01 1.0000e-10 1.0000e-10 9.4438e-03 3.5955e+00 + 3.7000e+00 -9.2263e+00 2.5522e-03 9.9745e-01 9.4659e-02 9.0534e-01 1.0000e-10 1.0000e-10 9.4556e-03 3.6955e+00 + 3.8000e+00 -9.2273e+00 2.4881e-03 9.9751e-01 9.2478e-02 9.0752e-01 1.0000e-10 1.0000e-10 9.4669e-03 3.7955e+00 + 3.9000e+00 -9.2284e+00 2.4271e-03 9.9757e-01 9.0395e-02 9.0961e-01 1.0000e-10 1.0000e-10 9.4776e-03 3.8955e+00 + 4.0000e+00 -9.2294e+00 2.3690e-03 9.9763e-01 8.8404e-02 9.1160e-01 1.0000e-10 1.0000e-10 9.4879e-03 3.9955e+00 + 4.1000e+00 -9.2303e+00 2.3137e-03 9.9769e-01 8.6499e-02 9.1350e-01 1.0000e-10 1.0000e-10 9.4977e-03 4.0955e+00 + 4.2000e+00 -9.2312e+00 2.2609e-03 9.9774e-01 8.4674e-02 9.1533e-01 1.0000e-10 1.0000e-10 9.5071e-03 4.1954e+00 + 4.3000e+00 -9.2320e+00 2.2105e-03 9.9779e-01 8.2925e-02 9.1707e-01 1.0000e-10 1.0000e-10 9.5160e-03 4.2954e+00 + 4.4000e+00 -9.2329e+00 2.1623e-03 9.9784e-01 8.1247e-02 9.1875e-01 1.0000e-10 1.0000e-10 9.5246e-03 4.3954e+00 + 4.5000e+00 -9.2337e+00 2.1161e-03 9.9788e-01 7.9636e-02 9.2036e-01 1.0000e-10 1.0000e-10 9.5329e-03 4.4954e+00 + 4.6000e+00 -9.2344e+00 2.0719e-03 9.9793e-01 7.8087e-02 9.2191e-01 1.0000e-10 1.0000e-10 9.5408e-03 4.5954e+00 + 4.7000e+00 -9.2351e+00 2.0294e-03 9.9797e-01 7.6598e-02 9.2340e-01 1.0000e-10 1.0000e-10 9.5484e-03 4.6954e+00 + 4.8000e+00 -9.2358e+00 1.9887e-03 9.9801e-01 7.5164e-02 9.2484e-01 1.0000e-10 1.0000e-10 9.5557e-03 4.7954e+00 + 4.9000e+00 -9.2365e+00 1.9496e-03 9.9805e-01 7.3784e-02 9.2622e-01 1.0000e-10 1.0000e-10 9.5628e-03 4.8954e+00 + 5.0000e+00 -9.2371e+00 1.9120e-03 9.9809e-01 7.2453e-02 9.2755e-01 1.0000e-10 1.0000e-10 9.5695e-03 4.9954e+00 + 5.1000e+00 -9.2378e+00 1.8758e-03 9.9812e-01 7.1169e-02 9.2883e-01 1.0000e-10 1.0000e-10 9.5761e-03 5.0954e+00 + 5.2000e+00 -9.2384e+00 1.8410e-03 9.9816e-01 6.9930e-02 9.3007e-01 1.0000e-10 1.0000e-10 9.5823e-03 5.1954e+00 + 5.3000e+00 -9.2389e+00 1.8074e-03 9.9819e-01 6.8733e-02 9.3127e-01 1.0000e-10 1.0000e-10 9.5884e-03 5.2954e+00 + 5.4000e+00 -9.2395e+00 1.7751e-03 9.9822e-01 6.7577e-02 9.3242e-01 1.0000e-10 1.0000e-10 9.5943e-03 5.3954e+00 + 5.5000e+00 -9.2400e+00 1.7439e-03 9.9826e-01 6.6459e-02 9.3354e-01 1.0000e-10 1.0000e-10 9.5999e-03 5.4954e+00 + 5.6000e+00 -9.2406e+00 1.7137e-03 9.9829e-01 6.5378e-02 9.3462e-01 1.0000e-10 1.0000e-10 9.6054e-03 5.5954e+00 + 5.7000e+00 -9.2411e+00 1.6846e-03 9.9832e-01 6.4331e-02 9.3567e-01 1.0000e-10 1.0000e-10 9.6107e-03 5.6954e+00 + 5.8000e+00 -9.2415e+00 1.6565e-03 9.9834e-01 6.3317e-02 9.3668e-01 1.0000e-10 1.0000e-10 9.6158e-03 5.7954e+00 + 5.9000e+00 -9.2420e+00 1.6293e-03 9.9837e-01 6.2335e-02 9.3766e-01 1.0000e-10 1.0000e-10 9.6208e-03 5.8954e+00 + 6.0000e+00 -9.2425e+00 1.6029e-03 9.9840e-01 6.1383e-02 9.3862e-01 1.0000e-10 1.0000e-10 9.6256e-03 5.9954e+00 + 6.1000e+00 -9.2429e+00 1.5774e-03 9.9842e-01 6.0459e-02 9.3954e-01 1.0000e-10 1.0000e-10 9.6303e-03 6.0954e+00 + 6.2000e+00 -9.2433e+00 1.5527e-03 9.9845e-01 5.9563e-02 9.4044e-01 1.0000e-10 1.0000e-10 9.6348e-03 6.1954e+00 + 6.3000e+00 -9.2438e+00 1.5288e-03 9.9847e-01 5.8693e-02 9.4131e-01 1.0000e-10 1.0000e-10 9.6392e-03 6.2954e+00 + 6.4000e+00 -9.2442e+00 1.5056e-03 9.9849e-01 5.7848e-02 9.4215e-01 1.0000e-10 1.0000e-10 9.6434e-03 6.3954e+00 + 6.5000e+00 -9.2446e+00 1.4831e-03 9.9852e-01 5.7027e-02 9.4297e-01 1.0000e-10 1.0000e-10 9.6475e-03 6.4954e+00 + 6.6000e+00 -9.2449e+00 1.4612e-03 9.9854e-01 5.6230e-02 9.4377e-01 1.0000e-10 1.0000e-10 9.6515e-03 6.5954e+00 + 6.7000e+00 -9.2453e+00 1.4400e-03 9.9856e-01 5.5454e-02 9.4455e-01 1.0000e-10 1.0000e-10 9.6554e-03 6.6953e+00 + 6.8000e+00 -9.2457e+00 1.4194e-03 9.9858e-01 5.4699e-02 9.4530e-01 1.0000e-10 1.0000e-10 9.6592e-03 6.7953e+00 + 6.9000e+00 -9.2460e+00 1.3994e-03 9.9860e-01 5.3965e-02 9.4604e-01 1.0000e-10 1.0000e-10 9.6629e-03 6.8953e+00 + 7.0000e+00 -9.2464e+00 1.3799e-03 9.9862e-01 5.3250e-02 9.4675e-01 1.0000e-10 1.0000e-10 9.6665e-03 6.9953e+00 + 7.1000e+00 -9.2467e+00 1.3610e-03 9.9864e-01 5.2553e-02 9.4745e-01 1.0000e-10 1.0000e-10 9.6700e-03 7.0953e+00 + 7.2000e+00 -9.2470e+00 1.3426e-03 9.9866e-01 5.1875e-02 9.4812e-01 1.0000e-10 1.0000e-10 9.6734e-03 7.1953e+00 + 7.3000e+00 -9.2473e+00 1.3247e-03 9.9868e-01 5.1214e-02 9.4879e-01 1.0000e-10 1.0000e-10 9.6767e-03 7.2953e+00 + 7.4000e+00 -9.2476e+00 1.3072e-03 9.9869e-01 5.0570e-02 9.4943e-01 1.0000e-10 1.0000e-10 9.6799e-03 7.3953e+00 + 7.5000e+00 -9.2479e+00 1.2902e-03 9.9871e-01 4.9942e-02 9.5006e-01 1.0000e-10 1.0000e-10 9.6831e-03 7.4953e+00 + 7.6000e+00 -9.2482e+00 1.2737e-03 9.9873e-01 4.9329e-02 9.5067e-01 1.0000e-10 1.0000e-10 9.6861e-03 7.5953e+00 + 7.7000e+00 -9.2485e+00 1.2575e-03 9.9874e-01 4.8731e-02 9.5127e-01 1.0000e-10 1.0000e-10 9.6891e-03 7.6953e+00 + 7.8000e+00 -9.2488e+00 1.2418e-03 9.9876e-01 4.8147e-02 9.5185e-01 1.0000e-10 1.0000e-10 9.6920e-03 7.7953e+00 + 7.9000e+00 -9.2490e+00 1.2264e-03 9.9877e-01 4.7577e-02 9.5242e-01 1.0000e-10 1.0000e-10 9.6949e-03 7.8953e+00 + 8.0000e+00 -9.2493e+00 1.2114e-03 9.9879e-01 4.7021e-02 9.5298e-01 1.0000e-10 1.0000e-10 9.6977e-03 7.9953e+00 + 8.1000e+00 -9.2496e+00 1.1968e-03 9.9880e-01 4.6477e-02 9.5352e-01 1.0000e-10 1.0000e-10 9.7004e-03 8.0953e+00 + 8.2000e+00 -9.2498e+00 1.1826e-03 9.9882e-01 4.5946e-02 9.5405e-01 1.0000e-10 1.0000e-10 9.7030e-03 8.1953e+00 + 8.3000e+00 -9.2501e+00 1.1686e-03 9.9883e-01 4.5427e-02 9.5457e-01 1.0000e-10 1.0000e-10 9.7056e-03 8.2953e+00 + 8.4000e+00 -9.2503e+00 1.1550e-03 9.9884e-01 4.4919e-02 9.5508e-01 1.0000e-10 1.0000e-10 9.7081e-03 8.3953e+00 + 8.5000e+00 -9.2505e+00 1.1418e-03 9.9886e-01 4.4423e-02 9.5558e-01 1.0000e-10 1.0000e-10 9.7106e-03 8.4953e+00 + 8.6000e+00 -9.2508e+00 1.1288e-03 9.9887e-01 4.3937e-02 9.5606e-01 1.0000e-10 1.0000e-10 9.7130e-03 8.5953e+00 + 8.7000e+00 -9.2510e+00 1.1161e-03 9.9888e-01 4.3462e-02 9.5654e-01 1.0000e-10 1.0000e-10 9.7154e-03 8.6953e+00 + 8.8000e+00 -9.2512e+00 1.1037e-03 9.9890e-01 4.2997e-02 9.5700e-01 1.0000e-10 1.0000e-10 9.7177e-03 8.7953e+00 + 8.9000e+00 -9.2514e+00 1.0915e-03 9.9891e-01 4.2542e-02 9.5746e-01 1.0000e-10 1.0000e-10 9.7200e-03 8.8953e+00 + 9.0000e+00 -9.2516e+00 1.0796e-03 9.9892e-01 4.2097e-02 9.5790e-01 1.0000e-10 1.0000e-10 9.7222e-03 8.9953e+00 + 9.1000e+00 -9.2518e+00 1.0680e-03 9.9893e-01 4.1661e-02 9.5834e-01 1.0000e-10 1.0000e-10 9.7244e-03 9.0953e+00 + 9.2000e+00 -9.2520e+00 1.0566e-03 9.9894e-01 4.1234e-02 9.5877e-01 1.0000e-10 1.0000e-10 9.7265e-03 9.1953e+00 + 9.3000e+00 -9.2522e+00 1.0455e-03 9.9895e-01 4.0815e-02 9.5919e-01 1.0000e-10 1.0000e-10 9.7286e-03 9.2953e+00 + 9.4000e+00 -9.2524e+00 1.0346e-03 9.9897e-01 4.0405e-02 9.5960e-01 1.0000e-10 1.0000e-10 9.7306e-03 9.3953e+00 + 9.5000e+00 -9.2526e+00 1.0239e-03 9.9898e-01 4.0003e-02 9.6000e-01 1.0000e-10 1.0000e-10 9.7326e-03 9.4953e+00 + 9.6000e+00 -9.2528e+00 1.0135e-03 9.9899e-01 3.9609e-02 9.6039e-01 1.0000e-10 1.0000e-10 9.7346e-03 9.5953e+00 + 9.7000e+00 -9.2530e+00 1.0032e-03 9.9900e-01 3.9222e-02 9.6078e-01 1.0000e-10 1.0000e-10 9.7365e-03 9.6953e+00 + 9.8000e+00 -9.2531e+00 9.9320e-04 9.9901e-01 3.8843e-02 9.6116e-01 1.0000e-10 1.0000e-10 9.7384e-03 9.7953e+00 + 9.9000e+00 -9.2533e+00 9.8336e-04 9.9902e-01 3.8472e-02 9.6153e-01 1.0000e-10 1.0000e-10 9.7402e-03 9.8953e+00 + 1.0000e+01 -9.2535e+00 9.7371e-04 9.9903e-01 3.8107e-02 9.6189e-01 1.0000e-10 1.0000e-10 9.7420e-03 9.9953e+00 diff --git a/ex11.out b/ex11.out index c9af3143..c9b25c64 100644 --- a/ex11.out +++ b/ex11.out @@ -13,7 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES - CALCULATE_VALUES + MEAN_GAMMAS RATES END ------------------------------------ diff --git a/ex12.out b/ex12.out index 0a1b776d..3ce78bc9 100644 --- a/ex12.out +++ b/ex12.out @@ -13,7 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES - CALCULATE_VALUES + MEAN_GAMMAS RATES END ------------------------------------ diff --git a/ex12a.out b/ex12a.out index 7f886c42..f8fc81e7 100644 --- a/ex12a.out +++ b/ex12a.out @@ -13,7 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES - CALCULATE_VALUES + MEAN_GAMMAS RATES END ------------------------------------ diff --git a/ex13a.out b/ex13a.out index 65c5d82a..566b957b 100644 --- a/ex13a.out +++ b/ex13a.out @@ -13,7 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES - CALCULATE_VALUES + MEAN_GAMMAS RATES END ------------------------------------ diff --git a/ex13ac.out b/ex13ac.out index 7f601aa2..6d99ba6b 100644 --- a/ex13ac.out +++ b/ex13ac.out @@ -13,7 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES - CALCULATE_VALUES + MEAN_GAMMAS RATES END ------------------------------------ diff --git a/ex13b.out b/ex13b.out index 229de687..83257bbb 100644 --- a/ex13b.out +++ b/ex13b.out @@ -13,7 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES - CALCULATE_VALUES + MEAN_GAMMAS RATES END ------------------------------------ diff --git a/ex13c.out b/ex13c.out index 5bbf0c8a..5102e6e4 100644 --- a/ex13c.out +++ b/ex13c.out @@ -13,7 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES - CALCULATE_VALUES + MEAN_GAMMAS RATES END ------------------------------------ diff --git a/ex14.out b/ex14.out index 28655381..71a465f4 100644 --- a/ex14.out +++ b/ex14.out @@ -13,7 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES - CALCULATE_VALUES + MEAN_GAMMAS RATES END ------------------------------------ @@ -88,21 +88,21 @@ Initial solution 1. Brine pH = 5.713 pe = 14.962 Equilibrium with O2(g) - Specific Conductance (µS/cm, 25°C) = 243034 - Density (g/cm³) = 1.21640 - Volume (L) = 1.13690 - Viscosity (mPa s) = 1.95436 + Specific Conductance (µS/cm, 25°C) = 243000 + Density (g/cm³) = 1.21629 + Volume (L) = 1.13700 + Viscosity (mPa s) = 1.95441 Activity of water = 0.785 - Ionic strength (mol/kgw) = 7.269e+00 + Ionic strength (mol/kgw) = 7.270e+00 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 3.726e-03 + Total alkalinity (eq/kg) = 3.608e-03 Total CO2 (mol/kg) = 3.960e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = -2.013e-15 + Electrical balance (eq) = -3.249e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 11 - Total H = 1.110162e+02 - Total O = 5.553686e+01 + Iterations = 14 + Total H = 1.110160e+02 + Total O = 5.553674e+01 ----------------------------Distribution of species---------------------------- @@ -114,79 +114,79 @@ Initial solution 1. Brine H2O 5.551e+01 7.846e-01 1.744 -0.105 0.000 18.07 As 2.500e-08 H2AsO4- 2.498e-08 1.374e-07 -7.602 -6.862 0.740 (0) - H3AsO4 8.668e-12 4.622e-11 -11.062 -10.335 0.727 (0) - HAsO4-2 8.511e-12 7.778e-09 -11.070 -8.109 2.961 (0) - AsO4-3 2.766e-21 1.270e-14 -20.558 -13.896 6.662 (0) + H3AsO4 8.669e-12 4.623e-11 -11.062 -10.335 0.727 (0) + HAsO4-2 8.507e-12 7.779e-09 -11.070 -8.109 2.961 (0) + AsO4-3 2.763e-21 1.270e-14 -20.559 -13.896 6.663 (0) C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -144.675 -143.948 0.727 35.46 + CH4 0.000e+00 0.000e+00 -144.496 -143.769 0.727 35.46 C(4) 3.960e-03 - CaHCO3+ 1.902e-03 1.152e-03 -2.721 -2.939 -0.218 10.08 - MgHCO3+ 1.562e-03 7.781e-04 -2.806 -3.109 -0.303 6.01 - CO2 2.334e-04 7.045e-04 -3.632 -3.152 0.480 34.43 - HCO3- 2.195e-04 1.270e-04 -3.659 -3.896 -0.238 37.32 - NaHCO3 4.169e-05 1.186e-03 -4.380 -2.926 1.454 31.73 - CaCO3 6.889e-07 3.674e-06 -6.162 -5.435 0.727 -14.60 - MgCO3 2.882e-07 1.537e-06 -6.540 -5.813 0.727 -17.09 - CO3-2 2.748e-08 3.075e-09 -7.561 -8.512 -0.951 10.19 - (CO2)2 1.709e-09 9.111e-09 -8.767 -8.040 0.727 68.87 + MgHCO3+ 2.344e-03 1.167e-03 -2.630 -2.933 -0.303 6.01 + CaHCO3+ 8.690e-04 5.263e-04 -3.061 -3.279 -0.218 123.05 + CO2 3.518e-04 1.062e-03 -3.454 -2.974 0.480 34.43 + HCO3- 3.309e-04 1.914e-04 -3.480 -3.718 -0.238 37.32 + NaHCO3 6.284e-05 1.787e-03 -4.202 -2.748 1.454 31.73 + CaCO3 1.041e-06 5.551e-06 -5.983 -5.256 0.727 -14.60 + MgCO3 4.324e-07 2.306e-06 -6.364 -5.637 0.727 -17.09 + CO3-2 4.143e-08 4.635e-09 -7.383 -8.334 -0.951 10.19 + (CO2)2 3.882e-09 2.070e-08 -8.411 -7.684 0.727 68.87 Ca 4.655e-01 - Ca+2 4.633e-01 7.112e-01 -0.334 -0.148 0.186 -13.79 - CaHCO3+ 1.902e-03 1.152e-03 -2.721 -2.939 -0.218 10.08 - CaSO4 3.220e-04 1.717e-03 -3.492 -2.765 0.727 7.50 - CaCO3 6.889e-07 3.674e-06 -6.162 -5.435 0.727 -14.60 - CaOH+ 8.698e-09 4.782e-08 -8.061 -7.320 0.740 (0) - CaHSO4+ 3.975e-09 2.186e-08 -8.401 -7.660 0.740 (0) + Ca+2 4.643e-01 7.129e-01 -0.333 -0.147 0.186 -13.79 + CaHCO3+ 8.690e-04 5.263e-04 -3.061 -3.279 -0.218 123.05 + CaSO4 3.227e-04 1.721e-03 -3.491 -2.764 0.727 7.50 + CaCO3 1.041e-06 5.551e-06 -5.983 -5.256 0.727 -14.60 + CaOH+ 8.717e-09 4.794e-08 -8.060 -7.319 0.740 (0) + CaHSO4+ 3.984e-09 2.191e-08 -8.400 -7.659 0.740 (0) Cl 6.642e+00 Cl- 6.642e+00 4.165e+00 0.822 0.620 -0.203 20.27 - HCl 2.239e-09 2.778e-06 -8.650 -5.556 3.094 (0) + HCl 2.238e-09 2.778e-06 -8.650 -5.556 3.094 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -45.226 -44.499 0.727 28.61 Mg 1.609e-01 - Mg+2 1.593e-01 5.238e-01 -0.798 -0.281 0.517 -17.22 - MgHCO3+ 1.562e-03 7.781e-04 -2.806 -3.109 -0.303 6.01 - MgSO4 6.548e-05 1.862e-03 -4.184 -2.730 1.454 -7.92 - MgOH+ 1.231e-06 7.705e-07 -5.910 -6.113 -0.204 (0) - MgCO3 2.882e-07 1.537e-06 -6.540 -5.813 0.727 -17.09 - Mg(SO4)2-2 2.202e-07 8.328e-08 -6.657 -7.079 -0.422 54.97 + Mg+2 1.585e-01 5.213e-01 -0.800 -0.283 0.517 -17.22 + MgHCO3+ 2.344e-03 1.167e-03 -2.630 -2.933 -0.303 6.01 + MgSO4 6.515e-05 1.853e-03 -4.186 -2.732 1.454 -7.92 + MgOH+ 1.225e-06 7.669e-07 -5.912 -6.115 -0.204 (0) + MgCO3 4.324e-07 2.306e-06 -6.364 -5.637 0.727 -17.09 + Mg(SO4)2-2 2.191e-07 8.286e-08 -6.659 -7.082 -0.422 54.97 Na 5.402e+00 Na+ 5.398e+00 1.072e+01 0.732 1.030 0.298 1.52 - NaSO4- 4.064e-03 2.370e-03 -2.391 -2.625 -0.234 35.76 - NaHCO3 4.169e-05 1.186e-03 -4.380 -2.926 1.454 31.73 + NaSO4- 4.063e-03 2.370e-03 -2.391 -2.625 -0.234 35.76 + NaHCO3 6.284e-05 1.787e-03 -4.202 -2.748 1.454 31.73 NaOH 8.245e-19 4.397e-18 -18.084 -17.357 0.727 (0) -O(0) 9.587e-05 +O(0) 9.585e-05 O2 4.793e-05 2.556e-04 -4.319 -3.592 0.727 30.40 S(-2) 0.000e+00 H2S 0.000e+00 0.000e+00 -141.404 -140.677 0.727 36.27 HS- 0.000e+00 0.000e+00 -141.570 -141.905 -0.335 23.12 S-2 0.000e+00 0.000e+00 -148.097 -149.110 -1.013 (0) - (H2S)2 0.000e+00 0.000e+00 -283.358 -282.631 0.727 30.09 + (H2S)2 0.000e+00 0.000e+00 -283.359 -282.632 0.727 30.09 S(6) 4.725e-03 - NaSO4- 4.064e-03 2.370e-03 -2.391 -2.625 -0.234 35.76 - CaSO4 3.220e-04 1.717e-03 -3.492 -2.765 0.727 7.50 - SO4-2 2.735e-04 1.358e-05 -3.563 -4.867 -1.304 85.83 - MgSO4 6.548e-05 1.862e-03 -4.184 -2.730 1.454 -7.92 - Mg(SO4)2-2 2.202e-07 8.328e-08 -6.657 -7.079 -0.422 54.97 - CaHSO4+ 3.975e-09 2.186e-08 -8.401 -7.660 0.740 (0) - HSO4- 4.649e-10 2.556e-09 -9.333 -8.592 0.740 42.16 + NaSO4- 4.063e-03 2.370e-03 -2.391 -2.625 -0.234 35.76 + CaSO4 3.227e-04 1.721e-03 -3.491 -2.764 0.727 7.50 + SO4-2 2.734e-04 1.358e-05 -3.563 -4.867 -1.304 85.83 + MgSO4 6.515e-05 1.853e-03 -4.186 -2.732 1.454 -7.92 + Mg(SO4)2-2 2.191e-07 8.286e-08 -6.659 -7.082 -0.422 54.97 + CaHSO4+ 3.984e-09 2.191e-08 -8.400 -7.659 0.740 (0) + HSO4- 4.648e-10 2.556e-09 -9.333 -8.592 0.740 42.16 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -0.74 -5.02 -4.28 CaSO4 - Aragonite -0.32 -8.66 -8.34 CaCO3 - Calcite -0.18 -8.66 -8.48 CaCO3 - CH4(g) -141.15 -143.95 -2.80 CH4 - CO2(g) -1.68 -3.15 -1.47 CO2 - Dolomite -0.37 -17.45 -17.08 CaMg(CO3)2 + Anhydrite -0.74 -5.01 -4.28 CaSO4 + Aragonite -0.14 -8.48 -8.34 CaCO3 + Calcite -0.00 -8.48 -8.48 CaCO3 + CH4(g) -140.97 -143.77 -2.80 CH4 + CO2(g) -1.51 -2.97 -1.47 CO2 + Dolomite -0.01 -17.10 -17.08 CaMg(CO3)2 Epsomite -4.15 -5.89 -1.74 MgSO4:7H2O - Gypsum -0.64 -5.23 -4.58 CaSO4:2H2O + Gypsum -0.64 -5.22 -4.58 CaSO4:2H2O H2(g) -41.40 -44.50 -3.10 H2 H2O(g) -1.61 -0.11 1.50 H2O H2S(g) -139.68 -147.62 -7.94 H2S Halite 0.08 1.65 1.57 NaCl - Hexahydrite -4.21 -5.78 -1.57 MgSO4:6H2O - Kieserite -4.09 -5.25 -1.16 MgSO4:H2O + Hexahydrite -4.22 -5.78 -1.57 MgSO4:6H2O + Kieserite -4.09 -5.26 -1.16 MgSO4:H2O Mirabilite -2.62 -3.86 -1.24 Na2SO4:10H2O O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000 Sulfur -104.21 -99.33 4.88 S @@ -230,105 +230,105 @@ Using pure phase assemblage 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Calcite 0.00 -8.48 -8.48 1.000e-01 1.049e-01 4.857e-03 -Dolomite 0.00 -17.08 -17.08 1.600e+00 1.598e+00 -2.464e-03 +Calcite 0.00 -8.48 -8.48 1.000e-01 1.065e-01 6.536e-03 +Dolomite 0.00 -17.08 -17.08 1.600e+00 1.597e+00 -3.272e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles As 2.500e-08 2.500e-08 - C 4.032e-03 4.032e-03 - Ca 4.631e-01 4.631e-01 + C 3.968e-03 3.968e-03 + Ca 4.622e-01 4.622e-01 Cl 6.642e+00 6.642e+00 - Mg 1.634e-01 1.634e-01 + Mg 1.642e-01 1.642e-01 Na 5.402e+00 5.402e+00 S 4.725e-03 4.725e-03 ----------------------------Description of solution---------------------------- - pH = 5.881 Charge balance - pe = 14.794 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 242989 - Density (g/cm³) = 1.21638 - Volume (L) = 1.13689 - Viscosity (mPa s) = 1.95471 + pH = 5.720 Charge balance + pe = 14.955 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 242937 + Density (g/cm³) = 1.21626 + Volume (L) = 1.13699 + Viscosity (mPa s) = 1.95490 Activity of water = 0.785 - Ionic strength (mol/kgw) = 7.269e+00 + Ionic strength (mol/kgw) = 7.270e+00 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 3.869e-03 - Total CO2 (mol/kg) = 4.032e-03 + Total alkalinity (eq/kg) = 3.625e-03 + Total CO2 (mol/kg) = 3.968e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 8.401e-13 + Electrical balance (eq) = 3.117e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 - Total H = 1.110162e+02 - Total O = 5.553708e+01 + Iterations = 2 + Total H = 1.110160e+02 + Total O = 5.553677e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.872e-06 1.315e-06 -5.728 -5.881 -0.153 0.00 - OH- 1.307e-08 6.038e-09 -7.884 -8.219 -0.335 6.33 + H+ 2.712e-06 1.905e-06 -5.567 -5.720 -0.153 0.00 + OH- 9.023e-09 4.168e-09 -8.045 -8.380 -0.335 6.33 H2O 5.551e+01 7.846e-01 1.744 -0.105 0.000 18.07 As 2.500e-08 H2AsO4- 2.498e-08 1.374e-07 -7.602 -6.862 0.740 (0) - HAsO4-2 1.253e-11 1.145e-08 -10.902 -7.941 2.961 (0) - H3AsO4 5.887e-12 3.139e-11 -11.230 -10.503 0.727 (0) - AsO4-3 5.997e-21 2.753e-14 -20.222 -13.560 6.662 (0) + HAsO4-2 8.646e-12 7.906e-09 -11.063 -8.102 2.961 (0) + H3AsO4 8.529e-12 4.549e-11 -11.069 -10.342 0.727 (0) + AsO4-3 2.854e-21 1.312e-14 -20.545 -13.882 6.663 (0) C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -144.828 -144.101 0.727 35.46 -C(4) 4.032e-03 - CaHCO3+ 1.956e-03 1.185e-03 -2.709 -2.926 -0.218 10.08 - MgHCO3+ 1.640e-03 8.166e-04 -2.785 -3.088 -0.303 6.01 - HCO3- 2.270e-04 1.313e-04 -3.644 -3.882 -0.238 37.31 - CO2 1.639e-04 4.948e-04 -3.785 -3.306 0.480 34.43 - NaHCO3 4.311e-05 1.226e-03 -4.365 -2.912 1.454 31.73 + CH4 0.000e+00 0.000e+00 -144.506 -143.780 0.727 35.46 +C(4) 3.968e-03 + MgHCO3+ 2.375e-03 1.183e-03 -2.624 -2.927 -0.303 6.01 + CaHCO3+ 8.569e-04 5.189e-04 -3.067 -3.285 -0.218 123.05 + CO2 3.437e-04 1.038e-03 -3.464 -2.984 0.480 34.43 + HCO3- 3.286e-04 1.901e-04 -3.483 -3.721 -0.238 37.32 + NaHCO3 6.240e-05 1.775e-03 -4.205 -2.751 1.454 31.73 CaCO3 1.043e-06 5.563e-06 -5.982 -5.255 0.727 -14.60 MgCO3 4.453e-07 2.375e-06 -6.351 -5.624 0.727 -17.09 - CO3-2 4.184e-08 4.681e-09 -7.378 -8.330 -0.951 10.19 - (CO2)2 8.427e-10 4.494e-09 -9.074 -8.347 0.727 68.87 -Ca 4.631e-01 - Ca+2 4.608e-01 7.074e-01 -0.336 -0.150 0.186 -13.79 - CaHCO3+ 1.956e-03 1.185e-03 -2.709 -2.926 -0.218 10.08 - CaSO4 3.204e-04 1.708e-03 -3.494 -2.767 0.727 7.50 + CO3-2 4.181e-08 4.678e-09 -7.379 -8.330 -0.951 10.19 + (CO2)2 3.706e-09 1.976e-08 -8.431 -7.704 0.727 68.87 +Ca 4.622e-01 + Ca+2 4.611e-01 7.079e-01 -0.336 -0.150 0.186 -13.79 + CaHCO3+ 8.569e-04 5.189e-04 -3.067 -3.285 -0.218 123.05 + CaSO4 3.205e-04 1.709e-03 -3.494 -2.767 0.727 7.50 CaCO3 1.043e-06 5.563e-06 -5.982 -5.255 0.727 -14.60 - CaOH+ 1.274e-08 7.004e-08 -7.895 -7.155 0.740 (0) - CaHSO4+ 2.686e-09 1.477e-08 -8.571 -7.831 0.740 (0) + CaOH+ 8.798e-09 4.838e-08 -8.056 -7.315 0.740 (0) + CaHSO4+ 3.893e-09 2.141e-08 -8.410 -7.669 0.740 (0) Cl 6.642e+00 Cl- 6.642e+00 4.165e+00 0.822 0.620 -0.203 20.27 - HCl 1.521e-09 1.887e-06 -8.818 -5.724 3.094 (0) + HCl 2.202e-09 2.734e-06 -8.657 -5.563 3.094 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -45.226 -44.499 0.727 28.61 -Mg 1.634e-01 - Mg+2 1.617e-01 5.316e-01 -0.791 -0.274 0.517 -17.22 - MgHCO3+ 1.640e-03 8.166e-04 -2.785 -3.088 -0.303 6.01 - MgSO4 6.648e-05 1.890e-03 -4.177 -2.723 1.454 -7.92 - MgOH+ 1.840e-06 1.151e-06 -5.735 -5.939 -0.204 (0) +Mg 1.642e-01 + Mg+2 1.617e-01 5.320e-01 -0.791 -0.274 0.517 -17.22 + MgHCO3+ 2.375e-03 1.183e-03 -2.624 -2.927 -0.303 6.01 + MgSO4 6.650e-05 1.891e-03 -4.177 -2.723 1.454 -7.92 + MgOH+ 1.271e-06 7.954e-07 -5.896 -6.099 -0.204 (0) MgCO3 4.453e-07 2.375e-06 -6.351 -5.624 0.727 -17.09 - Mg(SO4)2-2 2.236e-07 8.455e-08 -6.651 -7.073 -0.422 54.97 + Mg(SO4)2-2 2.237e-07 8.458e-08 -6.650 -7.073 -0.422 54.97 Na 5.402e+00 Na+ 5.398e+00 1.072e+01 0.732 1.030 0.298 1.52 NaSO4- 4.064e-03 2.370e-03 -2.391 -2.625 -0.234 35.76 - NaHCO3 4.311e-05 1.226e-03 -4.365 -2.912 1.454 31.73 - NaOH 1.214e-18 6.474e-18 -17.916 -17.189 0.727 (0) -O(0) 9.587e-05 + NaHCO3 6.240e-05 1.775e-03 -4.205 -2.751 1.454 31.73 + NaOH 8.380e-19 4.469e-18 -18.077 -17.350 0.727 (0) +O(0) 9.585e-05 O2 4.793e-05 2.556e-04 -4.319 -3.592 0.727 30.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -141.738 -142.073 -0.335 23.12 - H2S 0.000e+00 0.000e+00 -141.739 -141.013 0.727 36.27 + H2S 0.000e+00 0.000e+00 -141.418 -140.691 0.727 36.27 + HS- 0.000e+00 0.000e+00 -141.577 -141.912 -0.335 23.12 S-2 0.000e+00 0.000e+00 -148.097 -149.110 -1.013 (0) - (H2S)2 0.000e+00 0.000e+00 -284.030 -283.303 0.727 30.09 + (H2S)2 0.000e+00 0.000e+00 -283.387 -282.660 0.727 30.09 S(6) 4.725e-03 NaSO4- 4.064e-03 2.370e-03 -2.391 -2.625 -0.234 35.76 - CaSO4 3.204e-04 1.708e-03 -3.494 -2.767 0.727 7.50 + CaSO4 3.205e-04 1.709e-03 -3.494 -2.767 0.727 7.50 SO4-2 2.735e-04 1.358e-05 -3.563 -4.867 -1.304 85.83 - MgSO4 6.648e-05 1.890e-03 -4.177 -2.723 1.454 -7.92 - Mg(SO4)2-2 2.236e-07 8.455e-08 -6.651 -7.073 -0.422 54.97 - CaHSO4+ 2.686e-09 1.477e-08 -8.571 -7.831 0.740 (0) - HSO4- 3.158e-10 1.737e-09 -9.501 -8.760 0.740 42.16 + MgSO4 6.650e-05 1.891e-03 -4.177 -2.723 1.454 -7.92 + Mg(SO4)2-2 2.237e-07 8.458e-08 -6.650 -7.073 -0.422 54.97 + CaHSO4+ 3.893e-09 2.141e-08 -8.410 -7.669 0.740 (0) + HSO4- 4.574e-10 2.515e-09 -9.340 -8.599 0.740 42.16 ------------------------------Saturation indices------------------------------- @@ -337,20 +337,20 @@ S(6) 4.725e-03 Anhydrite -0.74 -5.02 -4.28 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -141.30 -144.10 -2.80 CH4 - CO2(g) -1.84 -3.31 -1.47 CO2 + CH4(g) -140.98 -143.78 -2.80 CH4 + CO2(g) -1.52 -2.98 -1.47 CO2 Dolomite 0.00 -17.08 -17.08 CaMg(CO3)2 Epsomite -4.14 -5.88 -1.74 MgSO4:7H2O Gypsum -0.65 -5.23 -4.58 CaSO4:2H2O H2(g) -41.40 -44.50 -3.10 H2 H2O(g) -1.61 -0.11 1.50 H2O - H2S(g) -140.02 -147.95 -7.94 H2S + H2S(g) -139.70 -147.63 -7.94 H2S Halite 0.08 1.65 1.57 NaCl Hexahydrite -4.21 -5.77 -1.57 MgSO4:6H2O Kieserite -4.09 -5.25 -1.16 MgSO4:H2O Mirabilite -2.62 -3.86 -1.24 Na2SO4:10H2O O2(g) -0.70 -3.59 -2.89 O2 - Sulfur -104.55 -99.66 4.88 S + Sulfur -104.22 -99.34 4.88 S Thenardite -2.51 -2.81 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -385,8 +385,8 @@ X 1.000e+00 mol Species Moles alents Fraction Gamma NaX 9.010e-01 9.010e-01 9.010e-01 0.298 - CaX2 4.051e-02 8.102e-02 8.102e-02 0.186 - MgX2 8.966e-03 1.793e-02 1.793e-02 0.517 + CaX2 4.053e-02 8.105e-02 8.105e-02 0.186 + MgX2 8.970e-03 1.794e-02 1.794e-02 0.517 ------------------------------------------------------ Beginning of initial surface-composition calculations. @@ -397,11 +397,11 @@ Surface 1. Diffuse Double Layer Surface-Complexation Model Surf - 5.172e-02 Surface charge, eq - 2.772e-01 sigma, C/m² - 4.066e-02 psi, V - -1.583e+00 -F*psi/RT - 2.054e-01 exp(-F*psi/RT) + 5.630e-02 Surface charge, eq + 3.018e-01 sigma, C/m² + 4.360e-02 psi, V + -1.697e+00 -F*psi/RT + 1.832e-01 exp(-F*psi/RT) 6.000e+02 specific area, m²/g 1.800e+04 m² for 3.000e+01 g @@ -411,12 +411,12 @@ Surf Mole Log Species Moles Fraction Molality Molality - SurfOH2+ 5.669e-02 0.810 5.669e-02 -1.246 - SurfOH 1.076e-02 0.154 1.076e-02 -1.968 - SurfOHAsO4-3 1.299e-03 0.019 1.299e-03 -2.886 - SurfHAsO4- 1.029e-03 0.015 1.029e-03 -2.988 - SurfH2AsO4 1.754e-04 0.003 1.754e-04 -3.756 - SurfO- 4.679e-05 0.001 4.679e-05 -4.330 + SurfOH2+ 5.939e-02 0.848 5.939e-02 -1.226 + SurfOH 8.727e-03 0.125 8.727e-03 -2.059 + SurfHAsO4- 9.359e-04 0.013 9.359e-04 -3.029 + SurfOHAsO4-3 7.082e-04 0.010 7.082e-04 -3.150 + SurfH2AsO4 2.061e-04 0.003 2.061e-04 -3.686 + SurfO- 2.938e-05 0.000 2.938e-05 -4.532 ------------------ End of simulation. @@ -474,7 +474,7 @@ Initial solution 0. 20 x precipitation Total alkalinity (eq/kg) = -2.630e-05 Total CO2 (mol/kg) = 1.096e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = 7.480e-16 + Electrical balance (eq) = 1.978e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 9 Total H = 1.110125e+02 @@ -493,7 +493,7 @@ C(-4) 0.000e+00 C(4) 1.096e-05 CO2 1.076e-05 1.076e-05 -4.968 -4.968 0.000 34.43 HCO3- 1.975e-07 1.906e-07 -6.704 -6.720 -0.016 24.58 - CaHCO3+ 4.061e-10 3.919e-10 -9.391 -9.407 -0.015 9.67 + CaHCO3+ 1.228e-10 1.185e-10 -9.911 -9.926 -0.015 122.64 MgHCO3+ 6.872e-11 6.627e-11 -10.163 -10.179 -0.016 5.48 NaHCO3 1.957e-11 1.958e-11 -10.708 -10.708 0.000 31.73 (CO2)2 2.126e-12 2.127e-12 -11.672 -11.672 0.000 68.87 @@ -504,7 +504,7 @@ Ca 1.916e-04 Ca+2 1.860e-04 1.612e-04 -3.731 -3.793 -0.062 -18.14 CaSO4 5.634e-06 5.635e-06 -5.249 -5.249 0.000 7.50 CaHSO4+ 9.648e-10 9.304e-10 -9.016 -9.031 -0.016 (0) - CaHCO3+ 4.061e-10 3.919e-10 -9.391 -9.407 -0.015 9.67 + CaHCO3+ 1.228e-10 1.185e-10 -9.911 -9.926 -0.015 122.64 CaOH+ 1.104e-12 1.065e-12 -11.957 -11.973 -0.016 (0) CaCO3 9.632e-14 9.634e-14 -13.016 -13.016 0.000 -14.60 Cl 1.337e-04 @@ -580,100 +580,100 @@ Using pure phase assemblage 0. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -CO2(g) -1.50 -2.97 -1.47 1.000e+01 9.996e+00 -4.073e-03 -Calcite 0.00 -8.48 -8.48 1.000e-01 9.968e-02 -3.160e-04 -Dolomite 0.00 -17.08 -17.08 1.600e+00 1.599e+00 -1.366e-03 +CO2(g) -1.50 -2.97 -1.47 1.000e+01 9.996e+00 -4.032e-03 +Calcite 0.00 -8.48 -8.48 1.000e-01 9.974e-02 -2.569e-04 +Dolomite 0.00 -17.08 -17.08 1.600e+00 1.599e+00 -1.375e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 7.133e-03 7.132e-03 - Ca 1.874e-03 1.874e-03 + C 7.051e-03 7.051e-03 + Ca 1.824e-03 1.824e-03 Cl 1.337e-04 1.337e-04 - Mg 1.402e-03 1.402e-03 + Mg 1.411e-03 1.411e-03 Na 1.227e-04 1.227e-04 S 2.351e-04 2.351e-04 ----------------------------Description of solution---------------------------- - pH = 7.048 Charge balance - pe = 13.574 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 604 - Density (g/cm³) = 0.99747 + pH = 7.047 Charge balance + pe = 13.576 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 603 + Density (g/cm³) = 0.99746 Volume (L) = 1.00305 Viscosity (mPa s) = 0.89401 Activity of water = 1.000 Ionic strength (mol/kgw) = 9.649e-03 Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 6.070e-03 - Total CO2 (mol/kg) = 7.133e-03 + Total alkalinity (eq/kg) = 5.989e-03 + Total CO2 (mol/kg) = 7.051e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 2.082e-15 + Electrical balance (eq) = 2.051e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 9 Total H = 1.110125e+02 - Total O = 5.552498e+01 + Total O = 5.552478e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.254e-07 1.130e-07 -6.902 -6.947 -0.045 -4.04 - H+ 9.790e-08 8.953e-08 -7.009 -7.048 -0.039 0.00 + OH- 1.250e-07 1.126e-07 -6.903 -6.948 -0.045 -4.04 + H+ 9.823e-08 8.983e-08 -7.008 -7.047 -0.039 0.00 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 0.000e+00 CH4 0.000e+00 0.000e+00 -143.556 -143.555 0.001 35.46 -C(4) 7.133e-03 - HCO3- 5.895e-03 5.344e-03 -2.230 -2.272 -0.043 24.65 +C(4) 7.051e-03 + HCO3- 5.875e-03 5.326e-03 -2.231 -2.274 -0.043 24.65 CO2 1.074e-03 1.076e-03 -2.969 -2.968 0.001 34.43 - CaHCO3+ 8.885e-05 8.066e-05 -4.051 -4.093 -0.042 9.72 - MgHCO3+ 6.157e-05 5.559e-05 -4.211 -4.255 -0.044 5.53 + MgHCO3+ 6.178e-05 5.578e-05 -4.209 -4.254 -0.044 5.53 + CaHCO3+ 2.695e-05 2.447e-05 -4.569 -4.611 -0.042 122.69 CaCO3 5.551e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 - CO3-2 4.146e-06 2.799e-06 -5.382 -5.553 -0.171 -3.67 + CO3-2 4.119e-06 2.780e-06 -5.385 -5.556 -0.171 -3.67 MgCO3 2.369e-06 2.375e-06 -5.625 -5.624 0.001 -17.09 - NaHCO3 5.111e-07 5.134e-07 -6.291 -6.290 0.002 31.73 + NaHCO3 5.094e-07 5.117e-07 -6.293 -6.291 0.002 31.73 (CO2)2 2.120e-08 2.125e-08 -7.674 -7.673 0.001 68.87 -Ca 1.874e-03 - Ca+2 1.754e-03 1.183e-03 -2.756 -2.927 -0.171 -17.93 - CaHCO3+ 8.885e-05 8.066e-05 -4.051 -4.093 -0.042 9.72 - CaSO4 2.553e-05 2.558e-05 -4.593 -4.592 0.001 7.50 +Ca 1.824e-03 + Ca+2 1.766e-03 1.191e-03 -2.753 -2.924 -0.171 -17.93 + CaHCO3+ 2.695e-05 2.447e-05 -4.569 -4.611 -0.042 122.69 + CaSO4 2.566e-05 2.572e-05 -4.591 -4.590 0.001 7.50 CaCO3 5.551e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 - CaOH+ 2.427e-09 2.193e-09 -8.615 -8.659 -0.044 (0) - CaHSO4+ 1.667e-11 1.506e-11 -10.778 -10.822 -0.044 (0) + CaOH+ 2.435e-09 2.200e-09 -8.613 -8.658 -0.044 (0) + CaHSO4+ 1.681e-11 1.519e-11 -10.774 -10.819 -0.044 (0) Cl 1.337e-04 Cl- 1.337e-04 1.206e-04 -3.874 -3.919 -0.045 18.14 - HCl 3.686e-12 3.721e-12 -11.433 -11.429 0.004 (0) + HCl 3.698e-12 3.733e-12 -11.432 -11.428 0.004 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.395 -44.394 0.001 28.61 -Mg 1.402e-03 - Mg+2 1.310e-03 8.891e-04 -2.883 -3.051 -0.168 -21.62 - MgHCO3+ 6.157e-05 5.559e-05 -4.211 -4.255 -0.044 5.53 - MgSO4 2.818e-05 2.831e-05 -4.550 -4.548 0.002 -7.92 +Mg 1.411e-03 + Mg+2 1.319e-03 8.951e-04 -2.880 -3.048 -0.168 -21.62 + MgHCO3+ 6.178e-05 5.578e-05 -4.209 -4.254 -0.044 5.53 + MgSO4 2.833e-05 2.845e-05 -4.548 -4.546 0.002 -7.92 MgCO3 2.369e-06 2.375e-06 -5.625 -5.624 0.001 -17.09 - MgOH+ 3.965e-08 3.605e-08 -7.402 -7.443 -0.041 (0) - Mg(SO4)2-2 1.650e-08 1.134e-08 -7.782 -7.945 -0.163 6.69 + MgOH+ 3.979e-08 3.617e-08 -7.400 -7.442 -0.041 (0) + Mg(SO4)2-2 1.656e-08 1.138e-08 -7.781 -7.944 -0.163 6.69 Na 1.227e-04 Na+ 1.219e-04 1.103e-04 -3.914 -3.957 -0.043 -1.38 - NaHCO3 5.111e-07 5.134e-07 -6.291 -6.290 0.002 31.73 - NaSO4- 2.408e-07 2.184e-07 -6.618 -6.661 -0.043 -15.24 - NaOH 1.244e-21 1.247e-21 -20.905 -20.904 0.001 (0) + NaHCO3 5.094e-07 5.117e-07 -6.293 -6.291 0.002 31.73 + NaSO4- 2.405e-07 2.180e-07 -6.619 -6.662 -0.043 -15.24 + NaOH 1.240e-21 1.243e-21 -20.907 -20.906 0.001 (0) O(0) 5.111e-04 O2 2.556e-04 2.561e-04 -3.593 -3.592 0.001 30.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -142.245 -142.290 -0.045 20.67 - H2S 0.000e+00 0.000e+00 -142.397 -142.396 0.001 36.27 - S-2 0.000e+00 0.000e+00 -147.987 -148.160 -0.173 (0) - (H2S)2 0.000e+00 0.000e+00 -286.072 -286.071 0.001 30.09 + HS- 0.000e+00 0.000e+00 -142.244 -142.289 -0.045 20.67 + H2S 0.000e+00 0.000e+00 -142.395 -142.394 0.001 36.27 + S-2 0.000e+00 0.000e+00 -147.988 -148.161 -0.173 (0) + (H2S)2 0.000e+00 0.000e+00 -286.067 -286.066 0.001 30.09 S(6) 2.351e-04 - SO4-2 1.811e-04 1.216e-04 -3.742 -3.915 -0.173 17.83 - MgSO4 2.818e-05 2.831e-05 -4.550 -4.548 0.002 -7.92 - CaSO4 2.553e-05 2.558e-05 -4.593 -4.592 0.001 7.50 - NaSO4- 2.408e-07 2.184e-07 -6.618 -6.661 -0.043 -15.24 - Mg(SO4)2-2 1.650e-08 1.134e-08 -7.782 -7.945 -0.163 6.69 - HSO4- 1.172e-09 1.059e-09 -8.931 -8.975 -0.044 40.34 - CaHSO4+ 1.667e-11 1.506e-11 -10.778 -10.822 -0.044 (0) + SO4-2 1.808e-04 1.214e-04 -3.743 -3.916 -0.173 17.83 + MgSO4 2.833e-05 2.845e-05 -4.548 -4.546 0.002 -7.92 + CaSO4 2.566e-05 2.572e-05 -4.591 -4.590 0.001 7.50 + NaSO4- 2.405e-07 2.180e-07 -6.619 -6.662 -0.043 -15.24 + Mg(SO4)2-2 1.656e-08 1.138e-08 -7.781 -7.944 -0.163 6.69 + HSO4- 1.174e-09 1.060e-09 -8.930 -8.975 -0.044 40.34 + CaHSO4+ 1.681e-11 1.519e-11 -10.774 -10.819 -0.044 (0) ------------------------------Saturation indices------------------------------- @@ -685,14 +685,14 @@ S(6) 2.351e-04 CH4(g) -140.75 -143.56 -2.80 CH4 CO2(g) -1.50 -2.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 Dolomite 0.00 -17.08 -17.08 CaMg(CO3)2 - Epsomite -5.23 -6.97 -1.74 MgSO4:7H2O + Epsomite -5.23 -6.96 -1.74 MgSO4:7H2O Gypsum -2.26 -6.84 -4.58 CaSO4:2H2O H2(g) -41.29 -44.39 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O H2S(g) -141.40 -149.34 -7.94 H2S Halite -9.45 -7.88 1.57 NaCl - Hexahydrite -5.40 -6.97 -1.57 MgSO4:6H2O - Kieserite -5.80 -6.97 -1.16 MgSO4:H2O + Hexahydrite -5.40 -6.96 -1.57 MgSO4:6H2O + Kieserite -5.80 -6.96 -1.16 MgSO4:H2O Mirabilite -10.59 -11.83 -1.24 Na2SO4:10H2O O2(g) -0.70 -3.59 -2.89 O2 Sulfur -106.03 -101.15 4.88 S @@ -943,19 +943,19 @@ Using pure phase assemblage 1. Pure-phase assemblage after simulation 5. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Calcite -0.00 -8.48 -8.48 0.000e+00 0 0.000e+00 -Dolomite 0.00 -17.08 -17.08 1.569e+00 1.569e+00 3.059e-07 +Calcite -0.01 -8.49 -8.48 0.000e+00 0 0.000e+00 +Dolomite 0.00 -17.08 -17.08 1.567e+00 1.567e+00 3.988e-07 ------------------------------Surface composition------------------------------ Diffuse Double Layer Surface-Complexation Model Surf - 2.271e-03 Surface charge, eq - 1.218e-02 sigma, C/m² - 4.731e-02 psi, V - -1.842e+00 -F*psi/RT - 1.586e-01 exp(-F*psi/RT) + 2.452e-03 Surface charge, eq + 1.314e-02 sigma, C/m² + 5.022e-02 psi, V + -1.955e+00 -F*psi/RT + 1.416e-01 exp(-F*psi/RT) 6.000e+02 specific area, m²/g 1.800e+04 m² for 3.000e+01 g @@ -965,12 +965,12 @@ Surf Mole Log Species Moles Fraction Molality Molality - SurfOH 4.967e-02 0.710 4.967e-02 -1.304 - SurfOH2+ 1.376e-02 0.197 1.376e-02 -1.861 - SurfO- 4.108e-03 0.059 4.108e-03 -2.386 - SurfOHAsO4-3 2.458e-03 0.035 2.458e-03 -2.609 - SurfHAsO4- 4.223e-06 0.000 4.223e-06 -5.374 - SurfH2AsO4 3.785e-08 0.000 3.785e-08 -7.422 + SurfOH 5.085e-02 0.726 5.086e-02 -1.294 + SurfOH2+ 1.263e-02 0.180 1.263e-02 -1.899 + SurfO- 4.692e-03 0.067 4.693e-03 -2.329 + SurfOHAsO4-3 1.826e-03 0.026 1.826e-03 -2.738 + SurfHAsO4- 2.521e-06 0.000 2.521e-06 -5.598 + SurfH2AsO4 2.025e-08 0.000 2.025e-08 -7.694 -----------------------------Exchange composition------------------------------ @@ -979,114 +979,114 @@ X 1.000e+00 mol Equiv- Equivalent Log Species Moles alents Fraction Gamma - CaX2 3.379e-01 6.758e-01 6.758e-01 -0.171 - MgX2 1.616e-01 3.232e-01 3.232e-01 -0.168 - NaX 9.561e-04 9.561e-04 9.561e-04 -0.043 + CaX2 3.368e-01 6.735e-01 6.735e-01 -0.171 + MgX2 1.628e-01 3.255e-01 3.255e-01 -0.168 + NaX 9.536e-04 9.536e-04 9.536e-04 -0.043 -----------------------------Solution composition------------------------------ Elements Molality Moles - As 3.537e-10 3.537e-10 - C 7.132e-03 7.132e-03 - Ca 1.861e-03 1.861e-03 + As 1.837e-10 1.837e-10 + C 7.050e-03 7.050e-03 + Ca 1.803e-03 1.803e-03 Cl 1.337e-04 1.337e-04 - Mg 1.414e-03 1.414e-03 + Mg 1.431e-03 1.431e-03 Na 1.227e-04 1.227e-04 S 2.351e-04 2.351e-04 ----------------------------Description of solution---------------------------- - pH = 7.048 Charge balance - pe = 13.574 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 603 - Density (g/cm³) = 0.99747 + pH = 7.046 Charge balance + pe = 13.576 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 602 + Density (g/cm³) = 0.99746 Volume (L) = 1.00305 Viscosity (mPa s) = 0.89401 Activity of water = 1.000 - Ionic strength (mol/kgw) = 9.647e-03 + Ionic strength (mol/kgw) = 9.645e-03 Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 6.069e-03 - Total CO2 (mol/kg) = 7.132e-03 + Total alkalinity (eq/kg) = 5.987e-03 + Total CO2 (mol/kg) = 7.050e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.623e-09 + Electrical balance (eq) = 7.167e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 + Iterations = 11 Total H = 1.110125e+02 - Total O = 5.552498e+01 + Total O = 5.552477e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.253e-07 1.129e-07 -6.902 -6.947 -0.045 -4.04 - H+ 9.797e-08 8.960e-08 -7.009 -7.048 -0.039 0.00 + OH- 1.248e-07 1.125e-07 -6.904 -6.949 -0.045 -4.04 + H+ 9.833e-08 8.993e-08 -7.007 -7.046 -0.039 0.00 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 -As 3.537e-10 - HAsO4-2 2.207e-10 1.470e-10 -9.656 -9.833 -0.177 (0) - H2AsO4- 1.330e-10 1.201e-10 -9.876 -9.920 -0.044 (0) - AsO4-3 1.295e-14 5.188e-15 -13.888 -14.285 -0.397 (0) - H3AsO4 1.866e-15 1.870e-15 -14.729 -14.728 0.001 (0) +As 1.837e-10 + HAsO4-2 1.145e-10 7.625e-11 -9.941 -10.118 -0.177 (0) + H2AsO4- 6.923e-11 6.254e-11 -10.160 -10.204 -0.044 (0) + AsO4-3 6.692e-15 2.681e-15 -14.174 -14.572 -0.397 (0) + H3AsO4 9.752e-16 9.773e-16 -15.011 -15.010 0.001 (0) C(-4) 0.000e+00 CH4 0.000e+00 0.000e+00 -143.556 -143.555 0.001 35.46 -C(4) 7.132e-03 - HCO3- 5.894e-03 5.343e-03 -2.230 -2.272 -0.043 24.65 - CO2 1.075e-03 1.076e-03 -2.969 -2.968 0.001 34.43 - CaHCO3+ 8.825e-05 8.012e-05 -4.054 -4.096 -0.042 9.72 - MgHCO3+ 6.207e-05 5.605e-05 -4.207 -4.251 -0.044 5.53 - CaCO3 5.510e-06 5.522e-06 -5.259 -5.258 0.001 -14.60 - CO3-2 4.142e-06 2.796e-06 -5.383 -5.553 -0.171 -3.67 - MgCO3 2.387e-06 2.392e-06 -5.622 -5.621 0.001 -17.09 - NaHCO3 5.111e-07 5.134e-07 -6.291 -6.290 0.002 31.73 - (CO2)2 2.122e-08 2.127e-08 -7.673 -7.672 0.001 68.87 -Ca 1.861e-03 - Ca+2 1.742e-03 1.175e-03 -2.759 -2.930 -0.171 -17.93 - CaHCO3+ 8.825e-05 8.012e-05 -4.054 -4.096 -0.042 9.72 - CaSO4 2.535e-05 2.541e-05 -4.596 -4.595 0.001 7.50 - CaCO3 5.510e-06 5.522e-06 -5.259 -5.258 0.001 -14.60 - CaOH+ 2.410e-09 2.177e-09 -8.618 -8.662 -0.044 (0) - CaHSO4+ 1.657e-11 1.496e-11 -10.781 -10.825 -0.044 (0) +C(4) 7.050e-03 + HCO3- 5.873e-03 5.324e-03 -2.231 -2.274 -0.043 24.65 + CO2 1.075e-03 1.077e-03 -2.969 -2.968 0.001 34.43 + MgHCO3+ 6.263e-05 5.655e-05 -4.203 -4.248 -0.044 5.53 + CaHCO3+ 2.664e-05 2.418e-05 -4.574 -4.616 -0.042 122.69 + CaCO3 5.481e-06 5.493e-06 -5.261 -5.260 0.001 -14.60 + CO3-2 4.113e-06 2.776e-06 -5.386 -5.557 -0.171 -3.67 + MgCO3 2.400e-06 2.405e-06 -5.620 -5.619 0.001 -17.09 + NaHCO3 5.093e-07 5.116e-07 -6.293 -6.291 0.002 31.73 + (CO2)2 2.123e-08 2.128e-08 -7.673 -7.672 0.001 68.87 +Ca 1.803e-03 + Ca+2 1.746e-03 1.178e-03 -2.758 -2.929 -0.171 -17.93 + CaHCO3+ 2.664e-05 2.418e-05 -4.574 -4.616 -0.042 122.69 + CaSO4 2.536e-05 2.542e-05 -4.596 -4.595 0.001 7.50 + CaCO3 5.481e-06 5.493e-06 -5.261 -5.260 0.001 -14.60 + CaOH+ 2.405e-09 2.173e-09 -8.619 -8.663 -0.044 (0) + CaHSO4+ 1.663e-11 1.502e-11 -10.779 -10.823 -0.044 (0) Cl 1.337e-04 Cl- 1.337e-04 1.206e-04 -3.874 -3.919 -0.045 18.14 - HCl 3.688e-12 3.724e-12 -11.433 -11.429 0.004 (0) + HCl 3.702e-12 3.737e-12 -11.432 -11.427 0.004 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.395 -44.394 0.001 28.61 -Mg 1.414e-03 - Mg+2 1.321e-03 8.965e-04 -2.879 -3.047 -0.168 -21.62 - MgHCO3+ 6.207e-05 5.605e-05 -4.207 -4.251 -0.044 5.53 - MgSO4 2.841e-05 2.854e-05 -4.547 -4.545 0.002 -7.92 - MgCO3 2.387e-06 2.392e-06 -5.622 -5.621 0.001 -17.09 - MgOH+ 3.996e-08 3.632e-08 -7.398 -7.440 -0.041 (0) - Mg(SO4)2-2 1.663e-08 1.143e-08 -7.779 -7.942 -0.163 6.69 +Mg 1.431e-03 + Mg+2 1.337e-03 9.078e-04 -2.874 -3.042 -0.168 -21.62 + MgHCO3+ 6.263e-05 5.655e-05 -4.203 -4.248 -0.044 5.53 + MgSO4 2.872e-05 2.885e-05 -4.542 -4.540 0.002 -7.92 + MgCO3 2.400e-06 2.405e-06 -5.620 -5.619 0.001 -17.09 + MgOH+ 4.031e-08 3.664e-08 -7.395 -7.436 -0.041 (0) + Mg(SO4)2-2 1.678e-08 1.153e-08 -7.775 -7.938 -0.163 6.68 Na 1.227e-04 - Na+ 1.219e-04 1.103e-04 -3.914 -3.957 -0.043 -1.38 - NaHCO3 5.111e-07 5.134e-07 -6.291 -6.290 0.002 31.73 - NaSO4- 2.408e-07 2.183e-07 -6.618 -6.661 -0.043 -15.24 - NaOH 1.243e-21 1.246e-21 -20.905 -20.904 0.001 (0) + Na+ 1.220e-04 1.103e-04 -3.914 -3.957 -0.043 -1.38 + NaHCO3 5.093e-07 5.116e-07 -6.293 -6.291 0.002 31.73 + NaSO4- 2.404e-07 2.180e-07 -6.619 -6.662 -0.043 -15.24 + NaOH 1.239e-21 1.242e-21 -20.907 -20.906 0.001 (0) O(0) 5.111e-04 O2 2.556e-04 2.561e-04 -3.593 -3.592 0.001 30.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -142.245 -142.290 -0.045 20.67 - H2S 0.000e+00 0.000e+00 -142.397 -142.396 0.001 36.27 - S-2 0.000e+00 0.000e+00 -147.988 -148.160 -0.173 (0) - (H2S)2 0.000e+00 0.000e+00 -286.071 -286.070 0.001 30.09 + HS- 0.000e+00 0.000e+00 -142.244 -142.289 -0.045 20.67 + H2S 0.000e+00 0.000e+00 -142.394 -142.393 0.001 36.27 + S-2 0.000e+00 0.000e+00 -147.988 -148.161 -0.173 (0) + (H2S)2 0.000e+00 0.000e+00 -286.066 -286.065 0.001 30.09 S(6) 2.351e-04 - SO4-2 1.810e-04 1.216e-04 -3.742 -3.915 -0.173 17.83 - MgSO4 2.841e-05 2.854e-05 -4.547 -4.545 0.002 -7.92 - CaSO4 2.535e-05 2.541e-05 -4.596 -4.595 0.001 7.50 - NaSO4- 2.408e-07 2.183e-07 -6.618 -6.661 -0.043 -15.24 - Mg(SO4)2-2 1.663e-08 1.143e-08 -7.779 -7.942 -0.163 6.69 - HSO4- 1.172e-09 1.059e-09 -8.931 -8.975 -0.044 40.34 - CaHSO4+ 1.657e-11 1.496e-11 -10.781 -10.825 -0.044 (0) + SO4-2 1.807e-04 1.214e-04 -3.743 -3.916 -0.173 17.83 + MgSO4 2.872e-05 2.885e-05 -4.542 -4.540 0.002 -7.92 + CaSO4 2.536e-05 2.542e-05 -4.596 -4.595 0.001 7.50 + NaSO4- 2.404e-07 2.180e-07 -6.619 -6.662 -0.043 -15.24 + Mg(SO4)2-2 1.678e-08 1.153e-08 -7.775 -7.938 -0.163 6.68 + HSO4- 1.175e-09 1.061e-09 -8.930 -8.974 -0.044 40.34 + CaHSO4+ 1.663e-11 1.502e-11 -10.779 -10.823 -0.044 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) Anhydrite -2.57 -6.84 -4.28 CaSO4 - Aragonite -0.15 -8.48 -8.34 CaCO3 - Calcite -0.00 -8.48 -8.48 CaCO3 + Aragonite -0.15 -8.49 -8.34 CaCO3 + Calcite -0.01 -8.49 -8.48 CaCO3 CH4(g) -140.75 -143.55 -2.80 CH4 CO2(g) -1.50 -2.97 -1.47 CO2 Dolomite 0.00 -17.08 -17.08 CaMg(CO3)2 @@ -1096,7 +1096,7 @@ S(6) 2.351e-04 H2O(g) -1.50 -0.00 1.50 H2O H2S(g) -141.40 -149.34 -7.94 H2S Halite -9.45 -7.88 1.57 NaCl - Hexahydrite -5.40 -6.96 -1.57 MgSO4:6H2O + Hexahydrite -5.39 -6.96 -1.57 MgSO4:6H2O Kieserite -5.80 -6.96 -1.16 MgSO4:H2O Mirabilite -10.59 -11.83 -1.24 Na2SO4:10H2O O2(g) -0.70 -3.59 -2.89 O2 diff --git a/ex14.sel b/ex14.sel index 03767844..ee307064 100644 --- a/ex14.sel +++ b/ex14.sel @@ -1,202 +1,202 @@ step m_Ca m_Mg m_Na umol_As pH mmol_sorbedAs - 1 4.6311e-01 1.6336e-01 5.4020e+00 2.5000e-02 5.8810e+00 0.0000e+00 - 1 3.3982e-04 2.4501e-04 9.3753e-02 1.5319e-03 7.2305e+00 2.5031e+00 - 2 2.7841e-05 1.8927e-05 2.3197e-02 1.8488e-01 8.6742e+00 2.5029e+00 - 3 1.4871e-05 9.3459e-06 1.4410e-02 1.2141e+00 9.1757e+00 2.5017e+00 - 4 1.2989e-05 7.9525e-06 1.2379e-02 2.0465e+00 9.3176e+00 2.4996e+00 - 5 1.2586e-05 7.6552e-06 1.1597e-02 2.3837e+00 9.3589e+00 2.4972e+00 - 6 1.2614e-05 7.6785e-06 1.1209e-02 2.4314e+00 9.3635e+00 2.4948e+00 - 7 1.2816e-05 7.8309e-06 1.0979e-02 2.3487e+00 9.3532e+00 2.4925e+00 - 8 1.3101e-05 8.0448e-06 1.0819e-02 2.2165e+00 9.3364e+00 2.4902e+00 - 9 1.3431e-05 8.2921e-06 1.0692e-02 2.0706e+00 9.3171e+00 2.4882e+00 - 10 1.3789e-05 8.5605e-06 1.0584e-02 1.9262e+00 9.2967e+00 2.4863e+00 - 11 1.4169e-05 8.8445e-06 1.0486e-02 1.7887e+00 9.2760e+00 2.4845e+00 - 12 1.4566e-05 9.1422e-06 1.0396e-02 1.6601e+00 9.2553e+00 2.4828e+00 - 13 1.4981e-05 9.4529e-06 1.0312e-02 1.5405e+00 9.2346e+00 2.4813e+00 - 14 1.5413e-05 9.7768e-06 1.0232e-02 1.4295e+00 9.2141e+00 2.4798e+00 - 15 1.5863e-05 1.0114e-05 1.0156e-02 1.3265e+00 9.1937e+00 2.4785e+00 - 16 1.6333e-05 1.0466e-05 1.0083e-02 1.2309e+00 9.1734e+00 2.4773e+00 - 17 1.6823e-05 1.0834e-05 1.0014e-02 1.1422e+00 9.1532e+00 2.4761e+00 - 18 1.7335e-05 1.1217e-05 9.9480e-03 1.0598e+00 9.1331e+00 2.4751e+00 - 19 1.7870e-05 1.1618e-05 9.8848e-03 9.8312e-01 9.1130e+00 2.4741e+00 - 20 1.8430e-05 1.2037e-05 9.8243e-03 9.1184e-01 9.0929e+00 2.4732e+00 - 21 1.9015e-05 1.2476e-05 9.7662e-03 8.4551e-01 9.0729e+00 2.4723e+00 - 22 1.9628e-05 1.2936e-05 9.7104e-03 7.8377e-01 9.0528e+00 2.4716e+00 - 23 2.0271e-05 1.3417e-05 9.6568e-03 7.2629e-01 9.0328e+00 2.4708e+00 - 24 2.0946e-05 1.3923e-05 9.6051e-03 6.7276e-01 9.0127e+00 2.4702e+00 - 25 2.1654e-05 1.4453e-05 9.5553e-03 6.2290e-01 8.9926e+00 2.4695e+00 - 26 2.2398e-05 1.5011e-05 9.5073e-03 5.7646e-01 8.9724e+00 2.4690e+00 - 27 2.3180e-05 1.5597e-05 9.4609e-03 5.3321e-01 8.9522e+00 2.4684e+00 - 28 2.4003e-05 1.6214e-05 9.4160e-03 4.9293e-01 8.9319e+00 2.4679e+00 - 29 2.4869e-05 1.6863e-05 9.3725e-03 4.5542e-01 8.9115e+00 2.4675e+00 - 30 2.5782e-05 1.7548e-05 9.3303e-03 4.2050e-01 8.8910e+00 2.4671e+00 - 31 2.6746e-05 1.8269e-05 9.2894e-03 3.8799e-01 8.8704e+00 2.4667e+00 - 32 2.7762e-05 1.9031e-05 9.2497e-03 3.5775e-01 8.8496e+00 2.4663e+00 - 33 2.8836e-05 1.9836e-05 9.2109e-03 3.2961e-01 8.8288e+00 2.4660e+00 - 34 2.9971e-05 2.0687e-05 9.1732e-03 3.0345e-01 8.8078e+00 2.4657e+00 - 35 3.1172e-05 2.1587e-05 9.1363e-03 2.7914e-01 8.7866e+00 2.4654e+00 - 36 3.2444e-05 2.2540e-05 9.1003e-03 2.5656e-01 8.7653e+00 2.4651e+00 - 37 3.3792e-05 2.3551e-05 9.0650e-03 2.3559e-01 8.7438e+00 2.4649e+00 - 38 3.5222e-05 2.4622e-05 9.0303e-03 2.1614e-01 8.7221e+00 2.4647e+00 - 39 3.6740e-05 2.5760e-05 8.9962e-03 1.9810e-01 8.7002e+00 2.4645e+00 - 40 3.8353e-05 2.6969e-05 8.9626e-03 1.8138e-01 8.6781e+00 2.4643e+00 - 41 4.0068e-05 2.8254e-05 8.9294e-03 1.6591e-01 8.6558e+00 2.4641e+00 - 42 4.1894e-05 2.9623e-05 8.8965e-03 1.5159e-01 8.6333e+00 2.4640e+00 - 43 4.3840e-05 3.1081e-05 8.8639e-03 1.3835e-01 8.6105e+00 2.4638e+00 - 44 4.5915e-05 3.2636e-05 8.8314e-03 1.2613e-01 8.5875e+00 2.4637e+00 - 45 4.8130e-05 3.4296e-05 8.7990e-03 1.1485e-01 8.5643e+00 2.4636e+00 - 46 5.0496e-05 3.6070e-05 8.7665e-03 1.0445e-01 8.5407e+00 2.4635e+00 - 47 5.3028e-05 3.7968e-05 8.7339e-03 9.4876e-02 8.5169e+00 2.4634e+00 - 48 5.5738e-05 3.9999e-05 8.7011e-03 8.6070e-02 8.4928e+00 2.4633e+00 - 49 5.8643e-05 4.2176e-05 8.6679e-03 7.7978e-02 8.4685e+00 2.4632e+00 - 50 6.1760e-05 4.4512e-05 8.6342e-03 7.0553e-02 8.4438e+00 2.4632e+00 - 51 6.5107e-05 4.7021e-05 8.6000e-03 6.3747e-02 8.4188e+00 2.4631e+00 - 52 6.8705e-05 4.9718e-05 8.5650e-03 5.7517e-02 8.3935e+00 2.4631e+00 - 53 7.2578e-05 5.2621e-05 8.5292e-03 5.1822e-02 8.3678e+00 2.4630e+00 - 54 7.6750e-05 5.5748e-05 8.4923e-03 4.6624e-02 8.3418e+00 2.4630e+00 - 55 8.1250e-05 5.9121e-05 8.4542e-03 4.1886e-02 8.3155e+00 2.4629e+00 - 56 8.6108e-05 6.2763e-05 8.4147e-03 3.7574e-02 8.2888e+00 2.4629e+00 - 57 9.1359e-05 6.6699e-05 8.3737e-03 3.3655e-02 8.2617e+00 2.4628e+00 - 58 9.7040e-05 7.0957e-05 8.3308e-03 3.0101e-02 8.2343e+00 2.4628e+00 - 59 1.0319e-04 7.5569e-05 8.2860e-03 2.6881e-02 8.2065e+00 2.4628e+00 - 60 1.0986e-04 8.0568e-05 8.2388e-03 2.3971e-02 8.1784e+00 2.4628e+00 - 61 1.1710e-04 8.5993e-05 8.1891e-03 2.1344e-02 8.1498e+00 2.4627e+00 - 62 1.2496e-04 9.1886e-05 8.1366e-03 1.8978e-02 8.1209e+00 2.4627e+00 - 63 1.3350e-04 9.8292e-05 8.0809e-03 1.6851e-02 8.0916e+00 2.4627e+00 - 64 1.4280e-04 1.0526e-04 8.0217e-03 1.4942e-02 8.0620e+00 2.4627e+00 - 65 1.5292e-04 1.1285e-04 7.9586e-03 1.3233e-02 8.0320e+00 2.4627e+00 - 66 1.6395e-04 1.2111e-04 7.8912e-03 1.1705e-02 8.0016e+00 2.4627e+00 - 67 1.7596e-04 1.3012e-04 7.8192e-03 1.0342e-02 7.9709e+00 2.4627e+00 - 68 1.8907e-04 1.3994e-04 7.7420e-03 9.1295e-03 7.9399e+00 2.4626e+00 - 69 2.0336e-04 1.5066e-04 7.6592e-03 8.0524e-03 7.9087e+00 2.4626e+00 - 70 2.1894e-04 1.6234e-04 7.5703e-03 7.0978e-03 7.8771e+00 2.4626e+00 - 71 2.3593e-04 1.7508e-04 7.4748e-03 6.2535e-03 7.8454e+00 2.4626e+00 - 72 2.5446e-04 1.8897e-04 7.3722e-03 5.5084e-03 7.8135e+00 2.4626e+00 - 73 2.7463e-04 2.0409e-04 7.2618e-03 4.8521e-03 7.7814e+00 2.4626e+00 - 74 2.9659e-04 2.2055e-04 7.1434e-03 4.2752e-03 7.7493e+00 2.4626e+00 - 75 3.2045e-04 2.3845e-04 7.0162e-03 3.7691e-03 7.7172e+00 2.4626e+00 - 76 3.4635e-04 2.5786e-04 6.8800e-03 3.3259e-03 7.6851e+00 2.4626e+00 - 77 3.7440e-04 2.7889e-04 6.7342e-03 2.9386e-03 7.6532e+00 2.4626e+00 - 78 4.0470e-04 3.0161e-04 6.5786e-03 2.6006e-03 7.6215e+00 2.4626e+00 - 79 4.3734e-04 3.2608e-04 6.4130e-03 2.3060e-03 7.5901e+00 2.4626e+00 - 80 4.7239e-04 3.5236e-04 6.2372e-03 2.0498e-03 7.5592e+00 2.4626e+00 - 81 5.0989e-04 3.8047e-04 6.0514e-03 1.8271e-03 7.5287e+00 2.4626e+00 - 82 5.4982e-04 4.1041e-04 5.8558e-03 1.6337e-03 7.4988e+00 2.4626e+00 - 83 5.9216e-04 4.4215e-04 5.6508e-03 1.4660e-03 7.4697e+00 2.4626e+00 - 84 6.3681e-04 4.7562e-04 5.4371e-03 1.3206e-03 7.4413e+00 2.4626e+00 - 85 6.8364e-04 5.1072e-04 5.2154e-03 1.1946e-03 7.4138e+00 2.4626e+00 - 86 7.3244e-04 5.4730e-04 4.9870e-03 1.0855e-03 7.3873e+00 2.4626e+00 - 87 7.8274e-04 5.8543e-04 4.7528e-03 9.9091e-04 7.3618e+00 2.4626e+00 - 88 8.3380e-04 6.2532e-04 4.5141e-03 9.0878e-04 7.3374e+00 2.4626e+00 - 89 8.8593e-04 6.6610e-04 4.2730e-03 8.3762e-04 7.3142e+00 2.4626e+00 - 90 9.3873e-04 7.0745e-04 4.0310e-03 7.7596e-04 7.2921e+00 2.4626e+00 - 91 9.9182e-04 7.4907e-04 3.7899e-03 7.2250e-04 7.2714e+00 2.4626e+00 - 92 1.0448e-03 7.9064e-04 3.5514e-03 6.7611e-04 7.2519e+00 2.4626e+00 - 93 1.0973e-03 8.3185e-04 3.3171e-03 6.3583e-04 7.2337e+00 2.4626e+00 - 94 1.1489e-03 8.7238e-04 3.0885e-03 6.0081e-04 7.2167e+00 2.4626e+00 - 95 1.1992e-03 9.1197e-04 2.8670e-03 5.7034e-04 7.2009e+00 2.4626e+00 - 96 1.2480e-03 9.5035e-04 2.6538e-03 5.4379e-04 7.1864e+00 2.4626e+00 - 97 1.2950e-03 9.8730e-04 2.4499e-03 5.2064e-04 7.1730e+00 2.4626e+00 - 98 1.3399e-03 1.0226e-03 2.2561e-03 5.0043e-04 7.1607e+00 2.4626e+00 - 99 1.3826e-03 1.0562e-03 2.0729e-03 4.8276e-04 7.1494e+00 2.4626e+00 - 100 1.4229e-03 1.0879e-03 1.9008e-03 4.6730e-04 7.1392e+00 2.4626e+00 - 101 1.4608e-03 1.1177e-03 1.7399e-03 4.5375e-04 7.1298e+00 2.4626e+00 - 102 1.4962e-03 1.1456e-03 1.5901e-03 4.4188e-04 7.1214e+00 2.4626e+00 - 103 1.5291e-03 1.1715e-03 1.4514e-03 4.3145e-04 7.1137e+00 2.4626e+00 - 104 1.5596e-03 1.1954e-03 1.3234e-03 4.2230e-04 7.1067e+00 2.4626e+00 - 105 1.5877e-03 1.2175e-03 1.2058e-03 4.1425e-04 7.1005e+00 2.4626e+00 - 106 1.6136e-03 1.2378e-03 1.0981e-03 4.0716e-04 7.0948e+00 2.4626e+00 - 107 1.6372e-03 1.2563e-03 9.9978e-04 4.0092e-04 7.0897e+00 2.4626e+00 - 108 1.6589e-03 1.2732e-03 9.1028e-04 3.9542e-04 7.0852e+00 2.4626e+00 - 109 1.6785e-03 1.2885e-03 8.2903e-04 3.9057e-04 7.0811e+00 2.4626e+00 - 110 1.6964e-03 1.3025e-03 7.5545e-04 3.8630e-04 7.0774e+00 2.4626e+00 - 111 1.7126e-03 1.3151e-03 6.8895e-04 3.8252e-04 7.0742e+00 2.4626e+00 - 112 1.7273e-03 1.3264e-03 6.2897e-04 3.7919e-04 7.0712e+00 2.4626e+00 - 113 1.7405e-03 1.3366e-03 5.7496e-04 3.7624e-04 7.0686e+00 2.4626e+00 - 114 1.7524e-03 1.3458e-03 5.2642e-04 3.7363e-04 7.0663e+00 2.4626e+00 - 115 1.7631e-03 1.3541e-03 4.8284e-04 3.7133e-04 7.0642e+00 2.4626e+00 - 116 1.7727e-03 1.3615e-03 4.4378e-04 3.6929e-04 7.0624e+00 2.4626e+00 - 117 1.7814e-03 1.3681e-03 4.0879e-04 3.6749e-04 7.0607e+00 2.4626e+00 - 118 1.7892e-03 1.3740e-03 3.7750e-04 3.6590e-04 7.0592e+00 2.4626e+00 - 119 1.7961e-03 1.3792e-03 3.4953e-04 3.6449e-04 7.0579e+00 2.4626e+00 - 120 1.8024e-03 1.3839e-03 3.2455e-04 3.6324e-04 7.0568e+00 2.4626e+00 - 121 1.8080e-03 1.3880e-03 3.0226e-04 3.6213e-04 7.0557e+00 2.4626e+00 - 122 1.8130e-03 1.3917e-03 2.8239e-04 3.6115e-04 7.0548e+00 2.4626e+00 - 123 1.8174e-03 1.3950e-03 2.6467e-04 3.6028e-04 7.0540e+00 2.4626e+00 - 124 1.8214e-03 1.3979e-03 2.4889e-04 3.5952e-04 7.0533e+00 2.4626e+00 - 125 1.8250e-03 1.4005e-03 2.3484e-04 3.5883e-04 7.0526e+00 2.4626e+00 - 126 1.8282e-03 1.4028e-03 2.2233e-04 3.5823e-04 7.0520e+00 2.4626e+00 - 127 1.8311e-03 1.4048e-03 2.1121e-04 3.5770e-04 7.0515e+00 2.4626e+00 - 128 1.8337e-03 1.4066e-03 2.0131e-04 3.5723e-04 7.0511e+00 2.4626e+00 - 129 1.8360e-03 1.4081e-03 1.9251e-04 3.5681e-04 7.0507e+00 2.4626e+00 - 130 1.8380e-03 1.4095e-03 1.8469e-04 3.5644e-04 7.0503e+00 2.4626e+00 - 131 1.8399e-03 1.4107e-03 1.7774e-04 3.5611e-04 7.0500e+00 2.4626e+00 - 132 1.8415e-03 1.4118e-03 1.7156e-04 3.5582e-04 7.0497e+00 2.4626e+00 - 133 1.8430e-03 1.4127e-03 1.6607e-04 3.5556e-04 7.0495e+00 2.4626e+00 - 134 1.8444e-03 1.4135e-03 1.6120e-04 3.5533e-04 7.0493e+00 2.4626e+00 - 135 1.8456e-03 1.4142e-03 1.5687e-04 3.5513e-04 7.0491e+00 2.4626e+00 - 136 1.8467e-03 1.4148e-03 1.5302e-04 3.5495e-04 7.0489e+00 2.4626e+00 - 137 1.8476e-03 1.4153e-03 1.4961e-04 3.5479e-04 7.0488e+00 2.4626e+00 - 138 1.8485e-03 1.4158e-03 1.4658e-04 3.5465e-04 7.0486e+00 2.4626e+00 - 139 1.8493e-03 1.4162e-03 1.4389e-04 3.5453e-04 7.0485e+00 2.4626e+00 - 140 1.8500e-03 1.4165e-03 1.4150e-04 3.5442e-04 7.0484e+00 2.4626e+00 - 141 1.8507e-03 1.4168e-03 1.3938e-04 3.5433e-04 7.0483e+00 2.4626e+00 - 142 1.8513e-03 1.4170e-03 1.3750e-04 3.5424e-04 7.0482e+00 2.4626e+00 - 143 1.8519e-03 1.4172e-03 1.3583e-04 3.5417e-04 7.0481e+00 2.4626e+00 - 144 1.8524e-03 1.4174e-03 1.3435e-04 3.5410e-04 7.0481e+00 2.4626e+00 - 145 1.8528e-03 1.4175e-03 1.3303e-04 3.5404e-04 7.0480e+00 2.4626e+00 - 146 1.8532e-03 1.4176e-03 1.3187e-04 3.5399e-04 7.0480e+00 2.4626e+00 - 147 1.8536e-03 1.4177e-03 1.3083e-04 3.5394e-04 7.0479e+00 2.4626e+00 - 148 1.8540e-03 1.4177e-03 1.2991e-04 3.5390e-04 7.0479e+00 2.4626e+00 - 149 1.8543e-03 1.4177e-03 1.2910e-04 3.5387e-04 7.0479e+00 2.4626e+00 - 150 1.8546e-03 1.4178e-03 1.2837e-04 3.5384e-04 7.0478e+00 2.4626e+00 - 151 1.8549e-03 1.4178e-03 1.2773e-04 3.5381e-04 7.0478e+00 2.4626e+00 - 152 1.8552e-03 1.4177e-03 1.2716e-04 3.5379e-04 7.0478e+00 2.4626e+00 - 153 1.8554e-03 1.4177e-03 1.2666e-04 3.5377e-04 7.0478e+00 2.4626e+00 - 154 1.8557e-03 1.4177e-03 1.2621e-04 3.5375e-04 7.0477e+00 2.4626e+00 - 155 1.8559e-03 1.4176e-03 1.2581e-04 3.5374e-04 7.0477e+00 2.4626e+00 - 156 1.8561e-03 1.4176e-03 1.2546e-04 3.5372e-04 7.0477e+00 2.4626e+00 - 157 1.8563e-03 1.4175e-03 1.2514e-04 3.5371e-04 7.0477e+00 2.4626e+00 - 158 1.8565e-03 1.4175e-03 1.2487e-04 3.5370e-04 7.0477e+00 2.4626e+00 - 159 1.8567e-03 1.4174e-03 1.2462e-04 3.5369e-04 7.0477e+00 2.4626e+00 - 160 1.8568e-03 1.4173e-03 1.2440e-04 3.5369e-04 7.0477e+00 2.4626e+00 - 161 1.8570e-03 1.4173e-03 1.2421e-04 3.5368e-04 7.0477e+00 2.4626e+00 - 162 1.8572e-03 1.4172e-03 1.2404e-04 3.5368e-04 7.0477e+00 2.4626e+00 - 163 1.8573e-03 1.4171e-03 1.2388e-04 3.5367e-04 7.0477e+00 2.4626e+00 - 164 1.8575e-03 1.4170e-03 1.2375e-04 3.5367e-04 7.0477e+00 2.4625e+00 - 165 1.8576e-03 1.4169e-03 1.2363e-04 3.5367e-04 7.0477e+00 2.4625e+00 - 166 1.8578e-03 1.4168e-03 1.2352e-04 3.5367e-04 7.0477e+00 2.4625e+00 - 167 1.8579e-03 1.4167e-03 1.2343e-04 3.5366e-04 7.0477e+00 2.4625e+00 - 168 1.8580e-03 1.4166e-03 1.2334e-04 3.5366e-04 7.0477e+00 2.4625e+00 - 169 1.8582e-03 1.4165e-03 1.2327e-04 3.5366e-04 7.0477e+00 2.4625e+00 - 170 1.8583e-03 1.4165e-03 1.2320e-04 3.5366e-04 7.0477e+00 2.4625e+00 - 171 1.8584e-03 1.4164e-03 1.2314e-04 3.5366e-04 7.0477e+00 2.4625e+00 - 172 1.8586e-03 1.4163e-03 1.2309e-04 3.5366e-04 7.0477e+00 2.4625e+00 - 173 1.8587e-03 1.4162e-03 1.2304e-04 3.5367e-04 7.0477e+00 2.4625e+00 - 174 1.8588e-03 1.4161e-03 1.2300e-04 3.5367e-04 7.0477e+00 2.4625e+00 - 175 1.8589e-03 1.4160e-03 1.2297e-04 3.5367e-04 7.0477e+00 2.4625e+00 - 176 1.8590e-03 1.4159e-03 1.2294e-04 3.5367e-04 7.0477e+00 2.4625e+00 - 177 1.8591e-03 1.4158e-03 1.2291e-04 3.5367e-04 7.0477e+00 2.4625e+00 - 178 1.8593e-03 1.4157e-03 1.2288e-04 3.5367e-04 7.0477e+00 2.4625e+00 - 179 1.8594e-03 1.4156e-03 1.2286e-04 3.5367e-04 7.0477e+00 2.4625e+00 - 180 1.8595e-03 1.4155e-03 1.2284e-04 3.5368e-04 7.0477e+00 2.4625e+00 - 181 1.8596e-03 1.4154e-03 1.2282e-04 3.5368e-04 7.0477e+00 2.4625e+00 - 182 1.8597e-03 1.4153e-03 1.2281e-04 3.5368e-04 7.0477e+00 2.4625e+00 - 183 1.8598e-03 1.4152e-03 1.2279e-04 3.5368e-04 7.0477e+00 2.4625e+00 - 184 1.8599e-03 1.4151e-03 1.2278e-04 3.5369e-04 7.0477e+00 2.4625e+00 - 185 1.8600e-03 1.4150e-03 1.2277e-04 3.5369e-04 7.0477e+00 2.4625e+00 - 186 1.8601e-03 1.4149e-03 1.2276e-04 3.5369e-04 7.0477e+00 2.4625e+00 - 187 1.8602e-03 1.4148e-03 1.2275e-04 3.5369e-04 7.0477e+00 2.4625e+00 - 188 1.8603e-03 1.4147e-03 1.2274e-04 3.5369e-04 7.0477e+00 2.4625e+00 - 189 1.8604e-03 1.4146e-03 1.2274e-04 3.5370e-04 7.0477e+00 2.4625e+00 - 190 1.8605e-03 1.4145e-03 1.2273e-04 3.5370e-04 7.0477e+00 2.4625e+00 - 191 1.8606e-03 1.4145e-03 1.2272e-04 3.5370e-04 7.0477e+00 2.4625e+00 - 192 1.8607e-03 1.4144e-03 1.2272e-04 3.5370e-04 7.0477e+00 2.4625e+00 - 193 1.8608e-03 1.4143e-03 1.2271e-04 3.5371e-04 7.0477e+00 2.4625e+00 - 194 1.8609e-03 1.4142e-03 1.2271e-04 3.5371e-04 7.0477e+00 2.4625e+00 - 195 1.8610e-03 1.4141e-03 1.2271e-04 3.5371e-04 7.0477e+00 2.4625e+00 - 196 1.8611e-03 1.4140e-03 1.2270e-04 3.5371e-04 7.0477e+00 2.4625e+00 - 197 1.8612e-03 1.4139e-03 1.2270e-04 3.5372e-04 7.0477e+00 2.4625e+00 - 198 1.8613e-03 1.4138e-03 1.2270e-04 3.5372e-04 7.0477e+00 2.4625e+00 - 199 1.8614e-03 1.4137e-03 1.2270e-04 3.5372e-04 7.0477e+00 2.4625e+00 - 200 1.8615e-03 1.4137e-03 1.2270e-04 3.5372e-04 7.0477e+00 2.4625e+00 + 1 4.6224e-01 1.6417e-01 5.4020e+00 2.5000e-02 5.7200e+00 0.0000e+00 + 1 3.4012e-04 2.8376e-04 9.8893e-02 6.9061e-04 7.1604e+00 1.8502e+00 + 2 2.8798e-05 2.0914e-05 2.4017e-02 7.7563e-02 8.6169e+00 1.8501e+00 + 3 1.4730e-05 9.6045e-06 1.4376e-02 6.0687e-01 9.1600e+00 1.8495e+00 + 4 1.2797e-05 8.0657e-06 1.2262e-02 1.0664e+00 9.3111e+00 1.8485e+00 + 5 1.2388e-05 7.7402e-06 1.1473e-02 1.2555e+00 9.3547e+00 1.8472e+00 + 6 1.2412e-05 7.7568e-06 1.1090e-02 1.2842e+00 9.3600e+00 1.8459e+00 + 7 1.2606e-05 7.9080e-06 1.0866e-02 1.2413e+00 9.3499e+00 1.8447e+00 + 8 1.2879e-05 8.1219e-06 1.0710e-02 1.1714e+00 9.3334e+00 1.8435e+00 + 9 1.3195e-05 8.3693e-06 1.0588e-02 1.0944e+00 9.3143e+00 1.8424e+00 + 10 1.3537e-05 8.6376e-06 1.0483e-02 1.0181e+00 9.2942e+00 1.8414e+00 + 11 1.3899e-05 8.9215e-06 1.0388e-02 9.4559e-01 9.2738e+00 1.8405e+00 + 12 1.4278e-05 9.2189e-06 1.0300e-02 8.7770e-01 9.2533e+00 1.8396e+00 + 13 1.4674e-05 9.5292e-06 1.0218e-02 8.1456e-01 9.2330e+00 1.8388e+00 + 14 1.5086e-05 9.8526e-06 1.0139e-02 7.5594e-01 9.2127e+00 1.8380e+00 + 15 1.5516e-05 1.0190e-05 1.0065e-02 7.0154e-01 9.1925e+00 1.8373e+00 + 16 1.5964e-05 1.0541e-05 9.9941e-03 6.5104e-01 9.1725e+00 1.8367e+00 + 17 1.6431e-05 1.0908e-05 9.9263e-03 6.0413e-01 9.1525e+00 1.8361e+00 + 18 1.6919e-05 1.1291e-05 9.8615e-03 5.6054e-01 9.1325e+00 1.8355e+00 + 19 1.7429e-05 1.1691e-05 9.7994e-03 5.2000e-01 9.1127e+00 1.8350e+00 + 20 1.7963e-05 1.2109e-05 9.7399e-03 4.8229e-01 9.0928e+00 1.8345e+00 + 21 1.8521e-05 1.2547e-05 9.6827e-03 4.4720e-01 9.0729e+00 1.8340e+00 + 22 1.9106e-05 1.3006e-05 9.6278e-03 4.1452e-01 9.0531e+00 1.8336e+00 + 23 1.9719e-05 1.3487e-05 9.5749e-03 3.8410e-01 9.0332e+00 1.8332e+00 + 24 2.0362e-05 1.3991e-05 9.5240e-03 3.5576e-01 9.0133e+00 1.8329e+00 + 25 2.1037e-05 1.4521e-05 9.4749e-03 3.2937e-01 8.9934e+00 1.8326e+00 + 26 2.1746e-05 1.5077e-05 9.4275e-03 3.0479e-01 8.9733e+00 1.8323e+00 + 27 2.2492e-05 1.5662e-05 9.3817e-03 2.8190e-01 8.9533e+00 1.8320e+00 + 28 2.3276e-05 1.6277e-05 9.3374e-03 2.6057e-01 8.9331e+00 1.8317e+00 + 29 2.4102e-05 1.6925e-05 9.2944e-03 2.4072e-01 8.9128e+00 1.8315e+00 + 30 2.4972e-05 1.7607e-05 9.2528e-03 2.2224e-01 8.8925e+00 1.8313e+00 + 31 2.5890e-05 1.8327e-05 9.2123e-03 2.0503e-01 8.8720e+00 1.8310e+00 + 32 2.6858e-05 1.9087e-05 9.1730e-03 1.8903e-01 8.8514e+00 1.8309e+00 + 33 2.7881e-05 1.9889e-05 9.1347e-03 1.7414e-01 8.8307e+00 1.8307e+00 + 34 2.8963e-05 2.0738e-05 9.0973e-03 1.6030e-01 8.8098e+00 1.8305e+00 + 35 3.0107e-05 2.1635e-05 9.0608e-03 1.4744e-01 8.7887e+00 1.8304e+00 + 36 3.1318e-05 2.2585e-05 9.0251e-03 1.3549e-01 8.7675e+00 1.8302e+00 + 37 3.2602e-05 2.3592e-05 8.9902e-03 1.2440e-01 8.7461e+00 1.8301e+00 + 38 3.3964e-05 2.4659e-05 8.9558e-03 1.1412e-01 8.7246e+00 1.8300e+00 + 39 3.5409e-05 2.5793e-05 8.9221e-03 1.0458e-01 8.7028e+00 1.8299e+00 + 40 3.6945e-05 2.6997e-05 8.8888e-03 9.5744e-02 8.6808e+00 1.8298e+00 + 41 3.8578e-05 2.8278e-05 8.8559e-03 8.7564e-02 8.6586e+00 1.8297e+00 + 42 4.0316e-05 2.9641e-05 8.8234e-03 7.9998e-02 8.6362e+00 1.8296e+00 + 43 4.2168e-05 3.1093e-05 8.7911e-03 7.3004e-02 8.6136e+00 1.8296e+00 + 44 4.4143e-05 3.2641e-05 8.7589e-03 6.6546e-02 8.5907e+00 1.8295e+00 + 45 4.6251e-05 3.4294e-05 8.7268e-03 6.0588e-02 8.5675e+00 1.8294e+00 + 46 4.8503e-05 3.6060e-05 8.6947e-03 5.5097e-02 8.5441e+00 1.8294e+00 + 47 5.0912e-05 3.7949e-05 8.6625e-03 5.0041e-02 8.5204e+00 1.8293e+00 + 48 5.3491e-05 3.9971e-05 8.6300e-03 4.5392e-02 8.4964e+00 1.8293e+00 + 49 5.6256e-05 4.2138e-05 8.5972e-03 4.1120e-02 8.4721e+00 1.8292e+00 + 50 5.9221e-05 4.4462e-05 8.5640e-03 3.7201e-02 8.4475e+00 1.8292e+00 + 51 6.2406e-05 4.6958e-05 8.5301e-03 3.3609e-02 8.4226e+00 1.8292e+00 + 52 6.5830e-05 4.9642e-05 8.4956e-03 3.0322e-02 8.3973e+00 1.8291e+00 + 53 6.9514e-05 5.2529e-05 8.4602e-03 2.7317e-02 8.3718e+00 1.8291e+00 + 54 7.3485e-05 5.5640e-05 8.4238e-03 2.4574e-02 8.3459e+00 1.8291e+00 + 55 7.7766e-05 5.8996e-05 8.3863e-03 2.2075e-02 8.3196e+00 1.8291e+00 + 56 8.2389e-05 6.2618e-05 8.3474e-03 1.9801e-02 8.2930e+00 1.8290e+00 + 57 8.7386e-05 6.6532e-05 8.3070e-03 1.7734e-02 8.2660e+00 1.8290e+00 + 58 9.2793e-05 7.0768e-05 8.2648e-03 1.5859e-02 8.2386e+00 1.8290e+00 + 59 9.8649e-05 7.5354e-05 8.2207e-03 1.4162e-02 8.2109e+00 1.8290e+00 + 60 1.0500e-04 8.0327e-05 8.1743e-03 1.2627e-02 8.1828e+00 1.8290e+00 + 61 1.1189e-04 8.5723e-05 8.1255e-03 1.1242e-02 8.1543e+00 1.8290e+00 + 62 1.1938e-04 9.1584e-05 8.0738e-03 9.9950e-03 8.1254e+00 1.8290e+00 + 63 1.2751e-04 9.7956e-05 8.0191e-03 8.8736e-03 8.0962e+00 1.8290e+00 + 64 1.3637e-04 1.0489e-04 7.9610e-03 7.8674e-03 8.0666e+00 1.8289e+00 + 65 1.4602e-04 1.1244e-04 7.8991e-03 6.9663e-03 8.0366e+00 1.8289e+00 + 66 1.5653e-04 1.2066e-04 7.8330e-03 6.1611e-03 8.0062e+00 1.8289e+00 + 67 1.6799e-04 1.2963e-04 7.7623e-03 5.4429e-03 7.9756e+00 1.8289e+00 + 68 1.8049e-04 1.3940e-04 7.6865e-03 4.8037e-03 7.9446e+00 1.8289e+00 + 69 1.9413e-04 1.5007e-04 7.6053e-03 4.2361e-03 7.9133e+00 1.8289e+00 + 70 2.0902e-04 1.6170e-04 7.5180e-03 3.7330e-03 7.8817e+00 1.8289e+00 + 71 2.2526e-04 1.7439e-04 7.4242e-03 3.2880e-03 7.8499e+00 1.8289e+00 + 72 2.4297e-04 1.8823e-04 7.3235e-03 2.8954e-03 7.8180e+00 1.8289e+00 + 73 2.6228e-04 2.0331e-04 7.2151e-03 2.5496e-03 7.7859e+00 1.8289e+00 + 74 2.8331e-04 2.1973e-04 7.0987e-03 2.2456e-03 7.7537e+00 1.8289e+00 + 75 3.0619e-04 2.3759e-04 6.9737e-03 1.9790e-03 7.7214e+00 1.8289e+00 + 76 3.3104e-04 2.5698e-04 6.8397e-03 1.7456e-03 7.6893e+00 1.8289e+00 + 77 3.5798e-04 2.7798e-04 6.6963e-03 1.5416e-03 7.6572e+00 1.8289e+00 + 78 3.8711e-04 3.0069e-04 6.5431e-03 1.3636e-03 7.6254e+00 1.8289e+00 + 79 4.1854e-04 3.2518e-04 6.3799e-03 1.2085e-03 7.5938e+00 1.8289e+00 + 80 4.5223e-04 3.5158e-04 6.2066e-03 1.0736e-03 7.5627e+00 1.8289e+00 + 81 4.8765e-04 3.8060e-04 6.0223e-03 9.5591e-04 7.5319e+00 1.8289e+00 + 82 5.2542e-04 4.1158e-04 5.8285e-03 8.5381e-04 7.5017e+00 1.8289e+00 + 83 5.6547e-04 4.4448e-04 5.6253e-03 7.6535e-04 7.4722e+00 1.8289e+00 + 84 6.0773e-04 4.7922e-04 5.4134e-03 6.8877e-04 7.4435e+00 1.8289e+00 + 85 6.5205e-04 5.1570e-04 5.1935e-03 6.2251e-04 7.4157e+00 1.8289e+00 + 86 6.9826e-04 5.5377e-04 4.9668e-03 5.6518e-04 7.3888e+00 1.8289e+00 + 87 7.4613e-04 5.9324e-04 4.7345e-03 5.1559e-04 7.3631e+00 1.8289e+00 + 88 7.9538e-04 6.3387e-04 4.4979e-03 4.7268e-04 7.3385e+00 1.8289e+00 + 89 8.4568e-04 6.7540e-04 4.2586e-03 4.3553e-04 7.3150e+00 1.8289e+00 + 90 8.9670e-04 7.1753e-04 4.0183e-03 4.0336e-04 7.2928e+00 1.8289e+00 + 91 9.4805e-04 7.5995e-04 3.7788e-03 3.7548e-04 7.2719e+00 1.8289e+00 + 92 9.9935e-04 8.0234e-04 3.5416e-03 3.5130e-04 7.2522e+00 1.8289e+00 + 93 1.0502e-03 8.4437e-04 3.3084e-03 3.3030e-04 7.2338e+00 1.8289e+00 + 94 1.1003e-03 8.8573e-04 3.0808e-03 3.1206e-04 7.2167e+00 1.8289e+00 + 95 1.1492e-03 9.2613e-04 2.8602e-03 2.9619e-04 7.2008e+00 1.8289e+00 + 96 1.1966e-03 9.6531e-04 2.6478e-03 2.8237e-04 7.1861e+00 1.8289e+00 + 97 1.2423e-03 1.0030e-03 2.4445e-03 2.7032e-04 7.1726e+00 1.8289e+00 + 98 1.2860e-03 1.0391e-03 2.2513e-03 2.5980e-04 7.1602e+00 1.8289e+00 + 99 1.3276e-03 1.0734e-03 2.0686e-03 2.5061e-04 7.1488e+00 1.8289e+00 + 100 1.3669e-03 1.1058e-03 1.8968e-03 2.4257e-04 7.1384e+00 1.8289e+00 + 101 1.4039e-03 1.1362e-03 1.7362e-03 2.3553e-04 7.1290e+00 1.8289e+00 + 102 1.4385e-03 1.1646e-03 1.5868e-03 2.2936e-04 7.1204e+00 1.8289e+00 + 103 1.4707e-03 1.1910e-03 1.4483e-03 2.2395e-04 7.1126e+00 1.8289e+00 + 104 1.5005e-03 1.2155e-03 1.3205e-03 2.1920e-04 7.1056e+00 1.8289e+00 + 105 1.5280e-03 1.2380e-03 1.2031e-03 2.1502e-04 7.0993e+00 1.8289e+00 + 106 1.5533e-03 1.2586e-03 1.0956e-03 2.1134e-04 7.0936e+00 1.8289e+00 + 107 1.5765e-03 1.2775e-03 9.9741e-04 2.0810e-04 7.0885e+00 1.8289e+00 + 108 1.5977e-03 1.2947e-03 9.0805e-04 2.0525e-04 7.0839e+00 1.8289e+00 + 109 1.6170e-03 1.3104e-03 8.2693e-04 2.0274e-04 7.0797e+00 1.8289e+00 + 110 1.6345e-03 1.3245e-03 7.5347e-04 2.0052e-04 7.0760e+00 1.8289e+00 + 111 1.6505e-03 1.3373e-03 6.8709e-04 1.9857e-04 7.0727e+00 1.8289e+00 + 112 1.6648e-03 1.3488e-03 6.2722e-04 1.9684e-04 7.0698e+00 1.8289e+00 + 113 1.6779e-03 1.3592e-03 5.7333e-04 1.9531e-04 7.0671e+00 1.8289e+00 + 114 1.6896e-03 1.3685e-03 5.2489e-04 1.9396e-04 7.0648e+00 1.8289e+00 + 115 1.7002e-03 1.3768e-03 4.8141e-04 1.9277e-04 7.0627e+00 1.8289e+00 + 116 1.7097e-03 1.3843e-03 4.4244e-04 1.9172e-04 7.0608e+00 1.8289e+00 + 117 1.7182e-03 1.3909e-03 4.0755e-04 1.9079e-04 7.0591e+00 1.8289e+00 + 118 1.7259e-03 1.3968e-03 3.7634e-04 1.8996e-04 7.0577e+00 1.8289e+00 + 119 1.7328e-03 1.4021e-03 3.4845e-04 1.8923e-04 7.0563e+00 1.8289e+00 + 120 1.7390e-03 1.4068e-03 3.2355e-04 1.8859e-04 7.0552e+00 1.8289e+00 + 121 1.7445e-03 1.4109e-03 3.0134e-04 1.8802e-04 7.0541e+00 1.8289e+00 + 122 1.7495e-03 1.4146e-03 2.8153e-04 1.8751e-04 7.0532e+00 1.8289e+00 + 123 1.7540e-03 1.4179e-03 2.6388e-04 1.8706e-04 7.0524e+00 1.8289e+00 + 124 1.7580e-03 1.4207e-03 2.4816e-04 1.8667e-04 7.0516e+00 1.8289e+00 + 125 1.7616e-03 1.4233e-03 2.3417e-04 1.8632e-04 7.0510e+00 1.8289e+00 + 126 1.7648e-03 1.4255e-03 2.2171e-04 1.8600e-04 7.0504e+00 1.8289e+00 + 127 1.7677e-03 1.4274e-03 2.1064e-04 1.8573e-04 7.0499e+00 1.8289e+00 + 128 1.7703e-03 1.4292e-03 2.0079e-04 1.8549e-04 7.0494e+00 1.8289e+00 + 129 1.7727e-03 1.4307e-03 1.9203e-04 1.8527e-04 7.0490e+00 1.8289e+00 + 130 1.7748e-03 1.4320e-03 1.8425e-04 1.8508e-04 7.0487e+00 1.8289e+00 + 131 1.7767e-03 1.4331e-03 1.7733e-04 1.8491e-04 7.0484e+00 1.8289e+00 + 132 1.7784e-03 1.4341e-03 1.7119e-04 1.8476e-04 7.0481e+00 1.8289e+00 + 133 1.7799e-03 1.4349e-03 1.6574e-04 1.8463e-04 7.0478e+00 1.8289e+00 + 134 1.7813e-03 1.4357e-03 1.6089e-04 1.8451e-04 7.0476e+00 1.8289e+00 + 135 1.7826e-03 1.4363e-03 1.5659e-04 1.8441e-04 7.0474e+00 1.8289e+00 + 136 1.7838e-03 1.4368e-03 1.5277e-04 1.8432e-04 7.0473e+00 1.8289e+00 + 137 1.7848e-03 1.4373e-03 1.4938e-04 1.8424e-04 7.0471e+00 1.8289e+00 + 138 1.7858e-03 1.4376e-03 1.4637e-04 1.8417e-04 7.0470e+00 1.8289e+00 + 139 1.7866e-03 1.4379e-03 1.4370e-04 1.8411e-04 7.0468e+00 1.8289e+00 + 140 1.7874e-03 1.4382e-03 1.4133e-04 1.8405e-04 7.0467e+00 1.8289e+00 + 141 1.7882e-03 1.4384e-03 1.3922e-04 1.8400e-04 7.0467e+00 1.8289e+00 + 142 1.7888e-03 1.4385e-03 1.3736e-04 1.8396e-04 7.0466e+00 1.8289e+00 + 143 1.7895e-03 1.4386e-03 1.3570e-04 1.8392e-04 7.0465e+00 1.8289e+00 + 144 1.7900e-03 1.4387e-03 1.3423e-04 1.8389e-04 7.0464e+00 1.8289e+00 + 145 1.7906e-03 1.4388e-03 1.3293e-04 1.8386e-04 7.0464e+00 1.8289e+00 + 146 1.7911e-03 1.4388e-03 1.3177e-04 1.8383e-04 7.0463e+00 1.8289e+00 + 147 1.7915e-03 1.4388e-03 1.3075e-04 1.8381e-04 7.0463e+00 1.8289e+00 + 148 1.7920e-03 1.4387e-03 1.2983e-04 1.8379e-04 7.0462e+00 1.8289e+00 + 149 1.7924e-03 1.4387e-03 1.2903e-04 1.8377e-04 7.0462e+00 1.8289e+00 + 150 1.7928e-03 1.4386e-03 1.2831e-04 1.8376e-04 7.0462e+00 1.8289e+00 + 151 1.7931e-03 1.4385e-03 1.2768e-04 1.8375e-04 7.0462e+00 1.8289e+00 + 152 1.7935e-03 1.4384e-03 1.2711e-04 1.8373e-04 7.0461e+00 1.8289e+00 + 153 1.7938e-03 1.4383e-03 1.2661e-04 1.8372e-04 7.0461e+00 1.8289e+00 + 154 1.7941e-03 1.4382e-03 1.2617e-04 1.8372e-04 7.0461e+00 1.8289e+00 + 155 1.7944e-03 1.4381e-03 1.2578e-04 1.8371e-04 7.0461e+00 1.8289e+00 + 156 1.7947e-03 1.4380e-03 1.2543e-04 1.8370e-04 7.0461e+00 1.8289e+00 + 157 1.7950e-03 1.4378e-03 1.2512e-04 1.8370e-04 7.0461e+00 1.8289e+00 + 158 1.7953e-03 1.4377e-03 1.2484e-04 1.8369e-04 7.0461e+00 1.8289e+00 + 159 1.7955e-03 1.4376e-03 1.2460e-04 1.8369e-04 7.0461e+00 1.8289e+00 + 160 1.7958e-03 1.4374e-03 1.2438e-04 1.8369e-04 7.0460e+00 1.8289e+00 + 161 1.7960e-03 1.4372e-03 1.2419e-04 1.8369e-04 7.0460e+00 1.8289e+00 + 162 1.7963e-03 1.4371e-03 1.2402e-04 1.8368e-04 7.0460e+00 1.8289e+00 + 163 1.7965e-03 1.4369e-03 1.2387e-04 1.8368e-04 7.0460e+00 1.8289e+00 + 164 1.7967e-03 1.4368e-03 1.2374e-04 1.8368e-04 7.0460e+00 1.8289e+00 + 165 1.7970e-03 1.4366e-03 1.2362e-04 1.8368e-04 7.0460e+00 1.8289e+00 + 166 1.7972e-03 1.4364e-03 1.2351e-04 1.8368e-04 7.0460e+00 1.8289e+00 + 167 1.7974e-03 1.4363e-03 1.2342e-04 1.8368e-04 7.0460e+00 1.8289e+00 + 168 1.7976e-03 1.4361e-03 1.2334e-04 1.8368e-04 7.0460e+00 1.8289e+00 + 169 1.7978e-03 1.4359e-03 1.2326e-04 1.8368e-04 7.0460e+00 1.8289e+00 + 170 1.7980e-03 1.4358e-03 1.2320e-04 1.8368e-04 7.0460e+00 1.8289e+00 + 171 1.7982e-03 1.4356e-03 1.2314e-04 1.8368e-04 7.0460e+00 1.8289e+00 + 172 1.7984e-03 1.4354e-03 1.2309e-04 1.8368e-04 7.0460e+00 1.8289e+00 + 173 1.7986e-03 1.4353e-03 1.2304e-04 1.8369e-04 7.0460e+00 1.8289e+00 + 174 1.7988e-03 1.4351e-03 1.2300e-04 1.8369e-04 7.0460e+00 1.8289e+00 + 175 1.7990e-03 1.4349e-03 1.2297e-04 1.8369e-04 7.0460e+00 1.8289e+00 + 176 1.7992e-03 1.4348e-03 1.2294e-04 1.8369e-04 7.0460e+00 1.8289e+00 + 177 1.7993e-03 1.4346e-03 1.2291e-04 1.8369e-04 7.0460e+00 1.8289e+00 + 178 1.7995e-03 1.4344e-03 1.2288e-04 1.8369e-04 7.0460e+00 1.8289e+00 + 179 1.7997e-03 1.4343e-03 1.2286e-04 1.8369e-04 7.0460e+00 1.8289e+00 + 180 1.7999e-03 1.4341e-03 1.2284e-04 1.8370e-04 7.0461e+00 1.8289e+00 + 181 1.8001e-03 1.4339e-03 1.2282e-04 1.8370e-04 7.0461e+00 1.8289e+00 + 182 1.8002e-03 1.4338e-03 1.2281e-04 1.8370e-04 7.0461e+00 1.8289e+00 + 183 1.8004e-03 1.4336e-03 1.2279e-04 1.8370e-04 7.0461e+00 1.8289e+00 + 184 1.8006e-03 1.4335e-03 1.2278e-04 1.8370e-04 7.0461e+00 1.8289e+00 + 185 1.8008e-03 1.4333e-03 1.2277e-04 1.8371e-04 7.0461e+00 1.8289e+00 + 186 1.8009e-03 1.4331e-03 1.2276e-04 1.8371e-04 7.0461e+00 1.8289e+00 + 187 1.8011e-03 1.4330e-03 1.2275e-04 1.8371e-04 7.0461e+00 1.8289e+00 + 188 1.8013e-03 1.4328e-03 1.2275e-04 1.8371e-04 7.0461e+00 1.8289e+00 + 189 1.8014e-03 1.4327e-03 1.2274e-04 1.8371e-04 7.0461e+00 1.8289e+00 + 190 1.8016e-03 1.4325e-03 1.2273e-04 1.8371e-04 7.0461e+00 1.8289e+00 + 191 1.8018e-03 1.4324e-03 1.2273e-04 1.8372e-04 7.0461e+00 1.8289e+00 + 192 1.8019e-03 1.4322e-03 1.2272e-04 1.8372e-04 7.0461e+00 1.8289e+00 + 193 1.8021e-03 1.4321e-03 1.2272e-04 1.8372e-04 7.0461e+00 1.8289e+00 + 194 1.8022e-03 1.4319e-03 1.2272e-04 1.8372e-04 7.0461e+00 1.8289e+00 + 195 1.8024e-03 1.4318e-03 1.2271e-04 1.8372e-04 7.0461e+00 1.8289e+00 + 196 1.8025e-03 1.4316e-03 1.2271e-04 1.8373e-04 7.0461e+00 1.8289e+00 + 197 1.8027e-03 1.4315e-03 1.2271e-04 1.8373e-04 7.0461e+00 1.8289e+00 + 198 1.8028e-03 1.4313e-03 1.2270e-04 1.8373e-04 7.0461e+00 1.8289e+00 + 199 1.8030e-03 1.4312e-03 1.2270e-04 1.8373e-04 7.0461e+00 1.8289e+00 + 200 1.8032e-03 1.4310e-03 1.2270e-04 1.8373e-04 7.0461e+00 1.8289e+00 diff --git a/ex16.out b/ex16.out index 14f1f55a..b6bac07b 100644 --- a/ex16.out +++ b/ex16.out @@ -13,7 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES - CALCULATE_VALUES + MEAN_GAMMAS RATES END ------------------------------------ @@ -84,14 +84,14 @@ Initial solution 1. Volume (L) = 1.00300 Viscosity (mPa s) = 0.89038 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.851e-04 + Ionic strength (mol/kgw) = 4.855e-04 Mass of water (kg) = 1.000e+00 - Total carbon (mol/kg) = 7.825e-04 - Total CO2 (mol/kg) = 7.825e-04 + Total carbon (mol/kg) = 7.828e-04 + Total CO2 (mol/kg) = 7.828e-04 Temperature (°C) = 25.00 Electrical balance (eq) = 1.400e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.90 - Iterations = 7 + Iterations = 8 Total H = 1.110139e+02 Total O = 5.550924e+01 @@ -103,24 +103,24 @@ Initial solution 1. H+ 6.465e-07 6.310e-07 -6.189 -6.200 -0.011 0.00 OH- 1.645e-08 1.604e-08 -7.784 -7.795 -0.011 -4.12 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 -C(4) 7.825e-04 - CO2 4.540e-04 4.540e-04 -3.343 -3.343 0.000 34.43 - HCO3- 3.281e-04 3.200e-04 -3.484 -3.495 -0.011 24.57 - CaHCO3+ 2.940e-07 2.868e-07 -6.532 -6.542 -0.011 9.66 - MgHCO3+ 1.003e-07 9.778e-08 -6.999 -7.010 -0.011 5.47 - NaHCO3 3.640e-08 3.641e-08 -7.439 -7.439 0.000 31.73 - CO3-2 2.628e-08 2.379e-08 -7.580 -7.624 -0.043 -3.97 - KHCO3 3.902e-09 3.902e-09 -8.409 -8.409 0.000 41.03 - (CO2)2 3.783e-09 3.783e-09 -8.422 -8.422 0.000 68.87 - CaCO3 2.806e-09 2.806e-09 -8.552 -8.552 0.000 -14.60 - MgCO3 5.927e-10 5.927e-10 -9.227 -9.227 0.000 -17.09 +C(4) 7.828e-04 + CO2 4.542e-04 4.543e-04 -3.343 -3.343 0.000 34.43 + HCO3- 3.283e-04 3.202e-04 -3.484 -3.495 -0.011 24.57 + MgHCO3+ 1.003e-07 9.784e-08 -6.999 -7.009 -0.011 5.47 + CaHCO3+ 8.916e-08 8.698e-08 -7.050 -7.061 -0.011 122.63 + NaHCO3 3.643e-08 3.643e-08 -7.439 -7.438 0.000 31.73 + CO3-2 2.629e-08 2.380e-08 -7.580 -7.623 -0.043 -3.97 + KHCO3 3.904e-09 3.904e-09 -8.408 -8.408 0.000 41.03 + (CO2)2 3.787e-09 3.788e-09 -8.422 -8.422 0.000 68.87 + CaCO3 2.815e-09 2.815e-09 -8.550 -8.550 0.000 -14.60 + MgCO3 5.930e-10 5.931e-10 -9.227 -9.227 0.000 -17.09 Ca 7.800e-05 - Ca+2 7.760e-05 7.023e-05 -4.110 -4.153 -0.043 -18.17 - CaHCO3+ 2.940e-07 2.868e-07 -6.532 -6.542 -0.011 9.66 - CaSO4 1.108e-07 1.108e-07 -6.955 -6.955 0.000 7.50 - CaCO3 2.806e-09 2.806e-09 -8.552 -8.552 0.000 -14.60 - CaOH+ 1.894e-11 1.847e-11 -10.723 -10.733 -0.011 (0) - CaHSO4+ 4.713e-13 4.596e-13 -12.327 -12.338 -0.011 (0) + Ca+2 7.780e-05 7.042e-05 -4.109 -4.152 -0.043 -18.17 + CaSO4 1.111e-07 1.111e-07 -6.954 -6.954 0.000 7.50 + CaHCO3+ 8.916e-08 8.698e-08 -7.050 -7.061 -0.011 122.63 + CaCO3 2.815e-09 2.815e-09 -8.550 -8.550 0.000 -14.60 + CaOH+ 1.899e-11 1.852e-11 -10.721 -10.732 -0.011 (0) + CaHSO4+ 4.725e-13 4.608e-13 -12.326 -12.337 -0.011 (0) Cl 1.400e-05 Cl- 1.400e-05 1.365e-05 -4.854 -4.865 -0.011 18.07 HCl 2.966e-12 2.967e-12 -11.528 -11.528 0.000 (0) @@ -128,31 +128,31 @@ H(0) 5.636e-24 H2 2.818e-24 2.818e-24 -23.550 -23.550 0.000 28.61 K 2.800e-05 K+ 2.799e-05 2.730e-05 -4.553 -4.564 -0.011 9.00 - KHCO3 3.902e-09 3.902e-09 -8.409 -8.409 0.000 41.03 + KHCO3 3.904e-09 3.904e-09 -8.408 -8.408 0.000 41.03 KSO4- 3.777e-09 3.685e-09 -8.423 -8.434 -0.011 14.13 Mg 2.900e-05 Mg+2 2.884e-05 2.611e-05 -4.540 -4.583 -0.043 -21.86 - MgHCO3+ 1.003e-07 9.778e-08 -6.999 -7.010 -0.011 5.47 - MgSO4 6.066e-08 6.067e-08 -7.217 -7.217 0.000 -7.92 - MgCO3 5.927e-10 5.927e-10 -9.227 -9.227 0.000 -17.09 + MgHCO3+ 1.003e-07 9.784e-08 -6.999 -7.009 -0.011 5.47 + MgSO4 6.065e-08 6.066e-08 -7.217 -7.217 0.000 -7.92 + MgCO3 5.930e-10 5.931e-10 -9.227 -9.227 0.000 -17.09 MgOH+ 1.540e-10 1.503e-10 -9.812 -9.823 -0.011 (0) - Mg(SO4)2-2 1.957e-12 1.773e-12 -11.709 -11.751 -0.043 -8.04 + Mg(SO4)2-2 1.956e-12 1.773e-12 -11.709 -11.751 -0.043 -8.04 Na 1.340e-04 Na+ 1.339e-04 1.306e-04 -3.873 -3.884 -0.011 -1.49 - NaHCO3 3.640e-08 3.641e-08 -7.439 -7.439 0.000 31.73 + NaHCO3 3.643e-08 3.643e-08 -7.439 -7.438 0.000 31.73 NaSO4- 1.934e-08 1.887e-08 -7.713 -7.724 -0.011 -22.22 NaOH 2.095e-22 2.096e-22 -21.679 -21.679 0.000 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -45.280 -45.280 0.000 30.40 S(6) 1.000e-05 - SO4-2 9.805e-06 8.873e-06 -5.009 -5.052 -0.043 15.25 - CaSO4 1.108e-07 1.108e-07 -6.955 -6.955 0.000 7.50 - MgSO4 6.066e-08 6.067e-08 -7.217 -7.217 0.000 -7.92 + SO4-2 9.805e-06 8.872e-06 -5.009 -5.052 -0.043 15.25 + CaSO4 1.111e-07 1.111e-07 -6.954 -6.954 0.000 7.50 + MgSO4 6.065e-08 6.066e-08 -7.217 -7.217 0.000 -7.92 NaSO4- 1.934e-08 1.887e-08 -7.713 -7.724 -0.011 -22.22 KSO4- 3.777e-09 3.685e-09 -8.423 -8.434 -0.011 14.13 - HSO4- 5.582e-10 5.443e-10 -9.253 -9.264 -0.011 40.27 - Mg(SO4)2-2 1.957e-12 1.773e-12 -11.709 -11.751 -0.043 -8.04 - CaHSO4+ 4.713e-13 4.596e-13 -12.327 -12.338 -0.011 (0) + HSO4- 5.581e-10 5.443e-10 -9.253 -9.264 -0.011 40.27 + Mg(SO4)2-2 1.956e-12 1.773e-12 -11.709 -11.751 -0.043 -8.04 + CaHSO4+ 4.725e-13 4.608e-13 -12.326 -12.337 -0.011 (0) Si 2.730e-04 H4SiO4 2.729e-04 2.730e-04 -3.564 -3.564 0.000 52.08 H3SiO4- 6.542e-08 6.379e-08 -7.184 -7.195 -0.011 27.96 @@ -162,7 +162,7 @@ Si 2.730e-04 Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -4.93 -9.21 -4.28 CaSO4 + Anhydrite -4.93 -9.20 -4.28 CaSO4 Aragonite -3.44 -11.78 -8.34 CaCO3 Arcanite -12.30 -14.18 -1.88 K2SO4 Calcite -3.30 -11.78 -8.48 CaCO3 @@ -171,7 +171,7 @@ Si 2.730e-04 CO2(g) -1.87 -3.34 -1.47 CO2 Dolomite -6.90 -23.98 -17.08 CaMg(CO3)2 Epsomite -7.90 -9.64 -1.74 MgSO4:7H2O - Gypsum -4.62 -9.21 -4.58 CaSO4:2H2O + Gypsum -4.62 -9.20 -4.58 CaSO4:2H2O H2(g) -20.45 -23.55 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -10.32 -8.75 1.57 NaCl @@ -214,14 +214,14 @@ Initial solution 2. Volume (L) = 1.00301 Viscosity (mPa s) = 0.89080 Activity of water = 1.000 - Ionic strength (mol/kgw) = 1.313e-03 + Ionic strength (mol/kgw) = 1.317e-03 Mass of water (kg) = 1.000e+00 - Total carbon (mol/kg) = 1.199e-03 - Total CO2 (mol/kg) = 1.199e-03 + Total carbon (mol/kg) = 1.200e-03 + Total CO2 (mol/kg) = 1.200e-03 Temperature (°C) = 25.00 Electrical balance (eq) = -1.400e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.73 - Iterations = 6 (13 overall) + Iterations = 6 (14 overall) Total H = 1.110150e+02 Total O = 5.551125e+01 @@ -231,26 +231,26 @@ Initial solution 2. Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.647e-07 1.585e-07 -6.783 -6.800 -0.017 0.00 - OH- 6.652e-08 6.386e-08 -7.177 -7.195 -0.018 -4.10 + OH- 6.653e-08 6.386e-08 -7.177 -7.195 -0.018 -4.10 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 -C(4) 1.199e-03 - HCO3- 8.907e-04 8.558e-04 -3.050 -3.068 -0.017 24.58 - CO2 3.049e-04 3.050e-04 -3.516 -3.516 0.000 34.43 - CaHCO3+ 2.484e-06 2.387e-06 -5.605 -5.622 -0.017 9.68 - MgHCO3+ 6.230e-07 5.982e-07 -6.206 -6.223 -0.018 5.48 - CO3-2 2.971e-07 2.532e-07 -6.527 -6.597 -0.069 -3.92 - NaHCO3 1.851e-07 1.852e-07 -6.733 -6.732 0.000 31.73 - CaCO3 9.299e-08 9.302e-08 -7.032 -7.031 0.000 -14.60 - KHCO3 1.467e-08 1.467e-08 -7.834 -7.834 0.000 41.03 - MgCO3 1.443e-08 1.444e-08 -7.841 -7.841 0.000 -17.09 - (CO2)2 1.706e-09 1.707e-09 -8.768 -8.768 0.000 68.87 +C(4) 1.200e-03 + HCO3- 8.924e-04 8.574e-04 -3.049 -3.067 -0.017 24.58 + CO2 3.055e-04 3.055e-04 -3.515 -3.515 0.000 34.43 + CaHCO3+ 7.574e-07 7.279e-07 -6.121 -6.138 -0.017 122.64 + MgHCO3+ 6.241e-07 5.992e-07 -6.205 -6.222 -0.018 5.48 + CO3-2 2.978e-07 2.537e-07 -6.526 -6.596 -0.070 -3.92 + NaHCO3 1.855e-07 1.856e-07 -6.732 -6.731 0.000 31.73 + CaCO3 9.377e-08 9.380e-08 -7.028 -7.028 0.000 -14.60 + KHCO3 1.470e-08 1.470e-08 -7.833 -7.833 0.000 41.03 + MgCO3 1.446e-08 1.446e-08 -7.840 -7.840 0.000 -17.09 + (CO2)2 1.713e-09 1.713e-09 -8.766 -8.766 0.000 68.87 Ca 2.600e-04 - Ca+2 2.567e-04 2.187e-04 -3.591 -3.660 -0.070 -18.13 - CaHCO3+ 2.484e-06 2.387e-06 -5.605 -5.622 -0.017 9.68 - CaSO4 7.878e-07 7.880e-07 -6.104 -6.103 0.000 7.50 - CaCO3 9.299e-08 9.302e-08 -7.032 -7.031 0.000 -14.60 - CaOH+ 2.385e-10 2.290e-10 -9.623 -9.640 -0.018 (0) - CaHSO4+ 8.550e-13 8.209e-13 -12.068 -12.086 -0.018 (0) + Ca+2 2.584e-04 2.201e-04 -3.588 -3.657 -0.070 -18.13 + CaSO4 7.926e-07 7.928e-07 -6.101 -6.101 0.000 7.50 + CaHCO3+ 7.574e-07 7.279e-07 -6.121 -6.138 -0.017 122.64 + CaCO3 9.377e-08 9.380e-08 -7.028 -7.028 0.000 -14.60 + CaOH+ 2.400e-10 2.305e-10 -9.620 -9.637 -0.018 (0) + CaHSO4+ 8.602e-13 8.260e-13 -12.065 -12.083 -0.018 (0) Cl 3.000e-05 Cl- 3.000e-05 2.880e-05 -4.523 -4.541 -0.018 18.08 HCl 1.571e-12 1.573e-12 -11.804 -11.803 0.001 (0) @@ -258,48 +258,48 @@ H(0) 3.555e-25 H2 1.778e-25 1.778e-25 -24.750 -24.750 0.000 28.61 K 4.000e-05 K+ 3.998e-05 3.838e-05 -4.398 -4.416 -0.018 9.01 - KHCO3 1.467e-08 1.467e-08 -7.834 -7.834 0.000 41.03 - KSO4- 1.231e-08 1.183e-08 -7.910 -7.927 -0.017 14.15 + KHCO3 1.470e-08 1.470e-08 -7.833 -7.833 0.000 41.03 + KSO4- 1.230e-08 1.183e-08 -7.910 -7.927 -0.017 14.15 Mg 7.101e-05 - Mg+2 7.005e-05 5.974e-05 -4.155 -4.224 -0.069 -21.81 - MgHCO3+ 6.230e-07 5.982e-07 -6.206 -6.223 -0.018 5.48 - MgSO4 3.168e-07 3.170e-07 -6.499 -6.499 0.000 -7.92 - MgCO3 1.443e-08 1.444e-08 -7.841 -7.841 0.000 -17.09 - MgOH+ 1.424e-09 1.369e-09 -8.847 -8.864 -0.017 (0) - Mg(SO4)2-2 2.476e-11 2.116e-11 -10.606 -10.675 -0.068 -3.36 + Mg+2 7.005e-05 5.973e-05 -4.155 -4.224 -0.069 -21.81 + MgHCO3+ 6.241e-07 5.992e-07 -6.205 -6.222 -0.018 5.48 + MgSO4 3.166e-07 3.168e-07 -6.499 -6.499 0.000 -7.92 + MgCO3 1.446e-08 1.446e-08 -7.840 -7.840 0.000 -17.09 + MgOH+ 1.424e-09 1.368e-09 -8.847 -8.864 -0.017 (0) + Mg(SO4)2-2 2.474e-11 2.114e-11 -10.607 -10.675 -0.068 -3.35 Na 2.590e-04 Na+ 2.588e-04 2.485e-04 -3.587 -3.605 -0.018 -1.47 - NaHCO3 1.851e-07 1.852e-07 -6.733 -6.732 0.000 31.73 - NaSO4- 8.532e-08 8.198e-08 -7.069 -7.086 -0.017 -20.41 + NaHCO3 1.855e-07 1.856e-07 -6.732 -6.731 0.000 31.73 + NaSO4- 8.529e-08 8.195e-08 -7.069 -7.086 -0.017 -20.40 NaOH 1.587e-21 1.587e-21 -20.800 -20.799 0.000 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -42.880 -42.880 0.000 30.40 S(6) 2.500e-05 - SO4-2 2.380e-05 2.026e-05 -4.623 -4.693 -0.070 15.76 - CaSO4 7.878e-07 7.880e-07 -6.104 -6.103 0.000 7.50 - MgSO4 3.168e-07 3.170e-07 -6.499 -6.499 0.000 -7.92 - NaSO4- 8.532e-08 8.198e-08 -7.069 -7.086 -0.017 -20.41 - KSO4- 1.231e-08 1.183e-08 -7.910 -7.927 -0.017 14.15 - HSO4- 3.252e-10 3.123e-10 -9.488 -9.505 -0.018 40.28 - Mg(SO4)2-2 2.476e-11 2.116e-11 -10.606 -10.675 -0.068 -3.36 - CaHSO4+ 8.550e-13 8.209e-13 -12.068 -12.086 -0.018 (0) + SO4-2 2.380e-05 2.026e-05 -4.624 -4.693 -0.070 15.76 + CaSO4 7.926e-07 7.928e-07 -6.101 -6.101 0.000 7.50 + MgSO4 3.166e-07 3.168e-07 -6.499 -6.499 0.000 -7.92 + NaSO4- 8.529e-08 8.195e-08 -7.069 -7.086 -0.017 -20.40 + KSO4- 1.230e-08 1.183e-08 -7.910 -7.927 -0.017 14.15 + HSO4- 3.251e-10 3.121e-10 -9.488 -9.506 -0.018 40.28 + Mg(SO4)2-2 2.474e-11 2.114e-11 -10.607 -10.675 -0.068 -3.35 + CaHSO4+ 8.602e-13 8.260e-13 -12.065 -12.083 -0.018 (0) Si 4.100e-04 H4SiO4 4.096e-04 4.098e-04 -3.388 -3.387 0.000 52.08 H3SiO4- 3.970e-07 3.812e-07 -6.401 -6.419 -0.018 27.98 - H2SiO4-2 1.920e-13 1.636e-13 -12.717 -12.786 -0.069 (0) + H2SiO4-2 1.920e-13 1.636e-13 -12.717 -12.786 -0.070 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -4.08 -8.35 -4.28 CaSO4 - Aragonite -1.92 -10.26 -8.34 CaCO3 + Anhydrite -4.07 -8.35 -4.28 CaSO4 + Aragonite -1.92 -10.25 -8.34 CaCO3 Arcanite -11.65 -13.53 -1.88 K2SO4 - Calcite -1.78 -10.26 -8.48 CaCO3 + Calcite -1.77 -10.25 -8.48 CaCO3 Chalcedony 0.16 -3.39 -3.55 SiO2 Chrysotile -10.85 21.35 32.20 Mg3Si2O5(OH)4 - CO2(g) -2.05 -3.52 -1.47 CO2 - Dolomite -3.99 -21.08 -17.08 CaMg(CO3)2 + CO2(g) -2.05 -3.51 -1.47 CO2 + Dolomite -3.99 -21.07 -17.08 CaMg(CO3)2 Epsomite -7.18 -8.92 -1.74 MgSO4:7H2O Gypsum -3.77 -8.35 -4.58 CaSO4:2H2O H2(g) -21.65 -24.75 -3.10 H2 @@ -333,7 +333,7 @@ Solution 1: Al 0.000e+00 + 0.000e+00 = 0.000e+00 Alkalinity 3.280e-04 + 8.200e-06 = 3.362e-04 C(-4) 0.000e+00 + 0.000e+00 = 0.000e+00 - C(4) 7.825e-04 + 0.000e+00 = 7.825e-04 + C(4) 7.828e-04 + 0.000e+00 = 7.828e-04 Ca 7.800e-05 + -2.550e-06 = 7.545e-05 Cl 1.400e-05 + 0.000e+00 = 1.400e-05 H(0) 0.000e+00 + 0.000e+00 = 0.000e+00 @@ -352,7 +352,7 @@ Solution 2: Al 0.000e+00 + 0.000e+00 = 0.000e+00 Alkalinity 8.951e-04 + -1.480e-05 = 8.803e-04 C(-4) 0.000e+00 + 0.000e+00 = 0.000e+00 - C(4) 1.199e-03 + 0.000e+00 = 1.199e-03 + C(4) 1.200e-03 + 0.000e+00 = 1.200e-03 Ca 2.600e-04 + 0.000e+00 = 2.600e-04 Cl 3.000e-05 + 0.000e+00 = 3.000e-05 H(0) 0.000e+00 + 0.000e+00 = 0.000e+00 @@ -373,8 +373,8 @@ Phase mole transfers: Minimum Maximum Formula Gypsum 1.500e-05 1.413e-05 1.588e-05 CaSO4:2H2O ( -4.62, -3.77) Kaolinite -3.392e-05 -5.587e-05 -1.224e-05 Al2Si2O5(OH)4 ( , ) Ca-Montmorillon -8.090e-05 -1.100e-04 -5.154e-05 Ca0.165Al2.33Si3.67O10(OH ( , ) - CO2(g) 3.006e-04 2.363e-04 3.656e-04 CO2 ( -1.87, -2.05) - Calcite 1.161e-04 1.007e-04 1.309e-04 CaCO3 ( -3.30, -1.78) + CO2(g) 3.009e-04 2.365e-04 3.659e-04 CO2 ( -1.87, -2.05) + Calcite 1.161e-04 1.007e-04 1.309e-04 CaCO3 ( -3.30, -1.77) Biotite 1.370e-05 1.317e-05 1.370e-05 KMg3AlSi3O10(OH)2 ( , ) Plagioclase 1.758e-04 1.582e-04 1.935e-04 Na0.62Ca0.38Al1.38Si2.62O ( , ) @@ -395,7 +395,7 @@ Solution 1: Al 0.000e+00 + 0.000e+00 = 0.000e+00 Alkalinity 3.280e-04 + 8.200e-06 = 3.362e-04 C(-4) 0.000e+00 + 0.000e+00 = 0.000e+00 - C(4) 7.825e-04 + 0.000e+00 = 7.825e-04 + C(4) 7.828e-04 + 0.000e+00 = 7.828e-04 Ca 7.800e-05 + -2.550e-06 = 7.545e-05 Cl 1.400e-05 + 0.000e+00 = 1.400e-05 H(0) 0.000e+00 + 0.000e+00 = 0.000e+00 @@ -414,7 +414,7 @@ Solution 2: Al 0.000e+00 + 0.000e+00 = 0.000e+00 Alkalinity 8.951e-04 + -1.480e-05 = 8.803e-04 C(-4) 0.000e+00 + 0.000e+00 = 0.000e+00 - C(4) 1.199e-03 + 0.000e+00 = 1.199e-03 + C(4) 1.200e-03 + 0.000e+00 = 1.200e-03 Ca 2.600e-04 + 0.000e+00 = 2.600e-04 Cl 3.000e-05 + 0.000e+00 = 3.000e-05 H(0) 0.000e+00 + 0.000e+00 = 0.000e+00 @@ -434,8 +434,8 @@ Phase mole transfers: Minimum Maximum Formula Halite 1.600e-05 1.490e-05 1.710e-05 NaCl (-10.32, -9.72) Gypsum 1.500e-05 1.413e-05 1.588e-05 CaSO4:2H2O ( -4.62, -3.77) Kaolinite -1.282e-04 -1.403e-04 -1.159e-04 Al2Si2O5(OH)4 ( , ) - CO2(g) 3.140e-04 2.490e-04 3.795e-04 CO2 ( -1.87, -2.05) - Calcite 1.028e-04 8.680e-05 1.182e-04 CaCO3 ( -3.30, -1.78) + CO2(g) 3.143e-04 2.493e-04 3.798e-04 CO2 ( -1.87, -2.05) + Calcite 1.028e-04 8.680e-05 1.182e-04 CaCO3 ( -3.30, -1.77) Chalcedony -1.084e-04 -1.473e-04 -6.906e-05 SiO2 ( -0.01, 0.16) Biotite 1.370e-05 1.317e-05 1.370e-05 KMg3AlSi3O10(OH)2 ( , ) Plagioclase 1.758e-04 1.582e-04 1.935e-04 Na0.62Ca0.38Al1.38Si2.62O ( , ) diff --git a/ex17.out b/ex17.out index d3673e9a..261b7534 100644 --- a/ex17.out +++ b/ex17.out @@ -14,6 +14,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + MEAN_GAMMAS END ------------------------------------ Reading input data for simulation 1. @@ -90,7 +91,7 @@ Initial solution 1. Black Sea water pH = 8.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 29775 + Specific Conductance (µS/cm, 25°C) = 29777 Density (g/cm³) = 1.01091 Volume (L) = 1.00789 Viscosity (mPa s) = 0.92658 @@ -212,7 +213,7 @@ Initial solution 2. Composition during halite precipitation pH = 5.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 149839 + Specific Conductance (µS/cm, 25°C) = 150248 Density (g/cm³) = 1.27237 Volume (L) = 1.13163 Viscosity (mPa s) = 3.75438 diff --git a/ex17b.out b/ex17b.out index 4eec2395..1d5ea13f 100644 --- a/ex17b.out +++ b/ex17b.out @@ -14,6 +14,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES + MEAN_GAMMAS END ------------------------------------ Reading input data for simulation 1. @@ -92,7 +93,7 @@ Initial solution 1. Black Sea water pH = 8.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 29775 + Specific Conductance (µS/cm, 25°C) = 29777 Density (g/cm³) = 1.01091 Volume (L) = 1.00789 Viscosity (mPa s) = 0.92658 @@ -255,7 +256,7 @@ Polyhalite -9.73 -23.47 -13.74 0.000e+00 0 0.000e+00 pH = 8.000 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 29775 + Specific Conductance (µS/cm, 25°C) = 29777 Density (g/cm³) = 1.01091 Volume (L) = 1.00789 Viscosity (mPa s) = 0.92658 @@ -414,7 +415,7 @@ Polyhalite -7.26 -21.00 -13.74 0.000e+00 0 0.000e+00 pH = 7.848 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 73054 + Specific Conductance (µS/cm, 25°C) = 73063 Density (g/cm³) = 1.03527 Volume (L) = 0.35767 Viscosity (mPa s) = 0.99372 @@ -573,7 +574,7 @@ Polyhalite -6.70 -20.44 -13.74 0.000e+00 0 0.000e+00 pH = 7.793 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 88022 + Specific Conductance (µS/cm, 25°C) = 88035 Density (g/cm³) = 1.04464 Volume (L) = 0.28547 Viscosity (mPa s) = 1.02215 @@ -732,7 +733,7 @@ Polyhalite -5.93 -19.68 -13.74 0.000e+00 0 0.000e+00 pH = 7.710 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 110997 + Specific Conductance (µS/cm, 25°C) = 111017 Density (g/cm³) = 1.06016 Volume (L) = 0.21331 Viscosity (mPa s) = 1.07296 @@ -891,7 +892,7 @@ Polyhalite -4.92 -18.67 -13.74 0.000e+00 0 0.000e+00 pH = 7.595 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 149856 + Specific Conductance (µS/cm, 25°C) = 149892 Density (g/cm³) = 1.09018 Volume (L) = 0.14120 Viscosity (mPa s) = 1.18635 @@ -1050,7 +1051,7 @@ Polyhalite -4.70 -18.44 -13.74 0.000e+00 0 0.000e+00 pH = 7.573 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 163778 + Specific Conductance (µS/cm, 25°C) = 163822 Density (g/cm³) = 1.10237 Volume (L) = 0.12317 Viscosity (mPa s) = 1.23905 @@ -1209,7 +1210,7 @@ Polyhalite -4.40 -18.15 -13.74 0.000e+00 0 0.000e+00 pH = 7.546 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 180007 + Specific Conductance (µS/cm, 25°C) = 180062 Density (g/cm³) = 1.11850 Volume (L) = 0.10515 Viscosity (mPa s) = 1.31607 @@ -1368,7 +1369,7 @@ Polyhalite -4.00 -17.74 -13.74 0.000e+00 0 0.000e+00 pH = 7.508 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 198384 + Specific Conductance (µS/cm, 25°C) = 198454 Density (g/cm³) = 1.14090 Volume (L) = 0.08716 Viscosity (mPa s) = 1.43886 @@ -1527,7 +1528,7 @@ Polyhalite -3.38 -17.12 -13.74 0.000e+00 0 0.000e+00 pH = 7.454 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 216929 + Specific Conductance (µS/cm, 25°C) = 217024 Density (g/cm³) = 1.17419 Volume (L) = 0.06922 Viscosity (mPa s) = 1.66307 @@ -1686,7 +1687,7 @@ Polyhalite -2.55 -16.29 -13.74 0.000e+00 0 0.000e+00 pH = 7.359 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 226117 + Specific Conductance (µS/cm, 25°C) = 226248 Density (g/cm³) = 1.21418 Volume (L) = 0.05088 Viscosity (mPa s) = 2.03087 @@ -1845,7 +1846,7 @@ Polyhalite -1.68 -15.43 -13.74 0.000e+00 0 0.000e+00 pH = 7.364 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 214023 + Specific Conductance (µS/cm, 25°C) = 214242 Density (g/cm³) = 1.21997 Volume (L) = 0.03050 Viscosity (mPa s) = 2.19817 @@ -2004,7 +2005,7 @@ Polyhalite -1.34 -15.08 -13.74 0.000e+00 0 0.000e+00 pH = 7.367 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 207654 + Specific Conductance (µS/cm, 25°C) = 207916 Density (g/cm³) = 1.22336 Volume (L) = 0.02541 Viscosity (mPa s) = 2.30055 @@ -2163,7 +2164,7 @@ Polyhalite -0.87 -14.62 -13.74 0.000e+00 0 0.000e+00 pH = 7.371 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 197529 + Specific Conductance (µS/cm, 25°C) = 197853 Density (g/cm³) = 1.22919 Volume (L) = 0.02033 Viscosity (mPa s) = 2.48495 @@ -2322,7 +2323,7 @@ Polyhalite -0.42 -14.16 -13.74 0.000e+00 0 0.000e+00 pH = 7.375 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 185821 + Specific Conductance (µS/cm, 25°C) = 186206 Density (g/cm³) = 1.23656 Volume (L) = 0.01675 Viscosity (mPa s) = 2.73450 @@ -2481,7 +2482,7 @@ Polyhalite -0.26 -14.00 -13.74 0.000e+00 0 0.000e+00 pH = 7.377 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 181272 + Specific Conductance (µS/cm, 25°C) = 181678 Density (g/cm³) = 1.23961 Volume (L) = 0.01574 Viscosity (mPa s) = 2.84317 @@ -2640,7 +2641,7 @@ Polyhalite -0.08 -13.82 -13.74 0.000e+00 0 0.000e+00 pH = 7.379 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 175925 + Specific Conductance (µS/cm, 25°C) = 176353 Density (g/cm³) = 1.24332 Volume (L) = 0.01472 Viscosity (mPa s) = 2.98015 @@ -2799,7 +2800,7 @@ Polyhalite 0.00 -13.74 -13.74 0.000e+00 2.746e-04 2.746e-04 pH = 7.379 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 169804 + Specific Conductance (µS/cm, 25°C) = 170258 Density (g/cm³) = 1.24638 Volume (L) = 0.01369 Viscosity (mPa s) = 3.12540 @@ -2958,7 +2959,7 @@ Polyhalite 0.00 -13.74 -13.74 2.746e-04 7.008e-04 4.262e-04 pH = 7.378 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 162768 + Specific Conductance (µS/cm, 25°C) = 163252 Density (g/cm³) = 1.24930 Volume (L) = 0.01264 Viscosity (mPa s) = 3.29229 @@ -3117,7 +3118,7 @@ Polyhalite 0.00 -13.74 -13.74 7.008e-04 9.425e-04 2.417e-04 pH = 7.377 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 157939 + Specific Conductance (µS/cm, 25°C) = 158442 Density (g/cm³) = 1.25155 Volume (L) = 0.01201 Viscosity (mPa s) = 3.41850 @@ -3276,7 +3277,7 @@ Polyhalite 0.00 -13.74 -13.74 9.425e-04 1.172e-03 2.296e-04 pH = 7.376 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 152554 + Specific Conductance (µS/cm, 25°C) = 153077 Density (g/cm³) = 1.25429 Volume (L) = 0.01139 Viscosity (mPa s) = 3.57162 @@ -3435,7 +3436,7 @@ Polyhalite 0.00 -13.74 -13.74 1.172e-03 1.369e-03 1.969e-04 pH = 7.378 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 146876 + Specific Conductance (µS/cm, 25°C) = 147417 Density (g/cm³) = 1.25755 Volume (L) = 0.01081 Viscosity (mPa s) = 3.74839 @@ -3594,7 +3595,7 @@ Polyhalite 0.00 -13.74 -13.74 1.369e-03 1.563e-03 1.942e-04 pH = 7.386 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 139761 + Specific Conductance (µS/cm, 25°C) = 140319 Density (g/cm³) = 1.26219 Volume (L) = 0.01020 Viscosity (mPa s) = 3.99402 @@ -3753,7 +3754,7 @@ Polyhalite 0.00 -13.74 -13.74 1.563e-03 1.740e-03 1.768e-04 pH = 7.394 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 131643 + Specific Conductance (µS/cm, 25°C) = 132216 Density (g/cm³) = 1.26804 Volume (L) = 0.00958 Viscosity (mPa s) = 4.31212 diff --git a/ex18.out b/ex18.out index 8c1a47c5..43e3a7e0 100644 --- a/ex18.out +++ b/ex18.out @@ -13,7 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES - CALCULATE_VALUES + MEAN_GAMMAS RATES END ------------------------------------ @@ -118,18 +118,18 @@ Initial solution 1. Recharge number 3 pH = 7.550 pe = 0.000 - Specific Conductance (µS/cm, 10°C) = 277 + Specific Conductance (µS/cm, 10°C) = 278 Density (g/cm³) = 0.99999 Volume (L) = 1.00035 - Viscosity (mPa s) = 1.31356 + Viscosity (mPa s) = 1.31358 Activity of water = 1.000 - Ionic strength (mol/kgw) = 6.542e-03 + Ionic strength (mol/kgw) = 6.588e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 4.016e-03 + Total alkalinity (eq/kg) = 4.014e-03 Total CO2 (mol/kg) = 4.300e-03 Temperature (°C) = 9.90 - Electrical balance (eq) = 1.063e-04 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.24 + Electrical balance (eq) = 1.077e-04 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.25 Iterations = 8 Total H = 1.110164e+02 Total O = 5.551946e+01 @@ -143,95 +143,95 @@ Initial solution 1. Recharge number 3 H+ 3.038e-08 2.818e-08 -7.517 -7.550 -0.033 0.00 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.02 C(4) 4.300e-03 - HCO3- 3.929e-03 3.622e-03 -2.406 -2.441 -0.035 22.89 - CO2 2.971e-04 2.974e-04 -3.527 -3.527 0.000 33.66 - MgHCO3+ 3.094e-05 2.845e-05 -4.510 -4.546 -0.036 4.93 - CaHCO3+ 3.027e-05 2.794e-05 -4.519 -4.554 -0.035 8.96 - CO3-2 5.765e-06 4.167e-06 -5.239 -5.380 -0.141 -6.10 - CaCO3 4.730e-06 4.737e-06 -5.325 -5.324 0.001 -14.66 - MgCO3 2.204e-06 2.208e-06 -5.657 -5.656 0.001 -17.07 - FeHCO3+ 2.086e-07 1.919e-07 -6.681 -6.717 -0.036 (0) - FeCO3 5.288e-08 5.296e-08 -7.277 -7.276 0.001 (0) - NaHCO3 3.675e-08 3.686e-08 -7.435 -7.433 0.001 31.86 - KHCO3 2.291e-08 2.291e-08 -7.640 -7.640 0.000 40.92 - (CO2)2 9.408e-10 9.423e-10 -9.026 -9.026 0.001 67.31 + HCO3- 3.951e-03 3.642e-03 -2.403 -2.439 -0.035 22.89 + CO2 2.987e-04 2.990e-04 -3.525 -3.524 0.000 33.66 + MgHCO3+ 3.108e-05 2.857e-05 -4.508 -4.544 -0.037 4.93 + CaHCO3+ 6.407e-06 5.913e-06 -5.193 -5.228 -0.035 121.93 + CO3-2 5.802e-06 4.190e-06 -5.236 -5.378 -0.141 -6.10 + CaCO3 4.848e-06 4.855e-06 -5.314 -5.314 0.001 -14.66 + MgCO3 2.214e-06 2.217e-06 -5.655 -5.654 0.001 -17.07 + FeHCO3+ 2.093e-07 1.925e-07 -6.679 -6.716 -0.036 (0) + FeCO3 5.305e-08 5.313e-08 -7.275 -7.275 0.001 (0) + NaHCO3 3.694e-08 3.705e-08 -7.433 -7.431 0.001 31.86 + KHCO3 2.302e-08 2.303e-08 -7.638 -7.638 0.000 40.92 + (CO2)2 9.509e-10 9.523e-10 -9.022 -9.021 0.001 67.31 Ca 1.200e-03 - Ca+2 1.152e-03 8.324e-04 -2.938 -3.080 -0.141 -18.31 - CaHCO3+ 3.027e-05 2.794e-05 -4.519 -4.554 -0.035 8.96 - CaSO4 1.277e-05 1.279e-05 -4.894 -4.893 0.001 6.78 - CaCO3 4.730e-06 4.737e-06 -5.325 -5.324 0.001 -14.66 - CaOH+ 5.328e-09 4.901e-09 -8.273 -8.310 -0.036 (0) - CaHSO4+ 2.133e-12 1.962e-12 -11.671 -11.707 -0.036 (0) + Ca+2 1.176e-03 8.486e-04 -2.930 -3.071 -0.142 -18.31 + CaSO4 1.298e-05 1.300e-05 -4.887 -4.886 0.001 6.78 + CaHCO3+ 6.407e-06 5.913e-06 -5.193 -5.228 -0.035 121.93 + CaCO3 4.848e-06 4.855e-06 -5.314 -5.314 0.001 -14.66 + CaOH+ 5.433e-09 4.996e-09 -8.265 -8.301 -0.036 (0) + CaHSO4+ 2.170e-12 1.995e-12 -11.664 -11.700 -0.036 (0) Cl 2.000e-05 Cl- 2.000e-05 1.838e-05 -4.699 -4.736 -0.037 17.40 - FeCl+ 1.461e-11 1.344e-11 -10.835 -10.872 -0.036 (0) - HCl 1.948e-13 1.960e-13 -12.711 -12.708 0.003 (0) + FeCl+ 1.458e-11 1.341e-11 -10.836 -10.873 -0.036 (0) + HCl 1.947e-13 1.960e-13 -12.711 -12.708 0.003 (0) Fe(2) 1.000e-06 - Fe+2 7.297e-07 5.298e-07 -6.137 -6.276 -0.139 -23.20 - FeHCO3+ 2.086e-07 1.919e-07 -6.681 -6.717 -0.036 (0) - FeCO3 5.288e-08 5.296e-08 -7.277 -7.276 0.001 (0) - FeSO4 6.844e-09 6.855e-09 -8.165 -8.164 0.001 39.09 - FeOH+ 1.965e-09 1.811e-09 -8.707 -8.742 -0.036 (0) - FeCl+ 1.461e-11 1.344e-11 -10.835 -10.872 -0.036 (0) - Fe(OH)2 1.369e-13 1.371e-13 -12.864 -12.863 0.001 (0) - FeHSO4+ 1.357e-15 1.249e-15 -14.867 -14.904 -0.036 (0) - Fe(OH)3- 1.678e-16 1.546e-16 -15.775 -15.811 -0.036 (0) + Fe+2 7.288e-07 5.286e-07 -6.137 -6.277 -0.139 -23.19 + FeHCO3+ 2.093e-07 1.925e-07 -6.679 -6.716 -0.036 (0) + FeCO3 5.305e-08 5.313e-08 -7.275 -7.275 0.001 (0) + FeSO4 6.814e-09 6.824e-09 -8.167 -8.166 0.001 39.09 + FeOH+ 1.962e-09 1.807e-09 -8.707 -8.743 -0.036 (0) + FeCl+ 1.458e-11 1.341e-11 -10.836 -10.873 -0.036 (0) + Fe(OH)2 1.366e-13 1.368e-13 -12.865 -12.864 0.001 (0) + FeHSO4+ 1.352e-15 1.243e-15 -14.869 -14.906 -0.036 (0) + Fe(OH)3- 1.674e-16 1.542e-16 -15.776 -15.812 -0.036 (0) H(0) 1.316e-18 - H2 6.579e-19 6.588e-19 -18.182 -18.181 0.001 28.63 + H2 6.578e-19 6.588e-19 -18.182 -18.181 0.001 28.63 K 2.000e-05 - K+ 1.995e-05 1.833e-05 -4.700 -4.737 -0.037 8.43 - KSO4- 2.828e-08 2.615e-08 -7.548 -7.582 -0.034 12.38 - KHCO3 2.291e-08 2.291e-08 -7.640 -7.640 0.000 40.92 + K+ 1.995e-05 1.832e-05 -4.700 -4.737 -0.037 8.43 + KSO4- 2.822e-08 2.609e-08 -7.549 -7.584 -0.034 12.38 + KHCO3 2.302e-08 2.303e-08 -7.638 -7.638 0.000 40.92 Mg 1.010e-03 - Mg+2 9.648e-04 7.000e-04 -3.016 -3.155 -0.139 -21.10 - MgHCO3+ 3.094e-05 2.845e-05 -4.510 -4.546 -0.036 4.93 - MgSO4 1.203e-05 1.206e-05 -4.920 -4.919 0.001 -14.55 - MgCO3 2.204e-06 2.208e-06 -5.657 -5.656 0.001 -17.07 - MgOH+ 2.321e-08 2.144e-08 -7.634 -7.669 -0.034 (0) - Mg(SO4)2-2 7.109e-09 5.202e-09 -8.148 -8.284 -0.136 1.52 + Mg+2 9.647e-04 6.992e-04 -3.016 -3.155 -0.140 -21.10 + MgHCO3+ 3.108e-05 2.857e-05 -4.508 -4.544 -0.037 4.93 + MgSO4 1.198e-05 1.202e-05 -4.921 -4.920 0.001 -14.55 + MgCO3 2.214e-06 2.217e-06 -5.655 -5.654 0.001 -17.07 + MgOH+ 2.319e-08 2.142e-08 -7.635 -7.669 -0.034 (0) + Mg(SO4)2-2 7.075e-09 5.172e-09 -8.150 -8.286 -0.136 1.55 Na 2.000e-05 - Na+ 1.994e-05 1.836e-05 -4.700 -4.736 -0.036 -2.42 - NaHCO3 3.675e-08 3.686e-08 -7.435 -7.433 0.001 31.86 - NaSO4- 2.687e-08 2.478e-08 -7.571 -7.606 -0.035 -19.98 - NaOH 1.896e-22 1.899e-22 -21.722 -21.721 0.001 (0) + Na+ 1.994e-05 1.835e-05 -4.700 -4.736 -0.036 -2.42 + NaHCO3 3.694e-08 3.705e-08 -7.433 -7.431 0.001 31.86 + NaSO4- 2.681e-08 2.471e-08 -7.572 -7.607 -0.035 -19.96 + NaOH 1.896e-22 1.898e-22 -21.722 -21.722 0.001 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -61.151 -61.151 0.001 28.94 S(6) 1.600e-04 - SO4-2 1.351e-04 9.732e-05 -3.869 -4.012 -0.143 14.48 - CaSO4 1.277e-05 1.279e-05 -4.894 -4.893 0.001 6.78 - MgSO4 1.203e-05 1.206e-05 -4.920 -4.919 0.001 -14.55 - KSO4- 2.828e-08 2.615e-08 -7.548 -7.582 -0.034 12.38 - NaSO4- 2.687e-08 2.478e-08 -7.571 -7.606 -0.035 -19.98 - Mg(SO4)2-2 7.109e-09 5.202e-09 -8.148 -8.284 -0.136 1.52 - FeSO4 6.844e-09 6.855e-09 -8.165 -8.164 0.001 39.09 - HSO4- 2.131e-10 1.960e-10 -9.671 -9.708 -0.036 38.92 - CaHSO4+ 2.133e-12 1.962e-12 -11.671 -11.707 -0.036 (0) - FeHSO4+ 1.357e-15 1.249e-15 -14.867 -14.904 -0.036 (0) + SO4-2 1.350e-04 9.710e-05 -3.870 -4.013 -0.143 14.49 + CaSO4 1.298e-05 1.300e-05 -4.887 -4.886 0.001 6.78 + MgSO4 1.198e-05 1.202e-05 -4.921 -4.920 0.001 -14.55 + KSO4- 2.822e-08 2.609e-08 -7.549 -7.584 -0.034 12.38 + NaSO4- 2.681e-08 2.471e-08 -7.572 -7.607 -0.035 -19.96 + Mg(SO4)2-2 7.075e-09 5.172e-09 -8.150 -8.286 -0.136 1.55 + FeSO4 6.814e-09 6.824e-09 -8.167 -8.166 0.001 39.09 + HSO4- 2.127e-10 1.956e-10 -9.672 -9.709 -0.036 38.92 + CaHSO4+ 2.170e-12 1.995e-12 -11.664 -11.700 -0.036 (0) + FeHSO4+ 1.352e-15 1.243e-15 -14.869 -14.906 -0.036 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(283 K, 1 atm) - Anhydrite -2.97 -7.09 -4.12 CaSO4 - Aragonite -0.20 -8.46 -8.25 CaCO3 - Arcanite -11.37 -13.49 -2.11 K2SO4 - Calcite -0.06 -8.46 -8.40 CaCO3 - CH2O -33.73 -33.73 0.00 CH2O - CO2(g) -2.26 -3.53 -1.27 CO2 - Dolomite -0.11 -16.99 -16.88 CaMg(CO3)2 - Epsomite -5.33 -7.17 -1.83 MgSO4:7H2O - Gypsum -2.49 -7.09 -4.60 CaSO4:2H2O + Anhydrite -2.96 -7.08 -4.12 CaSO4 + Aragonite -0.19 -8.45 -8.25 CaCO3 + Arcanite -11.38 -13.49 -2.11 K2SO4 + Calcite -0.05 -8.45 -8.40 CaCO3 + CH2O -33.72 -33.72 0.00 CH2O + CO2(g) -2.26 -3.52 -1.27 CO2 + Dolomite -0.10 -16.98 -16.88 CaMg(CO3)2 + Epsomite -5.34 -7.17 -1.83 MgSO4:7H2O + Gypsum -2.49 -7.08 -4.60 CaSO4:2H2O H2(g) -15.13 -18.18 -3.05 H2 H2O(g) -1.91 -0.00 1.91 H2O Halite -11.03 -9.47 1.56 NaCl Hexahydrite -5.58 -7.17 -1.59 MgSO4:6H2O Kieserite -5.85 -7.17 -1.32 MgSO4:H2O Melanterite -7.88 -10.29 -2.41 FeSO4:7H2O - Mirabilite -11.51 -13.48 -1.97 Na2SO4:10H2O + Mirabilite -11.51 -13.49 -1.97 Na2SO4:10H2O O2(g) -58.39 -61.15 -2.76 O2 - Siderite -0.86 -11.66 -10.79 FeCO3 + Siderite -0.86 -11.65 -10.79 FeCO3 Sylvite -9.47 -9.47 0.00 KCl - Thenardite -13.26 -13.48 -0.23 Na2SO4 + Thenardite -13.26 -13.49 -0.23 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -256,21 +256,21 @@ Initial solution 2. Mysse pH = 6.610 pe = 0.000 - Specific Conductance (µS/cm, 63°C) = 10510 - Density (g/cm³) = 0.98523 - Volume (L) = 1.01939 - Viscosity (mPa s) = 0.45611 + Specific Conductance (µS/cm, 63°C) = 10507 + Density (g/cm³) = 0.98520 + Volume (L) = 1.01942 + Viscosity (mPa s) = 0.45609 Activity of water = 0.999 - Ionic strength (mol/kgw) = 7.104e-02 + Ionic strength (mol/kgw) = 7.101e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.286e-03 + Total alkalinity (eq/kg) = 5.294e-03 Total CO2 (mol/kg) = 6.870e-03 Temperature (°C) = 63.00 - Electrical balance (eq) = 3.215e-03 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 3.23 + Electrical balance (eq) = 3.207e-03 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 3.22 Iterations = 8 (16 overall) Total H = 1.110179e+02 - Total O = 5.560451e+01 + Total O = 5.560452e+01 ---------------------------------Redox couples--------------------------------- @@ -287,91 +287,91 @@ Initial solution 2. Mysse H+ 2.959e-07 2.455e-07 -6.529 -6.610 -0.081 0.00 H2O 5.551e+01 9.985e-01 1.744 -0.001 0.000 18.35 C(4) 6.870e-03 - HCO3- 4.595e-03 3.660e-03 -2.338 -2.436 -0.099 25.86 - CO2 1.753e-03 1.772e-03 -2.756 -2.751 0.005 36.36 - CaHCO3+ 2.484e-04 1.994e-04 -3.605 -3.700 -0.095 10.66 - NaHCO3 1.852e-04 1.914e-04 -3.732 -3.718 0.014 31.20 - MgHCO3+ 6.121e-05 4.775e-05 -4.213 -4.321 -0.108 6.10 - CaCO3 1.668e-05 1.695e-05 -4.778 -4.771 0.007 -14.51 - KHCO3 5.118e-06 5.126e-06 -5.291 -5.290 0.001 41.50 - CO3-2 2.699e-06 1.086e-06 -5.569 -5.964 -0.395 -2.58 - MgCO3 1.518e-06 1.543e-06 -5.819 -5.812 0.007 -17.09 - (CO2)2 1.559e-07 1.584e-07 -6.807 -6.800 0.007 72.72 - FeHCO3+ 1.158e-08 9.117e-09 -7.936 -8.040 -0.104 (0) - FeCO3 6.385e-10 6.490e-10 -9.195 -9.188 0.007 (0) + HCO3- 4.575e-03 3.644e-03 -2.340 -2.438 -0.099 25.86 + CO2 1.746e-03 1.765e-03 -2.758 -2.753 0.005 36.36 + CaHCO3+ 2.772e-04 2.226e-04 -3.557 -3.653 -0.095 123.62 + NaHCO3 1.844e-04 1.905e-04 -3.734 -3.720 0.014 31.20 + MgHCO3+ 6.093e-05 4.753e-05 -4.215 -4.323 -0.108 6.10 + CaCO3 1.656e-05 1.683e-05 -4.781 -4.774 0.007 -14.51 + KHCO3 5.096e-06 5.104e-06 -5.293 -5.292 0.001 41.50 + CO3-2 2.687e-06 1.082e-06 -5.571 -5.966 -0.395 -2.58 + MgCO3 1.511e-06 1.536e-06 -5.821 -5.814 0.007 -17.09 + (CO2)2 1.545e-07 1.571e-07 -6.811 -6.804 0.007 72.72 + FeHCO3+ 1.153e-08 9.078e-09 -7.938 -8.042 -0.104 (0) + FeCO3 6.358e-10 6.462e-10 -9.197 -9.190 0.007 (0) Ca 1.128e-02 - Ca+2 7.843e-03 3.171e-03 -2.106 -2.499 -0.393 -17.58 - CaSO4 3.172e-03 3.224e-03 -2.499 -2.492 0.007 8.42 - CaHCO3+ 2.484e-04 1.994e-04 -3.605 -3.700 -0.095 10.66 - CaCO3 1.668e-05 1.695e-05 -4.778 -4.771 0.007 -14.51 - CaHSO4+ 1.310e-08 1.031e-08 -7.883 -7.987 -0.104 (0) - CaOH+ 2.719e-09 2.141e-09 -8.566 -8.669 -0.104 (0) + Ca+2 7.821e-03 3.163e-03 -2.107 -2.500 -0.393 -17.58 + CaSO4 3.165e-03 3.217e-03 -2.500 -2.492 0.007 8.42 + CaHCO3+ 2.772e-04 2.226e-04 -3.557 -3.653 -0.095 123.62 + CaCO3 1.656e-05 1.683e-05 -4.781 -4.774 0.007 -14.51 + CaHSO4+ 1.307e-08 1.029e-08 -7.884 -7.988 -0.104 (0) + CaOH+ 2.712e-09 2.135e-09 -8.567 -8.671 -0.104 (0) Cl 1.785e-02 Cl- 1.785e-02 1.388e-02 -1.748 -1.858 -0.109 18.29 HCl 8.646e-10 9.269e-10 -9.063 -9.033 0.030 (0) - FeCl+ 6.060e-10 4.771e-10 -9.218 -9.321 -0.104 (0) + FeCl+ 6.061e-10 4.771e-10 -9.217 -9.321 -0.104 (0) Fe(2) 4.000e-07 Fe(HS)2 2.863e-07 2.910e-07 -6.543 -6.536 0.007 (0) Fe+2 5.995e-08 2.491e-08 -7.222 -7.604 -0.381 -19.95 - FeSO4 3.584e-08 3.643e-08 -7.446 -7.439 0.007 -6.81 - FeHCO3+ 1.158e-08 9.117e-09 -7.936 -8.040 -0.104 (0) - Fe(HS)3- 4.609e-09 3.628e-09 -8.336 -8.440 -0.104 (0) - FeCO3 6.385e-10 6.490e-10 -9.195 -9.188 0.007 (0) - FeCl+ 6.060e-10 4.771e-10 -9.218 -9.321 -0.104 (0) + FeSO4 3.586e-08 3.645e-08 -7.445 -7.438 0.007 -6.81 + FeHCO3+ 1.153e-08 9.078e-09 -7.938 -8.042 -0.104 (0) + Fe(HS)3- 4.609e-09 3.629e-09 -8.336 -8.440 -0.104 (0) + FeCO3 6.358e-10 6.462e-10 -9.197 -9.190 0.007 (0) + FeCl+ 6.061e-10 4.771e-10 -9.217 -9.321 -0.104 (0) FeOH+ 5.020e-10 3.976e-10 -9.299 -9.401 -0.101 (0) Fe(OH)2 2.540e-13 2.582e-13 -12.595 -12.588 0.007 (0) - FeHSO4+ 1.029e-13 8.100e-14 -12.988 -13.092 -0.104 (0) + FeHSO4+ 1.030e-13 8.105e-14 -12.987 -13.091 -0.104 (0) Fe(OH)3- 6.860e-17 5.434e-17 -16.164 -16.265 -0.101 (0) H(0) 1.219e-09 - H2 6.097e-10 6.198e-10 -9.215 -9.208 0.007 28.58 + H2 6.097e-10 6.197e-10 -9.215 -9.208 0.007 28.58 K 2.540e-03 - K+ 2.340e-03 1.814e-03 -2.631 -2.741 -0.111 10.01 - KSO4- 1.954e-04 1.605e-04 -3.709 -3.794 -0.085 15.45 - KHCO3 5.118e-06 5.126e-06 -5.291 -5.290 0.001 41.50 + K+ 2.339e-03 1.814e-03 -2.631 -2.741 -0.110 10.01 + KSO4- 1.955e-04 1.606e-04 -3.709 -3.794 -0.085 15.45 + KHCO3 5.096e-06 5.104e-06 -5.293 -5.292 0.001 41.50 Mg 4.540e-03 - MgSO4 2.446e-03 2.527e-03 -2.612 -2.597 0.014 -0.04 - Mg+2 1.986e-03 8.303e-04 -2.702 -3.081 -0.379 -22.49 - MgHCO3+ 6.121e-05 4.775e-05 -4.213 -4.321 -0.108 6.10 - Mg(SO4)2-2 4.582e-05 2.013e-05 -4.339 -4.696 -0.357 26.89 - MgCO3 1.518e-06 1.543e-06 -5.819 -5.812 0.007 -17.09 - MgOH+ 3.185e-07 2.573e-07 -6.497 -6.590 -0.093 (0) + MgSO4 2.446e-03 2.528e-03 -2.611 -2.597 0.014 -0.04 + Mg+2 1.985e-03 8.301e-04 -2.702 -3.081 -0.379 -22.49 + MgHCO3+ 6.093e-05 4.753e-05 -4.215 -4.323 -0.108 6.10 + Mg(SO4)2-2 4.585e-05 2.015e-05 -4.339 -4.696 -0.357 26.88 + MgCO3 1.511e-06 1.536e-06 -5.821 -5.814 0.007 -17.09 + MgOH+ 3.184e-07 2.572e-07 -6.497 -6.590 -0.093 (0) Na 3.189e-02 Na+ 2.911e-02 2.304e-02 -1.536 -1.638 -0.102 0.09 - NaSO4- 2.598e-03 2.072e-03 -2.585 -2.684 -0.098 -3.67 - NaHCO3 1.852e-04 1.914e-04 -3.732 -3.718 0.014 31.20 + NaSO4- 2.599e-03 2.073e-03 -2.585 -2.683 -0.098 -3.67 + NaHCO3 1.844e-04 1.905e-04 -3.734 -3.720 0.014 31.20 NaOH 1.044e-18 1.062e-18 -17.981 -17.974 0.007 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.096 -63.089 0.007 32.51 + O2 0.000e+00 0.000e+00 -63.096 -63.088 0.007 32.51 S(-2) 2.600e-04 HS- 1.480e-04 1.145e-04 -3.830 -3.941 -0.112 21.38 H2S 1.114e-04 1.132e-04 -3.953 -3.946 0.007 42.59 Fe(HS)2 2.863e-07 2.910e-07 -6.543 -6.536 0.007 (0) - Fe(HS)3- 4.609e-09 3.628e-09 -8.336 -8.440 -0.104 (0) - S-2 1.440e-09 5.667e-10 -8.842 -9.247 -0.405 (0) + Fe(HS)3- 4.609e-09 3.629e-09 -8.336 -8.440 -0.104 (0) + S-2 1.440e-09 5.668e-10 -8.842 -9.247 -0.405 (0) (H2S)2 1.351e-09 1.373e-09 -8.869 -8.862 0.007 27.88 S(6) 1.986e-02 - SO4-2 1.136e-02 4.441e-03 -1.945 -2.353 -0.408 23.91 - CaSO4 3.172e-03 3.224e-03 -2.499 -2.492 0.007 8.42 - NaSO4- 2.598e-03 2.072e-03 -2.585 -2.684 -0.098 -3.67 - MgSO4 2.446e-03 2.527e-03 -2.612 -2.597 0.014 -0.04 - KSO4- 1.954e-04 1.605e-04 -3.709 -3.794 -0.085 15.45 - Mg(SO4)2-2 4.582e-05 2.013e-05 -4.339 -4.696 -0.357 26.89 - HSO4- 3.436e-07 2.705e-07 -6.464 -6.568 -0.104 41.70 - FeSO4 3.584e-08 3.643e-08 -7.446 -7.439 0.007 -6.81 - CaHSO4+ 1.310e-08 1.031e-08 -7.883 -7.987 -0.104 (0) - FeHSO4+ 1.029e-13 8.100e-14 -12.988 -13.092 -0.104 (0) + SO4-2 1.136e-02 4.443e-03 -1.945 -2.352 -0.408 23.91 + CaSO4 3.165e-03 3.217e-03 -2.500 -2.492 0.007 8.42 + NaSO4- 2.599e-03 2.073e-03 -2.585 -2.683 -0.098 -3.67 + MgSO4 2.446e-03 2.528e-03 -2.611 -2.597 0.014 -0.04 + KSO4- 1.955e-04 1.606e-04 -3.709 -3.794 -0.085 15.45 + Mg(SO4)2-2 4.585e-05 2.015e-05 -4.339 -4.696 -0.357 26.88 + HSO4- 3.438e-07 2.706e-07 -6.464 -6.568 -0.104 41.70 + FeSO4 3.586e-08 3.645e-08 -7.445 -7.438 0.007 -6.81 + CaHSO4+ 1.307e-08 1.029e-08 -7.884 -7.988 -0.104 (0) + FeHSO4+ 1.030e-13 8.105e-14 -12.987 -13.091 -0.104 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(336 K, 1 atm) Anhydrite -0.11 -4.85 -4.75 CaSO4 - Aragonite 0.21 -8.46 -8.67 CaCO3 + Aragonite 0.20 -8.47 -8.67 CaCO3 Arcanite -6.28 -7.84 -1.55 K2SO4 - Calcite 0.46 -8.46 -8.92 CaCO3 - CH2O -14.57 -14.57 0.00 CH2O + Calcite 0.46 -8.47 -8.92 CaCO3 + CH2O -14.58 -14.58 0.00 CH2O CO2(g) -0.95 -2.75 -1.80 CO2 - Dolomite 0.55 -17.51 -18.06 CaMg(CO3)2 + Dolomite 0.54 -17.51 -18.06 CaMg(CO3)2 Epsomite -3.94 -5.44 -1.50 MgSO4:7H2O FeS(ppt) -1.02 -4.93 -3.92 FeS Gypsum -0.19 -4.85 -4.66 CaSO4:2H2O @@ -404,7 +404,7 @@ Solution 1: Recharge number 3 Input Delta Input+Delta pH 7.550e+00 + 0.000e+00 = 7.550e+00 - Alkalinity 4.016e-03 + 1.063e-04 = 4.122e-03 + Alkalinity 4.014e-03 + 1.077e-04 = 4.122e-03 C(-4) 0.000e+00 + 0.000e+00 = 0.000e+00 C(4) 4.300e-03 + 0.000e+00 = 4.300e-03 Ca 1.200e-03 + 0.000e+00 = 1.200e-03 @@ -428,7 +428,7 @@ Solution 2: Mysse Input Delta Input+Delta pH 6.610e+00 + 0.000e+00 = 6.610e+00 - Alkalinity 5.286e-03 + 0.000e+00 = 5.286e-03 + Alkalinity 5.294e-03 + 0.000e+00 = 5.294e-03 C(-4) 0.000e+00 + 0.000e+00 = 0.000e+00 C(4) 6.870e-03 + 0.000e+00 = 6.870e-03 Ca 1.128e-02 + 0.000e+00 = 1.128e-02 @@ -438,7 +438,7 @@ Solution 2: Mysse H(0) 1.219e-09 + 0.000e+00 = 1.219e-09 K 2.540e-03 + 0.000e+00 = 2.540e-03 Mg 4.540e-03 + 0.000e+00 = 4.540e-03 - Na 3.189e-02 + -1.229e-03 = 3.066e-02 + Na 3.189e-02 + -1.221e-03 = 3.067e-02 O(0) 0.000e+00 + 0.000e+00 = 0.000e+00 S(-2) 2.600e-04 + 0.000e+00 = 2.600e-04 S(6) 1.986e-02 + 9.930e-04 = 2.085e-02 @@ -451,8 +451,8 @@ Solution 2: Mysse Isotopic composition of phases: 13C Dolomite 3 + 0 = 3 13C Calcite -1.5 + 0 = -1.5 - 34S Anhydrite 13.5 + -0.715402 = 12.7846 - 13C CH2O -25 + 3.93324 = -21.0668 + 34S Anhydrite 13.5 + -0.70933 = 12.7907 + 13C CH2O -25 + 3.88835 = -21.1116 34S Pyrite -22 + 2 = -20 Solution fractions: Minimum Maximum @@ -460,24 +460,24 @@ Solution fractions: Minimum Maximum Solution 2 1.000e+00 1.000e+00 1.000e+00 Phase mole transfers: Minimum Maximum Formula (Approximate SI in solution 1, 2 at 336 K, 1 atm) - Dolomite 1.120e-02 1.022e-02 1.194e-02 CaMg(CO3)2 ( 1.06, 0.55) - Calcite -2.404e-02 -2.597e-02 -2.113e-02 CaCO3 ( 0.46, 0.46) - Anhydrite 2.293e-02 2.037e-02 2.378e-02 CaSO4 ( -2.35, -0.11) - CH2O 4.222e-03 2.482e-03 5.808e-03 CH2O ( , ) - Goethite 9.866e-04 5.145e-04 1.418e-03 FeOOH ( , ) - Pyrite -9.872e-04 -1.417e-03 -5.162e-04 FeS2 ( , ) - MgX2 -7.666e-03 -8.591e-03 -6.972e-03 MgX2 ( , ) - NaX 1.533e-02 1.394e-02 1.718e-02 NaX ( , ) + Dolomite 1.120e-02 1.022e-02 1.195e-02 CaMg(CO3)2 ( 1.07, 0.54) + Calcite -2.404e-02 -2.597e-02 -2.112e-02 CaCO3 ( 0.47, 0.46) + Anhydrite 2.292e-02 2.037e-02 2.378e-02 CaSO4 ( -2.34, -0.11) + CH2O 4.214e-03 2.473e-03 5.798e-03 CH2O ( , ) + Goethite 9.845e-04 5.123e-04 1.415e-03 FeOOH ( , ) + Pyrite -9.851e-04 -1.414e-03 -5.140e-04 FeS2 ( , ) + MgX2 -7.669e-03 -8.595e-03 -6.972e-03 MgX2 ( , ) + NaX 1.534e-02 1.394e-02 1.719e-02 NaX ( , ) Halite 1.531e-02 1.429e-02 1.633e-02 NaCl (-11.07, -5.09) Sylvite 2.520e-03 2.392e-03 2.648e-03 KCl ( -9.47, -4.60) Redox mole transfers: - Fe(3) 9.866e-04 + Fe(3) 9.845e-04 H(0) -1.219e-09 - S(-2) -2.234e-03 + S(-2) -2.230e-03 -Sum of residuals (epsilons in documentation): 2.312e+00 -Sum of delta/uncertainty limit: 4.444e+00 +Sum of residuals (epsilons in documentation): 2.315e+00 +Sum of delta/uncertainty limit: 4.435e+00 Maximum fractional error in element concentration: 5.000e-02 Model contains minimum number of phases. @@ -488,7 +488,7 @@ Solution 1: Recharge number 3 Input Delta Input+Delta pH 7.550e+00 + 0.000e+00 = 7.550e+00 - Alkalinity 4.016e-03 + 1.063e-04 = 4.122e-03 + Alkalinity 4.014e-03 + 1.077e-04 = 4.122e-03 C(-4) 0.000e+00 + 0.000e+00 = 0.000e+00 C(4) 4.300e-03 + 0.000e+00 = 4.300e-03 Ca 1.200e-03 + 0.000e+00 = 1.200e-03 @@ -512,9 +512,9 @@ Solution 2: Mysse Input Delta Input+Delta pH 6.610e+00 + 0.000e+00 = 6.610e+00 - Alkalinity 5.286e-03 + 0.000e+00 = 5.286e-03 + Alkalinity 5.294e-03 + 0.000e+00 = 5.294e-03 C(-4) 0.000e+00 + 0.000e+00 = 0.000e+00 - C(4) 6.870e-03 + -3.424e-04 = 6.528e-03 + C(4) 6.870e-03 + -3.383e-04 = 6.532e-03 Ca 1.128e-02 + 0.000e+00 = 1.128e-02 Cl 1.785e-02 + 0.000e+00 = 1.785e-02 Fe(2) 4.000e-07 + 0.000e+00 = 4.000e-07 @@ -522,7 +522,7 @@ Solution 2: Mysse H(0) 1.219e-09 + 0.000e+00 = 1.219e-09 K 2.540e-03 + 0.000e+00 = 2.540e-03 Mg 4.540e-03 + 0.000e+00 = 4.540e-03 - Na 3.189e-02 + -1.229e-03 = 3.066e-02 + Na 3.189e-02 + -1.221e-03 = 3.067e-02 O(0) 0.000e+00 + 0.000e+00 = 0.000e+00 S(-2) 2.600e-04 + 0.000e+00 = 2.600e-04 S(6) 1.986e-02 + 9.930e-04 = 2.085e-02 @@ -535,7 +535,7 @@ Solution 2: Mysse Isotopic composition of phases: 13C Dolomite 3 + 2 = 5 13C Calcite -1.5 + -1 = -2.5 - 34S Anhydrite 13.5 + -0.146098 = 13.3539 + 34S Anhydrite 13.5 + -0.146689 = 13.3533 13C CH2O -25 + 5 = -20 34S Pyrite -22 + 2 = -20 @@ -544,24 +544,24 @@ Solution fractions: Minimum Maximum Solution 2 1.000e+00 1.000e+00 1.000e+00 Phase mole transfers: Minimum Maximum Formula (Approximate SI in solution 1, 2 at 336 K, 1 atm) - Dolomite 5.446e-03 4.995e-03 5.842e-03 CaMg(CO3)2 ( 1.06, 0.55) - Calcite -1.215e-02 -1.337e-02 -1.066e-02 CaCO3 ( 0.46, 0.46) - Anhydrite 2.254e-02 2.037e-02 2.298e-02 CaSO4 ( -2.35, -0.11) - CH2O 3.488e-03 2.482e-03 4.302e-03 CH2O ( , ) - Goethite 7.909e-04 5.145e-04 1.016e-03 FeOOH ( , ) - Pyrite -7.915e-04 -1.015e-03 -5.162e-04 FeS2 ( , ) - Ca.75Mg.25X2 -7.666e-03 -8.591e-03 -6.972e-03 Ca.75Mg.25X2 ( , ) - NaX 1.533e-02 1.394e-02 1.718e-02 NaX ( , ) + Dolomite 5.447e-03 4.995e-03 5.843e-03 CaMg(CO3)2 ( 1.07, 0.54) + Calcite -1.215e-02 -1.336e-02 -1.066e-02 CaCO3 ( 0.47, 0.46) + Anhydrite 2.254e-02 2.037e-02 2.298e-02 CaSO4 ( -2.34, -0.11) + CH2O 3.489e-03 2.473e-03 4.302e-03 CH2O ( , ) + Goethite 7.911e-04 5.123e-04 1.016e-03 FeOOH ( , ) + Pyrite -7.917e-04 -1.016e-03 -5.140e-04 FeS2 ( , ) + Ca.75Mg.25X2 -7.669e-03 -8.595e-03 -6.972e-03 Ca.75Mg.25X2 ( , ) + NaX 1.534e-02 1.394e-02 1.719e-02 NaX ( , ) Halite 1.531e-02 1.429e-02 1.633e-02 NaCl (-11.07, -5.09) Sylvite 2.520e-03 2.392e-03 2.648e-03 KCl ( -9.47, -4.60) Redox mole transfers: - Fe(3) 7.909e-04 + Fe(3) 7.911e-04 H(0) -1.219e-09 S(-2) -1.843e-03 -Sum of residuals (epsilons in documentation): 3.320e+00 -Sum of delta/uncertainty limit: 7.370e+00 +Sum of residuals (epsilons in documentation): 3.311e+00 +Sum of delta/uncertainty limit: 7.361e+00 Maximum fractional error in element concentration: 5.000e-02 Model contains minimum number of phases. diff --git a/ex19.out b/ex19.out index 5fd0dfb7..c2e5f346 100644 --- a/ex19.out +++ b/ex19.out @@ -13,7 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES - CALCULATE_VALUES + MEAN_GAMMAS RATES END ------------------------------------ diff --git a/ex19b.out b/ex19b.out index 6549cfff..b006a676 100644 --- a/ex19b.out +++ b/ex19b.out @@ -13,7 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES - CALCULATE_VALUES + MEAN_GAMMAS RATES END ------------------------------------ diff --git a/ex2.out b/ex2.out index 60e613ad..84e5f510 100644 --- a/ex2.out +++ b/ex2.out @@ -13,7 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES - CALCULATE_VALUES + MEAN_GAMMAS RATES END ------------------------------------ diff --git a/ex21.out b/ex21.out index 0d4c7f73..7333a325 100644 --- a/ex21.out +++ b/ex21.out @@ -1,4 +1,4 @@ - Input file: ex21 + Input file: ../examples/ex21 Output file: ex21.out Database file: ../database/phreeqc.dat @@ -939,7 +939,3 @@ Calculating transport: 1 (mobile) cells, 1120 shifts, 1 mixruns... END --------------------------------- -End of Run after 54.706 Seconds. --------------------------------- - diff --git a/ex22.out b/ex22.out index 3ba17252..baa2a407 100644 --- a/ex22.out +++ b/ex22.out @@ -13,7 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES - CALCULATE_VALUES + MEAN_GAMMAS RATES END ------------------------------------ diff --git a/ex2b.out b/ex2b.out index 9d725358..2d9eb972 100644 --- a/ex2b.out +++ b/ex2b.out @@ -13,7 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES - CALCULATE_VALUES + MEAN_GAMMAS RATES END ------------------------------------ diff --git a/ex3.out b/ex3.out index 6f94d1e2..902dd6ec 100644 --- a/ex3.out +++ b/ex3.out @@ -13,7 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES - CALCULATE_VALUES + MEAN_GAMMAS RATES END ------------------------------------ @@ -104,62 +104,62 @@ Using pure phase assemblage 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -CO2(g) -2.00 -3.47 -1.47 1.000e+01 9.998e+00 -1.976e-03 -Calcite 0.00 -8.48 -8.48 1.000e+01 9.998e+00 -1.645e-03 +CO2(g) -2.00 -3.47 -1.47 1.000e+01 9.998e+00 -1.953e-03 +Calcite 0.00 -8.48 -8.48 1.000e+01 9.998e+00 -1.623e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 3.622e-03 3.621e-03 - Ca 1.645e-03 1.645e-03 + C 3.576e-03 3.576e-03 + Ca 1.623e-03 1.623e-03 ----------------------------Description of solution---------------------------- - pH = 7.297 Charge balance - pe = -1.575 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 308 + pH = 7.295 Charge balance + pe = -1.573 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 307 Density (g/cm³) = 0.99726 Volume (L) = 1.00300 Viscosity (mPa s) = 0.89219 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.826e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 3.291e-03 - Total CO2 (mol/kg) = 3.622e-03 + Total alkalinity (eq/kg) = 3.245e-03 + Total CO2 (mol/kg) = 3.576e-03 Temperature (°C) = 25.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 17 Total H = 1.110124e+02 - Total O = 5.551511e+01 + Total O = 5.551499e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 2.162e-07 2.005e-07 -6.665 -6.698 -0.033 -4.07 - H+ 5.402e-08 5.048e-08 -7.267 -7.297 -0.029 0.00 + OH- 2.154e-07 1.998e-07 -6.667 -6.699 -0.033 -4.07 + H+ 5.421e-08 5.066e-08 -7.266 -7.295 -0.029 0.00 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 -C(-4) 1.399e-25 - CH4 1.399e-25 1.401e-25 -24.854 -24.854 0.000 35.46 -C(4) 3.622e-03 - HCO3- 3.223e-03 2.998e-03 -2.492 -2.523 -0.032 24.62 +C(-4) 1.394e-25 + CH4 1.394e-25 1.396e-25 -24.856 -24.855 0.000 35.46 +C(4) 3.576e-03 + HCO3- 3.212e-03 2.987e-03 -2.493 -2.525 -0.032 24.62 CO2 3.400e-04 3.403e-04 -3.469 -3.468 0.000 34.43 - CaHCO3+ 4.886e-05 4.548e-05 -4.311 -4.342 -0.031 9.70 + CaHCO3+ 1.483e-05 1.380e-05 -4.829 -4.860 -0.031 122.67 CaCO3 5.557e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 - CO3-2 3.723e-06 2.785e-06 -5.429 -5.555 -0.126 -3.79 + CO3-2 3.697e-06 2.765e-06 -5.432 -5.558 -0.126 -3.79 (CO2)2 2.123e-09 2.125e-09 -8.673 -8.673 0.000 68.87 -Ca 1.645e-03 - Ca+2 1.591e-03 1.189e-03 -2.798 -2.925 -0.126 -18.02 - CaHCO3+ 4.886e-05 4.548e-05 -4.311 -4.342 -0.031 9.70 +Ca 1.623e-03 + Ca+2 1.602e-03 1.198e-03 -2.795 -2.922 -0.126 -18.02 + CaHCO3+ 1.483e-05 1.380e-05 -4.829 -4.860 -0.031 122.67 CaCO3 5.557e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 - CaOH+ 4.212e-09 3.909e-09 -8.376 -8.408 -0.032 (0) -H(0) 5.089e-15 - H2 2.544e-15 2.547e-15 -14.594 -14.594 0.000 28.61 + CaOH+ 4.227e-09 3.923e-09 -8.374 -8.406 -0.032 (0) +H(0) 5.084e-15 + H2 2.542e-15 2.545e-15 -14.595 -14.594 0.000 28.61 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.193 -63.192 0.000 30.40 + O2 0.000e+00 0.000e+00 -63.192 -63.191 0.000 30.40 ------------------------------Saturation indices------------------------------- @@ -167,7 +167,7 @@ O(0) 0.000e+00 Aragonite -0.14 -8.48 -8.34 CaCO3 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -22.05 -24.85 -2.80 CH4 + CH4(g) -22.05 -24.86 -2.80 CH4 CO2(g) -2.00 -3.47 -1.47 CO2 Pressure 0.0 atm, phi 1.000 H2(g) -11.49 -14.59 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O @@ -229,48 +229,48 @@ Initial solution 2. Seawater pH = 8.220 pe = 8.451 - Specific Conductance (µS/cm, 25°C) = 52855 + Specific Conductance (µS/cm, 25°C) = 52856 Density (g/cm³) = 1.02328 Volume (L) = 1.01278 - Viscosity (mPa s) = 0.96027 + Viscosity (mPa s) = 0.96029 Activity of water = 0.981 Ionic strength (mol/kgw) = 6.704e-01 Mass of water (kg) = 1.000e+00 - Total carbon (mol/kg) = 2.240e-03 - Total CO2 (mol/kg) = 2.240e-03 + Total carbon (mol/kg) = 2.238e-03 + Total CO2 (mol/kg) = 2.238e-03 Temperature (°C) = 25.00 Electrical balance (eq) = 7.967e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.07 Iterations = 8 Total H = 1.110148e+02 - Total O = 5.563027e+01 + Total O = 5.563026e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 2.703e-06 1.647e-06 -5.568 -5.783 -0.215 -2.64 + OH- 2.703e-06 1.647e-06 -5.568 -5.783 -0.215 -2.63 H+ 7.981e-09 6.026e-09 -8.098 -8.220 -0.122 0.00 H2O 5.551e+01 9.806e-01 1.744 -0.008 0.000 18.07 -C(4) 2.240e-03 - HCO3- 1.520e-03 1.027e-03 -2.818 -2.988 -0.170 25.99 - MgHCO3+ 2.745e-04 1.727e-04 -3.562 -3.763 -0.201 5.82 - NaHCO3 2.221e-04 3.024e-04 -3.653 -3.519 0.134 31.73 - MgCO3 9.395e-05 1.096e-04 -4.027 -3.960 0.067 -17.09 - CaHCO3+ 4.704e-05 3.256e-05 -4.328 -4.487 -0.160 9.96 - CO3-2 3.835e-05 7.993e-06 -4.416 -5.097 -0.681 -0.52 - CaCO3 2.859e-05 3.337e-05 -4.544 -4.477 0.067 -14.60 - CO2 1.281e-05 1.419e-05 -4.892 -4.848 0.044 34.43 - KHCO3 2.929e-06 2.972e-06 -5.533 -5.527 0.006 41.03 - (CO2)2 3.166e-12 3.695e-12 -11.499 -11.432 0.067 68.87 +C(4) 2.238e-03 + HCO3- 1.541e-03 1.041e-03 -2.812 -2.982 -0.170 25.99 + MgHCO3+ 2.783e-04 1.751e-04 -3.556 -3.757 -0.201 5.82 + NaHCO3 2.252e-04 3.066e-04 -3.647 -3.513 0.134 31.73 + MgCO3 9.524e-05 1.111e-04 -4.021 -3.954 0.067 -17.09 + CO3-2 3.889e-05 8.104e-06 -4.410 -5.091 -0.681 -0.52 + CaCO3 2.908e-05 3.393e-05 -4.536 -4.469 0.067 -14.60 + CaHCO3+ 1.446e-05 1.001e-05 -4.840 -5.000 -0.160 122.92 + CO2 1.299e-05 1.438e-05 -4.886 -4.842 0.044 34.43 + KHCO3 2.970e-06 3.013e-06 -5.527 -5.521 0.006 41.03 + (CO2)2 3.254e-12 3.798e-12 -11.488 -11.420 0.067 68.87 Ca 1.066e-02 - Ca+2 9.933e-03 2.485e-03 -2.003 -2.605 -0.602 -16.70 - CaSO4 6.518e-04 7.606e-04 -3.186 -3.119 0.067 7.50 - CaHCO3+ 4.704e-05 3.256e-05 -4.328 -4.487 -0.160 9.96 - CaCO3 2.859e-05 3.337e-05 -4.544 -4.477 0.067 -14.60 - CaOH+ 8.992e-08 6.712e-08 -7.046 -7.173 -0.127 (0) - CaHSO4+ 4.036e-11 3.012e-11 -10.394 -10.521 -0.127 (0) + Ca+2 9.964e-03 2.493e-03 -2.002 -2.603 -0.602 -16.70 + CaSO4 6.537e-04 7.628e-04 -3.185 -3.118 0.067 7.50 + CaCO3 2.908e-05 3.393e-05 -4.536 -4.469 0.067 -14.60 + CaHCO3+ 1.446e-05 1.001e-05 -4.840 -5.000 -0.160 122.92 + CaOH+ 9.020e-08 6.732e-08 -7.045 -7.172 -0.127 (0) + CaHSO4+ 4.048e-11 3.021e-11 -10.393 -10.520 -0.127 (0) Cl 5.657e-01 Cl- 5.657e-01 3.570e-01 -0.247 -0.447 -0.200 18.79 HCl 3.842e-10 7.411e-10 -9.415 -9.130 0.285 (0) @@ -278,34 +278,34 @@ H(0) 5.521e-37 H2 2.760e-37 3.221e-37 -36.559 -36.492 0.067 28.61 K 1.058e-02 K+ 1.039e-02 6.478e-03 -1.983 -2.189 -0.205 9.66 - KSO4- 1.873e-04 1.697e-04 -3.728 -3.770 -0.043 11.35 - KHCO3 2.929e-06 2.972e-06 -5.533 -5.527 0.006 41.03 + KSO4- 1.873e-04 1.696e-04 -3.728 -3.770 -0.043 11.34 + KHCO3 2.970e-06 3.013e-06 -5.527 -5.521 0.006 41.03 Mg 5.507e-02 - Mg+2 4.980e-02 1.437e-02 -1.303 -1.842 -0.540 -20.42 - MgSO4 4.757e-03 6.477e-03 -2.323 -2.189 0.134 -7.92 - MgHCO3+ 2.745e-04 1.727e-04 -3.562 -3.763 -0.201 5.82 - Mg(SO4)2-2 1.297e-04 3.672e-05 -3.887 -4.435 -0.548 32.91 - MgCO3 9.395e-05 1.096e-04 -4.027 -3.960 0.067 -17.09 + Mg+2 4.979e-02 1.437e-02 -1.303 -1.842 -0.540 -20.42 + MgSO4 4.756e-03 6.476e-03 -2.323 -2.189 0.134 -7.92 + MgHCO3+ 2.783e-04 1.751e-04 -3.556 -3.757 -0.201 5.82 + Mg(SO4)2-2 1.296e-04 3.671e-05 -3.887 -4.435 -0.548 32.91 + MgCO3 9.524e-05 1.111e-04 -4.021 -3.954 0.067 -17.09 MgOH+ 1.205e-05 8.493e-06 -4.919 -5.071 -0.152 (0) Na 4.854e-01 Na+ 4.712e-01 3.381e-01 -0.327 -0.471 -0.144 -0.51 - NaSO4- 1.396e-02 9.474e-03 -1.855 -2.023 -0.168 8.22 - NaHCO3 2.221e-04 3.024e-04 -3.653 -3.519 0.134 31.73 + NaSO4- 1.396e-02 9.473e-03 -1.855 -2.024 -0.168 8.22 + NaHCO3 2.252e-04 3.066e-04 -3.647 -3.513 0.134 31.73 NaOH 4.773e-17 5.570e-17 -16.321 -16.254 0.067 (0) O(0) 6.622e-20 O2 3.311e-20 3.864e-20 -19.480 -19.413 0.067 30.40 S(6) 2.926e-02 - NaSO4- 1.396e-02 9.474e-03 -1.855 -2.023 -0.168 8.22 - SO4-2 9.440e-03 1.721e-03 -2.025 -2.764 -0.739 38.41 - MgSO4 4.757e-03 6.477e-03 -2.323 -2.189 0.134 -7.92 - CaSO4 6.518e-04 7.606e-04 -3.186 -3.119 0.067 7.50 - KSO4- 1.873e-04 1.697e-04 -3.728 -3.770 -0.043 11.35 - Mg(SO4)2-2 1.297e-04 3.672e-05 -3.887 -4.435 -0.548 32.91 + NaSO4- 1.396e-02 9.473e-03 -1.855 -2.024 -0.168 8.22 + SO4-2 9.440e-03 1.721e-03 -2.025 -2.764 -0.739 38.42 + MgSO4 4.756e-03 6.476e-03 -2.323 -2.189 0.134 -7.92 + CaSO4 6.537e-04 7.628e-04 -3.185 -3.118 0.067 7.50 + KSO4- 1.873e-04 1.696e-04 -3.728 -3.770 -0.043 11.34 + Mg(SO4)2-2 1.296e-04 3.671e-05 -3.887 -4.435 -0.548 32.91 HSO4- 1.351e-09 1.008e-09 -8.869 -8.996 -0.127 40.96 - CaHSO4+ 4.036e-11 3.012e-11 -10.394 -10.521 -0.127 (0) + CaHSO4+ 4.048e-11 3.021e-11 -10.393 -10.520 -0.127 (0) Si 7.382e-05 H4SiO4 7.062e-05 8.241e-05 -4.151 -4.084 0.067 52.08 - H3SiO4- 3.205e-06 2.016e-06 -5.494 -5.695 -0.201 28.72 + H3SiO4- 3.205e-06 2.017e-06 -5.494 -5.695 -0.201 28.72 H2SiO4-2 1.092e-10 2.276e-11 -9.962 -10.643 -0.681 (0) ------------------------------Saturation indices------------------------------- @@ -313,15 +313,15 @@ Si 7.382e-05 Phase SI** log IAP log K(298 K, 1 atm) Anhydrite -1.09 -5.37 -4.28 CaSO4 - Aragonite 0.63 -7.70 -8.34 CaCO3 + Aragonite 0.64 -7.69 -8.34 CaCO3 Arcanite -5.26 -7.14 -1.88 K2SO4 - Calcite 0.78 -7.70 -8.48 CaCO3 + Calcite 0.79 -7.69 -8.48 CaCO3 Chalcedony -0.52 -4.07 -3.55 SiO2 - Chrysotile 3.42 35.62 32.20 Mg3Si2O5(OH)4 - CO2(g) -3.38 -4.85 -1.47 CO2 - Dolomite 2.44 -14.64 -17.08 CaMg(CO3)2 + Chrysotile 3.41 35.62 32.20 Mg3Si2O5(OH)4 + CO2(g) -3.37 -4.84 -1.47 CO2 + Dolomite 2.46 -14.63 -17.08 CaMg(CO3)2 Epsomite -2.93 -4.67 -1.74 MgSO4:7H2O - Gypsum -0.80 -5.39 -4.58 CaSO4:2H2O + Gypsum -0.80 -5.38 -4.58 CaSO4:2H2O H2(g) -33.39 -36.49 -3.10 H2 H2O(g) -1.51 -0.01 1.50 H2O Halite -2.49 -0.92 1.57 NaCl @@ -377,8 +377,8 @@ Mixture 1. Elements Molality Moles - C 3.207e-03 3.207e-03 - Ca 4.350e-03 4.350e-03 + C 3.175e-03 3.175e-03 + Ca 4.334e-03 4.334e-03 Cl 1.697e-01 1.697e-01 K 3.173e-03 3.173e-03 Mg 1.652e-02 1.652e-02 @@ -388,93 +388,93 @@ Mixture 1. ----------------------------Description of solution---------------------------- - pH = 7.326 Charge balance - pe = 10.569 Adjusted to redox equilibrium + pH = 7.327 Charge balance + pe = 10.559 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 18310 - Density (g/cm³) = 1.00527 + Density (g/cm³) = 1.00526 Volume (L) = 1.00578 - Viscosity (mPa s) = 0.91372 + Viscosity (mPa s) = 0.91373 Activity of water = 0.994 Ionic strength (mol/kgw) = 2.068e-01 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 3.026e-03 - Total CO2 (mol/kg) = 3.207e-03 + Total alkalinity (eq/kg) = 2.994e-03 + Total CO2 (mol/kg) = 3.175e-03 Temperature (°C) = 25.00 Electrical balance (eq) = 2.390e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.07 Iterations = 16 Total H = 1.110131e+02 - Total O = 5.554965e+01 + Total O = 5.554957e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 3.025e-07 2.130e-07 -6.519 -6.672 -0.152 -3.48 - H+ 5.933e-08 4.724e-08 -7.227 -7.326 -0.099 0.00 + OH- 3.031e-07 2.134e-07 -6.518 -6.671 -0.152 -3.48 + H+ 5.921e-08 4.715e-08 -7.228 -7.327 -0.099 0.00 H2O 5.551e+01 9.941e-01 1.744 -0.003 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.465 -122.445 0.021 35.46 -C(4) 3.207e-03 - HCO3- 2.617e-03 1.947e-03 -2.582 -2.711 -0.128 25.15 - CO2 2.016e-04 2.080e-04 -3.696 -3.682 0.014 34.43 - NaHCO3 1.641e-04 1.805e-04 -3.785 -3.743 0.041 31.73 - MgHCO3+ 1.612e-04 1.154e-04 -3.793 -3.938 -0.145 5.72 - CaHCO3+ 4.236e-05 3.196e-05 -4.373 -4.495 -0.122 9.88 - MgCO3 8.908e-06 9.342e-06 -5.050 -5.030 0.021 -17.09 - CO3-2 6.305e-06 1.933e-06 -5.200 -5.714 -0.514 -2.19 - CaCO3 3.984e-06 4.178e-06 -5.400 -5.379 0.021 -14.60 - KHCO3 1.917e-06 1.926e-06 -5.717 -5.715 0.002 41.03 - (CO2)2 7.575e-10 7.944e-10 -9.121 -9.100 0.021 68.87 -Ca 4.350e-03 - Ca+2 4.041e-03 1.287e-03 -2.394 -2.891 -0.497 -17.20 - CaSO4 2.631e-04 2.759e-04 -3.580 -3.559 0.021 7.50 - CaHCO3+ 4.236e-05 3.196e-05 -4.373 -4.495 -0.122 9.88 - CaCO3 3.984e-06 4.178e-06 -5.400 -5.379 0.021 -14.60 - CaOH+ 6.031e-09 4.494e-09 -8.220 -8.347 -0.128 (0) - CaHSO4+ 1.150e-10 8.567e-11 -9.939 -10.067 -0.128 (0) + CH4 0.000e+00 0.000e+00 -122.395 -122.374 0.021 35.46 +C(4) 3.175e-03 + HCO3- 2.615e-03 1.945e-03 -2.583 -2.711 -0.128 25.15 + CO2 2.010e-04 2.074e-04 -3.697 -3.683 0.014 34.43 + NaHCO3 1.640e-04 1.804e-04 -3.785 -3.744 0.041 31.73 + MgHCO3+ 1.611e-04 1.153e-04 -3.793 -3.938 -0.145 5.72 + CaHCO3+ 1.284e-05 9.686e-06 -4.892 -5.014 -0.122 122.85 + MgCO3 8.919e-06 9.354e-06 -5.050 -5.029 0.021 -17.09 + CO3-2 6.313e-06 1.935e-06 -5.200 -5.713 -0.514 -2.19 + CaCO3 4.001e-06 4.196e-06 -5.398 -5.377 0.021 -14.60 + KHCO3 1.915e-06 1.924e-06 -5.718 -5.716 0.002 41.03 + (CO2)2 7.531e-10 7.898e-10 -9.123 -9.102 0.021 68.87 +Ca 4.334e-03 + Ca+2 4.054e-03 1.291e-03 -2.392 -2.889 -0.497 -17.20 + CaSO4 2.639e-04 2.767e-04 -3.579 -3.558 0.021 7.50 + CaHCO3+ 1.284e-05 9.686e-06 -4.892 -5.014 -0.122 122.85 + CaCO3 4.001e-06 4.196e-06 -5.398 -5.377 0.021 -14.60 + CaOH+ 6.063e-09 4.517e-09 -8.217 -8.345 -0.128 (0) + CaHSO4+ 1.151e-10 8.576e-11 -9.939 -10.067 -0.128 (0) Cl 1.697e-01 Cl- 1.697e-01 1.210e-01 -0.770 -0.917 -0.147 18.46 - HCl 1.608e-09 1.970e-09 -8.794 -8.706 0.088 (0) -H(0) 2.192e-39 - H2 1.096e-39 1.149e-39 -38.960 -38.940 0.021 28.61 + HCl 1.605e-09 1.965e-09 -8.795 -8.707 0.088 (0) +H(0) 2.284e-39 + H2 1.142e-39 1.198e-39 -38.942 -38.922 0.021 28.61 K 3.173e-03 K+ 3.122e-03 2.214e-03 -2.506 -2.655 -0.149 9.35 - KSO4- 4.986e-05 4.062e-05 -4.302 -4.391 -0.089 14.03 - KHCO3 1.917e-06 1.926e-06 -5.717 -5.715 0.002 41.03 + KSO4- 4.986e-05 4.061e-05 -4.302 -4.391 -0.089 14.03 + KHCO3 1.915e-06 1.924e-06 -5.718 -5.716 0.002 41.03 Mg 1.652e-02 Mg+2 1.488e-02 5.065e-03 -1.827 -2.295 -0.468 -20.91 MgSO4 1.454e-03 1.599e-03 -2.838 -2.796 0.041 -7.92 - MgHCO3+ 1.612e-04 1.154e-04 -3.793 -3.938 -0.145 5.72 - Mg(SO4)2-2 1.764e-05 6.350e-06 -4.753 -5.197 -0.444 24.64 - MgCO3 8.908e-06 9.342e-06 -5.050 -5.030 0.021 -17.09 - MgOH+ 5.074e-07 3.870e-07 -6.295 -6.412 -0.118 (0) + MgHCO3+ 1.611e-04 1.153e-04 -3.793 -3.938 -0.145 5.72 + Mg(SO4)2-2 1.764e-05 6.349e-06 -4.754 -5.197 -0.444 24.64 + MgCO3 8.919e-06 9.354e-06 -5.050 -5.029 0.021 -17.09 + MgOH+ 5.085e-07 3.878e-07 -6.294 -6.411 -0.118 (0) Na 1.456e-01 Na+ 1.427e-01 1.065e-01 -0.846 -0.973 -0.127 -0.92 NaSO4- 2.801e-03 2.089e-03 -2.553 -2.680 -0.127 -0.72 - NaHCO3 1.641e-04 1.805e-04 -3.785 -3.743 0.041 31.73 - NaOH 2.162e-18 2.267e-18 -17.665 -17.645 0.021 (0) -O(0) 5.947e-15 - O2 2.973e-15 3.119e-15 -14.527 -14.506 0.021 30.40 + NaHCO3 1.640e-04 1.804e-04 -3.785 -3.744 0.041 31.73 + NaOH 2.166e-18 2.272e-18 -17.664 -17.644 0.021 (0) +O(0) 5.475e-15 + O2 2.738e-15 2.871e-15 -14.563 -14.542 0.021 30.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -119.590 -119.742 -0.152 21.00 - H2S 0.000e+00 0.000e+00 -120.147 -120.126 0.021 36.27 - S-2 0.000e+00 0.000e+00 -124.804 -125.335 -0.531 (0) - (H2S)2 0.000e+00 0.000e+00 -241.552 -241.531 0.021 30.09 + HS- 0.000e+00 0.000e+00 -119.519 -119.672 -0.152 21.00 + H2S 0.000e+00 0.000e+00 -120.077 -120.056 0.021 36.27 + S-2 0.000e+00 0.000e+00 -124.732 -125.263 -0.531 (0) + (H2S)2 0.000e+00 0.000e+00 -241.412 -241.391 0.021 30.09 S(6) 8.777e-03 SO4-2 4.174e-03 1.206e-03 -2.379 -2.919 -0.539 28.42 NaSO4- 2.801e-03 2.089e-03 -2.553 -2.680 -0.127 -0.72 MgSO4 1.454e-03 1.599e-03 -2.838 -2.796 0.041 -7.92 - CaSO4 2.631e-04 2.759e-04 -3.580 -3.559 0.021 7.50 - KSO4- 4.986e-05 4.062e-05 -4.302 -4.391 -0.089 14.03 - Mg(SO4)2-2 1.764e-05 6.350e-06 -4.753 -5.197 -0.444 24.64 - HSO4- 7.433e-09 5.538e-09 -8.129 -8.257 -0.128 40.66 - CaHSO4+ 1.150e-10 8.567e-11 -9.939 -10.067 -0.128 (0) + CaSO4 2.639e-04 2.767e-04 -3.579 -3.558 0.021 7.50 + KSO4- 4.986e-05 4.061e-05 -4.302 -4.391 -0.089 14.03 + Mg(SO4)2-2 1.764e-05 6.349e-06 -4.754 -5.197 -0.444 24.64 + HSO4- 7.416e-09 5.526e-09 -8.130 -8.258 -0.128 40.66 + CaHSO4+ 1.151e-10 8.576e-11 -9.939 -10.067 -0.128 (0) Si 2.215e-05 H4SiO4 2.205e-05 2.312e-05 -4.657 -4.636 0.021 52.08 - H3SiO4- 1.008e-07 7.217e-08 -6.996 -7.142 -0.145 28.37 - H2SiO4-2 3.390e-13 1.039e-13 -12.470 -12.983 -0.514 (0) + H3SiO4- 1.010e-07 7.231e-08 -6.996 -7.141 -0.145 28.37 + H2SiO4-2 3.404e-13 1.043e-13 -12.468 -12.982 -0.514 (0) ------------------------------Saturation indices------------------------------- @@ -484,28 +484,28 @@ Si 2.215e-05 Aragonite -0.27 -8.60 -8.34 CaCO3 Arcanite -6.35 -8.23 -1.88 K2SO4 Calcite -0.12 -8.60 -8.48 CaCO3 - CH4(g) -119.64 -122.44 -2.80 CH4 + CH4(g) -119.57 -122.37 -2.80 CH4 Chalcedony -1.08 -4.63 -3.55 SiO2 - Chrysotile -4.41 27.79 32.20 Mg3Si2O5(OH)4 + Chrysotile -4.40 27.80 32.20 Mg3Si2O5(OH)4 CO2(g) -2.21 -3.68 -1.47 CO2 Dolomite 0.47 -16.61 -17.08 CaMg(CO3)2 Epsomite -3.49 -5.23 -1.74 MgSO4:7H2O Gypsum -1.23 -5.81 -4.58 CaSO4:2H2O - H2(g) -35.84 -38.94 -3.10 H2 + H2(g) -35.82 -38.92 -3.10 H2 H2O(g) -1.51 -0.00 1.50 H2O - H2S(g) -119.13 -127.07 -7.94 H2S + H2S(g) -119.06 -127.00 -7.94 H2S Halite -3.46 -1.89 1.57 NaCl Hexahydrite -3.66 -5.23 -1.57 MgSO4:6H2O Kieserite -4.06 -5.22 -1.16 MgSO4:H2O Mirabilite -3.65 -4.89 -1.24 Na2SO4:10H2O - O2(g) -11.61 -14.51 -2.89 O2 + O2(g) -11.65 -14.54 -2.89 O2 Quartz -0.65 -4.63 -3.98 SiO2 Sepiolite -4.95 10.81 15.76 Mg2Si3O7.5OH:3H2O Sepiolite(d) -7.85 10.81 18.66 Mg2Si3O7.5OH:3H2O SiO2(a) -1.92 -4.63 -2.71 SiO2 - Sulfur -89.22 -84.34 4.88 S + Sulfur -89.17 -84.28 4.88 S Sylvite -4.47 -3.57 0.90 KCl - Talc -2.86 18.53 21.40 Mg3Si4O10(OH)2 + Talc -2.86 18.54 21.40 Mg3Si4O10(OH)2 Thenardite -4.56 -4.86 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -545,111 +545,111 @@ Using pure phase assemblage 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Calcite 0.00 -8.48 -8.48 1.000e+01 9.985e+00 -1.546e-02 -Dolomite -0.00 -17.08 -17.08 1.000e+01 1.001e+01 7.807e-03 +Calcite 0.00 -8.48 -8.48 1.000e+01 9.985e+00 -1.541e-02 +Dolomite 0.00 -17.08 -17.08 1.000e+01 1.001e+01 7.786e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 3.057e-03 3.057e-03 - Ca 1.201e-02 1.201e-02 + C 3.016e-03 3.016e-03 + Ca 1.196e-02 1.196e-02 Cl 1.697e-01 1.697e-01 K 3.173e-03 3.173e-03 - Mg 8.713e-03 8.713e-03 + Mg 8.734e-03 8.734e-03 Na 1.456e-01 1.456e-01 S 8.777e-03 8.777e-03 Si 2.215e-05 2.215e-05 ----------------------------Description of solution---------------------------- - pH = 7.052 Charge balance - pe = -1.301 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 18477 - Density (g/cm³) = 1.00534 - Volume (L) = 1.00582 - Viscosity (mPa s) = 0.91245 + pH = 7.047 Charge balance + pe = 10.927 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 18479 + Density (g/cm³) = 1.00533 + Volume (L) = 1.00583 + Viscosity (mPa s) = 0.91249 Activity of water = 0.994 - Ionic strength (mol/kgw) = 2.070e-01 + Ionic strength (mol/kgw) = 2.071e-01 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 2.725e-03 - Total CO2 (mol/kg) = 3.057e-03 + Total alkalinity (eq/kg) = 2.677e-03 + Total CO2 (mol/kg) = 3.016e-03 Temperature (°C) = 25.00 Electrical balance (eq) = 2.390e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.07 - Iterations = 16 + Iterations = 5 Total H = 1.110131e+02 - Total O = 5.554920e+01 + Total O = 5.554910e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.612e-07 1.135e-07 -6.793 -6.945 -0.152 -3.48 - H+ 1.113e-07 8.865e-08 -6.953 -7.052 -0.099 0.00 + OH- 1.593e-07 1.121e-07 -6.798 -6.950 -0.152 -3.48 + H+ 1.127e-07 8.972e-08 -6.948 -7.047 -0.099 0.00 H2O 5.551e+01 9.941e-01 1.744 -0.003 0.000 18.07 -C(-4) 8.153e-26 - CH4 8.153e-26 8.551e-26 -25.089 -25.068 0.021 35.46 -C(4) 3.057e-03 - HCO3- 2.370e-03 1.764e-03 -2.625 -2.754 -0.128 25.15 - CO2 3.427e-04 3.536e-04 -3.465 -3.451 0.014 34.43 - NaHCO3 1.486e-04 1.634e-04 -3.828 -3.787 0.041 31.73 - CaHCO3+ 1.059e-04 7.987e-05 -3.975 -4.098 -0.122 9.88 - MgHCO3+ 7.690e-05 5.504e-05 -4.114 -4.259 -0.145 5.72 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -122.863 -122.842 0.021 35.46 +C(4) 3.016e-03 + HCO3- 2.394e-03 1.781e-03 -2.621 -2.749 -0.128 25.15 + CO2 3.502e-04 3.614e-04 -3.456 -3.442 0.014 34.43 + NaHCO3 1.500e-04 1.650e-04 -3.824 -3.782 0.041 31.73 + MgHCO3+ 7.783e-05 5.571e-05 -4.109 -4.254 -0.145 5.72 + CaHCO3+ 3.239e-05 2.444e-05 -4.490 -4.612 -0.122 122.85 CaCO3 5.304e-06 5.563e-06 -5.275 -5.255 0.021 -14.60 - CO3-2 3.045e-06 9.330e-07 -5.516 -6.030 -0.514 -2.19 + CO3-2 3.038e-06 9.308e-07 -5.517 -6.031 -0.514 -2.19 MgCO3 2.264e-06 2.375e-06 -5.645 -5.624 0.021 -17.09 - KHCO3 1.735e-06 1.743e-06 -5.761 -5.759 0.002 41.03 - (CO2)2 2.188e-09 2.295e-09 -8.660 -8.639 0.021 68.87 -Ca 1.201e-02 - Ca+2 1.115e-02 3.550e-03 -1.953 -2.450 -0.497 -17.20 - CaSO4 7.461e-04 7.826e-04 -3.127 -3.106 0.021 7.50 - CaHCO3+ 1.059e-04 7.987e-05 -3.975 -4.098 -0.122 9.88 + KHCO3 1.752e-06 1.760e-06 -5.756 -5.754 0.002 41.03 + (CO2)2 2.285e-09 2.397e-09 -8.641 -8.620 0.021 68.87 +Ca 1.196e-02 + Ca+2 1.118e-02 3.558e-03 -1.952 -2.449 -0.497 -17.20 + CaSO4 7.475e-04 7.840e-04 -3.126 -3.106 0.021 7.50 + CaHCO3+ 3.239e-05 2.444e-05 -4.490 -4.612 -0.122 122.85 CaCO3 5.304e-06 5.563e-06 -5.275 -5.255 0.021 -14.60 - CaOH+ 8.866e-09 6.606e-09 -8.052 -8.180 -0.128 (0) - CaHSO4+ 6.121e-10 4.560e-10 -9.213 -9.341 -0.128 (0) + CaOH+ 8.781e-09 6.542e-09 -8.056 -8.184 -0.128 (0) + CaHSO4+ 6.206e-10 4.624e-10 -9.207 -9.335 -0.128 (0) Cl 1.697e-01 Cl- 1.697e-01 1.210e-01 -0.770 -0.917 -0.147 18.47 - HCl 3.017e-09 3.696e-09 -8.520 -8.432 0.088 (0) -H(0) 4.240e-15 - H2 2.120e-15 2.223e-15 -14.674 -14.653 0.021 28.61 + HCl 3.053e-09 3.740e-09 -8.515 -8.427 0.088 (0) +H(0) 1.519e-39 + H2 7.594e-40 7.965e-40 -39.120 -39.099 0.021 28.61 K 3.173e-03 K+ 3.120e-03 2.213e-03 -2.506 -2.655 -0.149 9.35 - KSO4- 5.125e-05 4.174e-05 -4.290 -4.379 -0.089 14.03 - KHCO3 1.735e-06 1.743e-06 -5.761 -5.759 0.002 41.03 -Mg 8.713e-03 - Mg+2 7.837e-03 2.667e-03 -2.106 -2.574 -0.468 -20.91 - MgSO4 7.871e-04 8.658e-04 -3.104 -3.063 0.041 -7.92 - MgHCO3+ 7.690e-05 5.504e-05 -4.114 -4.259 -0.145 5.72 - Mg(SO4)2-2 9.826e-06 3.536e-06 -5.008 -5.452 -0.444 24.65 + KSO4- 5.122e-05 4.172e-05 -4.291 -4.380 -0.089 14.03 + KHCO3 1.752e-06 1.760e-06 -5.756 -5.754 0.002 41.03 +Mg 8.734e-03 + Mg+2 7.855e-03 2.674e-03 -2.105 -2.573 -0.468 -20.91 + MgSO4 7.885e-04 8.675e-04 -3.103 -3.062 0.041 -7.92 + MgHCO3+ 7.783e-05 5.571e-05 -4.109 -4.254 -0.145 5.72 + Mg(SO4)2-2 9.841e-06 3.541e-06 -5.007 -5.451 -0.444 24.65 MgCO3 2.264e-06 2.375e-06 -5.645 -5.624 0.021 -17.09 - MgOH+ 1.424e-07 1.086e-07 -6.846 -6.964 -0.118 (0) + MgOH+ 1.410e-07 1.076e-07 -6.851 -6.968 -0.118 (0) Na 1.456e-01 Na+ 1.426e-01 1.064e-01 -0.846 -0.973 -0.127 -0.92 - NaSO4- 2.879e-03 2.147e-03 -2.541 -2.668 -0.127 -0.72 - NaHCO3 1.486e-04 1.634e-04 -3.828 -3.787 0.041 31.73 - NaOH 1.151e-18 1.208e-18 -17.939 -17.918 0.021 (0) -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.100 -63.079 0.021 30.40 -S(-2) 1.056e-22 - HS- 6.946e-23 4.891e-23 -22.158 -22.311 -0.152 21.00 - H2S 3.615e-23 3.791e-23 -22.442 -22.421 0.021 36.27 - S-2 2.264e-28 6.663e-29 -27.645 -28.176 -0.531 (0) - (H2S)2 0.000e+00 0.000e+00 -46.141 -46.121 0.021 30.09 + NaSO4- 2.878e-03 2.146e-03 -2.541 -2.668 -0.127 -0.71 + NaHCO3 1.500e-04 1.650e-04 -3.824 -3.782 0.041 31.73 + NaOH 1.138e-18 1.193e-18 -17.944 -17.923 0.021 (0) +O(0) 1.238e-14 + O2 6.191e-15 6.493e-15 -14.208 -14.188 0.021 30.40 +S(-2) 0.000e+00 + HS- 0.000e+00 0.000e+00 -119.936 -120.089 -0.152 21.00 + H2S 0.000e+00 0.000e+00 -120.215 -120.194 0.021 36.27 + S-2 0.000e+00 0.000e+00 -125.428 -125.960 -0.531 (0) + (H2S)2 0.000e+00 0.000e+00 -241.688 -241.667 0.021 30.09 S(6) 8.777e-03 - SO4-2 4.294e-03 1.240e-03 -2.367 -2.907 -0.540 28.43 - NaSO4- 2.879e-03 2.147e-03 -2.541 -2.668 -0.127 -0.72 - MgSO4 7.871e-04 8.658e-04 -3.104 -3.063 0.041 -7.92 - CaSO4 7.461e-04 7.826e-04 -3.127 -3.106 0.021 7.50 - KSO4- 5.125e-05 4.174e-05 -4.290 -4.379 -0.089 14.03 - Mg(SO4)2-2 9.826e-06 3.536e-06 -5.008 -5.452 -0.444 24.65 - HSO4- 1.434e-08 1.069e-08 -7.843 -7.971 -0.128 40.66 - CaHSO4+ 6.121e-10 4.560e-10 -9.213 -9.341 -0.128 (0) + SO4-2 4.293e-03 1.239e-03 -2.367 -2.907 -0.540 28.43 + NaSO4- 2.878e-03 2.146e-03 -2.541 -2.668 -0.127 -0.71 + MgSO4 7.885e-04 8.675e-04 -3.103 -3.062 0.041 -7.92 + CaSO4 7.475e-04 7.840e-04 -3.126 -3.106 0.021 7.50 + KSO4- 5.122e-05 4.172e-05 -4.291 -4.380 -0.089 14.03 + Mg(SO4)2-2 9.841e-06 3.541e-06 -5.007 -5.451 -0.444 24.65 + HSO4- 1.451e-08 1.081e-08 -7.838 -7.966 -0.128 40.66 + CaHSO4+ 6.206e-10 4.624e-10 -9.207 -9.335 -0.128 (0) Si 2.215e-05 H4SiO4 2.209e-05 2.317e-05 -4.656 -4.635 0.021 52.08 - H3SiO4- 5.385e-08 3.854e-08 -7.269 -7.414 -0.145 28.37 - H2SiO4-2 9.651e-14 2.957e-14 -13.015 -13.529 -0.514 (0) + H3SiO4- 5.321e-08 3.808e-08 -7.274 -7.419 -0.145 28.37 + H2SiO4-2 9.424e-14 2.887e-14 -13.026 -13.540 -0.514 (0) ------------------------------Saturation indices------------------------------- @@ -659,28 +659,28 @@ Si 2.215e-05 Aragonite -0.14 -8.48 -8.34 CaCO3 Arcanite -6.34 -8.22 -1.88 K2SO4 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -22.27 -25.07 -2.80 CH4 + CH4(g) -120.04 -122.84 -2.80 CH4 Chalcedony -1.08 -4.63 -3.55 SiO2 - Chrysotile -6.88 25.32 32.20 Mg3Si2O5(OH)4 - CO2(g) -1.98 -3.45 -1.47 CO2 - Dolomite -0.00 -17.08 -17.08 CaMg(CO3)2 + Chrysotile -6.91 25.29 32.20 Mg3Si2O5(OH)4 + CO2(g) -1.97 -3.44 -1.47 CO2 + Dolomite 0.00 -17.08 -17.08 CaMg(CO3)2 Epsomite -3.76 -5.50 -1.74 MgSO4:7H2O Gypsum -0.78 -5.36 -4.58 CaSO4:2H2O - H2(g) -11.55 -14.65 -3.10 H2 + H2(g) -36.00 -39.10 -3.10 H2 H2O(g) -1.51 -0.00 1.50 H2O - H2S(g) -21.43 -29.36 -7.94 H2S + H2S(g) -119.20 -127.14 -7.94 H2S Halite -3.46 -1.89 1.57 NaCl Hexahydrite -3.93 -5.50 -1.57 MgSO4:6H2O Kieserite -4.32 -5.48 -1.16 MgSO4:H2O Mirabilite -3.64 -4.88 -1.24 Na2SO4:10H2O - O2(g) -60.19 -63.08 -2.89 O2 + O2(g) -11.30 -14.19 -2.89 O2 Quartz -0.65 -4.63 -3.98 SiO2 - Sepiolite -6.60 9.16 15.76 Mg2Si3O7.5OH:3H2O - Sepiolite(d) -9.50 9.16 18.66 Mg2Si3O7.5OH:3H2O + Sepiolite -6.62 9.14 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -9.52 9.14 18.66 Mg2Si3O7.5OH:3H2O SiO2(a) -1.92 -4.63 -2.71 SiO2 - Sulfur -15.80 -10.92 4.88 S + Sulfur -89.13 -84.25 4.88 S Sylvite -4.47 -3.57 0.90 KCl - Talc -5.34 16.06 21.40 Mg3Si4O10(OH)2 + Talc -5.36 16.03 21.40 Mg3Si4O10(OH)2 Thenardite -4.55 -4.85 -0.30 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -719,14 +719,14 @@ Using pure phase assemblage 2. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Calcite 0.00 -8.48 -8.48 1.000e+01 1.000e+01 -4.676e-05 +Calcite 0.00 -8.48 -8.48 1.000e+01 1.000e+01 -4.587e-05 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 3.254e-03 3.254e-03 - Ca 4.397e-03 4.397e-03 + C 3.221e-03 3.220e-03 + Ca 4.380e-03 4.380e-03 Cl 1.697e-01 1.697e-01 K 3.173e-03 3.173e-03 Mg 1.652e-02 1.652e-02 @@ -736,122 +736,122 @@ Calcite 0.00 -8.48 -8.48 1.000e+01 1.000e+01 -4.676e-05 ----------------------------Description of solution---------------------------- - pH = 7.434 Charge balance - pe = -1.771 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 18314 + pH = 7.433 Charge balance + pe = 10.542 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 18315 Density (g/cm³) = 1.00527 Volume (L) = 1.00578 Viscosity (mPa s) = 0.91380 Activity of water = 0.994 Ionic strength (mol/kgw) = 2.069e-01 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 3.119e-03 - Total CO2 (mol/kg) = 3.254e-03 + Total alkalinity (eq/kg) = 3.085e-03 + Total CO2 (mol/kg) = 3.221e-03 Temperature (°C) = 25.00 Electrical balance (eq) = 2.390e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.07 - Iterations = 15 + Iterations = 3 Total H = 1.110131e+02 - Total O = 5.554979e+01 + Total O = 5.554971e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 3.883e-07 2.734e-07 -6.411 -6.563 -0.152 -3.48 - H+ 4.622e-08 3.680e-08 -7.335 -7.434 -0.099 0.00 + OH- 3.874e-07 2.728e-07 -6.412 -6.564 -0.152 -3.48 + H+ 4.632e-08 3.688e-08 -7.334 -7.433 -0.099 0.00 H2O 5.551e+01 9.941e-01 1.744 -0.003 0.000 18.07 -C(-4) 1.937e-25 - CH4 1.937e-25 2.032e-25 -24.713 -24.692 0.021 35.46 -C(4) 3.254e-03 - HCO3- 2.687e-03 1.999e-03 -2.571 -2.699 -0.128 25.15 - NaHCO3 1.685e-04 1.854e-04 -3.773 -3.732 0.041 31.73 - MgHCO3+ 1.655e-04 1.184e-04 -3.781 -3.926 -0.145 5.72 - CO2 1.613e-04 1.664e-04 -3.792 -3.779 0.014 34.43 - CaHCO3+ 4.394e-05 3.316e-05 -4.357 -4.479 -0.122 9.88 - MgCO3 1.174e-05 1.231e-05 -4.930 -4.910 0.021 -17.09 - CO3-2 8.314e-06 2.548e-06 -5.080 -5.594 -0.514 -2.19 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -123.201 -123.180 0.021 35.46 +C(4) 3.221e-03 + HCO3- 2.685e-03 1.998e-03 -2.571 -2.699 -0.128 25.15 + NaHCO3 1.684e-04 1.852e-04 -3.774 -3.732 0.041 31.73 + MgHCO3+ 1.653e-04 1.183e-04 -3.782 -3.927 -0.145 5.72 + CO2 1.615e-04 1.666e-04 -3.792 -3.778 0.014 34.43 + CaHCO3+ 1.332e-05 1.005e-05 -4.876 -4.998 -0.122 122.85 + MgCO3 1.170e-05 1.227e-05 -4.932 -4.911 0.021 -17.09 + CO3-2 8.287e-06 2.540e-06 -5.082 -5.595 -0.514 -2.19 CaCO3 5.304e-06 5.563e-06 -5.275 -5.255 0.021 -14.60 - KHCO3 1.968e-06 1.977e-06 -5.706 -5.704 0.002 41.03 - (CO2)2 4.848e-10 5.084e-10 -9.314 -9.294 0.021 68.87 -Ca 4.397e-03 - Ca+2 4.082e-03 1.300e-03 -2.389 -2.886 -0.497 -17.20 - CaSO4 2.656e-04 2.786e-04 -3.576 -3.555 0.021 7.50 - CaHCO3+ 4.394e-05 3.316e-05 -4.357 -4.479 -0.122 9.88 + KHCO3 1.967e-06 1.975e-06 -5.706 -5.704 0.002 41.03 + (CO2)2 4.860e-10 5.097e-10 -9.313 -9.293 0.021 68.87 +Ca 4.380e-03 + Ca+2 4.095e-03 1.304e-03 -2.388 -2.885 -0.497 -17.20 + CaSO4 2.664e-04 2.794e-04 -3.574 -3.554 0.021 7.50 + CaHCO3+ 1.332e-05 1.005e-05 -4.876 -4.998 -0.122 122.85 CaCO3 5.304e-06 5.563e-06 -5.275 -5.255 0.021 -14.60 - CaOH+ 7.820e-09 5.826e-09 -8.107 -8.235 -0.128 (0) - CaHSO4+ 9.045e-11 6.739e-11 -10.044 -10.171 -0.128 (0) + CaOH+ 7.828e-09 5.832e-09 -8.106 -8.234 -0.128 (0) + CaHSO4+ 9.093e-11 6.775e-11 -10.041 -10.169 -0.128 (0) Cl 1.697e-01 - Cl- 1.697e-01 1.210e-01 -0.770 -0.917 -0.147 18.46 - HCl 1.253e-09 1.534e-09 -8.902 -8.814 0.088 (0) -H(0) 6.355e-15 - H2 3.178e-15 3.333e-15 -14.498 -14.477 0.021 28.61 + Cl- 1.697e-01 1.210e-01 -0.770 -0.917 -0.147 18.47 + HCl 1.255e-09 1.538e-09 -8.901 -8.813 0.088 (0) +H(0) 1.517e-39 + H2 7.584e-40 7.954e-40 -39.120 -39.099 0.021 28.61 K 3.173e-03 K+ 3.122e-03 2.214e-03 -2.506 -2.655 -0.149 9.35 - KSO4- 4.984e-05 4.060e-05 -4.302 -4.391 -0.089 14.03 - KHCO3 1.968e-06 1.977e-06 -5.706 -5.704 0.002 41.03 + KSO4- 4.984e-05 4.060e-05 -4.302 -4.392 -0.089 14.03 + KHCO3 1.967e-06 1.975e-06 -5.706 -5.704 0.002 41.03 Mg 1.652e-02 Mg+2 1.487e-02 5.063e-03 -1.828 -2.296 -0.468 -20.91 MgSO4 1.452e-03 1.598e-03 -2.838 -2.797 0.041 -7.92 - MgHCO3+ 1.655e-04 1.184e-04 -3.781 -3.926 -0.145 5.72 - Mg(SO4)2-2 1.763e-05 6.343e-06 -4.754 -5.198 -0.444 24.64 - MgCO3 1.174e-05 1.231e-05 -4.930 -4.910 0.021 -17.09 - MgOH+ 6.511e-07 4.965e-07 -6.186 -6.304 -0.118 (0) + MgHCO3+ 1.653e-04 1.183e-04 -3.782 -3.927 -0.145 5.72 + Mg(SO4)2-2 1.762e-05 6.342e-06 -4.754 -5.198 -0.444 24.64 + MgCO3 1.170e-05 1.227e-05 -4.932 -4.911 0.021 -17.09 + MgOH+ 6.496e-07 4.954e-07 -6.187 -6.305 -0.118 (0) Na 1.456e-01 Na+ 1.427e-01 1.064e-01 -0.846 -0.973 -0.127 -0.92 - NaSO4- 2.800e-03 2.089e-03 -2.553 -2.680 -0.127 -0.72 - NaHCO3 1.685e-04 1.854e-04 -3.773 -3.732 0.041 31.73 - NaOH 2.775e-18 2.910e-18 -17.557 -17.536 0.021 (0) -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.451 -63.431 0.021 30.40 -S(-2) 1.721e-22 - HS- 1.415e-22 9.965e-23 -21.849 -22.002 -0.152 21.00 - H2S 3.057e-23 3.207e-23 -22.515 -22.494 0.021 36.27 - S-2 1.111e-27 3.270e-28 -26.954 -27.485 -0.531 (0) - (H2S)2 0.000e+00 0.000e+00 -46.287 -46.266 0.021 30.09 + NaSO4- 2.800e-03 2.088e-03 -2.553 -2.680 -0.127 -0.72 + NaHCO3 1.684e-04 1.852e-04 -3.774 -3.732 0.041 31.73 + NaOH 2.769e-18 2.904e-18 -17.558 -17.537 0.021 (0) +O(0) 1.242e-14 + O2 6.209e-15 6.512e-15 -14.207 -14.186 0.021 30.40 +S(-2) 0.000e+00 + HS- 0.000e+00 0.000e+00 -120.337 -120.489 -0.152 21.00 + H2S 0.000e+00 0.000e+00 -121.002 -120.981 0.021 36.27 + S-2 0.000e+00 0.000e+00 -125.443 -125.974 -0.531 (0) + (H2S)2 0.000e+00 0.000e+00 -243.261 -243.240 0.021 30.09 S(6) 8.777e-03 SO4-2 4.174e-03 1.205e-03 -2.379 -2.919 -0.539 28.43 - NaSO4- 2.800e-03 2.089e-03 -2.553 -2.680 -0.127 -0.72 + NaSO4- 2.800e-03 2.088e-03 -2.553 -2.680 -0.127 -0.72 MgSO4 1.452e-03 1.598e-03 -2.838 -2.797 0.041 -7.92 - CaSO4 2.656e-04 2.786e-04 -3.576 -3.555 0.021 7.50 - KSO4- 4.984e-05 4.060e-05 -4.302 -4.391 -0.089 14.03 - Mg(SO4)2-2 1.763e-05 6.343e-06 -4.754 -5.198 -0.444 24.64 - HSO4- 5.788e-09 4.313e-09 -8.237 -8.365 -0.128 40.66 - CaHSO4+ 9.045e-11 6.739e-11 -10.044 -10.171 -0.128 (0) + CaSO4 2.664e-04 2.794e-04 -3.574 -3.554 0.021 7.50 + KSO4- 4.984e-05 4.060e-05 -4.302 -4.392 -0.089 14.03 + Mg(SO4)2-2 1.762e-05 6.342e-06 -4.754 -5.198 -0.444 24.64 + HSO4- 5.801e-09 4.322e-09 -8.237 -8.364 -0.128 40.66 + CaHSO4+ 9.093e-11 6.775e-11 -10.041 -10.169 -0.128 (0) Si 2.215e-05 H4SiO4 2.202e-05 2.309e-05 -4.657 -4.637 0.021 52.08 - H3SiO4- 1.293e-07 9.252e-08 -6.889 -7.034 -0.145 28.37 - H2SiO4-2 5.580e-13 1.710e-13 -12.253 -12.767 -0.514 (0) + H3SiO4- 1.290e-07 9.232e-08 -6.890 -7.035 -0.145 28.37 + H2SiO4-2 5.555e-13 1.703e-13 -12.255 -12.769 -0.514 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -1.53 -5.81 -4.28 CaSO4 + Anhydrite -1.53 -5.80 -4.28 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 Arcanite -6.35 -8.23 -1.88 K2SO4 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -21.89 -24.69 -2.80 CH4 + CH4(g) -120.38 -123.18 -2.80 CH4 Chalcedony -1.08 -4.63 -3.55 SiO2 Chrysotile -3.76 28.44 32.20 Mg3Si2O5(OH)4 CO2(g) -2.31 -3.78 -1.47 CO2 Dolomite 0.71 -16.37 -17.08 CaMg(CO3)2 Epsomite -3.49 -5.23 -1.74 MgSO4:7H2O Gypsum -1.23 -5.81 -4.58 CaSO4:2H2O - H2(g) -11.38 -14.48 -3.10 H2 + H2(g) -36.00 -39.10 -3.10 H2 H2O(g) -1.51 -0.00 1.50 H2O - H2S(g) -21.50 -29.44 -7.94 H2S + H2S(g) -119.99 -127.92 -7.94 H2S Halite -3.46 -1.89 1.57 NaCl Hexahydrite -3.66 -5.23 -1.57 MgSO4:6H2O Kieserite -4.06 -5.22 -1.16 MgSO4:H2O Mirabilite -3.65 -4.89 -1.24 Na2SO4:10H2O - O2(g) -60.54 -63.43 -2.89 O2 + O2(g) -11.29 -14.19 -2.89 O2 Quartz -0.65 -4.63 -3.98 SiO2 - Sepiolite -4.52 11.24 15.76 Mg2Si3O7.5OH:3H2O - Sepiolite(d) -7.42 11.24 18.66 Mg2Si3O7.5OH:3H2O + Sepiolite -4.53 11.23 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -7.43 11.23 18.66 Mg2Si3O7.5OH:3H2O SiO2(a) -1.92 -4.63 -2.71 SiO2 - Sulfur -16.05 -11.17 4.88 S + Sulfur -89.91 -85.03 4.88 S Sylvite -4.47 -3.57 0.90 KCl Talc -2.22 19.18 21.40 Mg3Si4O10(OH)2 Thenardite -4.56 -4.86 -0.30 Na2SO4 diff --git a/ex4.out b/ex4.out index 61165384..f72a7446 100644 --- a/ex4.out +++ b/ex4.out @@ -13,7 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES - CALCULATE_VALUES + MEAN_GAMMAS RATES END ------------------------------------ @@ -102,7 +102,7 @@ Initial solution 1. Precipitation from Central Oklahoma C(4) 1.091e-05 CO2 1.076e-05 1.076e-05 -4.968 -4.968 0.000 34.43 HCO3- 1.530e-07 1.513e-07 -6.815 -6.820 -0.005 24.56 - CaHCO3+ 1.787e-11 1.767e-11 -10.748 -10.753 -0.005 9.65 + CaHCO3+ 5.402e-12 5.344e-12 -11.267 -11.272 -0.005 122.62 MgHCO3+ 3.022e-12 2.989e-12 -11.520 -11.524 -0.005 5.46 (CO2)2 2.125e-12 2.125e-12 -11.673 -11.673 0.000 68.87 NaHCO3 7.995e-13 7.995e-13 -12.097 -12.097 0.000 31.73 @@ -113,7 +113,7 @@ C(4) 1.091e-05 Ca 9.581e-06 Ca+2 9.560e-06 9.153e-06 -5.020 -5.038 -0.019 -18.22 CaSO4 2.098e-08 2.098e-08 -7.678 -7.678 0.000 7.50 - CaHCO3+ 1.787e-11 1.767e-11 -10.748 -10.753 -0.005 9.65 + CaHCO3+ 5.402e-12 5.344e-12 -11.267 -11.272 -0.005 122.62 CaHSO4+ 4.409e-12 4.361e-12 -11.356 -11.360 -0.005 (0) CaOH+ 4.856e-14 4.804e-14 -13.314 -13.318 -0.005 (0) CaCO3 3.451e-15 3.451e-15 -14.462 -14.462 0.000 -14.60 @@ -253,7 +253,7 @@ C(4) 2.182e-04 CO2 2.180e-04 2.181e-04 -3.661 -3.661 0.000 34.43 HCO3- 1.425e-07 1.365e-07 -6.846 -6.865 -0.019 24.59 (CO2)2 8.728e-10 8.731e-10 -9.059 -9.059 0.000 68.87 - CaHCO3+ 2.842e-10 2.723e-10 -9.546 -9.565 -0.019 9.68 + CaHCO3+ 8.591e-11 8.233e-11 -10.066 -10.084 -0.019 122.64 MgHCO3+ 4.754e-11 4.551e-11 -10.323 -10.342 -0.019 5.48 NaHCO3 1.390e-11 1.391e-11 -10.857 -10.857 0.000 31.73 KHCO3 1.071e-12 1.071e-12 -11.970 -11.970 0.000 41.03 @@ -264,7 +264,7 @@ Ca 1.916e-04 Ca+2 1.857e-04 1.564e-04 -3.731 -3.806 -0.075 -18.12 CaSO4 5.792e-06 5.795e-06 -5.237 -5.237 0.000 7.50 CaHSO4+ 2.828e-08 2.707e-08 -7.549 -7.568 -0.019 (0) - CaHCO3+ 2.842e-10 2.723e-10 -9.546 -9.565 -0.019 9.68 + CaHCO3+ 8.591e-11 8.233e-11 -10.066 -10.084 -0.019 122.64 CaOH+ 3.814e-14 3.651e-14 -13.419 -13.438 -0.019 (0) CaCO3 2.365e-15 2.366e-15 -14.626 -14.626 0.000 -14.60 Cl 1.331e-04 @@ -424,7 +424,7 @@ C(4) 2.182e-04 CO2 2.180e-04 2.181e-04 -3.661 -3.661 0.000 34.43 HCO3- 1.425e-07 1.365e-07 -6.846 -6.865 -0.019 24.59 (CO2)2 8.728e-10 8.731e-10 -9.059 -9.059 0.000 68.87 - CaHCO3+ 2.842e-10 2.723e-10 -9.546 -9.565 -0.019 9.68 + CaHCO3+ 8.591e-11 8.233e-11 -10.066 -10.084 -0.019 122.64 MgHCO3+ 4.754e-11 4.551e-11 -10.323 -10.342 -0.019 5.48 NaHCO3 1.390e-11 1.391e-11 -10.857 -10.857 0.000 31.73 KHCO3 1.071e-12 1.071e-12 -11.970 -11.970 0.000 41.03 @@ -435,7 +435,7 @@ Ca 1.916e-04 Ca+2 1.857e-04 1.564e-04 -3.731 -3.806 -0.075 -18.12 CaSO4 5.792e-06 5.795e-06 -5.237 -5.237 0.000 7.50 CaHSO4+ 2.828e-08 2.707e-08 -7.549 -7.568 -0.019 (0) - CaHCO3+ 2.842e-10 2.723e-10 -9.546 -9.565 -0.019 9.68 + CaHCO3+ 8.591e-11 8.233e-11 -10.066 -10.084 -0.019 122.64 CaOH+ 3.814e-14 3.651e-14 -13.419 -13.438 -0.019 (0) CaCO3 2.365e-15 2.366e-15 -14.626 -14.626 0.000 -14.60 Cl 1.331e-04 diff --git a/ex5.out b/ex5.out index feb86355..7c0c909f 100644 --- a/ex5.out +++ b/ex5.out @@ -13,7 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES - CALCULATE_VALUES + MEAN_GAMMAS RATES END ------------------------------------ @@ -143,25 +143,25 @@ Reaction 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 -4.869e-04 -Calcite 0.00 -8.48 -8.48 1.000e+01 1.000e+01 -4.933e-04 -Goethite 0.00 -1.00 -1.00 1.000e+01 1.000e+01 1.096e-08 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 -4.846e-04 +Calcite 0.00 -8.48 -8.48 1.000e+01 1.000e+01 -4.910e-04 +Goethite -0.00 -1.00 -1.00 1.000e+01 1.000e+01 1.089e-08 Gypsum -6.13 -10.71 -4.58 0.000e+00 0 0.000e+00 -Pyrite 0.00 -18.48 -18.48 1.000e+01 1.000e+01 -3.144e-08 +Pyrite -0.00 -18.48 -18.48 1.000e+01 1.000e+01 -3.140e-08 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 9.802e-04 9.802e-04 - Ca 4.933e-04 4.933e-04 - Fe 2.048e-08 2.048e-08 - S 6.287e-08 6.287e-08 + C 9.756e-04 9.756e-04 + Ca 4.910e-04 4.910e-04 + Fe 2.051e-08 2.051e-08 + S 6.280e-08 6.280e-08 ----------------------------Description of solution---------------------------- pH = 8.279 Charge balance - pe = -4.943 Adjusted to redox equilibrium + pe = -4.942 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 96 Density (g/cm³) = 0.99711 Volume (L) = 1.00297 @@ -169,84 +169,84 @@ Pyrite 0.00 -18.48 -18.48 1.000e+01 1.000e+01 -3.144e-08 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.463e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 9.866e-04 - Total CO2 (mol/kg) = 9.801e-04 + Total alkalinity (eq/kg) = 9.820e-04 + Total CO2 (mol/kg) = 9.756e-04 Temperature (°C) = 25.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 14 Total H = 1.110124e+02 - Total O = 5.550867e+01 + Total O = 5.550866e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 2.010e-06 1.925e-06 -5.697 -5.716 -0.019 -4.10 - H+ 5.475e-09 5.258e-09 -8.262 -8.279 -0.018 0.00 + OH- 2.007e-06 1.923e-06 -5.697 -5.716 -0.019 -4.10 + H+ 5.481e-09 5.264e-09 -8.261 -8.279 -0.018 0.00 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 -C(-4) 5.384e-08 - CH4 5.384e-08 5.386e-08 -7.269 -7.269 0.000 35.46 -C(4) 9.801e-04 - HCO3- 9.493e-04 9.102e-04 -3.023 -3.041 -0.018 24.58 +C(-4) 5.377e-08 + CH4 5.377e-08 5.379e-08 -7.269 -7.269 0.000 35.46 +C(4) 9.756e-04 + HCO3- 9.482e-04 9.091e-04 -3.023 -3.041 -0.018 24.58 CO2 1.076e-05 1.076e-05 -4.968 -4.968 0.000 34.43 - CO3-2 9.605e-06 8.118e-06 -5.017 -5.091 -0.073 -3.91 + CO3-2 9.583e-06 8.099e-06 -5.019 -5.092 -0.073 -3.91 CaCO3 5.561e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 - CaHCO3+ 4.939e-06 4.737e-06 -5.306 -5.324 -0.018 9.68 - FeCO3 2.598e-09 2.599e-09 -8.585 -8.585 0.000 (0) - FeHCO3+ 1.268e-09 1.215e-09 -8.897 -8.916 -0.019 (0) + CaHCO3+ 1.495e-06 1.434e-06 -5.825 -5.843 -0.018 122.64 + FeCO3 2.597e-09 2.598e-09 -8.585 -8.585 0.000 (0) + FeHCO3+ 1.269e-09 1.216e-09 -8.897 -8.915 -0.019 (0) (CO2)2 2.125e-12 2.125e-12 -11.673 -11.673 0.000 68.87 -Ca 4.933e-04 - Ca+2 4.828e-04 4.079e-04 -3.316 -3.389 -0.073 -18.12 +Ca 4.910e-04 + Ca+2 4.840e-04 4.089e-04 -3.315 -3.388 -0.073 -18.12 CaCO3 5.561e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 - CaHCO3+ 4.939e-06 4.737e-06 -5.306 -5.324 -0.018 9.68 - CaOH+ 1.344e-08 1.288e-08 -7.872 -7.890 -0.019 (0) - CaSO4 3.483e-09 3.484e-09 -8.458 -8.458 0.000 7.50 - CaHSO4+ 1.257e-16 1.204e-16 -15.901 -15.919 -0.019 (0) -Fe(2) 2.048e-08 - Fe+2 1.577e-08 1.335e-08 -7.802 -7.875 -0.073 -22.11 - FeCO3 2.598e-09 2.599e-09 -8.585 -8.585 0.000 (0) - FeHCO3+ 1.268e-09 1.215e-09 -8.897 -8.916 -0.019 (0) - FeOH+ 8.372e-10 8.026e-10 -9.077 -9.096 -0.018 (0) - Fe(OH)2 1.299e-12 1.299e-12 -11.887 -11.886 0.000 (0) - FeSO4 1.139e-13 1.140e-13 -12.943 -12.943 0.000 18.97 - Fe(OH)3- 9.575e-15 9.179e-15 -14.019 -14.037 -0.018 (0) - Fe(HS)2 6.282e-17 6.285e-17 -16.202 -16.202 0.000 (0) - FeHSO4+ 4.111e-21 3.939e-21 -20.386 -20.405 -0.019 (0) - Fe(HS)3- 1.642e-23 1.573e-23 -22.785 -22.803 -0.019 (0) -Fe(3) 3.369e-14 + CaHCO3+ 1.495e-06 1.434e-06 -5.825 -5.843 -0.018 122.64 + CaOH+ 1.345e-08 1.289e-08 -7.871 -7.890 -0.019 (0) + CaSO4 3.487e-09 3.488e-09 -8.458 -8.457 0.000 7.50 + CaHSO4+ 1.260e-16 1.207e-16 -15.900 -15.918 -0.019 (0) +Fe(2) 2.051e-08 + Fe+2 1.581e-08 1.337e-08 -7.801 -7.874 -0.073 -22.11 + FeCO3 2.597e-09 2.598e-09 -8.585 -8.585 0.000 (0) + FeHCO3+ 1.269e-09 1.216e-09 -8.897 -8.915 -0.019 (0) + FeOH+ 8.381e-10 8.034e-10 -9.077 -9.095 -0.018 (0) + Fe(OH)2 1.298e-12 1.299e-12 -11.887 -11.886 0.000 (0) + FeSO4 1.141e-13 1.141e-13 -12.943 -12.943 0.000 18.97 + Fe(OH)3- 9.563e-15 9.167e-15 -14.019 -14.038 -0.018 (0) + Fe(HS)2 6.281e-17 6.283e-17 -16.202 -16.202 0.000 (0) + FeHSO4+ 4.120e-21 3.948e-21 -20.385 -20.404 -0.019 (0) + Fe(HS)3- 1.639e-23 1.571e-23 -22.785 -22.804 -0.019 (0) +Fe(3) 3.368e-14 Fe(OH)3 2.753e-14 2.754e-14 -13.560 -13.560 0.000 (0) - Fe(OH)4- 4.982e-15 4.777e-15 -14.303 -14.321 -0.018 (0) - Fe(OH)2+ 1.172e-15 1.124e-15 -14.931 -14.949 -0.018 (0) - FeOH+2 2.114e-20 1.785e-20 -19.675 -19.748 -0.073 (0) - Fe+3 2.091e-26 1.454e-26 -25.680 -25.837 -0.158 (0) - FeSO4+ 7.987e-30 7.656e-30 -29.098 -29.116 -0.018 (0) - Fe(SO4)2- 8.396e-36 8.045e-36 -35.076 -35.094 -0.019 (0) - FeHSO4+2 1.279e-37 1.078e-37 -36.893 -36.967 -0.074 (0) - Fe2(OH)2+4 1.700e-38 8.577e-39 -37.770 -38.067 -0.297 (0) - Fe3(OH)4+5 0.000e+00 0.000e+00 -50.232 -50.696 -0.464 (0) -H(0) 3.007e-10 - H2 1.504e-10 1.504e-10 -9.823 -9.823 0.000 28.61 + Fe(OH)4- 4.976e-15 4.771e-15 -14.303 -14.321 -0.018 (0) + Fe(OH)2+ 1.174e-15 1.125e-15 -14.930 -14.949 -0.018 (0) + FeOH+2 2.119e-20 1.789e-20 -19.674 -19.747 -0.073 (0) + Fe+3 2.098e-26 1.459e-26 -25.678 -25.836 -0.158 (0) + FeSO4+ 8.005e-30 7.674e-30 -29.097 -29.115 -0.018 (0) + Fe(SO4)2- 8.405e-36 8.054e-36 -35.075 -35.094 -0.019 (0) + FeHSO4+2 1.284e-37 1.082e-37 -36.892 -36.966 -0.074 (0) + Fe2(OH)2+4 1.708e-38 8.618e-39 -37.768 -38.065 -0.297 (0) + Fe3(OH)4+5 0.000e+00 0.000e+00 -50.229 -50.693 -0.464 (0) +H(0) 3.006e-10 + H2 1.503e-10 1.504e-10 -9.823 -9.823 0.000 28.61 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -72.735 -72.735 0.000 30.40 -S(-2) 2.505e-09 - HS- 2.400e-09 2.299e-09 -8.620 -8.639 -0.019 20.61 + O2 0.000e+00 0.000e+00 -72.734 -72.734 0.000 30.40 +S(-2) 2.502e-09 + HS- 2.397e-09 2.296e-09 -8.620 -8.639 -0.019 20.61 H2S 1.056e-10 1.057e-10 -9.976 -9.976 0.000 36.27 - S-2 6.253e-14 5.280e-14 -13.204 -13.277 -0.073 (0) - Fe(HS)2 6.282e-17 6.285e-17 -16.202 -16.202 0.000 (0) - (H2S)2 5.883e-22 5.885e-22 -21.230 -21.230 0.000 30.09 - Fe(HS)3- 1.642e-23 1.573e-23 -22.785 -22.803 -0.019 (0) -S(6) 6.037e-08 - SO4-2 5.688e-08 4.803e-08 -7.245 -7.319 -0.073 15.83 - CaSO4 3.483e-09 3.484e-09 -8.458 -8.458 0.000 7.50 - FeSO4 1.139e-13 1.140e-13 -12.943 -12.943 0.000 18.97 - HSO4- 2.563e-14 2.455e-14 -13.591 -13.610 -0.019 40.28 - CaHSO4+ 1.257e-16 1.204e-16 -15.901 -15.919 -0.019 (0) - FeHSO4+ 4.111e-21 3.939e-21 -20.386 -20.405 -0.019 (0) - FeSO4+ 7.987e-30 7.656e-30 -29.098 -29.116 -0.018 (0) - Fe(SO4)2- 8.396e-36 8.045e-36 -35.076 -35.094 -0.019 (0) - FeHSO4+2 1.279e-37 1.078e-37 -36.893 -36.967 -0.074 (0) + S-2 6.237e-14 5.267e-14 -13.205 -13.278 -0.073 (0) + Fe(HS)2 6.281e-17 6.283e-17 -16.202 -16.202 0.000 (0) + (H2S)2 5.882e-22 5.884e-22 -21.230 -21.230 0.000 30.09 + Fe(HS)3- 1.639e-23 1.571e-23 -22.785 -22.804 -0.019 (0) +S(6) 6.030e-08 + SO4-2 5.681e-08 4.797e-08 -7.246 -7.319 -0.073 15.83 + CaSO4 3.487e-09 3.488e-09 -8.458 -8.457 0.000 7.50 + FeSO4 1.141e-13 1.141e-13 -12.943 -12.943 0.000 18.97 + HSO4- 2.562e-14 2.455e-14 -13.591 -13.610 -0.019 40.28 + CaHSO4+ 1.260e-16 1.207e-16 -15.900 -15.918 -0.019 (0) + FeHSO4+ 4.120e-21 3.948e-21 -20.385 -20.404 -0.019 (0) + FeSO4+ 8.005e-30 7.674e-30 -29.097 -29.115 -0.018 (0) + Fe(SO4)2- 8.405e-36 8.054e-36 -35.075 -35.094 -0.019 (0) + FeHSO4+2 1.284e-37 1.082e-37 -36.892 -36.966 -0.074 (0) ------------------------------Saturation indices------------------------------- @@ -259,7 +259,7 @@ S(6) 6.037e-08 CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 FeS(ppt) -4.32 -8.23 -3.92 FeS - Goethite 0.00 -1.00 -1.00 FeOOH + Goethite -0.00 -1.00 -1.00 FeOOH Gypsum -6.13 -10.71 -4.58 CaSO4:2H2O H2(g) -6.72 -9.82 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O @@ -268,7 +268,7 @@ S(6) 6.037e-08 Mackinawite -3.59 -8.23 -4.65 FeS Melanterite -12.98 -15.19 -2.21 FeSO4:7H2O O2(g) -69.84 -72.73 -2.89 O2 - Pyrite 0.00 -18.48 -18.48 FeS2 + Pyrite -0.00 -18.48 -18.48 FeS2 Siderite -2.08 -12.97 -10.89 FeCO3 Sulfur -8.19 -3.30 4.88 S @@ -302,130 +302,130 @@ Reaction 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 1.426e-04 -Calcite 0.00 -8.48 -8.48 1.000e+01 9.999e+00 -9.268e-04 -Goethite -0.00 -1.00 -1.00 1.000e+01 1.000e+01 2.667e-04 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 1.452e-04 +Calcite 0.00 -8.48 -8.48 1.000e+01 9.999e+00 -9.242e-04 +Goethite 0.00 -1.00 -1.00 1.000e+01 1.000e+01 2.667e-04 Gypsum -2.01 -6.60 -4.58 0.000e+00 0 0.000e+00 -Pyrite 0.00 -18.48 -18.48 1.000e+01 1.000e+01 -2.667e-04 +Pyrite -0.00 -18.48 -18.48 1.000e+01 1.000e+01 -2.667e-04 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 7.842e-04 7.842e-04 - Ca 9.268e-04 9.268e-04 + C 7.789e-04 7.789e-04 + Ca 9.242e-04 9.242e-04 Cl 5.000e-04 5.000e-04 - Fe 9.968e-09 9.968e-09 + Fe 9.984e-09 9.984e-09 Na 5.000e-04 5.000e-04 S 5.333e-04 5.333e-04 ----------------------------Description of solution---------------------------- pH = 8.170 Charge balance - pe = -4.286 Adjusted to redox equilibrium + pe = -4.285 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 271 Density (g/cm³) = 0.99719 Volume (L) = 1.00298 Viscosity (mPa s) = 0.89164 Activity of water = 1.000 - Ionic strength (mol/kgw) = 3.604e-03 + Ionic strength (mol/kgw) = 3.605e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 7.870e-04 - Total CO2 (mol/kg) = 7.842e-04 + Total alkalinity (eq/kg) = 7.817e-04 + Total CO2 (mol/kg) = 7.789e-04 Temperature (°C) = 25.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 24 Total H = 1.110122e+02 - Total O = 5.551018e+01 + Total O = 5.551017e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.600e-06 1.498e-06 -5.796 -5.825 -0.029 -4.08 - H+ 7.175e-09 6.758e-09 -8.144 -8.170 -0.026 0.00 + OH- 1.598e-06 1.496e-06 -5.796 -5.825 -0.029 -4.08 + H+ 7.182e-09 6.764e-09 -8.144 -8.170 -0.026 0.00 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 -C(-4) 2.218e-12 - CH4 2.218e-12 2.220e-12 -11.654 -11.654 0.000 35.46 -C(4) 7.842e-04 - HCO3- 7.548e-04 7.082e-04 -3.122 -3.150 -0.028 24.61 +C(-4) 2.213e-12 + CH4 2.213e-12 2.215e-12 -11.655 -11.655 0.000 35.46 +C(4) 7.789e-04 + HCO3- 7.540e-04 7.075e-04 -3.123 -3.150 -0.028 24.61 CO2 1.075e-05 1.076e-05 -4.968 -4.968 0.000 34.43 - CaHCO3+ 6.484e-06 6.088e-06 -5.188 -5.216 -0.027 9.69 - CO3-2 6.342e-06 4.915e-06 -5.198 -5.308 -0.111 -3.82 + CO3-2 6.329e-06 4.905e-06 -5.199 -5.309 -0.111 -3.82 CaCO3 5.559e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 - NaHCO3 2.867e-07 2.872e-07 -6.543 -6.542 0.001 31.73 - FeCO3 7.350e-10 7.356e-10 -9.134 -9.133 0.000 (0) - FeHCO3+ 4.717e-10 4.419e-10 -9.326 -9.355 -0.028 (0) + CaHCO3+ 1.962e-06 1.842e-06 -5.707 -5.735 -0.027 122.66 + NaHCO3 2.864e-07 2.869e-07 -6.543 -6.542 0.001 31.73 + FeCO3 7.348e-10 7.354e-10 -9.134 -9.133 0.000 (0) + FeHCO3+ 4.720e-10 4.422e-10 -9.326 -9.354 -0.028 (0) (CO2)2 2.124e-12 2.125e-12 -11.673 -11.673 0.000 68.87 -Ca 9.268e-04 - Ca+2 8.698e-04 6.738e-04 -3.061 -3.171 -0.111 -18.05 - CaSO4 4.494e-05 4.498e-05 -4.347 -4.347 0.000 7.50 - CaHCO3+ 6.484e-06 6.088e-06 -5.188 -5.216 -0.027 9.69 +Ca 9.242e-04 + Ca+2 8.716e-04 6.752e-04 -3.060 -3.171 -0.111 -18.05 + CaSO4 4.502e-05 4.506e-05 -4.347 -4.346 0.000 7.50 CaCO3 5.559e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 - CaOH+ 1.766e-08 1.655e-08 -7.753 -7.781 -0.028 (0) - CaHSO4+ 2.132e-12 1.998e-12 -11.671 -11.699 -0.028 (0) + CaHCO3+ 1.962e-06 1.842e-06 -5.707 -5.735 -0.027 122.66 + CaOH+ 1.768e-08 1.656e-08 -7.753 -7.781 -0.028 (0) + CaHSO4+ 2.139e-12 2.003e-12 -11.670 -11.698 -0.028 (0) Cl 5.000e-04 Cl- 5.000e-04 4.682e-04 -3.301 -3.330 -0.029 18.10 - FeCl+ 4.305e-12 4.033e-12 -11.366 -11.394 -0.028 (0) - HCl 1.086e-12 1.090e-12 -11.964 -11.963 0.002 (0) - FeCl+2 5.641e-28 4.364e-28 -27.249 -27.360 -0.111 (0) - FeCl2+ 9.733e-31 9.128e-31 -30.012 -30.040 -0.028 (0) - FeCl3 4.270e-35 4.274e-35 -34.370 -34.369 0.000 (0) -Fe(2) 9.968e-09 - Fe+2 8.029e-09 6.240e-09 -8.095 -8.205 -0.110 -22.04 - FeCO3 7.350e-10 7.356e-10 -9.134 -9.133 0.000 (0) - FeHCO3+ 4.717e-10 4.419e-10 -9.326 -9.355 -0.028 (0) - FeSO4 4.161e-10 4.165e-10 -9.381 -9.380 0.000 18.97 - FeOH+ 3.113e-10 2.920e-10 -9.507 -9.535 -0.028 (0) - FeCl+ 4.305e-12 4.033e-12 -11.366 -11.394 -0.028 (0) - Fe(OH)2 3.674e-13 3.677e-13 -12.435 -12.434 0.000 (0) - Fe(OH)3- 2.156e-15 2.022e-15 -14.666 -14.694 -0.028 (0) - FeHSO4+ 1.975e-17 1.850e-17 -16.705 -16.733 -0.028 (0) - Fe(HS)2 5.031e-18 5.035e-18 -17.298 -17.298 0.000 (0) - Fe(HS)3- 5.569e-25 5.218e-25 -24.254 -24.283 -0.028 (0) + FeCl+ 4.312e-12 4.040e-12 -11.365 -11.394 -0.028 (0) + HCl 1.087e-12 1.091e-12 -11.964 -11.962 0.002 (0) + FeCl+2 5.659e-28 4.377e-28 -27.247 -27.359 -0.111 (0) + FeCl2+ 9.762e-31 9.155e-31 -30.010 -30.038 -0.028 (0) + FeCl3 4.283e-35 4.287e-35 -34.368 -34.368 0.000 (0) +Fe(2) 9.984e-09 + Fe+2 8.044e-09 6.251e-09 -8.095 -8.204 -0.110 -22.04 + FeCO3 7.348e-10 7.354e-10 -9.134 -9.133 0.000 (0) + FeHCO3+ 4.720e-10 4.422e-10 -9.326 -9.354 -0.028 (0) + FeSO4 4.168e-10 4.171e-10 -9.380 -9.380 0.000 18.97 + FeOH+ 3.116e-10 2.922e-10 -9.506 -9.534 -0.028 (0) + FeCl+ 4.312e-12 4.040e-12 -11.365 -11.394 -0.028 (0) + Fe(OH)2 3.673e-13 3.676e-13 -12.435 -12.435 0.000 (0) + Fe(OH)3- 2.153e-15 2.019e-15 -14.667 -14.695 -0.028 (0) + FeHSO4+ 1.980e-17 1.855e-17 -16.703 -16.732 -0.028 (0) + Fe(HS)2 5.029e-18 5.033e-18 -17.299 -17.298 0.000 (0) + Fe(HS)3- 5.560e-25 5.209e-25 -24.255 -24.283 -0.028 (0) Fe(3) 3.302e-14 Fe(OH)3 2.752e-14 2.754e-14 -13.560 -13.560 0.000 (0) - Fe(OH)4- 3.961e-15 3.717e-15 -14.402 -14.430 -0.028 (0) - Fe(OH)2+ 1.540e-15 1.445e-15 -14.813 -14.840 -0.028 (0) - FeOH+2 3.812e-20 2.949e-20 -19.419 -19.530 -0.111 (0) - FeSO4+ 1.354e-25 1.270e-25 -24.868 -24.896 -0.028 (0) - Fe+3 5.290e-26 3.086e-26 -25.277 -25.511 -0.234 (0) - Fe(SO4)2- 1.113e-27 1.043e-27 -26.953 -26.982 -0.028 (0) - FeCl+2 5.641e-28 4.364e-28 -27.249 -27.360 -0.111 (0) - FeCl2+ 9.733e-31 9.128e-31 -30.012 -30.040 -0.028 (0) - FeHSO4+2 2.984e-33 2.298e-33 -32.525 -32.639 -0.113 (0) - FeCl3 4.270e-35 4.274e-35 -34.370 -34.369 0.000 (0) - Fe2(OH)2+4 6.646e-38 2.340e-38 -37.177 -37.631 -0.453 (0) - Fe3(OH)4+5 0.000e+00 0.000e+00 -49.443 -50.151 -0.708 (0) -H(0) 2.408e-11 - H2 1.204e-11 1.205e-11 -10.919 -10.919 0.000 28.61 + Fe(OH)4- 3.957e-15 3.713e-15 -14.403 -14.430 -0.028 (0) + Fe(OH)2+ 1.541e-15 1.446e-15 -14.812 -14.840 -0.028 (0) + FeOH+2 3.819e-20 2.955e-20 -19.418 -19.530 -0.111 (0) + FeSO4+ 1.358e-25 1.274e-25 -24.867 -24.895 -0.028 (0) + Fe+3 5.307e-26 3.096e-26 -25.275 -25.509 -0.234 (0) + Fe(SO4)2- 1.116e-27 1.046e-27 -26.952 -26.981 -0.028 (0) + FeCl+2 5.659e-28 4.377e-28 -27.247 -27.359 -0.111 (0) + FeCl2+ 9.762e-31 9.155e-31 -30.010 -30.038 -0.028 (0) + FeHSO4+2 2.995e-33 2.307e-33 -32.524 -32.637 -0.113 (0) + FeCl3 4.283e-35 4.287e-35 -34.368 -34.368 0.000 (0) + Fe2(OH)2+4 6.674e-38 2.350e-38 -37.176 -37.629 -0.453 (0) + Fe3(OH)4+5 0.000e+00 0.000e+00 -49.440 -50.149 -0.708 (0) +H(0) 2.407e-11 + H2 1.204e-11 1.205e-11 -10.920 -10.919 0.000 28.61 Na 5.000e-04 Na+ 4.967e-04 4.656e-04 -3.304 -3.332 -0.028 -1.44 - NaSO4- 3.032e-06 2.845e-06 -5.518 -5.546 -0.028 -18.09 - NaHCO3 2.867e-07 2.872e-07 -6.543 -6.542 0.001 31.73 - NaOH 6.968e-20 6.974e-20 -19.157 -19.157 0.000 (0) + NaSO4- 3.031e-06 2.845e-06 -5.518 -5.546 -0.028 -18.09 + NaHCO3 2.864e-07 2.869e-07 -6.543 -6.542 0.001 31.73 + NaOH 6.961e-20 6.967e-20 -19.157 -19.157 0.000 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -70.542 -70.542 0.000 30.40 -S(-2) 1.073e-09 - HS- 1.016e-09 9.516e-10 -8.993 -9.022 -0.029 20.63 - H2S 5.618e-11 5.622e-11 -10.250 -10.250 0.000 36.27 - S-2 2.199e-14 1.701e-14 -13.658 -13.769 -0.111 (0) - Fe(HS)2 5.031e-18 5.035e-18 -17.298 -17.298 0.000 (0) - (H2S)2 1.664e-22 1.666e-22 -21.779 -21.778 0.000 30.09 - Fe(HS)3- 5.569e-25 5.218e-25 -24.254 -24.283 -0.028 (0) +S(-2) 1.071e-09 + HS- 1.015e-09 9.505e-10 -8.993 -9.022 -0.029 20.63 + H2S 5.617e-11 5.622e-11 -10.251 -10.250 0.000 36.27 + S-2 2.194e-14 1.697e-14 -13.659 -13.770 -0.111 (0) + Fe(HS)2 5.029e-18 5.033e-18 -17.299 -17.298 0.000 (0) + (H2S)2 1.664e-22 1.665e-22 -21.779 -21.779 0.000 30.09 + Fe(HS)3- 5.560e-25 5.209e-25 -24.255 -24.283 -0.028 (0) S(6) 5.333e-04 - SO4-2 4.854e-04 3.754e-04 -3.314 -3.426 -0.112 16.58 - CaSO4 4.494e-05 4.498e-05 -4.347 -4.347 0.000 7.50 - NaSO4- 3.032e-06 2.845e-06 -5.518 -5.546 -0.028 -18.09 - FeSO4 4.161e-10 4.165e-10 -9.381 -9.380 0.000 18.97 - HSO4- 2.632e-10 2.466e-10 -9.580 -9.608 -0.028 40.30 - CaHSO4+ 2.132e-12 1.998e-12 -11.671 -11.699 -0.028 (0) - FeHSO4+ 1.975e-17 1.850e-17 -16.705 -16.733 -0.028 (0) - FeSO4+ 1.354e-25 1.270e-25 -24.868 -24.896 -0.028 (0) - Fe(SO4)2- 1.113e-27 1.043e-27 -26.953 -26.982 -0.028 (0) - FeHSO4+2 2.984e-33 2.298e-33 -32.525 -32.639 -0.113 (0) + SO4-2 4.853e-04 3.753e-04 -3.314 -3.426 -0.112 16.58 + CaSO4 4.502e-05 4.506e-05 -4.347 -4.346 0.000 7.50 + NaSO4- 3.031e-06 2.845e-06 -5.518 -5.546 -0.028 -18.09 + FeSO4 4.168e-10 4.171e-10 -9.380 -9.380 0.000 18.97 + HSO4- 2.635e-10 2.468e-10 -9.579 -9.608 -0.028 40.30 + CaHSO4+ 2.139e-12 2.003e-12 -11.670 -11.698 -0.028 (0) + FeHSO4+ 1.980e-17 1.855e-17 -16.703 -16.732 -0.028 (0) + FeSO4+ 1.358e-25 1.274e-25 -24.867 -24.895 -0.028 (0) + Fe(SO4)2- 1.116e-27 1.046e-27 -26.952 -26.981 -0.028 (0) + FeHSO4+2 2.995e-33 2.307e-33 -32.524 -32.637 -0.113 (0) ------------------------------Saturation indices------------------------------- @@ -438,7 +438,7 @@ S(6) 5.333e-04 CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 FeS(ppt) -5.14 -9.06 -3.92 FeS - Goethite -0.00 -1.00 -1.00 FeOOH + Goethite 0.00 -1.00 -1.00 FeOOH Gypsum -2.01 -6.60 -4.58 CaSO4:2H2O H2(g) -7.82 -10.92 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O @@ -449,7 +449,7 @@ S(6) 5.333e-04 Melanterite -9.42 -11.63 -2.21 FeSO4:7H2O Mirabilite -8.85 -10.09 -1.24 Na2SO4:10H2O O2(g) -67.65 -70.54 -2.89 O2 - Pyrite 0.00 -18.48 -18.48 FeS2 + Pyrite -0.00 -18.48 -18.48 FeS2 Siderite -2.62 -13.51 -10.89 FeCO3 Sulfur -7.36 -2.48 4.88 S Thenardite -9.79 -10.09 -0.30 Na2SO4 @@ -484,20 +484,20 @@ Reaction 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 2.397e-03 -Calcite 0.00 -8.48 -8.48 1.000e+01 9.997e+00 -2.936e-03 -Goethite 0.00 -1.00 -1.00 1.000e+01 1.000e+01 1.333e-03 -Gypsum -1.06 -5.64 -4.58 0.000e+00 0 0.000e+00 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 2.401e-03 +Calcite 0.00 -8.48 -8.48 1.000e+01 9.997e+00 -2.932e-03 +Goethite -0.00 -1.00 -1.00 1.000e+01 1.000e+01 1.333e-03 +Gypsum -1.05 -5.64 -4.58 0.000e+00 0 0.000e+00 Pyrite 0.00 -18.48 -18.48 1.000e+01 9.999e+00 -1.333e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 5.389e-04 5.389e-04 - Ca 2.936e-03 2.936e-03 + C 5.312e-04 5.312e-04 + Ca 2.932e-03 2.932e-03 Cl 2.500e-03 2.500e-03 - Fe 2.153e-08 2.153e-08 + Fe 2.155e-08 2.155e-08 Na 2.500e-03 2.500e-03 S 2.667e-03 2.667e-03 @@ -512,102 +512,102 @@ Pyrite 0.00 -18.48 -18.48 1.000e+01 9.999e+00 -1.333e-03 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.219e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.379e-04 - Total CO2 (mol/kg) = 5.389e-04 + Total alkalinity (eq/kg) = 5.303e-04 + Total CO2 (mol/kg) = 5.312e-04 Temperature (°C) = 25.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 + Iterations = 26 Total H = 1.110111e+02 - Total O = 5.551756e+01 + Total O = 5.551754e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.082e-06 9.640e-07 -5.966 -6.016 -0.050 -4.02 + OH- 1.081e-06 9.635e-07 -5.966 -6.016 -0.050 -4.02 H+ 1.158e-08 1.050e-08 -7.936 -7.979 -0.042 0.00 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 -C(-4) 2.095e-13 - CH4 2.095e-13 2.101e-13 -12.679 -12.678 0.001 35.46 -C(4) 5.389e-04 - HCO3- 5.081e-04 4.558e-04 -3.294 -3.341 -0.047 24.66 +C(-4) 2.093e-13 + CH4 2.093e-13 2.099e-13 -12.679 -12.678 0.001 35.46 +C(4) 5.312e-04 + HCO3- 5.077e-04 4.556e-04 -3.294 -3.341 -0.047 24.66 CO2 1.074e-05 1.076e-05 -4.969 -4.968 0.001 34.43 - CaHCO3+ 1.052e-05 9.457e-06 -4.978 -5.024 -0.046 9.73 CaCO3 5.548e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 - CO3-2 3.142e-06 2.037e-06 -5.503 -5.691 -0.188 -3.63 - NaHCO3 8.635e-07 8.683e-07 -6.064 -6.061 0.002 31.73 - FeHCO3+ 5.721e-10 5.113e-10 -9.243 -9.291 -0.049 (0) - FeCO3 5.464e-10 5.479e-10 -9.263 -9.261 0.001 (0) + CaHCO3+ 3.182e-06 2.861e-06 -5.497 -5.543 -0.046 122.70 + CO3-2 3.139e-06 2.034e-06 -5.503 -5.692 -0.188 -3.63 + NaHCO3 8.629e-07 8.678e-07 -6.064 -6.062 0.002 31.73 + FeHCO3+ 5.724e-10 5.115e-10 -9.242 -9.291 -0.049 (0) + FeCO3 5.463e-10 5.478e-10 -9.263 -9.261 0.001 (0) (CO2)2 2.119e-12 2.125e-12 -11.674 -11.673 0.001 68.87 -Ca 2.936e-03 - Ca+2 2.511e-03 1.626e-03 -2.600 -2.789 -0.189 -17.90 - CaSO4 4.088e-04 4.100e-04 -3.388 -3.387 0.001 7.50 - CaHCO3+ 1.052e-05 9.457e-06 -4.978 -5.024 -0.046 9.73 +Ca 2.932e-03 + Ca+2 2.514e-03 1.628e-03 -2.600 -2.788 -0.189 -17.90 + CaSO4 4.092e-04 4.104e-04 -3.388 -3.387 0.001 7.50 CaCO3 5.548e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 - CaOH+ 2.876e-08 2.570e-08 -7.541 -7.590 -0.049 (0) - CaHSO4+ 3.165e-11 2.829e-11 -10.500 -10.548 -0.049 (0) + CaHCO3+ 3.182e-06 2.861e-06 -5.497 -5.543 -0.046 122.70 + CaOH+ 2.878e-08 2.572e-08 -7.541 -7.590 -0.049 (0) + CaHSO4+ 3.171e-11 2.833e-11 -10.499 -10.548 -0.049 (0) Cl 2.500e-03 Cl- 2.500e-03 2.230e-03 -2.602 -2.652 -0.050 18.15 - FeCl+ 3.864e-11 3.453e-11 -10.413 -10.462 -0.049 (0) - HCl 7.970e-12 8.066e-12 -11.099 -11.093 0.005 (0) - FeCl+2 1.209e-26 7.794e-27 -25.918 -26.108 -0.191 (0) - FeCl2+ 8.666e-29 7.765e-29 -28.062 -28.110 -0.048 (0) - FeCl3 1.727e-32 1.732e-32 -31.763 -31.761 0.001 (0) -Fe(2) 2.153e-08 - Fe+2 1.717e-08 1.122e-08 -7.765 -7.950 -0.185 -21.90 - FeSO4 2.820e-09 2.828e-09 -8.550 -8.549 0.001 18.97 - FeHCO3+ 5.721e-10 5.113e-10 -9.243 -9.291 -0.049 (0) - FeCO3 5.464e-10 5.479e-10 -9.263 -9.261 0.001 (0) - FeOH+ 3.770e-10 3.378e-10 -9.424 -9.471 -0.048 (0) - FeCl+ 3.864e-11 3.453e-11 -10.413 -10.462 -0.049 (0) - Fe(OH)2 2.731e-13 2.739e-13 -12.564 -12.562 0.001 (0) - Fe(OH)3- 1.082e-15 9.691e-16 -14.966 -15.014 -0.048 (0) - FeHSO4+ 2.183e-16 1.951e-16 -15.661 -15.710 -0.049 (0) - Fe(HS)2 2.785e-18 2.793e-18 -17.555 -17.554 0.001 (0) - Fe(HS)3- 1.799e-25 1.607e-25 -24.745 -24.794 -0.049 (0) + FeCl+ 3.868e-11 3.457e-11 -10.412 -10.461 -0.049 (0) + HCl 7.975e-12 8.070e-12 -11.098 -11.093 0.005 (0) + FeCl+2 1.211e-26 7.808e-27 -25.917 -26.107 -0.191 (0) + FeCl2+ 8.682e-29 7.779e-29 -28.061 -28.109 -0.048 (0) + FeCl3 1.730e-32 1.735e-32 -31.762 -31.761 0.001 (0) +Fe(2) 2.155e-08 + Fe+2 1.719e-08 1.123e-08 -7.765 -7.950 -0.185 -21.90 + FeSO4 2.822e-09 2.830e-09 -8.549 -8.548 0.001 18.97 + FeHCO3+ 5.724e-10 5.115e-10 -9.242 -9.291 -0.049 (0) + FeCO3 5.463e-10 5.478e-10 -9.263 -9.261 0.001 (0) + FeOH+ 3.772e-10 3.380e-10 -9.423 -9.471 -0.048 (0) + FeCl+ 3.868e-11 3.457e-11 -10.412 -10.461 -0.049 (0) + Fe(OH)2 2.730e-13 2.738e-13 -12.564 -12.563 0.001 (0) + Fe(OH)3- 1.081e-15 9.684e-16 -14.966 -15.014 -0.048 (0) + FeHSO4+ 2.186e-16 1.954e-16 -15.660 -15.709 -0.049 (0) + Fe(HS)2 2.784e-18 2.792e-18 -17.555 -17.554 0.001 (0) + Fe(HS)3- 1.797e-25 1.606e-25 -24.745 -24.794 -0.049 (0) Fe(3) 3.263e-14 Fe(OH)3 2.746e-14 2.754e-14 -13.561 -13.560 0.001 (0) - Fe(OH)4- 2.666e-15 2.392e-15 -14.574 -14.621 -0.047 (0) - Fe(OH)2+ 2.501e-15 2.244e-15 -14.602 -14.649 -0.047 (0) - FeOH+2 1.104e-19 7.116e-20 -18.957 -19.148 -0.191 (0) - FeSO4+ 2.007e-24 1.799e-24 -23.697 -23.745 -0.048 (0) - Fe+3 2.789e-25 1.157e-25 -24.555 -24.937 -0.382 (0) - Fe(SO4)2- 6.243e-26 5.579e-26 -25.205 -25.253 -0.049 (0) - FeCl+2 1.209e-26 7.794e-27 -25.918 -26.108 -0.191 (0) - FeCl2+ 8.666e-29 7.765e-29 -28.062 -28.110 -0.048 (0) - FeHSO4+2 7.929e-32 5.056e-32 -31.101 -31.296 -0.195 (0) - FeCl3 1.727e-32 1.732e-32 -31.763 -31.761 0.001 (0) - Fe2(OH)2+4 8.242e-37 1.363e-37 -36.084 -36.866 -0.782 (0) - Fe3(OH)4+5 0.000e+00 0.000e+00 -47.973 -49.194 -1.221 (0) + Fe(OH)4- 2.664e-15 2.391e-15 -14.574 -14.621 -0.047 (0) + Fe(OH)2+ 2.503e-15 2.246e-15 -14.602 -14.649 -0.047 (0) + FeOH+2 1.105e-19 7.124e-20 -18.957 -19.147 -0.191 (0) + FeSO4+ 2.011e-24 1.802e-24 -23.697 -23.744 -0.048 (0) + Fe+3 2.794e-25 1.159e-25 -24.554 -24.936 -0.382 (0) + Fe(SO4)2- 6.252e-26 5.587e-26 -25.204 -25.253 -0.049 (0) + FeCl+2 1.211e-26 7.808e-27 -25.917 -26.107 -0.191 (0) + FeCl2+ 8.682e-29 7.779e-29 -28.061 -28.109 -0.048 (0) + FeHSO4+2 7.946e-32 5.067e-32 -31.100 -31.295 -0.195 (0) + FeCl3 1.730e-32 1.735e-32 -31.762 -31.761 0.001 (0) + Fe2(OH)2+4 8.262e-37 1.366e-37 -36.083 -36.865 -0.782 (0) + Fe3(OH)4+5 0.000e+00 0.000e+00 -47.972 -49.193 -1.221 (0) H(0) 1.333e-11 - H2 6.665e-12 6.684e-12 -11.176 -11.175 0.001 28.61 + H2 6.663e-12 6.682e-12 -11.176 -11.175 0.001 28.61 Na 2.500e-03 Na+ 2.443e-03 2.187e-03 -2.612 -2.660 -0.048 -1.36 - NaSO4- 5.624e-05 5.047e-05 -4.250 -4.297 -0.047 -14.46 - NaHCO3 8.635e-07 8.683e-07 -6.064 -6.061 0.002 31.73 - NaOH 2.103e-19 2.108e-19 -18.677 -18.676 0.001 (0) + NaSO4- 5.622e-05 5.046e-05 -4.250 -4.297 -0.047 -14.46 + NaHCO3 8.629e-07 8.678e-07 -6.064 -6.062 0.002 31.73 + NaOH 2.101e-19 2.107e-19 -18.678 -18.676 0.001 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -70.031 -70.030 0.001 30.40 -S(-2) 6.414e-10 - HS- 5.930e-10 5.286e-10 -9.227 -9.277 -0.050 20.68 - H2S 4.838e-11 4.851e-11 -10.315 -10.314 0.001 36.27 - S-2 9.434e-15 6.082e-15 -14.025 -14.216 -0.191 (0) - Fe(HS)2 2.785e-18 2.793e-18 -17.555 -17.554 0.001 (0) +S(-2) 6.410e-10 + HS- 5.926e-10 5.282e-10 -9.227 -9.277 -0.050 20.68 + H2S 4.837e-11 4.851e-11 -10.315 -10.314 0.001 36.27 + S-2 9.422e-15 6.074e-15 -14.026 -14.217 -0.191 (0) + Fe(HS)2 2.784e-18 2.792e-18 -17.555 -17.554 0.001 (0) (H2S)2 1.237e-22 1.240e-22 -21.908 -21.907 0.001 30.09 - Fe(HS)3- 1.799e-25 1.607e-25 -24.745 -24.794 -0.049 (0) + Fe(HS)3- 1.797e-25 1.606e-25 -24.745 -24.794 -0.049 (0) S(6) 2.667e-03 - SO4-2 2.202e-03 1.418e-03 -2.657 -2.848 -0.191 18.23 - CaSO4 4.088e-04 4.100e-04 -3.388 -3.387 0.001 7.50 - NaSO4- 5.624e-05 5.047e-05 -4.250 -4.297 -0.047 -14.46 - FeSO4 2.820e-09 2.828e-09 -8.550 -8.549 0.001 18.97 - HSO4- 1.619e-09 1.447e-09 -8.791 -8.840 -0.049 40.35 - CaHSO4+ 3.165e-11 2.829e-11 -10.500 -10.548 -0.049 (0) - FeHSO4+ 2.183e-16 1.951e-16 -15.661 -15.710 -0.049 (0) - FeSO4+ 2.007e-24 1.799e-24 -23.697 -23.745 -0.048 (0) - Fe(SO4)2- 6.243e-26 5.579e-26 -25.205 -25.253 -0.049 (0) - FeHSO4+2 7.929e-32 5.056e-32 -31.101 -31.296 -0.195 (0) + SO4-2 2.201e-03 1.417e-03 -2.657 -2.848 -0.191 18.23 + CaSO4 4.092e-04 4.104e-04 -3.388 -3.387 0.001 7.50 + NaSO4- 5.622e-05 5.046e-05 -4.250 -4.297 -0.047 -14.46 + FeSO4 2.822e-09 2.830e-09 -8.549 -8.548 0.001 18.97 + HSO4- 1.620e-09 1.447e-09 -8.791 -8.839 -0.049 40.35 + CaHSO4+ 3.171e-11 2.833e-11 -10.499 -10.548 -0.049 (0) + FeHSO4+ 2.186e-16 1.954e-16 -15.660 -15.709 -0.049 (0) + FeSO4+ 2.011e-24 1.802e-24 -23.697 -23.744 -0.048 (0) + Fe(SO4)2- 6.252e-26 5.587e-26 -25.204 -25.253 -0.049 (0) + FeHSO4+2 7.946e-32 5.067e-32 -31.100 -31.295 -0.195 (0) ------------------------------Saturation indices------------------------------- @@ -620,9 +620,9 @@ S(6) 2.667e-03 CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 FeS(ppt) -5.33 -9.25 -3.92 FeS - Goethite 0.00 -1.00 -1.00 FeOOH - Gypsum -1.06 -5.64 -4.58 CaSO4:2H2O - H2(g) -8.07 -11.17 -3.10 H2 + Goethite -0.00 -1.00 -1.00 FeOOH + Gypsum -1.05 -5.64 -4.58 CaSO4:2H2O + H2(g) -8.07 -11.18 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O H2S(g) -9.32 -17.26 -7.94 H2S Halite -6.88 -5.31 1.57 NaCl @@ -666,9 +666,9 @@ Reaction 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.001e+01 5.107e-03 -Calcite 0.00 -8.48 -8.48 1.000e+01 9.994e+00 -5.557e-03 -Goethite 0.00 -1.00 -1.00 1.000e+01 1.000e+01 2.667e-03 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.001e+01 5.112e-03 +Calcite 0.00 -8.48 -8.48 1.000e+01 9.994e+00 -5.552e-03 +Goethite -0.00 -1.00 -1.00 1.000e+01 1.000e+01 2.667e-03 Gypsum -0.64 -5.22 -4.58 0.000e+00 0 0.000e+00 Pyrite -0.00 -18.48 -18.48 1.000e+01 9.997e+00 -2.667e-03 @@ -676,10 +676,10 @@ Pyrite -0.00 -18.48 -18.48 1.000e+01 9.997e+00 -2.667e-03 Elements Molality Moles - C 4.499e-04 4.499e-04 - Ca 5.557e-03 5.557e-03 + C 4.402e-04 4.402e-04 + Ca 5.553e-03 5.552e-03 Cl 5.000e-03 5.000e-03 - Fe 3.497e-08 3.497e-08 + Fe 3.499e-08 3.499e-08 Na 5.000e-03 5.000e-03 S 5.333e-03 5.333e-03 @@ -694,102 +694,102 @@ Pyrite -0.00 -18.48 -18.48 1.000e+01 9.997e+00 -2.667e-03 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.237e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 4.479e-04 - Total CO2 (mol/kg) = 4.499e-04 + Total alkalinity (eq/kg) = 4.382e-04 + Total CO2 (mol/kg) = 4.402e-04 Temperature (°C) = 25.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 27 + Iterations = 25 Total H = 1.110098e+02 - Total O = 5.552734e+01 + Total O = 5.552732e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 8.906e-07 7.666e-07 -6.050 -6.115 -0.065 -3.97 - H+ 1.491e-08 1.320e-08 -7.827 -7.879 -0.053 0.00 + OH- 8.902e-07 7.663e-07 -6.051 -6.116 -0.065 -3.97 + H+ 1.491e-08 1.320e-08 -7.826 -7.879 -0.053 0.00 H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.07 -C(-4) 7.563e-14 - CH4 7.563e-14 7.602e-14 -13.121 -13.119 0.002 35.46 -C(4) 4.499e-04 - HCO3- 4.165e-04 3.625e-04 -3.380 -3.441 -0.060 24.70 - CaHCO3+ 1.362e-05 1.189e-05 -4.866 -4.925 -0.059 9.76 +C(-4) 7.558e-14 + CH4 7.558e-14 7.597e-14 -13.122 -13.119 0.002 35.46 +C(4) 4.402e-04 + HCO3- 4.163e-04 3.623e-04 -3.381 -3.441 -0.060 24.70 CO2 1.072e-05 1.076e-05 -4.970 -4.968 0.001 34.43 CaCO3 5.535e-06 5.563e-06 -5.257 -5.255 0.002 -14.60 - CO3-2 2.244e-06 1.288e-06 -5.649 -5.890 -0.241 -3.47 - NaHCO3 1.306e-06 1.319e-06 -5.884 -5.880 0.004 31.73 - FeHCO3+ 6.545e-10 5.662e-10 -9.184 -9.247 -0.063 (0) - FeCO3 4.801e-10 4.826e-10 -9.319 -9.316 0.002 (0) + CaHCO3+ 4.119e-06 3.596e-06 -5.385 -5.444 -0.059 122.72 + CO3-2 2.242e-06 1.287e-06 -5.649 -5.890 -0.241 -3.47 + NaHCO3 1.305e-06 1.319e-06 -5.884 -5.880 0.004 31.73 + FeHCO3+ 6.547e-10 5.664e-10 -9.184 -9.247 -0.063 (0) + FeCO3 4.801e-10 4.825e-10 -9.319 -9.316 0.002 (0) (CO2)2 2.114e-12 2.125e-12 -11.675 -11.673 0.002 68.87 -Ca 5.557e-03 - Ca+2 4.481e-03 2.571e-03 -2.349 -2.590 -0.241 -17.79 - CaSO4 1.057e-03 1.063e-03 -2.976 -2.974 0.002 7.50 - CaHCO3+ 1.362e-05 1.189e-05 -4.866 -4.925 -0.059 9.76 +Ca 5.553e-03 + Ca+2 4.485e-03 2.573e-03 -2.348 -2.590 -0.241 -17.79 + CaSO4 1.058e-03 1.064e-03 -2.975 -2.973 0.002 7.50 CaCO3 5.535e-06 5.563e-06 -5.257 -5.255 0.002 -14.60 - CaOH+ 3.736e-08 3.232e-08 -7.428 -7.491 -0.063 (0) - CaHSO4+ 1.066e-10 9.220e-11 -9.972 -10.035 -0.063 (0) + CaHCO3+ 4.119e-06 3.596e-06 -5.385 -5.444 -0.059 122.72 + CaOH+ 3.737e-08 3.233e-08 -7.427 -7.490 -0.063 (0) + CaHSO4+ 1.067e-10 9.230e-11 -9.972 -10.035 -0.063 (0) Cl 5.000e-03 Cl- 5.000e-03 4.311e-03 -2.301 -2.365 -0.064 18.18 - FeCl+ 1.074e-10 9.295e-11 -9.969 -10.032 -0.063 (0) - HCl 1.918e-11 1.960e-11 -10.717 -10.708 0.010 (0) - FeCl+2 5.265e-26 2.995e-26 -25.279 -25.524 -0.245 (0) - FeCl2+ 6.642e-28 5.769e-28 -27.178 -27.239 -0.061 (0) - FeCl3 2.474e-31 2.487e-31 -30.607 -30.604 0.002 (0) -Fe(2) 3.497e-08 - Fe+2 2.687e-08 1.562e-08 -7.571 -7.806 -0.236 -21.80 - FeSO4 6.423e-09 6.456e-09 -8.192 -8.190 0.002 18.97 - FeHCO3+ 6.545e-10 5.662e-10 -9.184 -9.247 -0.063 (0) - FeCO3 4.801e-10 4.826e-10 -9.319 -9.316 0.002 (0) - FeOH+ 4.307e-10 3.741e-10 -9.366 -9.427 -0.061 (0) - FeCl+ 1.074e-10 9.295e-11 -9.969 -10.032 -0.063 (0) - Fe(OH)2 2.399e-13 2.412e-13 -12.620 -12.618 0.002 (0) - Fe(OH)3- 7.814e-16 6.787e-16 -15.107 -15.168 -0.061 (0) - FeHSO4+ 6.475e-16 5.601e-16 -15.189 -15.252 -0.063 (0) - Fe(HS)2 2.155e-18 2.166e-18 -17.667 -17.664 0.002 (0) - Fe(HS)3- 1.075e-25 9.303e-26 -24.968 -25.031 -0.063 (0) + FeCl+ 1.075e-10 9.302e-11 -9.968 -10.031 -0.063 (0) + HCl 1.919e-11 1.961e-11 -10.717 -10.708 0.010 (0) + FeCl+2 5.272e-26 2.999e-26 -25.278 -25.523 -0.245 (0) + FeCl2+ 6.651e-28 5.776e-28 -27.177 -27.238 -0.061 (0) + FeCl3 2.478e-31 2.490e-31 -30.606 -30.604 0.002 (0) +Fe(2) 3.499e-08 + Fe+2 2.689e-08 1.563e-08 -7.570 -7.806 -0.236 -21.80 + FeSO4 6.427e-09 6.460e-09 -8.192 -8.190 0.002 18.97 + FeHCO3+ 6.547e-10 5.664e-10 -9.184 -9.247 -0.063 (0) + FeCO3 4.801e-10 4.825e-10 -9.319 -9.316 0.002 (0) + FeOH+ 4.309e-10 3.742e-10 -9.366 -9.427 -0.061 (0) + FeCl+ 1.075e-10 9.302e-11 -9.968 -10.031 -0.063 (0) + Fe(OH)2 2.399e-13 2.411e-13 -12.620 -12.618 0.002 (0) + Fe(OH)3- 7.810e-16 6.783e-16 -15.107 -15.169 -0.061 (0) + FeHSO4+ 6.481e-16 5.607e-16 -15.188 -15.251 -0.063 (0) + Fe(HS)2 2.154e-18 2.165e-18 -17.667 -17.664 0.002 (0) + Fe(HS)3- 1.075e-25 9.297e-26 -24.969 -25.032 -0.063 (0) Fe(3) 3.282e-14 Fe(OH)3 2.739e-14 2.753e-14 -13.562 -13.560 0.002 (0) - Fe(OH)2+ 3.242e-15 2.822e-15 -14.489 -14.549 -0.060 (0) - Fe(OH)4- 2.185e-15 1.902e-15 -14.661 -14.721 -0.060 (0) - FeOH+2 1.978e-19 1.125e-19 -18.704 -18.949 -0.245 (0) - FeSO4+ 6.752e-24 5.864e-24 -23.171 -23.232 -0.061 (0) - Fe+3 6.885e-25 2.301e-25 -24.162 -24.638 -0.476 (0) - Fe(SO4)2- 3.447e-25 2.982e-25 -24.463 -24.525 -0.063 (0) - FeCl+2 5.265e-26 2.995e-26 -25.279 -25.524 -0.245 (0) - FeCl2+ 6.642e-28 5.769e-28 -27.178 -27.239 -0.061 (0) - FeHSO4+2 3.700e-31 2.072e-31 -30.432 -30.684 -0.252 (0) - FeCl3 2.474e-31 2.487e-31 -30.607 -30.604 0.002 (0) - Fe2(OH)2+4 3.462e-36 3.407e-37 -35.461 -36.468 -1.007 (0) - Fe3(OH)4+5 0.000e+00 0.000e+00 -47.124 -48.697 -1.573 (0) + Fe(OH)2+ 3.243e-15 2.823e-15 -14.489 -14.549 -0.060 (0) + Fe(OH)4- 2.184e-15 1.901e-15 -14.661 -14.721 -0.060 (0) + FeOH+2 1.979e-19 1.126e-19 -18.703 -18.948 -0.245 (0) + FeSO4+ 6.759e-24 5.870e-24 -23.170 -23.231 -0.061 (0) + Fe+3 6.894e-25 2.304e-25 -24.162 -24.638 -0.476 (0) + Fe(SO4)2- 3.451e-25 2.985e-25 -24.462 -24.525 -0.063 (0) + FeCl+2 5.272e-26 2.999e-26 -25.278 -25.523 -0.245 (0) + FeCl2+ 6.651e-28 5.776e-28 -27.177 -27.238 -0.061 (0) + FeHSO4+2 3.706e-31 2.076e-31 -30.431 -30.683 -0.252 (0) + FeCl3 2.478e-31 2.490e-31 -30.606 -30.604 0.002 (0) + Fe2(OH)2+4 3.468e-36 3.413e-37 -35.460 -36.467 -1.007 (0) + Fe3(OH)4+5 0.000e+00 0.000e+00 -47.123 -48.696 -1.573 (0) H(0) 1.031e-11 - H2 5.157e-12 5.184e-12 -11.288 -11.285 0.002 28.61 + H2 5.156e-12 5.183e-12 -11.288 -11.285 0.002 28.61 Na 5.000e-03 Na+ 4.817e-03 4.179e-03 -2.317 -2.379 -0.062 -1.31 NaSO4- 1.816e-04 1.581e-04 -3.741 -3.801 -0.060 -12.22 - NaHCO3 1.306e-06 1.319e-06 -5.884 -5.880 0.004 31.73 - NaOH 3.187e-19 3.204e-19 -18.497 -18.494 0.002 (0) + NaHCO3 1.305e-06 1.319e-06 -5.884 -5.880 0.004 31.73 + NaOH 3.186e-19 3.202e-19 -18.497 -18.495 0.002 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -69.812 -69.810 0.002 30.40 -S(-2) 5.035e-10 - HS- 4.582e-10 3.945e-10 -9.339 -9.404 -0.065 20.71 + O2 0.000e+00 0.000e+00 -69.812 -69.809 0.002 30.40 +S(-2) 5.033e-10 + HS- 4.580e-10 3.943e-10 -9.339 -9.404 -0.065 20.71 H2S 4.528e-11 4.552e-11 -10.344 -10.342 0.002 36.27 - S-2 6.345e-15 3.610e-15 -14.198 -14.443 -0.245 (0) - Fe(HS)2 2.155e-18 2.166e-18 -17.667 -17.664 0.002 (0) + S-2 6.339e-15 3.607e-15 -14.198 -14.443 -0.245 (0) + Fe(HS)2 2.154e-18 2.165e-18 -17.667 -17.664 0.002 (0) (H2S)2 1.086e-22 1.092e-22 -21.964 -21.962 0.002 30.09 - Fe(HS)3- 1.075e-25 9.303e-26 -24.968 -25.031 -0.063 (0) + Fe(HS)3- 1.075e-25 9.297e-26 -24.969 -25.032 -0.063 (0) S(6) 5.333e-03 - SO4-2 4.095e-03 2.325e-03 -2.388 -2.634 -0.246 19.46 - CaSO4 1.057e-03 1.063e-03 -2.976 -2.974 0.002 7.50 + SO4-2 4.094e-03 2.324e-03 -2.388 -2.634 -0.246 19.46 + CaSO4 1.058e-03 1.064e-03 -2.975 -2.973 0.002 7.50 NaSO4- 1.816e-04 1.581e-04 -3.741 -3.801 -0.060 -12.22 - FeSO4 6.423e-09 6.456e-09 -8.192 -8.190 0.002 18.97 - HSO4- 3.448e-09 2.983e-09 -8.462 -8.525 -0.063 40.39 - CaHSO4+ 1.066e-10 9.220e-11 -9.972 -10.035 -0.063 (0) - FeHSO4+ 6.475e-16 5.601e-16 -15.189 -15.252 -0.063 (0) - FeSO4+ 6.752e-24 5.864e-24 -23.171 -23.232 -0.061 (0) - Fe(SO4)2- 3.447e-25 2.982e-25 -24.463 -24.525 -0.063 (0) - FeHSO4+2 3.700e-31 2.072e-31 -30.432 -30.684 -0.252 (0) + FeSO4 6.427e-09 6.460e-09 -8.192 -8.190 0.002 18.97 + HSO4- 3.449e-09 2.984e-09 -8.462 -8.525 -0.063 40.39 + CaHSO4+ 1.067e-10 9.230e-11 -9.972 -10.035 -0.063 (0) + FeHSO4+ 6.481e-16 5.607e-16 -15.188 -15.251 -0.063 (0) + FeSO4+ 6.759e-24 5.870e-24 -23.170 -23.231 -0.061 (0) + Fe(SO4)2- 3.451e-25 2.985e-25 -24.462 -24.525 -0.063 (0) + FeHSO4+2 3.706e-31 2.076e-31 -30.431 -30.683 -0.252 (0) ------------------------------Saturation indices------------------------------- @@ -802,7 +802,7 @@ S(6) 5.333e-03 CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 FeS(ppt) -5.42 -9.33 -3.92 FeS - Goethite 0.00 -1.00 -1.00 FeOOH + Goethite -0.00 -1.00 -1.00 FeOOH Gypsum -0.64 -5.22 -4.58 CaSO4:2H2O H2(g) -8.18 -11.29 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O @@ -848,9 +848,9 @@ Reaction 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.002e+01 1.582e-02 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.002e+01 1.583e-02 Calcite 0.00 -8.48 -8.48 1.000e+01 9.984e+00 -1.617e-02 -Goethite 0.00 -1.00 -1.00 1.000e+01 1.001e+01 8.000e-03 +Goethite -0.00 -1.00 -1.00 1.000e+01 1.001e+01 8.000e-03 Gypsum -0.03 -4.61 -4.58 0.000e+00 0 0.000e+00 Pyrite 0.00 -18.48 -18.48 1.000e+01 9.992e+00 -8.000e-03 @@ -858,10 +858,10 @@ Pyrite 0.00 -18.48 -18.48 1.000e+01 9.992e+00 -8.000e-03 Elements Molality Moles - C 3.486e-04 3.486e-04 + C 3.341e-04 3.340e-04 Ca 1.617e-02 1.617e-02 Cl 1.500e-02 1.500e-02 - Fe 8.225e-08 8.224e-08 + Fe 8.228e-08 8.227e-08 Na 1.500e-02 1.500e-02 S 1.600e-02 1.600e-02 @@ -876,102 +876,102 @@ Pyrite 0.00 -18.48 -18.48 1.000e+01 9.992e+00 -8.000e-03 Activity of water = 0.999 Ionic strength (mol/kgw) = 6.003e-02 Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 3.455e-04 - Total CO2 (mol/kg) = 3.486e-04 + Total alkalinity (eq/kg) = 3.310e-04 + Total CO2 (mol/kg) = 3.341e-04 Temperature (°C) = 25.00 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 + Iterations = 25 Total H = 1.110044e+02 - Total O = 5.556709e+01 + Total O = 5.556705e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 6.669e-07 5.328e-07 -6.176 -6.273 -0.097 -3.84 - H+ 2.242e-08 1.898e-08 -7.649 -7.722 -0.072 0.00 + OH- 6.668e-07 5.327e-07 -6.176 -6.274 -0.097 -3.84 + H+ 2.243e-08 1.898e-08 -7.649 -7.722 -0.072 0.00 H2O 5.551e+01 9.990e-01 1.744 -0.000 0.000 18.07 -C(-4) 1.647e-14 - CH4 1.647e-14 1.670e-14 -13.783 -13.777 0.006 35.46 -C(4) 3.486e-04 - HCO3- 3.079e-04 2.519e-04 -3.512 -3.599 -0.087 24.82 - CaHCO3+ 2.076e-05 1.710e-05 -4.683 -4.767 -0.084 9.80 +C(-4) 1.646e-14 + CH4 1.646e-14 1.669e-14 -13.784 -13.778 0.006 35.46 +C(4) 3.341e-04 + HCO3- 3.078e-04 2.519e-04 -3.512 -3.599 -0.087 24.82 CO2 1.066e-05 1.076e-05 -4.972 -4.968 0.004 34.43 + CaHCO3+ 6.277e-06 5.170e-06 -5.202 -5.286 -0.084 122.77 CaCO3 5.487e-06 5.563e-06 -5.261 -5.255 0.006 -14.60 - NaHCO3 2.425e-06 2.493e-06 -5.615 -5.603 0.012 31.73 - CO3-2 1.389e-06 6.226e-07 -5.857 -6.206 -0.348 -3.08 - FeHCO3+ 8.313e-10 6.739e-10 -9.080 -9.171 -0.091 (0) + NaHCO3 2.424e-06 2.492e-06 -5.615 -5.603 0.012 31.73 + CO3-2 1.388e-06 6.223e-07 -5.858 -6.206 -0.348 -3.08 + FeHCO3+ 8.315e-10 6.740e-10 -9.080 -9.171 -0.091 (0) FeCO3 3.940e-10 3.995e-10 -9.405 -9.399 0.006 (0) (CO2)2 2.096e-12 2.125e-12 -11.679 -11.673 0.006 68.87 Ca 1.617e-02 - Ca+2 1.181e-02 5.319e-03 -1.928 -2.274 -0.347 -17.57 - CaSO4 4.335e-03 4.396e-03 -2.363 -2.357 0.006 7.50 - CaHCO3+ 2.076e-05 1.710e-05 -4.683 -4.767 -0.084 9.80 + Ca+2 1.182e-02 5.322e-03 -1.927 -2.274 -0.347 -17.57 + CaSO4 4.337e-03 4.397e-03 -2.363 -2.357 0.006 7.50 + CaHCO3+ 6.277e-06 5.170e-06 -5.202 -5.286 -0.084 122.77 CaCO3 5.487e-06 5.563e-06 -5.261 -5.255 0.006 -14.60 - CaOH+ 5.733e-08 4.647e-08 -7.242 -7.333 -0.091 (0) - CaHSO4+ 6.764e-10 5.483e-10 -9.170 -9.261 -0.091 (0) + CaOH+ 5.734e-08 4.648e-08 -7.242 -7.333 -0.091 (0) + CaHSO4+ 6.768e-10 5.486e-10 -9.170 -9.261 -0.091 (0) Cl 1.500e-02 Cl- 1.500e-02 1.203e-02 -1.824 -1.920 -0.096 18.27 - FeCl+ 5.482e-10 4.444e-10 -9.261 -9.352 -0.091 (0) - HCl 7.418e-11 7.868e-11 -10.130 -10.104 0.026 (0) - FeCl+2 5.655e-25 2.489e-25 -24.248 -24.604 -0.356 (0) - FeCl2+ 1.643e-26 1.338e-26 -25.784 -25.874 -0.089 (0) - FeCl3 1.588e-29 1.610e-29 -28.799 -28.793 0.006 (0) -Fe(2) 8.225e-08 - Fe+2 5.812e-08 2.675e-08 -7.236 -7.573 -0.337 -21.59 - FeSO4 2.180e-08 2.210e-08 -7.662 -7.656 0.006 18.97 - FeHCO3+ 8.313e-10 6.739e-10 -9.080 -9.171 -0.091 (0) - FeCl+ 5.482e-10 4.444e-10 -9.261 -9.352 -0.091 (0) - FeOH+ 5.467e-10 4.453e-10 -9.262 -9.351 -0.089 (0) + FeCl+ 5.484e-10 4.446e-10 -9.261 -9.352 -0.091 (0) + HCl 7.420e-11 7.870e-11 -10.130 -10.104 0.026 (0) + FeCl+2 5.659e-25 2.491e-25 -24.247 -24.604 -0.356 (0) + FeCl2+ 1.644e-26 1.339e-26 -25.784 -25.873 -0.089 (0) + FeCl3 1.589e-29 1.611e-29 -28.799 -28.793 0.006 (0) +Fe(2) 8.228e-08 + Fe+2 5.815e-08 2.676e-08 -7.235 -7.573 -0.337 -21.59 + FeSO4 2.181e-08 2.211e-08 -7.661 -7.655 0.006 18.97 + FeHCO3+ 8.315e-10 6.740e-10 -9.080 -9.171 -0.091 (0) + FeCl+ 5.484e-10 4.446e-10 -9.261 -9.352 -0.091 (0) + FeOH+ 5.468e-10 4.454e-10 -9.262 -9.351 -0.089 (0) FeCO3 3.940e-10 3.995e-10 -9.405 -9.399 0.006 (0) Fe(OH)2 1.968e-13 1.995e-13 -12.706 -12.700 0.006 (0) - FeHSO4+ 3.402e-15 2.757e-15 -14.468 -14.559 -0.091 (0) - Fe(OH)3- 4.791e-16 3.902e-16 -15.320 -15.409 -0.089 (0) + FeHSO4+ 3.403e-15 2.759e-15 -14.468 -14.559 -0.091 (0) + Fe(OH)3- 4.789e-16 3.901e-16 -15.320 -15.409 -0.089 (0) Fe(HS)2 1.462e-18 1.482e-18 -17.835 -17.829 0.006 (0) - Fe(HS)3- 4.965e-26 4.025e-26 -25.304 -25.395 -0.091 (0) + Fe(HS)3- 4.963e-26 4.023e-26 -25.304 -25.395 -0.091 (0) Fe(3) 3.371e-14 Fe(OH)3 2.714e-14 2.752e-14 -13.566 -13.560 0.006 (0) - Fe(OH)2+ 4.958e-15 4.057e-15 -14.305 -14.392 -0.087 (0) + Fe(OH)2+ 4.960e-15 4.058e-15 -14.305 -14.392 -0.087 (0) Fe(OH)4- 1.614e-15 1.321e-15 -14.792 -14.879 -0.087 (0) - FeOH+2 5.288e-19 2.328e-19 -18.277 -18.633 -0.356 (0) - FeSO4+ 4.284e-23 3.489e-23 -22.368 -22.457 -0.089 (0) - Fe(SO4)2- 4.377e-24 3.548e-24 -23.359 -23.450 -0.091 (0) - Fe+3 3.075e-24 6.848e-25 -23.512 -24.164 -0.652 (0) - FeCl+2 5.655e-25 2.489e-25 -24.248 -24.604 -0.356 (0) - FeCl2+ 1.643e-26 1.338e-26 -25.784 -25.874 -0.089 (0) - FeCl3 1.588e-29 1.610e-29 -28.799 -28.793 0.006 (0) - FeHSO4+2 4.107e-30 1.773e-30 -29.386 -29.751 -0.365 (0) - Fe2(OH)2+4 4.195e-35 1.458e-36 -34.377 -35.836 -1.459 (0) - Fe3(OH)4+5 0.000e+00 0.000e+00 -45.628 -47.908 -2.280 (0) -H(0) 6.998e-12 - H2 3.499e-12 3.548e-12 -11.456 -11.450 0.006 28.61 + FeOH+2 5.291e-19 2.329e-19 -18.276 -18.633 -0.356 (0) + FeSO4+ 4.287e-23 3.492e-23 -22.368 -22.457 -0.089 (0) + Fe(SO4)2- 4.378e-24 3.549e-24 -23.359 -23.450 -0.091 (0) + Fe+3 3.077e-24 6.853e-25 -23.512 -24.164 -0.652 (0) + FeCl+2 5.659e-25 2.491e-25 -24.247 -24.604 -0.356 (0) + FeCl2+ 1.644e-26 1.339e-26 -25.784 -25.873 -0.089 (0) + FeCl3 1.589e-29 1.611e-29 -28.799 -28.793 0.006 (0) + FeHSO4+2 4.110e-30 1.775e-30 -29.386 -29.751 -0.365 (0) + Fe2(OH)2+4 4.199e-35 1.460e-36 -34.377 -35.836 -1.459 (0) + Fe3(OH)4+5 0.000e+00 0.000e+00 -45.628 -47.907 -2.280 (0) +H(0) 6.997e-12 + H2 3.499e-12 3.547e-12 -11.456 -11.450 0.006 28.61 Na 1.500e-02 Na+ 1.395e-02 1.136e-02 -1.855 -1.945 -0.089 -1.18 - NaSO4- 1.049e-03 8.594e-04 -2.979 -3.066 -0.087 -7.84 - NaHCO3 2.425e-06 2.493e-06 -5.615 -5.603 0.012 31.73 - NaOH 5.970e-19 6.053e-19 -18.224 -18.218 0.006 (0) + NaSO4- 1.049e-03 8.593e-04 -2.979 -3.066 -0.087 -7.84 + NaHCO3 2.424e-06 2.492e-06 -5.615 -5.603 0.012 31.73 + NaOH 5.969e-19 6.052e-19 -18.224 -18.218 0.006 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -69.487 -69.481 0.006 30.40 -S(-2) 3.529e-10 - HS- 3.121e-10 2.494e-10 -9.506 -9.603 -0.097 20.80 - H2S 4.081e-11 4.138e-11 -10.389 -10.383 0.006 36.27 - S-2 3.606e-15 1.587e-15 -14.443 -14.799 -0.356 (0) +S(-2) 3.528e-10 + HS- 3.120e-10 2.493e-10 -9.506 -9.603 -0.097 20.80 + H2S 4.081e-11 4.137e-11 -10.389 -10.383 0.006 36.27 + S-2 3.604e-15 1.586e-15 -14.443 -14.800 -0.356 (0) Fe(HS)2 1.462e-18 1.482e-18 -17.835 -17.829 0.006 (0) - (H2S)2 8.897e-23 9.021e-23 -22.051 -22.045 0.006 30.09 - Fe(HS)3- 4.965e-26 4.025e-26 -25.304 -25.395 -0.091 (0) + (H2S)2 8.897e-23 9.020e-23 -22.051 -22.045 0.006 30.09 + Fe(HS)3- 4.963e-26 4.023e-26 -25.304 -25.395 -0.091 (0) S(6) 1.600e-02 SO4-2 1.062e-02 4.647e-03 -1.974 -2.333 -0.359 22.36 - CaSO4 4.335e-03 4.396e-03 -2.363 -2.357 0.006 7.50 - NaSO4- 1.049e-03 8.594e-04 -2.979 -3.066 -0.087 -7.84 - FeSO4 2.180e-08 2.210e-08 -7.662 -7.656 0.006 18.97 - HSO4- 1.058e-08 8.574e-09 -7.976 -8.067 -0.091 40.47 - CaHSO4+ 6.764e-10 5.483e-10 -9.170 -9.261 -0.091 (0) - FeHSO4+ 3.402e-15 2.757e-15 -14.468 -14.559 -0.091 (0) - FeSO4+ 4.284e-23 3.489e-23 -22.368 -22.457 -0.089 (0) - Fe(SO4)2- 4.377e-24 3.548e-24 -23.359 -23.450 -0.091 (0) - FeHSO4+2 4.107e-30 1.773e-30 -29.386 -29.751 -0.365 (0) + CaSO4 4.337e-03 4.397e-03 -2.363 -2.357 0.006 7.50 + NaSO4- 1.049e-03 8.593e-04 -2.979 -3.066 -0.087 -7.84 + FeSO4 2.181e-08 2.211e-08 -7.661 -7.655 0.006 18.97 + HSO4- 1.058e-08 8.575e-09 -7.976 -8.067 -0.091 40.47 + CaHSO4+ 6.768e-10 5.486e-10 -9.170 -9.261 -0.091 (0) + FeHSO4+ 3.403e-15 2.759e-15 -14.468 -14.559 -0.091 (0) + FeSO4+ 4.287e-23 3.492e-23 -22.368 -22.457 -0.089 (0) + Fe(SO4)2- 4.378e-24 3.549e-24 -23.359 -23.450 -0.091 (0) + FeHSO4+2 4.110e-30 1.775e-30 -29.386 -29.751 -0.365 (0) ------------------------------Saturation indices------------------------------- @@ -984,7 +984,7 @@ S(6) 1.600e-02 CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 FeS(ppt) -5.54 -9.45 -3.92 FeS - Goethite 0.00 -1.00 -1.00 FeOOH + Goethite -0.00 -1.00 -1.00 FeOOH Gypsum -0.03 -4.61 -4.58 CaSO4:2H2O H2(g) -8.35 -11.45 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O @@ -1030,130 +1030,130 @@ Reaction 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.003e+01 2.649e-02 -Calcite 0.00 -8.48 -8.48 1.000e+01 9.973e+00 -2.684e-02 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.003e+01 2.650e-02 +Calcite 0.00 -8.48 -8.48 1.000e+01 9.973e+00 -2.683e-02 Goethite -0.00 -1.00 -1.00 1.000e+01 1.001e+01 1.333e-02 -Gypsum 0.00 -4.58 -4.58 0.000e+00 8.971e-03 8.971e-03 -Pyrite 0.00 -18.48 -18.48 1.000e+01 9.987e+00 -1.333e-02 +Gypsum 0.00 -4.58 -4.58 0.000e+00 8.976e-03 8.976e-03 +Pyrite -0.00 -18.48 -18.48 1.000e+01 9.987e+00 -1.333e-02 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 3.468e-04 3.467e-04 - Ca 1.787e-02 1.787e-02 + C 3.317e-04 3.315e-04 + Ca 1.786e-02 1.786e-02 Cl 2.501e-02 2.500e-02 - Fe 9.031e-08 9.027e-08 + Fe 9.033e-08 9.029e-08 Na 2.501e-02 2.500e-02 - S 1.770e-02 1.770e-02 + S 1.770e-02 1.769e-02 ----------------------------Description of solution---------------------------- pH = 7.709 Charge balance pe = -3.556 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 5636 + Specific Conductance (µS/cm, 25°C) = 5635 Density (g/cm³) = 1.00044 Volume (L) = 1.00301 Viscosity (mPa s) = 0.90053 Activity of water = 0.999 - Ionic strength (mol/kgw) = 7.443e-02 + Ionic strength (mol/kgw) = 7.442e-02 Mass of water (kg) = 9.996e-01 - Total alkalinity (eq/kg) = 3.437e-04 - Total CO2 (mol/kg) = 3.468e-04 + Total alkalinity (eq/kg) = 3.286e-04 + Total CO2 (mol/kg) = 3.317e-04 Temperature (°C) = 25.00 - Electrical balance (eq) = -1.188e-09 + Electrical balance (eq) = -1.182e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 25 Total H = 1.109632e+02 - Total O = 5.555325e+01 + Total O = 5.555319e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 6.608e-07 5.178e-07 -6.180 -6.286 -0.106 -3.80 + OH- 6.607e-07 5.177e-07 -6.180 -6.286 -0.106 -3.80 H+ 2.331e-08 1.952e-08 -7.632 -7.709 -0.077 0.00 H2O 5.551e+01 9.986e-01 1.744 -0.001 0.000 18.07 C(-4) 1.539e-14 CH4 1.539e-14 1.566e-14 -13.813 -13.805 0.007 35.46 -C(4) 3.468e-04 +C(4) 3.317e-04 HCO3- 3.038e-04 2.448e-04 -3.517 -3.611 -0.094 24.86 - CaHCO3+ 2.166e-05 1.759e-05 -4.664 -4.755 -0.090 9.82 CO2 1.064e-05 1.076e-05 -4.973 -4.968 0.005 34.43 + CaHCO3+ 6.550e-06 5.318e-06 -5.184 -5.274 -0.090 122.78 CaCO3 5.469e-06 5.563e-06 -5.262 -5.255 0.007 -14.60 NaHCO3 3.843e-06 3.977e-06 -5.415 -5.400 0.015 31.73 - CO3-2 1.395e-06 5.881e-07 -5.855 -6.231 -0.375 -2.97 - FeHCO3+ 8.619e-10 6.879e-10 -9.065 -9.162 -0.098 (0) + CO3-2 1.394e-06 5.880e-07 -5.856 -6.231 -0.375 -2.97 + FeHCO3+ 8.620e-10 6.880e-10 -9.064 -9.162 -0.098 (0) FeCO3 3.897e-10 3.964e-10 -9.409 -9.402 0.007 (0) (CO2)2 2.089e-12 2.125e-12 -11.680 -11.673 0.007 68.87 -Ca 1.787e-02 - Ca+2 1.326e-02 5.631e-03 -1.877 -2.249 -0.372 -17.52 +Ca 1.786e-02 + Ca+2 1.327e-02 5.632e-03 -1.877 -2.249 -0.372 -17.52 CaSO4 4.585e-03 4.664e-03 -2.339 -2.331 0.007 7.50 - CaHCO3+ 2.166e-05 1.759e-05 -4.664 -4.755 -0.090 9.82 + CaHCO3+ 6.550e-06 5.318e-06 -5.184 -5.274 -0.090 122.78 CaCO3 5.469e-06 5.563e-06 -5.262 -5.255 0.007 -14.60 - CaOH+ 5.989e-08 4.780e-08 -7.223 -7.321 -0.098 (0) - CaHSO4+ 7.499e-10 5.985e-10 -9.125 -9.223 -0.098 (0) + CaOH+ 5.990e-08 4.781e-08 -7.223 -7.320 -0.098 (0) + CaHSO4+ 7.500e-10 5.986e-10 -9.125 -9.223 -0.098 (0) Cl 2.501e-02 Cl- 2.501e-02 1.970e-02 -1.602 -1.706 -0.104 18.30 - FeCl+ 9.572e-10 7.640e-10 -9.019 -9.117 -0.098 (0) - HCl 1.231e-10 1.325e-10 -9.910 -9.878 0.032 (0) - FeCl+2 1.075e-24 4.438e-25 -23.968 -24.353 -0.384 (0) - FeCl2+ 4.871e-26 3.905e-26 -25.312 -25.408 -0.096 (0) - FeCl3 7.560e-29 7.691e-29 -28.121 -28.114 0.007 (0) -Fe(2) 9.031e-08 - Fe+2 6.466e-08 2.810e-08 -7.189 -7.551 -0.362 -21.54 + FeCl+ 9.575e-10 7.642e-10 -9.019 -9.117 -0.098 (0) + HCl 1.232e-10 1.325e-10 -9.910 -9.878 0.032 (0) + FeCl+2 1.076e-24 4.440e-25 -23.968 -24.353 -0.384 (0) + FeCl2+ 4.874e-26 3.906e-26 -25.312 -25.408 -0.096 (0) + FeCl3 7.564e-29 7.694e-29 -28.121 -28.114 0.007 (0) +Fe(2) 9.033e-08 + Fe+2 6.467e-08 2.811e-08 -7.189 -7.551 -0.362 -21.54 FeSO4 2.288e-08 2.328e-08 -7.641 -7.633 0.007 18.97 - FeCl+ 9.572e-10 7.640e-10 -9.019 -9.117 -0.098 (0) - FeHCO3+ 8.619e-10 6.879e-10 -9.065 -9.162 -0.098 (0) - FeOH+ 5.671e-10 4.545e-10 -9.246 -9.342 -0.096 (0) + FeCl+ 9.575e-10 7.642e-10 -9.019 -9.117 -0.098 (0) + FeHCO3+ 8.620e-10 6.880e-10 -9.064 -9.162 -0.098 (0) + FeOH+ 5.671e-10 4.546e-10 -9.246 -9.342 -0.096 (0) FeCO3 3.897e-10 3.964e-10 -9.409 -9.402 0.007 (0) Fe(OH)2 1.945e-13 1.979e-13 -12.711 -12.704 0.007 (0) - FeHSO4+ 3.742e-15 2.987e-15 -14.427 -14.525 -0.098 (0) - Fe(OH)3- 4.693e-16 3.761e-16 -15.329 -15.425 -0.096 (0) + FeHSO4+ 3.743e-15 2.987e-15 -14.427 -14.525 -0.098 (0) + Fe(OH)3- 4.692e-16 3.761e-16 -15.329 -15.425 -0.096 (0) Fe(HS)2 1.434e-18 1.458e-18 -17.844 -17.836 0.007 (0) - Fe(HS)3- 4.802e-26 3.832e-26 -25.319 -25.417 -0.098 (0) + Fe(HS)3- 4.801e-26 3.832e-26 -25.319 -25.417 -0.098 (0) Fe(3) 3.381e-14 Fe(OH)3 2.704e-14 2.751e-14 -13.568 -13.561 0.007 (0) Fe(OH)2+ 5.180e-15 4.174e-15 -14.286 -14.379 -0.094 (0) Fe(OH)4- 1.592e-15 1.283e-15 -14.798 -14.892 -0.094 (0) - FeOH+2 5.970e-19 2.464e-19 -18.224 -18.608 -0.384 (0) - FeSO4+ 4.754e-23 3.811e-23 -22.323 -22.419 -0.096 (0) - Fe(SO4)2- 4.866e-24 3.884e-24 -23.313 -23.411 -0.098 (0) - Fe+3 3.681e-24 7.460e-25 -23.434 -24.127 -0.693 (0) - FeCl+2 1.075e-24 4.438e-25 -23.968 -24.353 -0.384 (0) - FeCl2+ 4.871e-26 3.905e-26 -25.312 -25.408 -0.096 (0) - FeCl3 7.560e-29 7.691e-29 -28.121 -28.114 0.007 (0) - FeHSO4+2 4.909e-30 1.992e-30 -29.309 -29.701 -0.392 (0) - Fe2(OH)2+4 6.028e-35 1.634e-36 -34.220 -35.787 -1.567 (0) + FeOH+2 5.972e-19 2.465e-19 -18.224 -18.608 -0.384 (0) + FeSO4+ 4.755e-23 3.811e-23 -22.323 -22.419 -0.096 (0) + Fe(SO4)2- 4.865e-24 3.883e-24 -23.313 -23.411 -0.098 (0) + Fe+3 3.682e-24 7.463e-25 -23.434 -24.127 -0.693 (0) + FeCl+2 1.076e-24 4.440e-25 -23.968 -24.353 -0.384 (0) + FeCl2+ 4.874e-26 3.906e-26 -25.312 -25.408 -0.096 (0) + FeCl3 7.564e-29 7.694e-29 -28.121 -28.114 0.007 (0) + FeHSO4+2 4.910e-30 1.993e-30 -29.309 -29.701 -0.392 (0) + Fe2(OH)2+4 6.031e-35 1.635e-36 -34.220 -35.786 -1.567 (0) Fe3(OH)4+5 0.000e+00 0.000e+00 -45.398 -47.846 -2.448 (0) H(0) 6.862e-12 H2 3.431e-12 3.490e-12 -11.465 -11.457 0.007 28.61 Na 2.501e-02 Na+ 2.325e-02 1.865e-02 -1.633 -1.729 -0.096 -1.15 - NaSO4- 1.753e-03 1.414e-03 -2.756 -2.849 -0.093 -6.75 + NaSO4- 1.753e-03 1.414e-03 -2.756 -2.850 -0.093 -6.75 NaHCO3 3.843e-06 3.977e-06 -5.415 -5.400 0.015 31.73 - NaOH 9.493e-19 9.657e-19 -18.023 -18.015 0.007 (0) + NaOH 9.492e-19 9.656e-19 -18.023 -18.015 0.007 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -69.474 -69.467 0.007 30.40 -S(-2) 3.485e-10 - HS- 3.080e-10 2.413e-10 -9.511 -9.617 -0.106 20.83 +S(-2) 3.484e-10 + HS- 3.079e-10 2.413e-10 -9.512 -9.617 -0.106 20.83 H2S 4.049e-11 4.119e-11 -10.393 -10.385 0.007 36.27 - S-2 3.618e-15 1.493e-15 -14.442 -14.826 -0.384 (0) + S-2 3.617e-15 1.493e-15 -14.442 -14.826 -0.384 (0) Fe(HS)2 1.434e-18 1.458e-18 -17.844 -17.836 0.007 (0) (H2S)2 8.789e-23 8.941e-23 -22.056 -22.049 0.007 30.09 - Fe(HS)3- 4.802e-26 3.832e-26 -25.319 -25.417 -0.098 (0) + Fe(HS)3- 4.801e-26 3.832e-26 -25.319 -25.417 -0.098 (0) S(6) 1.770e-02 - SO4-2 1.136e-02 4.658e-03 -1.944 -2.332 -0.387 23.18 + SO4-2 1.136e-02 4.657e-03 -1.945 -2.332 -0.387 23.18 CaSO4 4.585e-03 4.664e-03 -2.339 -2.331 0.007 7.50 - NaSO4- 1.753e-03 1.414e-03 -2.756 -2.849 -0.093 -6.75 + NaSO4- 1.753e-03 1.414e-03 -2.756 -2.850 -0.093 -6.75 FeSO4 2.288e-08 2.328e-08 -7.641 -7.633 0.007 18.97 - HSO4- 1.108e-08 8.842e-09 -7.956 -8.053 -0.098 40.50 - CaHSO4+ 7.499e-10 5.985e-10 -9.125 -9.223 -0.098 (0) - FeHSO4+ 3.742e-15 2.987e-15 -14.427 -14.525 -0.098 (0) - FeSO4+ 4.754e-23 3.811e-23 -22.323 -22.419 -0.096 (0) - Fe(SO4)2- 4.866e-24 3.884e-24 -23.313 -23.411 -0.098 (0) - FeHSO4+2 4.909e-30 1.992e-30 -29.309 -29.701 -0.392 (0) + HSO4- 1.108e-08 8.840e-09 -7.956 -8.054 -0.098 40.50 + CaHSO4+ 7.500e-10 5.986e-10 -9.125 -9.223 -0.098 (0) + FeHSO4+ 3.743e-15 2.987e-15 -14.427 -14.525 -0.098 (0) + FeSO4+ 4.755e-23 3.811e-23 -22.323 -22.419 -0.096 (0) + Fe(SO4)2- 4.865e-24 3.883e-24 -23.313 -23.411 -0.098 (0) + FeHSO4+2 4.910e-30 1.993e-30 -29.309 -29.701 -0.392 (0) ------------------------------Saturation indices------------------------------- @@ -1177,7 +1177,7 @@ S(6) 1.770e-02 Melanterite -7.68 -9.89 -2.21 FeSO4:7H2O Mirabilite -4.56 -5.80 -1.24 Na2SO4:10H2O O2(g) -66.57 -69.47 -2.89 O2 - Pyrite 0.00 -18.48 -18.48 FeS2 + Pyrite -0.00 -18.48 -18.48 FeS2 Siderite -2.89 -13.78 -10.89 FeCO3 Sulfur -6.96 -2.08 4.88 S Thenardite -5.49 -5.79 -0.30 Na2SO4 diff --git a/ex5.sel b/ex5.sel index da7da55d..f577caf6 100644 --- a/ex5.sel +++ b/ex5.sel @@ -1,8 +1,8 @@ sim state soln dist_x time step pH pe Cl pyrite d_pyrite goethite d_goethite calcite d_calcite CO2(g) d_CO2(g) gypsum d_gypsum si_Gypsum 1 i_soln 1 -99 -99 -99 7 4 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -999.9990 - 1 react 1 -99 0 1 8.27917 -4.94281 0.0000e+00 1.0000e+01 -3.1435e-08 1.0000e+01 1.0959e-08 9.9995e+00 -4.9333e-04 9.9995e+00 -4.8687e-04 0.0000e+00 0.0000e+00 -6.1255 - 1 react 1 -99 0 2 8.1702 -4.28572 5.0000e-04 9.9997e+00 -2.6667e-04 1.0000e+01 2.6666e-04 9.9991e+00 -9.2681e-04 1.0000e+01 1.4260e-04 0.0000e+00 0.0000e+00 -2.0147 - 1 react 1 -99 0 3 7.97893 -3.96644 2.5000e-03 9.9987e+00 -1.3333e-03 1.0001e+01 1.3333e-03 9.9971e+00 -2.9356e-03 1.0002e+01 2.3967e-03 0.0000e+00 0.0000e+00 -1.0550 - 1 react 1 -99 0 4 7.87949 -3.8118 5.0001e-03 9.9973e+00 -2.6667e-03 1.0003e+01 2.6666e-03 9.9944e+00 -5.5572e-03 1.0005e+01 5.1073e-03 0.0000e+00 0.0000e+00 -0.6415 - 1 react 1 -99 0 5 7.72176 -3.57172 1.5001e-02 9.9920e+00 -8.0000e-03 1.0008e+01 7.9999e-03 9.9838e+00 -1.6173e-02 1.0016e+01 1.5824e-02 0.0000e+00 0.0000e+00 -0.0254 - 1 react 1 -99 0 6 7.70948 -3.55591 2.5011e-02 9.9867e+00 -1.3333e-02 1.0013e+01 1.3333e-02 9.9732e+00 -2.6838e-02 1.0026e+01 2.6492e-02 8.9714e-03 8.9714e-03 0.0000 + 1 react 1 -99 0 1 8.27866 -4.94223 0.0000e+00 1.0000e+01 -3.1401e-08 1.0000e+01 1.0888e-08 9.9995e+00 -4.9102e-04 9.9995e+00 -4.8459e-04 0.0000e+00 0.0000e+00 -6.1251 + 1 react 1 -99 0 2 8.16976 -4.28517 5.0000e-04 9.9997e+00 -2.6667e-04 1.0000e+01 2.6666e-04 9.9991e+00 -9.2415e-04 1.0000e+01 1.4524e-04 0.0000e+00 0.0000e+00 -2.0139 + 1 react 1 -99 0 3 7.97867 -3.96612 2.5000e-03 9.9987e+00 -1.3333e-03 1.0001e+01 1.3333e-03 9.9971e+00 -2.9318e-03 1.0002e+01 2.4006e-03 0.0000e+00 0.0000e+00 -1.0546 + 1 react 1 -99 0 4 7.8793 -3.81158 5.0001e-03 9.9973e+00 -2.6667e-03 1.0003e+01 2.6666e-03 9.9944e+00 -5.5524e-03 1.0005e+01 5.1122e-03 0.0000e+00 0.0000e+00 -0.6412 + 1 react 1 -99 0 5 7.72165 -3.57159 1.5001e-02 9.9920e+00 -8.0000e-03 1.0008e+01 7.9999e-03 9.9838e+00 -1.6165e-02 1.0016e+01 1.5831e-02 0.0000e+00 0.0000e+00 -0.0253 + 1 react 1 -99 0 6 7.70941 -3.55585 2.5011e-02 9.9867e+00 -1.3333e-02 1.0013e+01 1.3333e-02 9.9732e+00 -2.6831e-02 1.0026e+01 2.6499e-02 8.9755e-03 8.9755e-03 0.0000 diff --git a/ex6.out b/ex6.out index e8ce61a7..6e015cc3 100644 --- a/ex6.out +++ b/ex6.out @@ -13,7 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES - CALCULATE_VALUES + MEAN_GAMMAS RATES END ------------------------------------ diff --git a/ex7.out b/ex7.out index 15a365e0..0570eece 100644 --- a/ex7.out +++ b/ex7.out @@ -13,7 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES - CALCULATE_VALUES + MEAN_GAMMAS RATES END ------------------------------------ @@ -128,60 +128,60 @@ Using pure phase assemblage 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -CO2(g) -1.50 -2.97 -1.47 1.000e+01 9.996e+00 -3.568e-03 -Calcite 0.00 -8.48 -8.48 1.000e+01 9.997e+00 -2.502e-03 +CO2(g) -1.50 -2.97 -1.47 1.000e+01 9.996e+00 -3.519e-03 +Calcite 0.00 -8.48 -8.48 1.000e+01 9.998e+00 -2.453e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 6.070e-03 6.070e-03 - Ca 2.502e-03 2.502e-03 + C 5.972e-03 5.972e-03 + Ca 2.453e-03 2.453e-03 ----------------------------Description of solution---------------------------- - pH = 6.971 Charge balance - pe = -1.249 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 458 - Density (g/cm³) = 0.99738 + pH = 6.969 Charge balance + pe = -1.247 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 457 + Density (g/cm³) = 0.99737 Volume (L) = 1.00304 Viscosity (mPa s) = 0.89302 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.282e-03 + Ionic strength (mol/kgw) = 7.281e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.004e-03 - Total CO2 (mol/kg) = 6.070e-03 + Total alkalinity (eq/kg) = 4.906e-03 + Total CO2 (mol/kg) = 5.972e-03 Temperature (°C) = 25.00 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 17 Total H = 1.110124e+02 - Total O = 5.552086e+01 + Total O = 5.552061e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.158e-07 1.069e-07 -6.936 -6.971 -0.035 0.00 - OH- 1.037e-07 9.466e-08 -6.984 -7.024 -0.040 -4.05 + H+ 1.164e-07 1.075e-07 -6.934 -6.969 -0.035 0.00 + OH- 1.032e-07 9.418e-08 -6.986 -7.026 -0.040 -4.05 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 -C(-4) 4.416e-25 - CH4 4.416e-25 4.424e-25 -24.355 -24.354 0.001 35.46 -C(4) 6.070e-03 - HCO3- 4.882e-03 4.475e-03 -2.311 -2.349 -0.038 24.63 +C(-4) 4.428e-25 + CH4 4.428e-25 4.435e-25 -24.354 -24.353 0.001 35.46 +C(4) 5.972e-03 + HCO3- 4.857e-03 4.452e-03 -2.314 -2.351 -0.038 24.63 CO2 1.075e-03 1.076e-03 -2.969 -2.968 0.000 34.43 - CaHCO3+ 1.050e-04 9.632e-05 -3.979 -4.016 -0.037 9.71 + CaHCO3+ 3.189e-05 2.927e-05 -4.496 -4.534 -0.037 122.68 CaCO3 5.554e-06 5.563e-06 -5.255 -5.255 0.001 -14.60 - CO3-2 2.780e-06 1.963e-06 -5.556 -5.707 -0.151 -3.73 + CO3-2 2.752e-06 1.943e-06 -5.560 -5.711 -0.151 -3.73 (CO2)2 2.121e-08 2.125e-08 -7.673 -7.673 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.391e-03 1.687e-03 -2.621 -2.773 -0.151 -17.97 - CaHCO3+ 1.050e-04 9.632e-05 -3.979 -4.016 -0.037 9.71 +Ca 2.453e-03 + Ca+2 2.415e-03 1.704e-03 -2.617 -2.768 -0.151 -17.97 + CaHCO3+ 3.189e-05 2.927e-05 -4.496 -4.534 -0.037 122.68 CaCO3 5.554e-06 5.563e-06 -5.255 -5.255 0.001 -14.60 - CaOH+ 2.864e-09 2.618e-09 -8.543 -8.582 -0.039 (0) -H(0) 5.084e-15 - H2 2.542e-15 2.546e-15 -14.595 -14.594 0.001 28.61 + CaOH+ 2.879e-09 2.632e-09 -8.541 -8.580 -0.039 (0) +H(0) 5.087e-15 + H2 2.544e-15 2.548e-15 -14.595 -14.594 0.001 28.61 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -63.193 -63.192 0.001 30.40 @@ -286,64 +286,64 @@ Reaction 1. Elements Molality Moles - C 7.070e-03 7.070e-03 - Ca 2.502e-03 2.502e-03 + C 6.972e-03 6.972e-03 + Ca 2.453e-03 2.453e-03 N 7.000e-05 7.000e-05 ----------------------------Description of solution---------------------------- - pH = 6.832 Charge balance - pe = -3.723 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 461 - Density (g/cm³) = 0.99738 - Volume (L) = 1.00306 + pH = 6.829 Charge balance + pe = -3.721 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 460 + Density (g/cm³) = 0.99737 + Volume (L) = 1.00307 Viscosity (mPa s) = 0.89305 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.352e-03 + Ionic strength (mol/kgw) = 7.354e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.073e-03 - Total CO2 (mol/kg) = 6.570e-03 + Total alkalinity (eq/kg) = 4.976e-03 + Total CO2 (mol/kg) = 6.472e-03 Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 10 Total H = 1.110146e+02 - Total O = 5.552186e+01 + Total O = 5.552161e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.597e-07 1.474e-07 -6.797 -6.832 -0.035 0.00 - OH- 7.527e-08 6.867e-08 -7.123 -7.163 -0.040 -4.05 + H+ 1.605e-07 1.481e-07 -6.795 -6.829 -0.035 0.00 + OH- 7.491e-08 6.835e-08 -7.125 -7.165 -0.040 -4.05 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 5.001e-04 CH4 5.001e-04 5.009e-04 -3.301 -3.300 0.001 35.46 -C(4) 6.570e-03 - HCO3- 4.955e-03 4.540e-03 -2.305 -2.343 -0.038 24.63 +C(4) 6.472e-03 + HCO3- 4.931e-03 4.518e-03 -2.307 -2.345 -0.038 24.63 CO2 1.503e-03 1.504e-03 -2.823 -2.823 0.000 34.43 - CaHCO3+ 1.064e-04 9.758e-05 -3.973 -4.011 -0.037 9.71 - CaCO3 4.082e-06 4.089e-06 -5.389 -5.388 0.001 -14.60 - CO3-2 2.050e-06 1.445e-06 -5.688 -5.840 -0.152 -3.72 + CaHCO3+ 3.232e-05 2.966e-05 -4.490 -4.528 -0.037 122.68 + CaCO3 4.086e-06 4.093e-06 -5.389 -5.388 0.001 -14.60 + CO3-2 2.030e-06 1.431e-06 -5.692 -5.844 -0.152 -3.72 (CO2)2 4.147e-08 4.154e-08 -7.382 -7.382 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.391e-03 1.685e-03 -2.621 -2.773 -0.152 -17.97 - CaHCO3+ 1.064e-04 9.758e-05 -3.973 -4.011 -0.037 9.71 - CaCO3 4.082e-06 4.089e-06 -5.389 -5.388 0.001 -14.60 - CaOH+ 2.076e-09 1.897e-09 -8.683 -8.722 -0.039 (0) +Ca 2.453e-03 + Ca+2 2.417e-03 1.702e-03 -2.617 -2.769 -0.152 -17.97 + CaHCO3+ 3.232e-05 2.966e-05 -4.490 -4.528 -0.037 122.68 + CaCO3 4.086e-06 4.093e-06 -5.389 -5.388 0.001 -14.60 + CaOH+ 2.088e-09 1.908e-09 -8.680 -8.720 -0.039 (0) H(0) 8.575e-10 H2 4.288e-10 4.295e-10 -9.368 -9.367 0.001 28.61 -N(-3) 6.986e-05 +N(-3) 6.987e-05 NH4+ 6.962e-05 6.337e-05 -4.157 -4.198 -0.041 (0) - NH3 2.446e-07 2.450e-07 -6.612 -6.611 0.001 (0) -N(0) 1.393e-07 - N2 6.967e-08 6.979e-08 -7.157 -7.156 0.001 29.29 + NH3 2.435e-07 2.439e-07 -6.614 -6.613 0.001 (0) +N(0) 1.380e-07 + N2 6.901e-08 6.913e-08 -7.161 -7.160 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -62.351 -62.391 -0.040 25.02 + NO2- 0.000e+00 0.000e+00 -62.355 -62.395 -0.040 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -84.704 -84.744 -0.040 29.54 + NO3- 0.000e+00 0.000e+00 -84.708 -84.748 -0.040 29.54 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.647 -73.646 0.001 30.40 @@ -392,64 +392,64 @@ Reaction 1. Elements Molality Moles - C 8.070e-03 8.070e-03 - Ca 2.502e-03 2.502e-03 + C 7.972e-03 7.972e-03 + Ca 2.453e-03 2.453e-03 N 1.400e-04 1.400e-04 ----------------------------Description of solution---------------------------- - pH = 6.729 Charge balance - pe = -3.644 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 464 - Density (g/cm³) = 0.99738 + pH = 6.727 Charge balance + pe = -3.642 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 463 + Density (g/cm³) = 0.99737 Volume (L) = 1.00310 Viscosity (mPa s) = 0.89307 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.421e-03 + Ionic strength (mol/kgw) = 7.425e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.143e-03 - Total CO2 (mol/kg) = 7.070e-03 + Total alkalinity (eq/kg) = 5.046e-03 + Total CO2 (mol/kg) = 6.972e-03 Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 16 + Iterations = 15 Total H = 1.110169e+02 - Total O = 5.552286e+01 + Total O = 5.552261e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 2.025e-07 1.868e-07 -6.694 -6.729 -0.035 0.00 - OH- 5.939e-08 5.417e-08 -7.226 -7.266 -0.040 -4.05 + H+ 2.034e-07 1.877e-07 -6.692 -6.727 -0.035 0.00 + OH- 5.913e-08 5.392e-08 -7.228 -7.268 -0.040 -4.05 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 1.000e-03 CH4 1.000e-03 1.002e-03 -3.000 -2.999 0.001 35.46 -C(4) 7.070e-03 - HCO3- 5.026e-03 4.603e-03 -2.299 -2.337 -0.038 24.63 +C(4) 6.972e-03 + HCO3- 5.003e-03 4.582e-03 -2.301 -2.339 -0.038 24.63 CO2 1.932e-03 1.934e-03 -2.714 -2.714 0.000 34.43 - CaHCO3+ 1.077e-04 9.878e-05 -3.968 -4.005 -0.038 9.71 - CaCO3 3.260e-06 3.265e-06 -5.487 -5.486 0.001 -14.60 - CO3-2 1.642e-06 1.156e-06 -5.785 -5.937 -0.152 -3.72 + CaHCO3+ 3.275e-05 3.004e-05 -4.485 -4.522 -0.038 122.68 + CaCO3 3.265e-06 3.271e-06 -5.486 -5.485 0.001 -14.60 + CO3-2 1.627e-06 1.145e-06 -5.789 -5.941 -0.152 -3.72 (CO2)2 6.852e-08 6.864e-08 -7.164 -7.163 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.391e-03 1.682e-03 -2.621 -2.774 -0.153 -17.97 - CaHCO3+ 1.077e-04 9.878e-05 -3.968 -4.005 -0.038 9.71 - CaCO3 3.260e-06 3.265e-06 -5.487 -5.486 0.001 -14.60 - CaOH+ 1.635e-09 1.494e-09 -8.786 -8.826 -0.039 (0) +Ca 2.453e-03 + Ca+2 2.417e-03 1.700e-03 -2.617 -2.770 -0.153 -17.97 + CaHCO3+ 3.275e-05 3.004e-05 -4.485 -4.522 -0.038 122.68 + CaCO3 3.265e-06 3.271e-06 -5.486 -5.485 0.001 -14.60 + CaOH+ 1.646e-09 1.503e-09 -8.784 -8.823 -0.039 (0) H(0) 9.577e-10 H2 4.789e-10 4.797e-10 -9.320 -9.319 0.001 28.61 N(-3) 1.398e-04 NH4+ 1.394e-04 1.268e-04 -3.856 -3.897 -0.041 (0) - NH3 3.861e-07 3.868e-07 -6.413 -6.413 0.001 (0) -N(0) 2.492e-07 - N2 1.246e-07 1.248e-07 -6.904 -6.904 0.001 29.29 + NH3 3.844e-07 3.850e-07 -6.415 -6.414 0.001 (0) +N(0) 2.470e-07 + N2 1.235e-07 1.237e-07 -6.908 -6.908 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -62.399 -62.440 -0.040 25.02 + NO2- 0.000e+00 0.000e+00 -62.403 -62.444 -0.041 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -84.800 -84.841 -0.040 29.54 + NO3- 0.000e+00 0.000e+00 -84.804 -84.845 -0.041 29.54 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.743 -73.742 0.001 30.40 @@ -457,13 +457,13 @@ O(0) 0.000e+00 Phase SI** log IAP log K(298 K, 1 atm) - Aragonite -0.38 -8.71 -8.34 CaCO3 + Aragonite -0.37 -8.71 -8.34 CaCO3 Calcite -0.23 -8.71 -8.48 CaCO3 CH4(g) -0.20 -3.00 -2.80 CH4 CO2(g) -1.25 -2.71 -1.47 CO2 H2(g) -6.22 -9.32 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.73 -6.90 -3.18 N2 + N2(g) -3.73 -6.91 -3.18 N2 NH3(g) -8.18 -6.41 1.77 NH3 O2(g) -70.85 -73.74 -2.89 O2 @@ -498,64 +498,64 @@ Reaction 1. Elements Molality Moles - C 9.070e-03 9.070e-03 - Ca 2.502e-03 2.502e-03 + C 8.972e-03 8.972e-03 + Ca 2.453e-03 2.453e-03 N 2.100e-04 2.100e-04 ----------------------------Description of solution---------------------------- - pH = 6.647 Charge balance - pe = -3.574 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 466 - Density (g/cm³) = 0.99738 + pH = 6.645 Charge balance + pe = -3.572 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 465 + Density (g/cm³) = 0.99737 Volume (L) = 1.00313 Viscosity (mPa s) = 0.89310 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.490e-03 + Ionic strength (mol/kgw) = 7.495e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.213e-03 - Total CO2 (mol/kg) = 7.570e-03 + Total alkalinity (eq/kg) = 5.116e-03 + Total CO2 (mol/kg) = 7.472e-03 Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 15 Total H = 1.110191e+02 - Total O = 5.552386e+01 + Total O = 5.552361e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 2.443e-07 2.253e-07 -6.612 -6.647 -0.035 0.00 - OH- 4.927e-08 4.492e-08 -7.307 -7.348 -0.040 -4.05 + H+ 2.453e-07 2.263e-07 -6.610 -6.645 -0.035 0.00 + OH- 4.906e-08 4.473e-08 -7.309 -7.349 -0.040 -4.05 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 1.500e-03 CH4 1.500e-03 1.503e-03 -2.824 -2.823 0.001 35.46 -C(4) 7.570e-03 - HCO3- 5.096e-03 4.666e-03 -2.293 -2.331 -0.038 24.63 +C(4) 7.472e-03 + HCO3- 5.074e-03 4.646e-03 -2.295 -2.333 -0.038 24.63 CO2 2.361e-03 2.364e-03 -2.627 -2.626 0.000 34.43 - CaHCO3+ 1.090e-04 9.995e-05 -3.963 -4.000 -0.038 9.71 - CaCO3 2.735e-06 2.740e-06 -5.563 -5.562 0.001 -14.60 - CO3-2 1.382e-06 9.714e-07 -5.860 -6.013 -0.153 -3.72 + CaHCO3+ 3.317e-05 3.041e-05 -4.479 -4.517 -0.038 122.68 + CaCO3 2.742e-06 2.747e-06 -5.562 -5.561 0.001 -14.60 + CO3-2 1.370e-06 9.631e-07 -5.863 -6.016 -0.153 -3.72 (CO2)2 1.024e-07 1.025e-07 -6.990 -6.989 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.390e-03 1.679e-03 -2.622 -2.775 -0.153 -17.97 - CaHCO3+ 1.090e-04 9.995e-05 -3.963 -4.000 -0.038 9.71 - CaCO3 2.735e-06 2.740e-06 -5.563 -5.562 0.001 -14.60 - CaOH+ 1.354e-09 1.237e-09 -8.868 -8.908 -0.039 (0) +Ca 2.453e-03 + Ca+2 2.417e-03 1.698e-03 -2.617 -2.770 -0.153 -17.97 + CaHCO3+ 3.317e-05 3.041e-05 -4.479 -4.517 -0.038 122.68 + CaCO3 2.742e-06 2.747e-06 -5.562 -5.561 0.001 -14.60 + CaOH+ 1.364e-09 1.245e-09 -8.865 -8.905 -0.039 (0) H(0) 1.008e-09 H2 5.040e-10 5.049e-10 -9.298 -9.297 0.001 28.61 N(-3) 2.097e-04 NH4+ 2.092e-04 1.903e-04 -3.679 -3.721 -0.041 (0) - NH3 4.805e-07 4.813e-07 -6.318 -6.318 0.001 (0) -N(0) 3.310e-07 - N2 1.655e-07 1.658e-07 -6.781 -6.781 0.001 29.29 + NH3 4.784e-07 4.792e-07 -6.320 -6.319 0.001 (0) +N(0) 3.281e-07 + N2 1.640e-07 1.643e-07 -6.785 -6.784 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -62.452 -62.493 -0.041 25.02 + NO2- 0.000e+00 0.000e+00 -62.456 -62.497 -0.041 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -84.876 -84.916 -0.041 29.54 + NO3- 0.000e+00 0.000e+00 -84.879 -84.920 -0.041 29.54 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.787 -73.787 0.001 30.40 @@ -569,7 +569,7 @@ O(0) 0.000e+00 CO2(g) -1.16 -2.63 -1.47 CO2 H2(g) -6.20 -9.30 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.60 -6.78 -3.18 N2 + N2(g) -3.61 -6.78 -3.18 N2 NH3(g) -8.09 -6.32 1.77 NH3 O2(g) -70.89 -73.79 -2.89 O2 @@ -612,70 +612,70 @@ Component log P P phi Initial Final Delta CH4(g) -0.01 9.866e-01 0.998 0.000e+00 4.502e-04 4.502e-04 CO2(g) -1.09 8.149e-02 0.994 0.000e+00 3.719e-05 3.719e-05 H2O(g) -1.50 3.157e-02 0.995 0.000e+00 1.441e-05 1.441e-05 -N2(g) -3.44 3.640e-04 1.000 0.000e+00 1.661e-07 1.661e-07 +N2(g) -3.44 3.610e-04 1.000 0.000e+00 1.647e-07 1.647e-07 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 9.583e-03 9.582e-03 - Ca 2.502e-03 2.502e-03 + C 9.485e-03 9.485e-03 + Ca 2.453e-03 2.453e-03 N 2.797e-04 2.797e-04 ----------------------------Description of solution---------------------------- - pH = 6.586 Charge balance - pe = -3.506 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 469 - Density (g/cm³) = 0.99739 + pH = 6.584 Charge balance + pe = -3.504 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 468 + Density (g/cm³) = 0.99738 Volume (L) = 1.00315 Viscosity (mPa s) = 0.89313 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.558e-03 - Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 5.283e-03 - Total CO2 (mol/kg) = 8.033e-03 + Ionic strength (mol/kgw) = 7.565e-03 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = 5.185e-03 + Total CO2 (mol/kg) = 7.935e-03 Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 20 Total H = 1.110194e+02 - Total O = 5.552477e+01 + Total O = 5.552452e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 2.813e-07 2.593e-07 -6.551 -6.586 -0.035 0.00 - OH- 4.282e-08 3.903e-08 -7.368 -7.409 -0.040 -4.05 + H+ 2.824e-07 2.604e-07 -6.549 -6.584 -0.035 0.00 + OH- 4.265e-08 3.887e-08 -7.370 -7.410 -0.040 -4.05 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 1.550e-03 CH4 1.550e-03 1.553e-03 -2.810 -2.809 0.001 35.46 -C(4) 8.033e-03 - HCO3- 5.165e-03 4.728e-03 -2.287 -2.325 -0.038 24.63 +C(4) 7.935e-03 + HCO3- 5.144e-03 4.708e-03 -2.289 -2.327 -0.038 24.63 CO2 2.753e-03 2.757e-03 -2.560 -2.560 0.000 34.43 - CaHCO3+ 1.103e-04 1.011e-04 -3.957 -3.995 -0.038 9.72 - CaCO3 2.403e-06 2.408e-06 -5.619 -5.618 0.001 -14.60 - CO3-2 1.218e-06 8.551e-07 -5.914 -6.068 -0.154 -3.72 + CaHCO3+ 3.358e-05 3.077e-05 -4.474 -4.512 -0.038 122.68 + CaCO3 2.411e-06 2.415e-06 -5.618 -5.617 0.001 -14.60 + CO3-2 1.208e-06 8.481e-07 -5.918 -6.072 -0.154 -3.72 (CO2)2 1.392e-07 1.395e-07 -6.856 -6.855 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.389e-03 1.676e-03 -2.622 -2.776 -0.154 -17.96 - CaHCO3+ 1.103e-04 1.011e-04 -3.957 -3.995 -0.038 9.72 - CaCO3 2.403e-06 2.408e-06 -5.619 -5.618 0.001 -14.60 - CaOH+ 1.175e-09 1.072e-09 -8.930 -8.970 -0.040 (0) +Ca 2.453e-03 + Ca+2 2.417e-03 1.695e-03 -2.617 -2.771 -0.154 -17.96 + CaHCO3+ 3.358e-05 3.077e-05 -4.474 -4.512 -0.038 122.68 + CaCO3 2.411e-06 2.415e-06 -5.618 -5.617 0.001 -14.60 + CaOH+ 1.184e-09 1.080e-09 -8.927 -8.966 -0.040 (0) H(0) 9.779e-10 H2 4.890e-10 4.898e-10 -9.311 -9.310 0.001 28.61 N(-3) 2.792e-04 - NH4+ 2.786e-04 2.533e-04 -3.555 -3.596 -0.041 (0) - NH3 5.557e-07 5.567e-07 -6.255 -6.254 0.001 (0) -N(0) 4.849e-07 - N2 2.424e-07 2.429e-07 -6.615 -6.615 0.001 29.29 + NH4+ 2.787e-04 2.533e-04 -3.555 -3.596 -0.041 (0) + NH3 5.534e-07 5.544e-07 -6.257 -6.256 0.001 (0) +N(0) 4.809e-07 + N2 2.404e-07 2.409e-07 -6.619 -6.618 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -62.411 -62.451 -0.041 25.02 + NO2- 0.000e+00 0.000e+00 -62.414 -62.455 -0.041 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -84.821 -84.862 -0.041 29.54 + NO3- 0.000e+00 0.000e+00 -84.824 -84.865 -0.041 29.54 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.761 -73.760 0.001 30.40 @@ -689,8 +689,8 @@ O(0) 0.000e+00 CO2(g) -1.09 -2.56 -1.47 CO2 Pressure 0.1 atm, phi 0.994 H2(g) -6.21 -9.31 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.995 - N2(g) -3.44 -6.61 -3.18 N2 Pressure 0.0 atm, phi 1.000 - NH3(g) -8.02 -6.25 1.77 NH3 + N2(g) -3.44 -6.62 -3.18 N2 Pressure 0.0 atm, phi 1.000 + NH3(g) -8.03 -6.26 1.77 NH3 O2(g) -70.87 -73.76 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -730,72 +730,72 @@ Total pressure: 1.10 atmospheres (Peng-Robinson calculation) Component log P P phi Initial Final Delta CH4(g) -0.03 9.437e-01 0.998 0.000e+00 2.520e-03 2.520e-03 -CO2(g) -0.91 1.238e-01 0.994 0.000e+00 3.306e-04 3.306e-04 +CO2(g) -0.91 1.238e-01 0.994 0.000e+00 3.305e-04 3.305e-04 H2O(g) -1.50 3.158e-02 0.995 0.000e+00 8.432e-05 8.432e-05 -N2(g) -3.01 9.676e-04 1.000 0.000e+00 2.584e-06 2.584e-06 +N2(g) -3.02 9.612e-04 1.000 0.000e+00 2.567e-06 2.567e-06 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 1.122e-02 1.122e-02 - Ca 2.502e-03 2.502e-03 - N 5.549e-04 5.548e-04 + C 1.112e-02 1.112e-02 + Ca 2.453e-03 2.453e-03 + N 5.549e-04 5.549e-04 ----------------------------Description of solution---------------------------- - pH = 6.426 Charge balance - pe = -3.321 Adjusted to redox equilibrium + pH = 6.425 Charge balance + pe = -3.320 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 479 - Density (g/cm³) = 0.99742 - Volume (L) = 1.00319 + Density (g/cm³) = 0.99741 + Volume (L) = 1.00320 Viscosity (mPa s) = 0.89323 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.824e-03 + Ionic strength (mol/kgw) = 7.837e-03 Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 5.557e-03 - Total CO2 (mol/kg) = 9.737e-03 + Total alkalinity (eq/kg) = 5.460e-03 + Total CO2 (mol/kg) = 9.640e-03 Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 21 Total H = 1.110199e+02 - Total O = 5.552811e+01 + Total O = 5.552787e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 4.069e-07 3.747e-07 -6.391 -6.426 -0.036 0.00 - OH- 2.968e-08 2.701e-08 -7.528 -7.569 -0.041 -4.05 + H+ 4.083e-07 3.760e-07 -6.389 -6.425 -0.036 0.00 + OH- 2.958e-08 2.692e-08 -7.529 -7.570 -0.041 -4.05 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 1.483e-03 CH4 1.483e-03 1.485e-03 -2.829 -2.828 0.001 35.46 -C(4) 9.737e-03 - HCO3- 5.436e-03 4.969e-03 -2.265 -2.304 -0.039 24.64 +C(4) 9.640e-03 + HCO3- 5.419e-03 4.953e-03 -2.266 -2.305 -0.039 24.64 CO2 4.182e-03 4.187e-03 -2.379 -2.378 0.001 34.43 - CaHCO3+ 1.153e-04 1.055e-04 -3.938 -3.977 -0.038 9.72 - CaCO3 1.736e-06 1.739e-06 -5.761 -5.760 0.001 -14.60 - CO3-2 8.908e-07 6.220e-07 -6.050 -6.206 -0.156 -3.71 + CaHCO3+ 3.516e-05 3.219e-05 -4.454 -4.492 -0.038 122.68 + CaCO3 1.746e-06 1.749e-06 -5.758 -5.757 0.001 -14.60 + CO3-2 8.851e-07 6.179e-07 -6.053 -6.209 -0.156 -3.71 (CO2)2 3.213e-07 3.218e-07 -6.493 -6.492 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.385e-03 1.664e-03 -2.623 -2.779 -0.156 -17.96 - CaHCO3+ 1.153e-04 1.055e-04 -3.938 -3.977 -0.038 9.72 - CaCO3 1.736e-06 1.739e-06 -5.761 -5.760 0.001 -14.60 - CaOH+ 8.084e-10 7.368e-10 -9.092 -9.133 -0.040 (0) +Ca 2.453e-03 + Ca+2 2.416e-03 1.685e-03 -2.617 -2.773 -0.156 -17.96 + CaHCO3+ 3.516e-05 3.219e-05 -4.454 -4.492 -0.038 122.68 + CaCO3 1.746e-06 1.749e-06 -5.758 -5.757 0.001 -14.60 + CaOH+ 8.161e-10 7.438e-10 -9.088 -9.129 -0.040 (0) H(0) 8.711e-10 H2 4.355e-10 4.363e-10 -9.361 -9.360 0.001 28.61 N(-3) 5.536e-04 - NH4+ 5.528e-04 5.018e-04 -3.257 -3.299 -0.042 (0) - NH3 7.617e-07 7.631e-07 -6.118 -6.117 0.001 (0) -N(0) 1.289e-06 - N2 6.444e-07 6.456e-07 -6.191 -6.190 0.001 29.29 + NH4+ 5.529e-04 5.018e-04 -3.257 -3.299 -0.042 (0) + NH3 7.592e-07 7.606e-07 -6.120 -6.119 0.001 (0) +N(0) 1.280e-06 + N2 6.402e-07 6.413e-07 -6.194 -6.193 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -62.282 -62.324 -0.041 25.02 + NO2- 0.000e+00 0.000e+00 -62.285 -62.327 -0.042 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -84.642 -84.684 -0.041 29.54 + NO3- 0.000e+00 0.000e+00 -84.645 -84.687 -0.042 29.54 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.661 -73.660 0.001 30.40 @@ -803,13 +803,13 @@ O(0) 0.000e+00 Phase SI** log IAP log K(298 K, 1 atm) - Aragonite -0.65 -8.99 -8.34 CaCO3 - Calcite -0.51 -8.99 -8.48 CaCO3 + Aragonite -0.65 -8.98 -8.34 CaCO3 + Calcite -0.50 -8.98 -8.48 CaCO3 CH4(g) -0.03 -2.83 -2.80 CH4 Pressure 0.9 atm, phi 0.998 CO2(g) -0.91 -2.38 -1.47 CO2 Pressure 0.1 atm, phi 0.994 H2(g) -6.26 -9.36 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.995 - N2(g) -3.01 -6.19 -3.18 N2 Pressure 0.0 atm, phi 1.000 + N2(g) -3.02 -6.19 -3.18 N2 Pressure 0.0 atm, phi 1.000 NH3(g) -7.89 -6.12 1.77 NH3 O2(g) -70.77 -73.66 -2.89 O2 @@ -852,70 +852,70 @@ Component log P P phi Initial Final Delta CH4(g) -0.06 8.731e-01 0.998 0.000e+00 6.645e-03 6.645e-03 CO2(g) -0.72 1.927e-01 0.994 0.000e+00 1.466e-03 1.466e-03 H2O(g) -1.50 3.159e-02 0.994 0.000e+00 2.404e-04 2.404e-04 -N2(g) -2.58 2.647e-03 1.000 0.000e+00 2.014e-05 2.014e-05 +N2(g) -2.58 2.636e-03 1.000 0.000e+00 2.006e-05 2.006e-05 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 1.396e-02 1.396e-02 - Ca 2.502e-03 2.502e-03 + C 1.386e-02 1.386e-02 + Ca 2.453e-03 2.453e-03 N 1.080e-03 1.080e-03 ----------------------------Description of solution---------------------------- pH = 6.272 Charge balance - pe = -3.139 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 498 - Density (g/cm³) = 0.99747 + pe = -3.138 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 499 + Density (g/cm³) = 0.99746 Volume (L) = 1.00327 - Viscosity (mPa s) = 0.89343 + Viscosity (mPa s) = 0.89344 Activity of water = 1.000 - Ionic strength (mol/kgw) = 8.329e-03 + Ionic strength (mol/kgw) = 8.355e-03 Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 6.080e-03 - Total CO2 (mol/kg) = 1.259e-02 + Total alkalinity (eq/kg) = 5.982e-03 + Total CO2 (mol/kg) = 1.249e-02 Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 22 Total H = 1.110207e+02 - Total O = 5.553368e+01 + Total O = 5.553344e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 5.811e-07 5.340e-07 -6.236 -6.272 -0.037 0.00 - OH- 2.088e-08 1.895e-08 -7.680 -7.722 -0.042 -4.04 + H+ 5.823e-07 5.351e-07 -6.235 -6.272 -0.037 0.00 + OH- 2.084e-08 1.891e-08 -7.681 -7.723 -0.042 -4.04 H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.07 C(-4) 1.372e-03 CH4 1.372e-03 1.374e-03 -2.863 -2.862 0.001 35.46 -C(4) 1.259e-02 +C(4) 1.249e-02 CO2 6.509e-03 6.517e-03 -2.187 -2.186 0.001 34.43 - HCO3- 5.951e-03 5.427e-03 -2.225 -2.265 -0.040 24.64 - CaHCO3+ 1.245e-04 1.137e-04 -3.905 -3.944 -0.039 9.72 - CaCO3 1.312e-06 1.314e-06 -5.882 -5.881 0.001 -14.60 + HCO3- 5.940e-03 5.416e-03 -2.226 -2.266 -0.040 24.64 + CaHCO3+ 3.812e-05 3.480e-05 -4.419 -4.458 -0.040 122.68 + CaCO3 1.327e-06 1.329e-06 -5.877 -5.876 0.001 -14.60 (CO2)2 7.781e-07 7.796e-07 -6.109 -6.108 0.001 68.87 - CO3-2 6.893e-07 4.766e-07 -6.162 -6.322 -0.160 -3.70 -Ca 2.502e-03 - Ca+2 2.376e-03 1.642e-03 -2.624 -2.785 -0.161 -17.95 - CaHCO3+ 1.245e-04 1.137e-04 -3.905 -3.944 -0.039 9.72 - CaCO3 1.312e-06 1.314e-06 -5.882 -5.881 0.001 -14.60 - CaOH+ 5.610e-10 5.100e-10 -9.251 -9.292 -0.041 (0) + CO3-2 6.869e-07 4.747e-07 -6.163 -6.324 -0.160 -3.70 +Ca 2.453e-03 + Ca+2 2.414e-03 1.667e-03 -2.617 -2.778 -0.161 -17.95 + CaHCO3+ 3.812e-05 3.480e-05 -4.419 -4.458 -0.040 122.68 + CaCO3 1.327e-06 1.329e-06 -5.877 -5.876 0.001 -14.60 + CaOH+ 5.685e-10 5.168e-10 -9.245 -9.287 -0.041 (0) H(0) 7.648e-10 H2 3.824e-10 3.831e-10 -9.417 -9.417 0.001 28.61 N(-3) 1.076e-03 - NH4+ 1.075e-03 9.732e-04 -2.969 -3.012 -0.043 (0) - NH3 1.036e-06 1.038e-06 -5.984 -5.984 0.001 (0) -N(0) 3.525e-06 - N2 1.763e-06 1.766e-06 -5.754 -5.753 0.001 29.29 + NH4+ 1.075e-03 9.732e-04 -2.968 -3.012 -0.043 (0) + NH3 1.034e-06 1.036e-06 -5.985 -5.984 0.001 (0) +N(0) 3.511e-06 + N2 1.756e-06 1.759e-06 -5.756 -5.755 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -62.132 -62.174 -0.043 25.02 + NO2- 0.000e+00 0.000e+00 -62.133 -62.176 -0.043 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -84.435 -84.478 -0.043 29.55 + NO3- 0.000e+00 0.000e+00 -84.437 -84.480 -0.043 29.55 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.548 -73.547 0.001 30.40 @@ -923,8 +923,8 @@ O(0) 0.000e+00 Phase SI** log IAP log K(298 K, 1 atm) - Aragonite -0.77 -9.11 -8.34 CaCO3 - Calcite -0.63 -9.11 -8.48 CaCO3 + Aragonite -0.77 -9.10 -8.34 CaCO3 + Calcite -0.62 -9.10 -8.48 CaCO3 CH4(g) -0.06 -2.86 -2.80 CH4 Pressure 0.9 atm, phi 0.998 CO2(g) -0.72 -2.19 -1.47 CO2 Pressure 0.2 atm, phi 0.994 H2(g) -6.32 -9.42 -3.10 H2 @@ -972,70 +972,70 @@ Component log P P phi Initial Final Delta CH4(g) -0.11 7.773e-01 0.998 0.000e+00 1.489e-02 1.489e-02 CO2(g) -0.55 2.836e-01 0.994 0.000e+00 5.433e-03 5.433e-03 H2O(g) -1.50 3.161e-02 0.994 0.000e+00 6.054e-04 6.054e-04 -N2(g) -2.13 7.474e-03 1.000 0.000e+00 1.432e-04 1.432e-04 +N2(g) -2.13 7.467e-03 1.000 0.000e+00 1.430e-04 1.430e-04 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 1.775e-02 1.775e-02 - Ca 2.502e-03 2.502e-03 + C 1.765e-02 1.765e-02 + Ca 2.453e-03 2.453e-03 N 1.954e-03 1.954e-03 ----------------------------Description of solution---------------------------- pH = 6.161 Charge balance pe = -3.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 530 - Density (g/cm³) = 0.99755 - Volume (L) = 1.00337 - Viscosity (mPa s) = 0.89375 + Specific Conductance (µS/cm, 25°C) = 532 + Density (g/cm³) = 0.99754 + Volume (L) = 1.00338 + Viscosity (mPa s) = 0.89377 Activity of water = 1.000 - Ionic strength (mol/kgw) = 9.168e-03 + Ionic strength (mol/kgw) = 9.214e-03 Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 6.948e-03 - Total CO2 (mol/kg) = 1.653e-02 + Total alkalinity (eq/kg) = 6.850e-03 + Total CO2 (mol/kg) = 1.643e-02 Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 22 Total H = 1.110224e+02 - Total O = 5.554139e+01 + Total O = 5.554114e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.533e-07 6.901e-07 -6.123 -6.161 -0.038 0.00 - OH- 1.623e-08 1.466e-08 -7.790 -7.834 -0.044 -4.04 + H+ 7.537e-07 6.903e-07 -6.123 -6.161 -0.038 0.00 + OH- 1.622e-08 1.466e-08 -7.790 -7.834 -0.044 -4.04 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.07 C(-4) 1.221e-03 CH4 1.221e-03 1.224e-03 -2.913 -2.912 0.001 35.46 -C(4) 1.653e-02 +C(4) 1.643e-02 CO2 9.579e-03 9.592e-03 -2.019 -2.018 0.001 34.43 - HCO3- 6.804e-03 6.181e-03 -2.167 -2.209 -0.042 24.64 - CaHCO3+ 1.393e-04 1.267e-04 -3.856 -3.897 -0.041 9.72 + HCO3- 6.803e-03 6.178e-03 -2.167 -2.209 -0.042 24.64 + CaHCO3+ 4.289e-05 3.901e-05 -4.368 -4.409 -0.041 122.69 (CO2)2 1.685e-06 1.689e-06 -5.773 -5.772 0.001 68.87 - CaCO3 1.131e-06 1.134e-06 -5.946 -5.946 0.001 -14.60 - CO3-2 6.170e-07 4.201e-07 -6.210 -6.377 -0.167 -3.68 -Ca 2.502e-03 - Ca+2 2.361e-03 1.607e-03 -2.627 -2.794 -0.167 -17.94 - CaHCO3+ 1.393e-04 1.267e-04 -3.856 -3.897 -0.041 9.72 - CaCO3 1.131e-06 1.134e-06 -5.946 -5.946 0.001 -14.60 - CaOH+ 4.266e-10 3.862e-10 -9.370 -9.413 -0.043 (0) + CaCO3 1.152e-06 1.155e-06 -5.938 -5.938 0.001 -14.60 + CO3-2 6.171e-07 4.198e-07 -6.210 -6.377 -0.167 -3.68 +Ca 2.453e-03 + Ca+2 2.409e-03 1.638e-03 -2.618 -2.786 -0.168 -17.94 + CaHCO3+ 4.289e-05 3.901e-05 -4.368 -4.409 -0.041 122.69 + CaCO3 1.152e-06 1.155e-06 -5.938 -5.938 0.001 -14.60 + CaOH+ 4.347e-10 3.935e-10 -9.362 -9.405 -0.043 (0) H(0) 6.743e-10 H2 3.372e-10 3.379e-10 -9.472 -9.471 0.001 28.61 N(-3) 1.944e-03 - NH4+ 1.942e-03 1.750e-03 -2.712 -2.757 -0.045 (0) + NH4+ 1.943e-03 1.750e-03 -2.712 -2.757 -0.045 (0) NH3 1.442e-06 1.445e-06 -5.841 -5.840 0.001 (0) -N(0) 9.954e-06 - N2 4.977e-06 4.988e-06 -5.303 -5.302 0.001 29.29 +N(0) 9.945e-06 + N2 4.972e-06 4.983e-06 -5.303 -5.303 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.934 -61.978 -0.045 25.03 + NO2- 0.000e+00 0.000e+00 -61.934 -61.979 -0.045 25.03 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -84.183 -84.227 -0.045 29.55 + NO3- 0.000e+00 0.000e+00 -84.183 -84.228 -0.045 29.55 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.439 -73.438 0.001 30.40 @@ -1043,8 +1043,8 @@ O(0) 0.000e+00 Phase SI** log IAP log K(298 K, 1 atm) - Aragonite -0.83 -9.17 -8.34 CaCO3 - Calcite -0.69 -9.17 -8.48 CaCO3 + Aragonite -0.83 -9.16 -8.34 CaCO3 + Calcite -0.68 -9.16 -8.48 CaCO3 CH4(g) -0.11 -2.91 -2.80 CH4 Pressure 0.8 atm, phi 0.998 CO2(g) -0.55 -2.02 -1.47 CO2 Pressure 0.3 atm, phi 0.994 H2(g) -6.37 -9.47 -3.10 H2 @@ -1092,70 +1092,70 @@ Component log P P phi Initial Final Delta CH4(g) -0.17 6.819e-01 0.998 0.000e+00 3.152e-02 3.152e-02 CO2(g) -0.43 3.697e-01 0.994 0.000e+00 1.709e-02 1.709e-02 H2O(g) -1.50 3.162e-02 0.993 0.000e+00 1.462e-03 1.462e-03 -N2(g) -1.77 1.682e-02 1.000 0.000e+00 7.776e-04 7.776e-04 +N2(g) -1.77 1.683e-02 1.000 0.000e+00 7.780e-04 7.780e-04 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 2.146e-02 2.146e-02 - Ca 2.502e-03 2.502e-03 - N 2.925e-03 2.925e-03 + C 2.137e-02 2.136e-02 + Ca 2.453e-03 2.453e-03 + N 2.924e-03 2.924e-03 ----------------------------Description of solution---------------------------- pH = 6.101 Charge balance pe = -2.919 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 566 - Density (g/cm³) = 0.99763 + Specific Conductance (µS/cm, 25°C) = 568 + Density (g/cm³) = 0.99762 Volume (L) = 1.00348 - Viscosity (mPa s) = 0.89411 + Viscosity (mPa s) = 0.89414 Activity of water = 1.000 - Ionic strength (mol/kgw) = 1.009e-02 + Ionic strength (mol/kgw) = 1.016e-02 Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 7.907e-03 - Total CO2 (mol/kg) = 2.039e-02 + Total alkalinity (eq/kg) = 7.808e-03 + Total CO2 (mol/kg) = 2.029e-02 Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 20 Total H = 1.110249e+02 - Total O = 5.554922e+01 + Total O = 5.554898e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 8.686e-07 7.931e-07 -6.061 -6.101 -0.040 0.00 - OH- 1.418e-08 1.276e-08 -7.848 -7.894 -0.046 -4.03 + H+ 8.681e-07 7.925e-07 -6.061 -6.101 -0.040 0.00 + OH- 1.420e-08 1.277e-08 -7.848 -7.894 -0.046 -4.03 H2O 5.551e+01 9.995e-01 1.744 -0.000 0.000 18.07 C(-4) 1.071e-03 CH4 1.071e-03 1.073e-03 -2.970 -2.969 0.001 35.46 -C(4) 2.039e-02 +C(4) 2.029e-02 CO2 1.248e-02 1.250e-02 -1.904 -1.903 0.001 34.43 - HCO3- 7.747e-03 7.009e-03 -2.111 -2.154 -0.043 24.65 - CaHCO3+ 1.550e-04 1.404e-04 -3.810 -3.853 -0.043 9.72 + HCO3- 7.756e-03 7.015e-03 -2.110 -2.154 -0.044 24.65 + CaHCO3+ 4.799e-05 4.348e-05 -4.319 -4.362 -0.043 122.69 (CO2)2 2.862e-06 2.869e-06 -5.543 -5.542 0.001 68.87 - CaCO3 1.091e-06 1.093e-06 -5.962 -5.961 0.001 -14.60 - CO3-2 6.187e-07 4.145e-07 -6.209 -6.382 -0.174 -3.66 -Ca 2.502e-03 - Ca+2 2.346e-03 1.570e-03 -2.630 -2.804 -0.174 -17.93 - CaHCO3+ 1.550e-04 1.404e-04 -3.810 -3.853 -0.043 9.72 - CaCO3 1.091e-06 1.093e-06 -5.962 -5.961 0.001 -14.60 - CaOH+ 3.643e-10 3.285e-10 -9.438 -9.484 -0.045 (0) + CaCO3 1.119e-06 1.121e-06 -5.951 -5.950 0.001 -14.60 + CO3-2 6.204e-07 4.152e-07 -6.207 -6.382 -0.174 -3.66 +Ca 2.453e-03 + Ca+2 2.404e-03 1.608e-03 -2.619 -2.794 -0.175 -17.92 + CaHCO3+ 4.799e-05 4.348e-05 -4.319 -4.362 -0.043 122.69 + CaCO3 1.119e-06 1.121e-06 -5.951 -5.950 0.001 -14.60 + CaOH+ 3.734e-10 3.365e-10 -9.428 -9.473 -0.045 (0) H(0) 6.106e-10 H2 3.053e-10 3.060e-10 -9.515 -9.514 0.001 28.61 -N(-3) 2.903e-03 - NH4+ 2.901e-03 2.601e-03 -2.537 -2.585 -0.047 (0) - NH3 1.865e-06 1.869e-06 -5.729 -5.728 0.001 (0) -N(0) 2.240e-05 - N2 1.120e-05 1.123e-05 -4.951 -4.950 0.001 29.29 +N(-3) 2.902e-03 + NH4+ 2.900e-03 2.600e-03 -2.538 -2.585 -0.047 (0) + NH3 1.865e-06 1.870e-06 -5.729 -5.728 0.001 (0) +N(0) 2.241e-05 + N2 1.121e-05 1.123e-05 -4.951 -4.950 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.752 -61.798 -0.047 25.03 + NO2- 0.000e+00 0.000e+00 -61.751 -61.798 -0.047 25.03 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.958 -84.004 -0.047 29.55 + NO3- 0.000e+00 0.000e+00 -83.957 -84.004 -0.047 29.56 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.353 -73.352 0.001 30.40 @@ -1163,8 +1163,8 @@ O(0) 0.000e+00 Phase SI** log IAP log K(298 K, 1 atm) - Aragonite -0.85 -9.19 -8.34 CaCO3 - Calcite -0.71 -9.19 -8.48 CaCO3 + Aragonite -0.84 -9.18 -8.34 CaCO3 + Calcite -0.70 -9.18 -8.48 CaCO3 CH4(g) -0.17 -2.97 -2.80 CH4 Pressure 0.7 atm, phi 0.998 CO2(g) -0.43 -1.90 -1.47 CO2 Pressure 0.4 atm, phi 0.994 H2(g) -6.41 -9.51 -3.10 H2 @@ -1212,66 +1212,66 @@ Component log P P phi Initial Final Delta CH4(g) -0.21 6.176e-01 0.998 0.000e+00 6.350e-02 6.350e-02 CO2(g) -0.37 4.254e-01 0.994 0.000e+00 4.373e-02 4.373e-02 H2O(g) -1.50 3.163e-02 0.993 0.000e+00 3.252e-03 3.252e-03 -N2(g) -1.60 2.536e-02 1.001 0.000e+00 2.607e-03 2.607e-03 +N2(g) -1.60 2.537e-02 1.001 0.000e+00 2.608e-03 2.608e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 2.384e-02 2.384e-02 - Ca 2.502e-03 2.502e-03 - N 3.536e-03 3.535e-03 + C 2.374e-02 2.374e-02 + Ca 2.453e-03 2.453e-03 + N 3.533e-03 3.533e-03 ----------------------------Description of solution---------------------------- pH = 6.071 Charge balance - pe = -2.875 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 588 - Density (g/cm³) = 0.99768 + pe = -2.876 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 591 + Density (g/cm³) = 0.99767 Volume (L) = 1.00356 - Viscosity (mPa s) = 0.89434 + Viscosity (mPa s) = 0.89437 Activity of water = 0.999 - Ionic strength (mol/kgw) = 1.067e-02 + Ionic strength (mol/kgw) = 1.075e-02 Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 8.506e-03 - Total CO2 (mol/kg) = 2.287e-02 + Total alkalinity (eq/kg) = 8.406e-03 + Total CO2 (mol/kg) = 2.277e-02 Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 21 Total H = 1.110282e+02 - Total O = 5.555515e+01 + Total O = 5.555490e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.328e-07 8.501e-07 -6.030 -6.071 -0.040 0.00 - OH- 1.327e-08 1.190e-08 -7.877 -7.924 -0.047 -4.03 + H+ 9.319e-07 8.490e-07 -6.031 -6.071 -0.040 0.00 + OH- 1.329e-08 1.192e-08 -7.877 -7.924 -0.047 -4.03 H2O 5.551e+01 9.995e-01 1.744 -0.000 0.000 18.07 C(-4) 9.699e-04 CH4 9.699e-04 9.723e-04 -3.013 -3.012 0.001 35.46 -C(4) 2.287e-02 +C(4) 2.277e-02 CO2 1.436e-02 1.439e-02 -1.843 -1.842 0.001 34.43 - HCO3- 8.337e-03 7.524e-03 -2.079 -2.124 -0.045 24.65 - CaHCO3+ 1.645e-04 1.487e-04 -3.784 -3.828 -0.044 9.73 + HCO3- 8.350e-03 7.534e-03 -2.078 -2.123 -0.045 24.65 + CaHCO3+ 5.109e-05 4.618e-05 -4.292 -4.336 -0.044 122.69 (CO2)2 3.789e-06 3.799e-06 -5.421 -5.420 0.001 68.87 - CaCO3 1.078e-06 1.080e-06 -5.967 -5.966 0.001 -14.60 - CO3-2 6.257e-07 4.152e-07 -6.204 -6.382 -0.178 -3.65 -Ca 2.502e-03 - Ca+2 2.336e-03 1.549e-03 -2.631 -2.810 -0.178 -17.92 - CaHCO3+ 1.645e-04 1.487e-04 -3.784 -3.828 -0.044 9.73 - CaCO3 1.078e-06 1.080e-06 -5.967 -5.966 0.001 -14.60 - CaOH+ 3.362e-10 3.023e-10 -9.473 -9.520 -0.046 (0) -H(0) 5.751e-10 + CaCO3 1.109e-06 1.112e-06 -5.955 -5.954 0.001 -14.60 + CO3-2 6.280e-07 4.162e-07 -6.202 -6.381 -0.179 -3.65 +Ca 2.453e-03 + Ca+2 2.401e-03 1.590e-03 -2.620 -2.799 -0.179 -17.92 + CaHCO3+ 5.109e-05 4.618e-05 -4.292 -4.336 -0.044 122.69 + CaCO3 1.109e-06 1.112e-06 -5.955 -5.954 0.001 -14.60 + CaOH+ 3.456e-10 3.106e-10 -9.461 -9.508 -0.046 (0) +H(0) 5.750e-10 H2 2.875e-10 2.882e-10 -9.541 -9.540 0.001 28.61 -N(-3) 3.502e-03 - NH4+ 3.500e-03 3.130e-03 -2.456 -2.505 -0.049 (0) +N(-3) 3.500e-03 + NH4+ 3.498e-03 3.126e-03 -2.456 -2.505 -0.049 (0) NH3 2.093e-06 2.098e-06 -5.679 -5.678 0.001 (0) -N(0) 3.377e-05 - N2 1.689e-05 1.693e-05 -4.772 -4.771 0.001 29.29 +N(0) 3.379e-05 + N2 1.689e-05 1.694e-05 -4.772 -4.771 0.001 29.29 N(3) 0.000e+00 NO2- 0.000e+00 0.000e+00 -61.652 -61.700 -0.048 25.03 N(5) 0.000e+00 @@ -1283,8 +1283,8 @@ O(0) 0.000e+00 Phase SI** log IAP log K(298 K, 1 atm) - Aragonite -0.86 -9.19 -8.34 CaCO3 - Calcite -0.71 -9.19 -8.48 CaCO3 + Aragonite -0.84 -9.18 -8.34 CaCO3 + Calcite -0.70 -9.18 -8.48 CaCO3 CH4(g) -0.21 -3.01 -2.80 CH4 Pressure 0.6 atm, phi 0.998 CO2(g) -0.37 -1.84 -1.47 CO2 Pressure 0.4 atm, phi 0.994 H2(g) -6.44 -9.54 -3.10 H2 @@ -1332,70 +1332,70 @@ Component log P P phi Initial Final Delta CH4(g) -0.24 5.807e-01 0.998 0.000e+00 1.292e-01 1.292e-01 CO2(g) -0.34 4.570e-01 0.994 0.000e+00 1.017e-01 1.017e-01 H2O(g) -1.50 3.163e-02 0.993 0.000e+00 7.039e-03 7.039e-03 -N2(g) -1.51 3.067e-02 1.001 0.000e+00 6.826e-03 6.826e-03 +N2(g) -1.51 3.068e-02 1.001 0.000e+00 6.827e-03 6.827e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 2.516e-02 2.516e-02 - Ca 2.502e-03 2.502e-03 - N 3.849e-03 3.849e-03 + C 2.506e-02 2.506e-02 + Ca 2.453e-03 2.453e-03 + N 3.846e-03 3.845e-03 ----------------------------Description of solution---------------------------- - pH = 6.054 Charge balance - pe = -2.852 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 599 - Density (g/cm³) = 0.99771 - Volume (L) = 1.00364 - Viscosity (mPa s) = 0.89445 + pH = 6.055 Charge balance + pe = -2.853 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 602 + Density (g/cm³) = 0.99770 + Volume (L) = 1.00365 + Viscosity (mPa s) = 0.89448 Activity of water = 0.999 - Ionic strength (mol/kgw) = 1.097e-02 + Ionic strength (mol/kgw) = 1.105e-02 Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 8.812e-03 - Total CO2 (mol/kg) = 2.425e-02 + Total alkalinity (eq/kg) = 8.711e-03 + Total CO2 (mol/kg) = 2.415e-02 Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 20 Total H = 1.110340e+02 - Total O = 5.556044e+01 + Total O = 5.556019e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.693e-07 8.824e-07 -6.014 -6.054 -0.041 0.00 - OH- 1.280e-08 1.147e-08 -7.893 -7.941 -0.048 -4.03 + H+ 9.682e-07 8.811e-07 -6.014 -6.055 -0.041 0.00 + OH- 1.282e-08 1.148e-08 -7.892 -7.940 -0.048 -4.03 H2O 5.551e+01 9.995e-01 1.744 -0.000 0.000 18.07 C(-4) 9.119e-04 CH4 9.119e-04 9.142e-04 -3.040 -3.039 0.001 35.46 -C(4) 2.425e-02 +C(4) 2.415e-02 CO2 1.543e-02 1.546e-02 -1.812 -1.811 0.001 34.43 - HCO3- 8.638e-03 7.787e-03 -2.064 -2.109 -0.045 24.65 - CaHCO3+ 1.693e-04 1.529e-04 -3.771 -3.816 -0.044 9.73 + HCO3- 8.653e-03 7.798e-03 -2.063 -2.108 -0.045 24.65 + CaHCO3+ 5.266e-05 4.754e-05 -4.279 -4.323 -0.044 122.69 (CO2)2 4.373e-06 4.384e-06 -5.359 -5.358 0.001 68.87 - CaCO3 1.067e-06 1.070e-06 -5.972 -5.971 0.001 -14.60 - CO3-2 6.268e-07 4.139e-07 -6.203 -6.383 -0.180 -3.65 -Ca 2.502e-03 - Ca+2 2.331e-03 1.539e-03 -2.632 -2.813 -0.181 -17.91 - CaHCO3+ 1.693e-04 1.529e-04 -3.771 -3.816 -0.044 9.73 - CaCO3 1.067e-06 1.070e-06 -5.972 -5.971 0.001 -14.60 - CaOH+ 3.220e-10 2.892e-10 -9.492 -9.539 -0.047 (0) + CaCO3 1.100e-06 1.103e-06 -5.959 -5.958 0.001 -14.60 + CO3-2 6.294e-07 4.151e-07 -6.201 -6.382 -0.181 -3.65 +Ca 2.453e-03 + Ca+2 2.399e-03 1.581e-03 -2.620 -2.801 -0.181 -17.91 + CaHCO3+ 5.266e-05 4.754e-05 -4.279 -4.323 -0.044 122.69 + CaCO3 1.100e-06 1.103e-06 -5.959 -5.958 0.001 -14.60 + CaOH+ 3.315e-10 2.977e-10 -9.479 -9.526 -0.047 (0) H(0) 5.562e-10 H2 2.781e-10 2.788e-10 -9.556 -9.555 0.001 28.61 -N(-3) 3.808e-03 - NH4+ 3.806e-03 3.399e-03 -2.420 -2.469 -0.049 (0) - NH3 2.189e-06 2.195e-06 -5.660 -5.659 0.001 (0) -N(0) 4.085e-05 - N2 2.042e-05 2.048e-05 -4.690 -4.689 0.001 29.29 +N(-3) 3.805e-03 + NH4+ 3.803e-03 3.394e-03 -2.420 -2.469 -0.049 (0) + NH3 2.190e-06 2.195e-06 -5.660 -5.659 0.001 (0) +N(0) 4.086e-05 + N2 2.043e-05 2.048e-05 -4.690 -4.689 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.605 -61.653 -0.048 25.04 + NO2- 0.000e+00 0.000e+00 -61.604 -61.653 -0.049 25.04 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.771 -83.819 -0.048 29.56 + NO3- 0.000e+00 0.000e+00 -83.770 -83.818 -0.049 29.56 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.272 -73.271 0.001 30.40 @@ -1403,8 +1403,8 @@ O(0) 0.000e+00 Phase SI** log IAP log K(298 K, 1 atm) - Aragonite -0.86 -9.20 -8.34 CaCO3 - Calcite -0.72 -9.20 -8.48 CaCO3 + Aragonite -0.85 -9.18 -8.34 CaCO3 + Calcite -0.70 -9.18 -8.48 CaCO3 CH4(g) -0.24 -3.04 -2.80 CH4 Pressure 0.6 atm, phi 0.998 CO2(g) -0.34 -1.81 -1.47 CO2 Pressure 0.5 atm, phi 0.994 H2(g) -6.45 -9.55 -3.10 H2 @@ -1458,64 +1458,64 @@ N2(g) -1.48 3.341e-02 1.001 0.000e+00 1.550e-02 1.550e-02 Elements Molality Moles - C 2.581e-02 2.581e-02 - Ca 2.502e-03 2.502e-03 - N 3.996e-03 3.996e-03 + C 2.571e-02 2.571e-02 + Ca 2.453e-03 2.453e-03 + N 3.992e-03 3.992e-03 ----------------------------Description of solution---------------------------- - pH = 6.046 Charge balance - pe = -2.840 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 605 - Density (g/cm³) = 0.99772 + pH = 6.047 Charge balance + pe = -2.841 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 608 + Density (g/cm³) = 0.99771 Volume (L) = 1.00376 - Viscosity (mPa s) = 0.89450 + Viscosity (mPa s) = 0.89454 Activity of water = 0.999 - Ionic strength (mol/kgw) = 1.111e-02 + Ionic strength (mol/kgw) = 1.119e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 8.955e-03 - Total CO2 (mol/kg) = 2.493e-02 + Total alkalinity (eq/kg) = 8.853e-03 + Total CO2 (mol/kg) = 2.483e-02 Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 27 + Iterations = 26 Total H = 1.110450e+02 - Total O = 5.556719e+01 + Total O = 5.556694e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.882e-07 8.992e-07 -6.005 -6.046 -0.041 0.00 - OH- 1.256e-08 1.125e-08 -7.901 -7.949 -0.048 -4.03 + H+ 9.870e-07 8.978e-07 -6.006 -6.047 -0.041 0.00 + OH- 1.259e-08 1.127e-08 -7.900 -7.948 -0.048 -4.03 H2O 5.551e+01 9.995e-01 1.744 -0.000 0.000 18.07 C(-4) 8.824e-04 - CH4 8.824e-04 8.847e-04 -3.054 -3.053 0.001 35.46 -C(4) 2.493e-02 + CH4 8.824e-04 8.846e-04 -3.054 -3.053 0.001 35.46 +C(4) 2.483e-02 CO2 1.597e-02 1.600e-02 -1.797 -1.796 0.001 34.43 - HCO3- 8.779e-03 7.909e-03 -2.057 -2.102 -0.045 24.65 - CaHCO3+ 1.715e-04 1.548e-04 -3.766 -3.810 -0.045 9.73 + HCO3- 8.795e-03 7.921e-03 -2.056 -2.101 -0.045 24.65 + CaHCO3+ 5.338e-05 4.816e-05 -4.273 -4.317 -0.045 122.69 (CO2)2 4.685e-06 4.697e-06 -5.329 -5.328 0.001 68.87 - CaCO3 1.060e-06 1.063e-06 -5.975 -5.974 0.001 -14.60 - CO3-2 6.261e-07 4.125e-07 -6.203 -6.385 -0.181 -3.65 -Ca 2.502e-03 - Ca+2 2.329e-03 1.534e-03 -2.633 -2.814 -0.181 -17.91 - CaHCO3+ 1.715e-04 1.548e-04 -3.766 -3.810 -0.045 9.73 - CaCO3 1.060e-06 1.063e-06 -5.975 -5.974 0.001 -14.60 - CaOH+ 3.152e-10 2.829e-10 -9.501 -9.548 -0.047 (0) + CaCO3 1.093e-06 1.096e-06 -5.961 -5.960 0.001 -14.60 + CO3-2 6.288e-07 4.138e-07 -6.201 -6.383 -0.182 -3.64 +Ca 2.453e-03 + Ca+2 2.398e-03 1.577e-03 -2.620 -2.802 -0.182 -17.91 + CaHCO3+ 5.338e-05 4.816e-05 -4.273 -4.317 -0.045 122.69 + CaCO3 1.093e-06 1.096e-06 -5.961 -5.960 0.001 -14.60 + CaOH+ 3.247e-10 2.913e-10 -9.489 -9.536 -0.047 (0) H(0) 5.469e-10 H2 2.734e-10 2.741e-10 -9.563 -9.562 0.001 28.61 -N(-3) 3.952e-03 - NH4+ 3.949e-03 3.524e-03 -2.403 -2.453 -0.049 (0) - NH3 2.228e-06 2.233e-06 -5.652 -5.651 0.001 (0) +N(-3) 3.947e-03 + NH4+ 3.945e-03 3.519e-03 -2.404 -2.454 -0.050 (0) + NH3 2.228e-06 2.234e-06 -5.652 -5.651 0.001 (0) N(0) 4.449e-05 - N2 2.224e-05 2.230e-05 -4.653 -4.652 0.001 29.29 + N2 2.225e-05 2.230e-05 -4.653 -4.652 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.583 -61.632 -0.049 25.04 + NO2- 0.000e+00 0.000e+00 -61.583 -61.631 -0.049 25.04 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.742 -83.790 -0.049 29.56 + NO3- 0.000e+00 0.000e+00 -83.741 -83.790 -0.049 29.56 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.258 -73.256 0.001 30.40 @@ -1523,8 +1523,8 @@ O(0) 0.000e+00 Phase SI** log IAP log K(298 K, 1 atm) - Aragonite -0.86 -9.20 -8.34 CaCO3 - Calcite -0.72 -9.20 -8.48 CaCO3 + Aragonite -0.85 -9.19 -8.34 CaCO3 + Calcite -0.71 -9.19 -8.48 CaCO3 CH4(g) -0.25 -3.05 -2.80 CH4 Pressure 0.6 atm, phi 0.998 CO2(g) -0.33 -1.80 -1.47 CO2 Pressure 0.5 atm, phi 0.994 H2(g) -6.46 -9.56 -3.10 H2 @@ -1578,64 +1578,64 @@ N2(g) -1.46 3.477e-02 1.001 0.000e+00 3.297e-02 3.297e-02 Elements Molality Moles - C 2.614e-02 2.614e-02 - Ca 2.501e-03 2.502e-03 - N 4.066e-03 4.067e-03 + C 2.603e-02 2.604e-02 + Ca 2.452e-03 2.453e-03 + N 4.062e-03 4.063e-03 ----------------------------Description of solution---------------------------- - pH = 6.042 Charge balance - pe = -2.834 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 607 - Density (g/cm³) = 0.99773 - Volume (L) = 1.00396 - Viscosity (mPa s) = 0.89453 + pH = 6.043 Charge balance + pe = -2.835 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 610 + Density (g/cm³) = 0.99772 + Volume (L) = 1.00397 + Viscosity (mPa s) = 0.89456 Activity of water = 0.999 - Ionic strength (mol/kgw) = 1.117e-02 + Ionic strength (mol/kgw) = 1.126e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 9.022e-03 - Total CO2 (mol/kg) = 2.527e-02 + Total alkalinity (eq/kg) = 8.920e-03 + Total CO2 (mol/kg) = 2.517e-02 Temperature (°C) = 25.00 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 24 Total H = 1.110669e+02 - Total O = 5.557876e+01 + Total O = 5.557851e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.978e-07 9.078e-07 -6.001 -6.042 -0.041 0.00 - OH- 1.245e-08 1.114e-08 -7.905 -7.953 -0.048 -4.03 + H+ 9.966e-07 9.064e-07 -6.001 -6.043 -0.041 0.00 + OH- 1.247e-08 1.116e-08 -7.904 -7.952 -0.048 -4.03 H2O 5.551e+01 9.994e-01 1.744 -0.000 0.000 18.07 -C(-4) 8.677e-04 - CH4 8.677e-04 8.699e-04 -3.062 -3.061 0.001 35.46 -C(4) 2.527e-02 +C(-4) 8.676e-04 + CH4 8.676e-04 8.699e-04 -3.062 -3.061 0.001 35.46 +C(4) 2.517e-02 CO2 1.624e-02 1.627e-02 -1.789 -1.789 0.001 34.43 - HCO3- 8.845e-03 7.967e-03 -2.053 -2.099 -0.045 24.65 - CaHCO3+ 1.725e-04 1.556e-04 -3.763 -3.808 -0.045 9.73 + HCO3- 8.862e-03 7.979e-03 -2.052 -2.098 -0.046 24.65 + CaHCO3+ 5.371e-05 4.845e-05 -4.270 -4.315 -0.045 122.69 (CO2)2 4.845e-06 4.858e-06 -5.315 -5.314 0.001 68.87 - CaCO3 1.056e-06 1.059e-06 -5.976 -5.975 0.001 -14.60 - CO3-2 6.254e-07 4.116e-07 -6.204 -6.385 -0.182 -3.64 -Ca 2.501e-03 - Ca+2 2.328e-03 1.531e-03 -2.633 -2.815 -0.182 -17.91 - CaHCO3+ 1.725e-04 1.556e-04 -3.763 -3.808 -0.045 9.73 - CaCO3 1.056e-06 1.059e-06 -5.976 -5.975 0.001 -14.60 - CaOH+ 3.118e-10 2.797e-10 -9.506 -9.553 -0.047 (0) + CaCO3 1.090e-06 1.092e-06 -5.963 -5.962 0.001 -14.60 + CO3-2 6.281e-07 4.129e-07 -6.202 -6.384 -0.182 -3.64 +Ca 2.452e-03 + Ca+2 2.397e-03 1.575e-03 -2.620 -2.803 -0.183 -17.91 + CaHCO3+ 5.371e-05 4.845e-05 -4.270 -4.315 -0.045 122.69 + CaCO3 1.090e-06 1.092e-06 -5.963 -5.962 0.001 -14.60 + CaOH+ 3.213e-10 2.882e-10 -9.493 -9.540 -0.047 (0) H(0) 5.423e-10 H2 2.711e-10 2.718e-10 -9.567 -9.566 0.001 28.61 -N(-3) 4.020e-03 - NH4+ 4.018e-03 3.584e-03 -2.396 -2.446 -0.050 (0) +N(-3) 4.016e-03 + NH4+ 4.014e-03 3.579e-03 -2.396 -2.446 -0.050 (0) NH3 2.244e-06 2.250e-06 -5.649 -5.648 0.001 (0) -N(0) 4.630e-05 +N(0) 4.631e-05 N2 2.315e-05 2.321e-05 -4.635 -4.634 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.573 -61.622 -0.049 25.04 + NO2- 0.000e+00 0.000e+00 -61.572 -61.621 -0.049 25.04 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.728 -83.777 -0.049 29.56 + NO3- 0.000e+00 0.000e+00 -83.727 -83.776 -0.049 29.56 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.250 -73.249 0.001 30.40 @@ -1643,8 +1643,8 @@ O(0) 0.000e+00 Phase SI** log IAP log K(298 K, 1 atm) - Aragonite -0.86 -9.20 -8.34 CaCO3 - Calcite -0.72 -9.20 -8.48 CaCO3 + Aragonite -0.85 -9.19 -8.34 CaCO3 + Calcite -0.71 -9.19 -8.48 CaCO3 CH4(g) -0.26 -3.06 -2.80 CH4 Pressure 0.6 atm, phi 0.998 CO2(g) -0.32 -1.79 -1.47 CO2 Pressure 0.5 atm, phi 0.994 H2(g) -6.46 -9.57 -3.10 H2 @@ -1709,7 +1709,7 @@ Total pressure: 0.06 atmospheres ---------------------------------- Component log P P Initial Final Delta -CH4(g) -21.55 2.803e-22 2.657e-22 2.657e-22 0.000e+00 +CH4(g) -21.55 2.810e-22 2.664e-22 2.664e-22 0.000e+00 CO2(g) -1.50 3.162e-02 2.997e-02 2.997e-02 0.000e+00 H2O(g) -1.50 3.141e-02 2.977e-02 2.977e-02 0.000e+00 N2(g) -99.99 0.000e+00 0.000e+00 0.000e+00 0.000e+00 @@ -1755,73 +1755,73 @@ Total pressure: 0.06 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -3.26 5.527e-04 1.000 2.657e-22 5.242e-04 5.242e-04 -CO2(g) -1.49 3.208e-02 1.000 2.997e-02 3.042e-02 4.563e-04 +CH4(g) -3.26 5.527e-04 1.000 2.664e-22 5.242e-04 5.242e-04 +CO2(g) -1.49 3.208e-02 1.000 2.997e-02 3.042e-02 4.562e-04 H2O(g) -1.50 3.144e-02 0.999 2.977e-02 2.982e-02 4.337e-05 -N2(g) -4.45 3.524e-05 1.000 0.000e+00 3.342e-05 3.342e-05 +N2(g) -4.45 3.523e-05 1.000 0.000e+00 3.341e-05 3.341e-05 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 6.089e-03 6.089e-03 - Ca 2.502e-03 2.502e-03 - N 3.156e-06 3.156e-06 + C 5.992e-03 5.992e-03 + Ca 2.453e-03 2.453e-03 + N 3.171e-06 3.171e-06 ----------------------------Description of solution---------------------------- - pH = 6.965 Charge balance - pe = -3.529 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 458 - Density (g/cm³) = 0.99734 + pH = 6.963 Charge balance + pe = -3.527 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 457 + Density (g/cm³) = 0.99733 Volume (L) = 1.00308 - Viscosity (mPa s) = 0.89303 + Viscosity (mPa s) = 0.89304 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.285e-03 + Ionic strength (mol/kgw) = 7.284e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.007e-03 - Total CO2 (mol/kg) = 6.089e-03 + Total alkalinity (eq/kg) = 4.909e-03 + Total CO2 (mol/kg) = 5.991e-03 Temperature (°C) = 25.00 Pressure (atm) = 0.06 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 25 Total H = 1.110125e+02 - Total O = 5.552090e+01 + Total O = 5.552066e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.174e-07 1.084e-07 -6.930 -6.965 -0.035 0.00 - OH- 1.023e-07 9.337e-08 -6.990 -7.030 -0.040 -4.05 + H+ 1.180e-07 1.089e-07 -6.928 -6.963 -0.035 0.00 + OH- 1.018e-07 9.291e-08 -6.992 -7.032 -0.040 -4.05 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 C(-4) 8.710e-07 CH4 8.710e-07 8.724e-07 -6.060 -6.059 0.001 35.45 -C(4) 6.089e-03 - HCO3- 4.885e-03 4.478e-03 -2.311 -2.349 -0.038 24.63 +C(4) 5.991e-03 + HCO3- 4.861e-03 4.455e-03 -2.313 -2.351 -0.038 24.63 CO2 1.090e-03 1.091e-03 -2.963 -2.962 0.000 34.43 - CaHCO3+ 1.050e-04 9.638e-05 -3.979 -4.016 -0.037 9.71 + CaHCO3+ 3.191e-05 2.929e-05 -4.496 -4.533 -0.037 122.68 CaCO3 5.482e-06 5.491e-06 -5.261 -5.260 0.001 -14.61 - CO3-2 2.745e-06 1.938e-06 -5.562 -5.713 -0.151 -3.73 + CO3-2 2.717e-06 1.918e-06 -5.566 -5.717 -0.151 -3.73 (CO2)2 2.182e-08 2.186e-08 -7.661 -7.660 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.391e-03 1.687e-03 -2.621 -2.773 -0.152 -17.98 - CaHCO3+ 1.050e-04 9.638e-05 -3.979 -4.016 -0.037 9.71 +Ca 2.453e-03 + Ca+2 2.416e-03 1.704e-03 -2.617 -2.769 -0.152 -17.98 + CaHCO3+ 3.191e-05 2.929e-05 -4.496 -4.533 -0.037 122.68 CaCO3 5.482e-06 5.491e-06 -5.261 -5.260 0.001 -14.61 - CaOH+ 2.825e-09 2.583e-09 -8.549 -8.588 -0.039 (0) + CaOH+ 2.840e-09 2.596e-09 -8.547 -8.586 -0.039 (0) H(0) 1.898e-10 H2 9.492e-11 9.508e-11 -10.023 -10.022 0.001 28.61 -N(-3) 3.109e-06 - NH4+ 3.094e-06 2.817e-06 -5.509 -5.550 -0.041 (0) +N(-3) 3.124e-06 + NH4+ 3.109e-06 2.831e-06 -5.507 -5.548 -0.041 (0) NH3 1.479e-08 1.481e-08 -7.830 -7.829 0.001 (0) -N(0) 4.697e-08 +N(0) 4.695e-08 N2 2.348e-08 2.352e-08 -7.629 -7.629 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.471 -61.511 -0.040 25.02 + NO2- 0.000e+00 0.000e+00 -61.474 -61.514 -0.040 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.169 -83.210 -0.040 29.54 + NO3- 0.000e+00 0.000e+00 -83.172 -83.212 -0.040 29.54 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -72.337 -72.336 0.001 30.40 @@ -1875,73 +1875,73 @@ Total pressure: 0.07 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -2.96 1.106e-03 1.000 2.657e-22 1.049e-03 1.049e-03 +CH4(g) -2.96 1.106e-03 1.000 2.664e-22 1.049e-03 1.049e-03 CO2(g) -1.49 3.256e-02 1.000 2.997e-02 3.088e-02 9.119e-04 H2O(g) -1.50 3.144e-02 0.999 2.977e-02 2.982e-02 4.366e-05 -N2(g) -4.15 7.072e-05 1.000 0.000e+00 6.707e-05 6.707e-05 +N2(g) -4.15 7.071e-05 1.000 0.000e+00 6.706e-05 6.706e-05 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 6.109e-03 6.109e-03 - Ca 2.502e-03 2.502e-03 - N 5.856e-06 5.855e-06 + C 6.012e-03 6.012e-03 + Ca 2.453e-03 2.453e-03 + N 5.884e-06 5.883e-06 ----------------------------Description of solution---------------------------- - pH = 6.959 Charge balance - pe = -3.560 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 458 - Density (g/cm³) = 0.99734 + pH = 6.957 Charge balance + pe = -3.558 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 457 + Density (g/cm³) = 0.99733 Volume (L) = 1.00308 Viscosity (mPa s) = 0.89304 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.287e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.009e-03 - Total CO2 (mol/kg) = 6.108e-03 + Total alkalinity (eq/kg) = 4.912e-03 + Total CO2 (mol/kg) = 6.010e-03 Temperature (°C) = 25.00 Pressure (atm) = 0.07 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 27 + Iterations = 25 Total H = 1.110126e+02 - Total O = 5.552099e+01 + Total O = 5.552075e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.191e-07 1.099e-07 -6.924 -6.959 -0.035 0.00 - OH- 1.008e-07 9.205e-08 -6.996 -7.036 -0.040 -4.05 + H+ 1.197e-07 1.105e-07 -6.922 -6.957 -0.035 0.00 + OH- 1.003e-07 9.159e-08 -6.999 -7.038 -0.040 -4.05 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 C(-4) 1.742e-06 CH4 1.742e-06 1.745e-06 -5.759 -5.758 0.001 35.45 -C(4) 6.108e-03 - HCO3- 4.888e-03 4.480e-03 -2.311 -2.349 -0.038 24.63 +C(4) 6.010e-03 + HCO3- 4.864e-03 4.458e-03 -2.313 -2.351 -0.038 24.63 CO2 1.106e-03 1.108e-03 -2.956 -2.956 0.000 34.43 - CaHCO3+ 1.051e-04 9.643e-05 -3.979 -4.016 -0.037 9.71 + CaHCO3+ 3.193e-05 2.930e-05 -4.496 -4.533 -0.037 122.68 CaCO3 5.407e-06 5.416e-06 -5.267 -5.266 0.001 -14.61 - CO3-2 2.707e-06 1.911e-06 -5.567 -5.719 -0.151 -3.73 + CO3-2 2.680e-06 1.892e-06 -5.572 -5.723 -0.151 -3.73 (CO2)2 2.248e-08 2.252e-08 -7.648 -7.647 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.391e-03 1.687e-03 -2.621 -2.773 -0.152 -17.98 - CaHCO3+ 1.051e-04 9.643e-05 -3.979 -4.016 -0.037 9.71 +Ca 2.453e-03 + Ca+2 2.416e-03 1.704e-03 -2.617 -2.769 -0.152 -17.98 + CaHCO3+ 3.193e-05 2.930e-05 -4.496 -4.533 -0.037 122.68 CaCO3 5.407e-06 5.416e-06 -5.267 -5.266 0.001 -14.61 - CaOH+ 2.785e-09 2.546e-09 -8.555 -8.594 -0.039 (0) + CaOH+ 2.799e-09 2.559e-09 -8.553 -8.592 -0.039 (0) H(0) 2.249e-10 H2 1.125e-10 1.127e-10 -9.949 -9.948 0.001 28.61 -N(-3) 5.761e-06 - NH4+ 5.734e-06 5.221e-06 -5.242 -5.282 -0.041 (0) +N(-3) 5.790e-06 + NH4+ 5.762e-06 5.247e-06 -5.239 -5.280 -0.041 (0) NH3 2.702e-08 2.706e-08 -7.568 -7.568 0.001 (0) -N(0) 9.425e-08 - N2 4.713e-08 4.720e-08 -7.327 -7.326 0.001 29.29 +N(0) 9.423e-08 + N2 4.712e-08 4.719e-08 -7.327 -7.326 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.437 -61.477 -0.040 25.02 + NO2- 0.000e+00 0.000e+00 -61.439 -61.479 -0.040 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.209 -83.249 -0.040 29.54 + NO3- 0.000e+00 0.000e+00 -83.211 -83.251 -0.040 29.54 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -72.484 -72.484 0.001 30.40 @@ -1995,73 +1995,73 @@ Total pressure: 0.07 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -2.78 1.659e-03 1.000 2.657e-22 1.573e-03 1.573e-03 +CH4(g) -2.78 1.659e-03 1.000 2.664e-22 1.573e-03 1.573e-03 CO2(g) -1.48 3.304e-02 1.000 2.997e-02 3.134e-02 1.368e-03 H2O(g) -1.50 3.144e-02 0.999 2.977e-02 2.982e-02 4.396e-05 -N2(g) -3.97 1.063e-04 1.000 0.000e+00 1.008e-04 1.008e-04 +N2(g) -3.97 1.062e-04 1.000 0.000e+00 1.008e-04 1.008e-04 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 6.129e-03 6.129e-03 - Ca 2.502e-03 2.502e-03 - N 8.435e-06 8.434e-06 + C 6.032e-03 6.031e-03 + Ca 2.453e-03 2.453e-03 + N 8.475e-06 8.475e-06 ----------------------------Description of solution---------------------------- - pH = 6.953 Charge balance - pe = -3.575 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 459 - Density (g/cm³) = 0.99734 + pH = 6.951 Charge balance + pe = -3.573 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 457 + Density (g/cm³) = 0.99733 Volume (L) = 1.00308 Viscosity (mPa s) = 0.89304 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.290e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.012e-03 - Total CO2 (mol/kg) = 6.127e-03 + Total alkalinity (eq/kg) = 4.914e-03 + Total CO2 (mol/kg) = 6.029e-03 Temperature (°C) = 25.00 Pressure (atm) = 0.07 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 28 Total H = 1.110127e+02 - Total O = 5.552108e+01 + Total O = 5.552083e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.208e-07 1.115e-07 -6.918 -6.953 -0.035 0.00 - OH- 9.944e-08 9.076e-08 -7.002 -7.042 -0.040 -4.05 + H+ 1.214e-07 1.121e-07 -6.916 -6.951 -0.035 0.00 + OH- 9.894e-08 9.031e-08 -7.005 -7.044 -0.040 -4.05 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 C(-4) 2.613e-06 CH4 2.613e-06 2.618e-06 -5.583 -5.582 0.001 35.45 -C(4) 6.127e-03 - HCO3- 4.891e-03 4.483e-03 -2.311 -2.348 -0.038 24.63 +C(4) 6.029e-03 + HCO3- 4.866e-03 4.460e-03 -2.313 -2.351 -0.038 24.63 CO2 1.123e-03 1.124e-03 -2.950 -2.949 0.000 34.43 - CaHCO3+ 1.051e-04 9.647e-05 -3.978 -4.016 -0.037 9.71 - CaCO3 5.334e-06 5.342e-06 -5.273 -5.272 0.001 -14.61 - CO3-2 2.671e-06 1.885e-06 -5.573 -5.725 -0.151 -3.73 + CaHCO3+ 3.194e-05 2.932e-05 -4.496 -4.533 -0.037 122.68 + CaCO3 5.334e-06 5.343e-06 -5.273 -5.272 0.001 -14.61 + CO3-2 2.644e-06 1.867e-06 -5.578 -5.729 -0.151 -3.73 (CO2)2 2.315e-08 2.319e-08 -7.635 -7.635 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.391e-03 1.687e-03 -2.621 -2.773 -0.152 -17.98 - CaHCO3+ 1.051e-04 9.647e-05 -3.978 -4.016 -0.037 9.71 - CaCO3 5.334e-06 5.342e-06 -5.273 -5.272 0.001 -14.61 - CaOH+ 2.746e-09 2.510e-09 -8.561 -8.600 -0.039 (0) +Ca 2.453e-03 + Ca+2 2.416e-03 1.704e-03 -2.617 -2.769 -0.152 -17.98 + CaHCO3+ 3.194e-05 2.932e-05 -4.496 -4.533 -0.037 122.68 + CaCO3 5.334e-06 5.343e-06 -5.273 -5.272 0.001 -14.61 + CaOH+ 2.760e-09 2.523e-09 -8.559 -8.598 -0.039 (0) H(0) 2.480e-10 H2 1.240e-10 1.242e-10 -9.907 -9.906 0.001 28.61 -N(-3) 8.293e-06 - NH4+ 8.255e-06 7.516e-06 -5.083 -5.124 -0.041 (0) +N(-3) 8.333e-06 + NH4+ 8.295e-06 7.553e-06 -5.081 -5.122 -0.041 (0) NH3 3.835e-08 3.841e-08 -7.416 -7.416 0.001 (0) N(0) 1.416e-07 - N2 7.081e-08 7.093e-08 -7.150 -7.149 0.001 29.29 + N2 7.080e-08 7.092e-08 -7.150 -7.149 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.418 -61.458 -0.040 25.02 + NO2- 0.000e+00 0.000e+00 -61.420 -61.461 -0.040 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.232 -83.273 -0.040 29.54 + NO3- 0.000e+00 0.000e+00 -83.235 -83.275 -0.040 29.54 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -72.569 -72.569 0.001 30.40 @@ -2115,7 +2115,7 @@ Total pressure: 0.07 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -2.66 2.212e-03 1.000 2.657e-22 2.097e-03 2.097e-03 +CH4(g) -2.66 2.212e-03 1.000 2.664e-22 2.097e-03 2.097e-03 CO2(g) -1.47 3.352e-02 1.000 2.997e-02 3.179e-02 1.823e-03 H2O(g) -1.50 3.144e-02 0.999 2.977e-02 2.982e-02 4.426e-05 N2(g) -3.85 1.418e-04 1.000 0.000e+00 1.345e-04 1.345e-04 @@ -2124,64 +2124,64 @@ N2(g) -3.85 1.418e-04 1.000 0.000e+00 1.345e-04 1.345e-04 Elements Molality Moles - C 6.149e-03 6.149e-03 - Ca 2.502e-03 2.502e-03 - N 1.095e-05 1.095e-05 + C 6.051e-03 6.051e-03 + Ca 2.453e-03 2.453e-03 + N 1.100e-05 1.100e-05 ----------------------------Description of solution---------------------------- - pH = 6.947 Charge balance - pe = -3.584 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 459 - Density (g/cm³) = 0.99734 - Volume (L) = 1.00308 + pH = 6.944 Charge balance + pe = -3.581 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 458 + Density (g/cm³) = 0.99733 + Volume (L) = 1.00309 Viscosity (mPa s) = 0.89304 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.293e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.014e-03 - Total CO2 (mol/kg) = 6.145e-03 + Total alkalinity (eq/kg) = 4.917e-03 + Total CO2 (mol/kg) = 6.048e-03 Temperature (°C) = 25.00 Pressure (atm) = 0.07 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 + Iterations = 28 Total H = 1.110128e+02 - Total O = 5.552117e+01 + Total O = 5.552092e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.225e-07 1.131e-07 -6.912 -6.947 -0.035 0.00 - OH- 9.806e-08 8.951e-08 -7.008 -7.048 -0.040 -4.05 + H+ 1.231e-07 1.136e-07 -6.910 -6.944 -0.035 0.00 + OH- 9.758e-08 8.906e-08 -7.011 -7.050 -0.040 -4.05 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 C(-4) 3.485e-06 CH4 3.485e-06 3.491e-06 -5.458 -5.457 0.001 35.45 -C(4) 6.145e-03 - HCO3- 4.893e-03 4.485e-03 -2.310 -2.348 -0.038 24.63 +C(4) 6.048e-03 + HCO3- 4.869e-03 4.463e-03 -2.313 -2.350 -0.038 24.63 CO2 1.139e-03 1.140e-03 -2.943 -2.943 0.000 34.43 - CaHCO3+ 1.052e-04 9.652e-05 -3.978 -4.015 -0.037 9.71 - CaCO3 5.262e-06 5.271e-06 -5.279 -5.278 0.001 -14.61 - CO3-2 2.636e-06 1.860e-06 -5.579 -5.730 -0.151 -3.73 + CaHCO3+ 3.196e-05 2.933e-05 -4.495 -4.533 -0.037 122.68 + CaCO3 5.263e-06 5.272e-06 -5.279 -5.278 0.001 -14.61 + CO3-2 2.609e-06 1.842e-06 -5.583 -5.735 -0.151 -3.73 (CO2)2 2.383e-08 2.387e-08 -7.623 -7.622 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.391e-03 1.687e-03 -2.621 -2.773 -0.152 -17.98 - CaHCO3+ 1.052e-04 9.652e-05 -3.978 -4.015 -0.037 9.71 - CaCO3 5.262e-06 5.271e-06 -5.279 -5.278 0.001 -14.61 - CaOH+ 2.708e-09 2.475e-09 -8.567 -8.606 -0.039 (0) +Ca 2.453e-03 + Ca+2 2.416e-03 1.704e-03 -2.617 -2.769 -0.152 -17.98 + CaHCO3+ 3.196e-05 2.933e-05 -4.495 -4.533 -0.037 122.68 + CaCO3 5.263e-06 5.272e-06 -5.279 -5.278 0.001 -14.61 + CaOH+ 2.722e-09 2.488e-09 -8.565 -8.604 -0.039 (0) H(0) 2.656e-10 H2 1.328e-10 1.330e-10 -9.877 -9.876 0.001 28.61 -N(-3) 1.076e-05 - NH4+ 1.071e-05 9.756e-06 -4.970 -5.011 -0.041 (0) - NH3 4.909e-08 4.917e-08 -7.309 -7.308 0.001 (0) +N(-3) 1.082e-05 + NH4+ 1.077e-05 9.803e-06 -4.968 -5.009 -0.041 (0) + NH3 4.908e-08 4.916e-08 -7.309 -7.308 0.001 (0) N(0) 1.890e-07 - N2 9.452e-08 9.468e-08 -7.024 -7.024 0.001 29.29 + N2 9.450e-08 9.466e-08 -7.025 -7.024 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.406 -61.446 -0.040 25.02 + NO2- 0.000e+00 0.000e+00 -61.408 -61.448 -0.040 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.250 -83.290 -0.040 29.54 + NO3- 0.000e+00 0.000e+00 -83.252 -83.292 -0.040 29.54 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -72.629 -72.628 0.001 30.40 @@ -2235,73 +2235,73 @@ Total pressure: 0.07 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -2.35 4.424e-03 1.000 2.657e-22 4.195e-03 4.195e-03 +CH4(g) -2.35 4.424e-03 1.000 2.664e-22 4.195e-03 4.195e-03 CO2(g) -1.45 3.544e-02 1.000 2.997e-02 3.361e-02 3.647e-03 H2O(g) -1.50 3.144e-02 0.999 2.977e-02 2.982e-02 4.546e-05 -N2(g) -3.55 2.843e-04 1.000 0.000e+00 2.696e-04 2.696e-04 +N2(g) -3.55 2.842e-04 1.000 0.000e+00 2.696e-04 2.696e-04 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 6.228e-03 6.228e-03 - Ca 2.502e-03 2.502e-03 - N 2.079e-05 2.079e-05 + C 6.130e-03 6.130e-03 + Ca 2.453e-03 2.453e-03 + N 2.089e-05 2.089e-05 ----------------------------Description of solution---------------------------- - pH = 6.923 Charge balance - pe = -3.595 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 459 - Density (g/cm³) = 0.99734 + pH = 6.921 Charge balance + pe = -3.593 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 458 + Density (g/cm³) = 0.99733 Volume (L) = 1.00309 Viscosity (mPa s) = 0.89304 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.302e-03 + Ionic strength (mol/kgw) = 7.303e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.024e-03 - Total CO2 (mol/kg) = 6.221e-03 + Total alkalinity (eq/kg) = 4.926e-03 + Total CO2 (mol/kg) = 6.123e-03 Temperature (°C) = 25.00 Pressure (atm) = 0.07 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 + Iterations = 28 Total H = 1.110132e+02 - Total O = 5.552152e+01 + Total O = 5.552127e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.293e-07 1.193e-07 -6.889 -6.923 -0.035 0.00 - OH- 9.294e-08 8.483e-08 -7.032 -7.071 -0.040 -4.05 + H+ 1.299e-07 1.199e-07 -6.886 -6.921 -0.035 0.00 + OH- 9.248e-08 8.441e-08 -7.034 -7.074 -0.040 -4.05 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 C(-4) 6.970e-06 CH4 6.970e-06 6.982e-06 -5.157 -5.156 0.001 35.45 -C(4) 6.221e-03 - HCO3- 4.903e-03 4.494e-03 -2.309 -2.347 -0.038 24.63 +C(4) 6.123e-03 + HCO3- 4.879e-03 4.472e-03 -2.312 -2.349 -0.038 24.63 CO2 1.204e-03 1.206e-03 -2.919 -2.919 0.000 34.43 - CaHCO3+ 1.054e-04 9.670e-05 -3.977 -4.015 -0.037 9.71 - CaCO3 4.996e-06 5.005e-06 -5.301 -5.301 0.001 -14.61 - CO3-2 2.503e-06 1.767e-06 -5.601 -5.753 -0.151 -3.73 + CaHCO3+ 3.202e-05 2.939e-05 -4.495 -4.532 -0.037 122.68 + CaCO3 4.998e-06 5.006e-06 -5.301 -5.300 0.001 -14.61 + CO3-2 2.479e-06 1.749e-06 -5.606 -5.757 -0.151 -3.73 (CO2)2 2.664e-08 2.668e-08 -7.574 -7.574 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.391e-03 1.686e-03 -2.621 -2.773 -0.152 -17.98 - CaHCO3+ 1.054e-04 9.670e-05 -3.977 -4.015 -0.037 9.71 - CaCO3 4.996e-06 5.005e-06 -5.301 -5.301 0.001 -14.61 - CaOH+ 2.566e-09 2.346e-09 -8.591 -8.630 -0.039 (0) +Ca 2.453e-03 + Ca+2 2.416e-03 1.704e-03 -2.617 -2.769 -0.152 -17.98 + CaHCO3+ 3.202e-05 2.939e-05 -4.495 -4.532 -0.037 122.68 + CaCO3 4.998e-06 5.006e-06 -5.301 -5.300 0.001 -14.61 + CaOH+ 2.580e-09 2.358e-09 -8.588 -8.627 -0.039 (0) H(0) 3.114e-10 H2 1.557e-10 1.560e-10 -9.808 -9.807 0.001 28.61 -N(-3) 2.042e-05 - NH4+ 2.033e-05 1.851e-05 -4.692 -4.733 -0.041 (0) - NH3 8.826e-08 8.841e-08 -7.054 -7.054 0.001 (0) +N(-3) 2.051e-05 + NH4+ 2.043e-05 1.860e-05 -4.690 -4.731 -0.041 (0) + NH3 8.825e-08 8.840e-08 -7.054 -7.054 0.001 (0) N(0) 3.788e-07 N2 1.894e-07 1.897e-07 -6.723 -6.722 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.382 -61.422 -0.040 25.02 + NO2- 0.000e+00 0.000e+00 -61.384 -61.425 -0.040 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.295 -83.335 -0.040 29.54 + NO3- 0.000e+00 0.000e+00 -83.297 -83.338 -0.040 29.54 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -72.767 -72.766 0.001 30.40 @@ -2355,73 +2355,73 @@ Total pressure: 0.08 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -2.05 8.848e-03 1.000 2.657e-22 8.391e-03 8.391e-03 +CH4(g) -2.05 8.848e-03 1.000 2.664e-22 8.391e-03 8.391e-03 CO2(g) -1.41 3.929e-02 1.000 2.997e-02 3.726e-02 7.293e-03 H2O(g) -1.50 3.145e-02 0.999 2.977e-02 2.982e-02 4.786e-05 -N2(g) -3.24 5.691e-04 1.000 0.000e+00 5.397e-04 5.397e-04 +N2(g) -3.24 5.690e-04 1.000 0.000e+00 5.396e-04 5.396e-04 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 6.385e-03 6.385e-03 - Ca 2.502e-03 2.502e-03 - N 4.054e-05 4.053e-05 + C 6.288e-03 6.288e-03 + Ca 2.453e-03 2.453e-03 + N 4.072e-05 4.072e-05 ----------------------------Description of solution---------------------------- - pH = 6.880 Charge balance - pe = -3.584 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 460 - Density (g/cm³) = 0.99734 + pH = 6.878 Charge balance + pe = -3.582 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 459 + Density (g/cm³) = 0.99733 Volume (L) = 1.00310 Viscosity (mPa s) = 0.89305 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.322e-03 + Ionic strength (mol/kgw) = 7.323e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.043e-03 - Total CO2 (mol/kg) = 6.371e-03 + Total alkalinity (eq/kg) = 4.946e-03 + Total CO2 (mol/kg) = 6.274e-03 Temperature (°C) = 25.00 Pressure (atm) = 0.08 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 28 + Iterations = 26 Total H = 1.110141e+02 - Total O = 5.552222e+01 + Total O = 5.552198e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.427e-07 1.317e-07 -6.846 -6.880 -0.035 0.00 - OH- 8.420e-08 7.684e-08 -7.075 -7.114 -0.040 -4.05 + H+ 1.434e-07 1.323e-07 -6.843 -6.878 -0.035 0.00 + OH- 8.379e-08 7.647e-08 -7.077 -7.117 -0.040 -4.05 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 C(-4) 1.394e-05 CH4 1.394e-05 1.396e-05 -4.856 -4.855 0.001 35.45 -C(4) 6.371e-03 - HCO3- 4.924e-03 4.512e-03 -2.308 -2.346 -0.038 24.63 +C(4) 6.274e-03 + HCO3- 4.900e-03 4.490e-03 -2.310 -2.348 -0.038 24.63 CO2 1.335e-03 1.336e-03 -2.875 -2.874 0.000 34.43 - CaHCO3+ 1.058e-04 9.705e-05 -3.976 -4.013 -0.037 9.71 - CaCO3 4.542e-06 4.550e-06 -5.343 -5.342 0.001 -14.61 - CO3-2 2.278e-06 1.607e-06 -5.642 -5.794 -0.152 -3.73 + CaHCO3+ 3.215e-05 2.950e-05 -4.493 -4.530 -0.037 122.68 + CaCO3 4.545e-06 4.553e-06 -5.342 -5.342 0.001 -14.61 + CO3-2 2.256e-06 1.591e-06 -5.647 -5.798 -0.152 -3.73 (CO2)2 3.273e-08 3.278e-08 -7.485 -7.484 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.391e-03 1.686e-03 -2.621 -2.773 -0.152 -17.98 - CaHCO3+ 1.058e-04 9.705e-05 -3.976 -4.013 -0.037 9.71 - CaCO3 4.542e-06 4.550e-06 -5.343 -5.342 0.001 -14.61 - CaOH+ 2.324e-09 2.124e-09 -8.634 -8.673 -0.039 (0) +Ca 2.453e-03 + Ca+2 2.416e-03 1.703e-03 -2.617 -2.769 -0.152 -17.98 + CaHCO3+ 3.215e-05 2.950e-05 -4.493 -4.530 -0.037 122.68 + CaCO3 4.545e-06 4.553e-06 -5.342 -5.342 0.001 -14.61 + CaOH+ 2.337e-09 2.135e-09 -8.631 -8.671 -0.039 (0) H(0) 3.610e-10 H2 1.805e-10 1.808e-10 -9.744 -9.743 0.001 28.61 -N(-3) 3.978e-05 - NH4+ 3.962e-05 3.607e-05 -4.402 -4.443 -0.041 (0) +N(-3) 3.997e-05 + NH4+ 3.981e-05 3.624e-05 -4.400 -4.441 -0.041 (0) NH3 1.558e-07 1.561e-07 -6.807 -6.807 0.001 (0) -N(0) 7.584e-07 - N2 3.792e-07 3.798e-07 -6.421 -6.420 0.001 29.29 +N(0) 7.583e-07 + N2 3.791e-07 3.798e-07 -6.421 -6.420 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.370 -61.411 -0.040 25.02 + NO2- 0.000e+00 0.000e+00 -61.373 -61.413 -0.040 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.348 -83.388 -0.040 29.54 + NO3- 0.000e+00 0.000e+00 -83.350 -83.390 -0.040 29.54 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -72.895 -72.894 0.001 30.40 @@ -2431,7 +2431,7 @@ O(0) 0.000e+00 Aragonite -0.23 -8.57 -8.34 CaCO3 Calcite -0.09 -8.57 -8.48 CaCO3 - CH4(g) -2.05 -4.85 -2.80 CH4 Pressure 0.0 atm, phi 1.000 + CH4(g) -2.05 -4.86 -2.80 CH4 Pressure 0.0 atm, phi 1.000 CO2(g) -1.41 -2.87 -1.47 CO2 Pressure 0.0 atm, phi 1.000 H2(g) -6.64 -9.74 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.999 @@ -2475,7 +2475,7 @@ Total pressure: 0.10 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -1.75 1.769e-02 1.000 2.657e-22 1.678e-02 1.678e-02 +CH4(g) -1.75 1.769e-02 1.000 2.664e-22 1.678e-02 1.678e-02 CO2(g) -1.33 4.698e-02 0.999 2.997e-02 4.455e-02 1.459e-02 H2O(g) -1.50 3.145e-02 0.999 2.977e-02 2.983e-02 5.266e-05 N2(g) -2.94 1.137e-03 1.000 0.000e+00 1.079e-03 1.079e-03 @@ -2484,64 +2484,64 @@ N2(g) -2.94 1.137e-03 1.000 0.000e+00 1.079e-03 1.079e-03 Elements Molality Moles - C 6.702e-03 6.702e-03 - Ca 2.502e-03 2.502e-03 - N 8.235e-05 8.234e-05 + C 6.605e-03 6.605e-03 + Ca 2.453e-03 2.453e-03 + N 8.272e-05 8.272e-05 ----------------------------Description of solution---------------------------- - pH = 6.806 Charge balance - pe = -3.538 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 461 - Density (g/cm³) = 0.99735 - Volume (L) = 1.00312 - Viscosity (mPa s) = 0.89306 + pH = 6.804 Charge balance + pe = -3.536 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 460 + Density (g/cm³) = 0.99734 + Volume (L) = 1.00313 + Viscosity (mPa s) = 0.89307 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.363e-03 + Ionic strength (mol/kgw) = 7.365e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.084e-03 - Total CO2 (mol/kg) = 6.674e-03 + Total alkalinity (eq/kg) = 4.987e-03 + Total CO2 (mol/kg) = 6.577e-03 Temperature (°C) = 25.00 Pressure (atm) = 0.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 27 Total H = 1.110159e+02 - Total O = 5.552363e+01 + Total O = 5.552339e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.692e-07 1.562e-07 -6.772 -6.806 -0.035 0.00 - OH- 7.103e-08 6.481e-08 -7.149 -7.188 -0.040 -4.05 + H+ 1.700e-07 1.569e-07 -6.770 -6.804 -0.035 0.00 + OH- 7.070e-08 6.451e-08 -7.151 -7.190 -0.040 -4.05 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 2.788e-05 CH4 2.788e-05 2.792e-05 -4.555 -4.554 0.001 35.45 -C(4) 6.674e-03 - HCO3- 4.966e-03 4.550e-03 -2.304 -2.342 -0.038 24.63 +C(4) 6.577e-03 + HCO3- 4.943e-03 4.529e-03 -2.306 -2.344 -0.038 24.63 CO2 1.596e-03 1.598e-03 -2.797 -2.797 0.000 34.43 - CaHCO3+ 1.066e-04 9.777e-05 -3.972 -4.010 -0.037 9.71 - CaCO3 3.860e-06 3.866e-06 -5.413 -5.413 0.001 -14.61 - CO3-2 1.939e-06 1.366e-06 -5.712 -5.864 -0.152 -3.73 - (CO2)2 4.678e-08 4.685e-08 -7.330 -7.329 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.391e-03 1.684e-03 -2.621 -2.774 -0.152 -17.98 - CaHCO3+ 1.066e-04 9.777e-05 -3.972 -4.010 -0.037 9.71 - CaCO3 3.860e-06 3.866e-06 -5.413 -5.413 0.001 -14.61 - CaOH+ 1.959e-09 1.790e-09 -8.708 -8.747 -0.039 (0) + CaHCO3+ 3.241e-05 2.973e-05 -4.489 -4.527 -0.037 122.68 + CaCO3 3.864e-06 3.871e-06 -5.413 -5.412 0.001 -14.61 + CO3-2 1.921e-06 1.354e-06 -5.716 -5.868 -0.152 -3.73 + (CO2)2 4.677e-08 4.685e-08 -7.330 -7.329 0.001 68.87 +Ca 2.453e-03 + Ca+2 2.417e-03 1.702e-03 -2.617 -2.769 -0.152 -17.98 + CaHCO3+ 3.241e-05 2.973e-05 -4.489 -4.527 -0.037 122.68 + CaCO3 3.864e-06 3.871e-06 -5.413 -5.412 0.001 -14.61 + CaOH+ 1.970e-09 1.800e-09 -8.706 -8.745 -0.039 (0) H(0) 4.105e-10 H2 2.052e-10 2.056e-10 -9.688 -9.687 0.001 28.61 -N(-3) 8.083e-05 - NH4+ 8.056e-05 7.332e-05 -4.094 -4.135 -0.041 (0) +N(-3) 8.120e-05 + NH4+ 8.093e-05 7.366e-05 -4.092 -4.133 -0.041 (0) NH3 2.671e-07 2.676e-07 -6.573 -6.573 0.001 (0) N(0) 1.516e-06 - N2 7.579e-07 7.592e-07 -6.120 -6.120 0.001 29.29 + N2 7.578e-07 7.591e-07 -6.120 -6.120 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.378 -61.418 -0.040 25.02 + NO2- 0.000e+00 0.000e+00 -61.380 -61.420 -0.040 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.411 -83.451 -0.040 29.54 + NO3- 0.000e+00 0.000e+00 -83.413 -83.453 -0.040 29.54 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.007 -73.006 0.001 30.40 @@ -2595,73 +2595,73 @@ Total pressure: 0.13 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -1.45 3.538e-02 1.000 2.657e-22 3.356e-02 3.356e-02 -CO2(g) -1.21 6.234e-02 0.999 2.997e-02 5.913e-02 2.917e-02 +CH4(g) -1.45 3.538e-02 1.000 2.664e-22 3.356e-02 3.356e-02 +CO2(g) -1.21 6.234e-02 0.999 2.997e-02 5.913e-02 2.916e-02 H2O(g) -1.50 3.146e-02 0.999 2.977e-02 2.984e-02 6.224e-05 -N2(g) -2.64 2.269e-03 1.000 0.000e+00 2.152e-03 2.152e-03 +N2(g) -2.64 2.268e-03 1.000 0.000e+00 2.151e-03 2.151e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 7.345e-03 7.345e-03 - Ca 2.502e-03 2.502e-03 - N 1.764e-04 1.764e-04 + C 7.248e-03 7.248e-03 + Ca 2.453e-03 2.453e-03 + N 1.772e-04 1.772e-04 ----------------------------Description of solution---------------------------- - pH = 6.692 Charge balance - pe = -3.445 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 465 - Density (g/cm³) = 0.99736 + pH = 6.690 Charge balance + pe = -3.443 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 464 + Density (g/cm³) = 0.99735 Volume (L) = 1.00317 Viscosity (mPa s) = 0.89310 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.454e-03 + Ionic strength (mol/kgw) = 7.459e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.177e-03 - Total CO2 (mol/kg) = 7.290e-03 + Total alkalinity (eq/kg) = 5.080e-03 + Total CO2 (mol/kg) = 7.193e-03 Temperature (°C) = 25.00 Pressure (atm) = 0.13 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 28 + Iterations = 24 Total H = 1.110195e+02 - Total O = 5.552647e+01 + Total O = 5.552622e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 2.206e-07 2.035e-07 -6.656 -6.692 -0.035 0.00 - OH- 5.454e-08 4.974e-08 -7.263 -7.303 -0.040 -4.05 + H+ 2.215e-07 2.043e-07 -6.655 -6.690 -0.035 0.00 + OH- 5.431e-08 4.952e-08 -7.265 -7.305 -0.040 -4.05 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 5.573e-05 CH4 5.573e-05 5.583e-05 -4.254 -4.253 0.001 35.45 -C(4) 7.290e-03 - HCO3- 5.059e-03 4.633e-03 -2.296 -2.334 -0.038 24.63 +C(4) 7.193e-03 + HCO3- 5.037e-03 4.613e-03 -2.298 -2.336 -0.038 24.63 CO2 2.117e-03 2.120e-03 -2.674 -2.674 0.000 34.43 - CaHCO3+ 1.083e-04 9.933e-05 -3.965 -4.003 -0.038 9.71 - CaCO3 3.009e-06 3.015e-06 -5.522 -5.521 0.001 -14.61 - CO3-2 1.518e-06 1.068e-06 -5.819 -5.971 -0.153 -3.73 - (CO2)2 8.234e-08 8.249e-08 -7.084 -7.084 0.001 68.87 -Ca 2.502e-03 - Ca+2 2.390e-03 1.680e-03 -2.622 -2.775 -0.153 -17.97 - CaHCO3+ 1.083e-04 9.933e-05 -3.965 -4.003 -0.038 9.71 - CaCO3 3.009e-06 3.015e-06 -5.522 -5.521 0.001 -14.61 - CaOH+ 1.501e-09 1.370e-09 -8.824 -8.863 -0.039 (0) + CaHCO3+ 3.297e-05 3.023e-05 -4.482 -4.520 -0.038 122.68 + CaCO3 3.016e-06 3.022e-06 -5.521 -5.520 0.001 -14.61 + CO3-2 1.505e-06 1.059e-06 -5.822 -5.975 -0.153 -3.73 + (CO2)2 8.234e-08 8.248e-08 -7.084 -7.084 0.001 68.87 +Ca 2.453e-03 + Ca+2 2.417e-03 1.699e-03 -2.617 -2.770 -0.153 -17.97 + CaHCO3+ 3.297e-05 3.023e-05 -4.482 -4.520 -0.038 122.68 + CaCO3 3.016e-06 3.022e-06 -5.521 -5.520 0.001 -14.61 + CaOH+ 1.511e-09 1.380e-09 -8.821 -8.860 -0.039 (0) H(0) 4.548e-10 H2 2.274e-10 2.278e-10 -9.643 -9.642 0.001 28.61 -N(-3) 1.734e-04 - NH4+ 1.730e-04 1.574e-04 -3.762 -3.803 -0.041 (0) - NH3 4.400e-07 4.407e-07 -6.357 -6.356 0.001 (0) -N(0) 3.023e-06 +N(-3) 1.742e-04 + NH4+ 1.737e-04 1.580e-04 -3.760 -3.801 -0.041 (0) + NH3 4.399e-07 4.407e-07 -6.357 -6.356 0.001 (0) +N(0) 3.022e-06 N2 1.511e-06 1.514e-06 -5.821 -5.820 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.409 -61.450 -0.041 25.02 + NO2- 0.000e+00 0.000e+00 -61.411 -61.452 -0.041 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.487 -83.527 -0.041 29.54 + NO3- 0.000e+00 0.000e+00 -83.489 -83.529 -0.041 29.54 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.096 -73.095 0.001 30.40 @@ -2715,73 +2715,73 @@ Total pressure: 0.20 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -1.16 6.907e-02 1.000 2.657e-22 6.553e-02 6.553e-02 +CH4(g) -1.16 6.907e-02 1.000 2.664e-22 6.553e-02 6.553e-02 CO2(g) -1.04 9.161e-02 0.999 2.997e-02 8.691e-02 5.694e-02 H2O(g) -1.50 3.147e-02 0.998 2.977e-02 2.986e-02 8.047e-05 -N2(g) -2.36 4.408e-03 1.000 0.000e+00 4.182e-03 4.182e-03 +N2(g) -2.36 4.407e-03 1.000 0.000e+00 4.181e-03 4.181e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 8.599e-03 8.599e-03 - Ca 2.501e-03 2.502e-03 - N 3.861e-04 3.861e-04 + C 8.502e-03 8.503e-03 + Ca 2.453e-03 2.453e-03 + N 3.874e-04 3.874e-04 ----------------------------Description of solution---------------------------- - pH = 6.541 Charge balance - pe = -3.311 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 473 - Density (g/cm³) = 0.99738 + pH = 6.540 Charge balance + pe = -3.309 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 472 + Density (g/cm³) = 0.99737 Volume (L) = 1.00326 Viscosity (mPa s) = 0.89318 Activity of water = 1.000 - Ionic strength (mol/kgw) = 7.655e-03 + Ionic strength (mol/kgw) = 7.665e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.383e-03 - Total CO2 (mol/kg) = 8.490e-03 + Total alkalinity (eq/kg) = 5.287e-03 + Total CO2 (mol/kg) = 8.394e-03 Temperature (°C) = 25.00 Pressure (atm) = 0.20 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 31 + Iterations = 30 Total H = 1.110264e+02 - Total O = 5.553190e+01 + Total O = 5.553165e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 3.120e-07 2.875e-07 -6.506 -6.541 -0.035 0.00 - OH- 3.864e-08 3.520e-08 -7.413 -7.453 -0.041 -4.05 + H+ 3.131e-07 2.885e-07 -6.504 -6.540 -0.035 0.00 + OH- 3.851e-08 3.507e-08 -7.414 -7.455 -0.041 -4.05 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 1.088e-04 CH4 1.088e-04 1.090e-04 -3.963 -3.963 0.001 35.45 -C(4) 8.490e-03 - HCO3- 5.264e-03 4.816e-03 -2.279 -2.317 -0.039 24.63 +C(4) 8.394e-03 + HCO3- 5.246e-03 4.799e-03 -2.280 -2.319 -0.039 24.63 CO2 3.110e-03 3.114e-03 -2.507 -2.507 0.001 34.43 - CaHCO3+ 1.121e-04 1.027e-04 -3.950 -3.988 -0.038 9.71 - CaCO3 2.202e-06 2.206e-06 -5.657 -5.656 0.001 -14.60 - CO3-2 1.121e-06 7.856e-07 -5.950 -6.105 -0.155 -3.72 + CaHCO3+ 3.418e-05 3.131e-05 -4.466 -4.504 -0.038 122.68 + CaCO3 2.212e-06 2.216e-06 -5.655 -5.654 0.001 -14.60 + CO3-2 1.114e-06 7.800e-07 -5.953 -6.108 -0.155 -3.72 (CO2)2 1.777e-07 1.780e-07 -6.750 -6.750 0.001 68.87 -Ca 2.501e-03 - Ca+2 2.387e-03 1.671e-03 -2.622 -2.777 -0.155 -17.97 - CaHCO3+ 1.121e-04 1.027e-04 -3.950 -3.988 -0.038 9.71 - CaCO3 2.202e-06 2.206e-06 -5.657 -5.656 0.001 -14.60 - CaOH+ 1.057e-09 9.646e-10 -8.976 -9.016 -0.040 (0) +Ca 2.453e-03 + Ca+2 2.416e-03 1.691e-03 -2.617 -2.772 -0.155 -17.97 + CaHCO3+ 3.418e-05 3.131e-05 -4.466 -4.504 -0.038 122.68 + CaCO3 2.212e-06 2.216e-06 -5.655 -5.654 0.001 -14.60 + CaOH+ 1.066e-09 9.727e-10 -8.972 -9.012 -0.040 (0) H(0) 4.883e-10 H2 2.441e-10 2.446e-10 -9.612 -9.612 0.001 28.61 -N(-3) 3.802e-04 - NH4+ 3.795e-04 3.448e-04 -3.421 -3.462 -0.042 (0) +N(-3) 3.815e-04 + NH4+ 3.808e-04 3.460e-04 -3.419 -3.461 -0.042 (0) NH3 6.822e-07 6.834e-07 -6.166 -6.165 0.001 (0) -N(0) 5.874e-06 - N2 2.937e-06 2.942e-06 -5.532 -5.531 0.001 29.29 +N(0) 5.873e-06 + N2 2.936e-06 2.942e-06 -5.532 -5.531 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.461 -61.502 -0.041 25.02 + NO2- 0.000e+00 0.000e+00 -61.463 -61.504 -0.041 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.569 -83.611 -0.041 29.54 + NO3- 0.000e+00 0.000e+00 -83.571 -83.612 -0.041 29.54 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.158 -73.157 0.001 30.40 @@ -2789,7 +2789,7 @@ O(0) 0.000e+00 Phase SI** log IAP log K(298 K, 0 atm) - Aragonite -0.55 -8.88 -8.34 CaCO3 + Aragonite -0.54 -8.88 -8.34 CaCO3 Calcite -0.40 -8.88 -8.48 CaCO3 CH4(g) -1.16 -3.96 -2.80 CH4 Pressure 0.1 atm, phi 1.000 CO2(g) -1.04 -2.51 -1.47 CO2 Pressure 0.1 atm, phi 0.999 @@ -2835,73 +2835,73 @@ Total pressure: 0.33 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -0.86 1.380e-01 0.999 2.657e-22 1.310e-01 1.310e-01 +CH4(g) -0.86 1.380e-01 0.999 2.664e-22 1.310e-01 1.310e-01 CO2(g) -0.82 1.515e-01 0.998 2.997e-02 1.438e-01 1.138e-01 H2O(g) -1.50 3.150e-02 0.997 2.977e-02 2.989e-02 1.178e-04 -N2(g) -2.06 8.752e-03 1.000 0.000e+00 8.307e-03 8.307e-03 +N2(g) -2.06 8.751e-03 1.000 0.000e+00 8.306e-03 8.306e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 1.123e-02 1.123e-02 - Ca 2.501e-03 2.502e-03 - N 8.857e-04 8.858e-04 + C 1.114e-02 1.114e-02 + Ca 2.452e-03 2.453e-03 + N 8.876e-04 8.878e-04 ----------------------------Description of solution---------------------------- - pH = 6.361 Charge balance - pe = -3.140 Adjusted to redox equilibrium + pH = 6.360 Charge balance + pe = -3.139 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 491 - Density (g/cm³) = 0.99743 - Volume (L) = 1.00344 - Viscosity (mPa s) = 0.89336 + Density (g/cm³) = 0.99742 + Volume (L) = 1.00345 + Viscosity (mPa s) = 0.89337 Activity of water = 1.000 - Ionic strength (mol/kgw) = 8.132e-03 + Ionic strength (mol/kgw) = 8.155e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.876e-03 - Total CO2 (mol/kg) = 1.101e-02 + Total alkalinity (eq/kg) = 5.781e-03 + Total CO2 (mol/kg) = 1.092e-02 Temperature (°C) = 25.00 Pressure (atm) = 0.33 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 32 Total H = 1.110406e+02 - Total O = 5.554310e+01 + Total O = 5.554286e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 4.740e-07 4.359e-07 -6.324 -6.361 -0.036 0.00 - OH- 2.555e-08 2.321e-08 -7.593 -7.634 -0.042 -4.05 + H+ 4.750e-07 4.369e-07 -6.323 -6.360 -0.036 0.00 + OH- 2.550e-08 2.316e-08 -7.593 -7.635 -0.042 -4.05 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 2.173e-04 CH4 2.173e-04 2.177e-04 -3.663 -3.662 0.001 35.45 -C(4) 1.101e-02 - HCO3- 5.750e-03 5.249e-03 -2.240 -2.280 -0.040 24.63 +C(4) 1.092e-02 + HCO3- 5.738e-03 5.237e-03 -2.241 -2.281 -0.040 24.64 CO2 5.139e-03 5.146e-03 -2.289 -2.289 0.001 34.43 - CaHCO3+ 1.209e-04 1.105e-04 -3.918 -3.957 -0.039 9.72 - CaCO3 1.562e-06 1.565e-06 -5.806 -5.805 0.001 -14.60 - CO3-2 8.135e-07 5.646e-07 -6.090 -6.248 -0.159 -3.71 + CaHCO3+ 3.699e-05 3.381e-05 -4.432 -4.471 -0.039 122.68 + CaCO3 1.577e-06 1.580e-06 -5.802 -5.801 0.001 -14.60 + CO3-2 8.103e-07 5.622e-07 -6.091 -6.250 -0.159 -3.71 (CO2)2 4.851e-07 4.860e-07 -6.314 -6.313 0.001 68.87 -Ca 2.501e-03 - Ca+2 2.379e-03 1.650e-03 -2.624 -2.783 -0.159 -17.96 - CaHCO3+ 1.209e-04 1.105e-04 -3.918 -3.957 -0.039 9.72 - CaCO3 1.562e-06 1.565e-06 -5.806 -5.805 0.001 -14.60 - CaOH+ 6.900e-10 6.280e-10 -9.161 -9.202 -0.041 (0) +Ca 2.452e-03 + Ca+2 2.414e-03 1.673e-03 -2.617 -2.776 -0.159 -17.96 + CaHCO3+ 3.699e-05 3.381e-05 -4.432 -4.471 -0.039 122.68 + CaCO3 1.577e-06 1.580e-06 -5.802 -5.801 0.001 -14.60 + CaOH+ 6.985e-10 6.355e-10 -9.156 -9.197 -0.041 (0) H(0) 5.119e-10 H2 2.560e-10 2.564e-10 -9.592 -9.591 0.001 28.61 -N(-3) 8.740e-04 - NH4+ 8.730e-04 7.910e-04 -3.059 -3.102 -0.043 (0) +N(-3) 8.760e-04 + NH4+ 8.749e-04 7.927e-04 -3.058 -3.101 -0.043 (0) NH3 1.032e-06 1.034e-06 -5.986 -5.985 0.001 (0) N(0) 1.166e-05 - N2 5.831e-06 5.842e-06 -5.234 -5.233 0.001 29.29 + N2 5.830e-06 5.841e-06 -5.234 -5.234 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.523 -61.565 -0.042 25.02 + NO2- 0.000e+00 0.000e+00 -61.524 -61.566 -0.042 25.02 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.652 -83.694 -0.042 29.55 + NO3- 0.000e+00 0.000e+00 -83.653 -83.695 -0.042 29.55 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.199 -73.198 0.001 30.40 @@ -2955,7 +2955,7 @@ Total pressure: 0.60 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -0.56 2.757e-01 0.999 2.657e-22 2.620e-01 2.620e-01 +CH4(g) -0.56 2.757e-01 0.999 2.664e-22 2.620e-01 2.620e-01 CO2(g) -0.57 2.711e-01 0.997 2.997e-02 2.575e-01 2.275e-01 H2O(g) -1.50 3.154e-02 0.996 2.977e-02 2.997e-02 1.923e-04 N2(g) -1.76 1.738e-02 1.000 0.000e+00 1.651e-02 1.651e-02 @@ -2964,62 +2964,62 @@ N2(g) -1.76 1.738e-02 1.000 0.000e+00 1.651e-02 1.651e-02 Elements Molality Moles - C 1.657e-02 1.658e-02 - Ca 2.501e-03 2.502e-03 - N 1.979e-03 1.979e-03 + C 1.647e-02 1.648e-02 + Ca 2.452e-03 2.453e-03 + N 1.980e-03 1.980e-03 ----------------------------Description of solution---------------------------- pH = 6.180 Charge balance pe = -2.966 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 531 - Density (g/cm³) = 0.99754 + Specific Conductance (µS/cm, 25°C) = 532 + Density (g/cm³) = 0.99753 Volume (L) = 1.00381 - Viscosity (mPa s) = 0.89376 + Viscosity (mPa s) = 0.89378 Activity of water = 1.000 - Ionic strength (mol/kgw) = 9.175e-03 + Ionic strength (mol/kgw) = 9.223e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 6.957e-03 - Total CO2 (mol/kg) = 1.614e-02 + Total alkalinity (eq/kg) = 6.860e-03 + Total CO2 (mol/kg) = 1.604e-02 Temperature (°C) = 25.00 Pressure (atm) = 0.60 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 33 Total H = 1.110692e+02 - Total O = 5.556560e+01 + Total O = 5.556535e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.210e-07 6.605e-07 -6.142 -6.180 -0.038 0.00 + H+ 7.213e-07 6.607e-07 -6.142 -6.180 -0.038 0.00 OH- 1.695e-08 1.532e-08 -7.771 -7.815 -0.044 -4.04 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.07 C(-4) 4.337e-04 CH4 4.337e-04 4.346e-04 -3.363 -3.362 0.001 35.45 -C(4) 1.614e-02 +C(4) 1.604e-02 CO2 9.180e-03 9.193e-03 -2.037 -2.037 0.001 34.43 - HCO3- 6.813e-03 6.189e-03 -2.167 -2.208 -0.042 24.64 - CaHCO3+ 1.393e-04 1.268e-04 -3.856 -3.897 -0.041 9.72 + HCO3- 6.813e-03 6.187e-03 -2.167 -2.209 -0.042 24.64 + CaHCO3+ 4.294e-05 3.905e-05 -4.367 -4.408 -0.041 122.69 (CO2)2 1.548e-06 1.551e-06 -5.810 -5.809 0.001 68.87 - CaCO3 1.183e-06 1.185e-06 -5.927 -5.926 0.001 -14.60 - CO3-2 6.455e-07 4.394e-07 -6.190 -6.357 -0.167 -3.69 -Ca 2.501e-03 - Ca+2 2.360e-03 1.605e-03 -2.627 -2.794 -0.167 -17.94 - CaHCO3+ 1.393e-04 1.268e-04 -3.856 -3.897 -0.041 9.72 - CaCO3 1.183e-06 1.185e-06 -5.927 -5.926 0.001 -14.60 - CaOH+ 4.454e-10 4.033e-10 -9.351 -9.394 -0.043 (0) + CaCO3 1.205e-06 1.207e-06 -5.919 -5.918 0.001 -14.60 + CO3-2 6.457e-07 4.392e-07 -6.190 -6.357 -0.167 -3.69 +Ca 2.452e-03 + Ca+2 2.408e-03 1.636e-03 -2.618 -2.786 -0.168 -17.94 + CaHCO3+ 4.294e-05 3.905e-05 -4.367 -4.408 -0.041 122.69 + CaCO3 1.205e-06 1.207e-06 -5.919 -5.918 0.001 -14.60 + CaOH+ 4.540e-10 4.109e-10 -9.343 -9.386 -0.043 (0) H(0) 5.262e-10 H2 2.631e-10 2.636e-10 -9.580 -9.579 0.001 28.61 N(-3) 1.956e-03 - NH4+ 1.954e-03 1.760e-03 -2.709 -2.754 -0.045 (0) + NH4+ 1.955e-03 1.761e-03 -2.709 -2.754 -0.045 (0) NH3 1.516e-06 1.519e-06 -5.819 -5.818 0.001 (0) N(0) 2.315e-05 N2 1.158e-05 1.160e-05 -4.936 -4.936 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.570 -61.614 -0.045 25.03 + NO2- 0.000e+00 0.000e+00 -61.570 -61.615 -0.045 25.03 N(5) 0.000e+00 NO3- 0.000e+00 0.000e+00 -83.711 -83.756 -0.045 29.55 O(0) 0.000e+00 @@ -3029,8 +3029,8 @@ O(0) 0.000e+00 Phase SI** log IAP log K(298 K, 1 atm) - Aragonite -0.82 -9.15 -8.34 CaCO3 - Calcite -0.67 -9.15 -8.48 CaCO3 + Aragonite -0.81 -9.14 -8.34 CaCO3 + Calcite -0.66 -9.14 -8.48 CaCO3 CH4(g) -0.56 -3.36 -2.80 CH4 Pressure 0.3 atm, phi 0.999 CO2(g) -0.57 -2.04 -1.47 CO2 Pressure 0.3 atm, phi 0.997 H2(g) -6.48 -9.58 -3.10 H2 @@ -3075,7 +3075,7 @@ Total pressure: 1.13 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CH4(g) -0.26 5.504e-01 0.998 2.657e-22 5.238e-01 5.238e-01 +CH4(g) -0.26 5.504e-01 0.998 2.664e-22 5.238e-01 5.238e-01 CO2(g) -0.29 5.096e-01 0.994 2.997e-02 4.850e-01 4.550e-01 H2O(g) -1.50 3.165e-02 0.992 2.977e-02 3.012e-02 3.446e-04 N2(g) -1.46 3.459e-02 1.001 0.000e+00 3.292e-02 3.292e-02 @@ -3084,64 +3084,64 @@ N2(g) -1.46 3.459e-02 1.001 0.000e+00 3.292e-02 3.292e-02 Elements Molality Moles - C 2.718e-02 2.721e-02 - Ca 2.500e-03 2.502e-03 - N 4.158e-03 4.161e-03 + C 2.708e-02 2.710e-02 + Ca 2.451e-03 2.453e-03 + N 4.153e-03 4.157e-03 ----------------------------Description of solution---------------------------- - pH = 6.021 Charge balance - pe = -2.810 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 610 - Density (g/cm³) = 0.99775 - Volume (L) = 1.00453 - Viscosity (mPa s) = 0.89456 + pH = 6.022 Charge balance + pe = -2.811 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 614 + Density (g/cm³) = 0.99773 + Volume (L) = 1.00454 + Viscosity (mPa s) = 0.89459 Activity of water = 0.999 - Ionic strength (mol/kgw) = 1.126e-02 + Ionic strength (mol/kgw) = 1.135e-02 Mass of water (kg) = 1.001e+00 - Total alkalinity (eq/kg) = 9.111e-03 - Total CO2 (mol/kg) = 2.632e-02 + Total alkalinity (eq/kg) = 9.009e-03 + Total CO2 (mol/kg) = 2.622e-02 Temperature (°C) = 25.00 Pressure (atm) = 1.13 - Electrical balance (eq) = -1.206e-09 + Electrical balance (eq) = -1.204e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 35 Total H = 1.111264e+02 - Total O = 5.561047e+01 + Total O = 5.561022e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.047e-06 9.523e-07 -5.980 -6.021 -0.041 0.00 - OH- 1.187e-08 1.062e-08 -7.925 -7.974 -0.048 -4.03 + H+ 1.046e-06 9.508e-07 -5.981 -6.022 -0.041 0.00 + OH- 1.189e-08 1.064e-08 -7.925 -7.973 -0.048 -4.02 H2O 5.551e+01 9.994e-01 1.744 -0.000 0.000 18.07 -C(-4) 8.642e-04 - CH4 8.642e-04 8.664e-04 -3.063 -3.062 0.001 35.46 -C(4) 2.632e-02 +C(-4) 8.641e-04 + CH4 8.641e-04 8.664e-04 -3.063 -3.062 0.001 35.46 +C(4) 2.622e-02 CO2 1.720e-02 1.723e-02 -1.764 -1.764 0.001 34.43 - HCO3- 8.933e-03 8.044e-03 -2.049 -2.095 -0.046 24.65 - CaHCO3+ 1.738e-04 1.567e-04 -3.760 -3.805 -0.045 9.73 - (CO2)2 5.435e-06 5.449e-06 -5.265 -5.264 0.001 68.87 - CaCO3 1.014e-06 1.016e-06 -5.994 -5.993 0.001 -14.60 - CO3-2 6.027e-07 3.962e-07 -6.220 -6.402 -0.182 -3.64 -Ca 2.500e-03 - Ca+2 2.325e-03 1.527e-03 -2.634 -2.816 -0.182 -17.91 - CaHCO3+ 1.738e-04 1.567e-04 -3.760 -3.805 -0.045 9.73 - CaCO3 1.014e-06 1.016e-06 -5.994 -5.993 0.001 -14.60 - CaOH+ 2.966e-10 2.660e-10 -9.528 -9.575 -0.047 (0) + HCO3- 8.951e-03 8.057e-03 -2.048 -2.094 -0.046 24.66 + CaHCO3+ 5.413e-05 4.881e-05 -4.267 -4.311 -0.045 122.69 + (CO2)2 5.435e-06 5.450e-06 -5.265 -5.264 0.001 68.87 + CaCO3 1.047e-06 1.049e-06 -5.980 -5.979 0.001 -14.60 + CO3-2 6.054e-07 3.974e-07 -6.218 -6.401 -0.183 -3.64 +Ca 2.451e-03 + Ca+2 2.396e-03 1.572e-03 -2.621 -2.804 -0.183 -17.91 + CaHCO3+ 5.413e-05 4.881e-05 -4.267 -4.311 -0.045 122.69 + CaCO3 1.047e-06 1.049e-06 -5.980 -5.979 0.001 -14.60 + CaOH+ 3.058e-10 2.742e-10 -9.515 -9.562 -0.047 (0) H(0) 5.340e-10 H2 2.670e-10 2.677e-10 -9.574 -9.572 0.001 28.61 -N(-3) 4.112e-03 - NH4+ 4.110e-03 3.665e-03 -2.386 -2.436 -0.050 (0) +N(-3) 4.107e-03 + NH4+ 4.105e-03 3.659e-03 -2.387 -2.437 -0.050 (0) NH3 2.187e-06 2.193e-06 -5.660 -5.659 0.001 (0) N(0) 4.606e-05 N2 2.303e-05 2.309e-05 -4.638 -4.637 0.001 29.29 N(3) 0.000e+00 - NO2- 0.000e+00 0.000e+00 -61.585 -61.634 -0.049 25.04 + NO2- 0.000e+00 0.000e+00 -61.584 -61.633 -0.049 25.04 N(5) 0.000e+00 - NO3- 0.000e+00 0.000e+00 -83.733 -83.782 -0.049 29.56 + NO3- 0.000e+00 0.000e+00 -83.732 -83.781 -0.049 29.56 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -73.237 -73.236 0.001 30.40 @@ -3149,8 +3149,8 @@ O(0) 0.000e+00 Phase SI** log IAP log K(298 K, 1 atm) - Aragonite -0.88 -9.22 -8.34 CaCO3 - Calcite -0.74 -9.22 -8.48 CaCO3 + Aragonite -0.87 -9.20 -8.34 CaCO3 + Calcite -0.72 -9.20 -8.48 CaCO3 CH4(g) -0.26 -3.06 -2.80 CH4 Pressure 0.6 atm, phi 0.998 CO2(g) -0.30 -1.76 -1.47 CO2 Pressure 0.5 atm, phi 0.994 H2(g) -6.47 -9.57 -3.10 H2 diff --git a/ex7.sel b/ex7.sel index bb927faa..ce9b0612 100644 --- a/ex7.sel +++ b/ex7.sel @@ -1,28 +1,28 @@ sim state reaction si_CO2(g) si_CH4(g) si_N2(g) si_NH3(g) pressure total mol volume g_CO2(g) g_CH4(g) g_N2(g) g_NH3(g) 1 i_soln -99 -999.9990 -999.9990 -999.9990 -999.9990 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 - 1 react -99 -1.5001 -21.5524 -999.9990 -999.9990 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 - 2 react 1.0000e-03 -1.3544 -0.4983 -3.9804 -8.3808 1.1000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 - 2 react 2.0000e-03 -1.2454 -0.1973 -3.7279 -8.1825 1.1000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 - 2 react 3.0000e-03 -1.1582 -0.0212 -3.6047 -8.0876 1.1000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 - 2 react 4.0000e-03 -1.0914 -0.0069 -3.4389 -8.0244 1.1000e+00 5.0197e-04 1.1134e-02 3.7187e-05 4.5021e-04 1.6610e-07 0.0000e+00 - 2 react 8.0000e-03 -0.9098 -0.0262 -3.0143 -7.8874 1.1000e+00 2.9373e-03 6.5142e-02 3.3055e-04 2.5198e-03 2.5836e-06 0.0000e+00 - 2 react 1.6000e-02 -0.7177 -0.0600 -2.5772 -7.7536 1.1000e+00 8.3718e-03 1.8563e-01 1.4663e-03 6.6449e-03 2.0143e-05 0.0000e+00 - 2 react 3.2000e-02 -0.5499 -0.1104 -2.1263 -7.6101 1.1000e+00 2.1071e-02 4.6708e-01 5.4326e-03 1.4890e-02 1.4316e-04 0.0000e+00 - 2 react 6.4000e-02 -0.4348 -0.1673 -1.7739 -7.4984 1.1000e+00 5.0847e-02 1.1268e+00 1.7087e-02 3.1521e-02 7.7758e-04 0.0000e+00 - 2 react 1.2500e-01 -0.3738 -0.2103 -1.5956 -7.4482 1.1000e+00 1.1309e-01 2.5057e+00 4.3730e-02 6.3498e-02 2.6073e-03 0.0000e+00 - 2 react 2.5000e-01 -0.3427 -0.2370 -1.5130 -7.4286 1.1000e+00 2.4478e-01 5.4231e+00 1.0169e-01 1.2922e-01 6.8255e-03 0.0000e+00 - 2 react 5.0000e-01 -0.3277 -0.2513 -1.4759 -7.4210 1.1000e+00 5.1044e-01 1.1308e+01 2.1949e-01 2.6076e-01 1.5502e-02 0.0000e+00 - 2 react 1.0000e+00 -0.3204 -0.2586 -1.4585 -7.4178 1.1000e+00 1.0429e+00 2.3104e+01 4.5605e-01 5.2387e-01 3.2966e-02 0.0000e+00 - 3 i_gas -99 -1.5001 -21.5524 -999.9990 -999.9990 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 - 3 react 1.0000e-03 -1.4939 -3.2574 -4.4528 -9.5993 6.4110e-02 6.0800e-02 2.3190e+01 3.0424e-02 5.2421e-04 3.3422e-05 0.0000e+00 - 3 react 2.0000e-03 -1.4874 -2.9563 -4.1503 -9.3376 6.5179e-02 6.1814e-02 2.3190e+01 3.0880e-02 1.0486e-03 6.7072e-05 0.0000e+00 - 3 react 3.0000e-03 -1.4811 -2.7802 -3.9735 -9.1855 6.6249e-02 6.2828e-02 2.3190e+01 3.1336e-02 1.5730e-03 1.0078e-04 0.0000e+00 - 3 react 4.0000e-03 -1.4748 -2.6552 -3.8480 -9.0783 6.7318e-02 6.3843e-02 2.3190e+01 3.1792e-02 2.0975e-03 1.3452e-04 0.0000e+00 - 3 react 8.0000e-03 -1.4506 -2.3542 -3.5461 -8.8235 7.1596e-02 6.7900e-02 2.3190e+01 3.3615e-02 4.1954e-03 2.6960e-04 0.0000e+00 - 3 react 1.6000e-02 -1.4059 -2.0531 -3.2447 -8.5767 8.0152e-02 7.6015e-02 2.3190e+01 3.7262e-02 8.3911e-03 5.3973e-04 0.0000e+00 - 3 react 3.2000e-02 -1.3283 -1.7522 -2.9439 -8.3425 9.7259e-02 9.2242e-02 2.3190e+01 4.4554e-02 1.6782e-02 1.0788e-03 0.0000e+00 - 3 react 6.4000e-02 -1.2055 -1.4513 -2.6441 -8.1258 1.3145e-01 1.2468e-01 2.3190e+01 5.9133e-02 3.3559e-02 2.1518e-03 0.0000e+00 - 3 react 1.2500e-01 -1.0385 -1.1608 -2.3556 -7.9353 1.9656e-01 1.8648e-01 2.3190e+01 8.6909e-02 6.5530e-02 4.1820e-03 0.0000e+00 - 3 react 2.5000e-01 -0.8204 -0.8602 -2.0577 -7.7555 3.2979e-01 3.1300e-01 2.3190e+01 1.4379e-01 1.3102e-01 8.3071e-03 0.0000e+00 - 3 react 5.0000e-01 -0.5684 -0.5600 -1.7598 -7.5884 5.9573e-01 5.6594e-01 2.3190e+01 2.5750e-01 2.6196e-01 1.6510e-02 0.0000e+00 - 3 react 1.0000e+00 -0.2955 -0.2603 -1.4608 -7.4290 1.1262e+00 1.0719e+00 2.3190e+01 4.8499e-01 5.2384e-01 3.2919e-02 0.0000e+00 + 1 react -99 -1.5001 -21.5512 -999.9990 -999.9990 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 + 2 react 1.0000e-03 -1.3544 -0.4983 -3.9846 -8.3828 1.1000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 + 2 react 2.0000e-03 -1.2454 -0.1973 -3.7319 -8.1845 1.1000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 + 2 react 3.0000e-03 -1.1582 -0.0212 -3.6085 -8.0895 1.1000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 + 2 react 4.0000e-03 -1.0914 -0.0069 -3.4425 -8.0262 1.1000e+00 5.0196e-04 1.1134e-02 3.7187e-05 4.5021e-04 1.6474e-07 0.0000e+00 + 2 react 8.0000e-03 -0.9098 -0.0262 -3.0171 -7.8889 1.1000e+00 2.9372e-03 6.5141e-02 3.3055e-04 2.5198e-03 2.5666e-06 0.0000e+00 + 2 react 1.6000e-02 -0.7177 -0.0600 -2.5789 -7.7545 1.1000e+00 8.3716e-03 1.8562e-01 1.4663e-03 6.6448e-03 2.0062e-05 0.0000e+00 + 2 react 3.2000e-02 -0.5499 -0.1104 -2.1267 -7.6103 1.1000e+00 2.1071e-02 4.6708e-01 5.4325e-03 1.4890e-02 1.4303e-04 0.0000e+00 + 2 react 6.4000e-02 -0.4348 -0.1673 -1.7737 -7.4983 1.1000e+00 5.0849e-02 1.1269e+00 1.7088e-02 3.1521e-02 7.7795e-04 0.0000e+00 + 2 react 1.2500e-01 -0.3738 -0.2103 -1.5954 -7.4481 1.1000e+00 1.1309e-01 2.5058e+00 4.3732e-02 6.3499e-02 2.6085e-03 0.0000e+00 + 2 react 2.5000e-01 -0.3427 -0.2370 -1.5129 -7.4285 1.1000e+00 2.4478e-01 5.4232e+00 1.0169e-01 1.2922e-01 6.8273e-03 0.0000e+00 + 2 react 5.0000e-01 -0.3277 -0.2513 -1.4759 -7.4210 1.1000e+00 5.1044e-01 1.1309e+01 2.1950e-01 2.6076e-01 1.5504e-02 0.0000e+00 + 2 react 1.0000e+00 -0.3204 -0.2586 -1.4585 -7.4178 1.1000e+00 1.0429e+00 2.3104e+01 4.5606e-01 5.2388e-01 3.2968e-02 0.0000e+00 + 3 i_gas -99 -1.5001 -21.5512 -999.9990 -999.9990 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 + 3 react 1.0000e-03 -1.4939 -3.2574 -4.4529 -9.5994 6.4111e-02 6.0800e-02 2.3190e+01 3.0424e-02 5.2421e-04 3.3415e-05 0.0000e+00 + 3 react 2.0000e-03 -1.4874 -2.9563 -4.1504 -9.3376 6.5180e-02 6.1814e-02 2.3190e+01 3.0880e-02 1.0486e-03 6.7058e-05 0.0000e+00 + 3 react 3.0000e-03 -1.4811 -2.7802 -3.9735 -9.1856 6.6249e-02 6.2828e-02 2.3190e+01 3.1336e-02 1.5730e-03 1.0076e-04 0.0000e+00 + 3 react 4.0000e-03 -1.4748 -2.6552 -3.8481 -9.0783 6.7318e-02 6.3843e-02 2.3190e+01 3.1792e-02 2.0975e-03 1.3450e-04 0.0000e+00 + 3 react 8.0000e-03 -1.4506 -2.3542 -3.5462 -8.8236 7.1596e-02 6.7900e-02 2.3190e+01 3.3615e-02 4.1953e-03 2.6955e-04 0.0000e+00 + 3 react 1.6000e-02 -1.4059 -2.0531 -3.2448 -8.5767 8.0152e-02 7.6015e-02 2.3190e+01 3.7262e-02 8.3911e-03 5.3964e-04 0.0000e+00 + 3 react 3.2000e-02 -1.3283 -1.7522 -2.9440 -8.3426 9.7258e-02 9.2242e-02 2.3190e+01 4.4554e-02 1.6782e-02 1.0786e-03 0.0000e+00 + 3 react 6.4000e-02 -1.2055 -1.4513 -2.6442 -8.1259 1.3145e-01 1.2468e-01 2.3190e+01 5.9133e-02 3.3559e-02 2.1514e-03 0.0000e+00 + 3 react 1.2500e-01 -1.0385 -1.1608 -2.3557 -7.9353 1.9656e-01 1.8647e-01 2.3190e+01 8.6908e-02 6.5529e-02 4.1813e-03 0.0000e+00 + 3 react 2.5000e-01 -0.8204 -0.8602 -2.0578 -7.7555 3.2978e-01 3.1300e-01 2.3190e+01 1.4379e-01 1.3102e-01 8.3061e-03 0.0000e+00 + 3 react 5.0000e-01 -0.5684 -0.5600 -1.7598 -7.5885 5.9573e-01 5.6594e-01 2.3190e+01 2.5750e-01 2.6196e-01 1.6510e-02 0.0000e+00 + 3 react 1.0000e+00 -0.2955 -0.2603 -1.4608 -7.4289 1.1262e+00 1.0719e+00 2.3190e+01 4.8499e-01 5.2384e-01 3.2922e-02 0.0000e+00 diff --git a/ex8.out b/ex8.out index 3ab92227..37d31d32 100644 --- a/ex8.out +++ b/ex8.out @@ -13,7 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES - CALCULATE_VALUES + MEAN_GAMMAS RATES END ------------------------------------ diff --git a/ex9.out b/ex9.out index 431aa3d0..349afdd3 100644 --- a/ex9.out +++ b/ex9.out @@ -13,7 +13,7 @@ Reading data base. EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES - CALCULATE_VALUES + MEAN_GAMMAS RATES END ------------------------------------ From 09af2d5b127a8efe403f47751c7c8465ec94874d Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Mon, 27 May 2024 19:31:40 +0000 Subject: [PATCH 170/384] Squashed 'phreeqcpp/' changes from cb6d9f4..3d5242f 3d5242f bug in processing ISOTOPE_RATIOS 034e921 added commented code to check e- in non-master species. git-subtree-dir: phreeqcpp git-subtree-split: 3d5242f5ccaf56cbcad48d33caee0340fb97da65 --- tidy.cpp | 10 ++++++++++ utilities.cpp | 4 ++++ 2 files changed, 14 insertions(+) diff --git a/tidy.cpp b/tidy.cpp index 5769b4f5..35ddce08 100644 --- a/tidy.cpp +++ b/tidy.cpp @@ -5431,6 +5431,16 @@ tidy_isotope_ratios(void) /* * Mark master species list as minor isotope */ + if (isotope_ratio[i]->isotope_name == NULL) + { + + input_error++; + error_string = sformatf( + "For ISOTOPE_RATIO, did not find ISOTOPE name for this isotope ratio %s", + isotope_ratio[i]->name); + error_msg(error_string, CONTINUE); + continue; + } master_isotope_ptr = master_isotope_search(isotope_ratio[i]->isotope_name); if (master_isotope_ptr == NULL) diff --git a/utilities.cpp b/utilities.cpp index 79dfae7f..b2ff4839 100644 --- a/utilities.cpp +++ b/utilities.cpp @@ -41,6 +41,10 @@ calc_alk(CReaction& rxn_ref) break; } return_value += r_token->coef * master_ptr->alk; + //if (strcmp(r_token->name, "e-") == 0 && strcmp(rxn_ref.token[0].name,"e-") != 0) + //{ + // std::cerr << rxn_ref.token[0].name << " Non-master species has e- in reaction.\n"; + //} r_token++; } return (return_value); From 067a8b1aaa326cecf6a1b5a167fe88448ef1e0b2 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Wed, 29 May 2024 19:05:39 +0000 Subject: [PATCH 171/384] Squashed 'phreeqcpp/' changes from 3d5242f..e2f4d06 e2f4d06 updated InternalCopy d8abe83 Fixed problem with N vs NO3, for example, converting units with calculated density. Now gives same result for N or NO3. git-subtree-dir: phreeqcpp git-subtree-split: e2f4d060cd01b0b9912f0da7aa6c7cc20f77a9c5 --- Phreeqc.cpp | 5 ++++- Phreeqc.h | 3 +++ basicsubs.cpp | 21 ++++++++++++++++++--- mainsubs.cpp | 2 ++ prep.cpp | 4 ++++ 5 files changed, 31 insertions(+), 4 deletions(-) diff --git a/Phreeqc.cpp b/Phreeqc.cpp index d89c6dec..25d903af 100644 --- a/Phreeqc.cpp +++ b/Phreeqc.cpp @@ -1722,7 +1722,10 @@ Phreeqc::InternalCopy(const Phreeqc* pSrc) viscos_0 = pSrc->viscos_0; viscos_0_25 = pSrc->viscos_0_25; // viscosity of the solution, of pure water, of pure water at 25 C density_x = pSrc->density_x; - cell_pore_volume = pSrc->cell_pore_volume;; + solution_volume_x = pSrc->solution_volume_x; + solution_mass_x = pSrc->solution_mass_x; + kgw_kgs = pSrc->kgw_kgs; + cell_pore_volume = pSrc->cell_pore_volume; cell_porosity = pSrc->cell_porosity; cell_volume = pSrc->cell_volume; cell_saturation = pSrc->cell_saturation; diff --git a/Phreeqc.h b/Phreeqc.h index 225c52bd..be150845 100644 --- a/Phreeqc.h +++ b/Phreeqc.h @@ -1523,6 +1523,7 @@ protected: int iterations; int gamma_iterations; size_t density_iterations; + LDBLE kgw_kgs; int run_reactions_iterations; int overall_iterations; @@ -1629,6 +1630,8 @@ protected: int print_viscosity; LDBLE viscos, viscos_0, viscos_0_25; // viscosity of the solution, of pure water, of pure water at 25 C LDBLE density_x; + LDBLE solution_volume_x; + LDBLE solution_mass_x; LDBLE cell_pore_volume; LDBLE cell_porosity; LDBLE cell_volume; diff --git a/basicsubs.cpp b/basicsubs.cpp index 7b5a6f28..14744601 100644 --- a/basicsubs.cpp +++ b/basicsubs.cpp @@ -592,6 +592,8 @@ calc_dens(void) { density_x = rho_0 * (1e3 + M_T / mass_water_aq_x) / (rho_0 * V_solutes / mass_water_aq_x + 1e3); } + solution_mass_x = 1e-3*(M_T + s_h2o->moles * s_h2o->gfw); + solution_volume_x = solution_mass_x / density_x; return density_x; //M_T /= 1e3; //solution_mass = mass_water_aq_x + M_T; @@ -604,7 +606,7 @@ calc_dens(void) } /* VP: Density End */ /* DP: Function for interval halving */ - +#ifdef NOT_USED LDBLE Phreeqc:: f_rho(LDBLE rho_old, void* cookie) /* ---------------------------------------------------------------------- */ @@ -622,7 +624,8 @@ f_rho(LDBLE rho_old, void* cookie) rho = rho + pThis->rho_0; return (rho - rho_old); } - +#endif +#ifdef original /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: calc_solution_volume(void) @@ -653,7 +656,19 @@ calc_solution_volume(void) LDBLE vol = 1e-3 * total_mass / rho; return (vol); } - +#endif +/* ---------------------------------------------------------------------- */ +LDBLE Phreeqc:: +calc_solution_volume(void) +/* ---------------------------------------------------------------------- */ +{ + /* + * Calculates solution volume based on sum of mass of element plus density + */ + LDBLE rho = calc_dens(); + LDBLE vol = solution_volume_x; + return (vol); +} /* ---------------------------------------------------------------------- */ LDBLE Phreeqc:: calc_logk_n(const char* name) diff --git a/mainsubs.cpp b/mainsubs.cpp index e57c6389..051e85be 100644 --- a/mainsubs.cpp +++ b/mainsubs.cpp @@ -409,6 +409,8 @@ initial_solutions(int print) set(TRUE); converge = model(); } + calc_dens(); + kgw_kgs = mass_water_aq_x / solution_mass_x; density_iterations++; if (solution_ref.Get_initial_data()->Get_calc_density()) { diff --git a/prep.cpp b/prep.cpp index e08cd5f8..7494dfbe 100644 --- a/prep.cpp +++ b/prep.cpp @@ -1942,6 +1942,10 @@ convert_units(cxxSolution *solution_ptr) strstr(initial_data_ptr->Get_units().c_str(), "/l") != NULL) { mass_water_aq_x = 1.0 - 1e-3 * sum_solutes; + if (density_iterations > 0) + { + mass_water_aq_x = kgw_kgs; + } if (mass_water_aq_x <= 0) { error_string = sformatf( "Solute mass exceeds solution mass in conversion from /kgs to /kgw.\n" From a4a7ecab5bd672526d3d44f1542d8f588ffe10fc Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Thu, 6 Jun 2024 21:28:38 -0600 Subject: [PATCH 172/384] Tony's change to Sr and NH4, SC_Ohm and rate_xmpls, basicsubs.cpp error --- Amm.dat | 4 ++-- phreeqc.dat | 6 +++--- phreeqc_rates.dat | 19 +++++++++---------- pitzer.dat | 2 +- 4 files changed, 15 insertions(+), 16 deletions(-) diff --git a/Amm.dat b/Amm.dat index 2ae946d5..d6094609 100644 --- a/Amm.dat +++ b/Amm.dat @@ -112,7 +112,7 @@ Sr+2 = Sr+2 -gamma 5.26 0.121 -Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97 -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 - -dw 0.794e-9 160 0.68 0.767 1e-9 0.912 + -dw 0.794e-9 149 0.805 1.961 1e-9 0.7876 Ba+2 = Ba+2 -gamma 5 0 -gamma 4 0.153 # Barite solubility @@ -159,7 +159,7 @@ AmmH+ = AmmH+ -gamma 2.5 0 -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 - -dw 1.98e-9 178 3.747 0 1.22 + -dw 1.98e-9 203 1.47 2.644 6.81e-2 H3BO3 = H3BO3 -Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt -dw 1.1e-9 diff --git a/phreeqc.dat b/phreeqc.dat index c8e0f4c7..e2af2693 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -113,7 +113,7 @@ Sr+2 = Sr+2 -gamma 5.26 0.121 -Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97 -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 - -dw 0.794e-9 160 0.68 0.767 1e-9 0.912 + -dw 0.794e-9 149 0.805 1.961 1e-9 0.7876 Ba+2 = Ba+2 -gamma 5 0 -gamma 4 0.153 # Barite solubility @@ -160,7 +160,7 @@ NO3- = NO3- # -gamma 2.5 0 # -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 # -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 -# -dw 1.98e-9 178 3.747 0 1.220 +# -dw 1.98e-9 203 1.47 2.644 6.81e-2 H3BO3 = H3BO3 -Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt -dw 1.1e-9 @@ -307,7 +307,7 @@ NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O -gamma 2.5 0 -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 - -dw 1.98e-9 178 3.747 0 1.22 + -dw 1.98e-9 203 1.47 2.644 6.81e-2 #AmmH+ = Amm + H+ NH4+ = NH3 + H+ diff --git a/phreeqc_rates.dat b/phreeqc_rates.dat index d11dd870..9926adb6 100644 --- a/phreeqc_rates.dat +++ b/phreeqc_rates.dat @@ -113,7 +113,7 @@ Sr+2 = Sr+2 -gamma 5.26 0.121 -Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97 -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 - -dw 0.794e-9 160 0.68 0.767 1e-9 0.912 + -dw 0.794e-9 149 0.805 1.961 1e-9 0.7876 Ba+2 = Ba+2 -gamma 5 0 -gamma 4 0.153 # Barite solubility @@ -160,7 +160,7 @@ NO3- = NO3- # -gamma 2.5 0 # -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 # -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 -# -dw 1.98e-9 178 3.747 0 1.220 +# -dw 1.98e-9 203 1.47 2.644 6.81e-2 H3BO3 = H3BO3 -Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt -dw 1.1e-9 @@ -307,8 +307,7 @@ NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O -gamma 2.5 0 -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 - -dw 1.98e-9 178 3.747 0 1.22 - + -dw 1.98e-9 203 1.47 2.644 6.81e-2 #AmmH+ = Amm + H+ NH4+ = NH3 + H+ -log_k -9.252 @@ -2982,7 +2981,7 @@ Wollastonite -6.97 700 56 0.4 0 0 # EXCHANGE_MASTER_SPECIES # X_montm_mg X_montm_mg-0.34 # EXCHANGE_SPECIES -# # The Gapon formulation is easiest... +# # The Gapon formulation is easiest, with constants from Montmorillonite(Mg..) in PHASES # X_montm_mg-0.34 = X_montm_mg-0.34 # 0.34 Na+ + X_montm_mg-0.34 = Na0.34X_montm_mg; log_k -3.411 # 0 # # 0.34 K+ + X_montm_mg-0.34 = K0.34X_montm_mg; log_k -2.83 # 0.581 # @@ -2991,13 +2990,13 @@ Wollastonite -6.97 700 56 0.4 0 0 # # # The divalent cations have rather low log_k, cf. A&P, p.254, log_k Ca0.5X ~ log_k KX # # # uncomment the following lines to see the effect... -# # 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -2.73 +# # 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -2.86 # # 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -2.83 # # # also adapt the log_k`s of the solids... # # PHASES # # Montmorillonite(MgMg) # # Mg0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.510Mg+2 + 4H4SiO4 - # # log_k 2.73 + # # log_k 2.86 # # Montmorillonite(MgCa) # # Ca0.17Mg0.34Al1.66Si4O10(OH)2 + 6H+ + 4H2O = 1.660Al+3 + 0.170Ca+2 + 0.340Mg+2 + 4H4SiO4 # # log_k 2.83 @@ -3008,8 +3007,8 @@ Wollastonite -6.97 700 56 0.4 0 0 # # 0.17 Mg+2 + X_montm_mg-0.34 = Mg0.17X_montm_mg; log_k -3.708e10 # # 0.17 Ca+2 + X_montm_mg-0.34 = Ca0.17X_montm_mg; log_k -4.222e10 # # # write the Gaines-Thomas formulas... -# # 0.34 Mg+2 + 2 X_montm_mg-0.34 = Mg0.34X_montm_mg2 ; log_k -7.416 # -0.297 # -# # 0.34 Ca+2 + 2 X_montm_mg-0.34 = Ca0.34X_montm_mg2 ; log_k -8.444 # -0.811 # +# # 0.34 Mg+2 + 2 X_montm_mg-0.34 = Mg0.34X_montm_mg2 ; log_k -7.416 # -0.297 # +# # 0.34 Ca+2 + 2 X_montm_mg-0.34 = Ca0.34X_montm_mg2 ; log_k -8.444 # -0.811 # # # # The default exchanger X can be used, uncomment the follwing lines # # # redefine f_Na in the rate... @@ -3021,7 +3020,7 @@ Wollastonite -6.97 700 56 0.4 0 0 # # 20 rate = RATE_HERMANSKA("Montmorillonite") / f_Na # # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # # 40 SAVE area * rate * affinity * TIME -# # -end +# # -end # # # adapt log_k`s of the solids with default exchanger X: # # PHASES # # Montmorillonite(MgK) diff --git a/pitzer.dat b/pitzer.dat index c77909a7..4cdc7de2 100644 --- a/pitzer.dat +++ b/pitzer.dat @@ -79,7 +79,7 @@ Ca+2 = Ca+2 Sr+2 = Sr+2 -Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97 -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 - -dw 0.794e-9 160 0.68 0.767 1e-9 0.912 + -dw 0.794e-9 149 0.805 1.961 1e-9 0.7876 Ba+2 = Ba+2 -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 From 9064885f78fbfa26851960752574de7ae2333b0e Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Fri, 7 Jun 2024 08:32:17 -0600 Subject: [PATCH 173/384] 20240607 database2.zip from Tony --- Amm.dat | 31 +-- phreeqc.dat | 22 +- phreeqc_rates.dat | 100 ++++----- pitzer.dat | 534 +++++++++++++++++++++++----------------------- 4 files changed, 337 insertions(+), 350 deletions(-) diff --git a/Amm.dat b/Amm.dat index d6094609..fbe7b75f 100644 --- a/Amm.dat +++ b/Amm.dat @@ -43,8 +43,8 @@ N NO3- 0 N 14.0067 N(+5) NO3- 0 NO3 N(+3) NO2- 0 NO2 N(0) N2 0 N -#N(-3) NH4+ 0 NH4 14.0067 -Amm AmmH+ 0 AmmH 17.031 +#N(-3) NH4+ 0 NH4 14.0067 +Amm AmmH+ 0 AmmH 17.031 B H3BO3 0 B 10.81 P PO4-3 2 P 30.9738 F F- 0 F 18.9984 @@ -62,12 +62,13 @@ Oxg Oxg 0 Oxg 32 # O2 gas Mtg Mtg 0 Mtg 16.032 # CH4 gas Sg H2Sg 0 H2Sg 32.064 # H2S gas Ntg Ntg 0 Ntg 28.0134 # N2 gas + SOLUTION_SPECIES H+ = H+ -gamma 9 0 -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 - -dw 9.31e-9 838 16.315 0 2.376 24.01 0 -# Dw(25 C) dw_T a a2 visc a3 a_v_dif + -dw 9.31e-9 823 5.55 0 3.07 24.01 0 +# Dw(25 C) dw_T a a2 visc a3 a_v_dif # Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc # a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif @@ -300,19 +301,23 @@ NO3- + 2 H+ + 2 e- = NO2- + H2O -delta_h -312.13 kcal -Vm 7 # Pray et al., 1952, IEC 44 1146 -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 +#NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O +# -log_k 119.077 +# -delta_h -187.055 kcal +# -gamma 2.5 0 +# -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 +# -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 +# -dw 1.98e-9 203 1.47 2.644 6.81e-2 AmmH+ = Amm + H+ +#NH4+ = NH3 + H+ -log_k -9.252 -delta_h 12.48 kcal -analytic 0.6322 -0.001225 -2835.76 -Vm 6.69 2.8 3.58 -2.88 1.43 -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 -dw 2.28e-9 -#NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O -# -log_k 119.077 -# -delta_h -187.055 kcal -# -gamma 2.5 0 -# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 AmmH+ + SO4-2 = AmmHSO4- +#NH4+ + SO4-2 = NH4SO4- -gamma 6.54 -0.08 -log_k 1.106; -delta_h 4.3 kcal -Vm -3.23 0 -68.42 0 -14.27 0 68.51 0 -0.4099 0.2339 @@ -669,7 +674,7 @@ H4SiO4 = H3SiO4- + H+ -delta_h 6.12 kcal -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669 -gamma 4 0 - -Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt H2O in a1 + -Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt + H2O in a1 H4SiO4 = H2SiO4-2 + 2 H+ -log_k -23 -delta_h 17.6 kcal @@ -1236,6 +1241,8 @@ CH4(g) -T_c 190.6; -P_c 45.4; -Omega 0.008 Amm(g) Amm = Amm +#NH3(g) +# NH3 = NH3 -log_k 1.7966 -analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192 -T_c 405.6; -P_c 111.3; -Omega 0.25 @@ -1345,6 +1352,7 @@ EXCHANGE_SPECIES # -gamma 9.0 0 AmmH+ + X- = AmmHX +# NH4+ + X- = NH4X -log_k 0.6 -gamma 2.5 0 -delta_h -2.4 # Laudelout et al., 1968 @@ -1583,7 +1591,6 @@ HCl H+ 1 Cl- 1 H2SO4 H+ 2 SO4-2 1 HBr H+ 1 Br- 1 - RATES ########### @@ -1657,7 +1664,7 @@ K-feldspar 1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar 3 REM PARM(2) = Adjusts lab rate to field rate -4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +4 REM temp corr: from A&P, p. 162: E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) 5 REM K-Feldspar parameters 10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 20 RESTORE 10 diff --git a/phreeqc.dat b/phreeqc.dat index e2af2693..305e0828 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -67,8 +67,8 @@ SOLUTION_SPECIES H+ = H+ -gamma 9 0 -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 - -dw 9.31e-9 838 16.315 0 2.376 24.01 0 -# Dw(25 C) dw_T a a2 visc a3 a_v_dif + -dw 9.31e-9 823 5.55 0 3.07 24.01 0 +# Dw(25 C) dw_T a a2 visc a3 a_v_dif # Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc # a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif @@ -156,10 +156,10 @@ NO3- = NO3- -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 -viscosity 8.37e-2 -0.458 1.54e-2 0.34 1.79e-2 5.02e-2 0.7381 -dw 1.9e-9 104 1.11 -#AmmH+ = AmmH+ -# -gamma 2.5 0 -# -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 -# -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 +# AmmH+ = AmmH+ +# -gamma 2.5 0 +# -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 +# -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 # -dw 1.98e-9 203 1.47 2.644 6.81e-2 H3BO3 = H3BO3 -Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt @@ -308,7 +308,6 @@ NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 -dw 1.98e-9 203 1.47 2.644 6.81e-2 - #AmmH+ = Amm + H+ NH4+ = NH3 + H+ -log_k -9.252 @@ -317,11 +316,6 @@ NH4+ = NH3 + H+ -Vm 6.69 2.8 3.58 -2.88 1.43 -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 -dw 2.28e-9 -#NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O -# -log_k 119.077 -# -delta_h -187.055 kcal -# -gamma 2.5 0 -# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 #AmmH+ + SO4-2 = AmmHSO4- NH4+ + SO4-2 = NH4SO4- -gamma 6.54 -0.08 @@ -680,7 +674,7 @@ H4SiO4 = H3SiO4- + H+ -delta_h 6.12 kcal -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669 -gamma 4 0 - -Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt H2O in a1 + -Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt + H2O in a1 H4SiO4 = H2SiO4-2 + 2 H+ -log_k -23 -delta_h 17.6 kcal @@ -1670,7 +1664,7 @@ K-feldspar 1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar 3 REM PARM(2) = Adjusts lab rate to field rate -4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +4 REM temp corr: from A&P, p. 162: E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) 5 REM K-Feldspar parameters 10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 20 RESTORE 10 diff --git a/phreeqc_rates.dat b/phreeqc_rates.dat index 9926adb6..0d2a2bc5 100644 --- a/phreeqc_rates.dat +++ b/phreeqc_rates.dat @@ -44,7 +44,7 @@ N(+5) NO3- 0 N N(+3) NO2- 0 N N(0) N2 0 N N(-3) NH4+ 0 N 14.0067 -#Amm AmmH+ 0 AmmH 17.031 +#Amm AmmH+ 0 AmmH 17.031 B H3BO3 0 B 10.81 P PO4-3 2 P 30.9738 F F- 0 F 18.9984 @@ -67,8 +67,8 @@ SOLUTION_SPECIES H+ = H+ -gamma 9 0 -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 - -dw 9.31e-9 838 16.315 0 2.376 24.01 0 -# Dw(25 C) dw_T a a2 visc a3 a_v_dif + -dw 9.31e-9 823 5.55 0 3.07 24.01 0 +# Dw(25 C) dw_T a a2 visc a3 a_v_dif # Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc # a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif @@ -156,11 +156,11 @@ NO3- = NO3- -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 -viscosity 8.37e-2 -0.458 1.54e-2 0.34 1.79e-2 5.02e-2 0.7381 -dw 1.9e-9 104 1.11 -#AmmH+ = AmmH+ -# -gamma 2.5 0 -# -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 -# -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 -# -dw 1.98e-9 203 1.47 2.644 6.81e-2 +# AmmH+ = AmmH+ + # -gamma 2.50 + # -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 + # -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + # -dw 1.98e-9 203 1.47 2.644 6.81e-2 H3BO3 = H3BO3 -Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt -dw 1.1e-9 @@ -203,7 +203,7 @@ Mtg = Mtg # CH4 -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 -dw 1.85e-9 Ntg = Ntg # N2 - -Vm 7 # Pray et al., 1952, IEC 44 1146 + -Vm 7 # Pray et al., 1952, IEC 44, 1146 -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 H2Sg = H2Sg # H2S -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 @@ -316,11 +316,6 @@ NH4+ = NH3 + H+ -Vm 6.69 2.8 3.58 -2.88 1.43 -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 -dw 2.28e-9 -#NO3- + 10 H+ + 8 e- = AmmH+ + 3 H2O -# -log_k 119.077 -# -delta_h -187.055 kcal -# -gamma 2.5 0 -# -Vm 4.837 2.345 5.522 -2.88 1.096 3 -1.456 75.0 7.17e-3 1 #AmmH+ + SO4-2 = AmmHSO4- NH4+ + SO4-2 = NH4SO4- -gamma 6.54 -0.08 @@ -1247,7 +1242,7 @@ CH4(g) #Amm(g) # Amm = Amm NH3(g) - NH3 = NH3 + NH3 = NH3 -log_k 1.7966 -analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192 -T_c 405.6; -P_c 111.3; -Omega 0.25 @@ -1574,27 +1569,27 @@ SURFACE_SPECIES Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2 H+ + H2O; log_K -11.69 MEAN_GAMMAS -CaCl2 Ca+2 1 Cl- 2 -CaSO4 Ca+2 1 SO4-2 1 -CaCO3 Ca+2 1 CO3-2 1 -Ca(OH)2 Ca+2 1 OH- 2 -MgCl2 Mg+2 1 Cl- 2 -MgSO4 Mg+2 1 SO4-2 1 -MgCO3 Mg+2 1 CO3-2 1 -Mg(OH)2 Mg+2 1 OH- 2 -NaCl Na+ 1 Cl- 1 -Na2SO4 Na+ 2 SO4-2 1 -NaHCO3 Na+ 1 HCO3- 1 -Na2CO3 Na+ 2 CO3-2 1 -NaOH Na+ 1 OH- 1 -KCl K+ 1 Cl- 1 -K2SO4 K+ 2 SO4-2 1 -HCO3 K+ 1 HCO3- 1 -K2CO3 K+ 2 CO3-2 1 -KOH K+ 1 OH- 1 -HCl H+ 1 Cl- 1 -H2SO4 H+ 2 SO4-2 1 -HBr H+ 1 Br- 1 +CaCl2 Ca+2 1 Cl- 2 +CaSO4 Ca+2 1 SO4-2 1 +CaCO3 Ca+2 1 CO3-2 1 +Ca(OH)2 Ca+2 1 OH- 2 +MgCl2 Mg+2 1 Cl- 2 +MgSO4 Mg+2 1 SO4-2 1 +MgCO3 Mg+2 1 CO3-2 1 +Mg(OH)2 Mg+2 1 OH- 2 +NaCl Na+ 1 Cl- 1 +Na2SO4 Na+ 2 SO4-2 1 +NaHCO3 Na+ 1 HCO3- 1 +Na2CO3 Na+ 2 CO3-2 1 +NaOH Na+ 1 OH- 1 +KCl K+ 1 Cl- 1 +K2SO4 K+ 2 SO4-2 1 +HCO3 K+ 1 HCO3- 1 +K2CO3 K+ 2 CO3-2 1 +KOH K+ 1 OH- 1 +HCl H+ 1 Cl- 1 +H2SO4 H+ 2 SO4-2 1 +HBr H+ 1 Br- 1 RATES @@ -1669,7 +1664,7 @@ K-feldspar 1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar 3 REM PARM(2) = Adjusts lab rate to field rate -4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +4 REM temp corr: from A&P, p. 162: E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) 5 REM K-Feldspar parameters 10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 20 RESTORE 10 @@ -2523,7 +2518,7 @@ Labradorite -7.87 42.1 0.626 -10.91 45.2 -30 0 0 Bytownite -5.85 29.3 1.018 -9.82 31.5 -30 0 0 Anorthite -3.5 16.6 1.411 -9.12 17.8 -30 0 0 # -K-feldspar -10.06 51.7 0.5 -12.41 38 -21.2 94.1 -0.823 # Table 14 +K-feldspar -10.06 51.7 0.5 -12.41 38 -21.2 94.1 -0.823 # Table 15 # Nepheline -2.73 62.9 1.13 -8.56 65.4 -10.76 37.8 -0.2 # Table 18 Leucite -6 132.2 0.7 -9.2 75.5 -10.66 56.6 -0.2 @@ -2901,48 +2896,39 @@ Wollastonite -6.97 700 56 0.4 0 0 # END # RATES -# Quartz_Rimstidt_Barnes -# #1 rem Specific rate k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol, Rimstidt and Barnes, 1980, GCA 44, 1683 +# Quartz_Rimstidt +# #1 rem Specific rate k = 10^-13.34 mol/m2/s (25 C), Ea = 74 kJ/mol, Rimstidt, 2015, GCA 167, 195 # 5 REM PARMS: 1 affinity, 2 m^2/mol, 3 roughness, 4 exponent # 10 if parm(1) = 1 then affinity = 1 else affinity = 1 - SR("Quartz") : if affinity < parm(1) then SAVE 0 : END -# 20 rate = 10^-(13.7 + 4700 * (1 / 298 - 1 / TK)) * (1 + 1500*tot("Na")) # salt correction, Dove and Rimstidt, MSA Rev. 29, 259 +# 20 rate = 10^-(13.3 + 4700 * (1 / 298 - 1 / TK)) * (1 + 1500*tot("Na")) # salt correction, Dove and Rimstidt, 1994, MSA Rev. 29, 259 +# 20 rate = 10^-(13.3 + 4700 * (1 / 298 - 1 / TK)) + 11.2e3 * act("Na+")^0.33 * act("OH-")^0.44 * exp(-71.6/(8.314e-3 * TK)) # salt correction, Rimstidt, 2015, GCA 167, 195 # 30 IF M > 0 THEN area = M * parm(2) * parm(3) * (M/M0)^parm(4) ELSE area = 0 # 40 SAVE area * rate * affinity * TIME # -end # USE solution 1 # KINETICS 1 -# Quartz_Rimstidt_Barnes +# Quartz_Rimstidt # -formula SiO2 # -parms 0 6 1 0.67 # -time 0.1 10*1 year # USER_GRAPH 3 -# -headings H Rimstidt.et.al +# -headings H Rimstidt # END # SOLUTION 1 -# pH 7 charge; Na 30; Cl 30 +# pH 7 charge; Na 1; Cl 1 # KINETICS 1 -# Quartz_Svd +# Quartz_Rimstidt # -formula SiO2 # -parms 0 6 1 0.67 # -time 0.1 10*1 year # USER_GRAPH 3 -# -headings H Sverdup_NaCl -# END - -# USE solution 1 -# KINETICS 1 -# Quartz_Rimstidt_Barnes -# -formula SiO2 -# -parms 0 6 1 0.67 -# -time 0.1 10*1 year -# USER_GRAPH 3 -# -headings H Rimstidt.et.al._NaCl +# -headings H Rimstidt_1.mM.NaCl # END # # Example input file for calculating kinetic dissolution of Montmorillonite, -# # a solid solution with exchangeable cations reacting fast +# # a solid solution with exchangeable cations reacting fast; # # their ratios are related to the changing solution composition, # # and their amounts are connected to the kinetic reacting TOT layer. # # diff --git a/pitzer.dat b/pitzer.dat index 4cdc7de2..9a477922 100644 --- a/pitzer.dat +++ b/pitzer.dat @@ -40,8 +40,8 @@ Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 - -dw 9.31e-9 823 5.55 0 3.07 24.01 0 -# Dw(25 C) dw_T a a2 visc a3 a_v_dif + -dw 9.31e-9 823 5.55 0 3.07 24.01 0 +# Dw(25 C) dw_T a a2 visc a3 a_v_dif # Dw(TK) = 9.31e-9 * exp(823 / TK - 823 / 298.15) * viscos_0_25 / viscos_0_tc # a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif @@ -195,7 +195,7 @@ Mg+2 + CO3-2 = MgCO3 H4SiO4 = H3SiO4- + H+ -log_k -9.83; -delta_h 6.12 kcal -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669 - -Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt H2O in a1 + -Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt + H2O in a1 H4SiO4 = H2SiO4-2 + 2 H+ -log_k -23; -delta_h 17.6 kcal -analytic -294.0184 -0.07265 11204.49 108.18466 -1119669 @@ -515,277 +515,277 @@ H2Sg(g) T_c 373.2; -P_c 88.2; -Omega 0.1 PITZER -B0 - B(OH)4- K+ 0.035 - B(OH)4- Na+ -0.0427 - B3O3(OH)4- K+ -0.13 - B3O3(OH)4- Na+ -0.056 - B4O5(OH)4-2 K+ -0.022 - B4O5(OH)4-2 Na+ -0.11 - Ba+2 Br- 0.31455 0 0 -0.33825E-3 - Ba+2 Cl- 0.5268 0 0 0 0 4.75e4 # ref. 3 - Ba+2 OH- 0.17175 - Br- H+ 0.196 0 0 -2.049E-4 - Br- K+ 0.0569 0 0 7.39E-4 - Br- Li+ 0.1748 0 0 -1.819E-4 - Br- Mg+2 0.4327 0 0 -5.625E-5 - Br- Na+ 0.0973 0 0 7.692E-4 - Br- Sr+2 0.331125 0 0 -0.32775E-3 - Ca+2 Br- 0.3816 0 0 -5.2275E-4 - Ca+2 Cl- 0.3159 0 0 -3.27e-4 1.4e-7 # ref. 3 - Ca+2 HCO3- 0.4 - Ca+2 HSO4- 0.2145 - Ca+2 OH- -0.1747 - Ca+2 SO4-2 0 # ref. 3 - CaB(OH)4+ Cl- 0.12 - Cl- Fe+2 0.335925 - Cl- H+ 0.1775 0 0 -3.081E-4 - Cl- K+ 0.04808 -758.48 -4.7062 0.010072 -3.7599e-6 # ref. 3 - Cl- Li+ 0.1494 0 0 -1.685E-4 - Cl- Mg+2 0.351 0 0 -9.32e-4 5.94e-7 # ref. 3 - Cl- MgB(OH)4+ 0.16 - Cl- MgOH+ -0.1 - Cl- Mn+2 0.327225 - Cl- Na+ 7.534e-2 9598.4 35.48 -5.8731e-2 1.798e-5 -5e5 # ref. 3 - Cl- Sr+2 0.2858 0 0 0.717E-3 - CO3-2 K+ 0.1488 0 0 1.788E-3 - CO3-2 Na+ 0.0399 0 0 1.79E-3 - Fe+2 HSO4- 0.4273 - Fe+2 SO4-2 0.2568 - H+ HSO4- 0.2065 - H+ SO4-2 0.0298 - HCO3- K+ 0.0296 0 0 0.996E-3 - HCO3- Mg+2 0.329 - HCO3- Na+ -0.018 # ref. 3 new -analytic for calcite - HCO3- Sr+2 0.12 - HSO4- K+ -0.0003 - HSO4- Mg+2 0.4746 - HSO4- Na+ 0.0454 - K+ OH- 0.1298 - K+ SO4-2 3.17e-2 0 0 9.28e-4 # ref. 3 - Li+ OH- 0.015 - Li+ SO4-2 0.136275 0 0 0.5055E-3 - Mg+2 SO4-2 0.2135 -951 0 -2.34e-2 2.28e-5 # ref. 3 - Mn+2 SO4-2 0.2065 - Na+ OH- 0.0864 0 0 7E-4 - Na+ SO4-2 2.73e-2 0 -5.8 9.89e-3 0 -1.563e5 # ref. 3 - SO4-2 Sr+2 0.2 0 0 -2.9E-3 + B(OH)4- K+ 0.035 + B(OH)4- Na+ -0.0427 + B3O3(OH)4- K+ -0.13 + B3O3(OH)4- Na+ -0.056 + B4O5(OH)4-2 K+ -0.022 + B4O5(OH)4-2 Na+ -0.11 + Ba+2 Br- 0.31455 0 0 -0.33825E-3 + Ba+2 Cl- 0.5268 0 0 0 0 4.75e4 # ref. 3 + Ba+2 OH- 0.17175 + Br- H+ 0.196 0 0 -2.049E-4 + Br- K+ 0.0569 0 0 7.39E-4 + Br- Li+ 0.1748 0 0 -1.819E-4 + Br- Mg+2 0.4327 0 0 -5.625E-5 + Br- Na+ 0.0973 0 0 7.692E-4 + Br- Sr+2 0.331125 0 0 -0.32775E-3 + Ca+2 Br- 0.3816 0 0 -5.2275E-4 + Ca+2 Cl- 0.3159 0 0 -3.27e-4 1.4e-7 # ref. 3 + Ca+2 HCO3- 0.4 + Ca+2 HSO4- 0.2145 + Ca+2 OH- -0.1747 + Ca+2 SO4-2 0 # ref. 3 + CaB(OH)4+ Cl- 0.12 + Cl- Fe+2 0.335925 + Cl- H+ 0.1775 0 0 -3.081E-4 + Cl- K+ 0.04808 -758.48 -4.7062 0.010072 -3.7599e-6 # ref. 3 + Cl- Li+ 0.1494 0 0 -1.685E-4 + Cl- Mg+2 0.351 0 0 -9.32e-4 5.94e-7 # ref. 3 + Cl- MgB(OH)4+ 0.16 + Cl- MgOH+ -0.1 + Cl- Mn+2 0.327225 + Cl- Na+ 7.534e-2 9598.4 35.48 -5.8731e-2 1.798e-5 -5e5 # ref. 3 + Cl- Sr+2 0.2858 0 0 0.717E-3 + CO3-2 K+ 0.1488 0 0 1.788E-3 + CO3-2 Na+ 0.0399 0 0 1.79E-3 + Fe+2 HSO4- 0.4273 + Fe+2 SO4-2 0.2568 + H+ HSO4- 0.2065 + H+ SO4-2 0.0298 + HCO3- K+ 0.0296 0 0 0.996E-3 + HCO3- Mg+2 0.329 + HCO3- Na+ -0.018 # ref. 3 + new -analytic for calcite + HCO3- Sr+2 0.12 + HSO4- K+ -0.0003 + HSO4- Mg+2 0.4746 + HSO4- Na+ 0.0454 + K+ OH- 0.1298 + K+ SO4-2 3.17e-2 0 0 9.28e-4 # ref. 3 + Li+ OH- 0.015 + Li+ SO4-2 0.136275 0 0 0.5055E-3 + Mg+2 SO4-2 0.2135 -951 0 -2.34e-2 2.28e-5 # ref. 3 + Mn+2 SO4-2 0.2065 + Na+ OH- 0.0864 0 0 7E-4 + Na+ SO4-2 2.73e-2 0 -5.8 9.89e-3 0 -1.563e5 # ref. 3 + SO4-2 Sr+2 0.2 0 0 -2.9E-3 -B1 - B(OH)4- K+ 0.14 - B(OH)4- Na+ 0.089 - B3O3(OH)4- Na+ -0.91 - B4O5(OH)4-2 Na+ -0.4 - Ba+2 Br- 1.56975 0 0 6.78E-3 - Ba+2 Cl- 0.687 0 0 1.417e-2 # ref. 3 - Ba+2 OH- 1.2 - Br- H+ 0.3564 0 0 4.467E-4 - Br- K+ 0.2212 0 0 17.4E-4 - Br- Li+ 0.2547 0 0 6.636E-4 - Br- Mg+2 1.753 0 0 3.8625E-3 - Br- Na+ 0.2791 0 0 10.79E-4 - Br- Sr+2 1.7115 0 0 6.5325E-3 - Ca+2 Br- 1.613 0 0 6.0375E-3 - Ca+2 Cl- 1.614 0 0 7.63e-3 -8.19e-7 # ref. 3 - Ca+2 HCO3- 2.977 # ref. 3 new -analytic for calcite - Ca+2 HSO4- 2.53 - Ca+2 OH- -0.2303 - Ca+2 SO4-2 3.546 0 0 5.77e-3 # ref. 3 - Cl- Fe+2 1.53225 - Cl- H+ 0.2945 0 0 1.419E-4 - Cl- K+ 0.2168 0 -6.895 2.262e-2 -9.293e-6 -1e5 # ref. 3 - Cl- Li+ 0.3074 0 0 5.366E-4 - Cl- Mg+2 1.65 0 0 -1.09e-2 2.6e-5 # ref. 3 - Cl- MgOH+ 1.658 - Cl- Mn+2 1.55025 - Cl- Na+ 0.2769 1.377e4 46.8 -6.9512e-2 2e-5 -7.4823e5 # ref. 3 - Cl- Sr+2 1.667 0 0 2.8425E-3 - CO3-2 K+ 1.43 0 0 2.051E-3 - CO3-2 Na+ 1.389 0 0 2.05E-3 - Fe+2 HSO4- 3.48 - Fe+2 SO4-2 3.063 - H+ HSO4- 0.5556 - HCO3- K+ 0.25 0 0 1.104E-3 # ref. 3 - HCO3- Mg+2 0.6072 - HCO3- Na+ 0 # ref. 3 new -analytic for calcite - HSO4- K+ 0.1735 - HSO4- Mg+2 1.729 - HSO4- Na+ 0.398 - K+ OH- 0.32 - K+ SO4-2 0.756 -1.514e4 -80.3 0.1091 # ref. 3 - Li+ OH- 0.14 - Li+ SO4-2 1.2705 0 0 1.41E-3 - Mg+2 SO4-2 3.367 -5.78e3 0 -1.48e-1 1.576e-4 # ref. 3 - Mn+2 SO4-2 2.9511 - Na+ OH- 0.253 0 0 1.34E-4 - Na+ SO4-2 0.956 2.663e3 0 1.158e-2 0 -3.194e5 # ref. 3 - SO4-2 Sr+2 3.1973 0 0 27e-3 + B(OH)4- K+ 0.14 + B(OH)4- Na+ 0.089 + B3O3(OH)4- Na+ -0.91 + B4O5(OH)4-2 Na+ -0.4 + Ba+2 Br- 1.56975 0 0 6.78E-3 + Ba+2 Cl- 0.687 0 0 1.417e-2 # ref. 3 + Ba+2 OH- 1.2 + Br- H+ 0.3564 0 0 4.467E-4 + Br- K+ 0.2212 0 0 17.4E-4 + Br- Li+ 0.2547 0 0 6.636E-4 + Br- Mg+2 1.753 0 0 3.8625E-3 + Br- Na+ 0.2791 0 0 10.79E-4 + Br- Sr+2 1.7115 0 0 6.5325E-3 + Ca+2 Br- 1.613 0 0 6.0375E-3 + Ca+2 Cl- 1.614 0 0 7.63e-3 -8.19e-7 # ref. 3 + Ca+2 HCO3- 2.977 # ref. 3 + new -analytic for calcite + Ca+2 HSO4- 2.53 + Ca+2 OH- -0.2303 + Ca+2 SO4-2 3.546 0 0 5.77e-3 # ref. 3 + Cl- Fe+2 1.53225 + Cl- H+ 0.2945 0 0 1.419E-4 + Cl- K+ 0.2168 0 -6.895 2.262e-2 -9.293e-6 -1e5 # ref. 3 + Cl- Li+ 0.3074 0 0 5.366E-4 + Cl- Mg+2 1.65 0 0 -1.09e-2 2.6e-5 # ref. 3 + Cl- MgOH+ 1.658 + Cl- Mn+2 1.55025 + Cl- Na+ 0.2769 1.377e4 46.8 -6.9512e-2 2e-5 -7.4823e5 # ref. 3 + Cl- Sr+2 1.667 0 0 2.8425E-3 + CO3-2 K+ 1.43 0 0 2.051E-3 + CO3-2 Na+ 1.389 0 0 2.05E-3 + Fe+2 HSO4- 3.48 + Fe+2 SO4-2 3.063 + H+ HSO4- 0.5556 + HCO3- K+ 0.25 0 0 1.104E-3 # ref. 3 + HCO3- Mg+2 0.6072 + HCO3- Na+ 0 # ref. 3 + new -analytic for calcite + HSO4- K+ 0.1735 + HSO4- Mg+2 1.729 + HSO4- Na+ 0.398 + K+ OH- 0.32 + K+ SO4-2 0.756 -1.514e4 -80.3 0.1091 # ref. 3 + Li+ OH- 0.14 + Li+ SO4-2 1.2705 0 0 1.41E-3 + Mg+2 SO4-2 3.367 -5.78e3 0 -1.48e-1 1.576e-4 # ref. 3 + Mn+2 SO4-2 2.9511 + Na+ OH- 0.253 0 0 1.34E-4 + Na+ SO4-2 0.956 2.663e3 0 1.158e-2 0 -3.194e5 # ref. 3 + SO4-2 Sr+2 3.1973 0 0 27e-3 -B2 - Ca+2 Cl- -1.13 0 0 -0.0476 # ref. 3 - Ca+2 OH- -5.72 - Ca+2 SO4-2 -59.3 0 0 -0.443 -3.96e-6 # ref. 3 - Fe+2 SO4-2 -42 - HCO3- Na+ 8.22 0 0 -0.049 # ref. 3 new -analytic for calcite - Mg+2 SO4-2 -32.45 0 -3.236e3 21.812 -1.8859e-2 # ref. 3 - Mn+2 SO4-2 -40 - SO4-2 Sr+2 -54.24 0 0 -0.42 + Ca+2 Cl- -1.13 0 0 -0.0476 # ref. 3 + Ca+2 OH- -5.72 + Ca+2 SO4-2 -59.3 0 0 -0.443 -3.96e-6 # ref. 3 + Fe+2 SO4-2 -42 + HCO3- Na+ 8.22 0 0 -0.049 # ref. 3 + new -analytic for calcite + Mg+2 SO4-2 -32.45 0 -3.236e3 21.812 -1.8859e-2 # ref. 3 + Mn+2 SO4-2 -40.0 + SO4-2 Sr+2 -54.24 0 0 -0.42 -C0 - B(OH)4- Na+ 0.0114 - Ba+2 Br- -0.0159576 - Ba+2 Cl- -0.143 -114.5 # ref. 3 - Br- Ca+2 -0.00257 - Br- H+ 0.00827 0 0 -5.685E-5 - Br- K+ -0.0018 0 0 -7.004E-5 - Br- Li+ 0.0053 0 0 -2.813E-5 - Br- Mg+2 0.00312 - Br- Na+ 0.00116 0 0 -9.3E-5 - Br- Sr+2 0.00122506 - Ca+2 Cl- 1.4e-4 -57 -0.098 -7.83e-4 7.18e-7 # ref. 3 - Ca+2 SO4-2 0.114 # ref. 3 - Cl- Fe+2 -0.00860725 - Cl- H+ 0.0008 0 0 6.213E-5 - Cl- K+ -7.88e-4 91.27 0.58643 -1.298e-3 4.9567e-7 # ref. 3 - Cl- Li+ 0.00359 0 0 -4.52E-5 - Cl- Mg+2 0.00651 0 0 -2.5e-4 2.418e-7 # ref. 3 - Cl- Mn+2 -0.0204972 - Cl- Na+ 1.48e-3 -120.5 -0.2081 0 1.166e-7 11121 # ref. 3 - Cl- Sr+2 -0.0013 - CO3-2 K+ -0.0015 - CO3-2 Na+ 0.0044 - Fe+2 SO4-2 0.0209 - H+ SO4-2 0.0438 - HCO3- K+ -0.008 - K+ OH- 0.0041 - K+ SO4-2 8.18e-3 -625 -3.3 4.06e-3 # ref. 3 - Li+ SO4-2 -0.00399338 0 0 -2.33345e-4 - Mg+2 SO4-2 2.875e-2 0 -2.084 1.1428e-2 -8.228e-6 # ref. 3 - Mn+2 SO4-2 0.01636 - Na+ OH- 0.0044 0 0 -18.94E-5 - Na+ SO4-2 3.418e-3 -384 0 -8.451e-4 0 5.177e4 # ref. 3 + B(OH)4- Na+ 0.0114 + Ba+2 Br- -0.0159576 + Ba+2 Cl- -0.143 -114.5 # ref. 3 + Br- Ca+2 -0.00257 + Br- H+ 0.00827 0 0 -5.685E-5 + Br- K+ -0.0018 0 0 -7.004E-5 + Br- Li+ 0.0053 0 0 -2.813E-5 + Br- Mg+2 0.00312 + Br- Na+ 0.00116 0 0 -9.3E-5 + Br- Sr+2 0.00122506 + Ca+2 Cl- 1.4e-4 -57 -0.098 -7.83e-4 7.18e-7 # ref. 3 + Ca+2 SO4-2 0.114 # ref. 3 + Cl- Fe+2 -0.00860725 + Cl- H+ 0.0008 0 0 6.213E-5 + Cl- K+ -7.88e-4 91.27 0.58643 -1.298e-3 4.9567e-7 # ref. 3 + Cl- Li+ 0.00359 0 0 -4.52E-5 + Cl- Mg+2 0.00651 0 0 -2.5e-4 2.418e-7 # ref. 3 + Cl- Mn+2 -0.0204972 + Cl- Na+ 1.48e-3 -120.5 -0.2081 0 1.166e-7 11121 # ref. 3 + Cl- Sr+2 -0.0013 + CO3-2 K+ -0.0015 + CO3-2 Na+ 0.0044 + Fe+2 SO4-2 0.0209 + H+ SO4-2 0.0438 + HCO3- K+ -0.008 + K+ OH- 0.0041 + K+ SO4-2 8.18e-3 -625 -3.3 4.06e-3 # ref. 3 + Li+ SO4-2 -0.00399338 0 0 -2.33345e-4 + Mg+2 SO4-2 2.875e-2 0 -2.084 1.1428e-2 -8.228e-6 # ref. 3 + Mn+2 SO4-2 0.01636 + Na+ OH- 0.0044 0 0 -18.94E-5 + Na+ SO4-2 3.418e-3 -384 0 -8.451e-4 0 5.177e4 # ref. 3 -THETA - B(OH)4- Cl- -0.065 - B(OH)4- SO4-2 -0.012 - B3O3(OH)4- Cl- 0.12 - B3O3(OH)4- HCO3- -0.1 - B3O3(OH)4- SO4-2 0.1 - B4O5(OH)4-2 Cl- 0.074 - B4O5(OH)4-2 HCO3- -0.087 - B4O5(OH)4-2 SO4-2 0.12 - Ba+2 Na+ 0.07 # ref. 3 - Br- OH- -0.065 - Ca+2 H+ 0.092 - Ca+2 K+ -5.35e-3 0 0 3.08e-4 # ref. 3 - Ca+2 Mg+2 0.007 - Ca+2 Na+ 9.22e-2 0 0 -4.29e-4 1.21e-6 # ref. 3 - Cl- CO3-2 -0.02 - Cl- HCO3- 0.03 - Cl- HSO4- -0.006 - Cl- OH- -0.05 - Cl- SO4-2 0.03 # ref. 3 - CO3-2 OH- 0.1 - CO3-2 SO4-2 0.02 - H+ K+ 0.005 - H+ Mg+2 0.1 - H+ Na+ 0.036 - HCO3- CO3-2 -0.04 - HCO3- SO4-2 0.01 - K+ Na+ -0.012 - Mg+2 Na+ 0.07 - Na+ Sr+2 0.051 - OH- SO4-2 -0.013 + B(OH)4- Cl- -0.065 + B(OH)4- SO4-2 -0.012 + B3O3(OH)4- Cl- 0.12 + B3O3(OH)4- HCO3- -0.1 + B3O3(OH)4- SO4-2 0.1 + B4O5(OH)4-2 Cl- 0.074 + B4O5(OH)4-2 HCO3- -0.087 + B4O5(OH)4-2 SO4-2 0.12 + Ba+2 Na+ 0.07 # ref. 3 + Br- OH- -0.065 + Ca+2 H+ 0.092 + Ca+2 K+ -5.35e-3 0 0 3.08e-4 # ref. 3 + Ca+2 Mg+2 0.007 + Ca+2 Na+ 9.22e-2 0 0 -4.29e-4 1.21e-6 # ref. 3 + Cl- CO3-2 -0.02 + Cl- HCO3- 0.03 + Cl- HSO4- -0.006 + Cl- OH- -0.05 + Cl- SO4-2 0.03 # ref. 3 + CO3-2 OH- 0.1 + CO3-2 SO4-2 0.02 + H+ K+ 0.005 + H+ Mg+2 0.1 + H+ Na+ 0.036 + HCO3- CO3-2 -0.04 + HCO3- SO4-2 0.01 + K+ Na+ -0.012 + Mg+2 Na+ 0.07 + Na+ Sr+2 0.051 + OH- SO4-2 -0.013 -LAMDA - B(OH)3 Cl- 0.091 - B(OH)3 K+ -0.14 - B(OH)3 Na+ -0.097 - B(OH)3 SO4-2 0.018 - B3O3(OH)4- B(OH)3 -0.2 - Ca+2 CO2 0.183 - Ca+2 H4SiO4 0.238 # ref. 3 - Cl- CO2 -0.005 - Cl- H2Sg -0.005 - Cl- (H2Sg)2 -0.005 - CO2 CO2 -1.34e-2 348 0.803 # new VM("CO2"), CO2 solubilities at high P, 0 - 150C - CO2 HSO4- -0.003 - CO2 K+ 0.051 - CO2 Mg+2 0.183 - CO2 Na+ 0.085 - CO2 SO4-2 0.075 # Rumpf and Maurer, 1993 - H2Sg Na+ 0.1047 0 -0.0413 # Xia et al., 2000, Ind. Eng. Chem. Res. 39, 1064 - H2Sg SO4-2 0 0 0.679 - (H2Sg)2 Na+ 0.0123 0 0.256 - H4SiO4 K+ 0.0298 # ref. 3 - H4SiO4 Li+ 0.143 # ref. 3 - H4SiO4 Mg+2 0.238 -1788 -9.023 0.0103 # ref. 3 - H4SiO4 Na+ 0.0566 75.3 0.115 # ref. 3 - H4SiO4 SO4-2 -0.085 0 0.28 -8.25e-4 # ref. 3 + B(OH)3 Cl- 0.091 + B(OH)3 K+ -0.14 + B(OH)3 Na+ -0.097 + B(OH)3 SO4-2 0.018 + B3O3(OH)4- B(OH)3 -0.2 + Ca+2 CO2 0.183 + Ca+2 H4SiO4 0.238 # ref. 3 + Cl- CO2 -0.005 + Cl- H2Sg -0.005 + Cl- (H2Sg)2 -0.005 + CO2 CO2 -1.34e-2 348 0.803 # new VM("CO2"), CO2 solubilities at high P, 0 - 150C + CO2 HSO4- -0.003 + CO2 K+ 0.051 + CO2 Mg+2 0.183 + CO2 Na+ 0.085 + CO2 SO4-2 0.075 # Rumpf and Maurer, 1993. + H2Sg Na+ 0.1047 0 -0.0413 # Xia et al., 2000, Ind. Eng. Chem. Res. 39, 1064 + H2Sg SO4-2 0 0 0.679 + (H2Sg)2 Na+ 0.0123 0 0.256 + H4SiO4 K+ 0.0298 # ref. 3 + H4SiO4 Li+ 0.143 # ref. 3 + H4SiO4 Mg+2 0.238 -1788 -9.023 0.0103 # ref. 3 + H4SiO4 Na+ 0.0566 75.3 0.115 # ref. 3 + H4SiO4 SO4-2 -0.085 0 0.28 -8.25e-4 # ref. 3 -ZETA - B(OH)3 Cl- H+ -0.0102 - B(OH)3 Na+ SO4-2 0.046 - Cl- H4SiO4 K+ -0.0153 # ref. 3 - Cl- H4SiO4 Li+ -0.0196 # ref. 3 - CO2 Na+ SO4-2 -0.015 - H2Sg Cl- Na+ -0.0123 # Xia et al., 2000, Ind. Eng. Chem. Res. 39, 1064 - H2Sg Na+ SO4-2 0.157 - (H2Sg)2 Cl- Na+ 0.0119 - (H2Sg)2 Na+ SO4-2 -0.167 + B(OH)3 Cl- H+ -0.0102 + B(OH)3 Na+ SO4-2 0.046 + Cl- H4SiO4 K+ -0.0153 # ref. 3 + Cl- H4SiO4 Li+ -0.0196 # ref. 3 + CO2 Na+ SO4-2 -0.015 + H2Sg Cl- Na+ -0.0123 # Xia et al., 2000, Ind. Eng. Chem. Res. 39, 1064 + H2Sg Na+ SO4-2 0.157 + (H2Sg)2 Cl- Na+ 0.0119 + (H2Sg)2 Na+ SO4-2 -0.167 -PSI - B(OH)4- Cl- Na+ -0.0073 - B3O3(OH)4- Cl- Na+ -0.024 - B4O5(OH)4-2 Cl- Na+ 0.026 - Br- K+ Na+ -0.0022 - Br- K+ OH- -0.014 - Br- Na+ H+ -0.012 - Br- Na+ OH- -0.018 - Ca+2 Cl- H+ -0.015 - Ca+2 Cl- K+ -0.025 - Ca+2 Cl- Mg+2 -0.012 - Ca+2 Cl- Na+ -1.48e-2 0 0 -5.2e-6 # ref. 3 - Ca+2 Cl- OH- -0.025 - Ca+2 Cl- SO4-2 -0.122 0 0 -1.21e-3 # ref. 3 - Ca+2 K+ SO4-2 -0.0365 # ref. 3 - Ca+2 Mg+2 SO4-2 0.024 - Ca+2 Na+ SO4-2 -0.055 17.2 # ref. 3 - Cl- Br- K+ 0 - Cl- CO3-2 K+ 0.004 - Cl- CO3-2 Na+ 0.0085 - Cl- H+ K+ -0.011 - Cl- H+ Mg+2 -0.011 - Cl- H+ Na+ -0.004 - Cl- HCO3- Mg+2 -0.096 - Cl- HCO3- Na+ 0 # ref. 3 new -analytic for calcite - Cl- HSO4- H+ 0.013 - Cl- HSO4- Na+ -0.006 - Cl- K+ Mg+2 -0.022 -14.27 # ref. 3 - Cl- K+ Na+ -0.0015 0 0 1.8e-5 # ref. 3 - Cl- K+ OH- -0.006 - Cl- K+ SO4-2 -1e-3 # ref. 3 - Cl- Mg+2 MgOH+ 0.028 - Cl- Mg+2 Na+ -0.012 -9.51 # ref. 3 - Cl- Mg+2 SO4-2 -0.008 32.63 # ref. 3 - Cl- Na+ OH- -0.006 - Cl- Na+ SO4-2 0 # ref. 3 - Cl- Na+ Sr+2 -0.0021 - CO3-2 HCO3- K+ 0.012 - CO3-2 HCO3- Na+ 0.002 - CO3-2 K+ Na+ 0.003 - CO3-2 K+ OH- -0.01 - CO3-2 K+ SO4-2 -0.009 - CO3-2 Na+ OH- -0.017 - CO3-2 Na+ SO4-2 -0.005 - H+ HSO4- K+ -0.0265 - H+ HSO4- Mg+2 -0.0178 - H+ HSO4- Na+ -0.0129 - H+ K+ Br- -0.021 - H+ K+ SO4-2 0.197 - HCO3- K+ Na+ -0.003 - HCO3- Mg+2 SO4-2 -0.161 - HCO3- Na+ SO4-2 -0.005 - HSO4- K+ SO4-2 -0.0677 - HSO4- Mg+2 SO4-2 -0.0425 - HSO4- Na+ SO4-2 -0.0094 - K+ Mg+2 SO4-2 -0.048 - K+ Na+ SO4-2 -0.01 - K+ OH- SO4-2 -0.05 - Mg+2 Na+ SO4-2 -0.015 - Na+ OH- SO4-2 -0.009 + B(OH)4- Cl- Na+ -0.0073 + B3O3(OH)4- Cl- Na+ -0.024 + B4O5(OH)4-2 Cl- Na+ 0.026 + Br- K+ Na+ -0.0022 + Br- K+ OH- -0.014 + Br- Na+ H+ -0.012 + Br- Na+ OH- -0.018 + Ca+2 Cl- H+ -0.015 + Ca+2 Cl- K+ -0.025 + Ca+2 Cl- Mg+2 -0.012 + Ca+2 Cl- Na+ -1.48e-2 0 0 -5.2e-6 # ref. 3 + Ca+2 Cl- OH- -0.025 + Ca+2 Cl- SO4-2 -0.122 0 0 -1.21e-3 # ref. 3 + Ca+2 K+ SO4-2 -0.0365 # ref. 3 + Ca+2 Mg+2 SO4-2 0.024 + Ca+2 Na+ SO4-2 -0.055 17.2 # ref. 3 + Cl- Br- K+ 0 + Cl- CO3-2 K+ 0.004 + Cl- CO3-2 Na+ 0.0085 + Cl- H+ K+ -0.011 + Cl- H+ Mg+2 -0.011 + Cl- H+ Na+ -0.004 + Cl- HCO3- Mg+2 -0.096 + Cl- HCO3- Na+ 0 # ref. 3 + new -analytic for calcite + Cl- HSO4- H+ 0.013 + Cl- HSO4- Na+ -0.006 + Cl- K+ Mg+2 -0.022 -14.27 # ref. 3 + Cl- K+ Na+ -0.0015 0 0 1.8e-5 # ref. 3 + Cl- K+ OH- -0.006 + Cl- K+ SO4-2 -1e-3 # ref. 3 + Cl- Mg+2 MgOH+ 0.028 + Cl- Mg+2 Na+ -0.012 -9.51 # ref. 3 + Cl- Mg+2 SO4-2 -0.008 32.63 # ref. 3 + Cl- Na+ OH- -0.006 + Cl- Na+ SO4-2 0 # ref. 3 + Cl- Na+ Sr+2 -0.0021 + CO3-2 HCO3- K+ 0.012 + CO3-2 HCO3- Na+ 0.002 + CO3-2 K+ Na+ 0.003 + CO3-2 K+ OH- -0.01 + CO3-2 K+ SO4-2 -0.009 + CO3-2 Na+ OH- -0.017 + CO3-2 Na+ SO4-2 -0.005 + H+ HSO4- K+ -0.0265 + H+ HSO4- Mg+2 -0.0178 + H+ HSO4- Na+ -0.0129 + H+ K+ Br- -0.021 + H+ K+ SO4-2 0.197 + HCO3- K+ Na+ -0.003 + HCO3- Mg+2 SO4-2 -0.161 + HCO3- Na+ SO4-2 -0.005 + HSO4- K+ SO4-2 -0.0677 + HSO4- Mg+2 SO4-2 -0.0425 + HSO4- Na+ SO4-2 -0.0094 + K+ Mg+2 SO4-2 -0.048 + K+ Na+ SO4-2 -0.01 + K+ OH- SO4-2 -0.05 + Mg+2 Na+ SO4-2 -0.015 + Na+ OH- SO4-2 -0.009 EXCHANGE_MASTER_SPECIES X X- EXCHANGE_SPECIES From bab2c2e28343ba9c14f57353ce113a8eb6996e6d Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Fri, 7 Jun 2024 08:35:08 -0600 Subject: [PATCH 174/384] 20240607a database22.zip --- Amm.dat | 4 ++-- phreeqc.dat | 4 ++-- phreeqc_rates.dat | 4 ++-- pitzer.dat | 4 ++-- 4 files changed, 8 insertions(+), 8 deletions(-) diff --git a/Amm.dat b/Amm.dat index fbe7b75f..c7169124 100644 --- a/Amm.dat +++ b/Amm.dat @@ -67,8 +67,8 @@ SOLUTION_SPECIES H+ = H+ -gamma 9 0 -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 - -dw 9.31e-9 823 5.55 0 3.07 24.01 0 -# Dw(25 C) dw_T a a2 visc a3 a_v_dif + -dw 9.31e-9 838 16.315 0 2.376 24.01 0 +# Dw(25 C) dw_T a a2 visc a3 a_v_dif # Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc # a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif diff --git a/phreeqc.dat b/phreeqc.dat index 305e0828..04fe478e 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -67,8 +67,8 @@ SOLUTION_SPECIES H+ = H+ -gamma 9 0 -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 - -dw 9.31e-9 823 5.55 0 3.07 24.01 0 -# Dw(25 C) dw_T a a2 visc a3 a_v_dif + -dw 9.31e-9 838 16.315 0 2.376 24.01 0 +# Dw(25 C) dw_T a a2 visc a3 a_v_dif # Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc # a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif diff --git a/phreeqc_rates.dat b/phreeqc_rates.dat index 0d2a2bc5..3909b925 100644 --- a/phreeqc_rates.dat +++ b/phreeqc_rates.dat @@ -67,8 +67,8 @@ SOLUTION_SPECIES H+ = H+ -gamma 9 0 -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 - -dw 9.31e-9 823 5.55 0 3.07 24.01 0 -# Dw(25 C) dw_T a a2 visc a3 a_v_dif + -dw 9.31e-9 838 16.315 0 2.376 24.01 0 +# Dw(25 C) dw_T a a2 visc a3 a_v_dif # Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc # a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif diff --git a/pitzer.dat b/pitzer.dat index 9a477922..1fca4427 100644 --- a/pitzer.dat +++ b/pitzer.dat @@ -40,8 +40,8 @@ Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 - -dw 9.31e-9 823 5.55 0 3.07 24.01 0 -# Dw(25 C) dw_T a a2 visc a3 a_v_dif + -dw 9.31e-9 838 16.315 0 2.376 24.01 0 +# Dw(25 C) dw_T a a2 visc a3 a_v_dif # Dw(TK) = 9.31e-9 * exp(823 / TK - 823 / 298.15) * viscos_0_25 / viscos_0_tc # a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif From 9bf3c42d7c3df8472e2e83b0138032fe8697990b Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Fri, 7 Jun 2024 08:38:49 -0600 Subject: [PATCH 175/384] 20240607b pitzer.dat --- pitzer.dat | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/pitzer.dat b/pitzer.dat index 1fca4427..0f7579f9 100644 --- a/pitzer.dat +++ b/pitzer.dat @@ -40,8 +40,8 @@ Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 - -dw 9.31e-9 838 16.315 0 2.376 24.01 0 -# Dw(25 C) dw_T a a2 visc a3 a_v_dif + -dw 9.31e-9 823 5.55 0 3.07 24.01 0 +# Dw(25 C) dw_T a a2 visc a3 a_v_dif # Dw(TK) = 9.31e-9 * exp(823 / TK - 823 / 298.15) * viscos_0_25 / viscos_0_tc # a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif From 2d7d1bcae1bf1bf91e2ceab5e0d499ffa1c99db4 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Fri, 7 Jun 2024 15:51:51 -0600 Subject: [PATCH 176/384] [phreeqc] Updated for latest databases From merge pull request #65 from dlparkhurst/viscosity --- ex21.out | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ex21.out b/ex21.out index 7333a325..339f19af 100644 --- a/ex21.out +++ b/ex21.out @@ -436,7 +436,7 @@ WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. pH = 7.600 pe = 13.120 Equilibrium with O2(g) - Specific Conductance (µS/cm, 23°C) = 29069 + Specific Conductance (µS/cm, 23°C) = 29068 Density (g/cm³) = 1.01168 Volume (L) = 0.20147 Viscosity (mPa s) = 0.96935 From 8024ee12891fde0332b86544b2b18010a91fde15 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Fri, 7 Jun 2024 21:56:13 +0000 Subject: [PATCH 177/384] Squashed 'phreeqcpp/' changes from e2f4d06..ceab9a1 ceab9a1 Tony's change to Sr and NH4, SC_Ohm and rate_xmpls, basicsubs.cpp error git-subtree-dir: phreeqcpp git-subtree-split: ceab9a1033d2046c72a6bcf19c2c2244e8b23f97 --- basicsubs.cpp | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/basicsubs.cpp b/basicsubs.cpp index 14744601..a9305f73 100644 --- a/basicsubs.cpp +++ b/basicsubs.cpp @@ -493,7 +493,7 @@ calc_SC(void) if (av) t1 *= pow(viscos_0 / viscos, av); if (correct_Dw) - s_x[i]->dw_corr *= t1 / Dw; + s_x[i]->dw_corr *= t1 / Dw * pow(mass_water_aq_x / calc_solution_volume(), 2); // fractional contribution in mu, and correct for charge imbalance a2 = 2 / (eq_plus + eq_min); From 4fc5a196119c09ee6337f6c13618c8031bc6acaa Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Fri, 7 Jun 2024 18:00:52 -0600 Subject: [PATCH 178/384] [phreeqc3] Updated databases --- CMakeLists.txt | 8 +++++--- Makefile.am | 4 +++- 2 files changed, 8 insertions(+), 4 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index 680d81f1..2bc7947d 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -1,16 +1,18 @@ set(phreeqc_DATABASE Amm.dat - core10.dat ColdChem.dat + Concrete_PHR.dat + Concrete_PZ.dat + core10.dat frezchem.dat iso.dat - llnl.dat Kinec.v2.dat + llnl.dat minteq.dat minteq.v4.dat - phreeqc.dat phreeqc_rates.dat PHREEQC_ThermoddemV1.10_15Dec2020.dat + phreeqc.dat pitzer.dat sit.dat Tipping_Hurley.dat diff --git a/Makefile.am b/Makefile.am index b16ff718..ad40b735 100644 --- a/Makefile.am +++ b/Makefile.am @@ -9,6 +9,8 @@ dist_database_DATA=$(DATABASE) DATABASE=\ Amm.dat\ ColdChem.dat\ + Concrete_PHR.dat\ + Concrete_PZ.dat\ core10.dat\ frezchem.dat\ iso.dat\ @@ -16,9 +18,9 @@ DATABASE=\ llnl.dat\ minteq.dat\ minteq.v4.dat\ + phreeqc_rates.dat\ PHREEQC_ThermoddemV1.10_15Dec2020.dat\ phreeqc.dat\ - phreeqc_rates.dat\ pitzer.dat\ sit.dat\ Tipping_Hurley.dat\ From 7d53e27f9b7bb69e5386618a6810dc316b3571e0 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Sun, 9 Jun 2024 18:17:37 -0600 Subject: [PATCH 179/384] formatted rate parameters for phreeqc_rates.dat --- phreeqc_rates.dat | 156 +++++++++++++++++++++++----------------------- 1 file changed, 78 insertions(+), 78 deletions(-) diff --git a/phreeqc_rates.dat b/phreeqc_rates.dat index 3909b925..d5e2fbe5 100644 --- a/phreeqc_rates.dat +++ b/phreeqc_rates.dat @@ -2506,113 +2506,113 @@ RATE_PARAMETERS_PK # Acid Neutral Base # log K E n(H+) log K E log K E n(OH-) # ================================================================ -Quartz -30 0 0 -13.4 90.9 -30 0 0 # Table 4 +Quartz -30 0 0 -13.4 90.9 -30 0 0 # Table 4 # -SiO2(a) -30 0 0 -12.31 76 -30 0 0 # Table 6 -Cristobalite -30 0 0 -12.31 65 -30 0 0 +SiO2(a) -30 0 0 -12.31 76 -30 0 0 # Table 6 +Cristobalite -30 0 0 -12.31 65 -30 0 0 # -Albite -10.16 65 0.317 -12.56 65 -15.6 66.5 -0.471 # Table 1 -Oligoclase -9.67 65 0.457 -11.84 69.8 -30 0 0 # Table 13 -Andesine -8.88 53.5 0.541 -11.47 57.4 -30 0 0 -Labradorite -7.87 42.1 0.626 -10.91 45.2 -30 0 0 -Bytownite -5.85 29.3 1.018 -9.82 31.5 -30 0 0 -Anorthite -3.5 16.6 1.411 -9.12 17.8 -30 0 0 +Albite -10.16 65 0.317 -12.56 65 -15.6 66.5 -0.471 # Table 1 +Oligoclase -9.67 65 0.457 -11.84 69.8 -30 0 0 # Table 13 +Andesine -8.88 53.5 0.541 -11.47 57.4 -30 0 0 +Labradorite -7.87 42.1 0.626 -10.91 45.2 -30 0 0 +Bytownite -5.85 29.3 1.018 -9.82 31.5 -30 0 0 +Anorthite -3.5 16.6 1.411 -9.12 17.8 -30 0 0 # -K-feldspar -10.06 51.7 0.5 -12.41 38 -21.2 94.1 -0.823 # Table 15 +K-feldspar -10.06 51.7 0.5 -12.41 38 -21.2 94.1 -0.823 # Table 15 # -Nepheline -2.73 62.9 1.13 -8.56 65.4 -10.76 37.8 -0.2 # Table 18 -Leucite -6 132.2 0.7 -9.2 75.5 -10.66 56.6 -0.2 +Nepheline -2.73 62.9 1.13 -8.56 65.4 -10.76 37.8 -0.2 # Table 18 +Leucite -6 132.2 0.7 -9.2 75.5 -10.66 56.6 -0.2 # -Forsterite -6.85 67.2 0.47 -10.64 79 -30 0 0 # Table 23 -Fayalite -4.8 94.4 0 -12.8 94.4 -30 0 0 -Almandine -5.2 94.4 1 -10.7 103.8 -13.71 37.8 -0.35 -Grossular -5.1 85 1 -10.7 103.8 -30 0 0 -Andradite -5.2 94.4 1 -10.7 103.8 -30 0 0 -Kyanite -10.17 -53.9 1.268 -17.44 53.9 -30 0 0 -Staurolite -6.9 18.9 1 -12.2 56.6 -14.9 47.2 -0.3 -Epidote -10.6 71.1 0.338 -11.99 70.7 -17.33 79.1 -0.556 -Zoisite -7.5 66.1 0.5 -11.2 66.1 -30 0 0 +Forsterite -6.85 67.2 0.47 -10.64 79 -30 0 0 # Table 23 +Fayalite -4.8 94.4 0 -12.8 94.4 -30 0 0 +Almandine -5.2 94.4 1 -10.7 103.8 -13.71 37.8 -0.35 +Grossular -5.1 85 1 -10.7 103.8 -30 0 0 +Andradite -5.2 94.4 1 -10.7 103.8 -30 0 0 +Kyanite -10.17 -53.9 1.268 -17.44 53.9 -30 0 0 +Staurolite -6.9 18.9 1 -12.2 56.6 -14.9 47.2 -0.3 +Epidote -10.6 71.1 0.338 -11.99 70.7 -17.33 79.1 -0.556 +Zoisite -7.5 66.1 0.5 -11.2 66.1 -30 0 0 # -Cordierite -3.8 113.3 1 -11.2 28.3 -30 0 0 # Table 25 -Tourmaline -6.5 75.5 1 -11.2 85 -30 0 0 +Cordierite -3.8 113.3 1 -11.2 28.3 -30 0 0 # Table 25 +Tourmaline -6.5 75.5 1 -11.2 85 -30 0 0 # -augite -6.82 78 0.7 -11.97 78 -30 0 0 # Table 26 -bronzite -8.3 47.2 0.65 -11.7 66.1 -30 0 0 -diopside -6.36 96.1 0.71 -11.11 40.6 -30 0 0 -enstatite -9.02 80 0.6 -12.72 80 -30 0 0 -jadeite -6 132.2 0.7 -9.5 94.4 -30 0 0 -spodumene -4.6 94.4 0.7 -9.3 66.1 -30 0 0 -wollastonite -5.37 54.7 0.4 -8.88 54.7 -30 0 0 +augite -6.82 78 0.7 -11.97 78 -30 0 0 # Table 26 +bronzite -8.3 47.2 0.65 -11.7 66.1 -30 0 0 +diopside -6.36 96.1 0.71 -11.11 40.6 -30 0 0 +enstatite -9.02 80 0.6 -12.72 80 -30 0 0 +jadeite -6 132.2 0.7 -9.5 94.4 -30 0 0 +spodumene -4.6 94.4 0.7 -9.3 66.1 -30 0 0 +wollastonite -5.37 54.7 0.4 -8.88 54.7 -30 0 0 # -anthophyllite -11.94 51 0.44 -14.24 51 -30 0 0 # Table 27 -glaucophane -5.6 85 0.7 -10.1 94.4 -30 0 0 -hornblende -7 75.5 0.6 -10.3 94.4 -30 0 0 -riebeckite -7.7 56.6 0.7 -12.2 47.2 -30 0 0 -tremolite -8.4 18.9 0.7 -10.6 94.4 -30 0 0 +anthophyllite -11.94 51 0.44 -14.24 51 -30 0 0 # Table 27 +glaucophane -5.6 85 0.7 -10.1 94.4 -30 0 0 +hornblende -7 75.5 0.6 -10.3 94.4 -30 0 0 +riebeckite -7.7 56.6 0.7 -12.2 47.2 -30 0 0 +tremolite -8.4 18.9 0.7 -10.6 94.4 -30 0 0 # -biotite -9.84 22 0.525 -12.55 22 -30 0 0 # Table 28 -glauconite -4.8 85 0.7 -9.1 85 -30 0 0 -muscovite -11.85 22 0.37 -13.55 22 -14.55 22 -0.22 -muscovite -30 0 0 -13 22 -30 0 0 -paragonite -30 0 0 -13 22 -30 0 0 -phlogopite -30 0 0 -12.4 29 -30 0 0 -pyrophyllite -30 0 0 -12.4 29 -30 0 0 +biotite -9.84 22 0.525 -12.55 22 -30 0 0 # Table 28 +glauconite -4.8 85 0.7 -9.1 85 -30 0 0 +muscovite -11.85 22 0.37 -13.55 22 -14.55 22 -0.22 +muscovite -30 0 0 -13 22 -30 0 0 +paragonite -30 0 0 -13 22 -30 0 0 +phlogopite -30 0 0 -12.4 29 -30 0 0 +pyrophyllite -30 0 0 -12.4 29 -30 0 0 # -kaolinite -11.31 65.9 0.777 -13.18 22.2 -17.05 17.9 -0.472 # Table 29 -montmorillonite -12.71 48 0.22 -14.41 48 -14.41 48 -0.13 # Montmorillonite, K0.318(Si3.975Al0.025)(Al1.509Fe0.205Mg0.283)(OH)2. -smectite -10.98 23.6 0.34 -12.78 35 -16.52 58.9 -0.4 # Smectite, K0.04Ca0.5(Al2.8Fe0.53Mg0.7)(Si7.65Al0.35)O20(OH)4. +kaolinite -11.31 65.9 0.777 -13.18 22.2 -17.05 17.9 -0.472 # Table 29 +montmorillonite -12.71 48 0.22 -14.41 48 -14.41 48 -0.13 # Montmorillonite, K0.318(Si3.975Al0.025)(Al1.509Fe0.205Mg0.283)(OH)2. +smectite -10.98 23.6 0.34 -12.78 35 -16.52 58.9 -0.4 # Smectite, K0.04Ca0.5(Al2.8Fe0.53Mg0.7)(Si7.65Al0.35)O20(OH)4. # -lizardite -5.7 75.5 0.8 -12.4 56.6 -30 0 0 # Table 30 -chrysotile -30 0 0 -12 73.5 -13.58 73.5 -0.23 -chlorite(14A) -11.11 88 0.5 -12.52 88 -30 0 0 -talc -30 0 0 -12 42 -30 0 0 -prehnite -10.66 80.5 0.256 -13.16 93.4 -14.86 93.4 -0.2 +lizardite -5.7 75.5 0.8 -12.4 56.6 -30 0 0 # Table 30 +chrysotile -30 0 0 -12 73.5 -13.58 73.5 -0.23 +chlorite(14A) -11.11 88 0.5 -12.52 88 -30 0 0 +talc -30 0 0 -12 42 -30 0 0 +prehnite -10.66 80.5 0.256 -13.16 93.4 -14.86 93.4 -0.2 # -goethite -30 0 0 -7.94 86.5 -30 0 0 # Table 31 -hematite -9.39 66.2 1 -14.6 66.2 -30 0 0 -magnetite -8.59 18.6 0.279 -10.78 18.6 -30 0 0 -ilmenite -8.35 37.9 0.421 -11.16 37.9 -30 0 0 -uraninite -30 0 0 -7.98 32 -30 0 0 +goethite -30 0 0 -7.94 86.5 -30 0 0 # Table 31 +hematite -9.39 66.2 1 -14.6 66.2 -30 0 0 +magnetite -8.59 18.6 0.279 -10.78 18.6 -30 0 0 +ilmenite -8.35 37.9 0.421 -11.16 37.9 -30 0 0 +uraninite -30 0 0 -7.98 32 -30 0 0 # -brucite -4.73 59 0.5 -8.24 42 -30 0 0 # Table 32 -gibbsite -7.65 47.5 0.992 -11.5 61.2 -16.65 80.1 -0.784 -diaspore -30 0 0 -13.33 47.5 -23.6 47.5 -1.503 +brucite -4.73 59 0.5 -8.24 42 -30 0 0 # Table 32 +gibbsite -7.65 47.5 0.992 -11.5 61.2 -16.65 80.1 -0.784 +diaspore -30 0 0 -13.33 47.5 -23.6 47.5 -1.503 # -anglesite -5.58 31.3 0.298 -6.5 31.3 -30 0 0 # Table 34 -anhydrite -30 0 0 -3.19 14.3 -30 0 0 -gypsum -30 0 0 -2.79 0 -30 0 0 -barite -6.9 30.8 0.22 -7.9 30.8 -30 0 0 -celestite -5.66 23.8 0.109 -30 0 -30 0 0 +anglesite -5.58 31.3 0.298 -6.5 31.3 -30 0 0 # Table 34 +anhydrite -30 0 0 -3.19 14.3 -30 0 0 +gypsum -30 0 0 -2.79 0 -30 0 0 +barite -6.9 30.8 0.22 -7.9 30.8 -30 0 0 +celestite -5.66 23.8 0.109 -30 0 -30 0 0 # -hydroxyapatite -4.29 250 0.171 -6 250 -30 0 0 # Table 36 -fluorapatite -3.73 250 0.613 -8 250 -30 0 0 +hydroxyapatite -4.29 250 0.171 -6 250 -30 0 0 # Table 36 +fluorapatite -3.73 250 0.613 -8 250 -30 0 0 # -halite -30 0 0 -0.21 7.4 -30 0 0 # Table 37 -fluorite -7.14 73 1 -13.79 73 -30 0 0 +halite -30 0 0 -0.21 7.4 -30 0 0 # Table 37 +fluorite -7.14 73 1 -13.79 73 -30 0 0 # # Acid Neutral P_CO2 # log K E n(H+) log K E log K E n(P_CO2) Table # ================================================================================ -calcite -0.3 14.4 1 -5.81 23.5 -3.48 35.4 1 33 # specify Table number for P_CO2^n(P_CO2) -dawsonite -30 0 0 -7 62.8 -30 0 0 33 -dolomite(d) -3.19 36.1 0.5 -7.53 52.2 -5.11 34.8 0.5 33 -dolomite -3.76 56.7 0.5 -8.6 95.3 -5.37 45.7 0.5 33 -magnesite -6.38 14.4 1 -9.34 23.5 -5.22 62.8 1 33 +calcite -0.3 14.4 1 -5.81 23.5 -3.48 35.4 1 33 # specify Table number for P_CO2^n(P_CO2) +dawsonite -30 0 0 -7 62.8 -30 0 0 33 +dolomite(d) -3.19 36.1 0.5 -7.53 52.2 -5.11 34.8 0.5 33 +dolomite -3.76 56.7 0.5 -8.6 95.3 -5.37 45.7 0.5 33 +magnesite -6.38 14.4 1 -9.34 23.5 -5.22 62.8 1 33 # # Acid and Fe+3 Neutral and O2 Base # log K E n(H+) n(Fe+3) log K E n(O2) log K E n(OH-) Table # ========================================================================================= -pyrite -7.52 56.9 -0.5 0.5 -4.55 56.9 0.5 -30 0 0 35 # specify Table number for Fe+3 and O2 -pyrrhotite(Mc) -8.04 50.8 -0.597 0.355 -30 0 0 -30 0 0 35 -pyrrhotite(Hx) -6.79 63 -0.09 0.356 -30 0 0 -30 0 0 35 -As2S3(a) -30 0 0 0 -9.83 8.7 0.18 -17.39 8.7 -1.208 35 +pyrite -7.52 56.9 -0.5 0.5 -4.55 56.9 0.5 -30 0 0 35 # specify Table number for Fe+3 and O2 +pyrrhotite(Mc) -8.04 50.8 -0.597 0.355 -30 0 0 -30 0 0 35 +pyrrhotite(Hx) -6.79 63 -0.09 0.356 -30 0 0 -30 0 0 35 +As2S3(a) -30 0 0 0 -9.83 8.7 0.18 -17.39 8.7 -1.208 35 RATE_PARAMETERS_SVD # Table 4: E's Table 3: H+-reaction H2O-reaction CO2-reaction Organic_acids OH--reaction Table 5 # H+ H2O CO2 Organic acids OH- pkH nH yAl CAl xBC CBC pkH2O yAl CAl xBC CBC zSi CSi pkCO2 nCO2 pkOrg nOrg COrg pkOH- wOH- yAl CAl xBC CBC zSi CSi # Num Mineral Formula # ================================================================================================================================================================================================================================================================================================= -Albite 3350 2500 1680 1200 3100 14.6 0.5 0.4 0.4 0.4 0.5 16.8 0.15 4 0.15 200 3 900 16.05 0.6 14.7 0.5 5 15.4 0.3 0.1 12 0.5 5 3 900 # 1.6 Albite NaAlSi3O8 -Quartz 3890 0 2200 2000 3320 18.4 0.3 0.3 5 0 500 17.8 0 5 0 5000 4 900 18 0.5 16.3 0.5 5 14.1 0.3 0.4 200 0 5000 1 900 # 8.3 Quartz SiO2 +Albite 3350 2500 1680 1200 3100 14.6 0.5 0.4 0.4 0.4 0.5 16.8 0.15 4 0.15 200 3 900 16.05 0.6 14.7 0.5 5 15.4 0.3 0.1 12 0.5 5 3 900 # 1.6 Albite NaAlSi3O8 +Quartz 3890 0 2200 2000 3320 18.4 0.3 0.3 5 0 500 17.8 0 5 0 5000 4 900 18 0.5 16.3 0.5 5 14.1 0.3 0.4 200 0 5000 1 900 # 8.3 Quartz SiO2 RATE_PARAMETERS_HERMANSKA From a8ac4794911738dc44162ef5fc2fd02a50e3d499 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Mon, 10 Jun 2024 18:55:01 -0600 Subject: [PATCH 180/384] [iphreeqc] Fixed for R --- phreeqcpp/Serializer.cxx | 4 ++++ phreeqcpp/common/Utils.cxx | 8 ++++++++ 2 files changed, 12 insertions(+) diff --git a/phreeqcpp/Serializer.cxx b/phreeqcpp/Serializer.cxx index b4ebab76..fab11a37 100644 --- a/phreeqcpp/Serializer.cxx +++ b/phreeqcpp/Serializer.cxx @@ -201,6 +201,10 @@ Serializer::Deserialize(Phreeqc &phreeqc_ref, Dictionary &dictionary, std::vecto #if !defined(R_SO) std::cerr << "Unknown pack type in deserialize " << type << std::endl; exit(4); +#else + std::ostringstream oss; + oss << "Unknown pack type in deserialize " << type << std::endl; + phreeqc_ref.error_msg(oss.str().c_str(), STOP); #endif break; } diff --git a/phreeqcpp/common/Utils.cxx b/phreeqcpp/common/Utils.cxx index 6738fa9d..b2585a56 100644 --- a/phreeqcpp/common/Utils.cxx +++ b/phreeqcpp/common/Utils.cxx @@ -199,13 +199,17 @@ strcpy_safe(char* dest, size_t max, const char* src) { if (dest == nullptr || src == nullptr) { +#if !defined(R_SO) std::cerr << "nullptr in Utilities::strcpy_safe." << std::endl; +#endif throw; } lsrc = strlen(src); if (lsrc + 1 > max) { +#if !defined(R_SO) std::cerr << "Buffer overrun in Utilities::strcpy_safe." << std::endl; +#endif throw; } memcpy(dest, src, (lsrc + 1) * sizeof(char)); @@ -224,14 +228,18 @@ strcat_safe(char* dest, size_t max, const char* src) { if (dest == nullptr || src == nullptr) { +#if !defined(R_SO) std::cerr << "nullptr in Utilities::strcat_safe." << std::endl; +#endif throw; } lsrc = strlen(src); ldest = strlen(dest); if (ldest + lsrc + 1 > max) { +#if !defined(R_SO) std::cerr << "Buffer overrun in Utilities::strcat_safe." << std::endl; +#endif throw; } memcpy(&dest[ldest], src, (lsrc + 1) * sizeof(char)); From 279b84357dd36426396d7916436c373d319d2082 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Mon, 10 Jun 2024 18:55:01 -0600 Subject: [PATCH 181/384] [iphreeqc] Fixed for R --- phreeqcpp/Serializer.cxx | 4 ++++ phreeqcpp/common/Utils.cxx | 8 ++++++++ 2 files changed, 12 insertions(+) diff --git a/phreeqcpp/Serializer.cxx b/phreeqcpp/Serializer.cxx index b4ebab76..fab11a37 100644 --- a/phreeqcpp/Serializer.cxx +++ b/phreeqcpp/Serializer.cxx @@ -201,6 +201,10 @@ Serializer::Deserialize(Phreeqc &phreeqc_ref, Dictionary &dictionary, std::vecto #if !defined(R_SO) std::cerr << "Unknown pack type in deserialize " << type << std::endl; exit(4); +#else + std::ostringstream oss; + oss << "Unknown pack type in deserialize " << type << std::endl; + phreeqc_ref.error_msg(oss.str().c_str(), STOP); #endif break; } diff --git a/phreeqcpp/common/Utils.cxx b/phreeqcpp/common/Utils.cxx index 6738fa9d..b2585a56 100644 --- a/phreeqcpp/common/Utils.cxx +++ b/phreeqcpp/common/Utils.cxx @@ -199,13 +199,17 @@ strcpy_safe(char* dest, size_t max, const char* src) { if (dest == nullptr || src == nullptr) { +#if !defined(R_SO) std::cerr << "nullptr in Utilities::strcpy_safe." << std::endl; +#endif throw; } lsrc = strlen(src); if (lsrc + 1 > max) { +#if !defined(R_SO) std::cerr << "Buffer overrun in Utilities::strcpy_safe." << std::endl; +#endif throw; } memcpy(dest, src, (lsrc + 1) * sizeof(char)); @@ -224,14 +228,18 @@ strcat_safe(char* dest, size_t max, const char* src) { if (dest == nullptr || src == nullptr) { +#if !defined(R_SO) std::cerr << "nullptr in Utilities::strcat_safe." << std::endl; +#endif throw; } lsrc = strlen(src); ldest = strlen(dest); if (ldest + lsrc + 1 > max) { +#if !defined(R_SO) std::cerr << "Buffer overrun in Utilities::strcat_safe." << std::endl; +#endif throw; } memcpy(&dest[ldest], src, (lsrc + 1) * sizeof(char)); From a9c4ef8324b6c59ba5cf0d78fc0d8ef93b33923f Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Tue, 11 Jun 2024 00:58:17 +0000 Subject: [PATCH 182/384] Squashed 'phreeqcpp/' changes from ceab9a1..798f8f9 798f8f9 Merge commit '3eaa057b5d2bbc9327f2ab3adfd52577c687cfca' 3eaa057 Squashed 'common/' changes from 6abe004..399aba2 4cad3d5 [iphreeqc] Fixed for R git-subtree-dir: phreeqcpp git-subtree-split: 798f8f9d827d6ba7cf6a6d0c9a1fd3c7e806c72c --- Serializer.cxx | 4 ++++ common/Utils.cxx | 8 ++++++++ 2 files changed, 12 insertions(+) diff --git a/Serializer.cxx b/Serializer.cxx index b4ebab76..fab11a37 100644 --- a/Serializer.cxx +++ b/Serializer.cxx @@ -201,6 +201,10 @@ Serializer::Deserialize(Phreeqc &phreeqc_ref, Dictionary &dictionary, std::vecto #if !defined(R_SO) std::cerr << "Unknown pack type in deserialize " << type << std::endl; exit(4); +#else + std::ostringstream oss; + oss << "Unknown pack type in deserialize " << type << std::endl; + phreeqc_ref.error_msg(oss.str().c_str(), STOP); #endif break; } diff --git a/common/Utils.cxx b/common/Utils.cxx index 6738fa9d..b2585a56 100644 --- a/common/Utils.cxx +++ b/common/Utils.cxx @@ -199,13 +199,17 @@ strcpy_safe(char* dest, size_t max, const char* src) { if (dest == nullptr || src == nullptr) { +#if !defined(R_SO) std::cerr << "nullptr in Utilities::strcpy_safe." << std::endl; +#endif throw; } lsrc = strlen(src); if (lsrc + 1 > max) { +#if !defined(R_SO) std::cerr << "Buffer overrun in Utilities::strcpy_safe." << std::endl; +#endif throw; } memcpy(dest, src, (lsrc + 1) * sizeof(char)); @@ -224,14 +228,18 @@ strcat_safe(char* dest, size_t max, const char* src) { if (dest == nullptr || src == nullptr) { +#if !defined(R_SO) std::cerr << "nullptr in Utilities::strcat_safe." << std::endl; +#endif throw; } lsrc = strlen(src); ldest = strlen(dest); if (ldest + lsrc + 1 > max) { +#if !defined(R_SO) std::cerr << "Buffer overrun in Utilities::strcat_safe." << std::endl; +#endif throw; } memcpy(&dest[ldest], src, (lsrc + 1) * sizeof(char)); From 307253d3f96635e2bd94cf6deecd72ac9dcbcb82 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Wed, 19 Jun 2024 16:46:48 -0600 Subject: [PATCH 183/384] Fixed AmmH in Amm.dat and comments in phreeqc.dat and phreeqc_rates.dat --- Amm.dat | 2 +- phreeqc.dat | 2 +- phreeqc_rates.dat | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/Amm.dat b/Amm.dat index c7169124..1b06f4d3 100644 --- a/Amm.dat +++ b/Amm.dat @@ -44,7 +44,7 @@ N(+5) NO3- 0 NO3 N(+3) NO2- 0 NO2 N(0) N2 0 N #N(-3) NH4+ 0 NH4 14.0067 -Amm AmmH+ 0 AmmH 17.031 +Amm AmmH+ 0 Amm 17.031 B H3BO3 0 B 10.81 P PO4-3 2 P 30.9738 F F- 0 F 18.9984 diff --git a/phreeqc.dat b/phreeqc.dat index 04fe478e..f925376f 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -44,7 +44,7 @@ N(+5) NO3- 0 N N(+3) NO2- 0 N N(0) N2 0 N N(-3) NH4+ 0 N 14.0067 -#Amm AmmH+ 0 AmmH 17.031 +#Amm AmmH+ 0 Amm 17.031 B H3BO3 0 B 10.81 P PO4-3 2 P 30.9738 F F- 0 F 18.9984 diff --git a/phreeqc_rates.dat b/phreeqc_rates.dat index d5e2fbe5..280ee03c 100644 --- a/phreeqc_rates.dat +++ b/phreeqc_rates.dat @@ -44,7 +44,7 @@ N(+5) NO3- 0 N N(+3) NO2- 0 N N(0) N2 0 N N(-3) NH4+ 0 N 14.0067 -#Amm AmmH+ 0 AmmH 17.031 +#Amm AmmH+ 0 Amm 17.031 B H3BO3 0 B 10.81 P PO4-3 2 P 30.9738 F F- 0 F 18.9984 From 2abb0b0bcd4bcae42f84ff001aba7f2ab6df2af7 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Thu, 20 Jun 2024 21:52:29 +0000 Subject: [PATCH 184/384] Squashed 'phreeqcpp/' changes from 798f8f9..e4c4cf3 e4c4cf3 Added functions SPECIES_EQUATION and PHASE_EQUATION, and species_equation test case. git-subtree-dir: phreeqcpp git-subtree-split: e4c4cf31fb54a3546e6bdbb1fda762952803fd82 --- PBasic.cpp | 208 ++++++++++++++++++++++++++++++++++++++++++++++++++ PBasic.h | 4 + Phreeqc.h | 2 + basicsubs.cpp | 103 +++++++++++++++++++++++++ 4 files changed, 317 insertions(+) diff --git a/PBasic.cpp b/PBasic.cpp index f0923558..1ccf4126 100644 --- a/PBasic.cpp +++ b/PBasic.cpp @@ -1548,6 +1548,14 @@ listtokens(FILE * f, tokenrec * l_buf) case tokspecies_formula_: output_msg("SPECIES_FORMULA$"); break; + case tokphase_equation: + case tokphase_equation_: + output_msg("PHASE_EQUATION$"); + break; + case tokspecies_equation: + case tokspecies_equation_: + output_msg("SPECIES_EQUATION$"); + break; case toksr: output_msg("SR"); break; @@ -4080,6 +4088,202 @@ factor(struct LOC_exec * LINK) } break; + case tokphase_equation: + case tokphase_equation_: + { + require(toklp, LINK); + std::string phase_name(stringfactor(STR1, LINK)); + varrec* elts_varrec = NULL, * coef_varrec = NULL; + std::vector > stoichiometry; + /* + * Parse arguments + */ + require(tokcomma, LINK); + + count_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || count_varrec->stringvar != 0) + snerr(": Cannot find count variable"); + + /* return number of names of species */ + LINK->t = LINK->t->next; + require(tokcomma, LINK); + elts_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || elts_varrec->stringvar != 1) + snerr(": Cannot find species string variable"); + + /* return coefficients of species */ + LINK->t = LINK->t->next; + require(tokcomma, LINK); + coef_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || coef_varrec->stringvar != 0) + snerr(": Cannot find coefficient variable"); + LINK->t = LINK->t->next; + + require(tokrp, LINK); + + free_dim_stringvar(elts_varrec); + PhreeqcPtr->free_check_null(coef_varrec->UU.U0.arr); + coef_varrec->UU.U0.arr = NULL; + /* + * Call subroutine + */ + std::string eq = PhreeqcPtr->phase_equation(phase_name, stoichiometry); + + // put type as return value + n.stringval = true; + n.UU.sval = PhreeqcPtr->string_duplicate(eq.c_str()); + + /* + * fill in varrec structure + */ + + size_t count = stoichiometry.size(); + *count_varrec->UU.U0.val = (LDBLE)count; + /* + * malloc space + */ + elts_varrec->UU.U1.sarr = (char**)PhreeqcPtr->PHRQ_malloc((count + 1) * sizeof(char*)); + if (elts_varrec->UU.U1.sarr == NULL) + { + PhreeqcPtr->malloc_error(); +#if !defined(R_SO) + exit(4); +#endif + } + coef_varrec->UU.U0.arr = (LDBLE*)PhreeqcPtr->PHRQ_malloc((count + 1) * sizeof(LDBLE)); + if (coef_varrec->UU.U0.arr == NULL) + { + PhreeqcPtr->malloc_error(); +#if !defined(R_SO) + exit(4); +#endif + } + + // first position not used + elts_varrec->UU.U1.sarr[0] = NULL; + coef_varrec->UU.U0.arr[0] = 0; + + // set dims for Basic array + for (i = 0; i < maxdims; i++) + { + elts_varrec->dims[i] = 0; + coef_varrec->dims[i] = 0; + } + // set dims for first dimension and number of dims + elts_varrec->dims[0] = (long)(count + 1); + coef_varrec->dims[0] = (long)(count + 1); + elts_varrec->numdims = 1; + coef_varrec->numdims = 1; + + // fill in arrays + i = 1; + for (std::vector >::iterator it = stoichiometry.begin(); it != stoichiometry.end(); it++) + { + elts_varrec->UU.U1.sarr[i] = PhreeqcPtr->string_duplicate((it->first).c_str()); + coef_varrec->UU.U0.arr[i] = it->second; + i++; + } + } + break; + + case tokspecies_equation: + case tokspecies_equation_: + { + require(toklp, LINK); + std::string species_name(stringfactor(STR1, LINK)); + varrec* elts_varrec = NULL, * coef_varrec = NULL; + std::vector > stoichiometry; + /* + * Parse arguments + */ + require(tokcomma, LINK); + + count_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || count_varrec->stringvar != 0) + snerr(": Cannot find count variable"); + + /* return number of names of species */ + LINK->t = LINK->t->next; + require(tokcomma, LINK); + elts_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || elts_varrec->stringvar != 1) + snerr(": Cannot find species string variable"); + + /* return coefficients of species */ + LINK->t = LINK->t->next; + require(tokcomma, LINK); + coef_varrec = LINK->t->UU.vp; + if (LINK->t->kind != tokvar || coef_varrec->stringvar != 0) + snerr(": Cannot find coefficient variable"); + LINK->t = LINK->t->next; + + require(tokrp, LINK); + + free_dim_stringvar(elts_varrec); + PhreeqcPtr->free_check_null(coef_varrec->UU.U0.arr); + coef_varrec->UU.U0.arr = NULL; + /* + * Call subroutine + */ + std::string eq = PhreeqcPtr->species_equation(species_name, stoichiometry); + + // put type as return value + n.stringval = true; + n.UU.sval = PhreeqcPtr->string_duplicate(eq.c_str()); + + /* + * fill in varrec structure + */ + + size_t count = stoichiometry.size(); + *count_varrec->UU.U0.val = (LDBLE)count; + /* + * malloc space + */ + elts_varrec->UU.U1.sarr = (char**)PhreeqcPtr->PHRQ_malloc((count + 1) * sizeof(char*)); + if (elts_varrec->UU.U1.sarr == NULL) + { + PhreeqcPtr->malloc_error(); +#if !defined(R_SO) + exit(4); +#endif + } + coef_varrec->UU.U0.arr = (LDBLE*)PhreeqcPtr->PHRQ_malloc((count + 1) * sizeof(LDBLE)); + if (coef_varrec->UU.U0.arr == NULL) + { + PhreeqcPtr->malloc_error(); +#if !defined(R_SO) + exit(4); +#endif + } + + // first position not used + elts_varrec->UU.U1.sarr[0] = NULL; + coef_varrec->UU.U0.arr[0] = 0; + + // set dims for Basic array + for (i = 0; i < maxdims; i++) + { + elts_varrec->dims[i] = 0; + coef_varrec->dims[i] = 0; + } + // set dims for first dimension and number of dims + elts_varrec->dims[0] = (long)(count + 1); + coef_varrec->dims[0] = (long)(count + 1); + elts_varrec->numdims = 1; + coef_varrec->numdims = 1; + + // fill in arrays + i = 1; + for (std::vector >::iterator it = stoichiometry.begin(); it != stoichiometry.end(); it++) + { + elts_varrec->UU.U1.sarr[i] = PhreeqcPtr->string_duplicate((it->first).c_str()); + coef_varrec->UU.U0.arr[i] = it->second; + i++; + } + } + break; + case toksr: { const char* str = stringfactor(STR1, LINK); @@ -8088,6 +8292,10 @@ const std::map::value_type temp_tokens[] std::map::value_type("soln_vol", PBasic::toksoln_vol), std::map::value_type("species_formula", PBasic::tokspecies_formula), std::map::value_type("species_formula$", PBasic::tokspecies_formula_), + std::map::value_type("phase_equation", PBasic::tokphase_equation), + std::map::value_type("phase_equation$", PBasic::tokphase_equation_), + std::map::value_type("species_equation", PBasic::tokspecies_equation), + std::map::value_type("species_equation$", PBasic::tokspecies_equation_), std::map::value_type("sr", PBasic::toksr), std::map::value_type("step_no", PBasic::tokstep_no), std::map::value_type("str_e$", PBasic::tokstr_e_), diff --git a/PBasic.h b/PBasic.h index 231bae56..4a04ce9e 100644 --- a/PBasic.h +++ b/PBasic.h @@ -323,6 +323,10 @@ public: toksoln_vol, tokspecies_formula, tokspecies_formula_, + tokphase_equation, + tokphase_equation_, + tokspecies_equation, + tokspecies_equation_, toksr, tokstep_no, tokstr_e_, diff --git a/Phreeqc.h b/Phreeqc.h index be150845..86b6bfff 100644 --- a/Phreeqc.h +++ b/Phreeqc.h @@ -167,6 +167,8 @@ public: std::string kinetics_formula(std::string kinetics_name, cxxNameDouble& stoichiometry); std::string phase_formula(std::string phase_name, cxxNameDouble& stoichiometry); std::string species_formula(std::string phase_name, cxxNameDouble& stoichiometry); + std::string phase_equation(std::string phase_name, std::vector >& stoichiometry); + std::string species_equation(std::string species_name, std::vector >& stoichiometry); LDBLE list_ss(std::string ss_name, cxxNameDouble& composition); int system_total_elements(void); int system_total_si(void); diff --git a/basicsubs.cpp b/basicsubs.cpp index a9305f73..d49141da 100644 --- a/basicsubs.cpp +++ b/basicsubs.cpp @@ -3009,6 +3009,109 @@ species_formula(std::string phase_name, cxxNameDouble& stoichiometry) return (formula); } +/* ---------------------------------------------------------------------- */ +std::string Phreeqc:: +phase_equation(std::string phase_name, std::vector >& stoichiometry) +/* ---------------------------------------------------------------------- */ +{ + /* + * Returns equation + * Also returns arrays of species and stoichiometry in stoichiometry + */ + stoichiometry.clear(); + std::ostringstream eq, lhs, rhs; + int j = -1; + class phase* phase_ptr = phase_bsearch(phase_name.c_str(), &j, FALSE); + bool rhs_started = false; + bool lhs_started = false; + if (phase_ptr != NULL) + { + std::vector::iterator it = phase_ptr->rxn.Get_tokens().begin(); + for (; it->name != NULL; it++) + { + if (!lhs_started) + { + std::pair item(phase_ptr->formula, it->coef); + stoichiometry.push_back(item); + } + else + { + std::pair item(it->name, it->coef); + stoichiometry.push_back(item); + } + if (it->coef < 0.0) + { + if (lhs_started) lhs << "+ "; + if (it->coef != -1.0) + { + lhs << -it->coef; + } + lhs << it->name << " "; + lhs_started = true; + } + else if (it->coef > 0.0) + { + if (rhs_started) rhs << "+ "; + if (it->coef != 1.0) + { + rhs << it->coef; + } + rhs << it->name << " "; + rhs_started = true; + } + } + } + eq << lhs.str() << "= " << rhs.str(); + return (eq.str()); +} + +/* ---------------------------------------------------------------------- */ +std::string Phreeqc:: +species_equation(std::string species_name, std::vector >& stoichiometry) +/* ---------------------------------------------------------------------- */ +{ + /* + * Returns equation + * Also returns arrays of species and stoichiometry in stoichiometry + */ + stoichiometry.clear(); + std::ostringstream eq, lhs, rhs;; + class species* s_ptr = s_search(species_name.c_str()); + bool rhs_started = false; + bool lhs_started = false; + if (s_ptr != NULL) + { + std::vector::iterator it = s_ptr->rxn.Get_tokens().begin(); + for ( ; it->name != NULL; it++) + { + std::pair item(it->name, it->coef); + stoichiometry.push_back(item); + if (it->coef > 0.0) + { + if (lhs_started) lhs << "+ "; + if (it->coef != 1.0) + { + lhs << it->coef; + } + lhs << it->name << " "; + lhs_started = true; + } + else if (it->coef < 0.0) + { + if (rhs_started) rhs << "+ "; + if (it->coef != -1.0) + { + rhs << -it->coef; + } + rhs << it->name << " "; + rhs_started = true; + } + } + } + eq << lhs.str() << "= " << rhs.str(); + return (eq.str()); +} + /* ---------------------------------------------------------------------- */ int Phreeqc:: system_total_elements(void) From c51839c62249bbad9126d4e7aca71a3e4c598a76 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Sun, 23 Jun 2024 15:59:17 -0600 Subject: [PATCH 185/384] Changed back to AmmH --- Amm.dat | 2 +- phreeqc.dat | 2 +- phreeqc_rates.dat | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/Amm.dat b/Amm.dat index 1b06f4d3..c7169124 100644 --- a/Amm.dat +++ b/Amm.dat @@ -44,7 +44,7 @@ N(+5) NO3- 0 NO3 N(+3) NO2- 0 NO2 N(0) N2 0 N #N(-3) NH4+ 0 NH4 14.0067 -Amm AmmH+ 0 Amm 17.031 +Amm AmmH+ 0 AmmH 17.031 B H3BO3 0 B 10.81 P PO4-3 2 P 30.9738 F F- 0 F 18.9984 diff --git a/phreeqc.dat b/phreeqc.dat index f925376f..04fe478e 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -44,7 +44,7 @@ N(+5) NO3- 0 N N(+3) NO2- 0 N N(0) N2 0 N N(-3) NH4+ 0 N 14.0067 -#Amm AmmH+ 0 Amm 17.031 +#Amm AmmH+ 0 AmmH 17.031 B H3BO3 0 B 10.81 P PO4-3 2 P 30.9738 F F- 0 F 18.9984 diff --git a/phreeqc_rates.dat b/phreeqc_rates.dat index 280ee03c..50a5e0d4 100644 --- a/phreeqc_rates.dat +++ b/phreeqc_rates.dat @@ -44,7 +44,7 @@ N(+5) NO3- 0 N N(+3) NO2- 0 N N(0) N2 0 N N(-3) NH4+ 0 N 14.0067 -#Amm AmmH+ 0 Amm 17.031 +#Amm AmmH+ 0 AmmH 17.031 B H3BO3 0 B 10.81 P PO4-3 2 P 30.9738 F F- 0 F 18.9984 From e87a48a23412f2981e305c8f291b4340d05569a1 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Mon, 24 Jun 2024 15:12:48 -0600 Subject: [PATCH 186/384] Fixed unprintable characters in RELEASE.TXT --- RELEASE.TXT | 80 ++++++++++++++++++++++++++--------------------------- 1 file changed, 40 insertions(+), 40 deletions(-) diff --git a/RELEASE.TXT b/RELEASE.TXT index 3d5ca8e4..f62a9272 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -18,13 +18,13 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ -dw Dw(25C) dw_T a a2 visc a3 a_v_dif where, - Dw(25C)�Tracer diffusion coefficient for the species at 25 �C, m 2 /s. - dw_T�Temperature dependence for diffusion coefficient. - a�Debye-Huckel ion size. - a2�exponent. - Visc�Viscosity exponent. - a3�Ionic strength exponent. - A_v_dif�Exponent for (viscosity_0/viscosity). + Dw(25C)--Tracer diffusion coefficient for the species at 25 °C, m 2 /s. + dw_T--Temperature dependence for diffusion coefficient. + a--Debye-Hückel ion size. + a2--exponent. + Visc--Viscosity exponent. + a3--Ionic strength exponent. + A_v_dif--Exponent for (viscosity_0/viscosity). The diffusion coefficient is calculated as follows: Dw = Dw(25C) * exp(dw_T / T - dw_T / 298.15) @@ -32,9 +32,9 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ av = (viscos_0/viscos)a_v_diff ff = av * exp(-a * DH_A * z * I0.5 / (1 + ka)) Dw = Dw * ff - Where T is temperature in Kelvin, DH_B is the Debye-Huckel B parameter, + Where T is temperature in Kelvin, DH_B is the Debye-Hückel B parameter, I is ionic strength, viscos_0 is the viscosity of pure water at T, viscos is - the viscosity of the solution at T, DH_A is the Debye-Huckel A parameter, + the viscosity of the solution at T, DH_A is the Debye-Hückel A parameter, and z is the charge on the species,the viscosity of the solution. See Robinson and Stokes, 2002, Chpt 11 for examples. The Dw and a_v_dif can be set in a USER_ program with @@ -192,11 +192,11 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 March 25, 2024 ----------------- DATABASES phreeqc.dat, Amm.dat, and pitzer.dat: The calculation of the - specific conductance can now be done with a Debye-H�ckel-Onsager equation + specific conductance can now be done with a Debye-Hückel-Onsager equation that has both the electrophoretic and the relaxation term. (The standard phreeqc calculation uses a simple electrophoretic term only.) For individual ions, the equation can be multiplied with the viscosity ratio of - the solvent and the solution, and the ion-size a in the Debye-H�ckel term + the solvent and the solution, and the ion-size a in the Debye-Hückel term kappa_a can be made a function of the apparent molar volume of the ion. The options are described and used in the databases. The additions extend the applicability of the DHO equation to concentrations in the molar range, @@ -281,7 +281,7 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 first viscosity parameter was set to 0. Defined -analytical_expression and -gamma for Na2SO4, K2SO4 and MgSO4 and Mg(SO4)2-2 species in - phreeqc.dat and Amm.dat, fitting the activities from pitzer.dat from 0-200 �C, and the solubilities of + phreeqc.dat and Amm.dat, fitting the activities from pitzer.dat from 0-200 °C, and the solubilities of mirabilite/thenardite (Na2SO4), arcanite (K2SO4), and epsomite, hexahydrite, kieserite (MgSO4 and new species Mg(SO4)2-2). The parameters for calculating the apparent volume (-Vm) and the diffusion coefficients (-Dw) of the species were adapted using measured data of density and @@ -308,7 +308,7 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 where eta is the viscosity of the solution (mPa s), eta0 is viscosity of pure water at the temperature and pressure of the solution, mi is the molality of species i, made dimensionless - by dividing by 1 molal, and zi is the absolute charge number. A is derived from Debye-H�ckel + by dividing by 1 molal, and zi is the absolute charge number. A is derived from Debye-Hückel theory, and fan, B, D and n are coefficients that incorporate volume, ionic strength and temperature effects. @@ -316,8 +316,8 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 B = b0 + b1 exp(-b2 tC) - where b0, b1, and b2 are coefficients, and tC is the temperature in �C. The temperature is - limited to 200�C. + where b0, b1, and b2 are coefficients, and tC is the temperature in °C. The temperature is + limited to 200 °C. fan = (2 - tan * Van / VCl-) @@ -372,8 +372,8 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 It will set Dw(TK) = 9.31e-9 * exp(1000 / TK - 1000 / 298.15) * viscos_0_25 / viscos_0_tc and Dw(I) = Dw(TK) * exp(-0.46 * DH_A * |zi| * I 0.5 / (1 + DH_B * I 0.5 * 1e-10 / (1 + I 0.75))), - where viscos_0_25 is the viscosity of pure water at 25 �C, viscos_0_tc is the viscosity of pure - water at the temperature of the solution. DH_A and DH_B are Debye-H�ckel parameters, + where viscos_0_25 is the viscosity of pure water at 25 °C, viscos_0_tc is the viscosity of pure + water at the temperature of the solution. DH_A and DH_B are Debye-Hückel parameters, retrievable with PHREEQC Basic. @@ -384,7 +384,7 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 The correction is applied when the option is set true in TRANSPORT, item -multi_D: -multi_d true 1e-9 0.3 0.05 1.0 true # multicomponent diffusion - # true/false, default tracer diffusion coefficient (Dw = 1e-9 m2/s) in water at 25 �C (used in + # true/false, default tracer diffusion coefficient (Dw = 1e-9 m2/s) in water at 25 °C (used in case -dw is not defined for a species), porosity (por = 0.3), limiting porosity (0.05) below which diffusion stops, exponent n (1.0) used in calculating the porewater diffusion coefficient Dp = Dw * por^n, true/false: correct Dw for ionic strength (false by default). @@ -793,9 +793,9 @@ DELTA_H_SPECIES("CaHCO3+") Delta H in KJ/mol. If an analytic expression Delta H is at reaction temperature, otherwise Delta H at 25C. -DH_A0(Na+") Debye-Huckel species-specific ion size parameter. +DH_A0(Na+") Debye-Hückel species-specific ion size parameter. -DH_BDOT("Na+") Debye-Huckel species-specific ionic strength coefficient. +DH_BDOT("Na+") Debye-Hückel species-specific ionic strength coefficient. EOL_NOTAB$ Omits the tab that is normally printed after EOL$. @@ -823,8 +823,8 @@ type$ , moles, 1) 0 sorted by 5th argument, 1, sorted by 3rd a March 10, 2021 ------------- PHREEQC: New Basic functions return (1) delta H of species, - (2) delta H of a phase, (3) Debye Huckel a0 (species-specific - ion size), and (4) Debye Huckel bdot (species-specific ion + (2) delta H of a phase, (3) Debye Hückel a0 (species-specific + ion size), and (4) Debye Hückel bdot (species-specific ion strength coefficient). DELTA_H_PHASE("Calcite") Delta H in KJ/mol. If an analytic expression exists, @@ -835,9 +835,9 @@ DELTA_H_SPECIES("CaHCO3+") Delta H in KJ/mol. If an analytic expression exists Delta H is at reaction temperature, otherwise Delta H at 25C. -DH_A0(Na+") Debye-Huckel species-specific ion size parameter. +DH_A0(Na+") Debye-Hückel species-specific ion size parameter. -DH_BDOT("Na+") Debye-Huckel species-specific ionic strength coefficient. +DH_BDOT("Na+") Debye-Hückel species-specific ionic strength coefficient. ------------- March 10, 2021 @@ -857,8 +857,8 @@ DH_BDOT("Na+") Debye-Huckel species-specific ionic strength coefficient. Busenberg (1982) used in pitzer.dat. Modified the -analytical_expression for dolomite in - phreeqc.dat and pitzer.dat, using data at 25�C from Hemingway - and Robie (1994) and 50-175�C from B�n�zeth et al. (2018), GCA + phreeqc.dat and pitzer.dat, using data at 25 °C from Hemingway + and Robie (1994) and 50-175 °C from Bénézeth et al. (2018), GCA 224, 262-275. ------------- @@ -1176,11 +1176,11 @@ Version 3.6.1: January 7, 2020 solution 0: MIX 0; 6 0. -- Thermal diffusion with the stagnant cells will be calculated when - temperatures differ by more than 0.1 oC. Multicomponent diffusion + temperatures differ by more than 0.1 °C. Multicomponent diffusion coefficients decrease with the viscosity of the solution, markedly affecting the results. File ex12b.phr in c:\phreeqc\exmpls compares traditional and multicomponent diffusive transport of heat and solutes - with temperatures changing from 0 to 25 oC. + with temperatures changing from 0 to 25 °C. TRANSPORT -implicit false/true 1 -30 @@ -1804,7 +1804,7 @@ Version 3.4.0: November 9, 2017 (svn 12927) where the first number is the diffusion coeficient at 25 C, and the second number is a damping factor for the temperature correction, as proposed by Smolyakov, according to Anderko and Lencka, - 1997, Ind. Chem. Eng. Res. 36, 1932�1943: + 1997, Ind. Chem. Eng. Res. 36, 1932-1943: Dw(TK) = 9.31e-9 * exp(763 / TK - 763 / 298.15) * TK * 0.89 / (298.15 * viscos). @@ -2052,7 +2052,7 @@ Version 3.3.8: September 13, 2016 (svn 11728) This function identifies all of the kinetic reactants in the current KINETICS definition and returns the sum of moles of all kinetic reactants. Count is number of kinetic - reactants. Name$ contains the kinetic reactant names. Type$ is �kin�. Moles contains the + reactants. Name$ contains the kinetic reactant names. Type$ is "kin". Moles contains the moles of each kinetic reactant. The chemical formula used in the kinetic reaction can be determined by using a reaction name from Name$ as the first argument of the KINETICS_FORMULA$ Basic function. @@ -3263,11 +3263,11 @@ Version 3.0.0: February 1, 2013 reactions, the nonideal gas formulation of Peng and Robinson, and charting. All features of PHREEQC Version 3 are documented in U.S. Geological Survey - Techniques and Methods 6-A43, �Description of input + Techniques and Methods 6-A43, "Description of input and examples for PHREEQC Version 3--A computer program for speciation, batch-reaction, one- dimensional transport, and inverse geochemical - calculations�, available at + calculations", available at http://pubs.usgs.gov/tm/06/a43/. Features not previously documented include Pitzer and SIT aqueous models, CD-MUSIC surface complexation, isotopic @@ -4192,9 +4192,9 @@ Version 2.17.0: February 25, 2010 Changed the calculation of Specific Conductance (SC, uS/cm) to be for the actual temperature of the SOLUTION (in output and in BASIC function SC). - Previous versions calculated SC for 25 oC, whereas the + Previous versions calculated SC for 25 °C, whereas the complexation model is done at the actual temperature. - To obtain SC at 25 oC, use keyword REACTION_TEMPERATURE, + To obtain SC at 25 °C, use keyword REACTION_TEMPERATURE, for example: SOLUTION 1; K 1; Cl 1; -temp 99 @@ -4294,12 +4294,12 @@ Version 2.17.0: February 25, 2010 log(K) of an exchange-half reaction depends on the equivalent fraction on the exchanger: - log(K) = log_k + a_f * (1 - �_i) + log(K) = log_k + a_f * (1 - x_i) where log_k is the log of the equilibrium constant when all the sites are occupied by ion i, a_f is an empirical coefficient, and - �_i is the equivalent fraction of i. + x_i is the equivalent fraction of i. a_f can be defined in EXCHANGE_SPECIES with -gamma after the WATEQ Debye-Hueckel parameters. @@ -4310,7 +4310,7 @@ Version 2.17.0: February 25, 2010 -gamma 4.0 0.075 0.50 The association constant for NaX becomes: - log(K) = -0.5 + 0.50 * (1 - �_Na) + log(K) = -0.5 + 0.50 * (1 - x_Na) -------- svn 3453 @@ -4398,7 +4398,7 @@ Version 2.17.0: February 25, 2010 phi(i) = phi(i,inf) + s(t)I^0.5 + beta(i)I where phi(i,inf) is the apparent molar volume of species i at - infinite dilution, s(t) is the Debije-Huckel limiting slope, beta(i) + infinite dilution, s(t) is the Debije-Hückel limiting slope, beta(i) is an empirical constant, and I is the ionic strength. s(t) is calculated as a function of temperature. Parameterizations of @@ -5497,7 +5497,7 @@ LLNL_AQUEOUS_MODEL_PARAMETERS--New keyword data block Added new keyword to make aqueous model similar to EQ3/6 and Geochemists Workbench when using llnl.dat as the database file. Values - of Debye-Huckel a and b and bdot (ionic strength + of Debye-Hückel a and b and bdot (ionic strength coefficient) are read at fixed temperatures. Linear interpolation occurs between temperatures. @@ -7018,7 +7018,7 @@ Version 2.3: Date: Tue January 2, 2001 Added new keyword to make aqueous model similar to LLNL and Geochemists Workbench when using llnl.dat as the database file. Values - of Debye-Huckel a and b and bdot (ionic strength + of Debye-Hückel a and b and bdot (ionic strength coefficient) are read at fixed temperatures. Linear interpolation occurs between temperatures. From 9a4caf7def182e3f6aa3caa5024c7af821663b65 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Thu, 11 Jul 2024 17:08:34 +0000 Subject: [PATCH 187/384] Squashed 'phreeqcpp/' changes from e4c4cf3..587223f 587223f Extra check to not dump negative user numbers git-subtree-dir: phreeqcpp git-subtree-split: 587223f4d35ddca5105498f1f0ef31638f748562 --- Phreeqc.h | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/Phreeqc.h b/Phreeqc.h index 86b6bfff..5607f2bc 100644 --- a/Phreeqc.h +++ b/Phreeqc.h @@ -1897,7 +1897,8 @@ namespace Utilities for (it = b.begin(); it != b.end(); ++it) { // Adding logic to dump only non-negative entities - if (it->second.Get_n_user() >= 0) + //if (it->second.Get_n_user() >= 0) + if (it->first >= 0 && it->second.Get_n_user() >= 0) { it->second.dump_raw(s_oss, indent); } From 162c3a25ad948a0f262b15e6b0a7a1eff374e4f3 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Thu, 11 Jul 2024 12:57:59 -0600 Subject: [PATCH 188/384] Added to Release.txt about dump issue. --- RELEASE.TXT | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/RELEASE.TXT b/RELEASE.TXT index f62a9272..5e6f1b5a 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,4 +1,11 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + ----------------- + July 11, 2024 + ----------------- + PHREEQC: Fixed a bug in the DUMP routines. Under some circumstances + erroneous output was dumped for a user number. In most cases, the + correct output was dumped following the erroneous output, which + caused the erroneous output to be ignored. ----------------- May 18, 2024 From 8bf2d2989cc21d39c588ee2bb0190194462e21e3 Mon Sep 17 00:00:00 2001 From: SpaceIm <30052553+SpaceIm@users.noreply.github.com> Date: Sun, 11 Aug 2024 20:55:26 +0200 Subject: [PATCH 189/384] add missing include of stddef.h in IPhreeqc.h if no fortran module when IPHREEQC_NO_FORTRAN_MODULE is defined, the type of the last parameter of SetBasicFortranCallback is size_t, which is defined in stddef.h --- IPhreeqc.h | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/IPhreeqc.h b/IPhreeqc.h index 4c04c426..62d99029 100644 --- a/IPhreeqc.h +++ b/IPhreeqc.h @@ -6,6 +6,10 @@ #include "Var.h" +#ifdef IPHREEQC_NO_FORTRAN_MODULE +#include +#endif + /** * @mainpage IPhreeqc Library Documentation (@PHREEQC_VER@-@REVISION_SVN@) * From c2446417008aeaa22df9520cf478ccc6936c03bd Mon Sep 17 00:00:00 2001 From: SpaceIm <30052553+SpaceIm@users.noreply.github.com> Date: Sun, 11 Aug 2024 20:55:26 +0200 Subject: [PATCH 190/384] add missing include of stddef.h in IPhreeqc.h if no fortran module when IPHREEQC_NO_FORTRAN_MODULE is defined, the type of the last parameter of SetBasicFortranCallback is size_t, which is defined in stddef.h --- IPhreeqc.h | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/IPhreeqc.h b/IPhreeqc.h index 4c04c426..62d99029 100644 --- a/IPhreeqc.h +++ b/IPhreeqc.h @@ -6,6 +6,10 @@ #include "Var.h" +#ifdef IPHREEQC_NO_FORTRAN_MODULE +#include +#endif + /** * @mainpage IPhreeqc Library Documentation (@PHREEQC_VER@-@REVISION_SVN@) * From 128b7a11097cf8241b89cd21502381bbba04a5c7 Mon Sep 17 00:00:00 2001 From: SpaceIm <30052553+SpaceIm@users.noreply.github.com> Date: Sun, 11 Aug 2024 21:08:04 +0200 Subject: [PATCH 191/384] reorder classes in global_structures.h to avoid incomplete definitions --- phreeqcpp/global_structures.h | 216 +++++++++++++++++----------------- 1 file changed, 108 insertions(+), 108 deletions(-) diff --git a/phreeqcpp/global_structures.h b/phreeqcpp/global_structures.h index 50aae97a..9eba4493 100644 --- a/phreeqcpp/global_structures.h +++ b/phreeqcpp/global_structures.h @@ -210,6 +210,20 @@ struct Change_Surf /*---------------------------------------------------------------------- * CReaction *---------------------------------------------------------------------- */ +class rxn_token +{ +public: + ~rxn_token() {}; + rxn_token() + { + s = NULL; + coef = 0.0; + name = NULL; + } + class species* s; + LDBLE coef; + const char* name; +}; class CReaction { public: @@ -229,20 +243,6 @@ public: double dz[3]; std::vector token; }; -class rxn_token -{ -public: - ~rxn_token() {}; - rxn_token() - { - s = NULL; - coef = 0.0; - name = NULL; - } - class species* s; - LDBLE coef; - const char* name; -}; class save { public: @@ -322,6 +322,86 @@ public: /*---------------------------------------------------------------------- * Inverse *---------------------------------------------------------------------- */ +class inv_elts +{ +public: + ~inv_elts() {}; + inv_elts() + { + name = NULL; + master = NULL; + row = 0; + //uncertainties.clear(); + } + const char* name; + class master* master; + size_t row; + std::vector uncertainties; +}; +class isotope +{ +public: + ~isotope() {}; + isotope() + { + isotope_number = 0; + elt_name = NULL; + isotope_name = NULL; + total = 0; + ratio = 0; + ratio_uncertainty = 0; + x_ratio_uncertainty = 0; + master = NULL; + primary = NULL; + coef = 0; /* coefficient of element in phase */ + } + LDBLE isotope_number; + const char* elt_name; + const char* isotope_name; + LDBLE total; + LDBLE ratio; + LDBLE ratio_uncertainty; + LDBLE x_ratio_uncertainty; + class master* master; + class master* primary; + LDBLE coef; +}; +class inv_isotope +{ +public: + ~inv_isotope() {}; + inv_isotope() + { + isotope_name = NULL; + isotope_number = 0; + elt_name = NULL; + //uncertainties.clear(); + } + const char* isotope_name; + LDBLE isotope_number; + const char* elt_name; + std::vector uncertainties; +}; +class inv_phases +{ +public: + ~inv_phases() {}; + inv_phases() + { + name = NULL; + phase = NULL; + column = 0; + constraint = EITHER; + force = FALSE; + //isotopes.clear(); + } + const char* name; + class phase* phase; + int column; + int constraint; + int force; + std::vector isotopes; +}; class inverse { public: @@ -386,58 +466,6 @@ public: const char* netpath; const char* pat; }; -class inv_elts -{ -public: - ~inv_elts() {}; - inv_elts() - { - name = NULL; - master = NULL; - row = 0; - //uncertainties.clear(); - } - const char* name; - class master* master; - size_t row; - std::vector uncertainties; -}; -class inv_isotope -{ -public: - ~inv_isotope() {}; - inv_isotope() - { - isotope_name = NULL; - isotope_number = 0; - elt_name = NULL; - //uncertainties.clear(); - } - const char* isotope_name; - LDBLE isotope_number; - const char* elt_name; - std::vector uncertainties; -}; -class inv_phases -{ -public: - ~inv_phases() {}; - inv_phases() - { - name = NULL; - phase = NULL; - column = 0; - constraint = EITHER; - force = FALSE; - //isotopes.clear(); - } - const char* name; - class phase* phase; - int column; - int constraint; - int force; - std::vector isotopes; -}; /*---------------------------------------------------------------------- * Jacobian and Mass balance lists *---------------------------------------------------------------------- */ @@ -538,34 +566,6 @@ public: LDBLE* target; LDBLE coef; }; -class isotope -{ -public: - ~isotope() {}; - isotope() - { - isotope_number = 0; - elt_name = NULL; - isotope_name = NULL; - total = 0; - ratio = 0; - ratio_uncertainty = 0; - x_ratio_uncertainty = 0; - master = NULL; - primary = NULL; - coef = 0; /* coefficient of element in phase */ - } - LDBLE isotope_number; - const char* elt_name; - const char* isotope_name; - LDBLE total; - LDBLE ratio; - LDBLE ratio_uncertainty; - LDBLE x_ratio_uncertainty; - class master* master; - class master* primary; - LDBLE coef; -}; class iso { public: @@ -1107,20 +1107,6 @@ public: /*---------------------------------------------------------------------- * Reaction work space *---------------------------------------------------------------------- */ -class reaction_temp -{ -public: - ~reaction_temp() {}; - reaction_temp() - { - for (size_t i = 0; i < MAX_LOG_K_INDICES; i++) logk[i] = 0; - for (size_t i = 0; i < 3; i++) dz[i] = 0; - //token.clear(); - } - LDBLE logk[MAX_LOG_K_INDICES]; - LDBLE dz[3]; - std::vector token; -}; class rxn_token_temp { public: @@ -1139,6 +1125,20 @@ public: class unknown* unknown; LDBLE coef; }; +class reaction_temp +{ +public: + ~reaction_temp() {}; + reaction_temp() + { + for (size_t i = 0; i < MAX_LOG_K_INDICES; i++) logk[i] = 0; + for (size_t i = 0; i < 3; i++) dz[i] = 0; + //token.clear(); + } + LDBLE logk[MAX_LOG_K_INDICES]; + LDBLE dz[3]; + std::vector token; +}; class unknown_list { public: From 29f1d4098e07713c40d196e7750a2e2a036ca9fa Mon Sep 17 00:00:00 2001 From: SpaceIm <30052553+SpaceIm@users.noreply.github.com> Date: Sun, 11 Aug 2024 21:08:04 +0200 Subject: [PATCH 192/384] reorder classes in global_structures.h to avoid incomplete definitions --- phreeqcpp/global_structures.h | 216 +++++++++++++++++----------------- 1 file changed, 108 insertions(+), 108 deletions(-) diff --git a/phreeqcpp/global_structures.h b/phreeqcpp/global_structures.h index 50aae97a..9eba4493 100644 --- a/phreeqcpp/global_structures.h +++ b/phreeqcpp/global_structures.h @@ -210,6 +210,20 @@ struct Change_Surf /*---------------------------------------------------------------------- * CReaction *---------------------------------------------------------------------- */ +class rxn_token +{ +public: + ~rxn_token() {}; + rxn_token() + { + s = NULL; + coef = 0.0; + name = NULL; + } + class species* s; + LDBLE coef; + const char* name; +}; class CReaction { public: @@ -229,20 +243,6 @@ public: double dz[3]; std::vector token; }; -class rxn_token -{ -public: - ~rxn_token() {}; - rxn_token() - { - s = NULL; - coef = 0.0; - name = NULL; - } - class species* s; - LDBLE coef; - const char* name; -}; class save { public: @@ -322,6 +322,86 @@ public: /*---------------------------------------------------------------------- * Inverse *---------------------------------------------------------------------- */ +class inv_elts +{ +public: + ~inv_elts() {}; + inv_elts() + { + name = NULL; + master = NULL; + row = 0; + //uncertainties.clear(); + } + const char* name; + class master* master; + size_t row; + std::vector uncertainties; +}; +class isotope +{ +public: + ~isotope() {}; + isotope() + { + isotope_number = 0; + elt_name = NULL; + isotope_name = NULL; + total = 0; + ratio = 0; + ratio_uncertainty = 0; + x_ratio_uncertainty = 0; + master = NULL; + primary = NULL; + coef = 0; /* coefficient of element in phase */ + } + LDBLE isotope_number; + const char* elt_name; + const char* isotope_name; + LDBLE total; + LDBLE ratio; + LDBLE ratio_uncertainty; + LDBLE x_ratio_uncertainty; + class master* master; + class master* primary; + LDBLE coef; +}; +class inv_isotope +{ +public: + ~inv_isotope() {}; + inv_isotope() + { + isotope_name = NULL; + isotope_number = 0; + elt_name = NULL; + //uncertainties.clear(); + } + const char* isotope_name; + LDBLE isotope_number; + const char* elt_name; + std::vector uncertainties; +}; +class inv_phases +{ +public: + ~inv_phases() {}; + inv_phases() + { + name = NULL; + phase = NULL; + column = 0; + constraint = EITHER; + force = FALSE; + //isotopes.clear(); + } + const char* name; + class phase* phase; + int column; + int constraint; + int force; + std::vector isotopes; +}; class inverse { public: @@ -386,58 +466,6 @@ public: const char* netpath; const char* pat; }; -class inv_elts -{ -public: - ~inv_elts() {}; - inv_elts() - { - name = NULL; - master = NULL; - row = 0; - //uncertainties.clear(); - } - const char* name; - class master* master; - size_t row; - std::vector uncertainties; -}; -class inv_isotope -{ -public: - ~inv_isotope() {}; - inv_isotope() - { - isotope_name = NULL; - isotope_number = 0; - elt_name = NULL; - //uncertainties.clear(); - } - const char* isotope_name; - LDBLE isotope_number; - const char* elt_name; - std::vector uncertainties; -}; -class inv_phases -{ -public: - ~inv_phases() {}; - inv_phases() - { - name = NULL; - phase = NULL; - column = 0; - constraint = EITHER; - force = FALSE; - //isotopes.clear(); - } - const char* name; - class phase* phase; - int column; - int constraint; - int force; - std::vector isotopes; -}; /*---------------------------------------------------------------------- * Jacobian and Mass balance lists *---------------------------------------------------------------------- */ @@ -538,34 +566,6 @@ public: LDBLE* target; LDBLE coef; }; -class isotope -{ -public: - ~isotope() {}; - isotope() - { - isotope_number = 0; - elt_name = NULL; - isotope_name = NULL; - total = 0; - ratio = 0; - ratio_uncertainty = 0; - x_ratio_uncertainty = 0; - master = NULL; - primary = NULL; - coef = 0; /* coefficient of element in phase */ - } - LDBLE isotope_number; - const char* elt_name; - const char* isotope_name; - LDBLE total; - LDBLE ratio; - LDBLE ratio_uncertainty; - LDBLE x_ratio_uncertainty; - class master* master; - class master* primary; - LDBLE coef; -}; class iso { public: @@ -1107,20 +1107,6 @@ public: /*---------------------------------------------------------------------- * Reaction work space *---------------------------------------------------------------------- */ -class reaction_temp -{ -public: - ~reaction_temp() {}; - reaction_temp() - { - for (size_t i = 0; i < MAX_LOG_K_INDICES; i++) logk[i] = 0; - for (size_t i = 0; i < 3; i++) dz[i] = 0; - //token.clear(); - } - LDBLE logk[MAX_LOG_K_INDICES]; - LDBLE dz[3]; - std::vector token; -}; class rxn_token_temp { public: @@ -1139,6 +1125,20 @@ public: class unknown* unknown; LDBLE coef; }; +class reaction_temp +{ +public: + ~reaction_temp() {}; + reaction_temp() + { + for (size_t i = 0; i < MAX_LOG_K_INDICES; i++) logk[i] = 0; + for (size_t i = 0; i < 3; i++) dz[i] = 0; + //token.clear(); + } + LDBLE logk[MAX_LOG_K_INDICES]; + LDBLE dz[3]; + std::vector token; +}; class unknown_list { public: From 88d5ec20353fab67149768c11765c3c248ee0cea Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Wed, 14 Aug 2024 21:44:26 +0000 Subject: [PATCH 193/384] Squashed 'phreeqcpp/' changes from 587223f..b6a23a2 b6a23a2 reorder classes in global_structures.h to avoid incomplete definitions git-subtree-dir: phreeqcpp git-subtree-split: b6a23a2457530f9ca6e13fe4f0c226db3bba48af --- global_structures.h | 216 ++++++++++++++++++++++---------------------- 1 file changed, 108 insertions(+), 108 deletions(-) diff --git a/global_structures.h b/global_structures.h index 50aae97a..9eba4493 100644 --- a/global_structures.h +++ b/global_structures.h @@ -210,6 +210,20 @@ struct Change_Surf /*---------------------------------------------------------------------- * CReaction *---------------------------------------------------------------------- */ +class rxn_token +{ +public: + ~rxn_token() {}; + rxn_token() + { + s = NULL; + coef = 0.0; + name = NULL; + } + class species* s; + LDBLE coef; + const char* name; +}; class CReaction { public: @@ -229,20 +243,6 @@ public: double dz[3]; std::vector token; }; -class rxn_token -{ -public: - ~rxn_token() {}; - rxn_token() - { - s = NULL; - coef = 0.0; - name = NULL; - } - class species* s; - LDBLE coef; - const char* name; -}; class save { public: @@ -322,6 +322,86 @@ public: /*---------------------------------------------------------------------- * Inverse *---------------------------------------------------------------------- */ +class inv_elts +{ +public: + ~inv_elts() {}; + inv_elts() + { + name = NULL; + master = NULL; + row = 0; + //uncertainties.clear(); + } + const char* name; + class master* master; + size_t row; + std::vector uncertainties; +}; +class isotope +{ +public: + ~isotope() {}; + isotope() + { + isotope_number = 0; + elt_name = NULL; + isotope_name = NULL; + total = 0; + ratio = 0; + ratio_uncertainty = 0; + x_ratio_uncertainty = 0; + master = NULL; + primary = NULL; + coef = 0; /* coefficient of element in phase */ + } + LDBLE isotope_number; + const char* elt_name; + const char* isotope_name; + LDBLE total; + LDBLE ratio; + LDBLE ratio_uncertainty; + LDBLE x_ratio_uncertainty; + class master* master; + class master* primary; + LDBLE coef; +}; +class inv_isotope +{ +public: + ~inv_isotope() {}; + inv_isotope() + { + isotope_name = NULL; + isotope_number = 0; + elt_name = NULL; + //uncertainties.clear(); + } + const char* isotope_name; + LDBLE isotope_number; + const char* elt_name; + std::vector uncertainties; +}; +class inv_phases +{ +public: + ~inv_phases() {}; + inv_phases() + { + name = NULL; + phase = NULL; + column = 0; + constraint = EITHER; + force = FALSE; + //isotopes.clear(); + } + const char* name; + class phase* phase; + int column; + int constraint; + int force; + std::vector isotopes; +}; class inverse { public: @@ -386,58 +466,6 @@ public: const char* netpath; const char* pat; }; -class inv_elts -{ -public: - ~inv_elts() {}; - inv_elts() - { - name = NULL; - master = NULL; - row = 0; - //uncertainties.clear(); - } - const char* name; - class master* master; - size_t row; - std::vector uncertainties; -}; -class inv_isotope -{ -public: - ~inv_isotope() {}; - inv_isotope() - { - isotope_name = NULL; - isotope_number = 0; - elt_name = NULL; - //uncertainties.clear(); - } - const char* isotope_name; - LDBLE isotope_number; - const char* elt_name; - std::vector uncertainties; -}; -class inv_phases -{ -public: - ~inv_phases() {}; - inv_phases() - { - name = NULL; - phase = NULL; - column = 0; - constraint = EITHER; - force = FALSE; - //isotopes.clear(); - } - const char* name; - class phase* phase; - int column; - int constraint; - int force; - std::vector isotopes; -}; /*---------------------------------------------------------------------- * Jacobian and Mass balance lists *---------------------------------------------------------------------- */ @@ -538,34 +566,6 @@ public: LDBLE* target; LDBLE coef; }; -class isotope -{ -public: - ~isotope() {}; - isotope() - { - isotope_number = 0; - elt_name = NULL; - isotope_name = NULL; - total = 0; - ratio = 0; - ratio_uncertainty = 0; - x_ratio_uncertainty = 0; - master = NULL; - primary = NULL; - coef = 0; /* coefficient of element in phase */ - } - LDBLE isotope_number; - const char* elt_name; - const char* isotope_name; - LDBLE total; - LDBLE ratio; - LDBLE ratio_uncertainty; - LDBLE x_ratio_uncertainty; - class master* master; - class master* primary; - LDBLE coef; -}; class iso { public: @@ -1107,20 +1107,6 @@ public: /*---------------------------------------------------------------------- * Reaction work space *---------------------------------------------------------------------- */ -class reaction_temp -{ -public: - ~reaction_temp() {}; - reaction_temp() - { - for (size_t i = 0; i < MAX_LOG_K_INDICES; i++) logk[i] = 0; - for (size_t i = 0; i < 3; i++) dz[i] = 0; - //token.clear(); - } - LDBLE logk[MAX_LOG_K_INDICES]; - LDBLE dz[3]; - std::vector token; -}; class rxn_token_temp { public: @@ -1139,6 +1125,20 @@ public: class unknown* unknown; LDBLE coef; }; +class reaction_temp +{ +public: + ~reaction_temp() {}; + reaction_temp() + { + for (size_t i = 0; i < MAX_LOG_K_INDICES; i++) logk[i] = 0; + for (size_t i = 0; i < 3; i++) dz[i] = 0; + //token.clear(); + } + LDBLE logk[MAX_LOG_K_INDICES]; + LDBLE dz[3]; + std::vector token; +}; class unknown_list { public: From 7ad5a592a7d549d81d583c39dd7f306c26693278 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Thu, 15 Aug 2024 10:12:44 -0600 Subject: [PATCH 194/384] 50 apple clang 15 with c++11 or higher reports warnings wwritable strings in pbasiccpp (#57) Change char* -> const char* for callbacks --- IPhreeqc.cpp | 2 +- IPhreeqc.h | 2 +- IPhreeqc.hpp | 2 +- IPhreeqcLib.cpp | 2 +- IPhreeqc_interface_F.cpp | 2 +- IPhreeqc_interface_F.h | 2 +- fimpl.h | 2 +- fwrap.cpp | 2 +- fwrap.h | 2 +- phreeqcpp/Phreeqc.h | 6 +++--- phreeqcpp/basicsubs.cpp | 6 +++--- 11 files changed, 15 insertions(+), 15 deletions(-) diff --git a/IPhreeqc.cpp b/IPhreeqc.cpp index c71c42ac..20b967b4 100644 --- a/IPhreeqc.cpp +++ b/IPhreeqc.cpp @@ -931,7 +931,7 @@ void IPhreeqc::SetBasicCallback(double (*fcn)(double x1, double x2, const char * this->PhreeqcPtr->register_basic_callback(fcn, cookie1); } #ifdef IPHREEQC_NO_FORTRAN_MODULE -void IPhreeqc::SetBasicFortranCallback(double (*fcn)(double *x1, double *x2, char *str, size_t l)) +void IPhreeqc::SetBasicFortranCallback(double (*fcn)(double *x1, double *x2, const char *str, size_t l)) { this->PhreeqcPtr->register_fortran_basic_callback(fcn); } diff --git a/IPhreeqc.h b/IPhreeqc.h index 62d99029..6be24c24 100644 --- a/IPhreeqc.h +++ b/IPhreeqc.h @@ -1711,7 +1711,7 @@ Headings * @include ic */ #ifdef IPHREEQC_NO_FORTRAN_MODULE - IPQ_DLL_EXPORT IPQ_RESULT SetBasicFortranCallback(int id, double (*fcn)(double *x1, double *x2, char *str, size_t l)); + IPQ_DLL_EXPORT IPQ_RESULT SetBasicFortranCallback(int id, double (*fcn)(double *x1, double *x2, const char *str, size_t l)); #else IPQ_DLL_EXPORT IPQ_RESULT SetBasicFortranCallback(int id, double (*fcn)(double *x1, double *x2, const char *str, int l)); #endif diff --git a/IPhreeqc.hpp b/IPhreeqc.hpp index c79957b5..036b14ca 100644 --- a/IPhreeqc.hpp +++ b/IPhreeqc.hpp @@ -718,7 +718,7 @@ public: * @see SetBasicCallback */ #ifdef IPHREEQC_NO_FORTRAN_MODULE - void SetBasicFortranCallback(double (*fcn)(double *x1, double *x2, char *str, size_t l)); + void SetBasicFortranCallback(double (*fcn)(double *x1, double *x2, const char *str, size_t l)); #else void SetBasicFortranCallback(double (*fcn)(double *x1, double *x2, const char *str, int l)); #endif diff --git a/IPhreeqcLib.cpp b/IPhreeqcLib.cpp index b57755ab..d0a3f0ba 100644 --- a/IPhreeqcLib.cpp +++ b/IPhreeqcLib.cpp @@ -802,7 +802,7 @@ SetBasicCallback(int id, double (*fcn)(double x1, double x2, const char *str, vo #if !defined(R_SO) #ifdef IPHREEQC_NO_FORTRAN_MODULE IPQ_RESULT -SetBasicFortranCallback(int id, double (*fcn)(double *x1, double *x2, char *str, size_t l)) +SetBasicFortranCallback(int id, double (*fcn)(double *x1, double *x2, const char *str, size_t l)) { IPhreeqc* IPhreeqcPtr = IPhreeqcLib::GetInstance(id); if (IPhreeqcPtr) diff --git a/IPhreeqc_interface_F.cpp b/IPhreeqc_interface_F.cpp index e25590fb..4063d748 100644 --- a/IPhreeqc_interface_F.cpp +++ b/IPhreeqc_interface_F.cpp @@ -414,7 +414,7 @@ RunStringF(int *id, char* input) } #ifdef IPHREEQC_NO_FORTRAN_MODULE IPQ_RESULT -SetBasicFortranCallbackF(int *id, double (*fcn)(double *x1, double *x2, char *str, size_t l)) +SetBasicFortranCallbackF(int *id, double (*fcn)(double *x1, double *x2, const char *str, size_t l)) { return ::SetBasicFortranCallback(*id, fcn); } diff --git a/IPhreeqc_interface_F.h b/IPhreeqc_interface_F.h index d3fe29ec..3e77604f 100644 --- a/IPhreeqc_interface_F.h +++ b/IPhreeqc_interface_F.h @@ -133,7 +133,7 @@ extern "C" { IPQ_DLL_EXPORT int RunFileF(int *id, char* filename); IPQ_DLL_EXPORT int RunStringF(int *id, char* input); #ifdef IPHREEQC_NO_FORTRAN_MODULE - IPQ_DLL_EXPORT IPQ_RESULT SetBasicFortranCallbackF(int *id, double (*fcn)(double *x1, double *x2, char *str, size_t l)); + IPQ_DLL_EXPORT IPQ_RESULT SetBasicFortranCallbackF(int *id, double (*fcn)(double *x1, double *x2, const char *str, size_t l)); #else IPQ_DLL_EXPORT IPQ_RESULT SetBasicFortranCallbackF(int *id, double (*fcn)(double *x1, double *x2, const char *str, int l)); #endif diff --git a/fimpl.h b/fimpl.h index de9eb214..eddf5a45 100644 --- a/fimpl.h +++ b/fimpl.h @@ -208,7 +208,7 @@ IPQ_DLL_EXPORT int IPQ_DECL IPQ_CASE_UND(runstring, RUNSTRING, runstring_, RUNS { return RunStringF(id, input, len); } -IPQ_DLL_EXPORT int IPQ_DECL IPQ_CASE_UND(setbasicfortrancallback, SETBASICFORTRANCALLBACK, setbasicfortrancallback_, SETBASICFORTRANCALLBACK_)(int *id, double (*fcn)(double *x1, double *x2, char *str, size_t l)) +IPQ_DLL_EXPORT int IPQ_DECL IPQ_CASE_UND(setbasicfortrancallback, SETBASICFORTRANCALLBACK, setbasicfortrancallback_, SETBASICFORTRANCALLBACK_)(int *id, double (*fcn)(double *x1, double *x2, const char *str, size_t l)) { return SetBasicFortranCallbackF(id, fcn); } diff --git a/fwrap.cpp b/fwrap.cpp index bdec8e5a..6903c4f8 100644 --- a/fwrap.cpp +++ b/fwrap.cpp @@ -482,7 +482,7 @@ RunStringF(int *id, char* input, size_t input_length) } IPQ_RESULT -SetBasicFortranCallbackF(int *id, double (*fcn)(double *x1, double *x2, char *str, size_t l)) +SetBasicFortranCallbackF(int *id, double (*fcn)(double *x1, double *x2, const char *str, size_t l)) { return ::SetBasicFortranCallback(*id, fcn); } diff --git a/fwrap.h b/fwrap.h index c95758d0..b4449f30 100644 --- a/fwrap.h +++ b/fwrap.h @@ -135,7 +135,7 @@ extern "C" { int RunAccumulatedF(int *id); int RunFileF(int *id, char* filename, size_t filename_length); int RunStringF(int *id, char* input, size_t input_length); - IPQ_RESULT SetBasicFortranCallbackF(int *id, double (*fcn)(double *x1, double *x2, char *str, size_t l)); + IPQ_RESULT SetBasicFortranCallbackF(int *id, double (*fcn)(double *x1, double *x2, const char *str, size_t l)); IPQ_RESULT SetCurrentSelectedOutputUserNumberF(int *id, int *n); IPQ_RESULT SetDumpFileNameF(int *id, char* fname, size_t fname_length); IPQ_RESULT SetDumpFileOnF(int *id, int* dump_on); diff --git a/phreeqcpp/Phreeqc.h b/phreeqcpp/Phreeqc.h index 5607f2bc..ddff8262 100644 --- a/phreeqcpp/Phreeqc.h +++ b/phreeqcpp/Phreeqc.h @@ -93,13 +93,13 @@ public: int basic_run(char* commands, void* lnbase, void* vbase, void* lpbase); void basic_free(void); #ifdef IPHREEQC_NO_FORTRAN_MODULE - double basic_callback(double x1, double x2, char* str); + double basic_callback(double x1, double x2, const char* str); #else double basic_callback(double x1, double x2, const char* str); #endif void register_basic_callback(double (*fcn)(double x1, double x2, const char* str, void* cookie), void* cookie1); #ifdef IPHREEQC_NO_FORTRAN_MODULE - void register_fortran_basic_callback(double (*fcn)(double* x1, double* x2, char* str, size_t l)); + void register_fortran_basic_callback(double (*fcn)(double* x1, double* x2, const char* str, size_t l)); #else void register_fortran_basic_callback(double (*fcn)(double* x1, double* x2, const char* str, int l)); #endif @@ -1661,7 +1661,7 @@ protected: double (*basic_callback_ptr) (double x1, double x2, const char* str, void* cookie); void* basic_callback_cookie; #ifdef IPHREEQC_NO_FORTRAN_MODULE - double (*basic_fortran_callback_ptr) (double* x1, double* x2, char* str, size_t l); + double (*basic_fortran_callback_ptr) (double* x1, double* x2, const char* str, size_t l); #else double (*basic_fortran_callback_ptr) (double* x1, double* x2, const char* str, int l); #endif diff --git a/phreeqcpp/basicsubs.cpp b/phreeqcpp/basicsubs.cpp index d49141da..c92e8c30 100644 --- a/phreeqcpp/basicsubs.cpp +++ b/phreeqcpp/basicsubs.cpp @@ -4242,7 +4242,7 @@ basic_callback(double x1, double x2, const char * str) #ifdef IPHREEQC_NO_FORTRAN_MODULE double Phreeqc:: -basic_callback(double x1, double x2, char * str) +basic_callback(double x1, double x2, const char * str) #else double Phreeqc:: basic_callback(double x1, double x2, const char * str) @@ -4253,7 +4253,7 @@ basic_callback(double x1, double x2, const char * str) if (basic_callback_ptr != NULL) { - return (*basic_callback_ptr) (x1, x2, (const char *) str, basic_callback_cookie); + return (*basic_callback_ptr) (x1, x2, str, basic_callback_cookie); } if (basic_fortran_callback_ptr != NULL) { @@ -4274,7 +4274,7 @@ Phreeqc::register_basic_callback(double (*fcn)(double x1, double x2, const char } #ifdef IPHREEQC_NO_FORTRAN_MODULE void -Phreeqc::register_fortran_basic_callback(double ( *fcn)(double *x1, double *x2, char *str, size_t l)) +Phreeqc::register_fortran_basic_callback(double ( *fcn)(double *x1, double *x2, const char *str, size_t l)) { this->basic_fortran_callback_ptr = fcn; } From 1e41b0ca7aeadbf5c985c5038b811fd5b0186c1e Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Thu, 15 Aug 2024 10:12:44 -0600 Subject: [PATCH 195/384] 50 apple clang 15 with c++11 or higher reports warnings wwritable strings in pbasiccpp (#57) Change char* -> const char* for callbacks --- IPhreeqc.cpp | 2 +- IPhreeqc.h | 2 +- IPhreeqc.hpp | 2 +- IPhreeqcLib.cpp | 2 +- IPhreeqc_interface_F.cpp | 2 +- IPhreeqc_interface_F.h | 2 +- fimpl.h | 2 +- fwrap.cpp | 2 +- fwrap.h | 2 +- phreeqcpp/Phreeqc.h | 6 +++--- phreeqcpp/basicsubs.cpp | 6 +++--- 11 files changed, 15 insertions(+), 15 deletions(-) diff --git a/IPhreeqc.cpp b/IPhreeqc.cpp index c71c42ac..20b967b4 100644 --- a/IPhreeqc.cpp +++ b/IPhreeqc.cpp @@ -931,7 +931,7 @@ void IPhreeqc::SetBasicCallback(double (*fcn)(double x1, double x2, const char * this->PhreeqcPtr->register_basic_callback(fcn, cookie1); } #ifdef IPHREEQC_NO_FORTRAN_MODULE -void IPhreeqc::SetBasicFortranCallback(double (*fcn)(double *x1, double *x2, char *str, size_t l)) +void IPhreeqc::SetBasicFortranCallback(double (*fcn)(double *x1, double *x2, const char *str, size_t l)) { this->PhreeqcPtr->register_fortran_basic_callback(fcn); } diff --git a/IPhreeqc.h b/IPhreeqc.h index 62d99029..6be24c24 100644 --- a/IPhreeqc.h +++ b/IPhreeqc.h @@ -1711,7 +1711,7 @@ Headings * @include ic */ #ifdef IPHREEQC_NO_FORTRAN_MODULE - IPQ_DLL_EXPORT IPQ_RESULT SetBasicFortranCallback(int id, double (*fcn)(double *x1, double *x2, char *str, size_t l)); + IPQ_DLL_EXPORT IPQ_RESULT SetBasicFortranCallback(int id, double (*fcn)(double *x1, double *x2, const char *str, size_t l)); #else IPQ_DLL_EXPORT IPQ_RESULT SetBasicFortranCallback(int id, double (*fcn)(double *x1, double *x2, const char *str, int l)); #endif diff --git a/IPhreeqc.hpp b/IPhreeqc.hpp index c79957b5..036b14ca 100644 --- a/IPhreeqc.hpp +++ b/IPhreeqc.hpp @@ -718,7 +718,7 @@ public: * @see SetBasicCallback */ #ifdef IPHREEQC_NO_FORTRAN_MODULE - void SetBasicFortranCallback(double (*fcn)(double *x1, double *x2, char *str, size_t l)); + void SetBasicFortranCallback(double (*fcn)(double *x1, double *x2, const char *str, size_t l)); #else void SetBasicFortranCallback(double (*fcn)(double *x1, double *x2, const char *str, int l)); #endif diff --git a/IPhreeqcLib.cpp b/IPhreeqcLib.cpp index b57755ab..d0a3f0ba 100644 --- a/IPhreeqcLib.cpp +++ b/IPhreeqcLib.cpp @@ -802,7 +802,7 @@ SetBasicCallback(int id, double (*fcn)(double x1, double x2, const char *str, vo #if !defined(R_SO) #ifdef IPHREEQC_NO_FORTRAN_MODULE IPQ_RESULT -SetBasicFortranCallback(int id, double (*fcn)(double *x1, double *x2, char *str, size_t l)) +SetBasicFortranCallback(int id, double (*fcn)(double *x1, double *x2, const char *str, size_t l)) { IPhreeqc* IPhreeqcPtr = IPhreeqcLib::GetInstance(id); if (IPhreeqcPtr) diff --git a/IPhreeqc_interface_F.cpp b/IPhreeqc_interface_F.cpp index e25590fb..4063d748 100644 --- a/IPhreeqc_interface_F.cpp +++ b/IPhreeqc_interface_F.cpp @@ -414,7 +414,7 @@ RunStringF(int *id, char* input) } #ifdef IPHREEQC_NO_FORTRAN_MODULE IPQ_RESULT -SetBasicFortranCallbackF(int *id, double (*fcn)(double *x1, double *x2, char *str, size_t l)) +SetBasicFortranCallbackF(int *id, double (*fcn)(double *x1, double *x2, const char *str, size_t l)) { return ::SetBasicFortranCallback(*id, fcn); } diff --git a/IPhreeqc_interface_F.h b/IPhreeqc_interface_F.h index d3fe29ec..3e77604f 100644 --- a/IPhreeqc_interface_F.h +++ b/IPhreeqc_interface_F.h @@ -133,7 +133,7 @@ extern "C" { IPQ_DLL_EXPORT int RunFileF(int *id, char* filename); IPQ_DLL_EXPORT int RunStringF(int *id, char* input); #ifdef IPHREEQC_NO_FORTRAN_MODULE - IPQ_DLL_EXPORT IPQ_RESULT SetBasicFortranCallbackF(int *id, double (*fcn)(double *x1, double *x2, char *str, size_t l)); + IPQ_DLL_EXPORT IPQ_RESULT SetBasicFortranCallbackF(int *id, double (*fcn)(double *x1, double *x2, const char *str, size_t l)); #else IPQ_DLL_EXPORT IPQ_RESULT SetBasicFortranCallbackF(int *id, double (*fcn)(double *x1, double *x2, const char *str, int l)); #endif diff --git a/fimpl.h b/fimpl.h index de9eb214..eddf5a45 100644 --- a/fimpl.h +++ b/fimpl.h @@ -208,7 +208,7 @@ IPQ_DLL_EXPORT int IPQ_DECL IPQ_CASE_UND(runstring, RUNSTRING, runstring_, RUNS { return RunStringF(id, input, len); } -IPQ_DLL_EXPORT int IPQ_DECL IPQ_CASE_UND(setbasicfortrancallback, SETBASICFORTRANCALLBACK, setbasicfortrancallback_, SETBASICFORTRANCALLBACK_)(int *id, double (*fcn)(double *x1, double *x2, char *str, size_t l)) +IPQ_DLL_EXPORT int IPQ_DECL IPQ_CASE_UND(setbasicfortrancallback, SETBASICFORTRANCALLBACK, setbasicfortrancallback_, SETBASICFORTRANCALLBACK_)(int *id, double (*fcn)(double *x1, double *x2, const char *str, size_t l)) { return SetBasicFortranCallbackF(id, fcn); } diff --git a/fwrap.cpp b/fwrap.cpp index bdec8e5a..6903c4f8 100644 --- a/fwrap.cpp +++ b/fwrap.cpp @@ -482,7 +482,7 @@ RunStringF(int *id, char* input, size_t input_length) } IPQ_RESULT -SetBasicFortranCallbackF(int *id, double (*fcn)(double *x1, double *x2, char *str, size_t l)) +SetBasicFortranCallbackF(int *id, double (*fcn)(double *x1, double *x2, const char *str, size_t l)) { return ::SetBasicFortranCallback(*id, fcn); } diff --git a/fwrap.h b/fwrap.h index c95758d0..b4449f30 100644 --- a/fwrap.h +++ b/fwrap.h @@ -135,7 +135,7 @@ extern "C" { int RunAccumulatedF(int *id); int RunFileF(int *id, char* filename, size_t filename_length); int RunStringF(int *id, char* input, size_t input_length); - IPQ_RESULT SetBasicFortranCallbackF(int *id, double (*fcn)(double *x1, double *x2, char *str, size_t l)); + IPQ_RESULT SetBasicFortranCallbackF(int *id, double (*fcn)(double *x1, double *x2, const char *str, size_t l)); IPQ_RESULT SetCurrentSelectedOutputUserNumberF(int *id, int *n); IPQ_RESULT SetDumpFileNameF(int *id, char* fname, size_t fname_length); IPQ_RESULT SetDumpFileOnF(int *id, int* dump_on); diff --git a/phreeqcpp/Phreeqc.h b/phreeqcpp/Phreeqc.h index 5607f2bc..ddff8262 100644 --- a/phreeqcpp/Phreeqc.h +++ b/phreeqcpp/Phreeqc.h @@ -93,13 +93,13 @@ public: int basic_run(char* commands, void* lnbase, void* vbase, void* lpbase); void basic_free(void); #ifdef IPHREEQC_NO_FORTRAN_MODULE - double basic_callback(double x1, double x2, char* str); + double basic_callback(double x1, double x2, const char* str); #else double basic_callback(double x1, double x2, const char* str); #endif void register_basic_callback(double (*fcn)(double x1, double x2, const char* str, void* cookie), void* cookie1); #ifdef IPHREEQC_NO_FORTRAN_MODULE - void register_fortran_basic_callback(double (*fcn)(double* x1, double* x2, char* str, size_t l)); + void register_fortran_basic_callback(double (*fcn)(double* x1, double* x2, const char* str, size_t l)); #else void register_fortran_basic_callback(double (*fcn)(double* x1, double* x2, const char* str, int l)); #endif @@ -1661,7 +1661,7 @@ protected: double (*basic_callback_ptr) (double x1, double x2, const char* str, void* cookie); void* basic_callback_cookie; #ifdef IPHREEQC_NO_FORTRAN_MODULE - double (*basic_fortran_callback_ptr) (double* x1, double* x2, char* str, size_t l); + double (*basic_fortran_callback_ptr) (double* x1, double* x2, const char* str, size_t l); #else double (*basic_fortran_callback_ptr) (double* x1, double* x2, const char* str, int l); #endif diff --git a/phreeqcpp/basicsubs.cpp b/phreeqcpp/basicsubs.cpp index d49141da..c92e8c30 100644 --- a/phreeqcpp/basicsubs.cpp +++ b/phreeqcpp/basicsubs.cpp @@ -4242,7 +4242,7 @@ basic_callback(double x1, double x2, const char * str) #ifdef IPHREEQC_NO_FORTRAN_MODULE double Phreeqc:: -basic_callback(double x1, double x2, char * str) +basic_callback(double x1, double x2, const char * str) #else double Phreeqc:: basic_callback(double x1, double x2, const char * str) @@ -4253,7 +4253,7 @@ basic_callback(double x1, double x2, const char * str) if (basic_callback_ptr != NULL) { - return (*basic_callback_ptr) (x1, x2, (const char *) str, basic_callback_cookie); + return (*basic_callback_ptr) (x1, x2, str, basic_callback_cookie); } if (basic_fortran_callback_ptr != NULL) { @@ -4274,7 +4274,7 @@ Phreeqc::register_basic_callback(double (*fcn)(double x1, double x2, const char } #ifdef IPHREEQC_NO_FORTRAN_MODULE void -Phreeqc::register_fortran_basic_callback(double ( *fcn)(double *x1, double *x2, char *str, size_t l)) +Phreeqc::register_fortran_basic_callback(double ( *fcn)(double *x1, double *x2, const char *str, size_t l)) { this->basic_fortran_callback_ptr = fcn; } From c1c1f286b61ca73ae3204c7fa4831bb2e3066070 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Thu, 15 Aug 2024 17:08:49 +0000 Subject: [PATCH 196/384] Squashed 'phreeqcpp/' changes from b6a23a2..faf8144 faf8144 50 apple clang 15 with c++11 or higher reports warnings wwritable strings in pbasiccpp (#57) git-subtree-dir: phreeqcpp git-subtree-split: faf81447ee82e86ce3b2cb9d71fd81316cccfd9f --- Phreeqc.h | 6 +++--- basicsubs.cpp | 6 +++--- 2 files changed, 6 insertions(+), 6 deletions(-) diff --git a/Phreeqc.h b/Phreeqc.h index 5607f2bc..ddff8262 100644 --- a/Phreeqc.h +++ b/Phreeqc.h @@ -93,13 +93,13 @@ public: int basic_run(char* commands, void* lnbase, void* vbase, void* lpbase); void basic_free(void); #ifdef IPHREEQC_NO_FORTRAN_MODULE - double basic_callback(double x1, double x2, char* str); + double basic_callback(double x1, double x2, const char* str); #else double basic_callback(double x1, double x2, const char* str); #endif void register_basic_callback(double (*fcn)(double x1, double x2, const char* str, void* cookie), void* cookie1); #ifdef IPHREEQC_NO_FORTRAN_MODULE - void register_fortran_basic_callback(double (*fcn)(double* x1, double* x2, char* str, size_t l)); + void register_fortran_basic_callback(double (*fcn)(double* x1, double* x2, const char* str, size_t l)); #else void register_fortran_basic_callback(double (*fcn)(double* x1, double* x2, const char* str, int l)); #endif @@ -1661,7 +1661,7 @@ protected: double (*basic_callback_ptr) (double x1, double x2, const char* str, void* cookie); void* basic_callback_cookie; #ifdef IPHREEQC_NO_FORTRAN_MODULE - double (*basic_fortran_callback_ptr) (double* x1, double* x2, char* str, size_t l); + double (*basic_fortran_callback_ptr) (double* x1, double* x2, const char* str, size_t l); #else double (*basic_fortran_callback_ptr) (double* x1, double* x2, const char* str, int l); #endif diff --git a/basicsubs.cpp b/basicsubs.cpp index d49141da..c92e8c30 100644 --- a/basicsubs.cpp +++ b/basicsubs.cpp @@ -4242,7 +4242,7 @@ basic_callback(double x1, double x2, const char * str) #ifdef IPHREEQC_NO_FORTRAN_MODULE double Phreeqc:: -basic_callback(double x1, double x2, char * str) +basic_callback(double x1, double x2, const char * str) #else double Phreeqc:: basic_callback(double x1, double x2, const char * str) @@ -4253,7 +4253,7 @@ basic_callback(double x1, double x2, const char * str) if (basic_callback_ptr != NULL) { - return (*basic_callback_ptr) (x1, x2, (const char *) str, basic_callback_cookie); + return (*basic_callback_ptr) (x1, x2, str, basic_callback_cookie); } if (basic_fortran_callback_ptr != NULL) { @@ -4274,7 +4274,7 @@ Phreeqc::register_basic_callback(double (*fcn)(double x1, double x2, const char } #ifdef IPHREEQC_NO_FORTRAN_MODULE void -Phreeqc::register_fortran_basic_callback(double ( *fcn)(double *x1, double *x2, char *str, size_t l)) +Phreeqc::register_fortran_basic_callback(double ( *fcn)(double *x1, double *x2, const char *str, size_t l)) { this->basic_fortran_callback_ptr = fcn; } From af8d7af7fb6d37dfdbc4d825350f183f0073d14c Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Fri, 16 Aug 2024 17:00:21 -0600 Subject: [PATCH 197/384] Closes https://github.com/usgs-coupled/iphreeqccom/issues/6 --- python/parallel_advect.py | 38 ++++++++++++++++---------------------- 1 file changed, 16 insertions(+), 22 deletions(-) diff --git a/python/parallel_advect.py b/python/parallel_advect.py index f02b7096..a1229d8b 100644 --- a/python/parallel_advect.py +++ b/python/parallel_advect.py @@ -45,7 +45,7 @@ class CoupledModel(object): processes) self.reaction_model.make_initial_state() init_conc = dict([(name, [value] * ncells) for name, value in - self.reaction_model.init_conc.items()]) + list(self.reaction_model.init_conc.items())]) self.advection_model = AdvectionModel(init_conc, self.reaction_model.inflow_conc) self.component_names = self.reaction_model.component_names @@ -56,7 +56,7 @@ class CoupledModel(object): def run(self): """Go over all time steps (shifts). """ - for shift in xrange(self.nshifts): + for shift in range(self.nshifts): self.advection_model.advect() self.advection_model.save_results(self.results) self.reaction_model.modify(self.advection_model.conc) @@ -155,7 +155,7 @@ class ReactionModel(object): self.initial_conditions) self.calculators = [root_calculator] self.cell_ranges = [(0, root_ncells)] - for process in xrange(self.processes - 1): + for process in range(self.processes - 1): self.calculators.append(PhreeqcCalculatorProxy(slave_ncells, self.initial_conditions)) self.cell_ranges.append((current_cell, @@ -193,7 +193,7 @@ class ReactionModel(object): self.conc[name] = [] for cell_range, calculator in zip(self.cell_ranges, self.calculators): current_conc = dict([(name, value[cell_range[0]:cell_range[1]]) for - name, value in new_conc.items()]) + name, value in list(new_conc.items())]) calculator.modify(current_conc) for calculator in self.calculators: conc = calculator.get_modified() @@ -251,7 +251,7 @@ class PhreeqcCalculator(object): code += self.make_selected_output(self.components) self.phreeqc.RunString(code) self.conc = self.get_selected_output() - all_names = self.conc.keys() + all_names = list(self.conc.keys()) self.component_names = [name for name in all_names if name not in ('cb', 'H', 'O')] code = '' @@ -270,7 +270,7 @@ class PhreeqcCalculator(object): end = self.ncells + 1 conc.update(new_conc) modify = [] - for index, cell in enumerate(xrange(1, end)): + for index, cell in enumerate(range(1, end)): modify.append("SOLUTION_MODIFY %d" % cell) modify.append("\t-cb %e" % conc['cb'][index]) modify.append("\t-total_h %s" % conc['H'][index]) @@ -375,7 +375,7 @@ class PhreeqcCalculatorProxy(object): def process_worker(ncells, initial_conditions, in_queue, out_queue): """This runs in another process. """ - print 'Started process with ID', os.getpid() + print('Started process with ID', os.getpid()) calculator = PhreeqcCalculator(ncells, initial_conditions) out_queue.put((calculator.inflow_conc, calculator.init_conc, calculator.component_names)) @@ -393,7 +393,7 @@ def plot(ncells, outflow, specie_names): """ colors = {'Ca': 'r', 'Cl': 'b', 'K': 'g', 'N': 'y', 'Na': 'm'} x = [i / float(ncells) for i in - xrange(1, len(outflow[specie_names[0]]) + 1)] + range(1, len(outflow[specie_names[0]]) + 1)] args = [] for name in specie_names: args.extend([x, outflow[name], colors[name]]) @@ -410,15 +410,9 @@ def measure_time(func, *args, **kwargs): """Convenience function to measure run times. """ import sys - if sys.platform == 'win32': - # time.clock is more accurate on Windows - timer_func = time.clock - else: - # but behaves differently on other platforms - timer_func = time.time - start = timer_func() + start = time.perf_counter() result = func(*args, **kwargs) - return result, time.clock() - start + return result, time.perf_counter() - start if __name__ == '__main__': @@ -460,12 +454,12 @@ if __name__ == '__main__': model.run() return model, model.results (model, outflow), run_time = measure_time(run) - print 'Statistics' - print '==========' - print 'number of cells: ', ncells - print 'number of shifts: ', nshifts - print 'number of processes:', processes - print 'run_time: ', run_time + print('Statistics') + print('==========') + print('number of cells: ', ncells) + print('number of shifts: ', nshifts) + print('number of processes:', processes) + print('run_time: ', run_time) plot(ncells, outflow, model.component_names) main(ncells=400, nshifts=1200, processes=2) From 7f831e87e59c71484e4c3f7784cec3d35707c845 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Thu, 22 Aug 2024 07:24:30 -0600 Subject: [PATCH 198/384] Updated RELEASE.TXT --- RELEASE.TXT | 21 +++++++++++++++++++++ 1 file changed, 21 insertions(+) diff --git a/RELEASE.TXT b/RELEASE.TXT index 5e6f1b5a..c7d3b786 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,4 +1,23 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + + ----------------- + August 20, 2024 + ----------------- + PhreeqcRM (Python): Expanded documentation in BMI Python example notebook for + PHREEQC example 11 (ex11-advect.ipynb), courtesy of LimnoTech. + + ----------------- + August 14, 2024 + ----------------- + IPhreeqc: Pull request for modifications of class definition order and header file to + accommodate Clang 15 on Mac. + + ----------------- + August 8, 2024 + ----------------- + PhreeqcRM (Python): Fixed one docstring. Added code to handle numpy arrays + in yamlphreeqc. + ----------------- July 11, 2024 ----------------- @@ -6,6 +25,8 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ erroneous output was dumped for a user number. In most cases, the correct output was dumped following the erroneous output, which caused the erroneous output to be ignored. + +Version 3.8.0: July 3, 2024 ----------------- May 18, 2024 From b98a65380bc842c9a1437eb1676d689182cf55f7 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Thu, 22 Aug 2024 09:22:31 -0600 Subject: [PATCH 199/384] Kinec_v3.dat should replace kinec.v2.dat --- Kinec_v3.dat | 12159 +++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 12159 insertions(+) create mode 100644 Kinec_v3.dat diff --git a/Kinec_v3.dat b/Kinec_v3.dat new file mode 100644 index 00000000..d782d182 --- /dev/null +++ b/Kinec_v3.dat @@ -0,0 +1,12159 @@ +# KINEC_v3.dat - last edited July 23, 2024 by MA and EHO. +# +# This database contains the parameters for calculating mineral dissolution rates for primary and secondary silicate minerals using the equations and parameters reported by Hermanska et al. (2022, 2023), +# and dissolution rates for other mineral systems using the equations and parameters reported by Oelkers and addassi (2024*). +# +# This database contains thermodynamic properties from the Carbfix.dat (Voigt et al., 2018) and the llnl.dat database. +# The thermodynamic data for Gaspite, Variscite were taken from https://thermoddem.brgm.fr/ and Monazite-Ce was extracte from (A.P. Gysi et al. / Geochimica et Cosmochimica Acta 242 (2018)) +# +# Several solid solutions have been added to the kinetics database to properly address the release of metals from solid solutions. The solubilities of these solid solutions are based on the ideal mechanical mixing of the endmembers. These solid solutions are indicated by the suffix: _ss +# +#----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- +# README for the RATES blocks in the Kinec.v2.dat file + + +# Reference literature for derived kinetic fits can be found in Hermanska et al. (2022, 2003) and Oelkers and addassi (2024*), along with pH and temperature conditions. Note the minerals glauconite and Struvite are not present in the current database due to lack of thermodynamic data. +# Also please note that extrapolation of the database to different conditions or mineral precipitation might lead to incorrect results. + + +# When loading this database in PHREEQC, simulations can make use of them through using KINETICS blocks. These rates could also be imported to different thermodynamics databases if desired. + +# Below is a minimal example for such a KINETICS block, explaining the different parameters specific to KINEC.v2.dat. Other parameters can be specified as explained in the PHREEQC documentation. + +#------------------------------------------------ +##Example data block for mineral end-members: + +#KINETICS +#Albite # Name of the mineral +# -m0 1e-3 # Initial moles of mineral +# -parms 0 100 0 0 # Four parameters as explained below + +##Example data block for selected mineral solid solutions (selected solid solutions listed in Appendix in Hermanska et al. (2022)): + +#KINETICS +#Augite_ss # Name of the mineral +# -formula Mg0.45Fe0.275Ca0.275SiO3 1 # Mineral formula ! must be added to run solid soultions. +# -m0 100 # Initial moles of mineral +# -parms 0 0.0088183 0 2 # Four parameters as explained below + +#------------------------------------------------ +#Parameters: +#Four parameters are necessary when using rates from Kenec.dat: +# - The first parameter specifies if the specific surface area is entered as m2 per g of rock (0) or m2 per kg of water (1) +# - The second parameter specifies the specific surface area of the mineral (in m2/g or m2/kgw depending on the choice of the first parameter) +# - The third parameters define how the surface area changes during dissolution and has three possible values. This option is only available when the first parameter is 0. If the first parameter is 1, the surface area is always constant. +# 0: The surface area changes linearly with the moles of the mineral present +# 1: The surface area changes according to the geometry of dissolving cubes or spheres +#- The fourth parameter specifies the dissolution and precipitation option +# 0: allow dissolution and precipitation +# 1: allow precipitation only +# 2: allow dissolution only +#----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- +# +# References for KINEC_v3.dat database description: +#Hermanska M., Voigt M. J., Marieni C., Declercq J., and Oelkers E. H. (2022) A comprehensive and internally consistent mineral dissolution rate database: Part I: Primary silicate minerals and glasses. Chemical Geology. 597, 120807. https://doi.org/10.1016/j.chemgeo.2022.120807 +# +#Hermanska M., Voigt M. J., Marieni C., Declercq J., and Oelkers E. H. (2023) A comprehensive and internally consistent mineral dissolution rate database: Part II: Secondary silicate minerals. Chemical Geology. 636, 121632 https://doi.org/10.1016/j.chemgeo.2023.121632 +# +# and +# +# Oelkers, E.H., Addassi, M. 2024. A comprehensive and internally consistent mineral dissolution rate database: Part III: Non-silicate minerals including carbonate, sulfide, phosphate, halide, and oxy-hydroxide minerals. (in preperation) +# ********************************************************************* +# +# Thermodynamics from carbfix.dat (Voigt et al., 2018). +# Reference for carbfix.dat database description: Voigt M., Marieni C., Clark D. E., Gislason S. R., and Oelkers E. H. (2018) Evaluation and refinement of thermodynamic databases for mineral carbonation. Energy Procedia 146, 81-91. http://dx.doi.org/10.1016/j.egypro.2018.07.012 +# +# Reference for core10.dat database description: Neveu M., Desch S. J., Castillo-Rogez J. C. (2017) Aqueous geochemistry in icy world interiors: Equilibrium fluid, rock, and gas compositions, and fate of antifreezes and radionuclides. Geochimica et Cosmochimica Acta 212, 324-371. http://dx.doi.org/10.1016/j.gca.2017.06.023 +# +#*********************************************************************** +# +# Extrapolation algorithms: +# 64cri/cob: ? (12 aq species, all also with supcrt92) +# Cp integration = Integration of heat capacity vs. temperature measurements (162 solids, 2 gases) +# Constant H approx = Constant enthalpy approximation (76 solids) +# 69hel: http://dx.doi.org/10.2475/ajs.267.7.729 (5 aq species) +# Marion+12 (NH4Cl, NH4HCO3) +# supcrt92 = SUPCRT92 (329 aq, solids, gases) +# N17 ([(6)(CB)(CB)S], NH4-feldspar, NH4-muscovite) +# +# References: +# APP14: http://dx.doi.org/10.1016/j.gca.2013.10.003 (25 molar volumes, see phreeqc.dat) +# AS01: http://dx.doi.org/10.1016/S0168-6445(00)00062-0 (NO(g)) +# BH86: Barta and Hepler, 1986, Can. J.C. 64, 353. (Al+3, AlOH+2 molar volumes) +# Catalano13: http://dx.doi.org/10.1002/jgre.20161 (23 saponites + ripidolite) +# CWM89: http://www.worldcat.org/oclc/18559968 (20 solids, incl. 14 elemental) +# E68: Ellis, 1968, J. Chem. Soc. A, 1138. (Li+ molar volume) +# HDN+78: http://www.worldcatlibraries.org/oclc/13594862 (117 solids) +# Hel+98: http://dx.doi.org/10.1016/S0016-7037(97)00219-6 (Pyridine) +# Hel+09: http://dx.doi.org/10.1016/j.gca.2008.03.004 (Kerogen C128, C292, C515) +# HOK+98: http://dx.doi.org/10.1016/S0016-7037(97)00219-6 (C2H6(g), C3H8(g)) +# Hovis04: http://dx.doi.org/10.2138/am-2004-0111 (NH4-muscovite molar volume) +# HSS95: http://dx.doi.org/10.1016/0016-7037(95)00314-P (55 solutes) +# Joh90: Johnson, J.W., 1990, Personal calculation, Parameters given provide smooth metastable extrapolation of one-bar steam properties predicted by the Haar et al. (1984) equation of state to temperatures < the saturation temperature (99.632 C): Earch Sci. Dept, LLNL, Livermore, CA. (H2O(g)) +# Kel60: http://www.worldcat.org/oclc/693388901 (8 gases) +# M13: McColm I. J. (2013) Dictionary of Ceramic Science and Engineering, p.72. (CaUO4 molar volume) +# Marion+03: http://dx.doi.org/10.1016/S0016-7037(03)00372-7 (FeOH+) +# Marion+05: http://dx.doi.org/10.1016/j.gca.2004.06.024 (Arcanite, Gypsum, Niter, Thenardite molar volumes) +# Marion+08: http://dx.doi.org/10.1016/j.gca.2007.10.012 (FeOH+, FeOH+2, Melanterite molar volume) +# Marion+09: http://dx.doi.org/10.1016/j.gca.2009.03.013 (Alum-K molar volume) +# Marion+12: http://dx.doi.org/10.1016/j.icarus.2012.06.016 (NH4Cl, NH4HCO3) +# MLS+03: http://dx.doi.org/10.2138/am-2003-5-613 (Goethite) +# MS97: http://dx.doi.org/10.1016/S0016-7037(97)00241-X (HCl, MgSO4) +# N17: http://dx.doi.org/10.1016/j.gca.2017.06.023 ([(6)(CB)(CB)S], NH4-feldspar, NH4-muscovite) +# R01: http://dx.doi.org/10.1016/S0016-7037(01)00761-X ([(6)(CB)(CB)S]) +# RHF79: http://pubs.er.usgs.gov/publication/b1452 (40 solids) +# RH98: http://dx.doi.org/10.1016/S0016-7037(97)00345-1 ([(aro)-O-(aro)], Kerogen C128, C292, C515) +# SH88: http://dx.doi.org/10.1016/0016-7037(88)90181-0 (42 solutes, 1 solid) +# SH90: http://dx.doi.org/10.1016/0016-7037(90)90429-O (6 organic solutes) +# Sho93: http://dx.doi.org/10.1016/0016-7037(93)90542-5 (C2H4(g), CO(g)) +# Sho95: http://dx.doi.org/10.2475/ajs.295.5.496 (4 organic solutes) +# Sho09: http://dx.doi.org/10.2113/gsecongeo.104.8.1235 (Goethite) +# SHS89: http://dx.doi.org/10.1016/0016-7037(89)90341-4 (11 solutes) +# SK93: http://dx.doi.org/10.1016/0016-7037(93)90128-J (44 acetic acid/acetate complexes) +# SS93: http://dx.doi.org/10.1016/0016-7037(93)90337-V (CH2O) +# SM93: http://dx.doi.org/10.1006/icar.1993.1185 (CO, CO(NH2)2, HCN solutes) +# SSB97: http://dx.doi.org/10.1016/S0016-7037(97)00240-8 (UO2OH+, Uraninite) +# SSH97: http://dx.doi.org/10.1016/S0016-7037(97)00009-4 (30 solutes) +# SSW+97: https://doi.org/10.1016/S0016-7037(96)00339-0 +# SSW01: http://dx.doi.org/10.1016/S0016-7037(01)00717-7 (CO2, H2S) +# Ste01: http://dx.doi.org/10.1016/S0009-2541(00)00263-1 (Ti(OH)4) +# Wat81: ‚ÄúAmmonium Aluminosilicates: The Examination of a Mechanism for the High Temperature Condensation of Ammonia in Circumplanetary Subnebulae‚Äù MS Thesis, MIT, 1981. (NH4-feldspar, NH4-muscovite) +# WEP+82: http://dx.doi.org/10.1063/1.555845 (87 solutes, solids, and gases) +# WebElements: http://www.webelements.com/periodicity/molar_volume (K, U molar volumes) +# WebMineral: http://www.webmineral.com (38 solid molar volumes) +# Wilson+06: http://dx.doi.org/10.1016/j.gca.2005.10.003 (Chamosite, Lizardite) +# +# 73bar/kna: Barin, I., and Knacke, O., 1973, Thermochemical properties of inorganic substances: Springer-Verlag, New York. (Alum-K, MgOHCl, Na2SiO3, Nahcolite) +# 77bar/kna: Barin, I., Knacke, O., and Kubaschewski, O., 1977, Thermochemical properties of inorganic substances. Supplement: Springer-Verlag, New York. (Natrosilite, Pseudowollastonite, Rankinite) +# 87bou/bar: http://dx.doi.org/10.2113/gsecongeo.82.7.1839 (ZnOH+) +# 88db 3: Database development group iii/3, 1988, Errors in computation of estimated delH298 for montmor-x endmembers of smectite-di solid solution: LLNL Internal Memo. (Montmor-Ca, K, Mg, Na) +# 89db 7=89db 6, Database development group, 1989, Zeolite thermodynamic data: LLNL Internal memo. (Clinoptilolite-K) +# 76del/hal: http://dx.doi.org/10.1021/cr60301a001 (2 Cr solutes, 9 Cr solids) +# 92gre/fug: Grenthe, I., Fuger, J., Konings, R.J.M., Lemire, R.J., Muller, A.B., Nguyen-Trung, C., and Wanner, H., 1992, Chemical Thermodynamics, Volume 1: Chemical Thermodynamics of Uranium: North-Holland, Amsterdam, 1, 714p. (4 U solutes, 21 U solids) +# 90how/joh: http://dx.doi.org/10.1016/S0144-2449(05)80307-0 (Stilbite) +# 75kas/bor: Kashkay, C.H.M., Borovskaya,Y.U.B., and Babazade, M.A., 1975, Determination of delG0f298K of synthetic jarosite and its sulfate analogues: Geochem. Intl., 12, 115-121. (Jarosite) +# 87kee/rup: Kee, R.J., Rupley, F.M., and Miller, J.A., 1987, The Chemkin thermodynamic database: SNL Rep. SAND-87-8215, 92p. (Ice) +# 78lan: http://dx.doi.org/10.1016/0016-7037(78)90001-7 (Bassetite, Ningyoite, Saleeite) +# 80lan/her: http://dx.doi.org/10.1016/0016-7037(80)90226-4 (ThCl4) +# 82mar/smi: Martell, A.E., and Smith, R.M., 1982, Critical Stability Constants, Vol. 5: First Supplement: Plenum, New York, 5, 604p. (MgSO4(aq)) +# 74nau/ryz: Naumov, G.B., Ryzhenko, B.N., and Khodakovsky, I.L., 1974, Handbook of Thermodynamic Data: U.S.G.S. WRD-74-001, 328p. (CoCl+, CoFe2O4, CoS, CoSO4:H2O, Delafossite, Ni2SiO4) +# 76mac: http://dx.doi.org/10.1016/0010-938X(76)90066-4 (Mn+3) +# 95pok/hel: http://dx.doi.org/10.2475/ajs.295.10.1255 (4 solutes, 4 solids) +# 85rar 2: http://dx.doi.org/10.1021/cr00070a003 (9 europium solids) +# 87rar 2: Rard, J.A., 1987, Update of the europium data base, October, 1987: LLNL Internal Memo. (3 europium solids) +# 87rua/sew: http://dx.doi.org/10.1016/0016-7037(87)90013-5 (HCl) +# 82sar/bar: Sarkar, A.K., Barnes, M.W., and Roy, D.M., 1982, Longevity of borehole and shaft sealing materials: thermodynamic properties of cements and related phases applied to repository sealing: ONWI Tech. Rep. ONWI-201, 52p. (16 solids) +# 84sve: http://dx.doi.org/10.1016/0016-7037(84)90203-5 (Sphaerocobaltite) +# 78vau/cra: Vaughan, D.J., and Craig, J.R., 1978, Mineral chemistry of metal sulfides: Cambridge Univ. Press, Cambridge, MA. (5 solids) +# 78wol: Wolery, T.J., 1978, Some chemical aspects of hydrothermal processes at mid-oceanic ridges -- A theoretical study. I. Basalt-sea water reaction and chemical cycling between the oceanic crust and the oceans. II. Calculation of chemical equilibrium between aqueous solutions and minerals: Unpub. Ph.D. Diss., Northwestern Univ., Evaston, IL, 263p. (23 clays) +# 87woo/gar: Woods, T.L., and Garrels, R.M., 1987, Thermodynamic values at low temperature for natural inorganic materials: An uncritical summary: Oxford Univ. Press, Oxford. (Atacamite, Brochantite, Dioptase) +# +# Additional carbfix.dat references +# D08: http://dx.doi.org/10.1186/1467-4866-9-10 +# DEW17: Deep Earth Water (DEW) spreadsheet http://www.dewcommunity.org +# HP98: https://doi.org/10.1111/j.1525-1314.1998.00140.x +# HP11: http://dx.doi.org/10.1111/j.1525-1314.2010.00923.x +# Neu00: Neuhoff P.S., 2000, Thermodynamic Properties and Parageneses of Rock-Forming Zeolites. PhD Thesis. Stanford University. +# SBS13: http://dx.doi.org/10.1016/j.gca.2013.04.023 +# SBS14: http://dx.doi.org/10.1016/j.gca.2014.04.008 +# MS97: http://dx.doi.org/10.1016/S0016-7037(97)00241-X +# PB82: http://doi.org/10.1016/0016-7037(82)90056-4 +# P+96: http://dx.doi.org/10.1016/0016-7037(96)00123-8 +# SK95: http://doi.org/10.1016/0016-7037(95)00058-8 +# SS97: http://doi.org/10.1016/S0016-7037(97)00291-3 +# TS01: http://dx.doi.org/10.1016/S0016-7037(01)00705-0 +# Z+16: http://dx.doi.org/10.1016/j.cageo.2016.02.013 +# +# Species have various valid temperature ranges, noted in the Range parameter. Currently, Phreeqc does not use this parameter, so it is up to the user to remain in the valid temperature range for all data used. + +# Example entry block: + +# Formation reaction from basis species +# -llnl_gamma # ion size parameter in B-dot Debye-Huckel equation +# log_k # at 25C, 1 bar, used if no -delta_H or -analytic +# -delta_H # molar enthalpy of reaction, used if no -analytic +# # deltafH # molar enthalpy of formation from reference compounds +# -analytic b1 b2 b3 b4 b5 b6 # logK = b1 + b2*T + b3/T + b4*log(T) + b5/T2 + b6*T2 +# # Range Tmin-Tmax # of validity of -analytic +# -Vm a1 a2 a3 a4 omega # See APP14, SH88 for equations +# # Extrapol # extrapolation algorithm +# # Ref # references +#----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- + +# DATABASE STARTS BELOW +# +LLNL_AQUEOUS_MODEL_PARAMETERS +-temperatures + 0.01 25 60 100 + 150 200 250 300 +#debye huckel a (adh) +-dh_a + 0.4939 0.5114 0.5465 0.5995 + 0.6855 0.7994 0.9593 1.2180 +#debye huckel b (bdh) +-dh_b + 0.3253 0.3288 0.3346 0.3421 + 0.3525 0.3639 0.3766 0.3925 +-bdot + 0.0374 0.0410 0.0438 0.0460 + 0.0470 0.0470 0.0340 0 +#cco2 (coefficients for the Drummond (1981) polynomial) +-co2_coefs + -1.0312 0.0012806 + 255.9 0.4445 + -0.001606 + +SOLUTION_MASTER_SPECIES + +#element species alk gfw_formula element_gfw + +Al Al+3 0 Al 26.9815 +Alkalinity HCO3- 1 Ca0.5(CO3)0.5 50.05 +B B(OH)3 0 B 10.811 +B(3) B(OH)3 0 B -36.44179 +Ba Ba+2 0 Ba 137.3270 +C(-4) CH4 0 CH4 -33.31051 +C(-3) C2H6 0 C2H6 -30.54674 +C(-2) C2H4 0 C2H4 -28.08539 +C HCO3- 1 HCO3 12.011 +C(+2) CO 0 C -23.87691 +C(+4) HCO3- 1 HCO3 -22.05727 +Ca Ca+2 0 Ca 40.078 +Ce Ce+3 0 Ce 140.115 +Ce(+2) Ce+2 0 Ce +Ce(+3) Ce+3 0 Ce +Ce(+4) Ce+4 0 Ce +Cl Cl- 0 Cl 35.4527 +Cl(-1) Cl- 0 Cl -17.43358 +Cl(1) ClO- 0 Cl -16.11094 +Cl(3) ClO2- 0 Cl -14.87484 +Cl(5) ClO3- 0 Cl -13.71476 +Cl(7) ClO4- 0 Cl +Co Co+2 0 Co 58.9332 +Co(+2) Co+2 0 Co +Co(+3) Co+3 0 Co +Cr CrO4-2 0 CrO4-2 51.9961 +Cr(+2) Cr+2 0 Cr +Cr(+3) Cr+3 0 Cr +Cr(+6) CrO4-2 0 Cr +Cd Cd+2 0 Cd 112.411 +Cu Cu+2 0 Cu 63.546 +Cu(+1) Cu+1 0 Cu +Cu(+2) Cu+2 0 Cu +E e- 0 0 0 +Eu Eu+3 0 Eu 151.965 +Eu(+2) Eu+2 0 Eu +Eu(+3) Eu+3 0 Eu +F F- 0 F 18.9984 +Fe Fe+2 0 Fe 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2 Fe +Gd Gd+3 0 Gd 157.25 +Gd(+3) Gd+3 0 Gd +H H+ -1 H 1.0079 +H(0) H2 0 H +H(+1) H+ -1 0 +K K+ 0 K 39.0983 +Li Li+ 0 Li 6.941 +Mg Mg+2 0 Mg 24.305 +Mn Mn+2 0 Mn 54.938 +Mn(+2) Mn+2 0 Mn +Mn(+3) Mn+3 0 Mn +Mn(+6) MnO4-2 0 Mn +Mn(+7) MnO4- 0 Mn +Mo MoO4-2 0 Mo 95.94 +N NH3 1 N 14.0067 +N(-3) NH3 1 N +N(0) N2 0 N +N(+3) NO2- 0 N +N(+5) NO3- 0 N +Na Na+ 0 Na 22.9898 +Ni Ni+2 0 Ni 58.69 +O H2O 0 O 15.994 +O(-2) H2O 0 0 +O(0) O2 0 O +P HPO4-2 2 P 30.9738 +P(5) HPO4-2 2 P +Pb Pb+2 0 Pb 207.20 +Pb(+2) Pb+2 0 Pb +Pb(+4) Pb+4 0 Pb +S SO4-2 0 SO4 32.066 +S(-2) HS- 1 S +S(+2) S2O3-2 0 S +S(+3) S2O4-2 0 S +S(+4) SO3-2 0 S +S(+5) S2O5-2 0 S +S(+6) SO4-2 0 SO4 +S(+7) S2O8-2 0 S +S(+8) HSO5- 0 S +Sc Sc+3 0 Sc 44.9559 +Si SiO2 0 SiO2 28.0855 +Sm Sm+3 0 Sm 150.36 +Sm(+2) Sm+2 0 Sm +Sm(+3) Sm+3 0 Sm +Sr Sr+2 0.0 Sr 87.62 +Th Th+4 0 Th 232.0381 +Ti Ti(OH)4 0 Ti 47.88 +U UO2+2 0 U 238.0289 +U(+3) U+3 0 U +U(+4) U+4 0 U +U(+5) UO2+ 0 U +U(+6) UO2+2 0 U +Zn Zn+2 0 Zn 65.39 + + + +SOLUTION_SPECIES + +#------------------ +# 31 basis species +#------------------ + +Al+3 = Al+3 + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -128.681 kcal/mol + -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # APP14, BH86 + +B(OH)3 = B(OH)3 + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -256.82 kcal/mol + -Vm 7.0643 8.847 3.5844 -3.1451 -0.2 0 0 0 0 0 # SHS89 + +Ca+2 = Ca+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -129.8 kcal/mol + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1 # APP14 + +Cd+2 = Cd+2 + -llnl_gamma 5.0000 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cd+2 +# Enthalpy of formation: -18.14 kcal/mol + +Cl- = Cl- + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -39.933 kcal/mol + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 # APP14 + +Co+2 = Co+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -13.9 kcal/mol + -Vm -1.2252 -8.9356 5.3191 -2.4095 1.47690 0 0 0 0 0 # SSW+97 + +CrO4-2 = CrO4-2 + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -210.6 kcal/mol + -Vm 5.4891 5.6223 3.5382 -3.0113 3.00240 0 0 0 0 0 # SSW+97 + +Cu+2 = Cu+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH 15.7 kcal/mol + -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 # APP14 + +e- = e- + +Eu+3 = Eu+3 + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -144.7 kcal/mol + -Vm -3.1037 -15.3599 11.7871 -2.144 2.3161 0 0 0 0 0 # SH88 + +F- = F- + -llnl_gamma 3.5000 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -80.15 kcal/mol + -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 # APP14 + +Fe+2 = Fe+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -22.05 kcal/mol + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 # APP14 + +Gd+3 = Gd+3 + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -164.2 kcal/mol + -Vm -2.9771 -15.0506 11.6656 -2.1568 2.3265 0 0 0 0 0 # SH88 + +H+ = H+ + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -0 kJ/mol + +HCO3- = HCO3- + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -164.898 kcal/mol + -Vm 7.5621 1.1505 1.2346 -2.8266 1.27330 0 0 0 0 0 # SH88 + +HPO4-2 = HPO4-2 + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -308.815 kcal/mol + -Vm 3.6315 1.0857 5.3233 -2.8239 3.33630 0 0 0 0 0 # SH88 + +K+ = K+ + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -60.27 kcal/mol + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 # APP14 + +Li+ = Li+ + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -66.552 kcal/mol + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # APP14, E68 + +Mg+2 = Mg+2 + -llnl_gamma 8 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -111.367 kcal/mol + -Vm -1.410 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 # APP14 + +Mn+2 = Mn+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -52.724 kcal/mol + -Vm -1.10 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 # APP14 + +MoO4-2 = MoO4-2 + -llnl_gamma 4.5 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -238.5 kcal/mol + -Vm 6.9651 2.7095 18.6617 -2.8909 3.07770 0 0 0 0 0 # SSW+97 + +NH3 = NH3 + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -19.44 kcal/mol + -Vm 5.0911 2.797 8.6248 -2.8946 -7.690e-2 0 0 0 0 0 # SHS89 + +Na+ = Na+ + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -57.433 kcal/mol + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 # APP14 + +Ni+2 = Ni+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -12.9 kcal/mol + -Vm -1.6942 -11.9181 10.4344 -2.2863 1.50670 0 0 0 0 0 # SH88 + +H2O = H2O + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -68.317 kcal/mol + +SO4-2 = SO4-2 + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -217.4 kcal/mol + -Vm 8.0 2.3 -46.04 6.245 3.82 0 0 0 0 1 # APP14 + +Sc+3 = Sc+3 + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -146.8 kcal/mol + -Vm -2.1109 -12.9294 10.817 -2.2444 2.5003 0 0 0 0 0 # SSW+97 + +SiO2 = SiO2 + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -209.775 kcal/mol + -Vm 1.9 1.7 20 -2.7 0.12910 0 0 0 0 0 # SHS89 + +Sm+3 = Sm+3 + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -165.2 kcal/mol + -Vm -3.2065 -15.6108 11.8857 -2.1337 2.2955 0 0 0 0 0 # SH88 + +Th+4 = Th+4 + -llnl_gamma 11 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -183.8 kcal/mol + -Vm -4.2886 -18.25 12.9154 -2.0244 3.70930 0 0 0 0 0 # SSW+97 + +Ti(OH)4 = Ti(OH)4 + -llnl_gamma 3 + log_k 0 +# deltafH -0 kcal/mol + -Vm 7.366874 10.21009 1.152964 -3.201004 0.01498566 0 0 0 0 0 # Ste01 + +UO2+2 = UO2+2 + -llnl_gamma 4.5 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -1019 kJ/mol + -Vm 3.0256 -4.1084 15.3326 -2.6091 1.40990 0 0 0 0 0 # SSW+97 + +Zn+2 = Zn+2 + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol +# deltafH -36.66 kcal/mol + -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 # APP14 + +Ba+2 = Ba+2 + -llnl_gamma 5.0 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ba+2 +# Enthalpy of formation: -128.5 kcal/mol + +Ce+3 = Ce+3 + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ce+3 +# Enthalpy of formation: -167.4 kcal/mol + +Pb+2 = Pb+2 + -llnl_gamma 4.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pb+2 +# Enthalpy of formation: 0.22 kcal/mol + +Sr+2 = Sr+2 + -llnl_gamma 5.0 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sr+2 +# Enthalpy of formation: -131.67 kcal/mol +#------------------- +# 40 Redox couples +#------------------- + +2H2O = O2 + 4H+ + 4e- + -CO2_llnl_gamma + log_k -85.9951 + -delta_H 559.543 kJ/mol +# deltafH -2.9 kcal/mol + -analytic 38.0229 7.99407e-3 -2.7655e4 -1.4506e1 199838.45 +# Range 0-350 + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 +# Extrapol supcrt92 +# Ref SHS89 + +SO4-2 + H+ = HS- + 2 O2 + -llnl_gamma 3.5 + log_k -138.3169 + -delta_H 869.226 kJ/mol +# deltafH -3.85 kcal/mol + -analytic 2.6251e1 3.9525e-2 -4.5443e4 -1.1107e1 3.1843e5 +# Range 0-350 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.44100 +# Extrapol supcrt92 +# Ref SH88 + +.5 O2 + 2 HS- = S2-2 + H2O + -llnl_gamma 4.0 + log_k 33.2673 +# deltafH -0 kcal/mol + -analytic 0.21730e2 -0.12307e-2 0.10098e5 -0.88813e1 0.15757e3 + -mass_balance S(-2)2 +# Range 0-350 + -Vm 5.5797 5.8426 3.4536 -3.0205 3.10830 +# Extrapol supcrt92 +# Ref SH88 + +2 H+ + 2 SO3-2 = S2O3-2 + O2 + H2O + -llnl_gamma 4.0 + log_k -40.2906 +# deltafH -0 kcal/mol + -analytic 0.77679e2 0.65761e-1 -0.15438e5 -0.34651e2 -0.24092e3 +# Range 0-350 + -Vm 6.6685 12.4951 -7.7281 -3.2955 2.96940 +# Extrapol supcrt92 +# Ref SH88 + +H+ + HCO3- + H2O = CH4 + 2 O2 + -llnl_gamma 3.0 + log_k -144.1412 + -delta_H 863.599 kJ/mol +# deltafH -21.01 kcal/mol + -analytic -0.41698e2 0.36584e-1 -0.40675e5 0.93479e1 -0.63468e3 +# Range 0-350 + -Vm 6.7617 8.7279 2.3212 -3.1397 -0.31790 +# Extrapol supcrt92 +# Ref SH90 + +2 H+ + 2 HCO3- + H2O = C2H6 + 3.5 O2 + -llnl_gamma 3.0 + log_k -228.6072 +# deltafH -0 kcal/mol + #analytic -0.10777e2 0.72105e-1 -0.67489e5 -0.13915e2 -0.10531e4 + -analytic -491.3 1.148 -10004 0 0 -8.06e-4 # !!! Using CHNOSZ, discrepant with above expression unless the first term is -0.10777e2 instead of 0.10777e2 +# Range 0-350 + -Vm 8.75 13.1051 1.6258 -3.3207 -0.06270 +# Extrapol supcrt92 +# Ref SH90 + +2 H+ + 2 HCO3- = C2H4 + 3 O2 + -llnl_gamma 3.0 + log_k -254.5034 + -delta_H 1446.6 kJ/mol +# deltafH 24.65 kcal/mol + #analytic -0.30329e2 0.71187e-1 -0.73140e5 + -analytic 6e-2 3.60e-2 -7.17e4 +# Range 0-350 + -Vm 7.856 12.6391 -1.8737 -3.3014 -0.4 +# Extrapol supcrt92 +# Ref SH90 + +HCO3- + H+ = CO + H2O + 0.5 O2 + -llnl_gamma 3.0 + log_k -41.7002 + -delta_H 277.069 kJ/mol +# deltafH -28.91 kcal/mol + -analytic 1.0028e2 4.6877e-2 -1.8062e4 -4.0263e1 3.8031e5 +# Range 0-350 + -Vm 6.2373 7.4498 2.8184 -3.0869 -0.37150 +# Extrapol supcrt92 +# Ref SM93 + +Cl- + 0.5 O2 = ClO- + -llnl_gamma 4.0 + log_k -15.1014 + -delta_H 66.0361 kJ/mol +# deltafH -25.6 kcal/mol + -analytic 6.1314e1 3.4812e-3 -6.0952e3 -2.3043e1 -9.5128e1 +# Range 0-350 + -Vm 2.3599 -2.0164 6.5356 -2.6955 1.47670 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +O2 + Cl- = ClO2- + -llnl_gamma 4.0 + log_k -23.108 + -delta_H 112.688 kJ/mol +# deltafH -15.9 kcal/mol + -analytic 3.3638e0 -6.1675e-3 -4.9726e3 -2.0467e0 -2.5769e5 +# Range 0-350 + -Vm 5.2163 4.958 3.7949 -2.9839 1.2637 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +1.5 O2 + Cl- = ClO3- + -llnl_gamma 3.5 + log_k -17.2608 + -delta_H 81.3077 kJ/mol +# deltafH -24.85 kcal/mol + -analytic 2.8852e1 -4.8281e-3 -4.6779e3 -1.0772e1 -2.0783e5 +# Range 0-350 + -Vm 7.1665 9.7172 1.9307 -3.1807 1.0418 +# Extrapol supcrt92 +# Ref SH88 + +2 O2 + Cl- = ClO4- + -llnl_gamma 3.5 + log_k -15.7091 + -delta_H 62.0194 kJ/mol +# deltafH -30.91 kcal/mol + -analytic 7.0280e1 -6.8927e-5 -5.5690e3 -2.6446e1 -1.6596e5 +# Range 0-350 + -Vm 8.1411 15.5654 -7.8077 -3.4224 0.9699 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +H+ + Co+2 + 0.25 O2 = Co+3 + 0.5 H2O + -llnl_gamma 5.0 + log_k -11.4845 + -delta_H 10.3198 kJ/mol +# deltafH 22 kcal/mol + -analytic -2.2827e1 -1.2222e-2 -7.2117e2 7.0306 -1.1247e1 +# Range 0-350 + -Vm -2.8678 -14.7777 11.5439 -2.1680 2.6901 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +4 H+ + CrO4-2 = Cr+2 + 2 H2O + O2 + -llnl_gamma 4.5 + log_k -21.6373 + -delta_H 153.829 kJ/mol +# deltafH -34.3 kcal/mol + -analytic 6.9003e1 6.2884e-2 -6.9847e3 -3.4720e1 -1.0901e2 +# Range 0-350 + -Vm -0.8036 -9.74 9.5688 -2.3762 1.4287 # SSW+97 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 76del/hal differ by 2 log K at 0C, 0.7 log K at 300C + +5 H+ + CrO4-2 = Cr+3 + 2.5 H2O + 0.75 O2 + -llnl_gamma 9.0 + log_k 8.3842 + -delta_H -81.0336 kJ/mol +# deltafH -57 kcal/mol + -analytic 5.1963e1 6.0932e-2 5.4256e3 -3.2290e1 8.4645e1 +# Range 0-350 + -Vm -2.7824 -14.5709 11.4661 -2.1765 2.7403 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 76del/hal differ by 1.5 log K at 0C, 0.8 log K at 300C + +Cu+2 + 0.5 H2O = Cu+ + H+ + 0.25 O2 + -llnl_gamma 4.0 + log_k -18.7704 + -delta_H 145.877 kJ/mol +# deltafH 17.132 kcal/mol + -analytic 3.7909e1 1.3731e-2 -8.1506e3 -1.3508e1 -1.2719e2 +# Range 0-350 + -Vm 0.807 -5.804 8.0165 -2.5390 0.40460 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +Eu+3 + 0.5 H2O = Eu+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -27.5115 + -delta_H 217.708 kJ/mol +# deltafH -126.1 kcal/mol + -analytic 3.0300e1 1.4126e-2 -1.2319e4 -9.0585e0 1.5289e5 +# Range 0-350 + -Vm 0.0407 -7.6776 8.7578 -2.4615 1.0929 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +H+ + Fe+2 + 0.25 O2 = Fe+3 + 0.5 H2O + -llnl_gamma 9.0 + log_k 8.4899 + -delta_H -97.209 kJ/mol +# deltafH -11.85 kcal/mol + -analytic -1.7808e1 -1.1753e-2 4.7609e3 5.5866 7.4295e1 +# Range 0-350 + -Vm -2.4256 -13.6961 11.1141 -2.2127 2.58120 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +H2O = H2 + 0.5 O2 + -CO2_llnl_gamma + log_k -46.1066 + -delta_H 275.588 kJ/mol +# deltafH -1 kcal/mol + -analytic 6.6835e1 1.7172e-2 -1.8849e4 -2.4092e1 4.2501e5 +# Range 0-350 + -Vm 5.1427 4.7758 3.8729 -2.9764 -0.209 +# Extrapol supcrt92 +# Ref SHS89 + +SO4-2 + H+ + 0.5 O2 = HSO5- + -llnl_gamma 4.0 + log_k -17.2865 + -delta_H 140.038 kJ/mol +# deltafH -185.38 kcal/mol + -analytic 5.9944e1 3.0904e-2 -7.7494e3 -2.4420e1 -1.2094e2 +# Range 0-350 + -Vm 8.9391 14.043 0.2349 -3.3594 0.86110 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +Mn+2 + H+ + 0.25 O2 = Mn+3 + 0.5 H2O + -llnl_gamma 5.0 + log_k -4.0811 + -delta_H -65.2892 kJ/mol +# deltafH -34.895 kcal/mol + -analytic 3.8873e1 1.7458e-2 2.0757e3 -2.2274e1 3.2378e1 +# Range 0-350 + -Vm -2.932 -14.934 11.6041 -2.1615 2.70250 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 76mac match + +2 H2O + O2 + Mn+2 = MnO4-2 + 4 H+ + -llnl_gamma 4.0 + log_k -32.4146 + -delta_H 151.703 kJ/mol +# deltafH -156 kcal/mol + -analytic -1.0407e1 -4.6464e-2 -1.0515e4 1.0943e1 -1.6408e2 +# Range 0-350 + -Vm 5.6596 6.0368 3.3786 -3.0285 2.98030 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 NH3 + 1.5 O2 = N2 + 3 H2O + -llnl_gamma 3.0 + log_k 116.4609 + -delta_H -687.08 kJ/mol +# deltafH -2.495 kcal/mol + -analytic -8.2621e1 -1.4671e-2 4.0068e4 2.9090e1 -2.5924e5 +# Range 0-350 + -Vm 6.2046 7.3685 2.8539 -3.0836 -0.34680 +# Extrapol supcrt92 +# Ref SHS89 + +1.5 O2 + NH3 = NO2- + H+ + H2O + -llnl_gamma 3.0 + log_k +46.8653 + -delta_H -290.901 kJ/mol +# deltafH -25 kcal/mol + -analytic -1.7011e1 -3.3459e-2 1.3999e4 1.1078e1 -4.8255e4 +# Range 0-350 + -Vm 5.5864 5.859 3.4472 -3.0212 1.18470 +# Extrapol supcrt92 +# Ref SH88 + +2 O2 + NH3 = NO3- + H+ + H2O + -llnl_gamma 3.0 + log_k 62.1001 + -delta_H -387.045 kJ/mol +# deltafH -49.429 kcal/mol + -analytic -3.9468e1 -3.9697e-2 2.0614e4 1.8872e1 -2.1917e5 +# Range 0-350 + -Vm 7.3161 6.7824 -4.6838 -3.0594 1.09770 +# Extrapol supcrt92 +# Ref SH88 + +2 H+ + 2 SO3-2 = S2O4-2 + .5 O2 + H2O + -llnl_gamma 5.0 + log_k -25.2076 +# deltafH -0 kcal/mol + -analytic -2.3172e2 2.0393e-3 -7.1011 8.3239e1 9.4155e-1 +# Range 0-350 + -Vm 6.6784 8.528 2.3917 -3.1314 2.87720 +# Extrapol supcrt92 +# Ref SSW+97 + +2 SO3-2 + .5 O2 + 2 H+ = S2O6-2 + H2O + -llnl_gamma 4.0 + log_k 41.8289 +# deltafH -0 kcal/mol + -analytic 0.14458e3 0.61449e-1 0.71877e4 -0.58657e2 0.11211e3 +# Range 0-350 + -Vm 8.2257 12.3054 0.9087 -3.2876 2.75870 +# Extrapol supcrt92 +# Ref SSW+97 + +2 SO3-2 + 1.5 O2 + 2 H+ = S2O8-2 + H2O + -llnl_gamma 4.0 + log_k 70.7489 +# deltafH -0 kcal/mol + -analytic 0.18394e3 0.60414e-1 0.13864e5 -0.71804e2 0.21628e3 +# Range 0-350 + -Vm 13.3622 24.8454 -4.0153 -3.8061 2.32810 +# Extrapol supcrt92 +# Ref SH88 + +O2 + H+ + 3 HS- = S3-2 + 2 H2O + -llnl_gamma 4.0 + log_k 79.3915 +# deltafH -0 kcal/mol + -analytic -0.51626e2 0.70208e-2 0.31797e5 0.11927e2 -0.64249e6 + -mass_balance S(-2)3 +# Range 0-350 + -Vm 6.7661 8.7396 2.315 -3.1403 2.97490 +# Extrapol supcrt92 +# Ref SH88 + +3 SO3-2 + 4 H+ = S3O6-2 + .5 O2 + 2 H2O + -llnl_gamma 4.0 + log_k -6.2316 +# deltafH -0 kcal/mol + -analytic 0.23664e3 0.12702 -0.10110e5 -0.99715e2 -0.15783e3 +# Range 0-350 + -Vm 8.4155 12.7691 0.7268 -3.3068 2.71310 +# Extrapol supcrt92 +# Ref SSW+97 + +1.5 O2 + 2 H+ + 4 HS- = S4-2 + 3 H2O + -llnl_gamma 4.0 + log_k 125.2958 +# deltafH -0 kcal/mol + -analytic 0.20875e3 0.58133e-1 0.33278e5 -0.85833e2 0.51921e3 + -mass_balance S(-2)4 +# Range 0-350 + -Vm 7.9381 11.6012 1.1902 -3.2586 2.83900 +# Extrapol supcrt92 +# Ref SH88 + +4 SO3-2 + 6 H+ = S4O6-2 + 1.5 O2 + 3 H2O + -llnl_gamma 4.0 + log_k -38.3859 +# deltafH -0 kcal/mol + -analytic 0.32239e3 0.19555 -0.23617e5 -0.13729e3 -0.36862e3 +# Range 0-350 + -Vm 10.2672 17.2902 -1.0502 -3.4937 2.28050 +# Extrapol supcrt92 +# Ref SSW+97 + +2 O2 + 3 H+ + 5 HS- = S5-2 + 4 H2O + -llnl_gamma 4.0 + log_k 170.9802 +# deltafH -0 kcal/mol + -analytic 0.30329e3 0.88033e-1 0.44739e5 -0.12471e3 0.69803e3 + -mass_balance S(-2)5 +# Range 0-350 + -Vm 9.1107 14.4645 0.0649 -3.3770 2.70510 +# Extrapol supcrt92 +# Ref SH88 + +5 SO3-2 + 8 H+ = S5O6-2 + 2.5 O2 + 4 H2O + -llnl_gamma 4.0 + log_k -99.4206 +# deltafH -0 kcal/mol + -analytic 0.42074e3 0.25833 -0.43878e5 -0.18178e3 -0.68480e3 +# Range 0-350 + -Vm 8.8725 13.8806 0.2986 -3.3527 2.60760 +# Extrapol supcrt92 +# Ref SSW+97 + +H+ + HCO3- + HS- + NH3 = SCN- + 3 H2O + -llnl_gamma 3.5 + log_k 3.0070 +# deltafH -0 kcal/mol + -analytic 0.16539e3 0.49623e-1 -0.44624e4 -0.65544e2 -0.69680e2 +# Range 0-350 + -Vm 7.0244 9.3687 2.0708 -3.1662 1.10730 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +SO4-2 = SO3-2 + 0.5 O2 + -llnl_gamma 4.5 + log_k -46.6244 + -delta_H 267.985 kJ/mol +# deltafH -151.9 kcal/mol + -analytic -1.3771e1 6.5102e-4 -1.3330e4 4.7164 -2.0800e2 +# Range 0-350 + -Vm 2.4632 -1.7691 6.4494 -2.7058 3.321 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +Sm+3 + 0.5 H2O = Sm+2 + H+ + 0.25 O2 + -llnl_gamma 4.5 + log_k -47.9624 + -delta_H 326.911 kJ/mol +# deltafH -120.5 kcal/mol + -analytic -1.0217e1 7.7548e-3 -1.6285e4 5.4711 9.1931e4 +# Range 0-350 + -Vm -0.0353 -7.8592 8.8194 -2.454 1.1512 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +UO2+2 + H+ = U+3 + 0.75 O2 + 0.5 H2O + -llnl_gamma 5.0 + log_k -64.8028 + -delta_H 377.881 kJ/mol +# deltafH -489.1 kJ/mol + -analytic 2.5133e1 6.4088e-3 -2.2542e4 -8.1423 3.4793e5 +# Range 0-350 + -Vm -2.8438 -14.722 11.528 -2.1703 2.27520 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +2 H+ + UO2+2 = U+4 + H2O + 0.5 O2 + -llnl_gamma 5.5 + log_k -33.9491 + -delta_H 135.895 kJ/mol +# deltafH -591.2 kJ/mol + -analytic 4.4837e1 1.0129e-2 -1.1787e4 -1.9194e1 4.6436e5 +# Range 0-350 + -Vm -4.2836 -18.2319 12.8955 -2.0252 3.68350 # SSW+97 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +UO2+2 + 0.5 H2O = UO2+ + H+ + 0.25 O2 + -llnl_gamma 4.0 + log_k -20.0169 + -delta_H 133.759 kJ/mol +# deltafH -1025.13 kJ/mol + -analytic 8.0480 9.5845e-3 -6.5994e3 -3.5515 -1.0298e2 +# Range 0-350 + -Vm 3.3767 0.4614 5.5725 -2.7980 0.63880 # SSW+97 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +#--------------------------- +# 156 other aqueous species +#--------------------------- + +2 CH3COOH + Al+3 = Al(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -5.595 + -delta_H -46.8566 kJ/mol +# deltafH -372.08 kcal/mol + -analytic -4.2528e1 2.1431e-3 3.1658e2 1.1585e1 5.8604e5 +# Range 0-350 + -Vm 8.9971 14.1844 0.1805 -3.3653 1.39180 +# Extrapol supcrt92 +# Ref SK93, differ by 2.2 log K at 0C, 1 log K at 300C + +4 H2O + Al+3 = Al(OH)4- + 4 H+ + -llnl_gamma 4.0 + log_k -22.8833 + -delta_H 180.899 kJ/mol +# deltafH -222.079 kcal/mol + -analytic 1.0803e1 -3.4379e-3 -9.7391e3 0e0 0e0 +# Range 0-350 + -Vm 3.7221 3.9954 -1.5879 -2.9441 1.74180 +# Extrapol supcrt92 +# Ref SSW+97, 95pok/hel match + +H2O + Al+3 = Al(OH)+2 + H+ + -llnl_gamma 4.5 + log_k -4.9571 + -delta_H 49.798 kJ/mol +# deltafH -185.096 kcal/mol + -analytic -2.6224e-1 8.8816e-3 -1.8686e3 -4.3195e-1 -2.9158e1 +# Range 0-350 + -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # APP14, BH86 +# Extrapol supcrt92 +# Ref SSW+97, 95pok/hel match + +B(OH)3 = BO2- + H+ + H2O + -llnl_gamma 4.0 + log_k -9.2449 + -delta_H 16.3302 kJ/mol +# deltafH -184.6 kcal/mol + -analytic -1.0500e2 -3.3447e-2 1.4706e3 4.0724e1 2.2978e1 +# Range 0-350 + -Vm -2.2428 -6.2065 -6.3216 -2.5224 1.75950 +# Extrapol supcrt92 +# Ref SH88 + +HCO3- + H+ = CO2 + H2O + -CO2_llnl_gamma + log_k 6.3447 + -delta_H -9.7027 kJ/mol +# deltafH -98.9 kcal/mol + -analytic -1.0534e1 2.1746e-2 2.5216e3 7.9125e-1 3.9351e1 +# Range 0-350 + -Vm 6.2466 7.4711 2.8136 -3.0879 -0.1934 +# Extrapol supcrt92 +# Ref SSW01, SHS89 + +HCO3- = CO3-2 + H+ + -llnl_gamma 4.5 + log_k -10.3288 + -delta_H 14.6984 kJ/mol +# deltafH -161.385 kcal/mol + -analytic -6.9958e1 -3.3526e-2 -7.0846e1 2.8224e1 -1.0849 +# Range 0-350 + -Vm 2.8524 -3.9844 6.4142 -2.6143 3.39140 +# Extrapol supcrt92 +# Ref SH88 + +NH3 + HCO3- = CN- + 2 H2O + 0.5 O2 + -llnl_gamma 3.0 + log_k -56.0505 + -delta_H 344.151 kJ/mol +# deltafH 36 kcal/mol + -analytic -1.1174e1 3.8167e-3 -1.7063e4 4.5349e0 -2.6625e2 +# Range 0-350 + -Vm 5.4714 5.5813 3.5497 -3.0096 1.29000 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +HCO3- + H+ = HCOOH + 0.5 O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -39.0524 + -analytic -16.6 0.041 -10000 0 0 -1.205e-5 +# Range 0-350 + -Vm 6.3957 7.7713 2.8318 -3.1002 -0.33 +# Extrapol supcrt92 +# Ref Sho95 + +HCOOH = HCOO- + H+ + -llnl_gamma 3.5 # EQ3/6 data0.sup + log_k -3.752994 + -analytic -6.456 0.01694 0 0 0 -2.71e-5 +# Range 0-350 + -Vm 5.7842 4.7242 7.363 -2.9742 1.3003 +# Extrapol supcrt92 +# Ref Sho95 + +2 HCO3- + 2 H+ = CH3COOH + 2 O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -141.99219 + -analytic -6.037 0.0104 -42362 0 0 3.604e-5 +# Range 0-350 + -Vm 11.6198 5.218 2.5088 -2.9946 -0.15 +# Extrapol supcrt92 +# Ref Sho95 + +CH3COOH = CH3COO- + H+ + -llnl_gamma 4.5 + log_k -4.7572 +# deltafH -0 kcal/mol + -analytic -0.96597e2 -0.34535e-1 0.19753e4 0.38593e2 0.30850e2 +# Range 0-350 + -Vm 7.7525 8.6996 7.5825 -3.1385 1.31820 +# Extrapol supcrt92 +# Ref Sho95 + +2 NH3 + HCO3- + H+ = CO(NH2)2 + 2 H2O + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k 6.631821 + -analytic 15.98 -4.41e-2 0 0 0 4.25e-5 +# Range 0-350 + -Vm 7.7158 7.3031 10.9353 -3.0808 -0.3006 +# Extrapol supcrt92 +# Ref SM93 + +3 H+ + 3 HCO3- + H2O = C3H8 + 5 O2 + -llnl_gamma 3.0 # thermo.com.V8.R6+.tdat + log_k -363.088 + -analytic -8.04e2 1.877 0 0 0 -1.33e-3 +# Range 0-350 + -Vm 10.768 17.6785 -0.5878 -3.5097 -0.165 +# Extrapol supcrt92 +# Ref SH90 + +H+ + HCO3- + H2O = CH3OH + 1.5 O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -117.9046 + -analytic -262.5446137 6.159125942e-1 0 0 0 -4.375362728e-4 +# Range 0-350 + -Vm 6.9383 5.5146 11.4018 -3.0069 -0.14760 +# Extrapol supcrt92 +# Ref SH90 + +H2O + 2 HCO3- + 2 H+ = CH3CH2OH + 3 O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -224.1415 + -analytic -423.8 0.989 -10003 0 0 -6.93e-4 +# Range 0-350 + -Vm 9.2333 9.9581 12.1445 -3.1906 -0.2037 +# Extrapol supcrt92 +# Ref SH90 + +HCO3- + H+ = CH2O + O2 + -llnl_gamma 3.0 # EQ3/6 data0.sup + log_k -86.57248 + -analytic -17.3 0.0404 -24072 0 0 -6.57e-6 +# Range 0-350 + -Vm 5.3113 5.3139 3.3901 -2.9986 -0.3984 +# Extrapol supcrt92 +# Ref SS93 + +2 CH3COOH + Ca+2 = Ca(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.3814 + -delta_H -2.7196 kJ/mol +# deltafH -362.65 kcal/mol + -analytic -1.0320e1 4.0012e-3 -3.6281e3 2.4421 7.0175e5 +# Range 0-350 + -Vm 12.9911 23.9379 -3.6556 -3.7685 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Ca+2 + CH3COOH = CaCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.8263 + -delta_H 1.17152 kJ/mol +# deltafH -245.62 kcal/mol + -analytic -8.8826 3.1672e-3 -1.0764e3 2.0526 2.3599e5 +# Range 0-350 + -Vm 5.9002 6.6232 3.1505 -3.0527 0.36360 +# Extrapol supcrt92 +# Ref SK93 + +HCO3- + Ca+2 = CaCO3 + H+ + -llnl_gamma 3.0 + log_k -7.0017 + -delta_H 30.5767 kJ/mol +# deltafH -287.39 kcal/mol + -analytic 2.3045e2 5.5350e-2 -8.5056e3 -9.1096e1 -1.3279e2 +# Range 0-350 + -Vm -0.3907 -8.7325 9.1753 -2.4179 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +Cl- + Ca+2 = CaCl+ + -llnl_gamma 4.0 + log_k -0.6956 + -delta_H 2.02087 kJ/mol +# deltafH -169.25 kcal/mol + -analytic 8.1498e1 3.8387e-2 -1.3763e3 -3.5968e1 -2.1501e1 +# Range 0-350 + -Vm 2.7148 -1.1497 6.1949 -2.7314 0.48620 +# Extrapol supcrt92 +# Ref SSH97 differ by 0.3 log K at 0C, 1.2 log K at 300C + +2 Cl- + Ca+2 = CaCl2 + -llnl_gamma 3.0 + log_k -0.6436 + -delta_H -5.8325 kJ/mol +# deltafH -211.06 kcal/mol + -analytic 1.8178e2 7.6910e-2 -3.1088e3 -7.8760e1 -4.8563e1 +# Range 0-350 + -Vm 6.2187 7.4058 2.8322 -3.0851 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +SO4-2 + Ca+2 = CaSO4 + -llnl_gamma 3.0 + log_k 2.1111 + -delta_H 5.4392 kJ/mol +# deltafH -345.9 kcal/mol + -analytic 2.8618e2 8.4084e-2 -7.6880e3 -1.1449e2 -1.2005e2 +# Range 0-350 + -Vm 2.7910 -.9666 6.1300 -2.7390 -.0010 # phreeqc.dat, SSH97 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + Co+2 = Co(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.1468 + -delta_H -22.4262 kJ/mol +# deltafH -251.46 kcal/mol + -analytic -2.0661e1 2.9014e-3 -2.2146e3 5.1702 6.4968e5 +# Range 0-350 + -Vm 11.9141 21.312 -2.6321 -3.6599 3.49629 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Co+2 = Co(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -11.281 + -delta_H -48.2415 kJ/mol +# deltafH -373.73 kcal/mol + -analytic 6.3384e1 -4.0669e-3 -1.4715e4 -1.9518e1 2.1524e6 +# Range 0-350 + -Vm 20.3474 41.8989 -10.7127 -4.5110 1.47140 +# Extrapol supcrt92 +# Ref SK93 + +Co+2 + CH3COOH = CoCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.2985 + -delta_H -8.70272 kJ/mol +# deltafH -132.08 kcal/mol + -analytic -5.4858 1.9147e-3 -1.1292e3 9.0555e-1 2.8223e5 +# Range 0-350 + -Vm 5.0294 4.4992 3.9806 -2.9649 0.64720 +# Extrapol supcrt92 +# Ref SK93 + +Co+2 + Cl- = CoCl+ + -llnl_gamma 4.0 + log_k 0.1547 + -delta_H 1.71962 kJ/mol +# deltafH -53.422 kcal/mol + -analytic 1.5234e2 5.6958e-2 -3.3258e3 -6.3849e1 -5.1942e1 +# Range 0-350 + -Vm 1.8028 -3.3766 7.0702 -2.6394 0.71910 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 74nau/ryz match + +2 H+ + 2 CrO4-2 = Cr2O7-2 + H2O + -llnl_gamma 4.0 + log_k 14.5192 + -delta_H -13.8783 kJ/mol +# deltafH -356.2 kcal/mol + -analytic 1.3749e2 6.5773e-2 -7.9472e2 -5.6525e1 -1.2441e1 +# Range 0-350 + -Vm 12.4303 22.568 -3.1161 -3.7119 2.12160 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 CH3COOH + Cu+2 = Cu(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -5.8824 + -delta_H -25.899 kJ/mol +# deltafH -222.69 kcal/mol + -analytic -2.6689e1 1.8048e-3 -1.8244e3 7.7008 6.5408e5 +# Range 0-350 + -Vm 11.8801 21.2264 -2.5925 -3.6564 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +2 CH3COOH + Cu+ = Cu(CH3COO)2- + 2 H+ + -llnl_gamma 4.0 + log_k -9.2139 + -delta_H -19.5476 kJ/mol +# deltafH -219.74 kcal/mol + -analytic -3.2712e2 -5.9087e-2 1.1386e4 1.2017e2 1.7777e2 +# Range 0-350 + -Vm 15.0715 29.0205 -5.6592 -3.9786 1.06910 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Cu+2 = Cu(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -9.3788 + -delta_H -53.2205 kJ/mol +# deltafH -345.32 kcal/mol + -analytic 3.9475e1 -6.2867e-3 -1.3233e4 -1.0643e1 2.1121e6 +# Range 0-350 + -Vm 20.2654 41.7019 -10.6422 -4.5029 1.3408 +# Extrapol supcrt92 +# Ref SK93 + +Cu+ + CH3COOH = CuCH3COO + H+ + -llnl_gamma 3.0 + log_k -4.4274 + -delta_H -4.19237 kJ/mol +# deltafH -99.97 kcal/mol + -analytic 6.3784 -4.5464e-4 -1.9995e3 -2.8359 2.7224e5 +# Range 0-350 + -Vm 7.3009 10.0483 1.7946 -3.1943 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Cu+2 + CH3COOH = CuCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -2.5252 + -delta_H -11.3805 kJ/mol +# deltafH -103.12 kcal/mol + -analytic -1.4930e1 5.1278e-4 -3.4874e2 4.3605 2.3504e5 +# Range 0-350 + -Vm 4.9722 4.362 4.029 -2.9592 0.56810 +# Extrapol supcrt92 +# Ref SK93 + +2 CH3COOH + Eu+3 = Eu(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -4.6912 + -delta_H -28.3257 kJ/mol +# deltafH -383.67 kcal/mol + -analytic -2.7589e1 1.5772e-3 -1.1008e3 7.9899 5.6652e5 +# Range 0-350 + -Vm 9.3029 14.9307 -0.1123 -3.3961 0.7384 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Eu+3 = Eu(CH3COO)3 + 3 H+ + -llnl_gamma 3.0 + log_k -7.9824 + -delta_H -47.3629 kJ/mol +# deltafH -504.32 kcal/mol + -analytic -3.7470e1 1.9276e-3 -1.0318e3 9.7078 7.4558e5 +# Range 0-350 + -Vm 16.6413 32.8512 -7.1605 -4.137 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Eu+3 + CH3COOH = EuCH3COO+2 + H+ + -llnl_gamma 4.5 + log_k -1.9571 + -delta_H -14.5603 kJ/mol +# deltafH -264.28 kcal/mol + -analytic -1.5090e1 1.0352e-3 -6.4435e2 4.6225 3.1649e5 +# Range 0-350 + -Vm 2.75 -1.0666 6.169 -2.7348 1.5269 +# Extrapol supcrt92 +# Ref SK93 + +HCO3- + Eu+3 = EuCO3+ + H+ + -llnl_gamma 4.0 + log_k -2.4057 + -delta_H 90.7844 kJ/mol +# deltafH -287.9 kcal/mol # OBIGT: -311.27 kcal/mol HSS95 + -analytic 2.3548e2 5.3819e-2 -6.9908e3 -9.3137e1 -1.0915e2 +# Range 0-350 + -Vm -0.9842 -10.1779 9.7343 -2.3581 1.2465 +# Extrapol supcrt92 +# Ref HSS95 + +Eu+2 + Cl- = EuCl+ + -llnl_gamma 4.0 + log_k 0.3819 + -delta_H 8.50607 kJ/mol +# deltafH -164 kcal/mol + -analytic 6.8695e1 3.7619e-2 -1.0809e3 -3.0665e1 -1.6887e1 +# Range 0-350 + -Vm 5.1742 4.8499 3.8487 -2.9794 0.2557 +# Extrapol supcrt92 +# Ref HSS95 + +Eu+3 + Cl- = EuCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 13.9453 kJ/mol +# deltafH -181.3 kcal/mol + -analytic 7.9275e1 3.7878e-2 -1.7895e3 -3.4041e1 -2.7947e1 +# Range 0-350 + -Vm -0.3777 -8.6968 9.1514 -2.4194 1.4671 +# Extrapol supcrt92 +# Ref HSS95 + +2 Cl- + Eu+3 = EuCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 18.6857 kJ/mol +# deltafH -220.1 kcal/mol # OBIGT: -204.6 kcal/mol HSS95 + -analytic 2.1758e2 8.0336e-2 -5.5499e3 -9.0087e1 -8.6665e1 +# Range 0-350 + -Vm 9.1152 14.474 0.0641 -3.3773 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +3 Cl- + Eu+3 = EuCl3 + -llnl_gamma 3.0 + log_k -0.4669 + -delta_H 11.2926 kJ/mol +# deltafH -261.8 kcal/mol + -analytic 4.2075e2 1.2890e-1 -1.1288e4 -1.7043e2 -1.7627e2 +# Range 0-350 + -Vm 6.2132 7.3881 2.8493 -3.0843 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +3 Cl- + Eu+2 = EuCl3- + -llnl_gamma 4.0 + log_k 2.0253 + -delta_H -3.76978 kJ/mol +# deltafH -246.8 kcal/mol + -analytic 1.1546e1 6.4683e-2 3.7299e3 -1.6672e1 5.8196e1 +# Range 0-350 + -Vm 13.946 26.2721 -4.579 -3.865 0.9527 +# Extrapol supcrt92 +# Ref HSS95 + +4 Cl- + Eu+3 = EuCl4- + -llnl_gamma 4.0 + log_k -0.8913 + -delta_H -9.90771 kJ/mol +# deltafH -306.8 kcal/mol + -analytic 4.8122e2 1.3081e-1 -1.2950e4 -1.9302e2 -2.0222e2 +# Range 0-350 + -Vm 10.9946 19.066 -1.7473 -3.5671 1.787 +# Extrapol supcrt92 +# Ref HSS95 + +4 Cl- + Eu+2 = EuCl4-2 + -llnl_gamma 4.0 + log_k 2.8470 + -delta_H -19.9493 kJ/mol +# deltafH -290.6 kcal/mol + -analytic -1.2842e2 5.0789e-2 9.8815e3 3.3565e1 1.5423e2 +# Range 0-350 + -Vm 19.473 39.7656 -9.8784 -4.4228 2.4755 +# Extrapol supcrt92 +# Ref HSS95 + +HPO4-2 + H+ + Eu+3 = EuH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -17.0916 kJ/mol +# deltafH -457.6 kcal/mol + -analytic 1.0873e2 6.3416e-2 2.7202e2 -4.8113e1 4.2122 +# Range 0-350 + -Vm 1.4946 -4.1236 7.3517 -2.6084 1.5372 +# Extrapol supcrt92 +# Ref HSS95 + +HCO3- + Eu+3 = EuHCO3+2 + -llnl_gamma 4.5 + log_k 1.6258 + -delta_H 8.77803 kJ/mol +# deltafH -307.5 kcal/mol + -analytic 3.9266e1 3.1608e-2 -9.8731e1 -1.8875e1 -1.5524 +# Range 0-350 + -Vm 0.4928 -6.572 8.3198 -2.5072 1.286 +# Extrapol supcrt92 +# Ref HSS95 + +NO3- + Eu+3 = EuNO3+2 + -llnl_gamma 4.5 + log_k 0.8745 + -delta_H -32.0955 kJ/mol +# deltafH -201.8 kcal/mol + -analytic 1.7398e1 2.5467e-2 2.2683e3 -1.2810e1 3.5389e1 +# Range 0-350 + -Vm 1.2198 -4.7951 7.6178 -2.5807 1.6556 +# Extrapol supcrt92 +# Ref HSS95 + +H2O + Eu+3 = EuO+ + 2 H+ + -llnl_gamma 4.0 + log_k -16.337 + -delta_H 110.947 kJ/mol +# deltafH -186.5 kcal/mol # OBIGT: -177.81 kcal/mol HSS95 + -analytic 1.8876e2 3.0194e-2 -1.3836e4 -6.7770e1 -2.1595e2 +# Range 0-350 + -Vm 2.7458 -1.0743 6.1663 -2.7345 0.4322 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Eu+3 = EuO2- + 4 H+ + -llnl_gamma 4.0 + log_k -34.5066 + -delta_H 281.307 kJ/mol +# deltafH -214.1 kcal/mol # OBIGT: -219.06 kcal/mol HSS95 + -analytic 7.5244e1 3.7089e-4 -1.3587e4 -2.3859e1 -4.6713e5 +# Range 0-350 + -Vm 4.8468 4.0541 4.1548 -2.9465 1.1424 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Eu+3 = EuO2H + 3 H+ + -llnl_gamma 3.0 + log_k -25.4173 + -delta_H 222.313 kJ/mol +# deltafH -228.2 kcal/mol + -analytic 3.6754e2 5.3868e-2 -2.4034e4 -1.3272e2 -3.7514e2 +# Range 0-350 + -Vm 4.8064 3.954 4.1968 -2.9424 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +H2O + Eu+3 = EuOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.9075 + -delta_H 78.0065 kJ/mol +# deltafH -194.373 kcal/mol + -analytic 6.7691e1 1.2066e-2 -6.1871e3 -2.3617e1 -9.6563e1 +# Range 0-350 + -Vm 2.6569 -1.2969 6.2659 -2.7253 1.1815 +# Extrapol supcrt92 +# Ref HSS95 + +SO4-2 + Eu+3 = EuSO4+ + -llnl_gamma 4.0 + log_k 3.6430 + -delta_H 62.3416 kJ/mol +# deltafH -347.2 kcal/mol # OBIGT: -357.2 kcal/mol HSS95 + -analytic 3.0587e2 8.6208e-2 -9.0387e3 -1.2026e2 -1.4113e2 +# Range 0-350 + -Vm 1.4399 -4.2627 7.4184 -2.6027 0.779 +# Extrapol supcrt92 +# Ref HSS95 + +2 CH3COOH + Fe+2 = Fe(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.0295 + -delta_H -20.2924 kJ/mol +# deltafH -259.1 kcal/mol + -analytic -2.9862e1 1.3901e-3 -1.6908e3 8.6283 6.0125e5 +# Range 0-350 + -Vm 12.1698 21.937 -2.8791 -3.6858 -0.038 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +Fe+2 + CH3COOH = FeCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.4671 + -delta_H -3.80744 kJ/mol +# deltafH -139.06 kcal/mol + -analytic -1.3781e1 9.6253e-4 -7.5310e2 4.0135 2.3416e5 +# Range 0-350 + -Vm 5.2246 4.9785 3.7863 -2.9848 0.57560 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +Fe+2 + Cl- = FeCl+ + -llnl_gamma 4.0 + log_k -0.1605 + -delta_H 3.02503 kJ/mol +# deltafH -61.26 kcal/mol + -analytic 8.2435e1 3.7755e-2 -1.4765e3 -3.5918e1 -2.3064e1 +# Range 0-350 + -Vm 2.1468 -2.5367 6.7401 -2.6741 0.7003 +# Extrapol supcrt92 +# Ref SSH97 + +Fe+3 + Cl- = FeCl+2 + -llnl_gamma 4.5 + log_k -0.8108 + -delta_H 36.6421 kJ/mol +# deltafH -180.018 kJ/mol + -analytic 1.6186e2 5.9436e-2 -5.1913e3 -6.5852e1 -8.1053e1 +# Range 0-350 + -Vm -0.7164 -9.5277 9.4878 -2.3851 0.17013 # SSH97 +# Extrapol supcrt92, 64cri/cob +# Ref SSH97, WEP+82 differ by 2.7 log K at 0C, 1.2 log K at 300C + +2 Cl- + Fe+2 = FeCl2 + -llnl_gamma 3.0 + log_k -2.4541 + -delta_H 6.46846 kJ/mol +# deltafH -100.37 kcal/mol + -analytic 1.9171e2 7.8070e-2 -4.1048e3 -8.2292e1 -6.4108e1 +# Range 0-350 + -Vm 5.5057 5.665 3.5164 -3.0131 -0.038 +# Extrapol supcrt92 +# Ref SSH97 differ by 7.2 log K at 0C, 3.2 log K at 300C !! flag + +H2O + Fe+2 = FeOH+ + H+ + -llnl_gamma 4.0 + log_k -9.5 + -analytic 1.706e-1 0 -2.883e3 +# Range 0-350 + -Vm -0.2561 -8.4039 9.0457 -2.4315 0.7003 +# Extrapol supcrt92 +# Ref SSW+97, Marion+03,08 match + +H2O + Fe+3 = FeOH+2 + H+ + -llnl_gamma 4.5 + log_k -2.19 +# deltafH -0 kcal/mol + -analytic 5.300 0 -2.272e3 +# Range 0-350 + -Vm -1.1562 -10.6009 9.9077 -2.3407 1.43820 +# Extrapol supcrt92 +# Ref SSW+97, Marion+08 match + +2 CH3COOH + Gd+3 = Gd(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -4.9625 + -delta_H -22.3426 kJ/mol +# deltafH -401.74 kcal/mol + -analytic -4.3124e1 1.2995e-4 -4.3494e2 1.3677e1 5.1224e5 +# Range 0-350 + -Vm 9.4165 15.2134 -0.2342 -3.4078 0.6223 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Gd+3 = Gd(CH3COO)3 + 3 H+ + -llnl_gamma 3.0 + log_k -8.3489 + -delta_H -37.9907 kJ/mol +# deltafH -521.58 kcal/mol + -analytic -8.8296e1 -5.0939e-3 1.2268e3 2.8513e1 6.0745e5 +# Range 0-350 + -Vm 16.8116 33.2662 -7.3215 -4.1541 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Gd+3 + CH3COOH = GdCH3COO+2 + H+ + -llnl_gamma 4.5 + log_k -2.1037 + -delta_H -11.7152 kJ/mol +# deltafH -283.1 kcal/mol + -analytic -1.4118e1 1.6660e-3 -7.5206e2 4.2614 3.1187e5 +# Range 0-350 + -Vm 2.8605 -0.7945 6.0567 -2.7461 1.4477 +# Extrapol supcrt92 +# Ref SK93 + +HCO3- + Gd+3 = GdCO3+ + H+ + -llnl_gamma 4.0 + log_k -2.479 + -delta_H 89.9476 kJ/mol +# deltafH -307.6 kcal/mol # OBIGT: -330.22 kcal/mol HSS95 + -analytic 2.3628e2 5.4100e-2 -7.0746e3 -9.3413e1 -1.1046e2 +# Range 0-350 + -Vm -0.953 -10.1036 9.7095 -2.3612 1.1729 +# Extrapol supcrt92 +# Ref HSS95 + +Gd+3 + Cl- = GdCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 14.7821 kJ/mol +# deltafH -200.6 kcal/mol + -analytic 8.0750e1 3.8524e-2 -1.8591e3 -3.4621e1 -2.9034e1 +# Range 0-350 + -Vm -0.263 -8.417 9.0425 -2.4309 1.4006 +# Extrapol supcrt92 +# Ref HSS95 + +2 Cl- + Gd+3 = GdCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 21.1961 kJ/mol +# deltafH -239 kcal/mol + -analytic 2.1754e2 8.0996e-2 -5.6121e3 -9.0067e1 -8.7635e1 +# Range 0-350 + -Vm 2.8492 -0.8272 6.0803 -2.7447 0.6305 +# Extrapol supcrt92 +# Ref HSS95 + +3 Cl- + Gd+3 = GdCl3 + -llnl_gamma 3.0 + log_k -0.4669 + -delta_H 15.895 kJ/mol +# deltafH -280.2 kcal/mol + -analytic 4.1398e2 1.2829e-1 -1.1230e4 -1.6770e2 -1.7535e2 +# Range 0-350 + -Vm 6.3836 7.8028 2.6888 -3.1015 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +4 Cl- + Gd+3 = GdCl4- + -llnl_gamma 4.0 + log_k -0.8913 + -delta_H -1.53971 kJ/mol +# deltafH -324.3 kcal/mol + -analytic 4.7684e2 1.3157e-1 -1.3068e4 -1.9118e2 -2.0405e2 +# Range 0-350 + -Vm 11.1317 19.3995 -1.8761 -3.5809 1.631 +# Extrapol supcrt92 +# Ref HSS95 + +HPO4-2 + H+ + Gd+3 = GdH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -14.9996 kJ/mol +# deltafH -476.6 kcal/mol + -analytic 1.1058e2 6.4124e-2 1.3451e2 -4.8758e1 2.0660 +# Range 0-350 + -Vm 1.6048 -3.8632 7.2686 -2.6192 1.4574 +# Extrapol supcrt92 +# Ref HSS95 + +HCO3- + Gd+3 = GdHCO3+2 + -llnl_gamma 4.5 + log_k 1.6991 + -delta_H 10.0332 kJ/mol +# deltafH -326.7 kcal/mol + -analytic 4.1973e1 3.2521e-2 -2.3475e2 -1.9864e1 -3.6757 +# Range 0-350 + -Vm 0.6026 -6.3043 8.2153 -2.5183 1.2048 +# Extrapol supcrt92 +# Ref HSS95 + +NO3- + Gd+3 = GdNO3+2 + -llnl_gamma 4.5 + log_k 0.4347 + -delta_H -25.8195 kJ/mol +# deltafH -219.8 kcal/mol + -analytic 2.0253e1 2.6372e-2 1.8785e3 -1.3723e1 2.9306e1 +# Range 0-350 + -Vm 1.3205 -4.5535 7.5323 -2.5907 1.5475 +# Extrapol supcrt92 +# Ref HSS95 + +H2O + Gd+3 = GdO+ + 2 H+ + -llnl_gamma 4.0 + log_k -16.337 + -delta_H 113.039 kJ/mol +# deltafH -205.5 kcal/mol # OBIGT: -196.63 kcal/mol HSS95 + -analytic 2.0599e2 3.2521e-2 -1.4547e4 -7.4048e1 -2.2705e2 +# Range 0-350 + -Vm 2.8425 -0.8409 6.0801 -2.7441 0.3539 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Gd+3 = GdO2- + 4 H+ + -llnl_gamma 4.0 + log_k -34.4333 + -delta_H 283.817 kJ/mol +# deltafH -233 kcal/mol # OBIGT: -237.73 kcal/mol HSS95 + -analytic 1.2067e2 6.6276e-3 -1.5531e4 -4.0448e1 -4.3587e5 +# Range 0-350 + -Vm 5.0344 4.5111 3.9769 -2.9654 1.0495 -1 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Gd+3 = GdO2H + 3 H+ + -llnl_gamma 3.0 + log_k -25.2707 + -delta_H 224.405 kJ/mol +# deltafH -247.2 kcal/mol + -analytic 3.6324e2 4.7938e-2 -2.4275e4 -1.2988e2 -3.7889e2 +# Range 0-350 + -Vm 5.0117 4.4582 3.9917 -2.9632 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +H2O + Gd+3 = GdOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.9075 + -delta_H 79.9855 kJ/mol +# deltafH -213.4 kcal/mol # OBIGT: 212.9 kcal/mol HSS95 + -analytic 8.3265e1 1.4153e-2 -6.8229e3 -2.9301e1 -1.0649e2 +# Range 0-350 + -Vm 2.7389 -1.0936 6.1786 -2.7337 1.1 +# Extrapol supcrt92 +# Ref HSS95 + +SO4-2 + Gd+3 = GdSO4+ + -llnl_gamma 4.0 + log_k -3.687 + -delta_H 20.0832 kJ/mol +# deltafH -376.8 kcal/mol + -analytic 3.0783e2 8.6798e-2 -1.1246e4 -1.2109e2 -1.7557e2 + #analytic 3.18e2 7.5e-2 -1.12e4 -1.21e2 -1.76e2 +# Range 0-350 + -Vm 1.4776 -4.1705 7.3822 -2.6065 0.7287 +# Extrapol supcrt92 +# Ref HSS95 differ by 7 log K at 0C, 3.7 log K at 300C !! flag + +2 HPO4-2 + 2 H+ = H2P2O7-2 + H2O + -llnl_gamma 4.0 + log_k 12.0709 + -delta_H 19.7192 kJ/mol +# deltafH -544.6 kcal/mol + -analytic 1.4825e2 6.7021e-2 -2.8329e3 -5.9251e1 -4.4248e1 +# Range 0-350 + -Vm 9.0963 14.4299 0.076 -3.3754 2.62180 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +HPO4-2 + H+ = H2PO4- + -llnl_gamma 4.0 + log_k 7.2054 + -delta_H -4.20492 kJ/mol +# deltafH -309.82 kcal/mol + -analytic 8.2149e1 3.4077e-2 -1.0431e3 -3.2970e1 -1.6301e1 +# Range 0-350 + -Vm 6.4875 8.0594 2.5823 -3.1122 1.3003 +# Extrapol supcrt92 +# Ref SH88 + +3 H+ + 2 HPO4-2 = H3P2O7- + H2O + -llnl_gamma 4.0 + log_k 14.4165 + -delta_H 21.8112 kJ/mol +# deltafH -544.1 kcal/mol + -analytic 2.3157e2 1.0161e-1 -4.3723e3 -9.4050e1 -6.8295e1 +# Range 0-350 + -Vm 9.1292 14.5122 0.0398 -3.3788 0.8568 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 H+ + HPO4-2 = H3PO4 + -llnl_gamma 3.0 + log_k 9.3751 + -delta_H 3.74468 kJ/mol +# deltafH -307.92 kcal/mol + -analytic 1.8380e2 6.7320e-2 -3.7792e3 -7.3463e1 -5.9025e1 +# Range 0-350 + -Vm 8.2727 12.4182 0.8691 -3.2924 -0.22 +# Extrapol supcrt92 +# Ref SHS89 + +4 H+ + 2 HPO4-2 = H4P2O7 + H2O + -llnl_gamma 3.0 + log_k 15.9263 + -delta_H 29.7226 kJ/mol +# deltafH -2268.6 kJ/mol + -analytic 6.9026e2 2.4309e-1 -1.6165e4 -2.7989e2 -2.7475e2 +# Range 0-350 + -Vm 9.2975 14.9199 -0.113 -3.3957 -0.62920 +# Extrapol supcrt92, 69hel +# Ref SSW+97, WEP+82 + +3 H2O + Al+3 = Al(OH)3 + 3 H+ + -llnl_gamma 3.0 + log_k -16.4329 + -delta_H 144.704 kJ/mol +# deltafH -230.73 kcal/mol + -analytic 4.2012e1 1.9980e-2 -7.7847e3 -1.5470e1 -1.2149e2 +# Range 0-350 + -Vm 3.5338 0.8485 5.4132 -2.8140 -0.03 +# Extrapol supcrt92 +# Ref SSW+97, 95pok/hel + +H+ + CN- = HCN + -llnl_gamma 3.0 + log_k 9.2359 + -delta_H -43.5136 kJ/mol +# deltafH 25.6 kcal/mol + -analytic 1.0536e1 2.3105e-2 3.3038e3 -7.7786 5.1550e1 +# Range 0-350 + -Vm 8.0083 11.7705 1.1286 -3.2655 -0.1113 +# Extrapol supcrt92 +# Ref SM93 + +H+ + Cl- = HCl + -llnl_gamma 3.0 + log_k -0.67 +# deltafH -0 kcal/mol + -analytic 4.1893e2 1.1103e-1 -1.1784e4 -1.6697e2 -1.8400e2 +# Range 0-350 + -Vm 1.2547 -4.7177 7.6043 -2.5840 -0.7 +# Extrapol supcrt92, ? +# Ref MS97, 87rua/sew match + +H+ + CrO4-2 = HCrO4- + -llnl_gamma 4.0 + log_k 6.4944 + -delta_H 2.9288 kJ/mol +# deltafH -209.9 kcal/mol + -analytic 4.4944e1 3.2740e-2 1.8400e2 -1.9722e1 2.8578 +# Range 0-350 + -Vm 8.2211 12.2925 0.9174 -3.2871 0.923 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +NO2- + H+ = HNO2 + -llnl_gamma 3.0 + log_k 3.2206 + -delta_H -14.782 kJ/mol +# deltafH -119.382 kJ/mol + -analytic 1.9653 -1.1603e-4 0 0 1.1569e5 +# Range 0-350 + -Vm 5.9151 6.659 3.1378 -3.0542 -0.1507 +# Extrapol supcrt92, 69hel +# Ref SSW+97, WEP+82 match + +NO3- + H+ = HNO3 + -llnl_gamma 3.0 + log_k -1.3025 + -delta_H 16.8155 kJ/mol +# deltafH -45.41 kcal/mol + -analytic 9.9744e1 3.4866e-2 -3.0975e3 -4.0830e1 -4.8363e1 +# Range 0-350 + -Vm 7.1623 9.7063 1.9367 -3.1802 -0.3066 +# Extrapol supcrt92 +# Ref SSW+97, SHS89 + +2 HPO4-2 + H+ = HP2O7-3 + H2O + -llnl_gamma 4.0 + log_k 5.4498 + -delta_H 23.3326 kJ/mol +# deltafH -2274.99 kJ/mol + -analytic 3.9159e2 1.5438e-1 -8.7071e3 -1.6283e2 -1.3598e2 +# Range 0-350 + -Vm 8.3302 12.5558 0.8208 -3.2980 4.647 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, WEP+82 differ by 0 log K at 0C, 4.7 log K at 300C + +SO3-2 + H+ = HSO3- + -llnl_gamma 4.0 + log_k 7.2054 + -delta_H 9.33032 kJ/mol +# deltafH -149.67 kcal/mol + -analytic 5.5899e1 3.3623e-2 -5.0120e2 -2.3040e1 -7.8373 +# Range 0-350 + -Vm 6.7014 8.5816 2.3771 -0.31338 1.1233 +# Extrapol supcrt92 +# Ref SH88 + +SO4-2 + H+ = HSO4- + -llnl_gamma 4.0 + log_k 1.9791 + -delta_H 20.5016 kJ/mol +# deltafH -212.5 kcal/mol + -analytic 4.9619e1 3.0368e-2 -1.1558e3 -2.1335e1 -1.8051e1 +# Range 0-350 + -Vm 8.2 9.2590 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 # APP14 +# Extrapol supcrt92 +# Ref SH88 + +SiO2 + H2O = HSiO3- + H+ + -llnl_gamma 4.0 + log_k -9.9525 + -delta_H 25.991 kJ/mol +# deltafH -271.88 kcal/mol + -analytic 6.4211e1 -2.4872e-2 -1.2707e4 -1.4681e1 1.0853e6 +# Range 0-350 + -Vm 2.9735 -0.5158 5.9467 -2.7575 1.5511 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + K+ = K(CH3COO)2- + 2 H+ + -llnl_gamma 4.0 + log_k -10.2914 + -delta_H -1.79912 kJ/mol +# deltafH -292.9 kcal/mol + -analytic -2.3036e2 -4.6369e-2 7.0305e3 8.4997e1 1.0977e2 +# Range 0-350 + -Vm 17.8481 35.7984 -8.3193 -4.2588 0.7097 +# Extrapol supcrt92 +# Ref SK93 + +K+ + CH3COOH = KCH3COO + H+ + -llnl_gamma 3.0 + log_k -5.0211 + -delta_H 4.8116 kJ/mol +# deltafH -175.22 kcal/mol + -analytic -2.6676e-1 -3.2675e-3 -1.7143e3 -7.1907e-3 1.7726e5 +# Range 0-350 + -Vm 17.8481 35.7984 -8.3193 -4.2588 0.7097 +# Extrapol supcrt92 +# Ref SK93 + +K+ + Cl- = KCl + -llnl_gamma 3.0 + log_k -1.4946 + -delta_H 14.1963 kJ/mol +# deltafH -96.81 kcal/mol + -analytic 1.3650e2 3.8405e-2 -4.4014e3 -5.4421e1 -6.8721e1 +# Range 0-350 + -Vm 6.9932 9.297 2.0889 -3.1633 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +SO4-2 + K+ + H+ = KHSO4 + -llnl_gamma 3.0 + log_k 0.8136 + -delta_H 29.8319 kJ/mol +# deltafH -270.54 kcal/mol + -analytic 1.2620e2 5.7349e-2 -3.3670e3 -5.3003e1 -5.2576e1 +# Range 0-350 + -Vm 9.1226 14.4964 0.0453 -3.3782 -0.001 +# Extrapol supcrt92 +# Ref SSH97 + +SO4-2 + K+ = KSO4- + -llnl_gamma 4.0 + log_k 0.8796 + -delta_H 2.88696 kJ/mol +# deltafH -276.98 kcal/mol + -analytic 9.9073e1 3.7817e-2 -2.1628e3 -4.1297e1 -3.3779e1 +# Range 0-350 + -Vm 6.8 7.06 3.0 -2.07 1.1 0 0 0 0 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + Li+ = Li(CH3COO)2- + 2 H+ + -llnl_gamma 4.0 + log_k -9.2674 + -delta_H -24.7609 kJ/mol +# deltafH -304.67 kcal/mol + -analytic -3.3702e2 -6.0849e-2 1.1952e4 1.2359e2 1.8659e2 +# Range 0-350 + -Vm 16.3412 32.1211 -6.8785 -4.1068 1.2422 +# Extrapol supcrt92 +# Ref SK93 + +Li+ + CH3COOH = LiCH3COO + H+ + -llnl_gamma 3.0 + log_k -4.4589 + -delta_H -6.64419 kJ/mol +# deltafH -184.24 kcal/mol + -analytic -3.8391 -7.3938e-4 -1.0829e3 3.4134e-1 2.1318e5 +# Range 0-350 + -Vm 8.388 12.6976 0.7639 -3.3038 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Li+ + Cl- = LiCl + -llnl_gamma 3.0 + log_k -1.5115 + -delta_H 3.36812 kJ/mol +# deltafH -105.68 kcal/mol + -analytic 1.2484e2 4.1941e-2 -3.2439e3 -5.1708e1 -5.0655e1 +# Range 0-350 + -Vm 5.5837 5.8554 3.4416 -3.021 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + Mg+2 = Mg(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.473 + -delta_H -23.8195 kJ/mol +# deltafH -349.26 kcal/mol + -analytic -4.3954e1 -3.1842e-4 -1.2033e3 1.3556e1 6.3058e5 +# Range 0-350 + -Vm 12.3982 22.4898 -3.0853 -3.7086 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Mg+2 + CH3COOH = MgCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.4781 + -delta_H -8.42239 kJ/mol +# deltafH -229.48 kcal/mol + -analytic -2.3548e1 -1.6071e-3 -4.2228e2 7.7009 2.5981e5 +# Range 0-350 + -Vm 5.4981 5.6424 3.5341 -3.0122 0.7483 +# Extrapol supcrt92 +# Ref SK93 + +Mg+2 + Cl- = MgCl+ + -llnl_gamma 4.0 + log_k -0.1349 + -delta_H -0.58576 kJ/mol +# deltafH -151.44 kcal/mol + -analytic 4.3363e1 3.2858e-2 1.1878e2 -2.1688e1 1.8403 +# Range 0-350 + -Vm 2.223 -2.3505 6.6669 -2.6818 0.84490 +# Extrapol supcrt92 +# Ref SSH97 + +SO4-2 + Mg+2 = MgSO4 + -llnl_gamma 3.0 + log_k 2.4117 + -delta_H 19.6051 kJ/mol +# deltafH -1355.96 kJ/mol + -analytic 1.7994e2 6.4715e-2 -4.7314e3 -7.3123e1 -8.0408e1 +# Range 0-350 + -Vm 2.4 -0.97 6.1 -2.74 # APP14 +# Extrapol supcrt92, 69hel +# Ref MS97, 82mar/smi match + +2 CH3COOH + Mn+2 = Mn(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.4547 + -delta_H -11.4893 kJ/mol +# deltafH -287.67 kcal/mol + -analytic -9.0558e-1 5.9656e-3 -4.3531e3 -1.1063 8.0323e5 +# Range 0-350 + -Vm 13.1542 24.3405 -3.8236 -3.7851 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Mn+2 = Mn(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -11.8747 + -delta_H -30.3591 kJ/mol +# deltafH -408.28 kcal/mol + -analytic -3.8531 -9.9140e-3 -1.2065e4 5.1424 2.0175e6 +# Range 0-350 + -Vm 21.6217 45.0124 -11.9409 -4.6397 1.15360 +# Extrapol supcrt92 +# Ref SK93 + +Mn+2 + CH3COOH = MnCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.5404 + -delta_H -3.07942 kJ/mol +# deltafH -169.56 kcal/mol + -analytic -1.4061e1 1.8149e-3 -8.6438e2 4.0354 2.5831e5 +# Range 0-350 + -Vm 6.0776 7.057 2.9786 -3.0706 0.4555 +# Extrapol supcrt92 +# Ref SK93 + +Mn+2 + Cl- = MnCl+ + -llnl_gamma 4.0 + log_k 0.3013 + -delta_H 18.3134 kJ/mol +# deltafH -88.28 kcal/mol + -analytic 8.7072e1 4.0361e-2 -2.1786e3 -3.6966e1 -3.4022e1 +# Range 0-350 + -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +1.5 H2O + 1.25 O2 + Mn+2 = MnO4- + 3 H+ + -llnl_gamma 3.5 + log_k -20.2963 + -delta_H 123.112 kJ/mol +# deltafH -129.4 kcal/mol + -analytic 1.8544e1 -1.7618e-2 -6.7332e3 -3.3193 -2.4924e5 +# Range 0-350 + -Vm 7.8248 11.3277 1.2912 -3.2472 0.9248 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +SO4-2 + Mn+2 = MnSO4 + -llnl_gamma 3.0 + log_k 2.3529 + -delta_H 14.1168 kJ/mol +# deltafH -266.75 kcal/mol + -analytic 2.9448e2 8.5294e-2 -8.1366e3 -1.1729e2 -1.2705e2 +# Range 0-350 + -Vm -1.31 -1.83 62.3 -2.7 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +2 CH3COOH + NH3 = NH4(CH3COO)2- + H+ + -llnl_gamma 4.0 + log_k -0.1928 + -delta_H -56.735 kJ/mol +# deltafH -265.2 kcal/mol + -analytic 3.7137e1 -1.2242e-2 -8.4764e3 -8.4308 1.3883e6 +# Range 0-350 + -Vm 19.3685 39.509 -9.7736 -4.4122 0.6495 +# Extrapol supcrt92 +# Ref SK93 + +NH3 + H+ = NH4+ + -llnl_gamma 2.5 + log_k 9.2410 + -delta_H -51.9234 kJ/mol +# deltafH -31.85 kcal/mol + -analytic -1.4527e1 -5.0518e-3 3.0447e3 6.0865 4.7515e1 +# Range 0-350 + -Vm 3.8763 2.3448 8.5605 -2.8759 0.1502 +# Extrapol supcrt92 +# Ref SH88 + +NH3 + CH3COOH = NH4CH3COO + -llnl_gamma 3.0 + log_k 4.6964 + -delta_H -48.911 kJ/mol +# deltafH -147.23 kcal/mol + -analytic 1.4104e1 -4.3664e-3 -1.0746e3 -3.6999 4.1428e5 +# Range 0-350 + -Vm 11.2849 19.7719 -2.0187 -3.5963 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +2 CH3COOH + Na+ = Na(CH3COO)2- + 2 H+ + -llnl_gamma 4.0 + log_k -9.9989 + -delta_H -11.5771 kJ/mol +# deltafH -292.4 kcal/mol + -analytic -2.9232e2 -5.5708e-2 9.6601e3 1.0772e2 1.5082e2 +# Range 0-350 + -Vm 16.2062 31.7884 -6.7416 -4.0930 0.9633 +# Extrapol supcrt92 +# Ref SK93 + +Na+ + CH3COOH = NaCH3COO + H+ + -llnl_gamma 3.0 + log_k -4.8606 + -delta_H -0.029288 kJ/mol +# deltafH -173.54 kcal/mol + -analytic 6.4833 -1.8739e-3 -2.0902e3 -2.6121 2.3990e5 +# Range 0-350 + -Vm 8.3514 12.6125 0.7884 -3.3003 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Na+ + Cl- = NaCl + -llnl_gamma 3.0 + log_k -0.777 + -delta_H 5.21326 kJ/mol +# deltafH -96.12 kcal/mol + -analytic 1.1398e2 3.6386e-2 -3.0847e3 -4.6571e1 -4.8167e1 +# Range 0-350 + -Vm 5.0364 4.5189 3.9669 -2.9658 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +SiO2 + Na+ + H2O = NaHSiO3 + H+ + -llnl_gamma 3.0 + log_k -8.304 + -delta_H 11.6524 kJ/mol +# deltafH -332.74 kcal/mol + -analytic 3.6045e1 -9.0411e-3 -6.6605e3 -1.0447e1 5.8415e5 +# Range 0-350 + -Vm 3.4928 0.75 5.4483 -2.8100 -0.038 +# Extrapol supcrt92 +# Ref SSH97 + +Na+ + H2O = NaOH + H+ + -llnl_gamma 3.0 + log_k -14.7948 + -delta_H 53.6514 kJ/mol +# deltafH -112.927 kcal/mol + -analytic 8.7326e1 2.3555e-2 -5.4770e3 -3.6678e1 -8.5489e1 +# Range 0-350 + -Vm 2.2338 -2.3287 6.6683 -2.6826 -0.03 +# Extrapol supcrt92 +# Ref SSW+97, 95pok/hel match + +2 CH3COOH + Ni+2 = Ni(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -7.1908 + -delta_H -25.8571 kJ/mol +# deltafH -251.28 kcal/mol + -analytic -2.9660e1 1.0643e-3 -1.0060e3 7.9358 5.2562e5 +# Range 0-350 + -Vm 11.1327 19.4031 -1.8801 -3.5810 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Ni+2 = Ni(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -11.3543 + -delta_H -53.6807 kJ/mol +# deltafH -374.03 kcal/mol + -analytic 5.0850e1 -8.2435e-3 -1.3049e4 -1.5410e1 1.9704e6 +# Range 0-350 + -Vm 19.5212 39.8827 -9.9226 -4.4277 0.1603 +# Extrapol supcrt92 +# Ref SK93 + +Ni+2 + CH3COOH = NiCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.3278 + -delta_H -10.2508 kJ/mol +# deltafH -131.45 kcal/mol + -analytic -3.3110 1.6895e-3 -1.0556e3 2.7168e-2 2.6350e5 +# Range 0-350 + -Vm 4.3556 2.8512 4.6343 -2.8968 0.7287 +# Extrapol supcrt92 +# Ref SK93 + +Ni+2 + Cl- = NiCl+ + -llnl_gamma 4.0 + log_k -0.9962 + -delta_H 5.99567 kJ/mol +# deltafH -51.4 kcal/mol + -analytic 9.5370e1 3.8521e-2 -2.1746e3 -4.0629e1 -3.3961e1 +# Range 0-350 + -Vm 1.1319 -5.0147 7.714 -2.5716 0.8111 +# Extrapol supcrt92 +# Ref SSH97 + +H2O = OH- + H+ + -llnl_gamma 3.5 + log_k -13.9951 + -delta_H 55.8146 kJ/mol +# deltafH -54.977 kcal/mol + -analytic -6.7506e1 -3.0619e-2 -1.9901e3 2.8004e1 -3.1033e1 +# Range 0-350 + -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 # APP14 +# Extrapol supcrt92 +# Ref SH88 + +2 HPO4-2 = P2O7-4 + H2O + -llnl_gamma 4.0 + log_k -3.7463 + -delta_H 27.2256 kJ/mol +# deltafH -2271.1 kJ/mol + -analytic 4.0885e2 1.3243e-1 -1.1373e4 -1.6727e2 -1.7758e2 +# Range 0-350 + -Vm 7.0687 9.4773 2.0273 -3.1707 6.9069 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, WEP+82 differ by 0.1 log K at 0C, 7 log K at 350C !! flag + +HPO4-2 = PO4-3 + H+ + -llnl_gamma 4.0 + log_k -12.3218 + -delta_H 14.7068 kJ/mol +# deltafH -305.3 kcal/mol + -analytic -7.6170e1 -3.3574e-2 1.3405e2 2.9658e1 2.1140 +# Range 0-350 + -Vm -0.5258 -9.0576 9.2927 -2.4045 5.61140 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 H+ + 2 SO3-2 = S2O5-2 + H2O + -llnl_gamma 4.0 + log_k 9.5934 +# deltafH -0 kcal/mol + -analytic 0.12262e3 0.62883e-1 -0.18005e4 -0.50798e2 -0.28132e2 +# Range 0-350 + -Vm 7.3618 10.1945 1.7414 -3.2003 2.8343 # SSW+97 +# Extrapol supcrt92 +# Ref SSW+97, SH88 + +2 H+ + SO3-2 = SO2 + H2O + -llnl_gamma 3.0 + log_k 9.0656 + -delta_H 26.7316 kJ/mol +# deltafH -77.194 kcal/mol + -analytic 9.4048e1 6.2127e-2 -1.1072e3 -4.0310e1 -1.7305e1 +# Range 0-350 + -Vm 6.9502 9.189 2.1383 -3.1589 -0.0559 +# Extrapol supcrt92 +# Ref SHS89 + +2 CH3COOH + Sc+3 = Sc(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -3.7237 + -delta_H -43.1789 kJ/mol +# deltafH -389.32 kcal/mol + -analytic -4.1862e1 -3.9443e-5 2.1444e2 1.2616e1 5.5442e5 +# Range 0-350 + -Vm 9.2794 14.8737 -0.0899 -3.3938 0.9706 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Sc+3 = Sc(CH3COO)3 + 3 H+ + -llnl_gamma 3.0 + log_k -6.6777 + -delta_H -70.0402 kJ/mol +# deltafH -511.84 kcal/mol + -analytic -5.2525e1 1.6181e-3 7.5022e2 1.3988e1 7.3540e5 +# Range 0-350 + -Vm 16.5277 32.5748 -7.0539 -4.1255 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Sc+3 + CH3COOH = ScCH3COO+2 + H+ + -llnl_gamma 4.5 + log_k -1.4294 + -delta_H -21.7568 kJ/mol +# deltafH -268.1 kcal/mol + -analytic -2.3400e1 1.3144e-4 1.1125e2 7.3527 3.0025e5 +# Range 0-350 + -Vm 2.7175 -1.1437 6.1937 -2.7316 1.7013 +# Extrapol supcrt92 +# Ref SK93 + +2 CH3COOH + Sm+3 = Sm(CH3COO)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -4.7132 + -delta_H -25.5224 kJ/mol +# deltafH -403.5 kcal/mol + -analytic -1.4192e1 2.1732e-3 -1.0267e3 2.9516 4.4389e5 +# Range 0-350 + -Vm 9.159 14.5839 0.0138 -3.3818 0.6644 +# Extrapol supcrt92 +# Ref SK93 + +3 CH3COOH + Sm+3 = Sm(CH3COO)3 + 3 H+ + -llnl_gamma 3.0 + log_k -7.8798 + -delta_H -43.5554 kJ/mol +# deltafH -523.91 kcal/mol + -analytic -2.0765e1 1.1047e-3 -5.1181e2 3.4797 5.0618e5 +# Range 0-350 + -Vm 16.5088 32.5307 -7.0412 -4.1237 -0.03 +# Extrapol supcrt92 +# Ref SK93 + +Sm+3 + CH3COOH = SmCH3COO+2 + H+ + -llnl_gamma 4.5 + log_k -1.9205 + -delta_H -13.598 kJ/mol +# deltafH -284.55 kcal/mol + -analytic -1.1734e1 1.0889e-3 -5.1061e2 3.3317 2.6395e5 +# Range 0-350 + -Vm 2.6264 -1.3667 6.2827 -2.7224 1.4769 +# Extrapol supcrt92 +# Ref SK93 + +Sm+3 + HCO3- = SmCO3+ + H+ + -llnl_gamma 4.0 + log_k -2.479 + -delta_H 89.1108 kJ/mol +# deltafH -308.8 kcal/mol # OBIGT: -331.34 kcal/mol HSS95 + -analytic 2.3486e2 5.3703e-2 -7.0193e3 -9.2863e1 -1.0960e2 +# Range 0-350 + -Vm -1.0455 -10.3293 9.798 -2.3519 1.1907 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + Cl- = SmCl+2 + -llnl_gamma 4.5 + log_k 0.3086 + -delta_H 14.3637 kJ/mol +# deltafH -201.7 kcal/mol + -analytic 9.4972e1 3.9428e-2 -2.4198e3 -3.9718e1 -3.7787e1 +# Range 0-350 + -Vm -0.5006 -8.9988 9.2743 -2.4069 1.4192 +# Extrapol supcrt92 +# Ref HSS95 + +2 Cl- + Sm+3 = SmCl2+ + -llnl_gamma 4.0 + log_k -0.0425 + -delta_H 19.9409 kJ/mol +# deltafH -240.3 kcal/mol + -analytic 2.5872e2 8.4154e-2 -7.2061e3 -1.0493e2 -1.1252e2 +# Range 0-350 + -Vm 2.5888 -1.4617 6.3276 -2.7185 0.6644 +# Extrapol supcrt92 +# Ref HSS95 + +3 Cl- + Sm+3 = SmCl3 + -llnl_gamma 3.0 + log_k -0.3936 + -delta_H 13.803 kJ/mol +# deltafH -281.7 kcal/mol + -analytic 4.9535e2 1.3520e-1 -1.4325e4 -1.9720e2 -2.2367e2 +# Range 0-350 + -Vm 6.0808 7.0673 2.9692 -3.0711 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +4 Cl- + Sm+3 = SmCl4- + -llnl_gamma 4.0 + log_k -0.818 + -delta_H -5.30531 kJ/mol +# deltafH -326.2 kcal/mol + -analytic 6.0562e2 1.4212e-1 -1.7982e4 -2.3782e2 -2.8077e2 +# Range 0-350 + -Vm 10.8148 18.6261 -1.5732 -3.5489 1.6917 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + HPO4-2 + H+ = SmH2PO4+2 + -llnl_gamma 4.5 + log_k 9.4484 + -delta_H -15.8364 kJ/mol +# deltafH -477.8 kcal/mol + -analytic 1.2451e2 6.4959e-2 -3.9576e2 -5.3772e1 -6.2124 +# Range 0-350 + -Vm 1.3708 -4.4295 7.4801 -2.5958 1.4867 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + HCO3- = SmHCO3+2 + -llnl_gamma 4.5 + log_k 1.7724 + -delta_H 9.19643 kJ/mol +# deltafH -327.9 kcal/mol + -analytic 5.5520e1 3.3265e-2 -7.3142e2 -2.4727e1 -1.1430e1 +# Range 0-350 + -Vm 0.3694 -6.8727 8.4365 -2.4948 1.2366 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + NO3- = SmNO3+2 + -llnl_gamma 4.5 + log_k 0.8012 + -delta_H -29.1667 kJ/mol +# deltafH -221.6 kcal/mol + -analytic 3.3782e1 2.7125e-2 1.5091e3 -1.8632e1 2.3537e1 +# Range 0-350 + -Vm 1.0908 -5.1124 7.7478 -2.5676 1.5897 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + H2O = SmO+ + 2 H+ + -llnl_gamma 4.0 + log_k -16.4837 + -delta_H 113.039 kJ/mol +# deltafH -206.5 kcal/mol # OBIGT: -197.63 kcal/mol HSS95 + -analytic 1.8554e2 3.0198e-2 -1.3791e4 -6.6588e1 -2.1526e2 +# Range 0-350 + -Vm 2.8115 -0.9157 6.1076 -2.741 0.3837 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Sm+3 = SmO2- + 4 H+ + -llnl_gamma 4.0 + log_k -35.0197 + -delta_H 285.909 kJ/mol +# deltafH -233.5 kcal/mol # OBIGT: -238.22 kcal/mol HSS95 + -analytic 1.3508e1 -8.3384e-3 -1.0325e4 -1.5506 -6.7392e5 +# Range 0-350 + -Vm 4.9642 4.3393 4.0456 -2.9583 1.0848 +# Extrapol supcrt92 +# Ref HSS95 + +2 H2O + Sm+3 = SmO2H + 3 H+ + -llnl_gamma 3.0 + log_k -25.9304 + -delta_H 226.497 kJ/mol +# deltafH -247.7 kcal/mol + -analytic 3.6882e2 5.3761e-2 -2.4317e4 -1.3305e2 -3.7956e2 +# Range 0-350 + -Vm 4.9296 4.2552 4.0768 -2.9548 -0.03 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + H2O = SmOH+2 + H+ + -llnl_gamma 4.5 + log_k -7.9808 + -delta_H 79.1487 kJ/mol +# deltafH -214.6 kcal/mol # OBIGT: -213.97 kcal/mol HSS95 + -analytic 6.3793e1 1.1977e-2 -6.0852e3 -2.2198e1 -9.4972e1 +# Range 0-350 + -Vm 2.7076 -1.1676 6.2027 -2.7306 1.1289 +# Extrapol supcrt92 +# Ref HSS95 + +Sm+3 + SO4-2 = SmSO4+ + -llnl_gamma 4.0 + log_k 3.6430 + -delta_H 20.0832 kJ/mol +# deltafH -377.8 kcal/mol + -analytic 3.0597e2 8.6258e-2 -9.0231e3 -1.2032e2 -1.4089e2 +# Range 0-350 + -Vm -1.3885 -4.3882 7.4678 -2.5975 0.7483 +# Extrapol supcrt92 +# Ref HSS95 + +UO2+2 + H2O = UO2OH+ + H+ + -llnl_gamma 4.0 + log_k -5.2073 + -delta_H 43.1813 kJ/mol +# deltafH -1261.66 kJ/mol + -analytic 3.4387e1 6.0811e-3 -3.3068e3 -1.2252e1 -5.1609e1 +# Range 0-350 + -Vm 4.764 3.8529 4.2318 -2.9382 0.4925 # SSB97 +# Extrapol supcrt92, 64cri/cob +# Ref SSW+97, 92gre/fug match + +2 CH3COOH + Zn+2 = Zn(CH3COO)2 + 2 H+ + -llnl_gamma 3.0 + log_k -6.062 + -delta_H -11.0458 kJ/mol +# deltafH -271.5 kcal/mol + -analytic -2.2038e1 2.6133e-3 -2.7652e3 6.8501 6.7086e5 +# Range 0-350 + -Vm 11.7443 20.8978 -2.4707 -3.6429 -0.038 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +3 CH3COOH + Zn+2 = Zn(CH3COO)3- + 3 H+ + -llnl_gamma 4.0 + log_k -10.0715 + -delta_H 25.355 kJ/mol +# deltafH -378.9 kcal/mol + -analytic 3.5104e1 -6.1568e-3 -1.3379e4 -8.7697 2.0670e6 +# Range 0-350 + -Vm 20.0332 41.1373 -10.4257 -4.4796 1.2513 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +Zn+2 + CH3COOH = ZnCH3COO+ + H+ + -llnl_gamma 4.0 + log_k -3.1519 + -delta_H -9.87424 kJ/mol +# deltafH -155.12 kcal/mol + -analytic -7.9367 2.8564e-3 -1.4514e3 2.5010 2.3343e5 +# Range 0-350 + -Vm 4.8484 4.06 4.1473 -2.9468 0.41 +# Extrapol supcrt92 +# Ref SSH97, SK93 + +Zn+2 + Cl- = ZnCl+ + -llnl_gamma 4.0 + log_k 0.1986 + -delta_H 43.317 kJ/mol +# deltafH -66.24 kcal/mol + -analytic 1.1235e2 4.4461e-2 -4.1662e3 -4.5023e1 -6.5042e1 +# Range 0-350 + -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +2 Cl- + Zn+2 = ZnCl2 + -llnl_gamma 3.0 + log_k 0.2507 + -delta_H 31.1541 kJ/mol +# deltafH -109.08 kcal/mol + -analytic 1.7824e2 7.5733e-2 -4.6251e3 -7.4770e1 -7.2224e1 +# Range 0-350 + -Vm -10.1 4.57 241 -2.97 -1e-3 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +3 Cl- + Zn+2 = ZnCl3- + -llnl_gamma 4.0 + log_k -0.0198 + -delta_H 22.5894 kJ/mol +# deltafH -151.06 kcal/mol + -analytic 1.3889e2 7.4712e-2 -2.1527e3 -6.2200e1 -3.3633e1 +# Range 0-350 + -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97 + +4 Cl- + Zn+2 = ZnCl4-2 + -llnl_gamma 4.0 + log_k 0.8605 + -delta_H 4.98733 kJ/mol +# deltafH -195.2 kcal/mol + -analytic 8.4294e1 7.0021e-2 3.9150e2 -4.2664e1 6.0834 +# Range 0-300 + -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 # APP14 +# Extrapol supcrt92 +# Ref SSH97? + +Zn+2 + H2O = ZnOH+ + H+ + -llnl_gamma 4.0 + log_k -8.96 +# deltafH -0 kcal/mol + -analytic -7.8600e-1 -2.9499e-4 -2.8673e3 6.1892e-1 -4.2576e1 +# Range 25-300 + -Vm 1.1499 -4.9677 7.6896 -2.5735 0.326 +# Extrapol supcrt92, ? +# Ref SSW+97, 87bou/bar differ by 0.8 log K at 0C, 2.7 log K at 300C + +Zn+2 + SO4-2 = ZnSO4 + -llnl_gamma 3.0 + log_k 2.3062 + -delta_H 15.277 kJ/mol +# deltafH -1047.71 kJ/mol + -analytic 1.3640e2 5.1256e-2 -3.4422e3 -5.5695e1 -5.8501e1 +# Range 0-200 + -Vm 2.51 0 18.8 # APP14 +# Extrapol 69hel +# Ref WEP+82 + +#--------------------------- +# carbfix.dat additions and changes +#--------------------------- + +HS- + H+ = H2S + -llnl_gamma 3.0 + log_k 6.97791 # SS97 + -analytic -782.43945 -0.361261 20565.7315 328.67496 0 1.6722e-4 # SS97 + -Vm 7.81 2.96 -0.46 # phreeqc.dat + +2 H2O + Al+3 = Al(OH)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -10.5945 # llnl.dat + -analytic 4.4036e+001 2.0168e-002 -5.5455e+003 -1.6987e+001 -8.6545e+001 # llnl.dat + -Vm 2.1705 -2.4811 6.7241 -2.6763 0.95700 0 0 0 0 0 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Al+3 + SiO2 + 2 H2O = AlH3SiO4+2 + H+ + -llnl_gamma 4.5 + log_k -2.38 # P+96 + -analytic 5.241793953846094 0.005624769230769303 -2772.442855034987 0 0 0 # P+96 + -Vm 0.16 -7.23 8.61 -2.4800 0.88000 # TS01 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +SO4-2 + Al+3 = AlSO4+ + -llnl_gamma 4.0 + log_k 3.17527 # TS01 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -6034.286233487146 -2.009118445366823 225586.09598339273 2388.3098402377414 -8.473342720127227e6 0.000736431615071334 # TS01 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 1.833 -3.3057 7.0494 -2.6423 2.4143 # TS01 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +4 H2O + Na+ + Al+3 = NaAl(OH)4 + 4 H+ + -llnl_gamma 3.0 + log_k -22.9 # TS01 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -319.6003434647659 -0.1452549158200939 2048.487394301387 134.79387929123214 -579779.0987586592 0.00006885771169878286 # TS01 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 9.1267 14.3411 0.1121 -3.3719 0 # TS01 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Mg+2 + CO3-2 = MgCO3 + -llnl_gamma 3.0 + log_k 3.01 # SBS14 + -analytic 5.5093 -0.00017143 -734.208 0 0 0 # SBS14 + -Vm -0.7355 -9.5745 9.5062 -2.3831 -0.038 # SSH97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Mg+2 + HCO3- = MgHCO3+ + -llnl_gamma 4.0 + log_k 1.10 # SBS14 + -analytic -8.8935 0.01694 1474.786 0 0 0 # SBS14 + -Vm 3.271 0.206 5.669 -2.7880 0.59900 # SK95 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Na+ + CO3-2 = NaCO3- + -llnl_gamma 4.0 + log_k 1.01 # SBS13 + -analytic 4.1659 0 -941.150 0 0 0 # SBS13 + -Vm 7.642732 2.993503 2.328077 -2.902751 1.507948 # DEW17 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Na+ + HCO3- = NaHCO3 + -llnl_gamma 3.0 + log_k -0.18 # SBS13 + -analytic 1.8528 0 -606.240 0 0 0 # SBS13 + -Vm 0.431 # APP14 + +HCO3- + Ca+2 = CaHCO3+ + -llnl_gamma 4.0 + log_k 1.0467 # llnl.dat + -analytic 5.5985e+001 3.4639e-002 -3.6972e+002 -2.5864e+001 -5.7859e+000 # llnl.dat + -Vm 3.706 1.267 5.252 -2.8310 0.30800 # SK95 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Na+ + SO4-2 = NaSO4- + -llnl_gamma 4.0 + log_k 0.702779 # MS97 + CHNOSZ/OBIGT/SUPCRTBL - D08 + -analytic -1515.4130255698833 -0.5496881710640973 53009.74446438346 607.5403646933713 -1.7958467164664706e6 0.00021478523226344507 # MS97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 1e-5 16.4 -0.0678 -1.05 4.14 0 6.86 0 0.0242 0.53 # APP14 + +Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ + -llnl_gamma 4.0 + log_k -5.6502 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -311.3248470052558 -0.1252808696431922 9665.364708433648 127.49811415837463 -849396.8730633351 0.00005263379396466626 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm -3.7118 -16.8408 12.3595 -2.0827 0.7191 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ + -llnl_gamma 3.0 + log_k -12.0185 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -741.3725966104283 -0.26505708328056 26205.378230673232 296.5340355414264 -1.972081032472368e6 0.00010032479998977653 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 2.7401 -1.0905 6.1776 -2.7338 -0.03 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ + -llnl_gamma 4.0 + log_k -21.6225 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic 1533.5014901840032 0.45075510400897445 -69859.23735739749 -593.4694075764281 2.3641904800567343e6 -0.00014964010950998835 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 2.3837 -1.9602 6.5182 -2.6979 1.4662 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +2 H2O + Fe+2 = Fe(OH)2 + 2 H+ + -llnl_gamma 3.0 + log_k -20.4049 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -325.1339790725869 -0.1345716716871417 5315.653600095374 132.16984714439332 -459607.68923879805 0.000057906348553908315 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm -0.5029 -9.0053 9.2791 -2.4066 -0.03 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +3 H2O + Fe+2 = Fe(OH)3- + 3 H+ + -llnl_gamma 4.0 + log_k -29.208 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic 1906.044327275795 0.5662477247894362 -88119.68431429783 -741.1535184277503 3.7592690582787376e6 -0.0001898657106678743 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 0.6272 -6.244 8.1905 -2.5208 1.8564 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +H+ + ClO- = HClO + -llnl_gamma 3.0 + log_k 7.55236 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2041.6086043936152 -0.6683042462929405 80422.12116400951 805.7772200117705 -3.2667035060825506e6 0.00024280864184851264 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 5.5927 5.8751 3.4387 -3.0218 -0.1734 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +H+ + ClO2- = HClO2 + -llnl_gamma 3.0 + log_k 1.98189 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2249.8186120868168 -0.7355468012526403 86690.01133768198 887.6588357902062 -3.5397309172713878e6 0.00026672471518723433 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 7.6706 10.9455 1.4527 -3.2314 -0.3415 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +H+ + S2O3-- = HS2O3- + -llnl_gamma 4.0 + log_k 1.68836 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -1611.0948316547294 -0.5495686401519247 59194.43018784251 640.1240524484979 -2.166923306383505e6 0.00020844502892650532 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 6.1964 7.351 2.8549 -3.0828 1.1676 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + +K+ + H2O = KOH + H+ + -llnl_gamma 3.0 + log_k -14.4386 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -477.55011247018905 -0.1442523288404146 18222.588641689916 183.69951482387626 -1.2139398662316576e6 0.0000461802984447927 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 3.7938 1.4839 5.1619 -2.8402 -0.03 # SSW+97 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + + + +#--------------------------- +# 66 other aqueous species +#--------------------------- +H2O + Ba+2 + B(OH)3 = BaB(OH)4+ + H+ + -llnl_gamma 4.0 + log_k -7.8012 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaB(OH)4+ +# Enthalpy of formation: -0 kcal/mol + + HCO3- + Ba+2 = BaCO3 + H+ + -llnl_gamma 3.0 + log_k -7.6834 + -delta_H 31.5808 kJ/mol # Calculated enthalpy of reaction BaCO3 +# Enthalpy of formation: -285.85 kcal/mol + -analytic 2.1878e+002 5.2368e-002 -8.2472e+003 -8.6644e+001 -1.2875e+002 +# -Range: 0-300 + + Cl- + Ba+2 = BaCl+ + -llnl_gamma 4.0 + log_k -0.4977 + -delta_H 11.142 kJ/mol # Calculated enthalpy of reaction BaCl+ +# Enthalpy of formation: -165.77 kcal/mol + -analytic 1.1016e+002 4.2325e-002 -2.8039e+003 -4.6010e+001 -4.3785e+001 +# -Range: 0-300 + + F- + Ba+2 = BaF+ + -llnl_gamma 4.0 + log_k -0.1833 + -delta_H 8.95376 kJ/mol # Calculated enthalpy of reaction BaF+ +# Enthalpy of formation: -206.51 kcal/mol + -analytic 1.0349e+002 4.0336e-002 -2.5195e+003 -4.3334e+001 -3.9346e+001 +# -Range: 0-300 + + NO3- + Ba+2 = BaNO3+ + -llnl_gamma 4.0 + log_k +0.9 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaNO3+ +# Enthalpy of formation: -0 kcal/mol + + H2O + Ba+2 = BaOH+ + H+ + -llnl_gamma 4.0 + log_k -13.47 + -delta_H 0 # Not possible to calculate enthalpy of reaction BaOH+ +# Enthalpy of formation: -0 kcal/mol + + +Ce+3 + 0.5 H2O = Ce+2 + H+ +0.25 O2 + -llnl_gamma 4.5 + log_k -83.6754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce+2 +# Enthalpy of formation: -0 kcal/mol + +H+ + Ce+3 + 0.25 O2 = Ce+4 +0.5 H2O + -llnl_gamma 5.5 + log_k -7.9154 + -delta_H 0 # Not possible to ca + +2.0 HCO3- + Ce+3 = Ce(CO3)2- +2.0 H+ + -llnl_gamma 4.0 + log_k -8.1576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(CO3)2- +# Enthalpy of formation: -0 kcal/mol + +2.0 HPO4-2 + Ce+3 = Ce(HPO4)2- + -llnl_gamma 4.0 + log_k +8.7000 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(HPO4)2- +# Enthalpy of formation: -0 kcal/mol + +2.0 H2O + Ce+4 = Ce(OH)2+2 +2.0 H+ + -llnl_gamma 4.5 + log_k +2.0098 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)2+2 +# Enthalpy of formation: -0 kcal/mol + +2.0 HPO4-2 + Ce+3 = Ce(PO4)2-3 +2.0 H+ + -llnl_gamma 4.0 + log_k -6.1437 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol + +2.0 H2O + 2.0 Ce+4 = Ce2(OH)2+6 +2.0 H+ + -llnl_gamma 6.0 + log_k +3.0098 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2(OH)2+6 +# Enthalpy of formation: -0 kcal/mol + +5.0 H2O + 3.0 Ce+3 = Ce3(OH)5+4 +5.0 H+ + -llnl_gamma 5.5 + log_k -33.4754 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce3(OH)5+4 +# Enthalpy of formation: -0 kcal/mol + +HCO3- + Ce+3 = CeCO3+ + H+ + -llnl_gamma 4.0 + log_k -2.9284 + -delta_H 93.345 kJ/mol # Calculated enthalpy of reaction CeCO3+ +# Enthalpy of formation: -309.988 kcal/mol + -analytic 2.3292e+002 5.3153e-002 -7.1180e+003 -9.2061e+001 -1.1114e+002 +# -Range: 0-300 + +Cl- + Ce+3 = CeCl+2 + -llnl_gamma 4.5 + log_k +0.3086 + -delta_H 14.7821 kJ/mol # Calculated enthalpy of reaction CeCl+2 +# Enthalpy of formation: -203.8 kcal/mol + -analytic 8.3534e+001 3.8166e-002 -2.0058e+003 -3.5504e+001 -3.1324e+001 +# -Range: 0-300 + +2.0 Cl- + Ce+3 = CeCl2+ + -llnl_gamma 4.0 + log_k +0.0308 + -delta_H 20.7777 kJ/mol # Calculated enthalpy of reaction CeCl2+ +# Enthalpy of formation: -242.3 kcal/mol + -analytic 2.3011e+002 8.1428e-002 -6.1292e+003 -9.4468e+001 -9.5708e+001 +# -Range: 0-300 + +3.0 Cl- + Ce+3 = CeCl3 + -llnl_gamma 3.0 + log_k -0.3936 + -delta_H 15.4766 kJ/mol # Calculated enthalpy of reaction CeCl3 +# Enthalpy of formation: -283.5 kcal/mol + -analytic 4.4073e+002 1.2994e-001 -1.2308e+004 -1.7722e+002 -1.9218e+002 +# -Range: 0-300 + +4.0 Cl- + Ce+3 = CeCl4- + -llnl_gamma 4.0 + log_k -0.7447 + -delta_H -1.95811 kJ/mol # Calculated enthalpy of reaction CeCl4- +# Enthalpy of formation: -327.6 kcal/mol + -analytic 5.2230e+002 1.3490e-001 -1.4859e+004 -2.0747e+002 -2.3201e+002 +# -Range: 0-300 + +ClO4- + Ce+3 = CeClO4+2 + -llnl_gamma 4.5 + log_k +1.9102 + -delta_H -49.0197 kJ/mol # Calculated enthalpy of reaction CeClO4+2 +# Enthalpy of formation: -210.026 kcal/mol + -analytic -1.3609e+001 1.8115e-002 3.9869e+003 -1.3033e+000 6.2215e+001 +# -Range: 0-300 + +F- + Ce+3 = CeF+2 + -llnl_gamma 4.5 + log_k +4.2221 + -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction CeF+2 +# Enthalpy of formation: -242 kcal/mol + -analytic 1.0303e+002 4.1730e-002 -2.8424e+003 -4.1094e+001 -4.4383e+001 +# -Range: 0-300 + +2.0 F- + Ce+3 = CeF2+ + -llnl_gamma 4.0 + log_k +7.2714 + -delta_H 15.0624 kJ/mol # Calculated enthalpy of reaction CeF2+ +# Enthalpy of formation: -324.1 kcal/mol + -analytic 2.5063e+002 8.5224e-002 -6.2219e+003 -1.0017e+002 -9.7160e+001 +# -Range: 0-300 + +3.0 F- + Ce+3 = CeF3 + -llnl_gamma 3.0 + log_k +9.5144 + -delta_H -6.0668 kJ/mol # Calculated enthalpy of reaction CeF3 +# Enthalpy of formation: -409.3 kcal/mol + -analytic 4.6919e+002 1.3664e-001 -1.1745e+004 -1.8629e+002 -1.8340e+002 +# -Range: 0-300 + +4.0 F- + Ce+3 = CeF4- + -llnl_gamma 4.0 + log_k +11.3909 + -delta_H -45.6056 kJ/mol # Calculated enthalpy of reaction CeF4- +# Enthalpy of formation: -498.9 kcal/mol + -analytic 5.3522e+002 1.3856e-001 -1.2722e+004 -2.1112e+002 -1.9868e+002 +# -Range: 0-300 + +HPO4-2 + H+ + Ce+3 = CeH2PO4+2 + -llnl_gamma 4.5 + log_k +9.6684 + -delta_H -16.2548 kJ/mol # Calculated enthalpy of reaction CeH2PO4+2 +# Enthalpy of formation: -480.1 kcal/mol + -analytic 1.1338e+002 6.3771e-002 5.2908e+001 -4.9649e+001 7.9189e-001 +# -Range: 0-300 + +HCO3- + Ce+3 = CeHCO3+2 + -llnl_gamma 4.5 + log_k +1.9190 + -delta_H 8.77803 kJ/mol # Calculated enthalpy of reaction CeHCO3+2 +# Enthalpy of formation: -330.2 kcal/mol + -analytic 4.4441e+001 3.2077e-002 -3.0714e+002 -2.0622e+001 -4.8060e+000 +# -Range: 0-300 + +HPO4-2 + Ce+3 = CeHPO4+ + -llnl_gamma 4.0 + log_k +5.2000 + -delta_H 0 # Not possible to calculate enthalpy of reaction CeHPO4+ +# Enthalpy of formation: -0 kcal/mol + +NO3- + Ce+3 = CeNO3+2 + -llnl_gamma 4.5 + log_k +1.3143 + -delta_H -26.6563 kJ/mol # Calculated enthalpy of reaction CeNO3+2 +# Enthalpy of formation: -223.2 kcal/mol + -analytic 2.2772e+001 2.5931e-002 1.9950e+003 -1.4490e+001 3.1124e+001 +# -Range: 0-300 + +H2O + Ce+3 = CeO+ +2.0 H+ + -llnl_gamma 4.0 + log_k -16.4103 + -delta_H 112.202 kJ/mol # Calculated enthalpy of reaction CeO+ +# Enthalpy of formation: -208.9 kcal/mol + -analytic 1.9881e+002 3.1302e-002 -1.4331e+004 -7.1323e+001 -2.2368e+002 +# -Range: 0-300 + +2.0 H2O + Ce+3 = CeO2- +4.0 H+ + -llnl_gamma 4.0 + log_k -38.758 + -delta_H 308.503 kJ/mol # Calculated enthalpy of reaction CeO2- +# Enthalpy of formation: -230.3 kcal/mol + -analytic 1.0059e+002 3.4824e-003 -1.5873e+004 -3.3056e+001 -4.7656e+005 +# -Range: 0-300 + +2.0 H2O + Ce+3 = CeO2H +3.0 H+ + -llnl_gamma 3.0 + log_k -26.1503 + -delta_H 228.17 kJ/mol # Calculated enthalpy of reaction CeO2H +# Enthalpy of formation: -249.5 kcal/mol + -analytic 3.5650e+002 4.6708e-002 -2.4320e+004 -1.2731e+002 -3.7959e+002 +# -Range: 0-300 + +H2O + Ce+3 = CeOH+2 + H+ + -llnl_gamma 4.5 + log_k -8.4206 + -delta_H 73.2911 kJ/mol # Calculated enthalpy of reaction CeOH+2 +# Enthalpy of formation: -218.2 kcal/mol + -analytic 7.5809e+001 1.2863e-002 -6.7244e+003 -2.6473e+001 -1.0495e+002 +# -Range: 0-300 + +H2O + Ce+4 = CeOH+3 + H+ + -llnl_gamma 5.0 + log_k +3.2049 + -delta_H 0 # Not possible to calculate enthalpy of reaction CeOH+3 +# Enthalpy of formation: -0 kcal/mol + +HPO4-2 + Ce+3 = CePO4 + H+ + -llnl_gamma 3.0 + log_k -0.9718 + -delta_H 0 # Not possible to calculate enthalpy of reaction CePO4 +# Enthalpy of formation: -0 kcal/mol + +SO4-2 + Ce+3 = CeSO4+ + -llnl_gamma 4.0 + log_k -3.687 + -delta_H 19.2464 kJ/mol # Calculated enthalpy of reaction CeSO4+ +# Enthalpy of formation: -380.2 kcal/mol + -analytic 3.0156e+002 8.5149e-002 -1.1025e+004 -1.1866e+002 -1.7213e+002 +# -Range: 0-300 + +2.0 H+ + Pb+2 + 0.5 O2 = Pb+4 + H2O + -llnl_gamma 5.5 + log_k -14.1802 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb+4 +# Enthalpy of formation: -0 kcal/mol + +2.0 HCO3- + Pb+2 = Pb(CO3)2-2 +2.0 H+ + -llnl_gamma 4.0 + log_k -11.2576 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(CO3)2-2 +# Enthalpy of formation: -0 kcal/mol + +2.0 ClO3- + Pb+2 = Pb(ClO3)2 + -llnl_gamma 3.0 + log_k -0.5133 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(ClO3)2 +# Enthalpy of formation: -0 kcal/mol + +2.0 H2O + Pb+2 = Pb(OH)2 +2.0 H+ + -llnl_gamma 3.0 + log_k -17.0902 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)2 +# Enthalpy of formation: -0 kcal/mol + +3.0 H2O + Pb+2 = Pb(OH)3- +3.0 H+ + -llnl_gamma 4.0 + log_k -28.0852 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)3- +# Enthalpy of formation: -0 kcal/mol + +2.0 Pb+2 + H2O = Pb2OH+3 + H+ + -llnl_gamma 5.0 + log_k -6.3951 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2OH+3 +# Enthalpy of formation: -0 kcal/mol + +4.0 H2O + 3.0 Pb+2 = Pb3(OH)4+2 +4.0 H+ + -llnl_gamma 4.5 + log_k -23.8803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb3(OH)4+2 +# Enthalpy of formation: -0 kcal/mol + +4.0 Pb+2 + 4.0 H2O = Pb4(OH)4+4 +4.0 H+ + -llnl_gamma 5.5 + log_k -20.8803 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4(OH)4+4 +# Enthalpy of formation: -0 kcal/mol + +8.0 H2O + 6.0 Pb+2 = Pb6(OH)8+4 +8.0 H+ + -llnl_gamma 5.5 + log_k -43.5606 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb6(OH)8+4 +# Enthalpy of formation: -0 kcal/mol + + + Pb+2 + HCO3- = PbCO3 + H+ + -llnl_gamma 3.0 + log_k -3.7488 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbCO3 +# Enthalpy of formation: -0 kcal/mol + + Pb+2 + Cl- = PbCl+ + -llnl_gamma 4.0 + log_k +1.4374 + -delta_H 4.53127 kJ/mol # Calculated enthalpy of reaction PbCl+ +# Enthalpy of formation: -38.63 kcal/mol + -analytic 1.1948e+002 4.3527e-002 -2.7666e+003 -4.9190e+001 -4.3206e+001 +# -Range: 0-300 + +2.0 Cl- + Pb+2 = PbCl2 + -llnl_gamma 3.0 + log_k +2.0026 + -delta_H 8.14206 kJ/mol # Calculated enthalpy of reaction PbCl2 +# Enthalpy of formation: -77.7 kcal/mol + -analytic 2.2537e+002 7.7574e-002 -5.5112e+003 -9.2131e+001 -8.6064e+001 +# -Range: 0-300 + +3.0 Cl- + Pb+2 = PbCl3- + -llnl_gamma 4.0 + log_k +1.6881 + -delta_H 7.86174 kJ/mol # Calculated enthalpy of reaction PbCl3- +# Enthalpy of formation: -117.7 kcal/mol + -analytic 2.5254e+002 8.9159e-002 -6.0116e+003 -1.0395e+002 -9.3880e+001 +# -Range: 0-300 + +4.0 Cl- + Pb+2 = PbCl4-2 + -llnl_gamma 4.0 + log_k +1.4909 + -delta_H -7.18811 kJ/mol # Calculated enthalpy of reaction PbCl4-2 +# Enthalpy of formation: -161.23 kcal/mol + -analytic 1.4048e+002 7.6332e-002 -1.1507e+003 -6.3786e+001 -1.7997e+001 +# -Range: 0-300 + + Pb+2 + ClO3- = PbClO3+ + -llnl_gamma 4.0 + log_k -0.2208 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbClO3+ +# Enthalpy of formation: -0 kcal/mol + + Pb+2 + F- = PbF+ + -llnl_gamma 4.0 + log_k +0.8284 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbF+ +# Enthalpy of formation: -0 kcal/mol + +2.0 F- + Pb+2 = PbF2 + -llnl_gamma 3.0 + log_k +1.6132 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbF2 +# Enthalpy of formation: -0 kcal/mol + + Pb+2 + HPO4-2 + H+ = PbH2PO4+ + -llnl_gamma 4.0 + log_k +1.5 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbH2PO4+ +# Enthalpy of formation: -0 kcal/mol + + Pb+2 + HPO4-2 = PbHPO4 + -llnl_gamma 3.0 + log_k +3.1000 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbHPO4 +# Enthalpy of formation: -0 kcal/mol + + Pb+2 + NO3- = PbNO3+ + -llnl_gamma 4.0 + log_k +1.2271 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbNO3+ +# Enthalpy of formation: -0 kcal/mol + + Pb+2 + H2O = PbOH+ + H+ + -llnl_gamma 4.0 + log_k -7.6951 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbOH+ +# Enthalpy of formation: -0 kcal/mol + +2.0 HPO4-2 + Pb+2 = PbP2O7-2 + H2O + -llnl_gamma 4.0 + log_k +7.4136 + -delta_H 0 # Not possible to calculate enthalpy of reaction PbP2O7-2 +# Enthalpy of formation: -0 kcal/mol + +1.0 Sr+2 + 1.0 HCO3- = SrCO3 +1.0 H+ + -llnl_gamma 3.0 + log_k -7.4635 + -delta_H 33.2544 kJ/mol # Calculated enthalpy of reaction SrCO3 +# Enthalpy of formation: -288.62 kcal/mol + -analytic 2.2303e+002 5.2582e-002 -8.4861e+003 -8.7975e+001 -1.3248e+002 +# -Range: 0-300 + +1.0 Sr+2 + 1.0 Cl- = SrCl+ + -llnl_gamma 4.0 + log_k -0.2485 + -delta_H 7.58559 kJ/mol # Calculated enthalpy of reaction SrCl+ +# Enthalpy of formation: -169.79 kcal/mol + -analytic 9.4568e+001 3.9042e-002 -2.1458e+003 -4.0105e+001 -3.3511e+001 +# -Range: 0-300 + +1.0 Sr+2 + 1.0 F- = SrF+ + -llnl_gamma 4.0 + log_k +0.1393 + -delta_H 4.8116 kJ/mol # Calculated enthalpy of reaction SrF+ +# Enthalpy of formation: -210.67 kcal/mol + -analytic 9.0295e+001 3.7609e-002 -1.9012e+003 -3.8379e+001 -2.9693e+001 +# -Range: 0-300 + +1.0 Sr+2 + 1.0 HPO4-2 + 1.0 H+ = SrH2PO4+ + -llnl_gamma 4.0 + log_k +0.7300 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrH2PO4+ +# Enthalpy of formation: -0 kcal/mol + +1.0 Sr+2 + 1.0 HPO4-2 = SrHPO4 + -llnl_gamma 3.0 + log_k +2.0600 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrHPO4 +# Enthalpy of formation: -0 kcal/mol + +1.0 Sr+2 + 1.0 NO3- = SrNO3+ + -llnl_gamma 4.0 + log_k +0.8000 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrNO3+ +# Enthalpy of formation: -0 kcal/mol + +1.0 Sr+2 + 1.0 H2O = SrOH+ +1.0 H+ + -llnl_gamma 4.0 + log_k -13.29 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrOH+ +# Enthalpy of formation: -0 kcal/mol + +2.0 HPO4-2 + 1.0 Sr+2 = SrP2O7-2 +1.0 H2O + -llnl_gamma 4.0 + log_k +1.6537 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrP2O7-2 +# Enthalpy of formation: -0 kcal/mol + +1.0 Sr+2 + 1.0 SO4-2 = SrSO4 + -llnl_gamma 3.0 + log_k +2.3000 + -delta_H 0 # Not possible to calculate enthalpy of reaction SrSO4 +# Enthalpy of formation: -0 kcal/mol + + + +PHASES + +#------------ +# 375 solids +#------------ + +[(6)(CB)(CB)S] + S + O2 = SO2 + log_k 63.04 + -analytic 137.16 -0.320465 0 0 0 0.000241 +# Range 0-350 + -Vm 16.5 +# Extrapol supcrt92 +# Ref R01, calculations and fit by N17 + +[(aro)-O-(aro)] + O = 0.5 O2 + log_k -20.610681 + -delta_H 30.240 kcal/mol + -analytic -46.6 0.111 0 0 0 -7.99e-5 +# Range 0-350 + -Vm -2.4 +# Extrapol supcrt92 +# Ref RH98 + +Afwillite + Ca3Si2O4(OH)6 + 6 H+ = 2 SiO2 + 3 Ca+2 + 6 H2O + log_k 60.0452 + -delta_H -316.059 kJ/mol +# deltafH -1143.31 kcal/mol + -analytic 1.8353e1 1.9014e-3 1.8478e4 -6.6311 -4.0227e5 +# Range 0-300 + -Vm 129.23 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Akermanite + Ca2MgSi2O7 + 6 H+ = Mg+2 + 2 Ca+2 + 2 SiO2 + 3 H2O + log_k 45.3190 + -delta_H -288.575 kJ/mol +# deltafH -926.497 kcal/mol + -analytic -4.8295e1 -8.5613e-3 2.0880e4 1.3798e1 -7.1975e5 +# Range 0-350 + -Vm 92.81 +# Extrapol supcrt92 +# Ref HDN+78 + +Al + Al + 3 H+ + 0.75 O2 = Al+3 + 1.5 H2O + log_k 149.9292 + -delta_H -958.059 kJ/mol +# deltafH 0 kJ/mol + -analytic -1.8752e2 -4.6187e-2 5.7127e4 6.6270e1 -3.8952e5 +# Range 0-300 + -Vm 9.99 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Al2(SO4)3 + Al2(SO4)3 = 2 Al+3 + 3 SO4-2 + log_k 19.0535 + -delta_H -364.566 kJ/mol +# deltafH -3441.04 kJ/mol + -analytic -6.1001e2 -2.4268e-1 2.9194e4 2.4383e2 4.5573e2 +# Range 0-300 + -Vm 126.25 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Alabandite + MnS + H+ = HS- + Mn+2 + log_k -0.3944 + -delta_H -23.3216 kJ/mol +# deltafH -51 kcal/mol + -analytic -1.5515e2 -4.8820e-2 4.9049e3 6.1765e1 7.6583e1 +# Range 0-350 + -Vm 21.46 +# Extrapol supcrt92 +# Ref HDN+78 + +Albite + NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 + log_k 2.7645 + -delta_H -51.8523 kJ/mol +# deltafH -939.68 kcal/mol + -analytic -1.1694e1 1.4429e-2 1.3784e4 -7.2866 -1.6136e6 +# Range 0-350 + -Vm 100.25 +# Extrapol supcrt92 +# Ref HDN+78 + +Albite_high + NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 + log_k 4.0832 + -delta_H -62.8562 kJ/mol +# deltafH -937.05 kcal/mol + -analytic -1.8957e1 1.3726e-2 1.4801e4 -4.9732 -1.6442e6 +# Range 0-350 + -Vm 100.25 +# Extrapol supcrt92 +# Ref HDN+78 + +Albite_low + NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 + log_k 2.7645 + -delta_H -51.8523 kJ/mol +# deltafH -939.68 kcal/mol + -analytic -1.2860e1 1.4481e-2 1.3913e4 -6.9417 -1.6256e6 +# Range 0-350 + -Vm 100.25 +# Extrapol supcrt92 +# Ref HDN+78 + +Alum-K + KAl(SO4)2:12H2O = Al+3 + K+ + 2 SO4-2 + 12 H2O + log_k -4.8818 + -delta_H 14.4139 kJ/mol +# deltafH -1447 kcal/mol + -analytic -8.8025e2 -2.5706e-1 2.2399e4 3.5434e2 3.4978e2 +# Range 0-300 + -Vm 269.54 # Marion+09 +# Extrapol Cp integration +# Ref 73bar/kna + +Alunite + KAl3(OH)6(SO4)2 + 6 H+ = K+ + 2 SO4-2 + 3 Al+3 + 6 H2O + log_k -0.3479 + -delta_H -231.856 kJ/mol +# deltafH -1235.6 kcal/mol + -analytic -6.8581e2 -2.2455e-1 2.6886e4 2.6758e2 4.1973e2 +# Range 0-350 + -Vm 205.40 # thermo.com.V8.R6+.tdat +# Extrapol supcrt92 +# Ref HDN+78 + +Amesite-14A + Mg4Al4Si2O10(OH)8 + 20 H+ = 2 SiO2 + 4 Al+3 + 4 Mg+2 + 14 H2O + log_k 75.4571 + -delta_H -797.098 kJ/mol +# deltafH -2145.67 kcal/mol + -analytic -5.4326e2 -1.4144e-1 5.4150e4 1.9361e2 8.4512e2 +# Range 0-300 + -Vm 205.4 +# Extrapol Cp integration +# Ref 78wol + +Andalusite + Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O + log_k 15.9445 + -delta_H -235.233 kJ/mol +# deltafH -615.866 kcal/mol + -analytic -7.1115e1 -3.2234e-2 1.2308e4 2.2357e1 1.9208e2 +# Range 0-350 + -Vm 51.53 +# Extrapol supcrt92 +# Ref HDN+78 differ by 1.6 log K at 0C, 0.5 log K at 350C + +Andradite + Ca3Fe2(SiO4)3 + 12 H+ = 2 Fe+3 + 3 Ca+2 + 3 SiO2 + 6 H2O + log_k 33.3352 + -delta_H -301.173 kJ/mol +# deltafH -1380.35 kcal/mol + -analytic 1.3884e1 -2.3886e-2 1.5314e4 -8.1606 -4.2193e5 +# Range 0-350 + -Vm 131.85 +# Extrapol supcrt92 +# Ref HDN+78 + +Anhydrite + CaSO4 = Ca+2 + SO4-2 + log_k -4.3064 + -delta_H -18.577 kJ/mol +# deltafH -342.76 kcal/mol + -analytic -2.0986e2 -7.8823e-2 5.0969e3 8.5642e1 7.9594e1 +# Range 0-350 + -Vm 45.94 # thermo.com.V8.R6+.tdat +# Extrapol supcrt92 +# Ref HDN+78 + +Annite + KFe3AlSi3O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Fe+2 + 3 SiO2 + 6 H2O + log_k 29.4693 + -delta_H -259.964 kJ/mol +# deltafH -1232.19 kcal/mol + -analytic -4.0186e1 -1.4238e-2 1.8929e4 7.9859e0 -8.4343e5 +# Range 0-350 + -Vm 154.32 +# Extrapol supcrt92 +# Ref HDN+78 + +Anorthite + CaAl2(SiO4)2 + 8 H+ = Ca+2 + 2 Al+3 + 2 SiO2 + 4 H2O + log_k 26.5780 + -delta_H -303.039 kJ/mol +# deltafH -1007.55 kcal/mol + -analytic 3.9717e-1 -1.8751e-2 1.4897e4 -6.3078 -2.3885e5 +# Range 0-350 + -Vm 100.79 +# Extrapol supcrt92 +# Ref HDN+78 + +Anthophyllite + Mg7Si8O22(OH)2 + 14 H+ = 7 Mg+2 + 8 H2O + 8 SiO2 + log_k 66.7965 + -delta_H -483.486 kJ/mol +# deltafH -2888.75 kcal/mol + -analytic -1.2865e2 1.9705e-2 5.4853e4 1.9444e1 -3.8080e6 +# Range 0-350 + -Vm 264.4 +# Extrapol supcrt92 +# Ref HDN+78 + +Antigorite + Mg48Si34O85(OH)62 + 96 H+ = 34 SiO2 + 48 Mg+2 + 79 H2O + log_k 477.1943 + -delta_H -3364.43 kJ/mol +# deltafH -17070.9 kcal/mol + -analytic -8.1630e2 -6.7780e-2 2.5998e5 2.2029e2 -9.3275e6 +# Range 0-350 + -Vm 1749.13 +# Extrapol supcrt92 +# Ref HDN+78 + +Aragonite + CaCO3 + H+ = Ca+2 + HCO3- + log_k 1.9931 + -delta_H -25.8027 kJ/mol +# deltafH -288.531 kcal/mol + -analytic -1.4934e2 -4.8043e-2 4.9089e3 6.0284e1 7.6644e1 +# Range 0-325 + -Vm 34.15 # thermo.com.V8.R6+.tdat +# Extrapol supcrt92 +# Ref HDN+78 + +Arcanite + K2SO4 = SO4-2 + 2 K+ + log_k -1.8008 + -delta_H 23.836 kJ/mol +# deltafH -1437.78 kJ/mol + -analytic -1.6428e2 -6.7762e-2 1.9879e3 7.1116e1 3.1067e1 +# Range 0-300 + -Vm 65.50 # Marion+05 +# Extrapol Cp integration +# Ref RHF79 + +Artinite + Mg2CO3(OH)2:3H2O + 3 H+ = HCO3- + 2 Mg+2 + 5 H2O + log_k 19.6560 + -delta_H -130.432 kJ/mol +# deltafH -698.043 kcal/mol + -analytic -2.8614e2 -6.7344e-2 1.5230e4 1.1104e2 2.3773e2 +# Range 0-350 + -Vm 96.9 # 97.85 Webmineral.com +# Extrapol supcrt92 +# Ref HDN+78 + +Atacamite + Cu4Cl2(OH)6 + 6 H+ = 2 Cl- + 4 Cu+2 + 6 H2O + log_k 14.2836 + -delta_H -132.001 kJ/mol +# deltafH -1654.43 kJ/mol + -analytic -2.6623e2 -4.8121e-2 1.5315e4 9.8395e1 2.6016e2 +# Range 0-200 + -Vm 56.80 # Webmineral.com +# Extrapol Constant H approx +# Ref 87woo/gar + +Azurite + Cu3(CO3)2(OH)2 + 4 H+ = 2 H2O + 2 HCO3- + 3 Cu+2 + log_k 9.1607 + -delta_H -122.298 kJ/mol +# deltafH -390.1 kcal/mol + -analytic -4.4042e2 -1.1934e-1 1.8053e4 1.7158e2 2.8182e2 +# Range 0-350 + -Vm 91.01 +# Extrapol supcrt92 +# Ref HDN+78 + +B + B + 1.5 H2O + 0.75 O2 = B(OH)3 + log_k 109.5654 + -delta_H -636.677 kJ/mol +# deltafH 0 kJ/mol + -analytic 8.0471e1 1.2577e-3 2.9653e4 -2.8593e1 4.6268e2 +# Range 0-300 + -Vm 4.386 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +B2O3 + B2O3 + 3 H2O = 2 B(OH)3 + log_k 5.5464 + -delta_H -18.0548 kJ/mol +# deltafH -1273.5 kJ/mol + -analytic 9.0905e1 5.5365e-3 -2.6629e3 -3.1553e1 -4.1578e1 +# Range 0-300 + -Vm 28.30 # gfw/density +# Extrapol Cp integration +# Ref CWM89 + +Bassanite + CaSO4:0.5H2O = 0.5 H2O + Ca+2 + SO4-2 + log_k -3.6615 + -delta_H -18.711 kJ/mol +# deltafH -1576.89 kJ/mol + -analytic -2.2010e2 -8.0230e-2 5.5092e3 8.9651e1 8.6031e1 +# Range 0-300 + -Vm 52.31 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Bassetite + Fe(UO2)2(PO4)2 + 2 H+ = Fe+2 + 2 HPO4-2 + 2 UO2+2 + log_k -17.7240 + -delta_H -114.841 kJ/mol +# deltafH -1099.33 kcal/mol + -analytic -5.7788e1 -4.5400e-2 4.0119e3 1.6216e1 6.8147e1 +# Range 0-200 + -Vm 256.19 # Webmineral.com +# Extrapol Constant H approx +# Ref 78lan + +Beidellite-Ca + Ca.175Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Ca+2 + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 5.5914 + -delta_H -162.403 kJ/mol +# deltafH -1370.66 kcal/mol + -analytic 3.872e1 -1.431e-1 0 0 0 9.036e-5 +# Range 0-300 + -Vm 133.081 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78 wol differ by 1.5 log K at 0C, 1 log K at 300C + +Beidellite-Fe + Fe.175Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Fe+2 + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 4.6335 + -delta_H -154.65 kJ/mol +# deltafH -1351.1 kcal/mol + -analytic 3.641e1 -1.391e-1 0 0 0 8.671e-5 +# Range 0-300 + -Vm 134.293 +# Extrapol supcrt92 +# Ref Catalano13 + +Beidellite-K + K.35Al2.35Si3.65O10(OH)2 +7.4 H+ = 0.35 K+ + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 5.3088 + -delta_H -150.834 kJ/mol +# deltafH -1371.9 kcal/mol + -analytic 3.307e1 -1.254e-1 0 0 0 7.660e-5 +# Range 0-300 + -Vm 137.214 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78 wol differ by 2.9 log K at 0C, 1.7 log K at 300C + +Beidellite-Mg + Mg.175Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Mg+2 + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 5.5537 + -delta_H -165.455 kJ/mol +# deltafH -1366.89 kcal/mol + -analytic 3.750e1 -1.415e-1 0 0 0 8.929e-5 +# Range 0-300 + -Vm 132.116 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78 wol differ by 2.4 log K at 0C, 1.4 log K at 300C + +Beidellite-Na + Na.35Al2.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Na+ + 2.35 Al+3 + 3.65 SiO2 + 4.7 H2O + log_k 5.6473 + -delta_H -155.846 kJ/mol +# deltafH -1369.76 kcal/mol + -analytic 3.613e1 -1.347e-1 0 0 0 8.470e-5 +# Range 0-300 + -Vm 134.522 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, differ from 78 wol and Wilson+06 (which match) by 2.8 log K at 0C, 1.3 log K at 300C + +Berlinite + AlPO4 + H+ = Al+3 + HPO4-2 + log_k -7.2087 + -delta_H -96.6313 kJ/mol +# deltafH -1733.85 kJ/mol + -analytic -2.8134e2 -9.9933e-2 1.0308e4 1.0883e2 1.6094e2 +# Range 0-300 + -Vm 46.19 # Webmineral.com +# Extrapol Cp integration +# Ref WEP+82 + +Bieberite + CoSO4:7H2O = Co+2 + SO4-2 + 7 H2O + log_k -2.5051 + -delta_H 11.3885 kJ/mol +# deltafH -2980.02 kJ/mol + -analytic -2.6405e2 -7.2497e-2 6.6673e3 1.0538e2 1.0411e2 +# Range 0-300 + -Vm 147.95 # Webmineral.com +# Extrapol Cp integration +# Ref WEP+82 + +Bixbyite + Mn2O3 + 6 H+ = 2 Mn+3 + 3 H2O + log_k -0.9655 + -delta_H -190.545 kJ/mol +# deltafH -958.971 kJ/mol + -analytic -1.1600e2 -2.8056e-3 1.3418e4 2.8639e1 2.0941e2 +# Range 0-300 + -Vm 31.89 # Webmineral.com, density 4.95 +# Extrapol Cp integration +# Ref RHF79 + +Boehmite + AlO2H + 3 H+ = Al+3 + 2 H2O + log_k 7.5642 + -delta_H -113.282 kJ/mol +# deltafH -238.24 kcal/mol + -analytic -1.2196e2 -3.1138e-2 8.8643e3 4.4075e1 1.3835e2 +# Range 0-225 + -Vm 19.535 +# Extrapol supcrt92 +# Ref HDN+78, 95pok/hel + +Borax + Na2(B4O5(OH)4):8H2O + 2 H+ = 2 Na+ + 4 B(OH)3 + 5 H2O + log_k 12.0395 + -delta_H 80.5145 kJ/mol +# deltafH -6288.44 kJ/mol + -analytic 7.8374e1 1.9328e-2 -5.3279e3 -2.1914e1 -8.3160e1 +# Range 0-300 + -Vm 222.66 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Boric_acid + B(OH)3 = B(OH)3 + log_k -0.1583 + -delta_H 20.2651 kJ/mol +# deltafH -1094.8 kJ/mol + -analytic 3.9122e1 6.4058e-3 -2.2525e3 -1.3592e1 -3.5160e1 +# Range 0-300 + -Vm 43.09 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Bornite + Cu5FeS4 + 4 H+ = Cu+2 + Fe+2 + 4 Cu+ + 4 HS- + log_k -102.4369 + -delta_H 530.113 kJ/mol +# deltafH -79.922 kcal/mol + -analytic -7.0495e2 -2.0082e-1 -9.1376e3 2.8004e2 -1.4238e2 +# Range 0-350 + -Vm 98.6 +# Extrapol supcrt92 +# Ref HDN+78 + +Brezinaite + Cr3S4 + 4 H+ = Cr+2 + 2 Cr+3 + 4 HS- + log_k 2.7883 + -delta_H -216.731 kJ/mol +# deltafH -111.9 kcal/mol + -analytic -7.0528e1 -3.6568e-2 1.0598e4 1.9665e1 1.8000e2 +# Range 0-200 + -Vm 69.16 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 78vau/cra + +Brochantite + Cu4(SO4)(OH)6 + 6 H+ = SO4-2 + 4 Cu+2 + 6 H2O + log_k 15.4363 + -delta_H -163.158 kJ/mol +# deltafH -2198.72 kJ/mol + -analytic -2.3609e2 -3.9046e-2 1.5970e4 8.4701e1 2.7127e2 +# Range 0-200 + -Vm 113.60 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87woo/gar + +Brucite + Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O + log_k 16.2980 + -delta_H -111.34 kJ/mol +# deltafH -221.39 kcal/mol + -analytic -1.0280e2 -1.9759e-2 9.0180e3 3.8282e1 1.4075e2 +# Range 0-350 + -Vm 24.63 +# Extrapol supcrt92 +# Ref HDN+78 + +Bunsenite + NiO + 2 H+ = H2O + Ni+2 + log_k 12.4719 + -delta_H -100.069 kJ/mol +# deltafH -57.3 kcal/mol + -analytic -8.1664e1 -1.9796e-2 7.4064e3 3.0385e1 1.1559e2 +# Range 0-350 + -Vm 10.97 +# Extrapol supcrt92 +# Ref HDN+78 + +C + C + H2O + O2 = H+ + HCO3- + log_k 64.1735 + -delta_H -391.961 kJ/mol +# deltafH 0 kcal/mol + -analytic -3.5556e1 -3.3691e-2 1.9774e4 1.7548e1 3.0856e2 +# Range 0-350 + -Vm 5.298 +# Extrapol supcrt92 +# Ref HDN+78 + +Ca + Ca +2 H+ + 0.5 O2 = Ca+2 + H2O + log_k 139.8465 + -delta_H -822.855 kJ/mol +# deltafH 0 kJ/mol + -analytic -1.1328e2 -2.6554e-2 4.7638e4 4.1989e1 -2.3545e5 +# Range 0-300 + -Vm 26.19 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Ca-Al_Pyroxene + CaAl2SiO6 + 8 H+ = Ca+2 + SiO2 + 2 Al+3 + 4 H2O + log_k 35.9759 + -delta_H -361.548 kJ/mol +# deltafH -783.793 kcal/mol + -analytic -1.4664e2 -5.0409e-2 2.1045e4 5.1318e1 3.2843e2 +# Range 0-350 + -Vm 63.5 +# Extrapol supcrt92 +# Ref HDN+78 + +Ca3Al2O6 + Ca3Al2O6 + 12 H+ = 2 Al+3 + 3 Ca+2 + 6 H2O + log_k 113.0460 + -delta_H -833.336 kJ/mol +# deltafH -857.492 kcal/mol + -analytic -2.7163e2 -5.2897e-2 5.0815e4 9.2946e1 8.6300e2 +# Range 0-200 + -Vm 88.94 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +Ca4Al2Fe2O10 + Ca4Al2Fe2O10 + 20 H+ = 2 Al+3 + 2 Fe+3 + 4 Ca+2 + 10 H2O + log_k 140.5050 + -delta_H -1139.86 kJ/mol +# deltafH -1211 kcal/mol + -analytic -4.1808e2 -8.2787e-2 7.0288e4 1.4043e2 1.1937e3 +# Range 0-200 + -Vm 130.28 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +CaAl2O4 + CaAl2O4 + 8 H+ = Ca+2 + 2 Al+3 + 4 H2O + log_k 46.9541 + -delta_H -436.952 kJ/mol +# deltafH -555.996 kcal/mol + -analytic -3.0378e2 -7.9356e-2 3.0096e4 1.1049e2 4.6971e2 +# Range 0-300 + -Vm 53.02 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +CaAl4O7 + CaAl4O7 + 14 H+ = Ca+2 + 4 Al+3 + 7 H2O + log_k 68.6138 + -delta_H -718.464 kJ/mol +# deltafH -951.026 kcal/mol + -analytic -3.1044e2 -6.7078e-2 4.4566e4 1.0085e2 7.5689e2 +# Range 0-200 + -Vm 89.35 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +CaUO4 + CaUO4 + 4 H+ = Ca+2 + UO2+2 + 2 H2O + log_k 15.9420 + -delta_H -131.46 kJ/mol +# deltafH -2002.3 kJ/mol + -analytic -8.7902e1 -1.9810e-2 9.2354e3 3.1832e1 1.4414e2 +# Range 0-300 + -Vm 45.92 # M13 +# Extrapol Cp integration +# Ref 92gre/fug + +Calcite + CaCO3 + H+ = Ca+2 + HCO3- + log_k 1.8487 + -delta_H -25.7149 kJ/mol +# deltafH -288.552 kcal/mol + -analytic -1.4978e2 -4.8370e-2 4.8974e3 6.0458e1 7.6464e1 +# Range 0-350 + -Vm 36.934 +# Extrapol supcrt92 +# Ref HDN+78 + +Cattierite + CoS2 = Co+2 + S2-2 + log_k -29.9067 +# deltafH -36.589 kcal/mol + -analytic -2.1970e2 -7.8585e-2 -1.9592e3 8.8809e1 -3.0507e1 +# Range 0-300 + -Vm 25.53 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 78vau/cra + +Celadonite + KMgAlSi4O10(OH)2 + 6 H+ = Al+3 + K+ + Mg+2 + 4 H2O + 4 SiO2 + log_k 7.4575 + -delta_H -74.3957 kJ/mol +# deltafH -1394.9 kcal/mol + -analytic -3.3097e1 1.7989e-2 1.8919e4 -2.1219 -2.0588e6 +# Range 0-300 + -Vm 157.1 +# Extrapol supcrt92, Cp integration +# Ref HDN+78, 78wol match + +Chalcanthite + CuSO4:5H2O = Cu+2 + SO4-2 + 5 H2O + log_k -2.6215 + -delta_H 6.57556 kJ/mol +# deltafH -2279.68 kJ/mol + -analytic -1.1262e2 -1.5544e-2 3.6176e3 4.1420e1 6.1471e1 +# Range 0-200 + -Vm 108.97 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Chalcedony + SiO2 = SiO2 + log_k -3.7281 + -delta_H 31.4093 kJ/mol +# deltafH -217.282 kcal/mol + -analytic -9.0068 9.3241e-3 4.0535e3 -1.0830 -7.5077e5 +# Range 0-350 + -Vm 22.68 +# Extrapol supcrt92 +# Ref HDN+78 + +Chalcocite + Cu2S + H+ = HS- + 2 Cu+ + log_k -34.7342 + -delta_H 206.748 kJ/mol +# deltafH -19 kcal/mol + -analytic -1.3703e2 -4.0727e-2 -7.1694e3 5.5963e1 -1.1183e2 +# Range 0-350 + -Vm 27.48 +# Extrapol supcrt92 +# Ref HDN+78 + +Chalcocyanite + CuSO4 = Cu+2 + SO4-2 + log_k 2.9239 + -delta_H -72.5128 kJ/mol +# deltafH -771.4 kJ/mol + -analytic 5.8173 -1.6933e-2 2.0097e3 -1.8583 3.4126e1 +# Range 0-200 + -Vm 40.88 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref CWM89 + +Chalcopyrite + CuFeS2 + 2 H+ = Cu+2 + Fe+2 + 2 HS- + log_k -32.5638 + -delta_H 127.206 kJ/mol +# deltafH -44.453 kcal/mol + -analytic -3.1575e2 -9.8947e-2 8.3400e2 1.2522e2 1.3106e1 +# Range 0-350 + -Vm 42.83 +# Extrapol supcrt92 +# Ref HDN+78 + +Chloromagnesite + MgCl2 = Mg+2 + 2 Cl- + log_k 21.8604 + -delta_H -158.802 kJ/mol +# deltafH -641.317 kJ/mol + -analytic -2.3640e2 -8.2017e-2 1.3480e4 9.5963e1 2.1042e2 +# Range 0-300 + -Vm 40.95 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Chromite + FeCr2O4 + 8 H+ = Fe+2 + 2 Cr+3 + 4 H2O + log_k 15.1685 + -delta_H -267.755 kJ/mol +# deltafH -1444.83 kJ/mol + -analytic -1.9060e2 -2.5695e-2 1.9465e4 5.9865e1 3.0379e2 +# Range 0-300 + -Vm 44.01 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Chrysotile + Mg3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Mg+2 + 5 H2O + log_k 31.1254 + -delta_H -218.041 kJ/mol +# deltafH -1043.12 kcal/mol + -analytic -9.2462e1 -1.1359e-2 1.8312e4 2.9289e1 -6.2342e5 +# Range 0-350 + -Vm 108.5 +# Extrapol supcrt92 +# Ref HDN+78 + +Clinochlore-14A + Mg5Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Mg+2 + 12 H2O + log_k 67.2391 + -delta_H -612.379 kJ/mol +# deltafH -2116.96 kcal/mol + -analytic -2.0441e2 -6.2268e-2 3.5388e4 6.9239e1 5.5225e2 +# Range 0-350 + -Vm 207.11 +# Extrapol supcrt92 +# Ref HDN+78, Wilson+06 differ by 0.4 log K at 0C, 1.6 log K at 300C + +Clinochlore-7A + Mg5Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Mg+2 + 12 H2O + log_k 70.6124 + -delta_H -628.14 kJ/mol +# deltafH -2113.2 kcal/mol + -analytic -2.1644e2 -6.4187e-2 3.6548e4 7.4123e1 5.7037e2 +# Range 0-350 + -Vm 211.5 +# Extrapol supcrt92 +# Ref HDN+78 + +Clinoptilolite-K + K3.467Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 K+ + 14.533 SiO2 + 17.856 H2O + log_k -10.9485 + -delta_H 67.4862 kJ/mol +# deltafH -4937.77 kcal/mol + -analytic 1.1697e1 6.9480e-2 4.7718e4 -4.7442e1 -7.6907e6 +# Range 0-300 + -Vm 655.93 # Webmineral.com, density 2.15 +# Extrapol Cp integration +# Ref 89db 7 + +Clinozoisite + Ca2Al3Si3O12(OH) + 13 H+ = 2 Ca+2 + 3 Al+3 + 3 SiO2 + 7 H2O + log_k 43.2569 + -delta_H -457.755 kJ/mol +# deltafH -1643.78 kcal/mol + -analytic -2.8690e1 -3.7056e-2 2.2770e4 3.7880 -2.5834e5 +# Range 0-300 + -Vm 136.2 +# Extrapol supcrt92 +# Ref HDN+78, SH88 + +Co + Co + 2 H+ + 0.5 O2 = Co+2 + H2O + log_k 52.5307 + -delta_H -337.929 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.2703e1 -2.0172e-2 1.8888e4 2.3391e1 2.9474e2 +# Range 0-300 + -Vm 6.67 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Co2SiO4 + Co2SiO4 + 4 H+ = SiO2 + 2 Co+2 + 2 H2O + log_k 6.6808 + -delta_H -88.6924 kJ/mol +# deltafH -353.011 kcal/mol + -analytic -3.9978 -3.7985e-3 5.1554e3 -1.5033 -1.6100e5 +# Range 0-300 + -Vm 44.52 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CoCl2 + CoCl2 = Co+2 + 2 Cl- + log_k 8.2641 + -delta_H -79.5949 kJ/mol +# deltafH -312.722 kJ/mol + -analytic -2.2386e2 -8.0936e-2 8.8631e3 9.1528e1 1.3837e2 +# Range 0-300 + -Vm 38.69 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CoCl2:2H2O + CoCl2:2H2O = Co+2 + 2 Cl- + 2 H2O + log_k 4.6661 + -delta_H -40.7876 kJ/mol +# deltafH -923.206 kJ/mol + -analytic -5.6411e1 -2.3390e-2 3.0519e3 2.3361e1 5.1845e1 +# Range 0-200 + -Vm 66.61 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +CoCl2:6H2O + CoCl2:6H2O = Co+2 + 2 Cl- + 6 H2O + log_k 2.6033 + -delta_H 8.32709 kJ/mol +# deltafH -2115.67 kJ/mol + -analytic -1.5066e2 -2.2132e-2 5.0591e3 5.7743e1 8.5962e1 +# Range 0-200 + -Vm 123.66 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +CoFe2O4 + CoFe2O4 + 8 H+ = Co+2 + 2 Fe+3 + 4 H2O + log_k 0.8729 + -delta_H -160.674 kJ/mol +# deltafH -272.466 kcal/mol + -analytic -3.0149e2 -7.9159e-2 1.5683e4 1.1046e2 2.4480e2 +# Range 0-300 + -Vm 44 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +CoO + CoO + 2 H+ = Co+2 + H2O + log_k 13.5553 + -delta_H -106.05 kJ/mol +# deltafH -237.946 kJ/mol + -analytic -8.4424e1 -1.9457e-2 7.8616e3 3.1281e1 1.2270e2 +# Range 0-300 + -Vm 11.64 # gfw/density +# Extrapol Cp integration +# Ref WEP+82 + +CoS + CoS + H+ = Co+2 + HS- + log_k -7.3740 + -delta_H 10.1755 kJ/mol +# deltafH -20.182 kcal/mol + -analytic -1.5128e2 -4.8484e-2 2.9553e3 5.9983e1 4.6158e1 +# Range 0-300 + -Vm 22.91 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +CoSO4 + CoSO4 = Co+2 + SO4-2 + log_k 2.8996 + -delta_H -79.7952 kJ/mol +# deltafH -887.964 kJ/mol + -analytic -1.9907e2 -7.7890e-2 7.7193e3 8.0525e1 1.2051e2 +# Range 0-300 + -Vm 41.78 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CoSO4:6H2O + CoSO4:6H2O = Co+2 + SO4-2 + 6 H2O + log_k -2.3512 + -delta_H 1.08483 kJ/mol +# deltafH -2683.87 kJ/mol + -analytic -2.5469e2 -7.3092e-2 6.6767e3 1.0172e2 1.0426e2 +# Range 0-300 + -Vm 130.30 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CoSO4:H2O + CoSO4:H2O = Co+2 + H2O + SO4-2 + log_k -1.2111 + -delta_H -52.6556 kJ/mol +# deltafH -287.032 kcal/mol + -analytic -1.0570e1 -1.6196e-2 1.7180e3 3.4000 2.9178e1 +# Range 0-200 + -Vm 56.26 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +Coesite + SiO2 = SiO2 + log_k -3.1893 + -delta_H 28.6144 kJ/mol +# deltafH -216.614 kcal/mol + -analytic -9.7312 9.1773e-3 4.2143e3 -7.8065e-1 -7.4905e5 +# Range 0-350 + -Vm 20.641 +# Extrapol supcrt92 +# Ref HDN+78 + +Coffinite + USiO4 + 4 H+ = SiO2 + U+4 + 2 H2O + log_k -8.0530 + -delta_H -49.2493 kJ/mol +# deltafH -1991.33 kJ/mol + -analytic 2.3126e2 6.2389e-2 -4.6189e3 -9.7976e1 -7.8517e1 +# Range 0-200 + -Vm 46.12 # thermo.com.V8.R6+.tdat +# Extrapol Constant H Approx +# Ref 92gre/fug + +Cordierite_anhyd + Mg2Al4Si5O18 + 16 H+ = 2 Mg+2 + 4 Al+3 + 5 SiO2 + 8 H2O + log_k 52.3035 + -delta_H -626.219 kJ/mol +# deltafH -2183.2 kcal/mol + -analytic 2.6562 -2.3801e-2 3.5192e4 -1.9911e1 -1.0894e6 +# Range 0-350 + -Vm 233.22 +# Extrapol supcrt92 +# Ref HDN+78 differ by 3 log K at 0C, 0.8 log K at 350C + +Cordierite_hydr + Mg2Al4Si5O18:H2O + 16 H+ = 2 Mg+2 + 4 Al+3 + 5 SiO2 + 9 H2O + log_k 49.8235 + -delta_H -608.814 kJ/mol +# deltafH -2255.68 kcal/mol + -analytic -1.2985e2 -4.1335e-2 4.1566e4 2.7892e1 -1.4819e6 +# Range 0-350 + -Vm 241.22 +# Extrapol supcrt92 +# Ref HDN+78 differ by 3.4 log K at 0C, 0.8 log K at 350C + +Corundum + Al2O3 + 6 H+ = 2 Al+3 + 3 H2O + log_k 18.3121 + -delta_H -258.626 kJ/mol +# deltafH -400.5 kcal/mol + -analytic -1.4278e2 -7.8519e-2 1.3776e4 5.5881e1 2.1501e2 +# Range 0-350 + -Vm 25.575 +# Extrapol supcrt92 +# Ref HDN+78, 95pok/hel differ by 1 log K at 0C, 7 log K at 300C !! flag + +Covellite + CuS + H+ = Cu+2 + HS- + log_k -22.8310 + -delta_H 101.88 kJ/mol +# deltafH -12.5 kcal/mol + -analytic -1.6068e2 -4.9040e-2 -1.4234e3 6.3536e1 -2.2164e1 +# Range 0-350 + -Vm 20.42 +# Extrapol supcrt92 +# Ref HDN+78 + +Cr + Cr + 3 H+ + 0.75 O2 = Cr+3 + 1.5 H2O + log_k 98.6784 + -delta_H -658.145 kJ/mol +# deltafH 0 kJ/mol + -analytic -2.2488e1 -5.5886e-3 3.4288e4 3.1585 5.3503e2 +# Range 0-300 + -Vm 7.231 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +CrCl3 + CrCl3 = Cr+3 + 3 Cl- + log_k 17.9728 + -delta_H -183.227 kJ/mol +# deltafH -556.5 kJ/mol + -analytic -2.6348e2 -9.5339e-2 1.4785e4 1.0517e2 2.3079e2 +# Range 0-300 + -Vm 57.38 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +CrO2 + CrO2 = 0.5 Cr+2 + 0.5 CrO4-2 + log_k -19.1332 + -delta_H 85.9812 kJ/mol +# deltafH -143 kcal/mol + -analytic 2.7763 -7.7698e-3 -5.2893e3 -7.4970e-1 -8.9821e1 +# Range 0-200 + -Vm 16.95 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 76del/hal + +CrO3 + CrO3 + H2O = CrO4-2 + 2 H+ + log_k -3.5221 + -delta_H -5.78647 kJ/mol +# deltafH -140.9 kcal/mol + -analytic -1.3262e2 -6.1411e-2 2.2083e3 5.6564e1 3.4497e1 +# Range 0-300 + -Vm 35.14 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 76del/hal + +CrS + CrS + H+ = Cr+2 + HS- + log_k -0.6304 + -delta_H -26.15 kJ/mol +# deltafH -31.9 kcal/mol + -analytic -1.1134e2 -3.5954e-2 3.8744e3 4.3815e1 6.0490e1 +# Range 0-300 + -Vm 17.33 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 76del/hal + +Cristobalite(alpha) + SiO2 = SiO2 + log_k -3.4488 + -delta_H 29.2043 kJ/mol +# deltafH -216.755 kcal/mol + -analytic -1.1936e1 9.0520e-3 4.3701e3 -1.1464e-1 -7.6568e5 +# Range 0-350 + -Vm 25.74 +# Extrapol supcrt92 +# Ref HDN+78 + +Cristobalite(beta) + SiO2 = SiO2 + log_k -3.0053 + -delta_H 24.6856 kJ/mol +# deltafH -215.675 kcal/mol + -analytic -4.7414 9.7567e-3 3.8831e3 -2.5830 -6.9636e5 +# Range 0-350 + -Vm 27.38 +# Extrapol supcrt92 +# Ref HDN+78 + +Cronstedtite-7A + Fe2Fe2SiO5(OH)4 + 10 H+ = SiO2 + 2 Fe+2 + 2 Fe+3 + 7 H2O + log_k 16.2603 + -delta_H -244.266 kJ/mol +# deltafH -697.413 kcal/mol + -analytic -2.3783e2 -7.1026e-2 1.7752e4 8.7147e1 2.7707e2 +# Range 0-300 + -Vm 110.9 # HDN+78 +# Extrapol Cp integration +# Ref 78wol + +Cu + Cu + 2 H+ + 0.5 O2 = Cu+2 + H2O + log_k 31.5118 + -delta_H -214.083 kJ/mol +# deltafH 0 kcal/mol + -analytic -7.0719e1 -2.0300e-2 1.2802e4 2.6401e1 1.9979e2 +# Range 0-300 + -Vm 7.113 +# Extrapol supcrt92 +# Ref HDN+78 + + +CuCl2 + CuCl2 = Cu+2 + 2 Cl- + log_k 3.7308 + -delta_H -48.5965 kJ/mol +# deltafH -219.874 kJ/mol + -analytic -1.7803e1 -2.4432e-2 1.5729e3 9.5104 2.6716e1 +# Range 0-200 + -Vm 39.71 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +CuCr2O4 + CuCr2O4 + 8 H+ = Cu+2 + 2 Cr+3 + 4 H2O + log_k 16.2174 + -delta_H -268.768 kJ/mol +# deltafH -307.331 kcal/mol + -analytic -1.8199e2 -1.0254e-2 2.0123e4 5.4062e1 3.4178e2 +# Range 0-200 + -Vm 42.74 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 76del/hal + +Cuprite + Cu2O + 2 H+ = H2O + 2 Cu+ + log_k -1.9031 + -delta_H 28.355 kJ/mol +# deltafH -40.83 kcal/mol + -analytic -8.6240e1 -1.1445e-2 1.7851e3 3.3041e1 2.7880e1 +# Range 0-350 + -Vm 23.437 +# Extrapol supcrt92 +# Ref HDN+78 + +Daphnite-14A + Fe5AlAlSi3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Fe+2 + 12 H2O + log_k 52.2821 + -delta_H -517.561 kJ/mol +# deltafH -1693.04 kcal/mol + -analytic -1.5261e2 -6.1392e-2 2.8283e4 5.1788e1 4.4137e2 +# Range 0-350 + -Vm 213.42 +# Extrapol supcrt92 +# Ref HDN+78 + +Daphnite-7A + Fe5AlAlSi3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Fe+2 + 12 H2O + log_k 55.6554 + -delta_H -532.326 kJ/mol +# deltafH -1689.51 kcal/mol + -analytic -1.6430e2 -6.3160e-2 2.9499e4 5.6442e1 4.6035e2 +# Range 0-300 + -Vm 221.2 +# Extrapol supcrt92 +# Ref HDN+78 + +Dawsonite + NaAlCO3(OH)2 + 3 H+ = Al+3 + HCO3- + Na+ + 2 H2O + log_k 4.3464 + -delta_H -76.3549 kJ/mol +# deltafH -1963.96 kJ/mol + -analytic -1.1393e2 -2.3487e-2 7.1758e3 4.0900e1 1.2189e2 +# Range 0-200 + -Vm 59.50 # Webmineral.com +# Extrapol Constant H approx +# Ref RHF79 + +Delafossite + CuFeO2 + 4 H+ = Cu+ + Fe+3 + 2 H2O + log_k -6.4172 + -delta_H -18.6104 kJ/mol +# deltafH -126.904 kcal/mol + -analytic -1.5275e2 -3.5478e-2 5.1404e3 5.6437e1 8.0255e1 +# Range 0-300 + -Vm 27.52 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +Diaspore + AlHO2 + 3 H+ = Al+3 + 2 H2O + log_k 7.1603 + -delta_H -110.42 kJ/mol +# deltafH -238.924 kcal/mol + -analytic -1.2618e2 -3.1671e-2 8.8737e3 4.5669e1 1.3850e2 +# Range 0-225 + -Vm 17.76 +# Extrapol supcrt92 +# Ref HDN+78, 95pok/hel + +Dicalcium_silicate + Ca2SiO4 + 4 H+ = SiO2 + 2 Ca+2 + 2 H2O + log_k 37.1725 + -delta_H -217.642 kJ/mol +# deltafH -2317.9 kJ/mol + -analytic -5.9723e1 -1.3682e-2 1.5461e4 2.1547e1 -3.7732e5 +# Range 0-300 + -Vm 59.11 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Diopside + CaMgSi2O6 + 4 H+ = Ca+2 + Mg+2 + 2 H2O + 2 SiO2 + log_k 20.9643 + -delta_H -133.775 kJ/mol +# deltafH -765.378 kcal/mol + -analytic 7.1240e1 1.5514e-2 8.1437e3 -3.0672e1 -5.6880e5 +# Range 0-350 + -Vm 66.09 +# Extrapol supcrt92 +# Ref HDN+78 + +Dioptase + CuSiO2(OH)2 + 2 H+ = Cu+2 + SiO2 + 2 H2O + log_k 6.0773 + -delta_H -25.2205 kJ/mol +# deltafH -1358.47 kJ/mol + -analytic 2.3913e2 6.2669e-2 -5.4030e3 -9.4420e1 -9.1834e1 +# Range 0-200 + -Vm 48.24 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87woo/gar + +Dolomite-dis + CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- + log_k 4.0579 + -delta_H -72.2117 kJ/mol +# deltafH -553.704 kcal/mol + -analytic -3.1706e2 -9.7886e-2 1.1442e4 1.2604e2 1.7864e2 +# Range 0-350 + -Vm 64.39 +# Extrapol supcrt92 +# Ref HDN+78 + +Dolomite-ord + CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- + log_k 2.5135 + -delta_H -59.9651 kJ/mol +# deltafH -556.631 kcal/mol + -analytic -3.1654e2 -9.7902e-2 1.0805e4 1.2607e2 1.6870e2 +# Range 0-350 + -Vm 64.34 +# Extrapol supcrt92 +# Ref HDN+78 + +Enstatite + MgSiO3 + 2 H+ = H2O + Mg+2 + SiO2 + log_k 11.3269 + -delta_H -82.7302 kJ/mol +# deltafH -369.686 kcal/mol + -analytic -4.9278e1 -3.2832e-3 9.5205e3 1.4437e1 -5.4324e5 +# Range 0-350 + -Vm 31.276 +# Extrapol supcrt92 +# Ref HDN+78 + +Epidote + Ca2FeAl2Si3O12OH + 13 H+ = Fe+3 + 2 Al+3 + 2 Ca+2 + 3 SiO2 + 7 H2O + log_k 32.9296 + -delta_H -386.451 kJ/mol +# deltafH -1543.99 kcal/mol + -analytic -2.6187e1 -3.6436e-2 1.9351e4 3.3671 -3.0319e5 +# Range 0-350 + -Vm 139.2 +# Extrapol supcrt92 +# Ref HDN+78 + +Epidote-ord + FeCa2Al2(OH)(SiO4)3 + 13 H+ = Fe+3 + 2 Al+3 + 2 Ca+2 + 3 SiO2 + 7 H2O + log_k 32.9296 + -delta_H -386.351 kJ/mol +# deltafH -1544.02 kcal/mol + -analytic 1.9379e1 -3.2870e-2 1.5692e4 -1.1901e1 2.4485e2 +# Range 0-350 + -Vm 139.2 +# Extrapol supcrt92 +# Ref HDN+78 + +Eskolaite + Cr2O3 + 2 H2O + 1.5 O2 = 2 CrO4-2 + 4 H+ + log_k -9.1306 + -delta_H -32.6877 kJ/mol +# deltafH -1139.74 kJ/mol + -analytic -2.0411e2 -1.2809e-1 2.2197e3 9.1186e1 3.4697e1 +# Range 0-300 + -Vm 29.09 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Ettringite + Ca6Al2(SO4)3(OH)12:26H2O + 12 H+ = 2 Al+3 + 3 SO4-2 + 6 Ca+2 + 38 H2O + log_k 62.5362 + -delta_H -382.451 kJ/mol +# deltafH -4193 kcal/mol + -analytic -1.0576e3 -1.1585e-1 5.9580e4 3.8585e2 1.0121e3 +# Range 0-200 + -Vm 697.28 # Webmineral.com +# Extrapol Constant H approx +# Ref 82sar/bar + +Eu + Eu + 3 H+ + 0.75 O2 = Eu+3 + 1.5 H2O + log_k 165.1443 + -delta_H -1025.08 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.5749e1 -2.8921e-2 5.4018e4 2.3561e1 8.4292e2 +# Range 0-300 + -Vm 28.97 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 85rar 2 + +Eu(OH)3 + Eu(OH)3 + 3 H+ = Eu+3 + 3 H2O + log_k 15.3482 + -delta_H -126.897 kJ/mol +# deltafH -1336.04 kJ/mol + -analytic -6.3077e1 -6.1421e-3 8.7323e3 2.0595e1 1.4831e+2 +# Range 0-200 + -Vm 38.44 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87rar 2 + +Eu2(SO4)3:8H2O + Eu2(SO4)3:8H2O = 2 Eu+3 + 3 SO4-2 + 8 H2O + log_k -10.8524 + -delta_H -86.59 kJ/mol +# deltafH -6139.77 kJ/mol + -analytic -5.6582e1 -3.8846e-2 3.3821e3 1.8561e1 5.7452e1 +# Range 0-200 + -Vm 245.41 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +Eu2O3(cubic) + Eu2O3 + 6 H+ = 2 Eu+3 + 3 H2O + log_k 51.7818 + -delta_H -406.403 kJ/mol +# deltafH -1661.96 kJ/mol + -analytic -5.3469e1 -1.2554e-2 2.1925e4 1.4324e1 3.7233e2 +# Range 0-200 + -Vm 48.29 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +Eu2O3(monoclinic) + Eu2O3 + 6 H+ = 2 Eu+3 + 3 H2O + log_k 53.3936 + -delta_H -417.481 kJ/mol +# deltafH -1650.88 kJ/mol + -analytic -5.4022e1 -1.2627e-2 2.2508e4 1.4416e1 3.8224e2 +# Range 0-200 + -Vm 44.02 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +Eu3O4 + Eu3O4 + 8 H+ = Eu+2 + 2 Eu+3 + 4 H2O + log_k 87.0369 + -delta_H -611.249 kJ/mol +# deltafH -2270.56 kJ/mol + -analytic -1.1829e2 -2.0354e-2 3.4981e4 3.8007e1 5.9407e2 +# Range 0-200 + -Vm 64.15 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +EuCl2 + EuCl2 = Eu+2 + 2 Cl- + log_k 5.9230 + -delta_H -39.2617 kJ/mol +# deltafH -822.5 kJ/mol + -analytic -2.5741e1 -2.4956e-2 1.5713e3 1.3670e1 2.6691e1 +# Range 0-200 + -Vm 45.49 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87rar 2 + +EuCl3 + EuCl3 = Eu+3 + 3 Cl- + log_k 19.7149 + -delta_H -170.861 kJ/mol +# deltafH -935.803 kJ/mol + -analytic 3.2865e1 -3.1877e-2 4.9792e3 -8.2294 8.4542e1 +# Range 0-200 + -Vm 52.83 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +EuCl3:6H2O + EuCl3:6H2O = Eu+3 + 3 Cl- + 6 H2O + log_k 4.9090 + -delta_H -40.0288 kJ/mol +# deltafH -2781.66 kJ/mol + -analytic -1.0987e2 -2.9851e-2 4.9991e3 4.3198e1 8.4930e1 +# Range 0-200 + -Vm 151.22 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +EuOCl + EuOCl + 2 H+ = Cl- + Eu+3 + H2O + log_k 15.6683 + -delta_H -147.173 kJ/mol +# deltafH -911.17 kJ/mol + -analytic -7.7446 -1.4960e-2 6.6242e3 2.2813 1.1249e2 +# Range 0-200 + -Vm 31.68 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87rar 2 + +EuS + EuS + H+ = Eu+2 + HS- + log_k 14.9068 + -delta_H -96.4088 kJ/mol +# deltafH -447.302 kJ/mol + -analytic -4.1026e1 -1.5582e-2 5.7842e3 1.6639e1 9.8238e1 +# Range 0-200 + -Vm 32.03 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +EuSO4 + EuSO4 = Eu+2 + SO4-2 + log_k -8.8449 + -delta_H 33.873 kJ/mol +# deltafH -1471.08 kJ/mol + -analytic 3.0262e-1 -1.7571e-2 -3.0392e3 2.5356 -5.1610e1 +# Range 0-200 + -Vm 49.71 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 85rar 2 + +Eucryptite + LiAlSiO4 + 4 H+ = Al+3 + Li+ + SiO2 + 2 H2O + log_k 13.6106 + -delta_H -141.818 kJ/mol +# deltafH -2124.41 kJ/mol + -analytic -2.2213 -8.2498e-3 6.4838e3 -1.4183 1.0117e2 +# Range 0-300 + -Vm 53.63 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Fayalite + Fe2SiO4 + 4 H+ = SiO2 + 2 Fe+2 + 2 H2O + log_k 19.1113 + -delta_H -152.256 kJ/mol +# deltafH -354.119 kcal/mol + -analytic 1.3853e1 -3.5501e-3 7.1496e3 -6.8710e0 -6.3310e4 +# Range 0-350 + -Vm 46.39 +# Extrapol supcrt92 +# Ref HDN+78 + +Fe + Fe + 2 H+ + 0.5 O2 = Fe+2 + H2O + log_k 59.0325 + -delta_H -372.029 kJ/mol +# deltafH 0 kcal/mol + -analytic -6.2882e1 -2.0379e-2 2.0690e4 2.3673e1 3.2287e2 +# Range 0-350 + -Vm 7.092 # thermo.com.V8.R6+.tdat +# Extrapol supcrt92 +# Ref RHF79 + +Fe(OH)2 + Fe(OH)2 + 2 H+ = Fe+2 + 2 H2O + log_k 13.9045 + -delta_H -95.4089 kJ/mol +# deltafH -568.525 kJ/mol + -analytic -8.6666e1 -1.8440e-2 7.5723e3 3.2597e1 1.1818e2 +# Range 0-300 + -Vm 26.43 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Fe(OH)3 + Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O + log_k 5.6556 + -delta_H -84.0824 kJ/mol +# deltafH -823.013 kJ/mol + -analytic -1.3316e2 -3.1284e-2 7.9753e3 4.9052e1 1.2449e2 +# Range 0-300 + -Vm 34.36 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Fe2(SO4)3 + Fe2(SO4)3 = 2 Fe+3 + 3 SO4-2 + log_k 3.2058 + -delta_H -250.806 kJ/mol +# deltafH -2577.16 kJ/mol + -analytic -5.8649e2 -2.3718e-1 2.2736e4 2.3601e2 3.5495e2 +# Range 0-300 + -Vm 130.77 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +FeO + FeO + 2 H+ = Fe+2 + H2O + log_k 13.5318 + -delta_H -106.052 kJ/mol +# deltafH -65.02 kcal/mol + -analytic -7.8750e1 -1.8268e-2 7.6852e3 2.9074e1 1.1994e2 +# Range 0-350 + -Vm 12 +# Extrapol supcrt92 +# Ref HDN+78 + +FeSO4 + FeSO4 = Fe+2 + SO4-2 + log_k 2.6565 + -delta_H -73.0878 kJ/mol +# deltafH -928.771 kJ/mol + -analytic -2.0794e2 -7.6891e-2 7.8705e3 8.3685e1 1.2287e2 +# Range 0-300 + -Vm 41.58 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Ferrite-Ca + CaFe2O4 + 8 H+ = Ca+2 + 2 Fe+3 + 4 H2O + log_k 21.5217 + -delta_H -264.738 kJ/mol +# deltafH -363.494 kcal/mol + -analytic -2.8472e2 -7.5870e-2 2.0688e4 1.0485e2 3.2289e2 +# Range 0-300 + -Vm 44.98 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Ferrite-Cu + CuFe2O4 + 8 H+ = Cu+2 + 2 Fe+3 + 4 H2O + log_k 10.3160 + -delta_H -211.647 kJ/mol +# deltafH -965.178 kJ/mol + -analytic -3.1271e2 -7.9976e-2 1.8818e4 1.1466e2 2.9374e2 +# Range 0-300 + -Vm 44.53 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Ferrite-Dicalcium + Ca2Fe2O5 + 10 H+ = 2 Ca+2 + 2 Fe+3 + 5 H2O + log_k 56.8331 + -delta_H -475.261 kJ/mol +# deltafH -2139.26 kJ/mol + -analytic -3.6277e2 -9.5015e-2 3.3898e4 1.3506e2 5.2906e2 +# Range 0-300 + -Vm 67.18 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Ferrite-Mg + MgFe2O4 + 8 H+ = Mg+2 + 2 Fe+3 + 4 H2O + log_k 21.0551 + -delta_H -280.056 kJ/mol +# deltafH -1428.42 kJ/mol + -analytic -2.8297e2 -7.4820e-2 2.1333e4 1.0295e2 3.3296e2 +# Range 0-300 + -Vm 44.57 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Ferrite-Zn + ZnFe2O4 + 8 H+ = Zn+2 + 2 Fe+3 + 4 H2O + log_k 11.7342 + -delta_H -226.609 kJ/mol +# deltafH -1169.29 kJ/mol + -analytic -2.9809e2 -7.7263e-2 1.9067e4 1.0866e2 2.9761e2 +# Range 0-300 + -Vm 45.23 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Ferrosilite + FeSiO3 + 2 H+ = Fe+2 + H2O + SiO2 + log_k 7.4471 + -delta_H -60.6011 kJ/mol +# deltafH -285.658 kcal/mol + -analytic 9.0041 3.7917e-3 5.1625e3 -6.3009 -3.9565e5 +# Range 0-350 + -Vm 32.952 +# Extrapol supcrt92 +# Ref HDN+78 + +Forsterite + Mg2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Mg+2 + log_k 27.8626 + -delta_H -205.614 kJ/mol +# deltafH -520 kcal/mol + -analytic -7.6195e1 -1.4013e-2 1.4763e4 2.5090e1 -3.0379e5 +# Range 0-350 + -Vm 43.79 +# Extrapol supcrt92 +# Ref HDN+78 + +Foshagite + Ca4Si3O9(OH)2:0.5H2O + 8 H+ = 3 SiO2 + 4 Ca+2 + 5.5 H2O + log_k 65.9210 + -delta_H -359.839 kJ/mol +# deltafH -1438.27 kcal/mol + -analytic 2.9983e1 5.5272e-3 2.3427e4 -1.3879e1 -8.9461e5 +# Range 0-300 + -Vm 154.23 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + + +Gd + Gd + 3 H+ + 0.75 O2 = Gd+3 + 1.5 H2O + log_k 180.7573 + -delta_H -1106.67 kJ/mol +# deltafH 0 kJ/mol + -analytic -3.3949e2 -6.5698e-2 7.4278e4 1.2189e2 -9.7055e5 +# Range 0-300 + -Vm 19.89 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Gehlenite + Ca2Al2SiO7 + 10 H+ = SiO2 + 2 Al+3 + 2 Ca+2 + 5 H2O + log_k 56.2997 + -delta_H -489.934 kJ/mol +# deltafH -951.225 kcal/mol + -analytic -2.1784e2 -6.7200e-2 2.9779e4 7.8488e1 4.6473e2 +# Range 0-350 + -Vm 90.24 +# Extrapol supcrt92 +# Ref HDN+78 + +Gibbsite + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 7.7560 + -delta_H -102.788 kJ/mol +# deltafH -309.065 kcal/mol + -analytic -1.1403e2 -3.6453e-2 7.7236e3 4.3134e1 1.2055e2 +# Range 0-150 + -Vm 31.956 +# Extrapol supcrt92 +# Ref HDN+78, 95pok/hel + +Goethite + FeOOH + 3 H+ = Fe+3 + 2 H2O + log_k 0.5345 + -delta_H -61.9291 kJ/mol +# deltafH -559.328 kJ/mol + -analytic -6.0331e1 -1.0847e-2 4.7759e3 1.9429e1 8.1122e1 +# Range 0-200 + -Vm 20.82 +# Extrapol supcrt92, Constant H approx +# Ref Sho09, MLS+03, RHF79 match + +Greenalite + Fe3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Fe+2 + 5 H2O + log_k 22.6701 + -delta_H -165.297 kJ/mol +# deltafH -787.778 kcal/mol + -analytic -1.4187e1 -3.8377e-3 1.1710e4 1.6442 -4.8290e5 +# Range 0-350 + -Vm 115 +# Extrapol supcrt92 +# Ref HDN+78, 78wol, Wilson+06 match + +Grossular + Ca3Al2(SiO4)3 + 12 H+ = 2 Al+3 + 3 Ca+2 + 3 SiO2 + 6 H2O + log_k 51.9228 + -delta_H -432.006 kJ/mol +# deltafH -1582.74 kcal/mol + -analytic 2.9389e1 -2.2478e-2 2.0323e4 -1.4624e1 -2.5674e5 +# Range 0-350 + -Vm 125.3 +# Extrapol supcrt92 +# Ref HDN+78 + +Gypsum + CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O + log_k -4.4823 + -delta_H -1.66746 kJ/mol +# deltafH -2022.69 kJ/mol + -analytic -2.4417e2 -8.3329e-2 5.5958e3 9.9301e1 8.7389e1 +# Range 0-300 + -Vm 74.69 # Marion+05 +# Extrapol Cp integration +# Ref RHF79 + +Gyrolite + Ca2Si3O7(OH)2:1.5H2O + 4 H+ = 2 Ca+2 + 3 SiO2 + 4.5 H2O + log_k 22.9099 + -delta_H -82.862 kJ/mol +# deltafH -1176.55 kcal/mol + -analytic -2.4416e1 1.4646e-2 1.6181e4 2.3723 -1.5369e6 +# -Range 0-300 + -Vm 136.85 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Halite + NaCl = Cl- + Na+ + log_k 1.5855 + -delta_H 3.7405 kJ/mol +# deltafH -98.26 kcal/mol + -analytic -1.0163e2 -3.4761e-2 2.2796e3 4.2802e1 3.5602e1 +# Range 0-350 + -Vm 27.015 +# Extrapol supcrt92 +# Ref HDN+78 + +Hatrurite + Ca3SiO5 + 6 H+ = SiO2 + 3 Ca+2 + 3 H2O + log_k 73.4056 + -delta_H -434.684 kJ/mol +# deltafH -700.234 kcal/mol + -analytic -4.5448e1 -1.9998e-2 2.3800e4 1.8494e1 -7.3385e4 +# Range 0-300 + -Vm 75.60 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Hausmannite + Mn3O4 + 8 H+ = Mn+2 + 2 Mn+3 + 4 H2O + log_k 10.1598 + -delta_H -268.121 kJ/mol +# deltafH -1387.83 kJ/mol + -analytic -2.0600e2 -2.2214e-2 2.0160e4 6.2700e1 3.1464e2 +# Range 0-300 + -Vm 48.07 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Heazlewoodite + Ni3S2 + 4 H+ + 0.5 O2 = H2O + 2 HS- + 3 Ni+2 + log_k 28.2477 + -delta_H -270.897 kJ/mol +# deltafH -203.012 kJ/mol + -analytic -3.5439e2 -1.1740e-1 2.1811e4 1.3919e2 3.4044e2 +# Range 0-300 + -Vm 40.95 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Hedenbergite + CaFe(SiO3)2 + 4 H+ = Ca+2 + Fe+2 + 2 H2O + 2 SiO2 + log_k 19.6060 + -delta_H -124.507 kJ/mol +# deltafH -678.276 kcal/mol + -analytic -1.9473e1 1.5288e-3 1.2910e4 2.1729 -9.0058e5 +# Range 0-350 + -Vm 68.27 +# Extrapol supcrt92 +# Ref HDN+78 + +Hematite + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k 0.1086 + -delta_H -129.415 kJ/mol +# deltafH -197.72 kcal/mol + -analytic -2.2015e2 -6.0290e-2 1.1812e4 8.0253e1 1.8438e2 +# Range 0-350 + -Vm 30.274 +# Extrapol supcrt92 +# Ref HDN+78 + +Hercynite + FeAl2O4 + 8 H+ = Fe+2 + 2 Al+3 + 4 H2O + log_k 28.8484 + -delta_H -345.961 kJ/mol +# deltafH -1966.45 kJ/mol + -analytic -3.1848e2 -7.9501e-2 2.5892e4 1.1483e2 4.0412e2 +# Range 0-300 + -Vm 40.75 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Hillebrandite + Ca2SiO3(OH)2:0.17H2O + 4 H+ = SiO2 + 2 Ca+2 + 3.17 H2O + log_k 36.8190 + -delta_H -203.074 kJ/mol +# deltafH -637.404 kcal/mol + -analytic -1.9360e1 -7.5176e-3 1.1947e4 8.0558 -1.4504e5 +# Range 0-300 + -Vm 71.79 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Huntite + CaMg3(CO3)4 + 4 H+ = Ca+2 + 3 Mg+2 + 4 HCO3- + log_k 10.3010 + -delta_H -171.096 kJ/mol +# deltafH -1082.6 kcal/mol + -analytic -6.5e2 -1.9671e-1 2.4815e4 2.5688e2 3.8740e2 +# Range 0-350 + -Vm 122.9 +# Extrapol supcrt92 +# Ref HDN+78 + +Hydromagnesite + Mg5(CO3)4(OH)2:4H2O + 6 H+ = 4 HCO3- + 5 Mg+2 + 6 H2O + log_k 30.8539 + -delta_H -289.696 kJ/mol +# deltafH -1557.09 kcal/mol + -analytic -7.9288e2 -2.1448e-1 3.6749e4 3.0888e2 5.7367e2 +# Range 0-350 + -Vm 208.8 +# Extrapol supcrt92 +# Ref HDN+78 + +Hydrophilite + CaCl2 = Ca+2 + 2 Cl- + log_k 11.7916 + -delta_H -81.4545 kJ/mol +# deltafH -795.788 kJ/mol + -analytic -2.2278e2 -8.1414e-2 9.0298e3 9.2349e1 1.4097e2 +# Range 0-300 + -Vm 49.99 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Hydroxyapatite + Ca5(OH)(PO4)3 + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 + log_k -3.0746 + -delta_H -191.982 kJ/mol +# deltafH -6685.52 kJ/mol + -analytic -8.5221e2 -2.9430e-1 2.8125e4 3.4044e2 4.3911e2 +# Range 0-300 + -Vm 128.9 +# Extrapol Cp integration +# Ref RHF79 + +Ice + H2O = H2O + log_k 0.1387 + -delta_H 6.74879 kJ/mol +# deltafH -69.93 kcal/mol + -analytic -2.3260e1 4.7948e-4 7.7351e2 8.3499 1.3143e1 +# Range 0-200 + -Vm 19.635 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 87kee/rup + +Ilmenite + FeTiO3 + 2 H+ + H2O = Fe+2 + Ti(OH)4 + log_k 0.9046 +# deltafH -1236.65 kJ/mol + -Vm 32.15 # Webmineral.com +# Ref RHF79 + +Jadeite + NaAl(SiO3)2 + 4 H+ = Al+3 + Na+ + 2 H2O + 2 SiO2 + log_k 8.3888 + -delta_H -84.4415 kJ/mol +# deltafH -722.116 kcal/mol + -analytic 1.5934 5.0757e-3 9.5602e3 -7.0164 -8.4454e5 +# Range 0-350 + -Vm 60.4 +# Extrapol supcrt92 +# Ref HDN+78 + +Jarosite + KFe3(SO4)2(OH)6 + 6 H+ = K+ + 2 SO4-2 + 3 Fe+3 + 6 H2O + log_k -9.3706 + -delta_H -191.343 kJ/mol +# deltafH -894.79 kcal/mol + -analytic -1.0813e2 -5.0381e-2 9.6893e3 3.2832e1 1.6457e2 +# Range 0-200 + -Vm 162.07 # Webmineral.com +# Extrapol Constant H approx +# Ref 75kas/bor + +K + K + H+ + 0.25 O2 = 0.5 H2O + K+ + log_k 70.9861 + -delta_H -392.055 kJ/mol +# deltafH 0 kJ/mol + -analytic -3.1102e1 -1.0003e-2 2.1338e4 1.3534e1 3.3296e2 +# Range 0-300 + -Vm 45.94 # Webelements.com +# Extrapol Cp integration +# Ref CWM89 + + +K-Feldspar + KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 + log_k -0.2753 + -delta_H -23.9408 kJ/mol +# deltafH -949.188 kcal/mol + -analytic -1.0684 1.3111e-2 1.1671e4 -9.9129 -1.5855e6 +# Range 0-350 + -Vm 108.87 +# Extrapol supcrt92 +# Ref HDN+78 + +K2O + K2O + 2 H+ = H2O + 2 K+ + log_k 84.0405 + -delta_H -427.006 kJ/mol +# deltafH -86.8 kcal/mol + -analytic -1.8283e1 -5.2255e-3 2.3184e4 1.0553e1 3.6177e2 +# Range 0-350 + -Vm 40.085 # gfw/density +# Extrapol supcrt92 +# Ref HDN+78 + +KAl(SO4)2 + KAl(SO4)2 = Al+3 + K+ + 2 SO4-2 + log_k 3.3647 + -delta_H -139.485 kJ/mol +# deltafH -2470.29 kJ/mol + -analytic -4.2785e2 -1.6303e-1 1.5311e4 1.7312e2 2.3904e2 +# Range 0-300 + -Vm 146.71 # gfw/density +# Extrapol Cp integration +# Ref RHF79 + +Kalsilite + KAlSiO4 + 4 H+ = Al+3 + K+ + SiO2 + 2 H2O + log_k 10.8987 + -delta_H -108.583 kJ/mol +# deltafH -509.408 kcal/mol + -analytic -6.7595 -7.4301e-3 6.5380e3 1.8999e-1 -2.2880e5 +# Range 0-350 + -Vm 59.89 +# Extrapol supcrt92 +# Ref HDN+78 + +Kaolinite + Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 SiO2 + 5 H2O + log_k 6.8101 + -delta_H -151.779 kJ/mol +# deltafH -982.221 kcal/mol + -analytic 1.6835e1 -7.8939e-3 7.7636e3 -1.2190e1 -3.2354e5 +# Range 0-350 + -Vm 99.52 +# Extrapol supcrt92 +# Ref HDN+78 differ by 1.6 log K at 0C, 0.4 log K at 350C + +KerogenC128 + C128H68O7 + 141.5 O2 = 128 CO2 + 34 H2O + log_k 10740.654 + -delta_H -14623.902 kcal/mol + -analytic 23405.37 -54.726 0 0 0 0.041 +# Range 0-350 + -Vm 1320.7 +# Extrapol supcrt92 +# Ref RH98, Hel+09 + +KerogenC292 + C292H288O12 + 358 O2 = 292 CO2 + 144 H2O + log_k 27153.69 + -delta_H -36994.127 kcal/mol + -analytic 59184.26 -138.37 0 0 0 0.10 +# Range 0-350 + -Vm 3398.2 +# Extrapol supcrt92 +# Ref RH98, Hel+09 + +KerogenC515 + C515H596O72 + 628 O2 = 515 CO2 + 298 H2O + log_k 48112.16 + -delta_H -65346.703 kcal/mol + -analytic 104660.55 -244.27 0 0 0 0.183 +# Range 0-350 + -Vm 6989.3 +# Extrapol supcrt92 +# Ref RH98, Hel+09 + +Kyanite + Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O + log_k 15.6740 + -delta_H -230.919 kJ/mol +# deltafH -616.897 kcal/mol + -analytic -7.3335e1 -3.2853e-2 1.2166e4 2.3412e1 1.8986e2 +# Range 0-175 + -Vm 44.09 +# Extrapol supcrt92 +# Ref HDN+78 + +Larnite + Ca2SiO4 + 4 H+ = SiO2 + 2 Ca+2 + 2 H2O + log_k 38.4665 + -delta_H -227.061 kJ/mol +# deltafH -551.74 kcal/mol + -analytic 2.6900e1 -2.1833e-3 1.0900e4 -9.5257 -7.2537e4 +# Range 0-300 + -Vm 51.6 # HDN+78 +# Extrapol Cp integration +# Ref 82sar/bar + +Lawrencite + FeCl2 = Fe+2 + 2 Cl- + log_k 9.0945 + -delta_H -84.7665 kJ/mol +# deltafH -341.65 kJ/mol + -analytic -2.2798e2 -8.1819e-2 9.2620e3 9.3097e1 1.4459e2 +# Range 0-300 + -Vm 40.31 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Lawsonite + CaAl2Si2O7(OH)2:H2O + 8 H+ = Ca+2 + 2 Al+3 + 2 SiO2 + 6 H2O + log_k 22.2132 + -delta_H -244.806 kJ/mol +# deltafH -1158.1 kcal/mol + -analytic 1.3995e1 -1.7668e-2 1.0119e4 -8.3100 1.5789e2 +# Range 0-350 + -Vm 101.32 +# Extrapol supcrt92 +# Ref HDN+78 + +Li + Li + H+ +0.25 O2 = 0.5 H2O + Li+ + log_k 72.7622 + -delta_H -418.339 kJ/mol +# deltafH 0 kJ/mol + -analytic -1.0227e2 -1.8118e-2 2.6262e4 3.8056e1 -1.6166e5 +# Range 0-300 + -Vm 13.017 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Lime + CaO + 2 H+ = Ca+2 + H2O + log_k 32.5761 + -delta_H -193.832 kJ/mol +# deltafH -151.79 kcal/mol + -analytic -7.2686e1 -1.7654e-2 1.2199e4 2.8128e1 1.9037e2 +# Range 0-350 + -Vm 16.764 +# Extrapol supcrt92 +# Ref HDN+78 + +Linnaeite + Co3S4 + 4 H+ = Co+2 + 2 Co+3 + 4 HS- + log_k -106.9017 + -delta_H 420.534 kJ/mol +# deltafH -85.81 kcal/mol + -analytic -6.0034e2 -2.0179e-1 -9.2145e3 2.3618e2 -1.4361e2 +# Range 0-300 + -Vm 63.55 # Webmineral.com +# Extrapol Cp integration +# Ref 78vau/cra + +Lizardite + Mg3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Mg+2 + 5 H2O + log_k 30.560 + -analytic 7.886e1 -2.108e-1 0 0 0 1.637e-4 +# Range 0-300 + -Vm 107.31 +# Extrapol supcrt92 +# Ref Wilson+06 + +Lopezite + K2Cr2O7 + H2O = 2 CrO4-2 + 2 H+ + 2 K+ + log_k -17.4366 + -delta_H 81.9227 kJ/mol +# deltafH -493.003 kcal/mol + -analytic 7.8359e1 -2.2908e-2 -9.3812e3 -2.3245e1 -1.5933e2 +# Range 0-200 + -Vm 109.93 # thermo.com.V8.R6+.tdat +# Extrapol Constant H Approx +# Ref 76del/hal + +Magnesiochromite + MgCr2O4 + 8 H+ = Mg+2 + 2 Cr+3 + 4 H2O + log_k 21.6927 + -delta_H -302.689 kJ/mol +# deltafH -1783.6 kJ/mol + -analytic -1.7376e2 -8.7429e-3 2.1600e4 5.0762e1 3.6685e2 +# Range 0-200 + -Vm 43.564 # thermo.com.V8.R6+.tdat +# Extrapol Constant H Approx +# Ref WEP+82 + +Magnesite + MgCO3 + H+ = HCO3- + Mg+2 + log_k 2.2936 + -delta_H -44.4968 kJ/mol +# deltafH -265.63 kcal/mol + -analytic -1.6665e2 -4.9469e-2 6.4344e3 6.5506e1 1.0045e2 +# Range 0-350 + -Vm 28.018 +# Extrapol supcrt92 +# Ref HDN+78 + +Magnetite + Fe3O4 + 8 H+ = Fe+2 + 2 Fe+3 + 4 H2O + log_k 10.4724 + -delta_H -216.597 kJ/mol +# deltafH -267.25 kcal/mol + -analytic -3.0510e2 -7.9919e-2 1.8709e4 1.1178e2 2.9203e2 +# Range 0-350 + -Vm 44.524 +# Extrapol supcrt92 +# Ref HDN+78 + +Malachite + Cu2CO3(OH)2 + 3 H+ = HCO3- + 2 Cu+2 + 2 H2O + log_k 5.9399 + -delta_H -76.2827 kJ/mol +# deltafH -251.9 kcal/mol + -analytic -2.7189e2 -6.9454e-2 1.1451e4 1.0511e2 1.7877e2 +# Range 0-350 + -Vm 54.86 +# Extrapol supcrt92 +# Ref HDN+78 + +Manganosite + MnO + 2 H+ = H2O + Mn+2 + log_k 17.9240 + -delta_H -121.215 kJ/mol +# deltafH -92.07 kcal/mol + -analytic -8.4114e1 -1.8490e-2 8.7792e3 3.1561e1 1.3702e2 +# Range 0-350 + -Vm 13.221 +# Extrapol supcrt92 +# Ref HDN+78 + +Margarite + CaAl4Si2O10(OH)2 + 14 H+ = Ca+2 + 2 SiO2 + 4 Al+3 + 8 H2O + log_k 41.0658 + -delta_H -522.192 kJ/mol +# deltafH -1485.8 kcal/mol + -analytic -2.3138e2 -8.2788e-2 3.0154e4 7.9148e1 4.7060e2 +# Range 0-350 + -Vm 129.4 +# Extrapol supcrt92 +# Ref HDN+78 differ by 3.3 log K at 0C, 1.1 log K at 350C + +Maximum_Microcline + KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 + log_k -0.2753 + -delta_H -23.9408 kJ/mol +# deltafH -949.188 kcal/mol + -analytic -9.4387 1.3561e-2 1.2656e4 -7.4925 -1.6795e6 +# Range 0-350 + -Vm 108.741 +# Extrapol supcrt92 +# Ref HDN+78 + +Mayenite + Ca12Al14O33 + 66 H+ = 12 Ca+2 + 14 Al+3 + 33 H2O + log_k 494.2199 + -delta_H -4056.77 kJ/mol +# deltafH -4644 kcal/mol + -analytic -1.4778e3 -2.9898e-1 2.4918e5 4.9518e2 4.2319e3 +# Range 0-200 + -Vm 517.41 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +Melanterite + FeSO4:7H2O = Fe+2 + SO4-2 + 7 H2O + log_k -2.3490 + -delta_H 11.7509 kJ/mol +# deltafH -3014.48 kJ/mol + -analytic -2.6230e2 -7.2469e-2 6.5854e3 1.0484e2 1.0284e2 +# Range 0-300 + -Vm 146.48 # Marion+08 +# Extrapol Cp integration +# Ref RHF79 + +Merwinite + MgCa3(SiO4)2 + 8 H+ = Mg+2 + 2 SiO2 + 3 Ca+2 + 4 H2O + log_k 68.5140 + -delta_H -430.069 kJ/mol +# deltafH -1090.8 kcal/mol + -analytic -2.2524e2 -4.2525e-2 3.5619e4 7.9984e1 -9.8259e5 +# Range 0-350 + -Vm 104.4 +# Extrapol supcrt92 +# Ref HDN+78 + +Mg + Mg + 2 H+ + 0.5 O2 = H2O + Mg+2 + log_k 122.5365 + -delta_H -745.731 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.5988e1 -1.9356e-2 4.0318e4 2.3862e1 6.2914e2 +# Range 0-300 + -Vm 13.996 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +MgOHCl + MgOHCl + H+ = Cl- + H2O + Mg+2 + log_k 15.9138 + -delta_H -118.897 kJ/mol +# deltafH -191.2 kcal/mol + -analytic -1.6614e2 -4.9715e-2 1.0311e4 6.5578e1 1.6093e2 +# Range 0-300 + -Vm 33.23 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 73bar/kna + +MgSO4 + MgSO4 = Mg+2 + SO4-2 + log_k 4.8781 + -delta_H -90.6421 kJ/mol +# deltafH -1284.92 kJ/mol + -analytic -2.2439e2 -7.9688e-2 9.3058e3 8.9622e1 1.4527e2 +# Range 0-300 + -Vm 45.25 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Millerite + NiS + H+ = HS- + Ni+2 + log_k -8.0345 + -delta_H 12.089 kJ/mol +# deltafH -82.171 kJ/mol + -analytic -1.4848e2 -4.8834e-2 2.6981e3 5.8976e1 4.2145e1 +# Range 0-300 + -Vm 16.89 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Minnesotaite + Fe3Si4O10(OH)2 + 6 H+ = 3 Fe+2 + 4 H2O + 4 SiO2 + log_k 13.9805 + -delta_H -105.211 kJ/mol +# deltafH -1153.37 kcal/mol + -analytic -1.8812e1 1.7261e-2 1.9804e4 -6.4410 -2.0433e6 +# Range 0-300 + -Vm 147.86 # HDN+78 +# Extrapol Cp integration +# Ref 78wol, Wilson+06 differ by 2.6 log K at 0C, 1.6 log K at 350C + +Mirabilite + Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O + log_k -1.1398 + -delta_H 79.4128 kJ/mol +# deltafH -4328 kJ/mol + -analytic -2.1877e2 -3.6692e-3 5.9214e3 8.0361e1 1.0063e2 +# Range 0-200 + -Vm 219.80 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref RHF79 + +Mn + Mn + 2 H+ + 0.5 O2 = H2O + Mn+2 + log_k 82.9505 + -delta_H -500.369 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.5558e1 -2.0429e-2 2.7571e4 2.5098e1 4.3024e2 +# Range 0-300 + -Vm 7.354 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Mn(OH)2(am) + Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O + log_k 15.3102 + -delta_H -97.1779 kJ/mol +# deltafH -695.096 kJ/mol + -analytic -7.8518e1 -7.5357e-3 8.0198e3 2.7955e1 1.3621e2 +# Range 0-200 + -Vm 22.36 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +MnCl2:2H2O + MnCl2:2H2O = Mn+2 + 2 Cl- + 2 H2O + log_k 4.0067 + -delta_H -34.4222 kJ/mol +# deltafH -1092.01 kJ/mol + -analytic -6.2823e1 -2.3959e-2 2.9931e3 2.5834e1 5.0850e1 +# Range 0-200 + -Vm 71.12 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +MnCl2:4H2O + MnCl2:4H2O = Mn+2 + 2 Cl- + 4 H2O + log_k 2.7563 + -delta_H -10.7019 kJ/mol +# deltafH -1687.41 kJ/mol + -analytic -1.1049e2 -2.3376e-2 4.0458e3 4.3097e1 6.8742e1 +# Range 0-200 + -Vm 98.46 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +MnCl2:H2O + MnCl2:H2O = H2O + Mn+2 + 2 Cl- + log_k 5.5517 + -delta_H -50.8019 kJ/mol +# deltafH -789.793 kJ/mol + -analytic -4.5051e1 -2.5923e-2 2.8739e3 1.9674e1 4.8818e1 +# Range 0-200 + -Vm 42.27 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +MnSO4 + MnSO4 = Mn+2 + SO4-2 + log_k 2.6561 + -delta_H -64.8718 kJ/mol +# deltafH -1065.33 kJ/mol + -analytic -2.3088e2 -8.2694e-2 8.1653e3 9.3256e1 1.2748e2 +# Range 0-300 + -Vm 46.46 # gfw/density +# Extrapol Cp integration +# Ref RHF79 + +Mo + Mo + 1.5 O2 + H2O = MoO4-2 + 2 H+ + log_k 109.3230 + -delta_H -693.845 kJ/mol +# deltafH 0 kJ/mol + -analytic -2.0021e2 -8.3006e-2 4.1629e4 8.0219e1 -3.4570e5 +# Range 0-300 + -Vm 9.387 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Molysite + FeCl3 = Fe+3 + 3 Cl- + log_k 13.5517 + -delta_H -151.579 kJ/mol +# deltafH -399.24 kJ/mol + -analytic -3.1810e2 -1.2357e-1 1.3860e4 1.3010e2 2.1637e2 +# Range 0-300 + -Vm 55.86 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Monohydrocalcite + CaCO3:H2O + H+ = Ca+2 + H2O + HCO3- + log_k 2.6824 + -delta_H -20.5648 kJ/mol +# deltafH -1498.29 kJ/mol + -analytic -7.2614e1 -1.7217e-2 3.1850e3 2.8185e1 5.4111e1 +# Range 0-200 + -Vm 49.62 # Webmineral.com +# Extrapol Constant H approx +# Ref RHF79 + +Monticellite + CaMgSiO4 + 4 H+ = Ca+2 + Mg+2 + SiO2 + 2 H2O + log_k 29.5852 + -delta_H -195.711 kJ/mol +# deltafH -540.8 kcal/mol + -analytic 1.5730e1 -3.5567e-3 9.0789e3 -6.3007 1.4166e2 +# Range 0-300 + -Vm 51.47 +# Extrapol supcrt92 +# Ref HDN+78 + +Montmor-Ca + Ca.175Mg.35Al1.65Si4O10(OH)2 + 6 H+ = 0.175 Ca+2 + 0.35 Mg+2 + 1.65 Al+3 + 4 H2O + 4 SiO2 + log_k 2.4952 + -delta_H -100.154 kJ/mol +# deltafH -1361.5 kcal/mol + -analytic 2.459e1 -9.080e-2 0 0 0 5.223e-5 +# Range 0-300 + -Vm 136.007 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 88db 3 match + +Montmor-K + K.35Mg.35Al1.65Si4O10(OH)2 + 6 H+ = 0.35 K+ + 0.35 Mg+2 + 1.65 Al+3 + 4 H2O + 4 SiO2 + log_k 2.1423 + -delta_H -88.184 kJ/mol +# deltafH -1362.83 kcal/mol + -analytic 2.022e1 -7.624e-2 0 0 0 4.102e-5 +# Range 0-300 + -Vm 140.140 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 88db 3 match + +Montmor-Mg + Mg.525Al1.65Si4O10(OH)2 + 6 H+ = 0.525 Mg+2 + 1.65 Al+3 + 4 H2O + 4 SiO2 + log_k 2.3879 + -delta_H -102.608 kJ/mol +# deltafH -1357.87 kcal/mol + -analytic 2.381e1 -9.031e-2 0 0 0 5.203e-5 +# Range 0-300 + -Vm 135.042 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 88db 3 match + +Montmor-Na + Na.35Mg.35Al1.65Si4O10(OH)2 + 6 H+ = 0.35 Mg+2 + 0.35 Na+ + 1.65 Al+3 + 4 H2O + 4 SiO2 + log_k 2.4844 + -delta_H -93.2165 kJ/mol +# deltafH -1360.69 kcal/mol + -analytic 2.348e1 -8.604e-2 0 0 0 4.951e-5 +# Range 0-300 + -Vm 137.449 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 88db 3 match, but differ from Wilson+06 by 3.4 log K at 0C, 1.7 log K at 300C + +Morenosite + NiSO4:7H2O = Ni+2 + SO4-2 + 7 H2O + log_k -2.0140 + -delta_H 12.0185 kJ/mol +# deltafH -2976.46 kJ/mol + -analytic -2.6654e2 -7.2132e-2 6.7983e3 1.0636e2 1.0616e2 +# Range 0-300 + -Vm 144.17 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Muscovite + KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 SiO2 + 6 H2O + log_k 13.5858 + -delta_H -243.224 kJ/mol +# deltafH -1427.41 kcal/mol + -analytic 3.3085e1 -1.2425e-2 1.2477e4 -2.0865e1 -5.4692e5 +# Range 0-350 + -Vm 140.71 +# Extrapol supcrt92 +# Ref HDN+78 + +Na + Na + H+ + 0.25 O2 = 0.5 H2O + Na+ + log_k 67.3804 + -delta_H -380.185 kJ/mol +# deltafH 0 kJ/mol + -analytic -4.0458e1 -8.7899e-3 2.1223e4 1.5927e1 -1.2715e4 +# Range 0-300 + -Vm 23.812 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Na2CO3 + Na2CO3 + H+ = HCO3- + 2 Na+ + log_k 11.1822 + -delta_H -39.8526 kJ/mol +# deltafH -1130.68 kJ/mol + -analytic -1.5495e2 -4.3374e-2 6.4821e3 6.3571e1 1.0119e2 +# Range 0-300 + -Vm 41.86 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Na2CO3:7H2O + Na2CO3:7H2O + H+ = HCO3- + 2 Na+ + 7 H2O + log_k 9.9459 + -delta_H 27.7881 kJ/mol +# deltafH -3199.19 kJ/mol + -analytic -2.0593e2 -3.4509e-3 8.1601e3 7.6594e1 1.3864e2 +# Range 0-200 + -Vm 153.71 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Na2Cr2O7 + Na2Cr2O7 + H2O = 2 CrO4-2 + 2 H+ + 2 Na+ + log_k -10.1597 + -delta_H 21.9702 kJ/mol +# deltafH -473 kcal/mol + -analytic 4.4885e1 -2.4919e-2 -5.0321e3 -1.2430e1 -8.5468e1 +# Range 0-200 + -Vm 103.96 # gfw/density +# Extrapol Constant H approx +# Ref 76del/hal + +Na2CrO4 + Na2CrO4 = CrO4-2 + 2 Na+ + log_k 2.9103 + -delta_H -19.5225 kJ/mol +# deltafH -320.8 kcal/mol + -analytic 5.4985 -9.9008e-3 1.0510e2 +# Range 0-200 + -Vm 59.48 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 76del/hal + +Na2O + Na2O + 2 H+ = H2O + 2 Na+ + log_k 67.4269 + -delta_H -351.636 kJ/mol +# deltafH -99.14 kcal/mol + -analytic -6.3585e1 -8.4695e-3 2.0923e4 2.5601e1 3.2651e2 +# Range 0-350 + -Vm 25 +# Extrapol supcrt92 +# Ref HDN+78 + +Na2SiO3 + Na2SiO3 + 2 H+ = H2O + SiO2 + 2 Na+ + log_k 22.2418 + -delta_H -82.7093 kJ/mol +# deltafH -373.19 kcal/mol + -analytic -3.4928e1 5.6905e-3 1.0284e4 1.1197e1 -6.0134e5 +# Range 0-300 + -Vm 50.86 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 73bar/kna + +Na2U2O7 + Na2U2O7 + 6 H+ = 2 Na+ + 2 UO2+2 + 3 H2O + log_k 22.5917 + -delta_H -172.314 kJ/mol +# deltafH -3203.8 kJ/mol + -analytic -8.6640e1 -1.0903e-2 1.1841e4 2.9406e1 1.8479e2 +# Range 0-300 + -Vm 95.34 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 92gre/fug + +NaFeO2 + NaFeO2 + 4 H+ = Fe+3 + Na+ + 2 H2O + log_k 19.8899 + -delta_H -163.339 kJ/mol +# deltafH -698.218 kJ/mol + -analytic -7.0047e1 -9.6226e-3 1.0647e4 2.3071e1 1.8082e2 +# Range 0-200 + -Vm 33.48 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +NaUO3 + NaUO3 + 2 H+ = H2O + Na+ + UO2+ + log_k 8.3371 + -delta_H -56.365 kJ/mol +# deltafH -1494.9 kJ/mol + -analytic -3.6363e1 7.0505e-4 4.5359e3 1.1828e1 7.0790e1 +# Range 0-300 + -Vm 42.56 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +Nahcolite + NaHCO3 = HCO3- + Na+ + log_k -0.1118 + -delta_H 17.0247 kJ/mol +# deltafH -226.4 kcal/mol + -analytic -2.2282e2 -5.9693e-2 5.4887e3 8.9744e1 8.5712e1 +# Range 0-300 + -Vm 38.62 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 73bar/kna + +Nantokite + CuCl = Cl- + Cu+ + log_k -6.7623 + -delta_H 41.9296 kJ/mol +# deltafH -137.329 kJ/mol + -analytic -2.2442e1 -1.1201e-2 -1.8709e3 1.0221e1 -3.1763e1 +# Range 0-200 + -Vm 23.92 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Natron + Na2CO3:10H2O + H+ = HCO3- + 2 Na+ + 10 H2O + log_k 9.6102 + -delta_H 50.4781 kJ/mol +# deltafH -4079.39 kJ/mol + -analytic -1.9981e2 -2.9247e-2 5.2937e3 8.0973e1 8.2662e1 +# Range 0-300 + -Vm 195.99 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Natrosilite + Na2Si2O5 + 2 H+ = H2O + 2 Na+ + 2 SiO2 + log_k 18.1337 + -delta_H -51.7686 kJ/mol +# deltafH -590.36 kcal/mol + -analytic -2.7628e1 1.6865e-2 1.3302e4 4.2356 -1.2828e6 +# Range 0-300 + -Vm 72.57 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 77bar/kna + +Nepheline + NaAlSiO4 + 4 H+ = Al+3 + Na+ + SiO2 + 2 H2O + log_k 13.8006 + -delta_H -135.068 kJ/mol +# deltafH -500.241 kcal/mol + -analytic -2.4856e1 -8.8171e-3 8.5653e3 6.0904 -2.2786e5 +# Range 0-350 + -Vm 54.16 +# Extrapol supcrt92 +# Ref HDN+78 + +Nesquehonite + MgCO3:3H2O + H+ = HCO3- + Mg+2 + 3 H2O + log_k 4.9955 + -delta_H -36.1498 kJ/mol +# deltafH -472.576 kcal/mol + -analytic 1.3771e2 -6.0397e-2 -3.5049e4 -1.8831e1 4.4213e6 +# Range 0-50 + -Vm 74.79 +# Extrapol supcrt92 +# Ref HDN+78 + +NH4Cl + NH4Cl = NH4+ + Cl- + log_k 1.3252 + -analytic -3.078 1.550e-2 0 0 0 -3.451e-6 +# Range 0-30 + -Vm 34.96 +# Extrapol Marion+12 +# Ref Marion+12, WangLi11 match + +NH4-feldspar # Buddingtonite (sometimes with +0.5 H2O, especially at low temp) + NH4AlSi3O8 + 4H+ = NH4+ + Al+3 + 3 SiO2 + 2 H2O + log_k -2.7243 + -analytic -7.434e1 3.080e-1 0 0 0 -2.270e-4 +# Range 25-325 + -Vm 114.78 # Webmineral.com (Hovis04: 109.08-112.23) +# Extrapol N17 +# Ref Wat81 + +NH4HCO3 + NH4HCO3 = NH4+ + HCO3- + log_k -0.0207 + -analytic -1.587e1 9.703e-2 0 0 0 -1.472e-4 +# Range 0-40 + -Vm 50.04 +# Extrapol Marion+12 +# Ref Marion+12 + +NH4-muscovite # Tobelite + NH4Al3Si3O10(OH)2 + 10 H+ = NH4+ + 3 Al+3 + 3 SiO2 + 6 H2O + log_k 6.8109 + -analytical -6.638e1 3.170e-1 0 0 0 -2.386e-4 +# Range 25-325 + -Vm 146.07 # Hovis04 +# Extrapol N17 +# Ref Wat81 + +Ni + Ni + 2 H+ + 0.5 O2 = H2O + Ni+2 + log_k 50.9914 + -delta_H -333.745 kJ/mol +# deltafH 0 kcal/mol + -analytic -5.8308e1 -2.0133e-2 1.8444e4 2.1590e1 2.8781e2 +# Range 0-350 + -Vm 6.588 +# Extrapol supcrt92 +# Ref HDN+78 + +Ni(OH)2 + Ni(OH)2 + 2 H+ = Ni+2 + 2 H2O + log_k 12.7485 + -delta_H -95.6523 kJ/mol +# deltafH -529.998 kJ/mol + -analytic -6.5279e1 -5.9499e-3 7.3471e3 2.2290e1 1.2479e2 +# Range 0-200 + -Vm 22.34 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Ni2SiO4 + Ni2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Ni+2 + log_k 14.3416 + -delta_H -127.629 kJ/mol +# deltafH -341.705 kcal/mol + -analytic -4.0414e1 -1.1194e-2 9.6515e3 1.2026e1 -3.6336e5 +# Range 0-300 + -Vm 42.61 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 74nau/ryz + +NiCl2 + NiCl2 = Ni+2 + 2 Cl- + log_k 8.6113 + -delta_H -82.7969 kJ/mol +# deltafH -305.336 kJ/mol + -analytic -1.2416 -2.3139e-2 2.6529e3 3.1696 4.5052e1 +# Range 0-200 + -Vm 36.70 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +NiCl2:2H2O + NiCl2:2H2O = Ni+2 + 2 Cl- + 2 H2O + log_k 3.9327 + -delta_H -37.6746 kJ/mol +# deltafH -922.135 kJ/mol + -analytic -4.8814e1 -2.2602e-2 2.5951e3 2.0518e1 4.4086e1 +# Range 0-200 + -Vm 64.07 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +NiSO4 + NiSO4 = Ni+2 + SO4-2 + log_k 5.3197 + -delta_H -90.5092 kJ/mol +# deltafH -873.066 kJ/mol + -analytic -1.8878e2 -7.6403e-2 7.9412e3 7.6866e1 1.2397e2 +# Range 0-300 + -Vm 42.05 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +NiSO4:6H2O(alpha) + NiSO4:6H2O = Ni+2 + SO4-2 + 6 H2O + log_k -2.0072 + -delta_H 4.37983 kJ/mol +# deltafH -2682.99 kJ/mol + -analytic -1.1937e2 -1.3785e-2 4.1543e3 4.3454e1 7.0587e1 +# Range 0-200 + -Vm 126.6 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Nickelbischofite + NiCl2:6H2O = Ni+2 + 2 Cl- + 6 H2O + log_k 3.1681 + -delta_H 0.064088 kJ/mol +# deltafH -2103.23 kJ/mol + -analytic -1.4340e2 -2.1257e-2 5.1858e3 5.4759e1 8.8112e1 +# Range 0-200 + -Vm 123.15 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Ningyoite + CaUP2O8:2H2O + 2 H+ = Ca+2 + U+4 + 2 H2O + 2 HPO4-2 + log_k -29.7931 + -delta_H -36.4769 kJ/mol +# deltafH -1016.65 kcal/mol + -analytic -1.0274e2 -4.9041e-2 1.7779e3 3.2973e1 3.0227e1 +# Range 0-200 + -Vm 116.77 # Webmineral.com +# Extrapol Constant H approx +# Ref 78lan + +Niter + KNO3 = K+ + NO3- + log_k -0.2061 + -delta_H 35.4794 kJ/mol +# deltafH -494.46 kJ/mol + -analytic -6.5607e1 -2.8165e-2 -4.0131e2 3.0361e1 -6.2425 +# Range 0-300 + -Vm 48.04 # Marion+05 +# Extrapol Cp integration +# Ref RHF79 + +Nontronite-Ca + Ca.175Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.175 Ca+2 + 0.35 Al+3 + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O + log_k -11.5822 + -delta_H -38.138 kJ/mol +# deltafH -1166.7 kcal/mol + -analytic 3.697 -4.892e-2 0 0 0 1.489e-5 +# Range 0-300 + -Vm 137.780 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 2.6 log K at 0C, 0.2 log K at 300C + +Nontronite-K + K.35Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.35 Al+3 + 0.35 K+ + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O + log_k -11.8648 + -delta_H -26.5822 kJ/mol +# deltafH -1167.93 kcal/mol + -analytic -1.959 -3.115e-2 0 0 0 1.139e-6 +# Range 0-300 + -Vm 141.913 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 1.1 log K at 0C, 0.5 log K at 300C + +Nontronite-Mg + Mg.175Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.175 Mg+2 + 0.35 Al+3 + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O + log_k -11.6200 + -delta_H -41.1779 kJ/mol +# deltafH -1162.93 kcal/mol + -analytic 2.476 -4.730e-2 0 0 0 1.382e-5 +# Range 0-300 + -Vm 136.815 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol + +Nontronite-Na + Na.35Fe2Al.35Si3.65H2O12 + 7.4 H+ = 0.35 Al+3 + 0.35 Na+ + 2 Fe+3 + 3.65 SiO2 + 4.7 H2O + log_k -11.5263 + -delta_H -31.5687 kJ/mol +# deltafH -1165.8 kcal/mol + -analytic 1.106 -4.045e-2 0 0 0 9.229e-6 +# Range 0-300 + -Vm 139.221 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 1.7 log K at 0C, 0.2 log K at 300C + +Okenite + CaSi2O4(OH)2:H2O + 2 H+ = Ca+2 + 2 SiO2 + 3 H2O + log_k 10.3816 + -delta_H -19.4974 kJ/mol +# deltafH -749.641 kcal/mol + -analytic -7.7353e1 1.5091e-2 1.3023e4 2.1337e1 -1.1831e6 +# Range 0-300 + -Vm 94.77 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +P + P + 1.5 H2O + 1.25 O2 = HPO4-2 + 2 H+ + log_k 132.1032 + -delta_H -848.157 kJ/mol +# deltafH 0 kJ/mol + -analytic -9.2727e1 -6.8342e-2 4.3465e4 4.0156e1 6.7826e2 +# Range 0-300 + -Vm 17.2 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Paragonite + NaAl3Si3O10(OH)2 + 10 H+ = Na+ + 3 Al+3 + 3 SiO2 + 6 H2O + log_k 17.5220 + -delta_H -275.056 kJ/mol +# deltafH -1416.96 kcal/mol + -analytic 3.5507e1 -1.0720e-2 1.3519e4 -2.2283e1 -4.5657e5 +# Range 0-350 + -Vm 132.53 +# Extrapol supcrt92 +# Ref HDN+78, differ by 2.5 log K at 0C, 0.6 log K at 350C, but match Wilson+06 + +Pargasite + NaCa2Al3Mg4Si6O22(OH)2 + 22 H+ = Na+ + 2 Ca+2 + 3 Al+3 + 4 Mg+2 + 6 SiO2 + 12 H2O + log_k 101.9939 + -delta_H -880.205 kJ/mol +# deltafH -3016.62 kcal/mol + -analytic -6.7889e1 -3.7817e-2 5.0493e4 9.2705 -1.0163e6 +# Range 0-350 + -Vm 273.5 +# Extrapol supcrt92 +# Ref HDN+78 + +Periclase + MgO + 2 H+ = H2O + Mg+2 + log_k 21.3354 + -delta_H -150.139 kJ/mol +# deltafH -143.8 kcal/mol + -analytic -8.8465e1 -1.8390e-2 1.0414e4 3.2469e1 1.6253e2 +# Range 0-350 + -Vm 11.248 +# Extrapol supcrt92 +# Ref HDN+78 + +Petalite + LiAlSi4O10 + 4 H+ = Al+3 + Li+ + 2 H2O + 4 SiO2 + log_k -3.8153 + -delta_H -13.1739 kJ/mol +# deltafH -4886.15 kJ/mol + -analytic -6.6355 2.4316e-2 1.5949e4 -1.3341e1 -2.2265e6 +# Range 0-300 + -Vm 128.4 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Phlogopite + KAlMg3Si3O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Mg+2 + 3 SiO2 + 6 H2O + log_k 37.4400 + -delta_H -310.503 kJ/mol +# deltafH -1488.07 kcal/mol + -analytic -8.7730e1 -1.7253e-2 2.3748e4 2.4465e1 -8.9045e5 +# Range 0-350 + -Vm 149.66 +# Extrapol supcrt92 +# Ref HDN+78 + +Polydymite + Ni3S4 + 2 H+ = S2-2 + 2 HS- + 3 Ni+2 + log_k -48.9062 +# deltafH -78.014 kcal/mol + -analytic -1.8030e1 -4.6945e-2 -1.1557e4 8.8339 -1.9625e2 +# Range 0-200 + -Vm 64.14 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 78vau/cra + +Portlandite + Ca(OH)2 + 2 H+ = Ca+2 + 2 H2O + log_k 22.5552 + -delta_H -128.686 kJ/mol +# deltafH -986.074 kJ/mol + -analytic -8.3848e1 -1.8373e-2 9.3154e3 3.2584e1 1.4538e2 +# Range 0-300 + -Vm 33.056 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Prehnite + Ca2Al2Si3O10(OH)2 + 10 H+ = 2 Al+3 + 2 Ca+2 + 3 SiO2 + 6 H2O + log_k 32.9305 + -delta_H -311.875 kJ/mol +# deltafH -1481.65 kcal/mol + -analytic -3.5763e1 -2.1396e-2 2.0167e4 6.3554 -7.4967e5 +# Range 0-350 + -Vm 140.33 +# Extrapol supcrt92 +# Ref HDN+78 + +Pseudowollastonite + CaSiO3 + 2 H+ = Ca+2 + H2O + SiO2 + log_k 13.9997 + -delta_H -79.4625 kJ/mol +# deltafH -388.9 kcal/mol + -analytic 2.6691e1 6.3323e-3 5.5723e3 -1.1822e1 -3.6038e5 +# Range 0-300 + -Vm 40.08 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 77bar/kna + +Pyridine + C5H5N + 6.25 O2 = 5 CO2 + 2.5 H2O + 0.5 N2 + log_k 490.7474 + -delta_H -669.9574 kcal/mol + -analytic 1071.04 -2.50773 0 0 0 0.00188 +# Range 0-350 + -Vm 64.4 +# Extrapol supcrt92 +# Ref Hel+98 + +Pyrite + FeS2 + H2O = 0.25 H+ + 0.25 SO4-2 + Fe+2 + 1.75 HS- + log_k -24.6534 + -delta_H 109.535 kJ/mol +# deltafH -41 kcal/mol + -analytic -2.4195e2 -8.7948e-2 -6.2911e2 9.9248e1 -9.7454 +# Range 0-350 + -Vm 23.94 +# Extrapol supcrt92 +# Ref HDN+78 + +Pyrolusite + MnO2 = 0.5 Mn+2 + 0.5 MnO4-2 + log_k -17.6439 + -delta_H 83.3804 kJ/mol +# deltafH -520.031 kJ/mol + -analytic -1.1541e2 -4.1665e-2 -1.8960e3 4.7094e1 -2.9551e1 +# Range 0-300 + -Vm 18.38 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Pyrophyllite + Al2Si4O10(OH)2 + 6 H+ = 2 Al+3 + 4 H2O + 4 SiO2 + log_k 0.4397 + -delta_H -102.161 kJ/mol +# deltafH -1345.31 kcal/mol + -analytic 1.1066e1 1.2707e-2 1.6417e4 -1.9596e1 -1.8791e6 +# Range 0-350 + -Vm 126.6 +# Extrapol supcrt92 +# Ref HDN+78, Wilson+06 match + +Pyrrhotite + FeS + H+ = Fe+2 + HS- + log_k -3.7193 + -delta_H -7.9496 kJ/mol +# deltafH -24 kcal/mol + -analytic -1.5785e2 -5.2258e-2 3.9711e3 6.3195e1 6.2012e1 +# Range 0-350 + -Vm 18.2 +# Extrapol supcrt92 +# Ref HDN+78 + +Quartz + SiO2 = SiO2 + log_k -3.9993 + -delta_H 32.949 kJ/mol +# deltafH -217.65 kcal/mol + -analytic 7.7698e-2 1.0612e-2 3.4651e3 -4.3551 -7.2138e5 +# Range 0-350 + -Vm 22.68 +# Extrapol supcrt92 +# Ref HDN+78 + +Rankinite + Ca3Si2O7 + 6 H+ = 2 SiO2 + 3 Ca+2 + 3 H2O + log_k 51.9078 + -delta_H -302.089 kJ/mol +# deltafH -941.7 kcal/mol + -analytic -9.6393e1 -1.6592e-2 2.4832e4 3.2541e1 -9.4630e5 +# Range 0-300 + -Vm 96.13 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 77bar/kna + +Rhodochrosite + MnCO3 + H+ = HCO3- + Mn+2 + log_k -0.1928 + -delta_H -21.3426 kJ/mol +# deltafH -212.521 kcal/mol + -analytic -1.6195e2 -4.9344e-2 5.0937e3 6.4402e1 7.9531e1 +# Range 0-350 + -Vm 31.075 +# Extrapol supcrt92 +# Ref HDN+78 + +Rhodonite + MnSiO3 + 2 H+ = H2O + Mn+2 + SiO2 + log_k 9.7301 + -delta_H -64.7121 kJ/mol +# deltafH -1319.42 kJ/mol + -analytic 2.0585e1 4.9941e-3 4.5816e3 -9.8212 -3.0658e5 +# Range 0-300 + -Vm 35.87 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Ripidolite + Mg3Fe2Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 2 Fe+2 + 3 Mg+2 + 3 SiO2 + 12 H2O + log_k 60.9638 + -delta_H -572.472 kJ/mol +# deltafH -1947.87 kcal/mol + -analytic 2.122e2 -6.025e-1 0 0 0 4.579e-4 +# Range 0-300 + -Vm 208.614 +# Extrapol supcrt92 +# Ref Catalano13 + +Rutherfordine + UO2CO3 + H+ = HCO3- + UO2+2 + log_k -4.1064 + -delta_H -19.4032 kJ/mol +# deltafH -1689.53 kJ/mol + -analytic -8.8224e1 -3.1434e-2 2.6675e3 3.4161e1 4.1650e1 +# Range 0-300 + -Vm 57.90 # Webmineral.com +# Extrapol Cp integration +# Ref 92gre/fug + +Rutile + TiO2 + 2 H2O = Ti(OH)4 + log_k -9.6452 +# deltafH -226.107 kcal/mol + -Vm 18.82 +# Ref RHF79 + +S + S + H2O = 0.5 O2 + H+ + HS- + log_k -45.0980 + -delta_H 263.663 kJ/mol +# deltafH 0 kJ/mol + -analytic -8.8928e1 -2.8454e-2 -1.1516e4 3.6747e1 -1.7966e2 +# Range 0-300 + -Vm 15.511 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Saleeite + Mg(UO2)2(PO4)2 + 2 H+ = Mg+2 + 2 HPO4-2 + 2 UO2+2 + log_k -19.4575 + -delta_H -110.816 kJ/mol +# deltafH -1189.61 kcal/mol + -analytic -6.0028e1 -4.4391e-2 3.9168e3 1.6428e1 6.6533e1 +# Range 0-200 + -Vm 285.77 # Webmineral.com +# Extrapol Constant H approx +# Ref 78lan + +Sanidine_high + KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 + log_k 0.9239 + -delta_H -35.0284 kJ/mol +# deltafH -946.538 kcal/mol + -analytic -3.4889 1.4495e-2 1.2856e4 -9.8978 -1.6572e6 +# Range 0-350 + -Vm 109.008 +# Extrapol supcrt92 +# Ref HDN+78 + +Saponite-Fe-Ca + Ca.175Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Ca+2 + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 20.3624 + -analytic 5.992e1 -1.681e-1 0 0 0 1.174e-4 +# Range 0-300 + -Vm 143.506 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Fe-Fe + Fe3.175Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 3.175 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 18.9359 + -analytic 5.762e1 -1.630e-1 0 0 0 1.099e-4 +# Range 0-300 + -Vm 142.672 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Fe-K + K.35Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 K+ + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 18.7937 + -analytic 5.427e1 -1.504e-1 0 0 0 1.037e-4 +# Range 0-300 + -Vm 147.639 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Fe-Mg + Mg.175Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Mg+2 + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 19.5290 + -analytic 5.870e1 -1.665e-1 0 0 0 1.163e-4 +# Range 0-300 + -Vm 142.541 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Fe-Na + Na.35Fe3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Na+ + 0.35 Al+3 + 3 Fe+2 + 3.65 SiO2 + 4.7 H2O + log_k 19.7977 + -analytic 5.733e1 -1.597e-1 0 0 0 1.117e-4 +# Range 0-300 + -Vm 144.947 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Mg-Ca + Ca.175Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Ca+2 + 0.35 Al+3 + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 26.2900 + -delta_H -207.971 kJ/mol +# deltafH -1436.51 kcal/mol + -analytic 8.088e1 -2.233e-1 0 0 0 1.655e-4 +# Range 0-300 + -Vm 141.250 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol match + +Saponite-Mg-Fe + Fe.175Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.175 Fe+2 + 0.35 Al+3 + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 27.6789 + -analytic 7.825e1 -2.180e-1 0 0 0 1.612e-4 +# Range 0-300 + -Vm 140.416 +# Extrapol supcrt92 +# Ref Catalano13 + +Saponite-Mg-K + K.35Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 0.35 K+ + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 26.0075 + -delta_H -196.402 kJ/mol +# deltafH -1437.74 kcal/mol + -analytic 7.522e1 -2.055e-1 0 0 0 1.517e-4 +# Range 0-300 + -Vm 145.383 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 1.7 log K at 0C, 0.7 log K at 300C + +Saponite-Mg-Mg + Mg3.175Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 3.175 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 26.2523 + -delta_H -210.822 kJ/mol +# deltafH -1432.79 kcal/mol + -analytic 7.965e1 -2.217e-1 0 0 0 1.644e-4 +# Range 0-300 + -Vm 140.285 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 2.2 log K at 0C, 0.6 log K at 300C + +Saponite-Mg-Na + Na.35Mg3Al.35Si3.65O10(OH)2 + 7.4 H+ = 0.35 Al+3 + 0.35 Na+ + 3 Mg+2 + 3.65 SiO2 + 4.7 H2O + log_k 26.3459 + -delta_H -201.401 kJ/mol +# deltafH -1435.61 kcal/mol + -analytic 7.829e1 -2.148e-1 0 0 0 1.598e-4 +# Range 0-300 + -Vm 142.691 +# Extrapol supcrt92, Cp integration +# Ref Catalano13, 78wol differ by 2.4 log K at 0C, 0.7 log K at 300C + +Sc + Sc + 3 H+ + 0.75 O2 = Sc+3 + 1.5 H2O + log_k 167.2700 + -delta_H -1033.87 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.6922e1 -2.9150e-2 5.4559e4 2.4189e1 8.5137e2 +# Range 0-300 + -Vm 15.038 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Scacchite + MnCl2 = Mn+2 + 2 Cl- + log_k 8.7785 + -delta_H -73.4546 kJ/mol +# deltafH -481.302 kJ/mol + -analytic -2.3476e2 -8.2437e-2 9.0088e3 9.6128e1 1.4064e2 +# Range 0-300 + -Vm 42.27 # Webmineral.com +# Extrapol Cp integration +# Ref WEP+82 + +Schoepite + UO3:2H2O + 2 H+ = UO2+2 + 3 H2O + log_k 4.8333 + -delta_H -50.415 kJ/mol +# deltafH -1826.1 kJ/mol + -analytic 1.3645e1 1.0884e-2 2.5412e3 -8.3167e0 3.9649e1 +# Range 0-300 + -Vm 66.08 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 92gre/fug + +Sepiolite + Mg4Si6O15(OH)2:6H2O + 8 H+ = 4 Mg+2 + 6 SiO2 + 11 H2O + log_k 30.4439 + -delta_H -157.339 kJ/mol +# deltafH -2418 kcal/mol + -analytic 1.8690e1 4.7544e-2 2.6765e4 -2.5301e1 -2.6498e6 +# Range 0-350 + -Vm 285.6 +# Extrapol supcrt92 +# Ref HDN+78 + +Si + Si + O2 = SiO2 + log_k 148.9059 + -delta_H -865.565 kJ/mol +# deltafH 0 kJ/mol + -analytic -5.7245e2 -7.6302e-2 8.3516e4 2.0045e2 -2.8494e6 +# Range 0-300 + -Vm 12.056 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Sillimanite + Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O + log_k 16.3080 + -delta_H -238.442 kJ/mol +# deltafH -615.099 kcal/mol + -analytic -7.1610e1 -3.2196e-2 1.2493e4 2.2449e1 1.9496e2 +# Range 0-350 + -Vm 49.9 +# Extrapol supcrt92 +# Ref HDN+78 + +SiO2(am) + SiO2 = SiO2 + log_k -2.7136 + -delta_H 20.0539 kJ/mol +# deltafH -214.568 kcal/mol + -analytic 1.2109 7.0767e-3 2.3634e3 -3.4449 -4.8591e5 +# Range 0-325 + -Vm 29 +# Extrapol supcrt92 +# Ref HDN+78 + +Sm + Sm + 2 H+ + 0.5 O2 = H2O + Sm+2 + log_k 133.1614 + -delta_H -783.944 kJ/mol +# deltafH 0 kJ/mol + -analytic -7.1599e1 -2.0083e-2 4.2693e4 2.7291e1 6.6621e2 +# Range 0-300 + -Vm 19.98 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref RHF79 + +Smectite-high-Fe-Mg + Ca.025Na.1K.2Fe.5Fe.2Mg1.15Al1.25Si3.5H2O12 + 8 H+ = 0.025 Ca+2 + 0.1 Na+ + 0.2 Fe+3 + 0.2 K+ + 0.5 Fe+2 + 1.15 Mg+2 + 1.25 Al+3 + 3.5 SiO2 + 5 H2O + log_k 17.4200 + -delta_H -199.841 kJ/mol +# deltafH -1351.39 kcal/mol + -analytic -9.6102 1.2551e-3 1.8157e4 -7.9862 -1.3005e6 +# Range 0-300 + -Vm 139.07 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 78wol + +Smectite-low-Fe-Mg + Ca.02Na.15K.2Fe.29Fe.16Mg.9Al1.25Si3.75H2O12 + 7 H+ = 0.02 Ca+2 + 0.15 Na+ + 0.16 Fe+3 + 0.2 K+ + 0.29 Fe+2 + 0.9 Mg+2 + 1.25 Al+3 + 3.75 SiO2 + 4.5 H2O + log_k 11.0405 + -delta_H -144.774 kJ/mol +# deltafH -1352.12 kcal/mol + -analytic -1.7003e1 6.9848e-3 1.8359e4 -6.8896 -1.6637e6 +# Range 0-300 + -Vm 139.39 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 78wol + +Smithsonite + ZnCO3 + H+ = HCO3- + Zn+2 + log_k 0.4633 + -delta_H -30.5348 kJ/mol +# deltafH -194.26 kcal/mol + -analytic -1.6452e2 -5.0231e-2 5.5925e3 6.5139e1 8.7314e1 +# Range 0-350 + -Vm 28.275 +# Extrapol supcrt92 +# Ref HDN+78 + +Sphaerocobaltite + CoCO3 + H+ = Co+2 + HCO3- + log_k -0.2331 + -delta_H -30.7064 kJ/mol +# deltafH -171.459 kcal/mol + -analytic -1.5709e2 -4.8957e-2 5.3158e3 6.2075e1 8.2995e1 +# Range 0-300 + -Vm 28.8 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 84sve + +Sphalerite + ZnS + H+ = HS- + Zn+2 + log_k -11.4400 + -delta_H 35.5222 kJ/mol +# deltafH -49 kcal/mol + -analytic -1.5497e2 -4.8953e-2 1.7850e3 6.1472e1 2.7899e1 +# Range 0-350 + -Vm 23.83 +# Extrapol supcrt92 +# Ref HDN+78 + +Spinel + Al2MgO4 + 8 H+ = Mg+2 + 2 Al+3 + 4 H2O + log_k 37.6295 + -delta_H -398.108 kJ/mol +# deltafH -546.847 kcal/mol + -analytic -3.3895e2 -8.3595e-2 2.9251e4 1.2260e2 4.5654e2 +# Range 0-350 + -Vm 39.71 +# Extrapol supcrt92 +# Ref HDN+78 + +Spinel-Co + Co3O4 + 8 H+ = Co+2 + 2 Co+3 + 4 H2O + log_k -6.4852 + -delta_H -126.415 kJ/mol +# deltafH -891 kJ/mol + -analytic -3.2239e2 -8.0782e-2 1.4635e4 1.1755e2 2.2846e2 +# Range 0-300 + -Vm 39.41 # gfw/density +# Extrapol Cp integration +# Ref WEP+82 + +Spodumene + LiAlSi2O6 + 4 H+ = Al+3 + Li+ + 2 H2O + 2 SiO2 + log_k 6.9972 + -delta_H -89.1817 kJ/mol +# deltafH -3054.75 kJ/mol + -analytic -9.8111 2.1191e-3 9.6920e3 -3.0484 -7.8822e5 +# Range 0-300 + -Vm 58.37 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Stilbite + Ca1.019Na.136K.006Al2.18Si6.82O18:7.33H2O + 8.72 H+ = 0.006 K+ + 0.136 Na+ + 1.019 Ca+2 + 2.18 Al+3 + 6.82 SiO2 + 11.69 H2O + log_k 1.0545 + -delta_H -83.0019 kJ/mol +# deltafH -11005.7 kJ/mol + -analytic -2.4483e1 3.0987e-2 2.8013e4 -1.5802e1 -3.4491e6 +# Range 0-300 + -Vm 333.50 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 90how/joh + +Strengite + FePO4:2H2O + H+ = Fe+3 + HPO4-2 + 2 H2O + log_k -11.3429 + -delta_H -37.107 kJ/mol +# deltafH -1876.23 kJ/mol + -analytic -2.7752e2 -9.4014e-2 7.6862e3 1.0846e2 1.2002e2 +# Range 0-300 + -Vm 65.10 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +Sylvite + KCl = Cl- + K+ + log_k 0.8459 + -delta_H 17.4347 kJ/mol +# deltafH -104.37 kcal/mol + -analytic -8.1204e1 -3.3074e-2 8.2819e2 3.6014e1 1.2947e1 +# Range 0-350 + -Vm 37.524 +# Extrapol supcrt92 +# Ref HDN+78 + +Talc + Mg3Si4O10(OH)2 + 6 H+ = 3 Mg+2 + 4 H2O + 4 SiO2 + log_k 21.1383 + -delta_H -148.737 kJ/mol +# deltafH -1410.92 kcal/mol + -analytic 1.1164e1 2.4724e-2 1.9810e4 -1.7568e1 -1.8241e6 +# Range 0-350 + -Vm 136.25 +# Extrapol supcrt92 +# Ref HDN+78, Wilson+06 match + +Tarapacaite + K2CrO4 = CrO4-2 + 2 K+ + log_k -0.4037 + -delta_H 17.8238 kJ/mol +# deltafH -335.4 kcal/mol + -analytic 2.7953e1 -1.0863e-2 -2.7589e3 -6.4154e0 -4.6859e1 +# Range 0-200 + -Vm 70.87 # Webmineral.com +# Extrapol Constant H approx +# Ref 76del/hal + +Tenorite + CuO + 2 H+ = Cu+2 + H2O + log_k 7.6560 + -delta_H -64.5047 kJ/mol +# deltafH -37.2 kcal/mol + -analytic -8.9899e1 -1.8886e-2 6.0346e3 3.3517e1 9.4191e1 +# Range 0-350 + -Vm 12.22 +# Extrapol supcrt92 +# Ref HDN+78 + +Tephroite + Mn2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Mn+2 + log_k 23.0781 + -delta_H -160.1 kJ/mol +# deltafH -1730.47 kJ/mol + -analytic -3.2440e1 -1.1023e-2 8.8910e3 1.1691e1 1.3875e2 +# Range 0-300 + -Vm 47.52 # Webmineral.com +# Extrapol Cp integration +# Ref WEP+82 + +Th + Th + 4 H+ + O2 = Th+4 + 2 H2O + log_k 209.6028 + -delta_H -1328.56 kJ/mol +# deltafH 0 kJ/mol + -analytic -2.8256e1 -1.1963e-2 6.8870e4 4.2068e0 1.0747e3 +# Range 0-300 + -Vm 19.83 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Th(NO3)4:5H2O + Th(NO3)4:5H2O = Th+4 + 4 NO3- + 5 H2O + log_k 1.7789 + -delta_H -18.1066 kJ/mol +# deltafH -3007.35 kJ/mol + -analytic -1.2480e2 -2.0405e-2 5.1601e3 4.6613e1 8.7669e1 +# Range 0-200 + -Vm 203.62 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Th(SO4)2 + Th(SO4)2 = Th+4 + 2 SO4-2 + log_k -20.3006 + -delta_H -46.1064 kJ/mol +# deltafH -2542.12 kJ/mol + -analytic -8.4525 -3.5442e-2 0 0 -1.1540e5 +# Range 0-200 + -Vm 100.39 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Th2S3 + Th2S3 + 5 H+ + 0.5 O2 = H2O + 2 Th+4 + 3 HS- + log_k 95.2290 + -delta_H -783.243 kJ/mol +# deltafH -1082.89 kJ/mol + -analytic -3.2969e2 -1.1090e-1 4.6877e4 1.2152e2 7.3157e2 +# Range 0-300 + -Vm 71.19 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Th7S12 + Th7S12 + 16 H+ + O2 = 2 H2O + 7 Th+4 + 12 HS- + log_k 204.0740 + -delta_H -1999.4 kJ/mol +# deltafH -4136.58 kJ/mol + -analytic -2.1309e2 -1.4149e-1 9.8550e4 5.2042e1 1.6736e3 +# Range 0-200 + -Vm 248.02 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +ThCl4 + ThCl4 = Th+4 + 4 Cl- + log_k 23.8491 + -delta_H -251.094 kJ/mol +# deltafH -283.519 kcal/mol + -analytic -5.9340 -4.1640e-2 9.8623e3 3.6804 1.6748e2 +# Range 0-200 + -Vm 81.45 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 80lan/her + +ThS2 + ThS2 + 2 H+ = Th+4 + 2 HS- + log_k 10.7872 + -delta_H -175.369 kJ/mol +# deltafH -625.867 kJ/mol + -analytic -3.7691e1 -2.3714e-2 8.4673e3 1.0970e1 1.4380e2 +# Range 0-200 + -Vm 40.57 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref WEP+82 + +Thenardite + Na2SO4 = SO4-2 + 2 Na+ + log_k -0.3091 + -delta_H -2.33394 kJ/mol +# deltafH -1387.87 kJ/mol + -analytic -2.1202e2 -7.1613e-2 5.1083e3 8.7244e1 7.9773e1 +# Range 0-300 + -Vm 53.33 # Marion+05 +# Extrapol Cp integration +# Ref RHF79 + +Thermonatrite + Na2CO3:H2O + H+ = H2O + HCO3- + 2 Na+ + log_k 10.9623 + -delta_H -27.5869 kJ/mol +# deltafH -1428.78 kJ/mol + -analytic -1.4030e2 -3.5263e-2 5.7840e3 5.7528e1 9.0295e1 +# Range 0-300 + -Vm 54.92 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Thorianite + ThO2 + 4 H+ = Th+4 + 2 H2O + log_k 1.8624 + -delta_H -114.296 kJ/mol +# deltafH -1226.4 kJ/mol + -analytic -1.4249e1 -2.4645e-3 4.3110e3 -1.6605e-2 2.1598e5 +# Range 0-300 + -Vm 26.373 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Ti + Ti + 2 H2O + O2 = Ti(OH)4 + log_k 149.2978 +# deltafH 0 kJ/mol + -Vm 10.631 # thermo.com.V8.R6+.tdat +# Ref CWM89 + +Ti2O3 + Ti2O3 + 4 H2O + 0.5 O2 = 2 Ti(OH)4 + log_k 42.9866 +# deltafH -1520.78 kJ/mol + -Vm 32.02 # gfw/density +# Ref WEP+82 + +Ti3O5 + Ti3O5 + 6 H2O + 0.5 O2 = 3 Ti(OH)4 + log_k 34.6557 +# deltafH -2459.24 kJ/mol + -Vm 48.93 # gfw/density +# Ref WEP+82 + +TiB2 + TiB2 + 5 H2O + 2.5 O2 = Ti(OH)4 + 2 B(OH)3 + log_k 312.4194 +# deltafH -323.883 kJ/mol + -Vm 15.37 # gfw/density +# Ref WEP+82 + +TiC + TiC + 3 H2O + 2 O2 = H+ + HCO3- + Ti(OH)4 + log_k 181.8139 +# deltafH -184.346 kJ/mol + -Vm 12.15 # gfw/density +# Ref WEP+82 + +TiCl2 + TiCl2 + 3 H2O + 0.5 O2 = Ti(OH)4 + 2 Cl- + 2 H+ + log_k 70.9386 +# deltafH -514.012 kJ/mol + -Vm 37.95 # gfw/density +# Ref WEP+82 + +TiCl3 + TiCl3 + 3.5 H2O + 0.25 O2 = Ti(OH)4 + 3 Cl- + 3 H+ + log_k 39.3099 +# deltafH -720.775 kJ/mol + -Vm 58.42 # gfw/density +# Ref WEP+82 + +TiN + TiN + 3.5 H2O + 0.25 O2 = NH3 + Ti(OH)4 + log_k 35.2344 +# deltafH -338.304 kJ/mol + -Vm 11.46 # gfw/density +# Ref WEP+82 + +Titanite + CaTiSiO5 + 2 H+ + H2O = Ca+2 + SiO2 + Ti(OH)4 + log_k 719.5839 +# deltafH 0 kcal/mol + -Vm 55.65 +# Ref RHF79 + +Tobermorite-11A + Ca5Si6H11O22.5 + 10 H+ = 5 Ca+2 + 6 SiO2 + 10.5 H2O + log_k 65.6121 + -delta_H -286.861 kJ/mol +# deltafH -2556.42 kcal/mol + -analytic 7.9123e1 3.9150e-2 2.9429e4 -3.9191e1 -2.4122e6 +# Range 0-300 + -Vm 286.81 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 82sar/bar + +Tremolite + Ca2Mg5Si8O22(OH)2 + 14 H+ = 2 Ca+2 + 5 Mg+2 + 8 H2O + 8 SiO2 + log_k 61.2367 + -delta_H -406.404 kJ/mol +# deltafH -2944.04 kcal/mol + -analytic 8.5291e1 4.6337e-2 3.9465e4 -5.4414e1 -3.1913e6 +# Range 0-350 + -Vm 272.92 +# Extrapol supcrt92 +# Ref HDN+78 + +Trevorite + NiFe2O4 + 8 H+ = Ni+2 + 2 Fe+3 + 4 H2O + log_k 9.7876 + -delta_H -215.338 kJ/mol +# deltafH -1081.15 kJ/mol + -analytic -1.4322e2 -2.9429e-2 1.4518e4 4.5698e1 2.4658e2 +# Range 0-200 + -Vm 44.89 # Webmineral.com +# Extrapol Constant H approx +# Ref RHF79 + +Tridymite + SiO2 = SiO2 + log_k -3.8278 + -delta_H 31.3664 kJ/mol +# deltafH -909.065 kJ/mol + -analytic 3.1594e2 6.9315e-2 -1.1358e4 -1.2219e2 -1.9299e2 +# Range 0-200 + -Vm 26.12 # Webmineral.com +# Extrapol Constant H approx +# Ref WEP+82 + +Troilite + FeS + H+ = Fe+2 + HS- + log_k -3.8184 + -delta_H -7.3296 kJ/mol +# deltafH -101.036 kJ/mol + -analytic -1.6146e2 -5.3170e-2 4.0461e3 6.4620e1 6.3183e1 +# Range 0-300 + -Vm 19.07 # Webmineral.com +# Extrapol Cp integration +# Ref RHF79 + +U + U + 2 H+ + 1.5 O2 = H2O + UO2+2 + log_k 212.7800 + -delta_H -1286.64 kJ/mol +# deltafH 0 kJ/mol + -analytic -2.4912e2 -4.7104e-2 8.1115e4 8.7008e1 -1.0158e6 +# Range 0-300 + -Vm 12.49 # Webelements.com +# Extrapol Cp integration +# Ref CWM89 + +U2O2Cl5 + U2O2Cl5 = U+4 + UO2+ + 5 Cl- + log_k 19.2752 + -delta_H -254.325 kJ/mol +# deltafH -2197.4 kJ/mol + -analytic -4.3945e2 -1.6239e-1 2.1694e4 1.7551e2 3.3865e2 +# Range 0-300 + -Vm 142.48 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +U3S5 + U3S5 + 5 H+ = U+4 + 2 U+3 + 5 HS- + log_k -0.3680 + -delta_H -218.942 kJ/mol +# deltafH -1431 kJ/mol + -analytic -1.1011e2 -6.7959e-2 1.0369e4 3.8481e1 1.7611e2 +# Range 0-200 + -Vm 106.12 # gfw/density +# Extrapol Constant H approx +# Ref 92gre/fug + +UC + UC + 2 H+ + 1.75 O2 = 0.5 H2O + HCO3- + U+3 + log_k 194.8241 + -delta_H -1202.82 kJ/mol +# deltafH -97.9 kJ/mol + -analytic -4.6329e1 -4.4600e-2 6.1417e4 1.9566e1 9.5836e2 +# Range 0-300 + -Vm 18.34 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UCl3 + UCl3 = U+3 + 3 Cl- + log_k 13.0062 + -delta_H -126.639 kJ/mol +# deltafH -863.7 kJ/mol + -analytic -2.6388e2 -1.0241e-1 1.1629e4 1.0846e2 1.8155e2 +# Range 0-300 + -Vm 62.62 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UCl4 + UCl4 = U+4 + 4 Cl- + log_k 21.9769 + -delta_H -240.719 kJ/mol +# deltafH -1018.8 kJ/mol + -analytic -3.6881e2 -1.3618e-1 1.9685e4 1.4763e2 3.0727e2 +# Range 0-300 + -Vm 78.00 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UCl6 + UCl6 + 2 H2O = UO2+2 + 4 H+ + 6 Cl- + log_k 57.5888 + -delta_H -383.301 kJ/mol +# deltafH -1066.5 kJ/mol + -analytic -4.5589e2 -1.9203e-1 2.8029e4 1.9262e2 4.3750e2 +# Range 0-300 + -Vm 125.21 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UH3(beta) + UH3 + 3 H+ + 1.5 O2 = U+3 + 3 H2O + log_k 199.7683 + -delta_H -1201.43 kJ/mol +# deltafH -126.98 kJ/mol + -analytic 5.2870e1 4.2151e-3 6.0167e4 -2.2701e1 1.0217e3 +# Range 0-200 + -Vm 22.01 # gfw/density +# Extrapol Constant H approx +# Ref 92gre/fug + +UN + UN + 3 H+ = NH3 + U+3 + log_k 41.7130 + -delta_H -280.437 kJ/mol +# deltafH -290 kJ/mol + -analytic -1.6393e2 -1.1679e-3 2.8845e3 6.5637e1 3.0122e6 +# Range 0-300 + -Vm 45.85 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UO2(NO3)2 + UO2(NO3)2 = UO2+2 + 2 NO3- + log_k 11.9598 + -delta_H -81.6219 kJ/mol +# deltafH -1351 kJ/mol + -analytic -1.2216e1 -1.1261e-2 3.9895e3 5.7166 6.7751e1 +# Range 0-200 + -Vm 140.23 # gfw/density +# Extrapol Constant H approx +# Ref 92gre/fug + +UO2(NO3)2:6H2O + UO2(NO3)2:6H2O = UO2+2 + 2 NO3- + 6 H2O + log_k 2.3189 + -delta_H 19.8482 kJ/mol +# deltafH -3167.5 kJ/mol + -analytic -1.4019e2 -4.3682e-2 2.7842e3 5.9070e1 4.3486e1 +# Range 0-300 + -Vm 178.88 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 92gre/fug + +UO2(OH)2(beta) + UO2(OH)2 + 2 H+ = UO2+2 + 2 H2O + log_k 4.9457 + -delta_H -56.8767 kJ/mol +# deltafH -1533.8 kJ/mol + -analytic -1.7478e1 -1.6806e-3 3.4226e3 4.6260 5.3412e1 +# Range 0-300 + -Vm 51.31 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref 92gre/fug + +UO2SO4 + UO2SO4 = SO4-2 + UO2+2 + log_k 1.9681 + -delta_H -83.4616 kJ/mol +# deltafH -1845.14 kJ/mol + -analytic -1.5677e2 -6.5310e-2 6.7411e3 6.2867e1 1.0523e2 +# Range 0-300 + -Vm 111.61 # gfw/density +# Extrapol Cp integration +# Ref 92gre/fug + +UO2SO4:3H2O + UO2SO4:3H2O = SO4-2 + UO2+2 + 3 H2O + log_k -1.4028 + -delta_H -34.6176 kJ/mol +# deltafH -2751.5 kJ/mol + -analytic -5.0134e1 -1.0321e-2 3.0505e3 1.6799e1 5.1818e1 +# Range 0-200 + -Vm 108.34 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 92gre/fug + +UO3(beta) + UO3 + 2 H+ = H2O + UO2+2 + log_k 8.3095 + -delta_H -84.5383 kJ/mol +# deltafH -1220.3 kJ/mol + -analytic -1.2298e1 -1.7800e-3 4.5621e3 2.3593 7.1191e1 +# Range 0-300 + -Vm 34.46 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 92gre/fug + +Uraninite + UO2 + 4 H+ = U+4 + 2 H2O + log_k -4.8372 + -delta_H -77.8767 kJ/mol +# deltafH -1085 kJ/mol + -analytic -7.5776e1 -1.0558e-2 5.9677e3 2.1853e1 9.3142e1 +# Range 0-325 + -Vm 24.638 +# Extrapol Cp integration +# Ref CWM89, SSB97 match + +Vaesite + NiS2 + H2O = 0.25 H+ + 0.25 SO4-2 + Ni+2 + 1.75 HS- + log_k -26.7622 + -delta_H 110.443 kJ/mol +# deltafH -32.067 kcal/mol + -analytic 1.6172e1 -2.2673e-2 -8.2514e3 -3.4392 -1.4013e2 +# Range 0-200 + -Vm 27.697 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 78vau/cra + +Wollastonite + CaSiO3 + 2 H+ = Ca+2 + H2O + SiO2 + log_k 13.7605 + -delta_H -76.5756 kJ/mol +# deltafH -389.59 kcal/mol + -analytic 3.0931e1 6.7466e-3 5.1749e3 -1.3209e1 -3.4579e5 +# Range 0-350 + -Vm 39.93 +# Extrapol supcrt92 +# Ref HDN+78 + +Wurtzite + ZnS + H+ = HS- + Zn+2 + log_k -9.1406 + -delta_H 22.3426 kJ/mol +# deltafH -45.85 kcal/mol + -analytic -1.5446e2 -4.8874e-2 2.4551e3 6.1278e1 3.8355e1 +# Range 0-350 + -Vm 23.846 +# Extrapol supcrt92 +# Ref HDN+78 + +Wustite + Fe.947O + 2 H+ = 0.106 Fe+3 + 0.841 Fe+2 + H2O + log_k 12.4113 + -delta_H -102.417 kJ/mol +# deltafH -266.265 kJ/mol + -analytic -7.6919e1 -1.8433e-2 7.3823e3 2.8312e1 1.1522e2 +# Range 0-300 + -Vm 12.04 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref WEP+82 + +Xonotlite + Ca6Si6O17(OH)2 + 12 H+ = 6 Ca+2 + 6 SiO2 + 7 H2O + log_k 91.8267 + -delta_H -495.457 kJ/mol +# deltafH -2397.25 kcal/mol + -analytic 1.6080e3 3.7309e-1 -2.2548e4 -6.2716e2 -3.8346e2 +# Range 0-200 + -Vm 264.81 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 82sar/bar + +Zincite + ZnO + 2 H+ = H2O + Zn+2 + log_k 11.2087 + -delta_H -88.7638 kJ/mol +# deltafH -350.46 kJ/mol + -analytic -8.6681e1 -1.9324e-2 7.1034e3 3.2256e1 1.1087e2 +# Range 0-350 + -Vm 14.338 +# Extrapol supcrt92, Cp integration +# Ref SSW+97, CWM89 match + +Zn + Zn + 2 H+ + 0.5 O2 = H2O + Zn+2 + log_k 68.8035 + -delta_H -433.157 kJ/mol +# deltafH 0 kJ/mol + -analytic -6.4131e1 -2.0009e-2 2.3921e4 2.3702e1 3.7329e2 +# Range 0-300 + -Vm 9.162 # thermo.com.V8.R6+.tdat +# Extrapol Cp integration +# Ref CWM89 + +Zn(NO3)2:6H2O + Zn(NO3)2:6H2O = Zn+2 + 2 NO3- + 6 H2O + log_k 3.4102 + -delta_H 24.7577 kJ/mol +# deltafH -2306.8 kJ/mol + -analytic -1.7152e2 -1.6875e-2 5.6291e3 6.5094e1 9.5649e1 +# Range 0-200 + -Vm 144.06 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +Zn(OH)2(beta) + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.9341 + -delta_H -83.2111 kJ/mol +# deltafH -641.851 kJ/mol + -analytic -7.7810e1 -7.8548e-3 7.1994e3 2.7455e1 1.2228e2 +# Range 0-200 + -Vm 32.60 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +Zn(OH)2(epsilon) + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.6625 + -delta_H -81.7811 kJ/mol +# deltafH -643.281 kJ/mol + -analytic -7.7938e1 -7.8767e-3 7.1282e3 2.7496e1 1.2107e2 +# Range 0-200 + -Vm 32.60 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +Zn2SiO4 + Zn2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Zn+2 + log_k 13.8695 + -delta_H -119.399 kJ/mol +# deltafH -1636.75 kJ/mol + -analytic 2.0970e2 5.3663e-2 -1.2724e2 -8.5445e1 -2.2336 +# Range 0-200 + -Vm 55.03 # Webmineral.com +# Extrapol Constant H approx +# Ref WEP+82 + +ZnCl2 + ZnCl2 = Zn+2 + 2 Cl- + log_k 7.0880 + -delta_H -72.4548 kJ/mol +# deltafH -415.09 kJ/mol + -analytic -1.6157e1 -2.5405e-2 2.6505e3 8.8584 4.5015e1 +# Range 0-200 + -Vm 46.84 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +ZnCr2O4 + ZnCr2O4 + 8 H+ = Zn+2 + 2 Cr+3 + 4 H2O + log_k 7.9161 + -delta_H -221.953 kJ/mol +# deltafH -370.88 kcal/mol + -analytic -1.7603e2 -1.0217e-2 1.7414e4 5.1966e1 2.9577e2 +# Range 0-200 + -Vm 44.03 # thermo.com.V8.R6+.tdat +# Extrapol Constant H approx +# Ref 76del/hal + +ZnSO4 + ZnSO4 = SO4-2 + Zn+2 + log_k 3.5452 + -delta_H -80.132 kJ/mol +# deltafH -982.855 kJ/mol + -analytic 6.9905 -1.8046e-2 2.2566e3 -2.2819 3.8318e1 +# Range 0-200 + -Vm 45.61 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +ZnSO4:6H2O + ZnSO4:6H2O = SO4-2 + Zn+2 + 6 H2O + log_k -1.6846 + -delta_H -0.412008 kJ/mol +# deltafH -2777.61 kJ/mol + -analytic -1.4506e2 -1.8736e-2 5.2179e3 5.3121e1 8.8657e1 +# Range 0-200 + -Vm 130.08 # gfw/density +# Extrapol Constant H approx +# Ref WEP+82 + +Zoisite + Ca2Al3(SiO4)3OH + 13 H+ = 2 Ca+2 + 3 Al+3 + 3 SiO2 + 7 H2O + log_k 43.3017 + -delta_H -458.131 kJ/mol +# deltafH -1643.69 kcal/mol + -analytic 2.5321 -3.5886e-2 1.9902e4 -6.2443 3.1055e2 +# Range 0-350 + -Vm 135.9 +# Extrapol supcrt92 +# Ref HDN+78 differ by 2.5 log K at 0C, 0.6 log K at 350C + +#--------------------------- +# carbfix.dat additions and changes +#--------------------------- + +Ankerite + CaFe(CO3)2 = Ca+2 + Fe+2 + 2 CO3-2 + log_k -20.8732 # HP11 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic 6743.140988642074 2.3089611210263445 -252723.63251182728 -2681.493160205648 9.661065201605685e6 -0.0008807525923414785 # HP11 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 66.060 # HP11 + +Dolomite + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + log_k -17.5755 # carbfix.dat + -analytic 29.3854 -0.08464 -6474.23 0 0 0 # carbfix.dat + -Vm 64.365 # core10.dat + +Siderite #M 115.856 + FeCO3 = Fe+2 + CO3-2 + log_k -11.0441 # carbfix.dat + -analytic 349.4317054926304 0.03628114046578195 -13573.811090861998 -131.65143185871804 0 0 # carbfix.dat + -Vm 29.378 # core10.dat + +Vaterite + CaCO3 = Ca+2 + CO3-2 + log_k -7.913 # PB82 + -analytic -172.1295 -0.077993 3074.688 71.595 # PB82 + -Vm 37.628 # Webmineral + +Chamosite + Fe5Al2Si3O10(OH)8 + 16 H+ = 3 SiO2 + 2 Al+3 + 5 Fe+2 + 12 H2O + log_k 51.0989 # Wilson+06 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2261.8191086219654 -0.05624157931775312 177907.89284663578 751.8600225754568 -1.0016051707895715e7 -0.00016619114943726155 # Wilson+06 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 213.42 # Wilson+06 + +Ferroactinolite + Ca2Fe5Si8O24H2 + 14 H+ = 8 H2O + 2 Ca++ + 5 Fe++ + 8 SiO2 + log_k 53.8577 # HP11 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -6166.998542330102 -1.037219798091501 365861.8176639852 2233.6116457595454 -2.0884200268246245e7 0.00012380655710718727 # HP11 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 284.20 # HP11 + +Analcime + Na0.96Al0.96Si2.04O6:1H2O + 3.84 H+ = 0.96 Al+3 + 2.04 SiO2 + 0.96 Na+ + 2.92 H2O + log_k 6.46778 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -1607.397164637225 -0.20244882417823173 100724.95781836317 567.7196058320366 -6.033769323248515e6 -5.813879879598253e-6 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 97.43 # Neu00 + +Chabazite-Ca + CaAl2Si4O12:6H2O + 8 H+ = 2 Al+3 + Ca+2 + 4 SiO2 + 10 H2O + log_k 14.7771 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -3008.8025156663593 -0.3755910460310381 188997.49544842725 1062.7947084349842 -1.1188005391588064e7 -0.00002583123991650134 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 247.45 # Neu00 + +Chabazite-Na + Na2Al2Si4O12:6H2O + 8 H+ = 2 Al+3 + 2 Na+ + 4 SiO2 + 10 H2O + log_k 16.9077 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -3186.8278093507747 -0.418380143168157 196138.93487499916 1132.2901846509246 -1.157949755113691e7 -0.000010048464434853268 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 247.45 # Neu00 + +Clinoptilolite-Ca + Ca1.5Al3Si15O36:12H2O + 12 H+ = 3 Al+3 + 1.5 Ca+2 + 15 SiO2 + 18 H2O + log_k -6.46186 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -9671.715446207168 -1.2994995558734899 586051.6056233725 3435.4387233980556 -3.6938991496076465e7 0.000020765835897886403 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 628.14 # Neu00 + +Clinoptilolite-Na + Na3Al3Si15O36:10H2O + 12 H+ = 3 Al+3 + 3 Na+ + 15 SiO2 + 16 H2O + log_k -9.10501 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -9935.986589349232 -1.3651421045919674 595717.5272789554 3537.941435564227 -3.7574827008609205e7 0.00004659640445273473 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 628.14 # Neu00 + +Heulandite-Ca + CaAl2Si7O18:6H2O + 8 H+ = 2 Al+3 + Ca+2 + 7 SiO2 + 10 H2O + log_k 3.436 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -4716.20373811867 -0.6097204104617631 290361.2230601926 1669.4918855360143 -1.8033731828280084e7 -7.066268784616783e-6 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 319.27 # Neu00 + +Heulandite-Na + Na2Al2Si7O18:5H2O + 8 H+ = 2 Al+3 + 2 Na+ + 7 SiO2 + 9 H2O + log_k 6.5703 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -4893.663438946976 -0.6527198597381667 298513.6715970333 1737.9764230580004 -1.846214573574453e7 9.017353510490205e-6 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 314.27 # Neu00 + +Laumontite + CaAl2Si4O12:4.5H2O + 8 H+ = 2 Al+3 + 4 SiO2 + 1 Ca+2 + 8.5 H2O + log_k 14.7774 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2953.1864248185643 -0.3460678860757567 189179.5402824526 1037.3497867115404 -1.133807260140713e7 -0.000030091905800782725 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 209.68 # Neu00 + +Leonhardite + CaAl2Si4O12:3.5H2O + 8 H+ = 2 Al+3 + 4 SiO2 + 1 Ca+2 + 7.5 H2O + log_k 14.8743 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2952.1293972721705 -0.34742048679718 189640.4641323959 1036.5589592559031 -1.1353314773495251e7 -0.00002980389895752243 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 204.6 # Neu00 + +Mesolite + Ca0.667Na0.666Al2Si3O10:2.667H2O + 8 H+ = 2 Al+3 + 0.667 Ca+2 + 3 SiO2 + 0.666Na+ + 6.667 H2O + log_k 17.4218 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2514.705149002807 -0.29384113565312087 161655.70641411358 883.4921843216846 -9.406741691291668e6 -0.00003131384483046101 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 171.60 # Neu00 + +Mordenite-Ca + Ca0.5AlSi5O12:4H2O + 4 H+ = 1 Al+3 + 0.5 Ca+2 + 5 SiO2 + 6 H2O + log_k -7.0717 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -3209.8424385413937 -0.42341047224966527 194516.0226403748 1137.819893904924 -1.2397691837671977e7 6.8216657981027104e-6 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 208.74 # Neu00 + +Mordenite-Na + NaAlSi5O12:3H2O + 4 H+ = 1 Al+3 + 1 Na+ + 5 SiO2 + 5 H2O + log_k -1.64368 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -3304.0194429277494 -0.44813101451196 199814.8259786772 1174.547352199426 -1.2617592209620891e7 0.00001579003538196579 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 208.74 # Neu00 + +Natrolite + Na2Al2Si3O10:2H2O + 8 H+ = 2 Al+3 + 3 SiO2 + 2 Na+ + 6 H2O + log_k 19.1579 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2597.197018319145 -0.31602003400891093 165224.20445157515 915.9259126075954 -9.615658410718244e6 -0.000020437594207700833 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 169.22 # Neu00 + +Scolecite + CaAl2Si3O10:3H2O + 8 H+ = 2 Al+3 + Ca+2 + 3 SiO2 + 7 H2O + log_k 16.5484 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -2472.9848254242747 -0.282577973571597 159852.11641836836 867.0866007988283 -9.301702517122421e6 -0.00003682208544087395 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 172.29 # Neu00 + +Stilbite-Ca + CaAl2Si7O18:7H2O + 8 H+ = 2 Al+3 + Ca+2 + 7 SiO2 + 11 H2O + log_k 3.25107 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -4700.580605084462 -0.6041316785312421 289527.09790938033 1663.141867840657 -1.795058537490787e7 -5.933631409739997e-6 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 333.48 # Neu00 + +Thomsonite + Ca2NaAl5Si5O20:6H2O + 20 H+ = 5 Al+3 + 2 Ca+2 + 5 SiO2 + Na+ + 16 H2O + log_k 53.2914 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -4574.622243877597 -0.4696926814639755 308149.84600719286 1591.2127911035302 -1.7223826926743384e7 -0.00010328397531931611 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 338.10 # Neu00 + +Wairakite + CaAl2Si4O12:2H2O + 8 H+ = 2 Al+3 + 4 SiO2 + 1 Ca+2 + 6 H2O + log_k 18.7266 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -3019.9452775460704 -0.35597487369231395 196047.2234609314 1059.0051267650902 -1.159849076955757e7 -0.000030402580312874294 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 190.35 # Neu00 + +Yugawaralite + CaAl2Si6O16:4H2O + 8 H+ = 2 Al+3 + 6 SiO2 + 1 Ca+2 + 8 H2O + log_k 7.98228 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -analytic -4107.23434950416 -0.5135363017836825 257073.67049534645 1449.0996243850718 -1.5841096694718203e7 -0.000015762141005939227 # Neu00 + CHNOSZ/OBIGT/SUPCRTBL - D08,Z+16 + -Vm 265.79 # Neu00 + +#---------- +# 15 gases +#---------- + +C2H4(g) + C2H4 = C2H4 + log_k -2.323631 + -delta_H -3.930 kcal/mol + -analytic -14.5616 0.0176 2192.2 0 0 -3.8657e-6 +# Range 0-350 + -T_c 283 # K + -P_c 50.53 + -Omega 0.085 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref Sho93 + +C2H6(g) + C2H6 = C2H6 + log_k -2.93276 + -delta_H -4.509 kcal/mol + -analytic -23.1154 0.0354 3289.1 0 0 -1.5637e-5 +# Range 0-350 + -T_c 305 # K + -P_c 48.16 + -Omega 0.100 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref HOK+98 + +C3H8(g) + C3H8 = C3H8 + log_k -2.876 + -analytic 1.885 -2.55e-2 0 0 0 3.20e-5 # Not the best +# Range 0-350 + -T_c 369.522 # K + -P_c 42.4924 + -Omega 0.152 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref HOK+98 + +CH4(g) + CH4 = CH4 + log_k -2.8502 + -delta_H -13.0959 kJ/mol +# deltafH -17.88 kcal/mol + -analytic -24.027 4.7146e-3 372.27 6.4264 2.3362e5 +# Range 0-350 + -T_c 190.6 # K + -P_c 45.40 + -Omega 0.008 # phreeqc.dat +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +CO(g) + CO = CO + log_k -3.0068 + -delta_H -10.4349 kJ/mol +# deltafH -26.416 kcal/mol + -analytic -8.0849 9.2114e-3 0 0 2.0813e5 +# Range 0-350 + -T_c 133 # K + -P_c 34.54 + -Omega 0.049 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref Sho93 + +CO2(g) + CO2 + H2O = H+ + HCO3- + log_k -7.8136 + -delta_H -10.5855 kJ/mol +# deltafH -94.051 kcal/mol + -analytic -8.5938e1 -3.0431e-2 2.0702e3 3.2427e1 3.2328e1 +# Range 0-350 + -T_c 304.25 # K + -P_c 72.83 # atm, 7.38 MPa, http://webbook.nist.gov/cgi/cbook.cgi?ID=C124389&Units=SI&Mask=4#Thermo-Phase + -Omega 0.225 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +H2(g) + H2 = H2 + log_k -3.1050 + -delta_H -4.184 kJ/mol +# deltafH 0 kcal/mol + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 +# Range 0-350 + -T_c 33.2 # K + -P_c 12.80 + -Omega 0.225 # phreeqc.dat +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +H2O(g) # HP98 + H2O = 1.000 H2O + -log_k 1.5108 + -analytic -1.4782e1 1.0752e-3 2.7519e3 2.7548 4.2945e1 + -T_c 647.3 + -P_c 220.9 + -Omega 0.344 + +H2S(g) + H2S = H+ + HS- + log_k -7.9759 + -delta_H 4.5229 kJ/mol +# deltafH -4.931 kcal/mol + -analytic -97.354 -3.1576e-2 1.8285e3 37.44 28.56 +# Range 0-350 + -T_c 373.2 # K + -P_c 88.20 + -Omega 0.1 +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +N2(g) + N2 = N2 + log_k -3.1864 + -delta_H -10.4391 kJ/mol +# deltafH 0 kcal/mol + -analytic -58.453 1.818e-3 3199 17.909 -27460 # phreeqc.dat +# Range 0-350 + -T_c 126.2 # K + -P_c 33.50 + -Omega 0.039 +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +NH3(g) + NH3 = NH3 + log_k 1.7966 + -delta_H -35.2251 kJ/mol +# deltafH -11.021 kcal/mol + -analytic -18.758 3.3670e-4 2.5113e3 4.8619 39.192 +# Range 0-350 + -T_c 405.6 # K + -P_c 111.3 + -Omega 0.25 +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +NO(g) + NO + 0.5 H2O + 0.25 O2 = H+ + NO2- + log_k 0.7554 + -delta_H -48.8884 kJ/mol +# deltafH 90.241 kJ/mol + -analytic 8.2147 -1.2708e-1 -6.0593e3 2.0504e1 -9.4551e1 +# Range 0-300 + -T_c 180 # K + -P_c 64.64 + -Omega 0.607 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92, Cp integration +# Ref AS01, WEP+82 differ by 0.2 log K at 0C, 17 log K at 350C !! flag + +NO2(g) + NO2 + 0.5 H2O + 0.25 O2 = H+ + NO3- + log_k 8.3673 + -delta_H -94.0124 kJ/mol +# deltafH 33.154 kJ/mol + -analytic 9.4389e1 -2.7511e-1 -1.6783e4 2.1127e1 -2.6191e2 +# Range 0-300 + -T_c 431 # K + -P_c 99.67 + -Omega 0 # Not found +# Extrapol Cp integration +# Ref WEP+82 + +O2(g) + O2 = O2 + log_k -2.8983 + -delta_H -12.1336 kJ/mol +# deltafH 0 kcal/mol + -analytic -7.5001 7.8981e-3 0.0 0.0 2.0027e5 +# Range 0-300 + -T_c 154.6 # K phreeqc.dat + -P_c 49.80 # phreeqc.dat + -Omega 0.021 # phreeqc.dat +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +SO2(g) + SO2 = SO2 + log_k 0.1700 + -delta_H 0 +# deltafH 0 kcal/mol + -analytic -2.0205e1 2.8861e-3 1.4862e3 5.2958 1.2721e5 +# Range 0-300 + -T_c 430 # K + -P_c 77.67 + -Omega 0.251 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf +# Extrapol supcrt92 +# Ref WEP+82, Kel60 + +#---------- +# Additional phases added for the purpose of the kinetics +#---------- + +#Basaltic glass leached layer solubility - calculated from a stoichiometric mixture of amorphous SiO2 and Al(OH)3 in this database. +#NOTE: The analytical expression was calculated assuming a constant Cp for Al(OH)3(am), so that significant systematic errors occur at high temperatures! +Glass_Basalt_leached_layer + Si1.00Al0.35O2(OH)1.05 + 0.35 OH- = 0.35 Al(OH)4- + SiO2 + log_k -2.36449 + -analytic 77.82514814711445 0.032450265390183614 -1502.5932036570116 -33.02705435543141 -216815.051931841 -7.454186812457974e-6 + +#Rhyolite glass leached layer solubility - calculated from a stoichiometric mixture of amorphous SiO2 and Al(OH)3 in this database. +#NOTE: The analytical expression was calculated assuming a constant Cp for Al(OH)3(am), so that significant systematic errors occur at high temperatures! +Glass_Rhyolite_leached_layer +Si1.00Al0.23O2(OH)0.69 + 0.23 OH- = 0.23 Al(OH)4- + SiO2 + log_k -2.49416 + -analytic 5.1557406e+01 2.3750757e-02 -1.7710982e+02 -2.2884601e+01 -3.0907618e+05 -4.8984656e-06 + +#---------- +# Additional phases +##Non-silicate minerals including carbonate, sulfide, phosphate, halide, and oxy-hydroxide minerals#### +# 16 added solids +# The thermodynmaic propeties are from the llnl.data database expet for Gaspite +#------------ + + +Anglesite + PbSO4 = + Pb+2 + SO4-2 + log_k -7.8527 + -delta_H 11.255 kJ/mol # Calculated enthalpy of reaction Anglesite +# Enthalpy of formation: -219.87 kcal/mol + -analytic -1.8583e+002 -7.3849e-002 2.8528e+003 7.6936e+001 4.4570e+001 + -Vm 47.950 #https://thermoddem.brgm.fr/ +# -Range: 0-300 + +Barite + BaSO4 = + Ba++ + SO4-2 + log_k -9.9711 + -delta_H 25.9408 kJ/mol # Calculated enthalpy of reaction Barite +# Enthalpy of formation: -352.1 kcal/mol + -analytic -1.8747e+002 -7.5521e-002 2.0790e+003 7.7998e+001 3.2497e+001 + -Vm 52.1 #https://thermoddem.brgm.fr/ +# -Range: 0-300 + +Celestite + SrSO4 = + SO4-2 + Sr+2 + log_k -5.6771 + -delta_H -7.40568 kJ/mol # Calculated enthalpy of reaction Celestite +# Enthalpy of formation: -347.3 kcal/mol + -analytic -1.9063e+002 -7.4552e-002 3.9050e+003 7.8416e+001 6.0991e+001 + -Vm 46.25 #https://thermoddem.brgm.fr/ +# -Range: 0-300 + +Cerussite + PbCO3 + H+ = + HCO3- + Pb+2 + log_k -3.2091 + -delta_H 13.8992 kJ/mol # Calculated enthalpy of reaction Cerussite +# Enthalpy of formation: -168 kcal/mol + -analytic -1.2887e+002 -4.4372e-002 2.2336e+003 5.3091e+001 3.4891e+001 +# -Range: 0-300 + +Fluorapatite + Ca5(PO4)3F +3.0 H+ = + F- + 3.0 HPO4-2 + 5.0 Ca++ + log_k -24.9940 + -delta_H -90.8915 kJ/mol # Calculated enthalpy of reaction Fluorapatite +# Enthalpy of formation: -6836.12 kJ/mol + -analytic -9.3648e+002 -3.2688e-001 2.4398e+004 3.7461e+002 3.8098e+002 + -Vm 157.56 #https://thermoddem.brgm.fr/ +# -Range: 0-300 + +Fluorite + CaF2 = + Ca++ + 2.0 F- + log_k -10.0370 + -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction Fluorite +# Enthalpy of formation: -293 kcal/mol + -analytic -2.5036e+002 -8.4183e-002 4.9525e+003 1.0054e+002 7.7353e+001 + -Vm 24.542 #https://thermoddem.brgm.fr/ +# -Range: 0-300 + +Gaspite # M 118.702 https://thermoddem.brgm.fr/ +NiCO3 + H+ = HCO3- + Ni+2 + log_k -0.74 + -analytic -909.497277 -0.146985 50789.653398 329.221149 -2880194.459776 + -Vm 26.978 #https://thermoddem.brgm.fr/ +# -Range: 0-300 + +Otavite + CdCO3 + H+ = + Cd++ + HCO3- + log_k -1.7712 + -delta_H 0 # Not possible to calculate enthalpy of reaction Otavite +# Enthalpy of formation: 0 kcal/mol + +Pyromorphite + Pb5(PO4)3Cl +3.0 H+ = + Cl- + 3.0 HPO4-2 + 5.0 Pb+2 + log_k -47.8954 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite +# Enthalpy of formation: 0 kcal/mol + +Pyromorphite-OH + Pb5(OH)(PO4)3 +4.0 H+ = + H2O + 3.0 HPO4-2 + 5.0 Pb+2 + log_k -26.2653 + -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite-OH + -Vm 188.40 #https://thermoddem.brgm.fr/ +# Enthalpy of formation: 0 kcal/mol + +Rhodochrosite + MnCO3 + H+ = + HCO3- + Mn+2 + log_k -0.1928 + -delta_H -21.3426 kJ/mol # Calculated enthalpy of reaction Rhodochrosite +# Enthalpy of formation: -212.521 kcal/mol + -analytic -1.6195e+002 -4.9344e-002 5.0937e+003 6.4402e+001 7.9531e+001 + -Vm 31.075 #https://thermoddem.brgm.fr/ +# -Range: 0-300 + +Smithsonite + ZnCO3 + H+ = + HCO3- + Zn+2 + log_k 0.4633 + -delta_H -30.5348 kJ/mol # Calculated enthalpy of reaction Smithsonite +# Enthalpy of formation: -194.26 kcal/mol + -analytic -1.6452e+002 -5.0231e-002 5.5925e+003 6.5139e+001 8.7314e+001 +# -Range: 0-300 + + +Strontianite + SrCO3 + H+ = + HCO3- + Sr+2 + log_k -0.3137 + -delta_H -8.23411 kJ/mol # Calculated enthalpy of reaction Strontianite +# Enthalpy of formation: -294.6 kcal/mol + -analytic -1.3577e+002 -4.4884e-002 3.5729e+003 5.5296e+001 5.5791e+001 +# -Range: 0-300 + +Witherite + BaCO3 + H+ = + Ba+2 + HCO3- + log_k -2.9965 + -delta_H 17.1628 kJ/mol # Calculated enthalpy of reaction Witherite +# Enthalpy of formation: -297.5 kcal/mol + -analytic -1.2585e+002 -4.4315e-002 2.0227e+003 5.2239e+001 3.1600e+001 +# -Range: 0-300 + +# A.P. Gysi et al. / Geochimica et Cosmochimica Acta 242 (2018) 143–164 +Monazite-Ce # M 235.087 g/mol + CePO4 + H+ = Ce+3 + HPO4-2 + log_k -18.12 + -analytic 0.968 0.0474 4.384E+03 + +Variscite # M 157.983 #https://thermoddem.brgm.fr/ + AlPO4:2H2O + 2H+ = Al+3 + H2PO4- + 2 H2O + log_k -2.16 + -analytic -1069.095997 -0.173224 59751.042067 386.011849 -3287463.862916 + -Vm 61.953 + +## +Illite + K0.6Mg0.25Al1.8Al0.5Si3.5O10(OH)2 +8.0000 H+ = + 0.2500 Mg++ + 0.6000 K+ + 2.3000 Al+++ + 3.5000 SiO2 + 5.0000 H2O + log_k 9.0260 + -delta_H -171.764 kJ/mol # Calculated enthalpy of reaction Illite +# Enthalpy of formation: -1394.71 kcal/mol + -analytic 2.6069e+001 -1.2553e-003 1.3670e+004 -2.0232e+001 -1.1204e+006 +# -Range: 0-300 + + + +#---------- +# List of the RATE blocks (details in Hermanska et al. 2022, 2023) +#---------- + + +RATES + +Albite #NaAlSi3O8; M 262.219 g/mol +-start +1 name$ = "Albite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.7 #mol.m-2.s-1 +1001 An = 2.05e-1 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.3 +1010 nb = -0.3 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Albite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Albite_high #NaAlSi3O8; M 262.219 g/mol +-start +1 name$ = "Albite_high" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.7 #mol.m-2.s-1 +1001 An = 2.05e-1 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.3 +1010 nb = -0.3 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Albite_high")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Albite_low #NaAlSi3O8; M 262.219 g/mol +-start +1 name$ = "Albite_low" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.7 #mol.m-2.s-1 +1001 An = 2.05e-1 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.3 +1010 nb = -0.3 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Albite_low")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Almandine#Fe3Al2(SiO4)3, M 500.4 g/mol +-start +1 name$ = "Almandine" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.0e5#mol/m2/s +1001 An = 2.31e-4#mol/m2/s +1002 Ab = 6.0e-8#mol/m2/s +1003 na = 1 +1004 nb = -0.4 +1005 Ea = 60000 +1006 En = 43200 +1007 Eb = 42300 +1008 R = 8.314 #J.deg-1.mol-1 +1009 ACTI = act("H+") +10010 Sig = 3 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Almandine")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Analcime#Na0.96Al0.96Si2.04O6:1H2O; 219.27 g/mol +-start +1 name$ = "Analcime" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 5.0e7#mol.m-2.s-1 +1001 An = 1.0e-1 #mol.m-2.s-1 +1002 Ab = 7.5e-5 #mol.m-2.s-1 +1003 Ea = 63000 #J.mol-1 +1004 En = 58500 #J.mol-1 +1005 Eb = 58000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 1 +1010 nb = -0.4 +1011 Sig = 2.04 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Analcime")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + + +Andalusite#Al2SiO5, M 162.9 g/mol +-start +1 name$ = "Andalusite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.39#mol/m2/s +1001 An = 8.0e-3#mol/m2/s +1002 Ab = 8.8e-15#mol/m2/s +1003 na = 0.15 +1004 nb = -1.2 +1005 Ea = 58000 +1006 En = 60000 +1007 Eb = 50000 +1008 R = 8.314 #J.deg-1.mol-1 +1009 ACTI = act("H+") +1001 Sig = 1 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusn = An* (exp(-En/ (R * Tk)))* S +2004 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Andalusite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + +Andesine_ss#Ca0.4Na0.6Al1.4Si2.6O8 , M 268.613 g/mol +-start +1 name$ = "Andesine_ss" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 268.613 else S = m0 * ((m/m0)^(2/3)) * 268.613 * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +10 SR_Andesine=(SR ("Albite")*0.6)*(SR ("Anorthite")*0.4) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Andesine < 1) Then GoTo 5000 # warning no dissolution reaction +200 If (SR_Andesine > 1) Then GoTo 5000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 146.75#mol.m-2.s-1 +1001 An = 0.19 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.67 +1010 nb = -0.35 +1011 Sig = 2.6 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR_Andesine^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Andradite#Ca3Fe2(SiO4)3, M 510.9 g/mol +-start +1 name$ = "Andradite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.6e5#mol/m2/s +1001 An = 3.2e-4#mol/m2/s +1003 na = 1 +1005 Ea = 60000 +1006 En = 43200 +1008 R = 8.314 #J.deg-1.mol-1 +1009 ACTI = act("H+") +10010 Sig = 3 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusn = An* (exp(-En/ (R * Tk)))* S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Andradite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + + +Annite #KFe3AlSi3O10(OH)2; M 511.85 g/mol +-start +1 name$ = "Annite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.90e-7 #mol.m-2.s-1 +1001 An = 5e-9 #mol.m-2.s-1 +1002 Ab = 4e-10 #mol.m-2.s-1 +1003 Ea = 18200 #J.mol-1 +1004 En = 22000 #J.mol-1 +1005 Eb = 25500 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.5 +1009 nb = -0.16 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Annite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Anorthite #CaAl2Si2O8; M 278.204 g/mol +-start +1 name$ = "Anorthite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3))* GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 9.82e4 #mol.m-2.s-1 +1001 An = 1.5E-1 #mol.m-2.s-1 +1002 Ab = 1.5E-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 1.22 +1010 nb = -0.35 +1011 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Anorthite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Anthophyllite #Mg7Si8O22(OH)2, M 780.807 g/mol +-start +1 name$ = "Anthophyllite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.7e-4 #mol.m-2.s-1 +1001 An = 5.0e-6 #mol.m-2.s-1 +1002 Ea = 52000 #J.mol-1 +1003 En = 48000 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 n = 0.42 +1006 Sig = 8 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^n )* S +2001 rplusn = An* (exp(-En/ (R * Tk)))* S +2010 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR ("Anthophyllite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Antigorite #Mg3Si2O5(OH4); M 277 g/mol +-start +1 name$ = "Antigorite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +#------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.8e-6 #mol.m-2.s-1 +1001 An = 2.0e-8 #mol.m-2.s-1 +1003 Ea = 27000 #J.mol-1 +1004 En = 27000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.25 +1011 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Antigorite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + +Augite_ss#Mg0.45Fe0.275Ca0.275SiO3;M 113.4 g/mol +-start + 2 if (PARM(1) = 0) then goto 3 else goto 5 + 3 if PARM(3) = 0 then S = PARM(2) * m * 113.4 else S = m0 * ((m/m0)^(2/3)) * 113.4 * PARM(2) + 4 GOTO 1000 + 5 S = PARM(2)*TOT("water") + 10 SR_Augite=(SR ("Wollastonite")*0.45)*(SR ("Ferrosilite")*0.275)*(SR ("Enstatite")*0.275) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Augite < 1) Then GoTo 5000 # warning no dissolution reaction +200 If (SR_Augite > 1) Then GoTo 5000 # warning no precipitation reaction +#------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =1.52e6 +1001 An =350 +1002 Ea =81834 +1003 En =83000 +1004 R = 8.314 +1006 Sig = 1 +1007 na =0.7 +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR_Augite^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Beidellite-Ca#Ca.175Al2.35Si3.65O10(OH)2; M 366.9 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Beidellite-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +#------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Beidellite-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Beidellite-Fe# Fe.175Al2.35Si3.65O10(OH)2 369.7 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Beidellite-Fe" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Beidellite-Fe")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Beidellite-K# K.35Al2.35Si3.65O10(OH)2; M 373.6 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Beidellite-K" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Beidellite-K")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Beidellite-Mg# Mg.175Al2.35Si3.65O10(OH)2; M 364.2 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Beidellite-Mg" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Beidellite-Mg")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Beidellite-Na# Na.35Al2.35Si3.65O10(OH)2 ; M 368.0 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Beidellite-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Beidellite-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + +Biotite_ss #KFe1.5Mg1.5AlSi3O10(OH)2; M 464.564 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 464.564 else S = m0 * ((m/m0)^(2/3)) * 464.564 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 SR_Biotite=(SR ("Annite")*0.5)*(SR ("Phlogopite")*0.5) + +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Biotite < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Biotite > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.90e-7 #mol.m-2.s-1 +1001 An = 5e-9 #mol.m-2.s-1 +1002 Ab = 4e-10 #mol.m-2.s-1 +1003 Ea = 18200 #J.mol-1 +1004 En = 22000 #J.mol-1 +1005 Eb = 25500 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.5 +1009 nb = -0.16 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR_Biotite^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Bronzite_ss#Mg0.77Fe0.23SiO3, M 107.6 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 107.6 else S = m0 * ((m/m0)^(2/3)) * 107.6 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 SR_Bronzite=(SR ("Enstatite")*0.77)*(SR ("Ferrosilite")*0.23) + +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Bronzite < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Bronzite > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 9.5e-4# mol.m-2.s-1 +1001 An = 7.6e-1# mol.m-2.s-1 +1002 Ea = 38548# J/mol +1003 En = 66100# J/mol +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1011 Sig = 1 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR_Bronzite^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Bytownite_ss#Ca0.77Na0.23Al1.77Si2.23O8, M 243.67 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 243.67 else S = m0 * ((m/m0)^(2/3)) * 243.67 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 SR_Bytownite=(SR ("Albite")*0.23)*(SR ("Anorthite")*0.77) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Bytownite < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Bytownite > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 18838.52 #mol.m-2.s-1 +1001 An = 0.17 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 1.105 +1010 nb = -0.35 +1011 Sig = 2.23 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR_Bytownite^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Chabazite-Ca# CaAl2Si4O12:6H2O +-start +1 name$ = "Chabazite-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.221 #mol.m-2.s-1 +1001 An = 1.56e-4 #mol.m-2.s-1 +1002 Ab = 4.94e-5 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Chabazite-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Chabazite-Na# Na2Al2Si4O12:6H2O +-start +1 name$ = "Chabazite-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.221 #mol.m-2.s-1 +1001 An = 1.56e-4 #mol.m-2.s-1 +1002 Ab = 4.94e-5 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Chabazite-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Chalcedony# SiO2 M 60.08 g/mol #listed as Amorphous SiO2 in DB part 1 +-start +1 name$ = "Chalcedony" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 4.563e-4#mol/m2/s +1001 Ab = 0.0353#mol/m2/s +1002 na = 0.309 +1003 nb = -0.41 +1004 Ea = 41610 +1005 Eb = 73000 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1009 Sig = 1 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Chalcedony")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Chrysotile # Mg3Si2O5(OH4); M 278.9 g/mol +-start +1 name$ = "Chrysotile" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.8e-6 #mol.m-2.s-1 +1001 An = 2.0e-8 #mol.m-2.s-1 +1003 Ea = 27000 #J.mol-1 +1004 En = 27000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.25 +1011 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Chrysotile")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Chamosite# Fe5Al(AlSi3O10)(OH)8; M 713.44 g/mol +-start +1 name$ = "Chamosite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.5e-4 #mol.m-2.s-1 +1001 An = 4.7e-11 #mol.m-2.s-1 +1002 Ab = 2.0e-12 #mol.m-2.s-1 +1003 Ea = 30000 #J.mol-1 +1004 En = 15000 #J.mol-1 +1005 Eb = 15000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 nA = 0.74 +1009 nb = -0.19 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^nA * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Chamosite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + +Clinochlore-14A#Mg5Al(AlSi3O10)(OH)8; M 555.79 g/mol +-start +1 name$ = "Clinochlore-14A" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.5e-4 #mol.m-2.s-1 +1001 An = 4.7e-11 #mol.m-2.s-1 +1002 Ab = 2.0e-12 #mol.m-2.s-1 +1003 Ea = 30000 #J.mol-1 +1004 En = 15000 #J.mol-1 +1005 Eb = 15000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 nA = 0.74 +1009 nb = -0.19 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^nA * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Clinochlore-14A")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Clinochlore-7A# Mg5Al(AlSi3O10)(OH)8; M 555.79 g/mol +-start +1 name$ = "Clinochlore-7A" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.5e-4 #mol.m-2.s-1 +1001 An = 4.7e-11 #mol.m-2.s-1 +1002 Ab = 2.0e-12 #mol.m-2.s-1 +1003 Ea = 30000 #J.mol-1 +1004 En = 15000 #J.mol-1 +1005 Eb = 15000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 nA = 0.74 +1009 nb = -0.19 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^nA * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Clinochlore-7A")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Clinoptilolite-Ca# Ca1.5Al3Si15O36:12H2O +-start +1 name$ = "Clinoptilolite-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 15 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR ("Clinoptilolite-Ca") +/Sig)) +4000 moles = rate * time +5000 save moles +-end + +Clinoptilolite-Na# Na3Al3Si15O36:10H2O +-start +1 name$ = "Clinoptilolite-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 15 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Clinoptilolite-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Cristobalite(alpha)#SiO2; M 60.08 g/mol +-start +1 name$ = "Cristobalite(alpha)" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 4.03e-4#mol/m2/s +1001 Ab = 0.105#mol/m2/s +1002 na = 0.309 +1003 nb = -0.41 +1004 Ea = 45600 +1005 Eb = 80000 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1009 Sig = 1 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Cristobalite(alpha)")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Cristobalite(beta)#SiO2, M 60.08 g/mol +-start +1 name$ = "Cristobalite(beta)" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 4.03e-4#mol/m2/s +1001 Ab = 0.105#mol/m2/s +1002 na = 0.309 +1003 nb = -0.41 +1004 Ea = 45600 +1005 Eb = 80000 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1009 Sig = 1 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR ("Cristobalite(beta)")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Daphnite-14A#Fe5Al(AlSi3O10)(OH)8;M 713.44 g/mol +-start +1 name$ = "Daphnite-14A" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.5e-4 #mol.m-2.s-1 +1001 An = 4.7e-11 #mol.m-2.s-1 +1002 Ab = 2.0e-12 #mol.m-2.s-1 +1003 Ea = 30000 #J.mol-1 +1004 En = 15000 #J.mol-1 +1005 Eb = 15000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 nA = 0.74 +1009 nb = -0.19 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^nA * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Daphnite-14A")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Daphnite-7A#Fe5Al(AlSi3O10)(OH)8; M 713.44 g/mol +-start +1 name$ = "Daphnite-7A" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.5e-4 #mol.m-2.s-1 +1001 An = 4.7e-11 #mol.m-2.s-1 +1002 Ab = 2.0e-12 #mol.m-2.s-1 +1003 Ea = 30000 #J.mol-1 +1004 En = 15000 #J.mol-1 +1005 Eb = 15000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 nA = 0.74 +1009 nb = -0.19 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^nA * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Daphnite-7A")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Diopside #CaMgSi2O6; M 216.55 g/mol +-start +1 name$ = "Diopside" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 8.55e-5 #mol.m-2.s-1 +1001 An = 4.30e-4 #mol.m-2.s-1 +1003 Ea = 32654 #J.mol-1 +1004 En = 43866 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.25 +1009 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR ("Diopside")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Enstatite#MgSiO3;M 100.387 g/mol +-start +1 name$ = "Enstatite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 0.574 #mol.m-2.s-1 +1001 An = 6252 #mol.m-2.s-1 +1003 Ea = 46080 #J.mol-1 +1004 En = 89538 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.5 +1010 Sig = 1 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR ("Enstatite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Epidote#Ca2FeAl2Si3O12OH;M 483.215 g/mol +-start +1 name$ = "Epidote" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.09 #mol.m-2.s-1 +1001 An = 5.13e-5 #mol.m-2.s-1 +1002 Ab = 1.40e-9 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1004 En = 43200 #J.mol-1 +1005 Eb = 42300 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.30 +1009 nb = -0.4 +1010 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb )* S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Epidote")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Epidote-ord#Ca2FeAl2Si3O12OH;M 483.215 g/mol +-start +1 name$ = "Epidote-ord" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.14e1 #mol.m-2.s-1 +1001 An = 5.13e-5 #mol.m-2.s-1 +1002 Ab = 1.40e-9 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1004 En = 43200 #J.mol-1 +1005 Eb = 42300 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.56 +1009 nb = -0.4 +1010 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb )* S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Epidote-ord")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Fayalite #Fe2SiO4;M 203.771 g/mol +-start +1 name$ = "Fayalite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =1.20e6# mol.m-2.s-1 +1001 Ab =1.91e3# mol.m-2.s-1 +1002 Ea =70400# J/mol +1003 Eb =60900# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =0.44 +1008 nb =0.22 +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb)* S +2002 rplus = rplusa + rplusb +4000 rate = rplus * (1 - SR("Fayalite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Ferroactinolite #Ca2Fe5Si8O22(OH)2, M 970.053 g/mol, kinetic parameters from Tremolite +-start +1 name$ = "Ferroactinolite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +5 S = PARM(2)*TOT("water") +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 3.0e-3 #mol.m-2.s-1 +1001 An = 2.0e-5 #mol.m-2.s-1 +1002 Ea = 50000 #J.mol-1 +1003 En = 48000 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 n = 0.22 +1006 Sig = 8 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^n )* S +2001 rplusn = An* (exp(-En/ (R * Tk)))* S +2010 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Ferroactinolite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + +Forsterite #Mg2SiO4, M 140.692 g/mol +-start +1 name$ = "Forsterite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =14.8e4# mol.m-2.s-1 +1001 Ab =220# mol.m-2.s-1 +1002 Ea =70400# J/mol +1003 Eb =60900# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na = 0.44 +1008 nb = 0.22 + #Rate Equation +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusb +4000 rate = rplus * (1 - SR("Forsterite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Glass_Basalt#SiTi0.02Al0.36Fe0.19Mg0.28Ca0.26Na0.08K0.008O3.364 , M 122.566 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 122.566 else S = m0 * ((m/m0)^(2/3)) * 122.566 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR ("Glass_Basalt_leached_layer") < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR ("Glass_Basalt_leached_layer") > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 if (m0<=0) then go to 5000 +1001 Aa = 1.08e-4 #mol.m-2.s-1 +1003 Ea = 21500 #J.mol-1 +1006 R = 8.3144 #J.deg-1.mol-1 +1007 ACTI = (ACT ("H+")^3)/(ACT("Al+3")) +1008 n = 1/3 +1009 Sig = 1 + #rate equation +2000 rplus = Aa * ACTI^n * exp(-Ea/ (R * Tk)) * S +3000 rate = rplus * (1 - (SR ("Glass_Basalt_leached_layer")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Glass_Rhyolite#SiAl0.23Na0.13Fe0.05K0.05Ca0.03Mg0.007Ti0.004O2.536; M 84.165 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 84.165 else S = m0 * ((m/m0)^(2/3)) * 84.165 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR("Glass_Rhyolite_leached_layer") < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR("Glass_Rhyolite_leached_layer") > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.6e-3 #mol.m-2.s-1 +1002 Ab = 7.0e-8 #mol.m-2.s-1 +1003 Ea = 36000 #J.mol-1 +1005 Eb = 52000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.48 +1010 nb = -0.6 +1011 Sig = 1 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Glass_Rhyolite_leached_layer")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Glaucophane_ss#Na2Mg3Al2Si8O22(OH)2, M 783.531 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 783.531 else S = m0 * ((m/m0)^(2/3)) * 783.531 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 SR_Glaucophane =((SR ("Anthophyllite")*1)*(SR ("Jadeite")*2))*(SR ("Enstatite")*(-4)) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Glaucophane < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Glaucophane > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 220 #mol.m-2.s-1 +1001 Ab = 1.0e-4 #mol.m-2.s-1 +1002 Ea = 50000 #J.mol-1 +1003 Eb = 48000 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 na = 0.7 +1006 nb = -0.12 +1007 Sig = 8 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR_Glaucophane^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Grossular#Ca3Al2(SiO4)3, M 453 g/mol +-start +1 name$ = "Grossular" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.0e5#mol/m2/s +1001 An = 2.31e-4#mol/m2/s +1002 Ab = 6.0e-8#mol/m2/s +1003 na = 1 +1004 nb = -0.4 +1005 Ea = 60000 +1006 En = 43200 +1007 Eb = 42300 +1008 R = 8.314 #J.deg-1.mol-1 +1009 ACTI = act("H+") +10010 Sig = 3 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Grossular")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Heulandite-Ca# CaAl2Si7O18:6H2O +-start +1 name$ = "Heulandite-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 7 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Heulandite-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Heulandite-Na# Na2Al2Si7O18:5H2O +-start +1 name$ = "Heulandite-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 7 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Heulandite-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Hornblende_ss#Ca2(Mg4Al)(Si7Al)O22(OH)2, M 813.927 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 813.927 else S = m0 * ((m/m0)^(2/3)) * 813.927 * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +10 SR_Hornblende =((SR ("Tremolite")*1)*(SR ("Corundum")*1))*(SR ("Enstatite")*(-1)) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Hornblende < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Hornblende > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 5.0e-3 #mol.m-2.s-1 +1001 Ab = 2.1e-5 #mol.m-2.s-1 +1002 Ea = 50000 #J.mol-1 +1003 Eb = 48000 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 na = 0.17 +1006 nb = -0.12 +1007 Sig = 7 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR_Hornblende^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Illite# K0.6Mg0.25Al1.8Al0.5Si3.5O10(OH)2 +-start +1 name$ = "Illite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 7.3e-4 #mol.m-2.s-1 +1001 An = 3.348e-3 #mol.m-2.s-1 +1002 Ab = 6.0e-8 #mol.m-2.s-1 +1003 Ea = 50000 #J.mol-1 +1004 En = 70000 #J.mol-1 +1005 Eb = 74000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1009 nb = -0.6 +1011 Sig = 3.5 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Illite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Jadeite# NaAl(SiO3)2;M 203.9 g/mol +-start +1 name$ = "Jadeite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 25 #mol.m-2.s-1 +1001 An = 2.70e5 #mol.m-2.s-1 +1003 Ea = 46080 #J.mol-1 +1004 En = 89538 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.5 +1010 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Jadeite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Kaolinite # Al2Si2O5(OH)4; M 258.16 g/mol +-start +1 name$ = "Kaolinite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.85 #mol.m-2.s-1 +1001 An = 4.15e-3 #mol.m-2.s-1 +1002 Ab = 2.40e-11 #mol.m-2.s-1 +1003 Ea = 73000 #J.mol-1 +1004 En = 67000 #J.mol-1 +1005 Eb = 61000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.45 +1010 nb = -0.76 +1011 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 -SR("Kaolinite")^(1/Sig)) +4000 moles = rate * time +5000 save moles +-end + +K-Feldspar #KAlSi3O8; M 278.33 g/mol +-start +1 name$ = "K-Feldspar" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.05 # mol.m-2.s-1 +1001 An = 1.08e-2 # mol.m-2.s-1 +1002 Ab = 1.2e-10 # mol.m-2.s-1 +1003 Ea = 51700 # J/mol +1004 En = 60000 # J/mol +1005 Eb = 62195 # J/mol +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") # +1008 Sig = 3 +1009 nA = 0.45 +1010 nb = -0.75 + #Rate Equation +3000 rplusa = Aa * ACTI^nA * exp (-Ea/ (R * Tk)) * S +3001 rplusn = An * exp (-En/ (R * Tk)) * S +3002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* ACTI^(nC) * S +3003 rplus = rplusa + rplusn + rplusb +4000 rate = rplus * (1 - SR("K-Feldspar")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Kyanite# Al2SiO5, M 162.9 g/mol +-start +1 name$ = "Kyanite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.115#mol/m2/s +1001 An = 1e-3#mol/m2/s +1002 Ab = 1.5e-13#mol/m2/s +1003 na = 0.15 +1004 nb = -1 +1005 Ea = 58000 +1006 En = 60000 +1007 Eb = 50000 +1008 R = 8.314 #J.deg-1.mol-1 +1009 ACTI = act("H+") +1001 Sig = 1 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusn = An* (exp(-En/ (R * Tk)))* S +2004 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Kyanite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Larnite #Ca2SiO4;M 172.237 g/mol +-start +1 name$ = "Larnite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 5.25e8# mol.m-2.s-1 +1001 Ab = 8.25e5# mol.m-2.s-1 +1002 Ea = 70400# J/mol +1003 Eb = 60900# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =0.44 +1008 nb =0.22 +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb)* S +2002 rplus = rplusa + rplusb +4000 rate = rplus * (1 - SR ("Larnite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Labradorite_ss# Ca0.68Na0.32Al1.68Si2.32O8, M 245.84 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 245.84 else S = m0 * ((m/m0)^(2/3)) * 245.84 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 SR_Labradorite=(SR ("Albite")*0.32)*(SR ("Anorthite")*0.68) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Labradorite < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Labradorite > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 5886.557 #mol.m-2.s-1 +1001 An = 0.17 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 1.0 +1010 nb = -0.35 +1011 Sig = 2.32 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +2010 SR_Labradorite=(SR ("Albite")*0.32)*(SR ("Anorthite")*0.68) +3000 rate = rplus * (1 - (SR_Labradorite^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Labradorite_ss_an55# Ca0.55Na0.45Al1.68Si2.32O8, M 245.84 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 245.84 else S = m0 * ((m/m0)^(2/3)) * 245.84 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 Labradorite_ss_an55=(SR ("Albite")*0.55)*(SR ("Anorthite")*0.55) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Labradorite_an55 < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Labradorite_an55 > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 5886.557 #mol.m-2.s-1 +1001 An = 0.17 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 1.0 +1010 nb = -0.35 +1011 Sig = 2.32 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (Labradorite_ss_an55^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Laumontite# CaAl2Si4O12:4.5H2O +-start +1 name$ = "Laumontite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.25 #mol.m-2.s-1 +1001 An = 1.39e-3 #mol.m-2.s-1 +1002 Ab = 7.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Laumontite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Lizardite #Mg3Si2O5(OH4); M 277 g/mol +-start +1 name$ = "Lizardite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.8e-6 #mol.m-2.s-1 +1001 An = 2.0e-8 #mol.m-2.s-1 +1003 Ea = 27000 #J.mol-1 +1004 En = 27000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.25 +1011 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Lizardite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Leonhardite# CaAl2Si4O12:3.5H2O +-start +1 name$ = "Leonhardite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.25 #mol.m-2.s-1 +1001 An = 1.39e-3 #mol.m-2.s-1 +1002 Ab = 7.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Leonhardite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Maximum_Microcline #KAlSi3O8; M 278.33 g/mol +-start +1 name$ = "Maximum_Microcline" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.05 # mol.m-2.s-1 +1001 An = 1.08e-2 # mol.m-2.s-1 +1002 Ab = 1.2e-10 # mol.m-2.s-1 +1003 Ea = 51700 # J/mol +1004 En = 60000 # J/mol +1005 Eb = 62195 # J/mol +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") # +1008 Sig = 3 +1009 nA = 0.45 +1010 nb = -0.75 + #Rate Equation +3000 rplusa = Aa * ACTI^nA * exp (-Ea/ (R * Tk)) * S +3001 rplusn = An * exp (-En/ (R * Tk)) * S +3002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* ACTI^(nC) * S +3003 rplus = rplusa + rplusn + rplusb +4000 rate = rplus * (1 - SR("Maximum_Microcline")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Mesolite# Ca0.667Na0.666Al2Si3O10:2.667H2O +-start +1 name$ = "Mesolite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.97 #mol.m-2.s-1 +1001 An = 1.11e-3 #mol.m-2.s-1 +1002 Ab = 5.54e-4 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Mesolite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Montmor-Ca# Ca.175Mg.35Al1.65Si4O10(OH)2 +-start +1 name$ = "Montmor-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Montmor-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + +Montmor-Mg# Mg.525Al1.65Si4O10(OH)2; M 363.6 g/mol +-start +1 name$ = "Montmor-Mg" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Montmor-Mg")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Montmor-K# +-start +1 name$ = "Montmor-K" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Montmor-K")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Mordenite-Ca# Ca0.5AlSi5O12:4H2O +-start +1 name$ = "Mordenite-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000 else goto 1000 # warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 else goto 1000# warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 5 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Mordenite-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Mordenite-Na# NaAlSi5O12:3H2O +-start +1 name$ = "Mordenite-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 5 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Mordenite-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Muscovite #KAl3Si3O10(OH)2, M 398.303 g/mol +-start +1 name$ = "Muscovite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 0.000126#mol.m-2.s-1 +1001 An = 0.00000631#mol.m-2.s-1 +1002 Ab = 0.0000316#mol.m-2.s-1 +1004 Ea = 41311 #J.mol-1 +1005 En = 39301 #J.mol-1 +1006 Eb = 56950 #J.mol-1 +1008 R = 8.314 #J.deg-1.mol-1 +1009 nA = 0.37 +1010 nb = -0.22 +2000 Sig = 3 + #rate equations +2005 rplusa = Aa* (exp(-Ea/ (R * Tk)))*((act("H+"))^nA )* S +2006 rplusn = An* (exp(-En/ (R * Tk)))* S +2007 rplusb = Ab* (exp(-Eb/ (R * Tk)))*((act("H+"))^nb)* S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Muscovite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Natrolite# Na2Al2Si3O10:2H2O +-start +1 name$ = "Natrolite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.97 #mol.m-2.s-1 +1001 An = 1.11e-3 #mol.m-2.s-1 +1002 Ab = 5.54e-4 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Natrolite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Nepheline #NaAlSiO4 +-start +1 name$ = "Nepheline" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 5e7 #mol.m-2.s-1 +1001 An = 0.1 #mol.m-2.s-1 +1002 Ab = 7.5e-5 #mol.m-2.s-1 +1003 Ea = 63000 #J.mol-1 +1004 En = 58500 #J.mol-1 +1005 Eb = 58000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 1.0 +1009 nb = -0.4 +1011 Sig = 1 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Nepheline")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Nontronite-Ca# Ca.175Fe2Al.35Si3.65H2O12; M 424.7 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Nontronite-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Nontronite-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Nontronite-K# K.35Fe2Al.35Si3.65H2O12; M 431.3 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Nontronite-K" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Nontronite-K")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Nontronite-Mg# Mg.175Fe2Al.35Si3.65H2O12; M 421.9 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Nontronite-Mg" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Nontronite-Mg")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Nontronite-Na# Na.35Fe2Al.35Si3.65H2O12; M 425.7 g/mol # listed as SMECTITE in DB part 2 +-start +1 name$ = "Nontronite-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Nontronite-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Oligoclase_ss#Ca0.186Na0.814Al1.186Si2.814O8, M 265.2 g/mol +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 265.2 else S = m0 * ((m/m0)^(2/3)) * 265.2 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 SR_Oligoclase=(SR ("Albite")*0.814)*(SR ("Anorthite")*0.186) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Oligoclase < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Oligoclase > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 6.8 #mol.m-2.s-1 +1001 An = 0.2 #mol.m-2.s-1 +1002 Ab = 1.5e-5 #mol.m-2.s-1 +1003 Ea = 58000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 50000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.38 +1010 nb = -0.35 +1011 Sig = 2.814 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR_Oligoclase^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Olivine_ss#Mg1.8Fe0.2SiO4;M 147.31 g/mol +-start + 2 if (PARM(1) = 0) then goto 3 else goto 5 + 3 if PARM(3) = 0 then S = PARM(2) * m * 147.31 else S = m0 * ((m/m0)^(2/3)) * 113.4 * PARM(2) + 4 GOTO 1000 + 5 S = PARM(2)*TOT("water") +10 SR_Olivine=(SR ("Forsterite")*0.9)*(SR ("Fayalite")*0.1) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Olivine < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Olivine > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =14.8e4# mol.m-2.s-1 # Forsterite rate! +1001 Ab =220# mol.m-2.s-1 # Forsterite rate! +1002 Ea =70400# J/mol +1003 Eb =60900# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na = 0.44 +1008 nb = 0.22 +#Rate Equation +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR_Olivine^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Paragonite # NaAl3Si3O10(OH)2 +-start +1 name$ = "Paragonite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 7.3e-4 #mol.m-2.s-1 +1001 An = 3.48e-3 #mol.m-2.s-1 +1002 Ab = 6.0e-8 #mol.m-2.s-1 +1003 Ea = 50000 #J.mol-1 +1004 En = 70000 #J.mol-1 +1005 Eb = 74000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1009 nb = -0.6 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Paragonite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Pargasite #NaCa2Al3Mg4Si6O22(OH)2, M 835.814 g/mol, kinetic parameters from glaucophane in DB P1 +-start +1 name$ = "Pargasite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 3.327e8 #mol.m-2.s-1 +1001 Ab = 5000 #mol.m-2.s-1 +1002 Ea = 85000 #J.mol-1 +1003 Eb = 94400 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 na = 0.7 +1006 nb = -0.12 +1007 Sig = 6 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2010 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Pargasite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Phlogopite #KAlMg3Si3O10(OH)2; M 417.25 +-start +1 name$ = "Phlogopite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.90e-7 #mol.m-2.s-1 +1001 An = 5e-9 #mol.m-2.s-1 +1002 Ab = 4e-10 #mol.m-2.s-1 +1003 Ea = 18200 #J.mol-1 +1004 En = 22000 #J.mol-1 +1005 Eb = 25500 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.5 +1009 nb = -0.16 +1010 Sig = 3 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Phlogopite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Prehnite#Ca2Al2Si3O10(OH)2 ;M 415.1 g/mol +-start +1 name$ = "Prehnite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.30e3 #mol.m-2.s-1 +1001 An = 1.0 #mol.m-2.s-1 +1002 Ab = 1.53e1 #mol.m-2.s-1 +1003 Ea = 77000 #J.mol-1 +1004 En = 80000 #J.mol-1 +1005 Eb = 80000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.35 +1009 nb = -0.075 +1010 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb )* S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Prehnite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Pyrophyllite#Al2Si4O10(OH)2, M 363.908 g/mol +-start +1 name$ = "Pyrophyllite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.60e4 #mol.m-2.s-1 +1001 An = 1.5e-1 #mol.m-2.s-1 +1002 Ab = 2.0e-8 #mol.m-2.s-1 +1003 Ea = 73000 #J.mol-1 +1004 En = 67000 #J.mol-1 +1005 Eb = 61000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.7 +1010 nb = -0.7 +1011 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Pyrophyllite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Quartz#SiO2; M 60.08 g/mol +-start +1 name$ = "Quartz" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution only or precipitation only option---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 4.03e-4#mol/m2/s +1001 Ab = 0.105#mol/m2/s +1002 na = 0.309 +1003 nb = -0.41 +1004 Ea = 45600 +1005 Eb = 80000 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1009 Sig = 1 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Quartz")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Riebeckite_ss#Na2Fe5Si8O22(OH)2, M 935.877 g/mol, kinetic parameters from tremolite +-start +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * 935.877 else S = m0 * ((m/m0)^(2/3)) * 935.877 * PARM(2) +4 GOTO 1000 +5 S = PARM(2)*TOT("water") +10 SR_Riebeckite =((SR ("Wollastonite")*1)*(SR ("Jadeite")*2))*(SR ("Sillimanite")*(-2)) +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR_Riebeckite < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR_Riebeckite > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 3.0e-3 #mol.m-2.s-1 +1001 An = 2.0e-5 #mol.m-2.s-1 +1002 Ea = 50000 #J.mol-1 +1003 En = 48000 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 n = 0.22 +1006 Sig = 8 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^n )* S +2001 rplusn = An* (exp(-En/ (R * Tk)))* S +2010 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR_Riebeckite^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Sanidine_high #KAlSi3O8; M 278.33 g/mol, kinetic parameters from K-feldspar in DB P1 +-start +1 name$ = "Sanidine_high" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 0.05 # mol.m-2.s-1 +1001 An = 1.08e-2 # mol.m-2.s-1 +1002 Ab = 1.2e-10 # mol.m-2.s-1 +1003 Ea = 51700 # J/mol +1004 En = 60000 # J/mol +1005 Eb = 62195 # J/mol +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") # +1008 Sig = 3 +1009 nA = 0.45 +1010 nb = -0.75 + #Rate Equation +3000 rplusa = Aa * ACTI^nA * exp (-Ea/ (R * Tk)) * S +3001 rplusn = An * exp (-En/ (R * Tk)) * S +3002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* ACTI^(nC) * S +3003 rplus = rplusa + rplusn + rplusb +4000 rate = rplus * (1 - SR("Sanidine_high")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Saponite-Fe-Ca#Ca.175Fe3Al.35Si3.65O10(OH)2; M 480.5 g/mol +-start +1 name$ = "Saponite-Fe-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Fe-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Fe-Fe#Fe3.175Al.35Si3.65O10(OH)2; M 483.3 g/mol +-start +1 name$ = "Saponite-Fe-Fe" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Fe-Fe")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Fe-K#K.35Fe3Al.35Si3.65O10(OH)2; M 487.2 g/mol +-start +1 name$ = "Saponite-Fe-K" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Fe-K")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Fe-Mg#Mg.175Fe3Al.35Si3.65O10(OH)2 ; M 477.7 g/mol +-start +1 name$ = "Saponite-Fe-Mg" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Fe-Mg")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Fe-Na#Na.35Fe3Al.35Si3.65O10(OH)2; M 481.5 g/mol +-start +1 name$ = "Saponite-Fe-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Fe-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Mg-Ca#Ca.175Mg3Al.35Si3.65O10(OH)2 ; M 385.9 g/mol +-start +1 name$ = "Saponite-Mg-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Mg-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Mg-Fe#Fe.175Mg3Al.35Si3.65O10(OH)2 ; M 388.6 g/mol +-start +1 name$ = "Saponite-Mg-Fe" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Mg-Fe")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Mg-K#K.35Mg3Al.35Si3.65O10(OH)2 ; M 392.6 g/mol +-start +1 name$ = "Saponite-Mg-K" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Mg-K")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Mg-Mg#Mg3.175Al.35Si3.65O10(OH)2 ; M 383.0 g/mol +-start +1 name$ = "Saponite-Mg-Mg" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Mg-Mg")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Saponite-Mg-Na#Na.35Mg3Al.35Si3.65O10(OH)2; M 386.9 g/mol +-start +1 name$ = "Saponite-Mg-Na" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.65 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Saponite-Mg-Na")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Scolecite# CaAl2Si3O10:3H2O +-start +1 name$ = "Scolecite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.97 #mol.m-2.s-1 +1001 An = 1.11e-3 #mol.m-2.s-1 +1002 Ab = 5.54e-4 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR ("Scolecite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Sepiolite #Mg4Si6O15(OH)2:6H2O,653.22 g/mol +-start +1 name$ = "Sepiolite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.89e-3 #mol.m-2.s-1 +1001 An = 8.0e-7 #mol.m-2.s-1 +1002 Ea = 50200 #J.mol-1 +1003 En = 40700 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 n = 0.248 +1006 Sig = 6 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^n )* S +2001 rplusn = An* (exp(-En/ (R * Tk)))* S +2010 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Sepiolite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +SiO2(am)#M 60.08 g/mol +-start +1 name$ = "SiO2(am)" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 4.563e-4#mol/m2/s +1001 Ab = 0.0353#mol/m2/s +1002 na = 0.309 +1003 nb = -0.41 +1004 Ea = 41610 +1005 Eb = 73000 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1009 Sig = 1 + #rate equations +2002 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na)* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb)* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("SiO2(am)") ^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Smectite-high-Fe-Mg# Ca.025Na.1K.2Fe.5Fe.2Mg1.15Al1.25Si3.5H2O12 +-start +1 name$ = "Smectite-high-Fe-Mg" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.5 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Smectite-high-Fe-Mg")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + + +Smectite-low-Fe-Mg# Ca.02Na.15K.2Fe.29Fe.16Mg.9Al1.25Si3.75H2O12; 395.5 g/mol +-start +1 name$ = "Smectite-low-Fe-Mg" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.66e-3 #mol.m-2.s-1 +1001 An = 9.0e-10 #mol.m-2.s-1 +1002 Ab = 1.5e-9 #mol.m-2.s-1 +1003 Ea = 50798 #J.mol-1 +1004 En = 30000 #J.mol-1 +1005 Eb = 48000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.55 +1010 nb = -0.3 +1011 Sig = 3.75 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))* (act("H+")^nb) * S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Smectite-low-Fe-Mg")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Spodumene# LiAlSi2O6;M 187.9 g/mol +-start +1 name$ = "Spodumene" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 490 #mol.m-2.s-1 +1001 An = 5.40e6 #mol.m-2.s-1 +1003 Ea = 46080 #J.mol-1 +1004 En = 89538 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.5 +1010 Sig = 2 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2009 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Spodumene")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Stilbite# Ca.02Na.15K.2Fe.29Fe.16Mg.9Al1.25Si3.75H2O12 +-start +1 name$ = "Stilbite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 3.75 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Stilbite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Stilbite-Ca# CaAl2Si7O18:7H2O +-start +1 name$ = "Stilbite-Ca" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 2.48e-2 #mol.m-2.s-1 +1001 An = 1.39e-5 #mol.m-2.s-1 +1002 Ab = 3.5e-6 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Stilbite-Ca")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Talc #Mg3Si4O10(OH)2,379.259 g/mol +-start +1 name$ = "Talc" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 0.004424914 #mol.m-2.s-1 +1001 An = 1.56e-6 #mol.m-2.s-1 +1002 Ea = 50200 #J.mol-1 +1003 En = 40700 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 n = 0.36 +1006 Sig = 4 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^n )* S +2001 rplusn = An* (exp(-En/ (R * Tk)))* S +2010 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Talc")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Tremolite #Ca2Mg5Si8O22(OH)2, 812.353 g/mol +-start +1 name$ = "Tremolite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 3.0e-3 #mol.m-2.s-1 +1001 An = 2.0e-5 #mol.m-2.s-1 +1002 Ea = 50000 #J.mol-1 +1003 En = 48000 #J.mol-1 +1004 R = 8.314 #J.deg-1.mol-1 +1005 n = 0.22 +1006 Sig = 8 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^n )* S +2001 rplusn = An* (exp(-En/ (R * Tk)))* S +2010 rplus = rplusa + rplusn +3000 rate = rplus * (1 - (SR("Tremolite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Thomsonite# Ca2NaAl5Si5O20:6H2O +-start +1 name$ = "Thomsonite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa = 1.97 #mol.m-2.s-1 +1001 An = 1.11e-3 #mol.m-2.s-1 +1002 Ab = 5.54e-4 #mol.m-2.s-1 +1003 Ea = 33700 #J.mol-1 +1004 En = 44200 #J.mol-1 +1005 Eb = 44200 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1008 na = 0.82 +1009 nb = -0.2 +1011 Sig = 5 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na )* S +2001 rplusn = An* (exp(-En/ (R * Tk))) * S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(act("H+")^nb )* S +2009 rplus = rplusa + rplusn +rplusb +3000 rate = rplus * (1 - (SR("Thomsonite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Wollastonite#CaSiO3;M 117.1 g/mol +-start +1 name$ = "Wollastonite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 700 #mol.m-2.s-1 +1001 Ab = 20 #mol.m-2.s-1 +1003 Ea = 56000 #J.mol-1 +1004 Eb = 52000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.4 +1009 nb = 0.15 +1010 Sig = 1 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb )* S +2009 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR("Wollastonite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Zoisite#Ca2Al3(SiO4)3OH;M 457.1 g/mol +-start +1 name$ = "Zoisite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##----------------- Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 if (SR (name$) < 1) Then GoTo 5000 else goto 1000# warning no dissolution reaction +200 if (SR (name$) > 1) Then GoTo 5000 else goto 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.09 #mol.m-2.s-1 +1001 An = 5.13e-5 #mol.m-2.s-1 +1002 Ab = 1.40e-9 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1004 En = 43200 #J.mol-1 +1005 Eb = 42300 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = act("H+") +1008 na = 0.30 +1009 nb = -0.4 +1010 Sig = 3 + #rate equations +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(ACTI^na )* S +2002 rplusn = An* (exp(-En/ (R * Tk)))* S +2003 rplusb = Ab* (exp(-Eb/ (R * Tk)))*(ACTI^nb )* S +2009 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR("Zoisite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +#### Non-silicate minerals including carbonate, sulfide, phosphate, halide, and oxy-hydroxide minerals############################### + +Anglesite #PbSO4; M 303.264 g/mol +-start +1 name$ = "Anglesite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.0e-2 #mol.m-2.s-1 +1002 Ab = 2e-14 #mol.m-2.s-1 +1003 Ea = 26000 #J.mol-1 +1005 Eb = 26000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.11 +1009 nb = -1.0 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR ("Anglesite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Anhydrite #CaSO4; M 136.14 g/mol +-start +1 name$ = "Anhydrite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.30e3 #mol.m-2.s-1 +1003 Ea = 37700 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.11 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Anhydrite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Fluorapatite #Ca5(PO4)3F ; M 504.302 g/mol +-start +1 name$ = "Fluorapatite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 80 #mol.m-2.s-1 +1002 Ab = 3e-2 #mol.m-2.s-1 +1003 Ea = 43000 #J.mol-1 +1005 Eb = 43000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.8 +1009 nb = 0.2 +1010 Sig = 5 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR ("Fluorapatite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Hydroxyapatite #Ca5(OH)(PO4)3 ; M 502.31 g/mol +-start +1 name$ = "Hydroxyapatite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 80 #mol.m-2.s-1 +1002 Ab = 3e-2 #mol.m-2.s-1 +1003 Ea = 43000 #J.mol-1 +1005 Eb = 43000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.8 +1009 nb = 0.2 +1010 Sig = 5 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR ("Hydroxyapatite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Barite #BaSO4 ; M 233.404 g/mol +-start +1 name$ = "Barite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 2.5e-3 #mol.m-2.s-1 +1003 Ea = 26000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.11 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Barite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Boehmite #AlO2H : M 59.988 g/mol +-start +1 name$ = "Boehmite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 2.85 #mol.m-2.s-1 +1001 An = 4.2e-3 #mol.m-2.s-1 +1002 Ab = 5.4e-11 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 60000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 1.0 +1009 nb = -1 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Boehmite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Brucite #Mg(OH)2 ; M 58.32 g/mol +-start +1 name$ = "Brucite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.2e4 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.19 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Brucite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Celestite #SrSO4 ; M 183.684 g/mol +-start +1 name$ = "Celestite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 3.8e-2 #mol.m-2.s-1 +1003 Ea = 24000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.11 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Celestite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Diaspore #AlHO2 : M 59.99 g/mol +-start +1 name$ = "Diaspore" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 2.85 #mol.m-2.s-1 +1001 An = 4.2e-3 #mol.m-2.s-1 +1002 Ab = 5.4e-11 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 60000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 1.0 +1009 nb = -1.0 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Diaspore")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Fluorite #CaF2 ; M 78.075 g/mol +-start +1 name$ = "Fluorite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.2e6 #mol.m-2.s-1 +1003 Ea = 75000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.12 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Fluorite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Gibbsite #Al(OH)3 : M 78.00 g/mol +-start +1 name$ = "Gibbsite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 20.0 #mol.m-2.s-1 +1001 An = 3.0e-2 #mol.m-2.s-1 +1002 Ab = 3.0e-10 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1004 En = 60000 #J.mol-1 +1005 Eb = 60000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 1.0 +1009 nb = -1.0 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Gibbsite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Gypsum #CaSO4:2H2O : M 172.17 g/mol +-start +1 name$ = "Gypsum" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.8e4 #mol.m-2.s-1 +1003 Ea = 37700 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.11 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Gypsum")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Halite #NaCl : M 58.44 g/mol +-start +1 name$ = "Halite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1001 An = 3.3e-4 #mol.m-2.s-1 +1004 En = -22340 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1010 Sig = 1 + #rate equation +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2003 rplus =rplusn +3000 rate = rplus * (1 - (SR ("Halite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Monazite-Ce #CePO4 : M 235.087 g/mol +-start +1 name$ = "Monazite-Ce" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.0e-4 #mol.m-2.s-1 +1001 An = 1.0e-7 #mol.m-2.s-1 +1002 Ab = 1.2e-11 #mol.m-2.s-1 +1003 Ea = 43000 #J.mol-1 +1004 En = 43000 #J.mol-1 +1005 Eb = 43000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.7 +1009 nb = -0.5 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2001 rplusn = An * exp(-En/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusn + rplusb +3000 rate = rplus * (1 - (SR ("Monazite-Ce")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Periclase #MgO : M 40.304 g/mol +-start +1 name$ = "Periclase" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 1.2e4 #mol.m-2.s-1 +1003 Ea = 60000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.19 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Periclase")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Pyromorphite #Pb5(PO4)3Cl ; M 1356.365 g/mol +-start +1 name$ = "Pyromorphite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 58 #mol.m-2.s-1 +1003 Ea = 43000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.68 +1010 Sig = 5 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2003 rplus = rplusa +3000 rate = rplus * (1 - (SR ("Pyromorphite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +Variscite #AlPO4:2H2O ; M 157.983 g/mol +-start +1 name$ = "Variscite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction +##------------------Kinetic calculation---------------------## + # parameters +1000 Aa = 5.0e-4 #mol.m-2.s-1 +1002 Ab = 2.4e-7 #mol.m-2.s-1 +1003 Ea = 43000 #J.mol-1 +1005 Eb = 43000 #J.mol-1 +1006 R = 8.314 #J.deg-1.mol-1 +1007 ACTI = ACT ("H+") +1008 na = 0.3 +1009 nb = -0.3 +1010 Sig = 1 + #rate equation +2000 rplusa = Aa * ACTI^na * exp(-Ea/ (R * Tk)) * S +2002 rplusb = Ab * ACTI^nb * exp(-Eb/ (R * Tk)) * S +2003 rplus = rplusa + rplusb +3000 rate = rplus * (1 - (SR ("Variscite")^(1/Sig))) +4000 moles = rate * time +5000 save moles +-end + +## carbonates + +Aragonite #CaCO3; M 100.0869 g/mol +-start +1 name$ = "Aragonite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =11.025# mol.m-2.s-1 +1001 Ac = 122.5 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =1 +1008 kc =160 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Aragonite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Calcite #CaCO3; M 100.0869 g/mol +-start +1 name$ = "Calcite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =5.625# mol.m-2.s-1 +1001 Ac = 62.5 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =1 +1008 kc =160 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Calcite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Cerussite #PbCO3; M 267.2089 g/mol +-start +1 name$ = "Cerussite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =2.55# mol.m-2.s-1 +1001 Ac = 45.45 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =1 +1008 kc =160 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Cerussite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Dawsonite # NaAlCO3(OH)2 : M 144.0 g/mol +-start +1 name$ = "Dawsonite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =1.6e5# mol.m-2.s-1 +1001 Ac = 0.3 # mol.m-2.s-1 +1002 Ea =55000# J/mol +1003 Eac =55000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =1 +1008 kc =0 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Dawsonite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Dolomite # CaMg(CO3)2: M 184.40 g/mol !!! +-start +1 name$ = "Dolomite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =1.2e-3# mol.m-2.s-1 +1001 Ac = 650 # mol.m-2.s-1 +1002 Ea =10000# J/mol +1003 Eac =65000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1.9 +1007 na =0.5 +1008 kc =160 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Dolomite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Gaspite # NiCO3: M 118.702 g/mol +-start +1 name$ = "Gaspite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =2.6e-6# mol.m-2.s-1 +1001 Ac = 6.73e-3 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 3.73 +1007 na =0.55 +1008 kc =1000 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Gaspite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Magnesite # MgCO3: M 84.314 g/mol +-start +1 name$ = "Magnesite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =5e-4# mol.m-2.s-1 +1001 Ac = 2.7e-2 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =45000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 3.94 +1007 na =0.66 +1008 kc =380 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Magnesite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Otavite # CdCO3: M 172.419 g/mol +-start +1 name$ = "Otavite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =1.02# mol.m-2.s-1 +1001 Ac = 11.36 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =1 +1008 kc =160 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Otavite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Rhodochrosite #MnCO3 : M 114.95 g/mol +-start +1 name$ = "Rhodochrosite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =2.28e-3# mol.m-2.s-1 +1001 Ac = 0.4 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 4.65 +1007 na =0.5 +1008 kc =1000 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Rhodochrosite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +Siderite # FeCO3: M 115.856 g/mol !!! +-start +1 name$ = "Siderite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =2e-3# mol.m-2.s-1 +1001 Ac = 0.2 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 4 +1007 na =0.7 +1008 kc =160 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Siderite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Smithsonite # ZnCO3: M 125.399 g/mol !!! +-start +1 name$ = "Smithsonite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =1.94# mol.m-2.s-1 +1001 Ac = 8.89 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 2 +1007 na =1 +1008 kc =200 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Smithsonite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Strontianite # ZnCO3: M 125.399 g/mol +-start +1 name$ = "Strontianite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =2.2e-3# mol.m-2.s-1 +1001 Ac = 8.89 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =1 +1008 kc =240 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Strontianite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + + +Witherite # BaCO3: M 197.349 g/mol !!! +-start +1 name$ = "Witherite" +2 if (PARM(1) = 0) then goto 3 else goto 5 +3 if PARM(3) = 0 then S = PARM(2) * m * GFW(PHASE_FORMULA(name$)) else S = m0 * ((m/m0)^(2/3)) * GFW(PHASE_FORMULA(name$)) * PARM(2) +4 GOTO 100 +5 S = PARM(2)*TOT("water") +##-----------------Dissolution and precipitation options---------------------## +100 if (PARM(4) = 0) then goto 1000 else goto 110 +110 if (PARM(4) = 1) Then GoTo 150 else goto 200 # +150 If (SR (name$) < 1) Then GoTo 5000 else GoTO 1000 # warning no dissolution reaction +200 If (SR (name$) > 1) Then GoTo 5000 else GoTO 1000 # warning no precipitation reaction# +##------------------Kinetic calculation---------------------## + #Parameters +1000 Aa =35# mol.m-2.s-1 +1001 Ac = 12 # mol.m-2.s-1 +1002 Ea =16000# J/mol +1003 Eac =48000# J/mol +1004 R = 8.314 #J.deg-1.mol-1 +1006 Sig = 1 +1007 na =1 +1008 kc =160 +1009 act_c = act("HCO3-")+act("CO3-2") +1010 carb_term = 1-(kc*act_c)/(1+kc*act_c) +2000 rplusa = Aa* (exp(-Ea/ (R * Tk)))*(act("H+")^na)* S +2001 rplusc = Ac* (exp(-Eac/ (R * Tk)))*carb_term +2002 rplus = rplusa + rplusc +4000 rate = rplus * (1 - SR("Witherite")^(1/Sig)) +5000 moles = rate * time +6000 save moles +-end + +###! + + + From cfaa0d9ad164cd5dd73163c8ca265b12793c8b99 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Thu, 22 Aug 2024 17:10:38 -0600 Subject: [PATCH 200/384] Added Kinec_v3.dat to distribution Updated RELEASE.TXT for IPhreeqc --- RELEASE.TXT | 17 ++++++++++++++++- 1 file changed, 16 insertions(+), 1 deletion(-) diff --git a/RELEASE.TXT b/RELEASE.TXT index c7d3b786..19f80cd7 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -8,9 +8,24 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ ----------------- August 14, 2024 - ----------------- + ----------------- IPhreeqc: Pull request for modifications of class definition order and header file to accommodate Clang 15 on Mac. + + ----------------- + August 13, 2024 + ----------------- + + IPhreeqc: This resolves an issue when building shared libraries (DLLs) on Windows with + BUILD_SHARED_LIBS=ON and BUILD_TESTING=ON enabled in CMake. + + Sets BUILD_SHARED_LIBS=OFF when building the googletest framework. + Adds ctest-shared.cmake for testing shared library builds. + + It also resolves a build error that occurred when building shared libraries (DLLs) on + Windows using the Ninja generator. + + Adds the _WINDLL preprocessor definition for shared Windows builds. ----------------- August 8, 2024 From 5146dd686e295681c78dc7f775ab22efa6f84ed6 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Thu, 22 Aug 2024 17:10:38 -0600 Subject: [PATCH 201/384] Added Kinec_v3.dat to distribution Updated RELEASE.TXT for IPhreeqc --- CMakeLists.txt | 1 + Makefile.am | 1 + 2 files changed, 2 insertions(+) diff --git a/CMakeLists.txt b/CMakeLists.txt index 2bc7947d..75d594f5 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -6,6 +6,7 @@ set(phreeqc_DATABASE core10.dat frezchem.dat iso.dat + Kinec_v3.dat Kinec.v2.dat llnl.dat minteq.dat diff --git a/Makefile.am b/Makefile.am index ad40b735..abe19d83 100644 --- a/Makefile.am +++ b/Makefile.am @@ -14,6 +14,7 @@ DATABASE=\ core10.dat\ frezchem.dat\ iso.dat\ + Kinec_v3.dat\ Kinec.v2.dat\ llnl.dat\ minteq.dat\ From ca3ebafda0fc09ea9b95a8ce4ee7890b6755b93b Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Tue, 27 Aug 2024 14:50:58 -0600 Subject: [PATCH 202/384] updated release.txt with Tony's viscosity updates. Updated EDL Basic function documentation in HTML. --- RELEASE.TXT | 17 +++++++++++++++++ 1 file changed, 17 insertions(+) diff --git a/RELEASE.TXT b/RELEASE.TXT index 19f80cd7..519dc168 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,4 +1,21 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + ----------------- + August 27, 2024 + ----------------- + Added variable "viscos_DDL" in EDL("viscos_DDL", "surface_name") to give the + viscosity of a Donnan layer on a surface in BASIC. Note that the "surface_name" + should not contain an underscore "_", the Donnan properties are for the surface, + not for surface charge, thus use the surface name "Hfo", not "Hfo_w". If + "surface_name" is omitted, the viscosity is given for the first surface in the + alphabetical order. + + The viscosity of the Donnan layer on a surface is printed now in the output file. + + The viscosity calculation was adapted for high concentrations of neutral species + and gases. Viscosity parameters for CO2 were added using data from McBride et + al., 2015, JCED 60, 171-180. See example c:\phreeqc\viscosity\CO2.phr. + +Version 3.8.1: August 23, 2024 ----------------- August 20, 2024 From 4a0d366eef6b8e55e4109ef4bd3824a10d482038 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Wed, 28 Aug 2024 16:10:03 -0600 Subject: [PATCH 203/384] Updated examples with latest viscosity branch --- ex18.out | 2 +- ex6.out | 8 ++++---- 2 files changed, 5 insertions(+), 5 deletions(-) diff --git a/ex18.out b/ex18.out index 43e3a7e0..dc9986e5 100644 --- a/ex18.out +++ b/ex18.out @@ -259,7 +259,7 @@ Initial solution 2. Mysse Specific Conductance (µS/cm, 63°C) = 10507 Density (g/cm³) = 0.98520 Volume (L) = 1.01942 - Viscosity (mPa s) = 0.45609 + Viscosity (mPa s) = 0.45606 Activity of water = 0.999 Ionic strength (mol/kgw) = 7.101e-02 Mass of water (kg) = 1.000e+00 diff --git a/ex6.out b/ex6.out index 6e015cc3..bdb6ecba 100644 --- a/ex6.out +++ b/ex6.out @@ -3302,7 +3302,7 @@ Initial solution 2. Specific Conductance (µS/cm, 25°C) = 190 Density (g/cm³) = 0.99712 Volume (L) = 1.00299 - Viscosity (mPa s) = 0.89010 + Viscosity (mPa s) = 0.89011 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.333e-03 Mass of water (kg) = 1.000e+00 @@ -3376,7 +3376,7 @@ Initial solution 3. Specific Conductance (µS/cm, 25°C) = 190 Density (g/cm³) = 0.99715 Volume (L) = 1.00302 - Viscosity (mPa s) = 0.89005 + Viscosity (mPa s) = 0.89007 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.333e-03 Mass of water (kg) = 1.000e+00 @@ -3633,7 +3633,7 @@ Initial solution 2. Specific Conductance (µS/cm, 25°C) = 190 Density (g/cm³) = 0.99715 Volume (L) = 1.00302 - Viscosity (mPa s) = 0.89005 + Viscosity (mPa s) = 0.89007 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.333e-03 Mass of water (kg) = 1.000e+00 @@ -3707,7 +3707,7 @@ Initial solution 3. Specific Conductance (µS/cm, 25°C) = 190 Density (g/cm³) = 0.99712 Volume (L) = 1.00299 - Viscosity (mPa s) = 0.89010 + Viscosity (mPa s) = 0.89011 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.333e-03 Mass of water (kg) = 1.000e+00 From 45befa710880429a2a04cbc0294e83e0f2ce66b9 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Thu, 29 Aug 2024 19:02:04 +0000 Subject: [PATCH 204/384] Squashed 'phreeqcpp/' changes from faf8144..c477ba1 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit c477ba1 Converted to utf-8 53b14b4 Tony fixed latest viscosity bug in surface calculations 2375f7b fixed mismatched ifdef 84ad1ce Tony's changes. [200~Added variable viscos_DDL in EDL(viscos_DDL, surface_name) to give the viscosity of a Donnan layer on a surface in BASIC. Note that the surface_name should not contain an underscore _, the Donnan properties are for the surface, not for surface charge, thus use the surface name Hfo, not Hfo_w. If surface_name is omitted, the viscosity is given for the first surface in the alphabetical order. git-subtree-dir: phreeqcpp git-subtree-split: c477ba119a0ecfa4361b88f0b49523847a1a03bc --- PBasic.cpp | 2 ++ basicsubs.cpp | 37 ++++++++++++++++++++-- class_main.cpp | 85 ++++++++++++++++++++++++++++++++++++++++++++------ print.cpp | 26 ++++++++++----- transport.cpp | 71 ++++++++++++++++++++++++++--------------- 5 files changed, 174 insertions(+), 47 deletions(-) diff --git a/PBasic.cpp b/PBasic.cpp index 1ccf4126..53dda855 100644 --- a/PBasic.cpp +++ b/PBasic.cpp @@ -4732,6 +4732,8 @@ factor(struct LOC_exec * LINK) case tokviscos: { + if (PhreeqcPtr->print_viscosity) + PhreeqcPtr->viscosity(nullptr); n.UU.val = (parse_all) ? 1 : PhreeqcPtr->viscos; } break; diff --git a/basicsubs.cpp b/basicsubs.cpp index c92e8c30..7724d062 100644 --- a/basicsubs.cpp +++ b/basicsubs.cpp @@ -205,8 +205,11 @@ diff_c(const char *species_name) Dw *= viscos_0_25 / viscos_0; } - if (s_ptr->dw_a_v_dif) + if (s_ptr->dw_a_v_dif && print_viscosity) + { + viscosity(nullptr); Dw *= pow(viscos_0 / viscos, s_ptr->dw_a_v_dif); + } return Dw; } @@ -235,8 +238,11 @@ setdiff_c(const char *species_name, double d, double d_v_d) Dw *= viscos_0_25 / viscos_0; } - if (d_v_d) - Dw *= pow(viscos_0 / viscos, d_v_d); + if (d_v_d && print_viscosity) + { + viscosity(nullptr); + Dw *= pow(viscos_0 / viscos, s_ptr->dw_a_v_dif); + } return Dw; } /* ---------------------------------------------------------------------- */ @@ -269,6 +275,8 @@ calc_SC(void) // } //} av = 0; + if (print_viscosity) + viscosity(nullptr); if (!Falk) { for (i = 0; i < (int)this->s_x.size(); i++) @@ -1171,6 +1179,29 @@ diff_layer_total(const char* total_name, const char* surface_name) return (0); } } + else if (strcmp_nocase("viscos_ddl", total_name) == 0) + { + if (dl_type_x != cxxSurface::NO_DL) + { + cxxSurfaceCharge* charge_ptr = use.Get_surface_ptr()->Find_charge(x[j]->surface_charge); + if (charge_ptr->Get_mass_water() > 0) + { + cxxSurface * surf_ptr = use.Get_surface_ptr(); + if (surf_ptr->Get_calc_viscosity()) + { + viscosity(surf_ptr); + viscosity(nullptr); + return charge_ptr->Get_DDL_viscosity(); + } + else + return charge_ptr->Get_DDL_viscosity() * viscos; + } + } + else + { + return (0); + } + } /* * find total moles of each element in diffuse layer... */ diff --git a/class_main.cpp b/class_main.cpp index 731f0227..79e6475f 100644 --- a/class_main.cpp +++ b/class_main.cpp @@ -1,6 +1,8 @@ +#ifndef NPP #ifdef DOS #include #endif +#endif #include "Phreeqc.h" #include "NameDouble.h" @@ -122,12 +124,18 @@ main_method(int argc, char *argv[]) { return errors; } +#ifdef NPP +#ifdef DOS + write_banner(); +#endif +#else #ifndef NO_UTF8_ENCODING #ifdef DOS SetConsoleOutputCP(CP_UTF8); #endif write_banner(); #endif +#endif /* * Initialize arrays @@ -214,11 +222,17 @@ main_method(int argc, char *argv[]) { return errors; } +#ifdef NPP +#ifdef DOS + write_banner(); +#endif +#else #ifndef NO_UTF8_ENCODING #ifdef DOS SetConsoleOutputCP(CP_UTF8); #endif write_banner(); +#endif #endif /* @@ -281,6 +295,64 @@ main_method(int argc, char *argv[]) return 0; } #endif //TEST_COPY +#ifdef NPP +/* ---------------------------------------------------------------------- */ +int Phreeqc:: +write_banner(void) +/* ---------------------------------------------------------------------- */ +{ +#ifdef TESTING + return OK; +#endif +#ifndef NO_UTF8_ENCODING + char buffer[80]; + int len, indent; + screen_msg( + " ÛßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßÛ\n"); + screen_msg( + " º º\n"); + + /* version */ +#ifdef NPP + len = sprintf(buffer, "* PHREEQC-%s *", "3.8.0"); +#else + len = sprintf(buffer, "* PHREEQC-%s *", "@VERSION@"); +#endif + indent = (49 - len) / 2; + screen_msg(sformatf("%14cº%*c%s%*cº\n", ' ', indent, ' ', buffer, + 49 - indent - len, ' ')); + + screen_msg( + " º º\n"); + screen_msg( + " º A hydrogeochemical transport model º\n"); + screen_msg( + " º º\n"); + screen_msg( + " º by º\n"); + screen_msg( + " º D.L. Parkhurst and C.A.J. Appelo º\n"); + screen_msg( + " º º\n"); + + + /* date */ +#ifdef NPP + len = sprintf(buffer, "%s", "August 27, 2024, with bug-fixes and new items"); +#else + len = sprintf(buffer, "%s", "@VER_DATE@"); +#endif + indent = (49 - len) / 2; + screen_msg(sformatf("%14cº%*c%s%*cº\n", ' ', indent, ' ', buffer, + 49 - indent - len, ' ')); + + screen_msg( + " ÛÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÛ\n\n"); + +#endif + return 0; +} +#else /* ---------------------------------------------------------------------- */ int Phreeqc:: write_banner(void) @@ -298,11 +370,7 @@ write_banner(void) " ║ ║\n"); /* version */ -#ifdef NPP - len = sprintf(buffer, "* PHREEQC-%s *", "3.7.3"); -#else len = snprintf(buffer, sizeof(buffer), "* PHREEQC-%s *", "@VERSION@"); -#endif indent = (44 - len) / 2; screen_msg(sformatf("%14c║%*c%s%*c║\n", ' ', indent, ' ', buffer, 44 - indent - len, ' ')); @@ -322,11 +390,7 @@ write_banner(void) /* date */ -#ifdef NPP - len = sprintf(buffer, "%s", "March 14, 2024, with bug-fixes and new items"); -#else len = snprintf(buffer, sizeof(buffer), "%s", "@VER_DATE@"); -#endif indent = (44 - len) / 2; screen_msg(sformatf("%14c║%*c%s%*c║\n", ' ', indent, ' ', buffer, 44 - indent - len, ' ')); @@ -336,6 +400,7 @@ write_banner(void) #endif return 0; } +#endif /* ---------------------------------------------------------------------- */ int Phreeqc:: @@ -507,7 +572,7 @@ process_file_names(int argc, char *argv[], std::istream **db_cookie, output_msg(sformatf(" Input file: %s\n", in_file.c_str())); output_msg(sformatf(" Output file: %s\n", out_file.c_str())); #ifdef NPP - output_msg(sformatf("Using PHREEQC: version 3.7.3, compiled March 14, 2024, with bug-fixes and new items\n")); + output_msg(sformatf("Using PHREEQC: version 3.8.2, compiled August 27, 2024, with bug-fixes and new items\n")); #endif output_msg(sformatf("Database file: %s\n\n", token.c_str())); #ifdef NPP @@ -516,7 +581,7 @@ process_file_names(int argc, char *argv[], std::istream **db_cookie, /* * local cleanup */ - + line = (char *) free_check_null(line); line_save = (char *) free_check_null(line_save); diff --git a/print.cpp b/print.cpp index 325e1243..033d4899 100644 --- a/print.cpp +++ b/print.cpp @@ -1,3 +1,4 @@ +//Note to encode in ANSI with NP++ #include "Utils.h" #include "Phreeqc.h" #include "phqalloc.h" @@ -270,14 +271,23 @@ print_diffuse_layer(cxxSurfaceCharge *charge_ptr) output_msg(sformatf( "\tWater in diffuse layer: %8.3e kg, %4.1f%% of total DDL-water.\n", (double) charge_ptr->Get_mass_water(), (double) d)); - if (charge_ptr->Get_DDL_viscosity()) + if (print_viscosity && d > 0) { - if (d == 100) - output_msg(sformatf( - "\t\t viscosity: %7.5f mPa s.\n", (double)charge_ptr->Get_DDL_viscosity())); + cxxSurface * surf_ptr = use.Get_surface_ptr(); + if (surf_ptr->Get_calc_viscosity()) + { + viscosity(surf_ptr); + viscosity(nullptr); + if (d == 100) + output_msg(sformatf( + "\t\t calculated viscosity: %7.5f mPa s.\n", (double)charge_ptr->Get_DDL_viscosity())); + else + output_msg(sformatf( + "\t\t calculated viscosity: %7.5f mPa s for this DDL water. (%7.5f mPa s for total DDL-water.)\n", (double)charge_ptr->Get_DDL_viscosity(), (double)use.Get_surface_ptr()->Get_DDL_viscosity())); + } else - output_msg(sformatf( - "\t\t viscosity: %7.5f mPa s for this DDL water. (%7.5f mPa s for total DDL-water.)\n", (double)charge_ptr->Get_DDL_viscosity(), (double)use.Get_surface_ptr()->Get_DDL_viscosity())); + output_msg(sformatf( + "\t\t viscosity: %7.5f mPa s for DDL water.\n", (double)charge_ptr->Get_DDL_viscosity() * viscos)); } if (use.Get_surface_ptr()->Get_debye_lengths() > 0 && d > 0) @@ -2256,8 +2266,8 @@ print_totals(void) //#ifdef NPP if (print_viscosity) { - output_msg(sformatf("%45s%9.5f", "Viscosity (mPa s) = ", - (double) viscos)); + viscosity(nullptr); + output_msg(sformatf("%45s%9.5f", "Viscosity (mPa s) = ", (double) viscos)); if (tc_x > 200 && !pure_water) { #ifdef NO_UTF8_ENCODING diff --git a/transport.cpp b/transport.cpp index 109fd662..c49ee26b 100644 --- a/transport.cpp +++ b/transport.cpp @@ -962,6 +962,7 @@ transport(void) { snprintf(token, sizeof(token), "\nFor balancing negative concentrations in MCD, added in total to the system:"); + count_warnings = pr.warnings - 1; warning_msg(token); for (i = 0; i < count_moles_added; i++) { @@ -970,6 +971,7 @@ transport(void) snprintf(token, sizeof(token), "\t %.4e moles %s.", (double)moles_added[i].moles, moles_added[i].name); + count_warnings = pr.warnings - 1; warning_msg(token); } } @@ -3937,15 +3939,20 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) { if (s_ptr1->Get_dl_type() != cxxSurface::NO_DL) { + if (s_ptr1->Get_calc_viscosity()) + { + viscosity(s_ptr1); + ct[icell].visc1 = s_ptr1->Get_DDL_viscosity(); + } + else + ct[icell].visc1 = s_ptr1->Get_DDL_viscosity() * Utilities::Rxn_find(Rxn_solution_map, icell)->Get_viscosity(); + s_charge_p.assign(s_ptr1->Get_surface_charges().begin(), s_ptr1->Get_surface_charges().end()); s_com_p.assign(s_ptr1->Get_surface_comps().begin(), s_ptr1->Get_surface_comps().end()); if (s_ptr1->Get_only_counter_ions()) only_counter = TRUE; - ct[icell].visc1 = s_ptr1->Get_DDL_viscosity(); - if (s_ptr1->Get_calc_viscosity()) - ct[icell].visc1 /= Utilities::Rxn_find(Rxn_solution_map, icell)->Get_viscosity(); /* find the immobile surface charges with DL... */ for (i = 0; i < (int)s_charge_p.size(); i++) { @@ -3966,16 +3973,20 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) { if (s_ptr2->Get_dl_type() != cxxSurface::NO_DL) { + if (s_ptr2->Get_calc_viscosity()) + { + viscosity(s_ptr2); + ct[icell].visc2 = s_ptr2->Get_DDL_viscosity(); + } + else + ct[icell].visc2 = s_ptr2->Get_DDL_viscosity() * Utilities::Rxn_find(Rxn_solution_map, jcell)->Get_viscosity(); + s_charge_p.assign(s_ptr2->Get_surface_charges().begin(), s_ptr2->Get_surface_charges().end()); s_com_p.assign(s_ptr2->Get_surface_comps().begin(), s_ptr2->Get_surface_comps().end()); if (s_ptr2->Get_only_counter_ions()) only_counter = TRUE; - ct[icell].visc2 = s_ptr2->Get_DDL_viscosity(); - if (s_ptr2->Get_calc_viscosity()) - ct[icell].visc2 /= Utilities::Rxn_find(Rxn_solution_map, jcell)->Get_viscosity(); - for (i = 0; i < (int)s_charge_p.size(); i++) { for (i1 = 0; i1 < (int)s_com_p.size(); i1++) @@ -3990,6 +4001,7 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) } } } + viscosity(nullptr); if (!stagnant) { if (icell == 0) @@ -5975,8 +5987,11 @@ viscosity(cxxSurface *surf_ptr) /* ---------------------------------------------------------------------- */ { if (surf_ptr && !surf_ptr->Get_calc_viscosity()) + { + for (int i = 0; i < (int)surf_ptr->Get_surface_charges().size(); i++) + surf_ptr->Get_surface_charges()[i].Set_DDL_viscosity(surf_ptr->Get_DDL_viscosity()); return surf_ptr->Get_DDL_viscosity(); - + } /* from Atkins, 1994. Physical Chemistry, 5th ed. */ //viscos = @@ -6120,7 +6135,7 @@ viscosity(cxxSurface *surf_ptr) eq_plus += l_moles; l_mu_x += l_moles * s_x[i]->z; } - l_mu_x += fabs(eq_plus + eq_min); + l_mu_x += fabs(eq_plus + eq_min); // add surface charge l_mu_x /= (2 * l_water); eq_plus = eq_min = 0; } @@ -6140,6 +6155,8 @@ viscosity(cxxSurface *surf_ptr) { dw_t_visc = 0; t1 = l_moles / l_water; + if (t1 < 1e-9) + continue; l_z = fabs(s_x[i]->z); if (l_z) f_z = (l_z * l_z + l_z) / 2; @@ -6172,16 +6189,21 @@ viscosity(cxxSurface *surf_ptr) if (!surf_ptr) s_x[i]->dw_t_visc = dw_t_visc + t3; //output_msg(sformatf("\t%s\t%e\t%e\t%e\n", s_x[i]->name, t1, Bc, Dc )); } - // parms for A... + // parms for A and V_an. 7/26/24: added V_an calculation for gases z = 0 if ((l_z = s_x[i]->z) == 0) - continue; - Dw = s_x[i]->dw; - if (Dw) { - Dw *= (0.89 / viscos_0 * tk_x / 298.15); - if (s_x[i]->dw_t) - Dw *= exp(s_x[i]->dw_t / tk_x - s_x[i]->dw_t / 298.15); + if (s_x[i]->Jones_Dole[6]) + { + V_an += s_x[i]->logk[vm_tc] * s_x[i]->Jones_Dole[6] * l_moles; + m_an += l_moles; + } + continue; } + if ((Dw = s_x[i]->dw) == 0) + continue; + Dw *= (0.89 / viscos_0 * tk_x / 298.15); + if (s_x[i]->dw_t) + Dw *= exp(s_x[i]->dw_t / tk_x - s_x[i]->dw_t / 298.15); if (l_z < 0) { if (!strcmp(s_x[i]->name, "Cl-")) @@ -6191,21 +6213,18 @@ viscosity(cxxSurface *surf_ptr) V_an += V_Cl * l_moles; m_an += l_moles; } - else// if (s_x[i]->Jones_Dole[6]) + else if (s_x[i]->Jones_Dole[6]) { V_an += s_x[i]->logk[vm_tc] * s_x[i]->Jones_Dole[6] * l_moles; m_an += l_moles; } - if (Dw) - { - // anions for A... - m_min += l_moles; - t1 = l_moles * l_z; - eq_min -= t1; - eq_dw_min -= t1 / Dw; - } + // anions for A... + m_min += l_moles; + t1 = l_moles * l_z; + eq_min -= t1; + eq_dw_min -= t1 / Dw; } - else if (Dw) + else { // cations for A... m_plus += l_moles; From 7bb51ae783708bb9f004cc9ba6985ffc95df3ce8 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Thu, 29 Aug 2024 13:48:49 -0600 Subject: [PATCH 205/384] Whitespace adjustments --- RELEASE.TXT | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/RELEASE.TXT b/RELEASE.TXT index 519dc168..902b52a6 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,4 +1,5 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + ----------------- August 27, 2024 ----------------- @@ -32,7 +33,6 @@ Version 3.8.1: August 23, 2024 ----------------- August 13, 2024 ----------------- - IPhreeqc: This resolves an issue when building shared libraries (DLLs) on Windows with BUILD_SHARED_LIBS=ON and BUILD_TESTING=ON enabled in CMake. From 8f7d206a800852d06bc9a1230320fd670dd34473 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Thu, 29 Aug 2024 21:04:42 +0000 Subject: [PATCH 206/384] Squashed 'phreeqcpp/' changes from c477ba1..fdc0bb5 fdc0bb5 fixed nullptr for pre-c++11 git-subtree-dir: phreeqcpp git-subtree-split: fdc0bb51869877771df528f727fe577f58877c7d --- PBasic.cpp | 10 ++++++++++ basicsubs.cpp | 10 ++++++++++ print.cpp | 10 ++++++++++ transport.cpp | 10 ++++++++++ 4 files changed, 40 insertions(+) diff --git a/PBasic.cpp b/PBasic.cpp index 53dda855..0b7b68dc 100644 --- a/PBasic.cpp +++ b/PBasic.cpp @@ -24,6 +24,16 @@ #define toklength 20 typedef long chset[9]; +#if defined(_MSC_VER) && (_MSC_VER <= 1400) // VS2005 +# define nullptr NULL +#endif + +#if __cplusplus < 201103L // Check if C++ standard is pre-C++11 +# ifndef nullptr +# define nullptr NULL +# endif +#endif + #if defined(PHREEQCI_GUI) #ifdef _DEBUG #define new DEBUG_NEW diff --git a/basicsubs.cpp b/basicsubs.cpp index 7724d062..917353da 100644 --- a/basicsubs.cpp +++ b/basicsubs.cpp @@ -12,6 +12,16 @@ #include "Solution.h" #include "Parser.h" +#if defined(_MSC_VER) && (_MSC_VER <= 1400) // VS2005 +# define nullptr NULL +#endif + +#if __cplusplus < 201103L // Check if C++ standard is pre-C++11 +# ifndef nullptr +# define nullptr NULL +# endif +#endif + #if defined(PHREEQCI_GUI) #ifdef _DEBUG #define new DEBUG_NEW diff --git a/print.cpp b/print.cpp index 033d4899..4aa70fb6 100644 --- a/print.cpp +++ b/print.cpp @@ -15,6 +15,16 @@ #include "Solution.h" #include "Surface.h" +#if defined(_MSC_VER) && (_MSC_VER <= 1400) // VS2005 +# define nullptr NULL +#endif + +#if __cplusplus < 201103L // Check if C++ standard is pre-C++11 +# ifndef nullptr +# define nullptr NULL +# endif +#endif + #if defined(PHREEQCI_GUI) #ifdef _DEBUG #define new DEBUG_NEW diff --git a/transport.cpp b/transport.cpp index c49ee26b..6e69e8df 100644 --- a/transport.cpp +++ b/transport.cpp @@ -52,6 +52,16 @@ struct MOLES_ADDED /* total moles added to balance negative conc's */ } *moles_added; int count_moles_added; +#if defined(_MSC_VER) && (_MSC_VER <= 1400) // VS2005 +# define nullptr NULL +#endif + +#if __cplusplus < 201103L // Check if C++ standard is pre-C++11 +# ifndef nullptr +# define nullptr NULL +# endif +#endif + #if defined(PHREEQCI_GUI) #ifdef _DEBUG #define new DEBUG_NEW From bf3dc34a523e4cc4125f313917d4c3e69100a715 Mon Sep 17 00:00:00 2001 From: Mike Taves Date: Fri, 13 Sep 2024 22:01:44 +1200 Subject: [PATCH 207/384] Fix typos --- ex10.out | 2 +- examples_pc/ex10.out | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/ex10.out b/ex10.out index a4bf78c6..df2774a1 100644 --- a/ex10.out +++ b/ex10.out @@ -78,7 +78,7 @@ defined at 298.15 kelvin is valid at the critical temperature.) Log IAP (component 1): -8.338 Log Sum Pi: -8.29736 -Local minimum in the solidus curve coresponding to a maximum +Local minimum in the solidus curve corresponding to a maximum in the minimum stoichiometric saturation curve. Solid mole fraction of component 2: 0.198353 diff --git a/examples_pc/ex10.out b/examples_pc/ex10.out index 36f8b2bc..02abe7dd 100644 --- a/examples_pc/ex10.out +++ b/examples_pc/ex10.out @@ -77,7 +77,7 @@ defined at 298.15 kelvin is valid at the critical temperature.) Log IAP (component 1): -8.338 Log Sum Pi: -8.29736 -Local minimum in the solidus curve coresponding to a maximum +Local minimum in the solidus curve corresponding to a maximum in the minimum stoichiometric saturation curve. Solid mole fraction of component 2: 0.198353 From dc8e003f6a32007050e722ec71fe0ceaab51de14 Mon Sep 17 00:00:00 2001 From: Mike Taves Date: Fri, 13 Sep 2024 22:01:44 +1200 Subject: [PATCH 208/384] Fix typos --- Kinec.v2.dat | 2 +- Kinec_v3.dat | 8 ++++---- OtherDatabases/CEMDATA18-31-03-2022-phaseVol.dat | 2 +- OtherDatabases/CEMDATA18.1-16-01-2019-phaseVol.dat | 2 +- ...LM_BRGM_database_phreeqc_ThermoddemV1.10_06Jun2017.dat | 4 ++-- OtherDatabases/THEREDA_2020_PHRQ.dat | 8 ++++---- OtherDatabases/ThermoChimie_PhreeqC_SIT_electron_v10a.dat | 8 ++++---- OtherDatabases/Thermochimie_PhreeqC_eDH_oxygen_v10a.dat | 8 ++++---- OtherDatabases/ThermoddemV1.10_15Dec2020.dat | 4 ++-- .../ThermoChimie_PhreeqC_SIT_electron_v10a.dat | 8 ++++---- .../thermochemie/ThermoChimie_PhreeqC_SIT_oxygen_v10a.dat | 8 ++++---- .../Thermochimie_PhreeqC_Davies_electron_v10a.dat | 8 ++++---- .../Thermochimie_PhreeqC_Davies_oxygen_v10a.dat | 8 ++++---- .../Thermochimie_PhreeqC_eDH_electron_v10a.dat | 8 ++++---- .../thermochemie/Thermochimie_PhreeqC_eDH_oxygen_v10a.dat | 8 ++++---- OtherDatabases/thermochemie/sit.dat | 8 ++++---- PHREEQC_ThermoddemV1.10_15Dec2020.dat | 6 +++--- SIT/ThermoChimie7d_sit_JUNE_2011.dat | 6 +++--- SIT/ThermoSIT.dat | 6 +++--- SIT/sit-total.txt | 6 +++--- core10.dat | 4 ++-- frezchem.dat | 2 +- phreeqc_rates.dat | 2 +- sit.dat | 6 +++--- 24 files changed, 70 insertions(+), 70 deletions(-) diff --git a/Kinec.v2.dat b/Kinec.v2.dat index 3b7166ba..e4c1339b 100644 --- a/Kinec.v2.dat +++ b/Kinec.v2.dat @@ -7407,7 +7407,7 @@ Si1.00Al0.23O2(OH)0.69 + 0.23 OH- = 0.23 Al(OH)4- + SiO2 # Additional phases ##Non-silicate minerals including carbonate, sulfide, phosphate, halide, and oxy-hydroxide minerals#### # 16 added solids -# The thermodynmaic propeties are from the llnl.data database expet for Gaspite +# The thermodynmaic properties are from the llnl.data database export for Gaspite #------------ diff --git a/Kinec_v3.dat b/Kinec_v3.dat index d782d182..fd613fd7 100644 --- a/Kinec_v3.dat +++ b/Kinec_v3.dat @@ -32,7 +32,7 @@ #KINETICS #Augite_ss # Name of the mineral -# -formula Mg0.45Fe0.275Ca0.275SiO3 1 # Mineral formula ! must be added to run solid soultions. +# -formula Mg0.45Fe0.275Ca0.275SiO3 1 # Mineral formula ! must be added to run solid solutions. # -m0 100 # Initial moles of mineral # -parms 0 0.0088183 0 2 # Four parameters as explained below @@ -57,7 +57,7 @@ # # and # -# Oelkers, E.H., Addassi, M. 2024. A comprehensive and internally consistent mineral dissolution rate database: Part III: Non-silicate minerals including carbonate, sulfide, phosphate, halide, and oxy-hydroxide minerals. (in preperation) +# Oelkers, E.H., Addassi, M. 2024. A comprehensive and internally consistent mineral dissolution rate database: Part III: Non-silicate minerals including carbonate, sulfide, phosphate, halide, and oxy-hydroxide minerals. (in preparation) # ********************************************************************* # # Thermodynamics from carbfix.dat (Voigt et al., 2018). @@ -89,7 +89,7 @@ # HOK+98: http://dx.doi.org/10.1016/S0016-7037(97)00219-6 (C2H6(g), C3H8(g)) # Hovis04: http://dx.doi.org/10.2138/am-2004-0111 (NH4-muscovite molar volume) # HSS95: http://dx.doi.org/10.1016/0016-7037(95)00314-P (55 solutes) -# Joh90: Johnson, J.W., 1990, Personal calculation, Parameters given provide smooth metastable extrapolation of one-bar steam properties predicted by the Haar et al. (1984) equation of state to temperatures < the saturation temperature (99.632 C): Earch Sci. Dept, LLNL, Livermore, CA. (H2O(g)) +# Joh90: Johnson, J.W., 1990, Personal calculation, Parameters given provide smooth metastable extrapolation of one-bar steam properties predicted by the Haar et al. (1984) equation of state to temperatures < the saturation temperature (99.632 C): Earth Sci. Dept, LLNL, Livermore, CA. (H2O(g)) # Kel60: http://www.worldcat.org/oclc/693388901 (8 gases) # M13: McColm I. J. (2013) Dictionary of Ceramic Science and Engineering, p.72. (CaUO4 molar volume) # Marion+03: http://dx.doi.org/10.1016/S0016-7037(03)00372-7 (FeOH+) @@ -7527,7 +7527,7 @@ Si1.00Al0.23O2(OH)0.69 + 0.23 OH- = 0.23 Al(OH)4- + SiO2 # Additional phases ##Non-silicate minerals including carbonate, sulfide, phosphate, halide, and oxy-hydroxide minerals#### # 16 added solids -# The thermodynmaic propeties are from the llnl.data database expet for Gaspite +# The thermodynmaic properties are from the llnl.data database export for Gaspite #------------ diff --git a/OtherDatabases/CEMDATA18-31-03-2022-phaseVol.dat b/OtherDatabases/CEMDATA18-31-03-2022-phaseVol.dat index 14c26011..1006f59b 100644 --- a/OtherDatabases/CEMDATA18-31-03-2022-phaseVol.dat +++ b/OtherDatabases/CEMDATA18-31-03-2022-phaseVol.dat @@ -14,7 +14,7 @@ # update 03.12.2018 - added missing phases: zeoliteP_Ca, chabazite, M075SH, M15SH, zeoliteX, natrolite, zeoliteY # update 08.01.2019 - corrected INFCNA formula and reaction; 23.09.2019 fixed logK to 17.4787 # update 16.01.2019 - fixed a3 parameter from the logK analytical function (wrong converted from A[3]*ln(T) GEMS to -# phreeqc A[3]*log10(T); for phases aded in update update 03.12.2018) +# phreeqc A[3]*log10(T); for phases added in update 03.12.2018) # update 31.03.2022 - added missing C4FeCl2H10 (Fe Friedel's salt ideal composition) and reactions for Fe(OH)3(am) and Fe(OH)3(mic) with original source # Hummel et al. (2002) Nagra/PSI Chemical Thermodynamic Data Base 01/01. Nagra Technical Report NTB 02-16 # diff --git a/OtherDatabases/CEMDATA18.1-16-01-2019-phaseVol.dat b/OtherDatabases/CEMDATA18.1-16-01-2019-phaseVol.dat index 4bbf109d..c27d0cd5 100644 --- a/OtherDatabases/CEMDATA18.1-16-01-2019-phaseVol.dat +++ b/OtherDatabases/CEMDATA18.1-16-01-2019-phaseVol.dat @@ -14,7 +14,7 @@ # update 03.12.2018 - added missing phases: zeoliteP_Ca, chabazite, M075SH, M15SH, zeoliteX, natrolite, zeoliteY # update 08.01.2019 - corrected INFCNA formula and reaction # update 16.01.2019 - fixed a3 parameter from the logK analytical function (wrong converted from A[3]*ln(T) GEMS to -# phreeqc A[3]*log10(T); for phases aded in update update 03.12.2018) +# phreeqc A[3]*log10(T); for phases added in update 03.12.2018) # # for questions contact: Barbara Lothenbach (barbara.lothenbach@empa.ch); G. Dan Miron (dan.miron@psi.ch) diff --git a/OtherDatabases/PKDLM_BRGM_database_phreeqc_ThermoddemV1.10_06Jun2017.dat b/OtherDatabases/PKDLM_BRGM_database_phreeqc_ThermoddemV1.10_06Jun2017.dat index 0a05be58..48cead3a 100644 --- a/OtherDatabases/PKDLM_BRGM_database_phreeqc_ThermoddemV1.10_06Jun2017.dat +++ b/OtherDatabases/PKDLM_BRGM_database_phreeqc_ThermoddemV1.10_06Jun2017.dat @@ -12434,7 +12434,7 @@ References # 08bas/pet Basciano L.C., Peterson R.C. (2008) Amer. Mineral., 93, 853-862 # 08bla Blanc P. (2008) : Thermoddem - Selection de proprietes thermodynamiques pour les principales especes aqueuses et minerales porteuses de fer. Rapport final. Rapport BRGM/RP-56587-FR, 70p. # 08gai Gailhanou H. (2008) : Thermochimie : Acquisition des proprietes thermodynamiques sur une berthierine et revision des donnees sur les mineraux argileux. Rapport final BRGM/RP-56838-FR -# 08las Lassin A., 2008, personnal calculations. +# 08las Lassin A., 2008, personal calculations. # 08per/pok Perfetti E., Pokrovski G., Ballerat-Busserolles K., Majer V., Gibert F. (2008) Densities and heat capacities of aqueous arsenious and arsenic acid solutions to 350 C and 300 bar, and revised thermodynamic properties of As(OH)3(aq), AsO(OH)3(aq) and iron sulfarsenide minerals. Geochimica et Cosmochimica Acta 72, 713-731 # 08sch/lot Schmidt, T., Lothenbach, B., Romer, M., Scrivener, K.L., Rentsch, D., Figi, R. (2008), A thermodynamic and experimental study of the conditions of thaumasite formation, Cement and Concrete Research, 38(3), 337-349. # 08vie Vieillard P., 2008. Estimation des entropies et capacites calorifiques des zeolithes. Rapport CNRS-Hydrasa 2008, 29 p. @@ -12814,7 +12814,7 @@ References # 15bla/vie Blanc, P., Vieillard, P., Gailhanou, H., Gaboreau, S., Gaucher, E.C., Fialips, C.I., Made, B., Giffaut, E., 2015. A generalized model for predicting the thermodynamic properties of clay minerals. American Journal of Science 315, 734-780. # 17bbla Blanc P., 2017 D3E/BGE N 2017-077 (Compte-rendu de reunion), 17 p. # 16bla Blanc P., (2016) Biomore WP1 progress report -# 17roo/vie Roosz et al., 2017. Thermodynamic properties of C-(A)-S-H and M-S-H phases: results from direct measurements and predictive modelling. Applied Geochemistry, submited +# 17roo/vie Roosz et al., 2017. Thermodynamic properties of C-(A)-S-H and M-S-H phases: results from direct measurements and predictive modelling. Applied Geochemistry, submitted # 07pow/bro Powell, K.J., Brown, P.L., Byrne, R.H., Gadja, T., Hefter, G., Sjoberg, S., Wanner, H., 2007. Chemical speciation of environmentally significant metals with inorganic ligands Part 2 : The Cu[2+]-OH[-], Cl[-], CO[3][2-], SO[4][2-], and PO[4][3-] systems : (IUPAC Technical Report). Pure and applied chemistry, USA. # 00pui Puigdomenech, I., 2000. Thermodynamic data for copper: implications for the corrosion of copper under repository conditions, SKB report. SKB/Swedish Nuclear Fuel and Waste Management, p. 96. # 09xio Xiong, Y., 2009. The aqueous geochemistry of thallium: speciation and solubility of thallium in low temperature systems. Environmental Chemistry 6, 441-451. diff --git a/OtherDatabases/THEREDA_2020_PHRQ.dat b/OtherDatabases/THEREDA_2020_PHRQ.dat index ab7f5160..b0ac7e7a 100644 --- a/OtherDatabases/THEREDA_2020_PHRQ.dat +++ b/OtherDatabases/THEREDA_2020_PHRQ.dat @@ -1936,7 +1936,7 @@ K+ = K+ # calculation mode: Entered # datatype category: R (Reaction Data) # evaluation data quality, data class, data source: 1, 1, 4 - # data description: Application of the chemcial model of Th(IV); Pu(IV) complex could not be identified by EXAFS + # data description: Application of the chemical model of Th(IV); Pu(IV) complex could not be identified by EXAFS # contrary to the Th(IV) complex (and the Zr(IV) complex Ca3[Zr(OH)6]4+) which could be identified and # characterized by EXAFS measurements # LOGK298 value reference: FEL/NEC2010 @@ -2672,7 +2672,7 @@ PHASES # S298 = 669 J mol-1 K-1, GUI/FAN2003 - # pcon description (Al(OH)3(am)): amorphous Al(OH)3 as decribed in CEMDATA07 original reaction in CEMDATA07 with LOGK298 = 0.24 + # pcon description (Al(OH)3(am)): amorphous Al(OH)3 as described in CEMDATA07 original reaction in CEMDATA07 with LOGK298 = 0.24 Al(OH)3(am) 1 Al(OH)3 = +1.00000000 Al(OH)4- -1.00000000 H2O +1.00000000 H+ log_k -13.759 @@ -19892,7 +19892,7 @@ O2 Na+ Mg+2 -0.01709 # Volume: 40 # Page: 980-990 # Doi: 10.1016/j.jct.2008.02.006 -# Puburl: hhttp://www.sciencedirect.com/science/article/pii/S0021961408000426ttp://www.sciencedirect.com/science/article/B6WHM-4RW43BP-3/2/8053c8459b4ca70d64e52142d205fde6 +# Puburl: http://www.sciencedirect.com/science/article/pii/S0021961408000426ttp://www.sciencedirect.com/science/article/B6WHM-4RW43BP-3/2/8053c8459b4ca70d64e52142d205fde6 # YOU/BAT1981 # Type: Book @@ -20187,7 +20187,7 @@ O2 Na+ Mg+2 -0.01709 # STE/HOO1944 # Type: Journal # Language: English -# Title: The heat capacity of potassium dihydrogen phosphate from 15 to 300K. The anormaly at the curie temperature +# Title: The heat capacity of potassium dihydrogen phosphate from 15 to 300K. The anomaly at the curie temperature # Author: Hooley, J. G., Stephenson, C. C. # Pubname: Journal of the American Chemical Society # Year: 1944 diff --git a/OtherDatabases/ThermoChimie_PhreeqC_SIT_electron_v10a.dat b/OtherDatabases/ThermoChimie_PhreeqC_SIT_electron_v10a.dat index 20f07abd..ea7b3956 100644 --- a/OtherDatabases/ThermoChimie_PhreeqC_SIT_electron_v10a.dat +++ b/OtherDatabases/ThermoChimie_PhreeqC_SIT_electron_v10a.dat @@ -3459,7 +3459,7 @@ SOLUTION_SPECIES -analytic 7.78E+0 0E+0 0E+0 0E+0 0E+0 1.000Eu+3 + 1.000NO3- = Eu(NO3)+2 - log_k 1.210 #09RAO/TIA1 (Calculated usig SIT) + log_k 1.210 #09RAO/TIA1 (Calculated using SIT) # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0 @@ -6201,7 +6201,7 @@ SOLUTION_SPECIES -analytic 2.42556E+0 0E+0 -2.24374E+3 0E+0 0E+0 1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2 - log_k -12.210 #Estimated by correlation with An(VI) in funciton of ionic radii + log_k -12.210 #Estimated by correlation with An(VI) in function of ionic radii # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0 @@ -7659,7 +7659,7 @@ SOLUTION_SPECIES -analytic 9.73237E+0 0E+0 -9.84603E+2 0E+0 0E+0 1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2 - log_k -2.620 #Orginal data 07THA/SIN and 96JEN/CHO1 + log_k -2.620 #Original data 07THA/SIN and 96JEN/CHO1 # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0 @@ -10771,7 +10771,7 @@ Cm = 3.000e- + 1.000Cm+3 Cm2(CO3)3(am) Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3 - log_k -33.900 #estimated in analogy wiht Ln(III) and Am(III) + log_k -33.900 #estimated in analogy with Ln(III) and Am(III) # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0 diff --git a/OtherDatabases/Thermochimie_PhreeqC_eDH_oxygen_v10a.dat b/OtherDatabases/Thermochimie_PhreeqC_eDH_oxygen_v10a.dat index 0345012f..91c37a9e 100644 --- a/OtherDatabases/Thermochimie_PhreeqC_eDH_oxygen_v10a.dat +++ b/OtherDatabases/Thermochimie_PhreeqC_eDH_oxygen_v10a.dat @@ -3430,7 +3430,7 @@ SOLUTION_SPECIES 1.000Eu+3 + 1.000NO3- = Eu(NO3)+2 -llnl_gamma 5.7 - log_k 1.210 #09RAO/TIA1 (Calculated usig SIT) + log_k 1.210 #09RAO/TIA1 (Calculated using SIT) # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0 @@ -6692,7 +6692,7 @@ SOLUTION_SPECIES 1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2 -llnl_gamma 3.4 - log_k -12.210 #Estimated by correlation with An(VI) in funciton of ionic radii + log_k -12.210 #Estimated by correlation with An(VI) in function of ionic radii # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0 @@ -8393,7 +8393,7 @@ SOLUTION_SPECIES 1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2 -llnl_gamma 5.7 - log_k -2.620 #Orginal data 07THA/SIN and 96JEN/CHO1 + log_k -2.620 #Original data 07THA/SIN and 96JEN/CHO1 # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0 @@ -11759,7 +11759,7 @@ Cm = 1.000Cm+3 + 1.500H2O - 3.000H+ - 0.750O2 Cm2(CO3)3(am) Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3 - log_k -33.900 #estimated in analogy wiht Ln(III) and Am(III) + log_k -33.900 #estimated in analogy with Ln(III) and Am(III) # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0 diff --git a/OtherDatabases/ThermoddemV1.10_15Dec2020.dat b/OtherDatabases/ThermoddemV1.10_15Dec2020.dat index f54b5211..bac2673f 100644 --- a/OtherDatabases/ThermoddemV1.10_15Dec2020.dat +++ b/OtherDatabases/ThermoddemV1.10_15Dec2020.dat @@ -12554,7 +12554,7 @@ References # 08bas/pet Basciano L.C., Peterson R.C. (2008) Amer. Mineral., 93, 853-862 # 08bla Blanc P. (2008) : Thermoddem - Selection de proprietes thermodynamiques pour les principales especes aqueuses et minerales porteuses de fer. Rapport final. Rapport BRGM/RP-56587-FR, 70p. # 08gai Gailhanou H. (2008) : Thermochimie : Acquisition des proprietes thermodynamiques sur une berthierine et revision des donnees sur les mineraux argileux. Rapport final BRGM/RP-56838-FR -# 08las Lassin A., 2008, personnal calculations. +# 08las Lassin A., 2008, personal calculations. # 08per/pok Perfetti E., Pokrovski G., Ballerat-Busserolles K., Majer V., Gibert F. (2008) Densities and heat capacities of aqueous arsenious and arsenic acid solutions to 350 C and 300 bar, and revised thermodynamic properties of As(OH)3(aq), AsO(OH)3(aq) and iron sulfarsenide minerals. Geochimica et Cosmochimica Acta 72, 713-731 # 08sch/lot Schmidt, T., Lothenbach, B., Romer, M., Scrivener, K.L., Rentsch, D., Figi, R. (2008), A thermodynamic and experimental study of the conditions of thaumasite formation, Cement and Concrete Research, 38(3), 337-349. # 08vie Vieillard P., 2008. Estimation des entropies et capacites calorifiques des zeolithes. Rapport CNRS-Hydrasa 2008, 29 p. @@ -12588,7 +12588,7 @@ References # 17abla Blanc P. (2017) Selection de proprietes thermodynamiques pour les principales especes aqueuses et minerales porteuses de thallium. Rapport final. Rapport BRGM 66385-FR. # 17bbla Blanc P. (2017) - Thermoddem : Update for the 2017 version. Report BRGM/RP-66811-FR, 20 p. # 17gai/vie Gailhanou, H., Vieillard, P., Blanc, P., Lassin, A., Denoyel, R., Bloch, E., De Weireld, G., Claret, F., Fialips, C.I., Made, B., Giffaut, E., 2017. Methodology for determining the thermodynamic properties of hydration of Na-smectite considering the energetic contribution of capillary water. Applied Geochemistry. -# 18roo/vie Roosz et al., 2017. Thermodynamic properties of C-(A)-S-H and M-S-H phases: results from direct measurements and predictive modelling. Applied Geochemistry, submited +# 18roo/vie Roosz et al., 2017. Thermodynamic properties of C-(A)-S-H and M-S-H phases: results from direct measurements and predictive modelling. Applied Geochemistry, submitted # 18nea NEA, 2018. Forthcoming TDB selection on cement minerals # 18sig SIGARRR, 2018. Forthcoming results from the project. # 33dan D'Ans J., 1933. Die Losegleichgewichte der Systeme der Salze ozeanischer Salzablagerungen. Kaliorschungs Anstalt GmbH, Berlin Verlagsgesellschaft fur Ackerbau MBH, Berlin SW11 diff --git a/OtherDatabases/thermochemie/ThermoChimie_PhreeqC_SIT_electron_v10a.dat b/OtherDatabases/thermochemie/ThermoChimie_PhreeqC_SIT_electron_v10a.dat index 20f07abd..ea7b3956 100644 --- a/OtherDatabases/thermochemie/ThermoChimie_PhreeqC_SIT_electron_v10a.dat +++ b/OtherDatabases/thermochemie/ThermoChimie_PhreeqC_SIT_electron_v10a.dat @@ -3459,7 +3459,7 @@ SOLUTION_SPECIES -analytic 7.78E+0 0E+0 0E+0 0E+0 0E+0 1.000Eu+3 + 1.000NO3- = Eu(NO3)+2 - log_k 1.210 #09RAO/TIA1 (Calculated usig SIT) + log_k 1.210 #09RAO/TIA1 (Calculated using SIT) # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0 @@ -6201,7 +6201,7 @@ SOLUTION_SPECIES -analytic 2.42556E+0 0E+0 -2.24374E+3 0E+0 0E+0 1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2 - log_k -12.210 #Estimated by correlation with An(VI) in funciton of ionic radii + log_k -12.210 #Estimated by correlation with An(VI) in function of ionic radii # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0 @@ -7659,7 +7659,7 @@ SOLUTION_SPECIES -analytic 9.73237E+0 0E+0 -9.84603E+2 0E+0 0E+0 1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2 - log_k -2.620 #Orginal data 07THA/SIN and 96JEN/CHO1 + log_k -2.620 #Original data 07THA/SIN and 96JEN/CHO1 # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0 @@ -10771,7 +10771,7 @@ Cm = 3.000e- + 1.000Cm+3 Cm2(CO3)3(am) Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3 - log_k -33.900 #estimated in analogy wiht Ln(III) and Am(III) + log_k -33.900 #estimated in analogy with Ln(III) and Am(III) # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0 diff --git a/OtherDatabases/thermochemie/ThermoChimie_PhreeqC_SIT_oxygen_v10a.dat b/OtherDatabases/thermochemie/ThermoChimie_PhreeqC_SIT_oxygen_v10a.dat index c34f5eee..ce39a40d 100644 --- a/OtherDatabases/thermochemie/ThermoChimie_PhreeqC_SIT_oxygen_v10a.dat +++ b/OtherDatabases/thermochemie/ThermoChimie_PhreeqC_SIT_oxygen_v10a.dat @@ -3459,7 +3459,7 @@ SOLUTION_SPECIES -analytic 7.78E+0 0E+0 0E+0 0E+0 0E+0 1.000Eu+3 + 1.000NO3- = Eu(NO3)+2 - log_k 1.210 #09RAO/TIA1 (Calculated usig SIT) + log_k 1.210 #09RAO/TIA1 (Calculated using SIT) # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0 @@ -6201,7 +6201,7 @@ SOLUTION_SPECIES -analytic 2.42556E+0 0E+0 -2.24374E+3 0E+0 0E+0 1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2 - log_k -12.210 #Estimated by correlation with An(VI) in funciton of ionic radii + log_k -12.210 #Estimated by correlation with An(VI) in function of ionic radii # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0 @@ -7659,7 +7659,7 @@ SOLUTION_SPECIES -analytic 9.73237E+0 0E+0 -9.84603E+2 0E+0 0E+0 1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2 - log_k -2.620 #Orginal data 07THA/SIN and 96JEN/CHO1 + log_k -2.620 #Original data 07THA/SIN and 96JEN/CHO1 # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0 @@ -10771,7 +10771,7 @@ Cm = 1.000Cm+3 + 1.500H2O - 3.000H+ - 0.750O2 Cm2(CO3)3(am) Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3 - log_k -33.900 #estimated in analogy wiht Ln(III) and Am(III) + log_k -33.900 #estimated in analogy with Ln(III) and Am(III) # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0 diff --git a/OtherDatabases/thermochemie/Thermochimie_PhreeqC_Davies_electron_v10a.dat b/OtherDatabases/thermochemie/Thermochimie_PhreeqC_Davies_electron_v10a.dat index 84432838..9fad9dab 100644 --- a/OtherDatabases/thermochemie/Thermochimie_PhreeqC_Davies_electron_v10a.dat +++ b/OtherDatabases/thermochemie/Thermochimie_PhreeqC_Davies_electron_v10a.dat @@ -3430,7 +3430,7 @@ SOLUTION_SPECIES 1.000Eu+3 + 1.000NO3- = Eu(NO3)+2 #-llnl_gamma 5.7 - log_k 1.210 #09RAO/TIA1 (Calculated usig SIT) + log_k 1.210 #09RAO/TIA1 (Calculated using SIT) # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0 @@ -6692,7 +6692,7 @@ SOLUTION_SPECIES 1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2 #-llnl_gamma 3.4 - log_k -12.210 #Estimated by correlation with An(VI) in funciton of ionic radii + log_k -12.210 #Estimated by correlation with An(VI) in function of ionic radii # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0 @@ -8393,7 +8393,7 @@ SOLUTION_SPECIES 1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2 #-llnl_gamma 5.7 - log_k -2.620 #Orginal data 07THA/SIN and 96JEN/CHO1 + log_k -2.620 #Original data 07THA/SIN and 96JEN/CHO1 # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0 @@ -11759,7 +11759,7 @@ Cm = 3.000e- + 1.000Cm+3 Cm2(CO3)3(am) Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3 - log_k -33.900 #estimated in analogy wiht Ln(III) and Am(III) + log_k -33.900 #estimated in analogy with Ln(III) and Am(III) # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0 diff --git a/OtherDatabases/thermochemie/Thermochimie_PhreeqC_Davies_oxygen_v10a.dat b/OtherDatabases/thermochemie/Thermochimie_PhreeqC_Davies_oxygen_v10a.dat index db5f492b..5b446588 100644 --- a/OtherDatabases/thermochemie/Thermochimie_PhreeqC_Davies_oxygen_v10a.dat +++ b/OtherDatabases/thermochemie/Thermochimie_PhreeqC_Davies_oxygen_v10a.dat @@ -3430,7 +3430,7 @@ SOLUTION_SPECIES 1.000Eu+3 + 1.000NO3- = Eu(NO3)+2 #-llnl_gamma 5.7 - log_k 1.210 #09RAO/TIA1 (Calculated usig SIT) + log_k 1.210 #09RAO/TIA1 (Calculated using SIT) # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0 @@ -6692,7 +6692,7 @@ SOLUTION_SPECIES 1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2 #-llnl_gamma 3.4 - log_k -12.210 #Estimated by correlation with An(VI) in funciton of ionic radii + log_k -12.210 #Estimated by correlation with An(VI) in function of ionic radii # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0 @@ -8393,7 +8393,7 @@ SOLUTION_SPECIES 1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2 #-llnl_gamma 5.7 - log_k -2.620 #Orginal data 07THA/SIN and 96JEN/CHO1 + log_k -2.620 #Original data 07THA/SIN and 96JEN/CHO1 # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0 @@ -11759,7 +11759,7 @@ Cm = 1.000Cm+3 + 1.500H2O - 3.000H+ - 0.750O2 Cm2(CO3)3(am) Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3 - log_k -33.900 #estimated in analogy wiht Ln(III) and Am(III) + log_k -33.900 #estimated in analogy with Ln(III) and Am(III) # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0 diff --git a/OtherDatabases/thermochemie/Thermochimie_PhreeqC_eDH_electron_v10a.dat b/OtherDatabases/thermochemie/Thermochimie_PhreeqC_eDH_electron_v10a.dat index 68c80f96..0d812de2 100644 --- a/OtherDatabases/thermochemie/Thermochimie_PhreeqC_eDH_electron_v10a.dat +++ b/OtherDatabases/thermochemie/Thermochimie_PhreeqC_eDH_electron_v10a.dat @@ -3430,7 +3430,7 @@ SOLUTION_SPECIES 1.000Eu+3 + 1.000NO3- = Eu(NO3)+2 -llnl_gamma 5.7 - log_k 1.210 #09RAO/TIA1 (Calculated usig SIT) + log_k 1.210 #09RAO/TIA1 (Calculated using SIT) # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0 @@ -6692,7 +6692,7 @@ SOLUTION_SPECIES 1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2 -llnl_gamma 3.4 - log_k -12.210 #Estimated by correlation with An(VI) in funciton of ionic radii + log_k -12.210 #Estimated by correlation with An(VI) in function of ionic radii # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0 @@ -8393,7 +8393,7 @@ SOLUTION_SPECIES 1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2 -llnl_gamma 5.7 - log_k -2.620 #Orginal data 07THA/SIN and 96JEN/CHO1 + log_k -2.620 #Original data 07THA/SIN and 96JEN/CHO1 # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0 @@ -11759,7 +11759,7 @@ Cm = 3.000e- + 1.000Cm+3 Cm2(CO3)3(am) Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3 - log_k -33.900 #estimated in analogy wiht Ln(III) and Am(III) + log_k -33.900 #estimated in analogy with Ln(III) and Am(III) # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0 diff --git a/OtherDatabases/thermochemie/Thermochimie_PhreeqC_eDH_oxygen_v10a.dat b/OtherDatabases/thermochemie/Thermochimie_PhreeqC_eDH_oxygen_v10a.dat index 0345012f..91c37a9e 100644 --- a/OtherDatabases/thermochemie/Thermochimie_PhreeqC_eDH_oxygen_v10a.dat +++ b/OtherDatabases/thermochemie/Thermochimie_PhreeqC_eDH_oxygen_v10a.dat @@ -3430,7 +3430,7 @@ SOLUTION_SPECIES 1.000Eu+3 + 1.000NO3- = Eu(NO3)+2 -llnl_gamma 5.7 - log_k 1.210 #09RAO/TIA1 (Calculated usig SIT) + log_k 1.210 #09RAO/TIA1 (Calculated using SIT) # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0 @@ -6692,7 +6692,7 @@ SOLUTION_SPECIES 1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2 -llnl_gamma 3.4 - log_k -12.210 #Estimated by correlation with An(VI) in funciton of ionic radii + log_k -12.210 #Estimated by correlation with An(VI) in function of ionic radii # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0 @@ -8393,7 +8393,7 @@ SOLUTION_SPECIES 1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2 -llnl_gamma 5.7 - log_k -2.620 #Orginal data 07THA/SIN and 96JEN/CHO1 + log_k -2.620 #Original data 07THA/SIN and 96JEN/CHO1 # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0 @@ -11759,7 +11759,7 @@ Cm = 1.000Cm+3 + 1.500H2O - 3.000H+ - 0.750O2 Cm2(CO3)3(am) Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3 - log_k -33.900 #estimated in analogy wiht Ln(III) and Am(III) + log_k -33.900 #estimated in analogy with Ln(III) and Am(III) # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0 diff --git a/OtherDatabases/thermochemie/sit.dat b/OtherDatabases/thermochemie/sit.dat index ff94920a..90697134 100644 --- a/OtherDatabases/thermochemie/sit.dat +++ b/OtherDatabases/thermochemie/sit.dat @@ -3493,7 +3493,7 @@ SOLUTION_SPECIES -analytic 7.78E+0 0E+0 0E+0 0E+0 0E+0 1.000Eu+3 + 1.000NO3- = Eu(NO3)+2 - log_k 1.210 #09RAO/TIA1 (Calculated usig SIT) + log_k 1.210 #09RAO/TIA1 (Calculated using SIT) # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0 @@ -6277,7 +6277,7 @@ SOLUTION_SPECIES -analytic 2.42573E+0 0E+0 -2.2438E+3 0E+0 0E+0 1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2 - log_k -12.210 #Estimated by correlation with An(VI) in funciton of ionic radii + log_k -12.210 #Estimated by correlation with An(VI) in function of ionic radii # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0 @@ -7740,7 +7740,7 @@ SOLUTION_SPECIES -analytic 9.73237E+0 0E+0 -9.84603E+2 0E+0 0E+0 1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2 - log_k -2.620 #Orginal data 07THA/SIN and 96JEN/CHO1 + log_k -2.620 #Original data 07THA/SIN and 96JEN/CHO1 # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0 @@ -10648,7 +10648,7 @@ Cm = 1.000Cm+3 + 1.500H2O - 3.000H+ - 0.750O2 Cm2(CO3)3(am) Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3 - log_k -33.900 #estimated in analogy wiht Ln(III) and Am(III) + log_k -33.900 #estimated in analogy with Ln(III) and Am(III) # delta_h 0.000 #kJ/mol # Enthalpy of formation: #kJ/mol -analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0 diff --git a/PHREEQC_ThermoddemV1.10_15Dec2020.dat b/PHREEQC_ThermoddemV1.10_15Dec2020.dat index 35f3d2b8..e0899d96 100644 --- a/PHREEQC_ThermoddemV1.10_15Dec2020.dat +++ b/PHREEQC_ThermoddemV1.10_15Dec2020.dat @@ -12554,7 +12554,7 @@ References # 08bas/pet Basciano L.C., Peterson R.C. (2008) Amer. Mineral., 93, 853-862 # 08bla Blanc P. (2008) : Thermoddem - Selection de proprietes thermodynamiques pour les principales especes aqueuses et minerales porteuses de fer. Rapport final. Rapport BRGM/RP-56587-FR, 70p. # 08gai Gailhanou H. (2008) : Thermochimie : Acquisition des proprietes thermodynamiques sur une berthierine et revision des donnees sur les mineraux argileux. Rapport final BRGM/RP-56838-FR -# 08las Lassin A., 2008, personnal calculations. +# 08las Lassin A., 2008, personal calculations. # 08per/pok Perfetti E., Pokrovski G., Ballerat-Busserolles K., Majer V., Gibert F. (2008) Densities and heat capacities of aqueous arsenious and arsenic acid solutions to 350 C and 300 bar, and revised thermodynamic properties of As(OH)3(aq), AsO(OH)3(aq) and iron sulfarsenide minerals. Geochimica et Cosmochimica Acta 72, 713-731 # 08sch/lot Schmidt, T., Lothenbach, B., Romer, M., Scrivener, K.L., Rentsch, D., Figi, R. (2008), A thermodynamic and experimental study of the conditions of thaumasite formation, Cement and Concrete Research, 38(3), 337-349. # 08vie Vieillard P., 2008. Estimation des entropies et capacites calorifiques des zeolithes. Rapport CNRS-Hydrasa 2008, 29 p. @@ -12571,7 +12571,7 @@ References # 11bla/las Blanc P., Lassin A. 2011. Thermoddem report 2011 # 11maj/dra Majzlan J, Drahota P, Filippi M, Novak M, Loun J and Grevel K-D 2011. Thermodynamics of Crystalline iron(III) Arsenates Scorodite, Kankite, and Bukovskyite. Goldschmidt 2011 Conference Abstract 1391 # 11pal/ben Palmer, D.A., Benezeth, P., Wesolowski, D.J., 2011. Solubility of Nickel Oxide and Hydroxide in Water, 14th International Conference on the Properties of Water and Steam, pp. 264-269. -# 11par/cor Parmentier M., Corvisier J., Chiquet P., Parra T. et Sterpenich J. 2011. La modelisation geochimique de la reactivite des gaz annexes co-injectes avec le CO2 : possibilites et limites des codes de calcul via une application. BRGM/RP-60605-FR +# 11par/cor Parmentier M., Corvisier J., Chiquet P., Parra T. et Sterpenich J. 2011. La modelisation geochimique de la reactivite des gaz annexes co-injectes avec le CO2 : possibilities et limites des codes de calcul via une application. BRGM/RP-60605-FR # 11sky Skyllberg, U., 2011. Chemical Speciation of Mercury in Soil and Sediment, Environmental Chemistry and Toxicology of Mercury. John Wiley and Sons, Inc., pp. 219-258. # 11vie/bla Vieillard, P., Blanc, P., Fialips, C.I., Gailhanou, H., Gaboreau, S., 2011. Hydration thermodynamics of the SWy-1 montmorillonite saturated with alkali and alkaline-earth cations: A predictive model. Geochimica et Cosmochimica Acta 75, 5664-5685. doi:10.1016/j.gca.2011.07.014 # 12bla Blanc P., 2012, Mercury associated physical and chemical constants: updating of the THERMODDEM database, IMaHg project, rapport BRGM RP-61299-FR, 32p @@ -12588,7 +12588,7 @@ References # 17abla Blanc P. (2017) Selection de proprietes thermodynamiques pour les principales especes aqueuses et minerales porteuses de thallium. Rapport final. Rapport BRGM 66385-FR. # 17bbla Blanc P. (2017) - Thermoddem : Update for the 2017 version. Report BRGM/RP-66811-FR, 20 p. # 17gai/vie Gailhanou, H., Vieillard, P., Blanc, P., Lassin, A., Denoyel, R., Bloch, E., De Weireld, G., Claret, F., Fialips, C.I., Made, B., Giffaut, E., 2017. Methodology for determining the thermodynamic properties of hydration of Na-smectite considering the energetic contribution of capillary water. Applied Geochemistry. -# 18roo/vie Roosz et al., 2017. Thermodynamic properties of C-(A)-S-H and M-S-H phases: results from direct measurements and predictive modelling. Applied Geochemistry, submited +# 18roo/vie Roosz et al., 2017. Thermodynamic properties of C-(A)-S-H and M-S-H phases: results from direct measurements and predictive modelling. Applied Geochemistry, submitted # 18nea NEA, 2018. Forthcoming TDB selection on cement minerals # 18sig SIGARRR, 2018. Forthcoming results from the project. # 33dan D'Ans J., 1933. Die Losegleichgewichte der Systeme der Salze ozeanischer Salzablagerungen. Kaliorschungs Anstalt GmbH, Berlin Verlagsgesellschaft fur Ackerbau MBH, Berlin SW11 diff --git a/SIT/ThermoChimie7d_sit_JUNE_2011.dat b/SIT/ThermoChimie7d_sit_JUNE_2011.dat index 99c2868b..c1839e39 100644 --- a/SIT/ThermoChimie7d_sit_JUNE_2011.dat +++ b/SIT/ThermoChimie7d_sit_JUNE_2011.dat @@ -4633,7 +4633,7 @@ SOLUTION_SPECIES +1.000Sm+3 -1.000H+ +1.000H4(SiO4) = SmSiO(OH)3+2 - log_k -2.62 #Orginal data 07THA/SIN and 96JEN/CHO + log_k -2.62 #Original data 07THA/SIN and 96JEN/CHO #delta_h kJ/mol # # Enthalpy of formation: kJ/mol @@ -8006,7 +8006,7 @@ SOLUTION_SPECIES +1.000NpO2+2 -2.000H+ +2.000H2O = NpO2(OH)2 - log_k -12.21 #Estimated by correlation with An(VI) in funciton of ionic radii + log_k -12.21 #Estimated by correlation with An(VI) in function of ionic radii #delta_h kJ/mol # # Enthalpy of formation: kJ/mol @@ -13232,7 +13232,7 @@ CmOHCO3 = -1.000H+ +1.000CO3-2 +1.000Cm+3 +1.000H2O Cm2(CO3)3(am) Cm2(CO3)3 = +3.000CO3-2 +2.000Cm+3 - log_k -33.9 #estimated in analogy wiht Ln(III) and Am(III) + log_k -33.9 #estimated in analogy with Ln(III) and Am(III) #delta_h kJ/mol # # Enthalpy of formation: kJ/mol diff --git a/SIT/ThermoSIT.dat b/SIT/ThermoSIT.dat index 64464a1b..f368f445 100644 --- a/SIT/ThermoSIT.dat +++ b/SIT/ThermoSIT.dat @@ -4445,7 +4445,7 @@ SOLUTION_SPECIES +1.000Sm+3 -1.000H+ +1.000H4(SiO4) = SmSiO(OH)3+2 - log_k -2.62 #Orginal data 07THA/SIN and 96JEN/CHO + log_k -2.62 #Original data 07THA/SIN and 96JEN/CHO #delta_h kJ/mol # # Enthalpy of formation: kJ/mol @@ -7829,7 +7829,7 @@ SOLUTION_SPECIES +1.000NpO2+2 -2.000H+ +2.000H2O = NpO2(OH)2 - log_k -12.21 #Estimated by correlation with An(VI) in funciton of ionic radii + log_k -12.21 #Estimated by correlation with An(VI) in function of ionic radii #delta_h kJ/mol # # Enthalpy of formation: kJ/mol @@ -12979,7 +12979,7 @@ CmOHCO3 = -1.000H+ +1.000CO3-2 +1.000Cm+3 +1.000H2O Cm2(CO3)3(am) Cm2(CO3)3 = +3.000CO3-2 +2.000Cm+3 - log_k -33.9 #estimated in analogy wiht Ln(III) and Am(III) + log_k -33.9 #estimated in analogy with Ln(III) and Am(III) #delta_h kJ/mol # # Enthalpy of formation: kJ/mol diff --git a/SIT/sit-total.txt b/SIT/sit-total.txt index 8b286c1d..e00bda69 100644 --- a/SIT/sit-total.txt +++ b/SIT/sit-total.txt @@ -4448,7 +4448,7 @@ SOLUTION_SPECIES +1.000Sm+3 -1.000H+ +1.000H4(SiO4) = SmSiO(OH)3+2 - log_k -2.62 #Orginal data 07THA/SIN and 96JEN/CHO + log_k -2.62 #Original data 07THA/SIN and 96JEN/CHO #delta_h kJ/mol # # Enthalpy of formation: kJ/mol @@ -7838,7 +7838,7 @@ SOLUTION_SPECIES +1.000NpO2+2 -2.000H+ +2.000H2O = NpO2(OH)2 - log_k -12.21 #Estimated by correlation with An(VI) in funciton of ionic radii + log_k -12.21 #Estimated by correlation with An(VI) in function of ionic radii #delta_h kJ/mol # # Enthalpy of formation: kJ/mol @@ -13064,7 +13064,7 @@ CmOHCO3 = -1.000H+ +1.000CO3-2 +1.000Cm+3 +1.000H2O Cm2(CO3)3(am) Cm2(CO3)3 = +3.000CO3-2 +2.000Cm+3 - log_k -33.9 #estimated in analogy wiht Ln(III) and Am(III) + log_k -33.9 #estimated in analogy with Ln(III) and Am(III) #delta_h kJ/mol # # Enthalpy of formation: kJ/mol diff --git a/core10.dat b/core10.dat index 5b147d43..ebe2d739 100644 --- a/core10.dat +++ b/core10.dat @@ -36,7 +36,7 @@ # HOK+98: http://dx.doi.org/10.1016/S0016-7037(97)00219-6 (C2H6(g), C3H8(g)) # Hovis04: http://dx.doi.org/10.2138/am-2004-0111 (NH4-muscovite molar volume) # HSS95: http://dx.doi.org/10.1016/0016-7037(95)00314-P (55 solutes) -# Joh90: Johnson, J.W., 1990, Personal calculation, Parameters given provide smooth metastable extrapolation of one-bar steam properties predicted by the Haar et al. (1984) equation of state to temperatures < the saturation temperature (99.632 C): Earch Sci. Dept, LLNL, Livermore, CA. (H2O(g)) +# Joh90: Johnson, J.W., 1990, Personal calculation, Parameters given provide smooth metastable extrapolation of one-bar steam properties predicted by the Haar et al. (1984) equation of state to temperatures < the saturation temperature (99.632 C): Earth Sci. Dept, LLNL, Livermore, CA. (H2O(g)) # Kel60: http://www.worldcat.org/oclc/693388901 (8 gases) # M13: McColm I. J. (2013) Dictionary of Ceramic Science and Engineering, p.72. (CaUO4 molar volume) # Marion+03: http://dx.doi.org/10.1016/S0016-7037(03)00372-7 (FeOH+) @@ -6821,4 +6821,4 @@ SO2(g) -P_c 77.67 -Omega 0.251 # http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf # Extrapol supcrt92 -# Ref WEP+82, Kel60 \ No newline at end of file +# Ref WEP+82, Kel60 diff --git a/frezchem.dat b/frezchem.dat index 6e6097f5..fb7c3434 100644 --- a/frezchem.dat +++ b/frezchem.dat @@ -577,7 +577,7 @@ END # Cold aqueous planetary geochemistry with FREZCHEM: From modeling to the search for life at the limits # Springer, Berlin/Heidelberg. # -#FREZCHEM was later adaped to the present frezchem.dat PHREEQC database by Toner and Sletten (2013): +#FREZCHEM was later adapted to the present frezchem.dat PHREEQC database by Toner and Sletten (2013): # # Toner, J. D., and R. S. Sletten (2013) # The formation of Ca-Cl enriched groundwaters in the Dry Valleys of Antarctica by cation exchange reactions: Field measurements and modeling of reactive transport diff --git a/phreeqc_rates.dat b/phreeqc_rates.dat index 50a5e0d4..c1c818bf 100644 --- a/phreeqc_rates.dat +++ b/phreeqc_rates.dat @@ -2996,7 +2996,7 @@ Wollastonite -6.97 700 56 0.4 0 0 # # 0.34 Mg+2 + 2 X_montm_mg-0.34 = Mg0.34X_montm_mg2 ; log_k -7.416 # -0.297 # # # 0.34 Ca+2 + 2 X_montm_mg-0.34 = Ca0.34X_montm_mg2 ; log_k -8.444 # -0.811 # -# # # The default exchanger X can be used, uncomment the follwing lines +# # # The default exchanger X can be used, uncomment the following lines # # # redefine f_Na in the rate... # # RATES # # Montmorillonite diff --git a/sit.dat b/sit.dat index a14fc99d..91e80e4c 100644 --- a/sit.dat +++ b/sit.dat @@ -3433,7 +3433,7 @@ Eu+3 + 2 Malonate-2 = Eu(Malonate)2- -analytic 77.8E-1 00E+0 00E+0 00E+0 00E+0 Eu+3 + NO3- = Eu(NO3)+2 - log_k 1.21 #09RAO/TIA1 (Calculated usig SIT) + log_k 1.21 #09RAO/TIA1 (Calculated using SIT) -analytic 12.1E-1 00E+0 00E+0 00E+0 00E+0 Eu+3 + Nta-3 = Eu(Nta) @@ -5657,7 +5657,7 @@ NpO2+2 - H+ + H2O = NpO2(OH)+ -analytic 24.25568E-1 00E+0 -22.43748E+2 00E+0 00E+0 NpO2+2 - 2 H+ + 2 H2O = NpO2(OH)2 - log_k -12.21 #Estimated by correlation with An(VI) in funciton of ionic radii + log_k -12.21 #Estimated by correlation with An(VI) in function of ionic radii -analytic -12.21E+0 00E+0 00E+0 00E+0 00E+0 NpO2+ - 2 H+ + 2 H2O = NpO2(OH)2- @@ -6924,7 +6924,7 @@ Sm+3 + 2 F- = SmF2+ -analytic 97.32378E-1 00E+0 -98.46041E+1 00E+0 00E+0 Sm+3 - H+ + H4(SiO4) = SmSiO(OH)3+2 - log_k -2.62 #Orginal data 07THA/SIN and 96JEN/CHO1 + log_k -2.62 #Original data 07THA/SIN and 96JEN/CHO1 -analytic -26.2E-1 00E+0 00E+0 00E+0 00E+0 Sn+2 + Cit-3 = Sn(Cit)- From db48f0f69e9b2ec1880a62418e598777bc79ddcf Mon Sep 17 00:00:00 2001 From: Mike Taves Date: Fri, 13 Sep 2024 22:01:44 +1200 Subject: [PATCH 209/384] Fix typos --- README.Phreeqc.TXT | 4 ++-- RELEASE.TXT | 58 +++++++++++++++++++++++----------------------- 2 files changed, 31 insertions(+), 31 deletions(-) diff --git a/README.Phreeqc.TXT b/README.Phreeqc.TXT index 131dae21..910bd0d7 100644 --- a/README.Phreeqc.TXT +++ b/README.Phreeqc.TXT @@ -221,7 +221,7 @@ D.4. Compile and install PHREEQC Phreeqc_2_1999_manual.pdf Manual for PHREEQC version 2 phreeqc.txt Short explanation for PHREEQC phreeqc3.chm Latest PHREEQC documentation - wrir02-4172.pdf Documenation of isotope calculations + wrir02-4172.pdf Documentation of isotope calculations Install\examples files: Input files for the 22 examples described in the version 3 manual @@ -332,7 +332,7 @@ E.8. Install the program. install/share/doc/phreeqc Phreeqc_3_2013_manual.pdf Manual for Phreeqc version 3 Phreeqc_2_1999_manual.pdf Manual for Phreeqc version 2 - wrir02-4172.pdf Documenation of isotope calculations + wrir02-4172.pdf Documentation of isotope calculations phreeqc.txt Short explanation for Phreeqc RELEASE Release notes README this readme file diff --git a/RELEASE.TXT b/RELEASE.TXT index 902b52a6..626f9c6e 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -334,7 +334,7 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 Added Basic function f_visc("H+") that returns the fractional contribution of a species to viscosity of the solution when parameters are defined for the species with -viscosity. Actually, it gives the contribution of the species to the B and D terms in the Jones-Dole - eqution, assuming that the A term is small. The fractional contribution can be negative, for + equation, assuming that the A term is small. The fractional contribution can be negative, for example f_visc("K+") is usually less than zero. Bug-fix: When -Vm parameters of SOLUTION_SPECIES were read after -viscosity parameters, the @@ -599,7 +599,7 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 The YAML capability would be especially useful if a GUI (Graphical User Interface) is used to set up model initial conditions. The GUI could write a YAML file that contains directives for PhreeqcRM methods that need to be run and - the corresonding data needed to initialize a PhreeqcRM instance--for example, + the corresponding data needed to initialize a PhreeqcRM instance--for example, setting units; running a PHREEQC input file to define initial and boundary conditions; distribution of initial conditions to the model cells; setting initial porosity, saturation, temperature, and pressure. @@ -674,7 +674,7 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 identified by name. int GetVarNbytes(std::string name) - Returns the total number of bytes neded to store the value or vector + Returns the total number of bytes needed to store the value or vector of values identified by name. std::string GetVarType(std::string name) @@ -1110,7 +1110,7 @@ USER_PUNCH 2 related to the decay of the surface potential with distance from the surface. Theory says that the potential at distance d from the surface is equal to psi0*exp(d/DL), where psi0 is the surface potential and DL is - the Debye length. The lengh is inversely related to ionic strength. + the Debye length. The length is inversely related to ionic strength. Example: 10 DL = DEBYE_LENGTH @@ -1181,7 +1181,7 @@ Version 3.6.2: January 28, 2020 ---------------- January 28, 2020 ---------------- - PhreeqcRM: Documenation for Fortran RM_RunString had incorrect order for instances. + PhreeqcRM: Documentation for Fortran RM_RunString had incorrect order for instances. The order is workers, initial_phreeqc, utilities. ---------------- @@ -1862,7 +1862,7 @@ Version 3.4.0: November 9, 2017 (svn 12927) H+ = H+ -dw 9.31e-9 763 0.46 1e-10 - where the first number is the diffusion coeficient at 25 C, and the second number is a damping + where the first number is the diffusion coefficient at 25 C, and the second number is a damping factor for the temperature correction, as proposed by Smolyakov, according to Anderko and Lencka, 1997, Ind. Chem. Eng. Res. 36, 1932-1943: @@ -2465,7 +2465,7 @@ Version 3.2.2: August 24, 2015 svn 9998 -------- Pitzer.dat was adjusted to fit CO2 pressure and density by changing - Vm, analytical expression, and adding a CO2-CO2 iteraction parameter. + Vm, analytical expression, and adding a CO2-CO2 interaction parameter. -------- svn 9995 @@ -2517,7 +2517,7 @@ Version 3.2.1: July 7, 2015 -------- svn 9930 -------- - PhreeqcRM had a serious error in the convertion of units from transport + PhreeqcRM had a serious error in the conversion of units from transport to themodule. The error occurred when using H2O as a component and mg/L as the transport unit. @@ -2721,7 +2721,7 @@ Version 3.1.5: December 18, 2014 -------- svn 9000 -------- - Kinetic names were not saved correctly to allow unique retrival by name. + Kinetic names were not saved correctly to allow unique retrieval by name. The error could have lead to misidentification of kinetic reactions for a cell. @@ -2840,7 +2840,7 @@ Version 3.1.2: March 1, 2014 svn 8520 -------- - Changes in MCD to accomodate unequal cell lengths. + Changes in MCD to accommodate unequal cell lengths. -------- svn 8502 @@ -2949,7 +2949,7 @@ Version 3.1.1: December 6, 2013 automatic -reset false. A file may be defined for each SELECTED_OUTPUT n that will - recieve the output from the data block. Using i to + receive the output from the data block. Using i to represent a specific integer, USER_PUNCH i will write to the file defined for SELECTED_OUTPUT i. If USER_PUNCH i is defined, but SELECTED_OUTPUT i is not, then no data will @@ -2967,7 +2967,7 @@ Version 3.1.1: December 6, 2013 If SELECTED_OUTPUT i has been defined, a new data block of SELECTED_OUTPUT i will retain the previous definition if only -active and (or) -user_punch are defined. Defining - any other identifier will cause the old definiton + any other identifier will cause the old definition to be removed and its file closed; the data for SELECTED_OUTPUT i will be defined entirely by the new data block. @@ -3121,7 +3121,7 @@ Version 3.1.1: December 6, 2013 svn 7829 -------- - Added Basic fuction EQUIV_FRAC that returns the + Added Basic function EQUIV_FRAC that returns the equivalent fraction of a surface or exchange species. The three arguments are (1) Species name (input), @@ -3133,7 +3133,7 @@ Version 3.1.1: December 6, 2013 10 f = EQUIV_FRAC("AlX3", eq, x$) - f = equivlalent fraction of AlX3 relative to + f = equivalent fraction of AlX3 relative to total equivalents of X sites. eq = 3.0 x$ = "X" @@ -3154,7 +3154,7 @@ Version 3.1.1: December 6, 2013 svn 7828 -------- - Added Basic fuction SPECIES_FORMULA that returns the + Added Basic function SPECIES_FORMULA that returns the stoichiometry of an aqueous, exchange, or surface species. The function returns a string: "aq" for aqueous, "ex" for exchange, "surf" for surface, @@ -3477,7 +3477,7 @@ Version 2.18.0: April 9, 2011 This automatic adjustment is suggested rather than explicit definition of the initial guesses through SOLUTION_MODIFY; -activities. However, the -activities - identifier may be used and will supercede the automatic + identifier may be used and will supersede the automatic adjustment. The adjustment of the initial guesses for activities @@ -3717,7 +3717,7 @@ Version 2.18.0: April 9, 2011 The example below is indented to indicate which information is necessary to change a data item. - Working back through the indention levels for + Working back through the indentation levels for and item, each heading of a lower order is necessary to define the data item. In the example below, to change the number of moles of barite from @@ -4183,7 +4183,7 @@ Version 2.18.0: April 9, 2011 -------- svn 4830 -------- - Changed default for exchange species activty + Changed default for exchange species activity coefficients to be equal to the Pitzer aqueous activity coefficients when using Pitzer aqueous model. Default is @@ -4467,7 +4467,7 @@ Version 2.17.0: February 25, 2010 phi(i,inf) = a + bt +ct^2 beta(i) = d + et + ft^2 - where a, b, c, d, e, and f are empirical constants and t in Celcius. + where a, b, c, d, e, and f are empirical constants and t in Celsius. Data input of the constants are in the keyword data block SOLUTION_SPECIES using the new identifier -millero. @@ -4585,7 +4585,7 @@ Version 2.15.0: February 5, 2008 svn 2680 -------- - Identifiers for paramaters controlling the integration by + Identifiers for parameters controlling the integration by CVODE have been added in the KINETICS data block. -bad_step_max bad_steps @@ -5202,7 +5202,7 @@ Version 2.9: ------------------------------------------------------------ * Added new keyword COPY that allows a data entity to be copied from one index to a new index - or to a range of indicies. Format is + or to a range of indices. Format is COPY keyword index index_start[-index_end] @@ -5241,7 +5241,7 @@ Version 2.9: 10 t = SYS("As") the function will return the total arsenic in the system. - (2) 5 argumens + (2) 5 arguments 10 t = SYS("As", count_species, names$, types$, moles) @@ -5667,7 +5667,7 @@ Version 2.18.0: April 9, 2011 -------- svn 5212 -------- - Subscript error in solver (ineq) when reseting deltas + Subscript error in solver (ineq) when resetting deltas after optimization failed. -------- @@ -5817,7 +5817,7 @@ Version 2.17.0: February 25, 2010 -------- svn 4115 -------- - Fixed bugs with unititialized strings in Basic, which + Fixed bugs with uninitialized strings in Basic, which caused an error in renumbering with PhreeqcI. Tested most Basic functions. Fixed bugs with LG and GAMMA functions, which did not return the correct values @@ -5833,7 +5833,7 @@ Version 2.17.0: February 25, 2010 SIT and Pitzer, each species has an unknown, so the number of unknowns is large for a system with many elements. Now set the maximum iterations to be - equal to the number of unknows plus the number of + equal to the number of unknowns plus the number of equations/inequalities. -------- @@ -6193,7 +6193,7 @@ Version 2.13.1: January 16, 2007 svn 1368: (1) Added multicomponent diffusion in transport and SOLUTION_SPECIES. (2) Added BASIC functions to obtain and - modify the porosity in a cell. (3) Aded mobile surface and Donnan + modify the porosity in a cell. (3) Added mobile surface and Donnan option in SURFACE. (4) Added special BASIC function to change the diffusion coefficient of a SURFACE, and hence to change the status from mobile to immobile or immobile to @@ -6295,7 +6295,7 @@ SURFACE_SPECIES Plane 2 (or d) is 0. - svn 1030: Fixed bug in tranport. Mixing was not printed + svn 1030: Fixed bug in transport. Mixing was not printed when using -cvode in kinetics. svn 984: Fixed bug in transport when cell without a @@ -6558,7 +6558,7 @@ Version 2.9 Date: Wed September 15, 2004 Added new keyword COPY that allows a data entity to be copied from one index to a new index - or to a range of indicies. Format is + or to a range of indices. Format is COPY keyword index index_start[-index_end] @@ -6603,7 +6603,7 @@ Version 2.9 Date: Wed September 15, 2004 10 t = SYS("As") the function will return the total arsenic in the system. - (2) 5 argumens + (2) 5 arguments 10 t = SYS("As", count_species, names$, types$, moles) From 24d2c771f3830a122fc3f91d5f0b185c0128bdfb Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Tue, 17 Sep 2024 10:15:25 -0600 Subject: [PATCH 210/384] Tony updated OH- viscosity --- Amm.dat | 14 ++++++++------ phreeqc.dat | 14 ++++++++------ phreeqc_rates.dat | 14 ++++++++------ pitzer.dat | 11 ++++++----- 4 files changed, 30 insertions(+), 23 deletions(-) diff --git a/Amm.dat b/Amm.dat index c7169124..17d8d243 100644 --- a/Amm.dat +++ b/Amm.dat @@ -213,7 +213,7 @@ H2O = OH- + H+ -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 -gamma 3.5 0 -Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1 - -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH + -viscosity -2.26e-2 0.106 2.184e-2 -3.2e-3 0 0.4082 -1.634 # < 5 M Li,Na,KOH -dw 5.27e-9 478 0.8695 2 H2O = O2 + 4 H+ + 4 e- -log_k -86.08 @@ -243,11 +243,13 @@ CO3-2 + 2 H+ = CO2 + H2O -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 -Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171 -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 + -viscosity 6.8e-3 9.03e-2 3.27e-2 0 0 0 0.18 -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 2 CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T -log_k -1.8 -analytical_expression 8.68 -0.0103 -2190 -Vm 14.58 1.84 4.14 -2.46 -3.2 + -viscosity 1.36e-2 0.1806 3.27e-2 0 0 0 0.36 -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O -log_k 41.071 @@ -446,8 +448,8 @@ Mg+2 + F- = MgF+ -delta_h 3.2 kcal -gamma 4.5 0 -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt -Na+ + OH- = NaOH - -log_k -10 # remove this complex +# Na+ + OH- = NaOH + # -log_k -14.7 # remove this complex Na+ + HCO3- = NaHCO3 -log_k -0.06; -delta_h 21 kJ -gamma 0 0.2 @@ -1938,15 +1940,15 @@ END # For details, consult ref. 1. # ============================================================================================= # The viscosity is calculated with a (modified) Jones-Dole equation: -# viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i) +# viscos / viscos_0 = 1 + A * Sum(0.5 z_i m_i) + fan * Sum(B_i m_i + D_i m_i n_i) # Parameters are for calculating the B and D terms: # -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 # # b0 b1 b2 d1 d2 d3 tan # z_i is absolute charge number, m_i is molality of i # B_i = b0 + b1 exp(-b2 * tc) # fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions -# D_i = d1 + exp(-d2 tc) -# n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 m_i)d^3 / (2 + fI), fI is an ionic strength term. +# D_i = d1 * exp(-d2 tc) +# n_i = (I^d3 * (1 + fI) + ((z_i^2 + z_i) / 2 m_i)^d3) / (2 + fI), fI is an ionic strength term. # For details, consult ref. 4. # # ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967. diff --git a/phreeqc.dat b/phreeqc.dat index 04fe478e..9d281f84 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -213,7 +213,7 @@ H2O = OH- + H+ -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 -gamma 3.5 0 -Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1 - -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH + -viscosity -2.26e-2 0.106 2.184e-2 -3.2e-3 0 0.4082 -1.634 # < 5 M Li,Na,KOH -dw 5.27e-9 478 0.8695 2 H2O = O2 + 4 H+ + 4 e- -log_k -86.08 @@ -243,11 +243,13 @@ CO3-2 + 2 H+ = CO2 + H2O -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 -Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171 -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 + -viscosity 6.8e-3 9.03e-2 3.27e-2 0 0 0 0.18 -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 2 CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T -log_k -1.8 -analytical_expression 8.68 -0.0103 -2190 -Vm 14.58 1.84 4.14 -2.46 -3.2 + -viscosity 1.36e-2 0.1806 3.27e-2 0 0 0 0.36 -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O -log_k 41.071 @@ -446,8 +448,8 @@ Mg+2 + F- = MgF+ -delta_h 3.2 kcal -gamma 4.5 0 -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt -Na+ + OH- = NaOH - -log_k -10 # remove this complex +# Na+ + OH- = NaOH + # -log_k -14.7 # remove this complex Na+ + HCO3- = NaHCO3 -log_k -0.06; -delta_h 21 kJ -gamma 0 0.2 @@ -1938,15 +1940,15 @@ END # For details, consult ref. 1. # ============================================================================================= # The viscosity is calculated with a (modified) Jones-Dole equation: -# viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i) +# viscos / viscos_0 = 1 + A * Sum(0.5 z_i m_i) + fan * Sum(B_i m_i + D_i m_i n_i) # Parameters are for calculating the B and D terms: # -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 # # b0 b1 b2 d1 d2 d3 tan # z_i is absolute charge number, m_i is molality of i # B_i = b0 + b1 exp(-b2 * tc) # fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions -# D_i = d1 + exp(-d2 tc) -# n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 m_i)d^3 / (2 + fI), fI is an ionic strength term. +# D_i = d1 * exp(-d2 tc) +# n_i = (I^d3 * (1 + fI) + ((z_i^2 + z_i) / 2 m_i)^d3) / (2 + fI), fI is an ionic strength term. # For details, consult ref. 4. # # ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967. diff --git a/phreeqc_rates.dat b/phreeqc_rates.dat index 50a5e0d4..bd1eb678 100644 --- a/phreeqc_rates.dat +++ b/phreeqc_rates.dat @@ -213,7 +213,7 @@ H2O = OH- + H+ -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 -gamma 3.5 0 -Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1 - -viscosity -1.02e-1 0.189 9.4e-3 -4e-5 0 3.281 -2.053 # < 5 M Li,Na,KOH + -viscosity -2.26e-2 0.106 2.184e-2 -3.2e-3 0 0.4082 -1.634 # < 5 M Li,Na,KOH -dw 5.27e-9 478 0.8695 2 H2O = O2 + 4 H+ + 4 e- -log_k -86.08 @@ -243,11 +243,13 @@ CO3-2 + 2 H+ = CO2 + H2O -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 -Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171 -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 + -viscosity 6.8e-3 9.03e-2 3.27e-2 0 0 0 0.18 -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 2 CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T -log_k -1.8 -analytical_expression 8.68 -0.0103 -2190 -Vm 14.58 1.84 4.14 -2.46 -3.2 + -viscosity 1.36e-2 0.1806 3.27e-2 0 0 0 0.36 -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O -log_k 41.071 @@ -446,8 +448,8 @@ Mg+2 + F- = MgF+ -delta_h 3.2 kcal -gamma 4.5 0 -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt -Na+ + OH- = NaOH - -log_k -10 # remove this complex +# Na+ + OH- = NaOH + # -log_k -14.7 # remove this complex Na+ + HCO3- = NaHCO3 -log_k -0.06; -delta_h 21 kJ -gamma 0 0.2 @@ -3128,15 +3130,15 @@ Wollastonite -6.97 700 56 0.4 0 0 # For details, consult ref. 1. # ============================================================================================= # The viscosity is calculated with a (modified) Jones-Dole equation: -# viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i) +# viscos / viscos_0 = 1 + A * Sum(0.5 z_i m_i) + fan * Sum(B_i m_i + D_i m_i n_i) # Parameters are for calculating the B and D terms: # -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 # # b0 b1 b2 d1 d2 d3 tan # z_i is absolute charge number, m_i is molality of i # B_i = b0 + b1 exp(-b2 * tc) # fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions -# D_i = d1 + exp(-d2 tc) -# n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 m_i)d^3 / (2 + fI), fI is an ionic strength term. +# D_i = d1 * exp(-d2 tc) +# n_i = (I^d3 * (1 + fI) + ((z_i^2 + z_i) / 2 m_i)^d3) / (2 + fI), fI is an ionic strength term. # For details, consult ref. 4. # # ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967. diff --git a/pitzer.dat b/pitzer.dat index 0f7579f9..ba90d9e9 100644 --- a/pitzer.dat +++ b/pitzer.dat @@ -132,7 +132,7 @@ H2Sg = H2Sg # H2S H2O = OH- + H+ -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 -Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1 - -viscosity -5.45e-2 0.142 1.45e-2 -3e-5 0 3.231 -1.791 # < 5 M Li,Na,KOH + -viscosity -2.26e-2 0.106 2.184e-2 -3.2e-3 0 0.4082 -1.634 # < 5 M Li,Na,KOH -dw 5.27e-9 491 1.851 0 0.3256 CO3-2 + H+ = HCO3- log_k 10.3393; delta_h -3.561 kcal @@ -145,6 +145,7 @@ CO3-2 + 2 H+ = CO2 + H2O delta_h -5.738 kcal -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 -Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171 + -viscosity 1.15e-2 9.82e-2 3.59e-2 0 0 0 0.266 -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 SO4-2 + H+ = HSO4- -log_k 1.988; -delta_h 3.85 kcal @@ -1011,15 +1012,15 @@ END # For details, consult ref. 1. # ============================================================================================= # The viscosity is calculated with a (modified) Jones-Dole equation: -# viscos / viscos_0 = 1 + A Sum(0.5 z_i m_i) + fan (B_i m_i + D_i m_i n_i) +# viscos / viscos_0 = 1 + A * Sum(0.5 z_i m_i) + fan * Sum(B_i m_i + D_i m_i n_i) # Parameters are for calculating the B and D terms: # -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 -# # b0 b1 b2 d1 d2 d3 tan +# # b0 b1 b2 d1 d2 d3 tan # z_i is absolute charge number, m_i is molality of i # B_i = b0 + b1 exp(-b2 * tc) # fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions -# D_i = d1 + exp(-d2 tc) -# n_i = ((1 + fI)^d3 + ((z_i^2 + z_i) / 2 m_i)d^3 / (2 + fI), fI is an ionic strength term. +# D_i = d1 * exp(-d2 tc) +# n_i = (I^d3 * (1 + fI) + ((z_i^2 + z_i) / 2 m_i)^d3) / (2 + fI), fI is an ionic strength term. # For details, consult ref. 5. # # ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 4967. From 8d50b95a9fe30f7fedc2d189b361c7849a68df01 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Fri, 20 Sep 2024 14:36:02 -0600 Subject: [PATCH 211/384] Updated output files for current version --- ex1.out | 3 +- ex10.out | 6 +- ex11.out | 3 +- ex11trn.sel | 38 ++--- ex12.sel | 4 +- ex12a.sel | 12 +- ex13a.out | 1 - ex13ac.out | 1 - ex13b.out | 1 - ex13c.out | 1 - ex14.out | 21 +-- ex16.out | 6 +- ex17b.out | 4 +- ex18.out | 8 +- ex21.out | 2 - ex22.out | 432 ++++++++++++++++++++++++++-------------------------- ex3.out | 80 +++++----- ex4.out | 7 +- ex5.out | 25 ++- ex6.out | 8 +- ex7.out | 88 +++++------ ex8.out | 146 +++++++----------- ex8.sel | 4 +- ex9.out | 34 ++--- 24 files changed, 433 insertions(+), 502 deletions(-) diff --git a/ex1.out b/ex1.out index 1e5dee3b..62b2a326 100644 --- a/ex1.out +++ b/ex1.out @@ -124,7 +124,7 @@ Initial solution 1. SEAWATER FROM NORDSTROM AND OTHERS (1979) Specific Conductance (µS/cm, 25°C) = 52856 Density (g/cm³) = 1.02328 Volume (L) = 1.01278 - Viscosity (mPa s) = 0.96029 + Viscosity (mPa s) = 0.96030 Activity of water = 0.981 Ionic strength (mol/kgw) = 6.704e-01 Mass of water (kg) = 1.000e+00 @@ -248,7 +248,6 @@ Na 4.854e-01 Na+ 4.712e-01 3.381e-01 -0.327 -0.471 -0.144 -0.51 NaSO4- 1.396e-02 9.473e-03 -1.855 -2.024 -0.168 8.22 NaHCO3 2.252e-04 3.066e-04 -3.647 -3.513 0.134 31.73 - NaOH 4.773e-17 5.570e-17 -16.321 -16.254 0.067 (0) O(0) 4.381e-04 O2 2.190e-04 2.556e-04 -3.659 -3.592 0.067 30.40 S(6) 2.926e-02 diff --git a/ex10.out b/ex10.out index a4bf78c6..3a5e7131 100644 --- a/ex10.out +++ b/ex10.out @@ -123,7 +123,7 @@ Initial solution 1. Specific Conductance (µS/cm, 25°C) = 701 Density (g/cm³) = 0.99755 Volume (L) = 1.00310 - Viscosity (mPa s) = 0.89435 + Viscosity (mPa s) = 0.89463 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.134e-02 Mass of water (kg) = 1.000e+00 @@ -206,10 +206,10 @@ CO2(g) -0.01 -1.48 -1.47 1.000e+01 9.961e+00 -3.875e-02 pH = 6.058 Charge balance pe = 11.902 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 1708 + Specific Conductance (µS/cm, 25°C) = 1684 Density (g/cm³) = 0.99860 Volume (L) = 1.00434 - Viscosity (mPa s) = 0.89962 + Viscosity (mPa s) = 0.92188 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.900e-02 Mass of water (kg) = 9.999e-01 diff --git a/ex11.out b/ex11.out index c9b25c64..47df60a7 100644 --- a/ex11.out +++ b/ex11.out @@ -126,7 +126,7 @@ Initial solution 1. Initial solution for column Activity of water = 1.000 Ionic strength (mol/kgw) = 1.200e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -1.017e-18 + Total alkalinity (eq/kg) = -1.027e-18 Temperature (°C) = 25.00 Electrical balance (eq) = -9.088e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -150,7 +150,6 @@ N(5) 1.200e-03 NO3- 1.200e-03 1.154e-03 -2.921 -2.938 -0.017 29.49 Na 1.000e-03 Na+ 1.000e-03 9.621e-04 -3.000 -3.017 -0.017 -1.47 - NaOH 9.666e-21 9.668e-21 -20.015 -20.015 0.000 (0) O(0) 5.351e-04 O2 2.676e-04 2.676e-04 -3.573 -3.572 0.000 30.40 diff --git a/ex11trn.sel b/ex11trn.sel index c1c2d809..79b36acc 100644 --- a/ex11trn.sel +++ b/ex11trn.sel @@ -57,27 +57,27 @@ 55 8.344533301406e-04 1.131625845338e-03 3.655466698441e-04 0.000000000000e+00 1.387500000000e+00 56 7.847919650475e-04 1.142020362045e-03 4.152080349369e-04 0.000000000000e+00 1.412500000000e+00 57 7.284538372959e-04 1.150973656035e-03 4.715461626881e-04 3.531139650212e-28 1.437500000000e+00 - 58 6.674661295231e-04 1.158656441394e-03 5.325338704605e-04 4.216133178351e-26 1.462500000000e+00 + 58 6.674661295231e-04 1.158656441394e-03 5.325338704605e-04 4.216133178352e-26 1.462500000000e+00 59 6.042301758578e-04 1.165225432017e-03 5.957698241254e-04 2.112623929847e-24 1.487500000000e+00 - 60 5.410707042902e-04 1.170823053923e-03 6.589292956926e-04 9.154192241146e-23 1.512500000000e+00 + 60 5.410707042902e-04 1.170823053923e-03 6.589292956926e-04 9.154192241147e-23 1.512500000000e+00 61 4.799177066706e-04 1.175577598779e-03 7.200822933118e-04 3.514353871101e-21 1.537500000000e+00 - 62 4.221746364521e-04 1.179603706071e-03 7.778253635299e-04 1.207213754641e-19 1.562500000000e+00 - 63 3.687296865690e-04 1.183003078326e-03 8.312703134126e-04 3.694071268300e-18 1.587500000000e+00 - 64 3.200378094467e-04 1.185865350144e-03 8.799621905343e-04 1.035721724513e-16 1.612500000000e+00 - 65 2.762284431584e-04 1.188269047043e-03 9.237715568171e-04 2.657316487699e-15 1.637500000000e+00 - 66 2.371960440990e-04 1.190282583741e-03 9.628039557559e-04 6.272120678983e-14 1.662500000000e+00 + 62 4.221746364521e-04 1.179603706071e-03 7.778253635299e-04 1.207213754642e-19 1.562500000000e+00 + 63 3.687296865690e-04 1.183003078326e-03 8.312703134126e-04 3.694071268301e-18 1.587500000000e+00 + 64 3.200378094467e-04 1.185865350144e-03 8.799621905343e-04 1.035721724514e-16 1.612500000000e+00 + 65 2.762284431584e-04 1.188269047043e-03 9.237715568171e-04 2.657316487700e-15 1.637500000000e+00 + 66 2.371960440990e-04 1.190282583741e-03 9.628039557559e-04 6.272120678986e-14 1.662500000000e+00 67 2.026802660677e-04 1.191965263410e-03 9.973197311041e-04 1.404108206640e-12 1.687500000000e+00 - 68 1.723175379753e-04 1.193368249524e-03 1.027682402586e-03 2.970943178733e-11 1.712500000000e+00 - 69 1.456986526365e-04 1.194535490349e-03 1.054300174205e-03 5.865691832664e-10 1.737500000000e+00 - 70 1.223834694923e-04 1.195504582884e-03 1.077593516927e-03 1.150677988345e-08 1.762500000000e+00 - 71 1.019262303182e-04 1.196307568531e-03 1.097657241059e-03 2.082643005567e-07 1.787500000000e+00 - 72 8.381480436917e-05 1.196971656899e-03 1.109525476375e-03 3.329859617447e-06 1.812500000000e+00 - 73 6.668225222783e-05 1.197519877322e-03 1.024937206784e-03 5.419027048444e-05 1.837500000000e+00 + 68 1.723175379753e-04 1.193368249524e-03 1.027682402586e-03 2.970943178734e-11 1.712500000000e+00 + 69 1.456986526365e-04 1.194535490349e-03 1.054300174205e-03 5.865691832667e-10 1.737500000000e+00 + 70 1.223834694923e-04 1.195504582884e-03 1.077593516927e-03 1.150677988346e-08 1.762500000000e+00 + 71 1.019262303182e-04 1.196307568531e-03 1.097657241059e-03 2.082643005568e-07 1.787500000000e+00 + 72 8.381480436917e-05 1.196971656899e-03 1.109525476375e-03 3.329859617448e-06 1.812500000000e+00 + 73 6.668225222783e-05 1.197519877322e-03 1.024937206784e-03 5.419027048446e-05 1.837500000000e+00 74 5.053198367604e-05 1.197971659937e-03 7.350507107061e-04 2.072086528030e-04 1.862500000000e+00 - 75 3.879701357395e-05 1.198343349753e-03 5.356918142768e-04 3.127555860708e-04 1.887500000000e+00 + 75 3.879701357395e-05 1.198343349753e-03 5.356918142767e-04 3.127555860708e-04 1.887500000000e+00 76 3.007678322722e-05 1.198648658204e-03 4.021188008094e-04 3.839022079790e-04 1.912500000000e+00 - 77 2.344463549483e-05 1.198899057198e-03 3.068522371412e-04 4.348515636801e-04 1.937500000000e+00 - 78 1.834047972307e-05 1.199104120993e-03 2.366187847945e-04 4.725203677398e-04 1.962500000000e+00 + 77 2.344463549483e-05 1.198899057198e-03 3.068522371411e-04 4.348515636801e-04 1.937500000000e+00 + 78 1.834047972307e-05 1.199104120993e-03 2.366187847944e-04 4.725203677398e-04 1.962500000000e+00 79 1.438416333582e-05 1.199271821253e-03 1.838015689086e-04 5.009071338768e-04 1.987500000000e+00 80 1.130287552755e-05 1.199408780437e-03 1.435541337153e-04 5.225714953778e-04 2.012500000000e+00 81 8.894854154099e-06 1.199520488471e-03 1.125953626079e-04 5.392548916185e-04 2.037500000000e+00 @@ -86,13 +86,13 @@ 84 4.362237388672e-06 1.199745698858e-03 5.532050326743e-05 5.701586296717e-04 2.112500000000e+00 85 3.445231625616e-06 1.199794545990e-03 4.384740222256e-05 5.763536830758e-04 2.137500000000e+00 86 2.722483623513e-06 1.199834157394e-03 3.481279241283e-05 5.812323619826e-04 2.162500000000e+00 - 87 2.152343734153e-06 1.199866246232e-03 2.768046312193e-05 5.850835965725e-04 2.187500000000e+00 + 87 2.152343734153e-06 1.199866246232e-03 2.768046312192e-05 5.850835965725e-04 2.187500000000e+00 88 1.702259902002e-06 1.199892215323e-03 2.203774543638e-05 5.881299973317e-04 2.212500000000e+00 89 1.346733078607e-06 1.199913211686e-03 1.756522033724e-05 5.905440232928e-04 2.237500000000e+00 90 1.065752199293e-06 1.199930171882e-03 1.401446577327e-05 5.924598910143e-04 2.262500000000e+00 91 8.435890597776e-07 1.199943859609e-03 1.119149963194e-05 5.939824556550e-04 2.287500000000e+00 - 92 6.678659094764e-07 1.199954896813e-03 8.944331673377e-06 5.951939012093e-04 2.312500000000e+00 - 93 5.288312745990e-07 1.199963789378e-03 7.153523668295e-06 5.961588225292e-04 2.337500000000e+00 + 92 6.678659094763e-07 1.199954896813e-03 8.944331673377e-06 5.951939012093e-04 2.312500000000e+00 + 93 5.288312745990e-07 1.199963789378e-03 7.153523668294e-06 5.961588225292e-04 2.337500000000e+00 94 4.187957414427e-07 1.199970948301e-03 5.724978921457e-06 5.969281126691e-04 2.362500000000e+00 95 3.316912256408e-07 1.199976707113e-03 4.584400974714e-06 5.975419539002e-04 2.387500000000e+00 96 2.627259549757e-07 1.199981336185e-03 3.673012861562e-06 5.980321305921e-04 2.412500000000e+00 diff --git a/ex12.sel b/ex12.sel index 5bafa096..d549d47f 100644 --- a/ex12.sel +++ b/ex12.sel @@ -75,7 +75,7 @@ 2.83333 1.078314727713e+00 1.077198297073e+00 2.292280169464e+01 5.933476222844e+00 3.16666 6.047305557783e-01 6.039382767914e-01 2.339606171644e+01 4.701379781820e+00 3.5 3.237709470080e-01 3.232490525632e-01 2.367675094204e+01 3.667800399953e+00 - 3.83333 1.655104664086e-01 1.651896628001e-01 2.383481033299e+01 2.816701882844e+00 + 3.83333 1.655104664086e-01 1.651896628002e-01 2.383481033299e+01 2.816701882844e+00 4.16666 8.080257204240e-02 8.061777229753e-02 2.391938222449e+01 2.128773573946e+00 4.5 3.768568646672e-02 3.758557520676e-02 2.396241442239e+01 1.582986272153e+00 4.83333 1.679767756894e-02 1.674652868459e-02 2.398325346955e+01 1.157966472262e+00 @@ -107,7 +107,7 @@ 13.5 1.456506511045e-03 1.450373187822e-03 2.399854962640e+01 2.689568433456e-01 13.8333 3.570772369452e-03 3.557230846966e-03 2.399644276858e+01 3.761696764504e-01 14.1667 8.372702446682e-03 8.344318209114e-03 2.399165568100e+01 5.167554989993e-01 - 14.5 1.876668623423e-02 1.871028306261e-02 2.398128971588e+01 6.972801618698e-01 + 14.5 1.876668623423e-02 1.871028306262e-02 2.398128971588e+01 6.972801618698e-01 14.8333 4.018855158439e-02 4.008246069532e-02 2.395991753791e+01 9.242091443386e-01 15.1667 8.218587185627e-02 8.199729506180e-02 2.391800270313e+01 1.203352315083e+00 15.5 1.604262488969e-01 1.601100284715e-01 2.383988996925e+01 1.539191520808e+00 diff --git a/ex12a.sel b/ex12a.sel index ed20e23d..caa7d6cc 100644 --- a/ex12a.sel +++ b/ex12a.sel @@ -105,16 +105,16 @@ 0.5 1.732877230198e+01 1.732818349806e+01 6.671816494265e+00 2.011806700218e+01 9.000885944563e-08 3.998622946029e-05 0.833333 1.328083118787e+01 1.327977600374e+01 1.072022398538e+01 1.760855984595e+01 1.16667 9.764783869793e+00 9.763295612551e+00 1.423670437487e+01 1.521226338238e+01 - 1.5 6.876979954453e+00 6.875203671273e+00 1.712479631572e+01 1.296594983169e+01 1.040652470946e-06 5.706265744742e-05 + 1.5 6.876979954453e+00 6.875203671273e+00 1.712479631572e+01 1.296594983169e+01 1.040652470925e-06 5.706265744742e-05 1.83333 4.633445178532e+00 4.631592230628e+00 1.936840775690e+01 1.089878644681e+01 2.16667 2.983957613764e+00 2.982233846716e+00 2.101776614197e+01 9.031332911150e+00 - 2.5 1.835670035272e+00 1.834219344984e+00 2.216578064517e+01 7.375218041922e+00 3.202792299459e-06 1.617537638526e-05 + 2.5 1.835670035272e+00 1.834219344984e+00 2.216578064517e+01 7.375218041922e+00 3.202792299443e-06 1.617537638526e-05 2.83333 1.078309641703e+00 1.077193213980e+00 2.292280677773e+01 5.933464823767e+00 3.16667 6.047271172834e-01 6.039348411906e-01 2.339606515204e+01 4.701369003156e+00 - 3.5 3.237687663205e-01 3.232468743679e-01 2.367675312023e+01 3.667790507028e+00 5.217031892205e-06 -3.366526094913e-06 + 3.5 3.237687663205e-01 3.232468743679e-01 2.367675312023e+01 3.667790507028e+00 5.217031892201e-06 -3.366526094913e-06 3.83333 1.655091653734e-01 1.651883636811e-01 2.383481163211e+01 2.816693051604e+00 4.16667 8.080184009388e-02 8.061704168687e-02 2.391938295510e+01 2.128765894911e+00 - 4.5 3.768529738011e-02 3.758518697824e-02 2.396241481061e+01 1.582979760724e+00 5.639342372489e-06 -2.476867168243e-06 + 4.5 3.768529738011e-02 3.758518697824e-02 2.396241481061e+01 1.582979760724e+00 5.639342372485e-06 -2.476867168242e-06 4.83333 1.679748179371e-02 1.674633341902e-02 2.398325366481e+01 1.157961083143e+00 5.16667 7.158658672534e-03 7.133952391643e-03 2.399286604633e+01 8.331082803354e-01 5.5 2.918406916536e-03 2.907101078212e-03 2.399709289802e+01 5.894142528789e-01 4.455972089510e-06 -4.912290758279e-07 @@ -123,10 +123,10 @@ 6.5 1.523110828883e-04 1.515144739607e-04 2.399984848524e+01 1.884278508358e-01 2.697942283073e-06 -4.814123673546e-08 6.83333 5.227158933236e-05 5.197321123247e-05 2.399994802660e+01 1.244614394110e-01 7.16667 1.720693831522e-05 1.710029263504e-05 2.399998289958e+01 8.078687428981e-02 - 7.5 5.436060934909e-06 5.399649415897e-06 2.399999460027e+01 5.153218579103e-02 1.262649985251e-06 -2.664487783140e-09 + 7.5 5.436060934909e-06 5.399649415897e-06 2.399999460027e+01 5.153218579103e-02 1.262649985252e-06 -2.664487783140e-09 7.83333 1.649088195275e-06 1.637200882995e-06 2.399999836275e+01 3.231618817631e-02 8.16667 4.806358157844e-07 4.769214798034e-07 2.399999952305e+01 1.995341519604e-02 - 8.5 1.346685590700e-07 1.335566766312e-07 2.399999986642e+01 1.218943044882e-02 2.986653145795e-07 -8.898265268245e-11 + 8.5 1.346685590700e-07 1.335566766312e-07 2.399999986642e+01 1.218943044882e-02 2.986653145795e-07 -8.898265268244e-11 8.83333 3.634651793240e-08 3.602679113544e-08 2.399999996396e+01 7.477181955864e-03 9.16667 9.688299803978e-09 9.597461159243e-09 2.399999999040e+01 4.798414843917e-03 9.5 3.521245209155e-09 3.486098607350e-09 2.399999999651e+01 3.529705336616e-03 diff --git a/ex13a.out b/ex13a.out index 566b957b..b4c072b2 100644 --- a/ex13a.out +++ b/ex13a.out @@ -87,7 +87,6 @@ N(5) 1.000e-03 NO3- 1.000e-03 9.572e-04 -3.000 -3.019 -0.019 29.50 Na 1.000e-03 Na+ 1.000e-03 9.580e-04 -3.000 -3.019 -0.019 -1.47 - NaOH 9.693e-21 9.696e-21 -20.014 -20.013 0.000 (0) O(0) 5.110e-04 O2 2.555e-04 2.556e-04 -3.593 -3.592 0.000 30.40 diff --git a/ex13ac.out b/ex13ac.out index 6d99ba6b..a83605a0 100644 --- a/ex13ac.out +++ b/ex13ac.out @@ -87,7 +87,6 @@ N(5) 1.000e-03 NO3- 1.000e-03 9.572e-04 -3.000 -3.019 -0.019 29.50 Na 1.000e-03 Na+ 1.000e-03 9.580e-04 -3.000 -3.019 -0.019 -1.47 - NaOH 9.693e-21 9.696e-21 -20.014 -20.013 0.000 (0) O(0) 5.110e-04 O2 2.555e-04 2.556e-04 -3.593 -3.592 0.000 30.40 diff --git a/ex13b.out b/ex13b.out index 83257bbb..d91b1ae3 100644 --- a/ex13b.out +++ b/ex13b.out @@ -87,7 +87,6 @@ N(5) 1.000e-03 NO3- 1.000e-03 9.572e-04 -3.000 -3.019 -0.019 29.50 Na 1.000e-03 Na+ 1.000e-03 9.580e-04 -3.000 -3.019 -0.019 -1.47 - NaOH 9.693e-21 9.696e-21 -20.014 -20.013 0.000 (0) O(0) 5.110e-04 O2 2.555e-04 2.556e-04 -3.593 -3.592 0.000 30.40 diff --git a/ex13c.out b/ex13c.out index 5102e6e4..815ca21b 100644 --- a/ex13c.out +++ b/ex13c.out @@ -87,7 +87,6 @@ N(5) 1.000e-03 NO3- 1.000e-03 9.572e-04 -3.000 -3.019 -0.019 29.50 Na 1.000e-03 Na+ 1.000e-03 9.580e-04 -3.000 -3.019 -0.019 -1.47 - NaOH 9.693e-21 9.696e-21 -20.014 -20.013 0.000 (0) O(0) 5.110e-04 O2 2.555e-04 2.556e-04 -3.593 -3.592 0.000 30.40 diff --git a/ex14.out b/ex14.out index 71a465f4..fc3343ab 100644 --- a/ex14.out +++ b/ex14.out @@ -88,10 +88,10 @@ Initial solution 1. Brine pH = 5.713 pe = 14.962 Equilibrium with O2(g) - Specific Conductance (µS/cm, 25°C) = 243000 + Specific Conductance (µS/cm, 25°C) = 242995 Density (g/cm³) = 1.21629 Volume (L) = 1.13700 - Viscosity (mPa s) = 1.95441 + Viscosity (mPa s) = 1.95446 Activity of water = 0.785 Ionic strength (mol/kgw) = 7.270e+00 Mass of water (kg) = 1.000e+00 @@ -152,7 +152,6 @@ Na 5.402e+00 Na+ 5.398e+00 1.072e+01 0.732 1.030 0.298 1.52 NaSO4- 4.063e-03 2.370e-03 -2.391 -2.625 -0.234 35.76 NaHCO3 6.284e-05 1.787e-03 -4.202 -2.748 1.454 31.73 - NaOH 8.245e-19 4.397e-18 -18.084 -17.357 0.727 (0) O(0) 9.585e-05 O2 4.793e-05 2.556e-04 -4.319 -3.592 0.727 30.40 S(-2) 0.000e+00 @@ -249,10 +248,10 @@ Dolomite 0.00 -17.08 -17.08 1.600e+00 1.597e+00 -3.272e-03 pH = 5.720 Charge balance pe = 14.955 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 242937 + Specific Conductance (µS/cm, 25°C) = 242932 Density (g/cm³) = 1.21626 Volume (L) = 1.13699 - Viscosity (mPa s) = 1.95490 + Viscosity (mPa s) = 1.95495 Activity of water = 0.785 Ionic strength (mol/kgw) = 7.270e+00 Mass of water (kg) = 1.000e+00 @@ -313,7 +312,6 @@ Na 5.402e+00 Na+ 5.398e+00 1.072e+01 0.732 1.030 0.298 1.52 NaSO4- 4.064e-03 2.370e-03 -2.391 -2.625 -0.234 35.76 NaHCO3 6.240e-05 1.775e-03 -4.205 -2.751 1.454 31.73 - NaOH 8.380e-19 4.469e-18 -18.077 -17.350 0.727 (0) O(0) 9.585e-05 O2 4.793e-05 2.556e-04 -4.319 -3.592 0.727 30.40 S(-2) 0.000e+00 @@ -467,7 +465,7 @@ Initial solution 0. 20 x precipitation Specific Conductance (µS/cm, 25°C) = 81 Density (g/cm³) = 0.99708 Volume (L) = 1.00298 - Viscosity (mPa s) = 0.89050 + Viscosity (mPa s) = 0.89051 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.036e-03 Mass of water (kg) = 1.000e+00 @@ -523,7 +521,6 @@ Na 1.227e-04 Na+ 1.223e-04 1.179e-04 -3.913 -3.928 -0.016 -1.48 NaSO4- 3.912e-07 3.775e-07 -6.408 -6.423 -0.016 -20.88 NaHCO3 1.957e-11 1.958e-11 -10.708 -10.708 0.000 31.73 - NaOH 4.751e-24 4.753e-24 -23.323 -23.323 0.000 (0) O(0) 5.111e-04 O2 2.555e-04 2.556e-04 -3.593 -3.592 0.000 30.40 S(-2) 0.000e+00 @@ -599,10 +596,10 @@ Dolomite 0.00 -17.08 -17.08 1.600e+00 1.599e+00 -1.375e-03 pH = 7.047 Charge balance pe = 13.576 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 603 + Specific Conductance (µS/cm, 25°C) = 602 Density (g/cm³) = 0.99746 Volume (L) = 1.00305 - Viscosity (mPa s) = 0.89401 + Viscosity (mPa s) = 0.89550 Activity of water = 1.000 Ionic strength (mol/kgw) = 9.649e-03 Mass of water (kg) = 9.999e-01 @@ -658,7 +655,6 @@ Na 1.227e-04 Na+ 1.219e-04 1.103e-04 -3.914 -3.957 -0.043 -1.38 NaHCO3 5.094e-07 5.117e-07 -6.293 -6.291 0.002 31.73 NaSO4- 2.405e-07 2.180e-07 -6.619 -6.662 -0.043 -15.24 - NaOH 1.240e-21 1.243e-21 -20.907 -20.906 0.001 (0) O(0) 5.111e-04 O2 2.556e-04 2.561e-04 -3.593 -3.592 0.001 30.40 S(-2) 0.000e+00 @@ -1002,7 +998,7 @@ X 1.000e+00 mol Specific Conductance (µS/cm, 25°C) = 602 Density (g/cm³) = 0.99746 Volume (L) = 1.00305 - Viscosity (mPa s) = 0.89401 + Viscosity (mPa s) = 0.89550 Activity of water = 1.000 Ionic strength (mol/kgw) = 9.645e-03 Mass of water (kg) = 9.999e-01 @@ -1063,7 +1059,6 @@ Na 1.227e-04 Na+ 1.220e-04 1.103e-04 -3.914 -3.957 -0.043 -1.38 NaHCO3 5.093e-07 5.116e-07 -6.293 -6.291 0.002 31.73 NaSO4- 2.404e-07 2.180e-07 -6.619 -6.662 -0.043 -15.24 - NaOH 1.239e-21 1.242e-21 -20.907 -20.906 0.001 (0) O(0) 5.111e-04 O2 2.556e-04 2.561e-04 -3.593 -3.592 0.001 30.40 S(-2) 0.000e+00 diff --git a/ex16.out b/ex16.out index b6bac07b..996b5b97 100644 --- a/ex16.out +++ b/ex16.out @@ -82,7 +82,7 @@ Initial solution 1. Specific Conductance (µS/cm, 25°C) = 38 Density (g/cm³) = 0.99708 Volume (L) = 1.00300 - Viscosity (mPa s) = 0.89038 + Viscosity (mPa s) = 0.89070 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.855e-04 Mass of water (kg) = 1.000e+00 @@ -141,7 +141,6 @@ Na 1.340e-04 Na+ 1.339e-04 1.306e-04 -3.873 -3.884 -0.011 -1.49 NaHCO3 3.643e-08 3.643e-08 -7.439 -7.438 0.000 31.73 NaSO4- 1.934e-08 1.887e-08 -7.713 -7.724 -0.011 -22.22 - NaOH 2.095e-22 2.096e-22 -21.679 -21.679 0.000 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -45.280 -45.280 0.000 30.40 S(6) 1.000e-05 @@ -212,7 +211,7 @@ Initial solution 2. Specific Conductance (µS/cm, 25°C) = 97 Density (g/cm³) = 0.99712 Volume (L) = 1.00301 - Viscosity (mPa s) = 0.89080 + Viscosity (mPa s) = 0.89116 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.317e-03 Mass of water (kg) = 1.000e+00 @@ -271,7 +270,6 @@ Na 2.590e-04 Na+ 2.588e-04 2.485e-04 -3.587 -3.605 -0.018 -1.47 NaHCO3 1.855e-07 1.856e-07 -6.732 -6.731 0.000 31.73 NaSO4- 8.529e-08 8.195e-08 -7.069 -7.086 -0.017 -20.40 - NaOH 1.587e-21 1.587e-21 -20.800 -20.799 0.000 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -42.880 -42.880 0.000 30.40 S(6) 2.500e-05 diff --git a/ex17b.out b/ex17b.out index 1d5ea13f..f0064627 100644 --- a/ex17b.out +++ b/ex17b.out @@ -2482,7 +2482,7 @@ Polyhalite -0.26 -14.00 -13.74 0.000e+00 0 0.000e+00 pH = 7.377 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 181678 + Specific Conductance (µS/cm, 25°C) = 181677 Density (g/cm³) = 1.23961 Volume (L) = 0.01574 Viscosity (mPa s) = 2.84317 @@ -2641,7 +2641,7 @@ Polyhalite -0.08 -13.82 -13.74 0.000e+00 0 0.000e+00 pH = 7.379 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 176353 + Specific Conductance (µS/cm, 25°C) = 176352 Density (g/cm³) = 1.24332 Volume (L) = 0.01472 Viscosity (mPa s) = 2.98015 diff --git a/ex18.out b/ex18.out index dc9986e5..f1a3a1fd 100644 --- a/ex18.out +++ b/ex18.out @@ -121,7 +121,7 @@ Initial solution 1. Recharge number 3 Specific Conductance (µS/cm, 10°C) = 278 Density (g/cm³) = 0.99999 Volume (L) = 1.00035 - Viscosity (mPa s) = 1.31358 + Viscosity (mPa s) = 1.31409 Activity of water = 1.000 Ionic strength (mol/kgw) = 6.588e-03 Mass of water (kg) = 1.000e+00 @@ -193,7 +193,6 @@ Na 2.000e-05 Na+ 1.994e-05 1.835e-05 -4.700 -4.736 -0.036 -2.42 NaHCO3 3.694e-08 3.705e-08 -7.433 -7.431 0.001 31.86 NaSO4- 2.681e-08 2.471e-08 -7.572 -7.607 -0.035 -19.96 - NaOH 1.896e-22 1.898e-22 -21.722 -21.722 0.001 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -61.151 -61.151 0.001 28.94 S(6) 1.600e-04 @@ -256,10 +255,10 @@ Initial solution 2. Mysse pH = 6.610 pe = 0.000 - Specific Conductance (µS/cm, 63°C) = 10507 + Specific Conductance (µS/cm, 63°C) = 10505 Density (g/cm³) = 0.98520 Volume (L) = 1.01942 - Viscosity (mPa s) = 0.45606 + Viscosity (mPa s) = 0.45631 Activity of water = 0.999 Ionic strength (mol/kgw) = 7.101e-02 Mass of water (kg) = 1.000e+00 @@ -339,7 +338,6 @@ Na 3.189e-02 Na+ 2.911e-02 2.304e-02 -1.536 -1.638 -0.102 0.09 NaSO4- 2.599e-03 2.073e-03 -2.585 -2.683 -0.098 -3.67 NaHCO3 1.844e-04 1.905e-04 -3.734 -3.720 0.014 31.20 - NaOH 1.044e-18 1.062e-18 -17.981 -17.974 0.007 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -63.096 -63.088 0.007 32.51 S(-2) 2.600e-04 diff --git a/ex21.out b/ex21.out index 339f19af..e4d8058a 100644 --- a/ex21.out +++ b/ex21.out @@ -139,7 +139,6 @@ H(0) 1.416e-25 H2 7.078e-26 7.079e-26 -25.150 -25.150 0.000 28.61 Na 1.000e-03 Na+ 1.000e-03 9.652e-04 -3.000 -3.015 -0.015 -1.48 - NaOH 9.767e-21 9.769e-21 -20.010 -20.010 0.000 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -42.080 -42.080 0.000 30.40 @@ -502,7 +501,6 @@ Na 2.400e-01 Na+ 2.347e-01 1.701e-01 -0.629 -0.769 -0.140 -0.85 NaSO4- 5.251e-03 3.746e-03 -2.280 -2.426 -0.147 2.97 NaHCO3 3.292e-05 3.892e-05 -4.483 -4.410 0.073 31.75 - NaOH 5.351e-18 5.818e-18 -17.272 -17.235 0.036 (0) O(0) 2.438e-04 O2 1.219e-04 1.325e-04 -3.914 -3.878 0.036 30.24 S(6) 1.410e-02 diff --git a/ex22.out b/ex22.out index baa2a407..c57ca3a5 100644 --- a/ex22.out +++ b/ex22.out @@ -245,10 +245,10 @@ H2O(g) -1.45 3.586e-02 0.878 1.285e-03 1.587e-03 3.014e-04 pH = 3.368 Charge balance pe = 14.672 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 165 + Specific Conductance (µS/cm, 25°C) = 155 Density (g/cm³) = 1.00156 Volume (L) = 1.01670 - Viscosity (mPa s) = 0.89006 + Viscosity (mPa s) = 0.91920 Activity of water = 0.993 Ionic strength (mol/kgw) = 4.384e-04 Mass of water (kg) = 1.000e+00 @@ -339,10 +339,10 @@ H2O(g) -1.38 4.125e-02 0.766 1.587e-03 1.998e-03 4.108e-04 pH = 3.241 Charge balance pe = 14.793 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 218 + Specific Conductance (µS/cm, 25°C) = 193 Density (g/cm³) = 1.00523 Volume (L) = 1.02762 - Viscosity (mPa s) = 0.88995 + Viscosity (mPa s) = 0.94202 Activity of water = 0.987 Ionic strength (mol/kgw) = 5.901e-04 Mass of water (kg) = 1.000e+00 @@ -433,10 +433,10 @@ H2O(g) -1.32 4.764e-02 0.666 1.998e-03 2.555e-03 5.569e-04 pH = 3.178 Charge balance pe = 14.865 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 248 + Specific Conductance (µS/cm, 25°C) = 212 Density (g/cm³) = 1.00802 Volume (L) = 1.03574 - Viscosity (mPa s) = 0.88983 + Viscosity (mPa s) = 0.95902 Activity of water = 0.983 Ionic strength (mol/kgw) = 6.833e-04 Mass of water (kg) = 9.999e-01 @@ -527,10 +527,10 @@ H2O(g) -1.26 5.498e-02 0.580 2.555e-03 3.300e-03 7.455e-04 pH = 3.142 Charge balance pe = 14.877 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 267 + Specific Conductance (µS/cm, 25°C) = 222 Density (g/cm³) = 1.01002 Volume (L) = 1.04130 - Viscosity (mPa s) = 0.88973 + Viscosity (mPa s) = 0.97075 Activity of water = 0.980 Ionic strength (mol/kgw) = 7.422e-04 Mass of water (kg) = 9.999e-01 @@ -621,10 +621,10 @@ H2O(g) -1.20 6.307e-02 0.507 3.300e-03 4.278e-03 9.775e-04 pH = 3.122 Charge balance pe = 14.890 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 278 + Specific Conductance (µS/cm, 25°C) = 228 Density (g/cm³) = 1.01134 Volume (L) = 1.04476 - Viscosity (mPa s) = 0.88965 + Viscosity (mPa s) = 0.97819 Activity of water = 0.979 Ionic strength (mol/kgw) = 7.783e-04 Mass of water (kg) = 9.999e-01 @@ -715,10 +715,10 @@ H2O(g) -1.15 7.157e-02 0.448 4.278e-03 5.528e-03 1.251e-03 pH = 3.111 Charge balance pe = 14.943 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 284 + Specific Conductance (µS/cm, 25°C) = 231 Density (g/cm³) = 1.01215 Volume (L) = 1.04668 - Viscosity (mPa s) = 0.88959 + Viscosity (mPa s) = 0.98243 Activity of water = 0.978 Ionic strength (mol/kgw) = 7.989e-04 Mass of water (kg) = 9.999e-01 @@ -809,10 +809,10 @@ H2O(g) -1.10 8.014e-02 0.401 5.528e-03 7.089e-03 1.561e-03 pH = 3.105 Charge balance pe = 14.977 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 287 + Specific Conductance (µS/cm, 25°C) = 233 Density (g/cm³) = 1.01257 Volume (L) = 1.04759 - Viscosity (mPa s) = 0.88955 + Viscosity (mPa s) = 0.98452 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.092e-04 Mass of water (kg) = 9.999e-01 @@ -903,10 +903,10 @@ H2O(g) -1.05 8.845e-02 0.364 7.089e-03 8.995e-03 1.905e-03 pH = 3.103 Charge balance pe = 14.980 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 289 + Specific Conductance (µS/cm, 25°C) = 233 Density (g/cm³) = 1.01273 Volume (L) = 1.04788 - Viscosity (mPa s) = 0.88954 + Viscosity (mPa s) = 0.98529 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.131e-04 Mass of water (kg) = 9.998e-01 @@ -997,10 +997,10 @@ H2O(g) -1.02 9.646e-02 0.334 8.995e-03 1.127e-02 2.272e-03 pH = 3.103 Charge balance pe = 14.928 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 289 + Specific Conductance (µS/cm, 25°C) = 233 Density (g/cm³) = 1.01275 Volume (L) = 1.04787 - Viscosity (mPa s) = 0.88954 + Viscosity (mPa s) = 0.98535 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.134e-04 Mass of water (kg) = 9.998e-01 @@ -1091,10 +1091,10 @@ H2O(g) -0.98 1.051e-01 0.306 1.127e-02 1.389e-02 2.628e-03 pH = 3.103 Charge balance pe = 14.901 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 289 + Specific Conductance (µS/cm, 25°C) = 233 Density (g/cm³) = 1.01275 Volume (L) = 1.04780 - Viscosity (mPa s) = 0.88954 + Viscosity (mPa s) = 0.98532 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.133e-04 Mass of water (kg) = 9.997e-01 @@ -1185,10 +1185,10 @@ H2O(g) -0.94 1.145e-01 0.281 1.389e-02 1.691e-02 3.018e-03 pH = 3.103 Charge balance pe = 14.638 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 289 + Specific Conductance (µS/cm, 25°C) = 233 Density (g/cm³) = 1.01273 Volume (L) = 1.04770 - Viscosity (mPa s) = 0.88954 + Viscosity (mPa s) = 0.98522 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.129e-04 Mass of water (kg) = 9.997e-01 @@ -1279,10 +1279,10 @@ H2O(g) -0.90 1.248e-01 0.258 1.691e-02 2.036e-02 3.449e-03 pH = 3.104 Charge balance pe = 2.312 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 288 + Specific Conductance (µS/cm, 25°C) = 233 Density (g/cm³) = 1.01271 Volume (L) = 1.04756 - Viscosity (mPa s) = 0.88954 + Viscosity (mPa s) = 0.98509 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.123e-04 Mass of water (kg) = 9.996e-01 @@ -1373,10 +1373,10 @@ H2O(g) -0.87 1.359e-01 0.237 2.036e-02 2.428e-02 3.919e-03 pH = 3.104 Charge balance pe = 14.806 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 288 + Specific Conductance (µS/cm, 25°C) = 233 Density (g/cm³) = 1.01269 Volume (L) = 1.04741 - Viscosity (mPa s) = 0.88954 + Viscosity (mPa s) = 0.98492 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.116e-04 Mass of water (kg) = 9.995e-01 @@ -1467,10 +1467,10 @@ H2O(g) -0.83 1.479e-01 0.218 2.428e-02 2.871e-02 4.427e-03 pH = 3.104 Charge balance pe = 14.718 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 288 + Specific Conductance (µS/cm, 25°C) = 233 Density (g/cm³) = 1.01267 Volume (L) = 1.04724 - Viscosity (mPa s) = 0.88954 + Viscosity (mPa s) = 0.98477 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.110e-04 Mass of water (kg) = 9.995e-01 @@ -1561,10 +1561,10 @@ H2O(g) -0.79 1.606e-01 0.200 2.871e-02 3.368e-02 4.970e-03 pH = 3.105 Charge balance pe = 14.909 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 288 + Specific Conductance (µS/cm, 25°C) = 233 Density (g/cm³) = 1.01265 Volume (L) = 1.04709 - Viscosity (mPa s) = 0.88954 + Viscosity (mPa s) = 0.98465 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.105e-04 Mass of water (kg) = 9.994e-01 @@ -1655,10 +1655,10 @@ H2O(g) -0.76 1.742e-01 0.185 3.368e-02 3.922e-02 5.546e-03 pH = 3.105 Charge balance pe = 14.952 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 288 + Specific Conductance (µS/cm, 25°C) = 233 Density (g/cm³) = 1.01265 Volume (L) = 1.04696 - Viscosity (mPa s) = 0.88954 + Viscosity (mPa s) = 0.98459 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.102e-04 Mass of water (kg) = 9.993e-01 @@ -1749,10 +1749,10 @@ H2O(g) -0.69 2.026e-01 0.159 3.922e-02 4.502e-02 5.801e-03 pH = 3.102 Charge balance pe = 14.961 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 290 + Specific Conductance (µS/cm, 25°C) = 234 Density (g/cm³) = 1.01297 Volume (L) = 1.04694 - Viscosity (mPa s) = 0.88947 + Viscosity (mPa s) = 0.98520 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.154e-04 Mass of water (kg) = 9.992e-01 @@ -1843,10 +1843,10 @@ H2O(g) -0.61 2.464e-01 0.132 4.502e-02 5.114e-02 6.118e-03 pH = 3.097 Charge balance pe = 14.914 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 293 + Specific Conductance (µS/cm, 25°C) = 236 Density (g/cm³) = 1.01354 Volume (L) = 1.04694 - Viscosity (mPa s) = 0.88936 + Viscosity (mPa s) = 0.98618 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.244e-04 Mass of water (kg) = 9.991e-01 @@ -1937,10 +1937,10 @@ H2O(g) -0.51 3.084e-01 0.107 5.114e-02 5.758e-02 6.433e-03 pH = 3.091 Charge balance pe = 14.977 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 297 + Specific Conductance (µS/cm, 25°C) = 239 Density (g/cm³) = 1.01434 Volume (L) = 1.04689 - Viscosity (mPa s) = 0.88921 + Viscosity (mPa s) = 0.98743 Activity of water = 0.976 Ionic strength (mol/kgw) = 8.368e-04 Mass of water (kg) = 9.989e-01 @@ -2031,10 +2031,10 @@ H2O(g) -0.40 3.942e-01 0.085 5.758e-02 6.425e-02 6.677e-03 pH = 3.083 Charge balance pe = 14.941 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 303 + Specific Conductance (µS/cm, 25°C) = 243 Density (g/cm³) = 1.01543 Volume (L) = 1.04675 - Viscosity (mPa s) = 0.88900 + Viscosity (mPa s) = 0.98895 Activity of water = 0.976 Ionic strength (mol/kgw) = 8.532e-04 Mass of water (kg) = 9.988e-01 @@ -2125,10 +2125,10 @@ H2O(g) -0.29 5.106e-01 0.066 6.425e-02 7.108e-02 6.829e-03 pH = 3.072 Charge balance pe = 14.978 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 311 + Specific Conductance (µS/cm, 25°C) = 248 Density (g/cm³) = 1.01684 Volume (L) = 1.04648 - Viscosity (mPa s) = 0.88875 + Viscosity (mPa s) = 0.99076 Activity of water = 0.975 Ionic strength (mol/kgw) = 8.742e-04 Mass of water (kg) = 9.987e-01 @@ -2226,10 +2226,10 @@ H2O(g) -0.18 6.655e-01 0.052 7.108e-02 7.795e-02 6.869e-03 pH = 3.059 Charge balance pe = 15.552 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 320 + Specific Conductance (µS/cm, 25°C) = 254 Density (g/cm³) = 1.01866 Volume (L) = 1.04600 - Viscosity (mPa s) = 0.88844 + Viscosity (mPa s) = 0.99284 Activity of water = 0.975 Ionic strength (mol/kgw) = 9.010e-04 Mass of water (kg) = 9.986e-01 @@ -2327,10 +2327,10 @@ H2O(g) -0.06 8.678e-01 0.041 7.795e-02 8.472e-02 6.772e-03 pH = 3.044 Charge balance pe = 16.115 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 333 + Specific Conductance (µS/cm, 25°C) = 263 Density (g/cm³) = 1.02093 Volume (L) = 1.04525 - Viscosity (mPa s) = 0.88812 + Viscosity (mPa s) = 0.99523 Activity of water = 0.974 Ionic strength (mol/kgw) = 9.345e-04 Mass of water (kg) = 9.985e-01 @@ -2428,10 +2428,10 @@ H2O(g) 0.05 1.127e+00 0.033 8.472e-02 9.124e-02 6.514e-03 pH = 3.025 Charge balance pe = 16.133 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 349 + Specific Conductance (µS/cm, 25°C) = 273 Density (g/cm³) = 1.02376 Volume (L) = 1.04415 - Viscosity (mPa s) = 0.88780 + Viscosity (mPa s) = 0.99796 Activity of water = 0.973 Ionic strength (mol/kgw) = 9.763e-04 Mass of water (kg) = 9.983e-01 @@ -2529,10 +2529,10 @@ H2O(g) 0.16 1.455e+00 0.027 9.124e-02 9.730e-02 6.064e-03 pH = 3.003 Charge balance pe = 16.153 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 368 + Specific Conductance (µS/cm, 25°C) = 287 Density (g/cm³) = 1.02723 Volume (L) = 1.04258 - Viscosity (mPa s) = 0.88755 + Viscosity (mPa s) = 1.00108 Activity of water = 0.973 Ionic strength (mol/kgw) = 1.028e-03 Mass of water (kg) = 9.982e-01 @@ -2630,10 +2630,10 @@ H2O(g) 0.27 1.863e+00 0.023 9.730e-02 1.027e-01 5.386e-03 pH = 2.976 Charge balance pe = 16.178 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 393 + Specific Conductance (µS/cm, 25°C) = 304 Density (g/cm³) = 1.03147 Volume (L) = 1.04041 - Viscosity (mPa s) = 0.88750 + Viscosity (mPa s) = 1.00471 Activity of water = 0.972 Ionic strength (mol/kgw) = 1.094e-03 Mass of water (kg) = 9.981e-01 @@ -2731,10 +2731,10 @@ H2O(g) 0.37 2.361e+00 0.019 1.027e-01 1.071e-01 4.442e-03 pH = 2.945 Charge balance pe = 16.206 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 425 + Specific Conductance (µS/cm, 25°C) = 326 Density (g/cm³) = 1.03663 Volume (L) = 1.03747 - Viscosity (mPa s) = 0.88783 + Viscosity (mPa s) = 1.00901 Activity of water = 0.971 Ionic strength (mol/kgw) = 1.176e-03 Mass of water (kg) = 9.980e-01 @@ -2933,10 +2933,10 @@ H2O(g) -0.85 1.400e-01 0.872 4.591e-03 5.717e-03 1.126e-03 pH = 3.402 Charge balance pe = 12.495 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 205 + Specific Conductance (µS/cm, 50°C) = 200 Density (g/cm³) = 0.99137 Volume (L) = 1.02222 - Viscosity (mPa s) = 0.54698 + Viscosity (mPa s) = 0.55428 Activity of water = 0.995 Ionic strength (mol/kgw) = 4.059e-04 Mass of water (kg) = 9.999e-01 @@ -3028,10 +3028,10 @@ H2O(g) -0.79 1.615e-01 0.761 5.717e-03 7.178e-03 1.461e-03 pH = 3.277 Charge balance pe = 2.454 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 270 + Specific Conductance (µS/cm, 50°C) = 258 Density (g/cm³) = 0.99409 Volume (L) = 1.03007 - Viscosity (mPa s) = 0.54734 + Viscosity (mPa s) = 0.56004 Activity of water = 0.991 Ionic strength (mol/kgw) = 5.432e-04 Mass of water (kg) = 9.999e-01 @@ -3123,10 +3123,10 @@ H2O(g) -0.73 1.861e-01 0.665 7.178e-03 9.044e-03 1.866e-03 pH = 3.215 Charge balance pe = 2.643 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 308 + Specific Conductance (µS/cm, 50°C) = 290 Density (g/cm³) = 0.99620 Volume (L) = 1.03584 - Viscosity (mPa s) = 0.54765 + Viscosity (mPa s) = 0.56435 Activity of water = 0.988 Ionic strength (mol/kgw) = 6.276e-04 Mass of water (kg) = 9.998e-01 @@ -3218,10 +3218,10 @@ H2O(g) -0.67 2.136e-01 0.583 9.044e-03 1.139e-02 2.342e-03 pH = 3.178 Charge balance pe = 12.681 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 333 + Specific Conductance (µS/cm, 50°C) = 310 Density (g/cm³) = 0.99780 Volume (L) = 1.03988 - Viscosity (mPa s) = 0.54791 + Viscosity (mPa s) = 0.56749 Activity of water = 0.986 Ionic strength (mol/kgw) = 6.831e-04 Mass of water (kg) = 9.998e-01 @@ -3313,10 +3313,10 @@ H2O(g) -0.61 2.437e-01 0.514 1.139e-02 1.427e-02 2.881e-03 pH = 3.156 Charge balance pe = 12.723 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 349 + Specific Conductance (µS/cm, 50°C) = 322 Density (g/cm³) = 0.99898 Volume (L) = 1.04261 - Viscosity (mPa s) = 0.54813 + Viscosity (mPa s) = 0.56970 Activity of water = 0.984 Ionic strength (mol/kgw) = 7.202e-04 Mass of water (kg) = 9.997e-01 @@ -3408,10 +3408,10 @@ H2O(g) -0.56 2.762e-01 0.456 1.427e-02 1.774e-02 3.477e-03 pH = 3.141 Charge balance pe = 12.654 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 359 + Specific Conductance (µS/cm, 50°C) = 331 Density (g/cm³) = 0.99985 Volume (L) = 1.04438 - Viscosity (mPa s) = 0.54831 + Viscosity (mPa s) = 0.57125 Activity of water = 0.983 Ionic strength (mol/kgw) = 7.453e-04 Mass of water (kg) = 9.997e-01 @@ -3503,10 +3503,10 @@ H2O(g) -0.51 3.107e-01 0.407 1.774e-02 2.186e-02 4.119e-03 pH = 3.131 Charge balance pe = 2.402 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 367 + Specific Conductance (µS/cm, 50°C) = 336 Density (g/cm³) = 1.00049 Volume (L) = 1.04551 - Viscosity (mPa s) = 0.54846 + Viscosity (mPa s) = 0.57233 Activity of water = 0.983 Ionic strength (mol/kgw) = 7.626e-04 Mass of water (kg) = 9.996e-01 @@ -3598,10 +3598,10 @@ H2O(g) -0.46 3.475e-01 0.365 2.186e-02 2.666e-02 4.799e-03 pH = 3.125 Charge balance pe = 12.650 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 372 + Specific Conductance (µS/cm, 50°C) = 340 Density (g/cm³) = 1.00098 Volume (L) = 1.04621 - Viscosity (mPa s) = 0.54858 + Viscosity (mPa s) = 0.57310 Activity of water = 0.982 Ionic strength (mol/kgw) = 7.747e-04 Mass of water (kg) = 9.995e-01 @@ -3693,10 +3693,10 @@ H2O(g) -0.41 3.869e-01 0.329 2.666e-02 3.217e-02 5.510e-03 pH = 3.120 Charge balance pe = 12.901 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 376 + Specific Conductance (µS/cm, 50°C) = 343 Density (g/cm³) = 1.00135 Volume (L) = 1.04665 - Viscosity (mPa s) = 0.54868 + Viscosity (mPa s) = 0.57367 Activity of water = 0.982 Ionic strength (mol/kgw) = 7.838e-04 Mass of water (kg) = 9.994e-01 @@ -3788,10 +3788,10 @@ H2O(g) -0.37 4.298e-01 0.297 3.217e-02 3.841e-02 6.243e-03 pH = 3.116 Charge balance pe = 12.991 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 379 + Specific Conductance (µS/cm, 50°C) = 346 Density (g/cm³) = 1.00168 Volume (L) = 1.04693 - Viscosity (mPa s) = 0.54877 + Viscosity (mPa s) = 0.57414 Activity of water = 0.982 Ionic strength (mol/kgw) = 7.911e-04 Mass of water (kg) = 9.993e-01 @@ -3883,10 +3883,10 @@ H2O(g) -0.32 4.775e-01 0.268 3.841e-02 4.540e-02 6.987e-03 pH = 3.112 Charge balance pe = 12.971 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 382 + Specific Conductance (µS/cm, 50°C) = 348 Density (g/cm³) = 1.00199 Volume (L) = 1.04712 - Viscosity (mPa s) = 0.54887 + Viscosity (mPa s) = 0.57455 Activity of water = 0.981 Ionic strength (mol/kgw) = 7.977e-04 Mass of water (kg) = 9.992e-01 @@ -3978,10 +3978,10 @@ H2O(g) -0.27 5.320e-01 0.241 4.540e-02 5.313e-02 7.732e-03 pH = 3.109 Charge balance pe = 12.832 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 385 + Specific Conductance (µS/cm, 50°C) = 350 Density (g/cm³) = 1.00231 Volume (L) = 1.04725 - Viscosity (mPa s) = 0.54897 + Viscosity (mPa s) = 0.57497 Activity of water = 0.981 Ionic strength (mol/kgw) = 8.043e-04 Mass of water (kg) = 9.990e-01 @@ -4073,10 +4073,10 @@ H2O(g) -0.22 5.960e-01 0.216 5.313e-02 6.160e-02 8.464e-03 pH = 3.105 Charge balance pe = 12.852 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 388 + Specific Conductance (µS/cm, 50°C) = 353 Density (g/cm³) = 1.00268 Volume (L) = 1.04734 - Viscosity (mPa s) = 0.54910 + Viscosity (mPa s) = 0.57542 Activity of water = 0.981 Ionic strength (mol/kgw) = 8.115e-04 Mass of water (kg) = 9.989e-01 @@ -4168,10 +4168,10 @@ H2O(g) -0.17 6.730e-01 0.192 6.160e-02 7.077e-02 9.169e-03 pH = 3.100 Charge balance pe = 12.941 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 391 + Specific Conductance (µS/cm, 50°C) = 356 Density (g/cm³) = 1.00313 Volume (L) = 1.04741 - Viscosity (mPa s) = 0.54926 + Viscosity (mPa s) = 0.57594 Activity of water = 0.981 Ionic strength (mol/kgw) = 8.198e-04 Mass of water (kg) = 9.987e-01 @@ -4263,10 +4263,10 @@ H2O(g) -0.12 7.673e-01 0.170 7.077e-02 8.060e-02 9.828e-03 pH = 3.095 Charge balance pe = 13.004 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 396 + Specific Conductance (µS/cm, 50°C) = 359 Density (g/cm³) = 1.00368 Volume (L) = 1.04745 - Viscosity (mPa s) = 0.54946 + Viscosity (mPa s) = 0.57656 Activity of water = 0.980 Ionic strength (mol/kgw) = 8.298e-04 Mass of water (kg) = 9.985e-01 @@ -4358,10 +4358,10 @@ H2O(g) -0.05 8.845e-01 0.148 8.060e-02 9.102e-02 1.042e-02 pH = 3.089 Charge balance pe = 13.053 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 401 + Specific Conductance (µS/cm, 50°C) = 363 Density (g/cm³) = 1.00438 Volume (L) = 1.04745 - Viscosity (mPa s) = 0.54972 + Viscosity (mPa s) = 0.57730 Activity of water = 0.980 Ionic strength (mol/kgw) = 8.417e-04 Mass of water (kg) = 9.983e-01 @@ -4453,10 +4453,10 @@ H2O(g) 0.01 1.031e+00 0.129 9.102e-02 1.020e-01 1.094e-02 pH = 3.082 Charge balance pe = 12.930 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 408 + Specific Conductance (µS/cm, 50°C) = 368 Density (g/cm³) = 1.00524 Volume (L) = 1.04738 - Viscosity (mPa s) = 0.55006 + Viscosity (mPa s) = 0.57818 Activity of water = 0.980 Ionic strength (mol/kgw) = 8.561e-04 Mass of water (kg) = 9.981e-01 @@ -4548,10 +4548,10 @@ H2O(g) 0.08 1.215e+00 0.111 1.020e-01 1.133e-01 1.134e-02 pH = 3.073 Charge balance pe = 12.959 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 416 + Specific Conductance (µS/cm, 50°C) = 375 Density (g/cm³) = 1.00631 Volume (L) = 1.04724 - Viscosity (mPa s) = 0.55049 + Viscosity (mPa s) = 0.57924 Activity of water = 0.979 Ionic strength (mol/kgw) = 8.735e-04 Mass of water (kg) = 9.979e-01 @@ -4643,10 +4643,10 @@ H2O(g) 0.16 1.445e+00 0.095 1.133e-01 1.249e-01 1.161e-02 pH = 3.063 Charge balance pe = 13.006 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 425 + Specific Conductance (µS/cm, 50°C) = 382 Density (g/cm³) = 1.00763 Volume (L) = 1.04697 - Viscosity (mPa s) = 0.55104 + Viscosity (mPa s) = 0.58051 Activity of water = 0.979 Ionic strength (mol/kgw) = 8.944e-04 Mass of water (kg) = 9.977e-01 @@ -4738,10 +4738,10 @@ H2O(g) 0.24 1.731e+00 0.081 1.249e-01 1.366e-01 1.171e-02 pH = 3.051 Charge balance pe = 13.077 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 437 + Specific Conductance (µS/cm, 50°C) = 392 Density (g/cm³) = 1.00924 Volume (L) = 1.04656 - Viscosity (mPa s) = 0.55174 + Viscosity (mPa s) = 0.58202 Activity of water = 0.978 Ionic strength (mol/kgw) = 9.196e-04 Mass of water (kg) = 9.975e-01 @@ -4833,10 +4833,10 @@ H2O(g) 0.32 2.086e+00 0.069 1.366e-01 1.482e-01 1.162e-02 pH = 3.037 Charge balance pe = 13.058 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 451 + Specific Conductance (µS/cm, 50°C) = 403 Density (g/cm³) = 1.01120 Volume (L) = 1.04594 - Viscosity (mPa s) = 0.55262 + Viscosity (mPa s) = 0.58381 Activity of water = 0.978 Ionic strength (mol/kgw) = 9.498e-04 Mass of water (kg) = 9.973e-01 @@ -4935,10 +4935,10 @@ H2O(g) 0.40 2.523e+00 0.059 1.482e-01 1.595e-01 1.130e-02 pH = 3.021 Charge balance pe = 14.519 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 467 + Specific Conductance (µS/cm, 50°C) = 417 Density (g/cm³) = 1.01357 Volume (L) = 1.04507 - Viscosity (mPa s) = 0.55373 + Viscosity (mPa s) = 0.58594 Activity of water = 0.977 Ionic strength (mol/kgw) = 9.860e-04 Mass of water (kg) = 9.971e-01 @@ -5037,10 +5037,10 @@ H2O(g) 0.48 3.055e+00 0.050 1.595e-01 1.702e-01 1.071e-02 pH = 3.003 Charge balance pe = 14.536 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 488 + Specific Conductance (µS/cm, 50°C) = 433 Density (g/cm³) = 1.01643 Volume (L) = 1.04387 - Viscosity (mPa s) = 0.55513 + Viscosity (mPa s) = 0.58847 Activity of water = 0.976 Ionic strength (mol/kgw) = 1.030e-03 Mass of water (kg) = 9.969e-01 @@ -5139,10 +5139,10 @@ H2O(g) 0.57 3.696e+00 0.044 1.702e-01 1.801e-01 9.820e-03 pH = 2.981 Charge balance pe = 14.556 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 512 + Specific Conductance (µS/cm, 50°C) = 453 Density (g/cm³) = 1.01986 Volume (L) = 1.04226 - Viscosity (mPa s) = 0.55689 + Viscosity (mPa s) = 0.59149 Activity of water = 0.976 Ionic strength (mol/kgw) = 1.082e-03 Mass of water (kg) = 9.967e-01 @@ -5241,10 +5241,10 @@ H2O(g) 0.65 4.463e+00 0.039 1.801e-01 1.886e-01 8.575e-03 pH = 2.957 Charge balance pe = 14.579 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 542 + Specific Conductance (µS/cm, 50°C) = 478 Density (g/cm³) = 1.02395 Volume (L) = 1.04014 - Viscosity (mPa s) = 0.55913 + Viscosity (mPa s) = 0.59512 Activity of water = 0.975 Ionic strength (mol/kgw) = 1.146e-03 Mass of water (kg) = 9.966e-01 @@ -5343,10 +5343,10 @@ H2O(g) 0.73 5.366e+00 0.035 1.886e-01 1.956e-01 6.925e-03 pH = 2.929 Charge balance pe = 14.605 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 579 + Specific Conductance (µS/cm, 50°C) = 508 Density (g/cm³) = 1.02885 Volume (L) = 1.03737 - Viscosity (mPa s) = 0.56199 + Viscosity (mPa s) = 0.59951 Activity of water = 0.974 Ionic strength (mol/kgw) = 1.223e-03 Mass of water (kg) = 9.965e-01 @@ -5445,10 +5445,10 @@ H2O(g) 0.81 6.418e+00 0.032 1.956e-01 2.004e-01 4.813e-03 pH = 2.897 Charge balance pe = 14.634 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 623 + Specific Conductance (µS/cm, 50°C) = 544 Density (g/cm³) = 1.03468 Volume (L) = 1.03381 - Viscosity (mPa s) = 0.56567 + Viscosity (mPa s) = 0.60489 Activity of water = 0.973 Ionic strength (mol/kgw) = 1.318e-03 Mass of water (kg) = 9.964e-01 @@ -5647,10 +5647,10 @@ H2O(g) -0.36 4.356e-01 0.874 1.332e-02 1.642e-02 3.100e-03 pH = 3.465 Charge balance pe = 10.797 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 215 + Specific Conductance (µS/cm, 75°C) = 212 Density (g/cm³) = 0.97762 Volume (L) = 1.03384 - Viscosity (mPa s) = 0.37804 + Viscosity (mPa s) = 0.38077 Activity of water = 0.996 Ionic strength (mol/kgw) = 3.505e-04 Mass of water (kg) = 9.997e-01 @@ -5742,10 +5742,10 @@ H2O(g) -0.30 4.993e-01 0.769 1.642e-02 2.026e-02 3.838e-03 pH = 3.339 Charge balance pe = 2.019 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 285 + Specific Conductance (µS/cm, 75°C) = 278 Density (g/cm³) = 0.97995 Volume (L) = 1.04028 - Viscosity (mPa s) = 0.37856 + Viscosity (mPa s) = 0.38321 Activity of water = 0.993 Ionic strength (mol/kgw) = 4.703e-04 Mass of water (kg) = 9.996e-01 @@ -5837,10 +5837,10 @@ H2O(g) -0.24 5.707e-01 0.679 2.026e-02 2.494e-02 4.679e-03 pH = 3.275 Charge balance pe = 1.995 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 327 + Specific Conductance (µS/cm, 75°C) = 317 Density (g/cm³) = 0.98185 Volume (L) = 1.04514 - Viscosity (mPa s) = 0.37903 + Viscosity (mPa s) = 0.38513 Activity of water = 0.990 Ionic strength (mol/kgw) = 5.462e-04 Mass of water (kg) = 9.995e-01 @@ -5932,10 +5932,10 @@ H2O(g) -0.19 6.497e-01 0.601 2.494e-02 3.056e-02 5.615e-03 pH = 3.236 Charge balance pe = 2.005 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 356 + Specific Conductance (µS/cm, 75°C) = 343 Density (g/cm³) = 0.98339 Volume (L) = 1.04871 - Viscosity (mPa s) = 0.37944 + Viscosity (mPa s) = 0.38664 Activity of water = 0.988 Ionic strength (mol/kgw) = 5.986e-04 Mass of water (kg) = 9.994e-01 @@ -6027,10 +6027,10 @@ H2O(g) -0.13 7.364e-01 0.534 3.056e-02 3.718e-02 6.627e-03 pH = 3.209 Charge balance pe = 1.984 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 376 + Specific Conductance (µS/cm, 75°C) = 361 Density (g/cm³) = 0.98464 Volume (L) = 1.05128 - Viscosity (mPa s) = 0.37980 + Viscosity (mPa s) = 0.38784 Activity of water = 0.987 Ionic strength (mol/kgw) = 6.364e-04 Mass of water (kg) = 9.993e-01 @@ -6122,10 +6122,10 @@ H2O(g) -0.08 8.308e-01 0.476 3.718e-02 4.488e-02 7.699e-03 pH = 3.191 Charge balance pe = 1.945 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 391 + Specific Conductance (µS/cm, 75°C) = 374 Density (g/cm³) = 0.98568 Volume (L) = 1.05312 - Viscosity (mPa s) = 0.38013 + Viscosity (mPa s) = 0.38879 Activity of water = 0.986 Ionic strength (mol/kgw) = 6.648e-04 Mass of water (kg) = 9.992e-01 @@ -6217,10 +6217,10 @@ H2O(g) -0.03 9.337e-01 0.426 4.488e-02 5.370e-02 8.815e-03 pH = 3.177 Charge balance pe = 1.879 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 402 + Specific Conductance (µS/cm, 75°C) = 384 Density (g/cm³) = 0.98654 Volume (L) = 1.05442 - Viscosity (mPa s) = 0.38042 + Viscosity (mPa s) = 0.38958 Activity of water = 0.985 Ionic strength (mol/kgw) = 6.867e-04 Mass of water (kg) = 9.990e-01 @@ -6312,10 +6312,10 @@ H2O(g) 0.02 1.046e+00 0.383 5.370e-02 6.365e-02 9.958e-03 pH = 3.166 Charge balance pe = 1.968 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 411 + Specific Conductance (µS/cm, 75°C) = 392 Density (g/cm³) = 0.98730 Volume (L) = 1.05534 - Viscosity (mPa s) = 0.38069 + Viscosity (mPa s) = 0.39025 Activity of water = 0.984 Ionic strength (mol/kgw) = 7.045e-04 Mass of water (kg) = 9.988e-01 @@ -6407,10 +6407,10 @@ H2O(g) 0.07 1.170e+00 0.344 6.365e-02 7.477e-02 1.111e-02 pH = 3.157 Charge balance pe = 2.153 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 419 + Specific Conductance (µS/cm, 75°C) = 399 Density (g/cm³) = 0.98799 Volume (L) = 1.05600 - Viscosity (mPa s) = 0.38095 + Viscosity (mPa s) = 0.39085 Activity of water = 0.984 Ionic strength (mol/kgw) = 7.197e-04 Mass of water (kg) = 9.986e-01 @@ -6502,10 +6502,10 @@ H2O(g) 0.12 1.308e+00 0.310 7.477e-02 8.703e-02 1.226e-02 pH = 3.149 Charge balance pe = 2.246 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 426 + Specific Conductance (µS/cm, 75°C) = 405 Density (g/cm³) = 0.98864 Volume (L) = 1.05647 - Viscosity (mPa s) = 0.38121 + Viscosity (mPa s) = 0.39140 Activity of water = 0.983 Ionic strength (mol/kgw) = 7.333e-04 Mass of water (kg) = 9.984e-01 @@ -6597,10 +6597,10 @@ H2O(g) 0.17 1.463e+00 0.278 8.703e-02 1.004e-01 1.338e-02 pH = 3.141 Charge balance pe = 2.060 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 433 + Specific Conductance (µS/cm, 75°C) = 410 Density (g/cm³) = 0.98930 Volume (L) = 1.05681 - Viscosity (mPa s) = 0.38149 + Viscosity (mPa s) = 0.39195 Activity of water = 0.983 Ionic strength (mol/kgw) = 7.462e-04 Mass of water (kg) = 9.982e-01 @@ -6692,10 +6692,10 @@ H2O(g) 0.21 1.640e+00 0.250 1.004e-01 1.149e-01 1.446e-02 pH = 3.134 Charge balance pe = 1.950 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 440 + Specific Conductance (µS/cm, 75°C) = 416 Density (g/cm³) = 0.98999 Volume (L) = 1.05704 - Viscosity (mPa s) = 0.38179 + Viscosity (mPa s) = 0.39252 Activity of water = 0.982 Ionic strength (mol/kgw) = 7.592e-04 Mass of water (kg) = 9.979e-01 @@ -6787,10 +6787,10 @@ H2O(g) 0.27 1.845e+00 0.224 1.149e-01 1.303e-01 1.547e-02 pH = 3.126 Charge balance pe = 1.990 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 447 + Specific Conductance (µS/cm, 75°C) = 422 Density (g/cm³) = 0.99075 Volume (L) = 1.05719 - Viscosity (mPa s) = 0.38213 + Viscosity (mPa s) = 0.39313 Activity of water = 0.982 Ionic strength (mol/kgw) = 7.726e-04 Mass of water (kg) = 9.976e-01 @@ -6882,10 +6882,10 @@ H2O(g) 0.32 2.085e+00 0.200 1.303e-01 1.467e-01 1.639e-02 pH = 3.118 Charge balance pe = 2.109 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 454 + Specific Conductance (µS/cm, 75°C) = 429 Density (g/cm³) = 0.99159 Volume (L) = 1.05726 - Viscosity (mPa s) = 0.38252 + Viscosity (mPa s) = 0.39380 Activity of water = 0.981 Ionic strength (mol/kgw) = 7.871e-04 Mass of water (kg) = 9.973e-01 @@ -6977,10 +6977,10 @@ H2O(g) 0.37 2.368e+00 0.178 1.467e-01 1.639e-01 1.719e-02 pH = 3.110 Charge balance pe = 2.181 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 462 + Specific Conductance (µS/cm, 75°C) = 436 Density (g/cm³) = 0.99256 Volume (L) = 1.05726 - Viscosity (mPa s) = 0.38298 + Viscosity (mPa s) = 0.39456 Activity of water = 0.981 Ionic strength (mol/kgw) = 8.031e-04 Mass of water (kg) = 9.970e-01 @@ -7072,10 +7072,10 @@ H2O(g) 0.43 2.704e+00 0.158 1.639e-01 1.818e-01 1.784e-02 pH = 3.100 Charge balance pe = 2.157 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 472 + Specific Conductance (µS/cm, 75°C) = 444 Density (g/cm³) = 0.99369 Volume (L) = 1.05716 - Viscosity (mPa s) = 0.38353 + Viscosity (mPa s) = 0.39544 Activity of water = 0.980 Ionic strength (mol/kgw) = 8.210e-04 Mass of water (kg) = 9.967e-01 @@ -7167,10 +7167,10 @@ H2O(g) 0.49 3.103e+00 0.140 1.818e-01 2.001e-01 1.830e-02 pH = 3.090 Charge balance pe = 2.124 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 482 + Specific Conductance (µS/cm, 75°C) = 454 Density (g/cm³) = 0.99500 Volume (L) = 1.05696 - Viscosity (mPa s) = 0.38420 + Viscosity (mPa s) = 0.39646 Activity of water = 0.980 Ionic strength (mol/kgw) = 8.413e-04 Mass of water (kg) = 9.964e-01 @@ -7262,10 +7262,10 @@ H2O(g) 0.55 3.579e+00 0.123 2.001e-01 2.186e-01 1.854e-02 pH = 3.078 Charge balance pe = 2.151 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 495 + Specific Conductance (µS/cm, 75°C) = 464 Density (g/cm³) = 0.99654 Volume (L) = 1.05664 - Viscosity (mPa s) = 0.38499 + Viscosity (mPa s) = 0.39764 Activity of water = 0.979 Ionic strength (mol/kgw) = 8.646e-04 Mass of water (kg) = 9.960e-01 @@ -7357,10 +7357,10 @@ H2O(g) 0.62 4.146e+00 0.109 2.186e-01 2.371e-01 1.851e-02 pH = 3.065 Charge balance pe = 2.230 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 509 + Specific Conductance (µS/cm, 75°C) = 477 Density (g/cm³) = 0.99835 Volume (L) = 1.05616 - Viscosity (mPa s) = 0.38595 + Viscosity (mPa s) = 0.39903 Activity of water = 0.979 Ionic strength (mol/kgw) = 8.914e-04 Mass of water (kg) = 9.957e-01 @@ -7452,10 +7452,10 @@ H2O(g) 0.68 4.819e+00 0.096 2.371e-01 2.553e-01 1.819e-02 pH = 3.050 Charge balance pe = 2.295 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 525 + Specific Conductance (µS/cm, 75°C) = 491 Density (g/cm³) = 1.00048 Volume (L) = 1.05549 - Viscosity (mPa s) = 0.38711 + Viscosity (mPa s) = 0.40067 Activity of water = 0.978 Ionic strength (mol/kgw) = 9.224e-04 Mass of water (kg) = 9.954e-01 @@ -7554,10 +7554,10 @@ H2O(g) 0.75 5.616e+00 0.085 2.553e-01 2.728e-01 1.752e-02 pH = 3.034 Charge balance pe = 12.341 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 544 + Specific Conductance (µS/cm, 75°C) = 508 Density (g/cm³) = 1.00298 Volume (L) = 1.05459 - Viscosity (mPa s) = 0.38850 + Viscosity (mPa s) = 0.40259 Activity of water = 0.977 Ionic strength (mol/kgw) = 9.585e-04 Mass of water (kg) = 9.951e-01 @@ -7656,10 +7656,10 @@ H2O(g) 0.82 6.552e+00 0.076 2.728e-01 2.893e-01 1.646e-02 pH = 3.016 Charge balance pe = 12.359 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 567 + Specific Conductance (µS/cm, 75°C) = 527 Density (g/cm³) = 1.00591 Volume (L) = 1.05341 - Viscosity (mPa s) = 0.39018 + Viscosity (mPa s) = 0.40486 Activity of water = 0.977 Ionic strength (mol/kgw) = 1.001e-03 Mass of water (kg) = 9.948e-01 @@ -7758,10 +7758,10 @@ H2O(g) 0.88 7.646e+00 0.068 2.893e-01 3.042e-01 1.496e-02 pH = 2.995 Charge balance pe = 12.378 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 593 + Specific Conductance (µS/cm, 75°C) = 550 Density (g/cm³) = 1.00936 Volume (L) = 1.05188 - Viscosity (mPa s) = 0.39221 + Viscosity (mPa s) = 0.40754 Activity of water = 0.976 Ionic strength (mol/kgw) = 1.050e-03 Mass of water (kg) = 9.945e-01 @@ -7860,10 +7860,10 @@ H2O(g) 0.95 8.913e+00 0.062 3.042e-01 3.172e-01 1.297e-02 pH = 2.972 Charge balance pe = 12.400 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 624 + Specific Conductance (µS/cm, 75°C) = 577 Density (g/cm³) = 1.01339 Volume (L) = 1.04992 - Viscosity (mPa s) = 0.39467 + Viscosity (mPa s) = 0.41073 Activity of water = 0.975 Ionic strength (mol/kgw) = 1.108e-03 Mass of water (kg) = 9.943e-01 @@ -7962,10 +7962,10 @@ H2O(g) 1.02 1.037e+01 0.057 3.172e-01 3.276e-01 1.043e-02 pH = 2.946 Charge balance pe = 12.424 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 660 + Specific Conductance (µS/cm, 75°C) = 609 Density (g/cm³) = 1.01812 Volume (L) = 1.04745 - Viscosity (mPa s) = 0.39767 + Viscosity (mPa s) = 0.41454 Activity of water = 0.974 Ionic strength (mol/kgw) = 1.177e-03 Mass of water (kg) = 9.941e-01 @@ -8064,10 +8064,10 @@ H2O(g) 1.08 1.202e+01 0.053 3.276e-01 3.349e-01 7.291e-03 pH = 2.917 Charge balance pe = 12.450 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 704 + Specific Conductance (µS/cm, 75°C) = 646 Density (g/cm³) = 1.02365 Volume (L) = 1.04435 - Viscosity (mPa s) = 0.40132 + Viscosity (mPa s) = 0.41910 Activity of water = 0.973 Ionic strength (mol/kgw) = 1.259e-03 Mass of water (kg) = 9.939e-01 @@ -8166,10 +8166,10 @@ H2O(g) 1.14 1.386e+01 0.051 3.349e-01 3.384e-01 3.493e-03 pH = 2.885 Charge balance pe = 12.480 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 756 + Specific Conductance (µS/cm, 75°C) = 692 Density (g/cm³) = 1.03011 Volume (L) = 1.04050 - Viscosity (mPa s) = 0.40581 + Viscosity (mPa s) = 0.42462 Activity of water = 0.972 Ionic strength (mol/kgw) = 1.357e-03 Mass of water (kg) = 9.939e-01 @@ -8368,10 +8368,10 @@ H2O(g) 0.06 1.139e+00 0.877 3.285e-02 3.984e-02 6.990e-03 pH = 3.544 Charge balance pe = 9.305 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 206 + Specific Conductance (µS/cm, 100°C) = 204 Density (g/cm³) = 0.96086 Volume (L) = 1.05014 - Viscosity (mPa s) = 0.28228 + Viscosity (mPa s) = 0.28373 Activity of water = 0.996 Ionic strength (mol/kgw) = 2.920e-04 Mass of water (kg) = 9.993e-01 @@ -8463,10 +8463,10 @@ H2O(g) 0.11 1.294e+00 0.779 3.984e-02 4.816e-02 8.320e-03 pH = 3.416 Charge balance pe = 2.060 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 273 + Specific Conductance (µS/cm, 100°C) = 269 Density (g/cm³) = 0.96303 Volume (L) = 1.05598 - Viscosity (mPa s) = 0.28288 + Viscosity (mPa s) = 0.28529 Activity of water = 0.993 Ionic strength (mol/kgw) = 3.941e-04 Mass of water (kg) = 9.991e-01 @@ -8558,10 +8558,10 @@ H2O(g) 0.17 1.465e+00 0.695 4.816e-02 5.795e-02 9.787e-03 pH = 3.348 Charge balance pe = 9.623 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 316 + Specific Conductance (µS/cm, 100°C) = 310 Density (g/cm³) = 0.96489 Volume (L) = 1.06054 - Viscosity (mPa s) = 0.28342 + Viscosity (mPa s) = 0.28657 Activity of water = 0.991 Ionic strength (mol/kgw) = 4.610e-04 Mass of water (kg) = 9.989e-01 @@ -8653,10 +8653,10 @@ H2O(g) 0.22 1.653e+00 0.621 5.795e-02 6.931e-02 1.136e-02 pH = 3.306 Charge balance pe = 9.528 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 346 + Specific Conductance (µS/cm, 100°C) = 338 Density (g/cm³) = 0.96649 Volume (L) = 1.06404 - Viscosity (mPa s) = 0.28391 + Viscosity (mPa s) = 0.28765 Activity of water = 0.989 Ionic strength (mol/kgw) = 5.093e-04 Mass of water (kg) = 9.987e-01 @@ -8748,10 +8748,10 @@ H2O(g) 0.27 1.859e+00 0.557 6.931e-02 8.231e-02 1.301e-02 pH = 3.276 Charge balance pe = 2.016 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 369 + Specific Conductance (µS/cm, 100°C) = 359 Density (g/cm³) = 0.96788 Volume (L) = 1.06668 - Viscosity (mPa s) = 0.28436 + Viscosity (mPa s) = 0.28858 Activity of water = 0.988 Ionic strength (mol/kgw) = 5.462e-04 Mass of water (kg) = 9.985e-01 @@ -8843,10 +8843,10 @@ H2O(g) 0.32 2.085e+00 0.501 8.231e-02 9.701e-02 1.470e-02 pH = 3.253 Charge balance pe = 1.941 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 386 + Specific Conductance (µS/cm, 100°C) = 375 Density (g/cm³) = 0.96910 Volume (L) = 1.06867 - Viscosity (mPa s) = 0.28479 + Viscosity (mPa s) = 0.28939 Activity of water = 0.986 Ionic strength (mol/kgw) = 5.755e-04 Mass of water (kg) = 9.982e-01 @@ -8938,10 +8938,10 @@ H2O(g) 0.37 2.333e+00 0.451 9.701e-02 1.134e-01 1.641e-02 pH = 3.236 Charge balance pe = 1.889 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 400 + Specific Conductance (µS/cm, 100°C) = 388 Density (g/cm³) = 0.97021 Volume (L) = 1.07015 - Viscosity (mPa s) = 0.28519 + Viscosity (mPa s) = 0.29012 Activity of water = 0.985 Ionic strength (mol/kgw) = 5.997e-04 Mass of water (kg) = 9.979e-01 @@ -9033,10 +9033,10 @@ H2O(g) 0.42 2.605e+00 0.407 1.134e-01 1.315e-01 1.811e-02 pH = 3.221 Charge balance pe = 1.824 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 413 + Specific Conductance (µS/cm, 100°C) = 399 Density (g/cm³) = 0.97124 Volume (L) = 1.07126 - Viscosity (mPa s) = 0.28558 + Viscosity (mPa s) = 0.29079 Activity of water = 0.985 Ionic strength (mol/kgw) = 6.205e-04 Mass of water (kg) = 9.976e-01 @@ -9128,10 +9128,10 @@ H2O(g) 0.46 2.906e+00 0.368 1.315e-01 1.513e-01 1.977e-02 pH = 3.208 Charge balance pe = 1.845 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 423 + Specific Conductance (µS/cm, 100°C) = 409 Density (g/cm³) = 0.97222 Volume (L) = 1.07208 - Viscosity (mPa s) = 0.28597 + Viscosity (mPa s) = 0.29143 Activity of water = 0.984 Ionic strength (mol/kgw) = 6.392e-04 Mass of water (kg) = 9.973e-01 @@ -9223,10 +9223,10 @@ H2O(g) 0.51 3.242e+00 0.332 1.513e-01 1.727e-01 2.137e-02 pH = 3.197 Charge balance pe = 1.796 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 434 + Specific Conductance (µS/cm, 100°C) = 418 Density (g/cm³) = 0.97320 Volume (L) = 1.07268 - Viscosity (mPa s) = 0.28637 + Viscosity (mPa s) = 0.29206 Activity of water = 0.983 Ionic strength (mol/kgw) = 6.566e-04 Mass of water (kg) = 9.969e-01 @@ -9318,10 +9318,10 @@ H2O(g) 0.56 3.618e+00 0.300 1.727e-01 1.955e-01 2.287e-02 pH = 3.186 Charge balance pe = 1.849 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 443 + Specific Conductance (µS/cm, 100°C) = 426 Density (g/cm³) = 0.97420 Volume (L) = 1.07311 - Viscosity (mPa s) = 0.28679 + Viscosity (mPa s) = 0.29270 Activity of water = 0.982 Ionic strength (mol/kgw) = 6.734e-04 Mass of water (kg) = 9.965e-01 @@ -9413,10 +9413,10 @@ H2O(g) 0.61 4.045e+00 0.271 1.955e-01 2.198e-01 2.424e-02 pH = 3.175 Charge balance pe = 1.832 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 453 + Specific Conductance (µS/cm, 100°C) = 435 Density (g/cm³) = 0.97525 Volume (L) = 1.07339 - Viscosity (mPa s) = 0.28725 + Viscosity (mPa s) = 0.29338 Activity of water = 0.982 Ionic strength (mol/kgw) = 6.903e-04 Mass of water (kg) = 9.960e-01 @@ -9508,10 +9508,10 @@ H2O(g) 0.66 4.530e+00 0.245 2.198e-01 2.452e-01 2.545e-02 pH = 3.165 Charge balance pe = 1.850 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 463 + Specific Conductance (µS/cm, 100°C) = 444 Density (g/cm³) = 0.97639 Volume (L) = 1.07355 - Viscosity (mPa s) = 0.28776 + Viscosity (mPa s) = 0.29410 Activity of water = 0.981 Ionic strength (mol/kgw) = 7.077e-04 Mass of water (kg) = 9.956e-01 @@ -9603,10 +9603,10 @@ H2O(g) 0.71 5.087e+00 0.221 2.452e-01 2.717e-01 2.646e-02 pH = 3.154 Charge balance pe = 1.840 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 474 + Specific Conductance (µS/cm, 100°C) = 454 Density (g/cm³) = 0.97763 Volume (L) = 1.07359 - Viscosity (mPa s) = 0.28833 + Viscosity (mPa s) = 0.29491 Activity of water = 0.981 Ionic strength (mol/kgw) = 7.261e-04 Mass of water (kg) = 9.951e-01 @@ -9698,10 +9698,10 @@ H2O(g) 0.76 5.727e+00 0.199 2.717e-01 2.989e-01 2.722e-02 pH = 3.142 Charge balance pe = 1.755 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 485 + Specific Conductance (µS/cm, 100°C) = 464 Density (g/cm³) = 0.97902 Volume (L) = 1.07352 - Viscosity (mPa s) = 0.28899 + Viscosity (mPa s) = 0.29580 Activity of water = 0.980 Ionic strength (mol/kgw) = 7.459e-04 Mass of water (kg) = 9.946e-01 @@ -9793,10 +9793,10 @@ H2O(g) 0.81 6.466e+00 0.179 2.989e-01 3.266e-01 2.770e-02 pH = 3.130 Charge balance pe = 1.795 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 497 + Specific Conductance (µS/cm, 100°C) = 475 Density (g/cm³) = 0.98059 Volume (L) = 1.07333 - Viscosity (mPa s) = 0.28974 + Viscosity (mPa s) = 0.29681 Activity of water = 0.979 Ionic strength (mol/kgw) = 7.676e-04 Mass of water (kg) = 9.941e-01 @@ -9888,10 +9888,10 @@ H2O(g) 0.86 7.319e+00 0.161 3.266e-01 3.544e-01 2.783e-02 pH = 3.117 Charge balance pe = 1.787 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 511 + Specific Conductance (µS/cm, 100°C) = 488 Density (g/cm³) = 0.98238 Volume (L) = 1.07300 - Viscosity (mPa s) = 0.29062 + Viscosity (mPa s) = 0.29796 Activity of water = 0.979 Ionic strength (mol/kgw) = 7.916e-04 Mass of water (kg) = 9.936e-01 @@ -9983,10 +9983,10 @@ H2O(g) 0.92 8.305e+00 0.145 3.544e-01 3.820e-01 2.758e-02 pH = 3.102 Charge balance pe = 1.799 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 526 + Specific Conductance (µS/cm, 100°C) = 501 Density (g/cm³) = 0.98441 Volume (L) = 1.07253 - Viscosity (mPa s) = 0.29164 + Viscosity (mPa s) = 0.29928 Activity of water = 0.978 Ionic strength (mol/kgw) = 8.184e-04 Mass of water (kg) = 9.931e-01 @@ -10078,10 +10078,10 @@ H2O(g) 0.98 9.442e+00 0.131 3.820e-01 4.089e-01 2.690e-02 pH = 3.087 Charge balance pe = 1.822 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 544 + Specific Conductance (µS/cm, 100°C) = 517 Density (g/cm³) = 0.98675 Volume (L) = 1.07187 - Viscosity (mPa s) = 0.29284 + Viscosity (mPa s) = 0.30081 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.487e-04 Mass of water (kg) = 9.926e-01 @@ -10173,10 +10173,10 @@ H2O(g) 1.03 1.075e+01 0.119 4.089e-01 4.347e-01 2.572e-02 pH = 3.070 Charge balance pe = 1.820 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 563 + Specific Conductance (µS/cm, 100°C) = 534 Density (g/cm³) = 0.98942 Volume (L) = 1.07102 - Viscosity (mPa s) = 0.29424 + Viscosity (mPa s) = 0.30257 Activity of water = 0.976 Ionic strength (mol/kgw) = 8.829e-04 Mass of water (kg) = 9.922e-01 @@ -10275,10 +10275,10 @@ H2O(g) 1.09 1.225e+01 0.108 4.347e-01 4.587e-01 2.401e-02 pH = 3.051 Charge balance pe = 1.790 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 586 + Specific Conductance (µS/cm, 100°C) = 554 Density (g/cm³) = 0.99250 Volume (L) = 1.06991 - Viscosity (mPa s) = 0.29588 + Viscosity (mPa s) = 0.30462 Activity of water = 0.975 Ionic strength (mol/kgw) = 9.220e-04 Mass of water (kg) = 9.917e-01 @@ -10377,10 +10377,10 @@ H2O(g) 1.14 1.395e+01 0.099 4.587e-01 4.804e-01 2.170e-02 pH = 3.031 Charge balance pe = 1.764 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 611 + Specific Conductance (µS/cm, 100°C) = 577 Density (g/cm³) = 0.99605 Volume (L) = 1.06852 - Viscosity (mPa s) = 0.29782 + Viscosity (mPa s) = 0.30700 Activity of water = 0.974 Ionic strength (mol/kgw) = 9.668e-04 Mass of water (kg) = 9.913e-01 @@ -10479,10 +10479,10 @@ H2O(g) 1.20 1.588e+01 0.091 4.804e-01 4.991e-01 1.875e-02 pH = 3.009 Charge balance pe = 11.341 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 640 + Specific Conductance (µS/cm, 100°C) = 603 Density (g/cm³) = 1.00012 Volume (L) = 1.06679 - Viscosity (mPa s) = 0.30011 + Viscosity (mPa s) = 0.30979 Activity of water = 0.973 Ionic strength (mol/kgw) = 1.018e-03 Mass of water (kg) = 9.910e-01 @@ -10581,10 +10581,10 @@ H2O(g) 1.26 1.804e+01 0.085 4.991e-01 5.142e-01 1.511e-02 pH = 2.984 Charge balance pe = 11.364 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 674 + Specific Conductance (µS/cm, 100°C) = 633 Density (g/cm³) = 1.00480 Volume (L) = 1.06465 - Viscosity (mPa s) = 0.30281 + Viscosity (mPa s) = 0.31305 Activity of water = 0.972 Ionic strength (mol/kgw) = 1.078e-03 Mass of water (kg) = 9.907e-01 @@ -10683,10 +10683,10 @@ H2O(g) 1.31 2.044e+01 0.081 5.142e-01 5.250e-01 1.075e-02 pH = 2.958 Charge balance pe = 11.389 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 713 + Specific Conductance (µS/cm, 100°C) = 667 Density (g/cm³) = 1.01017 Volume (L) = 1.06205 - Viscosity (mPa s) = 0.30601 + Viscosity (mPa s) = 0.31688 Activity of water = 0.971 Ionic strength (mol/kgw) = 1.147e-03 Mass of water (kg) = 9.905e-01 @@ -10785,10 +10785,10 @@ H2O(g) 1.36 2.308e+01 0.078 5.250e-01 5.306e-01 5.633e-03 pH = 2.929 Charge balance pe = 11.416 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 758 + Specific Conductance (µS/cm, 100°C) = 707 Density (g/cm³) = 1.01630 Volume (L) = 1.05892 - Viscosity (mPa s) = 0.30979 + Viscosity (mPa s) = 0.32137 Activity of water = 0.970 Ionic strength (mol/kgw) = 1.228e-03 Mass of water (kg) = 9.904e-01 @@ -10887,10 +10887,10 @@ H2O(g) 1.41 2.593e+01 0.076 5.306e-01 5.304e-01 -2.391e-04 pH = 2.897 Charge balance pe = 11.445 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 810 + Specific Conductance (µS/cm, 100°C) = 753 Density (g/cm³) = 1.02323 Volume (L) = 1.05524 - Viscosity (mPa s) = 0.31423 + Viscosity (mPa s) = 0.32662 Activity of water = 0.969 Ionic strength (mol/kgw) = 1.323e-03 Mass of water (kg) = 9.904e-01 diff --git a/ex3.out b/ex3.out index 902dd6ec..3671a05c 100644 --- a/ex3.out +++ b/ex3.out @@ -121,7 +121,7 @@ Calcite 0.00 -8.48 -8.48 1.000e+01 9.998e+00 -1.623e-03 Specific Conductance (µS/cm, 25°C) = 307 Density (g/cm³) = 0.99726 Volume (L) = 1.00300 - Viscosity (mPa s) = 0.89219 + Viscosity (mPa s) = 0.89272 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.826e-03 Mass of water (kg) = 1.000e+00 @@ -232,7 +232,7 @@ Initial solution 2. Seawater Specific Conductance (µS/cm, 25°C) = 52856 Density (g/cm³) = 1.02328 Volume (L) = 1.01278 - Viscosity (mPa s) = 0.96029 + Viscosity (mPa s) = 0.96030 Activity of water = 0.981 Ionic strength (mol/kgw) = 6.704e-01 Mass of water (kg) = 1.000e+00 @@ -291,7 +291,6 @@ Na 4.854e-01 Na+ 4.712e-01 3.381e-01 -0.327 -0.471 -0.144 -0.51 NaSO4- 1.396e-02 9.473e-03 -1.855 -2.024 -0.168 8.22 NaHCO3 2.252e-04 3.066e-04 -3.647 -3.513 0.134 31.73 - NaOH 4.773e-17 5.570e-17 -16.321 -16.254 0.067 (0) O(0) 6.622e-20 O2 3.311e-20 3.864e-20 -19.480 -19.413 0.067 30.40 S(6) 2.926e-02 @@ -389,11 +388,11 @@ Mixture 1. ----------------------------Description of solution---------------------------- pH = 7.327 Charge balance - pe = 10.559 Adjusted to redox equilibrium + pe = 10.560 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 18310 Density (g/cm³) = 1.00526 Volume (L) = 1.00578 - Viscosity (mPa s) = 0.91373 + Viscosity (mPa s) = 0.91375 Activity of water = 0.994 Ionic strength (mol/kgw) = 2.068e-01 Mass of water (kg) = 1.000e+00 @@ -415,7 +414,7 @@ Mixture 1. H+ 5.921e-08 4.715e-08 -7.228 -7.327 -0.099 0.00 H2O 5.551e+01 9.941e-01 1.744 -0.003 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.395 -122.374 0.021 35.46 + CH4 0.000e+00 0.000e+00 -122.397 -122.377 0.021 35.46 C(4) 3.175e-03 HCO3- 2.615e-03 1.945e-03 -2.583 -2.711 -0.128 25.15 CO2 2.010e-04 2.074e-04 -3.697 -3.683 0.014 34.43 @@ -437,8 +436,8 @@ Ca 4.334e-03 Cl 1.697e-01 Cl- 1.697e-01 1.210e-01 -0.770 -0.917 -0.147 18.46 HCl 1.605e-09 1.965e-09 -8.795 -8.707 0.088 (0) -H(0) 2.284e-39 - H2 1.142e-39 1.198e-39 -38.942 -38.922 0.021 28.61 +H(0) 2.281e-39 + H2 1.140e-39 1.196e-39 -38.943 -38.922 0.021 28.61 K 3.173e-03 K+ 3.122e-03 2.214e-03 -2.506 -2.655 -0.149 9.35 KSO4- 4.986e-05 4.061e-05 -4.302 -4.391 -0.089 14.03 @@ -454,14 +453,13 @@ Na 1.456e-01 Na+ 1.427e-01 1.065e-01 -0.846 -0.973 -0.127 -0.92 NaSO4- 2.801e-03 2.089e-03 -2.553 -2.680 -0.127 -0.72 NaHCO3 1.640e-04 1.804e-04 -3.785 -3.744 0.041 31.73 - NaOH 2.166e-18 2.272e-18 -17.664 -17.644 0.021 (0) -O(0) 5.475e-15 - O2 2.738e-15 2.871e-15 -14.563 -14.542 0.021 30.40 +O(0) 5.492e-15 + O2 2.746e-15 2.880e-15 -14.561 -14.541 0.021 30.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -119.519 -119.672 -0.152 21.00 - H2S 0.000e+00 0.000e+00 -120.077 -120.056 0.021 36.27 - S-2 0.000e+00 0.000e+00 -124.732 -125.263 -0.531 (0) - (H2S)2 0.000e+00 0.000e+00 -241.412 -241.391 0.021 30.09 + HS- 0.000e+00 0.000e+00 -119.522 -119.674 -0.152 21.00 + H2S 0.000e+00 0.000e+00 -120.080 -120.059 0.021 36.27 + S-2 0.000e+00 0.000e+00 -124.735 -125.266 -0.531 (0) + (H2S)2 0.000e+00 0.000e+00 -241.417 -241.396 0.021 30.09 S(6) 8.777e-03 SO4-2 4.174e-03 1.206e-03 -2.379 -2.919 -0.539 28.42 NaSO4- 2.801e-03 2.089e-03 -2.553 -2.680 -0.127 -0.72 @@ -484,7 +482,7 @@ Si 2.215e-05 Aragonite -0.27 -8.60 -8.34 CaCO3 Arcanite -6.35 -8.23 -1.88 K2SO4 Calcite -0.12 -8.60 -8.48 CaCO3 - CH4(g) -119.57 -122.37 -2.80 CH4 + CH4(g) -119.57 -122.38 -2.80 CH4 Chalcedony -1.08 -4.63 -3.55 SiO2 Chrysotile -4.40 27.80 32.20 Mg3Si2O5(OH)4 CO2(g) -2.21 -3.68 -1.47 CO2 @@ -503,7 +501,7 @@ Si 2.215e-05 Sepiolite -4.95 10.81 15.76 Mg2Si3O7.5OH:3H2O Sepiolite(d) -7.85 10.81 18.66 Mg2Si3O7.5OH:3H2O SiO2(a) -1.92 -4.63 -2.71 SiO2 - Sulfur -89.17 -84.28 4.88 S + Sulfur -89.17 -84.29 4.88 S Sylvite -4.47 -3.57 0.90 KCl Talc -2.86 18.54 21.40 Mg3Si4O10(OH)2 Thenardite -4.56 -4.86 -0.30 Na2SO4 @@ -565,10 +563,10 @@ Dolomite 0.00 -17.08 -17.08 1.000e+01 1.001e+01 7.786e-03 pH = 7.047 Charge balance pe = 10.927 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 18479 + Specific Conductance (µS/cm, 25°C) = 18478 Density (g/cm³) = 1.00533 Volume (L) = 1.00583 - Viscosity (mPa s) = 0.91249 + Viscosity (mPa s) = 0.91253 Activity of water = 0.994 Ionic strength (mol/kgw) = 2.071e-01 Mass of water (kg) = 1.000e+00 @@ -590,7 +588,7 @@ Dolomite 0.00 -17.08 -17.08 1.000e+01 1.001e+01 7.786e-03 H+ 1.127e-07 8.972e-08 -6.948 -7.047 -0.099 0.00 H2O 5.551e+01 9.941e-01 1.744 -0.003 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.863 -122.842 0.021 35.46 + CH4 0.000e+00 0.000e+00 -122.863 -122.843 0.021 35.46 C(4) 3.016e-03 HCO3- 2.394e-03 1.781e-03 -2.621 -2.749 -0.128 25.15 CO2 3.502e-04 3.614e-04 -3.456 -3.442 0.014 34.43 @@ -612,8 +610,8 @@ Ca 1.196e-02 Cl 1.697e-01 Cl- 1.697e-01 1.210e-01 -0.770 -0.917 -0.147 18.47 HCl 3.053e-09 3.740e-09 -8.515 -8.427 0.088 (0) -H(0) 1.519e-39 - H2 7.594e-40 7.965e-40 -39.120 -39.099 0.021 28.61 +H(0) 1.518e-39 + H2 7.590e-40 7.961e-40 -39.120 -39.099 0.021 28.61 K 3.173e-03 K+ 3.120e-03 2.213e-03 -2.506 -2.655 -0.149 9.35 KSO4- 5.122e-05 4.172e-05 -4.291 -4.380 -0.089 14.03 @@ -629,14 +627,13 @@ Na 1.456e-01 Na+ 1.426e-01 1.064e-01 -0.846 -0.973 -0.127 -0.92 NaSO4- 2.878e-03 2.146e-03 -2.541 -2.668 -0.127 -0.71 NaHCO3 1.500e-04 1.650e-04 -3.824 -3.782 0.041 31.73 - NaOH 1.138e-18 1.193e-18 -17.944 -17.923 0.021 (0) -O(0) 1.238e-14 - O2 6.191e-15 6.493e-15 -14.208 -14.188 0.021 30.40 +O(0) 1.239e-14 + O2 6.197e-15 6.500e-15 -14.208 -14.187 0.021 30.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -119.936 -120.089 -0.152 21.00 - H2S 0.000e+00 0.000e+00 -120.215 -120.194 0.021 36.27 - S-2 0.000e+00 0.000e+00 -125.428 -125.960 -0.531 (0) - (H2S)2 0.000e+00 0.000e+00 -241.688 -241.667 0.021 30.09 + HS- 0.000e+00 0.000e+00 -119.937 -120.090 -0.152 21.00 + H2S 0.000e+00 0.000e+00 -120.216 -120.195 0.021 36.27 + S-2 0.000e+00 0.000e+00 -125.429 -125.961 -0.531 (0) + (H2S)2 0.000e+00 0.000e+00 -241.689 -241.669 0.021 30.09 S(6) 8.777e-03 SO4-2 4.293e-03 1.239e-03 -2.367 -2.907 -0.540 28.43 NaSO4- 2.878e-03 2.146e-03 -2.541 -2.668 -0.127 -0.71 @@ -673,7 +670,7 @@ Si 2.215e-05 Hexahydrite -3.93 -5.50 -1.57 MgSO4:6H2O Kieserite -4.32 -5.48 -1.16 MgSO4:H2O Mirabilite -3.64 -4.88 -1.24 Na2SO4:10H2O - O2(g) -11.30 -14.19 -2.89 O2 + O2(g) -11.29 -14.19 -2.89 O2 Quartz -0.65 -4.63 -3.98 SiO2 Sepiolite -6.62 9.14 15.76 Mg2Si3O7.5OH:3H2O Sepiolite(d) -9.52 9.14 18.66 Mg2Si3O7.5OH:3H2O @@ -738,10 +735,10 @@ Calcite 0.00 -8.48 -8.48 1.000e+01 1.000e+01 -4.587e-05 pH = 7.433 Charge balance pe = 10.542 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 18315 + Specific Conductance (µS/cm, 25°C) = 18314 Density (g/cm³) = 1.00527 Volume (L) = 1.00578 - Viscosity (mPa s) = 0.91380 + Viscosity (mPa s) = 0.91382 Activity of water = 0.994 Ionic strength (mol/kgw) = 2.069e-01 Mass of water (kg) = 1.000e+00 @@ -763,7 +760,7 @@ Calcite 0.00 -8.48 -8.48 1.000e+01 1.000e+01 -4.587e-05 H+ 4.632e-08 3.688e-08 -7.334 -7.433 -0.099 0.00 H2O 5.551e+01 9.941e-01 1.744 -0.003 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.201 -123.180 0.021 35.46 + CH4 0.000e+00 0.000e+00 -123.203 -123.182 0.021 35.46 C(4) 3.221e-03 HCO3- 2.685e-03 1.998e-03 -2.571 -2.699 -0.128 25.15 NaHCO3 1.684e-04 1.852e-04 -3.774 -3.732 0.041 31.73 @@ -785,8 +782,8 @@ Ca 4.380e-03 Cl 1.697e-01 Cl- 1.697e-01 1.210e-01 -0.770 -0.917 -0.147 18.47 HCl 1.255e-09 1.538e-09 -8.901 -8.813 0.088 (0) -H(0) 1.517e-39 - H2 7.584e-40 7.954e-40 -39.120 -39.099 0.021 28.61 +H(0) 1.515e-39 + H2 7.577e-40 7.946e-40 -39.121 -39.100 0.021 28.61 K 3.173e-03 K+ 3.122e-03 2.214e-03 -2.506 -2.655 -0.149 9.35 KSO4- 4.984e-05 4.060e-05 -4.302 -4.392 -0.089 14.03 @@ -802,14 +799,13 @@ Na 1.456e-01 Na+ 1.427e-01 1.064e-01 -0.846 -0.973 -0.127 -0.92 NaSO4- 2.800e-03 2.088e-03 -2.553 -2.680 -0.127 -0.72 NaHCO3 1.684e-04 1.852e-04 -3.774 -3.732 0.041 31.73 - NaOH 2.769e-18 2.904e-18 -17.558 -17.537 0.021 (0) -O(0) 1.242e-14 - O2 6.209e-15 6.512e-15 -14.207 -14.186 0.021 30.40 +O(0) 1.244e-14 + O2 6.221e-15 6.524e-15 -14.206 -14.185 0.021 30.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -120.337 -120.489 -0.152 21.00 - H2S 0.000e+00 0.000e+00 -121.002 -120.981 0.021 36.27 - S-2 0.000e+00 0.000e+00 -125.443 -125.974 -0.531 (0) - (H2S)2 0.000e+00 0.000e+00 -243.261 -243.240 0.021 30.09 + HS- 0.000e+00 0.000e+00 -120.339 -120.491 -0.152 21.00 + H2S 0.000e+00 0.000e+00 -121.003 -120.983 0.021 36.27 + S-2 0.000e+00 0.000e+00 -125.445 -125.976 -0.531 (0) + (H2S)2 0.000e+00 0.000e+00 -243.264 -243.243 0.021 30.09 S(6) 8.777e-03 SO4-2 4.174e-03 1.205e-03 -2.379 -2.919 -0.539 28.43 NaSO4- 2.800e-03 2.088e-03 -2.553 -2.680 -0.127 -0.72 diff --git a/ex4.out b/ex4.out index f72a7446..1eb01521 100644 --- a/ex4.out +++ b/ex4.out @@ -143,7 +143,6 @@ Na 6.133e-06 Na+ 6.132e-06 6.065e-06 -5.212 -5.217 -0.005 -1.51 NaSO4- 1.287e-09 1.273e-09 -8.891 -8.895 -0.005 -24.48 NaHCO3 7.995e-13 7.995e-13 -12.097 -12.097 0.000 31.73 - NaOH 1.941e-25 1.941e-25 -24.712 -24.712 0.000 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -52.080 -52.080 0.000 30.40 S(6) 1.353e-05 @@ -226,7 +225,7 @@ Reaction 1. Specific Conductance (µS/cm, 25°C) = 292 Density (g/cm³) = 0.99709 Volume (L) = 0.05017 - Viscosity (mPa s) = 0.89045 + Viscosity (mPa s) = 0.89048 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.529e-03 Mass of water (kg) = 5.002e-02 @@ -297,7 +296,6 @@ Na 1.226e-04 Na+ 1.222e-04 1.170e-04 -3.913 -3.932 -0.019 -1.47 NaSO4- 4.143e-07 3.969e-07 -6.383 -6.401 -0.019 -20.09 NaHCO3 1.390e-11 1.391e-11 -10.857 -10.857 0.000 31.73 - NaOH 1.666e-25 1.667e-25 -24.778 -24.778 0.000 (0) O(0) 8.552e-08 O2 4.276e-08 4.278e-08 -7.369 -7.369 0.000 30.40 S(-2) 0.000e+00 @@ -397,7 +395,7 @@ Mixture 1. Specific Conductance (µS/cm, 25°C) = 292 Density (g/cm³) = 0.99709 Volume (L) = 1.00332 - Viscosity (mPa s) = 0.89045 + Viscosity (mPa s) = 0.89048 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.529e-03 Mass of water (kg) = 1.000e+00 @@ -468,7 +466,6 @@ Na 1.226e-04 Na+ 1.222e-04 1.170e-04 -3.913 -3.932 -0.019 -1.47 NaSO4- 4.143e-07 3.969e-07 -6.383 -6.401 -0.019 -20.09 NaHCO3 1.390e-11 1.391e-11 -10.857 -10.857 0.000 31.73 - NaOH 1.666e-25 1.667e-25 -24.778 -24.778 0.000 (0) O(0) 8.552e-08 O2 4.276e-08 4.278e-08 -7.369 -7.369 0.000 30.40 S(-2) 0.000e+00 diff --git a/ex5.out b/ex5.out index 7c0c909f..4a57105f 100644 --- a/ex5.out +++ b/ex5.out @@ -165,7 +165,7 @@ Pyrite -0.00 -18.48 -18.48 1.000e+01 1.000e+01 -3.140e-08 Specific Conductance (µS/cm, 25°C) = 96 Density (g/cm³) = 0.99711 Volume (L) = 1.00297 - Viscosity (mPa s) = 0.89093 + Viscosity (mPa s) = 0.89095 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.463e-03 Mass of water (kg) = 1.000e+00 @@ -326,7 +326,7 @@ Pyrite -0.00 -18.48 -18.48 1.000e+01 1.000e+01 -2.667e-04 Specific Conductance (µS/cm, 25°C) = 271 Density (g/cm³) = 0.99719 Volume (L) = 1.00298 - Viscosity (mPa s) = 0.89164 + Viscosity (mPa s) = 0.89165 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.605e-03 Mass of water (kg) = 1.000e+00 @@ -405,7 +405,6 @@ Na 5.000e-04 Na+ 4.967e-04 4.656e-04 -3.304 -3.332 -0.028 -1.44 NaSO4- 3.031e-06 2.845e-06 -5.518 -5.546 -0.028 -18.09 NaHCO3 2.864e-07 2.869e-07 -6.543 -6.542 0.001 31.73 - NaOH 6.961e-20 6.967e-20 -19.157 -19.157 0.000 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -70.542 -70.542 0.000 30.40 S(-2) 1.071e-09 @@ -486,9 +485,9 @@ Phase SI log IAP log K(T, P) Initial Final Delta CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 2.401e-03 Calcite 0.00 -8.48 -8.48 1.000e+01 9.997e+00 -2.932e-03 -Goethite -0.00 -1.00 -1.00 1.000e+01 1.000e+01 1.333e-03 +Goethite 0.00 -1.00 -1.00 1.000e+01 1.000e+01 1.333e-03 Gypsum -1.05 -5.64 -4.58 0.000e+00 0 0.000e+00 -Pyrite 0.00 -18.48 -18.48 1.000e+01 9.999e+00 -1.333e-03 +Pyrite -0.00 -18.48 -18.48 1.000e+01 9.999e+00 -1.333e-03 -----------------------------Solution composition------------------------------ @@ -508,7 +507,7 @@ Pyrite 0.00 -18.48 -18.48 1.000e+01 9.999e+00 -1.333e-03 Specific Conductance (µS/cm, 25°C) = 913 Density (g/cm³) = 0.99754 Volume (L) = 1.00300 - Viscosity (mPa s) = 0.89302 + Viscosity (mPa s) = 0.89303 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.219e-02 Mass of water (kg) = 1.000e+00 @@ -517,7 +516,7 @@ Pyrite 0.00 -18.48 -18.48 1.000e+01 9.999e+00 -1.333e-03 Temperature (°C) = 25.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 + Iterations = 25 Total H = 1.110111e+02 Total O = 5.551754e+01 @@ -587,7 +586,6 @@ Na 2.500e-03 Na+ 2.443e-03 2.187e-03 -2.612 -2.660 -0.048 -1.36 NaSO4- 5.622e-05 5.046e-05 -4.250 -4.297 -0.047 -14.46 NaHCO3 8.629e-07 8.678e-07 -6.064 -6.062 0.002 31.73 - NaOH 2.101e-19 2.107e-19 -18.678 -18.676 0.001 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -70.031 -70.030 0.001 30.40 S(-2) 6.410e-10 @@ -620,7 +618,7 @@ S(6) 2.667e-03 CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 FeS(ppt) -5.33 -9.25 -3.92 FeS - Goethite -0.00 -1.00 -1.00 FeOOH + Goethite 0.00 -1.00 -1.00 FeOOH Gypsum -1.05 -5.64 -4.58 CaSO4:2H2O H2(g) -8.07 -11.18 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O @@ -631,7 +629,7 @@ S(6) 2.667e-03 Melanterite -8.59 -10.80 -2.21 FeSO4:7H2O Mirabilite -6.93 -8.17 -1.24 Na2SO4:10H2O O2(g) -67.14 -70.03 -2.89 O2 - Pyrite 0.00 -18.48 -18.48 FeS2 + Pyrite -0.00 -18.48 -18.48 FeS2 Siderite -2.75 -13.64 -10.89 FeCO3 Sulfur -7.17 -2.29 4.88 S Thenardite -7.87 -8.17 -0.30 Na2SO4 @@ -690,7 +688,7 @@ Pyrite -0.00 -18.48 -18.48 1.000e+01 9.997e+00 -2.667e-03 Specific Conductance (µS/cm, 25°C) = 1657 Density (g/cm³) = 0.99799 Volume (L) = 1.00304 - Viscosity (mPa s) = 0.89443 + Viscosity (mPa s) = 0.89444 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.237e-02 Mass of water (kg) = 1.000e+00 @@ -769,7 +767,6 @@ Na 5.000e-03 Na+ 4.817e-03 4.179e-03 -2.317 -2.379 -0.062 -1.31 NaSO4- 1.816e-04 1.581e-04 -3.741 -3.801 -0.060 -12.22 NaHCO3 1.305e-06 1.319e-06 -5.884 -5.880 0.004 31.73 - NaOH 3.186e-19 3.202e-19 -18.497 -18.495 0.002 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -69.812 -69.809 0.002 30.40 S(-2) 5.033e-10 @@ -951,7 +948,6 @@ Na 1.500e-02 Na+ 1.395e-02 1.136e-02 -1.855 -1.945 -0.089 -1.18 NaSO4- 1.049e-03 8.593e-04 -2.979 -3.066 -0.087 -7.84 NaHCO3 2.424e-06 2.492e-06 -5.615 -5.603 0.012 31.73 - NaOH 5.969e-19 6.052e-19 -18.224 -18.218 0.006 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -69.487 -69.481 0.006 30.40 S(-2) 3.528e-10 @@ -1054,7 +1050,7 @@ Pyrite -0.00 -18.48 -18.48 1.000e+01 9.987e+00 -1.333e-02 Specific Conductance (µS/cm, 25°C) = 5635 Density (g/cm³) = 1.00044 Volume (L) = 1.00301 - Viscosity (mPa s) = 0.90053 + Viscosity (mPa s) = 0.90054 Activity of water = 0.999 Ionic strength (mol/kgw) = 7.442e-02 Mass of water (kg) = 9.996e-01 @@ -1133,7 +1129,6 @@ Na 2.501e-02 Na+ 2.325e-02 1.865e-02 -1.633 -1.729 -0.096 -1.15 NaSO4- 1.753e-03 1.414e-03 -2.756 -2.850 -0.093 -6.75 NaHCO3 3.843e-06 3.977e-06 -5.415 -5.400 0.015 31.73 - NaOH 9.492e-19 9.656e-19 -18.023 -18.015 0.007 (0) O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -69.474 -69.467 0.007 30.40 S(-2) 3.484e-10 diff --git a/ex6.out b/ex6.out index bdb6ecba..3bb55293 100644 --- a/ex6.out +++ b/ex6.out @@ -3228,7 +3228,7 @@ Initial solution 1. Specific Conductance (µS/cm, 25°C) = 288 Density (g/cm³) = 0.99712 Volume (L) = 1.00297 - Viscosity (mPa s) = 0.89020 + Viscosity (mPa s) = 0.89019 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.175e-03 Mass of water (kg) = 1.000e+00 @@ -3302,7 +3302,7 @@ Initial solution 2. Specific Conductance (µS/cm, 25°C) = 190 Density (g/cm³) = 0.99712 Volume (L) = 1.00299 - Viscosity (mPa s) = 0.89011 + Viscosity (mPa s) = 0.89010 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.333e-03 Mass of water (kg) = 1.000e+00 @@ -3559,7 +3559,7 @@ Initial solution 1. Specific Conductance (µS/cm, 25°C) = 279 Density (g/cm³) = 0.99714 Volume (L) = 1.00299 - Viscosity (mPa s) = 0.89016 + Viscosity (mPa s) = 0.89015 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.372e-03 Mass of water (kg) = 1.000e+00 @@ -3707,7 +3707,7 @@ Initial solution 3. Specific Conductance (µS/cm, 25°C) = 190 Density (g/cm³) = 0.99712 Volume (L) = 1.00299 - Viscosity (mPa s) = 0.89011 + Viscosity (mPa s) = 0.89010 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.333e-03 Mass of water (kg) = 1.000e+00 diff --git a/ex7.out b/ex7.out index 0570eece..e0b00695 100644 --- a/ex7.out +++ b/ex7.out @@ -145,7 +145,7 @@ Calcite 0.00 -8.48 -8.48 1.000e+01 9.998e+00 -2.453e-03 Specific Conductance (µS/cm, 25°C) = 457 Density (g/cm³) = 0.99737 Volume (L) = 1.00304 - Viscosity (mPa s) = 0.89302 + Viscosity (mPa s) = 0.89454 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.281e-03 Mass of water (kg) = 1.000e+00 @@ -294,10 +294,10 @@ Reaction 1. pH = 6.829 Charge balance pe = -3.721 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 460 + Specific Conductance (µS/cm, 25°C) = 459 Density (g/cm³) = 0.99737 Volume (L) = 1.00307 - Viscosity (mPa s) = 0.89305 + Viscosity (mPa s) = 0.89504 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.354e-03 Mass of water (kg) = 1.000e+00 @@ -400,10 +400,10 @@ Reaction 1. pH = 6.727 Charge balance pe = -3.642 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 463 + Specific Conductance (µS/cm, 25°C) = 462 Density (g/cm³) = 0.99737 Volume (L) = 1.00310 - Viscosity (mPa s) = 0.89307 + Viscosity (mPa s) = 0.89549 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.425e-03 Mass of water (kg) = 1.000e+00 @@ -509,7 +509,7 @@ Reaction 1. Specific Conductance (µS/cm, 25°C) = 465 Density (g/cm³) = 0.99737 Volume (L) = 1.00313 - Viscosity (mPa s) = 0.89310 + Viscosity (mPa s) = 0.89590 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.495e-03 Mass of water (kg) = 1.000e+00 @@ -626,10 +626,10 @@ N2(g) -3.44 3.610e-04 1.000 0.000e+00 1.647e-07 1.647e-07 pH = 6.584 Charge balance pe = -3.504 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 468 + Specific Conductance (µS/cm, 25°C) = 467 Density (g/cm³) = 0.99738 Volume (L) = 1.00315 - Viscosity (mPa s) = 0.89313 + Viscosity (mPa s) = 0.89624 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.565e-03 Mass of water (kg) = 1.000e+00 @@ -746,10 +746,10 @@ N2(g) -3.02 9.612e-04 1.000 0.000e+00 2.567e-06 2.567e-06 pH = 6.425 Charge balance pe = -3.320 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 479 + Specific Conductance (µS/cm, 25°C) = 477 Density (g/cm³) = 0.99741 Volume (L) = 1.00320 - Viscosity (mPa s) = 0.89323 + Viscosity (mPa s) = 0.89735 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.837e-03 Mass of water (kg) = 9.999e-01 @@ -866,10 +866,10 @@ N2(g) -2.58 2.636e-03 1.000 0.000e+00 2.006e-05 2.006e-05 pH = 6.272 Charge balance pe = -3.138 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 499 + Specific Conductance (µS/cm, 25°C) = 497 Density (g/cm³) = 0.99746 Volume (L) = 1.00327 - Viscosity (mPa s) = 0.89344 + Viscosity (mPa s) = 0.89888 Activity of water = 1.000 Ionic strength (mol/kgw) = 8.355e-03 Mass of water (kg) = 9.999e-01 @@ -986,10 +986,10 @@ N2(g) -2.13 7.467e-03 1.000 0.000e+00 1.430e-04 1.430e-04 pH = 6.161 Charge balance pe = -3.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 532 + Specific Conductance (µS/cm, 25°C) = 530 Density (g/cm³) = 0.99754 Volume (L) = 1.00338 - Viscosity (mPa s) = 0.89377 + Viscosity (mPa s) = 0.90075 Activity of water = 1.000 Ionic strength (mol/kgw) = 9.214e-03 Mass of water (kg) = 9.999e-01 @@ -1106,10 +1106,10 @@ N2(g) -1.77 1.683e-02 1.000 0.000e+00 7.780e-04 7.780e-04 pH = 6.101 Charge balance pe = -2.919 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 568 + Specific Conductance (µS/cm, 25°C) = 566 Density (g/cm³) = 0.99762 Volume (L) = 1.00348 - Viscosity (mPa s) = 0.89414 + Viscosity (mPa s) = 0.90252 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.016e-02 Mass of water (kg) = 9.999e-01 @@ -1226,10 +1226,10 @@ N2(g) -1.60 2.537e-02 1.001 0.000e+00 2.608e-03 2.608e-03 pH = 6.071 Charge balance pe = -2.876 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 591 + Specific Conductance (µS/cm, 25°C) = 588 Density (g/cm³) = 0.99767 Volume (L) = 1.00356 - Viscosity (mPa s) = 0.89437 + Viscosity (mPa s) = 0.90362 Activity of water = 0.999 Ionic strength (mol/kgw) = 1.075e-02 Mass of water (kg) = 9.999e-01 @@ -1346,10 +1346,10 @@ N2(g) -1.51 3.068e-02 1.001 0.000e+00 6.827e-03 6.827e-03 pH = 6.055 Charge balance pe = -2.853 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 602 + Specific Conductance (µS/cm, 25°C) = 600 Density (g/cm³) = 0.99770 Volume (L) = 1.00365 - Viscosity (mPa s) = 0.89448 + Viscosity (mPa s) = 0.90420 Activity of water = 0.999 Ionic strength (mol/kgw) = 1.105e-02 Mass of water (kg) = 9.999e-01 @@ -1466,10 +1466,10 @@ N2(g) -1.48 3.341e-02 1.001 0.000e+00 1.550e-02 1.550e-02 pH = 6.047 Charge balance pe = -2.841 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 608 + Specific Conductance (µS/cm, 25°C) = 605 Density (g/cm³) = 0.99771 Volume (L) = 1.00376 - Viscosity (mPa s) = 0.89454 + Viscosity (mPa s) = 0.90448 Activity of water = 0.999 Ionic strength (mol/kgw) = 1.119e-02 Mass of water (kg) = 1.000e+00 @@ -1586,10 +1586,10 @@ N2(g) -1.46 3.477e-02 1.001 0.000e+00 3.297e-02 3.297e-02 pH = 6.043 Charge balance pe = -2.835 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 610 + Specific Conductance (µS/cm, 25°C) = 607 Density (g/cm³) = 0.99772 Volume (L) = 1.00397 - Viscosity (mPa s) = 0.89456 + Viscosity (mPa s) = 0.90461 Activity of water = 0.999 Ionic strength (mol/kgw) = 1.126e-02 Mass of water (kg) = 1.000e+00 @@ -1775,7 +1775,7 @@ N2(g) -4.45 3.523e-05 1.000 0.000e+00 3.341e-05 3.341e-05 Specific Conductance (µS/cm, 25°C) = 457 Density (g/cm³) = 0.99733 Volume (L) = 1.00308 - Viscosity (mPa s) = 0.89304 + Viscosity (mPa s) = 0.89457 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.284e-03 Mass of water (kg) = 1.000e+00 @@ -1895,7 +1895,7 @@ N2(g) -4.15 7.071e-05 1.000 0.000e+00 6.706e-05 6.706e-05 Specific Conductance (µS/cm, 25°C) = 457 Density (g/cm³) = 0.99733 Volume (L) = 1.00308 - Viscosity (mPa s) = 0.89304 + Viscosity (mPa s) = 0.89459 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.287e-03 Mass of water (kg) = 1.000e+00 @@ -2015,7 +2015,7 @@ N2(g) -3.97 1.062e-04 1.000 0.000e+00 1.008e-04 1.008e-04 Specific Conductance (µS/cm, 25°C) = 457 Density (g/cm³) = 0.99733 Volume (L) = 1.00308 - Viscosity (mPa s) = 0.89304 + Viscosity (mPa s) = 0.89461 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.290e-03 Mass of water (kg) = 1.000e+00 @@ -2132,10 +2132,10 @@ N2(g) -3.85 1.418e-04 1.000 0.000e+00 1.345e-04 1.345e-04 pH = 6.944 Charge balance pe = -3.581 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 458 + Specific Conductance (µS/cm, 25°C) = 457 Density (g/cm³) = 0.99733 Volume (L) = 1.00309 - Viscosity (mPa s) = 0.89304 + Viscosity (mPa s) = 0.89463 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.293e-03 Mass of water (kg) = 1.000e+00 @@ -2252,10 +2252,10 @@ N2(g) -3.55 2.842e-04 1.000 0.000e+00 2.696e-04 2.696e-04 pH = 6.921 Charge balance pe = -3.593 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 458 + Specific Conductance (µS/cm, 25°C) = 457 Density (g/cm³) = 0.99733 Volume (L) = 1.00309 - Viscosity (mPa s) = 0.89304 + Viscosity (mPa s) = 0.89471 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.303e-03 Mass of water (kg) = 1.000e+00 @@ -2372,10 +2372,10 @@ N2(g) -3.24 5.690e-04 1.000 0.000e+00 5.396e-04 5.396e-04 pH = 6.878 Charge balance pe = -3.582 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 459 + Specific Conductance (µS/cm, 25°C) = 458 Density (g/cm³) = 0.99733 Volume (L) = 1.00310 - Viscosity (mPa s) = 0.89305 + Viscosity (mPa s) = 0.89486 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.323e-03 Mass of water (kg) = 1.000e+00 @@ -2495,7 +2495,7 @@ N2(g) -2.94 1.137e-03 1.000 0.000e+00 1.079e-03 1.079e-03 Specific Conductance (µS/cm, 25°C) = 460 Density (g/cm³) = 0.99734 Volume (L) = 1.00313 - Viscosity (mPa s) = 0.89307 + Viscosity (mPa s) = 0.89515 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.365e-03 Mass of water (kg) = 1.000e+00 @@ -2612,10 +2612,10 @@ N2(g) -2.64 2.268e-03 1.000 0.000e+00 2.151e-03 2.151e-03 pH = 6.690 Charge balance pe = -3.443 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 464 + Specific Conductance (µS/cm, 25°C) = 463 Density (g/cm³) = 0.99735 Volume (L) = 1.00317 - Viscosity (mPa s) = 0.89310 + Viscosity (mPa s) = 0.89568 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.459e-03 Mass of water (kg) = 1.000e+00 @@ -2732,10 +2732,10 @@ N2(g) -2.36 4.407e-03 1.000 0.000e+00 4.181e-03 4.181e-03 pH = 6.540 Charge balance pe = -3.309 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 472 + Specific Conductance (µS/cm, 25°C) = 471 Density (g/cm³) = 0.99737 Volume (L) = 1.00326 - Viscosity (mPa s) = 0.89318 + Viscosity (mPa s) = 0.89657 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.665e-03 Mass of water (kg) = 1.000e+00 @@ -2852,10 +2852,10 @@ N2(g) -2.06 8.751e-03 1.000 0.000e+00 8.306e-03 8.306e-03 pH = 6.360 Charge balance pe = -3.139 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 491 + Specific Conductance (µS/cm, 25°C) = 490 Density (g/cm³) = 0.99742 Volume (L) = 1.00345 - Viscosity (mPa s) = 0.89337 + Viscosity (mPa s) = 0.89810 Activity of water = 1.000 Ionic strength (mol/kgw) = 8.155e-03 Mass of water (kg) = 1.000e+00 @@ -2972,10 +2972,10 @@ N2(g) -1.76 1.738e-02 1.000 0.000e+00 1.651e-02 1.651e-02 pH = 6.180 Charge balance pe = -2.966 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 532 + Specific Conductance (µS/cm, 25°C) = 530 Density (g/cm³) = 0.99753 Volume (L) = 1.00381 - Viscosity (mPa s) = 0.89378 + Viscosity (mPa s) = 0.90063 Activity of water = 1.000 Ionic strength (mol/kgw) = 9.223e-03 Mass of water (kg) = 1.000e+00 @@ -3092,10 +3092,10 @@ N2(g) -1.46 3.459e-02 1.001 0.000e+00 3.292e-02 3.292e-02 pH = 6.022 Charge balance pe = -2.811 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 614 + Specific Conductance (µS/cm, 25°C) = 611 Density (g/cm³) = 0.99773 Volume (L) = 1.00454 - Viscosity (mPa s) = 0.89459 + Viscosity (mPa s) = 0.90495 Activity of water = 0.999 Ionic strength (mol/kgw) = 1.135e-02 Mass of water (kg) = 1.001e+00 diff --git a/ex8.out b/ex8.out index 37d31d32..62430fd4 100644 --- a/ex8.out +++ b/ex8.out @@ -119,7 +119,6 @@ N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 1.000e-01 Na+ 1.000e-01 7.851e-02 -1.000 -1.105 -0.105 -1.09 - NaOH 7.739e-18 7.920e-18 -17.111 -17.101 0.010 (0) O(0) 1.615e-38 O2 8.073e-39 8.261e-39 -38.093 -38.083 0.010 30.40 Zn 1.000e-07 @@ -214,7 +213,6 @@ N(5) 1.000e-01 NO3- 1.000e-01 7.533e-02 -1.000 -1.123 -0.123 29.77 Na 9.981e-02 Na+ 9.981e-02 7.836e-02 -1.001 -1.106 -0.105 -1.09 - NaOH 7.724e-18 7.904e-18 -17.112 -17.102 0.010 (0) O(0) 1.615e-38 O2 8.073e-39 8.261e-39 -38.093 -38.083 0.010 30.40 Zn 1.000e-04 @@ -382,7 +380,6 @@ N(5) 1.000e-01 NO3- 1.000e-01 7.535e-02 -1.000 -1.123 -0.123 29.77 Na 9.987e-02 Na+ 9.987e-02 7.841e-02 -1.001 -1.106 -0.105 -1.09 - NaOH 7.730e-21 7.910e-21 -20.112 -20.102 0.010 (0) O(0) 3.858e-06 O2 1.929e-06 1.974e-06 -5.715 -5.705 0.010 30.40 Zn 9.967e-08 @@ -495,7 +492,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -9.667e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.05 - Iterations = 14 + Iterations = 15 Total H = 1.110122e+02 Total O = 5.580611e+01 @@ -520,7 +517,6 @@ N(5) 1.000e-01 NO3- 1.000e-01 7.535e-02 -1.000 -1.123 -0.123 29.77 Na 9.990e-02 Na+ 9.990e-02 7.843e-02 -1.000 -1.106 -0.105 -1.09 - NaOH 1.375e-20 1.407e-20 -19.862 -19.852 0.010 (0) O(0) 2.776e-06 O2 1.388e-06 1.420e-06 -5.858 -5.848 0.010 30.40 Zn 9.910e-08 @@ -633,7 +629,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -8.214e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.04 - Iterations = 15 + Iterations = 16 Total H = 1.110123e+02 Total O = 5.580613e+01 @@ -658,7 +654,6 @@ N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.991e-02 Na+ 9.991e-02 7.844e-02 -1.000 -1.105 -0.105 -1.09 - NaOH 2.445e-20 2.502e-20 -19.612 -19.602 0.010 (0) O(0) 1.998e-06 O2 9.990e-07 1.022e-06 -6.000 -5.990 0.010 30.40 Zn 9.759e-08 @@ -771,7 +766,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -6.888e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.03 - Iterations = 14 + Iterations = 15 Total H = 1.110123e+02 Total O = 5.580615e+01 @@ -796,7 +791,6 @@ N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.993e-02 Na+ 9.993e-02 7.846e-02 -1.000 -1.105 -0.105 -1.09 - NaOH 4.349e-20 4.450e-20 -19.362 -19.352 0.010 (0) O(0) 1.438e-06 O2 7.190e-07 7.357e-07 -6.143 -6.133 0.010 30.40 Zn 9.369e-08 @@ -909,7 +903,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -5.700e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.03 - Iterations = 15 + Iterations = 14 Total H = 1.110123e+02 Total O = 5.580616e+01 @@ -934,7 +928,6 @@ N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.994e-02 Na+ 9.994e-02 7.847e-02 -1.000 -1.105 -0.105 -1.09 - NaOH 7.735e-20 7.915e-20 -19.112 -19.102 0.010 (0) O(0) 1.035e-06 O2 5.174e-07 5.295e-07 -6.286 -6.276 0.010 30.40 Zn 8.454e-08 @@ -1047,7 +1040,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -4.647e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.02 - Iterations = 14 + Iterations = 15 Total H = 1.110123e+02 Total O = 5.580617e+01 @@ -1072,7 +1065,6 @@ N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.995e-02 Na+ 9.995e-02 7.847e-02 -1.000 -1.105 -0.105 -1.09 - NaOH 1.376e-19 1.408e-19 -18.862 -18.852 0.010 (0) O(0) 7.448e-07 O2 3.724e-07 3.811e-07 -6.429 -6.419 0.010 30.40 Zn 6.679e-08 @@ -1185,7 +1177,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -3.722e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.02 - Iterations = 13 + Iterations = 14 Total H = 1.110124e+02 Total O = 5.580618e+01 @@ -1210,7 +1202,6 @@ N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.996e-02 Na+ 9.996e-02 7.848e-02 -1.000 -1.105 -0.105 -1.09 - NaOH 2.446e-19 2.503e-19 -18.611 -18.601 0.010 (0) O(0) 5.360e-07 O2 2.680e-07 2.742e-07 -6.572 -6.562 0.010 30.40 Zn 4.243e-08 @@ -1323,7 +1314,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -2.911e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 - Iterations = 14 + Iterations = 15 Total H = 1.110124e+02 Total O = 5.580619e+01 @@ -1348,7 +1339,6 @@ N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.997e-02 Na+ 9.997e-02 7.849e-02 -1.000 -1.105 -0.105 -1.09 - NaOH 4.351e-19 4.452e-19 -18.361 -18.351 0.010 (0) O(0) 3.858e-07 O2 1.929e-07 1.974e-07 -6.715 -6.705 0.010 30.40 Zn 2.114e-08 @@ -1486,7 +1476,6 @@ N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.998e-02 Na+ 9.998e-02 7.849e-02 -1.000 -1.105 -0.105 -1.09 - NaOH 7.738e-19 7.918e-19 -18.111 -18.101 0.010 (0) O(0) 2.776e-07 O2 1.388e-07 1.420e-07 -6.858 -6.848 0.010 30.40 Zn 8.811e-09 @@ -1624,7 +1613,6 @@ N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.998e-02 Na+ 9.998e-02 7.850e-02 -1.000 -1.105 -0.105 -1.09 - NaOH 1.376e-18 1.408e-18 -17.861 -17.851 0.010 (0) O(0) 1.998e-07 O2 9.990e-08 1.022e-07 -7.000 -6.990 0.010 30.40 Zn 3.340e-09 @@ -1762,7 +1750,6 @@ N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.999e-02 Na+ 9.999e-02 7.850e-02 -1.000 -1.105 -0.105 -1.09 - NaOH 2.447e-18 2.504e-18 -17.611 -17.601 0.010 (0) O(0) 1.438e-07 O2 7.190e-08 7.357e-08 -7.143 -7.133 0.010 30.40 Zn 1.217e-09 @@ -1900,7 +1887,6 @@ N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 1.000e-01 Na+ 1.000e-01 7.851e-02 -1.000 -1.105 -0.105 -1.09 - NaOH 4.352e-18 4.453e-18 -17.361 -17.351 0.010 (0) O(0) 1.035e-07 O2 5.174e-08 5.295e-08 -7.286 -7.276 0.010 30.40 Zn 4.403e-10 @@ -2013,7 +1999,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -1.787e-08 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 15 + Iterations = 14 Total H = 1.110124e+02 Total O = 5.580622e+01 @@ -2038,7 +2024,6 @@ N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 1.000e-01 Na+ 1.000e-01 7.851e-02 -1.000 -1.105 -0.105 -1.09 - NaOH 7.739e-18 7.920e-18 -17.111 -17.101 0.010 (0) O(0) 7.448e-08 O2 3.724e-08 3.811e-08 -7.429 -7.419 0.010 30.40 Zn 1.628e-10 @@ -2185,7 +2170,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -1.124e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.06 - Iterations = 21 + Iterations = 23 Total H = 1.110122e+02 Total O = 5.580609e+01 @@ -2210,7 +2195,6 @@ N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.967e-02 Na+ 9.967e-02 7.825e-02 -1.001 -1.107 -0.105 -1.09 - NaOH 7.714e-21 7.893e-21 -20.113 -20.103 0.010 (0) O(0) 3.857e-06 O2 1.929e-06 1.974e-06 -5.715 -5.705 0.010 30.40 Zn 9.969e-05 @@ -2323,7 +2307,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -9.689e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.05 - Iterations = 23 + Iterations = 21 Total H = 1.110122e+02 Total O = 5.580611e+01 @@ -2339,16 +2323,15 @@ H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -43.278 -43.268 0.010 28.61 N(-3) 0.000e+00 NH4+ 0.000e+00 0.000e+00 -52.884 -53.012 -0.128 18.15 - NH3 0.000e+00 0.000e+00 -57.017 -57.007 0.010 24.42 -N(0) 1.110e-06 - N2 5.552e-07 5.682e-07 -6.256 -6.246 0.010 29.29 + NH3 0.000e+00 0.000e+00 -57.016 -57.006 0.010 24.42 +N(0) 1.111e-06 + N2 5.553e-07 5.683e-07 -6.255 -6.245 0.010 29.29 N(3) 2.843e-13 NO2- 2.843e-13 2.142e-13 -12.546 -12.669 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.970e-02 Na+ 9.970e-02 7.827e-02 -1.001 -1.106 -0.105 -1.09 - NaOH 1.372e-20 1.404e-20 -19.863 -19.853 0.010 (0) O(0) 2.776e-06 O2 1.388e-06 1.420e-06 -5.858 -5.848 0.010 30.40 Zn 9.923e-05 @@ -2461,7 +2444,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -8.259e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.04 - Iterations = 21 + Iterations = 22 Total H = 1.110123e+02 Total O = 5.580613e+01 @@ -2476,19 +2459,18 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -43.206 -43.196 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.098 -53.226 -0.128 18.15 + NH4+ 0.000e+00 0.000e+00 -53.099 -53.227 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.981 -56.971 0.010 24.42 -N(0) 7.997e-07 - N2 3.998e-07 4.092e-07 -6.398 -6.388 0.010 29.29 -N(3) 3.352e-13 - NO2- 3.352e-13 2.525e-13 -12.475 -12.598 -0.123 25.24 +N(0) 7.992e-07 + N2 3.996e-07 4.089e-07 -6.398 -6.388 0.010 29.29 +N(3) 3.351e-13 + NO2- 3.351e-13 2.525e-13 -12.475 -12.598 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.972e-02 Na+ 9.972e-02 7.828e-02 -1.001 -1.106 -0.105 -1.09 - NaOH 2.440e-20 2.497e-20 -19.613 -19.603 0.010 (0) -O(0) 1.997e-06 - O2 9.987e-07 1.022e-06 -6.001 -5.991 0.010 30.40 +O(0) 1.998e-06 + O2 9.990e-07 1.022e-06 -6.000 -5.990 0.010 30.40 Zn 9.832e-05 Zn+2 9.830e-05 3.697e-05 -4.007 -4.432 -0.425 -24.68 ZnOH+ 1.636e-08 1.278e-08 -7.786 -7.894 -0.107 (0) @@ -2599,7 +2581,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -6.970e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.03 - Iterations = 22 + Iterations = 23 Total H = 1.110123e+02 Total O = 5.580615e+01 @@ -2624,7 +2606,6 @@ N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.973e-02 Na+ 9.973e-02 7.830e-02 -1.001 -1.106 -0.105 -1.09 - NaOH 4.340e-20 4.441e-20 -19.362 -19.352 0.010 (0) O(0) 1.438e-06 O2 7.189e-07 7.357e-07 -6.143 -6.133 0.010 30.40 Zn 9.698e-05 @@ -2762,7 +2743,6 @@ N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.975e-02 Na+ 9.975e-02 7.831e-02 -1.001 -1.106 -0.105 -1.09 - NaOH 7.719e-20 7.899e-20 -19.112 -19.102 0.010 (0) O(0) 1.035e-06 O2 5.174e-07 5.295e-07 -6.286 -6.276 0.010 30.40 Zn 9.549e-05 @@ -2892,15 +2872,14 @@ H(0) 0.000e+00 N(-3) 0.000e+00 NH4+ 0.000e+00 0.000e+00 -53.741 -53.869 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.874 -56.864 0.010 24.42 -N(0) 2.979e-07 - N2 1.490e-07 1.524e-07 -6.827 -6.817 0.010 29.29 +N(0) 2.980e-07 + N2 1.490e-07 1.525e-07 -6.827 -6.817 0.010 29.29 N(3) 5.489e-13 - NO2- 5.489e-13 4.135e-13 -12.260 -12.383 -0.123 25.24 + NO2- 5.489e-13 4.136e-13 -12.260 -12.383 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.976e-02 Na+ 9.976e-02 7.832e-02 -1.001 -1.106 -0.105 -1.09 - NaOH 1.373e-19 1.405e-19 -18.862 -18.852 0.010 (0) O(0) 7.447e-07 O2 3.723e-07 3.810e-07 -6.429 -6.419 0.010 30.40 Zn 9.374e-05 @@ -3038,7 +3017,6 @@ N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.978e-02 Na+ 9.978e-02 7.833e-02 -1.001 -1.106 -0.105 -1.09 - NaOH 2.442e-19 2.499e-19 -18.612 -18.602 0.010 (0) O(0) 5.358e-07 O2 2.679e-07 2.741e-07 -6.572 -6.562 0.010 30.40 Zn 9.075e-05 @@ -3168,15 +3146,14 @@ H(0) 0.000e+00 N(-3) 0.000e+00 NH4+ 0.000e+00 0.000e+00 -54.169 -54.297 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.801 -56.791 0.010 24.42 -N(0) 1.546e-07 - N2 7.731e-08 7.911e-08 -7.112 -7.102 0.010 29.29 -N(3) 7.630e-13 - NO2- 7.630e-13 5.749e-13 -12.117 -12.240 -0.123 25.24 +N(0) 1.547e-07 + N2 7.733e-08 7.913e-08 -7.112 -7.102 0.010 29.29 +N(3) 7.631e-13 + NO2- 7.631e-13 5.749e-13 -12.117 -12.240 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.980e-02 Na+ 9.980e-02 7.835e-02 -1.001 -1.106 -0.105 -1.09 - NaOH 4.343e-19 4.444e-19 -18.362 -18.352 0.010 (0) O(0) 3.854e-07 O2 1.927e-07 1.972e-07 -6.715 -6.705 0.010 30.40 Zn 8.484e-05 @@ -3314,7 +3291,6 @@ N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.982e-02 Na+ 9.982e-02 7.837e-02 -1.001 -1.106 -0.105 -1.09 - NaOH 7.725e-19 7.905e-19 -18.112 -18.102 0.010 (0) O(0) 2.776e-07 O2 1.388e-07 1.420e-07 -6.858 -6.848 0.010 30.40 Zn 7.503e-05 @@ -3427,7 +3403,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -2.512e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 - Iterations = 25 + Iterations = 23 Total H = 1.110125e+02 Total O = 5.580627e+01 @@ -3442,19 +3418,18 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.706 -42.696 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -54.599 -54.727 -0.128 18.15 + NH4+ 0.000e+00 0.000e+00 -54.598 -54.727 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.731 -56.721 0.010 24.42 -N(0) 7.992e-08 - N2 3.996e-08 4.089e-08 -7.398 -7.388 0.010 29.29 +N(0) 7.993e-08 + N2 3.997e-08 4.090e-08 -7.398 -7.388 0.010 29.29 N(3) 1.060e-12 - NO2- 1.060e-12 7.984e-13 -11.975 -12.098 -0.123 25.24 + NO2- 1.060e-12 7.985e-13 -11.975 -12.098 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.985e-02 Na+ 9.985e-02 7.839e-02 -1.001 -1.106 -0.105 -1.09 - NaOH 1.374e-18 1.406e-18 -17.862 -17.852 0.010 (0) O(0) 1.998e-07 - O2 9.990e-08 1.022e-07 -7.000 -6.990 0.010 30.40 + O2 9.989e-08 1.022e-07 -7.000 -6.990 0.010 30.40 Zn 6.248e-05 Zn+2 6.181e-05 2.325e-05 -4.209 -4.634 -0.425 -24.68 ZnOH+ 5.783e-07 4.517e-07 -6.238 -6.345 -0.107 (0) @@ -3565,7 +3540,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -2.288e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 - Iterations = 23 + Iterations = 26 Total H = 1.110126e+02 Total O = 5.580630e+01 @@ -3580,19 +3555,18 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.635 -42.625 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -54.812 -54.940 -0.128 18.15 + NH4+ 0.000e+00 0.000e+00 -54.813 -54.941 -0.128 18.15 NH3 0.000e+00 0.000e+00 -56.695 -56.685 0.010 24.42 -N(0) 5.759e-08 - N2 2.879e-08 2.947e-08 -7.541 -7.531 0.010 29.29 -N(3) 1.250e-12 - NO2- 1.250e-12 9.414e-13 -11.903 -12.026 -0.123 25.24 +N(0) 5.752e-08 + N2 2.876e-08 2.943e-08 -7.541 -7.531 0.010 29.29 +N(3) 1.249e-12 + NO2- 1.249e-12 9.412e-13 -11.903 -12.026 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.988e-02 Na+ 9.988e-02 7.841e-02 -1.001 -1.106 -0.105 -1.09 - NaOH 2.444e-18 2.501e-18 -17.612 -17.602 0.010 (0) -O(0) 1.437e-07 - O2 7.186e-08 7.353e-08 -7.144 -7.134 0.010 30.40 +O(0) 1.438e-07 + O2 7.189e-08 7.357e-08 -7.143 -7.133 0.010 30.40 Zn 4.944e-05 Zn+2 4.841e-05 1.821e-05 -4.315 -4.740 -0.425 -24.68 ZnOH+ 8.055e-07 6.292e-07 -6.094 -6.201 -0.107 (0) @@ -3607,8 +3581,8 @@ Zn 4.944e-05 Fix_H+ -7.50 -7.50 0.00 H+ H2(g) -39.52 -42.62 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -4.35 -7.53 -3.18 N2 - NH3(g) -58.48 -56.68 1.80 NH3 + N2(g) -4.36 -7.53 -3.18 N2 + NH3(g) -58.48 -56.69 1.80 NH3 O2(g) -4.24 -7.13 -2.89 O2 Zn(OH)2(e) -1.24 10.26 11.50 Zn(OH)2 @@ -3691,7 +3665,7 @@ Hfo_w ----------------------------Description of solution---------------------------- pH = 7.750 Charge balance - pe = 11.952 Adjusted to redox equilibrium + pe = 11.951 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 9914 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 @@ -3703,7 +3677,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -2.080e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 - Iterations = 25 + Iterations = 23 Total H = 1.110126e+02 Total O = 5.580632e+01 @@ -3718,19 +3692,18 @@ Hfo_w H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.563 -42.553 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -55.027 -55.155 -0.128 18.15 - NH3 0.000e+00 0.000e+00 -56.659 -56.649 0.010 24.42 -N(0) 4.139e-08 - N2 2.070e-08 2.118e-08 -7.684 -7.674 0.010 29.29 -N(3) 1.473e-12 - NO2- 1.473e-12 1.109e-12 -11.832 -11.955 -0.123 25.24 + NH4+ 0.000e+00 0.000e+00 -55.025 -55.153 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -56.657 -56.647 0.010 24.42 +N(0) 4.165e-08 + N2 2.082e-08 2.131e-08 -7.681 -7.671 0.010 29.29 +N(3) 1.474e-12 + NO2- 1.474e-12 1.111e-12 -11.831 -11.954 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.991e-02 Na+ 9.991e-02 7.844e-02 -1.000 -1.105 -0.105 -1.09 - NaOH 4.348e-18 4.449e-18 -17.362 -17.352 0.010 (0) -O(0) 1.035e-07 - O2 5.174e-08 5.295e-08 -7.286 -7.276 0.010 30.40 +O(0) 1.032e-07 + O2 5.162e-08 5.282e-08 -7.287 -7.277 0.010 30.40 Zn 3.752e-05 Zn+2 3.594e-05 1.352e-05 -4.444 -4.869 -0.425 -24.68 ZnOH+ 1.063e-06 8.307e-07 -5.973 -6.081 -0.107 (0) @@ -3746,7 +3719,7 @@ Zn 3.752e-05 H2(g) -39.45 -42.55 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O N2(g) -4.50 -7.67 -3.18 N2 - NH3(g) -58.45 -56.65 1.80 NH3 + NH3(g) -58.44 -56.65 1.80 NH3 O2(g) -4.38 -7.28 -2.89 O2 Zn(OH)2(e) -0.87 10.63 11.50 Zn(OH)2 @@ -3841,7 +3814,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -1.854e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 - Iterations = 24 + Iterations = 25 Total H = 1.110127e+02 Total O = 5.580635e+01 @@ -3866,9 +3839,8 @@ N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.993e-02 Na+ 9.993e-02 7.845e-02 -1.000 -1.105 -0.105 -1.09 - NaOH 7.734e-18 7.914e-18 -17.112 -17.102 0.010 (0) -O(0) 7.447e-08 - O2 3.724e-08 3.810e-08 -7.429 -7.419 0.010 30.40 +O(0) 7.448e-08 + O2 3.724e-08 3.811e-08 -7.429 -7.419 0.010 30.40 Zn 2.762e-05 Zn+2 2.514e-05 9.458e-06 -4.600 -5.024 -0.425 -24.68 ZnOH+ 1.323e-06 1.033e-06 -5.878 -5.986 -0.107 (0) diff --git a/ex8.sel b/ex8.sel index 0ddfff4f..880c923a 100644 --- a/ex8.sel +++ b/ex8.sel @@ -1,5 +1,5 @@ sim state soln dist_x time step pH pe reaction temp Alk mu mass_H2O charge pct_err m_Zn+2 m_Hfo_wOZn+ m_Hfo_sOZn+ - 5 react 1 -99 0 1 5 15.0946 -99 25.000 -1.21142e-05 0.0999427 0.999998 -0.000112255 -0.0561601 9.9667e-08 1.3174e-11 3.1450e-10 + 5 react 1 -99 0 1 5 15.0946 -99 25.000 -1.21142e-05 0.0999427 0.999998 -0.000112255 -0.05616 9.9667e-08 1.3174e-11 3.1450e-10 6 react 1 -99 0 1 5.25 14.8088 -99 25.000 -6.81073e-06 0.0999508 0.999998 -9.66739e-05 -0.0483609 9.9094e-08 3.6062e-11 8.6083e-10 7 react 1 -99 0 1 5.5 14.5231 -99 25.000 -3.8271e-06 0.0999584 0.999998 -8.21358e-05 -0.0410851 9.7570e-08 9.7072e-11 2.3165e-09 8 react 1 -99 0 1 5.75 14.2374 -99 25.000 -2.14703e-06 0.0999652 0.999999 -6.88825e-05 -0.0344533 9.3666e-08 2.5380e-10 6.0522e-09 @@ -23,5 +23,5 @@ 28 react 2 -99 0 1 7 12.8088 -99 25.000 4.7235e-07 0.10006 1 -2.81879e-05 -0.0140959 7.4599e-05 2.0021e-05 4.9534e-06 29 react 2 -99 0 1 7.25 12.5231 -99 25.000 9.25371e-07 0.100049 1 -2.51184e-05 -0.0125608 6.1808e-05 3.2551e-05 4.9732e-06 30 react 2 -99 0 1 7.5 12.2374 -99 25.000 1.63108e-06 0.100037 1 -2.28778e-05 -0.0114402 4.8410e-05 4.5580e-05 4.9823e-06 - 31 react 2 -99 0 1 7.75 11.9517 -99 25.000 2.83165e-06 0.100026 1 -2.08025e-05 -0.0104023 3.5937e-05 5.7490e-05 4.9870e-06 + 31 react 2 -99 0 1 7.75 11.9514 -99 25.000 2.83165e-06 0.100026 1 -2.08025e-05 -0.0104023 3.5937e-05 5.7490e-05 4.9870e-06 32 react 2 -99 0 1 8 11.666 -99 25.000 4.94809e-06 0.100017 1 -1.85413e-05 -0.00927139 2.5143e-05 6.7388e-05 4.9897e-06 diff --git a/ex9.out b/ex9.out index 349afdd3..38a8cab1 100644 --- a/ex9.out +++ b/ex9.out @@ -214,7 +214,6 @@ H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 - NaOH 9.106e-20 9.128e-20 -19.041 -19.040 0.001 (0) O(0) 5.465e-04 O2 2.732e-04 2.739e-04 -3.563 -3.562 0.001 30.40 @@ -280,7 +279,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -2.669e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.298e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = 8.244e-16 + Electrical balance (eq) = 8.209e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 208 (195 overall) Total H = 1.110124e+02 @@ -320,7 +319,6 @@ H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 - NaOH 1.010e-20 1.012e-20 -19.996 -19.995 0.001 (0) O(0) 5.465e-04 O2 2.732e-04 2.739e-04 -3.563 -3.562 0.001 30.40 @@ -381,7 +379,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -1.858e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 2.041e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = 8.307e-16 + Electrical balance (eq) = 8.134e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 27 Total H = 1.110124e+02 @@ -421,7 +419,6 @@ H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 - NaOH 5.838e-21 5.852e-21 -20.234 -20.233 0.001 (0) O(0) 5.465e-04 O2 2.732e-04 2.739e-04 -3.563 -3.562 0.001 30.40 @@ -482,7 +479,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.073e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 3.670e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = 9.165e-16 + Electrical balance (eq) = 9.043e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 67 Total H = 1.110124e+02 @@ -522,7 +519,6 @@ H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 - NaOH 3.029e-21 3.036e-21 -20.519 -20.518 0.001 (0) O(0) 5.465e-04 O2 2.732e-04 2.739e-04 -3.563 -3.562 0.001 30.40 @@ -583,7 +579,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.928e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 5.641e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = 6.899e-15 + Electrical balance (eq) = 6.887e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 26 Total H = 1.110124e+02 @@ -623,7 +619,6 @@ H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 - NaOH 1.921e-21 1.926e-21 -20.716 -20.715 0.001 (0) O(0) 5.465e-04 O2 2.732e-04 2.739e-04 -3.563 -3.562 0.001 30.40 @@ -684,7 +679,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.731e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 7.533e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = 6.912e-15 + Electrical balance (eq) = 6.899e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 24 Total H = 1.110124e+02 @@ -724,7 +719,6 @@ H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 - NaOH 1.426e-21 1.430e-21 -20.846 -20.845 0.001 (0) O(0) 5.465e-04 O2 2.732e-04 2.739e-04 -3.563 -3.562 0.001 30.40 @@ -785,7 +779,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -6.071e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 9.960e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = 6.927e-15 + Electrical balance (eq) = 6.911e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 24 Total H = 1.110124e+02 @@ -825,7 +819,6 @@ H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 - NaOH 1.076e-21 1.079e-21 -20.968 -20.967 0.001 (0) O(0) 5.465e-04 O2 2.732e-04 2.739e-04 -3.563 -3.562 0.001 30.40 @@ -886,7 +879,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -6.211e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.244e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = 6.924e-15 + Electrical balance (eq) = 6.909e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 23 Total H = 1.110124e+02 @@ -926,7 +919,6 @@ H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 - NaOH 8.626e-22 8.647e-22 -21.064 -21.063 0.001 (0) O(0) 5.465e-04 O2 2.732e-04 2.739e-04 -3.563 -3.562 0.001 30.40 @@ -987,7 +979,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -7.790e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.556e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = 6.927e-15 + Electrical balance (eq) = 6.909e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 23 Total H = 1.110124e+02 @@ -1027,7 +1019,6 @@ H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 - NaOH 6.933e-22 6.949e-22 -21.159 -21.158 0.001 (0) O(0) 5.465e-04 O2 2.732e-04 2.739e-04 -3.563 -3.562 0.001 30.40 @@ -1088,7 +1079,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -5.440e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.774e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.316e-14 + Electrical balance (eq) = 5.315e-14 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 20 Total H = 1.110124e+02 @@ -1128,7 +1119,6 @@ H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 - NaOH 6.109e-22 6.124e-22 -21.214 -21.213 0.001 (0) O(0) 5.465e-04 O2 2.732e-04 2.739e-04 -3.563 -3.562 0.001 30.40 @@ -1189,7 +1179,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.315e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.946e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.627e-14 + Electrical balance (eq) = 5.625e-14 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 20 Total H = 1.110124e+02 @@ -1229,7 +1219,6 @@ H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 - NaOH 5.589e-22 5.602e-22 -21.253 -21.252 0.001 (0) O(0) 5.465e-04 O2 2.732e-04 2.739e-04 -3.563 -3.562 0.001 30.40 @@ -1290,7 +1279,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -3.633e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 2.091e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.669e-14 + Electrical balance (eq) = 5.667e-14 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 20 Total H = 1.110124e+02 @@ -1330,7 +1319,6 @@ H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 - NaOH 5.218e-22 5.230e-22 -21.283 -21.281 0.001 (0) O(0) 5.465e-04 O2 2.732e-04 2.739e-04 -3.563 -3.562 0.001 30.40 From c155685f6393b3cd780a56e72651eb79ea5f4bc1 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Tue, 24 Sep 2024 22:02:30 +0000 Subject: [PATCH 212/384] Squashed 'phreeqcpp/' changes from fdc0bb5..e317dd0 e317dd0 Guarded case with no points in curves for log axes. Added bad_graph test case. git-subtree-dir: phreeqcpp git-subtree-split: e317dd0e41bbfd18abd2255ab5f2cf3933cd4c69 --- Form1.h | 61 ++++++++++++++++++++++++++++++++++++++++++++------------- 1 file changed, 47 insertions(+), 14 deletions(-) diff --git a/Form1.h b/Form1.h index 6a17674a..77cb90f9 100644 --- a/Form1.h +++ b/Form1.h @@ -969,38 +969,71 @@ namespace zdg_ui2 { if ((fabs(chart->Get_axis_scale_x()[1] - NA) < 1e-3) && zg1->GraphPane->XAxis->Type == AxisType::Log) { double max = -1e99; - for (int i = 0; i < zg1->GraphPane->CurveList->Count; i++) + for (int i = 0; i < zg1->GraphPane->CurveList->Count; i++) { - if (Curves[i]->Get_x()[Curves[i]->Get_x().size() - 1] > max) - max = Curves[i]->Get_x()[Curves[i]->Get_x().size() - 1]; + if (Curves[i]->Get_x().size() > 0) + { + if (Curves[i]->Get_x()[Curves[i]->Get_x().size() - 1] > max) + max = Curves[i]->Get_x()[Curves[i]->Get_x().size() - 1]; + } + } + if (max > 0) + { + max += pow(10.0, log10(max / 3)); + } + else + { + zg1->GraphPane->XAxis->Scale->Min = 0; + max = zg1->GraphPane->XAxis->Scale->Min + 1.0; } - max += pow(10.0, log10(max / 3)); zg1->GraphPane->XAxis->Scale->Max = max; } if ((fabs(chart->Get_axis_scale_y()[1] - NA) < 1e-3) && zg1->GraphPane->YAxis->Type == AxisType::Log) { double max = -1e99; - for (int i = 0; i < zg1->GraphPane->CurveList->Count; i++) + for (int i = 0; i < zg1->GraphPane->CurveList->Count; i++) { - curve = (LineItem ^) zg1->GraphPane->CurveList[i]; + curve = (LineItem^)zg1->GraphPane->CurveList[i]; if (curve->IsY2Axis) continue; - if (Curves[i]->Get_y()[Curves[i]->Get_y().size() - 1] > max) - max = Curves[i]->Get_y()[Curves[i]->Get_y().size() - 1]; + if (Curves[i]->Get_y().size() > 0) + { + if (Curves[i]->Get_y()[Curves[i]->Get_y().size() - 1] > max) + max = Curves[i]->Get_y()[Curves[i]->Get_y().size() - 1]; + } + } + if (max > 0) + { + max += pow(10.0, log10(max / 3)); + } + else + { + zg1->GraphPane->YAxis->Scale->Min = 0; + max = zg1->GraphPane->YAxis->Scale->Min + 1.0; } - max += pow(10.0, log10(max / 3)); zg1->GraphPane->YAxis->Scale->Max = max; } if ((fabs(chart->Get_axis_scale_y2()[1] - NA) < 1e-3) && zg1->GraphPane->Y2Axis->Type == AxisType::Log) { double max = -1e99; - for (int i = 0; i < zg1->GraphPane->CurveList->Count; i++) + for (int i = 0; i < zg1->GraphPane->CurveList->Count; i++) { - curve = (LineItem ^) zg1->GraphPane->CurveList[i]; + curve = (LineItem^)zg1->GraphPane->CurveList[i]; if (!curve->IsY2Axis) continue; - if (Curves[i]->Get_y()[Curves[i]->Get_y().size() - 1] > max) - max = Curves[i]->Get_y()[Curves[i]->Get_y().size() - 1]; + if (Curves[i]->Get_y().size() > 0) + { + if (Curves[i]->Get_y()[Curves[i]->Get_y().size() - 1] > max) + max = Curves[i]->Get_y()[Curves[i]->Get_y().size() - 1]; + } + } + if (max > 0.0) + { + max += pow(10.0, log10(max / 3)); + } + else + { + zg1->GraphPane->Y2Axis->Scale->Min = 0; + max = zg1->GraphPane->Y2Axis->Scale->Min + 1.0; } - max += pow(10.0, log10(max / 3)); zg1->GraphPane->Y2Axis->Scale->Max = max; } zg1->AxisChange(); From b537589773f4819fe97ff8e5322bcd38c54b63f7 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Tue, 8 Oct 2024 20:04:33 +0000 Subject: [PATCH 213/384] Squashed 'phreeqcpp/' changes from e317dd0..7c7fafd 7c7fafd Merge pull request #78 from dlparkhurst/mix_error eb0591c Merge pull request #74 from mwtoews/fix-typos 334df5e Tony's fix in heat transport bf897a2 Marked old error in mix. Updated test case. 58566a6 Fix ah2o in adding a solution. Fixed bad_graph database. 75effd0 Merge branch 'viscosity' into mix_error f4708df account for water mass in addition to mixing fractions 70954c6 mixing by water mass times mixing fraction 84b59ab Fix typos git-subtree-dir: phreeqcpp git-subtree-split: 7c7fafd686d7c41753132a978a1d55d4d25b601b --- Form1.h | 2 +- Makefile.old | 2 +- PBasic.cpp | 8 ++--- Phreeqc.cpp | 2 +- Solution.cxx | 2 +- cl1.cpp | 2 +- cl1mp.cpp | 2 +- common/Parser.h | 2 +- common/Utils.cxx | 2 +- cvode.cpp | 8 ++--- global_structures.h | 4 +-- input.cpp | 2 +- inverse.cpp | 2 +- mainsubs.cpp | 2 +- model.cpp | 2 +- nvector_serial.cpp | 2 +- nvector_serial.h | 2 +- pitzer.cpp | 2 +- prep.cpp | 4 +-- read.cpp | 4 +-- sit.cpp | 2 +- step.cpp | 83 +++++++++++++++++++++++++++++++++++++++++++-- structures.cpp | 4 +-- tally.cpp | 6 ++-- tidy.cpp | 2 +- transport.cpp | 25 ++++++++------ utilities.cpp | 2 +- 27 files changed, 131 insertions(+), 51 deletions(-) diff --git a/Form1.h b/Form1.h index 77cb90f9..df07557a 100644 --- a/Form1.h +++ b/Form1.h @@ -673,7 +673,7 @@ namespace zdg_ui2 { // Respond to a Zoom Event void MyZoomEvent( ZedGraphControl ^control, ZoomState ^oldState, ZoomState ^newState ) { - // Here we get notification everytime the user zooms + // Here we get notification every time the user zooms } void SetChartOptions( System::Object ^sender, System::EventArgs ^e ) { diff --git a/Makefile.old b/Makefile.old index c0b66adb..02aa81b4 100644 --- a/Makefile.old +++ b/Makefile.old @@ -4,7 +4,7 @@ # Release # Debug # -# Serial verisons: Release Debug +# Serial versions: Release Debug # # Makefile sets CFG variable, cd's to appropriate directory, runs Makefile recursively # Recursive make sets appropriate compiler, objects, options, libraries, and compiles PHREEQC diff --git a/PBasic.cpp b/PBasic.cpp index 0b7b68dc..6fb6f1a0 100644 --- a/PBasic.cpp +++ b/PBasic.cpp @@ -2441,8 +2441,8 @@ factor(struct LOC_exec * LINK) require(tokcomma, LINK); varrec* area_varrec = LINK->t->UU.vp; if (LINK->t->kind != tokvar || area_varrec->stringvar != 0) - snerr(": Missing or wrong type area varaiable."); - // varaiable for thickness + snerr(": Missing or wrong type area variable."); + // variable for thickness LINK->t = LINK->t->next; require(tokcomma, LINK); varrec* thickness_varrec = LINK->t->UU.vp; @@ -5595,7 +5595,7 @@ cmdput(struct LOC_exec *LINK) /* get parentheses */ require(toklp, LINK); - /* get first argumen */ + /* get first argument */ double value = realexpr(LINK); for (;;) @@ -5628,7 +5628,7 @@ cmdput_(struct LOC_exec* LINK) /* get parentheses */ require(toklp, LINK); - /* get first argumen */ + /* get first argument */ char* str = strexpr(LINK); std::string s_value = str; PhreeqcPtr->PHRQ_free(str); diff --git a/Phreeqc.cpp b/Phreeqc.cpp index 25d903af..672b22d2 100644 --- a/Phreeqc.cpp +++ b/Phreeqc.cpp @@ -1966,7 +1966,7 @@ Phreeqc::InternalCopy(const Phreeqc* pSrc) //count_tally_table_rows = 0; /* transport.cpp ------------------------------- */ - /* storage is created and freed in tranport.cpp */ + /* storage is created and freed in transport.cpp */ sol_D = NULL; sol_D_dbg = NULL; J_ij = NULL; diff --git a/Solution.cxx b/Solution.cxx index a326adf5..9bf4a56e 100644 --- a/Solution.cxx +++ b/Solution.cxx @@ -1409,7 +1409,7 @@ cxxSolution::add(const cxxSolution & addee, LDBLE extensive) this->ph = f1 * this->ph + f2 * addee.ph; this->pe = f1 * this->pe + f2 * addee.pe; this->mu = f1 * this->mu + f2 * addee.mu; - this->ah2o = f1 * this->mu + f2 * addee.ah2o; + this->ah2o = f1 * this->ah2o + f2 * addee.ah2o; this->total_h += addee.total_h * extensive; this->total_o += addee.total_o * extensive; this->cb += addee.cb * extensive; diff --git a/cl1.cpp b/cl1.cpp index 22a748e5..e3d83170 100644 --- a/cl1.cpp +++ b/cl1.cpp @@ -460,7 +460,7 @@ cl1(int k, int l, int m, int n, #endif if (kk < 0) { -/* no positive value found in L340 or bypass intermediate verticies */ +/* no positive value found in L340 or bypass intermediate vertices */ *l_kode = 2; goto L590; } diff --git a/cl1mp.cpp b/cl1mp.cpp index 79767406..c9d1a8ad 100644 --- a/cl1mp.cpp +++ b/cl1mp.cpp @@ -603,7 +603,7 @@ cl1mp(int k, int l, int m, int n, #endif if (kk < 0) { -/* no positive value found in L340 or bypass intermediate verticies */ +/* no positive value found in L340 or bypass intermediate vertices */ *kode = 2; goto L590; } diff --git a/common/Parser.h b/common/Parser.h index ac6620bc..d3a11c58 100644 --- a/common/Parser.h +++ b/common/Parser.h @@ -83,7 +83,7 @@ class CParser: public PHRQ_base Arguments: string Input, character string used in printing error message - allow_empty Input, True or false, if a blank line is accepable + allow_empty Input, True or false, if a blank line is acceptable if false, another line is read allow_eof Input, True or false, if EOF is acceptable allow_keyword Input, True or false, if a keyword is acceptable diff --git a/common/Utils.cxx b/common/Utils.cxx index b2585a56..06034668 100644 --- a/common/Utils.cxx +++ b/common/Utils.cxx @@ -155,7 +155,7 @@ Utilities::convert_time(double t, std::string in, std::string out) { t = t * 3600. * 24. * 365.25; } - // convert to ouput units + // convert to output units if (out.substr(0,1) == "m") { t = t / 60.; diff --git a/cvode.cpp b/cvode.cpp index 509412aa..f273c7a8 100644 --- a/cvode.cpp +++ b/cvode.cpp @@ -1672,7 +1672,7 @@ CVEwtSet(CVodeMem cv_mem, N_Vector ycur) /*********************** CVEwtSetSS ********************************* - This routine sets ewt as decribed above in the case tol_type = SS. + This routine sets ewt as described above in the case tol_type = SS. It tests for non-positive components before inverting. CVEwtSetSS returns TRUE if ewt is successfully set to a positive vector and FALSE otherwise. In the latter case, ewt is considered @@ -1698,7 +1698,7 @@ CVEwtSetSS(CVodeMem cv_mem, N_Vector ycur) /*********************** CVEwtSetSV ********************************* - This routine sets ewt as decribed above in the case tol_type = SV. + This routine sets ewt as described above in the case tol_type = SV. It tests for non-positive components before inverting. CVEwtSetSV returns TRUE if ewt is successfully set to a positive vector and FALSE otherwise. In the latter case, ewt is considered @@ -3249,7 +3249,7 @@ static void CVSetEta(CVodeMem cv_mem) { - /* If eta below the threshhold THRESH, reject a change of step size */ + /* If eta below the threshold THRESH, reject a change of step size */ if (eta < THRESH) { eta = ONE; @@ -3320,7 +3320,7 @@ CVComputeEtaqp1(CVodeMem cv_mem) corresponding value of q. If there is a tie, the preference order is to (1) keep the same order, then (2) decrease the order, and finally (3) increase the order. If the maximum eta value - is below the threshhold THRESH, the order is kept unchanged and + is below the threshold THRESH, the order is kept unchanged and eta is set to 1. ******************************************************************/ diff --git a/global_structures.h b/global_structures.h index 9eba4493..2fa43bd4 100644 --- a/global_structures.h +++ b/global_structures.h @@ -109,7 +109,7 @@ #define TRANSPORT 8 #define PHAST 9 -/* constaints in mass balance */ +/* constants in mass balance */ #define EITHER 0 #define DISSOLVE 1 #define PRECIPITATE -1 @@ -981,7 +981,7 @@ public: alk = 0; // default gfw for species gfw = 1; - // formula from which to calcuate gfw + // formula from which to calculate gfw gfw_formula = NULL; // pointer to unknown structure unknown = NULL; diff --git a/input.cpp b/input.cpp index 7235f4ef..1614f797 100644 --- a/input.cpp +++ b/input.cpp @@ -55,7 +55,7 @@ check_line_impl(const char *string, int allow_empty, int allow_eof, * * Arguments: * string Input, character string used in printing error message - * allow_empty Input, True or false, if a blank line is accepable + * allow_empty Input, True or false, if a blank line is acceptable * if false, another line is read * allow_eof Input, True or false, if EOF is acceptable * allow_keyword Input, True or false, if a keyword is acceptable diff --git a/inverse.cpp b/inverse.cpp index 9e5c1ccb..8f4a6612 100644 --- a/inverse.cpp +++ b/inverse.cpp @@ -74,7 +74,7 @@ inverse_models(void) fprintf(netpath_file, "2.14 # File format\n"); } /* - * Fill in stucture "use". + * Fill in structure "use". */ use.Set_inverse_in(true); use.Set_inverse_ptr(&inverse[n]); diff --git a/mainsubs.cpp b/mainsubs.cpp index 051e85be..64d65549 100644 --- a/mainsubs.cpp +++ b/mainsubs.cpp @@ -931,7 +931,7 @@ saver(void) /* ---------------------------------------------------------------------- */ { /* - * Save results of calcuations (data in variables with _x, + * Save results of calculations (data in variables with _x, * in unknown structure x, in master, or s) into structure * arrays. Structure "save" has info on whether to save * data for each entity (solution, ex, surf, pp, gas, or s_s). diff --git a/model.cpp b/model.cpp index 863ff8d0..0c85693e 100644 --- a/model.cpp +++ b/model.cpp @@ -1964,7 +1964,7 @@ jacobian_sums(void) *sum_jacob2[k].target += *sum_jacob2[k].source * sum_jacob2[k].coef; } /* - * Make final adustments to jacobian array + * Make final adjustments to jacobian array */ /* * Ionic strength diff --git a/nvector_serial.cpp b/nvector_serial.cpp index 4227b899..118968be 100644 --- a/nvector_serial.cpp +++ b/nvector_serial.cpp @@ -12,7 +12,7 @@ *------------------------------------------------------------------------* * This is the implementation file for a serial implementation * * of the NVECTOR package. It contains the implementation of * - * the serial machine environment intialization and free * + * the serial machine environment initialization and free * * routines (and of the Fortran callable interfaces to them) * * and of the N_Vector kernels listed in nvector_serial.h. * * * diff --git a/nvector_serial.h b/nvector_serial.h index 8a5ecb90..fbef5df3 100644 --- a/nvector_serial.h +++ b/nvector_serial.h @@ -107,7 +107,7 @@ /**************************************************************** * PART I: * - * Serial implementaion of M_Env and N_Vector * + * Serial implementation of M_Env and N_Vector * ****************************************************************/ /* The serial implementation of the machine environment has diff --git a/pitzer.cpp b/pitzer.cpp index 35d494fc..a0c10b4e 100644 --- a/pitzer.cpp +++ b/pitzer.cpp @@ -737,7 +737,7 @@ PTEMP(LDBLE TK) { /* C -C SUBROUTINE TO CALUCLATE TEMPERATURE DEPENDENCE OF PITZER PARAMETER +C SUBROUTINE TO CALCULATE TEMPERATURE DEPENDENCE OF PITZER PARAMETER C */ LDBLE TR = 298.15; diff --git a/prep.cpp b/prep.cpp index 7494dfbe..fb867e08 100644 --- a/prep.cpp +++ b/prep.cpp @@ -674,7 +674,7 @@ build_ss_assemblage(void) /* include mole fraction */ store_mb(&(x[i]->phase->log10_fraction_x), &(x[i]->f), 1.0); - /* include activity coeficient */ + /* include activity coefficient */ store_mb(&(x[i]->phase->log10_lambda), &(x[i]->f), 1.0); /* * Put coefficients into mass action equations @@ -4478,7 +4478,7 @@ setup_solution(void) (ph_unknown == charge_balance_unknown) && (alkalinity_unknown != NULL)) { - error_msg("pH adustment cannot attain charge balance" + error_msg("pH adjustment cannot attain charge balance" " when alkalinity is fixed.", CONTINUE); input_error++; } diff --git a/read.cpp b/read.cpp index 9a60114c..bb451db6 100644 --- a/read.cpp +++ b/read.cpp @@ -7477,7 +7477,7 @@ read_title(void) } /* - * Read additonal lines + * Read additional lines */ for (;;) { @@ -9161,7 +9161,7 @@ read_solid_solutions(void) if (j != 1) { error_string = sformatf( - "Expected temperature (Celcius) for parameters, assemblage %d, solid solution %s, using 25 C", + "Expected temperature (Celsius) for parameters, assemblage %d, solid solution %s, using 25 C", n_user, ss_ptr->Get_name().c_str()); warning_msg(error_string); diff --git a/sit.cpp b/sit.cpp index 8e9c4e8c..4f3feb53 100644 --- a/sit.cpp +++ b/sit.cpp @@ -1586,7 +1586,7 @@ PTEMP_SIT(LDBLE TK) { /* C -C SUBROUTINE TO CALUCLATE TEMPERATURE DEPENDENCE OF PITZER PARAMETER +C SUBROUTINE TO CALCULATE TEMPERATURE DEPENDENCE OF PITZER PARAMETER C */ LDBLE TR = 298.15; diff --git a/step.cpp b/step.cpp index be02a1f4..d46066d2 100644 --- a/step.cpp +++ b/step.cpp @@ -620,10 +620,86 @@ add_mix(cxxMix *mix_ptr) * and other variables. */ LDBLE sum_fractions, intensive, extensive; + LDBLE sum_fractions_water=0, sum_positive_water=0, intensive_water=0, extensive_water=0; cxxSolution *solution_ptr; int count_positive; LDBLE sum_positive; + if (mix_ptr == NULL) + return (OK); + if (mix_ptr->Get_mixComps().size() == 0) + return (OK); + sum_fractions = 0.0; + sum_positive = 0.0; + count_positive = 0; + std::map::const_iterator it; + for (it = mix_ptr->Get_mixComps().begin(); it != mix_ptr->Get_mixComps().end(); it++) + { + solution_ptr = Utilities::Rxn_find(Rxn_solution_map, it->first); + if (solution_ptr == NULL) + { + error_string = sformatf("Mix solution not found, %d.", + it->first); + error_msg(error_string, CONTINUE); + input_error++; + continue; + } + sum_fractions += it->second; + sum_fractions_water += it->second * solution_ptr->Get_mass_water(); + if (it->second > 0) + { + sum_positive += it->second; + sum_positive_water += it->second * solution_ptr->Get_mass_water(); + count_positive++; + } + } + for (it = mix_ptr->Get_mixComps().begin(); it != mix_ptr->Get_mixComps().end(); it++) + { + solution_ptr = Utilities::Rxn_find(Rxn_solution_map, it->first); + if (solution_ptr == NULL) + { + error_string = sformatf( "Mix solution not found, %d.", + it->first); + error_msg(error_string, CONTINUE); + input_error++; + continue; + } + extensive = it->second; + extensive_water = it->second * solution_ptr->Get_mass_water(); + intensive = extensive / sum_fractions; + intensive_water = extensive_water / sum_fractions_water; + + if (count_positive < (int) mix_ptr->Get_mixComps().size()) + { + if (it->second > 0) + { + intensive = extensive / sum_positive; + intensive_water = extensive_water / sum_positive; + } + else + { + intensive = 0; + } + } + add_solution(solution_ptr, extensive, intensive_water); + } + return (OK); +} +#ifdef SKIP_ERROR +/* ---------------------------------------------------------------------- */ +int Phreeqc:: +add_mix(cxxMix* mix_ptr) +/* ---------------------------------------------------------------------- */ +{ + /* + * calls add_solution to accumulate all data in master->totals + * and other variables. + */ + LDBLE sum_fractions, intensive, extensive; + cxxSolution* solution_ptr; + int count_positive; + LDBLE sum_positive; + if (mix_ptr == NULL) return (OK); if (mix_ptr->Get_mixComps().size() == 0) @@ -646,15 +722,15 @@ add_mix(cxxMix *mix_ptr) solution_ptr = Utilities::Rxn_find(Rxn_solution_map, it->first); if (solution_ptr == NULL) { - error_string = sformatf( "Mix solution not found, %d.", - it->first); + error_string = sformatf("Mix solution not found, %d.", + it->first); error_msg(error_string, CONTINUE); input_error++; continue; } extensive = it->second; intensive = extensive / sum_fractions; - if (count_positive < (int) mix_ptr->Get_mixComps().size()) + if (count_positive < (int)mix_ptr->Get_mixComps().size()) { if (it->second > 0) { @@ -669,6 +745,7 @@ add_mix(cxxMix *mix_ptr) } return (OK); } +#endif /* ---------------------------------------------------------------------- */ int Phreeqc:: add_pp_assemblage(cxxPPassemblage *pp_assemblage_ptr) diff --git a/structures.cpp b/structures.cpp index c6b83ec9..1d5851a5 100644 --- a/structures.cpp +++ b/structures.cpp @@ -2488,7 +2488,7 @@ unknown_delete(int i) /* ---------------------------------------------------------------------- */ { /* - * Delete unknow from list x + * Delete unknown from list x */ unknown_free(x[i]); x.erase(x.begin() + (size_t)i); @@ -2636,7 +2636,7 @@ logk_init(class logk *logk_ptr) */ logk_ptr->name = NULL; /* - * set varibles = 0 + * set variables = 0 */ logk_ptr->lk = 0.0; for (i = 0; i < MAX_LOG_K_INDICES; i++) diff --git a/tally.cpp b/tally.cpp index 5f703e93..0102a604 100644 --- a/tally.cpp +++ b/tally.cpp @@ -31,7 +31,7 @@ get_tally_table_rows_columns(int *rows, int *columns) returns number of rows and columns in table get_tally_table_row_heading(int row, char *string) row is C row number - returns row descripter for row + returns row descriptor for row get_tally_table_column_heading(int column, int *type, char *string) column is C column number returns column heading for column @@ -803,7 +803,7 @@ build_tally_table(void) char token[MAX_LENGTH]; const char* cptr; /* - * make list of all elements in all entitites + * make list of all elements in all entities * defines the number of rows in the table */ get_all_components(); @@ -811,7 +811,7 @@ build_tally_table(void) save_print_use = pr.use; pr.use = FALSE; /* - * find nuber of columns + * find number of columns */ count_tally_table_columns = 0; /* diff --git a/tidy.cpp b/tidy.cpp index 35ddce08..9449e350 100644 --- a/tidy.cpp +++ b/tidy.cpp @@ -4661,7 +4661,7 @@ ss_prep(LDBLE t, cxxSS *ss_ptr, int print) { if (print == TRUE) output_msg(sformatf( - "\nLocal minimum in the solidus curve coresponding to a maximum\nin the minimum stoichiometric saturation curve.\n\n")); + "\nLocal minimum in the solidus curve corresponding to a maximum\nin the minimum stoichiometric saturation curve.\n\n")); } else { diff --git a/transport.cpp b/transport.cpp index 6e69e8df..4f84778c 100644 --- a/transport.cpp +++ b/transport.cpp @@ -28,7 +28,7 @@ struct CURRENT_CELLS LDBLE dif, ele, R; // diffusive and electric components, relative cell resistance } *current_cells; LDBLE sum_R, sum_Rd; // sum of R, sum of (current_cells[0].dif - current_cells[i].dif) * R -struct V_M // For calculating Vinograd and McBain's zero-charge, diffusive tranfer of individual solutes +struct V_M // For calculating Vinograd and McBain's zero-charge, diffusive transfer of individual solutes { LDBLE grad, D, z, c, zc, Dz, Dzc; LDBLE b_ij; // harmonic mean of cell properties, with EDL enrichment @@ -1653,14 +1653,17 @@ init_heat_mix(int l_nmix) { if (implicit) { - LDBLE viscos_f0; + LDBLE viscos_f; l_heat_nmix = l_nmix; for (i = 1; i <= count_cells + 1; i++) { heat_mix_array[i - 1] = heat_mix_array[i] / l_heat_nmix; /* for implicit, m[i] has mixf with higher cell */ - viscos_f0 = sol_D[i - 1].viscos_f0 * exp(heat_diffc / sol_D[i - 1].tk_x - heat_diffc / 298.15); - viscos_f0 += sol_D[i].viscos_f0 * exp(heat_diffc / sol_D[i].tk_x - heat_diffc / 298.15); - heat_mix_array[i - 1] *= (viscos_f0 / 2); + if (print_viscosity) + { + viscos_f = sol_D[i - 1].viscos_f * exp(heat_diffc / sol_D[i - 1].tk_x - heat_diffc / 298.15); + viscos_f += sol_D[i].viscos_f * exp(heat_diffc / sol_D[i].tk_x - heat_diffc / 298.15); + heat_mix_array[i - 1] *= (viscos_f / 2); + } } } else @@ -3871,7 +3874,7 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) for IL: A * por_il / por. por_il should be entered for the cell with the maximal cec. - IL water is related to X-, thus the cec (eq/L IL water) is the same for all cells if X is difined. + IL water is related to X-, thus the cec (eq/L IL water) is the same for all cells if X is defined. IL-water = (free + DL porewater) * por_il / por. for IL: A * aq_il / t_aq. */ @@ -4352,9 +4355,9 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) b_j *= sol_D[icell].spec[i].Dwt; else { - dum2 = sol_D[icell].spec[i].Dwt / sol_D[icell].viscos_f0; + dum2 = sol_D[icell].spec[i].Dwt / sol_D[icell].viscos_f; dum2 *= exp(sol_D[icell].spec[i].dw_t / sol_D[jcell].tk_x - sol_D[icell].spec[i].dw_t / sol_D[icell].tk_x); - dum2 *= sol_D[jcell].viscos_f0; + dum2 *= sol_D[jcell].viscos_f; b_j *= dum2; } if (sol_D[icell].spec[i].dw_a_v_dif) @@ -4463,9 +4466,9 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) b_i *= sol_D[jcell].spec[j].Dwt; else { - dum2 = sol_D[jcell].spec[j].Dwt / sol_D[jcell].viscos_f0; + dum2 = sol_D[jcell].spec[j].Dwt / sol_D[jcell].viscos_f; dum2 *= exp(sol_D[jcell].spec[j].dw_t / sol_D[icell].tk_x - sol_D[jcell].spec[j].dw_t / sol_D[jcell].tk_x); - dum2 *= sol_D[icell].viscos_f0; + dum2 *= sol_D[icell].viscos_f; b_i *= dum2; } if (sol_D[icell].spec[i].dw_a_v_dif) @@ -5602,7 +5605,7 @@ diff_stag_surf(int mobile_cell) * Diffuse stagnant and mobile surfaces, following the steps of disp_surf. * First the mobile/stagnant surfaces are mixed, then the stagnant surfaces * when not already done. -* If mixing factors among the cells are defined expicitly, it is assumed that +* If mixing factors among the cells are defined explicitly, it is assumed that * mixing with a lower numbered cell was done when that cell was processed: * for any cell in MCD, need only include the mixing factors for higher numbered cells. */ diff --git a/utilities.cpp b/utilities.cpp index b2ff4839..a88eda09 100644 --- a/utilities.cpp +++ b/utilities.cpp @@ -483,7 +483,7 @@ get_token(const char** eqnaddr, std::string& string, LDBLE* l_z, int* l) cptr = *eqnaddr; i = 0; /* - * Find end of token or begining of charge + * Find end of token or beginning of charge */ while (((c = *cptr) != '+') && (c != '-') && (c != '=') && (c != '\0')) { From 4e80a54467a084df3b666c7d6fc56a4798fd3301 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Tue, 8 Oct 2024 20:05:00 +0000 Subject: [PATCH 214/384] Squashed 'phreeqcpp/' changes from 7c7fafd..c876219 c876219 Merge commit '64310ada821d1cc387af4507db7029fe3326784b' 64310ad Squashed 'common/' changes from 399aba2..648db22 git-subtree-dir: phreeqcpp git-subtree-split: c876219b1b064ab7c17e0bc4ad8bff13e0aeb108 From 919f6119474cf24e9d06e364506da10fcedbe765 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Tue, 8 Oct 2024 14:19:47 -0600 Subject: [PATCH 215/384] ex12b added to examples --- CMakeLists.txt | 1 + ex12b | 74 + ex12b.out | 9810 ++++++++++++++++++++++++++++++++++++++++++++++++ 3 files changed, 9885 insertions(+) create mode 100644 ex12b create mode 100644 ex12b.out diff --git a/CMakeLists.txt b/CMakeLists.txt index 758e7fe6..ac885a5a 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -17,6 +17,7 @@ ex10 ex11 ex12 ex12a +ex12b ex13a ex13ac ex13b diff --git a/ex12b b/ex12b new file mode 100644 index 00000000..f7f3af99 --- /dev/null +++ b/ex12b @@ -0,0 +1,74 @@ +#DATABASE ../database/phreeqc.dat +#PRINT +# -reset false + +TITLE Example 12b.--Compare traditional and multicomponent diffusive transport of heat and solutes. + Multicomponent diffusion coefficients decrease with the viscosity of the solution, changing more as temperature decreases. + +SOLUTION 0 Fixed temp 24C, and NaCl conc (first type boundary cond) at inlet + temp 24; Na 24; Cl 24 +SOLUTION 1-31 24 mM KBr, initial temp 0C + temp 0; K 24; Br 24 +EXCHANGE_SPECIES + K+ + X- = KX +EXCHANGE 1-31 + KX 0.048 +END +TRANSPORT + -cells 30 + -lengths 0.3333333 + -shifts 1 + -flow_direction diffusion + -boundary_conditions constant closed + -thermal_diffusion 3.0 # heat is retarded equal to Na + -diffusion_coefficient 0.3e-9 # m^2/s + -time_step 1.0e+10 1 # max_mixf = 2/9 = Dt_max * De / Dx^2. Dt_max = 8.2140e+07 seconds, Number of mixes = 1e10 / 8.214e7 = 122 +USER_GRAPH 1 Example 12b + -headings Tradit:Na Cl TC Analyt + # -headings TC Analyt + -chart_title "Compare traditional and multicomponent diffusive transport" + -axis_titles "DISTANCE, IN METERS" "MILLIMOLES PER KILOGRAM WATER", "DEGREES CELSIUS" + -initial_solutions false + -plot_concentration_vs x + -axis_scale sy_axis 0 + -start + 10 x = DIST + 20 PLOT_XY x, TOT("Na")*1000, symbol = Plus + 30 PLOT_XY x, TOT("Cl")*1000, symbol = Plus + 40 PLOT_XY x, TC, symbol = XCross, y-axis 2 : print tc, diff_c("Cl-") + 50 if (x > 10 OR SIM_TIME <= 0) THEN END + 60 DATA 0.254829592, -0.284496736, 1.421413741, -1.453152027, 1.061405429, 0.3275911 + 70 READ a1, a2, a3, a4, a5, a6 +# Calculate and plot Cl analytical... + 80 z = x / (2 * SQRT(3e-10 * SIM_TIME / 1.0)) + 90 GOSUB 2000 + 100 PLOT_XY x, 24 * erfc, color = Green, symbol = Square, symbol_size = 8,\ + line_width = 0 +# Calculate and plot 3 times retarded Na and temperature analytical... + 110 z = z * SQRT(3.0) + 120 GOSUB 2000 + 130 PLOT_XY x, 24 * erfc, color = Blue, symbol = Square, symbol_size = 8,\ + line_width = 0 + 140 END + 2000 REM calculate erfc... + 2050 b = 1 / (1 + a6 * z) + 2060 erfc = b * (a1 + b * (a2 + b * (a3 + b * (a4 + b * a5)))) * EXP(-(z * z)) + 2080 RETURN + -end +END + +Reinitialize the column... +copy cell 31 1-30 +END +TRANSPORT + -multi_d true 0.3e-9 1 0.05 0 false # will give the traditional results when tc = 25 throughout + -thermal_diffusion 3.0 1.33e-9 # efine the diffusion coefficient for heat to be equal to Na + -implicit true 3 -12 # max_mixf = 3, min_dif_LM = -12 +USER_GRAPH 1 Example 12b + -headings MultiD&Visc&Implicit:Na Cl TC + -start + 10 x = DIST + 20 PLOT_XY x, TOT("Na")*1000, symbol = Circle, line_width = 0, symbol_size = 5, color = Red + 30 PLOT_XY x, TOT("Cl")*1000, symbol = Circle, line_width = 0, symbol_size = 5, color = Green + 40 PLOT_XY x, TC, symbol = Circle, line_width = 0, symbol_size = 8, y-axis 2, color = Blue +END diff --git a/ex12b.out b/ex12b.out new file mode 100644 index 00000000..00f8b1d0 --- /dev/null +++ b/ex12b.out @@ -0,0 +1,9810 @@ + Input file: ex12b + Output file: ex12b.out +Database file: ../database/phreeqc.dat + +------------------ +Reading data base. +------------------ + + SOLUTION_MASTER_SPECIES + SOLUTION_SPECIES + PHASES + EXCHANGE_MASTER_SPECIES + EXCHANGE_SPECIES + SURFACE_MASTER_SPECIES + SURFACE_SPECIES + MEAN_GAMMAS + RATES + END +------------------------------------ +Reading input data for simulation 1. +------------------------------------ + + DATABASE ../database/phreeqc.dat + TITLE Example 12b.--Compare traditional and multicomponent diffusive transport of heat and solutes. + Multicomponent diffusion coefficients decrease with the viscosity of the solution, changing more as temperature decreases. + SOLUTION 0 Fixed temp 24C, and NaCl conc (first type boundary cond) at inlet + temp 24 + Na 24 + Cl 24 + SOLUTION 1-31 24 mM KBr, initial temp 0C + temp 0 + K 24 + Br 24 + EXCHANGE_SPECIES + K+ + X- = KX + EXCHANGE 1-31 + KX 0.048 + END +----- +TITLE +----- + + Example 12b.--Compare traditional and multicomponent diffusive transport of heat and solutes. + Multicomponent diffusion coefficients decrease with the viscosity of the solution, changing more as temperature decreases. + +------------------------------------------- +Beginning of initial solution calculations. +------------------------------------------- + +Initial solution 0. Fixed temp 24C, and NaCl conc (first type boundary cond) at inlet + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Cl 2.400e-02 2.400e-02 + Na 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 + pe = 4.000 + Specific Conductance (µS/cm, 24°C) = 2687 + Density (g/cm³) = 0.99829 + Volume (L) = 1.00312 + Viscosity (mPa s) = 0.91317 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -4.679e-09 + Temperature (°C) = 24.00 + Electrical balance (eq) = 4.679e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 4 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.133e-07 1.000e-07 -6.946 -7.000 -0.054 0.00 + OH- 1.093e-07 9.367e-08 -6.961 -7.028 -0.067 -4.01 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.06 +Cl 2.400e-02 + Cl- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 18.16 + HCl 6.977e-10 7.143e-10 -9.156 -9.146 0.010 (0) +H(0) 1.422e-25 + H2 7.111e-26 7.151e-26 -25.148 -25.146 0.002 28.61 +Na 2.400e-02 + Na+ 2.400e-02 2.074e-02 -1.620 -1.683 -0.063 -1.36 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -42.416 -42.413 0.002 30.32 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(297 K, 1 atm) + + H2(g) -22.05 -25.15 -3.10 H2 + H2O(g) -1.53 -0.00 1.53 H2O + Halite -4.94 -3.37 1.57 NaCl + O2(g) -39.53 -42.41 -2.89 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Initial solution 1. 24 mM KBr, initial temp 0C + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 + pe = 4.000 + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 4 (8 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 1.848e-25 + H2 9.239e-26 9.290e-26 -25.034 -25.032 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -51.126 -51.123 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -22.02 -25.03 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -48.46 -51.12 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +----------------------------------------- +Beginning of batch-reaction calculations. +----------------------------------------- + +Reaction step 1. + +Using solution 0. Fixed temp 24C, and NaCl conc (first type boundary cond) at inlet +Using exchange 1. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 3.146e-02 3.146e-02 6.554e-01 0.000 + NaX 1.654e-02 1.654e-02 3.446e-01 -0.063 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Cl 2.400e-02 2.400e-02 + K 1.654e-02 1.654e-02 + Na 7.460e-03 7.460e-03 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = -1.000 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 24°C) = 3061 + Density (g/cm³) = 0.99839 + Volume (L) = 1.00329 + Viscosity (mPa s) = 0.91170 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -4.679e-09 + Temperature (°C) = 24.00 + Electrical balance (eq) = 4.679e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 12 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.133e-07 1.000e-07 -6.946 -7.000 -0.054 0.00 + OH- 1.093e-07 9.367e-08 -6.961 -7.028 -0.067 -4.01 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.06 +Cl 2.400e-02 + Cl- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 18.16 + HCl 6.977e-10 7.143e-10 -9.156 -9.146 0.010 (0) +H(0) 1.422e-15 + H2 7.109e-16 7.148e-16 -15.148 -15.146 0.002 28.61 +K 1.654e-02 + K+ 1.654e-02 1.419e-02 -1.781 -1.848 -0.067 9.08 +Na 7.460e-03 + Na+ 7.460e-03 6.447e-03 -2.127 -2.191 -0.063 -1.36 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -62.415 -62.413 0.002 30.32 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(297 K, 1 atm) + + H2(g) -12.05 -15.15 -3.10 H2 + H2O(g) -1.53 -0.00 1.53 H2O + Halite -5.45 -3.88 1.57 NaCl + O2(g) -59.53 -62.41 -2.89 O2 + Sylvite -4.43 -3.53 0.89 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +------------------ +End of simulation. +------------------ + +------------------------------------ +Reading input data for simulation 2. +------------------------------------ + + TRANSPORT + cells 30 + lengths 0.3333333 + shifts 1 + flow_direction diffusion + boundary_conditions constant closed + thermal_diffusion 3.0 # heat is retarded equal to Na + diffusion_coefficient 0.3e-9 # m^2/s + time_step 1.0e+10 1 # max_mixf = 2/9 = Dt_max * De / Dx^2. Dt_max = 8.2140e+07 seconds, Number of mixes = 1e10 / 8.214e7 = 122 + USER_GRAPH 1 Example 12b +WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 30. +WARNING: No dispersivities were read; disp = 0 assumed. + -headings Tradit:Na Cl TC Analyt + -chart_title "Compare traditional and multicomponent diffusive transport" + -axis_titles "DISTANCE, IN METERS" "MILLIMOLES PER KILOGRAM WATER", "DEGREES CELSIUS" + -initial_solutions false + -plot_concentration_vs x + -axis_scale sy_axis 0 + -start + 10 x = DIST + 20 PLOT_XY x, TOT("Na")*1000, symbol = Plus + 30 PLOT_XY x, TOT("Cl")*1000, symbol = Plus + 40 PLOT_XY x, TC, symbol = XCross, y-axis 2 : print tc, diff_c("Cl-") + 50 if (x > 10 OR SIM_TIME <= 0) THEN END + 60 DATA 0.254829592, -0.284496736, 1.421413741, -1.453152027, 1.061405429, 0.3275911 + 70 READ a1, a2, a3, a4, a5, a6 + 80 z = x / (2 * SQRT(3e-10 * SIM_TIME / 1.0)) + 90 GOSUB 2000 + 100 PLOT_XY x, 24 * erfc, color = Green, symbol = Square, symbol_size = 8, line_width = 0 + 110 z = z * SQRT(3.0) + 120 GOSUB 2000 + 130 PLOT_XY x, 24 * erfc, color = Blue, symbol = Square, symbol_size = 8, line_width = 0 + 140 END + 2000 REM calculate erfc... + 2050 b = 1 / (1 + a6 * z) + 2060 erfc = b * (a1 + b * (a2 + b * (a3 + b * (a4 + b * a5)))) * EXP(-(z * z)) + 2080 RETURN + -end + END +------------------------------------ +Beginning of transport calculations. +------------------------------------ + +------------------------------- +Equilibrating initial solutions +------------------------------- + +Using solution 0. Fixed temp 24C, and NaCl conc (first type boundary cond) at inlet + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Cl 2.400e-02 2.400e-02 + Na 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 4.000 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 24°C) = 2687 + Density (g/cm³) = 0.99829 + Volume (L) = 1.00312 + Viscosity (mPa s) = 0.91317 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -4.679e-09 + Temperature (°C) = 24.00 + Electrical balance (eq) = 4.679e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 0 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.133e-07 1.000e-07 -6.946 -7.000 -0.054 0.00 + OH- 1.093e-07 9.367e-08 -6.961 -7.028 -0.067 -4.01 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.06 +Cl 2.400e-02 + Cl- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 18.16 + HCl 6.977e-10 7.143e-10 -9.156 -9.146 0.010 (0) +H(0) 1.422e-25 + H2 7.111e-26 7.151e-26 -25.148 -25.146 0.002 28.61 +Na 2.400e-02 + Na+ 2.400e-02 2.074e-02 -1.620 -1.683 -0.063 -1.36 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -42.416 -42.413 0.002 30.32 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(297 K, 1 atm) + + H2(g) -22.05 -25.15 -3.10 H2 + H2O(g) -1.53 -0.00 1.53 H2O + Halite -4.94 -3.37 1.57 NaCl + O2(g) -39.53 -42.41 -2.89 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 1. 24 mM KBr, initial temp 0C +Using exchange 1. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 2. 24 mM KBr, initial temp 0C +Using exchange 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (26 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 3. 24 mM KBr, initial temp 0C +Using exchange 3. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (39 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 4. 24 mM KBr, initial temp 0C +Using exchange 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (52 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 5. 24 mM KBr, initial temp 0C +Using exchange 5. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (65 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 6. 24 mM KBr, initial temp 0C +Using exchange 6. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (78 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 7. 24 mM KBr, initial temp 0C +Using exchange 7. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (91 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 8. 24 mM KBr, initial temp 0C +Using exchange 8. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (104 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 9. 24 mM KBr, initial temp 0C +Using exchange 9. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (117 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 10. 24 mM KBr, initial temp 0C +Using exchange 10. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (130 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 11. 24 mM KBr, initial temp 0C +Using exchange 11. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (143 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 12. 24 mM KBr, initial temp 0C +Using exchange 12. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (156 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 13. 24 mM KBr, initial temp 0C +Using exchange 13. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (169 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 14. 24 mM KBr, initial temp 0C +Using exchange 14. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (182 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 15. 24 mM KBr, initial temp 0C +Using exchange 15. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (195 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 16. 24 mM KBr, initial temp 0C +Using exchange 16. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (208 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 17. 24 mM KBr, initial temp 0C +Using exchange 17. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (221 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 18. 24 mM KBr, initial temp 0C +Using exchange 18. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (234 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 19. 24 mM KBr, initial temp 0C +Using exchange 19. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (247 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 20. 24 mM KBr, initial temp 0C +Using exchange 20. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (260 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 21. 24 mM KBr, initial temp 0C +Using exchange 21. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (273 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 22. 24 mM KBr, initial temp 0C +Using exchange 22. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (286 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 23. 24 mM KBr, initial temp 0C +Using exchange 23. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (299 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 24. 24 mM KBr, initial temp 0C +Using exchange 24. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (312 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 25. 24 mM KBr, initial temp 0C +Using exchange 25. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (325 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 26. 24 mM KBr, initial temp 0C +Using exchange 26. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (338 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 27. 24 mM KBr, initial temp 0C +Using exchange 27. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (351 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 28. 24 mM KBr, initial temp 0C +Using exchange 28. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (364 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 29. 24 mM KBr, initial temp 0C +Using exchange 29. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (377 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 30. 24 mM KBr, initial temp 0C +Using exchange 30. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (390 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +WARNING: +Calculating transport: 30 (mobile) cells, 1 shifts, 122 mixruns... + + +Transport step 1. Mixrun 1. + +Transport step 1. Mixrun 2. + +Transport step 1. Mixrun 3. + +Transport step 1. Mixrun 4. + +Transport step 1. Mixrun 5. + +Transport step 1. Mixrun 6. + +Transport step 1. Mixrun 7. + +Transport step 1. Mixrun 8. + +Transport step 1. Mixrun 9. + +Transport step 1. Mixrun 10. + +Transport step 1. Mixrun 11. + +Transport step 1. Mixrun 12. + +Transport step 1. Mixrun 13. + +Transport step 1. Mixrun 14. + +Transport step 1. Mixrun 15. + +Transport step 1. Mixrun 16. + +Transport step 1. Mixrun 17. + +Transport step 1. Mixrun 18. + +Transport step 1. Mixrun 19. + +Transport step 1. Mixrun 20. + +Transport step 1. Mixrun 21. + +Transport step 1. Mixrun 22. + +Transport step 1. Mixrun 23. + +Transport step 1. Mixrun 24. + +Transport step 1. Mixrun 25. + +Transport step 1. Mixrun 26. + +Transport step 1. Mixrun 27. + +Transport step 1. Mixrun 28. + +Transport step 1. Mixrun 29. + +Transport step 1. Mixrun 30. + +Transport step 1. Mixrun 31. + +Transport step 1. Mixrun 32. + +Transport step 1. Mixrun 33. + +Transport step 1. Mixrun 34. + +Transport step 1. Mixrun 35. + +Transport step 1. Mixrun 36. + +Transport step 1. Mixrun 37. + +Transport step 1. Mixrun 38. + +Transport step 1. Mixrun 39. + +Transport step 1. Mixrun 40. + +Transport step 1. Mixrun 41. + +Transport step 1. Mixrun 42. + +Transport step 1. Mixrun 43. + +Transport step 1. Mixrun 44. + +Transport step 1. Mixrun 45. + +Transport step 1. Mixrun 46. + +Transport step 1. Mixrun 47. + +Transport step 1. Mixrun 48. + +Transport step 1. Mixrun 49. + +Transport step 1. Mixrun 50. + +Transport step 1. Mixrun 51. + +Transport step 1. Mixrun 52. + +Transport step 1. Mixrun 53. + +Transport step 1. Mixrun 54. + +Transport step 1. Mixrun 55. + +Transport step 1. Mixrun 56. + +Transport step 1. Mixrun 57. + +Transport step 1. Mixrun 58. + +Transport step 1. Mixrun 59. + +Transport step 1. Mixrun 60. + +Transport step 1. Mixrun 61. + +Transport step 1. Mixrun 62. + +Transport step 1. Mixrun 63. + +Transport step 1. Mixrun 64. + +Transport step 1. Mixrun 65. + +Transport step 1. Mixrun 66. + +Transport step 1. Mixrun 67. + +Transport step 1. Mixrun 68. + +Transport step 1. Mixrun 69. + +Transport step 1. Mixrun 70. + +Transport step 1. Mixrun 71. + +Transport step 1. Mixrun 72. + +Transport step 1. Mixrun 73. + +Transport step 1. Mixrun 74. + +Transport step 1. Mixrun 75. + +Transport step 1. Mixrun 76. + +Transport step 1. Mixrun 77. + +Transport step 1. Mixrun 78. + +Transport step 1. Mixrun 79. + +Transport step 1. Mixrun 80. + +Transport step 1. Mixrun 81. + +Transport step 1. Mixrun 82. + +Transport step 1. Mixrun 83. + +Transport step 1. Mixrun 84. + +Transport step 1. Mixrun 85. + +Transport step 1. Mixrun 86. + +Transport step 1. Mixrun 87. + +Transport step 1. Mixrun 88. + +Transport step 1. Mixrun 89. + +Transport step 1. Mixrun 90. + +Transport step 1. Mixrun 91. + +Transport step 1. Mixrun 92. + +Transport step 1. Mixrun 93. + +Transport step 1. Mixrun 94. + +Transport step 1. Mixrun 95. + +Transport step 1. Mixrun 96. + +Transport step 1. Mixrun 97. + +Transport step 1. Mixrun 98. + +Transport step 1. Mixrun 99. + +Transport step 1. Mixrun 100. + +Transport step 1. Mixrun 101. + +Transport step 1. Mixrun 102. + +Transport step 1. Mixrun 103. + +Transport step 1. Mixrun 104. + +Transport step 1. Mixrun 105. + +Transport step 1. Mixrun 106. + +Transport step 1. Mixrun 107. + +Transport step 1. Mixrun 108. + +Transport step 1. Mixrun 109. + +Transport step 1. Mixrun 110. + +Transport step 1. Mixrun 111. + +Transport step 1. Mixrun 112. + +Transport step 1. Mixrun 113. + +Transport step 1. Mixrun 114. + +Transport step 1. Mixrun 115. + +Transport step 1. Mixrun 116. + +Transport step 1. Mixrun 117. + +Transport step 1. Mixrun 118. + +Transport step 1. Mixrun 119. + +Transport step 1. Mixrun 120. + +Transport step 1. Mixrun 121. + +Transport step 1. Mixrun 122. + + 24 1.9917e-09 +Using solution 0. Solution after simulation 2. + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Cl 2.400e-02 2.400e-02 + Na 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 4.000 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 24°C) = 2687 + Density (g/cm³) = 0.99829 + Volume (L) = 1.00312 + Viscosity (mPa s) = 0.91317 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -4.679e-09 + Temperature (°C) = 24.00 + Electrical balance (eq) = 4.679e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 0 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.133e-07 1.000e-07 -6.946 -7.000 -0.054 0.00 + OH- 1.093e-07 9.367e-08 -6.961 -7.028 -0.067 -4.01 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.06 +Cl 2.400e-02 + Cl- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 18.16 + HCl 6.977e-10 7.143e-10 -9.156 -9.146 0.010 (0) +H(0) 1.422e-25 + H2 7.111e-26 7.151e-26 -25.148 -25.146 0.002 28.61 +Na 2.400e-02 + Na+ 2.400e-02 2.074e-02 -1.620 -1.683 -0.063 -1.36 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -42.416 -42.413 0.002 30.32 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(297 K, 1 atm) + + H2(g) -22.05 -25.15 -3.10 H2 + H2O(g) -1.53 -0.00 1.53 H2O + Halite -4.94 -3.37 1.57 NaCl + O2(g) -39.53 -42.41 -2.89 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 2.1734e+01 1.8991e-09 +Using mix 1. +Using exchange 1. Exchange assemblage after simulation 2. + +Mixture 1. + + 4.426e-01 Solution 0 Solution after simulation 2. + 3.361e-01 Solution 1 Solution after simulation 2. + 2.213e-01 Solution 2 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + NaX 4.400e-02 4.400e-02 9.168e-01 -0.063 + KX 3.995e-03 3.995e-03 8.323e-02 0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.302e-03 1.302e-03 + Cl 2.270e-02 2.270e-02 + K 2.296e-03 2.296e-03 + Na 2.170e-02 2.170e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.027 Charge balance + pe = 11.834 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 22°C) = 2615 + Density (g/cm³) = 0.99889 + Volume (L) = 1.00261 + Viscosity (mPa s) = 0.96277 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.820e-09 + Temperature (°C) = 21.73 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.826e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 8 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.065e-07 9.407e-08 -6.973 -7.027 -0.054 0.00 + OH- 9.732e-08 8.346e-08 -7.012 -7.079 -0.067 -4.11 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.06 +Br 1.302e-03 + Br- 1.302e-03 1.113e-03 -2.885 -2.954 -0.068 24.51 +Cl 2.270e-02 + Cl- 2.270e-02 1.950e-02 -1.644 -1.710 -0.066 18.08 + HCl 6.299e-10 6.449e-10 -9.201 -9.191 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -40.859 -40.857 0.002 28.61 +K 2.296e-03 + K+ 2.296e-03 1.971e-03 -2.639 -2.705 -0.066 9.00 +Na 2.170e-02 + Na+ 2.170e-02 1.877e-02 -1.663 -1.727 -0.063 -1.48 +O(0) 3.678e-12 + O2 1.839e-12 1.849e-12 -11.735 -11.733 0.002 30.14 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(294 K, 1 atm) + + H2(g) -37.76 -40.86 -3.09 H2 + H2O(g) -1.59 -0.00 1.59 H2O + Halite -5.00 -3.44 1.57 NaCl + O2(g) -8.87 -11.73 -2.87 O2 + Sylvite -5.30 -4.42 0.88 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 1.7329e+01 1.7225e-09 +Using mix 2. +Using exchange 2. Exchange assemblage after simulation 2. + +Mixture 2. + + 2.213e-01 Solution 1 Solution after simulation 2. + 5.574e-01 Solution 2 Solution after simulation 2. + 2.213e-01 Solution 3 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + NaX 3.589e-02 3.589e-02 7.476e-01 -0.063 + KX 1.211e-02 1.211e-02 2.524e-01 0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 3.882e-03 3.882e-03 + Cl 2.012e-02 2.012e-02 + K 6.770e-03 6.770e-03 + Na 1.723e-02 1.723e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.074 Charge balance + pe = 12.143 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 17°C) = 2468 + Density (g/cm³) = 0.99992 + Volume (L) = 1.00177 + Viscosity (mPa s) = 1.07259 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -2.001e-08 + Temperature (°C) = 17.33 + Pressure (atm) = 1.00 + Electrical balance (eq) = 2.002e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.547e-08 8.439e-08 -7.020 -7.074 -0.054 0.00 + OH- 7.598e-08 6.523e-08 -7.119 -7.186 -0.066 -4.34 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.04 +Br 3.882e-03 + Br- 3.882e-03 3.322e-03 -2.411 -2.479 -0.068 24.25 +Cl 2.012e-02 + Cl- 2.012e-02 1.730e-02 -1.696 -1.762 -0.065 17.90 + HCl 5.153e-10 5.275e-10 -9.288 -9.278 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -41.551 -41.549 0.002 28.61 +K 6.770e-03 + K+ 6.770e-03 5.817e-03 -2.169 -2.235 -0.066 8.83 +Na 1.723e-02 + Na+ 1.723e-02 1.491e-02 -1.764 -1.826 -0.063 -1.75 +O(0) 2.986e-12 + O2 1.493e-12 1.501e-12 -11.826 -11.824 0.002 29.74 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(290 K, 1 atm) + + H2(g) -38.47 -41.55 -3.08 H2 + H2O(g) -1.71 -0.00 1.71 H2O + Halite -5.15 -3.59 1.56 NaCl + O2(g) -8.99 -11.82 -2.83 O2 + Sylvite -4.86 -4.00 0.86 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 1.3281e+01 1.5645e-09 +Using mix 3. +Using exchange 3. Exchange assemblage after simulation 2. + +Mixture 3. + + 2.213e-01 Solution 2 Solution after simulation 2. + 5.574e-01 Solution 3 Solution after simulation 2. + 2.213e-01 Solution 4 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + NaX 2.799e-02 2.799e-02 5.830e-01 -0.062 + KX 2.001e-02 2.001e-02 4.170e-01 0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 6.391e-03 6.391e-03 + Cl 1.761e-02 1.761e-02 + K 1.090e-02 1.090e-02 + Na 1.310e-02 1.310e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.109 Charge balance + pe = 12.441 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 13°C) = 2325 + Density (g/cm³) = 1.00067 + Volume (L) = 1.00119 + Viscosity (mPa s) = 1.19248 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -2.992e-08 + Temperature (°C) = 13.28 + Pressure (atm) = 1.00 + Electrical balance (eq) = 2.993e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 8.801e-08 7.786e-08 -7.055 -7.109 -0.053 0.00 + OH- 5.852e-08 5.029e-08 -7.233 -7.299 -0.066 -4.62 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.03 +Br 6.391e-03 + Br- 6.391e-03 5.474e-03 -2.194 -2.262 -0.067 23.96 +Cl 1.761e-02 + Cl- 1.761e-02 1.516e-02 -1.754 -1.819 -0.065 17.68 + HCl 4.271e-10 4.372e-10 -9.370 -9.359 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.199 -42.197 0.002 28.62 +K 1.090e-02 + K+ 1.090e-02 9.371e-03 -1.963 -2.028 -0.065 8.65 +Na 1.310e-02 + Na+ 1.310e-02 1.135e-02 -1.883 -1.945 -0.062 -2.04 +O(0) 2.368e-12 + O2 1.184e-12 1.190e-12 -11.927 -11.924 0.002 29.32 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(286 K, 1 atm) + + H2(g) -39.13 -42.20 -3.07 H2 + H2O(g) -1.82 -0.00 1.82 H2O + Halite -5.32 -3.76 1.56 NaCl + O2(g) -9.13 -11.92 -2.80 O2 + Sylvite -4.69 -3.85 0.84 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 9.7648e+00 1.4309e-09 +Using mix 4. +Using exchange 4. Exchange assemblage after simulation 2. + +Mixture 4. + + 2.213e-01 Solution 3 Solution after simulation 2. + 5.574e-01 Solution 4 Solution after simulation 2. + 2.213e-01 Solution 5 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 2.723e-02 2.723e-02 5.672e-01 0.000 + NaX 2.077e-02 2.077e-02 4.328e-01 -0.062 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 8.788e-03 8.788e-03 + Cl 1.521e-02 1.521e-02 + K 1.449e-02 1.449e-02 + Na 9.513e-03 9.513e-03 + +----------------------------Description of solution---------------------------- + + pH = 7.129 Charge balance + pe = 12.714 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 10°C) = 2194 + Density (g/cm³) = 1.00117 + Volume (L) = 1.00085 + Viscosity (mPa s) = 1.31518 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -3.938e-08 + Temperature (°C) = 9.76 + Pressure (atm) = 1.00 + Electrical balance (eq) = 3.939e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 8.402e-08 7.437e-08 -7.076 -7.129 -0.053 0.00 + OH- 4.500e-08 3.870e-08 -7.347 -7.412 -0.066 -4.91 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 8.788e-03 + Br- 8.788e-03 7.532e-03 -2.056 -2.123 -0.067 23.65 +Cl 1.521e-02 + Cl- 1.521e-02 1.311e-02 -1.818 -1.883 -0.065 17.45 + HCl 3.605e-10 3.691e-10 -9.443 -9.433 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.767 -42.765 0.002 28.63 +K 1.449e-02 + K+ 1.449e-02 1.247e-02 -1.839 -1.904 -0.065 8.48 +Na 9.513e-03 + Na+ 9.513e-03 8.249e-03 -2.022 -2.084 -0.062 -2.32 +O(0) 1.845e-12 + O2 9.226e-13 9.277e-13 -12.035 -12.033 0.002 28.92 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(282 K, 1 atm) + + H2(g) -39.71 -42.76 -3.05 H2 + H2O(g) -1.92 -0.00 1.92 H2O + Halite -5.52 -3.97 1.56 NaCl + O2(g) -9.27 -12.03 -2.76 O2 + Sylvite -4.61 -3.79 0.82 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 6.8770e+00 1.3238e-09 +Using mix 5. +Using exchange 5. Exchange assemblage after simulation 2. + +Mixture 5. + + 2.213e-01 Solution 4 Solution after simulation 2. + 5.574e-01 Solution 5 Solution after simulation 2. + 2.213e-01 Solution 6 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 3.337e-02 3.337e-02 6.953e-01 0.000 + NaX 1.463e-02 1.463e-02 3.047e-01 -0.062 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.103e-02 1.103e-02 + Cl 1.297e-02 1.297e-02 + K 1.742e-02 1.742e-02 + Na 6.576e-03 6.576e-03 + +----------------------------Description of solution---------------------------- + + pH = 7.134 Charge balance + pe = 12.949 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 7°C) = 2083 + Density (g/cm³) = 1.00147 + Volume (L) = 1.00070 + Viscosity (mPa s) = 1.43191 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -4.825e-08 + Temperature (°C) = 6.88 + Pressure (atm) = 1.00 + Electrical balance (eq) = 4.826e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 8.299e-08 7.349e-08 -7.081 -7.134 -0.053 0.00 + OH- 3.505e-08 3.016e-08 -7.455 -7.521 -0.065 -5.19 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 1.103e-02 + Br- 1.103e-02 9.464e-03 -1.957 -2.024 -0.067 23.36 +Cl 1.297e-02 + Cl- 1.297e-02 1.118e-02 -1.887 -1.952 -0.064 17.23 + HCl 3.093e-10 3.167e-10 -9.510 -9.499 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -43.235 -43.233 0.002 28.63 +K 1.742e-02 + K+ 1.742e-02 1.501e-02 -1.759 -1.824 -0.065 8.31 +Na 6.576e-03 + Na+ 6.576e-03 5.705e-03 -2.182 -2.244 -0.062 -2.58 +O(0) 1.434e-12 + O2 7.171e-13 7.210e-13 -12.144 -12.142 0.002 28.55 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(280 K, 1 atm) + + H2(g) -40.19 -43.23 -3.04 H2 + H2O(g) -2.00 -0.00 2.00 H2O + Halite -5.75 -4.20 1.55 NaCl + O2(g) -9.41 -12.14 -2.73 O2 + Sylvite -4.58 -3.78 0.80 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 4.6334e+00 1.2424e-09 +Using mix 6. +Using exchange 6. Exchange assemblage after simulation 2. + +Mixture 6. + + 2.213e-01 Solution 5 Solution after simulation 2. + 5.574e-01 Solution 6 Solution after simulation 2. + 2.213e-01 Solution 7 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 3.826e-02 3.826e-02 7.970e-01 0.000 + NaX 9.745e-03 9.745e-03 2.030e-01 -0.062 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.310e-02 1.310e-02 + Cl 1.090e-02 1.090e-02 + K 1.968e-02 1.968e-02 + Na 4.319e-03 4.319e-03 + +----------------------------Description of solution---------------------------- + + pH = 7.127 Charge balance + pe = 13.142 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 5°C) = 1993 + Density (g/cm³) = 1.00163 + Volume (L) = 1.00067 + Viscosity (mPa s) = 1.53455 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -5.641e-08 + Temperature (°C) = 4.63 + Pressure (atm) = 1.00 + Electrical balance (eq) = 5.642e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 8.418e-08 7.457e-08 -7.075 -7.127 -0.053 0.00 + OH- 2.803e-08 2.413e-08 -7.552 -7.617 -0.065 -5.44 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 1.310e-02 + Br- 1.310e-02 1.124e-02 -1.883 -1.949 -0.066 23.11 +Cl 1.090e-02 + Cl- 1.090e-02 9.399e-03 -1.963 -2.027 -0.064 17.03 + HCl 2.676e-10 2.740e-10 -9.572 -9.562 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -43.596 -43.594 0.002 28.64 +K 1.968e-02 + K+ 1.968e-02 1.696e-02 -1.706 -1.771 -0.065 8.17 +Na 4.319e-03 + Na+ 4.319e-03 3.749e-03 -2.365 -2.426 -0.062 -2.80 +O(0) 1.123e-12 + O2 5.613e-13 5.644e-13 -12.251 -12.248 0.002 28.23 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(277 K, 1 atm) + + H2(g) -40.56 -43.59 -3.03 H2 + H2O(g) -2.07 -0.00 2.07 H2O + Halite -6.01 -4.45 1.55 NaCl + O2(g) -9.54 -12.25 -2.71 O2 + Sylvite -4.59 -3.80 0.79 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 2.9840e+00 1.1834e-09 +Using mix 7. +Using exchange 7. Exchange assemblage after simulation 2. + +Mixture 7. + + 2.213e-01 Solution 6 Solution after simulation 2. + 5.574e-01 Solution 7 Solution after simulation 2. + 2.213e-01 Solution 8 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.186e-02 4.186e-02 8.721e-01 -0.000 + NaX 6.140e-03 6.140e-03 1.279e-01 -0.061 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.497e-02 1.497e-02 + Cl 9.031e-03 9.031e-03 + K 2.131e-02 2.131e-02 + Na 2.694e-03 2.694e-03 + +----------------------------Description of solution---------------------------- + + pH = 7.114 Charge balance + pe = 13.287 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 3°C) = 1926 + Density (g/cm³) = 1.00172 + Volume (L) = 1.00069 + Viscosity (mPa s) = 1.61774 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -6.379e-08 + Temperature (°C) = 2.98 + Pressure (atm) = 1.00 + Electrical balance (eq) = 6.379e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 8.679e-08 7.690e-08 -7.062 -7.114 -0.053 0.00 + OH- 2.324e-08 2.001e-08 -7.634 -7.699 -0.065 -5.64 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 1.497e-02 + Br- 1.497e-02 1.285e-02 -1.825 -1.891 -0.066 22.90 +Cl 9.031e-03 + Cl- 9.031e-03 7.791e-03 -2.044 -2.108 -0.064 16.87 + HCl 2.311e-10 2.366e-10 -9.636 -9.626 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -43.852 -43.850 0.002 28.64 +K 2.131e-02 + K+ 2.131e-02 1.836e-02 -1.671 -1.736 -0.065 8.06 +Na 2.694e-03 + Na+ 2.694e-03 2.339e-03 -2.570 -2.631 -0.061 -2.98 +O(0) 8.835e-13 + O2 4.417e-13 4.442e-13 -12.355 -12.352 0.002 27.98 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(276 K, 1 atm) + + H2(g) -40.82 -43.85 -3.03 H2 + H2O(g) -2.12 -0.00 2.12 H2O + Halite -6.29 -4.74 1.55 NaCl + O2(g) -9.66 -12.35 -2.69 O2 + Sylvite -4.63 -3.84 0.78 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 1.8357e+00 1.1429e-09 +Using mix 8. +Using exchange 8. Exchange assemblage after simulation 2. + +Mixture 8. + + 2.213e-01 Solution 7 Solution after simulation 2. + 5.574e-01 Solution 8 Solution after simulation 2. + 2.213e-01 Solution 9 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.434e-02 4.434e-02 9.237e-01 0.000 + NaX 3.660e-03 3.660e-03 7.625e-02 -0.061 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.662e-02 1.662e-02 + Cl 7.375e-03 7.375e-03 + K 2.241e-02 2.241e-02 + Na 1.594e-03 1.594e-03 + +----------------------------Description of solution---------------------------- + + pH = 7.098 Charge balance + pe = 13.392 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 2°C) = 1879 + Density (g/cm³) = 1.00176 + Volume (L) = 1.00074 + Viscosity (mPa s) = 1.68000 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -7.033e-08 + Temperature (°C) = 1.84 + Pressure (atm) = 1.00 + Electrical balance (eq) = 7.033e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.015e-08 7.989e-08 -7.045 -7.098 -0.052 0.00 + OH- 2.002e-08 1.725e-08 -7.699 -7.763 -0.065 -5.79 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 1.662e-02 + Br- 1.662e-02 1.427e-02 -1.779 -1.845 -0.066 22.75 +Cl 7.375e-03 + Cl- 7.375e-03 6.364e-03 -2.132 -2.196 -0.064 16.75 + HCl 1.975e-10 2.022e-10 -9.704 -9.694 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -44.023 -44.021 0.002 28.64 +K 2.241e-02 + K+ 2.241e-02 1.932e-02 -1.650 -1.714 -0.064 7.98 +Na 1.594e-03 + Na+ 1.594e-03 1.385e-03 -2.797 -2.859 -0.061 -3.11 +O(0) 7.146e-13 + O2 3.573e-13 3.593e-13 -12.447 -12.445 0.002 27.80 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(274 K, 1 atm) + + H2(g) -41.00 -44.02 -3.02 H2 + H2O(g) -2.15 -0.00 2.15 H2O + Halite -6.60 -5.05 1.55 NaCl + O2(g) -9.76 -12.44 -2.68 O2 + Sylvite -4.68 -3.91 0.77 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 1.0783e+00 1.1165e-09 +Using mix 9. +Using exchange 9. Exchange assemblage after simulation 2. + +Mixture 9. + + 2.213e-01 Solution 8 Solution after simulation 2. + 5.574e-01 Solution 9 Solution after simulation 2. + 2.213e-01 Solution 10 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.593e-02 4.593e-02 9.570e-01 0.000 + NaX 2.066e-03 2.066e-03 4.303e-02 -0.061 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.807e-02 1.807e-02 + Cl 5.933e-03 5.933e-03 + K 2.310e-02 2.310e-02 + Na 8.958e-04 8.958e-04 + +----------------------------Description of solution---------------------------- + + pH = 7.081 Charge balance + pe = 13.461 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 1°C) = 1847 + Density (g/cm³) = 1.00179 + Volume (L) = 1.00079 + Viscosity (mPa s) = 1.72318 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -7.602e-08 + Temperature (°C) = 1.08 + Pressure (atm) = 1.00 + Electrical balance (eq) = 7.602e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.374e-08 8.308e-08 -7.028 -7.081 -0.052 0.00 + OH- 1.788e-08 1.541e-08 -7.748 -7.812 -0.065 -5.89 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 1.807e-02 + Br- 1.807e-02 1.551e-02 -1.743 -1.809 -0.066 22.65 +Cl 5.933e-03 + Cl- 5.933e-03 5.121e-03 -2.227 -2.291 -0.064 16.66 + HCl 1.661e-10 1.700e-10 -9.780 -9.770 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -44.122 -44.120 0.002 28.64 +K 2.310e-02 + K+ 2.310e-02 1.992e-02 -1.636 -1.701 -0.064 7.92 +Na 8.958e-04 + Na+ 8.958e-04 7.780e-04 -3.048 -3.109 -0.061 -3.20 +O(0) 5.807e-13 + O2 2.903e-13 2.919e-13 -12.537 -12.535 0.002 27.67 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(274 K, 1 atm) + + H2(g) -41.10 -44.12 -3.02 H2 + H2O(g) -2.18 -0.00 2.18 H2O + Halite -6.95 -5.40 1.55 NaCl + O2(g) -9.86 -12.53 -2.67 O2 + Sylvite -4.76 -3.99 0.77 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 6.0473e-01 1.1000e-09 +Using mix 10. +Using exchange 10. Exchange assemblage after simulation 2. + +Mixture 10. + + 2.213e-01 Solution 9 Solution after simulation 2. + 5.574e-01 Solution 10 Solution after simulation 2. + 2.213e-01 Solution 11 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.690e-02 4.690e-02 9.770e-01 0.000 + NaX 1.105e-03 1.105e-03 2.302e-02 -0.061 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.930e-02 1.930e-02 + Cl 4.701e-03 4.701e-03 + K 2.352e-02 2.352e-02 + Na 4.779e-04 4.779e-04 + +----------------------------Description of solution---------------------------- + + pH = 7.065 Charge balance + pe = 13.504 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 1°C) = 1827 + Density (g/cm³) = 1.00182 + Volume (L) = 1.00082 + Viscosity (mPa s) = 1.75106 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -8.088e-08 + Temperature (°C) = 0.60 + Pressure (atm) = 1.00 + Electrical balance (eq) = 8.089e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.721e-08 8.616e-08 -7.012 -7.065 -0.052 0.00 + OH- 1.646e-08 1.418e-08 -7.784 -7.848 -0.065 -5.96 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 1.930e-02 + Br- 1.930e-02 1.657e-02 -1.714 -1.781 -0.066 22.58 +Cl 4.701e-03 + Cl- 4.701e-03 4.058e-03 -2.328 -2.392 -0.064 16.61 + HCl 1.369e-10 1.401e-10 -9.864 -9.853 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -44.176 -44.173 0.002 28.64 +K 2.352e-02 + K+ 2.352e-02 2.028e-02 -1.629 -1.693 -0.064 7.88 +Na 4.779e-04 + Na+ 4.779e-04 4.151e-04 -3.321 -3.382 -0.061 -3.26 +O(0) 4.898e-13 + O2 2.449e-13 2.462e-13 -12.611 -12.609 0.002 27.59 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -41.16 -44.17 -3.01 H2 + H2O(g) -2.19 -0.00 2.19 H2O + Halite -7.32 -5.77 1.55 NaCl + O2(g) -9.94 -12.61 -2.67 O2 + Sylvite -4.85 -4.08 0.77 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 3.2377e-01 1.0903e-09 +Using mix 11. +Using exchange 11. Exchange assemblage after simulation 2. + +Mixture 11. + + 2.213e-01 Solution 10 Solution after simulation 2. + 5.574e-01 Solution 11 Solution after simulation 2. + 2.213e-01 Solution 12 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.744e-02 4.744e-02 9.883e-01 0.000 + NaX 5.610e-04 5.610e-04 1.169e-02 -0.061 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.033e-02 2.033e-02 + Cl 3.668e-03 3.668e-03 + K 2.376e-02 2.376e-02 + Na 2.423e-04 2.423e-04 + +----------------------------Description of solution---------------------------- + + pH = 7.051 Charge balance + pe = 13.530 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1816 + Density (g/cm³) = 1.00184 + Volume (L) = 1.00084 + Viscosity (mPa s) = 1.76793 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -8.497e-08 + Temperature (°C) = 0.32 + Pressure (atm) = 1.00 + Electrical balance (eq) = 8.497e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.004e-07 8.896e-08 -6.998 -7.051 -0.052 0.00 + OH- 1.551e-08 1.336e-08 -7.809 -7.874 -0.065 -6.00 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.033e-02 + Br- 2.033e-02 1.746e-02 -1.692 -1.758 -0.066 22.54 +Cl 3.668e-03 + Cl- 3.668e-03 3.166e-03 -2.436 -2.500 -0.064 16.57 + HCl 1.105e-10 1.131e-10 -9.957 -9.947 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -44.198 -44.196 0.002 28.64 +K 2.376e-02 + K+ 2.376e-02 2.049e-02 -1.624 -1.689 -0.064 7.86 +Na 2.423e-04 + Na+ 2.423e-04 2.104e-04 -3.616 -3.677 -0.061 -3.30 +O(0) 4.239e-13 + O2 2.120e-13 2.131e-13 -12.674 -12.671 0.002 27.54 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -41.18 -44.20 -3.01 H2 + H2O(g) -2.20 -0.00 2.20 H2O + Halite -7.72 -6.18 1.55 NaCl + O2(g) -10.01 -12.67 -2.66 O2 + Sylvite -4.95 -4.19 0.77 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 1.6551e-01 1.0848e-09 +Using mix 12. +Using exchange 12. Exchange assemblage after simulation 2. + +Mixture 12. + + 2.213e-01 Solution 11 Solution after simulation 2. + 5.574e-01 Solution 12 Solution after simulation 2. + 2.213e-01 Solution 13 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.773e-02 4.773e-02 9.944e-01 0.000 + NaX 2.705e-04 2.705e-04 5.636e-03 -0.061 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.118e-02 2.118e-02 + Cl 2.817e-03 2.817e-03 + K 2.388e-02 2.388e-02 + Na 1.167e-04 1.167e-04 + +----------------------------Description of solution---------------------------- + + pH = 7.039 Charge balance + pe = 13.544 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1809 + Density (g/cm³) = 1.00187 + Volume (L) = 1.00086 + Viscosity (mPa s) = 1.77752 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -8.833e-08 + Temperature (°C) = 0.17 + Pressure (atm) = 1.00 + Electrical balance (eq) = 8.833e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.031e-07 9.139e-08 -6.987 -7.039 -0.052 0.00 + OH- 1.486e-08 1.280e-08 -7.828 -7.893 -0.065 -6.03 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.118e-02 + Br- 2.118e-02 1.819e-02 -1.674 -1.740 -0.066 22.51 +Cl 2.817e-03 + Cl- 2.817e-03 2.431e-03 -2.550 -2.614 -0.064 16.55 + HCl 8.723e-11 8.930e-11 -10.059 -10.049 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -44.202 -44.200 0.002 28.65 +K 2.388e-02 + K+ 2.388e-02 2.060e-02 -1.622 -1.686 -0.064 7.85 +Na 1.167e-04 + Na+ 1.167e-04 1.014e-04 -3.933 -3.994 -0.061 -3.32 +O(0) 3.758e-13 + O2 1.879e-13 1.889e-13 -12.726 -12.724 0.002 27.52 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -41.19 -44.20 -3.01 H2 + H2O(g) -2.21 -0.00 2.20 H2O + Halite -8.16 -6.61 1.55 NaCl + O2(g) -10.06 -12.72 -2.66 O2 + Sylvite -5.07 -4.30 0.76 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 8.0802e-02 1.0819e-09 +Using mix 13. +Using exchange 13. Exchange assemblage after simulation 2. + +Mixture 13. + + 2.213e-01 Solution 12 Solution after simulation 2. + 5.574e-01 Solution 13 Solution after simulation 2. + 2.213e-01 Solution 14 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.788e-02 4.788e-02 9.974e-01 0.000 + NaX 1.241e-04 1.241e-04 2.585e-03 -0.061 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.187e-02 2.187e-02 + Cl 2.129e-03 2.129e-03 + K 2.395e-02 2.395e-02 + Na 5.352e-05 5.352e-05 + +----------------------------Description of solution---------------------------- + + pH = 7.030 Charge balance + pe = 13.541 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1806 + Density (g/cm³) = 1.00189 + Volume (L) = 1.00087 + Viscosity (mPa s) = 1.78267 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.104e-08 + Temperature (°C) = 0.08 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.104e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.054e-07 9.342e-08 -6.977 -7.030 -0.052 0.00 + OH- 1.442e-08 1.242e-08 -7.841 -7.906 -0.065 -6.04 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.187e-02 + Br- 2.187e-02 1.878e-02 -1.660 -1.726 -0.066 22.50 +Cl 2.129e-03 + Cl- 2.129e-03 1.838e-03 -2.672 -2.736 -0.064 16.54 + HCl 6.743e-11 6.903e-11 -10.171 -10.161 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -44.176 -44.173 0.002 28.65 +K 2.395e-02 + K+ 2.395e-02 2.065e-02 -1.621 -1.685 -0.064 7.84 +Na 5.352e-05 + Na+ 5.352e-05 4.649e-05 -4.272 -4.333 -0.061 -3.33 +O(0) 3.084e-13 + O2 1.542e-13 1.551e-13 -12.812 -12.809 0.002 27.50 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -41.16 -44.17 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + Halite -8.62 -7.07 1.55 NaCl + O2(g) -10.15 -12.81 -2.66 O2 + Sylvite -5.19 -4.42 0.76 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 3.7685e-02 1.0804e-09 +Using mix 14. +Using exchange 14. Exchange assemblage after simulation 2. + +Mixture 14. + + 2.213e-01 Solution 13 Solution after simulation 2. + 5.574e-01 Solution 14 Solution after simulation 2. + 2.213e-01 Solution 15 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.795e-02 4.795e-02 9.989e-01 0.000 + NaX 5.415e-05 5.415e-05 1.128e-03 -0.061 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.242e-02 2.242e-02 + Cl 1.583e-03 1.583e-03 + K 2.398e-02 2.398e-02 + Na 2.335e-05 2.335e-05 + +----------------------------Description of solution---------------------------- + + pH = 7.022 Charge balance + pe = 13.534 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1805 + Density (g/cm³) = 1.00191 + Volume (L) = 1.00088 + Viscosity (mPa s) = 1.78529 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.320e-08 + Temperature (°C) = 0.04 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.320e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.073e-07 9.507e-08 -6.970 -7.022 -0.052 0.00 + OH- 1.411e-08 1.215e-08 -7.851 -7.915 -0.065 -6.04 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.242e-02 + Br- 2.242e-02 1.925e-02 -1.649 -1.715 -0.066 22.49 +Cl 1.583e-03 + Cl- 1.583e-03 1.366e-03 -2.801 -2.864 -0.064 16.54 + HCl 5.104e-11 5.225e-11 -10.292 -10.282 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -44.147 -44.145 0.002 28.65 +K 2.398e-02 + K+ 2.398e-02 2.068e-02 -1.620 -1.685 -0.064 7.84 +Na 2.335e-05 + Na+ 2.335e-05 2.029e-05 -4.632 -4.693 -0.061 -3.33 +O(0) 2.600e-13 + O2 1.300e-13 1.307e-13 -12.886 -12.884 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -41.13 -44.14 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + Halite -9.11 -7.56 1.55 NaCl + O2(g) -10.22 -12.88 -2.66 O2 + Sylvite -5.31 -4.55 0.76 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 1.6798e-02 1.0797e-09 +Using mix 15. +Using exchange 15. Exchange assemblage after simulation 2. + +Mixture 15. + + 2.213e-01 Solution 14 Solution after simulation 2. + 5.574e-01 Solution 15 Solution after simulation 2. + 2.213e-01 Solution 16 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.798e-02 4.798e-02 9.995e-01 0.000 + NaX 2.251e-05 2.251e-05 4.690e-04 -0.061 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.284e-02 2.284e-02 + Cl 1.158e-03 1.158e-03 + K 2.399e-02 2.399e-02 + Na 9.707e-06 9.707e-06 + +----------------------------Description of solution---------------------------- + + pH = 7.016 Charge balance + pe = 13.532 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00192 + Volume (L) = 1.00088 + Viscosity (mPa s) = 1.78655 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.488e-08 + Temperature (°C) = 0.02 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.488e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.087e-07 9.638e-08 -6.964 -7.016 -0.052 0.00 + OH- 1.389e-08 1.197e-08 -7.857 -7.922 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.284e-02 + Br- 2.284e-02 1.962e-02 -1.641 -1.707 -0.066 22.49 +Cl 1.158e-03 + Cl- 1.158e-03 9.995e-04 -2.936 -3.000 -0.064 16.54 + HCl 3.785e-11 3.875e-11 -10.422 -10.412 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -44.131 -44.129 0.002 28.65 +K 2.399e-02 + K+ 2.399e-02 2.069e-02 -1.620 -1.684 -0.064 7.84 +Na 9.707e-06 + Na+ 9.707e-06 8.433e-06 -5.013 -5.074 -0.061 -3.34 +O(0) 2.376e-13 + O2 1.188e-13 1.195e-13 -12.925 -12.923 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -41.12 -44.13 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + Halite -9.62 -8.07 1.55 NaCl + O2(g) -10.26 -12.92 -2.66 O2 + Sylvite -5.45 -4.68 0.76 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 7.1587e-03 1.0793e-09 +Using mix 16. +Using exchange 16. Exchange assemblage after simulation 2. + +Mixture 16. + + 2.213e-01 Solution 15 Solution after simulation 2. + 5.574e-01 Solution 16 Solution after simulation 2. + 2.213e-01 Solution 17 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.799e-02 4.799e-02 9.998e-01 0.000 + NaX 8.920e-06 8.920e-06 1.858e-04 -0.061 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.317e-02 2.317e-02 + Cl 8.331e-04 8.331e-04 + K 2.400e-02 2.400e-02 + Na 3.846e-06 3.846e-06 + +----------------------------Description of solution---------------------------- + + pH = 7.012 Charge balance + pe = 13.517 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00193 + Volume (L) = 1.00088 + Viscosity (mPa s) = 1.78712 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.616e-08 + Temperature (°C) = 0.01 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.616e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.099e-07 9.739e-08 -6.959 -7.012 -0.052 0.00 + OH- 1.373e-08 1.183e-08 -7.862 -7.927 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.317e-02 + Br- 2.317e-02 1.990e-02 -1.635 -1.701 -0.066 22.49 +Cl 8.331e-04 + Cl- 8.331e-04 7.191e-04 -3.079 -3.143 -0.064 16.53 + HCl 2.752e-11 2.818e-11 -10.560 -10.550 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -44.091 -44.088 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.069e-02 -1.620 -1.684 -0.064 7.84 +Na 3.846e-06 + Na+ 3.846e-06 3.341e-06 -5.415 -5.476 -0.061 -3.34 +O(0) 1.952e-13 + O2 9.760e-14 9.814e-14 -13.011 -13.008 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -41.08 -44.09 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + Halite -10.17 -8.62 1.55 NaCl + O2(g) -10.35 -13.01 -2.66 O2 + Sylvite -5.59 -4.83 0.76 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 2.9184e-03 1.0792e-09 +Using mix 17. +Using exchange 17. Exchange assemblage after simulation 2. + +Mixture 17. + + 2.213e-01 Solution 16 Solution after simulation 2. + 5.574e-01 Solution 17 Solution after simulation 2. + 2.213e-01 Solution 18 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 9.999e-01 0.000 + NaX 3.371e-06 3.371e-06 7.023e-05 -0.061 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.341e-02 2.341e-02 + Cl 5.894e-04 5.894e-04 + K 2.400e-02 2.400e-02 + Na 1.454e-06 1.454e-06 + +----------------------------Description of solution---------------------------- + + pH = 7.008 Charge balance + pe = 13.506 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00194 + Volume (L) = 1.00088 + Viscosity (mPa s) = 1.78736 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.712e-08 + Temperature (°C) = 0.00 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.712e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.107e-07 9.815e-08 -6.956 -7.008 -0.052 0.00 + OH- 1.362e-08 1.173e-08 -7.866 -7.931 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.341e-02 + Br- 2.341e-02 2.011e-02 -1.631 -1.697 -0.066 22.49 +Cl 5.894e-04 + Cl- 5.894e-04 5.088e-04 -3.230 -3.293 -0.064 16.53 + HCl 1.962e-11 2.009e-11 -10.707 -10.697 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -44.063 -44.061 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +Na 1.454e-06 + Na+ 1.454e-06 1.263e-06 -5.838 -5.899 -0.061 -3.34 +O(0) 1.716e-13 + O2 8.580e-14 8.627e-14 -13.067 -13.064 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -41.05 -44.06 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + Halite -10.74 -9.19 1.55 NaCl + O2(g) -10.41 -13.06 -2.66 O2 + Sylvite -5.74 -4.98 0.76 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 1.1387e-03 1.0791e-09 +Using mix 18. +Using exchange 18. Exchange assemblage after simulation 2. + +Mixture 18. + + 2.213e-01 Solution 17 Solution after simulation 2. + 5.574e-01 Solution 18 Solution after simulation 2. + 2.213e-01 Solution 19 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 0.000 + NaX 1.216e-06 1.216e-06 2.534e-05 -0.061 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.359e-02 2.359e-02 + Cl 4.100e-04 4.100e-04 + K 2.400e-02 2.400e-02 + Na 5.244e-07 5.244e-07 + +----------------------------Description of solution---------------------------- + + pH = 7.006 Charge balance + pe = 13.488 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00195 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78746 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.783e-08 + Temperature (°C) = 0.00 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.783e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.114e-07 9.871e-08 -6.953 -7.006 -0.052 0.00 + OH- 1.354e-08 1.166e-08 -7.868 -7.933 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.359e-02 + Br- 2.359e-02 2.026e-02 -1.627 -1.693 -0.066 22.49 +Cl 4.100e-04 + Cl- 4.100e-04 3.539e-04 -3.387 -3.451 -0.064 16.53 + HCl 1.373e-11 1.405e-11 -10.862 -10.852 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -44.022 -44.020 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +Na 5.244e-07 + Na+ 5.244e-07 4.555e-07 -6.280 -6.341 -0.061 -3.34 +O(0) 1.415e-13 + O2 7.077e-14 7.116e-14 -13.150 -13.148 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -41.01 -44.02 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + Halite -11.34 -9.79 1.55 NaCl + O2(g) -10.49 -13.15 -2.66 O2 + Sylvite -5.90 -5.14 0.76 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 4.2546e-04 1.0791e-09 +Using mix 19. +Using exchange 19. Exchange assemblage after simulation 2. + +Mixture 19. + + 2.213e-01 Solution 18 Solution after simulation 2. + 5.574e-01 Solution 19 Solution after simulation 2. + 2.213e-01 Solution 20 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 0.000 + NaX 4.191e-07 4.191e-07 8.731e-06 -0.061 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.372e-02 2.372e-02 + Cl 2.804e-04 2.804e-04 + K 2.400e-02 2.400e-02 + Na 1.807e-07 1.807e-07 + +----------------------------Description of solution---------------------------- + + pH = 7.004 Charge balance + pe = 13.473 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00196 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78749 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.834e-08 + Temperature (°C) = 0.00 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.834e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.118e-07 9.912e-08 -6.952 -7.004 -0.052 0.00 + OH- 1.348e-08 1.162e-08 -7.870 -7.935 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.372e-02 + Br- 2.372e-02 2.037e-02 -1.625 -1.691 -0.066 22.49 +Cl 2.804e-04 + Cl- 2.804e-04 2.420e-04 -3.552 -3.616 -0.064 16.53 + HCl 9.426e-12 9.650e-12 -11.026 -11.015 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -43.987 -43.985 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +Na 1.807e-07 + Na+ 1.807e-07 1.570e-07 -6.743 -6.804 -0.061 -3.34 +O(0) 1.206e-13 + O2 6.030e-14 6.064e-14 -13.220 -13.217 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -40.97 -43.98 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + Halite -11.97 -10.42 1.55 NaCl + O2(g) -10.56 -13.22 -2.66 O2 + Sylvite -6.06 -5.30 0.76 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 1.5231e-04 1.0791e-09 +Using mix 20. +Using exchange 20. Exchange assemblage after simulation 2. + +Mixture 20. + + 2.213e-01 Solution 19 Solution after simulation 2. + 5.574e-01 Solution 20 Solution after simulation 2. + 2.213e-01 Solution 21 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 0.000 + NaX 1.381e-07 1.381e-07 2.876e-06 -0.061 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.381e-02 2.381e-02 + Cl 1.884e-04 1.884e-04 + K 2.400e-02 2.400e-02 + Na 5.953e-08 5.953e-08 + +----------------------------Description of solution---------------------------- + + pH = 7.003 Charge balance + pe = 13.444 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00196 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.870e-08 + Temperature (°C) = 0.00 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.870e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.121e-07 9.941e-08 -6.950 -7.003 -0.052 0.00 + OH- 1.344e-08 1.158e-08 -7.872 -7.936 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.381e-02 + Br- 2.381e-02 2.045e-02 -1.623 -1.689 -0.066 22.49 +Cl 1.884e-04 + Cl- 1.884e-04 1.626e-04 -3.725 -3.789 -0.064 16.53 + HCl 6.354e-12 6.505e-12 -11.197 -11.187 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -43.928 -43.925 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +Na 5.953e-08 + Na+ 5.953e-08 5.172e-08 -7.225 -7.286 -0.061 -3.34 +O(0) 9.158e-14 + O2 4.579e-14 4.604e-14 -13.339 -13.337 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -40.91 -43.93 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + Halite -12.62 -11.08 1.55 NaCl + O2(g) -10.68 -13.34 -2.66 O2 + Sylvite -6.24 -5.47 0.76 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 5.2272e-05 1.0791e-09 +Using mix 21. +Using exchange 21. Exchange assemblage after simulation 2. + +Mixture 21. + + 2.213e-01 Solution 20 Solution after simulation 2. + 5.574e-01 Solution 21 Solution after simulation 2. + 2.213e-01 Solution 22 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 0.000 + NaX 4.351e-08 4.351e-08 9.065e-07 -0.061 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.388e-02 2.388e-02 + Cl 1.245e-04 1.245e-04 + K 2.400e-02 2.400e-02 + Na 1.876e-08 1.876e-08 + +----------------------------Description of solution---------------------------- + + pH = 7.002 Charge balance + pe = 13.436 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00196 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.896e-08 + Temperature (°C) = 0.00 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.896e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.124e-07 9.961e-08 -6.949 -7.002 -0.052 0.00 + OH- 1.341e-08 1.156e-08 -7.872 -7.937 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.388e-02 + Br- 2.388e-02 2.051e-02 -1.622 -1.688 -0.066 22.49 +Cl 1.245e-04 + Cl- 1.245e-04 1.074e-04 -3.905 -3.969 -0.064 16.53 + HCl 4.205e-12 4.305e-12 -11.376 -11.366 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -43.909 -43.907 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +Na 1.876e-08 + Na+ 1.876e-08 1.630e-08 -7.727 -7.788 -0.061 -3.34 +O(0) 8.413e-14 + O2 4.206e-14 4.230e-14 -13.376 -13.374 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -40.90 -43.91 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + Halite -13.30 -11.76 1.55 NaCl + O2(g) -10.72 -13.37 -2.66 O2 + Sylvite -6.42 -5.65 0.76 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 1.7207e-05 1.0791e-09 +Using mix 22. +Using exchange 22. Exchange assemblage after simulation 2. + +Mixture 22. + + 2.213e-01 Solution 21 Solution after simulation 2. + 5.574e-01 Solution 22 Solution after simulation 2. + 2.213e-01 Solution 23 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + NaX 1.313e-08 1.313e-08 2.735e-07 -0.061 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.392e-02 2.392e-02 + Cl 8.078e-05 8.078e-05 + K 2.400e-02 2.400e-02 + Na 5.660e-09 5.660e-09 + +----------------------------Description of solution---------------------------- + + pH = 7.001 Charge balance + pe = 13.429 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00196 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.913e-08 + Temperature (°C) = 0.00 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.913e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.125e-07 9.975e-08 -6.949 -7.001 -0.052 0.00 + OH- 1.340e-08 1.154e-08 -7.873 -7.938 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.392e-02 + Br- 2.392e-02 2.054e-02 -1.621 -1.687 -0.066 22.49 +Cl 8.078e-05 + Cl- 8.078e-05 6.973e-05 -4.093 -4.157 -0.064 16.53 + HCl 2.733e-12 2.798e-12 -11.563 -11.553 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -43.895 -43.892 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +Na 5.660e-09 + Na+ 5.660e-09 4.917e-09 -8.247 -8.308 -0.061 -3.34 +O(0) 7.871e-14 + O2 3.935e-14 3.957e-14 -13.405 -13.403 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -40.88 -43.89 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + Halite -14.01 -12.46 1.55 NaCl + O2(g) -10.74 -13.40 -2.66 O2 + Sylvite -6.60 -5.84 0.76 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 5.4361e-06 1.0791e-09 +Using mix 23. +Using exchange 23. Exchange assemblage after simulation 2. + +Mixture 23. + + 2.213e-01 Solution 22 Solution after simulation 2. + 5.574e-01 Solution 23 Solution after simulation 2. + 2.213e-01 Solution 24 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 0.000 + NaX 3.794e-09 3.794e-09 7.904e-08 -0.061 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.395e-02 2.395e-02 + Cl 5.151e-05 5.151e-05 + K 2.400e-02 2.400e-02 + Na 1.636e-09 1.636e-09 + +----------------------------Description of solution---------------------------- + + pH = 7.001 Charge balance + pe = 13.405 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00196 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.925e-08 + Temperature (°C) = 0.00 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.925e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.126e-07 9.984e-08 -6.948 -7.001 -0.052 0.00 + OH- 1.338e-08 1.153e-08 -7.873 -7.938 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.395e-02 + Br- 2.395e-02 2.057e-02 -1.621 -1.687 -0.066 22.49 +Cl 5.151e-05 + Cl- 5.151e-05 4.446e-05 -4.288 -4.352 -0.064 16.53 + HCl 1.744e-12 1.786e-12 -11.758 -11.748 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -43.846 -43.844 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +Na 1.636e-09 + Na+ 1.636e-09 1.421e-09 -8.786 -8.847 -0.061 -3.34 +O(0) 6.298e-14 + O2 3.149e-14 3.167e-14 -13.502 -13.499 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -40.83 -43.84 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + Halite -14.75 -13.20 1.55 NaCl + O2(g) -10.84 -13.50 -2.66 O2 + Sylvite -6.80 -6.04 0.76 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 1.6491e-06 1.0791e-09 +Using mix 24. +Using exchange 24. Exchange assemblage after simulation 2. + +Mixture 24. + + 2.213e-01 Solution 23 Solution after simulation 2. + 5.574e-01 Solution 24 Solution after simulation 2. + 2.213e-01 Solution 25 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + NaX 1.051e-09 1.051e-09 2.190e-08 -0.061 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.397e-02 2.397e-02 + Cl 3.228e-05 3.228e-05 + K 2.400e-02 2.400e-02 + Na 4.532e-10 4.532e-10 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 13.416 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.932e-08 + Temperature (°C) = 0.00 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.932e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.127e-07 9.990e-08 -6.948 -7.000 -0.052 0.00 + OH- 1.337e-08 1.152e-08 -7.874 -7.938 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.397e-02 + Br- 2.397e-02 2.059e-02 -1.620 -1.686 -0.066 22.49 +Cl 3.228e-05 + Cl- 3.228e-05 2.786e-05 -4.491 -4.555 -0.064 16.53 + HCl 1.094e-12 1.120e-12 -11.961 -11.951 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -43.866 -43.864 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +Na 4.532e-10 + Na+ 4.532e-10 3.937e-10 -9.344 -9.405 -0.061 -3.34 +O(0) 6.910e-14 + O2 3.455e-14 3.474e-14 -13.462 -13.459 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -40.85 -43.86 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + Halite -15.51 -13.96 1.55 NaCl + O2(g) -10.80 -13.46 -2.66 O2 + Sylvite -7.00 -6.24 0.76 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 4.8063e-07 1.0791e-09 +Using mix 25. +Using exchange 25. Exchange assemblage after simulation 2. + +Mixture 25. + + 2.213e-01 Solution 24 Solution after simulation 2. + 5.574e-01 Solution 25 Solution after simulation 2. + 2.213e-01 Solution 26 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 0.000 + NaX 2.793e-10 2.793e-10 5.819e-09 -0.061 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.398e-02 2.398e-02 + Cl 1.988e-05 1.988e-05 + K 2.400e-02 2.400e-02 + Na 1.204e-10 1.204e-10 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 13.376 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.937e-08 + Temperature (°C) = 0.00 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.937e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.127e-07 9.994e-08 -6.948 -7.000 -0.052 0.00 + OH- 1.337e-08 1.152e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.398e-02 + Br- 2.398e-02 2.060e-02 -1.620 -1.686 -0.066 22.49 +Cl 1.988e-05 + Cl- 1.988e-05 1.716e-05 -4.702 -4.766 -0.064 16.53 + HCl 6.739e-13 6.899e-13 -12.171 -12.161 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -43.788 -43.785 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +Na 1.204e-10 + Na+ 1.204e-10 1.046e-10 -9.919 -9.980 -0.061 -3.34 +O(0) 4.806e-14 + O2 2.403e-14 2.416e-14 -13.619 -13.617 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -40.77 -43.79 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + Halite -16.29 -14.75 1.55 NaCl + O2(g) -10.96 -13.62 -2.66 O2 + Sylvite -7.21 -6.45 0.76 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 1.3465e-07 1.0791e-09 +Using mix 26. +Using exchange 26. Exchange assemblage after simulation 2. + +Mixture 26. + + 2.213e-01 Solution 25 Solution after simulation 2. + 5.574e-01 Solution 26 Solution after simulation 2. + 2.213e-01 Solution 27 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 0.000 + NaX 7.125e-11 7.125e-11 1.484e-09 -0.061 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.399e-02 2.399e-02 + Cl 1.205e-05 1.205e-05 + K 2.400e-02 2.400e-02 + Na 3.072e-11 3.072e-11 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 13.376 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.940e-08 + Temperature (°C) = 0.00 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.940e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 9.996e-08 -6.948 -7.000 -0.052 0.00 + OH- 1.337e-08 1.152e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.399e-02 + Br- 2.399e-02 2.060e-02 -1.620 -1.686 -0.066 22.49 +Cl 1.205e-05 + Cl- 1.205e-05 1.040e-05 -4.919 -4.983 -0.064 16.53 + HCl 4.086e-13 4.183e-13 -12.389 -12.378 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -43.787 -43.785 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +Na 3.072e-11 + Na+ 3.072e-11 2.669e-11 -10.513 -10.574 -0.061 -3.34 +O(0) 4.792e-14 + O2 2.396e-14 2.409e-14 -13.620 -13.618 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -40.77 -43.78 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + Halite -17.10 -15.56 1.55 NaCl + O2(g) -10.96 -13.62 -2.66 O2 + Sylvite -7.43 -6.67 0.76 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 3.6283e-08 1.0791e-09 +Using mix 27. +Using exchange 27. Exchange assemblage after simulation 2. + +Mixture 27. + + 2.213e-01 Solution 26 Solution after simulation 2. + 5.574e-01 Solution 27 Solution after simulation 2. + 2.213e-01 Solution 28 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + NaX 1.746e-11 1.746e-11 3.637e-10 -0.061 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.399e-02 2.399e-02 + Cl 7.227e-06 7.227e-06 + K 2.400e-02 2.400e-02 + Na 7.527e-12 7.527e-12 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 13.381 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.942e-08 + Temperature (°C) = 0.00 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.942e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 9.998e-08 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.152e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.399e-02 + Br- 2.399e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +Cl 7.227e-06 + Cl- 7.227e-06 6.238e-06 -5.141 -5.205 -0.064 16.53 + HCl 2.451e-13 2.509e-13 -12.611 -12.600 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -43.796 -43.794 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +Na 7.527e-12 + Na+ 7.527e-12 6.538e-12 -11.123 -11.185 -0.061 -3.34 +O(0) 4.999e-14 + O2 2.500e-14 2.513e-14 -13.602 -13.600 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -40.78 -43.79 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + Halite -17.94 -16.39 1.55 NaCl + O2(g) -10.94 -13.60 -2.66 O2 + Sylvite -7.65 -6.89 0.76 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 9.4125e-09 1.0791e-09 +Using mix 28. +Using exchange 28. Exchange assemblage after simulation 2. + +Mixture 28. + + 2.213e-01 Solution 27 Solution after simulation 2. + 5.574e-01 Solution 28 Solution after simulation 2. + 2.213e-01 Solution 29 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + NaX 4.111e-12 4.111e-12 8.565e-11 -0.061 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + Cl 4.357e-06 4.357e-06 + K 2.400e-02 2.400e-02 + Na 1.773e-12 1.773e-12 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 13.370 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.943e-08 + Temperature (°C) = 0.00 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.943e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 9.999e-08 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +Cl 4.357e-06 + Cl- 4.357e-06 3.761e-06 -5.361 -5.425 -0.064 16.53 + HCl 1.478e-13 1.513e-13 -12.830 -12.820 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -43.775 -43.773 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +Na 1.773e-12 + Na+ 1.773e-12 1.540e-12 -11.751 -11.812 -0.061 -3.34 +O(0) 4.538e-14 + O2 2.269e-14 2.282e-14 -13.644 -13.642 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -40.76 -43.77 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + Halite -18.79 -17.24 1.55 NaCl + O2(g) -10.98 -13.64 -2.66 O2 + Sylvite -7.87 -7.11 0.76 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 2.3768e-09 1.0791e-09 +Using mix 29. +Using exchange 29. Exchange assemblage after simulation 2. + +Mixture 29. + + 2.213e-01 Solution 28 Solution after simulation 2. + 5.574e-01 Solution 29 Solution after simulation 2. + 2.213e-01 Solution 30 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 0.000 + NaX 9.388e-13 9.388e-13 1.956e-11 -0.061 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + Cl 2.769e-06 2.769e-06 + K 2.400e-02 2.400e-02 + Na 4.048e-13 4.048e-13 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 13.313 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.944e-08 + Temperature (°C) = 0.00 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.944e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 9.999e-08 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +Cl 2.769e-06 + Cl- 2.769e-06 2.390e-06 -5.558 -5.622 -0.064 16.53 + HCl 9.391e-14 9.615e-14 -13.027 -13.017 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -43.661 -43.658 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +Na 4.048e-13 + Na+ 4.048e-13 3.517e-13 -12.393 -12.454 -0.061 -3.34 +O(0) 2.678e-14 + O2 1.339e-14 1.346e-14 -13.873 -13.871 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -40.65 -43.66 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + Halite -19.62 -18.08 1.55 NaCl + O2(g) -11.21 -13.87 -2.66 O2 + Sylvite -8.07 -7.31 0.76 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + + 6.9499e-10 1.0791e-09 +Using mix 30. +Using exchange 30. Exchange assemblage after simulation 2. + +Mixture 30. + + 2.213e-01 Solution 29 Solution after simulation 2. + 7.787e-01 Solution 30 Solution after simulation 2. + 0.000e+00 Solution 31 24 mM KBr, initial temp 0C + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + NaX 2.451e-13 2.451e-13 5.105e-12 -0.061 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + Cl 2.066e-06 2.066e-06 + K 2.400e-02 2.400e-02 + Na 1.057e-13 1.057e-13 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 13.323 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.944e-08 + Temperature (°C) = 0.00 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.944e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 9.999e-08 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +Cl 2.066e-06 + Cl- 2.066e-06 1.783e-06 -5.685 -5.749 -0.064 16.53 + HCl 7.007e-14 7.174e-14 -13.154 -13.144 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -43.680 -43.678 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +Na 1.057e-13 + Na+ 1.057e-13 9.179e-14 -12.976 -13.037 -0.061 -3.34 +O(0) 2.933e-14 + O2 1.467e-14 1.475e-14 -13.834 -13.831 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -40.67 -43.68 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + Halite -20.33 -18.79 1.55 NaCl + O2(g) -11.17 -13.83 -2.66 O2 + Sylvite -8.20 -7.43 0.76 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +------------------ +End of simulation. +------------------ + +------------------------------------ +Reading input data for simulation 3. +------------------------------------ + + Reinitialize the column... +WARNING: Unknown input, no keyword has been specified. + copy cell 31 1-30 + END +------------------ +End of simulation. +------------------ + +------------------------------------ +Reading input data for simulation 4. +------------------------------------ + + TRANSPORT + multi_d true 0.3e-9 1 0.05 0 false # will give the traditional results when tc = 25 throughout + thermal_diffusion 3.0 1.33e-9 # efine the diffusion coefficient for heat to be equal to Na + implicit true 3 -12 # max_mixf = 3, min_dif_LM = -12 + USER_GRAPH 1 Example 12b +WARNING: No porosities were read; used the value 1.00e+00 from -multi_D. +------------------------------------ +Column data retained from former run +------------------------------------ + + -headings MultiD&Visc&Implicit:Na Cl TC + -start + 10 x = DIST + 20 PLOT_XY x, TOT("Na")*1000, symbol = Circle, line_width = 0, symbol_size = 5, color = Red + 30 PLOT_XY x, TOT("Cl")*1000, symbol = Circle, line_width = 0, symbol_size = 5, color = Green + 40 PLOT_XY x, TC, symbol = Circle, line_width = 0, symbol_size = 8, y-axis 2, color = Blue + END +------------------------------------ +Beginning of transport calculations. +------------------------------------ + +------------------------------- +Equilibrating initial solutions +------------------------------- + +Using solution 0. Solution after simulation 2. + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Cl 2.400e-02 2.400e-02 + Na 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 4.000 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 24°C) = 2687 + Density (g/cm³) = 0.99829 + Volume (L) = 1.00312 + Viscosity (mPa s) = 0.91317 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -4.679e-09 + Temperature (°C) = 24.00 + Electrical balance (eq) = 4.679e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 0 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.133e-07 1.000e-07 -6.946 -7.000 -0.054 0.00 + OH- 1.093e-07 9.367e-08 -6.961 -7.028 -0.067 -4.01 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.06 +Cl 2.400e-02 + Cl- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 18.16 + HCl 6.977e-10 7.143e-10 -9.156 -9.146 0.010 (0) +H(0) 1.422e-25 + H2 7.111e-26 7.151e-26 -25.148 -25.146 0.002 28.61 +Na 2.400e-02 + Na+ 2.400e-02 2.074e-02 -1.620 -1.683 -0.063 -1.36 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -42.416 -42.413 0.002 30.32 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(297 K, 1 atm) + + H2(g) -22.05 -25.15 -3.10 H2 + H2O(g) -1.53 -0.00 1.53 H2O + Halite -4.94 -3.37 1.57 NaCl + O2(g) -39.53 -42.41 -2.89 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 1. 24 mM KBr, initial temp 0C +Using exchange 1. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 2. 24 mM KBr, initial temp 0C +Using exchange 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (26 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 3. 24 mM KBr, initial temp 0C +Using exchange 3. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (39 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 4. 24 mM KBr, initial temp 0C +Using exchange 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (52 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 5. 24 mM KBr, initial temp 0C +Using exchange 5. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (65 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 6. 24 mM KBr, initial temp 0C +Using exchange 6. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (78 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 7. 24 mM KBr, initial temp 0C +Using exchange 7. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (91 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 8. 24 mM KBr, initial temp 0C +Using exchange 8. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (104 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 9. 24 mM KBr, initial temp 0C +Using exchange 9. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (117 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 10. 24 mM KBr, initial temp 0C +Using exchange 10. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (130 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 11. 24 mM KBr, initial temp 0C +Using exchange 11. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (143 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 12. 24 mM KBr, initial temp 0C +Using exchange 12. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (156 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 13. 24 mM KBr, initial temp 0C +Using exchange 13. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (169 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 14. 24 mM KBr, initial temp 0C +Using exchange 14. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (182 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 15. 24 mM KBr, initial temp 0C +Using exchange 15. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (195 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 16. 24 mM KBr, initial temp 0C +Using exchange 16. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (208 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 17. 24 mM KBr, initial temp 0C +Using exchange 17. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (221 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 18. 24 mM KBr, initial temp 0C +Using exchange 18. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (234 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 19. 24 mM KBr, initial temp 0C +Using exchange 19. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (247 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 20. 24 mM KBr, initial temp 0C +Using exchange 20. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (260 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 21. 24 mM KBr, initial temp 0C +Using exchange 21. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (273 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 22. 24 mM KBr, initial temp 0C +Using exchange 22. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (286 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 23. 24 mM KBr, initial temp 0C +Using exchange 23. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (299 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 24. 24 mM KBr, initial temp 0C +Using exchange 24. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (312 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 25. 24 mM KBr, initial temp 0C +Using exchange 25. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (325 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 26. 24 mM KBr, initial temp 0C +Using exchange 26. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (338 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 27. 24 mM KBr, initial temp 0C +Using exchange 27. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (351 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 28. 24 mM KBr, initial temp 0C +Using exchange 28. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (364 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 29. 24 mM KBr, initial temp 0C +Using exchange 29. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (377 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 30. 24 mM KBr, initial temp 0C +Using exchange 30. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78750 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (390 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +WARNING: +Calculating implicit transport: 30 (mobile) cells, 1 shifts, 723 mixruns, max. mixf = 3. + + +Transport step 1. Multicomponent diffusion run 723. + +Using solution 0. Solution after simulation 4. + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Cl 2.400e-02 2.400e-02 + Na 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 4.000 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 24°C) = 2687 + Density (g/cm³) = 0.99829 + Volume (L) = 1.00312 + Viscosity (mPa s) = 0.91317 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -4.679e-09 + Temperature (°C) = 24.00 + Electrical balance (eq) = 4.679e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 0 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.133e-07 1.000e-07 -6.946 -7.000 -0.054 0.00 + OH- 1.093e-07 9.367e-08 -6.961 -7.028 -0.067 -4.01 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.06 +Cl 2.400e-02 + Cl- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 18.16 + HCl 6.977e-10 7.143e-10 -9.156 -9.146 0.010 (0) +H(0) 1.422e-25 + H2 7.111e-26 7.151e-26 -25.148 -25.146 0.002 28.61 +Na 2.400e-02 + Na+ 2.400e-02 2.074e-02 -1.620 -1.683 -0.063 -1.36 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -42.416 -42.413 0.002 30.32 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(297 K, 1 atm) + + H2(g) -22.05 -25.15 -3.10 H2 + H2O(g) -1.53 -0.00 1.53 H2O + Halite -4.94 -3.37 1.57 NaCl + O2(g) -39.53 -42.41 -2.89 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 1. +Using exchange 1. Exchange assemblage after simulation 4. + +Mixture 1. + + 0.000e+00 Solution 0 Solution after simulation 4. + 1.000e+00 Solution 1 Solution after simulation 4. + 0.000e+00 Solution 2 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + NaX 4.651e-02 4.651e-02 9.689e-01 -0.063 + KX 1.493e-03 1.493e-03 3.111e-02 0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 5.009e-04 5.009e-04 + Cl 2.337e-02 2.337e-02 + K 8.607e-04 8.607e-04 + Na 2.301e-02 2.301e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.009 Charge balance + pe = 11.983 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 23°C) = 2634 + Density (g/cm³) = 0.99857 + Volume (L) = 1.00286 + Viscosity (mPa s) = 0.93620 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.387e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.009e-09 + Temperature (°C) = 22.92 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.972e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.109e-07 9.797e-08 -6.955 -7.009 -0.054 0.00 + OH- 1.026e-07 8.798e-08 -6.989 -7.056 -0.067 -4.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.06 +Br 5.009e-04 + Br- 5.009e-04 4.281e-04 -3.300 -3.368 -0.068 24.57 +Cl 2.337e-02 + Cl- 2.337e-02 2.008e-02 -1.631 -1.697 -0.066 18.12 + HCl 6.705e-10 6.864e-10 -9.174 -9.163 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -41.128 -41.126 0.002 28.61 +K 8.607e-04 + K+ 8.607e-04 7.388e-04 -3.065 -3.131 -0.066 9.04 +Na 2.301e-02 + Na+ 2.301e-02 1.990e-02 -1.638 -1.701 -0.063 -1.41 +O(0) 3.126e-11 + O2 1.563e-11 1.572e-11 -10.806 -10.804 0.002 30.23 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(296 K, 1 atm) + + H2(g) -38.03 -41.13 -3.10 H2 + H2O(g) -1.56 -0.00 1.56 H2O + Halite -4.97 -3.40 1.57 NaCl + O2(g) -7.93 -10.80 -2.88 O2 + Sylvite -5.72 -4.83 0.89 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 2. +Using exchange 2. Exchange assemblage after simulation 4. + +Mixture 2. + + 0.000e+00 Solution 1 Solution after simulation 4. + 1.000e+00 Solution 2 Solution after simulation 4. + 0.000e+00 Solution 3 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + NaX 4.341e-02 4.341e-02 9.044e-01 -0.063 + KX 4.590e-03 4.590e-03 9.563e-02 0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.489e-03 1.489e-03 + Cl 2.212e-02 2.212e-02 + K 2.587e-03 2.587e-03 + Na 2.102e-02 2.102e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.025 Charge balance + pe = 12.267 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 21°C) = 2530 + Density (g/cm³) = 0.99910 + Volume (L) = 1.00239 + Viscosity (mPa s) = 0.98472 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.361e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -1.733e-08 + Temperature (°C) = 20.79 + Pressure (atm) = 1.00 + Electrical balance (eq) = 1.008e-07 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.067e-07 9.431e-08 -6.972 -7.025 -0.054 0.00 + OH- 8.998e-08 7.727e-08 -7.046 -7.112 -0.066 -4.15 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.05 +Br 1.489e-03 + Br- 1.489e-03 1.274e-03 -2.827 -2.895 -0.068 24.46 +Cl 2.212e-02 + Cl- 2.212e-02 1.903e-02 -1.655 -1.721 -0.065 18.05 + HCl 6.200e-10 6.345e-10 -9.208 -9.198 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -41.718 -41.715 0.002 28.61 +K 2.587e-03 + K+ 2.587e-03 2.223e-03 -2.587 -2.653 -0.066 8.97 +Na 2.102e-02 + Na+ 2.102e-02 1.820e-02 -1.677 -1.740 -0.063 -1.54 +O(0) 9.366e-11 + O2 4.683e-11 4.709e-11 -10.329 -10.327 0.002 30.05 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(293 K, 1 atm) + + H2(g) -38.63 -41.72 -3.09 H2 + H2O(g) -1.61 -0.00 1.61 H2O + Halite -5.03 -3.46 1.57 NaCl + O2(g) -7.47 -10.33 -2.86 O2 + Sylvite -5.25 -4.37 0.88 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 3. +Using exchange 3. Exchange assemblage after simulation 4. + +Mixture 3. + + 0.000e+00 Solution 2 Solution after simulation 4. + 1.000e+00 Solution 3 Solution after simulation 4. + 0.000e+00 Solution 4 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + NaX 4.017e-02 4.017e-02 8.369e-01 -0.062 + KX 7.827e-03 7.827e-03 1.631e-01 0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.450e-03 2.450e-03 + Cl 2.090e-02 2.090e-02 + K 4.311e-03 4.311e-03 + Na 1.904e-02 1.904e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.040 Charge balance + pe = 12.487 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 19°C) = 2429 + Density (g/cm³) = 0.99956 + Volume (L) = 1.00198 + Viscosity (mPa s) = 1.03639 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.335e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -2.501e-08 + Temperature (°C) = 18.70 + Pressure (atm) = 1.00 + Electrical balance (eq) = 1.002e-07 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.030e-07 9.115e-08 -6.987 -7.040 -0.053 0.00 + OH- 7.859e-08 6.756e-08 -7.105 -7.170 -0.066 -4.27 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.04 +Br 2.450e-03 + Br- 2.450e-03 2.100e-03 -2.611 -2.678 -0.067 24.34 +Cl 2.090e-02 + Cl- 2.090e-02 1.800e-02 -1.680 -1.745 -0.065 17.96 + HCl 5.745e-10 5.878e-10 -9.241 -9.231 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.178 -42.176 0.002 28.61 +K 4.311e-03 + K+ 4.311e-03 3.709e-03 -2.365 -2.431 -0.065 8.89 +Na 1.904e-02 + Na+ 1.904e-02 1.650e-02 -1.720 -1.782 -0.062 -1.67 +O(0) 1.558e-10 + O2 7.789e-11 7.831e-11 -10.109 -10.106 0.002 29.87 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(291 K, 1 atm) + + H2(g) -39.09 -42.18 -3.08 H2 + H2O(g) -1.67 -0.00 1.67 H2O + Halite -5.09 -3.53 1.56 NaCl + O2(g) -7.26 -10.11 -2.84 O2 + Sylvite -5.04 -4.18 0.87 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 4. +Using exchange 4. Exchange assemblage after simulation 4. + +Mixture 4. + + 0.000e+00 Solution 3 Solution after simulation 4. + 1.000e+00 Solution 4 Solution after simulation 4. + 0.000e+00 Solution 5 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + NaX 3.683e-02 3.683e-02 7.673e-01 -0.062 + KX 1.117e-02 1.117e-02 2.327e-01 0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 3.385e-03 3.385e-03 + Cl 1.972e-02 1.972e-02 + K 6.015e-03 6.015e-03 + Na 1.709e-02 1.709e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.053 Charge balance + pe = 12.686 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 17°C) = 2333 + Density (g/cm³) = 0.99997 + Volume (L) = 1.00163 + Viscosity (mPa s) = 1.09077 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.310e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -3.205e-08 + Temperature (°C) = 16.67 + Pressure (atm) = 1.00 + Electrical balance (eq) = 1.001e-07 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.996e-08 8.851e-08 -7.000 -7.053 -0.053 0.00 + OH- 6.844e-08 5.891e-08 -7.165 -7.230 -0.065 -4.39 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.04 +Br 3.385e-03 + Br- 3.385e-03 2.904e-03 -2.470 -2.537 -0.067 24.20 +Cl 1.972e-02 + Cl- 1.972e-02 1.700e-02 -1.705 -1.770 -0.064 17.87 + HCl 5.336e-10 5.458e-10 -9.273 -9.263 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.594 -42.592 0.002 28.62 +K 6.015e-03 + K+ 6.015e-03 5.182e-03 -2.221 -2.286 -0.065 8.80 +Na 1.709e-02 + Na+ 1.709e-02 1.482e-02 -1.767 -1.829 -0.062 -1.80 +O(0) 2.174e-10 + O2 1.087e-10 1.093e-10 -9.964 -9.961 0.002 29.67 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(289 K, 1 atm) + + H2(g) -39.51 -42.59 -3.08 H2 + H2O(g) -1.72 -0.00 1.72 H2O + Halite -5.16 -3.60 1.56 NaCl + O2(g) -7.13 -9.96 -2.83 O2 + Sylvite -4.91 -4.06 0.86 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 5. +Using exchange 5. Exchange assemblage after simulation 4. + +Mixture 5. + + 0.000e+00 Solution 4 Solution after simulation 4. + 1.000e+00 Solution 5 Solution after simulation 4. + 0.000e+00 Solution 6 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + NaX 3.341e-02 3.341e-02 6.961e-01 -0.061 + KX 1.459e-02 1.459e-02 3.039e-01 0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 4.291e-03 4.291e-03 + Cl 1.857e-02 1.857e-02 + K 7.684e-03 7.684e-03 + Na 1.518e-02 1.518e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.064 Charge balance + pe = 12.874 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 15°C) = 2242 + Density (g/cm³) = 1.00032 + Volume (L) = 1.00133 + Viscosity (mPa s) = 1.14723 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.286e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -3.840e-08 + Temperature (°C) = 14.73 + Pressure (atm) = 1.00 + Electrical balance (eq) = 1.000e-07 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.746e-08 8.636e-08 -7.011 -7.064 -0.052 0.00 + OH- 5.955e-08 5.132e-08 -7.225 -7.290 -0.065 -4.52 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.03 +Br 4.291e-03 + Br- 4.291e-03 3.686e-03 -2.367 -2.433 -0.066 24.06 +Cl 1.857e-02 + Cl- 1.857e-02 1.603e-02 -1.731 -1.795 -0.064 17.76 + HCl 4.970e-10 5.083e-10 -9.304 -9.294 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.981 -42.979 0.002 28.62 +K 7.684e-03 + K+ 7.684e-03 6.627e-03 -2.114 -2.179 -0.064 8.72 +Na 1.518e-02 + Na+ 1.518e-02 1.318e-02 -1.819 -1.880 -0.061 -1.94 +O(0) 2.784e-10 + O2 1.392e-10 1.399e-10 -9.856 -9.854 0.002 29.48 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(287 K, 1 atm) + + H2(g) -39.91 -42.98 -3.07 H2 + H2O(g) -1.78 -0.00 1.78 H2O + Halite -5.24 -3.68 1.56 NaCl + O2(g) -7.04 -9.85 -2.81 O2 + Sylvite -4.82 -3.97 0.85 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 6. +Using exchange 6. Exchange assemblage after simulation 4. + +Mixture 6. + + 0.000e+00 Solution 5 Solution after simulation 4. + 1.000e+00 Solution 6 Solution after simulation 4. + 0.000e+00 Solution 7 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + NaX 2.997e-02 2.997e-02 6.243e-01 -0.061 + KX 1.803e-02 1.803e-02 3.757e-01 0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 5.168e-03 5.168e-03 + Cl 1.747e-02 1.747e-02 + K 9.300e-03 9.300e-03 + Na 1.334e-02 1.334e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.072 Charge balance + pe = 13.050 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 13°C) = 2158 + Density (g/cm³) = 1.00061 + Volume (L) = 1.00110 + Viscosity (mPa s) = 1.20503 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.264e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -4.405e-08 + Temperature (°C) = 12.90 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.996e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.548e-08 8.467e-08 -7.020 -7.072 -0.052 0.00 + OH- 5.189e-08 4.476e-08 -7.285 -7.349 -0.064 -4.65 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.03 +Br 5.168e-03 + Br- 5.168e-03 4.444e-03 -2.287 -2.352 -0.066 23.92 +Cl 1.747e-02 + Cl- 1.747e-02 1.510e-02 -1.758 -1.821 -0.063 17.66 + HCl 4.643e-10 4.747e-10 -9.333 -9.324 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -43.343 -43.341 0.002 28.62 +K 9.300e-03 + K+ 9.300e-03 8.028e-03 -2.032 -2.095 -0.064 8.63 +Na 1.334e-02 + Na+ 1.334e-02 1.160e-02 -1.875 -1.936 -0.061 -2.07 +O(0) 3.385e-10 + O2 1.692e-10 1.701e-10 -9.771 -9.769 0.002 29.28 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(286 K, 1 atm) + + H2(g) -40.28 -43.34 -3.07 H2 + H2O(g) -1.83 -0.00 1.83 H2O + Halite -5.32 -3.76 1.56 NaCl + O2(g) -6.98 -9.77 -2.79 O2 + Sylvite -4.75 -3.92 0.84 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 7. +Using exchange 7. Exchange assemblage after simulation 4. + +Mixture 7. + + 0.000e+00 Solution 6 Solution after simulation 4. + 1.000e+00 Solution 7 Solution after simulation 4. + 0.000e+00 Solution 8 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + NaX 2.654e-02 2.654e-02 5.530e-01 -0.060 + KX 2.146e-02 2.146e-02 4.470e-01 0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 6.018e-03 6.018e-03 + Cl 1.642e-02 1.642e-02 + K 1.085e-02 1.085e-02 + Na 1.159e-02 1.159e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.079 Charge balance + pe = 13.216 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 11°C) = 2080 + Density (g/cm³) = 1.00084 + Volume (L) = 1.00091 + Viscosity (mPa s) = 1.26331 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.244e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -4.903e-08 + Temperature (°C) = 11.19 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.990e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.396e-08 8.338e-08 -7.027 -7.079 -0.052 0.00 + OH- 4.536e-08 3.916e-08 -7.343 -7.407 -0.064 -4.79 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 6.018e-03 + Br- 6.018e-03 5.179e-03 -2.221 -2.286 -0.065 23.78 +Cl 1.642e-02 + Cl- 1.642e-02 1.420e-02 -1.785 -1.848 -0.063 17.55 + HCl 4.348e-10 4.445e-10 -9.362 -9.352 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -43.679 -43.677 0.002 28.62 +K 1.085e-02 + K+ 1.085e-02 9.372e-03 -1.965 -2.028 -0.063 8.55 +Na 1.159e-02 + Na+ 1.159e-02 1.009e-02 -1.936 -1.996 -0.060 -2.21 +O(0) 3.976e-10 + O2 1.988e-10 1.998e-10 -9.702 -9.699 0.002 29.09 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(284 K, 1 atm) + + H2(g) -40.62 -43.68 -3.06 H2 + H2O(g) -1.88 -0.00 1.88 H2O + Halite -5.40 -3.84 1.56 NaCl + O2(g) -6.92 -9.70 -2.78 O2 + Sylvite -4.70 -3.88 0.83 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 8. +Using exchange 8. Exchange assemblage after simulation 4. + +Mixture 8. + + 0.000e+00 Solution 7 Solution after simulation 4. + 1.000e+00 Solution 8 Solution after simulation 4. + 0.000e+00 Solution 9 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 2.480e-02 2.480e-02 5.167e-01 0.000 + NaX 2.320e-02 2.320e-02 4.833e-01 -0.060 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 6.839e-03 6.839e-03 + Cl 1.542e-02 1.542e-02 + K 1.231e-02 1.231e-02 + Na 9.954e-03 9.954e-03 + +----------------------------Description of solution---------------------------- + + pH = 7.084 Charge balance + pe = 13.370 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 10°C) = 2011 + Density (g/cm³) = 1.00102 + Volume (L) = 1.00078 + Viscosity (mPa s) = 1.32113 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.226e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -5.337e-08 + Temperature (°C) = 9.62 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.984e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.284e-08 8.243e-08 -7.032 -7.084 -0.052 0.00 + OH- 3.987e-08 3.446e-08 -7.399 -7.463 -0.063 -4.93 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 6.839e-03 + Br- 6.839e-03 5.891e-03 -2.165 -2.230 -0.065 23.63 +Cl 1.542e-02 + Cl- 1.542e-02 1.335e-02 -1.812 -1.875 -0.063 17.44 + HCl 4.081e-10 4.171e-10 -9.389 -9.380 0.009 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -43.990 -43.988 0.002 28.63 +K 1.231e-02 + K+ 1.231e-02 1.064e-02 -1.910 -1.973 -0.063 8.46 +Na 9.954e-03 + Na+ 9.954e-03 8.668e-03 -2.002 -2.062 -0.060 -2.34 +O(0) 4.554e-10 + O2 2.277e-10 2.289e-10 -9.643 -9.640 0.002 28.90 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(282 K, 1 atm) + + H2(g) -40.93 -43.99 -3.05 H2 + H2O(g) -1.92 -0.00 1.92 H2O + Halite -5.49 -3.94 1.56 NaCl + O2(g) -6.88 -9.64 -2.76 O2 + Sylvite -4.67 -3.85 0.82 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 9. +Using exchange 9. Exchange assemblage after simulation 4. + +Mixture 9. + + 0.000e+00 Solution 8 Solution after simulation 4. + 1.000e+00 Solution 9 Solution after simulation 4. + 0.000e+00 Solution 10 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 2.801e-02 2.801e-02 5.836e-01 0.000 + NaX 1.999e-02 1.999e-02 4.164e-01 -0.060 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 7.634e-03 7.634e-03 + Cl 1.448e-02 1.448e-02 + K 1.367e-02 1.367e-02 + Na 8.441e-03 8.441e-03 + +----------------------------Description of solution---------------------------- + + pH = 7.087 Charge balance + pe = 13.512 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 8°C) = 1949 + Density (g/cm³) = 1.00116 + Volume (L) = 1.00069 + Viscosity (mPa s) = 1.37753 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.211e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -5.712e-08 + Temperature (°C) = 8.18 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.978e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.205e-08 8.177e-08 -7.036 -7.087 -0.051 0.00 + OH- 3.531e-08 3.053e-08 -7.452 -7.515 -0.063 -5.06 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 7.634e-03 + Br- 7.634e-03 6.581e-03 -2.117 -2.182 -0.064 23.49 +Cl 1.448e-02 + Cl- 1.448e-02 1.254e-02 -1.839 -1.902 -0.062 17.33 + HCl 3.837e-10 3.921e-10 -9.416 -9.407 0.009 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -44.274 -44.272 0.002 28.63 +K 1.367e-02 + K+ 1.367e-02 1.183e-02 -1.864 -1.927 -0.063 8.38 +Na 8.441e-03 + Na+ 8.441e-03 7.355e-03 -2.074 -2.133 -0.060 -2.47 +O(0) 5.119e-10 + O2 2.560e-10 2.573e-10 -9.592 -9.590 0.002 28.72 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(281 K, 1 atm) + + H2(g) -41.22 -44.27 -3.05 H2 + H2O(g) -1.96 -0.00 1.96 H2O + Halite -5.59 -4.04 1.56 NaCl + O2(g) -6.84 -9.59 -2.75 O2 + Sylvite -4.64 -3.83 0.81 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 10. +Using exchange 10. Exchange assemblage after simulation 4. + +Mixture 10. + + 0.000e+00 Solution 9 Solution after simulation 4. + 1.000e+00 Solution 10 Solution after simulation 4. + 0.000e+00 Solution 11 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 3.103e-02 3.103e-02 6.465e-01 0.000 + NaX 1.697e-02 1.697e-02 3.535e-01 -0.060 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 8.403e-03 8.403e-03 + Cl 1.359e-02 1.359e-02 + K 1.493e-02 1.493e-02 + Na 7.066e-03 7.066e-03 + +----------------------------Description of solution---------------------------- + + pH = 7.090 Charge balance + pe = 13.641 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 7°C) = 1895 + Density (g/cm³) = 1.00127 + Volume (L) = 1.00063 + Viscosity (mPa s) = 1.43158 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.199e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -6.032e-08 + Temperature (°C) = 6.89 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.972e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.151e-08 8.132e-08 -7.039 -7.090 -0.051 0.00 + OH- 3.155e-08 2.730e-08 -7.501 -7.564 -0.063 -5.19 + H2O 5.551e+01 9.993e-01 1.744 -0.000 0.000 18.02 +Br 8.403e-03 + Br- 8.403e-03 7.248e-03 -2.076 -2.140 -0.064 23.36 +Cl 1.359e-02 + Cl- 1.359e-02 1.178e-02 -1.867 -1.929 -0.062 17.23 + HCl 3.613e-10 3.692e-10 -9.442 -9.433 0.009 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -44.531 -44.528 0.002 28.63 +K 1.493e-02 + K+ 1.493e-02 1.292e-02 -1.826 -1.889 -0.063 8.31 +Na 7.066e-03 + Na+ 7.066e-03 6.160e-03 -2.151 -2.210 -0.060 -2.59 +O(0) 5.669e-10 + O2 2.835e-10 2.849e-10 -9.548 -9.545 0.002 28.55 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(280 K, 1 atm) + + H2(g) -41.49 -44.53 -3.04 H2 + H2O(g) -2.00 -0.00 2.00 H2O + Halite -5.69 -4.14 1.55 NaCl + O2(g) -6.81 -9.55 -2.73 O2 + Sylvite -4.62 -3.82 0.80 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 11. +Using exchange 11. Exchange assemblage after simulation 4. + +Mixture 11. + + 0.000e+00 Solution 10 Solution after simulation 4. + 1.000e+00 Solution 11 Solution after simulation 4. + 0.000e+00 Solution 12 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 3.381e-02 3.381e-02 7.045e-01 0.000 + NaX 1.419e-02 1.419e-02 2.955e-01 -0.059 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 9.147e-03 9.147e-03 + Cl 1.275e-02 1.275e-02 + K 1.606e-02 1.606e-02 + Na 5.837e-03 5.837e-03 + +----------------------------Description of solution---------------------------- + + pH = 7.091 Charge balance + pe = 13.757 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 6°C) = 1849 + Density (g/cm³) = 1.00134 + Volume (L) = 1.00060 + Viscosity (mPa s) = 1.48246 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.190e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -6.302e-08 + Temperature (°C) = 5.75 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.967e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.115e-08 8.104e-08 -7.040 -7.091 -0.051 0.00 + OH- 2.847e-08 2.465e-08 -7.546 -7.608 -0.063 -5.32 + H2O 5.551e+01 9.993e-01 1.744 -0.000 0.000 18.02 +Br 9.147e-03 + Br- 9.147e-03 7.894e-03 -2.039 -2.103 -0.064 23.23 +Cl 1.275e-02 + Cl- 1.275e-02 1.106e-02 -1.894 -1.956 -0.062 17.13 + HCl 3.405e-10 3.478e-10 -9.468 -9.459 0.009 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -44.760 -44.758 0.002 28.63 +K 1.606e-02 + K+ 1.606e-02 1.391e-02 -1.794 -1.857 -0.062 8.24 +Na 5.837e-03 + Na+ 5.837e-03 5.091e-03 -2.234 -2.293 -0.059 -2.70 +O(0) 6.202e-10 + O2 3.101e-10 3.116e-10 -9.509 -9.506 0.002 28.39 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(278 K, 1 atm) + + H2(g) -41.72 -44.76 -3.04 H2 + H2O(g) -2.04 -0.00 2.03 H2O + Halite -5.80 -4.25 1.55 NaCl + O2(g) -6.78 -9.51 -2.72 O2 + Sylvite -4.61 -3.81 0.80 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 12. +Using exchange 12. Exchange assemblage after simulation 4. + +Mixture 12. + + 0.000e+00 Solution 11 Solution after simulation 4. + 1.000e+00 Solution 12 Solution after simulation 4. + 0.000e+00 Solution 13 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 3.632e-02 3.632e-02 7.567e-01 0.000 + NaX 1.168e-02 1.168e-02 2.433e-01 -0.059 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 9.867e-03 9.867e-03 + Cl 1.197e-02 1.197e-02 + K 1.708e-02 1.708e-02 + Na 4.758e-03 4.758e-03 + +----------------------------Description of solution---------------------------- + + pH = 7.092 Charge balance + pe = 13.860 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 5°C) = 1809 + Density (g/cm³) = 1.00140 + Volume (L) = 1.00059 + Viscosity (mPa s) = 1.52948 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.183e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -6.529e-08 + Temperature (°C) = 4.75 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.963e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.094e-08 8.087e-08 -7.041 -7.092 -0.051 0.00 + OH- 2.597e-08 2.249e-08 -7.585 -7.648 -0.062 -5.43 + H2O 5.551e+01 9.993e-01 1.744 -0.000 0.000 18.02 +Br 9.867e-03 + Br- 9.867e-03 8.519e-03 -2.006 -2.070 -0.064 23.12 +Cl 1.197e-02 + Cl- 1.197e-02 1.038e-02 -1.922 -1.984 -0.062 17.03 + HCl 3.210e-10 3.279e-10 -9.494 -9.484 0.009 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -44.963 -44.961 0.002 28.64 +K 1.708e-02 + K+ 1.708e-02 1.480e-02 -1.768 -1.830 -0.062 8.17 +Na 4.758e-03 + Na+ 4.758e-03 4.152e-03 -2.323 -2.382 -0.059 -2.80 +O(0) 6.716e-10 + O2 3.358e-10 3.375e-10 -9.474 -9.472 0.002 28.25 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(277 K, 1 atm) + + H2(g) -41.93 -44.96 -3.03 H2 + H2O(g) -2.07 -0.00 2.06 H2O + Halite -5.92 -4.37 1.55 NaCl + O2(g) -6.76 -9.47 -2.71 O2 + Sylvite -4.61 -3.81 0.79 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 13. +Using exchange 13. Exchange assemblage after simulation 4. + +Mixture 13. + + 0.000e+00 Solution 12 Solution after simulation 4. + 1.000e+00 Solution 13 Solution after simulation 4. + 0.000e+00 Solution 14 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 3.853e-02 3.853e-02 8.028e-01 0.000 + NaX 9.468e-03 9.468e-03 1.972e-01 -0.059 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.056e-02 1.056e-02 + Cl 1.123e-02 1.123e-02 + K 1.797e-02 1.797e-02 + Na 3.828e-03 3.828e-03 + +----------------------------Description of solution---------------------------- + + pH = 7.093 Charge balance + pe = 13.950 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 4°C) = 1777 + Density (g/cm³) = 1.00144 + Volume (L) = 1.00060 + Viscosity (mPa s) = 1.57214 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.180e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -6.717e-08 + Temperature (°C) = 3.88 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.960e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.082e-08 8.078e-08 -7.042 -7.093 -0.051 0.00 + OH- 2.395e-08 2.075e-08 -7.621 -7.683 -0.062 -5.54 + H2O 5.551e+01 9.993e-01 1.744 -0.000 0.000 18.02 +Br 1.056e-02 + Br- 1.056e-02 9.123e-03 -1.976 -2.040 -0.064 23.01 +Cl 1.123e-02 + Cl- 1.123e-02 9.746e-03 -1.950 -2.011 -0.062 16.95 + HCl 3.027e-10 3.092e-10 -9.519 -9.510 0.009 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -45.140 -45.138 0.002 28.64 +K 1.797e-02 + K+ 1.797e-02 1.558e-02 -1.745 -1.808 -0.062 8.12 +Na 3.828e-03 + Na+ 3.828e-03 3.340e-03 -2.417 -2.476 -0.059 -2.90 +O(0) 7.211e-10 + O2 3.605e-10 3.623e-10 -9.443 -9.441 0.002 28.12 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(277 K, 1 atm) + + H2(g) -42.11 -45.14 -3.03 H2 + H2O(g) -2.09 -0.00 2.09 H2O + Halite -6.04 -4.49 1.55 NaCl + O2(g) -6.74 -9.44 -2.70 O2 + Sylvite -4.61 -3.82 0.79 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 14. +Using exchange 14. Exchange assemblage after simulation 4. + +Mixture 14. + + 0.000e+00 Solution 13 Solution after simulation 4. + 1.000e+00 Solution 14 Solution after simulation 4. + 0.000e+00 Solution 15 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.044e-02 4.044e-02 8.425e-01 0.000 + NaX 7.559e-03 7.559e-03 1.575e-01 -0.059 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.124e-02 1.124e-02 + Cl 1.055e-02 1.055e-02 + K 1.875e-02 1.875e-02 + Na 3.038e-03 3.038e-03 + +----------------------------Description of solution---------------------------- + + pH = 7.093 Charge balance + pe = 14.028 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 3°C) = 1750 + Density (g/cm³) = 1.00146 + Volume (L) = 1.00061 + Viscosity (mPa s) = 1.61015 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.178e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -6.871e-08 + Temperature (°C) = 3.14 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.957e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.075e-08 8.073e-08 -7.042 -7.093 -0.051 0.00 + OH- 2.233e-08 1.935e-08 -7.651 -7.713 -0.062 -5.63 + H2O 5.551e+01 9.993e-01 1.744 -0.000 0.000 18.02 +Br 1.124e-02 + Br- 1.124e-02 9.706e-03 -1.949 -2.013 -0.064 22.92 +Cl 1.055e-02 + Cl- 1.055e-02 9.153e-03 -1.977 -2.038 -0.062 16.88 + HCl 2.854e-10 2.916e-10 -9.545 -9.535 0.009 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -45.293 -45.290 0.002 28.64 +K 1.875e-02 + K+ 1.875e-02 1.625e-02 -1.727 -1.789 -0.062 8.07 +Na 3.038e-03 + Na+ 3.038e-03 2.652e-03 -2.517 -2.576 -0.059 -2.98 +O(0) 7.684e-10 + O2 3.842e-10 3.861e-10 -9.415 -9.413 0.002 28.01 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(276 K, 1 atm) + + H2(g) -42.26 -45.29 -3.03 H2 + H2O(g) -2.11 -0.00 2.11 H2O + Halite -6.17 -4.61 1.55 NaCl + O2(g) -6.72 -9.41 -2.69 O2 + Sylvite -4.61 -3.83 0.78 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 15. +Using exchange 15. Exchange assemblage after simulation 4. + +Mixture 15. + + 0.000e+00 Solution 14 Solution after simulation 4. + 1.000e+00 Solution 15 Solution after simulation 4. + 0.000e+00 Solution 16 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.205e-02 4.205e-02 8.761e-01 0.000 + NaX 5.947e-03 5.947e-03 1.239e-01 -0.059 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.188e-02 1.188e-02 + Cl 9.910e-03 9.910e-03 + K 1.941e-02 1.941e-02 + Na 2.380e-03 2.380e-03 + +----------------------------Description of solution---------------------------- + + pH = 7.093 Charge balance + pe = 14.095 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 3°C) = 1729 + Density (g/cm³) = 1.00148 + Volume (L) = 1.00063 + Viscosity (mPa s) = 1.64339 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.179e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -6.996e-08 + Temperature (°C) = 2.51 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.955e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.072e-08 8.071e-08 -7.042 -7.093 -0.051 0.00 + OH- 2.103e-08 1.822e-08 -7.677 -7.739 -0.062 -5.71 + H2O 5.551e+01 9.993e-01 1.744 -0.000 0.000 18.02 +Br 1.188e-02 + Br- 1.188e-02 1.027e-02 -1.925 -1.989 -0.064 22.84 +Cl 9.910e-03 + Cl- 9.910e-03 8.601e-03 -2.004 -2.065 -0.062 16.81 + HCl 2.691e-10 2.750e-10 -9.570 -9.561 0.009 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -45.423 -45.421 0.002 28.64 +K 1.941e-02 + K+ 1.941e-02 1.683e-02 -1.712 -1.774 -0.062 8.02 +Na 2.380e-03 + Na+ 2.380e-03 2.078e-03 -2.623 -2.682 -0.059 -3.05 +O(0) 8.135e-10 + O2 4.068e-10 4.088e-10 -9.391 -9.388 0.002 27.91 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(275 K, 1 atm) + + H2(g) -42.40 -45.42 -3.02 H2 + H2O(g) -2.13 -0.00 2.13 H2O + Halite -6.30 -4.75 1.55 NaCl + O2(g) -6.70 -9.39 -2.69 O2 + Sylvite -4.62 -3.84 0.78 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 16. +Using exchange 16. Exchange assemblage after simulation 4. + +Mixture 16. + + 0.000e+00 Solution 15 Solution after simulation 4. + 1.000e+00 Solution 16 Solution after simulation 4. + 0.000e+00 Solution 17 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.339e-02 4.339e-02 9.039e-01 0.000 + NaX 4.611e-03 4.611e-03 9.606e-02 -0.059 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.250e-02 1.250e-02 + Cl 9.317e-03 9.317e-03 + K 1.998e-02 1.998e-02 + Na 1.841e-03 1.841e-03 + +----------------------------Description of solution---------------------------- + + pH = 7.093 Charge balance + pe = 14.151 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 2°C) = 1713 + Density (g/cm³) = 1.00150 + Volume (L) = 1.00065 + Viscosity (mPa s) = 1.67196 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.182e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -7.097e-08 + Temperature (°C) = 1.99 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.953e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.071e-08 8.071e-08 -7.042 -7.093 -0.051 0.00 + OH- 2.000e-08 1.733e-08 -7.699 -7.761 -0.062 -5.78 + H2O 5.551e+01 9.993e-01 1.744 -0.000 0.000 18.02 +Br 1.250e-02 + Br- 1.250e-02 1.080e-02 -1.903 -1.966 -0.064 22.77 +Cl 9.317e-03 + Cl- 9.317e-03 8.086e-03 -2.031 -2.092 -0.062 16.76 + HCl 2.538e-10 2.593e-10 -9.595 -9.586 0.009 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -45.533 -45.531 0.002 28.64 +K 1.998e-02 + K+ 1.998e-02 1.733e-02 -1.699 -1.761 -0.062 7.98 +Na 1.841e-03 + Na+ 1.841e-03 1.607e-03 -2.735 -2.794 -0.059 -3.11 +O(0) 8.563e-10 + O2 4.282e-10 4.303e-10 -9.368 -9.366 0.002 27.83 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(275 K, 1 atm) + + H2(g) -42.51 -45.53 -3.02 H2 + H2O(g) -2.15 -0.00 2.15 H2O + Halite -6.44 -4.89 1.55 NaCl + O2(g) -6.68 -9.37 -2.68 O2 + Sylvite -4.63 -3.85 0.78 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 17. +Using exchange 17. Exchange assemblage after simulation 4. + +Mixture 17. + + 0.000e+00 Solution 16 Solution after simulation 4. + 1.000e+00 Solution 17 Solution after simulation 4. + 0.000e+00 Solution 18 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.447e-02 4.447e-02 9.265e-01 0.000 + NaX 3.526e-03 3.526e-03 7.346e-02 -0.059 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.310e-02 1.310e-02 + Cl 8.768e-03 8.768e-03 + K 2.046e-02 2.046e-02 + Na 1.406e-03 1.406e-03 + +----------------------------Description of solution---------------------------- + + pH = 7.093 Charge balance + pe = 14.198 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 2°C) = 1700 + Density (g/cm³) = 1.00151 + Volume (L) = 1.00068 + Viscosity (mPa s) = 1.69610 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.186e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -7.177e-08 + Temperature (°C) = 1.56 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.951e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.071e-08 8.070e-08 -7.042 -7.093 -0.051 0.00 + OH- 1.918e-08 1.662e-08 -7.717 -7.779 -0.062 -5.83 + H2O 5.551e+01 9.993e-01 1.744 -0.000 0.000 18.02 +Br 1.310e-02 + Br- 1.310e-02 1.131e-02 -1.883 -1.946 -0.064 22.71 +Cl 8.768e-03 + Cl- 8.768e-03 7.609e-03 -2.057 -2.119 -0.062 16.71 + HCl 2.395e-10 2.447e-10 -9.621 -9.611 0.009 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -45.625 -45.622 0.002 28.64 +K 2.046e-02 + K+ 2.046e-02 1.774e-02 -1.689 -1.751 -0.062 7.95 +Na 1.406e-03 + Na+ 1.406e-03 1.228e-03 -2.852 -2.911 -0.059 -3.16 +O(0) 8.967e-10 + O2 4.484e-10 4.506e-10 -9.348 -9.346 0.002 27.75 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(274 K, 1 atm) + + H2(g) -42.60 -45.62 -3.02 H2 + H2O(g) -2.16 -0.00 2.16 H2O + Halite -6.58 -5.03 1.55 NaCl + O2(g) -6.67 -9.35 -2.68 O2 + Sylvite -4.64 -3.87 0.77 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 18. +Using exchange 18. Exchange assemblage after simulation 4. + +Mixture 18. + + 0.000e+00 Solution 17 Solution after simulation 4. + 1.000e+00 Solution 18 Solution after simulation 4. + 0.000e+00 Solution 19 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.534e-02 4.534e-02 9.446e-01 0.000 + NaX 2.661e-03 2.661e-03 5.543e-02 -0.059 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.366e-02 1.366e-02 + Cl 8.260e-03 8.260e-03 + K 2.086e-02 2.086e-02 + Na 1.061e-03 1.061e-03 + +----------------------------Description of solution---------------------------- + + pH = 7.093 Charge balance + pe = 14.237 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 1°C) = 1692 + Density (g/cm³) = 1.00152 + Volume (L) = 1.00070 + Viscosity (mPa s) = 1.71615 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.192e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -7.240e-08 + Temperature (°C) = 1.21 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.949e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.072e-08 8.070e-08 -7.042 -7.093 -0.051 0.00 + OH- 1.854e-08 1.606e-08 -7.732 -7.794 -0.062 -5.88 + H2O 5.551e+01 9.993e-01 1.744 -0.000 0.000 18.02 +Br 1.366e-02 + Br- 1.366e-02 1.180e-02 -1.865 -1.928 -0.064 22.66 +Cl 8.260e-03 + Cl- 8.260e-03 7.167e-03 -2.083 -2.145 -0.062 16.67 + HCl 2.261e-10 2.310e-10 -9.646 -9.636 0.009 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -45.700 -45.698 0.002 28.64 +K 2.086e-02 + K+ 2.086e-02 1.808e-02 -1.681 -1.743 -0.062 7.93 +Na 1.061e-03 + Na+ 1.061e-03 9.263e-04 -2.974 -3.033 -0.059 -3.20 +O(0) 9.346e-10 + O2 4.673e-10 4.696e-10 -9.330 -9.328 0.002 27.70 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(274 K, 1 atm) + + H2(g) -42.68 -45.70 -3.02 H2 + H2O(g) -2.17 -0.00 2.17 H2O + Halite -6.73 -5.18 1.55 NaCl + O2(g) -6.66 -9.33 -2.67 O2 + Sylvite -4.66 -3.89 0.77 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 19. +Using exchange 19. Exchange assemblage after simulation 4. + +Mixture 19. + + 0.000e+00 Solution 18 Solution after simulation 4. + 1.000e+00 Solution 19 Solution after simulation 4. + 0.000e+00 Solution 20 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.602e-02 4.602e-02 9.587e-01 0.000 + NaX 1.982e-03 1.982e-03 4.130e-02 -0.059 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.419e-02 1.419e-02 + Cl 7.792e-03 7.792e-03 + K 2.119e-02 2.119e-02 + Na 7.913e-04 7.913e-04 + +----------------------------Description of solution---------------------------- + + pH = 7.093 Charge balance + pe = 14.268 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 1°C) = 1686 + Density (g/cm³) = 1.00154 + Volume (L) = 1.00072 + Viscosity (mPa s) = 1.73253 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.198e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -7.290e-08 + Temperature (°C) = 0.93 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.948e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.072e-08 8.070e-08 -7.042 -7.093 -0.051 0.00 + OH- 1.804e-08 1.563e-08 -7.744 -7.806 -0.062 -5.92 + H2O 5.551e+01 9.993e-01 1.744 -0.000 0.000 18.02 +Br 1.419e-02 + Br- 1.419e-02 1.225e-02 -1.848 -1.912 -0.064 22.62 +Cl 7.792e-03 + Cl- 7.792e-03 6.761e-03 -2.108 -2.170 -0.062 16.64 + HCl 2.136e-10 2.183e-10 -9.670 -9.661 0.009 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -45.762 -45.760 0.002 28.64 +K 2.119e-02 + K+ 2.119e-02 1.837e-02 -1.674 -1.736 -0.062 7.90 +Na 7.913e-04 + Na+ 7.913e-04 6.906e-04 -3.102 -3.161 -0.059 -3.23 +O(0) 9.698e-10 + O2 4.849e-10 4.873e-10 -9.314 -9.312 0.002 27.65 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(274 K, 1 atm) + + H2(g) -42.74 -45.76 -3.02 H2 + H2O(g) -2.18 -0.00 2.18 H2O + Halite -6.88 -5.33 1.55 NaCl + O2(g) -6.64 -9.31 -2.67 O2 + Sylvite -4.68 -3.91 0.77 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 20. +Using exchange 20. Exchange assemblage after simulation 4. + +Mixture 20. + + 0.000e+00 Solution 19 Solution after simulation 4. + 1.000e+00 Solution 20 Solution after simulation 4. + 0.000e+00 Solution 21 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.654e-02 4.654e-02 9.696e-01 0.000 + NaX 1.459e-03 1.459e-03 3.040e-02 -0.059 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.468e-02 1.468e-02 + Cl 7.364e-03 7.364e-03 + K 2.146e-02 2.146e-02 + Na 5.832e-04 5.832e-04 + +----------------------------Description of solution---------------------------- + + pH = 7.093 Charge balance + pe = 14.294 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 1°C) = 1683 + Density (g/cm³) = 1.00155 + Volume (L) = 1.00074 + Viscosity (mPa s) = 1.74572 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.205e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -7.328e-08 + Temperature (°C) = 0.70 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.947e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.073e-08 8.070e-08 -7.042 -7.093 -0.051 0.00 + OH- 1.765e-08 1.529e-08 -7.753 -7.816 -0.062 -5.95 + H2O 5.551e+01 9.993e-01 1.744 -0.000 0.000 18.02 +Br 1.468e-02 + Br- 1.468e-02 1.268e-02 -1.833 -1.897 -0.064 22.59 +Cl 7.364e-03 + Cl- 7.364e-03 6.389e-03 -2.133 -2.195 -0.062 16.61 + HCl 2.021e-10 2.065e-10 -9.694 -9.685 0.009 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -45.812 -45.810 0.002 28.64 +K 2.146e-02 + K+ 2.146e-02 1.860e-02 -1.668 -1.730 -0.062 7.89 +Na 5.832e-04 + Na+ 5.832e-04 5.089e-04 -3.234 -3.293 -0.059 -3.26 +O(0) 1.002e-09 + O2 5.012e-10 5.037e-10 -9.300 -9.298 0.002 27.61 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -42.80 -45.81 -3.01 H2 + H2O(g) -2.19 -0.00 2.19 H2O + Halite -7.04 -5.49 1.55 NaCl + O2(g) -6.63 -9.30 -2.67 O2 + Sylvite -4.69 -3.92 0.77 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 21. +Using exchange 21. Exchange assemblage after simulation 4. + +Mixture 21. + + 0.000e+00 Solution 20 Solution after simulation 4. + 1.000e+00 Solution 21 Solution after simulation 4. + 0.000e+00 Solution 22 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.694e-02 4.694e-02 9.779e-01 0.000 + NaX 1.061e-03 1.061e-03 2.211e-02 -0.059 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.514e-02 1.514e-02 + Cl 6.976e-03 6.976e-03 + K 2.169e-02 2.169e-02 + Na 4.250e-04 4.250e-04 + +----------------------------Description of solution---------------------------- + + pH = 7.093 Charge balance + pe = 14.314 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 1°C) = 1681 + Density (g/cm³) = 1.00156 + Volume (L) = 1.00075 + Viscosity (mPa s) = 1.75616 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.211e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -7.357e-08 + Temperature (°C) = 0.53 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.946e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.074e-08 8.070e-08 -7.042 -7.093 -0.051 0.00 + OH- 1.736e-08 1.503e-08 -7.761 -7.823 -0.062 -5.98 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 1.514e-02 + Br- 1.514e-02 1.307e-02 -1.820 -1.884 -0.064 22.56 +Cl 6.976e-03 + Cl- 6.976e-03 6.051e-03 -2.156 -2.218 -0.062 16.59 + HCl 1.916e-10 1.958e-10 -9.718 -9.708 0.009 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -45.852 -45.850 0.002 28.64 +K 2.169e-02 + K+ 2.169e-02 1.880e-02 -1.664 -1.726 -0.062 7.87 +Na 4.250e-04 + Na+ 4.250e-04 3.708e-04 -3.372 -3.431 -0.059 -3.28 +O(0) 1.032e-09 + O2 5.160e-10 5.187e-10 -9.287 -9.285 0.002 27.58 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -42.84 -45.85 -3.01 H2 + H2O(g) -2.19 -0.00 2.19 H2O + Halite -7.20 -5.65 1.55 NaCl + O2(g) -6.62 -9.29 -2.66 O2 + Sylvite -4.71 -3.94 0.77 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 22. +Using exchange 22. Exchange assemblage after simulation 4. + +Mixture 22. + + 0.000e+00 Solution 21 Solution after simulation 4. + 1.000e+00 Solution 22 Solution after simulation 4. + 0.000e+00 Solution 23 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.724e-02 4.724e-02 9.841e-01 0.000 + NaX 7.634e-04 7.634e-04 1.590e-02 -0.059 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.555e-02 1.555e-02 + Cl 6.626e-03 6.626e-03 + K 2.187e-02 2.187e-02 + Na 3.063e-04 3.063e-04 + +----------------------------Description of solution---------------------------- + + pH = 7.093 Charge balance + pe = 14.330 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1681 + Density (g/cm³) = 1.00157 + Volume (L) = 1.00077 + Viscosity (mPa s) = 1.76432 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.218e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -7.380e-08 + Temperature (°C) = 0.39 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.946e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.074e-08 8.070e-08 -7.042 -7.093 -0.051 0.00 + OH- 1.713e-08 1.483e-08 -7.766 -7.829 -0.063 -6.00 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 1.555e-02 + Br- 1.555e-02 1.343e-02 -1.808 -1.872 -0.064 22.54 +Cl 6.626e-03 + Cl- 6.626e-03 5.746e-03 -2.179 -2.241 -0.062 16.58 + HCl 1.821e-10 1.861e-10 -9.740 -9.730 0.009 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -45.883 -45.881 0.002 28.64 +K 2.187e-02 + K+ 2.187e-02 1.895e-02 -1.660 -1.722 -0.062 7.86 +Na 3.063e-04 + Na+ 3.063e-04 2.672e-04 -3.514 -3.573 -0.059 -3.30 +O(0) 1.059e-09 + O2 5.295e-10 5.322e-10 -9.276 -9.274 0.002 27.56 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -42.87 -45.88 -3.01 H2 + H2O(g) -2.20 -0.00 2.20 H2O + Halite -7.36 -5.81 1.55 NaCl + O2(g) -6.61 -9.27 -2.66 O2 + Sylvite -4.73 -3.96 0.77 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 23. +Using exchange 23. Exchange assemblage after simulation 4. + +Mixture 23. + + 0.000e+00 Solution 22 Solution after simulation 4. + 1.000e+00 Solution 23 Solution after simulation 4. + 0.000e+00 Solution 24 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.746e-02 4.746e-02 9.887e-01 0.000 + NaX 5.434e-04 5.434e-04 1.132e-02 -0.059 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.593e-02 1.593e-02 + Cl 6.314e-03 6.314e-03 + K 2.202e-02 2.202e-02 + Na 2.185e-04 2.185e-04 + +----------------------------Description of solution---------------------------- + + pH = 7.093 Charge balance + pe = 14.343 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1682 + Density (g/cm³) = 1.00158 + Volume (L) = 1.00078 + Viscosity (mPa s) = 1.77059 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.224e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -7.396e-08 + Temperature (°C) = 0.29 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.075e-08 8.069e-08 -7.042 -7.093 -0.051 0.00 + OH- 1.696e-08 1.468e-08 -7.771 -7.833 -0.063 -6.01 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 1.593e-02 + Br- 1.593e-02 1.375e-02 -1.798 -1.862 -0.064 22.53 +Cl 6.314e-03 + Cl- 6.314e-03 5.475e-03 -2.200 -2.262 -0.062 16.56 + HCl 1.736e-10 1.774e-10 -9.760 -9.751 0.009 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -45.908 -45.906 0.002 28.64 +K 2.202e-02 + K+ 2.202e-02 1.908e-02 -1.657 -1.719 -0.062 7.86 +Na 2.185e-04 + Na+ 2.185e-04 1.906e-04 -3.661 -3.720 -0.059 -3.31 +O(0) 1.083e-09 + O2 5.416e-10 5.443e-10 -9.266 -9.264 0.002 27.54 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -42.89 -45.91 -3.01 H2 + H2O(g) -2.20 -0.00 2.20 H2O + Halite -7.53 -5.98 1.55 NaCl + O2(g) -6.60 -9.26 -2.66 O2 + Sylvite -4.75 -3.98 0.77 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 24. +Using exchange 24. Exchange assemblage after simulation 4. + +Mixture 24. + + 0.000e+00 Solution 23 Solution after simulation 4. + 1.000e+00 Solution 24 Solution after simulation 4. + 0.000e+00 Solution 25 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.762e-02 4.762e-02 9.920e-01 0.000 + NaX 3.832e-04 3.832e-04 7.982e-03 -0.059 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.626e-02 1.626e-02 + Cl 6.041e-03 6.041e-03 + K 2.215e-02 2.215e-02 + Na 1.544e-04 1.544e-04 + +----------------------------Description of solution---------------------------- + + pH = 7.093 Charge balance + pe = 14.353 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1683 + Density (g/cm³) = 1.00160 + Volume (L) = 1.00079 + Viscosity (mPa s) = 1.77534 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.230e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -7.409e-08 + Temperature (°C) = 0.21 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.075e-08 8.069e-08 -7.042 -7.093 -0.051 0.00 + OH- 1.683e-08 1.457e-08 -7.774 -7.837 -0.063 -6.03 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 1.626e-02 + Br- 1.626e-02 1.403e-02 -1.789 -1.853 -0.064 22.52 +Cl 6.041e-03 + Cl- 6.041e-03 5.238e-03 -2.219 -2.281 -0.062 16.55 + HCl 1.662e-10 1.698e-10 -9.779 -9.770 0.009 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -45.927 -45.925 0.002 28.65 +K 2.215e-02 + K+ 2.215e-02 1.918e-02 -1.655 -1.717 -0.062 7.85 +Na 1.544e-04 + Na+ 1.544e-04 1.346e-04 -3.811 -3.871 -0.059 -3.32 +O(0) 1.104e-09 + O2 5.521e-10 5.550e-10 -9.258 -9.256 0.002 27.53 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -42.91 -45.93 -3.01 H2 + H2O(g) -2.20 -0.00 2.20 H2O + Halite -7.70 -6.15 1.55 NaCl + O2(g) -6.59 -9.26 -2.66 O2 + Sylvite -4.76 -4.00 0.76 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 25. +Using exchange 25. Exchange assemblage after simulation 4. + +Mixture 25. + + 0.000e+00 Solution 24 Solution after simulation 4. + 1.000e+00 Solution 25 Solution after simulation 4. + 0.000e+00 Solution 26 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.773e-02 4.773e-02 9.944e-01 0.000 + NaX 2.681e-04 2.681e-04 5.586e-03 -0.059 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.655e-02 1.655e-02 + Cl 5.807e-03 5.807e-03 + K 2.224e-02 2.224e-02 + Na 1.082e-04 1.082e-04 + +----------------------------Description of solution---------------------------- + + pH = 7.093 Charge balance + pe = 14.360 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1685 + Density (g/cm³) = 1.00161 + Volume (L) = 1.00079 + Viscosity (mPa s) = 1.77888 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.235e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -7.418e-08 + Temperature (°C) = 0.15 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.944e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.076e-08 8.069e-08 -7.042 -7.093 -0.051 0.00 + OH- 1.674e-08 1.449e-08 -7.776 -7.839 -0.063 -6.03 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 1.655e-02 + Br- 1.655e-02 1.428e-02 -1.781 -1.845 -0.064 22.51 +Cl 5.807e-03 + Cl- 5.807e-03 5.034e-03 -2.236 -2.298 -0.062 16.55 + HCl 1.597e-10 1.633e-10 -9.797 -9.787 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -45.942 -45.940 0.002 28.65 +K 2.224e-02 + K+ 2.224e-02 1.927e-02 -1.653 -1.715 -0.062 7.85 +Na 1.082e-04 + Na+ 1.082e-04 9.439e-05 -3.966 -4.025 -0.059 -3.33 +O(0) 1.122e-09 + O2 5.612e-10 5.641e-10 -9.251 -9.249 0.002 27.51 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -42.93 -45.94 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + Halite -7.87 -6.32 1.55 NaCl + O2(g) -6.59 -9.25 -2.66 O2 + Sylvite -4.78 -4.01 0.76 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 26. +Using exchange 26. Exchange assemblage after simulation 4. + +Mixture 26. + + 0.000e+00 Solution 25 Solution after simulation 4. + 1.000e+00 Solution 26 Solution after simulation 4. + 0.000e+00 Solution 27 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.781e-02 4.781e-02 9.961e-01 0.000 + NaX 1.870e-04 1.870e-04 3.896e-03 -0.059 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.679e-02 1.679e-02 + Cl 5.612e-03 5.612e-03 + K 2.232e-02 2.232e-02 + Na 7.562e-05 7.562e-05 + +----------------------------Description of solution---------------------------- + + pH = 7.093 Charge balance + pe = 14.366 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1687 + Density (g/cm³) = 1.00162 + Volume (L) = 1.00080 + Viscosity (mPa s) = 1.78146 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.240e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -7.425e-08 + Temperature (°C) = 0.11 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.944e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.076e-08 8.069e-08 -7.042 -7.093 -0.051 0.00 + OH- 1.667e-08 1.443e-08 -7.778 -7.841 -0.063 -6.04 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 1.679e-02 + Br- 1.679e-02 1.448e-02 -1.775 -1.839 -0.064 22.50 +Cl 5.612e-03 + Cl- 5.612e-03 4.864e-03 -2.251 -2.313 -0.062 16.54 + HCl 1.544e-10 1.578e-10 -9.811 -9.802 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -45.953 -45.951 0.002 28.65 +K 2.232e-02 + K+ 2.232e-02 1.933e-02 -1.651 -1.714 -0.062 7.84 +Na 7.562e-05 + Na+ 7.562e-05 6.594e-05 -4.121 -4.181 -0.059 -3.33 +O(0) 1.138e-09 + O2 5.689e-10 5.718e-10 -9.245 -9.243 0.002 27.51 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -42.94 -45.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + Halite -8.04 -6.49 1.55 NaCl + O2(g) -6.58 -9.24 -2.66 O2 + Sylvite -4.79 -4.03 0.76 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 27. +Using exchange 27. Exchange assemblage after simulation 4. + +Mixture 27. + + 0.000e+00 Solution 26 Solution after simulation 4. + 1.000e+00 Solution 27 Solution after simulation 4. + 0.000e+00 Solution 28 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.787e-02 4.787e-02 9.973e-01 0.000 + NaX 1.312e-04 1.312e-04 2.734e-03 -0.060 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.698e-02 1.698e-02 + Cl 5.455e-03 5.455e-03 + K 2.238e-02 2.238e-02 + Na 5.313e-05 5.313e-05 + +----------------------------Description of solution---------------------------- + + pH = 7.093 Charge balance + pe = 14.370 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1688 + Density (g/cm³) = 1.00162 + Volume (L) = 1.00080 + Viscosity (mPa s) = 1.78330 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.244e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -7.429e-08 + Temperature (°C) = 0.08 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.944e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.077e-08 8.068e-08 -7.042 -7.093 -0.051 0.00 + OH- 1.662e-08 1.438e-08 -7.779 -7.842 -0.063 -6.04 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 1.698e-02 + Br- 1.698e-02 1.465e-02 -1.770 -1.834 -0.064 22.50 +Cl 5.455e-03 + Cl- 5.455e-03 4.728e-03 -2.263 -2.325 -0.062 16.54 + HCl 1.501e-10 1.534e-10 -9.824 -9.814 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -45.961 -45.959 0.002 28.65 +K 2.238e-02 + K+ 2.238e-02 1.938e-02 -1.650 -1.713 -0.062 7.84 +Na 5.313e-05 + Na+ 5.313e-05 4.632e-05 -4.275 -4.334 -0.060 -3.34 +O(0) 1.150e-09 + O2 5.750e-10 5.779e-10 -9.240 -9.238 0.002 27.50 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -42.95 -45.96 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + Halite -8.21 -6.66 1.55 NaCl + O2(g) -6.58 -9.24 -2.66 O2 + Sylvite -4.80 -4.04 0.76 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 28. +Using exchange 28. Exchange assemblage after simulation 4. + +Mixture 28. + + 0.000e+00 Solution 27 Solution after simulation 4. + 1.000e+00 Solution 28 Solution after simulation 4. + 0.000e+00 Solution 29 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.791e-02 4.791e-02 9.980e-01 0.000 + NaX 9.436e-05 9.436e-05 1.966e-03 -0.060 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.713e-02 1.713e-02 + Cl 5.337e-03 5.337e-03 + K 2.243e-02 2.243e-02 + Na 3.825e-05 3.825e-05 + +----------------------------Description of solution---------------------------- + + pH = 7.093 Charge balance + pe = 14.373 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1689 + Density (g/cm³) = 1.00163 + Volume (L) = 1.00081 + Viscosity (mPa s) = 1.78454 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.246e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -7.433e-08 + Temperature (°C) = 0.06 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.944e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.077e-08 8.068e-08 -7.042 -7.093 -0.051 0.00 + OH- 1.659e-08 1.435e-08 -7.780 -7.843 -0.063 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 1.713e-02 + Br- 1.713e-02 1.477e-02 -1.766 -1.831 -0.064 22.49 +Cl 5.337e-03 + Cl- 5.337e-03 4.626e-03 -2.273 -2.335 -0.062 16.54 + HCl 1.468e-10 1.501e-10 -9.833 -9.824 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -45.967 -45.965 0.002 28.65 +K 2.243e-02 + K+ 2.243e-02 1.942e-02 -1.649 -1.712 -0.063 7.84 +Na 3.825e-05 + Na+ 3.825e-05 3.335e-05 -4.417 -4.477 -0.060 -3.34 +O(0) 1.159e-09 + O2 5.795e-10 5.826e-10 -9.237 -9.235 0.002 27.50 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -42.95 -45.96 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + Halite -8.36 -6.81 1.55 NaCl + O2(g) -6.58 -9.23 -2.66 O2 + Sylvite -4.81 -4.05 0.76 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 29. +Using exchange 29. Exchange assemblage after simulation 4. + +Mixture 29. + + 0.000e+00 Solution 28 Solution after simulation 4. + 1.000e+00 Solution 29 Solution after simulation 4. + 0.000e+00 Solution 30 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.793e-02 4.793e-02 9.985e-01 0.000 + NaX 7.208e-05 7.208e-05 1.502e-03 -0.060 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.722e-02 1.722e-02 + Cl 5.259e-03 5.259e-03 + K 2.245e-02 2.245e-02 + Na 2.924e-05 2.924e-05 + +----------------------------Description of solution---------------------------- + + pH = 7.093 Charge balance + pe = 14.375 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1690 + Density (g/cm³) = 1.00163 + Volume (L) = 1.00081 + Viscosity (mPa s) = 1.78531 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.248e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -7.435e-08 + Temperature (°C) = 0.05 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.944e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.077e-08 8.068e-08 -7.042 -7.093 -0.051 0.00 + OH- 1.657e-08 1.434e-08 -7.781 -7.844 -0.063 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 1.722e-02 + Br- 1.722e-02 1.486e-02 -1.764 -1.828 -0.064 22.49 +Cl 5.259e-03 + Cl- 5.259e-03 4.558e-03 -2.279 -2.341 -0.062 16.54 + HCl 1.447e-10 1.479e-10 -9.840 -9.830 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -45.971 -45.968 0.002 28.65 +K 2.245e-02 + K+ 2.245e-02 1.944e-02 -1.649 -1.711 -0.063 7.84 +Na 2.924e-05 + Na+ 2.924e-05 2.549e-05 -4.534 -4.594 -0.060 -3.34 +O(0) 1.165e-09 + O2 5.826e-10 5.856e-10 -9.235 -9.232 0.002 27.50 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -42.96 -45.97 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + Halite -8.48 -6.93 1.55 NaCl + O2(g) -6.57 -9.23 -2.66 O2 + Sylvite -4.82 -4.05 0.76 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 30. +Using exchange 30. Exchange assemblage after simulation 4. + +Mixture 30. + + 0.000e+00 Solution 29 Solution after simulation 4. + 1.000e+00 Solution 30 Solution after simulation 4. + 0.000e+00 Solution 31 Solution after simulation 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.794e-02 4.794e-02 9.987e-01 0.000 + NaX 6.161e-05 6.161e-05 1.284e-03 -0.060 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.727e-02 1.727e-02 + Cl 5.220e-03 5.220e-03 + K 2.247e-02 2.247e-02 + Na 2.500e-05 2.500e-05 + +----------------------------Description of solution---------------------------- + + pH = 7.093 Charge balance + pe = 14.376 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1691 + Density (g/cm³) = 1.00163 + Volume (L) = 1.00081 + Viscosity (mPa s) = 1.78567 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.249e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -7.436e-08 + Temperature (°C) = 0.04 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.944e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 2 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.077e-08 8.068e-08 -7.042 -7.093 -0.051 0.00 + OH- 1.656e-08 1.433e-08 -7.781 -7.844 -0.063 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 1.727e-02 + Br- 1.727e-02 1.490e-02 -1.763 -1.827 -0.064 22.49 +Cl 5.220e-03 + Cl- 5.220e-03 4.523e-03 -2.282 -2.345 -0.062 16.53 + HCl 1.436e-10 1.468e-10 -9.843 -9.833 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -45.972 -45.970 0.002 28.65 +K 2.247e-02 + K+ 2.247e-02 1.945e-02 -1.648 -1.711 -0.063 7.84 +Na 2.500e-05 + Na+ 2.500e-05 2.180e-05 -4.602 -4.662 -0.060 -3.34 +O(0) 1.168e-09 + O2 5.841e-10 5.872e-10 -9.233 -9.231 0.002 27.50 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -42.96 -45.97 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + Halite -8.55 -7.01 1.55 NaCl + O2(g) -6.57 -9.23 -2.66 O2 + Sylvite -4.82 -4.06 0.76 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +WARNING: +For balancing negative concentrations in MCD, added in total to the system: +WARNING: 6.3961e-12 moles Na. +------------------ +End of simulation. +------------------ + +------------------------------------ +Reading input data for simulation 5. +------------------------------------ + From 792cdda06002b1ebc354b23ca1af4edcdbd24c26 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Tue, 8 Oct 2024 22:02:03 +0000 Subject: [PATCH 216/384] Squashed 'phreeqcpp/' changes from c876219..ead498a ead498a Merge pull request #79 from dlparkhurst/mix_error 4409349 fixed error with MIX that Scott found on merge. git-subtree-dir: phreeqcpp git-subtree-split: ead498ab60e71b7175c0e4bc6468a0804851ac20 --- step.cpp | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/step.cpp b/step.cpp index d46066d2..7d3dc148 100644 --- a/step.cpp +++ b/step.cpp @@ -674,7 +674,7 @@ add_mix(cxxMix *mix_ptr) if (it->second > 0) { intensive = extensive / sum_positive; - intensive_water = extensive_water / sum_positive; + intensive_water = extensive_water / sum_positive_water; } else { From a8fd3b6a191f62885c8f2e31915410bbff840a2d Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Tue, 8 Oct 2024 21:01:57 -0600 Subject: [PATCH 217/384] Changed Lamda to Lambda, but retained backward compatibility --- RELEASE.TXT | 20 ++++++++++++++++++++ 1 file changed, 20 insertions(+) diff --git a/RELEASE.TXT b/RELEASE.TXT index 626f9c6e..90c99ad9 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,5 +1,25 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + ----------------- + October 8, 2024 + ----------------- + PHREEQC: Improved algorithem for transport of heat in TRANSPORT, and included + additional viscosity effects in transport calculations. + + ----------------- + October 8, 2024 + ----------------- + PHREEQC: Corrected spelling errors thoughout PHREEQC as supplied by Mike Toews. + Modified "lamda" to "lambda" internally as suggested by Toews, but "lamda" and + "lambda" are both acceptable in Ptzer database files for backward compatibility. + + ----------------- + October 8, 2024 + ----------------- + PHREEQC: Fixed bug in MIX that produced erroneous temperature and pressure + if the solutions being mixed did not have 1 kg of water. + +Version 3.8.2: August 29, 2024 ----------------- August 27, 2024 ----------------- From 1db6b42f19ffebb2d6ecc3c557e68c92dc13ad82 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Tue, 8 Oct 2024 21:01:57 -0600 Subject: [PATCH 218/384] Changed Lamda to Lambda, but retained backward compatibility --- pitzer.dat | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pitzer.dat b/pitzer.dat index ba90d9e9..508bd1c3 100644 --- a/pitzer.dat +++ b/pitzer.dat @@ -692,7 +692,7 @@ PITZER Mg+2 Na+ 0.07 Na+ Sr+2 0.051 OH- SO4-2 -0.013 --LAMDA +-LAMBDA B(OH)3 Cl- 0.091 B(OH)3 K+ -0.14 B(OH)3 Na+ -0.097 From 9172a45eb2d9bc13d777272d8320ebda14e78937 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Fri, 11 Oct 2024 19:12:45 +0000 Subject: [PATCH 219/384] Squashed 'phreeqcpp/' changes from ead498a..8c0d001 8c0d001 Changed Lamda to Lambda, but retained backward compatibility git-subtree-dir: phreeqcpp git-subtree-split: 8c0d00166b66af612f75b87eebc47f0badc6ce37 --- global_structures.h | 4 ++-- pitzer.cpp | 24 ++++++++++++------------ 2 files changed, 14 insertions(+), 14 deletions(-) diff --git a/global_structures.h b/global_structures.h index 2fa43bd4..69a7748f 100644 --- a/global_structures.h +++ b/global_structures.h @@ -1581,7 +1581,7 @@ public: }; // Pitzer definitions typedef enum -{ TYPE_B0, TYPE_B1, TYPE_B2, TYPE_C0, TYPE_THETA, TYPE_LAMDA, TYPE_ZETA, +{ TYPE_B0, TYPE_B1, TYPE_B2, TYPE_C0, TYPE_THETA, TYPE_LAMBDA, TYPE_ZETA, TYPE_PSI, TYPE_ETHETA, TYPE_ALPHAS, TYPE_MU, TYPE_ETA, TYPE_Other, TYPE_SIT_EPSILON, TYPE_SIT_EPSILON_MU, TYPE_APHI } pitz_param_type; @@ -1613,7 +1613,7 @@ public: LDBLE b2; LDBLE c0; LDBLE theta; - LDBLE lamda; + LDBLE lambda; LDBLE zeta; LDBLE psi; LDBLE alphas; diff --git a/pitzer.cpp b/pitzer.cpp index a0c10b4e..9282b576 100644 --- a/pitzer.cpp +++ b/pitzer.cpp @@ -199,7 +199,7 @@ pitzer_tidy(void) break; case TYPE_B2: case TYPE_THETA: - case TYPE_LAMDA: + case TYPE_LAMBDA: case TYPE_ZETA: case TYPE_PSI: case TYPE_ETHETA: @@ -464,14 +464,14 @@ pitzer_tidy(void) } */ /* - * Tidy TYPE_LAMDA + * Tidy TYPE_LAMBDA */ - /* Coef for Osmotic coefficient for TYPE_LAMDA */ + /* Coef for Osmotic coefficient for TYPE_LAMBDA */ for (i = 0; i < (int)pitz_params.size(); i++) { - if (pitz_params[i]->type == TYPE_LAMDA) + if (pitz_params[i]->type == TYPE_LAMBDA) { i0 = pitz_params[i]->ispec[0]; i1 = pitz_params[i]->ispec[1]; @@ -492,11 +492,11 @@ pitzer_tidy(void) } } } - /* Debug TYPE_LAMDA coefficients */ + /* Debug TYPE_LAMBDA coefficients */ /* for (i = 0; i < (int)pitz_params.size(); i++) { - if (pitz_params[i]->type == TYPE_LAMDA) + if (pitz_params[i]->type == TYPE_LAMBDA) { fprintf(stderr, "%s\t%s\n", pitz_params[i]->species[0], pitz_params[i]->species[1]); fprintf(stderr, "%f\t%f\n", pitz_params[i]->ln_coef[0], pitz_params[i]->ln_coef[1]); @@ -672,7 +672,7 @@ read_pitzer(void) break; case 5: /* lamda */ case 18: /* lambda */ - pzp_type = TYPE_LAMDA; + pzp_type = TYPE_LAMBDA; n = 2; opt_save = OPTION_DEFAULT; break; @@ -820,8 +820,8 @@ calc_pitz_param(class pitz_param *pz_ptr, LDBLE TK, LDBLE TR) case TYPE_THETA: pz_ptr->U.theta = param; break; - case TYPE_LAMDA: - pz_ptr->U.lamda = param; + case TYPE_LAMBDA: + pz_ptr->U.lambda = param; break; case TYPE_ZETA: pz_ptr->U.zeta = param; @@ -1062,7 +1062,7 @@ pitzer(void) LGAMMA[i2] += M[i0] * M[i1] * param; OSMOT += M[i0] * M[i1] * M[i2] * param; break; - case TYPE_LAMDA: + case TYPE_LAMBDA: LGAMMA[i0] += M[i1] * param * pitz_params[i]->ln_coef[0]; LGAMMA[i1] += M[i0] * param * pitz_params[i]->ln_coef[1]; OSMOT += M[i0] * M[i1] * param * pitz_params[i]->os_coef; @@ -1380,7 +1380,7 @@ pitzer(void) LGAMMA[i2] += M[i0] * M[i1] * param; OSMOT += M[i0] * M[i1] * M[i2] * param; break; - case TYPE_LAMDA: + case TYPE_LAMBDA: LGAMMA[i0] += M[i1] * param * pitz_params[i]->ln_coef[0]; LGAMMA[i1] += M[i0] * param * pitz_params[i]->ln_coef[1]; OSMOT += M[i0] * M[i1] * param * pitz_params[i]->os_coef; @@ -2688,7 +2688,7 @@ pitzer_make_lists(void) for (int i = 0; i < (int)pitz_params.size(); i++) { /* - TYPE_B0, TYPE_B1, TYPE_B2, TYPE_C0, TYPE_THETA, TYPE_LAMDA, TYPE_ZETA, + TYPE_B0, TYPE_B1, TYPE_B2, TYPE_C0, TYPE_THETA, TYPE_LAMBDA, TYPE_ZETA, TYPE_PSI, TYPE_ETHETA, TYPE_ALPHAS, TYPE_MU, TYPE_ETA, TYPE_Other, TYPE_SIT_EPSILON, TYPE_SIT_EPSILON_MU */ From c3e2310011853bf7beee568fb1a14cb10d74f5fd Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Fri, 11 Oct 2024 18:13:18 -0600 Subject: [PATCH 220/384] Removed extraneous files (#81) --- examples_pc/ex1.out | 331 - examples_pc/ex10.out | 8418 ------ examples_pc/ex10.sel | 621 - examples_pc/ex11.out | 214 - examples_pc/ex11adv.sel | 101 - examples_pc/ex11trn.sel | 102 - examples_pc/ex12.out | 58 - examples_pc/ex12.sel | 124 - examples_pc/ex12a.out | 171 - examples_pc/ex12a.sel | 167 - examples_pc/ex13a.out | 336 - examples_pc/ex13a.sel | 67 - examples_pc/ex13ac.out | 847 - examples_pc/ex13b.out | 456 - examples_pc/ex13b.sel | 41 - examples_pc/ex13c.out | 776 - examples_pc/ex13c.sel | 41 - examples_pc/ex14.out | 1060 - examples_pc/ex14.sel | 202 - examples_pc/ex15.out | 218 - examples_pc/ex15.sel | 155 - examples_pc/ex15a.out | 195 - examples_pc/ex15b.out | 192 - examples_pc/ex16.out | 443 - examples_pc/ex17.out | 359 - examples_pc/ex17b.out | 3667 --- examples_pc/ex18.out | 560 - examples_pc/ex19.out | 74 - examples_pc/ex19b.out | 172 - examples_pc/ex2.out | 4255 --- examples_pc/ex2.sel | 53 - examples_pc/ex20a.out | 452 - examples_pc/ex20b.out | 53202 -------------------------------------- examples_pc/ex21.out | 974 - examples_pc/ex22.out | 10359 -------- examples_pc/ex2b.out | 29 - examples_pc/ex3.out | 812 - examples_pc/ex4.out | 489 - examples_pc/ex5.out | 1162 - examples_pc/ex5.sel | 8 - examples_pc/ex6.out | 3814 --- examples_pc/ex6A-B.sel | 22 - examples_pc/ex6C.sel | 17 - examples_pc/ex7.out | 3088 --- examples_pc/ex7.sel | 28 - examples_pc/ex8.out | 3829 --- examples_pc/ex8.sel | 27 - examples_pc/ex9.out | 1336 - examples_pc/ex9.sel | 13 - 49 files changed, 104137 deletions(-) delete mode 100644 examples_pc/ex1.out delete mode 100644 examples_pc/ex10.out delete mode 100644 examples_pc/ex10.sel delete mode 100644 examples_pc/ex11.out delete mode 100644 examples_pc/ex11adv.sel delete mode 100644 examples_pc/ex11trn.sel delete mode 100644 examples_pc/ex12.out delete mode 100644 examples_pc/ex12.sel delete mode 100644 examples_pc/ex12a.out delete mode 100644 examples_pc/ex12a.sel delete mode 100644 examples_pc/ex13a.out delete mode 100644 examples_pc/ex13a.sel delete mode 100644 examples_pc/ex13ac.out delete mode 100644 examples_pc/ex13b.out delete mode 100644 examples_pc/ex13b.sel delete mode 100644 examples_pc/ex13c.out delete mode 100644 examples_pc/ex13c.sel delete mode 100644 examples_pc/ex14.out delete mode 100644 examples_pc/ex14.sel delete mode 100644 examples_pc/ex15.out delete mode 100644 examples_pc/ex15.sel delete mode 100644 examples_pc/ex15a.out delete mode 100644 examples_pc/ex15b.out delete mode 100644 examples_pc/ex16.out delete mode 100644 examples_pc/ex17.out delete mode 100644 examples_pc/ex17b.out delete mode 100644 examples_pc/ex18.out delete mode 100644 examples_pc/ex19.out delete mode 100644 examples_pc/ex19b.out delete mode 100644 examples_pc/ex2.out delete mode 100644 examples_pc/ex2.sel delete mode 100644 examples_pc/ex20a.out delete mode 100644 examples_pc/ex20b.out delete mode 100644 examples_pc/ex21.out delete mode 100644 examples_pc/ex22.out delete mode 100644 examples_pc/ex2b.out delete mode 100644 examples_pc/ex3.out delete mode 100644 examples_pc/ex4.out delete mode 100644 examples_pc/ex5.out delete mode 100644 examples_pc/ex5.sel delete mode 100644 examples_pc/ex6.out delete mode 100644 examples_pc/ex6A-B.sel delete mode 100644 examples_pc/ex6C.sel delete mode 100644 examples_pc/ex7.out delete mode 100644 examples_pc/ex7.sel delete mode 100644 examples_pc/ex8.out delete mode 100644 examples_pc/ex8.sel delete mode 100644 examples_pc/ex9.out delete mode 100644 examples_pc/ex9.sel diff --git a/examples_pc/ex1.out b/examples_pc/ex1.out deleted file mode 100644 index 6f36c1f3..00000000 --- a/examples_pc/ex1.out +++ /dev/null @@ -1,331 +0,0 @@ - Input file: ..\examples\ex1 - Output file: ex1.out -Database file: ..\database\phreeqc.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - PHASES - EXCHANGE_MASTER_SPECIES - EXCHANGE_SPECIES - SURFACE_MASTER_SPECIES - SURFACE_SPECIES - RATES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Example 1.--Add uranium and speciate seawater. - SOLUTION 1 SEAWATER FROM NORDSTROM AND OTHERS (1979) - units ppm - pH 8.22 - pe 8.451 - density 1.023 - temp 25.0 - redox O(0)/O(-2) - Ca 412.3 - Mg 1291.8 - Na 10768.0 - K 399.1 - Fe 0.002 - Mn 0.0002 pe - Si 4.28 - Cl 19353.0 - Alkalinity 141.682 as HCO3 - S(6) 2712.0 - N(5) 0.29 gfw 62.0 - N(-3) 0.03 as NH4 - U 3.3 ppb N(5)/N(-3) - O(0) 1.0 O2(g) -0.7 - SOLUTION_MASTER_SPECIES - U U+4 0.0 238.0290 238.0290 - U(4) U+4 0.0 238.0290 - U(5) UO2+ 0.0 238.0290 - U(6) UO2+2 0.0 238.0290 - SOLUTION_SPECIES - U+4 = U+4 - log_k 0.0 - U+4 + 4 H2O = U(OH)4 + 4 H+ - log_k -8.538 - delta_h 24.760 kcal - U+4 + 5 H2O = U(OH)5- + 5 H+ - log_k -13.147 - delta_h 27.580 kcal - U+4 + 2 H2O = UO2+ + 4 H+ + e- - log_k -6.432 - delta_h 31.130 kcal - U+4 + 2 H2O = UO2+2 + 4 H+ + 2 e- - log_k -9.217 - delta_h 34.430 kcal - UO2+2 + H2O = UO2OH+ + H+ - log_k -5.782 - delta_h 11.015 kcal - 2UO2+2 + 2H2O = (UO2)2(OH)2+2 + 2H+ - log_k -5.626 - delta_h -36.04 kcal - 3UO2+2 + 5H2O = (UO2)3(OH)5+ + 5H+ - log_k -15.641 - delta_h -44.27 kcal - UO2+2 + CO3-2 = UO2CO3 - log_k 10.064 - delta_h 0.84 kcal - UO2+2 + 2CO3-2 = UO2(CO3)2-2 - log_k 16.977 - delta_h 3.48 kcal - UO2+2 + 3CO3-2 = UO2(CO3)3-4 - log_k 21.397 - delta_h -8.78 kcal - PHASES - Uraninite - UO2 + 4 H+ = U+4 + 2 H2O - log_k -3.490 - delta_h -18.630 kcal - END ------ -TITLE ------ - - Example 1.--Add uranium and speciate seawater. - -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 1. SEAWATER FROM NORDSTROM AND OTHERS (1979) - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Alkalinity 2.406e-003 2.406e-003 - Ca 1.066e-002 1.066e-002 - Cl 5.657e-001 5.657e-001 - Fe 3.711e-008 3.711e-008 - K 1.058e-002 1.058e-002 - Mg 5.507e-002 5.507e-002 - Mn 3.773e-009 3.773e-009 - N(-3) 1.724e-006 1.724e-006 - N(5) 4.847e-006 4.847e-006 - Na 4.854e-001 4.854e-001 - O(0) 4.377e-004 4.377e-004 Equilibrium with O2(g) - S(6) 2.926e-002 2.926e-002 - Si 7.382e-005 7.382e-005 - U 1.437e-008 1.437e-008 - -----------------------------Description of solution---------------------------- - - pH = 8.220 - pe = 8.451 - Specific Conductance (uS/cm, 25 oC) = 53257 - Density (g/cm3) = 1.02327 - Volume (L) = 1.01473 - Activity of water = 0.981 - Ionic strength = 6.745e-001 - Mass of water (kg) = 1.000e+000 - Total carbon (mol/kg) = 2.257e-003 - Total CO2 (mol/kg) = 2.257e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 7.936e-004 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.07 - Iterations = 7 - Total H = 1.110149e+002 - Total O = 5.563077e+001 - ----------------------------------Redox couples--------------------------------- - - Redox couple pe Eh (volts) - - N(-3)/N(5) 4.6750 0.2766 - O(-2)/O(0) 12.4062 0.7339 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 2.705e-006 1.647e-006 -5.568 -5.783 -0.215 -2.63 - H+ 7.983e-009 6.026e-009 -8.098 -8.220 -0.122 0.00 - H2O 5.551e+001 9.806e-001 1.744 -0.009 0.000 18.07 -C(4) 2.257e-003 - HCO3- 1.238e-003 8.359e-004 -2.907 -3.078 -0.170 27.87 - NaHCO3 6.168e-004 7.205e-004 -3.210 -3.142 0.067 19.41 - MgHCO3+ 2.136e-004 1.343e-004 -3.670 -3.872 -0.201 5.82 - MgCO3 7.301e-005 8.527e-005 -4.137 -4.069 0.067 -17.09 - CaHCO3+ 3.717e-005 2.572e-005 -4.430 -4.590 -0.160 9.96 - CO3-2 3.128e-005 6.506e-006 -4.505 -5.187 -0.682 -0.34 - CaCO3 2.256e-005 2.636e-005 -4.647 -4.579 0.067 -14.60 - NaCO3- 1.477e-005 9.972e-006 -4.831 -5.001 -0.170 1.77 - CO2 9.887e-006 1.155e-005 -5.005 -4.937 0.067 30.26 - UO2(CO3)3-4 1.221e-008 1.143e-010 -7.913 -9.942 -2.029 (0) - UO2(CO3)2-2 2.148e-009 6.681e-010 -8.668 -9.175 -0.507 (0) - MnCO3 2.157e-010 2.519e-010 -9.666 -9.599 0.067 (0) - MnHCO3+ 5.475e-011 3.631e-011 -10.262 -10.440 -0.178 (0) - UO2CO3 1.074e-011 1.255e-011 -10.969 -10.901 0.067 (0) - FeCO3 1.498e-020 1.749e-020 -19.825 -19.757 0.067 (0) - FeHCO3+ 1.255e-020 9.369e-021 -19.902 -20.028 -0.127 (0) -Ca 1.066e-002 - Ca+2 9.645e-003 2.412e-003 -2.016 -2.618 -0.602 -16.70 - CaSO4 9.560e-004 1.117e-003 -3.020 -2.952 0.067 7.50 - CaHCO3+ 3.717e-005 2.572e-005 -4.430 -4.590 -0.160 9.96 - CaCO3 2.256e-005 2.636e-005 -4.647 -4.579 0.067 -14.60 - CaOH+ 8.721e-008 6.513e-008 -7.059 -7.186 -0.127 (0) - CaHSO4+ 5.922e-011 4.422e-011 -10.228 -10.354 -0.127 (0) -Cl 5.657e-001 - Cl- 5.657e-001 3.568e-001 -0.247 -0.448 -0.200 18.79 - MnCl+ 1.068e-009 7.086e-010 -8.971 -9.150 -0.178 7.01 - MnCl2 9.449e-011 1.104e-010 -10.025 -9.957 0.067 (0) - MnCl3- 1.635e-011 1.085e-011 -10.786 -10.965 -0.178 (0) - FeCl+2 1.519e-018 2.939e-019 -17.819 -18.532 -0.713 (0) - FeCl2+ 7.062e-019 4.684e-019 -18.151 -18.329 -0.178 (0) - FeCl+ 7.393e-020 5.521e-020 -19.131 -19.258 -0.127 (0) - FeCl3 1.431e-020 1.671e-020 -19.844 -19.777 0.067 (0) -Fe(2) 6.437e-019 - Fe+2 4.891e-019 1.121e-019 -18.311 -18.950 -0.640 -20.66 - FeCl+ 7.393e-020 5.521e-020 -19.131 -19.258 -0.127 (0) - FeSO4 4.443e-020 5.190e-020 -19.352 -19.285 0.067 (0) - FeCO3 1.498e-020 1.749e-020 -19.825 -19.757 0.067 (0) - FeHCO3+ 1.255e-020 9.369e-021 -19.902 -20.028 -0.127 (0) - FeOH+ 8.697e-021 5.768e-021 -20.061 -20.239 -0.178 (0) - Fe(OH)2 6.840e-024 7.989e-024 -23.165 -23.097 0.067 (0) - Fe(OH)3- 7.283e-026 4.830e-026 -25.138 -25.316 -0.178 (0) - FeHSO4+ 2.752e-027 2.056e-027 -26.560 -26.687 -0.127 (0) -Fe(3) 3.711e-008 - Fe(OH)3 2.771e-008 3.237e-008 -7.557 -7.490 0.067 (0) - Fe(OH)4- 7.114e-009 4.804e-009 -8.148 -8.318 -0.170 (0) - Fe(OH)2+ 2.286e-009 1.544e-009 -8.641 -8.811 -0.170 (0) - FeOH+2 1.481e-013 2.865e-014 -12.830 -13.543 -0.713 (0) - FeCl+2 1.519e-018 2.939e-019 -17.819 -18.532 -0.713 (0) - FeSO4+ 1.174e-018 7.786e-019 -17.930 -18.109 -0.178 (0) - FeCl2+ 7.062e-019 4.684e-019 -18.151 -18.329 -0.178 (0) - Fe+3 3.431e-019 2.727e-020 -18.465 -19.564 -1.100 (0) - Fe(SO4)2- 5.939e-020 4.435e-020 -19.226 -19.353 -0.127 (0) - FeCl3 1.431e-020 1.671e-020 -19.844 -19.777 0.067 (0) - Fe2(OH)2+4 2.360e-024 2.210e-026 -23.627 -25.656 -2.029 (0) - FeHSO4+2 4.039e-026 1.256e-026 -25.394 -25.901 -0.507 (0) - Fe3(OH)4+5 1.054e-029 7.129e-033 -28.977 -32.147 -3.170 (0) -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.470 -44.402 0.067 28.61 -K 1.058e-002 - K+ 1.040e-002 6.483e-003 -1.983 -2.188 -0.205 9.66 - KSO4- 1.756e-004 1.186e-004 -3.755 -3.926 -0.170 (0) -Mg 5.507e-002 - Mg+2 4.759e-002 1.374e-002 -1.322 -1.862 -0.540 -20.41 - MgSO4 7.178e-003 8.384e-003 -2.144 -2.077 0.067 5.84 - MgHCO3+ 2.136e-004 1.343e-004 -3.670 -3.872 -0.201 5.82 - MgCO3 7.301e-005 8.527e-005 -4.137 -4.069 0.067 -17.09 - MgOH+ 1.152e-005 8.116e-006 -4.939 -5.091 -0.152 (0) -Mn(2) 3.773e-009 - Mn+2 2.127e-009 4.875e-010 -8.672 -9.312 -0.640 -15.99 - MnCl+ 1.068e-009 7.086e-010 -8.971 -9.150 -0.178 7.01 - MnCO3 2.157e-010 2.519e-010 -9.666 -9.599 0.067 (0) - MnSO4 1.932e-010 2.257e-010 -9.714 -9.646 0.067 4.99 - MnCl2 9.449e-011 1.104e-010 -10.025 -9.957 0.067 (0) - MnHCO3+ 5.475e-011 3.631e-011 -10.262 -10.440 -0.178 (0) - MnCl3- 1.635e-011 1.085e-011 -10.786 -10.965 -0.178 (0) - MnOH+ 3.074e-012 2.039e-012 -11.512 -11.691 -0.178 (0) - Mn(OH)3- 5.020e-020 3.329e-020 -19.299 -19.478 -0.178 (0) - Mn(NO3)2 1.344e-020 1.570e-020 -19.871 -19.804 0.067 (0) -Mn(3) 5.354e-026 - Mn+3 5.354e-026 4.255e-027 -25.271 -26.371 -1.100 (0) -N(-3) 1.724e-006 - NH4+ 1.610e-006 9.049e-007 -5.793 -6.043 -0.250 18.44 - NH3 7.327e-008 8.558e-008 -7.135 -7.068 0.067 24.46 - NH4SO4- 4.064e-008 3.035e-008 -7.391 -7.518 -0.127 (0) -N(5) 4.847e-006 - NO3- 4.847e-006 2.845e-006 -5.314 -5.546 -0.232 30.32 - Mn(NO3)2 1.344e-020 1.570e-020 -19.871 -19.804 0.067 (0) -Na 4.854e-001 - Na+ 4.781e-001 3.431e-001 -0.320 -0.465 -0.144 -0.58 - NaSO4- 6.631e-003 4.478e-003 -2.178 -2.349 -0.170 22.62 - NaHCO3 6.168e-004 7.205e-004 -3.210 -3.142 0.067 19.41 - NaCO3- 1.477e-005 9.972e-006 -4.831 -5.001 -0.170 1.77 - NaOH 4.839e-017 5.652e-017 -16.315 -16.248 0.067 (0) -O(0) 4.377e-004 - O2 2.188e-004 2.556e-004 -3.660 -3.592 0.067 30.40 -S(6) 2.926e-002 - SO4-2 1.432e-002 2.604e-003 -1.844 -2.584 -0.740 16.99 - MgSO4 7.178e-003 8.384e-003 -2.144 -2.077 0.067 5.84 - NaSO4- 6.631e-003 4.478e-003 -2.178 -2.349 -0.170 22.62 - CaSO4 9.560e-004 1.117e-003 -3.020 -2.952 0.067 7.50 - KSO4- 1.756e-004 1.186e-004 -3.755 -3.926 -0.170 (0) - NH4SO4- 4.064e-008 3.035e-008 -7.391 -7.518 -0.127 (0) - HSO4- 2.042e-009 1.525e-009 -8.690 -8.817 -0.127 40.96 - MnSO4 1.932e-010 2.257e-010 -9.714 -9.646 0.067 4.99 - CaHSO4+ 5.922e-011 4.422e-011 -10.228 -10.354 -0.127 (0) - FeSO4+ 1.174e-018 7.786e-019 -17.930 -18.109 -0.178 (0) - Fe(SO4)2- 5.939e-020 4.435e-020 -19.226 -19.353 -0.127 (0) - FeSO4 4.443e-020 5.190e-020 -19.352 -19.285 0.067 (0) - FeHSO4+2 4.039e-026 1.256e-026 -25.394 -25.901 -0.507 (0) - FeHSO4+ 2.752e-027 2.056e-027 -26.560 -26.687 -0.127 (0) -Si 7.382e-005 - H4SiO4 7.061e-005 8.248e-005 -4.151 -4.084 0.067 52.08 - H3SiO4- 3.210e-006 2.018e-006 -5.494 -5.695 -0.201 28.72 - H2SiO4-2 1.095e-010 2.278e-011 -9.960 -10.642 -0.682 (0) -U(4) 1.830e-021 - U(OH)5- 1.830e-021 1.367e-021 -20.738 -20.864 -0.127 (0) - U(OH)4 2.922e-025 3.413e-025 -24.534 -24.467 0.067 (0) - U+4 0.000e+000 0.000e+000 -46.746 -48.775 -2.029 (0) -U(5) 2.871e-018 - UO2+ 2.871e-018 2.144e-018 -17.542 -17.669 -0.127 (0) -U(6) 1.437e-008 - UO2(CO3)3-4 1.221e-008 1.143e-010 -7.913 -9.942 -2.029 (0) - UO2(CO3)2-2 2.148e-009 6.681e-010 -8.668 -9.175 -0.507 (0) - UO2CO3 1.074e-011 1.255e-011 -10.969 -10.901 0.067 (0) - UO2OH+ 5.991e-014 4.474e-014 -13.222 -13.349 -0.127 (0) - UO2+2 5.350e-016 1.664e-016 -15.272 -15.779 -0.507 (0) - (UO2)2(OH)2+2 5.579e-021 1.736e-021 -20.253 -20.761 -0.507 (0) - (UO2)3(OH)5+ 1.610e-022 1.203e-022 -21.793 -21.920 -0.127 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -0.92 -5.20 -4.28 CaSO4 - Aragonite 0.53 -7.80 -8.34 CaCO3 - Calcite 0.68 -7.80 -8.48 CaCO3 - Chalcedony -0.52 -4.07 -3.55 SiO2 - Chrysotile 3.36 35.56 32.20 Mg3Si2O5(OH)4 - CO2(g) -3.48 -4.94 -1.46 CO2 - Dolomite 2.24 -14.85 -17.09 CaMg(CO3)2 - Fe(OH)3(a) 0.18 5.07 4.89 Fe(OH)3 - Goethite 6.08 5.08 -1.00 FeOOH - Gypsum -0.64 -5.22 -4.58 CaSO4:2H2O - H2(g) -41.30 -44.40 -3.10 H2 - H2O(g) -1.51 -0.01 1.50 H2O - Halite -2.48 -0.91 1.57 NaCl - Hausmannite 1.57 62.60 61.03 Mn3O4 - Hematite 14.17 10.17 -4.01 Fe2O3 - Jarosite-K -7.57 -16.78 -9.21 KFe3(SO4)2(OH)6 - Manganite 2.40 27.74 25.34 MnOOH - Melanterite -19.39 -21.59 -2.21 FeSO4:7H2O - NH3(g) -8.86 -7.07 1.80 NH3 - O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000. - Pyrochroite -8.09 7.11 15.20 Mn(OH)2 - Pyrolusite 6.97 48.35 41.38 MnO2:H2O - Quartz -0.09 -4.07 -3.98 SiO2 - Rhodochrosite -3.37 -14.50 -11.13 MnCO3 - Sepiolite 1.15 16.91 15.76 Mg2Si3O7.5OH:3H2O - Sepiolite(d) -1.75 16.91 18.66 Mg2Si3O7.5OH:3H2O - Siderite -13.25 -24.14 -10.89 FeCO3 - SiO2(a) -1.35 -4.07 -2.71 SiO2 - Sylvite -3.54 -2.64 0.90 KCl - Talc 6.03 27.43 21.40 Mg3Si4O10(OH)2 - Uraninite -12.42 -15.91 -3.49 UO2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 2. ------------------------------------- - -------------------------------- -End of Run after 0.521 Seconds. -------------------------------- - diff --git a/examples_pc/ex10.out b/examples_pc/ex10.out deleted file mode 100644 index 02abe7dd..00000000 --- a/examples_pc/ex10.out +++ /dev/null @@ -1,8418 +0,0 @@ - Input file: ..\examples\ex10 - Output file: ex10.out -Database file: ..\database\phreeqc.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - PHASES - EXCHANGE_MASTER_SPECIES - EXCHANGE_SPECIES - SURFACE_MASTER_SPECIES - SURFACE_SPECIES - RATES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Example 10.--Solid solution of strontianite and aragonite. - PHASES - Strontianite - SrCO3 = CO3-2 + Sr+2 - log_k -9.271 - Aragonite - CaCO3 = CO3-2 + Ca+2 - log_k -8.336 - END ------ -TITLE ------ - - Example 10.--Solid solution of strontianite and aragonite. - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 2. ------------------------------------- - - SOLID_SOLUTIONS 1 - Ca(x)Sr(1-x)CO3 - comp1 Aragonite 0 - comp2 Strontianite 0 - gugg_nondimensional 3.43 -1.82 - END ---------------------------------------------- -Description of Solid Solution Ca(x)Sr(1-x)CO3 ---------------------------------------------- - - Temperature: 298.15 kelvin - A0 (dimensionless): 3.43 - A1 (dimensionless): -1.82 - A0 (kJ/mol): 8.50307 - A1 (kJ/mol): -4.51183 - - Critical mole-fraction of component 2: 0.297625 - Critical temperature: 703.036 kelvin - -(The critical temperature calculation assumes that the Guggenheim model -defined at 298.15 kelvin is valid at the critical temperature.) - - - Spinodal-gap mole fractions, component 2: 0.0654427 0.619798 - Miscibility-gap fractions, component 2: 0.0048032 0.857863 - - Eutectic Point Calculations - - Aqueous activity ratio (comp2/comp1): 0.0981043 - Log aqueous activity ratio (comp2/comp1): -1.00831 - Aqueous activity fraction of component 2: 0.0893397 - Log IAP (component 2): -9.34631 - Log IAP (component 1): -8.338 - Log Sum Pi: -8.29736 - -Local minimum in the solidus curve corresponding to a maximum -in the minimum stoichiometric saturation curve. - - Solid mole fraction of component 2: 0.198353 - Log IAP (component 2): -8.91133 - Log IAP (component 1): -8.30479 - Log Sum Pi: -8.20877 ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 3. ------------------------------------- - - SOLUTION 1 - units mmol/kgw - pH 5.93 charge - Ca 3.932 - C 7.864 - EQUILIBRIUM_PHASES 1 - CO2(g) -0.01265 10 - Aragonite - SAVE solution 1 - END -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 1. - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 7.864e-003 7.864e-003 - Ca 3.932e-003 3.932e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.969 Charge balance - pe = 4.000 - Specific Conductance (uS/cm, 25 oC) = 677 - Density (g/cm3) = 0.99755 - Volume (L) = 1.00347 - Activity of water = 1.000 - Ionic strength = 1.105e-002 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 7.864e-003 - Total CO2 (mol/kg) = 7.864e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 9.333e-017 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 9 - Total H = 1.110200e+002 - Total O = 5.552965e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.051e-006 9.415e-007 -5.978 -6.026 -0.048 -4.03 - H+ 1.181e-008 1.075e-008 -7.928 -7.969 -0.041 0.00 - H2O 5.551e+001 9.998e-001 1.744 -0.000 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -75.157 -75.156 0.001 32.22 -C(4) 7.864e-003 - HCO3- 7.326e-003 6.602e-003 -2.135 -2.180 -0.045 24.70 - CaHCO3+ 2.211e-004 1.996e-004 -3.655 -3.700 -0.044 9.73 - CO2 1.592e-004 1.596e-004 -3.798 -3.797 0.001 30.26 - CaCO3 1.144e-004 1.147e-004 -3.942 -3.940 0.001 -14.60 - CO3-2 4.368e-005 2.880e-005 -4.360 -4.541 -0.181 -4.08 -Ca 3.932e-003 - Ca+2 3.596e-003 2.370e-003 -2.444 -2.625 -0.181 -17.91 - CaHCO3+ 2.211e-004 1.996e-004 -3.655 -3.700 -0.044 9.73 - CaCO3 1.144e-004 1.147e-004 -3.942 -3.940 0.001 -14.60 - CaOH+ 4.076e-008 3.659e-008 -7.390 -7.437 -0.047 (0) -H(0) 1.632e-027 - H2 8.158e-028 8.178e-028 -27.088 -27.087 0.001 28.61 -O(0) 1.243e-038 - O2 6.214e-039 6.230e-039 -38.207 -38.205 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Aragonite 1.17 -7.17 -8.34 CaCO3 - Calcite 1.31 -7.17 -8.48 CaCO3 - CH4(g) -72.31 -75.16 -2.84 CH4 - CO2(g) -2.34 -3.80 -1.46 CO2 - H2(g) -23.99 -27.09 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - O2(g) -35.31 -38.21 -2.89 O2 - - ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Aragonite 0.00 -8.34 -8.34 1.000e+001 9.993e+000 -6.659e-003 -CO2(g) -0.01 -1.48 -1.46 1.000e+001 9.960e+000 -3.990e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.443e-002 5.443e-002 - Ca 1.059e-002 1.059e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.059 Charge balance - pe = 11.993 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 1702 - Density (g/cm3) = 0.99887 - Volume (L) = 1.00686 - Activity of water = 0.999 - Ionic strength = 2.921e-002 - Mass of water (kg) = 9.999e-001 - Total alkalinity (eq/kg) = 2.118e-002 - Total CO2 (mol/kg) = 5.443e-002 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 1.696e-011 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 10 - Total H = 1.110200e+002 - Total O = 5.562944e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 9.966e-007 8.722e-007 -6.001 -6.059 -0.058 0.00 - OH- 1.371e-008 1.159e-008 -7.863 -7.936 -0.073 -3.95 - H2O 5.551e+001 9.989e-001 1.744 -0.000 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -121.508 -121.505 0.003 32.22 -C(4) 5.443e-002 - CO2 3.326e-002 3.348e-002 -1.478 -1.475 0.003 30.26 - HCO3- 1.989e-002 1.705e-002 -1.701 -1.768 -0.067 24.83 - CaHCO3+ 1.272e-003 1.095e-003 -2.896 -2.961 -0.065 9.77 - CaCO3 7.698e-006 7.750e-006 -5.114 -5.111 0.003 -14.60 - CO3-2 1.698e-006 9.170e-007 -5.770 -6.038 -0.268 -3.80 -Ca 1.059e-002 - Ca+2 9.313e-003 5.031e-003 -2.031 -2.298 -0.267 -17.74 - CaHCO3+ 1.272e-003 1.095e-003 -2.896 -2.961 -0.065 9.77 - CaCO3 7.698e-006 7.750e-006 -5.114 -5.111 0.003 -14.60 - CaOH+ 1.123e-009 9.562e-010 -8.949 -9.019 -0.070 (0) -H(0) 1.104e-039 - H2 5.519e-040 5.556e-040 -39.258 -39.255 0.003 28.61 -O(0) 2.677e-014 - O2 1.339e-014 1.348e-014 -13.873 -13.870 0.003 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Aragonite 0.00 -8.34 -8.34 CaCO3 - Calcite 0.14 -8.34 -8.48 CaCO3 - CH4(g) -118.66 -121.50 -2.84 CH4 - CO2(g) -0.01 -1.48 -1.46 CO2 Pressure 1.0 atm, phi 0.995. - H2(g) -36.15 -39.26 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - O2(g) -10.98 -13.87 -2.89 O2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 4. ------------------------------------- - - USE solution 1 - USE solid_solution 1 - REACTION 1 - SrCO3 1.0 - .005 in 500 steps - PRINT - reset false - user_print true - USER_PRINT - start - 10 sum = (S_S("Strontianite") + S_S("Aragonite")) - 20 if sum = 0 THEN GOTO 110 - 30 xb = S_S("Strontianite")/sum - 40 xc = S_S("Aragonite")/sum - 50 PRINT "Simulation number: ", SIM_NO - 60 PRINT "Reaction step number: ", STEP_NO - 70 PRINT "SrCO3 added: ", RXN - 80 PRINT "Log Sigma pi: ", LOG10 (ACT("CO3-2") * (ACT("Ca+2") + ACT("Sr+2"))) - 90 PRINT "XAragonite: ", xc - 100 PRINT "XStrontianite: ", xb - 110 PRINT "XCa: ", TOT("Ca")/(TOT("Ca") + TOT("Sr")) - 120 PRINT "XSr: ", TOT("Sr")/(TOT("Ca") + TOT("Sr")) - 130 PRINT "Misc 1: ", MISC1("Ca(x)Sr(1-x)CO3") - 140 PRINT "Misc 2: ", MISC2("Ca(x)Sr(1-x)CO3") - end - SELECTED_OUTPUT - file ex10.sel - reset false - reaction true - USER_PUNCH - heading lg_SigmaPi X_Arag X_Stront X_Ca_aq X_Sr_aq mol_Misc1 mol_Misc2 mol_Arag mol_Stront - start - 10 sum = (S_S("Strontianite") + S_S("Aragonite")) - 20 if sum = 0 THEN GOTO 60 - 30 xb = S_S("Strontianite")/(S_S("Strontianite") + S_S("Aragonite")) - 40 xc = S_S("Aragonite")/(S_S("Strontianite") + S_S("Aragonite")) - 50 REM Sigma Pi - 60 PUNCH LOG10(ACT("CO3-2") * (ACT("Ca+2") + ACT("Sr+2"))) - 70 PUNCH xc # Mole fraction aragonite - 80 PUNCH xb # Mole fraction strontianite - 90 PUNCH TOT("Ca")/(TOT("Ca") + TOT("Sr")) # Mole aqueous calcium - 100 PUNCH TOT("Sr")/(TOT("Ca") + TOT("Sr")) # Mole aqueous strontium - 110 x1 = MISC1("Ca(x)Sr(1-x)CO3") - 120 x2 = MISC2("Ca(x)Sr(1-x)CO3") - 130 if (xb < x1 OR xb > x2) THEN GOTO 250 - 140 nc = S_S("Aragonite") - 150 nb = S_S("Strontianite") - 160 mol2 = ((x1 - 1)/x1)*nb + nc - 170 mol2 = mol2 / ( ((x1 -1)/x1)*x2 + (1 - x2)) - 180 mol1 = (nb - mol2*x2)/x1 - 190 REM # Moles of misc. end members if in gap - 200 PUNCH mol1 - 210 PUNCH mol2 - 220 GOTO 300 - 250 REM # Moles of misc. end members if not in gap - 260 PUNCH 1e-10 - 270 PUNCH 1e-10 - 300 PUNCH S_S("Aragonite") # Moles aragonite - 310 PUNCH S_S("Strontianite") # Moles Strontianite - end - USER_GRAPH Example 10 - -headings x_Aragonite x_Srontianite - -chart_title "Aragonite-Strontianite Solid Solution" - -axis_titles "Log(SrCO3 added, in moles)" "Log(Mole fraction of component)" - -axis_scale x_axis -5 1 1 1 - -axis_scale y_axis -5 0.1 1 1 - -connect_simulations true - -start - 10 sum = (S_S("Strontianite") + S_S("Aragonite")) - 20 IF sum = 0 THEN GOTO 70 - 30 xb = S_S("Strontianite")/ sum - 40 xc = S_S("Aragonite")/ sum - 50 PLOT_XY LOG10(RXN), LOG10(xc), line_w = 2, symbol_size = 0 - 60 PLOT_XY LOG10(RXN), LOG10(xb), line_w = 2, symbol_size = 0 - 70 rem - -end - END -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 1 -SrCO3 added: 1.0000e-005 -Log Sigma pi: -8.3356e+000 -XAragonite: 9.9996e-001 -XStrontianite: 4.1861e-005 -XCa: 9.9906e-001 -XSr: 9.4386e-004 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 2 -SrCO3 added: 2.0000e-005 -Log Sigma pi: -8.3352e+000 -XAragonite: 9.9992e-001 -XStrontianite: 8.3830e-005 -XCa: 9.9811e-001 -XSr: 1.8871e-003 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 3 -SrCO3 added: 3.0000e-005 -Log Sigma pi: -8.3348e+000 -XAragonite: 9.9987e-001 -XStrontianite: 1.2591e-004 -XCa: 9.9717e-001 -XSr: 2.8296e-003 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 4 -SrCO3 added: 4.0000e-005 -Log Sigma pi: -8.3345e+000 -XAragonite: 9.9983e-001 -XStrontianite: 1.6809e-004 -XCa: 9.9623e-001 -XSr: 3.7714e-003 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 5 -SrCO3 added: 5.0000e-005 -Log Sigma pi: -8.3341e+000 -XAragonite: 9.9979e-001 -XStrontianite: 2.1039e-004 -XCa: 9.9529e-001 -XSr: 4.7126e-003 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 6 -SrCO3 added: 6.0000e-005 -Log Sigma pi: -8.3337e+000 -XAragonite: 9.9975e-001 -XStrontianite: 2.5279e-004 -XCa: 9.9435e-001 -XSr: 5.6532e-003 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 7 -SrCO3 added: 7.0000e-005 -Log Sigma pi: -8.3333e+000 -XAragonite: 9.9970e-001 -XStrontianite: 2.9531e-004 -XCa: 9.9341e-001 -XSr: 6.5930e-003 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 8 -SrCO3 added: 8.0000e-005 -Log Sigma pi: -8.3329e+000 -XAragonite: 9.9966e-001 -XStrontianite: 3.3794e-004 -XCa: 9.9247e-001 -XSr: 7.5322e-003 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 9 -SrCO3 added: 9.0000e-005 -Log Sigma pi: -8.3325e+000 -XAragonite: 9.9962e-001 -XStrontianite: 3.8068e-004 -XCa: 9.9153e-001 -XSr: 8.4707e-003 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 10 -SrCO3 added: 1.0000e-004 -Log Sigma pi: -8.3322e+000 -XAragonite: 9.9958e-001 -XStrontianite: 4.2353e-004 -XCa: 9.9059e-001 -XSr: 9.4086e-003 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 11 -SrCO3 added: 1.1000e-004 -Log Sigma pi: -8.3318e+000 -XAragonite: 9.9953e-001 -XStrontianite: 4.6649e-004 -XCa: 9.8965e-001 -XSr: 1.0346e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 12 -SrCO3 added: 1.2000e-004 -Log Sigma pi: -8.3314e+000 -XAragonite: 9.9949e-001 -XStrontianite: 5.0956e-004 -XCa: 9.8872e-001 -XSr: 1.1282e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 13 -SrCO3 added: 1.3000e-004 -Log Sigma pi: -8.3310e+000 -XAragonite: 9.9945e-001 -XStrontianite: 5.5275e-004 -XCa: 9.8778e-001 -XSr: 1.2218e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 14 -SrCO3 added: 1.4000e-004 -Log Sigma pi: -8.3306e+000 -XAragonite: 9.9940e-001 -XStrontianite: 5.9605e-004 -XCa: 9.8685e-001 -XSr: 1.3153e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 15 -SrCO3 added: 1.5000e-004 -Log Sigma pi: -8.3302e+000 -XAragonite: 9.9936e-001 -XStrontianite: 6.3947e-004 -XCa: 9.8591e-001 -XSr: 1.4088e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 16 -SrCO3 added: 1.6000e-004 -Log Sigma pi: -8.3299e+000 -XAragonite: 9.9932e-001 -XStrontianite: 6.8300e-004 -XCa: 9.8498e-001 -XSr: 1.5022e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 17 -SrCO3 added: 1.7000e-004 -Log Sigma pi: -8.3295e+000 -XAragonite: 9.9927e-001 -XStrontianite: 7.2664e-004 -XCa: 9.8405e-001 -XSr: 1.5955e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 18 -SrCO3 added: 1.8000e-004 -Log Sigma pi: -8.3291e+000 -XAragonite: 9.9923e-001 -XStrontianite: 7.7041e-004 -XCa: 9.8311e-001 -XSr: 1.6887e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 19 -SrCO3 added: 1.9000e-004 -Log Sigma pi: -8.3287e+000 -XAragonite: 9.9919e-001 -XStrontianite: 8.1428e-004 -XCa: 9.8218e-001 -XSr: 1.7819e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 20 -SrCO3 added: 2.0000e-004 -Log Sigma pi: -8.3283e+000 -XAragonite: 9.9914e-001 -XStrontianite: 8.5828e-004 -XCa: 9.8125e-001 -XSr: 1.8750e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 21 -SrCO3 added: 2.1000e-004 -Log Sigma pi: -8.3279e+000 -XAragonite: 9.9910e-001 -XStrontianite: 9.0239e-004 -XCa: 9.8032e-001 -XSr: 1.9681e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 22 -SrCO3 added: 2.2000e-004 -Log Sigma pi: -8.3275e+000 -XAragonite: 9.9905e-001 -XStrontianite: 9.4662e-004 -XCa: 9.7939e-001 -XSr: 2.0611e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 23 -SrCO3 added: 2.3000e-004 -Log Sigma pi: -8.3272e+000 -XAragonite: 9.9901e-001 -XStrontianite: 9.9096e-004 -XCa: 9.7846e-001 -XSr: 2.1540e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 24 -SrCO3 added: 2.4000e-004 -Log Sigma pi: -8.3268e+000 -XAragonite: 9.9896e-001 -XStrontianite: 1.0354e-003 -XCa: 9.7753e-001 -XSr: 2.2468e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 25 -SrCO3 added: 2.5000e-004 -Log Sigma pi: -8.3264e+000 -XAragonite: 9.9892e-001 -XStrontianite: 1.0800e-003 -XCa: 9.7660e-001 -XSr: 2.3396e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 26 -SrCO3 added: 2.6000e-004 -Log Sigma pi: -8.3260e+000 -XAragonite: 9.9888e-001 -XStrontianite: 1.1247e-003 -XCa: 9.7568e-001 -XSr: 2.4323e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 27 -SrCO3 added: 2.7000e-004 -Log Sigma pi: -8.3256e+000 -XAragonite: 9.9883e-001 -XStrontianite: 1.1695e-003 -XCa: 9.7475e-001 -XSr: 2.5250e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 28 -SrCO3 added: 2.8000e-004 -Log Sigma pi: -8.3252e+000 -XAragonite: 9.9879e-001 -XStrontianite: 1.2145e-003 -XCa: 9.7382e-001 -XSr: 2.6176e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 29 -SrCO3 added: 2.9000e-004 -Log Sigma pi: -8.3248e+000 -XAragonite: 9.9874e-001 -XStrontianite: 1.2596e-003 -XCa: 9.7290e-001 -XSr: 2.7101e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 30 -SrCO3 added: 3.0000e-004 -Log Sigma pi: -8.3245e+000 -XAragonite: 9.9870e-001 -XStrontianite: 1.3047e-003 -XCa: 9.7197e-001 -XSr: 2.8025e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 31 -SrCO3 added: 3.1000e-004 -Log Sigma pi: -8.3241e+000 -XAragonite: 9.9865e-001 -XStrontianite: 1.3501e-003 -XCa: 9.7105e-001 -XSr: 2.8949e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 32 -SrCO3 added: 3.2000e-004 -Log Sigma pi: -8.3237e+000 -XAragonite: 9.9860e-001 -XStrontianite: 1.3955e-003 -XCa: 9.7013e-001 -XSr: 2.9872e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 33 -SrCO3 added: 3.3000e-004 -Log Sigma pi: -8.3233e+000 -XAragonite: 9.9856e-001 -XStrontianite: 1.4410e-003 -XCa: 9.6921e-001 -XSr: 3.0795e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 34 -SrCO3 added: 3.4000e-004 -Log Sigma pi: -8.3229e+000 -XAragonite: 9.9851e-001 -XStrontianite: 1.4867e-003 -XCa: 9.6828e-001 -XSr: 3.1717e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 35 -SrCO3 added: 3.5000e-004 -Log Sigma pi: -8.3225e+000 -XAragonite: 9.9847e-001 -XStrontianite: 1.5325e-003 -XCa: 9.6736e-001 -XSr: 3.2638e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 36 -SrCO3 added: 3.6000e-004 -Log Sigma pi: -8.3221e+000 -XAragonite: 9.9842e-001 -XStrontianite: 1.5785e-003 -XCa: 9.6644e-001 -XSr: 3.3558e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 37 -SrCO3 added: 3.7000e-004 -Log Sigma pi: -8.3218e+000 -XAragonite: 9.9838e-001 -XStrontianite: 1.6245e-003 -XCa: 9.6552e-001 -XSr: 3.4478e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 38 -SrCO3 added: 3.8000e-004 -Log Sigma pi: -8.3214e+000 -XAragonite: 9.9833e-001 -XStrontianite: 1.6707e-003 -XCa: 9.6460e-001 -XSr: 3.5397e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 39 -SrCO3 added: 3.9000e-004 -Log Sigma pi: -8.3210e+000 -XAragonite: 9.9828e-001 -XStrontianite: 1.7170e-003 -XCa: 9.6368e-001 -XSr: 3.6316e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 40 -SrCO3 added: 4.0000e-004 -Log Sigma pi: -8.3206e+000 -XAragonite: 9.9824e-001 -XStrontianite: 1.7634e-003 -XCa: 9.6277e-001 -XSr: 3.7234e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 41 -SrCO3 added: 4.1000e-004 -Log Sigma pi: -8.3202e+000 -XAragonite: 9.9819e-001 -XStrontianite: 1.8100e-003 -XCa: 9.6185e-001 -XSr: 3.8151e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 42 -SrCO3 added: 4.2000e-004 -Log Sigma pi: -8.3198e+000 -XAragonite: 9.9814e-001 -XStrontianite: 1.8567e-003 -XCa: 9.6093e-001 -XSr: 3.9067e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 43 -SrCO3 added: 4.3000e-004 -Log Sigma pi: -8.3194e+000 -XAragonite: 9.9810e-001 -XStrontianite: 1.9035e-003 -XCa: 9.6002e-001 -XSr: 3.9983e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 44 -SrCO3 added: 4.4000e-004 -Log Sigma pi: -8.3191e+000 -XAragonite: 9.9805e-001 -XStrontianite: 1.9505e-003 -XCa: 9.5910e-001 -XSr: 4.0898e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 45 -SrCO3 added: 4.5000e-004 -Log Sigma pi: -8.3187e+000 -XAragonite: 9.9800e-001 -XStrontianite: 1.9975e-003 -XCa: 9.5819e-001 -XSr: 4.1813e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 46 -SrCO3 added: 4.6000e-004 -Log Sigma pi: -8.3183e+000 -XAragonite: 9.9796e-001 -XStrontianite: 2.0448e-003 -XCa: 9.5727e-001 -XSr: 4.2727e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 47 -SrCO3 added: 4.7000e-004 -Log Sigma pi: -8.3179e+000 -XAragonite: 9.9791e-001 -XStrontianite: 2.0921e-003 -XCa: 9.5636e-001 -XSr: 4.3640e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 48 -SrCO3 added: 4.8000e-004 -Log Sigma pi: -8.3175e+000 -XAragonite: 9.9786e-001 -XStrontianite: 2.1396e-003 -XCa: 9.5545e-001 -XSr: 4.4552e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 49 -SrCO3 added: 4.9000e-004 -Log Sigma pi: -8.3171e+000 -XAragonite: 9.9781e-001 -XStrontianite: 2.1872e-003 -XCa: 9.5454e-001 -XSr: 4.5464e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 50 -SrCO3 added: 5.0000e-004 -Log Sigma pi: -8.3167e+000 -XAragonite: 9.9777e-001 -XStrontianite: 2.2349e-003 -XCa: 9.5362e-001 -XSr: 4.6375e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 51 -SrCO3 added: 5.1000e-004 -Log Sigma pi: -8.3164e+000 -XAragonite: 9.9772e-001 -XStrontianite: 2.2828e-003 -XCa: 9.5271e-001 -XSr: 4.7286e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 52 -SrCO3 added: 5.2000e-004 -Log Sigma pi: -8.3160e+000 -XAragonite: 9.9767e-001 -XStrontianite: 2.3308e-003 -XCa: 9.5180e-001 -XSr: 4.8196e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 53 -SrCO3 added: 5.3000e-004 -Log Sigma pi: -8.3156e+000 -XAragonite: 9.9762e-001 -XStrontianite: 2.3790e-003 -XCa: 9.5090e-001 -XSr: 4.9105e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 54 -SrCO3 added: 5.4000e-004 -Log Sigma pi: -8.3152e+000 -XAragonite: 9.9757e-001 -XStrontianite: 2.4272e-003 -XCa: 9.4999e-001 -XSr: 5.0013e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 55 -SrCO3 added: 5.5000e-004 -Log Sigma pi: -8.3148e+000 -XAragonite: 9.9752e-001 -XStrontianite: 2.4756e-003 -XCa: 9.4908e-001 -XSr: 5.0921e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 56 -SrCO3 added: 5.6000e-004 -Log Sigma pi: -8.3144e+000 -XAragonite: 9.9748e-001 -XStrontianite: 2.5242e-003 -XCa: 9.4817e-001 -XSr: 5.1828e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 57 -SrCO3 added: 5.7000e-004 -Log Sigma pi: -8.3140e+000 -XAragonite: 9.9743e-001 -XStrontianite: 2.5729e-003 -XCa: 9.4727e-001 -XSr: 5.2735e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 58 -SrCO3 added: 5.8000e-004 -Log Sigma pi: -8.3136e+000 -XAragonite: 9.9738e-001 -XStrontianite: 2.6217e-003 -XCa: 9.4636e-001 -XSr: 5.3641e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 59 -SrCO3 added: 5.9000e-004 -Log Sigma pi: -8.3133e+000 -XAragonite: 9.9733e-001 -XStrontianite: 2.6707e-003 -XCa: 9.4545e-001 -XSr: 5.4546e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 60 -SrCO3 added: 6.0000e-004 -Log Sigma pi: -8.3129e+000 -XAragonite: 9.9728e-001 -XStrontianite: 2.7198e-003 -XCa: 9.4455e-001 -XSr: 5.5450e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 61 -SrCO3 added: 6.1000e-004 -Log Sigma pi: -8.3125e+000 -XAragonite: 9.9723e-001 -XStrontianite: 2.7690e-003 -XCa: 9.4365e-001 -XSr: 5.6354e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 62 -SrCO3 added: 6.2000e-004 -Log Sigma pi: -8.3121e+000 -XAragonite: 9.9718e-001 -XStrontianite: 2.8184e-003 -XCa: 9.4274e-001 -XSr: 5.7257e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 63 -SrCO3 added: 6.3000e-004 -Log Sigma pi: -8.3117e+000 -XAragonite: 9.9713e-001 -XStrontianite: 2.8680e-003 -XCa: 9.4184e-001 -XSr: 5.8160e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 64 -SrCO3 added: 6.4000e-004 -Log Sigma pi: -8.3113e+000 -XAragonite: 9.9708e-001 -XStrontianite: 2.9176e-003 -XCa: 9.4094e-001 -XSr: 5.9062e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 65 -SrCO3 added: 6.5000e-004 -Log Sigma pi: -8.3109e+000 -XAragonite: 9.9703e-001 -XStrontianite: 2.9674e-003 -XCa: 9.4004e-001 -XSr: 5.9963e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 66 -SrCO3 added: 6.6000e-004 -Log Sigma pi: -8.3105e+000 -XAragonite: 9.9698e-001 -XStrontianite: 3.0174e-003 -XCa: 9.3914e-001 -XSr: 6.0863e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 67 -SrCO3 added: 6.7000e-004 -Log Sigma pi: -8.3102e+000 -XAragonite: 9.9693e-001 -XStrontianite: 3.0675e-003 -XCa: 9.3824e-001 -XSr: 6.1763e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 68 -SrCO3 added: 6.8000e-004 -Log Sigma pi: -8.3098e+000 -XAragonite: 9.9688e-001 -XStrontianite: 3.1178e-003 -XCa: 9.3734e-001 -XSr: 6.2662e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 69 -SrCO3 added: 6.9000e-004 -Log Sigma pi: -8.3094e+000 -XAragonite: 9.9683e-001 -XStrontianite: 3.1681e-003 -XCa: 9.3644e-001 -XSr: 6.3561e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 70 -SrCO3 added: 7.0000e-004 -Log Sigma pi: -8.3090e+000 -XAragonite: 9.9678e-001 -XStrontianite: 3.2187e-003 -XCa: 9.3554e-001 -XSr: 6.4459e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 71 -SrCO3 added: 7.1000e-004 -Log Sigma pi: -8.3086e+000 -XAragonite: 9.9673e-001 -XStrontianite: 3.2694e-003 -XCa: 9.3464e-001 -XSr: 6.5356e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 72 -SrCO3 added: 7.2000e-004 -Log Sigma pi: -8.3082e+000 -XAragonite: 9.9668e-001 -XStrontianite: 3.3202e-003 -XCa: 9.3375e-001 -XSr: 6.6253e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 73 -SrCO3 added: 7.3000e-004 -Log Sigma pi: -8.3078e+000 -XAragonite: 9.9663e-001 -XStrontianite: 3.3712e-003 -XCa: 9.3285e-001 -XSr: 6.7148e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 74 -SrCO3 added: 7.4000e-004 -Log Sigma pi: -8.3074e+000 -XAragonite: 9.9658e-001 -XStrontianite: 3.4223e-003 -XCa: 9.3196e-001 -XSr: 6.8044e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 75 -SrCO3 added: 7.5000e-004 -Log Sigma pi: -8.3071e+000 -XAragonite: 9.9653e-001 -XStrontianite: 3.4736e-003 -XCa: 9.3106e-001 -XSr: 6.8938e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 76 -SrCO3 added: 7.6000e-004 -Log Sigma pi: -8.3067e+000 -XAragonite: 9.9647e-001 -XStrontianite: 3.5250e-003 -XCa: 9.3017e-001 -XSr: 6.9832e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 77 -SrCO3 added: 7.7000e-004 -Log Sigma pi: -8.3063e+000 -XAragonite: 9.9642e-001 -XStrontianite: 3.5766e-003 -XCa: 9.2927e-001 -XSr: 7.0725e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 78 -SrCO3 added: 7.8000e-004 -Log Sigma pi: -8.3059e+000 -XAragonite: 9.9637e-001 -XStrontianite: 3.6283e-003 -XCa: 9.2838e-001 -XSr: 7.1618e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 79 -SrCO3 added: 7.9000e-004 -Log Sigma pi: -8.3055e+000 -XAragonite: 9.9632e-001 -XStrontianite: 3.6802e-003 -XCa: 9.2749e-001 -XSr: 7.2510e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 80 -SrCO3 added: 8.0000e-004 -Log Sigma pi: -8.3051e+000 -XAragonite: 9.9627e-001 -XStrontianite: 3.7323e-003 -XCa: 9.2660e-001 -XSr: 7.3401e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 81 -SrCO3 added: 8.1000e-004 -Log Sigma pi: -8.3047e+000 -XAragonite: 9.9622e-001 -XStrontianite: 3.7845e-003 -XCa: 9.2571e-001 -XSr: 7.4291e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 82 -SrCO3 added: 8.2000e-004 -Log Sigma pi: -8.3043e+000 -XAragonite: 9.9616e-001 -XStrontianite: 3.8368e-003 -XCa: 9.2482e-001 -XSr: 7.5181e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 83 -SrCO3 added: 8.3000e-004 -Log Sigma pi: -8.3039e+000 -XAragonite: 9.9611e-001 -XStrontianite: 3.8893e-003 -XCa: 9.2393e-001 -XSr: 7.6070e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 84 -SrCO3 added: 8.4000e-004 -Log Sigma pi: -8.3036e+000 -XAragonite: 9.9606e-001 -XStrontianite: 3.9420e-003 -XCa: 9.2304e-001 -XSr: 7.6959e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 85 -SrCO3 added: 8.5000e-004 -Log Sigma pi: -8.3032e+000 -XAragonite: 9.9601e-001 -XStrontianite: 3.9948e-003 -XCa: 9.2215e-001 -XSr: 7.7847e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 86 -SrCO3 added: 8.6000e-004 -Log Sigma pi: -8.3028e+000 -XAragonite: 9.9595e-001 -XStrontianite: 4.0478e-003 -XCa: 9.2127e-001 -XSr: 7.8734e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 87 -SrCO3 added: 8.7000e-004 -Log Sigma pi: -8.3024e+000 -XAragonite: 9.9590e-001 -XStrontianite: 4.1009e-003 -XCa: 9.2038e-001 -XSr: 7.9621e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 88 -SrCO3 added: 8.8000e-004 -Log Sigma pi: -8.3020e+000 -XAragonite: 9.9585e-001 -XStrontianite: 4.1542e-003 -XCa: 9.1949e-001 -XSr: 8.0506e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 89 -SrCO3 added: 8.9000e-004 -Log Sigma pi: -8.3016e+000 -XAragonite: 9.9579e-001 -XStrontianite: 4.2077e-003 -XCa: 9.1861e-001 -XSr: 8.1392e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 90 -SrCO3 added: 9.0000e-004 -Log Sigma pi: -8.3012e+000 -XAragonite: 9.9574e-001 -XStrontianite: 4.2613e-003 -XCa: 9.1772e-001 -XSr: 8.2276e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 91 -SrCO3 added: 9.1000e-004 -Log Sigma pi: -8.3008e+000 -XAragonite: 9.9568e-001 -XStrontianite: 4.3151e-003 -XCa: 9.1684e-001 -XSr: 8.3160e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 92 -SrCO3 added: 9.2000e-004 -Log Sigma pi: -8.3004e+000 -XAragonite: 9.9563e-001 -XStrontianite: 4.3690e-003 -XCa: 9.1596e-001 -XSr: 8.4043e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 93 -SrCO3 added: 9.3000e-004 -Log Sigma pi: -8.3001e+000 -XAragonite: 9.9558e-001 -XStrontianite: 4.4231e-003 -XCa: 9.1507e-001 -XSr: 8.4926e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 94 -SrCO3 added: 9.4000e-004 -Log Sigma pi: -8.2997e+000 -XAragonite: 9.9552e-001 -XStrontianite: 4.4774e-003 -XCa: 9.1419e-001 -XSr: 8.5808e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 95 -SrCO3 added: 9.5000e-004 -Log Sigma pi: -8.2993e+000 -XAragonite: 9.9547e-001 -XStrontianite: 4.5319e-003 -XCa: 9.1331e-001 -XSr: 8.6689e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 96 -SrCO3 added: 9.6000e-004 -Log Sigma pi: -8.2989e+000 -XAragonite: 9.9541e-001 -XStrontianite: 4.5865e-003 -XCa: 9.1243e-001 -XSr: 8.7570e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 97 -SrCO3 added: 9.7000e-004 -Log Sigma pi: -8.2985e+000 -XAragonite: 9.9536e-001 -XStrontianite: 4.6412e-003 -XCa: 9.1155e-001 -XSr: 8.8449e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 98 -SrCO3 added: 9.8000e-004 -Log Sigma pi: -8.2981e+000 -XAragonite: 9.9530e-001 -XStrontianite: 4.6962e-003 -XCa: 9.1067e-001 -XSr: 8.9329e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 99 -SrCO3 added: 9.9000e-004 -Log Sigma pi: -8.2977e+000 -XAragonite: 9.9525e-001 -XStrontianite: 4.7513e-003 -XCa: 9.0979e-001 -XSr: 9.0207e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 100 -SrCO3 added: 1.0000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 9.9426e-001 -XStrontianite: 5.7398e-003 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 101 -SrCO3 added: 1.0100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 9.7912e-001 -XStrontianite: 2.0883e-002 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 102 -SrCO3 added: 1.0200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 9.6443e-001 -XStrontianite: 3.5571e-002 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 103 -SrCO3 added: 1.0300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 9.5017e-001 -XStrontianite: 4.9826e-002 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 104 -SrCO3 added: 1.0400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 9.3633e-001 -XStrontianite: 6.3665e-002 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 105 -SrCO3 added: 1.0500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 9.2289e-001 -XStrontianite: 7.7107e-002 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 106 -SrCO3 added: 1.0600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 9.0983e-001 -XStrontianite: 9.0168e-002 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 107 -SrCO3 added: 1.0700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 8.9713e-001 -XStrontianite: 1.0287e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 108 -SrCO3 added: 1.0800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 8.8479e-001 -XStrontianite: 1.1521e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 109 -SrCO3 added: 1.0900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 8.7278e-001 -XStrontianite: 1.2722e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 110 -SrCO3 added: 1.1000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 8.6109e-001 -XStrontianite: 1.3891e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 111 -SrCO3 added: 1.1100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 8.4970e-001 -XStrontianite: 1.5030e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 112 -SrCO3 added: 1.1200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 8.3862e-001 -XStrontianite: 1.6138e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 113 -SrCO3 added: 1.1300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 8.2782e-001 -XStrontianite: 1.7218e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 114 -SrCO3 added: 1.1400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 8.1730e-001 -XStrontianite: 1.8270e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 115 -SrCO3 added: 1.1500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 8.0704e-001 -XStrontianite: 1.9296e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 116 -SrCO3 added: 1.1600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 7.9703e-001 -XStrontianite: 2.0297e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 117 -SrCO3 added: 1.1700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 7.8727e-001 -XStrontianite: 2.1273e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 118 -SrCO3 added: 1.1800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 7.7775e-001 -XStrontianite: 2.2225e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 119 -SrCO3 added: 1.1900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 7.6845e-001 -XStrontianite: 2.3155e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 120 -SrCO3 added: 1.2000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 7.5937e-001 -XStrontianite: 2.4063e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 121 -SrCO3 added: 1.2100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 7.5051e-001 -XStrontianite: 2.4949e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 122 -SrCO3 added: 1.2200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 7.4185e-001 -XStrontianite: 2.5815e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 123 -SrCO3 added: 1.2300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 7.3338e-001 -XStrontianite: 2.6662e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 124 -SrCO3 added: 1.2400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 7.2511e-001 -XStrontianite: 2.7489e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 125 -SrCO3 added: 1.2500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 7.1702e-001 -XStrontianite: 2.8298e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 126 -SrCO3 added: 1.2600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 7.0911e-001 -XStrontianite: 2.9089e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 127 -SrCO3 added: 1.2700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 7.0138e-001 -XStrontianite: 2.9862e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 128 -SrCO3 added: 1.2800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 6.9381e-001 -XStrontianite: 3.0619e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 129 -SrCO3 added: 1.2900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 6.8640e-001 -XStrontianite: 3.1360e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 130 -SrCO3 added: 1.3000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 6.7915e-001 -XStrontianite: 3.2085e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 131 -SrCO3 added: 1.3100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 6.7205e-001 -XStrontianite: 3.2795e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 132 -SrCO3 added: 1.3200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 6.6510e-001 -XStrontianite: 3.3490e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 133 -SrCO3 added: 1.3300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 6.5829e-001 -XStrontianite: 3.4171e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 134 -SrCO3 added: 1.3400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 6.5161e-001 -XStrontianite: 3.4839e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 135 -SrCO3 added: 1.3500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 6.4508e-001 -XStrontianite: 3.5492e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 136 -SrCO3 added: 1.3600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 6.3867e-001 -XStrontianite: 3.6133e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 137 -SrCO3 added: 1.3700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 6.3238e-001 -XStrontianite: 3.6762e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 138 -SrCO3 added: 1.3800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 6.2622e-001 -XStrontianite: 3.7378e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 139 -SrCO3 added: 1.3900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 6.2018e-001 -XStrontianite: 3.7982e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 140 -SrCO3 added: 1.4000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 6.1426e-001 -XStrontianite: 3.8574e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 141 -SrCO3 added: 1.4100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 6.0844e-001 -XStrontianite: 3.9156e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 142 -SrCO3 added: 1.4200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 6.0274e-001 -XStrontianite: 3.9726e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 143 -SrCO3 added: 1.4300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 5.9714e-001 -XStrontianite: 4.0286e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 144 -SrCO3 added: 1.4400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 5.9164e-001 -XStrontianite: 4.0836e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 145 -SrCO3 added: 1.4500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 5.8625e-001 -XStrontianite: 4.1375e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 146 -SrCO3 added: 1.4600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 5.8095e-001 -XStrontianite: 4.1905e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 147 -SrCO3 added: 1.4700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 5.7575e-001 -XStrontianite: 4.2425e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 148 -SrCO3 added: 1.4800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 5.7064e-001 -XStrontianite: 4.2936e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 149 -SrCO3 added: 1.4900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 5.6562e-001 -XStrontianite: 4.3438e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 150 -SrCO3 added: 1.5000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 5.6068e-001 -XStrontianite: 4.3932e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 151 -SrCO3 added: 1.5100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 5.5584e-001 -XStrontianite: 4.4416e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 152 -SrCO3 added: 1.5200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 5.5107e-001 -XStrontianite: 4.4893e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 153 -SrCO3 added: 1.5300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 5.4639e-001 -XStrontianite: 4.5361e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 154 -SrCO3 added: 1.5400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 5.4178e-001 -XStrontianite: 4.5822e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 155 -SrCO3 added: 1.5500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 5.3726e-001 -XStrontianite: 4.6274e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 156 -SrCO3 added: 1.5600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 5.3280e-001 -XStrontianite: 4.6720e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 157 -SrCO3 added: 1.5700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 5.2842e-001 -XStrontianite: 4.7158e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 158 -SrCO3 added: 1.5800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 5.2412e-001 -XStrontianite: 4.7588e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 159 -SrCO3 added: 1.5900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 5.1988e-001 -XStrontianite: 4.8012e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 160 -SrCO3 added: 1.6000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 5.1571e-001 -XStrontianite: 4.8429e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 161 -SrCO3 added: 1.6100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 5.1160e-001 -XStrontianite: 4.8840e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 162 -SrCO3 added: 1.6200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 5.0756e-001 -XStrontianite: 4.9244e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 163 -SrCO3 added: 1.6300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 5.0359e-001 -XStrontianite: 4.9641e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 164 -SrCO3 added: 1.6400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.9967e-001 -XStrontianite: 5.0033e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 165 -SrCO3 added: 1.6500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.9582e-001 -XStrontianite: 5.0418e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 166 -SrCO3 added: 1.6600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.9202e-001 -XStrontianite: 5.0798e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 167 -SrCO3 added: 1.6700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.8829e-001 -XStrontianite: 5.1171e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 168 -SrCO3 added: 1.6800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.8461e-001 -XStrontianite: 5.1539e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 169 -SrCO3 added: 1.6900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.8098e-001 -XStrontianite: 5.1902e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 170 -SrCO3 added: 1.7000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.7741e-001 -XStrontianite: 5.2259e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 171 -SrCO3 added: 1.7100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.7389e-001 -XStrontianite: 5.2611e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 172 -SrCO3 added: 1.7200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.7042e-001 -XStrontianite: 5.2958e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 173 -SrCO3 added: 1.7300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.6700e-001 -XStrontianite: 5.3300e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 174 -SrCO3 added: 1.7400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.6364e-001 -XStrontianite: 5.3636e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 175 -SrCO3 added: 1.7500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.6032e-001 -XStrontianite: 5.3968e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 176 -SrCO3 added: 1.7600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.5704e-001 -XStrontianite: 5.4296e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 177 -SrCO3 added: 1.7700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.5382e-001 -XStrontianite: 5.4618e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 178 -SrCO3 added: 1.7800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.5064e-001 -XStrontianite: 5.4936e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 179 -SrCO3 added: 1.7900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.4750e-001 -XStrontianite: 5.5250e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 180 -SrCO3 added: 1.8000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.4441e-001 -XStrontianite: 5.5559e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 181 -SrCO3 added: 1.8100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.4136e-001 -XStrontianite: 5.5864e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 182 -SrCO3 added: 1.8200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.3835e-001 -XStrontianite: 5.6165e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 183 -SrCO3 added: 1.8300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.3538e-001 -XStrontianite: 5.6462e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 184 -SrCO3 added: 1.8400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.3245e-001 -XStrontianite: 5.6755e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 185 -SrCO3 added: 1.8500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.2956e-001 -XStrontianite: 5.7044e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 186 -SrCO3 added: 1.8600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.2671e-001 -XStrontianite: 5.7329e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 187 -SrCO3 added: 1.8700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.2389e-001 -XStrontianite: 5.7611e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 188 -SrCO3 added: 1.8800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.2112e-001 -XStrontianite: 5.7888e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 189 -SrCO3 added: 1.8900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.1838e-001 -XStrontianite: 5.8162e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 190 -SrCO3 added: 1.9000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.1567e-001 -XStrontianite: 5.8433e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 191 -SrCO3 added: 1.9100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.1300e-001 -XStrontianite: 5.8700e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 192 -SrCO3 added: 1.9200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.1037e-001 -XStrontianite: 5.8963e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 193 -SrCO3 added: 1.9300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.0776e-001 -XStrontianite: 5.9224e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 194 -SrCO3 added: 1.9400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.0519e-001 -XStrontianite: 5.9481e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 195 -SrCO3 added: 1.9500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.0265e-001 -XStrontianite: 5.9735e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 196 -SrCO3 added: 1.9600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 4.0015e-001 -XStrontianite: 5.9985e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 197 -SrCO3 added: 1.9700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.9767e-001 -XStrontianite: 6.0233e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 198 -SrCO3 added: 1.9800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.9523e-001 -XStrontianite: 6.0477e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 199 -SrCO3 added: 1.9900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.9281e-001 -XStrontianite: 6.0719e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 200 -SrCO3 added: 2.0000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.9043e-001 -XStrontianite: 6.0957e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 201 -SrCO3 added: 2.0100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.8807e-001 -XStrontianite: 6.1193e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 202 -SrCO3 added: 2.0200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.8574e-001 -XStrontianite: 6.1426e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 203 -SrCO3 added: 2.0300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.8344e-001 -XStrontianite: 6.1656e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 204 -SrCO3 added: 2.0400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.8117e-001 -XStrontianite: 6.1883e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 205 -SrCO3 added: 2.0500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.7892e-001 -XStrontianite: 6.2108e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 206 -SrCO3 added: 2.0600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.7670e-001 -XStrontianite: 6.2330e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 207 -SrCO3 added: 2.0700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.7451e-001 -XStrontianite: 6.2549e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 208 -SrCO3 added: 2.0800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.7234e-001 -XStrontianite: 6.2766e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 209 -SrCO3 added: 2.0900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.7019e-001 -XStrontianite: 6.2981e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 210 -SrCO3 added: 2.1000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.6807e-001 -XStrontianite: 6.3193e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 211 -SrCO3 added: 2.1100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.6598e-001 -XStrontianite: 6.3402e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 212 -SrCO3 added: 2.1200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.6391e-001 -XStrontianite: 6.3609e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 213 -SrCO3 added: 2.1300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.6186e-001 -XStrontianite: 6.3814e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 214 -SrCO3 added: 2.1400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.5983e-001 -XStrontianite: 6.4017e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 215 -SrCO3 added: 2.1500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.5783e-001 -XStrontianite: 6.4217e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 216 -SrCO3 added: 2.1600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.5585e-001 -XStrontianite: 6.4415e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 217 -SrCO3 added: 2.1700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.5389e-001 -XStrontianite: 6.4611e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 218 -SrCO3 added: 2.1800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.5195e-001 -XStrontianite: 6.4805e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 219 -SrCO3 added: 2.1900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.5004e-001 -XStrontianite: 6.4996e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 220 -SrCO3 added: 2.2000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.4814e-001 -XStrontianite: 6.5186e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 221 -SrCO3 added: 2.2100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.4627e-001 -XStrontianite: 6.5373e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 222 -SrCO3 added: 2.2200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.4441e-001 -XStrontianite: 6.5559e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 223 -SrCO3 added: 2.2300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.4258e-001 -XStrontianite: 6.5742e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 224 -SrCO3 added: 2.2400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.4076e-001 -XStrontianite: 6.5924e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 225 -SrCO3 added: 2.2500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.3896e-001 -XStrontianite: 6.6104e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 226 -SrCO3 added: 2.2600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.3718e-001 -XStrontianite: 6.6282e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 227 -SrCO3 added: 2.2700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.3543e-001 -XStrontianite: 6.6457e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 228 -SrCO3 added: 2.2800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.3368e-001 -XStrontianite: 6.6632e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 229 -SrCO3 added: 2.2900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.3196e-001 -XStrontianite: 6.6804e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 230 -SrCO3 added: 2.3000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.3026e-001 -XStrontianite: 6.6974e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 231 -SrCO3 added: 2.3100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.2857e-001 -XStrontianite: 6.7143e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 232 -SrCO3 added: 2.3200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.2690e-001 -XStrontianite: 6.7310e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 233 -SrCO3 added: 2.3300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.2524e-001 -XStrontianite: 6.7476e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 234 -SrCO3 added: 2.3400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.2361e-001 -XStrontianite: 6.7639e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 235 -SrCO3 added: 2.3500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.2199e-001 -XStrontianite: 6.7801e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 236 -SrCO3 added: 2.3600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.2038e-001 -XStrontianite: 6.7962e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 237 -SrCO3 added: 2.3700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.1879e-001 -XStrontianite: 6.8121e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 238 -SrCO3 added: 2.3800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.1722e-001 -XStrontianite: 6.8278e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 239 -SrCO3 added: 2.3900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.1566e-001 -XStrontianite: 6.8434e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 240 -SrCO3 added: 2.4000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.1412e-001 -XStrontianite: 6.8588e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 241 -SrCO3 added: 2.4100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.1259e-001 -XStrontianite: 6.8741e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 242 -SrCO3 added: 2.4200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.1108e-001 -XStrontianite: 6.8892e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 243 -SrCO3 added: 2.4300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.0958e-001 -XStrontianite: 6.9042e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 244 -SrCO3 added: 2.4400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.0810e-001 -XStrontianite: 6.9190e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 245 -SrCO3 added: 2.4500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.0663e-001 -XStrontianite: 6.9337e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 246 -SrCO3 added: 2.4600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.0517e-001 -XStrontianite: 6.9483e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 247 -SrCO3 added: 2.4700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.0373e-001 -XStrontianite: 6.9627e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 248 -SrCO3 added: 2.4800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.0230e-001 -XStrontianite: 6.9770e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 249 -SrCO3 added: 2.4900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 3.0089e-001 -XStrontianite: 6.9911e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 250 -SrCO3 added: 2.5000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.9949e-001 -XStrontianite: 7.0051e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 251 -SrCO3 added: 2.5100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.9810e-001 -XStrontianite: 7.0190e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 252 -SrCO3 added: 2.5200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.9672e-001 -XStrontianite: 7.0328e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 253 -SrCO3 added: 2.5300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.9536e-001 -XStrontianite: 7.0464e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 254 -SrCO3 added: 2.5400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.9401e-001 -XStrontianite: 7.0599e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 255 -SrCO3 added: 2.5500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.9267e-001 -XStrontianite: 7.0733e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 256 -SrCO3 added: 2.5600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.9134e-001 -XStrontianite: 7.0866e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 257 -SrCO3 added: 2.5700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.9003e-001 -XStrontianite: 7.0997e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 258 -SrCO3 added: 2.5800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.8873e-001 -XStrontianite: 7.1127e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 259 -SrCO3 added: 2.5900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.8743e-001 -XStrontianite: 7.1257e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 260 -SrCO3 added: 2.6000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.8615e-001 -XStrontianite: 7.1385e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 261 -SrCO3 added: 2.6100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.8489e-001 -XStrontianite: 7.1511e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 262 -SrCO3 added: 2.6200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.8363e-001 -XStrontianite: 7.1637e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 263 -SrCO3 added: 2.6300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.8238e-001 -XStrontianite: 7.1762e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 264 -SrCO3 added: 2.6400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.8115e-001 -XStrontianite: 7.1885e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 265 -SrCO3 added: 2.6500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.7992e-001 -XStrontianite: 7.2008e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 266 -SrCO3 added: 2.6600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.7871e-001 -XStrontianite: 7.2129e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 267 -SrCO3 added: 2.6700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.7751e-001 -XStrontianite: 7.2249e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 268 -SrCO3 added: 2.6800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.7632e-001 -XStrontianite: 7.2368e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 269 -SrCO3 added: 2.6900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.7513e-001 -XStrontianite: 7.2487e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 270 -SrCO3 added: 2.7000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.7396e-001 -XStrontianite: 7.2604e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 271 -SrCO3 added: 2.7100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.7280e-001 -XStrontianite: 7.2720e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 272 -SrCO3 added: 2.7200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.7165e-001 -XStrontianite: 7.2835e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 273 -SrCO3 added: 2.7300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.7050e-001 -XStrontianite: 7.2950e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 274 -SrCO3 added: 2.7400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.6937e-001 -XStrontianite: 7.3063e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 275 -SrCO3 added: 2.7500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.6824e-001 -XStrontianite: 7.3176e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 276 -SrCO3 added: 2.7600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.6713e-001 -XStrontianite: 7.3287e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 277 -SrCO3 added: 2.7700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.6602e-001 -XStrontianite: 7.3398e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 278 -SrCO3 added: 2.7800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.6493e-001 -XStrontianite: 7.3507e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 279 -SrCO3 added: 2.7900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.6384e-001 -XStrontianite: 7.3616e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 280 -SrCO3 added: 2.8000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.6276e-001 -XStrontianite: 7.3724e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 281 -SrCO3 added: 2.8100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.6169e-001 -XStrontianite: 7.3831e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 282 -SrCO3 added: 2.8200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.6063e-001 -XStrontianite: 7.3937e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 283 -SrCO3 added: 2.8300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.5958e-001 -XStrontianite: 7.4042e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 284 -SrCO3 added: 2.8400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.5854e-001 -XStrontianite: 7.4146e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 285 -SrCO3 added: 2.8500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.5750e-001 -XStrontianite: 7.4250e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 286 -SrCO3 added: 2.8600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.5647e-001 -XStrontianite: 7.4353e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 287 -SrCO3 added: 2.8700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.5545e-001 -XStrontianite: 7.4455e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 288 -SrCO3 added: 2.8800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.5444e-001 -XStrontianite: 7.4556e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 289 -SrCO3 added: 2.8900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.5344e-001 -XStrontianite: 7.4656e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 290 -SrCO3 added: 2.9000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.5244e-001 -XStrontianite: 7.4756e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 291 -SrCO3 added: 2.9100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.5146e-001 -XStrontianite: 7.4854e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 292 -SrCO3 added: 2.9200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.5048e-001 -XStrontianite: 7.4952e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 293 -SrCO3 added: 2.9300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.4951e-001 -XStrontianite: 7.5049e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 294 -SrCO3 added: 2.9400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.4854e-001 -XStrontianite: 7.5146e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 295 -SrCO3 added: 2.9500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.4758e-001 -XStrontianite: 7.5242e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 296 -SrCO3 added: 2.9600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.4663e-001 -XStrontianite: 7.5337e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 297 -SrCO3 added: 2.9700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.4569e-001 -XStrontianite: 7.5431e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 298 -SrCO3 added: 2.9800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.4476e-001 -XStrontianite: 7.5524e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 299 -SrCO3 added: 2.9900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.4383e-001 -XStrontianite: 7.5617e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 300 -SrCO3 added: 3.0000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.4291e-001 -XStrontianite: 7.5709e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 301 -SrCO3 added: 3.0100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.4199e-001 -XStrontianite: 7.5801e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 302 -SrCO3 added: 3.0200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.4108e-001 -XStrontianite: 7.5892e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 303 -SrCO3 added: 3.0300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.4018e-001 -XStrontianite: 7.5982e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 304 -SrCO3 added: 3.0400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.3929e-001 -XStrontianite: 7.6071e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 305 -SrCO3 added: 3.0500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.3840e-001 -XStrontianite: 7.6160e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 306 -SrCO3 added: 3.0600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.3752e-001 -XStrontianite: 7.6248e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 307 -SrCO3 added: 3.0700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.3665e-001 -XStrontianite: 7.6335e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 308 -SrCO3 added: 3.0800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.3578e-001 -XStrontianite: 7.6422e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 309 -SrCO3 added: 3.0900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.3492e-001 -XStrontianite: 7.6508e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 310 -SrCO3 added: 3.1000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.3406e-001 -XStrontianite: 7.6594e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 311 -SrCO3 added: 3.1100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.3321e-001 -XStrontianite: 7.6679e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 312 -SrCO3 added: 3.1200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.3237e-001 -XStrontianite: 7.6763e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 313 -SrCO3 added: 3.1300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.3153e-001 -XStrontianite: 7.6847e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 314 -SrCO3 added: 3.1400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.3070e-001 -XStrontianite: 7.6930e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 315 -SrCO3 added: 3.1500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.2988e-001 -XStrontianite: 7.7012e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 316 -SrCO3 added: 3.1600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.2906e-001 -XStrontianite: 7.7094e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 317 -SrCO3 added: 3.1700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.2824e-001 -XStrontianite: 7.7176e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 318 -SrCO3 added: 3.1800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.2744e-001 -XStrontianite: 7.7256e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 319 -SrCO3 added: 3.1900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.2664e-001 -XStrontianite: 7.7336e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 320 -SrCO3 added: 3.2000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.2584e-001 -XStrontianite: 7.7416e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 321 -SrCO3 added: 3.2100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.2505e-001 -XStrontianite: 7.7495e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 322 -SrCO3 added: 3.2200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.2426e-001 -XStrontianite: 7.7574e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 323 -SrCO3 added: 3.2300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.2348e-001 -XStrontianite: 7.7652e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 324 -SrCO3 added: 3.2400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.2271e-001 -XStrontianite: 7.7729e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 325 -SrCO3 added: 3.2500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.2194e-001 -XStrontianite: 7.7806e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 326 -SrCO3 added: 3.2600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.2118e-001 -XStrontianite: 7.7882e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 327 -SrCO3 added: 3.2700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.2042e-001 -XStrontianite: 7.7958e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 328 -SrCO3 added: 3.2800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.1967e-001 -XStrontianite: 7.8033e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 329 -SrCO3 added: 3.2900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.1892e-001 -XStrontianite: 7.8108e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 330 -SrCO3 added: 3.3000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.1817e-001 -XStrontianite: 7.8183e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 331 -SrCO3 added: 3.3100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.1744e-001 -XStrontianite: 7.8256e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 332 -SrCO3 added: 3.3200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.1670e-001 -XStrontianite: 7.8330e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 333 -SrCO3 added: 3.3300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.1598e-001 -XStrontianite: 7.8402e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 334 -SrCO3 added: 3.3400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.1525e-001 -XStrontianite: 7.8475e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 335 -SrCO3 added: 3.3500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.1453e-001 -XStrontianite: 7.8547e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 336 -SrCO3 added: 3.3600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.1382e-001 -XStrontianite: 7.8618e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 337 -SrCO3 added: 3.3700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.1311e-001 -XStrontianite: 7.8689e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 338 -SrCO3 added: 3.3800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.1241e-001 -XStrontianite: 7.8759e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 339 -SrCO3 added: 3.3900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.1171e-001 -XStrontianite: 7.8829e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 340 -SrCO3 added: 3.4000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.1101e-001 -XStrontianite: 7.8899e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 341 -SrCO3 added: 3.4100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.1032e-001 -XStrontianite: 7.8968e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 342 -SrCO3 added: 3.4200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.0964e-001 -XStrontianite: 7.9036e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 343 -SrCO3 added: 3.4300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.0896e-001 -XStrontianite: 7.9104e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 344 -SrCO3 added: 3.4400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.0828e-001 -XStrontianite: 7.9172e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 345 -SrCO3 added: 3.4500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.0761e-001 -XStrontianite: 7.9239e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 346 -SrCO3 added: 3.4600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.0694e-001 -XStrontianite: 7.9306e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 347 -SrCO3 added: 3.4700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.0627e-001 -XStrontianite: 7.9373e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 348 -SrCO3 added: 3.4800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.0561e-001 -XStrontianite: 7.9439e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 349 -SrCO3 added: 3.4900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.0496e-001 -XStrontianite: 7.9504e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 350 -SrCO3 added: 3.5000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.0431e-001 -XStrontianite: 7.9569e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 351 -SrCO3 added: 3.5100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.0366e-001 -XStrontianite: 7.9634e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 352 -SrCO3 added: 3.5200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.0302e-001 -XStrontianite: 7.9698e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 353 -SrCO3 added: 3.5300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.0238e-001 -XStrontianite: 7.9762e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 354 -SrCO3 added: 3.5400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.0174e-001 -XStrontianite: 7.9826e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 355 -SrCO3 added: 3.5500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.0111e-001 -XStrontianite: 7.9889e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 356 -SrCO3 added: 3.5600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 2.0048e-001 -XStrontianite: 7.9952e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 357 -SrCO3 added: 3.5700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.9986e-001 -XStrontianite: 8.0014e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 358 -SrCO3 added: 3.5800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.9924e-001 -XStrontianite: 8.0076e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 359 -SrCO3 added: 3.5900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.9863e-001 -XStrontianite: 8.0137e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 360 -SrCO3 added: 3.6000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.9801e-001 -XStrontianite: 8.0199e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 361 -SrCO3 added: 3.6100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.9741e-001 -XStrontianite: 8.0259e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 362 -SrCO3 added: 3.6200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.9680e-001 -XStrontianite: 8.0320e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 363 -SrCO3 added: 3.6300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.9620e-001 -XStrontianite: 8.0380e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 364 -SrCO3 added: 3.6400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.9560e-001 -XStrontianite: 8.0440e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 365 -SrCO3 added: 3.6500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.9501e-001 -XStrontianite: 8.0499e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 366 -SrCO3 added: 3.6600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.9442e-001 -XStrontianite: 8.0558e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 367 -SrCO3 added: 3.6700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.9384e-001 -XStrontianite: 8.0616e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 368 -SrCO3 added: 3.6800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.9325e-001 -XStrontianite: 8.0675e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 369 -SrCO3 added: 3.6900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.9267e-001 -XStrontianite: 8.0733e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 370 -SrCO3 added: 3.7000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.9210e-001 -XStrontianite: 8.0790e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 371 -SrCO3 added: 3.7100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.9153e-001 -XStrontianite: 8.0847e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 372 -SrCO3 added: 3.7200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.9096e-001 -XStrontianite: 8.0904e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 373 -SrCO3 added: 3.7300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.9039e-001 -XStrontianite: 8.0961e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 374 -SrCO3 added: 3.7400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.8983e-001 -XStrontianite: 8.1017e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 375 -SrCO3 added: 3.7500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.8927e-001 -XStrontianite: 8.1073e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 376 -SrCO3 added: 3.7600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.8871e-001 -XStrontianite: 8.1129e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 377 -SrCO3 added: 3.7700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.8816e-001 -XStrontianite: 8.1184e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 378 -SrCO3 added: 3.7800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.8761e-001 -XStrontianite: 8.1239e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 379 -SrCO3 added: 3.7900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.8707e-001 -XStrontianite: 8.1293e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 380 -SrCO3 added: 3.8000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.8652e-001 -XStrontianite: 8.1348e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 381 -SrCO3 added: 3.8100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.8598e-001 -XStrontianite: 8.1402e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 382 -SrCO3 added: 3.8200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.8545e-001 -XStrontianite: 8.1455e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 383 -SrCO3 added: 3.8300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.8491e-001 -XStrontianite: 8.1509e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 384 -SrCO3 added: 3.8400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.8438e-001 -XStrontianite: 8.1562e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 385 -SrCO3 added: 3.8500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.8386e-001 -XStrontianite: 8.1614e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 386 -SrCO3 added: 3.8600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.8333e-001 -XStrontianite: 8.1667e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 387 -SrCO3 added: 3.8700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.8281e-001 -XStrontianite: 8.1719e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 388 -SrCO3 added: 3.8800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.8229e-001 -XStrontianite: 8.1771e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 389 -SrCO3 added: 3.8900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.8178e-001 -XStrontianite: 8.1822e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 390 -SrCO3 added: 3.9000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.8126e-001 -XStrontianite: 8.1874e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 391 -SrCO3 added: 3.9100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.8076e-001 -XStrontianite: 8.1924e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 392 -SrCO3 added: 3.9200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.8025e-001 -XStrontianite: 8.1975e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 393 -SrCO3 added: 3.9300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.7974e-001 -XStrontianite: 8.2026e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 394 -SrCO3 added: 3.9400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.7924e-001 -XStrontianite: 8.2076e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 395 -SrCO3 added: 3.9500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.7874e-001 -XStrontianite: 8.2126e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 396 -SrCO3 added: 3.9600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.7825e-001 -XStrontianite: 8.2175e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 397 -SrCO3 added: 3.9700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.7776e-001 -XStrontianite: 8.2224e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 398 -SrCO3 added: 3.9800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.7727e-001 -XStrontianite: 8.2273e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 399 -SrCO3 added: 3.9900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.7678e-001 -XStrontianite: 8.2322e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 400 -SrCO3 added: 4.0000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.7629e-001 -XStrontianite: 8.2371e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 401 -SrCO3 added: 4.0100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.7581e-001 -XStrontianite: 8.2419e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 402 -SrCO3 added: 4.0200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.7533e-001 -XStrontianite: 8.2467e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 403 -SrCO3 added: 4.0300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.7486e-001 -XStrontianite: 8.2514e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 404 -SrCO3 added: 4.0400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.7438e-001 -XStrontianite: 8.2562e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 405 -SrCO3 added: 4.0500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.7391e-001 -XStrontianite: 8.2609e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 406 -SrCO3 added: 4.0600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.7344e-001 -XStrontianite: 8.2656e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 407 -SrCO3 added: 4.0700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.7297e-001 -XStrontianite: 8.2703e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 408 -SrCO3 added: 4.0800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.7251e-001 -XStrontianite: 8.2749e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 409 -SrCO3 added: 4.0900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.7205e-001 -XStrontianite: 8.2795e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 410 -SrCO3 added: 4.1000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.7159e-001 -XStrontianite: 8.2841e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 411 -SrCO3 added: 4.1100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.7113e-001 -XStrontianite: 8.2887e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 412 -SrCO3 added: 4.1200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.7068e-001 -XStrontianite: 8.2932e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 413 -SrCO3 added: 4.1300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.7023e-001 -XStrontianite: 8.2977e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 414 -SrCO3 added: 4.1400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.6978e-001 -XStrontianite: 8.3022e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 415 -SrCO3 added: 4.1500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.6933e-001 -XStrontianite: 8.3067e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 416 -SrCO3 added: 4.1600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.6888e-001 -XStrontianite: 8.3112e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 417 -SrCO3 added: 4.1700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.6844e-001 -XStrontianite: 8.3156e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 418 -SrCO3 added: 4.1800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.6800e-001 -XStrontianite: 8.3200e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 419 -SrCO3 added: 4.1900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.6756e-001 -XStrontianite: 8.3244e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 420 -SrCO3 added: 4.2000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.6713e-001 -XStrontianite: 8.3287e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 421 -SrCO3 added: 4.2100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.6669e-001 -XStrontianite: 8.3331e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 422 -SrCO3 added: 4.2200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.6626e-001 -XStrontianite: 8.3374e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 423 -SrCO3 added: 4.2300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.6583e-001 -XStrontianite: 8.3417e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 424 -SrCO3 added: 4.2400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.6541e-001 -XStrontianite: 8.3459e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 425 -SrCO3 added: 4.2500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.6498e-001 -XStrontianite: 8.3502e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 426 -SrCO3 added: 4.2600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.6456e-001 -XStrontianite: 8.3544e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 427 -SrCO3 added: 4.2700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.6414e-001 -XStrontianite: 8.3586e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 428 -SrCO3 added: 4.2800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.6372e-001 -XStrontianite: 8.3628e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 429 -SrCO3 added: 4.2900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.6331e-001 -XStrontianite: 8.3669e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 430 -SrCO3 added: 4.3000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.6289e-001 -XStrontianite: 8.3711e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 431 -SrCO3 added: 4.3100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.6248e-001 -XStrontianite: 8.3752e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 432 -SrCO3 added: 4.3200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.6207e-001 -XStrontianite: 8.3793e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 433 -SrCO3 added: 4.3300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.6166e-001 -XStrontianite: 8.3834e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 434 -SrCO3 added: 4.3400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.6126e-001 -XStrontianite: 8.3874e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 435 -SrCO3 added: 4.3500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.6086e-001 -XStrontianite: 8.3914e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 436 -SrCO3 added: 4.3600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.6045e-001 -XStrontianite: 8.3955e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 437 -SrCO3 added: 4.3700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.6005e-001 -XStrontianite: 8.3995e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 438 -SrCO3 added: 4.3800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.5966e-001 -XStrontianite: 8.4034e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 439 -SrCO3 added: 4.3900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.5926e-001 -XStrontianite: 8.4074e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 440 -SrCO3 added: 4.4000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.5887e-001 -XStrontianite: 8.4113e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 441 -SrCO3 added: 4.4100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.5848e-001 -XStrontianite: 8.4152e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 442 -SrCO3 added: 4.4200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.5809e-001 -XStrontianite: 8.4191e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 443 -SrCO3 added: 4.4300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.5770e-001 -XStrontianite: 8.4230e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 444 -SrCO3 added: 4.4400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.5731e-001 -XStrontianite: 8.4269e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 445 -SrCO3 added: 4.4500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.5693e-001 -XStrontianite: 8.4307e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 446 -SrCO3 added: 4.4600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.5655e-001 -XStrontianite: 8.4345e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 447 -SrCO3 added: 4.4700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.5617e-001 -XStrontianite: 8.4383e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 448 -SrCO3 added: 4.4800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.5579e-001 -XStrontianite: 8.4421e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 449 -SrCO3 added: 4.4900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.5541e-001 -XStrontianite: 8.4459e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 450 -SrCO3 added: 4.5000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.5504e-001 -XStrontianite: 8.4496e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 451 -SrCO3 added: 4.5100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.5466e-001 -XStrontianite: 8.4534e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 452 -SrCO3 added: 4.5200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.5429e-001 -XStrontianite: 8.4571e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 453 -SrCO3 added: 4.5300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.5392e-001 -XStrontianite: 8.4608e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 454 -SrCO3 added: 4.5400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.5355e-001 -XStrontianite: 8.4645e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 455 -SrCO3 added: 4.5500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.5319e-001 -XStrontianite: 8.4681e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 456 -SrCO3 added: 4.5600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.5282e-001 -XStrontianite: 8.4718e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 457 -SrCO3 added: 4.5700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.5246e-001 -XStrontianite: 8.4754e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 458 -SrCO3 added: 4.5800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.5210e-001 -XStrontianite: 8.4790e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 459 -SrCO3 added: 4.5900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.5174e-001 -XStrontianite: 8.4826e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 460 -SrCO3 added: 4.6000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.5139e-001 -XStrontianite: 8.4861e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 461 -SrCO3 added: 4.6100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.5103e-001 -XStrontianite: 8.4897e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 462 -SrCO3 added: 4.6200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.5068e-001 -XStrontianite: 8.4932e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 463 -SrCO3 added: 4.6300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.5032e-001 -XStrontianite: 8.4968e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 464 -SrCO3 added: 4.6400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.4997e-001 -XStrontianite: 8.5003e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 465 -SrCO3 added: 4.6500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.4962e-001 -XStrontianite: 8.5038e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 466 -SrCO3 added: 4.6600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.4928e-001 -XStrontianite: 8.5072e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 467 -SrCO3 added: 4.6700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.4893e-001 -XStrontianite: 8.5107e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 468 -SrCO3 added: 4.6800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.4859e-001 -XStrontianite: 8.5141e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 469 -SrCO3 added: 4.6900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.4824e-001 -XStrontianite: 8.5176e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 470 -SrCO3 added: 4.7000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.4790e-001 -XStrontianite: 8.5210e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 471 -SrCO3 added: 4.7100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.4756e-001 -XStrontianite: 8.5244e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 472 -SrCO3 added: 4.7200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.4723e-001 -XStrontianite: 8.5277e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 473 -SrCO3 added: 4.7300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.4689e-001 -XStrontianite: 8.5311e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 474 -SrCO3 added: 4.7400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.4655e-001 -XStrontianite: 8.5345e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 475 -SrCO3 added: 4.7500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.4622e-001 -XStrontianite: 8.5378e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 476 -SrCO3 added: 4.7600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.4589e-001 -XStrontianite: 8.5411e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 477 -SrCO3 added: 4.7700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.4556e-001 -XStrontianite: 8.5444e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 478 -SrCO3 added: 4.7800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.4523e-001 -XStrontianite: 8.5477e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 479 -SrCO3 added: 4.7900e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.4490e-001 -XStrontianite: 8.5510e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 480 -SrCO3 added: 4.8000e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.4458e-001 -XStrontianite: 8.5542e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 481 -SrCO3 added: 4.8100e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.4425e-001 -XStrontianite: 8.5575e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 482 -SrCO3 added: 4.8200e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.4393e-001 -XStrontianite: 8.5607e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 483 -SrCO3 added: 4.8300e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.4361e-001 -XStrontianite: 8.5639e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 484 -SrCO3 added: 4.8400e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.4329e-001 -XStrontianite: 8.5671e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 485 -SrCO3 added: 4.8500e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.4297e-001 -XStrontianite: 8.5703e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 486 -SrCO3 added: 4.8600e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.4265e-001 -XStrontianite: 8.5735e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 487 -SrCO3 added: 4.8700e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.4234e-001 -XStrontianite: 8.5766e-001 -XCa: 9.0897e-001 -XSr: 9.1032e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 488 -SrCO3 added: 4.8800e-003 -Log Sigma pi: -8.2974e+000 -XAragonite: 1.4212e-001 -XStrontianite: 8.5788e-001 -XCa: 9.0896e-001 -XSr: 9.1043e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 489 -SrCO3 added: 4.8900e-003 -Log Sigma pi: -8.2975e+000 -XAragonite: 1.4208e-001 -XStrontianite: 8.5792e-001 -XCa: 9.0892e-001 -XSr: 9.1075e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 490 -SrCO3 added: 4.9000e-003 -Log Sigma pi: -8.2977e+000 -XAragonite: 1.4204e-001 -XStrontianite: 8.5796e-001 -XCa: 9.0889e-001 -XSr: 9.1107e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 491 -SrCO3 added: 4.9100e-003 -Log Sigma pi: -8.2978e+000 -XAragonite: 1.4200e-001 -XStrontianite: 8.5800e-001 -XCa: 9.0886e-001 -XSr: 9.1139e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 492 -SrCO3 added: 4.9200e-003 -Log Sigma pi: -8.2979e+000 -XAragonite: 1.4195e-001 -XStrontianite: 8.5805e-001 -XCa: 9.0883e-001 -XSr: 9.1171e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 493 -SrCO3 added: 4.9300e-003 -Log Sigma pi: -8.2980e+000 -XAragonite: 1.4191e-001 -XStrontianite: 8.5809e-001 -XCa: 9.0880e-001 -XSr: 9.1202e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 494 -SrCO3 added: 4.9400e-003 -Log Sigma pi: -8.2982e+000 -XAragonite: 1.4187e-001 -XStrontianite: 8.5813e-001 -XCa: 9.0877e-001 -XSr: 9.1234e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 495 -SrCO3 added: 4.9500e-003 -Log Sigma pi: -8.2983e+000 -XAragonite: 1.4183e-001 -XStrontianite: 8.5817e-001 -XCa: 9.0873e-001 -XSr: 9.1266e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 496 -SrCO3 added: 4.9600e-003 -Log Sigma pi: -8.2984e+000 -XAragonite: 1.4179e-001 -XStrontianite: 8.5821e-001 -XCa: 9.0870e-001 -XSr: 9.1298e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 497 -SrCO3 added: 4.9700e-003 -Log Sigma pi: -8.2986e+000 -XAragonite: 1.4174e-001 -XStrontianite: 8.5826e-001 -XCa: 9.0867e-001 -XSr: 9.1330e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 498 -SrCO3 added: 4.9800e-003 -Log Sigma pi: -8.2987e+000 -XAragonite: 1.4170e-001 -XStrontianite: 8.5830e-001 -XCa: 9.0864e-001 -XSr: 9.1361e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 499 -SrCO3 added: 4.9900e-003 -Log Sigma pi: -8.2988e+000 -XAragonite: 1.4166e-001 -XStrontianite: 8.5834e-001 -XCa: 9.0861e-001 -XSr: 9.1393e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 4 -Reaction step number: 500 -SrCO3 added: 5.0000e-003 -Log Sigma pi: -8.2989e+000 -XAragonite: 1.4162e-001 -XStrontianite: 8.5838e-001 -XCa: 9.0858e-001 -XSr: 9.1425e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - - USE solution 1 - USE solid_solution 1 - REACTION 1 - SrCO3 1.0 - .1 in 20 steps - END -----------------------------------User print----------------------------------- - -Simulation number: 5 -Reaction step number: 1 -SrCO3 added: 5.0000e-003 -Log Sigma pi: -8.2989e+000 -XAragonite: 1.4162e-001 -XStrontianite: 8.5838e-001 -XCa: 9.0858e-001 -XSr: 9.1425e-002 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 5 -Reaction step number: 2 -SrCO3 added: 1.0000e-002 -Log Sigma pi: -8.3554e+000 -XAragonite: 1.2447e-001 -XStrontianite: 8.7553e-001 -XCa: 8.9362e-001 -XSr: 1.0638e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 5 -Reaction step number: 3 -SrCO3 added: 1.5000e-002 -Log Sigma pi: -8.4009e+000 -XAragonite: 1.1217e-001 -XStrontianite: 8.8783e-001 -XCa: 8.8002e-001 -XSr: 1.1998e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 5 -Reaction step number: 4 -SrCO3 added: 2.0000e-002 -Log Sigma pi: -8.4394e+000 -XAragonite: 1.0269e-001 -XStrontianite: 8.9731e-001 -XCa: 8.6737e-001 -XSr: 1.3263e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 5 -Reaction step number: 5 -SrCO3 added: 2.5000e-002 -Log Sigma pi: -8.4726e+000 -XAragonite: 9.5063e-002 -XStrontianite: 9.0494e-001 -XCa: 8.5547e-001 -XSr: 1.4453e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 5 -Reaction step number: 6 -SrCO3 added: 3.0000e-002 -Log Sigma pi: -8.5020e+000 -XAragonite: 8.8733e-002 -XStrontianite: 9.1127e-001 -XCa: 8.4417e-001 -XSr: 1.5583e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 5 -Reaction step number: 7 -SrCO3 added: 3.5000e-002 -Log Sigma pi: -8.5282e+000 -XAragonite: 8.3362e-002 -XStrontianite: 9.1664e-001 -XCa: 8.3338e-001 -XSr: 1.6662e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 5 -Reaction step number: 8 -SrCO3 added: 4.0000e-002 -Log Sigma pi: -8.5520e+000 -XAragonite: 7.8729e-002 -XStrontianite: 9.2127e-001 -XCa: 8.2306e-001 -XSr: 1.7694e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 5 -Reaction step number: 9 -SrCO3 added: 4.5000e-002 -Log Sigma pi: -8.5736e+000 -XAragonite: 7.4675e-002 -XStrontianite: 9.2532e-001 -XCa: 8.1313e-001 -XSr: 1.8687e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 5 -Reaction step number: 10 -SrCO3 added: 5.0000e-002 -Log Sigma pi: -8.5934e+000 -XAragonite: 7.1091e-002 -XStrontianite: 9.2891e-001 -XCa: 8.0358e-001 -XSr: 1.9642e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 5 -Reaction step number: 11 -SrCO3 added: 5.5000e-002 -Log Sigma pi: -8.6117e+000 -XAragonite: 6.7891e-002 -XStrontianite: 9.3211e-001 -XCa: 7.9435e-001 -XSr: 2.0565e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 5 -Reaction step number: 12 -SrCO3 added: 6.0000e-002 -Log Sigma pi: -8.6288e+000 -XAragonite: 6.5012e-002 -XStrontianite: 9.3499e-001 -XCa: 7.8543e-001 -XSr: 2.1457e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 5 -Reaction step number: 13 -SrCO3 added: 6.5000e-002 -Log Sigma pi: -8.6446e+000 -XAragonite: 6.2405e-002 -XStrontianite: 9.3760e-001 -XCa: 7.7679e-001 -XSr: 2.2321e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 5 -Reaction step number: 14 -SrCO3 added: 7.0000e-002 -Log Sigma pi: -8.6594e+000 -XAragonite: 6.0029e-002 -XStrontianite: 9.3997e-001 -XCa: 7.6842e-001 -XSr: 2.3158e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 5 -Reaction step number: 15 -SrCO3 added: 7.5000e-002 -Log Sigma pi: -8.6734e+000 -XAragonite: 5.7853e-002 -XStrontianite: 9.4215e-001 -XCa: 7.6029e-001 -XSr: 2.3971e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 5 -Reaction step number: 16 -SrCO3 added: 8.0000e-002 -Log Sigma pi: -8.6865e+000 -XAragonite: 5.5851e-002 -XStrontianite: 9.4415e-001 -XCa: 7.5239e-001 -XSr: 2.4761e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 5 -Reaction step number: 17 -SrCO3 added: 8.5000e-002 -Log Sigma pi: -8.6989e+000 -XAragonite: 5.4001e-002 -XStrontianite: 9.4600e-001 -XCa: 7.4471e-001 -XSr: 2.5529e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 5 -Reaction step number: 18 -SrCO3 added: 9.0000e-002 -Log Sigma pi: -8.7106e+000 -XAragonite: 5.2285e-002 -XStrontianite: 9.4771e-001 -XCa: 7.3723e-001 -XSr: 2.6277e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 5 -Reaction step number: 19 -SrCO3 added: 9.5000e-002 -Log Sigma pi: -8.7217e+000 -XAragonite: 5.0689e-002 -XStrontianite: 9.4931e-001 -XCa: 7.2995e-001 -XSr: 2.7005e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 5 -Reaction step number: 20 -SrCO3 added: 1.0000e-001 -Log Sigma pi: -8.7323e+000 -XAragonite: 4.9199e-002 -XStrontianite: 9.5080e-001 -XCa: 7.2285e-001 -XSr: 2.7715e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - - USE solution 1 - USE solid_solution 1 - REACTION 1 - SrCO3 1.0 - 10.0 in 100 steps - END -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 1 -SrCO3 added: 1.0000e-001 -Log Sigma pi: -8.7323e+000 -XAragonite: 4.9199e-002 -XStrontianite: 9.5080e-001 -XCa: 7.2285e-001 -XSr: 2.7715e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 2 -SrCO3 added: 2.0000e-001 -Log Sigma pi: -8.8736e+000 -XAragonite: 3.1644e-002 -XStrontianite: 9.6836e-001 -XCa: 6.0934e-001 -XSr: 3.9066e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 3 -SrCO3 added: 3.0000e-001 -Log Sigma pi: -8.9506e+000 -XAragonite: 2.3703e-002 -XStrontianite: 9.7630e-001 -XCa: 5.3013e-001 -XSr: 4.6987e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 4 -SrCO3 added: 4.0000e-001 -Log Sigma pi: -9.0006e+000 -XAragonite: 1.9069e-002 -XStrontianite: 9.8093e-001 -XCa: 4.7057e-001 -XSr: 5.2943e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 5 -SrCO3 added: 5.0000e-001 -Log Sigma pi: -9.0363e+000 -XAragonite: 1.6001e-002 -XStrontianite: 9.8400e-001 -XCa: 4.2376e-001 -XSr: 5.7624e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 6 -SrCO3 added: 6.0000e-001 -Log Sigma pi: -9.0633e+000 -XAragonite: 1.3808e-002 -XStrontianite: 9.8619e-001 -XCa: 3.8581e-001 -XSr: 6.1419e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 7 -SrCO3 added: 7.0000e-001 -Log Sigma pi: -9.0844e+000 -XAragonite: 1.2157e-002 -XStrontianite: 9.8784e-001 -XCa: 3.5434e-001 -XSr: 6.4566e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 8 -SrCO3 added: 8.0000e-001 -Log Sigma pi: -9.1015e+000 -XAragonite: 1.0867e-002 -XStrontianite: 9.8913e-001 -XCa: 3.2777e-001 -XSr: 6.7223e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 9 -SrCO3 added: 9.0000e-001 -Log Sigma pi: -9.1156e+000 -XAragonite: 9.8291e-003 -XStrontianite: 9.9017e-001 -XCa: 3.0500e-001 -XSr: 6.9500e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 10 -SrCO3 added: 1 -Log Sigma pi: -9.1275e+000 -XAragonite: 8.9753e-003 -XStrontianite: 9.9102e-001 -XCa: 2.8526e-001 -XSr: 7.1474e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 11 -SrCO3 added: 1.1000e+000 -Log Sigma pi: -9.1377e+000 -XAragonite: 8.2601e-003 -XStrontianite: 9.9174e-001 -XCa: 2.6796e-001 -XSr: 7.3204e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 12 -SrCO3 added: 1.2000e+000 -Log Sigma pi: -9.1465e+000 -XAragonite: 7.6520e-003 -XStrontianite: 9.9235e-001 -XCa: 2.5268e-001 -XSr: 7.4732e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 13 -SrCO3 added: 1.3000e+000 -Log Sigma pi: -9.1542e+000 -XAragonite: 7.1283e-003 -XStrontianite: 9.9287e-001 -XCa: 2.3907e-001 -XSr: 7.6093e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 14 -SrCO3 added: 1.4000e+000 -Log Sigma pi: -9.1610e+000 -XAragonite: 6.6725e-003 -XStrontianite: 9.9333e-001 -XCa: 2.2688e-001 -XSr: 7.7312e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 15 -SrCO3 added: 1.5000e+000 -Log Sigma pi: -9.1670e+000 -XAragonite: 6.2720e-003 -XStrontianite: 9.9373e-001 -XCa: 2.1588e-001 -XSr: 7.8412e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 16 -SrCO3 added: 1.6000e+000 -Log Sigma pi: -9.1724e+000 -XAragonite: 5.9173e-003 -XStrontianite: 9.9408e-001 -XCa: 2.0591e-001 -XSr: 7.9409e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 17 -SrCO3 added: 1.7000e+000 -Log Sigma pi: -9.1772e+000 -XAragonite: 5.6010e-003 -XStrontianite: 9.9440e-001 -XCa: 1.9683e-001 -XSr: 8.0317e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 18 -SrCO3 added: 1.8000e+000 -Log Sigma pi: -9.1816e+000 -XAragonite: 5.3170e-003 -XStrontianite: 9.9468e-001 -XCa: 1.8852e-001 -XSr: 8.1148e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 19 -SrCO3 added: 1.9000e+000 -Log Sigma pi: -9.1856e+000 -XAragonite: 5.0606e-003 -XStrontianite: 9.9494e-001 -XCa: 1.8089e-001 -XSr: 8.1911e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 20 -SrCO3 added: 2 -Log Sigma pi: -9.1892e+000 -XAragonite: 4.8280e-003 -XStrontianite: 9.9517e-001 -XCa: 1.7386e-001 -XSr: 8.2614e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 21 -SrCO3 added: 2.1000e+000 -Log Sigma pi: -9.1926e+000 -XAragonite: 4.6159e-003 -XStrontianite: 9.9538e-001 -XCa: 1.6736e-001 -XSr: 8.3264e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 22 -SrCO3 added: 2.2000e+000 -Log Sigma pi: -9.1957e+000 -XAragonite: 4.4218e-003 -XStrontianite: 9.9558e-001 -XCa: 1.6133e-001 -XSr: 8.3867e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 23 -SrCO3 added: 2.3000e+000 -Log Sigma pi: -9.1985e+000 -XAragonite: 4.2435e-003 -XStrontianite: 9.9576e-001 -XCa: 1.5573e-001 -XSr: 8.4427e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 24 -SrCO3 added: 2.4000e+000 -Log Sigma pi: -9.2012e+000 -XAragonite: 4.0790e-003 -XStrontianite: 9.9592e-001 -XCa: 1.5050e-001 -XSr: 8.4950e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 25 -SrCO3 added: 2.5000e+000 -Log Sigma pi: -9.2036e+000 -XAragonite: 3.9269e-003 -XStrontianite: 9.9607e-001 -XCa: 1.4561e-001 -XSr: 8.5439e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 26 -SrCO3 added: 2.6000e+000 -Log Sigma pi: -9.2059e+000 -XAragonite: 3.7858e-003 -XStrontianite: 9.9621e-001 -XCa: 1.4103e-001 -XSr: 8.5897e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 27 -SrCO3 added: 2.7000e+000 -Log Sigma pi: -9.2080e+000 -XAragonite: 3.6545e-003 -XStrontianite: 9.9635e-001 -XCa: 1.3674e-001 -XSr: 8.6326e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 28 -SrCO3 added: 2.8000e+000 -Log Sigma pi: -9.2100e+000 -XAragonite: 3.5320e-003 -XStrontianite: 9.9647e-001 -XCa: 1.3269e-001 -XSr: 8.6731e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 29 -SrCO3 added: 2.9000e+000 -Log Sigma pi: -9.2119e+000 -XAragonite: 3.4175e-003 -XStrontianite: 9.9658e-001 -XCa: 1.2889e-001 -XSr: 8.7111e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 30 -SrCO3 added: 3 -Log Sigma pi: -9.2137e+000 -XAragonite: 3.3103e-003 -XStrontianite: 9.9669e-001 -XCa: 1.2529e-001 -XSr: 8.7471e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 31 -SrCO3 added: 3.1000e+000 -Log Sigma pi: -9.2153e+000 -XAragonite: 3.2096e-003 -XStrontianite: 9.9679e-001 -XCa: 1.2189e-001 -XSr: 8.7811e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 32 -SrCO3 added: 3.2000e+000 -Log Sigma pi: -9.2169e+000 -XAragonite: 3.1148e-003 -XStrontianite: 9.9689e-001 -XCa: 1.1867e-001 -XSr: 8.8133e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 33 -SrCO3 added: 3.3000e+000 -Log Sigma pi: -9.2184e+000 -XAragonite: 3.0255e-003 -XStrontianite: 9.9697e-001 -XCa: 1.1562e-001 -XSr: 8.8438e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 34 -SrCO3 added: 3.4000e+000 -Log Sigma pi: -9.2198e+000 -XAragonite: 2.9412e-003 -XStrontianite: 9.9706e-001 -XCa: 1.1272e-001 -XSr: 8.8728e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 35 -SrCO3 added: 3.5000e+000 -Log Sigma pi: -9.2211e+000 -XAragonite: 2.8615e-003 -XStrontianite: 9.9714e-001 -XCa: 1.0996e-001 -XSr: 8.9004e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 36 -SrCO3 added: 3.6000e+000 -Log Sigma pi: -9.2223e+000 -XAragonite: 2.7860e-003 -XStrontianite: 9.9721e-001 -XCa: 1.0734e-001 -XSr: 8.9266e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 37 -SrCO3 added: 3.7000e+000 -Log Sigma pi: -9.2235e+000 -XAragonite: 2.7144e-003 -XStrontianite: 9.9729e-001 -XCa: 1.0483e-001 -XSr: 8.9517e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 38 -SrCO3 added: 3.8000e+000 -Log Sigma pi: -9.2247e+000 -XAragonite: 2.6464e-003 -XStrontianite: 9.9735e-001 -XCa: 1.0245e-001 -XSr: 8.9755e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 39 -SrCO3 added: 3.9000e+000 -Log Sigma pi: -9.2258e+000 -XAragonite: 2.5817e-003 -XStrontianite: 9.9742e-001 -XCa: 1.0016e-001 -XSr: 8.9984e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 40 -SrCO3 added: 4 -Log Sigma pi: -9.2268e+000 -XAragonite: 2.5201e-003 -XStrontianite: 9.9748e-001 -XCa: 9.7983e-002 -XSr: 9.0202e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 41 -SrCO3 added: 4.1000e+000 -Log Sigma pi: -9.2278e+000 -XAragonite: 2.4614e-003 -XStrontianite: 9.9754e-001 -XCa: 9.5894e-002 -XSr: 9.0411e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 42 -SrCO3 added: 4.2000e+000 -Log Sigma pi: -9.2287e+000 -XAragonite: 2.4054e-003 -XStrontianite: 9.9759e-001 -XCa: 9.3893e-002 -XSr: 9.0611e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 43 -SrCO3 added: 4.3000e+000 -Log Sigma pi: -9.2296e+000 -XAragonite: 2.3518e-003 -XStrontianite: 9.9765e-001 -XCa: 9.1974e-002 -XSr: 9.0803e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 44 -SrCO3 added: 4.4000e+000 -Log Sigma pi: -9.2305e+000 -XAragonite: 2.3006e-003 -XStrontianite: 9.9770e-001 -XCa: 9.0132e-002 -XSr: 9.0987e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 45 -SrCO3 added: 4.5000e+000 -Log Sigma pi: -9.2313e+000 -XAragonite: 2.2516e-003 -XStrontianite: 9.9775e-001 -XCa: 8.8362e-002 -XSr: 9.1164e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 46 -SrCO3 added: 4.6000e+000 -Log Sigma pi: -9.2321e+000 -XAragonite: 2.2047e-003 -XStrontianite: 9.9780e-001 -XCa: 8.6660e-002 -XSr: 9.1334e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 47 -SrCO3 added: 4.7000e+000 -Log Sigma pi: -9.2329e+000 -XAragonite: 2.1596e-003 -XStrontianite: 9.9784e-001 -XCa: 8.5023e-002 -XSr: 9.1498e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 48 -SrCO3 added: 4.8000e+000 -Log Sigma pi: -9.2336e+000 -XAragonite: 2.1164e-003 -XStrontianite: 9.9788e-001 -XCa: 8.3447e-002 -XSr: 9.1655e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 49 -SrCO3 added: 4.9000e+000 -Log Sigma pi: -9.2344e+000 -XAragonite: 2.0748e-003 -XStrontianite: 9.9793e-001 -XCa: 8.1929e-002 -XSr: 9.1807e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 50 -SrCO3 added: 5 -Log Sigma pi: -9.2350e+000 -XAragonite: 2.0349e-003 -XStrontianite: 9.9797e-001 -XCa: 8.0464e-002 -XSr: 9.1954e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 51 -SrCO3 added: 5.1000e+000 -Log Sigma pi: -9.2357e+000 -XAragonite: 1.9965e-003 -XStrontianite: 9.9800e-001 -XCa: 7.9051e-002 -XSr: 9.2095e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 52 -SrCO3 added: 5.2000e+000 -Log Sigma pi: -9.2363e+000 -XAragonite: 1.9595e-003 -XStrontianite: 9.9804e-001 -XCa: 7.7687e-002 -XSr: 9.2231e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 53 -SrCO3 added: 5.3000e+000 -Log Sigma pi: -9.2369e+000 -XAragonite: 1.9238e-003 -XStrontianite: 9.9808e-001 -XCa: 7.6370e-002 -XSr: 9.2363e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 54 -SrCO3 added: 5.4000e+000 -Log Sigma pi: -9.2375e+000 -XAragonite: 1.8895e-003 -XStrontianite: 9.9811e-001 -XCa: 7.5096e-002 -XSr: 9.2490e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 55 -SrCO3 added: 5.5000e+000 -Log Sigma pi: -9.2381e+000 -XAragonite: 1.8563e-003 -XStrontianite: 9.9814e-001 -XCa: 7.3864e-002 -XSr: 9.2614e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 56 -SrCO3 added: 5.6000e+000 -Log Sigma pi: -9.2387e+000 -XAragonite: 1.8243e-003 -XStrontianite: 9.9818e-001 -XCa: 7.2672e-002 -XSr: 9.2733e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 57 -SrCO3 added: 5.7000e+000 -Log Sigma pi: -9.2392e+000 -XAragonite: 1.7934e-003 -XStrontianite: 9.9821e-001 -XCa: 7.1518e-002 -XSr: 9.2848e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 58 -SrCO3 added: 5.8000e+000 -Log Sigma pi: -9.2397e+000 -XAragonite: 1.7635e-003 -XStrontianite: 9.9824e-001 -XCa: 7.0400e-002 -XSr: 9.2960e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 59 -SrCO3 added: 5.9000e+000 -Log Sigma pi: -9.2402e+000 -XAragonite: 1.7345e-003 -XStrontianite: 9.9827e-001 -XCa: 6.9317e-002 -XSr: 9.3068e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 60 -SrCO3 added: 6 -Log Sigma pi: -9.2407e+000 -XAragonite: 1.7066e-003 -XStrontianite: 9.9829e-001 -XCa: 6.8266e-002 -XSr: 9.3173e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 61 -SrCO3 added: 6.1000e+000 -Log Sigma pi: -9.2412e+000 -XAragonite: 1.6795e-003 -XStrontianite: 9.9832e-001 -XCa: 6.7247e-002 -XSr: 9.3275e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 62 -SrCO3 added: 6.2000e+000 -Log Sigma pi: -9.2416e+000 -XAragonite: 1.6532e-003 -XStrontianite: 9.9835e-001 -XCa: 6.6258e-002 -XSr: 9.3374e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 63 -SrCO3 added: 6.3000e+000 -Log Sigma pi: -9.2420e+000 -XAragonite: 1.6278e-003 -XStrontianite: 9.9837e-001 -XCa: 6.5297e-002 -XSr: 9.3470e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 64 -SrCO3 added: 6.4000e+000 -Log Sigma pi: -9.2425e+000 -XAragonite: 1.6031e-003 -XStrontianite: 9.9840e-001 -XCa: 6.4364e-002 -XSr: 9.3564e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 65 -SrCO3 added: 6.5000e+000 -Log Sigma pi: -9.2429e+000 -XAragonite: 1.5792e-003 -XStrontianite: 9.9842e-001 -XCa: 6.3457e-002 -XSr: 9.3654e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 66 -SrCO3 added: 6.6000e+000 -Log Sigma pi: -9.2433e+000 -XAragonite: 1.5560e-003 -XStrontianite: 9.9844e-001 -XCa: 6.2576e-002 -XSr: 9.3742e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 67 -SrCO3 added: 6.7000e+000 -Log Sigma pi: -9.2437e+000 -XAragonite: 1.5334e-003 -XStrontianite: 9.9847e-001 -XCa: 6.1718e-002 -XSr: 9.3828e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 68 -SrCO3 added: 6.8000e+000 -Log Sigma pi: -9.2441e+000 -XAragonite: 1.5115e-003 -XStrontianite: 9.9849e-001 -XCa: 6.0884e-002 -XSr: 9.3912e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 69 -SrCO3 added: 6.9000e+000 -Log Sigma pi: -9.2444e+000 -XAragonite: 1.4902e-003 -XStrontianite: 9.9851e-001 -XCa: 6.0073e-002 -XSr: 9.3993e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 70 -SrCO3 added: 7 -Log Sigma pi: -9.2448e+000 -XAragonite: 1.4695e-003 -XStrontianite: 9.9853e-001 -XCa: 5.9282e-002 -XSr: 9.4072e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 71 -SrCO3 added: 7.1000e+000 -Log Sigma pi: -9.2451e+000 -XAragonite: 1.4494e-003 -XStrontianite: 9.9855e-001 -XCa: 5.8512e-002 -XSr: 9.4149e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 72 -SrCO3 added: 7.2000e+000 -Log Sigma pi: -9.2455e+000 -XAragonite: 1.4298e-003 -XStrontianite: 9.9857e-001 -XCa: 5.7762e-002 -XSr: 9.4224e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 73 -SrCO3 added: 7.3000e+000 -Log Sigma pi: -9.2458e+000 -XAragonite: 1.4108e-003 -XStrontianite: 9.9859e-001 -XCa: 5.7031e-002 -XSr: 9.4297e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 74 -SrCO3 added: 7.4000e+000 -Log Sigma pi: -9.2461e+000 -XAragonite: 1.3922e-003 -XStrontianite: 9.9861e-001 -XCa: 5.6318e-002 -XSr: 9.4368e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 75 -SrCO3 added: 7.5000e+000 -Log Sigma pi: -9.2465e+000 -XAragonite: 1.3741e-003 -XStrontianite: 9.9863e-001 -XCa: 5.5623e-002 -XSr: 9.4438e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 76 -SrCO3 added: 7.6000e+000 -Log Sigma pi: -9.2468e+000 -XAragonite: 1.3565e-003 -XStrontianite: 9.9864e-001 -XCa: 5.4944e-002 -XSr: 9.4506e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 77 -SrCO3 added: 7.7000e+000 -Log Sigma pi: -9.2471e+000 -XAragonite: 1.3393e-003 -XStrontianite: 9.9866e-001 -XCa: 5.4282e-002 -XSr: 9.4572e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 78 -SrCO3 added: 7.8000e+000 -Log Sigma pi: -9.2474e+000 -XAragonite: 1.3226e-003 -XStrontianite: 9.9868e-001 -XCa: 5.3636e-002 -XSr: 9.4636e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 79 -SrCO3 added: 7.9000e+000 -Log Sigma pi: -9.2476e+000 -XAragonite: 1.3063e-003 -XStrontianite: 9.9869e-001 -XCa: 5.3005e-002 -XSr: 9.4699e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 80 -SrCO3 added: 8 -Log Sigma pi: -9.2479e+000 -XAragonite: 1.2903e-003 -XStrontianite: 9.9871e-001 -XCa: 5.2389e-002 -XSr: 9.4761e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 81 -SrCO3 added: 8.1000e+000 -Log Sigma pi: -9.2482e+000 -XAragonite: 1.2748e-003 -XStrontianite: 9.9873e-001 -XCa: 5.1787e-002 -XSr: 9.4821e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 82 -SrCO3 added: 8.2000e+000 -Log Sigma pi: -9.2485e+000 -XAragonite: 1.2596e-003 -XStrontianite: 9.9874e-001 -XCa: 5.1199e-002 -XSr: 9.4880e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 83 -SrCO3 added: 8.3000e+000 -Log Sigma pi: -9.2487e+000 -XAragonite: 1.2448e-003 -XStrontianite: 9.9876e-001 -XCa: 5.0623e-002 -XSr: 9.4938e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 84 -SrCO3 added: 8.4000e+000 -Log Sigma pi: -9.2490e+000 -XAragonite: 1.2303e-003 -XStrontianite: 9.9877e-001 -XCa: 5.0061e-002 -XSr: 9.4994e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 85 -SrCO3 added: 8.5000e+000 -Log Sigma pi: -9.2492e+000 -XAragonite: 1.2162e-003 -XStrontianite: 9.9878e-001 -XCa: 4.9511e-002 -XSr: 9.5049e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 86 -SrCO3 added: 8.6000e+000 -Log Sigma pi: -9.2495e+000 -XAragonite: 1.2024e-003 -XStrontianite: 9.9880e-001 -XCa: 4.8973e-002 -XSr: 9.5103e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 87 -SrCO3 added: 8.7000e+000 -Log Sigma pi: -9.2497e+000 -XAragonite: 1.1889e-003 -XStrontianite: 9.9881e-001 -XCa: 4.8447e-002 -XSr: 9.5155e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 88 -SrCO3 added: 8.8000e+000 -Log Sigma pi: -9.2499e+000 -XAragonite: 1.1757e-003 -XStrontianite: 9.9882e-001 -XCa: 4.7931e-002 -XSr: 9.5207e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 89 -SrCO3 added: 8.9000e+000 -Log Sigma pi: -9.2502e+000 -XAragonite: 1.1628e-003 -XStrontianite: 9.9884e-001 -XCa: 4.7427e-002 -XSr: 9.5257e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 90 -SrCO3 added: 9 -Log Sigma pi: -9.2504e+000 -XAragonite: 1.1501e-003 -XStrontianite: 9.9885e-001 -XCa: 4.6933e-002 -XSr: 9.5307e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 91 -SrCO3 added: 9.1000e+000 -Log Sigma pi: -9.2506e+000 -XAragonite: 1.1378e-003 -XStrontianite: 9.9886e-001 -XCa: 4.6449e-002 -XSr: 9.5355e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 92 -SrCO3 added: 9.2000e+000 -Log Sigma pi: -9.2508e+000 -XAragonite: 1.1257e-003 -XStrontianite: 9.9887e-001 -XCa: 4.5975e-002 -XSr: 9.5402e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 93 -SrCO3 added: 9.3000e+000 -Log Sigma pi: -9.2510e+000 -XAragonite: 1.1138e-003 -XStrontianite: 9.9889e-001 -XCa: 4.5511e-002 -XSr: 9.5449e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 94 -SrCO3 added: 9.4000e+000 -Log Sigma pi: -9.2512e+000 -XAragonite: 1.1022e-003 -XStrontianite: 9.9890e-001 -XCa: 4.5056e-002 -XSr: 9.5494e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 95 -SrCO3 added: 9.5000e+000 -Log Sigma pi: -9.2514e+000 -XAragonite: 1.0909e-003 -XStrontianite: 9.9891e-001 -XCa: 4.4610e-002 -XSr: 9.5539e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 96 -SrCO3 added: 9.6000e+000 -Log Sigma pi: -9.2516e+000 -XAragonite: 1.0797e-003 -XStrontianite: 9.9892e-001 -XCa: 4.4173e-002 -XSr: 9.5583e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 97 -SrCO3 added: 9.7000e+000 -Log Sigma pi: -9.2518e+000 -XAragonite: 1.0688e-003 -XStrontianite: 9.9893e-001 -XCa: 4.3744e-002 -XSr: 9.5626e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 98 -SrCO3 added: 9.8000e+000 -Log Sigma pi: -9.2520e+000 -XAragonite: 1.0582e-003 -XStrontianite: 9.9894e-001 -XCa: 4.3324e-002 -XSr: 9.5668e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 99 -SrCO3 added: 9.9000e+000 -Log Sigma pi: -9.2522e+000 -XAragonite: 1.0477e-003 -XStrontianite: 9.9895e-001 -XCa: 4.2911e-002 -XSr: 9.5709e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -----------------------------------User print----------------------------------- - -Simulation number: 6 -Reaction step number: 100 -SrCO3 added: 10 -Log Sigma pi: -9.2524e+000 -XAragonite: 1.0374e-003 -XStrontianite: 9.9896e-001 -XCa: 4.2507e-002 -XSr: 9.5749e-001 -Misc 1: 4.8032e-003 -Misc 2: 8.5786e-001 - -------------------------------- -End of Run after 1.352 Seconds. -------------------------------- - diff --git a/examples_pc/ex10.sel b/examples_pc/ex10.sel deleted file mode 100644 index 6a891ddb..00000000 --- a/examples_pc/ex10.sel +++ /dev/null @@ -1,621 +0,0 @@ - reaction lg_SigmaPi X_Arag X_Stront X_Ca_aq X_Sr_aq mol_Misc1 mol_Misc2 mol_Arag mol_Stront - 1.0000e-005 -8.3356e+000 9.9996e-001 4.1861e-005 9.9906e-001 9.4386e-004 1.0000e-010 1.0000e-010 6.5385e-006 2.7372e-010 - 2.0000e-005 -8.3352e+000 9.9992e-001 8.3830e-005 9.9811e-001 1.8871e-003 1.0000e-010 1.0000e-010 1.3075e-005 1.0962e-009 - 3.0000e-005 -8.3348e+000 9.9987e-001 1.2591e-004 9.9717e-001 2.8296e-003 1.0000e-010 1.0000e-010 1.9609e-005 2.4693e-009 - 4.0000e-005 -8.3345e+000 9.9983e-001 1.6809e-004 9.9623e-001 3.7714e-003 1.0000e-010 1.0000e-010 2.6142e-005 4.3950e-009 - 5.0000e-005 -8.3341e+000 9.9979e-001 2.1039e-004 9.9529e-001 4.7126e-003 1.0000e-010 1.0000e-010 3.2672e-005 6.8752e-009 - 6.0000e-005 -8.3337e+000 9.9975e-001 2.5279e-004 9.9435e-001 5.6532e-003 1.0000e-010 1.0000e-010 3.9200e-005 9.9120e-009 - 7.0000e-005 -8.3333e+000 9.9970e-001 2.9531e-004 9.9341e-001 6.5930e-003 1.0000e-010 1.0000e-010 4.5726e-005 1.3507e-008 - 8.0000e-005 -8.3329e+000 9.9966e-001 3.3794e-004 9.9247e-001 7.5322e-003 1.0000e-010 1.0000e-010 5.2249e-005 1.7663e-008 - 9.0000e-005 -8.3325e+000 9.9962e-001 3.8068e-004 9.9153e-001 8.4707e-003 1.0000e-010 1.0000e-010 5.8771e-005 2.2381e-008 - 1.0000e-004 -8.3322e+000 9.9958e-001 4.2353e-004 9.9059e-001 9.4086e-003 1.0000e-010 1.0000e-010 6.5291e-005 2.7664e-008 - 1.1000e-004 -8.3318e+000 9.9953e-001 4.6649e-004 9.8965e-001 1.0346e-002 1.0000e-010 1.0000e-010 7.1808e-005 3.3513e-008 - 1.2000e-004 -8.3314e+000 9.9949e-001 5.0956e-004 9.8872e-001 1.1282e-002 1.0000e-010 1.0000e-010 7.8323e-005 3.9931e-008 - 1.3000e-004 -8.3310e+000 9.9945e-001 5.5275e-004 9.8778e-001 1.2218e-002 1.0000e-010 1.0000e-010 8.4837e-005 4.6920e-008 - 1.4000e-004 -8.3306e+000 9.9940e-001 5.9605e-004 9.8685e-001 1.3153e-002 1.0000e-010 1.0000e-010 9.1348e-005 5.4481e-008 - 1.5000e-004 -8.3302e+000 9.9936e-001 6.3947e-004 9.8591e-001 1.4088e-002 1.0000e-010 1.0000e-010 9.7857e-005 6.2616e-008 - 1.6000e-004 -8.3299e+000 9.9932e-001 6.8300e-004 9.8498e-001 1.5022e-002 1.0000e-010 1.0000e-010 1.0436e-004 7.1329e-008 - 1.7000e-004 -8.3295e+000 9.9927e-001 7.2664e-004 9.8405e-001 1.5955e-002 1.0000e-010 1.0000e-010 1.1087e-004 8.0621e-008 - 1.8000e-004 -8.3291e+000 9.9923e-001 7.7041e-004 9.8311e-001 1.6887e-002 1.0000e-010 1.0000e-010 1.1737e-004 9.0493e-008 - 1.9000e-004 -8.3287e+000 9.9919e-001 8.1428e-004 9.8218e-001 1.7819e-002 1.0000e-010 1.0000e-010 1.2387e-004 1.0095e-007 - 2.0000e-004 -8.3283e+000 9.9914e-001 8.5828e-004 9.8125e-001 1.8750e-002 1.0000e-010 1.0000e-010 1.3037e-004 1.1199e-007 - 2.1000e-004 -8.3279e+000 9.9910e-001 9.0239e-004 9.8032e-001 1.9681e-002 1.0000e-010 1.0000e-010 1.3687e-004 1.2362e-007 - 2.2000e-004 -8.3275e+000 9.9905e-001 9.4662e-004 9.7939e-001 2.0611e-002 1.0000e-010 1.0000e-010 1.4336e-004 1.3584e-007 - 2.3000e-004 -8.3272e+000 9.9901e-001 9.9096e-004 9.7846e-001 2.1540e-002 1.0000e-010 1.0000e-010 1.4985e-004 1.4865e-007 - 2.4000e-004 -8.3268e+000 9.9896e-001 1.0354e-003 9.7753e-001 2.2468e-002 1.0000e-010 1.0000e-010 1.5634e-004 1.6205e-007 - 2.5000e-004 -8.3264e+000 9.9892e-001 1.0800e-003 9.7660e-001 2.3396e-002 1.0000e-010 1.0000e-010 1.6283e-004 1.7605e-007 - 2.6000e-004 -8.3260e+000 9.9888e-001 1.1247e-003 9.7568e-001 2.4323e-002 1.0000e-010 1.0000e-010 1.6932e-004 1.9065e-007 - 2.7000e-004 -8.3256e+000 9.9883e-001 1.1695e-003 9.7475e-001 2.5250e-002 1.0000e-010 1.0000e-010 1.7580e-004 2.0585e-007 - 2.8000e-004 -8.3252e+000 9.9879e-001 1.2145e-003 9.7382e-001 2.6176e-002 1.0000e-010 1.0000e-010 1.8228e-004 2.2165e-007 - 2.9000e-004 -8.3248e+000 9.9874e-001 1.2596e-003 9.7290e-001 2.7101e-002 1.0000e-010 1.0000e-010 1.8876e-004 2.3805e-007 - 3.0000e-004 -8.3245e+000 9.9870e-001 1.3047e-003 9.7197e-001 2.8025e-002 1.0000e-010 1.0000e-010 1.9524e-004 2.5507e-007 - 3.1000e-004 -8.3241e+000 9.9865e-001 1.3501e-003 9.7105e-001 2.8949e-002 1.0000e-010 1.0000e-010 2.0171e-004 2.7269e-007 - 3.2000e-004 -8.3237e+000 9.9860e-001 1.3955e-003 9.7013e-001 2.9872e-002 1.0000e-010 1.0000e-010 2.0819e-004 2.9093e-007 - 3.3000e-004 -8.3233e+000 9.9856e-001 1.4410e-003 9.6921e-001 3.0795e-002 1.0000e-010 1.0000e-010 2.1466e-004 3.0977e-007 - 3.4000e-004 -8.3229e+000 9.9851e-001 1.4867e-003 9.6828e-001 3.1717e-002 1.0000e-010 1.0000e-010 2.2112e-004 3.2924e-007 - 3.5000e-004 -8.3225e+000 9.9847e-001 1.5325e-003 9.6736e-001 3.2638e-002 1.0000e-010 1.0000e-010 2.2759e-004 3.4932e-007 - 3.6000e-004 -8.3221e+000 9.9842e-001 1.5785e-003 9.6644e-001 3.3558e-002 1.0000e-010 1.0000e-010 2.3406e-004 3.7003e-007 - 3.7000e-004 -8.3218e+000 9.9838e-001 1.6245e-003 9.6552e-001 3.4478e-002 1.0000e-010 1.0000e-010 2.4052e-004 3.9136e-007 - 3.8000e-004 -8.3214e+000 9.9833e-001 1.6707e-003 9.6460e-001 3.5397e-002 1.0000e-010 1.0000e-010 2.4698e-004 4.1331e-007 - 3.9000e-004 -8.3210e+000 9.9828e-001 1.7170e-003 9.6368e-001 3.6316e-002 1.0000e-010 1.0000e-010 2.5344e-004 4.3590e-007 - 4.0000e-004 -8.3206e+000 9.9824e-001 1.7634e-003 9.6277e-001 3.7234e-002 1.0000e-010 1.0000e-010 2.5989e-004 4.5911e-007 - 4.1000e-004 -8.3202e+000 9.9819e-001 1.8100e-003 9.6185e-001 3.8151e-002 1.0000e-010 1.0000e-010 2.6634e-004 4.8296e-007 - 4.2000e-004 -8.3198e+000 9.9814e-001 1.8567e-003 9.6093e-001 3.9067e-002 1.0000e-010 1.0000e-010 2.7280e-004 5.0744e-007 - 4.3000e-004 -8.3194e+000 9.9810e-001 1.9035e-003 9.6002e-001 3.9983e-002 1.0000e-010 1.0000e-010 2.7924e-004 5.3256e-007 - 4.4000e-004 -8.3191e+000 9.9805e-001 1.9505e-003 9.5910e-001 4.0898e-002 1.0000e-010 1.0000e-010 2.8569e-004 5.5832e-007 - 4.5000e-004 -8.3187e+000 9.9800e-001 1.9975e-003 9.5819e-001 4.1813e-002 1.0000e-010 1.0000e-010 2.9214e-004 5.8473e-007 - 4.6000e-004 -8.3183e+000 9.9796e-001 2.0448e-003 9.5727e-001 4.2727e-002 1.0000e-010 1.0000e-010 2.9858e-004 6.1177e-007 - 4.7000e-004 -8.3179e+000 9.9791e-001 2.0921e-003 9.5636e-001 4.3640e-002 1.0000e-010 1.0000e-010 3.0502e-004 6.3947e-007 - 4.8000e-004 -8.3175e+000 9.9786e-001 2.1396e-003 9.5545e-001 4.4552e-002 1.0000e-010 1.0000e-010 3.1146e-004 6.6782e-007 - 4.9000e-004 -8.3171e+000 9.9781e-001 2.1872e-003 9.5454e-001 4.5464e-002 1.0000e-010 1.0000e-010 3.1790e-004 6.9682e-007 - 5.0000e-004 -8.3167e+000 9.9777e-001 2.2349e-003 9.5362e-001 4.6375e-002 1.0000e-010 1.0000e-010 3.2433e-004 7.2648e-007 - 5.1000e-004 -8.3164e+000 9.9772e-001 2.2828e-003 9.5271e-001 4.7286e-002 1.0000e-010 1.0000e-010 3.3076e-004 7.5679e-007 - 5.2000e-004 -8.3160e+000 9.9767e-001 2.3308e-003 9.5180e-001 4.8196e-002 1.0000e-010 1.0000e-010 3.3719e-004 7.8776e-007 - 5.3000e-004 -8.3156e+000 9.9762e-001 2.3790e-003 9.5090e-001 4.9105e-002 1.0000e-010 1.0000e-010 3.4362e-004 8.1940e-007 - 5.4000e-004 -8.3152e+000 9.9757e-001 2.4272e-003 9.4999e-001 5.0013e-002 1.0000e-010 1.0000e-010 3.5004e-004 8.5171e-007 - 5.5000e-004 -8.3148e+000 9.9752e-001 2.4756e-003 9.4908e-001 5.0921e-002 1.0000e-010 1.0000e-010 3.5647e-004 8.8468e-007 - 5.6000e-004 -8.3144e+000 9.9748e-001 2.5242e-003 9.4817e-001 5.1828e-002 1.0000e-010 1.0000e-010 3.6289e-004 9.1832e-007 - 5.7000e-004 -8.3140e+000 9.9743e-001 2.5729e-003 9.4727e-001 5.2735e-002 1.0000e-010 1.0000e-010 3.6931e-004 9.5264e-007 - 5.8000e-004 -8.3136e+000 9.9738e-001 2.6217e-003 9.4636e-001 5.3641e-002 1.0000e-010 1.0000e-010 3.7572e-004 9.8763e-007 - 5.9000e-004 -8.3133e+000 9.9733e-001 2.6707e-003 9.4545e-001 5.4546e-002 1.0000e-010 1.0000e-010 3.8214e-004 1.0233e-006 - 6.0000e-004 -8.3129e+000 9.9728e-001 2.7198e-003 9.4455e-001 5.5450e-002 1.0000e-010 1.0000e-010 3.8855e-004 1.0597e-006 - 6.1000e-004 -8.3125e+000 9.9723e-001 2.7690e-003 9.4365e-001 5.6354e-002 1.0000e-010 1.0000e-010 3.9496e-004 1.0967e-006 - 6.2000e-004 -8.3121e+000 9.9718e-001 2.8184e-003 9.4274e-001 5.7257e-002 1.0000e-010 1.0000e-010 4.0137e-004 1.1344e-006 - 6.3000e-004 -8.3117e+000 9.9713e-001 2.8680e-003 9.4184e-001 5.8160e-002 1.0000e-010 1.0000e-010 4.0778e-004 1.1728e-006 - 6.4000e-004 -8.3113e+000 9.9708e-001 2.9176e-003 9.4094e-001 5.9062e-002 1.0000e-010 1.0000e-010 4.1418e-004 1.2120e-006 - 6.5000e-004 -8.3109e+000 9.9703e-001 2.9674e-003 9.4004e-001 5.9963e-002 1.0000e-010 1.0000e-010 4.2058e-004 1.2518e-006 - 6.6000e-004 -8.3105e+000 9.9698e-001 3.0174e-003 9.3914e-001 6.0863e-002 1.0000e-010 1.0000e-010 4.2698e-004 1.2923e-006 - 6.7000e-004 -8.3102e+000 9.9693e-001 3.0675e-003 9.3824e-001 6.1763e-002 1.0000e-010 1.0000e-010 4.3338e-004 1.3335e-006 - 6.8000e-004 -8.3098e+000 9.9688e-001 3.1178e-003 9.3734e-001 6.2662e-002 1.0000e-010 1.0000e-010 4.3977e-004 1.3754e-006 - 6.9000e-004 -8.3094e+000 9.9683e-001 3.1681e-003 9.3644e-001 6.3561e-002 1.0000e-010 1.0000e-010 4.4617e-004 1.4180e-006 - 7.0000e-004 -8.3090e+000 9.9678e-001 3.2187e-003 9.3554e-001 6.4459e-002 1.0000e-010 1.0000e-010 4.5256e-004 1.4613e-006 - 7.1000e-004 -8.3086e+000 9.9673e-001 3.2694e-003 9.3464e-001 6.5356e-002 1.0000e-010 1.0000e-010 4.5895e-004 1.5054e-006 - 7.2000e-004 -8.3082e+000 9.9668e-001 3.3202e-003 9.3375e-001 6.6253e-002 1.0000e-010 1.0000e-010 4.6533e-004 1.5501e-006 - 7.3000e-004 -8.3078e+000 9.9663e-001 3.3712e-003 9.3285e-001 6.7148e-002 1.0000e-010 1.0000e-010 4.7172e-004 1.5956e-006 - 7.4000e-004 -8.3074e+000 9.9658e-001 3.4223e-003 9.3196e-001 6.8044e-002 1.0000e-010 1.0000e-010 4.7810e-004 1.6418e-006 - 7.5000e-004 -8.3071e+000 9.9653e-001 3.4736e-003 9.3106e-001 6.8938e-002 1.0000e-010 1.0000e-010 4.8448e-004 1.6887e-006 - 7.6000e-004 -8.3067e+000 9.9647e-001 3.5250e-003 9.3017e-001 6.9832e-002 1.0000e-010 1.0000e-010 4.9086e-004 1.7364e-006 - 7.7000e-004 -8.3063e+000 9.9642e-001 3.5766e-003 9.2927e-001 7.0725e-002 1.0000e-010 1.0000e-010 4.9723e-004 1.7848e-006 - 7.8000e-004 -8.3059e+000 9.9637e-001 3.6283e-003 9.2838e-001 7.1618e-002 1.0000e-010 1.0000e-010 5.0360e-004 1.8339e-006 - 7.9000e-004 -8.3055e+000 9.9632e-001 3.6802e-003 9.2749e-001 7.2510e-002 1.0000e-010 1.0000e-010 5.0997e-004 1.8838e-006 - 8.0000e-004 -8.3051e+000 9.9627e-001 3.7323e-003 9.2660e-001 7.3401e-002 1.0000e-010 1.0000e-010 5.1634e-004 1.9344e-006 - 8.1000e-004 -8.3047e+000 9.9622e-001 3.7845e-003 9.2571e-001 7.4291e-002 1.0000e-010 1.0000e-010 5.2271e-004 1.9857e-006 - 8.2000e-004 -8.3043e+000 9.9616e-001 3.8368e-003 9.2482e-001 7.5181e-002 1.0000e-010 1.0000e-010 5.2907e-004 2.0378e-006 - 8.3000e-004 -8.3039e+000 9.9611e-001 3.8893e-003 9.2393e-001 7.6070e-002 1.0000e-010 1.0000e-010 5.3544e-004 2.0906e-006 - 8.4000e-004 -8.3036e+000 9.9606e-001 3.9420e-003 9.2304e-001 7.6959e-002 1.0000e-010 1.0000e-010 5.4180e-004 2.1442e-006 - 8.5000e-004 -8.3032e+000 9.9601e-001 3.9948e-003 9.2215e-001 7.7847e-002 1.0000e-010 1.0000e-010 5.4815e-004 2.1986e-006 - 8.6000e-004 -8.3028e+000 9.9595e-001 4.0478e-003 9.2127e-001 7.8734e-002 1.0000e-010 1.0000e-010 5.5451e-004 2.2537e-006 - 8.7000e-004 -8.3024e+000 9.9590e-001 4.1009e-003 9.2038e-001 7.9621e-002 1.0000e-010 1.0000e-010 5.6086e-004 2.3095e-006 - 8.8000e-004 -8.3020e+000 9.9585e-001 4.1542e-003 9.1949e-001 8.0506e-002 1.0000e-010 1.0000e-010 5.6721e-004 2.3662e-006 - 8.9000e-004 -8.3016e+000 9.9579e-001 4.2077e-003 9.1861e-001 8.1392e-002 1.0000e-010 1.0000e-010 5.7356e-004 2.4236e-006 - 9.0000e-004 -8.3012e+000 9.9574e-001 4.2613e-003 9.1772e-001 8.2276e-002 1.0000e-010 1.0000e-010 5.7991e-004 2.4818e-006 - 9.1000e-004 -8.3008e+000 9.9568e-001 4.3151e-003 9.1684e-001 8.3160e-002 1.0000e-010 1.0000e-010 5.8625e-004 2.5407e-006 - 9.2000e-004 -8.3004e+000 9.9563e-001 4.3690e-003 9.1596e-001 8.4043e-002 1.0000e-010 1.0000e-010 5.9260e-004 2.6004e-006 - 9.3000e-004 -8.3001e+000 9.9558e-001 4.4231e-003 9.1507e-001 8.4926e-002 1.0000e-010 1.0000e-010 5.9894e-004 2.6610e-006 - 9.4000e-004 -8.2997e+000 9.9552e-001 4.4774e-003 9.1419e-001 8.5808e-002 1.0000e-010 1.0000e-010 6.0527e-004 2.7223e-006 - 9.5000e-004 -8.2993e+000 9.9547e-001 4.5319e-003 9.1331e-001 8.6689e-002 1.0000e-010 1.0000e-010 6.1161e-004 2.7843e-006 - 9.6000e-004 -8.2989e+000 9.9541e-001 4.5865e-003 9.1243e-001 8.7570e-002 1.0000e-010 1.0000e-010 6.1794e-004 2.8472e-006 - 9.7000e-004 -8.2985e+000 9.9536e-001 4.6412e-003 9.1155e-001 8.8449e-002 1.0000e-010 1.0000e-010 6.2427e-004 2.9109e-006 - 9.8000e-004 -8.2981e+000 9.9530e-001 4.6962e-003 9.1067e-001 8.9329e-002 1.0000e-010 1.0000e-010 6.3060e-004 2.9754e-006 - 9.9000e-004 -8.2977e+000 9.9525e-001 4.7513e-003 9.0979e-001 9.0207e-002 1.0000e-010 1.0000e-010 6.3693e-004 3.0407e-006 - 1.0000e-003 -8.2974e+000 9.9426e-001 5.7398e-003 9.0897e-001 9.1032e-002 6.4587e-004 7.0992e-007 6.4287e-004 3.7113e-006 - 1.0100e-003 -8.2974e+000 9.7912e-001 2.0883e-002 9.0897e-001 9.1032e-002 6.4421e-004 1.2376e-005 6.4287e-004 1.3711e-005 - 1.0200e-003 -8.2974e+000 9.6443e-001 3.5571e-002 9.0897e-001 9.1032e-002 6.4254e-004 2.4042e-005 6.4287e-004 2.3711e-005 - 1.0300e-003 -8.2974e+000 9.5017e-001 4.9826e-002 9.0897e-001 9.1032e-002 6.4087e-004 3.5709e-005 6.4287e-004 3.3711e-005 - 1.0400e-003 -8.2974e+000 9.3633e-001 6.3665e-002 9.0897e-001 9.1032e-002 6.3921e-004 4.7375e-005 6.4287e-004 4.3711e-005 - 1.0500e-003 -8.2974e+000 9.2289e-001 7.7107e-002 9.0897e-001 9.1032e-002 6.3754e-004 5.9041e-005 6.4287e-004 5.3711e-005 - 1.0600e-003 -8.2974e+000 9.0983e-001 9.0168e-002 9.0897e-001 9.1032e-002 6.3587e-004 7.0707e-005 6.4287e-004 6.3711e-005 - 1.0700e-003 -8.2974e+000 8.9713e-001 1.0287e-001 9.0897e-001 9.1032e-002 6.3421e-004 8.2373e-005 6.4287e-004 7.3711e-005 - 1.0800e-003 -8.2974e+000 8.8479e-001 1.1521e-001 9.0897e-001 9.1032e-002 6.3254e-004 9.4040e-005 6.4287e-004 8.3711e-005 - 1.0900e-003 -8.2974e+000 8.7278e-001 1.2722e-001 9.0897e-001 9.1032e-002 6.3088e-004 1.0571e-004 6.4287e-004 9.3711e-005 - 1.1000e-003 -8.2974e+000 8.6109e-001 1.3891e-001 9.0897e-001 9.1032e-002 6.2921e-004 1.1737e-004 6.4287e-004 1.0371e-004 - 1.1100e-003 -8.2974e+000 8.4970e-001 1.5030e-001 9.0897e-001 9.1032e-002 6.2754e-004 1.2904e-004 6.4287e-004 1.1371e-004 - 1.1200e-003 -8.2974e+000 8.3862e-001 1.6138e-001 9.0897e-001 9.1032e-002 6.2588e-004 1.4070e-004 6.4287e-004 1.2371e-004 - 1.1300e-003 -8.2974e+000 8.2782e-001 1.7218e-001 9.0897e-001 9.1032e-002 6.2421e-004 1.5237e-004 6.4287e-004 1.3371e-004 - 1.1400e-003 -8.2974e+000 8.1730e-001 1.8270e-001 9.0897e-001 9.1032e-002 6.2254e-004 1.6404e-004 6.4287e-004 1.4371e-004 - 1.1500e-003 -8.2974e+000 8.0704e-001 1.9296e-001 9.0897e-001 9.1032e-002 6.2088e-004 1.7570e-004 6.4287e-004 1.5371e-004 - 1.1600e-003 -8.2974e+000 7.9703e-001 2.0297e-001 9.0897e-001 9.1032e-002 6.1921e-004 1.8737e-004 6.4287e-004 1.6371e-004 - 1.1700e-003 -8.2974e+000 7.8727e-001 2.1273e-001 9.0897e-001 9.1032e-002 6.1755e-004 1.9904e-004 6.4287e-004 1.7371e-004 - 1.1800e-003 -8.2974e+000 7.7775e-001 2.2225e-001 9.0897e-001 9.1032e-002 6.1588e-004 2.1070e-004 6.4287e-004 1.8371e-004 - 1.1900e-003 -8.2974e+000 7.6845e-001 2.3155e-001 9.0897e-001 9.1032e-002 6.1421e-004 2.2237e-004 6.4287e-004 1.9371e-004 - 1.2000e-003 -8.2974e+000 7.5937e-001 2.4063e-001 9.0897e-001 9.1032e-002 6.1255e-004 2.3403e-004 6.4287e-004 2.0371e-004 - 1.2100e-003 -8.2974e+000 7.5051e-001 2.4949e-001 9.0897e-001 9.1032e-002 6.1088e-004 2.4570e-004 6.4287e-004 2.1371e-004 - 1.2200e-003 -8.2974e+000 7.4185e-001 2.5815e-001 9.0897e-001 9.1032e-002 6.0922e-004 2.5737e-004 6.4287e-004 2.2371e-004 - 1.2300e-003 -8.2974e+000 7.3338e-001 2.6662e-001 9.0897e-001 9.1032e-002 6.0755e-004 2.6903e-004 6.4287e-004 2.3371e-004 - 1.2400e-003 -8.2974e+000 7.2511e-001 2.7489e-001 9.0897e-001 9.1032e-002 6.0588e-004 2.8070e-004 6.4287e-004 2.4371e-004 - 1.2500e-003 -8.2974e+000 7.1702e-001 2.8298e-001 9.0897e-001 9.1032e-002 6.0422e-004 2.9236e-004 6.4287e-004 2.5371e-004 - 1.2600e-003 -8.2974e+000 7.0911e-001 2.9089e-001 9.0897e-001 9.1032e-002 6.0255e-004 3.0403e-004 6.4287e-004 2.6371e-004 - 1.2700e-003 -8.2974e+000 7.0138e-001 2.9862e-001 9.0897e-001 9.1032e-002 6.0088e-004 3.1570e-004 6.4287e-004 2.7371e-004 - 1.2800e-003 -8.2974e+000 6.9381e-001 3.0619e-001 9.0897e-001 9.1032e-002 5.9922e-004 3.2736e-004 6.4287e-004 2.8371e-004 - 1.2900e-003 -8.2974e+000 6.8640e-001 3.1360e-001 9.0897e-001 9.1032e-002 5.9755e-004 3.3903e-004 6.4287e-004 2.9371e-004 - 1.3000e-003 -8.2974e+000 6.7915e-001 3.2085e-001 9.0897e-001 9.1032e-002 5.9589e-004 3.5070e-004 6.4287e-004 3.0371e-004 - 1.3100e-003 -8.2974e+000 6.7205e-001 3.2795e-001 9.0897e-001 9.1032e-002 5.9422e-004 3.6236e-004 6.4287e-004 3.1371e-004 - 1.3200e-003 -8.2974e+000 6.6510e-001 3.3490e-001 9.0897e-001 9.1032e-002 5.9255e-004 3.7403e-004 6.4287e-004 3.2371e-004 - 1.3300e-003 -8.2974e+000 6.5829e-001 3.4171e-001 9.0897e-001 9.1032e-002 5.9089e-004 3.8569e-004 6.4287e-004 3.3371e-004 - 1.3400e-003 -8.2974e+000 6.5161e-001 3.4839e-001 9.0897e-001 9.1032e-002 5.8922e-004 3.9736e-004 6.4287e-004 3.4371e-004 - 1.3500e-003 -8.2974e+000 6.4508e-001 3.5492e-001 9.0897e-001 9.1032e-002 5.8755e-004 4.0903e-004 6.4287e-004 3.5371e-004 - 1.3600e-003 -8.2974e+000 6.3867e-001 3.6133e-001 9.0897e-001 9.1032e-002 5.8589e-004 4.2069e-004 6.4287e-004 3.6371e-004 - 1.3700e-003 -8.2974e+000 6.3238e-001 3.6762e-001 9.0897e-001 9.1032e-002 5.8422e-004 4.3236e-004 6.4287e-004 3.7371e-004 - 1.3800e-003 -8.2974e+000 6.2622e-001 3.7378e-001 9.0897e-001 9.1032e-002 5.8256e-004 4.4403e-004 6.4287e-004 3.8371e-004 - 1.3900e-003 -8.2974e+000 6.2018e-001 3.7982e-001 9.0897e-001 9.1032e-002 5.8089e-004 4.5569e-004 6.4287e-004 3.9371e-004 - 1.4000e-003 -8.2974e+000 6.1426e-001 3.8574e-001 9.0897e-001 9.1032e-002 5.7922e-004 4.6736e-004 6.4287e-004 4.0371e-004 - 1.4100e-003 -8.2974e+000 6.0844e-001 3.9156e-001 9.0897e-001 9.1032e-002 5.7756e-004 4.7902e-004 6.4287e-004 4.1371e-004 - 1.4200e-003 -8.2974e+000 6.0274e-001 3.9726e-001 9.0897e-001 9.1032e-002 5.7589e-004 4.9069e-004 6.4287e-004 4.2371e-004 - 1.4300e-003 -8.2974e+000 5.9714e-001 4.0286e-001 9.0897e-001 9.1032e-002 5.7422e-004 5.0236e-004 6.4287e-004 4.3371e-004 - 1.4400e-003 -8.2974e+000 5.9164e-001 4.0836e-001 9.0897e-001 9.1032e-002 5.7256e-004 5.1402e-004 6.4287e-004 4.4371e-004 - 1.4500e-003 -8.2974e+000 5.8625e-001 4.1375e-001 9.0897e-001 9.1032e-002 5.7089e-004 5.2569e-004 6.4287e-004 4.5371e-004 - 1.4600e-003 -8.2974e+000 5.8095e-001 4.1905e-001 9.0897e-001 9.1032e-002 5.6923e-004 5.3736e-004 6.4287e-004 4.6371e-004 - 1.4700e-003 -8.2974e+000 5.7575e-001 4.2425e-001 9.0897e-001 9.1032e-002 5.6756e-004 5.4902e-004 6.4287e-004 4.7371e-004 - 1.4800e-003 -8.2974e+000 5.7064e-001 4.2936e-001 9.0897e-001 9.1032e-002 5.6589e-004 5.6069e-004 6.4287e-004 4.8371e-004 - 1.4900e-003 -8.2974e+000 5.6562e-001 4.3438e-001 9.0897e-001 9.1032e-002 5.6423e-004 5.7235e-004 6.4287e-004 4.9371e-004 - 1.5000e-003 -8.2974e+000 5.6068e-001 4.3932e-001 9.0897e-001 9.1032e-002 5.6256e-004 5.8402e-004 6.4287e-004 5.0371e-004 - 1.5100e-003 -8.2974e+000 5.5584e-001 4.4416e-001 9.0897e-001 9.1032e-002 5.6090e-004 5.9569e-004 6.4287e-004 5.1371e-004 - 1.5200e-003 -8.2974e+000 5.5107e-001 4.4893e-001 9.0897e-001 9.1032e-002 5.5923e-004 6.0735e-004 6.4287e-004 5.2371e-004 - 1.5300e-003 -8.2974e+000 5.4639e-001 4.5361e-001 9.0897e-001 9.1032e-002 5.5756e-004 6.1902e-004 6.4287e-004 5.3371e-004 - 1.5400e-003 -8.2974e+000 5.4178e-001 4.5822e-001 9.0897e-001 9.1032e-002 5.5590e-004 6.3068e-004 6.4287e-004 5.4371e-004 - 1.5500e-003 -8.2974e+000 5.3726e-001 4.6274e-001 9.0897e-001 9.1032e-002 5.5423e-004 6.4235e-004 6.4287e-004 5.5371e-004 - 1.5600e-003 -8.2974e+000 5.3280e-001 4.6720e-001 9.0897e-001 9.1032e-002 5.5256e-004 6.5402e-004 6.4287e-004 5.6371e-004 - 1.5700e-003 -8.2974e+000 5.2842e-001 4.7158e-001 9.0897e-001 9.1032e-002 5.5090e-004 6.6568e-004 6.4287e-004 5.7371e-004 - 1.5800e-003 -8.2974e+000 5.2412e-001 4.7588e-001 9.0897e-001 9.1032e-002 5.4923e-004 6.7735e-004 6.4287e-004 5.8371e-004 - 1.5900e-003 -8.2974e+000 5.1988e-001 4.8012e-001 9.0897e-001 9.1032e-002 5.4757e-004 6.8902e-004 6.4287e-004 5.9371e-004 - 1.6000e-003 -8.2974e+000 5.1571e-001 4.8429e-001 9.0897e-001 9.1032e-002 5.4590e-004 7.0068e-004 6.4287e-004 6.0371e-004 - 1.6100e-003 -8.2974e+000 5.1160e-001 4.8840e-001 9.0897e-001 9.1032e-002 5.4423e-004 7.1235e-004 6.4287e-004 6.1371e-004 - 1.6200e-003 -8.2974e+000 5.0756e-001 4.9244e-001 9.0897e-001 9.1032e-002 5.4257e-004 7.2401e-004 6.4287e-004 6.2371e-004 - 1.6300e-003 -8.2974e+000 5.0359e-001 4.9641e-001 9.0897e-001 9.1032e-002 5.4090e-004 7.3568e-004 6.4287e-004 6.3371e-004 - 1.6400e-003 -8.2974e+000 4.9967e-001 5.0033e-001 9.0897e-001 9.1032e-002 5.3923e-004 7.4735e-004 6.4287e-004 6.4371e-004 - 1.6500e-003 -8.2974e+000 4.9582e-001 5.0418e-001 9.0897e-001 9.1032e-002 5.3757e-004 7.5901e-004 6.4287e-004 6.5371e-004 - 1.6600e-003 -8.2974e+000 4.9202e-001 5.0798e-001 9.0897e-001 9.1032e-002 5.3590e-004 7.7068e-004 6.4287e-004 6.6371e-004 - 1.6700e-003 -8.2974e+000 4.8829e-001 5.1171e-001 9.0897e-001 9.1032e-002 5.3424e-004 7.8235e-004 6.4287e-004 6.7371e-004 - 1.6800e-003 -8.2974e+000 4.8461e-001 5.1539e-001 9.0897e-001 9.1032e-002 5.3257e-004 7.9401e-004 6.4287e-004 6.8371e-004 - 1.6900e-003 -8.2974e+000 4.8098e-001 5.1902e-001 9.0897e-001 9.1032e-002 5.3090e-004 8.0568e-004 6.4287e-004 6.9371e-004 - 1.7000e-003 -8.2974e+000 4.7741e-001 5.2259e-001 9.0897e-001 9.1032e-002 5.2924e-004 8.1734e-004 6.4287e-004 7.0371e-004 - 1.7100e-003 -8.2974e+000 4.7389e-001 5.2611e-001 9.0897e-001 9.1032e-002 5.2757e-004 8.2901e-004 6.4287e-004 7.1371e-004 - 1.7200e-003 -8.2974e+000 4.7042e-001 5.2958e-001 9.0897e-001 9.1032e-002 5.2591e-004 8.4068e-004 6.4287e-004 7.2371e-004 - 1.7300e-003 -8.2974e+000 4.6700e-001 5.3300e-001 9.0897e-001 9.1032e-002 5.2424e-004 8.5234e-004 6.4287e-004 7.3371e-004 - 1.7400e-003 -8.2974e+000 4.6364e-001 5.3636e-001 9.0897e-001 9.1032e-002 5.2257e-004 8.6401e-004 6.4287e-004 7.4371e-004 - 1.7500e-003 -8.2974e+000 4.6032e-001 5.3968e-001 9.0897e-001 9.1032e-002 5.2091e-004 8.7568e-004 6.4287e-004 7.5371e-004 - 1.7600e-003 -8.2974e+000 4.5704e-001 5.4296e-001 9.0897e-001 9.1032e-002 5.1924e-004 8.8734e-004 6.4287e-004 7.6371e-004 - 1.7700e-003 -8.2974e+000 4.5382e-001 5.4618e-001 9.0897e-001 9.1032e-002 5.1757e-004 8.9901e-004 6.4287e-004 7.7371e-004 - 1.7800e-003 -8.2974e+000 4.5064e-001 5.4936e-001 9.0897e-001 9.1032e-002 5.1591e-004 9.1067e-004 6.4287e-004 7.8371e-004 - 1.7900e-003 -8.2974e+000 4.4750e-001 5.5250e-001 9.0897e-001 9.1032e-002 5.1424e-004 9.2234e-004 6.4287e-004 7.9371e-004 - 1.8000e-003 -8.2974e+000 4.4441e-001 5.5559e-001 9.0897e-001 9.1032e-002 5.1258e-004 9.3401e-004 6.4287e-004 8.0371e-004 - 1.8100e-003 -8.2974e+000 4.4136e-001 5.5864e-001 9.0897e-001 9.1032e-002 5.1091e-004 9.4567e-004 6.4287e-004 8.1371e-004 - 1.8200e-003 -8.2974e+000 4.3835e-001 5.6165e-001 9.0897e-001 9.1032e-002 5.0924e-004 9.5734e-004 6.4287e-004 8.2371e-004 - 1.8300e-003 -8.2974e+000 4.3538e-001 5.6462e-001 9.0897e-001 9.1032e-002 5.0758e-004 9.6900e-004 6.4287e-004 8.3371e-004 - 1.8400e-003 -8.2974e+000 4.3245e-001 5.6755e-001 9.0897e-001 9.1032e-002 5.0591e-004 9.8067e-004 6.4287e-004 8.4371e-004 - 1.8500e-003 -8.2974e+000 4.2956e-001 5.7044e-001 9.0897e-001 9.1032e-002 5.0424e-004 9.9234e-004 6.4287e-004 8.5371e-004 - 1.8600e-003 -8.2974e+000 4.2671e-001 5.7329e-001 9.0897e-001 9.1032e-002 5.0258e-004 1.0040e-003 6.4287e-004 8.6371e-004 - 1.8700e-003 -8.2974e+000 4.2389e-001 5.7611e-001 9.0897e-001 9.1032e-002 5.0091e-004 1.0157e-003 6.4287e-004 8.7371e-004 - 1.8800e-003 -8.2974e+000 4.2112e-001 5.7888e-001 9.0897e-001 9.1032e-002 4.9925e-004 1.0273e-003 6.4287e-004 8.8371e-004 - 1.8900e-003 -8.2974e+000 4.1838e-001 5.8162e-001 9.0897e-001 9.1032e-002 4.9758e-004 1.0390e-003 6.4287e-004 8.9371e-004 - 1.9000e-003 -8.2974e+000 4.1567e-001 5.8433e-001 9.0897e-001 9.1032e-002 4.9591e-004 1.0507e-003 6.4287e-004 9.0371e-004 - 1.9100e-003 -8.2974e+000 4.1300e-001 5.8700e-001 9.0897e-001 9.1032e-002 4.9425e-004 1.0623e-003 6.4287e-004 9.1371e-004 - 1.9200e-003 -8.2974e+000 4.1037e-001 5.8963e-001 9.0897e-001 9.1032e-002 4.9258e-004 1.0740e-003 6.4287e-004 9.2371e-004 - 1.9300e-003 -8.2974e+000 4.0776e-001 5.9224e-001 9.0897e-001 9.1032e-002 4.9091e-004 1.0857e-003 6.4287e-004 9.3371e-004 - 1.9400e-003 -8.2974e+000 4.0519e-001 5.9481e-001 9.0897e-001 9.1032e-002 4.8925e-004 1.0973e-003 6.4287e-004 9.4371e-004 - 1.9500e-003 -8.2974e+000 4.0265e-001 5.9735e-001 9.0897e-001 9.1032e-002 4.8758e-004 1.1090e-003 6.4287e-004 9.5371e-004 - 1.9600e-003 -8.2974e+000 4.0015e-001 5.9985e-001 9.0897e-001 9.1032e-002 4.8592e-004 1.1207e-003 6.4287e-004 9.6371e-004 - 1.9700e-003 -8.2974e+000 3.9767e-001 6.0233e-001 9.0897e-001 9.1032e-002 4.8425e-004 1.1323e-003 6.4287e-004 9.7371e-004 - 1.9800e-003 -8.2974e+000 3.9523e-001 6.0477e-001 9.0897e-001 9.1032e-002 4.8258e-004 1.1440e-003 6.4287e-004 9.8371e-004 - 1.9900e-003 -8.2974e+000 3.9281e-001 6.0719e-001 9.0897e-001 9.1032e-002 4.8092e-004 1.1557e-003 6.4287e-004 9.9371e-004 - 2.0000e-003 -8.2974e+000 3.9043e-001 6.0957e-001 9.0897e-001 9.1032e-002 4.7925e-004 1.1673e-003 6.4287e-004 1.0037e-003 - 2.0100e-003 -8.2974e+000 3.8807e-001 6.1193e-001 9.0897e-001 9.1032e-002 4.7759e-004 1.1790e-003 6.4287e-004 1.0137e-003 - 2.0200e-003 -8.2974e+000 3.8574e-001 6.1426e-001 9.0897e-001 9.1032e-002 4.7592e-004 1.1907e-003 6.4287e-004 1.0237e-003 - 2.0300e-003 -8.2974e+000 3.8344e-001 6.1656e-001 9.0897e-001 9.1032e-002 4.7425e-004 1.2023e-003 6.4287e-004 1.0337e-003 - 2.0400e-003 -8.2974e+000 3.8117e-001 6.1883e-001 9.0897e-001 9.1032e-002 4.7259e-004 1.2140e-003 6.4287e-004 1.0437e-003 - 2.0500e-003 -8.2974e+000 3.7892e-001 6.2108e-001 9.0897e-001 9.1032e-002 4.7092e-004 1.2257e-003 6.4287e-004 1.0537e-003 - 2.0600e-003 -8.2974e+000 3.7670e-001 6.2330e-001 9.0897e-001 9.1032e-002 4.6925e-004 1.2373e-003 6.4287e-004 1.0637e-003 - 2.0700e-003 -8.2974e+000 3.7451e-001 6.2549e-001 9.0897e-001 9.1032e-002 4.6759e-004 1.2490e-003 6.4287e-004 1.0737e-003 - 2.0800e-003 -8.2974e+000 3.7234e-001 6.2766e-001 9.0897e-001 9.1032e-002 4.6592e-004 1.2607e-003 6.4287e-004 1.0837e-003 - 2.0900e-003 -8.2974e+000 3.7019e-001 6.2981e-001 9.0897e-001 9.1032e-002 4.6426e-004 1.2723e-003 6.4287e-004 1.0937e-003 - 2.1000e-003 -8.2974e+000 3.6807e-001 6.3193e-001 9.0897e-001 9.1032e-002 4.6259e-004 1.2840e-003 6.4287e-004 1.1037e-003 - 2.1100e-003 -8.2974e+000 3.6598e-001 6.3402e-001 9.0897e-001 9.1032e-002 4.6092e-004 1.2957e-003 6.4287e-004 1.1137e-003 - 2.1200e-003 -8.2974e+000 3.6391e-001 6.3609e-001 9.0897e-001 9.1032e-002 4.5926e-004 1.3073e-003 6.4287e-004 1.1237e-003 - 2.1300e-003 -8.2974e+000 3.6186e-001 6.3814e-001 9.0897e-001 9.1032e-002 4.5759e-004 1.3190e-003 6.4287e-004 1.1337e-003 - 2.1400e-003 -8.2974e+000 3.5983e-001 6.4017e-001 9.0897e-001 9.1032e-002 4.5592e-004 1.3307e-003 6.4287e-004 1.1437e-003 - 2.1500e-003 -8.2974e+000 3.5783e-001 6.4217e-001 9.0897e-001 9.1032e-002 4.5426e-004 1.3423e-003 6.4287e-004 1.1537e-003 - 2.1600e-003 -8.2974e+000 3.5585e-001 6.4415e-001 9.0897e-001 9.1032e-002 4.5259e-004 1.3540e-003 6.4287e-004 1.1637e-003 - 2.1700e-003 -8.2974e+000 3.5389e-001 6.4611e-001 9.0897e-001 9.1032e-002 4.5093e-004 1.3657e-003 6.4287e-004 1.1737e-003 - 2.1800e-003 -8.2974e+000 3.5195e-001 6.4805e-001 9.0897e-001 9.1032e-002 4.4926e-004 1.3773e-003 6.4287e-004 1.1837e-003 - 2.1900e-003 -8.2974e+000 3.5004e-001 6.4996e-001 9.0897e-001 9.1032e-002 4.4759e-004 1.3890e-003 6.4287e-004 1.1937e-003 - 2.2000e-003 -8.2974e+000 3.4814e-001 6.5186e-001 9.0897e-001 9.1032e-002 4.4593e-004 1.4007e-003 6.4287e-004 1.2037e-003 - 2.2100e-003 -8.2974e+000 3.4627e-001 6.5373e-001 9.0897e-001 9.1032e-002 4.4426e-004 1.4123e-003 6.4287e-004 1.2137e-003 - 2.2200e-003 -8.2974e+000 3.4441e-001 6.5559e-001 9.0897e-001 9.1032e-002 4.4260e-004 1.4240e-003 6.4287e-004 1.2237e-003 - 2.2300e-003 -8.2974e+000 3.4258e-001 6.5742e-001 9.0897e-001 9.1032e-002 4.4093e-004 1.4357e-003 6.4287e-004 1.2337e-003 - 2.2400e-003 -8.2974e+000 3.4076e-001 6.5924e-001 9.0897e-001 9.1032e-002 4.3926e-004 1.4473e-003 6.4287e-004 1.2437e-003 - 2.2500e-003 -8.2974e+000 3.3896e-001 6.6104e-001 9.0897e-001 9.1032e-002 4.3760e-004 1.4590e-003 6.4287e-004 1.2537e-003 - 2.2600e-003 -8.2974e+000 3.3718e-001 6.6282e-001 9.0897e-001 9.1032e-002 4.3593e-004 1.4707e-003 6.4287e-004 1.2637e-003 - 2.2700e-003 -8.2974e+000 3.3543e-001 6.6457e-001 9.0897e-001 9.1032e-002 4.3426e-004 1.4823e-003 6.4287e-004 1.2737e-003 - 2.2800e-003 -8.2974e+000 3.3368e-001 6.6632e-001 9.0897e-001 9.1032e-002 4.3260e-004 1.4940e-003 6.4287e-004 1.2837e-003 - 2.2900e-003 -8.2974e+000 3.3196e-001 6.6804e-001 9.0897e-001 9.1032e-002 4.3093e-004 1.5056e-003 6.4287e-004 1.2937e-003 - 2.3000e-003 -8.2974e+000 3.3026e-001 6.6974e-001 9.0897e-001 9.1032e-002 4.2927e-004 1.5173e-003 6.4287e-004 1.3037e-003 - 2.3100e-003 -8.2974e+000 3.2857e-001 6.7143e-001 9.0897e-001 9.1032e-002 4.2760e-004 1.5290e-003 6.4287e-004 1.3137e-003 - 2.3200e-003 -8.2974e+000 3.2690e-001 6.7310e-001 9.0897e-001 9.1032e-002 4.2593e-004 1.5406e-003 6.4287e-004 1.3237e-003 - 2.3300e-003 -8.2974e+000 3.2524e-001 6.7476e-001 9.0897e-001 9.1032e-002 4.2427e-004 1.5523e-003 6.4287e-004 1.3337e-003 - 2.3400e-003 -8.2974e+000 3.2361e-001 6.7639e-001 9.0897e-001 9.1032e-002 4.2260e-004 1.5640e-003 6.4287e-004 1.3437e-003 - 2.3500e-003 -8.2974e+000 3.2199e-001 6.7801e-001 9.0897e-001 9.1032e-002 4.2093e-004 1.5756e-003 6.4287e-004 1.3537e-003 - 2.3600e-003 -8.2974e+000 3.2038e-001 6.7962e-001 9.0897e-001 9.1032e-002 4.1927e-004 1.5873e-003 6.4287e-004 1.3637e-003 - 2.3700e-003 -8.2974e+000 3.1879e-001 6.8121e-001 9.0897e-001 9.1032e-002 4.1760e-004 1.5990e-003 6.4287e-004 1.3737e-003 - 2.3800e-003 -8.2974e+000 3.1722e-001 6.8278e-001 9.0897e-001 9.1032e-002 4.1594e-004 1.6106e-003 6.4287e-004 1.3837e-003 - 2.3900e-003 -8.2974e+000 3.1566e-001 6.8434e-001 9.0897e-001 9.1032e-002 4.1427e-004 1.6223e-003 6.4287e-004 1.3937e-003 - 2.4000e-003 -8.2974e+000 3.1412e-001 6.8588e-001 9.0897e-001 9.1032e-002 4.1260e-004 1.6340e-003 6.4287e-004 1.4037e-003 - 2.4100e-003 -8.2974e+000 3.1259e-001 6.8741e-001 9.0897e-001 9.1032e-002 4.1094e-004 1.6456e-003 6.4287e-004 1.4137e-003 - 2.4200e-003 -8.2974e+000 3.1108e-001 6.8892e-001 9.0897e-001 9.1032e-002 4.0927e-004 1.6573e-003 6.4287e-004 1.4237e-003 - 2.4300e-003 -8.2974e+000 3.0958e-001 6.9042e-001 9.0897e-001 9.1032e-002 4.0760e-004 1.6690e-003 6.4287e-004 1.4337e-003 - 2.4400e-003 -8.2974e+000 3.0810e-001 6.9190e-001 9.0897e-001 9.1032e-002 4.0594e-004 1.6806e-003 6.4287e-004 1.4437e-003 - 2.4500e-003 -8.2974e+000 3.0663e-001 6.9337e-001 9.0897e-001 9.1032e-002 4.0427e-004 1.6923e-003 6.4287e-004 1.4537e-003 - 2.4600e-003 -8.2974e+000 3.0517e-001 6.9483e-001 9.0897e-001 9.1032e-002 4.0261e-004 1.7040e-003 6.4287e-004 1.4637e-003 - 2.4700e-003 -8.2974e+000 3.0373e-001 6.9627e-001 9.0897e-001 9.1032e-002 4.0094e-004 1.7156e-003 6.4287e-004 1.4737e-003 - 2.4800e-003 -8.2974e+000 3.0230e-001 6.9770e-001 9.0897e-001 9.1032e-002 3.9927e-004 1.7273e-003 6.4287e-004 1.4837e-003 - 2.4900e-003 -8.2974e+000 3.0089e-001 6.9911e-001 9.0897e-001 9.1032e-002 3.9761e-004 1.7390e-003 6.4287e-004 1.4937e-003 - 2.5000e-003 -8.2974e+000 2.9949e-001 7.0051e-001 9.0897e-001 9.1032e-002 3.9594e-004 1.7506e-003 6.4287e-004 1.5037e-003 - 2.5100e-003 -8.2974e+000 2.9810e-001 7.0190e-001 9.0897e-001 9.1032e-002 3.9428e-004 1.7623e-003 6.4287e-004 1.5137e-003 - 2.5200e-003 -8.2974e+000 2.9672e-001 7.0328e-001 9.0897e-001 9.1032e-002 3.9261e-004 1.7740e-003 6.4287e-004 1.5237e-003 - 2.5300e-003 -8.2974e+000 2.9536e-001 7.0464e-001 9.0897e-001 9.1032e-002 3.9094e-004 1.7856e-003 6.4287e-004 1.5337e-003 - 2.5400e-003 -8.2974e+000 2.9401e-001 7.0599e-001 9.0897e-001 9.1032e-002 3.8928e-004 1.7973e-003 6.4287e-004 1.5437e-003 - 2.5500e-003 -8.2974e+000 2.9267e-001 7.0733e-001 9.0897e-001 9.1032e-002 3.8761e-004 1.8090e-003 6.4287e-004 1.5537e-003 - 2.5600e-003 -8.2974e+000 2.9134e-001 7.0866e-001 9.0897e-001 9.1032e-002 3.8594e-004 1.8206e-003 6.4287e-004 1.5637e-003 - 2.5700e-003 -8.2974e+000 2.9003e-001 7.0997e-001 9.0897e-001 9.1032e-002 3.8428e-004 1.8323e-003 6.4287e-004 1.5737e-003 - 2.5800e-003 -8.2974e+000 2.8873e-001 7.1127e-001 9.0897e-001 9.1032e-002 3.8261e-004 1.8440e-003 6.4287e-004 1.5837e-003 - 2.5900e-003 -8.2974e+000 2.8743e-001 7.1257e-001 9.0897e-001 9.1032e-002 3.8095e-004 1.8556e-003 6.4287e-004 1.5937e-003 - 2.6000e-003 -8.2974e+000 2.8615e-001 7.1385e-001 9.0897e-001 9.1032e-002 3.7928e-004 1.8673e-003 6.4287e-004 1.6037e-003 - 2.6100e-003 -8.2974e+000 2.8489e-001 7.1511e-001 9.0897e-001 9.1032e-002 3.7761e-004 1.8790e-003 6.4287e-004 1.6137e-003 - 2.6200e-003 -8.2974e+000 2.8363e-001 7.1637e-001 9.0897e-001 9.1032e-002 3.7595e-004 1.8906e-003 6.4287e-004 1.6237e-003 - 2.6300e-003 -8.2974e+000 2.8238e-001 7.1762e-001 9.0897e-001 9.1032e-002 3.7428e-004 1.9023e-003 6.4287e-004 1.6337e-003 - 2.6400e-003 -8.2974e+000 2.8115e-001 7.1885e-001 9.0897e-001 9.1032e-002 3.7261e-004 1.9140e-003 6.4287e-004 1.6437e-003 - 2.6500e-003 -8.2974e+000 2.7992e-001 7.2008e-001 9.0897e-001 9.1032e-002 3.7095e-004 1.9256e-003 6.4287e-004 1.6537e-003 - 2.6600e-003 -8.2974e+000 2.7871e-001 7.2129e-001 9.0897e-001 9.1032e-002 3.6928e-004 1.9373e-003 6.4287e-004 1.6637e-003 - 2.6700e-003 -8.2974e+000 2.7751e-001 7.2249e-001 9.0897e-001 9.1032e-002 3.6762e-004 1.9490e-003 6.4287e-004 1.6737e-003 - 2.6800e-003 -8.2974e+000 2.7632e-001 7.2368e-001 9.0897e-001 9.1032e-002 3.6595e-004 1.9606e-003 6.4287e-004 1.6837e-003 - 2.6900e-003 -8.2974e+000 2.7513e-001 7.2487e-001 9.0897e-001 9.1032e-002 3.6428e-004 1.9723e-003 6.4287e-004 1.6937e-003 - 2.7000e-003 -8.2974e+000 2.7396e-001 7.2604e-001 9.0897e-001 9.1032e-002 3.6262e-004 1.9840e-003 6.4287e-004 1.7037e-003 - 2.7100e-003 -8.2974e+000 2.7280e-001 7.2720e-001 9.0897e-001 9.1032e-002 3.6095e-004 1.9956e-003 6.4287e-004 1.7137e-003 - 2.7200e-003 -8.2974e+000 2.7165e-001 7.2835e-001 9.0897e-001 9.1032e-002 3.5928e-004 2.0073e-003 6.4287e-004 1.7237e-003 - 2.7300e-003 -8.2974e+000 2.7050e-001 7.2950e-001 9.0897e-001 9.1032e-002 3.5762e-004 2.0190e-003 6.4287e-004 1.7337e-003 - 2.7400e-003 -8.2974e+000 2.6937e-001 7.3063e-001 9.0897e-001 9.1032e-002 3.5595e-004 2.0306e-003 6.4287e-004 1.7437e-003 - 2.7500e-003 -8.2974e+000 2.6824e-001 7.3176e-001 9.0897e-001 9.1032e-002 3.5429e-004 2.0423e-003 6.4287e-004 1.7537e-003 - 2.7600e-003 -8.2974e+000 2.6713e-001 7.3287e-001 9.0897e-001 9.1032e-002 3.5262e-004 2.0540e-003 6.4287e-004 1.7637e-003 - 2.7700e-003 -8.2974e+000 2.6602e-001 7.3398e-001 9.0897e-001 9.1032e-002 3.5095e-004 2.0656e-003 6.4287e-004 1.7737e-003 - 2.7800e-003 -8.2974e+000 2.6493e-001 7.3507e-001 9.0897e-001 9.1032e-002 3.4929e-004 2.0773e-003 6.4287e-004 1.7837e-003 - 2.7900e-003 -8.2974e+000 2.6384e-001 7.3616e-001 9.0897e-001 9.1032e-002 3.4762e-004 2.0890e-003 6.4287e-004 1.7937e-003 - 2.8000e-003 -8.2974e+000 2.6276e-001 7.3724e-001 9.0897e-001 9.1032e-002 3.4596e-004 2.1006e-003 6.4287e-004 1.8037e-003 - 2.8100e-003 -8.2974e+000 2.6169e-001 7.3831e-001 9.0897e-001 9.1032e-002 3.4429e-004 2.1123e-003 6.4287e-004 1.8137e-003 - 2.8200e-003 -8.2974e+000 2.6063e-001 7.3937e-001 9.0897e-001 9.1032e-002 3.4262e-004 2.1240e-003 6.4287e-004 1.8237e-003 - 2.8300e-003 -8.2974e+000 2.5958e-001 7.4042e-001 9.0897e-001 9.1032e-002 3.4096e-004 2.1356e-003 6.4287e-004 1.8337e-003 - 2.8400e-003 -8.2974e+000 2.5854e-001 7.4146e-001 9.0897e-001 9.1032e-002 3.3929e-004 2.1473e-003 6.4287e-004 1.8437e-003 - 2.8500e-003 -8.2974e+000 2.5750e-001 7.4250e-001 9.0897e-001 9.1032e-002 3.3762e-004 2.1590e-003 6.4287e-004 1.8537e-003 - 2.8600e-003 -8.2974e+000 2.5647e-001 7.4353e-001 9.0897e-001 9.1032e-002 3.3596e-004 2.1706e-003 6.4287e-004 1.8637e-003 - 2.8700e-003 -8.2974e+000 2.5545e-001 7.4455e-001 9.0897e-001 9.1032e-002 3.3429e-004 2.1823e-003 6.4287e-004 1.8737e-003 - 2.8800e-003 -8.2974e+000 2.5444e-001 7.4556e-001 9.0897e-001 9.1032e-002 3.3263e-004 2.1940e-003 6.4287e-004 1.8837e-003 - 2.8900e-003 -8.2974e+000 2.5344e-001 7.4656e-001 9.0897e-001 9.1032e-002 3.3096e-004 2.2056e-003 6.4287e-004 1.8937e-003 - 2.9000e-003 -8.2974e+000 2.5244e-001 7.4756e-001 9.0897e-001 9.1032e-002 3.2929e-004 2.2173e-003 6.4287e-004 1.9037e-003 - 2.9100e-003 -8.2974e+000 2.5146e-001 7.4854e-001 9.0897e-001 9.1032e-002 3.2763e-004 2.2290e-003 6.4287e-004 1.9137e-003 - 2.9200e-003 -8.2974e+000 2.5048e-001 7.4952e-001 9.0897e-001 9.1032e-002 3.2596e-004 2.2406e-003 6.4287e-004 1.9237e-003 - 2.9300e-003 -8.2974e+000 2.4951e-001 7.5049e-001 9.0897e-001 9.1032e-002 3.2429e-004 2.2523e-003 6.4287e-004 1.9337e-003 - 2.9400e-003 -8.2974e+000 2.4854e-001 7.5146e-001 9.0897e-001 9.1032e-002 3.2263e-004 2.2640e-003 6.4287e-004 1.9437e-003 - 2.9500e-003 -8.2974e+000 2.4758e-001 7.5242e-001 9.0897e-001 9.1032e-002 3.2096e-004 2.2756e-003 6.4287e-004 1.9537e-003 - 2.9600e-003 -8.2974e+000 2.4663e-001 7.5337e-001 9.0897e-001 9.1032e-002 3.1930e-004 2.2873e-003 6.4287e-004 1.9637e-003 - 2.9700e-003 -8.2974e+000 2.4569e-001 7.5431e-001 9.0897e-001 9.1032e-002 3.1763e-004 2.2990e-003 6.4287e-004 1.9737e-003 - 2.9800e-003 -8.2974e+000 2.4476e-001 7.5524e-001 9.0897e-001 9.1032e-002 3.1596e-004 2.3106e-003 6.4287e-004 1.9837e-003 - 2.9900e-003 -8.2974e+000 2.4383e-001 7.5617e-001 9.0897e-001 9.1032e-002 3.1430e-004 2.3223e-003 6.4287e-004 1.9937e-003 - 3.0000e-003 -8.2974e+000 2.4291e-001 7.5709e-001 9.0897e-001 9.1032e-002 3.1263e-004 2.3340e-003 6.4287e-004 2.0037e-003 - 3.0100e-003 -8.2974e+000 2.4199e-001 7.5801e-001 9.0897e-001 9.1032e-002 3.1097e-004 2.3456e-003 6.4287e-004 2.0137e-003 - 3.0200e-003 -8.2974e+000 2.4108e-001 7.5892e-001 9.0897e-001 9.1032e-002 3.0930e-004 2.3573e-003 6.4287e-004 2.0237e-003 - 3.0300e-003 -8.2974e+000 2.4018e-001 7.5982e-001 9.0897e-001 9.1032e-002 3.0763e-004 2.3689e-003 6.4287e-004 2.0337e-003 - 3.0400e-003 -8.2974e+000 2.3929e-001 7.6071e-001 9.0897e-001 9.1032e-002 3.0597e-004 2.3806e-003 6.4287e-004 2.0437e-003 - 3.0500e-003 -8.2974e+000 2.3840e-001 7.6160e-001 9.0897e-001 9.1032e-002 3.0430e-004 2.3923e-003 6.4287e-004 2.0537e-003 - 3.0600e-003 -8.2974e+000 2.3752e-001 7.6248e-001 9.0897e-001 9.1032e-002 3.0263e-004 2.4039e-003 6.4287e-004 2.0637e-003 - 3.0700e-003 -8.2974e+000 2.3665e-001 7.6335e-001 9.0897e-001 9.1032e-002 3.0097e-004 2.4156e-003 6.4287e-004 2.0737e-003 - 3.0800e-003 -8.2974e+000 2.3578e-001 7.6422e-001 9.0897e-001 9.1032e-002 2.9930e-004 2.4273e-003 6.4287e-004 2.0837e-003 - 3.0900e-003 -8.2974e+000 2.3492e-001 7.6508e-001 9.0897e-001 9.1032e-002 2.9764e-004 2.4389e-003 6.4287e-004 2.0937e-003 - 3.1000e-003 -8.2974e+000 2.3406e-001 7.6594e-001 9.0897e-001 9.1032e-002 2.9597e-004 2.4506e-003 6.4287e-004 2.1037e-003 - 3.1100e-003 -8.2974e+000 2.3321e-001 7.6679e-001 9.0897e-001 9.1032e-002 2.9430e-004 2.4623e-003 6.4287e-004 2.1137e-003 - 3.1200e-003 -8.2974e+000 2.3237e-001 7.6763e-001 9.0897e-001 9.1032e-002 2.9264e-004 2.4739e-003 6.4287e-004 2.1237e-003 - 3.1300e-003 -8.2974e+000 2.3153e-001 7.6847e-001 9.0897e-001 9.1032e-002 2.9097e-004 2.4856e-003 6.4287e-004 2.1337e-003 - 3.1400e-003 -8.2974e+000 2.3070e-001 7.6930e-001 9.0897e-001 9.1032e-002 2.8930e-004 2.4973e-003 6.4287e-004 2.1437e-003 - 3.1500e-003 -8.2974e+000 2.2988e-001 7.7012e-001 9.0897e-001 9.1032e-002 2.8764e-004 2.5089e-003 6.4287e-004 2.1537e-003 - 3.1600e-003 -8.2974e+000 2.2906e-001 7.7094e-001 9.0897e-001 9.1032e-002 2.8597e-004 2.5206e-003 6.4287e-004 2.1637e-003 - 3.1700e-003 -8.2974e+000 2.2824e-001 7.7176e-001 9.0897e-001 9.1032e-002 2.8431e-004 2.5323e-003 6.4287e-004 2.1737e-003 - 3.1800e-003 -8.2974e+000 2.2744e-001 7.7256e-001 9.0897e-001 9.1032e-002 2.8264e-004 2.5439e-003 6.4287e-004 2.1837e-003 - 3.1900e-003 -8.2974e+000 2.2664e-001 7.7336e-001 9.0897e-001 9.1032e-002 2.8097e-004 2.5556e-003 6.4287e-004 2.1937e-003 - 3.2000e-003 -8.2974e+000 2.2584e-001 7.7416e-001 9.0897e-001 9.1032e-002 2.7931e-004 2.5673e-003 6.4287e-004 2.2037e-003 - 3.2100e-003 -8.2974e+000 2.2505e-001 7.7495e-001 9.0897e-001 9.1032e-002 2.7764e-004 2.5789e-003 6.4287e-004 2.2137e-003 - 3.2200e-003 -8.2974e+000 2.2426e-001 7.7574e-001 9.0897e-001 9.1032e-002 2.7597e-004 2.5906e-003 6.4287e-004 2.2237e-003 - 3.2300e-003 -8.2974e+000 2.2348e-001 7.7652e-001 9.0897e-001 9.1032e-002 2.7431e-004 2.6023e-003 6.4287e-004 2.2337e-003 - 3.2400e-003 -8.2974e+000 2.2271e-001 7.7729e-001 9.0897e-001 9.1032e-002 2.7264e-004 2.6139e-003 6.4287e-004 2.2437e-003 - 3.2500e-003 -8.2974e+000 2.2194e-001 7.7806e-001 9.0897e-001 9.1032e-002 2.7098e-004 2.6256e-003 6.4287e-004 2.2537e-003 - 3.2600e-003 -8.2974e+000 2.2118e-001 7.7882e-001 9.0897e-001 9.1032e-002 2.6931e-004 2.6373e-003 6.4287e-004 2.2637e-003 - 3.2700e-003 -8.2974e+000 2.2042e-001 7.7958e-001 9.0897e-001 9.1032e-002 2.6764e-004 2.6489e-003 6.4287e-004 2.2737e-003 - 3.2800e-003 -8.2974e+000 2.1967e-001 7.8033e-001 9.0897e-001 9.1032e-002 2.6598e-004 2.6606e-003 6.4287e-004 2.2837e-003 - 3.2900e-003 -8.2974e+000 2.1892e-001 7.8108e-001 9.0897e-001 9.1032e-002 2.6431e-004 2.6723e-003 6.4287e-004 2.2937e-003 - 3.3000e-003 -8.2974e+000 2.1817e-001 7.8183e-001 9.0897e-001 9.1032e-002 2.6265e-004 2.6839e-003 6.4287e-004 2.3037e-003 - 3.3100e-003 -8.2974e+000 2.1744e-001 7.8256e-001 9.0897e-001 9.1032e-002 2.6098e-004 2.6956e-003 6.4287e-004 2.3137e-003 - 3.3200e-003 -8.2974e+000 2.1670e-001 7.8330e-001 9.0897e-001 9.1032e-002 2.5931e-004 2.7073e-003 6.4287e-004 2.3237e-003 - 3.3300e-003 -8.2974e+000 2.1598e-001 7.8402e-001 9.0897e-001 9.1032e-002 2.5765e-004 2.7189e-003 6.4287e-004 2.3337e-003 - 3.3400e-003 -8.2974e+000 2.1525e-001 7.8475e-001 9.0897e-001 9.1032e-002 2.5598e-004 2.7306e-003 6.4287e-004 2.3437e-003 - 3.3500e-003 -8.2974e+000 2.1453e-001 7.8547e-001 9.0897e-001 9.1032e-002 2.5431e-004 2.7423e-003 6.4287e-004 2.3537e-003 - 3.3600e-003 -8.2974e+000 2.1382e-001 7.8618e-001 9.0897e-001 9.1032e-002 2.5265e-004 2.7539e-003 6.4287e-004 2.3637e-003 - 3.3700e-003 -8.2974e+000 2.1311e-001 7.8689e-001 9.0897e-001 9.1032e-002 2.5098e-004 2.7656e-003 6.4287e-004 2.3737e-003 - 3.3800e-003 -8.2974e+000 2.1241e-001 7.8759e-001 9.0897e-001 9.1032e-002 2.4932e-004 2.7773e-003 6.4287e-004 2.3837e-003 - 3.3900e-003 -8.2974e+000 2.1171e-001 7.8829e-001 9.0897e-001 9.1032e-002 2.4765e-004 2.7889e-003 6.4287e-004 2.3937e-003 - 3.4000e-003 -8.2974e+000 2.1101e-001 7.8899e-001 9.0897e-001 9.1032e-002 2.4598e-004 2.8006e-003 6.4287e-004 2.4037e-003 - 3.4100e-003 -8.2974e+000 2.1032e-001 7.8968e-001 9.0897e-001 9.1032e-002 2.4432e-004 2.8123e-003 6.4287e-004 2.4137e-003 - 3.4200e-003 -8.2974e+000 2.0964e-001 7.9036e-001 9.0897e-001 9.1032e-002 2.4265e-004 2.8239e-003 6.4287e-004 2.4237e-003 - 3.4300e-003 -8.2974e+000 2.0896e-001 7.9104e-001 9.0897e-001 9.1032e-002 2.4098e-004 2.8356e-003 6.4287e-004 2.4337e-003 - 3.4400e-003 -8.2974e+000 2.0828e-001 7.9172e-001 9.0897e-001 9.1032e-002 2.3932e-004 2.8473e-003 6.4287e-004 2.4437e-003 - 3.4500e-003 -8.2974e+000 2.0761e-001 7.9239e-001 9.0897e-001 9.1032e-002 2.3765e-004 2.8589e-003 6.4287e-004 2.4537e-003 - 3.4600e-003 -8.2974e+000 2.0694e-001 7.9306e-001 9.0897e-001 9.1032e-002 2.3599e-004 2.8706e-003 6.4287e-004 2.4637e-003 - 3.4700e-003 -8.2974e+000 2.0627e-001 7.9373e-001 9.0897e-001 9.1032e-002 2.3432e-004 2.8823e-003 6.4287e-004 2.4737e-003 - 3.4800e-003 -8.2974e+000 2.0561e-001 7.9439e-001 9.0897e-001 9.1032e-002 2.3265e-004 2.8939e-003 6.4287e-004 2.4837e-003 - 3.4900e-003 -8.2974e+000 2.0496e-001 7.9504e-001 9.0897e-001 9.1032e-002 2.3099e-004 2.9056e-003 6.4287e-004 2.4937e-003 - 3.5000e-003 -8.2974e+000 2.0431e-001 7.9569e-001 9.0897e-001 9.1032e-002 2.2932e-004 2.9173e-003 6.4287e-004 2.5037e-003 - 3.5100e-003 -8.2974e+000 2.0366e-001 7.9634e-001 9.0897e-001 9.1032e-002 2.2765e-004 2.9289e-003 6.4287e-004 2.5137e-003 - 3.5200e-003 -8.2974e+000 2.0302e-001 7.9698e-001 9.0897e-001 9.1032e-002 2.2599e-004 2.9406e-003 6.4287e-004 2.5237e-003 - 3.5300e-003 -8.2974e+000 2.0238e-001 7.9762e-001 9.0897e-001 9.1032e-002 2.2432e-004 2.9523e-003 6.4287e-004 2.5337e-003 - 3.5400e-003 -8.2974e+000 2.0174e-001 7.9826e-001 9.0897e-001 9.1032e-002 2.2266e-004 2.9639e-003 6.4287e-004 2.5437e-003 - 3.5500e-003 -8.2974e+000 2.0111e-001 7.9889e-001 9.0897e-001 9.1032e-002 2.2099e-004 2.9756e-003 6.4287e-004 2.5537e-003 - 3.5600e-003 -8.2974e+000 2.0048e-001 7.9952e-001 9.0897e-001 9.1032e-002 2.1932e-004 2.9873e-003 6.4287e-004 2.5637e-003 - 3.5700e-003 -8.2974e+000 1.9986e-001 8.0014e-001 9.0897e-001 9.1032e-002 2.1766e-004 2.9989e-003 6.4287e-004 2.5737e-003 - 3.5800e-003 -8.2974e+000 1.9924e-001 8.0076e-001 9.0897e-001 9.1032e-002 2.1599e-004 3.0106e-003 6.4287e-004 2.5837e-003 - 3.5900e-003 -8.2974e+000 1.9863e-001 8.0137e-001 9.0897e-001 9.1032e-002 2.1433e-004 3.0223e-003 6.4287e-004 2.5937e-003 - 3.6000e-003 -8.2974e+000 1.9801e-001 8.0199e-001 9.0897e-001 9.1032e-002 2.1266e-004 3.0339e-003 6.4287e-004 2.6037e-003 - 3.6100e-003 -8.2974e+000 1.9741e-001 8.0259e-001 9.0897e-001 9.1032e-002 2.1099e-004 3.0456e-003 6.4287e-004 2.6137e-003 - 3.6200e-003 -8.2974e+000 1.9680e-001 8.0320e-001 9.0897e-001 9.1032e-002 2.0933e-004 3.0573e-003 6.4287e-004 2.6237e-003 - 3.6300e-003 -8.2974e+000 1.9620e-001 8.0380e-001 9.0897e-001 9.1032e-002 2.0766e-004 3.0689e-003 6.4287e-004 2.6337e-003 - 3.6400e-003 -8.2974e+000 1.9560e-001 8.0440e-001 9.0897e-001 9.1032e-002 2.0599e-004 3.0806e-003 6.4287e-004 2.6437e-003 - 3.6500e-003 -8.2974e+000 1.9501e-001 8.0499e-001 9.0897e-001 9.1032e-002 2.0433e-004 3.0923e-003 6.4287e-004 2.6537e-003 - 3.6600e-003 -8.2974e+000 1.9442e-001 8.0558e-001 9.0897e-001 9.1032e-002 2.0266e-004 3.1039e-003 6.4287e-004 2.6637e-003 - 3.6700e-003 -8.2974e+000 1.9384e-001 8.0616e-001 9.0897e-001 9.1032e-002 2.0100e-004 3.1156e-003 6.4287e-004 2.6737e-003 - 3.6800e-003 -8.2974e+000 1.9325e-001 8.0675e-001 9.0897e-001 9.1032e-002 1.9933e-004 3.1273e-003 6.4287e-004 2.6837e-003 - 3.6900e-003 -8.2974e+000 1.9267e-001 8.0733e-001 9.0897e-001 9.1032e-002 1.9766e-004 3.1389e-003 6.4287e-004 2.6937e-003 - 3.7000e-003 -8.2974e+000 1.9210e-001 8.0790e-001 9.0897e-001 9.1032e-002 1.9600e-004 3.1506e-003 6.4287e-004 2.7037e-003 - 3.7100e-003 -8.2974e+000 1.9153e-001 8.0847e-001 9.0897e-001 9.1032e-002 1.9433e-004 3.1623e-003 6.4287e-004 2.7137e-003 - 3.7200e-003 -8.2974e+000 1.9096e-001 8.0904e-001 9.0897e-001 9.1032e-002 1.9266e-004 3.1739e-003 6.4287e-004 2.7237e-003 - 3.7300e-003 -8.2974e+000 1.9039e-001 8.0961e-001 9.0897e-001 9.1032e-002 1.9100e-004 3.1856e-003 6.4287e-004 2.7337e-003 - 3.7400e-003 -8.2974e+000 1.8983e-001 8.1017e-001 9.0897e-001 9.1032e-002 1.8933e-004 3.1972e-003 6.4287e-004 2.7437e-003 - 3.7500e-003 -8.2974e+000 1.8927e-001 8.1073e-001 9.0897e-001 9.1032e-002 1.8767e-004 3.2089e-003 6.4287e-004 2.7537e-003 - 3.7600e-003 -8.2974e+000 1.8871e-001 8.1129e-001 9.0897e-001 9.1032e-002 1.8600e-004 3.2206e-003 6.4287e-004 2.7637e-003 - 3.7700e-003 -8.2974e+000 1.8816e-001 8.1184e-001 9.0897e-001 9.1032e-002 1.8433e-004 3.2322e-003 6.4287e-004 2.7737e-003 - 3.7800e-003 -8.2974e+000 1.8761e-001 8.1239e-001 9.0897e-001 9.1032e-002 1.8267e-004 3.2439e-003 6.4287e-004 2.7837e-003 - 3.7900e-003 -8.2974e+000 1.8707e-001 8.1293e-001 9.0897e-001 9.1032e-002 1.8100e-004 3.2556e-003 6.4287e-004 2.7937e-003 - 3.8000e-003 -8.2974e+000 1.8652e-001 8.1348e-001 9.0897e-001 9.1032e-002 1.7934e-004 3.2672e-003 6.4287e-004 2.8037e-003 - 3.8100e-003 -8.2974e+000 1.8598e-001 8.1402e-001 9.0897e-001 9.1032e-002 1.7767e-004 3.2789e-003 6.4287e-004 2.8137e-003 - 3.8200e-003 -8.2974e+000 1.8545e-001 8.1455e-001 9.0897e-001 9.1032e-002 1.7600e-004 3.2906e-003 6.4287e-004 2.8237e-003 - 3.8300e-003 -8.2974e+000 1.8491e-001 8.1509e-001 9.0897e-001 9.1032e-002 1.7434e-004 3.3022e-003 6.4287e-004 2.8337e-003 - 3.8400e-003 -8.2974e+000 1.8438e-001 8.1562e-001 9.0897e-001 9.1032e-002 1.7267e-004 3.3139e-003 6.4287e-004 2.8437e-003 - 3.8500e-003 -8.2974e+000 1.8386e-001 8.1614e-001 9.0897e-001 9.1032e-002 1.7100e-004 3.3256e-003 6.4287e-004 2.8537e-003 - 3.8600e-003 -8.2974e+000 1.8333e-001 8.1667e-001 9.0897e-001 9.1032e-002 1.6934e-004 3.3372e-003 6.4287e-004 2.8637e-003 - 3.8700e-003 -8.2974e+000 1.8281e-001 8.1719e-001 9.0897e-001 9.1032e-002 1.6767e-004 3.3489e-003 6.4287e-004 2.8737e-003 - 3.8800e-003 -8.2974e+000 1.8229e-001 8.1771e-001 9.0897e-001 9.1032e-002 1.6601e-004 3.3606e-003 6.4287e-004 2.8837e-003 - 3.8900e-003 -8.2974e+000 1.8178e-001 8.1822e-001 9.0897e-001 9.1032e-002 1.6434e-004 3.3722e-003 6.4287e-004 2.8937e-003 - 3.9000e-003 -8.2974e+000 1.8126e-001 8.1874e-001 9.0897e-001 9.1032e-002 1.6267e-004 3.3839e-003 6.4287e-004 2.9037e-003 - 3.9100e-003 -8.2974e+000 1.8076e-001 8.1924e-001 9.0897e-001 9.1032e-002 1.6101e-004 3.3956e-003 6.4287e-004 2.9137e-003 - 3.9200e-003 -8.2974e+000 1.8025e-001 8.1975e-001 9.0897e-001 9.1032e-002 1.5934e-004 3.4072e-003 6.4287e-004 2.9237e-003 - 3.9300e-003 -8.2974e+000 1.7974e-001 8.2026e-001 9.0897e-001 9.1032e-002 1.5767e-004 3.4189e-003 6.4287e-004 2.9337e-003 - 3.9400e-003 -8.2974e+000 1.7924e-001 8.2076e-001 9.0897e-001 9.1032e-002 1.5601e-004 3.4306e-003 6.4287e-004 2.9437e-003 - 3.9500e-003 -8.2974e+000 1.7874e-001 8.2126e-001 9.0897e-001 9.1032e-002 1.5434e-004 3.4422e-003 6.4287e-004 2.9537e-003 - 3.9600e-003 -8.2974e+000 1.7825e-001 8.2175e-001 9.0897e-001 9.1032e-002 1.5268e-004 3.4539e-003 6.4287e-004 2.9637e-003 - 3.9700e-003 -8.2974e+000 1.7776e-001 8.2224e-001 9.0897e-001 9.1032e-002 1.5101e-004 3.4656e-003 6.4287e-004 2.9737e-003 - 3.9800e-003 -8.2974e+000 1.7727e-001 8.2273e-001 9.0897e-001 9.1032e-002 1.4934e-004 3.4772e-003 6.4287e-004 2.9837e-003 - 3.9900e-003 -8.2974e+000 1.7678e-001 8.2322e-001 9.0897e-001 9.1032e-002 1.4768e-004 3.4889e-003 6.4287e-004 2.9937e-003 - 4.0000e-003 -8.2974e+000 1.7629e-001 8.2371e-001 9.0897e-001 9.1032e-002 1.4601e-004 3.5006e-003 6.4287e-004 3.0037e-003 - 4.0100e-003 -8.2974e+000 1.7581e-001 8.2419e-001 9.0897e-001 9.1032e-002 1.4434e-004 3.5122e-003 6.4287e-004 3.0137e-003 - 4.0200e-003 -8.2974e+000 1.7533e-001 8.2467e-001 9.0897e-001 9.1032e-002 1.4268e-004 3.5239e-003 6.4287e-004 3.0237e-003 - 4.0300e-003 -8.2974e+000 1.7486e-001 8.2514e-001 9.0897e-001 9.1032e-002 1.4101e-004 3.5356e-003 6.4287e-004 3.0337e-003 - 4.0400e-003 -8.2974e+000 1.7438e-001 8.2562e-001 9.0897e-001 9.1032e-002 1.3935e-004 3.5472e-003 6.4287e-004 3.0437e-003 - 4.0500e-003 -8.2974e+000 1.7391e-001 8.2609e-001 9.0897e-001 9.1032e-002 1.3768e-004 3.5589e-003 6.4287e-004 3.0537e-003 - 4.0600e-003 -8.2974e+000 1.7344e-001 8.2656e-001 9.0897e-001 9.1032e-002 1.3601e-004 3.5706e-003 6.4287e-004 3.0637e-003 - 4.0700e-003 -8.2974e+000 1.7297e-001 8.2703e-001 9.0897e-001 9.1032e-002 1.3435e-004 3.5822e-003 6.4287e-004 3.0737e-003 - 4.0800e-003 -8.2974e+000 1.7251e-001 8.2749e-001 9.0897e-001 9.1032e-002 1.3268e-004 3.5939e-003 6.4287e-004 3.0837e-003 - 4.0900e-003 -8.2974e+000 1.7205e-001 8.2795e-001 9.0897e-001 9.1032e-002 1.3102e-004 3.6056e-003 6.4287e-004 3.0937e-003 - 4.1000e-003 -8.2974e+000 1.7159e-001 8.2841e-001 9.0897e-001 9.1032e-002 1.2935e-004 3.6172e-003 6.4287e-004 3.1037e-003 - 4.1100e-003 -8.2974e+000 1.7113e-001 8.2887e-001 9.0897e-001 9.1032e-002 1.2768e-004 3.6289e-003 6.4287e-004 3.1137e-003 - 4.1200e-003 -8.2974e+000 1.7068e-001 8.2932e-001 9.0897e-001 9.1032e-002 1.2602e-004 3.6406e-003 6.4287e-004 3.1237e-003 - 4.1300e-003 -8.2974e+000 1.7023e-001 8.2977e-001 9.0897e-001 9.1032e-002 1.2435e-004 3.6522e-003 6.4287e-004 3.1337e-003 - 4.1400e-003 -8.2974e+000 1.6978e-001 8.3022e-001 9.0897e-001 9.1032e-002 1.2268e-004 3.6639e-003 6.4287e-004 3.1437e-003 - 4.1500e-003 -8.2974e+000 1.6933e-001 8.3067e-001 9.0897e-001 9.1032e-002 1.2102e-004 3.6756e-003 6.4287e-004 3.1537e-003 - 4.1600e-003 -8.2974e+000 1.6888e-001 8.3112e-001 9.0897e-001 9.1032e-002 1.1935e-004 3.6872e-003 6.4287e-004 3.1637e-003 - 4.1700e-003 -8.2974e+000 1.6844e-001 8.3156e-001 9.0897e-001 9.1032e-002 1.1769e-004 3.6989e-003 6.4287e-004 3.1737e-003 - 4.1800e-003 -8.2974e+000 1.6800e-001 8.3200e-001 9.0897e-001 9.1032e-002 1.1602e-004 3.7106e-003 6.4287e-004 3.1837e-003 - 4.1900e-003 -8.2974e+000 1.6756e-001 8.3244e-001 9.0897e-001 9.1032e-002 1.1435e-004 3.7222e-003 6.4287e-004 3.1937e-003 - 4.2000e-003 -8.2974e+000 1.6713e-001 8.3287e-001 9.0897e-001 9.1032e-002 1.1269e-004 3.7339e-003 6.4287e-004 3.2037e-003 - 4.2100e-003 -8.2974e+000 1.6669e-001 8.3331e-001 9.0897e-001 9.1032e-002 1.1102e-004 3.7456e-003 6.4287e-004 3.2137e-003 - 4.2200e-003 -8.2974e+000 1.6626e-001 8.3374e-001 9.0897e-001 9.1032e-002 1.0935e-004 3.7572e-003 6.4287e-004 3.2237e-003 - 4.2300e-003 -8.2974e+000 1.6583e-001 8.3417e-001 9.0897e-001 9.1032e-002 1.0769e-004 3.7689e-003 6.4287e-004 3.2337e-003 - 4.2400e-003 -8.2974e+000 1.6541e-001 8.3459e-001 9.0897e-001 9.1032e-002 1.0602e-004 3.7806e-003 6.4287e-004 3.2437e-003 - 4.2500e-003 -8.2974e+000 1.6498e-001 8.3502e-001 9.0897e-001 9.1032e-002 1.0436e-004 3.7922e-003 6.4287e-004 3.2537e-003 - 4.2600e-003 -8.2974e+000 1.6456e-001 8.3544e-001 9.0897e-001 9.1032e-002 1.0269e-004 3.8039e-003 6.4287e-004 3.2637e-003 - 4.2700e-003 -8.2974e+000 1.6414e-001 8.3586e-001 9.0897e-001 9.1032e-002 1.0102e-004 3.8156e-003 6.4287e-004 3.2737e-003 - 4.2800e-003 -8.2974e+000 1.6372e-001 8.3628e-001 9.0897e-001 9.1032e-002 9.9357e-005 3.8272e-003 6.4287e-004 3.2837e-003 - 4.2900e-003 -8.2974e+000 1.6331e-001 8.3669e-001 9.0897e-001 9.1032e-002 9.7691e-005 3.8389e-003 6.4287e-004 3.2937e-003 - 4.3000e-003 -8.2974e+000 1.6289e-001 8.3711e-001 9.0897e-001 9.1032e-002 9.6025e-005 3.8506e-003 6.4287e-004 3.3037e-003 - 4.3100e-003 -8.2974e+000 1.6248e-001 8.3752e-001 9.0897e-001 9.1032e-002 9.4359e-005 3.8622e-003 6.4287e-004 3.3137e-003 - 4.3200e-003 -8.2974e+000 1.6207e-001 8.3793e-001 9.0897e-001 9.1032e-002 9.2693e-005 3.8739e-003 6.4287e-004 3.3237e-003 - 4.3300e-003 -8.2974e+000 1.6166e-001 8.3834e-001 9.0897e-001 9.1032e-002 9.1026e-005 3.8856e-003 6.4287e-004 3.3337e-003 - 4.3400e-003 -8.2974e+000 1.6126e-001 8.3874e-001 9.0897e-001 9.1032e-002 8.9360e-005 3.8972e-003 6.4287e-004 3.3437e-003 - 4.3500e-003 -8.2974e+000 1.6086e-001 8.3914e-001 9.0897e-001 9.1032e-002 8.7694e-005 3.9089e-003 6.4287e-004 3.3537e-003 - 4.3600e-003 -8.2974e+000 1.6045e-001 8.3955e-001 9.0897e-001 9.1032e-002 8.6028e-005 3.9206e-003 6.4287e-004 3.3637e-003 - 4.3700e-003 -8.2974e+000 1.6005e-001 8.3995e-001 9.0897e-001 9.1032e-002 8.4362e-005 3.9322e-003 6.4287e-004 3.3737e-003 - 4.3800e-003 -8.2974e+000 1.5966e-001 8.4034e-001 9.0897e-001 9.1032e-002 8.2695e-005 3.9439e-003 6.4287e-004 3.3837e-003 - 4.3900e-003 -8.2974e+000 1.5926e-001 8.4074e-001 9.0897e-001 9.1032e-002 8.1029e-005 3.9556e-003 6.4287e-004 3.3937e-003 - 4.4000e-003 -8.2974e+000 1.5887e-001 8.4113e-001 9.0897e-001 9.1032e-002 7.9363e-005 3.9672e-003 6.4287e-004 3.4037e-003 - 4.4100e-003 -8.2974e+000 1.5848e-001 8.4152e-001 9.0897e-001 9.1032e-002 7.7697e-005 3.9789e-003 6.4287e-004 3.4137e-003 - 4.4200e-003 -8.2974e+000 1.5809e-001 8.4191e-001 9.0897e-001 9.1032e-002 7.6031e-005 3.9906e-003 6.4287e-004 3.4237e-003 - 4.4300e-003 -8.2974e+000 1.5770e-001 8.4230e-001 9.0897e-001 9.1032e-002 7.4364e-005 4.0022e-003 6.4287e-004 3.4337e-003 - 4.4400e-003 -8.2974e+000 1.5731e-001 8.4269e-001 9.0897e-001 9.1032e-002 7.2698e-005 4.0139e-003 6.4287e-004 3.4437e-003 - 4.4500e-003 -8.2974e+000 1.5693e-001 8.4307e-001 9.0897e-001 9.1032e-002 7.1032e-005 4.0255e-003 6.4287e-004 3.4537e-003 - 4.4600e-003 -8.2974e+000 1.5655e-001 8.4345e-001 9.0897e-001 9.1032e-002 6.9366e-005 4.0372e-003 6.4287e-004 3.4637e-003 - 4.4700e-003 -8.2974e+000 1.5617e-001 8.4383e-001 9.0897e-001 9.1032e-002 6.7700e-005 4.0489e-003 6.4287e-004 3.4737e-003 - 4.4800e-003 -8.2974e+000 1.5579e-001 8.4421e-001 9.0897e-001 9.1032e-002 6.6033e-005 4.0605e-003 6.4287e-004 3.4837e-003 - 4.4900e-003 -8.2974e+000 1.5541e-001 8.4459e-001 9.0897e-001 9.1032e-002 6.4367e-005 4.0722e-003 6.4287e-004 3.4937e-003 - 4.5000e-003 -8.2974e+000 1.5504e-001 8.4496e-001 9.0897e-001 9.1032e-002 6.2701e-005 4.0839e-003 6.4287e-004 3.5037e-003 - 4.5100e-003 -8.2974e+000 1.5466e-001 8.4534e-001 9.0897e-001 9.1032e-002 6.1035e-005 4.0955e-003 6.4287e-004 3.5137e-003 - 4.5200e-003 -8.2974e+000 1.5429e-001 8.4571e-001 9.0897e-001 9.1032e-002 5.9369e-005 4.1072e-003 6.4287e-004 3.5237e-003 - 4.5300e-003 -8.2974e+000 1.5392e-001 8.4608e-001 9.0897e-001 9.1032e-002 5.7702e-005 4.1189e-003 6.4287e-004 3.5337e-003 - 4.5400e-003 -8.2974e+000 1.5355e-001 8.4645e-001 9.0897e-001 9.1032e-002 5.6036e-005 4.1305e-003 6.4287e-004 3.5437e-003 - 4.5500e-003 -8.2974e+000 1.5319e-001 8.4681e-001 9.0897e-001 9.1032e-002 5.4370e-005 4.1422e-003 6.4287e-004 3.5537e-003 - 4.5600e-003 -8.2974e+000 1.5282e-001 8.4718e-001 9.0897e-001 9.1032e-002 5.2704e-005 4.1539e-003 6.4287e-004 3.5637e-003 - 4.5700e-003 -8.2974e+000 1.5246e-001 8.4754e-001 9.0897e-001 9.1032e-002 5.1038e-005 4.1655e-003 6.4287e-004 3.5737e-003 - 4.5800e-003 -8.2974e+000 1.5210e-001 8.4790e-001 9.0897e-001 9.1032e-002 4.9371e-005 4.1772e-003 6.4287e-004 3.5837e-003 - 4.5900e-003 -8.2974e+000 1.5174e-001 8.4826e-001 9.0897e-001 9.1032e-002 4.7705e-005 4.1889e-003 6.4287e-004 3.5937e-003 - 4.6000e-003 -8.2974e+000 1.5139e-001 8.4861e-001 9.0897e-001 9.1032e-002 4.6039e-005 4.2005e-003 6.4287e-004 3.6037e-003 - 4.6100e-003 -8.2974e+000 1.5103e-001 8.4897e-001 9.0897e-001 9.1032e-002 4.4373e-005 4.2122e-003 6.4287e-004 3.6137e-003 - 4.6200e-003 -8.2974e+000 1.5068e-001 8.4932e-001 9.0897e-001 9.1032e-002 4.2707e-005 4.2239e-003 6.4287e-004 3.6237e-003 - 4.6300e-003 -8.2974e+000 1.5032e-001 8.4968e-001 9.0897e-001 9.1032e-002 4.1040e-005 4.2355e-003 6.4287e-004 3.6337e-003 - 4.6400e-003 -8.2974e+000 1.4997e-001 8.5003e-001 9.0897e-001 9.1032e-002 3.9374e-005 4.2472e-003 6.4287e-004 3.6437e-003 - 4.6500e-003 -8.2974e+000 1.4962e-001 8.5038e-001 9.0897e-001 9.1032e-002 3.7708e-005 4.2589e-003 6.4287e-004 3.6537e-003 - 4.6600e-003 -8.2974e+000 1.4928e-001 8.5072e-001 9.0897e-001 9.1032e-002 3.6042e-005 4.2705e-003 6.4287e-004 3.6637e-003 - 4.6700e-003 -8.2974e+000 1.4893e-001 8.5107e-001 9.0897e-001 9.1032e-002 3.4376e-005 4.2822e-003 6.4287e-004 3.6737e-003 - 4.6800e-003 -8.2974e+000 1.4859e-001 8.5141e-001 9.0897e-001 9.1032e-002 3.2709e-005 4.2939e-003 6.4287e-004 3.6837e-003 - 4.6900e-003 -8.2974e+000 1.4824e-001 8.5176e-001 9.0897e-001 9.1032e-002 3.1043e-005 4.3055e-003 6.4287e-004 3.6937e-003 - 4.7000e-003 -8.2974e+000 1.4790e-001 8.5210e-001 9.0897e-001 9.1032e-002 2.9377e-005 4.3172e-003 6.4287e-004 3.7037e-003 - 4.7100e-003 -8.2974e+000 1.4756e-001 8.5244e-001 9.0897e-001 9.1032e-002 2.7711e-005 4.3289e-003 6.4287e-004 3.7137e-003 - 4.7200e-003 -8.2974e+000 1.4723e-001 8.5277e-001 9.0897e-001 9.1032e-002 2.6045e-005 4.3405e-003 6.4287e-004 3.7237e-003 - 4.7300e-003 -8.2974e+000 1.4689e-001 8.5311e-001 9.0897e-001 9.1032e-002 2.4378e-005 4.3522e-003 6.4287e-004 3.7337e-003 - 4.7400e-003 -8.2974e+000 1.4655e-001 8.5345e-001 9.0897e-001 9.1032e-002 2.2712e-005 4.3639e-003 6.4287e-004 3.7437e-003 - 4.7500e-003 -8.2974e+000 1.4622e-001 8.5378e-001 9.0897e-001 9.1032e-002 2.1046e-005 4.3755e-003 6.4287e-004 3.7537e-003 - 4.7600e-003 -8.2974e+000 1.4589e-001 8.5411e-001 9.0897e-001 9.1032e-002 1.9380e-005 4.3872e-003 6.4287e-004 3.7637e-003 - 4.7700e-003 -8.2974e+000 1.4556e-001 8.5444e-001 9.0897e-001 9.1032e-002 1.7714e-005 4.3989e-003 6.4287e-004 3.7737e-003 - 4.7800e-003 -8.2974e+000 1.4523e-001 8.5477e-001 9.0897e-001 9.1032e-002 1.6047e-005 4.4105e-003 6.4287e-004 3.7837e-003 - 4.7900e-003 -8.2974e+000 1.4490e-001 8.5510e-001 9.0897e-001 9.1032e-002 1.4381e-005 4.4222e-003 6.4287e-004 3.7937e-003 - 4.8000e-003 -8.2974e+000 1.4458e-001 8.5542e-001 9.0897e-001 9.1032e-002 1.2715e-005 4.4339e-003 6.4287e-004 3.8037e-003 - 4.8100e-003 -8.2974e+000 1.4425e-001 8.5575e-001 9.0897e-001 9.1032e-002 1.1049e-005 4.4455e-003 6.4287e-004 3.8137e-003 - 4.8200e-003 -8.2974e+000 1.4393e-001 8.5607e-001 9.0897e-001 9.1032e-002 9.3825e-006 4.4572e-003 6.4287e-004 3.8237e-003 - 4.8300e-003 -8.2974e+000 1.4361e-001 8.5639e-001 9.0897e-001 9.1032e-002 7.7163e-006 4.4689e-003 6.4287e-004 3.8337e-003 - 4.8400e-003 -8.2974e+000 1.4329e-001 8.5671e-001 9.0897e-001 9.1032e-002 6.0501e-006 4.4805e-003 6.4287e-004 3.8437e-003 - 4.8500e-003 -8.2974e+000 1.4297e-001 8.5703e-001 9.0897e-001 9.1032e-002 4.3839e-006 4.4922e-003 6.4287e-004 3.8537e-003 - 4.8600e-003 -8.2974e+000 1.4265e-001 8.5735e-001 9.0897e-001 9.1032e-002 2.7177e-006 4.5039e-003 6.4287e-004 3.8637e-003 - 4.8700e-003 -8.2974e+000 1.4234e-001 8.5766e-001 9.0897e-001 9.1032e-002 1.0515e-006 4.5155e-003 6.4287e-004 3.8737e-003 - 4.8800e-003 -8.2974e+000 1.4212e-001 8.5788e-001 9.0896e-001 9.1043e-002 1.0000e-010 1.0000e-010 6.4338e-004 3.8836e-003 - 4.8900e-003 -8.2975e+000 1.4208e-001 8.5792e-001 9.0892e-001 9.1075e-002 1.0000e-010 1.0000e-010 6.4478e-004 3.8934e-003 - 4.9000e-003 -8.2977e+000 1.4204e-001 8.5796e-001 9.0889e-001 9.1107e-002 1.0000e-010 1.0000e-010 6.4617e-004 3.9031e-003 - 4.9100e-003 -8.2978e+000 1.4200e-001 8.5800e-001 9.0886e-001 9.1139e-002 1.0000e-010 1.0000e-010 6.4756e-004 3.9129e-003 - 4.9200e-003 -8.2979e+000 1.4195e-001 8.5805e-001 9.0883e-001 9.1171e-002 1.0000e-010 1.0000e-010 6.4895e-004 3.9226e-003 - 4.9300e-003 -8.2980e+000 1.4191e-001 8.5809e-001 9.0880e-001 9.1202e-002 1.0000e-010 1.0000e-010 6.5034e-004 3.9324e-003 - 4.9400e-003 -8.2982e+000 1.4187e-001 8.5813e-001 9.0877e-001 9.1234e-002 1.0000e-010 1.0000e-010 6.5173e-004 3.9422e-003 - 4.9500e-003 -8.2983e+000 1.4183e-001 8.5817e-001 9.0873e-001 9.1266e-002 1.0000e-010 1.0000e-010 6.5312e-004 3.9519e-003 - 4.9600e-003 -8.2984e+000 1.4179e-001 8.5821e-001 9.0870e-001 9.1298e-002 1.0000e-010 1.0000e-010 6.5451e-004 3.9617e-003 - 4.9700e-003 -8.2986e+000 1.4174e-001 8.5826e-001 9.0867e-001 9.1330e-002 1.0000e-010 1.0000e-010 6.5589e-004 3.9714e-003 - 4.9800e-003 -8.2987e+000 1.4170e-001 8.5830e-001 9.0864e-001 9.1361e-002 1.0000e-010 1.0000e-010 6.5728e-004 3.9812e-003 - 4.9900e-003 -8.2988e+000 1.4166e-001 8.5834e-001 9.0861e-001 9.1393e-002 1.0000e-010 1.0000e-010 6.5866e-004 3.9909e-003 - 5.0000e-003 -8.2989e+000 1.4162e-001 8.5838e-001 9.0858e-001 9.1425e-002 1.0000e-010 1.0000e-010 6.6005e-004 4.0007e-003 - 5.0000e-003 -8.2989e+000 1.4162e-001 8.5838e-001 9.0858e-001 9.1425e-002 1.0000e-010 1.0000e-010 6.6005e-004 4.0007e-003 - 1.0000e-002 -8.3554e+000 1.2447e-001 8.7553e-001 8.9362e-001 1.0638e-001 1.0000e-010 1.0000e-010 1.2638e-003 8.8897e-003 - 1.5000e-002 -8.4009e+000 1.1217e-001 8.8783e-001 8.8002e-001 1.1998e-001 1.0000e-010 1.0000e-010 1.7427e-003 1.3794e-002 - 2.0000e-002 -8.4394e+000 1.0269e-001 8.9731e-001 8.6737e-001 1.3263e-001 1.0000e-010 1.0000e-010 2.1410e-003 1.8708e-002 - 2.5000e-002 -8.4726e+000 9.5063e-002 9.0494e-001 8.5547e-001 1.4453e-001 1.0000e-010 1.0000e-010 2.4823e-003 2.3630e-002 - 3.0000e-002 -8.5020e+000 8.8733e-002 9.1127e-001 8.4417e-001 1.5583e-001 1.0000e-010 1.0000e-010 2.7808e-003 2.8558e-002 - 3.5000e-002 -8.5282e+000 8.3362e-002 9.1664e-001 8.3338e-001 1.6662e-001 1.0000e-010 1.0000e-010 3.0458e-003 3.3492e-002 - 4.0000e-002 -8.5520e+000 7.8729e-002 9.2127e-001 8.2306e-001 1.7694e-001 1.0000e-010 1.0000e-010 3.2840e-003 3.8429e-002 - 4.5000e-002 -8.5736e+000 7.4675e-002 9.2532e-001 8.1313e-001 1.8687e-001 1.0000e-010 1.0000e-010 3.5001e-003 4.3370e-002 - 5.0000e-002 -8.5934e+000 7.1091e-002 9.2891e-001 8.0358e-001 1.9642e-001 1.0000e-010 1.0000e-010 3.6976e-003 4.8315e-002 - 5.5000e-002 -8.6117e+000 6.7891e-002 9.3211e-001 7.9435e-001 2.0565e-001 1.0000e-010 1.0000e-010 3.8794e-003 5.3262e-002 - 6.0000e-002 -8.6288e+000 6.5012e-002 9.3499e-001 7.8543e-001 2.1457e-001 1.0000e-010 1.0000e-010 4.0477e-003 5.8212e-002 - 6.5000e-002 -8.6446e+000 6.2405e-002 9.3760e-001 7.7679e-001 2.2321e-001 1.0000e-010 1.0000e-010 4.2041e-003 6.3165e-002 - 7.0000e-002 -8.6594e+000 6.0029e-002 9.3997e-001 7.6842e-001 2.3158e-001 1.0000e-010 1.0000e-010 4.3503e-003 6.8119e-002 - 7.5000e-002 -8.6734e+000 5.7853e-002 9.4215e-001 7.6029e-001 2.3971e-001 1.0000e-010 1.0000e-010 4.4872e-003 7.3076e-002 - 8.0000e-002 -8.6865e+000 5.5851e-002 9.4415e-001 7.5239e-001 2.4761e-001 1.0000e-010 1.0000e-010 4.6160e-003 7.8034e-002 - 8.5000e-002 -8.6989e+000 5.4001e-002 9.4600e-001 7.4471e-001 2.5529e-001 1.0000e-010 1.0000e-010 4.7375e-003 8.2993e-002 - 9.0000e-002 -8.7106e+000 5.2285e-002 9.4771e-001 7.3723e-001 2.6277e-001 1.0000e-010 1.0000e-010 4.8524e-003 8.7955e-002 - 9.5000e-002 -8.7217e+000 5.0689e-002 9.4931e-001 7.2995e-001 2.7005e-001 1.0000e-010 1.0000e-010 4.9614e-003 9.2917e-002 - 1.0000e-001 -8.7323e+000 4.9199e-002 9.5080e-001 7.2285e-001 2.7715e-001 1.0000e-010 1.0000e-010 5.0649e-003 9.7881e-002 - 1.0000e-001 -8.7323e+000 4.9199e-002 9.5080e-001 7.2285e-001 2.7715e-001 1.0000e-010 1.0000e-010 5.0649e-003 9.7881e-002 - 2.0000e-001 -8.8736e+000 3.1644e-002 9.6836e-001 6.0934e-001 3.9066e-001 1.0000e-010 1.0000e-010 6.4489e-003 1.9734e-001 - 3.0000e-001 -8.9506e+000 2.3703e-002 9.7630e-001 5.3013e-001 4.6987e-001 1.0000e-010 1.0000e-010 7.2109e-003 2.9700e-001 - 4.0000e-001 -9.0006e+000 1.9069e-002 9.8093e-001 4.7057e-001 5.2943e-001 1.0000e-010 1.0000e-010 7.7130e-003 3.9676e-001 - 5.0000e-001 -9.0363e+000 1.6001e-002 9.8400e-001 4.2376e-001 5.7624e-001 1.0000e-010 1.0000e-010 8.0750e-003 4.9658e-001 - 6.0000e-001 -9.0633e+000 1.3808e-002 9.8619e-001 3.8581e-001 6.1419e-001 1.0000e-010 1.0000e-010 8.3510e-003 5.9643e-001 - 7.0000e-001 -9.0844e+000 1.2157e-002 9.8784e-001 3.5434e-001 6.4566e-001 1.0000e-010 1.0000e-010 8.5696e-003 6.9632e-001 - 8.0000e-001 -9.1015e+000 1.0867e-002 9.8913e-001 3.2777e-001 6.7223e-001 1.0000e-010 1.0000e-010 8.7476e-003 7.9622e-001 - 9.0000e-001 -9.1156e+000 9.8291e-003 9.9017e-001 3.0500e-001 6.9500e-001 1.0000e-010 1.0000e-010 8.8956e-003 8.9614e-001 - 1.0000e+000 -9.1275e+000 8.9753e-003 9.9102e-001 2.8526e-001 7.1474e-001 1.0000e-010 1.0000e-010 9.0209e-003 9.9607e-001 - 1.1000e+000 -9.1377e+000 8.2601e-003 9.9174e-001 2.6796e-001 7.3204e-001 1.0000e-010 1.0000e-010 9.1285e-003 1.0960e+000 - 1.2000e+000 -9.1465e+000 7.6520e-003 9.9235e-001 2.5268e-001 7.4732e-001 1.0000e-010 1.0000e-010 9.2219e-003 1.1960e+000 - 1.3000e+000 -9.1542e+000 7.1283e-003 9.9287e-001 2.3907e-001 7.6093e-001 1.0000e-010 1.0000e-010 9.3039e-003 1.2959e+000 - 1.4000e+000 -9.1610e+000 6.6725e-003 9.9333e-001 2.2688e-001 7.7312e-001 1.0000e-010 1.0000e-010 9.3764e-003 1.3959e+000 - 1.5000e+000 -9.1670e+000 6.2720e-003 9.9373e-001 2.1588e-001 7.8412e-001 1.0000e-010 1.0000e-010 9.4410e-003 1.4958e+000 - 1.6000e+000 -9.1724e+000 5.9173e-003 9.9408e-001 2.0591e-001 7.9409e-001 1.0000e-010 1.0000e-010 9.4990e-003 1.5958e+000 - 1.7000e+000 -9.1772e+000 5.6010e-003 9.9440e-001 1.9683e-001 8.0317e-001 1.0000e-010 1.0000e-010 9.5514e-003 1.6958e+000 - 1.8000e+000 -9.1816e+000 5.3170e-003 9.9468e-001 1.8852e-001 8.1148e-001 1.0000e-010 1.0000e-010 9.5989e-003 1.7957e+000 - 1.9000e+000 -9.1856e+000 5.0606e-003 9.9494e-001 1.8089e-001 8.1911e-001 1.0000e-010 1.0000e-010 9.6422e-003 1.8957e+000 - 2.0000e+000 -9.1892e+000 4.8280e-003 9.9517e-001 1.7386e-001 8.2614e-001 1.0000e-010 1.0000e-010 9.6818e-003 1.9957e+000 - 2.1000e+000 -9.1926e+000 4.6159e-003 9.9538e-001 1.6736e-001 8.3264e-001 1.0000e-010 1.0000e-010 9.7182e-003 2.0957e+000 - 2.2000e+000 -9.1957e+000 4.4218e-003 9.9558e-001 1.6133e-001 8.3867e-001 1.0000e-010 1.0000e-010 9.7518e-003 2.1956e+000 - 2.3000e+000 -9.1985e+000 4.2435e-003 9.9576e-001 1.5573e-001 8.4427e-001 1.0000e-010 1.0000e-010 9.7829e-003 2.2956e+000 - 2.4000e+000 -9.2012e+000 4.0790e-003 9.9592e-001 1.5050e-001 8.4950e-001 1.0000e-010 1.0000e-010 9.8117e-003 2.3956e+000 - 2.5000e+000 -9.2036e+000 3.9269e-003 9.9607e-001 1.4561e-001 8.5439e-001 1.0000e-010 1.0000e-010 9.8385e-003 2.4956e+000 - 2.6000e+000 -9.2059e+000 3.7858e-003 9.9621e-001 1.4103e-001 8.5897e-001 1.0000e-010 1.0000e-010 9.8636e-003 2.5956e+000 - 2.7000e+000 -9.2080e+000 3.6545e-003 9.9635e-001 1.3674e-001 8.6326e-001 1.0000e-010 1.0000e-010 9.8870e-003 2.6956e+000 - 2.8000e+000 -9.2100e+000 3.5320e-003 9.9647e-001 1.3269e-001 8.6731e-001 1.0000e-010 1.0000e-010 9.9089e-003 2.7955e+000 - 2.9000e+000 -9.2119e+000 3.4175e-003 9.9658e-001 1.2889e-001 8.7111e-001 1.0000e-010 1.0000e-010 9.9295e-003 2.8955e+000 - 3.0000e+000 -9.2137e+000 3.3103e-003 9.9669e-001 1.2529e-001 8.7471e-001 1.0000e-010 1.0000e-010 9.9489e-003 2.9955e+000 - 3.1000e+000 -9.2153e+000 3.2096e-003 9.9679e-001 1.2189e-001 8.7811e-001 1.0000e-010 1.0000e-010 9.9672e-003 3.0955e+000 - 3.2000e+000 -9.2169e+000 3.1148e-003 9.9689e-001 1.1867e-001 8.8133e-001 1.0000e-010 1.0000e-010 9.9845e-003 3.1955e+000 - 3.3000e+000 -9.2184e+000 3.0255e-003 9.9697e-001 1.1562e-001 8.8438e-001 1.0000e-010 1.0000e-010 1.0001e-002 3.2955e+000 - 3.4000e+000 -9.2198e+000 2.9412e-003 9.9706e-001 1.1272e-001 8.8728e-001 1.0000e-010 1.0000e-010 1.0016e-002 3.3955e+000 - 3.5000e+000 -9.2211e+000 2.8615e-003 9.9714e-001 1.0996e-001 8.9004e-001 1.0000e-010 1.0000e-010 1.0031e-002 3.4955e+000 - 3.6000e+000 -9.2223e+000 2.7860e-003 9.9721e-001 1.0734e-001 8.9266e-001 1.0000e-010 1.0000e-010 1.0045e-002 3.5955e+000 - 3.7000e+000 -9.2235e+000 2.7144e-003 9.9729e-001 1.0483e-001 8.9517e-001 1.0000e-010 1.0000e-010 1.0058e-002 3.6954e+000 - 3.8000e+000 -9.2247e+000 2.6464e-003 9.9735e-001 1.0245e-001 8.9755e-001 1.0000e-010 1.0000e-010 1.0071e-002 3.7954e+000 - 3.9000e+000 -9.2258e+000 2.5817e-003 9.9742e-001 1.0016e-001 8.9984e-001 1.0000e-010 1.0000e-010 1.0083e-002 3.8954e+000 - 4.0000e+000 -9.2268e+000 2.5201e-003 9.9748e-001 9.7983e-002 9.0202e-001 1.0000e-010 1.0000e-010 1.0094e-002 3.9954e+000 - 4.1000e+000 -9.2278e+000 2.4614e-003 9.9754e-001 9.5894e-002 9.0411e-001 1.0000e-010 1.0000e-010 1.0105e-002 4.0954e+000 - 4.2000e+000 -9.2287e+000 2.4054e-003 9.9759e-001 9.3893e-002 9.0611e-001 1.0000e-010 1.0000e-010 1.0116e-002 4.1954e+000 - 4.3000e+000 -9.2296e+000 2.3518e-003 9.9765e-001 9.1974e-002 9.0803e-001 1.0000e-010 1.0000e-010 1.0126e-002 4.2954e+000 - 4.4000e+000 -9.2305e+000 2.3006e-003 9.9770e-001 9.0132e-002 9.0987e-001 1.0000e-010 1.0000e-010 1.0135e-002 4.3954e+000 - 4.5000e+000 -9.2313e+000 2.2516e-003 9.9775e-001 8.8362e-002 9.1164e-001 1.0000e-010 1.0000e-010 1.0145e-002 4.4954e+000 - 4.6000e+000 -9.2321e+000 2.2047e-003 9.9780e-001 8.6660e-002 9.1334e-001 1.0000e-010 1.0000e-010 1.0154e-002 4.5954e+000 - 4.7000e+000 -9.2329e+000 2.1596e-003 9.9784e-001 8.5023e-002 9.1498e-001 1.0000e-010 1.0000e-010 1.0162e-002 4.6954e+000 - 4.8000e+000 -9.2336e+000 2.1164e-003 9.9788e-001 8.3447e-002 9.1655e-001 1.0000e-010 1.0000e-010 1.0170e-002 4.7954e+000 - 4.9000e+000 -9.2344e+000 2.0748e-003 9.9793e-001 8.1929e-002 9.1807e-001 1.0000e-010 1.0000e-010 1.0178e-002 4.8954e+000 - 5.0000e+000 -9.2350e+000 2.0349e-003 9.9797e-001 8.0464e-002 9.1954e-001 1.0000e-010 1.0000e-010 1.0186e-002 4.9954e+000 - 5.1000e+000 -9.2357e+000 1.9965e-003 9.9800e-001 7.9051e-002 9.2095e-001 1.0000e-010 1.0000e-010 1.0193e-002 5.0954e+000 - 5.2000e+000 -9.2363e+000 1.9595e-003 9.9804e-001 7.7687e-002 9.2231e-001 1.0000e-010 1.0000e-010 1.0200e-002 5.1954e+000 - 5.3000e+000 -9.2369e+000 1.9238e-003 9.9808e-001 7.6370e-002 9.2363e-001 1.0000e-010 1.0000e-010 1.0207e-002 5.2954e+000 - 5.4000e+000 -9.2375e+000 1.8895e-003 9.9811e-001 7.5096e-002 9.2490e-001 1.0000e-010 1.0000e-010 1.0214e-002 5.3954e+000 - 5.5000e+000 -9.2381e+000 1.8563e-003 9.9814e-001 7.3864e-002 9.2614e-001 1.0000e-010 1.0000e-010 1.0220e-002 5.4953e+000 - 5.6000e+000 -9.2387e+000 1.8243e-003 9.9818e-001 7.2672e-002 9.2733e-001 1.0000e-010 1.0000e-010 1.0226e-002 5.5953e+000 - 5.7000e+000 -9.2392e+000 1.7934e-003 9.9821e-001 7.1518e-002 9.2848e-001 1.0000e-010 1.0000e-010 1.0232e-002 5.6953e+000 - 5.8000e+000 -9.2397e+000 1.7635e-003 9.9824e-001 7.0400e-002 9.2960e-001 1.0000e-010 1.0000e-010 1.0238e-002 5.7953e+000 - 5.9000e+000 -9.2402e+000 1.7345e-003 9.9827e-001 6.9317e-002 9.3068e-001 1.0000e-010 1.0000e-010 1.0243e-002 5.8953e+000 - 6.0000e+000 -9.2407e+000 1.7066e-003 9.9829e-001 6.8266e-002 9.3173e-001 1.0000e-010 1.0000e-010 1.0249e-002 5.9953e+000 - 6.1000e+000 -9.2412e+000 1.6795e-003 9.9832e-001 6.7247e-002 9.3275e-001 1.0000e-010 1.0000e-010 1.0254e-002 6.0953e+000 - 6.2000e+000 -9.2416e+000 1.6532e-003 9.9835e-001 6.6258e-002 9.3374e-001 1.0000e-010 1.0000e-010 1.0259e-002 6.1953e+000 - 6.3000e+000 -9.2420e+000 1.6278e-003 9.9837e-001 6.5297e-002 9.3470e-001 1.0000e-010 1.0000e-010 1.0264e-002 6.2953e+000 - 6.4000e+000 -9.2425e+000 1.6031e-003 9.9840e-001 6.4364e-002 9.3564e-001 1.0000e-010 1.0000e-010 1.0269e-002 6.3953e+000 - 6.5000e+000 -9.2429e+000 1.5792e-003 9.9842e-001 6.3457e-002 9.3654e-001 1.0000e-010 1.0000e-010 1.0274e-002 6.4953e+000 - 6.6000e+000 -9.2433e+000 1.5560e-003 9.9844e-001 6.2576e-002 9.3742e-001 1.0000e-010 1.0000e-010 1.0278e-002 6.5953e+000 - 6.7000e+000 -9.2437e+000 1.5334e-003 9.9847e-001 6.1718e-002 9.3828e-001 1.0000e-010 1.0000e-010 1.0282e-002 6.6953e+000 - 6.8000e+000 -9.2441e+000 1.5115e-003 9.9849e-001 6.0884e-002 9.3912e-001 1.0000e-010 1.0000e-010 1.0287e-002 6.7953e+000 - 6.9000e+000 -9.2444e+000 1.4902e-003 9.9851e-001 6.0073e-002 9.3993e-001 1.0000e-010 1.0000e-010 1.0291e-002 6.8953e+000 - 7.0000e+000 -9.2448e+000 1.4695e-003 9.9853e-001 5.9282e-002 9.4072e-001 1.0000e-010 1.0000e-010 1.0295e-002 6.9953e+000 - 7.1000e+000 -9.2451e+000 1.4494e-003 9.9855e-001 5.8512e-002 9.4149e-001 1.0000e-010 1.0000e-010 1.0299e-002 7.0953e+000 - 7.2000e+000 -9.2455e+000 1.4298e-003 9.9857e-001 5.7762e-002 9.4224e-001 1.0000e-010 1.0000e-010 1.0303e-002 7.1953e+000 - 7.3000e+000 -9.2458e+000 1.4108e-003 9.9859e-001 5.7031e-002 9.4297e-001 1.0000e-010 1.0000e-010 1.0306e-002 7.2953e+000 - 7.4000e+000 -9.2461e+000 1.3922e-003 9.9861e-001 5.6318e-002 9.4368e-001 1.0000e-010 1.0000e-010 1.0310e-002 7.3953e+000 - 7.5000e+000 -9.2465e+000 1.3741e-003 9.9863e-001 5.5623e-002 9.4438e-001 1.0000e-010 1.0000e-010 1.0314e-002 7.4953e+000 - 7.6000e+000 -9.2468e+000 1.3565e-003 9.9864e-001 5.4944e-002 9.4506e-001 1.0000e-010 1.0000e-010 1.0317e-002 7.5953e+000 - 7.7000e+000 -9.2471e+000 1.3393e-003 9.9866e-001 5.4282e-002 9.4572e-001 1.0000e-010 1.0000e-010 1.0320e-002 7.6953e+000 - 7.8000e+000 -9.2474e+000 1.3226e-003 9.9868e-001 5.3636e-002 9.4636e-001 1.0000e-010 1.0000e-010 1.0324e-002 7.7953e+000 - 7.9000e+000 -9.2476e+000 1.3063e-003 9.9869e-001 5.3005e-002 9.4699e-001 1.0000e-010 1.0000e-010 1.0327e-002 7.8953e+000 - 8.0000e+000 -9.2479e+000 1.2903e-003 9.9871e-001 5.2389e-002 9.4761e-001 1.0000e-010 1.0000e-010 1.0330e-002 7.9953e+000 - 8.1000e+000 -9.2482e+000 1.2748e-003 9.9873e-001 5.1787e-002 9.4821e-001 1.0000e-010 1.0000e-010 1.0333e-002 8.0953e+000 - 8.2000e+000 -9.2485e+000 1.2596e-003 9.9874e-001 5.1199e-002 9.4880e-001 1.0000e-010 1.0000e-010 1.0336e-002 8.1953e+000 - 8.3000e+000 -9.2487e+000 1.2448e-003 9.9876e-001 5.0623e-002 9.4938e-001 1.0000e-010 1.0000e-010 1.0339e-002 8.2953e+000 - 8.4000e+000 -9.2490e+000 1.2303e-003 9.9877e-001 5.0061e-002 9.4994e-001 1.0000e-010 1.0000e-010 1.0342e-002 8.3953e+000 - 8.5000e+000 -9.2492e+000 1.2162e-003 9.9878e-001 4.9511e-002 9.5049e-001 1.0000e-010 1.0000e-010 1.0345e-002 8.4953e+000 - 8.6000e+000 -9.2495e+000 1.2024e-003 9.9880e-001 4.8973e-002 9.5103e-001 1.0000e-010 1.0000e-010 1.0347e-002 8.5953e+000 - 8.7000e+000 -9.2497e+000 1.1889e-003 9.9881e-001 4.8447e-002 9.5155e-001 1.0000e-010 1.0000e-010 1.0350e-002 8.6953e+000 - 8.8000e+000 -9.2499e+000 1.1757e-003 9.9882e-001 4.7931e-002 9.5207e-001 1.0000e-010 1.0000e-010 1.0353e-002 8.7953e+000 - 8.9000e+000 -9.2502e+000 1.1628e-003 9.9884e-001 4.7427e-002 9.5257e-001 1.0000e-010 1.0000e-010 1.0355e-002 8.8953e+000 - 9.0000e+000 -9.2504e+000 1.1501e-003 9.9885e-001 4.6933e-002 9.5307e-001 1.0000e-010 1.0000e-010 1.0358e-002 8.9953e+000 - 9.1000e+000 -9.2506e+000 1.1378e-003 9.9886e-001 4.6449e-002 9.5355e-001 1.0000e-010 1.0000e-010 1.0360e-002 9.0953e+000 - 9.2000e+000 -9.2508e+000 1.1257e-003 9.9887e-001 4.5975e-002 9.5402e-001 1.0000e-010 1.0000e-010 1.0363e-002 9.1953e+000 - 9.3000e+000 -9.2510e+000 1.1138e-003 9.9889e-001 4.5511e-002 9.5449e-001 1.0000e-010 1.0000e-010 1.0365e-002 9.2953e+000 - 9.4000e+000 -9.2512e+000 1.1022e-003 9.9890e-001 4.5056e-002 9.5494e-001 1.0000e-010 1.0000e-010 1.0367e-002 9.3953e+000 - 9.5000e+000 -9.2514e+000 1.0909e-003 9.9891e-001 4.4610e-002 9.5539e-001 1.0000e-010 1.0000e-010 1.0369e-002 9.4953e+000 - 9.6000e+000 -9.2516e+000 1.0797e-003 9.9892e-001 4.4173e-002 9.5583e-001 1.0000e-010 1.0000e-010 1.0372e-002 9.5953e+000 - 9.7000e+000 -9.2518e+000 1.0688e-003 9.9893e-001 4.3744e-002 9.5626e-001 1.0000e-010 1.0000e-010 1.0374e-002 9.6953e+000 - 9.8000e+000 -9.2520e+000 1.0582e-003 9.9894e-001 4.3324e-002 9.5668e-001 1.0000e-010 1.0000e-010 1.0376e-002 9.7953e+000 - 9.9000e+000 -9.2522e+000 1.0477e-003 9.9895e-001 4.2911e-002 9.5709e-001 1.0000e-010 1.0000e-010 1.0378e-002 9.8952e+000 - 1.0000e+001 -9.2524e+000 1.0374e-003 9.9896e-001 4.2507e-002 9.5749e-001 1.0000e-010 1.0000e-010 1.0380e-002 9.9952e+000 diff --git a/examples_pc/ex11.out b/examples_pc/ex11.out deleted file mode 100644 index efb36a86..00000000 --- a/examples_pc/ex11.out +++ /dev/null @@ -1,214 +0,0 @@ - Input file: ..\examples\ex11 - Output file: ex11.out -Database file: ..\database\phreeqc.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - PHASES - EXCHANGE_MASTER_SPECIES - EXCHANGE_SPECIES - SURFACE_MASTER_SPECIES - SURFACE_SPECIES - RATES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Example 11.--Transport and cation exchange. - SOLUTION 0 CaCl2 - units mmol/kgw - temp 25.0 - pH 7.0 charge - pe 12.5 O2(g) -0.68 - Ca 0.6 - Cl 1.2 - SOLUTION 1-40 Initial solution for column - units mmol/kgw - temp 25.0 - pH 7.0 charge - pe 12.5 O2(g) -0.68 - Na 1.0 - K 0.2 - N(5) 1.2 - END ------ -TITLE ------ - - Example 11.--Transport and cation exchange. - -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 0. CaCl2 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 6.000e-004 6.000e-004 - Cl 1.200e-003 1.200e-003 - -----------------------------Description of solution---------------------------- - - pH = 6.995 Charge balance - pe = 13.632 Equilibrium with O2(g) - Specific Conductance (uS/cm, 25 oC) = 155 - Density (g/cm3) = 0.99710 - Volume (L) = 1.00298 - Activity of water = 1.000 - Ionic strength = 1.800e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 6.950e-020 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 4.519e-018 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 4 - Total H = 1.110124e+002 - Total O = 5.550675e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.058e-007 1.012e-007 -6.976 -6.995 -0.019 0.00 - OH- 1.049e-007 1.000e-007 -6.979 -7.000 -0.021 -4.10 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Ca 6.000e-004 - Ca+2 6.000e-004 4.983e-004 -3.222 -3.302 -0.081 -18.10 - CaOH+ 8.569e-010 8.174e-010 -9.067 -9.088 -0.020 (0) -Cl 1.200e-003 - Cl- 1.200e-003 1.144e-003 -2.921 -2.941 -0.021 18.08 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.404 -44.404 0.000 28.61 -O(0) 5.351e-004 - O2 2.675e-004 2.676e-004 -3.573 -3.572 0.000 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - H2(g) -41.30 -44.40 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - O2(g) -0.68 -3.57 -2.89 O2 Pressure 0.2 atm, phi 1.000. - - -Initial solution 1. Initial solution for column - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - K 2.000e-004 2.000e-004 - N(5) 1.200e-003 1.200e-003 - Na 1.000e-003 1.000e-003 - -----------------------------Description of solution---------------------------- - - pH = 6.997 Charge balance - pe = 13.630 Equilibrium with O2(g) - Specific Conductance (uS/cm, 25 oC) = 146 - Density (g/cm3) = 0.99711 - Volume (L) = 1.00301 - Activity of water = 1.000 - Ionic strength = 1.200e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = -9.247e-019 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -9.243e-017 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 3 - Total H = 1.110124e+002 - Total O = 5.551035e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.045e-007 1.007e-007 -6.981 -6.997 -0.016 0.00 - OH- 1.045e-007 1.005e-007 -6.981 -6.998 -0.017 -4.10 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.404 -44.404 0.000 28.61 -K 2.000e-004 - K+ 2.000e-004 1.923e-004 -3.699 -3.716 -0.017 9.01 -N(5) 1.200e-003 - NO3- 1.200e-003 1.154e-003 -2.921 -2.938 -0.017 29.53 -Na 1.000e-003 - Na+ 1.000e-003 9.621e-004 -3.000 -3.017 -0.017 -1.38 - NaOH 9.666e-021 9.668e-021 -20.015 -20.015 0.000 (0) -O(0) 5.351e-004 - O2 2.676e-004 2.676e-004 -3.573 -3.572 0.000 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - H2(g) -41.30 -44.40 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - O2(g) -0.68 -3.57 -2.89 O2 Pressure 0.2 atm, phi 1.000. - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 2. ------------------------------------- - - EXCHANGE 1-40 - equilibrate 1 - X 0.0011 - COPY cell 1 101 - END -------------------------------------------------------- -Beginning of initial exchange-composition calculations. -------------------------------------------------------- - -Exchange 1. - -X 1.100e-003 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 5.507e-004 5.507e-004 5.006e-001 -0.017 - NaX 5.493e-004 5.493e-004 4.994e-001 -0.017 - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 3. ------------------------------------- - - ADVECTION - cells 40 - shifts 100 - punch_cells 40 - punch_frequency 1 - print_cells 40 - print_frequency 20 - PRINT - reset false -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 40. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 40. -SSQD for Cl after 2 Pore Volumes: 7.985703293728e-005 (mmol/L)^2 -------------------------------- -End of Run after 6.718 Seconds. -------------------------------- - diff --git a/examples_pc/ex11adv.sel b/examples_pc/ex11adv.sel deleted file mode 100644 index 4f2f16f6..00000000 --- a/examples_pc/ex11adv.sel +++ /dev/null @@ -1,101 +0,0 @@ - step Na Cl K Ca Pore_vol - 1 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 3.7500e-002 - 2 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 6.2500e-002 - 3 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 8.7500e-002 - 4 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 1.1250e-001 - 5 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 1.3750e-001 - 6 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 1.6250e-001 - 7 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 1.8750e-001 - 8 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 2.1250e-001 - 9 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 2.3750e-001 - 10 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 2.6250e-001 - 11 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 2.8750e-001 - 12 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 3.1250e-001 - 13 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 3.3750e-001 - 14 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 3.6250e-001 - 15 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 3.8750e-001 - 16 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 4.1250e-001 - 17 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 4.3750e-001 - 18 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 4.6250e-001 - 19 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 4.8750e-001 - 20 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 5.1250e-001 - 21 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 5.3750e-001 - 22 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 5.6250e-001 - 23 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 5.8750e-001 - 24 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 6.1250e-001 - 25 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 6.3750e-001 - 26 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 6.6250e-001 - 27 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 6.8750e-001 - 28 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 7.1250e-001 - 29 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 7.3750e-001 - 30 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 7.6250e-001 - 31 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 7.8750e-001 - 32 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 8.1250e-001 - 33 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 8.3750e-001 - 34 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 8.6250e-001 - 35 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 8.8750e-001 - 36 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 9.1250e-001 - 37 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 9.3750e-001 - 38 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 9.6250e-001 - 39 1.0000e-003 0.0000e+000 2.0000e-004 0.0000e+000 9.8750e-001 - 40 1.0000e-003 1.2000e-003 2.0000e-004 0.0000e+000 1.0125e+000 - 41 1.0000e-003 1.2000e-003 2.0000e-004 0.0000e+000 1.0375e+000 - 42 1.0000e-003 1.2000e-003 2.0000e-004 0.0000e+000 1.0625e+000 - 43 1.0000e-003 1.2000e-003 2.0000e-004 0.0000e+000 1.0875e+000 - 44 1.0000e-003 1.2000e-003 2.0000e-004 0.0000e+000 1.1125e+000 - 45 1.0000e-003 1.2000e-003 2.0000e-004 0.0000e+000 1.1375e+000 - 46 1.0000e-003 1.2000e-003 2.0000e-004 0.0000e+000 1.1625e+000 - 47 1.0000e-003 1.2000e-003 2.0000e-004 0.0000e+000 1.1875e+000 - 48 1.0000e-003 1.2000e-003 2.0000e-004 0.0000e+000 1.2125e+000 - 49 1.0000e-003 1.2000e-003 2.0000e-004 0.0000e+000 1.2375e+000 - 50 1.0000e-003 1.2000e-003 2.0000e-004 0.0000e+000 1.2625e+000 - 51 1.0000e-003 1.2000e-003 2.0000e-004 0.0000e+000 1.2875e+000 - 52 1.0000e-003 1.2000e-003 2.0000e-004 0.0000e+000 1.3125e+000 - 53 1.0000e-003 1.2000e-003 2.0000e-004 0.0000e+000 1.3375e+000 - 54 9.9998e-004 1.2000e-003 2.0002e-004 0.0000e+000 1.3625e+000 - 55 9.9993e-004 1.2000e-003 2.0007e-004 0.0000e+000 1.3875e+000 - 56 9.9969e-004 1.2000e-003 2.0031e-004 0.0000e+000 1.4125e+000 - 57 9.9860e-004 1.2000e-003 2.0140e-004 0.0000e+000 1.4375e+000 - 58 9.9376e-004 1.2000e-003 2.0624e-004 0.0000e+000 1.4625e+000 - 59 9.7266e-004 1.2000e-003 2.2734e-004 0.0000e+000 1.4875e+000 - 60 8.8947e-004 1.2000e-003 3.1053e-004 0.0000e+000 1.5125e+000 - 61 6.5396e-004 1.2000e-003 5.4604e-004 0.0000e+000 1.5375e+000 - 62 3.1876e-004 1.2000e-003 8.8124e-004 0.0000e+000 1.5625e+000 - 63 1.0663e-004 1.2000e-003 1.0934e-003 0.0000e+000 1.5875e+000 - 64 2.9829e-005 1.2000e-003 1.1702e-003 0.0000e+000 1.6125e+000 - 65 7.8763e-006 1.2000e-003 1.1921e-003 1.2216e-027 1.6375e+000 - 66 2.0460e-006 1.2000e-003 1.1980e-003 1.8112e-025 1.6625e+000 - 67 5.2878e-007 1.2000e-003 1.1995e-003 2.6557e-023 1.6875e+000 - 68 1.3629e-007 1.2000e-003 1.1999e-003 3.9376e-021 1.7125e+000 - 69 3.5021e-008 1.2000e-003 1.2000e-003 5.8912e-019 1.7375e+000 - 70 8.9558e-009 1.2000e-003 1.2000e-003 8.8181e-017 1.7625e+000 - 71 2.2719e-009 1.2000e-003 1.2000e-003 1.3080e-014 1.7875e+000 - 72 5.6835e-010 1.2000e-003 1.2000e-003 1.9126e-012 1.8125e+000 - 73 1.3869e-010 1.2000e-003 1.2000e-003 2.7576e-010 1.8375e+000 - 74 3.2281e-011 1.2000e-003 1.1999e-003 3.9374e-008 1.8625e+000 - 75 6.7673e-012 1.2000e-003 1.1890e-003 5.4946e-006 1.8875e+000 - 76 8.0510e-013 1.2000e-003 7.0494e-004 2.4753e-004 1.9125e+000 - 77 2.1968e-014 1.2000e-003 9.6078e-005 5.5196e-004 1.9375e+000 - 78 4.1771e-016 1.2000e-003 9.1268e-006 5.9544e-004 1.9625e+000 - 79 7.6748e-018 1.2000e-003 8.3782e-007 5.9958e-004 1.9875e+000 - 80 1.4057e-019 1.2000e-003 7.6671e-008 5.9996e-004 2.0125e+000 - 81 2.5740e-021 1.2000e-003 7.0147e-009 6.0000e-004 2.0375e+000 - 82 4.7052e-023 1.2000e-003 6.4179e-010 6.0000e-004 2.0625e+000 - 83 8.2642e-025 1.2000e-003 5.8721e-011 6.0000e-004 2.0875e+000 - 84 0.0000e+000 1.2000e-003 5.3731e-012 6.0000e-004 2.1125e+000 - 85 0.0000e+000 1.2000e-003 4.9168e-013 6.0000e-004 2.1375e+000 - 86 0.0000e+000 1.2000e-003 4.4995e-014 6.0000e-004 2.1625e+000 - 87 0.0000e+000 1.2000e-003 4.1178e-015 6.0000e-004 2.1875e+000 - 88 0.0000e+000 1.2000e-003 3.7688e-016 6.0000e-004 2.2125e+000 - 89 0.0000e+000 1.2000e-003 3.4497e-017 6.0000e-004 2.2375e+000 - 90 0.0000e+000 1.2000e-003 3.1579e-018 6.0000e-004 2.2625e+000 - 91 0.0000e+000 1.2000e-003 2.8916e-019 6.0000e-004 2.2875e+000 - 92 0.0000e+000 1.2000e-003 2.6481e-020 6.0000e-004 2.3125e+000 - 93 0.0000e+000 1.2000e-003 2.4260e-021 6.0000e-004 2.3375e+000 - 94 0.0000e+000 1.2000e-003 2.2286e-022 6.0000e-004 2.3625e+000 - 95 0.0000e+000 1.2000e-003 2.0929e-023 6.0000e-004 2.3875e+000 - 96 0.0000e+000 1.2000e-003 1.9254e-024 6.0000e-004 2.4125e+000 - 97 0.0000e+000 1.2000e-003 1.5833e-025 6.0000e-004 2.4375e+000 - 98 0.0000e+000 1.2000e-003 0.0000e+000 6.0000e-004 2.4625e+000 - 99 0.0000e+000 1.2000e-003 0.0000e+000 6.0000e-004 2.4875e+000 - 100 0.0000e+000 1.2000e-003 0.0000e+000 6.0000e-004 2.5125e+000 diff --git a/examples_pc/ex11trn.sel b/examples_pc/ex11trn.sel deleted file mode 100644 index 0dcee7f2..00000000 --- a/examples_pc/ex11trn.sel +++ /dev/null @@ -1,102 +0,0 @@ - step Na Cl K Ca Pore_vol - 0 1.000000000001e-003 0.000000000000e+000 2.000000000001e-004 0.000000000000e+000 1.250000000000e-002 - 1 1.000000000001e-003 0.000000000000e+000 2.000000000001e-004 0.000000000000e+000 3.750000000000e-002 - 2 1.000000000001e-003 0.000000000000e+000 2.000000000001e-004 0.000000000000e+000 6.250000000000e-002 - 3 1.000000000001e-003 0.000000000000e+000 2.000000000001e-004 0.000000000000e+000 8.750000000000e-002 - 4 1.000000000001e-003 0.000000000000e+000 2.000000000001e-004 0.000000000000e+000 1.125000000000e-001 - 5 1.000000000001e-003 0.000000000000e+000 2.000000000001e-004 0.000000000000e+000 1.375000000000e-001 - 6 1.000000000001e-003 0.000000000000e+000 2.000000000001e-004 0.000000000000e+000 1.625000000000e-001 - 7 1.000000000001e-003 0.000000000000e+000 2.000000000001e-004 0.000000000000e+000 1.875000000000e-001 - 8 1.000000000001e-003 3.099695935216e-022 2.000000000001e-004 0.000000000000e+000 2.125000000000e-001 - 9 1.000000000001e-003 1.500932742251e-017 2.000000000001e-004 0.000000000000e+000 2.375000000000e-001 - 10 1.000000000001e-003 6.337810922006e-015 2.000000000001e-004 0.000000000000e+000 2.625000000000e-001 - 11 1.000000000001e-003 4.494806192987e-013 2.000000000001e-004 0.000000000000e+000 2.875000000000e-001 - 12 1.000000000001e-003 1.148716183077e-011 2.000000000001e-004 0.000000000000e+000 3.125000000000e-001 - 13 1.000000000001e-003 1.502206811162e-010 2.000000000001e-004 0.000000000000e+000 3.375000000000e-001 - 14 1.000000000001e-003 1.222542811929e-009 2.000000000001e-004 0.000000000000e+000 3.625000000000e-001 - 15 1.000000000001e-003 6.992469583308e-009 2.000000000001e-004 0.000000000000e+000 3.875000000000e-001 - 16 1.000000000001e-003 3.048043440204e-008 2.000000000001e-004 0.000000000000e+000 4.125000000000e-001 - 17 1.000000000001e-003 1.071736884873e-007 2.000000000001e-004 0.000000000000e+000 4.375000000000e-001 - 18 1.000000000000e-003 3.167880505853e-007 2.000000000002e-004 0.000000000000e+000 4.625000000000e-001 - 19 1.000000000000e-003 8.119152403754e-007 2.000000000007e-004 0.000000000000e+000 4.875000000000e-001 - 20 9.999999999972e-004 1.847753783998e-006 2.000000000035e-004 0.000000000000e+000 5.125000000000e-001 - 21 9.999999999830e-004 3.804229075472e-006 2.000000000176e-004 0.000000000000e+000 5.375000000000e-001 - 22 9.999999999208e-004 7.191769366241e-006 2.000000000797e-004 0.000000000000e+000 5.625000000000e-001 - 23 9.999999996781e-004 1.263506022269e-005 2.000000003223e-004 0.000000000000e+000 5.875000000000e-001 - 24 9.999999988273e-004 2.083413717052e-005 2.000000011729e-004 0.000000000000e+000 6.125000000000e-001 - 25 9.999999961122e-004 3.250742767477e-005 2.000000038878e-004 0.000000000000e+000 6.375000000000e-001 - 26 9.999999881427e-004 4.832522920501e-005 2.000000118569e-004 0.000000000000e+000 6.625000000000e-001 - 27 9.999999664319e-004 6.884373211786e-005 2.000000335672e-004 0.000000000000e+000 6.875000000000e-001 - 28 9.999999111043e-004 9.444901160170e-005 2.000000888942e-004 0.000000000000e+000 7.125000000000e-001 - 29 9.999997782999e-004 1.253179893804e-004 2.000002216979e-004 0.000000000000e+000 7.375000000000e-001 - 30 9.999994762263e-004 1.614000573128e-004 2.000005237707e-004 0.000000000000e+000 7.625000000000e-001 - 31 9.999988216501e-004 2.024196971827e-004 2.000011783459e-004 0.000000000000e+000 7.875000000000e-001 - 32 9.999974639175e-004 2.478976466357e-004 2.000025360775e-004 0.000000000000e+000 8.125000000000e-001 - 33 9.999947567692e-004 2.971862880203e-004 2.000052432246e-004 0.000000000000e+000 8.375000000000e-001 - 34 9.999895484274e-004 3.495140484271e-004 2.000104515652e-004 0.000000000000e+000 8.625000000000e-001 - 35 9.999798465382e-004 4.040335770958e-004 2.000201534531e-004 0.000000000000e+000 8.875000000000e-001 - 36 9.999622949284e-004 4.598690859738e-004 2.000377050616e-004 0.000000000000e+000 9.125000000000e-001 - 37 9.999313715113e-004 5.161592448413e-004 2.000686284774e-004 0.000000000000e+000 9.375000000000e-001 - 38 9.998781779374e-004 5.720931802481e-004 2.001218220501e-004 0.000000000000e+000 9.625000000000e-001 - 39 9.997886375303e-004 6.269382550201e-004 2.002113624559e-004 0.000000000000e+000 9.875000000000e-001 - 40 9.996408433271e-004 6.800592808306e-004 2.003591566578e-004 0.000000000000e+000 1.012500000000e+000 - 41 9.994011963729e-004 7.309295762310e-004 2.005988036109e-004 0.000000000000e+000 1.037500000000e+000 - 42 9.990188398101e-004 7.791348087954e-004 2.009811601725e-004 0.000000000000e+000 1.062500000000e+000 - 43 9.984177243126e-004 8.243708674738e-004 2.015822756690e-004 0.000000000000e+000 1.087500000000e+000 - 44 9.974854440168e-004 8.664371340722e-004 2.025145559638e-004 0.000000000000e+000 1.112500000000e+000 - 45 9.960577965258e-004 9.052265038214e-004 2.039422034539e-004 0.000000000000e+000 1.137500000000e+000 - 46 9.938979448316e-004 9.407133877474e-004 2.061020551473e-004 0.000000000000e+000 1.162500000000e+000 - 47 9.906693148669e-004 9.729407531490e-004 2.093306851112e-004 0.000000000000e+000 1.187500000000e+000 - 48 9.859023902705e-004 1.002007055045e-003 2.140976097070e-004 0.000000000000e+000 1.212500000000e+000 - 49 9.789581361193e-004 1.028053705196e-003 2.210418638576e-004 0.000000000000e+000 1.237500000000e+000 - 50 9.689960048222e-004 1.051253532900e-003 2.310039951541e-004 0.000000000000e+000 1.262500000000e+000 - 51 9.549633447186e-004 1.071800523378e-003 2.450366552573e-004 0.000000000000e+000 1.287500000000e+000 - 52 9.356347670748e-004 1.089900980030e-003 2.643652329006e-004 0.000000000000e+000 1.312500000000e+000 - 53 9.097384638197e-004 1.105766147279e-003 2.902615361554e-004 0.000000000000e+000 1.337500000000e+000 - 54 8.761960899943e-004 1.119606249492e-003 3.238039099805e-004 0.000000000000e+000 1.362500000000e+000 - 55 8.344533301387e-004 1.131625845338e-003 3.655466698358e-004 0.000000000000e+000 1.387500000000e+000 - 56 7.847919650465e-004 1.142020362045e-003 4.152080349277e-004 0.000000000000e+000 1.412500000000e+000 - 57 7.284538372957e-004 1.150973656035e-003 4.715461626783e-004 3.527692741319e-028 1.437500000000e+000 - 58 6.674661295234e-004 1.158656441393e-003 5.325338704504e-004 4.210831831453e-026 1.462500000000e+000 - 59 6.042301758585e-004 1.165225432016e-003 5.957698241152e-004 2.111264373326e-024 1.487500000000e+000 - 60 5.410707042909e-004 1.170823053923e-003 6.589292956826e-004 9.153155082440e-023 1.512500000000e+000 - 61 4.799177066713e-004 1.175577598779e-003 7.200822933022e-004 3.514330819332e-021 1.537500000000e+000 - 62 4.221746364525e-004 1.179603706071e-003 7.778253635208e-004 1.207213311877e-019 1.562500000000e+000 - 63 3.687296865692e-004 1.183003078325e-003 8.312703134040e-004 3.694071117279e-018 1.587500000000e+000 - 64 3.200378094467e-004 1.185865350144e-003 8.799621905262e-004 1.035721708115e-016 1.612500000000e+000 - 65 2.762284431582e-004 1.188269047043e-003 9.237715568096e-004 2.657316464038e-015 1.637500000000e+000 - 66 2.371960440987e-004 1.190282583741e-003 9.628039557489e-004 6.272120644407e-014 1.662500000000e+000 - 67 2.026802660672e-004 1.191965263409e-003 9.973197310975e-004 1.404108201922e-012 1.687500000000e+000 - 68 1.723175379747e-004 1.193368249524e-003 1.027682402579e-003 2.970943171749e-011 1.712500000000e+000 - 69 1.456986526359e-004 1.194535490348e-003 1.054300174199e-003 5.865691823966e-010 1.737500000000e+000 - 70 1.223834694918e-004 1.195504582883e-003 1.077593516921e-003 1.150677987014e-008 1.762500000000e+000 - 71 1.019262303177e-004 1.196307568530e-003 1.097657241054e-003 2.082643003519e-007 1.787500000000e+000 - 72 8.381480436881e-005 1.196971656898e-003 1.109525476374e-003 3.329859614993e-006 1.812500000000e+000 - 73 6.668225222801e-005 1.197519877321e-003 1.024937206827e-003 5.419027046048e-005 1.837500000000e+000 - 74 5.053198367582e-005 1.197971659937e-003 7.350507107303e-004 2.072086527883e-004 1.862500000000e+000 - 75 3.879701357350e-005 1.198343349752e-003 5.356918142845e-004 3.127555860648e-004 1.887500000000e+000 - 76 3.007678322670e-005 1.198648658204e-003 4.021188008103e-004 3.839022079768e-004 1.912500000000e+000 - 77 2.344463549430e-005 1.198899057198e-003 3.068522371389e-004 4.348515636799e-004 1.937500000000e+000 - 78 1.834047972256e-005 1.199104120993e-003 2.366187847907e-004 4.725203677407e-004 1.962500000000e+000 - 79 1.438416333535e-005 1.199271821252e-003 1.838015689043e-004 5.009071338781e-004 1.987500000000e+000 - 80 1.130287552711e-005 1.199408780437e-003 1.435541337109e-004 5.225714953794e-004 2.012500000000e+000 - 81 8.894854153711e-006 1.199520488471e-003 1.125953626036e-004 5.392548916201e-004 2.037500000000e+000 - 82 7.008145850465e-006 1.199611487222e-003 8.861328634960e-005 5.521892838990e-004 2.062500000000e+000 - 83 5.526939767580e-006 1.199685527005e-003 6.993373976949e-005 5.622696602307e-004 2.087500000000e+000 - 84 4.362237388404e-006 1.199745698858e-003 5.532050326425e-005 5.701586296731e-004 2.112500000000e+000 - 85 3.445231625382e-006 1.199794545990e-003 4.384740221976e-005 5.763536830769e-004 2.137500000000e+000 - 86 2.722483623308e-006 1.199834157394e-003 3.481279240958e-005 5.812323619832e-004 2.162500000000e+000 - 87 2.152343733976e-006 1.199866246232e-003 2.768046311915e-005 5.850835965731e-004 2.187500000000e+000 - 88 1.702259901847e-006 1.199892215323e-003 2.203774543333e-005 5.881299973322e-004 2.212500000000e+000 - 89 1.346733078473e-006 1.199913211686e-003 1.756522033457e-005 5.905440232933e-004 2.237500000000e+000 - 90 1.065752199178e-006 1.199930171882e-003 1.401446577099e-005 5.924598910148e-004 2.262500000000e+000 - 91 8.435890596762e-007 1.199943859609e-003 1.119149962938e-005 5.939824556553e-004 2.287500000000e+000 - 92 6.678659093891e-007 1.199954896813e-003 8.944331671077e-006 5.951939012097e-004 2.312500000000e+000 - 93 5.288312745244e-007 1.199963789378e-003 7.153523666312e-006 5.961588225295e-004 2.337500000000e+000 - 94 4.187957413792e-007 1.199970948301e-003 5.724978919780e-006 5.969281126694e-004 2.362500000000e+000 - 95 3.316912255868e-007 1.199976707113e-003 4.584400973310e-006 5.975419539005e-004 2.387500000000e+000 - 96 2.627259549300e-007 1.199981336185e-003 3.673012860394e-006 5.980321305923e-004 2.412500000000e+000 - 97 2.081138873747e-007 1.199985054462e-003 2.944235323438e-006 5.984238253946e-004 2.437500000000e+000 - 98 1.648621779638e-007 1.199988039067e-003 2.361099156253e-006 5.987370193329e-004 2.462500000000e+000 - 99 1.306040218440e-007 1.199990433149e-003 1.894222603352e-006 5.989875866874e-004 2.487500000000e+000 - 100 1.034670378514e-007 1.199992352295e-003 1.520225735430e-006 5.991881536133e-004 2.512500000000e+000 diff --git a/examples_pc/ex12.out b/examples_pc/ex12.out deleted file mode 100644 index f2125598..00000000 --- a/examples_pc/ex12.out +++ /dev/null @@ -1,58 +0,0 @@ - Input file: ..\examples\ex12 - Output file: ex12.out -Database file: ..\database\phreeqc.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - PHASES - EXCHANGE_MASTER_SPECIES - EXCHANGE_SPECIES - SURFACE_MASTER_SPECIES - SURFACE_SPECIES - RATES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Example 12.--Advective and diffusive transport of heat and solutes. - Two different boundary conditions at column ends. - After diffusion temperature should equal Na-conc in mmol/l. - SOLUTION 0 24.0 mM KNO3 - units mol/kgw - temp 0 # Incoming solution 0C - pH 7.0 - pe 12.0 O2(g) -0.67 - K 24.e-3 - N(5) 24.e-3 - SOLUTION 1-60 0.001 mM KCl - units mol/kgw - temp 25 # Column is at 25C - pH 7.0 - pe 12.0 O2(g) -0.67 - K 1e-6 - Cl 1e-6 - EXCHANGE_SPECIES - Na+ + X- = NaX - log_k 0.0 - gamma 4.0 0.075 - H+ + X- = HX - log_k -99. - gamma 9.0 0.0 - K+ + X- = KX - log_k 0.0 - gamma 3.5 0.015 - EXCHANGE 1-60 - KX 0.048 - PRINT - reset false -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 60. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 60. -------------------------------- -End of Run after 2.971 Seconds. -------------------------------- - diff --git a/examples_pc/ex12.sel b/examples_pc/ex12.sel deleted file mode 100644 index 390f190c..00000000 --- a/examples_pc/ex12.sel +++ /dev/null @@ -1,124 +0,0 @@ - dist_x temp Na_mmol K_mmol Cl_mmol - -99 2.400000000000e+001 2.400000000000e+001 0.000000000000e+000 2.400000000000e+001 - -99 2.400000000000e+001 2.400000000000e+001 0.000000000000e+000 2.400000000000e+001 - -99 2.400000000000e+001 2.400000000000e+001 0.000000000000e+000 2.400000000000e+001 - 0.166667 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 0.499999 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 0.833333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 1.16667 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 1.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 1.83333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 2.16666 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 2.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 2.83333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 3.16666 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 3.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 3.83333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 4.16666 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 4.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 4.83333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 5.16666 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 5.49999 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 5.83333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 6.16666 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 6.49999 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 6.83333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 7.16666 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 7.49999 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 7.83333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 8.16666 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 8.49999 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 8.83332 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 9.16666 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 9.49999 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 9.83332 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 10.1667 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 10.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 10.8333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 11.1667 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 11.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 11.8333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 12.1667 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 12.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 12.8333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 13.1667 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 13.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 13.8333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 14.1667 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 14.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 14.8333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 15.1667 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 15.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 15.8333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 16.1667 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 16.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 16.8333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 17.1666 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 17.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 17.8333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 18.1666 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 18.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 18.8333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 19.1666 2.400000000000e+001 2.400000000000e+001 0.000000000000e+000 2.400000000000e+001 - 19.5 2.400000000000e+001 2.400000000000e+001 0.000000000000e+000 2.400000000000e+001 - 19.8333 2.400000000000e+001 2.400000000000e+001 0.000000000000e+000 2.400000000000e+001 - 0.166667 2.173421535788e+001 2.173403615953e+001 2.265963837555e+000 2.269804797032e+001 - 0.499999 1.732877881413e+001 1.732819001087e+001 6.671809981454e+000 2.011807085411e+001 - 0.833333 1.328084086748e+001 1.327978568452e+001 1.072021430460e+001 1.760856603201e+001 - 1.16667 9.764795286473e+000 9.763307030562e+000 1.423669295684e+001 1.521227157403e+001 - 1.5 6.876991640216e+000 6.875215357889e+000 1.712478462909e+001 1.296595961048e+001 - 1.83333 4.633455928133e+000 4.631602980036e+000 1.936839700748e+001 1.089879733960e+001 - 2.16666 2.983966658034e+000 2.982242889554e+000 2.101775709911e+001 9.031344427758e+000 - 2.5 1.835677067050e+000 1.834226374329e+000 2.216577361581e+001 7.375229710892e+000 - 2.83333 1.078314727713e+000 1.077198297055e+000 2.292280169465e+001 5.933476222831e+000 - 3.16666 6.047305557783e-001 6.039382767761e-001 2.339606171644e+001 4.701379781811e+000 - 3.5 3.237709470080e-001 3.232490525503e-001 2.367675094204e+001 3.667800399947e+000 - 3.83333 1.655104664086e-001 1.651896627897e-001 2.383481033299e+001 2.816701882840e+000 - 4.16666 8.080257204240e-002 8.061777228930e-002 2.391938222449e+001 2.128773573943e+000 - 4.5 3.768568646672e-002 3.758557520054e-002 2.396241442239e+001 1.582986272151e+000 - 4.83333 1.679767756894e-002 1.674652868007e-002 2.398325346955e+001 1.157966472261e+000 - 5.16666 7.158752063679e-003 7.134045497620e-003 2.399286595322e+001 8.331126368287e-001 - 5.49999 2.918449214332e-003 2.907143227833e-003 2.399709285586e+001 5.894176946317e-001 - 5.83333 1.138722696040e-003 1.133812458916e-003 2.399886618691e+001 4.099979928610e-001 - 6.16666 4.254688736287e-004 4.234417516094e-004 2.399957655782e+001 2.803568840115e-001 - 6.49999 1.523139982618e-004 1.515173747096e-004 2.399984848233e+001 1.884293356558e-001 - 6.83333 5.227267557720e-005 5.197429139395e-005 2.399994802552e+001 1.244625136568e-001 - 7.16666 1.720732480116e-005 1.710067670520e-005 2.399998289920e+001 8.078763518345e-002 - 7.49999 5.436192373459e-006 5.399779934586e-006 2.399999460014e+001 5.153271367641e-002 - 7.83333 1.649130959657e-006 1.637243309840e-006 2.399999836271e+001 3.231654723603e-002 - 8.16666 4.806491381349e-007 4.769346821472e-007 2.399999952303e+001 1.995365519780e-002 - 8.49999 1.346725366297e-007 1.335606126723e-007 2.399999986642e+001 1.218958904147e-002 - 8.83332 3.634765898121e-008 3.602791823423e-008 2.399999996396e+001 7.477287155023e-003 - 9.16666 9.688623034758e-009 9.597779740065e-009 2.399999999039e+001 4.798487469932e-003 - 9.49999 3.521368975345e-009 3.486220156105e-009 2.399999999651e+001 3.529761276500e-003 - 9.83332 5.266906600210e-009 5.215746665698e-009 2.399999999478e+001 3.350250040814e-003 - 10.1667 1.826871464229e-008 1.810246236093e-008 2.399999998189e+001 4.187235208024e-003 - 10.5 6.734356349056e-008 6.676736130756e-008 2.399999993322e+001 6.195716013747e-003 - 10.8333 2.402639314420e-007 2.383343344210e-007 2.399999976165e+001 9.768664012917e-003 - 11.1667 8.242843018529e-007 8.180891038318e-007 2.399999918189e+001 1.557505013534e-002 - 11.5 2.716922549622e-006 2.697877246438e-006 2.399999730208e+001 2.462264894634e-002 - 11.8333 8.598959192629e-006 8.542946811720e-006 2.399999145699e+001 3.834165440468e-002 - 12.1667 2.611819663843e-005 2.596074261954e-005 2.399997403917e+001 5.868305693641e-002 - 12.5 7.608967015818e-005 7.566701713315e-005 2.399992433285e+001 8.822247450093e-002 - 12.8333 2.124941138159e-004 2.114118443699e-004 2.399978858795e+001 1.302558794728e-001 - 13.1667 5.685367828663e-004 5.658959578912e-004 2.399943410375e+001 1.888688939336e-001 - 13.5 1.456506511045e-003 1.450373186455e-003 2.399854962640e+001 2.689568433448e-001 - 13.8333 3.570772369452e-003 3.557230844913e-003 2.399644276858e+001 3.761696764497e-001 - 14.1667 8.372702446682e-003 8.344318206136e-003 2.399165568100e+001 5.167554989985e-001 - 14.5 1.876668623423e-002 1.871028305844e-002 2.398128971588e+001 6.972801618689e-001 - 14.8333 4.018855158439e-002 4.008246068967e-002 2.395991753791e+001 9.242091443375e-001 - 15.1667 8.218587185627e-002 8.199729505439e-002 2.391800270314e+001 1.203352315082e+000 - 15.5 1.604262488969e-001 1.601100284622e-001 2.383988996926e+001 1.539191520807e+000 - 15.8333 2.987859018573e-001 2.982865096982e-001 2.370171348749e+001 1.934133647610e+000 - 16.1667 5.307585250720e-001 5.300169112808e-001 2.346998308535e+001 2.387754908516e+000 - 16.5 8.989956902916e-001 8.979611507920e-001 2.310203884529e+001 2.896121734262e+000 - 16.8333 1.451582042996e+000 1.450226361435e+000 2.254977363415e+001 3.451285434097e+000 - 17.1666 2.233972730862e+000 2.232300602858e+000 2.176769939235e+001 4.041047732556e+000 - 17.5 3.276610346604e+000 3.274658958315e+000 2.072534103672e+001 4.649079608372e+000 - 17.8333 4.580032365347e+000 4.577856581102e+000 1.942214341403e+001 5.255445898750e+000 - 18.1666 6.101263069883e+000 6.098911107783e+000 1.790108888776e+001 5.837544906620e+000 - 18.5 7.746550873541e+000 7.744044086566e+000 1.625595590971e+001 6.371420572377e+000 - 18.8333 9.375124349924e+000 9.372456106620e+000 1.462754389061e+001 6.833351769762e+000 - 19.1666 1.081616435699e+001 1.081332243661e+001 1.318667756165e+001 7.201577340309e+000 - 19.5 1.189711477283e+001 1.189411416970e+001 1.210588582944e+001 7.457984760702e+000 - 19.8333 1.247718192302e+001 1.247408415259e+001 1.152591584704e+001 7.589581188880e+000 diff --git a/examples_pc/ex12a.out b/examples_pc/ex12a.out deleted file mode 100644 index 291af88a..00000000 --- a/examples_pc/ex12a.out +++ /dev/null @@ -1,171 +0,0 @@ - Input file: ..\examples\ex12a - Output file: ex12a.out -Database file: ..\database\phreeqc.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - PHASES - EXCHANGE_MASTER_SPECIES - EXCHANGE_SPECIES - SURFACE_MASTER_SPECIES - SURFACE_SPECIES - RATES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Example 12a.--Advective and diffusive transport of heat and solutes. - Constant boundary condition at one end, closed at other. - The problem is designed so that temperature should equal Na-conc - (in mmol/kgw) after diffusion. Compares with analytical solution - for 20-cell and 60-cell models. - EXCHANGE_SPECIES - Na+ + X- = NaX - log_k 0.0 - gamma 4.0 0.075 - H+ + X- = HX - log_k -99. - gamma 9.0 0.0 - K+ + X- = KX - log_k 0.0 - gamma 3.5 0.015 - SOLUTION 0 Fixed temp 24C, and NaCl conc (first type boundary cond) at inlet - units mol/kgw - temp 24 - pH 7.0 - pe 12.0 O2(g) -0.67 - Na 24.e-3 - Cl 24.e-3 - SOLUTION 1-19 24.0 mM KNO3 - units mol/kgw - temp 0 # Incoming solution 0C - pH 7.0 - pe 12.0 O2(g) -0.67 - K 24.e-3 - N(5) 24.e-3 - EXCHANGE 1-19 - KX 0.048 - SOLUTION 20 Same as soln 0 in cell 20 at closed column end (second type boundary cond) - units mol/kgw - temp 24 - pH 7.0 - pe 12.0 O2(g) -0.67 - Na 24.e-3 - Cl 24.e-3 - EXCHANGE 20 - NaX 0.048 - PRINT - reset false - status false - COPY solution 20 58-60 # for 60-cell model - COPY exchange 20 58-60 # for 60-cell model - END - TRANSPORT # Diffuse 24C, NaCl solution from column ends - cells 20 - shifts 1 - flow_direction diffusion - boundary_conditions constant closed - lengths 1.0 - thermal_diffusion 3.0 # Heat is retarded equal to Na - dispersivities 0.0 # No dispersion - diffusion_coefficient 0.3e-9 # m^2/s - time_step 1.0e+10 # 317 years, 19 substeps will be used - SELECTED_OUTPUT -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. - file ex12a.sel - high_precision true - reset false - distance true - temperature true - USER_PUNCH - heading Na_mmol K_mmol Cl_mmol error_Cl error_Na - 10 PUNCH TOT("Na")*1000, TOT("K")*1000, TOT("Cl")*1000 - 20 x = DIST - 30 if (x > 8.5 OR SIM_TIME <= 0) THEN END - 40 IF (ABS(x MOD 0.5) > 1e-3) OR (TC <= 0) THEN END - 50 DATA 0.254829592, -0.284496736, 1.421413741, -1.453152027, 1.061405429, 0.3275911 - 60 READ a1, a2, a3, a4, a5, a6 - 70 REM calculate error in Cl - 80 z = x / (2*SQRT(3e-10 * SIM_TIME / 1.0)) - 90 GOSUB 2000 # erfc(z)... - 100 erfc_Cl = erfc - 110 REM calculate error in Na, 3 times retarded - 120 z = z * SQRT(3.0) - 130 GOSUB 2000 # erfc(z)... - 140 erfc_Na = erfc - 150 REM punch results - 160 error_Cl = 0.024 * erfc_Cl - TOT("Cl") - 170 error_Na = 0.024 * erfc_Na - TOT("Na") - 180 PUNCH error_Cl, error_Na - 190 REM store results - 200 j = x - 0.5 - 210 PUT(error_Cl, SIM_NO, j, 1) - 220 PUT(error_Na, SIM_NO, j, 2) - 500 END - 2000 REM calculate erfc... - 2050 b = 1 / (1 + a6 * z) - 2060 erfc = b * (a1 + b * (a2 + b * (a3 + b * (a4 + b * a5)))) * EXP(-(z * z)) - 2080 RETURN - END - SELECTED_OUTPUT - user_punch false - SOLUTION 1-57 24.0 mM KNO3 - units mol/kgw - temp 0 # Incoming solution 0C - pH 7.0 - pe 12.0 O2(g) -0.67 - K 24.e-3 - N(5) 24.e-3 - EXCHANGE 1-57 - KX 0.048 - END - TRANSPORT # no need to redefine parameters that don't change from 20 cell model - cells 60 - lengths 0.33333333333333333 - punch_cells 1-60 - SELECTED_OUTPUT -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 60. -WARNING: No dispersivities were read; disp = 0 assumed. - user_punch true - END - SOLUTION # Initial solution calculation for pure water - PRINT - reset false # Initial solution calculation not printed - user_print true - SELECTED_OUTPUT - high_precision false # Controls precision for USER_PRINT too. - USER_PRINT - 10 PRINT " Error in Cl concentration Error in Na concentration" - 20 PRINT " ------------------------- -------------------------" - 30 PRINT " Distance 20-cell 60-cell 20-cell 60-cell" - 40 PRINT " " - 50 FOR j = 0 TO 8 - 60 PRINT j + 0.5, GET(2, j, 1), GET(4, j, 1), GET(2, j, 2), GET(4, j, 2) - 70 NEXT j - END -----------------------------------User print----------------------------------- - - Error in Cl concentration Error in Na concentration - ------------------------- ------------------------- - Distance 20-cell 60-cell 20-cell 60-cell - - 5.0000e-001 4.3817e-006 9.0009e-008 5.0683e-004 3.9986e-005 - 1.5000e+000 1.7304e-005 1.0407e-006 5.1271e-004 5.7063e-005 - 2.5000e+000 3.5613e-005 3.2028e-006 9.1860e-005 1.6175e-005 - 3.5000e+000 4.9599e-005 5.2170e-006 -3.6825e-005 -3.3665e-006 - 4.5000e+000 5.0063e-005 5.6393e-006 -1.9684e-005 -2.4769e-006 - 5.5000e+000 3.8208e-005 4.4560e-006 -4.0513e-006 -4.9123e-007 - 6.5000e+000 2.2627e-005 2.6979e-006 -4.8731e-007 -4.8141e-008 - 7.5000e+000 1.0547e-005 1.2626e-006 -3.9008e-008 -2.6645e-009 - 8.5000e+000 3.8231e-006 2.9867e-007 -2.2212e-009 -8.8983e-011 - -------------------------------- -End of Run after 2.401 Seconds. -------------------------------- - diff --git a/examples_pc/ex12a.sel b/examples_pc/ex12a.sel deleted file mode 100644 index 91fc13ca..00000000 --- a/examples_pc/ex12a.sel +++ /dev/null @@ -1,167 +0,0 @@ - dist_x temp Na_mmol K_mmol Cl_mmol error_Cl error_Na - 0.5 0.000000000000e+000 0.000000000000e+000 2.400000000010e+001 0.000000000000e+000 - 1.5 0.000000000000e+000 0.000000000000e+000 2.400000000010e+001 0.000000000000e+000 - 2.5 0.000000000000e+000 0.000000000000e+000 2.400000000010e+001 0.000000000000e+000 - 3.5 0.000000000000e+000 0.000000000000e+000 2.400000000010e+001 0.000000000000e+000 - 4.5 0.000000000000e+000 0.000000000000e+000 2.400000000010e+001 0.000000000000e+000 - 5.5 0.000000000000e+000 0.000000000000e+000 2.400000000010e+001 0.000000000000e+000 - 6.5 0.000000000000e+000 0.000000000000e+000 2.400000000010e+001 0.000000000000e+000 - 7.5 0.000000000000e+000 0.000000000000e+000 2.400000000010e+001 0.000000000000e+000 - 8.5 0.000000000000e+000 0.000000000000e+000 2.400000000010e+001 0.000000000000e+000 - 9.5 0.000000000000e+000 0.000000000000e+000 2.400000000010e+001 0.000000000000e+000 - 10.5 0.000000000000e+000 0.000000000000e+000 2.400000000010e+001 0.000000000000e+000 - 11.5 0.000000000000e+000 0.000000000000e+000 2.400000000010e+001 0.000000000000e+000 - 12.5 0.000000000000e+000 0.000000000000e+000 2.400000000010e+001 0.000000000000e+000 - 13.5 0.000000000000e+000 0.000000000000e+000 2.400000000010e+001 0.000000000000e+000 - 14.5 0.000000000000e+000 0.000000000000e+000 2.400000000010e+001 0.000000000000e+000 - 15.5 0.000000000000e+000 0.000000000000e+000 2.400000000010e+001 0.000000000000e+000 - 16.5 0.000000000000e+000 0.000000000000e+000 2.400000000010e+001 0.000000000000e+000 - 17.5 0.000000000000e+000 0.000000000000e+000 2.400000000010e+001 0.000000000000e+000 - 18.5 0.000000000000e+000 0.000000000000e+000 2.400000000010e+001 0.000000000000e+000 - 19.5 2.400000000000e+001 2.400000000000e+001 0.000000000000e+000 2.400000000000e+001 - 0.5 1.686181418415e+001 1.686133609177e+001 7.138663899863e+000 2.011377529320e+001 4.381717844656e-006 5.068336357409e-004 - 1.5 6.421492325960e+000 6.419558988179e+000 1.758044099842e+001 1.294968671941e+001 1.730376475936e-005 5.127073405408e-004 - 2.5 1.759908541854e+000 1.758534659752e+000 2.224146533045e+001 7.342808261286e+000 3.561257293500e-005 9.186006161718e-005 - 3.5 3.571924631562e-001 3.567054178236e-001 2.364329457694e+001 3.623408283675e+000 4.959925524517e-005 -3.682506955067e-005 - 4.5 5.490209781371e-002 5.479279662294e-002 2.394520720113e+001 1.538555967128e+000 5.006313596866e-005 -1.968447681294e-005 - 5.5 6.484238380348e-003 6.467124486865e-003 2.399353287476e+001 5.556625533105e-001 3.820767165789e-005 -4.051252484481e-006 - 6.5 5.926340095484e-004 5.906785139680e-004 2.399940932133e+001 1.684990632467e-001 2.262672987221e-005 -4.873052767427e-007 - 7.5 4.190926756604e-005 4.174299653747e-005 2.399995825704e+001 4.224784404200e-002 1.054699173428e-005 -3.900783490471e-008 - 8.5 2.276345750780e-006 2.265781715797e-006 2.399999773431e+001 8.664946370886e-003 3.823149392516e-006 -2.221207691848e-009 - 9.5 1.396593677778e-007 1.389123928101e-007 2.399999986119e+001 2.055609847091e-003 - 10.5 1.138869021831e-006 1.133447609147e-006 2.399999886665e+001 4.374443607422e-003 - 11.5 2.090811414205e-005 2.082226930773e-005 2.399997917780e+001 2.044715368546e-002 - 12.5 2.951795282278e-004 2.941575641835e-004 2.399970584241e+001 7.995922685932e-002 - 13.5 3.221164570742e-003 3.212049565132e-003 2.399678795014e+001 2.567109777338e-001 - 14.5 2.715473190226e-002 2.709461903621e-002 2.397290538002e+001 6.850286499837e-001 - 15.5 1.753541123879e-001 1.750694114097e-001 2.382493058642e+001 1.533872870595e+000 - 16.5 8.525032220200e-001 8.515834471020e-001 2.314841654903e+001 2.902126148036e+000 - 17.5 3.032149931402e+000 3.030261194913e+000 2.096973880001e+001 4.663139220088e+000 - 18.5 7.550952821146e+000 7.548456392614e+000 1.645154360353e+001 6.385483516912e+000 - 19.5 1.235834674495e+001 1.235529368930e+001 1.164470631042e+001 7.468268986450e+000 - dist_x temp - -99 0.000000000000e+000 - -99 0.000000000000e+000 - dist_x temp Na_mmol K_mmol Cl_mmol error_Cl error_Na - 0.166667 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 0.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 0.833333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 1.16667 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 1.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 1.83333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 2.16667 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 2.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 2.83333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 3.16667 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 3.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 3.83333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 4.16667 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 4.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 4.83333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 5.16667 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 5.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 5.83333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 6.16667 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 6.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 6.83333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 7.16667 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 7.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 7.83333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 8.16667 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 8.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 8.83333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 9.16667 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 9.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 9.83333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 10.1667 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 10.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 10.8333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 11.1667 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 11.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 11.8333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 12.1667 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 12.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 12.8333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 13.1667 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 13.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 13.8333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 14.1667 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 14.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 14.8333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 15.1667 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 15.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 15.8333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 16.1667 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 16.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 16.8333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 17.1667 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 17.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 17.8333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 18.1667 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 18.5 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 18.8333 0.000000000000e+000 0.000000000000e+000 2.400000000000e+001 0.000000000000e+000 - 19.1667 2.400000000000e+001 2.400000000000e+001 0.000000000000e+000 2.400000000000e+001 - 19.5 2.400000000000e+001 2.400000000000e+001 0.000000000000e+000 2.400000000000e+001 - 19.8333 2.400000000000e+001 2.400000000000e+001 0.000000000000e+000 2.400000000000e+001 - 0.166667 2.173421305916e+001 2.173403386063e+001 2.265966136454e+000 2.269804666230e+001 - 0.5 1.732877230198e+001 1.732818349805e+001 6.671816494272e+000 2.011806700217e+001 9.000887541549e-008 3.998622946738e-005 - 0.833333 1.328083118787e+001 1.327977600372e+001 1.072022398539e+001 1.760855984592e+001 - 1.16667 9.764783869793e+000 9.763295612528e+000 1.423670437488e+001 1.521226338234e+001 - 1.5 6.876979954453e+000 6.875203671250e+000 1.712479631573e+001 1.296594983166e+001 1.040652503724e-006 5.706265747056e-005 - 1.83333 4.633445178532e+000 4.631592230606e+000 1.936840775691e+001 1.089878644678e+001 - 2.16667 2.983957613764e+000 2.982233846694e+000 2.101776614197e+001 9.031332911127e+000 - 2.5 1.835670035272e+000 1.834219344965e+000 2.216578064517e+001 7.375218041904e+000 3.202792317071e-006 1.617537640467e-005 - 2.83333 1.078309641703e+000 1.077193213963e+000 2.292280677774e+001 5.933464823754e+000 - 3.16667 6.047271172834e-001 6.039348411755e-001 2.339606515204e+001 4.701369003147e+000 - 3.5 3.237687663205e-001 3.232468743552e-001 2.367675312023e+001 3.667790507022e+000 5.217031898444e-006 -3.366526082224e-006 - 3.83333 1.655091653734e-001 1.651883636707e-001 2.383481163211e+001 2.816693051599e+000 - 4.16667 8.080184009388e-002 8.061704167871e-002 2.391938295510e+001 2.128765894909e+000 - 4.5 3.768529738011e-002 3.758518697206e-002 2.396241481061e+001 1.582979760722e+000 5.639342374335e-006 -2.476867162061e-006 - 4.83333 1.679748179371e-002 1.674633341452e-002 2.398325366481e+001 1.157961083142e+000 - 5.16667 7.158658672534e-003 7.133952388493e-003 2.399286604633e+001 8.331082803343e-001 - 5.5 2.918406916536e-003 2.907101076095e-003 2.399709289802e+001 5.894142528778e-001 4.455972090611e-006 -4.912290737112e-007 - 5.83333 1.138704483513e-003 1.133794317456e-003 2.399886620505e+001 4.099953343101e-001 - 6.16667 4.254614091982e-004 4.234343197647e-004 2.399957656525e+001 2.803548753962e-001 - 6.5 1.523110828883e-004 1.515144734530e-004 2.399984848524e+001 1.884278508342e-001 2.697942284683e-006 -4.814123622780e-008 - 6.83333 5.227158933236e-005 5.197321094024e-005 2.399994802660e+001 1.244614394092e-001 - 7.16667 1.720693831522e-005 1.710029247319e-005 2.399998289958e+001 8.078687428779e-002 - 7.5 5.436060934909e-006 5.399649329740e-006 2.399999460027e+001 5.153218578890e-002 1.262649987387e-006 -2.664487696983e-009 - 7.83333 1.649088195275e-006 1.637200838983e-006 2.399999836275e+001 3.231618817415e-002 - 8.16667 4.806358157844e-007 4.769214582981e-007 2.399999952305e+001 1.995341519396e-002 - 8.5 1.346685590700e-007 1.335566666644e-007 2.399999986642e+001 1.218943044689e-002 2.986653165130e-007 -8.898264271568e-011 - 8.83333 3.634651793240e-008 3.602678686559e-008 2.399999996396e+001 7.477181954097e-003 - 9.16667 9.688299803978e-009 9.597459443197e-009 2.399999999040e+001 4.798414842272e-003 - 9.5 3.521245209155e-009 3.486097589011e-009 2.399999999651e+001 3.529705335038e-003 - 9.83333 5.266729325119e-009 5.215571061578e-009 2.399999999478e+001 3.350197790832e-003 - 10.1667 1.826814042878e-008 1.810189319862e-008 2.399999998189e+001 4.187174718005e-003 - 10.5 6.734157441183e-008 6.676538861847e-008 2.399999993323e+001 6.195634765136e-003 - 10.8333 2.402572726136e-007 2.383277268952e-007 2.399999976166e+001 9.768547400294e-003 - 11.1667 8.242629300769e-007 8.180678854826e-007 2.399999918191e+001 1.557488011749e-002 - 11.5 2.716856871595e-006 2.697812005999e-006 2.399999730215e+001 2.462240289774e-002 - 11.8333 8.598766106045e-006 8.542754913791e-006 2.399999145719e+001 3.834130427899e-002 - 12.1667 2.611765408526e-005 2.596020313725e-005 2.399997403971e+001 5.868256891991e-002 - 12.5 7.608821445992e-005 7.566556896871e-005 2.399992433429e+001 8.822180939102e-002 - 12.8333 2.124903882618e-004 2.114081363373e-004 2.399978859166e+001 1.302549940487e-001 - 13.1667 5.685276979853e-004 5.658869115669e-004 2.399943411280e+001 1.888677435751e-001 - 13.5 1.456485427866e-003 1.450352183380e-003 2.399854964740e+001 2.689553860812e-001 - 13.8333 3.570725867122e-003 3.557184499311e-003 2.399644281492e+001 3.761678784761e-001 - 14.1667 8.372605102191e-003 8.344221149602e-003 2.399165577806e+001 5.167533414725e-001 - 14.5 1.876649314861e-002 1.871009046794e-002 2.398128990847e+001 6.972776485195e-001 - 14.8333 4.018818934234e-002 4.008209924101e-002 2.395991789936e+001 9.242063091054e-001 - 15.1667 8.218523044497e-002 8.199665482203e-002 2.391800334337e+001 1.203349228726e+000 - 15.5 1.604251797020e-001 1.601089608817e-001 2.383989103684e+001 1.539188295216e+000 - 15.8333 2.987842293055e-001 2.982848391674e-001 2.370171515802e+001 1.934130436523e+000 - 16.1667 5.307560799548e-001 5.300144684538e-001 2.346998552818e+001 2.387751903536e+000 - 16.5 8.989923689458e-001 8.979578317650e-001 2.310204216431e+001 2.896119155482e+000 - 16.8333 1.451577886835e+000 1.450222207339e+000 2.254977778824e+001 3.451283515299e+000 - 17.1667 2.233968006579e+000 2.232295880160e+000 2.176770411505e+001 4.041046701767e+000 - 17.5 3.276605594066e+000 3.274654206808e+000 2.072534578822e+001 4.649079665424e+000 - 17.8333 4.580028376255e+000 4.577852592580e+000 1.942214740255e+001 5.255447192236e+000 - 18.1667 6.101260773083e+000 6.098908811257e+000 1.790109118429e+001 5.837547513114e+000 - 18.5 7.746551133352e+000 7.744044346443e+000 1.625595564983e+001 6.371424480901e+000 - 18.8333 9.375127722697e+000 9.372459479177e+000 1.462754051806e+001 6.833356874068e+000 - 19.1667 1.081617088116e+001 1.081332896011e+001 1.318667103815e+001 7.201583440728e+000 - 19.5 1.189712387179e+001 1.189412326746e+001 1.210587673167e+001 7.457991576082e+000 - 19.8333 1.247719247117e+001 1.247409469918e+001 1.152590530045e+001 7.589588377770e+000 - dist_x temp Na_mmol K_mmol Cl_mmol error_Cl error_Na - -99 25.000 0.0000e+000 0.0000e+000 0.0000e+000 diff --git a/examples_pc/ex13a.out b/examples_pc/ex13a.out deleted file mode 100644 index d349e13c..00000000 --- a/examples_pc/ex13a.out +++ /dev/null @@ -1,336 +0,0 @@ - Input file: ..\examples\ex13a - Output file: ex13a.out -Database file: ..\database\phreeqc.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - PHASES - EXCHANGE_MASTER_SPECIES - EXCHANGE_SPECIES - SURFACE_MASTER_SPECIES - SURFACE_SPECIES - RATES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Example 13A.--1 mmol/L NaCl/NO3 enters column with stagnant zones. - Implicit definition of first-order exchange model. - SOLUTION 0 # 1 mmol/L NaCl - units mmol/l - pH 7.0 - pe 13.0 O2(g) -0.7 - Na 1.0 # Na has Retardation = 2 - Cl 1.0 # Cl has Retardation = 1, stagnant exchange - N(5) 1.0 # NO3 is conservative - END ------ -TITLE ------ - - Example 13A.--1 mmol/L NaCl/NO3 enters column with stagnant zones. - Implicit definition of first-order exchange model. - -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 0. - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Cl 1.000e-003 1.000e-003 - N(5) 1.000e-003 1.000e-003 - Na 1.000e-003 1.000e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.000 - pe = 13.622 Equilibrium with O2(g) - Specific Conductance (uS/cm, 25 oC) = 192 - Density (g/cm3) = 0.99712 - Volume (L) = 1.00302 - Activity of water = 1.000 - Ionic strength = 1.500e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.549e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.000e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -33.33 - Iterations = 3 - Total H = 1.110124e+002 - Total O = 5.550973e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.057e-007 1.012e-007 -6.976 -6.995 -0.019 -4.10 - H+ 1.042e-007 1.000e-007 -6.982 -7.000 -0.018 0.00 - H2O 5.551e+001 9.999e-001 1.744 -0.000 0.000 18.07 -Cl 1.000e-003 - Cl- 1.000e-003 9.576e-004 -3.000 -3.019 -0.019 18.08 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.394 -44.394 0.000 28.61 -N(5) 1.000e-003 - NO3- 1.000e-003 9.572e-004 -3.000 -3.019 -0.019 29.54 -Na 1.000e-003 - Na+ 1.000e-003 9.580e-004 -3.000 -3.019 -0.019 -1.38 - NaOH 9.693e-021 9.696e-021 -20.014 -20.013 0.000 (0) -O(0) 5.110e-004 - O2 2.555e-004 2.556e-004 -3.593 -3.592 0.000 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - H2(g) -41.29 -44.39 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - Halite -7.61 -6.04 1.57 NaCl - O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000. - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 2. ------------------------------------- - - SOLUTION 1-41 # Column with KNO3 - units mmol/l - pH 7.0 - pe 13.0 O2(g) -0.7 - K 1.0 - N(5) 1.0 - EXCHANGE_SPECIES # For linear exchange, make KX exch. coeff. equal to NaX - K+ + X- = KX - log_k 0.0 - gamma 3.5 0.015 - EXCHANGE 1-41 - equilibrate 1 - X 1.e-3 - END -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 1. - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - K 1.000e-003 1.000e-003 - N(5) 1.000e-003 1.000e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.000 - pe = 13.622 Equilibrium with O2(g) - Specific Conductance (uS/cm, 25 oC) = 141 - Density (g/cm3) = 0.99711 - Volume (L) = 1.00301 - Activity of water = 1.000 - Ionic strength = 1.000e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.450e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.450e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 3 - Total H = 1.110124e+002 - Total O = 5.550973e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.049e-007 1.012e-007 -6.979 -6.995 -0.016 -4.11 - H+ 1.035e-007 1.000e-007 -6.985 -7.000 -0.015 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.394 -44.394 0.000 28.61 -K 1.000e-003 - K+ 1.000e-003 9.649e-004 -3.000 -3.016 -0.016 9.01 -N(5) 1.000e-003 - NO3- 1.000e-003 9.647e-004 -3.000 -3.016 -0.016 29.53 -O(0) 5.111e-004 - O2 2.555e-004 2.556e-004 -3.593 -3.592 0.000 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - H2(g) -41.29 -44.39 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000. - - -------------------------------------------------------- -Beginning of initial exchange-composition calculations. -------------------------------------------------------- - -Exchange 1. - -X 1.000e-003 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 1.000e-003 1.000e-003 1.000e+000 -0.016 - ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. -Using exchange 1. Exchange assemblage after simulation 2. - ------------------------------Exchange composition------------------------------ - -X 1.000e-003 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 1.000e-003 1.000e-003 1.000e+000 -0.016 - NH4X 5.034e-063 5.034e-063 5.034e-060 -0.016 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - K 1.000e-003 1.000e-003 - N 1.000e-003 1.000e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 13.622 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 141 - Density (g/cm3) = 0.99711 - Volume (L) = 1.00301 - Activity of water = 1.000 - Ionic strength = 1.000e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.450e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.450e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 5 - Total H = 1.110124e+002 - Total O = 5.550973e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.049e-007 1.012e-007 -6.979 -6.995 -0.016 -4.11 - H+ 1.035e-007 1.000e-007 -6.985 -7.000 -0.015 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.394 -44.394 0.000 28.61 -K 1.000e-003 - K+ 1.000e-003 9.649e-004 -3.000 -3.016 -0.016 9.01 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -62.898 -62.914 -0.016 17.96 - NH3 0.000e+000 0.000e+000 -65.158 -65.158 0.000 24.46 -N(0) 1.351e-019 - N2 6.757e-020 6.759e-020 -19.170 -19.170 0.000 29.29 -N(3) 2.120e-016 - NO2- 2.120e-016 2.045e-016 -15.674 -15.689 -0.016 24.97 -N(5) 1.000e-003 - NO3- 1.000e-003 9.647e-004 -3.000 -3.016 -0.016 29.53 -O(0) 5.111e-004 - O2 2.555e-004 2.556e-004 -3.593 -3.592 0.000 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - H2(g) -41.29 -44.39 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -15.99 -19.17 -3.18 N2 - NH3(g) -66.95 -65.16 1.80 NH3 - O2(g) -0.70 -3.59 -2.89 O2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 3. ------------------------------------- - - PRINT - reset false - status false - TRANSPORT - cells 20 - shifts 5 - flow_direction forward - time_step 3600 - boundary_conditions flux flux - diffusion_coefficient 0.0 - lengths 0.1 - dispersivities 0.015 - stagnant 1 6.8e-6 0.3 0.1 - END -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. - SOLUTION 0 # Original solution with KNO3 reenters - units mmol/l - pH 7.0 - pe 13.0 O2(g) -0.7 - K 1.0 - N(5) 1.0 - END - SELECTED_OUTPUT - file ex13a.sel - reset false - solution - distance true - USER_PUNCH - headings Cl_mmol Na_mmol - 10 PUNCH TOT("Cl")*1000, TOT("Na")*1000 - TRANSPORT - shifts 10 - punch_cells 1-20 - punch_frequency 10 - USER_GRAPH 1 Example 13A - -headings Distance Na Cl - -chart_title "Dual Porosity, First-Order Exchange with Implicit Mixing Factors" - -axis_titles "Distance, in meters" "Millimoles per kilogram water" - -axis_scale x_axis 0 2 - -axis_scale y_axis 0 0.8 - -plot_concentration_vs x - -start - 10 GRAPH_X DIST - 20 GRAPH_Y TOT("Na")*1000 TOT("Cl")*1000 - -end - END -------------------------------- -End of Run after 0.957 Seconds. -------------------------------- - diff --git a/examples_pc/ex13a.sel b/examples_pc/ex13a.sel deleted file mode 100644 index 09581374..00000000 --- a/examples_pc/ex13a.sel +++ /dev/null @@ -1,67 +0,0 @@ - soln dist_x Cl_mmol Na_mmol - 1 0.05 9.6495e-001 8.8504e-001 - 2 0.15 9.1812e-001 6.9360e-001 - 3 0.25 8.4451e-001 4.3288e-001 - 4 0.35 7.1652e-001 1.9734e-001 - 5 0.45 4.9952e-001 6.0705e-002 - 6 0.55 2.4048e-001 1.1785e-002 - 7 0.65 7.2812e-002 1.4039e-003 - 8 0.75 1.3132e-002 9.9324e-005 - 9 0.85 1.2882e-003 3.8318e-006 - 10 0.95 5.2940e-005 6.2140e-008 - 11 1.05 0.0000e+000 0.0000e+000 - 12 1.15 0.0000e+000 0.0000e+000 - 13 1.25 0.0000e+000 0.0000e+000 - 14 1.35 0.0000e+000 0.0000e+000 - 15 1.45 0.0000e+000 0.0000e+000 - 16 1.55 0.0000e+000 0.0000e+000 - 17 1.65 0.0000e+000 0.0000e+000 - 18 1.75 0.0000e+000 0.0000e+000 - 19 1.85 0.0000e+000 0.0000e+000 - 20 1.95 0.0000e+000 0.0000e+000 - 1 0.05 7.5889e-003 2.0250e-002 - 2 0.15 1.7993e-002 5.0943e-002 - 3 0.25 3.3135e-002 1.0209e-001 - 4 0.35 5.3591e-002 1.7480e-001 - 5 0.45 8.0158e-002 2.5484e-001 - 6 0.55 1.1396e-001 3.1308e-001 - 7 0.65 1.5767e-001 3.2277e-001 - 8 0.75 2.1666e-001 2.7968e-001 - 9 0.85 2.9573e-001 2.0468e-001 - 10 0.95 3.8769e-001 1.2726e-001 - 11 1.05 4.6467e-001 6.7581e-002 - 12 1.15 4.9243e-001 3.0745e-002 - 13 1.25 4.5811e-001 1.1988e-002 - 14 1.35 3.7620e-001 3.9981e-003 - 15 1.45 2.7323e-001 1.1366e-003 - 16 1.55 1.7416e-001 2.7440e-004 - 17 1.65 9.6074e-002 5.6038e-005 - 18 1.75 4.5211e-002 9.6477e-006 - 19 1.85 1.7934e-002 1.3954e-006 - 20 1.95 6.4869e-003 1.7678e-007 - 0 -99 1.0001e+000 1.0001e+000 - 1 -99 0.0000e+000 0.0000e+000 - 1 -99 0.0000e+000 0.0000e+000 - 1 -99 0.0000e+000 0.0000e+000 - 1 -99 0.0000e+000 0.0000e+000 - 1 0.05 0.0000e+000 0.0000e+000 - 2 0.15 0.0000e+000 0.0000e+000 - 3 0.25 0.0000e+000 0.0000e+000 - 4 0.35 0.0000e+000 0.0000e+000 - 5 0.45 0.0000e+000 0.0000e+000 - 6 0.55 0.0000e+000 0.0000e+000 - 7 0.65 0.0000e+000 0.0000e+000 - 8 0.75 0.0000e+000 0.0000e+000 - 9 0.85 0.0000e+000 0.0000e+000 - 10 0.95 0.0000e+000 0.0000e+000 - 11 1.05 0.0000e+000 0.0000e+000 - 12 1.15 0.0000e+000 0.0000e+000 - 13 1.25 0.0000e+000 0.0000e+000 - 14 1.35 0.0000e+000 0.0000e+000 - 15 1.45 0.0000e+000 0.0000e+000 - 16 1.55 0.0000e+000 0.0000e+000 - 17 1.65 0.0000e+000 0.0000e+000 - 18 1.75 0.0000e+000 0.0000e+000 - 19 1.85 0.0000e+000 0.0000e+000 - 20 1.95 0.0000e+000 0.0000e+000 - 0 -99 0.0000e+000 0.0000e+000 diff --git a/examples_pc/ex13ac.out b/examples_pc/ex13ac.out deleted file mode 100644 index b463ccfa..00000000 --- a/examples_pc/ex13ac.out +++ /dev/null @@ -1,847 +0,0 @@ - Input file: ..\examples\ex13ac - Output file: ex13ac.out -Database file: ..\database\phreeqc.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - PHASES - EXCHANGE_MASTER_SPECIES - EXCHANGE_SPECIES - SURFACE_MASTER_SPECIES - SURFACE_SPECIES - RATES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Example 13A.--1 mmol/l NaCl/NO3 enters column with stagnant zones. - Implicit definition of first-order exchange model. - SOLUTION 0 # 1 mmol/l NaCl - units mmol/l - pH 7.0 - pe 13.0 O2(g) -0.7 - Na 1.0 # Na has Retardation = 2 - Cl 1.0 # Cl has Retardation = 1, stagnant exchange - N(5) 1.0 # NO3 is conservative - END ------ -TITLE ------ - - Example 13A.--1 mmol/l NaCl/NO3 enters column with stagnant zones. - Implicit definition of first-order exchange model. - -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 0. - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Cl 1.000e-003 1.000e-003 - N(5) 1.000e-003 1.000e-003 - Na 1.000e-003 1.000e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.000 - pe = 13.622 Equilibrium with O2(g) - Specific Conductance (uS/cm, 25 oC) = 192 - Density (g/cm3) = 0.99712 - Volume (L) = 1.00302 - Activity of water = 1.000 - Ionic strength = 1.500e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.549e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.000e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -33.33 - Iterations = 3 - Total H = 1.110124e+002 - Total O = 5.550973e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.057e-007 1.012e-007 -6.976 -6.995 -0.019 -4.10 - H+ 1.042e-007 1.000e-007 -6.982 -7.000 -0.018 0.00 - H2O 5.551e+001 9.999e-001 1.744 -0.000 0.000 18.07 -Cl 1.000e-003 - Cl- 1.000e-003 9.576e-004 -3.000 -3.019 -0.019 18.08 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.394 -44.394 0.000 28.61 -N(5) 1.000e-003 - NO3- 1.000e-003 9.572e-004 -3.000 -3.019 -0.019 29.54 -Na 1.000e-003 - Na+ 1.000e-003 9.580e-004 -3.000 -3.019 -0.019 -1.38 - NaOH 9.693e-021 9.696e-021 -20.014 -20.013 0.000 (0) -O(0) 5.110e-004 - O2 2.555e-004 2.556e-004 -3.593 -3.592 0.000 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - H2(g) -41.29 -44.39 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - Halite -7.61 -6.04 1.57 NaCl - O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000. - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 2. ------------------------------------- - - SOLUTION 1-41 # Column with KNO3 - units mmol/l - pH 7.0 - pe 13.0 O2(g) -0.7 - K 1.0 - N(5) 1.0 - EXCHANGE_SPECIES # For linear exchange, make KX exch. coeff. equal to NaX - K+ + X- = KX - log_k 0.0 - gamma 3.5 0.015 - EXCHANGE 1-41 - equilibrate 1 - X 1.e-3 - END -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 1. - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - K 1.000e-003 1.000e-003 - N(5) 1.000e-003 1.000e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.000 - pe = 13.622 Equilibrium with O2(g) - Specific Conductance (uS/cm, 25 oC) = 141 - Density (g/cm3) = 0.99711 - Volume (L) = 1.00301 - Activity of water = 1.000 - Ionic strength = 1.000e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.450e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.450e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 3 - Total H = 1.110124e+002 - Total O = 5.550973e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.049e-007 1.012e-007 -6.979 -6.995 -0.016 -4.11 - H+ 1.035e-007 1.000e-007 -6.985 -7.000 -0.015 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.394 -44.394 0.000 28.61 -K 1.000e-003 - K+ 1.000e-003 9.649e-004 -3.000 -3.016 -0.016 9.01 -N(5) 1.000e-003 - NO3- 1.000e-003 9.647e-004 -3.000 -3.016 -0.016 29.53 -O(0) 5.111e-004 - O2 2.555e-004 2.556e-004 -3.593 -3.592 0.000 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - H2(g) -41.29 -44.39 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000. - - -------------------------------------------------------- -Beginning of initial exchange-composition calculations. -------------------------------------------------------- - -Exchange 1. - -X 1.000e-003 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 1.000e-003 1.000e-003 1.000e+000 -0.016 - ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. -Using exchange 1. Exchange assemblage after simulation 2. - ------------------------------Exchange composition------------------------------ - -X 1.000e-003 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 1.000e-003 1.000e-003 1.000e+000 -0.016 - NH4X 5.034e-063 5.034e-063 5.034e-060 -0.016 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - K 1.000e-003 1.000e-003 - N 1.000e-003 1.000e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 13.622 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 141 - Density (g/cm3) = 0.99711 - Volume (L) = 1.00301 - Activity of water = 1.000 - Ionic strength = 1.000e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.450e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.450e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 5 - Total H = 1.110124e+002 - Total O = 5.550973e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.049e-007 1.012e-007 -6.979 -6.995 -0.016 -4.11 - H+ 1.035e-007 1.000e-007 -6.985 -7.000 -0.015 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.394 -44.394 0.000 28.61 -K 1.000e-003 - K+ 1.000e-003 9.649e-004 -3.000 -3.016 -0.016 9.01 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -62.898 -62.914 -0.016 17.96 - NH3 0.000e+000 0.000e+000 -65.158 -65.158 0.000 24.46 -N(0) 1.351e-019 - N2 6.757e-020 6.759e-020 -19.170 -19.170 0.000 29.29 -N(3) 2.120e-016 - NO2- 2.120e-016 2.045e-016 -15.674 -15.689 -0.016 24.97 -N(5) 1.000e-003 - NO3- 1.000e-003 9.647e-004 -3.000 -3.016 -0.016 29.53 -O(0) 5.111e-004 - O2 2.555e-004 2.556e-004 -3.593 -3.592 0.000 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - H2(g) -41.29 -44.39 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -15.99 -19.17 -3.18 N2 - NH3(g) -66.95 -65.16 1.80 NH3 - O2(g) -0.70 -3.59 -2.89 O2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 3. ------------------------------------- - - PRINT - reset false - status false - TRANSPORT - cells 20 - shifts 5 - flow_direction forward - time_step 3600 - boundary_conditions flux flux - diffusion_coefficient 0.0 - lengths 0.1 - dispersivities 0.015 - stagnant 1 6.8e-6 0.3 0.1 - END -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. - SOLUTION 0 # Original solution with KNO3 reenters - units mmol/l - pH 7.0 - pe 13.0 O2(g) -0.7 - K 1.0 - N(5) 1.0 - END - SELECTED_OUTPUT - file ex13a.sel - reset false - solution - distance true - USER_PUNCH - headings Cl_mmol Na_mmol - 10 PUNCH TOT("Cl")*1000, TOT("Na")*1000 - TRANSPORT - shifts 10 - punch_cells 1-20 - punch_frequency 10 - USER_GRAPH 1 Examples 13A and 13C - -headings 1st_Order Na Cl - -chart_title "Dual Porosity, First Order and Finite Difference Approximations" - -axis_titles "Distance, in meters" "Millimoles per kilogram water" - -axis_scale x_axis 0 2 - -axis_scale y_axis 0 0.8 - -plot_concentration_vs x - -start - 10 plot_xy -1, -1, line_width = 0, symbol_size = 0 - 20 plot_xy dist, TOT("Na")*1000, color = Red, symbol = Square - 30 plot_xy dist, TOT("Cl")*1000, color = Green, symbol = Diamond, symbol_size = 7 - -end - END - PRINT - user_graph false - TITLE Example 13C.--1 mmol/l NaCl/NO3 enters column with stagnant zones. - 5 layer stagnant zone with finite differences. - SOLUTION 0 # 1 mmol/l NaCl - units mmol/l - pH 7.0 - pe 13.0 O2(g) -0.7 - Na 1.0 # Na has Retardation = 2 - Cl 1.0 # Cl has Retardation = 1, stagnant exchange - N(5) 1.0 # NO3 is conservative - END - SOLUTION 1-121 - units mmol/l - pH 7.0 - pe 13.0 O2(g) -0.7 - K 1.0 - N(5) 1.0 - EXCHANGE_SPECIES # For linear exchange, make KX exch. coeff. equal to NaX - K+ + X- = KX - log_k 0.0 - gamma 3.5 0.015 - EXCHANGE 1-121 - equilibrate 1 - X 1.e-3 - END - PRINT - reset false - MIX 1 - 1 0.90712 - 22 0.09288 - MIX 22 - 1 0.57098 - 22 0.21656 - 42 0.21246 - MIX 42 - 22 0.35027 - 42 0.45270 - 62 0.19703 - MIX 62 - 42 0.38368 - 62 0.44579 - 82 0.17053 - MIX 82 - 62 0.46286 - 82 0.42143 - 102 0.11571 - MIX 102 - 82 0.81000 - 102 0.19000 - MIX 2 - 2 0.90712 - 23 0.09288 - MIX 23 - 2 0.57098 - 23 0.21656 - 43 0.21246 - MIX 43 - 23 0.35027 - 43 0.45270 - 63 0.19703 - MIX 63 - 43 0.38368 - 63 0.44579 - 83 0.17053 - MIX 83 - 63 0.46286 - 83 0.42143 - 103 0.11571 - MIX 103 - 83 0.81000 - 103 0.19000 - MIX 3 - 3 0.90712 - 24 0.09288 - MIX 24 - 3 0.57098 - 24 0.21656 - 44 0.21246 - MIX 44 - 24 0.35027 - 44 0.45270 - 64 0.19703 - MIX 64 - 44 0.38368 - 64 0.44579 - 84 0.17053 - MIX 84 - 64 0.46286 - 84 0.42143 - 104 0.11571 - MIX 104 - 84 0.81000 - 104 0.19000 - MIX 4 - 4 0.90712 - 25 0.09288 - MIX 25 - 4 0.57098 - 25 0.21656 - 45 0.21246 - MIX 45 - 25 0.35027 - 45 0.45270 - 65 0.19703 - MIX 65 - 45 0.38368 - 65 0.44579 - 85 0.17053 - MIX 85 - 65 0.46286 - 85 0.42143 - 105 0.11571 - MIX 105 - 85 0.81000 - 105 0.19000 - MIX 5 - 5 0.90712 - 26 0.09288 - MIX 26 - 5 0.57098 - 26 0.21656 - 46 0.21246 - MIX 46 - 26 0.35027 - 46 0.45270 - 66 0.19703 - MIX 66 - 46 0.38368 - 66 0.44579 - 86 0.17053 - MIX 86 - 66 0.46286 - 86 0.42143 - 106 0.11571 - MIX 106 - 86 0.81000 - 106 0.19000 - MIX 6 - 6 0.90712 - 27 0.09288 - MIX 27 - 6 0.57098 - 27 0.21656 - 47 0.21246 - MIX 47 - 27 0.35027 - 47 0.45270 - 67 0.19703 - MIX 67 - 47 0.38368 - 67 0.44579 - 87 0.17053 - MIX 87 - 67 0.46286 - 87 0.42143 - 107 0.11571 - MIX 107 - 87 0.81000 - 107 0.19000 - MIX 7 - 7 0.90712 - 28 0.09288 - MIX 28 - 7 0.57098 - 28 0.21656 - 48 0.21246 - MIX 48 - 28 0.35027 - 48 0.45270 - 68 0.19703 - MIX 68 - 48 0.38368 - 68 0.44579 - 88 0.17053 - MIX 88 - 68 0.46286 - 88 0.42143 - 108 0.11571 - MIX 108 - 88 0.81000 - 108 0.19000 - MIX 8 - 8 0.90712 - 29 0.09288 - MIX 29 - 8 0.57098 - 29 0.21656 - 49 0.21246 - MIX 49 - 29 0.35027 - 49 0.45270 - 69 0.19703 - MIX 69 - 49 0.38368 - 69 0.44579 - 89 0.17053 - MIX 89 - 69 0.46286 - 89 0.42143 - 109 0.11571 - MIX 109 - 89 0.81000 - 109 0.19000 - MIX 9 - 9 0.90712 - 30 0.09288 - MIX 30 - 9 0.57098 - 30 0.21656 - 50 0.21246 - MIX 50 - 30 0.35027 - 50 0.45270 - 70 0.19703 - MIX 70 - 50 0.38368 - 70 0.44579 - 90 0.17053 - MIX 90 - 70 0.46286 - 90 0.42143 - 110 0.11571 - MIX 110 - 90 0.81000 - 110 0.19000 - MIX 10 - 10 0.90712 - 31 0.09288 - MIX 31 - 10 0.57098 - 31 0.21656 - 51 0.21246 - MIX 51 - 31 0.35027 - 51 0.45270 - 71 0.19703 - MIX 71 - 51 0.38368 - 71 0.44579 - 91 0.17053 - MIX 91 - 71 0.46286 - 91 0.42143 - 111 0.11571 - MIX 111 - 91 0.81000 - 111 0.19000 - MIX 11 - 11 0.90712 - 32 0.09288 - MIX 32 - 11 0.57098 - 32 0.21656 - 52 0.21246 - MIX 52 - 32 0.35027 - 52 0.45270 - 72 0.19703 - MIX 72 - 52 0.38368 - 72 0.44579 - 92 0.17053 - MIX 92 - 72 0.46286 - 92 0.42143 - 112 0.11571 - MIX 112 - 92 0.81000 - 112 0.19000 - MIX 12 - 12 0.90712 - 33 0.09288 - MIX 33 - 12 0.57098 - 33 0.21656 - 53 0.21246 - MIX 53 - 33 0.35027 - 53 0.45270 - 73 0.19703 - MIX 73 - 53 0.38368 - 73 0.44579 - 93 0.17053 - MIX 93 - 73 0.46286 - 93 0.42143 - 113 0.11571 - MIX 113 - 93 0.81000 - 113 0.19000 - MIX 13 - 13 0.90712 - 34 0.09288 - MIX 34 - 13 0.57098 - 34 0.21656 - 54 0.21246 - MIX 54 - 34 0.35027 - 54 0.45270 - 74 0.19703 - MIX 74 - 54 0.38368 - 74 0.44579 - 94 0.17053 - MIX 94 - 74 0.46286 - 94 0.42143 - 114 0.11571 - MIX 114 - 94 0.81000 - 114 0.19000 - MIX 14 - 14 0.90712 - 35 0.09288 - MIX 35 - 14 0.57098 - 35 0.21656 - 55 0.21246 - MIX 55 - 35 0.35027 - 55 0.45270 - 75 0.19703 - MIX 75 - 55 0.38368 - 75 0.44579 - 95 0.17053 - MIX 95 - 75 0.46286 - 95 0.42143 - 115 0.11571 - MIX 115 - 95 0.81000 - 115 0.19000 - MIX 15 - 15 0.90712 - 36 0.09288 - MIX 36 - 15 0.57098 - 36 0.21656 - 56 0.21246 - MIX 56 - 36 0.35027 - 56 0.45270 - 76 0.19703 - MIX 76 - 56 0.38368 - 76 0.44579 - 96 0.17053 - MIX 96 - 76 0.46286 - 96 0.42143 - 116 0.11571 - MIX 116 - 96 0.81000 - 116 0.19000 - MIX 16 - 16 0.90712 - 37 0.09288 - MIX 37 - 16 0.57098 - 37 0.21656 - 57 0.21246 - MIX 57 - 37 0.35027 - 57 0.45270 - 77 0.19703 - MIX 77 - 57 0.38368 - 77 0.44579 - 97 0.17053 - MIX 97 - 77 0.46286 - 97 0.42143 - 117 0.11571 - MIX 117 - 97 0.81000 - 117 0.19000 - MIX 17 - 17 0.90712 - 38 0.09288 - MIX 38 - 17 0.57098 - 38 0.21656 - 58 0.21246 - MIX 58 - 38 0.35027 - 58 0.45270 - 78 0.19703 - MIX 78 - 58 0.38368 - 78 0.44579 - 98 0.17053 - MIX 98 - 78 0.46286 - 98 0.42143 - 118 0.11571 - MIX 118 - 98 0.81000 - 118 0.19000 - MIX 18 - 18 0.90712 - 39 0.09288 - MIX 39 - 18 0.57098 - 39 0.21656 - 59 0.21246 - MIX 59 - 39 0.35027 - 59 0.45270 - 79 0.19703 - MIX 79 - 59 0.38368 - 79 0.44579 - 99 0.17053 - MIX 99 - 79 0.46286 - 99 0.42143 - 119 0.11571 - MIX 119 - 99 0.81000 - 119 0.19000 - MIX 19 - 19 0.90712 - 40 0.09288 - MIX 40 - 19 0.57098 - 40 0.21656 - 60 0.21246 - MIX 60 - 40 0.35027 - 60 0.45270 - 80 0.19703 - MIX 80 - 60 0.38368 - 80 0.44579 - 100 0.17053 - MIX 100 - 80 0.46286 - 100 0.42143 - 120 0.11571 - MIX 120 - 100 0.81000 - 120 0.19000 - MIX 20 - 20 0.90712 - 41 0.09288 - MIX 41 - 20 0.57098 - 41 0.21656 - 61 0.21246 - MIX 61 - 41 0.35027 - 61 0.45270 - 81 0.19703 - MIX 81 - 61 0.38368 - 81 0.44579 - 101 0.17053 - MIX 101 - 81 0.46286 - 101 0.42143 - 121 0.11571 - MIX 121 - 101 0.81000 - 121 0.19000 - TRANSPORT - cells 20 - shifts 5 - flow_direction forward - time_step 3600 - boundary_conditions flux flux - diffusion_coefficient 0.0 - lengths 0.1 - dispersivities 0.015 - stagnant 5 - END -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. - SOLUTION 0 # Original solution reenters - units mmol/l - pH 7.0 - pe 13.0 O2(g) -0.7 - K 1.0 - N(5) 1.0 - END - PRINT - user_graph true - SELECTED_OUTPUT - file ex13c.sel - reset false - distance true - solution - USER_PUNCH - headings Cl_mmol Na_mmol - 10 PUNCH TOT("Cl")*1000, TOT("Na")*1000 - TRANSPORT - shifts 10 - punch_cells 1-20 - punch_frequency 10 - USER_GRAPH 1 - -headings Finite_Diff Na Cl - -start - 10 plot_xy -1, -1, line_width = 0, symbol_size = 0 - 20 plot_xy dist, TOT("Na")*1000, color = Red, symbol = Plus - 30 plot_xy dist, TOT("Cl")*1000, color = Green, symbol = Plus - -end - END -------------------------------- -End of Run after 1.566 Seconds. -------------------------------- - diff --git a/examples_pc/ex13b.out b/examples_pc/ex13b.out deleted file mode 100644 index e8d1c53c..00000000 --- a/examples_pc/ex13b.out +++ /dev/null @@ -1,456 +0,0 @@ - Input file: ..\examples\ex13b - Output file: ex13b.out -Database file: ..\database\phreeqc.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - PHASES - EXCHANGE_MASTER_SPECIES - EXCHANGE_SPECIES - SURFACE_MASTER_SPECIES - SURFACE_SPECIES - RATES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Example 13B.--1 mmol/l NaCl/NO3 enters column with stagnant zones. - Explicit definition of first-order exchange factors. - SOLUTION 0 # 1 mmol/l NaCl - units mmol/l - pH 7.0 - pe 13.0 O2(g) -0.7 - Na 1.0 # Na has Retardation = 2 - Cl 1.0 # Cl has Retardation = 1, stagnant exchange - N(5) 1.0 # NO3 is conservative - END ------ -TITLE ------ - - Example 13B.--1 mmol/l NaCl/NO3 enters column with stagnant zones. - Explicit definition of first-order exchange factors. - -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 0. - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Cl 1.000e-003 1.000e-003 - N(5) 1.000e-003 1.000e-003 - Na 1.000e-003 1.000e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.000 - pe = 13.622 Equilibrium with O2(g) - Specific Conductance (uS/cm, 25 oC) = 192 - Density (g/cm3) = 0.99712 - Volume (L) = 1.00302 - Activity of water = 1.000 - Ionic strength = 1.500e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.549e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.000e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -33.33 - Iterations = 3 - Total H = 1.110124e+002 - Total O = 5.550973e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.057e-007 1.012e-007 -6.976 -6.995 -0.019 -4.10 - H+ 1.042e-007 1.000e-007 -6.982 -7.000 -0.018 0.00 - H2O 5.551e+001 9.999e-001 1.744 -0.000 0.000 18.07 -Cl 1.000e-003 - Cl- 1.000e-003 9.576e-004 -3.000 -3.019 -0.019 18.08 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.394 -44.394 0.000 28.61 -N(5) 1.000e-003 - NO3- 1.000e-003 9.572e-004 -3.000 -3.019 -0.019 29.54 -Na 1.000e-003 - Na+ 1.000e-003 9.580e-004 -3.000 -3.019 -0.019 -1.38 - NaOH 9.693e-021 9.696e-021 -20.014 -20.013 0.000 (0) -O(0) 5.110e-004 - O2 2.555e-004 2.556e-004 -3.593 -3.592 0.000 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - H2(g) -41.29 -44.39 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - Halite -7.61 -6.04 1.57 NaCl - O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000. - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 2. ------------------------------------- - - SOLUTION 1-41 # Column with KNO3 - units mmol/l - pH 7.0 - pe 13.0 O2(g) -0.7 - K 1.0 - N(5) 1.0 - EXCHANGE_SPECIES # For linear exchange, make KX exch. coeff. equal to NaX - K+ + X- = KX - log_k 0.0 - gamma 3.5 0.015 - EXCHANGE 1-41 - equilibrate 1 - X 1.e-3 - END -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 1. - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - K 1.000e-003 1.000e-003 - N(5) 1.000e-003 1.000e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.000 - pe = 13.622 Equilibrium with O2(g) - Specific Conductance (uS/cm, 25 oC) = 141 - Density (g/cm3) = 0.99711 - Volume (L) = 1.00301 - Activity of water = 1.000 - Ionic strength = 1.000e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.450e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.450e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 3 - Total H = 1.110124e+002 - Total O = 5.550973e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.049e-007 1.012e-007 -6.979 -6.995 -0.016 -4.11 - H+ 1.035e-007 1.000e-007 -6.985 -7.000 -0.015 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.394 -44.394 0.000 28.61 -K 1.000e-003 - K+ 1.000e-003 9.649e-004 -3.000 -3.016 -0.016 9.01 -N(5) 1.000e-003 - NO3- 1.000e-003 9.647e-004 -3.000 -3.016 -0.016 29.53 -O(0) 5.111e-004 - O2 2.555e-004 2.556e-004 -3.593 -3.592 0.000 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - H2(g) -41.29 -44.39 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000. - - -------------------------------------------------------- -Beginning of initial exchange-composition calculations. -------------------------------------------------------- - -Exchange 1. - -X 1.000e-003 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 1.000e-003 1.000e-003 1.000e+000 -0.016 - ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. -Using exchange 1. Exchange assemblage after simulation 2. - ------------------------------Exchange composition------------------------------ - -X 1.000e-003 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 1.000e-003 1.000e-003 1.000e+000 -0.016 - NH4X 5.034e-063 5.034e-063 5.034e-060 -0.016 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - K 1.000e-003 1.000e-003 - N 1.000e-003 1.000e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 13.622 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 141 - Density (g/cm3) = 0.99711 - Volume (L) = 1.00301 - Activity of water = 1.000 - Ionic strength = 1.000e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.450e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.450e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 5 - Total H = 1.110124e+002 - Total O = 5.550973e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.049e-007 1.012e-007 -6.979 -6.995 -0.016 -4.11 - H+ 1.035e-007 1.000e-007 -6.985 -7.000 -0.015 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.394 -44.394 0.000 28.61 -K 1.000e-003 - K+ 1.000e-003 9.649e-004 -3.000 -3.016 -0.016 9.01 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -62.898 -62.914 -0.016 17.96 - NH3 0.000e+000 0.000e+000 -65.158 -65.158 0.000 24.46 -N(0) 1.351e-019 - N2 6.757e-020 6.759e-020 -19.170 -19.170 0.000 29.29 -N(3) 2.120e-016 - NO2- 2.120e-016 2.045e-016 -15.674 -15.689 -0.016 24.97 -N(5) 1.000e-003 - NO3- 1.000e-003 9.647e-004 -3.000 -3.016 -0.016 29.53 -O(0) 5.111e-004 - O2 2.555e-004 2.556e-004 -3.593 -3.592 0.000 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - H2(g) -41.29 -44.39 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -15.99 -19.17 -3.18 N2 - NH3(g) -66.95 -65.16 1.80 NH3 - O2(g) -0.70 -3.59 -2.89 O2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 3. ------------------------------------- - - PRINT - reset false - status false - MIX 1 - 1 .93038 - 22 .06962 - MIX 2 - 2 .93038 - 23 .06962 - MIX 3 - 3 .93038 - 24 .06962 - MIX 4 - 4 .93038 - 25 .06962 - MIX 5 - 5 .93038 - 26 .06962 - MIX 6 - 6 .93038 - 27 .06962 - MIX 7 - 7 .93038 - 28 .06962 - MIX 8 - 8 .93038 - 29 .06962 - MIX 9 - 9 .93038 - 30 .06962 - MIX 10 - 10 .93038 - 31 .06962 - MIX 11 - 11 .93038 - 32 .06962 - MIX 12 - 12 .93038 - 33 .06962 - MIX 13 - 13 .93038 - 34 .06962 - MIX 14 - 14 .93038 - 35 .06962 - MIX 15 - 15 .93038 - 36 .06962 - MIX 16 - 16 .93038 - 37 .06962 - MIX 17 - 17 .93038 - 38 .06962 - MIX 18 - 18 .93038 - 39 .06962 - MIX 19 - 19 .93038 - 40 .06962 - MIX 20 - 20 .93038 - 41 .06962 - MIX 22 - 1 .20886 - 22 .79114 - MIX 23 - 2 .20886 - 23 .79114 - MIX 24 - 3 .20886 - 24 .79114 - MIX 25 - 4 .20886 - 25 .79114 - MIX 26 - 5 .20886 - 26 .79114 - MIX 27 - 6 .20886 - 27 .79114 - MIX 28 - 7 .20886 - 28 .79114 - MIX 29 - 8 .20886 - 29 .79114 - MIX 30 - 9 .20886 - 30 .79114 - MIX 31 - 10 .20886 - 31 .79114 - MIX 32 - 11 .20886 - 32 .79114 - MIX 33 - 12 .20886 - 33 .79114 - MIX 34 - 13 .20886 - 34 .79114 - MIX 35 - 14 .20886 - 35 .79114 - MIX 36 - 15 .20886 - 36 .79114 - MIX 37 - 16 .20886 - 37 .79114 - MIX 38 - 17 .20886 - 38 .79114 - MIX 39 - 18 .20886 - 39 .79114 - MIX 40 - 19 .20886 - 40 .79114 - MIX 41 - 20 .20886 - 41 .79114 - TRANSPORT - cells 20 - shifts 5 - flow_direction forward - time_step 3600 - boundary_conditions flux flux - diffusion_coefficient 0.0 - lengths 0.1 - dispersivities 0.015 - stagnant 1 - END -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. - SOLUTION 0 # Original solution reenters - units mmol/l - pH 7.0 - pe 13.0 O2(g) -0.7 - K 1.0 - N(5) 1.0 - END - SELECTED_OUTPUT - file ex13b.sel - reset false - distance true - solution - USER_PUNCH - headings Cl_mmol Na_mmol - 10 PUNCH TOT("Cl")*1000, TOT("Na")*1000 - TRANSPORT - shifts 10 - punch_cells 1-20 - punch_frequency 10 - USER_GRAPH 1 Example 13B - -headings Distance Na Cl - -chart_title "Dual Porosity, First-Order Exchange with Explicit Mixing Factors" - -axis_titles "Distance, in meters" "Millimoles per kilogram water" - -axis_scale x_axis 0 2 - -axis_scale y_axis 0 0.8 - -plot_concentration_vs x - -start - 10 GRAPH_X DIST - 20 GRAPH_Y TOT("Na")*1000 TOT("Cl")*1000 - -end - END -------------------------------- -End of Run after 0.963 Seconds. -------------------------------- - diff --git a/examples_pc/ex13b.sel b/examples_pc/ex13b.sel deleted file mode 100644 index cb2d8382..00000000 --- a/examples_pc/ex13b.sel +++ /dev/null @@ -1,41 +0,0 @@ - soln dist_x Cl_mmol Na_mmol - 1 0.05 9.6495e-001 8.8504e-001 - 2 0.15 9.1812e-001 6.9360e-001 - 3 0.25 8.4451e-001 4.3288e-001 - 4 0.35 7.1652e-001 1.9734e-001 - 5 0.45 4.9952e-001 6.0705e-002 - 6 0.55 2.4048e-001 1.1785e-002 - 7 0.65 7.2813e-002 1.4039e-003 - 8 0.75 1.3132e-002 9.9324e-005 - 9 0.85 1.2882e-003 3.8318e-006 - 10 0.95 5.2941e-005 6.2140e-008 - 11 1.05 0.0000e+000 0.0000e+000 - 12 1.15 0.0000e+000 0.0000e+000 - 13 1.25 0.0000e+000 0.0000e+000 - 14 1.35 0.0000e+000 0.0000e+000 - 15 1.45 0.0000e+000 0.0000e+000 - 16 1.55 0.0000e+000 0.0000e+000 - 17 1.65 0.0000e+000 0.0000e+000 - 18 1.75 0.0000e+000 0.0000e+000 - 19 1.85 0.0000e+000 0.0000e+000 - 20 1.95 0.0000e+000 0.0000e+000 - 1 0.05 7.5889e-003 2.0249e-002 - 2 0.15 1.7993e-002 5.0943e-002 - 3 0.25 3.3135e-002 1.0209e-001 - 4 0.35 5.3590e-002 1.7480e-001 - 5 0.45 8.0158e-002 2.5484e-001 - 6 0.55 1.1395e-001 3.1308e-001 - 7 0.65 1.5766e-001 3.2277e-001 - 8 0.75 2.1666e-001 2.7969e-001 - 9 0.85 2.9573e-001 2.0468e-001 - 10 0.95 3.8768e-001 1.2727e-001 - 11 1.05 4.6467e-001 6.7581e-002 - 12 1.15 4.9243e-001 3.0745e-002 - 13 1.25 4.5811e-001 1.1988e-002 - 14 1.35 3.7620e-001 3.9981e-003 - 15 1.45 2.7323e-001 1.1366e-003 - 16 1.55 1.7416e-001 2.7440e-004 - 17 1.65 9.6075e-002 5.6039e-005 - 18 1.75 4.5211e-002 9.6477e-006 - 19 1.85 1.7934e-002 1.3954e-006 - 20 1.95 6.4870e-003 1.7678e-007 diff --git a/examples_pc/ex13c.out b/examples_pc/ex13c.out deleted file mode 100644 index 5b29794e..00000000 --- a/examples_pc/ex13c.out +++ /dev/null @@ -1,776 +0,0 @@ - Input file: ..\examples\ex13c - Output file: ex13c.out -Database file: ..\database\phreeqc.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - PHASES - EXCHANGE_MASTER_SPECIES - EXCHANGE_SPECIES - SURFACE_MASTER_SPECIES - SURFACE_SPECIES - RATES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Example 13C.--1 mmol/l NaCl/NO3 enters column with stagnant zones. - 5 layer stagnant zone with finite differences. - SOLUTION 0 # 1 mmol/l NaCl - units mmol/l - pH 7.0 - pe 13.0 O2(g) -0.7 - Na 1.0 # Na has Retardation = 2 - Cl 1.0 # Cl has Retardation = 1, stagnant exchange - N(5) 1.0 # NO3 is conservative - END ------ -TITLE ------ - - Example 13C.--1 mmol/l NaCl/NO3 enters column with stagnant zones. - 5 layer stagnant zone with finite differences. - -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 0. - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Cl 1.000e-003 1.000e-003 - N(5) 1.000e-003 1.000e-003 - Na 1.000e-003 1.000e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.000 - pe = 13.622 Equilibrium with O2(g) - Specific Conductance (uS/cm, 25 oC) = 192 - Density (g/cm3) = 0.99712 - Volume (L) = 1.00302 - Activity of water = 1.000 - Ionic strength = 1.500e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.549e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.000e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -33.33 - Iterations = 3 - Total H = 1.110124e+002 - Total O = 5.550973e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.057e-007 1.012e-007 -6.976 -6.995 -0.019 -4.10 - H+ 1.042e-007 1.000e-007 -6.982 -7.000 -0.018 0.00 - H2O 5.551e+001 9.999e-001 1.744 -0.000 0.000 18.07 -Cl 1.000e-003 - Cl- 1.000e-003 9.576e-004 -3.000 -3.019 -0.019 18.08 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.394 -44.394 0.000 28.61 -N(5) 1.000e-003 - NO3- 1.000e-003 9.572e-004 -3.000 -3.019 -0.019 29.54 -Na 1.000e-003 - Na+ 1.000e-003 9.580e-004 -3.000 -3.019 -0.019 -1.38 - NaOH 9.693e-021 9.696e-021 -20.014 -20.013 0.000 (0) -O(0) 5.110e-004 - O2 2.555e-004 2.556e-004 -3.593 -3.592 0.000 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - H2(g) -41.29 -44.39 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - Halite -7.61 -6.04 1.57 NaCl - O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000. - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 2. ------------------------------------- - - SOLUTION 1-121 - units mmol/l - pH 7.0 - pe 13.0 O2(g) -0.7 - K 1.0 - N(5) 1.0 - EXCHANGE_SPECIES # For linear exchange, make KX exch. coeff. equal to NaX - K+ + X- = KX - log_k 0.0 - gamma 3.5 0.015 - EXCHANGE 1-121 - equilibrate 1 - X 1.e-3 - END -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 1. - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - K 1.000e-003 1.000e-003 - N(5) 1.000e-003 1.000e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.000 - pe = 13.622 Equilibrium with O2(g) - Specific Conductance (uS/cm, 25 oC) = 141 - Density (g/cm3) = 0.99711 - Volume (L) = 1.00301 - Activity of water = 1.000 - Ionic strength = 1.000e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.450e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.450e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 3 - Total H = 1.110124e+002 - Total O = 5.550973e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.049e-007 1.012e-007 -6.979 -6.995 -0.016 -4.11 - H+ 1.035e-007 1.000e-007 -6.985 -7.000 -0.015 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.394 -44.394 0.000 28.61 -K 1.000e-003 - K+ 1.000e-003 9.649e-004 -3.000 -3.016 -0.016 9.01 -N(5) 1.000e-003 - NO3- 1.000e-003 9.647e-004 -3.000 -3.016 -0.016 29.53 -O(0) 5.111e-004 - O2 2.555e-004 2.556e-004 -3.593 -3.592 0.000 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - H2(g) -41.29 -44.39 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000. - - -------------------------------------------------------- -Beginning of initial exchange-composition calculations. -------------------------------------------------------- - -Exchange 1. - -X 1.000e-003 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 1.000e-003 1.000e-003 1.000e+000 -0.016 - ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. -Using exchange 1. Exchange assemblage after simulation 2. - ------------------------------Exchange composition------------------------------ - -X 1.000e-003 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 1.000e-003 1.000e-003 1.000e+000 -0.016 - NH4X 5.034e-063 5.034e-063 5.034e-060 -0.016 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - K 1.000e-003 1.000e-003 - N 1.000e-003 1.000e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 13.622 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 141 - Density (g/cm3) = 0.99711 - Volume (L) = 1.00301 - Activity of water = 1.000 - Ionic strength = 1.000e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.450e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.450e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 5 - Total H = 1.110124e+002 - Total O = 5.550973e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.049e-007 1.012e-007 -6.979 -6.995 -0.016 -4.11 - H+ 1.035e-007 1.000e-007 -6.985 -7.000 -0.015 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.394 -44.394 0.000 28.61 -K 1.000e-003 - K+ 1.000e-003 9.649e-004 -3.000 -3.016 -0.016 9.01 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -62.898 -62.914 -0.016 17.96 - NH3 0.000e+000 0.000e+000 -65.158 -65.158 0.000 24.46 -N(0) 1.351e-019 - N2 6.757e-020 6.759e-020 -19.170 -19.170 0.000 29.29 -N(3) 2.120e-016 - NO2- 2.120e-016 2.045e-016 -15.674 -15.689 -0.016 24.97 -N(5) 1.000e-003 - NO3- 1.000e-003 9.647e-004 -3.000 -3.016 -0.016 29.53 -O(0) 5.111e-004 - O2 2.555e-004 2.556e-004 -3.593 -3.592 0.000 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - H2(g) -41.29 -44.39 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -15.99 -19.17 -3.18 N2 - NH3(g) -66.95 -65.16 1.80 NH3 - O2(g) -0.70 -3.59 -2.89 O2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 3. ------------------------------------- - - PRINT - reset false - status false - MIX 1 - 1 0.90712 - 22 0.09288 - MIX 22 - 1 0.57098 - 22 0.21656 - 42 0.21246 - MIX 42 - 22 0.35027 - 42 0.45270 - 62 0.19703 - MIX 62 - 42 0.38368 - 62 0.44579 - 82 0.17053 - MIX 82 - 62 0.46286 - 82 0.42143 - 102 0.11571 - MIX 102 - 82 0.81000 - 102 0.19000 - MIX 2 - 2 0.90712 - 23 0.09288 - MIX 23 - 2 0.57098 - 23 0.21656 - 43 0.21246 - MIX 43 - 23 0.35027 - 43 0.45270 - 63 0.19703 - MIX 63 - 43 0.38368 - 63 0.44579 - 83 0.17053 - MIX 83 - 63 0.46286 - 83 0.42143 - 103 0.11571 - MIX 103 - 83 0.81000 - 103 0.19000 - MIX 3 - 3 0.90712 - 24 0.09288 - MIX 24 - 3 0.57098 - 24 0.21656 - 44 0.21246 - MIX 44 - 24 0.35027 - 44 0.45270 - 64 0.19703 - MIX 64 - 44 0.38368 - 64 0.44579 - 84 0.17053 - MIX 84 - 64 0.46286 - 84 0.42143 - 104 0.11571 - MIX 104 - 84 0.81000 - 104 0.19000 - MIX 4 - 4 0.90712 - 25 0.09288 - MIX 25 - 4 0.57098 - 25 0.21656 - 45 0.21246 - MIX 45 - 25 0.35027 - 45 0.45270 - 65 0.19703 - MIX 65 - 45 0.38368 - 65 0.44579 - 85 0.17053 - MIX 85 - 65 0.46286 - 85 0.42143 - 105 0.11571 - MIX 105 - 85 0.81000 - 105 0.19000 - MIX 5 - 5 0.90712 - 26 0.09288 - MIX 26 - 5 0.57098 - 26 0.21656 - 46 0.21246 - MIX 46 - 26 0.35027 - 46 0.45270 - 66 0.19703 - MIX 66 - 46 0.38368 - 66 0.44579 - 86 0.17053 - MIX 86 - 66 0.46286 - 86 0.42143 - 106 0.11571 - MIX 106 - 86 0.81000 - 106 0.19000 - MIX 6 - 6 0.90712 - 27 0.09288 - MIX 27 - 6 0.57098 - 27 0.21656 - 47 0.21246 - MIX 47 - 27 0.35027 - 47 0.45270 - 67 0.19703 - MIX 67 - 47 0.38368 - 67 0.44579 - 87 0.17053 - MIX 87 - 67 0.46286 - 87 0.42143 - 107 0.11571 - MIX 107 - 87 0.81000 - 107 0.19000 - MIX 7 - 7 0.90712 - 28 0.09288 - MIX 28 - 7 0.57098 - 28 0.21656 - 48 0.21246 - MIX 48 - 28 0.35027 - 48 0.45270 - 68 0.19703 - MIX 68 - 48 0.38368 - 68 0.44579 - 88 0.17053 - MIX 88 - 68 0.46286 - 88 0.42143 - 108 0.11571 - MIX 108 - 88 0.81000 - 108 0.19000 - MIX 8 - 8 0.90712 - 29 0.09288 - MIX 29 - 8 0.57098 - 29 0.21656 - 49 0.21246 - MIX 49 - 29 0.35027 - 49 0.45270 - 69 0.19703 - MIX 69 - 49 0.38368 - 69 0.44579 - 89 0.17053 - MIX 89 - 69 0.46286 - 89 0.42143 - 109 0.11571 - MIX 109 - 89 0.81000 - 109 0.19000 - MIX 9 - 9 0.90712 - 30 0.09288 - MIX 30 - 9 0.57098 - 30 0.21656 - 50 0.21246 - MIX 50 - 30 0.35027 - 50 0.45270 - 70 0.19703 - MIX 70 - 50 0.38368 - 70 0.44579 - 90 0.17053 - MIX 90 - 70 0.46286 - 90 0.42143 - 110 0.11571 - MIX 110 - 90 0.81000 - 110 0.19000 - MIX 10 - 10 0.90712 - 31 0.09288 - MIX 31 - 10 0.57098 - 31 0.21656 - 51 0.21246 - MIX 51 - 31 0.35027 - 51 0.45270 - 71 0.19703 - MIX 71 - 51 0.38368 - 71 0.44579 - 91 0.17053 - MIX 91 - 71 0.46286 - 91 0.42143 - 111 0.11571 - MIX 111 - 91 0.81000 - 111 0.19000 - MIX 11 - 11 0.90712 - 32 0.09288 - MIX 32 - 11 0.57098 - 32 0.21656 - 52 0.21246 - MIX 52 - 32 0.35027 - 52 0.45270 - 72 0.19703 - MIX 72 - 52 0.38368 - 72 0.44579 - 92 0.17053 - MIX 92 - 72 0.46286 - 92 0.42143 - 112 0.11571 - MIX 112 - 92 0.81000 - 112 0.19000 - MIX 12 - 12 0.90712 - 33 0.09288 - MIX 33 - 12 0.57098 - 33 0.21656 - 53 0.21246 - MIX 53 - 33 0.35027 - 53 0.45270 - 73 0.19703 - MIX 73 - 53 0.38368 - 73 0.44579 - 93 0.17053 - MIX 93 - 73 0.46286 - 93 0.42143 - 113 0.11571 - MIX 113 - 93 0.81000 - 113 0.19000 - MIX 13 - 13 0.90712 - 34 0.09288 - MIX 34 - 13 0.57098 - 34 0.21656 - 54 0.21246 - MIX 54 - 34 0.35027 - 54 0.45270 - 74 0.19703 - MIX 74 - 54 0.38368 - 74 0.44579 - 94 0.17053 - MIX 94 - 74 0.46286 - 94 0.42143 - 114 0.11571 - MIX 114 - 94 0.81000 - 114 0.19000 - MIX 14 - 14 0.90712 - 35 0.09288 - MIX 35 - 14 0.57098 - 35 0.21656 - 55 0.21246 - MIX 55 - 35 0.35027 - 55 0.45270 - 75 0.19703 - MIX 75 - 55 0.38368 - 75 0.44579 - 95 0.17053 - MIX 95 - 75 0.46286 - 95 0.42143 - 115 0.11571 - MIX 115 - 95 0.81000 - 115 0.19000 - MIX 15 - 15 0.90712 - 36 0.09288 - MIX 36 - 15 0.57098 - 36 0.21656 - 56 0.21246 - MIX 56 - 36 0.35027 - 56 0.45270 - 76 0.19703 - MIX 76 - 56 0.38368 - 76 0.44579 - 96 0.17053 - MIX 96 - 76 0.46286 - 96 0.42143 - 116 0.11571 - MIX 116 - 96 0.81000 - 116 0.19000 - MIX 16 - 16 0.90712 - 37 0.09288 - MIX 37 - 16 0.57098 - 37 0.21656 - 57 0.21246 - MIX 57 - 37 0.35027 - 57 0.45270 - 77 0.19703 - MIX 77 - 57 0.38368 - 77 0.44579 - 97 0.17053 - MIX 97 - 77 0.46286 - 97 0.42143 - 117 0.11571 - MIX 117 - 97 0.81000 - 117 0.19000 - MIX 17 - 17 0.90712 - 38 0.09288 - MIX 38 - 17 0.57098 - 38 0.21656 - 58 0.21246 - MIX 58 - 38 0.35027 - 58 0.45270 - 78 0.19703 - MIX 78 - 58 0.38368 - 78 0.44579 - 98 0.17053 - MIX 98 - 78 0.46286 - 98 0.42143 - 118 0.11571 - MIX 118 - 98 0.81000 - 118 0.19000 - MIX 18 - 18 0.90712 - 39 0.09288 - MIX 39 - 18 0.57098 - 39 0.21656 - 59 0.21246 - MIX 59 - 39 0.35027 - 59 0.45270 - 79 0.19703 - MIX 79 - 59 0.38368 - 79 0.44579 - 99 0.17053 - MIX 99 - 79 0.46286 - 99 0.42143 - 119 0.11571 - MIX 119 - 99 0.81000 - 119 0.19000 - MIX 19 - 19 0.90712 - 40 0.09288 - MIX 40 - 19 0.57098 - 40 0.21656 - 60 0.21246 - MIX 60 - 40 0.35027 - 60 0.45270 - 80 0.19703 - MIX 80 - 60 0.38368 - 80 0.44579 - 100 0.17053 - MIX 100 - 80 0.46286 - 100 0.42143 - 120 0.11571 - MIX 120 - 100 0.81000 - 120 0.19000 - MIX 20 - 20 0.90712 - 41 0.09288 - MIX 41 - 20 0.57098 - 41 0.21656 - 61 0.21246 - MIX 61 - 41 0.35027 - 61 0.45270 - 81 0.19703 - MIX 81 - 61 0.38368 - 81 0.44579 - 101 0.17053 - MIX 101 - 81 0.46286 - 101 0.42143 - 121 0.11571 - MIX 121 - 101 0.81000 - 121 0.19000 - TRANSPORT - cells 20 - shifts 5 - flow_direction forward - time_step 3600 - boundary_conditions flux flux - diffusion_coefficient 0.0 - lengths 0.1 - dispersivities 0.015 - stagnant 5 - END -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. - SOLUTION 0 # Original solution reenters - units mmol/l - pH 7.0 - pe 13.0 O2(g) -0.7 - K 1.0 - N(5) 1.0 - END - SELECTED_OUTPUT - file ex13c.sel - reset false - distance true - solution - USER_PUNCH - headings Cl_mmol Na_mmol - 10 PUNCH TOT("Cl")*1000, TOT("Na")*1000 - TRANSPORT - shifts 10 - punch_cells 1-20 - punch_frequency 10 - USER_GRAPH 1 Example 13C - -headings Distance Na Cl - -chart_title "Dual Porosity, Finite-Difference Approximation" - -axis_titles "Distance, in meters" "Millimoles per kilogram water" - -axis_scale x_axis 0 2 - -axis_scale y_axis 0 0.8 - -plot_concentration_vs x - -start - 10 GRAPH_X DIST - 20 GRAPH_Y TOT("Na")*1000 TOT("Cl")*1000 - -end - END -------------------------------- -End of Run after 1.281 Seconds. -------------------------------- - diff --git a/examples_pc/ex13c.sel b/examples_pc/ex13c.sel deleted file mode 100644 index 71fadcdd..00000000 --- a/examples_pc/ex13c.sel +++ /dev/null @@ -1,41 +0,0 @@ - soln dist_x Cl_mmol Na_mmol - 1 0.05 9.7683e-001 8.8829e-001 - 2 0.15 9.4255e-001 6.9066e-001 - 3 0.25 8.7253e-001 4.2503e-001 - 4 0.35 7.2600e-001 1.9091e-001 - 5 0.45 4.8246e-001 5.8021e-002 - 6 0.55 2.2239e-001 1.1177e-002 - 7 0.65 6.5489e-002 1.3256e-003 - 8 0.75 1.1639e-002 9.3569e-005 - 9 0.85 1.1350e-003 3.6065e-006 - 10 0.95 4.6646e-005 5.8485e-008 - 11 1.05 0.0000e+000 0.0000e+000 - 12 1.15 0.0000e+000 0.0000e+000 - 13 1.25 0.0000e+000 0.0000e+000 - 14 1.35 0.0000e+000 0.0000e+000 - 15 1.45 0.0000e+000 0.0000e+000 - 16 1.55 0.0000e+000 0.0000e+000 - 17 1.65 0.0000e+000 0.0000e+000 - 18 1.75 0.0000e+000 0.0000e+000 - 19 1.85 0.0000e+000 0.0000e+000 - 20 1.95 0.0000e+000 0.0000e+000 - 1 0.05 4.7101e-003 1.6916e-002 - 2 0.15 1.0234e-002 4.9729e-002 - 3 0.25 1.8109e-002 1.0883e-001 - 4 0.35 2.9565e-002 1.9194e-001 - 5 0.45 4.7408e-002 2.7841e-001 - 6 0.55 7.7191e-002 3.3492e-001 - 7 0.65 1.2832e-001 3.3632e-001 - 8 0.75 2.1109e-001 2.8375e-001 - 9 0.85 3.2572e-001 2.0251e-001 - 10 0.95 4.4908e-001 1.2304e-001 - 11 1.05 5.3819e-001 6.3977e-002 - 12 1.15 5.5716e-001 2.8554e-002 - 13 1.25 5.0158e-001 1.0943e-002 - 14 1.35 3.9581e-001 3.5935e-003 - 15 1.45 2.7424e-001 1.0078e-003 - 16 1.55 1.6586e-001 2.4047e-004 - 17 1.65 8.6688e-002 4.8621e-005 - 18 1.75 3.8743e-002 8.3007e-006 - 19 1.85 1.4669e-002 1.1922e-006 - 20 1.95 5.0940e-003 1.5016e-007 diff --git a/examples_pc/ex14.out b/examples_pc/ex14.out deleted file mode 100644 index 55dca2bb..00000000 --- a/examples_pc/ex14.out +++ /dev/null @@ -1,1060 +0,0 @@ - Input file: ..\examples\ex14 - Output file: ex14.out -Database file: ..\database\phreeqc.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - PHASES - EXCHANGE_MASTER_SPECIES - EXCHANGE_SPECIES - SURFACE_MASTER_SPECIES - SURFACE_SPECIES - RATES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Example 14.--Transport with equilibrium_phases, exchange, and surface reactions - SURFACE_MASTER_SPECIES - Surf SurfOH - SURFACE_SPECIES - SurfOH = SurfOH - log_k 0.0 - SurfOH + H+ = SurfOH2+ - log_k 7.29 - SurfOH = SurfO- + H+ - log_k -8.93 - SurfOH + AsO4-3 + 3H+ = SurfH2AsO4 + H2O - log_k 29.31 - SurfOH + AsO4-3 + 2H+ = SurfHAsO4- + H2O - log_k 23.51 - SurfOH + AsO4-3 = SurfOHAsO4-3 - log_k 10.58 - SOLUTION_MASTER_SPECIES - As H3AsO4 -1.0 74.9216 74.9216 - SOLUTION_SPECIES - H3AsO4 = H3AsO4 - log_k 0.0 - H3AsO4 = AsO4-3 + 3H+ - log_k -20.7 - H+ + AsO4-3 = HAsO4-2 - log_k 11.50 - 2H+ + AsO4-3 = H2AsO4- - log_k 18.46 - SOLUTION 1 Brine - pH 5.713 - pe 4.0 O2(g) -0.7 - temp 25. - units mol/kgw - Ca .4655 - Mg .1609 - Na 5.402 - Cl 6.642 charge - C .00396 - S .004725 - As .025 umol/kgw - END ------ -TITLE ------ - - Example 14.--Transport with equilibrium_phases, exchange, and surface reactions - -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 1. Brine - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - As 2.500e-008 2.500e-008 - C 3.960e-003 3.960e-003 - Ca 4.655e-001 4.655e-001 - Cl 6.642e+000 6.642e+000 Charge balance - Mg 1.609e-001 1.609e-001 - Na 5.402e+000 5.402e+000 - S 4.725e-003 4.725e-003 - -----------------------------Description of solution---------------------------- - - pH = 5.713 - pe = 14.962 Equilibrium with O2(g) - Specific Conductance (uS/cm, 25 oC) = 485621 - Density (g/cm3) = 1.21497 - Volume (L) = 1.13864 - Activity of water = 0.785 - Ionic strength = 7.268e+000 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 3.842e-003 - Total CO2 (mol/kg) = 3.960e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.921e-013 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 11 - Total H = 1.110163e+002 - Total O = 5.553698e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 2.756e-006 1.936e-006 -5.560 -5.713 -0.153 0.00 - OH- 8.878e-009 4.101e-009 -8.052 -8.387 -0.335 6.33 - H2O 5.551e+001 7.846e-001 1.744 -0.105 0.000 18.07 -As 2.500e-008 - H2AsO4- 2.498e-008 1.373e-007 -7.602 -6.862 0.740 (0) - H3AsO4 8.667e-012 4.621e-011 -11.062 -10.335 0.727 (0) - HAsO4-2 8.521e-012 7.775e-009 -11.070 -8.109 2.960 (0) - AsO4-3 2.775e-021 1.270e-014 -20.557 -13.896 6.661 (0) -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -144.725 -143.999 0.727 32.22 -C(4) 3.960e-003 - CaHCO3+ 1.691e-003 1.024e-003 -2.772 -2.990 -0.218 10.08 - MgHCO3+ 1.385e-003 6.898e-004 -2.859 -3.161 -0.303 6.01 - NaHCO3 5.704e-004 3.041e-003 -3.244 -2.517 0.727 19.41 - HCO3- 1.953e-004 1.129e-004 -3.709 -3.947 -0.238 54.45 - CO2 1.175e-004 6.266e-004 -3.930 -3.203 0.727 30.26 - CaCO3 6.125e-007 3.265e-006 -6.213 -5.486 0.727 -14.60 - MgCO3 2.556e-007 1.363e-006 -6.592 -5.866 0.727 -17.09 - NaCO3- 2.264e-007 1.310e-007 -6.645 -6.883 -0.238 20.09 - CO3-2 2.444e-008 2.735e-009 -7.612 -8.563 -0.951 17.09 -Ca 4.655e-001 - Ca+2 4.631e-001 7.107e-001 -0.334 -0.148 0.186 -13.79 - CaHCO3+ 1.691e-003 1.024e-003 -2.772 -2.990 -0.218 10.08 - CaSO4 7.014e-004 3.739e-003 -3.154 -2.427 0.727 7.50 - CaCO3 6.125e-007 3.265e-006 -6.213 -5.486 0.727 -14.60 - CaOH+ 8.695e-009 4.779e-008 -8.061 -7.321 0.740 (0) - CaHSO4+ 8.659e-009 4.759e-008 -8.063 -7.322 0.740 (0) -Cl 6.642e+000 - Cl- 6.642e+000 4.165e+000 0.822 0.620 -0.203 20.27 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -45.226 -44.499 0.727 28.61 -Mg 1.609e-001 - Mg+2 1.588e-001 5.221e-001 -0.799 -0.282 0.517 -17.22 - MgHCO3+ 1.385e-003 6.898e-004 -2.859 -3.161 -0.303 6.01 - MgSO4 6.792e-004 3.621e-003 -3.168 -2.441 0.727 5.84 - MgOH+ 1.227e-006 7.680e-007 -5.911 -6.115 -0.204 (0) - MgCO3 2.556e-007 1.363e-006 -6.592 -5.866 0.727 -17.09 -Na 5.402e+000 - Na+ 5.399e+000 1.072e+001 0.732 1.030 0.298 1.77 - NaSO4- 2.749e-003 1.590e-003 -2.561 -2.799 -0.238 42.57 - NaHCO3 5.704e-004 3.041e-003 -3.244 -2.517 0.727 19.41 - NaCO3- 2.264e-007 1.310e-007 -6.645 -6.883 -0.238 20.09 - NaOH 8.247e-019 4.397e-018 -18.084 -17.357 0.727 (0) -O(0) 9.589e-005 - O2 4.794e-005 2.556e-004 -4.319 -3.592 0.727 30.40 -S(-2) 0.000e+000 - H2S 0.000e+000 0.000e+000 -141.065 -140.338 0.727 37.16 - HS- 0.000e+000 0.000e+000 -141.232 -141.567 -0.335 23.12 - S-2 0.000e+000 0.000e+000 -147.759 -148.772 -1.013 (0) -S(6) 4.725e-003 - NaSO4- 2.749e-003 1.590e-003 -2.561 -2.799 -0.238 42.57 - CaSO4 7.014e-004 3.739e-003 -3.154 -2.427 0.727 7.50 - MgSO4 6.792e-004 3.621e-003 -3.168 -2.441 0.727 5.84 - SO4-2 5.958e-004 2.959e-005 -3.225 -4.529 -1.304 24.07 - CaHSO4+ 8.659e-009 4.759e-008 -8.063 -7.322 0.740 (0) - HSO4- 1.013e-009 5.570e-009 -8.994 -8.254 0.740 42.16 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -0.40 -4.68 -4.28 CaSO4 - Aragonite -0.38 -8.71 -8.34 CaCO3 - Calcite -0.23 -8.71 -8.48 CaCO3 - CH4(g) -141.16 -144.00 -2.84 CH4 - CO2(g) -1.74 -3.20 -1.46 CO2 - Dolomite -0.47 -17.56 -17.09 CaMg(CO3)2 - Gypsum -0.31 -4.89 -4.58 CaSO4:2H2O - H2(g) -41.40 -44.50 -3.10 H2 - H2O(g) -1.61 -0.11 1.50 H2O - H2S(g) -139.29 -147.28 -7.99 H2S - Halite 0.08 1.65 1.57 NaCl - O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000. - Sulfur -103.87 -98.99 4.88 S - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 2. ------------------------------------- - - USE solution 1 - EQUILIBRIUM_PHASES 1 - Dolomite 0.0 1.6 - Calcite 0.0 0.1 - SAVE solution 1 - SELECTED_OUTPUT - file ex14.sel - reset false - step - USER_PUNCH - heading m_Ca m_Mg m_Na umol_As pH mmol_sorbedAs - 10 PUNCH TOT("Ca"), TOT("Mg"), TOT("Na"), TOT("As")*1e6, -LA("H+"), SURF("As", "Surf")*1000 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Brine -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Calcite 0.00 -8.48 -8.48 1.000e-001 1.020e-001 1.984e-003 -Dolomite -0.00 -17.09 -17.09 1.600e+000 1.599e+000 -1.016e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - As 2.500e-008 2.500e-008 - C 4.008e-003 4.008e-003 - Ca 4.645e-001 4.645e-001 - Cl 6.642e+000 6.642e+000 - Mg 1.619e-001 1.619e-001 - Na 5.402e+000 5.402e+000 - S 4.725e-003 4.725e-003 - -----------------------------Description of solution---------------------------- - - pH = 5.936 Charge balance - pe = 14.739 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 485604 - Density (g/cm3) = 1.21496 - Volume (L) = 1.13864 - Activity of water = 0.785 - Ionic strength = 7.268e+000 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 3.939e-003 - Total CO2 (mol/kg) = 4.008e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.917e-013 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 5 - Total H = 1.110163e+002 - Total O = 5.553712e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.651e-006 1.160e-006 -5.782 -5.936 -0.153 0.00 - OH- 1.482e-008 6.848e-009 -7.829 -8.164 -0.335 6.33 - H2O 5.551e+001 7.846e-001 1.744 -0.105 0.000 18.07 -As 2.500e-008 - H2AsO4- 2.498e-008 1.373e-007 -7.602 -6.862 0.740 (0) - HAsO4-2 1.423e-011 1.298e-008 -10.847 -7.887 2.960 (0) - H3AsO4 5.190e-012 2.767e-011 -11.285 -10.558 0.727 (0) - AsO4-3 7.735e-021 3.540e-014 -20.112 -13.451 6.660 (0) -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -144.938 -144.211 0.727 32.22 -C(4) 4.008e-003 - CaHCO3+ 1.726e-003 1.045e-003 -2.763 -2.981 -0.218 10.08 - MgHCO3+ 1.425e-003 7.100e-004 -2.846 -3.149 -0.303 6.01 - NaHCO3 5.835e-004 3.111e-003 -3.234 -2.507 0.727 19.41 - HCO3- 1.997e-004 1.155e-004 -3.700 -3.937 -0.238 54.45 - CO2 7.201e-005 3.839e-004 -4.143 -3.416 0.727 30.26 - CaCO3 1.044e-006 5.565e-006 -5.981 -5.255 0.727 -14.60 - MgCO3 4.392e-007 2.341e-006 -6.357 -5.631 0.727 -17.09 - NaCO3- 3.868e-007 2.237e-007 -6.413 -6.650 -0.238 20.09 - CO3-2 4.175e-008 4.671e-009 -7.379 -8.331 -0.951 17.09 -Ca 4.645e-001 - Ca+2 4.621e-001 7.091e-001 -0.335 -0.149 0.186 -13.79 - CaHCO3+ 1.726e-003 1.045e-003 -2.763 -2.981 -0.218 10.08 - CaSO4 6.995e-004 3.729e-003 -3.155 -2.428 0.727 7.50 - CaCO3 1.044e-006 5.565e-006 -5.981 -5.255 0.727 -14.60 - CaOH+ 1.449e-008 7.962e-008 -7.839 -7.099 0.740 (0) - CaHSO4+ 5.172e-009 2.842e-008 -8.286 -7.546 0.740 (0) -Cl 6.642e+000 - Cl- 6.642e+000 4.165e+000 0.822 0.620 -0.203 20.27 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -45.226 -44.499 0.727 28.61 -Mg 1.619e-001 - Mg+2 1.598e-001 5.253e-001 -0.796 -0.280 0.517 -17.22 - MgHCO3+ 1.425e-003 7.100e-004 -2.846 -3.149 -0.303 6.01 - MgSO4 6.830e-004 3.641e-003 -3.166 -2.439 0.727 5.84 - MgOH+ 2.062e-006 1.290e-006 -5.686 -5.889 -0.204 (0) - MgCO3 4.392e-007 2.341e-006 -6.357 -5.631 0.727 -17.09 -Na 5.402e+000 - Na+ 5.399e+000 1.072e+001 0.732 1.030 0.298 1.77 - NaSO4- 2.747e-003 1.589e-003 -2.561 -2.799 -0.238 42.57 - NaHCO3 5.835e-004 3.111e-003 -3.234 -2.507 0.727 19.41 - NaCO3- 3.868e-007 2.237e-007 -6.413 -6.650 -0.238 20.09 - NaOH 1.377e-018 7.341e-018 -17.861 -17.134 0.727 (0) -O(0) 9.589e-005 - O2 4.794e-005 2.556e-004 -4.319 -3.592 0.727 30.40 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -141.455 -141.790 -0.335 23.12 - H2S 0.000e+000 0.000e+000 -141.511 -140.784 0.727 37.16 - S-2 0.000e+000 0.000e+000 -147.759 -148.772 -1.013 (0) -S(6) 4.725e-003 - NaSO4- 2.747e-003 1.589e-003 -2.561 -2.799 -0.238 42.57 - CaSO4 6.995e-004 3.729e-003 -3.155 -2.428 0.727 7.50 - MgSO4 6.830e-004 3.641e-003 -3.166 -2.439 0.727 5.84 - SO4-2 5.955e-004 2.957e-005 -3.225 -4.529 -1.304 24.07 - CaHSO4+ 5.172e-009 2.842e-008 -8.286 -7.546 0.740 (0) - HSO4- 6.066e-010 3.334e-009 -9.217 -8.477 0.740 42.16 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -0.40 -4.68 -4.28 CaSO4 - Aragonite -0.14 -8.48 -8.34 CaCO3 - Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -141.37 -144.21 -2.84 CH4 - CO2(g) -1.96 -3.42 -1.46 CO2 - Dolomite -0.00 -17.09 -17.09 CaMg(CO3)2 - Gypsum -0.31 -4.89 -4.58 CaSO4:2H2O - H2(g) -41.40 -44.50 -3.10 H2 - H2O(g) -1.61 -0.11 1.50 H2O - H2S(g) -139.73 -147.73 -7.99 H2S - Halite 0.08 1.65 1.57 NaCl - O2(g) -0.70 -3.59 -2.89 O2 - Sulfur -104.32 -99.43 4.88 S - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 3. ------------------------------------- - - PRINT - selected_output false - EXCHANGE 1 - equilibrate with solution 1 - X 1.0 - SURFACE 1 - equilibrate solution 1 - SurfOH 0.07 600. 30. - END -------------------------------------------------------- -Beginning of initial exchange-composition calculations. -------------------------------------------------------- - -Exchange 1. - -X 1.000e+000 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - NaX 9.011e-001 9.011e-001 9.011e-001 0.298 - CaX2 4.061e-002 8.122e-002 8.122e-002 0.186 - MgX2 8.861e-003 1.772e-002 1.772e-002 0.517 - ------------------------------------------------------- -Beginning of initial surface-composition calculations. ------------------------------------------------------- - -Surface 1. - -Surf - 4.995e-002 Surface charge, eq - 2.678e-001 sigma, C/m**2 - 3.950e-002 psi, V - -1.537e+000 -F*psi/RT - 2.149e-001 exp(-F*psi/RT) - 6.000e+002 specific area, m**2/g - 1.800e+004 m**2 for 3.000e+001 g - - -Surf - 7.000e-002 moles - Mole Log - Species Moles Fraction Molality Molality - - SurfOH2+ 5.572e-002 0.796 5.572e-002 -1.254 - SurfOH 1.146e-002 0.164 1.146e-002 -1.941 - SurfOHAsO4-3 1.554e-003 0.022 1.554e-003 -2.809 - SurfHAsO4- 1.047e-003 0.015 1.047e-003 -2.980 - SurfH2AsO4 1.647e-004 0.002 1.647e-004 -3.783 - SurfO- 5.403e-005 0.001 5.403e-005 -4.267 - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 4. ------------------------------------- - - SOLUTION 0 20 x precipitation - pH 4.6 - pe 4.0 O2(g) -0.7 - temp 25. - units mmol/kgw - Ca .191625 - Mg .035797 - Na .122668 - Cl .133704 - C .01096 - S .235153 charge - EQUILIBRIUM_PHASES 0 - Dolomite 0.0 1.6 - Calcite 0.0 0.1 - CO2(g) -1.5 10. - SAVE solution 0 - END -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 0. 20 x precipitation - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.096e-005 1.096e-005 - Ca 1.916e-004 1.916e-004 - Cl 1.337e-004 1.337e-004 - Mg 3.580e-005 3.580e-005 - Na 1.227e-004 1.227e-004 - S 2.351e-004 2.351e-004 Charge balance - -----------------------------Description of solution---------------------------- - - pH = 4.600 - pe = 16.022 Equilibrium with O2(g) - Specific Conductance (uS/cm, 25 oC) = 83 - Density (g/cm3) = 0.99708 - Volume (L) = 1.00299 - Activity of water = 1.000 - Ionic strength = 1.037e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = -2.630e-005 - Total CO2 (mol/kg) = 1.096e-005 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 7.348e-016 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 9 - Total H = 1.110125e+002 - Total O = 5.550769e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 2.600e-005 2.512e-005 -4.585 -4.600 -0.015 0.00 - OH- 4.179e-010 4.029e-010 -9.379 -9.395 -0.016 -4.11 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -145.553 -145.553 0.000 32.22 -C(4) 1.096e-005 - CO2 1.076e-005 1.076e-005 -4.968 -4.968 0.000 30.26 - HCO3- 1.975e-007 1.906e-007 -6.704 -6.720 -0.016 24.59 - CaHCO3+ 4.061e-010 3.919e-010 -9.391 -9.407 -0.015 9.67 - MgHCO3+ 6.903e-011 6.657e-011 -10.161 -10.177 -0.016 5.48 - NaHCO3 5.658e-011 5.659e-011 -10.247 -10.247 0.000 19.41 - CO3-2 4.106e-013 3.559e-013 -12.387 -12.449 -0.062 -4.37 - CaCO3 9.631e-014 9.634e-014 -13.016 -13.016 0.000 -14.60 - MgCO3 1.013e-014 1.014e-014 -13.994 -13.994 0.000 -17.09 - NaCO3- 1.947e-016 1.879e-016 -15.711 -15.726 -0.016 -0.66 -Ca 1.916e-004 - Ca+2 1.860e-004 1.612e-004 -3.731 -3.793 -0.062 -18.14 - CaSO4 5.643e-006 5.644e-006 -5.248 -5.248 0.000 7.50 - CaHSO4+ 9.664e-010 9.319e-010 -9.015 -9.031 -0.016 (0) - CaHCO3+ 4.061e-010 3.919e-010 -9.391 -9.407 -0.015 9.67 - CaOH+ 1.104e-012 1.065e-012 -11.957 -11.973 -0.016 (0) - CaCO3 9.631e-014 9.634e-014 -13.016 -13.016 0.000 -14.60 -Cl 1.337e-004 - Cl- 1.337e-004 1.289e-004 -3.874 -3.890 -0.016 18.08 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.394 -44.394 0.000 28.61 -Mg 3.580e-005 - Mg+2 3.442e-005 2.985e-005 -4.463 -4.525 -0.062 -21.82 - MgSO4 1.378e-006 1.378e-006 -5.861 -5.861 0.000 5.84 - MgHCO3+ 6.903e-011 6.657e-011 -10.161 -10.177 -0.016 5.48 - MgOH+ 4.470e-012 4.314e-012 -11.350 -11.365 -0.015 (0) - MgCO3 1.013e-014 1.014e-014 -13.994 -13.994 0.000 -17.09 -Na 1.227e-004 - Na+ 1.225e-004 1.182e-004 -3.912 -3.927 -0.016 -1.39 - NaSO4- 1.209e-007 1.167e-007 -6.917 -6.933 -0.016 18.43 - NaHCO3 5.658e-011 5.659e-011 -10.247 -10.247 0.000 19.41 - NaCO3- 1.947e-016 1.879e-016 -15.711 -15.726 -0.016 -0.66 - NaOH 4.762e-024 4.763e-024 -23.322 -23.322 0.000 (0) -O(0) 5.111e-004 - O2 2.555e-004 2.556e-004 -3.593 -3.592 0.000 30.40 -S(-2) 0.000e+000 - H2S 0.000e+000 0.000e+000 -137.289 -137.289 0.000 37.16 - HS- 0.000e+000 0.000e+000 -139.615 -139.631 -0.016 20.60 - S-2 0.000e+000 0.000e+000 -147.886 -147.949 -0.062 (0) -S(6) 2.351e-004 - SO4-2 2.274e-004 1.970e-004 -3.643 -3.706 -0.062 14.01 - CaSO4 5.643e-006 5.644e-006 -5.248 -5.248 0.000 7.50 - MgSO4 1.378e-006 1.378e-006 -5.861 -5.861 0.000 5.84 - HSO4- 4.988e-007 4.810e-007 -6.302 -6.318 -0.016 40.28 - NaSO4- 1.209e-007 1.167e-007 -6.917 -6.933 -0.016 18.43 - CaHSO4+ 9.664e-010 9.319e-010 -9.015 -9.031 -0.016 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -3.22 -7.50 -4.28 CaSO4 - Aragonite -7.91 -16.24 -8.34 CaCO3 - Calcite -7.76 -16.24 -8.48 CaCO3 - CH4(g) -142.71 -145.55 -2.84 CH4 - CO2(g) -3.51 -4.97 -1.46 CO2 - Dolomite -16.13 -33.22 -17.09 CaMg(CO3)2 - Gypsum -2.92 -7.50 -4.58 CaSO4:2H2O - H2(g) -41.29 -44.39 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -136.24 -144.23 -7.99 H2S - Halite -9.39 -7.82 1.57 NaCl - O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000. - Sulfur -100.93 -96.05 4.88 S - - ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 0. 20 x precipitation -Using pure phase assemblage 0. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -CO2(g) -1.50 -2.96 -1.46 1.000e+001 9.996e+000 -4.106e-003 -Calcite 0.00 -8.48 -8.48 1.000e-001 9.966e-002 -3.445e-004 -Dolomite 0.00 -17.09 -17.09 1.600e+000 1.599e+000 -1.359e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 7.180e-003 7.180e-003 - Ca 1.895e-003 1.895e-003 - Cl 1.337e-004 1.337e-004 - Mg 1.395e-003 1.395e-003 - Na 1.227e-004 1.227e-004 - S 2.351e-004 2.351e-004 - -----------------------------Description of solution---------------------------- - - pH = 7.042 Charge balance - pe = 13.580 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 589 - Density (g/cm3) = 0.99748 - Volume (L) = 1.00341 - Activity of water = 1.000 - Ionic strength = 9.697e-003 - Mass of water (kg) = 9.999e-001 - Total alkalinity (eq/kg) = 6.099e-003 - Total CO2 (mol/kg) = 7.180e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 4.958e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 9 - Total H = 1.110125e+002 - Total O = 5.552509e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.236e-007 1.114e-007 -6.908 -6.953 -0.045 -4.03 - H+ 9.931e-008 9.080e-008 -7.003 -7.042 -0.039 0.00 - H2O 5.551e+001 9.998e-001 1.744 -0.000 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -143.548 -143.547 0.001 32.22 -C(4) 7.180e-003 - HCO3- 5.921e-003 5.366e-003 -2.228 -2.270 -0.043 24.69 - CO2 1.093e-003 1.096e-003 -2.961 -2.960 0.001 30.26 - CaHCO3+ 9.015e-005 8.183e-005 -4.045 -4.087 -0.042 9.72 - MgHCO3+ 6.159e-005 5.559e-005 -4.211 -4.255 -0.044 5.53 - CaCO3 5.552e-006 5.565e-006 -5.256 -5.255 0.001 -14.60 - CO3-2 4.109e-006 2.771e-006 -5.386 -5.557 -0.171 -4.11 - MgCO3 2.336e-006 2.341e-006 -5.631 -5.631 0.001 -17.09 - NaHCO3 1.474e-006 1.477e-006 -5.832 -5.831 0.001 19.41 - NaCO3- 1.497e-009 1.356e-009 -8.825 -8.868 -0.043 -0.58 -Ca 1.895e-003 - Ca+2 1.773e-003 1.195e-003 -2.751 -2.923 -0.171 -17.93 - CaHCO3+ 9.015e-005 8.183e-005 -4.045 -4.087 -0.042 9.72 - CaSO4 2.610e-005 2.616e-005 -4.583 -4.582 0.001 7.50 - CaCO3 5.552e-006 5.565e-006 -5.256 -5.255 0.001 -14.60 - CaOH+ 2.418e-009 2.184e-009 -8.616 -8.661 -0.044 (0) - CaHSO4+ 1.729e-011 1.561e-011 -10.762 -10.807 -0.044 (0) -Cl 1.337e-004 - Cl- 1.337e-004 1.206e-004 -3.874 -3.919 -0.045 18.14 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.395 -44.394 0.001 28.61 -Mg 1.395e-003 - Mg+2 1.305e-003 8.854e-004 -2.884 -3.053 -0.169 -21.62 - MgHCO3+ 6.159e-005 5.559e-005 -4.211 -4.255 -0.044 5.53 - MgSO4 2.548e-005 2.554e-005 -4.594 -4.593 0.001 5.84 - MgCO3 2.336e-006 2.341e-006 -5.631 -5.631 0.001 -17.09 - MgOH+ 3.894e-008 3.539e-008 -7.410 -7.451 -0.041 (0) -Na 1.227e-004 - Na+ 1.211e-004 1.096e-004 -3.917 -3.960 -0.044 -1.32 - NaHCO3 1.474e-006 1.477e-006 -5.832 -5.831 0.001 19.41 - NaSO4- 7.456e-008 6.757e-008 -7.127 -7.170 -0.043 18.60 - NaCO3- 1.497e-009 1.356e-009 -8.825 -8.868 -0.043 -0.58 - NaOH 1.218e-021 1.221e-021 -20.914 -20.913 0.001 (0) -O(0) 5.111e-004 - O2 2.556e-004 2.561e-004 -3.593 -3.592 0.001 30.40 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -142.234 -142.279 -0.045 20.67 - H2S 0.000e+000 0.000e+000 -142.380 -142.379 0.001 37.16 - S-2 0.000e+000 0.000e+000 -147.982 -148.155 -0.173 (0) -S(6) 2.351e-004 - SO4-2 1.834e-004 1.231e-004 -3.737 -3.910 -0.173 14.26 - CaSO4 2.610e-005 2.616e-005 -4.583 -4.582 0.001 7.50 - MgSO4 2.548e-005 2.554e-005 -4.594 -4.593 0.001 5.84 - NaSO4- 7.456e-008 6.757e-008 -7.127 -7.170 -0.043 18.60 - HSO4- 1.203e-009 1.086e-009 -8.920 -8.964 -0.044 40.34 - CaHSO4+ 1.729e-011 1.561e-011 -10.762 -10.807 -0.044 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -2.55 -6.83 -4.28 CaSO4 - Aragonite -0.14 -8.48 -8.34 CaCO3 - Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -140.70 -143.55 -2.84 CH4 - CO2(g) -1.50 -2.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Dolomite 0.00 -17.09 -17.09 CaMg(CO3)2 - Gypsum -2.25 -6.83 -4.58 CaSO4:2H2O - H2(g) -41.29 -44.39 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -141.33 -149.32 -7.99 H2S - Halite -9.45 -7.88 1.57 NaCl - O2(g) -0.70 -3.59 -2.89 O2 - Sulfur -106.02 -101.13 4.88 S - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 5. ------------------------------------- - - PRINT - selected_output true - status false - ADVECTION - cells 1 - shifts 200 - print_frequency 200 - USER_GRAPH 1 Example 14 - -headings PV As(ppb) Ca(M) Mg(M) Na(M) pH - -chart_title "Chemical Evolution of the Central Oklahoma Aquifer" - -axis_titles "Pore volumes or shift number" "Log(Concentration, in ppb or molal)" "pH" - -axis_scale x_axis 0 200 - -axis_scale y_axis 1e-6 100 auto auto Log - 10 GRAPH_X STEP_NO - 20 GRAPH_Y TOT("As") * 74.92e6, TOT("Ca"), TOT("Mg"), TOT("Na") - 30 GRAPH_SY -LA("H+") - END ------------------------------------- -Beginning of advection calculations. ------------------------------------- - -Beginning of advection time step 1, cumulative pore volumes 1.000000. -Beginning of advection time step 2, cumulative pore volumes 2.000000. -Beginning of advection time step 3, cumulative pore volumes 3.000000. -Beginning of advection time step 4, cumulative pore volumes 4.000000. -Beginning of advection time step 5, cumulative pore volumes 5.000000. -Beginning of advection time step 6, cumulative pore volumes 6.000000. -Beginning of advection time step 7, cumulative pore volumes 7.000000. -Beginning of advection time step 8, cumulative pore volumes 8.000000. -Beginning of advection time step 9, cumulative pore volumes 9.000000. -Beginning of advection time step 10, cumulative pore volumes 10.000000. -Beginning of advection time step 11, cumulative pore volumes 11.000000. -Beginning of advection time step 12, cumulative pore volumes 12.000000. -Beginning of advection time step 13, cumulative pore volumes 13.000000. -Beginning of advection time step 14, cumulative pore volumes 14.000000. -Beginning of advection time step 15, cumulative pore volumes 15.000000. -Beginning of advection time step 16, cumulative pore volumes 16.000000. -Beginning of advection time step 17, cumulative pore volumes 17.000000. -Beginning of advection time step 18, cumulative pore volumes 18.000000. -Beginning of advection time step 19, cumulative pore volumes 19.000000. -Beginning of advection time step 20, cumulative pore volumes 20.000000. -Beginning of advection time step 21, cumulative pore volumes 21.000000. -Beginning of advection time step 22, cumulative pore volumes 22.000000. -Beginning of advection time step 23, cumulative pore volumes 23.000000. -Beginning of advection time step 24, cumulative pore volumes 24.000000. -Beginning of advection time step 25, cumulative pore volumes 25.000000. -Beginning of advection time step 26, cumulative pore volumes 26.000000. -Beginning of advection time step 27, cumulative pore volumes 27.000000. -Beginning of advection time step 28, cumulative pore volumes 28.000000. -Beginning of advection time step 29, cumulative pore volumes 29.000000. -Beginning of advection time step 30, cumulative pore volumes 30.000000. -Beginning of advection time step 31, cumulative pore volumes 31.000000. -Beginning of advection time step 32, cumulative pore volumes 32.000000. -Beginning of advection time step 33, cumulative pore volumes 33.000000. -Beginning of advection time step 34, cumulative pore volumes 34.000000. -Beginning of advection time step 35, cumulative pore volumes 35.000000. -Beginning of advection time step 36, cumulative pore volumes 36.000000. -Beginning of advection time step 37, cumulative pore volumes 37.000000. -Beginning of advection time step 38, cumulative pore volumes 38.000000. -Beginning of advection time step 39, cumulative pore volumes 39.000000. -Beginning of advection time step 40, cumulative pore volumes 40.000000. -Beginning of advection time step 41, cumulative pore volumes 41.000000. -Beginning of advection time step 42, cumulative pore volumes 42.000000. -Beginning of advection time step 43, cumulative pore volumes 43.000000. -Beginning of advection time step 44, cumulative pore volumes 44.000000. -Beginning of advection time step 45, cumulative pore volumes 45.000000. -Beginning of advection time step 46, cumulative pore volumes 46.000000. -Beginning of advection time step 47, cumulative pore volumes 47.000000. -Beginning of advection time step 48, cumulative pore volumes 48.000000. -Beginning of advection time step 49, cumulative pore volumes 49.000000. -Beginning of advection time step 50, cumulative pore volumes 50.000000. -Beginning of advection time step 51, cumulative pore volumes 51.000000. -Beginning of advection time step 52, cumulative pore volumes 52.000000. -Beginning of advection time step 53, cumulative pore volumes 53.000000. -Beginning of advection time step 54, cumulative pore volumes 54.000000. -Beginning of advection time step 55, cumulative pore volumes 55.000000. -Beginning of advection time step 56, cumulative pore volumes 56.000000. -Beginning of advection time step 57, cumulative pore volumes 57.000000. -Beginning of advection time step 58, cumulative pore volumes 58.000000. -Beginning of advection time step 59, cumulative pore volumes 59.000000. -Beginning of advection time step 60, cumulative pore volumes 60.000000. -Beginning of advection time step 61, cumulative pore volumes 61.000000. -Beginning of advection time step 62, cumulative pore volumes 62.000000. -Beginning of advection time step 63, cumulative pore volumes 63.000000. -Beginning of advection time step 64, cumulative pore volumes 64.000000. -Beginning of advection time step 65, cumulative pore volumes 65.000000. -Beginning of advection time step 66, cumulative pore volumes 66.000000. -Beginning of advection time step 67, cumulative pore volumes 67.000000. -Beginning of advection time step 68, cumulative pore volumes 68.000000. -Beginning of advection time step 69, cumulative pore volumes 69.000000. -Beginning of advection time step 70, cumulative pore volumes 70.000000. -Beginning of advection time step 71, cumulative pore volumes 71.000000. -Beginning of advection time step 72, cumulative pore volumes 72.000000. -Beginning of advection time step 73, cumulative pore volumes 73.000000. -Beginning of advection time step 74, cumulative pore volumes 74.000000. -Beginning of advection time step 75, cumulative pore volumes 75.000000. -Beginning of advection time step 76, cumulative pore volumes 76.000000. -Beginning of advection time step 77, cumulative pore volumes 77.000000. -Beginning of advection time step 78, cumulative pore volumes 78.000000. -Beginning of advection time step 79, cumulative pore volumes 79.000000. -Beginning of advection time step 80, cumulative pore volumes 80.000000. -Beginning of advection time step 81, cumulative pore volumes 81.000000. -Beginning of advection time step 82, cumulative pore volumes 82.000000. -Beginning of advection time step 83, cumulative pore volumes 83.000000. -Beginning of advection time step 84, cumulative pore volumes 84.000000. -Beginning of advection time step 85, cumulative pore volumes 85.000000. -Beginning of advection time step 86, cumulative pore volumes 86.000000. -Beginning of advection time step 87, cumulative pore volumes 87.000000. -Beginning of advection time step 88, cumulative pore volumes 88.000000. -Beginning of advection time step 89, cumulative pore volumes 89.000000. -Beginning of advection time step 90, cumulative pore volumes 90.000000. -Beginning of advection time step 91, cumulative pore volumes 91.000000. -Beginning of advection time step 92, cumulative pore volumes 92.000000. -Beginning of advection time step 93, cumulative pore volumes 93.000000. -Beginning of advection time step 94, cumulative pore volumes 94.000000. -Beginning of advection time step 95, cumulative pore volumes 95.000000. -Beginning of advection time step 96, cumulative pore volumes 96.000000. -Beginning of advection time step 97, cumulative pore volumes 97.000000. -Beginning of advection time step 98, cumulative pore volumes 98.000000. -Beginning of advection time step 99, cumulative pore volumes 99.000000. -Beginning of advection time step 100, cumulative pore volumes 100.000000. -Beginning of advection time step 101, cumulative pore volumes 101.000000. -Beginning of advection time step 102, cumulative pore volumes 102.000000. -Beginning of advection time step 103, cumulative pore volumes 103.000000. -Beginning of advection time step 104, cumulative pore volumes 104.000000. -Beginning of advection time step 105, cumulative pore volumes 105.000000. -Beginning of advection time step 106, cumulative pore volumes 106.000000. -Beginning of advection time step 107, cumulative pore volumes 107.000000. -Beginning of advection time step 108, cumulative pore volumes 108.000000. -Beginning of advection time step 109, cumulative pore volumes 109.000000. -Beginning of advection time step 110, cumulative pore volumes 110.000000. -Beginning of advection time step 111, cumulative pore volumes 111.000000. -Beginning of advection time step 112, cumulative pore volumes 112.000000. -Beginning of advection time step 113, cumulative pore volumes 113.000000. -Beginning of advection time step 114, cumulative pore volumes 114.000000. -Beginning of advection time step 115, cumulative pore volumes 115.000000. -Beginning of advection time step 116, cumulative pore volumes 116.000000. -Beginning of advection time step 117, cumulative pore volumes 117.000000. -Beginning of advection time step 118, cumulative pore volumes 118.000000. -Beginning of advection time step 119, cumulative pore volumes 119.000000. -Beginning of advection time step 120, cumulative pore volumes 120.000000. -Beginning of advection time step 121, cumulative pore volumes 121.000000. -Beginning of advection time step 122, cumulative pore volumes 122.000000. -Beginning of advection time step 123, cumulative pore volumes 123.000000. -Beginning of advection time step 124, cumulative pore volumes 124.000000. -Beginning of advection time step 125, cumulative pore volumes 125.000000. -Beginning of advection time step 126, cumulative pore volumes 126.000000. -Beginning of advection time step 127, cumulative pore volumes 127.000000. -Beginning of advection time step 128, cumulative pore volumes 128.000000. -Beginning of advection time step 129, cumulative pore volumes 129.000000. -Beginning of advection time step 130, cumulative pore volumes 130.000000. -Beginning of advection time step 131, cumulative pore volumes 131.000000. -Beginning of advection time step 132, cumulative pore volumes 132.000000. -Beginning of advection time step 133, cumulative pore volumes 133.000000. -Beginning of advection time step 134, cumulative pore volumes 134.000000. -Beginning of advection time step 135, cumulative pore volumes 135.000000. -Beginning of advection time step 136, cumulative pore volumes 136.000000. -Beginning of advection time step 137, cumulative pore volumes 137.000000. -Beginning of advection time step 138, cumulative pore volumes 138.000000. -Beginning of advection time step 139, cumulative pore volumes 139.000000. -Beginning of advection time step 140, cumulative pore volumes 140.000000. -Beginning of advection time step 141, cumulative pore volumes 141.000000. -Beginning of advection time step 142, cumulative pore volumes 142.000000. -Beginning of advection time step 143, cumulative pore volumes 143.000000. -Beginning of advection time step 144, cumulative pore volumes 144.000000. -Beginning of advection time step 145, cumulative pore volumes 145.000000. -Beginning of advection time step 146, cumulative pore volumes 146.000000. -Beginning of advection time step 147, cumulative pore volumes 147.000000. -Beginning of advection time step 148, cumulative pore volumes 148.000000. -Beginning of advection time step 149, cumulative pore volumes 149.000000. -Beginning of advection time step 150, cumulative pore volumes 150.000000. -Beginning of advection time step 151, cumulative pore volumes 151.000000. -Beginning of advection time step 152, cumulative pore volumes 152.000000. -Beginning of advection time step 153, cumulative pore volumes 153.000000. -Beginning of advection time step 154, cumulative pore volumes 154.000000. -Beginning of advection time step 155, cumulative pore volumes 155.000000. -Beginning of advection time step 156, cumulative pore volumes 156.000000. -Beginning of advection time step 157, cumulative pore volumes 157.000000. -Beginning of advection time step 158, cumulative pore volumes 158.000000. -Beginning of advection time step 159, cumulative pore volumes 159.000000. -Beginning of advection time step 160, cumulative pore volumes 160.000000. -Beginning of advection time step 161, cumulative pore volumes 161.000000. -Beginning of advection time step 162, cumulative pore volumes 162.000000. -Beginning of advection time step 163, cumulative pore volumes 163.000000. -Beginning of advection time step 164, cumulative pore volumes 164.000000. -Beginning of advection time step 165, cumulative pore volumes 165.000000. -Beginning of advection time step 166, cumulative pore volumes 166.000000. -Beginning of advection time step 167, cumulative pore volumes 167.000000. -Beginning of advection time step 168, cumulative pore volumes 168.000000. -Beginning of advection time step 169, cumulative pore volumes 169.000000. -Beginning of advection time step 170, cumulative pore volumes 170.000000. -Beginning of advection time step 171, cumulative pore volumes 171.000000. -Beginning of advection time step 172, cumulative pore volumes 172.000000. -Beginning of advection time step 173, cumulative pore volumes 173.000000. -Beginning of advection time step 174, cumulative pore volumes 174.000000. -Beginning of advection time step 175, cumulative pore volumes 175.000000. -Beginning of advection time step 176, cumulative pore volumes 176.000000. -Beginning of advection time step 177, cumulative pore volumes 177.000000. -Beginning of advection time step 178, cumulative pore volumes 178.000000. -Beginning of advection time step 179, cumulative pore volumes 179.000000. -Beginning of advection time step 180, cumulative pore volumes 180.000000. -Beginning of advection time step 181, cumulative pore volumes 181.000000. -Beginning of advection time step 182, cumulative pore volumes 182.000000. -Beginning of advection time step 183, cumulative pore volumes 183.000000. -Beginning of advection time step 184, cumulative pore volumes 184.000000. -Beginning of advection time step 185, cumulative pore volumes 185.000000. -Beginning of advection time step 186, cumulative pore volumes 186.000000. -Beginning of advection time step 187, cumulative pore volumes 187.000000. -Beginning of advection time step 188, cumulative pore volumes 188.000000. -Beginning of advection time step 189, cumulative pore volumes 189.000000. -Beginning of advection time step 190, cumulative pore volumes 190.000000. -Beginning of advection time step 191, cumulative pore volumes 191.000000. -Beginning of advection time step 192, cumulative pore volumes 192.000000. -Beginning of advection time step 193, cumulative pore volumes 193.000000. -Beginning of advection time step 194, cumulative pore volumes 194.000000. -Beginning of advection time step 195, cumulative pore volumes 195.000000. -Beginning of advection time step 196, cumulative pore volumes 196.000000. -Beginning of advection time step 197, cumulative pore volumes 197.000000. -Beginning of advection time step 198, cumulative pore volumes 198.000000. -Beginning of advection time step 199, cumulative pore volumes 199.000000. -Beginning of advection time step 200, cumulative pore volumes 200.000000. - -Cell 1. - -Using solution 1. Solution after simulation 4. -Using exchange 1. Exchange assemblage after simulation 5. -Using surface 1. -Using pure phase assemblage 1. Pure-phase assemblage after simulation 5. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Calcite -0.00 -8.48 -8.48 0.000e+000 0 0.000e+000 -Dolomite 0.00 -17.09 -17.09 1.568e+000 1.568e+000 3.563e-007 - -------------------------------Surface composition------------------------------ - -Surf - 2.228e-003 Surface charge, eq - 1.195e-002 sigma, C/m**2 - 4.652e-002 psi, V - -1.811e+000 -F*psi/RT - 1.636e-001 exp(-F*psi/RT) - 6.000e+002 specific area, m**2/g - 1.800e+004 m**2 for 3.000e+001 g - - -Surf - 7.000e-002 moles - Mole Log - Species Moles Fraction Molality Molality - - SurfOH 4.915e-002 0.702 4.916e-002 -1.308 - SurfOH2+ 1.425e-002 0.204 1.425e-002 -1.846 - SurfO- 3.885e-003 0.056 3.886e-003 -2.411 - SurfOHAsO4-3 2.709e-003 0.039 2.709e-003 -2.567 - SurfHAsO4- 5.095e-006 0.000 5.095e-006 -5.293 - SurfH2AsO4 4.778e-008 0.000 4.779e-008 -7.321 - ------------------------------Exchange composition------------------------------ - -X 1.000e+000 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - CaX2 3.393e-001 6.786e-001 6.786e-001 -0.171 - MgX2 1.602e-001 3.204e-001 3.204e-001 -0.169 - NaX 9.469e-004 9.469e-004 9.469e-004 -0.044 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - As 4.412e-010 4.412e-010 - C 7.179e-003 7.179e-003 - Ca 1.882e-003 1.881e-003 - Cl 1.337e-004 1.337e-004 - Mg 1.408e-003 1.408e-003 - Na 1.227e-004 1.227e-004 - S 2.351e-004 2.351e-004 - -----------------------------Description of solution---------------------------- - - pH = 7.042 Charge balance - pe = 13.581 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 589 - Density (g/cm3) = 0.99748 - Volume (L) = 1.00341 - Activity of water = 1.000 - Ionic strength = 9.695e-003 - Mass of water (kg) = 9.999e-001 - Total alkalinity (eq/kg) = 6.097e-003 - Total CO2 (mol/kg) = 7.179e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 6.577e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 - Total H = 1.110125e+002 - Total O = 5.552509e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.235e-007 1.114e-007 -6.908 -6.953 -0.045 -4.03 - H+ 9.940e-008 9.088e-008 -7.003 -7.042 -0.039 0.00 - H2O 5.551e+001 9.998e-001 1.744 -0.000 0.000 18.07 -As 4.412e-010 - HAsO4-2 2.739e-010 1.823e-010 -9.562 -9.739 -0.177 (0) - H2AsO4- 1.673e-010 1.511e-010 -9.777 -9.821 -0.044 (0) - AsO4-3 1.586e-014 6.342e-015 -13.800 -14.198 -0.398 (0) - H3AsO4 2.380e-015 2.386e-015 -14.623 -14.622 0.001 (0) -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -143.548 -143.547 0.001 32.22 -C(4) 7.179e-003 - HCO3- 5.920e-003 5.365e-003 -2.228 -2.270 -0.043 24.69 - CO2 1.094e-003 1.096e-003 -2.961 -2.960 0.001 30.26 - CaHCO3+ 8.949e-005 8.123e-005 -4.048 -4.090 -0.042 9.72 - MgHCO3+ 6.214e-005 5.610e-005 -4.207 -4.251 -0.044 5.53 - CaCO3 5.507e-006 5.519e-006 -5.259 -5.258 0.001 -14.60 - CO3-2 4.104e-006 2.769e-006 -5.387 -5.558 -0.171 -4.11 - MgCO3 2.355e-006 2.361e-006 -5.628 -5.627 0.001 -17.09 - NaHCO3 1.473e-006 1.477e-006 -5.832 -5.831 0.001 19.41 - NaCO3- 1.495e-009 1.355e-009 -8.825 -8.868 -0.043 -0.58 -Ca 1.882e-003 - Ca+2 1.761e-003 1.187e-003 -2.754 -2.926 -0.171 -17.93 - CaHCO3+ 8.949e-005 8.123e-005 -4.048 -4.090 -0.042 9.72 - CaSO4 2.591e-005 2.597e-005 -4.587 -4.586 0.001 7.50 - CaCO3 5.507e-006 5.519e-006 -5.259 -5.258 0.001 -14.60 - CaOH+ 2.399e-009 2.167e-009 -8.620 -8.664 -0.044 (0) - CaHSO4+ 1.717e-011 1.551e-011 -10.765 -10.809 -0.044 (0) -Cl 1.337e-004 - Cl- 1.337e-004 1.206e-004 -3.874 -3.919 -0.045 18.14 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.395 -44.394 0.001 28.61 -Mg 1.408e-003 - Mg+2 1.317e-003 8.936e-004 -2.880 -3.049 -0.169 -21.62 - MgHCO3+ 6.214e-005 5.610e-005 -4.207 -4.251 -0.044 5.53 - MgSO4 2.572e-005 2.577e-005 -4.590 -4.589 0.001 5.84 - MgCO3 2.355e-006 2.361e-006 -5.628 -5.627 0.001 -17.09 - MgOH+ 3.927e-008 3.569e-008 -7.406 -7.447 -0.041 (0) -Na 1.227e-004 - Na+ 1.211e-004 1.096e-004 -3.917 -3.960 -0.044 -1.32 - NaHCO3 1.473e-006 1.477e-006 -5.832 -5.831 0.001 19.41 - NaSO4- 7.456e-008 6.757e-008 -7.127 -7.170 -0.043 18.60 - NaCO3- 1.495e-009 1.355e-009 -8.825 -8.868 -0.043 -0.58 - NaOH 1.217e-021 1.220e-021 -20.915 -20.914 0.001 (0) -O(0) 5.111e-004 - O2 2.556e-004 2.561e-004 -3.593 -3.592 0.001 30.40 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -142.233 -142.278 -0.045 20.67 - H2S 0.000e+000 0.000e+000 -142.379 -142.378 0.001 37.16 - S-2 0.000e+000 0.000e+000 -147.982 -148.155 -0.173 (0) -S(6) 2.351e-004 - SO4-2 1.834e-004 1.230e-004 -3.737 -3.910 -0.173 14.26 - CaSO4 2.591e-005 2.597e-005 -4.587 -4.586 0.001 7.50 - MgSO4 2.572e-005 2.577e-005 -4.590 -4.589 0.001 5.84 - NaSO4- 7.456e-008 6.757e-008 -7.127 -7.170 -0.043 18.60 - HSO4- 1.204e-009 1.087e-009 -8.919 -8.964 -0.044 40.34 - CaHSO4+ 1.717e-011 1.551e-011 -10.765 -10.809 -0.044 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -2.56 -6.84 -4.28 CaSO4 - Aragonite -0.15 -8.48 -8.34 CaCO3 - Calcite -0.00 -8.48 -8.48 CaCO3 - CH4(g) -140.70 -143.55 -2.84 CH4 - CO2(g) -1.50 -2.96 -1.46 CO2 - Dolomite 0.00 -17.09 -17.09 CaMg(CO3)2 - Gypsum -2.25 -6.84 -4.58 CaSO4:2H2O - H2(g) -41.29 -44.39 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -141.33 -149.32 -7.99 H2S - Halite -9.45 -7.88 1.57 NaCl - O2(g) -0.70 -3.59 -2.89 O2 - Sulfur -106.02 -101.13 4.88 S - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 6. ------------------------------------- - -------------------------------- -End of Run after 1.012 Seconds. -------------------------------- - diff --git a/examples_pc/ex14.sel b/examples_pc/ex14.sel deleted file mode 100644 index 05b0fa10..00000000 --- a/examples_pc/ex14.sel +++ /dev/null @@ -1,202 +0,0 @@ - step m_Ca m_Mg m_Na umol_As pH mmol_sorbedAs - 1 4.6453e-001 1.6192e-001 5.4020e+000 2.5000e-002 5.9357e+000 0.0000e+000 - 1 3.0943e-004 2.2001e-004 9.3424e-002 2.2422e-003 7.2906e+000 2.7655e+000 - 2 2.6159e-005 1.7418e-005 2.2725e-002 2.8286e-001 8.7231e+000 2.7652e+000 - 3 1.4677e-005 9.0598e-006 1.4460e-002 1.6324e+000 9.1924e+000 2.7636e+000 - 4 1.2943e-005 7.7962e-006 1.2497e-002 2.6548e+000 9.3254e+000 2.7610e+000 - 5 1.2579e-005 7.5316e-006 1.1727e-002 3.0534e+000 9.3635e+000 2.7579e+000 - 6 1.2623e-005 7.5661e-006 1.1340e-002 3.0976e+000 9.3667e+000 2.7548e+000 - 7 1.2835e-005 7.7226e-006 1.1107e-002 2.9842e+000 9.3555e+000 2.7518e+000 - 8 1.3126e-005 7.9378e-006 1.0942e-002 2.8118e+000 9.3383e+000 2.7490e+000 - 9 1.3462e-005 8.1851e-006 1.0812e-002 2.6241e+000 9.3186e+000 2.7464e+000 - 10 1.3825e-005 8.4530e-006 1.0700e-002 2.4390e+000 9.2980e+000 2.7439e+000 - 11 1.4210e-005 8.7365e-006 1.0599e-002 2.2634e+000 9.2770e+000 2.7417e+000 - 12 1.4613e-005 9.0335e-006 1.0505e-002 2.0993e+000 9.2560e+000 2.7396e+000 - 13 1.5033e-005 9.3435e-006 1.0417e-002 1.9469e+000 9.2351e+000 2.7376e+000 - 14 1.5472e-005 9.6667e-006 1.0334e-002 1.8055e+000 9.2144e+000 2.7358e+000 - 15 1.5929e-005 1.0004e-005 1.0256e-002 1.6745e+000 9.1938e+000 2.7342e+000 - 16 1.6406e-005 1.0355e-005 1.0181e-002 1.5530e+000 9.1732e+000 2.7326e+000 - 17 1.6904e-005 1.0722e-005 1.0109e-002 1.4402e+000 9.1528e+000 2.7312e+000 - 18 1.7424e-005 1.1106e-005 1.0041e-002 1.3355e+000 9.1325e+000 2.7298e+000 - 19 1.7968e-005 1.1506e-005 9.9757e-003 1.2382e+000 9.1122e+000 2.7286e+000 - 20 1.8537e-005 1.1926e-005 9.9132e-003 1.1478e+000 9.0919e+000 2.7274e+000 - 21 1.9133e-005 1.2365e-005 9.8533e-003 1.0637e+000 9.0716e+000 2.7264e+000 - 22 1.9757e-005 1.2825e-005 9.7958e-003 9.8549e-001 9.0514e+000 2.7254e+000 - 23 2.0412e-005 1.3308e-005 9.7405e-003 9.1268e-001 9.0311e+000 2.7245e+000 - 24 2.1099e-005 1.3814e-005 9.6874e-003 8.4492e-001 9.0109e+000 2.7236e+000 - 25 2.1821e-005 1.4346e-005 9.6361e-003 7.8183e-001 8.9905e+000 2.7229e+000 - 26 2.2579e-005 1.4906e-005 9.5867e-003 7.2311e-001 8.9702e+000 2.7221e+000 - 27 2.3378e-005 1.5494e-005 9.5390e-003 6.6843e-001 8.9497e+000 2.7215e+000 - 28 2.4218e-005 1.6113e-005 9.4929e-003 6.1754e-001 8.9292e+000 2.7208e+000 - 29 2.5103e-005 1.6766e-005 9.4483e-003 5.7018e-001 8.9086e+000 2.7203e+000 - 30 2.6037e-005 1.7454e-005 9.4051e-003 5.2610e-001 8.8878e+000 2.7198e+000 - 31 2.7022e-005 1.8181e-005 9.3631e-003 4.8509e-001 8.8670e+000 2.7193e+000 - 32 2.8063e-005 1.8948e-005 9.3223e-003 4.4696e-001 8.8460e+000 2.7188e+000 - 33 2.9163e-005 1.9759e-005 9.2827e-003 4.1150e-001 8.8249e+000 2.7184e+000 - 34 3.0327e-005 2.0617e-005 9.2440e-003 3.7856e-001 8.8037e+000 2.7180e+000 - 35 3.1559e-005 2.1525e-005 9.2063e-003 3.4795e-001 8.7823e+000 2.7177e+000 - 36 3.2865e-005 2.2488e-005 9.1694e-003 3.1954e-001 8.7607e+000 2.7174e+000 - 37 3.4249e-005 2.3508e-005 9.1333e-003 2.9318e-001 8.7389e+000 2.7171e+000 - 38 3.5719e-005 2.4592e-005 9.0978e-003 2.6874e-001 8.7170e+000 2.7168e+000 - 39 3.7281e-005 2.5744e-005 9.0629e-003 2.4608e-001 8.6948e+000 2.7166e+000 - 40 3.8942e-005 2.6968e-005 9.0286e-003 2.2511e-001 8.6725e+000 2.7163e+000 - 41 4.0710e-005 2.8271e-005 8.9947e-003 2.0570e-001 8.6499e+000 2.7161e+000 - 42 4.2594e-005 2.9660e-005 8.9611e-003 1.8776e-001 8.6271e+000 2.7159e+000 - 43 4.4602e-005 3.1141e-005 8.9277e-003 1.7119e-001 8.6040e+000 2.7158e+000 - 44 4.6746e-005 3.2721e-005 8.8945e-003 1.5589e-001 8.5807e+000 2.7156e+000 - 45 4.9037e-005 3.4410e-005 8.8614e-003 1.4179e-001 8.5571e+000 2.7155e+000 - 46 5.1488e-005 3.6217e-005 8.8282e-003 1.2880e-001 8.5333e+000 2.7153e+000 - 47 5.4112e-005 3.8151e-005 8.7948e-003 1.1685e-001 8.5091e+000 2.7152e+000 - 48 5.6924e-005 4.0224e-005 8.7612e-003 1.0587e-001 8.4847e+000 2.7151e+000 - 49 5.9940e-005 4.2448e-005 8.7273e-003 9.5794e-002 8.4600e+000 2.7150e+000 - 50 6.3181e-005 4.4837e-005 8.6928e-003 8.6555e-002 8.4349e+000 2.7149e+000 - 51 6.6665e-005 4.7406e-005 8.6577e-003 7.8095e-002 8.4095e+000 2.7149e+000 - 52 7.0414e-005 5.0170e-005 8.6218e-003 7.0361e-002 8.3838e+000 2.7148e+000 - 53 7.4455e-005 5.3149e-005 8.5850e-003 6.3299e-002 8.3578e+000 2.7147e+000 - 54 7.8813e-005 5.6363e-005 8.5471e-003 5.6860e-002 8.3314e+000 2.7147e+000 - 55 8.3520e-005 5.9832e-005 8.5078e-003 5.1000e-002 8.3046e+000 2.7146e+000 - 56 8.8607e-005 6.3583e-005 8.4672e-003 4.5673e-002 8.2775e+000 2.7146e+000 - 57 9.4113e-005 6.7643e-005 8.4248e-003 4.0840e-002 8.2499e+000 2.7145e+000 - 58 1.0008e-004 7.2040e-005 8.3805e-003 3.6462e-002 8.2221e+000 2.7145e+000 - 59 1.0655e-004 7.6810e-005 8.3341e-003 3.2503e-002 8.1938e+000 2.7145e+000 - 60 1.1357e-004 8.1987e-005 8.2852e-003 2.8929e-002 8.1651e+000 2.7144e+000 - 61 1.2120e-004 8.7613e-005 8.2336e-003 2.5710e-002 8.1361e+000 2.7144e+000 - 62 1.2950e-004 9.3732e-005 8.1789e-003 2.2816e-002 8.1066e+000 2.7144e+000 - 63 1.3853e-004 1.0039e-004 8.1209e-003 2.0218e-002 8.0768e+000 2.7144e+000 - 64 1.4837e-004 1.0765e-004 8.0591e-003 1.7892e-002 8.0466e+000 2.7143e+000 - 65 1.5910e-004 1.1556e-004 7.9932e-003 1.5813e-002 8.0161e+000 2.7143e+000 - 66 1.7081e-004 1.2419e-004 7.9227e-003 1.3959e-002 7.9852e+000 2.7143e+000 - 67 1.8358e-004 1.3361e-004 7.8471e-003 1.2309e-002 7.9539e+000 2.7143e+000 - 68 1.9752e-004 1.4389e-004 7.7660e-003 1.0844e-002 7.9224e+000 2.7143e+000 - 69 2.1274e-004 1.5511e-004 7.6790e-003 9.5458e-003 7.8906e+000 2.7143e+000 - 70 2.2937e-004 1.6737e-004 7.5853e-003 8.3980e-003 7.8585e+000 2.7143e+000 - 71 2.4751e-004 1.8075e-004 7.4846e-003 7.3854e-003 7.8262e+000 2.7143e+000 - 72 2.6730e-004 1.9534e-004 7.3762e-003 6.4940e-003 7.7938e+000 2.7143e+000 - 73 2.8887e-004 2.1125e-004 7.2597e-003 5.7109e-003 7.7612e+000 2.7143e+000 - 74 3.1236e-004 2.2857e-004 7.1345e-003 5.0245e-003 7.7286e+000 2.7142e+000 - 75 3.3789e-004 2.4740e-004 7.0000e-003 4.4239e-003 7.6961e+000 2.7142e+000 - 76 3.6560e-004 2.6783e-004 6.8559e-003 3.8994e-003 7.6636e+000 2.7142e+000 - 77 3.9559e-004 2.8995e-004 6.7018e-003 3.4422e-003 7.6313e+000 2.7142e+000 - 78 4.2798e-004 3.1383e-004 6.5374e-003 3.0443e-003 7.5993e+000 2.7142e+000 - 79 4.6283e-004 3.3953e-004 6.3625e-003 2.6986e-003 7.5677e+000 2.7142e+000 - 80 5.0021e-004 3.6709e-004 6.1772e-003 2.3985e-003 7.5366e+000 2.7142e+000 - 81 5.4012e-004 3.9652e-004 5.9816e-003 2.1385e-003 7.5060e+000 2.7142e+000 - 82 5.8254e-004 4.2780e-004 5.7762e-003 1.9132e-003 7.4761e+000 2.7142e+000 - 83 6.2739e-004 4.6087e-004 5.5614e-003 1.7183e-003 7.4470e+000 2.7142e+000 - 84 6.7454e-004 4.9563e-004 5.3382e-003 1.5497e-003 7.4188e+000 2.7142e+000 - 85 7.2358e-004 5.3221e-004 5.1073e-003 1.4038e-003 7.3915e+000 2.7142e+000 - 86 7.7382e-004 5.7087e-004 4.8697e-003 1.2774e-003 7.3652e+000 2.7142e+000 - 87 8.2560e-004 6.1078e-004 4.6276e-003 1.1682e-003 7.3400e+000 2.7142e+000 - 88 8.7856e-004 6.5165e-004 4.3825e-003 1.0737e-003 7.3161e+000 2.7142e+000 - 89 9.3234e-004 6.9319e-004 4.1359e-003 9.9206e-004 7.2933e+000 2.7142e+000 - 90 9.8651e-004 7.3509e-004 3.8897e-003 9.2141e-004 7.2719e+000 2.7142e+000 - 91 1.0407e-003 7.7702e-004 3.6457e-003 8.6024e-004 7.2518e+000 2.7142e+000 - 92 1.0944e-003 8.1866e-004 3.4056e-003 8.0723e-004 7.2329e+000 2.7142e+000 - 93 1.1474e-003 8.5969e-004 3.1709e-003 7.6124e-004 7.2154e+000 2.7142e+000 - 94 1.1991e-003 8.9982e-004 2.9433e-003 7.2129e-004 7.1991e+000 2.7142e+000 - 95 1.2493e-003 9.3877e-004 2.7240e-003 6.8656e-004 7.1841e+000 2.7142e+000 - 96 1.2977e-003 9.7631e-004 2.5141e-003 6.5633e-004 7.1702e+000 2.7142e+000 - 97 1.3440e-003 1.0122e-003 2.3144e-003 6.2998e-004 7.1575e+000 2.7142e+000 - 98 1.3880e-003 1.0464e-003 2.1255e-003 6.0699e-004 7.1459e+000 2.7142e+000 - 99 1.4296e-003 1.0787e-003 1.9480e-003 5.8690e-004 7.1353e+000 2.7142e+000 - 100 1.4687e-003 1.1091e-003 1.7820e-003 5.6934e-004 7.1256e+000 2.7142e+000 - 101 1.5053e-003 1.1374e-003 1.6275e-003 5.5397e-004 7.1169e+000 2.7142e+000 - 102 1.5393e-003 1.1638e-003 1.4844e-003 5.4049e-004 7.1089e+000 2.7142e+000 - 103 1.5708e-003 1.1882e-003 1.3524e-003 5.2867e-004 7.1018e+000 2.7142e+000 - 104 1.5998e-003 1.2106e-003 1.2311e-003 5.1829e-004 7.0953e+000 2.7142e+000 - 105 1.6265e-003 1.2313e-003 1.1201e-003 5.0918e-004 7.0895e+000 2.7142e+000 - 106 1.6509e-003 1.2501e-003 1.0188e-003 5.0116e-004 7.0843e+000 2.7142e+000 - 107 1.6732e-003 1.2673e-003 9.2670e-004 4.9410e-004 7.0796e+000 2.7142e+000 - 108 1.6935e-003 1.2829e-003 8.4311e-004 4.8789e-004 7.0754e+000 2.7142e+000 - 109 1.7119e-003 1.2970e-003 7.6746e-004 4.8241e-004 7.0717e+000 2.7142e+000 - 110 1.7286e-003 1.3098e-003 6.9914e-004 4.7758e-004 7.0683e+000 2.7142e+000 - 111 1.7436e-003 1.3213e-003 6.3758e-004 4.7332e-004 7.0653e+000 2.7142e+000 - 112 1.7572e-003 1.3316e-003 5.8220e-004 4.6957e-004 7.0627e+000 2.7142e+000 - 113 1.7694e-003 1.3409e-003 5.3246e-004 4.6625e-004 7.0603e+000 2.7142e+000 - 114 1.7805e-003 1.3492e-003 4.8786e-004 4.6332e-004 7.0582e+000 2.7142e+000 - 115 1.7903e-003 1.3567e-003 4.4791e-004 4.6073e-004 7.0563e+000 2.7142e+000 - 116 1.7992e-003 1.3633e-003 4.1217e-004 4.5845e-004 7.0546e+000 2.7142e+000 - 117 1.8072e-003 1.3693e-003 3.8023e-004 4.5642e-004 7.0531e+000 2.7142e+000 - 118 1.8143e-003 1.3745e-003 3.5172e-004 4.5464e-004 7.0518e+000 2.7142e+000 - 119 1.8207e-003 1.3792e-003 3.2628e-004 4.5306e-004 7.0506e+000 2.7142e+000 - 120 1.8264e-003 1.3834e-003 3.0360e-004 4.5166e-004 7.0495e+000 2.7142e+000 - 121 1.8315e-003 1.3871e-003 2.8340e-004 4.5042e-004 7.0486e+000 2.7142e+000 - 122 1.8360e-003 1.3904e-003 2.6542e-004 4.4933e-004 7.0478e+000 2.7142e+000 - 123 1.8401e-003 1.3933e-003 2.4942e-004 4.4836e-004 7.0471e+000 2.7142e+000 - 124 1.8438e-003 1.3958e-003 2.3518e-004 4.4751e-004 7.0464e+000 2.7142e+000 - 125 1.8470e-003 1.3981e-003 2.2253e-004 4.4675e-004 7.0458e+000 2.7142e+000 - 126 1.8500e-003 1.4001e-003 2.1128e-004 4.4608e-004 7.0453e+000 2.7142e+000 - 127 1.8526e-003 1.4018e-003 2.0129e-004 4.4549e-004 7.0449e+000 2.7142e+000 - 128 1.8549e-003 1.4034e-003 1.9242e-004 4.4497e-004 7.0445e+000 2.7142e+000 - 129 1.8570e-003 1.4047e-003 1.8454e-004 4.4450e-004 7.0441e+000 2.7142e+000 - 130 1.8589e-003 1.4059e-003 1.7754e-004 4.4410e-004 7.0438e+000 2.7142e+000 - 131 1.8606e-003 1.4069e-003 1.7133e-004 4.4373e-004 7.0435e+000 2.7142e+000 - 132 1.8621e-003 1.4078e-003 1.6582e-004 4.4341e-004 7.0433e+000 2.7142e+000 - 133 1.8635e-003 1.4086e-003 1.6093e-004 4.4313e-004 7.0430e+000 2.7142e+000 - 134 1.8647e-003 1.4093e-003 1.5660e-004 4.4288e-004 7.0429e+000 2.7142e+000 - 135 1.8658e-003 1.4099e-003 1.5275e-004 4.4266e-004 7.0427e+000 2.7142e+000 - 136 1.8668e-003 1.4104e-003 1.4934e-004 4.4246e-004 7.0425e+000 2.7142e+000 - 137 1.8677e-003 1.4108e-003 1.4631e-004 4.4229e-004 7.0424e+000 2.7142e+000 - 138 1.8685e-003 1.4112e-003 1.4363e-004 4.4214e-004 7.0423e+000 2.7142e+000 - 139 1.8692e-003 1.4115e-003 1.4125e-004 4.4201e-004 7.0422e+000 2.7142e+000 - 140 1.8699e-003 1.4117e-003 1.3914e-004 4.4189e-004 7.0421e+000 2.7142e+000 - 141 1.8705e-003 1.4119e-003 1.3727e-004 4.4178e-004 7.0420e+000 2.7142e+000 - 142 1.8711e-003 1.4121e-003 1.3561e-004 4.4169e-004 7.0419e+000 2.7142e+000 - 143 1.8716e-003 1.4122e-003 1.3414e-004 4.4161e-004 7.0419e+000 2.7142e+000 - 144 1.8721e-003 1.4123e-003 1.3284e-004 4.4154e-004 7.0418e+000 2.7142e+000 - 145 1.8725e-003 1.4124e-003 1.3168e-004 4.4148e-004 7.0418e+000 2.7142e+000 - 146 1.8729e-003 1.4125e-003 1.3066e-004 4.4142e-004 7.0417e+000 2.7142e+000 - 147 1.8733e-003 1.4125e-003 1.2975e-004 4.4138e-004 7.0417e+000 2.7142e+000 - 148 1.8736e-003 1.4125e-003 1.2895e-004 4.4133e-004 7.0416e+000 2.7142e+000 - 149 1.8740e-003 1.4125e-003 1.2824e-004 4.4130e-004 7.0416e+000 2.7142e+000 - 150 1.8743e-003 1.4125e-003 1.2760e-004 4.4127e-004 7.0416e+000 2.7142e+000 - 151 1.8745e-003 1.4125e-003 1.2704e-004 4.4124e-004 7.0416e+000 2.7142e+000 - 152 1.8748e-003 1.4124e-003 1.2655e-004 4.4121e-004 7.0416e+000 2.7142e+000 - 153 1.8751e-003 1.4124e-003 1.2611e-004 4.4119e-004 7.0415e+000 2.7142e+000 - 154 1.8753e-003 1.4123e-003 1.2572e-004 4.4118e-004 7.0415e+000 2.7142e+000 - 155 1.8755e-003 1.4123e-003 1.2537e-004 4.4116e-004 7.0415e+000 2.7142e+000 - 156 1.8757e-003 1.4122e-003 1.2507e-004 4.4115e-004 7.0415e+000 2.7142e+000 - 157 1.8759e-003 1.4121e-003 1.2480e-004 4.4114e-004 7.0415e+000 2.7142e+000 - 158 1.8761e-003 1.4120e-003 1.2456e-004 4.4113e-004 7.0415e+000 2.7142e+000 - 159 1.8763e-003 1.4119e-003 1.2434e-004 4.4112e-004 7.0415e+000 2.7142e+000 - 160 1.8765e-003 1.4118e-003 1.2415e-004 4.4111e-004 7.0415e+000 2.7142e+000 - 161 1.8767e-003 1.4117e-003 1.2399e-004 4.4111e-004 7.0415e+000 2.7142e+000 - 162 1.8768e-003 1.4116e-003 1.2384e-004 4.4110e-004 7.0415e+000 2.7142e+000 - 163 1.8770e-003 1.4115e-003 1.2371e-004 4.4110e-004 7.0415e+000 2.7142e+000 - 164 1.8772e-003 1.4114e-003 1.2359e-004 4.4110e-004 7.0415e+000 2.7142e+000 - 165 1.8773e-003 1.4113e-003 1.2349e-004 4.4110e-004 7.0415e+000 2.7142e+000 - 166 1.8775e-003 1.4112e-003 1.2340e-004 4.4110e-004 7.0415e+000 2.7142e+000 - 167 1.8776e-003 1.4111e-003 1.2331e-004 4.4110e-004 7.0415e+000 2.7142e+000 - 168 1.8778e-003 1.4110e-003 1.2324e-004 4.4110e-004 7.0415e+000 2.7142e+000 - 169 1.8779e-003 1.4109e-003 1.2318e-004 4.4110e-004 7.0415e+000 2.7142e+000 - 170 1.8781e-003 1.4108e-003 1.2312e-004 4.4110e-004 7.0415e+000 2.7142e+000 - 171 1.8782e-003 1.4107e-003 1.2307e-004 4.4110e-004 7.0415e+000 2.7142e+000 - 172 1.8783e-003 1.4106e-003 1.2303e-004 4.4110e-004 7.0415e+000 2.7142e+000 - 173 1.8785e-003 1.4105e-003 1.2299e-004 4.4111e-004 7.0415e+000 2.7142e+000 - 174 1.8786e-003 1.4104e-003 1.2295e-004 4.4111e-004 7.0415e+000 2.7142e+000 - 175 1.8787e-003 1.4102e-003 1.2292e-004 4.4111e-004 7.0415e+000 2.7142e+000 - 176 1.8788e-003 1.4101e-003 1.2290e-004 4.4111e-004 7.0415e+000 2.7142e+000 - 177 1.8790e-003 1.4100e-003 1.2287e-004 4.4112e-004 7.0415e+000 2.7142e+000 - 178 1.8791e-003 1.4099e-003 1.2285e-004 4.4112e-004 7.0415e+000 2.7142e+000 - 179 1.8792e-003 1.4098e-003 1.2283e-004 4.4112e-004 7.0415e+000 2.7142e+000 - 180 1.8793e-003 1.4097e-003 1.2281e-004 4.4113e-004 7.0415e+000 2.7142e+000 - 181 1.8795e-003 1.4096e-003 1.2280e-004 4.4113e-004 7.0415e+000 2.7142e+000 - 182 1.8796e-003 1.4095e-003 1.2279e-004 4.4113e-004 7.0415e+000 2.7142e+000 - 183 1.8797e-003 1.4094e-003 1.2277e-004 4.4114e-004 7.0415e+000 2.7142e+000 - 184 1.8798e-003 1.4093e-003 1.2276e-004 4.4114e-004 7.0415e+000 2.7142e+000 - 185 1.8799e-003 1.4092e-003 1.2275e-004 4.4114e-004 7.0415e+000 2.7142e+000 - 186 1.8800e-003 1.4091e-003 1.2275e-004 4.4115e-004 7.0415e+000 2.7142e+000 - 187 1.8801e-003 1.4090e-003 1.2274e-004 4.4115e-004 7.0415e+000 2.7142e+000 - 188 1.8803e-003 1.4089e-003 1.2273e-004 4.4115e-004 7.0415e+000 2.7142e+000 - 189 1.8804e-003 1.4088e-003 1.2273e-004 4.4116e-004 7.0415e+000 2.7142e+000 - 190 1.8805e-003 1.4087e-003 1.2272e-004 4.4116e-004 7.0415e+000 2.7142e+000 - 191 1.8806e-003 1.4086e-003 1.2272e-004 4.4116e-004 7.0415e+000 2.7142e+000 - 192 1.8807e-003 1.4085e-003 1.2271e-004 4.4117e-004 7.0415e+000 2.7142e+000 - 193 1.8808e-003 1.4084e-003 1.2271e-004 4.4117e-004 7.0415e+000 2.7142e+000 - 194 1.8809e-003 1.4083e-003 1.2271e-004 4.4118e-004 7.0415e+000 2.7142e+000 - 195 1.8810e-003 1.4082e-003 1.2270e-004 4.4118e-004 7.0415e+000 2.7142e+000 - 196 1.8811e-003 1.4081e-003 1.2270e-004 4.4118e-004 7.0415e+000 2.7142e+000 - 197 1.8812e-003 1.4080e-003 1.2270e-004 4.4119e-004 7.0415e+000 2.7142e+000 - 198 1.8813e-003 1.4079e-003 1.2270e-004 4.4119e-004 7.0415e+000 2.7142e+000 - 199 1.8814e-003 1.4078e-003 1.2270e-004 4.4119e-004 7.0415e+000 2.7142e+000 - 200 1.8815e-003 1.4077e-003 1.2269e-004 4.4120e-004 7.0415e+000 2.7142e+000 diff --git a/examples_pc/ex15.out b/examples_pc/ex15.out deleted file mode 100644 index b1942c95..00000000 --- a/examples_pc/ex15.out +++ /dev/null @@ -1,218 +0,0 @@ - Input file: ..\examples\ex15 - Output file: ex15.out -Database file: ..\examples\ex15.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Example 15.--1D Transport: Kinetic Biodegradation, Cell Growth, and Sorption - *********** - PLEASE NOTE: This problem requires database file ex15.dat!! - *********** - PRINT - reset false - status false - SOLUTION 0 Pulse solution with NTA and cobalt - units umol/L - pH 6 - C .49 - O(0) 62.5 - Nta 5.23 - Co 5.23 - Na 1000 - Cl 1000 - SOLUTION 1-10 Background solution initially filling column - units umol/L - pH 6 - C .49 - O(0) 62.5 - Na 1000 - Cl 1000 - COPY solution 0 100 # for use later on, and in - COPY solution 1 101 # 20 cells model - END - RATES Rate expressions for the four kinetic reactions - HNTA-2 - start - 10 Ks = 7.64e-7 - 20 Ka = 6.25e-6 - 30 qm = 1.407e-3/3600 - 40 f1 = MOL("HNta-2")/(Ks + MOL("HNta-2")) - 50 f2 = MOL("O2")/(Ka + MOL("O2")) - 60 rate = -qm * KIN("Biomass") * f1 * f2 - 70 moles = rate * TIME - 80 PUT(rate, 1) # save the rate for use in Biomass rate calculation - 90 SAVE moles - end - Biomass - start - 10 Y = 65.14 - 20 b = 0.00208/3600 - 30 rate = GET(1) # uses rate calculated in HTNA-2 rate calculation - 40 rate = -Y*rate -b*M - 50 moles = -rate * TIME - 60 if (M + moles) < 0 then moles = -M - 70 SAVE moles - end - Co_sorption - start - 10 km = 1/3600 - 20 kd = 5.07e-3 - 30 solids = 3.75e3 - 40 rate = -km*(MOL("Co+2") - (M/solids)/kd) - 50 moles = rate * TIME - 60 if (M - moles) < 0 then moles = M - 70 SAVE moles - end - CoNta_sorption - start - 10 km = 1/3600 - 20 kd = 5.33e-4 - 30 solids = 3.75e3 - 40 rate = -km*(MOL("CoNta-") - (M/solids)/kd) - 50 moles = rate * TIME - 60 if (M - moles) < 0 then moles = M - 70 SAVE moles - end - KINETICS 1-10 Four kinetic reactions for all cells - HNTA-2 - formula C -3.12 H -1.968 O -4.848 N -0.424 Nta 1. - Biomass - formula H 0.0 - m 1.36e-4 - Co_sorption - formula CoCl2 - m 0.0 - tol 1e-11 - CoNta_sorption - formula NaCoNta - m 0.0 - tol 1e-11 - COPY kinetics 1 101 # to use with 20 cells - END - SELECTED_OUTPUT - file ex15.sel - molalities Nta-3 CoNta- HNta-2 Co+2 - USER_PUNCH - headings hours Co_sorb CoNta_sorb Biomass - start - 10 punch TOTAL_TIME/3600 + 3600/2/3600 - 20 punch KIN("Co_sorption")/3.75e3 - 30 punch KIN("CoNta_sorption")/3.75e3 - 40 punch KIN("Biomass") - USER_GRAPH 1 Example 15 - -headings 10_cells: Co+2 CoNTA- HNTA-2 pH - -chart_title "Kinetic Biodegradation, Cell Growth, and Sorption: Dissolved Species" - -axis_titles "Time, in hours" "Micromoles per kilogram water" "pH" - -axis_scale x_axis 0 75 - -axis_scale y_axis 0 4 - -axis_scale secondary_y_axis 5.799 6.8 0.2 0.1 - -plot_concentration_vs t - -start - 10 x = TOTAL_TIME/3600 + 3600/2/3600 - 20 PLOT_XY -1, -1, line_width = 0, symbol_size = 0 - 30 PLOT_XY x, MOL("Co+2") * 1e6, color = Red, line_width = 0, symbol_size = 4 - 40 PLOT_XY x, MOL("CoNta-") * 1e6, color = Green, line_width = 0, symbol_size = 4 - 50 PLOT_XY x, MOL("HNta-2") * 1e6, color = Blue, line_width = 0, symbol_size = 4 - 60 PLOT_XY x, -LA("H+"), y-axis = 2, color = Magenta, line_width = 0, symbol_size = 4 - -end - USER_GRAPH 2 Example 15 - -headings 10_cells: Co+2 CoNTA- Biomass - -chart_title "Kinetic Biodegradation, Cell Growth, and Sorption: Sorbed Species" - -axis_titles "Time, in hours" "Nanomoles per kilogram water" "Biomass, in milligrams per liter" - -axis_scale x_axis 0 75 - -axis_scale y_axis 0 2 - -axis_scale secondary_y_axis 0 0.4 - -plot_concentration_vs t - -start - 10 x = TOTAL_TIME/3600 + 3600/2/3600 - 20 PLOT_XY -1, -1, line_width = 0, symbol_size = 0 - 30 PLOT_XY x, KIN("Co_sorption") / 3.75e3 * 1e9, color = Red, line_width = 0, symbol_size = 4 - 40 PLOT_XY x, KIN("CoNta_sorption") / 3.75e3 * 1e9, color = Green, line_width = 0, symbol_size = 4 - 50 PLOT_XY x, KIN("Biomass") * 1e3, y-axis = 2, color = Magenta, line_width = 0, symbol_size = 4 - -end -end - TRANSPORT First 20 hours have NTA and cobalt in infilling solution - cells 10 - lengths 1 - shifts 20 - time_step 3600 - flow_direction forward - boundary_conditions flux flux - dispersivities .05 - correct_disp true - diffusion_coefficient 0.0 - punch_cells 10 - punch_frequency 1 - print_cells 10 - print_frequency 5 - COPY solution 101 0 # initial column solution becomes influent -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 10. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 10. - END - TRANSPORT Last 55 hours with background infilling solution - shifts 55 - COPY cell 100 0 # for the 20 cell model... - COPY cell 101 1-20 - END - USER_PUNCH - start - 10 punch TOTAL_TIME/3600 + 3600/4/3600 - 20 punch KIN("Co_sorption")/3.75e3 - 30 punch KIN("CoNta_sorption")/3.75e3 - 40 punch KIN("Biomass") - end - USER_GRAPH 1 - -headings 20_cells: Co+2 CoNTA- HNTA-2 pH - -start - 10 x = TOTAL_TIME/3600 + 3600/4/3600 - 20 PLOT_XY -1, -1, line_width = 0, symbol_size = 0 - 30 PLOT_XY x, MOL("Co+2") * 1e6, color = Red, symbol_size = 0 - 40 PLOT_XY x, MOL("CoNta-") * 1e6, color = Green, symbol_size = 0 - 50 PLOT_XY x, MOL("HNta-2") * 1e6, color = Blue, symbol_size = 0 - 60 PLOT_XY x, -LA("H+"), y-axis = 2, color = Magenta, symbol_size = 0 - -end - USER_GRAPH 2 - -headings 20_cells: Co+2 CoNTA- Biomass - -start - 10 x = TOTAL_TIME/3600 + 3600/4/3600 - 20 PLOT_XY -1, -1, line_width = 0, symbol_size = 0 - 30 PLOT_XY x, KIN("Co_sorption") / 3.75e3 * 1e9, color = Red, symbol_size = 0 - 40 PLOT_XY x, KIN("CoNta_sorption") / 3.75e3 * 1e9, color = Green, symbol_size = 0 - 60 PLOT_XY x, KIN("Biomass") * 1e3, y-axis = 2, color = Magenta, symbol_size = 0 - -end - TRANSPORT First 20 hours have NTA and cobalt in infilling solution - cells 20 - lengths 0.5 - shifts 40 - initial_time 0 - time_step 1800 - flow_direction forward - boundary_conditions flux flux - dispersivities .05 - correct_disp true - diffusion_coefficient 0.0 - punch_cells 20 - punch_frequency 2 - print_cells 20 - print_frequency 10 - COPY cell 101 0 -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. - END -WARNING: USER_PUNCH: Headings count doesn't match number of calls to PUNCH. - - TRANSPORT Last 55 hours with background infilling solution - shifts 110 - END --------------------------------- -End of Run after 14.903 Seconds. --------------------------------- - diff --git a/examples_pc/ex15.sel b/examples_pc/ex15.sel deleted file mode 100644 index 415010bb..00000000 --- a/examples_pc/ex15.sel +++ /dev/null @@ -1,155 +0,0 @@ - sim state soln dist_x time step pH pe m_Nta-3 m_CoNta- m_HNta-2 m_Co+2 hours Co_sorb CoNta_sorb Biomass - 1 transp 10 9.5 0 0 6 14.3937 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 5.0000e-001 0.0000e+000 0.0000e+000 0.0000e+000 - 1 transp 10 9.5 3600 1 6 14.3937 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 1.5000e+000 0.0000e+000 0.0000e+000 1.3572e-004 - 1 transp 10 9.5 7200 2 6 14.3937 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 2.5000e+000 0.0000e+000 0.0000e+000 1.3544e-004 - 1 transp 10 9.5 10800 3 6 14.3937 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 3.5000e+000 0.0000e+000 0.0000e+000 1.3515e-004 - 1 transp 10 9.5 14400 4 6 14.3937 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 4.5000e+000 0.0000e+000 0.0000e+000 1.3487e-004 - 1 transp 10 9.5 18000 5 6 14.3937 4.1636e-017 4.8355e-019 8.3075e-013 2.3172e-014 5.5000e+000 6.1781e-018 1.4377e-022 1.3459e-004 - 1 transp 10 9.5 21600 6 6.00019 14.3935 5.3586e-015 7.6671e-015 1.0687e-010 2.8548e-012 6.5000e+000 1.0994e-015 2.6066e-018 1.3431e-004 - 1 transp 10 9.5 25200 7 6.00441 14.3893 1.1039e-013 3.4338e-012 2.1803e-009 6.2065e-011 7.5000e+000 2.2731e-014 9.7753e-016 1.3406e-004 - 1 transp 10 9.5 28800 8 6.03587 14.3576 8.7248e-013 1.8088e-010 1.6028e-008 4.1366e-010 8.5000e+000 1.5703e-013 4.8045e-014 1.3399e-004 - 1 transp 10 9.5 32400 9 6.12883 14.264 3.7779e-012 1.9561e-009 5.6030e-008 1.0331e-009 9.5000e+000 4.8525e-013 5.5433e-013 1.3445e-004 - 1 transp 10 9.5 36000 10 6.2369 14.1549 9.6448e-012 8.0004e-009 1.1153e-007 1.6551e-009 1.0500e+001 9.8421e-013 2.4608e-012 1.3556e-004 - 1 transp 10 9.5 39600 11 6.30614 14.0851 1.5152e-011 2.0272e-008 1.4940e-007 2.6695e-009 1.1500e+001 1.7623e-012 6.7849e-012 1.3707e-004 - 1 transp 10 9.5 43200 12 6.35376 14.0371 1.9799e-011 4.1065e-008 1.7494e-007 4.1384e-009 1.2500e+001 2.9364e-012 1.4662e-011 1.3886e-004 - 1 transp 10 9.5 46800 13 6.3909 13.9998 2.3996e-011 7.2616e-008 1.9464e-007 6.0380e-009 1.3500e+001 4.6059e-012 2.7261e-011 1.4085e-004 - 1 transp 10 9.5 50400 14 6.4217 13.9688 2.7923e-011 1.1683e-007 2.1099e-007 8.3484e-009 1.4500e+001 6.8561e-012 4.5675e-011 1.4301e-004 - 1 transp 10 9.5 54000 15 6.44804 13.9423 3.1619e-011 1.7515e-007 2.2486e-007 1.1052e-008 1.5500e+001 9.7615e-012 7.0827e-011 1.4533e-004 - 1 transp 10 9.5 57600 16 6.47097 13.9193 3.5087e-011 2.4844e-007 2.3669e-007 1.4128e-008 1.6500e+001 1.3385e-011 1.0340e-010 1.4778e-004 - 1 transp 10 9.5 61200 17 6.49117 13.8989 3.8321e-011 3.3699e-007 2.4675e-007 1.7546e-008 1.7500e+001 1.7779e-011 1.4381e-010 1.5036e-004 - 1 transp 10 9.5 64800 18 6.50914 13.8808 4.1316e-011 4.4051e-007 2.5526e-007 2.1274e-008 1.8500e+001 2.2982e-011 1.9215e-010 1.5306e-004 - 1 transp 10 9.5 68400 19 6.52519 13.8647 4.4065e-011 5.5820e-007 2.6236e-007 2.5276e-008 1.9500e+001 2.9022e-011 2.4826e-010 1.5586e-004 - 1 transp 10 9.5 72000 20 6.53959 13.8502 4.6562e-011 6.8880e-007 2.6819e-007 2.9517e-008 2.0500e+001 3.5915e-011 3.1170e-010 1.5876e-004 - 2 transp 10 9.5 72000 0 6.53959 13.8502 4.6562e-011 6.8880e-007 2.6819e-007 2.9517e-008 2.0500e+001 0.0000e+000 0.0000e+000 0.0000e+000 - 2 transp 10 9.5 75600 1 6.55254 13.8371 4.8804e-011 8.3068e-007 2.7284e-007 3.3961e-008 2.1500e+001 4.3669e-011 3.8179e-010 1.6174e-004 - 2 transp 10 9.5 79200 2 6.56419 13.8254 5.0791e-011 9.8198e-007 2.7644e-007 3.8576e-008 2.2500e+001 5.2280e-011 4.5769e-010 1.6481e-004 - 2 transp 10 9.5 82800 3 6.57469 13.8148 5.2526e-011 1.1406e-006 2.7905e-007 4.3329e-008 2.3500e+001 6.1739e-011 5.3842e-010 1.6796e-004 - 2 transp 10 9.5 86400 4 6.58413 13.8053 5.4012e-011 1.3046e-006 2.8077e-007 4.8193e-008 2.4500e+001 7.2027e-011 6.2293e-010 1.7117e-004 - 2 transp 10 9.5 90000 5 6.59263 13.7967 5.5256e-011 1.4717e-006 2.8168e-007 5.3142e-008 2.5500e+001 8.3123e-011 7.1013e-010 1.7444e-004 - 2 transp 10 9.5 93600 6 6.60028 13.789 5.6269e-011 1.6400e-006 2.8183e-007 5.8153e-008 2.6500e+001 9.4998e-011 7.9893e-010 1.7778e-004 - 2 transp 10 9.5 97200 7 6.60754 13.7817 5.7056e-011 1.8075e-006 2.8103e-007 6.3208e-008 2.7500e+001 1.0762e-010 8.8826e-010 1.8116e-004 - 2 transp 10 9.5 100800 8 6.61795 13.7713 5.7637e-011 1.9718e-006 2.7717e-007 6.8258e-008 2.8500e+001 1.2096e-010 9.7697e-010 1.8457e-004 - 2 transp 10 9.5 104400 9 6.64212 13.7473 5.8212e-011 2.1299e-006 2.6478e-007 7.3002e-008 2.9500e+001 1.3490e-010 1.0636e-009 1.8791e-004 - 2 transp 10 9.5 108000 10 6.6795 13.7103 5.8949e-011 2.2783e-006 2.4602e-007 7.7114e-008 3.0500e+001 1.4924e-010 1.1465e-009 1.9109e-004 - 2 transp 10 9.5 111600 11 6.69156 13.6985 5.8746e-011 2.4117e-006 2.3846e-007 8.1911e-008 3.1500e+001 1.6415e-010 1.2236e-009 1.9424e-004 - 2 transp 10 9.5 115200 12 6.68638 13.7039 5.7684e-011 2.5260e-006 2.3696e-007 8.7374e-008 3.2500e+001 1.7978e-010 1.2925e-009 1.9741e-004 - 2 transp 10 9.5 118800 13 6.67462 13.7157 5.6097e-011 2.6183e-006 2.3676e-007 9.3127e-008 3.3500e+001 1.9616e-010 1.3514e-009 2.0062e-004 - 2 transp 10 9.5 122400 14 6.66009 13.7304 5.4144e-011 2.6860e-006 2.3630e-007 9.8982e-008 3.4500e+001 2.1330e-010 1.3987e-009 2.0387e-004 - 2 transp 10 9.5 126000 15 6.64373 13.7469 5.1900e-011 2.7276e-006 2.3520e-007 1.0486e-007 3.5500e+001 2.3114e-010 1.4332e-009 2.0716e-004 - 2 transp 10 9.5 129600 16 6.62579 13.7649 4.9419e-011 2.7424e-006 2.3341e-007 1.1072e-007 3.6500e+001 2.4964e-010 1.4540e-009 2.1047e-004 - 2 transp 10 9.5 133200 17 6.60638 13.7845 4.6754e-011 2.7304e-006 2.3091e-007 1.1652e-007 3.7500e+001 2.6875e-010 1.4608e-009 2.1379e-004 - 2 transp 10 9.5 136800 18 6.58562 13.8054 4.3956e-011 2.6927e-006 2.2772e-007 1.2223e-007 3.8500e+001 2.8841e-010 1.4537e-009 2.1712e-004 - 2 transp 10 9.5 140400 19 6.56361 13.8275 4.1075e-011 2.6309e-006 2.2386e-007 1.2780e-007 3.9500e+001 3.0854e-010 1.4333e-009 2.2044e-004 - 2 transp 10 9.5 144000 20 6.54047 13.8508 3.8158e-011 2.5474e-006 2.1934e-007 1.3320e-007 4.0500e+001 3.2906e-010 1.4004e-009 2.2375e-004 - 2 transp 10 9.5 147600 21 6.51631 13.8751 3.5247e-011 2.4449e-006 2.1419e-007 1.3841e-007 4.1500e+001 3.4990e-010 1.3562e-009 2.2702e-004 - 2 transp 10 9.5 151200 22 6.49127 13.9003 3.2379e-011 2.3266e-006 2.0845e-007 1.4337e-007 4.2500e+001 3.7097e-010 1.3021e-009 2.3026e-004 - 2 transp 10 9.5 154800 23 6.46547 13.9262 2.9588e-011 2.1956e-006 2.0213e-007 1.4806e-007 4.3500e+001 3.9217e-010 1.2398e-009 2.3344e-004 - 2 transp 10 9.5 158400 24 6.43907 13.9527 2.6899e-011 2.0552e-006 1.9529e-007 1.5245e-007 4.4500e+001 4.1340e-010 1.1710e-009 2.3656e-004 - 2 transp 10 9.5 162000 25 6.41223 13.9797 2.4336e-011 1.9087e-006 1.8794e-007 1.5649e-007 4.5500e+001 4.3456e-010 1.0972e-009 2.3959e-004 - 2 transp 10 9.5 165600 26 6.38512 14.0069 2.1913e-011 1.7589e-006 1.8013e-007 1.6016e-007 4.6500e+001 4.5554e-010 1.0202e-009 2.4253e-004 - 2 transp 10 9.5 169200 27 6.35794 14.0343 1.9643e-011 1.6088e-006 1.7189e-007 1.6342e-007 4.7500e+001 4.7623e-010 9.4150e-010 2.4537e-004 - 2 transp 10 9.5 172800 28 6.33089 14.0614 1.7532e-011 1.4607e-006 1.6329e-007 1.6624e-007 4.8500e+001 4.9652e-010 8.6254e-010 2.4809e-004 - 2 transp 10 9.5 176400 29 6.30416 14.0883 1.5584e-011 1.3168e-006 1.5436e-007 1.6859e-007 4.9500e+001 5.1630e-010 7.8460e-010 2.5068e-004 - 2 transp 10 9.5 180000 30 6.27797 14.1146 1.3798e-011 1.1788e-006 1.4516e-007 1.7047e-007 5.0500e+001 5.3545e-010 7.0877e-010 2.5312e-004 - 2 transp 10 9.5 183600 31 6.25252 14.1402 1.2170e-011 1.0482e-006 1.3576e-007 1.7185e-007 5.1500e+001 5.5388e-010 6.3597e-010 2.5541e-004 - 2 transp 10 9.5 187200 32 6.228 14.1648 1.0695e-011 9.2591e-007 1.2623e-007 1.7274e-007 5.2500e+001 5.7148e-010 5.6693e-010 2.5754e-004 - 2 transp 10 9.5 190800 33 6.20459 14.1883 9.3648e-012 8.1273e-007 1.1666e-007 1.7316e-007 5.3500e+001 5.8818e-010 5.0219e-010 2.5949e-004 - 2 transp 10 9.5 194400 34 6.18244 14.2105 8.1717e-012 7.0904e-007 1.0712e-007 1.7312e-007 5.4500e+001 6.0391e-010 4.4212e-010 2.6127e-004 - 2 transp 10 9.5 198000 35 6.16167 14.2314 7.1059e-012 6.1497e-007 9.7713e-008 1.7268e-007 5.5500e+001 6.1861e-010 3.8695e-010 2.6286e-004 - 2 transp 10 9.5 201600 36 6.14237 14.2508 6.1578e-012 5.3042e-007 8.8524e-008 1.7187e-007 5.6500e+001 6.3226e-010 3.3676e-010 2.6427e-004 - 2 transp 10 9.5 205200 37 6.12459 14.2686 5.3178e-012 4.5509e-007 7.9641e-008 1.7075e-007 5.7500e+001 6.4483e-010 2.9149e-010 2.6550e-004 - 2 transp 10 9.5 208800 38 6.10837 14.2849 4.5763e-012 3.8853e-007 7.1145e-008 1.6940e-007 5.8500e+001 6.5634e-010 2.5101e-010 2.6655e-004 - 2 transp 10 9.5 212400 39 6.09369 14.2996 3.9244e-012 3.3017e-007 6.3107e-008 1.6787e-007 5.9500e+001 6.6679e-010 2.1511e-010 2.6742e-004 - 2 transp 10 9.5 216000 40 6.08053 14.3129 3.3534e-012 2.7937e-007 5.5584e-008 1.6623e-007 6.0500e+001 6.7624e-010 1.8349e-010 2.6813e-004 - 2 transp 10 9.5 219600 41 6.06883 14.3246 2.8552e-012 2.3545e-007 4.8619e-008 1.6454e-007 6.1500e+001 6.8474e-010 1.5585e-010 2.6869e-004 - 2 transp 10 9.5 223200 42 6.05851 14.335 2.4224e-012 1.9772e-007 4.2241e-008 1.6286e-007 6.2500e+001 6.9233e-010 1.3184e-010 2.6910e-004 - 2 transp 10 9.5 226800 43 6.04948 14.3441 2.0479e-012 1.6548e-007 3.6461e-008 1.6123e-007 6.3500e+001 6.9911e-010 1.1112e-010 2.6938e-004 - 2 transp 10 9.5 230400 44 6.04163 14.3519 1.7253e-012 1.3809e-007 3.1277e-008 1.5969e-007 6.4500e+001 7.0513e-010 9.3326e-011 2.6955e-004 - 2 transp 10 9.5 234000 45 6.03487 14.3587 1.4485e-012 1.1491e-007 2.6672e-008 1.5827e-007 6.5500e+001 7.1047e-010 7.8132e-011 2.6960e-004 - 2 transp 10 9.5 237600 46 6.02908 14.3645 1.2122e-012 9.5378e-008 2.2620e-008 1.5699e-007 6.6500e+001 7.1521e-010 6.5220e-011 2.6957e-004 - 2 transp 10 9.5 241200 47 6.02415 14.3695 1.0113e-012 7.8988e-008 1.9086e-008 1.5585e-007 6.7500e+001 7.1941e-010 5.4292e-011 2.6945e-004 - 2 transp 10 9.5 244800 48 6.01999 14.3737 8.4110e-013 6.5277e-008 1.6027e-008 1.5485e-007 6.8500e+001 7.2315e-010 4.5082e-011 2.6926e-004 - 2 transp 10 9.5 248400 49 6.01648 14.3772 6.9760e-013 5.3842e-008 1.3400e-008 1.5400e-007 6.9500e+001 7.2648e-010 3.7348e-011 2.6901e-004 - 2 transp 10 9.5 252000 50 6.01355 14.3801 5.7705e-013 4.4330e-008 1.1160e-008 1.5328e-007 7.0500e+001 7.2947e-010 3.0873e-011 2.6870e-004 - 2 transp 10 9.5 255600 51 6.01111 14.3826 4.7615e-013 3.6437e-008 9.2604e-009 1.5268e-007 7.1500e+001 7.3215e-010 2.5469e-011 2.6836e-004 - 2 transp 10 9.5 259200 52 6.00908 14.3846 3.9198e-013 2.9901e-008 7.6592e-009 1.5220e-007 7.2500e+001 7.3458e-010 2.0972e-011 2.6798e-004 - 2 transp 10 9.5 262800 53 6.00741 14.3863 3.2200e-013 2.4501e-008 6.3161e-009 1.5182e-007 7.3500e+001 7.3678e-010 1.7238e-011 2.6756e-004 - 2 transp 10 9.5 266400 54 6.00603 14.3877 2.6398e-013 2.0046e-008 5.1944e-009 1.5152e-007 7.4500e+001 7.3880e-010 1.4145e-011 2.6713e-004 - 2 transp 10 9.5 270000 55 6.0049 14.3888 2.1600e-013 1.6379e-008 4.2615e-009 1.5130e-007 7.5500e+001 7.4066e-010 1.1589e-011 2.6667e-004 - 3 transp 20 9.75 0 0 6 14.3937 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 2.5000e-001 0.0000e+000 0.0000e+000 0.0000e+000 - 3 transp 20 9.75 3600 2 6 14.3937 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 1.2500e+000 0.0000e+000 0.0000e+000 1.3572e-004 - 3 transp 20 9.75 7200 4 6 14.3937 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 2.2500e+000 0.0000e+000 0.0000e+000 1.3544e-004 - 3 transp 20 9.75 10800 6 6 14.3937 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 3.2500e+000 0.0000e+000 0.0000e+000 1.3515e-004 - 3 transp 20 9.75 14400 8 6 14.3937 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 4.2500e+000 0.0000e+000 0.0000e+000 1.3487e-004 - 3 transp 20 9.75 18000 10 6 14.3937 1.5238e-020 5.3050e-026 3.0404e-016 6.9464e-018 5.2500e+000 6.1742e-022 4.9718e-030 1.3459e-004 - 3 transp 20 9.75 21600 12 6.00001 14.3937 1.5975e-016 4.1405e-018 3.1874e-012 5.1715e-014 6.2500e+000 6.9697e-018 4.6156e-022 1.3431e-004 - 3 transp 20 9.75 25200 14 6.00099 14.3927 2.2502e-014 7.4018e-014 4.4795e-010 6.5633e-012 7.2500e+000 1.1424e-015 1.0363e-017 1.3404e-004 - 3 transp 20 9.75 28800 16 6.0195 14.3741 4.3142e-013 2.8750e-011 8.2301e-009 1.3296e-010 8.2500e+000 2.6874e-014 4.0925e-015 1.3383e-004 - 3 transp 20 9.75 32400 18 6.0982 14.2948 2.5897e-012 6.9410e-010 4.1215e-008 5.3477e-010 9.2500e+000 1.5046e-013 1.1367e-013 1.3395e-004 - 3 transp 20 9.75 36000 20 6.20728 14.1848 7.5082e-012 3.8106e-009 9.2952e-008 1.0126e-009 1.0250e+001 4.0151e-013 7.6561e-013 1.3465e-004 - 3 transp 20 9.75 39600 22 6.28545 14.1059 1.3116e-011 1.1318e-008 1.3563e-007 1.7217e-009 1.1250e+001 8.1923e-013 2.6789e-012 1.3586e-004 - 3 transp 20 9.75 43200 24 6.33761 14.0534 1.7886e-011 2.5308e-008 1.6402e-007 2.8233e-009 1.2250e+001 1.4963e-012 6.7447e-012 1.3740e-004 - 3 transp 20 9.75 46800 26 6.37759 14.0132 2.2122e-011 4.8085e-008 1.8503e-007 4.3370e-009 1.3250e+001 2.5327e-012 1.4004e-011 1.3918e-004 - 3 transp 20 9.75 50400 28 6.41058 13.98 2.6101e-011 8.1880e-008 2.0233e-007 6.2593e-009 1.4250e+001 4.0203e-012 2.5577e-011 1.4114e-004 - 3 transp 20 9.75 54000 30 6.43869 13.9517 2.9881e-011 1.2863e-007 2.1712e-007 8.5892e-009 1.5250e+001 6.0449e-012 4.2563e-011 1.4326e-004 - 3 transp 20 9.75 57600 32 6.46311 13.9271 3.3464e-011 1.8983e-007 2.2986e-007 1.1319e-008 1.6250e+001 8.6853e-012 6.5952e-011 1.4553e-004 - 3 transp 20 9.75 61200 34 6.48462 13.9055 3.6842e-011 2.6645e-007 2.4084e-007 1.4430e-008 1.7250e+001 1.2011e-011 9.6546e-011 1.4793e-004 - 3 transp 20 9.75 64800 36 6.50373 13.8863 4.0006e-011 3.5884e-007 2.5026e-007 1.7897e-008 1.8250e+001 1.6082e-011 1.3490e-010 1.5046e-004 - 3 transp 20 9.75 68400 38 6.52082 13.8691 4.2945e-011 4.6679e-007 2.5828e-007 2.1688e-008 1.9250e+001 2.0945e-011 1.8130e-010 1.5310e-004 - 3 transp 20 9.75 72000 40 6.53617 13.8536 4.5647e-011 5.8950e-007 2.6500e-007 2.5768e-008 2.0250e+001 2.6637e-011 2.3572e-010 1.5584e-004 - 4 transp 20 9.75 72000 0 6.53617 13.8536 4.5647e-011 5.8950e-007 2.6500e-007 2.5768e-008 2.0250e+001 0.0000e+000 0.0000e+000 0.0000e+000 - 4 transp 20 9.75 75600 2 6.54997 13.8397 4.8105e-011 7.2569e-007 2.7053e-007 3.0100e-008 2.1250e+001 3.3180e-011 2.9788e-010 1.5869e-004 - 4 transp 20 9.75 79200 4 6.5624 13.8272 5.0312e-011 8.7369e-007 2.7496e-007 3.4649e-008 2.2250e+001 4.0590e-011 3.6721e-010 1.6162e-004 - 4 transp 20 9.75 82800 6 6.57359 13.8159 5.2265e-011 1.0315e-006 2.7837e-007 3.9378e-008 2.3250e+001 4.8869e-011 4.4295e-010 1.6463e-004 - 4 transp 20 9.75 86400 8 6.58366 13.8058 5.3964e-011 1.1969e-006 2.8083e-007 4.4255e-008 2.4250e+001 5.8011e-011 5.2415e-010 1.6773e-004 - 4 transp 20 9.75 90000 10 6.5927 13.7967 5.5412e-011 1.3677e-006 2.8242e-007 4.9249e-008 2.5250e+001 6.8003e-011 6.0975e-010 1.7089e-004 - 4 transp 20 9.75 93600 12 6.60083 13.7885 5.6614e-011 1.5416e-006 2.8320e-007 5.4332e-008 2.6250e+001 7.8824e-011 6.9861e-010 1.7412e-004 - 4 transp 20 9.75 97200 14 6.60819 13.7811 5.7579e-011 1.7164e-006 2.8319e-007 5.9478e-008 2.7250e+001 9.0448e-011 7.8957e-010 1.7741e-004 - 4 transp 20 9.75 100800 16 6.61729 13.7719 5.8329e-011 1.8898e-006 2.8092e-007 6.4646e-008 2.8250e+001 1.0284e-010 8.8146e-010 1.8074e-004 - 4 transp 20 9.75 104400 18 6.63937 13.75 5.9056e-011 2.0592e-006 2.7033e-007 6.9572e-008 2.9250e+001 1.1593e-010 9.7301e-010 1.8406e-004 - 4 transp 20 9.75 108000 20 6.67423 13.7155 5.9914e-011 2.2213e-006 2.5310e-007 7.3975e-008 3.0250e+001 1.2955e-010 1.0628e-009 1.8727e-004 - 4 transp 20 9.75 111600 22 6.69436 13.6956 6.0179e-011 2.3715e-006 2.4271e-007 7.8630e-008 3.1250e+001 1.4366e-010 1.1489e-009 1.9039e-004 - 4 transp 20 9.75 115200 24 6.69321 13.697 5.9460e-011 2.5051e-006 2.4044e-007 8.4061e-008 3.2250e+001 1.5844e-010 1.2293e-009 1.9351e-004 - 4 transp 20 9.75 118800 26 6.68242 13.7079 5.8084e-011 2.6182e-006 2.4079e-007 8.9940e-008 3.3250e+001 1.7400e-010 1.3019e-009 1.9668e-004 - 4 transp 20 9.75 122400 28 6.6682 13.7222 5.6285e-011 2.7080e-006 2.4110e-007 9.5995e-008 3.4250e+001 1.9036e-010 1.3646e-009 1.9991e-004 - 4 transp 20 9.75 126000 30 6.65201 13.7385 5.4150e-011 2.7717e-006 2.4076e-007 1.0213e-007 3.5250e+001 2.0749e-010 1.4157e-009 2.0318e-004 - 4 transp 20 9.75 129600 32 6.63414 13.7565 5.1734e-011 2.8078e-006 2.3968e-007 1.0829e-007 3.6250e+001 2.2538e-010 1.4540e-009 2.0649e-004 - 4 transp 20 9.75 133200 34 6.6147 13.7761 4.9089e-011 2.8156e-006 2.3784e-007 1.1444e-007 3.7250e+001 2.4397e-010 1.4782e-009 2.0984e-004 - 4 transp 20 9.75 136800 36 6.59379 13.7972 4.6268e-011 2.7951e-006 2.3522e-007 1.2054e-007 3.8250e+001 2.6322e-010 1.4881e-009 2.1320e-004 - 4 transp 20 9.75 140400 38 6.57153 13.8196 4.3324e-011 2.7475e-006 2.3185e-007 1.2653e-007 3.9250e+001 2.8306e-010 1.4833e-009 2.1658e-004 - 4 transp 20 9.75 144000 40 6.54802 13.8432 4.0310e-011 2.6746e-006 2.2771e-007 1.3239e-007 4.0250e+001 3.0343e-010 1.4644e-009 2.1995e-004 - 4 transp 20 9.75 147600 42 6.52337 13.868 3.7273e-011 2.5790e-006 2.2285e-007 1.3806e-007 4.1250e+001 3.2424e-010 1.4320e-009 2.2331e-004 - 4 transp 20 9.75 151200 44 6.49771 13.8938 3.4256e-011 2.4638e-006 2.1728e-007 1.4350e-007 4.2250e+001 3.4543e-010 1.3874e-009 2.2665e-004 - 4 transp 20 9.75 154800 46 6.47118 13.9205 3.1300e-011 2.3322e-006 2.1104e-007 1.4867e-007 4.3250e+001 3.6688e-010 1.3320e-009 2.2994e-004 - 4 transp 20 9.75 158400 48 6.44394 13.9479 2.8437e-011 2.1880e-006 2.0415e-007 1.5352e-007 4.4250e+001 3.8850e-010 1.2674e-009 2.3319e-004 - 4 transp 20 9.75 162000 50 6.41614 13.9758 2.5695e-011 2.0348e-006 1.9666e-007 1.5801e-007 4.5250e+001 4.1019e-010 1.1955e-009 2.3636e-004 - 4 transp 20 9.75 165600 52 6.38799 14.0041 2.3095e-011 1.8760e-006 1.8860e-007 1.6208e-007 4.6250e+001 4.3182e-010 1.1179e-009 2.3946e-004 - 4 transp 20 9.75 169200 54 6.35969 14.0325 2.0653e-011 1.7151e-006 1.8001e-007 1.6570e-007 4.7250e+001 4.5328e-010 1.0367e-009 2.4246e-004 - 4 transp 20 9.75 172800 56 6.33146 14.0609 1.8380e-011 1.5551e-006 1.7095e-007 1.6882e-007 4.8250e+001 4.7444e-010 9.5339e-010 2.4534e-004 - 4 transp 20 9.75 176400 58 6.30355 14.0889 1.6280e-011 1.3985e-006 1.6148e-007 1.7140e-007 4.9250e+001 4.9517e-010 8.6976e-010 2.4810e-004 - 4 transp 20 9.75 180000 60 6.27619 14.1164 1.4356e-011 1.2478e-006 1.5165e-007 1.7343e-007 5.0250e+001 5.1535e-010 7.8721e-010 2.5073e-004 - 4 transp 20 9.75 183600 62 6.24962 14.1431 1.2605e-011 1.1048e-006 1.4156e-007 1.7487e-007 5.1250e+001 5.3485e-010 7.0701e-010 2.5319e-004 - 4 transp 20 9.75 187200 64 6.22407 14.1687 1.1022e-011 9.7077e-007 1.3127e-007 1.7574e-007 5.2250e+001 5.5355e-010 6.3021e-010 2.5549e-004 - 4 transp 20 9.75 190800 66 6.19973 14.1932 9.5976e-012 8.4680e-007 1.2090e-007 1.7604e-007 5.3250e+001 5.7134e-010 5.5765e-010 2.5761e-004 - 4 transp 20 9.75 194400 68 6.17678 14.2162 8.3242e-012 7.3347e-007 1.1055e-007 1.7581e-007 5.4250e+001 5.8813e-010 4.8993e-010 2.5955e-004 - 4 transp 20 9.75 198000 70 6.15536 14.2377 7.1909e-012 6.3103e-007 1.0033e-007 1.7509e-007 5.5250e+001 6.0384e-010 4.2747e-010 2.6129e-004 - 4 transp 20 9.75 201600 72 6.13556 14.2576 6.1871e-012 5.3940e-007 9.0349e-008 1.7395e-007 5.6250e+001 6.1843e-010 3.7051e-010 2.6284e-004 - 4 transp 20 9.75 205200 74 6.11746 14.2758 5.3019e-012 4.5826e-007 8.0718e-008 1.7246e-007 5.7250e+001 6.3185e-010 3.1909e-010 2.6418e-004 - 4 transp 20 9.75 208800 76 6.10107 14.2923 4.5247e-012 3.8709e-007 7.1536e-008 1.7070e-007 5.8250e+001 6.4410e-010 2.7315e-010 2.6534e-004 - 4 transp 20 9.75 212400 78 6.08637 14.307 3.8454e-012 3.2523e-007 6.2889e-008 1.6875e-007 5.9250e+001 6.5521e-010 2.3247e-010 2.6630e-004 - 4 transp 20 9.75 216000 80 6.07332 14.3201 3.2542e-012 2.7189e-007 5.4844e-008 1.6671e-007 6.0250e+001 6.6519e-010 1.9677e-010 2.6709e-004 - 4 transp 20 9.75 219600 82 6.06184 14.3316 2.7422e-012 2.2626e-007 4.7453e-008 1.6463e-007 6.1250e+001 6.7412e-010 1.6570e-010 2.6770e-004 - 4 transp 20 9.75 223200 84 6.05183 14.3417 2.3008e-012 1.8750e-007 4.0743e-008 1.6260e-007 6.2250e+001 6.8205e-010 1.3887e-010 2.6816e-004 - 4 transp 20 9.75 226800 86 6.04319 14.3504 1.9223e-012 1.5479e-007 3.4723e-008 1.6067e-007 6.3250e+001 6.8906e-010 1.1587e-010 2.6847e-004 - 4 transp 20 9.75 230400 88 6.03578 14.3578 1.5993e-012 1.2734e-007 2.9385e-008 1.5887e-007 6.4250e+001 6.9524e-010 9.6273e-011 2.6865e-004 - 4 transp 20 9.75 234000 90 6.02949 14.3641 1.3251e-012 1.0442e-007 2.4703e-008 1.5724e-007 6.5250e+001 7.0068e-010 7.9687e-011 2.6872e-004 - 4 transp 20 9.75 237600 92 6.02419 14.3694 1.0936e-012 8.5385e-008 2.0638e-008 1.5578e-007 6.6250e+001 7.0546e-010 6.5726e-011 2.6869e-004 - 4 transp 20 9.75 241200 94 6.01975 14.3739 8.9916e-013 6.9632e-008 1.7143e-008 1.5452e-007 6.7250e+001 7.0967e-010 5.4034e-011 2.6856e-004 - 4 transp 20 9.75 244800 96 6.01606 14.3776 7.3665e-013 5.6647e-008 1.4164e-008 1.5343e-007 6.8250e+001 7.1338e-010 4.4288e-011 2.6837e-004 - 4 transp 20 9.75 248400 98 6.01301 14.3807 6.0148e-013 4.5978e-008 1.1647e-008 1.5252e-007 6.9250e+001 7.1667e-010 3.6198e-011 2.6811e-004 - 4 transp 20 9.75 252000 100 6.0105 14.3832 4.8955e-013 3.7239e-008 9.5346e-009 1.5177e-007 7.0250e+001 7.1959e-010 2.9508e-011 2.6779e-004 - 4 transp 20 9.75 255600 102 6.00844 14.3853 3.9728e-013 3.0100e-008 7.7742e-009 1.5117e-007 7.1250e+001 7.2221e-010 2.3996e-011 2.6744e-004 - 4 transp 20 9.75 259200 104 6.00677 14.3869 3.2151e-013 2.4282e-008 6.3157e-009 1.5069e-007 7.2250e+001 7.2457e-010 1.9469e-011 2.6704e-004 - 4 transp 20 9.75 262800 106 6.00542 14.3883 2.5952e-013 1.9553e-008 5.1139e-009 1.5033e-007 7.3250e+001 7.2672e-010 1.5761e-011 2.6662e-004 - 4 transp 20 9.75 266400 108 6.00432 14.3894 2.0897e-013 1.5716e-008 4.1282e-009 1.5006e-007 7.4250e+001 7.2869e-010 1.2733e-011 2.6617e-004 - 4 transp 20 9.75 270000 110 6.00344 14.3903 1.6789e-013 1.2610e-008 3.3234e-009 1.4987e-007 7.5250e+001 7.3050e-010 1.0267e-011 2.6570e-004 diff --git a/examples_pc/ex15a.out b/examples_pc/ex15a.out deleted file mode 100644 index cd4b64c0..00000000 --- a/examples_pc/ex15a.out +++ /dev/null @@ -1,195 +0,0 @@ - Input file: ..\examples\ex15a - Output file: ex15a.out -Database file: ..\examples\ex15.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Example 15.--1D Transport: Kinetic Biodegradation, Cell Growth, and Sorption - *********** - PLEASE NOTE: This problem requires database file ex15.dat!! - *********** - PRINT - reset false - status false - SOLUTION 0 Pulse solution with NTA and cobalt - units umol/L - pH 6 - C .49 - O(0) 62.5 - Nta 5.23 - Co 5.23 - Na 1000 - Cl 1000 - SOLUTION 1-10 Background solution initially filling column - units umol/L - pH 6 - C .49 - O(0) 62.5 - Na 1000 - Cl 1000 - COPY solution 0 100 # for use later on, and in - COPY solution 1 101 # 20 cells model - END - RATES Rate expressions for the four kinetic reactions - HNTA-2 - start - 10 Ks = 7.64e-7 - 20 Ka = 6.25e-6 - 30 qm = 1.407e-3/3600 - 40 f1 = MOL("HNta-2")/(Ks + MOL("HNta-2")) - 50 f2 = MOL("O2")/(Ka + MOL("O2")) - 60 rate = -qm * KIN("Biomass") * f1 * f2 - 70 moles = rate * TIME - 80 PUT(rate, 1) # save the rate for use in Biomass rate calculation - 90 SAVE moles - end - Biomass - start - 10 Y = 65.14 - 20 b = 0.00208/3600 - 30 rate = GET(1) # uses rate calculated in HTNA-2 rate calculation - 40 rate = -Y*rate -b*M - 50 moles = -rate * TIME - 60 if (M + moles) < 0 then moles = -M - 70 SAVE moles - end - Co_sorption - start - 10 km = 1/3600 - 20 kd = 5.07e-3 - 30 solids = 3.75e3 - 40 rate = -km*(MOL("Co+2") - (M/solids)/kd) - 50 moles = rate * TIME - 60 if (M - moles) < 0 then moles = M - 70 SAVE moles - end - CoNta_sorption - start - 10 km = 1/3600 - 20 kd = 5.33e-4 - 30 solids = 3.75e3 - 40 rate = -km*(MOL("CoNta-") - (M/solids)/kd) - 50 moles = rate * TIME - 60 if (M - moles) < 0 then moles = M - 70 SAVE moles - end - KINETICS 1-10 Four kinetic reactions for all cells - HNTA-2 - formula C -3.12 H -1.968 O -4.848 N -0.424 Nta 1. - Biomass - formula H 0.0 - m 1.36e-4 - Co_sorption - formula CoCl2 - m 0.0 - tol 1e-11 - CoNta_sorption - formula NaCoNta - m 0.0 - tol 1e-11 - COPY kinetics 1 101 # to use with 20 cells - END - SELECTED_OUTPUT - file ex15.sel - molalities Nta-3 CoNta- HNta-2 Co+2 - USER_PUNCH - headings hours Co_sorb CoNta_sorb Biomass - start - 10 punch TOTAL_TIME/3600 + 3600/2/3600 - 20 punch KIN("Co_sorption")/3.75e3 - 30 punch KIN("CoNta_sorption")/3.75e3 - 40 punch KIN("Biomass") - end - USER_GRAPH Example 15A - -headings 10_cells: Co+2 CoNTA- HNTA-2 pH - -chart_title "Example 15" - -axis_titles "Time / hours" "umol / kgw" "pH" - -axis_scale x_axis 0 75 - -axis_scale y_axis 0 4 - -axis_scale secondary_y_axis 5.799 6.8 0.2 0.1 - -plot_concentration_vs t - -start - 10 x = TOTAL_TIME/3600 + 3600/2/3600 - 20 PLOT_XY -1, -1, line_width = 0, symbol_size = 0 - 30 PLOT_XY x, MOL("Co+2") * 1e6, color = Red, line_width = 0, symbol_size = 4 - 40 PLOT_XY x, MOL("CoNta-") * 1e6, color = Green, line_width = 0, symbol_size = 4 - 50 PLOT_XY x, MOL("HNta-2") * 1e6, color = Blue, line_width = 0, symbol_size = 4 - 60 PLOT_XY x, -LA("H+"), y-axis = 2, color = Magenta, line_width = 0, symbol_size = 4 - -end - TRANSPORT First 20 hours have NTA and cobalt in infilling solution - cells 10 - lengths 1 - shifts 20 - time_step 3600 - flow_direction forward - boundary_conditions flux flux - dispersivities .05 - correct_disp true - diffusion_coefficient 0.0 - punch_cells 10 - punch_frequency 1 - print_cells 10 - print_frequency 5 - COPY solution 101 0 # initial column solution becomes influent -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 10. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 10. - END - TRANSPORT Last 55 hours with background infilling solution - shifts 55 - COPY cell 100 0 # for the 20 cell model... - COPY cell 101 1-20 - END - USER_PUNCH - start - 10 punch TOTAL_TIME/3600 + 3600/4/3600 - 20 punch KIN("Co_sorption")/3.75e3 - 30 punch KIN("CoNta_sorption")/3.75e3 - 40 punch KIN("Biomass") - end - USER_GRAPH - -headings 20_cells: Co+2 CoNTA- HNTA-2 pH - -start - 10 x = TOTAL_TIME/3600 + 3600/4/3600 - 20 PLOT_XY -1, -1, line_width = 0, symbol_size = 0 - 30 PLOT_XY x, MOL("Co+2") * 1e6, color = Red, symbol_size = 0 - 40 PLOT_XY x, MOL("CoNta-") * 1e6, color = Green, symbol_size = 0 - 50 PLOT_XY x, MOL("HNta-2") * 1e6, color = Blue, symbol_size = 0 - 60 PLOT_XY x, -LA("H+"), y-axis = 2, color = Magenta, symbol_size = 0 - -end - TRANSPORT First 20 hours have NTA and cobalt in infilling solution - cells 20 - lengths 0.5 - shifts 40 - initial_time 0 - time_step 1800 - flow_direction forward - boundary_conditions flux flux - dispersivities .05 - correct_disp true - diffusion_coefficient 0.0 - punch_cells 20 - punch_frequency 2 - print_cells 20 - print_frequency 10 - COPY cell 101 0 -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. - END -WARNING: USER_PUNCH: Headings count doesn't match number of calls to PUNCH. - - TRANSPORT Last 55 hours with background infilling solution - shifts 110 - END --------------------------------- -End of Run after 15.074 Seconds. --------------------------------- - diff --git a/examples_pc/ex15b.out b/examples_pc/ex15b.out deleted file mode 100644 index 746e9021..00000000 --- a/examples_pc/ex15b.out +++ /dev/null @@ -1,192 +0,0 @@ - Input file: ..\examples\ex15b - Output file: ex15b.out -Database file: ..\examples\ex15.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Example 15.--1D Transport: Kinetic Biodegradation, Cell Growth, and Sorption - *********** - PLEASE NOTE: This problem requires database file ex15.dat!! - *********** - PRINT - reset false - status false - SOLUTION 0 Pulse solution with NTA and cobalt - units umol/L - pH 6 - C .49 - O(0) 62.5 - Nta 5.23 - Co 5.23 - Na 1000 - Cl 1000 - SOLUTION 1-10 Background solution initially filling column - units umol/L - pH 6 - C .49 - O(0) 62.5 - Na 1000 - Cl 1000 - COPY solution 0 100 # to use with 20 cells - COPY solution 1 101 - END - RATES Rate expressions for the four kinetic reactions - HNTA-2 - start - 10 Ks = 7.64e-7 - 20 Ka = 6.25e-6 - 30 qm = 1.407e-3/3600 - 40 f1 = MOL("HNta-2")/(Ks + MOL("HNta-2")) - 50 f2 = MOL("O2")/(Ka + MOL("O2")) - 60 rate = -qm * KIN("Biomass") * f1 * f2 - 70 moles = rate * TIME - 80 PUT(rate, 1) # save the rate for use in Biomass rate calculation - 90 SAVE moles - end - Biomass - start - 10 Y = 65.14 - 20 b = 0.00208/3600 - 30 rate = GET(1) # uses rate calculated in HTNA-2 rate calculation - 40 rate = -Y*rate -b*M - 50 moles = -rate * TIME - 60 if (M + moles) < 0 then moles = -M - 70 SAVE moles - end - Co_sorption - start - 10 km = 1/3600 - 20 kd = 5.07e-3 - 30 solids = 3.75e3 - 40 rate = -km*(MOL("Co+2") - (M/solids)/kd) - 50 moles = rate * TIME - 60 if (M - moles) < 0 then moles = M - 70 SAVE moles - end - CoNta_sorption - start - 10 km = 1/3600 - 20 kd = 5.33e-4 - 30 solids = 3.75e3 - 40 rate = -km*(MOL("CoNta-") - (M/solids)/kd) - 50 moles = rate * TIME - 60 if (M - moles) < 0 then moles = M - 70 SAVE moles - end - KINETICS 1-10 Four kinetic reactions for all cells - HNTA-2 - formula C -3.12 H -1.968 O -4.848 N -0.424 Nta 1. - Biomass - formula H 0.0 - m 1.36e-4 - Co_sorption - formula CoCl2 - m 0.0 - tol 1e-11 - CoNta_sorption - formula NaCoNta - m 0.0 - tol 1e-11 - COPY kinetics 1 101 # to use with 20 cells - END - SELECTED_OUTPUT - file ex15.sel - molalities Nta-3 CoNta- HNta-2 Co+2 - USER_PUNCH - headings hours Co_sorb CoNta_sorb Biomass - start - 10 punch TOTAL_TIME/3600 + 3600/2/3600 - 20 punch KIN("Co_sorption")/3.75e3 - 30 punch KIN("CoNta_sorption")/3.75e3 - 40 punch KIN("Biomass") - end - TRANSPORT First 20 hours have NTA and cobalt in infilling solution - cells 10 - lengths 1 - shifts 20 - time_step 3600 - flow_direction forward - boundary_conditions flux flux - dispersivities .05 - correct_disp true - diffusion_coefficient 0.0 - punch_cells 10 - punch_frequency 1 - print_cells 10 - print_frequency 5 - warnings false - USER_GRAPH Example 15B -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 10. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 10. - -headings 10_cells: Co+2 CoNTA- Biomass - -chart_title "Example 15, Sorbed Species" - -axis_titles "Time / hours" "nmol / kgw" "Biomass / (mg/L)" - -axis_scale x_axis 0 75 - -axis_scale y_axis 0 2 - -axis_scale secondary_y_axis 0 0.4 - -plot_concentration_vs t - -start - 10 x = TOTAL_TIME/3600 + 3600/2/3600 - 20 PLOT_XY -1, -1, line_width = 0, symbol_size = 0 - 30 PLOT_XY x, KIN("Co_sorption") / 3.75e3 * 1e9, color = Red, line_width = 0, symbol_size = 4 - 40 PLOT_XY x, KIN("CoNta_sorption") / 3.75e3 * 1e9, color = Green, line_width = 0, symbol_size = 4 - 50 PLOT_XY x, KIN("Biomass") * 1e3, y-axis = 2, color = Magenta, line_width = 0, symbol_size = 4 - -end - COPY solution 101 0 - END - TRANSPORT Last 55 hours with background infilling solution - shifts 55 - COPY cell 100 0 - COPY cell 101 1-20 - END - USER_PUNCH - start - 10 punch TOTAL_TIME/3600 + 3600/4/3600 - 20 punch KIN("Co_sorption")/3.75e3 - 30 punch KIN("CoNta_sorption")/3.75e3 - 40 punch KIN("Biomass") - end - TRANSPORT First 20 hours have NTA and cobalt in infilling solution - cells 20 - lengths 0.5 - shifts 40 - initial_time 0 - time_step 1800 - flow_direction forward - boundary_conditions flux flux - dispersivities .05 - correct_disp true - diffusion_coefficient 0.0 - punch_cells 20 - punch_frequency 2 - print_cells 20 - print_frequency 10 - USER_GRAPH -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. - -headings 20_cells: Co+2 CoNTA- Biomass - -start - 10 x = TOTAL_TIME/3600 + 3600/4/3600 - 20 PLOT_XY -1, -1, line_width = 0, symbol_size = 0 - 30 PLOT_XY x, KIN("Co_sorption") / 3.75e3 * 1e9, color = Red, symbol_size = 0 - 40 PLOT_XY x, KIN("CoNta_sorption") / 3.75e3 * 1e9, color = Green, symbol_size = 0 - 60 PLOT_XY x, KIN("Biomass") * 1e3, y-axis = 2, color = Magenta, symbol_size = 0 - -end - COPY cell 101 0 - END - TRANSPORT Last 55 hours with background infilling solution - shifts 110 - END --------------------------------- -End of Run after 15.023 Seconds. --------------------------------- - diff --git a/examples_pc/ex16.out b/examples_pc/ex16.out deleted file mode 100644 index 2d293730..00000000 --- a/examples_pc/ex16.out +++ /dev/null @@ -1,443 +0,0 @@ - Input file: ..\examples\ex16 - Output file: ex16.out -Database file: ..\database\phreeqc.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - PHASES - EXCHANGE_MASTER_SPECIES - EXCHANGE_SPECIES - SURFACE_MASTER_SPECIES - SURFACE_SPECIES - RATES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Example 16.--Inverse modeling of Sierra springs - SOLUTION_SPREAD - units mmol/L - Number pH Si Ca Mg Na K Alkalinity S(6) Cl - 1 6.2 0.273 0.078 0.029 0.134 0.028 0.328 0.01 0.014 - 2 6.8 0.41 0.26 0.071 0.259 0.04 0.895 0.025 0.03 - INVERSE_MODELING 1 - solutions 1 2 - uncertainty 0.025 - range - phases - Halite - Gypsum - Kaolinite precip - Ca-montmorillonite precip - CO2(g) - Calcite - Chalcedony precip - Biotite dissolve - Plagioclase dissolve - balances - Ca 0.05 0.025 - PHASES - Biotite - KMg3AlSi3O10(OH)2 + 6H+ + 4H2O = K+ + 3Mg+2 + Al(OH)4- + 3H4SiO4 - log_k 0.0 # No log_k, Inverse modeling only - Plagioclase - Na0.62Ca0.38Al1.38Si2.62O8 + 5.52 H+ + 2.48H2O = 0.62Na+ + 0.38Ca+2 + 1.38Al+3 + 2.62H4SiO4 - log_k 0.0 # No log_k, inverse modeling only - END ------ -TITLE ------ - - Example 16.--Inverse modeling of Sierra springs - -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 1. - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Alkalinity 3.280e-004 3.280e-004 - Ca 7.800e-005 7.800e-005 - Cl 1.400e-005 1.400e-005 - K 2.800e-005 2.800e-005 - Mg 2.900e-005 2.900e-005 - Na 1.340e-004 1.340e-004 - S(6) 1.000e-005 1.000e-005 - Si 2.730e-004 2.730e-004 - -----------------------------Description of solution---------------------------- - - pH = 6.200 - pe = 4.000 - Specific Conductance (uS/cm, 25 oC) = 37 - Density (g/cm3) = 0.99708 - Volume (L) = 1.00305 - Activity of water = 1.000 - Ionic strength = 4.851e-004 - Mass of water (kg) = 1.000e+000 - Total carbon (mol/kg) = 7.824e-004 - Total CO2 (mol/kg) = 7.824e-004 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 1.400e-005 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.90 - Iterations = 8 - Total H = 1.110139e+002 - Total O = 5.550924e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 6.465e-007 6.310e-007 -6.189 -6.200 -0.011 0.00 - OH- 1.645e-008 1.604e-008 -7.784 -7.795 -0.011 -4.12 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -C(4) 7.824e-004 - CO2 4.539e-004 4.539e-004 -3.343 -3.343 0.000 30.26 - HCO3- 3.280e-004 3.200e-004 -3.484 -3.495 -0.011 24.58 - CaHCO3+ 2.939e-007 2.867e-007 -6.532 -6.543 -0.011 9.66 - NaHCO3 1.049e-007 1.049e-007 -6.979 -6.979 0.000 19.41 - MgHCO3+ 1.003e-007 9.778e-008 -6.999 -7.010 -0.011 5.47 - CO3-2 2.627e-008 2.378e-008 -7.581 -7.624 -0.043 -4.41 - CaCO3 2.806e-009 2.806e-009 -8.552 -8.552 0.000 -14.60 - MgCO3 5.927e-010 5.927e-010 -9.227 -9.227 0.000 -17.09 - NaCO3- 1.422e-011 1.387e-011 -10.847 -10.858 -0.011 -0.67 -Ca 7.800e-005 - Ca+2 7.760e-005 7.023e-005 -4.110 -4.153 -0.043 -18.17 - CaHCO3+ 2.939e-007 2.867e-007 -6.532 -6.543 -0.011 9.66 - CaSO4 1.111e-007 1.111e-007 -6.954 -6.954 0.000 7.50 - CaCO3 2.806e-009 2.806e-009 -8.552 -8.552 0.000 -14.60 - CaOH+ 1.894e-011 1.847e-011 -10.723 -10.733 -0.011 (0) - CaHSO4+ 4.724e-013 4.606e-013 -12.326 -12.337 -0.011 (0) -Cl 1.400e-005 - Cl- 1.400e-005 1.365e-005 -4.854 -4.865 -0.011 18.07 -H(0) 5.636e-024 - H2 2.818e-024 2.818e-024 -23.550 -23.550 0.000 28.61 -K 2.800e-005 - K+ 2.800e-005 2.730e-005 -4.553 -4.564 -0.011 9.00 - KSO4- 1.749e-009 1.706e-009 -8.757 -8.768 -0.011 (0) -Mg 2.900e-005 - Mg+2 2.885e-005 2.612e-005 -4.540 -4.583 -0.043 -21.86 - MgHCO3+ 1.003e-007 9.778e-008 -6.999 -7.010 -0.011 5.47 - MgSO4 5.444e-008 5.445e-008 -7.264 -7.264 0.000 5.84 - MgCO3 5.927e-010 5.927e-010 -9.227 -9.227 0.000 -17.09 - MgOH+ 1.541e-010 1.503e-010 -9.812 -9.823 -0.011 (0) -Na 1.340e-004 - Na+ 1.339e-004 1.306e-004 -3.873 -3.884 -0.011 -1.40 - NaHCO3 1.049e-007 1.049e-007 -6.979 -6.979 0.000 19.41 - NaSO4- 5.967e-009 5.820e-009 -8.224 -8.235 -0.011 18.41 - NaCO3- 1.422e-011 1.387e-011 -10.847 -10.858 -0.011 -0.67 - NaOH 2.095e-022 2.095e-022 -21.679 -21.679 0.000 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -45.280 -45.280 0.000 30.40 -S(6) 1.000e-005 - SO4-2 9.827e-006 8.892e-006 -5.008 -5.051 -0.043 13.98 - CaSO4 1.111e-007 1.111e-007 -6.954 -6.954 0.000 7.50 - MgSO4 5.444e-008 5.445e-008 -7.264 -7.264 0.000 5.84 - NaSO4- 5.967e-009 5.820e-009 -8.224 -8.235 -0.011 18.41 - KSO4- 1.749e-009 1.706e-009 -8.757 -8.768 -0.011 (0) - HSO4- 5.594e-010 5.455e-010 -9.252 -9.263 -0.011 40.27 - CaHSO4+ 4.724e-013 4.606e-013 -12.326 -12.337 -0.011 (0) -Si 2.730e-004 - H4SiO4 2.729e-004 2.730e-004 -3.564 -3.564 0.000 52.08 - H3SiO4- 6.542e-008 6.379e-008 -7.184 -7.195 -0.011 27.96 - H2SiO4-2 7.598e-015 6.877e-015 -14.119 -14.163 -0.043 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -4.93 -9.20 -4.28 CaSO4 - Aragonite -3.44 -11.78 -8.34 CaCO3 - Calcite -3.30 -11.78 -8.48 CaCO3 - Chalcedony -0.01 -3.56 -3.55 SiO2 - Chrysotile -15.88 16.32 32.20 Mg3Si2O5(OH)4 - CO2(g) -1.88 -3.34 -1.46 CO2 - Dolomite -6.89 -23.98 -17.09 CaMg(CO3)2 - Gypsum -4.62 -9.20 -4.58 CaSO4:2H2O - H2(g) -20.45 -23.55 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - Halite -10.32 -8.75 1.57 NaCl - O2(g) -42.39 -45.28 -2.89 O2 - Quartz 0.42 -3.56 -3.98 SiO2 - Sepiolite -10.82 4.94 15.76 Mg2Si3O7.5OH:3H2O - Sepiolite(d) -13.72 4.94 18.66 Mg2Si3O7.5OH:3H2O - SiO2(a) -0.85 -3.56 -2.71 SiO2 - Sylvite -10.33 -9.43 0.90 KCl - Talc -12.20 9.20 21.40 Mg3Si4O10(OH)2 - - -Initial solution 2. - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Alkalinity 8.951e-004 8.951e-004 - Ca 2.600e-004 2.600e-004 - Cl 3.000e-005 3.000e-005 - K 4.000e-005 4.000e-005 - Mg 7.101e-005 7.101e-005 - Na 2.590e-004 2.590e-004 - S(6) 2.500e-005 2.500e-005 - Si 4.100e-004 4.100e-004 - -----------------------------Description of solution---------------------------- - - pH = 6.800 - pe = 4.000 - Specific Conductance (uS/cm, 25 oC) = 95 - Density (g/cm3) = 0.99713 - Volume (L) = 1.00309 - Activity of water = 1.000 - Ionic strength = 1.313e-003 - Mass of water (kg) = 1.000e+000 - Total carbon (mol/kg) = 1.199e-003 - Total CO2 (mol/kg) = 1.199e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.400e-005 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.73 - Iterations = 7 - Total H = 1.110150e+002 - Total O = 5.551125e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.647e-007 1.585e-007 -6.783 -6.800 -0.017 0.00 - OH- 6.652e-008 6.386e-008 -7.177 -7.195 -0.018 -4.10 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -C(4) 1.199e-003 - HCO3- 8.903e-004 8.554e-004 -3.050 -3.068 -0.017 24.60 - CO2 3.047e-004 3.048e-004 -3.516 -3.516 0.000 30.26 - CaHCO3+ 2.483e-006 2.387e-006 -5.605 -5.622 -0.017 9.68 - MgHCO3+ 6.231e-007 5.983e-007 -6.205 -6.223 -0.018 5.48 - NaHCO3 5.333e-007 5.334e-007 -6.273 -6.273 0.000 19.41 - CO3-2 2.970e-007 2.531e-007 -6.527 -6.597 -0.069 -4.35 - CaCO3 9.296e-008 9.298e-008 -7.032 -7.032 0.000 -14.60 - MgCO3 1.443e-008 1.444e-008 -7.841 -7.841 0.000 -17.09 - NaCO3- 2.921e-010 2.807e-010 -9.534 -9.552 -0.017 -0.66 -Ca 2.600e-004 - Ca+2 2.567e-004 2.187e-004 -3.591 -3.660 -0.070 -18.13 - CaHCO3+ 2.483e-006 2.387e-006 -5.605 -5.622 -0.017 9.68 - CaSO4 7.909e-007 7.911e-007 -6.102 -6.102 0.000 7.50 - CaCO3 9.296e-008 9.298e-008 -7.032 -7.032 0.000 -14.60 - CaOH+ 2.385e-010 2.290e-010 -9.623 -9.640 -0.018 (0) - CaHSO4+ 8.584e-013 8.242e-013 -12.066 -12.084 -0.018 (0) -Cl 3.000e-005 - Cl- 3.000e-005 2.880e-005 -4.523 -4.541 -0.018 18.08 -H(0) 3.555e-025 - H2 1.778e-025 1.778e-025 -24.750 -24.750 0.000 28.61 -K 4.000e-005 - K+ 4.000e-005 3.840e-005 -4.398 -4.416 -0.018 9.01 - KSO4- 5.713e-009 5.489e-009 -8.243 -8.260 -0.017 (0) -Mg 7.101e-005 - Mg+2 7.008e-005 5.977e-005 -4.154 -4.224 -0.069 -21.81 - MgHCO3+ 6.231e-007 5.983e-007 -6.205 -6.223 -0.018 5.48 - MgSO4 2.850e-007 2.851e-007 -6.545 -6.545 0.000 5.84 - MgCO3 1.443e-008 1.444e-008 -7.841 -7.841 0.000 -17.09 - MgOH+ 1.424e-009 1.369e-009 -8.846 -8.864 -0.017 (0) -Na 2.590e-004 - Na+ 2.585e-004 2.482e-004 -3.588 -3.605 -0.018 -1.38 - NaHCO3 5.333e-007 5.334e-007 -6.273 -6.273 0.000 19.41 - NaSO4- 2.635e-008 2.531e-008 -7.579 -7.597 -0.017 18.44 - NaCO3- 2.921e-010 2.807e-010 -9.534 -9.552 -0.017 -0.66 - NaOH 1.585e-021 1.585e-021 -20.800 -20.800 0.000 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -42.880 -42.880 0.000 30.40 -S(6) 2.500e-005 - SO4-2 2.389e-005 2.035e-005 -4.622 -4.692 -0.070 14.03 - CaSO4 7.909e-007 7.911e-007 -6.102 -6.102 0.000 7.50 - MgSO4 2.850e-007 2.851e-007 -6.545 -6.545 0.000 5.84 - NaSO4- 2.635e-008 2.531e-008 -7.579 -7.597 -0.017 18.44 - KSO4- 5.713e-009 5.489e-009 -8.243 -8.260 -0.017 (0) - HSO4- 3.265e-010 3.135e-010 -9.486 -9.504 -0.018 40.28 - CaHSO4+ 8.584e-013 8.242e-013 -12.066 -12.084 -0.018 (0) -Si 4.100e-004 - H4SiO4 4.096e-004 4.098e-004 -3.388 -3.387 0.000 52.08 - H3SiO4- 3.970e-007 3.812e-007 -6.401 -6.419 -0.018 27.98 - H2SiO4-2 1.920e-013 1.636e-013 -12.717 -12.786 -0.069 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -4.07 -8.35 -4.28 CaSO4 - Aragonite -1.92 -10.26 -8.34 CaCO3 - Calcite -1.78 -10.26 -8.48 CaCO3 - Chalcedony 0.16 -3.39 -3.55 SiO2 - Chrysotile -10.85 21.35 32.20 Mg3Si2O5(OH)4 - CO2(g) -2.06 -3.52 -1.46 CO2 - Dolomite -3.99 -21.08 -17.09 CaMg(CO3)2 - Gypsum -3.77 -8.35 -4.58 CaSO4:2H2O - H2(g) -21.65 -24.75 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - Halite -9.72 -8.15 1.57 NaCl - O2(g) -39.99 -42.88 -2.89 O2 - Quartz 0.59 -3.39 -3.98 SiO2 - Sepiolite -7.17 8.59 15.76 Mg2Si3O7.5OH:3H2O - Sepiolite(d) -10.07 8.59 18.66 Mg2Si3O7.5OH:3H2O - SiO2(a) -0.68 -3.39 -2.71 SiO2 - Sylvite -9.86 -8.96 0.90 KCl - Talc -6.82 14.58 21.40 Mg3Si4O10(OH)2 - - ---------------------------------------------- -Beginning of inverse modeling 1 calculations. ---------------------------------------------- - -Using Cl1 standard precision optimization routine. - -Solution 1: - - Input Delta Input+Delta - pH 6.200e+000 + 0.000e+000 = 6.200e+000 - Al 0.000e+000 + 0.000e+000 = 0.000e+000 - Alkalinity 3.280e-004 + 8.200e-006 = 3.362e-004 - C(-4) 0.000e+000 + 0.000e+000 = 0.000e+000 - C(4) 7.824e-004 + 0.000e+000 = 7.824e-004 - Ca 7.800e-005 + -2.550e-006 = 7.545e-005 - Cl 1.400e-005 + 0.000e+000 = 1.400e-005 - H(0) 0.000e+000 + 0.000e+000 = 0.000e+000 - K 2.800e-005 + -7.000e-007 = 2.730e-005 - Mg 2.900e-005 + 0.000e+000 = 2.900e-005 - Na 1.340e-004 + 0.000e+000 = 1.340e-004 - O(0) 0.000e+000 + 0.000e+000 = 0.000e+000 - S(-2) 0.000e+000 + 0.000e+000 = 0.000e+000 - S(6) 1.000e-005 + 0.000e+000 = 1.000e-005 - Si 2.730e-004 + 0.000e+000 = 2.730e-004 - -Solution 2: - - Input Delta Input+Delta - pH 6.800e+000 + 0.000e+000 = 6.800e+000 - Al 0.000e+000 + 0.000e+000 = 0.000e+000 - Alkalinity 8.951e-004 + -1.480e-005 = 8.803e-004 - C(-4) 0.000e+000 + 0.000e+000 = 0.000e+000 - C(4) 1.199e-003 + 0.000e+000 = 1.199e-003 - Ca 2.600e-004 + 0.000e+000 = 2.600e-004 - Cl 3.000e-005 + 0.000e+000 = 3.000e-005 - H(0) 0.000e+000 + 0.000e+000 = 0.000e+000 - K 4.000e-005 + 1.000e-006 = 4.100e-005 - Mg 7.101e-005 + -8.979e-007 = 7.011e-005 - Na 2.590e-004 + 0.000e+000 = 2.590e-004 - O(0) 0.000e+000 + 0.000e+000 = 0.000e+000 - S(-2) 0.000e+000 + 0.000e+000 = 0.000e+000 - S(6) 2.500e-005 + 0.000e+000 = 2.500e-005 - Si 4.100e-004 + 0.000e+000 = 4.100e-004 - -Solution fractions: Minimum Maximum - Solution 1 1.000e+000 1.000e+000 1.000e+000 - Solution 2 1.000e+000 1.000e+000 1.000e+000 - -Phase mole transfers: Minimum Maximum - Halite 1.600e-005 1.490e-005 1.710e-005 NaCl - Gypsum 1.500e-005 1.413e-005 1.588e-005 CaSO4:2H2O - Kaolinite -3.392e-005 -5.587e-005 -1.224e-005 Al2Si2O5(OH)4 -Ca-Montmorillon -8.090e-005 -1.100e-004 -5.154e-005 Ca0.165Al2.33Si3.67O10(OH)2 - CO2(g) 3.006e-004 2.362e-004 3.655e-004 CO2 - Calcite 1.161e-004 1.007e-004 1.309e-004 CaCO3 - Biotite 1.370e-005 1.317e-005 1.370e-005 KMg3AlSi3O10(OH)2 - Plagioclase 1.758e-004 1.582e-004 1.935e-004 Na0.62Ca0.38Al1.38Si2.62O8 - -Redox mole transfers: - -Sum of residuals (epsilons in documentation): 4.821e+000 -Sum of delta/uncertainty limit: 4.821e+000 -Maximum fractional error in element concentration: 3.269e-002 - -Model contains minimum number of phases. -=============================================================================== - - -Solution 1: - - Input Delta Input+Delta - pH 6.200e+000 + 0.000e+000 = 6.200e+000 - Al 0.000e+000 + 0.000e+000 = 0.000e+000 - Alkalinity 3.280e-004 + 8.200e-006 = 3.362e-004 - C(-4) 0.000e+000 + 0.000e+000 = 0.000e+000 - C(4) 7.824e-004 + 0.000e+000 = 7.824e-004 - Ca 7.800e-005 + -2.550e-006 = 7.545e-005 - Cl 1.400e-005 + 0.000e+000 = 1.400e-005 - H(0) 0.000e+000 + 0.000e+000 = 0.000e+000 - K 2.800e-005 + -7.000e-007 = 2.730e-005 - Mg 2.900e-005 + 0.000e+000 = 2.900e-005 - Na 1.340e-004 + 0.000e+000 = 1.340e-004 - O(0) 0.000e+000 + 0.000e+000 = 0.000e+000 - S(-2) 0.000e+000 + 0.000e+000 = 0.000e+000 - S(6) 1.000e-005 + 0.000e+000 = 1.000e-005 - Si 2.730e-004 + 0.000e+000 = 2.730e-004 - -Solution 2: - - Input Delta Input+Delta - pH 6.800e+000 + 0.000e+000 = 6.800e+000 - Al 0.000e+000 + 0.000e+000 = 0.000e+000 - Alkalinity 8.951e-004 + -1.480e-005 = 8.803e-004 - C(-4) 0.000e+000 + 0.000e+000 = 0.000e+000 - C(4) 1.199e-003 + 0.000e+000 = 1.199e-003 - Ca 2.600e-004 + 0.000e+000 = 2.600e-004 - Cl 3.000e-005 + 0.000e+000 = 3.000e-005 - H(0) 0.000e+000 + 0.000e+000 = 0.000e+000 - K 4.000e-005 + 1.000e-006 = 4.100e-005 - Mg 7.101e-005 + -8.980e-007 = 7.011e-005 - Na 2.590e-004 + 0.000e+000 = 2.590e-004 - O(0) 0.000e+000 + 0.000e+000 = 0.000e+000 - S(-2) 0.000e+000 + 0.000e+000 = 0.000e+000 - S(6) 2.500e-005 + 0.000e+000 = 2.500e-005 - Si 4.100e-004 + 0.000e+000 = 4.100e-004 - -Solution fractions: Minimum Maximum - Solution 1 1.000e+000 1.000e+000 1.000e+000 - Solution 2 1.000e+000 1.000e+000 1.000e+000 - -Phase mole transfers: Minimum Maximum - Halite 1.600e-005 1.490e-005 1.710e-005 NaCl - Gypsum 1.500e-005 1.413e-005 1.588e-005 CaSO4:2H2O - Kaolinite -1.282e-004 -1.403e-004 -1.159e-004 Al2Si2O5(OH)4 - CO2(g) 3.140e-004 2.490e-004 3.794e-004 CO2 - Calcite 1.028e-004 8.680e-005 1.182e-004 CaCO3 - Chalcedony -1.084e-004 -1.473e-004 -6.906e-005 SiO2 - Biotite 1.370e-005 1.317e-005 1.370e-005 KMg3AlSi3O10(OH)2 - Plagioclase 1.758e-004 1.582e-004 1.935e-004 Na0.62Ca0.38Al1.38Si2.62O8 - -Redox mole transfers: - -Sum of residuals (epsilons in documentation): 4.821e+000 -Sum of delta/uncertainty limit: 4.821e+000 -Maximum fractional error in element concentration: 3.269e-002 - -Model contains minimum number of phases. -=============================================================================== - - -Summary of inverse modeling: - - Number of models found: 2 - Number of minimal models found: 2 - Number of infeasible sets of phases saved: 20 - Number of calls to cl1: 62 ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 2. ------------------------------------- - -------------------------------- -End of Run after 0.589 Seconds. -------------------------------- - diff --git a/examples_pc/ex17.out b/examples_pc/ex17.out deleted file mode 100644 index 79e80127..00000000 --- a/examples_pc/ex17.out +++ /dev/null @@ -1,359 +0,0 @@ - Input file: ..\examples\ex17 - Output file: ex17.out -Database file: ..\database\pitzer.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - PHASES - PITZER - EXCHANGE_MASTER_SPECIES - EXCHANGE_SPECIES - SURFACE_MASTER_SPECIES - SURFACE_SPECIES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Example 17.--Inverse modeling of Black Sea water evaporation - SOLUTION 1 Black Sea water - units mg/L - density 1.014 - pH 8.0 # estimated - Ca 233 - Mg 679 - Na 5820 - K 193 - S(6) 1460 - Cl 10340 - Br 35 - C 1 CO2(g) -3.5 - SOLUTION 2 Composition during halite precipitation - units mg/L - density 1.271 - pH 5.0 # estimated - Ca 0.0 - Mg 50500 - Na 55200 - K 15800 - S(6) 76200 - Cl 187900 - Br 2670 - C 1 CO2(g) -3.5 - INVERSE_MODELING - solutions 1 2 - uncertainties .025 - range - balances - Br - K - Mg - phases - H2O(g) pre - Calcite pre - CO2(g) pre - Gypsum pre - Halite pre - Glauberite pre - Polyhalite pre - END ------ -TITLE ------ - - Example 17.--Inverse modeling of Black Sea water evaporation - -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 1. Black Sea water - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 4.401e-004 4.401e-004 - C 8.453e-004 8.453e-004 Equilibrium with CO2(g) - Ca 5.841e-003 5.841e-003 - Cl 2.930e-001 2.930e-001 - K 4.960e-003 4.960e-003 - Mg 2.807e-002 2.807e-002 - Na 2.544e-001 2.544e-001 - S(6) 1.527e-002 1.527e-002 - -----------------------------Description of solution---------------------------- - - pH = 8.000 - pe = 4.000 - Specific Conductance (uS/cm, 25 oC) = 31362 - Density (g/cm3) = 1.01094 - Volume (L) = 1.00889 - Activity of water = 0.990 - Ionic strength = 3.752e-001 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 8.684e-004 - Total CO2 (mol/kg) = 8.453e-004 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.250e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.35 - Iterations = 9 - Gamma iterations = 3 - Osmotic coefficient = 0.89851 - Density of water = 0.99706 - Total H = 1.110132e+002 - Total O = 5.556983e+001 - -----------------------------Distribution of species---------------------------- - - MacInnes MacInnes - MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.663e-006 9.977e-007 -5.779 -6.001 -0.222 -2.99 - H+ 1.290e-008 1.000e-008 -7.889 -8.000 -0.111 0.00 - H2O 5.551e+001 9.903e-001 1.744 -0.004 0.000 18.07 -Br 4.401e-004 - Br- 4.401e-004 3.004e-004 -3.356 -3.522 -0.166 25.36 -C(4) 8.453e-004 - HCO3- 8.044e-004 4.944e-004 -3.095 -3.306 -0.211 25.95 - CO3-2 1.612e-005 2.264e-006 -4.793 -5.645 -0.853 -1.27 - MgCO3 1.441e-005 1.441e-005 -4.841 -4.841 0.000 -17.09 - CO2 1.036e-005 1.096e-005 -4.985 -4.960 0.024 30.26 -Ca 5.841e-003 - Ca+2 5.841e-003 1.473e-003 -2.233 -2.832 -0.598 -16.97 -Cl 2.930e-001 - Cl- 2.930e-001 1.960e-001 -0.533 -0.708 -0.175 18.61 -K 4.960e-003 - K+ 4.960e-003 3.418e-003 -2.305 -2.466 -0.162 9.48 -Mg 2.807e-002 - Mg+2 2.805e-002 7.511e-003 -1.552 -2.124 -0.572 -20.69 - MgCO3 1.441e-005 1.441e-005 -4.841 -4.841 0.000 -17.09 - MgOH+ 1.244e-006 1.155e-006 -5.905 -5.938 -0.032 (0) -Na 2.544e-001 - Na+ 2.544e-001 1.836e-001 -0.595 -0.736 -0.142 -0.79 -S(6) 1.527e-002 - SO4-2 1.527e-002 2.117e-003 -1.816 -2.674 -0.858 17.27 - HSO4- 2.952e-009 2.017e-009 -8.530 -8.695 -0.165 40.79 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -1.28 -5.51 -4.22 CaSO4 - Aragonite -0.26 -8.48 -8.22 CaCO3 - Arcanite -5.83 -7.61 -1.78 K2SO4 - Bischofite -8.02 -3.57 4.46 MgCl2:6H2O - Bloedite -6.62 -8.96 -2.35 Na2Mg(SO4)2:4H2O - Brucite -3.25 -14.13 -10.88 Mg(OH)2 - Burkeite -14.64 -15.41 -0.77 Na6CO3(SO4)2 - Calcite -0.07 -8.48 -8.41 CaCO3 - Carnallite -11.07 -6.74 4.33 KMgCl3:6H2O - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Dolomite 0.84 -16.25 -17.08 CaMg(CO3)2 - Epsomite -2.95 -4.83 -1.88 MgSO4:7H2O - Gaylussite -6.19 -15.62 -9.42 CaNa2(CO3)2:5H2O - Glaserite -9.68 -13.48 -3.80 NaK3(SO4)2 - Glauberite -4.41 -9.65 -5.25 Na2Ca(SO4)2 - Gypsum -0.93 -5.51 -4.58 CaSO4:2H2O - H2O(g) -1.51 -0.00 1.50 H2O - Halite -3.01 -1.44 1.57 NaCl - Hexahydrite -3.19 -4.82 -1.63 MgSO4:6H2O - Kainite -7.79 -7.99 -0.19 KMgClSO4:3H2O - Kalicinite -6.05 -16.11 -10.06 KHCO3 - Kieserite -4.68 -4.80 -0.12 MgSO4:H2O - Labile_S -8.14 -13.81 -5.67 Na4Ca(SO4)3:2H2O - Leonhardite -3.93 -4.82 -0.89 MgSO4:4H2O - Leonite -8.44 -12.42 -3.98 K2Mg(SO4)2:4H2O - Magnesite 0.06 -7.77 -7.83 MgCO3 - Mirabilite -2.98 -4.19 -1.21 Na2SO4:10H2O - Misenite -75.64 -86.45 -10.81 K8H6(SO4)7 - Nahcolite -3.64 -14.38 -10.74 NaHCO3 - Natron -6.34 -7.16 -0.82 Na2CO3:10H2O - Nesquehonite -2.62 -7.78 -5.17 MgCO3:3H2O - Pentahydrite -3.53 -4.82 -1.28 MgSO4:5H2O - Pirssonite -6.37 -15.60 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite -9.68 -23.43 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.64 -14.83 -5.19 Ca(OH)2 - Schoenite -8.10 -12.43 -4.33 K2Mg(SO4)2:6H2O - Sylvite -4.07 -3.17 0.90 KCl - Syngenite -5.67 -13.12 -7.45 K2Ca(SO4)2:H2O - Trona -10.12 -21.51 -11.38 Na3H(CO3)2:2H2O - - -Initial solution 2. Composition during halite precipitation - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 3.785e-002 3.785e-002 - C 7.206e-006 7.206e-006 Equilibrium with CO2(g) - Cl 6.004e+000 6.004e+000 - K 4.578e-001 4.578e-001 - Mg 2.354e+000 2.354e+000 - Na 2.720e+000 2.720e+000 - S(6) 8.986e-001 8.986e-001 - -----------------------------Description of solution---------------------------- - - pH = 5.000 - pe = 4.000 - Specific Conductance (uS/cm, 25 oC) = 598313 - Density (g/cm3) = 1.26987 - Volume (L) = 1.17915 - Activity of water = 0.681 - Ionic strength = 1.111e+001 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 7.758e-006 - Total CO2 (mol/kg) = 7.206e-006 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 4.629e-002 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.29 - Iterations = 16 - Gamma iterations = 7 - Osmotic coefficient = 1.71249 - Density of water = 0.99706 - Total H = 1.110124e+002 - Total O = 5.910065e+001 - -----------------------------Distribution of species---------------------------- - - MacInnes MacInnes - MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 5.602e-007 1.000e-005 -6.252 -5.000 1.252 0.00 - OH- 1.205e-008 6.857e-010 -7.919 -9.164 -1.245 9.31 - H2O 5.551e+001 6.806e-001 1.744 -0.167 0.000 18.07 -Br 3.785e-002 - Br- 3.785e-002 4.950e-002 -1.422 -1.305 0.116 27.92 -C(4) 7.206e-006 - HCO3- 4.558e-006 3.398e-007 -5.341 -6.469 -1.128 47.51 - CO2 2.575e-006 1.096e-005 -5.589 -4.960 0.629 30.26 - MgCO3 6.713e-008 6.713e-008 -7.173 -7.173 0.000 -17.09 - CO3-2 5.877e-009 1.556e-012 -8.231 -11.808 -3.577 14.84 -Cl 6.004e+000 - Cl- 6.004e+000 4.512e+000 0.778 0.654 -0.124 20.71 -K 4.578e-001 - K+ 4.578e-001 4.785e-001 -0.339 -0.320 0.019 14.34 -Mg 2.354e+000 - Mg+2 2.354e+000 5.091e+001 0.372 1.707 1.335 -15.59 - MgOH+ 6.271e-006 5.379e-006 -5.203 -5.269 -0.067 (0) - MgCO3 6.713e-008 6.713e-008 -7.173 -7.173 0.000 -17.09 -Na 2.720e+000 - Na+ 2.720e+000 8.671e+000 0.435 0.938 0.503 2.74 -S(6) 8.986e-001 - SO4-2 8.986e-001 2.260e-003 -0.046 -2.646 -2.599 31.36 - HSO4- 2.669e-006 2.153e-006 -5.574 -5.667 -0.093 42.44 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Arcanite -1.51 -3.29 -1.78 K2SO4 - Bischofite -2.44 2.01 4.46 MgCl2:6H2O - Bloedite -0.03 -2.38 -2.35 Na2Mg(SO4)2:4H2O - Brucite -5.74 -16.62 -10.88 Mg(OH)2 - Burkeite -10.70 -11.47 -0.77 Na6CO3(SO4)2 - Carnallite -1.98 2.35 4.33 KMgCl3:6H2O - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Epsomite -0.23 -2.11 -1.88 MgSO4:7H2O - Glaserite -1.51 -5.31 -3.80 NaK3(SO4)2 - H2O(g) -1.67 -0.17 1.50 H2O - Halite 0.02 1.59 1.57 NaCl - Hexahydrite -0.31 -1.94 -1.63 MgSO4:6H2O - Kainite -0.91 -1.11 -0.19 KMgClSO4:3H2O - Kalicinite -7.07 -17.13 -10.06 KHCO3 - Kieserite -0.98 -1.11 -0.12 MgSO4:H2O - Leonhardite -0.72 -1.61 -0.89 MgSO4:4H2O - Leonite -0.91 -4.89 -3.98 K2Mg(SO4)2:4H2O - Magnesite -2.27 -10.10 -7.83 MgCO3 - Mirabilite -1.23 -2.44 -1.21 Na2SO4:10H2O - Misenite -40.28 -51.08 -10.81 K8H6(SO4)7 - Nahcolite -5.13 -15.87 -10.74 NaHCO3 - Natron -10.78 -11.60 -0.82 Na2CO3:10H2O - Nesquehonite -5.44 -10.60 -5.17 MgCO3:3H2O - Pentahydrite -0.49 -1.77 -1.28 MgSO4:5H2O - Schoenite -0.90 -5.23 -4.33 K2Mg(SO4)2:6H2O - Sylvite -0.57 0.33 0.90 KCl - Trona -14.75 -26.14 -11.38 Na3H(CO3)2:2H2O - - ---------------------------------------------- -Beginning of inverse modeling 1 calculations. ---------------------------------------------- - -Using Cl1 standard precision optimization routine. - -Solution 1: Black Sea water - - Input Delta Input+Delta - pH 8.000e+000 + 0.000e+000 = 8.000e+000 - Alkalinity 8.684e-004 + 0.000e+000 = 8.684e-004 - Br 4.401e-004 + 0.000e+000 = 4.401e-004 - C(4) 8.453e-004 + 0.000e+000 = 8.453e-004 - Ca 5.841e-003 + 0.000e+000 = 5.841e-003 - Cl 2.930e-001 + 8.006e-004 = 2.938e-001 - K 4.960e-003 + 1.034e-004 = 5.063e-003 - Mg 2.807e-002 + -7.018e-004 = 2.737e-002 - Na 2.544e-001 + 0.000e+000 = 2.544e-001 - S(6) 1.527e-002 + 7.486e-005 = 1.535e-002 - -Solution 2: Composition during halite precipitation - - Input Delta Input+Delta - pH 5.000e+000 + 0.000e+000 = 5.000e+000 - Alkalinity 7.758e-006 + -1.940e-007 = 7.564e-006 - Br 3.785e-002 + 9.440e-004 = 3.880e-002 - C(4) 7.206e-006 + 1.802e-007 = 7.387e-006 - Ca 0.000e+000 + 0.000e+000 = 0.000e+000 - Cl 6.004e+000 + 1.501e-001 = 6.154e+000 - K 4.578e-001 + -1.144e-002 = 4.464e-001 - Mg 2.354e+000 + 5.884e-002 = 2.413e+000 - Na 2.720e+000 + -4.642e-002 = 2.674e+000 - S(6) 8.986e-001 + -2.247e-002 = 8.761e-001 - -Solution fractions: Minimum Maximum - Solution 1 8.815e+001 8.780e+001 8.815e+001 - Solution 2 1.000e+000 1.000e+000 1.000e+000 - -Phase mole transfers: Minimum Maximum - H2O(g) -4.837e+003 -4.817e+003 -4.817e+003 H2O - Calcite -3.827e-002 -3.923e-002 -3.716e-002 CaCO3 - CO2(g) -3.624e-002 -3.906e-002 -3.328e-002 CO2 - Gypsum -4.767e-001 -4.905e-001 -4.609e-001 CaSO4:2H2O - Halite -1.975e+001 -2.033e+001 -1.901e+001 NaCl - -Redox mole transfers: - -Sum of residuals (epsilons in documentation): 1.923e+002 -Sum of delta/uncertainty limit: 9.820e+000 -Maximum fractional error in element concentration: 2.500e-002 - -Model contains minimum number of phases. -=============================================================================== - - -Summary of inverse modeling: - - Number of models found: 1 - Number of minimal models found: 1 - Number of infeasible sets of phases saved: 11 - Number of calls to cl1: 29 ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 2. ------------------------------------- - -------------------------------- -End of Run after 0.593 Seconds. -------------------------------- - diff --git a/examples_pc/ex17b.out b/examples_pc/ex17b.out deleted file mode 100644 index b171fa9b..00000000 --- a/examples_pc/ex17b.out +++ /dev/null @@ -1,3667 +0,0 @@ - Input file: ..\examples\ex17b - Output file: ex17b.out -Database file: ..\database\pitzer.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - PHASES - PITZER - EXCHANGE_MASTER_SPECIES - EXCHANGE_SPECIES - SURFACE_MASTER_SPECIES - SURFACE_SPECIES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - SOLUTION 1 Black Sea water - units mg/L - density 1.014 - pH 8.0 # estimated - Ca 233 - Mg 679 - Na 5820 - K 193 - S(6) 1460 - Cl 10340 - Br 35 - C 1 CO2(g) -3.5 - EQUILIBRIUM_PHASES - CO2(g) -3.5 10 - Calcite 0 0 - Gypsum 0 0 - Anhydrite 0 0 - Glauberite 0 0 - Polyhalite 0 0 - Epsomite 0 0 - Kieserite 0 0 - Hexahydrite 0 0 - Halite 0 0 - Bischofite 0 0 - Carnallite 0 0 - USER_GRAPH Example 17B - -head H2O Na K Mg Ca Cl SO4 Calcite Gypsum Anhydrite Halite Glauberite Polyhalite - -init false - -axis_scale x_axis 0 100 - -axis_scale y_axis -5 1. 1 - -axis_scale sy_axis -5 10 5 100 - -axis_titles "Concentration factor" "Log(Molality)" "Log(Moles of solid)" - -chart_title "Evaporating Black Sea water" - -start - 10 graph_x 1 / tot("water") - 20 graph_y log10(tot("Na")), log10(tot("K")), log10(tot("Mg")), log10(tot("Ca")), log10(tot("Cl")), log10(tot("S")) - 30 if equi("Calcite") > 1e-5 then graph_sy log10(equi("Calcite")) else graph_sy -5 - 35 if equi("Gypsum") > 1e-5 then graph_sy log10(equi("Gypsum")) else graph_sy -5 - 40 if equi("Anhydrite") > 1e-5 then graph_sy log10(equi("Anhydrite")) else graph_sy -5 - 50 if equi("Halite") > 1e-5 then graph_sy log10(equi("Halite")) else graph_sy -5 - 60 if equi("Glauberite") > 1e-5 then graph_sy log10(equi("Glauberite")) else graph_sy -5 - 70 if equi("Polyhalite") > 1e-5 then graph_sy log10(equi("Polyhalite")) else graph_sy -5 - 80 if STEP_NO > 20 THEN PRINT "x", "Na", "K", "Mg", "Ca", "Cl", "S" - 90 if STEP_NO > 20 THEN PRINT 1 / tot("water"), (tot("Na")), (tot("K")), (tot("Mg")), (tot("Ca")), (tot("Cl")), (tot("S")) - -end - REACTION - H2O -1 - 0 36 3*4 6*1 2*0.25 0.176 4*0.05 5*0.03 - INCREMENTAL_REACTIONS true - END -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 1. Black Sea water - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 4.401e-004 4.401e-004 - C 8.453e-004 8.453e-004 Equilibrium with CO2(g) - Ca 5.841e-003 5.841e-003 - Cl 2.930e-001 2.930e-001 - K 4.960e-003 4.960e-003 - Mg 2.807e-002 2.807e-002 - Na 2.544e-001 2.544e-001 - S(6) 1.527e-002 1.527e-002 - -----------------------------Description of solution---------------------------- - - pH = 8.000 - pe = 4.000 - Specific Conductance (uS/cm, 25 oC) = 31362 - Density (g/cm3) = 1.01094 - Volume (L) = 1.00889 - Activity of water = 0.990 - Ionic strength = 3.752e-001 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 8.684e-004 - Total CO2 (mol/kg) = 8.453e-004 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.250e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.35 - Iterations = 9 - Gamma iterations = 3 - Osmotic coefficient = 0.89851 - Density of water = 0.99706 - Total H = 1.110132e+002 - Total O = 5.556983e+001 - -----------------------------Distribution of species---------------------------- - - MacInnes MacInnes - MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.663e-006 9.977e-007 -5.779 -6.001 -0.222 -2.99 - H+ 1.290e-008 1.000e-008 -7.889 -8.000 -0.111 0.00 - H2O 5.551e+001 9.903e-001 1.744 -0.004 0.000 18.07 -Br 4.401e-004 - Br- 4.401e-004 3.004e-004 -3.356 -3.522 -0.166 25.36 -C(4) 8.453e-004 - HCO3- 8.044e-004 4.944e-004 -3.095 -3.306 -0.211 25.95 - CO3-2 1.612e-005 2.264e-006 -4.793 -5.645 -0.853 -1.27 - MgCO3 1.441e-005 1.441e-005 -4.841 -4.841 0.000 -17.09 - CO2 1.036e-005 1.096e-005 -4.985 -4.960 0.024 30.26 -Ca 5.841e-003 - Ca+2 5.841e-003 1.473e-003 -2.233 -2.832 -0.598 -16.97 -Cl 2.930e-001 - Cl- 2.930e-001 1.960e-001 -0.533 -0.708 -0.175 18.61 -K 4.960e-003 - K+ 4.960e-003 3.418e-003 -2.305 -2.466 -0.162 9.48 -Mg 2.807e-002 - Mg+2 2.805e-002 7.511e-003 -1.552 -2.124 -0.572 -20.69 - MgCO3 1.441e-005 1.441e-005 -4.841 -4.841 0.000 -17.09 - MgOH+ 1.244e-006 1.155e-006 -5.905 -5.938 -0.032 (0) -Na 2.544e-001 - Na+ 2.544e-001 1.836e-001 -0.595 -0.736 -0.142 -0.79 -S(6) 1.527e-002 - SO4-2 1.527e-002 2.117e-003 -1.816 -2.674 -0.858 17.27 - HSO4- 2.952e-009 2.017e-009 -8.530 -8.695 -0.165 40.79 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -1.28 -5.51 -4.22 CaSO4 - Aragonite -0.26 -8.48 -8.22 CaCO3 - Arcanite -5.83 -7.61 -1.78 K2SO4 - Bischofite -8.02 -3.57 4.46 MgCl2:6H2O - Bloedite -6.62 -8.96 -2.35 Na2Mg(SO4)2:4H2O - Brucite -3.25 -14.13 -10.88 Mg(OH)2 - Burkeite -14.64 -15.41 -0.77 Na6CO3(SO4)2 - Calcite -0.07 -8.48 -8.41 CaCO3 - Carnallite -11.07 -6.74 4.33 KMgCl3:6H2O - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Dolomite 0.84 -16.25 -17.08 CaMg(CO3)2 - Epsomite -2.95 -4.83 -1.88 MgSO4:7H2O - Gaylussite -6.19 -15.62 -9.42 CaNa2(CO3)2:5H2O - Glaserite -9.68 -13.48 -3.80 NaK3(SO4)2 - Glauberite -4.41 -9.65 -5.25 Na2Ca(SO4)2 - Gypsum -0.93 -5.51 -4.58 CaSO4:2H2O - H2O(g) -1.51 -0.00 1.50 H2O - Halite -3.01 -1.44 1.57 NaCl - Hexahydrite -3.19 -4.82 -1.63 MgSO4:6H2O - Kainite -7.79 -7.99 -0.19 KMgClSO4:3H2O - Kalicinite -6.05 -16.11 -10.06 KHCO3 - Kieserite -4.68 -4.80 -0.12 MgSO4:H2O - Labile_S -8.14 -13.81 -5.67 Na4Ca(SO4)3:2H2O - Leonhardite -3.93 -4.82 -0.89 MgSO4:4H2O - Leonite -8.44 -12.42 -3.98 K2Mg(SO4)2:4H2O - Magnesite 0.06 -7.77 -7.83 MgCO3 - Mirabilite -2.98 -4.19 -1.21 Na2SO4:10H2O - Misenite -75.64 -86.45 -10.81 K8H6(SO4)7 - Nahcolite -3.64 -14.38 -10.74 NaHCO3 - Natron -6.34 -7.16 -0.82 Na2CO3:10H2O - Nesquehonite -2.62 -7.78 -5.17 MgCO3:3H2O - Pentahydrite -3.53 -4.82 -1.28 MgSO4:5H2O - Pirssonite -6.37 -15.60 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite -9.68 -23.43 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.64 -14.83 -5.19 Ca(OH)2 - Schoenite -8.10 -12.43 -4.33 K2Mg(SO4)2:6H2O - Sylvite -4.07 -3.17 0.90 KCl - Syngenite -5.67 -13.12 -7.45 K2Ca(SO4)2:H2O - Trona -10.12 -21.51 -11.38 Na3H(CO3)2:2H2O - - ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Black Sea water -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 0.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - H2O -1.00000 - - Relative - Element moles - H -2.00000 - O -1.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -1.28 -5.51 -4.22 0.000e+000 0 0.000e+000 -Bischofite -8.02 -3.57 4.46 0.000e+000 0 0.000e+000 -CO2(g) -3.50 -4.96 -1.46 1.000e+001 1.000e+001 2.309e-013 -Calcite -0.07 -8.48 -8.41 0.000e+000 0 0.000e+000 -Carnallite -11.07 -6.74 4.33 0.000e+000 0 0.000e+000 -Epsomite -2.95 -4.83 -1.88 0.000e+000 0 0.000e+000 -Glauberite -4.41 -9.65 -5.25 0.000e+000 0 0.000e+000 -Gypsum -0.93 -5.51 -4.58 0.000e+000 0 0.000e+000 -Halite -3.01 -1.44 1.57 0.000e+000 0 0.000e+000 -Hexahydrite -3.19 -4.82 -1.63 0.000e+000 0 0.000e+000 -Kieserite -4.68 -4.80 -0.12 0.000e+000 0 0.000e+000 -Polyhalite -9.68 -23.43 -13.74 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 4.401e-004 4.401e-004 - C 8.453e-004 8.453e-004 - Ca 5.841e-003 5.841e-003 - Cl 2.930e-001 2.930e-001 - K 4.960e-003 4.960e-003 - Mg 2.807e-002 2.807e-002 - Na 2.544e-001 2.544e-001 - S 1.527e-002 1.527e-002 - -----------------------------Description of solution---------------------------- - - pH = 8.000 Charge balance - pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 31362 - Density (g/cm3) = 1.01094 - Volume (L) = 1.00889 - Activity of water = 0.990 - Ionic strength = 3.752e-001 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 8.684e-004 - Total CO2 (mol/kg) = 8.453e-004 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.250e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.35 - Iterations = 13 - Gamma iterations = 5 - Osmotic coefficient = 0.89851 - Density of water = 0.99706 - Total H = 1.110132e+002 - Total O = 5.556983e+001 - -----------------------------Distribution of species---------------------------- - - MacInnes MacInnes - MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.663e-006 9.977e-007 -5.779 -6.001 -0.222 -2.99 - H+ 1.290e-008 1.000e-008 -7.889 -8.000 -0.111 0.00 - H2O 5.551e+001 9.903e-001 1.744 -0.004 0.000 18.07 -Br 4.401e-004 - Br- 4.401e-004 3.004e-004 -3.356 -3.522 -0.166 25.36 -C(4) 8.453e-004 - HCO3- 8.044e-004 4.944e-004 -3.095 -3.306 -0.211 25.95 - CO3-2 1.612e-005 2.264e-006 -4.793 -5.645 -0.853 -1.27 - MgCO3 1.441e-005 1.441e-005 -4.841 -4.841 0.000 -17.09 - CO2 1.036e-005 1.096e-005 -4.985 -4.960 0.024 30.26 -Ca 5.841e-003 - Ca+2 5.841e-003 1.473e-003 -2.233 -2.832 -0.598 -16.97 -Cl 2.930e-001 - Cl- 2.930e-001 1.960e-001 -0.533 -0.708 -0.175 18.61 -K 4.960e-003 - K+ 4.960e-003 3.418e-003 -2.305 -2.466 -0.162 9.48 -Mg 2.807e-002 - Mg+2 2.805e-002 7.511e-003 -1.552 -2.124 -0.572 -20.69 - MgCO3 1.441e-005 1.441e-005 -4.841 -4.841 0.000 -17.09 - MgOH+ 1.244e-006 1.155e-006 -5.905 -5.938 -0.032 (0) -Na 2.544e-001 - Na+ 2.544e-001 1.836e-001 -0.595 -0.736 -0.142 -0.79 -S(6) 1.527e-002 - SO4-2 1.527e-002 2.117e-003 -1.816 -2.674 -0.858 17.27 - HSO4- 2.952e-009 2.017e-009 -8.530 -8.695 -0.165 40.79 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -1.28 -5.51 -4.22 CaSO4 - Aragonite -0.26 -8.48 -8.22 CaCO3 - Arcanite -5.83 -7.61 -1.78 K2SO4 - Bischofite -8.02 -3.57 4.46 MgCl2:6H2O - Bloedite -6.62 -8.96 -2.35 Na2Mg(SO4)2:4H2O - Brucite -3.25 -14.13 -10.88 Mg(OH)2 - Burkeite -14.64 -15.41 -0.77 Na6CO3(SO4)2 - Calcite -0.07 -8.48 -8.41 CaCO3 - Carnallite -11.07 -6.74 4.33 KMgCl3:6H2O - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Dolomite 0.84 -16.25 -17.08 CaMg(CO3)2 - Epsomite -2.95 -4.83 -1.88 MgSO4:7H2O - Gaylussite -6.19 -15.62 -9.42 CaNa2(CO3)2:5H2O - Glaserite -9.68 -13.48 -3.80 NaK3(SO4)2 - Glauberite -4.41 -9.65 -5.25 Na2Ca(SO4)2 - Gypsum -0.93 -5.51 -4.58 CaSO4:2H2O - H2O(g) -1.51 -0.00 1.50 H2O - Halite -3.01 -1.44 1.57 NaCl - Hexahydrite -3.19 -4.82 -1.63 MgSO4:6H2O - Kainite -7.79 -7.99 -0.19 KMgClSO4:3H2O - Kalicinite -6.05 -16.11 -10.06 KHCO3 - Kieserite -4.68 -4.80 -0.12 MgSO4:H2O - Labile_S -8.14 -13.81 -5.67 Na4Ca(SO4)3:2H2O - Leonhardite -3.93 -4.82 -0.89 MgSO4:4H2O - Leonite -8.44 -12.42 -3.98 K2Mg(SO4)2:4H2O - Magnesite 0.06 -7.77 -7.83 MgCO3 - Mirabilite -2.98 -4.19 -1.21 Na2SO4:10H2O - Misenite -75.64 -86.45 -10.81 K8H6(SO4)7 - Nahcolite -3.64 -14.38 -10.74 NaHCO3 - Natron -6.34 -7.16 -0.82 Na2CO3:10H2O - Nesquehonite -2.62 -7.78 -5.17 MgCO3:3H2O - Pentahydrite -3.53 -4.82 -1.28 MgSO4:5H2O - Pirssonite -6.37 -15.60 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite -9.68 -23.43 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.64 -14.83 -5.19 Ca(OH)2 - Schoenite -8.10 -12.43 -4.33 K2Mg(SO4)2:6H2O - Sylvite -4.07 -3.17 0.90 KCl - Syngenite -5.67 -13.12 -7.45 K2Ca(SO4)2:H2O - Trona -10.12 -21.51 -11.38 Na3H(CO3)2:2H2O - - -Reaction step 2. - -Using solution 1. Black Sea water -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 3.600e+001 moles of the following reaction have been added: - - Relative - Reactant moles - - H2O -1.00000 - - Relative - Element moles - H -2.00000 - O -1.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.78 -5.01 -4.22 0.000e+000 0 0.000e+000 -Bischofite -6.82 -2.36 4.46 0.000e+000 0 0.000e+000 -CO2(g) -3.50 -4.96 -1.46 1.000e+001 1.000e+001 2.904e-004 -Calcite 0.00 -8.41 -8.41 0.000e+000 3.020e-004 3.020e-004 -Carnallite -9.04 -4.71 4.33 0.000e+000 0 0.000e+000 -Epsomite -2.45 -4.34 -1.88 0.000e+000 0 0.000e+000 -Glauberite -2.91 -8.15 -5.25 0.000e+000 0 0.000e+000 -Gypsum -0.45 -5.03 -4.58 0.000e+000 0 0.000e+000 -Halite -2.16 -0.59 1.57 0.000e+000 0 0.000e+000 -Hexahydrite -2.69 -4.32 -1.63 0.000e+000 0 0.000e+000 -Kieserite -4.14 -4.26 -0.12 0.000e+000 0 0.000e+000 -Polyhalite -7.21 -20.95 -13.74 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 1.252e-003 4.401e-004 - C 7.196e-004 2.529e-004 - Ca 1.576e-002 5.539e-003 - Cl 8.339e-001 2.930e-001 - K 1.411e-002 4.960e-003 - Mg 7.987e-002 2.807e-002 - Na 7.238e-001 2.544e-001 - S 4.345e-002 1.527e-002 - -----------------------------Description of solution---------------------------- - - pH = 7.844 Charge balance - pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 70310 - Density (g/cm3) = 1.03532 - Volume (L) = 0.35861 - Activity of water = 0.972 - Ionic strength = 1.065e+000 - Mass of water (kg) = 3.514e-001 - Total alkalinity (eq/kg) = 7.522e-004 - Total CO2 (mol/kg) = 7.196e-004 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.250e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.35 - Iterations = 20 - Gamma iterations = 5 - Osmotic coefficient = 0.91486 - Density of water = 0.99706 - Total H = 3.901324e+001 - Total O = 1.956834e+001 - -----------------------------Distribution of species---------------------------- - - MacInnes MacInnes - MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.457e-006 6.842e-007 -5.836 -6.165 -0.328 -1.97 - H+ 1.634e-008 1.432e-008 -7.787 -7.844 -0.058 0.00 - H2O 5.551e+001 9.722e-001 1.744 -0.012 0.000 18.07 -Br 1.252e-003 - Br- 1.252e-003 7.911e-004 -2.902 -3.102 -0.200 25.75 -C(4) 7.196e-004 - HCO3- 6.720e-004 3.391e-004 -3.173 -3.470 -0.297 27.57 - CO3-2 1.927e-005 1.085e-006 -4.715 -5.965 -1.250 0.69 - MgCO3 1.899e-005 1.899e-005 -4.722 -4.722 0.000 -17.09 - CO2 9.348e-006 1.096e-005 -5.029 -4.960 0.069 30.26 -Ca 1.576e-002 - Ca+2 1.576e-002 3.619e-003 -1.802 -2.441 -0.639 -16.43 -Cl 8.339e-001 - Cl- 8.339e-001 4.997e-001 -0.079 -0.301 -0.222 18.97 -K 1.411e-002 - K+ 1.411e-002 8.942e-003 -1.850 -2.049 -0.198 9.88 -Mg 7.987e-002 - Mg+2 7.985e-002 2.066e-002 -1.098 -1.685 -0.587 -20.14 - MgCO3 1.899e-005 1.899e-005 -4.722 -4.722 0.000 -17.09 - MgOH+ 2.209e-006 2.178e-006 -5.656 -5.662 -0.006 (0) -Na 7.238e-001 - Na+ 7.238e-001 5.131e-001 -0.140 -0.290 -0.149 -0.35 -S(6) 4.345e-002 - SO4-2 4.345e-002 2.722e-003 -1.362 -2.565 -1.203 19.51 - HSO4- 6.080e-009 3.712e-009 -8.216 -8.430 -0.214 41.13 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -0.78 -5.01 -4.22 CaSO4 - Aragonite -0.19 -8.41 -8.22 CaCO3 - Arcanite -4.89 -6.66 -1.78 K2SO4 - Bischofite -6.82 -2.36 4.46 MgCl2:6H2O - Bloedite -5.10 -7.44 -2.35 Na2Mg(SO4)2:4H2O - Brucite -3.13 -14.01 -10.88 Mg(OH)2 - Burkeite -12.06 -12.83 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.41 -8.41 CaCO3 - Carnallite -9.04 -4.71 4.33 KMgCl3:6H2O - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Dolomite 1.03 -16.06 -17.08 CaMg(CO3)2 - Epsomite -2.45 -4.34 -1.88 MgSO4:7H2O - Gaylussite -5.59 -15.01 -9.42 CaNa2(CO3)2:5H2O - Glaserite -7.76 -11.57 -3.80 NaK3(SO4)2 - Glauberite -2.91 -8.15 -5.25 Na2Ca(SO4)2 - Gypsum -0.45 -5.03 -4.58 CaSO4:2H2O - H2O(g) -1.52 -0.01 1.50 H2O - Halite -2.16 -0.59 1.57 NaCl - Hexahydrite -2.69 -4.32 -1.63 MgSO4:6H2O - Kainite -6.44 -6.64 -0.19 KMgClSO4:3H2O - Kalicinite -5.80 -15.86 -10.06 KHCO3 - Kieserite -4.14 -4.26 -0.12 MgSO4:H2O - Labile_S -5.65 -11.32 -5.67 Na4Ca(SO4)3:2H2O - Leonhardite -3.41 -4.30 -0.89 MgSO4:4H2O - Leonite -6.98 -10.96 -3.98 K2Mg(SO4)2:4H2O - Magnesite 0.18 -7.65 -7.83 MgCO3 - Mirabilite -2.05 -3.27 -1.21 Na2SO4:10H2O - Misenite -70.60 -81.41 -10.81 K8H6(SO4)7 - Nahcolite -3.36 -14.10 -10.74 NaHCO3 - Natron -5.84 -6.67 -0.82 Na2CO3:10H2O - Nesquehonite -2.52 -7.69 -5.17 MgCO3:3H2O - Pentahydrite -3.03 -4.31 -1.28 MgSO4:5H2O - Pirssonite -5.74 -14.98 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite -7.21 -20.95 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.58 -14.77 -5.19 Ca(OH)2 - Schoenite -6.66 -10.99 -4.33 K2Mg(SO4)2:6H2O - Sylvite -3.25 -2.35 0.90 KCl - Syngenite -4.23 -11.68 -7.45 K2Ca(SO4)2:H2O - Trona -9.28 -20.67 -11.38 Na3H(CO3)2:2H2O - - -Reaction step 3. - -Using solution 1. Black Sea water -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 4.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - H2O -1.00000 - - Relative - Element moles - H -2.00000 - O -1.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.66 -4.89 -4.22 0.000e+000 0 0.000e+000 -Bischofite -6.53 -2.07 4.46 0.000e+000 0 0.000e+000 -CO2(g) -3.50 -4.96 -1.46 1.000e+001 1.000e+001 3.246e-005 -Calcite 0.00 -8.41 -8.41 3.020e-004 3.365e-004 3.451e-005 -Carnallite -8.57 -4.24 4.33 0.000e+000 0 0.000e+000 -Epsomite -2.35 -4.23 -1.88 0.000e+000 0 0.000e+000 -Glauberite -2.57 -7.81 -5.25 0.000e+000 0 0.000e+000 -Gypsum -0.34 -4.92 -4.58 0.000e+000 0 0.000e+000 -Halite -1.96 -0.39 1.57 0.000e+000 0 0.000e+000 -Hexahydrite -2.58 -4.21 -1.63 0.000e+000 0 0.000e+000 -Kieserite -4.01 -4.13 -0.12 0.000e+000 0 0.000e+000 -Polyhalite -6.65 -20.39 -13.74 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 1.575e-003 4.401e-004 - C 6.655e-004 1.859e-004 - Ca 1.970e-002 5.505e-003 - Cl 1.049e+000 2.930e-001 - K 1.775e-002 4.960e-003 - Mg 1.005e-001 2.807e-002 - Na 9.105e-001 2.544e-001 - S 5.466e-002 1.527e-002 - -----------------------------Description of solution---------------------------- - - pH = 7.790 Charge balance - pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 82662 - Density (g/cm3) = 1.04470 - Volume (L) = 0.28640 - Activity of water = 0.965 - Ionic strength = 1.339e+000 - Mass of water (kg) = 2.794e-001 - Total alkalinity (eq/kg) = 6.991e-004 - Total CO2 (mol/kg) = 6.655e-004 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.250e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.35 - Iterations = 15 - Gamma iterations = 5 - Osmotic coefficient = 0.92627 - Density of water = 0.99706 - Total H = 3.101324e+001 - Total O = 1.556817e+001 - -----------------------------Distribution of species---------------------------- - - MacInnes MacInnes - MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.364e-006 5.990e-007 -5.865 -6.223 -0.358 -1.60 - H+ 1.728e-008 1.623e-008 -7.762 -7.790 -0.027 0.00 - H2O 5.551e+001 9.647e-001 1.744 -0.016 0.000 18.07 -Br 1.575e-003 - Br- 1.575e-003 9.876e-004 -2.803 -3.005 -0.203 25.87 -C(4) 6.655e-004 - HCO3- 6.179e-004 2.968e-004 -3.209 -3.528 -0.318 28.17 - MgCO3 1.952e-005 1.952e-005 -4.709 -4.709 0.000 -17.09 - CO3-2 1.914e-005 8.375e-007 -4.718 -6.077 -1.359 1.31 - CO2 8.974e-006 1.096e-005 -5.047 -4.960 0.087 30.26 -Ca 1.970e-002 - Ca+2 1.970e-002 4.686e-003 -1.705 -2.329 -0.624 -16.27 -Cl 1.049e+000 - Cl- 1.049e+000 6.161e-001 0.021 -0.210 -0.231 19.08 -K 1.775e-002 - K+ 1.775e-002 1.112e-002 -1.751 -1.954 -0.203 10.01 -Mg 1.005e-001 - Mg+2 1.005e-001 2.751e-002 -0.998 -1.561 -0.563 -19.97 - MgCO3 1.952e-005 1.952e-005 -4.709 -4.709 0.000 -17.09 - MgOH+ 2.578e-006 2.539e-006 -5.589 -5.595 -0.007 (0) -Na 9.105e-001 - Na+ 9.105e-001 6.539e-001 -0.041 -0.184 -0.144 -0.22 -S(6) 5.466e-002 - SO4-2 5.466e-002 2.769e-003 -1.262 -2.558 -1.295 20.17 - HSO4- 7.203e-009 4.280e-009 -8.143 -8.369 -0.226 41.22 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -0.66 -4.89 -4.22 CaSO4 - Aragonite -0.19 -8.41 -8.22 CaCO3 - Arcanite -4.69 -6.47 -1.78 K2SO4 - Bischofite -6.53 -2.07 4.46 MgCl2:6H2O - Bloedite -4.76 -7.11 -2.35 Na2Mg(SO4)2:4H2O - Brucite -3.13 -14.01 -10.88 Mg(OH)2 - Burkeite -11.53 -12.30 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.41 -8.41 CaCO3 - Carnallite -8.57 -4.24 4.33 KMgCl3:6H2O - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Dolomite 1.04 -16.04 -17.08 CaMg(CO3)2 - Epsomite -2.35 -4.23 -1.88 MgSO4:7H2O - Gaylussite -5.51 -14.93 -9.42 CaNa2(CO3)2:5H2O - Glaserite -7.36 -11.16 -3.80 NaK3(SO4)2 - Glauberite -2.57 -7.81 -5.25 Na2Ca(SO4)2 - Gypsum -0.34 -4.92 -4.58 CaSO4:2H2O - H2O(g) -1.52 -0.02 1.50 H2O - Halite -1.96 -0.39 1.57 NaCl - Hexahydrite -2.58 -4.21 -1.63 MgSO4:6H2O - Kainite -6.14 -6.33 -0.19 KMgClSO4:3H2O - Kalicinite -5.76 -15.82 -10.06 KHCO3 - Kieserite -4.01 -4.13 -0.12 MgSO4:H2O - Labile_S -5.10 -10.77 -5.67 Na4Ca(SO4)3:2H2O - Leonhardite -3.29 -4.18 -0.89 MgSO4:4H2O - Leonite -6.67 -10.65 -3.98 K2Mg(SO4)2:4H2O - Magnesite 0.20 -7.64 -7.83 MgCO3 - Mirabilite -1.87 -3.08 -1.21 Na2SO4:10H2O - Misenite -69.47 -80.28 -10.81 K8H6(SO4)7 - Nahcolite -3.31 -14.05 -10.74 NaHCO3 - Natron -5.78 -6.60 -0.82 Na2CO3:10H2O - Nesquehonite -2.52 -7.68 -5.17 MgCO3:3H2O - Pentahydrite -2.91 -4.20 -1.28 MgSO4:5H2O - Pirssonite -5.65 -14.88 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite -6.65 -20.39 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.58 -14.77 -5.19 Ca(OH)2 - Schoenite -6.35 -10.68 -4.33 K2Mg(SO4)2:6H2O - Sylvite -3.06 -2.16 0.90 KCl - Syngenite -3.92 -11.37 -7.45 K2Ca(SO4)2:H2O - Trona -9.14 -20.53 -11.38 Na3H(CO3)2:2H2O - - -Reaction step 4. - -Using solution 1. Black Sea water -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 4.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - H2O -1.00000 - - Relative - Element moles - H -2.00000 - O -1.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.49 -4.72 -4.22 0.000e+000 0 0.000e+000 -Bischofite -6.14 -1.68 4.46 0.000e+000 0 0.000e+000 -CO2(g) -3.50 -4.96 -1.46 1.000e+001 1.000e+001 3.099e-005 -Calcite 0.00 -8.41 -8.41 3.365e-004 3.696e-004 3.312e-005 -Carnallite -7.93 -3.60 4.33 0.000e+000 0 0.000e+000 -Epsomite -2.20 -4.08 -1.88 0.000e+000 0 0.000e+000 -Glauberite -2.11 -7.36 -5.25 0.000e+000 0 0.000e+000 -Gypsum -0.18 -4.76 -4.58 0.000e+000 0 0.000e+000 -Halite -1.70 -0.13 1.57 0.000e+000 0 0.000e+000 -Hexahydrite -2.43 -4.06 -1.63 0.000e+000 0 0.000e+000 -Kieserite -3.83 -3.95 -0.12 0.000e+000 0 0.000e+000 -Polyhalite -5.88 -19.62 -13.74 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.123e-003 4.401e-004 - C 5.876e-004 1.218e-004 - Ca 2.639e-002 5.472e-003 - Cl 1.414e+000 2.930e-001 - K 2.393e-002 4.960e-003 - Mg 1.354e-001 2.807e-002 - Na 1.227e+000 2.544e-001 - S 7.366e-002 1.527e-002 - -----------------------------Description of solution---------------------------- - - pH = 7.707 Charge balance - pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 102616 - Density (g/cm3) = 1.06022 - Volume (L) = 0.21423 - Activity of water = 0.952 - Ionic strength = 1.805e+000 - Mass of water (kg) = 2.073e-001 - Total alkalinity (eq/kg) = 6.226e-004 - Total CO2 (mol/kg) = 5.876e-004 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.250e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.35 - Iterations = 16 - Gamma iterations = 5 - Osmotic coefficient = 0.94891 - Density of water = 0.99706 - Total H = 2.301324e+001 - Total O = 1.156801e+001 - -----------------------------Distribution of species---------------------------- - - MacInnes MacInnes - MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.227e-006 4.888e-007 -5.911 -6.311 -0.400 -1.00 - H+ 1.834e-008 1.961e-008 -7.737 -7.707 0.029 0.00 - H2O 5.551e+001 9.516e-001 1.744 -0.022 0.000 18.07 -Br 2.123e-003 - Br- 2.123e-003 1.331e-003 -2.673 -2.876 -0.203 26.05 -C(4) 5.876e-004 - HCO3- 5.403e-004 2.422e-004 -3.267 -3.616 -0.348 29.17 - MgCO3 2.035e-005 2.035e-005 -4.691 -4.691 0.000 -17.09 - CO3-2 1.854e-005 5.656e-007 -4.732 -6.248 -1.516 2.27 - CO2 8.374e-006 1.096e-005 -5.077 -4.960 0.117 30.26 -Ca 2.639e-002 - Ca+2 2.639e-002 6.939e-003 -1.578 -2.159 -0.580 -16.03 -Cl 1.414e+000 - Cl- 1.414e+000 8.132e-001 0.150 -0.090 -0.240 19.23 -K 2.393e-002 - K+ 2.393e-002 1.487e-002 -1.621 -1.828 -0.207 10.24 -Mg 1.354e-001 - Mg+2 1.354e-001 4.247e-002 -0.868 -1.372 -0.504 -19.72 - MgCO3 2.035e-005 2.035e-005 -4.691 -4.691 0.000 -17.09 - MgOH+ 3.310e-006 3.199e-006 -5.480 -5.495 -0.015 (0) -Na 1.227e+000 - Na+ 1.227e+000 9.120e-001 0.089 -0.040 -0.129 -0.00 -S(6) 7.366e-002 - SO4-2 7.366e-002 2.760e-003 -1.133 -2.559 -1.426 21.15 - HSO4- 9.000e-009 5.156e-009 -8.046 -8.288 -0.242 41.36 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -0.49 -4.72 -4.22 CaSO4 - Aragonite -0.19 -8.41 -8.22 CaCO3 - Arcanite -4.44 -6.21 -1.78 K2SO4 - Bischofite -6.14 -1.68 4.46 MgCl2:6H2O - Bloedite -4.31 -6.66 -2.35 Na2Mg(SO4)2:4H2O - Brucite -3.11 -13.99 -10.88 Mg(OH)2 - Burkeite -10.83 -11.61 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.41 -8.41 CaCO3 - Carnallite -7.93 -3.60 4.33 KMgCl3:6H2O - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Dolomite 1.06 -16.03 -17.08 CaMg(CO3)2 - Epsomite -2.20 -4.08 -1.88 MgSO4:7H2O - Gaylussite -5.42 -14.84 -9.42 CaNa2(CO3)2:5H2O - Glaserite -6.84 -10.64 -3.80 NaK3(SO4)2 - Glauberite -2.11 -7.36 -5.25 Na2Ca(SO4)2 - Gypsum -0.18 -4.76 -4.58 CaSO4:2H2O - H2O(g) -1.52 -0.02 1.50 H2O - Halite -1.70 -0.13 1.57 NaCl - Hexahydrite -2.43 -4.06 -1.63 MgSO4:6H2O - Kainite -5.72 -5.91 -0.19 KMgClSO4:3H2O - Kalicinite -5.72 -15.78 -10.06 KHCO3 - Kieserite -3.83 -3.95 -0.12 MgSO4:H2O - Labile_S -4.37 -10.04 -5.67 Na4Ca(SO4)3:2H2O - Leonhardite -3.13 -4.02 -0.89 MgSO4:4H2O - Leonite -6.25 -10.23 -3.98 K2Mg(SO4)2:4H2O - Magnesite 0.21 -7.62 -7.83 MgCO3 - Mirabilite -1.64 -2.85 -1.21 Na2SO4:10H2O - Misenite -67.98 -78.78 -10.81 K8H6(SO4)7 - Nahcolite -3.25 -13.99 -10.74 NaHCO3 - Natron -5.72 -6.54 -0.82 Na2CO3:10H2O - Nesquehonite -2.52 -7.68 -5.17 MgCO3:3H2O - Pentahydrite -2.75 -4.04 -1.28 MgSO4:5H2O - Pirssonite -5.54 -14.78 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite -5.88 -19.62 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.59 -14.78 -5.19 Ca(OH)2 - Schoenite -5.95 -10.28 -4.33 K2Mg(SO4)2:6H2O - Sylvite -2.82 -1.92 0.90 KCl - Syngenite -3.51 -10.95 -7.45 K2Ca(SO4)2:H2O - Trona -8.98 -20.37 -11.38 Na3H(CO3)2:2H2O - - -Reaction step 5. - -Using solution 1. Black Sea water -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 4.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - H2O -1.00000 - - Relative - Element moles - H -2.00000 - O -1.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.29 -4.51 -4.22 0.000e+000 0 0.000e+000 -Bischofite -5.51 -1.05 4.46 0.000e+000 0 0.000e+000 -CO2(g) -3.50 -4.96 -1.46 1.000e+001 1.000e+001 2.634e-005 -Calcite -0.00 -8.41 -8.41 3.696e-004 3.974e-004 2.773e-005 -Carnallite -6.93 -2.60 4.33 0.000e+000 0 0.000e+000 -Epsomite -1.99 -3.87 -1.88 0.000e+000 0 0.000e+000 -Glauberite -1.49 -6.74 -5.25 0.000e+000 0 0.000e+000 -Gypsum 0.00 -4.58 -4.58 0.000e+000 7.537e-004 7.537e-004 -Halite -1.29 0.28 1.57 0.000e+000 0 0.000e+000 -Hexahydrite -2.20 -3.84 -1.63 0.000e+000 0 0.000e+000 -Kieserite -3.54 -3.66 -0.12 0.000e+000 0 0.000e+000 -Polyhalite -4.85 -18.59 -13.74 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 3.255e-003 4.401e-004 - C 5.010e-004 6.774e-005 - Ca 3.469e-002 4.690e-003 - Cl 2.167e+000 2.930e-001 - K 3.668e-002 4.960e-003 - Mg 2.076e-001 2.807e-002 - Na 1.881e+000 2.544e-001 - S 1.074e-001 1.452e-002 - -----------------------------Description of solution---------------------------- - - pH = 7.588 Charge balance - pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 148315 - Density (g/cm3) = 1.09026 - Volume (L) = 0.14206 - Activity of water = 0.923 - Ionic strength = 2.744e+000 - Mass of water (kg) = 1.352e-001 - Total alkalinity (eq/kg) = 5.444e-004 - Total CO2 (mol/kg) = 5.010e-004 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.250e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.35 - Iterations = 18 - Gamma iterations = 5 - Osmotic coefficient = 1.00525 - Density of water = 0.99706 - Total H = 1.501023e+001 - Total O = 7.563354e+000 - -----------------------------Distribution of species---------------------------- - - MacInnes MacInnes - MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.053e-006 3.598e-007 -5.978 -6.444 -0.466 0.14 - H+ 1.788e-008 2.584e-008 -7.748 -7.588 0.160 0.00 - H2O 5.551e+001 9.228e-001 1.744 -0.035 0.000 18.07 -Br 3.255e-003 - Br- 3.255e-003 2.101e-003 -2.487 -2.677 -0.190 26.34 -C(4) 5.010e-004 - HCO3- 4.499e-004 1.783e-004 -3.347 -3.749 -0.402 31.13 - MgCO3 2.549e-005 2.549e-005 -4.594 -4.594 0.000 -17.09 - CO3-2 1.836e-005 3.159e-007 -4.736 -6.500 -1.764 3.96 - CO2 7.285e-006 1.096e-005 -5.138 -4.960 0.177 30.26 -Ca 3.469e-002 - Ca+2 3.469e-002 1.242e-002 -1.460 -1.906 -0.446 -15.60 -Cl 2.167e+000 - Cl- 2.167e+000 1.231e+000 0.336 0.090 -0.246 19.49 -K 3.668e-002 - K+ 3.668e-002 2.315e-002 -1.436 -1.636 -0.200 10.68 -Mg 2.076e-001 - Mg+2 2.076e-001 9.521e-002 -0.683 -1.021 -0.338 -19.25 - MgCO3 2.549e-005 2.549e-005 -4.594 -4.594 0.000 -17.09 - MgOH+ 5.809e-006 5.278e-006 -5.236 -5.278 -0.042 (0) -Na 1.881e+000 - Na+ 1.881e+000 1.550e+000 0.274 0.190 -0.084 0.37 -S(6) 1.074e-001 - SO4-2 1.074e-001 2.484e-003 -0.969 -2.605 -1.636 22.78 - HSO4- 1.130e-008 6.115e-009 -7.947 -8.214 -0.267 41.57 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -0.29 -4.51 -4.22 CaSO4 - Aragonite -0.19 -8.41 -8.22 CaCO3 - Arcanite -4.10 -5.88 -1.78 K2SO4 - Bischofite -5.51 -1.05 4.46 MgCl2:6H2O - Bloedite -3.64 -5.99 -2.35 Na2Mg(SO4)2:4H2O - Brucite -3.03 -13.91 -10.88 Mg(OH)2 - Burkeite -9.80 -10.57 -0.77 Na6CO3(SO4)2 - Calcite -0.00 -8.41 -8.41 CaCO3 - Carnallite -6.93 -2.60 4.33 KMgCl3:6H2O - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Dolomite 1.16 -15.93 -17.08 CaMg(CO3)2 - Epsomite -1.99 -3.87 -1.88 MgSO4:7H2O - Gaylussite -5.28 -14.70 -9.42 CaNa2(CO3)2:5H2O - Glaserite -6.12 -9.93 -3.80 NaK3(SO4)2 - Glauberite -1.49 -6.74 -5.25 Na2Ca(SO4)2 - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2O(g) -1.54 -0.03 1.50 H2O - Halite -1.29 0.28 1.57 NaCl - Hexahydrite -2.20 -3.84 -1.63 MgSO4:6H2O - Kainite -5.08 -5.28 -0.19 KMgClSO4:3H2O - Kalicinite -5.67 -15.72 -10.06 KHCO3 - Kieserite -3.54 -3.66 -0.12 MgSO4:H2O - Labile_S -3.36 -9.03 -5.67 Na4Ca(SO4)3:2H2O - Leonhardite -2.88 -3.77 -0.89 MgSO4:4H2O - Leonite -5.66 -9.64 -3.98 K2Mg(SO4)2:4H2O - Magnesite 0.31 -7.52 -7.83 MgCO3 - Mirabilite -1.36 -2.57 -1.21 Na2SO4:10H2O - Misenite -66.04 -76.84 -10.81 K8H6(SO4)7 - Nahcolite -3.16 -13.90 -10.74 NaHCO3 - Natron -5.64 -6.47 -0.82 Na2CO3:10H2O - Nesquehonite -2.46 -7.63 -5.17 MgCO3:3H2O - Pentahydrite -2.52 -3.80 -1.28 MgSO4:5H2O - Pirssonite -5.36 -14.60 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite -4.85 -18.59 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.60 -14.79 -5.19 Ca(OH)2 - Schoenite -5.38 -9.71 -4.33 K2Mg(SO4)2:6H2O - Sylvite -2.45 -1.55 0.90 KCl - Syngenite -2.97 -10.42 -7.45 K2Ca(SO4)2:H2O - Trona -8.70 -20.09 -11.38 Na3H(CO3)2:2H2O - - -Reaction step 6. - -Using solution 1. Black Sea water -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - H2O -1.00000 - - Relative - Element moles - H -2.00000 - O -1.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.27 -4.50 -4.22 0.000e+000 0 0.000e+000 -Bischofite -5.27 -0.82 4.46 0.000e+000 0 0.000e+000 -CO2(g) -3.50 -4.96 -1.46 1.000e+001 1.000e+001 4.552e-006 -Calcite 0.00 -8.41 -8.41 3.974e-004 4.015e-004 4.116e-006 -Carnallite -6.56 -2.23 4.33 0.000e+000 0 0.000e+000 -Epsomite -1.92 -3.81 -1.88 0.000e+000 0 0.000e+000 -Glauberite -1.34 -6.59 -5.25 0.000e+000 0 0.000e+000 -Gypsum 0.00 -4.58 -4.58 7.537e-004 1.574e-003 8.205e-004 -Halite -1.14 0.43 1.57 0.000e+000 0 0.000e+000 -Hexahydrite -2.13 -3.76 -1.63 0.000e+000 0 0.000e+000 -Kieserite -3.43 -3.56 -0.12 0.000e+000 0 0.000e+000 -Polyhalite -4.63 -18.37 -13.74 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 3.756e-003 4.401e-004 - C 5.042e-004 5.907e-005 - Ca 3.299e-002 3.865e-003 - Cl 2.501e+000 2.930e-001 - K 4.233e-002 4.960e-003 - Mg 2.396e-001 2.807e-002 - Na 2.171e+000 2.544e-001 - S 1.169e-001 1.370e-002 - -----------------------------Description of solution---------------------------- - - pH = 7.566 Charge balance - pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 174022 - Density (g/cm3) = 1.10241 - Volume (L) = 0.12397 - Activity of water = 0.909 - Ionic strength = 3.138e+000 - Mass of water (kg) = 1.172e-001 - Total alkalinity (eq/kg) = 5.580e-004 - Total CO2 (mol/kg) = 5.042e-004 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.250e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.35 - Iterations = 16 - Gamma iterations = 5 - Osmotic coefficient = 1.03297 - Density of water = 0.99706 - Total H = 1.300694e+001 - Total O = 6.558410e+000 - -----------------------------Distribution of species---------------------------- - - MacInnes MacInnes - MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.038e-006 3.370e-007 -5.984 -6.472 -0.488 0.61 - H+ 1.632e-008 2.719e-008 -7.787 -7.566 0.222 0.00 - H2O 5.551e+001 9.093e-001 1.744 -0.041 0.000 18.07 -Br 3.756e-003 - Br- 3.756e-003 2.474e-003 -2.425 -2.607 -0.181 26.45 -C(4) 5.042e-004 - HCO3- 4.455e-004 1.670e-004 -3.351 -3.777 -0.426 31.93 - MgCO3 3.187e-005 3.187e-005 -4.497 -4.497 0.000 -17.09 - CO3-2 1.995e-005 2.813e-007 -4.700 -6.551 -1.851 4.61 - CO2 6.870e-006 1.096e-005 -5.163 -4.960 0.203 30.26 -Ca 3.299e-002 - Ca+2 3.299e-002 1.395e-002 -1.482 -1.855 -0.374 -15.43 -Cl 2.501e+000 - Cl- 2.501e+000 1.423e+000 0.398 0.153 -0.245 19.58 -K 4.233e-002 - K+ 4.233e-002 2.713e-002 -1.373 -1.567 -0.193 10.86 -Mg 2.396e-001 - Mg+2 2.395e-001 1.337e-001 -0.621 -0.874 -0.253 -19.06 - MgCO3 3.187e-005 3.187e-005 -4.497 -4.497 0.000 -17.09 - MgOH+ 7.847e-006 6.943e-006 -5.105 -5.158 -0.053 (0) -Na 2.171e+000 - Na+ 2.171e+000 1.889e+000 0.337 0.276 -0.060 0.51 -S(6) 1.169e-001 - SO4-2 1.169e-001 2.277e-003 -0.932 -2.643 -1.710 23.38 - HSO4- 1.113e-008 5.898e-009 -7.953 -8.229 -0.276 41.65 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -0.27 -4.50 -4.22 CaSO4 - Aragonite -0.19 -8.41 -8.22 CaCO3 - Arcanite -4.00 -5.78 -1.78 K2SO4 - Bischofite -5.27 -0.82 4.46 MgCl2:6H2O - Bloedite -3.42 -5.77 -2.35 Na2Mg(SO4)2:4H2O - Brucite -2.94 -13.82 -10.88 Mg(OH)2 - Burkeite -9.41 -10.18 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.41 -8.41 CaCO3 - Carnallite -6.56 -2.23 4.33 KMgCl3:6H2O - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Dolomite 1.25 -15.83 -17.08 CaMg(CO3)2 - Epsomite -1.92 -3.81 -1.88 MgSO4:7H2O - Gaylussite -5.19 -14.61 -9.42 CaNa2(CO3)2:5H2O - Glaserite -5.91 -9.71 -3.80 NaK3(SO4)2 - Glauberite -1.34 -6.59 -5.25 Na2Ca(SO4)2 - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2O(g) -1.54 -0.04 1.50 H2O - Halite -1.14 0.43 1.57 NaCl - Hexahydrite -2.13 -3.76 -1.63 MgSO4:6H2O - Kainite -4.86 -5.05 -0.19 KMgClSO4:3H2O - Kalicinite -5.63 -15.68 -10.06 KHCO3 - Kieserite -3.43 -3.56 -0.12 MgSO4:H2O - Labile_S -3.09 -8.76 -5.67 Na4Ca(SO4)3:2H2O - Leonhardite -2.79 -3.68 -0.89 MgSO4:4H2O - Leonite -5.48 -9.46 -3.98 K2Mg(SO4)2:4H2O - Magnesite 0.41 -7.42 -7.83 MgCO3 - Mirabilite -1.29 -2.50 -1.21 Na2SO4:10H2O - Misenite -65.62 -76.43 -10.81 K8H6(SO4)7 - Nahcolite -3.10 -13.84 -10.74 NaHCO3 - Natron -5.59 -6.41 -0.82 Na2CO3:10H2O - Nesquehonite -2.38 -7.55 -5.17 MgCO3:3H2O - Pentahydrite -2.44 -3.72 -1.28 MgSO4:5H2O - Pirssonite -5.25 -14.49 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite -4.63 -18.37 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.61 -14.80 -5.19 Ca(OH)2 - Schoenite -5.21 -9.54 -4.33 K2Mg(SO4)2:6H2O - Sylvite -2.31 -1.41 0.90 KCl - Syngenite -2.87 -10.32 -7.45 K2Ca(SO4)2:H2O - Trona -8.54 -19.92 -11.38 Na3H(CO3)2:2H2O - - -Reaction step 7. - -Using solution 1. Black Sea water -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - H2O -1.00000 - - Relative - Element moles - H -2.00000 - O -1.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.25 -4.48 -4.22 0.000e+000 0 0.000e+000 -Bischofite -4.98 -0.52 4.46 0.000e+000 0 0.000e+000 -CO2(g) -3.50 -4.96 -1.46 1.000e+001 1.000e+001 4.536e-006 -Calcite 0.00 -8.41 -8.41 4.015e-004 4.053e-004 3.781e-006 -Carnallite -6.11 -1.78 4.33 0.000e+000 0 0.000e+000 -Epsomite -1.84 -3.72 -1.88 0.000e+000 0 0.000e+000 -Glauberite -1.16 -6.40 -5.25 0.000e+000 0 0.000e+000 -Gypsum 0.00 -4.58 -4.58 1.574e-003 2.447e-003 8.727e-004 -Halite -0.96 0.61 1.57 0.000e+000 0 0.000e+000 -Hexahydrite -2.04 -3.67 -1.63 0.000e+000 0 0.000e+000 -Kieserite -3.30 -3.42 -0.12 0.000e+000 0 0.000e+000 -Polyhalite -4.34 -18.08 -13.74 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 4.440e-003 4.401e-004 - C 5.121e-004 5.076e-005 - Ca 3.016e-002 2.989e-003 - Cl 2.957e+000 2.930e-001 - K 5.004e-002 4.960e-003 - Mg 2.832e-001 2.807e-002 - Na 2.566e+000 2.544e-001 - S 1.294e-001 1.282e-002 - -----------------------------Description of solution---------------------------- - - pH = 7.537 Charge balance - pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 218831 - Density (g/cm3) = 1.11845 - Volume (L) = 0.10590 - Activity of water = 0.890 - Ionic strength = 3.674e+000 - Mass of water (kg) = 9.912e-002 - Total alkalinity (eq/kg) = 5.833e-004 - Total CO2 (mol/kg) = 5.121e-004 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.250e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.35 - Iterations = 17 - Gamma iterations = 5 - Osmotic coefficient = 1.07237 - Density of water = 0.99706 - Total H = 1.100345e+001 - Total O = 5.553153e+000 - -----------------------------Distribution of species---------------------------- - - MacInnes MacInnes - MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.014e-006 3.087e-007 -5.994 -6.510 -0.517 1.23 - H+ 1.429e-008 2.905e-008 -7.845 -7.537 0.308 0.00 - H2O 5.551e+001 8.902e-001 1.744 -0.051 0.000 18.07 -Br 4.440e-003 - Br- 4.440e-003 3.019e-003 -2.353 -2.520 -0.168 26.59 -C(4) 5.121e-004 - HCO3- 4.409e-004 1.530e-004 -3.356 -3.815 -0.460 33.02 - MgCO3 4.296e-005 4.296e-005 -4.367 -4.367 0.000 -17.09 - CO3-2 2.185e-005 2.411e-007 -4.661 -6.618 -1.957 5.45 - CO2 6.345e-006 1.096e-005 -5.198 -4.960 0.237 30.26 -Ca 3.016e-002 - Ca+2 3.016e-002 1.627e-002 -1.521 -1.789 -0.268 -15.20 -Cl 2.957e+000 - Cl- 2.957e+000 1.693e+000 0.471 0.229 -0.242 19.69 -K 5.004e-002 - K+ 5.004e-002 3.292e-002 -1.301 -1.483 -0.182 11.10 -Mg 2.832e-001 - Mg+2 2.831e-001 2.102e-001 -0.548 -0.677 -0.129 -18.81 - MgCO3 4.296e-005 4.296e-005 -4.367 -4.367 0.000 -17.09 - MgOH+ 1.176e-005 1.000e-005 -4.930 -5.000 -0.070 (0) -Na 2.566e+000 - Na+ 2.566e+000 2.421e+000 0.409 0.384 -0.025 0.70 -S(6) 1.294e-001 - SO4-2 1.294e-001 2.037e-003 -0.888 -2.691 -1.803 24.13 - HSO4- 1.094e-008 5.638e-009 -7.961 -8.249 -0.288 41.74 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -0.25 -4.48 -4.22 CaSO4 - Aragonite -0.19 -8.41 -8.22 CaCO3 - Arcanite -3.88 -5.66 -1.78 K2SO4 - Bischofite -4.98 -0.52 4.46 MgCl2:6H2O - Bloedite -3.15 -5.49 -2.35 Na2Mg(SO4)2:4H2O - Brucite -2.82 -13.70 -10.88 Mg(OH)2 - Burkeite -8.92 -9.70 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.41 -8.41 CaCO3 - Carnallite -6.11 -1.78 4.33 KMgCl3:6H2O - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Dolomite 1.38 -15.70 -17.08 CaMg(CO3)2 - Epsomite -1.84 -3.72 -1.88 MgSO4:7H2O - Gaylussite -5.09 -14.51 -9.42 CaNa2(CO3)2:5H2O - Glaserite -5.64 -9.45 -3.80 NaK3(SO4)2 - Glauberite -1.16 -6.40 -5.25 Na2Ca(SO4)2 - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2O(g) -1.55 -0.05 1.50 H2O - Halite -0.96 0.61 1.57 NaCl - Hexahydrite -2.04 -3.67 -1.63 MgSO4:6H2O - Kainite -4.58 -4.77 -0.19 KMgClSO4:3H2O - Kalicinite -5.58 -15.64 -10.06 KHCO3 - Kieserite -3.30 -3.42 -0.12 MgSO4:H2O - Labile_S -2.75 -8.43 -5.67 Na4Ca(SO4)3:2H2O - Leonhardite -2.68 -3.57 -0.89 MgSO4:4H2O - Leonite -5.25 -9.23 -3.98 K2Mg(SO4)2:4H2O - Magnesite 0.54 -7.29 -7.83 MgCO3 - Mirabilite -1.21 -2.43 -1.21 Na2SO4:10H2O - Misenite -65.11 -75.92 -10.81 K8H6(SO4)7 - Nahcolite -3.03 -13.77 -10.74 NaHCO3 - Natron -5.53 -6.35 -0.82 Na2CO3:10H2O - Nesquehonite -2.28 -7.45 -5.17 MgCO3:3H2O - Pentahydrite -2.34 -3.62 -1.28 MgSO4:5H2O - Pirssonite -5.12 -14.36 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite -4.34 -18.08 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.62 -14.81 -5.19 Ca(OH)2 - Schoenite -5.00 -9.33 -4.33 K2Mg(SO4)2:6H2O - Sylvite -2.15 -1.25 0.90 KCl - Syngenite -2.74 -10.19 -7.45 K2Ca(SO4)2:H2O - Trona -8.34 -19.72 -11.38 Na3H(CO3)2:2H2O - - -Reaction step 8. - -Using solution 1. Black Sea water -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - H2O -1.00000 - - Relative - Element moles - H -2.00000 - O -1.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.23 -4.45 -4.22 0.000e+000 0 0.000e+000 -Bischofite -4.60 -0.14 4.46 0.000e+000 0 0.000e+000 -CO2(g) -3.50 -4.96 -1.46 1.000e+001 1.000e+001 4.501e-006 -Calcite 0.00 -8.41 -8.41 4.053e-004 4.082e-004 2.944e-006 -Carnallite -5.52 -1.19 4.33 0.000e+000 0 0.000e+000 -Epsomite -1.73 -3.61 -1.88 0.000e+000 0 0.000e+000 -Glauberite -0.91 -6.15 -5.25 0.000e+000 0 0.000e+000 -Gypsum 0.00 -4.58 -4.58 2.447e-003 3.361e-003 9.141e-004 -Halite -0.72 0.85 1.57 0.000e+000 0 0.000e+000 -Hexahydrite -1.91 -3.54 -1.63 0.000e+000 0 0.000e+000 -Kieserite -3.10 -3.22 -0.12 0.000e+000 0 0.000e+000 -Polyhalite -3.95 -17.69 -13.74 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 5.429e-003 4.401e-004 - C 5.343e-004 4.331e-005 - Ca 2.556e-002 2.072e-003 - Cl 3.615e+000 2.930e-001 - K 6.118e-002 4.960e-003 - Mg 3.462e-001 2.807e-002 - Na 3.138e+000 2.544e-001 - S 1.469e-001 1.191e-002 - -----------------------------Description of solution---------------------------- - - pH = 7.498 Charge balance - pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 286245 - Density (g/cm3) = 1.14064 - Volume (L) = 0.08786 - Activity of water = 0.861 - Ionic strength = 4.447e+000 - Mass of water (kg) = 8.107e-002 - Total alkalinity (eq/kg) = 6.405e-004 - Total CO2 (mol/kg) = 5.343e-004 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.250e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.35 - Iterations = 17 - Gamma iterations = 5 - Osmotic coefficient = 1.13202 - Density of water = 0.99706 - Total H = 8.999797e+000 - Total O = 4.547651e+000 - -----------------------------Distribution of species---------------------------- - - MacInnes MacInnes - MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 9.779e-007 2.728e-007 -6.010 -6.564 -0.554 2.11 - H+ 1.163e-008 3.180e-008 -7.935 -7.498 0.437 0.00 - H2O 5.551e+001 8.610e-001 1.744 -0.065 0.000 18.07 -Br 5.429e-003 - Br- 5.429e-003 3.891e-003 -2.265 -2.410 -0.145 26.77 -C(4) 5.343e-004 - HCO3- 4.386e-004 1.352e-004 -3.358 -3.869 -0.511 34.56 - MgCO3 6.590e-005 6.590e-005 -4.181 -4.181 0.000 -17.09 - CO3-2 2.411e-005 1.947e-007 -4.618 -6.711 -2.093 6.59 - CO2 5.658e-006 1.096e-005 -5.247 -4.960 0.287 30.26 -Ca 2.556e-002 - Ca+2 2.556e-002 2.016e-002 -1.592 -1.696 -0.103 -14.89 -Cl 3.615e+000 - Cl- 3.615e+000 2.104e+000 0.558 0.323 -0.235 19.84 -K 6.118e-002 - K+ 6.118e-002 4.214e-002 -1.213 -1.375 -0.162 11.44 -Mg 3.462e-001 - Mg+2 3.462e-001 3.995e-001 -0.461 -0.399 0.062 -18.46 - MgCO3 6.590e-005 6.590e-005 -4.181 -4.181 0.000 -17.09 - MgOH+ 2.096e-005 1.679e-005 -4.679 -4.775 -0.096 (0) -Na 3.138e+000 - Na+ 3.138e+000 3.366e+000 0.497 0.527 0.031 0.95 -S(6) 1.469e-001 - SO4-2 1.469e-001 1.758e-003 -0.833 -2.755 -1.922 25.12 - HSO4- 1.073e-008 5.326e-009 -7.970 -8.274 -0.304 41.85 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -0.23 -4.45 -4.22 CaSO4 - Aragonite -0.19 -8.41 -8.22 CaCO3 - Arcanite -3.73 -5.51 -1.78 K2SO4 - Bischofite -4.60 -0.14 4.46 MgCl2:6H2O - Bloedite -2.77 -5.11 -2.35 Na2Mg(SO4)2:4H2O - Brucite -2.65 -13.53 -10.88 Mg(OH)2 - Burkeite -8.29 -9.06 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.41 -8.41 CaCO3 - Carnallite -5.52 -1.19 4.33 KMgCl3:6H2O - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Dolomite 1.57 -15.52 -17.08 CaMg(CO3)2 - Epsomite -1.73 -3.61 -1.88 MgSO4:7H2O - Gaylussite -4.97 -14.39 -9.42 CaNa2(CO3)2:5H2O - Glaserite -5.31 -9.11 -3.80 NaK3(SO4)2 - Glauberite -0.91 -6.15 -5.25 Na2Ca(SO4)2 - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2O(g) -1.57 -0.06 1.50 H2O - Halite -0.72 0.85 1.57 NaCl - Hexahydrite -1.91 -3.54 -1.63 MgSO4:6H2O - Kainite -4.21 -4.40 -0.19 KMgClSO4:3H2O - Kalicinite -5.53 -15.58 -10.06 KHCO3 - Kieserite -3.10 -3.22 -0.12 MgSO4:H2O - Labile_S -2.31 -7.98 -5.67 Na4Ca(SO4)3:2H2O - Leonhardite -2.53 -3.41 -0.89 MgSO4:4H2O - Leonite -4.94 -8.92 -3.98 K2Mg(SO4)2:4H2O - Magnesite 0.72 -7.11 -7.83 MgCO3 - Mirabilite -1.14 -2.35 -1.21 Na2SO4:10H2O - Misenite -64.47 -75.27 -10.81 K8H6(SO4)7 - Nahcolite -2.94 -13.68 -10.74 NaHCO3 - Natron -5.48 -6.31 -0.82 Na2CO3:10H2O - Nesquehonite -2.14 -7.30 -5.17 MgCO3:3H2O - Pentahydrite -2.19 -3.48 -1.28 MgSO4:5H2O - Pirssonite -4.96 -14.19 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite -3.95 -17.69 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.63 -14.82 -5.19 Ca(OH)2 - Schoenite -4.72 -9.05 -4.33 K2Mg(SO4)2:6H2O - Sylvite -1.95 -1.05 0.90 KCl - Syngenite -2.57 -10.02 -7.45 K2Ca(SO4)2:H2O - Trona -8.08 -19.47 -11.38 Na3H(CO3)2:2H2O - - -Reaction step 9. - -Using solution 1. Black Sea water -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - H2O -1.00000 - - Relative - Element moles - H -2.00000 - O -1.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.17 -4.40 -4.22 0.000e+000 0 0.000e+000 -Bischofite -4.07 0.39 4.46 0.000e+000 0 0.000e+000 -CO2(g) -3.50 -4.96 -1.46 1.000e+001 1.000e+001 4.598e-006 -Calcite 0.00 -8.41 -8.41 4.082e-004 4.086e-004 3.617e-007 -Carnallite -4.72 -0.39 4.33 0.000e+000 0 0.000e+000 -Epsomite -1.56 -3.44 -1.88 0.000e+000 0 0.000e+000 -Glauberite -0.53 -5.78 -5.25 0.000e+000 0 0.000e+000 -Gypsum -0.00 -4.58 -4.58 3.361e-003 4.268e-003 9.065e-004 -Halite -0.39 1.18 1.57 0.000e+000 0 0.000e+000 -Hexahydrite -1.72 -3.35 -1.63 0.000e+000 0 0.000e+000 -Kieserite -2.78 -2.90 -0.12 0.000e+000 0 0.000e+000 -Polyhalite -3.34 -17.09 -13.74 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 6.984e-003 4.401e-004 - C 6.086e-004 3.835e-005 - Ca 1.849e-002 1.165e-003 - Cl 4.650e+000 2.930e-001 - K 7.870e-002 4.960e-003 - Mg 4.454e-001 2.807e-002 - Na 4.036e+000 2.544e-001 - S 1.746e-001 1.100e-002 - -----------------------------Description of solution---------------------------- - - pH = 7.441 Charge balance - pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 360816 - Density (g/cm3) = 1.17346 - Volume (L) = 0.06986 - Activity of water = 0.812 - Ionic strength = 5.663e+000 - Mass of water (kg) = 6.302e-002 - Total alkalinity (eq/kg) = 8.125e-004 - Total CO2 (mol/kg) = 6.086e-004 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.250e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.36 - Iterations = 20 - Gamma iterations = 6 - Osmotic coefficient = 1.23104 - Density of water = 0.99706 - Total H = 6.996171e+000 - Total O = 3.542201e+000 - -----------------------------Distribution of species---------------------------- - - MacInnes MacInnes - MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 9.202e-007 2.256e-007 -6.036 -6.647 -0.611 3.47 - H+ 8.191e-009 3.624e-008 -8.087 -7.441 0.646 0.00 - H2O 5.551e+001 8.116e-001 1.744 -0.091 0.000 18.07 -Br 6.984e-003 - Br- 6.984e-003 5.501e-003 -2.156 -2.260 -0.104 27.02 -C(4) 6.086e-004 - HCO3- 4.476e-004 1.118e-004 -3.349 -3.952 -0.602 36.97 - MgCO3 1.296e-004 1.296e-004 -3.887 -3.887 0.000 -17.09 - CO3-2 2.663e-005 1.413e-007 -4.575 -6.850 -2.275 8.28 - CO2 4.728e-006 1.096e-005 -5.325 -4.960 0.365 30.26 -Ca 1.849e-002 - Ca+2 1.849e-002 2.778e-002 -1.733 -1.556 0.177 -14.41 -Cl 4.650e+000 - Cl- 4.650e+000 2.806e+000 0.667 0.448 -0.219 20.04 -K 7.870e-002 - K+ 7.870e-002 5.905e-002 -1.104 -1.229 -0.125 11.98 -Mg 4.454e-001 - Mg+2 4.452e-001 1.083e+000 -0.351 0.035 0.386 -17.92 - MgCO3 1.296e-004 1.296e-004 -3.887 -3.887 0.000 -17.09 - MgOH+ 5.153e-005 3.764e-005 -4.288 -4.424 -0.136 (0) -Na 4.036e+000 - Na+ 4.036e+000 5.415e+000 0.606 0.734 0.128 1.32 -S(6) 1.746e-001 - SO4-2 1.746e-001 1.436e-003 -0.758 -2.843 -2.085 26.51 - HSO4- 1.061e-008 4.957e-009 -7.974 -8.305 -0.330 42.00 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -0.17 -4.40 -4.22 CaSO4 - Aragonite -0.19 -8.41 -8.22 CaCO3 - Arcanite -3.52 -5.30 -1.78 K2SO4 - Bischofite -4.07 0.39 4.46 MgCl2:6H2O - Bloedite -2.20 -4.55 -2.35 Na2Mg(SO4)2:4H2O - Brucite -2.38 -13.26 -10.88 Mg(OH)2 - Burkeite -7.36 -8.13 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.41 -8.41 CaCO3 - Carnallite -4.72 -0.39 4.33 KMgCl3:6H2O - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Dolomite 1.86 -15.22 -17.08 CaMg(CO3)2 - Epsomite -1.56 -3.44 -1.88 MgSO4:7H2O - Gaylussite -4.82 -14.24 -9.42 CaNa2(CO3)2:5H2O - Glaserite -4.84 -8.64 -3.80 NaK3(SO4)2 - Glauberite -0.53 -5.78 -5.25 Na2Ca(SO4)2 - Gypsum -0.00 -4.58 -4.58 CaSO4:2H2O - H2O(g) -1.59 -0.09 1.50 H2O - Halite -0.39 1.18 1.57 NaCl - Hexahydrite -1.72 -3.35 -1.63 MgSO4:6H2O - Kainite -3.67 -3.86 -0.19 KMgClSO4:3H2O - Kalicinite -5.46 -15.52 -10.06 KHCO3 - Kieserite -2.78 -2.90 -0.12 MgSO4:H2O - Labile_S -1.66 -7.33 -5.67 Na4Ca(SO4)3:2H2O - Leonhardite -2.28 -3.17 -0.89 MgSO4:4H2O - Leonite -4.49 -8.47 -3.98 K2Mg(SO4)2:4H2O - Magnesite 1.02 -6.82 -7.83 MgCO3 - Mirabilite -1.07 -2.28 -1.21 Na2SO4:10H2O - Misenite -63.57 -74.38 -10.81 K8H6(SO4)7 - Nahcolite -2.82 -13.56 -10.74 NaHCO3 - Natron -5.46 -6.29 -0.82 Na2CO3:10H2O - Nesquehonite -1.92 -7.09 -5.17 MgCO3:3H2O - Pentahydrite -1.98 -3.26 -1.28 MgSO4:5H2O - Pirssonite -4.74 -13.97 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite -3.34 -17.09 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.66 -14.85 -5.19 Ca(OH)2 - Schoenite -4.32 -8.65 -4.33 K2Mg(SO4)2:6H2O - Sylvite -1.68 -0.78 0.90 KCl - Syngenite -2.34 -9.79 -7.45 K2Ca(SO4)2:H2O - Trona -7.74 -19.12 -11.38 Na3H(CO3)2:2H2O - - -Reaction step 10. - -Using solution 1. Black Sea water -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - H2O -1.00000 - - Relative - Element moles - H -2.00000 - O -1.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.09 -4.32 -4.22 0.000e+000 0 0.000e+000 -Bischofite -3.42 1.03 4.46 0.000e+000 0 0.000e+000 -CO2(g) -3.50 -4.96 -1.46 1.000e+001 1.000e+001 5.362e-006 -Calcite 0.00 -8.41 -8.41 4.086e-004 4.004e-004 -8.136e-006 -Carnallite -3.74 0.59 4.33 0.000e+000 0 0.000e+000 -Epsomite -1.31 -3.19 -1.88 0.000e+000 0 0.000e+000 -Glauberite -0.02 -5.27 -5.25 0.000e+000 0 0.000e+000 -Gypsum 0.00 -4.58 -4.58 4.268e-003 4.966e-003 6.990e-004 -Halite 0.00 1.57 1.57 0.000e+000 2.327e-002 2.327e-002 -Hexahydrite -1.42 -3.06 -1.63 0.000e+000 0 0.000e+000 -Kieserite -2.28 -2.40 -0.12 0.000e+000 0 0.000e+000 -Polyhalite -2.40 -16.14 -13.74 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 9.785e-003 4.401e-004 - C 9.143e-004 4.113e-005 - Ca 1.054e-002 4.743e-004 - Cl 5.998e+000 2.698e-001 - K 1.103e-001 4.960e-003 - Mg 6.241e-001 2.807e-002 - Na 5.138e+000 2.311e-001 - S 2.291e-001 1.030e-002 - -----------------------------Description of solution---------------------------- - - pH = 7.384 Charge balance - pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 467460 - Density (g/cm3) = 1.21428 - Volume (L) = 0.05142 - Activity of water = 0.741 - Ionic strength = 7.354e+000 - Mass of water (kg) = 4.498e-002 - Total alkalinity (eq/kg) = 1.500e-003 - Total CO2 (mol/kg) = 9.143e-004 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.250e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.39 - Iterations = 20 - Gamma iterations = 6 - Osmotic coefficient = 1.37578 - Density of water = 0.99706 - Total H = 4.993375e+000 - Total O = 2.538021e+000 - -----------------------------Distribution of species---------------------------- - - MacInnes MacInnes - MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 9.013e-007 1.806e-007 -6.045 -6.743 -0.698 5.32 - H+ 4.812e-009 4.131e-008 -8.318 -7.384 0.934 0.00 - H2O 5.551e+001 7.405e-001 1.744 -0.130 0.000 18.07 -Br 9.785e-003 - Br- 9.785e-003 8.930e-003 -2.009 -2.049 -0.040 27.34 -C(4) 9.143e-004 - HCO3- 5.083e-004 8.949e-005 -3.294 -4.048 -0.754 40.28 - MgCO3 3.704e-004 3.704e-004 -3.431 -3.431 0.000 -17.09 - CO3-2 3.187e-005 9.918e-008 -4.497 -7.004 -2.507 10.45 - CO2 3.709e-006 1.096e-005 -5.431 -4.960 0.471 30.26 -Ca 1.054e-002 - Ca+2 1.054e-002 3.957e-002 -1.977 -1.403 0.574 -13.75 -Cl 5.998e+000 - Cl- 5.998e+000 3.852e+000 0.778 0.586 -0.192 20.28 -K 1.103e-001 - K+ 1.103e-001 9.444e-002 -0.958 -1.025 -0.067 12.72 -Mg 6.241e-001 - Mg+2 6.235e-001 4.407e+000 -0.205 0.644 0.849 -17.19 - MgCO3 3.704e-004 3.704e-004 -3.431 -3.431 0.000 -17.09 - MgOH+ 1.864e-004 1.226e-004 -3.730 -3.911 -0.182 (0) -Na 5.138e+000 - Na+ 5.138e+000 9.646e+000 0.711 0.984 0.274 1.80 -S(6) 2.291e-001 - SO4-2 2.291e-001 1.211e-003 -0.640 -2.917 -2.277 28.20 - HSO4- 1.093e-008 4.766e-009 -7.961 -8.322 -0.360 42.17 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -0.09 -4.32 -4.22 CaSO4 - Aragonite -0.19 -8.41 -8.22 CaCO3 - Arcanite -3.19 -4.97 -1.78 K2SO4 - Bischofite -3.42 1.03 4.46 MgCl2:6H2O - Bloedite -1.40 -3.74 -2.35 Na2Mg(SO4)2:4H2O - Brucite -1.96 -12.84 -10.88 Mg(OH)2 - Burkeite -6.16 -6.93 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.41 -8.41 CaCO3 - Carnallite -3.74 0.59 4.33 KMgCl3:6H2O - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Dolomite 2.32 -14.77 -17.08 CaMg(CO3)2 - Epsomite -1.31 -3.19 -1.88 MgSO4:7H2O - Gaylussite -4.67 -14.09 -9.42 CaNa2(CO3)2:5H2O - Glaserite -4.12 -7.92 -3.80 NaK3(SO4)2 - Glauberite -0.02 -5.27 -5.25 Na2Ca(SO4)2 - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2O(g) -1.63 -0.13 1.50 H2O - Halite 0.00 1.57 1.57 NaCl - Hexahydrite -1.42 -3.06 -1.63 MgSO4:6H2O - Kainite -2.91 -3.10 -0.19 KMgClSO4:3H2O - Kalicinite -5.35 -15.41 -10.06 KHCO3 - Kieserite -2.28 -2.40 -0.12 MgSO4:H2O - Labile_S -0.80 -6.48 -5.67 Na4Ca(SO4)3:2H2O - Leonhardite -1.91 -2.79 -0.89 MgSO4:4H2O - Leonite -3.78 -7.76 -3.98 K2Mg(SO4)2:4H2O - Magnesite 1.47 -6.36 -7.83 MgCO3 - Mirabilite -1.04 -2.25 -1.21 Na2SO4:10H2O - Misenite -62.11 -72.92 -10.81 K8H6(SO4)7 - Nahcolite -2.66 -13.40 -10.74 NaHCO3 - Natron -5.51 -6.34 -0.82 Na2CO3:10H2O - Nesquehonite -1.58 -6.75 -5.17 MgCO3:3H2O - Pentahydrite -1.64 -2.93 -1.28 MgSO4:5H2O - Pirssonite -4.47 -13.70 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite -2.40 -16.14 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.70 -14.89 -5.19 Ca(OH)2 - Schoenite -3.69 -8.02 -4.33 K2Mg(SO4)2:6H2O - Sylvite -1.34 -0.44 0.90 KCl - Syngenite -1.97 -9.42 -7.45 K2Ca(SO4)2:H2O - Trona -7.31 -18.70 -11.38 Na3H(CO3)2:2H2O - - -Reaction step 11. - -Using solution 1. Black Sea water -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - H2O -1.00000 - - Relative - Element moles - H -2.00000 - O -1.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.08 -4.31 -4.22 0.000e+000 0 0.000e+000 -Bischofite -3.11 1.34 4.46 0.000e+000 0 0.000e+000 -CO2(g) -3.50 -4.96 -1.46 1.000e+001 1.000e+001 4.270e-006 -Calcite 0.00 -8.41 -8.41 4.004e-004 3.970e-004 -3.400e-006 -Carnallite -3.17 1.16 4.33 0.000e+000 0 0.000e+000 -Epsomite -0.99 -2.87 -1.88 0.000e+000 0 0.000e+000 -Glauberite -0.00 -5.25 -5.25 0.000e+000 2.034e-003 2.034e-003 -Gypsum 0.00 -4.58 -4.58 4.966e-003 3.182e-003 -1.784e-003 -Halite 0.00 1.57 1.57 2.327e-002 1.303e-001 1.071e-001 -Hexahydrite -1.10 -2.73 -1.63 0.000e+000 0 0.000e+000 -Kieserite -1.93 -2.05 -0.12 0.000e+000 0 0.000e+000 -Polyhalite -1.50 -15.25 -13.74 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 1.628e-002 4.401e-004 - C 1.489e-003 4.026e-005 - Ca 8.447e-003 2.283e-004 - Cl 6.020e+000 1.627e-001 - K 1.835e-001 4.960e-003 - Mg 1.039e+000 2.807e-002 - Na 4.438e+000 1.200e-001 - S 2.968e-001 8.022e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.400 Charge balance - pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 485121 - Density (g/cm3) = 1.22168 - Volume (L) = 0.03091 - Activity of water = 0.731 - Ionic strength = 8.015e+000 - Mass of water (kg) = 2.703e-002 - Total alkalinity (eq/kg) = 2.748e-003 - Total CO2 (mol/kg) = 1.489e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.250e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.62 - Iterations = 22 - Gamma iterations = 6 - Osmotic coefficient = 1.45089 - Density of water = 0.99706 - Total H = 3.000512e+000 - Total O = 1.532459e+000 - -----------------------------Distribution of species---------------------------- - - MacInnes MacInnes - MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.275e-006 1.848e-007 -5.895 -6.733 -0.839 6.02 - H+ 4.083e-009 3.983e-008 -8.389 -7.400 0.989 0.00 - H2O 5.551e+001 7.307e-001 1.744 -0.136 0.000 18.07 -Br 1.628e-002 - Br- 1.628e-002 1.609e-002 -1.788 -1.794 -0.005 27.45 -C(4) 1.489e-003 - MgCO3 8.205e-004 8.205e-004 -3.086 -3.086 0.000 -17.09 - HCO3- 5.998e-004 9.159e-005 -3.222 -4.038 -0.816 41.55 - CO3-2 6.550e-005 1.053e-007 -4.184 -6.978 -2.794 11.26 - CO2 3.528e-006 1.096e-005 -5.453 -4.960 0.492 30.26 -Ca 8.447e-003 - Ca+2 8.447e-003 3.727e-002 -2.073 -1.429 0.645 -13.51 -Cl 6.020e+000 - Cl- 6.020e+000 3.970e+000 0.780 0.599 -0.181 20.37 -K 1.835e-001 - K+ 1.835e-001 1.655e-001 -0.736 -0.781 -0.045 13.00 -Mg 1.039e+000 - Mg+2 1.037e+000 9.196e+000 0.016 0.964 0.948 -16.90 - MgCO3 8.205e-004 8.205e-004 -3.086 -3.086 0.000 -17.09 - MgOH+ 3.749e-004 2.619e-004 -3.426 -3.582 -0.156 (0) -Na 4.438e+000 - Na+ 4.438e+000 9.358e+000 0.647 0.971 0.324 1.97 -S(6) 2.968e-001 - SO4-2 2.968e-001 1.320e-003 -0.528 -2.879 -2.352 28.81 - HSO4- 9.651e-009 5.009e-009 -8.015 -8.300 -0.285 42.23 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -0.08 -4.31 -4.22 CaSO4 - Aragonite -0.19 -8.41 -8.22 CaCO3 - Arcanite -2.67 -4.44 -1.78 K2SO4 - Bischofite -3.11 1.34 4.46 MgCl2:6H2O - Bloedite -1.05 -3.40 -2.35 Na2Mg(SO4)2:4H2O - Brucite -1.62 -12.50 -10.88 Mg(OH)2 - Burkeite -6.14 -6.91 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.41 -8.41 CaCO3 - Carnallite -3.17 1.16 4.33 KMgCl3:6H2O - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Dolomite 2.66 -14.42 -17.08 CaMg(CO3)2 - Epsomite -0.99 -2.87 -1.88 MgSO4:7H2O - Gaylussite -4.70 -14.12 -9.42 CaNa2(CO3)2:5H2O - Glaserite -3.33 -7.13 -3.80 NaK3(SO4)2 - Glauberite -0.00 -5.25 -5.25 Na2Ca(SO4)2 - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2O(g) -1.64 -0.14 1.50 H2O - Halite 0.00 1.57 1.57 NaCl - Hexahydrite -1.10 -2.73 -1.63 MgSO4:6H2O - Kainite -2.31 -2.51 -0.19 KMgClSO4:3H2O - Kalicinite -5.10 -15.16 -10.06 KHCO3 - Kieserite -1.93 -2.05 -0.12 MgSO4:H2O - Labile_S -0.78 -6.45 -5.67 Na4Ca(SO4)3:2H2O - Leonhardite -1.57 -2.46 -0.89 MgSO4:4H2O - Leonite -2.92 -6.90 -3.98 K2Mg(SO4)2:4H2O - Magnesite 1.82 -6.01 -7.83 MgCO3 - Mirabilite -1.09 -2.30 -1.21 Na2SO4:10H2O - Misenite -60.00 -70.80 -10.81 K8H6(SO4)7 - Nahcolite -2.66 -13.41 -10.74 NaHCO3 - Natron -5.57 -6.40 -0.82 Na2CO3:10H2O - Nesquehonite -1.26 -6.42 -5.17 MgCO3:3H2O - Pentahydrite -1.31 -2.60 -1.28 MgSO4:5H2O - Pirssonite -4.48 -13.71 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite -1.50 -15.25 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.71 -14.90 -5.19 Ca(OH)2 - Schoenite -2.85 -7.17 -4.33 K2Mg(SO4)2:6H2O - Sylvite -1.08 -0.18 0.90 KCl - Syngenite -1.44 -8.89 -7.45 K2Ca(SO4)2:H2O - Trona -7.33 -18.71 -11.38 Na3H(CO3)2:2H2O - - -Reaction step 12. - -Using solution 1. Black Sea water -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 2.500e-001 moles of the following reaction have been added: - - Relative - Reactant moles - - H2O -1.00000 - - Relative - Element moles - H -2.00000 - O -1.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.08 -4.30 -4.22 0.000e+000 0 0.000e+000 -Bischofite -2.98 1.47 4.46 0.000e+000 0 0.000e+000 -CO2(g) -3.50 -4.96 -1.46 1.000e+001 1.000e+001 1.288e-006 -Calcite 0.00 -8.41 -8.41 3.970e-004 3.941e-004 -2.972e-006 -Carnallite -2.94 1.39 4.33 0.000e+000 0 0.000e+000 -Epsomite -0.87 -2.75 -1.88 0.000e+000 0 0.000e+000 -Glauberite -0.00 -5.25 -5.25 2.034e-003 2.551e-003 5.174e-004 -Gypsum -0.00 -4.58 -4.58 3.182e-003 2.724e-003 -4.587e-004 -Halite 0.00 1.57 1.57 1.303e-001 1.569e-001 2.656e-002 -Hexahydrite -0.98 -2.61 -1.63 0.000e+000 0 0.000e+000 -Kieserite -1.79 -1.91 -0.12 0.000e+000 0 0.000e+000 -Polyhalite -1.16 -14.91 -13.74 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 1.953e-002 4.401e-004 - C 1.861e-003 4.194e-005 - Ca 7.656e-003 1.726e-004 - Cl 6.040e+000 1.362e-001 - K 2.200e-001 4.960e-003 - Mg 1.245e+000 2.807e-002 - Na 4.098e+000 9.237e-002 - S 3.303e-001 7.445e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.402 Charge balance - pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 495832 - Density (g/cm3) = 1.22557 - Volume (L) = 0.02579 - Activity of water = 0.725 - Ionic strength = 8.353e+000 - Mass of water (kg) = 2.254e-002 - Total alkalinity (eq/kg) = 3.559e-003 - Total CO2 (mol/kg) = 1.861e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.250e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.74 - Iterations = 21 - Gamma iterations = 6 - Osmotic coefficient = 1.49143 - Density of water = 0.99706 - Total H = 2.502346e+000 - Total O = 1.281079e+000 - -----------------------------Distribution of species---------------------------- - - MacInnes MacInnes - MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.493e-006 1.845e-007 -5.826 -6.734 -0.908 6.39 - H+ 3.776e-009 3.960e-008 -8.423 -7.402 1.021 0.00 - H2O 5.551e+001 7.251e-001 1.744 -0.140 0.000 18.07 -Br 1.953e-002 - Br- 1.953e-002 2.005e-002 -1.709 -1.698 0.011 27.51 -C(4) 1.861e-003 - MgCO3 1.120e-003 1.120e-003 -2.951 -2.951 0.000 -17.09 - HCO3- 6.470e-004 9.142e-005 -3.189 -4.039 -0.850 42.20 - CO3-2 9.058e-005 1.057e-007 -4.043 -6.976 -2.933 11.66 - CO2 3.434e-006 1.096e-005 -5.464 -4.960 0.504 30.26 -Ca 7.656e-003 - Ca+2 7.656e-003 3.713e-002 -2.116 -1.430 0.686 -13.38 -Cl 6.040e+000 - Cl- 6.040e+000 4.039e+000 0.781 0.606 -0.175 20.41 -K 2.200e-001 - K+ 2.200e-001 2.043e-001 -0.657 -0.690 -0.032 13.15 -Mg 1.245e+000 - Mg+2 1.244e+000 1.250e+001 0.095 1.097 1.002 -16.76 - MgCO3 1.120e-003 1.120e-003 -2.951 -2.951 0.000 -17.09 - MgOH+ 4.900e-004 3.553e-004 -3.310 -3.449 -0.140 (0) -Na 4.098e+000 - Na+ 4.098e+000 9.198e+000 0.613 0.964 0.351 2.06 -S(6) 3.303e-001 - SO4-2 3.303e-001 1.346e-003 -0.481 -2.871 -2.390 29.11 - HSO4- 8.990e-009 5.077e-009 -8.046 -8.294 -0.248 42.25 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -0.08 -4.30 -4.22 CaSO4 - Aragonite -0.19 -8.41 -8.22 CaCO3 - Arcanite -2.47 -4.25 -1.78 K2SO4 - Bischofite -2.98 1.47 4.46 MgCl2:6H2O - Bloedite -0.93 -3.28 -2.35 Na2Mg(SO4)2:4H2O - Brucite -1.49 -12.37 -10.88 Mg(OH)2 - Burkeite -6.16 -6.94 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.41 -8.41 CaCO3 - Carnallite -2.94 1.39 4.33 KMgCl3:6H2O - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Dolomite 2.80 -14.29 -17.08 CaMg(CO3)2 - Epsomite -0.87 -2.75 -1.88 MgSO4:7H2O - Gaylussite -4.73 -14.15 -9.42 CaNa2(CO3)2:5H2O - Glaserite -3.04 -6.85 -3.80 NaK3(SO4)2 - Glauberite -0.00 -5.25 -5.25 Na2Ca(SO4)2 - Gypsum -0.00 -4.58 -4.58 CaSO4:2H2O - H2O(g) -1.64 -0.14 1.50 H2O - Halite 0.00 1.57 1.57 NaCl - Hexahydrite -0.98 -2.61 -1.63 MgSO4:6H2O - Kainite -2.08 -2.28 -0.19 KMgClSO4:3H2O - Kalicinite -5.01 -15.07 -10.06 KHCO3 - Kieserite -1.79 -1.91 -0.12 MgSO4:H2O - Labile_S -0.80 -6.47 -5.67 Na4Ca(SO4)3:2H2O - Leonhardite -1.45 -2.33 -0.89 MgSO4:4H2O - Leonite -2.60 -6.58 -3.98 K2Mg(SO4)2:4H2O - Magnesite 1.95 -5.88 -7.83 MgCO3 - Mirabilite -1.13 -2.34 -1.21 Na2SO4:10H2O - Misenite -59.22 -70.03 -10.81 K8H6(SO4)7 - Nahcolite -2.67 -13.41 -10.74 NaHCO3 - Natron -5.62 -6.44 -0.82 Na2CO3:10H2O - Nesquehonite -1.13 -6.30 -5.17 MgCO3:3H2O - Pentahydrite -1.19 -2.47 -1.28 MgSO4:5H2O - Pirssonite -4.50 -13.73 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite -1.16 -14.91 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.71 -14.90 -5.19 Ca(OH)2 - Schoenite -2.53 -6.86 -4.33 K2Mg(SO4)2:6H2O - Sylvite -0.98 -0.08 0.90 KCl - Syngenite -1.24 -8.69 -7.45 K2Ca(SO4)2:H2O - Trona -7.36 -18.74 -11.38 Na3H(CO3)2:2H2O - - -Reaction step 13. - -Using solution 1. Black Sea water -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 2.500e-001 moles of the following reaction have been added: - - Relative - Reactant moles - - H2O -1.00000 - - Relative - Element moles - H -2.00000 - O -1.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.07 -4.29 -4.22 0.000e+000 0 0.000e+000 -Bischofite -2.81 1.65 4.46 0.000e+000 0 0.000e+000 -CO2(g) -3.50 -4.96 -1.46 1.000e+001 1.000e+001 1.506e-006 -Calcite 0.00 -8.41 -8.41 3.941e-004 3.876e-004 -6.469e-006 -Carnallite -2.64 1.69 4.33 0.000e+000 0 0.000e+000 -Epsomite -0.71 -2.59 -1.88 0.000e+000 0 0.000e+000 -Glauberite 0.00 -5.24 -5.25 2.551e-003 2.909e-003 3.576e-004 -Gypsum 0.00 -4.58 -4.58 2.724e-003 2.427e-003 -2.966e-004 -Halite 0.00 1.57 1.57 1.569e-001 1.834e-001 2.651e-002 -Hexahydrite -0.81 -2.45 -1.63 0.000e+000 0 0.000e+000 -Kieserite -1.60 -1.72 -0.12 0.000e+000 0 0.000e+000 -Polyhalite -0.71 -14.45 -13.74 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.439e-002 4.401e-004 - C 2.599e-003 4.690e-005 - Ca 6.539e-003 1.180e-004 - Cl 6.075e+000 1.096e-001 - K 2.748e-001 4.960e-003 - Mg 1.555e+000 2.807e-002 - Na 3.609e+000 6.514e-002 - S 3.893e-001 7.027e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.406 Charge balance - pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 515133 - Density (g/cm3) = 1.23221 - Volume (L) = 0.02068 - Activity of water = 0.716 - Ionic strength = 8.890e+000 - Mass of water (kg) = 1.805e-002 - Total alkalinity (eq/kg) = 5.162e-003 - Total CO2 (mol/kg) = 2.599e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.250e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.90 - Iterations = 24 - Gamma iterations = 6 - Osmotic coefficient = 1.55543 - Density of water = 0.99706 - Total H = 2.003533e+000 - Total O = 1.030014e+000 - -----------------------------Distribution of species---------------------------- - - MacInnes MacInnes - MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.883e-006 1.836e-007 -5.725 -6.736 -1.011 6.96 - H+ 3.323e-009 3.927e-008 -8.479 -7.406 1.073 0.00 - H2O 5.551e+001 7.157e-001 1.744 -0.145 0.000 18.07 -Br 2.439e-002 - Br- 2.439e-002 2.652e-002 -1.613 -1.576 0.036 27.59 -C(4) 2.599e-003 - MgCO3 1.718e-003 1.718e-003 -2.765 -2.765 0.000 -17.09 - HCO3- 7.320e-004 9.100e-005 -3.135 -4.041 -0.905 43.24 - CO3-2 1.452e-004 1.061e-007 -3.838 -6.974 -3.136 12.30 - CO2 3.281e-006 1.096e-005 -5.484 -4.960 0.524 30.26 -Ca 6.539e-003 - Ca+2 6.539e-003 3.698e-002 -2.185 -1.432 0.753 -13.18 -Cl 6.075e+000 - Cl- 6.075e+000 4.154e+000 0.784 0.618 -0.165 20.47 -K 2.748e-001 - K+ 2.748e-001 2.671e-001 -0.561 -0.573 -0.012 13.38 -Mg 1.555e+000 - Mg+2 1.553e+000 1.911e+001 0.191 1.281 1.090 -16.53 - MgCO3 1.718e-003 1.718e-003 -2.765 -2.765 0.000 -17.09 - MgOH+ 7.008e-004 5.407e-004 -3.154 -3.267 -0.113 (0) -Na 3.609e+000 - Na+ 3.609e+000 8.943e+000 0.557 0.951 0.394 2.20 -S(6) 3.893e-001 - SO4-2 3.893e-001 1.387e-003 -0.410 -2.858 -2.448 29.57 - HSO4- 8.131e-009 5.188e-009 -8.090 -8.285 -0.195 42.29 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -0.07 -4.29 -4.22 CaSO4 - Aragonite -0.19 -8.41 -8.22 CaCO3 - Arcanite -2.23 -4.00 -1.78 K2SO4 - Bischofite -2.81 1.65 4.46 MgCl2:6H2O - Bloedite -0.77 -3.11 -2.35 Na2Mg(SO4)2:4H2O - Brucite -1.31 -12.19 -10.88 Mg(OH)2 - Burkeite -6.21 -6.98 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.41 -8.41 CaCO3 - Carnallite -2.64 1.69 4.33 KMgCl3:6H2O - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Dolomite 2.98 -14.10 -17.08 CaMg(CO3)2 - Epsomite -0.71 -2.59 -1.88 MgSO4:7H2O - Gaylussite -4.78 -14.20 -9.42 CaNa2(CO3)2:5H2O - Glaserite -2.68 -6.48 -3.80 NaK3(SO4)2 - Glauberite 0.00 -5.24 -5.25 Na2Ca(SO4)2 - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2O(g) -1.65 -0.15 1.50 H2O - Halite 0.00 1.57 1.57 NaCl - Hexahydrite -0.81 -2.45 -1.63 MgSO4:6H2O - Kainite -1.77 -1.97 -0.19 KMgClSO4:3H2O - Kalicinite -4.90 -14.95 -10.06 KHCO3 - Kieserite -1.60 -1.72 -0.12 MgSO4:H2O - Labile_S -0.82 -6.49 -5.67 Na4Ca(SO4)3:2H2O - Leonhardite -1.27 -2.16 -0.89 MgSO4:4H2O - Leonite -2.18 -6.16 -3.98 K2Mg(SO4)2:4H2O - Magnesite 2.14 -5.69 -7.83 MgCO3 - Mirabilite -1.19 -2.41 -1.21 Na2SO4:10H2O - Misenite -58.22 -69.03 -10.81 K8H6(SO4)7 - Nahcolite -2.69 -13.43 -10.74 NaHCO3 - Natron -5.70 -6.52 -0.82 Na2CO3:10H2O - Nesquehonite -0.96 -6.13 -5.17 MgCO3:3H2O - Pentahydrite -1.02 -2.30 -1.28 MgSO4:5H2O - Pirssonite -4.53 -13.77 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite -0.71 -14.45 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.71 -14.90 -5.19 Ca(OH)2 - Schoenite -2.12 -6.45 -4.33 K2Mg(SO4)2:6H2O - Sylvite -0.85 0.05 0.90 KCl - Syngenite -0.99 -8.44 -7.45 K2Ca(SO4)2:H2O - Trona -7.41 -18.79 -11.38 Na3H(CO3)2:2H2O - - -Reaction step 14. - -Using solution 1. Black Sea water -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 1.760e-001 moles of the following reaction have been added: - - Relative - Reactant moles - - H2O -1.00000 - - Relative - Element moles - H -2.00000 - O -1.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.05 -4.28 -4.22 0.000e+000 0 0.000e+000 -Bischofite -2.64 1.82 4.46 0.000e+000 0 0.000e+000 -CO2(g) -3.50 -4.96 -1.46 1.000e+001 1.000e+001 1.362e-006 -Calcite 0.00 -8.41 -8.41 3.876e-004 3.777e-004 -9.938e-006 -Carnallite -2.35 1.98 4.33 0.000e+000 0 0.000e+000 -Epsomite -0.56 -2.44 -1.88 0.000e+000 0 0.000e+000 -Glauberite 0.00 -5.25 -5.25 2.909e-003 2.946e-003 3.731e-005 -Gypsum 0.00 -4.58 -4.58 2.427e-003 2.437e-003 9.592e-006 -Halite 0.00 1.57 1.57 1.834e-001 2.020e-001 1.864e-002 -Hexahydrite -0.66 -2.29 -1.63 0.000e+000 0 0.000e+000 -Kieserite -1.41 -1.53 -0.12 0.000e+000 0 0.000e+000 -Polyhalite -0.27 -14.01 -13.74 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.959e-002 4.401e-004 - C 3.729e-003 5.548e-005 - Ca 5.448e-003 8.105e-005 - Cl 6.117e+000 9.100e-002 - K 3.334e-001 4.960e-003 - Mg 1.887e+000 2.807e-002 - Na 3.121e+000 4.643e-002 - S 4.667e-001 6.943e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.410 Charge balance - pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 539390 - Density (g/cm3) = 1.24052 - Volume (L) = 0.01709 - Activity of water = 0.704 - Ionic strength = 9.513e+000 - Mass of water (kg) = 1.488e-002 - Total alkalinity (eq/kg) = 7.598e-003 - Total CO2 (mol/kg) = 3.729e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.250e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.06 - Iterations = 22 - Gamma iterations = 6 - Osmotic coefficient = 1.62789 - Density of water = 0.99706 - Total H = 1.651494e+000 - Total O = 8.536850e-001 - -----------------------------Distribution of species---------------------------- - - MacInnes MacInnes - MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 2.395e-006 1.822e-007 -5.621 -6.739 -1.119 7.62 - H+ 2.854e-009 3.893e-008 -8.545 -7.410 1.135 0.00 - H2O 5.551e+001 7.041e-001 1.744 -0.152 0.000 18.07 -Br 2.959e-002 - Br- 2.959e-002 3.424e-002 -1.529 -1.465 0.063 27.69 -C(4) 3.729e-003 - MgCO3 2.642e-003 2.642e-003 -2.578 -2.578 0.000 -17.09 - HCO3- 8.487e-004 9.030e-005 -3.071 -4.044 -0.973 44.43 - CO3-2 2.356e-004 1.062e-007 -3.628 -6.974 -3.346 13.03 - CO2 3.098e-006 1.096e-005 -5.509 -4.960 0.549 30.26 -Ca 5.448e-003 - Ca+2 5.448e-003 3.695e-002 -2.264 -1.432 0.831 -12.94 -Cl 6.117e+000 - Cl- 6.117e+000 4.294e+000 0.787 0.633 -0.154 20.54 -K 3.334e-001 - K+ 3.334e-001 3.410e-001 -0.477 -0.467 0.010 13.65 -Mg 1.887e+000 - Mg+2 1.883e+000 2.935e+001 0.275 1.468 1.193 -16.27 - MgCO3 2.642e-003 2.642e-003 -2.578 -2.578 0.000 -17.09 - MgOH+ 9.920e-004 8.242e-004 -3.003 -3.084 -0.080 (0) -Na 3.121e+000 - Na+ 3.121e+000 8.652e+000 0.494 0.937 0.443 2.35 -S(6) 4.667e-001 - SO4-2 4.667e-001 1.434e-003 -0.331 -2.843 -2.512 30.09 - HSO4- 7.368e-009 5.319e-009 -8.133 -8.274 -0.142 42.34 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -0.05 -4.28 -4.22 CaSO4 - Aragonite -0.19 -8.41 -8.22 CaCO3 - Arcanite -2.00 -3.78 -1.78 K2SO4 - Bischofite -2.64 1.82 4.46 MgCl2:6H2O - Bloedite -0.61 -2.95 -2.35 Na2Mg(SO4)2:4H2O - Brucite -1.13 -12.01 -10.88 Mg(OH)2 - Burkeite -6.27 -7.04 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.41 -8.41 CaCO3 - Carnallite -2.35 1.98 4.33 KMgCl3:6H2O - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Dolomite 3.17 -13.91 -17.08 CaMg(CO3)2 - Epsomite -0.56 -2.44 -1.88 MgSO4:7H2O - Gaylussite -4.85 -14.27 -9.42 CaNa2(CO3)2:5H2O - Glaserite -2.35 -6.15 -3.80 NaK3(SO4)2 - Glauberite 0.00 -5.25 -5.25 Na2Ca(SO4)2 - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2O(g) -1.66 -0.15 1.50 H2O - Halite 0.00 1.57 1.57 NaCl - Hexahydrite -0.66 -2.29 -1.63 MgSO4:6H2O - Kainite -1.47 -1.67 -0.19 KMgClSO4:3H2O - Kalicinite -4.79 -14.85 -10.06 KHCO3 - Kieserite -1.41 -1.53 -0.12 MgSO4:H2O - Labile_S -0.85 -6.52 -5.67 Na4Ca(SO4)3:2H2O - Leonhardite -1.10 -1.99 -0.89 MgSO4:4H2O - Leonite -1.78 -5.76 -3.98 K2Mg(SO4)2:4H2O - Magnesite 2.33 -5.51 -7.83 MgCO3 - Mirabilite -1.28 -2.49 -1.21 Na2SO4:10H2O - Misenite -57.29 -68.10 -10.81 K8H6(SO4)7 - Nahcolite -2.70 -13.45 -10.74 NaHCO3 - Natron -5.80 -6.62 -0.82 Na2CO3:10H2O - Nesquehonite -0.80 -5.96 -5.17 MgCO3:3H2O - Pentahydrite -0.85 -2.14 -1.28 MgSO4:5H2O - Pirssonite -4.58 -13.81 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite -0.27 -14.01 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.72 -14.91 -5.19 Ca(OH)2 - Schoenite -1.74 -6.07 -4.33 K2Mg(SO4)2:6H2O - Sylvite -0.73 0.17 0.90 KCl - Syngenite -0.76 -8.21 -7.45 K2Ca(SO4)2:H2O - Trona -7.47 -18.85 -11.38 Na3H(CO3)2:2H2O - - -Reaction step 15. - -Using solution 1. Black Sea water -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 5.000e-002 moles of the following reaction have been added: - - Relative - Reactant moles - - H2O -1.00000 - - Relative - Element moles - H -2.00000 - O -1.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.05 -4.27 -4.22 0.000e+000 0 0.000e+000 -Bischofite -2.57 1.88 4.46 0.000e+000 0 0.000e+000 -CO2(g) -3.50 -4.96 -1.46 1.000e+001 1.000e+001 4.772e-007 -Calcite 0.00 -8.41 -8.41 3.777e-004 3.731e-004 -4.596e-006 -Carnallite -2.24 2.09 4.33 0.000e+000 0 0.000e+000 -Epsomite -0.51 -2.39 -1.88 0.000e+000 0 0.000e+000 -Glauberite -0.00 -5.25 -5.25 2.946e-003 2.894e-003 -5.167e-005 -Gypsum 0.00 -4.58 -4.58 2.437e-003 2.503e-003 6.638e-005 -Halite 0.00 1.57 1.57 2.020e-001 2.073e-001 5.297e-003 -Hexahydrite -0.60 -2.23 -1.63 0.000e+000 0 0.000e+000 -Kieserite -1.34 -1.46 -0.12 0.000e+000 0 0.000e+000 -Polyhalite -0.11 -13.86 -13.74 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 3.150e-002 4.401e-004 - C 4.265e-003 5.960e-005 - Ca 5.077e-003 7.094e-005 - Cl 6.133e+000 8.570e-002 - K 3.550e-001 4.960e-003 - Mg 2.009e+000 2.807e-002 - Na 2.951e+000 4.123e-002 - S 4.995e-001 6.980e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.411 Charge balance - pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 548763 - Density (g/cm3) = 1.24393 - Volume (L) = 0.01608 - Activity of water = 0.699 - Ionic strength = 9.755e+000 - Mass of water (kg) = 1.397e-002 - Total alkalinity (eq/kg) = 8.747e-003 - Total CO2 (mol/kg) = 4.265e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.250e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.11 - Iterations = 21 - Gamma iterations = 6 - Osmotic coefficient = 1.65552 - Density of water = 0.99706 - Total H = 1.551229e+000 - Total O = 8.037129e-001 - -----------------------------Distribution of species---------------------------- - - MacInnes MacInnes - MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 2.612e-006 1.816e-007 -5.583 -6.741 -1.158 7.88 - H+ 2.687e-009 3.882e-008 -8.571 -7.411 1.160 0.00 - H2O 5.551e+001 6.995e-001 1.744 -0.155 0.000 18.07 -Br 3.150e-002 - Br- 3.150e-002 3.730e-002 -1.502 -1.428 0.073 27.73 -C(4) 4.265e-003 - MgCO3 3.082e-003 3.082e-003 -2.511 -2.511 0.000 -17.09 - HCO3- 9.004e-004 8.997e-005 -3.046 -4.046 -1.000 44.90 - CO3-2 2.800e-004 1.061e-007 -3.553 -6.974 -3.421 13.31 - CO2 3.026e-006 1.096e-005 -5.519 -4.960 0.559 30.26 -Ca 5.077e-003 - Ca+2 5.077e-003 3.698e-002 -2.294 -1.432 0.862 -12.85 -Cl 6.133e+000 - Cl- 6.133e+000 4.350e+000 0.788 0.639 -0.149 20.57 -K 3.550e-001 - K+ 3.550e-001 3.701e-001 -0.450 -0.432 0.018 13.75 -Mg 2.009e+000 - Mg+2 2.005e+000 3.427e+001 0.302 1.535 1.233 -16.16 - MgCO3 3.082e-003 3.082e-003 -2.511 -2.511 0.000 -17.09 - MgOH+ 1.121e-003 9.586e-004 -2.951 -3.018 -0.068 (0) -Na 2.951e+000 - Na+ 2.951e+000 8.541e+000 0.470 0.931 0.462 2.41 -S(6) 4.995e-001 - SO4-2 4.995e-001 1.452e-003 -0.301 -2.838 -2.536 30.29 - HSO4- 7.123e-009 5.370e-009 -8.147 -8.270 -0.123 42.35 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -0.05 -4.27 -4.22 CaSO4 - Aragonite -0.19 -8.41 -8.22 CaCO3 - Arcanite -1.93 -3.70 -1.78 K2SO4 - Bischofite -2.57 1.88 4.46 MgCl2:6H2O - Bloedite -0.55 -2.90 -2.35 Na2Mg(SO4)2:4H2O - Brucite -1.07 -11.95 -10.88 Mg(OH)2 - Burkeite -6.29 -7.06 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.41 -8.41 CaCO3 - Carnallite -2.24 2.09 4.33 KMgCl3:6H2O - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Dolomite 3.24 -13.85 -17.08 CaMg(CO3)2 - Epsomite -0.51 -2.39 -1.88 MgSO4:7H2O - Gaylussite -4.87 -14.29 -9.42 CaNa2(CO3)2:5H2O - Glaserite -2.24 -6.04 -3.80 NaK3(SO4)2 - Glauberite -0.00 -5.25 -5.25 Na2Ca(SO4)2 - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2O(g) -1.66 -0.16 1.50 H2O - Halite 0.00 1.57 1.57 NaCl - Hexahydrite -0.60 -2.23 -1.63 MgSO4:6H2O - Kainite -1.37 -1.56 -0.19 KMgClSO4:3H2O - Kalicinite -4.76 -14.82 -10.06 KHCO3 - Kieserite -1.34 -1.46 -0.12 MgSO4:H2O - Labile_S -0.86 -6.53 -5.67 Na4Ca(SO4)3:2H2O - Leonhardite -1.04 -1.92 -0.89 MgSO4:4H2O - Leonite -1.65 -5.63 -3.98 K2Mg(SO4)2:4H2O - Magnesite 2.39 -5.44 -7.83 MgCO3 - Mirabilite -1.31 -2.53 -1.21 Na2SO4:10H2O - Misenite -56.98 -67.79 -10.81 K8H6(SO4)7 - Nahcolite -2.71 -13.45 -10.74 NaHCO3 - Natron -5.84 -6.66 -0.82 Na2CO3:10H2O - Nesquehonite -0.74 -5.91 -5.17 MgCO3:3H2O - Pentahydrite -0.79 -2.08 -1.28 MgSO4:5H2O - Pirssonite -4.59 -13.83 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite -0.11 -13.86 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.72 -14.91 -5.19 Ca(OH)2 - Schoenite -1.61 -5.94 -4.33 K2Mg(SO4)2:6H2O - Sylvite -0.69 0.21 0.90 KCl - Syngenite -0.68 -8.13 -7.45 K2Ca(SO4)2:H2O - Trona -7.49 -18.88 -11.38 Na3H(CO3)2:2H2O - - -Reaction step 16. - -Using solution 1. Black Sea water -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 5.000e-002 moles of the following reaction have been added: - - Relative - Reactant moles - - H2O -1.00000 - - Relative - Element moles - H -2.00000 - O -1.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.04 -4.26 -4.22 0.000e+000 0 0.000e+000 -Bischofite -2.51 1.94 4.46 0.000e+000 0 0.000e+000 -CO2(g) -3.50 -4.96 -1.46 1.000e+001 1.000e+001 4.715e-007 -Calcite 0.00 -8.41 -8.41 3.731e-004 3.681e-004 -4.964e-006 -Carnallite -2.16 2.17 4.33 0.000e+000 0 0.000e+000 -Epsomite -0.46 -2.34 -1.88 0.000e+000 0 0.000e+000 -Glauberite 0.00 -5.25 -5.25 2.894e-003 2.592e-003 -3.023e-004 -Gypsum 0.00 -4.58 -4.58 2.503e-003 2.540e-003 3.668e-005 -Halite 0.00 1.57 1.57 2.073e-001 2.128e-001 5.477e-003 -Hexahydrite -0.54 -2.18 -1.63 0.000e+000 0 0.000e+000 -Kieserite -1.26 -1.39 -0.12 0.000e+000 0 0.000e+000 -Polyhalite 0.00 -13.74 -13.74 0.000e+000 1.399e-004 1.399e-004 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 3.368e-002 4.401e-004 - C 4.905e-003 6.409e-005 - Ca 4.714e-003 6.159e-005 - Cl 6.140e+000 8.023e-002 - K 3.582e-001 4.680e-003 - Mg 2.138e+000 2.793e-002 - Na 2.783e+000 3.636e-002 - S 5.348e-001 6.988e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.412 Charge balance - pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 557669 - Density (g/cm3) = 1.24730 - Volume (L) = 0.01505 - Activity of water = 0.695 - Ionic strength = 1.000e+001 - Mass of water (kg) = 1.307e-002 - Total alkalinity (eq/kg) = 1.011e-002 - Total CO2 (mol/kg) = 4.905e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.250e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.17 - Iterations = 20 - Gamma iterations = 6 - Osmotic coefficient = 1.68640 - Density of water = 0.99706 - Total H = 1.450522e+000 - Total O = 7.534058e-001 - -----------------------------Distribution of species---------------------------- - - MacInnes MacInnes - MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 2.865e-006 1.805e-007 -5.543 -6.743 -1.201 8.14 - H+ 2.528e-009 3.877e-008 -8.597 -7.412 1.186 0.00 - H2O 5.551e+001 6.946e-001 1.744 -0.158 0.000 18.07 -Br 3.368e-002 - Br- 3.368e-002 4.084e-002 -1.473 -1.389 0.084 27.76 -C(4) 4.905e-003 - MgCO3 3.608e-003 3.608e-003 -2.443 -2.443 0.000 -17.09 - HCO3- 9.581e-004 8.946e-005 -3.019 -4.048 -1.030 45.38 - CO3-2 3.365e-004 1.057e-007 -3.473 -6.976 -3.503 13.59 - CO2 2.951e-006 1.096e-005 -5.530 -4.960 0.570 30.26 -Ca 4.714e-003 - Ca+2 4.714e-003 3.714e-002 -2.327 -1.430 0.896 -12.76 -Cl 6.140e+000 - Cl- 6.140e+000 4.401e+000 0.788 0.644 -0.145 20.59 -K 3.582e-001 - K+ 3.582e-001 3.815e-001 -0.446 -0.418 0.027 13.86 -Mg 2.138e+000 - Mg+2 2.133e+000 4.029e+001 0.329 1.605 1.276 -16.06 - MgCO3 3.608e-003 3.608e-003 -2.443 -2.443 0.000 -17.09 - MgOH+ 1.265e-003 1.121e-003 -2.898 -2.951 -0.053 (0) -Na 2.783e+000 - Na+ 2.783e+000 8.442e+000 0.444 0.926 0.482 2.48 -S(6) 5.348e-001 - SO4-2 5.348e-001 1.466e-003 -0.272 -2.834 -2.562 30.49 - HSO4- 6.859e-009 5.414e-009 -8.164 -8.266 -0.103 42.37 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -0.04 -4.26 -4.22 CaSO4 - Aragonite -0.19 -8.41 -8.22 CaCO3 - Arcanite -1.89 -3.67 -1.78 K2SO4 - Bischofite -2.51 1.94 4.46 MgCl2:6H2O - Bloedite -0.50 -2.84 -2.35 Na2Mg(SO4)2:4H2O - Brucite -1.00 -11.88 -10.88 Mg(OH)2 - Burkeite -6.31 -7.09 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.41 -8.41 CaCO3 - Carnallite -2.16 2.17 4.33 KMgCl3:6H2O - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Dolomite 3.31 -13.78 -17.08 CaMg(CO3)2 - Epsomite -0.46 -2.34 -1.88 MgSO4:7H2O - Gaylussite -4.90 -14.32 -9.42 CaNa2(CO3)2:5H2O - Glaserite -2.19 -6.00 -3.80 NaK3(SO4)2 - Glauberite 0.00 -5.25 -5.25 Na2Ca(SO4)2 - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2O(g) -1.66 -0.16 1.50 H2O - Halite 0.00 1.57 1.57 NaCl - Hexahydrite -0.54 -2.18 -1.63 MgSO4:6H2O - Kainite -1.29 -1.48 -0.19 KMgClSO4:3H2O - Kalicinite -4.75 -14.81 -10.06 KHCO3 - Kieserite -1.26 -1.39 -0.12 MgSO4:H2O - Labile_S -0.87 -6.54 -5.67 Na4Ca(SO4)3:2H2O - Leonhardite -0.97 -1.86 -0.89 MgSO4:4H2O - Leonite -1.55 -5.53 -3.98 K2Mg(SO4)2:4H2O - Magnesite 2.46 -5.37 -7.83 MgCO3 - Mirabilite -1.35 -2.56 -1.21 Na2SO4:10H2O - Misenite -56.85 -67.65 -10.81 K8H6(SO4)7 - Nahcolite -2.72 -13.46 -10.74 NaHCO3 - Natron -5.88 -6.71 -0.82 Na2CO3:10H2O - Nesquehonite -0.68 -5.85 -5.17 MgCO3:3H2O - Pentahydrite -0.73 -2.02 -1.28 MgSO4:5H2O - Pirssonite -4.61 -13.85 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite 0.00 -13.74 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.73 -14.92 -5.19 Ca(OH)2 - Schoenite -1.52 -5.85 -4.33 K2Mg(SO4)2:6H2O - Sylvite -0.67 0.23 0.90 KCl - Syngenite -0.65 -8.09 -7.45 K2Ca(SO4)2:H2O - Trona -7.52 -18.90 -11.38 Na3H(CO3)2:2H2O - - -Reaction step 17. - -Using solution 1. Black Sea water -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 5.000e-002 moles of the following reaction have been added: - - Relative - Reactant moles - - H2O -1.00000 - - Relative - Element moles - H -2.00000 - O -1.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.03 -4.26 -4.22 0.000e+000 0 0.000e+000 -Bischofite -2.45 2.00 4.46 0.000e+000 0 0.000e+000 -CO2(g) -3.50 -4.96 -1.46 1.000e+001 1.000e+001 3.995e-007 -Calcite 0.00 -8.41 -8.41 3.681e-004 3.636e-004 -4.483e-006 -Carnallite -2.14 2.19 4.33 0.000e+000 0 0.000e+000 -Epsomite -0.40 -2.29 -1.88 0.000e+000 0 0.000e+000 -Glauberite 0.00 -5.25 -5.25 2.592e-003 1.882e-003 -7.103e-004 -Gypsum 0.00 -4.58 -4.58 2.540e-003 2.479e-003 -6.092e-005 -Halite 0.00 1.57 1.57 2.128e-001 2.186e-001 5.797e-003 -Hexahydrite -0.49 -2.12 -1.63 0.000e+000 0 0.000e+000 -Kieserite -1.20 -1.32 -0.12 0.000e+000 0 0.000e+000 -Polyhalite 0.00 -13.74 -13.74 1.399e-004 5.319e-004 3.920e-004 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 3.621e-002 4.401e-004 - C 5.610e-003 6.818e-005 - Ca 4.391e-003 5.337e-005 - Cl 6.124e+000 7.443e-002 - K 3.206e-001 3.896e-003 - Mg 2.266e+000 2.754e-002 - Na 2.632e+000 3.198e-002 - S 5.679e-001 6.901e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.411 Charge balance - pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 563614 - Density (g/cm3) = 1.24995 - Volume (L) = 0.01400 - Activity of water = 0.690 - Ionic strength = 1.022e+001 - Mass of water (kg) = 1.215e-002 - Total alkalinity (eq/kg) = 1.161e-002 - Total CO2 (mol/kg) = 5.610e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.250e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.25 - Iterations = 21 - Gamma iterations = 6 - Osmotic coefficient = 1.72044 - Density of water = 0.99706 - Total H = 1.349198e+000 - Total O = 7.024111e-001 - -----------------------------Distribution of species---------------------------- - - MacInnes MacInnes - MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 3.154e-006 1.790e-007 -5.501 -6.747 -1.246 8.37 - H+ 2.400e-009 3.886e-008 -8.620 -7.411 1.209 0.00 - H2O 5.551e+001 6.904e-001 1.744 -0.161 0.000 18.07 -Br 3.621e-002 - Br- 3.621e-002 4.482e-002 -1.441 -1.349 0.093 27.80 -C(4) 5.610e-003 - MgCO3 4.184e-003 4.184e-003 -2.378 -2.378 0.000 -17.09 - HCO3- 1.015e-003 8.871e-005 -2.993 -4.052 -1.059 45.80 - CO3-2 4.072e-004 1.045e-007 -3.390 -6.981 -3.591 13.84 - CO2 2.883e-006 1.096e-005 -5.540 -4.960 0.580 30.26 -Ca 4.391e-003 - Ca+2 4.391e-003 3.754e-002 -2.357 -1.425 0.932 -12.68 -Cl 6.124e+000 - Cl- 6.124e+000 4.431e+000 0.787 0.646 -0.141 20.62 -K 3.206e-001 - K+ 3.206e-001 3.497e-001 -0.494 -0.456 0.038 13.95 -Mg 2.266e+000 - Mg+2 2.260e+000 4.724e+001 0.354 1.674 1.320 -15.97 - MgCO3 4.184e-003 4.184e-003 -2.378 -2.378 0.000 -17.09 - MgOH+ 1.410e-003 1.303e-003 -2.851 -2.885 -0.034 (0) -Na 2.632e+000 - Na+ 2.632e+000 8.385e+000 0.420 0.923 0.503 2.53 -S(6) 5.679e-001 - SO4-2 5.679e-001 1.468e-003 -0.246 -2.833 -2.588 30.67 - HSO4- 6.567e-009 5.434e-009 -8.183 -8.265 -0.082 42.38 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -0.03 -4.26 -4.22 CaSO4 - Aragonite -0.19 -8.41 -8.22 CaCO3 - Arcanite -1.97 -3.75 -1.78 K2SO4 - Bischofite -2.45 2.00 4.46 MgCl2:6H2O - Bloedite -0.44 -2.79 -2.35 Na2Mg(SO4)2:4H2O - Brucite -0.94 -11.82 -10.88 Mg(OH)2 - Burkeite -6.33 -7.11 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.41 -8.41 CaCO3 - Carnallite -2.14 2.19 4.33 KMgCl3:6H2O - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Dolomite 3.37 -13.71 -17.08 CaMg(CO3)2 - Epsomite -0.40 -2.29 -1.88 MgSO4:7H2O - Gaylussite -4.92 -14.34 -9.42 CaNa2(CO3)2:5H2O - Glaserite -2.31 -6.11 -3.80 NaK3(SO4)2 - Glauberite 0.00 -5.25 -5.25 Na2Ca(SO4)2 - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2O(g) -1.66 -0.16 1.50 H2O - Halite 0.00 1.57 1.57 NaCl - Hexahydrite -0.49 -2.12 -1.63 MgSO4:6H2O - Kainite -1.26 -1.45 -0.19 KMgClSO4:3H2O - Kalicinite -4.79 -14.85 -10.06 KHCO3 - Kieserite -1.20 -1.32 -0.12 MgSO4:H2O - Labile_S -0.88 -6.55 -5.67 Na4Ca(SO4)3:2H2O - Leonhardite -0.92 -1.80 -0.89 MgSO4:4H2O - Leonite -1.57 -5.55 -3.98 K2Mg(SO4)2:4H2O - Magnesite 2.53 -5.31 -7.83 MgCO3 - Mirabilite -1.38 -2.60 -1.21 Na2SO4:10H2O - Misenite -57.14 -67.95 -10.81 K8H6(SO4)7 - Nahcolite -2.73 -13.47 -10.74 NaHCO3 - Natron -5.92 -6.74 -0.82 Na2CO3:10H2O - Nesquehonite -0.62 -5.79 -5.17 MgCO3:3H2O - Pentahydrite -0.68 -1.96 -1.28 MgSO4:5H2O - Pirssonite -4.63 -13.86 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite 0.00 -13.74 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.73 -14.92 -5.19 Ca(OH)2 - Schoenite -1.54 -5.87 -4.33 K2Mg(SO4)2:6H2O - Sylvite -0.71 0.19 0.90 KCl - Syngenite -0.72 -8.17 -7.45 K2Ca(SO4)2:H2O - Trona -7.54 -18.92 -11.38 Na3H(CO3)2:2H2O - - -Reaction step 18. - -Using solution 1. Black Sea water -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 5.000e-002 moles of the following reaction have been added: - - Relative - Reactant moles - - H2O -1.00000 - - Relative - Element moles - H -2.00000 - O -1.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.03 -4.25 -4.22 0.000e+000 0 0.000e+000 -Bischofite -2.38 2.07 4.46 0.000e+000 0 0.000e+000 -CO2(g) -3.50 -4.96 -1.46 1.000e+001 1.000e+001 4.689e-007 -Calcite 0.00 -8.41 -8.41 3.636e-004 3.573e-004 -6.271e-006 -Carnallite -2.11 2.22 4.33 0.000e+000 0 0.000e+000 -Epsomite -0.35 -2.23 -1.88 0.000e+000 0 0.000e+000 -Glauberite 0.00 -5.25 -5.25 1.882e-003 1.168e-003 -7.140e-004 -Gypsum 0.00 -4.58 -4.58 2.479e-003 2.468e-003 -1.114e-005 -Halite 0.00 1.57 1.57 2.186e-001 2.244e-001 5.779e-003 -Hexahydrite -0.43 -2.06 -1.63 0.000e+000 0 0.000e+000 -Kieserite -1.12 -1.24 -0.12 0.000e+000 0 0.000e+000 -Polyhalite -0.00 -13.74 -13.74 5.319e-004 9.017e-004 3.697e-004 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 3.916e-002 4.401e-004 - C 6.582e-003 7.398e-005 - Ca 4.028e-003 4.527e-005 - Cl 6.108e+000 6.865e-002 - K 2.808e-001 3.157e-003 - Mg 2.417e+000 2.717e-002 - Na 2.459e+000 2.763e-002 - S 6.105e-001 6.861e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.409 Charge balance - pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 571695 - Density (g/cm3) = 1.25340 - Volume (L) = 0.01295 - Activity of water = 0.685 - Ionic strength = 1.050e+001 - Mass of water (kg) = 1.124e-002 - Total alkalinity (eq/kg) = 1.367e-002 - Total CO2 (mol/kg) = 6.582e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.250e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.34 - Iterations = 40 - Gamma iterations = 6 - Osmotic coefficient = 1.76136 - Density of water = 0.99706 - Total H = 1.247764e+000 - Total O = 6.515522e-001 - -----------------------------Distribution of species---------------------------- - - MacInnes MacInnes - MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 3.526e-006 1.771e-007 -5.453 -6.752 -1.299 8.67 - H+ 2.251e-009 3.896e-008 -8.648 -7.409 1.238 0.00 - H2O 5.551e+001 6.851e-001 1.744 -0.164 0.000 18.07 -Br 3.916e-002 - Br- 3.916e-002 4.965e-002 -1.407 -1.304 0.103 27.84 -C(4) 6.582e-003 - MgCO3 4.981e-003 4.981e-003 -2.303 -2.303 0.000 -17.09 - HCO3- 1.091e-003 8.778e-005 -2.962 -4.057 -1.094 46.34 - CO3-2 5.074e-004 1.031e-007 -3.295 -6.987 -3.692 14.16 - CO2 2.798e-006 1.096e-005 -5.553 -4.960 0.593 30.26 -Ca 4.028e-003 - Ca+2 4.028e-003 3.805e-002 -2.395 -1.420 0.975 -12.57 -Cl 6.108e+000 - Cl- 6.108e+000 4.471e+000 0.786 0.650 -0.136 20.64 -K 2.808e-001 - K+ 2.808e-001 3.152e-001 -0.552 -0.501 0.050 14.07 -Mg 2.417e+000 - Mg+2 2.411e+000 5.698e+001 0.382 1.756 1.374 -15.85 - MgCO3 4.981e-003 4.981e-003 -2.303 -2.303 0.000 -17.09 - MgOH+ 1.601e-003 1.555e-003 -2.796 -2.808 -0.013 (0) -Na 2.459e+000 - Na+ 2.459e+000 8.310e+000 0.391 0.920 0.529 2.60 -S(6) 6.105e-001 - SO4-2 6.105e-001 1.471e-003 -0.214 -2.832 -2.618 30.89 - HSO4- 6.253e-009 5.462e-009 -8.204 -8.263 -0.059 42.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -0.03 -4.25 -4.22 CaSO4 - Aragonite -0.19 -8.41 -8.22 CaCO3 - Arcanite -2.06 -3.83 -1.78 K2SO4 - Bischofite -2.38 2.07 4.46 MgCl2:6H2O - Bloedite -0.38 -2.73 -2.35 Na2Mg(SO4)2:4H2O - Brucite -0.87 -11.75 -10.88 Mg(OH)2 - Burkeite -6.36 -7.13 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.41 -8.41 CaCO3 - Carnallite -2.11 2.22 4.33 KMgCl3:6H2O - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Dolomite 3.45 -13.64 -17.08 CaMg(CO3)2 - Epsomite -0.35 -2.23 -1.88 MgSO4:7H2O - Gaylussite -4.95 -14.37 -9.42 CaNa2(CO3)2:5H2O - Glaserite -2.45 -6.25 -3.80 NaK3(SO4)2 - Glauberite 0.00 -5.25 -5.25 Na2Ca(SO4)2 - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2O(g) -1.67 -0.16 1.50 H2O - Halite 0.00 1.57 1.57 NaCl - Hexahydrite -0.43 -2.06 -1.63 MgSO4:6H2O - Kainite -1.23 -1.42 -0.19 KMgClSO4:3H2O - Kalicinite -4.84 -14.90 -10.06 KHCO3 - Kieserite -1.12 -1.24 -0.12 MgSO4:H2O - Labile_S -0.89 -6.57 -5.67 Na4Ca(SO4)3:2H2O - Leonhardite -0.85 -1.73 -0.89 MgSO4:4H2O - Leonite -1.59 -5.57 -3.98 K2Mg(SO4)2:4H2O - Magnesite 2.60 -5.23 -7.83 MgCO3 - Mirabilite -1.42 -2.64 -1.21 Na2SO4:10H2O - Misenite -57.49 -68.29 -10.81 K8H6(SO4)7 - Nahcolite -2.73 -13.48 -10.74 NaHCO3 - Natron -5.96 -6.79 -0.82 Na2CO3:10H2O - Nesquehonite -0.56 -5.72 -5.17 MgCO3:3H2O - Pentahydrite -0.61 -1.90 -1.28 MgSO4:5H2O - Pirssonite -4.65 -13.88 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite -0.00 -13.74 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.73 -14.92 -5.19 Ca(OH)2 - Schoenite -1.57 -5.90 -4.33 K2Mg(SO4)2:6H2O - Sylvite -0.75 0.15 0.90 KCl - Syngenite -0.80 -8.25 -7.45 K2Ca(SO4)2:H2O - Trona -7.57 -18.95 -11.38 Na3H(CO3)2:2H2O - - -Reaction step 19. - -Using solution 1. Black Sea water -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 3.000e-002 moles of the following reaction have been added: - - Relative - Reactant moles - - H2O -1.00000 - - Relative - Element moles - H -2.00000 - O -1.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.02 -4.25 -4.22 0.000e+000 0 0.000e+000 -Bischofite -2.34 2.12 4.46 0.000e+000 0 0.000e+000 -CO2(g) -3.50 -4.96 -1.46 1.000e+001 1.000e+001 3.265e-007 -Calcite 0.00 -8.41 -8.41 3.573e-004 3.523e-004 -5.004e-006 -Carnallite -2.09 2.24 4.33 0.000e+000 0 0.000e+000 -Epsomite -0.31 -2.19 -1.88 0.000e+000 0 0.000e+000 -Glauberite 0.00 -5.25 -5.25 1.168e-003 7.331e-004 -4.345e-004 -Gypsum 0.00 -4.58 -4.58 2.468e-003 2.493e-003 2.524e-005 -Halite 0.00 1.57 1.57 2.244e-001 2.279e-001 3.459e-003 -Hexahydrite -0.39 -2.02 -1.63 0.000e+000 0 0.000e+000 -Kieserite -1.06 -1.19 -0.12 0.000e+000 0 0.000e+000 -Polyhalite 0.00 -13.74 -13.74 9.017e-004 1.111e-003 2.095e-004 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 4.117e-002 4.401e-004 - C 7.357e-003 7.865e-005 - Ca 3.788e-003 4.050e-005 - Cl 6.098e+000 6.519e-002 - K 2.561e-001 2.738e-003 - Mg 2.522e+000 2.696e-002 - Na 2.343e+000 2.504e-002 - S 6.423e-001 6.867e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.408 Charge balance - pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 577971 - Density (g/cm3) = 1.25606 - Volume (L) = 0.01233 - Activity of water = 0.681 - Ionic strength = 1.069e+001 - Mass of water (kg) = 1.069e-002 - Total alkalinity (eq/kg) = 1.531e-002 - Total CO2 (mol/kg) = 7.357e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.250e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.40 - Iterations = 32 - Gamma iterations = 7 - Osmotic coefficient = 1.79008 - Density of water = 0.99706 - Total H = 1.186825e+000 - Total O = 6.211198e-001 - -----------------------------Distribution of species---------------------------- - - MacInnes MacInnes - MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 3.802e-006 1.758e-007 -5.420 -6.755 -1.335 8.87 - H+ 2.149e-009 3.904e-008 -8.668 -7.408 1.259 0.00 - H2O 5.551e+001 6.811e-001 1.744 -0.167 0.000 18.07 -Br 4.117e-002 - Br- 4.117e-002 5.310e-002 -1.385 -1.275 0.111 27.86 -C(4) 7.357e-003 - MgCO3 5.616e-003 5.616e-003 -2.251 -2.251 0.000 -17.09 - HCO3- 1.149e-003 8.711e-005 -2.940 -4.060 -1.120 46.70 - CO3-2 5.890e-004 1.022e-007 -3.230 -6.991 -3.761 14.37 - CO2 2.738e-006 1.096e-005 -5.563 -4.960 0.602 30.26 -Ca 3.788e-003 - Ca+2 3.788e-003 3.841e-002 -2.422 -1.416 1.006 -12.50 -Cl 6.098e+000 - Cl- 6.098e+000 4.501e+000 0.785 0.653 -0.132 20.66 -K 2.561e-001 - K+ 2.561e-001 2.932e-001 -0.592 -0.533 0.059 14.15 -Mg 2.522e+000 - Mg+2 2.514e+000 6.487e+001 0.400 1.812 1.412 -15.77 - MgCO3 5.616e-003 5.616e-003 -2.251 -2.251 0.000 -17.09 - MgOH+ 1.746e-003 1.757e-003 -2.758 -2.755 0.003 (0) -Na 2.343e+000 - Na+ 2.343e+000 8.255e+000 0.370 0.917 0.547 2.64 -S(6) 6.423e-001 - SO4-2 6.423e-001 1.474e-003 -0.192 -2.831 -2.639 31.03 - HSO4- 6.056e-009 5.483e-009 -8.218 -8.261 -0.043 42.41 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -0.02 -4.25 -4.22 CaSO4 - Aragonite -0.19 -8.41 -8.22 CaCO3 - Arcanite -2.12 -3.90 -1.78 K2SO4 - Bischofite -2.34 2.12 4.46 MgCl2:6H2O - Bloedite -0.34 -2.68 -2.35 Na2Mg(SO4)2:4H2O - Brucite -0.82 -11.70 -10.88 Mg(OH)2 - Burkeite -6.38 -7.15 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.41 -8.41 CaCO3 - Carnallite -2.09 2.24 4.33 KMgCl3:6H2O - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Dolomite 3.50 -13.58 -17.08 CaMg(CO3)2 - Epsomite -0.31 -2.19 -1.88 MgSO4:7H2O - Gaylussite -4.98 -14.40 -9.42 CaNa2(CO3)2:5H2O - Glaserite -2.54 -6.34 -3.80 NaK3(SO4)2 - Glauberite 0.00 -5.25 -5.25 Na2Ca(SO4)2 - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2O(g) -1.67 -0.17 1.50 H2O - Halite 0.00 1.57 1.57 NaCl - Hexahydrite -0.39 -2.02 -1.63 MgSO4:6H2O - Kainite -1.21 -1.40 -0.19 KMgClSO4:3H2O - Kalicinite -4.87 -14.93 -10.06 KHCO3 - Kieserite -1.06 -1.19 -0.12 MgSO4:H2O - Labile_S -0.90 -6.58 -5.67 Na4Ca(SO4)3:2H2O - Leonhardite -0.80 -1.69 -0.89 MgSO4:4H2O - Leonite -1.60 -5.58 -3.98 K2Mg(SO4)2:4H2O - Magnesite 2.66 -5.18 -7.83 MgCO3 - Mirabilite -1.45 -2.67 -1.21 Na2SO4:10H2O - Misenite -57.73 -68.53 -10.81 K8H6(SO4)7 - Nahcolite -2.74 -13.48 -10.74 NaHCO3 - Natron -6.00 -6.82 -0.82 Na2CO3:10H2O - Nesquehonite -0.51 -5.68 -5.17 MgCO3:3H2O - Pentahydrite -0.57 -1.85 -1.28 MgSO4:5H2O - Pirssonite -4.66 -13.90 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite 0.00 -13.74 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.74 -14.93 -5.19 Ca(OH)2 - Schoenite -1.59 -5.92 -4.33 K2Mg(SO4)2:6H2O - Sylvite -0.78 0.12 0.90 KCl - Syngenite -0.86 -8.31 -7.45 K2Ca(SO4)2:H2O - Trona -7.59 -18.97 -11.38 Na3H(CO3)2:2H2O - - -Reaction step 20. - -Using solution 1. Black Sea water -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 3.000e-002 moles of the following reaction have been added: - - Relative - Reactant moles - - H2O -1.00000 - - Relative - Element moles - H -2.00000 - O -1.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.02 -4.24 -4.22 0.000e+000 0 0.000e+000 -Bischofite -2.28 2.17 4.46 0.000e+000 0 0.000e+000 -CO2(g) -3.50 -4.96 -1.46 1.000e+001 1.000e+001 3.712e-007 -Calcite 0.00 -8.41 -8.41 3.523e-004 3.460e-004 -6.314e-006 -Carnallite -2.07 2.26 4.33 0.000e+000 0 0.000e+000 -Epsomite -0.26 -2.14 -1.88 0.000e+000 0 0.000e+000 -Glauberite 0.00 -5.25 -5.25 7.331e-004 2.896e-004 -4.435e-004 -Gypsum 0.00 -4.58 -4.58 2.493e-003 2.549e-003 5.643e-005 -Halite 0.00 1.57 1.57 2.279e-001 2.313e-001 3.455e-003 -Hexahydrite -0.34 -1.97 -1.63 0.000e+000 0 0.000e+000 -Kieserite -1.00 -1.12 -0.12 0.000e+000 0 0.000e+000 -Polyhalite 0.00 -13.74 -13.74 1.111e-003 1.310e-003 1.990e-004 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 4.340e-002 4.401e-004 - C 8.342e-003 8.460e-005 - Ca 3.531e-003 3.580e-005 - Cl 6.088e+000 6.174e-002 - K 2.307e-001 2.339e-003 - Mg 2.639e+000 2.676e-002 - Na 2.216e+000 2.248e-002 - S 6.806e-001 6.902e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.408 Charge balance - pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 585693 - Density (g/cm3) = 1.25922 - Volume (L) = 0.01170 - Activity of water = 0.676 - Ionic strength = 1.092e+001 - Mass of water (kg) = 1.014e-002 - Total alkalinity (eq/kg) = 1.738e-002 - Total CO2 (mol/kg) = 8.342e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.250e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.46 - Iterations = 29 - Gamma iterations = 6 - Osmotic coefficient = 1.82263 - Density of water = 0.99706 - Total H = 1.125803e+000 - Total O = 5.907647e-001 - -----------------------------Distribution of species---------------------------- - - MacInnes MacInnes - MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 4.132e-006 1.742e-007 -5.384 -6.759 -1.375 9.10 - H+ 2.037e-009 3.913e-008 -8.691 -7.408 1.284 0.00 - H2O 5.551e+001 6.765e-001 1.744 -0.170 0.000 18.07 -Br 4.340e-002 - Br- 4.340e-002 5.706e-002 -1.363 -1.244 0.119 27.90 -C(4) 8.342e-003 - MgCO3 6.424e-003 6.424e-003 -2.192 -2.192 0.000 -17.09 - HCO3- 1.222e-003 8.633e-005 -2.913 -4.064 -1.151 47.13 - CO3-2 6.939e-004 1.010e-007 -3.159 -6.996 -3.837 14.63 - CO2 2.668e-006 1.096e-005 -5.574 -4.960 0.614 30.26 -Ca 3.531e-003 - Ca+2 3.531e-003 3.885e-002 -2.452 -1.411 1.041 -12.42 -Cl 6.088e+000 - Cl- 6.088e+000 4.537e+000 0.784 0.657 -0.128 20.69 -K 2.307e-001 - K+ 2.307e-001 2.701e-001 -0.637 -0.569 0.068 14.25 -Mg 2.639e+000 - Mg+2 2.630e+000 7.504e+001 0.420 1.875 1.455 -15.67 - MgCO3 6.424e-003 6.424e-003 -2.192 -2.192 0.000 -17.09 - MgOH+ 1.923e-003 2.014e-003 -2.716 -2.696 0.020 (0) -Na 2.216e+000 - Na+ 2.216e+000 8.188e+000 0.346 0.913 0.568 2.70 -S(6) 6.806e-001 - SO4-2 6.806e-001 1.478e-003 -0.167 -2.830 -2.663 31.21 - HSO4- 5.851e-009 5.509e-009 -8.233 -8.259 -0.026 42.42 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -0.02 -4.24 -4.22 CaSO4 - Aragonite -0.19 -8.41 -8.22 CaCO3 - Arcanite -2.19 -3.97 -1.78 K2SO4 - Bischofite -2.28 2.17 4.46 MgCl2:6H2O - Bloedite -0.29 -2.64 -2.35 Na2Mg(SO4)2:4H2O - Brucite -0.76 -11.64 -10.88 Mg(OH)2 - Burkeite -6.41 -7.18 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.41 -8.41 CaCO3 - Carnallite -2.07 2.26 4.33 KMgCl3:6H2O - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Dolomite 3.56 -13.53 -17.08 CaMg(CO3)2 - Epsomite -0.26 -2.14 -1.88 MgSO4:7H2O - Gaylussite -5.00 -14.42 -9.42 CaNa2(CO3)2:5H2O - Glaserite -2.65 -6.45 -3.80 NaK3(SO4)2 - Glauberite 0.00 -5.25 -5.25 Na2Ca(SO4)2 - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2O(g) -1.67 -0.17 1.50 H2O - Halite 0.00 1.57 1.57 NaCl - Hexahydrite -0.34 -1.97 -1.63 MgSO4:6H2O - Kainite -1.18 -1.38 -0.19 KMgClSO4:3H2O - Kalicinite -4.91 -14.97 -10.06 KHCO3 - Kieserite -1.00 -1.12 -0.12 MgSO4:H2O - Labile_S -0.92 -6.59 -5.67 Na4Ca(SO4)3:2H2O - Leonhardite -0.75 -1.63 -0.89 MgSO4:4H2O - Leonite -1.62 -5.60 -3.98 K2Mg(SO4)2:4H2O - Magnesite 2.71 -5.12 -7.83 MgCO3 - Mirabilite -1.49 -2.70 -1.21 Na2SO4:10H2O - Misenite -58.00 -68.81 -10.81 K8H6(SO4)7 - Nahcolite -2.75 -13.49 -10.74 NaHCO3 - Natron -6.04 -6.87 -0.82 Na2CO3:10H2O - Nesquehonite -0.46 -5.63 -5.17 MgCO3:3H2O - Pentahydrite -0.52 -1.80 -1.28 MgSO4:5H2O - Pirssonite -4.68 -13.91 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite 0.00 -13.74 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.74 -14.93 -5.19 Ca(OH)2 - Schoenite -1.61 -5.94 -4.33 K2Mg(SO4)2:6H2O - Sylvite -0.81 0.09 0.90 KCl - Syngenite -0.93 -8.38 -7.45 K2Ca(SO4)2:H2O - Trona -7.61 -19.00 -11.38 Na3H(CO3)2:2H2O - - -Reaction step 21. - -x Na K Mg Ca Cl S - 1.0421e+002 2.0679e+000 2.0788e-001 2.7708e+000 3.2956e-003 6.0991e+000 7.1233e-001 -Using solution 1. Black Sea water -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 3.000e-002 moles of the following reaction have been added: - - Relative - Reactant moles - - H2O -1.00000 - - Relative - Element moles - H -2.00000 - O -1.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.01 -4.23 -4.22 0.000e+000 0 0.000e+000 -Bischofite -2.22 2.23 4.46 0.000e+000 0 0.000e+000 -CO2(g) -3.50 -4.96 -1.46 1.000e+001 1.000e+001 4.575e-007 -Calcite 0.00 -8.41 -8.41 3.460e-004 3.391e-004 -6.885e-006 -Carnallite -2.04 2.29 4.33 0.000e+000 0 0.000e+000 -Epsomite -0.22 -2.10 -1.88 0.000e+000 0 0.000e+000 -Glauberite -0.01 -5.26 -5.25 2.896e-004 0 -2.896e-004 -Gypsum 0.00 -4.58 -4.58 2.549e-003 2.505e-003 -4.397e-005 -Halite 0.00 1.57 1.57 2.313e-001 2.345e-001 3.211e-003 -Hexahydrite -0.29 -1.93 -1.63 0.000e+000 0 0.000e+000 -Kieserite -0.94 -1.06 -0.12 0.000e+000 0 0.000e+000 -Polyhalite 0.00 -13.74 -13.74 1.310e-003 1.483e-003 1.723e-004 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 4.587e-002 4.401e-004 - C 9.486e-003 9.102e-005 - Ca 3.296e-003 3.162e-005 - Cl 6.099e+000 5.853e-002 - K 2.079e-001 1.995e-003 - Mg 2.771e+000 2.659e-002 - Na 2.068e+000 1.984e-002 - S 7.123e-001 6.835e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.401 Charge balance - pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 595226 - Density (g/cm3) = 1.26243 - Volume (L) = 0.01108 - Activity of water = 0.671 - Ionic strength = 1.117e+001 - Mass of water (kg) = 9.596e-003 - Total alkalinity (eq/kg) = 1.981e-002 - Total CO2 (mol/kg) = 9.486e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.250e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.52 - Iterations = 32 - Gamma iterations = 6 - Osmotic coefficient = 1.86189 - Density of water = 0.99706 - Total H = 1.065289e+000 - Total O = 5.602634e-001 - -----------------------------Distribution of species---------------------------- - - MacInnes MacInnes - MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 4.488e-006 1.703e-007 -5.348 -6.769 -1.421 9.36 - H+ 1.927e-009 3.968e-008 -8.715 -7.401 1.314 0.00 - H2O 5.551e+001 6.707e-001 1.744 -0.173 0.000 18.07 -Br 4.587e-002 - Br- 4.587e-002 6.158e-002 -1.339 -1.211 0.128 27.93 -C(4) 9.486e-003 - MgCO3 7.371e-003 7.371e-003 -2.132 -2.132 0.000 -17.09 - HCO3- 1.295e-003 8.439e-005 -2.888 -4.074 -1.186 47.60 - CO3-2 8.171e-004 9.739e-008 -3.088 -7.011 -3.924 14.90 - CO2 2.597e-006 1.096e-005 -5.585 -4.960 0.625 30.26 -Ca 3.296e-003 - Ca+2 3.296e-003 4.029e-002 -2.482 -1.395 1.087 -12.33 -Cl 6.099e+000 - Cl- 6.099e+000 4.594e+000 0.785 0.662 -0.123 20.71 -K 2.079e-001 - K+ 2.079e-001 2.502e-001 -0.682 -0.602 0.081 14.36 -Mg 2.771e+000 - Mg+2 2.761e+000 8.931e+001 0.441 1.951 1.510 -15.57 - MgCO3 7.371e-003 7.371e-003 -2.132 -2.132 0.000 -17.09 - MgOH+ 2.131e-003 2.344e-003 -2.671 -2.630 0.041 (0) -Na 2.068e+000 - Na+ 2.068e+000 8.088e+000 0.316 0.908 0.592 2.76 -S(6) 7.123e-001 - SO4-2 7.123e-001 1.450e-003 -0.147 -2.839 -2.691 31.39 - HSO4- 5.567e-009 5.479e-009 -8.254 -8.261 -0.007 42.44 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -0.01 -4.23 -4.22 CaSO4 - Aragonite -0.19 -8.41 -8.22 CaCO3 - Arcanite -2.27 -4.04 -1.78 K2SO4 - Bischofite -2.22 2.23 4.46 MgCl2:6H2O - Bloedite -0.26 -2.60 -2.35 Na2Mg(SO4)2:4H2O - Brucite -0.71 -11.59 -10.88 Mg(OH)2 - Burkeite -6.47 -7.24 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.41 -8.41 CaCO3 - Carnallite -2.04 2.29 4.33 KMgCl3:6H2O - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Dolomite 3.62 -13.47 -17.08 CaMg(CO3)2 - Epsomite -0.22 -2.10 -1.88 MgSO4:7H2O - Gaylussite -5.05 -14.47 -9.42 CaNa2(CO3)2:5H2O - Glaserite -2.77 -6.57 -3.80 NaK3(SO4)2 - Glauberite -0.01 -5.26 -5.25 Na2Ca(SO4)2 - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2O(g) -1.68 -0.17 1.50 H2O - Halite 0.00 1.57 1.57 NaCl - Hexahydrite -0.29 -1.93 -1.63 MgSO4:6H2O - Kainite -1.15 -1.35 -0.19 KMgClSO4:3H2O - Kalicinite -4.96 -15.01 -10.06 KHCO3 - Kieserite -0.94 -1.06 -0.12 MgSO4:H2O - Labile_S -0.95 -6.63 -5.67 Na4Ca(SO4)3:2H2O - Leonhardite -0.69 -1.58 -0.89 MgSO4:4H2O - Leonite -1.64 -5.62 -3.98 K2Mg(SO4)2:4H2O - Magnesite 2.77 -5.06 -7.83 MgCO3 - Mirabilite -1.54 -2.76 -1.21 Na2SO4:10H2O - Misenite -58.29 -69.09 -10.81 K8H6(SO4)7 - Nahcolite -2.76 -13.51 -10.74 NaHCO3 - Natron -6.11 -6.93 -0.82 Na2CO3:10H2O - Nesquehonite -0.41 -5.58 -5.17 MgCO3:3H2O - Pentahydrite -0.47 -1.76 -1.28 MgSO4:5H2O - Pirssonite -4.71 -13.95 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite 0.00 -13.74 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.74 -14.93 -5.19 Ca(OH)2 - Schoenite -1.64 -5.97 -4.33 K2Mg(SO4)2:6H2O - Sylvite -0.84 0.06 0.90 KCl - Syngenite -1.00 -8.45 -7.45 K2Ca(SO4)2:H2O - Trona -7.66 -19.05 -11.38 Na3H(CO3)2:2H2O - - -Reaction step 22. - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - -x Na K Mg Ca Cl S - 1.0963e+002 1.9090e+000 1.9161e-001 2.9014e+000 3.1326e-003 6.1499e+000 7.2135e-001 -Using solution 1. Black Sea water -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 3.000e-002 moles of the following reaction have been added: - - Relative - Reactant moles - - H2O -1.00000 - - Relative - Element moles - H -2.00000 - O -1.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite 0.00 -4.22 -4.22 0.000e+000 1.713e-003 1.713e-003 -Bischofite -2.15 2.31 4.46 0.000e+000 0 0.000e+000 -CO2(g) -3.50 -4.96 -1.46 1.000e+001 1.000e+001 5.226e-007 -Calcite 0.00 -8.41 -8.41 3.391e-004 3.334e-004 -5.702e-006 -Carnallite -1.98 2.35 4.33 0.000e+000 0 0.000e+000 -Epsomite -0.19 -2.07 -1.88 0.000e+000 0 0.000e+000 -Glauberite -0.04 -5.29 -5.25 0.000e+000 0 0.000e+000 -Gypsum 0.00 -4.58 -4.58 2.505e-003 5.543e-004 -1.951e-003 -Halite 0.00 1.57 1.57 2.345e-001 2.370e-001 2.431e-003 -Hexahydrite -0.26 -1.90 -1.63 0.000e+000 0 0.000e+000 -Kieserite -0.88 -1.01 -0.12 0.000e+000 0 0.000e+000 -Polyhalite 0.00 -13.74 -13.74 1.483e-003 1.606e-003 1.235e-004 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 4.825e-002 4.401e-004 - C 1.055e-002 9.620e-005 - Ca 3.133e-003 2.857e-005 - Cl 6.150e+000 5.609e-002 - K 1.916e-001 1.748e-003 - Mg 2.901e+000 2.646e-002 - Na 1.909e+000 1.741e-002 - S 7.214e-001 6.580e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.387 Charge balance - pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 605485 - Density (g/cm3) = 1.26479 - Volume (L) = 0.01053 - Activity of water = 0.664 - Ionic strength = 1.138e+001 - Mass of water (kg) = 9.121e-003 - Total alkalinity (eq/kg) = 2.209e-002 - Total CO2 (mol/kg) = 1.055e-002 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.250e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.59 - Iterations = 12 - Gamma iterations = 12 - Osmotic coefficient = 1.90536 - Density of water = 0.99706 - Total H = 1.012599e+000 - Total O = 5.329111e-001 - -----------------------------Distribution of species---------------------------- - - MacInnes MacInnes - MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 4.792e-006 1.631e-007 -5.319 -6.787 -1.468 9.59 - H+ 1.844e-009 4.101e-008 -8.734 -7.387 1.347 0.00 - H2O 5.551e+001 6.640e-001 1.744 -0.178 0.000 18.07 -Br 4.825e-002 - Br- 4.825e-002 6.605e-002 -1.316 -1.180 0.136 27.96 -C(4) 1.055e-002 - MgCO3 8.269e-003 8.269e-003 -2.083 -2.083 0.000 -17.09 - HCO3- 1.345e-003 8.084e-005 -2.871 -4.092 -1.221 48.02 - CO3-2 9.309e-004 9.026e-008 -3.031 -7.044 -4.013 15.14 - CO2 2.543e-006 1.096e-005 -5.595 -4.960 0.635 30.26 -Ca 3.133e-003 - Ca+2 3.133e-003 4.348e-002 -2.504 -1.362 1.142 -12.25 -Cl 6.150e+000 - Cl- 6.150e+000 4.675e+000 0.789 0.670 -0.119 20.73 -K 1.916e-001 - K+ 1.916e-001 2.382e-001 -0.718 -0.623 0.095 14.45 -Mg 2.901e+000 - Mg+2 2.891e+000 1.081e+002 0.461 2.034 1.573 -15.48 - MgCO3 8.269e-003 8.269e-003 -2.083 -2.083 0.000 -17.09 - MgOH+ 2.339e-003 2.718e-003 -2.631 -2.566 0.065 (0) -Na 1.909e+000 - Na+ 1.909e+000 7.948e+000 0.281 0.900 0.619 2.81 -S(6) 7.214e-001 - SO4-2 7.214e-001 1.370e-003 -0.142 -2.863 -2.721 31.56 - HSO4- 5.196e-009 5.354e-009 -8.284 -8.271 0.013 42.45 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite 0.00 -4.22 -4.22 CaSO4 - Aragonite -0.19 -8.41 -8.22 CaCO3 - Arcanite -2.33 -4.11 -1.78 K2SO4 - Bischofite -2.15 2.31 4.46 MgCl2:6H2O - Bloedite -0.26 -2.60 -2.35 Na2Mg(SO4)2:4H2O - Brucite -0.66 -11.54 -10.88 Mg(OH)2 - Burkeite -6.60 -7.37 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.41 -8.41 CaCO3 - Carnallite -1.98 2.35 4.33 KMgCl3:6H2O - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Dolomite 3.67 -13.42 -17.08 CaMg(CO3)2 - Epsomite -0.19 -2.07 -1.88 MgSO4:7H2O - Gaylussite -5.12 -14.54 -9.42 CaNa2(CO3)2:5H2O - Glaserite -2.89 -6.70 -3.80 NaK3(SO4)2 - Glauberite -0.04 -5.29 -5.25 Na2Ca(SO4)2 - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2O(g) -1.68 -0.18 1.50 H2O - Halite 0.00 1.57 1.57 NaCl - Hexahydrite -0.26 -1.90 -1.63 MgSO4:6H2O - Kainite -1.12 -1.32 -0.19 KMgClSO4:3H2O - Kalicinite -5.00 -15.05 -10.06 KHCO3 - Kieserite -0.88 -1.01 -0.12 MgSO4:H2O - Labile_S -1.03 -6.71 -5.67 Na4Ca(SO4)3:2H2O - Leonhardite -0.65 -1.54 -0.89 MgSO4:4H2O - Leonite -1.67 -5.65 -3.98 K2Mg(SO4)2:4H2O - Magnesite 2.82 -5.01 -7.83 MgCO3 - Mirabilite -1.63 -2.84 -1.21 Na2SO4:10H2O - Misenite -58.54 -69.35 -10.81 K8H6(SO4)7 - Nahcolite -2.79 -13.53 -10.74 NaHCO3 - Natron -6.20 -7.02 -0.82 Na2CO3:10H2O - Nesquehonite -0.38 -5.54 -5.17 MgCO3:3H2O - Pentahydrite -0.43 -1.72 -1.28 MgSO4:5H2O - Pirssonite -4.77 -14.01 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite 0.00 -13.74 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.75 -14.94 -5.19 Ca(OH)2 - Schoenite -1.68 -6.01 -4.33 K2Mg(SO4)2:6H2O - Sylvite -0.85 0.05 0.90 KCl - Syngenite -1.06 -8.51 -7.45 K2Ca(SO4)2:H2O - Trona -7.75 -19.13 -11.38 Na3H(CO3)2:2H2O - - -Reaction step 23. - -x Na K Mg Ca Cl S - 1.1633e+002 1.7209e+000 1.7649e-001 3.0651e+000 2.8412e-003 6.2206e+000 7.3674e-001 -Using solution 1. Black Sea water -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 3.000e-002 moles of the following reaction have been added: - - Relative - Reactant moles - - H2O -1.00000 - - Relative - Element moles - H -2.00000 - O -1.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite 0.00 -4.22 -4.22 1.713e-003 2.052e-003 3.394e-004 -Bischofite -2.06 2.40 4.46 0.000e+000 0 0.000e+000 -CO2(g) -3.50 -4.96 -1.46 1.000e+001 1.000e+001 7.772e-007 -Calcite 0.00 -8.41 -8.41 3.334e-004 3.219e-004 -1.151e-005 -Carnallite -1.89 2.44 4.33 0.000e+000 0 0.000e+000 -Epsomite -0.16 -2.04 -1.88 0.000e+000 0 0.000e+000 -Glauberite -0.09 -5.34 -5.25 0.000e+000 0 0.000e+000 -Gypsum -0.01 -4.59 -4.58 5.543e-004 0 -5.543e-004 -Halite 0.00 1.57 1.57 2.370e-001 2.396e-001 2.619e-003 -Hexahydrite -0.22 -1.85 -1.63 0.000e+000 0 0.000e+000 -Kieserite -0.81 -0.94 -0.12 0.000e+000 0 0.000e+000 -Polyhalite 0.00 -13.74 -13.74 1.606e-003 1.721e-003 1.152e-004 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 5.120e-002 4.401e-004 - C 1.244e-002 1.069e-004 - Ca 2.841e-003 2.442e-005 - Cl 6.221e+000 5.348e-002 - K 1.765e-001 1.517e-003 - Mg 3.065e+000 2.635e-002 - Na 1.721e+000 1.479e-002 - S 7.367e-001 6.333e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.376 Charge balance - pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 620182 - Density (g/cm3) = 1.26827 - Volume (L) = 0.00993 - Activity of water = 0.655 - Ionic strength = 1.167e+001 - Mass of water (kg) = 8.597e-003 - Total alkalinity (eq/kg) = 2.611e-002 - Total CO2 (mol/kg) = 1.244e-002 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.250e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.66 - Iterations = 41 - Gamma iterations = 7 - Osmotic coefficient = 1.96085 - Density of water = 0.99706 - Total H = 9.543554e-001 - Total O = 5.028376e-001 - -----------------------------Distribution of species---------------------------- - - MacInnes MacInnes - MacInnes Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 5.262e-006 1.567e-007 -5.279 -6.805 -1.526 9.89 - H+ 1.708e-009 4.211e-008 -8.767 -7.376 1.392 0.00 - H2O 5.551e+001 6.550e-001 1.744 -0.184 0.000 18.07 -Br 5.120e-002 - Br- 5.120e-002 7.185e-002 -1.291 -1.144 0.147 28.00 -C(4) 1.244e-002 - MgCO3 9.875e-003 9.875e-003 -2.005 -2.005 0.000 -17.09 - HCO3- 1.440e-003 7.767e-005 -2.842 -4.110 -1.268 48.57 - CO3-2 1.123e-003 8.445e-008 -2.950 -7.073 -4.124 15.46 - CO2 2.469e-006 1.096e-005 -5.608 -4.960 0.647 30.26 -Ca 2.841e-003 - Ca+2 2.841e-003 4.647e-002 -2.547 -1.333 1.214 -12.14 -Cl 6.221e+000 - Cl- 6.221e+000 4.787e+000 0.794 0.680 -0.114 20.76 -K 1.765e-001 - K+ 1.765e-001 2.284e-001 -0.753 -0.641 0.112 14.58 -Mg 3.065e+000 - Mg+2 3.053e+000 1.380e+002 0.485 2.140 1.655 -15.35 - MgCO3 9.875e-003 9.875e-003 -2.005 -2.005 0.000 -17.09 - MgOH+ 2.675e-003 3.332e-003 -2.573 -2.477 0.095 (0) -Na 1.721e+000 - Na+ 1.721e+000 7.762e+000 0.236 0.890 0.654 2.88 -S(6) 7.367e-001 - SO4-2 7.367e-001 1.282e-003 -0.133 -2.892 -2.759 31.77 - HSO4- 4.725e-009 5.143e-009 -8.326 -8.289 0.037 42.47 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite 0.00 -4.22 -4.22 CaSO4 - Aragonite -0.19 -8.41 -8.22 CaCO3 - Arcanite -2.40 -4.17 -1.78 K2SO4 - Bischofite -2.06 2.40 4.46 MgCl2:6H2O - Bloedite -0.25 -2.60 -2.35 Na2Mg(SO4)2:4H2O - Brucite -0.59 -11.47 -10.88 Mg(OH)2 - Burkeite -6.75 -7.52 -0.77 Na6CO3(SO4)2 - Calcite 0.00 -8.41 -8.41 CaCO3 - Carnallite -1.89 2.44 4.33 KMgCl3:6H2O - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Dolomite 3.74 -13.34 -17.08 CaMg(CO3)2 - Epsomite -0.16 -2.04 -1.88 MgSO4:7H2O - Gaylussite -5.20 -14.62 -9.42 CaNa2(CO3)2:5H2O - Glaserite -3.01 -6.82 -3.80 NaK3(SO4)2 - Glauberite -0.09 -5.34 -5.25 Na2Ca(SO4)2 - Gypsum -0.01 -4.59 -4.58 CaSO4:2H2O - H2O(g) -1.69 -0.18 1.50 H2O - Halite 0.00 1.57 1.57 NaCl - Hexahydrite -0.22 -1.85 -1.63 MgSO4:6H2O - Kainite -1.07 -1.26 -0.19 KMgClSO4:3H2O - Kalicinite -5.03 -15.09 -10.06 KHCO3 - Kieserite -0.81 -0.94 -0.12 MgSO4:H2O - Labile_S -1.14 -6.82 -5.67 Na4Ca(SO4)3:2H2O - Leonhardite -0.60 -1.49 -0.89 MgSO4:4H2O - Leonite -1.68 -5.66 -3.98 K2Mg(SO4)2:4H2O - Magnesite 2.90 -4.93 -7.83 MgCO3 - Mirabilite -1.74 -2.95 -1.21 Na2SO4:10H2O - Misenite -58.82 -69.63 -10.81 K8H6(SO4)7 - Nahcolite -2.82 -13.56 -10.74 NaHCO3 - Natron -6.31 -7.13 -0.82 Na2CO3:10H2O - Nesquehonite -0.32 -5.48 -5.17 MgCO3:3H2O - Pentahydrite -0.39 -1.67 -1.28 MgSO4:5H2O - Pirssonite -4.83 -14.07 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite 0.00 -13.74 -13.74 K2MgCa2(SO4)4:2H2O - Portlandite -9.75 -14.94 -5.19 Ca(OH)2 - Schoenite -1.70 -6.03 -4.33 K2Mg(SO4)2:6H2O - Sylvite -0.86 0.04 0.90 KCl - Syngenite -1.14 -8.58 -7.45 K2Ca(SO4)2:H2O - Trona -7.84 -19.22 -11.38 Na3H(CO3)2:2H2O - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 2. ------------------------------------- - -------------------------------- -End of Run after 1.377 Seconds. -------------------------------- - diff --git a/examples_pc/ex18.out b/examples_pc/ex18.out deleted file mode 100644 index 2fefafbd..00000000 --- a/examples_pc/ex18.out +++ /dev/null @@ -1,560 +0,0 @@ - Input file: ..\examples\ex18 - Output file: ex18.out -Database file: ..\database\phreeqc.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - PHASES - EXCHANGE_MASTER_SPECIES - EXCHANGE_SPECIES - SURFACE_MASTER_SPECIES - SURFACE_SPECIES - RATES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Example 18.--Inverse modeling of Madison aquifer - SOLUTION 1 Recharge number 3 - units mmol/kgw - temp 9.9 - pe 0. - pH 7.55 - Ca 1.2 - Mg 1.01 - Na 0.02 - K 0.02 - Fe(2) 0.001 - Cl 0.02 - S(6) 0.16 - S(-2) 0 - C(4) 4.30 - isotope 13C -7.0 1.4 - isotope 34S 9.7 0.9 - SOLUTION 2 Mysse - units mmol/kgw - temp 63. - pH 6.61 - pe 0. - redox S(6)/S(-2) - Ca 11.28 - Mg 4.54 - Na 31.89 - K 2.54 - Fe(2) 0.0004 - Cl 17.85 - S(6) 19.86 - S(-2) 0.26 - C(4) 6.87 - isotope 13C -2.3 0.2 - isotope 34S(6) 16.3 1.5 - isotope 34S(-2) -22.1 7 - INVERSE_MODELING 1 - solutions 1 2 - uncertainty 0.05 - range - isotopes - 13C - 34S - balances - Fe(2) 1.0 - ph 0.1 - phases - Dolomite dis 13C 3.0 2 - Calcite pre 13C -1.5 1 - Anhydrite dis 34S 13.5 2 - CH2O dis 13C -25.0 5 - Goethite - Pyrite pre 34S -22. 2 - CaX2 pre - Ca.75Mg.25X2 pre - MgX2 pre - NaX - Halite - Sylvite - PHASES - Sylvite - KCl = K+ + Cl- - log_k 0.0 - CH2O - CH2O + H2O = CO2 + 4H+ + 4e- - log_k 0.0 - EXCHANGE_SPECIES - 0.75Ca+2 + 0.25Mg+2 + 2X- = Ca.75Mg.25X2 - log_k 0.0 - END ------ -TITLE ------ - - Example 18.--Inverse modeling of Madison aquifer - -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 1. Recharge number 3 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C(4) 4.300e-003 4.300e-003 - Ca 1.200e-003 1.200e-003 - Cl 2.000e-005 2.000e-005 - Fe(2) 1.000e-006 1.000e-006 - K 2.000e-005 2.000e-005 - Mg 1.010e-003 1.010e-003 - Na 2.000e-005 2.000e-005 - S(6) 1.600e-004 1.600e-004 - -----------------------------Description of solution---------------------------- - - pH = 7.550 - pe = 0.000 - Specific Conductance (uS/cm, 9 oC) = 272 - Density (g/cm3) = 0.99999 - Volume (L) = 1.00057 - Activity of water = 1.000 - Ionic strength = 6.547e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 4.016e-003 - Total CO2 (mol/kg) = 4.300e-003 - Temperature (deg C) = 9.90 - Electrical balance (eq) = 1.061e-004 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.24 - Iterations = 8 - Total H = 1.110164e+002 - Total O = 5.551946e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.126e-007 1.034e-007 -6.948 -6.985 -0.037 -4.98 - H+ 3.038e-008 2.818e-008 -7.517 -7.550 -0.033 0.00 - H2O 5.551e+001 9.999e-001 1.744 -0.000 0.000 18.02 -C(4) 4.300e-003 - HCO3- 3.929e-003 3.622e-003 -2.406 -2.441 -0.035 23.01 - CO2 2.970e-004 2.974e-004 -3.527 -3.527 0.001 35.36 - MgHCO3+ 3.098e-005 2.848e-005 -4.509 -4.545 -0.036 4.93 - CaHCO3+ 3.026e-005 2.793e-005 -4.519 -4.554 -0.035 8.96 - CO3-2 5.766e-006 4.167e-006 -5.239 -5.380 -0.141 -6.79 - CaCO3 4.729e-006 4.736e-006 -5.325 -5.325 0.001 -14.66 - MgCO3 2.207e-006 2.210e-006 -5.656 -5.656 0.001 -17.07 - FeHCO3+ 2.086e-007 1.919e-007 -6.681 -6.717 -0.036 (0) - NaHCO3 1.719e-007 1.721e-007 -6.765 -6.764 0.001 19.41 - FeCO3 5.287e-008 5.295e-008 -7.277 -7.276 0.001 (0) - NaCO3- 3.459e-010 3.190e-010 -9.461 -9.496 -0.035 -2.67 -Ca 1.200e-003 - Ca+2 1.152e-003 8.322e-004 -2.939 -3.080 -0.141 -18.31 - CaHCO3+ 3.026e-005 2.793e-005 -4.519 -4.554 -0.035 8.96 - CaSO4 1.288e-005 1.290e-005 -4.890 -4.889 0.001 6.78 - CaCO3 4.729e-006 4.736e-006 -5.325 -5.325 0.001 -14.66 - CaOH+ 5.327e-009 4.900e-009 -8.274 -8.310 -0.036 (0) - CaHSO4+ 2.152e-012 1.980e-012 -11.667 -11.703 -0.036 (0) -Cl 2.000e-005 - Cl- 2.000e-005 1.838e-005 -4.699 -4.736 -0.037 17.40 - FeCl+ 1.461e-011 1.344e-011 -10.835 -10.872 -0.036 (0) -Fe(2) 1.000e-006 - Fe+2 7.296e-007 5.297e-007 -6.137 -6.276 -0.139 -23.19 - FeHCO3+ 2.086e-007 1.919e-007 -6.681 -6.717 -0.036 (0) - FeCO3 5.287e-008 5.295e-008 -7.277 -7.276 0.001 (0) - FeSO4 6.907e-009 6.917e-009 -8.161 -8.160 0.001 (0) - FeOH+ 1.965e-009 1.811e-009 -8.707 -8.742 -0.036 (0) - FeCl+ 1.461e-011 1.344e-011 -10.835 -10.872 -0.036 (0) - Fe(OH)2 1.369e-013 1.371e-013 -12.864 -12.863 0.001 (0) - FeHSO4+ 1.370e-015 1.260e-015 -14.863 -14.900 -0.036 (0) - Fe(OH)3- 1.677e-016 1.545e-016 -15.775 -15.811 -0.036 (0) -H(0) 1.316e-018 - H2 6.579e-019 6.588e-019 -18.182 -18.181 0.001 28.63 -K 2.000e-005 - K+ 1.999e-005 1.837e-005 -4.699 -4.736 -0.037 8.43 - KSO4- 1.042e-008 9.604e-009 -7.982 -8.018 -0.035 (0) -Mg 1.010e-003 - Mg+2 9.661e-004 7.009e-004 -3.015 -3.154 -0.139 -21.10 - MgHCO3+ 3.098e-005 2.848e-005 -4.509 -4.545 -0.036 4.93 - MgSO4 1.070e-005 1.071e-005 -4.971 -4.970 0.001 5.11 - MgCO3 2.207e-006 2.210e-006 -5.656 -5.656 0.001 -17.07 - MgOH+ 2.324e-008 2.147e-008 -7.634 -7.668 -0.034 (0) -Na 2.000e-005 - Na+ 1.982e-005 1.825e-005 -4.703 -4.739 -0.036 -2.33 - NaHCO3 1.719e-007 1.721e-007 -6.765 -6.764 0.001 19.41 - NaSO4- 8.809e-009 8.122e-009 -8.055 -8.090 -0.035 18.16 - NaCO3- 3.459e-010 3.190e-010 -9.461 -9.496 -0.035 -2.67 - NaOH 1.885e-022 1.888e-022 -21.725 -21.724 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -61.151 -61.151 0.001 28.94 -S(6) 1.600e-004 - SO4-2 1.364e-004 9.822e-005 -3.865 -4.008 -0.143 11.51 - CaSO4 1.288e-005 1.290e-005 -4.890 -4.889 0.001 6.78 - MgSO4 1.070e-005 1.071e-005 -4.971 -4.970 0.001 5.11 - KSO4- 1.042e-008 9.604e-009 -7.982 -8.018 -0.035 (0) - NaSO4- 8.809e-009 8.122e-009 -8.055 -8.090 -0.035 18.16 - FeSO4 6.907e-009 6.917e-009 -8.161 -8.160 0.001 (0) - HSO4- 2.151e-010 1.978e-010 -9.667 -9.704 -0.036 38.92 - CaHSO4+ 2.152e-012 1.980e-012 -11.667 -11.703 -0.036 (0) - FeHSO4+ 1.370e-015 1.260e-015 -14.863 -14.900 -0.036 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(283 K, 1 atm) - - Anhydrite -2.97 -7.09 -4.12 CaSO4 - Aragonite -0.21 -8.46 -8.25 CaCO3 - Calcite -0.05 -8.46 -8.41 CaCO3 - CH2O -33.73 -33.73 0.00 CH2O - CO2(g) -2.26 -3.53 -1.27 CO2 - Dolomite -0.27 -16.99 -16.72 CaMg(CO3)2 - Gypsum -2.50 -7.09 -4.59 CaSO4:2H2O - H2(g) -15.13 -18.18 -3.05 H2 - H2O(g) -1.91 -0.00 1.91 H2O - Halite -11.01 -9.47 1.54 NaCl - Melanterite -7.87 -10.28 -2.41 FeSO4:7H2O - O2(g) -58.39 -61.15 -2.76 O2 - Siderite -0.86 -11.66 -10.79 FeCO3 - Sylvite -9.47 -9.47 0.00 KCl - - -Initial solution 2. Mysse - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C(4) 6.870e-003 6.870e-003 - Ca 1.128e-002 1.128e-002 - Cl 1.785e-002 1.785e-002 - Fe(2) 4.000e-007 4.000e-007 - K 2.540e-003 2.540e-003 - Mg 4.540e-003 4.540e-003 - Na 3.189e-002 3.189e-002 - S(-2) 2.600e-004 2.600e-004 - S(6) 1.986e-002 1.986e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.610 - pe = 0.000 - Specific Conductance (uS/cm, 63 oC) = 10081 - Density (g/cm3) = 0.98527 - Volume (L) = 1.02100 - Activity of water = 0.999 - Ionic strength = 7.389e-002 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 5.299e-003 - Total CO2 (mol/kg) = 6.870e-003 - Temperature (deg C) = 63.00 - Electrical balance (eq) = 3.202e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 3.12 - Iterations = 8 - Total H = 1.110179e+002 - Total O = 5.560453e+001 - ----------------------------------Redox couples--------------------------------- - - Redox couple pe Eh (volts) - - S(-2)/S(6) -3.6474 -0.2433 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 5.980e-007 4.607e-007 -6.223 -6.337 -0.113 -3.62 - H+ 2.965e-007 2.455e-007 -6.528 -6.610 -0.082 0.00 - H2O 5.551e+001 9.985e-001 1.744 -0.001 0.000 18.35 -C(4) 6.870e-003 - HCO3- 4.604e-003 3.656e-003 -2.337 -2.437 -0.100 26.24 - CO2 1.740e-003 1.770e-003 -2.759 -2.752 0.007 23.72 - CaHCO3+ 2.384e-004 1.909e-004 -3.623 -3.719 -0.097 10.66 - NaHCO3 2.029e-004 2.064e-004 -3.693 -3.685 0.007 19.41 - MgHCO3+ 6.403e-005 4.976e-005 -4.194 -4.303 -0.109 6.11 - CaCO3 1.595e-005 1.622e-005 -4.797 -4.790 0.007 -14.51 - CO3-2 2.728e-006 1.085e-006 -5.564 -5.965 -0.401 -2.63 - MgCO3 1.581e-006 1.608e-006 -5.801 -5.794 0.007 -17.09 - NaCO3- 1.692e-007 1.343e-007 -6.772 -6.872 -0.100 1.12 - FeHCO3+ 1.149e-008 9.017e-009 -7.940 -8.045 -0.105 (0) - FeCO3 6.311e-010 6.419e-010 -9.200 -9.193 0.007 (0) -Ca 1.128e-002 - Ca+2 7.604e-003 3.039e-003 -2.119 -2.517 -0.398 -17.56 - CaSO4 3.422e-003 3.481e-003 -2.466 -2.458 0.007 8.42 - CaHCO3+ 2.384e-004 1.909e-004 -3.623 -3.719 -0.097 10.66 - CaCO3 1.595e-005 1.622e-005 -4.797 -4.790 0.007 -14.51 - CaHSO4+ 1.419e-008 1.113e-008 -7.848 -7.953 -0.105 (0) - CaOH+ 2.614e-009 2.051e-009 -8.583 -8.688 -0.105 (0) -Cl 1.785e-002 - Cl- 1.785e-002 1.382e-002 -1.748 -1.859 -0.111 18.29 - FeCl+ 5.998e-010 4.707e-010 -9.222 -9.327 -0.105 (0) -Fe(2) 4.000e-007 - Fe(HS)2 2.822e-007 2.871e-007 -6.549 -6.542 0.007 (0) - Fe+2 6.004e-008 2.467e-008 -7.222 -7.608 -0.386 -19.91 - FeSO4 3.995e-008 4.064e-008 -7.398 -7.391 0.007 (0) - FeHCO3+ 1.149e-008 9.017e-009 -7.940 -8.045 -0.105 (0) - Fe(HS)3- 4.552e-009 3.572e-009 -8.342 -8.447 -0.105 (0) - FeCO3 6.311e-010 6.419e-010 -9.200 -9.193 0.007 (0) - FeCl+ 5.998e-010 4.707e-010 -9.222 -9.327 -0.105 (0) - FeOH+ 4.987e-010 3.937e-010 -9.302 -9.405 -0.103 (0) - Fe(OH)2 2.514e-013 2.557e-013 -12.600 -12.592 0.007 (0) - FeHSO4+ 1.151e-013 9.036e-014 -12.939 -13.044 -0.105 (0) - Fe(OH)3- 6.814e-017 5.380e-017 -16.167 -16.269 -0.103 (0) -H(0) 1.182e-009 - H2 5.912e-010 6.013e-010 -9.228 -9.221 0.007 28.58 -K 2.540e-003 - K+ 2.393e-003 1.848e-003 -2.621 -2.733 -0.112 10.02 - KSO4- 1.473e-004 1.170e-004 -3.832 -3.932 -0.100 (0) -Mg 4.540e-003 - MgSO4 2.380e-003 2.421e-003 -2.623 -2.616 0.007 6.77 - Mg+2 2.094e-003 8.664e-004 -2.679 -3.062 -0.383 -22.47 - MgHCO3+ 6.403e-005 4.976e-005 -4.194 -4.303 -0.109 6.11 - MgCO3 1.581e-006 1.608e-006 -5.801 -5.794 0.007 -17.09 - MgOH+ 3.332e-007 2.685e-007 -6.477 -6.571 -0.094 (0) -Na 3.189e-002 - Na+ 3.074e-002 2.426e-002 -1.512 -1.615 -0.103 0.16 - NaSO4- 9.483e-004 7.531e-004 -3.023 -3.123 -0.100 17.89 - NaHCO3 2.029e-004 2.064e-004 -3.693 -3.685 0.007 19.41 - NaCO3- 1.692e-007 1.343e-007 -6.772 -6.872 -0.100 1.12 - NaOH 1.099e-018 1.118e-018 -17.959 -17.952 0.007 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -63.070 -63.062 0.007 32.51 -S(-2) 2.600e-004 - HS- 1.483e-004 1.143e-004 -3.829 -3.942 -0.113 21.39 - H2S 1.111e-004 1.130e-004 -3.954 -3.947 0.007 37.26 - Fe(HS)2 2.822e-007 2.871e-007 -6.549 -6.542 0.007 (0) - Fe(HS)3- 4.552e-009 3.572e-009 -8.342 -8.447 -0.105 (0) - S-2 1.456e-009 5.657e-010 -8.837 -9.247 -0.411 (0) -S(6) 1.986e-002 - SO4-2 1.296e-002 5.003e-003 -1.887 -2.301 -0.413 16.30 - CaSO4 3.422e-003 3.481e-003 -2.466 -2.458 0.007 8.42 - MgSO4 2.380e-003 2.421e-003 -2.623 -2.616 0.007 6.77 - NaSO4- 9.483e-004 7.531e-004 -3.023 -3.123 -0.100 17.89 - KSO4- 1.473e-004 1.170e-004 -3.832 -3.932 -0.100 (0) - HSO4- 3.883e-007 3.047e-007 -6.411 -6.516 -0.105 41.70 - FeSO4 3.995e-008 4.064e-008 -7.398 -7.391 0.007 (0) - CaHSO4+ 1.419e-008 1.113e-008 -7.848 -7.953 -0.105 (0) - FeHSO4+ 1.151e-013 9.036e-014 -12.939 -13.044 -0.105 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(336 K, 1 atm) - - Anhydrite -0.07 -4.82 -4.75 CaSO4 - Aragonite 0.19 -8.48 -8.67 CaCO3 - Calcite 0.31 -8.48 -8.79 CaCO3 - CH2O -14.60 -14.60 0.00 CH2O - CO2(g) -0.97 -2.75 -1.79 CO2 - Dolomite 0.36 -17.51 -17.87 CaMg(CO3)2 - FeS(ppt) -1.02 -4.94 -3.92 FeS - Gypsum -0.15 -4.82 -4.67 CaSO4:2H2O - H2(g) -6.08 -9.22 -3.14 H2 - H2O(g) -0.65 -0.00 0.65 H2O - H2S(g) -2.62 -10.55 -7.94 H2S - Halite -5.07 -3.47 1.59 NaCl - Mackinawite -0.29 -4.94 -4.65 FeS - Melanterite -8.06 -9.91 -1.85 FeSO4:7H2O - O2(g) -59.99 -63.06 -3.07 O2 - Pyrite 7.98 -9.57 -17.54 FeS2 - Siderite -2.48 -13.57 -11.10 FeCO3 - Sulfur -2.12 1.98 4.09 S - Sylvite -4.59 -4.59 0.00 KCl - - ---------------------------------------------- -Beginning of inverse modeling 1 calculations. ---------------------------------------------- - -Using Cl1 standard precision optimization routine. - -Solution 1: Recharge number 3 - - Input Delta Input+Delta - pH 7.550e+000 + 0.000e+000 = 7.550e+000 - Alkalinity 4.016e-003 + 1.061e-004 = 4.122e-003 - C(-4) 0.000e+000 + 0.000e+000 = 0.000e+000 - C(4) 4.300e-003 + 0.000e+000 = 4.300e-003 - Ca 1.200e-003 + 0.000e+000 = 1.200e-003 - Cl 2.000e-005 + 0.000e+000 = 2.000e-005 - Fe(2) 1.000e-006 + 0.000e+000 = 1.000e-006 - Fe(3) 0.000e+000 + 0.000e+000 = 0.000e+000 - H(0) 0.000e+000 + 0.000e+000 = 0.000e+000 - K 2.000e-005 + 0.000e+000 = 2.000e-005 - Mg 1.010e-003 + 0.000e+000 = 1.010e-003 - Na 2.000e-005 + 0.000e+000 = 2.000e-005 - O(0) 0.000e+000 + 0.000e+000 = 0.000e+000 - S(-2) 0.000e+000 + 0.000e+000 = 0.000e+000 - S(6) 1.600e-004 + 0.000e+000 = 1.600e-004 - X 0.000e+000 + 0.000e+000 = 0.000e+000 - 13C(-4) -7 + 0 = -7 - 13C(4) -7 + 0 = -7 - 34S(-2) 9.7 + 0 = 9.7 - 34S(6) 9.7 + 0 = 9.7 - -Solution 2: Mysse - - Input Delta Input+Delta - pH 6.610e+000 + 0.000e+000 = 6.610e+000 - Alkalinity 5.299e-003 + 0.000e+000 = 5.299e-003 - C(-4) 0.000e+000 + 0.000e+000 = 0.000e+000 - C(4) 6.870e-003 + 0.000e+000 = 6.870e-003 - Ca 1.128e-002 + 0.000e+000 = 1.128e-002 - Cl 1.785e-002 + 0.000e+000 = 1.785e-002 - Fe(2) 4.000e-007 + 0.000e+000 = 4.000e-007 - Fe(3) 0.000e+000 + 0.000e+000 = 0.000e+000 - H(0) 1.182e-009 + 0.000e+000 = 1.182e-009 - K 2.540e-003 + 0.000e+000 = 2.540e-003 - Mg 4.540e-003 + 0.000e+000 = 4.540e-003 - Na 3.189e-002 + -1.216e-003 = 3.067e-002 - O(0) 0.000e+000 + 0.000e+000 = 0.000e+000 - S(-2) 2.600e-004 + 0.000e+000 = 2.600e-004 - S(6) 1.986e-002 + 9.930e-004 = 2.085e-002 - X 0.000e+000 + 0.000e+000 = 0.000e+000 - 13C(-4) -2.3 + 0 = -2.3 - 13C(4) -2.3 + 0 = -2.3 - 34S(-2) -22.1 + 0 = -22.1 - 34S(6) 16.3 + 0 = 16.3 - -Isotopic composition of phases: - 13C Dolomite 3 + 0 = 3 - 13C Calcite -1.5 + 0 = -1.5 - 34S Anhydrite 13.5 + -0.704733 = 12.7953 - 13C CH2O -25 + 3.85425 = -21.1457 - 34S Pyrite -22 + 2 = -20 - -Solution fractions: Minimum Maximum - Solution 1 1.000e+000 9.999e-001 1.000e+000 - Solution 2 1.000e+000 1.000e+000 1.000e+000 - -Phase mole transfers: Minimum Maximum - Dolomite 1.120e-002 1.022e-002 1.195e-002 CaMg(CO3)2 - Calcite -2.404e-002 -2.597e-002 -2.111e-002 CaCO3 - Anhydrite 2.292e-002 2.036e-002 2.377e-002 CaSO4 - CH2O 4.208e-003 2.467e-003 5.795e-003 CH2O - Goethite 9.829e-004 5.106e-004 1.414e-003 FeOOH - Pyrite -9.835e-004 -1.413e-003 -5.123e-004 FeS2 - MgX2 -7.672e-003 -8.598e-003 -6.972e-003 MgX2 - NaX 1.534e-002 1.394e-002 1.720e-002 NaX - Halite 1.531e-002 1.429e-002 1.633e-002 NaCl - Sylvite 2.520e-003 2.392e-003 2.648e-003 KCl - -Redox mole transfers: - Fe(3) 9.829e-004 - H(0) -1.182e-009 - S(-2) -2.227e-003 - -Sum of residuals (epsilons in documentation): 2.303e+000 -Sum of delta/uncertainty limit: 4.414e+000 -Maximum fractional error in element concentration: 5.000e-002 - -Model contains minimum number of phases. -=============================================================================== - - -Solution 1: Recharge number 3 - - Input Delta Input+Delta - pH 7.550e+000 + 0.000e+000 = 7.550e+000 - Alkalinity 4.016e-003 + 1.061e-004 = 4.122e-003 - C(-4) 0.000e+000 + 0.000e+000 = 0.000e+000 - C(4) 4.300e-003 + 0.000e+000 = 4.300e-003 - Ca 1.200e-003 + 0.000e+000 = 1.200e-003 - Cl 2.000e-005 + 0.000e+000 = 2.000e-005 - Fe(2) 1.000e-006 + 0.000e+000 = 1.000e-006 - Fe(3) 0.000e+000 + 0.000e+000 = 0.000e+000 - H(0) 0.000e+000 + 0.000e+000 = 0.000e+000 - K 2.000e-005 + 0.000e+000 = 2.000e-005 - Mg 1.010e-003 + 0.000e+000 = 1.010e-003 - Na 2.000e-005 + 0.000e+000 = 2.000e-005 - O(0) 0.000e+000 + 0.000e+000 = 0.000e+000 - S(-2) 0.000e+000 + 0.000e+000 = 0.000e+000 - S(6) 1.600e-004 + 0.000e+000 = 1.600e-004 - X 0.000e+000 + 0.000e+000 = 0.000e+000 - 13C(-4) -7 + 0 = -7 - 13C(4) -7 + 0 = -7 - 34S(-2) 9.7 + 0 = 9.7 - 34S(6) 9.7 + 0 = 9.7 - -Solution 2: Mysse - - Input Delta Input+Delta - pH 6.610e+000 + 0.000e+000 = 6.610e+000 - Alkalinity 5.299e-003 + 0.000e+000 = 5.299e-003 - C(-4) 0.000e+000 + 0.000e+000 = 0.000e+000 - C(4) 6.870e-003 + -3.353e-004 = 6.535e-003 - Ca 1.128e-002 + 0.000e+000 = 1.128e-002 - Cl 1.785e-002 + 0.000e+000 = 1.785e-002 - Fe(2) 4.000e-007 + 0.000e+000 = 4.000e-007 - Fe(3) 0.000e+000 + 0.000e+000 = 0.000e+000 - H(0) 1.182e-009 + 0.000e+000 = 1.182e-009 - K 2.540e-003 + 0.000e+000 = 2.540e-003 - Mg 4.540e-003 + 0.000e+000 = 4.540e-003 - Na 3.189e-002 + -1.216e-003 = 3.067e-002 - O(0) 0.000e+000 + 0.000e+000 = 0.000e+000 - S(-2) 2.600e-004 + 0.000e+000 = 2.600e-004 - S(6) 1.986e-002 + 9.930e-004 = 2.085e-002 - X 0.000e+000 + 0.000e+000 = 0.000e+000 - 13C(-4) -2.3 + 0 = -2.3 - 13C(4) -2.3 + 0 = -2.3 - 34S(-2) -22.1 + 0 = -22.1 - 34S(6) 16.3 + 0 = 16.3 - -Isotopic composition of phases: - 13C Dolomite 3 + 2 = 5 - 13C Calcite -1.5 + -1 = -2.5 - 34S Anhydrite 13.5 + -0.147137 = 13.3529 - 13C CH2O -25 + 5 = -20 - 34S Pyrite -22 + 2 = -20 - -Solution fractions: Minimum Maximum - Solution 1 1.000e+000 1.000e+000 1.000e+000 - Solution 2 1.000e+000 1.000e+000 1.000e+000 - -Phase mole transfers: Minimum Maximum - Dolomite 5.448e-003 4.995e-003 5.843e-003 CaMg(CO3)2 - Calcite -1.215e-002 -1.336e-002 -1.065e-002 CaCO3 - Anhydrite 2.254e-002 2.036e-002 2.298e-002 CaSO4 - CH2O 3.489e-003 2.467e-003 4.303e-003 CH2O - Goethite 7.913e-004 5.106e-004 1.016e-003 FeOOH - Pyrite -7.919e-004 -1.016e-003 -5.123e-004 FeS2 - Ca.75Mg.25X2 -7.672e-003 -8.598e-003 -6.972e-003 Ca.75Mg.25X2 - NaX 1.534e-002 1.394e-002 1.720e-002 NaX - Halite 1.531e-002 1.429e-002 1.633e-002 NaCl - Sylvite 2.520e-003 2.392e-003 2.648e-003 KCl - -Redox mole transfers: - Fe(3) 7.913e-004 - H(0) -1.182e-009 - S(-2) -1.844e-003 - -Sum of residuals (epsilons in documentation): 3.290e+000 -Sum of delta/uncertainty limit: 7.340e+000 -Maximum fractional error in element concentration: 5.000e-002 - -Model contains minimum number of phases. -=============================================================================== - - -Summary of inverse modeling: - - Number of models found: 2 - Number of minimal models found: 2 - Number of infeasible sets of phases saved: 28 - Number of calls to cl1: 80 ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 2. ------------------------------------- - -------------------------------- -End of Run after 0.657 Seconds. -------------------------------- - diff --git a/examples_pc/ex19.out b/examples_pc/ex19.out deleted file mode 100644 index f323b4c2..00000000 --- a/examples_pc/ex19.out +++ /dev/null @@ -1,74 +0,0 @@ - Input file: ..\examples\ex19 - Output file: ex19.out -Database file: ..\database\phreeqc.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - PHASES - EXCHANGE_MASTER_SPECIES - EXCHANGE_SPECIES - SURFACE_MASTER_SPECIES - SURFACE_SPECIES - RATES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Example 19.--Linear, Freundlich and Langmuir isotherms for - Cd sorption on loamy sand. Calculates Example 7.1 - from Appelo and Postma, 2005. Data from Christensen, 1984. - SURFACE_MASTER_SPECIES - Linear Linear - Freundlich Freundlich - Langmuir Langmuir - SURFACE_SPECIES - Linear = Linear - Linear + Cd+2 = LinearCd+2 - log_k -100.7 # log10(0.2) - 100 - mole_balance LinearCdCl2 - Freundlich = Freundlich - Freundlich + 0.722 Cd+2 = FreundlichCd+2 - log_k -102.61 # log10(0.421) + (0.722 - 1) * log10(112.4e6) - 100 - no_check - mole_balance FreundlichCdCl2 - Langmuir = Langmuir - Langmuir + Cd+2 = LangmuirCd+2 - log_k 6.56 # log10(112.4 / 30.9e-6) - mole_balance LangmuirCdCl2 - SURFACE 1 - Linear 1e100 1 1 - Freundlich 1e100 1 1 - Langmuir 8.45e-8 1 1 # 9.5 / 112.4e6 - no_edl - SOLUTION 1 - pH 6 - Ca 1 - Cl 2 - REACTION 1 - CdCl2 1 - 0.7e-6 in 20 - USER_GRAPH Example 19 - -headings Linear Freundlich Langmuir - -chart_title "Sorption Isotherms" - -axis_titles "Dissolved Cd, in micrograms per kilogram water" "Sorbed Cd, in micrograms per gram soil" - -plot_tsv_file ex19_meas.tsv - -axis_scale x_axis 0 40 - -axis_scale y_axis 0 6 - -initial_solutions true - -start - 10 x = act("Cd+2") * 112.4e6 - 20 PLOT_XY x, mol("LinearCd+2")*112e6, color = Green, symbol = None, line_width = 2 - 30 PLOT_XY x, mol("FreundlichCd+2")*112e6, color = Blue, symbol = None, line_width = 2 - 40 PLOT_XY x, mol("LangmuirCd+2")*112e6, color = Orange, symbol = None, line_width = 2 - -end - PRINT - reset false -------------------------------- -End of Run after 0.691 Seconds. -------------------------------- - diff --git a/examples_pc/ex19b.out b/examples_pc/ex19b.out deleted file mode 100644 index f6ebae38..00000000 --- a/examples_pc/ex19b.out +++ /dev/null @@ -1,172 +0,0 @@ - Input file: ..\examples\ex19b - Output file: ex19b.out -Database file: ..\database\phreeqc.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - PHASES - EXCHANGE_MASTER_SPECIES - EXCHANGE_SPECIES - SURFACE_MASTER_SPECIES - SURFACE_SPECIES - RATES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Example 19B.--Cd sorption on X, Hfo and OC in loamy soil - PRINT - reset false - - ug Cd/L = 1.1240e-001 ug Cd/g = 0 Kd (L/kg) = 0 ug Cd/g in DL = 0 -Excess meq Ca in DL = 0 -Excess meq Cl in DL = 0 -Surface charge = 0 -Total Ca in/on organic matter = 0 CEC on OM = Zero divide in BASIC line - 70 print 'Total Ca in/on organic matter =', H_Ca, ' CEC on OM =' H_Ca*200/TOT("X"), '%.'. -Value set to zero. - 0 %. - - ug Cd/L = 1.1240e-001 ug Cd/g = 0 Kd (L/kg) = 0 ug Cd/g in DL = 0 -Excess meq Ca in DL = 0 -Excess meq Cl in DL = 0 -Surface charge = 0 -Total Ca in/on organic matter = 0 CEC on OM = 0 %. - - ug Cd/L = 1.1240e-001 ug Cd/g = 2.0660e-001 Kd (L/kg) = 1.8381e+003 ug Cd/g in DL = 8.5947e-004 -Excess meq Ca in DL = 1.3249e-005 -Excess meq Cl in DL = -1.8095e-006 -Surface charge = -1.5062e-005 -Total Ca in/on organic matter = 1.2741e-006 CEC on OM = Zero divide in BASIC line - 70 print 'Total Ca in/on organic matter =', H_Ca, ' CEC on OM =' H_Ca*200/TOT("X"), '%.'. -Value set to zero. - 0 %. - - ug Cd/L = 4.1724e+000 ug Cd/g = 7.2867e+000 Kd (L/kg) = 1.7464e+003 ug Cd/g in DL = 3.1870e-002 -Excess meq Ca in DL = 1.3232e-005 -Excess meq Cl in DL = -1.8088e-006 -Surface charge = -1.5045e-005 -Total Ca in/on organic matter = 1.2674e-006 CEC on OM = 4.5507e+000 %. - - ug Cd/L = 8.4928e+000 ug Cd/g = 1.4100e+001 Kd (L/kg) = 1.6602e+003 ug Cd/g in DL = 6.4803e-002 -Excess meq Ca in DL = 1.3215e-005 -Excess meq Cl in DL = -1.8082e-006 -Surface charge = -1.5028e-005 -Total Ca in/on organic matter = 1.2609e-006 CEC on OM = 4.5274e+000 %. - - ug Cd/L = 1.3073e+001 ug Cd/g = 2.0647e+001 Kd (L/kg) = 1.5794e+003 ug Cd/g in DL = 9.9645e-002 -Excess meq Ca in DL = 1.3197e-005 -Excess meq Cl in DL = -1.8076e-006 -Surface charge = -1.5010e-005 -Total Ca in/on organic matter = 1.2547e-006 CEC on OM = 4.5051e+000 %. - - ug Cd/L = 1.7910e+001 ug Cd/g = 2.6932e+001 Kd (L/kg) = 1.5037e+003 ug Cd/g in DL = 1.3636e-001 -Excess meq Ca in DL = 1.3180e-005 -Excess meq Cl in DL = -1.8069e-006 -Surface charge = -1.4992e-005 -Total Ca in/on organic matter = 1.2487e-006 CEC on OM = 4.4837e+000 %. - - ug Cd/L = 2.2997e+001 ug Cd/g = 3.2959e+001 Kd (L/kg) = 1.4332e+003 ug Cd/g in DL = 1.7490e-001 -Excess meq Ca in DL = 1.3162e-005 -Excess meq Cl in DL = -1.8063e-006 -Surface charge = -1.4974e-005 -Total Ca in/on organic matter = 1.2430e-006 CEC on OM = 4.4632e+000 %. - - ug Cd/L = 2.8328e+001 ug Cd/g = 3.8738e+001 Kd (L/kg) = 1.3675e+003 ug Cd/g in DL = 2.1520e-001 -Excess meq Ca in DL = 1.3144e-005 -Excess meq Cl in DL = -1.8056e-006 -Surface charge = -1.4956e-005 -Total Ca in/on organic matter = 1.2376e-006 CEC on OM = 4.4437e+000 %. - - ug Cd/L = 3.3892e+001 ug Cd/g = 4.4277e+001 Kd (L/kg) = 1.3064e+003 ug Cd/g in DL = 2.5719e-001 -Excess meq Ca in DL = 1.3125e-005 -Excess meq Cl in DL = -1.8049e-006 -Surface charge = -1.4938e-005 -Total Ca in/on organic matter = 1.2324e-006 CEC on OM = 4.4250e+000 %. - - ug Cd/L = 3.9679e+001 ug Cd/g = 4.9588e+001 Kd (L/kg) = 1.2497e+003 ug Cd/g in DL = 3.0076e-001 -Excess meq Ca in DL = 1.3107e-005 -Excess meq Cl in DL = -1.8042e-006 -Surface charge = -1.4919e-005 -Total Ca in/on organic matter = 1.2274e-006 CEC on OM = 4.4071e+000 %. - - ug Cd/L = 4.5678e+001 ug Cd/g = 5.4682e+001 Kd (L/kg) = 1.1971e+003 ug Cd/g in DL = 3.4584e-001 -Excess meq Ca in DL = 1.3089e-005 -Excess meq Cl in DL = -1.8036e-006 -Surface charge = -1.4901e-005 -Total Ca in/on organic matter = 1.2226e-006 CEC on OM = 4.3899e+000 %. - - ug Cd/L = 5.1877e+001 ug Cd/g = 5.9571e+001 Kd (L/kg) = 1.1483e+003 ug Cd/g in DL = 3.9233e-001 -Excess meq Ca in DL = 1.3070e-005 -Excess meq Cl in DL = -1.8029e-006 -Surface charge = -1.4882e-005 -Total Ca in/on organic matter = 1.2180e-006 CEC on OM = 4.3736e+000 %. - - ug Cd/L = 5.8264e+001 ug Cd/g = 6.4268e+001 Kd (L/kg) = 1.1031e+003 ug Cd/g in DL = 4.4013e-001 -Excess meq Ca in DL = 1.3052e-005 -Excess meq Cl in DL = -1.8022e-006 -Surface charge = -1.4864e-005 -Total Ca in/on organic matter = 1.2137e-006 CEC on OM = 4.3578e+000 %. - - ug Cd/L = 6.4826e+001 ug Cd/g = 6.8784e+001 Kd (L/kg) = 1.0611e+003 ug Cd/g in DL = 4.8915e-001 -Excess meq Ca in DL = 1.3033e-005 -Excess meq Cl in DL = -1.8015e-006 -Surface charge = -1.4845e-005 -Total Ca in/on organic matter = 1.2095e-006 CEC on OM = 4.3428e+000 %. - - ug Cd/L = 7.1553e+001 ug Cd/g = 7.3133e+001 Kd (L/kg) = 1.0221e+003 ug Cd/g in DL = 5.3930e-001 -Excess meq Ca in DL = 1.3015e-005 -Excess meq Cl in DL = -1.8008e-006 -Surface charge = -1.4827e-005 -Total Ca in/on organic matter = 1.2054e-006 CEC on OM = 4.3283e+000 %. - - ug Cd/L = 7.8434e+001 ug Cd/g = 7.7323e+001 Kd (L/kg) = 9.8584e+002 ug Cd/g in DL = 5.9050e-001 -Excess meq Ca in DL = 1.2996e-005 -Excess meq Cl in DL = -1.8001e-006 -Surface charge = -1.4809e-005 -Total Ca in/on organic matter = 1.2016e-006 CEC on OM = 4.3144e+000 %. - - ug Cd/L = 8.5458e+001 ug Cd/g = 8.1368e+001 Kd (L/kg) = 9.5214e+002 ug Cd/g in DL = 6.4265e-001 -Excess meq Ca in DL = 1.2978e-005 -Excess meq Cl in DL = -1.7994e-006 -Surface charge = -1.4790e-005 -Total Ca in/on organic matter = 1.1978e-006 CEC on OM = 4.3010e+000 %. - - ug Cd/L = 9.2615e+001 ug Cd/g = 8.5276e+001 Kd (L/kg) = 9.2076e+002 ug Cd/g in DL = 6.9570e-001 -Excess meq Ca in DL = 1.2960e-005 -Excess meq Cl in DL = -1.7987e-006 -Surface charge = -1.4772e-005 -Total Ca in/on organic matter = 1.1942e-006 CEC on OM = 4.2881e+000 %. - - ug Cd/L = 9.9896e+001 ug Cd/g = 8.9056e+001 Kd (L/kg) = 8.9149e+002 ug Cd/g in DL = 7.4956e-001 -Excess meq Ca in DL = 1.2942e-005 -Excess meq Cl in DL = -1.7981e-006 -Surface charge = -1.4754e-005 -Total Ca in/on organic matter = 1.1908e-006 CEC on OM = 4.2756e+000 %. - - ug Cd/L = 1.0729e+002 ug Cd/g = 9.2718e+001 Kd (L/kg) = 8.6416e+002 ug Cd/g in DL = 8.0418e-001 -Excess meq Ca in DL = 1.2924e-005 -Excess meq Cl in DL = -1.7974e-006 -Surface charge = -1.4736e-005 -Total Ca in/on organic matter = 1.1874e-006 CEC on OM = 4.2636e+000 %. - - ug Cd/L = 1.1480e+002 ug Cd/g = 9.6270e+001 Kd (L/kg) = 8.3860e+002 ug Cd/g in DL = 8.5949e-001 -Excess meq Ca in DL = 1.2906e-005 -Excess meq Cl in DL = -1.7967e-006 -Surface charge = -1.4719e-005 -Total Ca in/on organic matter = 1.1842e-006 CEC on OM = 4.2519e+000 %. - - ug Cd/L = 1.2240e+002 ug Cd/g = 9.9718e+001 Kd (L/kg) = 8.1466e+002 ug Cd/g in DL = 9.1543e-001 -Excess meq Ca in DL = 1.2888e-005 -Excess meq Cl in DL = -1.7960e-006 -Surface charge = -1.4701e-005 -Total Ca in/on organic matter = 1.1810e-006 CEC on OM = 4.2406e+000 %. -------------------------------- -End of Run after 0.876 Seconds. -------------------------------- - diff --git a/examples_pc/ex2.out b/examples_pc/ex2.out deleted file mode 100644 index c017b2c9..00000000 --- a/examples_pc/ex2.out +++ /dev/null @@ -1,4255 +0,0 @@ - Input file: ..\examples\ex2 - Output file: ex2.out -Database file: ..\database\phreeqc.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - PHASES - EXCHANGE_MASTER_SPECIES - EXCHANGE_SPECIES - SURFACE_MASTER_SPECIES - SURFACE_SPECIES - RATES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Example 2.--Temperature dependence of solubility - of gypsum and anhydrite - SOLUTION 1 Pure water - pH 7.0 - temp 25.0 - EQUILIBRIUM_PHASES 1 - Gypsum 0.0 1.0 - Anhydrite 0.0 1.0 - REACTION_TEMPERATURE 1 - 25.0 75.0 in 51 steps - SELECTED_OUTPUT - file ex2.sel - temperature - si anhydrite gypsum - USER_GRAPH 1 Example 2 - -headings Temperature Gypsum Anhydrite - -chart_title "Gypsum-Anhydrite Stability" - -axis_scale x_axis 25 75 5 0 - -axis_scale y_axis auto 0.05 0.1 - -axis_titles "Temperature, in degrees celsius" "Saturation index" - -initial_solutions false - -start - 10 graph_x TC - 20 graph_y SI("Gypsum") SI("Anhydrite") - -end - END ------ -TITLE ------ - - Example 2.--Temperature dependence of solubility - of gypsum and anhydrite - -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 1. Pure water - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Pure water - -----------------------------Description of solution---------------------------- - - pH = 7.000 - pe = 4.000 - Specific Conductance (uS/cm, 25 oC) = 0 - Density (g/cm3) = 0.99704 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 1.007e-007 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.217e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.60 - Iterations = 0 - Total H = 1.110124e+002 - Total O = 5.550622e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.013e-007 1.012e-007 -6.995 -6.995 -0.000 -4.14 - H+ 1.001e-007 1.000e-007 -7.000 -7.000 -0.000 0.00 - H2O 5.551e+001 1.000e+000 1.744 0.000 0.000 18.07 -H(0) 1.416e-025 - H2 7.079e-026 7.079e-026 -25.150 -25.150 0.000 28.61 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -42.080 -42.080 0.000 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - H2(g) -22.05 -25.15 -3.10 H2 - H2O(g) -1.50 0.00 1.50 H2O - O2(g) -39.19 -42.08 -2.89 O2 - - ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.30 -4.58 -4.28 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.58 -4.58 1.000e+000 1.985e+000 9.855e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.508e-002 1.455e-002 - S 1.508e-002 1.455e-002 - -----------------------------Description of solution---------------------------- - - pH = 7.066 Charge balance - pe = 10.745 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 2161 - Density (g/cm3) = 0.99909 - Volume (L) = 0.96829 - Activity of water = 1.000 - Ionic strength = 4.183e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 19 - Total H = 1.070706e+002 - Total O = 5.359351e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.431e-007 1.178e-007 -6.844 -6.929 -0.084 -3.90 - H+ 9.974e-008 8.587e-008 -7.001 -7.066 -0.065 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.07 -Ca 1.508e-002 - Ca+2 1.046e-002 5.176e-003 -1.981 -2.286 -0.305 -17.66 - CaSO4 4.627e-003 4.672e-003 -2.335 -2.331 0.004 7.50 - CaOH+ 1.203e-008 1.000e-008 -7.920 -8.000 -0.080 (0) - CaHSO4+ 3.172e-009 2.637e-009 -8.499 -8.579 -0.080 (0) -H(0) 3.354e-039 - H2 1.677e-039 1.693e-039 -38.776 -38.771 0.004 28.61 -O(0) 2.878e-015 - O2 1.439e-015 1.453e-015 -14.842 -14.838 0.004 30.40 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -118.111 -118.195 -0.084 20.77 - H2S 0.000e+000 0.000e+000 -118.324 -118.320 0.004 37.16 - S-2 0.000e+000 0.000e+000 -123.735 -124.047 -0.312 (0) -S(6) 1.508e-002 - SO4-2 1.046e-002 5.075e-003 -1.981 -2.295 -0.314 14.66 - CaSO4 4.627e-003 4.672e-003 -2.335 -2.331 0.004 7.50 - HSO4- 5.096e-008 4.237e-008 -7.293 -7.373 -0.080 40.44 - CaHSO4+ 3.172e-009 2.637e-009 -8.499 -8.579 -0.080 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -0.30 -4.58 -4.28 CaSO4 - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2(g) -35.67 -38.77 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -117.27 -125.26 -7.99 H2S - O2(g) -11.95 -14.84 -2.89 O2 - Sulfur -87.58 -82.70 4.88 S - - -Reaction step 2. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.29 -4.58 -4.29 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.58 -4.58 1.000e+000 1.985e+000 9.854e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.513e-002 1.459e-002 - S 1.513e-002 1.459e-002 - -----------------------------Description of solution---------------------------- - - pH = 7.052 Charge balance - pe = 10.676 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 26 oC) = 2212 - Density (g/cm3) = 0.99883 - Volume (L) = 0.96855 - Activity of water = 1.000 - Ionic strength = 4.188e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 26.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 19 - Total H = 1.070708e+002 - Total O = 5.359376e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.497e-007 1.232e-007 -6.825 -6.910 -0.085 -3.86 - H+ 1.030e-007 8.862e-008 -6.987 -7.052 -0.065 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.07 -Ca 1.513e-002 - Ca+2 1.047e-002 5.174e-003 -1.980 -2.286 -0.306 -17.65 - CaSO4 4.658e-003 4.703e-003 -2.332 -2.328 0.004 7.54 - CaOH+ 1.166e-008 9.686e-009 -7.933 -8.014 -0.080 (0) - CaHSO4+ 3.344e-009 2.779e-009 -8.476 -8.556 -0.080 (0) -H(0) 4.855e-039 - H2 2.428e-039 2.451e-039 -38.615 -38.611 0.004 28.60 -O(0) 2.880e-015 - O2 1.440e-015 1.454e-015 -14.842 -14.837 0.004 30.48 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -117.585 -117.669 -0.085 20.81 - H2S 0.000e+000 0.000e+000 -117.797 -117.793 0.004 37.17 - S-2 0.000e+000 0.000e+000 -123.192 -123.505 -0.313 (0) -S(6) 1.513e-002 - SO4-2 1.047e-002 5.073e-003 -1.980 -2.295 -0.315 14.78 - CaSO4 4.658e-003 4.703e-003 -2.332 -2.328 0.004 7.54 - HSO4- 5.376e-008 4.468e-008 -7.270 -7.350 -0.080 40.50 - CaHSO4+ 3.344e-009 2.779e-009 -8.476 -8.556 -0.080 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(299 K, 1 atm) - - Anhydrite -0.29 -4.58 -4.29 CaSO4 - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2(g) -35.51 -38.61 -3.10 H2 - H2O(g) -1.48 -0.00 1.48 H2O - H2S(g) -116.73 -124.72 -7.99 H2S - O2(g) -11.94 -14.84 -2.90 O2 - Sulfur -87.20 -82.34 4.86 S - - -Reaction step 3. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.28 -4.58 -4.30 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.58 -4.58 1.000e+000 1.985e+000 9.854e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.517e-002 1.463e-002 - S 1.517e-002 1.463e-002 - -----------------------------Description of solution---------------------------- - - pH = 7.039 Charge balance - pe = 10.607 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 27 oC) = 2262 - Density (g/cm3) = 0.99856 - Volume (L) = 0.96882 - Activity of water = 1.000 - Ionic strength = 4.191e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 27.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 - Total H = 1.070709e+002 - Total O = 5.359398e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.564e-007 1.287e-007 -6.806 -6.890 -0.085 -3.83 - H+ 1.063e-007 9.143e-008 -6.974 -7.039 -0.065 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.08 -Ca 1.517e-002 - Ca+2 1.048e-002 5.172e-003 -1.980 -2.286 -0.307 -17.64 - CaSO4 4.688e-003 4.733e-003 -2.329 -2.325 0.004 7.57 - CaOH+ 1.130e-008 9.384e-009 -7.947 -8.028 -0.081 (0) - CaHSO4+ 3.525e-009 2.929e-009 -8.453 -8.533 -0.081 (0) -H(0) 7.015e-039 - H2 3.507e-039 3.541e-039 -38.455 -38.451 0.004 28.60 -O(0) 2.879e-015 - O2 1.439e-015 1.453e-015 -14.842 -14.838 0.004 30.55 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -117.061 -117.146 -0.085 20.85 - H2S 0.000e+000 0.000e+000 -117.273 -117.269 0.004 37.17 - S-2 0.000e+000 0.000e+000 -122.652 -122.966 -0.314 (0) -S(6) 1.517e-002 - SO4-2 1.048e-002 5.070e-003 -1.980 -2.295 -0.315 14.90 - CaSO4 4.688e-003 4.733e-003 -2.329 -2.325 0.004 7.57 - HSO4- 5.670e-008 4.710e-008 -7.246 -7.327 -0.081 40.57 - CaHSO4+ 3.525e-009 2.929e-009 -8.453 -8.533 -0.081 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(300 K, 1 atm) - - Anhydrite -0.28 -4.58 -4.30 CaSO4 - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2(g) -35.35 -38.45 -3.11 H2 - H2O(g) -1.45 -0.00 1.45 H2O - H2S(g) -116.20 -124.18 -7.99 H2S - O2(g) -11.93 -14.84 -2.91 O2 - Sulfur -86.81 -81.98 4.84 S - - -Reaction step 4. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.27 -4.58 -4.31 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.58 -4.58 1.000e+000 1.985e+000 9.853e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.520e-002 1.466e-002 - S 1.520e-002 1.466e-002 - -----------------------------Description of solution---------------------------- - - pH = 7.025 Charge balance - pe = 10.540 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 28 oC) = 2313 - Density (g/cm3) = 0.99828 - Volume (L) = 0.96909 - Activity of water = 1.000 - Ionic strength = 4.194e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 28.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 - Total H = 1.070711e+002 - Total O = 5.359419e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.634e-007 1.344e-007 -6.787 -6.872 -0.085 -3.79 - H+ 1.096e-007 9.431e-008 -6.960 -7.025 -0.065 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.08 -Ca 1.520e-002 - Ca+2 1.049e-002 5.168e-003 -1.979 -2.287 -0.307 -17.62 - CaSO4 4.716e-003 4.762e-003 -2.326 -2.322 0.004 7.61 - CaOH+ 1.095e-008 9.091e-009 -7.961 -8.041 -0.081 (0) - CaHSO4+ 3.715e-009 3.085e-009 -8.430 -8.511 -0.081 (0) -H(0) 1.008e-038 - H2 5.039e-039 5.088e-039 -38.298 -38.293 0.004 28.60 -O(0) 2.897e-015 - O2 1.449e-015 1.463e-015 -14.839 -14.835 0.004 30.63 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -116.547 -116.632 -0.085 20.89 - H2S 0.000e+000 0.000e+000 -116.758 -116.753 0.004 37.18 - S-2 0.000e+000 0.000e+000 -122.122 -122.436 -0.314 (0) -S(6) 1.520e-002 - SO4-2 1.049e-002 5.067e-003 -1.979 -2.295 -0.316 15.00 - CaSO4 4.716e-003 4.762e-003 -2.326 -2.322 0.004 7.61 - HSO4- 5.978e-008 4.964e-008 -7.223 -7.304 -0.081 40.63 - CaHSO4+ 3.715e-009 3.085e-009 -8.430 -8.511 -0.081 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(301 K, 1 atm) - - Anhydrite -0.27 -4.58 -4.31 CaSO4 - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2(g) -35.19 -38.29 -3.11 H2 - H2O(g) -1.43 -0.00 1.43 H2O - H2S(g) -115.67 -123.66 -7.99 H2S - O2(g) -11.92 -14.83 -2.91 O2 - Sulfur -86.44 -81.62 4.81 S - - -Reaction step 5. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.26 -4.58 -4.32 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.58 -4.58 1.000e+000 1.985e+000 9.853e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.524e-002 1.469e-002 - S 1.524e-002 1.469e-002 - -----------------------------Description of solution---------------------------- - - pH = 7.012 Charge balance - pe = 10.471 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 29 oC) = 2364 - Density (g/cm3) = 0.99800 - Volume (L) = 0.96938 - Activity of water = 1.000 - Ionic strength = 4.197e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 29.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 22 - Total H = 1.070712e+002 - Total O = 5.359438e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.707e-007 1.403e-007 -6.768 -6.853 -0.085 -3.76 - H+ 1.131e-007 9.725e-008 -6.947 -7.012 -0.065 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.09 -Ca 1.524e-002 - Ca+2 1.049e-002 5.164e-003 -1.979 -2.287 -0.308 -17.61 - CaSO4 4.744e-003 4.790e-003 -2.324 -2.320 0.004 7.64 - CaOH+ 1.061e-008 8.809e-009 -7.974 -8.055 -0.081 (0) - CaHSO4+ 3.913e-009 3.248e-009 -8.408 -8.488 -0.081 (0) -H(0) 1.457e-038 - H2 7.284e-039 7.355e-039 -38.138 -38.133 0.004 28.60 -O(0) 2.865e-015 - O2 1.433e-015 1.446e-015 -14.844 -14.840 0.004 30.70 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -116.021 -116.106 -0.085 20.93 - H2S 0.000e+000 0.000e+000 -116.231 -116.227 0.004 37.18 - S-2 0.000e+000 0.000e+000 -121.580 -121.894 -0.315 (0) -S(6) 1.524e-002 - SO4-2 1.049e-002 5.063e-003 -1.979 -2.296 -0.316 15.11 - CaSO4 4.744e-003 4.790e-003 -2.324 -2.320 0.004 7.64 - HSO4- 6.302e-008 5.231e-008 -7.201 -7.281 -0.081 40.69 - CaHSO4+ 3.913e-009 3.248e-009 -8.408 -8.488 -0.081 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(302 K, 1 atm) - - Anhydrite -0.26 -4.58 -4.32 CaSO4 - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2(g) -35.02 -38.13 -3.11 H2 - H2O(g) -1.40 -0.00 1.40 H2O - H2S(g) -115.13 -123.12 -7.98 H2S - O2(g) -11.92 -14.84 -2.92 O2 - Sulfur -86.05 -81.26 4.79 S - - -Reaction step 6. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.25 -4.58 -4.33 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.58 -4.58 1.000e+000 1.985e+000 9.853e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.527e-002 1.472e-002 - S 1.527e-002 1.472e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.999 Charge balance - pe = 10.404 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 30 oC) = 2415 - Density (g/cm3) = 0.99770 - Volume (L) = 0.96967 - Activity of water = 1.000 - Ionic strength = 4.198e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 30.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 - Total H = 1.070713e+002 - Total O = 5.359456e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.781e-007 1.464e-007 -6.749 -6.835 -0.085 -3.73 - H+ 1.166e-007 1.003e-007 -6.933 -6.999 -0.066 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.09 -Ca 1.527e-002 - Ca+2 1.050e-002 5.160e-003 -1.979 -2.287 -0.308 -17.61 - CaSO4 4.770e-003 4.816e-003 -2.322 -2.317 0.004 7.68 - CaOH+ 1.029e-008 8.537e-009 -7.988 -8.069 -0.081 (0) - CaHSO4+ 4.120e-009 3.419e-009 -8.385 -8.466 -0.081 (0) -H(0) 2.088e-038 - H2 1.044e-038 1.054e-038 -37.981 -37.977 0.004 28.60 -O(0) 2.870e-015 - O2 1.435e-015 1.449e-015 -14.843 -14.839 0.004 30.77 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -115.510 -115.595 -0.085 20.97 - H2S 0.000e+000 0.000e+000 -115.718 -115.714 0.004 37.18 - S-2 0.000e+000 0.000e+000 -121.052 -121.368 -0.315 (0) -S(6) 1.527e-002 - SO4-2 1.050e-002 5.059e-003 -1.979 -2.296 -0.317 15.20 - CaSO4 4.770e-003 4.816e-003 -2.322 -2.317 0.004 7.68 - HSO4- 6.642e-008 5.511e-008 -7.178 -7.259 -0.081 40.74 - CaHSO4+ 4.120e-009 3.419e-009 -8.385 -8.466 -0.081 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(303 K, 1 atm) - - Anhydrite -0.25 -4.58 -4.33 CaSO4 - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2(g) -34.87 -37.98 -3.11 H2 - H2O(g) -1.38 -0.00 1.38 H2O - H2S(g) -114.61 -122.59 -7.98 H2S - O2(g) -11.91 -14.84 -2.93 O2 - Sulfur -85.68 -80.91 4.77 S - - -Reaction step 7. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.24 -4.58 -4.35 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.58 -4.58 1.000e+000 1.985e+000 9.853e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.529e-002 1.475e-002 - S 1.529e-002 1.475e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.986 Charge balance - pe = 10.337 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 31 oC) = 2466 - Density (g/cm3) = 0.99740 - Volume (L) = 0.96998 - Activity of water = 1.000 - Ionic strength = 4.199e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 31.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 20 - Total H = 1.070714e+002 - Total O = 5.359471e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.858e-007 1.526e-007 -6.731 -6.816 -0.085 -3.71 - H+ 1.202e-007 1.033e-007 -6.920 -6.986 -0.066 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.10 -Ca 1.529e-002 - Ca+2 1.050e-002 5.154e-003 -1.979 -2.288 -0.309 -17.60 - CaSO4 4.794e-003 4.841e-003 -2.319 -2.315 0.004 7.71 - CaOH+ 9.975e-009 8.275e-009 -8.001 -8.082 -0.081 (0) - CaHSO4+ 4.337e-009 3.597e-009 -8.363 -8.444 -0.081 (0) -H(0) 2.989e-038 - H2 1.494e-038 1.509e-038 -37.826 -37.821 0.004 28.60 -O(0) 2.866e-015 - O2 1.433e-015 1.447e-015 -14.844 -14.840 0.004 30.84 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -114.999 -115.085 -0.085 21.00 - H2S 0.000e+000 0.000e+000 -115.207 -115.202 0.004 37.19 - S-2 0.000e+000 0.000e+000 -120.526 -120.842 -0.316 (0) -S(6) 1.529e-002 - SO4-2 1.050e-002 5.053e-003 -1.979 -2.296 -0.318 15.29 - CaSO4 4.794e-003 4.841e-003 -2.319 -2.315 0.004 7.71 - HSO4- 6.998e-008 5.805e-008 -7.155 -7.236 -0.081 40.80 - CaHSO4+ 4.337e-009 3.597e-009 -8.363 -8.444 -0.081 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(304 K, 1 atm) - - Anhydrite -0.24 -4.58 -4.35 CaSO4 - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2(g) -34.71 -37.82 -3.11 H2 - H2O(g) -1.35 -0.00 1.35 H2O - H2S(g) -114.09 -122.07 -7.98 H2S - O2(g) -11.91 -14.84 -2.93 O2 - Sulfur -85.30 -80.56 4.74 S - - -Reaction step 8. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.23 -4.59 -4.36 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.59 -4.59 1.000e+000 1.985e+000 9.852e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.532e-002 1.477e-002 - S 1.532e-002 1.477e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.973 Charge balance - pe = 10.272 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 32 oC) = 2517 - Density (g/cm3) = 0.99708 - Volume (L) = 0.97029 - Activity of water = 1.000 - Ionic strength = 4.200e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 32.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 - Total H = 1.070715e+002 - Total O = 5.359485e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.938e-007 1.591e-007 -6.713 -6.798 -0.086 -3.68 - H+ 1.239e-007 1.065e-007 -6.907 -6.973 -0.066 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.11 -Ca 1.532e-002 - Ca+2 1.050e-002 5.148e-003 -1.979 -2.288 -0.309 -17.59 - CaSO4 4.817e-003 4.864e-003 -2.317 -2.313 0.004 7.74 - CaOH+ 9.673e-009 8.021e-009 -8.014 -8.096 -0.081 (0) - CaHSO4+ 4.563e-009 3.784e-009 -8.341 -8.422 -0.081 (0) -H(0) 4.251e-038 - H2 2.125e-038 2.146e-038 -37.673 -37.668 0.004 28.60 -O(0) 2.887e-015 - O2 1.443e-015 1.457e-015 -14.841 -14.836 0.004 30.91 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -114.500 -114.585 -0.086 21.04 - H2S 0.000e+000 0.000e+000 -114.706 -114.702 0.004 37.19 - S-2 0.000e+000 0.000e+000 -120.011 -120.327 -0.316 (0) -S(6) 1.532e-002 - SO4-2 1.050e-002 5.047e-003 -1.979 -2.297 -0.318 15.38 - CaSO4 4.817e-003 4.864e-003 -2.317 -2.313 0.004 7.74 - HSO4- 7.371e-008 6.113e-008 -7.132 -7.214 -0.081 40.85 - CaHSO4+ 4.563e-009 3.784e-009 -8.341 -8.422 -0.081 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(305 K, 1 atm) - - Anhydrite -0.23 -4.59 -4.36 CaSO4 - Gypsum 0.00 -4.59 -4.59 CaSO4:2H2O - H2(g) -34.55 -37.67 -3.12 H2 - H2O(g) -1.33 -0.00 1.33 H2O - H2S(g) -113.58 -121.56 -7.98 H2S - O2(g) -11.90 -14.84 -2.94 O2 - Sulfur -84.94 -80.21 4.72 S - - -Reaction step 9. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.22 -4.59 -4.37 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.59 -4.59 1.000e+000 1.985e+000 9.852e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.534e-002 1.479e-002 - S 1.534e-002 1.479e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.960 Charge balance - pe = 10.206 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 33 oC) = 2568 - Density (g/cm3) = 0.99676 - Volume (L) = 0.97060 - Activity of water = 1.000 - Ionic strength = 4.199e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 33.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 - Total H = 1.070716e+002 - Total O = 5.359497e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 2.020e-007 1.658e-007 -6.695 -6.780 -0.086 -3.66 - H+ 1.277e-007 1.097e-007 -6.894 -6.960 -0.066 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.11 -Ca 1.534e-002 - Ca+2 1.050e-002 5.142e-003 -1.979 -2.289 -0.310 -17.58 - CaSO4 4.839e-003 4.886e-003 -2.315 -2.311 0.004 7.77 - CaOH+ 9.381e-009 7.777e-009 -8.028 -8.109 -0.081 (0) - CaHSO4+ 4.799e-009 3.978e-009 -8.319 -8.400 -0.081 (0) -H(0) 6.054e-038 - H2 3.027e-038 3.056e-038 -37.519 -37.515 0.004 28.60 -O(0) 2.887e-015 - O2 1.443e-015 1.457e-015 -14.841 -14.836 0.004 30.97 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -113.997 -114.083 -0.086 21.07 - H2S 0.000e+000 0.000e+000 -114.202 -114.198 0.004 37.19 - S-2 0.000e+000 0.000e+000 -119.492 -119.809 -0.317 (0) -S(6) 1.534e-002 - SO4-2 1.050e-002 5.041e-003 -1.979 -2.298 -0.319 15.46 - CaSO4 4.839e-003 4.886e-003 -2.315 -2.311 0.004 7.77 - HSO4- 7.763e-008 6.435e-008 -7.110 -7.191 -0.081 40.90 - CaHSO4+ 4.799e-009 3.978e-009 -8.319 -8.400 -0.081 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(306 K, 1 atm) - - Anhydrite -0.22 -4.59 -4.37 CaSO4 - Gypsum 0.00 -4.59 -4.59 CaSO4:2H2O - H2(g) -34.40 -37.51 -3.12 H2 - H2O(g) -1.30 -0.00 1.30 H2O - H2S(g) -113.07 -121.04 -7.97 H2S - O2(g) -11.89 -14.84 -2.95 O2 - Sulfur -84.57 -79.87 4.70 S - - -Reaction step 10. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.21 -4.59 -4.38 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.59 -4.59 1.000e+000 1.985e+000 9.852e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.536e-002 1.481e-002 - S 1.536e-002 1.481e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.947 Charge balance - pe = 10.139 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 34 oC) = 2619 - Density (g/cm3) = 0.99643 - Volume (L) = 0.97093 - Activity of water = 1.000 - Ionic strength = 4.198e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 34.00 - Electrical balance (eq) = -1.207e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 22 - Total H = 1.070717e+002 - Total O = 5.359508e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 2.104e-007 1.727e-007 -6.677 -6.763 -0.086 -3.64 - H+ 1.315e-007 1.129e-007 -6.881 -6.947 -0.066 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.12 -Ca 1.536e-002 - Ca+2 1.050e-002 5.134e-003 -1.979 -2.290 -0.311 -17.58 - CaSO4 4.860e-003 4.907e-003 -2.313 -2.309 0.004 7.80 - CaOH+ 9.100e-009 7.541e-009 -8.041 -8.123 -0.082 (0) - CaHSO4+ 5.045e-009 4.181e-009 -8.297 -8.379 -0.082 (0) -H(0) 8.626e-038 - H2 4.313e-038 4.355e-038 -37.365 -37.361 0.004 28.60 -O(0) 2.870e-015 - O2 1.435e-015 1.449e-015 -14.843 -14.839 0.004 31.04 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -113.493 -113.579 -0.086 21.10 - H2S 0.000e+000 0.000e+000 -113.696 -113.692 0.004 37.20 - S-2 0.000e+000 0.000e+000 -118.973 -119.290 -0.317 (0) -S(6) 1.536e-002 - SO4-2 1.050e-002 5.034e-003 -1.979 -2.298 -0.319 15.53 - CaSO4 4.860e-003 4.907e-003 -2.313 -2.309 0.004 7.80 - HSO4- 8.173e-008 6.773e-008 -7.088 -7.169 -0.082 40.95 - CaHSO4+ 5.045e-009 4.181e-009 -8.297 -8.379 -0.082 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(307 K, 1 atm) - - Anhydrite -0.21 -4.59 -4.38 CaSO4 - Gypsum 0.00 -4.59 -4.59 CaSO4:2H2O - H2(g) -34.24 -37.36 -3.12 H2 - H2O(g) -1.28 -0.00 1.28 H2O - H2S(g) -112.55 -120.53 -7.97 H2S - O2(g) -11.89 -14.84 -2.95 O2 - Sulfur -84.20 -79.52 4.68 S - - -Reaction step 11. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.20 -4.59 -4.39 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.59 -4.59 1.000e+000 1.985e+000 9.852e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.537e-002 1.482e-002 - S 1.537e-002 1.482e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.935 Charge balance - pe = -2.375 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 35 oC) = 2670 - Density (g/cm3) = 0.99609 - Volume (L) = 0.97127 - Activity of water = 1.000 - Ionic strength = 4.197e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 35.00 - Electrical balance (eq) = -1.167e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 52 - Total H = 1.070717e+002 - Total O = 5.359517e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 2.191e-007 1.798e-007 -6.659 -6.745 -0.086 -3.62 - H+ 1.354e-007 1.163e-007 -6.868 -6.935 -0.066 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.12 -Ca 1.537e-002 - Ca+2 1.049e-002 5.126e-003 -1.979 -2.290 -0.311 -17.57 - CaSO4 4.879e-003 4.927e-003 -2.312 -2.307 0.004 7.83 - CaOH+ 8.829e-009 7.314e-009 -8.054 -8.136 -0.082 (0) - CaHSO4+ 5.302e-009 4.392e-009 -8.276 -8.357 -0.082 (0) -H(0) 9.680e-013 - H2 4.840e-013 4.887e-013 -12.315 -12.311 0.004 28.60 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -64.640 -64.636 0.004 31.10 -S(-2) 6.431e-014 - HS- 3.948e-014 3.239e-014 -13.404 -13.490 -0.086 21.12 - H2S 2.483e-014 2.507e-014 -13.605 -13.601 0.004 37.20 - S-2 1.357e-019 6.527e-020 -18.867 -19.185 -0.318 (0) -S(6) 1.537e-002 - SO4-2 1.049e-002 5.026e-003 -1.979 -2.299 -0.320 15.60 - CaSO4 4.879e-003 4.927e-003 -2.312 -2.307 0.004 7.83 - HSO4- 8.602e-008 7.127e-008 -7.065 -7.147 -0.082 40.99 - CaHSO4+ 5.302e-009 4.392e-009 -8.276 -8.357 -0.082 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(308 K, 1 atm) - - Anhydrite -0.20 -4.59 -4.39 CaSO4 - Gypsum 0.00 -4.59 -4.59 CaSO4:2H2O - H2(g) -9.19 -12.31 -3.12 H2 - H2O(g) -1.26 -0.00 1.26 H2O - H2S(g) -12.45 -20.42 -7.97 H2S - O2(g) -61.68 -64.64 -2.96 O2 - Sulfur -9.14 -4.48 4.66 S - - -Reaction step 12. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.19 -4.59 -4.40 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.59 -4.59 1.000e+000 1.985e+000 9.852e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.538e-002 1.484e-002 - S 1.538e-002 1.484e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.922 Charge balance - pe = 10.010 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 36 oC) = 2720 - Density (g/cm3) = 0.99574 - Volume (L) = 0.97161 - Activity of water = 1.000 - Ionic strength = 4.194e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 36.00 - Electrical balance (eq) = -1.210e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 22 - Total H = 1.070718e+002 - Total O = 5.359524e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 2.281e-007 1.871e-007 -6.642 -6.728 -0.086 -3.60 - H+ 1.394e-007 1.197e-007 -6.856 -6.922 -0.066 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.13 -Ca 1.538e-002 - Ca+2 1.049e-002 5.118e-003 -1.979 -2.291 -0.312 -17.57 - CaSO4 4.897e-003 4.945e-003 -2.310 -2.306 0.004 7.86 - CaOH+ 8.567e-009 7.095e-009 -8.067 -8.149 -0.082 (0) - CaHSO4+ 5.570e-009 4.613e-009 -8.254 -8.336 -0.082 (0) -H(0) 1.727e-037 - H2 8.637e-038 8.721e-038 -37.064 -37.059 0.004 28.60 -O(0) 2.877e-015 - O2 1.439e-015 1.453e-015 -14.842 -14.838 0.004 31.16 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -112.507 -112.594 -0.086 21.15 - H2S 0.000e+000 0.000e+000 -112.707 -112.703 0.004 37.20 - S-2 0.000e+000 0.000e+000 -117.955 -118.274 -0.318 (0) -S(6) 1.538e-002 - SO4-2 1.049e-002 5.018e-003 -1.979 -2.300 -0.320 15.66 - CaSO4 4.897e-003 4.945e-003 -2.310 -2.306 0.004 7.86 - HSO4- 9.052e-008 7.497e-008 -7.043 -7.125 -0.082 41.04 - CaHSO4+ 5.570e-009 4.613e-009 -8.254 -8.336 -0.082 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(309 K, 1 atm) - - Anhydrite -0.19 -4.59 -4.40 CaSO4 - Gypsum 0.00 -4.59 -4.59 CaSO4:2H2O - H2(g) -33.94 -37.06 -3.12 H2 - H2O(g) -1.23 -0.00 1.23 H2O - H2S(g) -111.55 -119.52 -7.97 H2S - O2(g) -11.87 -14.84 -2.96 O2 - Sulfur -83.47 -78.84 4.63 S - - -Reaction step 13. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.18 -4.59 -4.42 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.59 -4.59 1.000e+000 1.985e+000 9.852e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.539e-002 1.485e-002 - S 1.539e-002 1.485e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.910 Charge balance - pe = 9.977 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 37 oC) = 2771 - Density (g/cm3) = 0.99539 - Volume (L) = 0.97196 - Activity of water = 1.000 - Ionic strength = 4.191e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 37.00 - Electrical balance (eq) = -1.209e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 15 - Total H = 1.070718e+002 - Total O = 5.359529e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 2.374e-007 1.947e-007 -6.624 -6.711 -0.086 -3.59 - H+ 1.434e-007 1.231e-007 -6.843 -6.910 -0.066 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.14 -Ca 1.539e-002 - Ca+2 1.048e-002 5.109e-003 -1.980 -2.292 -0.312 -17.57 - CaSO4 4.914e-003 4.961e-003 -2.309 -2.304 0.004 7.88 - CaOH+ 8.315e-009 6.884e-009 -8.080 -8.162 -0.082 (0) - CaHSO4+ 5.848e-009 4.842e-009 -8.233 -8.315 -0.082 (0) -H(0) 2.109e-037 - H2 1.054e-037 1.065e-037 -36.977 -36.973 0.004 28.60 -O(0) 3.845e-015 - O2 1.922e-015 1.941e-015 -14.716 -14.712 0.004 31.22 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -112.270 -112.356 -0.086 21.17 - H2S 0.000e+000 0.000e+000 -112.468 -112.464 0.004 37.20 - S-2 0.000e+000 0.000e+000 -117.703 -118.022 -0.319 (0) -S(6) 1.539e-002 - SO4-2 1.048e-002 5.009e-003 -1.980 -2.300 -0.321 15.72 - CaSO4 4.914e-003 4.961e-003 -2.309 -2.304 0.004 7.88 - HSO4- 9.522e-008 7.883e-008 -7.021 -7.103 -0.082 41.08 - CaHSO4+ 5.848e-009 4.842e-009 -8.233 -8.315 -0.082 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(310 K, 1 atm) - - Anhydrite -0.18 -4.59 -4.42 CaSO4 - Gypsum 0.00 -4.59 -4.59 CaSO4:2H2O - H2(g) -33.85 -36.97 -3.12 H2 - H2O(g) -1.21 -0.00 1.21 H2O - H2S(g) -111.30 -119.27 -7.97 H2S - O2(g) -11.74 -14.71 -2.97 O2 - Sulfur -83.30 -78.69 4.61 S - - -Reaction step 14. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.17 -4.59 -4.43 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.59 -4.59 1.000e+000 1.985e+000 9.851e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.540e-002 1.485e-002 - S 1.540e-002 1.485e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.898 Charge balance - pe = 9.881 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 38 oC) = 2822 - Density (g/cm3) = 0.99502 - Volume (L) = 0.97232 - Activity of water = 1.000 - Ionic strength = 4.188e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 38.00 - Electrical balance (eq) = -1.212e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 18 - Total H = 1.070718e+002 - Total O = 5.359533e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 2.470e-007 2.024e-007 -6.607 -6.694 -0.086 -3.58 - H+ 1.475e-007 1.266e-007 -6.831 -6.898 -0.066 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.14 -Ca 1.540e-002 - Ca+2 1.047e-002 5.099e-003 -1.980 -2.293 -0.312 -17.57 - CaSO4 4.929e-003 4.977e-003 -2.307 -2.303 0.004 7.91 - CaOH+ 8.072e-009 6.681e-009 -8.093 -8.175 -0.082 (0) - CaHSO4+ 6.139e-009 5.081e-009 -8.212 -8.294 -0.082 (0) -H(0) 3.435e-037 - H2 1.718e-037 1.734e-037 -36.765 -36.761 0.004 28.59 -O(0) 2.873e-015 - O2 1.437e-015 1.450e-015 -14.843 -14.838 0.004 31.28 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -111.531 -111.618 -0.086 21.19 - H2S 0.000e+000 0.000e+000 -111.727 -111.723 0.004 37.21 - S-2 0.000e+000 0.000e+000 -116.948 -117.268 -0.319 (0) -S(6) 1.540e-002 - SO4-2 1.047e-002 4.999e-003 -1.980 -2.301 -0.321 15.78 - CaSO4 4.929e-003 4.977e-003 -2.307 -2.303 0.004 7.91 - HSO4- 1.001e-007 8.288e-008 -6.999 -7.082 -0.082 41.12 - CaHSO4+ 6.139e-009 5.081e-009 -8.212 -8.294 -0.082 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(311 K, 1 atm) - - Anhydrite -0.17 -4.59 -4.43 CaSO4 - Gypsum 0.00 -4.59 -4.59 CaSO4:2H2O - H2(g) -33.64 -36.76 -3.13 H2 - H2O(g) -1.18 -0.00 1.18 H2O - H2S(g) -110.55 -118.52 -7.97 H2S - O2(g) -11.86 -14.84 -2.97 O2 - Sulfur -82.76 -78.17 4.59 S - - -Reaction step 15. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.16 -4.60 -4.44 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.60 -4.60 1.000e+000 1.985e+000 9.851e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.540e-002 1.486e-002 - S 1.540e-002 1.486e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.885 Charge balance - pe = 9.817 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 39 oC) = 2872 - Density (g/cm3) = 0.99465 - Volume (L) = 0.97268 - Activity of water = 1.000 - Ionic strength = 4.184e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 39.00 - Electrical balance (eq) = -1.211e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 15 - Total H = 1.070719e+002 - Total O = 5.359535e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 2.569e-007 2.105e-007 -6.590 -6.677 -0.087 -3.56 - H+ 1.517e-007 1.302e-007 -6.819 -6.885 -0.067 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.15 -Ca 1.540e-002 - Ca+2 1.046e-002 5.089e-003 -1.981 -2.293 -0.313 -17.57 - CaSO4 4.943e-003 4.991e-003 -2.306 -2.302 0.004 7.94 - CaOH+ 7.837e-009 6.484e-009 -8.106 -8.188 -0.082 (0) - CaHSO4+ 6.441e-009 5.329e-009 -8.191 -8.273 -0.082 (0) -H(0) 4.828e-037 - H2 2.414e-037 2.437e-037 -36.617 -36.613 0.004 28.59 -O(0) 2.872e-015 - O2 1.436e-015 1.450e-015 -14.843 -14.839 0.004 31.34 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -111.048 -111.135 -0.087 21.21 - H2S 0.000e+000 0.000e+000 -111.242 -111.238 0.004 37.21 - S-2 0.000e+000 0.000e+000 -116.450 -116.770 -0.320 (0) -S(6) 1.540e-002 - SO4-2 1.046e-002 4.989e-003 -1.981 -2.302 -0.321 15.83 - CaSO4 4.943e-003 4.991e-003 -2.306 -2.302 0.004 7.94 - HSO4- 1.053e-007 8.711e-008 -6.978 -7.060 -0.082 41.15 - CaHSO4+ 6.441e-009 5.329e-009 -8.191 -8.273 -0.082 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(312 K, 1 atm) - - Anhydrite -0.16 -4.60 -4.44 CaSO4 - Gypsum 0.00 -4.60 -4.60 CaSO4:2H2O - H2(g) -33.49 -36.61 -3.13 H2 - H2O(g) -1.16 -0.00 1.16 H2O - H2S(g) -110.06 -118.02 -7.96 H2S - O2(g) -11.86 -14.84 -2.98 O2 - Sulfur -82.40 -77.83 4.57 S - - -Reaction step 16. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.15 -4.60 -4.45 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.60 -4.60 1.000e+000 1.985e+000 9.851e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.540e-002 1.486e-002 - S 1.540e-002 1.486e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.874 Charge balance - pe = 9.754 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 40 oC) = 2923 - Density (g/cm3) = 0.99427 - Volume (L) = 0.97305 - Activity of water = 1.000 - Ionic strength = 4.179e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 40.00 - Electrical balance (eq) = -1.214e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 18 - Total H = 1.070719e+002 - Total O = 5.359535e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 2.670e-007 2.187e-007 -6.573 -6.660 -0.087 -3.55 - H+ 1.560e-007 1.338e-007 -6.807 -6.874 -0.067 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.16 -Ca 1.540e-002 - Ca+2 1.045e-002 5.078e-003 -1.981 -2.294 -0.313 -17.57 - CaSO4 4.956e-003 5.004e-003 -2.305 -2.301 0.004 7.96 - CaOH+ 7.610e-009 6.295e-009 -8.119 -8.201 -0.082 (0) - CaHSO4+ 6.755e-009 5.587e-009 -8.170 -8.253 -0.082 (0) -H(0) 6.772e-037 - H2 3.386e-037 3.419e-037 -36.470 -36.466 0.004 28.59 -O(0) 2.869e-015 - O2 1.434e-015 1.448e-015 -14.843 -14.839 0.004 31.40 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -110.568 -110.655 -0.087 21.23 - H2S 0.000e+000 0.000e+000 -110.760 -110.755 0.004 37.21 - S-2 0.000e+000 0.000e+000 -115.954 -116.274 -0.320 (0) -S(6) 1.540e-002 - SO4-2 1.045e-002 4.978e-003 -1.981 -2.303 -0.322 15.88 - CaSO4 4.956e-003 5.004e-003 -2.305 -2.301 0.004 7.96 - HSO4- 1.106e-007 9.153e-008 -6.956 -7.038 -0.082 41.19 - CaHSO4+ 6.755e-009 5.587e-009 -8.170 -8.253 -0.082 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(313 K, 1 atm) - - Anhydrite -0.15 -4.60 -4.45 CaSO4 - Gypsum 0.00 -4.60 -4.60 CaSO4:2H2O - H2(g) -33.34 -36.47 -3.13 H2 - H2O(g) -1.14 -0.00 1.14 H2O - H2S(g) -109.57 -117.53 -7.96 H2S - O2(g) -11.85 -14.84 -2.98 O2 - Sulfur -82.05 -77.50 4.55 S - - -Reaction step 17. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.14 -4.60 -4.46 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.60 -4.60 1.000e+000 1.985e+000 9.851e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.540e-002 1.485e-002 - S 1.540e-002 1.485e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.862 Charge balance - pe = 9.691 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 41 oC) = 2973 - Density (g/cm3) = 0.99388 - Volume (L) = 0.97343 - Activity of water = 1.000 - Ionic strength = 4.174e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 41.00 - Electrical balance (eq) = -1.213e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 15 - Total H = 1.070719e+002 - Total O = 5.359534e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 2.775e-007 2.273e-007 -6.557 -6.643 -0.087 -3.55 - H+ 1.603e-007 1.375e-007 -6.795 -6.862 -0.067 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.16 -Ca 1.540e-002 - Ca+2 1.043e-002 5.066e-003 -1.982 -2.295 -0.314 -17.57 - CaSO4 4.967e-003 5.015e-003 -2.304 -2.300 0.004 7.99 - CaOH+ 7.392e-009 6.113e-009 -8.131 -8.214 -0.083 (0) - CaHSO4+ 7.081e-009 5.856e-009 -8.150 -8.232 -0.083 (0) -H(0) 9.471e-037 - H2 4.735e-037 4.781e-037 -36.325 -36.320 0.004 28.59 -O(0) 2.871e-015 - O2 1.435e-015 1.449e-015 -14.843 -14.839 0.004 31.46 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -110.093 -110.179 -0.087 21.25 - H2S 0.000e+000 0.000e+000 -110.282 -110.278 0.004 37.22 - S-2 0.000e+000 0.000e+000 -115.463 -115.784 -0.321 (0) -S(6) 1.540e-002 - SO4-2 1.043e-002 4.967e-003 -1.982 -2.304 -0.322 15.92 - CaSO4 4.967e-003 5.015e-003 -2.304 -2.300 0.004 7.99 - HSO4- 1.163e-007 9.614e-008 -6.935 -7.017 -0.083 41.22 - CaHSO4+ 7.081e-009 5.856e-009 -8.150 -8.232 -0.083 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(314 K, 1 atm) - - Anhydrite -0.14 -4.60 -4.46 CaSO4 - Gypsum 0.00 -4.60 -4.60 CaSO4:2H2O - H2(g) -33.19 -36.32 -3.13 H2 - H2O(g) -1.12 -0.00 1.12 H2O - H2S(g) -109.08 -117.04 -7.96 H2S - O2(g) -11.85 -14.84 -2.99 O2 - Sulfur -81.70 -77.17 4.53 S - - -Reaction step 18. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.13 -4.60 -4.48 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.60 -4.60 1.000e+000 1.985e+000 9.852e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.540e-002 1.485e-002 - S 1.540e-002 1.485e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.850 Charge balance - pe = 9.629 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 42 oC) = 3023 - Density (g/cm3) = 0.99349 - Volume (L) = 0.97382 - Activity of water = 1.000 - Ionic strength = 4.168e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 42.00 - Electrical balance (eq) = -1.213e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 15 - Total H = 1.070718e+002 - Total O = 5.359532e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 2.883e-007 2.360e-007 -6.540 -6.627 -0.087 -3.54 - H+ 1.647e-007 1.412e-007 -6.783 -6.850 -0.067 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.17 -Ca 1.540e-002 - Ca+2 1.042e-002 5.054e-003 -1.982 -2.296 -0.314 -17.57 - CaSO4 4.977e-003 5.025e-003 -2.303 -2.299 0.004 8.01 - CaHSO4+ 7.420e-009 6.135e-009 -8.130 -8.212 -0.083 (0) - CaOH+ 7.181e-009 5.937e-009 -8.144 -8.226 -0.083 (0) -H(0) 1.318e-036 - H2 6.592e-037 6.656e-037 -36.181 -36.177 0.004 28.59 -O(0) 2.887e-015 - O2 1.443e-015 1.457e-015 -14.841 -14.836 0.004 31.51 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -109.624 -109.711 -0.087 21.26 - H2S 0.000e+000 0.000e+000 -109.811 -109.807 0.004 37.22 - S-2 0.000e+000 0.000e+000 -114.980 -115.301 -0.321 (0) -S(6) 1.540e-002 - SO4-2 1.042e-002 4.956e-003 -1.982 -2.305 -0.323 15.96 - CaSO4 4.977e-003 5.025e-003 -2.303 -2.299 0.004 8.01 - HSO4- 1.221e-007 1.010e-007 -6.913 -6.996 -0.083 41.26 - CaHSO4+ 7.420e-009 6.135e-009 -8.130 -8.212 -0.083 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(315 K, 1 atm) - - Anhydrite -0.13 -4.60 -4.48 CaSO4 - Gypsum 0.00 -4.60 -4.60 CaSO4:2H2O - H2(g) -33.05 -36.18 -3.13 H2 - H2O(g) -1.09 -0.00 1.09 H2O - H2S(g) -108.60 -116.56 -7.96 H2S - O2(g) -11.84 -14.84 -2.99 O2 - Sulfur -81.36 -76.85 4.51 S - - -Reaction step 19. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.12 -4.60 -4.49 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.60 -4.60 1.000e+000 1.985e+000 9.852e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.539e-002 1.484e-002 - S 1.539e-002 1.484e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.839 Charge balance - pe = 9.566 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 43 oC) = 3073 - Density (g/cm3) = 0.99308 - Volume (L) = 0.97421 - Activity of water = 1.000 - Ionic strength = 4.161e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 43.00 - Electrical balance (eq) = -1.214e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 15 - Total H = 1.070718e+002 - Total O = 5.359527e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 2.994e-007 2.451e-007 -6.524 -6.611 -0.087 -3.54 - H+ 1.691e-007 1.450e-007 -6.772 -6.839 -0.067 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.18 -Ca 1.539e-002 - Ca+2 1.040e-002 5.042e-003 -1.983 -2.297 -0.315 -17.57 - CaSO4 4.986e-003 5.034e-003 -2.302 -2.298 0.004 8.04 - CaHSO4+ 7.772e-009 6.424e-009 -8.109 -8.192 -0.083 (0) - CaOH+ 6.978e-009 5.768e-009 -8.156 -8.239 -0.083 (0) -H(0) 1.841e-036 - H2 9.203e-037 9.292e-037 -36.036 -36.032 0.004 28.59 -O(0) 2.875e-015 - O2 1.437e-015 1.451e-015 -14.842 -14.838 0.004 31.57 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -109.151 -109.238 -0.087 21.28 - H2S 0.000e+000 0.000e+000 -109.335 -109.331 0.004 37.22 - S-2 0.000e+000 0.000e+000 -114.491 -114.812 -0.321 (0) -S(6) 1.539e-002 - SO4-2 1.040e-002 4.943e-003 -1.983 -2.306 -0.323 15.99 - CaSO4 4.986e-003 5.034e-003 -2.302 -2.298 0.004 8.04 - HSO4- 1.282e-007 1.060e-007 -6.892 -6.975 -0.083 41.29 - CaHSO4+ 7.772e-009 6.424e-009 -8.109 -8.192 -0.083 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(316 K, 1 atm) - - Anhydrite -0.12 -4.60 -4.49 CaSO4 - Gypsum 0.00 -4.60 -4.60 CaSO4:2H2O - H2(g) -32.90 -36.03 -3.13 H2 - H2O(g) -1.07 -0.00 1.07 H2O - H2S(g) -108.12 -116.08 -7.96 H2S - O2(g) -11.84 -14.84 -3.00 O2 - Sulfur -81.01 -76.52 4.49 S - - -Reaction step 20. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.11 -4.61 -4.50 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.61 -4.61 1.000e+000 1.985e+000 9.852e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.538e-002 1.483e-002 - S 1.538e-002 1.483e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.827 Charge balance - pe = 9.504 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 44 oC) = 3122 - Density (g/cm3) = 0.99267 - Volume (L) = 0.97461 - Activity of water = 1.000 - Ionic strength = 4.154e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 44.00 - Electrical balance (eq) = -1.215e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 15 - Total H = 1.070718e+002 - Total O = 5.359521e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 3.109e-007 2.544e-007 -6.507 -6.594 -0.087 -3.53 - H+ 1.737e-007 1.488e-007 -6.760 -6.827 -0.067 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.19 -Ca 1.538e-002 - Ca+2 1.039e-002 5.028e-003 -1.984 -2.299 -0.315 -17.58 - CaSO4 4.993e-003 5.041e-003 -2.302 -2.297 0.004 8.06 - CaHSO4+ 8.138e-009 6.724e-009 -8.090 -8.172 -0.083 (0) - CaOH+ 6.782e-009 5.604e-009 -8.169 -8.251 -0.083 (0) -H(0) 2.554e-036 - H2 1.277e-036 1.289e-036 -35.894 -35.890 0.004 28.59 -O(0) 2.886e-015 - O2 1.443e-015 1.457e-015 -14.841 -14.837 0.004 31.62 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -108.687 -108.774 -0.087 21.29 - H2S 0.000e+000 0.000e+000 -108.869 -108.865 0.004 37.22 - S-2 0.000e+000 0.000e+000 -114.012 -114.334 -0.322 (0) -S(6) 1.538e-002 - SO4-2 1.039e-002 4.931e-003 -1.984 -2.307 -0.324 16.02 - CaSO4 4.993e-003 5.041e-003 -2.302 -2.297 0.004 8.06 - HSO4- 1.346e-007 1.112e-007 -6.871 -6.954 -0.083 41.32 - CaHSO4+ 8.138e-009 6.724e-009 -8.090 -8.172 -0.083 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(317 K, 1 atm) - - Anhydrite -0.11 -4.61 -4.50 CaSO4 - Gypsum 0.00 -4.61 -4.61 CaSO4:2H2O - H2(g) -32.76 -35.89 -3.13 H2 - H2O(g) -1.05 -0.00 1.05 H2O - H2S(g) -107.65 -115.60 -7.96 H2S - O2(g) -11.83 -14.84 -3.00 O2 - Sulfur -80.67 -76.20 4.46 S - - -Reaction step 21. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.10 -4.61 -4.51 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.61 -4.61 1.000e+000 1.985e+000 9.852e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.537e-002 1.482e-002 - S 1.537e-002 1.482e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.816 Charge balance - pe = 9.443 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 45 oC) = 3171 - Density (g/cm3) = 0.99225 - Volume (L) = 0.97502 - Activity of water = 1.000 - Ionic strength = 4.147e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 45.00 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 15 - Total H = 1.070717e+002 - Total O = 5.359514e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 3.227e-007 2.640e-007 -6.491 -6.578 -0.087 -3.53 - H+ 1.782e-007 1.527e-007 -6.749 -6.816 -0.067 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.19 -Ca 1.537e-002 - Ca+2 1.037e-002 5.015e-003 -1.984 -2.300 -0.315 -17.58 - CaSO4 4.999e-003 5.047e-003 -2.301 -2.297 0.004 8.08 - CaHSO4+ 8.517e-009 7.036e-009 -8.070 -8.153 -0.083 (0) - CaOH+ 6.593e-009 5.446e-009 -8.181 -8.264 -0.083 (0) -H(0) 3.538e-036 - H2 1.769e-036 1.786e-036 -35.752 -35.748 0.004 28.59 -O(0) 2.894e-015 - O2 1.447e-015 1.461e-015 -14.839 -14.835 0.004 31.67 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -108.226 -108.313 -0.087 21.30 - H2S 0.000e+000 0.000e+000 -108.406 -108.402 0.004 37.23 - S-2 0.000e+000 0.000e+000 -113.535 -113.857 -0.322 (0) -S(6) 1.537e-002 - SO4-2 1.037e-002 4.918e-003 -1.984 -2.308 -0.324 16.05 - CaSO4 4.999e-003 5.047e-003 -2.301 -2.297 0.004 8.08 - HSO4- 1.413e-007 1.167e-007 -6.850 -6.933 -0.083 41.35 - CaHSO4+ 8.517e-009 7.036e-009 -8.070 -8.153 -0.083 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(318 K, 1 atm) - - Anhydrite -0.10 -4.61 -4.51 CaSO4 - Gypsum 0.00 -4.61 -4.61 CaSO4:2H2O - H2(g) -32.62 -35.75 -3.13 H2 - H2O(g) -1.03 -0.00 1.03 H2O - H2S(g) -107.18 -115.13 -7.95 H2S - O2(g) -11.83 -14.84 -3.01 O2 - Sulfur -80.33 -75.88 4.44 S - - -Reaction step 22. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.09 -4.61 -4.53 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.61 -4.61 1.000e+000 1.985e+000 9.852e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.535e-002 1.481e-002 - S 1.535e-002 1.481e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.805 Charge balance - pe = 9.382 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 46 oC) = 3220 - Density (g/cm3) = 0.99183 - Volume (L) = 0.97543 - Activity of water = 1.000 - Ionic strength = 4.139e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 46.00 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 - Total H = 1.070717e+002 - Total O = 5.359505e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 3.348e-007 2.739e-007 -6.475 -6.562 -0.087 -3.53 - H+ 1.829e-007 1.567e-007 -6.738 -6.805 -0.067 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.20 -Ca 1.535e-002 - Ca+2 1.035e-002 5.001e-003 -1.985 -2.301 -0.316 -17.58 - CaSO4 5.004e-003 5.052e-003 -2.301 -2.297 0.004 8.11 - CaHSO4+ 8.910e-009 7.359e-009 -8.050 -8.133 -0.083 (0) - CaOH+ 6.410e-009 5.294e-009 -8.193 -8.276 -0.083 (0) -H(0) 4.886e-036 - H2 2.443e-036 2.467e-036 -35.612 -35.608 0.004 28.59 -O(0) 2.908e-015 - O2 1.454e-015 1.468e-015 -14.837 -14.833 0.004 31.72 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -107.769 -107.856 -0.087 21.31 - H2S 0.000e+000 0.000e+000 -107.946 -107.942 0.004 37.23 - S-2 0.000e+000 0.000e+000 -113.063 -113.386 -0.323 (0) -S(6) 1.535e-002 - SO4-2 1.035e-002 4.904e-003 -1.985 -2.309 -0.324 16.07 - CaSO4 5.004e-003 5.052e-003 -2.301 -2.297 0.004 8.11 - HSO4- 1.482e-007 1.224e-007 -6.829 -6.912 -0.083 41.37 - CaHSO4+ 8.910e-009 7.359e-009 -8.050 -8.133 -0.083 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(319 K, 1 atm) - - Anhydrite -0.09 -4.61 -4.53 CaSO4 - Gypsum 0.00 -4.61 -4.61 CaSO4:2H2O - H2(g) -32.47 -35.61 -3.13 H2 - H2O(g) -1.00 -0.00 1.00 H2O - H2S(g) -106.71 -114.66 -7.95 H2S - O2(g) -11.82 -14.83 -3.01 O2 - Sulfur -79.99 -75.57 4.42 S - - -Reaction step 23. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.08 -4.61 -4.54 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.61 -4.61 1.000e+000 1.985e+000 9.852e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.533e-002 1.479e-002 - S 1.533e-002 1.479e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.794 Charge balance - pe = 9.318 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 47 oC) = 3269 - Density (g/cm3) = 0.99140 - Volume (L) = 0.97586 - Activity of water = 1.000 - Ionic strength = 4.130e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 47.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 18 - Total H = 1.070716e+002 - Total O = 5.359495e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 3.473e-007 2.840e-007 -6.459 -6.547 -0.087 -3.53 - H+ 1.876e-007 1.607e-007 -6.727 -6.794 -0.067 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.21 -Ca 1.533e-002 - Ca+2 1.032e-002 4.986e-003 -1.986 -2.302 -0.316 -17.59 - CaSO4 5.008e-003 5.056e-003 -2.300 -2.296 0.004 8.13 - CaHSO4+ 9.317e-009 7.693e-009 -8.031 -8.114 -0.083 (0) - CaOH+ 6.234e-009 5.148e-009 -8.205 -8.288 -0.083 (0) -H(0) 6.829e-036 - H2 3.414e-036 3.447e-036 -35.467 -35.463 0.004 28.59 -O(0) 2.842e-015 - O2 1.421e-015 1.435e-015 -14.847 -14.843 0.004 31.77 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -107.292 -107.379 -0.087 21.32 - H2S 0.000e+000 0.000e+000 -107.466 -107.462 0.004 37.23 - S-2 0.000e+000 0.000e+000 -112.571 -112.894 -0.323 (0) -S(6) 1.533e-002 - SO4-2 1.032e-002 4.890e-003 -1.986 -2.311 -0.325 16.08 - CaSO4 5.008e-003 5.056e-003 -2.300 -2.296 0.004 8.13 - HSO4- 1.554e-007 1.283e-007 -6.808 -6.892 -0.083 41.40 - CaHSO4+ 9.317e-009 7.693e-009 -8.031 -8.114 -0.083 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(320 K, 1 atm) - - Anhydrite -0.08 -4.61 -4.54 CaSO4 - Gypsum 0.00 -4.61 -4.61 CaSO4:2H2O - H2(g) -32.33 -35.46 -3.13 H2 - H2O(g) -0.98 -0.00 0.98 H2O - H2S(g) -106.22 -114.17 -7.95 H2S - O2(g) -11.83 -14.84 -3.02 O2 - Sulfur -79.64 -75.24 4.40 S - - -Reaction step 24. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.07 -4.62 -4.55 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.62 -4.62 1.000e+000 1.985e+000 9.852e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.531e-002 1.477e-002 - S 1.531e-002 1.477e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.783 Charge balance - pe = 9.258 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 48 oC) = 3317 - Density (g/cm3) = 0.99096 - Volume (L) = 0.97628 - Activity of water = 1.000 - Ionic strength = 4.121e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 48.00 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 19 - Total H = 1.070715e+002 - Total O = 5.359483e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 3.602e-007 2.945e-007 -6.443 -6.531 -0.087 -3.54 - H+ 1.923e-007 1.647e-007 -6.716 -6.783 -0.067 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.22 -Ca 1.531e-002 - Ca+2 1.030e-002 4.971e-003 -1.987 -2.304 -0.316 -17.60 - CaSO4 5.010e-003 5.058e-003 -2.300 -2.296 0.004 8.15 - CaHSO4+ 9.739e-009 8.040e-009 -8.011 -8.095 -0.083 (0) - CaOH+ 6.064e-009 5.006e-009 -8.217 -8.300 -0.083 (0) -H(0) 9.367e-036 - H2 4.683e-036 4.728e-036 -35.329 -35.325 0.004 28.59 -O(0) 2.872e-015 - O2 1.436e-015 1.450e-015 -14.843 -14.839 0.004 31.83 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -106.846 -106.933 -0.087 21.33 - H2S 0.000e+000 0.000e+000 -107.018 -107.014 0.004 37.23 - S-2 0.000e+000 0.000e+000 -112.110 -112.433 -0.323 (0) -S(6) 1.531e-002 - SO4-2 1.030e-002 4.875e-003 -1.987 -2.312 -0.325 16.10 - CaSO4 5.010e-003 5.058e-003 -2.300 -2.296 0.004 8.15 - HSO4- 1.630e-007 1.345e-007 -6.788 -6.871 -0.083 41.42 - CaHSO4+ 9.739e-009 8.040e-009 -8.011 -8.095 -0.083 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(321 K, 1 atm) - - Anhydrite -0.07 -4.62 -4.55 CaSO4 - Gypsum 0.00 -4.62 -4.62 CaSO4:2H2O - H2(g) -32.19 -35.33 -3.14 H2 - H2O(g) -0.96 -0.00 0.96 H2O - H2S(g) -105.77 -113.72 -7.95 H2S - O2(g) -11.82 -14.84 -3.02 O2 - Sulfur -79.31 -74.93 4.38 S - - -Reaction step 25. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.06 -4.62 -4.56 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.62 -4.62 1.000e+000 1.985e+000 9.853e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.529e-002 1.475e-002 - S 1.529e-002 1.475e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.773 Charge balance - pe = 9.227 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 49 oC) = 3365 - Density (g/cm3) = 0.99051 - Volume (L) = 0.97672 - Activity of water = 1.000 - Ionic strength = 4.111e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 49.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 18 - Total H = 1.070714e+002 - Total O = 5.359470e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 3.734e-007 3.053e-007 -6.428 -6.515 -0.088 -3.54 - H+ 1.971e-007 1.688e-007 -6.705 -6.773 -0.067 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.23 -Ca 1.529e-002 - Ca+2 1.028e-002 4.955e-003 -1.988 -2.305 -0.317 -17.60 - CaSO4 5.012e-003 5.059e-003 -2.300 -2.296 0.004 8.17 - CaHSO4+ 1.018e-008 8.399e-009 -7.992 -8.076 -0.083 (0) - CaOH+ 5.900e-009 4.870e-009 -8.229 -8.312 -0.083 (0) -H(0) 1.126e-035 - H2 5.631e-036 5.685e-036 -35.249 -35.245 0.004 28.59 -O(0) 3.763e-015 - O2 1.881e-015 1.899e-015 -14.726 -14.721 0.004 31.88 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -106.629 -106.716 -0.088 21.33 - H2S 0.000e+000 0.000e+000 -106.798 -106.794 0.004 37.23 - S-2 0.000e+000 0.000e+000 -111.877 -112.201 -0.324 (0) -S(6) 1.529e-002 - SO4-2 1.028e-002 4.860e-003 -1.988 -2.313 -0.325 16.11 - CaSO4 5.012e-003 5.059e-003 -2.300 -2.296 0.004 8.17 - HSO4- 1.708e-007 1.410e-007 -6.768 -6.851 -0.083 41.44 - CaHSO4+ 1.018e-008 8.399e-009 -7.992 -8.076 -0.083 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(322 K, 1 atm) - - Anhydrite -0.06 -4.62 -4.56 CaSO4 - Gypsum 0.00 -4.62 -4.62 CaSO4:2H2O - H2(g) -32.11 -35.25 -3.14 H2 - H2O(g) -0.94 -0.00 0.94 H2O - H2S(g) -105.54 -113.49 -7.95 H2S - O2(g) -11.70 -14.72 -3.03 O2 - Sulfur -79.16 -74.79 4.36 S - - -Reaction step 26. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.05 -4.62 -4.58 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.62 -4.62 1.000e+000 1.985e+000 9.853e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.526e-002 1.472e-002 - S 1.526e-002 1.472e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.762 Charge balance - pe = 9.136 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50 oC) = 3413 - Density (g/cm3) = 0.99006 - Volume (L) = 0.97716 - Activity of water = 1.000 - Ionic strength = 4.101e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 50.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 18 - Total H = 1.070713e+002 - Total O = 5.359455e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 3.871e-007 3.164e-007 -6.412 -6.500 -0.088 -3.55 - H+ 2.020e-007 1.729e-007 -6.695 -6.762 -0.067 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.23 -Ca 1.526e-002 - Ca+2 1.025e-002 4.939e-003 -1.989 -2.306 -0.317 -17.61 - CaSO4 5.012e-003 5.059e-003 -2.300 -2.296 0.004 8.19 - CaHSO4+ 1.063e-008 8.770e-009 -7.974 -8.057 -0.083 (0) - CaOH+ 5.742e-009 4.738e-009 -8.241 -8.324 -0.083 (0) -H(0) 1.779e-035 - H2 8.897e-036 8.982e-036 -35.051 -35.047 0.004 28.59 -O(0) 2.843e-015 - O2 1.421e-015 1.435e-015 -14.847 -14.843 0.004 31.92 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -105.936 -106.024 -0.088 21.34 - H2S 0.000e+000 0.000e+000 -106.103 -106.099 0.004 37.24 - S-2 0.000e+000 0.000e+000 -111.170 -111.494 -0.324 (0) -S(6) 1.526e-002 - SO4-2 1.025e-002 4.845e-003 -1.989 -2.315 -0.326 16.12 - CaSO4 5.012e-003 5.059e-003 -2.300 -2.296 0.004 8.19 - HSO4- 1.790e-007 1.477e-007 -6.747 -6.831 -0.083 41.46 - CaHSO4+ 1.063e-008 8.770e-009 -7.974 -8.057 -0.083 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(323 K, 1 atm) - - Anhydrite -0.05 -4.62 -4.58 CaSO4 - Gypsum 0.00 -4.62 -4.62 CaSO4:2H2O - H2(g) -31.91 -35.05 -3.14 H2 - H2O(g) -0.92 -0.00 0.92 H2O - H2S(g) -104.84 -112.79 -7.95 H2S - O2(g) -11.81 -14.84 -3.03 O2 - Sulfur -78.65 -74.30 4.34 S - - -Reaction step 27. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.04 -4.62 -4.59 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.62 -4.62 1.000e+000 1.985e+000 9.853e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.524e-002 1.470e-002 - S 1.524e-002 1.470e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.752 Charge balance - pe = 9.076 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 51 oC) = 3460 - Density (g/cm3) = 0.98960 - Volume (L) = 0.97761 - Activity of water = 1.000 - Ionic strength = 4.090e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 51.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 18 - Total H = 1.070712e+002 - Total O = 5.359439e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 4.011e-007 3.278e-007 -6.397 -6.484 -0.088 -3.56 - H+ 2.069e-007 1.771e-007 -6.684 -6.752 -0.067 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.24 -Ca 1.524e-002 - Ca+2 1.023e-002 4.923e-003 -1.990 -2.308 -0.317 -17.62 - CaSO4 5.010e-003 5.058e-003 -2.300 -2.296 0.004 8.21 - CaHSO4+ 1.110e-008 9.154e-009 -7.955 -8.038 -0.084 (0) - CaOH+ 5.589e-009 4.611e-009 -8.253 -8.336 -0.084 (0) -H(0) 2.440e-035 - H2 1.220e-035 1.232e-035 -34.914 -34.910 0.004 28.59 -O(0) 2.841e-015 - O2 1.420e-015 1.434e-015 -14.848 -14.844 0.004 31.97 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -105.490 -105.577 -0.088 21.34 - H2S 0.000e+000 0.000e+000 -105.653 -105.649 0.004 37.24 - S-2 0.000e+000 0.000e+000 -110.708 -111.032 -0.324 (0) -S(6) 1.524e-002 - SO4-2 1.023e-002 4.829e-003 -1.990 -2.316 -0.326 16.12 - CaSO4 5.010e-003 5.058e-003 -2.300 -2.296 0.004 8.21 - HSO4- 1.875e-007 1.547e-007 -6.727 -6.811 -0.084 41.48 - CaHSO4+ 1.110e-008 9.154e-009 -7.955 -8.038 -0.084 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(324 K, 1 atm) - - Anhydrite -0.04 -4.62 -4.59 CaSO4 - Gypsum 0.00 -4.62 -4.62 CaSO4:2H2O - H2(g) -31.77 -34.91 -3.14 H2 - H2O(g) -0.89 -0.00 0.89 H2O - H2S(g) -104.38 -112.33 -7.95 H2S - O2(g) -11.81 -14.84 -3.03 O2 - Sulfur -78.32 -73.99 4.32 S - - -Reaction step 28. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.03 -4.63 -4.60 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.63 -4.63 1.000e+000 1.985e+000 9.853e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.521e-002 1.467e-002 - S 1.521e-002 1.467e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.742 Charge balance - pe = 9.019 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 52 oC) = 3507 - Density (g/cm3) = 0.98913 - Volume (L) = 0.97806 - Activity of water = 1.000 - Ionic strength = 4.079e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 52.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 21 - Total H = 1.070711e+002 - Total O = 5.359422e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 4.155e-007 3.395e-007 -6.381 -6.469 -0.088 -3.57 - H+ 2.118e-007 1.813e-007 -6.674 -6.742 -0.068 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.25 -Ca 1.521e-002 - Ca+2 1.020e-002 4.906e-003 -1.991 -2.309 -0.318 -17.63 - CaSO4 5.008e-003 5.055e-003 -2.300 -2.296 0.004 8.23 - CaHSO4+ 1.158e-008 9.550e-009 -7.936 -8.020 -0.084 (0) - CaOH+ 5.441e-009 4.488e-009 -8.264 -8.348 -0.084 (0) -H(0) 3.310e-035 - H2 1.655e-035 1.671e-035 -34.781 -34.777 0.004 28.59 -O(0) 2.890e-015 - O2 1.445e-015 1.459e-015 -14.840 -14.836 0.004 32.02 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -105.061 -105.149 -0.088 21.34 - H2S 0.000e+000 0.000e+000 -105.222 -105.218 0.004 37.24 - S-2 0.000e+000 0.000e+000 -110.265 -110.589 -0.325 (0) -S(6) 1.521e-002 - SO4-2 1.020e-002 4.812e-003 -1.991 -2.318 -0.326 16.12 - CaSO4 5.008e-003 5.055e-003 -2.300 -2.296 0.004 8.23 - HSO4- 1.963e-007 1.619e-007 -6.707 -6.791 -0.084 41.50 - CaHSO4+ 1.158e-008 9.550e-009 -7.936 -8.020 -0.084 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(325 K, 1 atm) - - Anhydrite -0.03 -4.63 -4.60 CaSO4 - Gypsum 0.00 -4.63 -4.63 CaSO4:2H2O - H2(g) -31.64 -34.78 -3.14 H2 - H2O(g) -0.87 -0.00 0.87 H2O - H2S(g) -103.95 -111.89 -7.94 H2S - O2(g) -11.80 -14.84 -3.04 O2 - Sulfur -78.00 -73.70 4.30 S - - -Reaction step 29. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.02 -4.63 -4.61 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.63 -4.63 1.000e+000 1.985e+000 9.854e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.517e-002 1.464e-002 - S 1.517e-002 1.464e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.731 Charge balance - pe = 8.959 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 53 oC) = 3554 - Density (g/cm3) = 0.98866 - Volume (L) = 0.97852 - Activity of water = 1.000 - Ionic strength = 4.068e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 53.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 19 - Total H = 1.070710e+002 - Total O = 5.359403e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 4.304e-007 3.516e-007 -6.366 -6.454 -0.088 -3.58 - H+ 2.168e-007 1.856e-007 -6.664 -6.731 -0.068 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.26 -Ca 1.517e-002 - Ca+2 1.017e-002 4.889e-003 -1.993 -2.311 -0.318 -17.64 - CaSO4 5.005e-003 5.052e-003 -2.301 -2.297 0.004 8.25 - CaHSO4+ 1.208e-008 9.960e-009 -7.918 -8.002 -0.084 (0) - CaOH+ 5.299e-009 4.370e-009 -8.276 -8.360 -0.084 (0) -H(0) 4.519e-035 - H2 2.260e-035 2.281e-035 -34.646 -34.642 0.004 28.59 -O(0) 2.890e-015 - O2 1.445e-015 1.458e-015 -14.840 -14.836 0.004 32.07 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -104.621 -104.709 -0.088 21.34 - H2S 0.000e+000 0.000e+000 -104.779 -104.775 0.004 37.24 - S-2 0.000e+000 0.000e+000 -109.809 -110.134 -0.325 (0) -S(6) 1.517e-002 - SO4-2 1.017e-002 4.796e-003 -1.993 -2.319 -0.326 16.12 - CaSO4 5.005e-003 5.052e-003 -2.301 -2.297 0.004 8.25 - HSO4- 2.055e-007 1.695e-007 -6.687 -6.771 -0.084 41.51 - CaHSO4+ 1.208e-008 9.960e-009 -7.918 -8.002 -0.084 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(326 K, 1 atm) - - Anhydrite -0.02 -4.63 -4.61 CaSO4 - Gypsum 0.00 -4.63 -4.63 CaSO4:2H2O - H2(g) -31.50 -34.64 -3.14 H2 - H2O(g) -0.85 -0.00 0.85 H2O - H2S(g) -103.50 -111.44 -7.94 H2S - O2(g) -11.79 -14.84 -3.04 O2 - Sulfur -77.68 -73.39 4.28 S - - -Reaction step 30. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite -0.01 -4.63 -4.63 1.000e+000 0 -1.000e+000 -Gypsum 0.00 -4.63 -4.63 1.000e+000 1.985e+000 9.854e-001 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.514e-002 1.460e-002 - S 1.514e-002 1.460e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.722 Charge balance - pe = -1.628 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 54 oC) = 3600 - Density (g/cm3) = 0.98818 - Volume (L) = 0.97899 - Activity of water = 1.000 - Ionic strength = 4.056e-002 - Mass of water (kg) = 9.645e-001 - Total alkalinity (eq/kg) = 1.261e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 54.00 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 47 - Total H = 1.070708e+002 - Total O = 5.359383e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 4.456e-007 3.640e-007 -6.351 -6.439 -0.088 -3.59 - H+ 2.219e-007 1.899e-007 -6.654 -6.722 -0.068 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.27 -Ca 1.514e-002 - Ca+2 1.014e-002 4.871e-003 -1.994 -2.312 -0.318 -17.65 - CaSO4 5.000e-003 5.047e-003 -2.301 -2.297 0.004 8.27 - CaHSO4+ 1.259e-008 1.038e-008 -7.900 -7.984 -0.084 (0) - CaOH+ 5.161e-009 4.256e-009 -8.287 -8.371 -0.084 (0) -H(0) 7.003e-014 - H2 3.501e-014 3.534e-014 -13.456 -13.452 0.004 28.59 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -56.952 -56.948 0.004 32.11 -S(-2) 1.861e-020 - HS- 1.094e-020 8.939e-021 -19.961 -20.049 -0.088 21.34 - H2S 7.664e-021 7.736e-021 -20.116 -20.112 0.004 37.24 - S-2 7.347e-026 3.476e-026 -25.134 -25.459 -0.325 (0) -S(6) 1.514e-002 - SO4-2 1.014e-002 4.779e-003 -1.994 -2.321 -0.327 16.11 - CaSO4 5.000e-003 5.047e-003 -2.301 -2.297 0.004 8.27 - HSO4- 2.150e-007 1.773e-007 -6.667 -6.751 -0.084 41.53 - CaHSO4+ 1.259e-008 1.038e-008 -7.900 -7.984 -0.084 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(327 K, 1 atm) - - Anhydrite -0.01 -4.63 -4.63 CaSO4 - Gypsum 0.00 -4.63 -4.63 CaSO4:2H2O - H2(g) -10.31 -13.45 -3.14 H2 - H2O(g) -0.83 -0.00 0.83 H2O - H2S(g) -18.83 -26.77 -7.94 H2S - O2(g) -53.90 -56.95 -3.05 O2 - Sulfur -14.19 -9.92 4.26 S - - -Reaction step 31. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite 0.00 -4.64 -4.64 1.000e+000 1.984e+000 9.845e-001 -Gypsum -0.00 -4.64 -4.64 1.000e+000 0 -1.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.500e-002 1.554e-002 - S 1.500e-002 1.554e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.711 Charge balance - pe = 8.790 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 55 oC) = 3627 - Density (g/cm3) = 0.98768 - Volume (L) = 1.05211 - Activity of water = 1.000 - Ionic strength = 4.020e-002 - Mass of water (kg) = 1.036e+000 - Total alkalinity (eq/kg) = 1.174e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 55.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 18 - Total H = 1.150124e+002 - Total O = 5.756840e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 4.606e-007 3.763e-007 -6.337 -6.424 -0.088 -3.60 - H+ 2.272e-007 1.944e-007 -6.644 -6.711 -0.068 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.28 -Ca 1.500e-002 - Ca+2 1.005e-002 4.833e-003 -1.998 -2.316 -0.318 -17.67 - CaSO4 4.953e-003 4.999e-003 -2.305 -2.301 0.004 8.29 - CaHSO4+ 1.303e-008 1.074e-008 -7.885 -7.969 -0.084 (0) - CaOH+ 5.000e-009 4.123e-009 -8.301 -8.385 -0.084 (0) -H(0) 1.064e-034 - H2 5.319e-035 5.368e-035 -34.274 -34.270 0.004 28.58 -O(0) 1.793e-015 - O2 8.964e-016 9.048e-016 -15.047 -15.043 0.004 32.16 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -103.336 -103.424 -0.088 21.34 - H2S 0.000e+000 0.000e+000 -103.487 -103.483 0.004 37.25 - S-2 0.000e+000 0.000e+000 -108.495 -108.820 -0.325 (0) -S(6) 1.500e-002 - SO4-2 1.005e-002 4.742e-003 -1.998 -2.324 -0.326 16.10 - CaSO4 4.953e-003 4.999e-003 -2.305 -2.301 0.004 8.29 - HSO4- 2.242e-007 1.849e-007 -6.649 -6.733 -0.084 41.54 - CaHSO4+ 1.303e-008 1.074e-008 -7.885 -7.969 -0.084 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(328 K, 1 atm) - - Anhydrite 0.00 -4.64 -4.64 CaSO4 - Gypsum -0.00 -4.64 -4.64 CaSO4:2H2O - H2(g) -31.13 -34.27 -3.14 H2 - H2O(g) -0.81 -0.00 0.81 H2O - H2S(g) -102.19 -110.13 -7.94 H2S - O2(g) -11.99 -15.04 -3.05 O2 - Sulfur -76.73 -72.48 4.25 S - - -Reaction step 32. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite 0.00 -4.65 -4.65 1.000e+000 1.985e+000 9.848e-001 -Gypsum -0.01 -4.65 -4.64 1.000e+000 0 -1.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.470e-002 1.523e-002 - S 1.470e-002 1.523e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.700 Charge balance - pe = 8.794 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 56 oC) = 3623 - Density (g/cm3) = 0.98715 - Volume (L) = 1.05261 - Activity of water = 1.000 - Ionic strength = 3.946e-002 - Mass of water (kg) = 1.036e+000 - Total alkalinity (eq/kg) = 1.174e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 56.00 - Electrical balance (eq) = -1.236e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 13 - Total H = 1.150124e+002 - Total O = 5.756715e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 4.748e-007 3.883e-007 -6.324 -6.411 -0.087 -3.62 - H+ 2.328e-007 1.993e-007 -6.633 -6.700 -0.067 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.29 -Ca 1.470e-002 - Ca+2 9.866e-003 4.760e-003 -2.006 -2.322 -0.317 -17.68 - CaSO4 4.838e-003 4.882e-003 -2.315 -2.311 0.004 8.31 - CaHSO4+ 1.330e-008 1.098e-008 -7.876 -7.960 -0.083 (0) - CaOH+ 4.799e-009 3.961e-009 -8.319 -8.402 -0.083 (0) -H(0) 1.090e-034 - H2 5.448e-035 5.497e-035 -34.264 -34.260 0.004 28.58 -O(0) 3.152e-015 - O2 1.576e-015 1.591e-015 -14.802 -14.798 0.004 32.20 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -103.398 -103.485 -0.087 21.34 - H2S 0.000e+000 0.000e+000 -103.544 -103.540 0.004 37.25 - S-2 0.000e+000 0.000e+000 -108.545 -108.868 -0.323 (0) -S(6) 1.470e-002 - SO4-2 9.866e-003 4.672e-003 -2.006 -2.330 -0.325 16.07 - CaSO4 4.838e-003 4.882e-003 -2.315 -2.311 0.004 8.31 - HSO4- 2.323e-007 1.918e-007 -6.634 -6.717 -0.083 41.55 - CaHSO4+ 1.330e-008 1.098e-008 -7.876 -7.960 -0.083 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(329 K, 1 atm) - - Anhydrite 0.00 -4.65 -4.65 CaSO4 - Gypsum -0.01 -4.65 -4.64 CaSO4:2H2O - H2(g) -31.12 -34.26 -3.14 H2 - H2O(g) -0.79 -0.00 0.79 H2O - H2S(g) -102.25 -110.19 -7.94 H2S - O2(g) -11.75 -14.80 -3.05 O2 - Sulfur -76.78 -72.55 4.23 S - - -Reaction step 33. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite 0.00 -4.67 -4.67 1.000e+000 1.985e+000 9.851e-001 -Gypsum -0.02 -4.67 -4.64 1.000e+000 0 -1.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.441e-002 1.493e-002 - S 1.441e-002 1.493e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.690 Charge balance - pe = 8.719 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 57 oC) = 3618 - Density (g/cm3) = 0.98662 - Volume (L) = 1.05312 - Activity of water = 1.000 - Ionic strength = 3.874e-002 - Mass of water (kg) = 1.036e+000 - Total alkalinity (eq/kg) = 1.174e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 57.00 - Electrical balance (eq) = -1.234e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 13 - Total H = 1.150124e+002 - Total O = 5.756593e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 4.893e-007 4.006e-007 -6.310 -6.397 -0.087 -3.64 - H+ 2.385e-007 2.043e-007 -6.623 -6.690 -0.067 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.30 -Ca 1.441e-002 - Ca+2 9.684e-003 4.689e-003 -2.014 -2.329 -0.315 -17.70 - CaSO4 4.725e-003 4.767e-003 -2.326 -2.322 0.004 8.32 - CaHSO4+ 1.357e-008 1.121e-008 -7.868 -7.950 -0.083 (0) - CaOH+ 4.607e-009 3.806e-009 -8.337 -8.419 -0.083 (0) -H(0) 1.603e-034 - H2 8.013e-035 8.085e-035 -34.096 -34.092 0.004 28.58 -O(0) 2.677e-015 - O2 1.339e-015 1.351e-015 -14.873 -14.869 0.004 32.25 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -102.831 -102.918 -0.087 21.33 - H2S 0.000e+000 0.000e+000 -102.972 -102.968 0.004 37.25 - S-2 0.000e+000 0.000e+000 -107.965 -108.287 -0.321 (0) -S(6) 1.441e-002 - SO4-2 9.684e-003 4.603e-003 -2.014 -2.337 -0.323 16.05 - CaSO4 4.725e-003 4.767e-003 -2.326 -2.322 0.004 8.32 - HSO4- 2.407e-007 1.989e-007 -6.619 -6.701 -0.083 41.56 - CaHSO4+ 1.357e-008 1.121e-008 -7.868 -7.950 -0.083 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(330 K, 1 atm) - - Anhydrite 0.00 -4.67 -4.67 CaSO4 - Gypsum -0.02 -4.67 -4.64 CaSO4:2H2O - H2(g) -30.95 -34.09 -3.14 H2 - H2O(g) -0.77 -0.00 0.77 H2O - H2S(g) -101.67 -109.61 -7.94 H2S - O2(g) -11.81 -14.87 -3.06 O2 - Sulfur -76.36 -72.15 4.21 S - - -Reaction step 34. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite 0.00 -4.68 -4.68 1.000e+000 1.985e+000 9.854e-001 -Gypsum -0.03 -4.68 -4.65 1.000e+000 0 -1.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.412e-002 1.463e-002 - S 1.412e-002 1.463e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.679 Charge balance - pe = 8.662 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 58 oC) = 3612 - Density (g/cm3) = 0.98608 - Volume (L) = 1.05363 - Activity of water = 1.000 - Ionic strength = 3.802e-002 - Mass of water (kg) = 1.036e+000 - Total alkalinity (eq/kg) = 1.174e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 58.00 - Electrical balance (eq) = -1.232e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 13 - Total H = 1.150124e+002 - Total O = 5.756472e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 5.041e-007 4.132e-007 -6.298 -6.384 -0.086 -3.66 - H+ 2.442e-007 2.094e-007 -6.612 -6.679 -0.067 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.31 -Ca 1.412e-002 - Ca+2 9.505e-003 4.618e-003 -2.022 -2.336 -0.314 -17.72 - CaSO4 4.613e-003 4.654e-003 -2.336 -2.332 0.004 8.34 - CaHSO4+ 1.384e-008 1.144e-008 -7.859 -7.941 -0.082 (0) - CaOH+ 4.424e-009 3.658e-009 -8.354 -8.437 -0.082 (0) -H(0) 2.170e-034 - H2 1.085e-034 1.095e-034 -33.965 -33.961 0.004 28.58 -O(0) 2.673e-015 - O2 1.337e-015 1.348e-015 -14.874 -14.870 0.004 32.29 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -102.407 -102.494 -0.086 21.32 - H2S 0.000e+000 0.000e+000 -102.543 -102.540 0.004 37.25 - S-2 0.000e+000 0.000e+000 -107.529 -107.849 -0.320 (0) -S(6) 1.412e-002 - SO4-2 9.504e-003 4.535e-003 -2.022 -2.343 -0.321 16.02 - CaSO4 4.613e-003 4.654e-003 -2.336 -2.332 0.004 8.34 - HSO4- 2.493e-007 2.061e-007 -6.603 -6.686 -0.082 41.57 - CaHSO4+ 1.384e-008 1.144e-008 -7.859 -7.941 -0.082 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(331 K, 1 atm) - - Anhydrite 0.00 -4.68 -4.68 CaSO4 - Gypsum -0.03 -4.68 -4.65 CaSO4:2H2O - H2(g) -30.82 -33.96 -3.14 H2 - H2O(g) -0.75 -0.00 0.75 H2O - H2S(g) -101.23 -109.17 -7.94 H2S - O2(g) -11.81 -14.87 -3.06 O2 - Sulfur -76.05 -71.86 4.19 S - - -Reaction step 35. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite 0.00 -4.69 -4.69 1.000e+000 1.986e+000 9.857e-001 -Gypsum -0.04 -4.69 -4.65 1.000e+000 0 -1.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.383e-002 1.433e-002 - S 1.383e-002 1.433e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.669 Charge balance - pe = 8.606 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 59 oC) = 3605 - Density (g/cm3) = 0.98553 - Volume (L) = 1.05415 - Activity of water = 1.000 - Ionic strength = 3.731e-002 - Mass of water (kg) = 1.036e+000 - Total alkalinity (eq/kg) = 1.174e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 59.00 - Electrical balance (eq) = -1.230e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 13 - Total H = 1.150124e+002 - Total O = 5.756354e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 5.192e-007 4.261e-007 -6.285 -6.370 -0.086 -3.68 - H+ 2.500e-007 2.145e-007 -6.602 -6.669 -0.067 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.31 -Ca 1.383e-002 - Ca+2 9.328e-003 4.548e-003 -2.030 -2.342 -0.312 -17.74 - CaSO4 4.504e-003 4.543e-003 -2.346 -2.343 0.004 8.36 - CaHSO4+ 1.411e-008 1.168e-008 -7.850 -7.932 -0.082 (0) - CaOH+ 4.249e-009 3.517e-009 -8.372 -8.454 -0.082 (0) -H(0) 2.930e-034 - H2 1.465e-034 1.478e-034 -33.834 -33.830 0.004 28.58 -O(0) 2.675e-015 - O2 1.337e-015 1.349e-015 -14.874 -14.870 0.004 32.34 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -101.988 -102.074 -0.086 21.31 - H2S 0.000e+000 0.000e+000 -102.119 -102.115 0.004 37.25 - S-2 0.000e+000 0.000e+000 -107.097 -107.415 -0.318 (0) -S(6) 1.383e-002 - SO4-2 9.328e-003 4.468e-003 -2.030 -2.350 -0.320 15.99 - CaSO4 4.504e-003 4.543e-003 -2.346 -2.343 0.004 8.36 - HSO4- 2.581e-007 2.137e-007 -6.588 -6.670 -0.082 41.58 - CaHSO4+ 1.411e-008 1.168e-008 -7.850 -7.932 -0.082 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(332 K, 1 atm) - - Anhydrite 0.00 -4.69 -4.69 CaSO4 - Gypsum -0.04 -4.69 -4.65 CaSO4:2H2O - H2(g) -30.69 -33.83 -3.14 H2 - H2O(g) -0.73 -0.00 0.73 H2O - H2S(g) -100.80 -108.74 -7.94 H2S - O2(g) -11.81 -14.87 -3.06 O2 - Sulfur -75.74 -71.57 4.17 S - - -Reaction step 36. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite 0.00 -4.71 -4.71 1.000e+000 1.986e+000 9.860e-001 -Gypsum -0.05 -4.71 -4.65 1.000e+000 0 -1.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.355e-002 1.404e-002 - S 1.355e-002 1.404e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.658 Charge balance - pe = 8.550 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 60 oC) = 3597 - Density (g/cm3) = 0.98498 - Volume (L) = 1.05468 - Activity of water = 1.000 - Ionic strength = 3.662e-002 - Mass of water (kg) = 1.036e+000 - Total alkalinity (eq/kg) = 1.174e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 60.00 - Electrical balance (eq) = -1.228e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 13 - Total H = 1.150124e+002 - Total O = 5.756238e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 5.346e-007 4.392e-007 -6.272 -6.357 -0.085 -3.70 - H+ 2.559e-007 2.197e-007 -6.592 -6.658 -0.066 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.32 -Ca 1.355e-002 - Ca+2 9.155e-003 4.478e-003 -2.038 -2.349 -0.311 -17.76 - CaSO4 4.397e-003 4.434e-003 -2.357 -2.353 0.004 8.37 - CaHSO4+ 1.439e-008 1.192e-008 -7.842 -7.924 -0.082 (0) - CaOH+ 4.081e-009 3.382e-009 -8.389 -8.471 -0.082 (0) -H(0) 3.942e-034 - H2 1.971e-034 1.988e-034 -33.705 -33.702 0.004 28.58 -O(0) 2.685e-015 - O2 1.343e-015 1.354e-015 -14.872 -14.868 0.004 32.38 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -101.574 -101.660 -0.085 21.30 - H2S 0.000e+000 0.000e+000 -101.700 -101.696 0.004 37.26 - S-2 0.000e+000 0.000e+000 -106.671 -106.988 -0.317 (0) -S(6) 1.355e-002 - SO4-2 9.154e-003 4.402e-003 -2.038 -2.356 -0.318 15.95 - CaSO4 4.397e-003 4.434e-003 -2.357 -2.353 0.004 8.37 - HSO4- 2.672e-007 2.214e-007 -6.573 -6.655 -0.082 41.58 - CaHSO4+ 1.439e-008 1.192e-008 -7.842 -7.924 -0.082 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(333 K, 1 atm) - - Anhydrite 0.00 -4.71 -4.71 CaSO4 - Gypsum -0.05 -4.71 -4.65 CaSO4:2H2O - H2(g) -30.56 -33.70 -3.14 H2 - H2O(g) -0.71 -0.00 0.71 H2O - H2S(g) -100.38 -108.32 -7.94 H2S - O2(g) -11.80 -14.87 -3.06 O2 - Sulfur -75.43 -71.28 4.15 S - - -Reaction step 37. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite 0.00 -4.72 -4.72 1.000e+000 1.986e+000 9.862e-001 -Gypsum -0.06 -4.72 -4.66 1.000e+000 0 -1.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.328e-002 1.375e-002 - S 1.328e-002 1.375e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.648 Charge balance - pe = 8.494 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 61 oC) = 3589 - Density (g/cm3) = 0.98443 - Volume (L) = 1.05521 - Activity of water = 1.000 - Ionic strength = 3.594e-002 - Mass of water (kg) = 1.036e+000 - Total alkalinity (eq/kg) = 1.174e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 61.00 - Electrical balance (eq) = -1.226e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 13 - Total H = 1.150124e+002 - Total O = 5.756123e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 5.504e-007 4.527e-007 -6.259 -6.344 -0.085 -3.73 - H+ 2.619e-007 2.250e-007 -6.582 -6.648 -0.066 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.33 -Ca 1.328e-002 - Ca+2 8.984e-003 4.410e-003 -2.047 -2.356 -0.309 -17.78 - CaSO4 4.291e-003 4.327e-003 -2.367 -2.364 0.004 8.39 - CaHSO4+ 1.466e-008 1.216e-008 -7.834 -7.915 -0.081 (0) - CaOH+ 3.922e-009 3.252e-009 -8.407 -8.488 -0.081 (0) -H(0) 5.308e-034 - H2 2.654e-034 2.676e-034 -33.576 -33.572 0.004 28.58 -O(0) 2.682e-015 - O2 1.341e-015 1.352e-015 -14.873 -14.869 0.004 32.42 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -101.159 -101.244 -0.085 21.29 - H2S 0.000e+000 0.000e+000 -101.279 -101.276 0.004 37.26 - S-2 0.000e+000 0.000e+000 -106.243 -106.558 -0.315 (0) -S(6) 1.328e-002 - SO4-2 8.984e-003 4.336e-003 -2.047 -2.363 -0.316 15.92 - CaSO4 4.291e-003 4.327e-003 -2.367 -2.364 0.004 8.39 - HSO4- 2.766e-007 2.294e-007 -6.558 -6.639 -0.081 41.59 - CaHSO4+ 1.466e-008 1.216e-008 -7.834 -7.915 -0.081 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(334 K, 1 atm) - - Anhydrite 0.00 -4.72 -4.72 CaSO4 - Gypsum -0.06 -4.72 -4.66 CaSO4:2H2O - H2(g) -30.43 -33.57 -3.14 H2 - H2O(g) -0.69 -0.00 0.69 H2O - H2S(g) -99.96 -107.89 -7.94 H2S - O2(g) -11.80 -14.87 -3.07 O2 - Sulfur -75.12 -70.99 4.13 S - - -Reaction step 38. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite 0.00 -4.73 -4.73 1.000e+000 1.987e+000 9.865e-001 -Gypsum -0.07 -4.73 -4.66 1.000e+000 0 -1.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.300e-002 1.347e-002 - S 1.300e-002 1.347e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.638 Charge balance - pe = 8.438 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 62 oC) = 3580 - Density (g/cm3) = 0.98387 - Volume (L) = 1.05576 - Activity of water = 1.000 - Ionic strength = 3.526e-002 - Mass of water (kg) = 1.036e+000 - Total alkalinity (eq/kg) = 1.174e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 62.00 - Electrical balance (eq) = -1.225e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 13 - Total H = 1.150124e+002 - Total O = 5.756010e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 5.665e-007 4.664e-007 -6.247 -6.331 -0.084 -3.75 - H+ 2.679e-007 2.303e-007 -6.572 -6.638 -0.066 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.34 -Ca 1.300e-002 - Ca+2 8.816e-003 4.343e-003 -2.055 -2.362 -0.308 -17.80 - CaSO4 4.188e-003 4.222e-003 -2.378 -2.375 0.004 8.41 - CaHSO4+ 1.494e-008 1.240e-008 -7.826 -7.906 -0.081 (0) - CaOH+ 3.769e-009 3.128e-009 -8.424 -8.505 -0.081 (0) -H(0) 7.140e-034 - H2 3.570e-034 3.599e-034 -33.447 -33.444 0.004 28.58 -O(0) 2.675e-015 - O2 1.337e-015 1.348e-015 -14.874 -14.870 0.004 32.47 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -100.745 -100.829 -0.084 21.28 - H2S 0.000e+000 0.000e+000 -100.860 -100.856 0.004 37.26 - S-2 0.000e+000 0.000e+000 -105.817 -106.130 -0.313 (0) -S(6) 1.300e-002 - SO4-2 8.816e-003 4.271e-003 -2.055 -2.369 -0.315 15.87 - CaSO4 4.188e-003 4.222e-003 -2.378 -2.375 0.004 8.41 - HSO4- 2.862e-007 2.376e-007 -6.543 -6.624 -0.081 41.59 - CaHSO4+ 1.494e-008 1.240e-008 -7.826 -7.906 -0.081 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(335 K, 1 atm) - - Anhydrite 0.00 -4.73 -4.73 CaSO4 - Gypsum -0.07 -4.73 -4.66 CaSO4:2H2O - H2(g) -30.31 -33.44 -3.14 H2 - H2O(g) -0.67 -0.00 0.67 H2O - H2S(g) -99.53 -107.47 -7.94 H2S - O2(g) -11.80 -14.87 -3.07 O2 - Sulfur -74.82 -70.70 4.11 S - - -Reaction step 39. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite 0.00 -4.75 -4.75 1.000e+000 1.987e+000 9.868e-001 -Gypsum -0.08 -4.75 -4.67 1.000e+000 0 -1.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.274e-002 1.320e-002 - S 1.274e-002 1.320e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.628 Charge balance - pe = 8.383 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 63 oC) = 3570 - Density (g/cm3) = 0.98331 - Volume (L) = 1.05631 - Activity of water = 1.000 - Ionic strength = 3.460e-002 - Mass of water (kg) = 1.036e+000 - Total alkalinity (eq/kg) = 1.174e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 63.00 - Electrical balance (eq) = -1.224e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 13 - Total H = 1.150124e+002 - Total O = 5.755900e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 5.829e-007 4.805e-007 -6.234 -6.318 -0.084 -3.78 - H+ 2.740e-007 2.357e-007 -6.562 -6.628 -0.065 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.35 -Ca 1.274e-002 - Ca+2 8.650e-003 4.276e-003 -2.063 -2.369 -0.306 -17.82 - CaSO4 4.086e-003 4.119e-003 -2.389 -2.385 0.003 8.42 - CaHSO4+ 1.522e-008 1.265e-008 -7.818 -7.898 -0.080 (0) - CaOH+ 3.623e-009 3.010e-009 -8.441 -8.521 -0.080 (0) -H(0) 9.570e-034 - H2 4.785e-034 4.823e-034 -33.320 -33.317 0.003 28.58 -O(0) 2.678e-015 - O2 1.339e-015 1.350e-015 -14.873 -14.870 0.003 32.51 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -100.336 -100.420 -0.084 21.27 - H2S 0.000e+000 0.000e+000 -100.446 -100.443 0.003 37.26 - S-2 0.000e+000 0.000e+000 -105.396 -105.708 -0.312 (0) -S(6) 1.274e-002 - SO4-2 8.650e-003 4.207e-003 -2.063 -2.376 -0.313 15.83 - CaSO4 4.086e-003 4.119e-003 -2.389 -2.385 0.003 8.42 - HSO4- 2.961e-007 2.460e-007 -6.529 -6.609 -0.080 41.59 - CaHSO4+ 1.522e-008 1.265e-008 -7.818 -7.898 -0.080 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(336 K, 1 atm) - - Anhydrite 0.00 -4.75 -4.75 CaSO4 - Gypsum -0.08 -4.75 -4.67 CaSO4:2H2O - H2(g) -30.18 -33.32 -3.14 H2 - H2O(g) -0.65 -0.00 0.65 H2O - H2S(g) -99.11 -107.05 -7.94 H2S - O2(g) -11.80 -14.87 -3.07 O2 - Sulfur -74.52 -70.42 4.09 S - - -Reaction step 40. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite 0.00 -4.76 -4.76 1.000e+000 1.987e+000 9.871e-001 -Gypsum -0.09 -4.76 -4.67 1.000e+000 0 -1.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.247e-002 1.292e-002 - S 1.247e-002 1.292e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.618 Charge balance - pe = 8.327 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 64 oC) = 3560 - Density (g/cm3) = 0.98274 - Volume (L) = 1.05686 - Activity of water = 1.000 - Ionic strength = 3.395e-002 - Mass of water (kg) = 1.036e+000 - Total alkalinity (eq/kg) = 1.174e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 64.00 - Electrical balance (eq) = -1.222e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 13 - Total H = 1.150124e+002 - Total O = 5.755791e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 5.996e-007 4.948e-007 -6.222 -6.306 -0.083 -3.81 - H+ 2.802e-007 2.411e-007 -6.553 -6.618 -0.065 0.00 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.36 -Ca 1.247e-002 - Ca+2 8.488e-003 4.210e-003 -2.071 -2.376 -0.305 -17.85 - CaSO4 3.986e-003 4.018e-003 -2.399 -2.396 0.003 8.44 - CaHSO4+ 1.550e-008 1.289e-008 -7.810 -7.890 -0.080 (0) - CaOH+ 3.483e-009 2.897e-009 -8.458 -8.538 -0.080 (0) -H(0) 1.282e-033 - H2 6.410e-034 6.460e-034 -33.193 -33.190 0.003 28.58 -O(0) 2.674e-015 - O2 1.337e-015 1.347e-015 -14.874 -14.870 0.003 32.55 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -99.928 -100.011 -0.083 21.25 - H2S 0.000e+000 0.000e+000 -100.033 -100.029 0.003 37.26 - S-2 0.000e+000 0.000e+000 -104.976 -105.286 -0.310 (0) -S(6) 1.247e-002 - SO4-2 8.488e-003 4.143e-003 -2.071 -2.383 -0.311 15.78 - CaSO4 3.986e-003 4.018e-003 -2.399 -2.396 0.003 8.44 - HSO4- 3.062e-007 2.547e-007 -6.514 -6.594 -0.080 41.59 - CaHSO4+ 1.550e-008 1.289e-008 -7.810 -7.890 -0.080 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(337 K, 1 atm) - - Anhydrite 0.00 -4.76 -4.76 CaSO4 - Gypsum -0.09 -4.76 -4.67 CaSO4:2H2O - H2(g) -30.05 -33.19 -3.14 H2 - H2O(g) -0.63 -0.00 0.63 H2O - H2S(g) -98.69 -106.63 -7.93 H2S - O2(g) -11.80 -14.87 -3.08 O2 - Sulfur -74.22 -70.14 4.08 S - - -Reaction step 41. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite 0.00 -4.77 -4.77 1.000e+000 1.987e+000 9.873e-001 -Gypsum -0.10 -4.77 -4.67 1.000e+000 0 -1.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.222e-002 1.266e-002 - S 1.222e-002 1.266e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.608 Charge balance - pe = 8.273 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 65 oC) = 3549 - Density (g/cm3) = 0.98216 - Volume (L) = 1.05743 - Activity of water = 1.000 - Ionic strength = 3.331e-002 - Mass of water (kg) = 1.036e+000 - Total alkalinity (eq/kg) = 1.174e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 65.00 - Electrical balance (eq) = -1.221e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 13 - Total H = 1.150124e+002 - Total O = 5.755684e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 6.167e-007 5.095e-007 -6.210 -6.293 -0.083 -3.84 - H+ 2.864e-007 2.466e-007 -6.543 -6.608 -0.065 0.00 - H2O 5.551e+001 9.997e-001 1.744 -0.000 0.000 18.37 -Ca 1.222e-002 - Ca+2 8.328e-003 4.145e-003 -2.079 -2.382 -0.303 -17.87 - CaSO4 3.888e-003 3.918e-003 -2.410 -2.407 0.003 8.45 - CaHSO4+ 1.578e-008 1.314e-008 -7.802 -7.881 -0.080 (0) - CaOH+ 3.350e-009 2.789e-009 -8.475 -8.555 -0.080 (0) -H(0) 1.711e-033 - H2 8.553e-034 8.619e-034 -33.068 -33.065 0.003 28.58 -O(0) 2.682e-015 - O2 1.341e-015 1.351e-015 -14.873 -14.869 0.003 32.59 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -99.526 -99.609 -0.083 21.24 - H2S 0.000e+000 0.000e+000 -99.625 -99.622 0.003 37.26 - S-2 0.000e+000 0.000e+000 -104.562 -104.870 -0.308 (0) -S(6) 1.222e-002 - SO4-2 8.328e-003 4.080e-003 -2.079 -2.389 -0.310 15.73 - CaSO4 3.888e-003 3.918e-003 -2.410 -2.407 0.003 8.45 - HSO4- 3.167e-007 2.636e-007 -6.499 -6.579 -0.080 41.59 - CaHSO4+ 1.578e-008 1.314e-008 -7.802 -7.881 -0.080 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(338 K, 1 atm) - - Anhydrite 0.00 -4.77 -4.77 CaSO4 - Gypsum -0.10 -4.77 -4.67 CaSO4:2H2O - H2(g) -29.93 -33.06 -3.14 H2 - H2O(g) -0.61 -0.00 0.61 H2O - H2S(g) -98.28 -106.22 -7.93 H2S - O2(g) -11.79 -14.87 -3.08 O2 - Sulfur -73.92 -69.86 4.06 S - - -Reaction step 42. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite 0.00 -4.79 -4.79 1.000e+000 1.988e+000 9.876e-001 -Gypsum -0.11 -4.79 -4.68 1.000e+000 0 -1.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.196e-002 1.239e-002 - S 1.196e-002 1.239e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.598 Charge balance - pe = 8.219 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 66 oC) = 3537 - Density (g/cm3) = 0.98158 - Volume (L) = 1.05800 - Activity of water = 1.000 - Ionic strength = 3.268e-002 - Mass of water (kg) = 1.036e+000 - Total alkalinity (eq/kg) = 1.174e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 66.00 - Electrical balance (eq) = -1.220e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 13 - Total H = 1.150124e+002 - Total O = 5.755579e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 6.341e-007 5.244e-007 -6.198 -6.280 -0.082 -3.87 - H+ 2.927e-007 2.522e-007 -6.534 -6.598 -0.065 0.00 - H2O 5.551e+001 9.997e-001 1.744 -0.000 0.000 18.38 -Ca 1.196e-002 - Ca+2 8.171e-003 4.081e-003 -2.088 -2.389 -0.301 -17.89 - CaSO4 3.793e-003 3.821e-003 -2.421 -2.418 0.003 8.47 - CaHSO4+ 1.606e-008 1.338e-008 -7.794 -7.873 -0.079 (0) - CaOH+ 3.222e-009 2.685e-009 -8.492 -8.571 -0.079 (0) -H(0) 2.280e-033 - H2 1.140e-033 1.149e-033 -32.943 -32.940 0.003 28.58 -O(0) 2.686e-015 - O2 1.343e-015 1.353e-015 -14.872 -14.869 0.003 32.63 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -99.126 -99.208 -0.082 21.22 - H2S 0.000e+000 0.000e+000 -99.220 -99.216 0.003 37.27 - S-2 0.000e+000 0.000e+000 -104.149 -104.456 -0.307 (0) -S(6) 1.196e-002 - SO4-2 8.170e-003 4.018e-003 -2.088 -2.396 -0.308 15.68 - CaSO4 3.793e-003 3.821e-003 -2.421 -2.418 0.003 8.47 - HSO4- 3.274e-007 2.728e-007 -6.485 -6.564 -0.079 41.59 - CaHSO4+ 1.606e-008 1.338e-008 -7.794 -7.873 -0.079 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(339 K, 1 atm) - - Anhydrite 0.00 -4.79 -4.79 CaSO4 - Gypsum -0.11 -4.79 -4.68 CaSO4:2H2O - H2(g) -29.80 -32.94 -3.14 H2 - H2O(g) -0.59 -0.00 0.59 H2O - H2S(g) -97.87 -105.81 -7.93 H2S - O2(g) -11.79 -14.87 -3.08 O2 - Sulfur -73.62 -69.58 4.04 S - - -Reaction step 43. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite 0.00 -4.80 -4.80 1.000e+000 1.988e+000 9.879e-001 -Gypsum -0.12 -4.80 -4.68 1.000e+000 0 -1.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.171e-002 1.214e-002 - S 1.171e-002 1.214e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.589 Charge balance - pe = 8.164 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 67 oC) = 3525 - Density (g/cm3) = 0.98100 - Volume (L) = 1.05858 - Activity of water = 1.000 - Ionic strength = 3.206e-002 - Mass of water (kg) = 1.036e+000 - Total alkalinity (eq/kg) = 1.174e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 67.00 - Electrical balance (eq) = -1.219e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 13 - Total H = 1.150124e+002 - Total O = 5.755476e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 6.519e-007 5.397e-007 -6.186 -6.268 -0.082 -3.90 - H+ 2.990e-007 2.578e-007 -6.524 -6.589 -0.064 0.00 - H2O 5.551e+001 9.997e-001 1.744 -0.000 0.000 18.39 -Ca 1.171e-002 - Ca+2 8.016e-003 4.018e-003 -2.096 -2.396 -0.300 -17.92 - CaSO4 3.699e-003 3.726e-003 -2.432 -2.429 0.003 8.48 - CaHSO4+ 1.635e-008 1.363e-008 -7.787 -7.865 -0.079 (0) - CaOH+ 3.100e-009 2.586e-009 -8.509 -8.587 -0.079 (0) -H(0) 3.043e-033 - H2 1.522e-033 1.533e-033 -32.818 -32.814 0.003 28.58 -O(0) 2.675e-015 - O2 1.337e-015 1.347e-015 -14.874 -14.871 0.003 32.67 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -98.723 -98.805 -0.082 21.21 - H2S 0.000e+000 0.000e+000 -98.811 -98.808 0.003 37.27 - S-2 0.000e+000 0.000e+000 -103.734 -104.039 -0.305 (0) -S(6) 1.171e-002 - SO4-2 8.015e-003 3.957e-003 -2.096 -2.403 -0.307 15.62 - CaSO4 3.699e-003 3.726e-003 -2.432 -2.429 0.003 8.48 - HSO4- 3.384e-007 2.823e-007 -6.471 -6.549 -0.079 41.59 - CaHSO4+ 1.635e-008 1.363e-008 -7.787 -7.865 -0.079 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(340 K, 1 atm) - - Anhydrite 0.00 -4.80 -4.80 CaSO4 - Gypsum -0.12 -4.80 -4.68 CaSO4:2H2O - H2(g) -29.68 -32.81 -3.14 H2 - H2O(g) -0.57 -0.00 0.57 H2O - H2S(g) -97.46 -105.39 -7.93 H2S - O2(g) -11.79 -14.87 -3.08 O2 - Sulfur -73.32 -69.30 4.02 S - - -Reaction step 44. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite 0.00 -4.81 -4.81 1.000e+000 1.988e+000 9.881e-001 -Gypsum -0.13 -4.81 -4.69 1.000e+000 0 -1.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.147e-002 1.188e-002 - S 1.147e-002 1.188e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.579 Charge balance - pe = 8.110 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 68 oC) = 3512 - Density (g/cm3) = 0.98041 - Volume (L) = 1.05916 - Activity of water = 1.000 - Ionic strength = 3.145e-002 - Mass of water (kg) = 1.036e+000 - Total alkalinity (eq/kg) = 1.174e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 68.00 - Electrical balance (eq) = -1.218e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 13 - Total H = 1.150124e+002 - Total O = 5.755375e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 6.700e-007 5.553e-007 -6.174 -6.255 -0.082 -3.93 - H+ 3.054e-007 2.634e-007 -6.515 -6.579 -0.064 0.00 - H2O 5.551e+001 9.997e-001 1.744 -0.000 0.000 18.40 -Ca 1.147e-002 - Ca+2 7.864e-003 3.955e-003 -2.104 -2.403 -0.298 -17.95 - CaSO4 3.606e-003 3.633e-003 -2.443 -2.440 0.003 8.50 - CaHSO4+ 1.663e-008 1.388e-008 -7.779 -7.858 -0.078 (0) - CaOH+ 2.984e-009 2.491e-009 -8.525 -8.604 -0.078 (0) -H(0) 4.050e-033 - H2 2.025e-033 2.040e-033 -32.694 -32.690 0.003 28.58 -O(0) 2.670e-015 - O2 1.335e-015 1.345e-015 -14.874 -14.871 0.003 32.71 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -98.325 -98.406 -0.082 21.19 - H2S 0.000e+000 0.000e+000 -98.407 -98.404 0.003 37.27 - S-2 0.000e+000 0.000e+000 -103.323 -103.627 -0.304 (0) -S(6) 1.147e-002 - SO4-2 7.863e-003 3.896e-003 -2.104 -2.409 -0.305 15.56 - CaSO4 3.606e-003 3.633e-003 -2.443 -2.440 0.003 8.50 - HSO4- 3.498e-007 2.920e-007 -6.456 -6.535 -0.078 41.59 - CaHSO4+ 1.663e-008 1.388e-008 -7.779 -7.858 -0.078 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(341 K, 1 atm) - - Anhydrite 0.00 -4.81 -4.81 CaSO4 - Gypsum -0.13 -4.81 -4.69 CaSO4:2H2O - H2(g) -29.55 -32.69 -3.14 H2 - H2O(g) -0.55 -0.00 0.55 H2O - H2S(g) -97.05 -104.99 -7.93 H2S - O2(g) -11.79 -14.87 -3.08 O2 - Sulfur -73.03 -69.03 4.00 S - - -Reaction step 45. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite 0.00 -4.83 -4.83 1.000e+000 1.988e+000 9.884e-001 -Gypsum -0.14 -4.83 -4.69 1.000e+000 0 -1.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.123e-002 1.163e-002 - S 1.123e-002 1.163e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.570 Charge balance - pe = 8.057 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 69 oC) = 3499 - Density (g/cm3) = 0.97981 - Volume (L) = 1.05975 - Activity of water = 1.000 - Ionic strength = 3.086e-002 - Mass of water (kg) = 1.036e+000 - Total alkalinity (eq/kg) = 1.174e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 69.00 - Electrical balance (eq) = -1.218e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 13 - Total H = 1.150124e+002 - Total O = 5.755276e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 6.884e-007 5.712e-007 -6.162 -6.243 -0.081 -3.97 - H+ 3.118e-007 2.692e-007 -6.506 -6.570 -0.064 0.00 - H2O 5.551e+001 9.997e-001 1.744 -0.000 0.000 18.42 -Ca 1.123e-002 - Ca+2 7.714e-003 3.893e-003 -2.113 -2.410 -0.297 -17.97 - CaSO4 3.516e-003 3.541e-003 -2.454 -2.451 0.003 8.51 - CaHSO4+ 1.692e-008 1.413e-008 -7.772 -7.850 -0.078 (0) - CaOH+ 2.872e-009 2.400e-009 -8.542 -8.620 -0.078 (0) -H(0) 5.355e-033 - H2 2.677e-033 2.696e-033 -32.572 -32.569 0.003 28.58 -O(0) 2.691e-015 - O2 1.345e-015 1.355e-015 -14.871 -14.868 0.003 32.75 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -97.937 -98.018 -0.081 21.17 - H2S 0.000e+000 0.000e+000 -98.014 -98.011 0.003 37.27 - S-2 0.000e+000 0.000e+000 -102.923 -103.225 -0.302 (0) -S(6) 1.123e-002 - SO4-2 7.714e-003 3.837e-003 -2.113 -2.416 -0.303 15.50 - CaSO4 3.516e-003 3.541e-003 -2.454 -2.451 0.003 8.51 - HSO4- 3.614e-007 3.019e-007 -6.442 -6.520 -0.078 41.58 - CaHSO4+ 1.692e-008 1.413e-008 -7.772 -7.850 -0.078 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(342 K, 1 atm) - - Anhydrite 0.00 -4.83 -4.83 CaSO4 - Gypsum -0.14 -4.83 -4.69 CaSO4:2H2O - H2(g) -29.43 -32.57 -3.14 H2 - H2O(g) -0.53 -0.00 0.53 H2O - H2S(g) -96.66 -104.59 -7.93 H2S - O2(g) -11.78 -14.87 -3.09 O2 - Sulfur -72.74 -68.76 3.99 S - - -Reaction step 46. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite 0.00 -4.84 -4.84 1.000e+000 1.989e+000 9.886e-001 -Gypsum -0.15 -4.84 -4.69 1.000e+000 0 -1.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.099e-002 1.139e-002 - S 1.099e-002 1.139e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.561 Charge balance - pe = 8.003 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 70 oC) = 3485 - Density (g/cm3) = 0.97921 - Volume (L) = 1.06035 - Activity of water = 1.000 - Ionic strength = 3.027e-002 - Mass of water (kg) = 1.036e+000 - Total alkalinity (eq/kg) = 1.174e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 70.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 13 - Total H = 1.150124e+002 - Total O = 5.755178e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 7.072e-007 5.874e-007 -6.150 -6.231 -0.081 -4.00 - H+ 3.183e-007 2.749e-007 -6.497 -6.561 -0.064 0.00 - H2O 5.551e+001 9.997e-001 1.744 -0.000 0.000 18.43 -Ca 1.099e-002 - Ca+2 7.567e-003 3.832e-003 -2.121 -2.417 -0.295 -18.00 - CaSO4 3.428e-003 3.452e-003 -2.465 -2.462 0.003 8.53 - CaHSO4+ 1.720e-008 1.438e-008 -7.764 -7.842 -0.078 (0) - CaOH+ 2.765e-009 2.312e-009 -8.558 -8.636 -0.078 (0) -H(0) 7.102e-033 - H2 3.551e-033 3.576e-033 -32.450 -32.447 0.003 28.58 -O(0) 2.686e-015 - O2 1.343e-015 1.353e-015 -14.872 -14.869 0.003 32.79 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -97.543 -97.624 -0.081 21.15 - H2S 0.000e+000 0.000e+000 -97.615 -97.612 0.003 37.27 - S-2 0.000e+000 0.000e+000 -102.518 -102.818 -0.300 (0) -S(6) 1.099e-002 - SO4-2 7.567e-003 3.778e-003 -2.121 -2.423 -0.302 15.43 - CaSO4 3.428e-003 3.452e-003 -2.465 -2.462 0.003 8.53 - HSO4- 3.733e-007 3.122e-007 -6.428 -6.506 -0.078 41.58 - CaHSO4+ 1.720e-008 1.438e-008 -7.764 -7.842 -0.078 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(343 K, 1 atm) - - Anhydrite 0.00 -4.84 -4.84 CaSO4 - Gypsum -0.15 -4.84 -4.69 CaSO4:2H2O - H2(g) -29.31 -32.45 -3.14 H2 - H2O(g) -0.52 -0.00 0.51 H2O - H2S(g) -96.25 -104.18 -7.93 H2S - O2(g) -11.78 -14.87 -3.09 O2 - Sulfur -72.45 -68.48 3.97 S - - -Reaction step 47. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite 0.00 -4.85 -4.85 1.000e+000 1.989e+000 9.888e-001 -Gypsum -0.15 -4.85 -4.70 1.000e+000 0 -1.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.076e-002 1.115e-002 - S 1.076e-002 1.115e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.552 Charge balance - pe = 7.948 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 71 oC) = 3470 - Density (g/cm3) = 0.97861 - Volume (L) = 1.06096 - Activity of water = 1.000 - Ionic strength = 2.969e-002 - Mass of water (kg) = 1.036e+000 - Total alkalinity (eq/kg) = 1.174e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 71.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 - Total H = 1.150124e+002 - Total O = 5.755082e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 7.264e-007 6.040e-007 -6.139 -6.219 -0.080 -4.04 - H+ 3.249e-007 2.808e-007 -6.488 -6.552 -0.063 0.00 - H2O 5.551e+001 9.997e-001 1.744 -0.000 0.000 18.44 -Ca 1.076e-002 - Ca+2 7.423e-003 3.772e-003 -2.129 -2.423 -0.294 -18.03 - CaSO4 3.341e-003 3.364e-003 -2.476 -2.473 0.003 8.54 - CaHSO4+ 1.748e-008 1.464e-008 -7.757 -7.835 -0.077 (0) - CaOH+ 2.663e-009 2.229e-009 -8.575 -8.652 -0.077 (0) -H(0) 9.463e-033 - H2 4.731e-033 4.764e-033 -32.325 -32.322 0.003 28.58 -O(0) 2.648e-015 - O2 1.324e-015 1.333e-015 -14.878 -14.875 0.003 32.83 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -97.141 -97.222 -0.080 21.12 - H2S 0.000e+000 0.000e+000 -97.207 -97.204 0.003 37.27 - S-2 0.000e+000 0.000e+000 -102.104 -102.402 -0.299 (0) -S(6) 1.076e-002 - SO4-2 7.422e-003 3.719e-003 -2.129 -2.430 -0.300 15.36 - CaSO4 3.341e-003 3.364e-003 -2.476 -2.473 0.003 8.54 - HSO4- 3.856e-007 3.227e-007 -6.414 -6.491 -0.077 41.57 - CaHSO4+ 1.748e-008 1.464e-008 -7.757 -7.835 -0.077 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(344 K, 1 atm) - - Anhydrite 0.00 -4.85 -4.85 CaSO4 - Gypsum -0.15 -4.85 -4.70 CaSO4:2H2O - H2(g) -29.19 -32.32 -3.14 H2 - H2O(g) -0.50 -0.00 0.50 H2O - H2S(g) -95.84 -103.77 -7.93 H2S - O2(g) -11.78 -14.88 -3.09 O2 - Sulfur -72.16 -68.20 3.95 S - - -Reaction step 48. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite 0.00 -4.87 -4.87 1.000e+000 1.989e+000 9.891e-001 -Gypsum -0.16 -4.87 -4.70 1.000e+000 0 -1.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.054e-002 1.092e-002 - S 1.054e-002 1.092e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.543 Charge balance - pe = 7.895 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 72 oC) = 3455 - Density (g/cm3) = 0.97800 - Volume (L) = 1.06157 - Activity of water = 1.000 - Ionic strength = 2.912e-002 - Mass of water (kg) = 1.036e+000 - Total alkalinity (eq/kg) = 1.174e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 72.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 - Total H = 1.150124e+002 - Total O = 5.754988e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 7.459e-007 6.209e-007 -6.127 -6.207 -0.080 -4.08 - H+ 3.314e-007 2.866e-007 -6.480 -6.543 -0.063 0.00 - H2O 5.551e+001 9.997e-001 1.744 -0.000 0.000 18.45 -Ca 1.054e-002 - Ca+2 7.281e-003 3.713e-003 -2.138 -2.430 -0.292 -18.06 - CaSO4 3.256e-003 3.278e-003 -2.487 -2.484 0.003 8.55 - CaHSO4+ 1.777e-008 1.489e-008 -7.750 -7.827 -0.077 (0) - CaOH+ 2.565e-009 2.149e-009 -8.591 -8.668 -0.077 (0) -H(0) 1.250e-032 - H2 6.251e-033 6.293e-033 -32.204 -32.201 0.003 28.58 -O(0) 2.647e-015 - O2 1.324e-015 1.332e-015 -14.878 -14.875 0.003 32.87 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -96.754 -96.834 -0.080 21.10 - H2S 0.000e+000 0.000e+000 -96.814 -96.811 0.003 37.27 - S-2 0.000e+000 0.000e+000 -101.704 -102.001 -0.297 (0) -S(6) 1.054e-002 - SO4-2 7.280e-003 3.662e-003 -2.138 -2.436 -0.298 15.29 - CaSO4 3.256e-003 3.278e-003 -2.487 -2.484 0.003 8.55 - HSO4- 3.981e-007 3.336e-007 -6.400 -6.477 -0.077 41.56 - CaHSO4+ 1.777e-008 1.489e-008 -7.750 -7.827 -0.077 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(345 K, 1 atm) - - Anhydrite 0.00 -4.87 -4.87 CaSO4 - Gypsum -0.16 -4.87 -4.70 CaSO4:2H2O - H2(g) -29.07 -32.20 -3.13 H2 - H2O(g) -0.48 -0.00 0.48 H2O - H2S(g) -95.44 -103.38 -7.93 H2S - O2(g) -11.78 -14.88 -3.09 O2 - Sulfur -71.87 -67.94 3.93 S - - -Reaction step 49. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite 0.00 -4.88 -4.88 1.000e+000 1.989e+000 9.893e-001 -Gypsum -0.17 -4.88 -4.71 1.000e+000 0 -1.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.031e-002 1.069e-002 - S 1.031e-002 1.069e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.534 Charge balance - pe = 7.843 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 73 oC) = 3440 - Density (g/cm3) = 0.97739 - Volume (L) = 1.06219 - Activity of water = 1.000 - Ionic strength = 2.856e-002 - Mass of water (kg) = 1.036e+000 - Total alkalinity (eq/kg) = 1.174e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 73.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 - Total H = 1.150124e+002 - Total O = 5.754896e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 7.658e-007 6.382e-007 -6.116 -6.195 -0.079 -4.12 - H+ 3.381e-007 2.926e-007 -6.471 -6.534 -0.063 0.00 - H2O 5.551e+001 9.997e-001 1.744 -0.000 0.000 18.46 -Ca 1.031e-002 - Ca+2 7.141e-003 3.654e-003 -2.146 -2.437 -0.291 -18.09 - CaSO4 3.173e-003 3.194e-003 -2.499 -2.496 0.003 8.57 - CaHSO4+ 1.806e-008 1.514e-008 -7.743 -7.820 -0.076 (0) - CaOH+ 2.471e-009 2.072e-009 -8.607 -8.684 -0.076 (0) -H(0) 1.648e-032 - H2 8.238e-033 8.292e-033 -32.084 -32.081 0.003 28.58 -O(0) 2.650e-015 - O2 1.325e-015 1.334e-015 -14.878 -14.875 0.003 32.91 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -96.370 -96.449 -0.079 21.08 - H2S 0.000e+000 0.000e+000 -96.424 -96.421 0.003 37.28 - S-2 0.000e+000 0.000e+000 -101.308 -101.604 -0.296 (0) -S(6) 1.031e-002 - SO4-2 7.141e-003 3.605e-003 -2.146 -2.443 -0.297 15.21 - CaSO4 3.173e-003 3.194e-003 -2.499 -2.496 0.003 8.57 - HSO4- 4.110e-007 3.447e-007 -6.386 -6.463 -0.076 41.55 - CaHSO4+ 1.806e-008 1.514e-008 -7.743 -7.820 -0.076 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(346 K, 1 atm) - - Anhydrite 0.00 -4.88 -4.88 CaSO4 - Gypsum -0.17 -4.88 -4.71 CaSO4:2H2O - H2(g) -28.95 -32.08 -3.13 H2 - H2O(g) -0.46 -0.00 0.46 H2O - H2S(g) -95.05 -102.98 -7.93 H2S - O2(g) -11.78 -14.87 -3.09 O2 - Sulfur -71.58 -67.67 3.92 S - - -Reaction step 50. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite 0.00 -4.89 -4.89 1.000e+000 1.990e+000 9.895e-001 -Gypsum -0.18 -4.89 -4.71 1.000e+000 0 -1.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 1.010e-002 1.046e-002 - S 1.010e-002 1.046e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.525 Charge balance - pe = 7.821 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 74 oC) = 3423 - Density (g/cm3) = 0.97677 - Volume (L) = 1.06282 - Activity of water = 1.000 - Ionic strength = 2.802e-002 - Mass of water (kg) = 1.036e+000 - Total alkalinity (eq/kg) = 1.174e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 74.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 - Total H = 1.150124e+002 - Total O = 5.754806e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 7.861e-007 6.558e-007 -6.105 -6.183 -0.079 -4.16 - H+ 3.448e-007 2.985e-007 -6.462 -6.525 -0.063 0.00 - H2O 5.551e+001 9.997e-001 1.744 -0.000 0.000 18.47 -Ca 1.010e-002 - Ca+2 7.004e-003 3.596e-003 -2.155 -2.444 -0.289 -18.12 - CaSO4 3.092e-003 3.112e-003 -2.510 -2.507 0.003 8.58 - CaHSO4+ 1.834e-008 1.540e-008 -7.737 -7.813 -0.076 (0) - CaOH+ 2.381e-009 1.999e-009 -8.623 -8.699 -0.076 (0) -H(0) 1.884e-032 - H2 9.421e-033 9.482e-033 -32.026 -32.023 0.003 28.58 -O(0) 3.512e-015 - O2 1.756e-015 1.767e-015 -14.755 -14.753 0.003 32.95 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -96.232 -96.311 -0.079 21.05 - H2S 0.000e+000 0.000e+000 -96.280 -96.277 0.003 37.28 - S-2 0.000e+000 0.000e+000 -101.158 -101.452 -0.294 (0) -S(6) 1.010e-002 - SO4-2 7.004e-003 3.549e-003 -2.155 -2.450 -0.295 15.13 - CaSO4 3.092e-003 3.112e-003 -2.510 -2.507 0.003 8.58 - HSO4- 4.242e-007 3.561e-007 -6.372 -6.448 -0.076 41.54 - CaHSO4+ 1.834e-008 1.540e-008 -7.737 -7.813 -0.076 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(347 K, 1 atm) - - Anhydrite 0.00 -4.89 -4.89 CaSO4 - Gypsum -0.18 -4.89 -4.71 CaSO4:2H2O - H2(g) -28.89 -32.02 -3.13 H2 - H2O(g) -0.44 -0.00 0.44 H2O - H2S(g) -94.90 -102.84 -7.93 H2S - O2(g) -11.66 -14.75 -3.10 O2 - Sulfur -71.49 -67.59 3.90 S - - -Reaction step 51. - -Using solution 1. Pure water -Using pure phase assemblage 1. -Using temperature 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Anhydrite 0.00 -4.91 -4.91 1.000e+000 1.990e+000 9.898e-001 -Gypsum -0.19 -4.91 -4.72 1.000e+000 0 -1.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Ca 9.882e-003 1.024e-002 - S 9.882e-003 1.024e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.516 Charge balance - pe = 7.763 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75 oC) = 3407 - Density (g/cm3) = 0.97614 - Volume (L) = 1.06345 - Activity of water = 1.000 - Ionic strength = 2.748e-002 - Mass of water (kg) = 1.036e+000 - Total alkalinity (eq/kg) = 1.174e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 75.00 - Electrical balance (eq) = -1.208e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 13 - Total H = 1.150124e+002 - Total O = 5.754717e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 8.067e-007 6.737e-007 -6.093 -6.172 -0.078 -4.20 - H+ 3.515e-007 3.046e-007 -6.454 -6.516 -0.062 0.00 - H2O 5.551e+001 9.997e-001 1.744 -0.000 0.000 18.48 -Ca 9.882e-003 - Ca+2 6.869e-003 3.539e-003 -2.163 -2.451 -0.288 -18.15 - CaSO4 3.012e-003 3.031e-003 -2.521 -2.518 0.003 8.59 - CaHSO4+ 1.863e-008 1.565e-008 -7.730 -7.805 -0.076 (0) - CaOH+ 2.295e-009 1.928e-009 -8.639 -8.715 -0.076 (0) -H(0) 2.533e-032 - H2 1.266e-032 1.274e-032 -31.897 -31.895 0.003 28.58 -O(0) 3.359e-015 - O2 1.680e-015 1.690e-015 -14.775 -14.772 0.003 32.99 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -95.813 -95.892 -0.078 21.03 - H2S 0.000e+000 0.000e+000 -95.855 -95.853 0.003 37.28 - S-2 0.000e+000 0.000e+000 -100.727 -101.020 -0.293 (0) -S(6) 9.882e-003 - SO4-2 6.869e-003 3.493e-003 -2.163 -2.457 -0.294 15.05 - CaSO4 3.012e-003 3.031e-003 -2.521 -2.518 0.003 8.59 - HSO4- 4.377e-007 3.678e-007 -6.359 -6.434 -0.076 41.53 - CaHSO4+ 1.863e-008 1.565e-008 -7.730 -7.805 -0.076 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(348 K, 1 atm) - - Anhydrite 0.00 -4.91 -4.91 CaSO4 - Gypsum -0.19 -4.91 -4.72 CaSO4:2H2O - H2(g) -28.76 -31.89 -3.13 H2 - H2O(g) -0.42 -0.00 0.42 H2O - H2S(g) -94.48 -102.41 -7.93 H2S - O2(g) -11.67 -14.77 -3.10 O2 - Sulfur -71.18 -67.29 3.88 S - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 2. ------------------------------------- - -------------------------------- -End of Run after 0.694 Seconds. -------------------------------- - diff --git a/examples_pc/ex2.sel b/examples_pc/ex2.sel deleted file mode 100644 index 6e0ee831..00000000 --- a/examples_pc/ex2.sel +++ /dev/null @@ -1,53 +0,0 @@ - sim state soln dist_x time step pH pe temp si_anhydrite si_gypsum - 1 i_soln 1 -99 -99 -99 7 4 25.000 -999.9990 -999.9990 - 1 react 1 -99 0 1 7.06615 10.7445 25.000 -0.3030 0.0000 - 1 react 1 -99 0 2 7.05248 10.6757 26.000 -0.2923 0.0000 - 1 react 1 -99 0 3 7.03891 10.6072 27.000 -0.2815 0.0000 - 1 react 1 -99 0 4 7.02545 10.5399 28.000 -0.2709 0.0000 - 1 react 1 -99 0 5 7.0121 10.4711 29.000 -0.2602 0.0000 - 1 react 1 -99 0 6 6.99887 10.4041 30.000 -0.2496 0.0000 - 1 react 1 -99 0 7 6.98575 10.3372 31.000 -0.2391 0.0000 - 1 react 1 -99 0 8 6.97276 10.2716 32.000 -0.2286 0.0000 - 1 react 1 -99 0 9 6.95989 10.2057 33.000 -0.2181 0.0000 - 1 react 1 -99 0 10 6.94715 10.1395 34.000 -0.2076 0.0000 - 1 react 1 -99 0 11 6.93455 -2.37498 35.000 -0.1972 0.0000 - 1 react 1 -99 0 12 6.92207 10.0097 36.000 -0.1868 0.0000 - 1 react 1 -99 0 13 6.90973 9.97671 37.000 -0.1765 0.0000 - 1 react 1 -99 0 14 6.89753 9.88097 38.000 -0.1662 0.0000 - 1 react 1 -99 0 15 6.88547 9.81716 39.000 -0.1559 0.0000 - 1 react 1 -99 0 16 6.87354 9.75364 40.000 -0.1457 0.0000 - 1 react 1 -99 0 17 6.86176 9.69064 41.000 -0.1355 0.0000 - 1 react 1 -99 0 18 6.85012 9.6285 42.000 -0.1254 0.0000 - 1 react 1 -99 0 19 6.83862 9.56563 43.000 -0.1152 0.0000 - 1 react 1 -99 0 20 6.82726 9.50396 44.000 -0.1052 0.0000 - 1 react 1 -99 0 21 6.81604 9.4425 45.000 -0.0951 0.0000 - 1 react 1 -99 0 22 6.80497 9.38156 46.000 -0.0851 0.0000 - 1 react 1 -99 0 23 6.79404 9.31794 47.000 -0.0751 0.0000 - 1 react 1 -99 0 24 6.78325 9.25824 48.000 -0.0651 0.0000 - 1 react 1 -99 0 25 6.77261 9.22701 49.000 -0.0552 0.0000 - 1 react 1 -99 0 26 6.76211 9.13633 50.000 -0.0453 0.0000 - 1 react 1 -99 0 27 6.75175 9.0763 51.000 -0.0355 0.0000 - 1 react 1 -99 0 28 6.74153 9.01851 52.000 -0.0257 0.0000 - 1 react 1 -99 0 29 6.73146 8.95914 53.000 -0.0159 0.0000 - 1 react 1 -99 0 30 6.72153 -1.62782 54.000 -0.0061 0.0000 - 1 react 1 -99 0 31 6.71125 8.78989 55.000 0.0000 -0.0036 - 1 react 1 -99 0 32 6.70039 8.79381 56.000 0.0000 -0.0133 - 1 react 1 -99 0 33 6.68965 8.71903 57.000 0.0000 -0.0229 - 1 react 1 -99 0 34 6.67903 8.66211 58.000 0.0000 -0.0325 - 1 react 1 -99 0 35 6.66853 8.60569 59.000 0.0000 -0.0421 - 1 react 1 -99 0 36 6.65815 8.54994 60.000 0.0000 -0.0517 - 1 react 1 -99 0 37 6.64789 8.49391 61.000 0.0000 -0.0612 - 1 react 1 -99 0 38 6.63774 8.43798 62.000 0.0000 -0.0707 - 1 react 1 -99 0 39 6.62771 8.38274 63.000 0.0000 -0.0802 - 1 react 1 -99 0 40 6.6178 8.3275 64.000 0.0000 -0.0896 - 1 react 1 -99 0 41 6.608 8.273 65.000 0.0000 -0.0990 - 1 react 1 -99 0 42 6.59833 8.21862 66.000 0.0000 -0.1084 - 1 react 1 -99 0 43 6.58876 8.16388 67.000 0.0000 -0.1177 - 1 react 1 -99 0 44 6.57931 8.10967 68.000 0.0000 -0.1270 - 1 react 1 -99 0 45 6.56998 8.05673 69.000 0.0000 -0.1363 - 1 react 1 -99 0 46 6.56075 8.00303 70.000 0.0000 -0.1456 - 1 react 1 -99 0 47 6.55165 7.94821 71.000 0.0000 -0.1548 - 1 react 1 -99 0 48 6.54265 7.89515 72.000 0.0000 -0.1640 - 1 react 1 -99 0 49 6.53376 7.8425 73.000 0.0000 -0.1732 - 1 react 1 -99 0 50 6.52499 7.82056 74.000 0.0000 -0.1823 - 1 react 1 -99 0 51 6.51633 7.76344 75.000 0.0000 -0.1914 diff --git a/examples_pc/ex20a.out b/examples_pc/ex20a.out deleted file mode 100644 index 3ae2f3e5..00000000 --- a/examples_pc/ex20a.out +++ /dev/null @@ -1,452 +0,0 @@ - Input file: ..\examples\ex20a - Output file: ex20a.out -Database file: ..\database\iso.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - PHASES - EXCHANGE_MASTER_SPECIES - EXCHANGE_SPECIES - SURFACE_MASTER_SPECIES - SURFACE_SPECIES - SOLUTION_MASTER_SPECIES - ISOTOPES - ISOTOPE_RATIOS - ISOTOPE_ALPHAS - NAMED_EXPRESSIONS - CALCULATE_VALUES - CALCULATE_VALUES - SOLUTION_SPECIES - PHASES ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Example 20A.--Calculate carbonate solid solution - PRINT - censor_species 1e-006 - SOLUTION 1 # water to find composition of marine carbonate - pH 8.2 - Na 1 charge - Ca 10 Calcite 0 - C 2 - [13C] 0 # permil - [14C] 0 # pmc - D 0 # permil - [18O] 0 # permil - END ------ -TITLE ------ - - Example 20A.--Calculate carbonate solid solution - -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 1. - ------------------------------------Isotopes------------------------------------ - - Isotope Molality Moles Ratio Units - - H 1.10997e+002 1.10997e+002 - D 1.72889e-002 1.72889e-002 0.00000e+000 permil - T 0.00000e+000 0.00000e+000 0.00000e+000 TU - - C 1.97789e-003 1.97789e-003 - [13C] 2.21132e-005 2.21132e-005 0.00000e+000 permil - [14C] 0.00000e+000 0.00000e+000 0.00000e+000 pmc - - O 5.54011e+001 5.54011e+001 - [18O] 1.11090e-001 1.11090e-001 0.00000e+000 permil - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 2.000e-003 2.000e-003 - Ca 3.091e-004 3.091e-004 Equilibrium with Calcite - Na 1.380e-003 1.380e-003 Charge balance - -----------------------------Description of solution---------------------------- - - pH = 8.200 - pe = 4.000 - Activity of water = 1.000 - Ionic strength = 2.294e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.998e-003 - Total CO2 (mol/kg) = 2.000e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 1.667e-013 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 8 - Total H = 1.109971e+002 - Total O = 5.540110e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.673e-006 1.586e-006 -5.776 -5.800 -0.023 (0) - H3O+ 6.628e-009 6.310e-009 -8.179 -8.200 -0.021 (0) - H2O 5.551e+001 9.999e-001 1.744 -0.000 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -77.792 -77.792 0.000 (0) -C(4) 2.000e-003 - HCO3- 1.944e-003 1.844e-003 -2.711 -2.734 -0.023 (0) - CO2 2.615e-005 2.616e-005 -4.583 -4.582 0.000 (0) - CO3-2 1.693e-005 1.371e-005 -4.771 -4.863 -0.092 (0) - CaHCO3+ 5.989e-006 5.687e-006 -5.223 -5.245 -0.023 (0) - CaCO3 5.562e-006 5.565e-006 -5.255 -5.255 0.000 (0) - NaHCO3 1.355e-006 1.356e-006 -5.868 -5.868 0.000 (0) - NaCO3- 3.519e-007 3.338e-007 -6.454 -6.477 -0.023 (0) -Ca 3.091e-004 - Ca+2 2.975e-004 2.417e-004 -3.527 -3.617 -0.090 (0) - CaHCO3+ 5.989e-006 5.687e-006 -5.223 -5.245 -0.023 (0) - CaCO3 5.562e-006 5.565e-006 -5.255 -5.255 0.000 (0) -H(0) 5.634e-028 - H2 2.817e-028 2.819e-028 -27.550 -27.550 0.000 (0) -Na 1.380e-003 - Na+ 1.379e-003 1.308e-003 -2.861 -2.883 -0.023 (0) - NaHCO3 1.355e-006 1.356e-006 -5.868 -5.868 0.000 (0) - NaCO3- 3.519e-007 3.338e-007 -6.454 -6.477 -0.023 (0) -O(0) 1.049e-037 - O2 5.243e-038 5.246e-038 -37.280 -37.280 0.000 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Calcite -0.00 -8.48 -8.48 CaCO3 - CH4(g) -74.93 -77.79 -2.86 CH4 - CO2(g) -3.11 -4.58 -1.47 CO2 - H2(g) -24.40 -27.55 -3.15 H2 - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -34.39 -37.28 -2.89 O2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 2. ------------------------------------- - - SOLID_SOLUTION 1 No [14C] - Calcite - component Calcite 0 - component CaCO2[18O](s) 0 - component CaCO[18O]2(s) 0 - component CaC[18O]3(s) 0 - component Ca[13C]O3(s) 0 - component Ca[13C]O2[18O](s) 0 - component Ca[13C]O[18O]2(s) 0 - component Ca[13C][18O]3(s) 0 - END ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 3. ------------------------------------- - - RUN_CELLS - -cells 1 - USER_PRINT - start - 10 PRINT pad("Component", 20), "Mole fraction" - 20 t = LIST_S_S("Calcite", count, name$, moles) - 30 for i = 1 to count - 40 PRINT pad(name$(i),20), moles(i)/t - 50 next i - end - END --------------------------- -Beginning of run as cells. --------------------------- - ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. -Using solid solution assemblage 1. No [14C] - -----------------------------------User print----------------------------------- - -Component Mole fraction -Calcite 9.8283e-001 -Ca[13C]O3(s) 1.1011e-002 -CaCO2[18O](s) 6.0825e-003 -Ca[13C]O2[18O](s) 6.8147e-005 -CaCO[18O]2(s) 1.2548e-005 -Ca[13C]O[18O]2(s) 1.4058e-007 -CaC[18O]3(s) 8.6284e-009 -Ca[13C][18O]3(s) 9.6671e-011 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 2.54e-007 - Calcite 2.49e-007 2.49e-007 9.83e-001 - CaCO2[18O](s) 1.54e-009 1.54e-009 6.08e-003 - CaCO[18O]2(s) 3.18e-012 3.18e-012 1.25e-005 - CaC[18O]3(s) 2.19e-015 2.19e-015 8.63e-009 - Ca[13C]O3(s) 2.79e-009 2.79e-009 1.10e-002 - Ca[13C]O2[18O](s) 1.73e-011 1.73e-011 6.81e-005 - Ca[13C]O[18O]2(s) 3.56e-014 3.56e-014 1.41e-007 - Ca[13C][18O]3(s) 2.45e-017 2.45e-017 9.67e-011 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(D) 1.55760e-004 2.2204e-013 permil - R(18O) 2.00520e-003 -3.9446e-007 permil - R(13C) 1.11802e-002 -0.00026756 permil - R(D) H2O(l) 1.55760e-004 1.138e-005 permil - R(18O) H2O(l) 2.00520e-003 -3.9132e-005 permil - R(D) OH- 3.70888e-005 -761.88 permil - R(18O) OH- 1.93086e-003 -37.072 permil - R(D) H3O+ 1.62250e-004 41.665 permil - R(18O) H3O+ 2.05157e-003 23.123 permil - R(D) H2(aq) 1.55760e-004 1.138e-005 permil - R(13C) CO2(aq) 1.10852e-002 -8.4965 permil - R(18O) CO2(aq) 2.08959e-003 42.084 permil - R(D) HCO3- 1.55760e-004 1.1383e-005 permil - R(18O) HCO3- 2.00520e-003 -3.9132e-005 permil - R(13C) HCO3- 1.11816e-002 0.12942 permil - R(18O) CO3-2 2.00520e-003 -3.9134e-005 permil - R(13C) CO3-2 1.11656e-002 -1.3058 permil - R(D) CH4(aq) 1.55760e-004 1.1377e-005 permil - R(13C) CH4(aq) 1.10852e-002 -8.4965 permil - R(18O) Calcite 2.06293e-003 28.79 permil - R(13C) Calcite 1.12038e-002 2.1103 permil - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha D OH-/H2O(l) 0.23812 -1435 -1435 -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha D H3O+/H2O(l) 1.0417 40.82 40.82 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha D H2(aq)/H2O(l) 1 -7.4385e-012 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha D HCO3-/H2O(l) 1 2.254e-009 0 -Alpha 18O HCO3-/H2O(l) 1 -2.1094e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 18O CO3-2/H2O(l) 1 -1.5682e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha D CH4(aq)/H2O(l) 1 -3.7309e-009 0 -Alpha 13C CH4(aq)/CO2(aq) 1 -7.9936e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.984e-003 1.978e-003 - Ca 3.098e-004 3.088e-004 - D 1.734e-002 1.729e-002 - Na 1.385e-003 1.380e-003 - [13C] 2.218e-005 2.211e-005 - [18O] 1.114e-001 1.111e-001 - -----------------------------Description of solution---------------------------- - - pH = 8.199 Charge balance - pe = -2.404 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 2.301e-003 - Mass of water (kg) = 9.968e-001 - Total alkalinity (eq/kg) = 2.004e-003 - Total CO2 (mol/kg) = 1.984e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 1.667e-013 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 34 - Total H = 1.109971e+002 - Total O = 5.540110e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.661e-006 1.575e-006 -5.780 -5.803 -0.023 (0) - H3O+ 6.648e-009 6.328e-009 -8.177 -8.199 -0.021 (0) - H2O 5.556e+001 9.977e-001 1.745 -0.001 0.000 18.07 -C(-4) 2.841e-027 - CH4 2.839e-027 2.841e-027 -26.547 -26.547 0.000 (0) - CH3D 1.769e-030 1.770e-030 -29.752 -29.752 0.000 (0) -C(4) 1.984e-003 - HCO3- 1.916e-003 1.817e-003 -2.718 -2.741 -0.023 (0) - CO2 2.597e-005 2.598e-005 -4.586 -4.585 0.000 (0) - CO3-2 1.661e-005 1.344e-005 -4.780 -4.872 -0.092 (0) - CaHCO3+ 5.917e-006 5.618e-006 -5.228 -5.250 -0.023 (0) - CaCO3 5.466e-006 5.469e-006 -5.262 -5.262 0.000 (0) - HCO[18O]O- 3.842e-006 3.644e-006 -5.415 -5.438 -0.023 (0) - HC[18O]O2- 3.842e-006 3.644e-006 -5.415 -5.438 -0.023 (0) - HCO2[18O]- 3.842e-006 3.644e-006 -5.415 -5.438 -0.023 (0) - NaHCO3 1.340e-006 1.341e-006 -5.873 -5.873 0.000 (0) - NaCO3- 3.463e-007 3.284e-007 -6.461 -6.484 -0.023 (0) - DCO3- 2.985e-007 2.831e-007 -6.525 -6.548 -0.023 (0) - CO[18O] 1.085e-007 1.086e-007 -6.964 -6.964 0.000 (0) - CO2[18O]-2 9.993e-008 8.086e-008 -7.000 -7.092 -0.092 (0) - CaCO2[18O] 3.288e-008 3.290e-008 -7.483 -7.483 0.000 (0) - CaHCO2[18O]+ 1.186e-008 1.126e-008 -7.926 -7.948 -0.023 (0) - CaHC[18O]O2+ 1.186e-008 1.126e-008 -7.926 -7.948 -0.023 (0) - CaHCO[18O]O+ 1.186e-008 1.126e-008 -7.926 -7.948 -0.023 (0) - HCO[18O]2- 7.705e-009 7.307e-009 -8.113 -8.136 -0.023 (0) - HC[18O]2O- 7.705e-009 7.307e-009 -8.113 -8.136 -0.023 (0) - HC[18O]O[18O]- 7.705e-009 7.307e-009 -8.113 -8.136 -0.023 (0) - NaHC[18O]O2 2.687e-009 2.689e-009 -8.571 -8.570 0.000 (0) - NaHCO2[18O] 2.687e-009 2.689e-009 -8.571 -8.570 0.000 (0) - NaHCO[18O]O 2.687e-009 2.689e-009 -8.571 -8.570 0.000 (0) - NaCO2[18O]- 2.083e-009 1.976e-009 -8.681 -8.704 -0.023 (0) -Ca 3.098e-004 - Ca+2 2.982e-004 2.422e-004 -3.525 -3.616 -0.090 (0) - CaHCO3+ 5.917e-006 5.618e-006 -5.228 -5.250 -0.023 (0) - CaCO3 5.466e-006 5.469e-006 -5.262 -5.262 0.000 (0) - CaH[13C]O3+ 6.616e-008 6.281e-008 -7.179 -7.202 -0.023 (0) - Ca[13C]O3 6.104e-008 6.107e-008 -7.214 -7.214 0.000 (0) - CaCO2[18O] 3.288e-008 3.290e-008 -7.483 -7.483 0.000 (0) - CaHCO2[18O]+ 1.186e-008 1.126e-008 -7.926 -7.948 -0.023 (0) - CaHC[18O]O2+ 1.186e-008 1.126e-008 -7.926 -7.948 -0.023 (0) - CaHCO[18O]O+ 1.186e-008 1.126e-008 -7.926 -7.948 -0.023 (0) - CaDCO3+ 9.216e-010 8.750e-010 -9.035 -9.058 -0.023 (0) - Ca[13C]O2[18O] 3.672e-010 3.674e-010 -9.435 -9.435 0.000 (0) -D(0) 5.688e-019 - HD 5.687e-019 5.690e-019 -18.245 -18.245 0.000 (0) - D2 4.429e-023 4.431e-023 -22.354 -22.353 0.000 (0) -D(1) 1.734e-002 - HDO 1.731e-002 3.108e-004 -1.762 -3.507 -1.746 (0) - HD[18O] 3.470e-005 6.233e-007 -4.460 -6.205 -1.746 (0) - D2O 1.348e-006 2.421e-008 -5.870 -7.616 -1.746 (0) - DCO3- 2.985e-007 2.831e-007 -6.525 -6.548 -0.023 (0) -H(0) 3.652e-015 - H2 1.826e-015 1.827e-015 -14.739 -14.738 0.000 (0) - HD 5.687e-019 5.690e-019 -18.245 -18.245 0.000 (0) -Na 1.385e-003 - Na+ 1.383e-003 1.312e-003 -2.859 -2.882 -0.023 (0) - NaHCO3 1.340e-006 1.341e-006 -5.873 -5.873 0.000 (0) - NaCO3- 3.463e-007 3.284e-007 -6.461 -6.484 -0.023 (0) - NaH[13C]O3 1.499e-008 1.499e-008 -7.824 -7.824 0.000 (0) - Na[13C]O3- 3.866e-009 3.667e-009 -8.413 -8.436 -0.023 (0) - NaHCO2[18O] 2.687e-009 2.689e-009 -8.571 -8.570 0.000 (0) - NaHCO[18O]O 2.687e-009 2.689e-009 -8.571 -8.570 0.000 (0) - NaHC[18O]O2 2.687e-009 2.689e-009 -8.571 -8.570 0.000 (0) - NaCO2[18O]- 2.083e-009 1.976e-009 -8.681 -8.704 -0.023 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -62.905 -62.905 0.000 (0) - O[18O] 0.000e+000 0.000e+000 -65.302 -65.302 0.000 (0) -[13C](-4) 3.149e-029 - [13C]H4 3.147e-029 3.149e-029 -28.502 -28.502 0.000 (0) - [13C]H3D 1.961e-032 1.962e-032 -31.708 -31.707 0.000 (0) -[13C](4) 2.218e-005 - H[13C]O3- 2.143e-005 2.032e-005 -4.669 -4.692 -0.023 (0) - [13C]O2 2.878e-007 2.880e-007 -6.541 -6.541 0.000 (0) - [13C]O3-2 1.855e-007 1.501e-007 -6.732 -6.824 -0.092 (0) - CaH[13C]O3+ 6.616e-008 6.281e-008 -7.179 -7.202 -0.023 (0) - Ca[13C]O3 6.104e-008 6.107e-008 -7.214 -7.214 0.000 (0) - H[13C]O2[18O]- 4.296e-008 4.075e-008 -7.367 -7.390 -0.023 (0) - H[13C][18O]O2- 4.296e-008 4.075e-008 -7.367 -7.390 -0.023 (0) - H[13C]O[18O]O- 4.296e-008 4.075e-008 -7.367 -7.390 -0.023 (0) - NaH[13C]O3 1.499e-008 1.499e-008 -7.824 -7.824 0.000 (0) - Na[13C]O3- 3.866e-009 3.667e-009 -8.413 -8.436 -0.023 (0) - D[13C]O3- 3.337e-009 3.165e-009 -8.477 -8.500 -0.023 (0) - [13C]O[18O] 1.203e-009 1.204e-009 -8.920 -8.920 0.000 (0) - [13C]O2[18O]-2 1.116e-009 9.028e-010 -8.952 -9.044 -0.092 (0) - Ca[13C]O2[18O] 3.672e-010 3.674e-010 -9.435 -9.435 0.000 (0) - CaH[13C][18O]O2+ 1.327e-010 1.260e-010 -9.877 -9.900 -0.023 (0) - CaH[13C]O[18O]O+ 1.327e-010 1.260e-010 -9.877 -9.900 -0.023 (0) - CaH[13C]O2[18O]+ 1.327e-010 1.260e-010 -9.877 -9.900 -0.023 (0) - H[13C][18O]2O- 8.615e-011 8.171e-011 -10.065 -10.088 -0.023 (0) - H[13C][18O]O[18O]- 8.615e-011 8.171e-011 -10.065 -10.088 -0.023 (0) - H[13C]O[18O]2- 8.615e-011 8.171e-011 -10.065 -10.088 -0.023 (0) - NaH[13C]O2[18O] 3.005e-011 3.007e-011 -10.522 -10.522 0.000 (0) - NaH[13C]O[18O]O 3.005e-011 3.007e-011 -10.522 -10.522 0.000 (0) - NaH[13C][18O]O2 3.005e-011 3.007e-011 -10.522 -10.522 0.000 (0) - Na[13C]O2[18O]- 2.326e-011 2.206e-011 -10.633 -10.656 -0.023 (0) -[18O](-2) 1.114e-001 - H2[18O] 1.114e-001 2.001e-003 -0.953 -2.699 -1.746 (0) - HD[18O] 3.470e-005 6.233e-007 -4.460 -6.205 -1.746 (0) - HCO2[18O]- 3.842e-006 3.644e-006 -5.415 -5.438 -0.023 (0) - HC[18O]O2- 3.842e-006 3.644e-006 -5.415 -5.438 -0.023 (0) - HCO[18O]O- 3.842e-006 3.644e-006 -5.415 -5.438 -0.023 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -65.302 -65.302 0.000 (0) - [18O]2 0.000e+000 0.000e+000 -68.301 -68.301 0.000 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -10.43 -11.94 -1.50 [13C][18O]2 - [13C]D4(g) -40.87 -43.73 -2.86 [13C]D4 - [13C]H2D2(g) -32.48 -36.12 -3.64 [13C]H2D2 - [13C]H3D(g) -28.85 -32.31 -3.46 [13C]H3D - [13C]H4(g) -25.64 -28.50 -2.86 [13C]H4 - [13C]HD3(g) -36.46 -39.92 -3.46 [13C]HD3 - [13C]O2(g) -5.07 -6.54 -1.47 [13C]O2 - [13C]O[18O](g) -7.45 -9.24 -1.79 [13C]O[18O] - [18O]2(g) -66.01 -68.30 -2.29 [18O]2 - C[18O]2(g) -8.48 -9.98 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.01 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.85 0.84 7.69 Ca[13C]O[18O]2 - CaC[18O]3(s) -8.06 0.10 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.50 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.90 2.80 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CD4(g) -38.92 -41.78 -2.86 CD4 - CH2D2(g) -30.52 -34.16 -3.64 CH2D2 - CH3D(g) -26.89 -30.35 -3.46 CH3D - CH4(g) -23.69 -26.55 -2.86 CH4 - CHD3(g) -34.51 -37.97 -3.46 CHD3 - CO2(g) -3.12 -4.59 -1.47 CO2 - CO[18O](g) -5.50 -7.28 -1.79 CO[18O] - D2(g) -19.20 -22.35 -3.15 D2 - D2[18O](g) -11.89 -10.31 1.58 D2[18O] - D2O(g) -9.19 -7.62 1.58 D2O - H2(g) -11.59 -14.74 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - HD(g) -15.09 -18.55 -3.45 HD - HD[18O](g) -7.75 -6.51 1.25 HD[18O] - HDO(g) -5.05 -3.81 1.24 HDO - O2(g) -60.01 -62.91 -2.89 O2 - O[18O](g) -62.71 -65.60 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 4. ------------------------------------- - -------------------------------- -End of Run after 1.081 Seconds. -------------------------------- - diff --git a/examples_pc/ex20b.out b/examples_pc/ex20b.out deleted file mode 100644 index 07654795..00000000 --- a/examples_pc/ex20b.out +++ /dev/null @@ -1,53202 +0,0 @@ - Input file: ..\examples\ex20b - Output file: ex20b.out -Database file: ..\database\iso.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - PHASES - EXCHANGE_MASTER_SPECIES - EXCHANGE_SPECIES - SURFACE_MASTER_SPECIES - SURFACE_SPECIES - SOLUTION_MASTER_SPECIES - ISOTOPES - ISOTOPE_RATIOS - ISOTOPE_ALPHAS - NAMED_EXPRESSIONS - CALCULATE_VALUES - CALCULATE_VALUES - SOLUTION_SPECIES - PHASES ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Example 20B.--Isotope evolution. - PRINT - censor_species 1e-006 - KNOBS - diagonal_scale - step_size 10 - pe_step_size 5 - SOLID_SOLUTION 1 With [14C] - Calcite - component Calcite 0 - component CaCO2[18O](s) 0 - component CaCO[18O]2(s) 0 - component CaC[18O]3(s) 0 - component Ca[13C]O3(s) 0 - component Ca[13C]O2[18O](s) 0 - component Ca[13C]O[18O]2(s) 0 - component Ca[13C][18O]3(s) 0 - component Ca[14C]O3(s) 0 - component Ca[14C]O2[18O](s) 0 - component Ca[14C]O[18O]2(s) 0 - component Ca[14C][18O]3(s) 0 - END ------ -TITLE ------ - - Example 20B.--Isotope evolution. - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 2. ------------------------------------- - - REACTION 1 - Calcite 9.8283e-001 - Ca[13C]O3(s) 1.1011e-002 - CaCO2[18O](s) 6.0825e-003 - Ca[13C]O2[18O](s) 6.8147e-005 - CaCO[18O]2(s) 1.2548e-005 - Ca[13C]O[18O]2(s) 1.4058e-007 - CaC[18O]3(s) 8.6284e-009 - Ca[13C][18O]3(s) 9.6671e-011 - 0.0005 mole - END ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 3. ------------------------------------- - - USER_PRINT - 10 PRINT "Calcite added: ", GET(0) * RXN - USER_GRAPH 1 Example 20 - -headings Open--Dissolved Open--Calcite - -chart_title "Oxygen-18" - -axis_titles "Marine calcite reacted, in moles" "Permil" - -axis_scale x_axis 0 0.05 a a - -axis_scale y_axis -10 30 a a - -start - 10 PUT(GET(0) + 1, 0) - 20 PLOT_XY RXN*GET(0),ISO("R(18O)"), color=Red, line_w=2, symbol=None - 30 PLOT_XY RXN*GET(0),ISO("R(18O)_Calcite"), color=Green, line_w=2, symbol=None - -end - END ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 4. ------------------------------------- - - USER_GRAPH 2 Example 20 - -headings Open--Dissolved Open-Calcite - -chart_title "Carbon-13" - -axis_titles "Marine calcite reacted, in moles" "Permil" - -axis_scale x_axis 0 0.05 a a - -axis_scale y_axis -25 5.0 a a - -plot_tsv ex20-c13.tsv - -start - 10 PLOT_XY RXN*GET(0),ISO("R(13C)"), color=Red, line_w=2, symbol=None - 20 PLOT_XY RXN*GET(0),ISO("R(13C)_Calcite"), color=Green, line_w=2, symbol=None - -end - END ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 5. ------------------------------------- - - USER_GRAPH 3 Example 20 - -headings Open--Dissolved Open--Calcite - -chart_title "Carbon-14" - -axis_titles "Marine calcite reacted, in moles" "Percent modern carbon" - -axis_scale x_axis 0 0.05 a a - -axis_scale y_axis 0 100 a a - -plot_tsv ex20-c14.tsv - -start - 10 PLOT_XY RXN*GET(0),ISO("R(14C)"), color=Red, line_w=2, symbol=None - 20 PLOT_XY RXN*GET(0),ISO("R(14C)_Calcite"), color=Green, line_w=2, symbol=None - -end - END ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 6. ------------------------------------- - - SOLUTION 1 - pH 5 charge - pe 10 - C 2 CO2(g) -1.0 - [13C] -25 # permil - [14C] 100 # pmc - [18O] -5 # permil - SELECTED_OUTPUT - reset false - file ex20_open - USER_PUNCH - start - 10 FOR i = 1 to 100 - 20 PUNCH EOL$ + "USE solution 1" - 30 PUNCH EOL$ + "USE solid_solution 1" - 40 PUNCH EOL$ + "USE reaction 1" - 50 PUNCH EOL$ + "SAVE solution 1" - 60 PUNCH EOL$ + "END" - 70 NEXT i - end - END -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 1. - -WARNING: USER_PUNCH: Headings count doesn't match number of calls to PUNCH. - -----------------------------------User print----------------------------------- - -Calcite added: 0 - ------------------------------------Isotopes------------------------------------ - - Isotope Molality Moles Ratio Units - - C 3.40658e-003 3.40658e-003 - [13C] 3.71341e-005 3.71341e-005 -2.50000e+001 permil - [14C] 4.04942e-015 4.04942e-015 1.00000e+002 pmc - - O 5.54026e+001 5.54026e+001 - [18O] 1.10538e-001 1.10538e-001 -5.00000e+000 permil - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 3.444e-003 3.444e-003 Equilibrium with CO2(g) - -----------------------------Description of solution---------------------------- - - pH = 4.410 Charge balance - pe = 10.000 - Activity of water = 1.000 - Ionic strength = 3.919e-005 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.366e-018 - Total CO2 (mol/kg) = 3.444e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.366e-018 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 7 - Total H = 1.110126e+002 - Total O = 5.540264e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 3.919e-005 3.891e-005 -4.407 -4.410 -0.003 (0) - OH- 2.592e-010 2.573e-010 -9.586 -9.590 -0.003 (0) - H2O 5.551e+001 9.999e-001 1.744 -0.000 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -93.357 -93.357 0.000 (0) -C(4) 3.444e-003 - CO2 3.405e-003 3.405e-003 -2.468 -2.468 0.000 (0) - HCO3- 3.919e-005 3.890e-005 -4.407 -4.410 -0.003 (0) -H(0) 2.144e-032 - H2 1.072e-032 1.072e-032 -31.970 -31.970 0.000 (0) -O(0) 7.256e-029 - O2 3.628e-029 3.628e-029 -28.440 -28.440 0.000 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - CH4(g) -90.50 -93.36 -2.86 CH4 - CO2(g) -1.00 -2.47 -1.47 CO2 - H2(g) -28.82 -31.97 -3.15 H2 - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -25.55 -28.44 -2.89 O2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 7. ------------------------------------- - - PRINT - selected_output false - END ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 8. ------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 0.00e+000 - Calcite 0.00e+000 0.00e+000 0.00e+000 - CaCO2[18O](s) 0.00e+000 0.00e+000 0.00e+000 - CaCO[18O]2(s) 0.00e+000 0.00e+000 0.00e+000 - CaC[18O]3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C]O3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C]O2[18O](s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C]O[18O]2(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C][18O]3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C]O3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C]O2[18O](s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C]O[18O]2(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C][18O]3(s) 0.00e+000 0.00e+000 0.00e+000 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99518e-003 -4.9991 permil - R(13C) 1.09391e-002 -21.569 permil - R(14C) 1.03804e-012 88.277 pmc - R(18O) H2O(l) 1.99517e-003 -5.0035 permil - R(18O) OH- 1.92120e-003 -41.89 permil - R(18O) H3O+ 2.04130e-003 18.004 permil - R(13C) CO2(aq) 1.09149e-002 -23.725 permil - R(14C) CO2(aq) 1.03345e-012 87.887 pmc - R(18O) CO2(aq) 2.07913e-003 36.87 permil - R(18O) HCO3- 1.99517e-003 -5.0035 permil - R(13C) HCO3- 1.10099e-002 -15.232 permil - R(14C) HCO3- 1.05151e-012 89.423 pmc - R(18O) CO3-2 1.99517e-003 -5.0035 permil - R(13C) CO3-2 1.09941e-002 -16.645 permil - R(14C) CO3-2 1.04849e-012 89.166 pmc - R(13C) CH4(aq) 1.09149e-002 -23.725 permil - R(14C) CH4(aq) 1.03345e-012 87.887 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 3.1086e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 1.9633e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 3.1086e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 9.3259e-012 0 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 3.912e-003 3.901e-003 - Ca 5.014e-004 5.000e-004 - [13C] 4.280e-005 4.267e-005 - [14C] 4.061e-015 4.049e-015 - [18O] 1.109e-001 1.105e-001 - -----------------------------Description of solution---------------------------- - - pH = 5.863 Charge balance - pe = 0.245 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 1.495e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 1.003e-003 - Total CO2 (mol/kg) = 3.912e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.462e-016 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 19 - Total H = 1.110126e+002 - Total O = 5.540414e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.426e-006 1.369e-006 -5.846 -5.863 -0.018 (0) - OH- 7.606e-009 7.282e-009 -8.119 -8.138 -0.019 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 9.958e-028 - CH4 9.958e-028 9.961e-028 -27.002 -27.002 0.000 (0) -C(4) 3.912e-003 - CO2 2.907e-003 2.908e-003 -2.537 -2.536 0.000 (0) - HCO3- 9.821e-004 9.406e-004 -3.008 -3.027 -0.019 (0) - CO[18O] 1.209e-005 1.209e-005 -4.918 -4.918 0.000 (0) - CaHCO3+ 5.241e-006 5.023e-006 -5.281 -5.299 -0.018 (0) - HC[18O]O2- 1.959e-006 1.877e-006 -5.708 -5.727 -0.019 (0) - HCO[18O]O- 1.959e-006 1.877e-006 -5.708 -5.727 -0.019 (0) - HCO2[18O]- 1.959e-006 1.877e-006 -5.708 -5.727 -0.019 (0) - CO3-2 3.822e-008 3.216e-008 -7.418 -7.493 -0.075 (0) - CaCO3 2.260e-008 2.261e-008 -7.646 -7.646 0.000 (0) - C[18O]2 1.257e-008 1.257e-008 -7.901 -7.901 0.000 (0) - CaHCO2[18O]+ 1.046e-008 1.002e-008 -7.981 -7.999 -0.018 (0) - CaHC[18O]O2+ 1.046e-008 1.002e-008 -7.981 -7.999 -0.018 (0) - CaHCO[18O]O+ 1.046e-008 1.002e-008 -7.981 -7.999 -0.018 (0) -Ca 5.014e-004 - Ca+2 4.961e-004 4.184e-004 -3.304 -3.378 -0.074 (0) - CaHCO3+ 5.241e-006 5.023e-006 -5.281 -5.299 -0.018 (0) - CaH[13C]O3+ 5.770e-008 5.530e-008 -7.239 -7.257 -0.018 (0) - CaCO3 2.260e-008 2.261e-008 -7.646 -7.646 0.000 (0) - CaHCO2[18O]+ 1.046e-008 1.002e-008 -7.981 -7.999 -0.018 (0) - CaHC[18O]O2+ 1.046e-008 1.002e-008 -7.981 -7.999 -0.018 (0) - CaHCO[18O]O+ 1.046e-008 1.002e-008 -7.981 -7.999 -0.018 (0) -H(0) 8.641e-016 - H2 4.321e-016 4.322e-016 -15.364 -15.364 0.000 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -61.653 -61.653 0.000 (0) - O[18O] 0.000e+000 0.000e+000 -64.052 -64.052 0.000 (0) -[13C](-4) 1.087e-029 - [13C]H4 1.087e-029 1.087e-029 -28.964 -28.964 0.000 (0) -[13C](4) 4.280e-005 - [13C]O2 3.173e-005 3.174e-005 -4.499 -4.498 0.000 (0) - H[13C]O3- 1.081e-005 1.036e-005 -4.966 -4.985 -0.019 (0) - [13C]O[18O] 1.319e-007 1.320e-007 -6.880 -6.879 0.000 (0) - CaH[13C]O3+ 5.770e-008 5.530e-008 -7.239 -7.257 -0.018 (0) - H[13C]O[18O]O- 2.157e-008 2.066e-008 -7.666 -7.685 -0.019 (0) - H[13C]O2[18O]- 2.157e-008 2.066e-008 -7.666 -7.685 -0.019 (0) - H[13C][18O]O2- 2.157e-008 2.066e-008 -7.666 -7.685 -0.019 (0) - [13C]O3-2 4.202e-010 3.535e-010 -9.377 -9.452 -0.075 (0) - Ca[13C]O3 2.484e-010 2.485e-010 -9.605 -9.605 0.000 (0) - [13C][18O]2 1.372e-010 1.372e-010 -9.863 -9.863 0.000 (0) - CaH[13C]O2[18O]+ 1.151e-010 1.103e-010 -9.939 -9.957 -0.018 (0) - CaH[13C]O[18O]O+ 1.151e-010 1.103e-010 -9.939 -9.957 -0.018 (0) - CaH[13C][18O]O2+ 1.151e-010 1.103e-010 -9.939 -9.957 -0.018 (0) - H[13C][18O]2O- 4.304e-011 4.122e-011 -10.366 -10.385 -0.019 (0) - H[13C][18O]O[18O]- 4.304e-011 4.122e-011 -10.366 -10.385 -0.019 (0) - H[13C]O[18O]2- 4.304e-011 4.122e-011 -10.366 -10.385 -0.019 (0) -[14C](-4) 1.029e-039 - [14C]H4 1.029e-039 1.029e-039 -38.988 -38.987 0.000 (0) -[14C](4) 4.061e-015 - [14C]O2 3.004e-015 3.005e-015 -14.522 -14.522 0.000 (0) - H[14C]O3- 1.033e-015 9.890e-016 -14.986 -15.005 -0.019 (0) - [14C]O[18O] 1.249e-017 1.250e-017 -16.903 -16.903 0.000 (0) - CaH[14C]O3+ 5.511e-018 5.281e-018 -17.259 -17.277 -0.018 (0) - H[14C][18O]O2- 2.060e-018 1.973e-018 -17.686 -17.705 -0.019 (0) - H[14C]O[18O]O- 2.060e-018 1.973e-018 -17.686 -17.705 -0.019 (0) - H[14C]O2[18O]- 2.060e-018 1.973e-018 -17.686 -17.705 -0.019 (0) - [14C]O3-2 4.008e-020 3.372e-020 -19.397 -19.472 -0.075 (0) - Ca[14C]O3 2.369e-020 2.370e-020 -19.625 -19.625 0.000 (0) - [14C][18O]2 1.299e-020 1.299e-020 -19.887 -19.886 0.000 (0) - CaH[14C]O2[18O]+ 1.099e-020 1.054e-020 -19.959 -19.977 -0.018 (0) - CaH[14C][18O]O2+ 1.099e-020 1.054e-020 -19.959 -19.977 -0.018 (0) - CaH[14C]O[18O]O+ 1.099e-020 1.054e-020 -19.959 -19.977 -0.018 (0) - H[14C]O[18O]2- 4.111e-021 3.937e-021 -20.386 -20.405 -0.019 (0) - H[14C][18O]O[18O]- 4.111e-021 3.937e-021 -20.386 -20.405 -0.019 (0) - H[14C][18O]2O- 4.111e-021 3.937e-021 -20.386 -20.405 -0.019 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - CO[18O] 1.209e-005 1.209e-005 -4.918 -4.918 0.000 (0) - HCO[18O]O- 1.959e-006 1.877e-006 -5.708 -5.727 -0.019 (0) - HCO2[18O]- 1.959e-006 1.877e-006 -5.708 -5.727 -0.019 (0) - HC[18O]O2- 1.959e-006 1.877e-006 -5.708 -5.727 -0.019 (0) - [13C]O[18O] 1.319e-007 1.320e-007 -6.880 -6.879 0.000 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -64.052 -64.052 0.000 (0) - [18O]2 0.000e+000 0.000e+000 -67.053 -67.053 0.000 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.40 -9.90 -1.50 [13C][18O]2 - [13C]H4(g) -26.10 -28.96 -2.86 [13C]H4 - [13C]O2(g) -3.03 -4.50 -1.47 [13C]O2 - [13C]O[18O](g) -5.41 -7.20 -1.79 [13C]O[18O] - [14C][18O]2(g) -18.42 -19.92 -1.50 [14C][18O]2 - [14C]H4(g) -36.13 -38.99 -2.86 [14C]H4 - [14C]O2(g) -13.05 -14.52 -1.47 [14C]O2 - [14C]O[18O](g) -15.44 -17.22 -1.79 [14C]O[18O] - [18O]2(g) -64.76 -67.05 -2.29 [18O]2 - C[18O]2(g) -6.43 -7.94 -1.50 C[18O]2 - Ca[13C][18O]3(s) -12.41 -4.25 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -6.56 1.15 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -4.35 3.85 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -9.25 -1.55 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.43 -14.28 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.58 -8.88 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.37 -6.18 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.27 -11.58 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -10.45 -2.29 8.16 CaC[18O]3 - CaCO2[18O](s) -4.60 3.11 7.71 CaCO2[18O] - CaCO[18O]2(s) -7.29 0.41 7.70 CaCO[18O]2 - Calcite -2.39 -10.87 -8.48 CaCO3 - CH4(g) -24.14 -27.00 -2.86 CH4 - CO2(g) -1.07 -2.54 -1.47 CO2 - CO[18O](g) -3.45 -5.24 -1.79 CO[18O] - H2(g) -12.21 -15.36 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -58.76 -61.65 -2.89 O2 - O[18O](g) -61.46 -64.35 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 9. ------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 8. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 1.0000e-003 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 0.00e+000 - Calcite 0.00e+000 0.00e+000 0.00e+000 - CaCO2[18O](s) 0.00e+000 0.00e+000 0.00e+000 - CaCO[18O]2(s) 0.00e+000 0.00e+000 0.00e+000 - CaC[18O]3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C]O3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C]O2[18O](s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C]O[18O]2(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C][18O]3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C]O3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C]O2[18O](s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C]O[18O]2(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C][18O]3(s) 0.00e+000 0.00e+000 0.00e+000 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99518e-003 -4.9982 permil - R(13C) 1.09688e-002 -18.909 permil - R(14C) 9.21264e-013 78.346 pmc - R(18O) H2O(l) 1.99517e-003 -5.0019 permil - R(18O) OH- 1.92120e-003 -41.889 permil - R(18O) H3O+ 2.04131e-003 18.006 permil - R(18O) O2(aq) 1.99517e-003 -5.0019 permil - R(13C) CO2(aq) 1.09260e-002 -22.736 permil - R(14C) CO2(aq) 9.14074e-013 77.735 pmc - R(18O) CO2(aq) 2.07914e-003 36.872 permil - R(18O) HCO3- 1.99517e-003 -5.0019 permil - R(13C) HCO3- 1.10211e-002 -14.234 permil - R(14C) HCO3- 9.30048e-013 79.093 pmc - R(18O) CO3-2 1.99517e-003 -5.0019 permil - R(13C) CO3-2 1.10052e-002 -15.648 permil - R(14C) CO3-2 9.27381e-013 78.866 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2402e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.4409e-013 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -2.0765e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 4.408e-003 4.396e-003 - Ca 1.003e-003 1.000e-003 - [13C] 4.835e-005 4.821e-005 - [14C] 4.061e-015 4.049e-015 - [18O] 1.109e-001 1.105e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.235 Charge balance - pe = 11.683 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 2.970e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 2.006e-003 - Total CO2 (mol/kg) = 4.408e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.408e-016 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 19 - Total H = 1.110126e+002 - Total O = 5.540564e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 6.146e-007 5.816e-007 -6.211 -6.235 -0.024 (0) - OH- 1.821e-008 1.714e-008 -7.740 -7.766 -0.026 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -121.566 -121.565 0.000 (0) -C(4) 4.408e-003 - CO2 2.414e-003 2.416e-003 -2.617 -2.617 0.000 (0) - HCO3- 1.953e-003 1.840e-003 -2.709 -2.735 -0.026 (0) - CaHCO3+ 1.936e-005 1.827e-005 -4.713 -4.738 -0.025 (0) - CO[18O] 1.004e-005 1.005e-005 -4.998 -4.998 0.000 (0) - HCO[18O]O- 3.896e-006 3.670e-006 -5.409 -5.435 -0.026 (0) - HCO2[18O]- 3.896e-006 3.670e-006 -5.409 -5.435 -0.026 (0) - HC[18O]O2- 3.896e-006 3.670e-006 -5.409 -5.435 -0.026 (0) - CaCO3 1.934e-007 1.935e-007 -6.714 -6.713 0.000 (0) - CO3-2 1.880e-007 1.481e-007 -6.726 -6.830 -0.104 (0) - CaHCO2[18O]+ 3.863e-008 3.644e-008 -7.413 -7.438 -0.025 (0) - CaHC[18O]O2+ 3.863e-008 3.644e-008 -7.413 -7.438 -0.025 (0) - CaHCO[18O]O+ 3.863e-008 3.644e-008 -7.413 -7.438 -0.025 (0) - C[18O]2 1.044e-008 1.044e-008 -7.981 -7.981 0.000 (0) - HCO[18O]2- 7.773e-009 7.323e-009 -8.109 -8.135 -0.026 (0) - HC[18O]O[18O]- 7.773e-009 7.323e-009 -8.109 -8.135 -0.026 (0) - HC[18O]2O- 7.773e-009 7.323e-009 -8.109 -8.135 -0.026 (0) -Ca 1.003e-003 - Ca+2 9.830e-004 7.781e-004 -3.007 -3.109 -0.102 (0) - CaHCO3+ 1.936e-005 1.827e-005 -4.713 -4.738 -0.025 (0) - CaH[13C]O3+ 2.134e-007 2.013e-007 -6.671 -6.696 -0.025 (0) - CaCO3 1.934e-007 1.935e-007 -6.714 -6.713 0.000 (0) - CaHCO2[18O]+ 3.863e-008 3.644e-008 -7.413 -7.438 -0.025 (0) - CaHC[18O]O2+ 3.863e-008 3.644e-008 -7.413 -7.438 -0.025 (0) - CaHCO[18O]O+ 3.863e-008 3.644e-008 -7.413 -7.438 -0.025 (0) - Ca[13C]O3 2.128e-009 2.130e-009 -8.672 -8.672 0.000 (0) - CaCO2[18O] 1.158e-009 1.158e-009 -8.936 -8.936 0.000 (0) -H(0) 2.068e-039 - H2 1.034e-039 1.035e-039 -38.985 -38.985 0.000 (0) -O(0) 7.779e-015 - O2 3.874e-015 3.877e-015 -14.412 -14.412 0.000 (0) - O[18O] 1.546e-017 1.547e-017 -16.811 -16.811 0.000 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -123.527 -123.527 0.000 (0) -[13C](4) 4.835e-005 - [13C]O2 2.638e-005 2.639e-005 -4.579 -4.578 0.000 (0) - H[13C]O3- 2.152e-005 2.027e-005 -4.667 -4.693 -0.026 (0) - CaH[13C]O3+ 2.134e-007 2.013e-007 -6.671 -6.696 -0.025 (0) - [13C]O[18O] 1.097e-007 1.098e-007 -6.960 -6.960 0.000 (0) - H[13C]O2[18O]- 4.294e-008 4.045e-008 -7.367 -7.393 -0.026 (0) - H[13C][18O]O2- 4.294e-008 4.045e-008 -7.367 -7.393 -0.026 (0) - H[13C]O[18O]O- 4.294e-008 4.045e-008 -7.367 -7.393 -0.026 (0) - Ca[13C]O3 2.128e-009 2.130e-009 -8.672 -8.672 0.000 (0) - [13C]O3-2 2.069e-009 1.629e-009 -8.684 -8.788 -0.104 (0) - CaH[13C]O2[18O]+ 4.258e-010 4.016e-010 -9.371 -9.396 -0.025 (0) - CaH[13C]O[18O]O+ 4.258e-010 4.016e-010 -9.371 -9.396 -0.025 (0) - CaH[13C][18O]O2+ 4.258e-010 4.016e-010 -9.371 -9.396 -0.025 (0) - [13C][18O]2 1.140e-010 1.141e-010 -9.943 -9.943 0.000 (0) - H[13C][18O]2O- 8.566e-011 8.070e-011 -10.067 -10.093 -0.026 (0) - H[13C][18O]O[18O]- 8.566e-011 8.070e-011 -10.067 -10.093 -0.026 (0) - H[13C]O[18O]2- 8.566e-011 8.070e-011 -10.067 -10.093 -0.026 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -133.605 -133.604 0.000 (0) -[14C](4) 4.061e-015 - [14C]O2 2.207e-015 2.208e-015 -14.656 -14.656 0.000 (0) - H[14C]O3- 1.816e-015 1.711e-015 -14.741 -14.767 -0.026 (0) - CaH[14C]O3+ 1.801e-017 1.699e-017 -16.745 -16.770 -0.025 (0) - [14C]O[18O] 9.176e-018 9.182e-018 -17.037 -17.037 0.000 (0) - H[14C]O[18O]O- 3.623e-018 3.413e-018 -17.441 -17.467 -0.026 (0) - H[14C]O2[18O]- 3.623e-018 3.413e-018 -17.441 -17.467 -0.026 (0) - H[14C][18O]O2- 3.623e-018 3.413e-018 -17.441 -17.467 -0.026 (0) - Ca[14C]O3 1.794e-019 1.795e-019 -18.746 -18.746 0.000 (0) - [14C]O3-2 1.743e-019 1.373e-019 -18.759 -18.862 -0.104 (0) - CaH[14C]O[18O]O+ 3.593e-020 3.389e-020 -19.445 -19.470 -0.025 (0) - CaH[14C]O2[18O]+ 3.593e-020 3.389e-020 -19.445 -19.470 -0.025 (0) - CaH[14C][18O]O2+ 3.593e-020 3.389e-020 -19.445 -19.470 -0.025 (0) - [14C][18O]2 9.539e-021 9.545e-021 -20.021 -20.020 0.000 (0) - H[14C][18O]O[18O]- 7.229e-021 6.810e-021 -20.141 -20.167 -0.026 (0) - H[14C][18O]2O- 7.229e-021 6.810e-021 -20.141 -20.167 -0.026 (0) - H[14C]O[18O]2- 7.229e-021 6.810e-021 -20.141 -20.167 -0.026 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - CO[18O] 1.004e-005 1.005e-005 -4.998 -4.998 0.000 (0) - HCO2[18O]- 3.896e-006 3.670e-006 -5.409 -5.435 -0.026 (0) - HC[18O]O2- 3.896e-006 3.670e-006 -5.409 -5.435 -0.026 (0) - HCO[18O]O- 3.896e-006 3.670e-006 -5.409 -5.435 -0.026 (0) -[18O](0) 1.549e-017 - O[18O] 1.546e-017 1.547e-017 -16.811 -16.811 0.000 (0) - [18O]2 1.542e-020 1.543e-020 -19.812 -19.812 0.000 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.48 -9.98 -1.50 [13C][18O]2 - [13C]H4(g) -120.67 -123.53 -2.86 [13C]H4 - [13C]O2(g) -3.11 -4.58 -1.47 [13C]O2 - [13C]O[18O](g) -5.49 -7.28 -1.79 [13C]O[18O] - [14C][18O]2(g) -18.55 -20.06 -1.50 [14C][18O]2 - [14C]H4(g) -130.74 -133.60 -2.86 [14C]H4 - [14C]O2(g) -13.19 -14.66 -1.47 [14C]O2 - [14C]O[18O](g) -15.57 -17.36 -1.79 [14C]O[18O] - [18O]2(g) -17.52 -19.81 -2.29 [18O]2 - C[18O]2(g) -6.51 -8.02 -1.50 C[18O]2 - Ca[13C][18O]3(s) -11.48 -3.32 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -5.63 2.08 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -3.42 4.78 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -8.31 -0.62 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.55 -13.40 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.70 -8.00 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.49 -5.30 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.39 -10.70 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -9.52 -1.36 8.16 CaC[18O]3 - CaCO2[18O](s) -3.67 4.04 7.71 CaCO2[18O] - CaCO[18O]2(s) -6.36 1.34 7.70 CaCO[18O]2 - Calcite -1.46 -9.94 -8.48 CaCO3 - CH4(g) -118.71 -121.57 -2.86 CH4 - CO2(g) -1.15 -2.62 -1.47 CO2 - CO[18O](g) -3.53 -5.32 -1.79 CO[18O] - H2(g) -35.84 -38.99 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.52 -14.41 -2.89 O2 - O[18O](g) -14.22 -17.11 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 10. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 9. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 1.5000e-003 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 0.00e+000 - Calcite 0.00e+000 0.00e+000 0.00e+000 - CaCO2[18O](s) 0.00e+000 0.00e+000 0.00e+000 - CaCO[18O]2(s) 0.00e+000 0.00e+000 0.00e+000 - CaC[18O]3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C]O3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C]O2[18O](s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C]O[18O]2(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C][18O]3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C]O3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C]O2[18O](s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C]O[18O]2(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C][18O]3(s) 0.00e+000 0.00e+000 0.00e+000 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99518e-003 -4.9973 permil - R(13C) 1.09925e-002 -16.788 permil - R(14C) 8.28108e-013 70.424 pmc - R(18O) H2O(l) 1.99517e-003 -5.0002 permil - R(18O) OH- 1.92121e-003 -41.887 permil - R(18O) H3O+ 2.04131e-003 18.007 permil - R(18O) O2(aq) 1.99517e-003 -5.0002 permil - R(13C) CO2(aq) 1.09348e-002 -21.949 permil - R(14C) CO2(aq) 8.19422e-013 69.685 pmc - R(18O) CO2(aq) 2.07914e-003 36.873 permil - R(18O) HCO3- 1.99517e-003 -5.0002 permil - R(13C) HCO3- 1.10299e-002 -13.44 permil - R(14C) HCO3- 8.33742e-013 70.903 pmc - R(18O) CO3-2 1.99517e-003 -5.0002 permil - R(13C) CO3-2 1.10141e-002 -14.856 permil - R(14C) CO3-2 8.31350e-013 70.7 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2421e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -2.095e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 4.904e-003 4.890e-003 - Ca 1.504e-003 1.500e-003 - [13C] 5.391e-005 5.375e-005 - [14C] 4.061e-015 4.049e-015 - [18O] 1.109e-001 1.105e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.503 Charge balance - pe = 11.488 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 4.428e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 3.009e-003 - Total CO2 (mol/kg) = 4.904e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.496e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 6 - Total H = 1.110126e+002 - Total O = 5.540714e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 3.351e-007 3.139e-007 -6.475 -6.503 -0.028 (0) - OH- 3.415e-008 3.176e-008 -7.467 -7.498 -0.032 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -122.246 -122.246 0.000 (0) -C(4) 4.904e-003 - HCO3- 2.915e-003 2.713e-003 -2.535 -2.567 -0.031 (0) - CO2 1.921e-003 1.923e-003 -2.716 -2.716 0.000 (0) - CaHCO3+ 4.102e-005 3.825e-005 -4.387 -4.417 -0.030 (0) - CO[18O] 7.989e-006 7.997e-006 -5.097 -5.097 0.000 (0) - HCO2[18O]- 5.816e-006 5.413e-006 -5.235 -5.267 -0.031 (0) - HC[18O]O2- 5.816e-006 5.413e-006 -5.235 -5.267 -0.031 (0) - HCO[18O]O- 5.816e-006 5.413e-006 -5.235 -5.267 -0.031 (0) - CaCO3 7.501e-007 7.509e-007 -6.125 -6.124 0.000 (0) - CO3-2 5.390e-007 4.046e-007 -6.268 -6.393 -0.125 (0) - CaHCO2[18O]+ 8.184e-008 7.632e-008 -7.087 -7.117 -0.030 (0) - CaHCO[18O]O+ 8.184e-008 7.632e-008 -7.087 -7.117 -0.030 (0) - CaHC[18O]O2+ 8.184e-008 7.632e-008 -7.087 -7.117 -0.030 (0) - HC[18O]2O- 1.160e-008 1.080e-008 -7.935 -7.967 -0.031 (0) - HCO[18O]2- 1.160e-008 1.080e-008 -7.935 -7.967 -0.031 (0) - HC[18O]O[18O]- 1.160e-008 1.080e-008 -7.935 -7.967 -0.031 (0) - C[18O]2 8.305e-009 8.314e-009 -8.081 -8.080 0.000 (0) -Ca 1.504e-003 - Ca+2 1.462e-003 1.105e-003 -2.835 -2.957 -0.122 (0) - CaHCO3+ 4.102e-005 3.825e-005 -4.387 -4.417 -0.030 (0) - CaCO3 7.501e-007 7.509e-007 -6.125 -6.124 0.000 (0) - CaH[13C]O3+ 4.525e-007 4.219e-007 -6.344 -6.375 -0.030 (0) - CaHCO2[18O]+ 8.184e-008 7.632e-008 -7.087 -7.117 -0.030 (0) - CaHC[18O]O2+ 8.184e-008 7.632e-008 -7.087 -7.117 -0.030 (0) - CaHCO[18O]O+ 8.184e-008 7.632e-008 -7.087 -7.117 -0.030 (0) - Ca[13C]O3 8.262e-009 8.270e-009 -8.083 -8.082 0.000 (0) - CaCO2[18O] 4.490e-009 4.494e-009 -8.348 -8.347 0.000 (0) -H(0) 1.479e-039 - H2 7.397e-040 7.405e-040 -39.131 -39.131 0.000 (0) -O(0) 1.519e-014 - O2 7.565e-015 7.573e-015 -14.121 -14.121 0.000 (0) - O[18O] 3.019e-017 3.022e-017 -16.520 -16.520 0.000 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -124.208 -124.207 0.000 (0) -[13C](4) 5.391e-005 - H[13C]O3- 3.215e-005 2.993e-005 -4.493 -4.524 -0.031 (0) - [13C]O2 2.101e-005 2.103e-005 -4.678 -4.677 0.000 (0) - CaH[13C]O3+ 4.525e-007 4.219e-007 -6.344 -6.375 -0.030 (0) - [13C]O[18O] 8.736e-008 8.745e-008 -7.059 -7.058 0.000 (0) - H[13C]O2[18O]- 6.415e-008 5.971e-008 -7.193 -7.224 -0.031 (0) - H[13C][18O]O2- 6.415e-008 5.971e-008 -7.193 -7.224 -0.031 (0) - H[13C]O[18O]O- 6.415e-008 5.971e-008 -7.193 -7.224 -0.031 (0) - Ca[13C]O3 8.262e-009 8.270e-009 -8.083 -8.082 0.000 (0) - [13C]O3-2 5.937e-009 4.456e-009 -8.226 -8.351 -0.125 (0) - CaH[13C]O[18O]O+ 9.027e-010 8.418e-010 -9.044 -9.075 -0.030 (0) - CaH[13C][18O]O2+ 9.027e-010 8.418e-010 -9.044 -9.075 -0.030 (0) - CaH[13C]O2[18O]+ 9.027e-010 8.418e-010 -9.044 -9.075 -0.030 (0) - H[13C]O[18O]2- 1.280e-010 1.191e-010 -9.893 -9.924 -0.031 (0) - H[13C][18O]2O- 1.280e-010 1.191e-010 -9.893 -9.924 -0.031 (0) - H[13C][18O]O[18O]- 1.280e-010 1.191e-010 -9.893 -9.924 -0.031 (0) - [13C][18O]2 9.082e-011 9.091e-011 -10.042 -10.041 0.000 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -134.333 -134.332 0.000 (0) -[14C](4) 4.061e-015 - H[14C]O3- 2.430e-015 2.262e-015 -14.614 -14.645 -0.031 (0) - [14C]O2 1.574e-015 1.576e-015 -14.803 -14.802 0.000 (0) - CaH[14C]O3+ 3.420e-017 3.189e-017 -16.466 -16.496 -0.030 (0) - [14C]O[18O] 6.547e-018 6.553e-018 -17.184 -17.184 0.000 (0) - H[14C]O[18O]O- 4.849e-018 4.513e-018 -17.314 -17.346 -0.031 (0) - H[14C]O2[18O]- 4.849e-018 4.513e-018 -17.314 -17.346 -0.031 (0) - H[14C][18O]O2- 4.849e-018 4.513e-018 -17.314 -17.346 -0.031 (0) - Ca[14C]O3 6.236e-019 6.242e-019 -18.205 -18.205 0.000 (0) - [14C]O3-2 4.481e-019 3.364e-019 -18.349 -18.473 -0.125 (0) - CaH[14C]O2[18O]+ 6.824e-020 6.363e-020 -19.166 -19.196 -0.030 (0) - CaH[14C][18O]O2+ 6.824e-020 6.363e-020 -19.166 -19.196 -0.030 (0) - CaH[14C]O[18O]O+ 6.824e-020 6.363e-020 -19.166 -19.196 -0.030 (0) - H[14C]O[18O]2- 9.674e-021 9.005e-021 -20.014 -20.046 -0.031 (0) - H[14C][18O]O[18O]- 9.674e-021 9.005e-021 -20.014 -20.046 -0.031 (0) - H[14C][18O]2O- 9.674e-021 9.005e-021 -20.014 -20.046 -0.031 (0) - [14C][18O]2 6.806e-021 6.813e-021 -20.167 -20.167 0.000 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - CO[18O] 7.989e-006 7.997e-006 -5.097 -5.097 0.000 (0) - HC[18O]O2- 5.816e-006 5.413e-006 -5.235 -5.267 -0.031 (0) - HCO[18O]O- 5.816e-006 5.413e-006 -5.235 -5.267 -0.031 (0) - HCO2[18O]- 5.816e-006 5.413e-006 -5.235 -5.267 -0.031 (0) -[18O](0) 3.025e-017 - O[18O] 3.019e-017 3.022e-017 -16.520 -16.520 0.000 (0) - [18O]2 3.012e-020 3.015e-020 -19.521 -19.521 0.000 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.57 -10.08 -1.50 [13C][18O]2 - [13C]H4(g) -121.35 -124.21 -2.86 [13C]H4 - [13C]O2(g) -3.21 -4.68 -1.47 [13C]O2 - [13C]O[18O](g) -5.59 -7.38 -1.79 [13C]O[18O] - [14C][18O]2(g) -18.70 -20.20 -1.50 [14C][18O]2 - [14C]H4(g) -131.47 -134.33 -2.86 [14C]H4 - [14C]O2(g) -13.33 -14.80 -1.47 [14C]O2 - [14C]O[18O](g) -15.72 -17.50 -1.79 [14C]O[18O] - [18O]2(g) -17.23 -19.52 -2.29 [18O]2 - C[18O]2(g) -6.61 -8.12 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.89 -2.73 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -5.04 2.67 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -2.83 5.37 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -7.72 -0.03 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.01 -12.86 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.16 -7.46 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.95 -4.76 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.85 -10.16 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.93 -0.77 8.16 CaC[18O]3 - CaCO2[18O](s) -3.08 4.63 7.71 CaCO2[18O] - CaCO[18O]2(s) -5.77 1.93 7.70 CaCO[18O]2 - Calcite -0.87 -9.35 -8.48 CaCO3 - CH4(g) -119.39 -122.25 -2.86 CH4 - CO2(g) -1.25 -2.72 -1.47 CO2 - CO[18O](g) -3.63 -5.42 -1.79 CO[18O] - H2(g) -35.98 -39.13 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.23 -14.12 -2.89 O2 - O[18O](g) -13.93 -16.82 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 11. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 10. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 2.0000e-003 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 0.00e+000 - Calcite 0.00e+000 0.00e+000 0.00e+000 - CaCO2[18O](s) 0.00e+000 0.00e+000 0.00e+000 - CaCO[18O]2(s) 0.00e+000 0.00e+000 0.00e+000 - CaC[18O]3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C]O3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C]O2[18O](s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C]O[18O]2(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C][18O]3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C]O3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C]O2[18O](s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C]O[18O]2(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C][18O]3(s) 0.00e+000 0.00e+000 0.00e+000 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99518e-003 -4.9963 permil - R(13C) 1.10119e-002 -15.056 permil - R(14C) 7.52061e-013 63.957 pmc - R(18O) H2O(l) 1.99518e-003 -4.9985 permil - R(18O) OH- 1.92121e-003 -41.886 permil - R(18O) H3O+ 2.04131e-003 18.009 permil - R(18O) O2(aq) 1.99518e-003 -4.9985 permil - R(13C) CO2(aq) 1.09420e-002 -21.306 permil - R(14C) CO2(aq) 7.42536e-013 63.147 pmc - R(18O) CO2(aq) 2.07914e-003 36.875 permil - R(18O) HCO3- 1.99518e-003 -4.9985 permil - R(13C) HCO3- 1.10372e-002 -12.791 permil - R(14C) HCO3- 7.55512e-013 64.25 pmc - R(18O) CO3-2 1.99518e-003 -4.9985 permil - R(13C) CO3-2 1.10214e-002 -14.208 permil - R(14C) CO3-2 7.53345e-013 64.066 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2439e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.6621e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7115e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.400e-003 5.384e-003 - Ca 2.006e-003 2.000e-003 - [13C] 5.947e-005 5.929e-005 - [14C] 4.061e-015 4.049e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.750 Charge balance - pe = 11.260 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 5.871e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.012e-003 - Total CO2 (mol/kg) = 5.400e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.025e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 6 - Total H = 1.110126e+002 - Total O = 5.540863e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.914e-007 1.778e-007 -6.718 -6.750 -0.032 (0) - OH- 6.090e-008 5.607e-008 -7.215 -7.251 -0.036 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -122.525 -122.525 0.001 (0) -C(4) 5.400e-003 - HCO3- 3.868e-003 3.565e-003 -2.413 -2.448 -0.035 (0) - CO2 1.430e-003 1.432e-003 -2.845 -2.844 0.001 (0) - CaHCO3+ 6.931e-005 6.403e-005 -4.159 -4.194 -0.034 (0) - HCO2[18O]- 7.717e-006 7.113e-006 -5.113 -5.148 -0.035 (0) - HC[18O]O2- 7.717e-006 7.113e-006 -5.113 -5.148 -0.035 (0) - HCO[18O]O- 7.717e-006 7.113e-006 -5.113 -5.148 -0.035 (0) - CO[18O] 5.945e-006 5.953e-006 -5.226 -5.225 0.001 (0) - CaCO3 2.216e-006 2.219e-006 -5.654 -5.654 0.001 (0) - CO3-2 1.300e-006 9.385e-007 -5.886 -6.028 -0.142 (0) - CaHCO2[18O]+ 1.383e-007 1.277e-007 -6.859 -6.894 -0.034 (0) - CaHC[18O]O2+ 1.383e-007 1.277e-007 -6.859 -6.894 -0.034 (0) - CaHCO[18O]O+ 1.383e-007 1.277e-007 -6.859 -6.894 -0.034 (0) - HC[18O]2O- 1.540e-008 1.419e-008 -7.813 -7.848 -0.035 (0) - HCO[18O]2- 1.540e-008 1.419e-008 -7.813 -7.848 -0.035 (0) - HC[18O]O[18O]- 1.540e-008 1.419e-008 -7.813 -7.848 -0.035 (0) - CaCO2[18O] 1.326e-008 1.328e-008 -7.877 -7.877 0.001 (0) - CO2[18O]-2 7.783e-009 5.618e-009 -8.109 -8.250 -0.142 (0) - C[18O]2 6.180e-009 6.189e-009 -8.209 -8.208 0.001 (0) -Ca 2.006e-003 - Ca+2 1.933e-003 1.407e-003 -2.714 -2.852 -0.138 (0) - CaHCO3+ 6.931e-005 6.403e-005 -4.159 -4.194 -0.034 (0) - CaCO3 2.216e-006 2.219e-006 -5.654 -5.654 0.001 (0) - CaH[13C]O3+ 7.650e-007 7.067e-007 -6.116 -6.151 -0.034 (0) - CaHCO2[18O]+ 1.383e-007 1.277e-007 -6.859 -6.894 -0.034 (0) - CaHC[18O]O2+ 1.383e-007 1.277e-007 -6.859 -6.894 -0.034 (0) - CaHCO[18O]O+ 1.383e-007 1.277e-007 -6.859 -6.894 -0.034 (0) - Ca[13C]O3 2.442e-008 2.445e-008 -7.612 -7.612 0.001 (0) - CaCO2[18O] 1.326e-008 1.328e-008 -7.877 -7.877 0.001 (0) -H(0) 1.356e-039 - H2 6.781e-040 6.790e-040 -39.169 -39.168 0.001 (0) -O(0) 1.806e-014 - O2 8.993e-015 9.005e-015 -14.046 -14.046 0.001 (0) - O[18O] 3.589e-017 3.593e-017 -16.445 -16.444 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -124.486 -124.486 0.001 (0) -[13C](4) 5.947e-005 - H[13C]O3- 4.269e-005 3.935e-005 -4.370 -4.405 -0.035 (0) - [13C]O2 1.564e-005 1.566e-005 -4.806 -4.805 0.001 (0) - CaH[13C]O3+ 7.650e-007 7.067e-007 -6.116 -6.151 -0.034 (0) - H[13C]O2[18O]- 8.518e-008 7.851e-008 -7.070 -7.105 -0.035 (0) - H[13C][18O]O2- 8.518e-008 7.851e-008 -7.070 -7.105 -0.035 (0) - H[13C]O[18O]O- 8.518e-008 7.851e-008 -7.070 -7.105 -0.035 (0) - [13C]O[18O] 6.505e-008 6.514e-008 -7.187 -7.186 0.001 (0) - Ca[13C]O3 2.442e-008 2.445e-008 -7.612 -7.612 0.001 (0) - [13C]O3-2 1.433e-008 1.034e-008 -7.844 -7.985 -0.142 (0) - CaH[13C][18O]O2+ 1.526e-009 1.410e-009 -8.816 -8.851 -0.034 (0) - CaH[13C]O2[18O]+ 1.526e-009 1.410e-009 -8.816 -8.851 -0.034 (0) - CaH[13C]O[18O]O+ 1.526e-009 1.410e-009 -8.816 -8.851 -0.034 (0) - H[13C]O[18O]2- 1.699e-010 1.566e-010 -9.770 -9.805 -0.035 (0) - H[13C][18O]2O- 1.699e-010 1.566e-010 -9.770 -9.805 -0.035 (0) - H[13C][18O]O[18O]- 1.699e-010 1.566e-010 -9.770 -9.805 -0.035 (0) - Ca[13C]O2[18O] 1.462e-010 1.464e-010 -9.835 -9.835 0.001 (0) - [13C]O2[18O]-2 8.578e-011 6.191e-011 -10.067 -10.208 -0.142 (0) - [13C][18O]2 6.763e-011 6.772e-011 -10.170 -10.169 0.001 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -134.654 -134.654 0.001 (0) -[14C](4) 4.061e-015 - H[14C]O3- 2.922e-015 2.694e-015 -14.534 -14.570 -0.035 (0) - [14C]O2 1.062e-015 1.063e-015 -14.974 -14.973 0.001 (0) - CaH[14C]O3+ 5.236e-017 4.837e-017 -16.281 -16.315 -0.034 (0) - H[14C][18O]O2- 5.831e-018 5.374e-018 -17.234 -17.270 -0.035 (0) - H[14C]O[18O]O- 5.831e-018 5.374e-018 -17.234 -17.270 -0.035 (0) - H[14C]O2[18O]- 5.831e-018 5.374e-018 -17.234 -17.270 -0.035 (0) - [14C]O[18O] 4.414e-018 4.420e-018 -17.355 -17.355 0.001 (0) - Ca[14C]O3 1.669e-018 1.671e-018 -17.777 -17.777 0.001 (0) - [14C]O3-2 9.796e-019 7.070e-019 -18.009 -18.151 -0.142 (0) - CaH[14C]O2[18O]+ 1.045e-019 9.651e-020 -18.981 -19.015 -0.034 (0) - CaH[14C][18O]O2+ 1.045e-019 9.651e-020 -18.981 -19.015 -0.034 (0) - CaH[14C]O[18O]O+ 1.045e-019 9.651e-020 -18.981 -19.015 -0.034 (0) - H[14C][18O]O[18O]- 1.163e-020 1.072e-020 -19.934 -19.970 -0.035 (0) - H[14C][18O]2O- 1.163e-020 1.072e-020 -19.934 -19.970 -0.035 (0) - H[14C]O[18O]2- 1.163e-020 1.072e-020 -19.934 -19.970 -0.035 (0) - Ca[14C]O2[18O] 9.991e-021 1.000e-020 -20.000 -20.000 0.001 (0) - [14C]O2[18O]-2 5.863e-021 4.232e-021 -20.232 -20.373 -0.142 (0) - [14C][18O]2 4.589e-021 4.595e-021 -20.338 -20.338 0.001 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 7.717e-006 7.113e-006 -5.113 -5.148 -0.035 (0) - HC[18O]O2- 7.717e-006 7.113e-006 -5.113 -5.148 -0.035 (0) - HCO[18O]O- 7.717e-006 7.113e-006 -5.113 -5.148 -0.035 (0) - CO[18O] 5.945e-006 5.953e-006 -5.226 -5.225 0.001 (0) - CaHCO2[18O]+ 1.383e-007 1.277e-007 -6.859 -6.894 -0.034 (0) - CaHCO[18O]O+ 1.383e-007 1.277e-007 -6.859 -6.894 -0.034 (0) - CaHC[18O]O2+ 1.383e-007 1.277e-007 -6.859 -6.894 -0.034 (0) -[18O](0) 3.596e-017 - O[18O] 3.589e-017 3.593e-017 -16.445 -16.444 0.001 (0) - [18O]2 3.580e-020 3.585e-020 -19.446 -19.446 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.70 -10.21 -1.50 [13C][18O]2 - [13C]H4(g) -121.63 -124.49 -2.86 [13C]H4 - [13C]O2(g) -3.34 -4.81 -1.47 [13C]O2 - [13C]O[18O](g) -5.72 -7.51 -1.79 [13C]O[18O] - [14C][18O]2(g) -18.87 -20.37 -1.50 [14C][18O]2 - [14C]H4(g) -131.79 -134.65 -2.86 [14C]H4 - [14C]O2(g) -13.50 -14.97 -1.47 [14C]O2 - [14C]O[18O](g) -15.89 -17.67 -1.79 [14C]O[18O] - [18O]2(g) -17.16 -19.45 -2.29 [18O]2 - C[18O]2(g) -6.74 -8.24 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.42 -2.26 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.57 3.14 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -2.36 5.84 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -7.25 0.44 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.58 -12.43 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.73 -7.03 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.52 -4.33 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.42 -9.73 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.46 -0.30 8.16 CaC[18O]3 - CaCO2[18O](s) -2.61 5.10 7.71 CaCO2[18O] - CaCO[18O]2(s) -5.30 2.40 7.70 CaCO[18O]2 - Calcite -0.40 -8.88 -8.48 CaCO3 - CH4(g) -119.66 -122.52 -2.86 CH4 - CO2(g) -1.38 -2.84 -1.47 CO2 - CO[18O](g) -3.76 -5.54 -1.79 CO[18O] - H2(g) -36.02 -39.17 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.15 -14.05 -2.89 O2 - O[18O](g) -13.85 -16.75 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 12. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 11. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 2.5000e-003 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.60e-005 - Calcite 5.50e-005 5.50e-005 9.83e-001 - CaCO2[18O](s) 3.39e-007 3.39e-007 6.05e-003 - CaCO[18O]2(s) 6.96e-010 6.96e-010 1.24e-005 - CaC[18O]3(s) 4.76e-013 4.76e-013 8.50e-009 - Ca[13C]O3(s) 6.09e-007 6.09e-007 1.09e-002 - Ca[13C]O2[18O](s) 3.75e-009 3.75e-009 6.70e-005 - Ca[13C]O[18O]2(s) 7.70e-012 7.70e-012 1.37e-007 - Ca[13C][18O]3(s) 5.27e-015 5.27e-015 9.41e-011 - Ca[14C]O3(s) 3.82e-017 3.82e-017 6.82e-013 - Ca[14C]O2[18O](s) 2.35e-019 2.35e-019 4.20e-015 - Ca[14C]O[18O]2(s) 4.82e-022 4.82e-022 8.62e-018 - Ca[14C][18O]3(s) 3.30e-025 3.29e-025 5.90e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99518e-003 -4.9955 permil - R(13C) 1.10276e-002 -13.647 permil - R(14C) 6.88762e-013 58.574 pmc - R(18O) H2O(l) 1.99518e-003 -4.997 permil - R(18O) OH- 1.92121e-003 -41.884 permil - R(18O) H3O+ 2.04132e-003 18.011 permil - R(18O) O2(aq) 1.99518e-003 -4.997 permil - R(13C) CO2(aq) 1.09487e-002 -20.706 permil - R(14C) CO2(aq) 6.78931e-013 57.738 pmc - R(18O) CO2(aq) 2.07915e-003 36.877 permil - R(18O) HCO3- 1.99518e-003 -4.997 permil - R(13C) HCO3- 1.10440e-002 -12.187 permil - R(14C) HCO3- 6.90796e-013 58.747 pmc - R(18O) CO3-2 1.99518e-003 -4.997 permil - R(13C) CO3-2 1.10281e-002 -13.604 permil - R(14C) CO3-2 6.88815e-013 58.578 pmc - R(18O) Calcite 2.05262e-003 23.649 permil - R(13C) Calcite 1.10658e-002 -10.23 permil - R(14C) Calcite 6.93535e-013 58.98 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2732e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.2196e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5742e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.841e-003 5.824e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.441e-005 6.422e-005 - [14C] 4.023e-015 4.011e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.089 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.841e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.015e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 30 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.225 -123.224 0.001 (0) -C(4) 5.841e-003 - HCO3- 4.704e-003 4.304e-003 -2.328 -2.366 -0.039 (0) - CO2 9.959e-004 9.976e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.802e-006 1.963e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.873e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.873e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.873e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.097e-006 1.006e-006 -5.960 -5.997 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.023e-008 6.033e-008 -7.220 -7.219 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 9.919e-040 - H2 4.960e-040 4.968e-040 -39.305 -39.304 0.001 (0) -O(0) 3.372e-014 - O2 1.680e-014 1.682e-014 -13.775 -13.774 0.001 (0) - O[18O] 6.702e-017 6.713e-017 -16.174 -16.173 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.186 -125.185 0.001 (0) -[13C](4) 6.441e-005 - H[13C]O3- 5.195e-005 4.753e-005 -4.284 -4.323 -0.039 (0) - [13C]O2 1.090e-005 1.092e-005 -4.962 -4.962 0.001 (0) - CaH[13C]O3+ 1.097e-006 1.006e-006 -5.960 -5.997 -0.037 (0) - H[13C][18O]O2- 1.037e-007 9.483e-008 -6.984 -7.023 -0.039 (0) - H[13C]O[18O]O- 1.037e-007 9.483e-008 -6.984 -7.023 -0.039 (0) - H[13C]O2[18O]- 1.037e-007 9.483e-008 -6.984 -7.023 -0.039 (0) - Ca[13C]O3 6.023e-008 6.033e-008 -7.220 -7.219 0.001 (0) - [13C]O[18O] 4.534e-008 4.542e-008 -7.343 -7.343 0.001 (0) - [13C]O3-2 3.090e-008 2.164e-008 -7.510 -7.665 -0.155 (0) - CaH[13C][18O]O2+ 2.189e-009 2.008e-009 -8.660 -8.697 -0.037 (0) - CaH[13C]O2[18O]+ 2.189e-009 2.008e-009 -8.660 -8.697 -0.037 (0) - CaH[13C]O[18O]O+ 2.189e-009 2.008e-009 -8.660 -8.697 -0.037 (0) - Ca[13C]O2[18O] 3.605e-010 3.611e-010 -9.443 -9.442 0.001 (0) - H[13C][18O]O[18O]- 2.068e-010 1.892e-010 -9.684 -9.723 -0.039 (0) - H[13C][18O]2O- 2.068e-010 1.892e-010 -9.684 -9.723 -0.039 (0) - H[13C]O[18O]2- 2.068e-010 1.892e-010 -9.684 -9.723 -0.039 (0) - [13C]O2[18O]-2 1.849e-010 1.295e-010 -9.733 -9.888 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -135.393 -135.393 0.001 (0) -[14C](4) 4.023e-015 - H[14C]O3- 3.250e-015 2.973e-015 -14.488 -14.527 -0.039 (0) - [14C]O2 6.762e-016 6.773e-016 -15.170 -15.169 0.001 (0) - CaH[14C]O3+ 6.862e-017 6.295e-017 -16.164 -16.201 -0.037 (0) - H[14C][18O]O2- 6.483e-018 5.931e-018 -17.188 -17.227 -0.039 (0) - H[14C]O[18O]O- 6.483e-018 5.931e-018 -17.188 -17.227 -0.039 (0) - H[14C]O2[18O]- 6.483e-018 5.931e-018 -17.188 -17.227 -0.039 (0) - Ca[14C]O3 3.762e-018 3.768e-018 -17.425 -17.424 0.001 (0) - [14C]O[18O] 2.812e-018 2.816e-018 -17.551 -17.550 0.001 (0) - [14C]O3-2 1.930e-018 1.352e-018 -17.715 -17.869 -0.155 (0) - CaH[14C]O2[18O]+ 1.369e-019 1.256e-019 -18.864 -18.901 -0.037 (0) - CaH[14C][18O]O2+ 1.369e-019 1.256e-019 -18.864 -18.901 -0.037 (0) - CaH[14C]O[18O]O+ 1.369e-019 1.256e-019 -18.864 -18.901 -0.037 (0) - Ca[14C]O2[18O] 2.252e-020 2.255e-020 -19.648 -19.647 0.001 (0) - H[14C]O[18O]2- 1.294e-020 1.183e-020 -19.888 -19.927 -0.039 (0) - H[14C][18O]2O- 1.294e-020 1.183e-020 -19.888 -19.927 -0.039 (0) - H[14C][18O]O[18O]- 1.294e-020 1.183e-020 -19.888 -19.927 -0.039 (0) - [14C]O2[18O]-2 1.155e-020 8.092e-021 -19.937 -20.092 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 6.715e-017 - O[18O] 6.702e-017 6.713e-017 -16.174 -16.173 0.001 (0) - [18O]2 6.686e-020 6.697e-020 -19.175 -19.174 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.32 -125.18 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.07 -20.57 -1.50 [14C][18O]2 - [14C]H4(g) -132.53 -135.39 -2.86 [14C]H4 - [14C]O2(g) -13.70 -15.17 -1.47 [14C]O2 - [14C]O[18O](g) -16.08 -17.87 -1.79 [14C]O[18O] - [18O]2(g) -16.88 -19.17 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.23 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.83 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.23 -12.07 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.38 -6.67 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.17 -3.97 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.06 -9.37 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.36 -123.22 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.15 -39.30 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.88 -13.77 -2.89 O2 - O[18O](g) -13.58 -16.47 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 13. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 12. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 3.0000e-003 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.44e-006 5.44e-006 1.09e-002 - Ca[13C]O2[18O](s) 3.35e-008 3.35e-008 6.70e-005 - Ca[13C]O[18O]2(s) 6.88e-011 6.88e-011 1.38e-007 - Ca[13C][18O]3(s) 4.71e-014 4.71e-014 9.42e-011 - Ca[14C]O3(s) 3.14e-016 3.14e-016 6.28e-013 - Ca[14C]O2[18O](s) 1.93e-018 1.93e-018 3.87e-015 - Ca[14C]O[18O]2(s) 3.97e-021 3.97e-021 7.94e-018 - Ca[14C][18O]3(s) 2.72e-024 2.71e-024 5.43e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99518e-003 -4.9954 permil - R(13C) 1.10384e-002 -12.685 permil - R(14C) 6.34513e-013 53.96 pmc - R(18O) H2O(l) 1.99518e-003 -4.9969 permil - R(18O) OH- 1.92121e-003 -41.884 permil - R(18O) H3O+ 2.04132e-003 18.011 permil - R(18O) O2(aq) 1.99518e-003 -4.9969 permil - R(13C) CO2(aq) 1.09594e-002 -19.751 permil - R(14C) CO2(aq) 6.25457e-013 53.19 pmc - R(18O) CO2(aq) 2.07915e-003 36.877 permil - R(18O) HCO3- 1.99518e-003 -4.9969 permil - R(13C) HCO3- 1.10547e-002 -11.223 permil - R(14C) HCO3- 6.36387e-013 54.12 pmc - R(18O) CO3-2 1.99518e-003 -4.9969 permil - R(13C) CO3-2 1.10389e-002 -12.642 permil - R(14C) CO3-2 6.34562e-013 53.964 pmc - R(18O) Calcite 2.05262e-003 23.649 permil - R(13C) Calcite 1.10766e-002 -9.2642 permil - R(14C) Calcite 6.38911e-013 54.334 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2852e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7063e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.841e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.447e-005 6.428e-005 - [14C] 3.706e-015 3.695e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.126 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.841e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.009e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.523 -123.523 0.001 (0) -C(4) 5.841e-003 - HCO3- 4.704e-003 4.304e-003 -2.328 -2.366 -0.039 (0) - CO2 9.959e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.963e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.873e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.873e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.873e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.098e-006 1.007e-006 -5.959 -5.997 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.028e-008 6.038e-008 -7.220 -7.219 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 8.355e-040 - H2 4.177e-040 4.184e-040 -39.379 -39.378 0.001 (0) -O(0) 4.754e-014 - O2 2.367e-014 2.371e-014 -13.626 -13.625 0.001 (0) - O[18O] 9.447e-017 9.462e-017 -16.025 -16.024 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.483 -125.483 0.001 (0) -[13C](4) 6.447e-005 - H[13C]O3- 5.200e-005 4.757e-005 -4.284 -4.323 -0.039 (0) - [13C]O2 1.091e-005 1.093e-005 -4.962 -4.961 0.001 (0) - CaH[13C]O3+ 1.098e-006 1.007e-006 -5.959 -5.997 -0.037 (0) - H[13C]O[18O]O- 1.038e-007 9.492e-008 -6.984 -7.023 -0.039 (0) - H[13C]O2[18O]- 1.038e-007 9.492e-008 -6.984 -7.023 -0.039 (0) - H[13C][18O]O2- 1.038e-007 9.492e-008 -6.984 -7.023 -0.039 (0) - Ca[13C]O3 6.028e-008 6.038e-008 -7.220 -7.219 0.001 (0) - [13C]O[18O] 4.539e-008 4.546e-008 -7.343 -7.342 0.001 (0) - [13C]O3-2 3.093e-008 2.166e-008 -7.510 -7.664 -0.155 (0) - CaH[13C]O2[18O]+ 2.191e-009 2.010e-009 -8.659 -8.697 -0.037 (0) - CaH[13C]O[18O]O+ 2.191e-009 2.010e-009 -8.659 -8.697 -0.037 (0) - CaH[13C][18O]O2+ 2.191e-009 2.010e-009 -8.659 -8.697 -0.037 (0) - Ca[13C]O2[18O] 3.608e-010 3.614e-010 -9.443 -9.442 0.001 (0) - H[13C][18O]O[18O]- 2.070e-010 1.894e-010 -9.684 -9.723 -0.039 (0) - H[13C][18O]2O- 2.070e-010 1.894e-010 -9.684 -9.723 -0.039 (0) - H[13C]O[18O]2- 2.070e-010 1.894e-010 -9.684 -9.723 -0.039 (0) - [13C]O2[18O]-2 1.851e-010 1.297e-010 -9.733 -9.887 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -135.727 -135.726 0.001 (0) -[14C](4) 3.706e-015 - H[14C]O3- 2.994e-015 2.739e-015 -14.524 -14.562 -0.039 (0) - [14C]O2 6.229e-016 6.239e-016 -15.206 -15.205 0.001 (0) - CaH[14C]O3+ 6.321e-017 5.799e-017 -16.199 -16.237 -0.037 (0) - H[14C][18O]O2- 5.973e-018 5.464e-018 -17.224 -17.262 -0.039 (0) - H[14C]O[18O]O- 5.973e-018 5.464e-018 -17.224 -17.262 -0.039 (0) - H[14C]O2[18O]- 5.973e-018 5.464e-018 -17.224 -17.262 -0.039 (0) - Ca[14C]O3 3.465e-018 3.471e-018 -17.460 -17.460 0.001 (0) - [14C]O[18O] 2.590e-018 2.594e-018 -17.587 -17.586 0.001 (0) - [14C]O3-2 1.778e-018 1.245e-018 -17.750 -17.905 -0.155 (0) - CaH[14C]O2[18O]+ 1.261e-019 1.157e-019 -18.899 -18.937 -0.037 (0) - CaH[14C][18O]O2+ 1.261e-019 1.157e-019 -18.899 -18.937 -0.037 (0) - CaH[14C]O[18O]O+ 1.261e-019 1.157e-019 -18.899 -18.937 -0.037 (0) - Ca[14C]O2[18O] 2.074e-020 2.078e-020 -19.683 -19.682 0.001 (0) - H[14C][18O]2O- 1.192e-020 1.090e-020 -19.924 -19.962 -0.039 (0) - H[14C][18O]O[18O]- 1.192e-020 1.090e-020 -19.924 -19.962 -0.039 (0) - H[14C]O[18O]2- 1.192e-020 1.090e-020 -19.924 -19.962 -0.039 (0) - [14C]O2[18O]-2 1.064e-020 7.454e-021 -19.973 -20.128 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 9.466e-017 - O[18O] 9.447e-017 9.462e-017 -16.025 -16.024 0.001 (0) - [18O]2 9.424e-020 9.440e-020 -19.026 -19.025 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.62 -125.48 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.10 -20.60 -1.50 [14C][18O]2 - [14C]H4(g) -132.87 -135.73 -2.86 [14C]H4 - [14C]O2(g) -13.74 -15.20 -1.47 [14C]O2 - [14C]O[18O](g) -16.12 -17.90 -1.79 [14C]O[18O] - [18O]2(g) -16.73 -19.03 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.23 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.83 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.27 -12.11 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.41 -6.71 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.20 -4.01 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.10 -9.41 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.66 -123.52 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.23 -39.38 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.73 -13.63 -2.89 O2 - O[18O](g) -13.43 -16.33 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 14. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 13. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 3.5000e-003 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.45e-006 5.45e-006 1.09e-002 - Ca[13C]O2[18O](s) 3.36e-008 3.36e-008 6.71e-005 - Ca[13C]O[18O]2(s) 6.89e-011 6.89e-011 1.38e-007 - Ca[13C][18O]3(s) 4.71e-014 4.71e-014 9.42e-011 - Ca[14C]O3(s) 2.89e-016 2.89e-016 5.79e-013 - Ca[14C]O2[18O](s) 1.78e-018 1.78e-018 3.56e-015 - Ca[14C]O[18O]2(s) 3.66e-021 3.66e-021 7.31e-018 - Ca[14C][18O]3(s) 2.50e-024 2.50e-024 5.00e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99518e-003 -4.9952 permil - R(13C) 1.10483e-002 -11.798 permil - R(14C) 5.84537e-013 49.71 pmc - R(18O) H2O(l) 1.99518e-003 -4.9968 permil - R(18O) OH- 1.92121e-003 -41.884 permil - R(18O) H3O+ 2.04132e-003 18.011 permil - R(18O) O2(aq) 1.99518e-003 -4.9968 permil - R(13C) CO2(aq) 1.09692e-002 -18.87 permil - R(14C) CO2(aq) 5.76194e-013 49.001 pmc - R(18O) CO2(aq) 2.07915e-003 36.877 permil - R(18O) HCO3- 1.99518e-003 -4.9968 permil - R(13C) HCO3- 1.10647e-002 -10.334 permil - R(14C) HCO3- 5.86263e-013 49.857 pmc - R(18O) CO3-2 1.99518e-003 -4.9968 permil - R(13C) CO3-2 1.10488e-002 -11.755 permil - R(14C) CO3-2 5.84582e-013 49.714 pmc - R(18O) Calcite 2.05262e-003 23.649 permil - R(13C) Calcite 1.10866e-002 -8.3742 permil - R(14C) Calcite 5.88588e-013 50.055 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2577e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.724e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.453e-005 6.434e-005 - [14C] 3.414e-015 3.404e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.086 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.005e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 30 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.197 -123.196 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.304e-003 -2.328 -2.366 -0.039 (0) - CO2 9.959e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.963e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.873e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.873e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.873e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.099e-006 1.008e-006 -5.959 -5.996 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.034e-008 6.044e-008 -7.219 -7.219 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.008e-039 - H2 5.040e-040 5.048e-040 -39.298 -39.297 0.001 (0) -O(0) 3.266e-014 - O2 1.626e-014 1.629e-014 -13.789 -13.788 0.001 (0) - O[18O] 6.490e-017 6.501e-017 -16.188 -16.187 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.157 -125.156 0.001 (0) -[13C](4) 6.453e-005 - H[13C]O3- 5.205e-005 4.762e-005 -4.284 -4.322 -0.039 (0) - [13C]O2 1.092e-005 1.094e-005 -4.962 -4.961 0.001 (0) - CaH[13C]O3+ 1.099e-006 1.008e-006 -5.959 -5.996 -0.037 (0) - H[13C]O2[18O]- 1.038e-007 9.500e-008 -6.984 -7.022 -0.039 (0) - H[13C][18O]O2- 1.038e-007 9.500e-008 -6.984 -7.022 -0.039 (0) - H[13C]O[18O]O- 1.038e-007 9.500e-008 -6.984 -7.022 -0.039 (0) - Ca[13C]O3 6.034e-008 6.044e-008 -7.219 -7.219 0.001 (0) - [13C]O[18O] 4.543e-008 4.550e-008 -7.343 -7.342 0.001 (0) - [13C]O3-2 3.095e-008 2.168e-008 -7.509 -7.664 -0.155 (0) - CaH[13C]O[18O]O+ 2.193e-009 2.012e-009 -8.659 -8.696 -0.037 (0) - CaH[13C][18O]O2+ 2.193e-009 2.012e-009 -8.659 -8.696 -0.037 (0) - CaH[13C]O2[18O]+ 2.193e-009 2.012e-009 -8.659 -8.696 -0.037 (0) - Ca[13C]O2[18O] 3.612e-010 3.618e-010 -9.442 -9.442 0.001 (0) - H[13C][18O]O[18O]- 2.072e-010 1.896e-010 -9.684 -9.722 -0.039 (0) - H[13C][18O]2O- 2.072e-010 1.896e-010 -9.684 -9.722 -0.039 (0) - H[13C]O[18O]2- 2.072e-010 1.896e-010 -9.684 -9.722 -0.039 (0) - [13C]O2[18O]-2 1.853e-010 1.298e-010 -9.732 -9.887 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -135.437 -135.436 0.001 (0) -[14C](4) 3.414e-015 - H[14C]O3- 2.758e-015 2.523e-015 -14.559 -14.598 -0.039 (0) - [14C]O2 5.738e-016 5.748e-016 -15.241 -15.241 0.001 (0) - CaH[14C]O3+ 5.823e-017 5.342e-017 -16.235 -16.272 -0.037 (0) - H[14C][18O]O2- 5.502e-018 5.034e-018 -17.259 -17.298 -0.039 (0) - H[14C]O[18O]O- 5.502e-018 5.034e-018 -17.259 -17.298 -0.039 (0) - H[14C]O2[18O]- 5.502e-018 5.034e-018 -17.259 -17.298 -0.039 (0) - Ca[14C]O3 3.192e-018 3.198e-018 -17.496 -17.495 0.001 (0) - [14C]O[18O] 2.386e-018 2.390e-018 -17.622 -17.622 0.001 (0) - [14C]O3-2 1.638e-018 1.147e-018 -17.786 -17.940 -0.155 (0) - CaH[14C]O2[18O]+ 1.162e-019 1.066e-019 -18.935 -18.972 -0.037 (0) - CaH[14C][18O]O2+ 1.162e-019 1.066e-019 -18.935 -18.972 -0.037 (0) - CaH[14C]O[18O]O+ 1.162e-019 1.066e-019 -18.935 -18.972 -0.037 (0) - Ca[14C]O2[18O] 1.911e-020 1.914e-020 -19.719 -19.718 0.001 (0) - H[14C][18O]O[18O]- 1.098e-020 1.004e-020 -19.959 -19.998 -0.039 (0) - H[14C]O[18O]2- 1.098e-020 1.004e-020 -19.959 -19.998 -0.039 (0) - H[14C][18O]2O- 1.098e-020 1.004e-020 -19.959 -19.998 -0.039 (0) - [14C]O2[18O]-2 9.802e-021 6.867e-021 -20.009 -20.163 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 6.503e-017 - O[18O] 6.490e-017 6.501e-017 -16.188 -16.187 0.001 (0) - [18O]2 6.474e-020 6.485e-020 -19.189 -19.188 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.30 -125.16 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.14 -20.64 -1.50 [14C][18O]2 - [14C]H4(g) -132.58 -135.44 -2.86 [14C]H4 - [14C]O2(g) -13.77 -15.24 -1.47 [14C]O2 - [14C]O[18O](g) -16.15 -17.94 -1.79 [14C]O[18O] - [18O]2(g) -16.90 -19.19 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.23 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.83 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.30 -12.15 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.45 -6.75 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.24 -4.05 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.14 -9.45 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.34 -123.20 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.15 -39.30 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.90 -13.79 -2.89 O2 - O[18O](g) -13.60 -16.49 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 15. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 14. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 4.0000e-003 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.45e-006 5.45e-006 1.09e-002 - Ca[13C]O2[18O](s) 3.36e-008 3.36e-008 6.72e-005 - Ca[13C]O[18O]2(s) 6.89e-011 6.89e-011 1.38e-007 - Ca[13C][18O]3(s) 4.72e-014 4.72e-014 9.43e-011 - Ca[14C]O3(s) 2.66e-016 2.66e-016 5.33e-013 - Ca[14C]O2[18O](s) 1.64e-018 1.64e-018 3.28e-015 - Ca[14C]O[18O]2(s) 3.37e-021 3.37e-021 6.74e-018 - Ca[14C][18O]3(s) 2.30e-024 2.30e-024 4.61e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99518e-003 -4.9951 permil - R(13C) 1.10574e-002 -10.981 permil - R(14C) 5.38496e-013 45.795 pmc - R(18O) H2O(l) 1.99518e-003 -4.9966 permil - R(18O) OH- 1.92121e-003 -41.884 permil - R(18O) H3O+ 2.04132e-003 18.011 permil - R(18O) O2(aq) 1.99518e-003 -4.9966 permil - R(13C) CO2(aq) 1.09783e-002 -18.059 permil - R(14C) CO2(aq) 5.30811e-013 45.141 pmc - R(18O) CO2(aq) 2.07915e-003 36.877 permil - R(18O) HCO3- 1.99518e-003 -4.9966 permil - R(13C) HCO3- 1.10738e-002 -9.5159 permil - R(14C) HCO3- 5.40087e-013 45.93 pmc - R(18O) CO3-2 1.99518e-003 -4.9966 permil - R(13C) CO3-2 1.10579e-002 -10.937 permil - R(14C) CO3-2 5.38538e-013 45.798 pmc - R(18O) Calcite 2.05262e-003 23.65 permil - R(13C) Calcite 1.10957e-002 -7.554 permil - R(14C) Calcite 5.42228e-013 46.112 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2545e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8298e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.458e-005 6.439e-005 - [14C] 3.145e-015 3.136e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.042 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.990e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 28 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -122.851 -122.850 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.959e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.963e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.873e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.873e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.873e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.100e-006 1.009e-006 -5.959 -5.996 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.039e-008 6.049e-008 -7.219 -7.218 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.230e-039 - H2 6.152e-040 6.162e-040 -39.211 -39.210 0.001 (0) -O(0) 2.192e-014 - O2 1.092e-014 1.093e-014 -13.962 -13.961 0.001 (0) - O[18O] 4.356e-017 4.363e-017 -16.361 -16.360 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -124.810 -124.810 0.001 (0) -[13C](4) 6.458e-005 - H[13C]O3- 5.209e-005 4.766e-005 -4.283 -4.322 -0.039 (0) - [13C]O2 1.093e-005 1.095e-005 -4.961 -4.961 0.001 (0) - CaH[13C]O3+ 1.100e-006 1.009e-006 -5.959 -5.996 -0.037 (0) - H[13C][18O]O2- 1.039e-007 9.508e-008 -6.983 -7.022 -0.039 (0) - H[13C]O[18O]O- 1.039e-007 9.508e-008 -6.983 -7.022 -0.039 (0) - H[13C]O2[18O]- 1.039e-007 9.508e-008 -6.983 -7.022 -0.039 (0) - Ca[13C]O3 6.039e-008 6.049e-008 -7.219 -7.218 0.001 (0) - [13C]O[18O] 4.546e-008 4.554e-008 -7.342 -7.342 0.001 (0) - [13C]O3-2 3.098e-008 2.170e-008 -7.509 -7.664 -0.155 (0) - CaH[13C][18O]O2+ 2.195e-009 2.013e-009 -8.659 -8.696 -0.037 (0) - CaH[13C]O2[18O]+ 2.195e-009 2.013e-009 -8.659 -8.696 -0.037 (0) - CaH[13C]O[18O]O+ 2.195e-009 2.013e-009 -8.659 -8.696 -0.037 (0) - Ca[13C]O2[18O] 3.615e-010 3.620e-010 -9.442 -9.441 0.001 (0) - H[13C][18O]O[18O]- 2.074e-010 1.897e-010 -9.683 -9.722 -0.039 (0) - H[13C][18O]2O- 2.074e-010 1.897e-010 -9.683 -9.722 -0.039 (0) - H[13C]O[18O]2- 2.074e-010 1.897e-010 -9.683 -9.722 -0.039 (0) - [13C]O2[18O]-2 1.854e-010 1.299e-010 -9.732 -9.886 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -135.126 -135.125 0.001 (0) -[14C](4) 3.145e-015 - H[14C]O3- 2.541e-015 2.324e-015 -14.595 -14.634 -0.039 (0) - [14C]O2 5.286e-016 5.295e-016 -15.277 -15.276 0.001 (0) - CaH[14C]O3+ 5.365e-017 4.921e-017 -16.270 -16.308 -0.037 (0) - H[14C][18O]O2- 5.069e-018 4.637e-018 -17.295 -17.334 -0.039 (0) - H[14C]O[18O]O- 5.069e-018 4.637e-018 -17.295 -17.334 -0.039 (0) - H[14C]O2[18O]- 5.069e-018 4.637e-018 -17.295 -17.334 -0.039 (0) - Ca[14C]O3 2.941e-018 2.946e-018 -17.532 -17.531 0.001 (0) - [14C]O[18O] 2.198e-018 2.202e-018 -17.658 -17.657 0.001 (0) - [14C]O3-2 1.509e-018 1.057e-018 -17.821 -17.976 -0.155 (0) - CaH[14C]O2[18O]+ 1.070e-019 9.819e-020 -18.970 -19.008 -0.037 (0) - CaH[14C][18O]O2+ 1.070e-019 9.819e-020 -18.970 -19.008 -0.037 (0) - CaH[14C]O[18O]O+ 1.070e-019 9.819e-020 -18.970 -19.008 -0.037 (0) - Ca[14C]O2[18O] 1.760e-020 1.763e-020 -19.754 -19.754 0.001 (0) - H[14C]O[18O]2- 1.011e-020 9.252e-021 -19.995 -20.034 -0.039 (0) - H[14C][18O]2O- 1.011e-020 9.252e-021 -19.995 -20.034 -0.039 (0) - H[14C][18O]O[18O]- 1.011e-020 9.252e-021 -19.995 -20.034 -0.039 (0) - [14C]O2[18O]-2 9.030e-021 6.326e-021 -20.044 -20.199 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 4.365e-017 - O[18O] 4.356e-017 4.363e-017 -16.361 -16.360 0.001 (0) - [18O]2 4.346e-020 4.353e-020 -19.362 -19.361 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.95 -124.81 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.17 -20.68 -1.50 [14C][18O]2 - [14C]H4(g) -132.27 -135.13 -2.86 [14C]H4 - [14C]O2(g) -13.81 -15.28 -1.47 [14C]O2 - [14C]O[18O](g) -16.19 -17.98 -1.79 [14C]O[18O] - [18O]2(g) -17.07 -19.36 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.23 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.83 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.34 -12.18 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.48 -6.78 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.27 -4.08 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.17 -9.48 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.99 -122.85 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.06 -39.21 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.07 -13.96 -2.89 O2 - O[18O](g) -13.77 -16.66 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 16. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 15. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 4.5000e-003 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.46e-006 5.46e-006 1.09e-002 - Ca[13C]O2[18O](s) 3.36e-008 3.36e-008 6.72e-005 - Ca[13C]O[18O]2(s) 6.90e-011 6.90e-011 1.38e-007 - Ca[13C][18O]3(s) 4.72e-014 4.72e-014 9.44e-011 - Ca[14C]O3(s) 2.46e-016 2.46e-016 4.91e-013 - Ca[14C]O2[18O](s) 1.51e-018 1.51e-018 3.02e-015 - Ca[14C]O[18O]2(s) 3.10e-021 3.10e-021 6.21e-018 - Ca[14C][18O]3(s) 2.12e-024 2.12e-024 4.25e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99518e-003 -4.995 permil - R(13C) 1.10659e-002 -10.227 permil - R(14C) 4.96082e-013 42.188 pmc - R(18O) H2O(l) 1.99518e-003 -4.9965 permil - R(18O) OH- 1.92121e-003 -41.884 permil - R(18O) H3O+ 2.04132e-003 18.011 permil - R(18O) O2(aq) 1.99518e-003 -4.9965 permil - R(13C) CO2(aq) 1.09867e-002 -17.311 permil - R(14C) CO2(aq) 4.89002e-013 41.586 pmc - R(18O) CO2(aq) 2.07915e-003 36.877 permil - R(18O) HCO3- 1.99518e-003 -4.9965 permil - R(13C) HCO3- 1.10822e-002 -8.7616 permil - R(14C) HCO3- 4.97547e-013 42.312 pmc - R(18O) CO3-2 1.99518e-003 -4.9965 permil - R(13C) CO3-2 1.10663e-002 -10.184 permil - R(14C) CO3-2 4.96120e-013 42.191 pmc - R(18O) Calcite 2.05262e-003 23.65 permil - R(13C) Calcite 1.11042e-002 -6.7983 permil - R(14C) Calcite 4.99520e-013 42.48 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2436e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.8842e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6693e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.463e-005 6.444e-005 - [14C] 2.897e-015 2.889e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.105 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.983e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 37 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.351 -123.351 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.959e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.963e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.101e-006 1.010e-006 -5.958 -5.996 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.043e-008 6.053e-008 -7.219 -7.218 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 9.225e-040 - H2 4.612e-040 4.620e-040 -39.336 -39.335 0.001 (0) -O(0) 3.900e-014 - O2 1.942e-014 1.945e-014 -13.712 -13.711 0.001 (0) - O[18O] 7.749e-017 7.762e-017 -16.111 -16.110 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.310 -125.310 0.001 (0) -[13C](4) 6.463e-005 - H[13C]O3- 5.213e-005 4.769e-005 -4.283 -4.322 -0.039 (0) - [13C]O2 1.094e-005 1.096e-005 -4.961 -4.960 0.001 (0) - CaH[13C]O3+ 1.101e-006 1.010e-006 -5.958 -5.996 -0.037 (0) - H[13C]O[18O]O- 1.040e-007 9.515e-008 -6.983 -7.022 -0.039 (0) - H[13C]O2[18O]- 1.040e-007 9.515e-008 -6.983 -7.022 -0.039 (0) - H[13C][18O]O2- 1.040e-007 9.515e-008 -6.983 -7.022 -0.039 (0) - Ca[13C]O3 6.043e-008 6.053e-008 -7.219 -7.218 0.001 (0) - [13C]O[18O] 4.550e-008 4.557e-008 -7.342 -7.341 0.001 (0) - [13C]O3-2 3.100e-008 2.172e-008 -7.509 -7.663 -0.155 (0) - CaH[13C]O2[18O]+ 2.196e-009 2.015e-009 -8.658 -8.696 -0.037 (0) - CaH[13C]O[18O]O+ 2.196e-009 2.015e-009 -8.658 -8.696 -0.037 (0) - CaH[13C][18O]O2+ 2.196e-009 2.015e-009 -8.658 -8.696 -0.037 (0) - Ca[13C]O2[18O] 3.617e-010 3.623e-010 -9.442 -9.441 0.001 (0) - H[13C][18O]O[18O]- 2.075e-010 1.898e-010 -9.683 -9.722 -0.039 (0) - H[13C][18O]2O- 2.075e-010 1.898e-010 -9.683 -9.722 -0.039 (0) - H[13C]O[18O]2- 2.075e-010 1.898e-010 -9.683 -9.722 -0.039 (0) - [13C]O2[18O]-2 1.856e-010 1.300e-010 -9.732 -9.886 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -135.662 -135.661 0.001 (0) -[14C](4) 2.897e-015 - H[14C]O3- 2.340e-015 2.141e-015 -14.631 -14.669 -0.039 (0) - [14C]O2 4.870e-016 4.878e-016 -15.312 -15.312 0.001 (0) - CaH[14C]O3+ 4.942e-017 4.534e-017 -16.306 -16.344 -0.037 (0) - H[14C][18O]O2- 4.670e-018 4.272e-018 -17.331 -17.369 -0.039 (0) - H[14C]O[18O]O- 4.670e-018 4.272e-018 -17.331 -17.369 -0.039 (0) - H[14C]O2[18O]- 4.670e-018 4.272e-018 -17.331 -17.369 -0.039 (0) - Ca[14C]O3 2.709e-018 2.714e-018 -17.567 -17.566 0.001 (0) - [14C]O[18O] 2.025e-018 2.028e-018 -17.694 -17.693 0.001 (0) - [14C]O3-2 1.390e-018 9.736e-019 -17.857 -18.012 -0.155 (0) - CaH[14C]O2[18O]+ 9.861e-020 9.045e-020 -19.006 -19.044 -0.037 (0) - CaH[14C][18O]O2+ 9.861e-020 9.045e-020 -19.006 -19.044 -0.037 (0) - CaH[14C]O[18O]O+ 9.861e-020 9.045e-020 -19.006 -19.044 -0.037 (0) - Ca[14C]O2[18O] 1.622e-020 1.624e-020 -19.790 -19.789 0.001 (0) - H[14C][18O]2O- 9.317e-021 8.523e-021 -20.031 -20.069 -0.039 (0) - H[14C][18O]O[18O]- 9.317e-021 8.523e-021 -20.031 -20.069 -0.039 (0) - H[14C]O[18O]2- 9.317e-021 8.523e-021 -20.031 -20.069 -0.039 (0) - [14C]O2[18O]-2 8.319e-021 5.828e-021 -20.080 -20.234 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 7.765e-017 - O[18O] 7.749e-017 7.762e-017 -16.111 -16.110 0.001 (0) - [18O]2 7.731e-020 7.744e-020 -19.112 -19.111 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.45 -125.31 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.21 -20.71 -1.50 [14C][18O]2 - [14C]H4(g) -132.80 -135.66 -2.86 [14C]H4 - [14C]O2(g) -13.84 -15.31 -1.47 [14C]O2 - [14C]O[18O](g) -16.22 -18.01 -1.79 [14C]O[18O] - [18O]2(g) -16.82 -19.11 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.23 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.83 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.37 -12.22 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.52 -6.82 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.31 -4.12 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.21 -9.52 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.49 -123.35 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.19 -39.34 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.82 -13.71 -2.89 O2 - O[18O](g) -13.52 -16.41 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 17. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 16. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 5.0000e-003 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.46e-006 5.46e-006 1.09e-002 - Ca[13C]O2[18O](s) 3.36e-008 3.36e-008 6.73e-005 - Ca[13C]O[18O]2(s) 6.90e-011 6.90e-011 1.38e-007 - Ca[13C][18O]3(s) 4.72e-014 4.72e-014 9.45e-011 - Ca[14C]O3(s) 2.26e-016 2.26e-016 4.52e-013 - Ca[14C]O2[18O](s) 1.39e-018 1.39e-018 2.79e-015 - Ca[14C]O[18O]2(s) 2.86e-021 2.86e-021 5.72e-018 - Ca[14C][18O]3(s) 1.96e-024 1.95e-024 3.91e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99518e-003 -4.9948 permil - R(13C) 1.10736e-002 -9.5335 permil - R(14C) 4.57008e-013 38.865 pmc - R(18O) H2O(l) 1.99518e-003 -4.9963 permil - R(18O) OH- 1.92122e-003 -41.883 permil - R(18O) H3O+ 2.04132e-003 18.011 permil - R(18O) O2(aq) 1.99518e-003 -4.9963 permil - R(13C) CO2(aq) 1.09944e-002 -16.622 permil - R(14C) CO2(aq) 4.50485e-013 38.31 pmc - R(18O) CO2(aq) 2.07915e-003 36.877 permil - R(18O) HCO3- 1.99518e-003 -4.9963 permil - R(13C) HCO3- 1.10900e-002 -8.0665 permil - R(14C) HCO3- 4.58358e-013 38.98 pmc - R(18O) CO3-2 1.99518e-003 -4.9963 permil - R(13C) CO3-2 1.10741e-002 -9.4901 permil - R(14C) CO3-2 4.57043e-013 38.868 pmc - R(18O) Calcite 2.05262e-003 23.65 permil - R(13C) Calcite 1.11120e-002 -6.1019 permil - R(14C) Calcite 4.60175e-013 39.134 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2577e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 0 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6761e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.467e-005 6.448e-005 - [14C] 2.669e-015 2.661e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.064 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.986e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.024 -123.023 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.959e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.963e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.102e-006 1.011e-006 -5.958 -5.995 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.048e-008 6.057e-008 -7.218 -7.218 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.114e-039 - H2 5.568e-040 5.577e-040 -39.254 -39.254 0.001 (0) -O(0) 2.676e-014 - O2 1.333e-014 1.335e-014 -13.875 -13.875 0.001 (0) - O[18O] 5.318e-017 5.327e-017 -16.274 -16.274 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -124.983 -124.982 0.001 (0) -[13C](4) 6.467e-005 - H[13C]O3- 5.217e-005 4.772e-005 -4.283 -4.321 -0.039 (0) - [13C]O2 1.095e-005 1.097e-005 -4.961 -4.960 0.001 (0) - CaH[13C]O3+ 1.102e-006 1.011e-006 -5.958 -5.995 -0.037 (0) - H[13C]O2[18O]- 1.041e-007 9.522e-008 -6.983 -7.021 -0.039 (0) - H[13C][18O]O2- 1.041e-007 9.522e-008 -6.983 -7.021 -0.039 (0) - H[13C]O[18O]O- 1.041e-007 9.522e-008 -6.983 -7.021 -0.039 (0) - Ca[13C]O3 6.048e-008 6.057e-008 -7.218 -7.218 0.001 (0) - [13C]O[18O] 4.553e-008 4.560e-008 -7.342 -7.341 0.001 (0) - [13C]O3-2 3.102e-008 2.173e-008 -7.508 -7.663 -0.155 (0) - CaH[13C]O[18O]O+ 2.198e-009 2.016e-009 -8.658 -8.695 -0.037 (0) - CaH[13C][18O]O2+ 2.198e-009 2.016e-009 -8.658 -8.695 -0.037 (0) - CaH[13C]O2[18O]+ 2.198e-009 2.016e-009 -8.658 -8.695 -0.037 (0) - Ca[13C]O2[18O] 3.620e-010 3.626e-010 -9.441 -9.441 0.001 (0) - H[13C][18O]O[18O]- 2.077e-010 1.900e-010 -9.683 -9.721 -0.039 (0) - H[13C][18O]2O- 2.077e-010 1.900e-010 -9.683 -9.721 -0.039 (0) - H[13C]O[18O]2- 2.077e-010 1.900e-010 -9.683 -9.721 -0.039 (0) - [13C]O2[18O]-2 1.857e-010 1.301e-010 -9.731 -9.886 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -135.371 -135.370 0.001 (0) -[14C](4) 2.669e-015 - H[14C]O3- 2.156e-015 1.972e-015 -14.666 -14.705 -0.039 (0) - [14C]O2 4.486e-016 4.494e-016 -15.348 -15.347 0.001 (0) - CaH[14C]O3+ 4.553e-017 4.176e-017 -16.342 -16.379 -0.037 (0) - H[14C][18O]O2- 4.302e-018 3.935e-018 -17.366 -17.405 -0.039 (0) - H[14C]O[18O]O- 4.302e-018 3.935e-018 -17.366 -17.405 -0.039 (0) - H[14C]O2[18O]- 4.302e-018 3.935e-018 -17.366 -17.405 -0.039 (0) - Ca[14C]O3 2.496e-018 2.500e-018 -17.603 -17.602 0.001 (0) - [14C]O[18O] 1.866e-018 1.869e-018 -17.729 -17.728 0.001 (0) - [14C]O3-2 1.280e-018 8.969e-019 -17.893 -18.047 -0.155 (0) - CaH[14C]O2[18O]+ 9.084e-020 8.333e-020 -19.042 -19.079 -0.037 (0) - CaH[14C][18O]O2+ 9.084e-020 8.333e-020 -19.042 -19.079 -0.037 (0) - CaH[14C]O[18O]O+ 9.084e-020 8.333e-020 -19.042 -19.079 -0.037 (0) - Ca[14C]O2[18O] 1.494e-020 1.496e-020 -19.826 -19.825 0.001 (0) - H[14C][18O]O[18O]- 8.583e-021 7.852e-021 -20.066 -20.105 -0.039 (0) - H[14C]O[18O]2- 8.583e-021 7.852e-021 -20.066 -20.105 -0.039 (0) - H[14C][18O]2O- 8.583e-021 7.852e-021 -20.066 -20.105 -0.039 (0) - [14C]O2[18O]-2 7.664e-021 5.369e-021 -20.116 -20.270 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 5.329e-017 - O[18O] 5.318e-017 5.327e-017 -16.274 -16.274 0.001 (0) - [18O]2 5.305e-020 5.314e-020 -19.275 -19.275 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.12 -124.98 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.24 -20.75 -1.50 [14C][18O]2 - [14C]H4(g) -132.51 -135.37 -2.86 [14C]H4 - [14C]O2(g) -13.88 -15.35 -1.47 [14C]O2 - [14C]O[18O](g) -16.26 -18.05 -1.79 [14C]O[18O] - [18O]2(g) -16.98 -19.27 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.23 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.83 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.41 -12.25 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.56 -6.85 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.34 -4.15 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.24 -9.55 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.16 -123.02 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.10 -39.25 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.98 -13.87 -2.89 O2 - O[18O](g) -13.68 -16.57 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 18. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 17. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 5.5000e-003 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.46e-006 5.46e-006 1.09e-002 - Ca[13C]O2[18O](s) 3.37e-008 3.37e-008 6.73e-005 - Ca[13C]O[18O]2(s) 6.91e-011 6.91e-011 1.38e-007 - Ca[13C][18O]3(s) 4.73e-014 4.73e-014 9.45e-011 - Ca[14C]O3(s) 2.08e-016 2.08e-016 4.17e-013 - Ca[14C]O2[18O](s) 1.28e-018 1.28e-018 2.57e-015 - Ca[14C]O[18O]2(s) 2.63e-021 2.63e-021 5.27e-018 - Ca[14C][18O]3(s) 1.80e-024 1.80e-024 3.60e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99518e-003 -4.9947 permil - R(13C) 1.10808e-002 -8.8939 permil - R(14C) 4.21011e-013 35.804 pmc - R(18O) H2O(l) 1.99518e-003 -4.9962 permil - R(18O) OH- 1.92122e-003 -41.883 permil - R(18O) H3O+ 2.04132e-003 18.012 permil - R(18O) O2(aq) 1.99518e-003 -4.9962 permil - R(13C) CO2(aq) 1.10015e-002 -15.987 permil - R(14C) CO2(aq) 4.15002e-013 35.293 pmc - R(18O) CO2(aq) 2.07915e-003 36.878 permil - R(18O) HCO3- 1.99518e-003 -4.9962 permil - R(13C) HCO3- 1.10972e-002 -7.4261 permil - R(14C) HCO3- 4.22255e-013 35.909 pmc - R(18O) CO3-2 1.99518e-003 -4.9962 permil - R(13C) CO3-2 1.10812e-002 -8.8505 permil - R(14C) CO3-2 4.21044e-013 35.806 pmc - R(18O) Calcite 2.05262e-003 23.65 permil - R(13C) Calcite 1.11192e-002 -5.4601 permil - R(14C) Calcite 4.23929e-013 36.052 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2661e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.8858e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7324e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.471e-005 6.453e-005 - [14C] 2.459e-015 2.452e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.117 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.985e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 24 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.445 -123.445 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.959e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.102e-006 1.011e-006 -5.958 -5.995 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.051e-008 6.061e-008 -7.218 -7.217 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 8.738e-040 - H2 4.369e-040 4.376e-040 -39.360 -39.359 0.001 (0) -O(0) 4.346e-014 - O2 2.165e-014 2.168e-014 -13.665 -13.664 0.001 (0) - O[18O] 8.637e-017 8.652e-017 -16.064 -16.063 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.404 -125.403 0.001 (0) -[13C](4) 6.471e-005 - H[13C]O3- 5.220e-005 4.776e-005 -4.282 -4.321 -0.039 (0) - [13C]O2 1.096e-005 1.097e-005 -4.960 -4.960 0.001 (0) - CaH[13C]O3+ 1.102e-006 1.011e-006 -5.958 -5.995 -0.037 (0) - H[13C][18O]O2- 1.041e-007 9.528e-008 -6.982 -7.021 -0.039 (0) - H[13C]O[18O]O- 1.041e-007 9.528e-008 -6.982 -7.021 -0.039 (0) - H[13C]O2[18O]- 1.041e-007 9.528e-008 -6.982 -7.021 -0.039 (0) - Ca[13C]O3 6.051e-008 6.061e-008 -7.218 -7.217 0.001 (0) - [13C]O[18O] 4.556e-008 4.563e-008 -7.341 -7.341 0.001 (0) - [13C]O3-2 3.104e-008 2.175e-008 -7.508 -7.663 -0.155 (0) - CaH[13C][18O]O2+ 2.199e-009 2.017e-009 -8.658 -8.695 -0.037 (0) - CaH[13C]O2[18O]+ 2.199e-009 2.017e-009 -8.658 -8.695 -0.037 (0) - CaH[13C]O[18O]O+ 2.199e-009 2.017e-009 -8.658 -8.695 -0.037 (0) - Ca[13C]O2[18O] 3.622e-010 3.628e-010 -9.441 -9.440 0.001 (0) - H[13C][18O]O[18O]- 2.078e-010 1.901e-010 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.078e-010 1.901e-010 -9.682 -9.721 -0.039 (0) - H[13C]O[18O]2- 2.078e-010 1.901e-010 -9.682 -9.721 -0.039 (0) - [13C]O2[18O]-2 1.858e-010 1.302e-010 -9.731 -9.886 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -135.827 -135.827 0.001 (0) -[14C](4) 2.459e-015 - H[14C]O3- 1.986e-015 1.817e-015 -14.702 -14.741 -0.039 (0) - [14C]O2 4.133e-016 4.140e-016 -15.384 -15.383 0.001 (0) - CaH[14C]O3+ 4.194e-017 3.847e-017 -16.377 -16.415 -0.037 (0) - H[14C][18O]O2- 3.963e-018 3.625e-018 -17.402 -17.441 -0.039 (0) - H[14C]O[18O]O- 3.963e-018 3.625e-018 -17.402 -17.441 -0.039 (0) - H[14C]O2[18O]- 3.963e-018 3.625e-018 -17.402 -17.441 -0.039 (0) - Ca[14C]O3 2.299e-018 2.303e-018 -17.638 -17.638 0.001 (0) - [14C]O[18O] 1.719e-018 1.721e-018 -17.765 -17.764 0.001 (0) - [14C]O3-2 1.179e-018 8.263e-019 -17.928 -18.083 -0.155 (0) - CaH[14C]O2[18O]+ 8.368e-020 7.676e-020 -19.077 -19.115 -0.037 (0) - CaH[14C][18O]O2+ 8.368e-020 7.676e-020 -19.077 -19.115 -0.037 (0) - CaH[14C]O[18O]O+ 8.368e-020 7.676e-020 -19.077 -19.115 -0.037 (0) - Ca[14C]O2[18O] 1.376e-020 1.379e-020 -19.861 -19.861 0.001 (0) - H[14C]O[18O]2- 7.907e-021 7.233e-021 -20.102 -20.141 -0.039 (0) - H[14C][18O]2O- 7.907e-021 7.233e-021 -20.102 -20.141 -0.039 (0) - H[14C][18O]O[18O]- 7.907e-021 7.233e-021 -20.102 -20.141 -0.039 (0) - [14C]O2[18O]-2 7.060e-021 4.946e-021 -20.151 -20.306 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 8.655e-017 - O[18O] 8.637e-017 8.652e-017 -16.064 -16.063 0.001 (0) - [18O]2 8.616e-020 8.631e-020 -19.065 -19.064 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.54 -125.40 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.28 -20.78 -1.50 [14C][18O]2 - [14C]H4(g) -132.97 -135.83 -2.86 [14C]H4 - [14C]O2(g) -13.91 -15.38 -1.47 [14C]O2 - [14C]O[18O](g) -16.30 -18.08 -1.79 [14C]O[18O] - [18O]2(g) -16.77 -19.06 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.23 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.83 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.44 -12.29 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.59 -6.89 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.38 -4.19 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.28 -9.59 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.58 -123.44 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.21 -39.36 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.77 -13.66 -2.89 O2 - O[18O](g) -13.47 -16.36 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 19. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 18. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 6.0000e-003 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.47e-006 5.47e-006 1.09e-002 - Ca[13C]O2[18O](s) 3.37e-008 3.37e-008 6.73e-005 - Ca[13C]O[18O]2(s) 6.91e-011 6.91e-011 1.38e-007 - Ca[13C][18O]3(s) 4.73e-014 4.73e-014 9.46e-011 - Ca[14C]O3(s) 1.92e-016 1.92e-016 3.84e-013 - Ca[14C]O2[18O](s) 1.18e-018 1.18e-018 2.36e-015 - Ca[14C]O[18O]2(s) 2.43e-021 2.43e-021 4.85e-018 - Ca[14C][18O]3(s) 1.66e-024 1.66e-024 3.32e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99518e-003 -4.9946 permil - R(13C) 1.10874e-002 -8.3046 permil - R(14C) 3.87850e-013 32.984 pmc - R(18O) H2O(l) 1.99518e-003 -4.9961 permil - R(18O) OH- 1.92122e-003 -41.883 permil - R(18O) H3O+ 2.04132e-003 18.012 permil - R(18O) O2(aq) 1.99518e-003 -4.9961 permil - R(13C) CO2(aq) 1.10080e-002 -15.402 permil - R(14C) CO2(aq) 3.82314e-013 32.513 pmc - R(18O) CO2(aq) 2.07915e-003 36.878 permil - R(18O) HCO3- 1.99518e-003 -4.9961 permil - R(13C) HCO3- 1.11038e-002 -6.8359 permil - R(14C) HCO3- 3.88995e-013 33.081 pmc - R(18O) CO3-2 1.99518e-003 -4.9961 permil - R(13C) CO3-2 1.10878e-002 -8.2611 permil - R(14C) CO3-2 3.87880e-013 32.986 pmc - R(18O) Calcite 2.05262e-003 23.65 permil - R(13C) Calcite 1.11258e-002 -4.8688 permil - R(14C) Calcite 3.90538e-013 33.212 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2677e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.6621e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5596e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.475e-005 6.456e-005 - [14C] 2.265e-015 2.259e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.123 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.983e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 23 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.499 -123.498 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.959e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.103e-006 1.012e-006 -5.957 -5.995 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.055e-008 6.065e-008 -7.218 -7.217 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 8.474e-040 - H2 4.237e-040 4.244e-040 -39.373 -39.372 0.001 (0) -O(0) 4.621e-014 - O2 2.301e-014 2.305e-014 -13.638 -13.637 0.001 (0) - O[18O] 9.183e-017 9.198e-017 -16.037 -16.036 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.457 -125.456 0.001 (0) -[13C](4) 6.475e-005 - H[13C]O3- 5.223e-005 4.778e-005 -4.282 -4.321 -0.039 (0) - [13C]O2 1.096e-005 1.098e-005 -4.960 -4.959 0.001 (0) - CaH[13C]O3+ 1.103e-006 1.012e-006 -5.957 -5.995 -0.037 (0) - H[13C]O[18O]O- 1.042e-007 9.534e-008 -6.982 -7.021 -0.039 (0) - H[13C]O2[18O]- 1.042e-007 9.534e-008 -6.982 -7.021 -0.039 (0) - H[13C][18O]O2- 1.042e-007 9.534e-008 -6.982 -7.021 -0.039 (0) - Ca[13C]O3 6.055e-008 6.065e-008 -7.218 -7.217 0.001 (0) - [13C]O[18O] 4.559e-008 4.566e-008 -7.341 -7.340 0.001 (0) - [13C]O3-2 3.106e-008 2.176e-008 -7.508 -7.662 -0.155 (0) - CaH[13C]O2[18O]+ 2.201e-009 2.019e-009 -8.657 -8.695 -0.037 (0) - CaH[13C]O[18O]O+ 2.201e-009 2.019e-009 -8.657 -8.695 -0.037 (0) - CaH[13C][18O]O2+ 2.201e-009 2.019e-009 -8.657 -8.695 -0.037 (0) - Ca[13C]O2[18O] 3.624e-010 3.630e-010 -9.441 -9.440 0.001 (0) - H[13C][18O]O[18O]- 2.079e-010 1.902e-010 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.079e-010 1.902e-010 -9.682 -9.721 -0.039 (0) - H[13C]O[18O]2- 2.079e-010 1.902e-010 -9.682 -9.721 -0.039 (0) - [13C]O2[18O]-2 1.859e-010 1.302e-010 -9.731 -9.885 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -135.916 -135.916 0.001 (0) -[14C](4) 2.265e-015 - H[14C]O3- 1.830e-015 1.674e-015 -14.738 -14.776 -0.039 (0) - [14C]O2 3.807e-016 3.814e-016 -15.419 -15.419 0.001 (0) - CaH[14C]O3+ 3.864e-017 3.544e-017 -16.413 -16.450 -0.037 (0) - H[14C][18O]O2- 3.651e-018 3.340e-018 -17.438 -17.476 -0.039 (0) - H[14C]O[18O]O- 3.651e-018 3.340e-018 -17.438 -17.476 -0.039 (0) - H[14C]O2[18O]- 3.651e-018 3.340e-018 -17.438 -17.476 -0.039 (0) - Ca[14C]O3 2.118e-018 2.122e-018 -17.674 -17.673 0.001 (0) - [14C]O[18O] 1.583e-018 1.586e-018 -17.800 -17.800 0.001 (0) - [14C]O3-2 1.087e-018 7.612e-019 -17.964 -18.118 -0.155 (0) - CaH[14C]O2[18O]+ 7.709e-020 7.072e-020 -19.113 -19.150 -0.037 (0) - CaH[14C][18O]O2+ 7.709e-020 7.072e-020 -19.113 -19.150 -0.037 (0) - CaH[14C]O[18O]O+ 7.709e-020 7.072e-020 -19.113 -19.150 -0.037 (0) - Ca[14C]O2[18O] 1.268e-020 1.270e-020 -19.897 -19.896 0.001 (0) - H[14C][18O]2O- 7.284e-021 6.664e-021 -20.138 -20.176 -0.039 (0) - H[14C][18O]O[18O]- 7.284e-021 6.664e-021 -20.138 -20.176 -0.039 (0) - H[14C]O[18O]2- 7.284e-021 6.664e-021 -20.138 -20.176 -0.039 (0) - [14C]O2[18O]-2 6.504e-021 4.556e-021 -20.187 -20.341 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 9.201e-017 - O[18O] 9.183e-017 9.198e-017 -16.037 -16.036 0.001 (0) - [18O]2 9.161e-020 9.176e-020 -19.038 -19.037 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.60 -125.46 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.32 -20.82 -1.50 [14C][18O]2 - [14C]H4(g) -133.06 -135.92 -2.86 [14C]H4 - [14C]O2(g) -13.95 -15.42 -1.47 [14C]O2 - [14C]O[18O](g) -16.33 -18.12 -1.79 [14C]O[18O] - [18O]2(g) -16.75 -19.04 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.48 -12.32 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.63 -6.92 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.42 -4.22 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.31 -9.62 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.64 -123.50 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.22 -39.37 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.74 -13.64 -2.89 O2 - O[18O](g) -13.44 -16.34 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 20. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 19. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 6.5000e-003 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.47e-006 5.47e-006 1.09e-002 - Ca[13C]O2[18O](s) 3.37e-008 3.37e-008 6.74e-005 - Ca[13C]O[18O]2(s) 6.92e-011 6.92e-011 1.38e-007 - Ca[13C][18O]3(s) 4.73e-014 4.73e-014 9.46e-011 - Ca[14C]O3(s) 1.77e-016 1.77e-016 3.54e-013 - Ca[14C]O2[18O](s) 1.09e-018 1.09e-018 2.18e-015 - Ca[14C]O[18O]2(s) 2.23e-021 2.23e-021 4.47e-018 - Ca[14C][18O]3(s) 1.53e-024 1.53e-024 3.06e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9944 permil - R(13C) 1.10934e-002 -7.7616 permil - R(14C) 3.57300e-013 30.386 pmc - R(18O) H2O(l) 1.99518e-003 -4.9959 permil - R(18O) OH- 1.92122e-003 -41.883 permil - R(18O) H3O+ 2.04132e-003 18.012 permil - R(18O) O2(aq) 1.99518e-003 -4.9959 permil - R(13C) CO2(aq) 1.10140e-002 -14.863 permil - R(14C) CO2(aq) 3.52201e-013 29.952 pmc - R(18O) CO2(aq) 2.07915e-003 36.878 permil - R(18O) HCO3- 1.99518e-003 -4.9959 permil - R(13C) HCO3- 1.11099e-002 -6.292 permil - R(14C) HCO3- 3.58355e-013 30.475 pmc - R(18O) CO3-2 1.99518e-003 -4.9959 permil - R(13C) CO3-2 1.10939e-002 -7.7181 permil - R(14C) CO3-2 3.57328e-013 30.388 pmc - R(18O) Calcite 2.05262e-003 23.65 permil - R(13C) Calcite 1.11319e-002 -4.3238 permil - R(14C) Calcite 3.59776e-013 30.596 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2654e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.1102e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7163e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.479e-005 6.460e-005 - [14C] 2.087e-015 2.081e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.116 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.000e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.443 -123.442 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.959e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.104e-006 1.012e-006 -5.957 -5.995 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.058e-008 6.068e-008 -7.218 -7.217 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 8.749e-040 - H2 4.374e-040 4.382e-040 -39.359 -39.358 0.001 (0) -O(0) 4.335e-014 - O2 2.159e-014 2.163e-014 -13.666 -13.665 0.001 (0) - O[18O] 8.615e-017 8.629e-017 -16.065 -16.064 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.401 -125.401 0.001 (0) -[13C](4) 6.479e-005 - H[13C]O3- 5.226e-005 4.781e-005 -4.282 -4.320 -0.039 (0) - [13C]O2 1.097e-005 1.099e-005 -4.960 -4.959 0.001 (0) - CaH[13C]O3+ 1.104e-006 1.012e-006 -5.957 -5.995 -0.037 (0) - H[13C]O2[18O]- 1.043e-007 9.539e-008 -6.982 -7.021 -0.039 (0) - H[13C][18O]O2- 1.043e-007 9.539e-008 -6.982 -7.021 -0.039 (0) - H[13C]O[18O]O- 1.043e-007 9.539e-008 -6.982 -7.021 -0.039 (0) - Ca[13C]O3 6.058e-008 6.068e-008 -7.218 -7.217 0.001 (0) - [13C]O[18O] 4.561e-008 4.568e-008 -7.341 -7.340 0.001 (0) - [13C]O3-2 3.108e-008 2.177e-008 -7.508 -7.662 -0.155 (0) - CaH[13C]O[18O]O+ 2.202e-009 2.020e-009 -8.657 -8.695 -0.037 (0) - CaH[13C][18O]O2+ 2.202e-009 2.020e-009 -8.657 -8.695 -0.037 (0) - CaH[13C]O2[18O]+ 2.202e-009 2.020e-009 -8.657 -8.695 -0.037 (0) - Ca[13C]O2[18O] 3.626e-010 3.632e-010 -9.441 -9.440 0.001 (0) - H[13C][18O]O[18O]- 2.080e-010 1.903e-010 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.080e-010 1.903e-010 -9.682 -9.721 -0.039 (0) - H[13C]O[18O]2- 2.080e-010 1.903e-010 -9.682 -9.721 -0.039 (0) - [13C]O2[18O]-2 1.860e-010 1.303e-010 -9.730 -9.885 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -135.896 -135.896 0.001 (0) -[14C](4) 2.087e-015 - H[14C]O3- 1.686e-015 1.542e-015 -14.773 -14.812 -0.039 (0) - [14C]O2 3.507e-016 3.513e-016 -15.455 -15.454 0.001 (0) - CaH[14C]O3+ 3.559e-017 3.265e-017 -16.449 -16.486 -0.037 (0) - H[14C][18O]O2- 3.363e-018 3.077e-018 -17.473 -17.512 -0.039 (0) - H[14C]O[18O]O- 3.363e-018 3.077e-018 -17.473 -17.512 -0.039 (0) - H[14C]O2[18O]- 3.363e-018 3.077e-018 -17.473 -17.512 -0.039 (0) - Ca[14C]O3 1.951e-018 1.955e-018 -17.710 -17.709 0.001 (0) - [14C]O[18O] 1.458e-018 1.461e-018 -17.836 -17.835 0.001 (0) - [14C]O3-2 1.001e-018 7.012e-019 -18.000 -18.154 -0.155 (0) - CaH[14C]O2[18O]+ 7.102e-020 6.515e-020 -19.149 -19.186 -0.037 (0) - CaH[14C][18O]O2+ 7.102e-020 6.515e-020 -19.149 -19.186 -0.037 (0) - CaH[14C]O[18O]O+ 7.102e-020 6.515e-020 -19.149 -19.186 -0.037 (0) - Ca[14C]O2[18O] 1.168e-020 1.170e-020 -19.933 -19.932 0.001 (0) - H[14C][18O]O[18O]- 6.710e-021 6.139e-021 -20.173 -20.212 -0.039 (0) - H[14C]O[18O]2- 6.710e-021 6.139e-021 -20.173 -20.212 -0.039 (0) - H[14C][18O]2O- 6.710e-021 6.139e-021 -20.173 -20.212 -0.039 (0) - [14C]O2[18O]-2 5.991e-021 4.197e-021 -20.222 -20.377 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 8.632e-017 - O[18O] 8.615e-017 8.629e-017 -16.065 -16.064 0.001 (0) - [18O]2 8.594e-020 8.608e-020 -19.066 -19.065 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.54 -125.40 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.35 -20.85 -1.50 [14C][18O]2 - [14C]H4(g) -133.04 -135.90 -2.86 [14C]H4 - [14C]O2(g) -13.99 -15.45 -1.47 [14C]O2 - [14C]O[18O](g) -16.37 -18.15 -1.79 [14C]O[18O] - [18O]2(g) -16.77 -19.07 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.51 -12.36 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.66 -6.96 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.45 -4.26 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.35 -9.66 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.58 -123.44 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.21 -39.36 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.77 -13.67 -2.89 O2 - O[18O](g) -13.47 -16.37 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 21. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 20. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 7.0000e-003 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.47e-006 5.47e-006 1.09e-002 - Ca[13C]O2[18O](s) 3.37e-008 3.37e-008 6.74e-005 - Ca[13C]O[18O]2(s) 6.92e-011 6.92e-011 1.38e-007 - Ca[13C][18O]3(s) 4.73e-014 4.73e-014 9.47e-011 - Ca[14C]O3(s) 1.63e-016 1.63e-016 3.26e-013 - Ca[14C]O2[18O](s) 1.00e-018 1.00e-018 2.01e-015 - Ca[14C]O[18O]2(s) 2.06e-021 2.06e-021 4.12e-018 - Ca[14C][18O]3(s) 1.41e-024 1.41e-024 2.82e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9943 permil - R(13C) 1.10990e-002 -7.2611 permil - R(14C) 3.29157e-013 27.992 pmc - R(18O) H2O(l) 1.99518e-003 -4.9958 permil - R(18O) OH- 1.92122e-003 -41.883 permil - R(18O) H3O+ 2.04132e-003 18.012 permil - R(18O) O2(aq) 1.99518e-003 -4.9958 permil - R(13C) CO2(aq) 1.10196e-002 -14.366 permil - R(14C) CO2(aq) 3.24459e-013 27.593 pmc - R(18O) CO2(aq) 2.07915e-003 36.878 permil - R(18O) HCO3- 1.99518e-003 -4.9958 permil - R(13C) HCO3- 1.11155e-002 -5.7908 permil - R(14C) HCO3- 3.30129e-013 28.075 pmc - R(18O) CO3-2 1.99518e-003 -4.9958 permil - R(13C) CO3-2 1.10995e-002 -7.2176 permil - R(14C) CO3-2 3.29182e-013 27.994 pmc - R(18O) Calcite 2.05262e-003 23.65 permil - R(13C) Calcite 1.11375e-002 -3.8217 permil - R(14C) Calcite 3.31438e-013 28.186 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2371e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 8.8818e-013 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.771e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.482e-005 6.463e-005 - [14C] 1.922e-015 1.917e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.093 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.996e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 18 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.258 -123.258 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.104e-006 1.013e-006 -5.957 -5.994 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.061e-008 6.071e-008 -7.217 -7.217 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 9.732e-040 - H2 4.866e-040 4.874e-040 -39.313 -39.312 0.001 (0) -O(0) 3.504e-014 - O2 1.745e-014 1.748e-014 -13.758 -13.758 0.001 (0) - O[18O] 6.963e-017 6.974e-017 -16.157 -16.157 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.216 -125.215 0.001 (0) -[13C](4) 6.482e-005 - H[13C]O3- 5.228e-005 4.783e-005 -4.282 -4.320 -0.039 (0) - [13C]O2 1.097e-005 1.099e-005 -4.960 -4.959 0.001 (0) - CaH[13C]O3+ 1.104e-006 1.013e-006 -5.957 -5.994 -0.037 (0) - H[13C][18O]O2- 1.043e-007 9.544e-008 -6.982 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.043e-007 9.544e-008 -6.982 -7.020 -0.039 (0) - H[13C]O2[18O]- 1.043e-007 9.544e-008 -6.982 -7.020 -0.039 (0) - Ca[13C]O3 6.061e-008 6.071e-008 -7.217 -7.217 0.001 (0) - [13C]O[18O] 4.563e-008 4.571e-008 -7.341 -7.340 0.001 (0) - [13C]O3-2 3.109e-008 2.178e-008 -7.507 -7.662 -0.155 (0) - CaH[13C][18O]O2+ 2.203e-009 2.021e-009 -8.657 -8.694 -0.037 (0) - CaH[13C]O2[18O]+ 2.203e-009 2.021e-009 -8.657 -8.694 -0.037 (0) - CaH[13C]O[18O]O+ 2.203e-009 2.021e-009 -8.657 -8.694 -0.037 (0) - Ca[13C]O2[18O] 3.628e-010 3.634e-010 -9.440 -9.440 0.001 (0) - H[13C][18O]O[18O]- 2.081e-010 1.904e-010 -9.682 -9.720 -0.039 (0) - H[13C][18O]2O- 2.081e-010 1.904e-010 -9.682 -9.720 -0.039 (0) - H[13C]O[18O]2- 2.081e-010 1.904e-010 -9.682 -9.720 -0.039 (0) - [13C]O2[18O]-2 1.861e-010 1.304e-010 -9.730 -9.885 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -135.747 -135.746 0.001 (0) -[14C](4) 1.922e-015 - H[14C]O3- 1.553e-015 1.421e-015 -14.809 -14.848 -0.039 (0) - [14C]O2 3.231e-016 3.236e-016 -15.491 -15.490 0.001 (0) - CaH[14C]O3+ 3.279e-017 3.008e-017 -16.484 -16.522 -0.037 (0) - H[14C][18O]O2- 3.098e-018 2.834e-018 -17.509 -17.548 -0.039 (0) - H[14C]O[18O]O- 3.098e-018 2.834e-018 -17.509 -17.548 -0.039 (0) - H[14C]O2[18O]- 3.098e-018 2.834e-018 -17.509 -17.548 -0.039 (0) - Ca[14C]O3 1.798e-018 1.801e-018 -17.745 -17.745 0.001 (0) - [14C]O[18O] 1.344e-018 1.346e-018 -17.872 -17.871 0.001 (0) - [14C]O3-2 9.221e-019 6.460e-019 -18.035 -18.190 -0.155 (0) - CaH[14C]O2[18O]+ 6.542e-020 6.002e-020 -19.184 -19.222 -0.037 (0) - CaH[14C][18O]O2+ 6.542e-020 6.002e-020 -19.184 -19.222 -0.037 (0) - CaH[14C]O[18O]O+ 6.542e-020 6.002e-020 -19.184 -19.222 -0.037 (0) - Ca[14C]O2[18O] 1.076e-020 1.078e-020 -19.968 -19.967 0.001 (0) - H[14C]O[18O]2- 6.181e-021 5.655e-021 -20.209 -20.248 -0.039 (0) - H[14C][18O]2O- 6.181e-021 5.655e-021 -20.209 -20.248 -0.039 (0) - H[14C][18O]O[18O]- 6.181e-021 5.655e-021 -20.209 -20.248 -0.039 (0) - [14C]O2[18O]-2 5.520e-021 3.867e-021 -20.258 -20.413 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 6.976e-017 - O[18O] 6.963e-017 6.974e-017 -16.157 -16.157 0.001 (0) - [18O]2 6.946e-020 6.957e-020 -19.158 -19.158 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.36 -125.22 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.39 -20.89 -1.50 [14C][18O]2 - [14C]H4(g) -132.89 -135.75 -2.86 [14C]H4 - [14C]O2(g) -14.02 -15.49 -1.47 [14C]O2 - [14C]O[18O](g) -16.40 -18.19 -1.79 [14C]O[18O] - [18O]2(g) -16.87 -19.16 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.55 -12.40 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.70 -7.00 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.49 -4.30 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.39 -9.70 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.40 -123.26 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.16 -39.31 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.87 -13.76 -2.89 O2 - O[18O](g) -13.57 -16.46 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 22. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 21. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 7.5000e-003 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.48e-006 5.48e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.37e-008 3.37e-008 6.74e-005 - Ca[13C]O[18O]2(s) 6.92e-011 6.92e-011 1.38e-007 - Ca[13C][18O]3(s) 4.74e-014 4.74e-014 9.47e-011 - Ca[14C]O3(s) 1.50e-016 1.50e-016 3.00e-013 - Ca[14C]O2[18O](s) 9.24e-019 9.24e-019 1.85e-015 - Ca[14C]O[18O]2(s) 1.90e-021 1.90e-021 3.79e-018 - Ca[14C][18O]3(s) 1.30e-024 1.30e-024 2.60e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9941 permil - R(13C) 1.11042e-002 -6.8 permil - R(14C) 3.03230e-013 25.787 pmc - R(18O) H2O(l) 1.99518e-003 -4.9957 permil - R(18O) OH- 1.92122e-003 -41.883 permil - R(18O) H3O+ 2.04132e-003 18.012 permil - R(18O) O2(aq) 1.99518e-003 -4.9957 permil - R(13C) CO2(aq) 1.10247e-002 -13.908 permil - R(14C) CO2(aq) 2.98902e-013 25.419 pmc - R(18O) CO2(aq) 2.07915e-003 36.878 permil - R(18O) HCO3- 1.99518e-003 -4.9957 permil - R(13C) HCO3- 1.11206e-002 -5.329 permil - R(14C) HCO3- 3.04125e-013 25.863 pmc - R(18O) CO3-2 1.99518e-003 -4.9957 permil - R(13C) CO3-2 1.11047e-002 -6.7565 permil - R(14C) CO3-2 3.03253e-013 25.789 pmc - R(18O) Calcite 2.05262e-003 23.651 permil - R(13C) Calcite 1.11426e-002 -3.3589 permil - R(14C) Calcite 3.05331e-013 25.966 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2577e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 4.4409e-013 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6789e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.485e-005 6.466e-005 - [14C] 1.771e-015 1.766e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.135 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.982e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 22 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.591 -123.590 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.105e-006 1.013e-006 -5.957 -5.994 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.064e-008 6.074e-008 -7.217 -7.217 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 8.036e-040 - H2 4.018e-040 4.025e-040 -39.396 -39.395 0.001 (0) -O(0) 5.138e-014 - O2 2.559e-014 2.563e-014 -13.592 -13.591 0.001 (0) - O[18O] 1.021e-016 1.023e-016 -15.991 -15.990 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.548 -125.548 0.001 (0) -[13C](4) 6.485e-005 - H[13C]O3- 5.231e-005 4.786e-005 -4.281 -4.320 -0.039 (0) - [13C]O2 1.098e-005 1.100e-005 -4.959 -4.959 0.001 (0) - CaH[13C]O3+ 1.105e-006 1.013e-006 -5.957 -5.994 -0.037 (0) - H[13C]O[18O]O- 1.044e-007 9.548e-008 -6.981 -7.020 -0.039 (0) - H[13C]O2[18O]- 1.044e-007 9.548e-008 -6.981 -7.020 -0.039 (0) - H[13C][18O]O2- 1.044e-007 9.548e-008 -6.981 -7.020 -0.039 (0) - Ca[13C]O3 6.064e-008 6.074e-008 -7.217 -7.217 0.001 (0) - [13C]O[18O] 4.565e-008 4.573e-008 -7.341 -7.340 0.001 (0) - [13C]O3-2 3.111e-008 2.179e-008 -7.507 -7.662 -0.155 (0) - CaH[13C]O2[18O]+ 2.204e-009 2.022e-009 -8.657 -8.694 -0.037 (0) - CaH[13C]O[18O]O+ 2.204e-009 2.022e-009 -8.657 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.204e-009 2.022e-009 -8.657 -8.694 -0.037 (0) - Ca[13C]O2[18O] 3.630e-010 3.636e-010 -9.440 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.082e-010 1.905e-010 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.082e-010 1.905e-010 -9.681 -9.720 -0.039 (0) - H[13C]O[18O]2- 2.082e-010 1.905e-010 -9.681 -9.720 -0.039 (0) - [13C]O2[18O]-2 1.862e-010 1.304e-010 -9.730 -9.885 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.115 -136.115 0.001 (0) -[14C](4) 1.771e-015 - H[14C]O3- 1.431e-015 1.309e-015 -14.845 -14.883 -0.039 (0) - [14C]O2 2.977e-016 2.981e-016 -15.526 -15.526 0.001 (0) - CaH[14C]O3+ 3.021e-017 2.771e-017 -16.520 -16.557 -0.037 (0) - H[14C][18O]O2- 2.854e-018 2.611e-018 -17.545 -17.583 -0.039 (0) - H[14C]O[18O]O- 2.854e-018 2.611e-018 -17.545 -17.583 -0.039 (0) - H[14C]O2[18O]- 2.854e-018 2.611e-018 -17.545 -17.583 -0.039 (0) - Ca[14C]O3 1.656e-018 1.659e-018 -17.781 -17.780 0.001 (0) - [14C]O[18O] 1.238e-018 1.240e-018 -17.907 -17.907 0.001 (0) - [14C]O3-2 8.495e-019 5.951e-019 -18.071 -18.225 -0.155 (0) - CaH[14C]O2[18O]+ 6.027e-020 5.529e-020 -19.220 -19.257 -0.037 (0) - CaH[14C][18O]O2+ 6.027e-020 5.529e-020 -19.220 -19.257 -0.037 (0) - CaH[14C]O[18O]O+ 6.027e-020 5.529e-020 -19.220 -19.257 -0.037 (0) - Ca[14C]O2[18O] 9.912e-021 9.928e-021 -20.004 -20.003 0.001 (0) - H[14C][18O]2O- 5.695e-021 5.210e-021 -20.245 -20.283 -0.039 (0) - H[14C][18O]O[18O]- 5.695e-021 5.210e-021 -20.245 -20.283 -0.039 (0) - H[14C]O[18O]2- 5.695e-021 5.210e-021 -20.245 -20.283 -0.039 (0) - [14C]O2[18O]-2 5.085e-021 3.562e-021 -20.294 -20.448 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.023e-016 - O[18O] 1.021e-016 1.023e-016 -15.991 -15.990 0.001 (0) - [18O]2 1.019e-019 1.020e-019 -18.992 -18.991 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.69 -125.55 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.42 -20.93 -1.50 [14C][18O]2 - [14C]H4(g) -133.25 -136.11 -2.86 [14C]H4 - [14C]O2(g) -14.06 -15.53 -1.47 [14C]O2 - [14C]O[18O](g) -16.44 -18.23 -1.79 [14C]O[18O] - [18O]2(g) -16.70 -18.99 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.59 -12.43 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.73 -7.03 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.52 -4.33 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.42 -9.73 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.73 -123.59 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.25 -39.40 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.70 -13.59 -2.89 O2 - O[18O](g) -13.40 -16.29 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 23. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 22. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 8.0000e-003 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.48e-006 5.48e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.37e-008 3.37e-008 6.75e-005 - Ca[13C]O[18O]2(s) 6.92e-011 6.92e-011 1.38e-007 - Ca[13C][18O]3(s) 4.74e-014 4.74e-014 9.48e-011 - Ca[14C]O3(s) 1.38e-016 1.38e-016 2.76e-013 - Ca[14C]O2[18O](s) 8.51e-019 8.51e-019 1.70e-015 - Ca[14C]O[18O]2(s) 1.75e-021 1.75e-021 3.49e-018 - Ca[14C][18O]3(s) 1.20e-024 1.19e-024 2.39e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.994 permil - R(13C) 1.11089e-002 -6.3751 permil - R(14C) 2.79345e-013 23.756 pmc - R(18O) H2O(l) 1.99518e-003 -4.9955 permil - R(18O) OH- 1.92122e-003 -41.883 permil - R(18O) H3O+ 2.04132e-003 18.012 permil - R(18O) O2(aq) 1.99518e-003 -4.9955 permil - R(13C) CO2(aq) 1.10294e-002 -13.486 permil - R(14C) CO2(aq) 2.75358e-013 23.417 pmc - R(18O) CO2(aq) 2.07915e-003 36.878 permil - R(18O) HCO3- 1.99518e-003 -4.9955 permil - R(13C) HCO3- 1.11254e-002 -4.9035 permil - R(14C) HCO3- 2.80170e-013 23.826 pmc - R(18O) CO3-2 1.99518e-003 -4.9955 permil - R(13C) CO3-2 1.11094e-002 -6.3315 permil - R(14C) CO3-2 2.79366e-013 23.758 pmc - R(18O) Calcite 2.05262e-003 23.651 permil - R(13C) Calcite 1.11474e-002 -2.9325 permil - R(14C) Calcite 2.81281e-013 23.921 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2736e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.4417e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.625e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.488e-005 6.469e-005 - [14C] 1.631e-015 1.627e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.173 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.983e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.897 -123.896 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.105e-006 1.014e-006 -5.957 -5.994 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.067e-008 6.077e-008 -7.217 -7.216 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 6.739e-040 - H2 3.369e-040 3.375e-040 -39.472 -39.472 0.001 (0) -O(0) 7.308e-014 - O2 3.639e-014 3.645e-014 -13.439 -13.438 0.001 (0) - O[18O] 1.452e-016 1.455e-016 -15.838 -15.837 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.854 -125.854 0.001 (0) -[13C](4) 6.488e-005 - H[13C]O3- 5.233e-005 4.788e-005 -4.281 -4.320 -0.039 (0) - [13C]O2 1.098e-005 1.100e-005 -4.959 -4.959 0.001 (0) - CaH[13C]O3+ 1.105e-006 1.014e-006 -5.957 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.044e-007 9.552e-008 -6.981 -7.020 -0.039 (0) - H[13C][18O]O2- 1.044e-007 9.552e-008 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.044e-007 9.552e-008 -6.981 -7.020 -0.039 (0) - Ca[13C]O3 6.067e-008 6.077e-008 -7.217 -7.216 0.001 (0) - [13C]O[18O] 4.567e-008 4.575e-008 -7.340 -7.340 0.001 (0) - [13C]O3-2 3.112e-008 2.180e-008 -7.507 -7.662 -0.155 (0) - CaH[13C]O[18O]O+ 2.205e-009 2.022e-009 -8.657 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.205e-009 2.022e-009 -8.657 -8.694 -0.037 (0) - CaH[13C]O2[18O]+ 2.205e-009 2.022e-009 -8.657 -8.694 -0.037 (0) - Ca[13C]O2[18O] 3.631e-010 3.637e-010 -9.440 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.083e-010 1.906e-010 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.083e-010 1.906e-010 -9.681 -9.720 -0.039 (0) - H[13C]O[18O]2- 2.083e-010 1.906e-010 -9.681 -9.720 -0.039 (0) - [13C]O2[18O]-2 1.863e-010 1.305e-010 -9.730 -9.884 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.457 -136.456 0.001 (0) -[14C](4) 1.631e-015 - H[14C]O3- 1.318e-015 1.206e-015 -14.880 -14.919 -0.039 (0) - [14C]O2 2.742e-016 2.747e-016 -15.562 -15.561 0.001 (0) - CaH[14C]O3+ 2.783e-017 2.553e-017 -16.556 -16.593 -0.037 (0) - H[14C][18O]O2- 2.629e-018 2.405e-018 -17.580 -17.619 -0.039 (0) - H[14C]O[18O]O- 2.629e-018 2.405e-018 -17.580 -17.619 -0.039 (0) - H[14C]O2[18O]- 2.629e-018 2.405e-018 -17.580 -17.619 -0.039 (0) - Ca[14C]O3 1.526e-018 1.528e-018 -17.817 -17.816 0.001 (0) - [14C]O[18O] 1.140e-018 1.142e-018 -17.943 -17.942 0.001 (0) - [14C]O3-2 7.826e-019 5.482e-019 -18.106 -18.261 -0.155 (0) - CaH[14C]O2[18O]+ 5.552e-020 5.093e-020 -19.256 -19.293 -0.037 (0) - CaH[14C][18O]O2+ 5.552e-020 5.093e-020 -19.256 -19.293 -0.037 (0) - CaH[14C]O[18O]O+ 5.552e-020 5.093e-020 -19.256 -19.293 -0.037 (0) - Ca[14C]O2[18O] 9.131e-021 9.146e-021 -20.039 -20.039 0.001 (0) - H[14C][18O]O[18O]- 5.246e-021 4.799e-021 -20.280 -20.319 -0.039 (0) - H[14C]O[18O]2- 5.246e-021 4.799e-021 -20.280 -20.319 -0.039 (0) - H[14C][18O]2O- 5.246e-021 4.799e-021 -20.280 -20.319 -0.039 (0) - [14C]O2[18O]-2 4.684e-021 3.282e-021 -20.329 -20.484 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.455e-016 - O[18O] 1.452e-016 1.455e-016 -15.838 -15.837 0.001 (0) - [18O]2 1.449e-019 1.451e-019 -18.839 -18.838 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.99 -125.85 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.46 -20.96 -1.50 [14C][18O]2 - [14C]H4(g) -133.60 -136.46 -2.86 [14C]H4 - [14C]O2(g) -14.09 -15.56 -1.47 [14C]O2 - [14C]O[18O](g) -16.47 -18.26 -1.79 [14C]O[18O] - [18O]2(g) -16.55 -18.84 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.62 -12.47 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.77 -7.07 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.56 -4.37 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.46 -9.77 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.04 -123.90 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.32 -39.47 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.55 -13.44 -2.89 O2 - O[18O](g) -13.25 -16.14 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 24. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 23. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 8.5000e-003 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.48e-006 5.48e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.37e-008 3.37e-008 6.75e-005 - Ca[13C]O[18O]2(s) 6.93e-011 6.93e-011 1.39e-007 - Ca[13C][18O]3(s) 4.74e-014 4.74e-014 9.48e-011 - Ca[14C]O3(s) 1.27e-016 1.27e-016 2.55e-013 - Ca[14C]O2[18O](s) 7.84e-019 7.84e-019 1.57e-015 - Ca[14C]O[18O]2(s) 1.61e-021 1.61e-021 3.22e-018 - Ca[14C][18O]3(s) 1.10e-024 1.10e-024 2.20e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9939 permil - R(13C) 1.11133e-002 -5.9835 permil - R(14C) 2.57341e-013 21.885 pmc - R(18O) H2O(l) 1.99518e-003 -4.9954 permil - R(18O) OH- 1.92122e-003 -41.883 permil - R(18O) H3O+ 2.04132e-003 18.012 permil - R(18O) O2(aq) 1.99518e-003 -4.9954 permil - R(13C) CO2(aq) 1.10338e-002 -13.097 permil - R(14C) CO2(aq) 2.53668e-013 21.573 pmc - R(18O) CO2(aq) 2.07915e-003 36.878 permil - R(18O) HCO3- 1.99518e-003 -4.9954 permil - R(13C) HCO3- 1.11298e-002 -4.5113 permil - R(14C) HCO3- 2.58101e-013 21.949 pmc - R(18O) CO3-2 1.99518e-003 -4.9954 permil - R(13C) CO3-2 1.11138e-002 -5.9399 permil - R(14C) CO3-2 2.57361e-013 21.887 pmc - R(18O) Calcite 2.05262e-003 23.651 permil - R(13C) Calcite 1.11518e-002 -2.5396 permil - R(14C) Calcite 2.59125e-013 22.037 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2543e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.8858e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6815e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.490e-005 6.471e-005 - [14C] 1.503e-015 1.499e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.161 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.001e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.797 -123.796 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.105e-006 1.014e-006 -5.956 -5.994 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.069e-008 6.079e-008 -7.217 -7.216 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 7.137e-040 - H2 3.568e-040 3.574e-040 -39.448 -39.447 0.001 (0) -O(0) 6.515e-014 - O2 3.245e-014 3.250e-014 -13.489 -13.488 0.001 (0) - O[18O] 1.295e-016 1.297e-016 -15.888 -15.887 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.754 -125.754 0.001 (0) -[13C](4) 6.490e-005 - H[13C]O3- 5.235e-005 4.789e-005 -4.281 -4.320 -0.039 (0) - [13C]O2 1.099e-005 1.101e-005 -4.959 -4.958 0.001 (0) - CaH[13C]O3+ 1.105e-006 1.014e-006 -5.956 -5.994 -0.037 (0) - H[13C][18O]O2- 1.044e-007 9.556e-008 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.044e-007 9.556e-008 -6.981 -7.020 -0.039 (0) - H[13C]O2[18O]- 1.044e-007 9.556e-008 -6.981 -7.020 -0.039 (0) - Ca[13C]O3 6.069e-008 6.079e-008 -7.217 -7.216 0.001 (0) - [13C]O[18O] 4.569e-008 4.577e-008 -7.340 -7.339 0.001 (0) - [13C]O3-2 3.113e-008 2.181e-008 -7.507 -7.661 -0.155 (0) - CaH[13C][18O]O2+ 2.206e-009 2.023e-009 -8.656 -8.694 -0.037 (0) - CaH[13C]O2[18O]+ 2.206e-009 2.023e-009 -8.656 -8.694 -0.037 (0) - CaH[13C]O[18O]O+ 2.206e-009 2.023e-009 -8.656 -8.694 -0.037 (0) - Ca[13C]O2[18O] 3.633e-010 3.639e-010 -9.440 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.084e-010 1.907e-010 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.084e-010 1.907e-010 -9.681 -9.720 -0.039 (0) - H[13C]O[18O]2- 2.084e-010 1.907e-010 -9.681 -9.720 -0.039 (0) - [13C]O2[18O]-2 1.863e-010 1.305e-010 -9.730 -9.884 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.393 -136.392 0.001 (0) -[14C](4) 1.503e-015 - H[14C]O3- 1.214e-015 1.111e-015 -14.916 -14.954 -0.039 (0) - [14C]O2 2.526e-016 2.530e-016 -15.598 -15.597 0.001 (0) - CaH[14C]O3+ 2.564e-017 2.352e-017 -16.591 -16.629 -0.037 (0) - H[14C][18O]O2- 2.422e-018 2.216e-018 -17.616 -17.654 -0.039 (0) - H[14C]O[18O]O- 2.422e-018 2.216e-018 -17.616 -17.654 -0.039 (0) - H[14C]O2[18O]- 2.422e-018 2.216e-018 -17.616 -17.654 -0.039 (0) - Ca[14C]O3 1.405e-018 1.408e-018 -17.852 -17.851 0.001 (0) - [14C]O[18O] 1.050e-018 1.052e-018 -17.979 -17.978 0.001 (0) - [14C]O3-2 7.209e-019 5.051e-019 -18.142 -18.297 -0.155 (0) - CaH[14C]O2[18O]+ 5.115e-020 4.692e-020 -19.291 -19.329 -0.037 (0) - CaH[14C][18O]O2+ 5.115e-020 4.692e-020 -19.291 -19.329 -0.037 (0) - CaH[14C]O[18O]O+ 5.115e-020 4.692e-020 -19.291 -19.329 -0.037 (0) - Ca[14C]O2[18O] 8.412e-021 8.426e-021 -20.075 -20.074 0.001 (0) - H[14C]O[18O]2- 4.833e-021 4.421e-021 -20.316 -20.354 -0.039 (0) - H[14C][18O]2O- 4.833e-021 4.421e-021 -20.316 -20.354 -0.039 (0) - H[14C][18O]O[18O]- 4.833e-021 4.421e-021 -20.316 -20.354 -0.039 (0) - [14C]O2[18O]-2 4.315e-021 3.023e-021 -20.365 -20.520 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.297e-016 - O[18O] 1.295e-016 1.297e-016 -15.888 -15.887 0.001 (0) - [18O]2 1.292e-019 1.294e-019 -18.889 -18.888 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.89 -125.75 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.49 -21.00 -1.50 [14C][18O]2 - [14C]H4(g) -133.53 -136.39 -2.86 [14C]H4 - [14C]O2(g) -14.13 -15.60 -1.47 [14C]O2 - [14C]O[18O](g) -16.51 -18.30 -1.79 [14C]O[18O] - [18O]2(g) -16.60 -18.89 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.66 -12.50 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.80 -7.10 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.59 -4.40 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.49 -9.80 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.94 -123.80 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.30 -39.45 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.60 -13.49 -2.89 O2 - O[18O](g) -13.30 -16.19 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 25. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 24. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 9.0000e-003 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.48e-006 5.48e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.38e-008 3.38e-008 6.75e-005 - Ca[13C]O[18O]2(s) 6.93e-011 6.93e-011 1.39e-007 - Ca[13C][18O]3(s) 4.74e-014 4.74e-014 9.48e-011 - Ca[14C]O3(s) 1.17e-016 1.17e-016 2.35e-013 - Ca[14C]O2[18O](s) 7.22e-019 7.22e-019 1.44e-015 - Ca[14C]O[18O]2(s) 1.48e-021 1.48e-021 2.97e-018 - Ca[14C][18O]3(s) 1.01e-024 1.01e-024 2.03e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9937 permil - R(13C) 1.11173e-002 -5.6227 permil - R(14C) 2.37071e-013 20.161 pmc - R(18O) H2O(l) 1.99518e-003 -4.9952 permil - R(18O) OH- 1.92122e-003 -41.882 permil - R(18O) H3O+ 2.04132e-003 18.013 permil - R(18O) O2(aq) 1.99518e-003 -4.9952 permil - R(13C) CO2(aq) 1.10378e-002 -12.739 permil - R(14C) CO2(aq) 2.33687e-013 19.873 pmc - R(18O) CO2(aq) 2.07915e-003 36.879 permil - R(18O) HCO3- 1.99518e-003 -4.9952 permil - R(13C) HCO3- 1.11338e-002 -4.15 permil - R(14C) HCO3- 2.37771e-013 20.221 pmc - R(18O) CO3-2 1.99518e-003 -4.9952 permil - R(13C) CO3-2 1.11178e-002 -5.5791 permil - R(14C) CO3-2 2.37089e-013 20.163 pmc - R(18O) Calcite 2.05262e-003 23.651 permil - R(13C) Calcite 1.11559e-002 -2.1775 permil - R(14C) Calcite 2.38714e-013 20.301 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2973e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.9984e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8339e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.493e-005 6.474e-005 - [14C] 1.385e-015 1.380e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.153 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.004e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 28 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.739 -123.739 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.106e-006 1.014e-006 -5.956 -5.994 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.071e-008 6.081e-008 -7.217 -7.216 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 7.377e-040 - H2 3.689e-040 3.695e-040 -39.433 -39.432 0.001 (0) -O(0) 6.097e-014 - O2 3.036e-014 3.041e-014 -13.518 -13.517 0.001 (0) - O[18O] 1.212e-016 1.214e-016 -15.917 -15.916 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.697 -125.696 0.001 (0) -[13C](4) 6.493e-005 - H[13C]O3- 5.237e-005 4.791e-005 -4.281 -4.320 -0.039 (0) - [13C]O2 1.099e-005 1.101e-005 -4.959 -4.958 0.001 (0) - CaH[13C]O3+ 1.106e-006 1.014e-006 -5.956 -5.994 -0.037 (0) - H[13C]O[18O]O- 1.045e-007 9.559e-008 -6.981 -7.020 -0.039 (0) - H[13C]O2[18O]- 1.045e-007 9.559e-008 -6.981 -7.020 -0.039 (0) - H[13C][18O]O2- 1.045e-007 9.559e-008 -6.981 -7.020 -0.039 (0) - Ca[13C]O3 6.071e-008 6.081e-008 -7.217 -7.216 0.001 (0) - [13C]O[18O] 4.571e-008 4.578e-008 -7.340 -7.339 0.001 (0) - [13C]O3-2 3.114e-008 2.182e-008 -7.507 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.206e-009 2.024e-009 -8.656 -8.694 -0.037 (0) - CaH[13C]O[18O]O+ 2.206e-009 2.024e-009 -8.656 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.206e-009 2.024e-009 -8.656 -8.694 -0.037 (0) - Ca[13C]O2[18O] 3.634e-010 3.640e-010 -9.440 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.085e-010 1.907e-010 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.085e-010 1.907e-010 -9.681 -9.720 -0.039 (0) - H[13C]O[18O]2- 2.085e-010 1.907e-010 -9.681 -9.720 -0.039 (0) - [13C]O2[18O]-2 1.864e-010 1.306e-010 -9.730 -9.884 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.371 -136.370 0.001 (0) -[14C](4) 1.385e-015 - H[14C]O3- 1.118e-015 1.023e-015 -14.951 -14.990 -0.039 (0) - [14C]O2 2.327e-016 2.331e-016 -15.633 -15.632 0.001 (0) - CaH[14C]O3+ 2.362e-017 2.166e-017 -16.627 -16.664 -0.037 (0) - H[14C][18O]O2- 2.231e-018 2.041e-018 -17.651 -17.690 -0.039 (0) - H[14C]O[18O]O- 2.231e-018 2.041e-018 -17.651 -17.690 -0.039 (0) - H[14C]O2[18O]- 2.231e-018 2.041e-018 -17.651 -17.690 -0.039 (0) - Ca[14C]O3 1.295e-018 1.297e-018 -17.888 -17.887 0.001 (0) - [14C]O[18O] 9.677e-019 9.693e-019 -18.014 -18.014 0.001 (0) - [14C]O3-2 6.641e-019 4.653e-019 -18.178 -18.332 -0.155 (0) - CaH[14C]O2[18O]+ 4.712e-020 4.322e-020 -19.327 -19.364 -0.037 (0) - CaH[14C][18O]O2+ 4.712e-020 4.322e-020 -19.327 -19.364 -0.037 (0) - CaH[14C]O[18O]O+ 4.712e-020 4.322e-020 -19.327 -19.364 -0.037 (0) - Ca[14C]O2[18O] 7.749e-021 7.762e-021 -20.111 -20.110 0.001 (0) - H[14C][18O]2O- 4.452e-021 4.073e-021 -20.351 -20.390 -0.039 (0) - H[14C][18O]O[18O]- 4.452e-021 4.073e-021 -20.351 -20.390 -0.039 (0) - H[14C]O[18O]2- 4.452e-021 4.073e-021 -20.351 -20.390 -0.039 (0) - [14C]O2[18O]-2 3.975e-021 2.785e-021 -20.401 -20.555 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.214e-016 - O[18O] 1.212e-016 1.214e-016 -15.917 -15.916 0.001 (0) - [18O]2 1.209e-019 1.211e-019 -18.918 -18.917 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.84 -125.70 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.53 -21.03 -1.50 [14C][18O]2 - [14C]H4(g) -133.51 -136.37 -2.86 [14C]H4 - [14C]O2(g) -14.16 -15.63 -1.47 [14C]O2 - [14C]O[18O](g) -16.55 -18.33 -1.79 [14C]O[18O] - [18O]2(g) -16.63 -18.92 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.69 -12.54 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.84 -7.14 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.63 -4.44 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.53 -9.84 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.88 -123.74 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.28 -39.43 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.62 -13.52 -2.89 O2 - O[18O](g) -13.32 -16.22 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 26. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 25. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 9.5000e-003 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.48e-006 5.48e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.38e-008 3.38e-008 6.75e-005 - Ca[13C]O[18O]2(s) 6.93e-011 6.93e-011 1.39e-007 - Ca[13C][18O]3(s) 4.74e-014 4.74e-014 9.49e-011 - Ca[14C]O3(s) 1.08e-016 1.08e-016 2.16e-013 - Ca[14C]O2[18O](s) 6.66e-019 6.66e-019 1.33e-015 - Ca[14C]O[18O]2(s) 1.37e-021 1.37e-021 2.73e-018 - Ca[14C][18O]3(s) 9.35e-025 9.34e-025 1.87e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9936 permil - R(13C) 1.11211e-002 -5.2902 permil - R(14C) 2.18397e-013 18.573 pmc - R(18O) H2O(l) 1.99518e-003 -4.9951 permil - R(18O) OH- 1.92122e-003 -41.882 permil - R(18O) H3O+ 2.04132e-003 18.013 permil - R(18O) O2(aq) 1.99518e-003 -4.9951 permil - R(13C) CO2(aq) 1.10415e-002 -12.409 permil - R(14C) CO2(aq) 2.15280e-013 18.308 pmc - R(18O) CO2(aq) 2.07915e-003 36.879 permil - R(18O) HCO3- 1.99518e-003 -4.9951 permil - R(13C) HCO3- 1.11375e-002 -3.817 permil - R(14C) HCO3- 2.19042e-013 18.628 pmc - R(18O) CO3-2 1.99518e-003 -4.9951 permil - R(13C) CO3-2 1.11215e-002 -5.2466 permil - R(14C) CO3-2 2.18414e-013 18.574 pmc - R(18O) Calcite 2.05263e-003 23.651 permil - R(13C) Calcite 1.11596e-002 -1.8439 permil - R(14C) Calcite 2.19911e-013 18.702 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2389e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.4401e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.642e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.495e-005 6.476e-005 - [14C] 1.275e-015 1.272e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.184 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.010e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 22 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.987 -123.986 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.106e-006 1.015e-006 -5.956 -5.994 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.073e-008 6.083e-008 -7.217 -7.216 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 6.399e-040 - H2 3.199e-040 3.205e-040 -39.495 -39.494 0.001 (0) -O(0) 8.104e-014 - O2 4.036e-014 4.043e-014 -13.394 -13.393 0.001 (0) - O[18O] 1.611e-016 1.613e-016 -15.793 -15.792 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.944 -125.943 0.001 (0) -[13C](4) 6.495e-005 - H[13C]O3- 5.239e-005 4.793e-005 -4.281 -4.319 -0.039 (0) - [13C]O2 1.100e-005 1.101e-005 -4.959 -4.958 0.001 (0) - CaH[13C]O3+ 1.106e-006 1.015e-006 -5.956 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.045e-007 9.562e-008 -6.981 -7.019 -0.039 (0) - H[13C][18O]O2- 1.045e-007 9.562e-008 -6.981 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.045e-007 9.562e-008 -6.981 -7.019 -0.039 (0) - Ca[13C]O3 6.073e-008 6.083e-008 -7.217 -7.216 0.001 (0) - [13C]O[18O] 4.572e-008 4.580e-008 -7.340 -7.339 0.001 (0) - [13C]O3-2 3.115e-008 2.183e-008 -7.506 -7.661 -0.155 (0) - CaH[13C]O[18O]O+ 2.207e-009 2.025e-009 -8.656 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.207e-009 2.025e-009 -8.656 -8.694 -0.037 (0) - CaH[13C]O2[18O]+ 2.207e-009 2.025e-009 -8.656 -8.694 -0.037 (0) - Ca[13C]O2[18O] 3.635e-010 3.641e-010 -9.439 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.085e-010 1.908e-010 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.085e-010 1.908e-010 -9.681 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.085e-010 1.908e-010 -9.681 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.865e-010 1.306e-010 -9.729 -9.884 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.654 -136.653 0.001 (0) -[14C](4) 1.275e-015 - H[14C]O3- 1.030e-015 9.426e-016 -14.987 -15.026 -0.039 (0) - [14C]O2 2.144e-016 2.147e-016 -15.669 -15.668 0.001 (0) - CaH[14C]O3+ 2.176e-017 1.996e-017 -16.662 -16.700 -0.037 (0) - H[14C][18O]O2- 2.056e-018 1.881e-018 -17.687 -17.726 -0.039 (0) - H[14C]O[18O]O- 2.056e-018 1.881e-018 -17.687 -17.726 -0.039 (0) - H[14C]O2[18O]- 2.056e-018 1.881e-018 -17.687 -17.726 -0.039 (0) - Ca[14C]O3 1.193e-018 1.195e-018 -17.923 -17.923 0.001 (0) - [14C]O[18O] 8.915e-019 8.929e-019 -18.050 -18.049 0.001 (0) - [14C]O3-2 6.118e-019 4.286e-019 -18.213 -18.368 -0.155 (0) - CaH[14C]O2[18O]+ 4.341e-020 3.982e-020 -19.362 -19.400 -0.037 (0) - CaH[14C][18O]O2+ 4.341e-020 3.982e-020 -19.362 -19.400 -0.037 (0) - CaH[14C]O[18O]O+ 4.341e-020 3.982e-020 -19.362 -19.400 -0.037 (0) - Ca[14C]O2[18O] 7.139e-021 7.151e-021 -20.146 -20.146 0.001 (0) - H[14C][18O]O[18O]- 4.101e-021 3.752e-021 -20.387 -20.426 -0.039 (0) - H[14C]O[18O]2- 4.101e-021 3.752e-021 -20.387 -20.426 -0.039 (0) - H[14C][18O]2O- 4.101e-021 3.752e-021 -20.387 -20.426 -0.039 (0) - [14C]O2[18O]-2 3.662e-021 2.566e-021 -20.436 -20.591 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.614e-016 - O[18O] 1.611e-016 1.613e-016 -15.793 -15.792 0.001 (0) - [18O]2 1.607e-019 1.609e-019 -18.794 -18.793 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.08 -125.94 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.56 -21.07 -1.50 [14C][18O]2 - [14C]H4(g) -133.79 -136.65 -2.86 [14C]H4 - [14C]O2(g) -14.20 -15.67 -1.47 [14C]O2 - [14C]O[18O](g) -16.58 -18.37 -1.79 [14C]O[18O] - [18O]2(g) -16.50 -18.79 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.73 -12.57 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.88 -7.17 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.67 -4.47 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.56 -9.87 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.13 -123.99 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.34 -39.49 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.50 -13.39 -2.89 O2 - O[18O](g) -13.20 -16.09 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 27. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 26. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 1.0000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.49e-006 5.49e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.38e-008 3.38e-008 6.76e-005 - Ca[13C]O[18O]2(s) 6.93e-011 6.93e-011 1.39e-007 - Ca[13C][18O]3(s) 4.74e-014 4.74e-014 9.49e-011 - Ca[14C]O3(s) 9.96e-017 9.96e-017 1.99e-013 - Ca[14C]O2[18O](s) 6.13e-019 6.13e-019 1.23e-015 - Ca[14C]O[18O]2(s) 1.26e-021 1.26e-021 2.52e-018 - Ca[14C][18O]3(s) 8.61e-025 8.60e-025 1.72e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9934 permil - R(13C) 1.11245e-002 -4.9838 permil - R(14C) 2.01194e-013 17.11 pmc - R(18O) H2O(l) 1.99518e-003 -4.995 permil - R(18O) OH- 1.92122e-003 -41.882 permil - R(18O) H3O+ 2.04132e-003 18.013 permil - R(18O) O2(aq) 1.99518e-003 -4.995 permil - R(13C) CO2(aq) 1.10449e-002 -12.105 permil - R(14C) CO2(aq) 1.98323e-013 16.866 pmc - R(18O) CO2(aq) 2.07915e-003 36.879 permil - R(18O) HCO3- 1.99518e-003 -4.995 permil - R(13C) HCO3- 1.11410e-002 -3.5101 permil - R(14C) HCO3- 2.01788e-013 17.161 pmc - R(18O) CO3-2 1.99518e-003 -4.995 permil - R(13C) CO3-2 1.11250e-002 -4.9402 permil - R(14C) CO3-2 2.01210e-013 17.111 pmc - R(18O) Calcite 2.05263e-003 23.651 permil - R(13C) Calcite 1.11630e-002 -1.5364 permil - R(14C) Calcite 2.02589e-013 17.229 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2761e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.5543e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.647e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.497e-005 6.478e-005 - [14C] 1.175e-015 1.172e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.199 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.023e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 19 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.106 -124.106 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.015e-006 -5.956 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.075e-008 6.085e-008 -7.216 -7.216 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 5.972e-040 - H2 2.986e-040 2.991e-040 -39.525 -39.524 0.001 (0) -O(0) 9.303e-014 - O2 4.633e-014 4.641e-014 -13.334 -13.333 0.001 (0) - O[18O] 1.849e-016 1.852e-016 -15.733 -15.732 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.063 -126.063 0.001 (0) -[13C](4) 6.497e-005 - H[13C]O3- 5.240e-005 4.794e-005 -4.281 -4.319 -0.039 (0) - [13C]O2 1.100e-005 1.102e-005 -4.959 -4.958 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.015e-006 -5.956 -5.993 -0.037 (0) - H[13C][18O]O2- 1.046e-007 9.565e-008 -6.981 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-007 9.565e-008 -6.981 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.046e-007 9.565e-008 -6.981 -7.019 -0.039 (0) - Ca[13C]O3 6.075e-008 6.085e-008 -7.216 -7.216 0.001 (0) - [13C]O[18O] 4.574e-008 4.581e-008 -7.340 -7.339 0.001 (0) - [13C]O3-2 3.116e-008 2.183e-008 -7.506 -7.661 -0.155 (0) - CaH[13C][18O]O2+ 2.208e-009 2.025e-009 -8.656 -8.694 -0.037 (0) - CaH[13C]O2[18O]+ 2.208e-009 2.025e-009 -8.656 -8.694 -0.037 (0) - CaH[13C]O[18O]O+ 2.208e-009 2.025e-009 -8.656 -8.694 -0.037 (0) - Ca[13C]O2[18O] 3.636e-010 3.642e-010 -9.439 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.086e-010 1.908e-010 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.086e-010 1.908e-010 -9.681 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.086e-010 1.908e-010 -9.681 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.865e-010 1.307e-010 -9.729 -9.884 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.809 -136.808 0.001 (0) -[14C](4) 1.175e-015 - H[14C]O3- 9.491e-016 8.683e-016 -15.023 -15.061 -0.039 (0) - [14C]O2 1.975e-016 1.978e-016 -15.704 -15.704 0.001 (0) - CaH[14C]O3+ 2.004e-017 1.839e-017 -16.698 -16.736 -0.037 (0) - H[14C][18O]O2- 1.894e-018 1.732e-018 -17.723 -17.761 -0.039 (0) - H[14C]O[18O]O- 1.894e-018 1.732e-018 -17.723 -17.761 -0.039 (0) - H[14C]O2[18O]- 1.894e-018 1.732e-018 -17.723 -17.761 -0.039 (0) - Ca[14C]O3 1.099e-018 1.101e-018 -17.959 -17.958 0.001 (0) - [14C]O[18O] 8.212e-019 8.226e-019 -18.086 -18.085 0.001 (0) - [14C]O3-2 5.636e-019 3.949e-019 -18.249 -18.404 -0.155 (0) - CaH[14C]O2[18O]+ 3.999e-020 3.668e-020 -19.398 -19.436 -0.037 (0) - CaH[14C][18O]O2+ 3.999e-020 3.668e-020 -19.398 -19.436 -0.037 (0) - CaH[14C]O[18O]O+ 3.999e-020 3.668e-020 -19.398 -19.436 -0.037 (0) - Ca[14C]O2[18O] 6.577e-021 6.587e-021 -20.182 -20.181 0.001 (0) - H[14C]O[18O]2- 3.778e-021 3.457e-021 -20.423 -20.461 -0.039 (0) - H[14C][18O]2O- 3.778e-021 3.457e-021 -20.423 -20.461 -0.039 (0) - H[14C][18O]O[18O]- 3.778e-021 3.457e-021 -20.423 -20.461 -0.039 (0) - [14C]O2[18O]-2 3.374e-021 2.363e-021 -20.472 -20.626 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.852e-016 - O[18O] 1.849e-016 1.852e-016 -15.733 -15.732 0.001 (0) - [18O]2 1.844e-019 1.847e-019 -18.734 -18.733 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.20 -126.06 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.60 -21.10 -1.50 [14C][18O]2 - [14C]H4(g) -133.95 -136.81 -2.86 [14C]H4 - [14C]O2(g) -14.24 -15.70 -1.47 [14C]O2 - [14C]O[18O](g) -16.62 -18.40 -1.79 [14C]O[18O] - [18O]2(g) -16.44 -18.73 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.76 -12.61 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.91 -7.21 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.70 -4.51 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.60 -9.91 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.25 -124.11 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.37 -39.52 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.44 -13.33 -2.89 O2 - O[18O](g) -13.14 -16.03 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 28. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 27. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 1.0500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.49e-006 5.49e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.38e-008 3.38e-008 6.76e-005 - Ca[13C]O[18O]2(s) 6.94e-011 6.94e-011 1.39e-007 - Ca[13C][18O]3(s) 4.75e-014 4.75e-014 9.49e-011 - Ca[14C]O3(s) 9.17e-017 9.17e-017 1.83e-013 - Ca[14C]O2[18O](s) 5.65e-019 5.65e-019 1.13e-015 - Ca[14C]O[18O]2(s) 1.16e-021 1.16e-021 2.32e-018 - Ca[14C][18O]3(s) 7.93e-025 7.92e-025 1.59e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9933 permil - R(13C) 1.11276e-002 -4.7014 permil - R(14C) 1.85346e-013 15.762 pmc - R(18O) H2O(l) 1.99518e-003 -4.9948 permil - R(18O) OH- 1.92122e-003 -41.882 permil - R(18O) H3O+ 2.04132e-003 18.013 permil - R(18O) O2(aq) 1.99518e-003 -4.9948 permil - R(13C) CO2(aq) 1.10480e-002 -11.824 permil - R(14C) CO2(aq) 1.82701e-013 15.537 pmc - R(18O) CO2(aq) 2.07915e-003 36.879 permil - R(18O) HCO3- 1.99518e-003 -4.9948 permil - R(13C) HCO3- 1.11441e-002 -3.2274 permil - R(14C) HCO3- 1.85894e-013 15.809 pmc - R(18O) CO3-2 1.99518e-003 -4.9948 permil - R(13C) CO3-2 1.11281e-002 -4.6578 permil - R(14C) CO3-2 1.85360e-013 15.763 pmc - R(18O) Calcite 2.05263e-003 23.651 permil - R(13C) Calcite 1.11662e-002 -1.2531 permil - R(14C) Calcite 1.86631e-013 15.871 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2453e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 2.2204e-013 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.714e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.499e-005 6.480e-005 - [14C] 1.082e-015 1.079e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.204 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.027e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.145 -124.144 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.015e-006 -5.956 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.077e-008 6.087e-008 -7.216 -7.216 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 5.842e-040 - H2 2.921e-040 2.926e-040 -39.534 -39.534 0.001 (0) -O(0) 9.724e-014 - O2 4.843e-014 4.850e-014 -13.315 -13.314 0.001 (0) - O[18O] 1.932e-016 1.936e-016 -15.714 -15.713 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.102 -126.101 0.001 (0) -[13C](4) 6.499e-005 - H[13C]O3- 5.242e-005 4.796e-005 -4.281 -4.319 -0.039 (0) - [13C]O2 1.100e-005 1.102e-005 -4.959 -4.958 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.015e-006 -5.956 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.046e-007 9.568e-008 -6.981 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.046e-007 9.568e-008 -6.981 -7.019 -0.039 (0) - H[13C][18O]O2- 1.046e-007 9.568e-008 -6.981 -7.019 -0.039 (0) - Ca[13C]O3 6.077e-008 6.087e-008 -7.216 -7.216 0.001 (0) - [13C]O[18O] 4.575e-008 4.582e-008 -7.340 -7.339 0.001 (0) - [13C]O3-2 3.117e-008 2.184e-008 -7.506 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.208e-009 2.026e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.208e-009 2.026e-009 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.208e-009 2.026e-009 -8.656 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.637e-010 3.643e-010 -9.439 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.087e-010 1.909e-010 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-010 1.909e-010 -9.681 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.087e-010 1.909e-010 -9.681 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.866e-010 1.307e-010 -9.729 -9.884 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.883 -136.882 0.001 (0) -[14C](4) 1.082e-015 - H[14C]O3- 8.744e-016 7.999e-016 -15.058 -15.097 -0.039 (0) - [14C]O2 1.819e-016 1.822e-016 -15.740 -15.739 0.001 (0) - CaH[14C]O3+ 1.846e-017 1.694e-017 -16.734 -16.771 -0.037 (0) - H[14C][18O]O2- 1.745e-018 1.596e-018 -17.758 -17.797 -0.039 (0) - H[14C]O[18O]O- 1.745e-018 1.596e-018 -17.758 -17.797 -0.039 (0) - H[14C]O2[18O]- 1.745e-018 1.596e-018 -17.758 -17.797 -0.039 (0) - Ca[14C]O3 1.012e-018 1.014e-018 -17.995 -17.994 0.001 (0) - [14C]O[18O] 7.565e-019 7.578e-019 -18.121 -18.120 0.001 (0) - [14C]O3-2 5.192e-019 3.638e-019 -18.285 -18.439 -0.155 (0) - CaH[14C]O2[18O]+ 3.684e-020 3.379e-020 -19.434 -19.471 -0.037 (0) - CaH[14C][18O]O2+ 3.684e-020 3.379e-020 -19.434 -19.471 -0.037 (0) - CaH[14C]O[18O]O+ 3.684e-020 3.379e-020 -19.434 -19.471 -0.037 (0) - Ca[14C]O2[18O] 6.059e-021 6.068e-021 -20.218 -20.217 0.001 (0) - H[14C][18O]2O- 3.481e-021 3.184e-021 -20.458 -20.497 -0.039 (0) - H[14C][18O]O[18O]- 3.481e-021 3.184e-021 -20.458 -20.497 -0.039 (0) - H[14C]O[18O]2- 3.481e-021 3.184e-021 -20.458 -20.497 -0.039 (0) - [14C]O2[18O]-2 3.108e-021 2.177e-021 -20.508 -20.662 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.936e-016 - O[18O] 1.932e-016 1.936e-016 -15.714 -15.713 0.001 (0) - [18O]2 1.928e-019 1.931e-019 -18.715 -18.714 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.24 -126.10 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.64 -21.14 -1.50 [14C][18O]2 - [14C]H4(g) -134.02 -136.88 -2.86 [14C]H4 - [14C]O2(g) -14.27 -15.74 -1.47 [14C]O2 - [14C]O[18O](g) -16.65 -18.44 -1.79 [14C]O[18O] - [18O]2(g) -16.42 -18.71 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.80 -12.64 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.95 -7.24 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.74 -4.54 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.63 -9.94 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.28 -124.14 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.38 -39.53 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.42 -13.31 -2.89 O2 - O[18O](g) -13.12 -16.01 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 29. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 28. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 1.1000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.49e-006 5.49e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.38e-008 3.38e-008 6.76e-005 - Ca[13C]O[18O]2(s) 6.94e-011 6.94e-011 1.39e-007 - Ca[13C][18O]3(s) 4.75e-014 4.75e-014 9.49e-011 - Ca[14C]O3(s) 8.45e-017 8.45e-017 1.69e-013 - Ca[14C]O2[18O](s) 5.20e-019 5.20e-019 1.04e-015 - Ca[14C]O[18O]2(s) 1.07e-021 1.07e-021 2.14e-018 - Ca[14C][18O]3(s) 7.31e-025 7.30e-025 1.46e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9932 permil - R(13C) 1.11305e-002 -4.4413 permil - R(14C) 1.70747e-013 14.521 pmc - R(18O) H2O(l) 1.99518e-003 -4.9947 permil - R(18O) OH- 1.92122e-003 -41.882 permil - R(18O) H3O+ 2.04132e-003 18.013 permil - R(18O) O2(aq) 1.99518e-003 -4.9947 permil - R(13C) CO2(aq) 1.10509e-002 -11.566 permil - R(14C) CO2(aq) 1.68310e-013 14.313 pmc - R(18O) CO2(aq) 2.07915e-003 36.879 permil - R(18O) HCO3- 1.99518e-003 -4.9947 permil - R(13C) HCO3- 1.11470e-002 -2.9668 permil - R(14C) HCO3- 1.71251e-013 14.564 pmc - R(18O) CO3-2 1.99518e-003 -4.9947 permil - R(13C) CO3-2 1.11310e-002 -4.3976 permil - R(14C) CO3-2 1.70760e-013 14.522 pmc - R(18O) Calcite 2.05263e-003 23.652 permil - R(13C) Calcite 1.11691e-002 -0.99203 permil - R(14C) Calcite 1.71930e-013 14.621 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2452e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5965e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.500e-005 6.481e-005 - [14C] 9.972e-016 9.942e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.211 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.027e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 28 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.203 -124.202 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.078e-008 6.088e-008 -7.216 -7.216 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 5.649e-040 - H2 2.825e-040 2.829e-040 -39.549 -39.548 0.001 (0) -O(0) 1.040e-013 - O2 5.178e-014 5.186e-014 -13.286 -13.285 0.001 (0) - O[18O] 2.066e-016 2.070e-016 -15.685 -15.684 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.160 -126.159 0.001 (0) -[13C](4) 6.500e-005 - H[13C]O3- 5.243e-005 4.797e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.100e-005 1.102e-005 -4.958 -4.958 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-007 9.570e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.046e-007 9.570e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-007 9.570e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.078e-008 6.088e-008 -7.216 -7.216 0.001 (0) - [13C]O[18O] 4.576e-008 4.584e-008 -7.340 -7.339 0.001 (0) - [13C]O3-2 3.118e-008 2.184e-008 -7.506 -7.661 -0.155 (0) - CaH[13C]O[18O]O+ 2.209e-009 2.026e-009 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.209e-009 2.026e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.209e-009 2.026e-009 -8.656 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.638e-010 3.644e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.087e-010 1.909e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-010 1.909e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.087e-010 1.909e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.866e-010 1.307e-010 -9.729 -9.884 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.977 -136.976 0.001 (0) -[14C](4) 9.972e-016 - H[14C]O3- 8.055e-016 7.369e-016 -15.094 -15.133 -0.039 (0) - [14C]O2 1.676e-016 1.679e-016 -15.776 -15.775 0.001 (0) - CaH[14C]O3+ 1.701e-017 1.560e-017 -16.769 -16.807 -0.037 (0) - H[14C][18O]O2- 1.607e-018 1.470e-018 -17.794 -17.833 -0.039 (0) - H[14C]O[18O]O- 1.607e-018 1.470e-018 -17.794 -17.833 -0.039 (0) - H[14C]O2[18O]- 1.607e-018 1.470e-018 -17.794 -17.833 -0.039 (0) - Ca[14C]O3 9.325e-019 9.340e-019 -18.030 -18.030 0.001 (0) - [14C]O[18O] 6.970e-019 6.981e-019 -18.157 -18.156 0.001 (0) - [14C]O3-2 4.783e-019 3.351e-019 -18.320 -18.475 -0.155 (0) - CaH[14C]O2[18O]+ 3.394e-020 3.113e-020 -19.469 -19.507 -0.037 (0) - CaH[14C][18O]O2+ 3.394e-020 3.113e-020 -19.469 -19.507 -0.037 (0) - CaH[14C]O[18O]O+ 3.394e-020 3.113e-020 -19.469 -19.507 -0.037 (0) - Ca[14C]O2[18O] 5.581e-021 5.590e-021 -20.253 -20.253 0.001 (0) - H[14C][18O]O[18O]- 3.206e-021 2.934e-021 -20.494 -20.533 -0.039 (0) - H[14C]O[18O]2- 3.206e-021 2.934e-021 -20.494 -20.533 -0.039 (0) - H[14C][18O]2O- 3.206e-021 2.934e-021 -20.494 -20.533 -0.039 (0) - [14C]O2[18O]-2 2.863e-021 2.006e-021 -20.543 -20.698 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.070e-016 - O[18O] 2.066e-016 2.070e-016 -15.685 -15.684 0.001 (0) - [18O]2 2.061e-019 2.065e-019 -18.686 -18.685 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.30 -126.16 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.67 -21.18 -1.50 [14C][18O]2 - [14C]H4(g) -134.12 -136.98 -2.86 [14C]H4 - [14C]O2(g) -14.31 -15.77 -1.47 [14C]O2 - [14C]O[18O](g) -16.69 -18.48 -1.79 [14C]O[18O] - [18O]2(g) -16.39 -18.69 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.84 -12.68 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.98 -7.28 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.77 -4.58 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.67 -9.98 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.34 -124.20 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.40 -39.55 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.39 -13.29 -2.89 O2 - O[18O](g) -13.09 -15.99 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 30. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 29. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 1.1500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.49e-006 5.49e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.38e-008 3.38e-008 6.76e-005 - Ca[13C]O[18O]2(s) 6.94e-011 6.94e-011 1.39e-007 - Ca[13C][18O]3(s) 4.75e-014 4.75e-014 9.50e-011 - Ca[14C]O3(s) 7.78e-017 7.78e-017 1.56e-013 - Ca[14C]O2[18O](s) 4.79e-019 4.79e-019 9.59e-016 - Ca[14C]O[18O]2(s) 9.84e-022 9.84e-022 1.97e-018 - Ca[14C][18O]3(s) 6.73e-025 6.72e-025 1.35e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.993 permil - R(13C) 1.11332e-002 -4.2015 permil - R(14C) 1.57297e-013 13.377 pmc - R(18O) H2O(l) 1.99518e-003 -4.9945 permil - R(18O) OH- 1.92122e-003 -41.882 permil - R(18O) H3O+ 2.04132e-003 18.013 permil - R(18O) O2(aq) 1.99518e-003 -4.9945 permil - R(13C) CO2(aq) 1.10536e-002 -11.328 permil - R(14C) CO2(aq) 1.55052e-013 13.186 pmc - R(18O) CO2(aq) 2.07915e-003 36.879 permil - R(18O) HCO3- 1.99518e-003 -4.9945 permil - R(13C) HCO3- 1.11497e-002 -2.7267 permil - R(14C) HCO3- 1.57761e-013 13.416 pmc - R(18O) CO3-2 1.99518e-003 -4.9945 permil - R(13C) CO3-2 1.11337e-002 -4.1579 permil - R(14C) CO3-2 1.57309e-013 13.378 pmc - R(18O) Calcite 2.05263e-003 23.652 permil - R(13C) Calcite 1.11718e-002 -0.75146 permil - R(14C) Calcite 1.58387e-013 13.47 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2784e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.4417e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7863e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.502e-005 6.483e-005 - [14C] 9.186e-016 9.159e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.207 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.040e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 24 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.169 -124.168 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.080e-008 6.090e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 5.761e-040 - H2 2.880e-040 2.885e-040 -39.541 -39.540 0.001 (0) -O(0) 9.999e-014 - O2 4.979e-014 4.988e-014 -13.303 -13.302 0.001 (0) - O[18O] 1.987e-016 1.990e-016 -15.702 -15.701 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.126 -126.125 0.001 (0) -[13C](4) 6.502e-005 - H[13C]O3- 5.244e-005 4.798e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.101e-005 1.103e-005 -4.958 -4.958 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - H[13C][18O]O2- 1.046e-007 9.573e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-007 9.573e-008 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.046e-007 9.573e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.080e-008 6.090e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.577e-008 4.585e-008 -7.339 -7.339 0.001 (0) - [13C]O3-2 3.119e-008 2.185e-008 -7.506 -7.661 -0.155 (0) - CaH[13C][18O]O2+ 2.210e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.210e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.210e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.639e-010 3.645e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.088e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.088e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.867e-010 1.308e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.979 -136.978 0.001 (0) -[14C](4) 9.186e-016 - H[14C]O3- 7.420e-016 6.789e-016 -15.130 -15.168 -0.039 (0) - [14C]O2 1.544e-016 1.547e-016 -15.811 -15.811 0.001 (0) - CaH[14C]O3+ 1.567e-017 1.437e-017 -16.805 -16.842 -0.037 (0) - H[14C][18O]O2- 1.481e-018 1.354e-018 -17.830 -17.868 -0.039 (0) - H[14C]O[18O]O- 1.481e-018 1.354e-018 -17.830 -17.868 -0.039 (0) - H[14C]O2[18O]- 1.481e-018 1.354e-018 -17.830 -17.868 -0.039 (0) - Ca[14C]O3 8.590e-019 8.604e-019 -18.066 -18.065 0.001 (0) - [14C]O[18O] 6.421e-019 6.431e-019 -18.192 -18.192 0.001 (0) - [14C]O3-2 4.407e-019 3.087e-019 -18.356 -18.510 -0.155 (0) - CaH[14C]O2[18O]+ 3.126e-020 2.868e-020 -19.505 -19.542 -0.037 (0) - CaH[14C][18O]O2+ 3.126e-020 2.868e-020 -19.505 -19.542 -0.037 (0) - CaH[14C]O[18O]O+ 3.126e-020 2.868e-020 -19.505 -19.542 -0.037 (0) - Ca[14C]O2[18O] 5.142e-021 5.150e-021 -20.289 -20.288 0.001 (0) - H[14C]O[18O]2- 2.954e-021 2.702e-021 -20.530 -20.568 -0.039 (0) - H[14C][18O]2O- 2.954e-021 2.702e-021 -20.530 -20.568 -0.039 (0) - H[14C][18O]O[18O]- 2.954e-021 2.702e-021 -20.530 -20.568 -0.039 (0) - [14C]O2[18O]-2 2.638e-021 1.848e-021 -20.579 -20.733 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.991e-016 - O[18O] 1.987e-016 1.990e-016 -15.702 -15.701 0.001 (0) - [18O]2 1.982e-019 1.985e-019 -18.703 -18.702 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.26 -126.12 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.71 -21.21 -1.50 [14C][18O]2 - [14C]H4(g) -134.12 -136.98 -2.86 [14C]H4 - [14C]O2(g) -14.34 -15.81 -1.47 [14C]O2 - [14C]O[18O](g) -16.72 -18.51 -1.79 [14C]O[18O] - [18O]2(g) -16.41 -18.70 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.87 -12.72 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.02 -7.32 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.81 -4.62 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.71 -10.02 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.31 -124.17 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.39 -39.54 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.41 -13.30 -2.89 O2 - O[18O](g) -13.11 -16.00 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 31. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 30. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 1.2000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.49e-006 5.49e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.38e-008 3.38e-008 6.76e-005 - Ca[13C]O[18O]2(s) 6.94e-011 6.94e-011 1.39e-007 - Ca[13C][18O]3(s) 4.75e-014 4.75e-014 9.50e-011 - Ca[14C]O3(s) 7.17e-017 7.17e-017 1.43e-013 - Ca[14C]O2[18O](s) 4.42e-019 4.42e-019 8.83e-016 - Ca[14C]O[18O]2(s) 9.06e-022 9.06e-022 1.81e-018 - Ca[14C][18O]3(s) 6.20e-025 6.19e-025 1.24e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9929 permil - R(13C) 1.11357e-002 -3.9806 permil - R(14C) 1.44907e-013 12.323 pmc - R(18O) H2O(l) 1.99519e-003 -4.9944 permil - R(18O) OH- 1.92122e-003 -41.882 permil - R(18O) H3O+ 2.04132e-003 18.013 permil - R(18O) O2(aq) 1.99519e-003 -4.9944 permil - R(13C) CO2(aq) 1.10560e-002 -11.109 permil - R(14C) CO2(aq) 1.42838e-013 12.147 pmc - R(18O) CO2(aq) 2.07915e-003 36.879 permil - R(18O) HCO3- 1.99519e-003 -4.9944 permil - R(13C) HCO3- 1.11522e-002 -2.5055 permil - R(14C) HCO3- 1.45335e-013 12.36 pmc - R(18O) CO3-2 1.99519e-003 -4.9944 permil - R(13C) CO3-2 1.11362e-002 -3.937 permil - R(14C) CO3-2 1.44918e-013 12.324 pmc - R(18O) Calcite 2.05263e-003 23.652 permil - R(13C) Calcite 1.11743e-002 -0.52978 permil - R(14C) Calcite 1.45911e-013 12.409 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2761e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5696e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.503e-005 6.484e-005 - [14C] 8.462e-016 8.438e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.218 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.041e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 23 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.254 -124.253 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.081e-008 6.091e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 5.487e-040 - H2 2.743e-040 2.748e-040 -39.562 -39.561 0.001 (0) -O(0) 1.102e-013 - O2 5.489e-014 5.498e-014 -13.261 -13.260 0.001 (0) - O[18O] 2.190e-016 2.194e-016 -15.659 -15.659 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.210 -126.209 0.001 (0) -[13C](4) 6.503e-005 - H[13C]O3- 5.245e-005 4.799e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.101e-005 1.103e-005 -4.958 -4.958 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.047e-007 9.575e-008 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.047e-007 9.575e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-007 9.575e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.081e-008 6.091e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.578e-008 4.586e-008 -7.339 -7.339 0.001 (0) - [13C]O3-2 3.119e-008 2.185e-008 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.210e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.210e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.210e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.640e-010 3.646e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.088e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.088e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.867e-010 1.308e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.099 -137.098 0.001 (0) -[14C](4) 8.462e-016 - H[14C]O3- 6.836e-016 6.254e-016 -15.165 -15.204 -0.039 (0) - [14C]O2 1.422e-016 1.425e-016 -15.847 -15.846 0.001 (0) - CaH[14C]O3+ 1.444e-017 1.324e-017 -16.841 -16.878 -0.037 (0) - H[14C][18O]O2- 1.364e-018 1.248e-018 -17.865 -17.904 -0.039 (0) - H[14C]O[18O]O- 1.364e-018 1.248e-018 -17.865 -17.904 -0.039 (0) - H[14C]O2[18O]- 1.364e-018 1.248e-018 -17.865 -17.904 -0.039 (0) - Ca[14C]O3 7.913e-019 7.926e-019 -18.102 -18.101 0.001 (0) - [14C]O[18O] 5.915e-019 5.925e-019 -18.228 -18.227 0.001 (0) - [14C]O3-2 4.059e-019 2.844e-019 -18.392 -18.546 -0.155 (0) - CaH[14C]O2[18O]+ 2.880e-020 2.642e-020 -19.541 -19.578 -0.037 (0) - CaH[14C][18O]O2+ 2.880e-020 2.642e-020 -19.541 -19.578 -0.037 (0) - CaH[14C]O[18O]O+ 2.880e-020 2.642e-020 -19.541 -19.578 -0.037 (0) - Ca[14C]O2[18O] 4.737e-021 4.744e-021 -20.325 -20.324 0.001 (0) - H[14C][18O]2O- 2.721e-021 2.490e-021 -20.565 -20.604 -0.039 (0) - H[14C][18O]O[18O]- 2.721e-021 2.490e-021 -20.565 -20.604 -0.039 (0) - H[14C]O[18O]2- 2.721e-021 2.490e-021 -20.565 -20.604 -0.039 (0) - [14C]O2[18O]-2 2.430e-021 1.702e-021 -20.614 -20.769 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.195e-016 - O[18O] 2.190e-016 2.194e-016 -15.659 -15.659 0.001 (0) - [18O]2 2.185e-019 2.189e-019 -18.661 -18.660 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.35 -126.21 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.74 -21.25 -1.50 [14C][18O]2 - [14C]H4(g) -134.24 -137.10 -2.86 [14C]H4 - [14C]O2(g) -14.38 -15.85 -1.47 [14C]O2 - [14C]O[18O](g) -16.76 -18.55 -1.79 [14C]O[18O] - [18O]2(g) -16.37 -18.66 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.91 -12.75 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.05 -7.35 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.84 -4.65 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.74 -10.05 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.39 -124.25 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.41 -39.56 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.37 -13.26 -2.89 O2 - O[18O](g) -13.07 -15.96 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 32. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 31. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 1.2500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.49e-006 5.49e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.38e-008 3.38e-008 6.76e-005 - Ca[13C]O[18O]2(s) 6.94e-011 6.94e-011 1.39e-007 - Ca[13C][18O]3(s) 4.75e-014 4.75e-014 9.50e-011 - Ca[14C]O3(s) 6.61e-017 6.61e-017 1.32e-013 - Ca[14C]O2[18O](s) 4.07e-019 4.07e-019 8.14e-016 - Ca[14C]O[18O]2(s) 8.35e-022 8.35e-022 1.67e-018 - Ca[14C][18O]3(s) 5.71e-025 5.70e-025 1.14e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9927 permil - R(13C) 1.11380e-002 -3.777 permil - R(14C) 1.33492e-013 11.352 pmc - R(18O) H2O(l) 1.99519e-003 -4.9943 permil - R(18O) OH- 1.92122e-003 -41.881 permil - R(18O) H3O+ 2.04132e-003 18.014 permil - R(18O) O2(aq) 1.99519e-003 -4.9943 permil - R(13C) CO2(aq) 1.10583e-002 -10.907 permil - R(14C) CO2(aq) 1.31587e-013 11.19 pmc - R(18O) CO2(aq) 2.07915e-003 36.88 permil - R(18O) HCO3- 1.99519e-003 -4.9943 permil - R(13C) HCO3- 1.11545e-002 -2.3016 permil - R(14C) HCO3- 1.33887e-013 11.386 pmc - R(18O) CO3-2 1.99519e-003 -4.9943 permil - R(13C) CO3-2 1.11385e-002 -3.7334 permil - R(14C) CO3-2 1.33503e-013 11.353 pmc - R(18O) Calcite 2.05263e-003 23.652 permil - R(13C) Calcite 1.11766e-002 -0.3255 permil - R(14C) Calcite 1.34417e-013 11.431 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2401e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.7724e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.4952e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.505e-005 6.486e-005 - [14C] 7.796e-016 7.773e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.208 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.047e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 33 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.173 -124.172 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.082e-008 6.092e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 5.748e-040 - H2 2.874e-040 2.879e-040 -39.542 -39.541 0.001 (0) -O(0) 1.004e-013 - O2 5.002e-014 5.010e-014 -13.301 -13.300 0.001 (0) - O[18O] 1.996e-016 1.999e-016 -15.700 -15.699 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.129 -126.129 0.001 (0) -[13C](4) 6.505e-005 - H[13C]O3- 5.247e-005 4.800e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.101e-005 1.103e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-007 9.577e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-007 9.577e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-007 9.577e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.082e-008 6.092e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.579e-008 4.587e-008 -7.339 -7.339 0.001 (0) - [13C]O3-2 3.120e-008 2.186e-008 -7.506 -7.660 -0.155 (0) - CaH[13C]O[18O]O+ 2.210e-009 2.028e-009 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.210e-009 2.028e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.210e-009 2.028e-009 -8.656 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.641e-010 3.647e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.868e-010 1.308e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.054 -137.053 0.001 (0) -[14C](4) 7.796e-016 - H[14C]O3- 6.297e-016 5.761e-016 -15.201 -15.239 -0.039 (0) - [14C]O2 1.310e-016 1.313e-016 -15.883 -15.882 0.001 (0) - CaH[14C]O3+ 1.330e-017 1.220e-017 -16.876 -16.914 -0.037 (0) - H[14C][18O]O2- 1.256e-018 1.149e-018 -17.901 -17.939 -0.039 (0) - H[14C]O[18O]O- 1.256e-018 1.149e-018 -17.901 -17.939 -0.039 (0) - H[14C]O2[18O]- 1.256e-018 1.149e-018 -17.901 -17.939 -0.039 (0) - Ca[14C]O3 7.290e-019 7.302e-019 -18.137 -18.137 0.001 (0) - [14C]O[18O] 5.449e-019 5.458e-019 -18.264 -18.263 0.001 (0) - [14C]O3-2 3.740e-019 2.620e-019 -18.427 -18.582 -0.155 (0) - CaH[14C]O2[18O]+ 2.653e-020 2.434e-020 -19.576 -19.614 -0.037 (0) - CaH[14C][18O]O2+ 2.653e-020 2.434e-020 -19.576 -19.614 -0.037 (0) - CaH[14C]O[18O]O+ 2.653e-020 2.434e-020 -19.576 -19.614 -0.037 (0) - Ca[14C]O2[18O] 4.364e-021 4.371e-021 -20.360 -20.359 0.001 (0) - H[14C][18O]O[18O]- 2.507e-021 2.293e-021 -20.601 -20.640 -0.039 (0) - H[14C]O[18O]2- 2.507e-021 2.293e-021 -20.601 -20.640 -0.039 (0) - H[14C][18O]2O- 2.507e-021 2.293e-021 -20.601 -20.640 -0.039 (0) - [14C]O2[18O]-2 2.238e-021 1.568e-021 -20.650 -20.805 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.000e-016 - O[18O] 1.996e-016 1.999e-016 -15.700 -15.699 0.001 (0) - [18O]2 1.991e-019 1.994e-019 -18.701 -18.700 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.27 -126.13 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.78 -21.28 -1.50 [14C][18O]2 - [14C]H4(g) -134.19 -137.05 -2.86 [14C]H4 - [14C]O2(g) -14.41 -15.88 -1.47 [14C]O2 - [14C]O[18O](g) -16.79 -18.58 -1.79 [14C]O[18O] - [18O]2(g) -16.41 -18.70 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.94 -12.79 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.09 -7.39 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.88 -4.69 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.78 -10.09 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.31 -124.17 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.39 -39.54 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.41 -13.30 -2.89 O2 - O[18O](g) -13.11 -16.00 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 33. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 32. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 1.3000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.49e-006 5.49e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.38e-008 3.38e-008 6.77e-005 - Ca[13C]O[18O]2(s) 6.94e-011 6.94e-011 1.39e-007 - Ca[13C][18O]3(s) 4.75e-014 4.75e-014 9.50e-011 - Ca[14C]O3(s) 6.09e-017 6.09e-017 1.22e-013 - Ca[14C]O2[18O](s) 3.75e-019 3.75e-019 7.49e-016 - Ca[14C]O[18O]2(s) 7.69e-022 7.69e-022 1.54e-018 - Ca[14C][18O]3(s) 5.26e-025 5.25e-025 1.05e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9926 permil - R(13C) 1.11401e-002 -3.5895 permil - R(14C) 1.22977e-013 10.458 pmc - R(18O) H2O(l) 1.99519e-003 -4.9941 permil - R(18O) OH- 1.92122e-003 -41.881 permil - R(18O) H3O+ 2.04132e-003 18.014 permil - R(18O) O2(aq) 1.99519e-003 -4.9941 permil - R(13C) CO2(aq) 1.10603e-002 -10.72 permil - R(14C) CO2(aq) 1.21222e-013 10.309 pmc - R(18O) CO2(aq) 2.07915e-003 36.88 permil - R(18O) HCO3- 1.99519e-003 -4.9941 permil - R(13C) HCO3- 1.11566e-002 -2.1137 permil - R(14C) HCO3- 1.23340e-013 10.489 pmc - R(18O) CO3-2 1.99519e-003 -4.9941 permil - R(13C) CO3-2 1.11406e-002 -3.5458 permil - R(14C) CO3-2 1.22986e-013 10.459 pmc - R(18O) Calcite 2.05263e-003 23.652 permil - R(13C) Calcite 1.11787e-002 -0.13726 permil - R(14C) Calcite 1.23829e-013 10.531 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2378e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6852e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.506e-005 6.487e-005 - [14C] 7.182e-016 7.161e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.208 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.051e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 28 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.176 -124.175 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.083e-008 6.093e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 5.740e-040 - H2 2.870e-040 2.874e-040 -39.542 -39.541 0.001 (0) -O(0) 1.007e-013 - O2 5.017e-014 5.025e-014 -13.300 -13.299 0.001 (0) - O[18O] 2.002e-016 2.005e-016 -15.699 -15.698 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.132 -126.131 0.001 (0) -[13C](4) 6.506e-005 - H[13C]O3- 5.248e-005 4.801e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.101e-005 1.103e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.047e-007 9.578e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-007 9.578e-008 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.047e-007 9.578e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.083e-008 6.093e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.580e-008 4.587e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.121e-008 2.186e-008 -7.506 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.641e-010 3.647e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.868e-010 1.309e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.092 -137.091 0.001 (0) -[14C](4) 7.182e-016 - H[14C]O3- 5.801e-016 5.307e-016 -15.236 -15.275 -0.039 (0) - [14C]O2 1.207e-016 1.209e-016 -15.918 -15.918 0.001 (0) - CaH[14C]O3+ 1.225e-017 1.124e-017 -16.912 -16.949 -0.037 (0) - H[14C][18O]O2- 1.157e-018 1.059e-018 -17.936 -17.975 -0.039 (0) - H[14C]O[18O]O- 1.157e-018 1.059e-018 -17.936 -17.975 -0.039 (0) - H[14C]O2[18O]- 1.157e-018 1.059e-018 -17.936 -17.975 -0.039 (0) - Ca[14C]O3 6.716e-019 6.727e-019 -18.173 -18.172 0.001 (0) - [14C]O[18O] 5.020e-019 5.028e-019 -18.299 -18.299 0.001 (0) - [14C]O3-2 3.445e-019 2.413e-019 -18.463 -18.617 -0.155 (0) - CaH[14C]O2[18O]+ 2.444e-020 2.242e-020 -19.612 -19.649 -0.037 (0) - CaH[14C][18O]O2+ 2.444e-020 2.242e-020 -19.612 -19.649 -0.037 (0) - CaH[14C]O[18O]O+ 2.444e-020 2.242e-020 -19.612 -19.649 -0.037 (0) - Ca[14C]O2[18O] 4.020e-021 4.026e-021 -20.396 -20.395 0.001 (0) - H[14C]O[18O]2- 2.309e-021 2.113e-021 -20.637 -20.675 -0.039 (0) - H[14C][18O]2O- 2.309e-021 2.113e-021 -20.637 -20.675 -0.039 (0) - H[14C][18O]O[18O]- 2.309e-021 2.113e-021 -20.637 -20.675 -0.039 (0) - [14C]O2[18O]-2 2.062e-021 1.445e-021 -20.686 -20.840 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.006e-016 - O[18O] 2.002e-016 2.005e-016 -15.699 -15.698 0.001 (0) - [18O]2 1.997e-019 2.000e-019 -18.700 -18.699 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.27 -126.13 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.81 -21.32 -1.50 [14C][18O]2 - [14C]H4(g) -134.23 -137.09 -2.86 [14C]H4 - [14C]O2(g) -14.45 -15.92 -1.47 [14C]O2 - [14C]O[18O](g) -16.83 -18.62 -1.79 [14C]O[18O] - [18O]2(g) -16.41 -18.70 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.98 -12.82 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.13 -7.42 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.91 -4.72 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.81 -10.12 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.31 -124.17 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.39 -39.54 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.41 -13.30 -2.89 O2 - O[18O](g) -13.11 -16.00 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 34. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 33. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 1.3500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.49e-006 5.49e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.38e-008 3.38e-008 6.77e-005 - Ca[13C]O[18O]2(s) 6.95e-011 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 4.75e-014 4.75e-014 9.50e-011 - Ca[14C]O3(s) 5.61e-017 5.61e-017 1.12e-013 - Ca[14C]O2[18O](s) 3.45e-019 3.45e-019 6.90e-016 - Ca[14C]O[18O]2(s) 7.09e-022 7.09e-022 1.42e-018 - Ca[14C][18O]3(s) 4.85e-025 4.84e-025 9.70e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9925 permil - R(13C) 1.11420e-002 -3.4166 permil - R(14C) 1.13290e-013 9.6344 pmc - R(18O) H2O(l) 1.99519e-003 -4.994 permil - R(18O) OH- 1.92122e-003 -41.881 permil - R(18O) H3O+ 2.04132e-003 18.014 permil - R(18O) O2(aq) 1.99519e-003 -4.994 permil - R(13C) CO2(aq) 1.10623e-002 -10.549 permil - R(14C) CO2(aq) 1.11673e-013 9.4969 pmc - R(18O) CO2(aq) 2.07915e-003 36.88 permil - R(18O) HCO3- 1.99519e-003 -4.994 permil - R(13C) HCO3- 1.11585e-002 -1.9406 permil - R(14C) HCO3- 1.13625e-013 9.6629 pmc - R(18O) CO3-2 1.99519e-003 -4.994 permil - R(13C) CO3-2 1.11425e-002 -3.3729 permil - R(14C) CO3-2 1.13299e-013 9.6352 pmc - R(18O) Calcite 2.05263e-003 23.652 permil - R(13C) Calcite 1.11806e-002 0.036198 permil - R(14C) Calcite 1.14075e-013 9.7012 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2343e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.67e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.507e-005 6.488e-005 - [14C] 6.616e-016 6.597e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.180 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.057e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 27 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.950 -123.949 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.084e-008 6.094e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 6.537e-040 - H2 3.268e-040 3.274e-040 -39.486 -39.485 0.001 (0) -O(0) 7.765e-014 - O2 3.867e-014 3.874e-014 -13.413 -13.412 0.001 (0) - O[18O] 1.543e-016 1.546e-016 -15.812 -15.811 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.906 -125.905 0.001 (0) -[13C](4) 6.507e-005 - H[13C]O3- 5.248e-005 4.802e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.102e-005 1.103e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.047e-007 9.580e-008 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.047e-007 9.580e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-007 9.580e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.084e-008 6.094e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.581e-008 4.588e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.121e-008 2.187e-008 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.642e-010 3.648e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.868e-010 1.309e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.902 -136.901 0.001 (0) -[14C](4) 6.616e-016 - H[14C]O3- 5.344e-016 4.889e-016 -15.272 -15.311 -0.039 (0) - [14C]O2 1.112e-016 1.114e-016 -15.954 -15.953 0.001 (0) - CaH[14C]O3+ 1.129e-017 1.035e-017 -16.947 -16.985 -0.037 (0) - H[14C][18O]O2- 1.066e-018 9.755e-019 -17.972 -18.011 -0.039 (0) - H[14C]O[18O]O- 1.066e-018 9.755e-019 -17.972 -18.011 -0.039 (0) - H[14C]O2[18O]- 1.066e-018 9.755e-019 -17.972 -18.011 -0.039 (0) - Ca[14C]O3 6.187e-019 6.197e-019 -18.209 -18.208 0.001 (0) - [14C]O[18O] 4.624e-019 4.632e-019 -18.335 -18.334 0.001 (0) - [14C]O3-2 3.174e-019 2.223e-019 -18.498 -18.653 -0.155 (0) - CaH[14C]O2[18O]+ 2.252e-020 2.066e-020 -19.647 -19.685 -0.037 (0) - CaH[14C][18O]O2+ 2.252e-020 2.066e-020 -19.647 -19.685 -0.037 (0) - CaH[14C]O[18O]O+ 2.252e-020 2.066e-020 -19.647 -19.685 -0.037 (0) - Ca[14C]O2[18O] 3.703e-021 3.709e-021 -20.431 -20.431 0.001 (0) - H[14C][18O]2O- 2.127e-021 1.946e-021 -20.672 -20.711 -0.039 (0) - H[14C][18O]O[18O]- 2.127e-021 1.946e-021 -20.672 -20.711 -0.039 (0) - H[14C]O[18O]2- 2.127e-021 1.946e-021 -20.672 -20.711 -0.039 (0) - [14C]O2[18O]-2 1.900e-021 1.331e-021 -20.721 -20.876 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.546e-016 - O[18O] 1.543e-016 1.546e-016 -15.812 -15.811 0.001 (0) - [18O]2 1.539e-019 1.542e-019 -18.813 -18.812 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.04 -125.90 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.85 -21.35 -1.50 [14C][18O]2 - [14C]H4(g) -134.04 -136.90 -2.86 [14C]H4 - [14C]O2(g) -14.48 -15.95 -1.47 [14C]O2 - [14C]O[18O](g) -16.87 -18.65 -1.79 [14C]O[18O] - [18O]2(g) -16.52 -18.81 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.01 -12.86 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.16 -7.46 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.95 -4.76 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.85 -10.16 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.09 -123.95 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.33 -39.48 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.52 -13.41 -2.89 O2 - O[18O](g) -13.22 -16.11 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 35. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 34. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 1.4000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.38e-008 3.38e-008 6.77e-005 - Ca[13C]O[18O]2(s) 6.95e-011 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 4.75e-014 4.75e-014 9.51e-011 - Ca[14C]O3(s) 5.16e-017 5.16e-017 1.03e-013 - Ca[14C]O2[18O](s) 3.18e-019 3.18e-019 6.36e-016 - Ca[14C]O[18O]2(s) 6.53e-022 6.53e-022 1.31e-018 - Ca[14C][18O]3(s) 4.47e-025 4.46e-025 8.93e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9923 permil - R(13C) 1.11438e-002 -3.2573 permil - R(14C) 1.04366e-013 8.8755 pmc - R(18O) H2O(l) 1.99519e-003 -4.9939 permil - R(18O) OH- 1.92122e-003 -41.881 permil - R(18O) H3O+ 2.04132e-003 18.014 permil - R(18O) O2(aq) 1.99519e-003 -4.9939 permil - R(13C) CO2(aq) 1.10640e-002 -10.391 permil - R(14C) CO2(aq) 1.02877e-013 8.7488 pmc - R(18O) CO2(aq) 2.07915e-003 36.88 permil - R(18O) HCO3- 1.99519e-003 -4.9939 permil - R(13C) HCO3- 1.11603e-002 -1.7811 permil - R(14C) HCO3- 1.04674e-013 8.9017 pmc - R(18O) CO3-2 1.99519e-003 -4.9939 permil - R(13C) CO3-2 1.11443e-002 -3.2136 permil - R(14C) CO3-2 1.04374e-013 8.8762 pmc - R(18O) Calcite 2.05263e-003 23.652 permil - R(13C) Calcite 1.11824e-002 0.19604 permil - R(14C) Calcite 1.05089e-013 8.937 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2616e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.2196e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6133e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.508e-005 6.489e-005 - [14C] 6.095e-016 6.077e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.183 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.077e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 35 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.976 -123.975 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.085e-008 6.095e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 6.439e-040 - H2 3.220e-040 3.225e-040 -39.492 -39.491 0.001 (0) -O(0) 8.003e-014 - O2 3.986e-014 3.992e-014 -13.399 -13.399 0.001 (0) - O[18O] 1.590e-016 1.593e-016 -15.798 -15.798 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.932 -125.931 0.001 (0) -[13C](4) 6.508e-005 - H[13C]O3- 5.249e-005 4.802e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-007 9.582e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-007 9.582e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-007 9.582e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.085e-008 6.095e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.581e-008 4.589e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.122e-008 2.187e-008 -7.506 -7.660 -0.155 (0) - CaH[13C]O[18O]O+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.642e-010 3.648e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.309e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.963 -136.963 0.001 (0) -[14C](4) 6.095e-016 - H[14C]O3- 4.923e-016 4.504e-016 -15.308 -15.346 -0.039 (0) - [14C]O2 1.024e-016 1.026e-016 -15.990 -15.989 0.001 (0) - CaH[14C]O3+ 1.040e-017 9.537e-018 -16.983 -17.021 -0.037 (0) - H[14C][18O]O2- 9.823e-019 8.987e-019 -18.008 -18.046 -0.039 (0) - H[14C]O[18O]O- 9.823e-019 8.987e-019 -18.008 -18.046 -0.039 (0) - H[14C]O2[18O]- 9.823e-019 8.987e-019 -18.008 -18.046 -0.039 (0) - Ca[14C]O3 5.699e-019 5.709e-019 -18.244 -18.243 0.001 (0) - [14C]O[18O] 4.260e-019 4.267e-019 -18.371 -18.370 0.001 (0) - [14C]O3-2 2.924e-019 2.048e-019 -18.534 -18.689 -0.155 (0) - CaH[14C]O2[18O]+ 2.074e-020 1.903e-020 -19.683 -19.721 -0.037 (0) - CaH[14C][18O]O2+ 2.074e-020 1.903e-020 -19.683 -19.721 -0.037 (0) - CaH[14C]O[18O]O+ 2.074e-020 1.903e-020 -19.683 -19.721 -0.037 (0) - Ca[14C]O2[18O] 3.411e-021 3.417e-021 -20.467 -20.466 0.001 (0) - H[14C][18O]O[18O]- 1.960e-021 1.793e-021 -20.708 -20.746 -0.039 (0) - H[14C]O[18O]2- 1.960e-021 1.793e-021 -20.708 -20.746 -0.039 (0) - H[14C][18O]2O- 1.960e-021 1.793e-021 -20.708 -20.746 -0.039 (0) - [14C]O2[18O]-2 1.750e-021 1.226e-021 -20.757 -20.912 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.594e-016 - O[18O] 1.590e-016 1.593e-016 -15.798 -15.798 0.001 (0) - [18O]2 1.587e-019 1.589e-019 -18.800 -18.799 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.07 -125.93 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.89 -21.39 -1.50 [14C][18O]2 - [14C]H4(g) -134.10 -136.96 -2.86 [14C]H4 - [14C]O2(g) -14.52 -15.99 -1.47 [14C]O2 - [14C]O[18O](g) -16.90 -18.69 -1.79 [14C]O[18O] - [18O]2(g) -16.51 -18.80 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.05 -12.89 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.20 -7.49 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.99 -4.79 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.88 -10.19 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.12 -123.98 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.34 -39.49 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.51 -13.40 -2.89 O2 - O[18O](g) -13.21 -16.10 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 36. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 35. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 1.4500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.38e-008 3.38e-008 6.77e-005 - Ca[13C]O[18O]2(s) 6.95e-011 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 4.75e-014 4.75e-014 9.51e-011 - Ca[14C]O3(s) 4.76e-017 4.76e-017 9.52e-014 - Ca[14C]O2[18O](s) 2.93e-019 2.93e-019 5.86e-016 - Ca[14C]O[18O]2(s) 6.01e-022 6.01e-022 1.20e-018 - Ca[14C][18O]3(s) 4.11e-025 4.10e-025 8.23e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9922 permil - R(13C) 1.11454e-002 -3.1105 permil - R(14C) 9.61451e-014 8.1764 pmc - R(18O) H2O(l) 1.99519e-003 -4.9937 permil - R(18O) OH- 1.92122e-003 -41.881 permil - R(18O) H3O+ 2.04132e-003 18.014 permil - R(18O) O2(aq) 1.99519e-003 -4.9937 permil - R(13C) CO2(aq) 1.10657e-002 -10.245 permil - R(14C) CO2(aq) 9.47729e-014 8.0597 pmc - R(18O) CO2(aq) 2.07915e-003 36.88 permil - R(18O) HCO3- 1.99519e-003 -4.9937 permil - R(13C) HCO3- 1.11619e-002 -1.6341 permil - R(14C) HCO3- 9.64291e-014 8.2005 pmc - R(18O) CO3-2 1.99519e-003 -4.9937 permil - R(13C) CO3-2 1.11459e-002 -3.0668 permil - R(14C) CO3-2 9.61525e-014 8.177 pmc - R(18O) Calcite 2.05263e-003 23.653 permil - R(13C) Calcite 1.11840e-002 0.34333 permil - R(14C) Calcite 9.68115e-014 8.2331 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2564e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6827e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.509e-005 6.490e-005 - [14C] 5.615e-016 5.598e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.194 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.088e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 31 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.067 -124.066 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.086e-008 6.096e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 6.110e-040 - H2 3.055e-040 3.060e-040 -39.515 -39.514 0.001 (0) -O(0) 8.888e-014 - O2 4.426e-014 4.433e-014 -13.354 -13.353 0.001 (0) - O[18O] 1.766e-016 1.769e-016 -15.753 -15.752 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.023 -126.022 0.001 (0) -[13C](4) 6.509e-005 - H[13C]O3- 5.250e-005 4.803e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.047e-007 9.583e-008 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.047e-007 9.583e-008 -6.980 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.047e-007 9.583e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.086e-008 6.096e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.582e-008 4.590e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.122e-008 2.187e-008 -7.506 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.643e-010 3.649e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.309e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.090 -137.089 0.001 (0) -[14C](4) 5.615e-016 - H[14C]O3- 4.536e-016 4.149e-016 -15.343 -15.382 -0.039 (0) - [14C]O2 9.438e-017 9.453e-017 -16.025 -16.024 0.001 (0) - CaH[14C]O3+ 9.578e-018 8.786e-018 -17.019 -17.056 -0.037 (0) - H[14C][18O]O2- 9.049e-019 8.279e-019 -18.043 -18.082 -0.039 (0) - H[14C]O[18O]O- 9.049e-019 8.279e-019 -18.043 -18.082 -0.039 (0) - H[14C]O2[18O]- 9.049e-019 8.279e-019 -18.043 -18.082 -0.039 (0) - Ca[14C]O3 5.250e-019 5.259e-019 -18.280 -18.279 0.001 (0) - [14C]O[18O] 3.924e-019 3.931e-019 -18.406 -18.406 0.001 (0) - [14C]O3-2 2.693e-019 1.887e-019 -18.570 -18.724 -0.155 (0) - CaH[14C]O2[18O]+ 1.911e-020 1.753e-020 -19.719 -19.756 -0.037 (0) - CaH[14C][18O]O2+ 1.911e-020 1.753e-020 -19.719 -19.756 -0.037 (0) - CaH[14C]O[18O]O+ 1.911e-020 1.753e-020 -19.719 -19.756 -0.037 (0) - Ca[14C]O2[18O] 3.143e-021 3.148e-021 -20.503 -20.502 0.001 (0) - H[14C]O[18O]2- 1.805e-021 1.652e-021 -20.743 -20.782 -0.039 (0) - H[14C][18O]2O- 1.805e-021 1.652e-021 -20.743 -20.782 -0.039 (0) - H[14C][18O]O[18O]- 1.805e-021 1.652e-021 -20.743 -20.782 -0.039 (0) - [14C]O2[18O]-2 1.612e-021 1.129e-021 -20.793 -20.947 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.770e-016 - O[18O] 1.766e-016 1.769e-016 -15.753 -15.752 0.001 (0) - [18O]2 1.762e-019 1.765e-019 -18.754 -18.753 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.16 -126.02 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.92 -21.42 -1.50 [14C][18O]2 - [14C]H4(g) -134.23 -137.09 -2.86 [14C]H4 - [14C]O2(g) -14.56 -16.02 -1.47 [14C]O2 - [14C]O[18O](g) -16.94 -18.72 -1.79 [14C]O[18O] - [18O]2(g) -16.46 -18.75 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.08 -12.93 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.23 -7.53 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.02 -4.83 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.92 -10.23 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.21 -124.07 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.36 -39.51 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.46 -13.35 -2.89 O2 - O[18O](g) -13.16 -16.05 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 37. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 36. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 1.5000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.38e-008 3.38e-008 6.77e-005 - Ca[13C]O[18O]2(s) 6.95e-011 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 4.75e-014 4.75e-014 9.51e-011 - Ca[14C]O3(s) 4.38e-017 4.38e-017 8.77e-014 - Ca[14C]O2[18O](s) 2.70e-019 2.70e-019 5.40e-016 - Ca[14C]O[18O]2(s) 5.54e-022 5.54e-022 1.11e-018 - Ca[14C][18O]3(s) 3.79e-025 3.78e-025 7.58e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9921 permil - R(13C) 1.11469e-002 -2.9753 permil - R(14C) 8.85717e-014 7.5323 pmc - R(18O) H2O(l) 1.99519e-003 -4.9936 permil - R(18O) OH- 1.92122e-003 -41.881 permil - R(18O) H3O+ 2.04132e-003 18.014 permil - R(18O) O2(aq) 1.99519e-003 -4.9936 permil - R(13C) CO2(aq) 1.10672e-002 -10.111 permil - R(14C) CO2(aq) 8.73076e-014 7.4248 pmc - R(18O) CO2(aq) 2.07915e-003 36.88 permil - R(18O) HCO3- 1.99519e-003 -4.9936 permil - R(13C) HCO3- 1.11634e-002 -1.4986 permil - R(14C) HCO3- 8.88333e-014 7.5546 pmc - R(18O) CO3-2 1.99519e-003 -4.9936 permil - R(13C) CO3-2 1.11474e-002 -2.9316 permil - R(14C) CO3-2 8.85785e-014 7.5329 pmc - R(18O) Calcite 2.05263e-003 23.653 permil - R(13C) Calcite 1.11856e-002 0.47905 permil - R(14C) Calcite 8.91855e-014 7.5845 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2534e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.4417e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6528e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.510e-005 6.491e-005 - [14C] 5.172e-016 5.157e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.183 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.090e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 38 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.975 -123.974 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.087e-008 6.097e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 6.441e-040 - H2 3.221e-040 3.226e-040 -39.492 -39.491 0.001 (0) -O(0) 7.998e-014 - O2 3.983e-014 3.989e-014 -13.400 -13.399 0.001 (0) - O[18O] 1.589e-016 1.592e-016 -15.799 -15.798 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.931 -125.930 0.001 (0) -[13C](4) 6.510e-005 - H[13C]O3- 5.251e-005 4.804e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.048e-007 9.584e-008 -6.980 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.048e-007 9.584e-008 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-007 9.584e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.087e-008 6.097e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.583e-008 4.590e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.123e-008 2.188e-008 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.643e-010 3.649e-010 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.309e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.034 -137.033 0.001 (0) -[14C](4) 5.172e-016 - H[14C]O3- 4.178e-016 3.823e-016 -15.379 -15.418 -0.039 (0) - [14C]O2 8.694e-017 8.708e-017 -16.061 -16.060 0.001 (0) - CaH[14C]O3+ 8.823e-018 8.094e-018 -17.054 -17.092 -0.037 (0) - H[14C][18O]O2- 8.336e-019 7.627e-019 -18.079 -18.118 -0.039 (0) - H[14C]O[18O]O- 8.336e-019 7.627e-019 -18.079 -18.118 -0.039 (0) - H[14C]O2[18O]- 8.336e-019 7.627e-019 -18.079 -18.118 -0.039 (0) - Ca[14C]O3 4.837e-019 4.845e-019 -18.315 -18.315 0.001 (0) - [14C]O[18O] 3.615e-019 3.621e-019 -18.442 -18.441 0.001 (0) - [14C]O3-2 2.481e-019 1.738e-019 -18.605 -18.760 -0.155 (0) - CaH[14C]O2[18O]+ 1.760e-020 1.615e-020 -19.754 -19.792 -0.037 (0) - CaH[14C][18O]O2+ 1.760e-020 1.615e-020 -19.754 -19.792 -0.037 (0) - CaH[14C]O[18O]O+ 1.760e-020 1.615e-020 -19.754 -19.792 -0.037 (0) - Ca[14C]O2[18O] 2.895e-021 2.900e-021 -20.538 -20.538 0.001 (0) - H[14C][18O]2O- 1.663e-021 1.522e-021 -20.779 -20.818 -0.039 (0) - H[14C][18O]O[18O]- 1.663e-021 1.522e-021 -20.779 -20.818 -0.039 (0) - H[14C]O[18O]2- 1.663e-021 1.522e-021 -20.779 -20.818 -0.039 (0) - [14C]O2[18O]-2 1.485e-021 1.040e-021 -20.828 -20.983 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.592e-016 - O[18O] 1.589e-016 1.592e-016 -15.799 -15.798 0.001 (0) - [18O]2 1.585e-019 1.588e-019 -18.800 -18.799 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.07 -125.93 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.96 -21.46 -1.50 [14C][18O]2 - [14C]H4(g) -134.17 -137.03 -2.86 [14C]H4 - [14C]O2(g) -14.59 -16.06 -1.47 [14C]O2 - [14C]O[18O](g) -16.97 -18.76 -1.79 [14C]O[18O] - [18O]2(g) -16.51 -18.80 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.12 -12.97 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.27 -7.57 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.06 -4.87 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.96 -10.27 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.11 -123.97 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.34 -39.49 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.51 -13.40 -2.89 O2 - O[18O](g) -13.21 -16.10 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 38. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 37. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 1.5500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 6.95e-011 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 4.75e-014 4.75e-014 9.51e-011 - Ca[14C]O3(s) 4.04e-017 4.04e-017 8.08e-014 - Ca[14C]O2[18O](s) 2.49e-019 2.49e-019 4.97e-016 - Ca[14C]O[18O]2(s) 5.10e-022 5.10e-022 1.02e-018 - Ca[14C][18O]3(s) 3.49e-025 3.48e-025 6.98e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9919 permil - R(13C) 1.11483e-002 -2.8506 permil - R(14C) 8.15948e-014 6.939 pmc - R(18O) H2O(l) 1.99519e-003 -4.9934 permil - R(18O) OH- 1.92122e-003 -41.881 permil - R(18O) H3O+ 2.04132e-003 18.014 permil - R(18O) O2(aq) 1.99519e-003 -4.9934 permil - R(13C) CO2(aq) 1.10685e-002 -9.9868 permil - R(14C) CO2(aq) 8.04302e-014 6.84 pmc - R(18O) CO2(aq) 2.07915e-003 36.88 permil - R(18O) HCO3- 1.99519e-003 -4.9934 permil - R(13C) HCO3- 1.11648e-002 -1.3738 permil - R(14C) HCO3- 8.18358e-014 6.9595 pmc - R(18O) CO3-2 1.99519e-003 -4.9934 permil - R(13C) CO3-2 1.11488e-002 -2.8069 permil - R(14C) CO3-2 8.16011e-014 6.9395 pmc - R(18O) Calcite 2.05263e-003 23.653 permil - R(13C) Calcite 1.11870e-002 0.60412 permil - R(14C) Calcite 8.21603e-014 6.9871 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2505e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8996e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.510e-005 6.491e-005 - [14C] 4.765e-016 4.751e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.193 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.094e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 44 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.053 -124.052 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.088e-008 6.098e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 6.160e-040 - H2 3.080e-040 3.085e-040 -39.511 -39.511 0.001 (0) -O(0) 8.746e-014 - O2 4.356e-014 4.363e-014 -13.361 -13.360 0.001 (0) - O[18O] 1.738e-016 1.741e-016 -15.760 -15.759 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.009 -126.008 0.001 (0) -[13C](4) 6.510e-005 - H[13C]O3- 5.251e-005 4.804e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-007 9.586e-008 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-007 9.586e-008 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-007 9.586e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.088e-008 6.098e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.583e-008 4.591e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.123e-008 2.188e-008 -7.505 -7.660 -0.155 (0) - CaH[13C]O[18O]O+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.644e-010 3.650e-010 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.310e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.147 -137.147 0.001 (0) -[14C](4) 4.765e-016 - H[14C]O3- 3.849e-016 3.521e-016 -15.415 -15.453 -0.039 (0) - [14C]O2 8.009e-017 8.022e-017 -16.096 -16.096 0.001 (0) - CaH[14C]O3+ 8.128e-018 7.456e-018 -17.090 -17.127 -0.037 (0) - H[14C][18O]O2- 7.680e-019 7.026e-019 -18.115 -18.153 -0.039 (0) - H[14C]O[18O]O- 7.680e-019 7.026e-019 -18.115 -18.153 -0.039 (0) - H[14C]O2[18O]- 7.680e-019 7.026e-019 -18.115 -18.153 -0.039 (0) - Ca[14C]O3 4.456e-019 4.463e-019 -18.351 -18.350 0.001 (0) - [14C]O[18O] 3.330e-019 3.336e-019 -18.477 -18.477 0.001 (0) - [14C]O3-2 2.286e-019 1.601e-019 -18.641 -18.796 -0.155 (0) - CaH[14C]O2[18O]+ 1.622e-020 1.488e-020 -19.790 -19.827 -0.037 (0) - CaH[14C][18O]O2+ 1.622e-020 1.488e-020 -19.790 -19.827 -0.037 (0) - CaH[14C]O[18O]O+ 1.622e-020 1.488e-020 -19.790 -19.827 -0.037 (0) - Ca[14C]O2[18O] 2.667e-021 2.671e-021 -20.574 -20.573 0.001 (0) - H[14C][18O]O[18O]- 1.532e-021 1.402e-021 -20.815 -20.853 -0.039 (0) - H[14C]O[18O]2- 1.532e-021 1.402e-021 -20.815 -20.853 -0.039 (0) - H[14C][18O]2O- 1.532e-021 1.402e-021 -20.815 -20.853 -0.039 (0) - [14C]O2[18O]-2 1.368e-021 9.585e-022 -20.864 -21.018 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.742e-016 - O[18O] 1.738e-016 1.741e-016 -15.760 -15.759 0.001 (0) - [18O]2 1.734e-019 1.737e-019 -18.761 -18.760 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.15 -126.01 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.99 -21.50 -1.50 [14C][18O]2 - [14C]H4(g) -134.29 -137.15 -2.86 [14C]H4 - [14C]O2(g) -14.63 -16.10 -1.47 [14C]O2 - [14C]O[18O](g) -17.01 -18.80 -1.79 [14C]O[18O] - [18O]2(g) -16.47 -18.76 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.16 -13.00 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.30 -7.60 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.09 -4.90 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.99 -10.30 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.19 -124.05 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.36 -39.51 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.47 -13.36 -2.89 O2 - O[18O](g) -13.17 -16.06 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 39. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 38. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 1.6000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 6.95e-011 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.72e-017 3.72e-017 7.44e-014 - Ca[14C]O2[18O](s) 2.29e-019 2.29e-019 4.58e-016 - Ca[14C]O[18O]2(s) 4.70e-022 4.70e-022 9.40e-019 - Ca[14C][18O]3(s) 3.22e-025 3.21e-025 6.43e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9918 permil - R(13C) 1.11496e-002 -2.7358 permil - R(14C) 7.51675e-014 6.3924 pmc - R(18O) H2O(l) 1.99519e-003 -4.9933 permil - R(18O) OH- 1.92122e-003 -41.881 permil - R(18O) H3O+ 2.04132e-003 18.015 permil - R(18O) O2(aq) 1.99519e-003 -4.9933 permil - R(13C) CO2(aq) 1.10698e-002 -9.8728 permil - R(14C) CO2(aq) 7.40947e-014 6.3012 pmc - R(18O) CO2(aq) 2.07915e-003 36.881 permil - R(18O) HCO3- 1.99519e-003 -4.9933 permil - R(13C) HCO3- 1.11661e-002 -1.2588 permil - R(14C) HCO3- 7.53895e-014 6.4113 pmc - R(18O) CO3-2 1.99519e-003 -4.9933 permil - R(13C) CO3-2 1.11501e-002 -2.6921 permil - R(14C) CO3-2 7.51733e-014 6.3929 pmc - R(18O) Calcite 2.05263e-003 23.653 permil - R(13C) Calcite 1.11882e-002 0.71937 permil - R(14C) Calcite 7.56884e-014 6.4367 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2802e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.5543e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7474e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.511e-005 6.492e-005 - [14C] 4.390e-016 4.377e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.232 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.096e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 24 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.366 -124.365 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.089e-008 6.099e-008 -7.215 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 5.145e-040 - H2 2.572e-040 2.577e-040 -39.590 -39.589 0.001 (0) -O(0) 1.254e-013 - O2 6.243e-014 6.253e-014 -13.205 -13.204 0.001 (0) - O[18O] 2.491e-016 2.495e-016 -15.604 -15.603 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.321 -126.321 0.001 (0) -[13C](4) 6.511e-005 - H[13C]O3- 5.252e-005 4.805e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.048e-007 9.587e-008 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-007 9.587e-008 -6.980 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.048e-007 9.587e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.089e-008 6.099e-008 -7.215 -7.215 0.001 (0) - [13C]O[18O] 4.584e-008 4.591e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.123e-008 2.188e-008 -7.505 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.644e-010 3.650e-010 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.310e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.496 -137.495 0.001 (0) -[14C](4) 4.390e-016 - H[14C]O3- 3.546e-016 3.244e-016 -15.450 -15.489 -0.039 (0) - [14C]O2 7.378e-017 7.390e-017 -16.132 -16.131 0.001 (0) - CaH[14C]O3+ 7.488e-018 6.869e-018 -17.126 -17.163 -0.037 (0) - H[14C][18O]O2- 7.075e-019 6.473e-019 -18.150 -18.189 -0.039 (0) - H[14C]O[18O]O- 7.075e-019 6.473e-019 -18.150 -18.189 -0.039 (0) - H[14C]O2[18O]- 7.075e-019 6.473e-019 -18.150 -18.189 -0.039 (0) - Ca[14C]O3 4.105e-019 4.112e-019 -18.387 -18.386 0.001 (0) - [14C]O[18O] 3.068e-019 3.073e-019 -18.513 -18.512 0.001 (0) - [14C]O3-2 2.106e-019 1.475e-019 -18.677 -18.831 -0.155 (0) - CaH[14C]O2[18O]+ 1.494e-020 1.370e-020 -19.826 -19.863 -0.037 (0) - CaH[14C][18O]O2+ 1.494e-020 1.370e-020 -19.826 -19.863 -0.037 (0) - CaH[14C]O[18O]O+ 1.494e-020 1.370e-020 -19.826 -19.863 -0.037 (0) - Ca[14C]O2[18O] 2.457e-021 2.461e-021 -20.610 -20.609 0.001 (0) - H[14C]O[18O]2- 1.412e-021 1.291e-021 -20.850 -20.889 -0.039 (0) - H[14C][18O]2O- 1.412e-021 1.291e-021 -20.850 -20.889 -0.039 (0) - H[14C][18O]O[18O]- 1.412e-021 1.291e-021 -20.850 -20.889 -0.039 (0) - [14C]O2[18O]-2 1.260e-021 8.830e-022 -20.899 -21.054 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.496e-016 - O[18O] 2.491e-016 2.495e-016 -15.604 -15.603 0.001 (0) - [18O]2 2.485e-019 2.489e-019 -18.605 -18.604 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.46 -126.32 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.03 -21.53 -1.50 [14C][18O]2 - [14C]H4(g) -134.64 -137.50 -2.86 [14C]H4 - [14C]O2(g) -14.66 -16.13 -1.47 [14C]O2 - [14C]O[18O](g) -17.04 -18.83 -1.79 [14C]O[18O] - [18O]2(g) -16.31 -18.60 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.19 -13.04 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.34 -7.64 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.13 -4.94 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.03 -10.34 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.50 -124.36 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.44 -39.59 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.31 -13.20 -2.89 O2 - O[18O](g) -13.01 -15.90 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 40. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 39. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 1.6500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 6.95e-011 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.43e-017 3.43e-017 6.85e-014 - Ca[14C]O2[18O](s) 2.11e-019 2.11e-019 4.22e-016 - Ca[14C]O[18O]2(s) 4.33e-022 4.33e-022 8.66e-019 - Ca[14C][18O]3(s) 2.96e-025 2.95e-025 5.93e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9916 permil - R(13C) 1.11508e-002 -2.6299 permil - R(14C) 6.92465e-014 5.8889 pmc - R(18O) H2O(l) 1.99519e-003 -4.9932 permil - R(18O) OH- 1.92122e-003 -41.88 permil - R(18O) H3O+ 2.04132e-003 18.015 permil - R(18O) O2(aq) 1.99519e-003 -4.9932 permil - R(13C) CO2(aq) 1.10710e-002 -9.7677 permil - R(14C) CO2(aq) 6.82581e-014 5.8048 pmc - R(18O) CO2(aq) 2.07915e-003 36.881 permil - R(18O) HCO3- 1.99519e-003 -4.9932 permil - R(13C) HCO3- 1.11673e-002 -1.1528 permil - R(14C) HCO3- 6.94510e-014 5.9063 pmc - R(18O) CO3-2 1.99519e-003 -4.9932 permil - R(13C) CO3-2 1.11513e-002 -2.5862 permil - R(14C) CO3-2 6.92518e-014 5.8893 pmc - R(18O) Calcite 2.05263e-003 23.653 permil - R(13C) Calcite 1.11894e-002 0.82557 permil - R(14C) Calcite 6.97264e-014 5.9297 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2773e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.4425e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6598e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.512e-005 6.493e-005 - [14C] 4.044e-016 4.032e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.249 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.093e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 33 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.502 -124.501 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.089e-008 6.099e-008 -7.215 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 4.756e-040 - H2 2.378e-040 2.382e-040 -39.624 -39.623 0.001 (0) -O(0) 1.467e-013 - O2 7.306e-014 7.318e-014 -13.136 -13.136 0.001 (0) - O[18O] 2.916e-016 2.920e-016 -15.535 -15.535 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.458 -126.457 0.001 (0) -[13C](4) 6.512e-005 - H[13C]O3- 5.253e-005 4.805e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.992 -0.037 (0) - H[13C]O[18O]O- 1.048e-007 9.588e-008 -6.980 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.048e-007 9.588e-008 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-007 9.588e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.089e-008 6.099e-008 -7.215 -7.215 0.001 (0) - [13C]O[18O] 4.584e-008 4.592e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.124e-008 2.188e-008 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.213e-009 2.030e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.213e-009 2.030e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.213e-009 2.030e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.645e-010 3.651e-010 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.870e-010 1.310e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.668 -137.667 0.001 (0) -[14C](4) 4.044e-016 - H[14C]O3- 3.267e-016 2.989e-016 -15.486 -15.525 -0.039 (0) - [14C]O2 6.797e-017 6.808e-017 -16.168 -16.167 0.001 (0) - CaH[14C]O3+ 6.898e-018 6.328e-018 -17.161 -17.199 -0.037 (0) - H[14C][18O]O2- 6.518e-019 5.963e-019 -18.186 -18.225 -0.039 (0) - H[14C]O[18O]O- 6.518e-019 5.963e-019 -18.186 -18.225 -0.039 (0) - H[14C]O2[18O]- 6.518e-019 5.963e-019 -18.186 -18.225 -0.039 (0) - Ca[14C]O3 3.782e-019 3.788e-019 -18.422 -18.422 0.001 (0) - [14C]O[18O] 2.826e-019 2.831e-019 -18.549 -18.548 0.001 (0) - [14C]O3-2 1.940e-019 1.359e-019 -18.712 -18.867 -0.155 (0) - CaH[14C]O2[18O]+ 1.376e-020 1.263e-020 -19.861 -19.899 -0.037 (0) - CaH[14C][18O]O2+ 1.376e-020 1.263e-020 -19.861 -19.899 -0.037 (0) - CaH[14C]O[18O]O+ 1.376e-020 1.263e-020 -19.861 -19.899 -0.037 (0) - Ca[14C]O2[18O] 2.263e-021 2.267e-021 -20.645 -20.645 0.001 (0) - H[14C][18O]2O- 1.300e-021 1.190e-021 -20.886 -20.925 -0.039 (0) - H[14C][18O]O[18O]- 1.300e-021 1.190e-021 -20.886 -20.925 -0.039 (0) - H[14C]O[18O]2- 1.300e-021 1.190e-021 -20.886 -20.925 -0.039 (0) - [14C]O2[18O]-2 1.161e-021 8.134e-022 -20.935 -21.090 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.921e-016 - O[18O] 2.916e-016 2.920e-016 -15.535 -15.535 0.001 (0) - [18O]2 2.908e-019 2.913e-019 -18.536 -18.536 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.60 -126.46 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.06 -21.57 -1.50 [14C][18O]2 - [14C]H4(g) -134.81 -137.67 -2.86 [14C]H4 - [14C]O2(g) -14.70 -16.17 -1.47 [14C]O2 - [14C]O[18O](g) -17.08 -18.87 -1.79 [14C]O[18O] - [18O]2(g) -16.25 -18.54 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.23 -13.07 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.37 -7.67 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.16 -4.97 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.06 -10.37 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.64 -124.50 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.47 -39.62 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.24 -13.14 -2.89 O2 - O[18O](g) -12.94 -15.84 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 41. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 40. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 1.7000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 6.95e-011 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.16e-017 3.16e-017 6.31e-014 - Ca[14C]O2[18O](s) 1.94e-019 1.94e-019 3.89e-016 - Ca[14C]O[18O]2(s) 3.99e-022 3.99e-022 7.98e-019 - Ca[14C][18O]3(s) 2.73e-025 2.72e-025 5.46e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9915 permil - R(13C) 1.11519e-002 -2.5324 permil - R(14C) 6.37918e-014 5.425 pmc - R(18O) H2O(l) 1.99519e-003 -4.993 permil - R(18O) OH- 1.92122e-003 -41.88 permil - R(18O) H3O+ 2.04132e-003 18.015 permil - R(18O) O2(aq) 1.99519e-003 -4.993 permil - R(13C) CO2(aq) 1.10721e-002 -9.6709 permil - R(14C) CO2(aq) 6.28814e-014 5.3476 pmc - R(18O) CO2(aq) 2.07915e-003 36.881 permil - R(18O) HCO3- 1.99519e-003 -4.993 permil - R(13C) HCO3- 1.11684e-002 -1.0551 permil - R(14C) HCO3- 6.39802e-014 5.441 pmc - R(18O) CO3-2 1.99519e-003 -4.993 permil - R(13C) CO3-2 1.11524e-002 -2.4887 permil - R(14C) CO3-2 6.37967e-014 5.4254 pmc - R(18O) Calcite 2.05263e-003 23.653 permil - R(13C) Calcite 1.11905e-002 0.92343 permil - R(14C) Calcite 6.42339e-014 5.4626 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2441e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6843e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.513e-005 6.494e-005 - [14C] 3.725e-016 3.714e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.237 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.103e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 20 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.406 -124.406 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.090e-008 6.100e-008 -7.215 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 5.026e-040 - H2 2.513e-040 2.517e-040 -39.600 -39.599 0.001 (0) -O(0) 1.314e-013 - O2 6.543e-014 6.554e-014 -13.184 -13.184 0.001 (0) - O[18O] 2.611e-016 2.615e-016 -15.583 -15.583 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.362 -126.361 0.001 (0) -[13C](4) 6.513e-005 - H[13C]O3- 5.253e-005 4.806e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.103e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.048e-007 9.589e-008 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-007 9.589e-008 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-007 9.589e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.090e-008 6.100e-008 -7.215 -7.215 0.001 (0) - [13C]O[18O] 4.585e-008 4.592e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.124e-008 2.188e-008 -7.505 -7.660 -0.155 (0) - CaH[13C]O[18O]O+ 2.213e-009 2.030e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.213e-009 2.030e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.213e-009 2.030e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.645e-010 3.651e-010 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.870e-010 1.310e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.608 -137.607 0.001 (0) -[14C](4) 3.725e-016 - H[14C]O3- 3.009e-016 2.753e-016 -15.522 -15.560 -0.039 (0) - [14C]O2 6.262e-017 6.272e-017 -16.203 -16.203 0.001 (0) - CaH[14C]O3+ 6.355e-018 5.829e-018 -17.197 -17.234 -0.037 (0) - H[14C][18O]O2- 6.004e-019 5.493e-019 -18.222 -18.260 -0.039 (0) - H[14C]O[18O]O- 6.004e-019 5.493e-019 -18.222 -18.260 -0.039 (0) - H[14C]O2[18O]- 6.004e-019 5.493e-019 -18.222 -18.260 -0.039 (0) - Ca[14C]O3 3.484e-019 3.489e-019 -18.458 -18.457 0.001 (0) - [14C]O[18O] 2.604e-019 2.608e-019 -18.584 -18.584 0.001 (0) - [14C]O3-2 1.787e-019 1.252e-019 -18.748 -18.902 -0.155 (0) - CaH[14C]O2[18O]+ 1.268e-020 1.163e-020 -19.897 -19.934 -0.037 (0) - CaH[14C][18O]O2+ 1.268e-020 1.163e-020 -19.897 -19.934 -0.037 (0) - CaH[14C]O[18O]O+ 1.268e-020 1.163e-020 -19.897 -19.934 -0.037 (0) - Ca[14C]O2[18O] 2.085e-021 2.089e-021 -20.681 -20.680 0.001 (0) - H[14C][18O]O[18O]- 1.198e-021 1.096e-021 -20.922 -20.960 -0.039 (0) - H[14C]O[18O]2- 1.198e-021 1.096e-021 -20.922 -20.960 -0.039 (0) - H[14C][18O]2O- 1.198e-021 1.096e-021 -20.922 -20.960 -0.039 (0) - [14C]O2[18O]-2 1.070e-021 7.493e-022 -20.971 -21.125 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.616e-016 - O[18O] 2.611e-016 2.615e-016 -15.583 -15.583 0.001 (0) - [18O]2 2.605e-019 2.609e-019 -18.584 -18.584 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.50 -126.36 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.10 -21.60 -1.50 [14C][18O]2 - [14C]H4(g) -134.75 -137.61 -2.86 [14C]H4 - [14C]O2(g) -14.73 -16.20 -1.47 [14C]O2 - [14C]O[18O](g) -17.12 -18.90 -1.79 [14C]O[18O] - [18O]2(g) -16.29 -18.58 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.26 -13.11 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.41 -7.71 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.20 -5.01 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.10 -10.41 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.55 -124.41 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.45 -39.60 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.29 -13.18 -2.89 O2 - O[18O](g) -12.99 -15.88 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 42. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 41. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 1.7500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 6.95e-011 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.51e-011 - Ca[14C]O3(s) 2.91e-017 2.91e-017 5.82e-014 - Ca[14C]O2[18O](s) 1.79e-019 1.79e-019 3.58e-016 - Ca[14C]O[18O]2(s) 3.68e-022 3.68e-022 7.35e-019 - Ca[14C][18O]3(s) 2.51e-025 2.50e-025 5.03e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9914 permil - R(13C) 1.11529e-002 -2.4426 permil - R(14C) 5.87669e-014 4.9977 pmc - R(18O) H2O(l) 1.99519e-003 -4.9929 permil - R(18O) OH- 1.92122e-003 -41.88 permil - R(18O) H3O+ 2.04132e-003 18.015 permil - R(18O) O2(aq) 1.99519e-003 -4.9929 permil - R(13C) CO2(aq) 1.10731e-002 -9.5817 permil - R(14C) CO2(aq) 5.79281e-014 4.9263 pmc - R(18O) CO2(aq) 2.07915e-003 36.881 permil - R(18O) HCO3- 1.99519e-003 -4.9929 permil - R(13C) HCO3- 1.11694e-002 -0.96514 permil - R(14C) HCO3- 5.89404e-014 5.0124 pmc - R(18O) CO3-2 1.99519e-003 -4.9929 permil - R(13C) CO3-2 1.11534e-002 -2.3988 permil - R(14C) CO3-2 5.87714e-014 4.998 pmc - R(18O) Calcite 2.05263e-003 23.653 permil - R(13C) Calcite 1.11915e-002 1.0136 permil - R(14C) Calcite 5.91741e-014 5.0323 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2764e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.3283e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7104e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.513e-005 6.494e-005 - [14C] 3.432e-016 3.422e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.223 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.092e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 32 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.296 -124.296 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.090e-008 6.100e-008 -7.215 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 5.354e-040 - H2 2.677e-040 2.681e-040 -39.572 -39.572 0.001 (0) -O(0) 1.158e-013 - O2 5.766e-014 5.775e-014 -13.239 -13.238 0.001 (0) - O[18O] 2.301e-016 2.304e-016 -15.638 -15.637 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.252 -126.251 0.001 (0) -[13C](4) 6.513e-005 - H[13C]O3- 5.253e-005 4.806e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.103e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - H[13C][18O]O2- 1.048e-007 9.589e-008 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-007 9.589e-008 -6.980 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.048e-007 9.589e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.090e-008 6.100e-008 -7.215 -7.215 0.001 (0) - [13C]O[18O] 4.585e-008 4.593e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.124e-008 2.189e-008 -7.505 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.213e-009 2.030e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.213e-009 2.030e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.213e-009 2.030e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.645e-010 3.651e-010 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.870e-010 1.310e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.534 -137.533 0.001 (0) -[14C](4) 3.432e-016 - H[14C]O3- 2.772e-016 2.536e-016 -15.557 -15.596 -0.039 (0) - [14C]O2 5.768e-017 5.778e-017 -16.239 -16.238 0.001 (0) - CaH[14C]O3+ 5.854e-018 5.370e-018 -17.233 -17.270 -0.037 (0) - H[14C][18O]O2- 5.531e-019 5.060e-019 -18.257 -18.296 -0.039 (0) - H[14C]O[18O]O- 5.531e-019 5.060e-019 -18.257 -18.296 -0.039 (0) - H[14C]O2[18O]- 5.531e-019 5.060e-019 -18.257 -18.296 -0.039 (0) - Ca[14C]O3 3.209e-019 3.215e-019 -18.494 -18.493 0.001 (0) - [14C]O[18O] 2.399e-019 2.403e-019 -18.620 -18.619 0.001 (0) - [14C]O3-2 1.646e-019 1.153e-019 -18.783 -18.938 -0.155 (0) - CaH[14C]O2[18O]+ 1.168e-020 1.071e-020 -19.933 -19.970 -0.037 (0) - CaH[14C][18O]O2+ 1.168e-020 1.071e-020 -19.933 -19.970 -0.037 (0) - CaH[14C]O[18O]O+ 1.168e-020 1.071e-020 -19.933 -19.970 -0.037 (0) - Ca[14C]O2[18O] 1.921e-021 1.924e-021 -20.716 -20.716 0.001 (0) - H[14C]O[18O]2- 1.104e-021 1.010e-021 -20.957 -20.996 -0.039 (0) - H[14C][18O]2O- 1.104e-021 1.010e-021 -20.957 -20.996 -0.039 (0) - H[14C][18O]O[18O]- 1.104e-021 1.010e-021 -20.957 -20.996 -0.039 (0) - [14C]O2[18O]-2 9.854e-022 6.903e-022 -21.006 -21.161 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.305e-016 - O[18O] 2.301e-016 2.304e-016 -15.638 -15.637 0.001 (0) - [18O]2 2.295e-019 2.299e-019 -18.639 -18.638 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.39 -126.25 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.13 -21.64 -1.50 [14C][18O]2 - [14C]H4(g) -134.67 -137.53 -2.86 [14C]H4 - [14C]O2(g) -14.77 -16.24 -1.47 [14C]O2 - [14C]O[18O](g) -17.15 -18.94 -1.79 [14C]O[18O] - [18O]2(g) -16.35 -18.64 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.30 -13.14 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.45 -7.74 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.24 -5.04 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.13 -10.44 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.44 -124.30 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.42 -39.57 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.35 -13.24 -2.89 O2 - O[18O](g) -13.05 -15.94 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 43. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 42. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 1.8000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 6.95e-011 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.51e-011 - Ca[14C]O3(s) 2.68e-017 2.68e-017 5.36e-014 - Ca[14C]O2[18O](s) 1.65e-019 1.65e-019 3.30e-016 - Ca[14C]O[18O]2(s) 3.39e-022 3.39e-022 6.77e-019 - Ca[14C][18O]3(s) 2.32e-025 2.31e-025 4.63e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9912 permil - R(13C) 1.11538e-002 -2.3598 permil - R(14C) 5.41377e-014 4.604 pmc - R(18O) H2O(l) 1.99519e-003 -4.9927 permil - R(18O) OH- 1.92122e-003 -41.88 permil - R(18O) H3O+ 2.04132e-003 18.015 permil - R(18O) O2(aq) 1.99519e-003 -4.9927 permil - R(13C) CO2(aq) 1.10740e-002 -9.4994 permil - R(14C) CO2(aq) 5.33650e-014 4.5383 pmc - R(18O) CO2(aq) 2.07915e-003 36.881 permil - R(18O) HCO3- 1.99519e-003 -4.9927 permil - R(13C) HCO3- 1.11703e-002 -0.88221 permil - R(14C) HCO3- 5.42976e-014 4.6176 pmc - R(18O) CO3-2 1.99519e-003 -4.9927 permil - R(13C) CO3-2 1.11543e-002 -2.316 permil - R(14C) CO3-2 5.41419e-014 4.6043 pmc - R(18O) Calcite 2.05263e-003 23.654 permil - R(13C) Calcite 1.11925e-002 1.0967 permil - R(14C) Calcite 5.45129e-014 4.6359 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.245e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6691e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.514e-005 6.495e-005 - [14C] 3.162e-016 3.152e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.216 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.092e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 28 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.240 -124.240 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.091e-008 6.101e-008 -7.215 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 5.529e-040 - H2 2.765e-040 2.769e-040 -39.558 -39.558 0.001 (0) -O(0) 1.085e-013 - O2 5.405e-014 5.414e-014 -13.267 -13.266 0.001 (0) - O[18O] 2.157e-016 2.160e-016 -15.666 -15.665 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.196 -126.195 0.001 (0) -[13C](4) 6.514e-005 - H[13C]O3- 5.254e-005 4.807e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.103e-005 1.105e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - H[13C]O[18O]O- 1.048e-007 9.590e-008 -6.980 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.048e-007 9.590e-008 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-007 9.590e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.091e-008 6.101e-008 -7.215 -7.215 0.001 (0) - [13C]O[18O] 4.586e-008 4.593e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.124e-008 2.189e-008 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.214e-009 2.031e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.214e-009 2.031e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.214e-009 2.031e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.646e-010 3.652e-010 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.870e-010 1.310e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.513 -137.512 0.001 (0) -[14C](4) 3.162e-016 - H[14C]O3- 2.554e-016 2.336e-016 -15.593 -15.631 -0.039 (0) - [14C]O2 5.314e-017 5.323e-017 -16.275 -16.274 0.001 (0) - CaH[14C]O3+ 5.393e-018 4.947e-018 -17.268 -17.306 -0.037 (0) - H[14C][18O]O2- 5.095e-019 4.662e-019 -18.293 -18.331 -0.039 (0) - H[14C]O[18O]O- 5.095e-019 4.662e-019 -18.293 -18.331 -0.039 (0) - H[14C]O2[18O]- 5.095e-019 4.662e-019 -18.293 -18.331 -0.039 (0) - Ca[14C]O3 2.956e-019 2.961e-019 -18.529 -18.529 0.001 (0) - [14C]O[18O] 2.210e-019 2.213e-019 -18.656 -18.655 0.001 (0) - [14C]O3-2 1.517e-019 1.062e-019 -18.819 -18.974 -0.155 (0) - CaH[14C]O2[18O]+ 1.076e-020 9.870e-021 -19.968 -20.006 -0.037 (0) - CaH[14C][18O]O2+ 1.076e-020 9.870e-021 -19.968 -20.006 -0.037 (0) - CaH[14C]O[18O]O+ 1.076e-020 9.870e-021 -19.968 -20.006 -0.037 (0) - Ca[14C]O2[18O] 1.770e-021 1.773e-021 -20.752 -20.751 0.001 (0) - H[14C][18O]2O- 1.017e-021 9.301e-022 -20.993 -21.031 -0.039 (0) - H[14C][18O]O[18O]- 1.017e-021 9.301e-022 -20.993 -21.031 -0.039 (0) - H[14C]O[18O]2- 1.017e-021 9.301e-022 -20.993 -21.031 -0.039 (0) - [14C]O2[18O]-2 9.078e-022 6.359e-022 -21.042 -21.197 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.161e-016 - O[18O] 2.157e-016 2.160e-016 -15.666 -15.665 0.001 (0) - [18O]2 2.152e-019 2.155e-019 -18.667 -18.667 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.34 -126.20 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.17 -21.67 -1.50 [14C][18O]2 - [14C]H4(g) -134.65 -137.51 -2.86 [14C]H4 - [14C]O2(g) -14.81 -16.27 -1.47 [14C]O2 - [14C]O[18O](g) -17.19 -18.97 -1.79 [14C]O[18O] - [18O]2(g) -16.38 -18.67 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.33 -13.18 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.48 -7.78 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.27 -5.08 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.17 -10.48 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.38 -124.24 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.41 -39.56 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.37 -13.27 -2.89 O2 - O[18O](g) -13.07 -15.97 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 44. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 43. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 1.8500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 6.95e-011 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.51e-011 - Ca[14C]O3(s) 2.47e-017 2.47e-017 4.94e-014 - Ca[14C]O2[18O](s) 1.52e-019 1.52e-019 3.04e-016 - Ca[14C]O[18O]2(s) 3.12e-022 3.12e-022 6.24e-019 - Ca[14C][18O]3(s) 2.13e-025 2.12e-025 4.27e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9911 permil - R(13C) 1.11547e-002 -2.2834 permil - R(14C) 4.98732e-014 4.2413 pmc - R(18O) H2O(l) 1.99519e-003 -4.9926 permil - R(18O) OH- 1.92122e-003 -41.88 permil - R(18O) H3O+ 2.04132e-003 18.015 permil - R(18O) O2(aq) 1.99519e-003 -4.9926 permil - R(13C) CO2(aq) 1.10748e-002 -9.4237 permil - R(14C) CO2(aq) 4.91614e-014 4.1808 pmc - R(18O) CO2(aq) 2.07915e-003 36.881 permil - R(18O) HCO3- 1.99519e-003 -4.9926 permil - R(13C) HCO3- 1.11712e-002 -0.80578 permil - R(14C) HCO3- 5.00205e-014 4.2539 pmc - R(18O) CO3-2 1.99519e-003 -4.9926 permil - R(13C) CO3-2 1.11552e-002 -2.2397 permil - R(14C) CO3-2 4.98770e-014 4.2416 pmc - R(18O) Calcite 2.05263e-003 23.654 permil - R(13C) Calcite 1.11933e-002 1.1733 permil - R(14C) Calcite 5.02188e-014 4.2707 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2821e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 2.2204e-013 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7663e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.514e-005 6.495e-005 - [14C] 2.913e-016 2.904e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.190 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.107e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 24 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.034 -124.033 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.091e-008 6.101e-008 -7.215 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 6.228e-040 - H2 3.114e-040 3.119e-040 -39.507 -39.506 0.001 (0) -O(0) 8.554e-014 - O2 4.260e-014 4.267e-014 -13.371 -13.370 0.001 (0) - O[18O] 1.700e-016 1.703e-016 -15.770 -15.769 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.989 -125.989 0.001 (0) -[13C](4) 6.514e-005 - H[13C]O3- 5.254e-005 4.807e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.103e-005 1.105e-005 -4.957 -4.957 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.048e-007 9.591e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-007 9.591e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-007 9.591e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.091e-008 6.101e-008 -7.215 -7.215 0.001 (0) - [13C]O[18O] 4.586e-008 4.593e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.125e-008 2.189e-008 -7.505 -7.660 -0.155 (0) - CaH[13C]O[18O]O+ 2.214e-009 2.031e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.214e-009 2.031e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.214e-009 2.031e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.646e-010 3.652e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.092e-010 1.914e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.092e-010 1.914e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.092e-010 1.914e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.870e-010 1.310e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.342 -137.341 0.001 (0) -[14C](4) 2.913e-016 - H[14C]O3- 2.353e-016 2.152e-016 -15.628 -15.667 -0.039 (0) - [14C]O2 4.895e-017 4.904e-017 -16.310 -16.309 0.001 (0) - CaH[14C]O3+ 4.968e-018 4.557e-018 -17.304 -17.341 -0.037 (0) - H[14C][18O]O2- 4.694e-019 4.294e-019 -18.328 -18.367 -0.039 (0) - H[14C]O[18O]O- 4.694e-019 4.294e-019 -18.328 -18.367 -0.039 (0) - H[14C]O2[18O]- 4.694e-019 4.294e-019 -18.328 -18.367 -0.039 (0) - Ca[14C]O3 2.724e-019 2.728e-019 -18.565 -18.564 0.001 (0) - [14C]O[18O] 2.036e-019 2.039e-019 -18.691 -18.691 0.001 (0) - [14C]O3-2 1.397e-019 9.788e-020 -18.855 -19.009 -0.155 (0) - CaH[14C]O2[18O]+ 9.912e-021 9.093e-021 -20.004 -20.041 -0.037 (0) - CaH[14C][18O]O2+ 9.912e-021 9.093e-021 -20.004 -20.041 -0.037 (0) - CaH[14C]O[18O]O+ 9.912e-021 9.093e-021 -20.004 -20.041 -0.037 (0) - Ca[14C]O2[18O] 1.630e-021 1.633e-021 -20.788 -20.787 0.001 (0) - H[14C][18O]O[18O]- 9.366e-022 8.568e-022 -21.028 -21.067 -0.039 (0) - H[14C]O[18O]2- 9.366e-022 8.568e-022 -21.028 -21.067 -0.039 (0) - H[14C][18O]2O- 9.366e-022 8.568e-022 -21.028 -21.067 -0.039 (0) - [14C]O2[18O]-2 8.363e-022 5.858e-022 -21.078 -21.232 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.703e-016 - O[18O] 1.700e-016 1.703e-016 -15.770 -15.769 0.001 (0) - [18O]2 1.696e-019 1.699e-019 -18.771 -18.770 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.13 -125.99 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.21 -21.71 -1.50 [14C][18O]2 - [14C]H4(g) -134.48 -137.34 -2.86 [14C]H4 - [14C]O2(g) -14.84 -16.31 -1.47 [14C]O2 - [14C]O[18O](g) -17.22 -19.01 -1.79 [14C]O[18O] - [18O]2(g) -16.48 -18.77 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.37 -13.22 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.52 -7.82 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.31 -5.11 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.20 -10.52 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.17 -124.03 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.36 -39.51 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.48 -13.37 -2.89 O2 - O[18O](g) -13.18 -16.07 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 45. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 44. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 1.9000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.95e-011 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 2.27e-017 2.27e-017 4.55e-014 - Ca[14C]O2[18O](s) 1.40e-019 1.40e-019 2.80e-016 - Ca[14C]O[18O]2(s) 2.87e-022 2.87e-022 5.75e-019 - Ca[14C][18O]3(s) 1.97e-025 1.96e-025 3.93e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9909 permil - R(13C) 1.11555e-002 -2.2131 permil - R(14C) 4.59446e-014 3.9072 pmc - R(18O) H2O(l) 1.99519e-003 -4.9925 permil - R(18O) OH- 1.92122e-003 -41.88 permil - R(18O) H3O+ 2.04132e-003 18.015 permil - R(18O) O2(aq) 1.99519e-003 -4.9925 permil - R(13C) CO2(aq) 1.10756e-002 -9.3539 permil - R(14C) CO2(aq) 4.52889e-014 3.8515 pmc - R(18O) CO2(aq) 2.07915e-003 36.881 permil - R(18O) HCO3- 1.99519e-003 -4.9925 permil - R(13C) HCO3- 1.11720e-002 -0.73536 permil - R(14C) HCO3- 4.60803e-014 3.9188 pmc - R(18O) CO3-2 1.99519e-003 -4.9925 permil - R(13C) CO3-2 1.11559e-002 -2.1694 permil - R(14C) CO3-2 4.59481e-014 3.9075 pmc - R(18O) Calcite 2.05263e-003 23.654 permil - R(13C) Calcite 1.11941e-002 1.2438 permil - R(14C) Calcite 4.62630e-014 3.9343 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2858e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.1102e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5585e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.515e-005 6.496e-005 - [14C] 2.683e-016 2.675e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.195 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.109e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 55 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.070 -124.070 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.092e-008 6.102e-008 -7.215 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 6.098e-040 - H2 3.049e-040 3.054e-040 -39.516 -39.515 0.001 (0) -O(0) 8.924e-014 - O2 4.444e-014 4.452e-014 -13.352 -13.351 0.001 (0) - O[18O] 1.774e-016 1.776e-016 -15.751 -15.750 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.026 -126.025 0.001 (0) -[13C](4) 6.515e-005 - H[13C]O3- 5.255e-005 4.807e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.103e-005 1.105e-005 -4.957 -4.957 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - H[13C][18O]O2- 1.048e-007 9.592e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-007 9.592e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.048e-007 9.592e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.092e-008 6.102e-008 -7.215 -7.215 0.001 (0) - [13C]O[18O] 4.586e-008 4.594e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.125e-008 2.189e-008 -7.505 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.214e-009 2.031e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.214e-009 2.031e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.214e-009 2.031e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.646e-010 3.652e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.092e-010 1.914e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.092e-010 1.914e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.092e-010 1.914e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.870e-010 1.310e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.414 -137.414 0.001 (0) -[14C](4) 2.683e-016 - H[14C]O3- 2.167e-016 1.983e-016 -15.664 -15.703 -0.039 (0) - [14C]O2 4.510e-017 4.517e-017 -16.346 -16.345 0.001 (0) - CaH[14C]O3+ 4.577e-018 4.198e-018 -17.339 -17.377 -0.037 (0) - H[14C][18O]O2- 4.324e-019 3.956e-019 -18.364 -18.403 -0.039 (0) - H[14C]O[18O]O- 4.324e-019 3.956e-019 -18.364 -18.403 -0.039 (0) - H[14C]O2[18O]- 4.324e-019 3.956e-019 -18.364 -18.403 -0.039 (0) - Ca[14C]O3 2.509e-019 2.513e-019 -18.600 -18.600 0.001 (0) - [14C]O[18O] 1.875e-019 1.878e-019 -18.727 -18.726 0.001 (0) - [14C]O3-2 1.287e-019 9.017e-020 -18.890 -19.045 -0.155 (0) - CaH[14C]O2[18O]+ 9.132e-021 8.377e-021 -20.039 -20.077 -0.037 (0) - CaH[14C][18O]O2+ 9.132e-021 8.377e-021 -20.039 -20.077 -0.037 (0) - CaH[14C]O[18O]O+ 9.132e-021 8.377e-021 -20.039 -20.077 -0.037 (0) - Ca[14C]O2[18O] 1.502e-021 1.504e-021 -20.823 -20.823 0.001 (0) - H[14C]O[18O]2- 8.628e-022 7.893e-022 -21.064 -21.103 -0.039 (0) - H[14C][18O]2O- 8.628e-022 7.893e-022 -21.064 -21.103 -0.039 (0) - H[14C][18O]O[18O]- 8.628e-022 7.893e-022 -21.064 -21.103 -0.039 (0) - [14C]O2[18O]-2 7.704e-022 5.397e-022 -21.113 -21.268 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.777e-016 - O[18O] 1.774e-016 1.776e-016 -15.751 -15.750 0.001 (0) - [18O]2 1.769e-019 1.772e-019 -18.752 -18.751 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.17 -126.03 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.24 -21.75 -1.50 [14C][18O]2 - [14C]H4(g) -134.55 -137.41 -2.86 [14C]H4 - [14C]O2(g) -14.88 -16.35 -1.47 [14C]O2 - [14C]O[18O](g) -17.26 -19.05 -1.79 [14C]O[18O] - [18O]2(g) -16.46 -18.75 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.41 -13.25 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.55 -7.85 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.34 -5.15 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.24 -10.55 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.21 -124.07 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.37 -39.52 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.46 -13.35 -2.89 O2 - O[18O](g) -13.16 -16.05 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 46. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 45. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 1.9500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.95e-011 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 2.09e-017 2.09e-017 4.19e-014 - Ca[14C]O2[18O](s) 1.29e-019 1.29e-019 2.58e-016 - Ca[14C]O[18O]2(s) 2.65e-022 2.65e-022 5.29e-019 - Ca[14C][18O]3(s) 1.81e-025 1.80e-025 3.62e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9908 permil - R(13C) 1.11562e-002 -2.1483 permil - R(14C) 4.23255e-014 3.5994 pmc - R(18O) H2O(l) 1.99519e-003 -4.9923 permil - R(18O) OH- 1.92122e-003 -41.88 permil - R(18O) H3O+ 2.04132e-003 18.016 permil - R(18O) O2(aq) 1.99519e-003 -4.9923 permil - R(13C) CO2(aq) 1.10763e-002 -9.2895 permil - R(14C) CO2(aq) 4.17214e-014 3.5481 pmc - R(18O) CO2(aq) 2.07916e-003 36.882 permil - R(18O) HCO3- 1.99519e-003 -4.9923 permil - R(13C) HCO3- 1.11727e-002 -0.67047 permil - R(14C) HCO3- 4.24505e-014 3.6101 pmc - R(18O) CO3-2 1.99519e-003 -4.9923 permil - R(13C) CO3-2 1.11567e-002 -2.1046 permil - R(14C) CO3-2 4.23287e-014 3.5997 pmc - R(18O) Calcite 2.05263e-003 23.654 permil - R(13C) Calcite 1.11948e-002 1.3089 permil - R(14C) Calcite 4.26188e-014 3.6244 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2577e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.4417e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7297e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.515e-005 6.496e-005 - [14C] 2.472e-016 2.465e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.175 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.091e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.912 -123.912 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.092e-008 6.102e-008 -7.215 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 6.678e-040 - H2 3.339e-040 3.345e-040 -39.476 -39.476 0.001 (0) -O(0) 7.441e-014 - O2 3.706e-014 3.712e-014 -13.431 -13.430 0.001 (0) - O[18O] 1.479e-016 1.481e-016 -15.830 -15.829 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.868 -125.867 0.001 (0) -[13C](4) 6.515e-005 - H[13C]O3- 5.255e-005 4.808e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.103e-005 1.105e-005 -4.957 -4.957 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - H[13C]O[18O]O- 1.048e-007 9.592e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.048e-007 9.592e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-007 9.592e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.092e-008 6.102e-008 -7.215 -7.215 0.001 (0) - [13C]O[18O] 4.587e-008 4.594e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.125e-008 2.189e-008 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.214e-009 2.031e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.214e-009 2.031e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.214e-009 2.031e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.646e-010 3.652e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.092e-010 1.914e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.092e-010 1.914e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.092e-010 1.914e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.871e-010 1.310e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.292 -137.291 0.001 (0) -[14C](4) 2.472e-016 - H[14C]O3- 1.997e-016 1.827e-016 -15.700 -15.738 -0.039 (0) - [14C]O2 4.155e-017 4.161e-017 -16.381 -16.381 0.001 (0) - CaH[14C]O3+ 4.216e-018 3.868e-018 -17.375 -17.413 -0.037 (0) - H[14C][18O]O2- 3.984e-019 3.645e-019 -18.400 -18.438 -0.039 (0) - H[14C]O[18O]O- 3.984e-019 3.645e-019 -18.400 -18.438 -0.039 (0) - H[14C]O2[18O]- 3.984e-019 3.645e-019 -18.400 -18.438 -0.039 (0) - Ca[14C]O3 2.311e-019 2.315e-019 -18.636 -18.635 0.001 (0) - [14C]O[18O] 1.728e-019 1.730e-019 -18.763 -18.762 0.001 (0) - [14C]O3-2 1.186e-019 8.306e-020 -18.926 -19.081 -0.155 (0) - CaH[14C]O2[18O]+ 8.412e-021 7.717e-021 -20.075 -20.113 -0.037 (0) - CaH[14C][18O]O2+ 8.412e-021 7.717e-021 -20.075 -20.113 -0.037 (0) - CaH[14C]O[18O]O+ 8.412e-021 7.717e-021 -20.075 -20.113 -0.037 (0) - Ca[14C]O2[18O] 1.383e-021 1.386e-021 -20.859 -20.858 0.001 (0) - H[14C][18O]2O- 7.948e-022 7.272e-022 -21.100 -21.138 -0.039 (0) - H[14C][18O]O[18O]- 7.948e-022 7.272e-022 -21.100 -21.138 -0.039 (0) - H[14C]O[18O]2- 7.948e-022 7.272e-022 -21.100 -21.138 -0.039 (0) - [14C]O2[18O]-2 7.097e-022 4.972e-022 -21.149 -21.303 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.482e-016 - O[18O] 1.479e-016 1.481e-016 -15.830 -15.829 0.001 (0) - [18O]2 1.475e-019 1.478e-019 -18.831 -18.830 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.01 -125.87 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.28 -21.78 -1.50 [14C][18O]2 - [14C]H4(g) -134.43 -137.29 -2.86 [14C]H4 - [14C]O2(g) -14.91 -16.38 -1.47 [14C]O2 - [14C]O[18O](g) -17.29 -19.08 -1.79 [14C]O[18O] - [18O]2(g) -16.54 -18.83 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.44 -13.29 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.59 -7.89 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.38 -5.19 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.28 -10.59 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.05 -123.91 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.33 -39.48 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.54 -13.43 -2.89 O2 - O[18O](g) -13.24 -16.13 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 47. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 46. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 2.0000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.95e-011 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 1.93e-017 1.93e-017 3.86e-014 - Ca[14C]O2[18O](s) 1.19e-019 1.19e-019 2.38e-016 - Ca[14C]O[18O]2(s) 2.44e-022 2.44e-022 4.88e-019 - Ca[14C][18O]3(s) 1.67e-025 1.66e-025 3.34e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9907 permil - R(13C) 1.11568e-002 -2.0886 permil - R(14C) 3.89914e-014 3.3159 pmc - R(18O) H2O(l) 1.99519e-003 -4.9922 permil - R(18O) OH- 1.92122e-003 -41.879 permil - R(18O) H3O+ 2.04133e-003 18.016 permil - R(18O) O2(aq) 1.99519e-003 -4.9922 permil - R(13C) CO2(aq) 1.10770e-002 -9.2303 permil - R(14C) CO2(aq) 3.84349e-014 3.2686 pmc - R(18O) CO2(aq) 2.07916e-003 36.882 permil - R(18O) HCO3- 1.99519e-003 -4.9922 permil - R(13C) HCO3- 1.11734e-002 -0.61068 permil - R(14C) HCO3- 3.91066e-014 3.3257 pmc - R(18O) CO3-2 1.99519e-003 -4.9922 permil - R(13C) CO3-2 1.11573e-002 -2.0449 permil - R(14C) CO3-2 3.89944e-014 3.3162 pmc - R(18O) Calcite 2.05263e-003 23.654 permil - R(13C) Calcite 1.11955e-002 1.3688 permil - R(14C) Calcite 3.92617e-014 3.3389 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2666e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-013 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7081e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.515e-005 6.496e-005 - [14C] 2.277e-016 2.270e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.159 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.105e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.785 -123.784 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.092e-008 6.102e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 7.187e-040 - H2 3.594e-040 3.599e-040 -39.444 -39.444 0.001 (0) -O(0) 6.424e-014 - O2 3.199e-014 3.204e-014 -13.495 -13.494 0.001 (0) - O[18O] 1.277e-016 1.279e-016 -15.894 -15.893 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.740 -125.740 0.001 (0) -[13C](4) 6.515e-005 - H[13C]O3- 5.255e-005 4.808e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.103e-005 1.105e-005 -4.957 -4.957 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-007 9.593e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.593e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.593e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.092e-008 6.102e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.587e-008 4.594e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.125e-008 2.189e-008 -7.505 -7.660 -0.155 (0) - CaH[13C]O[18O]O+ 2.214e-009 2.031e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.214e-009 2.031e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.214e-009 2.031e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.647e-010 3.653e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.092e-010 1.914e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.092e-010 1.914e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.092e-010 1.914e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.871e-010 1.311e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.200 -137.199 0.001 (0) -[14C](4) 2.277e-016 - H[14C]O3- 1.839e-016 1.683e-016 -15.735 -15.774 -0.039 (0) - [14C]O2 3.827e-017 3.834e-017 -16.417 -16.416 0.001 (0) - CaH[14C]O3+ 3.884e-018 3.563e-018 -17.411 -17.448 -0.037 (0) - H[14C][18O]O2- 3.670e-019 3.357e-019 -18.435 -18.474 -0.039 (0) - H[14C]O[18O]O- 3.670e-019 3.357e-019 -18.435 -18.474 -0.039 (0) - H[14C]O2[18O]- 3.670e-019 3.357e-019 -18.435 -18.474 -0.039 (0) - Ca[14C]O3 2.129e-019 2.133e-019 -18.672 -18.671 0.001 (0) - [14C]O[18O] 1.592e-019 1.594e-019 -18.798 -18.797 0.001 (0) - [14C]O3-2 1.092e-019 7.652e-020 -18.962 -19.116 -0.155 (0) - CaH[14C]O2[18O]+ 7.750e-021 7.109e-021 -20.111 -20.148 -0.037 (0) - CaH[14C][18O]O2+ 7.750e-021 7.109e-021 -20.111 -20.148 -0.037 (0) - CaH[14C]O[18O]O+ 7.750e-021 7.109e-021 -20.111 -20.148 -0.037 (0) - Ca[14C]O2[18O] 1.275e-021 1.277e-021 -20.895 -20.894 0.001 (0) - H[14C][18O]O[18O]- 7.322e-022 6.699e-022 -21.135 -21.174 -0.039 (0) - H[14C]O[18O]2- 7.322e-022 6.699e-022 -21.135 -21.174 -0.039 (0) - H[14C][18O]2O- 7.322e-022 6.699e-022 -21.135 -21.174 -0.039 (0) - [14C]O2[18O]-2 6.538e-022 4.580e-022 -21.185 -21.339 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.279e-016 - O[18O] 1.277e-016 1.279e-016 -15.894 -15.893 0.001 (0) - [18O]2 1.274e-019 1.276e-019 -18.895 -18.894 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.88 -125.74 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.31 -21.82 -1.50 [14C][18O]2 - [14C]H4(g) -134.34 -137.20 -2.86 [14C]H4 - [14C]O2(g) -14.95 -16.42 -1.47 [14C]O2 - [14C]O[18O](g) -17.33 -19.12 -1.79 [14C]O[18O] - [18O]2(g) -16.60 -18.89 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.48 -13.32 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.62 -7.92 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.41 -5.22 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.31 -10.62 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.92 -123.78 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.29 -39.44 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.60 -13.49 -2.89 O2 - O[18O](g) -13.30 -16.19 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 48. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 47. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 2.0500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.95e-011 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 1.78e-017 1.78e-017 3.55e-014 - Ca[14C]O2[18O](s) 1.09e-019 1.09e-019 2.19e-016 - Ca[14C]O[18O]2(s) 2.25e-022 2.25e-022 4.49e-019 - Ca[14C][18O]3(s) 1.54e-025 1.53e-025 3.07e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9905 permil - R(13C) 1.11575e-002 -2.0336 permil - R(14C) 3.59200e-014 3.0547 pmc - R(18O) H2O(l) 1.99519e-003 -4.9921 permil - R(18O) OH- 1.92122e-003 -41.879 permil - R(18O) H3O+ 2.04133e-003 18.016 permil - R(18O) O2(aq) 1.99519e-003 -4.9921 permil - R(13C) CO2(aq) 1.10776e-002 -9.1756 permil - R(14C) CO2(aq) 3.54073e-014 3.0111 pmc - R(18O) CO2(aq) 2.07916e-003 36.882 permil - R(18O) HCO3- 1.99519e-003 -4.9921 permil - R(13C) HCO3- 1.11740e-002 -0.55558 permil - R(14C) HCO3- 3.60261e-014 3.0637 pmc - R(18O) CO3-2 1.99519e-003 -4.9921 permil - R(13C) CO3-2 1.11580e-002 -1.9899 permil - R(14C) CO3-2 3.59228e-014 3.0549 pmc - R(18O) Calcite 2.05263e-003 23.654 permil - R(13C) Calcite 1.11961e-002 1.424 permil - R(14C) Calcite 3.61689e-014 3.0759 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2448e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6244e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.516e-005 6.497e-005 - [14C] 2.098e-016 2.092e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.158 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.099e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.777 -123.776 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.093e-008 6.103e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 7.219e-040 - H2 3.610e-040 3.615e-040 -39.443 -39.442 0.001 (0) -O(0) 6.367e-014 - O2 3.171e-014 3.176e-014 -13.499 -13.498 0.001 (0) - O[18O] 1.265e-016 1.267e-016 -15.898 -15.897 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.733 -125.732 0.001 (0) -[13C](4) 6.516e-005 - H[13C]O3- 5.256e-005 4.808e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.103e-005 1.105e-005 -4.957 -4.957 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - H[13C][18O]O2- 1.049e-007 9.593e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.593e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.593e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.093e-008 6.103e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.587e-008 4.595e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.126e-008 2.190e-008 -7.505 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.214e-009 2.031e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.214e-009 2.031e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.214e-009 2.031e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.647e-010 3.653e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.092e-010 1.914e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.092e-010 1.914e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.092e-010 1.914e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.871e-010 1.311e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.228 -137.227 0.001 (0) -[14C](4) 2.098e-016 - H[14C]O3- 1.694e-016 1.550e-016 -15.771 -15.810 -0.039 (0) - [14C]O2 3.526e-017 3.532e-017 -16.453 -16.452 0.001 (0) - CaH[14C]O3+ 3.578e-018 3.282e-018 -17.446 -17.484 -0.037 (0) - H[14C][18O]O2- 3.381e-019 3.093e-019 -18.471 -18.510 -0.039 (0) - H[14C]O[18O]O- 3.381e-019 3.093e-019 -18.471 -18.510 -0.039 (0) - H[14C]O2[18O]- 3.381e-019 3.093e-019 -18.471 -18.510 -0.039 (0) - Ca[14C]O3 1.962e-019 1.965e-019 -18.707 -18.707 0.001 (0) - [14C]O[18O] 1.466e-019 1.469e-019 -18.834 -18.833 0.001 (0) - [14C]O3-2 1.006e-019 7.049e-020 -18.997 -19.152 -0.155 (0) - CaH[14C]O2[18O]+ 7.139e-021 6.549e-021 -20.146 -20.184 -0.037 (0) - CaH[14C][18O]O2+ 7.139e-021 6.549e-021 -20.146 -20.184 -0.037 (0) - CaH[14C]O[18O]O+ 7.139e-021 6.549e-021 -20.146 -20.184 -0.037 (0) - Ca[14C]O2[18O] 1.174e-021 1.176e-021 -20.930 -20.930 0.001 (0) - H[14C]O[18O]2- 6.745e-022 6.171e-022 -21.171 -21.210 -0.039 (0) - H[14C][18O]2O- 6.745e-022 6.171e-022 -21.171 -21.210 -0.039 (0) - H[14C][18O]O[18O]- 6.745e-022 6.171e-022 -21.171 -21.210 -0.039 (0) - [14C]O2[18O]-2 6.023e-022 4.219e-022 -21.220 -21.375 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.268e-016 - O[18O] 1.265e-016 1.267e-016 -15.898 -15.897 0.001 (0) - [18O]2 1.262e-019 1.264e-019 -18.899 -18.898 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.87 -125.73 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.35 -21.85 -1.50 [14C][18O]2 - [14C]H4(g) -134.37 -137.23 -2.86 [14C]H4 - [14C]O2(g) -14.98 -16.45 -1.47 [14C]O2 - [14C]O[18O](g) -17.36 -19.15 -1.79 [14C]O[18O] - [18O]2(g) -16.61 -18.90 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.51 -13.36 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.66 -7.96 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.45 -5.26 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.35 -10.66 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.92 -123.78 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.29 -39.44 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.61 -13.50 -2.89 O2 - O[18O](g) -13.31 -16.20 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 49. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 48. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 2.1000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 1.64e-017 1.64e-017 3.27e-014 - Ca[14C]O2[18O](s) 1.01e-019 1.01e-019 2.02e-016 - Ca[14C]O[18O]2(s) 2.07e-022 2.07e-022 4.14e-019 - Ca[14C][18O]3(s) 1.42e-025 1.41e-025 2.83e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9904 permil - R(13C) 1.11580e-002 -1.9829 permil - R(14C) 3.30905e-014 2.8141 pmc - R(18O) H2O(l) 1.99519e-003 -4.9919 permil - R(18O) OH- 1.92122e-003 -41.879 permil - R(18O) H3O+ 2.04133e-003 18.016 permil - R(18O) O2(aq) 1.99519e-003 -4.9919 permil - R(13C) CO2(aq) 1.10782e-002 -9.1253 permil - R(14C) CO2(aq) 3.26182e-014 2.7739 pmc - R(18O) CO2(aq) 2.07916e-003 36.882 permil - R(18O) HCO3- 1.99519e-003 -4.9919 permil - R(13C) HCO3- 1.11746e-002 -0.5048 permil - R(14C) HCO3- 3.31883e-014 2.8224 pmc - R(18O) CO3-2 1.99519e-003 -4.9919 permil - R(13C) CO3-2 1.11585e-002 -1.9392 permil - R(14C) CO3-2 3.30931e-014 2.8143 pmc - R(18O) Calcite 2.05263e-003 23.654 permil - R(13C) Calcite 1.11967e-002 1.4749 permil - R(14C) Calcite 3.33199e-014 2.8336 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2861e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.2196e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5647e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.516e-005 6.497e-005 - [14C] 1.932e-016 1.927e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.123 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.095e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 60 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.493 -123.492 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.093e-008 6.103e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 8.504e-040 - H2 4.252e-040 4.259e-040 -39.371 -39.371 0.001 (0) -O(0) 4.588e-014 - O2 2.285e-014 2.289e-014 -13.641 -13.640 0.001 (0) - O[18O] 9.118e-017 9.133e-017 -16.040 -16.039 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.448 -125.447 0.001 (0) -[13C](4) 6.516e-005 - H[13C]O3- 5.256e-005 4.808e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.103e-005 1.105e-005 -4.957 -4.957 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - H[13C]O[18O]O- 1.049e-007 9.594e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.594e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.594e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.093e-008 6.103e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.587e-008 4.595e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.126e-008 2.190e-008 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.214e-009 2.031e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.214e-009 2.031e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.214e-009 2.031e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.647e-010 3.653e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.092e-010 1.914e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.092e-010 1.914e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.092e-010 1.914e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.871e-010 1.311e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.979 -136.978 0.001 (0) -[14C](4) 1.932e-016 - H[14C]O3- 1.561e-016 1.428e-016 -15.807 -15.845 -0.039 (0) - [14C]O2 3.248e-017 3.253e-017 -16.488 -16.488 0.001 (0) - CaH[14C]O3+ 3.296e-018 3.024e-018 -17.482 -17.519 -0.037 (0) - H[14C][18O]O2- 3.114e-019 2.849e-019 -18.507 -18.545 -0.039 (0) - H[14C]O[18O]O- 3.114e-019 2.849e-019 -18.507 -18.545 -0.039 (0) - H[14C]O2[18O]- 3.114e-019 2.849e-019 -18.507 -18.545 -0.039 (0) - Ca[14C]O3 1.807e-019 1.810e-019 -18.743 -18.742 0.001 (0) - [14C]O[18O] 1.351e-019 1.353e-019 -18.869 -18.869 0.001 (0) - [14C]O3-2 9.270e-020 6.494e-020 -19.033 -19.187 -0.155 (0) - CaH[14C]O2[18O]+ 6.577e-021 6.033e-021 -20.182 -20.219 -0.037 (0) - CaH[14C][18O]O2+ 6.577e-021 6.033e-021 -20.182 -20.219 -0.037 (0) - CaH[14C]O[18O]O+ 6.577e-021 6.033e-021 -20.182 -20.219 -0.037 (0) - Ca[14C]O2[18O] 1.082e-021 1.083e-021 -20.966 -20.965 0.001 (0) - H[14C][18O]2O- 6.214e-022 5.685e-022 -21.207 -21.245 -0.039 (0) - H[14C][18O]O[18O]- 6.214e-022 5.685e-022 -21.207 -21.245 -0.039 (0) - H[14C]O[18O]2- 6.214e-022 5.685e-022 -21.207 -21.245 -0.039 (0) - [14C]O2[18O]-2 5.549e-022 3.887e-022 -21.256 -21.410 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 9.136e-017 - O[18O] 9.118e-017 9.133e-017 -16.040 -16.039 0.001 (0) - [18O]2 9.096e-020 9.111e-020 -19.041 -19.040 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.59 -125.45 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.38 -21.89 -1.50 [14C][18O]2 - [14C]H4(g) -134.12 -136.98 -2.86 [14C]H4 - [14C]O2(g) -15.02 -16.49 -1.47 [14C]O2 - [14C]O[18O](g) -17.40 -19.19 -1.79 [14C]O[18O] - [18O]2(g) -16.75 -19.04 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.55 -13.39 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.70 -7.99 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.48 -5.29 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.38 -10.69 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.63 -123.49 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.22 -39.37 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.75 -13.64 -2.89 O2 - O[18O](g) -13.45 -16.34 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 50. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 49. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 2.1500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 1.51e-017 1.51e-017 3.02e-014 - Ca[14C]O2[18O](s) 9.29e-020 9.29e-020 1.86e-016 - Ca[14C]O[18O]2(s) 1.91e-022 1.91e-022 3.81e-019 - Ca[14C][18O]3(s) 1.30e-025 1.29e-025 2.61e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9903 permil - R(13C) 1.11586e-002 -1.9362 permil - R(14C) 3.04839e-014 2.5924 pmc - R(18O) H2O(l) 1.99519e-003 -4.9918 permil - R(18O) OH- 1.92122e-003 -41.879 permil - R(18O) H3O+ 2.04133e-003 18.016 permil - R(18O) O2(aq) 1.99519e-003 -4.9918 permil - R(13C) CO2(aq) 1.10787e-002 -9.0789 permil - R(14C) CO2(aq) 3.00488e-014 2.5554 pmc - R(18O) CO2(aq) 2.07916e-003 36.882 permil - R(18O) HCO3- 1.99519e-003 -4.9918 permil - R(13C) HCO3- 1.11751e-002 -0.45802 permil - R(14C) HCO3- 3.05740e-014 2.6001 pmc - R(18O) CO3-2 1.99519e-003 -4.9918 permil - R(13C) CO3-2 1.11590e-002 -1.8924 permil - R(14C) CO3-2 3.04863e-014 2.5926 pmc - R(18O) Calcite 2.05263e-003 23.655 permil - R(13C) Calcite 1.11972e-002 1.5217 permil - R(14C) Calcite 3.06952e-014 2.6104 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2373e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.6605e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.655e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.516e-005 6.497e-005 - [14C] 1.780e-016 1.775e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.134 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.089e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.584 -123.583 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.093e-008 6.103e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 8.070e-040 - H2 4.035e-040 4.042e-040 -39.394 -39.393 0.001 (0) -O(0) 5.095e-014 - O2 2.538e-014 2.542e-014 -13.596 -13.595 0.001 (0) - O[18O] 1.013e-016 1.014e-016 -15.995 -15.994 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.539 -125.538 0.001 (0) -[13C](4) 6.516e-005 - H[13C]O3- 5.256e-005 4.809e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.103e-005 1.105e-005 -4.957 -4.957 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-007 9.594e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.594e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.594e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.093e-008 6.103e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.587e-008 4.595e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.126e-008 2.190e-008 -7.505 -7.660 -0.155 (0) - CaH[13C]O[18O]O+ 2.215e-009 2.031e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.215e-009 2.031e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.215e-009 2.031e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.647e-010 3.653e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.092e-010 1.914e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.092e-010 1.914e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.092e-010 1.914e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.871e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.106 -137.105 0.001 (0) -[14C](4) 1.780e-016 - H[14C]O3- 1.438e-016 1.316e-016 -15.842 -15.881 -0.039 (0) - [14C]O2 2.992e-017 2.997e-017 -16.524 -16.523 0.001 (0) - CaH[14C]O3+ 3.037e-018 2.786e-018 -17.518 -17.555 -0.037 (0) - H[14C][18O]O2- 2.869e-019 2.625e-019 -18.542 -18.581 -0.039 (0) - H[14C]O[18O]O- 2.869e-019 2.625e-019 -18.542 -18.581 -0.039 (0) - H[14C]O2[18O]- 2.869e-019 2.625e-019 -18.542 -18.581 -0.039 (0) - Ca[14C]O3 1.665e-019 1.667e-019 -18.779 -18.778 0.001 (0) - [14C]O[18O] 1.244e-019 1.246e-019 -18.905 -18.904 0.001 (0) - [14C]O3-2 8.540e-020 5.982e-020 -19.069 -19.223 -0.155 (0) - CaH[14C]O2[18O]+ 6.059e-021 5.558e-021 -20.218 -20.255 -0.037 (0) - CaH[14C][18O]O2+ 6.059e-021 5.558e-021 -20.218 -20.255 -0.037 (0) - CaH[14C]O[18O]O+ 6.059e-021 5.558e-021 -20.218 -20.255 -0.037 (0) - Ca[14C]O2[18O] 9.964e-022 9.981e-022 -21.002 -21.001 0.001 (0) - H[14C][18O]O[18O]- 5.724e-022 5.237e-022 -21.242 -21.281 -0.039 (0) - H[14C]O[18O]2- 5.724e-022 5.237e-022 -21.242 -21.281 -0.039 (0) - H[14C][18O]2O- 5.724e-022 5.237e-022 -21.242 -21.281 -0.039 (0) - [14C]O2[18O]-2 5.111e-022 3.581e-022 -21.291 -21.446 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.015e-016 - O[18O] 1.013e-016 1.014e-016 -15.995 -15.994 0.001 (0) - [18O]2 1.010e-019 1.012e-019 -18.996 -18.995 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.68 -125.54 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.42 -21.92 -1.50 [14C][18O]2 - [14C]H4(g) -134.25 -137.11 -2.86 [14C]H4 - [14C]O2(g) -15.05 -16.52 -1.47 [14C]O2 - [14C]O[18O](g) -17.44 -19.22 -1.79 [14C]O[18O] - [18O]2(g) -16.70 -18.99 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.58 -13.43 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.73 -8.03 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.52 -5.33 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.42 -10.73 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.72 -123.58 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.24 -39.39 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.70 -13.59 -2.89 O2 - O[18O](g) -13.40 -16.29 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 51. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 50. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 2.2000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 1.39e-017 1.39e-017 2.78e-014 - Ca[14C]O2[18O](s) 8.56e-020 8.56e-020 1.71e-016 - Ca[14C]O[18O]2(s) 1.76e-022 1.76e-022 3.51e-019 - Ca[14C][18O]3(s) 1.20e-025 1.19e-025 2.40e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9901 permil - R(13C) 1.11590e-002 -1.8931 permil - R(14C) 2.80826e-014 2.3882 pmc - R(18O) H2O(l) 1.99519e-003 -4.9916 permil - R(18O) OH- 1.92122e-003 -41.879 permil - R(18O) H3O+ 2.04133e-003 18.016 permil - R(18O) O2(aq) 1.99519e-003 -4.9916 permil - R(13C) CO2(aq) 1.10792e-002 -9.0362 permil - R(14C) CO2(aq) 2.76818e-014 2.3541 pmc - R(18O) CO2(aq) 2.07916e-003 36.882 permil - R(18O) HCO3- 1.99519e-003 -4.9916 permil - R(13C) HCO3- 1.11756e-002 -0.4149 permil - R(14C) HCO3- 2.81656e-014 2.3953 pmc - R(18O) CO3-2 1.99519e-003 -4.9916 permil - R(13C) CO3-2 1.11595e-002 -1.8494 permil - R(14C) CO3-2 2.80848e-014 2.3884 pmc - R(18O) Calcite 2.05263e-003 23.655 permil - R(13C) Calcite 1.11977e-002 1.5649 permil - R(14C) Calcite 2.82773e-014 2.4048 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.255e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-013 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6209e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.517e-005 6.498e-005 - [14C] 1.640e-016 1.635e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.184 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.107e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 28 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.982 -123.981 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.094e-008 6.104e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 6.417e-040 - H2 3.209e-040 3.214e-040 -39.494 -39.493 0.001 (0) -O(0) 8.058e-014 - O2 4.013e-014 4.019e-014 -13.397 -13.396 0.001 (0) - O[18O] 1.601e-016 1.604e-016 -15.796 -15.795 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.937 -125.936 0.001 (0) -[13C](4) 6.517e-005 - H[13C]O3- 5.256e-005 4.809e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.103e-005 1.105e-005 -4.957 -4.957 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - H[13C][18O]O2- 1.049e-007 9.595e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.595e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.595e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.094e-008 6.104e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.588e-008 4.595e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.126e-008 2.190e-008 -7.505 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.647e-010 3.653e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.092e-010 1.914e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.092e-010 1.914e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.092e-010 1.914e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.871e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.539 -137.539 0.001 (0) -[14C](4) 1.640e-016 - H[14C]O3- 1.325e-016 1.212e-016 -15.878 -15.917 -0.039 (0) - [14C]O2 2.757e-017 2.761e-017 -16.560 -16.559 0.001 (0) - CaH[14C]O3+ 2.797e-018 2.566e-018 -17.553 -17.591 -0.037 (0) - H[14C][18O]O2- 2.643e-019 2.418e-019 -18.578 -18.617 -0.039 (0) - H[14C]O[18O]O- 2.643e-019 2.418e-019 -18.578 -18.617 -0.039 (0) - H[14C]O2[18O]- 2.643e-019 2.418e-019 -18.578 -18.617 -0.039 (0) - Ca[14C]O3 1.534e-019 1.536e-019 -18.814 -18.814 0.001 (0) - [14C]O[18O] 1.146e-019 1.148e-019 -18.941 -18.940 0.001 (0) - [14C]O3-2 7.867e-020 5.511e-020 -19.104 -19.259 -0.155 (0) - CaH[14C]O2[18O]+ 5.581e-021 5.120e-021 -20.253 -20.291 -0.037 (0) - CaH[14C][18O]O2+ 5.581e-021 5.120e-021 -20.253 -20.291 -0.037 (0) - CaH[14C]O[18O]O+ 5.581e-021 5.120e-021 -20.253 -20.291 -0.037 (0) - Ca[14C]O2[18O] 9.179e-022 9.194e-022 -21.037 -21.036 0.001 (0) - H[14C]O[18O]2- 5.274e-022 4.825e-022 -21.278 -21.317 -0.039 (0) - H[14C][18O]2O- 5.274e-022 4.825e-022 -21.278 -21.317 -0.039 (0) - H[14C][18O]O[18O]- 5.274e-022 4.825e-022 -21.278 -21.317 -0.039 (0) - [14C]O2[18O]-2 4.709e-022 3.299e-022 -21.327 -21.482 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.604e-016 - O[18O] 1.601e-016 1.604e-016 -15.796 -15.795 0.001 (0) - [18O]2 1.597e-019 1.600e-019 -18.797 -18.796 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.08 -125.94 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.46 -21.96 -1.50 [14C][18O]2 - [14C]H4(g) -134.68 -137.54 -2.86 [14C]H4 - [14C]O2(g) -15.09 -16.56 -1.47 [14C]O2 - [14C]O[18O](g) -17.47 -19.26 -1.79 [14C]O[18O] - [18O]2(g) -16.51 -18.80 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.62 -13.46 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.77 -8.06 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.56 -5.36 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.45 -10.76 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.12 -123.98 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.34 -39.49 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.50 -13.40 -2.89 O2 - O[18O](g) -13.20 -16.10 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 52. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 51. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 2.2500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 1.28e-017 1.28e-017 2.56e-014 - Ca[14C]O2[18O](s) 7.88e-020 7.88e-020 1.58e-016 - Ca[14C]O[18O]2(s) 1.62e-022 1.62e-022 3.24e-019 - Ca[14C][18O]3(s) 1.11e-025 1.10e-025 2.21e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.99 permil - R(13C) 1.11595e-002 -1.8535 permil - R(14C) 2.58705e-014 2.2001 pmc - R(18O) H2O(l) 1.99519e-003 -4.9915 permil - R(18O) OH- 1.92122e-003 -41.879 permil - R(18O) H3O+ 2.04133e-003 18.016 permil - R(18O) O2(aq) 1.99519e-003 -4.9915 permil - R(13C) CO2(aq) 1.10796e-002 -8.9968 permil - R(14C) CO2(aq) 2.55013e-014 2.1687 pmc - R(18O) CO2(aq) 2.07916e-003 36.882 permil - R(18O) HCO3- 1.99519e-003 -4.9915 permil - R(13C) HCO3- 1.11760e-002 -0.37517 permil - R(14C) HCO3- 2.59469e-014 2.2066 pmc - R(18O) CO3-2 1.99519e-003 -4.9915 permil - R(13C) CO3-2 1.11600e-002 -1.8097 permil - R(14C) CO3-2 2.58725e-014 2.2003 pmc - R(18O) Calcite 2.05263e-003 23.655 permil - R(13C) Calcite 1.11981e-002 1.6047 permil - R(14C) Calcite 2.60498e-014 2.2153 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2421e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 4.4409e-013 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7585e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.517e-005 6.498e-005 - [14C] 1.511e-016 1.506e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.162 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.112e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.811 -123.811 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.094e-008 6.104e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 7.078e-040 - H2 3.539e-040 3.545e-040 -39.451 -39.450 0.001 (0) -O(0) 6.623e-014 - O2 3.298e-014 3.304e-014 -13.482 -13.481 0.001 (0) - O[18O] 1.316e-016 1.318e-016 -15.881 -15.880 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.767 -125.766 0.001 (0) -[13C](4) 6.517e-005 - H[13C]O3- 5.257e-005 4.809e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.103e-005 1.105e-005 -4.957 -4.957 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - H[13C]O[18O]O- 1.049e-007 9.595e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.595e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.595e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.094e-008 6.104e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.588e-008 4.595e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.126e-008 2.190e-008 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.648e-010 3.654e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.914e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.914e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.914e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.871e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.405 -137.404 0.001 (0) -[14C](4) 1.511e-016 - H[14C]O3- 1.220e-016 1.117e-016 -15.913 -15.952 -0.039 (0) - [14C]O2 2.539e-017 2.544e-017 -16.595 -16.595 0.001 (0) - CaH[14C]O3+ 2.577e-018 2.364e-018 -17.589 -17.626 -0.037 (0) - H[14C][18O]O2- 2.435e-019 2.228e-019 -18.614 -18.652 -0.039 (0) - H[14C]O[18O]O- 2.435e-019 2.228e-019 -18.614 -18.652 -0.039 (0) - H[14C]O2[18O]- 2.435e-019 2.228e-019 -18.614 -18.652 -0.039 (0) - Ca[14C]O3 1.413e-019 1.415e-019 -18.850 -18.849 0.001 (0) - [14C]O[18O] 1.056e-019 1.058e-019 -18.976 -18.976 0.001 (0) - [14C]O3-2 7.247e-020 5.077e-020 -19.140 -19.294 -0.155 (0) - CaH[14C]O2[18O]+ 5.142e-021 4.717e-021 -20.289 -20.326 -0.037 (0) - CaH[14C][18O]O2+ 5.142e-021 4.717e-021 -20.289 -20.326 -0.037 (0) - CaH[14C]O[18O]O+ 5.142e-021 4.717e-021 -20.289 -20.326 -0.037 (0) - Ca[14C]O2[18O] 8.456e-022 8.470e-022 -21.073 -21.072 0.001 (0) - H[14C][18O]2O- 4.858e-022 4.445e-022 -21.314 -21.352 -0.039 (0) - H[14C][18O]O[18O]- 4.858e-022 4.445e-022 -21.314 -21.352 -0.039 (0) - H[14C]O[18O]2- 4.858e-022 4.445e-022 -21.314 -21.352 -0.039 (0) - [14C]O2[18O]-2 4.338e-022 3.039e-022 -21.363 -21.517 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.319e-016 - O[18O] 1.316e-016 1.318e-016 -15.881 -15.880 0.001 (0) - [18O]2 1.313e-019 1.315e-019 -18.882 -18.881 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.91 -125.77 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.49 -21.99 -1.50 [14C][18O]2 - [14C]H4(g) -134.54 -137.40 -2.86 [14C]H4 - [14C]O2(g) -15.13 -16.59 -1.47 [14C]O2 - [14C]O[18O](g) -17.51 -19.29 -1.79 [14C]O[18O] - [18O]2(g) -16.59 -18.88 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.65 -13.50 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.80 -8.10 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.59 -5.40 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.49 -10.80 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.95 -123.81 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.30 -39.45 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.59 -13.48 -2.89 O2 - O[18O](g) -13.29 -16.18 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 53. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 52. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 2.3000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 1.18e-017 1.18e-017 2.36e-014 - Ca[14C]O2[18O](s) 7.26e-020 7.26e-020 1.45e-016 - Ca[14C]O[18O]2(s) 1.49e-022 1.49e-022 2.98e-019 - Ca[14C][18O]3(s) 1.02e-025 1.01e-025 2.04e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9898 permil - R(13C) 1.11599e-002 -1.8169 permil - R(14C) 2.38327e-014 2.0268 pmc - R(18O) H2O(l) 1.99519e-003 -4.9914 permil - R(18O) OH- 1.92122e-003 -41.879 permil - R(18O) H3O+ 2.04133e-003 18.017 permil - R(18O) O2(aq) 1.99519e-003 -4.9914 permil - R(13C) CO2(aq) 1.10800e-002 -8.9605 permil - R(14C) CO2(aq) 2.34925e-014 1.9979 pmc - R(18O) CO2(aq) 2.07916e-003 36.883 permil - R(18O) HCO3- 1.99519e-003 -4.9914 permil - R(13C) HCO3- 1.11764e-002 -0.33856 permil - R(14C) HCO3- 2.39030e-014 2.0328 pmc - R(18O) CO3-2 1.99519e-003 -4.9914 permil - R(13C) CO3-2 1.11604e-002 -1.7732 permil - R(14C) CO3-2 2.38345e-014 2.0269 pmc - R(18O) Calcite 2.05263e-003 23.655 permil - R(13C) Calcite 1.11986e-002 1.6414 permil - R(14C) Calcite 2.39978e-014 2.0408 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2652e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5715e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.517e-005 6.498e-005 - [14C] 1.392e-016 1.388e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.159 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.111e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 39 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.785 -123.784 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.094e-008 6.104e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 7.186e-040 - H2 3.593e-040 3.599e-040 -39.445 -39.444 0.001 (0) -O(0) 6.426e-014 - O2 3.200e-014 3.206e-014 -13.495 -13.494 0.001 (0) - O[18O] 1.277e-016 1.279e-016 -15.894 -15.893 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.741 -125.740 0.001 (0) -[13C](4) 6.517e-005 - H[13C]O3- 5.257e-005 4.809e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.103e-005 1.105e-005 -4.957 -4.957 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-007 9.595e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.595e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.595e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.094e-008 6.104e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.588e-008 4.596e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.126e-008 2.190e-008 -7.505 -7.660 -0.155 (0) - CaH[13C]O[18O]O+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.648e-010 3.654e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.914e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.914e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.914e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.871e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.414 -137.413 0.001 (0) -[14C](4) 1.392e-016 - H[14C]O3- 1.124e-016 1.029e-016 -15.949 -15.988 -0.039 (0) - [14C]O2 2.339e-017 2.343e-017 -16.631 -16.630 0.001 (0) - CaH[14C]O3+ 2.374e-018 2.178e-018 -17.625 -17.662 -0.037 (0) - H[14C][18O]O2- 2.243e-019 2.052e-019 -18.649 -18.688 -0.039 (0) - H[14C]O[18O]O- 2.243e-019 2.052e-019 -18.649 -18.688 -0.039 (0) - H[14C]O2[18O]- 2.243e-019 2.052e-019 -18.649 -18.688 -0.039 (0) - Ca[14C]O3 1.301e-019 1.304e-019 -18.886 -18.885 0.001 (0) - [14C]O[18O] 9.728e-020 9.744e-020 -19.012 -19.011 0.001 (0) - [14C]O3-2 6.676e-020 4.677e-020 -19.175 -19.330 -0.155 (0) - CaH[14C]O2[18O]+ 4.737e-021 4.345e-021 -20.325 -20.362 -0.037 (0) - CaH[14C][18O]O2+ 4.737e-021 4.345e-021 -20.325 -20.362 -0.037 (0) - CaH[14C]O[18O]O+ 4.737e-021 4.345e-021 -20.325 -20.362 -0.037 (0) - Ca[14C]O2[18O] 7.790e-022 7.803e-022 -21.108 -21.108 0.001 (0) - H[14C][18O]O[18O]- 4.475e-022 4.094e-022 -21.349 -21.388 -0.039 (0) - H[14C]O[18O]2- 4.475e-022 4.094e-022 -21.349 -21.388 -0.039 (0) - H[14C][18O]2O- 4.475e-022 4.094e-022 -21.349 -21.388 -0.039 (0) - [14C]O2[18O]-2 3.996e-022 2.800e-022 -21.398 -21.553 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.280e-016 - O[18O] 1.277e-016 1.279e-016 -15.894 -15.893 0.001 (0) - [18O]2 1.274e-019 1.276e-019 -18.895 -18.894 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.88 -125.74 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.53 -22.03 -1.50 [14C][18O]2 - [14C]H4(g) -134.55 -137.41 -2.86 [14C]H4 - [14C]O2(g) -15.16 -16.63 -1.47 [14C]O2 - [14C]O[18O](g) -17.54 -19.33 -1.79 [14C]O[18O] - [18O]2(g) -16.60 -18.89 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.69 -13.54 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.84 -8.14 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.63 -5.44 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.53 -10.84 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.92 -123.78 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.29 -39.44 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.60 -13.49 -2.89 O2 - O[18O](g) -13.30 -16.19 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 54. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 53. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 2.3500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 1.09e-017 1.09e-017 2.17e-014 - Ca[14C]O2[18O](s) 6.69e-020 6.69e-020 1.34e-016 - Ca[14C]O[18O]2(s) 1.37e-022 1.37e-022 2.75e-019 - Ca[14C][18O]3(s) 9.40e-026 9.30e-026 1.88e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9897 permil - R(13C) 1.11603e-002 -1.7832 permil - R(14C) 2.19553e-014 1.8671 pmc - R(18O) H2O(l) 1.99519e-003 -4.9912 permil - R(18O) OH- 1.92123e-003 -41.879 permil - R(18O) H3O+ 2.04133e-003 18.017 permil - R(18O) O2(aq) 1.99519e-003 -4.9912 permil - R(13C) CO2(aq) 1.10804e-002 -8.927 permil - R(14C) CO2(aq) 2.16420e-014 1.8405 pmc - R(18O) CO2(aq) 2.07916e-003 36.883 permil - R(18O) HCO3- 1.99519e-003 -4.9912 permil - R(13C) HCO3- 1.11768e-002 -0.30483 permil - R(14C) HCO3- 2.20202e-014 1.8726 pmc - R(18O) CO3-2 1.99519e-003 -4.9912 permil - R(13C) CO3-2 1.11608e-002 -1.7395 permil - R(14C) CO3-2 2.19570e-014 1.8673 pmc - R(18O) Calcite 2.05263e-003 23.655 permil - R(13C) Calcite 1.11989e-002 1.6752 permil - R(14C) Calcite 2.21075e-014 1.8801 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2586e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7326e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.517e-005 6.498e-005 - [14C] 1.282e-016 1.278e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.154 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.102e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.740 -123.740 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.094e-008 6.104e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 7.373e-040 - H2 3.686e-040 3.693e-040 -39.433 -39.433 0.001 (0) -O(0) 6.104e-014 - O2 3.040e-014 3.045e-014 -13.517 -13.516 0.001 (0) - O[18O] 1.213e-016 1.215e-016 -15.916 -15.915 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.696 -125.695 0.001 (0) -[13C](4) 6.517e-005 - H[13C]O3- 5.257e-005 4.809e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.103e-005 1.105e-005 -4.957 -4.957 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - H[13C][18O]O2- 1.049e-007 9.596e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.596e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.596e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.094e-008 6.104e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.588e-008 4.596e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.126e-008 2.190e-008 -7.505 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.648e-010 3.654e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.871e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.405 -137.404 0.001 (0) -[14C](4) 1.282e-016 - H[14C]O3- 1.036e-016 9.475e-017 -15.985 -16.023 -0.039 (0) - [14C]O2 2.155e-017 2.159e-017 -16.667 -16.666 0.001 (0) - CaH[14C]O3+ 2.187e-018 2.006e-018 -17.660 -17.698 -0.037 (0) - H[14C][18O]O2- 2.066e-019 1.891e-019 -18.685 -18.723 -0.039 (0) - H[14C]O[18O]O- 2.066e-019 1.891e-019 -18.685 -18.723 -0.039 (0) - H[14C]O2[18O]- 2.066e-019 1.891e-019 -18.685 -18.723 -0.039 (0) - Ca[14C]O3 1.199e-019 1.201e-019 -18.921 -18.920 0.001 (0) - [14C]O[18O] 8.962e-020 8.976e-020 -19.048 -19.047 0.001 (0) - [14C]O3-2 6.150e-020 4.309e-020 -19.211 -19.366 -0.155 (0) - CaH[14C]O2[18O]+ 4.364e-021 4.003e-021 -20.360 -20.398 -0.037 (0) - CaH[14C][18O]O2+ 4.364e-021 4.003e-021 -20.360 -20.398 -0.037 (0) - CaH[14C]O[18O]O+ 4.364e-021 4.003e-021 -20.360 -20.398 -0.037 (0) - Ca[14C]O2[18O] 7.176e-022 7.188e-022 -21.144 -21.143 0.001 (0) - H[14C]O[18O]2- 4.123e-022 3.772e-022 -21.385 -21.423 -0.039 (0) - H[14C][18O]2O- 4.123e-022 3.772e-022 -21.385 -21.423 -0.039 (0) - H[14C][18O]O[18O]- 4.123e-022 3.772e-022 -21.385 -21.423 -0.039 (0) - [14C]O2[18O]-2 3.681e-022 2.579e-022 -21.434 -21.589 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.216e-016 - O[18O] 1.213e-016 1.215e-016 -15.916 -15.915 0.001 (0) - [18O]2 1.210e-019 1.212e-019 -18.917 -18.916 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.84 -125.70 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.56 -22.07 -1.50 [14C][18O]2 - [14C]H4(g) -134.54 -137.40 -2.86 [14C]H4 - [14C]O2(g) -15.20 -16.67 -1.47 [14C]O2 - [14C]O[18O](g) -17.58 -19.37 -1.79 [14C]O[18O] - [18O]2(g) -16.63 -18.92 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.73 -13.57 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.87 -8.17 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.66 -5.47 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.56 -10.87 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.88 -123.74 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.28 -39.43 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.62 -13.52 -2.89 O2 - O[18O](g) -13.32 -16.22 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 55. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 54. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 2.4000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 1.00e-017 1.00e-017 2.00e-014 - Ca[14C]O2[18O](s) 6.16e-020 6.16e-020 1.23e-016 - Ca[14C]O[18O]2(s) 1.27e-022 1.27e-022 2.53e-019 - Ca[14C][18O]3(s) 8.66e-026 8.56e-026 1.73e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9896 permil - R(13C) 1.11606e-002 -1.7522 permil - R(14C) 2.02258e-014 1.72 pmc - R(18O) H2O(l) 1.99519e-003 -4.9911 permil - R(18O) OH- 1.92123e-003 -41.878 permil - R(18O) H3O+ 2.04133e-003 18.017 permil - R(18O) O2(aq) 1.99519e-003 -4.9911 permil - R(13C) CO2(aq) 1.10807e-002 -8.8962 permil - R(14C) CO2(aq) 1.99372e-014 1.6955 pmc - R(18O) CO2(aq) 2.07916e-003 36.883 permil - R(18O) HCO3- 1.99519e-003 -4.9911 permil - R(13C) HCO3- 1.11771e-002 -0.27374 permil - R(14C) HCO3- 2.02856e-014 1.7251 pmc - R(18O) CO3-2 1.99519e-003 -4.9911 permil - R(13C) CO3-2 1.11611e-002 -1.7084 permil - R(14C) CO3-2 2.02274e-014 1.7202 pmc - R(18O) Calcite 2.05263e-003 23.655 permil - R(13C) Calcite 1.11993e-002 1.7064 permil - R(14C) Calcite 2.03660e-014 1.732 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2555e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7719e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.518e-005 6.499e-005 - [14C] 1.181e-016 1.178e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.139 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.098e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 20 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.623 -123.623 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.095e-008 6.105e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 7.888e-040 - H2 3.944e-040 3.950e-040 -39.404 -39.403 0.001 (0) -O(0) 5.333e-014 - O2 2.656e-014 2.660e-014 -13.576 -13.575 0.001 (0) - O[18O] 1.060e-016 1.062e-016 -15.975 -15.974 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.579 -125.578 0.001 (0) -[13C](4) 6.518e-005 - H[13C]O3- 5.257e-005 4.810e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.103e-005 1.105e-005 -4.957 -4.957 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - H[13C]O[18O]O- 1.049e-007 9.596e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.596e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.596e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.095e-008 6.105e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.588e-008 4.596e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.126e-008 2.190e-008 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.648e-010 3.654e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.871e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.324 -137.323 0.001 (0) -[14C](4) 1.181e-016 - H[14C]O3- 9.541e-017 8.729e-017 -16.020 -16.059 -0.039 (0) - [14C]O2 1.985e-017 1.989e-017 -16.702 -16.701 0.001 (0) - CaH[14C]O3+ 2.015e-018 1.848e-018 -17.696 -17.733 -0.037 (0) - H[14C][18O]O2- 1.904e-019 1.742e-019 -18.720 -18.759 -0.039 (0) - H[14C]O[18O]O- 1.904e-019 1.742e-019 -18.720 -18.759 -0.039 (0) - H[14C]O2[18O]- 1.904e-019 1.742e-019 -18.720 -18.759 -0.039 (0) - Ca[14C]O3 1.105e-019 1.106e-019 -18.957 -18.956 0.001 (0) - [14C]O[18O] 8.256e-020 8.269e-020 -19.083 -19.083 0.001 (0) - [14C]O3-2 5.666e-020 3.969e-020 -19.247 -19.401 -0.155 (0) - CaH[14C]O2[18O]+ 4.020e-021 3.688e-021 -20.396 -20.433 -0.037 (0) - CaH[14C][18O]O2+ 4.020e-021 3.688e-021 -20.396 -20.433 -0.037 (0) - CaH[14C]O[18O]O+ 4.020e-021 3.688e-021 -20.396 -20.433 -0.037 (0) - Ca[14C]O2[18O] 6.611e-022 6.622e-022 -21.180 -21.179 0.001 (0) - H[14C][18O]2O- 3.798e-022 3.475e-022 -21.420 -21.459 -0.039 (0) - H[14C][18O]O[18O]- 3.798e-022 3.475e-022 -21.420 -21.459 -0.039 (0) - H[14C]O[18O]2- 3.798e-022 3.475e-022 -21.420 -21.459 -0.039 (0) - [14C]O2[18O]-2 3.391e-022 2.376e-022 -21.470 -21.624 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.062e-016 - O[18O] 1.060e-016 1.062e-016 -15.975 -15.974 0.001 (0) - [18O]2 1.057e-019 1.059e-019 -18.976 -18.975 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.72 -125.58 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.60 -22.10 -1.50 [14C][18O]2 - [14C]H4(g) -134.46 -137.32 -2.86 [14C]H4 - [14C]O2(g) -15.23 -16.70 -1.47 [14C]O2 - [14C]O[18O](g) -17.61 -19.40 -1.79 [14C]O[18O] - [18O]2(g) -16.68 -18.98 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.76 -13.61 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.91 -8.21 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.70 -5.51 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.60 -10.91 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.76 -123.62 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.25 -39.40 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.68 -13.58 -2.89 O2 - O[18O](g) -13.38 -16.28 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 56. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 55. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 2.4500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 9.22e-018 9.22e-018 1.84e-014 - Ca[14C]O2[18O](s) 5.68e-020 5.68e-020 1.14e-016 - Ca[14C]O[18O]2(s) 1.17e-022 1.17e-022 2.33e-019 - Ca[14C][18O]3(s) 7.97e-026 7.87e-026 1.59e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9894 permil - R(13C) 1.11609e-002 -1.7236 permil - R(14C) 1.86326e-014 1.5846 pmc - R(18O) H2O(l) 1.99519e-003 -4.9909 permil - R(18O) OH- 1.92123e-003 -41.878 permil - R(18O) H3O+ 2.04133e-003 18.017 permil - R(18O) O2(aq) 1.99519e-003 -4.9909 permil - R(13C) CO2(aq) 1.10811e-002 -8.8678 permil - R(14C) CO2(aq) 1.83667e-014 1.5619 pmc - R(18O) CO2(aq) 2.07916e-003 36.883 permil - R(18O) HCO3- 1.99519e-003 -4.9909 permil - R(13C) HCO3- 1.11775e-002 -0.2451 permil - R(14C) HCO3- 1.86876e-014 1.5892 pmc - R(18O) CO3-2 1.99519e-003 -4.9909 permil - R(13C) CO3-2 1.11614e-002 -1.6798 permil - R(14C) CO3-2 1.86341e-014 1.5847 pmc - R(18O) Calcite 2.05263e-003 23.655 permil - R(13C) Calcite 1.11996e-002 1.7351 permil - R(14C) Calcite 1.87617e-014 1.5955 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2516e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.4401e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6463e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.518e-005 6.499e-005 - [14C] 1.088e-016 1.085e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.139 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.542e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 27 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.624 -123.623 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.095e-008 6.105e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 7.884e-040 - H2 3.942e-040 3.949e-040 -39.404 -39.404 0.001 (0) -O(0) 5.338e-014 - O2 2.659e-014 2.663e-014 -13.575 -13.575 0.001 (0) - O[18O] 1.061e-016 1.063e-016 -15.974 -15.974 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.579 -125.579 0.001 (0) -[13C](4) 6.518e-005 - H[13C]O3- 5.257e-005 4.810e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.103e-005 1.105e-005 -4.957 -4.957 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-007 9.596e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.596e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.596e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.095e-008 6.105e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.588e-008 4.596e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.126e-008 2.190e-008 -7.505 -7.660 -0.155 (0) - CaH[13C]O[18O]O+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.648e-010 3.654e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.871e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.360 -137.359 0.001 (0) -[14C](4) 1.088e-016 - H[14C]O3- 8.790e-017 8.041e-017 -16.056 -16.095 -0.039 (0) - [14C]O2 1.829e-017 1.832e-017 -16.738 -16.737 0.001 (0) - CaH[14C]O3+ 1.856e-018 1.703e-018 -17.731 -17.769 -0.037 (0) - H[14C][18O]O2- 1.754e-019 1.604e-019 -18.756 -18.795 -0.039 (0) - H[14C]O[18O]O- 1.754e-019 1.604e-019 -18.756 -18.795 -0.039 (0) - H[14C]O2[18O]- 1.754e-019 1.604e-019 -18.756 -18.795 -0.039 (0) - Ca[14C]O3 1.018e-019 1.019e-019 -18.992 -18.992 0.001 (0) - [14C]O[18O] 7.605e-020 7.618e-020 -19.119 -19.118 0.001 (0) - [14C]O3-2 5.220e-020 3.657e-020 -19.282 -19.437 -0.155 (0) - CaH[14C]O2[18O]+ 3.703e-021 3.397e-021 -20.431 -20.469 -0.037 (0) - CaH[14C][18O]O2+ 3.703e-021 3.397e-021 -20.431 -20.469 -0.037 (0) - CaH[14C]O[18O]O+ 3.703e-021 3.397e-021 -20.431 -20.469 -0.037 (0) - Ca[14C]O2[18O] 6.090e-022 6.100e-022 -21.215 -21.215 0.001 (0) - H[14C][18O]O[18O]- 3.499e-022 3.201e-022 -21.456 -21.495 -0.039 (0) - H[14C]O[18O]2- 3.499e-022 3.201e-022 -21.456 -21.495 -0.039 (0) - H[14C][18O]2O- 3.499e-022 3.201e-022 -21.456 -21.495 -0.039 (0) - [14C]O2[18O]-2 3.124e-022 2.189e-022 -21.505 -21.660 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.063e-016 - O[18O] 1.061e-016 1.063e-016 -15.974 -15.974 0.001 (0) - [18O]2 1.058e-019 1.060e-019 -18.975 -18.975 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.72 -125.58 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.63 -22.14 -1.50 [14C][18O]2 - [14C]H4(g) -134.50 -137.36 -2.86 [14C]H4 - [14C]O2(g) -15.27 -16.74 -1.47 [14C]O2 - [14C]O[18O](g) -17.65 -19.44 -1.79 [14C]O[18O] - [18O]2(g) -16.68 -18.97 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.80 -13.64 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.94 -8.24 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.73 -5.54 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.63 -10.94 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.76 -123.62 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.25 -39.40 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.68 -13.57 -2.89 O2 - O[18O](g) -13.38 -16.27 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 57. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 56. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 2.5000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 8.49e-018 8.49e-018 1.70e-014 - Ca[14C]O2[18O](s) 5.23e-020 5.23e-020 1.05e-016 - Ca[14C]O[18O]2(s) 1.07e-022 1.07e-022 2.15e-019 - Ca[14C][18O]3(s) 7.35e-026 7.25e-026 1.47e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9893 permil - R(13C) 1.11612e-002 -1.6972 permil - R(14C) 1.71649e-014 1.4597 pmc - R(18O) H2O(l) 1.99519e-003 -4.9908 permil - R(18O) OH- 1.92123e-003 -41.878 permil - R(18O) H3O+ 2.04133e-003 18.017 permil - R(18O) O2(aq) 1.99519e-003 -4.9908 permil - R(13C) CO2(aq) 1.10813e-002 -8.8417 permil - R(14C) CO2(aq) 1.69199e-014 1.4389 pmc - R(18O) CO2(aq) 2.07916e-003 36.883 permil - R(18O) HCO3- 1.99519e-003 -4.9908 permil - R(13C) HCO3- 1.11778e-002 -0.2187 permil - R(14C) HCO3- 1.72156e-014 1.4641 pmc - R(18O) CO3-2 1.99519e-003 -4.9908 permil - R(13C) CO3-2 1.11617e-002 -1.6535 permil - R(14C) CO3-2 1.71662e-014 1.4599 pmc - R(18O) Calcite 2.05263e-003 23.656 permil - R(13C) Calcite 1.11999e-002 1.7615 permil - R(14C) Calcite 1.72838e-014 1.4699 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2558e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.6621e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5835e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.518e-005 6.499e-005 - [14C] 1.002e-016 9.995e-017 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.088 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.542e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 32 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.217 -123.217 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.095e-008 6.105e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 9.964e-040 - H2 4.982e-040 4.990e-040 -39.303 -39.302 0.001 (0) -O(0) 3.342e-014 - O2 1.665e-014 1.667e-014 -13.779 -13.778 0.001 (0) - O[18O] 6.642e-017 6.653e-017 -16.178 -16.177 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.173 -125.172 0.001 (0) -[13C](4) 6.518e-005 - H[13C]O3- 5.257e-005 4.810e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.103e-005 1.105e-005 -4.957 -4.957 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - H[13C][18O]O2- 1.049e-007 9.597e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.597e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.597e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.095e-008 6.105e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.589e-008 4.596e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.127e-008 2.190e-008 -7.505 -7.659 -0.155 (0) - CaH[13C][18O]O2+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.648e-010 3.654e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.871e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.989 -136.988 0.001 (0) -[14C](4) 1.002e-016 - H[14C]O3- 8.097e-017 7.408e-017 -16.092 -16.130 -0.039 (0) - [14C]O2 1.685e-017 1.688e-017 -16.773 -16.773 0.001 (0) - CaH[14C]O3+ 1.710e-018 1.569e-018 -17.767 -17.805 -0.037 (0) - H[14C][18O]O2- 1.616e-019 1.478e-019 -18.792 -18.830 -0.039 (0) - H[14C]O[18O]O- 1.616e-019 1.478e-019 -18.792 -18.830 -0.039 (0) - H[14C]O2[18O]- 1.616e-019 1.478e-019 -18.792 -18.830 -0.039 (0) - Ca[14C]O3 9.374e-020 9.389e-020 -19.028 -19.027 0.001 (0) - [14C]O[18O] 7.006e-020 7.018e-020 -19.155 -19.154 0.001 (0) - [14C]O3-2 4.808e-020 3.369e-020 -19.318 -19.473 -0.155 (0) - CaH[14C]O2[18O]+ 3.412e-021 3.129e-021 -20.467 -20.505 -0.037 (0) - CaH[14C][18O]O2+ 3.412e-021 3.129e-021 -20.467 -20.505 -0.037 (0) - CaH[14C]O[18O]O+ 3.412e-021 3.129e-021 -20.467 -20.505 -0.037 (0) - Ca[14C]O2[18O] 5.611e-022 5.620e-022 -21.251 -21.250 0.001 (0) - H[14C]O[18O]2- 3.223e-022 2.949e-022 -21.492 -21.530 -0.039 (0) - H[14C][18O]2O- 3.223e-022 2.949e-022 -21.492 -21.530 -0.039 (0) - H[14C][18O]O[18O]- 3.223e-022 2.949e-022 -21.492 -21.530 -0.039 (0) - [14C]O2[18O]-2 2.878e-022 2.016e-022 -21.541 -21.695 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 6.656e-017 - O[18O] 6.642e-017 6.653e-017 -16.178 -16.177 0.001 (0) - [18O]2 6.626e-020 6.637e-020 -19.179 -19.178 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.31 -125.17 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.67 -22.17 -1.50 [14C][18O]2 - [14C]H4(g) -134.13 -136.99 -2.86 [14C]H4 - [14C]O2(g) -15.30 -16.77 -1.47 [14C]O2 - [14C]O[18O](g) -17.69 -19.47 -1.79 [14C]O[18O] - [18O]2(g) -16.89 -19.18 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.83 -13.68 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.98 -8.28 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.77 -5.58 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.67 -10.98 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.36 -123.22 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.15 -39.30 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.89 -13.78 -2.89 O2 - O[18O](g) -13.59 -16.48 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 58. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 57. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 2.5500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 7.82e-018 7.82e-018 1.56e-014 - Ca[14C]O2[18O](s) 4.82e-020 4.82e-020 9.64e-017 - Ca[14C]O[18O]2(s) 9.89e-023 9.89e-023 1.98e-019 - Ca[14C][18O]3(s) 6.77e-026 6.67e-026 1.35e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9891 permil - R(13C) 1.11615e-002 -1.6729 permil - R(14C) 1.58128e-014 1.3448 pmc - R(18O) H2O(l) 1.99519e-003 -4.9907 permil - R(18O) OH- 1.92123e-003 -41.878 permil - R(18O) H3O+ 2.04133e-003 18.017 permil - R(18O) O2(aq) 1.99519e-003 -4.9907 permil - R(13C) CO2(aq) 1.10816e-002 -8.8175 permil - R(14C) CO2(aq) 1.55871e-014 1.3256 pmc - R(18O) CO2(aq) 2.07916e-003 36.883 permil - R(18O) HCO3- 1.99519e-003 -4.9907 permil - R(13C) HCO3- 1.11780e-002 -0.19438 permil - R(14C) HCO3- 1.58595e-014 1.3487 pmc - R(18O) CO3-2 1.99519e-003 -4.9907 permil - R(13C) CO3-2 1.11620e-002 -1.6292 permil - R(14C) CO3-2 1.58140e-014 1.3449 pmc - R(18O) Calcite 2.05263e-003 23.656 permil - R(13C) Calcite 1.12002e-002 1.7859 permil - R(14C) Calcite 1.59224e-014 1.3541 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2575e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.2196e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8472e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.518e-005 6.499e-005 - [14C] 9.234e-017 9.207e-017 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.089 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.537e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 27 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.222 -123.222 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.095e-008 6.105e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 9.934e-040 - H2 4.967e-040 4.975e-040 -39.304 -39.303 0.001 (0) -O(0) 3.362e-014 - O2 1.674e-014 1.677e-014 -13.776 -13.775 0.001 (0) - O[18O] 6.682e-017 6.693e-017 -16.175 -16.174 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.178 -125.177 0.001 (0) -[13C](4) 6.518e-005 - H[13C]O3- 5.258e-005 4.810e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.103e-005 1.105e-005 -4.957 -4.957 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - H[13C]O[18O]O- 1.049e-007 9.597e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.597e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.597e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.095e-008 6.105e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.589e-008 4.596e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.127e-008 2.190e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.648e-010 3.654e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.871e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.030 -137.029 0.001 (0) -[14C](4) 9.234e-017 - H[14C]O3- 7.459e-017 6.824e-017 -16.127 -16.166 -0.039 (0) - [14C]O2 1.552e-017 1.555e-017 -16.809 -16.808 0.001 (0) - CaH[14C]O3+ 1.575e-018 1.445e-018 -17.803 -17.840 -0.037 (0) - H[14C][18O]O2- 1.488e-019 1.362e-019 -18.827 -18.866 -0.039 (0) - H[14C]O[18O]O- 1.488e-019 1.362e-019 -18.827 -18.866 -0.039 (0) - H[14C]O2[18O]- 1.488e-019 1.362e-019 -18.827 -18.866 -0.039 (0) - Ca[14C]O3 8.635e-020 8.649e-020 -19.064 -19.063 0.001 (0) - [14C]O[18O] 6.454e-020 6.465e-020 -19.190 -19.189 0.001 (0) - [14C]O3-2 4.430e-020 3.103e-020 -19.354 -19.508 -0.155 (0) - CaH[14C]O2[18O]+ 3.143e-021 2.883e-021 -20.503 -20.540 -0.037 (0) - CaH[14C][18O]O2+ 3.143e-021 2.883e-021 -20.503 -20.540 -0.037 (0) - CaH[14C]O[18O]O+ 3.143e-021 2.883e-021 -20.503 -20.540 -0.037 (0) - Ca[14C]O2[18O] 5.169e-022 5.177e-022 -21.287 -21.286 0.001 (0) - H[14C][18O]2O- 2.969e-022 2.717e-022 -21.527 -21.566 -0.039 (0) - H[14C][18O]O[18O]- 2.969e-022 2.717e-022 -21.527 -21.566 -0.039 (0) - H[14C]O[18O]2- 2.969e-022 2.717e-022 -21.527 -21.566 -0.039 (0) - [14C]O2[18O]-2 2.651e-022 1.857e-022 -21.577 -21.731 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 6.695e-017 - O[18O] 6.682e-017 6.693e-017 -16.175 -16.174 0.001 (0) - [18O]2 6.666e-020 6.677e-020 -19.176 -19.175 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.32 -125.18 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.70 -22.21 -1.50 [14C][18O]2 - [14C]H4(g) -134.17 -137.03 -2.86 [14C]H4 - [14C]O2(g) -15.34 -16.81 -1.47 [14C]O2 - [14C]O[18O](g) -17.72 -19.51 -1.79 [14C]O[18O] - [18O]2(g) -16.89 -19.18 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.87 -13.71 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.02 -8.31 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.81 -5.61 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.70 -11.01 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.36 -123.22 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.15 -39.30 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.88 -13.78 -2.89 O2 - O[18O](g) -13.58 -16.48 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 59. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 58. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 2.6000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 7.21e-018 7.21e-018 1.44e-014 - Ca[14C]O2[18O](s) 4.44e-020 4.44e-020 8.88e-017 - Ca[14C]O[18O]2(s) 9.11e-023 9.11e-023 1.82e-019 - Ca[14C][18O]3(s) 6.23e-026 6.13e-026 1.25e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.989 permil - R(13C) 1.11617e-002 -1.6506 permil - R(14C) 1.45672e-014 1.2388 pmc - R(18O) H2O(l) 1.99519e-003 -4.9905 permil - R(18O) OH- 1.92123e-003 -41.878 permil - R(18O) H3O+ 2.04133e-003 18.017 permil - R(13C) CO2(aq) 1.10819e-002 -8.7953 permil - R(14C) CO2(aq) 1.43593e-014 1.2211 pmc - R(18O) CO2(aq) 2.07916e-003 36.883 permil - R(18O) HCO3- 1.99519e-003 -4.9905 permil - R(13C) HCO3- 1.11783e-002 -0.17197 permil - R(14C) HCO3- 1.46102e-014 1.2425 pmc - R(18O) CO3-2 1.99519e-003 -4.9905 permil - R(13C) CO3-2 1.11622e-002 -1.6068 permil - R(14C) CO3-2 1.45683e-014 1.2389 pmc - R(13C) CH4(aq) 1.10819e-002 -8.7953 permil - R(14C) CH4(aq) 1.43593e-014 1.2211 pmc - R(18O) Calcite 2.05263e-003 23.656 permil - R(13C) Calcite 1.12004e-002 1.8083 permil - R(14C) Calcite 1.46681e-014 1.2474 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6003e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.1324e-011 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -8.9928e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.518e-005 6.499e-005 - [14C] 8.507e-017 8.482e-017 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -1.600 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.535e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 56 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.960e-022 - CH4 1.960e-022 1.963e-022 -21.708 -21.707 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.095e-008 6.105e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 2.376e-014 - H2 1.188e-014 1.190e-014 -13.925 -13.925 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -64.533 -64.533 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -66.932 -66.932 0.001 (0) -[13C](-4) 2.172e-024 - [13C]H4 2.172e-024 2.175e-024 -23.663 -23.663 0.001 (0) -[13C](4) 6.518e-005 - H[13C]O3- 5.258e-005 4.810e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.105e-005 -4.957 -4.957 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-007 9.597e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.597e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.597e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.095e-008 6.105e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.589e-008 4.596e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.127e-008 2.190e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O[18O]O+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.648e-010 3.654e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.814e-036 - [14C]H4 2.814e-036 2.818e-036 -35.551 -35.550 0.001 (0) -[14C](4) 8.507e-017 - H[14C]O3- 6.872e-017 6.287e-017 -16.163 -16.202 -0.039 (0) - [14C]O2 1.430e-017 1.432e-017 -16.845 -16.844 0.001 (0) - CaH[14C]O3+ 1.451e-018 1.331e-018 -17.838 -17.876 -0.037 (0) - H[14C][18O]O2- 1.371e-019 1.254e-019 -18.863 -18.902 -0.039 (0) - H[14C]O[18O]O- 1.371e-019 1.254e-019 -18.863 -18.902 -0.039 (0) - H[14C]O2[18O]- 1.371e-019 1.254e-019 -18.863 -18.902 -0.039 (0) - Ca[14C]O3 7.955e-020 7.968e-020 -19.099 -19.099 0.001 (0) - [14C]O[18O] 5.946e-020 5.956e-020 -19.226 -19.225 0.001 (0) - [14C]O3-2 4.081e-020 2.859e-020 -19.389 -19.544 -0.155 (0) - CaH[14C]O2[18O]+ 2.895e-021 2.656e-021 -20.538 -20.576 -0.037 (0) - CaH[14C][18O]O2+ 2.895e-021 2.656e-021 -20.538 -20.576 -0.037 (0) - CaH[14C]O[18O]O+ 2.895e-021 2.656e-021 -20.538 -20.576 -0.037 (0) - Ca[14C]O2[18O] 4.762e-022 4.769e-022 -21.322 -21.322 0.001 (0) - H[14C][18O]O[18O]- 2.736e-022 2.503e-022 -21.563 -21.602 -0.039 (0) - H[14C]O[18O]2- 2.736e-022 2.503e-022 -21.563 -21.602 -0.039 (0) - H[14C][18O]2O- 2.736e-022 2.503e-022 -21.563 -21.602 -0.039 (0) - [14C]O2[18O]-2 2.443e-022 1.711e-022 -21.612 -21.767 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -66.932 -66.932 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -69.933 -69.933 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -20.80 -23.66 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.74 -22.24 -1.50 [14C][18O]2 - [14C]H4(g) -32.69 -35.55 -2.86 [14C]H4 - [14C]O2(g) -15.38 -16.84 -1.47 [14C]O2 - [14C]O[18O](g) -17.76 -19.54 -1.79 [14C]O[18O] - [18O]2(g) -67.64 -69.93 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.90 -13.75 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.05 -8.35 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.84 -5.65 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.74 -11.05 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -18.85 -21.71 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.77 -13.92 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -61.64 -64.53 -2.89 O2 - O[18O](g) -64.34 -67.23 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 60. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 59. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 2.6500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 6.64e-018 6.64e-018 1.33e-014 - Ca[14C]O2[18O](s) 4.09e-020 4.09e-020 8.18e-017 - Ca[14C]O[18O]2(s) 8.39e-023 8.39e-023 1.68e-019 - Ca[14C][18O]3(s) 5.74e-026 5.64e-026 1.15e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9889 permil - R(13C) 1.11620e-002 -1.6299 permil - R(14C) 1.34197e-014 1.1412 pmc - R(18O) H2O(l) 1.99519e-003 -4.9904 permil - R(18O) OH- 1.92123e-003 -41.878 permil - R(18O) H3O+ 2.04133e-003 18.018 permil - R(13C) CO2(aq) 1.10821e-002 -8.7748 permil - R(14C) CO2(aq) 1.32282e-014 1.125 pmc - R(18O) CO2(aq) 2.07916e-003 36.884 permil - R(18O) HCO3- 1.99519e-003 -4.9904 permil - R(13C) HCO3- 1.11785e-002 -0.15131 permil - R(14C) HCO3- 1.34593e-014 1.1446 pmc - R(18O) CO3-2 1.99519e-003 -4.9904 permil - R(13C) CO3-2 1.11625e-002 -1.5862 permil - R(14C) CO3-2 1.34207e-014 1.1413 pmc - R(13C) CH4(aq) 1.10821e-002 -8.7748 permil - R(14C) CH4(aq) 1.32282e-014 1.125 pmc - R(18O) Calcite 2.05263e-003 23.656 permil - R(13C) Calcite 1.12006e-002 1.829 permil - R(14C) Calcite 1.35127e-014 1.1491 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.6621e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7639e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.1102e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.3545e-011 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.518e-005 6.499e-005 - [14C] 7.837e-017 7.814e-017 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -1.839 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.530e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 33 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.594e-020 - CH4 1.594e-020 1.596e-020 -19.798 -19.797 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.095e-008 6.105e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 7.135e-014 - H2 3.567e-014 3.573e-014 -13.448 -13.447 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -65.489 -65.488 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -67.888 -67.887 0.001 (0) -[13C](-4) 1.766e-022 - [13C]H4 1.766e-022 1.769e-022 -21.753 -21.752 0.001 (0) -[13C](4) 6.518e-005 - H[13C]O3- 5.258e-005 4.810e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.105e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - H[13C][18O]O2- 1.049e-007 9.597e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.597e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.597e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.095e-008 6.105e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.589e-008 4.596e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.127e-008 2.190e-008 -7.505 -7.659 -0.155 (0) - CaH[13C][18O]O2+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.648e-010 3.654e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.108e-034 - [14C]H4 2.108e-034 2.112e-034 -33.676 -33.675 0.001 (0) -[14C](4) 7.837e-017 - H[14C]O3- 6.330e-017 5.792e-017 -16.199 -16.237 -0.039 (0) - [14C]O2 1.317e-017 1.319e-017 -16.880 -16.880 0.001 (0) - CaH[14C]O3+ 1.337e-018 1.226e-018 -17.874 -17.911 -0.037 (0) - H[14C][18O]O2- 1.263e-019 1.156e-019 -18.899 -18.937 -0.039 (0) - H[14C]O[18O]O- 1.263e-019 1.156e-019 -18.899 -18.937 -0.039 (0) - H[14C]O2[18O]- 1.263e-019 1.156e-019 -18.899 -18.937 -0.039 (0) - Ca[14C]O3 7.328e-020 7.340e-020 -19.135 -19.134 0.001 (0) - [14C]O[18O] 5.478e-020 5.487e-020 -19.261 -19.261 0.001 (0) - [14C]O3-2 3.759e-020 2.634e-020 -19.425 -19.579 -0.155 (0) - CaH[14C]O2[18O]+ 2.667e-021 2.447e-021 -20.574 -20.611 -0.037 (0) - CaH[14C][18O]O2+ 2.667e-021 2.447e-021 -20.574 -20.611 -0.037 (0) - CaH[14C]O[18O]O+ 2.667e-021 2.447e-021 -20.574 -20.611 -0.037 (0) - Ca[14C]O2[18O] 4.386e-022 4.394e-022 -21.358 -21.357 0.001 (0) - H[14C]O[18O]2- 2.520e-022 2.306e-022 -21.599 -21.637 -0.039 (0) - H[14C][18O]2O- 2.520e-022 2.306e-022 -21.599 -21.637 -0.039 (0) - H[14C][18O]O[18O]- 2.520e-022 2.306e-022 -21.599 -21.637 -0.039 (0) - [14C]O2[18O]-2 2.250e-022 1.576e-022 -21.648 -21.802 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -67.888 -67.887 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -70.889 -70.888 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.89 -21.75 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.78 -22.28 -1.50 [14C][18O]2 - [14C]H4(g) -30.82 -33.68 -2.86 [14C]H4 - [14C]O2(g) -15.41 -16.88 -1.47 [14C]O2 - [14C]O[18O](g) -17.79 -19.58 -1.79 [14C]O[18O] - [18O]2(g) -68.60 -70.89 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.94 -13.79 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.09 -8.39 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.88 -5.69 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.78 -11.09 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.94 -19.80 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.30 -13.45 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.60 -65.49 -2.89 O2 - O[18O](g) -65.30 -68.19 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 61. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 60. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 2.7000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 6.12e-018 6.12e-018 1.22e-014 - Ca[14C]O2[18O](s) 3.77e-020 3.77e-020 7.53e-017 - Ca[14C]O[18O]2(s) 7.73e-023 7.73e-023 1.55e-019 - Ca[14C][18O]3(s) 5.29e-026 5.19e-026 1.06e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9887 permil - R(13C) 1.11622e-002 -1.6109 permil - R(14C) 1.23626e-014 1.0513 pmc - R(18O) H2O(l) 1.99519e-003 -4.9902 permil - R(18O) OH- 1.92123e-003 -41.878 permil - R(18O) H3O+ 2.04133e-003 18.018 permil - R(13C) CO2(aq) 1.10823e-002 -8.756 permil - R(14C) CO2(aq) 1.21861e-014 1.0363 pmc - R(18O) CO2(aq) 2.07916e-003 36.884 permil - R(18O) HCO3- 1.99519e-003 -4.9902 permil - R(13C) HCO3- 1.11787e-002 -0.13228 permil - R(14C) HCO3- 1.23991e-014 1.0544 pmc - R(18O) CO3-2 1.99519e-003 -4.9902 permil - R(13C) CO3-2 1.11627e-002 -1.5672 permil - R(14C) CO3-2 1.23635e-014 1.0514 pmc - R(13C) CH4(aq) 1.10823e-002 -8.756 permil - R(14C) CH4(aq) 1.21861e-014 1.0363 pmc - R(18O) Calcite 2.05264e-003 23.656 permil - R(13C) Calcite 1.12009e-002 1.8481 permil - R(14C) Calcite 1.24483e-014 1.0586 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.3299e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5989e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 5.9952e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -6.2172e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.518e-005 6.499e-005 - [14C] 7.219e-017 7.198e-017 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -1.882 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.519e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 28 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 3.517e-020 - CH4 3.517e-020 3.523e-020 -19.454 -19.453 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.095e-008 6.105e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 8.696e-014 - H2 4.348e-014 4.355e-014 -13.362 -13.361 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -65.660 -65.660 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -68.059 -68.059 0.001 (0) -[13C](-4) 3.898e-022 - [13C]H4 3.898e-022 3.904e-022 -21.409 -21.408 0.001 (0) -[13C](4) 6.518e-005 - H[13C]O3- 5.258e-005 4.810e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.105e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.018e-006 -5.955 -5.992 -0.037 (0) - H[13C]O[18O]O- 1.049e-007 9.597e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.597e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.597e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.095e-008 6.105e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.589e-008 4.597e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.127e-008 2.190e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.648e-010 3.654e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 4.286e-034 - [14C]H4 4.286e-034 4.293e-034 -33.368 -33.367 0.001 (0) -[14C](4) 7.219e-017 - H[14C]O3- 5.832e-017 5.335e-017 -16.234 -16.273 -0.039 (0) - [14C]O2 1.213e-017 1.215e-017 -16.916 -16.915 0.001 (0) - CaH[14C]O3+ 1.231e-018 1.130e-018 -17.910 -17.947 -0.037 (0) - H[14C][18O]O2- 1.164e-019 1.065e-019 -18.934 -18.973 -0.039 (0) - H[14C]O[18O]O- 1.164e-019 1.065e-019 -18.934 -18.973 -0.039 (0) - H[14C]O2[18O]- 1.164e-019 1.065e-019 -18.934 -18.973 -0.039 (0) - Ca[14C]O3 6.751e-020 6.762e-020 -19.171 -19.170 0.001 (0) - [14C]O[18O] 5.046e-020 5.054e-020 -19.297 -19.296 0.001 (0) - [14C]O3-2 3.463e-020 2.426e-020 -19.461 -19.615 -0.155 (0) - CaH[14C]O2[18O]+ 2.457e-021 2.254e-021 -20.610 -20.647 -0.037 (0) - CaH[14C][18O]O2+ 2.457e-021 2.254e-021 -20.610 -20.647 -0.037 (0) - CaH[14C]O[18O]O+ 2.457e-021 2.254e-021 -20.610 -20.647 -0.037 (0) - Ca[14C]O2[18O] 4.041e-022 4.048e-022 -21.394 -21.393 0.001 (0) - H[14C][18O]2O- 2.322e-022 2.124e-022 -21.634 -21.673 -0.039 (0) - H[14C][18O]O[18O]- 2.322e-022 2.124e-022 -21.634 -21.673 -0.039 (0) - H[14C]O[18O]2- 2.322e-022 2.124e-022 -21.634 -21.673 -0.039 (0) - [14C]O2[18O]-2 2.073e-022 1.452e-022 -21.683 -21.838 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -68.059 -68.059 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -71.061 -71.060 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.55 -21.41 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.81 -22.32 -1.50 [14C][18O]2 - [14C]H4(g) -30.51 -33.37 -2.86 [14C]H4 - [14C]O2(g) -15.45 -16.92 -1.47 [14C]O2 - [14C]O[18O](g) -17.83 -19.62 -1.79 [14C]O[18O] - [18O]2(g) -68.77 -71.06 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.98 -13.82 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.12 -8.42 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.91 -5.72 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.81 -11.12 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.59 -19.45 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.21 -13.36 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.77 -65.66 -2.89 O2 - O[18O](g) -65.47 -68.36 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 62. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 61. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 2.7500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 5.64e-018 5.64e-018 1.13e-014 - Ca[14C]O2[18O](s) 3.47e-020 3.47e-020 6.94e-017 - Ca[14C]O[18O]2(s) 7.12e-023 7.12e-023 1.42e-019 - Ca[14C][18O]3(s) 4.87e-026 4.77e-026 9.75e-023 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9886 permil - R(13C) 1.11624e-002 -1.5934 permil - R(14C) 1.13888e-014 0.96852 pmc - R(18O) H2O(l) 1.99519e-003 -4.9901 permil - R(18O) OH- 1.92123e-003 -41.877 permil - R(18O) H3O+ 2.04133e-003 18.018 permil - R(13C) CO2(aq) 1.10825e-002 -8.7386 permil - R(14C) CO2(aq) 1.12262e-014 0.9547 pmc - R(18O) CO2(aq) 2.07916e-003 36.884 permil - R(18O) HCO3- 1.99519e-003 -4.9901 permil - R(13C) HCO3- 1.11789e-002 -0.11474 permil - R(14C) HCO3- 1.14224e-014 0.97139 pmc - R(18O) CO3-2 1.99519e-003 -4.9901 permil - R(13C) CO3-2 1.11629e-002 -1.5497 permil - R(14C) CO3-2 1.13896e-014 0.9686 pmc - R(13C) CH4(aq) 1.10825e-002 -8.7386 permil - R(14C) CH4(aq) 1.12262e-014 0.9547 pmc - R(18O) Calcite 2.05264e-003 23.656 permil - R(13C) Calcite 1.12011e-002 1.8657 permil - R(14C) Calcite 1.14677e-014 0.97524 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7324e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 6.2172e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.4655e-011 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.519e-005 6.500e-005 - [14C] 6.651e-017 6.631e-017 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -1.730 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.509e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 33 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 2.140e-021 - CH4 2.140e-021 2.144e-021 -20.670 -20.669 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.095e-008 6.105e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 4.319e-014 - H2 2.160e-014 2.163e-014 -13.666 -13.665 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -65.053 -65.052 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -67.452 -67.451 0.001 (0) -[13C](-4) 2.372e-023 - [13C]H4 2.372e-023 2.376e-023 -22.625 -22.624 0.001 (0) -[13C](4) 6.519e-005 - H[13C]O3- 5.258e-005 4.810e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.105e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-007 9.598e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.598e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.598e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.095e-008 6.105e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.589e-008 4.597e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O[18O]O+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.648e-010 3.654e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.403e-035 - [14C]H4 2.403e-035 2.407e-035 -34.619 -34.619 0.001 (0) -[14C](4) 6.651e-017 - H[14C]O3- 5.372e-017 4.915e-017 -16.270 -16.308 -0.039 (0) - [14C]O2 1.118e-017 1.120e-017 -16.952 -16.951 0.001 (0) - CaH[14C]O3+ 1.134e-018 1.041e-018 -17.945 -17.983 -0.037 (0) - H[14C][18O]O2- 1.072e-019 9.807e-020 -18.970 -19.008 -0.039 (0) - H[14C]O[18O]O- 1.072e-019 9.807e-020 -18.970 -19.008 -0.039 (0) - H[14C]O2[18O]- 1.072e-019 9.807e-020 -18.970 -19.008 -0.039 (0) - Ca[14C]O3 6.219e-020 6.230e-020 -19.206 -19.206 0.001 (0) - [14C]O[18O] 4.649e-020 4.656e-020 -19.333 -19.332 0.001 (0) - [14C]O3-2 3.190e-020 2.235e-020 -19.496 -19.651 -0.155 (0) - CaH[14C]O2[18O]+ 2.264e-021 2.076e-021 -20.645 -20.683 -0.037 (0) - CaH[14C][18O]O2+ 2.264e-021 2.076e-021 -20.645 -20.683 -0.037 (0) - CaH[14C]O[18O]O+ 2.264e-021 2.076e-021 -20.645 -20.683 -0.037 (0) - Ca[14C]O2[18O] 3.723e-022 3.729e-022 -21.429 -21.428 0.001 (0) - H[14C][18O]O[18O]- 2.139e-022 1.957e-022 -21.670 -21.708 -0.039 (0) - H[14C]O[18O]2- 2.139e-022 1.957e-022 -21.670 -21.708 -0.039 (0) - H[14C][18O]2O- 2.139e-022 1.957e-022 -21.670 -21.708 -0.039 (0) - [14C]O2[18O]-2 1.910e-022 1.338e-022 -21.719 -21.874 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -67.452 -67.451 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -70.453 -70.452 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.76 -22.62 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.85 -22.35 -1.50 [14C][18O]2 - [14C]H4(g) -31.76 -34.62 -2.86 [14C]H4 - [14C]O2(g) -15.48 -16.95 -1.47 [14C]O2 - [14C]O[18O](g) -17.86 -19.65 -1.79 [14C]O[18O] - [18O]2(g) -68.16 -70.45 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.01 -13.86 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.16 -8.46 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.95 -5.76 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.85 -11.16 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.81 -20.67 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.51 -13.66 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.16 -65.05 -2.89 O2 - O[18O](g) -64.86 -67.75 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 63. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 62. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 2.8000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 5.19e-018 5.19e-018 1.04e-014 - Ca[14C]O2[18O](s) 3.20e-020 3.20e-020 6.39e-017 - Ca[14C]O[18O]2(s) 6.56e-023 6.56e-023 1.31e-019 - Ca[14C][18O]3(s) 4.49e-026 4.39e-026 8.98e-023 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9885 permil - R(13C) 1.11626e-002 -1.5773 permil - R(14C) 1.04916e-014 0.89223 pmc - R(18O) H2O(l) 1.99519e-003 -4.99 permil - R(18O) OH- 1.92123e-003 -41.877 permil - R(18O) H3O+ 2.04133e-003 18.018 permil - R(13C) CO2(aq) 1.10827e-002 -8.7226 permil - R(14C) CO2(aq) 1.03419e-014 0.8795 pmc - R(18O) CO2(aq) 2.07916e-003 36.884 permil - R(18O) HCO3- 1.99519e-003 -4.99 permil - R(13C) HCO3- 1.11791e-002 -0.098584 permil - R(14C) HCO3- 1.05226e-014 0.89487 pmc - R(18O) CO3-2 1.99519e-003 -4.99 permil - R(13C) CO3-2 1.11631e-002 -1.5335 permil - R(14C) CO3-2 1.04925e-014 0.8923 pmc - R(13C) CH4(aq) 1.10827e-002 -8.7226 permil - R(14C) CH4(aq) 1.03419e-014 0.8795 pmc - R(18O) Calcite 2.05264e-003 23.656 permil - R(13C) Calcite 1.12012e-002 1.8819 permil - R(14C) Calcite 1.05644e-014 0.89842 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7732e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 5.107e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 4.885e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.519e-005 6.500e-005 - [14C] 6.127e-017 6.109e-017 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -1.472 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.513e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 22 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.845e-023 - CH4 1.845e-023 1.848e-023 -22.734 -22.733 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.316e-014 - H2 6.580e-015 6.591e-015 -14.182 -14.181 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -64.020 -64.020 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -66.419 -66.419 0.001 (0) -[13C](-4) 2.045e-025 - [13C]H4 2.045e-025 2.048e-025 -24.689 -24.689 0.001 (0) -[13C](4) 6.519e-005 - H[13C]O3- 5.258e-005 4.810e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.105e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.955 -5.992 -0.037 (0) - H[13C][18O]O2- 1.049e-007 9.598e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.598e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.598e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.589e-008 4.597e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C][18O]O2+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.908e-037 - [14C]H4 1.908e-037 1.911e-037 -36.719 -36.719 0.001 (0) -[14C](4) 6.127e-017 - H[14C]O3- 4.949e-017 4.528e-017 -16.305 -16.344 -0.039 (0) - [14C]O2 1.030e-017 1.032e-017 -16.987 -16.987 0.001 (0) - CaH[14C]O3+ 1.045e-018 9.587e-019 -17.981 -18.018 -0.037 (0) - H[14C][18O]O2- 9.875e-020 9.034e-020 -19.005 -19.044 -0.039 (0) - H[14C]O[18O]O- 9.875e-020 9.034e-020 -19.005 -19.044 -0.039 (0) - H[14C]O2[18O]- 9.875e-020 9.034e-020 -19.005 -19.044 -0.039 (0) - Ca[14C]O3 5.729e-020 5.739e-020 -19.242 -19.241 0.001 (0) - [14C]O[18O] 4.282e-020 4.289e-020 -19.368 -19.368 0.001 (0) - [14C]O3-2 2.939e-020 2.059e-020 -19.532 -19.686 -0.155 (0) - CaH[14C]O2[18O]+ 2.085e-021 1.913e-021 -20.681 -20.718 -0.037 (0) - CaH[14C][18O]O2+ 2.085e-021 1.913e-021 -20.681 -20.718 -0.037 (0) - CaH[14C]O[18O]O+ 2.085e-021 1.913e-021 -20.681 -20.718 -0.037 (0) - Ca[14C]O2[18O] 3.429e-022 3.435e-022 -21.465 -21.464 0.001 (0) - H[14C]O[18O]2- 1.970e-022 1.802e-022 -21.705 -21.744 -0.039 (0) - H[14C][18O]2O- 1.970e-022 1.802e-022 -21.705 -21.744 -0.039 (0) - H[14C][18O]O[18O]- 1.970e-022 1.802e-022 -21.705 -21.744 -0.039 (0) - [14C]O2[18O]-2 1.759e-022 1.232e-022 -21.755 -21.909 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -66.419 -66.419 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -69.420 -69.420 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -21.83 -24.69 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.88 -22.39 -1.50 [14C][18O]2 - [14C]H4(g) -33.86 -36.72 -2.86 [14C]H4 - [14C]O2(g) -15.52 -16.99 -1.47 [14C]O2 - [14C]O[18O](g) -17.90 -19.69 -1.79 [14C]O[18O] - [18O]2(g) -67.13 -69.42 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.05 -13.89 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.19 -8.49 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.98 -5.79 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.88 -11.19 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -19.87 -22.73 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -11.03 -14.18 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -61.13 -64.02 -2.89 O2 - O[18O](g) -63.83 -66.72 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 64. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 63. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 2.8500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 4.78e-018 4.78e-018 9.57e-015 - Ca[14C]O2[18O](s) 2.95e-020 2.95e-020 5.89e-017 - Ca[14C]O[18O]2(s) 6.05e-023 6.05e-023 1.21e-019 - Ca[14C][18O]3(s) 4.14e-026 4.04e-026 8.27e-023 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9883 permil - R(13C) 1.11627e-002 -1.5624 permil - R(14C) 9.66519e-015 0.82195 pmc - R(18O) H2O(l) 1.99519e-003 -4.9898 permil - R(18O) OH- 1.92123e-003 -41.877 permil - R(18O) H3O+ 2.04133e-003 18.018 permil - R(13C) CO2(aq) 1.10828e-002 -8.7078 permil - R(14C) CO2(aq) 9.52725e-015 0.81022 pmc - R(18O) CO2(aq) 2.07916e-003 36.884 permil - R(18O) HCO3- 1.99519e-003 -4.9898 permil - R(13C) HCO3- 1.11793e-002 -0.083693 permil - R(14C) HCO3- 9.69374e-015 0.82438 pmc - R(18O) CO3-2 1.99519e-003 -4.9898 permil - R(13C) CO3-2 1.11632e-002 -1.5187 permil - R(14C) CO3-2 9.66594e-015 0.82201 pmc - R(13C) CH4(aq) 1.10828e-002 -8.7078 permil - R(14C) CH4(aq) 9.52725e-015 0.81022 pmc - R(18O) Calcite 2.05264e-003 23.657 permil - R(13C) Calcite 1.12014e-002 1.8968 permil - R(14C) Calcite 9.73218e-015 0.82765 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.667e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 6.2172e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 5.9952e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.519e-005 6.500e-005 - [14C] 5.644e-017 5.628e-017 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -1.692 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.514e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 30 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.063e-021 - CH4 1.063e-021 1.065e-021 -20.973 -20.973 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 3.626e-014 - H2 1.813e-014 1.816e-014 -13.742 -13.741 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -64.901 -64.900 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -67.300 -67.299 0.001 (0) -[13C](-4) 1.178e-023 - [13C]H4 1.178e-023 1.180e-023 -22.929 -22.928 0.001 (0) -[13C](4) 6.519e-005 - H[13C]O3- 5.258e-005 4.810e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.105e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.955 -5.992 -0.037 (0) - H[13C]O[18O]O- 1.049e-007 9.598e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.598e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.598e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.589e-008 4.597e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.013e-035 - [14C]H4 1.013e-035 1.014e-035 -34.994 -34.994 0.001 (0) -[14C](4) 5.644e-017 - H[14C]O3- 4.559e-017 4.171e-017 -16.341 -16.380 -0.039 (0) - [14C]O2 9.487e-018 9.503e-018 -17.023 -17.022 0.001 (0) - CaH[14C]O3+ 9.628e-019 8.832e-019 -18.016 -18.054 -0.037 (0) - H[14C][18O]O2- 9.097e-020 8.322e-020 -19.041 -19.080 -0.039 (0) - H[14C]O[18O]O- 9.097e-020 8.322e-020 -19.041 -19.080 -0.039 (0) - H[14C]O2[18O]- 9.097e-020 8.322e-020 -19.041 -19.080 -0.039 (0) - Ca[14C]O3 5.278e-020 5.287e-020 -19.278 -19.277 0.001 (0) - [14C]O[18O] 3.945e-020 3.952e-020 -19.404 -19.403 0.001 (0) - [14C]O3-2 2.708e-020 1.897e-020 -19.567 -19.722 -0.155 (0) - CaH[14C]O2[18O]+ 1.921e-021 1.762e-021 -20.716 -20.754 -0.037 (0) - CaH[14C][18O]O2+ 1.921e-021 1.762e-021 -20.716 -20.754 -0.037 (0) - CaH[14C]O[18O]O+ 1.921e-021 1.762e-021 -20.716 -20.754 -0.037 (0) - Ca[14C]O2[18O] 3.159e-022 3.164e-022 -21.500 -21.500 0.001 (0) - H[14C][18O]2O- 1.815e-022 1.660e-022 -21.741 -21.780 -0.039 (0) - H[14C][18O]O[18O]- 1.815e-022 1.660e-022 -21.741 -21.780 -0.039 (0) - H[14C]O[18O]2- 1.815e-022 1.660e-022 -21.741 -21.780 -0.039 (0) - [14C]O2[18O]-2 1.621e-022 1.135e-022 -21.790 -21.945 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -67.300 -67.299 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -70.301 -70.300 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -20.07 -22.93 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.92 -22.42 -1.50 [14C][18O]2 - [14C]H4(g) -32.13 -34.99 -2.86 [14C]H4 - [14C]O2(g) -15.55 -17.02 -1.47 [14C]O2 - [14C]O[18O](g) -17.94 -19.72 -1.79 [14C]O[18O] - [18O]2(g) -68.01 -70.30 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.08 -13.93 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.23 -8.53 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.02 -5.83 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.92 -11.23 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -18.11 -20.97 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.59 -13.74 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.01 -64.90 -2.89 O2 - O[18O](g) -64.71 -67.60 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 65. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 64. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 2.9000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 4.41e-018 4.41e-018 8.81e-015 - Ca[14C]O2[18O](s) 2.71e-020 2.71e-020 5.43e-017 - Ca[14C]O[18O]2(s) 5.57e-023 5.57e-023 1.11e-019 - Ca[14C][18O]3(s) 3.81e-026 3.71e-026 7.62e-023 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9882 permil - R(13C) 1.11629e-002 -1.5487 permil - R(14C) 8.90384e-015 0.7572 pmc - R(18O) H2O(l) 1.99519e-003 -4.9897 permil - R(18O) OH- 1.92123e-003 -41.877 permil - R(18O) H3O+ 2.04133e-003 18.018 permil - R(13C) CO2(aq) 1.10830e-002 -8.6942 permil - R(14C) CO2(aq) 8.77677e-015 0.74639 pmc - R(18O) CO2(aq) 2.07916e-003 36.884 permil - R(18O) HCO3- 1.99519e-003 -4.9897 permil - R(13C) HCO3- 1.11794e-002 -0.06997 permil - R(14C) HCO3- 8.93014e-015 0.75944 pmc - R(18O) CO3-2 1.99519e-003 -4.9897 permil - R(13C) CO3-2 1.11634e-002 -1.505 permil - R(14C) CO3-2 8.90453e-015 0.75726 pmc - R(13C) CH4(aq) 1.10830e-002 -8.6942 permil - R(14C) CH4(aq) 8.77677e-015 0.74639 pmc - R(18O) Calcite 2.05264e-003 23.657 permil - R(13C) Calcite 1.12016e-002 1.9105 permil - R(14C) Calcite 8.96555e-015 0.76245 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7339e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.8874e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.2434e-011 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.519e-005 6.500e-005 - [14C] 5.200e-017 5.184e-017 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -1.965 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.515e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 27 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.624e-019 - CH4 1.624e-019 1.626e-019 -18.790 -18.789 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.275e-013 - H2 6.373e-014 6.384e-014 -13.196 -13.195 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -65.993 -65.992 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -68.392 -68.391 0.001 (0) -[13C](-4) 1.799e-021 - [13C]H4 1.799e-021 1.802e-021 -20.745 -20.744 0.001 (0) -[13C](4) 6.519e-005 - H[13C]O3- 5.258e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.105e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-007 9.598e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.598e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.598e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.589e-008 4.597e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O[18O]O+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.425e-033 - [14C]H4 1.425e-033 1.427e-033 -32.846 -32.845 0.001 (0) -[14C](4) 5.200e-017 - H[14C]O3- 4.200e-017 3.843e-017 -16.377 -16.415 -0.039 (0) - [14C]O2 8.740e-018 8.754e-018 -17.058 -17.058 0.001 (0) - CaH[14C]O3+ 8.870e-019 8.136e-019 -18.052 -18.090 -0.037 (0) - H[14C][18O]O2- 8.380e-020 7.667e-020 -19.077 -19.115 -0.039 (0) - H[14C]O[18O]O- 8.380e-020 7.667e-020 -19.077 -19.115 -0.039 (0) - H[14C]O2[18O]- 8.380e-020 7.667e-020 -19.077 -19.115 -0.039 (0) - Ca[14C]O3 4.862e-020 4.870e-020 -19.313 -19.312 0.001 (0) - [14C]O[18O] 3.634e-020 3.640e-020 -19.440 -19.439 0.001 (0) - [14C]O3-2 2.494e-020 1.747e-020 -19.603 -19.758 -0.155 (0) - CaH[14C]O2[18O]+ 1.770e-021 1.623e-021 -20.752 -20.790 -0.037 (0) - CaH[14C][18O]O2+ 1.770e-021 1.623e-021 -20.752 -20.790 -0.037 (0) - CaH[14C]O[18O]O+ 1.770e-021 1.623e-021 -20.752 -20.790 -0.037 (0) - Ca[14C]O2[18O] 2.910e-022 2.915e-022 -21.536 -21.535 0.001 (0) - H[14C][18O]O[18O]- 1.672e-022 1.530e-022 -21.777 -21.815 -0.039 (0) - H[14C]O[18O]2- 1.672e-022 1.530e-022 -21.777 -21.815 -0.039 (0) - H[14C][18O]2O- 1.672e-022 1.530e-022 -21.777 -21.815 -0.039 (0) - [14C]O2[18O]-2 1.493e-022 1.046e-022 -21.826 -21.981 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -68.392 -68.391 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -71.393 -71.392 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.88 -20.74 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.95 -22.46 -1.50 [14C][18O]2 - [14C]H4(g) -29.99 -32.85 -2.86 [14C]H4 - [14C]O2(g) -15.59 -17.06 -1.47 [14C]O2 - [14C]O[18O](g) -17.97 -19.76 -1.79 [14C]O[18O] - [18O]2(g) -69.10 -71.39 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.12 -13.96 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.27 -8.56 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.05 -5.86 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.95 -11.26 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.93 -18.79 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.04 -13.19 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.10 -65.99 -2.89 O2 - O[18O](g) -65.80 -68.69 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 66. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 65. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 2.9500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 4.06e-018 4.06e-018 8.12e-015 - Ca[14C]O2[18O](s) 2.50e-020 2.50e-020 5.00e-017 - Ca[14C]O[18O]2(s) 5.13e-023 5.13e-023 1.03e-019 - Ca[14C][18O]3(s) 3.51e-026 3.41e-026 7.02e-023 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.988 permil - R(13C) 1.11630e-002 -1.5361 permil - R(14C) 8.20247e-015 0.69756 pmc - R(18O) H2O(l) 1.99519e-003 -4.9896 permil - R(18O) OH- 1.92123e-003 -41.877 permil - R(18O) H3O+ 2.04133e-003 18.018 permil - R(13C) CO2(aq) 1.10831e-002 -8.6817 permil - R(14C) CO2(aq) 8.08540e-015 0.6876 pmc - R(18O) CO2(aq) 2.07916e-003 36.885 permil - R(18O) HCO3- 1.99519e-003 -4.9896 permil - R(13C) HCO3- 1.11796e-002 -0.057326 permil - R(14C) HCO3- 8.22670e-015 0.69962 pmc - R(18O) CO3-2 1.99519e-003 -4.9896 permil - R(13C) CO3-2 1.11635e-002 -1.4923 permil - R(14C) CO3-2 8.20310e-015 0.69761 pmc - R(13C) CH4(aq) 1.10831e-002 -8.6817 permil - R(14C) CH4(aq) 8.08540e-015 0.6876 pmc - R(18O) Calcite 2.05264e-003 23.657 permil - R(13C) Calcite 1.12017e-002 1.9232 permil - R(14C) Calcite 8.25932e-015 0.70239 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.705e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -7.7716e-013 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -6.8834e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.519e-005 6.500e-005 - [14C] 4.790e-017 4.776e-017 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -1.692 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.510e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 20 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.064e-021 - CH4 1.064e-021 1.066e-021 -20.973 -20.972 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 3.627e-014 - H2 1.813e-014 1.816e-014 -13.742 -13.741 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -64.901 -64.900 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -67.300 -67.299 0.001 (0) -[13C](-4) 1.179e-023 - [13C]H4 1.179e-023 1.181e-023 -22.928 -22.928 0.001 (0) -[13C](4) 6.519e-005 - H[13C]O3- 5.258e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.105e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.955 -5.992 -0.037 (0) - H[13C][18O]O2- 1.049e-007 9.598e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.598e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.598e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.589e-008 4.597e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C][18O]O2+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 8.604e-036 - [14C]H4 8.604e-036 8.618e-036 -35.065 -35.065 0.001 (0) -[14C](4) 4.790e-017 - H[14C]O3- 3.869e-017 3.540e-017 -16.412 -16.451 -0.039 (0) - [14C]O2 8.051e-018 8.065e-018 -17.094 -17.093 0.001 (0) - CaH[14C]O3+ 8.171e-019 7.495e-019 -18.088 -18.125 -0.037 (0) - H[14C][18O]O2- 7.720e-020 7.063e-020 -19.112 -19.151 -0.039 (0) - H[14C]O[18O]O- 7.720e-020 7.063e-020 -19.112 -19.151 -0.039 (0) - H[14C]O2[18O]- 7.720e-020 7.063e-020 -19.112 -19.151 -0.039 (0) - Ca[14C]O3 4.479e-020 4.487e-020 -19.349 -19.348 0.001 (0) - [14C]O[18O] 3.348e-020 3.354e-020 -19.475 -19.475 0.001 (0) - [14C]O3-2 2.298e-020 1.610e-020 -19.639 -19.793 -0.155 (0) - CaH[14C]O2[18O]+ 1.630e-021 1.495e-021 -20.788 -20.825 -0.037 (0) - CaH[14C][18O]O2+ 1.630e-021 1.495e-021 -20.788 -20.825 -0.037 (0) - CaH[14C]O[18O]O+ 1.630e-021 1.495e-021 -20.788 -20.825 -0.037 (0) - Ca[14C]O2[18O] 2.681e-022 2.686e-022 -21.572 -21.571 0.001 (0) - H[14C]O[18O]2- 1.540e-022 1.409e-022 -21.812 -21.851 -0.039 (0) - H[14C][18O]2O- 1.540e-022 1.409e-022 -21.812 -21.851 -0.039 (0) - H[14C][18O]O[18O]- 1.540e-022 1.409e-022 -21.812 -21.851 -0.039 (0) - [14C]O2[18O]-2 1.375e-022 9.635e-023 -21.862 -22.016 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -67.300 -67.299 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -70.301 -70.300 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -20.07 -22.93 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.99 -22.49 -1.50 [14C][18O]2 - [14C]H4(g) -32.20 -35.06 -2.86 [14C]H4 - [14C]O2(g) -15.62 -17.09 -1.47 [14C]O2 - [14C]O[18O](g) -18.01 -19.79 -1.79 [14C]O[18O] - [18O]2(g) -68.01 -70.30 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.15 -14.00 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.30 -8.60 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.09 -5.90 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.99 -11.30 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -18.11 -20.97 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.59 -13.74 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.01 -64.90 -2.89 O2 - O[18O](g) -64.71 -67.60 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 67. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 66. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 3.0000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 3.74e-018 3.74e-018 7.48e-015 - Ca[14C]O2[18O](s) 2.30e-020 2.30e-020 4.61e-017 - Ca[14C]O[18O]2(s) 4.73e-023 4.73e-023 9.45e-020 - Ca[14C][18O]3(s) 3.23e-026 3.13e-026 6.47e-023 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9879 permil - R(13C) 1.11632e-002 -1.5245 permil - R(14C) 7.55634e-015 0.64261 pmc - R(18O) H2O(l) 1.99520e-003 -4.9894 permil - R(18O) OH- 1.92123e-003 -41.877 permil - R(18O) H3O+ 2.04133e-003 18.019 permil - R(13C) CO2(aq) 1.10833e-002 -8.6701 permil - R(14C) CO2(aq) 7.44850e-015 0.63344 pmc - R(18O) CO2(aq) 2.07916e-003 36.885 permil - R(18O) HCO3- 1.99520e-003 -4.9894 permil - R(13C) HCO3- 1.11797e-002 -0.045674 permil - R(14C) HCO3- 7.57866e-015 0.64451 pmc - R(18O) CO3-2 1.99520e-003 -4.9894 permil - R(13C) CO3-2 1.11636e-002 -1.4807 permil - R(14C) CO3-2 7.55693e-015 0.64266 pmc - R(13C) CH4(aq) 1.10833e-002 -8.6701 permil - R(14C) CH4(aq) 7.44850e-015 0.63344 pmc - R(18O) Calcite 2.05264e-003 23.657 permil - R(13C) Calcite 1.12018e-002 1.9349 permil - R(14C) Calcite 7.60871e-015 0.64706 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.9936e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6926e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -7.3275e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -2.9976e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.519e-005 6.500e-005 - [14C] 4.413e-017 4.400e-017 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -1.828 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.529e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 31 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.284e-020 - CH4 1.284e-020 1.286e-020 -19.891 -19.891 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 6.759e-014 - H2 3.380e-014 3.385e-014 -13.471 -13.470 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -65.442 -65.441 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -67.841 -67.840 0.001 (0) -[13C](-4) 1.423e-022 - [13C]H4 1.423e-022 1.425e-022 -21.847 -21.846 0.001 (0) -[13C](4) 6.519e-005 - H[13C]O3- 5.258e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.105e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.955 -5.992 -0.037 (0) - H[13C]O[18O]O- 1.049e-007 9.598e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.598e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.598e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.589e-008 4.597e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 9.564e-035 - [14C]H4 9.564e-035 9.579e-035 -34.019 -34.019 0.001 (0) -[14C](4) 4.413e-017 - H[14C]O3- 3.565e-017 3.261e-017 -16.448 -16.487 -0.039 (0) - [14C]O2 7.417e-018 7.429e-018 -17.130 -17.129 0.001 (0) - CaH[14C]O3+ 7.527e-019 6.905e-019 -18.123 -18.161 -0.037 (0) - H[14C][18O]O2- 7.112e-020 6.507e-020 -19.148 -19.187 -0.039 (0) - H[14C]O[18O]O- 7.112e-020 6.507e-020 -19.148 -19.187 -0.039 (0) - H[14C]O2[18O]- 7.112e-020 6.507e-020 -19.148 -19.187 -0.039 (0) - Ca[14C]O3 4.126e-020 4.133e-020 -19.384 -19.384 0.001 (0) - [14C]O[18O] 3.084e-020 3.089e-020 -19.511 -19.510 0.001 (0) - [14C]O3-2 2.117e-020 1.483e-020 -19.674 -19.829 -0.155 (0) - CaH[14C]O2[18O]+ 1.502e-021 1.378e-021 -20.823 -20.861 -0.037 (0) - CaH[14C][18O]O2+ 1.502e-021 1.378e-021 -20.823 -20.861 -0.037 (0) - CaH[14C]O[18O]O+ 1.502e-021 1.378e-021 -20.823 -20.861 -0.037 (0) - Ca[14C]O2[18O] 2.470e-022 2.474e-022 -21.607 -21.607 0.001 (0) - H[14C][18O]2O- 1.419e-022 1.298e-022 -21.848 -21.887 -0.039 (0) - H[14C][18O]O[18O]- 1.419e-022 1.298e-022 -21.848 -21.887 -0.039 (0) - H[14C]O[18O]2- 1.419e-022 1.298e-022 -21.848 -21.887 -0.039 (0) - [14C]O2[18O]-2 1.267e-022 8.876e-023 -21.897 -22.052 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -67.841 -67.840 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -70.842 -70.841 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.99 -21.85 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.03 -22.53 -1.50 [14C][18O]2 - [14C]H4(g) -31.16 -34.02 -2.86 [14C]H4 - [14C]O2(g) -15.66 -17.13 -1.47 [14C]O2 - [14C]O[18O](g) -18.04 -19.83 -1.79 [14C]O[18O] - [18O]2(g) -68.55 -70.84 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.19 -14.03 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.34 -8.63 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.13 -5.93 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.02 -11.33 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.03 -19.89 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.32 -13.47 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.55 -65.44 -2.89 O2 - O[18O](g) -65.25 -68.14 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 68. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 67. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 3.0500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.50e-006 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 3.44e-018 3.44e-018 6.89e-015 - Ca[14C]O2[18O](s) 2.12e-020 2.12e-020 4.24e-017 - Ca[14C]O[18O]2(s) 4.35e-023 4.35e-023 8.71e-020 - Ca[14C][18O]3(s) 2.98e-026 2.88e-026 5.96e-023 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9878 permil - R(13C) 1.11633e-002 -1.5137 permil - R(14C) 6.96111e-015 0.59199 pmc - R(18O) H2O(l) 1.99520e-003 -4.9893 permil - R(18O) OH- 1.92123e-003 -41.877 permil - R(18O) H3O+ 2.04133e-003 18.019 permil - R(13C) CO2(aq) 1.10834e-002 -8.6595 permil - R(14C) CO2(aq) 6.86176e-015 0.58354 pmc - R(18O) CO2(aq) 2.07916e-003 36.885 permil - R(18O) HCO3- 1.99520e-003 -4.9893 permil - R(13C) HCO3- 1.11798e-002 -0.034937 permil - R(14C) HCO3- 6.98167e-015 0.59374 pmc - R(18O) CO3-2 1.99520e-003 -4.9893 permil - R(13C) CO3-2 1.11638e-002 -1.47 permil - R(14C) CO3-2 6.96165e-015 0.59203 pmc - R(13C) CH4(aq) 1.10834e-002 -8.6595 permil - R(14C) CH4(aq) 6.86176e-015 0.58354 pmc - R(18O) Calcite 2.05264e-003 23.657 permil - R(13C) Calcite 1.12020e-002 1.9456 permil - R(14C) Calcite 7.00936e-015 0.59609 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.1102e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7079e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 8.2157e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -3.9968e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.519e-005 6.500e-005 - [14C] 4.065e-017 4.053e-017 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.004 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.546e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 36 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 3.331e-019 - CH4 3.331e-019 3.337e-019 -18.477 -18.477 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.526e-013 - H2 7.628e-014 7.640e-014 -13.118 -13.117 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.149 -66.148 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -68.548 -68.547 0.001 (0) -[13C](-4) 3.692e-021 - [13C]H4 3.692e-021 3.698e-021 -20.433 -20.432 0.001 (0) -[13C](4) 6.519e-005 - H[13C]O3- 5.258e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.105e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-007 9.598e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.598e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.598e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.589e-008 4.597e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O[18O]O+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.286e-033 - [14C]H4 2.286e-033 2.290e-033 -32.641 -32.640 0.001 (0) -[14C](4) 4.065e-017 - H[14C]O3- 3.284e-017 3.004e-017 -16.484 -16.522 -0.039 (0) - [14C]O2 6.833e-018 6.844e-018 -17.165 -17.165 0.001 (0) - CaH[14C]O3+ 6.934e-019 6.361e-019 -18.159 -18.196 -0.037 (0) - H[14C][18O]O2- 6.552e-020 5.994e-020 -19.184 -19.222 -0.039 (0) - H[14C]O[18O]O- 6.552e-020 5.994e-020 -19.184 -19.222 -0.039 (0) - H[14C]O2[18O]- 6.552e-020 5.994e-020 -19.184 -19.222 -0.039 (0) - Ca[14C]O3 3.801e-020 3.808e-020 -19.420 -19.419 0.001 (0) - [14C]O[18O] 2.841e-020 2.846e-020 -19.546 -19.546 0.001 (0) - [14C]O3-2 1.950e-020 1.366e-020 -19.710 -19.865 -0.155 (0) - CaH[14C]O2[18O]+ 1.384e-021 1.269e-021 -20.859 -20.896 -0.037 (0) - CaH[14C][18O]O2+ 1.384e-021 1.269e-021 -20.859 -20.896 -0.037 (0) - CaH[14C]O[18O]O+ 1.384e-021 1.269e-021 -20.859 -20.896 -0.037 (0) - Ca[14C]O2[18O] 2.275e-022 2.279e-022 -21.643 -21.642 0.001 (0) - H[14C][18O]O[18O]- 1.307e-022 1.196e-022 -21.884 -21.922 -0.039 (0) - H[14C]O[18O]2- 1.307e-022 1.196e-022 -21.884 -21.922 -0.039 (0) - H[14C][18O]2O- 1.307e-022 1.196e-022 -21.884 -21.922 -0.039 (0) - [14C]O2[18O]-2 1.167e-022 8.177e-023 -21.933 -22.087 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -68.548 -68.547 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -71.549 -71.548 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.57 -20.43 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.06 -22.56 -1.50 [14C][18O]2 - [14C]H4(g) -29.78 -32.64 -2.86 [14C]H4 - [14C]O2(g) -15.70 -17.16 -1.47 [14C]O2 - [14C]O[18O](g) -18.08 -19.86 -1.79 [14C]O[18O] - [18O]2(g) -69.26 -71.55 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.22 -14.07 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.37 -8.67 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.16 -5.97 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.06 -11.37 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.62 -18.48 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.97 -13.12 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.26 -66.15 -2.89 O2 - O[18O](g) -65.96 -68.85 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 69. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 68. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 3.1000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 3.17e-018 3.17e-018 6.35e-015 - Ca[14C]O2[18O](s) 1.95e-020 1.95e-020 3.91e-017 - Ca[14C]O[18O]2(s) 4.01e-023 4.01e-023 8.02e-020 - Ca[14C][18O]3(s) 2.74e-026 2.64e-026 5.49e-023 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9876 permil - R(13C) 1.11634e-002 -1.5039 permil - R(14C) 6.41277e-015 0.54536 pmc - R(18O) H2O(l) 1.99520e-003 -4.9891 permil - R(18O) OH- 1.92123e-003 -41.877 permil - R(18O) H3O+ 2.04133e-003 18.019 permil - R(13C) CO2(aq) 1.10835e-002 -8.6497 permil - R(14C) CO2(aq) 6.32125e-015 0.53757 pmc - R(18O) CO2(aq) 2.07916e-003 36.885 permil - R(18O) HCO3- 1.99520e-003 -4.9891 permil - R(13C) HCO3- 1.11799e-002 -0.025043 permil - R(14C) HCO3- 6.43171e-015 0.54697 pmc - R(18O) CO3-2 1.99520e-003 -4.9891 permil - R(13C) CO3-2 1.11639e-002 -1.4601 permil - R(14C) CO3-2 6.41327e-015 0.5454 pmc - R(13C) CH4(aq) 1.10835e-002 -8.6497 permil - R(14C) CH4(aq) 6.32125e-015 0.53757 pmc - R(18O) Calcite 2.05264e-003 23.657 permil - R(13C) Calcite 1.12021e-002 1.9556 permil - R(14C) Calcite 6.45722e-015 0.54914 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.8858e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6187e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.521e-011 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.5099e-011 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.519e-005 6.500e-005 - [14C] 3.745e-017 3.734e-017 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.021 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.535e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 22 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 4.562e-019 - CH4 4.562e-019 4.569e-019 -18.341 -18.340 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.650e-013 - H2 8.251e-014 8.265e-014 -13.083 -13.083 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.217 -66.216 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -68.616 -68.615 0.001 (0) -[13C](-4) 5.056e-021 - [13C]H4 5.056e-021 5.065e-021 -20.296 -20.295 0.001 (0) -[13C](4) 6.519e-005 - H[13C]O3- 5.258e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.105e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.955 -5.992 -0.037 (0) - H[13C][18O]O2- 1.049e-007 9.598e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.598e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.598e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.589e-008 4.597e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C][18O]O2+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.884e-033 - [14C]H4 2.884e-033 2.888e-033 -32.540 -32.539 0.001 (0) -[14C](4) 3.745e-017 - H[14C]O3- 3.025e-017 2.768e-017 -16.519 -16.558 -0.039 (0) - [14C]O2 6.295e-018 6.305e-018 -17.201 -17.200 0.001 (0) - CaH[14C]O3+ 6.388e-019 5.860e-019 -18.195 -18.232 -0.037 (0) - H[14C][18O]O2- 6.036e-020 5.522e-020 -19.219 -19.258 -0.039 (0) - H[14C]O[18O]O- 6.036e-020 5.522e-020 -19.219 -19.258 -0.039 (0) - H[14C]O2[18O]- 6.036e-020 5.522e-020 -19.219 -19.258 -0.039 (0) - Ca[14C]O3 3.502e-020 3.508e-020 -19.456 -19.455 0.001 (0) - [14C]O[18O] 2.618e-020 2.622e-020 -19.582 -19.581 0.001 (0) - [14C]O3-2 1.796e-020 1.258e-020 -19.746 -19.900 -0.155 (0) - CaH[14C]O2[18O]+ 1.275e-021 1.169e-021 -20.895 -20.932 -0.037 (0) - CaH[14C][18O]O2+ 1.275e-021 1.169e-021 -20.895 -20.932 -0.037 (0) - CaH[14C]O[18O]O+ 1.275e-021 1.169e-021 -20.895 -20.932 -0.037 (0) - Ca[14C]O2[18O] 2.096e-022 2.100e-022 -21.679 -21.678 0.001 (0) - H[14C]O[18O]2- 1.204e-022 1.102e-022 -21.919 -21.958 -0.039 (0) - H[14C][18O]2O- 1.204e-022 1.102e-022 -21.919 -21.958 -0.039 (0) - H[14C][18O]O[18O]- 1.204e-022 1.102e-022 -21.919 -21.958 -0.039 (0) - [14C]O2[18O]-2 1.075e-022 7.533e-023 -21.968 -22.123 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -68.616 -68.615 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -71.617 -71.616 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.44 -20.30 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.10 -22.60 -1.50 [14C][18O]2 - [14C]H4(g) -29.68 -32.54 -2.86 [14C]H4 - [14C]O2(g) -15.73 -17.20 -1.47 [14C]O2 - [14C]O[18O](g) -18.11 -19.90 -1.79 [14C]O[18O] - [18O]2(g) -69.33 -71.62 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.26 -14.11 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.41 -8.71 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.20 -6.01 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.10 -11.41 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.48 -18.34 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.93 -13.08 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.32 -66.22 -2.89 O2 - O[18O](g) -66.02 -68.92 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 70. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 69. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 3.1500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 2.92e-018 2.92e-018 5.85e-015 - Ca[14C]O2[18O](s) 1.80e-020 1.80e-020 3.60e-017 - Ca[14C]O[18O]2(s) 3.70e-023 3.69e-023 7.39e-020 - Ca[14C][18O]3(s) 2.53e-026 2.43e-026 5.06e-023 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9875 permil - R(13C) 1.11635e-002 -1.4948 permil - R(14C) 5.90762e-015 0.5024 pmc - R(18O) H2O(l) 1.99520e-003 -4.989 permil - R(18O) OH- 1.92123e-003 -41.876 permil - R(18O) H3O+ 2.04133e-003 18.019 permil - R(13C) CO2(aq) 1.10836e-002 -8.6406 permil - R(14C) CO2(aq) 5.82331e-015 0.49523 pmc - R(18O) CO2(aq) 2.07916e-003 36.885 permil - R(18O) HCO3- 1.99520e-003 -4.989 permil - R(13C) HCO3- 1.11800e-002 -0.015926 permil - R(14C) HCO3- 5.92507e-015 0.50388 pmc - R(18O) CO3-2 1.99520e-003 -4.989 permil - R(13C) CO3-2 1.11640e-002 -1.451 permil - R(14C) CO3-2 5.90808e-015 0.50244 pmc - R(13C) CH4(aq) 1.10836e-002 -8.6406 permil - R(14C) CH4(aq) 5.82331e-015 0.49523 pmc - R(18O) Calcite 2.05264e-003 23.657 permil - R(13C) Calcite 1.12022e-002 1.9647 permil - R(14C) Calcite 5.94857e-015 0.50588 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.4417e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6468e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.9318e-011 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.1102e-011 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.519e-005 6.500e-005 - [14C] 3.450e-017 3.440e-017 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.097 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.529e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.822e-018 - CH4 1.822e-018 1.825e-018 -17.739 -17.739 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 2.333e-013 - H2 1.166e-013 1.168e-013 -12.933 -12.932 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.518 -66.517 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -68.917 -68.916 0.001 (0) -[13C](-4) 2.020e-020 - [13C]H4 2.020e-020 2.023e-020 -19.695 -19.694 0.001 (0) -[13C](4) 6.519e-005 - H[13C]O3- 5.258e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.955 -5.992 -0.037 (0) - H[13C]O[18O]O- 1.049e-007 9.598e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.598e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.598e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.589e-008 4.597e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.215e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.061e-032 - [14C]H4 1.061e-032 1.063e-032 -31.974 -31.974 0.001 (0) -[14C](4) 3.450e-017 - H[14C]O3- 2.787e-017 2.550e-017 -16.555 -16.594 -0.039 (0) - [14C]O2 5.799e-018 5.808e-018 -17.237 -17.236 0.001 (0) - CaH[14C]O3+ 5.885e-019 5.398e-019 -18.230 -18.268 -0.037 (0) - H[14C][18O]O2- 5.560e-020 5.087e-020 -19.255 -19.294 -0.039 (0) - H[14C]O[18O]O- 5.560e-020 5.087e-020 -19.255 -19.294 -0.039 (0) - H[14C]O2[18O]- 5.560e-020 5.087e-020 -19.255 -19.294 -0.039 (0) - Ca[14C]O3 3.226e-020 3.231e-020 -19.491 -19.491 0.001 (0) - [14C]O[18O] 2.411e-020 2.415e-020 -19.618 -19.617 0.001 (0) - [14C]O3-2 1.655e-020 1.159e-020 -19.781 -19.936 -0.155 (0) - CaH[14C]O2[18O]+ 1.174e-021 1.077e-021 -20.930 -20.968 -0.037 (0) - CaH[14C][18O]O2+ 1.174e-021 1.077e-021 -20.930 -20.968 -0.037 (0) - CaH[14C]O[18O]O+ 1.174e-021 1.077e-021 -20.930 -20.968 -0.037 (0) - Ca[14C]O2[18O] 1.931e-022 1.934e-022 -21.714 -21.714 0.001 (0) - H[14C][18O]2O- 1.109e-022 1.015e-022 -21.955 -21.994 -0.039 (0) - H[14C][18O]O[18O]- 1.109e-022 1.015e-022 -21.955 -21.994 -0.039 (0) - H[14C]O[18O]2- 1.109e-022 1.015e-022 -21.955 -21.994 -0.039 (0) - [14C]O2[18O]-2 9.906e-023 6.939e-023 -22.004 -22.159 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -68.917 -68.916 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -71.918 -71.917 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.83 -19.69 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.13 -22.64 -1.50 [14C][18O]2 - [14C]H4(g) -29.11 -31.97 -2.86 [14C]H4 - [14C]O2(g) -15.77 -17.24 -1.47 [14C]O2 - [14C]O[18O](g) -18.15 -19.94 -1.79 [14C]O[18O] - [18O]2(g) -69.63 -71.92 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.30 -14.14 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.44 -8.74 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.23 -6.04 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.13 -11.44 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.88 -17.74 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.78 -12.93 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.62 -66.52 -2.89 O2 - O[18O](g) -66.32 -69.22 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 71. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 70. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 3.2000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 2.69e-018 2.69e-018 5.39e-015 - Ca[14C]O2[18O](s) 1.66e-020 1.66e-020 3.32e-017 - Ca[14C]O[18O]2(s) 3.40e-023 3.40e-023 6.81e-020 - Ca[14C][18O]3(s) 2.33e-026 2.23e-026 4.66e-023 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9873 permil - R(13C) 1.11636e-002 -1.4864 permil - R(14C) 5.44227e-015 0.46282 pmc - R(18O) H2O(l) 1.99520e-003 -4.9889 permil - R(18O) OH- 1.92123e-003 -41.876 permil - R(18O) H3O+ 2.04133e-003 18.019 permil - R(13C) CO2(aq) 1.10837e-002 -8.6323 permil - R(14C) CO2(aq) 5.36459e-015 0.45622 pmc - R(18O) CO2(aq) 2.07916e-003 36.885 permil - R(18O) HCO3- 1.99520e-003 -4.9889 permil - R(13C) HCO3- 1.11801e-002 -0.0075245 permil - R(14C) HCO3- 5.45834e-015 0.46419 pmc - R(18O) CO3-2 1.99520e-003 -4.9889 permil - R(13C) CO3-2 1.11641e-002 -1.4426 permil - R(14C) CO3-2 5.44269e-015 0.46286 pmc - R(13C) CH4(aq) 1.10837e-002 -8.6323 permil - R(14C) CH4(aq) 5.36459e-015 0.45622 pmc - R(18O) Calcite 2.05264e-003 23.658 permil - R(13C) Calcite 1.12023e-002 1.9731 permil - R(14C) Calcite 5.47999e-015 0.46603 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.4401e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5928e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.1102e-011 0 -Alpha 14C CH4(aq)/CO2(aq) 1 3.3307e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.519e-005 6.500e-005 - [14C] 3.178e-017 3.169e-017 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.106 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.509e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 2.149e-018 - CH4 2.149e-018 2.153e-018 -17.668 -17.667 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 2.431e-013 - H2 1.216e-013 1.218e-013 -12.915 -12.914 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.554 -66.553 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -68.953 -68.952 0.001 (0) -[13C](-4) 2.382e-020 - [13C]H4 2.382e-020 2.386e-020 -19.623 -19.622 0.001 (0) -[13C](4) 6.519e-005 - H[13C]O3- 5.258e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.597e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.153e-032 - [14C]H4 1.153e-032 1.155e-032 -31.938 -31.937 0.001 (0) -[14C](4) 3.178e-017 - H[14C]O3- 2.567e-017 2.349e-017 -16.591 -16.629 -0.039 (0) - [14C]O2 5.342e-018 5.351e-018 -17.272 -17.272 0.001 (0) - CaH[14C]O3+ 5.421e-019 4.973e-019 -18.266 -18.303 -0.037 (0) - H[14C][18O]O2- 5.122e-020 4.686e-020 -19.291 -19.329 -0.039 (0) - H[14C]O[18O]O- 5.122e-020 4.686e-020 -19.291 -19.329 -0.039 (0) - H[14C]O2[18O]- 5.122e-020 4.686e-020 -19.291 -19.329 -0.039 (0) - Ca[14C]O3 2.972e-020 2.977e-020 -19.527 -19.526 0.001 (0) - [14C]O[18O] 2.221e-020 2.225e-020 -19.653 -19.653 0.001 (0) - [14C]O3-2 1.525e-020 1.068e-020 -19.817 -19.971 -0.155 (0) - CaH[14C]O2[18O]+ 1.082e-021 9.922e-022 -20.966 -21.003 -0.037 (0) - CaH[14C][18O]O2+ 1.082e-021 9.922e-022 -20.966 -21.003 -0.037 (0) - CaH[14C]O[18O]O+ 1.082e-021 9.922e-022 -20.966 -21.003 -0.037 (0) - Ca[14C]O2[18O] 1.779e-022 1.782e-022 -21.750 -21.749 0.001 (0) - H[14C][18O]O[18O]- 1.022e-022 9.350e-023 -21.991 -22.029 -0.039 (0) - H[14C]O[18O]2- 1.022e-022 9.350e-023 -21.991 -22.029 -0.039 (0) - H[14C][18O]2O- 1.022e-022 9.350e-023 -21.991 -22.029 -0.039 (0) - [14C]O2[18O]-2 9.125e-023 6.393e-023 -22.040 -22.194 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -68.953 -68.952 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -71.954 -71.953 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.76 -19.62 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.17 -22.67 -1.50 [14C][18O]2 - [14C]H4(g) -29.08 -31.94 -2.86 [14C]H4 - [14C]O2(g) -15.80 -17.27 -1.47 [14C]O2 - [14C]O[18O](g) -18.18 -19.97 -1.79 [14C]O[18O] - [18O]2(g) -69.66 -71.95 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.33 -14.18 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.48 -8.78 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.27 -6.08 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.17 -11.48 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.81 -17.67 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.76 -12.91 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.66 -66.55 -2.89 O2 - O[18O](g) -66.36 -69.25 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 72. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 71. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 3.2500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 2.48e-018 2.48e-018 4.96e-015 - Ca[14C]O2[18O](s) 1.53e-020 1.53e-020 3.06e-017 - Ca[14C]O[18O]2(s) 3.14e-023 3.14e-023 6.27e-020 - Ca[14C][18O]3(s) 2.15e-026 2.05e-026 4.29e-023 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9872 permil - R(13C) 1.11637e-002 -1.4786 permil - R(14C) 5.01357e-015 0.42636 pmc - R(18O) H2O(l) 1.99520e-003 -4.9887 permil - R(18O) OH- 1.92123e-003 -41.876 permil - R(18O) H3O+ 2.04133e-003 18.019 permil - R(13C) CO2(aq) 1.10838e-002 -8.6246 permil - R(14C) CO2(aq) 4.94201e-015 0.42028 pmc - R(18O) CO2(aq) 2.07916e-003 36.885 permil - R(18O) HCO3- 1.99520e-003 -4.9887 permil - R(13C) HCO3- 1.11802e-002 0.00021708 permil - R(14C) HCO3- 5.02838e-015 0.42762 pmc - R(18O) CO3-2 1.99520e-003 -4.9887 permil - R(13C) CO3-2 1.11642e-002 -1.4349 permil - R(14C) CO3-2 5.01395e-015 0.4264 pmc - R(13C) CH4(aq) 1.10838e-002 -8.6246 permil - R(14C) CH4(aq) 4.94201e-015 0.42028 pmc - R(18O) Calcite 2.05264e-003 23.658 permil - R(13C) Calcite 1.12023e-002 1.9809 permil - R(14C) Calcite 5.04831e-015 0.42932 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6877e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 3.9968e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.1102e-013 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.519e-005 6.500e-005 - [14C] 2.928e-017 2.919e-017 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.099 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.507e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.889e-018 - CH4 1.889e-018 1.892e-018 -17.724 -17.723 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 2.354e-013 - H2 1.177e-013 1.179e-013 -12.929 -12.928 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.526 -66.525 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -68.924 -68.924 0.001 (0) -[13C](-4) 2.094e-020 - [13C]H4 2.094e-020 2.097e-020 -19.679 -19.678 0.001 (0) -[13C](4) 6.519e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.955 -5.992 -0.037 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.597e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C][18O]O2+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 9.336e-033 - [14C]H4 9.336e-033 9.352e-033 -32.030 -32.029 0.001 (0) -[14C](4) 2.928e-017 - H[14C]O3- 2.365e-017 2.164e-017 -16.626 -16.665 -0.039 (0) - [14C]O2 4.921e-018 4.929e-018 -17.308 -17.307 0.001 (0) - CaH[14C]O3+ 4.994e-019 4.581e-019 -18.302 -18.339 -0.037 (0) - H[14C][18O]O2- 4.719e-020 4.317e-020 -19.326 -19.365 -0.039 (0) - H[14C]O[18O]O- 4.719e-020 4.317e-020 -19.326 -19.365 -0.039 (0) - H[14C]O2[18O]- 4.719e-020 4.317e-020 -19.326 -19.365 -0.039 (0) - Ca[14C]O3 2.738e-020 2.742e-020 -19.563 -19.562 0.001 (0) - [14C]O[18O] 2.046e-020 2.050e-020 -19.689 -19.688 0.001 (0) - [14C]O3-2 1.404e-020 9.839e-021 -19.852 -20.007 -0.155 (0) - CaH[14C]O2[18O]+ 9.964e-022 9.141e-022 -21.002 -21.039 -0.037 (0) - CaH[14C][18O]O2+ 9.964e-022 9.141e-022 -21.002 -21.039 -0.037 (0) - CaH[14C]O[18O]O+ 9.964e-022 9.141e-022 -21.002 -21.039 -0.037 (0) - Ca[14C]O2[18O] 1.639e-022 1.641e-022 -21.785 -21.785 0.001 (0) - H[14C]O[18O]2- 9.415e-023 8.613e-023 -22.026 -22.065 -0.039 (0) - H[14C][18O]2O- 9.415e-023 8.613e-023 -22.026 -22.065 -0.039 (0) - H[14C][18O]O[18O]- 9.415e-023 8.613e-023 -22.026 -22.065 -0.039 (0) - [14C]O2[18O]-2 8.407e-023 5.889e-023 -22.075 -22.230 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -68.924 -68.924 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -71.926 -71.925 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.82 -19.68 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.20 -22.71 -1.50 [14C][18O]2 - [14C]H4(g) -29.17 -32.03 -2.86 [14C]H4 - [14C]O2(g) -15.84 -17.31 -1.47 [14C]O2 - [14C]O[18O](g) -18.22 -20.01 -1.79 [14C]O[18O] - [18O]2(g) -69.63 -71.92 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.37 -14.21 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.51 -8.81 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.30 -6.11 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.20 -11.51 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.86 -17.72 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.78 -12.93 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.63 -66.52 -2.89 O2 - O[18O](g) -66.33 -69.22 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 73. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 72. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 3.3000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 2.29e-018 2.29e-018 4.57e-015 - Ca[14C]O2[18O](s) 1.41e-020 1.41e-020 2.81e-017 - Ca[14C]O[18O]2(s) 2.89e-023 2.89e-023 5.78e-020 - Ca[14C][18O]3(s) 1.98e-026 1.88e-026 3.95e-023 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9871 permil - R(13C) 1.11637e-002 -1.4715 permil - R(14C) 4.61864e-015 0.39278 pmc - R(18O) H2O(l) 1.99520e-003 -4.9886 permil - R(18O) OH- 1.92123e-003 -41.876 permil - R(18O) H3O+ 2.04133e-003 18.019 permil - R(13C) CO2(aq) 1.10839e-002 -8.6176 permil - R(14C) CO2(aq) 4.55272e-015 0.38717 pmc - R(18O) CO2(aq) 2.07916e-003 36.886 permil - R(18O) HCO3- 1.99520e-003 -4.9886 permil - R(13C) HCO3- 1.11803e-002 0.0073508 permil - R(14C) HCO3- 4.63228e-015 0.39394 pmc - R(18O) CO3-2 1.99520e-003 -4.9886 permil - R(13C) CO3-2 1.11642e-002 -1.4277 permil - R(14C) CO3-2 4.61899e-015 0.39281 pmc - R(13C) CH4(aq) 1.10839e-002 -8.6176 permil - R(14C) CH4(aq) 4.55272e-015 0.38717 pmc - R(18O) Calcite 2.05264e-003 23.658 permil - R(13C) Calcite 1.12024e-002 1.988 permil - R(14C) Calcite 4.65065e-015 0.3955 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6815e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 4.2188e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.2101e-011 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.519e-005 6.500e-005 - [14C] 2.697e-017 2.689e-017 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.071 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.510e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.132e-018 - CH4 1.132e-018 1.134e-018 -17.946 -17.945 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 2.071e-013 - H2 1.036e-013 1.037e-013 -12.985 -12.984 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.414 -66.414 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -68.813 -68.813 0.001 (0) -[13C](-4) 1.255e-020 - [13C]H4 1.255e-020 1.257e-020 -19.901 -19.901 0.001 (0) -[13C](4) 6.519e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.955 -5.992 -0.037 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.597e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 5.154e-033 - [14C]H4 5.154e-033 5.162e-033 -32.288 -32.287 0.001 (0) -[14C](4) 2.697e-017 - H[14C]O3- 2.179e-017 1.993e-017 -16.662 -16.700 -0.039 (0) - [14C]O2 4.534e-018 4.541e-018 -17.344 -17.343 0.001 (0) - CaH[14C]O3+ 4.601e-019 4.220e-019 -18.337 -18.375 -0.037 (0) - H[14C][18O]O2- 4.347e-020 3.977e-020 -19.362 -19.400 -0.039 (0) - H[14C]O[18O]O- 4.347e-020 3.977e-020 -19.362 -19.400 -0.039 (0) - H[14C]O2[18O]- 4.347e-020 3.977e-020 -19.362 -19.400 -0.039 (0) - Ca[14C]O3 2.522e-020 2.526e-020 -19.598 -19.598 0.001 (0) - [14C]O[18O] 1.885e-020 1.888e-020 -19.725 -19.724 0.001 (0) - [14C]O3-2 1.294e-020 9.064e-021 -19.888 -20.043 -0.155 (0) - CaH[14C]O2[18O]+ 9.180e-022 8.421e-022 -21.037 -21.075 -0.037 (0) - CaH[14C][18O]O2+ 9.180e-022 8.421e-022 -21.037 -21.075 -0.037 (0) - CaH[14C]O[18O]O+ 9.180e-022 8.421e-022 -21.037 -21.075 -0.037 (0) - Ca[14C]O2[18O] 1.510e-022 1.512e-022 -21.821 -21.820 0.001 (0) - H[14C][18O]2O- 8.673e-023 7.935e-023 -22.062 -22.100 -0.039 (0) - H[14C][18O]O[18O]- 8.673e-023 7.935e-023 -22.062 -22.100 -0.039 (0) - H[14C]O[18O]2- 8.673e-023 7.935e-023 -22.062 -22.100 -0.039 (0) - [14C]O2[18O]-2 7.744e-023 5.425e-023 -22.111 -22.266 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -68.813 -68.813 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -71.814 -71.814 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.04 -19.90 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.24 -22.74 -1.50 [14C][18O]2 - [14C]H4(g) -29.43 -32.29 -2.86 [14C]H4 - [14C]O2(g) -15.87 -17.34 -1.47 [14C]O2 - [14C]O[18O](g) -18.26 -20.04 -1.79 [14C]O[18O] - [18O]2(g) -69.52 -71.81 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.40 -14.25 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.55 -8.85 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.34 -6.15 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.24 -11.55 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.09 -17.95 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.83 -12.98 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.52 -66.41 -2.89 O2 - O[18O](g) -66.22 -69.11 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 74. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 73. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 3.3500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 2.11e-018 2.11e-018 4.21e-015 - Ca[14C]O2[18O](s) 1.30e-020 1.30e-020 2.59e-017 - Ca[14C]O[18O]2(s) 2.66e-023 2.66e-023 5.32e-020 - Ca[14C][18O]3(s) 1.82e-026 1.72e-026 3.64e-023 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9869 permil - R(13C) 1.11638e-002 -1.4649 permil - R(14C) 4.25482e-015 0.36184 pmc - R(18O) H2O(l) 1.99520e-003 -4.9884 permil - R(18O) OH- 1.92123e-003 -41.876 permil - R(18O) H3O+ 2.04133e-003 18.019 permil - R(13C) CO2(aq) 1.10839e-002 -8.611 permil - R(14C) CO2(aq) 4.19409e-015 0.35667 pmc - R(18O) CO2(aq) 2.07916e-003 36.886 permil - R(18O) HCO3- 1.99520e-003 -4.9884 permil - R(13C) HCO3- 1.11804e-002 0.013924 permil - R(14C) HCO3- 4.26738e-015 0.36291 pmc - R(18O) CO3-2 1.99520e-003 -4.9884 permil - R(13C) CO3-2 1.11643e-002 -1.4212 permil - R(14C) CO3-2 4.25515e-015 0.36187 pmc - R(13C) CH4(aq) 1.10839e-002 -8.611 permil - R(14C) CH4(aq) 4.19409e-015 0.35667 pmc - R(18O) Calcite 2.05264e-003 23.658 permil - R(13C) Calcite 1.12025e-002 1.9946 permil - R(14C) Calcite 4.28431e-015 0.36435 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5331e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -4.996e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -2.9976e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.519e-005 6.500e-005 - [14C] 2.485e-017 2.477e-017 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.008 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.534e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 3.542e-019 - CH4 3.542e-019 3.548e-019 -18.451 -18.450 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.549e-013 - H2 7.745e-014 7.758e-014 -13.111 -13.110 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.162 -66.161 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -68.561 -68.560 0.001 (0) -[13C](-4) 3.926e-021 - [13C]H4 3.926e-021 3.932e-021 -20.406 -20.405 0.001 (0) -[13C](4) 6.519e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.955 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.597e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.485e-033 - [14C]H4 1.485e-033 1.488e-033 -32.828 -32.827 0.001 (0) -[14C](4) 2.485e-017 - H[14C]O3- 2.007e-017 1.836e-017 -16.697 -16.736 -0.039 (0) - [14C]O2 4.176e-018 4.183e-018 -17.379 -17.378 0.001 (0) - CaH[14C]O3+ 4.238e-019 3.888e-019 -18.373 -18.410 -0.037 (0) - H[14C][18O]O2- 4.005e-020 3.664e-020 -19.397 -19.436 -0.039 (0) - H[14C]O[18O]O- 4.005e-020 3.664e-020 -19.397 -19.436 -0.039 (0) - H[14C]O2[18O]- 4.005e-020 3.664e-020 -19.397 -19.436 -0.039 (0) - Ca[14C]O3 2.324e-020 2.327e-020 -19.634 -19.633 0.001 (0) - [14C]O[18O] 1.737e-020 1.740e-020 -19.760 -19.760 0.001 (0) - [14C]O3-2 1.192e-020 8.350e-021 -19.924 -20.078 -0.155 (0) - CaH[14C]O2[18O]+ 8.456e-022 7.757e-022 -21.073 -21.110 -0.037 (0) - CaH[14C][18O]O2+ 8.456e-022 7.757e-022 -21.073 -21.110 -0.037 (0) - CaH[14C]O[18O]O+ 8.456e-022 7.757e-022 -21.073 -21.110 -0.037 (0) - Ca[14C]O2[18O] 1.391e-022 1.393e-022 -21.857 -21.856 0.001 (0) - H[14C][18O]O[18O]- 7.990e-023 7.310e-023 -22.097 -22.136 -0.039 (0) - H[14C]O[18O]2- 7.990e-023 7.310e-023 -22.097 -22.136 -0.039 (0) - H[14C][18O]2O- 7.990e-023 7.310e-023 -22.097 -22.136 -0.039 (0) - [14C]O2[18O]-2 7.134e-023 4.998e-023 -22.147 -22.301 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -68.561 -68.560 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -71.562 -71.561 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.55 -20.41 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.27 -22.78 -1.50 [14C][18O]2 - [14C]H4(g) -29.97 -32.83 -2.86 [14C]H4 - [14C]O2(g) -15.91 -17.38 -1.47 [14C]O2 - [14C]O[18O](g) -18.29 -20.08 -1.79 [14C]O[18O] - [18O]2(g) -69.27 -71.56 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.44 -14.28 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.59 -8.88 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.38 -6.18 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.27 -11.58 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.59 -18.45 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.96 -13.11 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.27 -66.16 -2.89 O2 - O[18O](g) -65.97 -68.86 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 75. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 74. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 3.4000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 1.94e-018 1.94e-018 3.88e-015 - Ca[14C]O2[18O](s) 1.19e-020 1.19e-020 2.39e-017 - Ca[14C]O[18O]2(s) 2.45e-023 2.45e-023 4.90e-020 - Ca[14C][18O]3(s) 1.68e-026 1.58e-026 3.35e-023 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9868 permil - R(13C) 1.11639e-002 -1.4589 permil - R(14C) 3.91966e-015 0.33334 pmc - R(18O) H2O(l) 1.99520e-003 -4.9883 permil - R(18O) OH- 1.92123e-003 -41.876 permil - R(18O) H3O+ 2.04133e-003 18.02 permil - R(13C) CO2(aq) 1.10840e-002 -8.605 permil - R(14C) CO2(aq) 3.86371e-015 0.32858 pmc - R(18O) CO2(aq) 2.07916e-003 36.886 permil - R(18O) HCO3- 1.99520e-003 -4.9883 permil - R(13C) HCO3- 1.11804e-002 0.019982 permil - R(14C) HCO3- 3.93123e-015 0.33432 pmc - R(18O) CO3-2 1.99520e-003 -4.9883 permil - R(13C) CO3-2 1.11644e-002 -1.4151 permil - R(14C) CO3-2 3.91996e-015 0.33336 pmc - R(13C) CH4(aq) 1.10840e-002 -8.605 permil - R(14C) CH4(aq) 3.86371e-015 0.32858 pmc - R(18O) Calcite 2.05264e-003 23.658 permil - R(13C) Calcite 1.12026e-002 2.0007 permil - R(14C) Calcite 3.94682e-015 0.33565 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.4409e-013 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6157e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 2.8866e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 2.8866e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.519e-005 6.500e-005 - [14C] 2.289e-017 2.282e-017 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.066 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.542e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 27 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.037e-018 - CH4 1.037e-018 1.039e-018 -17.984 -17.983 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.955 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 2.026e-013 - H2 1.013e-013 1.015e-013 -12.994 -12.994 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.395 -66.395 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -68.794 -68.794 0.001 (0) -[13C](-4) 1.150e-020 - [13C]H4 1.150e-020 1.152e-020 -19.939 -19.939 0.001 (0) -[13C](4) 6.519e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.955 -5.992 -0.037 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.597e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C][18O]O2+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 4.008e-033 - [14C]H4 4.008e-033 4.014e-033 -32.397 -32.396 0.001 (0) -[14C](4) 2.289e-017 - H[14C]O3- 1.849e-017 1.692e-017 -16.733 -16.772 -0.039 (0) - [14C]O2 3.847e-018 3.854e-018 -17.415 -17.414 0.001 (0) - CaH[14C]O3+ 3.905e-019 3.582e-019 -18.408 -18.446 -0.037 (0) - H[14C][18O]O2- 3.689e-020 3.375e-020 -19.433 -19.472 -0.039 (0) - H[14C]O[18O]O- 3.689e-020 3.375e-020 -19.433 -19.472 -0.039 (0) - H[14C]O2[18O]- 3.689e-020 3.375e-020 -19.433 -19.472 -0.039 (0) - Ca[14C]O3 2.140e-020 2.144e-020 -19.669 -19.669 0.001 (0) - [14C]O[18O] 1.600e-020 1.603e-020 -19.796 -19.795 0.001 (0) - [14C]O3-2 1.098e-020 7.692e-021 -19.959 -20.114 -0.155 (0) - CaH[14C]O2[18O]+ 7.790e-022 7.146e-022 -21.108 -21.146 -0.037 (0) - CaH[14C][18O]O2+ 7.790e-022 7.146e-022 -21.108 -21.146 -0.037 (0) - CaH[14C]O[18O]O+ 7.790e-022 7.146e-022 -21.108 -21.146 -0.037 (0) - Ca[14C]O2[18O] 1.281e-022 1.283e-022 -21.892 -21.892 0.001 (0) - H[14C]O[18O]2- 7.361e-023 6.734e-023 -22.133 -22.172 -0.039 (0) - H[14C][18O]2O- 7.361e-023 6.734e-023 -22.133 -22.172 -0.039 (0) - H[14C][18O]O[18O]- 7.361e-023 6.734e-023 -22.133 -22.172 -0.039 (0) - [14C]O2[18O]-2 6.572e-023 4.604e-023 -22.182 -22.337 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -68.794 -68.794 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -71.795 -71.795 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.08 -19.94 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.31 -22.81 -1.50 [14C][18O]2 - [14C]H4(g) -29.54 -32.40 -2.86 [14C]H4 - [14C]O2(g) -15.95 -17.41 -1.47 [14C]O2 - [14C]O[18O](g) -18.33 -20.11 -1.79 [14C]O[18O] - [18O]2(g) -69.50 -71.79 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.47 -14.32 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.62 -8.92 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.41 -6.22 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.31 -11.62 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.12 -17.98 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.84 -12.99 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.50 -66.39 -2.89 O2 - O[18O](g) -66.20 -69.09 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 76. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 75. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 3.4500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 1.79e-018 1.79e-018 3.57e-015 - Ca[14C]O2[18O](s) 1.10e-020 1.10e-020 2.20e-017 - Ca[14C]O[18O]2(s) 2.26e-023 2.26e-023 4.52e-020 - Ca[14C][18O]3(s) 1.55e-026 1.45e-026 3.09e-023 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9867 permil - R(13C) 1.11640e-002 -1.4533 permil - R(14C) 3.61090e-015 0.30708 pmc - R(18O) H2O(l) 1.99520e-003 -4.9882 permil - R(18O) OH- 1.92123e-003 -41.876 permil - R(18O) H3O+ 2.04133e-003 18.02 permil - R(13C) CO2(aq) 1.10841e-002 -8.5995 permil - R(14C) CO2(aq) 3.55936e-015 0.3027 pmc - R(18O) CO2(aq) 2.07916e-003 36.886 permil - R(18O) HCO3- 1.99520e-003 -4.9882 permil - R(13C) HCO3- 1.11805e-002 0.025563 permil - R(14C) HCO3- 3.62156e-015 0.30799 pmc - R(18O) CO3-2 1.99520e-003 -4.9882 permil - R(13C) CO3-2 1.11644e-002 -1.4096 permil - R(14C) CO3-2 3.61117e-015 0.3071 pmc - R(13C) CH4(aq) 1.10841e-002 -8.5995 permil - R(14C) CH4(aq) 3.55936e-015 0.3027 pmc - R(18O) Calcite 2.05264e-003 23.658 permil - R(13C) Calcite 1.12026e-002 2.0063 permil - R(14C) Calcite 3.63592e-015 0.30921 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6863e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.2212e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 4.885e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.500e-005 - [14C] 2.109e-017 2.103e-017 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.107 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.551e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 27 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 2.211e-018 - CH4 2.211e-018 2.215e-018 -17.655 -17.655 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 2.449e-013 - H2 1.224e-013 1.226e-013 -12.912 -12.911 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.560 -66.559 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -68.959 -68.958 0.001 (0) -[13C](-4) 2.451e-020 - [13C]H4 2.451e-020 2.455e-020 -19.611 -19.610 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.597e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 7.869e-033 - [14C]H4 7.869e-033 7.882e-033 -32.104 -32.103 0.001 (0) -[14C](4) 2.109e-017 - H[14C]O3- 1.703e-017 1.558e-017 -16.769 -16.807 -0.039 (0) - [14C]O2 3.544e-018 3.550e-018 -17.450 -17.450 0.001 (0) - CaH[14C]O3+ 3.597e-019 3.300e-019 -18.444 -18.482 -0.037 (0) - H[14C][18O]O2- 3.399e-020 3.109e-020 -19.469 -19.507 -0.039 (0) - H[14C]O[18O]O- 3.399e-020 3.109e-020 -19.469 -19.507 -0.039 (0) - H[14C]O2[18O]- 3.399e-020 3.109e-020 -19.469 -19.507 -0.039 (0) - Ca[14C]O3 1.972e-020 1.975e-020 -19.705 -19.704 0.001 (0) - [14C]O[18O] 1.474e-020 1.476e-020 -19.832 -19.831 0.001 (0) - [14C]O3-2 1.012e-020 7.086e-021 -19.995 -20.150 -0.155 (0) - CaH[14C]O2[18O]+ 7.177e-022 6.583e-022 -21.144 -21.182 -0.037 (0) - CaH[14C][18O]O2+ 7.177e-022 6.583e-022 -21.144 -21.182 -0.037 (0) - CaH[14C]O[18O]O+ 7.177e-022 6.583e-022 -21.144 -21.182 -0.037 (0) - Ca[14C]O2[18O] 1.180e-022 1.182e-022 -21.928 -21.927 0.001 (0) - H[14C][18O]2O- 6.781e-023 6.204e-023 -22.169 -22.207 -0.039 (0) - H[14C][18O]O[18O]- 6.781e-023 6.204e-023 -22.169 -22.207 -0.039 (0) - H[14C]O[18O]2- 6.781e-023 6.204e-023 -22.169 -22.207 -0.039 (0) - [14C]O2[18O]-2 6.055e-023 4.242e-023 -22.218 -22.372 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -68.959 -68.958 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -71.960 -71.959 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.75 -19.61 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.35 -22.85 -1.50 [14C][18O]2 - [14C]H4(g) -29.24 -32.10 -2.86 [14C]H4 - [14C]O2(g) -15.98 -17.45 -1.47 [14C]O2 - [14C]O[18O](g) -18.36 -20.15 -1.79 [14C]O[18O] - [18O]2(g) -69.67 -71.96 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.51 -14.36 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.66 -8.96 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.45 -6.26 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.35 -11.66 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.79 -17.65 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.76 -12.91 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.67 -66.56 -2.89 O2 - O[18O](g) -66.37 -69.26 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 77. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 76. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 3.5000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 1.65e-018 1.65e-018 3.29e-015 - Ca[14C]O2[18O](s) 1.01e-020 1.01e-020 2.03e-017 - Ca[14C]O[18O]2(s) 2.08e-023 2.08e-023 4.16e-020 - Ca[14C][18O]3(s) 1.42e-026 1.32e-026 2.85e-023 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9865 permil - R(13C) 1.11640e-002 -1.4482 permil - R(14C) 3.32646e-015 0.28289 pmc - R(18O) H2O(l) 1.99520e-003 -4.988 permil - R(18O) OH- 1.92123e-003 -41.875 permil - R(18O) H3O+ 2.04133e-003 18.02 permil - R(13C) CO2(aq) 1.10841e-002 -8.5944 permil - R(14C) CO2(aq) 3.27898e-015 0.27885 pmc - R(18O) CO2(aq) 2.07916e-003 36.886 permil - R(18O) HCO3- 1.99520e-003 -4.988 permil - R(13C) HCO3- 1.11805e-002 0.030707 permil - R(14C) HCO3- 3.33628e-015 0.28372 pmc - R(18O) CO3-2 1.99520e-003 -4.988 permil - R(13C) CO3-2 1.11645e-002 -1.4044 permil - R(14C) CO3-2 3.32671e-015 0.28291 pmc - R(13C) CH4(aq) 1.10841e-002 -8.5944 permil - R(14C) CH4(aq) 3.27898e-015 0.27885 pmc - R(18O) Calcite 2.05264e-003 23.658 permil - R(13C) Calcite 1.12027e-002 2.0114 permil - R(14C) Calcite 3.34951e-015 0.28485 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7828e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.4211e-011 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.0436e-011 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 1.943e-017 1.937e-017 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.122 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.551e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 24 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 2.905e-018 - CH4 2.905e-018 2.910e-018 -17.537 -17.536 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 2.621e-013 - H2 1.311e-013 1.313e-013 -12.882 -12.882 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.619 -66.618 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.018 -69.017 0.001 (0) -[13C](-4) 3.220e-020 - [13C]H4 3.220e-020 3.225e-020 -19.492 -19.491 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.597e-008 -7.338 -7.338 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 9.525e-033 - [14C]H4 9.525e-033 9.540e-033 -32.021 -32.020 0.001 (0) -[14C](4) 1.943e-017 - H[14C]O3- 1.569e-017 1.436e-017 -16.804 -16.843 -0.039 (0) - [14C]O2 3.265e-018 3.271e-018 -17.486 -17.485 0.001 (0) - CaH[14C]O3+ 3.314e-019 3.040e-019 -18.480 -18.517 -0.037 (0) - H[14C][18O]O2- 3.131e-020 2.864e-020 -19.504 -19.543 -0.039 (0) - H[14C]O[18O]O- 3.131e-020 2.864e-020 -19.504 -19.543 -0.039 (0) - H[14C]O2[18O]- 3.131e-020 2.864e-020 -19.504 -19.543 -0.039 (0) - Ca[14C]O3 1.817e-020 1.820e-020 -19.741 -19.740 0.001 (0) - [14C]O[18O] 1.358e-020 1.360e-020 -19.867 -19.866 0.001 (0) - [14C]O3-2 9.319e-021 6.528e-021 -20.031 -20.185 -0.155 (0) - CaH[14C]O2[18O]+ 6.611e-022 6.065e-022 -21.180 -21.217 -0.037 (0) - CaH[14C][18O]O2+ 6.611e-022 6.065e-022 -21.180 -21.217 -0.037 (0) - CaH[14C]O[18O]O+ 6.611e-022 6.065e-022 -21.180 -21.217 -0.037 (0) - Ca[14C]O2[18O] 1.087e-022 1.089e-022 -21.964 -21.963 0.001 (0) - H[14C][18O]O[18O]- 6.247e-023 5.715e-023 -22.204 -22.243 -0.039 (0) - H[14C]O[18O]2- 6.247e-023 5.715e-023 -22.204 -22.243 -0.039 (0) - H[14C][18O]2O- 6.247e-023 5.715e-023 -22.204 -22.243 -0.039 (0) - [14C]O2[18O]-2 5.578e-023 3.907e-023 -22.254 -22.408 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.018 -69.017 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.019 -72.018 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.63 -19.49 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.38 -22.89 -1.50 [14C][18O]2 - [14C]H4(g) -29.16 -32.02 -2.86 [14C]H4 - [14C]O2(g) -16.02 -17.49 -1.47 [14C]O2 - [14C]O[18O](g) -18.40 -20.19 -1.79 [14C]O[18O] - [18O]2(g) -69.73 -72.02 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.55 -14.39 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.69 -8.99 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.48 -6.29 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.38 -11.69 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.68 -17.54 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.73 -12.88 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.73 -66.62 -2.89 O2 - O[18O](g) -66.43 -69.32 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 78. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 77. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 3.5500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 1.52e-018 1.52e-018 3.03e-015 - Ca[14C]O2[18O](s) 9.34e-021 9.34e-021 1.87e-017 - Ca[14C]O[18O]2(s) 1.92e-023 1.92e-023 3.83e-020 - Ca[14C][18O]3(s) 1.31e-026 1.21e-026 2.62e-023 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9864 permil - R(13C) 1.11641e-002 -1.4435 permil - R(14C) 3.06443e-015 0.26061 pmc - R(18O) H2O(l) 1.99520e-003 -4.9879 permil - R(18O) OH- 1.92123e-003 -41.875 permil - R(18O) H3O+ 2.04133e-003 18.02 permil - R(13C) CO2(aq) 1.10842e-002 -8.5897 permil - R(14C) CO2(aq) 3.02069e-015 0.25689 pmc - R(18O) CO2(aq) 2.07916e-003 36.886 permil - R(18O) HCO3- 1.99520e-003 -4.9879 permil - R(13C) HCO3- 1.11806e-002 0.035447 permil - R(14C) HCO3- 3.07348e-015 0.26138 pmc - R(18O) CO3-2 1.99520e-003 -4.9879 permil - R(13C) CO3-2 1.11646e-002 -1.3997 permil - R(14C) CO3-2 3.06466e-015 0.26063 pmc - R(13C) CH4(aq) 1.10842e-002 -8.5897 permil - R(14C) CH4(aq) 3.02069e-015 0.25689 pmc - R(18O) Calcite 2.05264e-003 23.659 permil - R(13C) Calcite 1.12027e-002 2.0162 permil - R(14C) Calcite 3.08566e-015 0.26241 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.3299e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6711e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 2.8866e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -8.8818e-013 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 1.790e-017 1.784e-017 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.192 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.555e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.049e-017 - CH4 1.049e-017 1.050e-017 -16.979 -16.979 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 3.613e-013 - H2 1.807e-013 1.810e-013 -12.743 -12.742 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.898 -66.897 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.297 -69.296 0.001 (0) -[13C](-4) 1.162e-019 - [13C]H4 1.162e-019 1.164e-019 -18.935 -18.934 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.597e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C][18O]O2+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.167e-032 - [14C]H4 3.167e-032 3.173e-032 -31.499 -31.499 0.001 (0) -[14C](4) 1.790e-017 - H[14C]O3- 1.446e-017 1.323e-017 -16.840 -16.879 -0.039 (0) - [14C]O2 3.008e-018 3.013e-018 -17.522 -17.521 0.001 (0) - CaH[14C]O3+ 3.053e-019 2.800e-019 -18.515 -18.553 -0.037 (0) - H[14C][18O]O2- 2.884e-020 2.639e-020 -19.540 -19.579 -0.039 (0) - H[14C]O[18O]O- 2.884e-020 2.639e-020 -19.540 -19.579 -0.039 (0) - H[14C]O2[18O]- 2.884e-020 2.639e-020 -19.540 -19.579 -0.039 (0) - Ca[14C]O3 1.673e-020 1.676e-020 -19.776 -19.776 0.001 (0) - [14C]O[18O] 1.251e-020 1.253e-020 -19.903 -19.902 0.001 (0) - [14C]O3-2 8.585e-021 6.014e-021 -20.066 -20.221 -0.155 (0) - CaH[14C]O2[18O]+ 6.091e-022 5.587e-022 -21.215 -21.253 -0.037 (0) - CaH[14C][18O]O2+ 6.091e-022 5.587e-022 -21.215 -21.253 -0.037 (0) - CaH[14C]O[18O]O+ 6.091e-022 5.587e-022 -21.215 -21.253 -0.037 (0) - Ca[14C]O2[18O] 1.002e-022 1.003e-022 -21.999 -21.999 0.001 (0) - H[14C]O[18O]2- 5.755e-023 5.265e-023 -22.240 -22.279 -0.039 (0) - H[14C][18O]2O- 5.755e-023 5.265e-023 -22.240 -22.279 -0.039 (0) - H[14C][18O]O[18O]- 5.755e-023 5.265e-023 -22.240 -22.279 -0.039 (0) - [14C]O2[18O]-2 5.138e-023 3.600e-023 -22.289 -22.444 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.297 -69.296 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.298 -72.297 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.07 -18.93 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.42 -22.92 -1.50 [14C][18O]2 - [14C]H4(g) -28.64 -31.50 -2.86 [14C]H4 - [14C]O2(g) -16.05 -17.52 -1.47 [14C]O2 - [14C]O[18O](g) -18.43 -20.22 -1.79 [14C]O[18O] - [18O]2(g) -70.01 -72.30 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.58 -14.43 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.73 -9.03 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.52 -6.33 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.42 -11.73 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.12 -16.98 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.59 -12.74 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.00 -66.90 -2.89 O2 - O[18O](g) -66.70 -69.60 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 79. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 78. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 3.6000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 1.40e-018 1.40e-018 2.79e-015 - Ca[14C]O2[18O](s) 8.60e-021 8.60e-021 1.72e-017 - Ca[14C]O[18O]2(s) 1.77e-023 1.77e-023 3.53e-020 - Ca[14C][18O]3(s) 1.21e-026 1.11e-026 2.42e-023 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9862 permil - R(13C) 1.11641e-002 -1.4391 permil - R(14C) 2.82303e-015 0.24008 pmc - R(18O) H2O(l) 1.99520e-003 -4.9878 permil - R(18O) OH- 1.92123e-003 -41.875 permil - R(18O) H3O+ 2.04133e-003 18.02 permil - R(13C) CO2(aq) 1.10842e-002 -8.5854 permil - R(14C) CO2(aq) 2.78274e-015 0.23665 pmc - R(18O) CO2(aq) 2.07916e-003 36.886 permil - R(18O) HCO3- 1.99520e-003 -4.9878 permil - R(13C) HCO3- 1.11806e-002 0.039814 permil - R(14C) HCO3- 2.83137e-015 0.24079 pmc - R(18O) CO3-2 1.99520e-003 -4.9878 permil - R(13C) CO3-2 1.11646e-002 -1.3953 permil - R(14C) CO3-2 2.82325e-015 0.2401 pmc - R(13C) CH4(aq) 1.10842e-002 -8.5854 permil - R(14C) CH4(aq) 2.78274e-015 0.23665 pmc - R(18O) Calcite 2.05264e-003 23.659 permil - R(13C) Calcite 1.12028e-002 2.0205 permil - R(14C) Calcite 2.84260e-015 0.24174 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7358e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -6.4393e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -8.3267e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 1.649e-017 1.644e-017 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.210 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.563e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.462e-017 - CH4 1.462e-017 1.465e-017 -16.835 -16.834 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 3.927e-013 - H2 1.963e-013 1.967e-013 -12.707 -12.706 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.970 -66.969 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.369 -69.368 0.001 (0) -[13C](-4) 1.621e-019 - [13C]H4 1.621e-019 1.624e-019 -18.790 -18.790 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.597e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 4.069e-032 - [14C]H4 4.069e-032 4.076e-032 -31.390 -31.390 0.001 (0) -[14C](4) 1.649e-017 - H[14C]O3- 1.332e-017 1.218e-017 -16.876 -16.914 -0.039 (0) - [14C]O2 2.771e-018 2.776e-018 -17.557 -17.557 0.001 (0) - CaH[14C]O3+ 2.812e-019 2.580e-019 -18.551 -18.588 -0.037 (0) - H[14C][18O]O2- 2.657e-020 2.431e-020 -19.576 -19.614 -0.039 (0) - H[14C]O[18O]O- 2.657e-020 2.431e-020 -19.576 -19.614 -0.039 (0) - H[14C]O2[18O]- 2.657e-020 2.431e-020 -19.576 -19.614 -0.039 (0) - Ca[14C]O3 1.542e-020 1.544e-020 -19.812 -19.811 0.001 (0) - [14C]O[18O] 1.152e-020 1.154e-020 -19.938 -19.938 0.001 (0) - [14C]O3-2 7.908e-021 5.540e-021 -20.102 -20.256 -0.155 (0) - CaH[14C]O2[18O]+ 5.611e-022 5.147e-022 -21.251 -21.288 -0.037 (0) - CaH[14C][18O]O2+ 5.611e-022 5.147e-022 -21.251 -21.288 -0.037 (0) - CaH[14C]O[18O]O+ 5.611e-022 5.147e-022 -21.251 -21.288 -0.037 (0) - Ca[14C]O2[18O] 9.228e-023 9.243e-023 -22.035 -22.034 0.001 (0) - H[14C][18O]2O- 5.301e-023 4.850e-023 -22.276 -22.314 -0.039 (0) - H[14C][18O]O[18O]- 5.301e-023 4.850e-023 -22.276 -22.314 -0.039 (0) - H[14C]O[18O]2- 5.301e-023 4.850e-023 -22.276 -22.314 -0.039 (0) - [14C]O2[18O]-2 4.734e-023 3.316e-023 -22.325 -22.479 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.369 -69.368 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.370 -72.369 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.93 -18.79 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.45 -22.96 -1.50 [14C][18O]2 - [14C]H4(g) -28.53 -31.39 -2.86 [14C]H4 - [14C]O2(g) -16.09 -17.56 -1.47 [14C]O2 - [14C]O[18O](g) -18.47 -20.26 -1.79 [14C]O[18O] - [18O]2(g) -70.08 -72.37 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.62 -14.46 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.76 -9.06 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.55 -6.36 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.45 -11.76 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.97 -16.83 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.56 -12.71 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.08 -66.97 -2.89 O2 - O[18O](g) -66.78 -69.67 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 80. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 79. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 3.6500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 1.29e-018 1.29e-018 2.57e-015 - Ca[14C]O2[18O](s) 7.92e-021 7.92e-021 1.58e-017 - Ca[14C]O[18O]2(s) 1.63e-023 1.63e-023 3.25e-020 - Ca[14C][18O]3(s) 1.11e-026 1.01e-026 2.23e-023 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9861 permil - R(13C) 1.11642e-002 -1.4351 permil - R(14C) 2.60066e-015 0.22117 pmc - R(18O) H2O(l) 1.99520e-003 -4.9876 permil - R(18O) OH- 1.92123e-003 -41.875 permil - R(18O) H3O+ 2.04133e-003 18.02 permil - R(13C) CO2(aq) 1.10843e-002 -8.5814 permil - R(14C) CO2(aq) 2.56354e-015 0.21801 pmc - R(18O) CO2(aq) 2.07916e-003 36.887 permil - R(18O) HCO3- 1.99520e-003 -4.9876 permil - R(13C) HCO3- 1.11807e-002 0.043839 permil - R(14C) HCO3- 2.60834e-015 0.22182 pmc - R(18O) CO3-2 1.99520e-003 -4.9876 permil - R(13C) CO3-2 1.11646e-002 -1.3913 permil - R(14C) CO3-2 2.60086e-015 0.22118 pmc - R(13C) CH4(aq) 1.10843e-002 -8.5814 permil - R(14C) CH4(aq) 2.56354e-015 0.21801 pmc - R(18O) Calcite 2.05264e-003 23.659 permil - R(13C) Calcite 1.12028e-002 2.0246 permil - R(14C) Calcite 2.61868e-015 0.2227 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.537e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 7.7716e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.7764e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 1.519e-017 1.514e-017 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.209 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.559e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 32 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.442e-017 - CH4 1.442e-017 1.444e-017 -16.841 -16.840 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 3.913e-013 - H2 1.956e-013 1.960e-013 -12.709 -12.708 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.967 -66.966 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.366 -69.365 0.001 (0) -[13C](-4) 1.598e-019 - [13C]H4 1.598e-019 1.600e-019 -18.796 -18.796 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.597e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.695e-032 - [14C]H4 3.695e-032 3.702e-032 -31.432 -31.432 0.001 (0) -[14C](4) 1.519e-017 - H[14C]O3- 1.227e-017 1.122e-017 -16.911 -16.950 -0.039 (0) - [14C]O2 2.553e-018 2.557e-018 -17.593 -17.592 0.001 (0) - CaH[14C]O3+ 2.591e-019 2.376e-019 -18.587 -18.624 -0.037 (0) - H[14C][18O]O2- 2.448e-020 2.239e-020 -19.611 -19.650 -0.039 (0) - H[14C]O[18O]O- 2.448e-020 2.239e-020 -19.611 -19.650 -0.039 (0) - H[14C]O2[18O]- 2.448e-020 2.239e-020 -19.611 -19.650 -0.039 (0) - Ca[14C]O3 1.420e-020 1.423e-020 -19.848 -19.847 0.001 (0) - [14C]O[18O] 1.062e-020 1.063e-020 -19.974 -19.973 0.001 (0) - [14C]O3-2 7.285e-021 5.104e-021 -20.138 -20.292 -0.155 (0) - CaH[14C]O2[18O]+ 5.169e-022 4.742e-022 -21.287 -21.324 -0.037 (0) - CaH[14C][18O]O2+ 5.169e-022 4.742e-022 -21.287 -21.324 -0.037 (0) - CaH[14C]O[18O]O+ 5.169e-022 4.742e-022 -21.287 -21.324 -0.037 (0) - Ca[14C]O2[18O] 8.501e-023 8.515e-023 -22.071 -22.070 0.001 (0) - H[14C][18O]O[18O]- 4.884e-023 4.468e-023 -22.311 -22.350 -0.039 (0) - H[14C]O[18O]2- 4.884e-023 4.468e-023 -22.311 -22.350 -0.039 (0) - H[14C][18O]2O- 4.884e-023 4.468e-023 -22.311 -22.350 -0.039 (0) - [14C]O2[18O]-2 4.361e-023 3.055e-023 -22.360 -22.515 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.366 -69.365 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.367 -72.366 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.94 -18.80 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.49 -22.99 -1.50 [14C][18O]2 - [14C]H4(g) -28.57 -31.43 -2.86 [14C]H4 - [14C]O2(g) -16.12 -17.59 -1.47 [14C]O2 - [14C]O[18O](g) -18.51 -20.29 -1.79 [14C]O[18O] - [18O]2(g) -70.08 -72.37 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.65 -14.50 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.80 -9.10 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.59 -6.40 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.49 -11.80 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.98 -16.84 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.56 -12.71 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.07 -66.97 -2.89 O2 - O[18O](g) -66.77 -69.67 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 81. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 80. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 3.7000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 1.19e-018 1.19e-018 2.37e-015 - Ca[14C]O2[18O](s) 7.30e-021 7.30e-021 1.46e-017 - Ca[14C]O[18O]2(s) 1.50e-023 1.50e-023 3.00e-020 - Ca[14C][18O]3(s) 1.03e-026 9.25e-027 2.05e-023 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.986 permil - R(13C) 1.11642e-002 -1.4314 permil - R(14C) 2.39580e-015 0.20374 pmc - R(18O) H2O(l) 1.99520e-003 -4.9875 permil - R(18O) OH- 1.92123e-003 -41.875 permil - R(18O) H3O+ 2.04133e-003 18.02 permil - R(13C) CO2(aq) 1.10843e-002 -8.5777 permil - R(14C) CO2(aq) 2.36160e-015 0.20084 pmc - R(18O) CO2(aq) 2.07917e-003 36.887 permil - R(18O) HCO3- 1.99520e-003 -4.9875 permil - R(13C) HCO3- 1.11807e-002 0.047547 permil - R(14C) HCO3- 2.40287e-015 0.20435 pmc - R(18O) CO3-2 1.99520e-003 -4.9875 permil - R(13C) CO3-2 1.11647e-002 -1.3876 permil - R(14C) CO3-2 2.39598e-015 0.20376 pmc - R(13C) CH4(aq) 1.10843e-002 -8.5777 permil - R(14C) CH4(aq) 2.36160e-015 0.20084 pmc - R(18O) Calcite 2.05264e-003 23.659 permil - R(13C) Calcite 1.12029e-002 2.0283 permil - R(14C) Calcite 2.41240e-015 0.20516 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 8.8818e-013 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6707e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.0214e-011 0 -Alpha 14C CH4(aq)/CO2(aq) 1 0 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 1.399e-017 1.395e-017 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.201 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.577e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 24 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.254e-017 - CH4 1.254e-017 1.256e-017 -16.902 -16.901 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 3.779e-013 - H2 1.889e-013 1.892e-013 -12.724 -12.723 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.937 -66.936 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.335 -69.335 0.001 (0) -[13C](-4) 1.390e-019 - [13C]H4 1.390e-019 1.392e-019 -18.857 -18.856 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.597e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C][18O]O2+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.961e-032 - [14C]H4 2.961e-032 2.966e-032 -31.529 -31.528 0.001 (0) -[14C](4) 1.399e-017 - H[14C]O3- 1.130e-017 1.034e-017 -16.947 -16.985 -0.039 (0) - [14C]O2 2.352e-018 2.356e-018 -17.629 -17.628 0.001 (0) - CaH[14C]O3+ 2.387e-019 2.189e-019 -18.622 -18.660 -0.037 (0) - H[14C][18O]O2- 2.255e-020 2.063e-020 -19.647 -19.686 -0.039 (0) - H[14C]O[18O]O- 2.255e-020 2.063e-020 -19.647 -19.686 -0.039 (0) - H[14C]O2[18O]- 2.255e-020 2.063e-020 -19.647 -19.686 -0.039 (0) - Ca[14C]O3 1.308e-020 1.310e-020 -19.883 -19.883 0.001 (0) - [14C]O[18O] 9.779e-021 9.795e-021 -20.010 -20.009 0.001 (0) - [14C]O3-2 6.711e-021 4.702e-021 -20.173 -20.328 -0.155 (0) - CaH[14C]O2[18O]+ 4.762e-022 4.368e-022 -21.322 -21.360 -0.037 (0) - CaH[14C][18O]O2+ 4.762e-022 4.368e-022 -21.322 -21.360 -0.037 (0) - CaH[14C]O[18O]O+ 4.762e-022 4.368e-022 -21.322 -21.360 -0.037 (0) - Ca[14C]O2[18O] 7.831e-023 7.844e-023 -22.106 -22.105 0.001 (0) - H[14C]O[18O]2- 4.499e-023 4.116e-023 -22.347 -22.386 -0.039 (0) - H[14C][18O]2O- 4.499e-023 4.116e-023 -22.347 -22.386 -0.039 (0) - H[14C][18O]O[18O]- 4.499e-023 4.116e-023 -22.347 -22.386 -0.039 (0) - [14C]O2[18O]-2 4.017e-023 2.814e-023 -22.396 -22.551 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.335 -69.335 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.337 -72.336 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.00 -18.86 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.52 -23.03 -1.50 [14C][18O]2 - [14C]H4(g) -28.67 -31.53 -2.86 [14C]H4 - [14C]O2(g) -16.16 -17.63 -1.47 [14C]O2 - [14C]O[18O](g) -18.54 -20.33 -1.79 [14C]O[18O] - [18O]2(g) -70.05 -72.34 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.69 -14.53 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.84 -9.13 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.63 -6.43 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.52 -11.83 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.04 -16.90 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.57 -12.72 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.04 -66.94 -2.89 O2 - O[18O](g) -66.74 -69.64 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 82. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 81. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 3.7500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 1.09e-018 1.09e-018 2.18e-015 - Ca[14C]O2[18O](s) 6.73e-021 6.73e-021 1.35e-017 - Ca[14C]O[18O]2(s) 1.38e-023 1.38e-023 2.76e-020 - Ca[14C][18O]3(s) 9.45e-027 8.45e-027 1.89e-023 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9858 permil - R(13C) 1.11642e-002 -1.428 permil - R(14C) 2.20708e-015 0.18769 pmc - R(18O) H2O(l) 1.99520e-003 -4.9873 permil - R(18O) OH- 1.92123e-003 -41.875 permil - R(18O) H3O+ 2.04133e-003 18.021 permil - R(13C) CO2(aq) 1.10843e-002 -8.5743 permil - R(14C) CO2(aq) 2.17557e-015 0.18502 pmc - R(18O) CO2(aq) 2.07917e-003 36.887 permil - R(18O) HCO3- 1.99520e-003 -4.9873 permil - R(13C) HCO3- 1.11808e-002 0.050964 permil - R(14C) HCO3- 2.21359e-015 0.18825 pmc - R(18O) CO3-2 1.99520e-003 -4.9873 permil - R(13C) CO3-2 1.11647e-002 -1.3842 permil - R(14C) CO3-2 2.20725e-015 0.18771 pmc - R(13C) CH4(aq) 1.10843e-002 -8.5743 permil - R(14C) CH4(aq) 2.17557e-015 0.18502 pmc - R(18O) Calcite 2.05264e-003 23.659 permil - R(13C) Calcite 1.12029e-002 2.0317 permil - R(14C) Calcite 2.22237e-015 0.189 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.6597e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7054e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -9.4369e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 2.8866e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 1.289e-017 1.285e-017 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.198 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.592e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 37 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.170e-017 - CH4 1.170e-017 1.172e-017 -16.932 -16.931 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 3.714e-013 - H2 1.857e-013 1.860e-013 -12.731 -12.730 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.922 -66.921 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.321 -69.320 0.001 (0) -[13C](-4) 1.297e-019 - [13C]H4 1.297e-019 1.299e-019 -18.887 -18.886 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.096e-008 6.106e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.597e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.546e-032 - [14C]H4 2.546e-032 2.550e-032 -31.594 -31.593 0.001 (0) -[14C](4) 1.289e-017 - H[14C]O3- 1.041e-017 9.525e-018 -16.982 -17.021 -0.039 (0) - [14C]O2 2.166e-018 2.170e-018 -17.664 -17.664 0.001 (0) - CaH[14C]O3+ 2.199e-019 2.017e-019 -18.658 -18.695 -0.037 (0) - H[14C][18O]O2- 2.077e-020 1.900e-020 -19.683 -19.721 -0.039 (0) - H[14C]O[18O]O- 2.077e-020 1.900e-020 -19.683 -19.721 -0.039 (0) - H[14C]O2[18O]- 2.077e-020 1.900e-020 -19.683 -19.721 -0.039 (0) - Ca[14C]O3 1.205e-020 1.207e-020 -19.919 -19.918 0.001 (0) - [14C]O[18O] 9.009e-021 9.023e-021 -20.045 -20.045 0.001 (0) - [14C]O3-2 6.183e-021 4.331e-021 -20.209 -20.363 -0.155 (0) - CaH[14C]O2[18O]+ 4.387e-022 4.024e-022 -21.358 -21.395 -0.037 (0) - CaH[14C][18O]O2+ 4.387e-022 4.024e-022 -21.358 -21.395 -0.037 (0) - CaH[14C]O[18O]O+ 4.387e-022 4.024e-022 -21.358 -21.395 -0.037 (0) - Ca[14C]O2[18O] 7.214e-023 7.226e-023 -22.142 -22.141 0.001 (0) - H[14C][18O]2O- 4.145e-023 3.792e-023 -22.383 -22.421 -0.039 (0) - H[14C][18O]O[18O]- 4.145e-023 3.792e-023 -22.383 -22.421 -0.039 (0) - H[14C]O[18O]2- 4.145e-023 3.792e-023 -22.383 -22.421 -0.039 (0) - [14C]O2[18O]-2 3.701e-023 2.593e-023 -22.432 -22.586 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.321 -69.320 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.322 -72.321 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.03 -18.89 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.56 -23.06 -1.50 [14C][18O]2 - [14C]H4(g) -28.73 -31.59 -2.86 [14C]H4 - [14C]O2(g) -16.19 -17.66 -1.47 [14C]O2 - [14C]O[18O](g) -18.58 -20.36 -1.79 [14C]O[18O] - [18O]2(g) -70.03 -72.32 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.72 -14.57 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.87 -9.17 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.66 -6.47 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.56 -11.87 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.07 -16.93 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.58 -12.73 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.03 -66.92 -2.89 O2 - O[18O](g) -66.73 -69.62 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 83. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 82. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 3.8000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 1.01e-018 1.01e-018 2.01e-015 - Ca[14C]O2[18O](s) 6.20e-021 6.20e-021 1.24e-017 - Ca[14C]O[18O]2(s) 1.27e-023 1.27e-023 2.54e-020 - Ca[14C][18O]3(s) 8.70e-027 7.70e-027 1.74e-023 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9857 permil - R(13C) 1.11643e-002 -1.4248 permil - R(14C) 2.03322e-015 0.17291 pmc - R(18O) H2O(l) 1.99520e-003 -4.9872 permil - R(18O) OH- 1.92123e-003 -41.875 permil - R(18O) H3O+ 2.04134e-003 18.021 permil - R(13C) CO2(aq) 1.10844e-002 -8.5712 permil - R(14C) CO2(aq) 2.00420e-015 0.17044 pmc - R(18O) CO2(aq) 2.07917e-003 36.887 permil - R(18O) HCO3- 1.99520e-003 -4.9872 permil - R(13C) HCO3- 1.11808e-002 0.054114 permil - R(14C) HCO3- 2.03922e-015 0.17342 pmc - R(18O) CO3-2 1.99520e-003 -4.9872 permil - R(13C) CO3-2 1.11648e-002 -1.3811 permil - R(14C) CO3-2 2.03338e-015 0.17292 pmc - R(13C) CH4(aq) 1.10844e-002 -8.5712 permil - R(14C) CH4(aq) 2.00420e-015 0.17044 pmc - R(18O) Calcite 2.05264e-003 23.659 permil - R(13C) Calcite 1.12030e-002 2.0349 permil - R(14C) Calcite 2.04731e-015 0.17411 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.3283e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6598e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -4.1078e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -4.1078e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 1.187e-017 1.184e-017 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.201 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.613e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 36 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.247e-017 - CH4 1.247e-017 1.249e-017 -16.904 -16.903 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.096e-008 6.107e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 3.774e-013 - H2 1.887e-013 1.890e-013 -12.724 -12.724 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.935 -66.935 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.334 -69.334 0.001 (0) -[13C](-4) 1.383e-019 - [13C]H4 1.383e-019 1.385e-019 -18.859 -18.859 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.096e-008 6.107e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.597e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.032e-009 -8.655 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.500e-032 - [14C]H4 2.500e-032 2.504e-032 -31.602 -31.601 0.001 (0) -[14C](4) 1.187e-017 - H[14C]O3- 9.591e-018 8.775e-018 -17.018 -17.057 -0.039 (0) - [14C]O2 1.996e-018 1.999e-018 -17.700 -17.699 0.001 (0) - CaH[14C]O3+ 2.025e-019 1.858e-019 -18.693 -18.731 -0.037 (0) - H[14C][18O]O2- 1.914e-020 1.751e-020 -19.718 -19.757 -0.039 (0) - H[14C]O[18O]O- 1.914e-020 1.751e-020 -19.718 -19.757 -0.039 (0) - H[14C]O2[18O]- 1.914e-020 1.751e-020 -19.718 -19.757 -0.039 (0) - Ca[14C]O3 1.110e-020 1.112e-020 -19.955 -19.954 0.001 (0) - [14C]O[18O] 8.299e-021 8.313e-021 -20.081 -20.080 0.001 (0) - [14C]O3-2 5.696e-021 3.990e-021 -20.244 -20.399 -0.155 (0) - CaH[14C]O2[18O]+ 4.041e-022 3.707e-022 -21.394 -21.431 -0.037 (0) - CaH[14C][18O]O2+ 4.041e-022 3.707e-022 -21.394 -21.431 -0.037 (0) - CaH[14C]O[18O]O+ 4.041e-022 3.707e-022 -21.394 -21.431 -0.037 (0) - Ca[14C]O2[18O] 6.646e-023 6.657e-023 -22.177 -22.177 0.001 (0) - H[14C][18O]O[18O]- 3.818e-023 3.493e-023 -22.418 -22.457 -0.039 (0) - H[14C]O[18O]2- 3.818e-023 3.493e-023 -22.418 -22.457 -0.039 (0) - H[14C][18O]2O- 3.818e-023 3.493e-023 -22.418 -22.457 -0.039 (0) - [14C]O2[18O]-2 3.409e-023 2.388e-023 -22.467 -22.622 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.334 -69.334 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.335 -72.335 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.00 -18.86 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.60 -23.10 -1.50 [14C][18O]2 - [14C]H4(g) -28.74 -31.60 -2.86 [14C]H4 - [14C]O2(g) -16.23 -17.70 -1.47 [14C]O2 - [14C]O[18O](g) -18.61 -20.40 -1.79 [14C]O[18O] - [18O]2(g) -70.04 -72.33 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.76 -14.60 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.91 -9.20 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.70 -6.50 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.59 -11.90 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.04 -16.90 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.57 -12.72 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.04 -66.93 -2.89 O2 - O[18O](g) -66.74 -69.63 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 84. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 83. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 3.8500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 9.27e-019 9.27e-019 1.85e-015 - Ca[14C]O2[18O](s) 5.71e-021 5.71e-021 1.14e-017 - Ca[14C]O[18O]2(s) 1.17e-023 1.17e-023 2.34e-020 - Ca[14C][18O]3(s) 8.02e-027 7.02e-027 1.60e-023 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9855 permil - R(13C) 1.11643e-002 -1.4219 permil - R(14C) 1.87306e-015 0.15929 pmc - R(18O) H2O(l) 1.99520e-003 -4.9871 permil - R(18O) OH- 1.92123e-003 -41.875 permil - R(18O) H3O+ 2.04134e-003 18.021 permil - R(13C) CO2(aq) 1.10844e-002 -8.5683 permil - R(14C) CO2(aq) 1.84632e-015 0.15702 pmc - R(18O) CO2(aq) 2.07917e-003 36.887 permil - R(18O) HCO3- 1.99520e-003 -4.9871 permil - R(13C) HCO3- 1.11808e-002 0.057015 permil - R(14C) HCO3- 1.87859e-015 0.15976 pmc - R(18O) CO3-2 1.99520e-003 -4.9871 permil - R(13C) CO3-2 1.11648e-002 -1.3782 permil - R(14C) CO3-2 1.87320e-015 0.1593 pmc - R(13C) CH4(aq) 1.10844e-002 -8.5683 permil - R(14C) CH4(aq) 1.84632e-015 0.15702 pmc - R(18O) Calcite 2.05264e-003 23.659 permil - R(13C) Calcite 1.12030e-002 2.0378 permil - R(14C) Calcite 1.88604e-015 0.16039 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6337e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.9984e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -2.2204e-013 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 1.094e-017 1.091e-017 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.241 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.619e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 36 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 2.590e-017 - CH4 2.590e-017 2.594e-017 -16.587 -16.586 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.096e-008 6.107e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 4.530e-013 - H2 2.265e-013 2.269e-013 -12.645 -12.644 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -67.094 -67.093 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.493 -69.492 0.001 (0) -[13C](-4) 2.871e-019 - [13C]H4 2.871e-019 2.876e-019 -18.542 -18.541 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.096e-008 6.107e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.597e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C][18O]O2+ 2.216e-009 2.032e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.032e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.032e-009 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 4.782e-032 - [14C]H4 4.782e-032 4.790e-032 -31.320 -31.320 0.001 (0) -[14C](4) 1.094e-017 - H[14C]O3- 8.836e-018 8.084e-018 -17.054 -17.092 -0.039 (0) - [14C]O2 1.839e-018 1.842e-018 -17.736 -17.735 0.001 (0) - CaH[14C]O3+ 1.866e-019 1.712e-019 -18.729 -18.767 -0.037 (0) - H[14C][18O]O2- 1.763e-020 1.613e-020 -19.754 -19.792 -0.039 (0) - H[14C]O[18O]O- 1.763e-020 1.613e-020 -19.754 -19.792 -0.039 (0) - H[14C]O2[18O]- 1.763e-020 1.613e-020 -19.754 -19.792 -0.039 (0) - Ca[14C]O3 1.023e-020 1.025e-020 -19.990 -19.989 0.001 (0) - [14C]O[18O] 7.645e-021 7.658e-021 -20.117 -20.116 0.001 (0) - [14C]O3-2 5.247e-021 3.676e-021 -20.280 -20.435 -0.155 (0) - CaH[14C]O2[18O]+ 3.723e-022 3.415e-022 -21.429 -21.467 -0.037 (0) - CaH[14C][18O]O2+ 3.723e-022 3.415e-022 -21.429 -21.467 -0.037 (0) - CaH[14C]O[18O]O+ 3.723e-022 3.415e-022 -21.429 -21.467 -0.037 (0) - Ca[14C]O2[18O] 6.122e-023 6.132e-023 -22.213 -22.212 0.001 (0) - H[14C]O[18O]2- 3.517e-023 3.218e-023 -22.454 -22.492 -0.039 (0) - H[14C][18O]2O- 3.517e-023 3.218e-023 -22.454 -22.492 -0.039 (0) - H[14C][18O]O[18O]- 3.517e-023 3.218e-023 -22.454 -22.492 -0.039 (0) - [14C]O2[18O]-2 3.141e-023 2.200e-023 -22.503 -22.658 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.493 -69.492 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.494 -72.493 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.68 -18.54 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.63 -23.13 -1.50 [14C][18O]2 - [14C]H4(g) -28.46 -31.32 -2.86 [14C]H4 - [14C]O2(g) -16.27 -17.73 -1.47 [14C]O2 - [14C]O[18O](g) -18.65 -20.43 -1.79 [14C]O[18O] - [18O]2(g) -70.20 -72.49 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.80 -14.64 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.94 -9.24 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.73 -6.54 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.63 -11.94 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.73 -16.59 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.49 -12.64 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.20 -67.09 -2.89 O2 - O[18O](g) -66.90 -69.79 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 85. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 84. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 3.9000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 8.54e-019 8.54e-019 1.71e-015 - Ca[14C]O2[18O](s) 5.26e-021 5.26e-021 1.05e-017 - Ca[14C]O[18O]2(s) 1.08e-023 1.08e-023 2.16e-020 - Ca[14C][18O]3(s) 7.38e-027 6.38e-027 1.48e-023 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9854 permil - R(13C) 1.11643e-002 -1.4192 permil - R(14C) 1.72551e-015 0.14674 pmc - R(18O) H2O(l) 1.99520e-003 -4.9869 permil - R(18O) OH- 1.92123e-003 -41.874 permil - R(18O) H3O+ 2.04134e-003 18.021 permil - R(13C) CO2(aq) 1.10844e-002 -8.5657 permil - R(14C) CO2(aq) 1.70089e-015 0.14465 pmc - R(18O) CO2(aq) 2.07917e-003 36.887 permil - R(18O) HCO3- 1.99520e-003 -4.9869 permil - R(13C) HCO3- 1.11809e-002 0.059689 permil - R(14C) HCO3- 1.73061e-015 0.14717 pmc - R(18O) CO3-2 1.99520e-003 -4.9869 permil - R(13C) CO3-2 1.11648e-002 -1.3755 permil - R(14C) CO3-2 1.72565e-015 0.14675 pmc - R(13C) CH4(aq) 1.10844e-002 -8.5657 permil - R(14C) CH4(aq) 1.70089e-015 0.14465 pmc - R(18O) Calcite 2.05264e-003 23.66 permil - R(13C) Calcite 1.12030e-002 2.0405 permil - R(14C) Calcite 1.73747e-015 0.14776 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6709e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 8.8818e-013 0 -Alpha 14C CH4(aq)/CO2(aq) 1 6.8834e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 1.008e-017 1.005e-017 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.204 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.639e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 20 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.315e-017 - CH4 1.315e-017 1.318e-017 -16.881 -16.880 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 3.824e-013 - H2 1.912e-013 1.915e-013 -12.718 -12.718 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.947 -66.946 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.346 -69.345 0.001 (0) -[13C](-4) 1.458e-019 - [13C]H4 1.458e-019 1.461e-019 -18.836 -18.835 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.597e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.032e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.032e-009 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-009 2.032e-009 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.238e-032 - [14C]H4 2.238e-032 2.241e-032 -31.650 -31.650 0.001 (0) -[14C](4) 1.008e-017 - H[14C]O3- 8.140e-018 7.447e-018 -17.089 -17.128 -0.039 (0) - [14C]O2 1.694e-018 1.697e-018 -17.771 -17.770 0.001 (0) - CaH[14C]O3+ 1.719e-019 1.577e-019 -18.765 -18.802 -0.037 (0) - H[14C][18O]O2- 1.624e-020 1.486e-020 -19.789 -19.828 -0.039 (0) - H[14C]O[18O]O- 1.624e-020 1.486e-020 -19.789 -19.828 -0.039 (0) - H[14C]O2[18O]- 1.624e-020 1.486e-020 -19.789 -19.828 -0.039 (0) - Ca[14C]O3 9.423e-021 9.438e-021 -20.026 -20.025 0.001 (0) - [14C]O[18O] 7.043e-021 7.055e-021 -20.152 -20.152 0.001 (0) - [14C]O3-2 4.834e-021 3.386e-021 -20.316 -20.470 -0.155 (0) - CaH[14C]O2[18O]+ 3.429e-022 3.146e-022 -21.465 -21.502 -0.037 (0) - CaH[14C][18O]O2+ 3.429e-022 3.146e-022 -21.465 -21.502 -0.037 (0) - CaH[14C]O[18O]O+ 3.429e-022 3.146e-022 -21.465 -21.502 -0.037 (0) - Ca[14C]O2[18O] 5.640e-023 5.649e-023 -22.249 -22.248 0.001 (0) - H[14C][18O]2O- 3.240e-023 2.964e-023 -22.489 -22.528 -0.039 (0) - H[14C][18O]O[18O]- 3.240e-023 2.964e-023 -22.489 -22.528 -0.039 (0) - H[14C]O[18O]2- 3.240e-023 2.964e-023 -22.489 -22.528 -0.039 (0) - [14C]O2[18O]-2 2.893e-023 2.027e-023 -22.539 -22.693 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.346 -69.345 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.347 -72.346 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.98 -18.84 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.67 -23.17 -1.50 [14C][18O]2 - [14C]H4(g) -28.79 -31.65 -2.86 [14C]H4 - [14C]O2(g) -16.30 -17.77 -1.47 [14C]O2 - [14C]O[18O](g) -18.68 -20.47 -1.79 [14C]O[18O] - [18O]2(g) -70.06 -72.35 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.83 -14.68 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.98 -9.28 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.77 -6.58 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.67 -11.98 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.02 -16.88 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.57 -12.72 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.05 -66.95 -2.89 O2 - O[18O](g) -66.75 -69.65 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 86. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 85. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 3.9500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 7.87e-019 7.87e-019 1.57e-015 - Ca[14C]O2[18O](s) 4.84e-021 4.84e-021 9.69e-018 - Ca[14C]O[18O]2(s) 9.94e-024 9.94e-024 1.99e-020 - Ca[14C][18O]3(s) 6.80e-027 5.80e-027 1.36e-023 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9853 permil - R(13C) 1.11644e-002 -1.4168 permil - R(14C) 1.58959e-015 0.13518 pmc - R(18O) H2O(l) 1.99520e-003 -4.9868 permil - R(18O) OH- 1.92123e-003 -41.874 permil - R(18O) H3O+ 2.04134e-003 18.021 permil - R(13C) CO2(aq) 1.10845e-002 -8.5632 permil - R(14C) CO2(aq) 1.56690e-015 0.13325 pmc - R(18O) CO2(aq) 2.07917e-003 36.887 permil - R(18O) HCO3- 1.99520e-003 -4.9868 permil - R(13C) HCO3- 1.11809e-002 0.062153 permil - R(14C) HCO3- 1.59429e-015 0.13558 pmc - R(18O) CO3-2 1.99520e-003 -4.9868 permil - R(13C) CO3-2 1.11648e-002 -1.373 permil - R(14C) CO3-2 1.58971e-015 0.13519 pmc - R(13C) CH4(aq) 1.10845e-002 -8.5632 permil - R(14C) CH4(aq) 1.56690e-015 0.13325 pmc - R(18O) Calcite 2.05264e-003 23.66 permil - R(13C) Calcite 1.12030e-002 2.0429 permil - R(14C) Calcite 1.60061e-015 0.13612 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.4409e-013 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.605e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.1102e-013 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -4.1078e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 9.283e-018 9.256e-018 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.219 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.637e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.749e-017 - CH4 1.749e-017 1.751e-017 -16.757 -16.757 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 4.106e-013 - H2 2.053e-013 2.056e-013 -12.688 -12.687 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -67.009 -67.008 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.408 -69.407 0.001 (0) -[13C](-4) 1.938e-019 - [13C]H4 1.938e-019 1.941e-019 -18.713 -18.712 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.597e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.032e-009 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-009 2.032e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.032e-009 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.740e-032 - [14C]H4 2.740e-032 2.744e-032 -31.562 -31.562 0.001 (0) -[14C](4) 9.283e-018 - H[14C]O3- 7.499e-018 6.860e-018 -17.125 -17.164 -0.039 (0) - [14C]O2 1.560e-018 1.563e-018 -17.807 -17.806 0.001 (0) - CaH[14C]O3+ 1.583e-019 1.453e-019 -18.800 -18.838 -0.037 (0) - H[14C][18O]O2- 1.496e-020 1.369e-020 -19.825 -19.864 -0.039 (0) - H[14C]O[18O]O- 1.496e-020 1.369e-020 -19.825 -19.864 -0.039 (0) - H[14C]O2[18O]- 1.496e-020 1.369e-020 -19.825 -19.864 -0.039 (0) - Ca[14C]O3 8.681e-021 8.695e-021 -20.061 -20.061 0.001 (0) - [14C]O[18O] 6.488e-021 6.499e-021 -20.188 -20.187 0.001 (0) - [14C]O3-2 4.453e-021 3.120e-021 -20.351 -20.506 -0.155 (0) - CaH[14C]O2[18O]+ 3.159e-022 2.898e-022 -21.500 -21.538 -0.037 (0) - CaH[14C][18O]O2+ 3.159e-022 2.898e-022 -21.500 -21.538 -0.037 (0) - CaH[14C]O[18O]O+ 3.159e-022 2.898e-022 -21.500 -21.538 -0.037 (0) - Ca[14C]O2[18O] 5.196e-023 5.204e-023 -22.284 -22.284 0.001 (0) - H[14C][18O]O[18O]- 2.985e-023 2.731e-023 -22.525 -22.564 -0.039 (0) - H[14C]O[18O]2- 2.985e-023 2.731e-023 -22.525 -22.564 -0.039 (0) - H[14C][18O]2O- 2.985e-023 2.731e-023 -22.525 -22.564 -0.039 (0) - [14C]O2[18O]-2 2.665e-023 1.867e-023 -22.574 -22.729 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.408 -69.407 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.409 -72.408 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.85 -18.71 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.70 -23.21 -1.50 [14C][18O]2 - [14C]H4(g) -28.70 -31.56 -2.86 [14C]H4 - [14C]O2(g) -16.34 -17.81 -1.47 [14C]O2 - [14C]O[18O](g) -18.72 -20.51 -1.79 [14C]O[18O] - [18O]2(g) -70.12 -72.41 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.87 -14.71 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.01 -9.31 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.80 -6.61 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.70 -12.01 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.90 -16.76 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.54 -12.69 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.12 -67.01 -2.89 O2 - O[18O](g) -66.82 -69.71 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 87. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 86. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 4.0000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 7.25e-019 7.25e-019 1.45e-015 - Ca[14C]O2[18O](s) 4.46e-021 4.46e-021 8.92e-018 - Ca[14C]O[18O]2(s) 9.16e-024 9.16e-024 1.83e-020 - Ca[14C][18O]3(s) 6.27e-027 5.27e-027 1.25e-023 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9851 permil - R(13C) 1.11644e-002 -1.4145 permil - R(14C) 1.46437e-015 0.12453 pmc - R(18O) H2O(l) 1.99520e-003 -4.9866 permil - R(18O) OH- 1.92123e-003 -41.874 permil - R(18O) H3O+ 2.04134e-003 18.021 permil - R(13C) CO2(aq) 1.10845e-002 -8.561 permil - R(14C) CO2(aq) 1.44347e-015 0.12276 pmc - R(18O) CO2(aq) 2.07917e-003 36.888 permil - R(18O) HCO3- 1.99520e-003 -4.9866 permil - R(13C) HCO3- 1.11809e-002 0.064424 permil - R(14C) HCO3- 1.46870e-015 0.1249 pmc - R(18O) CO3-2 1.99520e-003 -4.9866 permil - R(13C) CO3-2 1.11649e-002 -1.3708 permil - R(14C) CO3-2 1.46449e-015 0.12454 pmc - R(13C) CH4(aq) 1.10845e-002 -8.561 permil - R(14C) CH4(aq) 1.44347e-015 0.12276 pmc - R(18O) Calcite 2.05264e-003 23.66 permil - R(13C) Calcite 1.12031e-002 2.0452 permil - R(14C) Calcite 1.47452e-015 0.1254 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.6621e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6857e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -8.8818e-013 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.1102e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 8.552e-018 8.527e-018 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.200 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.638e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 24 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.228e-017 - CH4 1.228e-017 1.230e-017 -16.911 -16.910 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 3.759e-013 - H2 1.880e-013 1.883e-013 -12.726 -12.725 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.932 -66.931 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.331 -69.330 0.001 (0) -[13C](-4) 1.361e-019 - [13C]H4 1.361e-019 1.364e-019 -18.866 -18.865 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.110e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.597e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C][18O]O2+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.773e-032 - [14C]H4 1.773e-032 1.776e-032 -31.751 -31.751 0.001 (0) -[14C](4) 8.552e-018 - H[14C]O3- 6.908e-018 6.320e-018 -17.161 -17.199 -0.039 (0) - [14C]O2 1.437e-018 1.440e-018 -17.842 -17.842 0.001 (0) - CaH[14C]O3+ 1.459e-019 1.338e-019 -18.836 -18.874 -0.037 (0) - H[14C][18O]O2- 1.378e-020 1.261e-020 -19.861 -19.899 -0.039 (0) - H[14C]O[18O]O- 1.378e-020 1.261e-020 -19.861 -19.899 -0.039 (0) - H[14C]O2[18O]- 1.378e-020 1.261e-020 -19.861 -19.899 -0.039 (0) - Ca[14C]O3 7.997e-021 8.010e-021 -20.097 -20.096 0.001 (0) - [14C]O[18O] 5.977e-021 5.987e-021 -20.224 -20.223 0.001 (0) - [14C]O3-2 4.102e-021 2.874e-021 -20.387 -20.542 -0.155 (0) - CaH[14C]O2[18O]+ 2.910e-022 2.670e-022 -21.536 -21.574 -0.037 (0) - CaH[14C][18O]O2+ 2.910e-022 2.670e-022 -21.536 -21.574 -0.037 (0) - CaH[14C]O[18O]O+ 2.910e-022 2.670e-022 -21.536 -21.574 -0.037 (0) - Ca[14C]O2[18O] 4.787e-023 4.794e-023 -22.320 -22.319 0.001 (0) - H[14C]O[18O]2- 2.750e-023 2.516e-023 -22.561 -22.599 -0.039 (0) - H[14C][18O]2O- 2.750e-023 2.516e-023 -22.561 -22.599 -0.039 (0) - H[14C][18O]O[18O]- 2.750e-023 2.516e-023 -22.561 -22.599 -0.039 (0) - [14C]O2[18O]-2 2.455e-023 1.720e-023 -22.610 -22.764 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.331 -69.330 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.332 -72.331 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.01 -18.87 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.74 -23.24 -1.50 [14C][18O]2 - [14C]H4(g) -28.89 -31.75 -2.86 [14C]H4 - [14C]O2(g) -16.37 -17.84 -1.47 [14C]O2 - [14C]O[18O](g) -18.75 -20.54 -1.79 [14C]O[18O] - [18O]2(g) -70.04 -72.33 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.90 -14.75 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.05 -9.35 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.84 -6.65 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.74 -12.05 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.05 -16.91 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.58 -12.73 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.04 -66.93 -2.89 O2 - O[18O](g) -66.74 -69.63 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 88. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 87. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 4.0500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 6.68e-019 6.68e-019 1.34e-015 - Ca[14C]O2[18O](s) 4.11e-021 4.11e-021 8.22e-018 - Ca[14C]O[18O]2(s) 8.44e-024 8.44e-024 1.69e-020 - Ca[14C][18O]3(s) 5.77e-027 4.77e-027 1.15e-023 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.985 permil - R(13C) 1.11644e-002 -1.4124 permil - R(14C) 1.34902e-015 0.11472 pmc - R(18O) H2O(l) 1.99520e-003 -4.9865 permil - R(18O) OH- 1.92123e-003 -41.874 permil - R(18O) H3O+ 2.04134e-003 18.021 permil - R(13C) CO2(aq) 1.10845e-002 -8.5589 permil - R(14C) CO2(aq) 1.32977e-015 0.11309 pmc - R(18O) CO2(aq) 2.07917e-003 36.888 permil - R(18O) HCO3- 1.99520e-003 -4.9865 permil - R(13C) HCO3- 1.11809e-002 0.066516 permil - R(14C) HCO3- 1.35301e-015 0.11506 pmc - R(18O) CO3-2 1.99520e-003 -4.9865 permil - R(13C) CO3-2 1.11649e-002 -1.3687 permil - R(14C) CO3-2 1.34913e-015 0.11473 pmc - R(13C) CH4(aq) 1.10845e-002 -8.5589 permil - R(14C) CH4(aq) 1.32977e-015 0.11309 pmc - R(18O) Calcite 2.05264e-003 23.66 permil - R(13C) Calcite 1.12031e-002 2.0473 permil - R(14C) Calcite 1.35837e-015 0.11552 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.4425e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6437e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 9.3259e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.7542e-011 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 7.878e-018 7.855e-018 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.179 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.638e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 22 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 8.342e-018 - CH4 8.342e-018 8.356e-018 -17.079 -17.078 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 3.413e-013 - H2 1.706e-013 1.709e-013 -12.768 -12.767 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.848 -66.847 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.247 -69.246 0.001 (0) -[13C](-4) 9.247e-020 - [13C]H4 9.247e-020 9.262e-020 -19.034 -19.033 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.597e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.109e-032 - [14C]H4 1.109e-032 1.111e-032 -31.955 -31.954 0.001 (0) -[14C](4) 7.878e-018 - H[14C]O3- 6.364e-018 5.822e-018 -17.196 -17.235 -0.039 (0) - [14C]O2 1.324e-018 1.326e-018 -17.878 -17.877 0.001 (0) - CaH[14C]O3+ 1.344e-019 1.233e-019 -18.872 -18.909 -0.037 (0) - H[14C][18O]O2- 1.270e-020 1.162e-020 -19.896 -19.935 -0.039 (0) - H[14C]O[18O]O- 1.270e-020 1.162e-020 -19.896 -19.935 -0.039 (0) - H[14C]O2[18O]- 1.270e-020 1.162e-020 -19.896 -19.935 -0.039 (0) - Ca[14C]O3 7.367e-021 7.379e-021 -20.133 -20.132 0.001 (0) - [14C]O[18O] 5.506e-021 5.515e-021 -20.259 -20.258 0.001 (0) - [14C]O3-2 3.779e-021 2.647e-021 -20.423 -20.577 -0.155 (0) - CaH[14C]O2[18O]+ 2.681e-022 2.460e-022 -21.572 -21.609 -0.037 (0) - CaH[14C][18O]O2+ 2.681e-022 2.460e-022 -21.572 -21.609 -0.037 (0) - CaH[14C]O[18O]O+ 2.681e-022 2.460e-022 -21.572 -21.609 -0.037 (0) - Ca[14C]O2[18O] 4.410e-023 4.417e-023 -22.356 -22.355 0.001 (0) - H[14C][18O]2O- 2.533e-023 2.318e-023 -22.596 -22.635 -0.039 (0) - H[14C][18O]O[18O]- 2.533e-023 2.318e-023 -22.596 -22.635 -0.039 (0) - H[14C]O[18O]2- 2.533e-023 2.318e-023 -22.596 -22.635 -0.039 (0) - [14C]O2[18O]-2 2.262e-023 1.585e-023 -22.646 -22.800 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.247 -69.246 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.248 -72.247 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.17 -19.03 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.77 -23.28 -1.50 [14C][18O]2 - [14C]H4(g) -29.09 -31.95 -2.86 [14C]H4 - [14C]O2(g) -16.41 -17.88 -1.47 [14C]O2 - [14C]O[18O](g) -18.79 -20.58 -1.79 [14C]O[18O] - [18O]2(g) -69.96 -72.25 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.94 -14.78 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.09 -9.38 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.87 -6.68 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.77 -12.08 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.22 -17.08 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.62 -12.77 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.95 -66.85 -2.89 O2 - O[18O](g) -66.65 -69.55 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 89. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 88. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 4.1000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 6.15e-019 6.15e-019 1.23e-015 - Ca[14C]O2[18O](s) 3.79e-021 3.79e-021 7.57e-018 - Ca[14C]O[18O]2(s) 7.77e-024 7.77e-024 1.55e-020 - Ca[14C][18O]3(s) 5.32e-027 4.32e-027 1.06e-023 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9848 permil - R(13C) 1.11644e-002 -1.4105 permil - R(14C) 1.24276e-015 0.10569 pmc - R(18O) H2O(l) 1.99520e-003 -4.9864 permil - R(18O) OH- 1.92123e-003 -41.874 permil - R(18O) H3O+ 2.04134e-003 18.022 permil - R(13C) CO2(aq) 1.10845e-002 -8.557 permil - R(14C) CO2(aq) 1.22502e-015 0.10418 pmc - R(18O) CO2(aq) 2.07917e-003 36.888 permil - R(18O) HCO3- 1.99520e-003 -4.9864 permil - R(13C) HCO3- 1.11810e-002 0.068444 permil - R(14C) HCO3- 1.24643e-015 0.106 pmc - R(18O) CO3-2 1.99520e-003 -4.9864 permil - R(13C) CO3-2 1.11649e-002 -1.3667 permil - R(14C) CO3-2 1.24285e-015 0.10569 pmc - R(13C) CH4(aq) 1.10845e-002 -8.557 permil - R(14C) CH4(aq) 1.22502e-015 0.10418 pmc - R(18O) Calcite 2.05264e-003 23.66 permil - R(13C) Calcite 1.12031e-002 2.0492 permil - R(14C) Calcite 1.25137e-015 0.10642 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5926e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -7.9936e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.7764e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 7.257e-018 7.236e-018 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.176 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.635e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 7.929e-018 - CH4 7.929e-018 7.942e-018 -17.101 -17.100 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 3.369e-013 - H2 1.685e-013 1.688e-013 -12.773 -12.773 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.837 -66.836 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.236 -69.235 0.001 (0) -[13C](-4) 8.788e-020 - [13C]H4 8.788e-020 8.803e-020 -19.056 -19.055 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.597e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 9.713e-033 - [14C]H4 9.713e-033 9.729e-033 -32.013 -32.012 0.001 (0) -[14C](4) 7.257e-018 - H[14C]O3- 5.862e-018 5.363e-018 -17.232 -17.271 -0.039 (0) - [14C]O2 1.220e-018 1.222e-018 -17.914 -17.913 0.001 (0) - CaH[14C]O3+ 1.238e-019 1.136e-019 -18.907 -18.945 -0.037 (0) - H[14C][18O]O2- 1.170e-020 1.070e-020 -19.932 -19.971 -0.039 (0) - H[14C]O[18O]O- 1.170e-020 1.070e-020 -19.932 -19.971 -0.039 (0) - H[14C]O2[18O]- 1.170e-020 1.070e-020 -19.932 -19.971 -0.039 (0) - Ca[14C]O3 6.787e-021 6.798e-021 -20.168 -20.168 0.001 (0) - [14C]O[18O] 5.073e-021 5.081e-021 -20.295 -20.294 0.001 (0) - [14C]O3-2 3.481e-021 2.439e-021 -20.458 -20.613 -0.155 (0) - CaH[14C]O2[18O]+ 2.470e-022 2.266e-022 -21.607 -21.645 -0.037 (0) - CaH[14C][18O]O2+ 2.470e-022 2.266e-022 -21.607 -21.645 -0.037 (0) - CaH[14C]O[18O]O+ 2.470e-022 2.266e-022 -21.607 -21.645 -0.037 (0) - Ca[14C]O2[18O] 4.062e-023 4.069e-023 -22.391 -22.391 0.001 (0) - H[14C][18O]O[18O]- 2.334e-023 2.135e-023 -22.632 -22.671 -0.039 (0) - H[14C]O[18O]2- 2.334e-023 2.135e-023 -22.632 -22.671 -0.039 (0) - H[14C][18O]2O- 2.334e-023 2.135e-023 -22.632 -22.671 -0.039 (0) - [14C]O2[18O]-2 2.084e-023 1.460e-023 -22.681 -22.836 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.236 -69.235 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.237 -72.236 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.20 -19.06 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.81 -23.31 -1.50 [14C][18O]2 - [14C]H4(g) -29.15 -32.01 -2.86 [14C]H4 - [14C]O2(g) -16.44 -17.91 -1.47 [14C]O2 - [14C]O[18O](g) -18.83 -20.61 -1.79 [14C]O[18O] - [18O]2(g) -69.95 -72.24 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.97 -14.82 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.12 -9.42 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.91 -6.72 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.81 -12.12 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.24 -17.10 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.62 -12.77 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.94 -66.84 -2.89 O2 - O[18O](g) -66.64 -69.54 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 90. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 89. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 4.1500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 5.67e-019 5.67e-019 1.13e-015 - Ca[14C]O2[18O](s) 3.49e-021 3.49e-021 6.98e-018 - Ca[14C]O[18O]2(s) 7.16e-024 7.16e-024 1.43e-020 - Ca[14C][18O]3(s) 4.90e-027 3.90e-027 9.80e-024 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9847 permil - R(13C) 1.11645e-002 -1.4087 permil - R(14C) 1.14486e-015 0.097362 pmc - R(18O) H2O(l) 1.99520e-003 -4.9862 permil - R(18O) OH- 1.92123e-003 -41.874 permil - R(18O) H3O+ 2.04134e-003 18.022 permil - R(13C) CO2(aq) 1.10846e-002 -8.5552 permil - R(14C) CO2(aq) 1.12852e-015 0.095972 pmc - R(18O) CO2(aq) 2.07917e-003 36.888 permil - R(18O) HCO3- 1.99520e-003 -4.9862 permil - R(13C) HCO3- 1.11810e-002 0.07022 permil - R(14C) HCO3- 1.14824e-015 0.097649 pmc - R(18O) CO3-2 1.99520e-003 -4.9862 permil - R(13C) CO3-2 1.11649e-002 -1.365 permil - R(14C) CO3-2 1.14495e-015 0.097369 pmc - R(13C) CH4(aq) 1.10846e-002 -8.5552 permil - R(14C) CH4(aq) 1.12852e-015 0.095972 pmc - R(18O) Calcite 2.05264e-003 23.66 permil - R(13C) Calcite 1.12031e-002 2.051 permil - R(14C) Calcite 1.15280e-015 0.098036 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6726e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.1102e-011 0 -Alpha 14C CH4(aq)/CO2(aq) 1 5.107e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 6.686e-018 6.666e-018 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.170 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.623e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 48 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 7.013e-018 - CH4 7.013e-018 7.025e-018 -17.154 -17.153 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 3.268e-013 - H2 1.634e-013 1.637e-013 -12.787 -12.786 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.810 -66.810 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.209 -69.209 0.001 (0) -[13C](-4) 7.774e-020 - [13C]H4 7.774e-020 7.787e-020 -19.109 -19.109 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.597e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C][18O]O2+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 7.915e-033 - [14C]H4 7.915e-033 7.928e-033 -32.102 -32.101 0.001 (0) -[14C](4) 6.686e-018 - H[14C]O3- 5.401e-018 4.941e-018 -17.268 -17.306 -0.039 (0) - [14C]O2 1.124e-018 1.126e-018 -17.949 -17.949 0.001 (0) - CaH[14C]O3+ 1.140e-019 1.046e-019 -18.943 -18.980 -0.037 (0) - H[14C][18O]O2- 1.078e-020 9.858e-021 -19.968 -20.006 -0.039 (0) - H[14C]O[18O]O- 1.078e-020 9.858e-021 -19.968 -20.006 -0.039 (0) - H[14C]O2[18O]- 1.078e-020 9.858e-021 -19.968 -20.006 -0.039 (0) - Ca[14C]O3 6.252e-021 6.262e-021 -20.204 -20.203 0.001 (0) - [14C]O[18O] 4.673e-021 4.681e-021 -20.330 -20.330 0.001 (0) - [14C]O3-2 3.207e-021 2.247e-021 -20.494 -20.648 -0.155 (0) - CaH[14C]O2[18O]+ 2.275e-022 2.087e-022 -21.643 -21.680 -0.037 (0) - CaH[14C][18O]O2+ 2.275e-022 2.087e-022 -21.643 -21.680 -0.037 (0) - CaH[14C]O[18O]O+ 2.275e-022 2.087e-022 -21.643 -21.680 -0.037 (0) - Ca[14C]O2[18O] 3.742e-023 3.748e-023 -22.427 -22.426 0.001 (0) - H[14C]O[18O]2- 2.150e-023 1.967e-023 -22.668 -22.706 -0.039 (0) - H[14C][18O]2O- 2.150e-023 1.967e-023 -22.668 -22.706 -0.039 (0) - H[14C][18O]O[18O]- 2.150e-023 1.967e-023 -22.668 -22.706 -0.039 (0) - [14C]O2[18O]-2 1.920e-023 1.345e-023 -22.717 -22.871 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.209 -69.209 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.210 -72.210 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.25 -19.11 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.85 -23.35 -1.50 [14C][18O]2 - [14C]H4(g) -29.24 -32.10 -2.86 [14C]H4 - [14C]O2(g) -16.48 -17.95 -1.47 [14C]O2 - [14C]O[18O](g) -18.86 -20.65 -1.79 [14C]O[18O] - [18O]2(g) -69.92 -72.21 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.01 -14.85 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.16 -9.45 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.95 -6.75 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.84 -12.15 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.29 -17.15 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.64 -12.79 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.92 -66.81 -2.89 O2 - O[18O](g) -66.62 -69.51 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 91. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 90. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 4.2000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 5.22e-019 5.22e-019 1.04e-015 - Ca[14C]O2[18O](s) 3.21e-021 3.21e-021 6.43e-018 - Ca[14C]O[18O]2(s) 6.60e-024 6.60e-024 1.32e-020 - Ca[14C][18O]3(s) 4.51e-027 3.51e-027 9.03e-024 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9846 permil - R(13C) 1.11645e-002 -1.4071 permil - R(14C) 1.05468e-015 0.089692 pmc - R(18O) H2O(l) 1.99520e-003 -4.9861 permil - R(18O) OH- 1.92124e-003 -41.874 permil - R(18O) H3O+ 2.04134e-003 18.022 permil - R(13C) CO2(aq) 1.10846e-002 -8.5536 permil - R(14C) CO2(aq) 1.03963e-015 0.088412 pmc - R(18O) CO2(aq) 2.07917e-003 36.888 permil - R(18O) HCO3- 1.99520e-003 -4.9861 permil - R(13C) HCO3- 1.11810e-002 0.071857 permil - R(14C) HCO3- 1.05779e-015 0.089957 pmc - R(18O) CO3-2 1.99520e-003 -4.9861 permil - R(13C) CO3-2 1.11650e-002 -1.3633 permil - R(14C) CO3-2 1.05476e-015 0.089699 pmc - R(13C) CH4(aq) 1.10846e-002 -8.5536 permil - R(14C) CH4(aq) 1.03963e-015 0.088412 pmc - R(18O) Calcite 2.05264e-003 23.66 permil - R(13C) Calcite 1.12031e-002 2.0527 permil - R(14C) Calcite 1.06199e-015 0.090314 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.4409e-013 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7188e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -7.7716e-013 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.3323e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 6.159e-018 6.141e-018 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.108 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.606e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 36 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 2.261e-018 - CH4 2.261e-018 2.264e-018 -17.646 -17.645 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 2.462e-013 - H2 1.231e-013 1.233e-013 -12.910 -12.909 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.564 -66.564 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -68.963 -68.963 0.001 (0) -[13C](-4) 2.506e-020 - [13C]H4 2.506e-020 2.510e-020 -19.601 -19.600 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.597e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.350e-033 - [14C]H4 2.350e-033 2.354e-033 -32.629 -32.628 0.001 (0) -[14C](4) 6.159e-018 - H[14C]O3- 4.975e-018 4.552e-018 -17.303 -17.342 -0.039 (0) - [14C]O2 1.035e-018 1.037e-018 -17.985 -17.984 0.001 (0) - CaH[14C]O3+ 1.051e-019 9.638e-020 -18.979 -19.016 -0.037 (0) - H[14C][18O]O2- 9.927e-021 9.082e-021 -20.003 -20.042 -0.039 (0) - H[14C]O[18O]O- 9.927e-021 9.082e-021 -20.003 -20.042 -0.039 (0) - H[14C]O2[18O]- 9.927e-021 9.082e-021 -20.003 -20.042 -0.039 (0) - Ca[14C]O3 5.759e-021 5.769e-021 -20.240 -20.239 0.001 (0) - [14C]O[18O] 4.305e-021 4.312e-021 -20.366 -20.365 0.001 (0) - [14C]O3-2 2.955e-021 2.070e-021 -20.530 -20.684 -0.155 (0) - CaH[14C]O2[18O]+ 2.096e-022 1.923e-022 -21.679 -21.716 -0.037 (0) - CaH[14C][18O]O2+ 2.096e-022 1.923e-022 -21.679 -21.716 -0.037 (0) - CaH[14C]O[18O]O+ 2.096e-022 1.923e-022 -21.679 -21.716 -0.037 (0) - Ca[14C]O2[18O] 3.447e-023 3.453e-023 -22.463 -22.462 0.001 (0) - H[14C][18O]2O- 1.981e-023 1.812e-023 -22.703 -22.742 -0.039 (0) - H[14C][18O]O[18O]- 1.981e-023 1.812e-023 -22.703 -22.742 -0.039 (0) - H[14C]O[18O]2- 1.981e-023 1.812e-023 -22.703 -22.742 -0.039 (0) - [14C]O2[18O]-2 1.768e-023 1.239e-023 -22.752 -22.907 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -68.963 -68.963 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -71.965 -71.964 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.74 -19.60 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.88 -23.38 -1.50 [14C][18O]2 - [14C]H4(g) -29.77 -32.63 -2.86 [14C]H4 - [14C]O2(g) -16.52 -17.98 -1.47 [14C]O2 - [14C]O[18O](g) -18.90 -20.68 -1.79 [14C]O[18O] - [18O]2(g) -69.67 -71.96 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.04 -14.89 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.19 -9.49 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.98 -6.79 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.88 -12.19 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.79 -17.65 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.76 -12.91 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.67 -66.56 -2.89 O2 - O[18O](g) -66.37 -69.26 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 92. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 91. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 4.2500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 4.81e-019 4.81e-019 9.62e-016 - Ca[14C]O2[18O](s) 2.96e-021 2.96e-021 5.92e-018 - Ca[14C]O[18O]2(s) 6.08e-024 6.08e-024 1.22e-020 - Ca[14C][18O]3(s) 4.16e-027 3.16e-027 8.32e-024 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9844 permil - R(13C) 1.11645e-002 -1.4056 permil - R(14C) 9.71599e-016 0.082627 pmc - R(18O) H2O(l) 1.99520e-003 -4.986 permil - R(18O) OH- 1.92124e-003 -41.873 permil - R(18O) H3O+ 2.04134e-003 18.022 permil - R(13C) CO2(aq) 1.10846e-002 -8.5521 permil - R(14C) CO2(aq) 9.57732e-016 0.081448 pmc - R(18O) CO2(aq) 2.07917e-003 36.888 permil - R(18O) HCO3- 1.99520e-003 -4.986 permil - R(13C) HCO3- 1.11810e-002 0.073366 permil - R(14C) HCO3- 9.74469e-016 0.082871 pmc - R(18O) CO3-2 1.99520e-003 -4.986 permil - R(13C) CO3-2 1.11650e-002 -1.3618 permil - R(14C) CO3-2 9.71674e-016 0.082633 pmc - R(13C) CH4(aq) 1.10846e-002 -8.5521 permil - R(14C) CH4(aq) 9.57732e-016 0.081448 pmc - R(18O) Calcite 2.05264e-003 23.661 permil - R(13C) Calcite 1.12032e-002 2.0542 permil - R(14C) Calcite 9.78333e-016 0.0832 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5282e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.4211e-011 0 -Alpha 14C CH4(aq)/CO2(aq) 1 9.992e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 5.674e-018 5.657e-018 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.125 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.589e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 3.077e-018 - CH4 3.077e-018 3.082e-018 -17.512 -17.511 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 2.659e-013 - H2 1.330e-013 1.332e-013 -12.876 -12.876 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.631 -66.631 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.030 -69.030 0.001 (0) -[13C](-4) 3.410e-020 - [13C]H4 3.410e-020 3.416e-020 -19.467 -19.466 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.597e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.947e-033 - [14C]H4 2.947e-033 2.952e-033 -32.531 -32.530 0.001 (0) -[14C](4) 5.674e-018 - H[14C]O3- 4.583e-018 4.193e-018 -17.339 -17.377 -0.039 (0) - [14C]O2 9.537e-019 9.553e-019 -18.021 -18.020 0.001 (0) - CaH[14C]O3+ 9.679e-020 8.878e-020 -19.014 -19.052 -0.037 (0) - H[14C][18O]O2- 9.145e-021 8.366e-021 -20.039 -20.077 -0.039 (0) - H[14C]O[18O]O- 9.145e-021 8.366e-021 -20.039 -20.077 -0.039 (0) - H[14C]O2[18O]- 9.145e-021 8.366e-021 -20.039 -20.077 -0.039 (0) - Ca[14C]O3 5.306e-021 5.315e-021 -20.275 -20.275 0.001 (0) - [14C]O[18O] 3.966e-021 3.972e-021 -20.402 -20.401 0.001 (0) - [14C]O3-2 2.722e-021 1.907e-021 -20.565 -20.720 -0.155 (0) - CaH[14C]O2[18O]+ 1.931e-022 1.771e-022 -21.714 -21.752 -0.037 (0) - CaH[14C][18O]O2+ 1.931e-022 1.771e-022 -21.714 -21.752 -0.037 (0) - CaH[14C]O[18O]O+ 1.931e-022 1.771e-022 -21.714 -21.752 -0.037 (0) - Ca[14C]O2[18O] 3.176e-023 3.181e-023 -22.498 -22.497 0.001 (0) - H[14C][18O]O[18O]- 1.825e-023 1.669e-023 -22.739 -22.777 -0.039 (0) - H[14C]O[18O]2- 1.825e-023 1.669e-023 -22.739 -22.777 -0.039 (0) - H[14C][18O]2O- 1.825e-023 1.669e-023 -22.739 -22.777 -0.039 (0) - [14C]O2[18O]-2 1.629e-023 1.141e-023 -22.788 -22.943 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.030 -69.030 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.031 -72.031 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.61 -19.47 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.92 -23.42 -1.50 [14C][18O]2 - [14C]H4(g) -29.67 -32.53 -2.86 [14C]H4 - [14C]O2(g) -16.55 -18.02 -1.47 [14C]O2 - [14C]O[18O](g) -18.93 -20.72 -1.79 [14C]O[18O] - [18O]2(g) -69.74 -72.03 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.08 -14.93 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.23 -9.53 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.02 -6.83 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.92 -12.23 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.65 -17.51 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.73 -12.88 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.74 -66.63 -2.89 O2 - O[18O](g) -66.44 -69.33 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 93. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 92. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 4.3000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 4.43e-019 4.43e-019 8.86e-016 - Ca[14C]O2[18O](s) 2.73e-021 2.73e-021 5.45e-018 - Ca[14C]O[18O]2(s) 5.60e-024 5.60e-024 1.12e-020 - Ca[14C][18O]3(s) 3.83e-027 2.83e-027 7.66e-024 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9843 permil - R(13C) 1.11645e-002 -1.4042 permil - R(14C) 8.95064e-016 0.076118 pmc - R(18O) H2O(l) 1.99520e-003 -4.9858 permil - R(18O) OH- 1.92124e-003 -41.873 permil - R(18O) H3O+ 2.04134e-003 18.022 permil - R(13C) CO2(aq) 1.10846e-002 -8.5507 permil - R(14C) CO2(aq) 8.82290e-016 0.075032 pmc - R(18O) CO2(aq) 2.07917e-003 36.888 permil - R(18O) HCO3- 1.99520e-003 -4.9858 permil - R(13C) HCO3- 1.11810e-002 0.074756 permil - R(14C) HCO3- 8.97708e-016 0.076343 pmc - R(18O) CO3-2 1.99520e-003 -4.9858 permil - R(13C) CO3-2 1.11650e-002 -1.3604 permil - R(14C) CO3-2 8.95133e-016 0.076124 pmc - R(13C) CH4(aq) 1.10846e-002 -8.5507 permil - R(14C) CH4(aq) 8.82290e-016 0.075032 pmc - R(18O) Calcite 2.05264e-003 23.661 permil - R(13C) Calcite 1.12032e-002 2.0556 permil - R(14C) Calcite 9.01268e-016 0.076646 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.3299e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6671e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.4433e-011 0 -Alpha 14C CH4(aq)/CO2(aq) 1 8.4377e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 5.227e-018 5.212e-018 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.130 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.568e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 24 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 3.404e-018 - CH4 3.404e-018 3.409e-018 -17.468 -17.467 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 2.727e-013 - H2 1.364e-013 1.366e-013 -12.865 -12.865 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.653 -66.653 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.052 -69.052 0.001 (0) -[13C](-4) 3.773e-020 - [13C]H4 3.773e-020 3.779e-020 -19.423 -19.423 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.597e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C][18O]O2+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.003e-033 - [14C]H4 3.003e-033 3.008e-033 -32.522 -32.522 0.001 (0) -[14C](4) 5.227e-018 - H[14C]O3- 4.222e-018 3.863e-018 -17.374 -17.413 -0.039 (0) - [14C]O2 8.786e-019 8.800e-019 -18.056 -18.056 0.001 (0) - CaH[14C]O3+ 8.916e-020 8.179e-020 -19.050 -19.087 -0.037 (0) - H[14C][18O]O2- 8.424e-021 7.707e-021 -20.074 -20.113 -0.039 (0) - H[14C]O[18O]O- 8.424e-021 7.707e-021 -20.074 -20.113 -0.039 (0) - H[14C]O2[18O]- 8.424e-021 7.707e-021 -20.074 -20.113 -0.039 (0) - Ca[14C]O3 4.888e-021 4.896e-021 -20.311 -20.310 0.001 (0) - [14C]O[18O] 3.653e-021 3.659e-021 -20.437 -20.437 0.001 (0) - [14C]O3-2 2.507e-021 1.757e-021 -20.601 -20.755 -0.155 (0) - CaH[14C]O2[18O]+ 1.779e-022 1.632e-022 -21.750 -21.787 -0.037 (0) - CaH[14C][18O]O2+ 1.779e-022 1.632e-022 -21.750 -21.787 -0.037 (0) - CaH[14C]O[18O]O+ 1.779e-022 1.632e-022 -21.750 -21.787 -0.037 (0) - Ca[14C]O2[18O] 2.926e-023 2.930e-023 -22.534 -22.533 0.001 (0) - H[14C]O[18O]2- 1.681e-023 1.538e-023 -22.774 -22.813 -0.039 (0) - H[14C][18O]2O- 1.681e-023 1.538e-023 -22.774 -22.813 -0.039 (0) - H[14C][18O]O[18O]- 1.681e-023 1.538e-023 -22.774 -22.813 -0.039 (0) - [14C]O2[18O]-2 1.501e-023 1.051e-023 -22.824 -22.978 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.052 -69.052 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.053 -72.053 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.56 -19.42 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.95 -23.46 -1.50 [14C][18O]2 - [14C]H4(g) -29.66 -32.52 -2.86 [14C]H4 - [14C]O2(g) -16.59 -18.06 -1.47 [14C]O2 - [14C]O[18O](g) -18.97 -20.76 -1.79 [14C]O[18O] - [18O]2(g) -69.76 -72.05 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.12 -14.96 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.26 -9.56 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.05 -6.86 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.95 -12.26 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.61 -17.47 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.71 -12.86 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.76 -66.65 -2.89 O2 - O[18O](g) -66.46 -69.35 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 94. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 93. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 4.3500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 4.08e-019 4.08e-019 8.16e-016 - Ca[14C]O2[18O](s) 2.51e-021 2.51e-021 5.03e-018 - Ca[14C]O[18O]2(s) 5.16e-024 5.16e-024 1.03e-020 - Ca[14C][18O]3(s) 3.53e-027 2.53e-027 7.06e-024 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9842 permil - R(13C) 1.11645e-002 -1.4029 permil - R(14C) 8.24558e-016 0.070122 pmc - R(18O) H2O(l) 1.99520e-003 -4.9857 permil - R(18O) OH- 1.92124e-003 -41.873 permil - R(18O) H3O+ 2.04134e-003 18.022 permil - R(13C) CO2(aq) 1.10846e-002 -8.5495 permil - R(14C) CO2(aq) 8.12790e-016 0.069121 pmc - R(18O) CO2(aq) 2.07917e-003 36.889 permil - R(18O) HCO3- 1.99520e-003 -4.9857 permil - R(13C) HCO3- 1.11811e-002 0.076037 permil - R(14C) HCO3- 8.26993e-016 0.070329 pmc - R(18O) CO3-2 1.99520e-003 -4.9857 permil - R(13C) CO3-2 1.11650e-002 -1.3592 permil - R(14C) CO3-2 8.24621e-016 0.070128 pmc - R(13C) CH4(aq) 1.10846e-002 -8.5495 permil - R(14C) CH4(aq) 8.12790e-016 0.069121 pmc - R(18O) Calcite 2.05264e-003 23.661 permil - R(13C) Calcite 1.12032e-002 2.0568 permil - R(14C) Calcite 8.30273e-016 0.070608 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.9936e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6557e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 9.3259e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.7542e-011 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 4.815e-018 4.801e-018 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.140 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.583e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 24 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 4.027e-018 - CH4 4.027e-018 4.034e-018 -17.395 -17.394 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 2.845e-013 - H2 1.422e-013 1.425e-013 -12.847 -12.846 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.690 -66.689 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.089 -69.088 0.001 (0) -[13C](-4) 4.464e-020 - [13C]H4 4.464e-020 4.472e-020 -19.350 -19.350 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.597e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.273e-033 - [14C]H4 3.273e-033 3.279e-033 -32.485 -32.484 0.001 (0) -[14C](4) 4.815e-018 - H[14C]O3- 3.890e-018 3.559e-018 -17.410 -17.449 -0.039 (0) - [14C]O2 8.094e-019 8.107e-019 -18.092 -18.091 0.001 (0) - CaH[14C]O3+ 8.214e-020 7.535e-020 -19.085 -19.123 -0.037 (0) - H[14C][18O]O2- 7.761e-021 7.100e-021 -20.110 -20.149 -0.039 (0) - H[14C]O[18O]O- 7.761e-021 7.100e-021 -20.110 -20.149 -0.039 (0) - H[14C]O2[18O]- 7.761e-021 7.100e-021 -20.110 -20.149 -0.039 (0) - Ca[14C]O3 4.503e-021 4.510e-021 -20.347 -20.346 0.001 (0) - [14C]O[18O] 3.366e-021 3.371e-021 -20.473 -20.472 0.001 (0) - [14C]O3-2 2.310e-021 1.618e-021 -20.636 -20.791 -0.155 (0) - CaH[14C]O2[18O]+ 1.639e-022 1.503e-022 -21.785 -21.823 -0.037 (0) - CaH[14C][18O]O2+ 1.639e-022 1.503e-022 -21.785 -21.823 -0.037 (0) - CaH[14C]O[18O]O+ 1.639e-022 1.503e-022 -21.785 -21.823 -0.037 (0) - Ca[14C]O2[18O] 2.695e-023 2.700e-023 -22.569 -22.569 0.001 (0) - H[14C][18O]2O- 1.548e-023 1.417e-023 -22.810 -22.849 -0.039 (0) - H[14C][18O]O[18O]- 1.548e-023 1.417e-023 -22.810 -22.849 -0.039 (0) - H[14C]O[18O]2- 1.548e-023 1.417e-023 -22.810 -22.849 -0.039 (0) - [14C]O2[18O]-2 1.383e-023 9.686e-024 -22.859 -23.014 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.089 -69.088 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.090 -72.089 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.49 -19.35 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -21.99 -23.49 -1.50 [14C][18O]2 - [14C]H4(g) -29.62 -32.48 -2.86 [14C]H4 - [14C]O2(g) -16.62 -18.09 -1.47 [14C]O2 - [14C]O[18O](g) -19.00 -20.79 -1.79 [14C]O[18O] - [18O]2(g) -69.80 -72.09 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.15 -15.00 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.30 -9.60 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.09 -6.90 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.99 -12.30 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.53 -17.39 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.70 -12.85 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.80 -66.69 -2.89 O2 - O[18O](g) -66.50 -69.39 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 95. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 94. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 4.4000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 3.76e-019 3.76e-019 7.52e-016 - Ca[14C]O2[18O](s) 2.31e-021 2.31e-021 4.63e-018 - Ca[14C]O[18O]2(s) 4.75e-024 4.75e-024 9.50e-021 - Ca[14C][18O]3(s) 3.25e-027 2.25e-027 6.50e-024 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.984 permil - R(13C) 1.11645e-002 -1.4017 permil - R(14C) 7.59606e-016 0.064598 pmc - R(18O) H2O(l) 1.99520e-003 -4.9855 permil - R(18O) OH- 1.92124e-003 -41.873 permil - R(18O) H3O+ 2.04134e-003 18.022 permil - R(13C) CO2(aq) 1.10846e-002 -8.5483 permil - R(14C) CO2(aq) 7.48764e-016 0.063677 pmc - R(18O) CO2(aq) 2.07917e-003 36.889 permil - R(18O) HCO3- 1.99520e-003 -4.9855 permil - R(13C) HCO3- 1.11811e-002 0.077217 permil - R(14C) HCO3- 7.61849e-016 0.064789 pmc - R(18O) CO3-2 1.99520e-003 -4.9855 permil - R(13C) CO3-2 1.11650e-002 -1.358 permil - R(14C) CO3-2 7.59664e-016 0.064603 pmc - R(13C) CH4(aq) 1.10846e-002 -8.5483 permil - R(14C) CH4(aq) 7.48764e-016 0.063677 pmc - R(18O) Calcite 2.05264e-003 23.661 permil - R(13C) Calcite 1.12032e-002 2.058 permil - R(14C) Calcite 7.64870e-016 0.065046 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.4409e-013 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7565e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.1102e-011 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -2.1316e-011 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 4.436e-018 4.423e-018 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.173 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.530e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 7.437e-018 - CH4 7.437e-018 7.449e-018 -17.129 -17.128 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 3.316e-013 - H2 1.658e-013 1.661e-013 -12.780 -12.780 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.823 -66.822 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.222 -69.221 0.001 (0) -[13C](-4) 8.243e-020 - [13C]H4 8.243e-020 8.257e-020 -19.084 -19.083 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.597e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 5.568e-033 - [14C]H4 5.568e-033 5.577e-033 -32.254 -32.254 0.001 (0) -[14C](4) 4.436e-018 - H[14C]O3- 3.583e-018 3.278e-018 -17.446 -17.484 -0.039 (0) - [14C]O2 7.456e-019 7.468e-019 -18.127 -18.127 0.001 (0) - CaH[14C]O3+ 7.567e-020 6.941e-020 -19.121 -19.159 -0.037 (0) - H[14C][18O]O2- 7.149e-021 6.541e-021 -20.146 -20.184 -0.039 (0) - H[14C]O[18O]O- 7.149e-021 6.541e-021 -20.146 -20.184 -0.039 (0) - H[14C]O2[18O]- 7.149e-021 6.541e-021 -20.146 -20.184 -0.039 (0) - Ca[14C]O3 4.148e-021 4.155e-021 -20.382 -20.381 0.001 (0) - [14C]O[18O] 3.100e-021 3.106e-021 -20.509 -20.508 0.001 (0) - [14C]O3-2 2.128e-021 1.491e-021 -20.672 -20.827 -0.155 (0) - CaH[14C]O2[18O]+ 1.510e-022 1.385e-022 -21.821 -21.859 -0.037 (0) - CaH[14C][18O]O2+ 1.510e-022 1.385e-022 -21.821 -21.859 -0.037 (0) - CaH[14C]O[18O]O+ 1.510e-022 1.385e-022 -21.821 -21.859 -0.037 (0) - Ca[14C]O2[18O] 2.483e-023 2.487e-023 -22.605 -22.604 0.001 (0) - H[14C][18O]O[18O]- 1.426e-023 1.305e-023 -22.846 -22.884 -0.039 (0) - H[14C]O[18O]2- 1.426e-023 1.305e-023 -22.846 -22.884 -0.039 (0) - H[14C][18O]2O- 1.426e-023 1.305e-023 -22.846 -22.884 -0.039 (0) - [14C]O2[18O]-2 1.274e-023 8.923e-024 -22.895 -23.049 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.222 -69.221 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.223 -72.222 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.22 -19.08 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -22.02 -23.53 -1.50 [14C][18O]2 - [14C]H4(g) -29.39 -32.25 -2.86 [14C]H4 - [14C]O2(g) -16.66 -18.13 -1.47 [14C]O2 - [14C]O[18O](g) -19.04 -20.83 -1.79 [14C]O[18O] - [18O]2(g) -69.93 -72.22 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.19 -15.03 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.33 -9.63 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.12 -6.93 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -20.02 -12.33 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.27 -17.13 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.63 -12.78 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.93 -66.82 -2.89 O2 - O[18O](g) -66.63 -69.52 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 96. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 95. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 4.4500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 3.46e-019 3.46e-019 6.93e-016 - Ca[14C]O2[18O](s) 2.13e-021 2.13e-021 4.26e-018 - Ca[14C]O[18O]2(s) 4.38e-024 4.38e-024 8.75e-021 - Ca[14C][18O]3(s) 2.99e-027 1.99e-027 5.99e-024 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9839 permil - R(13C) 1.11645e-002 -1.4007 permil - R(14C) 6.99770e-016 0.05951 pmc - R(18O) H2O(l) 1.99520e-003 -4.9854 permil - R(18O) OH- 1.92124e-003 -41.873 permil - R(18O) H3O+ 2.04134e-003 18.023 permil - R(13C) CO2(aq) 1.10846e-002 -8.5472 permil - R(14C) CO2(aq) 6.89782e-016 0.058661 pmc - R(18O) CO2(aq) 2.07917e-003 36.889 permil - R(18O) HCO3- 1.99520e-003 -4.9854 permil - R(13C) HCO3- 1.11811e-002 0.078305 permil - R(14C) HCO3- 7.01837e-016 0.059686 pmc - R(18O) CO3-2 1.99520e-003 -4.9854 permil - R(13C) CO3-2 1.11650e-002 -1.3569 permil - R(14C) CO3-2 6.99824e-016 0.059515 pmc - R(13C) CH4(aq) 1.10846e-002 -8.5472 permil - R(14C) CH4(aq) 6.89782e-016 0.058661 pmc - R(18O) Calcite 2.05265e-003 23.661 permil - R(13C) Calcite 1.12032e-002 2.0591 permil - R(14C) Calcite 7.04620e-016 0.059922 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 2.2204e-013 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6153e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 2.2204e-013 0 -Alpha 14C CH4(aq)/CO2(aq) 1 4.2188e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 4.087e-018 4.075e-018 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.207 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.534e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 27 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.383e-017 - CH4 1.383e-017 1.385e-017 -16.859 -16.859 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 3.872e-013 - H2 1.936e-013 1.939e-013 -12.713 -12.712 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.958 -66.957 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.357 -69.356 0.001 (0) -[13C](-4) 1.533e-019 - [13C]H4 1.533e-019 1.535e-019 -18.815 -18.814 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.597e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C][18O]O2+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 9.538e-033 - [14C]H4 9.538e-033 9.554e-033 -32.021 -32.020 0.001 (0) -[14C](4) 4.087e-018 - H[14C]O3- 3.301e-018 3.020e-018 -17.481 -17.520 -0.039 (0) - [14C]O2 6.869e-019 6.880e-019 -18.163 -18.162 0.001 (0) - CaH[14C]O3+ 6.971e-020 6.394e-020 -19.157 -19.194 -0.037 (0) - H[14C][18O]O2- 6.586e-021 6.026e-021 -20.181 -20.220 -0.039 (0) - H[14C]O[18O]O- 6.586e-021 6.026e-021 -20.181 -20.220 -0.039 (0) - H[14C]O2[18O]- 6.586e-021 6.026e-021 -20.181 -20.220 -0.039 (0) - Ca[14C]O3 3.821e-021 3.828e-021 -20.418 -20.417 0.001 (0) - [14C]O[18O] 2.856e-021 2.861e-021 -20.544 -20.543 0.001 (0) - [14C]O3-2 1.960e-021 1.373e-021 -20.708 -20.862 -0.155 (0) - CaH[14C]O2[18O]+ 1.391e-022 1.276e-022 -21.857 -21.894 -0.037 (0) - CaH[14C][18O]O2+ 1.391e-022 1.276e-022 -21.857 -21.894 -0.037 (0) - CaH[14C]O[18O]O+ 1.391e-022 1.276e-022 -21.857 -21.894 -0.037 (0) - Ca[14C]O2[18O] 2.287e-023 2.291e-023 -22.641 -22.640 0.001 (0) - H[14C]O[18O]2- 1.314e-023 1.202e-023 -22.881 -22.920 -0.039 (0) - H[14C][18O]2O- 1.314e-023 1.202e-023 -22.881 -22.920 -0.039 (0) - H[14C][18O]O[18O]- 1.314e-023 1.202e-023 -22.881 -22.920 -0.039 (0) - [14C]O2[18O]-2 1.173e-023 8.220e-024 -22.931 -23.085 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.357 -69.356 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.358 -72.357 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.95 -18.81 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -22.06 -23.56 -1.50 [14C][18O]2 - [14C]H4(g) -29.16 -32.02 -2.86 [14C]H4 - [14C]O2(g) -16.69 -18.16 -1.47 [14C]O2 - [14C]O[18O](g) -19.08 -20.86 -1.79 [14C]O[18O] - [18O]2(g) -70.07 -72.36 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.22 -15.07 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.37 -9.67 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.16 -6.97 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -20.06 -12.37 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.00 -16.86 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.56 -12.71 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.06 -66.96 -2.89 O2 - O[18O](g) -66.76 -69.66 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 97. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 96. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 4.5000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 3.19e-019 3.19e-019 6.38e-016 - Ca[14C]O2[18O](s) 1.96e-021 1.96e-021 3.93e-018 - Ca[14C]O[18O]2(s) 4.03e-024 4.03e-024 8.06e-021 - Ca[14C][18O]3(s) 2.76e-027 1.76e-027 5.52e-024 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9837 permil - R(13C) 1.11646e-002 -1.3997 permil - R(14C) 6.44647e-016 0.054822 pmc - R(18O) H2O(l) 1.99520e-003 -4.9853 permil - R(18O) OH- 1.92124e-003 -41.873 permil - R(18O) H3O+ 2.04134e-003 18.023 permil - R(13C) CO2(aq) 1.10847e-002 -8.5462 permil - R(14C) CO2(aq) 6.35447e-016 0.05404 pmc - R(18O) CO2(aq) 2.07917e-003 36.889 permil - R(18O) HCO3- 1.99520e-003 -4.9853 permil - R(13C) HCO3- 1.11811e-002 0.079307 permil - R(14C) HCO3- 6.46551e-016 0.054984 pmc - R(18O) CO3-2 1.99520e-003 -4.9853 permil - R(13C) CO3-2 1.11650e-002 -1.3559 permil - R(14C) CO3-2 6.44697e-016 0.054826 pmc - R(13C) CH4(aq) 1.10847e-002 -8.5462 permil - R(14C) CH4(aq) 6.35447e-016 0.05404 pmc - R(18O) Calcite 2.05265e-003 23.661 permil - R(13C) Calcite 1.12032e-002 2.0601 permil - R(14C) Calcite 6.49115e-016 0.055202 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.8858e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6922e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 3.9968e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.6431e-011 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 3.765e-018 3.754e-018 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.203 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.521e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.294e-017 - CH4 1.294e-017 1.296e-017 -16.888 -16.888 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 3.808e-013 - H2 1.904e-013 1.907e-013 -12.720 -12.720 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.943 -66.943 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.342 -69.342 0.001 (0) -[13C](-4) 1.434e-019 - [13C]H4 1.434e-019 1.436e-019 -18.844 -18.843 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.597e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 8.220e-033 - [14C]H4 8.220e-033 8.233e-033 -32.085 -32.084 0.001 (0) -[14C](4) 3.765e-018 - H[14C]O3- 3.041e-018 2.782e-018 -17.517 -17.556 -0.039 (0) - [14C]O2 6.328e-019 6.338e-019 -18.199 -18.198 0.001 (0) - CaH[14C]O3+ 6.422e-020 5.891e-020 -19.192 -19.230 -0.037 (0) - H[14C][18O]O2- 6.067e-021 5.551e-021 -20.217 -20.256 -0.039 (0) - H[14C]O[18O]O- 6.067e-021 5.551e-021 -20.217 -20.256 -0.039 (0) - H[14C]O2[18O]- 6.067e-021 5.551e-021 -20.217 -20.256 -0.039 (0) - Ca[14C]O3 3.520e-021 3.526e-021 -20.453 -20.453 0.001 (0) - [14C]O[18O] 2.631e-021 2.636e-021 -20.580 -20.579 0.001 (0) - [14C]O3-2 1.806e-021 1.265e-021 -20.743 -20.898 -0.155 (0) - CaH[14C]O2[18O]+ 1.281e-022 1.175e-022 -21.892 -21.930 -0.037 (0) - CaH[14C][18O]O2+ 1.281e-022 1.175e-022 -21.892 -21.930 -0.037 (0) - CaH[14C]O[18O]O+ 1.281e-022 1.175e-022 -21.892 -21.930 -0.037 (0) - Ca[14C]O2[18O] 2.107e-023 2.111e-023 -22.676 -22.676 0.001 (0) - H[14C][18O]2O- 1.211e-023 1.108e-023 -22.917 -22.956 -0.039 (0) - H[14C][18O]O[18O]- 1.211e-023 1.108e-023 -22.917 -22.956 -0.039 (0) - H[14C]O[18O]2- 1.211e-023 1.108e-023 -22.917 -22.956 -0.039 (0) - [14C]O2[18O]-2 1.081e-023 7.572e-024 -22.966 -23.121 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.342 -69.342 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.343 -72.343 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.98 -18.84 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -22.09 -23.60 -1.50 [14C][18O]2 - [14C]H4(g) -29.22 -32.08 -2.86 [14C]H4 - [14C]O2(g) -16.73 -18.20 -1.47 [14C]O2 - [14C]O[18O](g) -19.11 -20.90 -1.79 [14C]O[18O] - [18O]2(g) -70.05 -72.34 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.26 -15.10 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.41 -9.70 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.20 -7.00 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -20.09 -12.40 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.03 -16.89 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.57 -12.72 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.05 -66.94 -2.89 O2 - O[18O](g) -66.75 -69.64 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 98. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 97. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 4.5500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 2.94e-019 2.94e-019 5.88e-016 - Ca[14C]O2[18O](s) 1.81e-021 1.81e-021 3.62e-018 - Ca[14C]O[18O]2(s) 3.71e-024 3.71e-024 7.43e-021 - Ca[14C][18O]3(s) 2.54e-027 1.54e-027 5.08e-024 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9836 permil - R(13C) 1.11646e-002 -1.3987 permil - R(14C) 5.93867e-016 0.050504 pmc - R(18O) H2O(l) 1.99520e-003 -4.9851 permil - R(18O) OH- 1.92124e-003 -41.873 permil - R(18O) H3O+ 2.04134e-003 18.023 permil - R(13C) CO2(aq) 1.10847e-002 -8.5453 permil - R(14C) CO2(aq) 5.85391e-016 0.049783 pmc - R(18O) CO2(aq) 2.07917e-003 36.889 permil - R(18O) HCO3- 1.99520e-003 -4.9851 permil - R(13C) HCO3- 1.11811e-002 0.080231 permil - R(14C) HCO3- 5.95621e-016 0.050653 pmc - R(18O) CO3-2 1.99520e-003 -4.9851 permil - R(13C) CO3-2 1.11651e-002 -1.355 permil - R(14C) CO3-2 5.93913e-016 0.050508 pmc - R(13C) CH4(aq) 1.10847e-002 -8.5453 permil - R(14C) CH4(aq) 5.85391e-016 0.049783 pmc - R(18O) Calcite 2.05265e-003 23.661 permil - R(13C) Calcite 1.12032e-002 2.061 permil - R(14C) Calcite 5.97983e-016 0.050854 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6072e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 0 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -6.1062e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 3.468e-018 3.458e-018 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.223 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.521e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.877e-017 - CH4 1.877e-017 1.880e-017 -16.727 -16.726 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 4.180e-013 - H2 2.090e-013 2.093e-013 -12.680 -12.679 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -67.024 -67.023 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.423 -69.422 0.001 (0) -[13C](-4) 2.081e-019 - [13C]H4 2.081e-019 2.084e-019 -18.682 -18.681 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.597e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.099e-032 - [14C]H4 1.099e-032 1.101e-032 -31.959 -31.958 0.001 (0) -[14C](4) 3.468e-018 - H[14C]O3- 2.801e-018 2.563e-018 -17.553 -17.591 -0.039 (0) - [14C]O2 5.829e-019 5.839e-019 -18.234 -18.234 0.001 (0) - CaH[14C]O3+ 5.916e-020 5.427e-020 -19.228 -19.265 -0.037 (0) - H[14C][18O]O2- 5.589e-021 5.114e-021 -20.253 -20.291 -0.039 (0) - H[14C]O[18O]O- 5.589e-021 5.114e-021 -20.253 -20.291 -0.039 (0) - H[14C]O2[18O]- 5.589e-021 5.114e-021 -20.253 -20.291 -0.039 (0) - Ca[14C]O3 3.243e-021 3.248e-021 -20.489 -20.488 0.001 (0) - [14C]O[18O] 2.424e-021 2.428e-021 -20.615 -20.615 0.001 (0) - [14C]O3-2 1.664e-021 1.165e-021 -20.779 -20.934 -0.155 (0) - CaH[14C]O2[18O]+ 1.180e-022 1.083e-022 -21.928 -21.965 -0.037 (0) - CaH[14C][18O]O2+ 1.180e-022 1.083e-022 -21.928 -21.965 -0.037 (0) - CaH[14C]O[18O]O+ 1.180e-022 1.083e-022 -21.928 -21.965 -0.037 (0) - Ca[14C]O2[18O] 1.941e-023 1.944e-023 -22.712 -22.711 0.001 (0) - H[14C][18O]O[18O]- 1.115e-023 1.020e-023 -22.953 -22.991 -0.039 (0) - H[14C]O[18O]2- 1.115e-023 1.020e-023 -22.953 -22.991 -0.039 (0) - H[14C][18O]2O- 1.115e-023 1.020e-023 -22.953 -22.991 -0.039 (0) - [14C]O2[18O]-2 9.958e-024 6.976e-024 -23.002 -23.156 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.423 -69.422 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.424 -72.423 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.82 -18.68 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -22.13 -23.63 -1.50 [14C][18O]2 - [14C]H4(g) -29.10 -31.96 -2.86 [14C]H4 - [14C]O2(g) -16.77 -18.23 -1.47 [14C]O2 - [14C]O[18O](g) -19.15 -20.93 -1.79 [14C]O[18O] - [18O]2(g) -70.13 -72.42 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.29 -15.14 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.44 -9.74 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.23 -7.04 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -20.13 -12.44 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.87 -16.73 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.53 -12.68 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.13 -67.02 -2.89 O2 - O[18O](g) -66.83 -69.72 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 99. -------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 98. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 4.6000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 2.71e-019 2.71e-019 5.41e-016 - Ca[14C]O2[18O](s) 1.67e-021 1.67e-021 3.33e-018 - Ca[14C]O[18O]2(s) 3.42e-024 3.42e-024 6.84e-021 - Ca[14C][18O]3(s) 2.34e-027 1.34e-027 4.68e-024 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9835 permil - R(13C) 1.11646e-002 -1.3979 permil - R(14C) 5.47087e-016 0.046525 pmc - R(18O) H2O(l) 1.99520e-003 -4.985 permil - R(18O) OH- 1.92124e-003 -41.873 permil - R(18O) H3O+ 2.04134e-003 18.023 permil - R(13C) CO2(aq) 1.10847e-002 -8.5445 permil - R(14C) CO2(aq) 5.39279e-016 0.045861 pmc - R(18O) CO2(aq) 2.07917e-003 36.889 permil - R(18O) HCO3- 1.99520e-003 -4.985 permil - R(13C) HCO3- 1.11811e-002 0.081082 permil - R(14C) HCO3- 5.48703e-016 0.046663 pmc - R(18O) CO3-2 1.99520e-003 -4.985 permil - R(13C) CO3-2 1.11651e-002 -1.3541 permil - R(14C) CO3-2 5.47129e-016 0.046529 pmc - R(13C) CH4(aq) 1.10847e-002 -8.5445 permil - R(14C) CH4(aq) 5.39279e-016 0.045861 pmc - R(18O) Calcite 2.05265e-003 23.662 permil - R(13C) Calcite 1.12033e-002 2.0619 permil - R(14C) Calcite 5.50878e-016 0.046848 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6555e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.1102e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.5321e-011 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 3.195e-018 3.186e-018 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.245 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.500e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 28 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 2.817e-017 - CH4 2.817e-017 2.821e-017 -16.550 -16.550 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 4.626e-013 - H2 2.313e-013 2.317e-013 -12.636 -12.635 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -67.112 -67.112 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.511 -69.510 0.001 (0) -[13C](-4) 3.122e-019 - [13C]H4 3.122e-019 3.127e-019 -18.506 -18.505 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.598e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C][18O]O2+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.093e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.519e-032 - [14C]H4 1.519e-032 1.521e-032 -31.818 -31.818 0.001 (0) -[14C](4) 3.195e-018 - H[14C]O3- 2.581e-018 2.361e-018 -17.588 -17.627 -0.039 (0) - [14C]O2 5.370e-019 5.379e-019 -18.270 -18.269 0.001 (0) - CaH[14C]O3+ 5.450e-020 4.999e-020 -19.264 -19.301 -0.037 (0) - H[14C][18O]O2- 5.149e-021 4.711e-021 -20.288 -20.327 -0.039 (0) - H[14C]O[18O]O- 5.149e-021 4.711e-021 -20.288 -20.327 -0.039 (0) - H[14C]O2[18O]- 5.149e-021 4.711e-021 -20.288 -20.327 -0.039 (0) - Ca[14C]O3 2.988e-021 2.992e-021 -20.525 -20.524 0.001 (0) - [14C]O[18O] 2.233e-021 2.237e-021 -20.651 -20.650 0.001 (0) - [14C]O3-2 1.533e-021 1.074e-021 -20.815 -20.969 -0.155 (0) - CaH[14C]O2[18O]+ 1.087e-022 9.974e-023 -21.964 -22.001 -0.037 (0) - CaH[14C][18O]O2+ 1.087e-022 9.974e-023 -21.964 -22.001 -0.037 (0) - CaH[14C]O[18O]O+ 1.087e-022 9.974e-023 -21.964 -22.001 -0.037 (0) - Ca[14C]O2[18O] 1.788e-023 1.791e-023 -22.748 -22.747 0.001 (0) - H[14C]O[18O]2- 1.027e-023 9.399e-024 -22.988 -23.027 -0.039 (0) - H[14C][18O]2O- 1.027e-023 9.399e-024 -22.988 -23.027 -0.039 (0) - H[14C][18O]O[18O]- 1.027e-023 9.399e-024 -22.988 -23.027 -0.039 (0) - [14C]O2[18O]-2 9.173e-024 6.426e-024 -23.037 -23.192 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.511 -69.510 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.512 -72.512 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.64 -18.50 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -22.17 -23.67 -1.50 [14C][18O]2 - [14C]H4(g) -28.96 -31.82 -2.86 [14C]H4 - [14C]O2(g) -16.80 -18.27 -1.47 [14C]O2 - [14C]O[18O](g) -19.18 -20.97 -1.79 [14C]O[18O] - [18O]2(g) -70.22 -72.51 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.33 -15.17 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.48 -9.77 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.27 -7.07 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -20.16 -12.47 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.69 -16.55 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.49 -12.64 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.22 -67.11 -2.89 O2 - O[18O](g) -66.92 -69.81 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - --------------------------------------- -Reading input data for simulation 100. --------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 99. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 4.6500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 2.49e-019 2.49e-019 4.99e-016 - Ca[14C]O2[18O](s) 1.54e-021 1.54e-021 3.07e-018 - Ca[14C]O[18O]2(s) 3.15e-024 3.15e-024 6.30e-021 - Ca[14C][18O]3(s) 2.16e-027 1.16e-027 4.31e-024 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9833 permil - R(13C) 1.11646e-002 -1.3971 permil - R(14C) 5.03991e-016 0.042861 pmc - R(18O) H2O(l) 1.99520e-003 -4.9848 permil - R(18O) OH- 1.92124e-003 -41.872 permil - R(18O) H3O+ 2.04134e-003 18.023 permil - R(13C) CO2(aq) 1.10847e-002 -8.5437 permil - R(14C) CO2(aq) 4.96798e-016 0.042249 pmc - R(18O) CO2(aq) 2.07917e-003 36.889 permil - R(18O) HCO3- 1.99520e-003 -4.9848 permil - R(13C) HCO3- 1.11811e-002 0.081866 permil - R(14C) HCO3- 5.05480e-016 0.042987 pmc - R(18O) CO3-2 1.99520e-003 -4.9848 permil - R(13C) CO3-2 1.11651e-002 -1.3533 permil - R(14C) CO3-2 5.04030e-016 0.042864 pmc - R(13C) CH4(aq) 1.10847e-002 -8.5437 permil - R(14C) CH4(aq) 4.96798e-016 0.042249 pmc - R(18O) Calcite 2.05265e-003 23.662 permil - R(13C) Calcite 1.12033e-002 2.0627 permil - R(14C) Calcite 5.07484e-016 0.043158 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5459e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 3.5527e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -4.996e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 2.943e-018 2.935e-018 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.266 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.501e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 28 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 4.159e-017 - CH4 4.159e-017 4.165e-017 -16.381 -16.380 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 5.099e-013 - H2 2.550e-013 2.554e-013 -12.594 -12.593 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -67.197 -67.196 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.596 -69.595 0.001 (0) -[13C](-4) 4.610e-019 - [13C]H4 4.610e-019 4.617e-019 -18.336 -18.336 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.598e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.094e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.094e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.094e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.066e-032 - [14C]H4 2.066e-032 2.069e-032 -31.685 -31.684 0.001 (0) -[14C](4) 2.943e-018 - H[14C]O3- 2.377e-018 2.175e-018 -17.624 -17.663 -0.039 (0) - [14C]O2 4.947e-019 4.955e-019 -18.306 -18.305 0.001 (0) - CaH[14C]O3+ 5.020e-020 4.605e-020 -19.299 -19.337 -0.037 (0) - H[14C][18O]O2- 4.744e-021 4.340e-021 -20.324 -20.363 -0.039 (0) - H[14C]O[18O]O- 4.744e-021 4.340e-021 -20.324 -20.363 -0.039 (0) - H[14C]O2[18O]- 4.744e-021 4.340e-021 -20.324 -20.363 -0.039 (0) - Ca[14C]O3 2.752e-021 2.757e-021 -20.560 -20.560 0.001 (0) - [14C]O[18O] 2.057e-021 2.061e-021 -20.687 -20.686 0.001 (0) - [14C]O3-2 1.412e-021 9.891e-022 -20.850 -21.005 -0.155 (0) - CaH[14C]O2[18O]+ 1.002e-022 9.189e-023 -21.999 -22.037 -0.037 (0) - CaH[14C][18O]O2+ 1.002e-022 9.189e-023 -21.999 -22.037 -0.037 (0) - CaH[14C]O[18O]O+ 1.002e-022 9.189e-023 -21.999 -22.037 -0.037 (0) - Ca[14C]O2[18O] 1.647e-023 1.650e-023 -22.783 -22.782 0.001 (0) - H[14C][18O]2O- 9.464e-024 8.659e-024 -23.024 -23.063 -0.039 (0) - H[14C][18O]O[18O]- 9.464e-024 8.659e-024 -23.024 -23.063 -0.039 (0) - H[14C]O[18O]2- 9.464e-024 8.659e-024 -23.024 -23.063 -0.039 (0) - [14C]O2[18O]-2 8.451e-024 5.920e-024 -23.073 -23.228 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.596 -69.595 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.597 -72.596 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.48 -18.34 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -22.20 -23.70 -1.50 [14C][18O]2 - [14C]H4(g) -28.82 -31.68 -2.86 [14C]H4 - [14C]O2(g) -16.84 -18.30 -1.47 [14C]O2 - [14C]O[18O](g) -19.22 -21.00 -1.79 [14C]O[18O] - [18O]2(g) -70.31 -72.60 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.37 -15.21 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.51 -9.81 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.30 -7.11 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -20.20 -12.51 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.52 -16.38 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.44 -12.59 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.30 -67.20 -2.89 O2 - O[18O](g) -67.00 -69.90 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - --------------------------------------- -Reading input data for simulation 101. --------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 100. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 4.7000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 2.30e-019 2.30e-019 4.59e-016 - Ca[14C]O2[18O](s) 1.41e-021 1.41e-021 2.83e-018 - Ca[14C]O[18O]2(s) 2.90e-024 2.90e-024 5.81e-021 - Ca[14C][18O]3(s) 1.99e-027 9.87e-028 3.97e-024 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9832 permil - R(13C) 1.11646e-002 -1.3964 permil - R(14C) 4.64291e-016 0.039484 pmc - R(18O) H2O(l) 1.99520e-003 -4.9847 permil - R(18O) OH- 1.92124e-003 -41.872 permil - R(18O) H3O+ 2.04134e-003 18.023 permil - R(13C) CO2(aq) 1.10847e-002 -8.543 permil - R(14C) CO2(aq) 4.57664e-016 0.038921 pmc - R(18O) CO2(aq) 2.07917e-003 36.89 permil - R(18O) HCO3- 1.99520e-003 -4.9847 permil - R(13C) HCO3- 1.11811e-002 0.082589 permil - R(14C) HCO3- 4.65662e-016 0.039601 pmc - R(18O) CO3-2 1.99520e-003 -4.9847 permil - R(13C) CO3-2 1.11651e-002 -1.3526 permil - R(14C) CO3-2 4.64327e-016 0.039487 pmc - R(13C) CH4(aq) 1.10847e-002 -8.543 permil - R(14C) CH4(aq) 4.57664e-016 0.038921 pmc - R(18O) Calcite 2.05265e-003 23.662 permil - R(13C) Calcite 1.12033e-002 2.0634 permil - R(14C) Calcite 4.67509e-016 0.039758 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.2196e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7537e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.0991e-011 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.1435e-011 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 2.711e-018 2.703e-018 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.256 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.482e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 3.467e-017 - CH4 3.467e-017 3.473e-017 -16.460 -16.459 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 4.872e-013 - H2 2.436e-013 2.440e-013 -12.613 -12.613 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -67.157 -67.157 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.556 -69.556 0.001 (0) -[13C](-4) 3.843e-019 - [13C]H4 3.843e-019 3.849e-019 -18.415 -18.415 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.598e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.094e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.094e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.094e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.587e-032 - [14C]H4 1.587e-032 1.589e-032 -31.800 -31.799 0.001 (0) -[14C](4) 2.711e-018 - H[14C]O3- 2.190e-018 2.004e-018 -17.660 -17.698 -0.039 (0) - [14C]O2 4.557e-019 4.565e-019 -18.341 -18.341 0.001 (0) - CaH[14C]O3+ 4.625e-020 4.243e-020 -19.335 -19.372 -0.037 (0) - H[14C][18O]O2- 4.370e-021 3.998e-021 -20.360 -20.398 -0.039 (0) - H[14C]O[18O]O- 4.370e-021 3.998e-021 -20.360 -20.398 -0.039 (0) - H[14C]O2[18O]- 4.370e-021 3.998e-021 -20.360 -20.398 -0.039 (0) - Ca[14C]O3 2.535e-021 2.540e-021 -20.596 -20.595 0.001 (0) - [14C]O[18O] 1.895e-021 1.898e-021 -20.722 -20.722 0.001 (0) - [14C]O3-2 1.301e-021 9.112e-022 -20.886 -21.040 -0.155 (0) - CaH[14C]O2[18O]+ 9.228e-023 8.465e-023 -22.035 -22.072 -0.037 (0) - CaH[14C][18O]O2+ 9.228e-023 8.465e-023 -22.035 -22.072 -0.037 (0) - CaH[14C]O[18O]O+ 9.228e-023 8.465e-023 -22.035 -22.072 -0.037 (0) - Ca[14C]O2[18O] 1.518e-023 1.520e-023 -22.819 -22.818 0.001 (0) - H[14C][18O]O[18O]- 8.719e-024 7.977e-024 -23.060 -23.098 -0.039 (0) - H[14C]O[18O]2- 8.719e-024 7.977e-024 -23.060 -23.098 -0.039 (0) - H[14C][18O]2O- 8.719e-024 7.977e-024 -23.060 -23.098 -0.039 (0) - [14C]O2[18O]-2 7.785e-024 5.454e-024 -23.109 -23.263 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.556 -69.556 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.557 -72.557 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.55 -18.41 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -22.24 -23.74 -1.50 [14C][18O]2 - [14C]H4(g) -28.94 -31.80 -2.86 [14C]H4 - [14C]O2(g) -16.87 -18.34 -1.47 [14C]O2 - [14C]O[18O](g) -19.25 -21.04 -1.79 [14C]O[18O] - [18O]2(g) -70.27 -72.56 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.40 -15.25 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.55 -9.85 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.34 -7.15 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -20.24 -12.55 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.60 -16.46 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.46 -12.61 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.26 -67.16 -2.89 O2 - O[18O](g) -66.96 -69.86 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - --------------------------------------- -Reading input data for simulation 102. --------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 101. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 4.7500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 2.12e-019 2.12e-019 4.23e-016 - Ca[14C]O2[18O](s) 1.30e-021 1.30e-021 2.61e-018 - Ca[14C]O[18O]2(s) 2.68e-024 2.67e-024 5.35e-021 - Ca[14C][18O]3(s) 1.83e-027 8.30e-028 3.66e-024 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9831 permil - R(13C) 1.11646e-002 -1.3957 permil - R(14C) 4.27718e-016 0.036374 pmc - R(18O) H2O(l) 1.99520e-003 -4.9846 permil - R(18O) OH- 1.92124e-003 -41.872 permil - R(18O) H3O+ 2.04134e-003 18.023 permil - R(13C) CO2(aq) 1.10847e-002 -8.5423 permil - R(14C) CO2(aq) 4.21613e-016 0.035855 pmc - R(18O) CO2(aq) 2.07917e-003 36.89 permil - R(18O) HCO3- 1.99520e-003 -4.9846 permil - R(13C) HCO3- 1.11811e-002 0.083254 permil - R(14C) HCO3- 4.28981e-016 0.036481 pmc - R(18O) CO3-2 1.99520e-003 -4.9846 permil - R(13C) CO3-2 1.11651e-002 -1.352 permil - R(14C) CO3-2 4.27751e-016 0.036377 pmc - R(13C) CH4(aq) 1.10847e-002 -8.5423 permil - R(14C) CH4(aq) 4.21613e-016 0.035855 pmc - R(18O) Calcite 2.05265e-003 23.662 permil - R(13C) Calcite 1.12033e-002 2.0641 permil - R(14C) Calcite 4.30682e-016 0.036626 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.4417e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7728e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 5.5511e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.521e-011 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 2.498e-018 2.490e-018 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.278 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.464e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 20 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 5.155e-017 - CH4 5.155e-017 5.163e-017 -16.288 -16.287 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 5.380e-013 - H2 2.690e-013 2.695e-013 -12.570 -12.569 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -67.243 -67.243 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.642 -69.642 0.001 (0) -[13C](-4) 5.714e-019 - [13C]H4 5.714e-019 5.724e-019 -18.243 -18.242 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.598e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C][18O]O2+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.094e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.094e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.094e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.173e-032 - [14C]H4 2.173e-032 2.177e-032 -31.663 -31.662 0.001 (0) -[14C](4) 2.498e-018 - H[14C]O3- 2.018e-018 1.846e-018 -17.695 -17.734 -0.039 (0) - [14C]O2 4.198e-019 4.205e-019 -18.377 -18.376 0.001 (0) - CaH[14C]O3+ 4.261e-020 3.908e-020 -19.371 -19.408 -0.037 (0) - H[14C][18O]O2- 4.026e-021 3.683e-021 -20.395 -20.434 -0.039 (0) - H[14C]O[18O]O- 4.026e-021 3.683e-021 -20.395 -20.434 -0.039 (0) - H[14C]O2[18O]- 4.026e-021 3.683e-021 -20.395 -20.434 -0.039 (0) - Ca[14C]O3 2.336e-021 2.340e-021 -20.632 -20.631 0.001 (0) - [14C]O[18O] 1.746e-021 1.749e-021 -20.758 -20.757 0.001 (0) - [14C]O3-2 1.198e-021 8.394e-022 -20.921 -21.076 -0.155 (0) - CaH[14C]O2[18O]+ 8.501e-023 7.798e-023 -22.071 -22.108 -0.037 (0) - CaH[14C][18O]O2+ 8.501e-023 7.798e-023 -22.071 -22.108 -0.037 (0) - CaH[14C]O[18O]O+ 8.501e-023 7.798e-023 -22.071 -22.108 -0.037 (0) - Ca[14C]O2[18O] 1.398e-023 1.400e-023 -22.854 -22.854 0.001 (0) - H[14C]O[18O]2- 8.032e-024 7.348e-024 -23.095 -23.134 -0.039 (0) - H[14C][18O]2O- 8.032e-024 7.348e-024 -23.095 -23.134 -0.039 (0) - H[14C][18O]O[18O]- 8.032e-024 7.348e-024 -23.095 -23.134 -0.039 (0) - [14C]O2[18O]-2 7.172e-024 5.024e-024 -23.144 -23.299 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.642 -69.642 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.644 -72.643 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.38 -18.24 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -22.27 -23.78 -1.50 [14C][18O]2 - [14C]H4(g) -28.80 -31.66 -2.86 [14C]H4 - [14C]O2(g) -16.91 -18.38 -1.47 [14C]O2 - [14C]O[18O](g) -19.29 -21.08 -1.79 [14C]O[18O] - [18O]2(g) -70.35 -72.64 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.44 -15.28 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.58 -9.88 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.37 -7.18 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -20.27 -12.58 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.43 -16.29 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.42 -12.57 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.35 -67.24 -2.89 O2 - O[18O](g) -67.05 -69.94 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - --------------------------------------- -Reading input data for simulation 103. --------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 102. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 4.8000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 1.95e-019 1.95e-019 3.90e-016 - Ca[14C]O2[18O](s) 1.20e-021 1.20e-021 2.40e-018 - Ca[14C]O[18O]2(s) 2.46e-024 2.46e-024 4.93e-021 - Ca[14C][18O]3(s) 1.69e-027 6.86e-028 3.37e-024 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9829 permil - R(13C) 1.11646e-002 -1.3951 permil - R(14C) 3.94025e-016 0.033509 pmc - R(18O) H2O(l) 1.99521e-003 -4.9844 permil - R(18O) OH- 1.92124e-003 -41.872 permil - R(18O) H3O+ 2.04134e-003 18.024 permil - R(13C) CO2(aq) 1.10847e-002 -8.5417 permil - R(14C) CO2(aq) 3.88402e-016 0.033031 pmc - R(18O) CO2(aq) 2.07917e-003 36.89 permil - R(18O) HCO3- 1.99521e-003 -4.9844 permil - R(13C) HCO3- 1.11811e-002 0.083868 permil - R(14C) HCO3- 3.95189e-016 0.033608 pmc - R(18O) CO3-2 1.99521e-003 -4.9844 permil - R(13C) CO3-2 1.11651e-002 -1.3513 permil - R(14C) CO3-2 3.94056e-016 0.033511 pmc - R(13C) CH4(aq) 1.10847e-002 -8.5417 permil - R(14C) CH4(aq) 3.88402e-016 0.033031 pmc - R(18O) Calcite 2.05265e-003 23.662 permil - R(13C) Calcite 1.12033e-002 2.0647 permil - R(14C) Calcite 3.96756e-016 0.033741 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6791e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -5.218e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -9.5479e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 2.301e-018 2.294e-018 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.311 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.467e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 31 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 9.434e-017 - CH4 9.434e-017 9.450e-017 -16.025 -16.025 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 6.258e-013 - H2 3.129e-013 3.134e-013 -12.505 -12.504 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -67.375 -67.374 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.774 -69.773 0.001 (0) -[13C](-4) 1.046e-018 - [13C]H4 1.046e-018 1.047e-018 -17.981 -17.980 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.598e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.094e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.094e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.094e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.664e-032 - [14C]H4 3.664e-032 3.670e-032 -31.436 -31.435 0.001 (0) -[14C](4) 2.301e-018 - H[14C]O3- 1.859e-018 1.701e-018 -17.731 -17.769 -0.039 (0) - [14C]O2 3.868e-019 3.874e-019 -18.413 -18.412 0.001 (0) - CaH[14C]O3+ 3.925e-020 3.601e-020 -19.406 -19.444 -0.037 (0) - H[14C][18O]O2- 3.709e-021 3.393e-021 -20.431 -20.469 -0.039 (0) - H[14C]O[18O]O- 3.709e-021 3.393e-021 -20.431 -20.469 -0.039 (0) - H[14C]O2[18O]- 3.709e-021 3.393e-021 -20.431 -20.469 -0.039 (0) - Ca[14C]O3 2.152e-021 2.155e-021 -20.667 -20.666 0.001 (0) - [14C]O[18O] 1.608e-021 1.611e-021 -20.794 -20.793 0.001 (0) - [14C]O3-2 1.104e-021 7.733e-022 -20.957 -21.112 -0.155 (0) - CaH[14C]O2[18O]+ 7.831e-023 7.184e-023 -22.106 -22.144 -0.037 (0) - CaH[14C][18O]O2+ 7.831e-023 7.184e-023 -22.106 -22.144 -0.037 (0) - CaH[14C]O[18O]O+ 7.831e-023 7.184e-023 -22.106 -22.144 -0.037 (0) - Ca[14C]O2[18O] 1.288e-023 1.290e-023 -22.890 -22.889 0.001 (0) - H[14C][18O]2O- 7.399e-024 6.769e-024 -23.131 -23.169 -0.039 (0) - H[14C][18O]O[18O]- 7.399e-024 6.769e-024 -23.131 -23.169 -0.039 (0) - H[14C]O[18O]2- 7.399e-024 6.769e-024 -23.131 -23.169 -0.039 (0) - [14C]O2[18O]-2 6.607e-024 4.628e-024 -23.180 -23.335 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.774 -69.773 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.775 -72.774 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.12 -17.98 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -22.31 -23.81 -1.50 [14C][18O]2 - [14C]H4(g) -28.58 -31.44 -2.86 [14C]H4 - [14C]O2(g) -16.94 -18.41 -1.47 [14C]O2 - [14C]O[18O](g) -19.32 -21.11 -1.79 [14C]O[18O] - [18O]2(g) -70.48 -72.77 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.47 -15.32 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.62 -9.92 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.41 -7.22 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -20.31 -12.62 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.16 -16.02 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.35 -12.50 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.48 -67.37 -2.89 O2 - O[18O](g) -67.18 -70.07 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - --------------------------------------- -Reading input data for simulation 104. --------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 103. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 4.8500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 1.80e-019 1.80e-019 3.59e-016 - Ca[14C]O2[18O](s) 1.11e-021 1.11e-021 2.21e-018 - Ca[14C]O[18O]2(s) 2.27e-024 2.27e-024 4.54e-021 - Ca[14C][18O]3(s) 1.55e-027 5.53e-028 3.11e-024 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9828 permil - R(13C) 1.11646e-002 -1.3945 permil - R(14C) 3.62987e-016 0.030869 pmc - R(18O) H2O(l) 1.99521e-003 -4.9843 permil - R(18O) OH- 1.92124e-003 -41.872 permil - R(18O) H3O+ 2.04134e-003 18.024 permil - R(13C) CO2(aq) 1.10847e-002 -8.5411 permil - R(14C) CO2(aq) 3.57806e-016 0.030429 pmc - R(18O) CO2(aq) 2.07917e-003 36.89 permil - R(18O) HCO3- 1.99521e-003 -4.9843 permil - R(13C) HCO3- 1.11811e-002 0.084434 permil - R(14C) HCO3- 3.64059e-016 0.03096 pmc - R(18O) CO3-2 1.99521e-003 -4.9843 permil - R(13C) CO3-2 1.11651e-002 -1.3508 permil - R(14C) CO3-2 3.63015e-016 0.030872 pmc - R(13C) CH4(aq) 1.10847e-002 -8.5411 permil - R(14C) CH4(aq) 3.57806e-016 0.030429 pmc - R(18O) Calcite 2.05265e-003 23.662 permil - R(13C) Calcite 1.12033e-002 2.0653 permil - R(14C) Calcite 3.65503e-016 0.031083 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.4425e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6412e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -4.1078e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 5.9952e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 2.120e-018 2.114e-018 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.337 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.471e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.525e-016 - CH4 1.525e-016 1.528e-016 -15.817 -15.816 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 7.057e-013 - H2 3.528e-013 3.534e-013 -12.452 -12.452 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -67.479 -67.478 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.878 -69.877 0.001 (0) -[13C](-4) 1.691e-018 - [13C]H4 1.691e-018 1.694e-018 -17.772 -17.771 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.598e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.094e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.094e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.094e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 5.458e-032 - [14C]H4 5.458e-032 5.467e-032 -31.263 -31.262 0.001 (0) -[14C](4) 2.120e-018 - H[14C]O3- 1.712e-018 1.567e-018 -17.766 -17.805 -0.039 (0) - [14C]O2 3.563e-019 3.569e-019 -18.448 -18.447 0.001 (0) - CaH[14C]O3+ 3.616e-020 3.317e-020 -19.442 -19.479 -0.037 (0) - H[14C][18O]O2- 3.416e-021 3.126e-021 -20.466 -20.505 -0.039 (0) - H[14C]O[18O]O- 3.416e-021 3.126e-021 -20.466 -20.505 -0.039 (0) - H[14C]O2[18O]- 3.416e-021 3.126e-021 -20.466 -20.505 -0.039 (0) - Ca[14C]O3 1.982e-021 1.985e-021 -20.703 -20.702 0.001 (0) - [14C]O[18O] 1.482e-021 1.484e-021 -20.829 -20.829 0.001 (0) - [14C]O3-2 1.017e-021 7.124e-022 -20.993 -21.147 -0.155 (0) - CaH[14C]O2[18O]+ 7.214e-023 6.618e-023 -22.142 -22.179 -0.037 (0) - CaH[14C][18O]O2+ 7.214e-023 6.618e-023 -22.142 -22.179 -0.037 (0) - CaH[14C]O[18O]O+ 7.214e-023 6.618e-023 -22.142 -22.179 -0.037 (0) - Ca[14C]O2[18O] 1.186e-023 1.188e-023 -22.926 -22.925 0.001 (0) - H[14C][18O]O[18O]- 6.816e-024 6.236e-024 -23.166 -23.205 -0.039 (0) - H[14C]O[18O]2- 6.816e-024 6.236e-024 -23.166 -23.205 -0.039 (0) - H[14C][18O]2O- 6.816e-024 6.236e-024 -23.166 -23.205 -0.039 (0) - [14C]O2[18O]-2 6.086e-024 4.264e-024 -23.216 -23.370 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.878 -69.877 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.879 -72.878 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.91 -17.77 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -22.34 -23.85 -1.50 [14C][18O]2 - [14C]H4(g) -28.40 -31.26 -2.86 [14C]H4 - [14C]O2(g) -16.98 -18.45 -1.47 [14C]O2 - [14C]O[18O](g) -19.36 -21.15 -1.79 [14C]O[18O] - [18O]2(g) -70.59 -72.88 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.51 -15.35 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.66 -9.95 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.44 -7.25 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -20.34 -12.65 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.96 -15.82 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.30 -12.45 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.59 -67.48 -2.89 O2 - O[18O](g) -67.29 -70.18 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - --------------------------------------- -Reading input data for simulation 105. --------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 104. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 4.9000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 1.65e-019 1.65e-019 3.31e-016 - Ca[14C]O2[18O](s) 1.02e-021 1.02e-021 2.04e-018 - Ca[14C]O[18O]2(s) 2.09e-024 2.09e-024 4.18e-021 - Ca[14C][18O]3(s) 1.43e-027 4.31e-028 2.86e-024 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9826 permil - R(13C) 1.11646e-002 -1.394 permil - R(14C) 3.34394e-016 0.028438 pmc - R(18O) H2O(l) 1.99521e-003 -4.9842 permil - R(18O) OH- 1.92124e-003 -41.872 permil - R(18O) H3O+ 2.04134e-003 18.024 permil - R(13C) CO2(aq) 1.10847e-002 -8.5406 permil - R(14C) CO2(aq) 3.29621e-016 0.028032 pmc - R(18O) CO2(aq) 2.07917e-003 36.89 permil - R(18O) HCO3- 1.99521e-003 -4.9842 permil - R(13C) HCO3- 1.11811e-002 0.084955 permil - R(14C) HCO3- 3.35381e-016 0.028522 pmc - R(18O) CO3-2 1.99521e-003 -4.9842 permil - R(13C) CO3-2 1.11651e-002 -1.3503 permil - R(14C) CO3-2 3.34420e-016 0.02844 pmc - R(13C) CH4(aq) 1.10847e-002 -8.5406 permil - R(14C) CH4(aq) 3.29621e-016 0.028032 pmc - R(18O) Calcite 2.05265e-003 23.662 permil - R(13C) Calcite 1.12033e-002 2.0658 permil - R(14C) Calcite 3.36711e-016 0.028635 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.4425e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6507e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.3323e-011 0 -Alpha 14C CH4(aq)/CO2(aq) 1 9.3259e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 1.953e-018 1.947e-018 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.322 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.460e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 22 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.155e-016 - CH4 1.155e-016 1.157e-016 -15.938 -15.937 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 6.582e-013 - H2 3.291e-013 3.297e-013 -12.483 -12.482 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -67.419 -67.418 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.818 -69.817 0.001 (0) -[13C](-4) 1.280e-018 - [13C]H4 1.280e-018 1.282e-018 -17.893 -17.892 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.598e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C][18O]O2+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.094e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.094e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.094e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.806e-032 - [14C]H4 3.806e-032 3.813e-032 -31.419 -31.419 0.001 (0) -[14C](4) 1.953e-018 - H[14C]O3- 1.577e-018 1.443e-018 -17.802 -17.841 -0.039 (0) - [14C]O2 3.282e-019 3.288e-019 -18.484 -18.483 0.001 (0) - CaH[14C]O3+ 3.331e-020 3.056e-020 -19.477 -19.515 -0.037 (0) - H[14C][18O]O2- 3.147e-021 2.879e-021 -20.502 -20.541 -0.039 (0) - H[14C]O[18O]O- 3.147e-021 2.879e-021 -20.502 -20.541 -0.039 (0) - H[14C]O2[18O]- 3.147e-021 2.879e-021 -20.502 -20.541 -0.039 (0) - Ca[14C]O3 1.826e-021 1.829e-021 -20.738 -20.738 0.001 (0) - [14C]O[18O] 1.365e-021 1.367e-021 -20.865 -20.864 0.001 (0) - [14C]O3-2 9.368e-022 6.562e-022 -21.028 -21.183 -0.155 (0) - CaH[14C]O2[18O]+ 6.646e-023 6.097e-023 -22.177 -22.215 -0.037 (0) - CaH[14C][18O]O2+ 6.646e-023 6.097e-023 -22.177 -22.215 -0.037 (0) - CaH[14C]O[18O]O+ 6.646e-023 6.097e-023 -22.177 -22.215 -0.037 (0) - Ca[14C]O2[18O] 1.093e-023 1.095e-023 -22.961 -22.961 0.001 (0) - H[14C]O[18O]2- 6.280e-024 5.745e-024 -23.202 -23.241 -0.039 (0) - H[14C][18O]2O- 6.280e-024 5.745e-024 -23.202 -23.241 -0.039 (0) - H[14C][18O]O[18O]- 6.280e-024 5.745e-024 -23.202 -23.241 -0.039 (0) - [14C]O2[18O]-2 5.607e-024 3.928e-024 -23.251 -23.406 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.818 -69.817 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.819 -72.818 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.03 -17.89 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -22.38 -23.88 -1.50 [14C][18O]2 - [14C]H4(g) -28.56 -31.42 -2.86 [14C]H4 - [14C]O2(g) -17.01 -18.48 -1.47 [14C]O2 - [14C]O[18O](g) -19.40 -21.18 -1.79 [14C]O[18O] - [18O]2(g) -70.53 -72.82 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.54 -15.39 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.69 -9.99 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.48 -7.29 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -20.38 -12.69 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.08 -15.94 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.33 -12.48 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.53 -67.42 -2.89 O2 - O[18O](g) -67.23 -70.12 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - --------------------------------------- -Reading input data for simulation 106. --------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 105. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 4.9500e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 1.52e-019 1.52e-019 3.05e-016 - Ca[14C]O2[18O](s) 9.39e-022 9.39e-022 1.88e-018 - Ca[14C]O[18O]2(s) 1.93e-024 1.93e-024 3.85e-021 - Ca[14C][18O]3(s) 1.32e-027 3.18e-028 2.64e-024 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9825 permil - R(13C) 1.11646e-002 -1.3935 permil - R(14C) 3.08053e-016 0.026197 pmc - R(18O) H2O(l) 1.99521e-003 -4.984 permil - R(18O) OH- 1.92124e-003 -41.872 permil - R(18O) H3O+ 2.04134e-003 18.024 permil - R(13C) CO2(aq) 1.10847e-002 -8.5401 permil - R(14C) CO2(aq) 3.03656e-016 0.025824 pmc - R(18O) CO2(aq) 2.07917e-003 36.89 permil - R(18O) HCO3- 1.99521e-003 -4.984 permil - R(13C) HCO3- 1.11812e-002 0.085435 permil - R(14C) HCO3- 3.08963e-016 0.026275 pmc - R(18O) CO3-2 1.99521e-003 -4.984 permil - R(13C) CO3-2 1.11651e-002 -1.3498 permil - R(14C) CO3-2 3.08077e-016 0.026199 pmc - R(13C) CH4(aq) 1.10847e-002 -8.5401 permil - R(14C) CH4(aq) 3.03656e-016 0.025824 pmc - R(18O) Calcite 2.05265e-003 23.663 permil - R(13C) Calcite 1.12033e-002 2.0663 permil - R(14C) Calcite 3.10188e-016 0.026379 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6537e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.8208e-011 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.199e-011 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 1.799e-018 1.794e-018 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.339 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.460e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 36 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.581e-016 - CH4 1.581e-016 1.583e-016 -15.801 -15.800 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 7.120e-013 - H2 3.560e-013 3.566e-013 -12.449 -12.448 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -67.487 -67.486 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.886 -69.885 0.001 (0) -[13C](-4) 1.752e-018 - [13C]H4 1.752e-018 1.755e-018 -17.756 -17.756 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.598e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.094e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.094e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.094e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 4.799e-032 - [14C]H4 4.799e-032 4.807e-032 -31.319 -31.318 0.001 (0) -[14C](4) 1.799e-018 - H[14C]O3- 1.453e-018 1.329e-018 -17.838 -17.876 -0.039 (0) - [14C]O2 3.024e-019 3.029e-019 -18.519 -18.519 0.001 (0) - CaH[14C]O3+ 3.069e-020 2.815e-020 -19.513 -19.551 -0.037 (0) - H[14C][18O]O2- 2.899e-021 2.653e-021 -20.538 -20.576 -0.039 (0) - H[14C]O[18O]O- 2.899e-021 2.653e-021 -20.538 -20.576 -0.039 (0) - H[14C]O2[18O]- 2.899e-021 2.653e-021 -20.538 -20.576 -0.039 (0) - Ca[14C]O3 1.682e-021 1.685e-021 -20.774 -20.773 0.001 (0) - [14C]O[18O] 1.257e-021 1.259e-021 -20.901 -20.900 0.001 (0) - [14C]O3-2 8.630e-022 6.045e-022 -21.064 -21.219 -0.155 (0) - CaH[14C]O2[18O]+ 6.123e-023 5.616e-023 -22.213 -22.251 -0.037 (0) - CaH[14C][18O]O2+ 6.123e-023 5.616e-023 -22.213 -22.251 -0.037 (0) - CaH[14C]O[18O]O+ 6.123e-023 5.616e-023 -22.213 -22.251 -0.037 (0) - Ca[14C]O2[18O] 1.007e-023 1.009e-023 -22.997 -22.996 0.001 (0) - H[14C][18O]2O- 5.785e-024 5.292e-024 -23.238 -23.276 -0.039 (0) - H[14C][18O]O[18O]- 5.785e-024 5.292e-024 -23.238 -23.276 -0.039 (0) - H[14C]O[18O]2- 5.785e-024 5.292e-024 -23.238 -23.276 -0.039 (0) - [14C]O2[18O]-2 5.165e-024 3.619e-024 -23.287 -23.441 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.886 -69.885 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.887 -72.886 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.90 -17.76 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -22.42 -23.92 -1.50 [14C][18O]2 - [14C]H4(g) -28.46 -31.32 -2.86 [14C]H4 - [14C]O2(g) -17.05 -18.52 -1.47 [14C]O2 - [14C]O[18O](g) -19.43 -21.22 -1.79 [14C]O[18O] - [18O]2(g) -70.60 -72.89 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.58 -15.42 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.73 -10.02 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.52 -7.32 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -20.41 -12.72 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.94 -15.80 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.30 -12.45 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.59 -67.49 -2.89 O2 - O[18O](g) -67.29 -70.19 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - --------------------------------------- -Reading input data for simulation 107. --------------------------------------- - - USE solution 1 - USE solid_solution 1 - USE reaction 1 - SAVE solution 1 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 106. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 5.0000e-002 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.00e-004 - Calcite 4.91e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.03e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.21e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.25e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.51e-006 5.51e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.39e-008 3.39e-008 6.78e-005 - Ca[13C]O[18O]2(s) 6.96e-011 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.76e-014 4.76e-014 9.52e-011 - Ca[14C]O3(s) 1.40e-019 1.40e-019 2.81e-016 - Ca[14C]O2[18O](s) 8.65e-022 8.65e-022 1.73e-018 - Ca[14C]O[18O]2(s) 1.78e-024 1.77e-024 3.55e-021 - Ca[14C][18O]3(s) 1.21e-027 2.14e-028 2.43e-024 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9824 permil - R(13C) 1.11646e-002 -1.3931 permil - R(14C) 2.83787e-016 0.024134 pmc - R(18O) H2O(l) 1.99521e-003 -4.9839 permil - R(18O) OH- 1.92124e-003 -41.871 permil - R(18O) H3O+ 2.04134e-003 18.024 permil - R(13C) CO2(aq) 1.10847e-002 -8.5397 permil - R(14C) CO2(aq) 2.79736e-016 0.023789 pmc - R(18O) CO2(aq) 2.07917e-003 36.89 permil - R(18O) HCO3- 1.99521e-003 -4.9839 permil - R(13C) HCO3- 1.11812e-002 0.085877 permil - R(14C) HCO3- 2.84625e-016 0.024205 pmc - R(18O) CO3-2 1.99521e-003 -4.9839 permil - R(13C) CO3-2 1.11651e-002 -1.3493 permil - R(14C) CO3-2 2.83809e-016 0.024136 pmc - R(13C) CH4(aq) 1.10847e-002 -8.5397 permil - R(14C) CH4(aq) 2.79736e-016 0.023789 pmc - R(18O) Calcite 2.05265e-003 23.663 permil - R(13C) Calcite 1.12033e-002 2.0667 permil - R(14C) Calcite 2.85754e-016 0.024301 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6206e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.0214e-011 0 -Alpha 14C CH4(aq)/CO2(aq) 1 6.4393e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.520e-005 6.501e-005 - [14C] 1.657e-018 1.652e-018 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.352 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.471e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 2.003e-016 - CH4 2.003e-016 2.006e-016 -15.698 -15.698 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.460e-006 5.469e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 7.554e-013 - H2 3.777e-013 3.783e-013 -12.423 -12.422 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -67.538 -67.537 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -69.937 -69.936 0.001 (0) -[13C](-4) 2.220e-018 - [13C]H4 2.220e-018 2.224e-018 -17.654 -17.653 0.001 (0) -[13C](4) 6.520e-005 - H[13C]O3- 5.259e-005 4.811e-005 -4.279 -4.318 -0.039 (0) - [13C]O2 1.104e-005 1.106e-005 -4.957 -4.956 0.001 (0) - CaH[13C]O3+ 1.111e-006 1.019e-006 -5.954 -5.992 -0.037 (0) - H[13C]O2[18O]- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C][18O]O2- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.049e-007 9.599e-008 -6.979 -7.018 -0.039 (0) - Ca[13C]O3 6.097e-008 6.107e-008 -7.215 -7.214 0.001 (0) - [13C]O[18O] 4.590e-008 4.598e-008 -7.338 -7.337 0.001 (0) - [13C]O3-2 3.127e-008 2.191e-008 -7.505 -7.659 -0.155 (0) - CaH[13C]O[18O]O+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C][18O]O2+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - CaH[13C]O2[18O]+ 2.216e-009 2.033e-009 -8.654 -8.692 -0.037 (0) - Ca[13C]O2[18O] 3.649e-010 3.655e-010 -9.438 -9.437 0.001 (0) - H[13C][18O]O[18O]- 2.094e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C][18O]2O- 2.094e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.094e-010 1.915e-010 -9.679 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.872e-010 1.311e-010 -9.728 -9.882 -0.155 (0) -[14C](-4) 5.603e-032 - [14C]H4 5.603e-032 5.612e-032 -31.252 -31.251 0.001 (0) -[14C](4) 1.657e-018 - H[14C]O3- 1.339e-018 1.225e-018 -17.873 -17.912 -0.039 (0) - [14C]O2 2.786e-019 2.790e-019 -18.555 -18.554 0.001 (0) - CaH[14C]O3+ 2.827e-020 2.593e-020 -19.549 -19.586 -0.037 (0) - H[14C][18O]O2- 2.671e-021 2.444e-021 -20.573 -20.612 -0.039 (0) - H[14C]O[18O]O- 2.671e-021 2.444e-021 -20.573 -20.612 -0.039 (0) - H[14C]O2[18O]- 2.671e-021 2.444e-021 -20.573 -20.612 -0.039 (0) - Ca[14C]O3 1.550e-021 1.552e-021 -20.810 -20.809 0.001 (0) - [14C]O[18O] 1.158e-021 1.160e-021 -20.936 -20.935 0.001 (0) - [14C]O3-2 7.950e-022 5.569e-022 -21.100 -21.254 -0.155 (0) - CaH[14C]O2[18O]+ 5.640e-023 5.174e-023 -22.249 -22.286 -0.037 (0) - CaH[14C][18O]O2+ 5.640e-023 5.174e-023 -22.249 -22.286 -0.037 (0) - CaH[14C]O[18O]O+ 5.640e-023 5.174e-023 -22.249 -22.286 -0.037 (0) - Ca[14C]O2[18O] 9.276e-024 9.291e-024 -23.033 -23.032 0.001 (0) - H[14C][18O]O[18O]- 5.329e-024 4.876e-024 -23.273 -23.312 -0.039 (0) - H[14C]O[18O]2- 5.329e-024 4.876e-024 -23.273 -23.312 -0.039 (0) - H[14C][18O]2O- 5.329e-024 4.876e-024 -23.273 -23.312 -0.039 (0) - [14C]O2[18O]-2 4.758e-024 3.334e-024 -23.323 -23.477 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.585e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -69.937 -69.936 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -72.938 -72.938 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.79 -17.65 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -22.45 -23.95 -1.50 [14C][18O]2 - [14C]H4(g) -28.39 -31.25 -2.86 [14C]H4 - [14C]O2(g) -17.09 -18.55 -1.47 [14C]O2 - [14C]O[18O](g) -19.47 -21.25 -1.79 [14C]O[18O] - [18O]2(g) -70.65 -72.94 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -23.61 -15.46 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -17.76 -10.06 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -15.55 -7.36 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -20.45 -12.76 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.84 -15.70 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.27 -12.42 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.65 -67.54 -2.89 O2 - O[18O](g) -67.35 -70.24 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - --------------------------------------- -Reading input data for simulation 108. --------------------------------------- - - END ------------------- -End of simulation. ------------------- - --------------------------------------- -Reading input data for simulation 109. --------------------------------------- - - USER_GRAPH 1 Oxygen-18 - -headings Closed--Dissolved Closed--Calcite - -start - 10 PUT(GET(1) + 1, 1) - 20 PLOT_XY RXN*GET(1),ISO("R(18O)"), color=Blue, line_w=0, symbol=Circle - 30 PLOT_XY RXN*GET(1),ISO("R(18O)_Calcite"), color=Black, line_w=0, symbol=Circle - -end - END ------------------- -End of simulation. ------------------- - --------------------------------------- -Reading input data for simulation 110. --------------------------------------- - - USER_GRAPH 2 Carbon-13 - -headings Closed--Dissolved Closed--Calcite - -start - 10 PLOT_XY RXN*GET(1),ISO("R(13C)"), color=Blue, line_w=2, symbol=None - 20 PLOT_XY RXN*GET(1),ISO("R(13C)_Calcite"), color=Black, line_w=2, symbol=None - -end - END ------------------- -End of simulation. ------------------- - --------------------------------------- -Reading input data for simulation 111. --------------------------------------- - - USER_GRAPH 3 Carbon-14 - -headings Closed--Dissolved Closed--Calcite - -start - 10 PLOT_XY RXN*GET(1),ISO("R(14C)"), color=Blue, line_w=2, symbol=None - 20 PLOT_XY RXN*GET(1),ISO("R(14C)_Calcite"), color=Black, line_w=2, symbol=None - -end - END ------------------- -End of simulation. ------------------- - --------------------------------------- -Reading input data for simulation 112. --------------------------------------- - - USER_PRINT - 10 PRINT "Calcite added: ", GET(1), GET(1)*0.0005, RXN - SOLUTION 1 - pH 5 charge - pe 10 - C 2 CO2(g) -1.0 - [13C] -25 # permil - [14C] 100 # pmc - [18O] -5 # permil - END -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 1. - -----------------------------------User print----------------------------------- - -Calcite added: 0 0 0 - ------------------------------------Isotopes------------------------------------ - - Isotope Molality Moles Ratio Units - - C 3.40658e-003 3.40658e-003 - [13C] 3.71341e-005 3.71341e-005 -2.50000e+001 permil - [14C] 4.04942e-015 4.04942e-015 1.00000e+002 pmc - - O 5.54026e+001 5.54026e+001 - [18O] 1.10538e-001 1.10538e-001 -5.00000e+000 permil - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 3.444e-003 3.444e-003 Equilibrium with CO2(g) - -----------------------------Description of solution---------------------------- - - pH = 4.410 Charge balance - pe = 10.000 - Activity of water = 1.000 - Ionic strength = 3.919e-005 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.366e-018 - Total CO2 (mol/kg) = 3.444e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.366e-018 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 7 - Total H = 1.110126e+002 - Total O = 5.540264e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 3.919e-005 3.891e-005 -4.407 -4.410 -0.003 (0) - OH- 2.592e-010 2.573e-010 -9.586 -9.590 -0.003 (0) - H2O 5.551e+001 9.999e-001 1.744 -0.000 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -93.357 -93.357 0.000 (0) -C(4) 3.444e-003 - CO2 3.405e-003 3.405e-003 -2.468 -2.468 0.000 (0) - HCO3- 3.919e-005 3.890e-005 -4.407 -4.410 -0.003 (0) -H(0) 2.144e-032 - H2 1.072e-032 1.072e-032 -31.970 -31.970 0.000 (0) -O(0) 7.256e-029 - O2 3.628e-029 3.628e-029 -28.440 -28.440 0.000 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - CH4(g) -90.50 -93.36 -2.86 CH4 - CO2(g) -1.00 -2.47 -1.47 CO2 - H2(g) -28.82 -31.97 -3.15 H2 - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -25.55 -28.44 -2.89 O2 - - ------------------- -End of simulation. ------------------- - --------------------------------------- -Reading input data for simulation 113. --------------------------------------- - - INCREMENTAL_REACTIONS true - REACTION 1 - Calcite 9.8283e-001 - Ca[13C]O3(s) 1.1011e-002 - CaCO2[18O](s) 6.0825e-003 - Ca[13C]O2[18O](s) 6.8147e-005 - CaCO[18O]2(s) 1.2548e-005 - Ca[13C]O[18O]2(s) 1.4058e-007 - CaC[18O]3(s) 8.6284e-009 - Ca[13C][18O]3(s) 9.6671e-011 - 0.05 mole in 100 steps - RUN_CELLS - -cells 1 - END --------------------------- -Beginning of run as cells. --------------------------- - ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 1 5.0000e-004 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 0.00e+000 - Calcite 0.00e+000 0.00e+000 0.00e+000 - CaCO2[18O](s) 0.00e+000 0.00e+000 0.00e+000 - CaCO[18O]2(s) 0.00e+000 0.00e+000 0.00e+000 - CaC[18O]3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C]O3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C]O2[18O](s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C]O[18O]2(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C][18O]3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C]O3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C]O2[18O](s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C]O[18O]2(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C][18O]3(s) 0.00e+000 0.00e+000 0.00e+000 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99518e-003 -4.9991 permil - R(13C) 1.09391e-002 -21.569 permil - R(14C) 1.03804e-012 88.277 pmc - R(18O) H2O(l) 1.99517e-003 -5.0035 permil - R(18O) OH- 1.92120e-003 -41.89 permil - R(18O) H3O+ 2.04130e-003 18.004 permil - R(13C) CO2(aq) 1.09149e-002 -23.725 permil - R(14C) CO2(aq) 1.03345e-012 87.887 pmc - R(18O) CO2(aq) 2.07913e-003 36.87 permil - R(18O) HCO3- 1.99517e-003 -5.0035 permil - R(13C) HCO3- 1.10099e-002 -15.232 permil - R(14C) HCO3- 1.05151e-012 89.423 pmc - R(18O) CO3-2 1.99517e-003 -5.0035 permil - R(13C) CO3-2 1.09941e-002 -16.645 permil - R(14C) CO3-2 1.04849e-012 89.166 pmc - R(13C) CH4(aq) 1.09149e-002 -23.725 permil - R(14C) CH4(aq) 1.03345e-012 87.887 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 3.1086e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 1.9633e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 3.1086e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 9.3259e-012 0 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 3.912e-003 3.901e-003 - Ca 5.014e-004 5.000e-004 - [13C] 4.280e-005 4.267e-005 - [14C] 4.061e-015 4.049e-015 - [18O] 1.109e-001 1.105e-001 - -----------------------------Description of solution---------------------------- - - pH = 5.863 Charge balance - pe = 0.245 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 1.495e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 1.003e-003 - Total CO2 (mol/kg) = 3.912e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.462e-016 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 19 - Total H = 1.110126e+002 - Total O = 5.540414e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.426e-006 1.369e-006 -5.846 -5.863 -0.018 (0) - OH- 7.606e-009 7.282e-009 -8.119 -8.138 -0.019 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 9.958e-028 - CH4 9.958e-028 9.961e-028 -27.002 -27.002 0.000 (0) -C(4) 3.912e-003 - CO2 2.907e-003 2.908e-003 -2.537 -2.536 0.000 (0) - HCO3- 9.821e-004 9.406e-004 -3.008 -3.027 -0.019 (0) - CO[18O] 1.209e-005 1.209e-005 -4.918 -4.918 0.000 (0) - CaHCO3+ 5.241e-006 5.023e-006 -5.281 -5.299 -0.018 (0) - HC[18O]O2- 1.959e-006 1.877e-006 -5.708 -5.727 -0.019 (0) - HCO[18O]O- 1.959e-006 1.877e-006 -5.708 -5.727 -0.019 (0) - HCO2[18O]- 1.959e-006 1.877e-006 -5.708 -5.727 -0.019 (0) - CO3-2 3.822e-008 3.216e-008 -7.418 -7.493 -0.075 (0) - CaCO3 2.260e-008 2.261e-008 -7.646 -7.646 0.000 (0) - C[18O]2 1.257e-008 1.257e-008 -7.901 -7.901 0.000 (0) - CaHCO2[18O]+ 1.046e-008 1.002e-008 -7.981 -7.999 -0.018 (0) - CaHC[18O]O2+ 1.046e-008 1.002e-008 -7.981 -7.999 -0.018 (0) - CaHCO[18O]O+ 1.046e-008 1.002e-008 -7.981 -7.999 -0.018 (0) -Ca 5.014e-004 - Ca+2 4.961e-004 4.184e-004 -3.304 -3.378 -0.074 (0) - CaHCO3+ 5.241e-006 5.023e-006 -5.281 -5.299 -0.018 (0) - CaH[13C]O3+ 5.770e-008 5.530e-008 -7.239 -7.257 -0.018 (0) - CaCO3 2.260e-008 2.261e-008 -7.646 -7.646 0.000 (0) - CaHCO2[18O]+ 1.046e-008 1.002e-008 -7.981 -7.999 -0.018 (0) - CaHC[18O]O2+ 1.046e-008 1.002e-008 -7.981 -7.999 -0.018 (0) - CaHCO[18O]O+ 1.046e-008 1.002e-008 -7.981 -7.999 -0.018 (0) -H(0) 8.641e-016 - H2 4.321e-016 4.322e-016 -15.364 -15.364 0.000 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -61.653 -61.653 0.000 (0) - O[18O] 0.000e+000 0.000e+000 -64.052 -64.052 0.000 (0) -[13C](-4) 1.087e-029 - [13C]H4 1.087e-029 1.087e-029 -28.964 -28.964 0.000 (0) -[13C](4) 4.280e-005 - [13C]O2 3.173e-005 3.174e-005 -4.499 -4.498 0.000 (0) - H[13C]O3- 1.081e-005 1.036e-005 -4.966 -4.985 -0.019 (0) - [13C]O[18O] 1.319e-007 1.320e-007 -6.880 -6.879 0.000 (0) - CaH[13C]O3+ 5.770e-008 5.530e-008 -7.239 -7.257 -0.018 (0) - H[13C]O[18O]O- 2.157e-008 2.066e-008 -7.666 -7.685 -0.019 (0) - H[13C]O2[18O]- 2.157e-008 2.066e-008 -7.666 -7.685 -0.019 (0) - H[13C][18O]O2- 2.157e-008 2.066e-008 -7.666 -7.685 -0.019 (0) - [13C]O3-2 4.202e-010 3.535e-010 -9.377 -9.452 -0.075 (0) - Ca[13C]O3 2.484e-010 2.485e-010 -9.605 -9.605 0.000 (0) - [13C][18O]2 1.372e-010 1.372e-010 -9.863 -9.863 0.000 (0) - CaH[13C]O2[18O]+ 1.151e-010 1.103e-010 -9.939 -9.957 -0.018 (0) - CaH[13C]O[18O]O+ 1.151e-010 1.103e-010 -9.939 -9.957 -0.018 (0) - CaH[13C][18O]O2+ 1.151e-010 1.103e-010 -9.939 -9.957 -0.018 (0) - H[13C][18O]2O- 4.304e-011 4.122e-011 -10.366 -10.385 -0.019 (0) - H[13C][18O]O[18O]- 4.304e-011 4.122e-011 -10.366 -10.385 -0.019 (0) - H[13C]O[18O]2- 4.304e-011 4.122e-011 -10.366 -10.385 -0.019 (0) -[14C](-4) 1.029e-039 - [14C]H4 1.029e-039 1.029e-039 -38.988 -38.987 0.000 (0) -[14C](4) 4.061e-015 - [14C]O2 3.004e-015 3.005e-015 -14.522 -14.522 0.000 (0) - H[14C]O3- 1.033e-015 9.890e-016 -14.986 -15.005 -0.019 (0) - [14C]O[18O] 1.249e-017 1.250e-017 -16.903 -16.903 0.000 (0) - CaH[14C]O3+ 5.511e-018 5.281e-018 -17.259 -17.277 -0.018 (0) - H[14C][18O]O2- 2.060e-018 1.973e-018 -17.686 -17.705 -0.019 (0) - H[14C]O[18O]O- 2.060e-018 1.973e-018 -17.686 -17.705 -0.019 (0) - H[14C]O2[18O]- 2.060e-018 1.973e-018 -17.686 -17.705 -0.019 (0) - [14C]O3-2 4.008e-020 3.372e-020 -19.397 -19.472 -0.075 (0) - Ca[14C]O3 2.369e-020 2.370e-020 -19.625 -19.625 0.000 (0) - [14C][18O]2 1.299e-020 1.299e-020 -19.887 -19.886 0.000 (0) - CaH[14C]O2[18O]+ 1.099e-020 1.054e-020 -19.959 -19.977 -0.018 (0) - CaH[14C][18O]O2+ 1.099e-020 1.054e-020 -19.959 -19.977 -0.018 (0) - CaH[14C]O[18O]O+ 1.099e-020 1.054e-020 -19.959 -19.977 -0.018 (0) - H[14C]O[18O]2- 4.111e-021 3.937e-021 -20.386 -20.405 -0.019 (0) - H[14C][18O]O[18O]- 4.111e-021 3.937e-021 -20.386 -20.405 -0.019 (0) - H[14C][18O]2O- 4.111e-021 3.937e-021 -20.386 -20.405 -0.019 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - CO[18O] 1.209e-005 1.209e-005 -4.918 -4.918 0.000 (0) - HCO[18O]O- 1.959e-006 1.877e-006 -5.708 -5.727 -0.019 (0) - HCO2[18O]- 1.959e-006 1.877e-006 -5.708 -5.727 -0.019 (0) - HC[18O]O2- 1.959e-006 1.877e-006 -5.708 -5.727 -0.019 (0) - [13C]O[18O] 1.319e-007 1.320e-007 -6.880 -6.879 0.000 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -64.052 -64.052 0.000 (0) - [18O]2 0.000e+000 0.000e+000 -67.053 -67.053 0.000 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.40 -9.90 -1.50 [13C][18O]2 - [13C]H4(g) -26.10 -28.96 -2.86 [13C]H4 - [13C]O2(g) -3.03 -4.50 -1.47 [13C]O2 - [13C]O[18O](g) -5.41 -7.20 -1.79 [13C]O[18O] - [14C][18O]2(g) -18.42 -19.92 -1.50 [14C][18O]2 - [14C]H4(g) -36.13 -38.99 -2.86 [14C]H4 - [14C]O2(g) -13.05 -14.52 -1.47 [14C]O2 - [14C]O[18O](g) -15.44 -17.22 -1.79 [14C]O[18O] - [18O]2(g) -64.76 -67.05 -2.29 [18O]2 - C[18O]2(g) -6.43 -7.94 -1.50 C[18O]2 - Ca[13C][18O]3(s) -12.41 -4.25 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -6.56 1.15 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -4.35 3.85 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -9.25 -1.55 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -22.43 -14.28 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -16.58 -8.88 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -14.37 -6.18 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -19.27 -11.58 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -10.45 -2.29 8.16 CaC[18O]3 - CaCO2[18O](s) -4.60 3.11 7.71 CaCO2[18O] - CaCO[18O]2(s) -7.29 0.41 7.70 CaCO[18O]2 - Calcite -2.39 -10.87 -8.48 CaCO3 - CH4(g) -24.14 -27.00 -2.86 CH4 - CO2(g) -1.07 -2.54 -1.47 CO2 - CO[18O](g) -3.45 -5.24 -1.79 CO[18O] - H2(g) -12.21 -15.36 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -58.76 -61.65 -2.89 O2 - O[18O](g) -61.46 -64.35 -2.89 O[18O] - - -Reaction step 2. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 2 1.0000e-003 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 0.00e+000 - Calcite 0.00e+000 0.00e+000 0.00e+000 - CaCO2[18O](s) 0.00e+000 0.00e+000 0.00e+000 - CaCO[18O]2(s) 0.00e+000 0.00e+000 0.00e+000 - CaC[18O]3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C]O3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C]O2[18O](s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C]O[18O]2(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C][18O]3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C]O3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C]O2[18O](s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C]O[18O]2(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C][18O]3(s) 0.00e+000 0.00e+000 0.00e+000 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99518e-003 -4.9982 permil - R(13C) 1.09688e-002 -18.909 permil - R(14C) 9.21264e-013 78.346 pmc - R(18O) H2O(l) 1.99517e-003 -5.0019 permil - R(18O) OH- 1.92120e-003 -41.889 permil - R(18O) H3O+ 2.04131e-003 18.006 permil - R(18O) O2(aq) 1.99517e-003 -5.0019 permil - R(13C) CO2(aq) 1.09260e-002 -22.736 permil - R(14C) CO2(aq) 9.14074e-013 77.735 pmc - R(18O) CO2(aq) 2.07914e-003 36.872 permil - R(18O) HCO3- 1.99517e-003 -5.0019 permil - R(13C) HCO3- 1.10211e-002 -14.234 permil - R(14C) HCO3- 9.30048e-013 79.093 pmc - R(18O) CO3-2 1.99517e-003 -5.0019 permil - R(13C) CO3-2 1.10052e-002 -15.648 permil - R(14C) CO3-2 9.27381e-013 78.866 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2402e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.4409e-013 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -2.0765e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 4.408e-003 4.396e-003 - Ca 1.003e-003 1.000e-003 - [13C] 4.835e-005 4.821e-005 - [14C] 4.061e-015 4.049e-015 - [18O] 1.109e-001 1.105e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.235 Charge balance - pe = 11.683 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 2.970e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 2.006e-003 - Total CO2 (mol/kg) = 4.408e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.408e-016 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 19 - Total H = 1.110126e+002 - Total O = 5.540564e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 6.146e-007 5.816e-007 -6.211 -6.235 -0.024 (0) - OH- 1.821e-008 1.714e-008 -7.740 -7.766 -0.026 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -121.566 -121.565 0.000 (0) -C(4) 4.408e-003 - CO2 2.414e-003 2.416e-003 -2.617 -2.617 0.000 (0) - HCO3- 1.953e-003 1.840e-003 -2.709 -2.735 -0.026 (0) - CaHCO3+ 1.936e-005 1.827e-005 -4.713 -4.738 -0.025 (0) - CO[18O] 1.004e-005 1.005e-005 -4.998 -4.998 0.000 (0) - HCO[18O]O- 3.896e-006 3.670e-006 -5.409 -5.435 -0.026 (0) - HCO2[18O]- 3.896e-006 3.670e-006 -5.409 -5.435 -0.026 (0) - HC[18O]O2- 3.896e-006 3.670e-006 -5.409 -5.435 -0.026 (0) - CaCO3 1.934e-007 1.935e-007 -6.714 -6.713 0.000 (0) - CO3-2 1.880e-007 1.481e-007 -6.726 -6.830 -0.104 (0) - CaHCO2[18O]+ 3.863e-008 3.644e-008 -7.413 -7.438 -0.025 (0) - CaHC[18O]O2+ 3.863e-008 3.644e-008 -7.413 -7.438 -0.025 (0) - CaHCO[18O]O+ 3.863e-008 3.644e-008 -7.413 -7.438 -0.025 (0) - C[18O]2 1.044e-008 1.044e-008 -7.981 -7.981 0.000 (0) - HCO[18O]2- 7.773e-009 7.323e-009 -8.109 -8.135 -0.026 (0) - HC[18O]O[18O]- 7.773e-009 7.323e-009 -8.109 -8.135 -0.026 (0) - HC[18O]2O- 7.773e-009 7.323e-009 -8.109 -8.135 -0.026 (0) -Ca 1.003e-003 - Ca+2 9.830e-004 7.781e-004 -3.007 -3.109 -0.102 (0) - CaHCO3+ 1.936e-005 1.827e-005 -4.713 -4.738 -0.025 (0) - CaH[13C]O3+ 2.134e-007 2.013e-007 -6.671 -6.696 -0.025 (0) - CaCO3 1.934e-007 1.935e-007 -6.714 -6.713 0.000 (0) - CaHCO2[18O]+ 3.863e-008 3.644e-008 -7.413 -7.438 -0.025 (0) - CaHC[18O]O2+ 3.863e-008 3.644e-008 -7.413 -7.438 -0.025 (0) - CaHCO[18O]O+ 3.863e-008 3.644e-008 -7.413 -7.438 -0.025 (0) - Ca[13C]O3 2.128e-009 2.130e-009 -8.672 -8.672 0.000 (0) - CaCO2[18O] 1.158e-009 1.158e-009 -8.936 -8.936 0.000 (0) -H(0) 2.068e-039 - H2 1.034e-039 1.035e-039 -38.985 -38.985 0.000 (0) -O(0) 7.779e-015 - O2 3.874e-015 3.877e-015 -14.412 -14.412 0.000 (0) - O[18O] 1.546e-017 1.547e-017 -16.811 -16.811 0.000 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -123.527 -123.527 0.000 (0) -[13C](4) 4.835e-005 - [13C]O2 2.638e-005 2.639e-005 -4.579 -4.578 0.000 (0) - H[13C]O3- 2.152e-005 2.027e-005 -4.667 -4.693 -0.026 (0) - CaH[13C]O3+ 2.134e-007 2.013e-007 -6.671 -6.696 -0.025 (0) - [13C]O[18O] 1.097e-007 1.098e-007 -6.960 -6.960 0.000 (0) - H[13C]O2[18O]- 4.294e-008 4.045e-008 -7.367 -7.393 -0.026 (0) - H[13C][18O]O2- 4.294e-008 4.045e-008 -7.367 -7.393 -0.026 (0) - H[13C]O[18O]O- 4.294e-008 4.045e-008 -7.367 -7.393 -0.026 (0) - Ca[13C]O3 2.128e-009 2.130e-009 -8.672 -8.672 0.000 (0) - [13C]O3-2 2.069e-009 1.629e-009 -8.684 -8.788 -0.104 (0) - CaH[13C]O2[18O]+ 4.258e-010 4.016e-010 -9.371 -9.396 -0.025 (0) - CaH[13C]O[18O]O+ 4.258e-010 4.016e-010 -9.371 -9.396 -0.025 (0) - CaH[13C][18O]O2+ 4.258e-010 4.016e-010 -9.371 -9.396 -0.025 (0) - [13C][18O]2 1.140e-010 1.141e-010 -9.943 -9.943 0.000 (0) - H[13C][18O]2O- 8.566e-011 8.070e-011 -10.067 -10.093 -0.026 (0) - H[13C][18O]O[18O]- 8.566e-011 8.070e-011 -10.067 -10.093 -0.026 (0) - H[13C]O[18O]2- 8.566e-011 8.070e-011 -10.067 -10.093 -0.026 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -133.605 -133.604 0.000 (0) -[14C](4) 4.061e-015 - [14C]O2 2.207e-015 2.208e-015 -14.656 -14.656 0.000 (0) - H[14C]O3- 1.816e-015 1.711e-015 -14.741 -14.767 -0.026 (0) - CaH[14C]O3+ 1.801e-017 1.699e-017 -16.745 -16.770 -0.025 (0) - [14C]O[18O] 9.176e-018 9.182e-018 -17.037 -17.037 0.000 (0) - H[14C]O[18O]O- 3.623e-018 3.413e-018 -17.441 -17.467 -0.026 (0) - H[14C]O2[18O]- 3.623e-018 3.413e-018 -17.441 -17.467 -0.026 (0) - H[14C][18O]O2- 3.623e-018 3.413e-018 -17.441 -17.467 -0.026 (0) - Ca[14C]O3 1.794e-019 1.795e-019 -18.746 -18.746 0.000 (0) - [14C]O3-2 1.743e-019 1.373e-019 -18.759 -18.862 -0.104 (0) - CaH[14C]O[18O]O+ 3.593e-020 3.389e-020 -19.445 -19.470 -0.025 (0) - CaH[14C]O2[18O]+ 3.593e-020 3.389e-020 -19.445 -19.470 -0.025 (0) - CaH[14C][18O]O2+ 3.593e-020 3.389e-020 -19.445 -19.470 -0.025 (0) - [14C][18O]2 9.539e-021 9.545e-021 -20.021 -20.020 0.000 (0) - H[14C][18O]O[18O]- 7.229e-021 6.810e-021 -20.141 -20.167 -0.026 (0) - H[14C][18O]2O- 7.229e-021 6.810e-021 -20.141 -20.167 -0.026 (0) - H[14C]O[18O]2- 7.229e-021 6.810e-021 -20.141 -20.167 -0.026 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - CO[18O] 1.004e-005 1.005e-005 -4.998 -4.998 0.000 (0) - HCO2[18O]- 3.896e-006 3.670e-006 -5.409 -5.435 -0.026 (0) - HC[18O]O2- 3.896e-006 3.670e-006 -5.409 -5.435 -0.026 (0) - HCO[18O]O- 3.896e-006 3.670e-006 -5.409 -5.435 -0.026 (0) -[18O](0) 1.549e-017 - O[18O] 1.546e-017 1.547e-017 -16.811 -16.811 0.000 (0) - [18O]2 1.542e-020 1.543e-020 -19.812 -19.812 0.000 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.48 -9.98 -1.50 [13C][18O]2 - [13C]H4(g) -120.67 -123.53 -2.86 [13C]H4 - [13C]O2(g) -3.11 -4.58 -1.47 [13C]O2 - [13C]O[18O](g) -5.49 -7.28 -1.79 [13C]O[18O] - [14C][18O]2(g) -18.55 -20.06 -1.50 [14C][18O]2 - [14C]H4(g) -130.74 -133.60 -2.86 [14C]H4 - [14C]O2(g) -13.19 -14.66 -1.47 [14C]O2 - [14C]O[18O](g) -15.57 -17.36 -1.79 [14C]O[18O] - [18O]2(g) -17.52 -19.81 -2.29 [18O]2 - C[18O]2(g) -6.51 -8.02 -1.50 C[18O]2 - Ca[13C][18O]3(s) -11.48 -3.32 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -5.63 2.08 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -3.42 4.78 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -8.31 -0.62 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.55 -13.40 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.70 -8.00 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.49 -5.30 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.39 -10.70 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -9.52 -1.36 8.16 CaC[18O]3 - CaCO2[18O](s) -3.67 4.04 7.71 CaCO2[18O] - CaCO[18O]2(s) -6.36 1.34 7.70 CaCO[18O]2 - Calcite -1.46 -9.94 -8.48 CaCO3 - CH4(g) -118.71 -121.57 -2.86 CH4 - CO2(g) -1.15 -2.62 -1.47 CO2 - CO[18O](g) -3.53 -5.32 -1.79 CO[18O] - H2(g) -35.84 -38.99 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.52 -14.41 -2.89 O2 - O[18O](g) -14.22 -17.11 -2.89 O[18O] - - -Reaction step 3. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 3 1.5000e-003 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 0.00e+000 - Calcite 0.00e+000 0.00e+000 0.00e+000 - CaCO2[18O](s) 0.00e+000 0.00e+000 0.00e+000 - CaCO[18O]2(s) 0.00e+000 0.00e+000 0.00e+000 - CaC[18O]3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C]O3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C]O2[18O](s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C]O[18O]2(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C][18O]3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C]O3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C]O2[18O](s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C]O[18O]2(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C][18O]3(s) 0.00e+000 0.00e+000 0.00e+000 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99518e-003 -4.9973 permil - R(13C) 1.09925e-002 -16.788 permil - R(14C) 8.28108e-013 70.424 pmc - R(18O) H2O(l) 1.99517e-003 -5.0002 permil - R(18O) OH- 1.92121e-003 -41.887 permil - R(18O) H3O+ 2.04131e-003 18.007 permil - R(18O) O2(aq) 1.99517e-003 -5.0002 permil - R(13C) CO2(aq) 1.09348e-002 -21.949 permil - R(14C) CO2(aq) 8.19422e-013 69.685 pmc - R(18O) CO2(aq) 2.07914e-003 36.873 permil - R(18O) HCO3- 1.99517e-003 -5.0002 permil - R(13C) HCO3- 1.10299e-002 -13.44 permil - R(14C) HCO3- 8.33742e-013 70.903 pmc - R(18O) CO3-2 1.99517e-003 -5.0002 permil - R(13C) CO3-2 1.10141e-002 -14.856 permil - R(14C) CO3-2 8.31350e-013 70.7 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2421e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -2.095e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 4.904e-003 4.890e-003 - Ca 1.504e-003 1.500e-003 - [13C] 5.391e-005 5.375e-005 - [14C] 4.061e-015 4.049e-015 - [18O] 1.109e-001 1.105e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.503 Charge balance - pe = 11.488 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 4.428e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 3.009e-003 - Total CO2 (mol/kg) = 4.904e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.496e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 6 - Total H = 1.110126e+002 - Total O = 5.540714e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 3.351e-007 3.139e-007 -6.475 -6.503 -0.028 (0) - OH- 3.415e-008 3.176e-008 -7.467 -7.498 -0.032 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -122.246 -122.246 0.000 (0) -C(4) 4.904e-003 - HCO3- 2.915e-003 2.713e-003 -2.535 -2.567 -0.031 (0) - CO2 1.921e-003 1.923e-003 -2.716 -2.716 0.000 (0) - CaHCO3+ 4.102e-005 3.825e-005 -4.387 -4.417 -0.030 (0) - CO[18O] 7.989e-006 7.997e-006 -5.097 -5.097 0.000 (0) - HCO2[18O]- 5.816e-006 5.413e-006 -5.235 -5.267 -0.031 (0) - HC[18O]O2- 5.816e-006 5.413e-006 -5.235 -5.267 -0.031 (0) - HCO[18O]O- 5.816e-006 5.413e-006 -5.235 -5.267 -0.031 (0) - CaCO3 7.501e-007 7.509e-007 -6.125 -6.124 0.000 (0) - CO3-2 5.390e-007 4.046e-007 -6.268 -6.393 -0.125 (0) - CaHCO2[18O]+ 8.184e-008 7.632e-008 -7.087 -7.117 -0.030 (0) - CaHCO[18O]O+ 8.184e-008 7.632e-008 -7.087 -7.117 -0.030 (0) - CaHC[18O]O2+ 8.184e-008 7.632e-008 -7.087 -7.117 -0.030 (0) - HC[18O]2O- 1.160e-008 1.080e-008 -7.935 -7.967 -0.031 (0) - HCO[18O]2- 1.160e-008 1.080e-008 -7.935 -7.967 -0.031 (0) - HC[18O]O[18O]- 1.160e-008 1.080e-008 -7.935 -7.967 -0.031 (0) - C[18O]2 8.305e-009 8.314e-009 -8.081 -8.080 0.000 (0) -Ca 1.504e-003 - Ca+2 1.462e-003 1.105e-003 -2.835 -2.957 -0.122 (0) - CaHCO3+ 4.102e-005 3.825e-005 -4.387 -4.417 -0.030 (0) - CaCO3 7.501e-007 7.509e-007 -6.125 -6.124 0.000 (0) - CaH[13C]O3+ 4.525e-007 4.219e-007 -6.344 -6.375 -0.030 (0) - CaHCO2[18O]+ 8.184e-008 7.632e-008 -7.087 -7.117 -0.030 (0) - CaHC[18O]O2+ 8.184e-008 7.632e-008 -7.087 -7.117 -0.030 (0) - CaHCO[18O]O+ 8.184e-008 7.632e-008 -7.087 -7.117 -0.030 (0) - Ca[13C]O3 8.262e-009 8.270e-009 -8.083 -8.082 0.000 (0) - CaCO2[18O] 4.490e-009 4.494e-009 -8.348 -8.347 0.000 (0) -H(0) 1.479e-039 - H2 7.397e-040 7.405e-040 -39.131 -39.131 0.000 (0) -O(0) 1.519e-014 - O2 7.565e-015 7.573e-015 -14.121 -14.121 0.000 (0) - O[18O] 3.019e-017 3.022e-017 -16.520 -16.520 0.000 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -124.208 -124.207 0.000 (0) -[13C](4) 5.391e-005 - H[13C]O3- 3.215e-005 2.993e-005 -4.493 -4.524 -0.031 (0) - [13C]O2 2.101e-005 2.103e-005 -4.678 -4.677 0.000 (0) - CaH[13C]O3+ 4.525e-007 4.219e-007 -6.344 -6.375 -0.030 (0) - [13C]O[18O] 8.736e-008 8.745e-008 -7.059 -7.058 0.000 (0) - H[13C]O2[18O]- 6.415e-008 5.971e-008 -7.193 -7.224 -0.031 (0) - H[13C][18O]O2- 6.415e-008 5.971e-008 -7.193 -7.224 -0.031 (0) - H[13C]O[18O]O- 6.415e-008 5.971e-008 -7.193 -7.224 -0.031 (0) - Ca[13C]O3 8.262e-009 8.270e-009 -8.083 -8.082 0.000 (0) - [13C]O3-2 5.937e-009 4.456e-009 -8.226 -8.351 -0.125 (0) - CaH[13C]O[18O]O+ 9.027e-010 8.418e-010 -9.044 -9.075 -0.030 (0) - CaH[13C][18O]O2+ 9.027e-010 8.418e-010 -9.044 -9.075 -0.030 (0) - CaH[13C]O2[18O]+ 9.027e-010 8.418e-010 -9.044 -9.075 -0.030 (0) - H[13C]O[18O]2- 1.280e-010 1.191e-010 -9.893 -9.924 -0.031 (0) - H[13C][18O]2O- 1.280e-010 1.191e-010 -9.893 -9.924 -0.031 (0) - H[13C][18O]O[18O]- 1.280e-010 1.191e-010 -9.893 -9.924 -0.031 (0) - [13C][18O]2 9.082e-011 9.091e-011 -10.042 -10.041 0.000 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -134.333 -134.332 0.000 (0) -[14C](4) 4.061e-015 - H[14C]O3- 2.430e-015 2.262e-015 -14.614 -14.645 -0.031 (0) - [14C]O2 1.574e-015 1.576e-015 -14.803 -14.802 0.000 (0) - CaH[14C]O3+ 3.420e-017 3.189e-017 -16.466 -16.496 -0.030 (0) - [14C]O[18O] 6.547e-018 6.553e-018 -17.184 -17.184 0.000 (0) - H[14C]O[18O]O- 4.849e-018 4.513e-018 -17.314 -17.346 -0.031 (0) - H[14C]O2[18O]- 4.849e-018 4.513e-018 -17.314 -17.346 -0.031 (0) - H[14C][18O]O2- 4.849e-018 4.513e-018 -17.314 -17.346 -0.031 (0) - Ca[14C]O3 6.236e-019 6.242e-019 -18.205 -18.205 0.000 (0) - [14C]O3-2 4.481e-019 3.364e-019 -18.349 -18.473 -0.125 (0) - CaH[14C]O2[18O]+ 6.824e-020 6.363e-020 -19.166 -19.196 -0.030 (0) - CaH[14C][18O]O2+ 6.824e-020 6.363e-020 -19.166 -19.196 -0.030 (0) - CaH[14C]O[18O]O+ 6.824e-020 6.363e-020 -19.166 -19.196 -0.030 (0) - H[14C]O[18O]2- 9.674e-021 9.005e-021 -20.014 -20.046 -0.031 (0) - H[14C][18O]O[18O]- 9.674e-021 9.005e-021 -20.014 -20.046 -0.031 (0) - H[14C][18O]2O- 9.674e-021 9.005e-021 -20.014 -20.046 -0.031 (0) - [14C][18O]2 6.806e-021 6.813e-021 -20.167 -20.167 0.000 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - CO[18O] 7.989e-006 7.997e-006 -5.097 -5.097 0.000 (0) - HC[18O]O2- 5.816e-006 5.413e-006 -5.235 -5.267 -0.031 (0) - HCO[18O]O- 5.816e-006 5.413e-006 -5.235 -5.267 -0.031 (0) - HCO2[18O]- 5.816e-006 5.413e-006 -5.235 -5.267 -0.031 (0) -[18O](0) 3.025e-017 - O[18O] 3.019e-017 3.022e-017 -16.520 -16.520 0.000 (0) - [18O]2 3.012e-020 3.015e-020 -19.521 -19.521 0.000 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.57 -10.08 -1.50 [13C][18O]2 - [13C]H4(g) -121.35 -124.21 -2.86 [13C]H4 - [13C]O2(g) -3.21 -4.68 -1.47 [13C]O2 - [13C]O[18O](g) -5.59 -7.38 -1.79 [13C]O[18O] - [14C][18O]2(g) -18.70 -20.20 -1.50 [14C][18O]2 - [14C]H4(g) -131.47 -134.33 -2.86 [14C]H4 - [14C]O2(g) -13.33 -14.80 -1.47 [14C]O2 - [14C]O[18O](g) -15.72 -17.50 -1.79 [14C]O[18O] - [18O]2(g) -17.23 -19.52 -2.29 [18O]2 - C[18O]2(g) -6.61 -8.12 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.89 -2.73 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -5.04 2.67 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -2.83 5.37 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -7.72 -0.03 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.01 -12.86 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.16 -7.46 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.95 -4.76 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.85 -10.16 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.93 -0.77 8.16 CaC[18O]3 - CaCO2[18O](s) -3.08 4.63 7.71 CaCO2[18O] - CaCO[18O]2(s) -5.77 1.93 7.70 CaCO[18O]2 - Calcite -0.87 -9.35 -8.48 CaCO3 - CH4(g) -119.39 -122.25 -2.86 CH4 - CO2(g) -1.25 -2.72 -1.47 CO2 - CO[18O](g) -3.63 -5.42 -1.79 CO[18O] - H2(g) -35.98 -39.13 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.23 -14.12 -2.89 O2 - O[18O](g) -13.93 -16.82 -2.89 O[18O] - - -Reaction step 4. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 4 2.0000e-003 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 0.00e+000 - Calcite 0.00e+000 0.00e+000 0.00e+000 - CaCO2[18O](s) 0.00e+000 0.00e+000 0.00e+000 - CaCO[18O]2(s) 0.00e+000 0.00e+000 0.00e+000 - CaC[18O]3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C]O3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C]O2[18O](s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C]O[18O]2(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[13C][18O]3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C]O3(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C]O2[18O](s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C]O[18O]2(s) 0.00e+000 0.00e+000 0.00e+000 - Ca[14C][18O]3(s) 0.00e+000 0.00e+000 0.00e+000 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99518e-003 -4.9963 permil - R(13C) 1.10119e-002 -15.056 permil - R(14C) 7.52061e-013 63.957 pmc - R(18O) H2O(l) 1.99518e-003 -4.9985 permil - R(18O) OH- 1.92121e-003 -41.886 permil - R(18O) H3O+ 2.04131e-003 18.009 permil - R(18O) O2(aq) 1.99518e-003 -4.9985 permil - R(13C) CO2(aq) 1.09420e-002 -21.306 permil - R(14C) CO2(aq) 7.42536e-013 63.147 pmc - R(18O) CO2(aq) 2.07914e-003 36.875 permil - R(18O) HCO3- 1.99518e-003 -4.9985 permil - R(13C) HCO3- 1.10372e-002 -12.791 permil - R(14C) HCO3- 7.55512e-013 64.25 pmc - R(18O) CO3-2 1.99518e-003 -4.9985 permil - R(13C) CO3-2 1.10214e-002 -14.208 permil - R(14C) CO3-2 7.53345e-013 64.066 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2439e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.6621e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7115e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.400e-003 5.384e-003 - Ca 2.006e-003 2.000e-003 - [13C] 5.947e-005 5.929e-005 - [14C] 4.061e-015 4.049e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.750 Charge balance - pe = 11.260 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 5.871e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.012e-003 - Total CO2 (mol/kg) = 5.400e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.025e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 6 - Total H = 1.110126e+002 - Total O = 5.540863e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.914e-007 1.778e-007 -6.718 -6.750 -0.032 (0) - OH- 6.090e-008 5.607e-008 -7.215 -7.251 -0.036 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -122.525 -122.525 0.001 (0) -C(4) 5.400e-003 - HCO3- 3.868e-003 3.565e-003 -2.413 -2.448 -0.035 (0) - CO2 1.430e-003 1.432e-003 -2.845 -2.844 0.001 (0) - CaHCO3+ 6.931e-005 6.403e-005 -4.159 -4.194 -0.034 (0) - HCO2[18O]- 7.717e-006 7.113e-006 -5.113 -5.148 -0.035 (0) - HC[18O]O2- 7.717e-006 7.113e-006 -5.113 -5.148 -0.035 (0) - HCO[18O]O- 7.717e-006 7.113e-006 -5.113 -5.148 -0.035 (0) - CO[18O] 5.945e-006 5.953e-006 -5.226 -5.225 0.001 (0) - CaCO3 2.216e-006 2.219e-006 -5.654 -5.654 0.001 (0) - CO3-2 1.300e-006 9.385e-007 -5.886 -6.028 -0.142 (0) - CaHCO2[18O]+ 1.383e-007 1.277e-007 -6.859 -6.894 -0.034 (0) - CaHC[18O]O2+ 1.383e-007 1.277e-007 -6.859 -6.894 -0.034 (0) - CaHCO[18O]O+ 1.383e-007 1.277e-007 -6.859 -6.894 -0.034 (0) - HC[18O]2O- 1.540e-008 1.419e-008 -7.813 -7.848 -0.035 (0) - HCO[18O]2- 1.540e-008 1.419e-008 -7.813 -7.848 -0.035 (0) - HC[18O]O[18O]- 1.540e-008 1.419e-008 -7.813 -7.848 -0.035 (0) - CaCO2[18O] 1.326e-008 1.328e-008 -7.877 -7.877 0.001 (0) - CO2[18O]-2 7.783e-009 5.618e-009 -8.109 -8.250 -0.142 (0) - C[18O]2 6.180e-009 6.189e-009 -8.209 -8.208 0.001 (0) -Ca 2.006e-003 - Ca+2 1.933e-003 1.407e-003 -2.714 -2.852 -0.138 (0) - CaHCO3+ 6.931e-005 6.403e-005 -4.159 -4.194 -0.034 (0) - CaCO3 2.216e-006 2.219e-006 -5.654 -5.654 0.001 (0) - CaH[13C]O3+ 7.650e-007 7.067e-007 -6.116 -6.151 -0.034 (0) - CaHCO2[18O]+ 1.383e-007 1.277e-007 -6.859 -6.894 -0.034 (0) - CaHC[18O]O2+ 1.383e-007 1.277e-007 -6.859 -6.894 -0.034 (0) - CaHCO[18O]O+ 1.383e-007 1.277e-007 -6.859 -6.894 -0.034 (0) - Ca[13C]O3 2.442e-008 2.445e-008 -7.612 -7.612 0.001 (0) - CaCO2[18O] 1.326e-008 1.328e-008 -7.877 -7.877 0.001 (0) -H(0) 1.356e-039 - H2 6.781e-040 6.790e-040 -39.169 -39.168 0.001 (0) -O(0) 1.806e-014 - O2 8.993e-015 9.005e-015 -14.046 -14.046 0.001 (0) - O[18O] 3.589e-017 3.593e-017 -16.445 -16.444 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -124.486 -124.486 0.001 (0) -[13C](4) 5.947e-005 - H[13C]O3- 4.269e-005 3.935e-005 -4.370 -4.405 -0.035 (0) - [13C]O2 1.564e-005 1.566e-005 -4.806 -4.805 0.001 (0) - CaH[13C]O3+ 7.650e-007 7.067e-007 -6.116 -6.151 -0.034 (0) - H[13C]O2[18O]- 8.518e-008 7.851e-008 -7.070 -7.105 -0.035 (0) - H[13C][18O]O2- 8.518e-008 7.851e-008 -7.070 -7.105 -0.035 (0) - H[13C]O[18O]O- 8.518e-008 7.851e-008 -7.070 -7.105 -0.035 (0) - [13C]O[18O] 6.505e-008 6.514e-008 -7.187 -7.186 0.001 (0) - Ca[13C]O3 2.442e-008 2.445e-008 -7.612 -7.612 0.001 (0) - [13C]O3-2 1.433e-008 1.034e-008 -7.844 -7.985 -0.142 (0) - CaH[13C][18O]O2+ 1.526e-009 1.410e-009 -8.816 -8.851 -0.034 (0) - CaH[13C]O2[18O]+ 1.526e-009 1.410e-009 -8.816 -8.851 -0.034 (0) - CaH[13C]O[18O]O+ 1.526e-009 1.410e-009 -8.816 -8.851 -0.034 (0) - H[13C]O[18O]2- 1.699e-010 1.566e-010 -9.770 -9.805 -0.035 (0) - H[13C][18O]2O- 1.699e-010 1.566e-010 -9.770 -9.805 -0.035 (0) - H[13C][18O]O[18O]- 1.699e-010 1.566e-010 -9.770 -9.805 -0.035 (0) - Ca[13C]O2[18O] 1.462e-010 1.464e-010 -9.835 -9.835 0.001 (0) - [13C]O2[18O]-2 8.578e-011 6.191e-011 -10.067 -10.208 -0.142 (0) - [13C][18O]2 6.763e-011 6.772e-011 -10.170 -10.169 0.001 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -134.654 -134.654 0.001 (0) -[14C](4) 4.061e-015 - H[14C]O3- 2.922e-015 2.694e-015 -14.534 -14.570 -0.035 (0) - [14C]O2 1.062e-015 1.063e-015 -14.974 -14.973 0.001 (0) - CaH[14C]O3+ 5.236e-017 4.837e-017 -16.281 -16.315 -0.034 (0) - H[14C][18O]O2- 5.831e-018 5.374e-018 -17.234 -17.270 -0.035 (0) - H[14C]O[18O]O- 5.831e-018 5.374e-018 -17.234 -17.270 -0.035 (0) - H[14C]O2[18O]- 5.831e-018 5.374e-018 -17.234 -17.270 -0.035 (0) - [14C]O[18O] 4.414e-018 4.420e-018 -17.355 -17.355 0.001 (0) - Ca[14C]O3 1.669e-018 1.671e-018 -17.777 -17.777 0.001 (0) - [14C]O3-2 9.796e-019 7.070e-019 -18.009 -18.151 -0.142 (0) - CaH[14C]O2[18O]+ 1.045e-019 9.651e-020 -18.981 -19.015 -0.034 (0) - CaH[14C][18O]O2+ 1.045e-019 9.651e-020 -18.981 -19.015 -0.034 (0) - CaH[14C]O[18O]O+ 1.045e-019 9.651e-020 -18.981 -19.015 -0.034 (0) - H[14C][18O]O[18O]- 1.163e-020 1.072e-020 -19.934 -19.970 -0.035 (0) - H[14C][18O]2O- 1.163e-020 1.072e-020 -19.934 -19.970 -0.035 (0) - H[14C]O[18O]2- 1.163e-020 1.072e-020 -19.934 -19.970 -0.035 (0) - Ca[14C]O2[18O] 9.991e-021 1.000e-020 -20.000 -20.000 0.001 (0) - [14C]O2[18O]-2 5.863e-021 4.232e-021 -20.232 -20.373 -0.142 (0) - [14C][18O]2 4.589e-021 4.595e-021 -20.338 -20.338 0.001 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 7.717e-006 7.113e-006 -5.113 -5.148 -0.035 (0) - HC[18O]O2- 7.717e-006 7.113e-006 -5.113 -5.148 -0.035 (0) - HCO[18O]O- 7.717e-006 7.113e-006 -5.113 -5.148 -0.035 (0) - CO[18O] 5.945e-006 5.953e-006 -5.226 -5.225 0.001 (0) - CaHCO2[18O]+ 1.383e-007 1.277e-007 -6.859 -6.894 -0.034 (0) - CaHCO[18O]O+ 1.383e-007 1.277e-007 -6.859 -6.894 -0.034 (0) - CaHC[18O]O2+ 1.383e-007 1.277e-007 -6.859 -6.894 -0.034 (0) -[18O](0) 3.596e-017 - O[18O] 3.589e-017 3.593e-017 -16.445 -16.444 0.001 (0) - [18O]2 3.580e-020 3.585e-020 -19.446 -19.446 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.70 -10.21 -1.50 [13C][18O]2 - [13C]H4(g) -121.63 -124.49 -2.86 [13C]H4 - [13C]O2(g) -3.34 -4.81 -1.47 [13C]O2 - [13C]O[18O](g) -5.72 -7.51 -1.79 [13C]O[18O] - [14C][18O]2(g) -18.87 -20.37 -1.50 [14C][18O]2 - [14C]H4(g) -131.79 -134.65 -2.86 [14C]H4 - [14C]O2(g) -13.50 -14.97 -1.47 [14C]O2 - [14C]O[18O](g) -15.89 -17.67 -1.79 [14C]O[18O] - [18O]2(g) -17.16 -19.45 -2.29 [18O]2 - C[18O]2(g) -6.74 -8.24 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.42 -2.26 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.57 3.14 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -2.36 5.84 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -7.25 0.44 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.58 -12.43 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.73 -7.03 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.52 -4.33 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.42 -9.73 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.46 -0.30 8.16 CaC[18O]3 - CaCO2[18O](s) -2.61 5.10 7.71 CaCO2[18O] - CaCO[18O]2(s) -5.30 2.40 7.70 CaCO[18O]2 - Calcite -0.40 -8.88 -8.48 CaCO3 - CH4(g) -119.66 -122.52 -2.86 CH4 - CO2(g) -1.38 -2.84 -1.47 CO2 - CO[18O](g) -3.76 -5.54 -1.79 CO[18O] - H2(g) -36.02 -39.17 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.15 -14.05 -2.89 O2 - O[18O](g) -13.85 -16.75 -2.89 O[18O] - - -Reaction step 5. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 5 2.5000e-003 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.60e-005 - Calcite 5.50e-005 5.50e-005 9.83e-001 - CaCO2[18O](s) 3.39e-007 3.39e-007 6.05e-003 - CaCO[18O]2(s) 6.96e-010 6.96e-010 1.24e-005 - CaC[18O]3(s) 4.76e-013 4.76e-013 8.50e-009 - Ca[13C]O3(s) 6.09e-007 6.09e-007 1.09e-002 - Ca[13C]O2[18O](s) 3.75e-009 3.75e-009 6.70e-005 - Ca[13C]O[18O]2(s) 7.70e-012 7.70e-012 1.37e-007 - Ca[13C][18O]3(s) 5.27e-015 5.27e-015 9.41e-011 - Ca[14C]O3(s) 3.82e-017 3.82e-017 6.82e-013 - Ca[14C]O2[18O](s) 2.35e-019 2.35e-019 4.20e-015 - Ca[14C]O[18O]2(s) 4.82e-022 4.82e-022 8.62e-018 - Ca[14C][18O]3(s) 3.30e-025 3.29e-025 5.90e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99518e-003 -4.9955 permil - R(13C) 1.10276e-002 -13.647 permil - R(14C) 6.88762e-013 58.574 pmc - R(18O) H2O(l) 1.99518e-003 -4.997 permil - R(18O) OH- 1.92121e-003 -41.884 permil - R(18O) H3O+ 2.04132e-003 18.011 permil - R(18O) O2(aq) 1.99518e-003 -4.997 permil - R(13C) CO2(aq) 1.09487e-002 -20.706 permil - R(14C) CO2(aq) 6.78931e-013 57.738 pmc - R(18O) CO2(aq) 2.07915e-003 36.877 permil - R(18O) HCO3- 1.99518e-003 -4.997 permil - R(13C) HCO3- 1.10440e-002 -12.187 permil - R(14C) HCO3- 6.90796e-013 58.747 pmc - R(18O) CO3-2 1.99518e-003 -4.997 permil - R(13C) CO3-2 1.10281e-002 -13.604 permil - R(14C) CO3-2 6.88815e-013 58.578 pmc - R(18O) Calcite 2.05262e-003 23.649 permil - R(13C) Calcite 1.10658e-002 -10.23 permil - R(14C) Calcite 6.93535e-013 58.98 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2741e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 0 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7106e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.841e-003 5.824e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.441e-005 6.422e-005 - [14C] 4.023e-015 4.011e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.089 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.841e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.025e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.223 -123.223 0.001 (0) -C(4) 5.841e-003 - HCO3- 4.704e-003 4.304e-003 -2.328 -2.366 -0.039 (0) - CO2 9.959e-004 9.976e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.802e-006 1.963e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.873e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.873e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.873e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.097e-006 1.006e-006 -5.960 -5.997 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.023e-008 6.033e-008 -7.220 -7.219 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 9.929e-040 - H2 4.965e-040 4.973e-040 -39.304 -39.303 0.001 (0) -O(0) 3.366e-014 - O2 1.676e-014 1.679e-014 -13.776 -13.775 0.001 (0) - O[18O] 6.689e-017 6.700e-017 -16.175 -16.174 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.184 -125.183 0.001 (0) -[13C](4) 6.441e-005 - H[13C]O3- 5.195e-005 4.753e-005 -4.284 -4.323 -0.039 (0) - [13C]O2 1.090e-005 1.092e-005 -4.962 -4.962 0.001 (0) - CaH[13C]O3+ 1.097e-006 1.006e-006 -5.960 -5.997 -0.037 (0) - H[13C][18O]O2- 1.037e-007 9.483e-008 -6.984 -7.023 -0.039 (0) - H[13C]O[18O]O- 1.037e-007 9.483e-008 -6.984 -7.023 -0.039 (0) - H[13C]O2[18O]- 1.037e-007 9.483e-008 -6.984 -7.023 -0.039 (0) - Ca[13C]O3 6.023e-008 6.033e-008 -7.220 -7.219 0.001 (0) - [13C]O[18O] 4.534e-008 4.542e-008 -7.343 -7.343 0.001 (0) - [13C]O3-2 3.090e-008 2.164e-008 -7.510 -7.665 -0.155 (0) - CaH[13C][18O]O2+ 2.189e-009 2.008e-009 -8.660 -8.697 -0.037 (0) - CaH[13C]O2[18O]+ 2.189e-009 2.008e-009 -8.660 -8.697 -0.037 (0) - CaH[13C]O[18O]O+ 2.189e-009 2.008e-009 -8.660 -8.697 -0.037 (0) - Ca[13C]O2[18O] 3.605e-010 3.611e-010 -9.443 -9.442 0.001 (0) - H[13C][18O]O[18O]- 2.068e-010 1.892e-010 -9.684 -9.723 -0.039 (0) - H[13C][18O]2O- 2.068e-010 1.892e-010 -9.684 -9.723 -0.039 (0) - H[13C]O[18O]2- 2.068e-010 1.892e-010 -9.684 -9.723 -0.039 (0) - [13C]O2[18O]-2 1.849e-010 1.295e-010 -9.733 -9.888 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -135.392 -135.391 0.001 (0) -[14C](4) 4.023e-015 - H[14C]O3- 3.250e-015 2.973e-015 -14.488 -14.527 -0.039 (0) - [14C]O2 6.762e-016 6.773e-016 -15.170 -15.169 0.001 (0) - CaH[14C]O3+ 6.862e-017 6.295e-017 -16.164 -16.201 -0.037 (0) - H[14C][18O]O2- 6.483e-018 5.931e-018 -17.188 -17.227 -0.039 (0) - H[14C]O[18O]O- 6.483e-018 5.931e-018 -17.188 -17.227 -0.039 (0) - H[14C]O2[18O]- 6.483e-018 5.931e-018 -17.188 -17.227 -0.039 (0) - Ca[14C]O3 3.762e-018 3.768e-018 -17.425 -17.424 0.001 (0) - [14C]O[18O] 2.812e-018 2.816e-018 -17.551 -17.550 0.001 (0) - [14C]O3-2 1.930e-018 1.352e-018 -17.715 -17.869 -0.155 (0) - CaH[14C]O2[18O]+ 1.369e-019 1.256e-019 -18.864 -18.901 -0.037 (0) - CaH[14C][18O]O2+ 1.369e-019 1.256e-019 -18.864 -18.901 -0.037 (0) - CaH[14C]O[18O]O+ 1.369e-019 1.256e-019 -18.864 -18.901 -0.037 (0) - Ca[14C]O2[18O] 2.252e-020 2.255e-020 -19.648 -19.647 0.001 (0) - H[14C]O[18O]2- 1.294e-020 1.183e-020 -19.888 -19.927 -0.039 (0) - H[14C][18O]2O- 1.294e-020 1.183e-020 -19.888 -19.927 -0.039 (0) - H[14C][18O]O[18O]- 1.294e-020 1.183e-020 -19.888 -19.927 -0.039 (0) - [14C]O2[18O]-2 1.155e-020 8.092e-021 -19.937 -20.092 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 6.702e-017 - O[18O] 6.689e-017 6.700e-017 -16.175 -16.174 0.001 (0) - [18O]2 6.673e-020 6.684e-020 -19.176 -19.175 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.32 -125.18 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.07 -20.57 -1.50 [14C][18O]2 - [14C]H4(g) -132.53 -135.39 -2.86 [14C]H4 - [14C]O2(g) -13.70 -15.17 -1.47 [14C]O2 - [14C]O[18O](g) -16.08 -17.87 -1.79 [14C]O[18O] - [18O]2(g) -16.88 -19.17 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.23 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.83 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.23 -12.07 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.38 -6.67 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.17 -3.97 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.06 -9.37 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.36 -123.22 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.15 -39.30 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.88 -13.77 -2.89 O2 - O[18O](g) -13.58 -16.47 -2.89 O[18O] - - -Reaction step 6. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 6 3.0000e-003 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.56e-004 - Calcite 5.47e-004 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.37e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.91e-009 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.73e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 6.05e-006 5.44e-006 1.09e-002 - Ca[13C]O2[18O](s) 3.73e-008 3.35e-008 6.70e-005 - Ca[13C]O[18O]2(s) 7.65e-011 6.88e-011 1.38e-007 - Ca[13C][18O]3(s) 5.24e-014 4.71e-014 9.42e-011 - Ca[14C]O3(s) 3.49e-016 3.11e-016 6.29e-013 - Ca[14C]O2[18O](s) 2.15e-018 1.92e-018 3.87e-015 - Ca[14C]O[18O]2(s) 4.42e-021 3.93e-021 7.94e-018 - Ca[14C][18O]3(s) 3.02e-024 2.69e-024 5.44e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99518e-003 -4.9954 permil - R(13C) 1.10383e-002 -12.693 permil - R(14C) 6.34987e-013 54.001 pmc - R(18O) H2O(l) 1.99518e-003 -4.9969 permil - R(18O) OH- 1.92121e-003 -41.884 permil - R(18O) H3O+ 2.04132e-003 18.011 permil - R(18O) O2(aq) 1.99518e-003 -4.9969 permil - R(13C) CO2(aq) 1.09593e-002 -19.759 permil - R(14C) CO2(aq) 6.25925e-013 53.23 pmc - R(18O) CO2(aq) 2.07915e-003 36.877 permil - R(18O) HCO3- 1.99518e-003 -4.9969 permil - R(13C) HCO3- 1.10546e-002 -11.231 permil - R(14C) HCO3- 6.36863e-013 54.16 pmc - R(18O) CO3-2 1.99518e-003 -4.9969 permil - R(13C) CO3-2 1.10388e-002 -12.65 permil - R(14C) CO3-2 6.35036e-013 54.005 pmc - R(18O) Calcite 2.05262e-003 23.649 permil - R(13C) Calcite 1.10765e-002 -9.2726 permil - R(14C) Calcite 6.39388e-013 54.375 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2656e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.2196e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6852e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.841e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.447e-005 6.428e-005 - [14C] 3.709e-015 3.698e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.127 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.841e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.790e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 6 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.529 -123.528 0.001 (0) -C(4) 5.841e-003 - HCO3- 4.704e-003 4.304e-003 -2.328 -2.366 -0.039 (0) - CO2 9.959e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.963e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.873e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.873e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.873e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.098e-006 1.007e-006 -5.959 -5.997 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.028e-008 6.038e-008 -7.220 -7.219 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 8.327e-040 - H2 4.163e-040 4.170e-040 -39.381 -39.380 0.001 (0) -O(0) 4.786e-014 - O2 2.383e-014 2.387e-014 -13.623 -13.622 0.001 (0) - O[18O] 9.511e-017 9.526e-017 -16.022 -16.021 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.489 -125.489 0.001 (0) -[13C](4) 6.447e-005 - H[13C]O3- 5.200e-005 4.757e-005 -4.284 -4.323 -0.039 (0) - [13C]O2 1.091e-005 1.093e-005 -4.962 -4.961 0.001 (0) - CaH[13C]O3+ 1.098e-006 1.007e-006 -5.959 -5.997 -0.037 (0) - H[13C]O[18O]O- 1.038e-007 9.492e-008 -6.984 -7.023 -0.039 (0) - H[13C]O2[18O]- 1.038e-007 9.492e-008 -6.984 -7.023 -0.039 (0) - H[13C][18O]O2- 1.038e-007 9.492e-008 -6.984 -7.023 -0.039 (0) - Ca[13C]O3 6.028e-008 6.038e-008 -7.220 -7.219 0.001 (0) - [13C]O[18O] 4.539e-008 4.546e-008 -7.343 -7.342 0.001 (0) - [13C]O3-2 3.092e-008 2.166e-008 -7.510 -7.664 -0.155 (0) - CaH[13C]O2[18O]+ 2.191e-009 2.010e-009 -8.659 -8.697 -0.037 (0) - CaH[13C]O[18O]O+ 2.191e-009 2.010e-009 -8.659 -8.697 -0.037 (0) - CaH[13C][18O]O2+ 2.191e-009 2.010e-009 -8.659 -8.697 -0.037 (0) - Ca[13C]O2[18O] 3.608e-010 3.614e-010 -9.443 -9.442 0.001 (0) - H[13C][18O]O[18O]- 2.070e-010 1.894e-010 -9.684 -9.723 -0.039 (0) - H[13C][18O]2O- 2.070e-010 1.894e-010 -9.684 -9.723 -0.039 (0) - H[13C]O[18O]2- 2.070e-010 1.894e-010 -9.684 -9.723 -0.039 (0) - [13C]O2[18O]-2 1.851e-010 1.297e-010 -9.733 -9.887 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -135.733 -135.732 0.001 (0) -[14C](4) 3.709e-015 - H[14C]O3- 2.996e-015 2.741e-015 -14.523 -14.562 -0.039 (0) - [14C]O2 6.234e-016 6.244e-016 -15.205 -15.205 0.001 (0) - CaH[14C]O3+ 6.326e-017 5.803e-017 -16.199 -16.236 -0.037 (0) - H[14C][18O]O2- 5.977e-018 5.468e-018 -17.224 -17.262 -0.039 (0) - H[14C]O[18O]O- 5.977e-018 5.468e-018 -17.224 -17.262 -0.039 (0) - H[14C]O2[18O]- 5.977e-018 5.468e-018 -17.224 -17.262 -0.039 (0) - Ca[14C]O3 3.468e-018 3.474e-018 -17.460 -17.459 0.001 (0) - [14C]O[18O] 2.592e-018 2.596e-018 -17.586 -17.586 0.001 (0) - [14C]O3-2 1.779e-018 1.246e-018 -17.750 -17.904 -0.155 (0) - CaH[14C]O2[18O]+ 1.262e-019 1.158e-019 -18.899 -18.936 -0.037 (0) - CaH[14C][18O]O2+ 1.262e-019 1.158e-019 -18.899 -18.936 -0.037 (0) - CaH[14C]O[18O]O+ 1.262e-019 1.158e-019 -18.899 -18.936 -0.037 (0) - Ca[14C]O2[18O] 2.076e-020 2.079e-020 -19.683 -19.682 0.001 (0) - H[14C][18O]2O- 1.193e-020 1.091e-020 -19.924 -19.962 -0.039 (0) - H[14C][18O]O[18O]- 1.193e-020 1.091e-020 -19.924 -19.962 -0.039 (0) - H[14C]O[18O]2- 1.193e-020 1.091e-020 -19.924 -19.962 -0.039 (0) - [14C]O2[18O]-2 1.065e-020 7.460e-021 -19.973 -20.127 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 9.530e-017 - O[18O] 9.511e-017 9.526e-017 -16.022 -16.021 0.001 (0) - [18O]2 9.488e-020 9.503e-020 -19.023 -19.022 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.63 -125.49 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.10 -20.60 -1.50 [14C][18O]2 - [14C]H4(g) -132.87 -135.73 -2.86 [14C]H4 - [14C]O2(g) -13.74 -15.20 -1.47 [14C]O2 - [14C]O[18O](g) -16.12 -17.90 -1.79 [14C]O[18O] - [18O]2(g) -16.73 -19.02 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.23 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.83 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.26 -12.11 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.41 -6.71 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.20 -4.01 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.10 -9.41 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.67 -123.53 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.23 -39.38 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.73 -13.62 -2.89 O2 - O[18O](g) -13.43 -16.32 -2.89 O[18O] - - -Reaction step 7. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 7 3.5000e-003 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 1.06e-003 - Calcite 1.04e-003 4.91e-004 9.83e-001 - CaCO2[18O](s) 6.39e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 1.31e-008 6.21e-009 1.24e-005 - CaC[18O]3(s) 8.98e-012 4.25e-012 8.50e-009 - Ca[13C]O3(s) 1.15e-005 5.45e-006 1.09e-002 - Ca[13C]O2[18O](s) 7.09e-008 3.36e-008 6.71e-005 - Ca[13C]O[18O]2(s) 1.45e-010 6.89e-011 1.38e-007 - Ca[13C][18O]3(s) 9.95e-014 4.72e-014 9.42e-011 - Ca[14C]O3(s) 6.16e-016 2.66e-016 5.83e-013 - Ca[14C]O2[18O](s) 3.79e-018 1.64e-018 3.59e-015 - Ca[14C]O[18O]2(s) 7.78e-021 3.36e-021 7.37e-018 - Ca[14C][18O]3(s) 5.32e-024 2.30e-024 5.04e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99518e-003 -4.9952 permil - R(13C) 1.10474e-002 -11.877 permil - R(14C) 5.89002e-013 50.09 pmc - R(18O) H2O(l) 1.99518e-003 -4.9968 permil - R(18O) OH- 1.92121e-003 -41.884 permil - R(18O) H3O+ 2.04132e-003 18.011 permil - R(18O) O2(aq) 1.99518e-003 -4.9968 permil - R(13C) CO2(aq) 1.09684e-002 -18.949 permil - R(14C) CO2(aq) 5.80595e-013 49.375 pmc - R(18O) CO2(aq) 2.07915e-003 36.877 permil - R(18O) HCO3- 1.99518e-003 -4.9968 permil - R(13C) HCO3- 1.10638e-002 -10.413 permil - R(14C) HCO3- 5.90741e-013 50.238 pmc - R(18O) CO3-2 1.99518e-003 -4.9968 permil - R(13C) CO3-2 1.10479e-002 -11.834 permil - R(14C) CO3-2 5.89047e-013 50.094 pmc - R(18O) Calcite 2.05262e-003 23.649 permil - R(13C) Calcite 1.10857e-002 -8.4535 permil - R(14C) Calcite 5.93084e-013 50.437 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2364e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.5503e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5794e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.452e-005 6.433e-005 - [14C] 3.440e-015 3.430e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.169 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.806e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 8 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.866 -123.865 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.304e-003 -2.328 -2.366 -0.039 (0) - CO2 9.959e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.963e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.873e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.873e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.873e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.099e-006 1.008e-006 -5.959 -5.996 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.033e-008 6.043e-008 -7.219 -7.219 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 6.860e-040 - H2 3.430e-040 3.436e-040 -39.465 -39.464 0.001 (0) -O(0) 7.050e-014 - O2 3.511e-014 3.517e-014 -13.455 -13.454 0.001 (0) - O[18O] 1.401e-016 1.403e-016 -15.854 -15.853 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.825 -125.825 0.001 (0) -[13C](4) 6.452e-005 - H[13C]O3- 5.204e-005 4.761e-005 -4.284 -4.322 -0.039 (0) - [13C]O2 1.092e-005 1.094e-005 -4.962 -4.961 0.001 (0) - CaH[13C]O3+ 1.099e-006 1.008e-006 -5.959 -5.996 -0.037 (0) - H[13C]O2[18O]- 1.038e-007 9.500e-008 -6.984 -7.022 -0.039 (0) - H[13C][18O]O2- 1.038e-007 9.500e-008 -6.984 -7.022 -0.039 (0) - H[13C]O[18O]O- 1.038e-007 9.500e-008 -6.984 -7.022 -0.039 (0) - Ca[13C]O3 6.033e-008 6.043e-008 -7.219 -7.219 0.001 (0) - [13C]O[18O] 4.542e-008 4.550e-008 -7.343 -7.342 0.001 (0) - [13C]O3-2 3.095e-008 2.168e-008 -7.509 -7.664 -0.155 (0) - CaH[13C]O[18O]O+ 2.193e-009 2.011e-009 -8.659 -8.696 -0.037 (0) - CaH[13C][18O]O2+ 2.193e-009 2.011e-009 -8.659 -8.696 -0.037 (0) - CaH[13C]O2[18O]+ 2.193e-009 2.011e-009 -8.659 -8.696 -0.037 (0) - Ca[13C]O2[18O] 3.611e-010 3.617e-010 -9.442 -9.442 0.001 (0) - H[13C][18O]O[18O]- 2.072e-010 1.895e-010 -9.684 -9.722 -0.039 (0) - H[13C][18O]2O- 2.072e-010 1.895e-010 -9.684 -9.722 -0.039 (0) - H[13C]O[18O]2- 2.072e-010 1.895e-010 -9.684 -9.722 -0.039 (0) - [13C]O2[18O]-2 1.853e-010 1.298e-010 -9.732 -9.887 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.102 -136.101 0.001 (0) -[14C](4) 3.440e-015 - H[14C]O3- 2.779e-015 2.542e-015 -14.556 -14.595 -0.039 (0) - [14C]O2 5.782e-016 5.792e-016 -15.238 -15.237 0.001 (0) - CaH[14C]O3+ 5.868e-017 5.383e-017 -16.232 -16.269 -0.037 (0) - H[14C][18O]O2- 5.544e-018 5.072e-018 -17.256 -17.295 -0.039 (0) - H[14C]O[18O]O- 5.544e-018 5.072e-018 -17.256 -17.295 -0.039 (0) - H[14C]O2[18O]- 5.544e-018 5.072e-018 -17.256 -17.295 -0.039 (0) - Ca[14C]O3 3.217e-018 3.222e-018 -17.493 -17.492 0.001 (0) - [14C]O[18O] 2.404e-018 2.408e-018 -17.619 -17.618 0.001 (0) - [14C]O3-2 1.650e-018 1.156e-018 -17.782 -17.937 -0.155 (0) - CaH[14C]O2[18O]+ 1.171e-019 1.074e-019 -18.932 -18.969 -0.037 (0) - CaH[14C][18O]O2+ 1.171e-019 1.074e-019 -18.932 -18.969 -0.037 (0) - CaH[14C]O[18O]O+ 1.171e-019 1.074e-019 -18.932 -18.969 -0.037 (0) - Ca[14C]O2[18O] 1.925e-020 1.929e-020 -19.715 -19.715 0.001 (0) - H[14C][18O]O[18O]- 1.106e-020 1.012e-020 -19.956 -19.995 -0.039 (0) - H[14C]O[18O]2- 1.106e-020 1.012e-020 -19.956 -19.995 -0.039 (0) - H[14C][18O]2O- 1.106e-020 1.012e-020 -19.956 -19.995 -0.039 (0) - [14C]O2[18O]-2 9.877e-021 6.919e-021 -20.005 -20.160 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.404e-016 - O[18O] 1.401e-016 1.403e-016 -15.854 -15.853 0.001 (0) - [18O]2 1.398e-019 1.400e-019 -18.855 -18.854 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.96 -125.82 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.13 -20.64 -1.50 [14C][18O]2 - [14C]H4(g) -133.24 -136.10 -2.86 [14C]H4 - [14C]O2(g) -13.77 -15.24 -1.47 [14C]O2 - [14C]O[18O](g) -16.15 -17.94 -1.79 [14C]O[18O] - [18O]2(g) -16.56 -18.85 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.23 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.83 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.30 -12.14 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.44 -6.74 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.23 -4.04 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.13 -9.44 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.00 -123.86 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.31 -39.46 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.56 -13.45 -2.89 O2 - O[18O](g) -13.26 -16.15 -2.89 O[18O] - - -Reaction step 8. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 8 4.0000e-003 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 1.56e-003 - Calcite 1.53e-003 4.91e-004 9.83e-001 - CaCO2[18O](s) 9.42e-006 3.03e-006 6.05e-003 - CaCO[18O]2(s) 1.93e-008 6.21e-009 1.24e-005 - CaC[18O]3(s) 1.32e-011 4.25e-012 8.50e-009 - Ca[13C]O3(s) 1.70e-005 5.46e-006 1.09e-002 - Ca[13C]O2[18O](s) 1.04e-007 3.36e-008 6.71e-005 - Ca[13C]O[18O]2(s) 2.14e-010 6.90e-011 1.38e-007 - Ca[13C][18O]3(s) 1.47e-013 4.72e-014 9.43e-011 - Ca[14C]O3(s) 8.46e-016 2.30e-016 5.44e-013 - Ca[14C]O2[18O](s) 5.21e-018 1.42e-018 3.35e-015 - Ca[14C]O[18O]2(s) 1.07e-020 2.91e-021 6.87e-018 - Ca[14C][18O]3(s) 7.32e-024 1.99e-024 4.70e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99518e-003 -4.9951 permil - R(13C) 1.10553e-002 -11.171 permil - R(14C) 5.49227e-013 46.707 pmc - R(18O) H2O(l) 1.99518e-003 -4.9966 permil - R(18O) OH- 1.92121e-003 -41.884 permil - R(18O) H3O+ 2.04132e-003 18.011 permil - R(18O) O2(aq) 1.99518e-003 -4.9966 permil - R(13C) CO2(aq) 1.09762e-002 -18.247 permil - R(14C) CO2(aq) 5.41388e-013 46.041 pmc - R(18O) CO2(aq) 2.07915e-003 36.877 permil - R(18O) HCO3- 1.99518e-003 -4.9966 permil - R(13C) HCO3- 1.10717e-002 -9.7061 permil - R(14C) HCO3- 5.50849e-013 46.845 pmc - R(18O) CO3-2 1.99518e-003 -4.9966 permil - R(13C) CO3-2 1.10558e-002 -11.127 permil - R(14C) CO3-2 5.49269e-013 46.711 pmc - R(18O) Calcite 2.05262e-003 23.65 permil - R(13C) Calcite 1.10936e-002 -7.7446 permil - R(14C) Calcite 5.53033e-013 47.031 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2811e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.3283e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6763e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.457e-005 6.438e-005 - [14C] 3.208e-015 3.198e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.196 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.803e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.078 -124.077 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.959e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.963e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.873e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.873e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.873e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.100e-006 1.009e-006 -5.959 -5.996 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.038e-008 6.048e-008 -7.219 -7.218 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 6.072e-040 - H2 3.036e-040 3.041e-040 -39.518 -39.517 0.001 (0) -O(0) 9.001e-014 - O2 4.483e-014 4.490e-014 -13.348 -13.348 0.001 (0) - O[18O] 1.789e-016 1.792e-016 -15.747 -15.747 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.037 -126.037 0.001 (0) -[13C](4) 6.457e-005 - H[13C]O3- 5.208e-005 4.765e-005 -4.283 -4.322 -0.039 (0) - [13C]O2 1.093e-005 1.095e-005 -4.961 -4.961 0.001 (0) - CaH[13C]O3+ 1.100e-006 1.009e-006 -5.959 -5.996 -0.037 (0) - H[13C][18O]O2- 1.039e-007 9.506e-008 -6.983 -7.022 -0.039 (0) - H[13C]O[18O]O- 1.039e-007 9.506e-008 -6.983 -7.022 -0.039 (0) - H[13C]O2[18O]- 1.039e-007 9.506e-008 -6.983 -7.022 -0.039 (0) - Ca[13C]O3 6.038e-008 6.048e-008 -7.219 -7.218 0.001 (0) - [13C]O[18O] 4.545e-008 4.553e-008 -7.342 -7.342 0.001 (0) - [13C]O3-2 3.097e-008 2.170e-008 -7.509 -7.664 -0.155 (0) - CaH[13C][18O]O2+ 2.194e-009 2.013e-009 -8.659 -8.696 -0.037 (0) - CaH[13C]O2[18O]+ 2.194e-009 2.013e-009 -8.659 -8.696 -0.037 (0) - CaH[13C]O[18O]O+ 2.194e-009 2.013e-009 -8.659 -8.696 -0.037 (0) - Ca[13C]O2[18O] 3.614e-010 3.620e-010 -9.442 -9.441 0.001 (0) - H[13C][18O]O[18O]- 2.073e-010 1.897e-010 -9.683 -9.722 -0.039 (0) - H[13C][18O]2O- 2.073e-010 1.897e-010 -9.683 -9.722 -0.039 (0) - H[13C]O[18O]2- 2.073e-010 1.897e-010 -9.683 -9.722 -0.039 (0) - [13C]O2[18O]-2 1.854e-010 1.299e-010 -9.732 -9.886 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.344 -136.344 0.001 (0) -[14C](4) 3.208e-015 - H[14C]O3- 2.591e-015 2.371e-015 -14.587 -14.625 -0.039 (0) - [14C]O2 5.392e-016 5.401e-016 -15.268 -15.268 0.001 (0) - CaH[14C]O3+ 5.472e-017 5.019e-017 -16.262 -16.299 -0.037 (0) - H[14C][18O]O2- 5.170e-018 4.730e-018 -17.287 -17.325 -0.039 (0) - H[14C]O[18O]O- 5.170e-018 4.730e-018 -17.287 -17.325 -0.039 (0) - H[14C]O2[18O]- 5.170e-018 4.730e-018 -17.287 -17.325 -0.039 (0) - Ca[14C]O3 3.000e-018 3.005e-018 -17.523 -17.522 0.001 (0) - [14C]O[18O] 2.242e-018 2.246e-018 -17.649 -17.649 0.001 (0) - [14C]O3-2 1.539e-018 1.078e-018 -17.813 -17.967 -0.155 (0) - CaH[14C]O2[18O]+ 1.092e-019 1.001e-019 -18.962 -18.999 -0.037 (0) - CaH[14C][18O]O2+ 1.092e-019 1.001e-019 -18.962 -18.999 -0.037 (0) - CaH[14C]O[18O]O+ 1.092e-019 1.001e-019 -18.962 -18.999 -0.037 (0) - Ca[14C]O2[18O] 1.795e-020 1.798e-020 -19.746 -19.745 0.001 (0) - H[14C]O[18O]2- 1.031e-020 9.437e-021 -19.987 -20.025 -0.039 (0) - H[14C][18O]2O- 1.031e-020 9.437e-021 -19.987 -20.025 -0.039 (0) - H[14C][18O]O[18O]- 1.031e-020 9.437e-021 -19.987 -20.025 -0.039 (0) - [14C]O2[18O]-2 9.210e-021 6.452e-021 -20.036 -20.190 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.792e-016 - O[18O] 1.789e-016 1.792e-016 -15.747 -15.747 0.001 (0) - [18O]2 1.784e-019 1.787e-019 -18.748 -18.748 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.18 -126.04 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.16 -20.67 -1.50 [14C][18O]2 - [14C]H4(g) -133.48 -136.34 -2.86 [14C]H4 - [14C]O2(g) -13.80 -15.27 -1.47 [14C]O2 - [14C]O[18O](g) -16.18 -17.97 -1.79 [14C]O[18O] - [18O]2(g) -16.46 -18.75 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.23 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.83 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.33 -12.17 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.48 -6.77 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.26 -4.07 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.16 -9.47 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.22 -124.08 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.37 -39.52 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.46 -13.35 -2.89 O2 - O[18O](g) -13.16 -16.05 -2.89 O[18O] - - -Reaction step 9. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 9 4.5000e-003 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 2.06e-003 - Calcite 2.02e-003 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.24e-005 3.03e-006 6.05e-003 - CaCO[18O]2(s) 2.55e-008 6.21e-009 1.24e-005 - CaC[18O]3(s) 1.75e-011 4.25e-012 8.50e-009 - Ca[13C]O3(s) 2.24e-005 5.47e-006 1.09e-002 - Ca[13C]O2[18O](s) 1.38e-007 3.37e-008 6.72e-005 - Ca[13C]O[18O]2(s) 2.84e-010 6.91e-011 1.38e-007 - Ca[13C][18O]3(s) 1.94e-013 4.73e-014 9.44e-011 - Ca[14C]O3(s) 1.05e-015 2.01e-016 5.09e-013 - Ca[14C]O2[18O](s) 6.45e-018 1.24e-018 3.14e-015 - Ca[14C]O[18O]2(s) 1.32e-020 2.54e-021 6.44e-018 - Ca[14C][18O]3(s) 9.05e-024 1.74e-024 4.40e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99518e-003 -4.995 permil - R(13C) 1.10622e-002 -10.553 permil - R(14C) 5.14484e-013 43.753 pmc - R(18O) H2O(l) 1.99518e-003 -4.9965 permil - R(18O) OH- 1.92121e-003 -41.884 permil - R(18O) H3O+ 2.04132e-003 18.011 permil - R(18O) O2(aq) 1.99518e-003 -4.9965 permil - R(13C) CO2(aq) 1.09830e-002 -17.634 permil - R(14C) CO2(aq) 5.07141e-013 43.128 pmc - R(18O) CO2(aq) 2.07915e-003 36.877 permil - R(18O) HCO3- 1.99518e-003 -4.9965 permil - R(13C) HCO3- 1.10786e-002 -9.0879 permil - R(14C) HCO3- 5.16004e-013 43.882 pmc - R(18O) CO3-2 1.99518e-003 -4.9965 permil - R(13C) CO3-2 1.10627e-002 -10.51 permil - R(14C) CO3-2 5.14524e-013 43.756 pmc - R(18O) Calcite 2.05262e-003 23.65 permil - R(13C) Calcite 1.11005e-002 -7.1253 permil - R(14C) Calcite 5.18050e-013 44.056 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2375e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6167e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.461e-005 6.442e-005 - [14C] 3.005e-015 2.996e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.152 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.790e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.731 -123.730 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.959e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.963e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.100e-006 1.009e-006 -5.958 -5.996 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.041e-008 6.051e-008 -7.219 -7.218 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 7.413e-040 - H2 3.706e-040 3.712e-040 -39.431 -39.430 0.001 (0) -O(0) 6.039e-014 - O2 3.007e-014 3.012e-014 -13.522 -13.521 0.001 (0) - O[18O] 1.200e-016 1.202e-016 -15.921 -15.920 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.690 -125.690 0.001 (0) -[13C](4) 6.461e-005 - H[13C]O3- 5.211e-005 4.768e-005 -4.283 -4.322 -0.039 (0) - [13C]O2 1.094e-005 1.096e-005 -4.961 -4.960 0.001 (0) - CaH[13C]O3+ 1.100e-006 1.009e-006 -5.958 -5.996 -0.037 (0) - H[13C]O[18O]O- 1.040e-007 9.512e-008 -6.983 -7.022 -0.039 (0) - H[13C]O2[18O]- 1.040e-007 9.512e-008 -6.983 -7.022 -0.039 (0) - H[13C][18O]O2- 1.040e-007 9.512e-008 -6.983 -7.022 -0.039 (0) - Ca[13C]O3 6.041e-008 6.051e-008 -7.219 -7.218 0.001 (0) - [13C]O[18O] 4.548e-008 4.556e-008 -7.342 -7.341 0.001 (0) - [13C]O3-2 3.099e-008 2.171e-008 -7.509 -7.663 -0.155 (0) - CaH[13C]O2[18O]+ 2.196e-009 2.014e-009 -8.658 -8.696 -0.037 (0) - CaH[13C]O[18O]O+ 2.196e-009 2.014e-009 -8.658 -8.696 -0.037 (0) - CaH[13C][18O]O2+ 2.196e-009 2.014e-009 -8.658 -8.696 -0.037 (0) - Ca[13C]O2[18O] 3.616e-010 3.622e-010 -9.442 -9.441 0.001 (0) - H[13C][18O]O[18O]- 2.074e-010 1.898e-010 -9.683 -9.722 -0.039 (0) - H[13C][18O]2O- 2.074e-010 1.898e-010 -9.683 -9.722 -0.039 (0) - H[13C]O[18O]2- 2.074e-010 1.898e-010 -9.683 -9.722 -0.039 (0) - [13C]O2[18O]-2 1.855e-010 1.300e-010 -9.732 -9.886 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.026 -136.025 0.001 (0) -[14C](4) 3.005e-015 - H[14C]O3- 2.427e-015 2.221e-015 -14.615 -14.654 -0.039 (0) - [14C]O2 5.051e-016 5.059e-016 -15.297 -15.296 0.001 (0) - CaH[14C]O3+ 5.126e-017 4.702e-017 -16.290 -16.328 -0.037 (0) - H[14C][18O]O2- 4.843e-018 4.430e-018 -17.315 -17.354 -0.039 (0) - H[14C]O[18O]O- 4.843e-018 4.430e-018 -17.315 -17.354 -0.039 (0) - H[14C]O2[18O]- 4.843e-018 4.430e-018 -17.315 -17.354 -0.039 (0) - Ca[14C]O3 2.810e-018 2.814e-018 -17.551 -17.551 0.001 (0) - [14C]O[18O] 2.100e-018 2.104e-018 -17.678 -17.677 0.001 (0) - [14C]O3-2 1.441e-018 1.010e-018 -17.841 -17.996 -0.155 (0) - CaH[14C]O2[18O]+ 1.023e-019 9.381e-020 -18.990 -19.028 -0.037 (0) - CaH[14C][18O]O2+ 1.023e-019 9.381e-020 -18.990 -19.028 -0.037 (0) - CaH[14C]O[18O]O+ 1.023e-019 9.381e-020 -18.990 -19.028 -0.037 (0) - Ca[14C]O2[18O] 1.682e-020 1.685e-020 -19.774 -19.774 0.001 (0) - H[14C][18O]2O- 9.662e-021 8.840e-021 -20.015 -20.054 -0.039 (0) - H[14C][18O]O[18O]- 9.662e-021 8.840e-021 -20.015 -20.054 -0.039 (0) - H[14C]O[18O]2- 9.662e-021 8.840e-021 -20.015 -20.054 -0.039 (0) - [14C]O2[18O]-2 8.628e-021 6.044e-021 -20.064 -20.219 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.202e-016 - O[18O] 1.200e-016 1.202e-016 -15.921 -15.920 0.001 (0) - [18O]2 1.197e-019 1.199e-019 -18.922 -18.921 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.83 -125.69 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.19 -20.70 -1.50 [14C][18O]2 - [14C]H4(g) -133.17 -136.03 -2.86 [14C]H4 - [14C]O2(g) -13.83 -15.30 -1.47 [14C]O2 - [14C]O[18O](g) -16.21 -18.00 -1.79 [14C]O[18O] - [18O]2(g) -16.63 -18.92 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.23 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.83 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.36 -12.20 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.50 -6.80 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.29 -4.10 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.19 -9.50 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.87 -123.73 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.28 -39.43 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.63 -13.52 -2.89 O2 - O[18O](g) -13.33 -16.22 -2.89 O[18O] - - -Reaction step 10. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 10 5.0000e-003 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 2.56e-003 - Calcite 2.51e-003 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.55e-005 3.03e-006 6.05e-003 - CaCO[18O]2(s) 3.18e-008 6.21e-009 1.24e-005 - CaC[18O]3(s) 2.17e-011 4.25e-012 8.50e-009 - Ca[13C]O3(s) 2.79e-005 5.47e-006 1.09e-002 - Ca[13C]O2[18O](s) 1.72e-007 3.37e-008 6.72e-005 - Ca[13C]O[18O]2(s) 3.53e-010 6.92e-011 1.38e-007 - Ca[13C][18O]3(s) 2.41e-013 4.73e-014 9.44e-011 - Ca[14C]O3(s) 1.22e-015 1.77e-016 4.79e-013 - Ca[14C]O2[18O](s) 7.54e-018 1.09e-018 2.95e-015 - Ca[14C]O[18O]2(s) 1.55e-020 2.24e-021 6.05e-018 - Ca[14C][18O]3(s) 1.06e-023 1.53e-024 4.14e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99518e-003 -4.9948 permil - R(13C) 1.10683e-002 -10.009 permil - R(14C) 4.83875e-013 41.15 pmc - R(18O) H2O(l) 1.99518e-003 -4.9963 permil - R(18O) OH- 1.92122e-003 -41.883 permil - R(18O) H3O+ 2.04132e-003 18.011 permil - R(18O) O2(aq) 1.99518e-003 -4.9963 permil - R(13C) CO2(aq) 1.09891e-002 -17.094 permil - R(14C) CO2(aq) 4.76969e-013 40.562 pmc - R(18O) CO2(aq) 2.07915e-003 36.877 permil - R(18O) HCO3- 1.99518e-003 -4.9963 permil - R(13C) HCO3- 1.10847e-002 -8.5432 permil - R(14C) HCO3- 4.85304e-013 41.271 pmc - R(18O) CO3-2 1.99518e-003 -4.9963 permil - R(13C) CO3-2 1.10688e-002 -9.966 permil - R(14C) CO3-2 4.83913e-013 41.153 pmc - R(18O) Calcite 2.05262e-003 23.65 permil - R(13C) Calcite 1.11066e-002 -6.5794 permil - R(14C) Calcite 4.87229e-013 41.435 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.27e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.8858e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6913e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.464e-005 6.445e-005 - [14C] 2.826e-015 2.818e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.188 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.783e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.016 -124.015 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.959e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.963e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.101e-006 1.010e-006 -5.958 -5.996 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.045e-008 6.055e-008 -7.219 -7.218 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 6.292e-040 - H2 3.146e-040 3.151e-040 -39.502 -39.502 0.001 (0) -O(0) 8.383e-014 - O2 4.175e-014 4.182e-014 -13.379 -13.379 0.001 (0) - O[18O] 1.666e-016 1.669e-016 -15.778 -15.778 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.975 -125.974 0.001 (0) -[13C](4) 6.464e-005 - H[13C]O3- 5.214e-005 4.770e-005 -4.283 -4.321 -0.039 (0) - [13C]O2 1.094e-005 1.096e-005 -4.961 -4.960 0.001 (0) - CaH[13C]O3+ 1.101e-006 1.010e-006 -5.958 -5.996 -0.037 (0) - H[13C]O2[18O]- 1.040e-007 9.517e-008 -6.983 -7.021 -0.039 (0) - H[13C][18O]O2- 1.040e-007 9.517e-008 -6.983 -7.021 -0.039 (0) - H[13C]O[18O]O- 1.040e-007 9.517e-008 -6.983 -7.021 -0.039 (0) - Ca[13C]O3 6.045e-008 6.055e-008 -7.219 -7.218 0.001 (0) - [13C]O[18O] 4.551e-008 4.558e-008 -7.342 -7.341 0.001 (0) - [13C]O3-2 3.101e-008 2.172e-008 -7.509 -7.663 -0.155 (0) - CaH[13C]O[18O]O+ 2.197e-009 2.015e-009 -8.658 -8.696 -0.037 (0) - CaH[13C][18O]O2+ 2.197e-009 2.015e-009 -8.658 -8.696 -0.037 (0) - CaH[13C]O2[18O]+ 2.197e-009 2.015e-009 -8.658 -8.696 -0.037 (0) - Ca[13C]O2[18O] 3.618e-010 3.624e-010 -9.442 -9.441 0.001 (0) - H[13C][18O]O[18O]- 2.076e-010 1.899e-010 -9.683 -9.721 -0.039 (0) - H[13C][18O]2O- 2.076e-010 1.899e-010 -9.683 -9.721 -0.039 (0) - H[13C]O[18O]2- 2.076e-010 1.899e-010 -9.683 -9.721 -0.039 (0) - [13C]O2[18O]-2 1.856e-010 1.300e-010 -9.731 -9.886 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.337 -136.337 0.001 (0) -[14C](4) 2.826e-015 - H[14C]O3- 2.283e-015 2.088e-015 -14.642 -14.680 -0.039 (0) - [14C]O2 4.750e-016 4.758e-016 -15.323 -15.323 0.001 (0) - CaH[14C]O3+ 4.821e-017 4.422e-017 -16.317 -16.354 -0.037 (0) - H[14C][18O]O2- 4.555e-018 4.167e-018 -17.342 -17.380 -0.039 (0) - H[14C]O[18O]O- 4.555e-018 4.167e-018 -17.342 -17.380 -0.039 (0) - H[14C]O2[18O]- 4.555e-018 4.167e-018 -17.342 -17.380 -0.039 (0) - Ca[14C]O3 2.643e-018 2.647e-018 -17.578 -17.577 0.001 (0) - [14C]O[18O] 1.975e-018 1.978e-018 -17.704 -17.704 0.001 (0) - [14C]O3-2 1.356e-018 9.497e-019 -17.868 -18.022 -0.155 (0) - CaH[14C]O2[18O]+ 9.618e-020 8.823e-020 -19.017 -19.054 -0.037 (0) - CaH[14C][18O]O2+ 9.618e-020 8.823e-020 -19.017 -19.054 -0.037 (0) - CaH[14C]O[18O]O+ 9.618e-020 8.823e-020 -19.017 -19.054 -0.037 (0) - Ca[14C]O2[18O] 1.582e-020 1.584e-020 -19.801 -19.800 0.001 (0) - H[14C][18O]O[18O]- 9.087e-021 8.314e-021 -20.042 -20.080 -0.039 (0) - H[14C]O[18O]2- 9.087e-021 8.314e-021 -20.042 -20.080 -0.039 (0) - H[14C][18O]2O- 9.087e-021 8.314e-021 -20.042 -20.080 -0.039 (0) - [14C]O2[18O]-2 8.114e-021 5.684e-021 -20.091 -20.245 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.669e-016 - O[18O] 1.666e-016 1.669e-016 -15.778 -15.778 0.001 (0) - [18O]2 1.662e-019 1.665e-019 -18.779 -18.779 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.11 -125.97 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.22 -20.72 -1.50 [14C][18O]2 - [14C]H4(g) -133.48 -136.34 -2.86 [14C]H4 - [14C]O2(g) -13.85 -15.32 -1.47 [14C]O2 - [14C]O[18O](g) -16.24 -18.02 -1.79 [14C]O[18O] - [18O]2(g) -16.49 -18.78 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.23 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.83 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.38 -12.23 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.53 -6.83 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.32 -4.13 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.22 -9.53 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.16 -124.02 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.35 -39.50 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.49 -13.38 -2.89 O2 - O[18O](g) -13.19 -16.08 -2.89 O[18O] - - -Reaction step 11. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 11 5.5000e-003 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 3.06e-003 - Calcite 3.00e-003 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.85e-005 3.03e-006 6.05e-003 - CaCO[18O]2(s) 3.80e-008 6.21e-009 1.24e-005 - CaC[18O]3(s) 2.60e-011 4.25e-012 8.50e-009 - Ca[13C]O3(s) 3.34e-005 5.47e-006 1.09e-002 - Ca[13C]O2[18O](s) 2.06e-007 3.37e-008 6.73e-005 - Ca[13C]O[18O]2(s) 4.22e-010 6.92e-011 1.38e-007 - Ca[13C][18O]3(s) 2.89e-013 4.73e-014 9.45e-011 - Ca[14C]O3(s) 1.38e-015 1.57e-016 4.52e-013 - Ca[14C]O2[18O](s) 8.51e-018 9.68e-019 2.78e-015 - Ca[14C]O[18O]2(s) 1.75e-020 1.99e-021 5.71e-018 - Ca[14C][18O]3(s) 1.19e-023 1.36e-024 3.91e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99518e-003 -4.9947 permil - R(13C) 1.10737e-002 -9.5264 permil - R(14C) 4.56704e-013 38.839 pmc - R(18O) H2O(l) 1.99518e-003 -4.9962 permil - R(18O) OH- 1.92122e-003 -41.883 permil - R(18O) H3O+ 2.04132e-003 18.012 permil - R(18O) O2(aq) 1.99518e-003 -4.9962 permil - R(13C) CO2(aq) 1.09944e-002 -16.615 permil - R(14C) CO2(aq) 4.50186e-013 38.285 pmc - R(18O) CO2(aq) 2.07915e-003 36.878 permil - R(18O) HCO3- 1.99518e-003 -4.9962 permil - R(13C) HCO3- 1.10901e-002 -8.0594 permil - R(14C) HCO3- 4.58053e-013 38.954 pmc - R(18O) CO3-2 1.99518e-003 -4.9962 permil - R(13C) CO3-2 1.10742e-002 -9.4829 permil - R(14C) CO3-2 4.56739e-013 38.842 pmc - R(18O) Calcite 2.05262e-003 23.65 permil - R(13C) Calcite 1.11121e-002 -6.0947 permil - R(14C) Calcite 4.59869e-013 39.108 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2505e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7165e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.467e-005 6.448e-005 - [14C] 2.667e-015 2.660e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.192 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.785e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.047 -124.047 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.959e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.963e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.102e-006 1.011e-006 -5.958 -5.995 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.048e-008 6.058e-008 -7.218 -7.218 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 6.179e-040 - H2 3.089e-040 3.094e-040 -39.510 -39.509 0.001 (0) -O(0) 8.692e-014 - O2 4.329e-014 4.336e-014 -13.364 -13.363 0.001 (0) - O[18O] 1.727e-016 1.730e-016 -15.763 -15.762 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.006 -126.006 0.001 (0) -[13C](4) 6.467e-005 - H[13C]O3- 5.217e-005 4.773e-005 -4.283 -4.321 -0.039 (0) - [13C]O2 1.095e-005 1.097e-005 -4.961 -4.960 0.001 (0) - CaH[13C]O3+ 1.102e-006 1.011e-006 -5.958 -5.995 -0.037 (0) - H[13C][18O]O2- 1.041e-007 9.522e-008 -6.983 -7.021 -0.039 (0) - H[13C]O[18O]O- 1.041e-007 9.522e-008 -6.983 -7.021 -0.039 (0) - H[13C]O2[18O]- 1.041e-007 9.522e-008 -6.983 -7.021 -0.039 (0) - Ca[13C]O3 6.048e-008 6.058e-008 -7.218 -7.218 0.001 (0) - [13C]O[18O] 4.553e-008 4.560e-008 -7.342 -7.341 0.001 (0) - [13C]O3-2 3.102e-008 2.173e-008 -7.508 -7.663 -0.155 (0) - CaH[13C][18O]O2+ 2.198e-009 2.016e-009 -8.658 -8.695 -0.037 (0) - CaH[13C]O2[18O]+ 2.198e-009 2.016e-009 -8.658 -8.695 -0.037 (0) - CaH[13C]O[18O]O+ 2.198e-009 2.016e-009 -8.658 -8.695 -0.037 (0) - Ca[13C]O2[18O] 3.620e-010 3.626e-010 -9.441 -9.441 0.001 (0) - H[13C][18O]O[18O]- 2.077e-010 1.900e-010 -9.683 -9.721 -0.039 (0) - H[13C][18O]2O- 2.077e-010 1.900e-010 -9.683 -9.721 -0.039 (0) - H[13C]O[18O]2- 2.077e-010 1.900e-010 -9.683 -9.721 -0.039 (0) - [13C]O2[18O]-2 1.857e-010 1.301e-010 -9.731 -9.886 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.394 -136.393 0.001 (0) -[14C](4) 2.667e-015 - H[14C]O3- 2.155e-015 1.971e-015 -14.667 -14.705 -0.039 (0) - [14C]O2 4.483e-016 4.491e-016 -15.348 -15.348 0.001 (0) - CaH[14C]O3+ 4.550e-017 4.174e-017 -16.342 -16.379 -0.037 (0) - H[14C][18O]O2- 4.299e-018 3.933e-018 -17.367 -17.405 -0.039 (0) - H[14C]O[18O]O- 4.299e-018 3.933e-018 -17.367 -17.405 -0.039 (0) - H[14C]O2[18O]- 4.299e-018 3.933e-018 -17.367 -17.405 -0.039 (0) - Ca[14C]O3 2.494e-018 2.498e-018 -17.603 -17.602 0.001 (0) - [14C]O[18O] 1.864e-018 1.867e-018 -17.729 -17.729 0.001 (0) - [14C]O3-2 1.280e-018 8.964e-019 -17.893 -18.048 -0.155 (0) - CaH[14C]O2[18O]+ 9.078e-020 8.327e-020 -19.042 -19.079 -0.037 (0) - CaH[14C][18O]O2+ 9.078e-020 8.327e-020 -19.042 -19.079 -0.037 (0) - CaH[14C]O[18O]O+ 9.078e-020 8.327e-020 -19.042 -19.079 -0.037 (0) - Ca[14C]O2[18O] 1.493e-020 1.495e-020 -19.826 -19.825 0.001 (0) - H[14C]O[18O]2- 8.577e-021 7.847e-021 -20.067 -20.105 -0.039 (0) - H[14C][18O]2O- 8.577e-021 7.847e-021 -20.067 -20.105 -0.039 (0) - H[14C][18O]O[18O]- 8.577e-021 7.847e-021 -20.067 -20.105 -0.039 (0) - [14C]O2[18O]-2 7.659e-021 5.365e-021 -20.116 -20.270 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.731e-016 - O[18O] 1.727e-016 1.730e-016 -15.763 -15.762 0.001 (0) - [18O]2 1.723e-019 1.726e-019 -18.764 -18.763 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.15 -126.01 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.24 -20.75 -1.50 [14C][18O]2 - [14C]H4(g) -133.53 -136.39 -2.86 [14C]H4 - [14C]O2(g) -13.88 -15.35 -1.47 [14C]O2 - [14C]O[18O](g) -16.26 -18.05 -1.79 [14C]O[18O] - [18O]2(g) -16.47 -18.76 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.23 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.83 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.41 -12.25 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.56 -6.85 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.34 -4.15 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.24 -9.55 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.19 -124.05 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.36 -39.51 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.47 -13.36 -2.89 O2 - O[18O](g) -13.17 -16.06 -2.89 O[18O] - - -Reaction step 12. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 12 6.0000e-003 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 3.56e-003 - Calcite 3.50e-003 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.15e-005 3.03e-006 6.05e-003 - CaCO[18O]2(s) 4.42e-008 6.21e-009 1.24e-005 - CaC[18O]3(s) 3.02e-011 4.25e-012 8.50e-009 - Ca[13C]O3(s) 3.89e-005 5.48e-006 1.09e-002 - Ca[13C]O2[18O](s) 2.39e-007 3.37e-008 6.73e-005 - Ca[13C]O[18O]2(s) 4.91e-010 6.92e-011 1.38e-007 - Ca[13C][18O]3(s) 3.36e-013 4.74e-014 9.45e-011 - Ca[14C]O3(s) 1.52e-015 1.41e-016 4.28e-013 - Ca[14C]O2[18O](s) 9.37e-018 8.65e-019 2.64e-015 - Ca[14C]O[18O]2(s) 1.92e-020 1.78e-021 5.41e-018 - Ca[14C][18O]3(s) 1.32e-023 1.22e-024 3.70e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99518e-003 -4.9946 permil - R(13C) 1.10785e-002 -9.0946 permil - R(14C) 4.32422e-013 36.774 pmc - R(18O) H2O(l) 1.99518e-003 -4.9961 permil - R(18O) OH- 1.92122e-003 -41.883 permil - R(18O) H3O+ 2.04132e-003 18.012 permil - R(18O) O2(aq) 1.99518e-003 -4.9961 permil - R(13C) CO2(aq) 1.09992e-002 -16.186 permil - R(14C) CO2(aq) 4.26250e-013 36.249 pmc - R(18O) CO2(aq) 2.07915e-003 36.878 permil - R(18O) HCO3- 1.99518e-003 -4.9961 permil - R(13C) HCO3- 1.10949e-002 -7.627 permil - R(14C) HCO3- 4.33699e-013 36.883 pmc - R(18O) CO3-2 1.99518e-003 -4.9961 permil - R(13C) CO3-2 1.10790e-002 -9.0512 permil - R(14C) CO3-2 4.32455e-013 36.777 pmc - R(18O) Calcite 2.05262e-003 23.65 permil - R(13C) Calcite 1.11169e-002 -5.6615 permil - R(14C) Calcite 4.35419e-013 37.029 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2462e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6473e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.470e-005 6.451e-005 - [14C] 2.525e-015 2.518e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.198 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.780e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.092 -124.091 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.959e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.102e-006 1.011e-006 -5.958 -5.995 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.050e-008 6.060e-008 -7.218 -7.218 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 6.022e-040 - H2 3.011e-040 3.016e-040 -39.521 -39.521 0.001 (0) -O(0) 9.151e-014 - O2 4.557e-014 4.565e-014 -13.341 -13.341 0.001 (0) - O[18O] 1.819e-016 1.822e-016 -15.740 -15.740 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.051 -126.050 0.001 (0) -[13C](4) 6.470e-005 - H[13C]O3- 5.219e-005 4.775e-005 -4.282 -4.321 -0.039 (0) - [13C]O2 1.095e-005 1.097e-005 -4.960 -4.960 0.001 (0) - CaH[13C]O3+ 1.102e-006 1.011e-006 -5.958 -5.995 -0.037 (0) - H[13C]O[18O]O- 1.041e-007 9.526e-008 -6.982 -7.021 -0.039 (0) - H[13C]O2[18O]- 1.041e-007 9.526e-008 -6.982 -7.021 -0.039 (0) - H[13C][18O]O2- 1.041e-007 9.526e-008 -6.982 -7.021 -0.039 (0) - Ca[13C]O3 6.050e-008 6.060e-008 -7.218 -7.218 0.001 (0) - [13C]O[18O] 4.555e-008 4.562e-008 -7.342 -7.341 0.001 (0) - [13C]O3-2 3.104e-008 2.174e-008 -7.508 -7.663 -0.155 (0) - CaH[13C]O2[18O]+ 2.199e-009 2.017e-009 -8.658 -8.695 -0.037 (0) - CaH[13C]O[18O]O+ 2.199e-009 2.017e-009 -8.658 -8.695 -0.037 (0) - CaH[13C][18O]O2+ 2.199e-009 2.017e-009 -8.658 -8.695 -0.037 (0) - Ca[13C]O2[18O] 3.621e-010 3.627e-010 -9.441 -9.440 0.001 (0) - H[13C][18O]O[18O]- 2.077e-010 1.901e-010 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.077e-010 1.901e-010 -9.682 -9.721 -0.039 (0) - H[13C]O[18O]2- 2.077e-010 1.901e-010 -9.682 -9.721 -0.039 (0) - [13C]O2[18O]-2 1.858e-010 1.301e-010 -9.731 -9.886 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.462 -136.462 0.001 (0) -[14C](4) 2.525e-015 - H[14C]O3- 2.040e-015 1.866e-015 -14.690 -14.729 -0.039 (0) - [14C]O2 4.245e-016 4.252e-016 -15.372 -15.371 0.001 (0) - CaH[14C]O3+ 4.308e-017 3.952e-017 -16.366 -16.403 -0.037 (0) - H[14C][18O]O2- 4.070e-018 3.724e-018 -17.390 -17.429 -0.039 (0) - H[14C]O[18O]O- 4.070e-018 3.724e-018 -17.390 -17.429 -0.039 (0) - H[14C]O2[18O]- 4.070e-018 3.724e-018 -17.390 -17.429 -0.039 (0) - Ca[14C]O3 2.362e-018 2.365e-018 -17.627 -17.626 0.001 (0) - [14C]O[18O] 1.765e-018 1.768e-018 -17.753 -17.753 0.001 (0) - [14C]O3-2 1.211e-018 8.487e-019 -17.917 -18.071 -0.155 (0) - CaH[14C]O2[18O]+ 8.595e-020 7.885e-020 -19.066 -19.103 -0.037 (0) - CaH[14C][18O]O2+ 8.595e-020 7.885e-020 -19.066 -19.103 -0.037 (0) - CaH[14C]O[18O]O+ 8.595e-020 7.885e-020 -19.066 -19.103 -0.037 (0) - Ca[14C]O2[18O] 1.414e-020 1.416e-020 -19.850 -19.849 0.001 (0) - H[14C][18O]2O- 8.121e-021 7.430e-021 -20.090 -20.129 -0.039 (0) - H[14C][18O]O[18O]- 8.121e-021 7.430e-021 -20.090 -20.129 -0.039 (0) - H[14C]O[18O]2- 8.121e-021 7.430e-021 -20.090 -20.129 -0.039 (0) - [14C]O2[18O]-2 7.251e-021 5.080e-021 -20.140 -20.294 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.822e-016 - O[18O] 1.819e-016 1.822e-016 -15.740 -15.740 0.001 (0) - [18O]2 1.814e-019 1.817e-019 -18.741 -18.741 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.19 -126.05 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.27 -20.77 -1.50 [14C][18O]2 - [14C]H4(g) -133.60 -136.46 -2.86 [14C]H4 - [14C]O2(g) -13.90 -15.37 -1.47 [14C]O2 - [14C]O[18O](g) -16.28 -18.07 -1.79 [14C]O[18O] - [18O]2(g) -16.45 -18.74 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.23 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.83 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.43 -12.28 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.58 -6.88 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.37 -4.18 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.27 -9.58 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.23 -124.09 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.37 -39.52 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.45 -13.34 -2.89 O2 - O[18O](g) -13.15 -16.04 -2.89 O[18O] - - -Reaction step 13. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 13 6.5000e-003 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 4.06e-003 - Calcite 3.99e-003 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.46e-005 3.03e-006 6.05e-003 - CaCO[18O]2(s) 5.04e-008 6.21e-009 1.24e-005 - CaC[18O]3(s) 3.45e-011 4.25e-012 8.50e-009 - Ca[13C]O3(s) 4.43e-005 5.48e-006 1.09e-002 - Ca[13C]O2[18O](s) 2.73e-007 3.38e-008 6.73e-005 - Ca[13C]O[18O]2(s) 5.60e-010 6.93e-011 1.38e-007 - Ca[13C][18O]3(s) 3.83e-013 4.74e-014 9.45e-011 - Ca[14C]O3(s) 1.65e-015 1.26e-016 4.06e-013 - Ca[14C]O2[18O](s) 1.01e-017 7.78e-019 2.50e-015 - Ca[14C]O[18O]2(s) 2.08e-020 1.60e-021 5.14e-018 - Ca[14C][18O]3(s) 1.43e-023 1.09e-024 3.51e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9944 permil - R(13C) 1.10829e-002 -8.7063 permil - R(14C) 4.10592e-013 34.918 pmc - R(18O) H2O(l) 1.99518e-003 -4.9959 permil - R(18O) OH- 1.92122e-003 -41.883 permil - R(18O) H3O+ 2.04132e-003 18.012 permil - R(18O) O2(aq) 1.99518e-003 -4.9959 permil - R(13C) CO2(aq) 1.10035e-002 -15.801 permil - R(14C) CO2(aq) 4.04732e-013 34.419 pmc - R(18O) CO2(aq) 2.07915e-003 36.878 permil - R(18O) HCO3- 1.99518e-003 -4.9959 permil - R(13C) HCO3- 1.10993e-002 -7.2382 permil - R(14C) HCO3- 4.11805e-013 35.021 pmc - R(18O) CO3-2 1.99518e-003 -4.9959 permil - R(13C) CO3-2 1.10833e-002 -8.6629 permil - R(14C) CO3-2 4.10624e-013 34.92 pmc - R(18O) Calcite 2.05262e-003 23.65 permil - R(13C) Calcite 1.11213e-002 -5.2719 permil - R(14C) Calcite 4.13438e-013 35.16 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2595e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.4401e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7596e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.473e-005 6.454e-005 - [14C] 2.398e-015 2.391e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.232 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.790e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.366 -124.366 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.959e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.102e-006 1.011e-006 -5.958 -5.995 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.053e-008 6.062e-008 -7.218 -7.217 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 5.142e-040 - H2 2.571e-040 2.575e-040 -39.590 -39.589 0.001 (0) -O(0) 1.255e-013 - O2 6.249e-014 6.259e-014 -13.204 -13.203 0.001 (0) - O[18O] 2.494e-016 2.498e-016 -15.603 -15.602 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.325 -126.324 0.001 (0) -[13C](4) 6.473e-005 - H[13C]O3- 5.221e-005 4.776e-005 -4.282 -4.321 -0.039 (0) - [13C]O2 1.096e-005 1.098e-005 -4.960 -4.960 0.001 (0) - CaH[13C]O3+ 1.102e-006 1.011e-006 -5.958 -5.995 -0.037 (0) - H[13C]O2[18O]- 1.042e-007 9.530e-008 -6.982 -7.021 -0.039 (0) - H[13C][18O]O2- 1.042e-007 9.530e-008 -6.982 -7.021 -0.039 (0) - H[13C]O[18O]O- 1.042e-007 9.530e-008 -6.982 -7.021 -0.039 (0) - Ca[13C]O3 6.053e-008 6.062e-008 -7.218 -7.217 0.001 (0) - [13C]O[18O] 4.557e-008 4.564e-008 -7.341 -7.341 0.001 (0) - [13C]O3-2 3.105e-008 2.175e-008 -7.508 -7.663 -0.155 (0) - CaH[13C]O[18O]O+ 2.200e-009 2.018e-009 -8.658 -8.695 -0.037 (0) - CaH[13C][18O]O2+ 2.200e-009 2.018e-009 -8.658 -8.695 -0.037 (0) - CaH[13C]O2[18O]+ 2.200e-009 2.018e-009 -8.658 -8.695 -0.037 (0) - Ca[13C]O2[18O] 3.623e-010 3.629e-010 -9.441 -9.440 0.001 (0) - H[13C][18O]O[18O]- 2.078e-010 1.901e-010 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.078e-010 1.901e-010 -9.682 -9.721 -0.039 (0) - H[13C]O[18O]2- 2.078e-010 1.901e-010 -9.682 -9.721 -0.039 (0) - [13C]O2[18O]-2 1.858e-010 1.302e-010 -9.731 -9.885 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.759 -136.758 0.001 (0) -[14C](4) 2.398e-015 - H[14C]O3- 1.937e-015 1.772e-015 -14.713 -14.752 -0.039 (0) - [14C]O2 4.031e-016 4.037e-016 -15.395 -15.394 0.001 (0) - CaH[14C]O3+ 4.090e-017 3.752e-017 -16.388 -16.426 -0.037 (0) - H[14C][18O]O2- 3.865e-018 3.536e-018 -17.413 -17.452 -0.039 (0) - H[14C]O[18O]O- 3.865e-018 3.536e-018 -17.413 -17.452 -0.039 (0) - H[14C]O2[18O]- 3.865e-018 3.536e-018 -17.413 -17.452 -0.039 (0) - Ca[14C]O3 2.242e-018 2.246e-018 -17.649 -17.649 0.001 (0) - [14C]O[18O] 1.676e-018 1.679e-018 -17.776 -17.775 0.001 (0) - [14C]O3-2 1.150e-018 8.058e-019 -17.939 -18.094 -0.155 (0) - CaH[14C]O2[18O]+ 8.161e-020 7.486e-020 -19.088 -19.126 -0.037 (0) - CaH[14C][18O]O2+ 8.161e-020 7.486e-020 -19.088 -19.126 -0.037 (0) - CaH[14C]O[18O]O+ 8.161e-020 7.486e-020 -19.088 -19.126 -0.037 (0) - Ca[14C]O2[18O] 1.342e-020 1.344e-020 -19.872 -19.871 0.001 (0) - H[14C][18O]O[18O]- 7.711e-021 7.054e-021 -20.113 -20.152 -0.039 (0) - H[14C]O[18O]2- 7.711e-021 7.054e-021 -20.113 -20.152 -0.039 (0) - H[14C][18O]2O- 7.711e-021 7.054e-021 -20.113 -20.152 -0.039 (0) - [14C]O2[18O]-2 6.885e-021 4.823e-021 -20.162 -20.317 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.499e-016 - O[18O] 2.494e-016 2.498e-016 -15.603 -15.602 0.001 (0) - [18O]2 2.488e-019 2.492e-019 -18.604 -18.604 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.46 -126.32 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.29 -20.79 -1.50 [14C][18O]2 - [14C]H4(g) -133.90 -136.76 -2.86 [14C]H4 - [14C]O2(g) -13.93 -15.39 -1.47 [14C]O2 - [14C]O[18O](g) -16.31 -18.09 -1.79 [14C]O[18O] - [18O]2(g) -16.31 -18.60 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.23 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.83 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.45 -12.30 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.60 -6.90 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.39 -4.20 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.29 -9.60 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.51 -124.37 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.44 -39.59 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.31 -13.20 -2.89 O2 - O[18O](g) -13.01 -15.90 -2.89 O[18O] - - -Reaction step 14. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 14 7.0000e-003 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 4.56e-003 - Calcite 4.48e-003 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.76e-005 3.03e-006 6.05e-003 - CaCO[18O]2(s) 5.66e-008 6.21e-009 1.24e-005 - CaC[18O]3(s) 3.87e-011 4.25e-012 8.50e-009 - Ca[13C]O3(s) 4.98e-005 5.48e-006 1.09e-002 - Ca[13C]O2[18O](s) 3.07e-007 3.38e-008 6.73e-005 - Ca[13C]O[18O]2(s) 6.30e-010 6.93e-011 1.38e-007 - Ca[13C][18O]3(s) 4.31e-013 4.74e-014 9.46e-011 - Ca[14C]O3(s) 1.76e-015 1.14e-016 3.87e-013 - Ca[14C]O2[18O](s) 1.09e-017 7.03e-019 2.38e-015 - Ca[14C]O[18O]2(s) 2.23e-020 1.44e-021 4.89e-018 - Ca[14C][18O]3(s) 1.52e-023 9.88e-025 3.35e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9943 permil - R(13C) 1.10868e-002 -8.3553 permil - R(14C) 3.90860e-013 33.24 pmc - R(18O) H2O(l) 1.99518e-003 -4.9958 permil - R(18O) OH- 1.92122e-003 -41.883 permil - R(18O) H3O+ 2.04132e-003 18.012 permil - R(18O) O2(aq) 1.99518e-003 -4.9958 permil - R(13C) CO2(aq) 1.10074e-002 -15.452 permil - R(14C) CO2(aq) 3.85281e-013 32.765 pmc - R(18O) CO2(aq) 2.07915e-003 36.878 permil - R(18O) HCO3- 1.99518e-003 -4.9958 permil - R(13C) HCO3- 1.11032e-002 -6.8866 permil - R(14C) HCO3- 3.92014e-013 33.338 pmc - R(18O) CO3-2 1.99518e-003 -4.9958 permil - R(13C) CO3-2 1.10873e-002 -8.3119 permil - R(14C) CO3-2 3.90890e-013 33.242 pmc - R(18O) Calcite 2.05262e-003 23.65 permil - R(13C) Calcite 1.11252e-002 -4.9196 permil - R(14C) Calcite 3.93569e-013 33.47 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2895e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.7724e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6314e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.475e-005 6.456e-005 - [14C] 2.283e-015 2.276e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.225 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.784e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.312 -124.311 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.959e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.103e-006 1.012e-006 -5.957 -5.995 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.055e-008 6.065e-008 -7.218 -7.217 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 5.307e-040 - H2 2.653e-040 2.658e-040 -39.576 -39.575 0.001 (0) -O(0) 1.178e-013 - O2 5.868e-014 5.878e-014 -13.231 -13.231 0.001 (0) - O[18O] 2.342e-016 2.346e-016 -15.630 -15.630 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.270 -126.269 0.001 (0) -[13C](4) 6.475e-005 - H[13C]O3- 5.223e-005 4.778e-005 -4.282 -4.321 -0.039 (0) - [13C]O2 1.096e-005 1.098e-005 -4.960 -4.959 0.001 (0) - CaH[13C]O3+ 1.103e-006 1.012e-006 -5.957 -5.995 -0.037 (0) - H[13C][18O]O2- 1.042e-007 9.533e-008 -6.982 -7.021 -0.039 (0) - H[13C]O[18O]O- 1.042e-007 9.533e-008 -6.982 -7.021 -0.039 (0) - H[13C]O2[18O]- 1.042e-007 9.533e-008 -6.982 -7.021 -0.039 (0) - Ca[13C]O3 6.055e-008 6.065e-008 -7.218 -7.217 0.001 (0) - [13C]O[18O] 4.558e-008 4.566e-008 -7.341 -7.340 0.001 (0) - [13C]O3-2 3.106e-008 2.176e-008 -7.508 -7.662 -0.155 (0) - CaH[13C][18O]O2+ 2.200e-009 2.019e-009 -8.657 -8.695 -0.037 (0) - CaH[13C]O2[18O]+ 2.200e-009 2.019e-009 -8.657 -8.695 -0.037 (0) - CaH[13C]O[18O]O+ 2.200e-009 2.019e-009 -8.657 -8.695 -0.037 (0) - Ca[13C]O2[18O] 3.624e-010 3.630e-010 -9.441 -9.440 0.001 (0) - H[13C][18O]O[18O]- 2.079e-010 1.902e-010 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.079e-010 1.902e-010 -9.682 -9.721 -0.039 (0) - H[13C]O[18O]2- 2.079e-010 1.902e-010 -9.682 -9.721 -0.039 (0) - [13C]O2[18O]-2 1.859e-010 1.302e-010 -9.731 -9.885 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.726 -136.725 0.001 (0) -[14C](4) 2.283e-015 - H[14C]O3- 1.844e-015 1.687e-015 -14.734 -14.773 -0.039 (0) - [14C]O2 3.837e-016 3.843e-016 -15.416 -15.415 0.001 (0) - CaH[14C]O3+ 3.894e-017 3.572e-017 -16.410 -16.447 -0.037 (0) - H[14C][18O]O2- 3.679e-018 3.366e-018 -17.434 -17.473 -0.039 (0) - H[14C]O[18O]O- 3.679e-018 3.366e-018 -17.434 -17.473 -0.039 (0) - H[14C]O2[18O]- 3.679e-018 3.366e-018 -17.434 -17.473 -0.039 (0) - Ca[14C]O3 2.135e-018 2.138e-018 -17.671 -17.670 0.001 (0) - [14C]O[18O] 1.595e-018 1.598e-018 -17.797 -17.796 0.001 (0) - [14C]O3-2 1.095e-018 7.671e-019 -17.961 -18.115 -0.155 (0) - CaH[14C]O2[18O]+ 7.769e-020 7.127e-020 -19.110 -19.147 -0.037 (0) - CaH[14C][18O]O2+ 7.769e-020 7.127e-020 -19.110 -19.147 -0.037 (0) - CaH[14C]O[18O]O+ 7.769e-020 7.127e-020 -19.110 -19.147 -0.037 (0) - Ca[14C]O2[18O] 1.278e-020 1.280e-020 -19.894 -19.893 0.001 (0) - H[14C]O[18O]2- 7.340e-021 6.715e-021 -20.134 -20.173 -0.039 (0) - H[14C][18O]2O- 7.340e-021 6.715e-021 -20.134 -20.173 -0.039 (0) - H[14C][18O]O[18O]- 7.340e-021 6.715e-021 -20.134 -20.173 -0.039 (0) - [14C]O2[18O]-2 6.554e-021 4.592e-021 -20.183 -20.338 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.346e-016 - O[18O] 2.342e-016 2.346e-016 -15.630 -15.630 0.001 (0) - [18O]2 2.336e-019 2.340e-019 -18.632 -18.631 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.41 -126.27 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.31 -20.82 -1.50 [14C][18O]2 - [14C]H4(g) -133.87 -136.73 -2.86 [14C]H4 - [14C]O2(g) -13.95 -15.42 -1.47 [14C]O2 - [14C]O[18O](g) -16.33 -18.12 -1.79 [14C]O[18O] - [18O]2(g) -16.34 -18.63 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.48 -12.32 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.62 -6.92 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.41 -4.22 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.31 -9.62 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.45 -124.31 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.43 -39.58 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.34 -13.23 -2.89 O2 - O[18O](g) -13.04 -15.93 -2.89 O[18O] - - -Reaction step 15. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 15 7.5000e-003 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.06e-003 - Calcite 4.97e-003 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.06e-005 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.28e-008 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.30e-011 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.53e-005 5.49e-006 1.09e-002 - Ca[13C]O2[18O](s) 3.41e-007 3.38e-008 6.74e-005 - Ca[13C]O[18O]2(s) 6.99e-010 6.93e-011 1.38e-007 - Ca[13C][18O]3(s) 4.78e-013 4.74e-014 9.46e-011 - Ca[14C]O3(s) 1.87e-015 1.04e-016 3.69e-013 - Ca[14C]O2[18O](s) 1.15e-017 6.39e-019 2.27e-015 - Ca[14C]O[18O]2(s) 2.36e-020 1.31e-021 4.67e-018 - Ca[14C][18O]3(s) 1.61e-023 8.97e-025 3.19e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9941 permil - R(13C) 1.10904e-002 -8.0364 permil - R(14C) 3.72937e-013 31.715 pmc - R(18O) H2O(l) 1.99518e-003 -4.9957 permil - R(18O) OH- 1.92122e-003 -41.883 permil - R(18O) H3O+ 2.04132e-003 18.012 permil - R(18O) O2(aq) 1.99518e-003 -4.9957 permil - R(13C) CO2(aq) 1.10110e-002 -15.135 permil - R(14C) CO2(aq) 3.67615e-013 31.263 pmc - R(18O) CO2(aq) 2.07915e-003 36.878 permil - R(18O) HCO3- 1.99518e-003 -4.9957 permil - R(13C) HCO3- 1.11068e-002 -6.5673 permil - R(14C) HCO3- 3.74039e-013 31.809 pmc - R(18O) CO3-2 1.99518e-003 -4.9957 permil - R(13C) CO3-2 1.10908e-002 -7.993 permil - R(14C) CO3-2 3.72966e-013 31.718 pmc - R(18O) Calcite 2.05262e-003 23.651 permil - R(13C) Calcite 1.11288e-002 -4.5996 permil - R(14C) Calcite 3.75522e-013 31.935 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2761e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.4401e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6998e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.477e-005 6.458e-005 - [14C] 2.178e-015 2.172e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.183 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.800e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.976 -123.975 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.959e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.103e-006 1.012e-006 -5.957 -5.995 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.057e-008 6.067e-008 -7.218 -7.217 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 6.438e-040 - H2 3.219e-040 3.224e-040 -39.492 -39.492 0.001 (0) -O(0) 8.006e-014 - O2 3.987e-014 3.994e-014 -13.399 -13.399 0.001 (0) - O[18O] 1.591e-016 1.594e-016 -15.798 -15.798 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.934 -125.934 0.001 (0) -[13C](4) 6.477e-005 - H[13C]O3- 5.224e-005 4.780e-005 -4.282 -4.321 -0.039 (0) - [13C]O2 1.097e-005 1.098e-005 -4.960 -4.959 0.001 (0) - CaH[13C]O3+ 1.103e-006 1.012e-006 -5.957 -5.995 -0.037 (0) - H[13C]O[18O]O- 1.042e-007 9.536e-008 -6.982 -7.021 -0.039 (0) - H[13C]O2[18O]- 1.042e-007 9.536e-008 -6.982 -7.021 -0.039 (0) - H[13C][18O]O2- 1.042e-007 9.536e-008 -6.982 -7.021 -0.039 (0) - Ca[13C]O3 6.057e-008 6.067e-008 -7.218 -7.217 0.001 (0) - [13C]O[18O] 4.560e-008 4.567e-008 -7.341 -7.340 0.001 (0) - [13C]O3-2 3.107e-008 2.177e-008 -7.508 -7.662 -0.155 (0) - CaH[13C]O2[18O]+ 2.201e-009 2.019e-009 -8.657 -8.695 -0.037 (0) - CaH[13C]O[18O]O+ 2.201e-009 2.019e-009 -8.657 -8.695 -0.037 (0) - CaH[13C][18O]O2+ 2.201e-009 2.019e-009 -8.657 -8.695 -0.037 (0) - Ca[13C]O2[18O] 3.625e-010 3.631e-010 -9.441 -9.440 0.001 (0) - H[13C][18O]O[18O]- 2.080e-010 1.903e-010 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.080e-010 1.903e-010 -9.682 -9.721 -0.039 (0) - H[13C]O[18O]2- 2.080e-010 1.903e-010 -9.682 -9.721 -0.039 (0) - [13C]O2[18O]-2 1.860e-010 1.303e-010 -9.731 -9.885 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.411 -136.410 0.001 (0) -[14C](4) 2.178e-015 - H[14C]O3- 1.759e-015 1.610e-015 -14.755 -14.793 -0.039 (0) - [14C]O2 3.661e-016 3.667e-016 -15.436 -15.436 0.001 (0) - CaH[14C]O3+ 3.715e-017 3.408e-017 -16.430 -16.467 -0.037 (0) - H[14C][18O]O2- 3.510e-018 3.211e-018 -17.455 -17.493 -0.039 (0) - H[14C]O[18O]O- 3.510e-018 3.211e-018 -17.455 -17.493 -0.039 (0) - H[14C]O2[18O]- 3.510e-018 3.211e-018 -17.455 -17.493 -0.039 (0) - Ca[14C]O3 2.037e-018 2.040e-018 -17.691 -17.690 0.001 (0) - [14C]O[18O] 1.522e-018 1.525e-018 -17.817 -17.817 0.001 (0) - [14C]O3-2 1.045e-018 7.319e-019 -17.981 -18.136 -0.155 (0) - CaH[14C]O2[18O]+ 7.413e-020 6.800e-020 -19.130 -19.168 -0.037 (0) - CaH[14C][18O]O2+ 7.413e-020 6.800e-020 -19.130 -19.168 -0.037 (0) - CaH[14C]O[18O]O+ 7.413e-020 6.800e-020 -19.130 -19.168 -0.037 (0) - Ca[14C]O2[18O] 1.219e-020 1.221e-020 -19.914 -19.913 0.001 (0) - H[14C][18O]2O- 7.004e-021 6.407e-021 -20.155 -20.193 -0.039 (0) - H[14C][18O]O[18O]- 7.004e-021 6.407e-021 -20.155 -20.193 -0.039 (0) - H[14C]O[18O]2- 7.004e-021 6.407e-021 -20.155 -20.193 -0.039 (0) - [14C]O2[18O]-2 6.254e-021 4.381e-021 -20.204 -20.358 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.594e-016 - O[18O] 1.591e-016 1.594e-016 -15.798 -15.798 0.001 (0) - [18O]2 1.587e-019 1.590e-019 -18.799 -18.799 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.07 -125.93 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.33 -20.84 -1.50 [14C][18O]2 - [14C]H4(g) -133.55 -136.41 -2.86 [14C]H4 - [14C]O2(g) -13.97 -15.44 -1.47 [14C]O2 - [14C]O[18O](g) -16.35 -18.14 -1.79 [14C]O[18O] - [18O]2(g) -16.51 -18.80 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.50 -12.34 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.64 -6.94 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.43 -4.24 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.33 -9.64 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.12 -123.98 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.34 -39.49 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.51 -13.40 -2.89 O2 - O[18O](g) -13.21 -16.10 -2.89 O[18O] - - -Reaction step 16. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 16 8.0000e-003 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 5.56e-003 - Calcite 5.46e-003 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.36e-005 3.03e-006 6.05e-003 - CaCO[18O]2(s) 6.90e-008 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.72e-011 4.25e-012 8.50e-009 - Ca[13C]O3(s) 6.08e-005 5.49e-006 1.09e-002 - Ca[13C]O2[18O](s) 3.74e-007 3.38e-008 6.74e-005 - Ca[13C]O[18O]2(s) 7.68e-010 6.94e-011 1.38e-007 - Ca[13C][18O]3(s) 5.26e-013 4.75e-014 9.46e-011 - Ca[14C]O3(s) 1.96e-015 9.46e-017 3.53e-013 - Ca[14C]O2[18O](s) 1.21e-017 5.83e-019 2.17e-015 - Ca[14C]O[18O]2(s) 2.48e-020 1.20e-021 4.46e-018 - Ca[14C][18O]3(s) 1.70e-023 8.18e-025 3.05e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.994 permil - R(13C) 1.10936e-002 -7.7455 permil - R(14C) 3.56587e-013 30.325 pmc - R(18O) H2O(l) 1.99518e-003 -4.9955 permil - R(18O) OH- 1.92122e-003 -41.883 permil - R(18O) H3O+ 2.04132e-003 18.012 permil - R(18O) O2(aq) 1.99518e-003 -4.9955 permil - R(13C) CO2(aq) 1.10142e-002 -14.847 permil - R(14C) CO2(aq) 3.51497e-013 29.892 pmc - R(18O) CO2(aq) 2.07915e-003 36.878 permil - R(18O) HCO3- 1.99518e-003 -4.9955 permil - R(13C) HCO3- 1.11100e-002 -6.2759 permil - R(14C) HCO3- 3.57640e-013 30.414 pmc - R(18O) CO3-2 1.99518e-003 -4.9955 permil - R(13C) CO3-2 1.10941e-002 -7.702 permil - R(14C) CO3-2 3.56614e-013 30.327 pmc - R(18O) Calcite 2.05262e-003 23.651 permil - R(13C) Calcite 1.11320e-002 -4.3077 permil - R(14C) Calcite 3.59058e-013 30.535 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2491e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.1102e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6652e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.479e-005 6.460e-005 - [14C] 2.083e-015 2.076e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.227 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.815e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.327 -124.326 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.959e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.104e-006 1.012e-006 -5.957 -5.995 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.058e-008 6.068e-008 -7.218 -7.217 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 5.260e-040 - H2 2.630e-040 2.634e-040 -39.580 -39.579 0.001 (0) -O(0) 1.199e-013 - O2 5.974e-014 5.983e-014 -13.224 -13.223 0.001 (0) - O[18O] 2.384e-016 2.388e-016 -15.623 -15.622 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.285 -126.285 0.001 (0) -[13C](4) 6.479e-005 - H[13C]O3- 5.226e-005 4.781e-005 -4.282 -4.320 -0.039 (0) - [13C]O2 1.097e-005 1.099e-005 -4.960 -4.959 0.001 (0) - CaH[13C]O3+ 1.104e-006 1.012e-006 -5.957 -5.995 -0.037 (0) - H[13C]O2[18O]- 1.043e-007 9.539e-008 -6.982 -7.020 -0.039 (0) - H[13C][18O]O2- 1.043e-007 9.539e-008 -6.982 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.043e-007 9.539e-008 -6.982 -7.020 -0.039 (0) - Ca[13C]O3 6.058e-008 6.068e-008 -7.218 -7.217 0.001 (0) - [13C]O[18O] 4.561e-008 4.569e-008 -7.341 -7.340 0.001 (0) - [13C]O3-2 3.108e-008 2.177e-008 -7.508 -7.662 -0.155 (0) - CaH[13C]O[18O]O+ 2.202e-009 2.020e-009 -8.657 -8.695 -0.037 (0) - CaH[13C][18O]O2+ 2.202e-009 2.020e-009 -8.657 -8.695 -0.037 (0) - CaH[13C]O2[18O]+ 2.202e-009 2.020e-009 -8.657 -8.695 -0.037 (0) - Ca[13C]O2[18O] 3.626e-010 3.632e-010 -9.441 -9.440 0.001 (0) - H[13C][18O]O[18O]- 2.080e-010 1.903e-010 -9.682 -9.721 -0.039 (0) - H[13C][18O]2O- 2.080e-010 1.903e-010 -9.682 -9.721 -0.039 (0) - H[13C]O[18O]2- 2.080e-010 1.903e-010 -9.682 -9.721 -0.039 (0) - [13C]O2[18O]-2 1.860e-010 1.303e-010 -9.730 -9.885 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.781 -136.781 0.001 (0) -[14C](4) 2.083e-015 - H[14C]O3- 1.682e-015 1.539e-015 -14.774 -14.813 -0.039 (0) - [14C]O2 3.500e-016 3.506e-016 -15.456 -15.455 0.001 (0) - CaH[14C]O3+ 3.552e-017 3.259e-017 -16.449 -16.487 -0.037 (0) - H[14C][18O]O2- 3.356e-018 3.071e-018 -17.474 -17.513 -0.039 (0) - H[14C]O[18O]O- 3.356e-018 3.071e-018 -17.474 -17.513 -0.039 (0) - H[14C]O2[18O]- 3.356e-018 3.071e-018 -17.474 -17.513 -0.039 (0) - Ca[14C]O3 1.947e-018 1.951e-018 -17.711 -17.710 0.001 (0) - [14C]O[18O] 1.456e-018 1.458e-018 -17.837 -17.836 0.001 (0) - [14C]O3-2 9.990e-019 6.998e-019 -18.000 -18.155 -0.155 (0) - CaH[14C]O2[18O]+ 7.088e-020 6.502e-020 -19.150 -19.187 -0.037 (0) - CaH[14C][18O]O2+ 7.088e-020 6.502e-020 -19.150 -19.187 -0.037 (0) - CaH[14C]O[18O]O+ 7.088e-020 6.502e-020 -19.150 -19.187 -0.037 (0) - Ca[14C]O2[18O] 1.166e-020 1.168e-020 -19.933 -19.933 0.001 (0) - H[14C][18O]O[18O]- 6.697e-021 6.127e-021 -20.174 -20.213 -0.039 (0) - H[14C]O[18O]2- 6.697e-021 6.127e-021 -20.174 -20.213 -0.039 (0) - H[14C][18O]2O- 6.697e-021 6.127e-021 -20.174 -20.213 -0.039 (0) - [14C]O2[18O]-2 5.980e-021 4.189e-021 -20.223 -20.378 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.388e-016 - O[18O] 2.384e-016 2.388e-016 -15.623 -15.622 0.001 (0) - [18O]2 2.378e-019 2.382e-019 -18.624 -18.623 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.42 -126.28 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.35 -20.86 -1.50 [14C][18O]2 - [14C]H4(g) -133.92 -136.78 -2.86 [14C]H4 - [14C]O2(g) -13.99 -15.46 -1.47 [14C]O2 - [14C]O[18O](g) -16.37 -18.16 -1.79 [14C]O[18O] - [18O]2(g) -16.33 -18.62 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.52 -12.36 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.66 -6.96 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.45 -4.26 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.35 -9.66 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.47 -124.33 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.43 -39.58 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.33 -13.22 -2.89 O2 - O[18O](g) -13.03 -15.92 -2.89 O[18O] - - -Reaction step 17. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 17 8.5000e-003 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 6.06e-003 - Calcite 5.95e-003 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.67e-005 3.03e-006 6.05e-003 - CaCO[18O]2(s) 7.52e-008 6.21e-009 1.24e-005 - CaC[18O]3(s) 5.15e-011 4.25e-012 8.50e-009 - Ca[13C]O3(s) 6.63e-005 5.49e-006 1.09e-002 - Ca[13C]O2[18O](s) 4.08e-007 3.38e-008 6.74e-005 - Ca[13C]O[18O]2(s) 8.38e-010 6.94e-011 1.38e-007 - Ca[13C][18O]3(s) 5.73e-013 4.75e-014 9.47e-011 - Ca[14C]O3(s) 2.05e-015 8.67e-017 3.38e-013 - Ca[14C]O2[18O](s) 1.26e-017 5.34e-019 2.08e-015 - Ca[14C]O[18O]2(s) 2.59e-020 1.10e-021 4.27e-018 - Ca[14C][18O]3(s) 1.77e-023 7.50e-025 2.92e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9939 permil - R(13C) 1.10966e-002 -7.4789 permil - R(14C) 3.41609e-013 29.051 pmc - R(18O) H2O(l) 1.99518e-003 -4.9954 permil - R(18O) OH- 1.92122e-003 -41.883 permil - R(18O) H3O+ 2.04132e-003 18.012 permil - R(18O) O2(aq) 1.99518e-003 -4.9954 permil - R(13C) CO2(aq) 1.10172e-002 -14.582 permil - R(14C) CO2(aq) 3.36734e-013 28.637 pmc - R(18O) CO2(aq) 2.07915e-003 36.878 permil - R(18O) HCO3- 1.99518e-003 -4.9954 permil - R(13C) HCO3- 1.11130e-002 -6.0089 permil - R(14C) HCO3- 3.42618e-013 29.137 pmc - R(18O) CO3-2 1.99518e-003 -4.9954 permil - R(13C) CO3-2 1.10971e-002 -7.4354 permil - R(14C) CO3-2 3.41636e-013 29.053 pmc - R(18O) Calcite 2.05262e-003 23.651 permil - R(13C) Calcite 1.11350e-002 -4.0402 permil - R(14C) Calcite 3.43977e-013 29.253 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2423e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-013 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7072e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.481e-005 6.462e-005 - [14C] 1.995e-015 1.989e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.230 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.822e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.354 -124.353 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.959e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.104e-006 1.013e-006 -5.957 -5.995 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.060e-008 6.070e-008 -7.218 -7.217 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 5.180e-040 - H2 2.590e-040 2.594e-040 -39.587 -39.586 0.001 (0) -O(0) 1.237e-013 - O2 6.158e-014 6.168e-014 -13.211 -13.210 0.001 (0) - O[18O] 2.457e-016 2.461e-016 -15.610 -15.609 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.312 -126.311 0.001 (0) -[13C](4) 6.481e-005 - H[13C]O3- 5.227e-005 4.782e-005 -4.282 -4.320 -0.039 (0) - [13C]O2 1.097e-005 1.099e-005 -4.960 -4.959 0.001 (0) - CaH[13C]O3+ 1.104e-006 1.013e-006 -5.957 -5.995 -0.037 (0) - H[13C][18O]O2- 1.043e-007 9.541e-008 -6.982 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.043e-007 9.541e-008 -6.982 -7.020 -0.039 (0) - H[13C]O2[18O]- 1.043e-007 9.541e-008 -6.982 -7.020 -0.039 (0) - Ca[13C]O3 6.060e-008 6.070e-008 -7.218 -7.217 0.001 (0) - [13C]O[18O] 4.562e-008 4.570e-008 -7.341 -7.340 0.001 (0) - [13C]O3-2 3.109e-008 2.178e-008 -7.507 -7.662 -0.155 (0) - CaH[13C][18O]O2+ 2.202e-009 2.020e-009 -8.657 -8.695 -0.037 (0) - CaH[13C]O2[18O]+ 2.202e-009 2.020e-009 -8.657 -8.695 -0.037 (0) - CaH[13C]O[18O]O+ 2.202e-009 2.020e-009 -8.657 -8.695 -0.037 (0) - Ca[13C]O2[18O] 3.627e-010 3.633e-010 -9.440 -9.440 0.001 (0) - H[13C][18O]O[18O]- 2.081e-010 1.904e-010 -9.682 -9.720 -0.039 (0) - H[13C][18O]2O- 2.081e-010 1.904e-010 -9.682 -9.720 -0.039 (0) - H[13C]O[18O]2- 2.081e-010 1.904e-010 -9.682 -9.720 -0.039 (0) - [13C]O2[18O]-2 1.861e-010 1.304e-010 -9.730 -9.885 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.826 -136.826 0.001 (0) -[14C](4) 1.995e-015 - H[14C]O3- 1.612e-015 1.474e-015 -14.793 -14.831 -0.039 (0) - [14C]O2 3.353e-016 3.359e-016 -15.475 -15.474 0.001 (0) - CaH[14C]O3+ 3.403e-017 3.122e-017 -16.468 -16.506 -0.037 (0) - H[14C][18O]O2- 3.215e-018 2.942e-018 -17.493 -17.531 -0.039 (0) - H[14C]O[18O]O- 3.215e-018 2.942e-018 -17.493 -17.531 -0.039 (0) - H[14C]O2[18O]- 3.215e-018 2.942e-018 -17.493 -17.531 -0.039 (0) - Ca[14C]O3 1.866e-018 1.869e-018 -17.729 -17.728 0.001 (0) - [14C]O[18O] 1.394e-018 1.397e-018 -17.856 -17.855 0.001 (0) - [14C]O3-2 9.570e-019 6.704e-019 -18.019 -18.174 -0.155 (0) - CaH[14C]O2[18O]+ 6.790e-020 6.229e-020 -19.168 -19.206 -0.037 (0) - CaH[14C][18O]O2+ 6.790e-020 6.229e-020 -19.168 -19.206 -0.037 (0) - CaH[14C]O[18O]O+ 6.790e-020 6.229e-020 -19.168 -19.206 -0.037 (0) - Ca[14C]O2[18O] 1.117e-020 1.119e-020 -19.952 -19.951 0.001 (0) - H[14C]O[18O]2- 6.415e-021 5.869e-021 -20.193 -20.231 -0.039 (0) - H[14C][18O]2O- 6.415e-021 5.869e-021 -20.193 -20.231 -0.039 (0) - H[14C][18O]O[18O]- 6.415e-021 5.869e-021 -20.193 -20.231 -0.039 (0) - [14C]O2[18O]-2 5.728e-021 4.013e-021 -20.242 -20.397 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.462e-016 - O[18O] 2.457e-016 2.461e-016 -15.610 -15.609 0.001 (0) - [18O]2 2.451e-019 2.455e-019 -18.611 -18.610 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.45 -126.31 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.37 -20.87 -1.50 [14C][18O]2 - [14C]H4(g) -133.97 -136.83 -2.86 [14C]H4 - [14C]O2(g) -14.01 -15.47 -1.47 [14C]O2 - [14C]O[18O](g) -16.39 -18.17 -1.79 [14C]O[18O] - [18O]2(g) -16.32 -18.61 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.53 -12.38 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.68 -6.98 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.47 -4.28 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.37 -9.68 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.49 -124.35 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.44 -39.59 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.32 -13.21 -2.89 O2 - O[18O](g) -13.02 -15.91 -2.89 O[18O] - - -Reaction step 18. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 18 9.0000e-003 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 6.56e-003 - Calcite 6.44e-003 4.91e-004 9.83e-001 - CaCO2[18O](s) 3.97e-005 3.03e-006 6.05e-003 - CaCO[18O]2(s) 8.15e-008 6.21e-009 1.24e-005 - CaC[18O]3(s) 5.57e-011 4.25e-012 8.50e-009 - Ca[13C]O3(s) 7.18e-005 5.49e-006 1.09e-002 - Ca[13C]O2[18O](s) 4.42e-007 3.38e-008 6.74e-005 - Ca[13C]O[18O]2(s) 9.07e-010 6.94e-011 1.38e-007 - Ca[13C][18O]3(s) 6.21e-013 4.75e-014 9.47e-011 - Ca[14C]O3(s) 2.13e-015 7.97e-017 3.24e-013 - Ca[14C]O2[18O](s) 1.31e-017 4.91e-019 2.00e-015 - Ca[14C]O[18O]2(s) 2.69e-020 1.01e-021 4.10e-018 - Ca[14C][18O]3(s) 1.84e-023 6.89e-025 2.81e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9937 permil - R(13C) 1.10993e-002 -7.2338 permil - R(14C) 3.27839e-013 27.88 pmc - R(18O) H2O(l) 1.99518e-003 -4.9952 permil - R(18O) OH- 1.92122e-003 -41.882 permil - R(18O) H3O+ 2.04132e-003 18.013 permil - R(18O) O2(aq) 1.99518e-003 -4.9952 permil - R(13C) CO2(aq) 1.10199e-002 -14.339 permil - R(14C) CO2(aq) 3.23160e-013 27.482 pmc - R(18O) CO2(aq) 2.07915e-003 36.879 permil - R(18O) HCO3- 1.99518e-003 -4.9952 permil - R(13C) HCO3- 1.11158e-002 -5.7634 permil - R(14C) HCO3- 3.28808e-013 27.963 pmc - R(18O) CO3-2 1.99518e-003 -4.9952 permil - R(13C) CO3-2 1.10998e-002 -7.1903 permil - R(14C) CO3-2 3.27865e-013 27.882 pmc - R(18O) Calcite 2.05262e-003 23.651 permil - R(13C) Calcite 1.11378e-002 -3.7942 permil - R(14C) Calcite 3.30111e-013 28.073 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2586e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6039e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.482e-005 6.463e-005 - [14C] 1.915e-015 1.909e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.241 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.839e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.438 -124.437 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.104e-006 1.013e-006 -5.957 -5.994 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.061e-008 6.071e-008 -7.217 -7.217 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 4.935e-040 - H2 2.467e-040 2.472e-040 -39.608 -39.607 0.001 (0) -O(0) 1.363e-013 - O2 6.786e-014 6.797e-014 -13.168 -13.168 0.001 (0) - O[18O] 2.708e-016 2.712e-016 -15.567 -15.567 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.396 -126.395 0.001 (0) -[13C](4) 6.482e-005 - H[13C]O3- 5.229e-005 4.783e-005 -4.282 -4.320 -0.039 (0) - [13C]O2 1.097e-005 1.099e-005 -4.960 -4.959 0.001 (0) - CaH[13C]O3+ 1.104e-006 1.013e-006 -5.957 -5.994 -0.037 (0) - H[13C]O[18O]O- 1.043e-007 9.544e-008 -6.982 -7.020 -0.039 (0) - H[13C]O2[18O]- 1.043e-007 9.544e-008 -6.982 -7.020 -0.039 (0) - H[13C][18O]O2- 1.043e-007 9.544e-008 -6.982 -7.020 -0.039 (0) - Ca[13C]O3 6.061e-008 6.071e-008 -7.217 -7.217 0.001 (0) - [13C]O[18O] 4.563e-008 4.571e-008 -7.341 -7.340 0.001 (0) - [13C]O3-2 3.109e-008 2.178e-008 -7.507 -7.662 -0.155 (0) - CaH[13C]O2[18O]+ 2.203e-009 2.021e-009 -8.657 -8.694 -0.037 (0) - CaH[13C]O[18O]O+ 2.203e-009 2.021e-009 -8.657 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.203e-009 2.021e-009 -8.657 -8.694 -0.037 (0) - Ca[13C]O2[18O] 3.628e-010 3.634e-010 -9.440 -9.440 0.001 (0) - H[13C][18O]O[18O]- 2.081e-010 1.904e-010 -9.682 -9.720 -0.039 (0) - H[13C][18O]2O- 2.081e-010 1.904e-010 -9.682 -9.720 -0.039 (0) - H[13C]O[18O]2- 2.081e-010 1.904e-010 -9.682 -9.720 -0.039 (0) - [13C]O2[18O]-2 1.861e-010 1.304e-010 -9.730 -9.885 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.929 -136.928 0.001 (0) -[14C](4) 1.915e-015 - H[14C]O3- 1.547e-015 1.415e-015 -14.811 -14.849 -0.039 (0) - [14C]O2 3.218e-016 3.223e-016 -15.492 -15.492 0.001 (0) - CaH[14C]O3+ 3.266e-017 2.996e-017 -16.486 -16.523 -0.037 (0) - H[14C][18O]O2- 3.086e-018 2.823e-018 -17.511 -17.549 -0.039 (0) - H[14C]O[18O]O- 3.086e-018 2.823e-018 -17.511 -17.549 -0.039 (0) - H[14C]O2[18O]- 3.086e-018 2.823e-018 -17.511 -17.549 -0.039 (0) - Ca[14C]O3 1.790e-018 1.793e-018 -17.747 -17.746 0.001 (0) - [14C]O[18O] 1.338e-018 1.340e-018 -17.873 -17.873 0.001 (0) - [14C]O3-2 9.185e-019 6.434e-019 -18.037 -18.192 -0.155 (0) - CaH[14C]O2[18O]+ 6.516e-020 5.977e-020 -19.186 -19.223 -0.037 (0) - CaH[14C][18O]O2+ 6.516e-020 5.977e-020 -19.186 -19.223 -0.037 (0) - CaH[14C]O[18O]O+ 6.516e-020 5.977e-020 -19.186 -19.223 -0.037 (0) - Ca[14C]O2[18O] 1.072e-020 1.073e-020 -19.970 -19.969 0.001 (0) - H[14C][18O]2O- 6.157e-021 5.633e-021 -20.211 -20.249 -0.039 (0) - H[14C][18O]O[18O]- 6.157e-021 5.633e-021 -20.211 -20.249 -0.039 (0) - H[14C]O[18O]2- 6.157e-021 5.633e-021 -20.211 -20.249 -0.039 (0) - [14C]O2[18O]-2 5.497e-021 3.851e-021 -20.260 -20.414 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.713e-016 - O[18O] 2.708e-016 2.712e-016 -15.567 -15.567 0.001 (0) - [18O]2 2.701e-019 2.706e-019 -18.568 -18.568 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.54 -126.40 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.39 -20.89 -1.50 [14C][18O]2 - [14C]H4(g) -134.07 -136.93 -2.86 [14C]H4 - [14C]O2(g) -14.02 -15.49 -1.47 [14C]O2 - [14C]O[18O](g) -16.40 -18.19 -1.79 [14C]O[18O] - [18O]2(g) -16.28 -18.57 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.55 -12.40 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.70 -7.00 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.49 -4.30 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.39 -9.70 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.58 -124.44 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.46 -39.61 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.28 -13.17 -2.89 O2 - O[18O](g) -12.98 -15.87 -2.89 O[18O] - - -Reaction step 19. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 19 9.5000e-003 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 7.06e-003 - Calcite 6.94e-003 4.91e-004 9.83e-001 - CaCO2[18O](s) 4.27e-005 3.03e-006 6.05e-003 - CaCO[18O]2(s) 8.77e-008 6.21e-009 1.24e-005 - CaC[18O]3(s) 6.00e-011 4.25e-012 8.50e-009 - Ca[13C]O3(s) 7.73e-005 5.49e-006 1.10e-002 - Ca[13C]O2[18O](s) 4.76e-007 3.38e-008 6.74e-005 - Ca[13C]O[18O]2(s) 9.77e-010 6.94e-011 1.38e-007 - Ca[13C][18O]3(s) 6.68e-013 4.75e-014 9.47e-011 - Ca[14C]O3(s) 2.20e-015 7.35e-017 3.12e-013 - Ca[14C]O2[18O](s) 1.36e-017 4.53e-019 1.92e-015 - Ca[14C]O[18O]2(s) 2.78e-020 9.29e-022 3.94e-018 - Ca[14C][18O]3(s) 1.90e-023 6.36e-025 2.70e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9936 permil - R(13C) 1.11019e-002 -7.0076 permil - R(14C) 3.15136e-013 26.8 pmc - R(18O) H2O(l) 1.99518e-003 -4.9951 permil - R(18O) OH- 1.92122e-003 -41.882 permil - R(18O) H3O+ 2.04132e-003 18.013 permil - R(18O) O2(aq) 1.99518e-003 -4.9951 permil - R(13C) CO2(aq) 1.10224e-002 -14.114 permil - R(14C) CO2(aq) 3.10639e-013 26.417 pmc - R(18O) CO2(aq) 2.07915e-003 36.879 permil - R(18O) HCO3- 1.99518e-003 -4.9951 permil - R(13C) HCO3- 1.11183e-002 -5.537 permil - R(14C) HCO3- 3.16067e-013 26.879 pmc - R(18O) CO3-2 1.99518e-003 -4.9951 permil - R(13C) CO3-2 1.11023e-002 -6.9641 permil - R(14C) CO3-2 3.15161e-013 26.802 pmc - R(18O) Calcite 2.05263e-003 23.651 permil - R(13C) Calcite 1.11403e-002 -3.5673 permil - R(14C) Calcite 3.17321e-013 26.986 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2337e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 0 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7356e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.484e-005 6.465e-005 - [14C] 1.840e-015 1.835e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.254 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.835e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.542 -124.542 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.104e-006 1.013e-006 -5.957 -5.994 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.063e-008 6.073e-008 -7.217 -7.217 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 4.647e-040 - H2 2.323e-040 2.327e-040 -39.634 -39.633 0.001 (0) -O(0) 1.537e-013 - O2 7.653e-014 7.666e-014 -13.116 -13.115 0.001 (0) - O[18O] 3.054e-016 3.059e-016 -15.515 -15.514 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.500 -126.499 0.001 (0) -[13C](4) 6.484e-005 - H[13C]O3- 5.230e-005 4.785e-005 -4.282 -4.320 -0.039 (0) - [13C]O2 1.098e-005 1.099e-005 -4.960 -4.959 0.001 (0) - CaH[13C]O3+ 1.104e-006 1.013e-006 -5.957 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.043e-007 9.546e-008 -6.982 -7.020 -0.039 (0) - H[13C][18O]O2- 1.043e-007 9.546e-008 -6.982 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.043e-007 9.546e-008 -6.982 -7.020 -0.039 (0) - Ca[13C]O3 6.063e-008 6.073e-008 -7.217 -7.217 0.001 (0) - [13C]O[18O] 4.564e-008 4.572e-008 -7.341 -7.340 0.001 (0) - [13C]O3-2 3.110e-008 2.179e-008 -7.507 -7.662 -0.155 (0) - CaH[13C]O[18O]O+ 2.203e-009 2.021e-009 -8.657 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.203e-009 2.021e-009 -8.657 -8.694 -0.037 (0) - CaH[13C]O2[18O]+ 2.203e-009 2.021e-009 -8.657 -8.694 -0.037 (0) - Ca[13C]O2[18O] 3.629e-010 3.635e-010 -9.440 -9.440 0.001 (0) - H[13C][18O]O[18O]- 2.082e-010 1.905e-010 -9.682 -9.720 -0.039 (0) - H[13C][18O]2O- 2.082e-010 1.905e-010 -9.682 -9.720 -0.039 (0) - H[13C]O[18O]2- 2.082e-010 1.905e-010 -9.682 -9.720 -0.039 (0) - [13C]O2[18O]-2 1.862e-010 1.304e-010 -9.730 -9.885 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.050 -137.049 0.001 (0) -[14C](4) 1.840e-015 - H[14C]O3- 1.487e-015 1.360e-015 -14.828 -14.866 -0.039 (0) - [14C]O2 3.093e-016 3.099e-016 -15.510 -15.509 0.001 (0) - CaH[14C]O3+ 3.139e-017 2.880e-017 -16.503 -16.541 -0.037 (0) - H[14C][18O]O2- 2.966e-018 2.714e-018 -17.528 -17.566 -0.039 (0) - H[14C]O[18O]O- 2.966e-018 2.714e-018 -17.528 -17.566 -0.039 (0) - H[14C]O2[18O]- 2.966e-018 2.714e-018 -17.528 -17.566 -0.039 (0) - Ca[14C]O3 1.721e-018 1.724e-018 -17.764 -17.763 0.001 (0) - [14C]O[18O] 1.286e-018 1.288e-018 -17.891 -17.890 0.001 (0) - [14C]O3-2 8.829e-019 6.185e-019 -18.054 -18.209 -0.155 (0) - CaH[14C]O2[18O]+ 6.264e-020 5.746e-020 -19.203 -19.241 -0.037 (0) - CaH[14C][18O]O2+ 6.264e-020 5.746e-020 -19.203 -19.241 -0.037 (0) - CaH[14C]O[18O]O+ 6.264e-020 5.746e-020 -19.203 -19.241 -0.037 (0) - Ca[14C]O2[18O] 1.030e-020 1.032e-020 -19.987 -19.986 0.001 (0) - H[14C][18O]O[18O]- 5.918e-021 5.414e-021 -20.228 -20.266 -0.039 (0) - H[14C]O[18O]2- 5.918e-021 5.414e-021 -20.228 -20.266 -0.039 (0) - H[14C][18O]2O- 5.918e-021 5.414e-021 -20.228 -20.266 -0.039 (0) - [14C]O2[18O]-2 5.284e-021 3.702e-021 -20.277 -20.432 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 3.060e-016 - O[18O] 3.054e-016 3.059e-016 -15.515 -15.514 0.001 (0) - [18O]2 3.047e-019 3.052e-019 -18.516 -18.515 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.64 -126.50 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.41 -20.91 -1.50 [14C][18O]2 - [14C]H4(g) -134.19 -137.05 -2.86 [14C]H4 - [14C]O2(g) -14.04 -15.51 -1.47 [14C]O2 - [14C]O[18O](g) -16.42 -18.21 -1.79 [14C]O[18O] - [18O]2(g) -16.23 -18.52 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.57 -12.41 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.72 -7.01 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.51 -4.31 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.40 -9.71 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.68 -124.54 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.48 -39.63 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.22 -13.12 -2.89 O2 - O[18O](g) -12.92 -15.82 -2.89 O[18O] - - -Reaction step 20. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 20 1.0000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 7.56e-003 - Calcite 7.43e-003 4.91e-004 9.83e-001 - CaCO2[18O](s) 4.57e-005 3.03e-006 6.05e-003 - CaCO[18O]2(s) 9.39e-008 6.21e-009 1.24e-005 - CaC[18O]3(s) 6.42e-011 4.25e-012 8.50e-009 - Ca[13C]O3(s) 8.28e-005 5.49e-006 1.10e-002 - Ca[13C]O2[18O](s) 5.10e-007 3.38e-008 6.74e-005 - Ca[13C]O[18O]2(s) 1.05e-009 6.94e-011 1.38e-007 - Ca[13C][18O]3(s) 7.16e-013 4.75e-014 9.47e-011 - Ca[14C]O3(s) 2.27e-015 6.80e-017 3.00e-013 - Ca[14C]O2[18O](s) 1.40e-017 4.19e-019 1.85e-015 - Ca[14C]O[18O]2(s) 2.87e-020 8.60e-022 3.80e-018 - Ca[14C][18O]3(s) 1.96e-023 5.88e-025 2.60e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9934 permil - R(13C) 1.11042e-002 -6.7983 permil - R(14C) 3.03381e-013 25.8 pmc - R(18O) H2O(l) 1.99518e-003 -4.995 permil - R(18O) OH- 1.92122e-003 -41.882 permil - R(18O) H3O+ 2.04132e-003 18.013 permil - R(18O) O2(aq) 1.99518e-003 -4.995 permil - R(13C) CO2(aq) 1.10247e-002 -13.906 permil - R(14C) CO2(aq) 2.99051e-013 25.432 pmc - R(18O) CO2(aq) 2.07915e-003 36.879 permil - R(18O) HCO3- 1.99518e-003 -4.995 permil - R(13C) HCO3- 1.11206e-002 -5.3273 permil - R(14C) HCO3- 3.04277e-013 25.876 pmc - R(18O) CO3-2 1.99518e-003 -4.995 permil - R(13C) CO3-2 1.11047e-002 -6.7548 permil - R(14C) CO3-2 3.03405e-013 25.802 pmc - R(18O) Calcite 2.05263e-003 23.651 permil - R(13C) Calcite 1.11427e-002 -3.3572 permil - R(14C) Calcite 3.05484e-013 25.979 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2654e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7041e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.485e-005 6.466e-005 - [14C] 1.772e-015 1.767e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.277 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.849e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.730 -124.729 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.105e-006 1.013e-006 -5.957 -5.994 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.064e-008 6.074e-008 -7.217 -7.217 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 4.171e-040 - H2 2.086e-040 2.089e-040 -39.681 -39.680 0.001 (0) -O(0) 1.907e-013 - O2 9.497e-014 9.513e-014 -13.022 -13.022 0.001 (0) - O[18O] 3.790e-016 3.796e-016 -15.421 -15.421 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.688 -126.687 0.001 (0) -[13C](4) 6.485e-005 - H[13C]O3- 5.231e-005 4.786e-005 -4.281 -4.320 -0.039 (0) - [13C]O2 1.098e-005 1.100e-005 -4.959 -4.959 0.001 (0) - CaH[13C]O3+ 1.105e-006 1.013e-006 -5.957 -5.994 -0.037 (0) - H[13C][18O]O2- 1.044e-007 9.548e-008 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.044e-007 9.548e-008 -6.981 -7.020 -0.039 (0) - H[13C]O2[18O]- 1.044e-007 9.548e-008 -6.981 -7.020 -0.039 (0) - Ca[13C]O3 6.064e-008 6.074e-008 -7.217 -7.217 0.001 (0) - [13C]O[18O] 4.565e-008 4.573e-008 -7.341 -7.340 0.001 (0) - [13C]O3-2 3.111e-008 2.179e-008 -7.507 -7.662 -0.155 (0) - CaH[13C][18O]O2+ 2.204e-009 2.022e-009 -8.657 -8.694 -0.037 (0) - CaH[13C]O2[18O]+ 2.204e-009 2.022e-009 -8.657 -8.694 -0.037 (0) - CaH[13C]O[18O]O+ 2.204e-009 2.022e-009 -8.657 -8.694 -0.037 (0) - Ca[13C]O2[18O] 3.630e-010 3.636e-010 -9.440 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.082e-010 1.905e-010 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.082e-010 1.905e-010 -9.681 -9.720 -0.039 (0) - H[13C]O[18O]2- 2.082e-010 1.905e-010 -9.681 -9.720 -0.039 (0) - [13C]O2[18O]-2 1.862e-010 1.304e-010 -9.730 -9.885 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.254 -137.253 0.001 (0) -[14C](4) 1.772e-015 - H[14C]O3- 1.431e-015 1.309e-015 -14.844 -14.883 -0.039 (0) - [14C]O2 2.978e-016 2.983e-016 -15.526 -15.525 0.001 (0) - CaH[14C]O3+ 3.022e-017 2.772e-017 -16.520 -16.557 -0.037 (0) - H[14C][18O]O2- 2.856e-018 2.612e-018 -17.544 -17.583 -0.039 (0) - H[14C]O[18O]O- 2.856e-018 2.612e-018 -17.544 -17.583 -0.039 (0) - H[14C]O2[18O]- 2.856e-018 2.612e-018 -17.544 -17.583 -0.039 (0) - Ca[14C]O3 1.657e-018 1.660e-018 -17.781 -17.780 0.001 (0) - [14C]O[18O] 1.238e-018 1.240e-018 -17.907 -17.906 0.001 (0) - [14C]O3-2 8.499e-019 5.954e-019 -18.071 -18.225 -0.155 (0) - CaH[14C]O2[18O]+ 6.030e-020 5.532e-020 -19.220 -19.257 -0.037 (0) - CaH[14C][18O]O2+ 6.030e-020 5.532e-020 -19.220 -19.257 -0.037 (0) - CaH[14C]O[18O]O+ 6.030e-020 5.532e-020 -19.220 -19.257 -0.037 (0) - Ca[14C]O2[18O] 9.917e-021 9.933e-021 -20.004 -20.003 0.001 (0) - H[14C]O[18O]2- 5.697e-021 5.212e-021 -20.244 -20.283 -0.039 (0) - H[14C][18O]2O- 5.697e-021 5.212e-021 -20.244 -20.283 -0.039 (0) - H[14C][18O]O[18O]- 5.697e-021 5.212e-021 -20.244 -20.283 -0.039 (0) - [14C]O2[18O]-2 5.087e-021 3.564e-021 -20.294 -20.448 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 3.797e-016 - O[18O] 3.790e-016 3.796e-016 -15.421 -15.421 0.001 (0) - [18O]2 3.781e-019 3.787e-019 -18.422 -18.422 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.83 -126.69 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.42 -20.93 -1.50 [14C][18O]2 - [14C]H4(g) -134.39 -137.25 -2.86 [14C]H4 - [14C]O2(g) -14.06 -15.53 -1.47 [14C]O2 - [14C]O[18O](g) -16.44 -18.23 -1.79 [14C]O[18O] - [18O]2(g) -16.13 -18.42 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.59 -12.43 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.73 -7.03 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.52 -4.33 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.42 -9.73 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.87 -124.73 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.53 -39.68 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.13 -13.02 -2.89 O2 - O[18O](g) -12.83 -15.72 -2.89 O[18O] - - -Reaction step 21. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 21 1.0500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 8.06e-003 - Calcite 7.92e-003 4.91e-004 9.83e-001 - CaCO2[18O](s) 4.88e-005 3.03e-006 6.05e-003 - CaCO[18O]2(s) 1.00e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 6.85e-011 4.25e-012 8.50e-009 - Ca[13C]O3(s) 8.82e-005 5.49e-006 1.10e-002 - Ca[13C]O2[18O](s) 5.43e-007 3.38e-008 6.75e-005 - Ca[13C]O[18O]2(s) 1.12e-009 6.94e-011 1.38e-007 - Ca[13C][18O]3(s) 7.63e-013 4.75e-014 9.47e-011 - Ca[14C]O3(s) 2.33e-015 6.31e-017 2.89e-013 - Ca[14C]O2[18O](s) 1.44e-017 3.89e-019 1.78e-015 - Ca[14C]O[18O]2(s) 2.95e-020 7.98e-022 3.66e-018 - Ca[14C][18O]3(s) 2.02e-023 5.46e-025 2.50e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9933 permil - R(13C) 1.11064e-002 -6.604 permil - R(14C) 2.92472e-013 24.872 pmc - R(18O) H2O(l) 1.99518e-003 -4.9948 permil - R(18O) OH- 1.92122e-003 -41.882 permil - R(18O) H3O+ 2.04132e-003 18.013 permil - R(18O) O2(aq) 1.99518e-003 -4.9948 permil - R(13C) CO2(aq) 1.10269e-002 -13.713 permil - R(14C) CO2(aq) 2.88297e-013 24.517 pmc - R(18O) CO2(aq) 2.07915e-003 36.879 permil - R(18O) HCO3- 1.99518e-003 -4.9948 permil - R(13C) HCO3- 1.11228e-002 -5.1328 permil - R(14C) HCO3- 2.93335e-013 24.946 pmc - R(18O) CO3-2 1.99518e-003 -4.9948 permil - R(13C) CO3-2 1.11069e-002 -6.5605 permil - R(14C) CO3-2 2.92494e-013 24.874 pmc - R(18O) Calcite 2.05263e-003 23.651 permil - R(13C) Calcite 1.11448e-002 -3.1623 permil - R(14C) Calcite 2.94499e-013 25.045 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2571e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.4417e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.72e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.486e-005 6.467e-005 - [14C] 1.708e-015 1.703e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.266 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.842e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.638 -124.637 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.105e-006 1.013e-006 -5.957 -5.994 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.065e-008 6.075e-008 -7.217 -7.216 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 4.399e-040 - H2 2.200e-040 2.203e-040 -39.658 -39.657 0.001 (0) -O(0) 1.715e-013 - O2 8.539e-014 8.553e-014 -13.069 -13.068 0.001 (0) - O[18O] 3.408e-016 3.413e-016 -15.468 -15.467 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.595 -126.594 0.001 (0) -[13C](4) 6.486e-005 - H[13C]O3- 5.232e-005 4.786e-005 -4.281 -4.320 -0.039 (0) - [13C]O2 1.098e-005 1.100e-005 -4.959 -4.959 0.001 (0) - CaH[13C]O3+ 1.105e-006 1.013e-006 -5.957 -5.994 -0.037 (0) - H[13C]O[18O]O- 1.044e-007 9.550e-008 -6.981 -7.020 -0.039 (0) - H[13C]O2[18O]- 1.044e-007 9.550e-008 -6.981 -7.020 -0.039 (0) - H[13C][18O]O2- 1.044e-007 9.550e-008 -6.981 -7.020 -0.039 (0) - Ca[13C]O3 6.065e-008 6.075e-008 -7.217 -7.216 0.001 (0) - [13C]O[18O] 4.566e-008 4.574e-008 -7.340 -7.340 0.001 (0) - [13C]O3-2 3.111e-008 2.180e-008 -7.507 -7.662 -0.155 (0) - CaH[13C]O2[18O]+ 2.204e-009 2.022e-009 -8.657 -8.694 -0.037 (0) - CaH[13C]O[18O]O+ 2.204e-009 2.022e-009 -8.657 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.204e-009 2.022e-009 -8.657 -8.694 -0.037 (0) - Ca[13C]O2[18O] 3.630e-010 3.636e-010 -9.440 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.083e-010 1.905e-010 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.083e-010 1.905e-010 -9.681 -9.720 -0.039 (0) - H[13C]O[18O]2- 2.083e-010 1.905e-010 -9.681 -9.720 -0.039 (0) - [13C]O2[18O]-2 1.862e-010 1.305e-010 -9.730 -9.885 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.178 -137.177 0.001 (0) -[14C](4) 1.708e-015 - H[14C]O3- 1.380e-015 1.262e-015 -14.860 -14.899 -0.039 (0) - [14C]O2 2.871e-016 2.876e-016 -15.542 -15.541 0.001 (0) - CaH[14C]O3+ 2.914e-017 2.673e-017 -16.536 -16.573 -0.037 (0) - H[14C][18O]O2- 2.753e-018 2.519e-018 -17.560 -17.599 -0.039 (0) - H[14C]O[18O]O- 2.753e-018 2.519e-018 -17.560 -17.599 -0.039 (0) - H[14C]O2[18O]- 2.753e-018 2.519e-018 -17.560 -17.599 -0.039 (0) - Ca[14C]O3 1.597e-018 1.600e-018 -17.797 -17.796 0.001 (0) - [14C]O[18O] 1.194e-018 1.196e-018 -17.923 -17.922 0.001 (0) - [14C]O3-2 8.194e-019 5.740e-019 -18.087 -18.241 -0.155 (0) - CaH[14C]O2[18O]+ 5.813e-020 5.333e-020 -19.236 -19.273 -0.037 (0) - CaH[14C][18O]O2+ 5.813e-020 5.333e-020 -19.236 -19.273 -0.037 (0) - CaH[14C]O[18O]O+ 5.813e-020 5.333e-020 -19.236 -19.273 -0.037 (0) - Ca[14C]O2[18O] 9.560e-021 9.576e-021 -20.020 -20.019 0.001 (0) - H[14C][18O]2O- 5.492e-021 5.025e-021 -20.260 -20.299 -0.039 (0) - H[14C][18O]O[18O]- 5.492e-021 5.025e-021 -20.260 -20.299 -0.039 (0) - H[14C]O[18O]2- 5.492e-021 5.025e-021 -20.260 -20.299 -0.039 (0) - [14C]O2[18O]-2 4.904e-021 3.436e-021 -20.309 -20.464 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 3.414e-016 - O[18O] 3.408e-016 3.413e-016 -15.468 -15.467 0.001 (0) - [18O]2 3.399e-019 3.405e-019 -18.469 -18.468 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.73 -126.59 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.44 -20.94 -1.50 [14C][18O]2 - [14C]H4(g) -134.32 -137.18 -2.86 [14C]H4 - [14C]O2(g) -14.07 -15.54 -1.47 [14C]O2 - [14C]O[18O](g) -16.45 -18.24 -1.79 [14C]O[18O] - [18O]2(g) -16.18 -18.47 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.60 -12.45 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.75 -7.05 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.54 -4.35 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.44 -9.75 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.78 -124.64 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.51 -39.66 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.18 -13.07 -2.89 O2 - O[18O](g) -12.88 -15.77 -2.89 O[18O] - - -Reaction step 22. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 22 1.1000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 8.56e-003 - Calcite 8.41e-003 4.91e-004 9.83e-001 - CaCO2[18O](s) 5.18e-005 3.03e-006 6.05e-003 - CaCO[18O]2(s) 1.06e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 7.27e-011 4.25e-012 8.50e-009 - Ca[13C]O3(s) 9.37e-005 5.49e-006 1.10e-002 - Ca[13C]O2[18O](s) 5.77e-007 3.38e-008 6.75e-005 - Ca[13C]O[18O]2(s) 1.18e-009 6.94e-011 1.38e-007 - Ca[13C][18O]3(s) 8.11e-013 4.75e-014 9.48e-011 - Ca[14C]O3(s) 2.39e-015 5.88e-017 2.79e-013 - Ca[14C]O2[18O](s) 1.47e-017 3.62e-019 1.72e-015 - Ca[14C]O[18O]2(s) 3.02e-020 7.43e-022 3.53e-018 - Ca[14C][18O]3(s) 2.07e-023 5.08e-025 2.42e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9932 permil - R(13C) 1.11084e-002 -6.4232 permil - R(14C) 2.82319e-013 24.009 pmc - R(18O) H2O(l) 1.99518e-003 -4.9947 permil - R(18O) OH- 1.92122e-003 -41.882 permil - R(18O) H3O+ 2.04132e-003 18.013 permil - R(18O) O2(aq) 1.99518e-003 -4.9947 permil - R(13C) CO2(aq) 1.10289e-002 -13.534 permil - R(14C) CO2(aq) 2.78290e-013 23.666 pmc - R(18O) CO2(aq) 2.07915e-003 36.879 permil - R(18O) HCO3- 1.99518e-003 -4.9947 permil - R(13C) HCO3- 1.11248e-002 -4.9517 permil - R(14C) HCO3- 2.83153e-013 24.08 pmc - R(18O) CO3-2 1.99518e-003 -4.9947 permil - R(13C) CO3-2 1.11089e-002 -6.3797 permil - R(14C) CO3-2 2.82341e-013 24.011 pmc - R(18O) Calcite 2.05263e-003 23.652 permil - R(13C) Calcite 1.11469e-002 -2.9809 permil - R(14C) Calcite 2.84276e-013 24.175 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2738e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.4417e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.663e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.487e-005 6.468e-005 - [14C] 1.649e-015 1.644e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.279 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.851e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.746 -124.746 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.112e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.105e-006 1.014e-006 -5.957 -5.994 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.066e-008 6.076e-008 -7.217 -7.216 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 4.132e-040 - H2 2.066e-040 2.069e-040 -39.685 -39.684 0.001 (0) -O(0) 1.944e-013 - O2 9.679e-014 9.695e-014 -13.014 -13.013 0.001 (0) - O[18O] 3.862e-016 3.869e-016 -15.413 -15.412 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.704 -126.703 0.001 (0) -[13C](4) 6.487e-005 - H[13C]O3- 5.233e-005 4.787e-005 -4.281 -4.320 -0.039 (0) - [13C]O2 1.098e-005 1.100e-005 -4.959 -4.959 0.001 (0) - CaH[13C]O3+ 1.105e-006 1.014e-006 -5.957 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.044e-007 9.552e-008 -6.981 -7.020 -0.039 (0) - H[13C][18O]O2- 1.044e-007 9.552e-008 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.044e-007 9.552e-008 -6.981 -7.020 -0.039 (0) - Ca[13C]O3 6.066e-008 6.076e-008 -7.217 -7.216 0.001 (0) - [13C]O[18O] 4.567e-008 4.575e-008 -7.340 -7.340 0.001 (0) - [13C]O3-2 3.112e-008 2.180e-008 -7.507 -7.662 -0.155 (0) - CaH[13C]O[18O]O+ 2.205e-009 2.022e-009 -8.657 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.205e-009 2.022e-009 -8.657 -8.694 -0.037 (0) - CaH[13C]O2[18O]+ 2.205e-009 2.022e-009 -8.657 -8.694 -0.037 (0) - Ca[13C]O2[18O] 3.631e-010 3.637e-010 -9.440 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.083e-010 1.906e-010 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.083e-010 1.906e-010 -9.681 -9.720 -0.039 (0) - H[13C]O[18O]2- 2.083e-010 1.906e-010 -9.681 -9.720 -0.039 (0) - [13C]O2[18O]-2 1.863e-010 1.305e-010 -9.730 -9.884 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.302 -137.301 0.001 (0) -[14C](4) 1.649e-015 - H[14C]O3- 1.332e-015 1.218e-015 -14.876 -14.914 -0.039 (0) - [14C]O2 2.771e-016 2.776e-016 -15.557 -15.557 0.001 (0) - CaH[14C]O3+ 2.812e-017 2.580e-017 -16.551 -16.588 -0.037 (0) - H[14C][18O]O2- 2.657e-018 2.431e-018 -17.576 -17.614 -0.039 (0) - H[14C]O[18O]O- 2.657e-018 2.431e-018 -17.576 -17.614 -0.039 (0) - H[14C]O2[18O]- 2.657e-018 2.431e-018 -17.576 -17.614 -0.039 (0) - Ca[14C]O3 1.542e-018 1.544e-018 -17.812 -17.811 0.001 (0) - [14C]O[18O] 1.152e-018 1.154e-018 -17.938 -17.938 0.001 (0) - [14C]O3-2 7.909e-019 5.541e-019 -18.102 -18.256 -0.155 (0) - CaH[14C]O2[18O]+ 5.611e-020 5.147e-020 -19.251 -19.288 -0.037 (0) - CaH[14C][18O]O2+ 5.611e-020 5.147e-020 -19.251 -19.288 -0.037 (0) - CaH[14C]O[18O]O+ 5.611e-020 5.147e-020 -19.251 -19.288 -0.037 (0) - Ca[14C]O2[18O] 9.229e-021 9.244e-021 -20.035 -20.034 0.001 (0) - H[14C][18O]O[18O]- 5.302e-021 4.850e-021 -20.276 -20.314 -0.039 (0) - H[14C]O[18O]2- 5.302e-021 4.850e-021 -20.276 -20.314 -0.039 (0) - H[14C][18O]2O- 5.302e-021 4.850e-021 -20.276 -20.314 -0.039 (0) - [14C]O2[18O]-2 4.734e-021 3.316e-021 -20.325 -20.479 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 3.870e-016 - O[18O] 3.862e-016 3.869e-016 -15.413 -15.412 0.001 (0) - [18O]2 3.853e-019 3.859e-019 -18.414 -18.413 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.84 -126.70 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.45 -20.96 -1.50 [14C][18O]2 - [14C]H4(g) -134.44 -137.30 -2.86 [14C]H4 - [14C]O2(g) -14.09 -15.56 -1.47 [14C]O2 - [14C]O[18O](g) -16.47 -18.26 -1.79 [14C]O[18O] - [18O]2(g) -16.12 -18.41 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.62 -12.46 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.76 -7.06 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.55 -4.36 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.45 -9.76 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.89 -124.75 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.53 -39.68 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.12 -13.01 -2.89 O2 - O[18O](g) -12.82 -15.71 -2.89 O[18O] - - -Reaction step 23. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 23 1.1500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 9.06e-003 - Calcite 8.90e-003 4.91e-004 9.83e-001 - CaCO2[18O](s) 5.48e-005 3.03e-006 6.05e-003 - CaCO[18O]2(s) 1.13e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 7.70e-011 4.25e-012 8.50e-009 - Ca[13C]O3(s) 9.92e-005 5.49e-006 1.10e-002 - Ca[13C]O2[18O](s) 6.11e-007 3.38e-008 6.75e-005 - Ca[13C]O[18O]2(s) 1.25e-009 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 8.58e-013 4.75e-014 9.48e-011 - Ca[14C]O3(s) 2.45e-015 5.48e-017 2.70e-013 - Ca[14C]O2[18O](s) 1.51e-017 3.38e-019 1.66e-015 - Ca[14C]O[18O]2(s) 3.09e-020 6.93e-022 3.41e-018 - Ca[14C][18O]3(s) 2.11e-023 4.74e-025 2.34e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.993 permil - R(13C) 1.11103e-002 -6.2545 permil - R(14C) 2.72848e-013 23.204 pmc - R(18O) H2O(l) 1.99518e-003 -4.9945 permil - R(18O) OH- 1.92122e-003 -41.882 permil - R(18O) H3O+ 2.04132e-003 18.013 permil - R(18O) O2(aq) 1.99518e-003 -4.9945 permil - R(13C) CO2(aq) 1.10308e-002 -13.366 permil - R(14C) CO2(aq) 2.68954e-013 22.872 pmc - R(18O) CO2(aq) 2.07915e-003 36.879 permil - R(18O) HCO3- 1.99518e-003 -4.9945 permil - R(13C) HCO3- 1.11267e-002 -4.7828 permil - R(14C) HCO3- 2.73654e-013 23.272 pmc - R(18O) CO3-2 1.99518e-003 -4.9945 permil - R(13C) CO3-2 1.11108e-002 -6.211 permil - R(14C) CO3-2 2.72869e-013 23.205 pmc - R(18O) Calcite 2.05263e-003 23.652 permil - R(13C) Calcite 1.11488e-002 -2.8116 permil - R(14C) Calcite 2.74739e-013 23.364 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2832e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-013 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.729e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.489e-005 6.470e-005 - [14C] 1.593e-015 1.589e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.296 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.853e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.880 -124.879 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.105e-006 1.014e-006 -5.957 -5.994 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.067e-008 6.077e-008 -7.217 -7.216 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 3.826e-040 - H2 1.913e-040 1.916e-040 -39.718 -39.718 0.001 (0) -O(0) 2.266e-013 - O2 1.129e-013 1.131e-013 -12.947 -12.947 0.001 (0) - O[18O] 4.504e-016 4.511e-016 -15.346 -15.346 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.837 -126.837 0.001 (0) -[13C](4) 6.489e-005 - H[13C]O3- 5.234e-005 4.788e-005 -4.281 -4.320 -0.039 (0) - [13C]O2 1.098e-005 1.100e-005 -4.959 -4.958 0.001 (0) - CaH[13C]O3+ 1.105e-006 1.014e-006 -5.957 -5.994 -0.037 (0) - H[13C][18O]O2- 1.044e-007 9.553e-008 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.044e-007 9.553e-008 -6.981 -7.020 -0.039 (0) - H[13C]O2[18O]- 1.044e-007 9.553e-008 -6.981 -7.020 -0.039 (0) - Ca[13C]O3 6.067e-008 6.077e-008 -7.217 -7.216 0.001 (0) - [13C]O[18O] 4.568e-008 4.575e-008 -7.340 -7.340 0.001 (0) - [13C]O3-2 3.112e-008 2.180e-008 -7.507 -7.661 -0.155 (0) - CaH[13C][18O]O2+ 2.205e-009 2.023e-009 -8.657 -8.694 -0.037 (0) - CaH[13C]O2[18O]+ 2.205e-009 2.023e-009 -8.657 -8.694 -0.037 (0) - CaH[13C]O[18O]O+ 2.205e-009 2.023e-009 -8.657 -8.694 -0.037 (0) - Ca[13C]O2[18O] 3.632e-010 3.638e-010 -9.440 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.083e-010 1.906e-010 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.083e-010 1.906e-010 -9.681 -9.720 -0.039 (0) - H[13C]O[18O]2- 2.083e-010 1.906e-010 -9.681 -9.720 -0.039 (0) - [13C]O2[18O]-2 1.863e-010 1.305e-010 -9.730 -9.884 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.450 -137.450 0.001 (0) -[14C](4) 1.593e-015 - H[14C]O3- 1.287e-015 1.178e-015 -14.890 -14.929 -0.039 (0) - [14C]O2 2.678e-016 2.683e-016 -15.572 -15.571 0.001 (0) - CaH[14C]O3+ 2.718e-017 2.493e-017 -16.566 -16.603 -0.037 (0) - H[14C][18O]O2- 2.568e-018 2.350e-018 -17.590 -17.629 -0.039 (0) - H[14C]O[18O]O- 2.568e-018 2.350e-018 -17.590 -17.629 -0.039 (0) - H[14C]O2[18O]- 2.568e-018 2.350e-018 -17.590 -17.629 -0.039 (0) - Ca[14C]O3 1.490e-018 1.493e-018 -17.827 -17.826 0.001 (0) - [14C]O[18O] 1.114e-018 1.116e-018 -17.953 -17.953 0.001 (0) - [14C]O3-2 7.644e-019 5.355e-019 -18.117 -18.271 -0.155 (0) - CaH[14C]O2[18O]+ 5.423e-020 4.975e-020 -19.266 -19.303 -0.037 (0) - CaH[14C][18O]O2+ 5.423e-020 4.975e-020 -19.266 -19.303 -0.037 (0) - CaH[14C]O[18O]O+ 5.423e-020 4.975e-020 -19.266 -19.303 -0.037 (0) - Ca[14C]O2[18O] 8.919e-021 8.934e-021 -20.050 -20.049 0.001 (0) - H[14C]O[18O]2- 5.124e-021 4.688e-021 -20.290 -20.329 -0.039 (0) - H[14C][18O]2O- 5.124e-021 4.688e-021 -20.290 -20.329 -0.039 (0) - H[14C][18O]O[18O]- 5.124e-021 4.688e-021 -20.290 -20.329 -0.039 (0) - [14C]O2[18O]-2 4.575e-021 3.205e-021 -20.340 -20.494 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 4.513e-016 - O[18O] 4.504e-016 4.511e-016 -15.346 -15.346 0.001 (0) - [18O]2 4.493e-019 4.501e-019 -18.347 -18.347 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.98 -126.84 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.47 -20.97 -1.50 [14C][18O]2 - [14C]H4(g) -134.59 -137.45 -2.86 [14C]H4 - [14C]O2(g) -14.10 -15.57 -1.47 [14C]O2 - [14C]O[18O](g) -16.48 -18.27 -1.79 [14C]O[18O] - [18O]2(g) -16.06 -18.35 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.63 -12.48 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.78 -7.08 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.57 -4.38 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.47 -9.78 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.02 -124.88 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.57 -39.72 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.05 -12.95 -2.89 O2 - O[18O](g) -12.75 -15.65 -2.89 O[18O] - - -Reaction step 24. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 24 1.2000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 9.56e-003 - Calcite 9.39e-003 4.91e-004 9.83e-001 - CaCO2[18O](s) 5.78e-005 3.03e-006 6.05e-003 - CaCO[18O]2(s) 1.19e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 8.12e-011 4.25e-012 8.50e-009 - Ca[13C]O3(s) 1.05e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 6.45e-007 3.38e-008 6.75e-005 - Ca[13C]O[18O]2(s) 1.32e-009 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 9.06e-013 4.75e-014 9.48e-011 - Ca[14C]O3(s) 2.50e-015 5.13e-017 2.61e-013 - Ca[14C]O2[18O](s) 1.54e-017 3.16e-019 1.61e-015 - Ca[14C]O[18O]2(s) 3.16e-020 6.48e-022 3.30e-018 - Ca[14C][18O]3(s) 2.16e-023 4.43e-025 2.26e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9929 permil - R(13C) 1.11120e-002 -6.0968 permil - R(14C) 2.63992e-013 22.45 pmc - R(18O) H2O(l) 1.99519e-003 -4.9944 permil - R(18O) OH- 1.92122e-003 -41.882 permil - R(18O) H3O+ 2.04132e-003 18.013 permil - R(18O) O2(aq) 1.99519e-003 -4.9944 permil - R(13C) CO2(aq) 1.10325e-002 -13.21 permil - R(14C) CO2(aq) 2.60224e-013 22.13 pmc - R(18O) CO2(aq) 2.07915e-003 36.879 permil - R(18O) HCO3- 1.99519e-003 -4.9944 permil - R(13C) HCO3- 1.11285e-002 -4.6248 permil - R(14C) HCO3- 2.64772e-013 22.517 pmc - R(18O) CO3-2 1.99519e-003 -4.9944 permil - R(13C) CO3-2 1.11125e-002 -6.0532 permil - R(14C) CO3-2 2.64012e-013 22.452 pmc - R(18O) Calcite 2.05263e-003 23.652 permil - R(13C) Calcite 1.11505e-002 -2.6533 permil - R(14C) Calcite 2.65822e-013 22.606 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.255e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.652e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.490e-005 6.471e-005 - [14C] 1.542e-015 1.537e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.294 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.854e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.862 -124.861 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.105e-006 1.014e-006 -5.957 -5.994 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.068e-008 6.078e-008 -7.217 -7.216 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 3.866e-040 - H2 1.933e-040 1.936e-040 -39.714 -39.713 0.001 (0) -O(0) 2.220e-013 - O2 1.106e-013 1.108e-013 -12.956 -12.956 0.001 (0) - O[18O] 4.412e-016 4.419e-016 -15.355 -15.355 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.819 -126.819 0.001 (0) -[13C](4) 6.490e-005 - H[13C]O3- 5.234e-005 4.789e-005 -4.281 -4.320 -0.039 (0) - [13C]O2 1.099e-005 1.100e-005 -4.959 -4.958 0.001 (0) - CaH[13C]O3+ 1.105e-006 1.014e-006 -5.957 -5.994 -0.037 (0) - H[13C]O[18O]O- 1.044e-007 9.555e-008 -6.981 -7.020 -0.039 (0) - H[13C]O2[18O]- 1.044e-007 9.555e-008 -6.981 -7.020 -0.039 (0) - H[13C][18O]O2- 1.044e-007 9.555e-008 -6.981 -7.020 -0.039 (0) - Ca[13C]O3 6.068e-008 6.078e-008 -7.217 -7.216 0.001 (0) - [13C]O[18O] 4.569e-008 4.576e-008 -7.340 -7.340 0.001 (0) - [13C]O3-2 3.113e-008 2.181e-008 -7.507 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.205e-009 2.023e-009 -8.657 -8.694 -0.037 (0) - CaH[13C]O[18O]O+ 2.205e-009 2.023e-009 -8.657 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.205e-009 2.023e-009 -8.657 -8.694 -0.037 (0) - Ca[13C]O2[18O] 3.632e-010 3.638e-010 -9.440 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.084e-010 1.906e-010 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.084e-010 1.906e-010 -9.681 -9.720 -0.039 (0) - H[13C]O[18O]2- 2.084e-010 1.906e-010 -9.681 -9.720 -0.039 (0) - [13C]O2[18O]-2 1.863e-010 1.305e-010 -9.730 -9.884 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.447 -137.446 0.001 (0) -[14C](4) 1.542e-015 - H[14C]O3- 1.245e-015 1.139e-015 -14.905 -14.943 -0.039 (0) - [14C]O2 2.591e-016 2.596e-016 -15.586 -15.586 0.001 (0) - CaH[14C]O3+ 2.630e-017 2.412e-017 -16.580 -16.618 -0.037 (0) - H[14C][18O]O2- 2.485e-018 2.273e-018 -17.605 -17.643 -0.039 (0) - H[14C]O[18O]O- 2.485e-018 2.273e-018 -17.605 -17.643 -0.039 (0) - H[14C]O2[18O]- 2.485e-018 2.273e-018 -17.605 -17.643 -0.039 (0) - Ca[14C]O3 1.442e-018 1.444e-018 -17.841 -17.840 0.001 (0) - [14C]O[18O] 1.078e-018 1.079e-018 -17.968 -17.967 0.001 (0) - [14C]O3-2 7.396e-019 5.181e-019 -18.131 -18.286 -0.155 (0) - CaH[14C]O2[18O]+ 5.247e-020 4.813e-020 -19.280 -19.318 -0.037 (0) - CaH[14C][18O]O2+ 5.247e-020 4.813e-020 -19.280 -19.318 -0.037 (0) - CaH[14C]O[18O]O+ 5.247e-020 4.813e-020 -19.280 -19.318 -0.037 (0) - Ca[14C]O2[18O] 8.629e-021 8.644e-021 -20.064 -20.063 0.001 (0) - H[14C][18O]2O- 4.958e-021 4.536e-021 -20.305 -20.343 -0.039 (0) - H[14C][18O]O[18O]- 4.958e-021 4.536e-021 -20.305 -20.343 -0.039 (0) - H[14C]O[18O]2- 4.958e-021 4.536e-021 -20.305 -20.343 -0.039 (0) - [14C]O2[18O]-2 4.427e-021 3.101e-021 -20.354 -20.508 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 4.421e-016 - O[18O] 4.412e-016 4.419e-016 -15.355 -15.355 0.001 (0) - [18O]2 4.401e-019 4.409e-019 -18.356 -18.356 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.96 -126.82 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.48 -20.99 -1.50 [14C][18O]2 - [14C]H4(g) -134.59 -137.45 -2.86 [14C]H4 - [14C]O2(g) -14.12 -15.59 -1.47 [14C]O2 - [14C]O[18O](g) -16.50 -18.29 -1.79 [14C]O[18O] - [18O]2(g) -16.07 -18.36 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.65 -12.49 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.79 -7.09 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.58 -4.39 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.48 -9.79 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.00 -124.86 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.56 -39.71 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.06 -12.96 -2.89 O2 - O[18O](g) -12.76 -15.66 -2.89 O[18O] - - -Reaction step 25. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 25 1.2500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 1.01e-002 - Calcite 9.88e-003 4.91e-004 9.83e-001 - CaCO2[18O](s) 6.09e-005 3.03e-006 6.05e-003 - CaCO[18O]2(s) 1.25e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 8.55e-011 4.25e-012 8.50e-009 - Ca[13C]O3(s) 1.10e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 6.79e-007 3.38e-008 6.75e-005 - Ca[13C]O[18O]2(s) 1.39e-009 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 9.53e-013 4.75e-014 9.48e-011 - Ca[14C]O3(s) 2.54e-015 4.80e-017 2.53e-013 - Ca[14C]O2[18O](s) 1.57e-017 2.96e-019 1.56e-015 - Ca[14C]O[18O]2(s) 3.22e-020 6.07e-022 3.20e-018 - Ca[14C][18O]3(s) 2.20e-023 4.15e-025 2.19e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9927 permil - R(13C) 1.11137e-002 -5.9489 permil - R(14C) 2.55692e-013 21.745 pmc - R(18O) H2O(l) 1.99519e-003 -4.9943 permil - R(18O) OH- 1.92122e-003 -41.881 permil - R(18O) H3O+ 2.04132e-003 18.014 permil - R(18O) O2(aq) 1.99519e-003 -4.9943 permil - R(13C) CO2(aq) 1.10342e-002 -13.063 permil - R(14C) CO2(aq) 2.52043e-013 21.434 pmc - R(18O) CO2(aq) 2.07915e-003 36.88 permil - R(18O) HCO3- 1.99519e-003 -4.9943 permil - R(13C) HCO3- 1.11301e-002 -4.4767 permil - R(14C) HCO3- 2.56448e-013 21.809 pmc - R(18O) CO3-2 1.99519e-003 -4.9943 permil - R(13C) CO3-2 1.11142e-002 -5.9054 permil - R(14C) CO3-2 2.55712e-013 21.746 pmc - R(18O) Calcite 2.05263e-003 23.652 permil - R(13C) Calcite 1.11522e-002 -2.5049 permil - R(14C) Calcite 2.57465e-013 21.895 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2539e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.6605e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6398e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.490e-005 6.472e-005 - [14C] 1.493e-015 1.489e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.301 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.858e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.919 -124.918 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.106e-006 1.014e-006 -5.956 -5.994 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.069e-008 6.079e-008 -7.217 -7.216 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 3.741e-040 - H2 1.871e-040 1.874e-040 -39.728 -39.727 0.001 (0) -O(0) 2.371e-013 - O2 1.181e-013 1.183e-013 -12.928 -12.927 0.001 (0) - O[18O] 4.712e-016 4.719e-016 -15.327 -15.326 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.876 -126.876 0.001 (0) -[13C](4) 6.490e-005 - H[13C]O3- 5.235e-005 4.790e-005 -4.281 -4.320 -0.039 (0) - [13C]O2 1.099e-005 1.101e-005 -4.959 -4.958 0.001 (0) - CaH[13C]O3+ 1.106e-006 1.014e-006 -5.956 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.045e-007 9.556e-008 -6.981 -7.020 -0.039 (0) - H[13C][18O]O2- 1.045e-007 9.556e-008 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.045e-007 9.556e-008 -6.981 -7.020 -0.039 (0) - Ca[13C]O3 6.069e-008 6.079e-008 -7.217 -7.216 0.001 (0) - [13C]O[18O] 4.569e-008 4.577e-008 -7.340 -7.339 0.001 (0) - [13C]O3-2 3.113e-008 2.181e-008 -7.507 -7.661 -0.155 (0) - CaH[13C]O[18O]O+ 2.206e-009 2.023e-009 -8.656 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.206e-009 2.023e-009 -8.656 -8.694 -0.037 (0) - CaH[13C]O2[18O]+ 2.206e-009 2.023e-009 -8.656 -8.694 -0.037 (0) - Ca[13C]O2[18O] 3.633e-010 3.639e-010 -9.440 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.084e-010 1.907e-010 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.084e-010 1.907e-010 -9.681 -9.720 -0.039 (0) - H[13C]O[18O]2- 2.084e-010 1.907e-010 -9.681 -9.720 -0.039 (0) - [13C]O2[18O]-2 1.864e-010 1.305e-010 -9.730 -9.884 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.518 -137.517 0.001 (0) -[14C](4) 1.493e-015 - H[14C]O3- 1.206e-015 1.104e-015 -14.919 -14.957 -0.039 (0) - [14C]O2 2.510e-016 2.514e-016 -15.600 -15.600 0.001 (0) - CaH[14C]O3+ 2.547e-017 2.337e-017 -16.594 -16.631 -0.037 (0) - H[14C][18O]O2- 2.407e-018 2.202e-018 -17.619 -17.657 -0.039 (0) - H[14C]O[18O]O- 2.407e-018 2.202e-018 -17.619 -17.657 -0.039 (0) - H[14C]O2[18O]- 2.407e-018 2.202e-018 -17.619 -17.657 -0.039 (0) - Ca[14C]O3 1.396e-018 1.399e-018 -17.855 -17.854 0.001 (0) - [14C]O[18O] 1.044e-018 1.045e-018 -17.981 -17.981 0.001 (0) - [14C]O3-2 7.163e-019 5.018e-019 -18.145 -18.299 -0.155 (0) - CaH[14C]O2[18O]+ 5.082e-020 4.662e-020 -19.294 -19.331 -0.037 (0) - CaH[14C][18O]O2+ 5.082e-020 4.662e-020 -19.294 -19.331 -0.037 (0) - CaH[14C]O[18O]O+ 5.082e-020 4.662e-020 -19.294 -19.331 -0.037 (0) - Ca[14C]O2[18O] 8.358e-021 8.372e-021 -20.078 -20.077 0.001 (0) - H[14C][18O]O[18O]- 4.802e-021 4.393e-021 -20.319 -20.357 -0.039 (0) - H[14C]O[18O]2- 4.802e-021 4.393e-021 -20.319 -20.357 -0.039 (0) - H[14C][18O]2O- 4.802e-021 4.393e-021 -20.319 -20.357 -0.039 (0) - [14C]O2[18O]-2 4.288e-021 3.004e-021 -20.368 -20.522 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 4.721e-016 - O[18O] 4.712e-016 4.719e-016 -15.327 -15.326 0.001 (0) - [18O]2 4.700e-019 4.708e-019 -18.328 -18.327 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -124.02 -126.88 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.50 -21.00 -1.50 [14C][18O]2 - [14C]H4(g) -134.66 -137.52 -2.86 [14C]H4 - [14C]O2(g) -14.13 -15.60 -1.47 [14C]O2 - [14C]O[18O](g) -16.51 -18.30 -1.79 [14C]O[18O] - [18O]2(g) -16.04 -18.33 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.66 -12.51 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.81 -7.11 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.60 -4.41 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.50 -9.81 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.06 -124.92 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.58 -39.73 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.03 -12.93 -2.89 O2 - O[18O](g) -12.73 -15.63 -2.89 O[18O] - - -Reaction step 26. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 26 1.3000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 1.06e-002 - Calcite 1.04e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 6.39e-005 3.03e-006 6.05e-003 - CaCO[18O]2(s) 1.31e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 8.97e-011 4.25e-012 8.50e-009 - Ca[13C]O3(s) 1.16e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 7.13e-007 3.38e-008 6.75e-005 - Ca[13C]O[18O]2(s) 1.46e-009 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 1.00e-012 4.75e-014 9.48e-011 - Ca[14C]O3(s) 2.59e-015 4.51e-017 2.45e-013 - Ca[14C]O2[18O](s) 1.59e-017 2.78e-019 1.51e-015 - Ca[14C]O[18O]2(s) 3.27e-020 5.70e-022 3.10e-018 - Ca[14C][18O]3(s) 2.24e-023 3.90e-025 2.12e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9926 permil - R(13C) 1.11152e-002 -5.8101 permil - R(14C) 2.47899e-013 21.082 pmc - R(18O) H2O(l) 1.99519e-003 -4.9941 permil - R(18O) OH- 1.92122e-003 -41.881 permil - R(18O) H3O+ 2.04132e-003 18.014 permil - R(18O) O2(aq) 1.99519e-003 -4.9941 permil - R(13C) CO2(aq) 1.10357e-002 -12.925 permil - R(14C) CO2(aq) 2.44361e-013 20.781 pmc - R(18O) CO2(aq) 2.07915e-003 36.88 permil - R(18O) HCO3- 1.99519e-003 -4.9941 permil - R(13C) HCO3- 1.11317e-002 -4.3377 permil - R(14C) HCO3- 2.48631e-013 21.144 pmc - R(18O) CO3-2 1.99519e-003 -4.9941 permil - R(13C) CO3-2 1.11157e-002 -5.7665 permil - R(14C) CO3-2 2.47918e-013 21.083 pmc - R(18O) Calcite 2.05263e-003 23.652 permil - R(13C) Calcite 1.11538e-002 -2.3656 permil - R(14C) Calcite 2.49617e-013 21.228 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2498e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6596e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.491e-005 6.472e-005 - [14C] 1.448e-015 1.444e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.294 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.867e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.866 -124.865 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.106e-006 1.014e-006 -5.956 -5.994 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.070e-008 6.080e-008 -7.217 -7.216 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 3.857e-040 - H2 1.929e-040 1.932e-040 -39.715 -39.714 0.001 (0) -O(0) 2.231e-013 - O2 1.111e-013 1.113e-013 -12.954 -12.954 0.001 (0) - O[18O] 4.433e-016 4.440e-016 -15.353 -15.353 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.823 -126.823 0.001 (0) -[13C](4) 6.491e-005 - H[13C]O3- 5.236e-005 4.790e-005 -4.281 -4.320 -0.039 (0) - [13C]O2 1.099e-005 1.101e-005 -4.959 -4.958 0.001 (0) - CaH[13C]O3+ 1.106e-006 1.014e-006 -5.956 -5.994 -0.037 (0) - H[13C][18O]O2- 1.045e-007 9.557e-008 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.045e-007 9.557e-008 -6.981 -7.020 -0.039 (0) - H[13C]O2[18O]- 1.045e-007 9.557e-008 -6.981 -7.020 -0.039 (0) - Ca[13C]O3 6.070e-008 6.080e-008 -7.217 -7.216 0.001 (0) - [13C]O[18O] 4.570e-008 4.577e-008 -7.340 -7.339 0.001 (0) - [13C]O3-2 3.114e-008 2.181e-008 -7.507 -7.661 -0.155 (0) - CaH[13C][18O]O2+ 2.206e-009 2.024e-009 -8.656 -8.694 -0.037 (0) - CaH[13C]O2[18O]+ 2.206e-009 2.024e-009 -8.656 -8.694 -0.037 (0) - CaH[13C]O[18O]O+ 2.206e-009 2.024e-009 -8.656 -8.694 -0.037 (0) - Ca[13C]O2[18O] 3.633e-010 3.639e-010 -9.440 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.084e-010 1.907e-010 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.084e-010 1.907e-010 -9.681 -9.720 -0.039 (0) - H[13C]O[18O]2- 2.084e-010 1.907e-010 -9.681 -9.720 -0.039 (0) - [13C]O2[18O]-2 1.864e-010 1.306e-010 -9.730 -9.884 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.478 -137.477 0.001 (0) -[14C](4) 1.448e-015 - H[14C]O3- 1.169e-015 1.070e-015 -14.932 -14.971 -0.039 (0) - [14C]O2 2.433e-016 2.437e-016 -15.614 -15.613 0.001 (0) - CaH[14C]O3+ 2.470e-017 2.265e-017 -16.607 -16.645 -0.037 (0) - H[14C][18O]O2- 2.333e-018 2.135e-018 -17.632 -17.671 -0.039 (0) - H[14C]O[18O]O- 2.333e-018 2.135e-018 -17.632 -17.671 -0.039 (0) - H[14C]O2[18O]- 2.333e-018 2.135e-018 -17.632 -17.671 -0.039 (0) - Ca[14C]O3 1.354e-018 1.356e-018 -17.868 -17.868 0.001 (0) - [14C]O[18O] 1.012e-018 1.014e-018 -17.995 -17.994 0.001 (0) - [14C]O3-2 6.945e-019 4.865e-019 -18.158 -18.313 -0.155 (0) - CaH[14C]O2[18O]+ 4.927e-020 4.520e-020 -19.307 -19.345 -0.037 (0) - CaH[14C][18O]O2+ 4.927e-020 4.520e-020 -19.307 -19.345 -0.037 (0) - CaH[14C]O[18O]O+ 4.927e-020 4.520e-020 -19.307 -19.345 -0.037 (0) - Ca[14C]O2[18O] 8.103e-021 8.117e-021 -20.091 -20.091 0.001 (0) - H[14C]O[18O]2- 4.655e-021 4.259e-021 -20.332 -20.371 -0.039 (0) - H[14C][18O]2O- 4.655e-021 4.259e-021 -20.332 -20.371 -0.039 (0) - H[14C][18O]O[18O]- 4.655e-021 4.259e-021 -20.332 -20.371 -0.039 (0) - [14C]O2[18O]-2 4.157e-021 2.912e-021 -20.381 -20.536 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 4.442e-016 - O[18O] 4.433e-016 4.440e-016 -15.353 -15.353 0.001 (0) - [18O]2 4.422e-019 4.429e-019 -18.354 -18.354 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.96 -126.82 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.51 -21.01 -1.50 [14C][18O]2 - [14C]H4(g) -134.62 -137.48 -2.86 [14C]H4 - [14C]O2(g) -14.14 -15.61 -1.47 [14C]O2 - [14C]O[18O](g) -16.53 -18.31 -1.79 [14C]O[18O] - [18O]2(g) -16.06 -18.35 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.67 -12.52 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.82 -7.12 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.61 -4.42 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.51 -9.82 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -122.01 -124.87 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.56 -39.71 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.06 -12.95 -2.89 O2 - O[18O](g) -12.76 -15.65 -2.89 O[18O] - - -Reaction step 27. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 27 1.3500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 1.11e-002 - Calcite 1.09e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 6.69e-005 3.03e-006 6.05e-003 - CaCO[18O]2(s) 1.37e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 9.40e-011 4.25e-012 8.50e-009 - Ca[13C]O3(s) 1.21e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 7.46e-007 3.39e-008 6.75e-005 - Ca[13C]O[18O]2(s) 1.53e-009 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 1.05e-012 4.75e-014 9.48e-011 - Ca[14C]O3(s) 2.63e-015 4.24e-017 2.38e-013 - Ca[14C]O2[18O](s) 1.62e-017 2.61e-019 1.47e-015 - Ca[14C]O[18O]2(s) 3.33e-020 5.36e-022 3.01e-018 - Ca[14C][18O]3(s) 2.28e-023 3.67e-025 2.06e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9925 permil - R(13C) 1.11167e-002 -5.6794 permil - R(14C) 2.40566e-013 20.458 pmc - R(18O) H2O(l) 1.99519e-003 -4.994 permil - R(18O) OH- 1.92122e-003 -41.881 permil - R(18O) H3O+ 2.04132e-003 18.014 permil - R(18O) O2(aq) 1.99519e-003 -4.994 permil - R(13C) CO2(aq) 1.10371e-002 -12.795 permil - R(14C) CO2(aq) 2.37133e-013 20.166 pmc - R(18O) CO2(aq) 2.07915e-003 36.88 permil - R(18O) HCO3- 1.99519e-003 -4.994 permil - R(13C) HCO3- 1.11332e-002 -4.2068 permil - R(14C) HCO3- 2.41277e-013 20.519 pmc - R(18O) CO3-2 1.99519e-003 -4.994 permil - R(13C) CO3-2 1.11172e-002 -5.6359 permil - R(14C) CO3-2 2.40585e-013 20.46 pmc - R(18O) Calcite 2.05263e-003 23.652 permil - R(13C) Calcite 1.11552e-002 -2.2345 permil - R(14C) Calcite 2.42234e-013 20.6 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2754e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5735e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.492e-005 6.473e-005 - [14C] 1.405e-015 1.401e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.290 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.880e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.835 -124.834 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.106e-006 1.014e-006 -5.956 -5.994 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.071e-008 6.081e-008 -7.217 -7.216 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 3.927e-040 - H2 1.963e-040 1.967e-040 -39.707 -39.706 0.001 (0) -O(0) 2.152e-013 - O2 1.072e-013 1.074e-013 -12.970 -12.969 0.001 (0) - O[18O] 4.277e-016 4.284e-016 -15.369 -15.368 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.792 -126.791 0.001 (0) -[13C](4) 6.492e-005 - H[13C]O3- 5.237e-005 4.791e-005 -4.281 -4.320 -0.039 (0) - [13C]O2 1.099e-005 1.101e-005 -4.959 -4.958 0.001 (0) - CaH[13C]O3+ 1.106e-006 1.014e-006 -5.956 -5.994 -0.037 (0) - H[13C]O[18O]O- 1.045e-007 9.559e-008 -6.981 -7.020 -0.039 (0) - H[13C]O2[18O]- 1.045e-007 9.559e-008 -6.981 -7.020 -0.039 (0) - H[13C][18O]O2- 1.045e-007 9.559e-008 -6.981 -7.020 -0.039 (0) - Ca[13C]O3 6.071e-008 6.081e-008 -7.217 -7.216 0.001 (0) - [13C]O[18O] 4.570e-008 4.578e-008 -7.340 -7.339 0.001 (0) - [13C]O3-2 3.114e-008 2.182e-008 -7.507 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.206e-009 2.024e-009 -8.656 -8.694 -0.037 (0) - CaH[13C]O[18O]O+ 2.206e-009 2.024e-009 -8.656 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.206e-009 2.024e-009 -8.656 -8.694 -0.037 (0) - Ca[13C]O2[18O] 3.634e-010 3.640e-010 -9.440 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.085e-010 1.907e-010 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.085e-010 1.907e-010 -9.681 -9.720 -0.039 (0) - H[13C]O[18O]2- 2.085e-010 1.907e-010 -9.681 -9.720 -0.039 (0) - [13C]O2[18O]-2 1.864e-010 1.306e-010 -9.730 -9.884 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.460 -137.459 0.001 (0) -[14C](4) 1.405e-015 - H[14C]O3- 1.135e-015 1.038e-015 -14.945 -14.984 -0.039 (0) - [14C]O2 2.361e-016 2.365e-016 -15.627 -15.626 0.001 (0) - CaH[14C]O3+ 2.396e-017 2.198e-017 -16.620 -16.658 -0.037 (0) - H[14C][18O]O2- 2.264e-018 2.072e-018 -17.645 -17.684 -0.039 (0) - H[14C]O[18O]O- 2.264e-018 2.072e-018 -17.645 -17.684 -0.039 (0) - H[14C]O2[18O]- 2.264e-018 2.072e-018 -17.645 -17.684 -0.039 (0) - Ca[14C]O3 1.314e-018 1.316e-018 -17.881 -17.881 0.001 (0) - [14C]O[18O] 9.820e-019 9.836e-019 -18.008 -18.007 0.001 (0) - [14C]O3-2 6.739e-019 4.721e-019 -18.171 -18.326 -0.155 (0) - CaH[14C]O2[18O]+ 4.781e-020 4.386e-020 -19.320 -19.358 -0.037 (0) - CaH[14C][18O]O2+ 4.781e-020 4.386e-020 -19.320 -19.358 -0.037 (0) - CaH[14C]O[18O]O+ 4.781e-020 4.386e-020 -19.320 -19.358 -0.037 (0) - Ca[14C]O2[18O] 7.864e-021 7.877e-021 -20.104 -20.104 0.001 (0) - H[14C][18O]2O- 4.518e-021 4.133e-021 -20.345 -20.384 -0.039 (0) - H[14C][18O]O[18O]- 4.518e-021 4.133e-021 -20.345 -20.384 -0.039 (0) - H[14C]O[18O]2- 4.518e-021 4.133e-021 -20.345 -20.384 -0.039 (0) - [14C]O2[18O]-2 4.034e-021 2.826e-021 -20.394 -20.549 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 4.286e-016 - O[18O] 4.277e-016 4.284e-016 -15.369 -15.368 0.001 (0) - [18O]2 4.267e-019 4.274e-019 -18.370 -18.369 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.93 -126.79 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.52 -21.03 -1.50 [14C][18O]2 - [14C]H4(g) -134.60 -137.46 -2.86 [14C]H4 - [14C]O2(g) -14.16 -15.63 -1.47 [14C]O2 - [14C]O[18O](g) -16.54 -18.33 -1.79 [14C]O[18O] - [18O]2(g) -16.08 -18.37 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.69 -12.53 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.83 -7.13 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.62 -4.43 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.52 -9.83 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.97 -124.83 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.56 -39.71 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.08 -12.97 -2.89 O2 - O[18O](g) -12.78 -15.67 -2.89 O[18O] - - -Reaction step 28. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 28 1.4000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 1.16e-002 - Calcite 1.14e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 6.99e-005 3.03e-006 6.05e-003 - CaCO[18O]2(s) 1.44e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 9.82e-011 4.25e-012 8.50e-009 - Ca[13C]O3(s) 1.27e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 7.80e-007 3.39e-008 6.75e-005 - Ca[13C]O[18O]2(s) 1.60e-009 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 1.10e-012 4.75e-014 9.48e-011 - Ca[14C]O3(s) 2.67e-015 4.00e-017 2.31e-013 - Ca[14C]O2[18O](s) 1.65e-017 2.46e-019 1.42e-015 - Ca[14C]O[18O]2(s) 3.38e-020 5.06e-022 2.92e-018 - Ca[14C][18O]3(s) 2.31e-023 3.46e-025 2.00e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9923 permil - R(13C) 1.11181e-002 -5.5563 permil - R(14C) 2.33655e-013 19.871 pmc - R(18O) H2O(l) 1.99519e-003 -4.9939 permil - R(18O) OH- 1.92122e-003 -41.881 permil - R(18O) H3O+ 2.04132e-003 18.014 permil - R(18O) O2(aq) 1.99519e-003 -4.9939 permil - R(13C) CO2(aq) 1.10385e-002 -12.673 permil - R(14C) CO2(aq) 2.30320e-013 19.587 pmc - R(18O) CO2(aq) 2.07915e-003 36.88 permil - R(18O) HCO3- 1.99519e-003 -4.9939 permil - R(13C) HCO3- 1.11345e-002 -4.0835 permil - R(14C) HCO3- 2.34345e-013 19.929 pmc - R(18O) CO3-2 1.99519e-003 -4.9939 permil - R(13C) CO3-2 1.11186e-002 -5.5127 permil - R(14C) CO3-2 2.33673e-013 19.872 pmc - R(18O) Calcite 2.05263e-003 23.652 permil - R(13C) Calcite 1.11566e-002 -2.1109 permil - R(14C) Calcite 2.35275e-013 20.008 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.266e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.8858e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5883e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.493e-005 6.474e-005 - [14C] 1.365e-015 1.361e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.280 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.878e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.752 -124.751 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.106e-006 1.015e-006 -5.956 -5.994 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.072e-008 6.082e-008 -7.217 -7.216 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 4.120e-040 - H2 2.060e-040 2.063e-040 -39.686 -39.685 0.001 (0) -O(0) 1.955e-013 - O2 9.738e-014 9.754e-014 -13.012 -13.011 0.001 (0) - O[18O] 3.886e-016 3.892e-016 -15.411 -15.410 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.709 -126.708 0.001 (0) -[13C](4) 6.493e-005 - H[13C]O3- 5.237e-005 4.791e-005 -4.281 -4.320 -0.039 (0) - [13C]O2 1.099e-005 1.101e-005 -4.959 -4.958 0.001 (0) - CaH[13C]O3+ 1.106e-006 1.015e-006 -5.956 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.045e-007 9.560e-008 -6.981 -7.020 -0.039 (0) - H[13C][18O]O2- 1.045e-007 9.560e-008 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.045e-007 9.560e-008 -6.981 -7.020 -0.039 (0) - Ca[13C]O3 6.072e-008 6.082e-008 -7.217 -7.216 0.001 (0) - [13C]O[18O] 4.571e-008 4.579e-008 -7.340 -7.339 0.001 (0) - [13C]O3-2 3.115e-008 2.182e-008 -7.507 -7.661 -0.155 (0) - CaH[13C]O[18O]O+ 2.207e-009 2.024e-009 -8.656 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.207e-009 2.024e-009 -8.656 -8.694 -0.037 (0) - CaH[13C]O2[18O]+ 2.207e-009 2.024e-009 -8.656 -8.694 -0.037 (0) - Ca[13C]O2[18O] 3.634e-010 3.640e-010 -9.440 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.085e-010 1.907e-010 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.085e-010 1.907e-010 -9.681 -9.720 -0.039 (0) - H[13C]O[18O]2- 2.085e-010 1.907e-010 -9.681 -9.720 -0.039 (0) - [13C]O2[18O]-2 1.864e-010 1.306e-010 -9.729 -9.884 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.389 -137.389 0.001 (0) -[14C](4) 1.365e-015 - H[14C]O3- 1.102e-015 1.008e-015 -14.958 -14.996 -0.039 (0) - [14C]O2 2.294e-016 2.297e-016 -15.639 -15.639 0.001 (0) - CaH[14C]O3+ 2.328e-017 2.135e-017 -16.633 -16.671 -0.037 (0) - H[14C][18O]O2- 2.199e-018 2.012e-018 -17.658 -17.696 -0.039 (0) - H[14C]O[18O]O- 2.199e-018 2.012e-018 -17.658 -17.696 -0.039 (0) - H[14C]O2[18O]- 2.199e-018 2.012e-018 -17.658 -17.696 -0.039 (0) - Ca[14C]O3 1.276e-018 1.278e-018 -17.894 -17.893 0.001 (0) - [14C]O[18O] 9.537e-019 9.553e-019 -18.021 -18.020 0.001 (0) - [14C]O3-2 6.546e-019 4.586e-019 -18.184 -18.339 -0.155 (0) - CaH[14C]O2[18O]+ 4.644e-020 4.260e-020 -19.333 -19.371 -0.037 (0) - CaH[14C][18O]O2+ 4.644e-020 4.260e-020 -19.333 -19.371 -0.037 (0) - CaH[14C]O[18O]O+ 4.644e-020 4.260e-020 -19.333 -19.371 -0.037 (0) - Ca[14C]O2[18O] 7.638e-021 7.650e-021 -20.117 -20.116 0.001 (0) - H[14C][18O]O[18O]- 4.388e-021 4.014e-021 -20.358 -20.396 -0.039 (0) - H[14C]O[18O]2- 4.388e-021 4.014e-021 -20.358 -20.396 -0.039 (0) - H[14C][18O]2O- 4.388e-021 4.014e-021 -20.358 -20.396 -0.039 (0) - [14C]O2[18O]-2 3.918e-021 2.745e-021 -20.407 -20.561 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 3.893e-016 - O[18O] 3.886e-016 3.892e-016 -15.411 -15.410 0.001 (0) - [18O]2 3.876e-019 3.883e-019 -18.412 -18.411 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.85 -126.71 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.54 -21.04 -1.50 [14C][18O]2 - [14C]H4(g) -134.53 -137.39 -2.86 [14C]H4 - [14C]O2(g) -14.17 -15.64 -1.47 [14C]O2 - [14C]O[18O](g) -16.55 -18.34 -1.79 [14C]O[18O] - [18O]2(g) -16.12 -18.41 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.70 -12.54 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.85 -7.14 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.64 -4.44 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.53 -9.84 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.89 -124.75 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.54 -39.69 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.12 -13.01 -2.89 O2 - O[18O](g) -12.82 -15.71 -2.89 O[18O] - - -Reaction step 29. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 29 1.4500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 1.21e-002 - Calcite 1.18e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 7.30e-005 3.03e-006 6.05e-003 - CaCO[18O]2(s) 1.50e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 1.02e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 1.32e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 8.14e-007 3.39e-008 6.75e-005 - Ca[13C]O[18O]2(s) 1.67e-009 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 1.14e-012 4.76e-014 9.48e-011 - Ca[14C]O3(s) 2.71e-015 3.78e-017 2.25e-013 - Ca[14C]O2[18O](s) 1.67e-017 2.33e-019 1.38e-015 - Ca[14C]O[18O]2(s) 3.43e-020 4.77e-022 2.84e-018 - Ca[14C][18O]3(s) 2.34e-023 3.27e-025 1.94e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9922 permil - R(13C) 1.11194e-002 -5.44 permil - R(14C) 2.27130e-013 19.316 pmc - R(18O) H2O(l) 1.99519e-003 -4.9937 permil - R(18O) OH- 1.92122e-003 -41.881 permil - R(18O) H3O+ 2.04132e-003 18.014 permil - R(18O) O2(aq) 1.99519e-003 -4.9937 permil - R(13C) CO2(aq) 1.10398e-002 -12.558 permil - R(14C) CO2(aq) 2.23888e-013 19.04 pmc - R(18O) CO2(aq) 2.07915e-003 36.88 permil - R(18O) HCO3- 1.99519e-003 -4.9937 permil - R(13C) HCO3- 1.11358e-002 -3.967 permil - R(14C) HCO3- 2.27801e-013 19.373 pmc - R(18O) CO3-2 1.99519e-003 -4.9937 permil - R(13C) CO3-2 1.11199e-002 -5.3964 permil - R(14C) CO3-2 2.27148e-013 19.317 pmc - R(18O) Calcite 2.05263e-003 23.653 permil - R(13C) Calcite 1.11579e-002 -1.9942 permil - R(14C) Calcite 2.28704e-013 19.45 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2552e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.1102e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7109e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.494e-005 6.475e-005 - [14C] 1.326e-015 1.323e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.274 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.861e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 8 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.700 -124.700 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.106e-006 1.015e-006 -5.956 -5.994 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.072e-008 6.082e-008 -7.217 -7.216 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 4.243e-040 - H2 2.121e-040 2.125e-040 -39.673 -39.673 0.001 (0) -O(0) 1.843e-013 - O2 9.180e-014 9.195e-014 -13.037 -13.036 0.001 (0) - O[18O] 3.663e-016 3.669e-016 -15.436 -15.435 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.657 -126.657 0.001 (0) -[13C](4) 6.494e-005 - H[13C]O3- 5.238e-005 4.792e-005 -4.281 -4.319 -0.039 (0) - [13C]O2 1.099e-005 1.101e-005 -4.959 -4.958 0.001 (0) - CaH[13C]O3+ 1.106e-006 1.015e-006 -5.956 -5.994 -0.037 (0) - H[13C][18O]O2- 1.045e-007 9.561e-008 -6.981 -7.020 -0.039 (0) - H[13C]O[18O]O- 1.045e-007 9.561e-008 -6.981 -7.020 -0.039 (0) - H[13C]O2[18O]- 1.045e-007 9.561e-008 -6.981 -7.020 -0.039 (0) - Ca[13C]O3 6.072e-008 6.082e-008 -7.217 -7.216 0.001 (0) - [13C]O[18O] 4.572e-008 4.579e-008 -7.340 -7.339 0.001 (0) - [13C]O3-2 3.115e-008 2.182e-008 -7.507 -7.661 -0.155 (0) - CaH[13C][18O]O2+ 2.207e-009 2.024e-009 -8.656 -8.694 -0.037 (0) - CaH[13C]O2[18O]+ 2.207e-009 2.024e-009 -8.656 -8.694 -0.037 (0) - CaH[13C]O[18O]O+ 2.207e-009 2.024e-009 -8.656 -8.694 -0.037 (0) - Ca[13C]O2[18O] 3.635e-010 3.641e-010 -9.440 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.085e-010 1.908e-010 -9.681 -9.720 -0.039 (0) - H[13C][18O]2O- 2.085e-010 1.908e-010 -9.681 -9.720 -0.039 (0) - H[13C]O[18O]2- 2.085e-010 1.908e-010 -9.681 -9.720 -0.039 (0) - [13C]O2[18O]-2 1.864e-010 1.306e-010 -9.729 -9.884 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.350 -137.350 0.001 (0) -[14C](4) 1.326e-015 - H[14C]O3- 1.071e-015 9.803e-016 -14.970 -15.009 -0.039 (0) - [14C]O2 2.230e-016 2.233e-016 -15.652 -15.651 0.001 (0) - CaH[14C]O3+ 2.263e-017 2.076e-017 -16.645 -16.683 -0.037 (0) - H[14C][18O]O2- 2.138e-018 1.956e-018 -17.670 -17.709 -0.039 (0) - H[14C]O[18O]O- 2.138e-018 1.956e-018 -17.670 -17.709 -0.039 (0) - H[14C]O2[18O]- 2.138e-018 1.956e-018 -17.670 -17.709 -0.039 (0) - Ca[14C]O3 1.240e-018 1.242e-018 -17.906 -17.906 0.001 (0) - [14C]O[18O] 9.271e-019 9.286e-019 -18.033 -18.032 0.001 (0) - [14C]O3-2 6.363e-019 4.458e-019 -18.196 -18.351 -0.155 (0) - CaH[14C]O2[18O]+ 4.514e-020 4.141e-020 -19.345 -19.383 -0.037 (0) - CaH[14C][18O]O2+ 4.514e-020 4.141e-020 -19.345 -19.383 -0.037 (0) - CaH[14C]O[18O]O+ 4.514e-020 4.141e-020 -19.345 -19.383 -0.037 (0) - Ca[14C]O2[18O] 7.424e-021 7.437e-021 -20.129 -20.129 0.001 (0) - H[14C]O[18O]2- 4.265e-021 3.902e-021 -20.370 -20.409 -0.039 (0) - H[14C][18O]2O- 4.265e-021 3.902e-021 -20.370 -20.409 -0.039 (0) - H[14C][18O]O[18O]- 4.265e-021 3.902e-021 -20.370 -20.409 -0.039 (0) - [14C]O2[18O]-2 3.809e-021 2.668e-021 -20.419 -20.574 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 3.670e-016 - O[18O] 3.663e-016 3.669e-016 -15.436 -15.435 0.001 (0) - [18O]2 3.654e-019 3.660e-019 -18.437 -18.436 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.80 -126.66 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.55 -21.05 -1.50 [14C][18O]2 - [14C]H4(g) -134.49 -137.35 -2.86 [14C]H4 - [14C]O2(g) -14.18 -15.65 -1.47 [14C]O2 - [14C]O[18O](g) -16.56 -18.35 -1.79 [14C]O[18O] - [18O]2(g) -16.15 -18.44 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.71 -12.56 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.86 -7.16 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.65 -4.46 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.55 -9.86 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.84 -124.70 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.52 -39.67 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.14 -13.04 -2.89 O2 - O[18O](g) -12.84 -15.74 -2.89 O[18O] - - -Reaction step 30. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 30 1.5000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 1.26e-002 - Calcite 1.23e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 7.60e-005 3.03e-006 6.05e-003 - CaCO[18O]2(s) 1.56e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 1.07e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 1.38e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 8.48e-007 3.39e-008 6.75e-005 - Ca[13C]O[18O]2(s) 1.74e-009 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 1.19e-012 4.76e-014 9.49e-011 - Ca[14C]O3(s) 2.75e-015 3.57e-017 2.19e-013 - Ca[14C]O2[18O](s) 1.69e-017 2.20e-019 1.35e-015 - Ca[14C]O[18O]2(s) 3.47e-020 4.51e-022 2.76e-018 - Ca[14C][18O]3(s) 2.37e-023 3.09e-025 1.89e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9921 permil - R(13C) 1.11206e-002 -5.3301 permil - R(14C) 2.20960e-013 18.791 pmc - R(18O) H2O(l) 1.99519e-003 -4.9936 permil - R(18O) OH- 1.92122e-003 -41.881 permil - R(18O) H3O+ 2.04132e-003 18.014 permil - R(18O) O2(aq) 1.99519e-003 -4.9936 permil - R(13C) CO2(aq) 1.10410e-002 -12.448 permil - R(14C) CO2(aq) 2.17806e-013 18.523 pmc - R(18O) CO2(aq) 2.07915e-003 36.88 permil - R(18O) HCO3- 1.99519e-003 -4.9936 permil - R(13C) HCO3- 1.11371e-002 -3.8569 permil - R(14C) HCO3- 2.21612e-013 18.846 pmc - R(18O) CO3-2 1.99519e-003 -4.9936 permil - R(13C) CO3-2 1.11211e-002 -5.2865 permil - R(14C) CO3-2 2.20977e-013 18.792 pmc - R(18O) Calcite 2.05263e-003 23.653 permil - R(13C) Calcite 1.11591e-002 -1.8839 permil - R(14C) Calcite 2.22491e-013 18.921 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2408e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5933e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.494e-005 6.476e-005 - [14C] 1.290e-015 1.287e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.267 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.858e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.647 -124.646 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.933e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.933e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.106e-006 1.015e-006 -5.956 -5.994 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.073e-008 6.083e-008 -7.217 -7.216 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 4.375e-040 - H2 2.188e-040 2.191e-040 -39.660 -39.659 0.001 (0) -O(0) 1.733e-013 - O2 8.633e-014 8.647e-014 -13.064 -13.063 0.001 (0) - O[18O] 3.445e-016 3.450e-016 -15.463 -15.462 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.604 -126.603 0.001 (0) -[13C](4) 6.494e-005 - H[13C]O3- 5.238e-005 4.793e-005 -4.281 -4.319 -0.039 (0) - [13C]O2 1.099e-005 1.101e-005 -4.959 -4.958 0.001 (0) - CaH[13C]O3+ 1.106e-006 1.015e-006 -5.956 -5.994 -0.037 (0) - H[13C]O[18O]O- 1.045e-007 9.562e-008 -6.981 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.045e-007 9.562e-008 -6.981 -7.019 -0.039 (0) - H[13C][18O]O2- 1.045e-007 9.562e-008 -6.981 -7.019 -0.039 (0) - Ca[13C]O3 6.073e-008 6.083e-008 -7.217 -7.216 0.001 (0) - [13C]O[18O] 4.572e-008 4.580e-008 -7.340 -7.339 0.001 (0) - [13C]O3-2 3.115e-008 2.182e-008 -7.507 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.207e-009 2.025e-009 -8.656 -8.694 -0.037 (0) - CaH[13C]O[18O]O+ 2.207e-009 2.025e-009 -8.656 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.207e-009 2.025e-009 -8.656 -8.694 -0.037 (0) - Ca[13C]O2[18O] 3.635e-010 3.641e-010 -9.439 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.085e-010 1.908e-010 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.085e-010 1.908e-010 -9.681 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.085e-010 1.908e-010 -9.681 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.865e-010 1.306e-010 -9.729 -9.884 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.309 -137.308 0.001 (0) -[14C](4) 1.290e-015 - H[14C]O3- 1.042e-015 9.536e-016 -14.982 -15.021 -0.039 (0) - [14C]O2 2.169e-016 2.173e-016 -15.664 -15.663 0.001 (0) - CaH[14C]O3+ 2.201e-017 2.019e-017 -16.657 -16.695 -0.037 (0) - H[14C][18O]O2- 2.080e-018 1.903e-018 -17.682 -17.721 -0.039 (0) - H[14C]O[18O]O- 2.080e-018 1.903e-018 -17.682 -17.721 -0.039 (0) - H[14C]O2[18O]- 2.080e-018 1.903e-018 -17.682 -17.721 -0.039 (0) - Ca[14C]O3 1.207e-018 1.209e-018 -17.918 -17.918 0.001 (0) - [14C]O[18O] 9.019e-019 9.034e-019 -18.045 -18.044 0.001 (0) - [14C]O3-2 6.190e-019 4.336e-019 -18.208 -18.363 -0.155 (0) - CaH[14C]O2[18O]+ 4.392e-020 4.029e-020 -19.357 -19.395 -0.037 (0) - CaH[14C][18O]O2+ 4.392e-020 4.029e-020 -19.357 -19.395 -0.037 (0) - CaH[14C]O[18O]O+ 4.392e-020 4.029e-020 -19.357 -19.395 -0.037 (0) - Ca[14C]O2[18O] 7.223e-021 7.235e-021 -20.141 -20.141 0.001 (0) - H[14C][18O]2O- 4.149e-021 3.796e-021 -20.382 -20.421 -0.039 (0) - H[14C][18O]O[18O]- 4.149e-021 3.796e-021 -20.382 -20.421 -0.039 (0) - H[14C]O[18O]2- 4.149e-021 3.796e-021 -20.382 -20.421 -0.039 (0) - [14C]O2[18O]-2 3.705e-021 2.596e-021 -20.431 -20.586 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 3.452e-016 - O[18O] 3.445e-016 3.450e-016 -15.463 -15.462 0.001 (0) - [18O]2 3.436e-019 3.442e-019 -18.464 -18.463 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.74 -126.60 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.56 -21.06 -1.50 [14C][18O]2 - [14C]H4(g) -134.45 -137.31 -2.86 [14C]H4 - [14C]O2(g) -14.19 -15.66 -1.47 [14C]O2 - [14C]O[18O](g) -16.58 -18.36 -1.79 [14C]O[18O] - [18O]2(g) -16.17 -18.46 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.72 -12.57 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.87 -7.17 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.66 -4.47 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.56 -9.87 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.79 -124.65 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.51 -39.66 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.17 -13.06 -2.89 O2 - O[18O](g) -12.87 -15.76 -2.89 O[18O] - - -Reaction step 31. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 31 1.5500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 1.31e-002 - Calcite 1.28e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 7.90e-005 3.03e-006 6.05e-003 - CaCO[18O]2(s) 1.62e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 1.11e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 1.43e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 8.82e-007 3.39e-008 6.75e-005 - Ca[13C]O[18O]2(s) 1.81e-009 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 1.24e-012 4.76e-014 9.49e-011 - Ca[14C]O3(s) 2.78e-015 3.38e-017 2.13e-013 - Ca[14C]O2[18O](s) 1.71e-017 2.08e-019 1.31e-015 - Ca[14C]O[18O]2(s) 3.51e-020 4.28e-022 2.69e-018 - Ca[14C][18O]3(s) 2.40e-023 2.93e-025 1.84e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9919 permil - R(13C) 1.11218e-002 -5.2259 permil - R(14C) 2.15115e-013 18.294 pmc - R(18O) H2O(l) 1.99519e-003 -4.9934 permil - R(18O) OH- 1.92122e-003 -41.881 permil - R(18O) H3O+ 2.04132e-003 18.014 permil - R(18O) O2(aq) 1.99519e-003 -4.9934 permil - R(13C) CO2(aq) 1.10422e-002 -12.345 permil - R(14C) CO2(aq) 2.12045e-013 18.033 pmc - R(18O) CO2(aq) 2.07915e-003 36.88 permil - R(18O) HCO3- 1.99519e-003 -4.9934 permil - R(13C) HCO3- 1.11382e-002 -3.7526 permil - R(14C) HCO3- 2.15751e-013 18.348 pmc - R(18O) CO3-2 1.99519e-003 -4.9934 permil - R(13C) CO3-2 1.11223e-002 -5.1823 permil - R(14C) CO3-2 2.15132e-013 18.295 pmc - R(18O) Calcite 2.05263e-003 23.653 permil - R(13C) Calcite 1.11603e-002 -1.7794 permil - R(14C) Calcite 2.16606e-013 18.421 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2619e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7621e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.495e-005 6.476e-005 - [14C] 1.256e-015 1.253e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.245 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.847e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.470 -124.470 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.106e-006 1.015e-006 -5.956 -5.994 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.074e-008 6.084e-008 -7.217 -7.216 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 4.844e-040 - H2 2.422e-040 2.426e-040 -39.616 -39.615 0.001 (0) -O(0) 1.414e-013 - O2 7.043e-014 7.055e-014 -13.152 -13.152 0.001 (0) - O[18O] 2.811e-016 2.815e-016 -15.551 -15.551 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.427 -126.426 0.001 (0) -[13C](4) 6.495e-005 - H[13C]O3- 5.239e-005 4.793e-005 -4.281 -4.319 -0.039 (0) - [13C]O2 1.100e-005 1.101e-005 -4.959 -4.958 0.001 (0) - CaH[13C]O3+ 1.106e-006 1.015e-006 -5.956 -5.994 -0.037 (0) - H[13C]O2[18O]- 1.045e-007 9.563e-008 -6.981 -7.019 -0.039 (0) - H[13C][18O]O2- 1.045e-007 9.563e-008 -6.981 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.045e-007 9.563e-008 -6.981 -7.019 -0.039 (0) - Ca[13C]O3 6.074e-008 6.084e-008 -7.217 -7.216 0.001 (0) - [13C]O[18O] 4.573e-008 4.580e-008 -7.340 -7.339 0.001 (0) - [13C]O3-2 3.116e-008 2.183e-008 -7.506 -7.661 -0.155 (0) - CaH[13C]O[18O]O+ 2.207e-009 2.025e-009 -8.656 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.207e-009 2.025e-009 -8.656 -8.694 -0.037 (0) - CaH[13C]O2[18O]+ 2.207e-009 2.025e-009 -8.656 -8.694 -0.037 (0) - Ca[13C]O2[18O] 3.635e-010 3.641e-010 -9.439 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.086e-010 1.908e-010 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.086e-010 1.908e-010 -9.681 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.086e-010 1.908e-010 -9.681 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.865e-010 1.306e-010 -9.729 -9.884 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.144 -137.143 0.001 (0) -[14C](4) 1.256e-015 - H[14C]O3- 1.015e-015 9.284e-016 -14.994 -15.032 -0.039 (0) - [14C]O2 2.112e-016 2.115e-016 -15.675 -15.675 0.001 (0) - CaH[14C]O3+ 2.143e-017 1.966e-017 -16.669 -16.706 -0.037 (0) - H[14C][18O]O2- 2.025e-018 1.852e-018 -17.694 -17.732 -0.039 (0) - H[14C]O[18O]O- 2.025e-018 1.852e-018 -17.694 -17.732 -0.039 (0) - H[14C]O2[18O]- 2.025e-018 1.852e-018 -17.694 -17.732 -0.039 (0) - Ca[14C]O3 1.175e-018 1.177e-018 -17.930 -17.929 0.001 (0) - [14C]O[18O] 8.781e-019 8.795e-019 -18.056 -18.056 0.001 (0) - [14C]O3-2 6.026e-019 4.222e-019 -18.220 -18.375 -0.155 (0) - CaH[14C]O2[18O]+ 4.276e-020 3.922e-020 -19.369 -19.406 -0.037 (0) - CaH[14C][18O]O2+ 4.276e-020 3.922e-020 -19.369 -19.406 -0.037 (0) - CaH[14C]O[18O]O+ 4.276e-020 3.922e-020 -19.369 -19.406 -0.037 (0) - Ca[14C]O2[18O] 7.032e-021 7.043e-021 -20.153 -20.152 0.001 (0) - H[14C][18O]O[18O]- 4.040e-021 3.696e-021 -20.394 -20.432 -0.039 (0) - H[14C]O[18O]2- 4.040e-021 3.696e-021 -20.394 -20.432 -0.039 (0) - H[14C][18O]2O- 4.040e-021 3.696e-021 -20.394 -20.432 -0.039 (0) - [14C]O2[18O]-2 3.607e-021 2.527e-021 -20.443 -20.597 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.816e-016 - O[18O] 2.811e-016 2.815e-016 -15.551 -15.551 0.001 (0) - [18O]2 2.804e-019 2.808e-019 -18.552 -18.552 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.57 -126.43 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.57 -21.07 -1.50 [14C][18O]2 - [14C]H4(g) -134.28 -137.14 -2.86 [14C]H4 - [14C]O2(g) -14.21 -15.67 -1.47 [14C]O2 - [14C]O[18O](g) -16.59 -18.37 -1.79 [14C]O[18O] - [18O]2(g) -16.26 -18.55 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.73 -12.58 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.88 -7.18 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.67 -4.48 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.57 -9.88 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.61 -124.47 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.47 -39.62 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.26 -13.15 -2.89 O2 - O[18O](g) -12.96 -15.85 -2.89 O[18O] - - -Reaction step 32. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 32 1.6000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 1.36e-002 - Calcite 1.33e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 8.20e-005 3.03e-006 6.05e-003 - CaCO[18O]2(s) 1.68e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 1.15e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 1.49e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 9.16e-007 3.39e-008 6.76e-005 - Ca[13C]O[18O]2(s) 1.88e-009 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 1.29e-012 4.76e-014 9.49e-011 - Ca[14C]O3(s) 2.81e-015 3.21e-017 2.07e-013 - Ca[14C]O2[18O](s) 1.73e-017 1.98e-019 1.28e-015 - Ca[14C]O[18O]2(s) 3.55e-020 4.05e-022 2.62e-018 - Ca[14C][18O]3(s) 2.43e-023 2.77e-025 1.79e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9918 permil - R(13C) 1.11229e-002 -5.1271 permil - R(14C) 2.09572e-013 17.822 pmc - R(18O) H2O(l) 1.99519e-003 -4.9933 permil - R(18O) OH- 1.92122e-003 -41.881 permil - R(18O) H3O+ 2.04132e-003 18.015 permil - R(18O) O2(aq) 1.99519e-003 -4.9933 permil - R(13C) CO2(aq) 1.10433e-002 -12.247 permil - R(14C) CO2(aq) 2.06581e-013 17.568 pmc - R(18O) CO2(aq) 2.07915e-003 36.881 permil - R(18O) HCO3- 1.99519e-003 -4.9933 permil - R(13C) HCO3- 1.11394e-002 -3.6537 permil - R(14C) HCO3- 2.10191e-013 17.875 pmc - R(18O) CO3-2 1.99519e-003 -4.9933 permil - R(13C) CO3-2 1.11234e-002 -5.0835 permil - R(14C) CO3-2 2.09588e-013 17.824 pmc - R(18O) Calcite 2.05263e-003 23.653 permil - R(13C) Calcite 1.11614e-002 -1.6802 permil - R(14C) Calcite 2.11025e-013 17.946 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2816e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7646e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.496e-005 6.477e-005 - [14C] 1.224e-015 1.220e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.235 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.833e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.394 -124.394 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.106e-006 1.015e-006 -5.956 -5.994 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.074e-008 6.084e-008 -7.217 -7.216 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 5.060e-040 - H2 2.530e-040 2.534e-040 -39.597 -39.596 0.001 (0) -O(0) 1.296e-013 - O2 6.454e-014 6.465e-014 -13.190 -13.189 0.001 (0) - O[18O] 2.575e-016 2.580e-016 -15.589 -15.588 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.351 -126.351 0.001 (0) -[13C](4) 6.496e-005 - H[13C]O3- 5.240e-005 4.793e-005 -4.281 -4.319 -0.039 (0) - [13C]O2 1.100e-005 1.102e-005 -4.959 -4.958 0.001 (0) - CaH[13C]O3+ 1.106e-006 1.015e-006 -5.956 -5.994 -0.037 (0) - H[13C][18O]O2- 1.045e-007 9.564e-008 -6.981 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.045e-007 9.564e-008 -6.981 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.045e-007 9.564e-008 -6.981 -7.019 -0.039 (0) - Ca[13C]O3 6.074e-008 6.084e-008 -7.217 -7.216 0.001 (0) - [13C]O[18O] 4.573e-008 4.580e-008 -7.340 -7.339 0.001 (0) - [13C]O3-2 3.116e-008 2.183e-008 -7.506 -7.661 -0.155 (0) - CaH[13C][18O]O2+ 2.208e-009 2.025e-009 -8.656 -8.694 -0.037 (0) - CaH[13C]O2[18O]+ 2.208e-009 2.025e-009 -8.656 -8.694 -0.037 (0) - CaH[13C]O[18O]O+ 2.208e-009 2.025e-009 -8.656 -8.694 -0.037 (0) - Ca[13C]O2[18O] 3.636e-010 3.642e-010 -9.439 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.086e-010 1.908e-010 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.086e-010 1.908e-010 -9.681 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.086e-010 1.908e-010 -9.681 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.865e-010 1.307e-010 -9.729 -9.884 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.079 -137.079 0.001 (0) -[14C](4) 1.224e-015 - H[14C]O3- 9.887e-016 9.045e-016 -15.005 -15.044 -0.039 (0) - [14C]O2 2.057e-016 2.061e-016 -15.687 -15.686 0.001 (0) - CaH[14C]O3+ 2.088e-017 1.915e-017 -16.680 -16.718 -0.037 (0) - H[14C][18O]O2- 1.973e-018 1.805e-018 -17.705 -17.744 -0.039 (0) - H[14C]O[18O]O- 1.973e-018 1.805e-018 -17.705 -17.744 -0.039 (0) - H[14C]O2[18O]- 1.973e-018 1.805e-018 -17.705 -17.744 -0.039 (0) - Ca[14C]O3 1.144e-018 1.146e-018 -17.941 -17.941 0.001 (0) - [14C]O[18O] 8.554e-019 8.568e-019 -18.068 -18.067 0.001 (0) - [14C]O3-2 5.871e-019 4.113e-019 -18.231 -18.386 -0.155 (0) - CaH[14C]O2[18O]+ 4.165e-020 3.821e-020 -19.380 -19.418 -0.037 (0) - CaH[14C][18O]O2+ 4.165e-020 3.821e-020 -19.380 -19.418 -0.037 (0) - CaH[14C]O[18O]O+ 4.165e-020 3.821e-020 -19.380 -19.418 -0.037 (0) - Ca[14C]O2[18O] 6.850e-021 6.862e-021 -20.164 -20.164 0.001 (0) - H[14C]O[18O]2- 3.936e-021 3.601e-021 -20.405 -20.444 -0.039 (0) - H[14C][18O]2O- 3.936e-021 3.601e-021 -20.405 -20.444 -0.039 (0) - H[14C][18O]O[18O]- 3.936e-021 3.601e-021 -20.405 -20.444 -0.039 (0) - [14C]O2[18O]-2 3.514e-021 2.462e-021 -20.454 -20.609 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.581e-016 - O[18O] 2.575e-016 2.580e-016 -15.589 -15.588 0.001 (0) - [18O]2 2.569e-019 2.573e-019 -18.590 -18.589 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.49 -126.35 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.58 -21.09 -1.50 [14C][18O]2 - [14C]H4(g) -134.22 -137.08 -2.86 [14C]H4 - [14C]O2(g) -14.22 -15.69 -1.47 [14C]O2 - [14C]O[18O](g) -16.60 -18.39 -1.79 [14C]O[18O] - [18O]2(g) -16.30 -18.59 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.75 -12.59 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.89 -7.19 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.68 -4.49 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.58 -9.89 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.53 -124.39 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.45 -39.60 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.30 -13.19 -2.89 O2 - O[18O](g) -13.00 -15.89 -2.89 O[18O] - - -Reaction step 33. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 33 1.6500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 1.41e-002 - Calcite 1.38e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 8.51e-005 3.03e-006 6.05e-003 - CaCO[18O]2(s) 1.75e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 1.19e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 1.54e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 9.50e-007 3.39e-008 6.76e-005 - Ca[13C]O[18O]2(s) 1.95e-009 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 1.33e-012 4.76e-014 9.49e-011 - Ca[14C]O3(s) 2.84e-015 3.05e-017 2.02e-013 - Ca[14C]O2[18O](s) 1.75e-017 1.88e-019 1.25e-015 - Ca[14C]O[18O]2(s) 3.59e-020 3.85e-022 2.56e-018 - Ca[14C][18O]3(s) 2.46e-023 2.64e-025 1.75e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9916 permil - R(13C) 1.11239e-002 -5.0333 permil - R(14C) 2.04308e-013 17.375 pmc - R(18O) H2O(l) 1.99519e-003 -4.9932 permil - R(18O) OH- 1.92122e-003 -41.88 permil - R(18O) H3O+ 2.04132e-003 18.015 permil - R(18O) O2(aq) 1.99519e-003 -4.9932 permil - R(13C) CO2(aq) 1.10443e-002 -12.154 permil - R(14C) CO2(aq) 2.01392e-013 17.127 pmc - R(18O) CO2(aq) 2.07915e-003 36.881 permil - R(18O) HCO3- 1.99519e-003 -4.9932 permil - R(13C) HCO3- 1.11404e-002 -3.5597 permil - R(14C) HCO3- 2.04911e-013 17.426 pmc - R(18O) CO3-2 1.99519e-003 -4.9932 permil - R(13C) CO3-2 1.11244e-002 -4.9897 permil - R(14C) CO3-2 2.04324e-013 17.376 pmc - R(18O) Calcite 2.05263e-003 23.653 permil - R(13C) Calcite 1.11625e-002 -1.5861 permil - R(14C) Calcite 2.05724e-013 17.495 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2391e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.1102e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6591e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.496e-005 6.477e-005 - [14C] 1.193e-015 1.190e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.227 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.816e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.329 -124.328 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.015e-006 -5.956 -5.994 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.075e-008 6.085e-008 -7.216 -7.216 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 5.254e-040 - H2 2.627e-040 2.632e-040 -39.581 -39.580 0.001 (0) -O(0) 1.202e-013 - O2 5.986e-014 5.995e-014 -13.223 -13.222 0.001 (0) - O[18O] 2.388e-016 2.392e-016 -15.622 -15.621 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.286 -126.285 0.001 (0) -[13C](4) 6.496e-005 - H[13C]O3- 5.240e-005 4.794e-005 -4.281 -4.319 -0.039 (0) - [13C]O2 1.100e-005 1.102e-005 -4.959 -4.958 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.015e-006 -5.956 -5.994 -0.037 (0) - H[13C]O[18O]O- 1.045e-007 9.565e-008 -6.981 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.045e-007 9.565e-008 -6.981 -7.019 -0.039 (0) - H[13C][18O]O2- 1.045e-007 9.565e-008 -6.981 -7.019 -0.039 (0) - Ca[13C]O3 6.075e-008 6.085e-008 -7.216 -7.216 0.001 (0) - [13C]O[18O] 4.573e-008 4.581e-008 -7.340 -7.339 0.001 (0) - [13C]O3-2 3.116e-008 2.183e-008 -7.506 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.208e-009 2.025e-009 -8.656 -8.694 -0.037 (0) - CaH[13C]O[18O]O+ 2.208e-009 2.025e-009 -8.656 -8.694 -0.037 (0) - CaH[13C][18O]O2+ 2.208e-009 2.025e-009 -8.656 -8.694 -0.037 (0) - Ca[13C]O2[18O] 3.636e-010 3.642e-010 -9.439 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.086e-010 1.908e-010 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.086e-010 1.908e-010 -9.681 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.086e-010 1.908e-010 -9.681 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.865e-010 1.307e-010 -9.729 -9.884 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.025 -137.024 0.001 (0) -[14C](4) 1.193e-015 - H[14C]O3- 9.638e-016 8.818e-016 -15.016 -15.055 -0.039 (0) - [14C]O2 2.006e-016 2.009e-016 -15.698 -15.697 0.001 (0) - CaH[14C]O3+ 2.035e-017 1.867e-017 -16.691 -16.729 -0.037 (0) - H[14C][18O]O2- 1.923e-018 1.759e-018 -17.716 -17.755 -0.039 (0) - H[14C]O[18O]O- 1.923e-018 1.759e-018 -17.716 -17.755 -0.039 (0) - H[14C]O2[18O]- 1.923e-018 1.759e-018 -17.716 -17.755 -0.039 (0) - Ca[14C]O3 1.116e-018 1.118e-018 -17.952 -17.952 0.001 (0) - [14C]O[18O] 8.340e-019 8.353e-019 -18.079 -18.078 0.001 (0) - [14C]O3-2 5.724e-019 4.010e-019 -18.242 -18.397 -0.155 (0) - CaH[14C]O2[18O]+ 4.061e-020 3.725e-020 -19.391 -19.429 -0.037 (0) - CaH[14C][18O]O2+ 4.061e-020 3.725e-020 -19.391 -19.429 -0.037 (0) - CaH[14C]O[18O]O+ 4.061e-020 3.725e-020 -19.391 -19.429 -0.037 (0) - Ca[14C]O2[18O] 6.678e-021 6.689e-021 -20.175 -20.175 0.001 (0) - H[14C][18O]2O- 3.837e-021 3.510e-021 -20.416 -20.455 -0.039 (0) - H[14C][18O]O[18O]- 3.837e-021 3.510e-021 -20.416 -20.455 -0.039 (0) - H[14C]O[18O]2- 3.837e-021 3.510e-021 -20.416 -20.455 -0.039 (0) - [14C]O2[18O]-2 3.426e-021 2.400e-021 -20.465 -20.620 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.393e-016 - O[18O] 2.388e-016 2.392e-016 -15.622 -15.621 0.001 (0) - [18O]2 2.383e-019 2.387e-019 -18.623 -18.622 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.43 -126.29 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.59 -21.10 -1.50 [14C][18O]2 - [14C]H4(g) -134.16 -137.02 -2.86 [14C]H4 - [14C]O2(g) -14.23 -15.70 -1.47 [14C]O2 - [14C]O[18O](g) -16.61 -18.40 -1.79 [14C]O[18O] - [18O]2(g) -16.33 -18.62 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.76 -12.60 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.90 -7.20 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.69 -4.50 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.59 -9.90 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.47 -124.33 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.43 -39.58 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.33 -13.22 -2.89 O2 - O[18O](g) -13.03 -15.92 -2.89 O[18O] - - -Reaction step 34. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 34 1.7000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 1.46e-002 - Calcite 1.43e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 8.81e-005 3.03e-006 6.05e-003 - CaCO[18O]2(s) 1.81e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 1.24e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 1.60e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 9.84e-007 3.39e-008 6.76e-005 - Ca[13C]O[18O]2(s) 2.02e-009 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 1.38e-012 4.76e-014 9.49e-011 - Ca[14C]O3(s) 2.87e-015 2.90e-017 1.97e-013 - Ca[14C]O2[18O](s) 1.77e-017 1.78e-019 1.21e-015 - Ca[14C]O[18O]2(s) 3.63e-020 3.66e-022 2.49e-018 - Ca[14C][18O]3(s) 2.48e-023 2.51e-025 1.71e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9915 permil - R(13C) 1.11249e-002 -4.944 permil - R(14C) 1.99301e-013 16.949 pmc - R(18O) H2O(l) 1.99519e-003 -4.993 permil - R(18O) OH- 1.92122e-003 -41.88 permil - R(18O) H3O+ 2.04132e-003 18.015 permil - R(18O) O2(aq) 1.99519e-003 -4.993 permil - R(13C) CO2(aq) 1.10453e-002 -12.065 permil - R(14C) CO2(aq) 1.96457e-013 16.707 pmc - R(18O) CO2(aq) 2.07915e-003 36.881 permil - R(18O) HCO3- 1.99519e-003 -4.993 permil - R(13C) HCO3- 1.11414e-002 -3.4703 permil - R(14C) HCO3- 1.99890e-013 16.999 pmc - R(18O) CO3-2 1.99519e-003 -4.993 permil - R(13C) CO3-2 1.11254e-002 -4.9004 permil - R(14C) CO3-2 1.99317e-013 16.95 pmc - R(18O) Calcite 2.05263e-003 23.653 permil - R(13C) Calcite 1.11635e-002 -1.4965 permil - R(14C) Calcite 2.00683e-013 17.066 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2625e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6798e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.497e-005 6.478e-005 - [14C] 1.164e-015 1.161e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.200 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.802e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.108 -124.107 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.015e-006 -5.956 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.075e-008 6.085e-008 -7.216 -7.216 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 5.968e-040 - H2 2.984e-040 2.989e-040 -39.525 -39.524 0.001 (0) -O(0) 9.317e-014 - O2 4.640e-014 4.648e-014 -13.333 -13.333 0.001 (0) - O[18O] 1.852e-016 1.855e-016 -15.732 -15.732 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.065 -126.064 0.001 (0) -[13C](4) 6.497e-005 - H[13C]O3- 5.240e-005 4.794e-005 -4.281 -4.319 -0.039 (0) - [13C]O2 1.100e-005 1.102e-005 -4.959 -4.958 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.015e-006 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-007 9.566e-008 -6.981 -7.019 -0.039 (0) - H[13C][18O]O2- 1.046e-007 9.566e-008 -6.981 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-007 9.566e-008 -6.981 -7.019 -0.039 (0) - Ca[13C]O3 6.075e-008 6.085e-008 -7.216 -7.216 0.001 (0) - [13C]O[18O] 4.574e-008 4.581e-008 -7.340 -7.339 0.001 (0) - [13C]O3-2 3.116e-008 2.183e-008 -7.506 -7.661 -0.155 (0) - CaH[13C]O[18O]O+ 2.208e-009 2.025e-009 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.208e-009 2.025e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.208e-009 2.025e-009 -8.656 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.636e-010 3.642e-010 -9.439 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.086e-010 1.909e-010 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.086e-010 1.909e-010 -9.681 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.086e-010 1.909e-010 -9.681 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.865e-010 1.307e-010 -9.729 -9.884 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.814 -136.814 0.001 (0) -[14C](4) 1.164e-015 - H[14C]O3- 9.402e-016 8.602e-016 -15.027 -15.065 -0.039 (0) - [14C]O2 1.956e-016 1.960e-016 -15.709 -15.708 0.001 (0) - CaH[14C]O3+ 1.985e-017 1.821e-017 -16.702 -16.740 -0.037 (0) - H[14C][18O]O2- 1.876e-018 1.716e-018 -17.727 -17.765 -0.039 (0) - H[14C]O[18O]O- 1.876e-018 1.716e-018 -17.727 -17.765 -0.039 (0) - H[14C]O2[18O]- 1.876e-018 1.716e-018 -17.727 -17.765 -0.039 (0) - Ca[14C]O3 1.088e-018 1.090e-018 -17.963 -17.962 0.001 (0) - [14C]O[18O] 8.135e-019 8.149e-019 -18.090 -18.089 0.001 (0) - [14C]O3-2 5.583e-019 3.911e-019 -18.253 -18.408 -0.155 (0) - CaH[14C]O2[18O]+ 3.961e-020 3.634e-020 -19.402 -19.440 -0.037 (0) - CaH[14C][18O]O2+ 3.961e-020 3.634e-020 -19.402 -19.440 -0.037 (0) - CaH[14C]O[18O]O+ 3.961e-020 3.634e-020 -19.402 -19.440 -0.037 (0) - Ca[14C]O2[18O] 6.515e-021 6.525e-021 -20.186 -20.185 0.001 (0) - H[14C][18O]O[18O]- 3.743e-021 3.424e-021 -20.427 -20.465 -0.039 (0) - H[14C]O[18O]2- 3.743e-021 3.424e-021 -20.427 -20.465 -0.039 (0) - H[14C][18O]2O- 3.743e-021 3.424e-021 -20.427 -20.465 -0.039 (0) - [14C]O2[18O]-2 3.342e-021 2.341e-021 -20.476 -20.631 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.855e-016 - O[18O] 1.852e-016 1.855e-016 -15.732 -15.732 0.001 (0) - [18O]2 1.847e-019 1.850e-019 -18.734 -18.733 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.20 -126.06 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.60 -21.11 -1.50 [14C][18O]2 - [14C]H4(g) -133.95 -136.81 -2.86 [14C]H4 - [14C]O2(g) -14.24 -15.71 -1.47 [14C]O2 - [14C]O[18O](g) -16.62 -18.41 -1.79 [14C]O[18O] - [18O]2(g) -16.44 -18.73 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.77 -12.61 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.92 -7.21 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.70 -4.51 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.60 -9.91 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.25 -124.11 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.37 -39.52 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.44 -13.33 -2.89 O2 - O[18O](g) -13.14 -16.03 -2.89 O[18O] - - -Reaction step 35. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 35 1.7500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 1.51e-002 - Calcite 1.48e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 9.11e-005 3.03e-006 6.05e-003 - CaCO[18O]2(s) 1.87e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 1.28e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 1.65e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 1.02e-006 3.39e-008 6.76e-005 - Ca[13C]O[18O]2(s) 2.09e-009 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 1.43e-012 4.76e-014 9.49e-011 - Ca[14C]O3(s) 2.90e-015 2.76e-017 1.93e-013 - Ca[14C]O2[18O](s) 1.79e-017 1.70e-019 1.19e-015 - Ca[14C]O[18O]2(s) 3.66e-020 3.49e-022 2.43e-018 - Ca[14C][18O]3(s) 2.51e-023 2.39e-025 1.67e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9914 permil - R(13C) 1.11259e-002 -4.8591 permil - R(14C) 1.94534e-013 16.544 pmc - R(18O) H2O(l) 1.99519e-003 -4.9929 permil - R(18O) OH- 1.92122e-003 -41.88 permil - R(18O) H3O+ 2.04132e-003 18.015 permil - R(18O) O2(aq) 1.99519e-003 -4.9929 permil - R(13C) CO2(aq) 1.10463e-002 -11.981 permil - R(14C) CO2(aq) 1.91758e-013 16.307 pmc - R(18O) CO2(aq) 2.07915e-003 36.881 permil - R(18O) HCO3- 1.99519e-003 -4.9929 permil - R(13C) HCO3- 1.11424e-002 -3.3852 permil - R(14C) HCO3- 1.95109e-013 16.592 pmc - R(18O) CO3-2 1.99519e-003 -4.9929 permil - R(13C) CO3-2 1.11264e-002 -4.8155 permil - R(14C) CO3-2 1.94549e-013 16.545 pmc - R(18O) Calcite 2.05263e-003 23.653 permil - R(13C) Calcite 1.11644e-002 -1.4113 permil - R(14C) Calcite 1.95883e-013 16.658 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2562e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.745e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.498e-005 6.479e-005 - [14C] 1.136e-015 1.133e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.203 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.808e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 18 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.138 -124.138 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.015e-006 -5.956 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.076e-008 6.086e-008 -7.216 -7.216 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 5.864e-040 - H2 2.932e-040 2.937e-040 -39.533 -39.532 0.001 (0) -O(0) 9.650e-014 - O2 4.806e-014 4.814e-014 -13.318 -13.318 0.001 (0) - O[18O] 1.918e-016 1.921e-016 -15.717 -15.717 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.095 -126.094 0.001 (0) -[13C](4) 6.498e-005 - H[13C]O3- 5.241e-005 4.795e-005 -4.281 -4.319 -0.039 (0) - [13C]O2 1.100e-005 1.102e-005 -4.959 -4.958 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.015e-006 -5.956 -5.993 -0.037 (0) - H[13C][18O]O2- 1.046e-007 9.566e-008 -6.981 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-007 9.566e-008 -6.981 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.046e-007 9.566e-008 -6.981 -7.019 -0.039 (0) - Ca[13C]O3 6.076e-008 6.086e-008 -7.216 -7.216 0.001 (0) - [13C]O[18O] 4.574e-008 4.582e-008 -7.340 -7.339 0.001 (0) - [13C]O3-2 3.117e-008 2.183e-008 -7.506 -7.661 -0.155 (0) - CaH[13C][18O]O2+ 2.208e-009 2.026e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.208e-009 2.026e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.208e-009 2.026e-009 -8.656 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.637e-010 3.643e-010 -9.439 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.086e-010 1.909e-010 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.086e-010 1.909e-010 -9.681 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.086e-010 1.909e-010 -9.681 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.866e-010 1.307e-010 -9.729 -9.884 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.856 -136.855 0.001 (0) -[14C](4) 1.136e-015 - H[14C]O3- 9.177e-016 8.396e-016 -15.037 -15.076 -0.039 (0) - [14C]O2 1.910e-016 1.913e-016 -15.719 -15.718 0.001 (0) - CaH[14C]O3+ 1.938e-017 1.778e-017 -16.713 -16.750 -0.037 (0) - H[14C][18O]O2- 1.831e-018 1.675e-018 -17.737 -17.776 -0.039 (0) - H[14C]O[18O]O- 1.831e-018 1.675e-018 -17.737 -17.776 -0.039 (0) - H[14C]O2[18O]- 1.831e-018 1.675e-018 -17.737 -17.776 -0.039 (0) - Ca[14C]O3 1.062e-018 1.064e-018 -17.974 -17.973 0.001 (0) - [14C]O[18O] 7.941e-019 7.954e-019 -18.100 -18.099 0.001 (0) - [14C]O3-2 5.450e-019 3.818e-019 -18.264 -18.418 -0.155 (0) - CaH[14C]O2[18O]+ 3.866e-020 3.547e-020 -19.413 -19.450 -0.037 (0) - CaH[14C][18O]O2+ 3.866e-020 3.547e-020 -19.413 -19.450 -0.037 (0) - CaH[14C]O[18O]O+ 3.866e-020 3.547e-020 -19.413 -19.450 -0.037 (0) - Ca[14C]O2[18O] 6.359e-021 6.369e-021 -20.197 -20.196 0.001 (0) - H[14C]O[18O]2- 3.653e-021 3.342e-021 -20.437 -20.476 -0.039 (0) - H[14C][18O]2O- 3.653e-021 3.342e-021 -20.437 -20.476 -0.039 (0) - H[14C][18O]O[18O]- 3.653e-021 3.342e-021 -20.437 -20.476 -0.039 (0) - [14C]O2[18O]-2 3.262e-021 2.285e-021 -20.487 -20.641 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.922e-016 - O[18O] 1.918e-016 1.921e-016 -15.717 -15.717 0.001 (0) - [18O]2 1.913e-019 1.916e-019 -18.718 -18.718 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.23 -126.09 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.61 -21.12 -1.50 [14C][18O]2 - [14C]H4(g) -133.99 -136.85 -2.86 [14C]H4 - [14C]O2(g) -14.25 -15.72 -1.47 [14C]O2 - [14C]O[18O](g) -16.63 -18.42 -1.79 [14C]O[18O] - [18O]2(g) -16.43 -18.72 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.78 -12.62 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.93 -7.22 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.72 -4.52 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.61 -9.92 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.28 -124.14 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.38 -39.53 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.43 -13.32 -2.89 O2 - O[18O](g) -13.13 -16.02 -2.89 O[18O] - - -Reaction step 36. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 36 1.8000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 1.56e-002 - Calcite 1.53e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 9.42e-005 3.03e-006 6.05e-003 - CaCO[18O]2(s) 1.93e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 1.32e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 1.71e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 1.05e-006 3.39e-008 6.76e-005 - Ca[13C]O[18O]2(s) 2.16e-009 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 1.48e-012 4.76e-014 9.49e-011 - Ca[14C]O3(s) 2.93e-015 2.63e-017 1.88e-013 - Ca[14C]O2[18O](s) 1.80e-017 1.62e-019 1.16e-015 - Ca[14C]O[18O]2(s) 3.70e-020 3.32e-022 2.38e-018 - Ca[14C][18O]3(s) 2.53e-023 2.27e-025 1.63e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9912 permil - R(13C) 1.11268e-002 -4.7781 permil - R(14C) 1.89990e-013 16.157 pmc - R(18O) H2O(l) 1.99519e-003 -4.9927 permil - R(18O) OH- 1.92122e-003 -41.88 permil - R(18O) H3O+ 2.04132e-003 18.015 permil - R(18O) O2(aq) 1.99519e-003 -4.9927 permil - R(13C) CO2(aq) 1.10472e-002 -11.9 permil - R(14C) CO2(aq) 1.87278e-013 15.927 pmc - R(18O) CO2(aq) 2.07915e-003 36.881 permil - R(18O) HCO3- 1.99519e-003 -4.9927 permil - R(13C) HCO3- 1.11433e-002 -3.3041 permil - R(14C) HCO3- 1.90551e-013 16.205 pmc - R(18O) CO3-2 1.99519e-003 -4.9927 permil - R(13C) CO3-2 1.11273e-002 -4.7344 permil - R(14C) CO3-2 1.90005e-013 16.158 pmc - R(18O) Calcite 2.05263e-003 23.654 permil - R(13C) Calcite 1.11653e-002 -1.33 permil - R(14C) Calcite 1.91307e-013 16.269 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2214e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6727e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.498e-005 6.479e-005 - [14C] 1.110e-015 1.106e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.176 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.795e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.921 -123.920 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.015e-006 -5.956 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.076e-008 6.086e-008 -7.216 -7.216 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 6.646e-040 - H2 3.323e-040 3.328e-040 -39.478 -39.478 0.001 (0) -O(0) 7.513e-014 - O2 3.742e-014 3.748e-014 -13.427 -13.426 0.001 (0) - O[18O] 1.493e-016 1.496e-016 -15.826 -15.825 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.878 -125.877 0.001 (0) -[13C](4) 6.498e-005 - H[13C]O3- 5.241e-005 4.795e-005 -4.281 -4.319 -0.039 (0) - [13C]O2 1.100e-005 1.102e-005 -4.959 -4.958 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.015e-006 -5.956 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.046e-007 9.567e-008 -6.981 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.046e-007 9.567e-008 -6.981 -7.019 -0.039 (0) - H[13C][18O]O2- 1.046e-007 9.567e-008 -6.981 -7.019 -0.039 (0) - Ca[13C]O3 6.076e-008 6.086e-008 -7.216 -7.216 0.001 (0) - [13C]O[18O] 4.575e-008 4.582e-008 -7.340 -7.339 0.001 (0) - [13C]O3-2 3.117e-008 2.184e-008 -7.506 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.208e-009 2.026e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.208e-009 2.026e-009 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.208e-009 2.026e-009 -8.656 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.637e-010 3.643e-010 -9.439 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.086e-010 1.909e-010 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.086e-010 1.909e-010 -9.681 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.086e-010 1.909e-010 -9.681 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.866e-010 1.307e-010 -9.729 -9.884 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.648 -136.648 0.001 (0) -[14C](4) 1.110e-015 - H[14C]O3- 8.963e-016 8.200e-016 -15.048 -15.086 -0.039 (0) - [14C]O2 1.865e-016 1.868e-016 -15.729 -15.729 0.001 (0) - CaH[14C]O3+ 1.893e-017 1.736e-017 -16.723 -16.760 -0.037 (0) - H[14C][18O]O2- 1.788e-018 1.636e-018 -17.748 -17.786 -0.039 (0) - H[14C]O[18O]O- 1.788e-018 1.636e-018 -17.748 -17.786 -0.039 (0) - H[14C]O2[18O]- 1.788e-018 1.636e-018 -17.748 -17.786 -0.039 (0) - Ca[14C]O3 1.038e-018 1.039e-018 -17.984 -17.983 0.001 (0) - [14C]O[18O] 7.755e-019 7.768e-019 -18.110 -18.110 0.001 (0) - [14C]O3-2 5.322e-019 3.729e-019 -18.274 -18.428 -0.155 (0) - CaH[14C]O2[18O]+ 3.776e-020 3.464e-020 -19.423 -19.460 -0.037 (0) - CaH[14C][18O]O2+ 3.776e-020 3.464e-020 -19.423 -19.460 -0.037 (0) - CaH[14C]O[18O]O+ 3.776e-020 3.464e-020 -19.423 -19.460 -0.037 (0) - Ca[14C]O2[18O] 6.210e-021 6.221e-021 -20.207 -20.206 0.001 (0) - H[14C][18O]2O- 3.568e-021 3.264e-021 -20.448 -20.486 -0.039 (0) - H[14C][18O]O[18O]- 3.568e-021 3.264e-021 -20.448 -20.486 -0.039 (0) - H[14C]O[18O]2- 3.568e-021 3.264e-021 -20.448 -20.486 -0.039 (0) - [14C]O2[18O]-2 3.186e-021 2.232e-021 -20.497 -20.651 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.496e-016 - O[18O] 1.493e-016 1.496e-016 -15.826 -15.825 0.001 (0) - [18O]2 1.490e-019 1.492e-019 -18.827 -18.826 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.02 -125.88 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.63 -21.13 -1.50 [14C][18O]2 - [14C]H4(g) -133.79 -136.65 -2.86 [14C]H4 - [14C]O2(g) -14.26 -15.73 -1.47 [14C]O2 - [14C]O[18O](g) -16.64 -18.43 -1.79 [14C]O[18O] - [18O]2(g) -16.54 -18.83 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.79 -12.63 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.94 -7.23 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.73 -4.53 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.62 -9.93 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.06 -123.92 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.33 -39.48 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.53 -13.43 -2.89 O2 - O[18O](g) -13.23 -16.13 -2.89 O[18O] - - -Reaction step 37. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 37 1.8500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 1.61e-002 - Calcite 1.58e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 9.72e-005 3.03e-006 6.05e-003 - CaCO[18O]2(s) 1.99e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 1.36e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 1.76e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 1.09e-006 3.39e-008 6.76e-005 - Ca[13C]O[18O]2(s) 2.23e-009 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 1.52e-012 4.76e-014 9.49e-011 - Ca[14C]O3(s) 2.95e-015 2.51e-017 1.84e-013 - Ca[14C]O2[18O](s) 1.82e-017 1.55e-019 1.13e-015 - Ca[14C]O[18O]2(s) 3.73e-020 3.17e-022 2.32e-018 - Ca[14C][18O]3(s) 2.55e-023 2.17e-025 1.59e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9911 permil - R(13C) 1.11276e-002 -4.7007 permil - R(14C) 1.85653e-013 15.788 pmc - R(18O) H2O(l) 1.99519e-003 -4.9926 permil - R(18O) OH- 1.92122e-003 -41.88 permil - R(18O) H3O+ 2.04132e-003 18.015 permil - R(18O) O2(aq) 1.99519e-003 -4.9926 permil - R(13C) CO2(aq) 1.10480e-002 -11.824 permil - R(14C) CO2(aq) 1.83003e-013 15.563 pmc - R(18O) CO2(aq) 2.07915e-003 36.881 permil - R(18O) HCO3- 1.99519e-003 -4.9926 permil - R(13C) HCO3- 1.11441e-002 -3.2267 permil - R(14C) HCO3- 1.86202e-013 15.835 pmc - R(18O) CO3-2 1.99519e-003 -4.9926 permil - R(13C) CO3-2 1.11281e-002 -4.6571 permil - R(14C) CO3-2 1.85667e-013 15.79 pmc - R(18O) Calcite 2.05263e-003 23.654 permil - R(13C) Calcite 1.11662e-002 -1.2524 permil - R(14C) Calcite 1.86940e-013 15.898 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2548e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-013 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7013e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.499e-005 6.480e-005 - [14C] 1.084e-015 1.081e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.205 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.783e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.152 -124.151 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.015e-006 -5.956 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.077e-008 6.087e-008 -7.216 -7.216 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 5.818e-040 - H2 2.909e-040 2.914e-040 -39.536 -39.536 0.001 (0) -O(0) 9.803e-014 - O2 4.882e-014 4.890e-014 -13.311 -13.311 0.001 (0) - O[18O] 1.948e-016 1.951e-016 -15.710 -15.710 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.109 -126.108 0.001 (0) -[13C](4) 6.499e-005 - H[13C]O3- 5.242e-005 4.796e-005 -4.281 -4.319 -0.039 (0) - [13C]O2 1.100e-005 1.102e-005 -4.959 -4.958 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.015e-006 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-007 9.568e-008 -6.981 -7.019 -0.039 (0) - H[13C][18O]O2- 1.046e-007 9.568e-008 -6.981 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-007 9.568e-008 -6.981 -7.019 -0.039 (0) - Ca[13C]O3 6.077e-008 6.087e-008 -7.216 -7.216 0.001 (0) - [13C]O[18O] 4.575e-008 4.582e-008 -7.340 -7.339 0.001 (0) - [13C]O3-2 3.117e-008 2.184e-008 -7.506 -7.661 -0.155 (0) - CaH[13C]O[18O]O+ 2.208e-009 2.026e-009 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.208e-009 2.026e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.208e-009 2.026e-009 -8.656 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.637e-010 3.643e-010 -9.439 -9.439 0.001 (0) - H[13C][18O]O[18O]- 2.087e-010 1.909e-010 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-010 1.909e-010 -9.681 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.087e-010 1.909e-010 -9.681 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.866e-010 1.307e-010 -9.729 -9.884 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.889 -136.889 0.001 (0) -[14C](4) 1.084e-015 - H[14C]O3- 8.758e-016 8.013e-016 -15.058 -15.096 -0.039 (0) - [14C]O2 1.822e-016 1.825e-016 -15.739 -15.739 0.001 (0) - CaH[14C]O3+ 1.849e-017 1.697e-017 -16.733 -16.770 -0.037 (0) - H[14C][18O]O2- 1.747e-018 1.599e-018 -17.758 -17.796 -0.039 (0) - H[14C]O[18O]O- 1.747e-018 1.599e-018 -17.758 -17.796 -0.039 (0) - H[14C]O2[18O]- 1.747e-018 1.599e-018 -17.758 -17.796 -0.039 (0) - Ca[14C]O3 1.014e-018 1.016e-018 -17.994 -17.993 0.001 (0) - [14C]O[18O] 7.578e-019 7.591e-019 -18.120 -18.120 0.001 (0) - [14C]O3-2 5.201e-019 3.644e-019 -18.284 -18.438 -0.155 (0) - CaH[14C]O2[18O]+ 3.690e-020 3.385e-020 -19.433 -19.470 -0.037 (0) - CaH[14C][18O]O2+ 3.690e-020 3.385e-020 -19.433 -19.470 -0.037 (0) - CaH[14C]O[18O]O+ 3.690e-020 3.385e-020 -19.433 -19.470 -0.037 (0) - Ca[14C]O2[18O] 6.069e-021 6.079e-021 -20.217 -20.216 0.001 (0) - H[14C][18O]O[18O]- 3.486e-021 3.190e-021 -20.458 -20.496 -0.039 (0) - H[14C]O[18O]2- 3.486e-021 3.190e-021 -20.458 -20.496 -0.039 (0) - H[14C][18O]2O- 3.486e-021 3.190e-021 -20.458 -20.496 -0.039 (0) - [14C]O2[18O]-2 3.113e-021 2.181e-021 -20.507 -20.661 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.952e-016 - O[18O] 1.948e-016 1.951e-016 -15.710 -15.710 0.001 (0) - [18O]2 1.943e-019 1.947e-019 -18.711 -18.711 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.25 -126.11 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.64 -21.14 -1.50 [14C][18O]2 - [14C]H4(g) -134.03 -136.89 -2.86 [14C]H4 - [14C]O2(g) -14.27 -15.74 -1.47 [14C]O2 - [14C]O[18O](g) -16.65 -18.44 -1.79 [14C]O[18O] - [18O]2(g) -16.42 -18.71 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.80 -12.64 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.95 -7.24 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.74 -4.54 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.63 -9.94 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.29 -124.15 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.39 -39.54 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.42 -13.31 -2.89 O2 - O[18O](g) -13.12 -16.01 -2.89 O[18O] - - -Reaction step 38. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 38 1.9000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 1.66e-002 - Calcite 1.63e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.00e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 2.06e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 1.41e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 1.82e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 1.12e-006 3.39e-008 6.76e-005 - Ca[13C]O[18O]2(s) 2.30e-009 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 1.57e-012 4.76e-014 9.49e-011 - Ca[14C]O3(s) 2.97e-015 2.40e-017 1.80e-013 - Ca[14C]O2[18O](s) 1.83e-017 1.48e-019 1.11e-015 - Ca[14C]O[18O]2(s) 3.76e-020 3.03e-022 2.27e-018 - Ca[14C][18O]3(s) 2.57e-023 2.07e-025 1.55e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9909 permil - R(13C) 1.11285e-002 -4.6269 permil - R(14C) 1.81510e-013 15.436 pmc - R(18O) H2O(l) 1.99519e-003 -4.9925 permil - R(18O) OH- 1.92122e-003 -41.88 permil - R(18O) H3O+ 2.04132e-003 18.015 permil - R(18O) O2(aq) 1.99519e-003 -4.9925 permil - R(13C) CO2(aq) 1.10488e-002 -11.75 permil - R(14C) CO2(aq) 1.78919e-013 15.216 pmc - R(18O) CO2(aq) 2.07915e-003 36.881 permil - R(18O) HCO3- 1.99519e-003 -4.9925 permil - R(13C) HCO3- 1.11450e-002 -3.1527 permil - R(14C) HCO3- 1.82046e-013 15.482 pmc - R(18O) CO3-2 1.99519e-003 -4.9925 permil - R(13C) CO3-2 1.11290e-002 -4.5833 permil - R(14C) CO3-2 1.81524e-013 15.437 pmc - R(18O) Calcite 2.05263e-003 23.654 permil - R(13C) Calcite 1.11670e-002 -1.1783 permil - R(14C) Calcite 1.82768e-013 15.543 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.261e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8243e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.499e-005 6.480e-005 - [14C] 1.060e-015 1.057e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.242 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.768e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.446 -124.445 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.015e-006 -5.956 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.077e-008 6.087e-008 -7.216 -7.216 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 4.913e-040 - H2 2.457e-040 2.461e-040 -39.610 -39.609 0.001 (0) -O(0) 1.375e-013 - O2 6.845e-014 6.857e-014 -13.165 -13.164 0.001 (0) - O[18O] 2.732e-016 2.736e-016 -15.564 -15.563 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.402 -126.401 0.001 (0) -[13C](4) 6.499e-005 - H[13C]O3- 5.242e-005 4.796e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.100e-005 1.102e-005 -4.959 -4.958 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.015e-006 -5.956 -5.993 -0.037 (0) - H[13C][18O]O2- 1.046e-007 9.569e-008 -6.981 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-007 9.569e-008 -6.981 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.046e-007 9.569e-008 -6.981 -7.019 -0.039 (0) - Ca[13C]O3 6.077e-008 6.087e-008 -7.216 -7.216 0.001 (0) - [13C]O[18O] 4.575e-008 4.583e-008 -7.340 -7.339 0.001 (0) - [13C]O3-2 3.117e-008 2.184e-008 -7.506 -7.661 -0.155 (0) - CaH[13C][18O]O2+ 2.209e-009 2.026e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.209e-009 2.026e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.209e-009 2.026e-009 -8.656 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.638e-010 3.644e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.087e-010 1.909e-010 -9.681 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-010 1.909e-010 -9.681 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.087e-010 1.909e-010 -9.681 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.866e-010 1.307e-010 -9.729 -9.884 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.193 -137.192 0.001 (0) -[14C](4) 1.060e-015 - H[14C]O3- 8.563e-016 7.834e-016 -15.067 -15.106 -0.039 (0) - [14C]O2 1.782e-016 1.785e-016 -15.749 -15.748 0.001 (0) - CaH[14C]O3+ 1.808e-017 1.659e-017 -16.743 -16.780 -0.037 (0) - H[14C][18O]O2- 1.708e-018 1.563e-018 -17.767 -17.806 -0.039 (0) - H[14C]O[18O]O- 1.708e-018 1.563e-018 -17.767 -17.806 -0.039 (0) - H[14C]O2[18O]- 1.708e-018 1.563e-018 -17.767 -17.806 -0.039 (0) - Ca[14C]O3 9.912e-019 9.929e-019 -18.004 -18.003 0.001 (0) - [14C]O[18O] 7.409e-019 7.421e-019 -18.130 -18.130 0.001 (0) - [14C]O3-2 5.085e-019 3.562e-019 -18.294 -18.448 -0.155 (0) - CaH[14C]O2[18O]+ 3.608e-020 3.309e-020 -19.443 -19.480 -0.037 (0) - CaH[14C][18O]O2+ 3.608e-020 3.309e-020 -19.443 -19.480 -0.037 (0) - CaH[14C]O[18O]O+ 3.608e-020 3.309e-020 -19.443 -19.480 -0.037 (0) - Ca[14C]O2[18O] 5.933e-021 5.943e-021 -20.227 -20.226 0.001 (0) - H[14C]O[18O]2- 3.409e-021 3.118e-021 -20.467 -20.506 -0.039 (0) - H[14C][18O]2O- 3.409e-021 3.118e-021 -20.467 -20.506 -0.039 (0) - H[14C][18O]O[18O]- 3.409e-021 3.118e-021 -20.467 -20.506 -0.039 (0) - [14C]O2[18O]-2 3.044e-021 2.132e-021 -20.517 -20.671 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.737e-016 - O[18O] 2.732e-016 2.736e-016 -15.564 -15.563 0.001 (0) - [18O]2 2.725e-019 2.729e-019 -18.565 -18.564 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.54 -126.40 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.64 -21.15 -1.50 [14C][18O]2 - [14C]H4(g) -134.33 -137.19 -2.86 [14C]H4 - [14C]O2(g) -14.28 -15.75 -1.47 [14C]O2 - [14C]O[18O](g) -16.66 -18.45 -1.79 [14C]O[18O] - [18O]2(g) -16.27 -18.56 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.81 -12.65 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.96 -7.25 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.75 -4.55 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.64 -9.95 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.58 -124.44 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.46 -39.61 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.27 -13.16 -2.89 O2 - O[18O](g) -12.97 -15.86 -2.89 O[18O] - - -Reaction step 39. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 39 1.9500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 1.71e-002 - Calcite 1.68e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.03e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 2.12e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 1.45e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 1.87e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 1.15e-006 3.39e-008 6.76e-005 - Ca[13C]O[18O]2(s) 2.37e-009 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 1.62e-012 4.76e-014 9.49e-011 - Ca[14C]O3(s) 3.00e-015 2.29e-017 1.76e-013 - Ca[14C]O2[18O](s) 1.85e-017 1.41e-019 1.08e-015 - Ca[14C]O[18O]2(s) 3.79e-020 2.90e-022 2.22e-018 - Ca[14C][18O]3(s) 2.59e-023 1.98e-025 1.52e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9908 permil - R(13C) 1.11293e-002 -4.5562 permil - R(14C) 1.77548e-013 15.099 pmc - R(18O) H2O(l) 1.99519e-003 -4.9923 permil - R(18O) OH- 1.92122e-003 -41.88 permil - R(18O) H3O+ 2.04132e-003 18.016 permil - R(18O) O2(aq) 1.99519e-003 -4.9923 permil - R(13C) CO2(aq) 1.10496e-002 -11.68 permil - R(14C) CO2(aq) 1.75013e-013 14.884 pmc - R(18O) CO2(aq) 2.07916e-003 36.882 permil - R(18O) HCO3- 1.99519e-003 -4.9923 permil - R(13C) HCO3- 1.11457e-002 -3.0819 permil - R(14C) HCO3- 1.78072e-013 15.144 pmc - R(18O) CO3-2 1.99519e-003 -4.9923 permil - R(13C) CO3-2 1.11297e-002 -4.5126 permil - R(14C) CO3-2 1.77561e-013 15.1 pmc - R(18O) Calcite 2.05263e-003 23.654 permil - R(13C) Calcite 1.11678e-002 -1.1074 permil - R(14C) Calcite 1.78778e-013 15.204 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.3027e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.8858e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7083e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.499e-005 6.480e-005 - [14C] 1.037e-015 1.034e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.263 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.777e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.619 -124.618 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.078e-008 6.088e-008 -7.216 -7.216 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 4.446e-040 - H2 2.223e-040 2.227e-040 -39.653 -39.652 0.001 (0) -O(0) 1.679e-013 - O2 8.360e-014 8.374e-014 -13.078 -13.077 0.001 (0) - O[18O] 3.336e-016 3.342e-016 -15.477 -15.476 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.576 -126.575 0.001 (0) -[13C](4) 6.499e-005 - H[13C]O3- 5.242e-005 4.796e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.100e-005 1.102e-005 -4.958 -4.958 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.046e-007 9.569e-008 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.046e-007 9.569e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.046e-007 9.569e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.078e-008 6.088e-008 -7.216 -7.216 0.001 (0) - [13C]O[18O] 4.576e-008 4.583e-008 -7.340 -7.339 0.001 (0) - [13C]O3-2 3.118e-008 2.184e-008 -7.506 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.209e-009 2.026e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.209e-009 2.026e-009 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.209e-009 2.026e-009 -8.656 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.638e-010 3.644e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.087e-010 1.909e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-010 1.909e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.087e-010 1.909e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.866e-010 1.307e-010 -9.729 -9.884 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.376 -137.375 0.001 (0) -[14C](4) 1.037e-015 - H[14C]O3- 8.376e-016 7.663e-016 -15.077 -15.116 -0.039 (0) - [14C]O2 1.743e-016 1.746e-016 -15.759 -15.758 0.001 (0) - CaH[14C]O3+ 1.769e-017 1.622e-017 -16.752 -16.790 -0.037 (0) - H[14C][18O]O2- 1.671e-018 1.529e-018 -17.777 -17.816 -0.039 (0) - H[14C]O[18O]O- 1.671e-018 1.529e-018 -17.777 -17.816 -0.039 (0) - H[14C]O2[18O]- 1.671e-018 1.529e-018 -17.777 -17.816 -0.039 (0) - Ca[14C]O3 9.696e-019 9.712e-019 -18.013 -18.013 0.001 (0) - [14C]O[18O] 7.247e-019 7.259e-019 -18.140 -18.139 0.001 (0) - [14C]O3-2 4.974e-019 3.484e-019 -18.303 -18.458 -0.155 (0) - CaH[14C]O2[18O]+ 3.529e-020 3.237e-020 -19.452 -19.490 -0.037 (0) - CaH[14C][18O]O2+ 3.529e-020 3.237e-020 -19.452 -19.490 -0.037 (0) - CaH[14C]O[18O]O+ 3.529e-020 3.237e-020 -19.452 -19.490 -0.037 (0) - Ca[14C]O2[18O] 5.804e-021 5.813e-021 -20.236 -20.236 0.001 (0) - H[14C][18O]2O- 3.334e-021 3.050e-021 -20.477 -20.516 -0.039 (0) - H[14C][18O]O[18O]- 3.334e-021 3.050e-021 -20.477 -20.516 -0.039 (0) - H[14C]O[18O]2- 3.334e-021 3.050e-021 -20.477 -20.516 -0.039 (0) - [14C]O2[18O]-2 2.977e-021 2.086e-021 -20.526 -20.681 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 3.343e-016 - O[18O] 3.336e-016 3.342e-016 -15.477 -15.476 0.001 (0) - [18O]2 3.328e-019 3.333e-019 -18.478 -18.477 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.72 -126.58 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.65 -21.16 -1.50 [14C][18O]2 - [14C]H4(g) -134.52 -137.38 -2.86 [14C]H4 - [14C]O2(g) -14.29 -15.76 -1.47 [14C]O2 - [14C]O[18O](g) -16.67 -18.46 -1.79 [14C]O[18O] - [18O]2(g) -16.19 -18.48 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.82 -12.66 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.97 -7.26 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.76 -4.56 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.65 -9.96 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.76 -124.62 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.50 -39.65 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.18 -13.08 -2.89 O2 - O[18O](g) -12.88 -15.78 -2.89 O[18O] - - -Reaction step 40. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 40 2.0000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 1.76e-002 - Calcite 1.73e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.06e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 2.18e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 1.49e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 1.93e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 1.19e-006 3.39e-008 6.76e-005 - Ca[13C]O[18O]2(s) 2.44e-009 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 1.67e-012 4.76e-014 9.49e-011 - Ca[14C]O3(s) 3.02e-015 2.20e-017 1.72e-013 - Ca[14C]O2[18O](s) 1.86e-017 1.35e-019 1.06e-015 - Ca[14C]O[18O]2(s) 3.82e-020 2.77e-022 2.17e-018 - Ca[14C][18O]3(s) 2.61e-023 1.90e-025 1.49e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9907 permil - R(13C) 1.11300e-002 -4.4886 permil - R(14C) 1.73754e-013 14.776 pmc - R(18O) H2O(l) 1.99519e-003 -4.9922 permil - R(18O) OH- 1.92122e-003 -41.879 permil - R(18O) H3O+ 2.04133e-003 18.016 permil - R(18O) O2(aq) 1.99519e-003 -4.9922 permil - R(13C) CO2(aq) 1.10504e-002 -11.613 permil - R(14C) CO2(aq) 1.71275e-013 14.566 pmc - R(18O) CO2(aq) 2.07916e-003 36.882 permil - R(18O) HCO3- 1.99519e-003 -4.9922 permil - R(13C) HCO3- 1.11465e-002 -3.0142 permil - R(14C) HCO3- 1.74268e-013 14.82 pmc - R(18O) CO3-2 1.99519e-003 -4.9922 permil - R(13C) CO3-2 1.11305e-002 -4.445 permil - R(14C) CO3-2 1.73768e-013 14.778 pmc - R(18O) Calcite 2.05263e-003 23.654 permil - R(13C) Calcite 1.11686e-002 -1.0395 permil - R(14C) Calcite 1.74959e-013 14.879 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2521e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.4425e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7919e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.500e-005 6.481e-005 - [14C] 1.015e-015 1.012e-015 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.247 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.770e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.490 -124.489 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.078e-008 6.088e-008 -7.216 -7.216 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 4.789e-040 - H2 2.394e-040 2.398e-040 -39.621 -39.620 0.001 (0) -O(0) 1.447e-013 - O2 7.206e-014 7.218e-014 -13.142 -13.142 0.001 (0) - O[18O] 2.875e-016 2.880e-016 -15.541 -15.541 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.447 -126.446 0.001 (0) -[13C](4) 6.500e-005 - H[13C]O3- 5.243e-005 4.797e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.100e-005 1.102e-005 -4.958 -4.958 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-007 9.570e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.046e-007 9.570e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-007 9.570e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.078e-008 6.088e-008 -7.216 -7.216 0.001 (0) - [13C]O[18O] 4.576e-008 4.583e-008 -7.340 -7.339 0.001 (0) - [13C]O3-2 3.118e-008 2.184e-008 -7.506 -7.661 -0.155 (0) - CaH[13C]O[18O]O+ 2.209e-009 2.026e-009 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.209e-009 2.026e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.209e-009 2.026e-009 -8.656 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.638e-010 3.644e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.087e-010 1.909e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-010 1.909e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.087e-010 1.909e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.866e-010 1.307e-010 -9.729 -9.884 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.256 -137.256 0.001 (0) -[14C](4) 1.015e-015 - H[14C]O3- 8.197e-016 7.499e-016 -15.086 -15.125 -0.039 (0) - [14C]O2 1.706e-016 1.708e-016 -15.768 -15.767 0.001 (0) - CaH[14C]O3+ 1.731e-017 1.588e-017 -16.762 -16.799 -0.037 (0) - H[14C][18O]O2- 1.635e-018 1.496e-018 -17.786 -17.825 -0.039 (0) - H[14C]O[18O]O- 1.635e-018 1.496e-018 -17.786 -17.825 -0.039 (0) - H[14C]O2[18O]- 1.635e-018 1.496e-018 -17.786 -17.825 -0.039 (0) - Ca[14C]O3 9.489e-019 9.504e-019 -18.023 -18.022 0.001 (0) - [14C]O[18O] 7.092e-019 7.104e-019 -18.149 -18.148 0.001 (0) - [14C]O3-2 4.868e-019 3.410e-019 -18.313 -18.467 -0.155 (0) - CaH[14C]O2[18O]+ 3.453e-020 3.168e-020 -19.462 -19.499 -0.037 (0) - CaH[14C][18O]O2+ 3.453e-020 3.168e-020 -19.462 -19.499 -0.037 (0) - CaH[14C]O[18O]O+ 3.453e-020 3.168e-020 -19.462 -19.499 -0.037 (0) - Ca[14C]O2[18O] 5.680e-021 5.689e-021 -20.246 -20.245 0.001 (0) - H[14C][18O]O[18O]- 3.263e-021 2.985e-021 -20.486 -20.525 -0.039 (0) - H[14C]O[18O]2- 3.263e-021 2.985e-021 -20.486 -20.525 -0.039 (0) - H[14C][18O]2O- 3.263e-021 2.985e-021 -20.486 -20.525 -0.039 (0) - [14C]O2[18O]-2 2.914e-021 2.041e-021 -20.536 -20.690 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.881e-016 - O[18O] 2.875e-016 2.880e-016 -15.541 -15.541 0.001 (0) - [18O]2 2.868e-019 2.873e-019 -18.542 -18.542 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.59 -126.45 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.66 -21.17 -1.50 [14C][18O]2 - [14C]H4(g) -134.40 -137.26 -2.86 [14C]H4 - [14C]O2(g) -14.30 -15.77 -1.47 [14C]O2 - [14C]O[18O](g) -16.68 -18.47 -1.79 [14C]O[18O] - [18O]2(g) -16.25 -18.54 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.83 -12.67 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.98 -7.27 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.76 -4.57 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.66 -9.97 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.63 -124.49 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.47 -39.62 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.25 -13.14 -2.89 O2 - O[18O](g) -12.95 -15.84 -2.89 O[18O] - - -Reaction step 41. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 41 2.0500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 1.81e-002 - Calcite 1.77e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.09e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 2.24e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 1.53e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 1.98e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 1.22e-006 3.39e-008 6.76e-005 - Ca[13C]O[18O]2(s) 2.51e-009 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 1.71e-012 4.76e-014 9.49e-011 - Ca[14C]O3(s) 3.04e-015 2.10e-017 1.68e-013 - Ca[14C]O2[18O](s) 1.87e-017 1.30e-019 1.04e-015 - Ca[14C]O[18O]2(s) 3.84e-020 2.66e-022 2.13e-018 - Ca[14C][18O]3(s) 2.63e-023 1.82e-025 1.46e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9905 permil - R(13C) 1.11307e-002 -4.4238 permil - R(14C) 1.70120e-013 14.467 pmc - R(18O) H2O(l) 1.99519e-003 -4.9921 permil - R(18O) OH- 1.92122e-003 -41.879 permil - R(18O) H3O+ 2.04133e-003 18.016 permil - R(18O) O2(aq) 1.99519e-003 -4.9921 permil - R(13C) CO2(aq) 1.10511e-002 -11.549 permil - R(14C) CO2(aq) 1.67692e-013 14.261 pmc - R(18O) CO2(aq) 2.07916e-003 36.882 permil - R(18O) HCO3- 1.99519e-003 -4.9921 permil - R(13C) HCO3- 1.11472e-002 -2.9493 permil - R(14C) HCO3- 1.70623e-013 14.51 pmc - R(18O) CO3-2 1.99519e-003 -4.9921 permil - R(13C) CO3-2 1.11312e-002 -4.3802 permil - R(14C) CO3-2 1.70133e-013 14.468 pmc - R(18O) Calcite 2.05263e-003 23.654 permil - R(13C) Calcite 1.11693e-002 -0.9745 permil - R(14C) Calcite 1.71299e-013 14.568 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2745e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.6613e-013 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5772e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.500e-005 6.481e-005 - [14C] 9.935e-016 9.906e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.259 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.767e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.584 -124.583 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.078e-008 6.088e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 4.538e-040 - H2 2.269e-040 2.273e-040 -39.644 -39.643 0.001 (0) -O(0) 1.611e-013 - O2 8.025e-014 8.038e-014 -13.096 -13.095 0.001 (0) - O[18O] 3.202e-016 3.207e-016 -15.495 -15.494 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.540 -126.539 0.001 (0) -[13C](4) 6.500e-005 - H[13C]O3- 5.243e-005 4.797e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.100e-005 1.102e-005 -4.958 -4.958 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - H[13C][18O]O2- 1.046e-007 9.571e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-007 9.571e-008 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.046e-007 9.571e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.078e-008 6.088e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.576e-008 4.584e-008 -7.339 -7.339 0.001 (0) - [13C]O3-2 3.118e-008 2.184e-008 -7.506 -7.661 -0.155 (0) - CaH[13C][18O]O2+ 2.209e-009 2.026e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.209e-009 2.026e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.209e-009 2.026e-009 -8.656 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.638e-010 3.644e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.087e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.087e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.866e-010 1.307e-010 -9.729 -9.884 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.359 -137.358 0.001 (0) -[14C](4) 9.935e-016 - H[14C]O3- 8.025e-016 7.342e-016 -15.096 -15.134 -0.039 (0) - [14C]O2 1.670e-016 1.673e-016 -15.777 -15.777 0.001 (0) - CaH[14C]O3+ 1.695e-017 1.555e-017 -16.771 -16.808 -0.037 (0) - H[14C][18O]O2- 1.601e-018 1.465e-018 -17.796 -17.834 -0.039 (0) - H[14C]O[18O]O- 1.601e-018 1.465e-018 -17.796 -17.834 -0.039 (0) - H[14C]O2[18O]- 1.601e-018 1.465e-018 -17.796 -17.834 -0.039 (0) - Ca[14C]O3 9.290e-019 9.306e-019 -18.032 -18.031 0.001 (0) - [14C]O[18O] 6.944e-019 6.955e-019 -18.158 -18.158 0.001 (0) - [14C]O3-2 4.766e-019 3.339e-019 -18.322 -18.476 -0.155 (0) - CaH[14C]O2[18O]+ 3.381e-020 3.102e-020 -19.471 -19.508 -0.037 (0) - CaH[14C][18O]O2+ 3.381e-020 3.102e-020 -19.471 -19.508 -0.037 (0) - CaH[14C]O[18O]O+ 3.381e-020 3.102e-020 -19.471 -19.508 -0.037 (0) - Ca[14C]O2[18O] 5.561e-021 5.570e-021 -20.255 -20.254 0.001 (0) - H[14C]O[18O]2- 3.195e-021 2.923e-021 -20.496 -20.534 -0.039 (0) - H[14C][18O]2O- 3.195e-021 2.923e-021 -20.496 -20.534 -0.039 (0) - H[14C][18O]O[18O]- 3.195e-021 2.923e-021 -20.496 -20.534 -0.039 (0) - [14C]O2[18O]-2 2.853e-021 1.998e-021 -20.545 -20.699 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 3.209e-016 - O[18O] 3.202e-016 3.207e-016 -15.495 -15.494 0.001 (0) - [18O]2 3.195e-019 3.200e-019 -18.496 -18.495 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.68 -126.54 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.67 -21.18 -1.50 [14C][18O]2 - [14C]H4(g) -134.50 -137.36 -2.86 [14C]H4 - [14C]O2(g) -14.31 -15.78 -1.47 [14C]O2 - [14C]O[18O](g) -16.69 -18.48 -1.79 [14C]O[18O] - [18O]2(g) -16.20 -18.49 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.84 -12.68 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.98 -7.28 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.77 -4.58 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.67 -9.98 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.72 -124.58 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.49 -39.64 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.20 -13.09 -2.89 O2 - O[18O](g) -12.90 -15.79 -2.89 O[18O] - - -Reaction step 42. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 42 2.1000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 1.86e-002 - Calcite 1.82e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.12e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 2.31e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 1.58e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 2.04e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 1.25e-006 3.39e-008 6.76e-005 - Ca[13C]O[18O]2(s) 2.58e-009 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 1.76e-012 4.76e-014 9.49e-011 - Ca[14C]O3(s) 3.06e-015 2.02e-017 1.65e-013 - Ca[14C]O2[18O](s) 1.88e-017 1.24e-019 1.02e-015 - Ca[14C]O[18O]2(s) 3.87e-020 2.55e-022 2.08e-018 - Ca[14C][18O]3(s) 2.65e-023 1.74e-025 1.43e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9904 permil - R(13C) 1.11314e-002 -4.3617 permil - R(14C) 1.66635e-013 14.171 pmc - R(18O) H2O(l) 1.99519e-003 -4.9919 permil - R(18O) OH- 1.92122e-003 -41.879 permil - R(18O) H3O+ 2.04133e-003 18.016 permil - R(18O) O2(aq) 1.99519e-003 -4.9919 permil - R(13C) CO2(aq) 1.10518e-002 -11.487 permil - R(14C) CO2(aq) 1.64256e-013 13.969 pmc - R(18O) CO2(aq) 2.07916e-003 36.882 permil - R(18O) HCO3- 1.99519e-003 -4.9919 permil - R(13C) HCO3- 1.11479e-002 -2.8871 permil - R(14C) HCO3- 1.67127e-013 14.213 pmc - R(18O) CO3-2 1.99519e-003 -4.9919 permil - R(13C) CO3-2 1.11319e-002 -4.318 permil - R(14C) CO3-2 1.66647e-013 14.172 pmc - R(18O) Calcite 2.05263e-003 23.654 permil - R(13C) Calcite 1.11700e-002 -0.91214 permil - R(14C) Calcite 1.67789e-013 14.269 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2712e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-013 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7263e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.501e-005 6.482e-005 - [14C] 9.731e-016 9.703e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.254 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.757e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.548 -124.547 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.079e-008 6.089e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 4.633e-040 - H2 2.316e-040 2.320e-040 -39.635 -39.634 0.001 (0) -O(0) 1.546e-013 - O2 7.699e-014 7.712e-014 -13.114 -13.113 0.001 (0) - O[18O] 3.072e-016 3.077e-016 -15.513 -15.512 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.504 -126.503 0.001 (0) -[13C](4) 6.501e-005 - H[13C]O3- 5.244e-005 4.797e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.101e-005 1.102e-005 -4.958 -4.958 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.046e-007 9.571e-008 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.046e-007 9.571e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.046e-007 9.571e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.079e-008 6.089e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.576e-008 4.584e-008 -7.339 -7.339 0.001 (0) - [13C]O3-2 3.118e-008 2.185e-008 -7.506 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.209e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.209e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.209e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.638e-010 3.644e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.087e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.087e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.866e-010 1.308e-010 -9.729 -9.884 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.332 -137.331 0.001 (0) -[14C](4) 9.731e-016 - H[14C]O3- 7.861e-016 7.192e-016 -15.105 -15.143 -0.039 (0) - [14C]O2 1.636e-016 1.638e-016 -15.786 -15.786 0.001 (0) - CaH[14C]O3+ 1.660e-017 1.523e-017 -16.780 -16.817 -0.037 (0) - H[14C][18O]O2- 1.568e-018 1.435e-018 -17.805 -17.843 -0.039 (0) - H[14C]O[18O]O- 1.568e-018 1.435e-018 -17.805 -17.843 -0.039 (0) - H[14C]O2[18O]- 1.568e-018 1.435e-018 -17.805 -17.843 -0.039 (0) - Ca[14C]O3 9.100e-019 9.115e-019 -18.041 -18.040 0.001 (0) - [14C]O[18O] 6.802e-019 6.813e-019 -18.167 -18.167 0.001 (0) - [14C]O3-2 4.668e-019 3.270e-019 -18.331 -18.485 -0.155 (0) - CaH[14C]O2[18O]+ 3.312e-020 3.038e-020 -19.480 -19.517 -0.037 (0) - CaH[14C][18O]O2+ 3.312e-020 3.038e-020 -19.480 -19.517 -0.037 (0) - CaH[14C]O[18O]O+ 3.312e-020 3.038e-020 -19.480 -19.517 -0.037 (0) - Ca[14C]O2[18O] 5.447e-021 5.456e-021 -20.264 -20.263 0.001 (0) - H[14C][18O]2O- 3.129e-021 2.863e-021 -20.505 -20.543 -0.039 (0) - H[14C][18O]O[18O]- 3.129e-021 2.863e-021 -20.505 -20.543 -0.039 (0) - H[14C]O[18O]2- 3.129e-021 2.863e-021 -20.505 -20.543 -0.039 (0) - [14C]O2[18O]-2 2.794e-021 1.957e-021 -20.554 -20.708 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 3.078e-016 - O[18O] 3.072e-016 3.077e-016 -15.513 -15.512 0.001 (0) - [18O]2 3.065e-019 3.070e-019 -18.514 -18.513 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.64 -126.50 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.68 -21.19 -1.50 [14C][18O]2 - [14C]H4(g) -134.47 -137.33 -2.86 [14C]H4 - [14C]O2(g) -14.32 -15.79 -1.47 [14C]O2 - [14C]O[18O](g) -16.70 -18.49 -1.79 [14C]O[18O] - [18O]2(g) -16.22 -18.51 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.85 -12.69 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -14.99 -7.29 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.78 -4.59 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.68 -9.99 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.69 -124.55 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.48 -39.63 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.22 -13.11 -2.89 O2 - O[18O](g) -12.92 -15.81 -2.89 O[18O] - - -Reaction step 43. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 43 2.1500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 1.91e-002 - Calcite 1.87e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.15e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 2.37e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 1.62e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 2.09e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 1.29e-006 3.39e-008 6.76e-005 - Ca[13C]O[18O]2(s) 2.64e-009 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 1.81e-012 4.76e-014 9.50e-011 - Ca[14C]O3(s) 3.08e-015 1.94e-017 1.62e-013 - Ca[14C]O2[18O](s) 1.90e-017 1.19e-019 9.95e-016 - Ca[14C]O[18O]2(s) 3.89e-020 2.45e-022 2.04e-018 - Ca[14C][18O]3(s) 2.66e-023 1.67e-025 1.40e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9903 permil - R(13C) 1.11321e-002 -4.302 permil - R(14C) 1.63289e-013 13.886 pmc - R(18O) H2O(l) 1.99519e-003 -4.9918 permil - R(18O) OH- 1.92122e-003 -41.879 permil - R(18O) H3O+ 2.04133e-003 18.016 permil - R(18O) O2(aq) 1.99519e-003 -4.9918 permil - R(13C) CO2(aq) 1.10524e-002 -11.428 permil - R(14C) CO2(aq) 1.60959e-013 13.688 pmc - R(18O) CO2(aq) 2.07916e-003 36.882 permil - R(18O) HCO3- 1.99519e-003 -4.9918 permil - R(13C) HCO3- 1.11486e-002 -2.8273 permil - R(14C) HCO3- 1.63771e-013 13.927 pmc - R(18O) CO3-2 1.99519e-003 -4.9918 permil - R(13C) CO3-2 1.11326e-002 -4.2584 permil - R(14C) CO3-2 1.63302e-013 13.888 pmc - R(18O) Calcite 2.05263e-003 23.655 permil - R(13C) Calcite 1.11707e-002 -0.85228 permil - R(14C) Calcite 1.64421e-013 13.983 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2441e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.4425e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6983e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.501e-005 6.482e-005 - [14C] 9.536e-016 9.508e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.275 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.770e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.708 -124.708 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.079e-008 6.089e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 4.224e-040 - H2 2.112e-040 2.115e-040 -39.675 -39.675 0.001 (0) -O(0) 1.860e-013 - O2 9.263e-014 9.278e-014 -13.033 -13.033 0.001 (0) - O[18O] 3.696e-016 3.702e-016 -15.432 -15.432 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.665 -126.664 0.001 (0) -[13C](4) 6.501e-005 - H[13C]O3- 5.244e-005 4.797e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.101e-005 1.102e-005 -4.958 -4.958 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-007 9.572e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.046e-007 9.572e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-007 9.572e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.079e-008 6.089e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.577e-008 4.584e-008 -7.339 -7.339 0.001 (0) - [13C]O3-2 3.118e-008 2.185e-008 -7.506 -7.661 -0.155 (0) - CaH[13C]O[18O]O+ 2.209e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.209e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.209e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.639e-010 3.645e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.087e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.087e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.087e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.867e-010 1.308e-010 -9.729 -9.884 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.502 -137.501 0.001 (0) -[14C](4) 9.536e-016 - H[14C]O3- 7.703e-016 7.047e-016 -15.113 -15.152 -0.039 (0) - [14C]O2 1.603e-016 1.605e-016 -15.795 -15.794 0.001 (0) - CaH[14C]O3+ 1.627e-017 1.492e-017 -16.789 -16.826 -0.037 (0) - H[14C][18O]O2- 1.537e-018 1.406e-018 -17.813 -17.852 -0.039 (0) - H[14C]O[18O]O- 1.537e-018 1.406e-018 -17.813 -17.852 -0.039 (0) - H[14C]O2[18O]- 1.537e-018 1.406e-018 -17.813 -17.852 -0.039 (0) - Ca[14C]O3 8.917e-019 8.932e-019 -18.050 -18.049 0.001 (0) - [14C]O[18O] 6.665e-019 6.676e-019 -18.176 -18.175 0.001 (0) - [14C]O3-2 4.574e-019 3.205e-019 -18.340 -18.494 -0.155 (0) - CaH[14C]O2[18O]+ 3.245e-020 2.977e-020 -19.489 -19.526 -0.037 (0) - CaH[14C][18O]O2+ 3.245e-020 2.977e-020 -19.489 -19.526 -0.037 (0) - CaH[14C]O[18O]O+ 3.245e-020 2.977e-020 -19.489 -19.526 -0.037 (0) - Ca[14C]O2[18O] 5.338e-021 5.346e-021 -20.273 -20.272 0.001 (0) - H[14C][18O]O[18O]- 3.066e-021 2.805e-021 -20.513 -20.552 -0.039 (0) - H[14C]O[18O]2- 3.066e-021 2.805e-021 -20.513 -20.552 -0.039 (0) - H[14C][18O]2O- 3.066e-021 2.805e-021 -20.513 -20.552 -0.039 (0) - [14C]O2[18O]-2 2.738e-021 1.918e-021 -20.563 -20.717 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 3.704e-016 - O[18O] 3.696e-016 3.702e-016 -15.432 -15.432 0.001 (0) - [18O]2 3.687e-019 3.693e-019 -18.433 -18.433 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.80 -126.66 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.69 -21.19 -1.50 [14C][18O]2 - [14C]H4(g) -134.64 -137.50 -2.86 [14C]H4 - [14C]O2(g) -14.33 -15.79 -1.47 [14C]O2 - [14C]O[18O](g) -16.71 -18.49 -1.79 [14C]O[18O] - [18O]2(g) -16.14 -18.43 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.85 -12.70 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.00 -7.30 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.79 -4.60 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.69 -10.00 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.85 -124.71 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.52 -39.67 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.14 -13.03 -2.89 O2 - O[18O](g) -12.84 -15.73 -2.89 O[18O] - - -Reaction step 44. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 44 2.2000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 1.96e-002 - Calcite 1.92e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.18e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 2.43e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 1.66e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 2.15e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 1.32e-006 3.39e-008 6.76e-005 - Ca[13C]O[18O]2(s) 2.71e-009 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 1.86e-012 4.76e-014 9.50e-011 - Ca[14C]O3(s) 3.10e-015 1.86e-017 1.58e-013 - Ca[14C]O2[18O](s) 1.91e-017 1.15e-019 9.76e-016 - Ca[14C]O[18O]2(s) 3.92e-020 2.35e-022 2.00e-018 - Ca[14C][18O]3(s) 2.68e-023 1.61e-025 1.37e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9901 permil - R(13C) 1.11327e-002 -4.2447 permil - R(14C) 1.60075e-013 13.613 pmc - R(18O) H2O(l) 1.99519e-003 -4.9916 permil - R(18O) OH- 1.92122e-003 -41.879 permil - R(18O) H3O+ 2.04133e-003 18.016 permil - R(18O) O2(aq) 1.99519e-003 -4.9916 permil - R(13C) CO2(aq) 1.10531e-002 -11.371 permil - R(14C) CO2(aq) 1.57791e-013 13.419 pmc - R(18O) CO2(aq) 2.07916e-003 36.882 permil - R(18O) HCO3- 1.99519e-003 -4.9916 permil - R(13C) HCO3- 1.11492e-002 -2.7699 permil - R(14C) HCO3- 1.60548e-013 13.653 pmc - R(18O) CO3-2 1.99519e-003 -4.9916 permil - R(13C) CO3-2 1.11332e-002 -4.2011 permil - R(14C) CO3-2 1.60088e-013 13.614 pmc - R(18O) Calcite 2.05263e-003 23.655 permil - R(13C) Calcite 1.11713e-002 -0.79477 permil - R(14C) Calcite 1.61185e-013 13.707 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2586e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6361e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.501e-005 6.482e-005 - [14C] 9.348e-016 9.321e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.268 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.766e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.655 -124.654 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.079e-008 6.089e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 4.355e-040 - H2 2.177e-040 2.181e-040 -39.662 -39.661 0.001 (0) -O(0) 1.750e-013 - O2 8.714e-014 8.728e-014 -13.060 -13.059 0.001 (0) - O[18O] 3.477e-016 3.483e-016 -15.459 -15.458 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.612 -126.611 0.001 (0) -[13C](4) 6.501e-005 - H[13C]O3- 5.244e-005 4.798e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.101e-005 1.102e-005 -4.958 -4.958 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - H[13C][18O]O2- 1.046e-007 9.572e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-007 9.572e-008 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.046e-007 9.572e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.079e-008 6.089e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.577e-008 4.585e-008 -7.339 -7.339 0.001 (0) - [13C]O3-2 3.119e-008 2.185e-008 -7.506 -7.661 -0.155 (0) - CaH[13C][18O]O2+ 2.209e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.209e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.209e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.639e-010 3.645e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.088e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.088e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.867e-010 1.308e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.457 -137.456 0.001 (0) -[14C](4) 9.348e-016 - H[14C]O3- 7.551e-016 6.909e-016 -15.122 -15.161 -0.039 (0) - [14C]O2 1.571e-016 1.574e-016 -15.804 -15.803 0.001 (0) - CaH[14C]O3+ 1.595e-017 1.463e-017 -16.797 -16.835 -0.037 (0) - H[14C][18O]O2- 1.507e-018 1.378e-018 -17.822 -17.861 -0.039 (0) - H[14C]O[18O]O- 1.507e-018 1.378e-018 -17.822 -17.861 -0.039 (0) - H[14C]O2[18O]- 1.507e-018 1.378e-018 -17.822 -17.861 -0.039 (0) - Ca[14C]O3 8.742e-019 8.756e-019 -18.058 -18.058 0.001 (0) - [14C]O[18O] 6.534e-019 6.545e-019 -18.185 -18.184 0.001 (0) - [14C]O3-2 4.484e-019 3.142e-019 -18.348 -18.503 -0.155 (0) - CaH[14C]O2[18O]+ 3.182e-020 2.919e-020 -19.497 -19.535 -0.037 (0) - CaH[14C][18O]O2+ 3.182e-020 2.919e-020 -19.497 -19.535 -0.037 (0) - CaH[14C]O[18O]O+ 3.182e-020 2.919e-020 -19.497 -19.535 -0.037 (0) - Ca[14C]O2[18O] 5.232e-021 5.241e-021 -20.281 -20.281 0.001 (0) - H[14C]O[18O]2- 3.006e-021 2.750e-021 -20.522 -20.561 -0.039 (0) - H[14C][18O]2O- 3.006e-021 2.750e-021 -20.522 -20.561 -0.039 (0) - H[14C][18O]O[18O]- 3.006e-021 2.750e-021 -20.522 -20.561 -0.039 (0) - [14C]O2[18O]-2 2.684e-021 1.880e-021 -20.571 -20.726 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.385e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 3.484e-016 - O[18O] 3.477e-016 3.483e-016 -15.459 -15.458 0.001 (0) - [18O]2 3.469e-019 3.474e-019 -18.460 -18.459 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.75 -126.61 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.70 -21.20 -1.50 [14C][18O]2 - [14C]H4(g) -134.60 -137.46 -2.86 [14C]H4 - [14C]O2(g) -14.33 -15.80 -1.47 [14C]O2 - [14C]O[18O](g) -16.72 -18.50 -1.79 [14C]O[18O] - [18O]2(g) -16.17 -18.46 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.86 -12.71 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.01 -7.31 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.80 -4.61 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.70 -10.01 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.79 -124.65 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.51 -39.66 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.17 -13.06 -2.89 O2 - O[18O](g) -12.87 -15.76 -2.89 O[18O] - - -Reaction step 45. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 45 2.2500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 2.01e-002 - Calcite 1.97e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.21e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 2.49e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 1.70e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 2.20e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 1.36e-006 3.39e-008 6.76e-005 - Ca[13C]O[18O]2(s) 2.78e-009 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 1.90e-012 4.76e-014 9.50e-011 - Ca[14C]O3(s) 3.12e-015 1.79e-017 1.55e-013 - Ca[14C]O2[18O](s) 1.92e-017 1.10e-019 9.57e-016 - Ca[14C]O[18O]2(s) 3.94e-020 2.26e-022 1.96e-018 - Ca[14C][18O]3(s) 2.69e-023 1.55e-025 1.34e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.99 permil - R(13C) 1.11334e-002 -4.1896 permil - R(14C) 1.56985e-013 13.35 pmc - R(18O) H2O(l) 1.99519e-003 -4.9915 permil - R(18O) OH- 1.92122e-003 -41.879 permil - R(18O) H3O+ 2.04133e-003 18.016 permil - R(18O) O2(aq) 1.99519e-003 -4.9915 permil - R(13C) CO2(aq) 1.10537e-002 -11.316 permil - R(14C) CO2(aq) 1.54745e-013 13.16 pmc - R(18O) CO2(aq) 2.07916e-003 36.882 permil - R(18O) HCO3- 1.99519e-003 -4.9915 permil - R(13C) HCO3- 1.11498e-002 -2.7148 permil - R(14C) HCO3- 1.57449e-013 13.39 pmc - R(18O) CO3-2 1.99519e-003 -4.9915 permil - R(13C) CO3-2 1.11338e-002 -4.146 permil - R(14C) CO3-2 1.56998e-013 13.351 pmc - R(18O) Calcite 2.05263e-003 23.655 permil - R(13C) Calcite 1.11719e-002 -0.73948 permil - R(14C) Calcite 1.58073e-013 13.443 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2814e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.3323e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7665e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.502e-005 6.483e-005 - [14C] 9.168e-016 9.141e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.240 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.764e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.428 -124.427 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.080e-008 6.090e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 4.963e-040 - H2 2.482e-040 2.486e-040 -39.605 -39.605 0.001 (0) -O(0) 1.347e-013 - O2 6.709e-014 6.720e-014 -13.173 -13.173 0.001 (0) - O[18O] 2.677e-016 2.682e-016 -15.572 -15.572 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.385 -126.384 0.001 (0) -[13C](4) 6.502e-005 - H[13C]O3- 5.244e-005 4.798e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.101e-005 1.103e-005 -4.958 -4.958 0.001 (0) - CaH[13C]O3+ 1.107e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.046e-007 9.573e-008 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.046e-007 9.573e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.046e-007 9.573e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.080e-008 6.090e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.577e-008 4.585e-008 -7.339 -7.339 0.001 (0) - [13C]O3-2 3.119e-008 2.185e-008 -7.506 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.210e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.210e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.210e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.639e-010 3.645e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.088e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.088e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.867e-010 1.308e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.238 -137.238 0.001 (0) -[14C](4) 9.168e-016 - H[14C]O3- 7.406e-016 6.775e-016 -15.130 -15.169 -0.039 (0) - [14C]O2 1.541e-016 1.544e-016 -15.812 -15.811 0.001 (0) - CaH[14C]O3+ 1.564e-017 1.435e-017 -16.806 -16.843 -0.037 (0) - H[14C][18O]O2- 1.478e-018 1.352e-018 -17.830 -17.869 -0.039 (0) - H[14C]O[18O]O- 1.478e-018 1.352e-018 -17.830 -17.869 -0.039 (0) - H[14C]O2[18O]- 1.478e-018 1.352e-018 -17.830 -17.869 -0.039 (0) - Ca[14C]O3 8.573e-019 8.587e-019 -18.067 -18.066 0.001 (0) - [14C]O[18O] 6.408e-019 6.418e-019 -18.193 -18.193 0.001 (0) - [14C]O3-2 4.398e-019 3.081e-019 -18.357 -18.511 -0.155 (0) - CaH[14C]O2[18O]+ 3.120e-020 2.862e-020 -19.506 -19.543 -0.037 (0) - CaH[14C][18O]O2+ 3.120e-020 2.862e-020 -19.506 -19.543 -0.037 (0) - CaH[14C]O[18O]O+ 3.120e-020 2.862e-020 -19.506 -19.543 -0.037 (0) - Ca[14C]O2[18O] 5.131e-021 5.140e-021 -20.290 -20.289 0.001 (0) - H[14C][18O]2O- 2.948e-021 2.697e-021 -20.530 -20.569 -0.039 (0) - H[14C][18O]O[18O]- 2.948e-021 2.697e-021 -20.530 -20.569 -0.039 (0) - H[14C]O[18O]2- 2.948e-021 2.697e-021 -20.530 -20.569 -0.039 (0) - [14C]O2[18O]-2 2.632e-021 1.844e-021 -20.580 -20.734 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.683e-016 - O[18O] 2.677e-016 2.682e-016 -15.572 -15.572 0.001 (0) - [18O]2 2.671e-019 2.675e-019 -18.573 -18.573 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.52 -126.38 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.71 -21.21 -1.50 [14C][18O]2 - [14C]H4(g) -134.38 -137.24 -2.86 [14C]H4 - [14C]O2(g) -14.34 -15.81 -1.47 [14C]O2 - [14C]O[18O](g) -16.72 -18.51 -1.79 [14C]O[18O] - [18O]2(g) -16.28 -18.57 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.87 -12.72 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.02 -7.32 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.81 -4.62 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.71 -10.02 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.57 -124.43 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.45 -39.60 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.28 -13.17 -2.89 O2 - O[18O](g) -12.98 -15.87 -2.89 O[18O] - - -Reaction step 46. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 46 2.3000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 2.06e-002 - Calcite 2.02e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.24e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 2.55e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 1.75e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 2.26e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 1.39e-006 3.39e-008 6.76e-005 - Ca[13C]O[18O]2(s) 2.85e-009 6.95e-011 1.39e-007 - Ca[13C][18O]3(s) 1.95e-012 4.76e-014 9.50e-011 - Ca[14C]O3(s) 3.13e-015 1.72e-017 1.52e-013 - Ca[14C]O2[18O](s) 1.93e-017 1.06e-019 9.39e-016 - Ca[14C]O[18O]2(s) 3.96e-020 2.17e-022 1.93e-018 - Ca[14C][18O]3(s) 2.71e-023 1.49e-025 1.32e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9898 permil - R(13C) 1.11340e-002 -4.1366 permil - R(14C) 1.54013e-013 13.098 pmc - R(18O) H2O(l) 1.99519e-003 -4.9914 permil - R(18O) OH- 1.92122e-003 -41.879 permil - R(18O) H3O+ 2.04133e-003 18.017 permil - R(18O) O2(aq) 1.99519e-003 -4.9914 permil - R(13C) CO2(aq) 1.10543e-002 -11.264 permil - R(14C) CO2(aq) 1.51815e-013 12.911 pmc - R(18O) CO2(aq) 2.07916e-003 36.883 permil - R(18O) HCO3- 1.99519e-003 -4.9914 permil - R(13C) HCO3- 1.11504e-002 -2.6617 permil - R(14C) HCO3- 1.54468e-013 13.136 pmc - R(18O) CO3-2 1.99519e-003 -4.9914 permil - R(13C) CO3-2 1.11344e-002 -4.0929 permil - R(14C) CO3-2 1.54025e-013 13.099 pmc - R(18O) Calcite 2.05263e-003 23.655 permil - R(13C) Calcite 1.11725e-002 -0.68629 permil - R(14C) Calcite 1.55080e-013 13.188 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2816e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.7724e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6407e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.502e-005 6.483e-005 - [14C] 8.994e-016 8.968e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.241 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.764e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 18 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.441 -124.441 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.080e-008 6.090e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 4.926e-040 - H2 2.463e-040 2.467e-040 -39.609 -39.608 0.001 (0) -O(0) 1.368e-013 - O2 6.812e-014 6.823e-014 -13.167 -13.166 0.001 (0) - O[18O] 2.718e-016 2.723e-016 -15.566 -15.565 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.398 -126.397 0.001 (0) -[13C](4) 6.502e-005 - H[13C]O3- 5.245e-005 4.798e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.101e-005 1.103e-005 -4.958 -4.958 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.046e-007 9.573e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.046e-007 9.573e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-007 9.573e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.080e-008 6.090e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.577e-008 4.585e-008 -7.339 -7.339 0.001 (0) - [13C]O3-2 3.119e-008 2.185e-008 -7.506 -7.661 -0.155 (0) - CaH[13C]O[18O]O+ 2.210e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.210e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.210e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.639e-010 3.645e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.088e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.088e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.867e-010 1.308e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.260 -137.259 0.001 (0) -[14C](4) 8.994e-016 - H[14C]O3- 7.265e-016 6.647e-016 -15.139 -15.177 -0.039 (0) - [14C]O2 1.512e-016 1.514e-016 -15.821 -15.820 0.001 (0) - CaH[14C]O3+ 1.534e-017 1.407e-017 -16.814 -16.852 -0.037 (0) - H[14C][18O]O2- 1.450e-018 1.326e-018 -17.839 -17.877 -0.039 (0) - H[14C]O[18O]O- 1.450e-018 1.326e-018 -17.839 -17.877 -0.039 (0) - H[14C]O2[18O]- 1.450e-018 1.326e-018 -17.839 -17.877 -0.039 (0) - Ca[14C]O3 8.411e-019 8.425e-019 -18.075 -18.074 0.001 (0) - [14C]O[18O] 6.287e-019 6.297e-019 -18.202 -18.201 0.001 (0) - [14C]O3-2 4.315e-019 3.023e-019 -18.365 -18.520 -0.155 (0) - CaH[14C]O2[18O]+ 3.061e-020 2.808e-020 -19.514 -19.552 -0.037 (0) - CaH[14C][18O]O2+ 3.061e-020 2.808e-020 -19.514 -19.552 -0.037 (0) - CaH[14C]O[18O]O+ 3.061e-020 2.808e-020 -19.514 -19.552 -0.037 (0) - Ca[14C]O2[18O] 5.034e-021 5.043e-021 -20.298 -20.297 0.001 (0) - H[14C][18O]O[18O]- 2.892e-021 2.646e-021 -20.539 -20.577 -0.039 (0) - H[14C]O[18O]2- 2.892e-021 2.646e-021 -20.539 -20.577 -0.039 (0) - H[14C][18O]2O- 2.892e-021 2.646e-021 -20.539 -20.577 -0.039 (0) - [14C]O2[18O]-2 2.583e-021 1.809e-021 -20.588 -20.743 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.724e-016 - O[18O] 2.718e-016 2.723e-016 -15.566 -15.565 0.001 (0) - [18O]2 2.712e-019 2.716e-019 -18.567 -18.566 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.54 -126.40 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.72 -21.22 -1.50 [14C][18O]2 - [14C]H4(g) -134.40 -137.26 -2.86 [14C]H4 - [14C]O2(g) -14.35 -15.82 -1.47 [14C]O2 - [14C]O[18O](g) -16.73 -18.52 -1.79 [14C]O[18O] - [18O]2(g) -16.28 -18.57 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.88 -12.73 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.03 -7.33 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.82 -4.63 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.72 -10.03 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.58 -124.44 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.46 -39.61 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.27 -13.17 -2.89 O2 - O[18O](g) -12.97 -15.87 -2.89 O[18O] - - -Reaction step 47. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 47 2.3500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 2.11e-002 - Calcite 2.07e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.27e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 2.62e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 1.79e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 2.31e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 1.42e-006 3.39e-008 6.76e-005 - Ca[13C]O[18O]2(s) 2.92e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 2.00e-012 4.76e-014 9.50e-011 - Ca[14C]O3(s) 3.15e-015 1.66e-017 1.50e-013 - Ca[14C]O2[18O](s) 1.94e-017 1.02e-019 9.21e-016 - Ca[14C]O[18O]2(s) 3.98e-020 2.09e-022 1.89e-018 - Ca[14C][18O]3(s) 2.72e-023 1.43e-025 1.29e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9897 permil - R(13C) 1.11345e-002 -4.0855 permil - R(14C) 1.51151e-013 12.854 pmc - R(18O) H2O(l) 1.99519e-003 -4.9912 permil - R(18O) OH- 1.92123e-003 -41.879 permil - R(18O) H3O+ 2.04133e-003 18.017 permil - R(18O) O2(aq) 1.99519e-003 -4.9912 permil - R(13C) CO2(aq) 1.10548e-002 -11.213 permil - R(14C) CO2(aq) 1.48993e-013 12.671 pmc - R(18O) CO2(aq) 2.07916e-003 36.883 permil - R(18O) HCO3- 1.99519e-003 -4.9912 permil - R(13C) HCO3- 1.11510e-002 -2.6105 permil - R(14C) HCO3- 1.51597e-013 12.892 pmc - R(18O) CO3-2 1.99519e-003 -4.9912 permil - R(13C) CO3-2 1.11350e-002 -4.0419 permil - R(14C) CO3-2 1.51162e-013 12.855 pmc - R(18O) Calcite 2.05263e-003 23.655 permil - R(13C) Calcite 1.11731e-002 -0.63507 permil - R(14C) Calcite 1.52198e-013 12.943 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2911e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6326e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.503e-005 6.484e-005 - [14C] 8.827e-016 8.801e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.232 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.767e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.368 -124.367 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.080e-008 6.090e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.269e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 5.139e-040 - H2 2.569e-040 2.574e-040 -39.590 -39.589 0.001 (0) -O(0) 1.257e-013 - O2 6.258e-014 6.268e-014 -13.204 -13.203 0.001 (0) - O[18O] 2.497e-016 2.501e-016 -15.603 -15.602 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.324 -126.323 0.001 (0) -[13C](4) 6.503e-005 - H[13C]O3- 5.245e-005 4.798e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.101e-005 1.103e-005 -4.958 -4.958 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - H[13C][18O]O2- 1.046e-007 9.574e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.046e-007 9.574e-008 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.046e-007 9.574e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.080e-008 6.090e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.578e-008 4.585e-008 -7.339 -7.339 0.001 (0) - [13C]O3-2 3.119e-008 2.185e-008 -7.506 -7.661 -0.155 (0) - CaH[13C][18O]O2+ 2.210e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.210e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.210e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.639e-010 3.645e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.088e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.088e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.867e-010 1.308e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.194 -137.194 0.001 (0) -[14C](4) 8.827e-016 - H[14C]O3- 7.130e-016 6.523e-016 -15.147 -15.186 -0.039 (0) - [14C]O2 1.484e-016 1.486e-016 -15.829 -15.828 0.001 (0) - CaH[14C]O3+ 1.506e-017 1.381e-017 -16.822 -16.860 -0.037 (0) - H[14C][18O]O2- 1.423e-018 1.302e-018 -17.847 -17.886 -0.039 (0) - H[14C]O[18O]O- 1.423e-018 1.302e-018 -17.847 -17.886 -0.039 (0) - H[14C]O2[18O]- 1.423e-018 1.302e-018 -17.847 -17.886 -0.039 (0) - Ca[14C]O3 8.254e-019 8.268e-019 -18.083 -18.083 0.001 (0) - [14C]O[18O] 6.170e-019 6.180e-019 -18.210 -18.209 0.001 (0) - [14C]O3-2 4.234e-019 2.966e-019 -18.373 -18.528 -0.155 (0) - CaH[14C]O2[18O]+ 3.004e-020 2.756e-020 -19.522 -19.560 -0.037 (0) - CaH[14C][18O]O2+ 3.004e-020 2.756e-020 -19.522 -19.560 -0.037 (0) - CaH[14C]O[18O]O+ 3.004e-020 2.756e-020 -19.522 -19.560 -0.037 (0) - Ca[14C]O2[18O] 4.941e-021 4.949e-021 -20.306 -20.305 0.001 (0) - H[14C]O[18O]2- 2.838e-021 2.597e-021 -20.547 -20.586 -0.039 (0) - H[14C][18O]2O- 2.838e-021 2.597e-021 -20.547 -20.586 -0.039 (0) - H[14C][18O]O[18O]- 2.838e-021 2.597e-021 -20.547 -20.586 -0.039 (0) - [14C]O2[18O]-2 2.535e-021 1.776e-021 -20.596 -20.751 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.502e-016 - O[18O] 2.497e-016 2.501e-016 -15.603 -15.602 0.001 (0) - [18O]2 2.491e-019 2.495e-019 -18.604 -18.603 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.46 -126.32 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.72 -21.23 -1.50 [14C][18O]2 - [14C]H4(g) -134.33 -137.19 -2.86 [14C]H4 - [14C]O2(g) -14.36 -15.83 -1.47 [14C]O2 - [14C]O[18O](g) -16.74 -18.53 -1.79 [14C]O[18O] - [18O]2(g) -16.31 -18.60 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.89 -12.73 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.04 -7.33 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.83 -4.63 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.72 -10.03 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.51 -124.37 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.44 -39.59 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.31 -13.20 -2.89 O2 - O[18O](g) -13.01 -15.90 -2.89 O[18O] - - -Reaction step 48. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 48 2.4000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 2.16e-002 - Calcite 2.12e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.30e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 2.68e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 1.83e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 2.37e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 1.46e-006 3.39e-008 6.76e-005 - Ca[13C]O[18O]2(s) 2.99e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 2.05e-012 4.76e-014 9.50e-011 - Ca[14C]O3(s) 3.17e-015 1.60e-017 1.47e-013 - Ca[14C]O2[18O](s) 1.95e-017 9.83e-020 9.04e-016 - Ca[14C]O[18O]2(s) 4.00e-020 2.02e-022 1.86e-018 - Ca[14C][18O]3(s) 2.74e-023 1.38e-025 1.27e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99519e-003 -4.9896 permil - R(13C) 1.11351e-002 -4.0364 permil - R(14C) 1.48393e-013 12.62 pmc - R(18O) H2O(l) 1.99519e-003 -4.9911 permil - R(18O) OH- 1.92123e-003 -41.878 permil - R(18O) H3O+ 2.04133e-003 18.017 permil - R(18O) O2(aq) 1.99519e-003 -4.9911 permil - R(13C) CO2(aq) 1.10554e-002 -11.164 permil - R(14C) CO2(aq) 1.46275e-013 12.44 pmc - R(18O) CO2(aq) 2.07916e-003 36.883 permil - R(18O) HCO3- 1.99519e-003 -4.9911 permil - R(13C) HCO3- 1.11516e-002 -2.5613 permil - R(14C) HCO3- 1.48831e-013 12.657 pmc - R(18O) CO3-2 1.99519e-003 -4.9911 permil - R(13C) CO3-2 1.11356e-002 -3.9927 permil - R(14C) CO3-2 1.48404e-013 12.621 pmc - R(18O) Calcite 2.05263e-003 23.655 permil - R(13C) Calcite 1.11737e-002 -0.58571 permil - R(14C) Calcite 1.49421e-013 12.707 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2458e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.3299e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7222e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.503e-005 6.484e-005 - [14C] 8.666e-016 8.641e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.225 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.753e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.310 -124.310 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.081e-008 6.091e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 5.311e-040 - H2 2.655e-040 2.660e-040 -39.576 -39.575 0.001 (0) -O(0) 1.177e-013 - O2 5.860e-014 5.869e-014 -13.232 -13.231 0.001 (0) - O[18O] 2.338e-016 2.342e-016 -15.631 -15.630 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.267 -126.266 0.001 (0) -[13C](4) 6.503e-005 - H[13C]O3- 5.245e-005 4.799e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.101e-005 1.103e-005 -4.958 -4.958 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.047e-007 9.574e-008 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.047e-007 9.574e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-007 9.574e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.081e-008 6.091e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.578e-008 4.585e-008 -7.339 -7.339 0.001 (0) - [13C]O3-2 3.119e-008 2.185e-008 -7.506 -7.661 -0.155 (0) - CaH[13C]O2[18O]+ 2.210e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.210e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.210e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.640e-010 3.646e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.088e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.088e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.867e-010 1.308e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.145 -137.145 0.001 (0) -[14C](4) 8.666e-016 - H[14C]O3- 7.000e-016 6.404e-016 -15.155 -15.194 -0.039 (0) - [14C]O2 1.457e-016 1.459e-016 -15.837 -15.836 0.001 (0) - CaH[14C]O3+ 1.478e-017 1.356e-017 -16.830 -16.868 -0.037 (0) - H[14C][18O]O2- 1.397e-018 1.278e-018 -17.855 -17.894 -0.039 (0) - H[14C]O[18O]O- 1.397e-018 1.278e-018 -17.855 -17.894 -0.039 (0) - H[14C]O2[18O]- 1.397e-018 1.278e-018 -17.855 -17.894 -0.039 (0) - Ca[14C]O3 8.104e-019 8.117e-019 -18.091 -18.091 0.001 (0) - [14C]O[18O] 6.057e-019 6.067e-019 -18.218 -18.217 0.001 (0) - [14C]O3-2 4.157e-019 2.912e-019 -18.381 -18.536 -0.155 (0) - CaH[14C]O2[18O]+ 2.949e-020 2.706e-020 -19.530 -19.568 -0.037 (0) - CaH[14C][18O]O2+ 2.949e-020 2.706e-020 -19.530 -19.568 -0.037 (0) - CaH[14C]O[18O]O+ 2.949e-020 2.706e-020 -19.530 -19.568 -0.037 (0) - Ca[14C]O2[18O] 4.851e-021 4.859e-021 -20.314 -20.313 0.001 (0) - H[14C][18O]2O- 2.787e-021 2.549e-021 -20.555 -20.594 -0.039 (0) - H[14C][18O]O[18O]- 2.787e-021 2.549e-021 -20.555 -20.594 -0.039 (0) - H[14C]O[18O]2- 2.787e-021 2.549e-021 -20.555 -20.594 -0.039 (0) - [14C]O2[18O]-2 2.488e-021 1.743e-021 -20.604 -20.759 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.343e-016 - O[18O] 2.338e-016 2.342e-016 -15.631 -15.630 0.001 (0) - [18O]2 2.333e-019 2.336e-019 -18.632 -18.631 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.41 -126.27 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.73 -21.24 -1.50 [14C][18O]2 - [14C]H4(g) -134.28 -137.14 -2.86 [14C]H4 - [14C]O2(g) -14.37 -15.84 -1.47 [14C]O2 - [14C]O[18O](g) -16.75 -18.54 -1.79 [14C]O[18O] - [18O]2(g) -16.34 -18.63 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.90 -12.74 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.04 -7.34 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.83 -4.64 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.73 -10.04 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.45 -124.31 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.43 -39.58 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.34 -13.23 -2.89 O2 - O[18O](g) -13.04 -15.93 -2.89 O[18O] - - -Reaction step 49. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 49 2.4500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 2.21e-002 - Calcite 2.17e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.33e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 2.74e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 1.87e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 2.42e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 1.49e-006 3.39e-008 6.76e-005 - Ca[13C]O[18O]2(s) 3.06e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 2.09e-012 4.76e-014 9.50e-011 - Ca[14C]O3(s) 3.18e-015 1.54e-017 1.44e-013 - Ca[14C]O2[18O](s) 1.96e-017 9.48e-020 8.88e-016 - Ca[14C]O[18O]2(s) 4.02e-020 1.95e-022 1.82e-018 - Ca[14C][18O]3(s) 2.75e-023 1.33e-025 1.25e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9894 permil - R(13C) 1.11356e-002 -3.9889 permil - R(14C) 1.45734e-013 12.394 pmc - R(18O) H2O(l) 1.99519e-003 -4.9909 permil - R(18O) OH- 1.92123e-003 -41.878 permil - R(18O) H3O+ 2.04133e-003 18.017 permil - R(18O) O2(aq) 1.99519e-003 -4.9909 permil - R(13C) CO2(aq) 1.10559e-002 -11.117 permil - R(14C) CO2(aq) 1.43654e-013 12.217 pmc - R(18O) CO2(aq) 2.07916e-003 36.883 permil - R(18O) HCO3- 1.99519e-003 -4.9909 permil - R(13C) HCO3- 1.11521e-002 -2.5138 permil - R(14C) HCO3- 1.46164e-013 12.43 pmc - R(18O) CO3-2 1.99519e-003 -4.9909 permil - R(13C) CO3-2 1.11361e-002 -3.9453 permil - R(14C) CO3-2 1.45745e-013 12.394 pmc - R(18O) Calcite 2.05263e-003 23.655 permil - R(13C) Calcite 1.11742e-002 -0.53813 permil - R(14C) Calcite 1.46744e-013 12.479 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2453e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.2196e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7544e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.503e-005 6.484e-005 - [14C] 8.511e-016 8.486e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.236 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.755e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.402 -124.401 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.081e-008 6.091e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 5.038e-040 - H2 2.519e-040 2.523e-040 -39.599 -39.598 0.001 (0) -O(0) 1.307e-013 - O2 6.510e-014 6.521e-014 -13.186 -13.186 0.001 (0) - O[18O] 2.598e-016 2.602e-016 -15.585 -15.585 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.358 -126.358 0.001 (0) -[13C](4) 6.503e-005 - H[13C]O3- 5.245e-005 4.799e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.101e-005 1.103e-005 -4.958 -4.958 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-007 9.575e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-007 9.575e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-007 9.575e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.081e-008 6.091e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.578e-008 4.586e-008 -7.339 -7.339 0.001 (0) - [13C]O3-2 3.119e-008 2.185e-008 -7.506 -7.660 -0.155 (0) - CaH[13C]O[18O]O+ 2.210e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.210e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.210e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.640e-010 3.646e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.088e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.088e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.867e-010 1.308e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.245 -137.244 0.001 (0) -[14C](4) 8.511e-016 - H[14C]O3- 6.875e-016 6.290e-016 -15.163 -15.201 -0.039 (0) - [14C]O2 1.431e-016 1.433e-016 -15.845 -15.844 0.001 (0) - CaH[14C]O3+ 1.452e-017 1.332e-017 -16.838 -16.876 -0.037 (0) - H[14C][18O]O2- 1.372e-018 1.255e-018 -17.863 -17.901 -0.039 (0) - H[14C]O[18O]O- 1.372e-018 1.255e-018 -17.863 -17.901 -0.039 (0) - H[14C]O2[18O]- 1.372e-018 1.255e-018 -17.863 -17.901 -0.039 (0) - Ca[14C]O3 7.959e-019 7.972e-019 -18.099 -18.098 0.001 (0) - [14C]O[18O] 5.949e-019 5.958e-019 -18.226 -18.225 0.001 (0) - [14C]O3-2 4.083e-019 2.860e-019 -18.389 -18.544 -0.155 (0) - CaH[14C]O2[18O]+ 2.897e-020 2.657e-020 -19.538 -19.576 -0.037 (0) - CaH[14C][18O]O2+ 2.897e-020 2.657e-020 -19.538 -19.576 -0.037 (0) - CaH[14C]O[18O]O+ 2.897e-020 2.657e-020 -19.538 -19.576 -0.037 (0) - Ca[14C]O2[18O] 4.764e-021 4.772e-021 -20.322 -20.321 0.001 (0) - H[14C][18O]O[18O]- 2.737e-021 2.504e-021 -20.563 -20.601 -0.039 (0) - H[14C]O[18O]2- 2.737e-021 2.504e-021 -20.563 -20.601 -0.039 (0) - H[14C][18O]2O- 2.737e-021 2.504e-021 -20.563 -20.601 -0.039 (0) - [14C]O2[18O]-2 2.444e-021 1.712e-021 -20.612 -20.767 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.603e-016 - O[18O] 2.598e-016 2.602e-016 -15.585 -15.585 0.001 (0) - [18O]2 2.591e-019 2.596e-019 -18.586 -18.586 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.50 -126.36 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.74 -21.24 -1.50 [14C][18O]2 - [14C]H4(g) -134.38 -137.24 -2.86 [14C]H4 - [14C]O2(g) -14.38 -15.84 -1.47 [14C]O2 - [14C]O[18O](g) -16.76 -18.54 -1.79 [14C]O[18O] - [18O]2(g) -16.30 -18.59 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.90 -12.75 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.05 -7.35 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.84 -4.65 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.74 -10.05 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.54 -124.40 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.45 -39.60 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.29 -13.19 -2.89 O2 - O[18O](g) -12.99 -15.89 -2.89 O[18O] - - -Reaction step 50. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 50 2.5000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 2.26e-002 - Calcite 2.22e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.37e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 2.80e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 1.92e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 2.48e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 1.53e-006 3.39e-008 6.76e-005 - Ca[13C]O[18O]2(s) 3.13e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 2.14e-012 4.76e-014 9.50e-011 - Ca[14C]O3(s) 3.20e-015 1.48e-017 1.42e-013 - Ca[14C]O2[18O](s) 1.97e-017 9.14e-020 8.73e-016 - Ca[14C]O[18O]2(s) 4.04e-020 1.88e-022 1.79e-018 - Ca[14C][18O]3(s) 2.76e-023 1.28e-025 1.23e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9893 permil - R(13C) 1.11361e-002 -3.9432 permil - R(14C) 1.43168e-013 12.175 pmc - R(18O) H2O(l) 1.99519e-003 -4.9908 permil - R(18O) OH- 1.92123e-003 -41.878 permil - R(18O) H3O+ 2.04133e-003 18.017 permil - R(18O) O2(aq) 1.99519e-003 -4.9908 permil - R(13C) CO2(aq) 1.10564e-002 -11.072 permil - R(14C) CO2(aq) 1.41125e-013 12.002 pmc - R(18O) CO2(aq) 2.07916e-003 36.883 permil - R(18O) HCO3- 1.99519e-003 -4.9908 permil - R(13C) HCO3- 1.11526e-002 -2.468 permil - R(14C) HCO3- 1.43591e-013 12.211 pmc - R(18O) CO3-2 1.99519e-003 -4.9908 permil - R(13C) CO3-2 1.11366e-002 -3.8995 permil - R(14C) CO3-2 1.43179e-013 12.176 pmc - R(18O) Calcite 2.05263e-003 23.656 permil - R(13C) Calcite 1.11747e-002 -0.49222 permil - R(14C) Calcite 1.44161e-013 12.26 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2577e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.4417e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7867e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.503e-005 6.484e-005 - [14C] 8.361e-016 8.337e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.244 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.770e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.462 -124.462 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.975e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.081e-008 6.091e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 4.866e-040 - H2 2.433e-040 2.437e-040 -39.614 -39.613 0.001 (0) -O(0) 1.401e-013 - O2 6.979e-014 6.991e-014 -13.156 -13.155 0.001 (0) - O[18O] 2.785e-016 2.790e-016 -15.555 -15.554 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.419 -126.418 0.001 (0) -[13C](4) 6.503e-005 - H[13C]O3- 5.246e-005 4.799e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.101e-005 1.103e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - H[13C][18O]O2- 1.047e-007 9.575e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-007 9.575e-008 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.047e-007 9.575e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.081e-008 6.091e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.578e-008 4.586e-008 -7.339 -7.339 0.001 (0) - [13C]O3-2 3.120e-008 2.185e-008 -7.506 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.210e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.210e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.210e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.640e-010 3.646e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.088e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.088e-010 1.910e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.867e-010 1.308e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.313 -137.312 0.001 (0) -[14C](4) 8.361e-016 - H[14C]O3- 6.754e-016 6.179e-016 -15.170 -15.209 -0.039 (0) - [14C]O2 1.405e-016 1.408e-016 -15.852 -15.852 0.001 (0) - CaH[14C]O3+ 1.426e-017 1.308e-017 -16.846 -16.883 -0.037 (0) - H[14C][18O]O2- 1.348e-018 1.233e-018 -17.870 -17.909 -0.039 (0) - H[14C]O[18O]O- 1.348e-018 1.233e-018 -17.870 -17.909 -0.039 (0) - H[14C]O2[18O]- 1.348e-018 1.233e-018 -17.870 -17.909 -0.039 (0) - Ca[14C]O3 7.818e-019 7.831e-019 -18.107 -18.106 0.001 (0) - [14C]O[18O] 5.844e-019 5.853e-019 -18.233 -18.233 0.001 (0) - [14C]O3-2 4.011e-019 2.810e-019 -18.397 -18.551 -0.155 (0) - CaH[14C]O2[18O]+ 2.846e-020 2.610e-020 -19.546 -19.583 -0.037 (0) - CaH[14C][18O]O2+ 2.846e-020 2.610e-020 -19.546 -19.583 -0.037 (0) - CaH[14C]O[18O]O+ 2.846e-020 2.610e-020 -19.546 -19.583 -0.037 (0) - Ca[14C]O2[18O] 4.680e-021 4.688e-021 -20.330 -20.329 0.001 (0) - H[14C]O[18O]2- 2.689e-021 2.460e-021 -20.570 -20.609 -0.039 (0) - H[14C][18O]2O- 2.689e-021 2.460e-021 -20.570 -20.609 -0.039 (0) - H[14C][18O]O[18O]- 2.689e-021 2.460e-021 -20.570 -20.609 -0.039 (0) - [14C]O2[18O]-2 2.401e-021 1.682e-021 -20.620 -20.774 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.791e-016 - O[18O] 2.785e-016 2.790e-016 -15.555 -15.554 0.001 (0) - [18O]2 2.778e-019 2.783e-019 -18.556 -18.556 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.56 -126.42 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.75 -21.25 -1.50 [14C][18O]2 - [14C]H4(g) -134.45 -137.31 -2.86 [14C]H4 - [14C]O2(g) -14.38 -15.85 -1.47 [14C]O2 - [14C]O[18O](g) -16.76 -18.55 -1.79 [14C]O[18O] - [18O]2(g) -16.27 -18.56 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.91 -12.76 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.06 -7.36 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.85 -4.66 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.75 -10.06 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.60 -124.46 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.46 -39.61 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.26 -13.16 -2.89 O2 - O[18O](g) -12.96 -15.86 -2.89 O[18O] - - -Reaction step 51. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 51 2.5500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 2.31e-002 - Calcite 2.27e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.40e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 2.86e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 1.96e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 2.53e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 1.56e-006 3.39e-008 6.76e-005 - Ca[13C]O[18O]2(s) 3.20e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 2.19e-012 4.76e-014 9.50e-011 - Ca[14C]O3(s) 3.21e-015 1.43e-017 1.39e-013 - Ca[14C]O2[18O](s) 1.98e-017 8.83e-020 8.57e-016 - Ca[14C]O[18O]2(s) 4.06e-020 1.81e-022 1.76e-018 - Ca[14C][18O]3(s) 2.78e-023 1.24e-025 1.20e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9891 permil - R(13C) 1.11366e-002 -3.899 permil - R(14C) 1.40692e-013 11.965 pmc - R(18O) H2O(l) 1.99519e-003 -4.9907 permil - R(18O) OH- 1.92123e-003 -41.878 permil - R(18O) H3O+ 2.04133e-003 18.017 permil - R(18O) O2(aq) 1.99519e-003 -4.9907 permil - R(13C) CO2(aq) 1.10569e-002 -11.028 permil - R(14C) CO2(aq) 1.38684e-013 11.794 pmc - R(18O) CO2(aq) 2.07916e-003 36.883 permil - R(18O) HCO3- 1.99519e-003 -4.9907 permil - R(13C) HCO3- 1.11531e-002 -2.4237 permil - R(14C) HCO3- 1.41107e-013 12 pmc - R(18O) CO3-2 1.99519e-003 -4.9907 permil - R(13C) CO3-2 1.11371e-002 -3.8554 permil - R(14C) CO3-2 1.40703e-013 11.966 pmc - R(18O) Calcite 2.05263e-003 23.656 permil - R(13C) Calcite 1.11752e-002 -0.44789 permil - R(14C) Calcite 1.41667e-013 12.048 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2171e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.3299e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.746e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.504e-005 6.485e-005 - [14C] 8.216e-016 8.192e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.246 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.777e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.484 -124.483 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.082e-008 6.092e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 4.807e-040 - H2 2.403e-040 2.407e-040 -39.619 -39.618 0.001 (0) -O(0) 1.436e-013 - O2 7.152e-014 7.164e-014 -13.146 -13.145 0.001 (0) - O[18O] 2.854e-016 2.859e-016 -15.545 -15.544 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.440 -126.439 0.001 (0) -[13C](4) 6.504e-005 - H[13C]O3- 5.246e-005 4.799e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.101e-005 1.103e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.047e-007 9.576e-008 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.047e-007 9.576e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-007 9.576e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.082e-008 6.092e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.579e-008 4.586e-008 -7.339 -7.339 0.001 (0) - [13C]O3-2 3.120e-008 2.186e-008 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.210e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.210e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.210e-009 2.027e-009 -8.656 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.640e-010 3.646e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.088e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.088e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.867e-010 1.308e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.342 -137.341 0.001 (0) -[14C](4) 8.216e-016 - H[14C]O3- 6.637e-016 6.072e-016 -15.178 -15.217 -0.039 (0) - [14C]O2 1.381e-016 1.383e-016 -15.860 -15.859 0.001 (0) - CaH[14C]O3+ 1.402e-017 1.286e-017 -16.853 -16.891 -0.037 (0) - H[14C][18O]O2- 1.324e-018 1.211e-018 -17.878 -17.917 -0.039 (0) - H[14C]O[18O]O- 1.324e-018 1.211e-018 -17.878 -17.917 -0.039 (0) - H[14C]O2[18O]- 1.324e-018 1.211e-018 -17.878 -17.917 -0.039 (0) - Ca[14C]O3 7.683e-019 7.696e-019 -18.114 -18.114 0.001 (0) - [14C]O[18O] 5.743e-019 5.752e-019 -18.241 -18.240 0.001 (0) - [14C]O3-2 3.941e-019 2.761e-019 -18.404 -18.559 -0.155 (0) - CaH[14C]O2[18O]+ 2.796e-020 2.565e-020 -19.553 -19.591 -0.037 (0) - CaH[14C][18O]O2+ 2.796e-020 2.565e-020 -19.553 -19.591 -0.037 (0) - CaH[14C]O[18O]O+ 2.796e-020 2.565e-020 -19.553 -19.591 -0.037 (0) - Ca[14C]O2[18O] 4.599e-021 4.606e-021 -20.337 -20.337 0.001 (0) - H[14C][18O]2O- 2.642e-021 2.417e-021 -20.578 -20.617 -0.039 (0) - H[14C][18O]O[18O]- 2.642e-021 2.417e-021 -20.578 -20.617 -0.039 (0) - H[14C]O[18O]2- 2.642e-021 2.417e-021 -20.578 -20.617 -0.039 (0) - [14C]O2[18O]-2 2.359e-021 1.653e-021 -20.627 -20.782 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.860e-016 - O[18O] 2.854e-016 2.859e-016 -15.545 -15.544 0.001 (0) - [18O]2 2.847e-019 2.852e-019 -18.546 -18.545 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.58 -126.44 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.76 -21.26 -1.50 [14C][18O]2 - [14C]H4(g) -134.48 -137.34 -2.86 [14C]H4 - [14C]O2(g) -14.39 -15.86 -1.47 [14C]O2 - [14C]O[18O](g) -16.77 -18.56 -1.79 [14C]O[18O] - [18O]2(g) -16.25 -18.54 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.92 -12.76 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.07 -7.36 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.86 -4.66 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.75 -10.06 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.62 -124.48 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.47 -39.62 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.25 -13.14 -2.89 O2 - O[18O](g) -12.95 -15.84 -2.89 O[18O] - - -Reaction step 52. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 52 2.6000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 2.36e-002 - Calcite 2.32e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.43e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 2.93e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 2.00e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 2.59e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 1.59e-006 3.39e-008 6.76e-005 - Ca[13C]O[18O]2(s) 3.27e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 2.24e-012 4.76e-014 9.50e-011 - Ca[14C]O3(s) 3.22e-015 1.38e-017 1.37e-013 - Ca[14C]O2[18O](s) 1.99e-017 8.53e-020 8.43e-016 - Ca[14C]O[18O]2(s) 4.08e-020 1.75e-022 1.73e-018 - Ca[14C][18O]3(s) 2.79e-023 1.20e-025 1.18e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.989 permil - R(13C) 1.11371e-002 -3.8563 permil - R(14C) 1.38299e-013 11.761 pmc - R(18O) H2O(l) 1.99519e-003 -4.9905 permil - R(18O) OH- 1.92123e-003 -41.878 permil - R(18O) H3O+ 2.04133e-003 18.017 permil - R(18O) O2(aq) 1.99519e-003 -4.9905 permil - R(13C) CO2(aq) 1.10574e-002 -10.985 permil - R(14C) CO2(aq) 1.36326e-013 11.593 pmc - R(18O) CO2(aq) 2.07916e-003 36.883 permil - R(18O) HCO3- 1.99519e-003 -4.9905 permil - R(13C) HCO3- 1.11536e-002 -2.381 permil - R(14C) HCO3- 1.38708e-013 11.796 pmc - R(18O) CO3-2 1.99519e-003 -4.9905 permil - R(13C) CO3-2 1.11376e-002 -3.8127 permil - R(14C) CO3-2 1.38310e-013 11.762 pmc - R(18O) Calcite 2.05263e-003 23.656 permil - R(13C) Calcite 1.11757e-002 -0.40507 permil - R(14C) Calcite 1.39258e-013 11.843 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2562e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6303e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.504e-005 6.485e-005 - [14C] 8.077e-016 8.053e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.254 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.796e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.543 -124.542 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.082e-008 6.092e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 4.645e-040 - H2 2.323e-040 2.326e-040 -39.634 -39.633 0.001 (0) -O(0) 1.538e-013 - O2 7.659e-014 7.672e-014 -13.116 -13.115 0.001 (0) - O[18O] 3.056e-016 3.061e-016 -15.515 -15.514 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.499 -126.499 0.001 (0) -[13C](4) 6.504e-005 - H[13C]O3- 5.246e-005 4.800e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.101e-005 1.103e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-007 9.576e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-007 9.576e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-007 9.576e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.082e-008 6.092e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.579e-008 4.586e-008 -7.339 -7.339 0.001 (0) - [13C]O3-2 3.120e-008 2.186e-008 -7.506 -7.660 -0.155 (0) - CaH[13C]O[18O]O+ 2.210e-009 2.028e-009 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.210e-009 2.028e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.210e-009 2.028e-009 -8.656 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.640e-010 3.646e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.088e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.088e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.867e-010 1.308e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.409 -137.408 0.001 (0) -[14C](4) 8.077e-016 - H[14C]O3- 6.524e-016 5.969e-016 -15.185 -15.224 -0.039 (0) - [14C]O2 1.358e-016 1.360e-016 -15.867 -15.867 0.001 (0) - CaH[14C]O3+ 1.378e-017 1.264e-017 -16.861 -16.898 -0.037 (0) - H[14C][18O]O2- 1.302e-018 1.191e-018 -17.885 -17.924 -0.039 (0) - H[14C]O[18O]O- 1.302e-018 1.191e-018 -17.885 -17.924 -0.039 (0) - H[14C]O2[18O]- 1.302e-018 1.191e-018 -17.885 -17.924 -0.039 (0) - Ca[14C]O3 7.553e-019 7.565e-019 -18.122 -18.121 0.001 (0) - [14C]O[18O] 5.645e-019 5.654e-019 -18.248 -18.248 0.001 (0) - [14C]O3-2 3.874e-019 2.714e-019 -18.412 -18.566 -0.155 (0) - CaH[14C]O2[18O]+ 2.749e-020 2.522e-020 -19.561 -19.598 -0.037 (0) - CaH[14C][18O]O2+ 2.749e-020 2.522e-020 -19.561 -19.598 -0.037 (0) - CaH[14C]O[18O]O+ 2.749e-020 2.522e-020 -19.561 -19.598 -0.037 (0) - Ca[14C]O2[18O] 4.521e-021 4.528e-021 -20.345 -20.344 0.001 (0) - H[14C][18O]O[18O]- 2.597e-021 2.376e-021 -20.586 -20.624 -0.039 (0) - H[14C]O[18O]2- 2.597e-021 2.376e-021 -20.586 -20.624 -0.039 (0) - H[14C][18O]2O- 2.597e-021 2.376e-021 -20.586 -20.624 -0.039 (0) - [14C]O2[18O]-2 2.319e-021 1.625e-021 -20.635 -20.789 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 3.062e-016 - O[18O] 3.056e-016 3.061e-016 -15.515 -15.514 0.001 (0) - [18O]2 3.049e-019 3.054e-019 -18.516 -18.515 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.64 -126.50 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.76 -21.27 -1.50 [14C][18O]2 - [14C]H4(g) -134.55 -137.41 -2.86 [14C]H4 - [14C]O2(g) -14.40 -15.87 -1.47 [14C]O2 - [14C]O[18O](g) -16.78 -18.57 -1.79 [14C]O[18O] - [18O]2(g) -16.22 -18.52 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.93 -12.77 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.07 -7.37 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.86 -4.67 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.76 -10.07 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.68 -124.54 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.48 -39.63 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.22 -13.12 -2.89 O2 - O[18O](g) -12.92 -15.82 -2.89 O[18O] - - -Reaction step 53. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 53 2.6500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 2.41e-002 - Calcite 2.36e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.46e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 2.99e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 2.04e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 2.64e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 1.63e-006 3.39e-008 6.76e-005 - Ca[13C]O[18O]2(s) 3.34e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 2.29e-012 4.76e-014 9.50e-011 - Ca[14C]O3(s) 3.24e-015 1.34e-017 1.35e-013 - Ca[14C]O2[18O](s) 1.99e-017 8.24e-020 8.29e-016 - Ca[14C]O[18O]2(s) 4.09e-020 1.69e-022 1.70e-018 - Ca[14C][18O]3(s) 2.80e-023 1.16e-025 1.16e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9889 permil - R(13C) 1.11375e-002 -3.8151 permil - R(14C) 1.35987e-013 11.565 pmc - R(18O) H2O(l) 1.99519e-003 -4.9904 permil - R(18O) OH- 1.92123e-003 -41.878 permil - R(18O) H3O+ 2.04133e-003 18.018 permil - R(18O) O2(aq) 1.99519e-003 -4.9904 permil - R(13C) CO2(aq) 1.10578e-002 -10.944 permil - R(14C) CO2(aq) 1.34046e-013 11.4 pmc - R(18O) CO2(aq) 2.07916e-003 36.884 permil - R(18O) HCO3- 1.99519e-003 -4.9904 permil - R(13C) HCO3- 1.11540e-002 -2.3397 permil - R(14C) HCO3- 1.36389e-013 11.599 pmc - R(18O) CO3-2 1.99519e-003 -4.9904 permil - R(13C) CO3-2 1.11380e-002 -3.7714 permil - R(14C) CO3-2 1.35998e-013 11.566 pmc - R(18O) Calcite 2.05263e-003 23.656 permil - R(13C) Calcite 1.11761e-002 -0.36369 permil - R(14C) Calcite 1.36930e-013 11.645 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2775e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.4425e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.648e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.504e-005 6.485e-005 - [14C] 7.942e-016 7.918e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.213 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.790e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.213 -124.212 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.082e-008 6.092e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 5.617e-040 - H2 2.808e-040 2.813e-040 -39.552 -39.551 0.001 (0) -O(0) 1.052e-013 - O2 5.238e-014 5.247e-014 -13.281 -13.280 0.001 (0) - O[18O] 2.090e-016 2.094e-016 -15.680 -15.679 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.169 -126.169 0.001 (0) -[13C](4) 6.504e-005 - H[13C]O3- 5.246e-005 4.800e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.101e-005 1.103e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.956 -5.993 -0.037 (0) - H[13C][18O]O2- 1.047e-007 9.576e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-007 9.576e-008 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.047e-007 9.576e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.082e-008 6.092e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.579e-008 4.586e-008 -7.339 -7.339 0.001 (0) - [13C]O3-2 3.120e-008 2.186e-008 -7.506 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.210e-009 2.028e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.210e-009 2.028e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.210e-009 2.028e-009 -8.656 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.640e-010 3.646e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.088e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.088e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.088e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.867e-010 1.308e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.086 -137.085 0.001 (0) -[14C](4) 7.942e-016 - H[14C]O3- 6.415e-016 5.869e-016 -15.193 -15.231 -0.039 (0) - [14C]O2 1.335e-016 1.337e-016 -15.875 -15.874 0.001 (0) - CaH[14C]O3+ 1.355e-017 1.243e-017 -16.868 -16.906 -0.037 (0) - H[14C][18O]O2- 1.280e-018 1.171e-018 -17.893 -17.931 -0.039 (0) - H[14C]O[18O]O- 1.280e-018 1.171e-018 -17.893 -17.931 -0.039 (0) - H[14C]O2[18O]- 1.280e-018 1.171e-018 -17.893 -17.931 -0.039 (0) - Ca[14C]O3 7.426e-019 7.439e-019 -18.129 -18.129 0.001 (0) - [14C]O[18O] 5.551e-019 5.560e-019 -18.256 -18.255 0.001 (0) - [14C]O3-2 3.810e-019 2.669e-019 -18.419 -18.574 -0.155 (0) - CaH[14C]O2[18O]+ 2.703e-020 2.479e-020 -19.568 -19.606 -0.037 (0) - CaH[14C][18O]O2+ 2.703e-020 2.479e-020 -19.568 -19.606 -0.037 (0) - CaH[14C]O[18O]O+ 2.703e-020 2.479e-020 -19.568 -19.606 -0.037 (0) - Ca[14C]O2[18O] 4.445e-021 4.452e-021 -20.352 -20.351 0.001 (0) - H[14C]O[18O]2- 2.554e-021 2.336e-021 -20.593 -20.631 -0.039 (0) - H[14C][18O]2O- 2.554e-021 2.336e-021 -20.593 -20.631 -0.039 (0) - H[14C][18O]O[18O]- 2.554e-021 2.336e-021 -20.593 -20.631 -0.039 (0) - [14C]O2[18O]-2 2.280e-021 1.597e-021 -20.642 -20.797 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.095e-016 - O[18O] 2.090e-016 2.094e-016 -15.680 -15.679 0.001 (0) - [18O]2 2.085e-019 2.089e-019 -18.681 -18.680 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.31 -126.17 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.77 -21.27 -1.50 [14C][18O]2 - [14C]H4(g) -134.23 -137.09 -2.86 [14C]H4 - [14C]O2(g) -14.41 -15.87 -1.47 [14C]O2 - [14C]O[18O](g) -16.79 -18.57 -1.79 [14C]O[18O] - [18O]2(g) -16.39 -18.68 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.93 -12.78 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.08 -7.38 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.87 -4.68 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.77 -10.08 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.35 -124.21 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.40 -39.55 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.39 -13.28 -2.89 O2 - O[18O](g) -13.09 -15.98 -2.89 O[18O] - - -Reaction step 54. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 54 2.7000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 2.46e-002 - Calcite 2.41e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.49e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 3.05e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 2.09e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 2.70e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 1.66e-006 3.39e-008 6.76e-005 - Ca[13C]O[18O]2(s) 3.41e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 2.33e-012 4.76e-014 9.50e-011 - Ca[14C]O3(s) 3.25e-015 1.29e-017 1.32e-013 - Ca[14C]O2[18O](s) 2.00e-017 7.97e-020 8.15e-016 - Ca[14C]O[18O]2(s) 4.11e-020 1.64e-022 1.67e-018 - Ca[14C][18O]3(s) 2.81e-023 1.12e-025 1.14e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9887 permil - R(13C) 1.11380e-002 -3.7752 permil - R(14C) 1.33751e-013 11.374 pmc - R(18O) H2O(l) 1.99519e-003 -4.9903 permil - R(18O) OH- 1.92123e-003 -41.878 permil - R(18O) H3O+ 2.04133e-003 18.018 permil - R(18O) O2(aq) 1.99519e-003 -4.9903 permil - R(13C) CO2(aq) 1.10583e-002 -10.905 permil - R(14C) CO2(aq) 1.31842e-013 11.212 pmc - R(18O) CO2(aq) 2.07916e-003 36.884 permil - R(18O) HCO3- 1.99519e-003 -4.9903 permil - R(13C) HCO3- 1.11545e-002 -2.2998 permil - R(14C) HCO3- 1.34146e-013 11.408 pmc - R(18O) CO3-2 1.99519e-003 -4.9903 permil - R(13C) CO3-2 1.11385e-002 -3.7315 permil - R(14C) CO3-2 1.33761e-013 11.375 pmc - R(18O) Calcite 2.05264e-003 23.656 permil - R(13C) Calcite 1.11766e-002 -0.32366 permil - R(14C) Calcite 1.34678e-013 11.453 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2482e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6832e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.505e-005 6.486e-005 - [14C] 7.811e-016 7.788e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.244 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.795e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 16 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.462 -124.461 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.082e-008 6.092e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 4.868e-040 - H2 2.434e-040 2.438e-040 -39.614 -39.613 0.001 (0) -O(0) 1.400e-013 - O2 6.974e-014 6.986e-014 -13.157 -13.156 0.001 (0) - O[18O] 2.783e-016 2.788e-016 -15.555 -15.555 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.418 -126.417 0.001 (0) -[13C](4) 6.505e-005 - H[13C]O3- 5.247e-005 4.800e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.101e-005 1.103e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.047e-007 9.577e-008 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.047e-007 9.577e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-007 9.577e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.082e-008 6.092e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.579e-008 4.587e-008 -7.339 -7.339 0.001 (0) - [13C]O3-2 3.120e-008 2.186e-008 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.210e-009 2.028e-009 -8.656 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.210e-009 2.028e-009 -8.656 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.210e-009 2.028e-009 -8.656 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.641e-010 3.647e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.868e-010 1.308e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.342 -137.341 0.001 (0) -[14C](4) 7.811e-016 - H[14C]O3- 6.310e-016 5.772e-016 -15.200 -15.239 -0.039 (0) - [14C]O2 1.313e-016 1.315e-016 -15.882 -15.881 0.001 (0) - CaH[14C]O3+ 1.332e-017 1.222e-017 -16.875 -16.913 -0.037 (0) - H[14C][18O]O2- 1.259e-018 1.152e-018 -17.900 -17.939 -0.039 (0) - H[14C]O[18O]O- 1.259e-018 1.152e-018 -17.900 -17.939 -0.039 (0) - H[14C]O2[18O]- 1.259e-018 1.152e-018 -17.900 -17.939 -0.039 (0) - Ca[14C]O3 7.304e-019 7.316e-019 -18.136 -18.136 0.001 (0) - [14C]O[18O] 5.459e-019 5.468e-019 -18.263 -18.262 0.001 (0) - [14C]O3-2 3.747e-019 2.625e-019 -18.426 -18.581 -0.155 (0) - CaH[14C]O2[18O]+ 2.658e-020 2.439e-020 -19.575 -19.613 -0.037 (0) - CaH[14C][18O]O2+ 2.658e-020 2.439e-020 -19.575 -19.613 -0.037 (0) - CaH[14C]O[18O]O+ 2.658e-020 2.439e-020 -19.575 -19.613 -0.037 (0) - Ca[14C]O2[18O] 4.372e-021 4.379e-021 -20.359 -20.359 0.001 (0) - H[14C][18O]2O- 2.512e-021 2.298e-021 -20.600 -20.639 -0.039 (0) - H[14C][18O]O[18O]- 2.512e-021 2.298e-021 -20.600 -20.639 -0.039 (0) - H[14C]O[18O]2- 2.512e-021 2.298e-021 -20.600 -20.639 -0.039 (0) - [14C]O2[18O]-2 2.243e-021 1.571e-021 -20.649 -20.804 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.789e-016 - O[18O] 2.783e-016 2.788e-016 -15.555 -15.555 0.001 (0) - [18O]2 2.776e-019 2.781e-019 -18.557 -18.556 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.56 -126.42 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.78 -21.28 -1.50 [14C][18O]2 - [14C]H4(g) -134.48 -137.34 -2.86 [14C]H4 - [14C]O2(g) -14.41 -15.88 -1.47 [14C]O2 - [14C]O[18O](g) -16.79 -18.58 -1.79 [14C]O[18O] - [18O]2(g) -16.27 -18.56 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.94 -12.79 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.09 -7.39 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.88 -4.69 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.78 -10.09 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.60 -124.46 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.46 -39.61 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.26 -13.16 -2.89 O2 - O[18O](g) -12.96 -15.86 -2.89 O[18O] - - -Reaction step 55. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 55 2.7500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 2.51e-002 - Calcite 2.46e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.52e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 3.11e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 2.13e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 2.75e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 1.70e-006 3.39e-008 6.76e-005 - Ca[13C]O[18O]2(s) 3.48e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 2.38e-012 4.76e-014 9.50e-011 - Ca[14C]O3(s) 3.26e-015 1.25e-017 1.30e-013 - Ca[14C]O2[18O](s) 2.01e-017 7.71e-020 8.02e-016 - Ca[14C]O[18O]2(s) 4.12e-020 1.58e-022 1.65e-018 - Ca[14C][18O]3(s) 2.82e-023 1.08e-025 1.13e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9886 permil - R(13C) 1.11384e-002 -3.7366 permil - R(14C) 1.31587e-013 11.19 pmc - R(18O) H2O(l) 1.99519e-003 -4.9901 permil - R(18O) OH- 1.92123e-003 -41.877 permil - R(18O) H3O+ 2.04133e-003 18.018 permil - R(18O) O2(aq) 1.99519e-003 -4.9901 permil - R(13C) CO2(aq) 1.10587e-002 -10.866 permil - R(14C) CO2(aq) 1.29709e-013 11.031 pmc - R(18O) CO2(aq) 2.07916e-003 36.884 permil - R(18O) HCO3- 1.99519e-003 -4.9901 permil - R(13C) HCO3- 1.11549e-002 -2.2611 permil - R(14C) HCO3- 1.31975e-013 11.223 pmc - R(18O) CO3-2 1.99519e-003 -4.9901 permil - R(13C) CO3-2 1.11389e-002 -3.6929 permil - R(14C) CO3-2 1.31597e-013 11.191 pmc - R(18O) Calcite 2.05264e-003 23.656 permil - R(13C) Calcite 1.11770e-002 -0.28493 permil - R(14C) Calcite 1.32499e-013 11.268 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2362e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.7724e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6489e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.505e-005 6.486e-005 - [14C] 7.685e-016 7.662e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.214 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.797e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 18 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.225 -124.224 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.083e-008 6.093e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 5.580e-040 - H2 2.790e-040 2.794e-040 -39.554 -39.554 0.001 (0) -O(0) 1.066e-013 - O2 5.308e-014 5.317e-014 -13.275 -13.274 0.001 (0) - O[18O] 2.118e-016 2.122e-016 -15.674 -15.673 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.181 -126.180 0.001 (0) -[13C](4) 6.505e-005 - H[13C]O3- 5.247e-005 4.800e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.101e-005 1.103e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-007 9.577e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-007 9.577e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-007 9.577e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.083e-008 6.093e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.579e-008 4.587e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.120e-008 2.186e-008 -7.506 -7.660 -0.155 (0) - CaH[13C]O[18O]O+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.641e-010 3.647e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.868e-010 1.308e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.112 -137.111 0.001 (0) -[14C](4) 7.685e-016 - H[14C]O3- 6.208e-016 5.679e-016 -15.207 -15.246 -0.039 (0) - [14C]O2 1.292e-016 1.294e-016 -15.889 -15.888 0.001 (0) - CaH[14C]O3+ 1.311e-017 1.202e-017 -16.882 -16.920 -0.037 (0) - H[14C][18O]O2- 1.239e-018 1.133e-018 -17.907 -17.946 -0.039 (0) - H[14C]O[18O]O- 1.239e-018 1.133e-018 -17.907 -17.946 -0.039 (0) - H[14C]O2[18O]- 1.239e-018 1.133e-018 -17.907 -17.946 -0.039 (0) - Ca[14C]O3 7.186e-019 7.198e-019 -18.144 -18.143 0.001 (0) - [14C]O[18O] 5.371e-019 5.380e-019 -18.270 -18.269 0.001 (0) - [14C]O3-2 3.686e-019 2.582e-019 -18.433 -18.588 -0.155 (0) - CaH[14C]O2[18O]+ 2.615e-020 2.399e-020 -19.582 -19.620 -0.037 (0) - CaH[14C][18O]O2+ 2.615e-020 2.399e-020 -19.582 -19.620 -0.037 (0) - CaH[14C]O[18O]O+ 2.615e-020 2.399e-020 -19.582 -19.620 -0.037 (0) - Ca[14C]O2[18O] 4.301e-021 4.308e-021 -20.366 -20.366 0.001 (0) - H[14C][18O]O[18O]- 2.471e-021 2.261e-021 -20.607 -20.646 -0.039 (0) - H[14C]O[18O]2- 2.471e-021 2.261e-021 -20.607 -20.646 -0.039 (0) - H[14C][18O]2O- 2.471e-021 2.261e-021 -20.607 -20.646 -0.039 (0) - [14C]O2[18O]-2 2.206e-021 1.546e-021 -20.656 -20.811 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.122e-016 - O[18O] 2.118e-016 2.122e-016 -15.674 -15.673 0.001 (0) - [18O]2 2.113e-019 2.117e-019 -18.675 -18.674 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.32 -126.18 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.78 -21.29 -1.50 [14C][18O]2 - [14C]H4(g) -134.25 -137.11 -2.86 [14C]H4 - [14C]O2(g) -14.42 -15.89 -1.47 [14C]O2 - [14C]O[18O](g) -16.80 -18.59 -1.79 [14C]O[18O] - [18O]2(g) -16.38 -18.67 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.95 -12.79 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.10 -7.39 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.89 -4.69 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.78 -10.09 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.36 -124.22 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.40 -39.55 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.38 -13.27 -2.89 O2 - O[18O](g) -13.08 -15.97 -2.89 O[18O] - - -Reaction step 56. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 56 2.8000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 2.56e-002 - Calcite 2.51e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.55e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 3.17e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 2.17e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 2.81e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 1.73e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 3.55e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 2.43e-012 4.76e-014 9.50e-011 - Ca[14C]O3(s) 3.28e-015 1.21e-017 1.28e-013 - Ca[14C]O2[18O](s) 2.02e-017 7.47e-020 7.89e-016 - Ca[14C]O[18O]2(s) 4.14e-020 1.53e-022 1.62e-018 - Ca[14C][18O]3(s) 2.83e-023 1.05e-025 1.11e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9885 permil - R(13C) 1.11388e-002 -3.6992 permil - R(14C) 1.29492e-013 11.012 pmc - R(18O) H2O(l) 1.99519e-003 -4.99 permil - R(18O) OH- 1.92123e-003 -41.877 permil - R(18O) H3O+ 2.04133e-003 18.018 permil - R(18O) O2(aq) 1.99519e-003 -4.99 permil - R(13C) CO2(aq) 1.10591e-002 -10.829 permil - R(14C) CO2(aq) 1.27644e-013 10.855 pmc - R(18O) CO2(aq) 2.07916e-003 36.884 permil - R(18O) HCO3- 1.99519e-003 -4.99 permil - R(13C) HCO3- 1.11553e-002 -2.2237 permil - R(14C) HCO3- 1.29874e-013 11.045 pmc - R(18O) CO3-2 1.99519e-003 -4.99 permil - R(13C) CO3-2 1.11393e-002 -3.6556 permil - R(14C) CO3-2 1.29502e-013 11.013 pmc - R(18O) Calcite 2.05264e-003 23.656 permil - R(13C) Calcite 1.11774e-002 -0.24743 permil - R(14C) Calcite 1.30389e-013 11.089 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2716e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.4409e-013 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7242e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.505e-005 6.486e-005 - [14C] 7.562e-016 7.540e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.204 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.810e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.142 -124.142 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.083e-008 6.093e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 5.851e-040 - H2 2.925e-040 2.930e-040 -39.534 -39.533 0.001 (0) -O(0) 9.694e-014 - O2 4.828e-014 4.836e-014 -13.316 -13.316 0.001 (0) - O[18O] 1.926e-016 1.930e-016 -15.715 -15.715 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.099 -126.098 0.001 (0) -[13C](4) 6.505e-005 - H[13C]O3- 5.247e-005 4.800e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.101e-005 1.103e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.047e-007 9.577e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-007 9.577e-008 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.047e-007 9.577e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.083e-008 6.093e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.579e-008 4.587e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.120e-008 2.186e-008 -7.506 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.641e-010 3.647e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.868e-010 1.308e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -137.036 -137.036 0.001 (0) -[14C](4) 7.562e-016 - H[14C]O3- 6.109e-016 5.589e-016 -15.214 -15.253 -0.039 (0) - [14C]O2 1.271e-016 1.273e-016 -15.896 -15.895 0.001 (0) - CaH[14C]O3+ 1.290e-017 1.183e-017 -16.889 -16.927 -0.037 (0) - H[14C][18O]O2- 1.219e-018 1.115e-018 -17.914 -17.953 -0.039 (0) - H[14C]O[18O]O- 1.219e-018 1.115e-018 -17.914 -17.953 -0.039 (0) - H[14C]O2[18O]- 1.219e-018 1.115e-018 -17.914 -17.953 -0.039 (0) - Ca[14C]O3 7.072e-019 7.083e-019 -18.150 -18.150 0.001 (0) - [14C]O[18O] 5.286e-019 5.294e-019 -18.277 -18.276 0.001 (0) - [14C]O3-2 3.628e-019 2.541e-019 -18.440 -18.595 -0.155 (0) - CaH[14C]O2[18O]+ 2.574e-020 2.361e-020 -19.589 -19.627 -0.037 (0) - CaH[14C][18O]O2+ 2.574e-020 2.361e-020 -19.589 -19.627 -0.037 (0) - CaH[14C]O[18O]O+ 2.574e-020 2.361e-020 -19.589 -19.627 -0.037 (0) - Ca[14C]O2[18O] 4.233e-021 4.240e-021 -20.373 -20.373 0.001 (0) - H[14C]O[18O]2- 2.432e-021 2.225e-021 -20.614 -20.653 -0.039 (0) - H[14C][18O]2O- 2.432e-021 2.225e-021 -20.614 -20.653 -0.039 (0) - H[14C][18O]O[18O]- 2.432e-021 2.225e-021 -20.614 -20.653 -0.039 (0) - [14C]O2[18O]-2 2.171e-021 1.521e-021 -20.663 -20.818 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.930e-016 - O[18O] 1.926e-016 1.930e-016 -15.715 -15.715 0.001 (0) - [18O]2 1.922e-019 1.925e-019 -18.716 -18.716 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.24 -126.10 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.79 -21.30 -1.50 [14C][18O]2 - [14C]H4(g) -134.18 -137.04 -2.86 [14C]H4 - [14C]O2(g) -14.43 -15.90 -1.47 [14C]O2 - [14C]O[18O](g) -16.81 -18.60 -1.79 [14C]O[18O] - [18O]2(g) -16.43 -18.72 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.96 -12.80 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.10 -7.40 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.89 -4.70 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.79 -10.10 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.28 -124.14 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.38 -39.53 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.42 -13.32 -2.89 O2 - O[18O](g) -13.12 -16.02 -2.89 O[18O] - - -Reaction step 57. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 57 2.8500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 2.61e-002 - Calcite 2.56e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.58e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 3.24e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 2.21e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 2.86e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 1.76e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 3.62e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 2.48e-012 4.76e-014 9.50e-011 - Ca[14C]O3(s) 3.29e-015 1.17e-017 1.26e-013 - Ca[14C]O2[18O](s) 2.02e-017 7.23e-020 7.77e-016 - Ca[14C]O[18O]2(s) 4.15e-020 1.48e-022 1.59e-018 - Ca[14C][18O]3(s) 2.84e-023 1.02e-025 1.09e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9883 permil - R(13C) 1.11392e-002 -3.663 permil - R(14C) 1.27462e-013 10.84 pmc - R(18O) H2O(l) 1.99519e-003 -4.9898 permil - R(18O) OH- 1.92123e-003 -41.877 permil - R(18O) H3O+ 2.04133e-003 18.018 permil - R(18O) O2(aq) 1.99519e-003 -4.9898 permil - R(13C) CO2(aq) 1.10595e-002 -10.793 permil - R(14C) CO2(aq) 1.25643e-013 10.685 pmc - R(18O) CO2(aq) 2.07916e-003 36.884 permil - R(18O) HCO3- 1.99519e-003 -4.9898 permil - R(13C) HCO3- 1.11557e-002 -2.1874 permil - R(14C) HCO3- 1.27839e-013 10.872 pmc - R(18O) CO3-2 1.99519e-003 -4.9898 permil - R(13C) CO3-2 1.11397e-002 -3.6194 permil - R(14C) CO3-2 1.27472e-013 10.841 pmc - R(18O) Calcite 2.05264e-003 23.657 permil - R(13C) Calcite 1.11778e-002 -0.2111 permil - R(14C) Calcite 1.28346e-013 10.915 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.258e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.8858e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7939e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.505e-005 6.486e-005 - [14C] 7.444e-016 7.422e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.197 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.793e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 16 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -124.087 -124.086 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.083e-008 6.093e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 6.039e-040 - H2 3.019e-040 3.024e-040 -39.520 -39.519 0.001 (0) -O(0) 9.099e-014 - O2 4.531e-014 4.539e-014 -13.344 -13.343 0.001 (0) - O[18O] 1.808e-016 1.811e-016 -15.743 -15.742 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -126.043 -126.043 0.001 (0) -[13C](4) 6.505e-005 - H[13C]O3- 5.247e-005 4.800e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.101e-005 1.103e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.047e-007 9.578e-008 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.047e-007 9.578e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-007 9.578e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.083e-008 6.093e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.580e-008 4.587e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.120e-008 2.186e-008 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.641e-010 3.647e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.868e-010 1.308e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.988 -136.987 0.001 (0) -[14C](4) 7.444e-016 - H[14C]O3- 6.013e-016 5.501e-016 -15.221 -15.260 -0.039 (0) - [14C]O2 1.251e-016 1.253e-016 -15.903 -15.902 0.001 (0) - CaH[14C]O3+ 1.270e-017 1.165e-017 -16.896 -16.934 -0.037 (0) - H[14C][18O]O2- 1.200e-018 1.098e-018 -17.921 -17.960 -0.039 (0) - H[14C]O[18O]O- 1.200e-018 1.098e-018 -17.921 -17.960 -0.039 (0) - H[14C]O2[18O]- 1.200e-018 1.098e-018 -17.921 -17.960 -0.039 (0) - Ca[14C]O3 6.961e-019 6.972e-019 -18.157 -18.157 0.001 (0) - [14C]O[18O] 5.203e-019 5.211e-019 -18.284 -18.283 0.001 (0) - [14C]O3-2 3.571e-019 2.501e-019 -18.447 -18.602 -0.155 (0) - CaH[14C]O2[18O]+ 2.533e-020 2.324e-020 -19.596 -19.634 -0.037 (0) - CaH[14C][18O]O2+ 2.533e-020 2.324e-020 -19.596 -19.634 -0.037 (0) - CaH[14C]O[18O]O+ 2.533e-020 2.324e-020 -19.596 -19.634 -0.037 (0) - Ca[14C]O2[18O] 4.166e-021 4.173e-021 -20.380 -20.380 0.001 (0) - H[14C][18O]2O- 2.394e-021 2.190e-021 -20.621 -20.660 -0.039 (0) - H[14C][18O]O[18O]- 2.394e-021 2.190e-021 -20.621 -20.660 -0.039 (0) - H[14C]O[18O]2- 2.394e-021 2.190e-021 -20.621 -20.660 -0.039 (0) - [14C]O2[18O]-2 2.137e-021 1.497e-021 -20.670 -20.825 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.812e-016 - O[18O] 1.808e-016 1.811e-016 -15.743 -15.742 0.001 (0) - [18O]2 1.804e-019 1.807e-019 -18.744 -18.743 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.18 -126.04 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.80 -21.30 -1.50 [14C][18O]2 - [14C]H4(g) -134.13 -136.99 -2.86 [14C]H4 - [14C]O2(g) -14.43 -15.90 -1.47 [14C]O2 - [14C]O[18O](g) -16.81 -18.60 -1.79 [14C]O[18O] - [18O]2(g) -16.45 -18.74 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.96 -12.81 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.11 -7.41 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.90 -4.71 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.80 -10.11 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.23 -124.09 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.37 -39.52 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.45 -13.34 -2.89 O2 - O[18O](g) -13.15 -16.04 -2.89 O[18O] - - -Reaction step 58. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 58 2.9000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 2.66e-002 - Calcite 2.61e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.61e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 3.30e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 2.26e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 2.92e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 1.80e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 3.69e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 2.52e-012 4.76e-014 9.50e-011 - Ca[14C]O3(s) 3.30e-015 1.14e-017 1.24e-013 - Ca[14C]O2[18O](s) 2.03e-017 7.01e-020 7.65e-016 - Ca[14C]O[18O]2(s) 4.17e-020 1.44e-022 1.57e-018 - Ca[14C][18O]3(s) 2.85e-023 9.84e-026 1.07e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9882 permil - R(13C) 1.11396e-002 -3.628 permil - R(14C) 1.25496e-013 10.672 pmc - R(18O) H2O(l) 1.99519e-003 -4.9897 permil - R(18O) OH- 1.92123e-003 -41.877 permil - R(18O) H3O+ 2.04133e-003 18.018 permil - R(18O) O2(aq) 1.99519e-003 -4.9897 permil - R(13C) CO2(aq) 1.10599e-002 -10.759 permil - R(14C) CO2(aq) 1.23704e-013 10.52 pmc - R(18O) CO2(aq) 2.07916e-003 36.884 permil - R(18O) HCO3- 1.99519e-003 -4.9897 permil - R(13C) HCO3- 1.11561e-002 -2.1523 permil - R(14C) HCO3- 1.25866e-013 10.704 pmc - R(18O) CO3-2 1.99519e-003 -4.9897 permil - R(13C) CO3-2 1.11401e-002 -3.5843 permil - R(14C) CO3-2 1.25505e-013 10.673 pmc - R(18O) Calcite 2.05264e-003 23.657 permil - R(13C) Calcite 1.11782e-002 -0.1759 permil - R(14C) Calcite 1.26365e-013 10.746 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.231e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.5543e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7163e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.505e-005 6.486e-005 - [14C] 7.329e-016 7.307e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.143 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.773e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.654 -123.653 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.083e-008 6.093e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 7.751e-040 - H2 3.875e-040 3.882e-040 -39.412 -39.411 0.001 (0) -O(0) 5.524e-014 - O2 2.751e-014 2.755e-014 -13.561 -13.560 0.001 (0) - O[18O] 1.098e-016 1.100e-016 -15.959 -15.959 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.610 -125.609 0.001 (0) -[13C](4) 6.505e-005 - H[13C]O3- 5.247e-005 4.801e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.101e-005 1.103e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-007 9.578e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-007 9.578e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-007 9.578e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.083e-008 6.093e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.580e-008 4.587e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.121e-008 2.186e-008 -7.506 -7.660 -0.155 (0) - CaH[13C]O[18O]O+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.641e-010 3.647e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.868e-010 1.309e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.561 -136.561 0.001 (0) -[14C](4) 7.329e-016 - H[14C]O3- 5.920e-016 5.416e-016 -15.228 -15.266 -0.039 (0) - [14C]O2 1.232e-016 1.234e-016 -15.909 -15.909 0.001 (0) - CaH[14C]O3+ 1.250e-017 1.147e-017 -16.903 -16.941 -0.037 (0) - H[14C][18O]O2- 1.181e-018 1.081e-018 -17.928 -17.966 -0.039 (0) - H[14C]O[18O]O- 1.181e-018 1.081e-018 -17.928 -17.966 -0.039 (0) - H[14C]O2[18O]- 1.181e-018 1.081e-018 -17.928 -17.966 -0.039 (0) - Ca[14C]O3 6.853e-019 6.865e-019 -18.164 -18.163 0.001 (0) - [14C]O[18O] 5.122e-019 5.131e-019 -18.291 -18.290 0.001 (0) - [14C]O3-2 3.516e-019 2.463e-019 -18.454 -18.609 -0.155 (0) - CaH[14C]O2[18O]+ 2.494e-020 2.288e-020 -19.603 -19.641 -0.037 (0) - CaH[14C][18O]O2+ 2.494e-020 2.288e-020 -19.603 -19.641 -0.037 (0) - CaH[14C]O[18O]O+ 2.494e-020 2.288e-020 -19.603 -19.641 -0.037 (0) - Ca[14C]O2[18O] 4.102e-021 4.109e-021 -20.387 -20.386 0.001 (0) - H[14C][18O]O[18O]- 2.357e-021 2.156e-021 -20.628 -20.666 -0.039 (0) - H[14C]O[18O]2- 2.357e-021 2.156e-021 -20.628 -20.666 -0.039 (0) - H[14C][18O]2O- 2.357e-021 2.156e-021 -20.628 -20.666 -0.039 (0) - [14C]O2[18O]-2 2.104e-021 1.474e-021 -20.677 -20.831 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.100e-016 - O[18O] 1.098e-016 1.100e-016 -15.959 -15.959 0.001 (0) - [18O]2 1.095e-019 1.097e-019 -18.961 -18.960 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.75 -125.61 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.81 -21.31 -1.50 [14C][18O]2 - [14C]H4(g) -133.70 -136.56 -2.86 [14C]H4 - [14C]O2(g) -14.44 -15.91 -1.47 [14C]O2 - [14C]O[18O](g) -16.82 -18.61 -1.79 [14C]O[18O] - [18O]2(g) -16.67 -18.96 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.97 -12.81 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.12 -7.41 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.91 -4.71 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.80 -10.11 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.79 -123.65 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.26 -39.41 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.67 -13.56 -2.89 O2 - O[18O](g) -13.37 -16.26 -2.89 O[18O] - - -Reaction step 59. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 59 2.9500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 2.71e-002 - Calcite 2.66e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.64e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 3.36e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 2.30e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 2.97e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 1.83e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 3.76e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 2.57e-012 4.76e-014 9.50e-011 - Ca[14C]O3(s) 3.31e-015 1.10e-017 1.22e-013 - Ca[14C]O2[18O](s) 2.04e-017 6.80e-020 7.53e-016 - Ca[14C]O[18O]2(s) 4.18e-020 1.40e-022 1.55e-018 - Ca[14C][18O]3(s) 2.86e-023 9.55e-026 1.06e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.988 permil - R(13C) 1.11400e-002 -3.5939 permil - R(14C) 1.23589e-013 10.51 pmc - R(18O) H2O(l) 1.99519e-003 -4.9896 permil - R(18O) OH- 1.92123e-003 -41.877 permil - R(18O) H3O+ 2.04133e-003 18.018 permil - R(18O) O2(aq) 1.99519e-003 -4.9896 permil - R(13C) CO2(aq) 1.10603e-002 -10.725 permil - R(14C) CO2(aq) 1.21825e-013 10.36 pmc - R(18O) CO2(aq) 2.07916e-003 36.884 permil - R(18O) HCO3- 1.99519e-003 -4.9896 permil - R(13C) HCO3- 1.11565e-002 -2.1182 permil - R(14C) HCO3- 1.23954e-013 10.541 pmc - R(18O) CO3-2 1.99519e-003 -4.9896 permil - R(13C) CO3-2 1.11405e-002 -3.5503 permil - R(14C) CO3-2 1.23598e-013 10.511 pmc - R(18O) Calcite 2.05264e-003 23.657 permil - R(13C) Calcite 1.11786e-002 -0.14176 permil - R(14C) Calcite 1.24445e-013 10.583 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2862e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.4417e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.677e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.506e-005 6.487e-005 - [14C] 7.217e-016 7.196e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.107 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.767e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.365 -123.364 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.083e-008 6.093e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 9.154e-040 - H2 4.577e-040 4.584e-040 -39.339 -39.339 0.001 (0) -O(0) 3.960e-014 - O2 1.972e-014 1.975e-014 -13.705 -13.704 0.001 (0) - O[18O] 7.870e-017 7.883e-017 -16.104 -16.103 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.321 -125.320 0.001 (0) -[13C](4) 6.506e-005 - H[13C]O3- 5.247e-005 4.801e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.101e-005 1.103e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.016e-006 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.047e-007 9.578e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-007 9.578e-008 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.047e-007 9.578e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.083e-008 6.093e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.580e-008 4.587e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.121e-008 2.186e-008 -7.506 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.641e-010 3.647e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.868e-010 1.309e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.279 -136.278 0.001 (0) -[14C](4) 7.217e-016 - H[14C]O3- 5.830e-016 5.334e-016 -15.234 -15.273 -0.039 (0) - [14C]O2 1.213e-016 1.215e-016 -15.916 -15.915 0.001 (0) - CaH[14C]O3+ 1.231e-017 1.129e-017 -16.910 -16.947 -0.037 (0) - H[14C][18O]O2- 1.163e-018 1.064e-018 -17.934 -17.973 -0.039 (0) - H[14C]O[18O]O- 1.163e-018 1.064e-018 -17.934 -17.973 -0.039 (0) - H[14C]O2[18O]- 1.163e-018 1.064e-018 -17.934 -17.973 -0.039 (0) - Ca[14C]O3 6.749e-019 6.760e-019 -18.171 -18.170 0.001 (0) - [14C]O[18O] 5.045e-019 5.053e-019 -18.297 -18.296 0.001 (0) - [14C]O3-2 3.462e-019 2.425e-019 -18.461 -18.615 -0.155 (0) - CaH[14C]O2[18O]+ 2.456e-020 2.253e-020 -19.610 -19.647 -0.037 (0) - CaH[14C][18O]O2+ 2.456e-020 2.253e-020 -19.610 -19.647 -0.037 (0) - CaH[14C]O[18O]O+ 2.456e-020 2.253e-020 -19.610 -19.647 -0.037 (0) - Ca[14C]O2[18O] 4.040e-021 4.046e-021 -20.394 -20.393 0.001 (0) - H[14C]O[18O]2- 2.321e-021 2.123e-021 -20.634 -20.673 -0.039 (0) - H[14C][18O]2O- 2.321e-021 2.123e-021 -20.634 -20.673 -0.039 (0) - H[14C][18O]O[18O]- 2.321e-021 2.123e-021 -20.634 -20.673 -0.039 (0) - [14C]O2[18O]-2 2.072e-021 1.452e-021 -20.684 -20.838 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 7.885e-017 - O[18O] 7.870e-017 7.883e-017 -16.104 -16.103 0.001 (0) - [18O]2 7.851e-020 7.864e-020 -19.105 -19.104 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.46 -125.32 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.81 -21.32 -1.50 [14C][18O]2 - [14C]H4(g) -133.42 -136.28 -2.86 [14C]H4 - [14C]O2(g) -14.45 -15.92 -1.47 [14C]O2 - [14C]O[18O](g) -16.83 -18.62 -1.79 [14C]O[18O] - [18O]2(g) -16.81 -19.10 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.98 -12.82 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.12 -7.42 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.91 -4.72 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.81 -10.12 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.50 -123.36 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.19 -39.34 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.81 -13.70 -2.89 O2 - O[18O](g) -13.51 -16.40 -2.89 O[18O] - - -Reaction step 60. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 60 3.0000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 2.76e-002 - Calcite 2.71e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.67e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 3.42e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 2.34e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 3.03e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 1.86e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 3.83e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 2.62e-012 4.76e-014 9.50e-011 - Ca[14C]O3(s) 3.32e-015 1.07e-017 1.20e-013 - Ca[14C]O2[18O](s) 2.04e-017 6.59e-020 7.42e-016 - Ca[14C]O[18O]2(s) 4.20e-020 1.35e-022 1.52e-018 - Ca[14C][18O]3(s) 2.87e-023 9.26e-026 1.04e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9879 permil - R(13C) 1.11404e-002 -3.5609 permil - R(14C) 1.21739e-013 10.353 pmc - R(18O) H2O(l) 1.99520e-003 -4.9894 permil - R(18O) OH- 1.92123e-003 -41.877 permil - R(18O) H3O+ 2.04133e-003 18.018 permil - R(18O) O2(aq) 1.99520e-003 -4.9894 permil - R(13C) CO2(aq) 1.10607e-002 -10.692 permil - R(14C) CO2(aq) 1.20001e-013 10.205 pmc - R(18O) CO2(aq) 2.07916e-003 36.885 permil - R(18O) HCO3- 1.99520e-003 -4.9894 permil - R(13C) HCO3- 1.11569e-002 -2.0852 permil - R(14C) HCO3- 1.22098e-013 10.383 pmc - R(18O) CO3-2 1.99520e-003 -4.9894 permil - R(13C) CO3-2 1.11409e-002 -3.5173 permil - R(14C) CO3-2 1.21748e-013 10.354 pmc - R(18O) Calcite 2.05264e-003 23.657 permil - R(13C) Calcite 1.11790e-002 -0.10865 permil - R(14C) Calcite 1.22582e-013 10.425 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.263e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-013 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5642e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.506e-005 6.487e-005 - [14C] 7.109e-016 7.089e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.060 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.775e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -122.995 -122.995 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.084e-008 6.094e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.132e-039 - H2 5.661e-040 5.670e-040 -39.247 -39.246 0.001 (0) -O(0) 2.589e-014 - O2 1.289e-014 1.291e-014 -13.890 -13.889 0.001 (0) - O[18O] 5.145e-017 5.153e-017 -16.289 -16.288 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -124.952 -124.951 0.001 (0) -[13C](4) 6.506e-005 - H[13C]O3- 5.248e-005 4.801e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.101e-005 1.103e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.047e-007 9.579e-008 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.047e-007 9.579e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-007 9.579e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.084e-008 6.094e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.580e-008 4.588e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.121e-008 2.186e-008 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.641e-010 3.647e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.868e-010 1.309e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -135.916 -135.916 0.001 (0) -[14C](4) 7.109e-016 - H[14C]O3- 5.743e-016 5.254e-016 -15.241 -15.280 -0.039 (0) - [14C]O2 1.195e-016 1.197e-016 -15.923 -15.922 0.001 (0) - CaH[14C]O3+ 1.213e-017 1.112e-017 -16.916 -16.954 -0.037 (0) - H[14C][18O]O2- 1.146e-018 1.048e-018 -17.941 -17.980 -0.039 (0) - H[14C]O[18O]O- 1.146e-018 1.048e-018 -17.941 -17.980 -0.039 (0) - H[14C]O2[18O]- 1.146e-018 1.048e-018 -17.941 -17.980 -0.039 (0) - Ca[14C]O3 6.648e-019 6.659e-019 -18.177 -18.177 0.001 (0) - [14C]O[18O] 4.969e-019 4.977e-019 -18.304 -18.303 0.001 (0) - [14C]O3-2 3.410e-019 2.389e-019 -18.467 -18.622 -0.155 (0) - CaH[14C]O2[18O]+ 2.420e-020 2.220e-020 -19.616 -19.654 -0.037 (0) - CaH[14C][18O]O2+ 2.420e-020 2.220e-020 -19.616 -19.654 -0.037 (0) - CaH[14C]O[18O]O+ 2.420e-020 2.220e-020 -19.616 -19.654 -0.037 (0) - Ca[14C]O2[18O] 3.979e-021 3.986e-021 -20.400 -20.399 0.001 (0) - H[14C][18O]2O- 2.286e-021 2.092e-021 -20.641 -20.680 -0.039 (0) - H[14C][18O]O[18O]- 2.286e-021 2.092e-021 -20.641 -20.680 -0.039 (0) - H[14C]O[18O]2- 2.286e-021 2.092e-021 -20.641 -20.680 -0.039 (0) - [14C]O2[18O]-2 2.041e-021 1.430e-021 -20.690 -20.845 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 5.155e-017 - O[18O] 5.145e-017 5.153e-017 -16.289 -16.288 0.001 (0) - [18O]2 5.133e-020 5.141e-020 -19.290 -19.289 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.09 -124.95 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.82 -21.32 -1.50 [14C][18O]2 - [14C]H4(g) -133.06 -135.92 -2.86 [14C]H4 - [14C]O2(g) -14.45 -15.92 -1.47 [14C]O2 - [14C]O[18O](g) -16.83 -18.62 -1.79 [14C]O[18O] - [18O]2(g) -17.00 -19.29 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.98 -12.83 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.13 -7.43 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.92 -4.73 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.82 -10.13 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.13 -122.99 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.10 -39.25 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.00 -13.89 -2.89 O2 - O[18O](g) -13.70 -16.59 -2.89 O[18O] - - -Reaction step 61. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 61 3.0500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 2.81e-002 - Calcite 2.76e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.70e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 3.49e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 2.38e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 3.08e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 1.90e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 3.90e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 2.67e-012 4.76e-014 9.50e-011 - Ca[14C]O3(s) 3.33e-015 1.04e-017 1.19e-013 - Ca[14C]O2[18O](s) 2.05e-017 6.40e-020 7.31e-016 - Ca[14C]O[18O]2(s) 4.21e-020 1.31e-022 1.50e-018 - Ca[14C][18O]3(s) 2.88e-023 8.99e-026 1.03e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9878 permil - R(13C) 1.11407e-002 -3.5289 permil - R(14C) 1.19943e-013 10.2 pmc - R(18O) H2O(l) 1.99520e-003 -4.9893 permil - R(18O) OH- 1.92123e-003 -41.877 permil - R(18O) H3O+ 2.04133e-003 18.019 permil - R(18O) O2(aq) 1.99520e-003 -4.9893 permil - R(13C) CO2(aq) 1.10610e-002 -10.66 permil - R(14C) CO2(aq) 1.18231e-013 10.055 pmc - R(18O) CO2(aq) 2.07916e-003 36.885 permil - R(18O) HCO3- 1.99520e-003 -4.9893 permil - R(13C) HCO3- 1.11572e-002 -2.0531 permil - R(14C) HCO3- 1.20298e-013 10.23 pmc - R(18O) CO3-2 1.99520e-003 -4.9893 permil - R(13C) CO3-2 1.11412e-002 -3.4852 permil - R(14C) CO3-2 1.19953e-013 10.201 pmc - R(18O) Calcite 2.05264e-003 23.657 permil - R(13C) Calcite 1.11793e-002 -0.07651 permil - R(14C) Calcite 1.20775e-013 10.271 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2591e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.5543e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6069e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.506e-005 6.487e-005 - [14C] 7.005e-016 6.984e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.086 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.756e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.198 -123.198 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.084e-008 6.094e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.007e-039 - H2 5.037e-040 5.045e-040 -39.298 -39.297 0.001 (0) -O(0) 3.270e-014 - O2 1.628e-014 1.631e-014 -13.788 -13.788 0.001 (0) - O[18O] 6.498e-017 6.509e-017 -16.187 -16.186 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.154 -125.154 0.001 (0) -[13C](4) 6.506e-005 - H[13C]O3- 5.248e-005 4.801e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.101e-005 1.103e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-007 9.579e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-007 9.579e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-007 9.579e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.084e-008 6.094e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.580e-008 4.588e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.121e-008 2.186e-008 -7.506 -7.660 -0.155 (0) - CaH[13C]O[18O]O+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.641e-010 3.647e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.868e-010 1.309e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.126 -136.125 0.001 (0) -[14C](4) 7.005e-016 - H[14C]O3- 5.658e-016 5.177e-016 -15.247 -15.286 -0.039 (0) - [14C]O2 1.177e-016 1.179e-016 -15.929 -15.928 0.001 (0) - CaH[14C]O3+ 1.195e-017 1.096e-017 -16.923 -16.960 -0.037 (0) - H[14C][18O]O2- 1.129e-018 1.033e-018 -17.947 -17.986 -0.039 (0) - H[14C]O[18O]O- 1.129e-018 1.033e-018 -17.947 -17.986 -0.039 (0) - H[14C]O2[18O]- 1.129e-018 1.033e-018 -17.947 -17.986 -0.039 (0) - Ca[14C]O3 6.550e-019 6.561e-019 -18.184 -18.183 0.001 (0) - [14C]O[18O] 4.896e-019 4.904e-019 -18.310 -18.309 0.001 (0) - [14C]O3-2 3.360e-019 2.354e-019 -18.474 -18.628 -0.155 (0) - CaH[14C]O2[18O]+ 2.384e-020 2.187e-020 -19.623 -19.660 -0.037 (0) - CaH[14C][18O]O2+ 2.384e-020 2.187e-020 -19.623 -19.660 -0.037 (0) - CaH[14C]O[18O]O+ 2.384e-020 2.187e-020 -19.623 -19.660 -0.037 (0) - Ca[14C]O2[18O] 3.921e-021 3.927e-021 -20.407 -20.406 0.001 (0) - H[14C][18O]O[18O]- 2.252e-021 2.061e-021 -20.647 -20.686 -0.039 (0) - H[14C]O[18O]2- 2.252e-021 2.061e-021 -20.647 -20.686 -0.039 (0) - H[14C][18O]2O- 2.252e-021 2.061e-021 -20.647 -20.686 -0.039 (0) - [14C]O2[18O]-2 2.011e-021 1.409e-021 -20.697 -20.851 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 6.511e-017 - O[18O] 6.498e-017 6.509e-017 -16.187 -16.186 0.001 (0) - [18O]2 6.483e-020 6.493e-020 -19.188 -19.188 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.29 -125.15 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.82 -21.33 -1.50 [14C][18O]2 - [14C]H4(g) -133.26 -136.12 -2.86 [14C]H4 - [14C]O2(g) -14.46 -15.93 -1.47 [14C]O2 - [14C]O[18O](g) -16.84 -18.63 -1.79 [14C]O[18O] - [18O]2(g) -16.90 -19.19 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.99 -12.83 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.14 -7.43 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.93 -4.73 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.82 -10.13 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.34 -123.20 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.15 -39.30 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.90 -13.79 -2.89 O2 - O[18O](g) -13.60 -16.49 -2.89 O[18O] - - -Reaction step 62. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 62 3.1000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 2.86e-002 - Calcite 2.81e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.73e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 3.55e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 2.43e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 3.14e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 1.93e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 3.97e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 2.71e-012 4.76e-014 9.50e-011 - Ca[14C]O3(s) 3.34e-015 1.01e-017 1.17e-013 - Ca[14C]O2[18O](s) 2.06e-017 6.21e-020 7.20e-016 - Ca[14C]O[18O]2(s) 4.22e-020 1.28e-022 1.48e-018 - Ca[14C][18O]3(s) 2.89e-023 8.73e-026 1.01e-021 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9876 permil - R(13C) 1.11411e-002 -3.4978 permil - R(14C) 1.18200e-013 10.052 pmc - R(18O) H2O(l) 1.99520e-003 -4.9891 permil - R(18O) OH- 1.92123e-003 -41.877 permil - R(18O) H3O+ 2.04133e-003 18.019 permil - R(18O) O2(aq) 1.99520e-003 -4.9891 permil - R(13C) CO2(aq) 1.10614e-002 -10.629 permil - R(14C) CO2(aq) 1.16513e-013 9.9085 pmc - R(18O) CO2(aq) 2.07916e-003 36.885 permil - R(18O) HCO3- 1.99520e-003 -4.9891 permil - R(13C) HCO3- 1.11576e-002 -2.022 permil - R(14C) HCO3- 1.18549e-013 10.082 pmc - R(18O) CO3-2 1.99520e-003 -4.9891 permil - R(13C) CO3-2 1.11416e-002 -3.4541 permil - R(14C) CO3-2 1.18209e-013 10.053 pmc - R(18O) Calcite 2.05264e-003 23.657 permil - R(13C) Calcite 1.11797e-002 -0.045306 permil - R(14C) Calcite 1.19019e-013 10.122 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2747e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6361e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.506e-005 6.487e-005 - [14C] 6.903e-016 6.883e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 10.980 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.760e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -122.355 -122.354 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.084e-008 6.094e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.637e-039 - H2 8.186e-040 8.199e-040 -39.087 -39.086 0.001 (0) -O(0) 1.238e-014 - O2 6.166e-015 6.176e-015 -14.210 -14.209 0.001 (0) - O[18O] 2.460e-017 2.465e-017 -16.609 -16.608 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -124.311 -124.310 0.001 (0) -[13C](4) 6.506e-005 - H[13C]O3- 5.248e-005 4.801e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.101e-005 1.103e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.047e-007 9.579e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-007 9.579e-008 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.047e-007 9.579e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.084e-008 6.094e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.580e-008 4.588e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.121e-008 2.186e-008 -7.506 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.642e-010 3.648e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.868e-010 1.309e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -135.288 -135.288 0.001 (0) -[14C](4) 6.903e-016 - H[14C]O3- 5.576e-016 5.101e-016 -15.254 -15.292 -0.039 (0) - [14C]O2 1.160e-016 1.162e-016 -15.935 -15.935 0.001 (0) - CaH[14C]O3+ 1.177e-017 1.080e-017 -16.929 -16.967 -0.037 (0) - H[14C][18O]O2- 1.113e-018 1.018e-018 -17.954 -17.992 -0.039 (0) - H[14C]O[18O]O- 1.113e-018 1.018e-018 -17.954 -17.992 -0.039 (0) - H[14C]O2[18O]- 1.113e-018 1.018e-018 -17.954 -17.992 -0.039 (0) - Ca[14C]O3 6.455e-019 6.466e-019 -18.190 -18.189 0.001 (0) - [14C]O[18O] 4.825e-019 4.833e-019 -18.317 -18.316 0.001 (0) - [14C]O3-2 3.311e-019 2.320e-019 -18.480 -18.635 -0.155 (0) - CaH[14C]O2[18O]+ 2.349e-020 2.155e-020 -19.629 -19.667 -0.037 (0) - CaH[14C][18O]O2+ 2.349e-020 2.155e-020 -19.629 -19.667 -0.037 (0) - CaH[14C]O[18O]O+ 2.349e-020 2.155e-020 -19.629 -19.667 -0.037 (0) - Ca[14C]O2[18O] 3.864e-021 3.870e-021 -20.413 -20.412 0.001 (0) - H[14C]O[18O]2- 2.220e-021 2.031e-021 -20.654 -20.692 -0.039 (0) - H[14C][18O]2O- 2.220e-021 2.031e-021 -20.654 -20.692 -0.039 (0) - H[14C][18O]O[18O]- 2.220e-021 2.031e-021 -20.654 -20.692 -0.039 (0) - [14C]O2[18O]-2 1.982e-021 1.388e-021 -20.703 -20.857 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.465e-017 - O[18O] 2.460e-017 2.465e-017 -16.609 -16.608 0.001 (0) - [18O]2 2.455e-020 2.459e-020 -19.610 -19.609 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.45 -124.31 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.83 -21.33 -1.50 [14C][18O]2 - [14C]H4(g) -132.43 -135.29 -2.86 [14C]H4 - [14C]O2(g) -14.47 -15.93 -1.47 [14C]O2 - [14C]O[18O](g) -16.85 -18.63 -1.79 [14C]O[18O] - [18O]2(g) -17.32 -19.61 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -20.99 -12.84 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.14 -7.44 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.93 -4.74 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.83 -10.14 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.49 -122.35 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.94 -39.09 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.32 -14.21 -2.89 O2 - O[18O](g) -14.02 -16.91 -2.89 O[18O] - - -Reaction step 63. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 63 3.1500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 2.91e-002 - Calcite 2.86e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.76e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 3.61e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 2.47e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 3.19e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 1.97e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 4.04e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 2.76e-012 4.76e-014 9.50e-011 - Ca[14C]O3(s) 3.35e-015 9.80e-018 1.15e-013 - Ca[14C]O2[18O](s) 2.06e-017 6.03e-020 7.10e-016 - Ca[14C]O[18O]2(s) 4.23e-020 1.24e-022 1.46e-018 - Ca[14C][18O]3(s) 2.90e-023 8.48e-026 9.97e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9875 permil - R(13C) 1.11414e-002 -3.4676 permil - R(14C) 1.16507e-013 9.908 pmc - R(18O) H2O(l) 1.99520e-003 -4.989 permil - R(18O) OH- 1.92123e-003 -41.876 permil - R(18O) H3O+ 2.04133e-003 18.019 permil - R(18O) O2(aq) 1.99520e-003 -4.989 permil - R(13C) CO2(aq) 1.10617e-002 -10.599 permil - R(14C) CO2(aq) 1.14844e-013 9.7666 pmc - R(18O) CO2(aq) 2.07916e-003 36.885 permil - R(18O) HCO3- 1.99520e-003 -4.989 permil - R(13C) HCO3- 1.11579e-002 -1.9917 permil - R(14C) HCO3- 1.16851e-013 9.9373 pmc - R(18O) CO3-2 1.99520e-003 -4.989 permil - R(13C) CO3-2 1.11419e-002 -3.4239 permil - R(14C) CO3-2 1.16516e-013 9.9088 pmc - R(18O) Calcite 2.05264e-003 23.657 permil - R(13C) Calcite 1.11800e-002 -0.014995 permil - R(14C) Calcite 1.17314e-013 9.9767 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2471e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-013 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6157e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.506e-005 6.488e-005 - [14C] 6.804e-016 6.784e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 10.852 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.767e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -121.327 -121.326 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.084e-008 6.094e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 2.958e-039 - H2 1.479e-039 1.481e-039 -38.830 -38.829 0.001 (0) -O(0) 3.793e-015 - O2 1.889e-015 1.892e-015 -14.724 -14.723 0.001 (0) - O[18O] 7.538e-018 7.550e-018 -17.123 -17.122 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -123.283 -123.283 0.001 (0) -[13C](4) 6.506e-005 - H[13C]O3- 5.248e-005 4.801e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.102e-005 1.103e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.047e-007 9.580e-008 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.047e-007 9.580e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-007 9.580e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.084e-008 6.094e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.581e-008 4.588e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.121e-008 2.186e-008 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.642e-010 3.648e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.868e-010 1.309e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -134.267 -134.266 0.001 (0) -[14C](4) 6.804e-016 - H[14C]O3- 5.496e-016 5.028e-016 -15.260 -15.299 -0.039 (0) - [14C]O2 1.144e-016 1.146e-016 -15.942 -15.941 0.001 (0) - CaH[14C]O3+ 1.161e-017 1.065e-017 -16.935 -16.973 -0.037 (0) - H[14C][18O]O2- 1.097e-018 1.003e-018 -17.960 -17.999 -0.039 (0) - H[14C]O[18O]O- 1.097e-018 1.003e-018 -17.960 -17.999 -0.039 (0) - H[14C]O2[18O]- 1.097e-018 1.003e-018 -17.960 -17.999 -0.039 (0) - Ca[14C]O3 6.362e-019 6.373e-019 -18.196 -18.196 0.001 (0) - [14C]O[18O] 4.756e-019 4.763e-019 -18.323 -18.322 0.001 (0) - [14C]O3-2 3.264e-019 2.286e-019 -18.486 -18.641 -0.155 (0) - CaH[14C]O2[18O]+ 2.316e-020 2.124e-020 -19.635 -19.673 -0.037 (0) - CaH[14C][18O]O2+ 2.316e-020 2.124e-020 -19.635 -19.673 -0.037 (0) - CaH[14C]O[18O]O+ 2.316e-020 2.124e-020 -19.635 -19.673 -0.037 (0) - Ca[14C]O2[18O] 3.808e-021 3.815e-021 -20.419 -20.419 0.001 (0) - H[14C][18O]2O- 2.188e-021 2.002e-021 -20.660 -20.699 -0.039 (0) - H[14C][18O]O[18O]- 2.188e-021 2.002e-021 -20.660 -20.699 -0.039 (0) - H[14C]O[18O]2- 2.188e-021 2.002e-021 -20.660 -20.699 -0.039 (0) - [14C]O2[18O]-2 1.954e-021 1.369e-021 -20.709 -20.864 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 7.553e-018 - O[18O] 7.538e-018 7.550e-018 -17.123 -17.122 0.001 (0) - [18O]2 7.519e-021 7.532e-021 -20.124 -20.123 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -120.42 -123.28 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.84 -21.34 -1.50 [14C][18O]2 - [14C]H4(g) -131.41 -134.27 -2.86 [14C]H4 - [14C]O2(g) -14.47 -15.94 -1.47 [14C]O2 - [14C]O[18O](g) -16.85 -18.64 -1.79 [14C]O[18O] - [18O]2(g) -17.83 -20.12 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.00 -12.85 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.15 -7.45 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.94 -4.75 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.84 -10.15 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -118.47 -121.33 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.68 -38.83 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.83 -14.72 -2.89 O2 - O[18O](g) -14.53 -17.42 -2.89 O[18O] - - -Reaction step 64. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 64 3.2000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 2.96e-002 - Calcite 2.91e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.79e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 3.67e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 2.51e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 3.25e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.00e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 4.11e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 2.81e-012 4.76e-014 9.50e-011 - Ca[14C]O3(s) 3.36e-015 9.52e-018 1.14e-013 - Ca[14C]O2[18O](s) 2.07e-017 5.86e-020 7.00e-016 - Ca[14C]O[18O]2(s) 4.25e-020 1.20e-022 1.44e-018 - Ca[14C][18O]3(s) 2.91e-023 8.24e-026 9.83e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9873 permil - R(13C) 1.11418e-002 -3.4383 permil - R(14C) 1.14862e-013 9.7681 pmc - R(18O) H2O(l) 1.99520e-003 -4.9889 permil - R(18O) OH- 1.92123e-003 -41.876 permil - R(18O) H3O+ 2.04133e-003 18.019 permil - R(18O) O2(aq) 1.99520e-003 -4.9889 permil - R(13C) CO2(aq) 1.10620e-002 -10.57 permil - R(14C) CO2(aq) 1.13222e-013 9.6287 pmc - R(18O) CO2(aq) 2.07916e-003 36.885 permil - R(18O) HCO3- 1.99520e-003 -4.9889 permil - R(13C) HCO3- 1.11583e-002 -1.9623 permil - R(14C) HCO3- 1.15201e-013 9.7969 pmc - R(18O) CO3-2 1.99520e-003 -4.9889 permil - R(13C) CO3-2 1.11422e-002 -3.3946 permil - R(14C) CO3-2 1.14870e-013 9.7688 pmc - R(18O) Calcite 2.05264e-003 23.658 permil - R(13C) Calcite 1.11804e-002 0.014461 permil - R(14C) Calcite 1.15658e-013 9.8358 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2405e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.9944e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6519e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.507e-005 6.488e-005 - [14C] 6.708e-016 6.688e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 10.955 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.779e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -122.149 -122.148 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.084e-008 6.094e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.843e-039 - H2 9.214e-040 9.229e-040 -39.036 -39.035 0.001 (0) -O(0) 9.772e-015 - O2 4.867e-015 4.875e-015 -14.313 -14.312 0.001 (0) - O[18O] 1.942e-017 1.945e-017 -16.712 -16.711 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -124.105 -124.105 0.001 (0) -[13C](4) 6.507e-005 - H[13C]O3- 5.248e-005 4.802e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.102e-005 1.103e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-007 9.580e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-007 9.580e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-007 9.580e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.084e-008 6.094e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.581e-008 4.588e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.121e-008 2.187e-008 -7.506 -7.660 -0.155 (0) - CaH[13C]O[18O]O+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.642e-010 3.648e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.868e-010 1.309e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -135.095 -135.095 0.001 (0) -[14C](4) 6.708e-016 - H[14C]O3- 5.418e-016 4.957e-016 -15.266 -15.305 -0.039 (0) - [14C]O2 1.127e-016 1.129e-016 -15.948 -15.947 0.001 (0) - CaH[14C]O3+ 1.144e-017 1.050e-017 -16.941 -16.979 -0.037 (0) - H[14C][18O]O2- 1.081e-018 9.891e-019 -17.966 -18.005 -0.039 (0) - H[14C]O[18O]O- 1.081e-018 9.891e-019 -17.966 -18.005 -0.039 (0) - H[14C]O2[18O]- 1.081e-018 9.891e-019 -17.966 -18.005 -0.039 (0) - Ca[14C]O3 6.273e-019 6.283e-019 -18.203 -18.202 0.001 (0) - [14C]O[18O] 4.688e-019 4.696e-019 -18.329 -18.328 0.001 (0) - [14C]O3-2 3.218e-019 2.254e-019 -18.492 -18.647 -0.155 (0) - CaH[14C]O2[18O]+ 2.283e-020 2.094e-020 -19.642 -19.679 -0.037 (0) - CaH[14C][18O]O2+ 2.283e-020 2.094e-020 -19.642 -19.679 -0.037 (0) - CaH[14C]O[18O]O+ 2.283e-020 2.094e-020 -19.642 -19.679 -0.037 (0) - Ca[14C]O2[18O] 3.755e-021 3.761e-021 -20.425 -20.425 0.001 (0) - H[14C][18O]O[18O]- 2.157e-021 1.973e-021 -20.666 -20.705 -0.039 (0) - H[14C]O[18O]2- 2.157e-021 1.973e-021 -20.666 -20.705 -0.039 (0) - H[14C][18O]2O- 2.157e-021 1.973e-021 -20.666 -20.705 -0.039 (0) - [14C]O2[18O]-2 1.926e-021 1.349e-021 -20.715 -20.870 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.946e-017 - O[18O] 1.942e-017 1.945e-017 -16.712 -16.711 0.001 (0) - [18O]2 1.937e-020 1.940e-020 -19.713 -19.712 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.24 -124.10 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.84 -21.35 -1.50 [14C][18O]2 - [14C]H4(g) -132.23 -135.09 -2.86 [14C]H4 - [14C]O2(g) -14.48 -15.95 -1.47 [14C]O2 - [14C]O[18O](g) -16.86 -18.65 -1.79 [14C]O[18O] - [18O]2(g) -17.42 -19.71 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.01 -12.85 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.15 -7.45 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.94 -4.75 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.84 -10.15 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.29 -122.15 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.88 -39.03 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.42 -14.31 -2.89 O2 - O[18O](g) -14.12 -17.01 -2.89 O[18O] - - -Reaction step 65. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 65 3.2500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 3.01e-002 - Calcite 2.95e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.82e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 3.73e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 2.55e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 3.30e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.03e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 4.17e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 2.86e-012 4.76e-014 9.50e-011 - Ca[14C]O3(s) 3.37e-015 9.26e-018 1.12e-013 - Ca[14C]O2[18O](s) 2.07e-017 5.70e-020 6.90e-016 - Ca[14C]O[18O]2(s) 4.26e-020 1.17e-022 1.42e-018 - Ca[14C][18O]3(s) 2.91e-023 8.01e-026 9.69e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9872 permil - R(13C) 1.11421e-002 -3.4097 permil - R(14C) 1.13262e-013 9.632 pmc - R(18O) H2O(l) 1.99520e-003 -4.9887 permil - R(18O) OH- 1.92123e-003 -41.876 permil - R(18O) H3O+ 2.04133e-003 18.019 permil - R(18O) O2(aq) 1.99520e-003 -4.9887 permil - R(13C) CO2(aq) 1.10623e-002 -10.542 permil - R(14C) CO2(aq) 1.11646e-013 9.4946 pmc - R(18O) CO2(aq) 2.07916e-003 36.885 permil - R(18O) HCO3- 1.99520e-003 -4.9887 permil - R(13C) HCO3- 1.11586e-002 -1.9337 permil - R(14C) HCO3- 1.13597e-013 9.6605 pmc - R(18O) CO3-2 1.99520e-003 -4.9887 permil - R(13C) CO3-2 1.11426e-002 -3.366 permil - R(14C) CO3-2 1.13271e-013 9.6328 pmc - R(18O) Calcite 2.05264e-003 23.658 permil - R(13C) Calcite 1.11807e-002 0.043097 permil - R(14C) Calcite 1.14047e-013 9.6988 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2612e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6469e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.507e-005 6.488e-005 - [14C] 6.614e-016 6.595e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 8.903 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.789e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -105.734 -105.733 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.084e-008 6.095e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 2.340e-035 - H2 1.170e-035 1.172e-035 -34.932 -34.931 0.001 (0) -O(0) 6.060e-023 - O2 3.018e-023 3.023e-023 -22.520 -22.520 0.001 (0) - O[18O] 1.204e-025 1.206e-025 -24.919 -24.919 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -107.690 -107.690 0.001 (0) -[13C](4) 6.507e-005 - H[13C]O3- 5.248e-005 4.802e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.102e-005 1.103e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.047e-007 9.580e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-007 9.580e-008 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.047e-007 9.580e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.084e-008 6.095e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.581e-008 4.588e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.121e-008 2.187e-008 -7.506 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.211e-009 2.028e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.642e-010 3.648e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.089e-010 1.911e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.868e-010 1.309e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -118.686 -118.686 0.001 (0) -[14C](4) 6.614e-016 - H[14C]O3- 5.343e-016 4.888e-016 -15.272 -15.311 -0.039 (0) - [14C]O2 1.112e-016 1.114e-016 -15.954 -15.953 0.001 (0) - CaH[14C]O3+ 1.128e-017 1.035e-017 -16.948 -16.985 -0.037 (0) - H[14C][18O]O2- 1.066e-018 9.753e-019 -17.972 -18.011 -0.039 (0) - H[14C]O[18O]O- 1.066e-018 9.753e-019 -17.972 -18.011 -0.039 (0) - H[14C]O2[18O]- 1.066e-018 9.753e-019 -17.972 -18.011 -0.039 (0) - Ca[14C]O3 6.185e-019 6.195e-019 -18.209 -18.208 0.001 (0) - [14C]O[18O] 4.623e-019 4.631e-019 -18.335 -18.334 0.001 (0) - [14C]O3-2 3.173e-019 2.223e-019 -18.499 -18.653 -0.155 (0) - CaH[14C]O2[18O]+ 2.251e-020 2.065e-020 -19.648 -19.685 -0.037 (0) - CaH[14C][18O]O2+ 2.251e-020 2.065e-020 -19.648 -19.685 -0.037 (0) - CaH[14C]O[18O]O+ 2.251e-020 2.065e-020 -19.648 -19.685 -0.037 (0) - Ca[14C]O2[18O] 3.702e-021 3.708e-021 -20.432 -20.431 0.001 (0) - H[14C]O[18O]2- 2.127e-021 1.946e-021 -20.672 -20.711 -0.039 (0) - H[14C][18O]2O- 2.127e-021 1.946e-021 -20.672 -20.711 -0.039 (0) - H[14C][18O]O[18O]- 2.127e-021 1.946e-021 -20.672 -20.711 -0.039 (0) - [14C]O2[18O]-2 1.899e-021 1.330e-021 -20.721 -20.876 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 1.207e-025 - O[18O] 1.204e-025 1.206e-025 -24.919 -24.919 0.001 (0) - [18O]2 1.201e-028 1.203e-028 -27.920 -27.920 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -104.83 -107.69 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.85 -21.35 -1.50 [14C][18O]2 - [14C]H4(g) -115.83 -118.69 -2.86 [14C]H4 - [14C]O2(g) -14.48 -15.95 -1.47 [14C]O2 - [14C]O[18O](g) -16.87 -18.65 -1.79 [14C]O[18O] - [18O]2(g) -25.63 -27.92 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.01 -12.86 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.16 -7.46 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.95 -4.76 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.85 -10.16 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -102.87 -105.73 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -31.78 -34.93 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -19.63 -22.52 -2.89 O2 - O[18O](g) -22.33 -25.22 -2.89 O[18O] - - -Reaction step 66. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 66 3.3000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 3.06e-002 - Calcite 3.00e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.85e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 3.80e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 2.60e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 3.36e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.07e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 4.24e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 2.90e-012 4.76e-014 9.50e-011 - Ca[14C]O3(s) 3.38e-015 9.00e-018 1.11e-013 - Ca[14C]O2[18O](s) 2.08e-017 5.54e-020 6.81e-016 - Ca[14C]O[18O]2(s) 4.27e-020 1.14e-022 1.40e-018 - Ca[14C][18O]3(s) 2.92e-023 7.79e-026 9.56e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9871 permil - R(13C) 1.11424e-002 -3.382 permil - R(14C) 1.11706e-013 9.4998 pmc - R(18O) H2O(l) 1.99520e-003 -4.9886 permil - R(18O) OH- 1.92123e-003 -41.876 permil - R(18O) H3O+ 2.04133e-003 18.019 permil - R(13C) CO2(aq) 1.10626e-002 -10.514 permil - R(14C) CO2(aq) 1.10112e-013 9.3642 pmc - R(18O) CO2(aq) 2.07916e-003 36.886 permil - R(18O) HCO3- 1.99520e-003 -4.9886 permil - R(13C) HCO3- 1.11589e-002 -1.9059 permil - R(14C) HCO3- 1.12036e-013 9.5278 pmc - R(18O) CO3-2 1.99520e-003 -4.9886 permil - R(13C) CO3-2 1.11429e-002 -3.3383 permil - R(14C) CO3-2 1.11715e-013 9.5005 pmc - R(13C) CH4(aq) 1.10626e-002 -10.514 permil - R(14C) CH4(aq) 1.10112e-013 9.3642 pmc - R(18O) Calcite 2.05264e-003 23.658 permil - R(13C) Calcite 1.11810e-002 0.070946 permil - R(14C) Calcite 1.12481e-013 9.5656 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.4425e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5046e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.3101e-011 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.5321e-011 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.507e-005 6.488e-005 - [14C] 6.524e-016 6.505e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -1.282 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.817e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 21 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 5.585e-025 - CH4 5.585e-025 5.594e-025 -24.253 -24.252 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.085e-008 6.095e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 5.489e-015 - H2 2.745e-015 2.749e-015 -14.562 -14.561 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -63.261 -63.260 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -65.660 -65.659 0.001 (0) -[13C](-4) 6.179e-027 - [13C]H4 6.179e-027 6.189e-027 -26.209 -26.208 0.001 (0) -[13C](4) 6.507e-005 - H[13C]O3- 5.249e-005 4.802e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.102e-005 1.103e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.047e-007 9.581e-008 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.047e-007 9.581e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-007 9.581e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.085e-008 6.095e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.581e-008 4.588e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.121e-008 2.187e-008 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.211e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.211e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.211e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.642e-010 3.648e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.089e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.868e-010 1.309e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 6.150e-038 - [14C]H4 6.150e-038 6.160e-038 -37.211 -37.210 0.001 (0) -[14C](4) 6.524e-016 - H[14C]O3- 5.270e-016 4.821e-016 -15.278 -15.317 -0.039 (0) - [14C]O2 1.097e-016 1.098e-016 -15.960 -15.959 0.001 (0) - CaH[14C]O3+ 1.113e-017 1.021e-017 -16.954 -16.991 -0.037 (0) - H[14C][18O]O2- 1.051e-018 9.619e-019 -17.978 -18.017 -0.039 (0) - H[14C]O[18O]O- 1.051e-018 9.619e-019 -17.978 -18.017 -0.039 (0) - H[14C]O2[18O]- 1.051e-018 9.619e-019 -17.978 -18.017 -0.039 (0) - Ca[14C]O3 6.100e-019 6.110e-019 -18.215 -18.214 0.001 (0) - [14C]O[18O] 4.560e-019 4.567e-019 -18.341 -18.340 0.001 (0) - [14C]O3-2 3.129e-019 2.192e-019 -18.505 -18.659 -0.155 (0) - CaH[14C]O2[18O]+ 2.220e-020 2.037e-020 -19.654 -19.691 -0.037 (0) - CaH[14C][18O]O2+ 2.220e-020 2.037e-020 -19.654 -19.691 -0.037 (0) - CaH[14C]O[18O]O+ 2.220e-020 2.037e-020 -19.654 -19.691 -0.037 (0) - Ca[14C]O2[18O] 3.651e-021 3.657e-021 -20.438 -20.437 0.001 (0) - H[14C][18O]2O- 2.098e-021 1.919e-021 -20.678 -20.717 -0.039 (0) - H[14C][18O]O[18O]- 2.098e-021 1.919e-021 -20.678 -20.717 -0.039 (0) - H[14C]O[18O]2- 2.098e-021 1.919e-021 -20.678 -20.717 -0.039 (0) - [14C]O2[18O]-2 1.873e-021 1.312e-021 -20.727 -20.882 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -65.660 -65.659 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -68.661 -68.660 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -23.35 -26.21 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.86 -21.36 -1.50 [14C][18O]2 - [14C]H4(g) -34.35 -37.21 -2.86 [14C]H4 - [14C]O2(g) -14.49 -15.96 -1.47 [14C]O2 - [14C]O[18O](g) -16.87 -18.66 -1.79 [14C]O[18O] - [18O]2(g) -66.37 -68.66 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.02 -12.86 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.17 -7.46 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.96 -4.76 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.85 -10.16 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -21.39 -24.25 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -11.41 -14.56 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -60.37 -63.26 -2.89 O2 - O[18O](g) -63.07 -65.96 -2.89 O[18O] - - -Reaction step 67. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 67 3.3500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 3.11e-002 - Calcite 3.05e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.88e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 3.86e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 2.64e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 3.41e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.10e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 4.31e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 2.95e-012 4.76e-014 9.50e-011 - Ca[14C]O3(s) 3.39e-015 8.76e-018 1.09e-013 - Ca[14C]O2[18O](s) 2.09e-017 5.39e-020 6.72e-016 - Ca[14C]O[18O]2(s) 4.28e-020 1.11e-022 1.38e-018 - Ca[14C][18O]3(s) 2.93e-023 7.58e-026 9.43e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9869 permil - R(13C) 1.11427e-002 -3.355 permil - R(14C) 1.10193e-013 9.371 pmc - R(18O) H2O(l) 1.99520e-003 -4.9885 permil - R(18O) OH- 1.92123e-003 -41.876 permil - R(18O) H3O+ 2.04133e-003 18.019 permil - R(13C) CO2(aq) 1.10629e-002 -10.488 permil - R(14C) CO2(aq) 1.08620e-013 9.2373 pmc - R(18O) CO2(aq) 2.07916e-003 36.886 permil - R(18O) HCO3- 1.99520e-003 -4.9885 permil - R(13C) HCO3- 1.11592e-002 -1.8789 permil - R(14C) HCO3- 1.10518e-013 9.3987 pmc - R(18O) CO3-2 1.99520e-003 -4.9885 permil - R(13C) CO3-2 1.11432e-002 -3.3113 permil - R(14C) CO3-2 1.10201e-013 9.3718 pmc - R(13C) CH4(aq) 1.10629e-002 -10.488 permil - R(14C) CH4(aq) 1.08620e-013 9.2373 pmc - R(18O) Calcite 2.05264e-003 23.658 permil - R(13C) Calcite 1.11813e-002 0.098041 permil - R(14C) Calcite 1.10957e-013 9.436 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6724e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 7.7716e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -4.2188e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.507e-005 6.488e-005 - [14C] 6.435e-016 6.416e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -1.675 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.826e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 7 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 7.744e-022 - CH4 7.744e-022 7.757e-022 -21.111 -21.110 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.085e-008 6.095e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 3.350e-014 - H2 1.675e-014 1.678e-014 -13.776 -13.775 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -64.832 -64.831 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -67.231 -67.230 0.001 (0) -[13C](-4) 8.567e-024 - [13C]H4 8.567e-024 8.581e-024 -23.067 -23.066 0.001 (0) -[13C](4) 6.507e-005 - H[13C]O3- 5.249e-005 4.802e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.102e-005 1.103e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-007 9.581e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-007 9.581e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-007 9.581e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.085e-008 6.095e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.581e-008 4.589e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.121e-008 2.187e-008 -7.506 -7.660 -0.155 (0) - CaH[13C]O[18O]O+ 2.211e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.211e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.211e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.642e-010 3.648e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.089e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.868e-010 1.309e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 8.412e-035 - [14C]H4 8.412e-035 8.426e-035 -34.075 -34.074 0.001 (0) -[14C](4) 6.435e-016 - H[14C]O3- 5.198e-016 4.756e-016 -15.284 -15.323 -0.039 (0) - [14C]O2 1.082e-016 1.083e-016 -15.966 -15.965 0.001 (0) - CaH[14C]O3+ 1.098e-017 1.007e-017 -16.960 -16.997 -0.037 (0) - H[14C][18O]O2- 1.037e-018 9.489e-019 -17.984 -18.023 -0.039 (0) - H[14C]O[18O]O- 1.037e-018 9.489e-019 -17.984 -18.023 -0.039 (0) - H[14C]O2[18O]- 1.037e-018 9.489e-019 -17.984 -18.023 -0.039 (0) - Ca[14C]O3 6.018e-019 6.028e-019 -18.221 -18.220 0.001 (0) - [14C]O[18O] 4.498e-019 4.505e-019 -18.347 -18.346 0.001 (0) - [14C]O3-2 3.087e-019 2.163e-019 -18.510 -18.665 -0.155 (0) - CaH[14C]O2[18O]+ 2.190e-020 2.009e-020 -19.660 -19.697 -0.037 (0) - CaH[14C][18O]O2+ 2.190e-020 2.009e-020 -19.660 -19.697 -0.037 (0) - CaH[14C]O[18O]O+ 2.190e-020 2.009e-020 -19.660 -19.697 -0.037 (0) - Ca[14C]O2[18O] 3.602e-021 3.608e-021 -20.443 -20.443 0.001 (0) - H[14C][18O]O[18O]- 2.069e-021 1.893e-021 -20.684 -20.723 -0.039 (0) - H[14C]O[18O]2- 2.069e-021 1.893e-021 -20.684 -20.723 -0.039 (0) - H[14C][18O]2O- 2.069e-021 1.893e-021 -20.684 -20.723 -0.039 (0) - [14C]O2[18O]-2 1.848e-021 1.294e-021 -20.733 -20.888 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -67.231 -67.230 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -70.232 -70.231 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -20.21 -23.07 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.86 -21.37 -1.50 [14C][18O]2 - [14C]H4(g) -31.21 -34.07 -2.86 [14C]H4 - [14C]O2(g) -14.50 -15.97 -1.47 [14C]O2 - [14C]O[18O](g) -16.88 -18.67 -1.79 [14C]O[18O] - [18O]2(g) -67.94 -70.23 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.03 -12.87 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.17 -7.47 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.96 -4.77 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.86 -10.17 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -18.25 -21.11 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.63 -13.78 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -61.94 -64.83 -2.89 O2 - O[18O](g) -64.64 -67.53 -2.89 O[18O] - - -Reaction step 68. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 68 3.4000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 3.16e-002 - Calcite 3.10e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.91e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 3.92e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 2.68e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 3.47e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.14e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 4.38e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 3.00e-012 4.76e-014 9.50e-011 - Ca[14C]O3(s) 3.40e-015 8.52e-018 1.08e-013 - Ca[14C]O2[18O](s) 2.09e-017 5.25e-020 6.63e-016 - Ca[14C]O[18O]2(s) 4.29e-020 1.08e-022 1.36e-018 - Ca[14C][18O]3(s) 2.94e-023 7.37e-026 9.31e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9868 permil - R(13C) 1.11430e-002 -3.3287 permil - R(14C) 1.08720e-013 9.2458 pmc - R(18O) H2O(l) 1.99520e-003 -4.9883 permil - R(18O) OH- 1.92123e-003 -41.876 permil - R(18O) H3O+ 2.04133e-003 18.02 permil - R(13C) CO2(aq) 1.10632e-002 -10.461 permil - R(14C) CO2(aq) 1.07168e-013 9.1138 pmc - R(18O) CO2(aq) 2.07916e-003 36.886 permil - R(18O) HCO3- 1.99520e-003 -4.9883 permil - R(13C) HCO3- 1.11595e-002 -1.8526 permil - R(14C) HCO3- 1.09041e-013 9.2731 pmc - R(18O) CO3-2 1.99520e-003 -4.9883 permil - R(13C) CO3-2 1.11435e-002 -3.285 permil - R(14C) CO3-2 1.08728e-013 9.2465 pmc - R(13C) CH4(aq) 1.10632e-002 -10.461 permil - R(14C) CH4(aq) 1.07168e-013 9.1138 pmc - R(18O) Calcite 2.05264e-003 23.658 permil - R(13C) Calcite 1.11816e-002 0.12441 permil - R(14C) Calcite 1.09473e-013 9.3099 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6471e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.7097e-011 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.521e-011 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.507e-005 6.488e-005 - [14C] 6.349e-016 6.331e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -1.823 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.217e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 6 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.191e-020 - CH4 1.191e-020 1.193e-020 -19.924 -19.923 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.085e-008 6.095e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 6.634e-014 - H2 3.317e-014 3.322e-014 -13.479 -13.479 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -65.425 -65.425 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -67.824 -67.824 0.001 (0) -[13C](-4) 1.318e-022 - [13C]H4 1.318e-022 1.320e-022 -21.880 -21.879 0.001 (0) -[13C](4) 6.507e-005 - H[13C]O3- 5.249e-005 4.802e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.102e-005 1.103e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.047e-007 9.581e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-007 9.581e-008 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.047e-007 9.581e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.085e-008 6.095e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.581e-008 4.589e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.121e-008 2.187e-008 -7.506 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.211e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.211e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.211e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.642e-010 3.648e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.089e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.089e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.089e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.868e-010 1.309e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 1.277e-033 - [14C]H4 1.277e-033 1.279e-033 -32.894 -32.893 0.001 (0) -[14C](4) 6.349e-016 - H[14C]O3- 5.129e-016 4.692e-016 -15.290 -15.329 -0.039 (0) - [14C]O2 1.067e-016 1.069e-016 -15.972 -15.971 0.001 (0) - CaH[14C]O3+ 1.083e-017 9.935e-018 -16.965 -17.003 -0.037 (0) - H[14C][18O]O2- 1.023e-018 9.362e-019 -17.990 -18.029 -0.039 (0) - H[14C]O[18O]O- 1.023e-018 9.362e-019 -17.990 -18.029 -0.039 (0) - H[14C]O2[18O]- 1.023e-018 9.362e-019 -17.990 -18.029 -0.039 (0) - Ca[14C]O3 5.937e-019 5.947e-019 -18.226 -18.226 0.001 (0) - [14C]O[18O] 4.438e-019 4.445e-019 -18.353 -18.352 0.001 (0) - [14C]O3-2 3.046e-019 2.134e-019 -18.516 -18.671 -0.155 (0) - CaH[14C]O2[18O]+ 2.161e-020 1.982e-020 -19.665 -19.703 -0.037 (0) - CaH[14C][18O]O2+ 2.161e-020 1.982e-020 -19.665 -19.703 -0.037 (0) - CaH[14C]O[18O]O+ 2.161e-020 1.982e-020 -19.665 -19.703 -0.037 (0) - Ca[14C]O2[18O] 3.554e-021 3.560e-021 -20.449 -20.449 0.001 (0) - H[14C]O[18O]2- 2.042e-021 1.868e-021 -20.690 -20.729 -0.039 (0) - H[14C][18O]2O- 2.042e-021 1.868e-021 -20.690 -20.729 -0.039 (0) - H[14C][18O]O[18O]- 2.042e-021 1.868e-021 -20.690 -20.729 -0.039 (0) - [14C]O2[18O]-2 1.823e-021 1.277e-021 -20.739 -20.894 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -67.824 -67.824 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -70.825 -70.825 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.02 -21.88 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.87 -21.37 -1.50 [14C][18O]2 - [14C]H4(g) -30.03 -32.89 -2.86 [14C]H4 - [14C]O2(g) -14.50 -15.97 -1.47 [14C]O2 - [14C]O[18O](g) -16.88 -18.67 -1.79 [14C]O[18O] - [18O]2(g) -68.53 -70.82 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.03 -12.88 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.18 -7.48 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.97 -4.78 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.87 -10.18 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.06 -19.92 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.33 -13.48 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.53 -65.42 -2.89 O2 - O[18O](g) -65.23 -68.12 -2.89 O[18O] - - -Reaction step 69. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 69 3.4500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 3.21e-002 - Calcite 3.15e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.94e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 3.98e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 2.72e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 3.52e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.17e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 4.45e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 3.05e-012 4.76e-014 9.50e-011 - Ca[14C]O3(s) 3.40e-015 8.30e-018 1.06e-013 - Ca[14C]O2[18O](s) 2.10e-017 5.11e-020 6.54e-016 - Ca[14C]O[18O]2(s) 4.30e-020 1.05e-022 1.34e-018 - Ca[14C][18O]3(s) 2.94e-023 7.18e-026 9.18e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9867 permil - R(13C) 1.11433e-002 -3.3031 permil - R(14C) 1.07286e-013 9.1238 pmc - R(18O) H2O(l) 1.99520e-003 -4.9882 permil - R(18O) OH- 1.92123e-003 -41.876 permil - R(18O) H3O+ 2.04133e-003 18.02 permil - R(13C) CO2(aq) 1.10635e-002 -10.436 permil - R(14C) CO2(aq) 1.05755e-013 8.9936 pmc - R(18O) CO2(aq) 2.07916e-003 36.886 permil - R(18O) HCO3- 1.99520e-003 -4.9882 permil - R(13C) HCO3- 1.11598e-002 -1.8269 permil - R(14C) HCO3- 1.07603e-013 9.1508 pmc - R(18O) CO3-2 1.99520e-003 -4.9882 permil - R(13C) CO3-2 1.11438e-002 -3.2594 permil - R(14C) CO3-2 1.07294e-013 9.1245 pmc - R(13C) CH4(aq) 1.10635e-002 -10.436 permil - R(14C) CH4(aq) 1.05755e-013 8.9936 pmc - R(18O) Calcite 2.05264e-003 23.658 permil - R(13C) Calcite 1.11819e-002 0.15009 permil - R(14C) Calcite 1.08029e-013 9.187 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.715e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 0 0 -Alpha 14C CH4(aq)/CO2(aq) 1 5.7732e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.508e-005 6.489e-005 - [14C] 6.265e-016 6.247e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -1.921 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.218e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 8 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 7.164e-020 - CH4 7.164e-020 7.176e-020 -19.145 -19.144 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.085e-008 6.095e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.039e-013 - H2 5.194e-014 5.203e-014 -13.284 -13.284 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -65.815 -65.814 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -68.214 -68.213 0.001 (0) -[13C](-4) 7.926e-022 - [13C]H4 7.926e-022 7.939e-022 -21.101 -21.100 0.001 (0) -[13C](4) 6.508e-005 - H[13C]O3- 5.249e-005 4.802e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.047e-007 9.581e-008 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.047e-007 9.581e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-007 9.581e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.085e-008 6.095e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.581e-008 4.589e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.122e-008 2.187e-008 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.642e-010 3.648e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.868e-010 1.309e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 7.576e-033 - [14C]H4 7.576e-033 7.588e-033 -32.121 -32.120 0.001 (0) -[14C](4) 6.265e-016 - H[14C]O3- 5.061e-016 4.630e-016 -15.296 -15.334 -0.039 (0) - [14C]O2 1.053e-016 1.055e-016 -15.978 -15.977 0.001 (0) - CaH[14C]O3+ 1.069e-017 9.804e-018 -16.971 -17.009 -0.037 (0) - H[14C][18O]O2- 1.010e-018 9.238e-019 -17.996 -18.034 -0.039 (0) - H[14C]O[18O]O- 1.010e-018 9.238e-019 -17.996 -18.034 -0.039 (0) - H[14C]O2[18O]- 1.010e-018 9.238e-019 -17.996 -18.034 -0.039 (0) - Ca[14C]O3 5.859e-019 5.869e-019 -18.232 -18.231 0.001 (0) - [14C]O[18O] 4.379e-019 4.386e-019 -18.359 -18.358 0.001 (0) - [14C]O3-2 3.006e-019 2.106e-019 -18.522 -18.677 -0.155 (0) - CaH[14C]O2[18O]+ 2.132e-020 1.956e-020 -19.671 -19.709 -0.037 (0) - CaH[14C][18O]O2+ 2.132e-020 1.956e-020 -19.671 -19.709 -0.037 (0) - CaH[14C]O[18O]O+ 2.132e-020 1.956e-020 -19.671 -19.709 -0.037 (0) - Ca[14C]O2[18O] 3.507e-021 3.513e-021 -20.455 -20.454 0.001 (0) - H[14C][18O]2O- 2.015e-021 1.843e-021 -20.696 -20.734 -0.039 (0) - H[14C][18O]O[18O]- 2.015e-021 1.843e-021 -20.696 -20.734 -0.039 (0) - H[14C]O[18O]2- 2.015e-021 1.843e-021 -20.696 -20.734 -0.039 (0) - [14C]O2[18O]-2 1.799e-021 1.260e-021 -20.745 -20.900 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -68.214 -68.213 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -71.215 -71.214 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.24 -21.10 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.87 -21.38 -1.50 [14C][18O]2 - [14C]H4(g) -29.26 -32.12 -2.86 [14C]H4 - [14C]O2(g) -14.51 -15.98 -1.47 [14C]O2 - [14C]O[18O](g) -16.89 -18.68 -1.79 [14C]O[18O] - [18O]2(g) -68.92 -71.21 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.04 -12.88 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.18 -7.48 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.97 -4.78 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.87 -10.18 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.28 -19.14 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.13 -13.28 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.92 -65.81 -2.89 O2 - O[18O](g) -65.62 -68.51 -2.89 O[18O] - - -Reaction step 70. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 70 3.5000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 3.26e-002 - Calcite 3.20e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 1.97e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 4.04e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 2.77e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 3.58e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.20e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 4.52e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 3.09e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.41e-015 8.08e-018 1.05e-013 - Ca[14C]O2[18O](s) 2.10e-017 4.98e-020 6.45e-016 - Ca[14C]O[18O]2(s) 4.31e-020 1.02e-022 1.32e-018 - Ca[14C][18O]3(s) 2.95e-023 6.99e-026 9.06e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9865 permil - R(13C) 1.11435e-002 -3.2782 permil - R(14C) 1.05889e-013 9.005 pmc - R(18O) H2O(l) 1.99520e-003 -4.988 permil - R(18O) OH- 1.92123e-003 -41.875 permil - R(18O) H3O+ 2.04133e-003 18.02 permil - R(13C) CO2(aq) 1.10638e-002 -10.411 permil - R(14C) CO2(aq) 1.04378e-013 8.8765 pmc - R(18O) CO2(aq) 2.07916e-003 36.886 permil - R(18O) HCO3- 1.99520e-003 -4.988 permil - R(13C) HCO3- 1.11601e-002 -1.802 permil - R(14C) HCO3- 1.06202e-013 9.0316 pmc - R(18O) CO3-2 1.99520e-003 -4.988 permil - R(13C) CO3-2 1.11440e-002 -3.2345 permil - R(14C) CO3-2 1.05897e-013 9.0057 pmc - R(13C) CH4(aq) 1.10638e-002 -10.411 permil - R(14C) CH4(aq) 1.04378e-013 8.8765 pmc - R(18O) Calcite 2.05264e-003 23.658 permil - R(13C) Calcite 1.11822e-002 0.1751 permil - R(14C) Calcite 1.06623e-013 9.0674 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6416e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.0214e-011 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -2.2204e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.508e-005 6.489e-005 - [14C] 6.184e-016 6.166e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -1.845 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.218e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.781e-020 - CH4 1.781e-020 1.784e-020 -19.749 -19.749 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.085e-008 6.095e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 7.335e-014 - H2 3.668e-014 3.674e-014 -13.436 -13.435 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -65.513 -65.512 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -67.912 -67.911 0.001 (0) -[13C](-4) 1.970e-022 - [13C]H4 1.970e-022 1.974e-022 -21.705 -21.705 0.001 (0) -[13C](4) 6.508e-005 - H[13C]O3- 5.249e-005 4.802e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-007 9.582e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-007 9.582e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-007 9.582e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.085e-008 6.095e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.581e-008 4.589e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.122e-008 2.187e-008 -7.506 -7.660 -0.155 (0) - CaH[13C]O[18O]O+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.642e-010 3.648e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.868e-010 1.309e-010 -9.729 -9.883 -0.155 (0) -[14C](-4) 1.859e-033 - [14C]H4 1.859e-033 1.862e-033 -32.731 -32.730 0.001 (0) -[14C](4) 6.184e-016 - H[14C]O3- 4.995e-016 4.570e-016 -15.301 -15.340 -0.039 (0) - [14C]O2 1.039e-016 1.041e-016 -15.983 -15.983 0.001 (0) - CaH[14C]O3+ 1.055e-017 9.676e-018 -16.977 -17.014 -0.037 (0) - H[14C][18O]O2- 9.966e-019 9.118e-019 -18.001 -18.040 -0.039 (0) - H[14C]O[18O]O- 9.966e-019 9.118e-019 -18.001 -18.040 -0.039 (0) - H[14C]O2[18O]- 9.966e-019 9.118e-019 -18.001 -18.040 -0.039 (0) - Ca[14C]O3 5.783e-019 5.792e-019 -18.238 -18.237 0.001 (0) - [14C]O[18O] 4.322e-019 4.329e-019 -18.364 -18.364 0.001 (0) - [14C]O3-2 2.966e-019 2.078e-019 -18.528 -18.682 -0.155 (0) - CaH[14C]O2[18O]+ 2.105e-020 1.931e-020 -19.677 -19.714 -0.037 (0) - CaH[14C][18O]O2+ 2.105e-020 1.931e-020 -19.677 -19.714 -0.037 (0) - CaH[14C]O[18O]O+ 2.105e-020 1.931e-020 -19.677 -19.714 -0.037 (0) - Ca[14C]O2[18O] 3.461e-021 3.467e-021 -20.461 -20.460 0.001 (0) - H[14C][18O]O[18O]- 1.989e-021 1.819e-021 -20.701 -20.740 -0.039 (0) - H[14C]O[18O]2- 1.989e-021 1.819e-021 -20.701 -20.740 -0.039 (0) - H[14C][18O]2O- 1.989e-021 1.819e-021 -20.701 -20.740 -0.039 (0) - [14C]O2[18O]-2 1.776e-021 1.244e-021 -20.751 -20.905 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -67.912 -67.911 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -70.913 -70.912 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.84 -21.70 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.88 -21.38 -1.50 [14C][18O]2 - [14C]H4(g) -29.87 -32.73 -2.86 [14C]H4 - [14C]O2(g) -14.51 -15.98 -1.47 [14C]O2 - [14C]O[18O](g) -16.90 -18.68 -1.79 [14C]O[18O] - [18O]2(g) -68.62 -70.91 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.04 -12.89 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.19 -7.49 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.98 -4.79 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.88 -10.19 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.89 -19.75 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.28 -13.43 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.62 -65.51 -2.89 O2 - O[18O](g) -65.32 -68.21 -2.89 O[18O] - - -Reaction step 71. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 71 3.5500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 3.31e-002 - Calcite 3.25e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.00e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 4.11e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 2.81e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 3.63e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.24e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 4.59e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 3.14e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.42e-015 7.88e-018 1.03e-013 - Ca[14C]O2[18O](s) 2.11e-017 4.85e-020 6.37e-016 - Ca[14C]O[18O]2(s) 4.32e-020 9.96e-023 1.31e-018 - Ca[14C][18O]3(s) 2.96e-023 6.81e-026 8.95e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9864 permil - R(13C) 1.11438e-002 -3.2539 permil - R(14C) 1.04528e-013 8.8893 pmc - R(18O) H2O(l) 1.99520e-003 -4.9879 permil - R(18O) OH- 1.92123e-003 -41.875 permil - R(18O) H3O+ 2.04133e-003 18.02 permil - R(13C) CO2(aq) 1.10641e-002 -10.387 permil - R(14C) CO2(aq) 1.03036e-013 8.7624 pmc - R(18O) CO2(aq) 2.07916e-003 36.886 permil - R(18O) HCO3- 1.99520e-003 -4.9879 permil - R(13C) HCO3- 1.11603e-002 -1.7777 permil - R(14C) HCO3- 1.04837e-013 8.9156 pmc - R(18O) CO3-2 1.99520e-003 -4.9879 permil - R(13C) CO3-2 1.11443e-002 -3.2102 permil - R(14C) CO3-2 1.04536e-013 8.89 pmc - R(13C) CH4(aq) 1.10641e-002 -10.387 permil - R(14C) CH4(aq) 1.03036e-013 8.7624 pmc - R(18O) Calcite 2.05264e-003 23.659 permil - R(13C) Calcite 1.11824e-002 0.19946 permil - R(14C) Calcite 1.05253e-013 8.9509 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.1062e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6257e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.3101e-011 0 -Alpha 14C CH4(aq)/CO2(aq) 1 9.1038e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.508e-005 6.489e-005 - [14C] 6.104e-016 6.087e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -1.952 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.220e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 7 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.266e-019 - CH4 1.266e-019 1.268e-019 -18.898 -18.897 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.085e-008 6.095e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.198e-013 - H2 5.989e-014 5.998e-014 -13.223 -13.222 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -65.939 -65.938 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -68.338 -68.337 0.001 (0) -[13C](-4) 1.401e-021 - [13C]H4 1.401e-021 1.403e-021 -20.854 -20.853 0.001 (0) -[13C](4) 6.508e-005 - H[13C]O3- 5.249e-005 4.802e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.108e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.047e-007 9.582e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-007 9.582e-008 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.047e-007 9.582e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.085e-008 6.095e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.582e-008 4.589e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.122e-008 2.187e-008 -7.506 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.642e-010 3.648e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.309e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 1.304e-032 - [14C]H4 1.304e-032 1.306e-032 -31.885 -31.884 0.001 (0) -[14C](4) 6.104e-016 - H[14C]O3- 4.931e-016 4.511e-016 -15.307 -15.346 -0.039 (0) - [14C]O2 1.026e-016 1.028e-016 -15.989 -15.988 0.001 (0) - CaH[14C]O3+ 1.041e-017 9.552e-018 -16.982 -17.020 -0.037 (0) - H[14C][18O]O2- 9.838e-019 9.001e-019 -18.007 -18.046 -0.039 (0) - H[14C]O[18O]O- 9.838e-019 9.001e-019 -18.007 -18.046 -0.039 (0) - H[14C]O2[18O]- 9.838e-019 9.001e-019 -18.007 -18.046 -0.039 (0) - Ca[14C]O3 5.708e-019 5.718e-019 -18.243 -18.243 0.001 (0) - [14C]O[18O] 4.267e-019 4.274e-019 -18.370 -18.369 0.001 (0) - [14C]O3-2 2.928e-019 2.051e-019 -18.533 -18.688 -0.155 (0) - CaH[14C]O2[18O]+ 2.078e-020 1.906e-020 -19.682 -19.720 -0.037 (0) - CaH[14C][18O]O2+ 2.078e-020 1.906e-020 -19.682 -19.720 -0.037 (0) - CaH[14C]O[18O]O+ 2.078e-020 1.906e-020 -19.682 -19.720 -0.037 (0) - Ca[14C]O2[18O] 3.417e-021 3.422e-021 -20.466 -20.466 0.001 (0) - H[14C]O[18O]2- 1.963e-021 1.796e-021 -20.707 -20.746 -0.039 (0) - H[14C][18O]2O- 1.963e-021 1.796e-021 -20.707 -20.746 -0.039 (0) - H[14C][18O]O[18O]- 1.963e-021 1.796e-021 -20.707 -20.746 -0.039 (0) - [14C]O2[18O]-2 1.753e-021 1.228e-021 -20.756 -20.911 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -68.338 -68.337 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -71.339 -71.338 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.99 -20.85 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.88 -21.39 -1.50 [14C][18O]2 - [14C]H4(g) -29.02 -31.88 -2.86 [14C]H4 - [14C]O2(g) -14.52 -15.99 -1.47 [14C]O2 - [14C]O[18O](g) -16.90 -18.69 -1.79 [14C]O[18O] - [18O]2(g) -69.05 -71.34 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.05 -12.89 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.20 -7.49 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.99 -4.79 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.88 -10.19 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.04 -18.90 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.07 -13.22 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.05 -65.94 -2.89 O2 - O[18O](g) -65.75 -68.64 -2.89 O[18O] - - -Reaction step 72. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 72 3.6000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 3.36e-002 - Calcite 3.30e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.03e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 4.17e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 2.85e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 3.69e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.27e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 4.66e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 3.19e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.43e-015 7.68e-018 1.02e-013 - Ca[14C]O2[18O](s) 2.11e-017 4.73e-020 6.29e-016 - Ca[14C]O[18O]2(s) 4.33e-020 9.70e-023 1.29e-018 - Ca[14C][18O]3(s) 2.96e-023 6.64e-026 8.83e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9862 permil - R(13C) 1.11441e-002 -3.2302 permil - R(14C) 1.03202e-013 8.7765 pmc - R(18O) H2O(l) 1.99520e-003 -4.9878 permil - R(18O) OH- 1.92123e-003 -41.875 permil - R(18O) H3O+ 2.04133e-003 18.02 permil - R(13C) CO2(aq) 1.10643e-002 -10.364 permil - R(14C) CO2(aq) 1.01729e-013 8.6512 pmc - R(18O) CO2(aq) 2.07916e-003 36.886 permil - R(18O) HCO3- 1.99520e-003 -4.9878 permil - R(13C) HCO3- 1.11606e-002 -1.754 permil - R(14C) HCO3- 1.03507e-013 8.8024 pmc - R(18O) CO3-2 1.99520e-003 -4.9878 permil - R(13C) CO3-2 1.11446e-002 -3.1865 permil - R(14C) CO3-2 1.03210e-013 8.7772 pmc - R(13C) CH4(aq) 1.10643e-002 -10.364 permil - R(14C) CH4(aq) 1.01729e-013 8.6512 pmc - R(18O) Calcite 2.05264e-003 23.659 permil - R(13C) Calcite 1.11827e-002 0.22321 permil - R(14C) Calcite 1.03917e-013 8.8373 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.3283e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.483e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.2212e-011 0 -Alpha 14C CH4(aq)/CO2(aq) 1 5.9952e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.508e-005 6.489e-005 - [14C] 6.027e-016 6.009e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.018 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.223e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 4.255e-019 - CH4 4.255e-019 4.262e-019 -18.371 -18.370 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.086e-008 6.096e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.622e-013 - H2 8.109e-014 8.122e-014 -13.091 -13.090 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.202 -66.201 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -68.601 -68.600 0.001 (0) -[13C](-4) 4.708e-021 - [13C]H4 4.708e-021 4.716e-021 -20.327 -20.326 0.001 (0) -[13C](4) 6.508e-005 - H[13C]O3- 5.249e-005 4.803e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.047e-007 9.582e-008 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.047e-007 9.582e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-007 9.582e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.086e-008 6.096e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.582e-008 4.589e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.122e-008 2.187e-008 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.643e-010 3.649e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.309e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 4.329e-032 - [14C]H4 4.329e-032 4.336e-032 -31.364 -31.363 0.001 (0) -[14C](4) 6.027e-016 - H[14C]O3- 4.868e-016 4.454e-016 -15.313 -15.351 -0.039 (0) - [14C]O2 1.013e-016 1.015e-016 -15.994 -15.994 0.001 (0) - CaH[14C]O3+ 1.028e-017 9.431e-018 -16.988 -17.025 -0.037 (0) - H[14C][18O]O2- 9.714e-019 8.887e-019 -18.013 -18.051 -0.039 (0) - H[14C]O[18O]O- 9.714e-019 8.887e-019 -18.013 -18.051 -0.039 (0) - H[14C]O2[18O]- 9.714e-019 8.887e-019 -18.013 -18.051 -0.039 (0) - Ca[14C]O3 5.636e-019 5.645e-019 -18.249 -18.248 0.001 (0) - [14C]O[18O] 4.212e-019 4.219e-019 -18.375 -18.375 0.001 (0) - [14C]O3-2 2.891e-019 2.025e-019 -18.539 -18.693 -0.155 (0) - CaH[14C]O2[18O]+ 2.051e-020 1.882e-020 -19.688 -19.725 -0.037 (0) - CaH[14C][18O]O2+ 2.051e-020 1.882e-020 -19.688 -19.725 -0.037 (0) - CaH[14C]O[18O]O+ 2.051e-020 1.882e-020 -19.688 -19.725 -0.037 (0) - Ca[14C]O2[18O] 3.373e-021 3.379e-021 -20.472 -20.471 0.001 (0) - H[14C][18O]2O- 1.938e-021 1.773e-021 -20.713 -20.751 -0.039 (0) - H[14C][18O]O[18O]- 1.938e-021 1.773e-021 -20.713 -20.751 -0.039 (0) - H[14C]O[18O]2- 1.938e-021 1.773e-021 -20.713 -20.751 -0.039 (0) - [14C]O2[18O]-2 1.730e-021 1.212e-021 -20.762 -20.916 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -68.601 -68.600 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -71.602 -71.601 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.47 -20.33 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.89 -21.39 -1.50 [14C][18O]2 - [14C]H4(g) -28.50 -31.36 -2.86 [14C]H4 - [14C]O2(g) -14.52 -15.99 -1.47 [14C]O2 - [14C]O[18O](g) -16.91 -18.69 -1.79 [14C]O[18O] - [18O]2(g) -69.31 -71.60 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.05 -12.90 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.20 -7.50 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -12.99 -4.80 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.89 -10.20 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.51 -18.37 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.94 -13.09 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.31 -66.20 -2.89 O2 - O[18O](g) -66.01 -68.90 -2.89 O[18O] - - -Reaction step 73. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 73 3.6500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 3.41e-002 - Calcite 3.35e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.06e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 4.23e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 2.89e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 3.74e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.31e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 4.73e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 3.24e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.43e-015 7.48e-018 1.01e-013 - Ca[14C]O2[18O](s) 2.12e-017 4.61e-020 6.21e-016 - Ca[14C]O[18O]2(s) 4.34e-020 9.46e-023 1.27e-018 - Ca[14C][18O]3(s) 2.97e-023 6.47e-026 8.72e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9861 permil - R(13C) 1.11443e-002 -3.2072 permil - R(14C) 1.01909e-013 8.6665 pmc - R(18O) H2O(l) 1.99520e-003 -4.9876 permil - R(18O) OH- 1.92123e-003 -41.875 permil - R(18O) H3O+ 2.04133e-003 18.02 permil - R(13C) CO2(aq) 1.10646e-002 -10.341 permil - R(14C) CO2(aq) 1.00454e-013 8.5428 pmc - R(18O) CO2(aq) 2.07916e-003 36.887 permil - R(18O) HCO3- 1.99520e-003 -4.9876 permil - R(13C) HCO3- 1.11608e-002 -1.7309 permil - R(14C) HCO3- 1.02210e-013 8.6921 pmc - R(18O) CO3-2 1.99520e-003 -4.9876 permil - R(13C) CO3-2 1.11448e-002 -3.1635 permil - R(14C) CO3-2 1.01917e-013 8.6672 pmc - R(13C) CH4(aq) 1.10646e-002 -10.341 permil - R(14C) CH4(aq) 1.00454e-013 8.5428 pmc - R(18O) Calcite 2.05264e-003 23.659 permil - R(13C) Calcite 1.11830e-002 0.24636 permil - R(14C) Calcite 1.02615e-013 8.7266 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.58e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.4433e-011 0 -Alpha 14C CH4(aq)/CO2(aq) 1 2.2204e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.508e-005 6.489e-005 - [14C] 5.951e-016 5.934e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -1.993 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.224e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 2.687e-019 - CH4 2.687e-019 2.691e-019 -18.571 -18.570 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.086e-008 6.096e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.446e-013 - H2 7.228e-014 7.240e-014 -13.141 -13.140 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.102 -66.101 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -68.501 -68.500 0.001 (0) -[13C](-4) 2.973e-021 - [13C]H4 2.973e-021 2.978e-021 -20.527 -20.526 0.001 (0) -[13C](4) 6.508e-005 - H[13C]O3- 5.250e-005 4.803e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-007 9.582e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-007 9.582e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-007 9.582e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.086e-008 6.096e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.582e-008 4.589e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.122e-008 2.187e-008 -7.506 -7.660 -0.155 (0) - CaH[13C]O[18O]O+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.643e-010 3.649e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.309e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 2.699e-032 - [14C]H4 2.699e-032 2.704e-032 -31.569 -31.568 0.001 (0) -[14C](4) 5.951e-016 - H[14C]O3- 4.807e-016 4.398e-016 -15.318 -15.357 -0.039 (0) - [14C]O2 1.000e-016 1.002e-016 -16.000 -15.999 0.001 (0) - CaH[14C]O3+ 1.015e-017 9.313e-018 -16.993 -17.031 -0.037 (0) - H[14C][18O]O2- 9.592e-019 8.775e-019 -18.018 -18.057 -0.039 (0) - H[14C]O[18O]O- 9.592e-019 8.775e-019 -18.018 -18.057 -0.039 (0) - H[14C]O2[18O]- 9.592e-019 8.775e-019 -18.018 -18.057 -0.039 (0) - Ca[14C]O3 5.565e-019 5.574e-019 -18.255 -18.254 0.001 (0) - [14C]O[18O] 4.160e-019 4.167e-019 -18.381 -18.380 0.001 (0) - [14C]O3-2 2.855e-019 2.000e-019 -18.544 -18.699 -0.155 (0) - CaH[14C]O2[18O]+ 2.025e-020 1.858e-020 -19.693 -19.731 -0.037 (0) - CaH[14C][18O]O2+ 2.025e-020 1.858e-020 -19.693 -19.731 -0.037 (0) - CaH[14C]O[18O]O+ 2.025e-020 1.858e-020 -19.693 -19.731 -0.037 (0) - Ca[14C]O2[18O] 3.331e-021 3.337e-021 -20.477 -20.477 0.001 (0) - H[14C][18O]O[18O]- 1.914e-021 1.751e-021 -20.718 -20.757 -0.039 (0) - H[14C]O[18O]2- 1.914e-021 1.751e-021 -20.718 -20.757 -0.039 (0) - H[14C][18O]2O- 1.914e-021 1.751e-021 -20.718 -20.757 -0.039 (0) - [14C]O2[18O]-2 1.709e-021 1.197e-021 -20.767 -20.922 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -68.501 -68.500 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -71.502 -71.501 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.67 -20.53 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.90 -21.40 -1.50 [14C][18O]2 - [14C]H4(g) -28.71 -31.57 -2.86 [14C]H4 - [14C]O2(g) -14.53 -16.00 -1.47 [14C]O2 - [14C]O[18O](g) -16.91 -18.70 -1.79 [14C]O[18O] - [18O]2(g) -69.21 -71.50 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.06 -12.90 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.21 -7.50 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.00 -4.80 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.89 -10.20 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.71 -18.57 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.99 -13.14 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.21 -66.10 -2.89 O2 - O[18O](g) -65.91 -68.80 -2.89 O[18O] - - -Reaction step 74. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 74 3.7000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 3.46e-002 - Calcite 3.40e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.09e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 4.29e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 2.94e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 3.80e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.34e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 4.80e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 3.28e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.44e-015 7.30e-018 9.96e-014 - Ca[14C]O2[18O](s) 2.12e-017 4.49e-020 6.13e-016 - Ca[14C]O[18O]2(s) 4.35e-020 9.23e-023 1.26e-018 - Ca[14C][18O]3(s) 2.98e-023 6.31e-026 8.61e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.986 permil - R(13C) 1.11446e-002 -3.1847 permil - R(14C) 1.00648e-013 8.5593 pmc - R(18O) H2O(l) 1.99520e-003 -4.9875 permil - R(18O) OH- 1.92123e-003 -41.875 permil - R(18O) H3O+ 2.04133e-003 18.02 permil - R(13C) CO2(aq) 1.10648e-002 -10.318 permil - R(14C) CO2(aq) 9.92111e-014 8.4371 pmc - R(18O) CO2(aq) 2.07917e-003 36.887 permil - R(18O) HCO3- 1.99520e-003 -4.9875 permil - R(13C) HCO3- 1.11611e-002 -1.7083 permil - R(14C) HCO3- 1.00945e-013 8.5846 pmc - R(18O) CO3-2 1.99520e-003 -4.9875 permil - R(13C) CO3-2 1.11451e-002 -3.141 permil - R(14C) CO3-2 1.00655e-013 8.5599 pmc - R(13C) CH4(aq) 1.10648e-002 -10.318 permil - R(14C) CH4(aq) 9.92111e-014 8.4371 pmc - R(18O) Calcite 2.05264e-003 23.659 permil - R(13C) Calcite 1.11832e-002 0.26894 permil - R(14C) Calcite 1.01345e-013 8.6186 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.3283e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.4961e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -4.1078e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.6542e-011 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.508e-005 6.489e-005 - [14C] 5.878e-016 5.861e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -1.942 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.224e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.067e-019 - CH4 1.067e-019 1.069e-019 -18.972 -18.971 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.086e-008 6.096e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.148e-013 - H2 5.738e-014 5.748e-014 -13.241 -13.241 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -65.901 -65.901 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -68.300 -68.300 0.001 (0) -[13C](-4) 1.181e-021 - [13C]H4 1.181e-021 1.183e-021 -20.928 -20.927 0.001 (0) -[13C](4) 6.508e-005 - H[13C]O3- 5.250e-005 4.803e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.047e-007 9.582e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-007 9.582e-008 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.047e-007 9.582e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.086e-008 6.096e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.582e-008 4.589e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.122e-008 2.187e-008 -7.506 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.643e-010 3.649e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.309e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 1.059e-032 - [14C]H4 1.059e-032 1.060e-032 -31.975 -31.975 0.001 (0) -[14C](4) 5.878e-016 - H[14C]O3- 4.748e-016 4.344e-016 -15.323 -15.362 -0.039 (0) - [14C]O2 9.879e-017 9.896e-017 -16.005 -16.005 0.001 (0) - CaH[14C]O3+ 1.003e-017 9.197e-018 -16.999 -17.036 -0.037 (0) - H[14C][18O]O2- 9.473e-019 8.667e-019 -18.024 -18.062 -0.039 (0) - H[14C]O[18O]O- 9.473e-019 8.667e-019 -18.024 -18.062 -0.039 (0) - H[14C]O2[18O]- 9.473e-019 8.667e-019 -18.024 -18.062 -0.039 (0) - Ca[14C]O3 5.496e-019 5.505e-019 -18.260 -18.259 0.001 (0) - [14C]O[18O] 4.108e-019 4.115e-019 -18.386 -18.386 0.001 (0) - [14C]O3-2 2.820e-019 1.975e-019 -18.550 -18.704 -0.155 (0) - CaH[14C]O2[18O]+ 2.000e-020 1.835e-020 -19.699 -19.736 -0.037 (0) - CaH[14C][18O]O2+ 2.000e-020 1.835e-020 -19.699 -19.736 -0.037 (0) - CaH[14C]O[18O]O+ 2.000e-020 1.835e-020 -19.699 -19.736 -0.037 (0) - Ca[14C]O2[18O] 3.290e-021 3.295e-021 -20.483 -20.482 0.001 (0) - H[14C]O[18O]2- 1.890e-021 1.729e-021 -20.724 -20.762 -0.039 (0) - H[14C][18O]2O- 1.890e-021 1.729e-021 -20.724 -20.762 -0.039 (0) - H[14C][18O]O[18O]- 1.890e-021 1.729e-021 -20.724 -20.762 -0.039 (0) - [14C]O2[18O]-2 1.688e-021 1.182e-021 -20.773 -20.927 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -68.300 -68.300 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -71.301 -71.301 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.07 -20.93 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.90 -21.40 -1.50 [14C][18O]2 - [14C]H4(g) -29.11 -31.97 -2.86 [14C]H4 - [14C]O2(g) -14.54 -16.00 -1.47 [14C]O2 - [14C]O[18O](g) -16.92 -18.70 -1.79 [14C]O[18O] - [18O]2(g) -69.01 -71.30 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.06 -12.91 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.21 -7.51 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.00 -4.81 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.90 -10.21 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.11 -18.97 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.09 -13.24 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.01 -65.90 -2.89 O2 - O[18O](g) -65.71 -68.60 -2.89 O[18O] - - -Reaction step 75. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 75 3.7500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 3.51e-002 - Calcite 3.45e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.12e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 4.36e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 2.98e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 3.85e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.37e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 4.87e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 3.33e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.45e-015 7.12e-018 9.84e-014 - Ca[14C]O2[18O](s) 2.12e-017 4.38e-020 6.06e-016 - Ca[14C]O[18O]2(s) 4.36e-020 9.00e-023 1.24e-018 - Ca[14C][18O]3(s) 2.98e-023 6.16e-026 8.51e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9858 permil - R(13C) 1.11448e-002 -3.1627 permil - R(14C) 9.94173e-014 8.4547 pmc - R(18O) H2O(l) 1.99520e-003 -4.9873 permil - R(18O) OH- 1.92123e-003 -41.875 permil - R(18O) H3O+ 2.04133e-003 18.021 permil - R(13C) CO2(aq) 1.10651e-002 -10.297 permil - R(14C) CO2(aq) 9.79983e-014 8.334 pmc - R(18O) CO2(aq) 2.07917e-003 36.887 permil - R(18O) HCO3- 1.99520e-003 -4.9873 permil - R(13C) HCO3- 1.11613e-002 -1.6863 permil - R(14C) HCO3- 9.97109e-014 8.4796 pmc - R(18O) CO3-2 1.99520e-003 -4.9873 permil - R(13C) CO3-2 1.11453e-002 -3.119 permil - R(14C) CO3-2 9.94249e-014 8.4553 pmc - R(13C) CH4(aq) 1.10651e-002 -10.297 permil - R(14C) CH4(aq) 9.79983e-014 8.334 pmc - R(18O) Calcite 2.05264e-003 23.659 permil - R(13C) Calcite 1.11835e-002 0.29097 permil - R(14C) Calcite 1.00106e-013 8.5133 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.5543e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6457e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -7.2164e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -9.3259e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.508e-005 6.489e-005 - [14C] 5.806e-016 5.789e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.018 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.222e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 11 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 4.300e-019 - CH4 4.300e-019 4.307e-019 -18.366 -18.366 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.086e-008 6.096e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.626e-013 - H2 8.130e-014 8.144e-014 -13.090 -13.089 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.204 -66.203 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -68.603 -68.602 0.001 (0) -[13C](-4) 4.758e-021 - [13C]H4 4.758e-021 4.766e-021 -20.323 -20.322 0.001 (0) -[13C](4) 6.508e-005 - H[13C]O3- 5.250e-005 4.803e-005 -4.280 -4.319 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.047e-007 9.583e-008 -6.980 -7.019 -0.039 (0) - H[13C]O2[18O]- 1.047e-007 9.583e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-007 9.583e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.086e-008 6.096e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.582e-008 4.589e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.122e-008 2.187e-008 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.643e-010 3.649e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.309e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 4.214e-032 - [14C]H4 4.214e-032 4.221e-032 -31.375 -31.375 0.001 (0) -[14C](4) 5.806e-016 - H[14C]O3- 4.690e-016 4.291e-016 -15.329 -15.367 -0.039 (0) - [14C]O2 9.759e-017 9.775e-017 -16.011 -16.010 0.001 (0) - CaH[14C]O3+ 9.904e-018 9.085e-018 -17.004 -17.042 -0.037 (0) - H[14C][18O]O2- 9.357e-019 8.561e-019 -18.029 -18.067 -0.039 (0) - H[14C]O[18O]O- 9.357e-019 8.561e-019 -18.029 -18.067 -0.039 (0) - H[14C]O2[18O]- 9.357e-019 8.561e-019 -18.029 -18.067 -0.039 (0) - Ca[14C]O3 5.429e-019 5.438e-019 -18.265 -18.265 0.001 (0) - [14C]O[18O] 4.058e-019 4.065e-019 -18.392 -18.391 0.001 (0) - [14C]O3-2 2.785e-019 1.951e-019 -18.555 -18.710 -0.155 (0) - CaH[14C]O2[18O]+ 1.976e-020 1.813e-020 -19.704 -19.742 -0.037 (0) - CaH[14C][18O]O2+ 1.976e-020 1.813e-020 -19.704 -19.742 -0.037 (0) - CaH[14C]O[18O]O+ 1.976e-020 1.813e-020 -19.704 -19.742 -0.037 (0) - Ca[14C]O2[18O] 3.250e-021 3.255e-021 -20.488 -20.487 0.001 (0) - H[14C][18O]2O- 1.867e-021 1.708e-021 -20.729 -20.768 -0.039 (0) - H[14C][18O]O[18O]- 1.867e-021 1.708e-021 -20.729 -20.768 -0.039 (0) - H[14C]O[18O]2- 1.867e-021 1.708e-021 -20.729 -20.768 -0.039 (0) - [14C]O2[18O]-2 1.667e-021 1.168e-021 -20.778 -20.933 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -68.603 -68.602 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -71.604 -71.603 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.46 -20.32 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.91 -21.41 -1.50 [14C][18O]2 - [14C]H4(g) -28.51 -31.37 -2.86 [14C]H4 - [14C]O2(g) -14.54 -16.01 -1.47 [14C]O2 - [14C]O[18O](g) -16.92 -18.71 -1.79 [14C]O[18O] - [18O]2(g) -69.31 -71.60 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.07 -12.92 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.22 -7.52 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.01 -4.82 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.91 -10.22 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.51 -18.37 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.94 -13.09 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.31 -66.20 -2.89 O2 - O[18O](g) -66.01 -68.90 -2.89 O[18O] - - -Reaction step 76. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 76 3.8000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 3.56e-002 - Calcite 3.49e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.15e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 4.42e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 3.02e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 3.91e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.41e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 4.94e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 3.38e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.46e-015 6.95e-018 9.72e-014 - Ca[14C]O2[18O](s) 2.13e-017 4.28e-020 5.99e-016 - Ca[14C]O[18O]2(s) 4.37e-020 8.78e-023 1.23e-018 - Ca[14C][18O]3(s) 2.99e-023 6.01e-026 8.41e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9857 permil - R(13C) 1.11451e-002 -3.1413 permil - R(14C) 9.82167e-014 8.3526 pmc - R(18O) H2O(l) 1.99520e-003 -4.9872 permil - R(18O) OH- 1.92123e-003 -41.875 permil - R(18O) H3O+ 2.04134e-003 18.021 permil - R(13C) CO2(aq) 1.10653e-002 -10.275 permil - R(14C) CO2(aq) 9.68149e-014 8.2333 pmc - R(18O) CO2(aq) 2.07917e-003 36.887 permil - R(18O) HCO3- 1.99520e-003 -4.9872 permil - R(13C) HCO3- 1.11616e-002 -1.6649 permil - R(14C) HCO3- 9.85068e-014 8.3772 pmc - R(18O) CO3-2 1.99520e-003 -4.9872 permil - R(13C) CO3-2 1.11456e-002 -3.0976 permil - R(14C) CO3-2 9.82243e-014 8.3532 pmc - R(13C) CH4(aq) 1.10653e-002 -10.275 permil - R(14C) CH4(aq) 9.68149e-014 8.2333 pmc - R(18O) Calcite 2.05264e-003 23.659 permil - R(13C) Calcite 1.11837e-002 0.31246 permil - R(14C) Calcite 9.88974e-014 8.4104 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7072e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 2.8866e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -2.9976e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.509e-005 6.490e-005 - [14C] 5.736e-016 5.719e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.042 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.221e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 6.625e-019 - CH4 6.625e-019 6.636e-019 -18.179 -18.178 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.086e-008 6.096e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.812e-013 - H2 9.058e-014 9.073e-014 -13.043 -13.042 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.298 -66.297 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -68.697 -68.696 0.001 (0) -[13C](-4) 7.331e-021 - [13C]H4 7.331e-021 7.343e-021 -20.135 -20.134 0.001 (0) -[13C](4) 6.509e-005 - H[13C]O3- 5.250e-005 4.803e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.047e-007 9.583e-008 -6.980 -7.019 -0.039 (0) - H[13C][18O]O2- 1.047e-007 9.583e-008 -6.980 -7.019 -0.039 (0) - H[13C]O[18O]O- 1.047e-007 9.583e-008 -6.980 -7.019 -0.039 (0) - Ca[13C]O3 6.086e-008 6.096e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.582e-008 4.590e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.122e-008 2.187e-008 -7.506 -7.660 -0.155 (0) - CaH[13C]O[18O]O+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.643e-010 3.649e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.309e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 6.414e-032 - [14C]H4 6.414e-032 6.425e-032 -31.193 -31.192 0.001 (0) -[14C](4) 5.736e-016 - H[14C]O3- 4.633e-016 4.239e-016 -15.334 -15.373 -0.039 (0) - [14C]O2 9.641e-017 9.657e-017 -16.016 -16.015 0.001 (0) - CaH[14C]O3+ 9.784e-018 8.975e-018 -17.009 -17.047 -0.037 (0) - H[14C][18O]O2- 9.244e-019 8.457e-019 -18.034 -18.073 -0.039 (0) - H[14C]O[18O]O- 9.244e-019 8.457e-019 -18.034 -18.073 -0.039 (0) - H[14C]O2[18O]- 9.244e-019 8.457e-019 -18.034 -18.073 -0.039 (0) - Ca[14C]O3 5.364e-019 5.372e-019 -18.271 -18.270 0.001 (0) - [14C]O[18O] 4.009e-019 4.016e-019 -18.397 -18.396 0.001 (0) - [14C]O3-2 2.751e-019 1.928e-019 -18.560 -18.715 -0.155 (0) - CaH[14C]O2[18O]+ 1.952e-020 1.791e-020 -19.709 -19.747 -0.037 (0) - CaH[14C][18O]O2+ 1.952e-020 1.791e-020 -19.709 -19.747 -0.037 (0) - CaH[14C]O[18O]O+ 1.952e-020 1.791e-020 -19.709 -19.747 -0.037 (0) - Ca[14C]O2[18O] 3.210e-021 3.216e-021 -20.493 -20.493 0.001 (0) - H[14C][18O]O[18O]- 1.844e-021 1.687e-021 -20.734 -20.773 -0.039 (0) - H[14C]O[18O]2- 1.844e-021 1.687e-021 -20.734 -20.773 -0.039 (0) - H[14C][18O]2O- 1.844e-021 1.687e-021 -20.734 -20.773 -0.039 (0) - [14C]O2[18O]-2 1.647e-021 1.154e-021 -20.783 -20.938 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -68.697 -68.696 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -71.698 -71.697 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.27 -20.13 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.91 -21.42 -1.50 [14C][18O]2 - [14C]H4(g) -28.33 -31.19 -2.86 [14C]H4 - [14C]O2(g) -14.55 -16.02 -1.47 [14C]O2 - [14C]O[18O](g) -16.93 -18.72 -1.79 [14C]O[18O] - [18O]2(g) -69.41 -71.70 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.08 -12.92 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.22 -7.52 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.01 -4.82 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.91 -10.22 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.32 -18.18 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.89 -13.04 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.40 -66.30 -2.89 O2 - O[18O](g) -66.10 -69.00 -2.89 O[18O] - - -Reaction step 77. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 77 3.8500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 3.61e-002 - Calcite 3.54e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.18e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 4.48e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 3.06e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 3.96e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.44e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 5.01e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 3.43e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.46e-015 6.78e-018 9.60e-014 - Ca[14C]O2[18O](s) 2.13e-017 4.18e-020 5.91e-016 - Ca[14C]O[18O]2(s) 4.38e-020 8.57e-023 1.21e-018 - Ca[14C][18O]3(s) 2.99e-023 5.87e-026 8.31e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9856 permil - R(13C) 1.11453e-002 -3.1204 permil - R(14C) 9.70448e-014 8.2529 pmc - R(18O) H2O(l) 1.99520e-003 -4.9871 permil - R(18O) OH- 1.92123e-003 -41.875 permil - R(18O) H3O+ 2.04134e-003 18.021 permil - R(13C) CO2(aq) 1.10656e-002 -10.255 permil - R(14C) CO2(aq) 9.56597e-014 8.1351 pmc - R(18O) CO2(aq) 2.07917e-003 36.887 permil - R(18O) HCO3- 1.99520e-003 -4.9871 permil - R(13C) HCO3- 1.11618e-002 -1.644 permil - R(14C) HCO3- 9.73314e-014 8.2773 pmc - R(18O) CO3-2 1.99520e-003 -4.9871 permil - R(13C) CO3-2 1.11458e-002 -3.0767 permil - R(14C) CO3-2 9.70523e-014 8.2535 pmc - R(13C) CH4(aq) 1.10656e-002 -10.255 permil - R(14C) CH4(aq) 9.56597e-014 8.1351 pmc - R(18O) Calcite 2.05264e-003 23.659 permil - R(13C) Calcite 1.11839e-002 0.33345 permil - R(14C) Calcite 9.77174e-014 8.3101 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.6613e-013 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6634e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -3.3307e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -3.3307e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.509e-005 6.490e-005 - [14C] 5.667e-016 5.651e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.045 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.219e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 7.017e-019 - CH4 7.017e-019 7.028e-019 -18.154 -18.153 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.086e-008 6.096e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.838e-013 - H2 9.189e-014 9.204e-014 -13.037 -13.036 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.310 -66.310 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -68.709 -68.709 0.001 (0) -[13C](-4) 7.765e-021 - [13C]H4 7.765e-021 7.777e-021 -20.110 -20.109 0.001 (0) -[13C](4) 6.509e-005 - H[13C]O3- 5.250e-005 4.803e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.047e-007 9.583e-008 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.047e-007 9.583e-008 -6.980 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.047e-007 9.583e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.086e-008 6.096e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.582e-008 4.590e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.122e-008 2.187e-008 -7.506 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.643e-010 3.649e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.309e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 6.712e-032 - [14C]H4 6.712e-032 6.723e-032 -31.173 -31.172 0.001 (0) -[14C](4) 5.667e-016 - H[14C]O3- 4.578e-016 4.188e-016 -15.339 -15.378 -0.039 (0) - [14C]O2 9.526e-017 9.541e-017 -16.021 -16.020 0.001 (0) - CaH[14C]O3+ 9.667e-018 8.868e-018 -17.015 -17.052 -0.037 (0) - H[14C][18O]O2- 9.134e-019 8.356e-019 -18.039 -18.078 -0.039 (0) - H[14C]O[18O]O- 9.134e-019 8.356e-019 -18.039 -18.078 -0.039 (0) - H[14C]O2[18O]- 9.134e-019 8.356e-019 -18.039 -18.078 -0.039 (0) - Ca[14C]O3 5.300e-019 5.308e-019 -18.276 -18.275 0.001 (0) - [14C]O[18O] 3.961e-019 3.968e-019 -18.402 -18.401 0.001 (0) - [14C]O3-2 2.719e-019 1.905e-019 -18.566 -18.720 -0.155 (0) - CaH[14C]O2[18O]+ 1.929e-020 1.769e-020 -19.715 -19.752 -0.037 (0) - CaH[14C][18O]O2+ 1.929e-020 1.769e-020 -19.715 -19.752 -0.037 (0) - CaH[14C]O[18O]O+ 1.929e-020 1.769e-020 -19.715 -19.752 -0.037 (0) - Ca[14C]O2[18O] 3.172e-021 3.177e-021 -20.499 -20.498 0.001 (0) - H[14C]O[18O]2- 1.822e-021 1.667e-021 -20.739 -20.778 -0.039 (0) - H[14C][18O]2O- 1.822e-021 1.667e-021 -20.739 -20.778 -0.039 (0) - H[14C][18O]O[18O]- 1.822e-021 1.667e-021 -20.739 -20.778 -0.039 (0) - [14C]O2[18O]-2 1.627e-021 1.140e-021 -20.789 -20.943 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -68.709 -68.709 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -71.710 -71.710 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.25 -20.11 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.92 -21.42 -1.50 [14C][18O]2 - [14C]H4(g) -28.31 -31.17 -2.86 [14C]H4 - [14C]O2(g) -14.55 -16.02 -1.47 [14C]O2 - [14C]O[18O](g) -16.93 -18.72 -1.79 [14C]O[18O] - [18O]2(g) -69.42 -71.71 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.08 -12.93 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.23 -7.53 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.02 -4.83 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.92 -10.23 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.29 -18.15 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.89 -13.04 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.42 -66.31 -2.89 O2 - O[18O](g) -66.12 -69.01 -2.89 O[18O] - - -Reaction step 78. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 78 3.9000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 3.66e-002 - Calcite 3.59e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.21e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 4.54e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 3.11e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 4.02e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.47e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 5.08e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 3.48e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.47e-015 6.62e-018 9.49e-014 - Ca[14C]O2[18O](s) 2.14e-017 4.08e-020 5.84e-016 - Ca[14C]O[18O]2(s) 4.39e-020 8.37e-023 1.20e-018 - Ca[14C][18O]3(s) 3.00e-023 5.73e-026 8.21e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9854 permil - R(13C) 1.11455e-002 -3.1 permil - R(14C) 9.59005e-014 8.1556 pmc - R(18O) H2O(l) 1.99520e-003 -4.9869 permil - R(18O) OH- 1.92123e-003 -41.874 permil - R(18O) H3O+ 2.04134e-003 18.021 permil - R(13C) CO2(aq) 1.10658e-002 -10.234 permil - R(14C) CO2(aq) 9.45318e-014 8.0392 pmc - R(18O) CO2(aq) 2.07917e-003 36.887 permil - R(18O) HCO3- 1.99520e-003 -4.9869 permil - R(13C) HCO3- 1.11620e-002 -1.6235 permil - R(14C) HCO3- 9.61837e-014 8.1797 pmc - R(18O) CO3-2 1.99520e-003 -4.9869 permil - R(13C) CO3-2 1.11460e-002 -3.0563 permil - R(14C) CO3-2 9.59079e-014 8.1562 pmc - R(13C) CH4(aq) 1.10658e-002 -10.234 permil - R(14C) CH4(aq) 9.45318e-014 8.0392 pmc - R(18O) Calcite 2.05264e-003 23.66 permil - R(13C) Calcite 1.11842e-002 0.35394 permil - R(14C) Calcite 9.65651e-014 8.2121 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.6605e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7176e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.199e-011 0 -Alpha 14C CH4(aq)/CO2(aq) 1 5.7732e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.509e-005 6.490e-005 - [14C] 5.600e-016 5.584e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.067 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.221e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.054e-018 - CH4 1.054e-018 1.056e-018 -17.977 -17.976 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.086e-008 6.096e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 2.035e-013 - H2 1.017e-013 1.019e-013 -12.993 -12.992 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.399 -66.398 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -68.798 -68.797 0.001 (0) -[13C](-4) 1.166e-020 - [13C]H4 1.166e-020 1.168e-020 -19.933 -19.933 0.001 (0) -[13C](4) 6.509e-005 - H[13C]O3- 5.250e-005 4.803e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.047e-007 9.583e-008 -6.980 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.047e-007 9.583e-008 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.047e-007 9.583e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.086e-008 6.096e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.582e-008 4.590e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.122e-008 2.187e-008 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.643e-010 3.649e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C][18O]2O- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - H[13C]O[18O]2- 2.090e-010 1.912e-010 -9.680 -9.719 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.309e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 9.963e-032 - [14C]H4 9.963e-032 9.979e-032 -31.002 -31.001 0.001 (0) -[14C](4) 5.600e-016 - H[14C]O3- 4.524e-016 4.139e-016 -15.344 -15.383 -0.039 (0) - [14C]O2 9.414e-017 9.429e-017 -16.026 -16.026 0.001 (0) - CaH[14C]O3+ 9.553e-018 8.763e-018 -17.020 -17.057 -0.037 (0) - H[14C][18O]O2- 9.026e-019 8.258e-019 -18.044 -18.083 -0.039 (0) - H[14C]O[18O]O- 9.026e-019 8.258e-019 -18.044 -18.083 -0.039 (0) - H[14C]O2[18O]- 9.026e-019 8.258e-019 -18.044 -18.083 -0.039 (0) - Ca[14C]O3 5.237e-019 5.246e-019 -18.281 -18.280 0.001 (0) - [14C]O[18O] 3.914e-019 3.921e-019 -18.407 -18.407 0.001 (0) - [14C]O3-2 2.687e-019 1.882e-019 -18.571 -18.725 -0.155 (0) - CaH[14C]O2[18O]+ 1.906e-020 1.748e-020 -19.720 -19.757 -0.037 (0) - CaH[14C][18O]O2+ 1.906e-020 1.748e-020 -19.720 -19.757 -0.037 (0) - CaH[14C]O[18O]O+ 1.906e-020 1.748e-020 -19.720 -19.757 -0.037 (0) - Ca[14C]O2[18O] 3.135e-021 3.140e-021 -20.504 -20.503 0.001 (0) - H[14C][18O]2O- 1.801e-021 1.648e-021 -20.745 -20.783 -0.039 (0) - H[14C][18O]O[18O]- 1.801e-021 1.648e-021 -20.745 -20.783 -0.039 (0) - H[14C]O[18O]2- 1.801e-021 1.648e-021 -20.745 -20.783 -0.039 (0) - [14C]O2[18O]-2 1.608e-021 1.127e-021 -20.794 -20.948 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -68.798 -68.797 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -71.799 -71.798 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.07 -19.93 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.92 -21.43 -1.50 [14C][18O]2 - [14C]H4(g) -28.14 -31.00 -2.86 [14C]H4 - [14C]O2(g) -14.56 -16.03 -1.47 [14C]O2 - [14C]O[18O](g) -16.94 -18.73 -1.79 [14C]O[18O] - [18O]2(g) -69.51 -71.80 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.09 -12.93 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.23 -7.53 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.02 -4.83 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.92 -10.23 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.12 -17.98 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.84 -12.99 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.51 -66.40 -2.89 O2 - O[18O](g) -66.21 -69.10 -2.89 O[18O] - - -Reaction step 79. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 79 3.9500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 3.71e-002 - Calcite 3.64e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.24e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 4.60e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 3.15e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 4.07e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.51e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 5.15e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 3.52e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.48e-015 6.47e-018 9.38e-014 - Ca[14C]O2[18O](s) 2.14e-017 3.98e-020 5.78e-016 - Ca[14C]O[18O]2(s) 4.39e-020 8.18e-023 1.19e-018 - Ca[14C][18O]3(s) 3.01e-023 5.59e-026 8.11e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9853 permil - R(13C) 1.11458e-002 -3.08 permil - R(14C) 9.47829e-014 8.0605 pmc - R(18O) H2O(l) 1.99520e-003 -4.9868 permil - R(18O) OH- 1.92123e-003 -41.874 permil - R(18O) H3O+ 2.04134e-003 18.021 permil - R(13C) CO2(aq) 1.10660e-002 -10.215 permil - R(14C) CO2(aq) 9.34301e-014 7.9455 pmc - R(18O) CO2(aq) 2.07917e-003 36.887 permil - R(18O) HCO3- 1.99520e-003 -4.9868 permil - R(13C) HCO3- 1.11623e-002 -1.6035 permil - R(14C) HCO3- 9.50628e-014 8.0843 pmc - R(18O) CO3-2 1.99520e-003 -4.9868 permil - R(13C) CO3-2 1.11463e-002 -3.0363 permil - R(14C) CO3-2 9.47902e-014 8.0612 pmc - R(13C) CH4(aq) 1.10660e-002 -10.215 permil - R(14C) CH4(aq) 9.34301e-014 7.9455 pmc - R(18O) Calcite 2.05264e-003 23.66 permil - R(13C) Calcite 1.11844e-002 0.37395 permil - R(14C) Calcite 9.54398e-014 8.1164 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 2.2204e-013 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5075e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -3.1086e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -3.1086e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.509e-005 6.490e-005 - [14C] 5.535e-016 5.519e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.080 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.220e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.350e-018 - CH4 1.350e-018 1.352e-018 -17.870 -17.869 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.086e-008 6.096e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 2.164e-013 - H2 1.082e-013 1.084e-013 -12.966 -12.965 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.453 -66.452 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -68.852 -68.851 0.001 (0) -[13C](-4) 1.494e-020 - [13C]H4 1.494e-020 1.497e-020 -19.826 -19.825 0.001 (0) -[13C](4) 6.509e-005 - H[13C]O3- 5.250e-005 4.803e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-007 9.583e-008 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-007 9.583e-008 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-007 9.583e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.086e-008 6.096e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.582e-008 4.590e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.122e-008 2.187e-008 -7.506 -7.660 -0.155 (0) - CaH[13C]O[18O]O+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.643e-010 3.649e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.309e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 1.261e-031 - [14C]H4 1.261e-031 1.264e-031 -30.899 -30.898 0.001 (0) -[14C](4) 5.535e-016 - H[14C]O3- 4.471e-016 4.091e-016 -15.350 -15.388 -0.039 (0) - [14C]O2 9.304e-017 9.319e-017 -16.031 -16.031 0.001 (0) - CaH[14C]O3+ 9.442e-018 8.661e-018 -17.025 -17.062 -0.037 (0) - H[14C][18O]O2- 8.921e-019 8.162e-019 -18.050 -18.088 -0.039 (0) - H[14C]O[18O]O- 8.921e-019 8.162e-019 -18.050 -18.088 -0.039 (0) - H[14C]O2[18O]- 8.921e-019 8.162e-019 -18.050 -18.088 -0.039 (0) - Ca[14C]O3 5.176e-019 5.185e-019 -18.286 -18.285 0.001 (0) - [14C]O[18O] 3.869e-019 3.875e-019 -18.412 -18.412 0.001 (0) - [14C]O3-2 2.655e-019 1.860e-019 -18.576 -18.730 -0.155 (0) - CaH[14C]O2[18O]+ 1.884e-020 1.728e-020 -19.725 -19.762 -0.037 (0) - CaH[14C][18O]O2+ 1.884e-020 1.728e-020 -19.725 -19.762 -0.037 (0) - CaH[14C]O[18O]O+ 1.884e-020 1.728e-020 -19.725 -19.762 -0.037 (0) - Ca[14C]O2[18O] 3.098e-021 3.103e-021 -20.509 -20.508 0.001 (0) - H[14C][18O]O[18O]- 1.780e-021 1.628e-021 -20.750 -20.788 -0.039 (0) - H[14C]O[18O]2- 1.780e-021 1.628e-021 -20.750 -20.788 -0.039 (0) - H[14C][18O]2O- 1.780e-021 1.628e-021 -20.750 -20.788 -0.039 (0) - [14C]O2[18O]-2 1.589e-021 1.113e-021 -20.799 -20.953 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -68.852 -68.851 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -71.853 -71.852 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.96 -19.82 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.93 -21.43 -1.50 [14C][18O]2 - [14C]H4(g) -28.04 -30.90 -2.86 [14C]H4 - [14C]O2(g) -14.56 -16.03 -1.47 [14C]O2 - [14C]O[18O](g) -16.94 -18.73 -1.79 [14C]O[18O] - [18O]2(g) -69.56 -71.85 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.09 -12.94 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.24 -7.54 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.03 -4.84 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.93 -10.24 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.01 -17.87 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.81 -12.96 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.56 -66.45 -2.89 O2 - O[18O](g) -66.26 -69.15 -2.89 O[18O] - - -Reaction step 80. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 80 4.0000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 3.76e-002 - Calcite 3.69e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.27e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 4.67e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 3.19e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 4.13e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.54e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 5.22e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 3.57e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.48e-015 6.32e-018 9.27e-014 - Ca[14C]O2[18O](s) 2.14e-017 3.89e-020 5.71e-016 - Ca[14C]O[18O]2(s) 4.40e-020 7.99e-023 1.17e-018 - Ca[14C][18O]3(s) 3.01e-023 5.47e-026 8.02e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9851 permil - R(13C) 1.11460e-002 -3.0605 permil - R(14C) 9.36910e-014 7.9677 pmc - R(18O) H2O(l) 1.99520e-003 -4.9867 permil - R(18O) OH- 1.92123e-003 -41.874 permil - R(18O) H3O+ 2.04134e-003 18.021 permil - R(13C) CO2(aq) 1.10662e-002 -10.195 permil - R(14C) CO2(aq) 9.23538e-014 7.854 pmc - R(18O) CO2(aq) 2.07917e-003 36.888 permil - R(18O) HCO3- 1.99520e-003 -4.9867 permil - R(13C) HCO3- 1.11625e-002 -1.584 permil - R(14C) HCO3- 9.39677e-014 7.9912 pmc - R(18O) CO3-2 1.99520e-003 -4.9867 permil - R(13C) CO3-2 1.11465e-002 -3.0168 permil - R(14C) CO3-2 9.36982e-014 7.9683 pmc - R(13C) CH4(aq) 1.10662e-002 -10.195 permil - R(14C) CH4(aq) 9.23538e-014 7.854 pmc - R(18O) Calcite 2.05264e-003 23.66 permil - R(13C) Calcite 1.11846e-002 0.3935 permil - R(14C) Calcite 9.43404e-014 8.0229 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.3323e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7102e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -2.2204e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 5.7732e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.509e-005 6.490e-005 - [14C] 5.471e-016 5.455e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -2.090 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.219e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.618e-018 - CH4 1.618e-018 1.621e-018 -17.791 -17.790 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.704e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.087e-008 6.097e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 2.265e-013 - H2 1.132e-013 1.134e-013 -12.946 -12.945 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.492 -66.491 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -68.891 -68.890 0.001 (0) -[13C](-4) 1.791e-020 - [13C]H4 1.791e-020 1.794e-020 -19.747 -19.746 0.001 (0) -[13C](4) 6.509e-005 - H[13C]O3- 5.250e-005 4.803e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.048e-007 9.584e-008 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-007 9.584e-008 -6.980 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.048e-007 9.584e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.087e-008 6.097e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.582e-008 4.590e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.122e-008 2.187e-008 -7.506 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.643e-010 3.649e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.309e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 1.495e-031 - [14C]H4 1.495e-031 1.497e-031 -30.825 -30.825 0.001 (0) -[14C](4) 5.471e-016 - H[14C]O3- 4.420e-016 4.044e-016 -15.355 -15.393 -0.039 (0) - [14C]O2 9.197e-017 9.212e-017 -16.036 -16.036 0.001 (0) - CaH[14C]O3+ 9.333e-018 8.562e-018 -17.030 -17.067 -0.037 (0) - H[14C][18O]O2- 8.818e-019 8.068e-019 -18.055 -18.093 -0.039 (0) - H[14C]O[18O]O- 8.818e-019 8.068e-019 -18.055 -18.093 -0.039 (0) - H[14C]O2[18O]- 8.818e-019 8.068e-019 -18.055 -18.093 -0.039 (0) - Ca[14C]O3 5.116e-019 5.125e-019 -18.291 -18.290 0.001 (0) - [14C]O[18O] 3.824e-019 3.831e-019 -18.417 -18.417 0.001 (0) - [14C]O3-2 2.625e-019 1.839e-019 -18.581 -18.735 -0.155 (0) - CaH[14C]O2[18O]+ 1.862e-020 1.708e-020 -19.730 -19.767 -0.037 (0) - CaH[14C][18O]O2+ 1.862e-020 1.708e-020 -19.730 -19.767 -0.037 (0) - CaH[14C]O[18O]O+ 1.862e-020 1.708e-020 -19.730 -19.767 -0.037 (0) - Ca[14C]O2[18O] 3.063e-021 3.068e-021 -20.514 -20.513 0.001 (0) - H[14C]O[18O]2- 1.759e-021 1.610e-021 -20.755 -20.793 -0.039 (0) - H[14C][18O]2O- 1.759e-021 1.610e-021 -20.755 -20.793 -0.039 (0) - H[14C][18O]O[18O]- 1.759e-021 1.610e-021 -20.755 -20.793 -0.039 (0) - [14C]O2[18O]-2 1.571e-021 1.101e-021 -20.804 -20.958 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -68.891 -68.890 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -71.892 -71.891 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.89 -19.75 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.93 -21.44 -1.50 [14C][18O]2 - [14C]H4(g) -27.96 -30.82 -2.86 [14C]H4 - [14C]O2(g) -14.57 -16.04 -1.47 [14C]O2 - [14C]O[18O](g) -16.95 -18.74 -1.79 [14C]O[18O] - [18O]2(g) -69.60 -71.89 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.10 -12.94 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.24 -7.54 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.03 -4.84 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.93 -10.24 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.93 -17.79 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.80 -12.95 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.60 -66.49 -2.89 O2 - O[18O](g) -66.30 -69.19 -2.89 O[18O] - - -Reaction step 81. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 81 4.0500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 3.81e-002 - Calcite 3.74e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.30e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 4.73e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 3.23e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 4.18e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.58e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 5.29e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 3.62e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.49e-015 6.17e-018 9.17e-014 - Ca[14C]O2[18O](s) 2.15e-017 3.80e-020 5.64e-016 - Ca[14C]O[18O]2(s) 4.41e-020 7.81e-023 1.16e-018 - Ca[14C][18O]3(s) 3.02e-023 5.34e-026 7.93e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.985 permil - R(13C) 1.11462e-002 -3.0415 permil - R(14C) 9.26240e-014 7.8769 pmc - R(18O) H2O(l) 1.99520e-003 -4.9865 permil - R(18O) OH- 1.92123e-003 -41.874 permil - R(18O) H3O+ 2.04134e-003 18.021 permil - R(13C) CO2(aq) 1.10664e-002 -10.176 permil - R(14C) CO2(aq) 9.13021e-014 7.7645 pmc - R(18O) CO2(aq) 2.07917e-003 36.888 permil - R(18O) HCO3- 1.99520e-003 -4.9865 permil - R(13C) HCO3- 1.11627e-002 -1.565 permil - R(14C) HCO3- 9.28976e-014 7.9002 pmc - R(18O) CO3-2 1.99520e-003 -4.9865 permil - R(13C) CO3-2 1.11467e-002 -2.9978 permil - R(14C) CO3-2 9.26312e-014 7.8776 pmc - R(13C) CH4(aq) 1.10664e-002 -10.176 permil - R(14C) CH4(aq) 9.13021e-014 7.7645 pmc - R(18O) Calcite 2.05264e-003 23.66 permil - R(13C) Calcite 1.11848e-002 0.4126 permil - R(14C) Calcite 9.32660e-014 7.9315 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 4.4409e-013 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6253e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 3.5527e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -9.992e-013 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.509e-005 6.490e-005 - [14C] 5.409e-016 5.393e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -1.980 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.216e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 2.146e-019 - CH4 2.146e-019 2.150e-019 -18.668 -18.668 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.087e-008 6.097e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.367e-013 - H2 6.834e-014 6.845e-014 -13.165 -13.165 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -66.053 -66.052 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -68.452 -68.451 0.001 (0) -[13C](-4) 2.375e-021 - [13C]H4 2.375e-021 2.379e-021 -20.624 -20.624 0.001 (0) -[13C](4) 6.509e-005 - H[13C]O3- 5.250e-005 4.803e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.048e-007 9.584e-008 -6.980 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.048e-007 9.584e-008 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-007 9.584e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.087e-008 6.097e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.582e-008 4.590e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.122e-008 2.187e-008 -7.506 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.643e-010 3.649e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.309e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 1.960e-032 - [14C]H4 1.960e-032 1.963e-032 -31.708 -31.707 0.001 (0) -[14C](4) 5.409e-016 - H[14C]O3- 4.369e-016 3.997e-016 -15.360 -15.398 -0.039 (0) - [14C]O2 9.092e-017 9.107e-017 -16.041 -16.041 0.001 (0) - CaH[14C]O3+ 9.227e-018 8.464e-018 -17.035 -17.072 -0.037 (0) - H[14C][18O]O2- 8.718e-019 7.976e-019 -18.060 -18.098 -0.039 (0) - H[14C]O[18O]O- 8.718e-019 7.976e-019 -18.060 -18.098 -0.039 (0) - H[14C]O2[18O]- 8.718e-019 7.976e-019 -18.060 -18.098 -0.039 (0) - Ca[14C]O3 5.058e-019 5.067e-019 -18.296 -18.295 0.001 (0) - [14C]O[18O] 3.781e-019 3.787e-019 -18.422 -18.422 0.001 (0) - [14C]O3-2 2.595e-019 1.818e-019 -18.586 -18.740 -0.155 (0) - CaH[14C]O2[18O]+ 1.841e-020 1.689e-020 -19.735 -19.772 -0.037 (0) - CaH[14C][18O]O2+ 1.841e-020 1.689e-020 -19.735 -19.772 -0.037 (0) - CaH[14C]O[18O]O+ 1.841e-020 1.689e-020 -19.735 -19.772 -0.037 (0) - Ca[14C]O2[18O] 3.028e-021 3.033e-021 -20.519 -20.518 0.001 (0) - H[14C][18O]2O- 1.739e-021 1.591e-021 -20.760 -20.798 -0.039 (0) - H[14C][18O]O[18O]- 1.739e-021 1.591e-021 -20.760 -20.798 -0.039 (0) - H[14C]O[18O]2- 1.739e-021 1.591e-021 -20.760 -20.798 -0.039 (0) - [14C]O2[18O]-2 1.553e-021 1.088e-021 -20.809 -20.963 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -68.452 -68.451 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -71.453 -71.453 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.76 -20.62 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.94 -21.44 -1.50 [14C][18O]2 - [14C]H4(g) -28.85 -31.71 -2.86 [14C]H4 - [14C]O2(g) -14.57 -16.04 -1.47 [14C]O2 - [14C]O[18O](g) -16.95 -18.74 -1.79 [14C]O[18O] - [18O]2(g) -69.16 -71.45 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.10 -12.95 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.25 -7.55 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.04 -4.85 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.94 -10.25 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.81 -18.67 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.01 -13.16 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.16 -66.05 -2.89 O2 - O[18O](g) -65.86 -68.75 -2.89 O[18O] - - -Reaction step 82. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 82 4.1000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 3.86e-002 - Calcite 3.79e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.33e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 4.79e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 3.28e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 4.24e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.61e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 5.36e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 3.67e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.49e-015 6.04e-018 9.06e-014 - Ca[14C]O2[18O](s) 2.15e-017 3.72e-020 5.58e-016 - Ca[14C]O[18O]2(s) 4.42e-020 7.63e-023 1.15e-018 - Ca[14C][18O]3(s) 3.02e-023 5.22e-026 7.84e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9849 permil - R(13C) 1.11464e-002 -3.0229 permil - R(14C) 9.15811e-014 7.7882 pmc - R(18O) H2O(l) 1.99520e-003 -4.9864 permil - R(18O) OH- 1.92123e-003 -41.874 permil - R(18O) H3O+ 2.04134e-003 18.022 permil - R(13C) CO2(aq) 1.10666e-002 -10.158 permil - R(14C) CO2(aq) 9.02740e-014 7.6771 pmc - R(18O) CO2(aq) 2.07917e-003 36.888 permil - R(18O) HCO3- 1.99520e-003 -4.9864 permil - R(13C) HCO3- 1.11629e-002 -1.5463 permil - R(14C) HCO3- 9.18516e-014 7.8113 pmc - R(18O) CO3-2 1.99520e-003 -4.9864 permil - R(13C) CO3-2 1.11469e-002 -2.9792 permil - R(14C) CO3-2 9.15881e-014 7.7888 pmc - R(13C) CH4(aq) 1.10666e-002 -10.158 permil - R(14C) CH4(aq) 9.02740e-014 7.6771 pmc - R(18O) Calcite 2.05264e-003 23.66 permil - R(13C) Calcite 1.11850e-002 0.43128 permil - R(14C) Calcite 9.22158e-014 7.8422 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.6613e-013 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6521e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.9984e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.7764e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.509e-005 6.490e-005 - [14C] 5.348e-016 5.333e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -1.896 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.216e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 4.540e-020 - CH4 4.540e-020 4.548e-020 -19.343 -19.342 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.087e-008 6.097e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 9.269e-014 - H2 4.635e-014 4.642e-014 -13.334 -13.333 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -65.716 -65.715 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -68.115 -68.114 0.001 (0) -[13C](-4) 5.025e-022 - [13C]H4 5.025e-022 5.033e-022 -21.299 -21.298 0.001 (0) -[13C](4) 6.509e-005 - H[13C]O3- 5.250e-005 4.804e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-007 9.584e-008 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-007 9.584e-008 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-007 9.584e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.087e-008 6.097e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.583e-008 4.590e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.122e-008 2.187e-008 -7.506 -7.660 -0.155 (0) - CaH[13C]O[18O]O+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.643e-010 3.649e-010 -9.439 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.309e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 4.099e-033 - [14C]H4 4.099e-033 4.105e-033 -32.387 -32.387 0.001 (0) -[14C](4) 5.348e-016 - H[14C]O3- 4.320e-016 3.952e-016 -15.364 -15.403 -0.039 (0) - [14C]O2 8.990e-017 9.004e-017 -16.046 -16.046 0.001 (0) - CaH[14C]O3+ 9.123e-018 8.369e-018 -17.040 -17.077 -0.037 (0) - H[14C][18O]O2- 8.620e-019 7.886e-019 -18.065 -18.103 -0.039 (0) - H[14C]O[18O]O- 8.620e-019 7.886e-019 -18.065 -18.103 -0.039 (0) - H[14C]O2[18O]- 8.620e-019 7.886e-019 -18.065 -18.103 -0.039 (0) - Ca[14C]O3 5.001e-019 5.009e-019 -18.301 -18.300 0.001 (0) - [14C]O[18O] 3.738e-019 3.744e-019 -18.427 -18.427 0.001 (0) - [14C]O3-2 2.566e-019 1.797e-019 -18.591 -18.745 -0.155 (0) - CaH[14C]O2[18O]+ 1.820e-020 1.670e-020 -19.740 -19.777 -0.037 (0) - CaH[14C][18O]O2+ 1.820e-020 1.670e-020 -19.740 -19.777 -0.037 (0) - CaH[14C]O[18O]O+ 1.820e-020 1.670e-020 -19.740 -19.777 -0.037 (0) - Ca[14C]O2[18O] 2.994e-021 2.998e-021 -20.524 -20.523 0.001 (0) - H[14C][18O]O[18O]- 1.720e-021 1.573e-021 -20.765 -20.803 -0.039 (0) - H[14C]O[18O]2- 1.720e-021 1.573e-021 -20.765 -20.803 -0.039 (0) - H[14C][18O]2O- 1.720e-021 1.573e-021 -20.765 -20.803 -0.039 (0) - [14C]O2[18O]-2 1.536e-021 1.076e-021 -20.814 -20.968 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -68.115 -68.114 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -71.116 -71.115 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.44 -21.30 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.94 -21.45 -1.50 [14C][18O]2 - [14C]H4(g) -29.53 -32.39 -2.86 [14C]H4 - [14C]O2(g) -14.58 -16.05 -1.47 [14C]O2 - [14C]O[18O](g) -16.96 -18.75 -1.79 [14C]O[18O] - [18O]2(g) -68.82 -71.12 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.11 -12.95 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.25 -7.55 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.04 -4.85 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.94 -10.25 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.48 -19.34 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.18 -13.33 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.82 -65.72 -2.89 O2 - O[18O](g) -65.52 -68.42 -2.89 O[18O] - - -Reaction step 83. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 83 4.1500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 3.91e-002 - Calcite 3.84e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.36e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 4.85e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 3.32e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 4.29e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.64e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 5.43e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 3.71e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.50e-015 5.90e-018 8.96e-014 - Ca[14C]O2[18O](s) 2.16e-017 3.63e-020 5.52e-016 - Ca[14C]O[18O]2(s) 4.42e-020 7.46e-023 1.13e-018 - Ca[14C][18O]3(s) 3.03e-023 5.11e-026 7.75e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9847 permil - R(13C) 1.11466e-002 -3.0047 permil - R(14C) 9.05613e-014 7.7015 pmc - R(18O) H2O(l) 1.99520e-003 -4.9862 permil - R(18O) OH- 1.92123e-003 -41.874 permil - R(18O) H3O+ 2.04134e-003 18.022 permil - R(13C) CO2(aq) 1.10668e-002 -10.14 permil - R(14C) CO2(aq) 8.92688e-014 7.5916 pmc - R(18O) CO2(aq) 2.07917e-003 36.888 permil - R(18O) HCO3- 1.99520e-003 -4.9862 permil - R(13C) HCO3- 1.11631e-002 -1.5281 permil - R(14C) HCO3- 9.08288e-014 7.7243 pmc - R(18O) CO3-2 1.99520e-003 -4.9862 permil - R(13C) CO3-2 1.11471e-002 -2.961 permil - R(14C) CO3-2 9.05683e-014 7.7021 pmc - R(13C) CH4(aq) 1.10668e-002 -10.14 permil - R(14C) CH4(aq) 8.92688e-014 7.5916 pmc - R(18O) Calcite 2.05264e-003 23.66 permil - R(13C) Calcite 1.11852e-002 0.44954 permil - R(14C) Calcite 9.11890e-014 7.7549 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.1062e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.575e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -9.2149e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.1546e-011 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.509e-005 6.490e-005 - [14C] 5.289e-016 5.273e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -1.872 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.218e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 2.935e-020 - CH4 2.935e-020 2.940e-020 -19.532 -19.532 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.087e-008 6.097e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 8.311e-014 - H2 4.156e-014 4.162e-014 -13.381 -13.381 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -65.621 -65.620 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -68.020 -68.019 0.001 (0) -[13C](-4) 3.248e-022 - [13C]H4 3.248e-022 3.253e-022 -21.488 -21.488 0.001 (0) -[13C](4) 6.509e-005 - H[13C]O3- 5.251e-005 4.804e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.048e-007 9.584e-008 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-007 9.584e-008 -6.980 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.048e-007 9.584e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.087e-008 6.097e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.583e-008 4.590e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.123e-008 2.187e-008 -7.505 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.643e-010 3.649e-010 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.309e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 2.620e-033 - [14C]H4 2.620e-033 2.624e-033 -32.582 -32.581 0.001 (0) -[14C](4) 5.289e-016 - H[14C]O3- 4.272e-016 3.908e-016 -15.369 -15.408 -0.039 (0) - [14C]O2 8.889e-017 8.904e-017 -16.051 -16.050 0.001 (0) - CaH[14C]O3+ 9.021e-018 8.276e-018 -17.045 -17.082 -0.037 (0) - H[14C][18O]O2- 8.524e-019 7.798e-019 -18.069 -18.108 -0.039 (0) - H[14C]O[18O]O- 8.524e-019 7.798e-019 -18.069 -18.108 -0.039 (0) - H[14C]O2[18O]- 8.524e-019 7.798e-019 -18.069 -18.108 -0.039 (0) - Ca[14C]O3 4.946e-019 4.954e-019 -18.306 -18.305 0.001 (0) - [14C]O[18O] 3.697e-019 3.703e-019 -18.432 -18.431 0.001 (0) - [14C]O3-2 2.537e-019 1.777e-019 -18.596 -18.750 -0.155 (0) - CaH[14C]O2[18O]+ 1.800e-020 1.651e-020 -19.745 -19.782 -0.037 (0) - CaH[14C][18O]O2+ 1.800e-020 1.651e-020 -19.745 -19.782 -0.037 (0) - CaH[14C]O[18O]O+ 1.800e-020 1.651e-020 -19.745 -19.782 -0.037 (0) - Ca[14C]O2[18O] 2.960e-021 2.965e-021 -20.529 -20.528 0.001 (0) - H[14C]O[18O]2- 1.701e-021 1.556e-021 -20.769 -20.808 -0.039 (0) - H[14C][18O]2O- 1.701e-021 1.556e-021 -20.769 -20.808 -0.039 (0) - H[14C][18O]O[18O]- 1.701e-021 1.556e-021 -20.769 -20.808 -0.039 (0) - [14C]O2[18O]-2 1.519e-021 1.064e-021 -20.819 -20.973 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -68.020 -68.019 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -71.021 -71.020 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.63 -21.49 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.95 -21.45 -1.50 [14C][18O]2 - [14C]H4(g) -29.72 -32.58 -2.86 [14C]H4 - [14C]O2(g) -14.58 -16.05 -1.47 [14C]O2 - [14C]O[18O](g) -16.96 -18.75 -1.79 [14C]O[18O] - [18O]2(g) -68.73 -71.02 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.11 -12.96 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.26 -7.56 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.05 -4.86 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.95 -10.26 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.67 -19.53 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.23 -13.38 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.73 -65.62 -2.89 O2 - O[18O](g) -65.43 -68.32 -2.89 O[18O] - - -Reaction step 84. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 84 4.2000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 3.96e-002 - Calcite 3.89e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.39e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 4.91e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 3.36e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 4.35e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.68e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 5.50e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 3.76e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.51e-015 5.77e-018 8.86e-014 - Ca[14C]O2[18O](s) 2.16e-017 3.55e-020 5.46e-016 - Ca[14C]O[18O]2(s) 4.43e-020 7.30e-023 1.12e-018 - Ca[14C][18O]3(s) 3.03e-023 4.99e-026 7.67e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99520e-003 -4.9846 permil - R(13C) 1.11468e-002 -2.9869 permil - R(14C) 8.95640e-014 7.6167 pmc - R(18O) H2O(l) 1.99520e-003 -4.9861 permil - R(18O) OH- 1.92124e-003 -41.874 permil - R(18O) H3O+ 2.04134e-003 18.022 permil - R(13C) CO2(aq) 1.10670e-002 -10.122 permil - R(14C) CO2(aq) 8.82858e-014 7.508 pmc - R(18O) CO2(aq) 2.07917e-003 36.888 permil - R(18O) HCO3- 1.99520e-003 -4.9861 permil - R(13C) HCO3- 1.11633e-002 -1.5103 permil - R(14C) HCO3- 8.98286e-014 7.6392 pmc - R(18O) CO3-2 1.99520e-003 -4.9861 permil - R(13C) CO3-2 1.11473e-002 -2.9432 permil - R(14C) CO3-2 8.95709e-014 7.6173 pmc - R(13C) CH4(aq) 1.10670e-002 -10.122 permil - R(14C) CH4(aq) 8.82858e-014 7.508 pmc - R(18O) Calcite 2.05264e-003 23.66 permil - R(13C) Calcite 1.11854e-002 0.4674 permil - R(14C) Calcite 9.01848e-014 7.6695 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.791e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 2.2204e-013 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.6209e-011 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.510e-005 6.491e-005 - [14C] 5.230e-016 5.215e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -1.830 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.218e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.332e-020 - CH4 1.332e-020 1.334e-020 -19.875 -19.875 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.087e-008 6.097e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 6.822e-014 - H2 3.411e-014 3.416e-014 -13.467 -13.466 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -65.450 -65.449 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -67.849 -67.848 0.001 (0) -[13C](-4) 1.474e-022 - [13C]H4 1.474e-022 1.477e-022 -21.831 -21.831 0.001 (0) -[13C](4) 6.510e-005 - H[13C]O3- 5.251e-005 4.804e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.048e-007 9.584e-008 -6.980 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.048e-007 9.584e-008 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-007 9.584e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.087e-008 6.097e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.583e-008 4.590e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.123e-008 2.187e-008 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.643e-010 3.649e-010 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.309e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 1.176e-033 - [14C]H4 1.176e-033 1.178e-033 -32.930 -32.929 0.001 (0) -[14C](4) 5.230e-016 - H[14C]O3- 4.225e-016 3.865e-016 -15.374 -15.413 -0.039 (0) - [14C]O2 8.792e-017 8.806e-017 -16.056 -16.055 0.001 (0) - CaH[14C]O3+ 8.922e-018 8.184e-018 -17.050 -17.087 -0.037 (0) - H[14C][18O]O2- 8.430e-019 7.712e-019 -18.074 -18.113 -0.039 (0) - H[14C]O[18O]O- 8.430e-019 7.712e-019 -18.074 -18.113 -0.039 (0) - H[14C]O2[18O]- 8.430e-019 7.712e-019 -18.074 -18.113 -0.039 (0) - Ca[14C]O3 4.891e-019 4.899e-019 -18.311 -18.310 0.001 (0) - [14C]O[18O] 3.656e-019 3.662e-019 -18.437 -18.436 0.001 (0) - [14C]O3-2 2.509e-019 1.758e-019 -18.600 -18.755 -0.155 (0) - CaH[14C]O2[18O]+ 1.780e-020 1.633e-020 -19.750 -19.787 -0.037 (0) - CaH[14C][18O]O2+ 1.780e-020 1.633e-020 -19.750 -19.787 -0.037 (0) - CaH[14C]O[18O]O+ 1.780e-020 1.633e-020 -19.750 -19.787 -0.037 (0) - Ca[14C]O2[18O] 2.928e-021 2.932e-021 -20.533 -20.533 0.001 (0) - H[14C][18O]2O- 1.682e-021 1.539e-021 -20.774 -20.813 -0.039 (0) - H[14C][18O]O[18O]- 1.682e-021 1.539e-021 -20.774 -20.813 -0.039 (0) - H[14C]O[18O]2- 1.682e-021 1.539e-021 -20.774 -20.813 -0.039 (0) - [14C]O2[18O]-2 1.502e-021 1.052e-021 -20.823 -20.978 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -67.849 -67.848 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -70.850 -70.849 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.97 -21.83 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.95 -21.46 -1.50 [14C][18O]2 - [14C]H4(g) -30.07 -32.93 -2.86 [14C]H4 - [14C]O2(g) -14.59 -16.06 -1.47 [14C]O2 - [14C]O[18O](g) -16.97 -18.76 -1.79 [14C]O[18O] - [18O]2(g) -68.56 -70.85 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.12 -12.96 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.26 -7.56 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.05 -4.86 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.95 -10.26 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.01 -19.87 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.32 -13.47 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.56 -65.45 -2.89 O2 - O[18O](g) -65.26 -68.15 -2.89 O[18O] - - -Reaction step 85. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 85 4.2500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 4.01e-002 - Calcite 3.94e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.42e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 4.98e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 3.40e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 4.40e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.71e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 5.57e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 3.81e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.51e-015 5.65e-018 8.77e-014 - Ca[14C]O2[18O](s) 2.16e-017 3.48e-020 5.40e-016 - Ca[14C]O[18O]2(s) 4.44e-020 7.14e-023 1.11e-018 - Ca[14C][18O]3(s) 3.04e-023 4.88e-026 7.58e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9844 permil - R(13C) 1.11470e-002 -2.9695 permil - R(14C) 8.85885e-014 7.5338 pmc - R(18O) H2O(l) 1.99520e-003 -4.986 permil - R(18O) OH- 1.92124e-003 -41.873 permil - R(18O) H3O+ 2.04134e-003 18.022 permil - R(13C) CO2(aq) 1.10672e-002 -10.105 permil - R(14C) CO2(aq) 8.73241e-014 7.4262 pmc - R(18O) CO2(aq) 2.07917e-003 36.888 permil - R(18O) HCO3- 1.99520e-003 -4.986 permil - R(13C) HCO3- 1.11635e-002 -1.4928 permil - R(14C) HCO3- 8.88501e-014 7.556 pmc - R(18O) CO3-2 1.99520e-003 -4.986 permil - R(13C) CO3-2 1.11475e-002 -2.9258 permil - R(14C) CO3-2 8.85953e-014 7.5343 pmc - R(13C) CH4(aq) 1.10672e-002 -10.105 permil - R(14C) CH4(aq) 8.73241e-014 7.4262 pmc - R(18O) Calcite 2.05264e-003 23.661 permil - R(13C) Calcite 1.11856e-002 0.48487 permil - R(14C) Calcite 8.92025e-014 7.586 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6048e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -3.1086e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 8.8818e-013 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.510e-005 6.491e-005 - [14C] 5.173e-016 5.158e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -1.861 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.219e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 2.394e-020 - CH4 2.394e-020 2.398e-020 -19.621 -19.620 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.087e-008 6.097e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 7.899e-014 - H2 3.949e-014 3.956e-014 -13.403 -13.403 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -65.577 -65.576 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -67.976 -67.975 0.001 (0) -[13C](-4) 2.650e-022 - [13C]H4 2.650e-022 2.654e-022 -21.577 -21.576 0.001 (0) -[13C](4) 6.510e-005 - H[13C]O3- 5.251e-005 4.804e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-007 9.584e-008 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-007 9.584e-008 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-007 9.584e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.087e-008 6.097e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.583e-008 4.590e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.123e-008 2.188e-008 -7.505 -7.660 -0.155 (0) - CaH[13C]O[18O]O+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.644e-010 3.650e-010 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.309e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 2.091e-033 - [14C]H4 2.091e-033 2.094e-033 -32.680 -32.679 0.001 (0) -[14C](4) 5.173e-016 - H[14C]O3- 4.179e-016 3.823e-016 -15.379 -15.418 -0.039 (0) - [14C]O2 8.696e-017 8.710e-017 -16.061 -16.060 0.001 (0) - CaH[14C]O3+ 8.825e-018 8.095e-018 -17.054 -17.092 -0.037 (0) - H[14C][18O]O2- 8.338e-019 7.628e-019 -18.079 -18.118 -0.039 (0) - H[14C]O[18O]O- 8.338e-019 7.628e-019 -18.079 -18.118 -0.039 (0) - H[14C]O2[18O]- 8.338e-019 7.628e-019 -18.079 -18.118 -0.039 (0) - Ca[14C]O3 4.838e-019 4.846e-019 -18.315 -18.315 0.001 (0) - [14C]O[18O] 3.616e-019 3.622e-019 -18.442 -18.441 0.001 (0) - [14C]O3-2 2.482e-019 1.739e-019 -18.605 -18.760 -0.155 (0) - CaH[14C]O2[18O]+ 1.761e-020 1.615e-020 -19.754 -19.792 -0.037 (0) - CaH[14C][18O]O2+ 1.761e-020 1.615e-020 -19.754 -19.792 -0.037 (0) - CaH[14C]O[18O]O+ 1.761e-020 1.615e-020 -19.754 -19.792 -0.037 (0) - Ca[14C]O2[18O] 2.896e-021 2.900e-021 -20.538 -20.538 0.001 (0) - H[14C][18O]O[18O]- 1.664e-021 1.522e-021 -20.779 -20.818 -0.039 (0) - H[14C]O[18O]2- 1.664e-021 1.522e-021 -20.779 -20.818 -0.039 (0) - H[14C][18O]2O- 1.664e-021 1.522e-021 -20.779 -20.818 -0.039 (0) - [14C]O2[18O]-2 1.485e-021 1.041e-021 -20.828 -20.983 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -67.976 -67.975 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -70.977 -70.976 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.72 -21.58 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.96 -21.46 -1.50 [14C][18O]2 - [14C]H4(g) -29.82 -32.68 -2.86 [14C]H4 - [14C]O2(g) -14.59 -16.06 -1.47 [14C]O2 - [14C]O[18O](g) -16.97 -18.76 -1.79 [14C]O[18O] - [18O]2(g) -68.69 -70.98 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.12 -12.97 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.27 -7.57 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.06 -4.87 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.96 -10.27 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.76 -19.62 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.25 -13.40 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.68 -65.58 -2.89 O2 - O[18O](g) -65.38 -68.28 -2.89 O[18O] - - -Reaction step 86. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 86 4.3000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 4.06e-002 - Calcite 3.99e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.45e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 5.04e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 3.45e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 4.46e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.75e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 5.64e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 3.86e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.52e-015 5.52e-018 8.67e-014 - Ca[14C]O2[18O](s) 2.17e-017 3.40e-020 5.34e-016 - Ca[14C]O[18O]2(s) 4.45e-020 6.98e-023 1.10e-018 - Ca[14C][18O]3(s) 3.04e-023 4.78e-026 7.50e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9843 permil - R(13C) 1.11472e-002 -2.9524 permil - R(14C) 8.76340e-014 7.4526 pmc - R(18O) H2O(l) 1.99520e-003 -4.9858 permil - R(18O) OH- 1.92124e-003 -41.873 permil - R(18O) H3O+ 2.04134e-003 18.022 permil - R(13C) CO2(aq) 1.10674e-002 -10.088 permil - R(14C) CO2(aq) 8.63832e-014 7.3462 pmc - R(18O) CO2(aq) 2.07917e-003 36.888 permil - R(18O) HCO3- 1.99520e-003 -4.9858 permil - R(13C) HCO3- 1.11637e-002 -1.4758 permil - R(14C) HCO3- 8.78928e-014 7.4746 pmc - R(18O) CO3-2 1.99520e-003 -4.9858 permil - R(13C) CO3-2 1.11477e-002 -2.9087 permil - R(14C) CO3-2 8.76407e-014 7.4532 pmc - R(13C) CH4(aq) 1.10674e-002 -10.088 permil - R(14C) CH4(aq) 8.63832e-014 7.3462 pmc - R(18O) Calcite 2.05264e-003 23.661 permil - R(13C) Calcite 1.11858e-002 0.50196 permil - R(14C) Calcite 8.82413e-014 7.5042 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.3323e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6926e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 4.2188e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -5.6621e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.510e-005 6.491e-005 - [14C] 5.118e-016 5.103e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -1.669 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.216e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 6.880e-022 - CH4 6.880e-022 6.891e-022 -21.162 -21.162 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.087e-008 6.097e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 3.252e-014 - H2 1.626e-014 1.629e-014 -13.789 -13.788 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -64.806 -64.805 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -67.205 -67.204 0.001 (0) -[13C](-4) 7.614e-024 - [13C]H4 7.614e-024 7.627e-024 -23.118 -23.118 0.001 (0) -[13C](4) 6.510e-005 - H[13C]O3- 5.251e-005 4.804e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.048e-007 9.585e-008 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-007 9.585e-008 -6.980 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.048e-007 9.585e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.087e-008 6.097e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.583e-008 4.590e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.123e-008 2.188e-008 -7.505 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.644e-010 3.650e-010 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.309e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 5.943e-035 - [14C]H4 5.943e-035 5.953e-035 -34.226 -34.225 0.001 (0) -[14C](4) 5.118e-016 - H[14C]O3- 4.134e-016 3.782e-016 -15.384 -15.422 -0.039 (0) - [14C]O2 8.602e-017 8.616e-017 -16.065 -16.065 0.001 (0) - CaH[14C]O3+ 8.730e-018 8.008e-018 -17.059 -17.096 -0.037 (0) - H[14C][18O]O2- 8.248e-019 7.546e-019 -18.084 -18.122 -0.039 (0) - H[14C]O[18O]O- 8.248e-019 7.546e-019 -18.084 -18.122 -0.039 (0) - H[14C]O2[18O]- 8.248e-019 7.546e-019 -18.084 -18.122 -0.039 (0) - Ca[14C]O3 4.786e-019 4.794e-019 -18.320 -18.319 0.001 (0) - [14C]O[18O] 3.577e-019 3.583e-019 -18.446 -18.446 0.001 (0) - [14C]O3-2 2.455e-019 1.720e-019 -18.610 -18.765 -0.155 (0) - CaH[14C]O2[18O]+ 1.742e-020 1.598e-020 -19.759 -19.796 -0.037 (0) - CaH[14C][18O]O2+ 1.742e-020 1.598e-020 -19.759 -19.796 -0.037 (0) - CaH[14C]O[18O]O+ 1.742e-020 1.598e-020 -19.759 -19.796 -0.037 (0) - Ca[14C]O2[18O] 2.865e-021 2.869e-021 -20.543 -20.542 0.001 (0) - H[14C]O[18O]2- 1.646e-021 1.506e-021 -20.784 -20.822 -0.039 (0) - H[14C][18O]2O- 1.646e-021 1.506e-021 -20.784 -20.822 -0.039 (0) - H[14C][18O]O[18O]- 1.646e-021 1.506e-021 -20.784 -20.822 -0.039 (0) - [14C]O2[18O]-2 1.469e-021 1.029e-021 -20.833 -20.987 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -67.205 -67.204 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -70.206 -70.205 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -20.26 -23.12 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.96 -21.46 -1.50 [14C][18O]2 - [14C]H4(g) -31.37 -34.23 -2.86 [14C]H4 - [14C]O2(g) -14.60 -16.06 -1.47 [14C]O2 - [14C]O[18O](g) -16.98 -18.76 -1.79 [14C]O[18O] - [18O]2(g) -67.92 -70.21 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.12 -12.97 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.27 -7.57 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.06 -4.87 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.96 -10.27 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -18.30 -21.16 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.64 -13.79 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -61.91 -64.81 -2.89 O2 - O[18O](g) -64.61 -67.51 -2.89 O[18O] - - -Reaction step 87. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 87 4.3500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 4.11e-002 - Calcite 4.04e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.48e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 5.10e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 3.49e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 4.51e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.78e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 5.71e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 3.90e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.52e-015 5.41e-018 8.58e-014 - Ca[14C]O2[18O](s) 2.17e-017 3.33e-020 5.28e-016 - Ca[14C]O[18O]2(s) 4.45e-020 6.83e-023 1.08e-018 - Ca[14C][18O]3(s) 3.05e-023 4.68e-026 7.42e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9842 permil - R(13C) 1.11474e-002 -2.9358 permil - R(14C) 8.66998e-014 7.3731 pmc - R(18O) H2O(l) 1.99520e-003 -4.9857 permil - R(18O) OH- 1.92124e-003 -41.873 permil - R(18O) H3O+ 2.04134e-003 18.022 permil - R(13C) CO2(aq) 1.10676e-002 -10.071 permil - R(14C) CO2(aq) 8.54624e-014 7.2679 pmc - R(18O) CO2(aq) 2.07917e-003 36.889 permil - R(18O) HCO3- 1.99520e-003 -4.9857 permil - R(13C) HCO3- 1.11639e-002 -1.4591 permil - R(14C) HCO3- 8.69559e-014 7.3949 pmc - R(18O) CO3-2 1.99520e-003 -4.9857 permil - R(13C) CO3-2 1.11479e-002 -2.8921 permil - R(14C) CO3-2 8.67065e-014 7.3737 pmc - R(13C) CH4(aq) 1.10676e-002 -10.071 permil - R(14C) CH4(aq) 8.54624e-014 7.2679 pmc - R(18O) Calcite 2.05264e-003 23.661 permil - R(13C) Calcite 1.11860e-002 0.51869 permil - R(14C) Calcite 8.73007e-014 7.4242 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7017e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -2.7756e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.088e-011 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.510e-005 6.491e-005 - [14C] 5.063e-016 5.048e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -1.102 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.217e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 2.007e-026 - CH4 2.007e-026 2.010e-026 -25.698 -25.697 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.087e-008 6.097e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 2.390e-015 - H2 1.195e-015 1.197e-015 -14.923 -14.922 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -62.539 -62.538 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -64.938 -64.937 0.001 (0) -[13C](-4) 2.221e-028 - [13C]H4 2.221e-028 2.224e-028 -27.653 -27.653 0.001 (0) -[13C](4) 6.510e-005 - H[13C]O3- 5.251e-005 4.804e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.048e-007 9.585e-008 -6.980 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.048e-007 9.585e-008 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-007 9.585e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.087e-008 6.097e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.583e-008 4.590e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.123e-008 2.188e-008 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.644e-010 3.650e-010 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.309e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 1.715e-039 - [14C]H4 1.715e-039 1.718e-039 -38.766 -38.765 0.001 (0) -[14C](4) 5.063e-016 - H[14C]O3- 4.090e-016 3.742e-016 -15.388 -15.427 -0.039 (0) - [14C]O2 8.510e-017 8.524e-017 -16.070 -16.069 0.001 (0) - CaH[14C]O3+ 8.637e-018 7.923e-018 -17.064 -17.101 -0.037 (0) - H[14C][18O]O2- 8.160e-019 7.466e-019 -18.088 -18.127 -0.039 (0) - H[14C]O[18O]O- 8.160e-019 7.466e-019 -18.088 -18.127 -0.039 (0) - H[14C]O2[18O]- 8.160e-019 7.466e-019 -18.088 -18.127 -0.039 (0) - Ca[14C]O3 4.735e-019 4.742e-019 -18.325 -18.324 0.001 (0) - [14C]O[18O] 3.539e-019 3.545e-019 -18.451 -18.450 0.001 (0) - [14C]O3-2 2.429e-019 1.701e-019 -18.615 -18.769 -0.155 (0) - CaH[14C]O2[18O]+ 1.723e-020 1.581e-020 -19.764 -19.801 -0.037 (0) - CaH[14C][18O]O2+ 1.723e-020 1.581e-020 -19.764 -19.801 -0.037 (0) - CaH[14C]O[18O]O+ 1.723e-020 1.581e-020 -19.764 -19.801 -0.037 (0) - Ca[14C]O2[18O] 2.834e-021 2.839e-021 -20.548 -20.547 0.001 (0) - H[14C][18O]2O- 1.628e-021 1.490e-021 -20.788 -20.827 -0.039 (0) - H[14C][18O]O[18O]- 1.628e-021 1.490e-021 -20.788 -20.827 -0.039 (0) - H[14C]O[18O]2- 1.628e-021 1.490e-021 -20.788 -20.827 -0.039 (0) - [14C]O2[18O]-2 1.454e-021 1.018e-021 -20.837 -20.992 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -64.938 -64.937 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -67.939 -67.938 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -24.79 -27.65 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.97 -21.47 -1.50 [14C][18O]2 - [14C]H4(g) -35.91 -38.77 -2.86 [14C]H4 - [14C]O2(g) -14.60 -16.07 -1.47 [14C]O2 - [14C]O[18O](g) -16.98 -18.77 -1.79 [14C]O[18O] - [18O]2(g) -65.65 -67.94 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.13 -12.97 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.28 -7.57 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.07 -4.87 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.96 -10.27 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -22.84 -25.70 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -11.77 -14.92 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -59.65 -62.54 -2.89 O2 - O[18O](g) -62.35 -65.24 -2.89 O[18O] - - -Reaction step 88. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 88 4.4000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 4.16e-002 - Calcite 4.08e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.52e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 5.16e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 3.53e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 4.57e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.81e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 5.78e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 3.95e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.53e-015 5.29e-018 8.49e-014 - Ca[14C]O2[18O](s) 2.17e-017 3.26e-020 5.23e-016 - Ca[14C]O[18O]2(s) 4.46e-020 6.69e-023 1.07e-018 - Ca[14C][18O]3(s) 3.05e-023 4.58e-026 7.34e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.984 permil - R(13C) 1.11476e-002 -2.9195 permil - R(14C) 8.57853e-014 7.2954 pmc - R(18O) H2O(l) 1.99520e-003 -4.9856 permil - R(18O) OH- 1.92124e-003 -41.873 permil - R(18O) H3O+ 2.04134e-003 18.022 permil - R(18O) O2(aq) 1.99520e-003 -4.9856 permil - R(13C) CO2(aq) 1.10678e-002 -10.055 permil - R(14C) CO2(aq) 8.45609e-014 7.1912 pmc - R(18O) CO2(aq) 2.07917e-003 36.889 permil - R(18O) HCO3- 1.99520e-003 -4.9856 permil - R(13C) HCO3- 1.11641e-002 -1.4427 permil - R(14C) HCO3- 8.60387e-014 7.3169 pmc - R(18O) CO3-2 1.99520e-003 -4.9856 permil - R(13C) CO3-2 1.11480e-002 -2.8758 permil - R(14C) CO3-2 8.57919e-014 7.2959 pmc - R(18O) Calcite 2.05264e-003 23.661 permil - R(13C) Calcite 1.11862e-002 0.53506 permil - R(14C) Calcite 8.63798e-014 7.3459 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2639e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.625e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.510e-005 6.491e-005 - [14C] 5.010e-016 4.995e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.024 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.216e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 21 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -122.707 -122.706 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.087e-008 6.097e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.337e-039 - H2 6.684e-040 6.695e-040 -39.175 -39.174 0.001 (0) -O(0) 1.857e-014 - O2 9.247e-015 9.262e-015 -14.034 -14.033 0.001 (0) - O[18O] 3.690e-017 3.696e-017 -16.433 -16.432 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -124.663 -124.662 0.001 (0) -[13C](4) 6.510e-005 - H[13C]O3- 5.251e-005 4.804e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-007 9.585e-008 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-007 9.585e-008 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-007 9.585e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.087e-008 6.097e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.583e-008 4.591e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.123e-008 2.188e-008 -7.505 -7.660 -0.155 (0) - CaH[13C]O[18O]O+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.212e-009 2.029e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.644e-010 3.650e-010 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.309e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -135.780 -135.779 0.001 (0) -[14C](4) 5.010e-016 - H[14C]O3- 4.047e-016 3.702e-016 -15.393 -15.432 -0.039 (0) - [14C]O2 8.421e-017 8.434e-017 -16.075 -16.074 0.001 (0) - CaH[14C]O3+ 8.546e-018 7.839e-018 -17.068 -17.106 -0.037 (0) - H[14C][18O]O2- 8.074e-019 7.387e-019 -18.093 -18.132 -0.039 (0) - H[14C]O[18O]O- 8.074e-019 7.387e-019 -18.093 -18.132 -0.039 (0) - H[14C]O2[18O]- 8.074e-019 7.387e-019 -18.093 -18.132 -0.039 (0) - Ca[14C]O3 4.685e-019 4.692e-019 -18.329 -18.329 0.001 (0) - [14C]O[18O] 3.502e-019 3.507e-019 -18.456 -18.455 0.001 (0) - [14C]O3-2 2.403e-019 1.684e-019 -18.619 -18.774 -0.155 (0) - CaH[14C]O2[18O]+ 1.705e-020 1.564e-020 -19.768 -19.806 -0.037 (0) - CaH[14C][18O]O2+ 1.705e-020 1.564e-020 -19.768 -19.806 -0.037 (0) - CaH[14C]O[18O]O+ 1.705e-020 1.564e-020 -19.768 -19.806 -0.037 (0) - Ca[14C]O2[18O] 2.804e-021 2.809e-021 -20.552 -20.551 0.001 (0) - H[14C][18O]O[18O]- 1.611e-021 1.474e-021 -20.793 -20.832 -0.039 (0) - H[14C]O[18O]2- 1.611e-021 1.474e-021 -20.793 -20.832 -0.039 (0) - H[14C][18O]2O- 1.611e-021 1.474e-021 -20.793 -20.832 -0.039 (0) - [14C]O2[18O]-2 1.438e-021 1.008e-021 -20.842 -20.997 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 3.697e-017 - O[18O] 3.690e-017 3.696e-017 -16.433 -16.432 0.001 (0) - [18O]2 3.681e-020 3.687e-020 -19.434 -19.433 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.80 -124.66 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.97 -21.47 -1.50 [14C][18O]2 - [14C]H4(g) -132.92 -135.78 -2.86 [14C]H4 - [14C]O2(g) -14.61 -16.07 -1.47 [14C]O2 - [14C]O[18O](g) -16.99 -18.77 -1.79 [14C]O[18O] - [18O]2(g) -17.14 -19.43 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.13 -12.98 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.28 -7.58 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.07 -4.88 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.97 -10.28 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.85 -122.71 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.02 -39.17 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.14 -14.03 -2.89 O2 - O[18O](g) -13.84 -16.73 -2.89 O[18O] - - -Reaction step 89. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 89 4.4500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 4.21e-002 - Calcite 4.13e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.55e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 5.22e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 3.57e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 4.62e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.85e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 5.84e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.00e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.53e-015 5.18e-018 8.40e-014 - Ca[14C]O2[18O](s) 2.18e-017 3.19e-020 5.17e-016 - Ca[14C]O[18O]2(s) 4.47e-020 6.55e-023 1.06e-018 - Ca[14C][18O]3(s) 3.06e-023 4.48e-026 7.27e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9839 permil - R(13C) 1.11477e-002 -2.9035 permil - R(14C) 8.48899e-014 7.2192 pmc - R(18O) H2O(l) 1.99520e-003 -4.9854 permil - R(18O) OH- 1.92124e-003 -41.873 permil - R(18O) H3O+ 2.04134e-003 18.023 permil - R(18O) O2(aq) 1.99520e-003 -4.9854 permil - R(13C) CO2(aq) 1.10680e-002 -10.039 permil - R(14C) CO2(aq) 8.36783e-014 7.1162 pmc - R(18O) CO2(aq) 2.07917e-003 36.889 permil - R(18O) HCO3- 1.99520e-003 -4.9854 permil - R(13C) HCO3- 1.11642e-002 -1.4267 permil - R(14C) HCO3- 8.51407e-014 7.2405 pmc - R(18O) CO3-2 1.99520e-003 -4.9854 permil - R(13C) CO3-2 1.11482e-002 -2.8598 permil - R(14C) CO3-2 8.48965e-014 7.2198 pmc - R(18O) Calcite 2.05265e-003 23.661 permil - R(13C) Calcite 1.11864e-002 0.5511 permil - R(14C) Calcite 8.54783e-014 7.2693 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2655e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.2196e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6528e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.510e-005 6.491e-005 - [14C] 4.957e-016 4.943e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 10.989 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.218e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -122.421 -122.420 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.088e-008 6.098e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.576e-039 - H2 7.879e-040 7.892e-040 -39.104 -39.103 0.001 (0) -O(0) 1.336e-014 - O2 6.655e-015 6.666e-015 -14.177 -14.176 0.001 (0) - O[18O] 2.655e-017 2.660e-017 -16.576 -16.575 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -124.377 -124.376 0.001 (0) -[13C](4) 6.510e-005 - H[13C]O3- 5.251e-005 4.804e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.048e-007 9.585e-008 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-007 9.585e-008 -6.980 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.048e-007 9.585e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.088e-008 6.098e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.583e-008 4.591e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.123e-008 2.188e-008 -7.505 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.212e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.212e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.212e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.644e-010 3.650e-010 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.309e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -135.498 -135.498 0.001 (0) -[14C](4) 4.957e-016 - H[14C]O3- 4.005e-016 3.664e-016 -15.397 -15.436 -0.039 (0) - [14C]O2 8.333e-017 8.346e-017 -16.079 -16.079 0.001 (0) - CaH[14C]O3+ 8.456e-018 7.757e-018 -17.073 -17.110 -0.037 (0) - H[14C][18O]O2- 7.990e-019 7.310e-019 -18.097 -18.136 -0.039 (0) - H[14C]O[18O]O- 7.990e-019 7.310e-019 -18.097 -18.136 -0.039 (0) - H[14C]O2[18O]- 7.990e-019 7.310e-019 -18.097 -18.136 -0.039 (0) - Ca[14C]O3 4.636e-019 4.643e-019 -18.334 -18.333 0.001 (0) - [14C]O[18O] 3.465e-019 3.471e-019 -18.460 -18.460 0.001 (0) - [14C]O3-2 2.378e-019 1.666e-019 -18.624 -18.778 -0.155 (0) - CaH[14C]O2[18O]+ 1.687e-020 1.548e-020 -19.773 -19.810 -0.037 (0) - CaH[14C][18O]O2+ 1.687e-020 1.548e-020 -19.773 -19.810 -0.037 (0) - CaH[14C]O[18O]O+ 1.687e-020 1.548e-020 -19.773 -19.810 -0.037 (0) - Ca[14C]O2[18O] 2.775e-021 2.779e-021 -20.557 -20.556 0.001 (0) - H[14C]O[18O]2- 1.594e-021 1.458e-021 -20.797 -20.836 -0.039 (0) - H[14C][18O]2O- 1.594e-021 1.458e-021 -20.797 -20.836 -0.039 (0) - H[14C][18O]O[18O]- 1.594e-021 1.458e-021 -20.797 -20.836 -0.039 (0) - [14C]O2[18O]-2 1.423e-021 9.972e-022 -20.847 -21.001 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 2.661e-017 - O[18O] 2.655e-017 2.660e-017 -16.576 -16.575 0.001 (0) - [18O]2 2.649e-020 2.653e-020 -19.577 -19.576 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.52 -124.38 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.97 -21.48 -1.50 [14C][18O]2 - [14C]H4(g) -132.64 -135.50 -2.86 [14C]H4 - [14C]O2(g) -14.61 -16.08 -1.47 [14C]O2 - [14C]O[18O](g) -16.99 -18.78 -1.79 [14C]O[18O] - [18O]2(g) -17.29 -19.58 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.14 -12.98 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.29 -7.58 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.08 -4.88 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.97 -10.28 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.56 -122.42 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.95 -39.10 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.28 -14.18 -2.89 O2 - O[18O](g) -13.98 -16.88 -2.89 O[18O] - - -Reaction step 90. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 90 4.5000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 4.26e-002 - Calcite 4.18e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.58e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 5.29e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 3.62e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 4.68e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.88e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 5.91e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.05e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.54e-015 5.07e-018 8.31e-014 - Ca[14C]O2[18O](s) 2.18e-017 3.13e-020 5.12e-016 - Ca[14C]O[18O]2(s) 4.47e-020 6.42e-023 1.05e-018 - Ca[14C][18O]3(s) 3.06e-023 4.39e-026 7.19e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9838 permil - R(13C) 1.11479e-002 -2.8878 permil - R(14C) 8.40130e-014 7.1446 pmc - R(18O) H2O(l) 1.99520e-003 -4.9853 permil - R(18O) OH- 1.92124e-003 -41.873 permil - R(18O) H3O+ 2.04134e-003 18.023 permil - R(18O) O2(aq) 1.99520e-003 -4.9853 permil - R(13C) CO2(aq) 1.10681e-002 -10.024 permil - R(14C) CO2(aq) 8.28140e-014 7.0427 pmc - R(18O) CO2(aq) 2.07917e-003 36.889 permil - R(18O) HCO3- 1.99520e-003 -4.9853 permil - R(13C) HCO3- 1.11644e-002 -1.4111 permil - R(14C) HCO3- 8.42612e-014 7.1658 pmc - R(18O) CO3-2 1.99520e-003 -4.9853 permil - R(13C) CO3-2 1.11484e-002 -2.8441 permil - R(14C) CO3-2 8.40195e-014 7.1452 pmc - R(18O) Calcite 2.05265e-003 23.661 permil - R(13C) Calcite 1.11865e-002 0.5668 permil - R(14C) Calcite 8.45953e-014 7.1942 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2412e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.2196e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.645e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.510e-005 6.491e-005 - [14C] 4.906e-016 4.892e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.059 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.216e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -122.987 -122.986 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.088e-008 6.098e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.138e-039 - H2 5.688e-040 5.697e-040 -39.245 -39.244 0.001 (0) -O(0) 2.564e-014 - O2 1.277e-014 1.279e-014 -13.894 -13.893 0.001 (0) - O[18O] 5.096e-017 5.104e-017 -16.293 -16.292 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -124.943 -124.942 0.001 (0) -[13C](4) 6.510e-005 - H[13C]O3- 5.251e-005 4.804e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.048e-007 9.585e-008 -6.980 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.048e-007 9.585e-008 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-007 9.585e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.088e-008 6.098e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.583e-008 4.591e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.123e-008 2.188e-008 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.212e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.212e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.644e-010 3.650e-010 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.309e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.069 -136.068 0.001 (0) -[14C](4) 4.906e-016 - H[14C]O3- 3.963e-016 3.626e-016 -15.402 -15.441 -0.039 (0) - [14C]O2 8.247e-017 8.260e-017 -16.084 -16.083 0.001 (0) - CaH[14C]O3+ 8.369e-018 7.677e-018 -17.077 -17.115 -0.037 (0) - H[14C][18O]O2- 7.907e-019 7.234e-019 -18.102 -18.141 -0.039 (0) - H[14C]O[18O]O- 7.907e-019 7.234e-019 -18.102 -18.141 -0.039 (0) - H[14C]O2[18O]- 7.907e-019 7.234e-019 -18.102 -18.141 -0.039 (0) - Ca[14C]O3 4.588e-019 4.595e-019 -18.338 -18.338 0.001 (0) - [14C]O[18O] 3.429e-019 3.435e-019 -18.465 -18.464 0.001 (0) - [14C]O3-2 2.354e-019 1.649e-019 -18.628 -18.783 -0.155 (0) - CaH[14C]O2[18O]+ 1.670e-020 1.532e-020 -19.777 -19.815 -0.037 (0) - CaH[14C][18O]O2+ 1.670e-020 1.532e-020 -19.777 -19.815 -0.037 (0) - CaH[14C]O[18O]O+ 1.670e-020 1.532e-020 -19.777 -19.815 -0.037 (0) - Ca[14C]O2[18O] 2.746e-021 2.751e-021 -20.561 -20.561 0.001 (0) - H[14C][18O]2O- 1.578e-021 1.443e-021 -20.802 -20.841 -0.039 (0) - H[14C][18O]O[18O]- 1.578e-021 1.443e-021 -20.802 -20.841 -0.039 (0) - H[14C]O[18O]2- 1.578e-021 1.443e-021 -20.802 -20.841 -0.039 (0) - [14C]O2[18O]-2 1.409e-021 9.869e-022 -20.851 -21.006 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 5.106e-017 - O[18O] 5.096e-017 5.104e-017 -16.293 -16.292 0.001 (0) - [18O]2 5.084e-020 5.092e-020 -19.294 -19.293 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.08 -124.94 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.98 -21.48 -1.50 [14C][18O]2 - [14C]H4(g) -133.21 -136.07 -2.86 [14C]H4 - [14C]O2(g) -14.61 -16.08 -1.47 [14C]O2 - [14C]O[18O](g) -17.00 -18.78 -1.79 [14C]O[18O] - [18O]2(g) -17.00 -19.29 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.14 -12.99 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.29 -7.59 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.08 -4.89 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.98 -10.29 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.13 -122.99 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.09 -39.24 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.00 -13.89 -2.89 O2 - O[18O](g) -13.70 -16.59 -2.89 O[18O] - - -Reaction step 91. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 91 4.5500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 4.31e-002 - Calcite 4.23e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.61e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 5.35e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 3.66e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 4.73e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.92e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 5.98e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.09e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.54e-015 4.97e-018 8.23e-014 - Ca[14C]O2[18O](s) 2.18e-017 3.06e-020 5.07e-016 - Ca[14C]O[18O]2(s) 4.48e-020 6.28e-023 1.04e-018 - Ca[14C][18O]3(s) 3.06e-023 4.30e-026 7.12e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9836 permil - R(13C) 1.11481e-002 -2.8725 permil - R(14C) 8.31541e-014 7.0716 pmc - R(18O) H2O(l) 1.99520e-003 -4.9851 permil - R(18O) OH- 1.92124e-003 -41.873 permil - R(18O) H3O+ 2.04134e-003 18.023 permil - R(18O) O2(aq) 1.99520e-003 -4.9851 permil - R(13C) CO2(aq) 1.10683e-002 -10.009 permil - R(14C) CO2(aq) 8.19673e-014 6.9707 pmc - R(18O) CO2(aq) 2.07917e-003 36.889 permil - R(18O) HCO3- 1.99520e-003 -4.9851 permil - R(13C) HCO3- 1.11646e-002 -1.3957 permil - R(14C) HCO3- 8.33997e-014 7.0925 pmc - R(18O) CO3-2 1.99520e-003 -4.9851 permil - R(13C) CO3-2 1.11486e-002 -2.8288 permil - R(14C) CO3-2 8.31605e-014 7.0721 pmc - R(18O) Calcite 2.05265e-003 23.661 permil - R(13C) Calcite 1.11867e-002 0.58218 permil - R(14C) Calcite 8.37304e-014 7.1206 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2866e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.3299e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5917e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.510e-005 6.491e-005 - [14C] 4.856e-016 4.842e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.106 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.217e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.360 -123.360 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.088e-008 6.098e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 9.177e-040 - H2 4.588e-040 4.596e-040 -39.338 -39.338 0.001 (0) -O(0) 3.940e-014 - O2 1.962e-014 1.966e-014 -13.707 -13.707 0.001 (0) - O[18O] 7.831e-017 7.844e-017 -16.106 -16.105 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.316 -125.315 0.001 (0) -[13C](4) 6.510e-005 - H[13C]O3- 5.251e-005 4.804e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-007 9.585e-008 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-007 9.585e-008 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-007 9.585e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.088e-008 6.098e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.583e-008 4.591e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.123e-008 2.188e-008 -7.505 -7.660 -0.155 (0) - CaH[13C]O[18O]O+ 2.212e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.212e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.212e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.644e-010 3.650e-010 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.090e-010 1.912e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.309e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.447 -136.446 0.001 (0) -[14C](4) 4.856e-016 - H[14C]O3- 3.923e-016 3.589e-016 -15.406 -15.445 -0.039 (0) - [14C]O2 8.162e-017 8.176e-017 -16.088 -16.087 0.001 (0) - CaH[14C]O3+ 8.283e-018 7.599e-018 -17.082 -17.119 -0.037 (0) - H[14C][18O]O2- 7.827e-019 7.160e-019 -18.106 -18.145 -0.039 (0) - H[14C]O[18O]O- 7.827e-019 7.160e-019 -18.106 -18.145 -0.039 (0) - H[14C]O2[18O]- 7.827e-019 7.160e-019 -18.106 -18.145 -0.039 (0) - Ca[14C]O3 4.541e-019 4.548e-019 -18.343 -18.342 0.001 (0) - [14C]O[18O] 3.394e-019 3.400e-019 -18.469 -18.469 0.001 (0) - [14C]O3-2 2.329e-019 1.632e-019 -18.633 -18.787 -0.155 (0) - CaH[14C]O2[18O]+ 1.653e-020 1.516e-020 -19.782 -19.819 -0.037 (0) - CaH[14C][18O]O2+ 1.653e-020 1.516e-020 -19.782 -19.819 -0.037 (0) - CaH[14C]O[18O]O+ 1.653e-020 1.516e-020 -19.782 -19.819 -0.037 (0) - Ca[14C]O2[18O] 2.718e-021 2.723e-021 -20.566 -20.565 0.001 (0) - H[14C][18O]O[18O]- 1.562e-021 1.429e-021 -20.806 -20.845 -0.039 (0) - H[14C]O[18O]2- 1.562e-021 1.429e-021 -20.806 -20.845 -0.039 (0) - H[14C][18O]2O- 1.562e-021 1.429e-021 -20.806 -20.845 -0.039 (0) - [14C]O2[18O]-2 1.394e-021 9.768e-022 -20.856 -21.010 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 7.846e-017 - O[18O] 7.831e-017 7.844e-017 -16.106 -16.105 0.001 (0) - [18O]2 7.812e-020 7.825e-020 -19.107 -19.107 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.46 -125.32 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.98 -21.49 -1.50 [14C][18O]2 - [14C]H4(g) -133.59 -136.45 -2.86 [14C]H4 - [14C]O2(g) -14.62 -16.09 -1.47 [14C]O2 - [14C]O[18O](g) -17.00 -18.79 -1.79 [14C]O[18O] - [18O]2(g) -16.82 -19.11 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.15 -12.99 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.30 -7.59 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.08 -4.89 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.98 -10.29 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.50 -123.36 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.19 -39.34 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.81 -13.71 -2.89 O2 - O[18O](g) -13.51 -16.41 -2.89 O[18O] - - -Reaction step 92. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 92 4.6000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 4.36e-002 - Calcite 4.28e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.64e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 5.41e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 3.70e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 4.79e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.95e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 6.05e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.14e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.55e-015 4.87e-018 8.15e-014 - Ca[14C]O2[18O](s) 2.18e-017 3.00e-020 5.02e-016 - Ca[14C]O[18O]2(s) 4.48e-020 6.16e-023 1.03e-018 - Ca[14C][18O]3(s) 3.07e-023 4.21e-026 7.05e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9835 permil - R(13C) 1.11483e-002 -2.8575 permil - R(14C) 8.23125e-014 7 pmc - R(18O) H2O(l) 1.99520e-003 -4.985 permil - R(18O) OH- 1.92124e-003 -41.873 permil - R(18O) H3O+ 2.04134e-003 18.023 permil - R(18O) O2(aq) 1.99520e-003 -4.985 permil - R(13C) CO2(aq) 1.10685e-002 -9.9936 permil - R(14C) CO2(aq) 8.11377e-014 6.9001 pmc - R(18O) CO2(aq) 2.07917e-003 36.889 permil - R(18O) HCO3- 1.99520e-003 -4.985 permil - R(13C) HCO3- 1.11648e-002 -1.3807 permil - R(14C) HCO3- 8.25556e-014 7.0207 pmc - R(18O) CO3-2 1.99520e-003 -4.985 permil - R(13C) CO3-2 1.11487e-002 -2.8138 permil - R(14C) CO3-2 8.23189e-014 7.0006 pmc - R(18O) Calcite 2.05265e-003 23.662 permil - R(13C) Calcite 1.11869e-002 0.59725 permil - R(14C) Calcite 8.28830e-014 7.0485 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2425e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6909e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.510e-005 6.491e-005 - [14C] 4.807e-016 4.793e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.057 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.220e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -122.968 -122.968 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.088e-008 6.098e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.150e-039 - H2 5.750e-040 5.759e-040 -39.240 -39.240 0.001 (0) -O(0) 2.509e-014 - O2 1.250e-014 1.252e-014 -13.903 -13.903 0.001 (0) - O[18O] 4.986e-017 4.995e-017 -16.302 -16.302 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -124.924 -124.923 0.001 (0) -[13C](4) 6.510e-005 - H[13C]O3- 5.251e-005 4.804e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.048e-007 9.586e-008 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-007 9.586e-008 -6.980 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.048e-007 9.586e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.088e-008 6.098e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.583e-008 4.591e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.123e-008 2.188e-008 -7.505 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.644e-010 3.650e-010 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.090e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.090e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.090e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.310e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.059 -136.058 0.001 (0) -[14C](4) 4.807e-016 - H[14C]O3- 3.883e-016 3.552e-016 -15.411 -15.449 -0.039 (0) - [14C]O2 8.080e-017 8.093e-017 -16.093 -16.092 0.001 (0) - CaH[14C]O3+ 8.200e-018 7.522e-018 -17.086 -17.124 -0.037 (0) - H[14C][18O]O2- 7.747e-019 7.088e-019 -18.111 -18.149 -0.039 (0) - H[14C]O[18O]O- 7.747e-019 7.088e-019 -18.111 -18.149 -0.039 (0) - H[14C]O2[18O]- 7.747e-019 7.088e-019 -18.111 -18.149 -0.039 (0) - Ca[14C]O3 4.495e-019 4.502e-019 -18.347 -18.347 0.001 (0) - [14C]O[18O] 3.360e-019 3.365e-019 -18.474 -18.473 0.001 (0) - [14C]O3-2 2.306e-019 1.615e-019 -18.637 -18.792 -0.155 (0) - CaH[14C]O2[18O]+ 1.636e-020 1.501e-020 -19.786 -19.824 -0.037 (0) - CaH[14C][18O]O2+ 1.636e-020 1.501e-020 -19.786 -19.824 -0.037 (0) - CaH[14C]O[18O]O+ 1.636e-020 1.501e-020 -19.786 -19.824 -0.037 (0) - Ca[14C]O2[18O] 2.691e-021 2.695e-021 -20.570 -20.569 0.001 (0) - H[14C]O[18O]2- 1.546e-021 1.414e-021 -20.811 -20.849 -0.039 (0) - H[14C][18O]2O- 1.546e-021 1.414e-021 -20.811 -20.849 -0.039 (0) - H[14C][18O]O[18O]- 1.546e-021 1.414e-021 -20.811 -20.849 -0.039 (0) - [14C]O2[18O]-2 1.380e-021 9.669e-022 -20.860 -21.015 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 4.996e-017 - O[18O] 4.986e-017 4.995e-017 -16.302 -16.302 0.001 (0) - [18O]2 4.974e-020 4.983e-020 -19.303 -19.303 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.06 -124.92 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.99 -21.49 -1.50 [14C][18O]2 - [14C]H4(g) -133.20 -136.06 -2.86 [14C]H4 - [14C]O2(g) -14.62 -16.09 -1.47 [14C]O2 - [14C]O[18O](g) -17.00 -18.79 -1.79 [14C]O[18O] - [18O]2(g) -17.01 -19.30 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.15 -13.00 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.30 -7.60 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.09 -4.90 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.99 -10.30 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.11 -122.97 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.09 -39.24 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.01 -13.90 -2.89 O2 - O[18O](g) -13.71 -16.60 -2.89 O[18O] - - -Reaction step 93. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 93 4.6500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 4.41e-002 - Calcite 4.33e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.67e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 5.47e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 3.74e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 4.84e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 2.98e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 6.12e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.19e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.55e-015 4.77e-018 8.06e-014 - Ca[14C]O2[18O](s) 2.19e-017 2.94e-020 4.97e-016 - Ca[14C]O[18O]2(s) 4.49e-020 6.03e-023 1.02e-018 - Ca[14C][18O]3(s) 3.07e-023 4.13e-026 6.97e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9833 permil - R(13C) 1.11484e-002 -2.8428 permil - R(14C) 8.14878e-014 6.9299 pmc - R(18O) H2O(l) 1.99520e-003 -4.9849 permil - R(18O) OH- 1.92124e-003 -41.872 permil - R(18O) H3O+ 2.04134e-003 18.023 permil - R(18O) O2(aq) 1.99520e-003 -4.9849 permil - R(13C) CO2(aq) 1.10686e-002 -9.979 permil - R(14C) CO2(aq) 8.03248e-014 6.831 pmc - R(18O) CO2(aq) 2.07917e-003 36.889 permil - R(18O) HCO3- 1.99520e-003 -4.9849 permil - R(13C) HCO3- 1.11649e-002 -1.3659 permil - R(14C) HCO3- 8.17285e-014 6.9504 pmc - R(18O) CO3-2 1.99520e-003 -4.9849 permil - R(13C) CO3-2 1.11489e-002 -2.7991 permil - R(14C) CO3-2 8.14941e-014 6.9304 pmc - R(18O) Calcite 2.05265e-003 23.662 permil - R(13C) Calcite 1.11870e-002 0.61202 permil - R(14C) Calcite 8.20526e-014 6.9779 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.27e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.6605e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6616e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.511e-005 6.492e-005 - [14C] 4.759e-016 4.745e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.084 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.220e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.183 -123.183 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.088e-008 6.098e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.016e-039 - H2 5.081e-040 5.089e-040 -39.294 -39.293 0.001 (0) -O(0) 3.214e-014 - O2 1.601e-014 1.603e-014 -13.796 -13.795 0.001 (0) - O[18O] 6.387e-017 6.397e-017 -16.195 -16.194 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.139 -125.138 0.001 (0) -[13C](4) 6.511e-005 - H[13C]O3- 5.251e-005 4.804e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.048e-007 9.586e-008 -6.980 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.048e-007 9.586e-008 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-007 9.586e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.088e-008 6.098e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.583e-008 4.591e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.123e-008 2.188e-008 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.644e-010 3.650e-010 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.310e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.278 -136.278 0.001 (0) -[14C](4) 4.759e-016 - H[14C]O3- 3.844e-016 3.517e-016 -15.415 -15.454 -0.039 (0) - [14C]O2 7.999e-017 8.012e-017 -16.097 -16.096 0.001 (0) - CaH[14C]O3+ 8.117e-018 7.446e-018 -17.091 -17.128 -0.037 (0) - H[14C][18O]O2- 7.670e-019 7.017e-019 -18.115 -18.154 -0.039 (0) - H[14C]O[18O]O- 7.670e-019 7.017e-019 -18.115 -18.154 -0.039 (0) - H[14C]O2[18O]- 7.670e-019 7.017e-019 -18.115 -18.154 -0.039 (0) - Ca[14C]O3 4.450e-019 4.457e-019 -18.352 -18.351 0.001 (0) - [14C]O[18O] 3.326e-019 3.332e-019 -18.478 -18.477 0.001 (0) - [14C]O3-2 2.283e-019 1.599e-019 -18.642 -18.796 -0.155 (0) - CaH[14C]O2[18O]+ 1.620e-020 1.486e-020 -19.791 -19.828 -0.037 (0) - CaH[14C][18O]O2+ 1.620e-020 1.486e-020 -19.791 -19.828 -0.037 (0) - CaH[14C]O[18O]O+ 1.620e-020 1.486e-020 -19.791 -19.828 -0.037 (0) - Ca[14C]O2[18O] 2.664e-021 2.668e-021 -20.575 -20.574 0.001 (0) - H[14C][18O]2O- 1.530e-021 1.400e-021 -20.815 -20.854 -0.039 (0) - H[14C][18O]O[18O]- 1.530e-021 1.400e-021 -20.815 -20.854 -0.039 (0) - H[14C]O[18O]2- 1.530e-021 1.400e-021 -20.815 -20.854 -0.039 (0) - [14C]O2[18O]-2 1.366e-021 9.572e-022 -20.864 -21.019 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 6.399e-017 - O[18O] 6.387e-017 6.397e-017 -16.195 -16.194 0.001 (0) - [18O]2 6.371e-020 6.382e-020 -19.196 -19.195 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.28 -125.14 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -19.99 -21.50 -1.50 [14C][18O]2 - [14C]H4(g) -133.42 -136.28 -2.86 [14C]H4 - [14C]O2(g) -14.63 -16.10 -1.47 [14C]O2 - [14C]O[18O](g) -17.01 -18.80 -1.79 [14C]O[18O] - [18O]2(g) -16.90 -19.20 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.16 -13.00 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.30 -7.60 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.09 -4.90 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -17.99 -10.30 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.32 -123.18 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.14 -39.29 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.90 -13.80 -2.89 O2 - O[18O](g) -13.60 -16.50 -2.89 O[18O] - - -Reaction step 94. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 94 4.7000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 4.46e-002 - Calcite 4.38e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.70e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 5.54e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 3.79e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 4.90e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.02e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 6.19e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.24e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.56e-015 4.68e-018 7.98e-014 - Ca[14C]O2[18O](s) 2.19e-017 2.88e-020 4.92e-016 - Ca[14C]O[18O]2(s) 4.50e-020 5.91e-023 1.01e-018 - Ca[14C][18O]3(s) 3.08e-023 4.05e-026 6.91e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9832 permil - R(13C) 1.11486e-002 -2.8283 permil - R(14C) 8.06795e-014 6.8612 pmc - R(18O) H2O(l) 1.99520e-003 -4.9847 permil - R(18O) OH- 1.92124e-003 -41.872 permil - R(18O) H3O+ 2.04134e-003 18.023 permil - R(18O) O2(aq) 1.99520e-003 -4.9847 permil - R(13C) CO2(aq) 1.10688e-002 -9.9647 permil - R(14C) CO2(aq) 7.95280e-014 6.7632 pmc - R(18O) CO2(aq) 2.07917e-003 36.89 permil - R(18O) HCO3- 1.99520e-003 -4.9847 permil - R(13C) HCO3- 1.11651e-002 -1.3515 permil - R(14C) HCO3- 8.09178e-014 6.8814 pmc - R(18O) CO3-2 1.99520e-003 -4.9847 permil - R(13C) CO3-2 1.11491e-002 -2.7846 permil - R(14C) CO3-2 8.06857e-014 6.8617 pmc - R(18O) Calcite 2.05265e-003 23.662 permil - R(13C) Calcite 1.11872e-002 0.6265 permil - R(14C) Calcite 8.12386e-014 6.9087 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2738e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 0 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6328e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.511e-005 6.492e-005 - [14C] 4.712e-016 4.698e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 10.799 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.217e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -120.901 -120.900 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.088e-008 6.098e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 3.780e-039 - H2 1.890e-039 1.893e-039 -38.724 -38.723 0.001 (0) -O(0) 2.322e-015 - O2 1.156e-015 1.158e-015 -14.937 -14.936 0.001 (0) - O[18O] 4.614e-018 4.622e-018 -17.336 -17.335 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -122.857 -122.856 0.001 (0) -[13C](4) 6.511e-005 - H[13C]O3- 5.251e-005 4.804e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-007 9.586e-008 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-007 9.586e-008 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-007 9.586e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.088e-008 6.098e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.583e-008 4.591e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.123e-008 2.188e-008 -7.505 -7.660 -0.155 (0) - CaH[13C]O[18O]O+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.644e-010 3.650e-010 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.310e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -134.000 -134.000 0.001 (0) -[14C](4) 4.712e-016 - H[14C]O3- 3.806e-016 3.482e-016 -15.420 -15.458 -0.039 (0) - [14C]O2 7.919e-017 7.932e-017 -16.101 -16.101 0.001 (0) - CaH[14C]O3+ 8.037e-018 7.373e-018 -17.095 -17.132 -0.037 (0) - H[14C][18O]O2- 7.594e-019 6.947e-019 -18.120 -18.158 -0.039 (0) - H[14C]O[18O]O- 7.594e-019 6.947e-019 -18.120 -18.158 -0.039 (0) - H[14C]O2[18O]- 7.594e-019 6.947e-019 -18.120 -18.158 -0.039 (0) - Ca[14C]O3 4.406e-019 4.413e-019 -18.356 -18.355 0.001 (0) - [14C]O[18O] 3.293e-019 3.299e-019 -18.482 -18.482 0.001 (0) - [14C]O3-2 2.260e-019 1.583e-019 -18.646 -18.800 -0.155 (0) - CaH[14C]O2[18O]+ 1.604e-020 1.471e-020 -19.795 -19.832 -0.037 (0) - CaH[14C][18O]O2+ 1.604e-020 1.471e-020 -19.795 -19.832 -0.037 (0) - CaH[14C]O[18O]O+ 1.604e-020 1.471e-020 -19.795 -19.832 -0.037 (0) - Ca[14C]O2[18O] 2.637e-021 2.642e-021 -20.579 -20.578 0.001 (0) - H[14C][18O]O[18O]- 1.515e-021 1.386e-021 -20.820 -20.858 -0.039 (0) - H[14C]O[18O]2- 1.515e-021 1.386e-021 -20.820 -20.858 -0.039 (0) - H[14C][18O]2O- 1.515e-021 1.386e-021 -20.820 -20.858 -0.039 (0) - [14C]O2[18O]-2 1.353e-021 9.477e-022 -20.869 -21.023 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 4.624e-018 - O[18O] 4.614e-018 4.622e-018 -17.336 -17.335 0.001 (0) - [18O]2 4.603e-021 4.611e-021 -20.337 -20.336 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -120.00 -122.86 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.00 -21.50 -1.50 [14C][18O]2 - [14C]H4(g) -131.14 -134.00 -2.86 [14C]H4 - [14C]O2(g) -14.63 -16.10 -1.47 [14C]O2 - [14C]O[18O](g) -17.01 -18.80 -1.79 [14C]O[18O] - [18O]2(g) -18.05 -20.34 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.16 -13.01 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.31 -7.61 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.10 -4.91 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.00 -10.31 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -118.04 -120.90 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.57 -38.72 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -12.04 -14.94 -2.89 O2 - O[18O](g) -14.74 -17.64 -2.89 O[18O] - - -Reaction step 95. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 95 4.7500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 4.51e-002 - Calcite 4.43e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.73e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 5.60e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 3.83e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 4.95e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.05e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 6.26e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.28e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.56e-015 4.59e-018 7.91e-014 - Ca[14C]O2[18O](s) 2.19e-017 2.82e-020 4.87e-016 - Ca[14C]O[18O]2(s) 4.50e-020 5.80e-023 9.99e-019 - Ca[14C][18O]3(s) 3.08e-023 3.97e-026 6.84e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9831 permil - R(13C) 1.11487e-002 -2.8142 permil - R(14C) 7.98870e-014 6.7938 pmc - R(18O) H2O(l) 1.99520e-003 -4.9846 permil - R(18O) OH- 1.92124e-003 -41.872 permil - R(18O) H3O+ 2.04134e-003 18.023 permil - R(13C) CO2(aq) 1.10690e-002 -9.9506 permil - R(14C) CO2(aq) 7.87468e-014 6.6968 pmc - R(18O) CO2(aq) 2.07917e-003 36.89 permil - R(18O) HCO3- 1.99520e-003 -4.9846 permil - R(13C) HCO3- 1.11652e-002 -1.3373 permil - R(14C) HCO3- 8.01230e-014 6.8138 pmc - R(18O) CO3-2 1.99520e-003 -4.9846 permil - R(13C) CO3-2 1.11492e-002 -2.7705 permil - R(14C) CO3-2 7.98932e-014 6.7943 pmc - R(13C) CH4(aq) 1.10690e-002 -9.9506 permil - R(14C) CH4(aq) 7.87468e-014 6.6968 pmc - R(18O) Calcite 2.05265e-003 23.662 permil - R(13C) Calcite 1.11874e-002 0.64069 permil - R(14C) Calcite 8.04407e-014 6.8408 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-013 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5835e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 7.1054e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 8.8818e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.511e-005 6.492e-005 - [14C] 4.665e-016 4.652e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -1.522 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.285e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 23 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 4.575e-023 - CH4 4.575e-023 4.583e-023 -22.340 -22.339 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.088e-008 6.098e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.651e-014 - H2 8.257e-015 8.271e-015 -14.083 -14.082 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -64.218 -64.217 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -66.617 -66.616 0.001 (0) -[13C](-4) 5.064e-025 - [13C]H4 5.064e-025 5.073e-025 -24.295 -24.295 0.001 (0) -[13C](4) 6.511e-005 - H[13C]O3- 5.252e-005 4.804e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.048e-007 9.586e-008 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-007 9.586e-008 -6.980 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.048e-007 9.586e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.088e-008 6.098e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.584e-008 4.591e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.123e-008 2.188e-008 -7.505 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.644e-010 3.650e-010 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.310e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 3.603e-036 - [14C]H4 3.603e-036 3.609e-036 -35.443 -35.443 0.001 (0) -[14C](4) 4.665e-016 - H[14C]O3- 3.769e-016 3.448e-016 -15.424 -15.462 -0.039 (0) - [14C]O2 7.842e-017 7.855e-017 -16.106 -16.105 0.001 (0) - CaH[14C]O3+ 7.958e-018 7.300e-018 -17.099 -17.137 -0.037 (0) - H[14C][18O]O2- 7.519e-019 6.879e-019 -18.124 -18.162 -0.039 (0) - H[14C]O[18O]O- 7.519e-019 6.879e-019 -18.124 -18.162 -0.039 (0) - H[14C]O2[18O]- 7.519e-019 6.879e-019 -18.124 -18.162 -0.039 (0) - Ca[14C]O3 4.363e-019 4.370e-019 -18.360 -18.360 0.001 (0) - [14C]O[18O] 3.261e-019 3.266e-019 -18.487 -18.486 0.001 (0) - [14C]O3-2 2.238e-019 1.568e-019 -18.650 -18.805 -0.155 (0) - CaH[14C]O2[18O]+ 1.588e-020 1.457e-020 -19.799 -19.837 -0.037 (0) - CaH[14C][18O]O2+ 1.588e-020 1.457e-020 -19.799 -19.837 -0.037 (0) - CaH[14C]O[18O]O+ 1.588e-020 1.457e-020 -19.799 -19.837 -0.037 (0) - Ca[14C]O2[18O] 2.611e-021 2.616e-021 -20.583 -20.582 0.001 (0) - H[14C]O[18O]2- 1.500e-021 1.372e-021 -20.824 -20.862 -0.039 (0) - H[14C][18O]2O- 1.500e-021 1.372e-021 -20.824 -20.862 -0.039 (0) - H[14C][18O]O[18O]- 1.500e-021 1.372e-021 -20.824 -20.862 -0.039 (0) - [14C]O2[18O]-2 1.340e-021 9.384e-022 -20.873 -21.028 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -66.617 -66.616 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -69.618 -69.617 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -21.43 -24.29 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.00 -21.50 -1.50 [14C][18O]2 - [14C]H4(g) -32.58 -35.44 -2.86 [14C]H4 - [14C]O2(g) -14.64 -16.10 -1.47 [14C]O2 - [14C]O[18O](g) -17.02 -18.80 -1.79 [14C]O[18O] - [18O]2(g) -67.33 -69.62 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.17 -13.01 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.31 -7.61 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.10 -4.91 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.00 -10.31 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -19.48 -22.34 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.93 -14.08 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -61.32 -64.22 -2.89 O2 - O[18O](g) -64.02 -66.92 -2.89 O[18O] - - -Reaction step 96. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 96 4.8000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 4.56e-002 - Calcite 4.48e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.76e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 5.66e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 3.87e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.01e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.08e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 6.33e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.33e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.57e-015 4.50e-018 7.83e-014 - Ca[14C]O2[18O](s) 2.20e-017 2.77e-020 4.82e-016 - Ca[14C]O[18O]2(s) 4.51e-020 5.69e-023 9.90e-019 - Ca[14C][18O]3(s) 3.08e-023 3.89e-026 6.77e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9829 permil - R(13C) 1.11489e-002 -2.8003 permil - R(14C) 7.91099e-014 6.7277 pmc - R(18O) H2O(l) 1.99521e-003 -4.9844 permil - R(18O) OH- 1.92124e-003 -41.872 permil - R(18O) H3O+ 2.04134e-003 18.024 permil - R(13C) CO2(aq) 1.10691e-002 -9.9369 permil - R(14C) CO2(aq) 7.79809e-014 6.6317 pmc - R(18O) CO2(aq) 2.07917e-003 36.89 permil - R(18O) HCO3- 1.99521e-003 -4.9844 permil - R(13C) HCO3- 1.11654e-002 -1.3234 permil - R(14C) HCO3- 7.93436e-014 6.7476 pmc - R(18O) CO3-2 1.99521e-003 -4.9844 permil - R(13C) CO3-2 1.11494e-002 -2.7566 permil - R(14C) CO3-2 7.91160e-014 6.7282 pmc - R(13C) CH4(aq) 1.10691e-002 -9.9369 permil - R(14C) CH4(aq) 7.79809e-014 6.6317 pmc - R(18O) Calcite 2.05265e-003 23.662 permil - R(13C) Calcite 1.11875e-002 0.6546 permil - R(14C) Calcite 7.96582e-014 6.7743 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6058e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 5.9952e-012 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -8.4377e-012 0 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.511e-005 6.492e-005 - [14C] 4.620e-016 4.606e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = -1.443 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.284e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 1.077e-023 - CH4 1.077e-023 1.079e-023 -22.968 -22.967 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.088e-008 6.098e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.150e-014 - H2 5.752e-015 5.761e-015 -14.240 -14.239 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -63.903 -63.903 0.001 (0) - O[18O] 0.000e+000 0.000e+000 -66.302 -66.302 0.001 (0) -[13C](-4) 1.192e-025 - [13C]H4 1.192e-025 1.194e-025 -24.924 -24.923 0.001 (0) -[13C](4) 6.511e-005 - H[13C]O3- 5.252e-005 4.805e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.048e-007 9.586e-008 -6.980 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.048e-007 9.586e-008 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-007 9.586e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.088e-008 6.098e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.584e-008 4.591e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.123e-008 2.188e-008 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.644e-010 3.650e-010 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.310e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 8.399e-037 - [14C]H4 8.399e-037 8.413e-037 -36.076 -36.075 0.001 (0) -[14C](4) 4.620e-016 - H[14C]O3- 3.732e-016 3.414e-016 -15.428 -15.467 -0.039 (0) - [14C]O2 7.765e-017 7.778e-017 -16.110 -16.109 0.001 (0) - CaH[14C]O3+ 7.881e-018 7.229e-018 -17.103 -17.141 -0.037 (0) - H[14C][18O]O2- 7.446e-019 6.812e-019 -18.128 -18.167 -0.039 (0) - H[14C]O[18O]O- 7.446e-019 6.812e-019 -18.128 -18.167 -0.039 (0) - H[14C]O2[18O]- 7.446e-019 6.812e-019 -18.128 -18.167 -0.039 (0) - Ca[14C]O3 4.320e-019 4.327e-019 -18.364 -18.364 0.001 (0) - [14C]O[18O] 3.229e-019 3.234e-019 -18.491 -18.490 0.001 (0) - [14C]O3-2 2.216e-019 1.553e-019 -18.654 -18.809 -0.155 (0) - CaH[14C]O2[18O]+ 1.572e-020 1.442e-020 -19.803 -19.841 -0.037 (0) - CaH[14C][18O]O2+ 1.572e-020 1.442e-020 -19.803 -19.841 -0.037 (0) - CaH[14C]O[18O]O+ 1.572e-020 1.442e-020 -19.803 -19.841 -0.037 (0) - Ca[14C]O2[18O] 2.586e-021 2.590e-021 -20.587 -20.587 0.001 (0) - H[14C][18O]2O- 1.486e-021 1.359e-021 -20.828 -20.867 -0.039 (0) - H[14C][18O]O[18O]- 1.486e-021 1.359e-021 -20.828 -20.867 -0.039 (0) - H[14C]O[18O]2- 1.486e-021 1.359e-021 -20.828 -20.867 -0.039 (0) - [14C]O2[18O]-2 1.327e-021 9.293e-022 -20.877 -21.032 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+000 - O[18O] 0.000e+000 0.000e+000 -66.302 -66.302 0.001 (0) - [18O]2 0.000e+000 0.000e+000 -69.304 -69.303 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -22.06 -24.92 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.01 -21.51 -1.50 [14C][18O]2 - [14C]H4(g) -33.22 -36.08 -2.86 [14C]H4 - [14C]O2(g) -14.64 -16.11 -1.47 [14C]O2 - [14C]O[18O](g) -17.02 -18.81 -1.79 [14C]O[18O] - [18O]2(g) -67.01 -69.30 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.17 -13.01 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.32 -7.61 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.11 -4.91 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.00 -10.31 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -20.11 -22.97 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -11.09 -14.24 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -61.01 -63.90 -2.89 O2 - O[18O](g) -63.71 -66.60 -2.89 O[18O] - - -Reaction step 97. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 97 4.8500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 4.61e-002 - Calcite 4.53e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.79e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 5.72e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 3.91e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.06e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.12e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 6.40e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.38e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.57e-015 4.41e-018 7.75e-014 - Ca[14C]O2[18O](s) 2.20e-017 2.72e-020 4.77e-016 - Ca[14C]O[18O]2(s) 4.51e-020 5.58e-023 9.80e-019 - Ca[14C][18O]3(s) 3.09e-023 3.82e-026 6.71e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9828 permil - R(13C) 1.11490e-002 -2.7867 permil - R(14C) 7.83479e-014 6.6629 pmc - R(18O) H2O(l) 1.99521e-003 -4.9843 permil - R(18O) OH- 1.92124e-003 -41.872 permil - R(18O) H3O+ 2.04134e-003 18.024 permil - R(18O) O2(aq) 1.99521e-003 -4.9843 permil - R(13C) CO2(aq) 1.10693e-002 -9.9234 permil - R(14C) CO2(aq) 7.72297e-014 6.5678 pmc - R(18O) CO2(aq) 2.07917e-003 36.89 permil - R(18O) HCO3- 1.99521e-003 -4.9843 permil - R(13C) HCO3- 1.11656e-002 -1.3098 permil - R(14C) HCO3- 7.85793e-014 6.6826 pmc - R(18O) CO3-2 1.99521e-003 -4.9843 permil - R(13C) CO3-2 1.11495e-002 -2.743 permil - R(14C) CO3-2 7.83539e-014 6.6634 pmc - R(18O) Calcite 2.05265e-003 23.662 permil - R(13C) Calcite 1.11877e-002 0.66825 permil - R(14C) Calcite 7.88909e-014 6.709 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2408e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6752e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.511e-005 6.492e-005 - [14C] 4.575e-016 4.562e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.050 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -7.807e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 19 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -122.913 -122.913 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.088e-008 6.098e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.187e-039 - H2 5.935e-040 5.944e-040 -39.227 -39.226 0.001 (0) -O(0) 2.355e-014 - O2 1.173e-014 1.175e-014 -13.931 -13.930 0.001 (0) - O[18O] 4.681e-017 4.689e-017 -16.330 -16.329 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -124.869 -124.869 0.001 (0) -[13C](4) 6.511e-005 - H[13C]O3- 5.252e-005 4.805e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-007 9.586e-008 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-007 9.586e-008 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-007 9.586e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.088e-008 6.098e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.584e-008 4.591e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.123e-008 2.188e-008 -7.505 -7.660 -0.155 (0) - CaH[13C]O[18O]O+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.644e-010 3.650e-010 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.310e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.026 -136.025 0.001 (0) -[14C](4) 4.575e-016 - H[14C]O3- 3.696e-016 3.381e-016 -15.432 -15.471 -0.039 (0) - [14C]O2 7.691e-017 7.703e-017 -16.114 -16.113 0.001 (0) - CaH[14C]O3+ 7.805e-018 7.159e-018 -17.108 -17.145 -0.037 (0) - H[14C][18O]O2- 7.374e-019 6.746e-019 -18.132 -18.171 -0.039 (0) - H[14C]O[18O]O- 7.374e-019 6.746e-019 -18.132 -18.171 -0.039 (0) - H[14C]O2[18O]- 7.374e-019 6.746e-019 -18.132 -18.171 -0.039 (0) - Ca[14C]O3 4.279e-019 4.286e-019 -18.369 -18.368 0.001 (0) - [14C]O[18O] 3.198e-019 3.203e-019 -18.495 -18.494 0.001 (0) - [14C]O3-2 2.195e-019 1.538e-019 -18.659 -18.813 -0.155 (0) - CaH[14C]O2[18O]+ 1.557e-020 1.428e-020 -19.808 -19.845 -0.037 (0) - CaH[14C][18O]O2+ 1.557e-020 1.428e-020 -19.808 -19.845 -0.037 (0) - CaH[14C]O[18O]O+ 1.557e-020 1.428e-020 -19.808 -19.845 -0.037 (0) - Ca[14C]O2[18O] 2.561e-021 2.565e-021 -20.592 -20.591 0.001 (0) - H[14C][18O]O[18O]- 1.471e-021 1.346e-021 -20.832 -20.871 -0.039 (0) - H[14C]O[18O]2- 1.471e-021 1.346e-021 -20.832 -20.871 -0.039 (0) - H[14C][18O]2O- 1.471e-021 1.346e-021 -20.832 -20.871 -0.039 (0) - [14C]O2[18O]-2 1.314e-021 9.203e-022 -20.881 -21.036 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 4.690e-017 - O[18O] 4.681e-017 4.689e-017 -16.330 -16.329 0.001 (0) - [18O]2 4.670e-020 4.677e-020 -19.331 -19.330 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.01 -124.87 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.01 -21.51 -1.50 [14C][18O]2 - [14C]H4(g) -133.16 -136.02 -2.86 [14C]H4 - [14C]O2(g) -14.64 -16.11 -1.47 [14C]O2 - [14C]O[18O](g) -17.03 -18.81 -1.79 [14C]O[18O] - [18O]2(g) -17.04 -19.33 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.17 -13.02 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.32 -7.62 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.11 -4.92 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.01 -10.32 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.05 -122.91 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.08 -39.23 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.04 -13.93 -2.89 O2 - O[18O](g) -13.74 -16.63 -2.89 O[18O] - - -Reaction step 98. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 98 4.9000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 4.66e-002 - Calcite 4.58e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.82e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 5.78e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 3.96e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.12e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.15e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 6.47e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.43e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.58e-015 4.33e-018 7.68e-014 - Ca[14C]O2[18O](s) 2.20e-017 2.66e-020 4.73e-016 - Ca[14C]O[18O]2(s) 4.52e-020 5.47e-023 9.71e-019 - Ca[14C][18O]3(s) 3.09e-023 3.74e-026 6.64e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9826 permil - R(13C) 1.11492e-002 -2.7734 permil - R(14C) 7.76003e-014 6.5993 pmc - R(18O) H2O(l) 1.99521e-003 -4.9842 permil - R(18O) OH- 1.92124e-003 -41.872 permil - R(18O) H3O+ 2.04134e-003 18.024 permil - R(18O) O2(aq) 1.99521e-003 -4.9842 permil - R(13C) CO2(aq) 1.10694e-002 -9.9101 permil - R(14C) CO2(aq) 7.64928e-014 6.5051 pmc - R(18O) CO2(aq) 2.07917e-003 36.89 permil - R(18O) HCO3- 1.99521e-003 -4.9842 permil - R(13C) HCO3- 1.11657e-002 -1.2964 permil - R(14C) HCO3- 7.78295e-014 6.6188 pmc - R(18O) CO3-2 1.99521e-003 -4.9842 permil - R(13C) CO3-2 1.11497e-002 -2.7297 permil - R(14C) CO3-2 7.76063e-014 6.5998 pmc - R(18O) Calcite 2.05265e-003 23.662 permil - R(13C) Calcite 1.11878e-002 0.68164 permil - R(14C) Calcite 7.81382e-014 6.645 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.251e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7267e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.511e-005 6.492e-005 - [14C] 4.532e-016 4.519e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.129 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -7.806e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.540 -123.540 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.088e-008 6.098e-008 -7.216 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 8.273e-040 - H2 4.136e-040 4.143e-040 -39.383 -39.383 0.001 (0) -O(0) 4.849e-014 - O2 2.415e-014 2.419e-014 -13.617 -13.616 0.001 (0) - O[18O] 9.635e-017 9.651e-017 -16.016 -16.015 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.496 -125.496 0.001 (0) -[13C](4) 6.511e-005 - H[13C]O3- 5.252e-005 4.805e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C][18O]O2- 1.048e-007 9.586e-008 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-007 9.586e-008 -6.980 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.048e-007 9.586e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.088e-008 6.098e-008 -7.216 -7.215 0.001 (0) - [13C]O[18O] 4.584e-008 4.591e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.123e-008 2.188e-008 -7.505 -7.660 -0.155 (0) - CaH[13C][18O]O2+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.644e-010 3.650e-010 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.310e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.657 -136.656 0.001 (0) -[14C](4) 4.532e-016 - H[14C]O3- 3.661e-016 3.349e-016 -15.436 -15.475 -0.039 (0) - [14C]O2 7.617e-017 7.630e-017 -16.118 -16.117 0.001 (0) - CaH[14C]O3+ 7.730e-018 7.091e-018 -17.112 -17.149 -0.037 (0) - H[14C][18O]O2- 7.304e-019 6.682e-019 -18.136 -18.175 -0.039 (0) - H[14C]O[18O]O- 7.304e-019 6.682e-019 -18.136 -18.175 -0.039 (0) - H[14C]O2[18O]- 7.304e-019 6.682e-019 -18.136 -18.175 -0.039 (0) - Ca[14C]O3 4.238e-019 4.245e-019 -18.373 -18.372 0.001 (0) - [14C]O[18O] 3.167e-019 3.173e-019 -18.499 -18.499 0.001 (0) - [14C]O3-2 2.174e-019 1.523e-019 -18.663 -18.817 -0.155 (0) - CaH[14C]O2[18O]+ 1.542e-020 1.415e-020 -19.812 -19.849 -0.037 (0) - CaH[14C][18O]O2+ 1.542e-020 1.415e-020 -19.812 -19.849 -0.037 (0) - CaH[14C]O[18O]O+ 1.542e-020 1.415e-020 -19.812 -19.849 -0.037 (0) - Ca[14C]O2[18O] 2.537e-021 2.541e-021 -20.596 -20.595 0.001 (0) - H[14C]O[18O]2- 1.457e-021 1.333e-021 -20.836 -20.875 -0.039 (0) - H[14C][18O]2O- 1.457e-021 1.333e-021 -20.836 -20.875 -0.039 (0) - H[14C][18O]O[18O]- 1.457e-021 1.333e-021 -20.836 -20.875 -0.039 (0) - [14C]O2[18O]-2 1.301e-021 9.116e-022 -20.886 -21.040 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 9.655e-017 - O[18O] 9.635e-017 9.651e-017 -16.016 -16.015 0.001 (0) - [18O]2 9.612e-020 9.628e-020 -19.017 -19.016 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.64 -125.50 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.01 -21.52 -1.50 [14C][18O]2 - [14C]H4(g) -133.80 -136.66 -2.86 [14C]H4 - [14C]O2(g) -14.65 -16.12 -1.47 [14C]O2 - [14C]O[18O](g) -17.03 -18.82 -1.79 [14C]O[18O] - [18O]2(g) -16.73 -19.02 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.18 -13.02 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.33 -7.62 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.11 -4.92 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.01 -10.32 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.68 -123.54 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.23 -39.38 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.72 -13.62 -2.89 O2 - O[18O](g) -13.42 -16.32 -2.89 O[18O] - - -Reaction step 99. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 99 4.9500e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 4.71e-002 - Calcite 4.63e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.85e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 5.85e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.00e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.17e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.19e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 6.54e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.48e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.58e-015 4.24e-018 7.61e-014 - Ca[14C]O2[18O](s) 2.20e-017 2.61e-020 4.68e-016 - Ca[14C]O[18O]2(s) 4.52e-020 5.37e-023 9.62e-019 - Ca[14C][18O]3(s) 3.10e-023 3.67e-026 6.58e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9825 permil - R(13C) 1.11493e-002 -2.7603 permil - R(14C) 7.68669e-014 6.5369 pmc - R(18O) H2O(l) 1.99521e-003 -4.984 permil - R(18O) OH- 1.92124e-003 -41.872 permil - R(18O) H3O+ 2.04134e-003 18.024 permil - R(18O) O2(aq) 1.99521e-003 -4.984 permil - R(13C) CO2(aq) 1.10695e-002 -9.8971 permil - R(14C) CO2(aq) 7.57699e-014 6.4436 pmc - R(18O) CO2(aq) 2.07917e-003 36.89 permil - R(18O) HCO3- 1.99521e-003 -4.984 permil - R(13C) HCO3- 1.11659e-002 -1.2833 permil - R(14C) HCO3- 7.70940e-014 6.5562 pmc - R(18O) CO3-2 1.99521e-003 -4.984 permil - R(13C) CO3-2 1.11498e-002 -2.7166 permil - R(14C) CO3-2 7.68729e-014 6.5374 pmc - R(18O) Calcite 2.05265e-003 23.663 permil - R(13C) Calcite 1.11880e-002 0.69477 permil - R(14C) Calcite 7.73997e-014 6.5822 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.243e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6137e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.511e-005 6.492e-005 - [14C] 4.489e-016 4.476e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.047 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -7.807e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -122.885 -122.885 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.088e-008 6.098e-008 -7.215 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 1.206e-039 - H2 6.031e-040 6.041e-040 -39.220 -39.219 0.001 (0) -O(0) 2.280e-014 - O2 1.136e-014 1.138e-014 -13.945 -13.944 0.001 (0) - O[18O] 4.532e-017 4.539e-017 -16.344 -16.343 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -124.841 -124.840 0.001 (0) -[13C](4) 6.511e-005 - H[13C]O3- 5.252e-005 4.805e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O[18O]O- 1.048e-007 9.586e-008 -6.980 -7.018 -0.039 (0) - H[13C]O2[18O]- 1.048e-007 9.586e-008 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-007 9.586e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.088e-008 6.098e-008 -7.215 -7.215 0.001 (0) - [13C]O[18O] 4.584e-008 4.591e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.123e-008 2.188e-008 -7.505 -7.660 -0.155 (0) - CaH[13C]O2[18O]+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O[18O]O+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.644e-010 3.650e-010 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.310e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.006 -136.005 0.001 (0) -[14C](4) 4.489e-016 - H[14C]O3- 3.626e-016 3.317e-016 -15.441 -15.479 -0.039 (0) - [14C]O2 7.545e-017 7.558e-017 -16.122 -16.122 0.001 (0) - CaH[14C]O3+ 7.657e-018 7.024e-018 -17.116 -17.153 -0.037 (0) - H[14C][18O]O2- 7.235e-019 6.619e-019 -18.141 -18.179 -0.039 (0) - H[14C]O[18O]O- 7.235e-019 6.619e-019 -18.141 -18.179 -0.039 (0) - H[14C]O2[18O]- 7.235e-019 6.619e-019 -18.141 -18.179 -0.039 (0) - Ca[14C]O3 4.198e-019 4.205e-019 -18.377 -18.376 0.001 (0) - [14C]O[18O] 3.138e-019 3.143e-019 -18.503 -18.503 0.001 (0) - [14C]O3-2 2.153e-019 1.509e-019 -18.667 -18.821 -0.155 (0) - CaH[14C]O2[18O]+ 1.528e-020 1.401e-020 -19.816 -19.853 -0.037 (0) - CaH[14C][18O]O2+ 1.528e-020 1.401e-020 -19.816 -19.853 -0.037 (0) - CaH[14C]O[18O]O+ 1.528e-020 1.401e-020 -19.816 -19.853 -0.037 (0) - Ca[14C]O2[18O] 2.513e-021 2.517e-021 -20.600 -20.599 0.001 (0) - H[14C][18O]2O- 1.443e-021 1.321e-021 -20.841 -20.879 -0.039 (0) - H[14C][18O]O[18O]- 1.443e-021 1.321e-021 -20.841 -20.879 -0.039 (0) - H[14C]O[18O]2- 1.443e-021 1.321e-021 -20.841 -20.879 -0.039 (0) - [14C]O2[18O]-2 1.289e-021 9.029e-022 -20.890 -21.044 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 4.541e-017 - O[18O] 4.532e-017 4.539e-017 -16.344 -16.343 0.001 (0) - [18O]2 4.521e-020 4.528e-020 -19.345 -19.344 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.98 -124.84 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.02 -21.52 -1.50 [14C][18O]2 - [14C]H4(g) -133.15 -136.01 -2.86 [14C]H4 - [14C]O2(g) -14.65 -16.12 -1.47 [14C]O2 - [14C]O[18O](g) -17.03 -18.82 -1.79 [14C]O[18O] - [18O]2(g) -17.05 -19.34 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.18 -13.03 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.33 -7.63 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.12 -4.93 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.02 -10.33 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.02 -122.88 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.07 -39.22 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.05 -13.94 -2.89 O2 - O[18O](g) -13.75 -16.64 -2.89 O[18O] - - -Reaction step 100. - -Using solution 1. -Using solid solution assemblage 1. With [14C] -Using reaction 1. - -Reaction 1. - - 5.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - CaCO2[18O](s) 0.00608 - CaCO[18O]2(s) 0.00001 - CaC[18O]3(s) 0.00000 - Ca[13C]O2[18O](s) 0.00007 - Ca[13C]O3(s) 0.01101 - Ca[13C]O[18O]2(s) 0.00000 - Ca[13C][18O]3(s) 0.00000 - Calcite 0.98283 - - Relative - Element moles - C 0.98893 - Ca 1.00000 - O 2.99384 - [13C] 0.01108 - [18O] 0.00618 - -----------------------------------User print----------------------------------- - -Calcite added: 100 5.0000e-002 5.0000e-004 - ---------------------------------Solid solutions-------------------------------- - - -Solid solution Component Moles Delta moles Mole fract - -Calcite 4.76e-002 - Calcite 4.67e-002 4.91e-004 9.83e-001 - CaCO2[18O](s) 2.88e-004 3.03e-006 6.05e-003 - CaCO[18O]2(s) 5.91e-007 6.21e-009 1.24e-005 - CaC[18O]3(s) 4.04e-010 4.25e-012 8.50e-009 - Ca[13C]O3(s) 5.23e-004 5.50e-006 1.10e-002 - Ca[13C]O2[18O](s) 3.22e-006 3.39e-008 6.77e-005 - Ca[13C]O[18O]2(s) 6.61e-009 6.96e-011 1.39e-007 - Ca[13C][18O]3(s) 4.52e-012 4.76e-014 9.51e-011 - Ca[14C]O3(s) 3.58e-015 4.16e-018 7.54e-014 - Ca[14C]O2[18O](s) 2.21e-017 2.57e-020 4.64e-016 - Ca[14C]O[18O]2(s) 4.53e-020 5.27e-023 9.53e-019 - Ca[14C][18O]3(s) 3.10e-023 3.60e-026 6.52e-022 - ---------------------------------Isotope Ratios--------------------------------- - - Isotope Ratio Ratio Input Units - - R(18O) 1.99521e-003 -4.9824 permil - R(13C) 1.11495e-002 -2.7474 permil - R(14C) 7.61473e-014 6.4757 pmc - R(18O) H2O(l) 1.99521e-003 -4.9839 permil - R(18O) OH- 1.92124e-003 -41.871 permil - R(18O) H3O+ 2.04134e-003 18.024 permil - R(18O) O2(aq) 1.99521e-003 -4.9839 permil - R(13C) CO2(aq) 1.10697e-002 -9.8844 permil - R(14C) CO2(aq) 7.50605e-014 6.3833 pmc - R(18O) CO2(aq) 2.07917e-003 36.89 permil - R(18O) HCO3- 1.99521e-003 -4.9839 permil - R(13C) HCO3- 1.11660e-002 -1.2705 permil - R(14C) HCO3- 7.63722e-014 6.4949 pmc - R(18O) CO3-2 1.99521e-003 -4.9839 permil - R(13C) CO3-2 1.11500e-002 -2.7037 permil - R(14C) CO3-2 7.61531e-014 6.4762 pmc - R(18O) Calcite 2.05265e-003 23.663 permil - R(13C) Calcite 1.11881e-002 0.70766 permil - R(14C) Calcite 7.66750e-014 6.5206 pmc - ---------------------------------Isotope Alphas--------------------------------- - - 1000ln(Alpha) - ---------------------- - Isotope Ratio Solution alpha Solution 25.0 C - -Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 -Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2451e-009 0 -Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.7724e-012 0 -Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8048e-009 0 -Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 -Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 -Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.840e-003 5.823e-003 - Ca 2.451e-003 2.444e-003 - [13C] 6.511e-005 6.492e-005 - [14C] 4.447e-016 4.434e-016 - [18O] 1.109e-001 1.106e-001 - -----------------------------Description of solution---------------------------- - - pH = 6.989 Charge balance - pe = 11.128 Adjusted to redox equilibrium - Activity of water = 0.998 - Ionic strength = 7.138e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 4.902e-003 - Total CO2 (mol/kg) = 5.840e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -7.809e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110126e+002 - Total O = 5.540996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H3O+ 1.111e-007 1.027e-007 -6.954 -6.989 -0.034 (0) - OH- 1.063e-007 9.713e-008 -6.973 -7.013 -0.039 (0) - H2O 5.556e+001 9.980e-001 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -123.534 -123.533 0.001 (0) -C(4) 5.840e-003 - HCO3- 4.703e-003 4.303e-003 -2.328 -2.366 -0.039 (0) - CO2 9.958e-004 9.974e-004 -3.002 -3.001 0.001 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CO3-2 2.801e-006 1.962e-006 -5.553 -5.707 -0.155 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) - HC[18O]O[18O]- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HCO[18O]2- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - HC[18O]2O- 1.872e-008 1.713e-008 -7.728 -7.766 -0.039 (0) - CO2[18O]-2 1.677e-008 1.175e-008 -7.776 -7.930 -0.155 (0) -Ca 2.451e-003 - Ca+2 2.345e-003 1.659e-003 -2.630 -2.780 -0.150 (0) - CaHCO3+ 9.932e-005 9.111e-005 -4.003 -4.040 -0.037 (0) - CaCO3 5.461e-006 5.470e-006 -5.263 -5.262 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - Ca[13C]O3 6.088e-008 6.099e-008 -7.215 -7.215 0.001 (0) - CaCO2[18O] 3.268e-008 3.274e-008 -7.486 -7.485 0.001 (0) -H(0) 8.306e-040 - H2 4.153e-040 4.160e-040 -39.382 -39.381 0.001 (0) -O(0) 4.810e-014 - O2 2.396e-014 2.400e-014 -13.621 -13.620 0.001 (0) - O[18O] 9.559e-017 9.575e-017 -16.020 -16.019 0.001 (0) -[13C](-4) 0.000e+000 - [13C]H4 0.000e+000 0.000e+000 -125.489 -125.489 0.001 (0) -[13C](4) 6.511e-005 - H[13C]O3- 5.252e-005 4.805e-005 -4.280 -4.318 -0.039 (0) - [13C]O2 1.102e-005 1.104e-005 -4.958 -4.957 0.001 (0) - CaH[13C]O3+ 1.109e-006 1.017e-006 -5.955 -5.993 -0.037 (0) - H[13C]O2[18O]- 1.048e-007 9.587e-008 -6.980 -7.018 -0.039 (0) - H[13C][18O]O2- 1.048e-007 9.587e-008 -6.980 -7.018 -0.039 (0) - H[13C]O[18O]O- 1.048e-007 9.587e-008 -6.980 -7.018 -0.039 (0) - Ca[13C]O3 6.088e-008 6.099e-008 -7.215 -7.215 0.001 (0) - [13C]O[18O] 4.584e-008 4.591e-008 -7.339 -7.338 0.001 (0) - [13C]O3-2 3.123e-008 2.188e-008 -7.505 -7.660 -0.155 (0) - CaH[13C]O[18O]O+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - CaH[13C][18O]O2+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - CaH[13C]O2[18O]+ 2.213e-009 2.030e-009 -8.655 -8.693 -0.037 (0) - Ca[13C]O2[18O] 3.644e-010 3.650e-010 -9.438 -9.438 0.001 (0) - H[13C][18O]O[18O]- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - H[13C][18O]2O- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - H[13C]O[18O]2- 2.091e-010 1.913e-010 -9.680 -9.718 -0.039 (0) - [13C]O2[18O]-2 1.869e-010 1.310e-010 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+000 - [14C]H4 0.000e+000 0.000e+000 -136.658 -136.657 0.001 (0) -[14C](4) 4.447e-016 - H[14C]O3- 3.592e-016 3.286e-016 -15.445 -15.483 -0.039 (0) - [14C]O2 7.475e-017 7.487e-017 -16.126 -16.126 0.001 (0) - CaH[14C]O3+ 7.585e-018 6.958e-018 -17.120 -17.157 -0.037 (0) - H[14C][18O]O2- 7.167e-019 6.557e-019 -18.145 -18.183 -0.039 (0) - H[14C]O[18O]O- 7.167e-019 6.557e-019 -18.145 -18.183 -0.039 (0) - H[14C]O2[18O]- 7.167e-019 6.557e-019 -18.145 -18.183 -0.039 (0) - Ca[14C]O3 4.158e-019 4.165e-019 -18.381 -18.380 0.001 (0) - [14C]O[18O] 3.108e-019 3.113e-019 -18.507 -18.507 0.001 (0) - [14C]O3-2 2.133e-019 1.494e-019 -18.671 -18.826 -0.155 (0) - CaH[14C]O2[18O]+ 1.513e-020 1.388e-020 -19.820 -19.858 -0.037 (0) - CaH[14C][18O]O2+ 1.513e-020 1.388e-020 -19.820 -19.858 -0.037 (0) - CaH[14C]O[18O]O+ 1.513e-020 1.388e-020 -19.820 -19.858 -0.037 (0) - Ca[14C]O2[18O] 2.489e-021 2.493e-021 -20.604 -20.603 0.001 (0) - H[14C][18O]O[18O]- 1.430e-021 1.308e-021 -20.845 -20.883 -0.039 (0) - H[14C]O[18O]2- 1.430e-021 1.308e-021 -20.845 -20.883 -0.039 (0) - H[14C][18O]2O- 1.430e-021 1.308e-021 -20.845 -20.883 -0.039 (0) - [14C]O2[18O]-2 1.277e-021 8.945e-022 -20.894 -21.048 -0.155 (0) -[18O](-2) 1.109e-001 - H2[18O] 1.108e-001 1.991e-003 -0.955 -2.701 -1.746 (0) - HCO2[18O]- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HC[18O]O2- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - HCO[18O]O- 9.384e-006 8.586e-006 -5.028 -5.066 -0.039 (0) - CO[18O] 4.141e-006 4.148e-006 -5.383 -5.382 0.001 (0) - CaHCO2[18O]+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHCO[18O]O+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) - CaHC[18O]O2+ 1.982e-007 1.818e-007 -6.703 -6.740 -0.037 (0) -[18O](0) 9.578e-017 - O[18O] 9.559e-017 9.575e-017 -16.020 -16.019 0.001 (0) - [18O]2 9.536e-020 9.552e-020 -19.021 -19.020 0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.63 -125.49 -2.86 [13C]H4 - [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 - [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] - [14C][18O]2(g) -20.02 -21.53 -1.50 [14C][18O]2 - [14C]H4(g) -133.80 -136.66 -2.86 [14C]H4 - [14C]O2(g) -14.66 -16.13 -1.47 [14C]O2 - [14C]O[18O](g) -17.04 -18.83 -1.79 [14C]O[18O] - [18O]2(g) -16.73 -19.02 -2.29 [18O]2 - C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 - Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 - Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] - Ca[13C]O3(s) -1.96 6.24 8.20 Ca[13C]O3 - Ca[13C]O[18O]2(s) -6.86 0.84 7.69 Ca[13C]O[18O]2 - Ca[14C][18O]3(s) -21.19 -13.03 8.15 Ca[14C][18O]3 - Ca[14C]O2[18O](s) -15.33 -7.63 7.70 Ca[14C]O2[18O] - Ca[14C]O3(s) -13.12 -4.93 8.19 Ca[14C]O3 - Ca[14C]O[18O]2(s) -18.02 -10.33 7.69 Ca[14C]O[18O]2 - CaC[18O]3(s) -8.07 0.09 8.16 CaC[18O]3 - CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] - CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.67 -123.53 -2.86 CH4 - CO2(g) -1.53 -3.00 -1.47 CO2 - CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.23 -39.38 -3.15 H2 - H2[18O](g) -4.21 -2.70 1.51 H2[18O] - H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.73 -13.62 -2.89 O2 - O[18O](g) -13.43 -16.32 -2.89 O[18O] - - ------------------- -End of simulation. ------------------- - --------------------------------------- -Reading input data for simulation 114. --------------------------------------- - --------------------------------- -End of Run after 23.307 Seconds. --------------------------------- - diff --git a/examples_pc/ex21.out b/examples_pc/ex21.out deleted file mode 100644 index 0ae2809f..00000000 --- a/examples_pc/ex21.out +++ /dev/null @@ -1,974 +0,0 @@ - Input file: ..\examples\ex21 - Output file: ex21.out -Database file: ..\database\phreeqc.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - PHASES - EXCHANGE_MASTER_SPECIES - EXCHANGE_SPECIES - SURFACE_MASTER_SPECIES - SURFACE_SPECIES - RATES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Diffusion through Opalinus Clay in a radial diffusion cell, - Appelo and others, 2010, GCA, v. 74, p. 1201-1219. - SOLUTION_MASTER_SPECIES - Hto Hto 0.0 20 20 - Na_tr Na_tr+ 0.0 22 22 - Cl_tr Cl_tr- 0.0 36 36 - Cs Cs+ 0.0 132.905 132.905 - SOLUTION_SPECIES - Hto = Hto - log_k 0 - gamma 1e6 0 - dw 2.236e-9 - Na_tr+ = Na_tr+ - log_k 0 - gamma 4.0 0.075 - dw 1.33e-9 - erm_ddl 1.23 - Cl_tr- = Cl_tr- - log_k 0 - gamma 3.5 0.015 - dw 1.31e-9 # dw = dw(water) / 1.55 = 2.03e-9 / 1.55 - Cs+ = Cs+ - log_k 0 - gamma 3.5 0.015 - dw 2.07e-9 - erm_ddl 1.23 - SURFACE_MASTER_SPECIES - Su_fes Su_fes- # Frayed Edge Sites - Su_ii Su_ii- # Type II sites of intermediate strength - Su_ Su_- # Double layer, planar sites are modeled with EXCHANGE - SURFACE_SPECIES - Su_fes- = Su_fes- - log_k 0 - Na+ + Su_fes- = NaSu_fes - log_k 10 - Na_tr+ + Su_fes- = Na_trSu_fes - log_k 10 - K+ + Su_fes- = KSu_fes - log_k 12.4 - Cs+ + Su_fes- = CsSu_fes - log_k 17.14 - Su_ii- = Su_ii- - log_k 0 - Na+ + Su_ii- = NaSu_ii - log_k 10 - Na_tr+ + Su_ii- = Na_trSu_ii - log_k 10 - K+ + Su_ii- = KSu_ii - log_k 12.1 - Cs+ + Su_ii- = CsSu_ii - log_k 14.6 - Su_- = Su_- - log_k 0 - EXCHANGE_SPECIES - Na_tr+ + X- = Na_trX - log_k 0.0 - gamma 4.0 0.075 - Cs+ + X- = CsX - log_k 2.04 - gamma 3.5 0.015 - SOLUTION 0-2 column with only cell 1, two boundary solutions 0 and 2. - Na 1 - Cl 1 - END ------ -TITLE ------ - - Diffusion through Opalinus Clay in a radial diffusion cell, - Appelo and others, 2010, GCA, v. 74, p. 1201-1219. - -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 0. column with only cell 1, two boundary solutions 0 and 2. - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Cl 1.000e-003 1.000e-003 - Na 1.000e-003 1.000e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.000 - pe = 4.000 - Specific Conductance (uS/cm, 25 oC) = 123 - Density (g/cm3) = 0.99708 - Volume (L) = 1.00298 - Activity of water = 1.000 - Ionic strength = 1.000e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.451e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.451e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 3 - Total H = 1.110124e+002 - Total O = 5.550622e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.049e-007 1.012e-007 -6.979 -6.995 -0.016 -4.11 - H+ 1.035e-007 1.000e-007 -6.985 -7.000 -0.015 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Cl 1.000e-003 - Cl- 1.000e-003 9.649e-004 -3.000 -3.016 -0.016 18.07 -H(0) 1.416e-025 - H2 7.078e-026 7.079e-026 -25.150 -25.150 0.000 28.61 -Na 1.000e-003 - Na+ 1.000e-003 9.652e-004 -3.000 -3.015 -0.015 -1.39 - NaOH 9.767e-021 9.769e-021 -20.010 -20.010 0.000 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -42.080 -42.080 0.000 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - H2(g) -22.05 -25.15 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - Halite -7.60 -6.03 1.57 NaCl - O2(g) -39.19 -42.08 -2.89 O2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 2. ------------------------------------- - - KNOBS - diagonal_scale true # -tolerance 1e-20 # because of low concentrations - SOLUTION 3 tracer solution - pH 7.6 - pe 14 O2(g) -1.0 - temp 23 - Na 240 - K 1.61 - Mg 16.9 - Ca 25.8 - Sr 0.505 - Cl 300 - S(6) 14.1 - Fe(2) 0.0 - Alkalinity 0.476 - Hto 1.14e-6 - water 0.2 - SELECTED_OUTPUT - file radial - reset false - USER_PUNCH - 1 nl$ = EOL$ # newline - 2 x$ = CHR$(35) # cross '#' - 3 sc$ = CHR$(59) # semicolon ';' - 4 pi = 2 * ARCTAN(1e10) # 3.14159... - 10 height = 0.052 # length of the clay cylinder / m - 20 r_int = 6.58e-3 # inner radius of clay cylinder / m - 30 r_ext = 25.4e-3 # outer radius - 40 thickn_filter1 = 1.8e-3 # tracer-in filter thickness / m - 50 thickn_filter2 = 1.6e-3 # tracer-out filter thickness / m - 60 por_filter1 = 0.418 # porosity - 70 por_filter2 = 0.367 - 80 G_filter1 = 4.18 # geometrical factor. (for filters, G = por / 10) - 90 G_filter2 = 3.67 - 100 V_end = 0.2 # volume of the tracer-out solution / L - 110 thickn_clay = r_ext - r_int # clay thickness / m - 120 por_clay = 0.159 - 130 rho_b_eps = 2.7 * (1 - por_clay) / por_clay # clay bulk density / porosity / (kg/L) - 140 CEC = 0.12 * rho_b_eps # CEC / (eq/L porewater) - 150 A_por = 37e3 * rho_b_eps # pore surface area / (m2/L porewater) - 160 DIM tracer$(4), exp_time(4), scale_y1$(4), scale_y2$(4), profile_y1$(4), profile_y2$(4) - 170 DATA 'Hto', 'Cl_tr', 'Na_tr', 'Cs' - 180 READ tracer$(1), tracer$(2), tracer$(3), tracer$(4) - 200 DATA 86400 * 20, 86400 * 40, 86400 * 45, 86400 * 1000 - 210 READ exp_time(1), exp_time(2), exp_time(3), exp_time(4) - 230 DATA '1', '1', '1', '1' - 240 READ scale_y1$(1), scale_y1$(2), scale_y1$(3), scale_y1$(4) - 260 DATA '1', '1', '1', '1' - 270 READ scale_y2$(1), scale_y2$(2), scale_y2$(3), scale_y2$(4) - 280 DATA '0 1.2e-9', '0 2.5e-5', '0 2e-10', '0 auto' - 290 READ profile_y1$(1), profile_y1$(2), profile_y1$(3), profile_y1$(4) - 300 DATA '0 1.2e-9', '0 2.5e-5', '0 6e-10', '0 auto' - 310 READ profile_y2$(1), profile_y2$(2), profile_y2$(3), profile_y2$(4) - 350 Dw = 2.5e-9 # default tracer diffusion coefficient / (m2/s) - 360 nfilt1 = 1 # number of cells in filter 1 - 370 nfilt2 = 1 # number of cells in filter 2 - 380 nclay = 11 # number of clay cells - 390 f_free = 0.117 # fraction of free pore water (0.01 - 1) - 400 f_DL_charge = 0.45 # fraction of CEC charge in electrical double layer - 410 tort_n = -0.99 # exponent in Archie's law, -1.045 without filters - 420 G_clay = por_clay^tort_n # geometrical factor - 430 interlayer_D$ = 'false' # 'true' or 'false' for interlayer diffusion - 440 G_IL = 700 # geometrical factor for clay interlayers - 450 punch_time = 60 * 60 * 6 # punch time / seconds - 460 profile$ = 'true' # 'true' or 'false' for c/x profile visualization - 470 IF nfilt1 = 0 THEN thickn_filter1 = 0 - 480 IF nfilt2 = 0 THEN thickn_filter2 = 0 - 490 IF tot("Hto") > 1e-10 THEN tracer = 1 ELSE IF tot("Cl_tr") > 1e-10 THEN tracer = 2 ELSE tracer = 3 - 520 sol$ = nl$ + ' pH 7.6' + sc$ +' pe 14 O2(g) -1.0' + sc$ +' temp 23' - 530 sol$ = sol$ + nl$ + ' Na 240' + sc$ +' K 1.61' + sc$ +' Mg 16.9' + sc$ +' Ca 25.8' + sc$ +' Sr 0.505' - 540 sol$ = sol$ + nl$ + ' Cl 300' + sc$ +' S(6) 14.1' + sc$ +' Fe(2) 0.0' + sc$ +' Alkalinity 0.476' - 550 tracer_phases$ = nl$ + 'PHASES ' - 560 tracer_phases$ = tracer_phases$ + nl$ + ' A_Hto' + nl$ + ' Hto = Hto' + sc$ +' log_k -15' - 570 tracer_phases$ = tracer_phases$ + nl$ + ' A_Na_tr' + nl$ + ' Na_trCl = Na_tr+ + Cl-' + sc$ + ' log_k -14' - 580 tracer_phases$ = tracer_phases$ + nl$ + ' A_Cl_tr' + nl$ + ' NaCl_tr = Na+ + Cl_tr-' + sc$ +' log_k -14' - 590 tracer_phases$ = tracer_phases$ + nl$ + ' A_Cs' + nl$ + ' CsCl = Cs+ + Cl-' + sc$ + ' log_k -13' - 600 DIM tracer_equi$(4) - 610 FOR i = 1 TO 4 - 620 tracer_equi$(i) = nl$ + 'A_' + tracer$(i) + ' 0 0' - 630 NEXT i - 650 punch nl$ + 'PRINT ' + sc$ + ' -reset false' + sc$ + ' -echo_input true' + sc$ + ' -user_print true' - 660 IF nfilt1 = 0 THEN GOTO 800 - 670 punch nl$ + x$ + ' filter cells at tracer-in side...' - 680 r1 = r_int - thickn_filter1 - 690 xf1 = thickn_filter1 / nfilt1 - 700 FOR i = 1 TO nfilt1 - 710 num$ = TRIM(STR$(i + 3)) + sc$ - 720 V_water = 1e3 * height * por_filter1 * pi * (SQR(r1 + xf1) - SQR(r1)) - 730 punch nl$ + 'SOLUTION ' + num$ + ' -water ' + STR$(V_water) - 740 punch sol$ + nl$ - 750 r1 = r1 + xf1 - 760 NEXT i - 800 punch nl$ + nl$ + x$ + ' cells in Opalinus Clay...' - 810 r1 = r_int - 820 x = thickn_clay / nclay - 830 FOR i = 1 TO nclay - 840 num$ = TRIM(STR$(i + 3 + nfilt1)) + sc$ - 850 V_water = 1e3 * height * por_clay * pi * (SQR(r1 + x) - SQR(r1)) - 860 punch nl$ + 'SOLUTION ' + num$ + ' -water ' + STR$(V_water * f_free) - 870 punch sol$ - 880 IF f_free = 1 and tracer = 1 THEN GOTO 960 - 890 punch nl$ + 'SURFACE ' + num$ + ' -equil ' + num$ - 900 punch nl$ + ' Su_ ' + TRIM(STR$(f_DL_charge * CEC * V_water)) + STR$(A_por) + ' ' + STR$(V_water) - 910 punch nl$ + ' Su_ii ' + TRIM(STR$(7.88e-4 * rho_b_eps * V_water)) - 920 punch nl$ + ' Su_fes ' + TRIM(STR$(7.4e-5 * rho_b_eps * V_water)) - 930 IF f_free < 1 THEN punch nl$ + ' -Donnan ' + TRIM(STR$((1 - f_free) * 1e-3 / A_por)) - 940 punch nl$ + 'EXCHANGE ' + num$ + ' -equil ' + num$ - 950 punch nl$ + ' X ' + TRIM(STR$((1 - f_DL_charge) * CEC * V_water)) + nl$ - 960 r1 = r1 + x - 970 NEXT i - 1000 IF nfilt2 = 0 THEN GOTO 1200 - 1010 punch nl$ + nl$ + x$ + ' tracer-out filter cells...' - 1020 r1 = r_ext - 1030 xf2 = thickn_filter2 / nfilt2 - 1040 FOR i = 1 TO nfilt2 - 1050 num$ = TRIM(STR$(i + 3 + nfilt1 + nclay)) + sc$ - 1060 V_water = 1e3 * height * por_filter2 * pi * (SQR(r1 + xf2) - SQR(r1)) - 1070 punch nl$ + 'SOLUTION ' + num$ + ' -water ' + STR$(V_water) - 1080 punch sol$ + nl$ - 1090 r1 = r1 + xf2 - 1100 NEXT i - 1200 punch nl$ + x$ + ' outside solution...' - 1210 num$ = TRIM(STR$(4 + nfilt1 + nclay + nfilt2)) + sc$ - 1220 punch nl$ + 'SOLUTION ' + num$ + ' -water ' + STR$(V_end) - 1230 punch sol$ - 1240 punch nl$ + 'END' - 1300 punch nl$ + tracer_phases$ - 1310 punch nl$ + 'EQUILIBRIUM_PHASES ' + num$ + tracer_equi$(tracer) - 1312 If tracer = 3 THEN punch nl$ + tracer_equi$(tracer + 1) - 1320 punch nl$ + 'END' - 1400 IF nfilt1 > 0 THEN gf1 = por_filter1 / G_filter1 - 1410 IF nfilt2 > 0 THEN gf2 = por_filter2 / G_filter2 - 1420 g = por_clay / G_clay - 1500 IF nfilt1 = 0 THEN GOTO 1530 - 1510 r1 = r_int - thickn_filter1 - 1520 ff = (SQR(r1 + xf1) - SQR(r1)) * xf1 * G_filter1 / (r1 * 2) / 2 - 1530 ff1 = (SQR(r_int + x) - SQR(r_int)) * x * G_clay / (r_int * 2) / 2 - 1540 IF nfilt1 = 0 THEN ff = ff1 ELSE IF ff1 * 2 < ff THEN ff = ff1 * 2 - 1550 IF nfilt1 > 0 THEN ff1 = (SQR(r_int + x) - SQR(r_int)) * (xf1 / gf1 + x / g) / (2 * r_int * 2) - 1560 IF nfilt1 > 0 AND ff1 < ff THEN ff = ff1 - 1570 IF nfilt2 > 0 THEN ff1 = (SQR(r_ext + xf2) - SQR(r_ext)) * xf2 * G_filter2 / (r_ext * 2) - 1580 IF nfilt2 > 0 AND ff1 < ff THEN ff = ff1 - 1590 dt_max = 0.5 * ff / Dw - 1610 IF punch_time < dt_max THEN dt = punch_time ELSE dt = dt_max - 1620 punch_fr = 1 - 1630 IF dt < punch_time THEN punch_fr = ceil(punch_time / dt) - 1640 dt = punch_time / punch_fr - 1650 shifts = ceil(exp_time(tracer) / dt) - 1700 punch nl$ + nl$ + x$ + ' mixing factors...' - 1710 r1 = r_int - 1720 IF nfilt1 > 0 THEN r1 = r_int - thickn_filter1 - 1730 A = height * 2 * pi - 1740 FOR i = 0 TO nfilt1 + nclay + nfilt2 - 1750 IF i = 0 OR i = nfilt1 + nclay + nfilt2 THEN fbc = 2 ELSE fbc = 1 - 1760 IF i > nfilt1 OR nfilt1 = 0 THEN GOTO 1810 - 1770 IF i < nfilt1 THEN mixf = Dw * fbc / (xf1 / gf1) * dt * A * r1 / 1e-3 - 1780 IF i = nfilt1 THEN mixf = 2 * Dw / (xf1 / gf1 + x / g) * dt * A * r1 / 1e-3 - 1790 IF i < nfilt1 THEN r1 = r1 + xf1 ELSE r1 = r1 + x - 1800 GOTO 1880 - 1810 IF i > nfilt1 + nclay THEN GOTO 1860 - 1820 mixf = Dw * fbc / (x / g) * dt * A * r1 / 1e-3 - 1830 IF i = nfilt1 + nclay AND nfilt2 > 0 THEN mixf = 2 * Dw / (xf2 / gf2 + x / g) * dt * A * r1 / 1e-3 - 1840 IF i < nfilt1 + nclay THEN r1 = r1 + x ELSE r1 = r1 + xf2 - 1850 GOTO 1880 - 1860 mixf = Dw * fbc / (xf2 / gf2) * dt * A * r1 / 1e-3 - 1870 r1 = r1 + xf2 - 1880 punch nl$ + 'MIX ' + TRIM(STR$(i + 3)) + sc$ + STR$(i + 4) + STR$(mixf) - 1890 NEXT i - 1900 punch nl$ + 'END' - 2000 punch nl$ + 'TRANSPORT' - 2010 stag = 2 + nfilt1 + nclay + nfilt2 - 2020 punch nl$ + ' -warnings true' - 2030 punch nl$ + ' -shifts ' + TRIM(STR$(shifts)) - 2040 punch nl$ + ' -flow diff' + sc$ + ' -cells 1' + sc$ + ' -bcon 1 2' + sc$ + ' -stag ' + TRIM(STR$(stag)) - 2050 punch nl$ + ' -time ' + STR$(dt) - 2060 punch nl$ + ' -multi_D true ' + STR$(Dw) + STR$(por_clay) + ' 0.0 ' + TRIM(STR$(-tort_n)) - 2070 punch nl$ + ' -interlayer_D ' + interlayer_D$ + ' 0.001 0.0 ' + TRIM(STR$(G_IL)) - 2080 punch nl$ + ' -punch_fr ' + TRIM(STR$(punch_fr)) + sc$ + ' -punch_c ' + TRIM(STR$(2 + stag)) - 2180 FOR i = 0 to 1 - 2190 punch nl$ + 'USER_GRAPH ' + TRIM(STR$(tracer + i)) + ' Example 21' + nl$ - 2200 punch nl$ + ' -chart_title " ' + tracer$(tracer + i) + ' Diffusion to Outer Cell"' - 2210 punch nl$ + ' -plot_tsv_file ex21_' + tracer$(tracer + i) + '_rad.tsv' - 2220 punch nl$ + ' -axis_scale x_axis 0 ' + TRIM(STR$(exp_time(tracer + i) / (3600 * 24))) - 2230 punch nl$ + ' -axis_titles "Time, in days" "Flux, in moles per square meter per second" "Accumulated mass, in moles"' - 2240 punch nl$ + ' -plot_concentration_vs time' - 2250 punch nl$ + ' 10 days = total_time / (3600 * 24)' - 2260 punch nl$ + ' 20 a = equi("A_' + tracer$(tracer + i) + '")' - 2270 punch nl$ + ' 30 IF get(1) = 0 AND total_time > 0 THEN put(total_time, 1)' - 2280 punch nl$ + ' 40 dt = get(1)' - 2290 A = 2 * pi * r_ext * height - 2300 i$ = TRIM(STR$(2 + i)) - 2310 punch nl$ + ' 50 plot_xy days - dt / (2 * 3600 * 24), (a - get(' + i$ + ')) / dt /' + STR$(A) + ', color = Green, symbol = None' - 2320 punch nl$ + ' 60 put(a, ' + i$ + ')' - 2330 punch nl$ + ' 70 plot_xy days, equi("A_' + tracer$(tracer + i) + '"), y_axis = 2, color = Red, symbol = None' - 2340 IF tracer < 3 THEN GOTO 2360 - 2350 NEXT i - 2360 punch nl$ + 'END' - 2400 IF profile$ = 'true' THEN GOSUB 3000 - 2410 IF tracer < 3 THEN END # finished for Hto and Cl - 2420 IF profile$ = 'false' THEN punch nl$ + 'USER_GRAPH ' + TRIM(STR$(tracer)) + sc$ + ' -detach' ELSE punch nl$ + 'USER_GRAPH ' + TRIM(STR$(tracer + 4)) + sc$ + ' -detach' - 2440 tracer = tracer + 1 - 2450 punch nl$ + 'TRANSPORT' - 2460 shifts = ceil((exp_time(tracer) - exp_time(tracer - 1))/ dt) - 2480 punch nl$ + ' -shifts ' + TRIM(STR$(shifts)) - 2490 punch nl$ + ' -punch_fr ' + TRIM(STR$(punch_fr)) + sc$ + ' -punch_c ' + TRIM(STR$(2 + stag)) - 2500 punch nl$ + 'END' - 2510 IF profile$ = 'true' THEN GOSUB 3000 - 2520 END # finished... - 3000 punch nl$ + 'TRANSPORT' - 3010 punch nl$ + ' -shifts 0' - 3020 punch nl$ + ' -punch_fr 2' + sc$ + ' -punch_c 3-' + TRIM(STR$(2 + stag)) - 3030 punch nl$ + 'USER_GRAPH ' + TRIM(STR$(tracer)) + sc$ + ' -detach' - 3040 punch nl$ + 'USER_GRAPH ' + TRIM(STR$(tracer + 4)) + ' Example 21' + nl$ - 3050 punch nl$ + ' -chart_title "' + tracer$(tracer) + ' Concentration Profile: Filter1 | Clay | Filter2"' - 3060 REM punch nl$ + ' -plot_tsv_file + tracer$(tracer) + '_prof.tsv' - 3070 punch nl$ + ' -axis_scale x_axis 0 ' + TRIM(STR$((thickn_filter1 + thickn_clay + thickn_filter2) * 1e3)) - 3080 punch nl$ + ' -axis_scale y_axis ' + profile_y1$(tracer) - 3090 punch nl$ + ' -axis_scale sy_axis ' + profile_y2$(tracer) - 3100 punch nl$ + ' -axis_titles ' + '"Distance, in millimeters" "Free pore-water molality" "Total molality"' - 3110 punch nl$ + ' -headings ' + tracer$(tracer) + '_free ' + tracer$(tracer) + '_tot' - 3120 punch nl$ + ' -plot_concentration_vs x' - 3130 punch nl$ + ' -initial_solutions true' - 3140 punch nl$ + ' 10 IF cell_no = 3 THEN xval = 0 ELSE xval = get(14)' - 3150 punch nl$ + ' 20 IF (' + TRIM(STR$(nfilt1)) + ' = 0 OR cell_no > ' + TRIM(STR$(nfilt1 + 3)) + ') THEN GOTO 60' - 3160 punch nl$ + ' 30 IF (cell_no = 4) THEN xval = xval + 0.5 * ' + TRIM(STR$(xf1)) - 3170 punch nl$ + ' 40 IF (cell_no > 4 AND cell_no < ' + TRIM(STR$(nfilt1 + 4)) + ') THEN xval = xval + ' + TRIM(STR$(xf1)) - 3180 punch nl$ + ' 50 GOTO 200' - 3190 punch nl$ + ' 60 IF (cell_no = ' + TRIM(STR$(4 + nfilt1)) + ') THEN xval = xval + 0.5 * ' + TRIM(STR$(xf1)) + ' + 0.5 * ' + TRIM(STR$(x)) - 3200 punch nl$ + ' 70 IF (cell_no > ' + TRIM(STR$(4 + nfilt1)) + ' AND cell_no < ' + TRIM(STR$(4 + nfilt1 + nclay)) + ') THEN xval = xval + ' + TRIM(STR$(x)) + ' ELSE GOTO 90' - 3210 punch nl$ + ' 80 GOTO 200' - 3220 punch nl$ + ' 90 IF (cell_no = ' + TRIM(STR$(4 + nfilt1 + nclay)) + ') THEN xval = xval + 0.5 * ' + TRIM(STR$(x)) + ' + 0.5 * ' + TRIM(STR$(xf2)) - 3230 punch nl$ + ' 100 IF (cell_no > ' + TRIM(STR$(4 + nfilt1 + nclay)) + ' AND cell_no <= ' + TRIM(STR$(3 + nfilt1 + nclay + nfilt2)) + ') THEN xval = xval + ' + TRIM(STR$(xf2)) - 3240 punch nl$ + ' 110 IF (cell_no = ' + TRIM(STR$(4 + nfilt1 + nclay + nfilt2)) + ') THEN xval = xval + 0.5 * ' + TRIM(STR$(xf2)) - 3250 punch nl$ + ' 200 y1 = TOT("' + tracer$(tracer) + '")' - 3260 punch nl$ + ' 210 plot_xy xval * 1e3, y1, color = Blue, symbol = Plus' - 3270 punch nl$ + ' 220 IF cell_no = 3 THEN put(y1, 15)' - 3280 punch nl$ + ' 230 IF (cell_no < ' + TRIM(STR$(4 + nfilt1)) + ' OR cell_no > ' + TRIM(STR$(3 + nfilt1 + nclay)) + ') THEN GOTO 400' - 3290 punch nl$ + ' 240 y2 = SYS("' + tracer$(tracer) + '") / (tot("water") + edl("water"))' - 3310 punch nl$ + ' 250 REM y2 = y2 / ' + TRIM(STR$(rho_b_eps)) + x$ + ' conc / kg solid' - 3320 punch nl$ + ' 260 plot_xy xval * 1e3, y2, symbol = Circle, y_axis = 2' - 3330 punch nl$ + ' 270 IF (cell_no > ' + TRIM(STR$(5 + nfilt1)) + ') THEN GOTO 400' - 3340 punch nl$ + ' 280 IF ' + TRIM(STR$(nfilt1)) + ' THEN plot_xy ' + TRIM(STR$(thickn_filter1 * 1e3)) + ', get(15), color = Black, symbol = None' - 3350 punch nl$ + ' 290 IF ' + TRIM(STR$(nfilt2)) + ' THEN plot_xy ' + TRIM(STR$((thickn_filter1 + thickn_clay) * 1e3)) + ', get(15), color = Black, symbol = None' - 3360 punch nl$ + ' 300 put(0, 15)' - 3370 punch nl$ + ' 400 put(xval, 14)' - 3380 punch nl$ + 'END' - 3390 RETURN - END -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 3. tracer solution - -WARNING: USER_PUNCH: Headings count doesn't match number of calls to PUNCH. - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Alkalinity 4.760e-004 9.520e-005 - Ca 2.580e-002 5.160e-003 - Cl 3.000e-001 6.000e-002 - Hto 1.140e-009 2.280e-010 - K 1.610e-003 3.220e-004 - Mg 1.690e-002 3.380e-003 - Na 2.400e-001 4.800e-002 - S(6) 1.410e-002 2.820e-003 - Sr 5.050e-004 1.010e-004 - -----------------------------Description of solution---------------------------- - - pH = 7.600 - pe = 13.120 Equilibrium with O2(g) - Specific Conductance (uS/cm, 23 oC) = 29877 - Density (g/cm3) = 1.01169 - Volume (L) = 0.20165 - Activity of water = 0.990 - Ionic strength = 3.657e-001 - Mass of water (kg) = 2.000e-001 - Total carbon (mol/kg) = 4.793e-004 - Total CO2 (mol/kg) = 4.793e-004 - Temperature (deg C) = 23.00 - Electrical balance (eq) = -1.312e-004 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.10 - Iterations = 6 - Total H = 2.220258e+001 - Total O = 1.111286e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 5.192e-007 3.419e-007 -6.285 -6.466 -0.181 -3.26 - H+ 3.238e-008 2.512e-008 -7.490 -7.600 -0.110 0.00 - H2O 5.551e+001 9.899e-001 1.744 -0.004 0.000 18.06 -C(4) 4.793e-004 - HCO3- 3.229e-004 2.295e-004 -3.491 -3.639 -0.148 26.37 - NaHCO3 9.167e-005 9.972e-005 -4.038 -4.001 0.037 19.41 - CaHCO3+ 2.585e-005 1.871e-005 -4.588 -4.728 -0.140 9.84 - MgHCO3+ 1.824e-005 1.230e-005 -4.739 -4.910 -0.171 5.70 - CO2 1.235e-005 1.343e-005 -4.908 -4.872 0.037 30.80 - CaCO3 4.029e-006 4.383e-006 -5.395 -5.358 0.037 -14.61 - MgCO3 1.615e-006 1.757e-006 -5.792 -5.755 0.037 -17.09 - CO3-2 1.612e-006 4.110e-007 -5.793 -6.386 -0.593 -1.89 - SrHCO3+ 5.910e-007 4.200e-007 -6.228 -6.377 -0.148 (0) - NaCO3- 4.415e-007 3.137e-007 -6.355 -6.503 -0.148 0.60 - SrCO3 2.913e-008 3.169e-008 -7.536 -7.499 0.037 -14.14 -Ca 2.580e-002 - Ca+2 2.378e-002 6.598e-003 -1.624 -2.181 -0.557 -17.02 - CaSO4 1.991e-003 2.166e-003 -2.701 -2.664 0.037 7.42 - CaHCO3+ 2.585e-005 1.871e-005 -4.588 -4.728 -0.140 9.84 - CaCO3 4.029e-006 4.383e-006 -5.395 -5.358 0.037 -14.61 - CaOH+ 5.899e-008 4.315e-008 -7.229 -7.365 -0.136 (0) - CaHSO4+ 4.754e-010 3.477e-010 -9.323 -9.459 -0.136 (0) -Cl 3.000e-001 - Cl- 3.000e-001 2.017e-001 -0.523 -0.695 -0.172 18.53 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.617 -44.580 0.037 28.61 -Hto 1.140e-009 - Hto 1.140e-009 1.140e-009 -8.943 -8.943 0.000 (0) -K 1.610e-003 - K+ 1.591e-003 1.061e-003 -2.798 -2.974 -0.176 9.40 - KSO4- 1.899e-005 1.349e-005 -4.722 -4.870 -0.148 (0) -Mg 1.690e-002 - Mg+2 1.511e-002 4.618e-003 -1.821 -2.336 -0.515 -20.64 - MgSO4 1.771e-003 1.927e-003 -2.752 -2.715 0.037 5.76 - MgHCO3+ 1.824e-005 1.230e-005 -4.739 -4.910 -0.171 5.70 - MgCO3 1.615e-006 1.757e-006 -5.792 -5.755 0.037 -17.09 - MgOH+ 7.505e-007 5.510e-007 -6.125 -6.259 -0.134 (0) -Na 2.400e-001 - Na+ 2.377e-001 1.722e-001 -0.624 -0.764 -0.140 -0.90 - NaSO4- 2.248e-003 1.597e-003 -2.648 -2.797 -0.148 21.10 - NaHCO3 9.167e-005 9.972e-005 -4.038 -4.001 0.037 19.41 - NaCO3- 4.415e-007 3.137e-007 -6.355 -6.503 -0.148 0.60 - NaOH 5.413e-018 5.889e-018 -17.267 -17.230 0.037 (0) -O(0) 2.437e-004 - O2 1.218e-004 1.325e-004 -3.914 -3.878 0.037 30.24 -S(6) 1.410e-002 - SO4-2 8.029e-003 1.874e-003 -2.095 -2.727 -0.632 15.89 - NaSO4- 2.248e-003 1.597e-003 -2.648 -2.797 -0.148 21.10 - CaSO4 1.991e-003 2.166e-003 -2.701 -2.664 0.037 7.42 - MgSO4 1.771e-003 1.927e-003 -2.752 -2.715 0.037 5.76 - SrSO4 4.204e-005 4.573e-005 -4.376 -4.340 0.037 24.16 - KSO4- 1.899e-005 1.349e-005 -4.722 -4.870 -0.148 (0) - HSO4- 5.993e-009 4.384e-009 -8.222 -8.358 -0.136 40.64 - CaHSO4+ 4.754e-010 3.477e-010 -9.323 -9.459 -0.136 (0) -Sr 5.050e-004 - Sr+2 4.623e-004 1.281e-004 -3.335 -3.892 -0.557 -16.73 - SrSO4 4.204e-005 4.573e-005 -4.376 -4.340 0.037 24.16 - SrHCO3+ 5.910e-007 4.200e-007 -6.228 -6.377 -0.148 (0) - SrCO3 2.913e-008 3.169e-008 -7.536 -7.499 0.037 -14.14 - SrOH+ 3.694e-010 2.590e-010 -9.432 -9.587 -0.154 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(296 K, 1 atm) - - Anhydrite -0.65 -4.91 -4.26 CaSO4 - Aragonite -0.24 -8.57 -8.32 CaCO3 - Calcite -0.10 -8.57 -8.47 CaCO3 - Celestite 0.03 -6.62 -6.65 SrSO4 - CO2(g) -3.43 -4.87 -1.44 CO2 - Dolomite -0.25 -17.29 -17.04 CaMg(CO3)2 - Gypsum -0.34 -4.92 -4.58 CaSO4:2H2O - H2(g) -41.48 -44.58 -3.10 H2 - H2O(g) -1.56 -0.00 1.55 H2O - Halite -3.03 -1.46 1.57 NaCl - O2(g) -1.00 -3.88 -2.88 O2 Pressure 0.1 atm, phi 1.000. - Strontianite -1.01 -10.28 -9.27 SrCO3 - Sylvite -4.55 -3.67 0.88 KCl - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 3. ------------------------------------- - - PRINT - selected_output false - status false - PRINT - reset false - user_print true - SOLUTION 4 - water 1.3963e-003 - pH 7.6 - pe 14 O2(g) -1.0 - temp 23 - Na 240 - K 1.61 - Mg 16.9 - Ca 25.8 - Sr 0.505 - Cl 300 - S(6) 14.1 - Fe(2) 0.0 - Alkalinity 0.476 - SOLUTION 5 - water 7.7322e-005 - pH 7.6 - pe 14 O2(g) -1.0 - temp 23 - Na 240 - K 1.61 - Mg 16.9 - Ca 25.8 - Sr 0.505 - Cl 300 - S(6) 14.1 - Fe(2) 0.0 - Alkalinity 0.476 - SURFACE 5 - equilibrate 5 - Su_ 5.0965e-004 5.2840e+005 6.6087e-004 - Su_ii 7.4371e-006 - Su_fes 6.9841e-007 - donnan 1.6711e-009 - EXCHANGE 5 - equilibrate 5 - X 6.2290e-004 - SOLUTION 6 - water 9.5113e-005 - pH 7.6 - pe 14 O2(g) -1.0 - temp 23 - Na 240 - K 1.61 - Mg 16.9 - Ca 25.8 - Sr 0.505 - Cl 300 - S(6) 14.1 - Fe(2) 0.0 - Alkalinity 0.476 - SURFACE 6 - equilibrate 6 - Su_ 6.2692e-004 5.2840e+005 8.1293e-004 - Su_ii 9.1484e-006 - Su_fes 8.5911e-007 - donnan 1.6711e-009 - EXCHANGE 6 - equilibrate 6 - X 7.6624e-004 - SOLUTION 7 - water 1.1291e-004 - pH 7.6 - pe 14 O2(g) -1.0 - temp 23 - Na 240 - K 1.61 - Mg 16.9 - Ca 25.8 - Sr 0.505 - Cl 300 - S(6) 14.1 - Fe(2) 0.0 - Alkalinity 0.476 - SURFACE 7 - equilibrate 7 - Su_ 7.4419e-004 5.2840e+005 9.6500e-004 - Su_ii 1.0860e-005 - Su_fes 1.0198e-006 - donnan 1.6711e-009 - EXCHANGE 7 - equilibrate 7 - X 9.0957e-004 - SOLUTION 8 - water 1.3070e-004 - pH 7.6 - pe 14 O2(g) -1.0 - temp 23 - Na 240 - K 1.61 - Mg 16.9 - Ca 25.8 - Sr 0.505 - Cl 300 - S(6) 14.1 - Fe(2) 0.0 - Alkalinity 0.476 - SURFACE 8 - equilibrate 8 - Su_ 8.6146e-004 5.2840e+005 1.1171e-003 - Su_ii 1.2571e-005 - Su_fes 1.1805e-006 - donnan 1.6711e-009 - EXCHANGE 8 - equilibrate 8 - X 1.0529e-003 - SOLUTION 9 - water 1.4849e-004 - pH 7.6 - pe 14 O2(g) -1.0 - temp 23 - Na 240 - K 1.61 - Mg 16.9 - Ca 25.8 - Sr 0.505 - Cl 300 - S(6) 14.1 - Fe(2) 0.0 - Alkalinity 0.476 - SURFACE 9 - equilibrate 9 - Su_ 9.7873e-004 5.2840e+005 1.2691e-003 - Su_ii 1.4282e-005 - Su_fes 1.3412e-006 - donnan 1.6711e-009 - EXCHANGE 9 - equilibrate 9 - X 1.1962e-003 - SOLUTION 10 - water 1.6628e-004 - pH 7.6 - pe 14 O2(g) -1.0 - temp 23 - Na 240 - K 1.61 - Mg 16.9 - Ca 25.8 - Sr 0.505 - Cl 300 - S(6) 14.1 - Fe(2) 0.0 - Alkalinity 0.476 - SURFACE 10 - equilibrate 10 - Su_ 1.0960e-003 5.2840e+005 1.4212e-003 - Su_ii 1.5994e-005 - Su_fes 1.5019e-006 - donnan 1.6711e-009 - EXCHANGE 10 - equilibrate 10 - X 1.3396e-003 - SOLUTION 11 - water 1.8407e-004 - pH 7.6 - pe 14 O2(g) -1.0 - temp 23 - Na 240 - K 1.61 - Mg 16.9 - Ca 25.8 - Sr 0.505 - Cl 300 - S(6) 14.1 - Fe(2) 0.0 - Alkalinity 0.476 - SURFACE 11 - equilibrate 11 - Su_ 1.2133e-003 5.2840e+005 1.5733e-003 - Su_ii 1.7705e-005 - Su_fes 1.6626e-006 - donnan 1.6711e-009 - EXCHANGE 11 - equilibrate 11 - X 1.4829e-003 - SOLUTION 12 - water 2.0186e-004 - pH 7.6 - pe 14 O2(g) -1.0 - temp 23 - Na 240 - K 1.61 - Mg 16.9 - Ca 25.8 - Sr 0.505 - Cl 300 - S(6) 14.1 - Fe(2) 0.0 - Alkalinity 0.476 - SURFACE 12 - equilibrate 12 - Su_ 1.3305e-003 5.2840e+005 1.7253e-003 - Su_ii 1.9416e-005 - Su_fes 1.8233e-006 - donnan 1.6711e-009 - EXCHANGE 12 - equilibrate 12 - X 1.6262e-003 - SOLUTION 13 - water 2.1966e-004 - pH 7.6 - pe 14 O2(g) -1.0 - temp 23 - Na 240 - K 1.61 - Mg 16.9 - Ca 25.8 - Sr 0.505 - Cl 300 - S(6) 14.1 - Fe(2) 0.0 - Alkalinity 0.476 - SURFACE 13 - equilibrate 13 - Su_ 1.4478e-003 5.2840e+005 1.8774e-003 - Su_ii 2.1127e-005 - Su_fes 1.9840e-006 - donnan 1.6711e-009 - EXCHANGE 13 - equilibrate 13 - X 1.7696e-003 - SOLUTION 14 - water 2.3745e-004 - pH 7.6 - pe 14 O2(g) -1.0 - temp 23 - Na 240 - K 1.61 - Mg 16.9 - Ca 25.8 - Sr 0.505 - Cl 300 - S(6) 14.1 - Fe(2) 0.0 - Alkalinity 0.476 - SURFACE 14 - equilibrate 14 - Su_ 1.5651e-003 5.2840e+005 2.0295e-003 - Su_ii 2.2839e-005 - Su_fes 2.1448e-006 - donnan 1.6711e-009 - EXCHANGE 14 - equilibrate 14 - X 1.9129e-003 - SOLUTION 15 - water 2.5524e-004 - pH 7.6 - pe 14 O2(g) -1.0 - temp 23 - Na 240 - K 1.61 - Mg 16.9 - Ca 25.8 - Sr 0.505 - Cl 300 - S(6) 14.1 - Fe(2) 0.0 - Alkalinity 0.476 - SURFACE 15 - equilibrate 15 - Su_ 1.6824e-003 5.2840e+005 2.1815e-003 - Su_ii 2.4550e-005 - Su_fes 2.3055e-006 - donnan 1.6711e-009 - EXCHANGE 15 - equilibrate 15 - X 2.0562e-003 - SOLUTION 16 - water 5.0266e-003 - pH 7.6 - pe 14 O2(g) -1.0 - temp 23 - Na 240 - K 1.61 - Mg 16.9 - Ca 25.8 - Sr 0.505 - Cl 300 - S(6) 14.1 - Fe(2) 0.0 - Alkalinity 0.476 - SOLUTION 17 - water 2.0000e-001 - pH 7.6 - pe 14 O2(g) -1.0 - temp 23 - Na 240 - K 1.61 - Mg 16.9 - Ca 25.8 - Sr 0.505 - Cl 300 - S(6) 14.1 - Fe(2) 0.0 - Alkalinity 0.476 - END - PHASES - A_Hto - Hto = Hto - log_k -15 - A_Na_tr - Na_trCl = Na_tr+ + Cl- - log_k -14 - A_Cl_tr - NaCl_tr = Na+ + Cl_tr- - log_k -14 - A_Cs - CsCl = Cs+ + Cl- - log_k -13 - EQUILIBRIUM_PHASES 17 - A_Hto 0 0 - END - MIX 3 - 4 6.6932e-004 - MIX 4 - 5 1.9640e-004 - MIX 5 - 6 1.5725e-004 - MIX 6 - 7 1.8971e-004 - MIX 7 - 8 2.2216e-004 - MIX 8 - 9 2.5461e-004 - MIX 9 - 10 2.8706e-004 - MIX 10 - 11 3.1951e-004 - MIX 11 - 12 3.5196e-004 - MIX 12 - 13 3.8441e-004 - MIX 13 - 14 4.1686e-004 - MIX 14 - 15 4.4931e-004 - MIX 15 - 16 7.7653e-004 - MIX 16 - 17 4.2533e-003 - END - TRANSPORT - warnings true - shifts 1120 - flow_direction diff - cells 1 - bcond 1 2 - stagnant 15 - timest 1.5429e+003 - multi_d true 2.5000e-009 1.5900e-001 0.0 9.9000e-001 - interlayer_d false 0.001 0.0 700 - punch_frequency 14 - punch_cells 17 - USER_GRAPH 1 Example 21 -WARNING: No cell-lengths were read; length = 1 m assumed. -WARNING: No dispersivities were read; disp = 0 assumed. - -chart_title " Hto Diffusion to Outer Cell" - -plot_tsv_file ex21_Hto_rad.tsv - -axis_scale x_axis 0 20 - -axis_titles "Time, in days" "Flux, in moles per square meter per second" "Accumulated mass, in moles" - -plot_concentration_vs time - 10 days = total_time / (3600 * 24) - 20 a = equi("A_Hto") - 30 IF get(1) = 0 AND total_time > 0 THEN put(total_time, 1) - 40 dt = get(1) - 50 plot_xy days - dt / (2 * 3600 * 24), (a - get(2)) / dt / 8.2988e-003, color = Green, symbol = None - 60 put(a, 2) - 70 plot_xy days, equi("A_Hto"), y_axis = 2, color = Red, symbol = None - END -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-016 ... - - TRANSPORT - shifts 0 - punch_frequency 2 - punch_cells 3-17 - USER_GRAPH 1 - -detach - USER_GRAPH 5 Example 21 - -chart_title "Hto Concentration Profile: Filter1 | Clay | Filter2" - -axis_scale x_axis 0 2.2220e+001 - -axis_scale y_axis 0 1.2e-9 - -axis_scale sy_axis 0 1.2e-9 - -axis_titles "Distance, in millimeters" "Free pore-water molality" "Total molality" - -headings Hto_free Hto_tot - -plot_concentration_vs x - -initial_solutions true - 10 IF cell_no = 3 THEN xval = 0 ELSE xval = get(14) - 20 IF (1 = 0 OR cell_no > 4) THEN GOTO 60 - 30 IF (cell_no = 4) THEN xval = xval + 0.5 * 1.8000e-003 - 40 IF (cell_no > 4 AND cell_no < 5) THEN xval = xval + 1.8000e-003 - 50 GOTO 200 - 60 IF (cell_no = 5) THEN xval = xval + 0.5 * 1.8000e-003 + 0.5 * 1.7109e-003 - 70 IF (cell_no > 5 AND cell_no < 16) THEN xval = xval + 1.7109e-003 ELSE GOTO 90 - 80 GOTO 200 - 90 IF (cell_no = 16) THEN xval = xval + 0.5 * 1.7109e-003 + 0.5 * 1.6000e-003 - 100 IF (cell_no > 16 AND cell_no <= 16) THEN xval = xval + 1.6000e-003 - 110 IF (cell_no = 17) THEN xval = xval + 0.5 * 1.6000e-003 - 200 y1 = TOT("Hto") - 210 plot_xy xval * 1e3, y1, color = Blue, symbol = Plus - 220 IF cell_no = 3 THEN put(y1, 15) - 230 IF (cell_no < 5 OR cell_no > 15) THEN GOTO 400 - 240 y2 = SYS("Hto") / (tot("water") + edl("water")) - 250 REM y2 = y2 / 1.4281e+001 - 260 plot_xy xval * 1e3, y2, symbol = Circle, y_axis = 2 - 270 IF (cell_no > 6) THEN GOTO 400 - 280 IF 1 THEN plot_xy 1.8000e+000, get(15), color = Black, symbol = None - 290 IF 1 THEN plot_xy 2.0620e+001, get(15), color = Black, symbol = None - 300 put(0, 15) - 400 put(xval, 14) - END - END --------------------------------- -End of Run after 22.075 Seconds. --------------------------------- - diff --git a/examples_pc/ex22.out b/examples_pc/ex22.out deleted file mode 100644 index fcead6b0..00000000 --- a/examples_pc/ex22.out +++ /dev/null @@ -1,10359 +0,0 @@ - Input file: ..\examples\ex22 - Output file: ex22.out -Database file: ..\database\phreeqc.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - PHASES - EXCHANGE_MASTER_SPECIES - EXCHANGE_SPECIES - SURFACE_MASTER_SPECIES - SURFACE_SPECIES - RATES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Example 22.--Compare experimental CO2 solubilities at high CO2 pressure - with Peng-Robinson calc'ns with fixed-volume gas_phase, 25, 50, 75, 100 oC. - SOLUTION 1 - GAS_PHASE 1 - fixed_volume - CO2(g) 0 - H2O(g) 0 - REACTION - CO2 1 - 0 27*1 - INCREMENTAL_REACTIONS true - USER_GRAPH 1 Example 22, CO2 solubility at high pressures, 25 - 100C - -plot_tsv_file co2.tsv - -axis_titles "Pressure, in atmospheres" "CO2 concentration, in moles per kilogram water" - -axis_scale x_axis 0 500 - -axis_scale y_axis 0 2 - -connect_simulations false - 10 graph_x PR_P("CO2(g)") - 20 graph_y TOT("C(4)") - -end - USER_GRAPH 2 Example 22, P-Vm of CO2 gas, 25 - 100C - -headings 25C - -axis_titles "Molar volume of CO2 gas, in liters per mole" "CO2 pressure, in atmospheres" - -axis_scale x_axis 0 1 - -axis_scale y_axis 0 500 - -connect_simulations false - 10 plot_xy gas_vm, gas_p symbol = None - -end - END ------ -TITLE ------ - - Example 22.--Compare experimental CO2 solubilities at high CO2 pressure - with Peng-Robinson calc'ns with fixed-volume gas_phase, 25, 50, 75, 100 oC. - -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 1. - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Pure water - -----------------------------Description of solution---------------------------- - - pH = 7.000 - pe = 4.000 - Specific Conductance (uS/cm, 25 oC) = 0 - Density (g/cm3) = 0.99704 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 1.007e-007 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.217e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.60 - Iterations = 0 - Total H = 1.110124e+002 - Total O = 5.550622e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.013e-007 1.012e-007 -6.995 -6.995 -0.000 -4.14 - H+ 1.001e-007 1.000e-007 -7.000 -7.000 -0.000 0.00 - H2O 5.551e+001 1.000e+000 1.744 0.000 0.000 18.07 -H(0) 1.416e-025 - H2 7.079e-026 7.079e-026 -25.150 -25.150 0.000 28.61 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -42.080 -42.080 0.000 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - H2(g) -22.05 -25.15 -3.10 H2 - H2O(g) -1.50 0.00 1.50 H2O - O2(g) -39.19 -42.08 -2.89 O2 - - ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -WARNING: Element C is contained in gas CO2(g) (which has 0.0 mass), -but is not in solution or other phases. -Using solution 1. -Using gas phase 1. -Using reaction 1. - -Reaction 1. - - 0.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 0.03 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 7.78e+002 liters/mole - P * Vm / RT: 0.99951 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) -99.99 0.000e+000 1.000 0.000e+000 0.000e+000 0.000e+000 -H2O(g) -1.50 3.143e-002 1.000 0.000e+000 1.285e-003 1.285e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Pure water - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 10.804 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 0 - Density (g/cm3) = 0.99700 - Volume (L) = 1.00299 - Activity of water = 1.000 - Ionic strength = 1.006e-007 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.217e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Pressure (atm) = 0.03 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.60 - Iterations = 13 - Total H = 1.110099e+002 - Total O = 5.550493e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.013e-007 1.012e-007 -6.995 -6.995 -0.000 -4.14 - H+ 1.000e-007 1.000e-007 -7.000 -7.000 -0.000 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -H(0) 3.486e-039 - H2 1.743e-039 1.743e-039 -38.759 -38.759 0.000 28.61 -O(0) 2.744e-015 - O2 1.372e-015 1.372e-015 -14.863 -14.863 0.000 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 0 atm) - - H2(g) -35.66 -38.76 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 1.000. - O2(g) -11.97 -14.86 -2.89 O2 - - -Reaction step 2. - -Using solution 1. -Using gas phase 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 13.20 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 1.71e+000 liters/mole - P * Vm / RT: 0.92376 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.12 1.316e+001 0.928 0.000e+000 5.825e-001 5.825e-001 -H2O(g) -1.45 3.584e-002 0.878 1.285e-003 1.586e-003 3.006e-004 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 4.175e-001 4.175e-001 - -----------------------------Description of solution---------------------------- - - pH = 3.365 Charge balance - pe = 2.240 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 171 - Density (g/cm3) = 1.00328 - Volume (L) = 1.03541 - Activity of water = 0.993 - Ionic strength = 4.420e-004 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.216e-009 - Total CO2 (mol/kg) = 4.175e-001 - Temperature (deg C) = 25.00 - Pressure (atm) = 13.20 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 37 - Total H = 1.110093e+002 - Total O = 5.633966e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 4.420e-004 4.319e-004 -3.355 -3.365 -0.010 0.00 - OH- 2.410e-011 2.353e-011 -10.618 -10.628 -0.010 -4.07 - H2O 5.551e+001 9.929e-001 1.744 -0.003 0.000 18.06 -C(-4) 1.475e-021 - CH4 1.475e-021 1.475e-021 -20.831 -20.831 0.000 32.22 -C(4) 4.175e-001 - CO2 4.171e-001 4.171e-001 -0.380 -0.380 0.000 30.29 - HCO3- 4.420e-004 4.316e-004 -3.355 -3.365 -0.010 24.59 - CO3-2 5.230e-011 4.755e-011 -10.282 -10.323 -0.041 -4.31 -H(0) 8.607e-015 - H2 4.303e-015 4.304e-015 -14.366 -14.366 0.000 28.60 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -63.665 -63.665 0.000 30.38 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 13 atm) - - CH4(g) -18.00 -20.83 -2.83 CH4 - CO2(g) 1.08 -0.38 -1.46 CO2 Pressure 13.2 atm, phi 0.928. - H2(g) -11.27 -14.37 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.878. - O2(g) -60.76 -63.67 -2.90 O2 - - -Reaction step 3. - -Using solution 1. -Using gas phase 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 25.88 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 7.98e-001 liters/mole - P * Vm / RT: 0.84357 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.41 2.583e+001 0.861 5.825e-001 1.252e+000 6.693e-001 -H2O(g) -1.38 4.126e-002 0.766 1.586e-003 1.999e-003 4.132e-004 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 7.483e-001 7.483e-001 - -----------------------------Description of solution---------------------------- - - pH = 3.236 Charge balance - pe = 2.464 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 231 - Density (g/cm3) = 1.00822 - Volume (L) = 1.06085 - Activity of water = 0.987 - Ionic strength = 5.959e-004 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.216e-009 - Total CO2 (mol/kg) = 7.483e-001 - Temperature (deg C) = 25.00 - Pressure (atm) = 25.88 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 - Total H = 1.110084e+002 - Total O = 5.700075e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 5.959e-004 5.802e-004 -3.225 -3.236 -0.012 0.00 - OH- 1.811e-011 1.761e-011 -10.742 -10.754 -0.012 -4.02 - H2O 5.551e+001 9.873e-001 1.744 -0.006 0.000 18.05 -C(-4) 4.554e-022 - CH4 4.554e-022 4.555e-022 -21.342 -21.342 0.000 32.22 -C(4) 7.483e-001 - CO2 7.477e-001 7.478e-001 -0.126 -0.126 0.000 30.32 - HCO3- 5.959e-004 5.798e-004 -3.225 -3.237 -0.012 24.61 - CO3-2 5.385e-011 4.825e-011 -10.269 -10.316 -0.048 -4.19 -H(0) 5.475e-015 - H2 2.737e-015 2.738e-015 -14.563 -14.563 0.000 28.59 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -63.289 -63.289 0.000 30.36 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 26 atm) - - CH4(g) -18.52 -21.34 -2.82 CH4 - CO2(g) 1.32 -0.13 -1.45 CO2 Pressure 25.8 atm, phi 0.861. - H2(g) -11.46 -14.56 -3.10 H2 - H2O(g) -1.50 -0.01 1.49 H2O Pressure 0.0 atm, phi 0.766. - O2(g) -60.38 -63.29 -2.91 O2 - - -Reaction step 4. - -Using solution 1. -Using gas phase 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 37.42 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 4.98e-001 liters/mole - P * Vm / RT: 0.76122 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.57 3.737e+001 0.802 1.252e+000 2.007e+000 7.550e-001 -H2O(g) -1.32 4.771e-002 0.665 1.999e-003 2.562e-003 5.627e-004 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 9.933e-001 9.933e-001 - -----------------------------Description of solution---------------------------- - - pH = 3.173 Charge balance - pe = 14.672 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 267 - Density (g/cm3) = 1.01190 - Volume (L) = 1.07950 - Activity of water = 0.983 - Ionic strength = 6.904e-004 - Mass of water (kg) = 9.999e-001 - Total alkalinity (eq/kg) = 1.216e-009 - Total CO2 (mol/kg) = 9.933e-001 - Temperature (deg C) = 25.00 - Pressure (atm) = 37.42 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 39 - Total H = 1.110073e+002 - Total O = 5.749019e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 6.904e-004 6.709e-004 -3.161 -3.173 -0.012 0.00 - OH- 1.579e-011 1.533e-011 -10.802 -10.815 -0.013 -3.98 - H2O 5.551e+001 9.831e-001 1.744 -0.007 0.000 18.04 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -118.387 -118.387 0.000 32.22 -C(4) 9.933e-001 - CO2 9.926e-001 9.928e-001 -0.003 -0.003 0.000 30.34 - HCO3- 6.904e-004 6.703e-004 -3.161 -3.174 -0.013 24.62 - CO3-2 5.501e-011 4.890e-011 -10.260 -10.311 -0.051 -4.09 -H(0) 2.764e-039 - H2 1.382e-039 1.382e-039 -38.860 -38.859 0.000 28.59 -O(0) 3.907e-015 - O2 1.953e-015 1.954e-015 -14.709 -14.709 0.000 30.35 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 37 atm) - - CH4(g) -115.58 -118.39 -2.81 CH4 - CO2(g) 1.44 -0.00 -1.45 CO2 Pressure 37.4 atm, phi 0.802. - H2(g) -35.76 -38.86 -3.10 H2 - H2O(g) -1.50 -0.01 1.49 H2O Pressure 0.0 atm, phi 0.665. - O2(g) -11.79 -14.71 -2.92 O2 - - -Reaction step 5. - -Using solution 1. -Using gas phase 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 47.24 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 3.52e-001 liters/mole - P * Vm / RT: 0.67936 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.67 4.718e+001 0.752 2.007e+000 2.839e+000 8.319e-001 -H2O(g) -1.26 5.512e-002 0.578 2.562e-003 3.316e-003 7.541e-004 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.161e+000 1.161e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.138 Charge balance - pe = 14.870 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 290 - Density (g/cm3) = 1.01446 - Volume (L) = 1.09217 - Activity of water = 0.980 - Ionic strength = 7.498e-004 - Mass of water (kg) = 9.999e-001 - Total alkalinity (eq/kg) = 1.216e-009 - Total CO2 (mol/kg) = 1.161e+000 - Temperature (deg C) = 25.00 - Pressure (atm) = 47.24 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 22 - Total H = 1.110058e+002 - Total O = 5.782562e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 7.498e-004 7.279e-004 -3.125 -3.138 -0.013 0.00 - OH- 1.466e-011 1.421e-011 -10.834 -10.847 -0.014 -3.94 - H2O 5.551e+001 9.802e-001 1.744 -0.009 0.000 18.03 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -119.618 -119.618 0.000 32.22 -C(4) 1.161e+000 - CO2 1.161e+000 1.161e+000 0.065 0.065 0.000 30.37 - HCO3- 7.498e-004 7.273e-004 -3.125 -3.138 -0.013 24.63 - CO3-2 5.590e-011 4.946e-011 -10.253 -10.306 -0.053 -4.01 -H(0) 1.296e-039 - H2 6.480e-040 6.481e-040 -39.188 -39.188 0.000 28.58 -O(0) 1.730e-014 - O2 8.652e-015 8.653e-015 -14.063 -14.063 0.000 30.33 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 47 atm) - - CH4(g) -116.82 -119.62 -2.80 CH4 - CO2(g) 1.51 0.06 -1.44 CO2 Pressure 47.2 atm, phi 0.752. - H2(g) -36.09 -39.19 -3.10 H2 - H2O(g) -1.50 -0.01 1.49 H2O Pressure 0.1 atm, phi 0.578. - O2(g) -11.14 -14.06 -2.92 O2 - - -Reaction step 6. - -Using solution 1. -Using gas phase 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 54.92 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 2.68e-001 liters/mole - P * Vm / RT: 0.60062 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.74 5.485e+001 0.713 2.839e+000 3.733e+000 8.941e-001 -H2O(g) -1.20 6.324e-002 0.506 3.316e-003 4.304e-003 9.878e-004 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.267e+000 1.267e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.118 Charge balance - pe = 14.892 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 304 - Density (g/cm3) = 1.01613 - Volume (L) = 1.10006 - Activity of water = 0.978 - Ionic strength = 7.860e-004 - Mass of water (kg) = 9.999e-001 - Total alkalinity (eq/kg) = 1.216e-009 - Total CO2 (mol/kg) = 1.267e+000 - Temperature (deg C) = 25.00 - Pressure (atm) = 54.92 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 - Total H = 1.110038e+002 - Total O = 5.803643e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 7.860e-004 7.626e-004 -3.105 -3.118 -0.013 0.00 - OH- 1.407e-011 1.363e-011 -10.852 -10.865 -0.014 -3.91 - H2O 5.551e+001 9.784e-001 1.744 -0.009 0.000 18.03 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -119.603 -119.603 0.000 32.22 -C(4) 1.267e+000 - CO2 1.267e+000 1.267e+000 0.103 0.103 0.000 30.38 - HCO3- 7.860e-004 7.618e-004 -3.105 -3.118 -0.014 24.64 - CO3-2 5.655e-011 4.990e-011 -10.248 -10.302 -0.054 -3.94 -H(0) 1.271e-039 - H2 6.354e-040 6.355e-040 -39.197 -39.197 0.000 28.58 -O(0) 1.764e-014 - O2 8.822e-015 8.823e-015 -14.054 -14.054 0.000 30.32 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 55 atm) - - CH4(g) -116.82 -119.60 -2.79 CH4 - CO2(g) 1.54 0.10 -1.44 CO2 Pressure 54.9 atm, phi 0.713. - H2(g) -36.10 -39.20 -3.10 H2 - H2O(g) -1.50 -0.01 1.49 H2O Pressure 0.1 atm, phi 0.506. - O2(g) -11.13 -14.05 -2.93 O2 - - -Reaction step 7. - -Using solution 1. -Using gas phase 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 60.33 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 2.14e-001 liters/mole - P * Vm / RT: 0.52708 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.78 6.025e+001 0.684 3.733e+000 4.672e+000 9.397e-001 -H2O(g) -1.14 7.177e-002 0.447 4.304e-003 5.566e-003 1.262e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.328e+000 1.328e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.107 Charge balance - pe = 14.925 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 311 - Density (g/cm3) = 1.01711 - Volume (L) = 1.10449 - Activity of water = 0.977 - Ionic strength = 8.065e-004 - Mass of water (kg) = 9.999e-001 - Total alkalinity (eq/kg) = 1.216e-009 - Total CO2 (mol/kg) = 1.328e+000 - Temperature (deg C) = 25.00 - Pressure (atm) = 60.33 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 34 - Total H = 1.110013e+002 - Total O = 5.815578e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.065e-004 7.822e-004 -3.093 -3.107 -0.013 0.00 - OH- 1.378e-011 1.334e-011 -10.861 -10.875 -0.014 -3.89 - H2O 5.551e+001 9.774e-001 1.744 -0.010 0.000 18.02 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -119.758 -119.758 0.000 32.22 -C(4) 1.328e+000 - CO2 1.327e+000 1.327e+000 0.123 0.123 0.000 30.40 - HCO3- 8.065e-004 7.814e-004 -3.093 -3.107 -0.014 24.65 - CO3-2 5.699e-011 5.021e-011 -10.244 -10.299 -0.055 -3.90 -H(0) 1.143e-039 - H2 5.716e-040 5.718e-040 -39.243 -39.243 0.000 28.58 -O(0) 2.150e-014 - O2 1.075e-014 1.075e-014 -13.968 -13.968 0.000 30.31 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 60 atm) - - CH4(g) -116.98 -119.76 -2.78 CH4 - CO2(g) 1.56 0.12 -1.44 CO2 Pressure 60.3 atm, phi 0.684. - H2(g) -36.14 -39.24 -3.10 H2 - H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.447. - O2(g) -11.04 -13.97 -2.93 O2 - - -Reaction step 8. - -Using solution 1. -Using gas phase 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 63.59 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 1.77e-001 liters/mole - P * Vm / RT: 0.46002 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.80 6.351e+001 0.666 4.672e+000 5.643e+000 9.703e-001 -H2O(g) -1.10 8.034e-002 0.400 5.566e-003 7.138e-003 1.572e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.357e+000 1.357e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.101 Charge balance - pe = 14.945 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 315 - Density (g/cm3) = 1.01762 - Volume (L) = 1.10663 - Activity of water = 0.977 - Ionic strength = 8.167e-004 - Mass of water (kg) = 9.999e-001 - Total alkalinity (eq/kg) = 1.216e-009 - Total CO2 (mol/kg) = 1.357e+000 - Temperature (deg C) = 25.00 - Pressure (atm) = 63.59 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 41 - Total H = 1.109982e+002 - Total O = 5.821352e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.167e-004 7.919e-004 -3.088 -3.101 -0.013 0.00 - OH- 1.364e-011 1.321e-011 -10.865 -10.879 -0.014 -3.88 - H2O 5.551e+001 9.769e-001 1.744 -0.010 0.000 18.02 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -119.866 -119.866 0.000 32.22 -C(4) 1.357e+000 - CO2 1.357e+000 1.357e+000 0.132 0.133 0.000 30.40 - HCO3- 8.167e-004 7.911e-004 -3.088 -3.102 -0.014 24.65 - CO3-2 5.724e-011 5.040e-011 -10.242 -10.298 -0.055 -3.87 -H(0) 1.065e-039 - H2 5.326e-040 5.327e-040 -39.274 -39.274 0.000 28.58 -O(0) 2.458e-014 - O2 1.229e-014 1.229e-014 -13.910 -13.910 0.000 30.31 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 64 atm) - - CH4(g) -117.09 -119.87 -2.78 CH4 - CO2(g) 1.57 0.13 -1.44 CO2 Pressure 63.5 atm, phi 0.666. - H2(g) -36.17 -39.27 -3.10 H2 - H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.400. - O2(g) -10.98 -13.91 -2.93 O2 - - -Reaction step 9. - -Using solution 1. -Using gas phase 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 65.01 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 1.51e-001 liters/mole - P * Vm / RT: 0.40010 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.81 6.492e+001 0.658 5.643e+000 6.632e+000 9.893e-001 -H2O(g) -1.05 8.863e-002 0.363 7.138e-003 9.055e-003 1.917e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.368e+000 1.368e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.099 Charge balance - pe = 14.955 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 317 - Density (g/cm3) = 1.01781 - Volume (L) = 1.10736 - Activity of water = 0.977 - Ionic strength = 8.205e-004 - Mass of water (kg) = 9.998e-001 - Total alkalinity (eq/kg) = 1.216e-009 - Total CO2 (mol/kg) = 1.368e+000 - Temperature (deg C) = 25.00 - Pressure (atm) = 65.01 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 46 - Total H = 1.109943e+002 - Total O = 5.823291e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.205e-004 7.955e-004 -3.086 -3.099 -0.013 0.00 - OH- 1.359e-011 1.316e-011 -10.867 -10.881 -0.014 -3.87 - H2O 5.551e+001 9.767e-001 1.744 -0.010 0.000 18.02 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -119.935 -119.935 0.000 32.22 -C(4) 1.368e+000 - CO2 1.367e+000 1.368e+000 0.136 0.136 0.000 30.41 - HCO3- 8.205e-004 7.947e-004 -3.086 -3.100 -0.014 24.65 - CO3-2 5.735e-011 5.048e-011 -10.241 -10.297 -0.055 -3.86 -H(0) 1.021e-039 - H2 5.103e-040 5.104e-040 -39.292 -39.292 0.000 28.58 -O(0) 2.668e-014 - O2 1.334e-014 1.334e-014 -13.875 -13.875 0.000 30.31 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 65 atm) - - CH4(g) -117.16 -119.93 -2.78 CH4 - CO2(g) 1.57 0.14 -1.44 CO2 Pressure 64.9 atm, phi 0.658. - H2(g) -36.19 -39.29 -3.10 H2 - H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.363. - O2(g) -10.94 -13.87 -2.93 O2 - - -Reaction step 10. - -Using solution 1. -Using gas phase 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 65.15 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 1.31e-001 liters/mole - P * Vm / RT: 0.34840 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.81 6.505e+001 0.657 6.632e+000 7.631e+000 9.992e-001 -H2O(g) -1.01 9.664e-002 0.333 9.055e-003 1.134e-002 2.283e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.369e+000 1.369e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.099 Charge balance - pe = 14.958 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 317 - Density (g/cm3) = 1.01782 - Volume (L) = 1.10737 - Activity of water = 0.977 - Ionic strength = 8.208e-004 - Mass of water (kg) = 9.998e-001 - Total alkalinity (eq/kg) = 1.216e-009 - Total CO2 (mol/kg) = 1.369e+000 - Temperature (deg C) = 25.00 - Pressure (atm) = 65.15 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 50 - Total H = 1.109898e+002 - Total O = 5.823224e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.208e-004 7.958e-004 -3.086 -3.099 -0.013 0.00 - OH- 1.359e-011 1.316e-011 -10.867 -10.881 -0.014 -3.87 - H2O 5.551e+001 9.767e-001 1.744 -0.010 0.000 18.02 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -119.958 -119.957 0.000 32.22 -C(4) 1.369e+000 - CO2 1.368e+000 1.368e+000 0.136 0.136 0.000 30.41 - HCO3- 8.208e-004 7.950e-004 -3.086 -3.100 -0.014 24.65 - CO3-2 5.736e-011 5.049e-011 -10.241 -10.297 -0.055 -3.86 -H(0) 1.007e-039 - H2 5.036e-040 5.036e-040 -39.298 -39.298 0.000 28.58 -O(0) 2.740e-014 - O2 1.370e-014 1.370e-014 -13.863 -13.863 0.000 30.31 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 65 atm) - - CH4(g) -117.18 -119.96 -2.78 CH4 - CO2(g) 1.57 0.14 -1.44 CO2 Pressure 65.0 atm, phi 0.657. - H2(g) -36.20 -39.30 -3.10 H2 - H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.333. - O2(g) -10.93 -13.86 -2.93 O2 - - -Reaction step 11. - -Using solution 1. -Using gas phase 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 65.13 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 1.16e-001 liters/mole - P * Vm / RT: 0.30790 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.81 6.503e+001 0.657 7.631e+000 8.632e+000 1.001e+000 -H2O(g) -0.98 1.053e-001 0.306 1.134e-002 1.398e-002 2.639e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.368e+000 1.368e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.099 Charge balance - pe = 14.966 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 317 - Density (g/cm3) = 1.01782 - Volume (L) = 1.10728 - Activity of water = 0.977 - Ionic strength = 8.206e-004 - Mass of water (kg) = 9.997e-001 - Total alkalinity (eq/kg) = 1.216e-009 - Total CO2 (mol/kg) = 1.368e+000 - Temperature (deg C) = 25.00 - Pressure (atm) = 65.13 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 49 - Total H = 1.109845e+002 - Total O = 5.822836e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.206e-004 7.957e-004 -3.086 -3.099 -0.013 0.00 - OH- 1.359e-011 1.316e-011 -10.867 -10.881 -0.014 -3.87 - H2O 5.551e+001 9.767e-001 1.744 -0.010 0.000 18.02 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -120.015 -120.015 0.000 32.22 -C(4) 1.368e+000 - CO2 1.368e+000 1.368e+000 0.136 0.136 0.000 30.41 - HCO3- 8.206e-004 7.949e-004 -3.086 -3.100 -0.014 24.65 - CO3-2 5.736e-011 5.049e-011 -10.241 -10.297 -0.055 -3.86 -H(0) 9.744e-040 - H2 4.872e-040 4.873e-040 -39.312 -39.312 0.000 28.58 -O(0) 2.927e-014 - O2 1.463e-014 1.464e-014 -13.835 -13.835 0.000 30.31 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 65 atm) - - CH4(g) -117.24 -120.01 -2.78 CH4 - CO2(g) 1.57 0.14 -1.44 CO2 Pressure 65.0 atm, phi 0.657. - H2(g) -36.21 -39.31 -3.10 H2 - H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.306. - O2(g) -10.90 -13.83 -2.93 O2 - - -Reaction step 12. - -Using solution 1. -Using gas phase 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 65.12 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 1.04e-001 liters/mole - P * Vm / RT: 0.27579 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.81 6.500e+001 0.657 8.632e+000 9.633e+000 1.001e+000 -H2O(g) -0.94 1.148e-001 0.280 1.398e-002 1.701e-002 3.030e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.367e+000 1.367e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.099 Charge balance - pe = 14.998 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 317 - Density (g/cm3) = 1.01780 - Volume (L) = 1.10711 - Activity of water = 0.977 - Ionic strength = 8.202e-004 - Mass of water (kg) = 9.997e-001 - Total alkalinity (eq/kg) = 1.216e-009 - Total CO2 (mol/kg) = 1.367e+000 - Temperature (deg C) = 25.00 - Pressure (atm) = 65.12 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 45 - Total H = 1.109784e+002 - Total O = 5.822254e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.202e-004 7.953e-004 -3.086 -3.099 -0.013 0.00 - OH- 1.360e-011 1.317e-011 -10.866 -10.881 -0.014 -3.87 - H2O 5.551e+001 9.767e-001 1.744 -0.010 0.000 18.02 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -120.274 -120.274 0.000 32.22 -C(4) 1.367e+000 - CO2 1.366e+000 1.367e+000 0.136 0.136 0.000 30.41 - HCO3- 8.202e-004 7.945e-004 -3.086 -3.100 -0.014 24.65 - CO3-2 5.736e-011 5.048e-011 -10.241 -10.297 -0.055 -3.86 -H(0) 8.395e-040 - H2 4.198e-040 4.198e-040 -39.377 -39.377 0.000 28.58 -O(0) 3.943e-014 - O2 1.972e-014 1.972e-014 -13.705 -13.705 0.000 30.31 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 65 atm) - - CH4(g) -117.50 -120.27 -2.78 CH4 - CO2(g) 1.57 0.14 -1.44 CO2 Pressure 65.0 atm, phi 0.657. - H2(g) -36.28 -39.38 -3.10 H2 - H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.280. - O2(g) -10.77 -13.71 -2.93 O2 - - -Reaction step 13. - -Using solution 1. -Using gas phase 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 65.10 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 9.38e-002 liters/mole - P * Vm / RT: 0.24970 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.81 6.497e+001 0.656 9.633e+000 1.064e+001 1.002e+000 -H2O(g) -0.90 1.250e-001 0.257 1.701e-002 2.047e-002 3.462e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.365e+000 1.365e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.100 Charge balance - pe = 14.998 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 316 - Density (g/cm3) = 1.01777 - Volume (L) = 1.10689 - Activity of water = 0.977 - Ionic strength = 8.197e-004 - Mass of water (kg) = 9.996e-001 - Total alkalinity (eq/kg) = 1.216e-009 - Total CO2 (mol/kg) = 1.365e+000 - Temperature (deg C) = 25.00 - Pressure (atm) = 65.10 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 49 - Total H = 1.109715e+002 - Total O = 5.821501e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.196e-004 7.947e-004 -3.086 -3.100 -0.013 0.00 - OH- 1.361e-011 1.317e-011 -10.866 -10.880 -0.014 -3.87 - H2O 5.551e+001 9.768e-001 1.744 -0.010 0.000 18.02 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -120.278 -120.278 0.000 32.22 -C(4) 1.365e+000 - CO2 1.364e+000 1.365e+000 0.135 0.135 0.000 30.41 - HCO3- 8.197e-004 7.939e-004 -3.086 -3.100 -0.014 24.65 - CO3-2 5.735e-011 5.048e-011 -10.241 -10.297 -0.055 -3.86 -H(0) 8.382e-040 - H2 4.191e-040 4.192e-040 -39.378 -39.378 0.000 28.58 -O(0) 3.956e-014 - O2 1.978e-014 1.978e-014 -13.704 -13.704 0.000 30.31 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 65 atm) - - CH4(g) -117.50 -120.28 -2.78 CH4 - CO2(g) 1.57 0.14 -1.44 CO2 Pressure 65.0 atm, phi 0.656. - H2(g) -36.28 -39.38 -3.10 H2 - H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.257. - O2(g) -10.77 -13.70 -2.93 O2 - - -Reaction step 14. - -Using solution 1. -Using gas phase 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 65.08 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 8.57e-002 liters/mole - P * Vm / RT: 0.22810 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.81 6.495e+001 0.655 1.064e+001 1.164e+001 1.002e+000 -H2O(g) -0.87 1.362e-001 0.236 2.047e-002 2.440e-002 3.933e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.363e+000 1.362e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.100 Charge balance - pe = 15.044 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 316 - Density (g/cm3) = 1.01775 - Volume (L) = 1.10664 - Activity of water = 0.977 - Ionic strength = 8.190e-004 - Mass of water (kg) = 9.995e-001 - Total alkalinity (eq/kg) = 1.216e-009 - Total CO2 (mol/kg) = 1.363e+000 - Temperature (deg C) = 25.00 - Pressure (atm) = 65.08 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 44 - Total H = 1.109636e+002 - Total O = 5.820638e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.190e-004 7.941e-004 -3.087 -3.100 -0.013 0.00 - OH- 1.362e-011 1.319e-011 -10.866 -10.880 -0.014 -3.87 - H2O 5.551e+001 9.768e-001 1.744 -0.010 0.000 18.02 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -120.650 -120.650 0.000 32.22 -C(4) 1.363e+000 - CO2 1.362e+000 1.362e+000 0.134 0.134 0.000 30.41 - HCO3- 8.190e-004 7.933e-004 -3.087 -3.101 -0.014 24.65 - CO3-2 5.735e-011 5.048e-011 -10.241 -10.297 -0.055 -3.86 -H(0) 6.768e-040 - H2 3.384e-040 3.385e-040 -39.471 -39.470 0.000 28.58 -O(0) 6.068e-014 - O2 3.034e-014 3.034e-014 -13.518 -13.518 0.000 30.31 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 65 atm) - - CH4(g) -117.87 -120.65 -2.78 CH4 - CO2(g) 1.57 0.13 -1.44 CO2 Pressure 64.9 atm, phi 0.655. - H2(g) -36.37 -39.47 -3.10 H2 - H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.236. - O2(g) -10.58 -13.52 -2.93 O2 - - -Reaction step 15. - -Using solution 1. -Using gas phase 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 65.06 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 7.89e-002 liters/mole - P * Vm / RT: 0.20991 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.81 6.491e+001 0.655 1.164e+001 1.264e+001 1.002e+000 -H2O(g) -0.83 1.481e-001 0.217 2.440e-002 2.884e-002 4.442e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.361e+000 1.360e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.100 Charge balance - pe = 15.036 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 316 - Density (g/cm3) = 1.01772 - Volume (L) = 1.10639 - Activity of water = 0.977 - Ionic strength = 8.183e-004 - Mass of water (kg) = 9.995e-001 - Total alkalinity (eq/kg) = 1.217e-009 - Total CO2 (mol/kg) = 1.361e+000 - Temperature (deg C) = 25.00 - Pressure (atm) = 65.06 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 48 - Total H = 1.109547e+002 - Total O = 5.819739e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.183e-004 7.934e-004 -3.087 -3.100 -0.013 0.00 - OH- 1.363e-011 1.320e-011 -10.865 -10.880 -0.014 -3.87 - H2O 5.551e+001 9.769e-001 1.744 -0.010 0.000 18.02 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -120.592 -120.592 0.000 32.22 -C(4) 1.361e+000 - CO2 1.360e+000 1.360e+000 0.134 0.134 0.000 30.41 - HCO3- 8.183e-004 7.926e-004 -3.087 -3.101 -0.014 24.65 - CO3-2 5.735e-011 5.048e-011 -10.241 -10.297 -0.055 -3.86 -H(0) 7.002e-040 - H2 3.501e-040 3.502e-040 -39.456 -39.456 0.000 28.58 -O(0) 5.670e-014 - O2 2.835e-014 2.836e-014 -13.547 -13.547 0.000 30.31 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 65 atm) - - CH4(g) -117.81 -120.59 -2.78 CH4 - CO2(g) 1.57 0.13 -1.44 CO2 Pressure 64.9 atm, phi 0.655. - H2(g) -36.35 -39.46 -3.10 H2 - H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.217. - O2(g) -10.61 -13.55 -2.93 O2 - - -Reaction step 16. - -Using solution 1. -Using gas phase 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 65.04 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 7.31e-002 liters/mole - P * Vm / RT: 0.19439 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.81 6.488e+001 0.654 1.264e+001 1.364e+001 1.002e+000 -H2O(g) -0.79 1.609e-001 0.200 2.884e-002 3.383e-002 4.986e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.359e+000 1.358e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.101 Charge balance - pe = 15.022 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 316 - Density (g/cm3) = 1.01770 - Volume (L) = 1.10616 - Activity of water = 0.977 - Ionic strength = 8.178e-004 - Mass of water (kg) = 9.994e-001 - Total alkalinity (eq/kg) = 1.217e-009 - Total CO2 (mol/kg) = 1.359e+000 - Temperature (deg C) = 25.00 - Pressure (atm) = 65.04 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 48 - Total H = 1.109448e+002 - Total O = 5.818879e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.178e-004 7.929e-004 -3.087 -3.101 -0.013 0.00 - OH- 1.364e-011 1.320e-011 -10.865 -10.879 -0.014 -3.87 - H2O 5.551e+001 9.769e-001 1.744 -0.010 0.000 18.02 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -120.483 -120.483 0.000 32.22 -C(4) 1.359e+000 - CO2 1.358e+000 1.358e+000 0.133 0.133 0.000 30.41 - HCO3- 8.178e-004 7.922e-004 -3.087 -3.101 -0.014 24.65 - CO3-2 5.734e-011 5.048e-011 -10.242 -10.297 -0.055 -3.86 -H(0) 7.458e-040 - H2 3.729e-040 3.730e-040 -39.428 -39.428 0.000 28.58 -O(0) 4.998e-014 - O2 2.499e-014 2.500e-014 -13.602 -13.602 0.000 30.31 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 65 atm) - - CH4(g) -117.71 -120.48 -2.78 CH4 - CO2(g) 1.57 0.13 -1.44 CO2 Pressure 64.9 atm, phi 0.654. - H2(g) -36.33 -39.43 -3.10 H2 - H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.2 atm, phi 0.200. - O2(g) -10.67 -13.60 -2.93 O2 - - -Reaction step 17. - -Using solution 1. -Using gas phase 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 65.02 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 6.81e-002 liters/mole - P * Vm / RT: 0.18101 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.81 6.485e+001 0.654 1.364e+001 1.464e+001 1.001e+000 -H2O(g) -0.76 1.744e-001 0.184 3.383e-002 3.939e-002 5.562e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.358e+000 1.357e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.101 Charge balance - pe = 15.042 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 316 - Density (g/cm3) = 1.01768 - Volume (L) = 1.10598 - Activity of water = 0.977 - Ionic strength = 8.176e-004 - Mass of water (kg) = 9.993e-001 - Total alkalinity (eq/kg) = 1.217e-009 - Total CO2 (mol/kg) = 1.358e+000 - Temperature (deg C) = 25.00 - Pressure (atm) = 65.02 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 47 - Total H = 1.109337e+002 - Total O = 5.818137e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.176e-004 7.927e-004 -3.087 -3.101 -0.013 0.00 - OH- 1.364e-011 1.321e-011 -10.865 -10.879 -0.014 -3.87 - H2O 5.551e+001 9.769e-001 1.744 -0.010 0.000 18.02 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -120.645 -120.645 0.000 32.22 -C(4) 1.358e+000 - CO2 1.357e+000 1.358e+000 0.133 0.133 0.000 30.41 - HCO3- 8.176e-004 7.919e-004 -3.087 -3.101 -0.014 24.65 - CO3-2 5.734e-011 5.048e-011 -10.242 -10.297 -0.055 -3.86 -H(0) 6.794e-040 - H2 3.397e-040 3.397e-040 -39.469 -39.469 0.000 28.58 -O(0) 6.024e-014 - O2 3.012e-014 3.013e-014 -13.521 -13.521 0.000 30.31 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 65 atm) - - CH4(g) -117.87 -120.65 -2.78 CH4 - CO2(g) 1.57 0.13 -1.44 CO2 Pressure 64.8 atm, phi 0.654. - H2(g) -36.37 -39.47 -3.10 H2 - H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.2 atm, phi 0.184. - O2(g) -10.59 -13.52 -2.93 O2 - - -Reaction step 18. - -Using solution 1. -Using gas phase 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 70.67 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 6.38e-002 liters/mole - P * Vm / RT: 0.18425 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.85 7.047e+001 0.611 1.464e+001 1.563e+001 9.891e-001 -H2O(g) -0.69 2.037e-001 0.159 3.939e-002 4.519e-002 5.794e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.369e+000 1.368e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.098 Charge balance - pe = 15.016 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 318 - Density (g/cm3) = 1.01805 - Volume (L) = 1.10647 - Activity of water = 0.977 - Ionic strength = 8.231e-004 - Mass of water (kg) = 9.992e-001 - Total alkalinity (eq/kg) = 1.217e-009 - Total CO2 (mol/kg) = 1.369e+000 - Temperature (deg C) = 25.00 - Pressure (atm) = 70.67 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 56 - Total H = 1.109221e+002 - Total O = 5.819732e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.231e-004 7.980e-004 -3.085 -3.098 -0.013 0.00 - OH- 1.362e-011 1.318e-011 -10.866 -10.880 -0.014 -3.85 - H2O 5.551e+001 9.767e-001 1.744 -0.010 0.000 18.01 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -120.415 -120.415 0.000 32.22 -C(4) 1.369e+000 - CO2 1.368e+000 1.369e+000 0.136 0.136 0.000 30.42 - HCO3- 8.231e-004 7.972e-004 -3.085 -3.098 -0.014 24.66 - CO3-2 5.773e-011 5.081e-011 -10.239 -10.294 -0.056 -3.81 -H(0) 7.707e-040 - H2 3.853e-040 3.854e-040 -39.414 -39.414 0.000 28.57 -O(0) 4.624e-014 - O2 2.312e-014 2.313e-014 -13.636 -13.636 0.000 30.30 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 71 atm) - - CH4(g) -117.64 -120.41 -2.77 CH4 - CO2(g) 1.57 0.14 -1.43 CO2 Pressure 70.5 atm, phi 0.611. - H2(g) -36.31 -39.41 -3.10 H2 - H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.2 atm, phi 0.159. - O2(g) -10.70 -13.64 -2.94 O2 - - -Reaction step 19. - -Using solution 1. -Using gas phase 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 80.58 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 6.00e-002 liters/mole - P * Vm / RT: 0.19762 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.90 8.033e+001 0.550 1.563e+001 1.661e+001 9.827e-001 -H2O(g) -0.61 2.480e-001 0.131 4.519e-002 5.130e-002 6.116e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.387e+000 1.385e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.093 Charge balance - pe = 15.038 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 321 - Density (g/cm3) = 1.01867 - Volume (L) = 1.10727 - Activity of water = 0.976 - Ionic strength = 8.324e-004 - Mass of water (kg) = 9.991e-001 - Total alkalinity (eq/kg) = 1.217e-009 - Total CO2 (mol/kg) = 1.387e+000 - Temperature (deg C) = 25.00 - Pressure (atm) = 80.58 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 58 - Total H = 1.109098e+002 - Total O = 5.822575e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.324e-004 8.069e-004 -3.080 -3.093 -0.014 0.00 - OH- 1.359e-011 1.315e-011 -10.867 -10.881 -0.014 -3.82 - H2O 5.551e+001 9.764e-001 1.744 -0.010 0.000 18.00 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -120.553 -120.553 0.000 32.22 -C(4) 1.387e+000 - CO2 1.386e+000 1.386e+000 0.142 0.142 0.000 30.44 - HCO3- 8.324e-004 8.061e-004 -3.080 -3.094 -0.014 24.67 - CO3-2 5.843e-011 5.138e-011 -10.233 -10.289 -0.056 -3.73 -H(0) 7.039e-040 - H2 3.519e-040 3.520e-040 -39.454 -39.453 0.000 28.57 -O(0) 5.426e-014 - O2 2.713e-014 2.714e-014 -13.567 -13.566 0.000 30.28 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 81 atm) - - CH4(g) -117.79 -120.55 -2.76 CH4 - CO2(g) 1.57 0.14 -1.43 CO2 Pressure 80.3 atm, phi 0.550. - H2(g) -36.35 -39.45 -3.10 H2 - H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.2 atm, phi 0.131. - O2(g) -10.62 -13.57 -2.94 O2 - - -Reaction step 20. - -Using solution 1. -Using gas phase 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 94.97 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 5.67e-002 liters/mole - P * Vm / RT: 0.21993 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.98 9.466e+001 0.483 1.661e+001 1.759e+001 9.774e-001 -H2O(g) -0.51 3.106e-001 0.106 5.130e-002 5.772e-002 6.422e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.409e+000 1.408e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.087 Charge balance - pe = 15.054 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 326 - Density (g/cm3) = 1.01954 - Volume (L) = 1.10827 - Activity of water = 0.976 - Ionic strength = 8.451e-004 - Mass of water (kg) = 9.989e-001 - Total alkalinity (eq/kg) = 1.218e-009 - Total CO2 (mol/kg) = 1.409e+000 - Temperature (deg C) = 25.00 - Pressure (atm) = 94.97 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 63 - Total H = 1.108970e+002 - Total O = 5.826447e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.451e-004 8.190e-004 -3.073 -3.087 -0.014 0.00 - OH- 1.355e-011 1.311e-011 -10.868 -10.882 -0.014 -3.77 - H2O 5.551e+001 9.760e-001 1.744 -0.011 0.000 17.99 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -120.629 -120.629 0.000 32.22 -C(4) 1.409e+000 - CO2 1.409e+000 1.409e+000 0.149 0.149 0.000 30.47 - HCO3- 8.451e-004 8.182e-004 -3.073 -3.087 -0.014 24.68 - CO3-2 5.944e-011 5.223e-011 -10.226 -10.282 -0.056 -3.62 -H(0) 6.635e-040 - H2 3.317e-040 3.318e-040 -39.479 -39.479 0.000 28.56 -O(0) 5.921e-014 - O2 2.960e-014 2.961e-014 -13.529 -13.529 0.000 30.26 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 95 atm) - - CH4(g) -117.88 -120.63 -2.75 CH4 - CO2(g) 1.57 0.15 -1.42 CO2 Pressure 94.7 atm, phi 0.483. - H2(g) -36.38 -39.48 -3.10 H2 - H2O(g) -1.48 -0.01 1.47 H2O Pressure 0.3 atm, phi 0.106. - O2(g) -10.58 -13.53 -2.95 O2 - - -Reaction step 21. - -Using solution 1. -Using gas phase 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 114.89 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 5.37e-002 liters/mole - P * Vm / RT: 0.25209 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.06 1.145e+002 0.417 1.759e+001 1.856e+001 9.719e-001 -H2O(g) -0.40 3.970e-001 0.084 5.772e-002 6.438e-002 6.653e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.438e+000 1.436e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.078 Charge balance - pe = 15.072 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 333 - Density (g/cm3) = 1.02070 - Volume (L) = 1.10947 - Activity of water = 0.976 - Ionic strength = 8.619e-004 - Mass of water (kg) = 9.988e-001 - Total alkalinity (eq/kg) = 1.219e-009 - Total CO2 (mol/kg) = 1.438e+000 - Temperature (deg C) = 25.00 - Pressure (atm) = 114.89 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 78 - Total H = 1.108837e+002 - Total O = 5.831412e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.619e-004 8.351e-004 -3.065 -3.078 -0.014 0.00 - OH- 1.352e-011 1.308e-011 -10.869 -10.883 -0.014 -3.70 - H2O 5.551e+001 9.755e-001 1.744 -0.011 0.000 17.98 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -120.710 -120.710 0.000 32.22 -C(4) 1.438e+000 - CO2 1.437e+000 1.437e+000 0.157 0.158 0.000 30.52 - HCO3- 8.619e-004 8.342e-004 -3.065 -3.079 -0.014 24.70 - CO3-2 6.085e-011 5.341e-011 -10.216 -10.272 -0.057 -3.46 -H(0) 6.200e-040 - H2 3.100e-040 3.100e-040 -39.509 -39.509 0.000 28.55 -O(0) 6.497e-014 - O2 3.249e-014 3.249e-014 -13.488 -13.488 0.000 30.24 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 115 atm) - - CH4(g) -117.98 -120.71 -2.73 CH4 - CO2(g) 1.57 0.16 -1.42 CO2 Pressure 114.5 atm, phi 0.417. - H2(g) -36.41 -39.51 -3.10 H2 - H2O(g) -1.48 -0.01 1.47 H2O Pressure 0.4 atm, phi 0.084. - O2(g) -10.52 -13.49 -2.97 O2 - - -Reaction step 22. - -Using solution 1. -Using gas phase 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 141.57 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 5.10e-002 liters/mole - P * Vm / RT: 0.29521 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.15 1.411e+002 0.359 1.856e+001 1.953e+001 9.660e-001 -H2O(g) -0.29 5.140e-001 0.066 6.438e-002 7.117e-002 6.790e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.472e+000 1.470e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.068 Charge balance - pe = 15.058 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 341 - Density (g/cm3) = 1.02219 - Volume (L) = 1.11082 - Activity of water = 0.975 - Ionic strength = 8.835e-004 - Mass of water (kg) = 9.987e-001 - Total alkalinity (eq/kg) = 1.219e-009 - Total CO2 (mol/kg) = 1.472e+000 - Temperature (deg C) = 25.00 - Pressure (atm) = 141.57 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 90 - Total H = 1.108701e+002 - Total O = 5.837529e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.835e-004 8.558e-004 -3.054 -3.068 -0.014 0.00 - OH- 1.350e-011 1.305e-011 -10.870 -10.884 -0.015 -3.60 - H2O 5.551e+001 9.750e-001 1.744 -0.011 0.000 17.96 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -120.520 -120.519 0.000 32.22 -C(4) 1.472e+000 - CO2 1.471e+000 1.471e+000 0.168 0.168 0.000 30.58 - HCO3- 8.835e-004 8.549e-004 -3.054 -3.068 -0.014 24.73 - CO3-2 6.276e-011 5.502e-011 -10.202 -10.260 -0.057 -3.25 -H(0) 6.734e-040 - H2 3.367e-040 3.368e-040 -39.473 -39.473 0.000 28.54 -O(0) 5.201e-014 - O2 2.600e-014 2.601e-014 -13.585 -13.585 0.000 30.20 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 142 atm) - - CH4(g) -117.82 -120.52 -2.70 CH4 - CO2(g) 1.58 0.17 -1.41 CO2 Pressure 141.1 atm, phi 0.359. - H2(g) -36.37 -39.47 -3.10 H2 - H2O(g) -1.47 -0.01 1.46 H2O Pressure 0.5 atm, phi 0.066. - O2(g) -10.60 -13.58 -2.98 O2 - - -Reaction step 23. - -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - -Using solution 1. -Using gas phase 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 176.48 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 4.86e-002 liters/mole - P * Vm / RT: 0.35071 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.25 1.758e+002 0.309 1.953e+001 2.049e+001 9.600e-001 -H2O(g) -0.17 6.691e-001 0.052 7.117e-002 7.798e-002 6.812e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.512e+000 1.510e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.055 Charge balance - pe = 16.266 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 351 - Density (g/cm3) = 1.02408 - Volume (L) = 1.11229 - Activity of water = 0.974 - Ionic strength = 9.109e-004 - Mass of water (kg) = 9.986e-001 - Total alkalinity (eq/kg) = 1.219e-009 - Total CO2 (mol/kg) = 1.512e+000 - Temperature (deg C) = 25.00 - Pressure (atm) = 176.48 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 10 - Total H = 1.108565e+002 - Total O = 5.844853e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 9.109e-004 8.820e-004 -3.041 -3.055 -0.014 0.00 - OH- 1.349e-011 1.304e-011 -10.870 -10.885 -0.015 -3.48 - H2O 5.551e+001 9.743e-001 1.744 -0.011 0.000 17.93 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -130.090 -130.090 0.000 32.22 -C(4) 1.512e+000 - CO2 1.511e+000 1.512e+000 0.179 0.179 0.000 30.65 - HCO3- 9.109e-004 8.811e-004 -3.041 -3.055 -0.014 24.76 - CO3-2 6.532e-011 5.716e-011 -10.185 -10.243 -0.058 -2.98 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -41.880 -41.880 0.000 28.53 -O(0) 3.155e-009 - O2 1.577e-009 1.578e-009 -8.802 -8.802 0.000 30.15 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 176 atm) - - CH4(g) -127.42 -130.09 -2.67 CH4 - CO2(g) 1.57 0.18 -1.40 CO2 Pressure 175.8 atm, phi 0.309. - H2(g) -38.78 -41.88 -3.10 H2 - H2O(g) -1.46 -0.01 1.45 H2O Pressure 0.7 atm, phi 0.052. - O2(g) -5.80 -8.80 -3.00 O2 - - -Reaction step 24. - -Using solution 1. -Using gas phase 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 221.42 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 4.65e-002 liters/mole - P * Vm / RT: 0.42038 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.34 2.206e+002 0.269 2.049e+001 2.144e+001 9.538e-001 -H2O(g) -0.06 8.709e-001 0.041 7.798e-002 8.468e-002 6.698e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.559e+000 1.556e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.039 Charge balance - pe = 16.281 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 365 - Density (g/cm3) = 1.02642 - Volume (L) = 1.11382 - Activity of water = 0.973 - Ionic strength = 9.454e-004 - Mass of water (kg) = 9.985e-001 - Total alkalinity (eq/kg) = 1.219e-009 - Total CO2 (mol/kg) = 1.559e+000 - Temperature (deg C) = 25.00 - Pressure (atm) = 221.42 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 19 - Total H = 1.108431e+002 - Total O = 5.853427e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 9.454e-004 9.150e-004 -3.024 -3.039 -0.014 0.00 - OH- 1.350e-011 1.304e-011 -10.870 -10.885 -0.015 -3.34 - H2O 5.551e+001 9.735e-001 1.744 -0.012 0.000 17.89 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -130.098 -130.098 0.000 32.22 -C(4) 1.559e+000 - CO2 1.558e+000 1.558e+000 0.193 0.193 0.000 30.75 - HCO3- 9.454e-004 9.139e-004 -3.024 -3.039 -0.015 24.81 - CO3-2 6.870e-011 5.999e-011 -10.163 -10.222 -0.059 -2.65 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -41.901 -41.901 0.000 28.51 -O(0) 3.155e-009 - O2 1.578e-009 1.578e-009 -8.802 -8.802 0.000 30.09 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 221 atm) - - CH4(g) -127.48 -130.10 -2.62 CH4 - CO2(g) 1.57 0.19 -1.38 CO2 Pressure 220.6 atm, phi 0.269. - H2(g) -38.80 -41.90 -3.10 H2 - H2O(g) -1.44 -0.01 1.43 H2O Pressure 0.9 atm, phi 0.041. - O2(g) -5.77 -8.80 -3.03 O2 - - -Reaction step 25. - -Using solution 1. -Using gas phase 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 278.60 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 4.45e-002 liters/mole - P * Vm / RT: 0.50649 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.44 2.775e+002 0.238 2.144e+001 2.239e+001 9.476e-001 -H2O(g) 0.05 1.129e+000 0.033 8.468e-002 9.110e-002 6.422e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.611e+000 1.609e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.019 Charge balance - pe = 16.299 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 381 - Density (g/cm3) = 1.02928 - Volume (L) = 1.11534 - Activity of water = 0.973 - Ionic strength = 9.887e-004 - Mass of water (kg) = 9.983e-001 - Total alkalinity (eq/kg) = 1.219e-009 - Total CO2 (mol/kg) = 1.611e+000 - Temperature (deg C) = 25.00 - Pressure (atm) = 278.60 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 21 - Total H = 1.108302e+002 - Total O = 5.863266e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 9.887e-004 9.562e-004 -3.005 -3.019 -0.014 0.00 - OH- 1.353e-011 1.306e-011 -10.869 -10.884 -0.015 -3.15 - H2O 5.551e+001 9.726e-001 1.744 -0.012 0.000 17.85 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -130.110 -130.110 0.000 32.22 -C(4) 1.611e+000 - CO2 1.610e+000 1.611e+000 0.207 0.207 0.000 30.86 - HCO3- 9.887e-004 9.551e-004 -3.005 -3.020 -0.015 24.86 - CO3-2 7.313e-011 6.370e-011 -10.136 -10.196 -0.060 -2.24 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -41.928 -41.928 0.000 28.48 -O(0) 3.155e-009 - O2 1.578e-009 1.578e-009 -8.802 -8.802 0.000 30.02 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 279 atm) - - CH4(g) -127.54 -130.11 -2.57 CH4 - CO2(g) 1.57 0.21 -1.36 CO2 Pressure 277.5 atm, phi 0.238. - H2(g) -38.83 -41.93 -3.10 H2 - H2O(g) -1.43 -0.01 1.41 H2O Pressure 1.1 atm, phi 0.033. - O2(g) -5.73 -8.80 -3.07 O2 - - -Reaction step 26. - -Using solution 1. -Using gas phase 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 350.78 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 4.27e-002 liters/mole - P * Vm / RT: 0.61193 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.54 3.493e+002 0.215 2.239e+001 2.333e+001 9.416e-001 -H2O(g) 0.16 1.453e+000 0.027 9.110e-002 9.706e-002 5.959e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.670e+000 1.667e+000 - -----------------------------Description of solution---------------------------- - - pH = 2.997 Charge balance - pe = 16.320 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 402 - Density (g/cm3) = 1.03276 - Volume (L) = 1.11674 - Activity of water = 0.972 - Ionic strength = 1.043e-003 - Mass of water (kg) = 9.982e-001 - Total alkalinity (eq/kg) = 1.219e-009 - Total CO2 (mol/kg) = 1.670e+000 - Temperature (deg C) = 25.00 - Pressure (atm) = 350.78 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 18 - Total H = 1.108183e+002 - Total O = 5.874341e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.043e-003 1.008e-003 -2.982 -2.997 -0.015 0.00 - OH- 1.360e-011 1.312e-011 -10.866 -10.882 -0.016 -2.93 - H2O 5.551e+001 9.716e-001 1.744 -0.013 0.000 17.79 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -130.127 -130.127 0.000 32.22 -C(4) 1.670e+000 - CO2 1.669e+000 1.669e+000 0.222 0.223 0.000 31.00 - HCO3- 1.043e-003 1.007e-003 -2.982 -2.997 -0.015 24.93 - CO3-2 7.896e-011 6.857e-011 -10.103 -10.164 -0.061 -1.73 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -41.961 -41.961 0.000 28.46 -O(0) 3.156e-009 - O2 1.578e-009 1.578e-009 -8.802 -8.802 0.000 29.93 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 351 atm) - - CH4(g) -127.63 -130.13 -2.50 CH4 - CO2(g) 1.56 0.22 -1.34 CO2 Pressure 349.3 atm, phi 0.215. - H2(g) -38.86 -41.96 -3.10 H2 - H2O(g) -1.40 -0.01 1.39 H2O Pressure 1.5 atm, phi 0.027. - O2(g) -5.69 -8.80 -3.11 O2 - - -Reaction step 27. - -Using solution 1. -Using gas phase 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 441.56 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 4.10e-002 liters/mole - P * Vm / RT: 0.74053 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.64 4.397e+002 0.199 2.333e+001 2.427e+001 9.364e-001 -H2O(g) 0.27 1.854e+000 0.023 9.706e-002 1.023e-001 5.280e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.734e+000 1.731e+000 - -----------------------------Description of solution---------------------------- - - pH = 2.969 Charge balance - pe = 16.346 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 428 - Density (g/cm3) = 1.03693 - Volume (L) = 1.11786 - Activity of water = 0.971 - Ionic strength = 1.111e-003 - Mass of water (kg) = 9.981e-001 - Total alkalinity (eq/kg) = 1.219e-009 - Total CO2 (mol/kg) = 1.734e+000 - Temperature (deg C) = 25.00 - Pressure (atm) = 441.56 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 - Total H = 1.108078e+002 - Total O = 5.886540e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.111e-003 1.073e-003 -2.954 -2.969 -0.015 0.00 - OH- 1.371e-011 1.321e-011 -10.863 -10.879 -0.016 -2.66 - H2O 5.551e+001 9.705e-001 1.744 -0.013 0.000 17.73 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -130.151 -130.151 0.000 32.22 -C(4) 1.734e+000 - CO2 1.733e+000 1.733e+000 0.239 0.239 0.000 31.16 - HCO3- 1.111e-003 1.072e-003 -2.954 -2.970 -0.016 25.01 - CO3-2 8.667e-011 7.498e-011 -10.062 -10.125 -0.063 -1.13 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -42.003 -42.002 0.000 28.42 -O(0) 3.156e-009 - O2 1.578e-009 1.578e-009 -8.802 -8.802 0.000 29.83 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 442 atm) - - CH4(g) -127.73 -130.15 -2.42 CH4 - CO2(g) 1.55 0.24 -1.31 CO2 Pressure 439.7 atm, phi 0.199. - H2(g) -38.90 -42.00 -3.10 H2 - H2O(g) -1.38 -0.01 1.36 H2O Pressure 1.9 atm, phi 0.023. - O2(g) -5.63 -8.80 -3.17 O2 - - -Reaction step 28. - -Using solution 1. -Using gas phase 1. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 555.67 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 3.95e-002 liters/mole - P * Vm / RT: 0.89740 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.74 5.533e+002 0.191 2.427e+001 2.520e+001 9.324e-001 -H2O(g) 0.37 2.342e+000 0.019 1.023e-001 1.067e-001 4.352e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.802e+000 1.798e+000 - -----------------------------Description of solution---------------------------- - - pH = 2.937 Charge balance - pe = 16.376 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 462 - Density (g/cm3) = 1.04192 - Volume (L) = 1.11847 - Activity of water = 0.969 - Ionic strength = 1.198e-003 - Mass of water (kg) = 9.981e-001 - Total alkalinity (eq/kg) = 1.218e-009 - Total CO2 (mol/kg) = 1.802e+000 - Temperature (deg C) = 25.00 - Pressure (atm) = 555.67 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 - Total H = 1.107991e+002 - Total O = 5.899627e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.198e-003 1.156e-003 -2.921 -2.937 -0.016 0.00 - OH- 1.387e-011 1.335e-011 -10.858 -10.875 -0.017 -2.34 - H2O 5.551e+001 9.693e-001 1.744 -0.014 0.000 17.65 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -130.184 -130.184 0.000 32.22 -C(4) 1.802e+000 - CO2 1.801e+000 1.801e+000 0.255 0.256 0.000 31.35 - HCO3- 1.198e-003 1.155e-003 -2.921 -2.938 -0.016 25.10 - CO3-2 9.696e-011 8.351e-011 -10.013 -10.078 -0.065 -0.41 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -42.055 -42.055 0.000 28.38 -O(0) 3.156e-009 - O2 1.578e-009 1.579e-009 -8.802 -8.802 0.000 29.70 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 556 atm) - - CH4(g) -127.87 -130.18 -2.32 CH4 - CO2(g) 1.54 0.26 -1.28 CO2 Pressure 553.3 atm, phi 0.191. - H2(g) -38.95 -42.05 -3.10 H2 - H2O(g) -1.34 -0.01 1.33 H2O Pressure 2.3 atm, phi 0.019. - O2(g) -5.56 -8.80 -3.24 O2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 2. ------------------------------------- - - USE solution 1 - USE gas_phase 1 - USE reaction 1 - REACTION_TEMPERATURE 2 - 50 - USER_GRAPH 2 - -headings 50C - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -WARNING: Element C is contained in gas CO2(g) (which has 0.0 mass), -but is not in solution or other phases. -Using solution 1. -Using gas phase 1. -Using temperature 2. -Using reaction 1. - -Reaction 1. - - 0.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 0.12 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 2.18e+002 liters/mole - P * Vm / RT: 0.99847 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) -99.99 0.000e+000 1.000 0.000e+000 0.000e+000 0.000e+000 -H2O(g) -0.92 1.216e-001 0.998 0.000e+000 4.591e-003 4.591e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Pure water - -----------------------------Description of solution---------------------------- - - pH = 6.632 Charge balance - pe = 9.262 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50 oC) = 0 - Density (g/cm3) = 0.98799 - Volume (L) = 1.01207 - Activity of water = 1.000 - Ionic strength = 2.341e-007 - Mass of water (kg) = 9.999e-001 - Total alkalinity (eq/kg) = 1.217e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 50.00 - Pressure (atm) = 0.12 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.26 - Iterations = 17 - Total H = 1.110033e+002 - Total O = 5.550163e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 2.347e-007 2.346e-007 -6.629 -6.630 -0.000 -3.83 - H+ 2.335e-007 2.334e-007 -6.632 -6.632 -0.000 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.23 -H(0) 1.838e-035 - H2 9.189e-036 9.189e-036 -35.037 -35.037 0.000 28.59 -O(0) 2.744e-015 - O2 1.372e-015 1.372e-015 -14.863 -14.863 0.000 31.93 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(323 K, 0 atm) - - H2(g) -31.90 -35.04 -3.14 H2 - H2O(g) -0.92 -0.00 0.92 H2O Pressure 0.1 atm, phi 0.998. - O2(g) -11.83 -14.86 -3.03 O2 - - -Reaction step 2. - -Using solution 1. -Using gas phase 1. -Using temperature 2. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 17.01 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 1.44e+000 liters/mole - P * Vm / RT: 0.92377 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.23 1.687e+001 0.928 0.000e+000 6.887e-001 6.887e-001 -H2O(g) -0.85 1.398e-001 0.873 4.591e-003 5.709e-003 1.118e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 3.114e-001 3.113e-001 - -----------------------------Description of solution---------------------------- - - pH = 3.395 Charge balance - pe = 12.494 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50 oC) = 260 - Density (g/cm3) = 0.99447 - Volume (L) = 1.03458 - Activity of water = 0.995 - Ionic strength = 4.121e-004 - Mass of water (kg) = 9.999e-001 - Total alkalinity (eq/kg) = 1.216e-009 - Total CO2 (mol/kg) = 3.114e-001 - Temperature (deg C) = 50.00 - Pressure (atm) = 17.01 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 34 - Total H = 1.110010e+002 - Total O = 5.612319e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 4.121e-004 4.025e-004 -3.385 -3.395 -0.010 0.00 - OH- 1.405e-010 1.371e-010 -9.852 -9.863 -0.011 -3.83 - H2O 5.551e+001 9.947e-001 1.744 -0.002 0.000 18.22 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -106.478 -106.478 0.000 32.22 -C(4) 3.114e-001 - CO2 3.110e-001 3.110e-001 -0.507 -0.507 0.000 25.53 - HCO3- 4.121e-004 4.023e-004 -3.385 -3.395 -0.010 25.67 - CO3-2 7.496e-011 6.807e-011 -10.125 -10.167 -0.042 -3.34 -H(0) 1.842e-035 - H2 9.211e-036 9.212e-036 -35.036 -35.036 0.000 28.58 -O(0) 2.617e-015 - O2 1.309e-015 1.309e-015 -14.883 -14.883 0.000 31.89 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(323 K, 17 atm) - - CH4(g) -103.51 -106.48 -2.97 CH4 - CO2(g) 1.18 -0.51 -1.69 CO2 Pressure 16.9 atm, phi 0.928. - H2(g) -31.90 -35.04 -3.14 H2 - H2O(g) -0.91 -0.00 0.91 H2O Pressure 0.1 atm, phi 0.873. - O2(g) -11.84 -14.88 -3.04 O2 - - -Reaction step 3. - -Using solution 1. -Using gas phase 1. -Using temperature 2. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 32.76 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 6.87e-001 liters/mole - P * Vm / RT: 0.84874 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.51 3.260e+001 0.864 6.887e-001 1.448e+000 7.598e-001 -H2O(g) -0.79 1.613e-001 0.762 5.709e-003 7.169e-003 1.460e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.516e-001 5.516e-001 - -----------------------------Description of solution---------------------------- - - pH = 3.269 Charge balance - pe = 12.741 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50 oC) = 348 - Density (g/cm3) = 0.99943 - Volume (L) = 1.05177 - Activity of water = 0.991 - Ionic strength = 5.525e-004 - Mass of water (kg) = 9.999e-001 - Total alkalinity (eq/kg) = 1.216e-009 - Total CO2 (mol/kg) = 5.516e-001 - Temperature (deg C) = 50.00 - Pressure (atm) = 32.76 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 - Total H = 1.109981e+002 - Total O = 5.660216e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 5.525e-004 5.377e-004 -3.258 -3.269 -0.012 0.00 - OH- 1.065e-010 1.035e-010 -9.973 -9.985 -0.012 -3.84 - H2O 5.551e+001 9.906e-001 1.744 -0.004 0.000 18.21 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -107.208 -107.208 0.000 32.22 -C(4) 5.516e-001 - CO2 5.511e-001 5.511e-001 -0.259 -0.259 0.000 25.68 - HCO3- 5.525e-004 5.374e-004 -3.258 -3.270 -0.012 25.70 - CO3-2 7.735e-011 6.923e-011 -10.112 -10.160 -0.048 -3.20 -H(0) 1.036e-035 - H2 5.179e-036 5.179e-036 -35.286 -35.286 0.000 28.57 -O(0) 7.959e-015 - O2 3.979e-015 3.980e-015 -14.400 -14.400 0.000 31.85 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(323 K, 33 atm) - - CH4(g) -104.25 -107.21 -2.96 CH4 - CO2(g) 1.43 -0.26 -1.68 CO2 Pressure 32.6 atm, phi 0.864. - H2(g) -32.15 -35.29 -3.14 H2 - H2O(g) -0.91 -0.00 0.91 H2O Pressure 0.2 atm, phi 0.762. - O2(g) -11.35 -14.40 -3.05 O2 - - -Reaction step 4. - -Using solution 1. -Using gas phase 1. -Using temperature 2. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 46.91 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 4.39e-001 liters/mole - P * Vm / RT: 0.77598 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.67 4.672e+001 0.809 1.448e+000 2.270e+000 8.220e-001 -H2O(g) -0.73 1.860e-001 0.665 7.169e-003 9.040e-003 1.871e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 7.297e-001 7.295e-001 - -----------------------------Description of solution---------------------------- - - pH = 3.207 Charge balance - pe = 12.814 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50 oC) = 402 - Density (g/cm3) = 1.00312 - Volume (L) = 1.06438 - Activity of water = 0.988 - Ionic strength = 6.388e-004 - Mass of water (kg) = 9.998e-001 - Total alkalinity (eq/kg) = 1.216e-009 - Total CO2 (mol/kg) = 7.297e-001 - Temperature (deg C) = 50.00 - Pressure (atm) = 46.91 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 20 - Total H = 1.109944e+002 - Total O = 5.695624e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 6.388e-004 6.207e-004 -3.195 -3.207 -0.013 0.00 - OH- 9.326e-011 9.049e-011 -10.030 -10.043 -0.013 -3.86 - H2O 5.551e+001 9.876e-001 1.744 -0.005 0.000 18.20 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -107.182 -107.182 0.000 32.22 -C(4) 7.297e-001 - CO2 7.290e-001 7.291e-001 -0.137 -0.137 0.000 25.82 - HCO3- 6.388e-004 6.201e-004 -3.195 -3.208 -0.013 25.72 - CO3-2 7.915e-011 7.029e-011 -10.102 -10.153 -0.052 -3.07 -H(0) 9.693e-036 - H2 4.847e-036 4.847e-036 -35.315 -35.314 0.000 28.57 -O(0) 8.780e-015 - O2 4.390e-015 4.391e-015 -14.358 -14.357 0.000 31.82 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(323 K, 47 atm) - - CH4(g) -104.24 -107.18 -2.94 CH4 - CO2(g) 1.54 -0.14 -1.68 CO2 Pressure 46.7 atm, phi 0.809. - H2(g) -32.18 -35.31 -3.14 H2 - H2O(g) -0.91 -0.01 0.90 H2O Pressure 0.2 atm, phi 0.665. - O2(g) -11.30 -14.36 -3.06 O2 - - -Reaction step 5. - -Using solution 1. -Using gas phase 1. -Using temperature 2. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 59.16 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 3.17e-001 liters/mole - P * Vm / RT: 0.70724 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.77 5.895e+001 0.763 2.270e+000 3.143e+000 8.727e-001 -H2O(g) -0.67 2.136e-001 0.583 9.040e-003 1.139e-002 2.350e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 8.571e-001 8.569e-001 - -----------------------------Description of solution---------------------------- - - pH = 3.171 Charge balance - pe = 12.830 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50 oC) = 438 - Density (g/cm3) = 1.00578 - Volume (L) = 1.07329 - Activity of water = 0.985 - Ionic strength = 6.954e-004 - Mass of water (kg) = 9.998e-001 - Total alkalinity (eq/kg) = 1.217e-009 - Total CO2 (mol/kg) = 8.571e-001 - Temperature (deg C) = 50.00 - Pressure (atm) = 59.16 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 21 - Total H = 1.109897e+002 - Total O = 5.720858e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 6.954e-004 6.749e-004 -3.158 -3.171 -0.013 0.00 - OH- 8.656e-011 8.388e-011 -10.063 -10.076 -0.014 -3.87 - H2O 5.551e+001 9.854e-001 1.744 -0.006 0.000 18.19 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -106.955 -106.955 0.000 32.22 -C(4) 8.571e-001 - CO2 8.564e-001 8.565e-001 -0.067 -0.067 0.000 25.93 - HCO3- 6.954e-004 6.743e-004 -3.158 -3.171 -0.013 25.74 - CO3-2 8.058e-011 7.121e-011 -10.094 -10.147 -0.054 -2.97 -H(0) 1.051e-035 - H2 5.256e-036 5.257e-036 -35.279 -35.279 0.000 28.56 -O(0) 7.255e-015 - O2 3.628e-015 3.628e-015 -14.440 -14.440 0.000 31.79 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(323 K, 59 atm) - - CH4(g) -104.02 -106.95 -2.93 CH4 - CO2(g) 1.61 -0.07 -1.68 CO2 Pressure 58.9 atm, phi 0.763. - H2(g) -32.14 -35.28 -3.14 H2 - H2O(g) -0.90 -0.01 0.90 H2O Pressure 0.2 atm, phi 0.583. - O2(g) -11.38 -14.44 -3.06 O2 - - -Reaction step 6. - -Using solution 1. -Using gas phase 1. -Using temperature 2. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 69.46 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 2.46e-001 liters/mole - P * Vm / RT: 0.64379 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.84 6.921e+001 0.724 3.143e+000 4.054e+000 9.112e-001 -H2O(g) -0.61 2.438e-001 0.513 1.139e-002 1.428e-002 2.890e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 9.459e-001 9.456e-001 - -----------------------------Description of solution---------------------------- - - pH = 3.148 Charge balance - pe = 2.287 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50 oC) = 462 - Density (g/cm3) = 1.00768 - Volume (L) = 1.07942 - Activity of water = 0.984 - Ionic strength = 7.333e-004 - Mass of water (kg) = 9.997e-001 - Total alkalinity (eq/kg) = 1.217e-009 - Total CO2 (mol/kg) = 9.459e-001 - Temperature (deg C) = 50.00 - Pressure (atm) = 69.46 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 38 - Total H = 1.109839e+002 - Total O = 5.738322e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 7.333e-004 7.111e-004 -3.135 -3.148 -0.013 0.00 - OH- 8.280e-011 8.018e-011 -10.082 -10.096 -0.014 -3.88 - H2O 5.551e+001 9.839e-001 1.744 -0.007 0.000 18.18 -C(-4) 4.077e-023 - CH4 4.077e-023 4.078e-023 -22.390 -22.390 0.000 32.22 -C(4) 9.459e-001 - CO2 9.452e-001 9.453e-001 -0.024 -0.024 0.000 26.03 - HCO3- 7.333e-004 7.104e-004 -3.135 -3.148 -0.014 25.75 - CO3-2 8.172e-011 7.199e-011 -10.088 -10.143 -0.055 -2.89 -H(0) 1.409e-014 - H2 7.045e-015 7.046e-015 -14.152 -14.152 0.000 28.55 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -56.705 -56.705 0.000 31.77 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(323 K, 69 atm) - - CH4(g) -19.47 -22.39 -2.92 CH4 - CO2(g) 1.65 -0.02 -1.67 CO2 Pressure 69.2 atm, phi 0.724. - H2(g) -11.02 -14.15 -3.14 H2 - H2O(g) -0.90 -0.01 0.90 H2O Pressure 0.2 atm, phi 0.513. - O2(g) -53.63 -56.70 -3.07 O2 - - -Reaction step 7. - -Using solution 1. -Using gas phase 1. -Using temperature 2. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 77.92 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 2.00e-001 liters/mole - P * Vm / RT: 0.58640 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.89 7.765e+001 0.693 4.054e+000 4.993e+000 9.391e-001 -H2O(g) -0.56 2.762e-001 0.455 1.428e-002 1.776e-002 3.484e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.007e+000 1.007e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.133 Charge balance - pe = 2.340 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50 oC) = 478 - Density (g/cm3) = 1.00901 - Volume (L) = 1.08355 - Activity of water = 0.983 - Ionic strength = 7.588e-004 - Mass of water (kg) = 9.997e-001 - Total alkalinity (eq/kg) = 1.217e-009 - Total CO2 (mol/kg) = 1.007e+000 - Temperature (deg C) = 50.00 - Pressure (atm) = 77.92 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 31 - Total H = 1.109769e+002 - Total O = 5.750161e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 7.588e-004 7.355e-004 -3.120 -3.133 -0.014 0.00 - OH- 8.057e-011 7.798e-011 -10.094 -10.108 -0.014 -3.89 - H2O 5.551e+001 9.829e-001 1.744 -0.008 0.000 18.17 -C(-4) 2.117e-023 - CH4 2.117e-023 2.117e-023 -22.674 -22.674 0.000 32.22 -C(4) 1.007e+000 - CO2 1.006e+000 1.006e+000 0.003 0.003 0.000 26.11 - HCO3- 7.588e-004 7.348e-004 -3.120 -3.134 -0.014 25.77 - CO3-2 8.262e-011 7.264e-011 -10.083 -10.139 -0.056 -2.82 -H(0) 1.170e-014 - H2 5.850e-015 5.852e-015 -14.233 -14.233 0.000 28.55 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -56.552 -56.552 0.000 31.75 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(323 K, 78 atm) - - CH4(g) -19.76 -22.67 -2.92 CH4 - CO2(g) 1.67 0.00 -1.67 CO2 Pressure 77.6 atm, phi 0.693. - H2(g) -11.10 -14.23 -3.14 H2 - H2O(g) -0.90 -0.01 0.89 H2O Pressure 0.3 atm, phi 0.455. - O2(g) -53.48 -56.55 -3.08 O2 - - -Reaction step 8. - -Using solution 1. -Using gas phase 1. -Using temperature 2. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 84.81 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 1.67e-001 liters/mole - P * Vm / RT: 0.53543 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.93 8.450e+001 0.668 4.993e+000 5.952e+000 9.582e-001 -H2O(g) -0.51 3.108e-001 0.406 1.776e-002 2.189e-002 4.125e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.049e+000 1.048e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.124 Charge balance - pe = 2.330 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50 oC) = 488 - Density (g/cm3) = 1.00995 - Volume (L) = 1.08631 - Activity of water = 0.982 - Ionic strength = 7.764e-004 - Mass of water (kg) = 9.996e-001 - Total alkalinity (eq/kg) = 1.217e-009 - Total CO2 (mol/kg) = 1.049e+000 - Temperature (deg C) = 50.00 - Pressure (atm) = 84.81 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 35 - Total H = 1.109687e+002 - Total O = 5.758104e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 7.764e-004 7.523e-004 -3.110 -3.124 -0.014 0.00 - OH- 7.920e-011 7.662e-011 -10.101 -10.116 -0.014 -3.90 - H2O 5.551e+001 9.822e-001 1.744 -0.008 0.000 18.17 -C(-4) 3.171e-023 - CH4 3.171e-023 3.172e-023 -22.499 -22.499 0.000 32.22 -C(4) 1.049e+000 - CO2 1.048e+000 1.048e+000 0.020 0.020 0.000 26.18 - HCO3- 7.764e-004 7.515e-004 -3.110 -3.124 -0.014 25.78 - CO3-2 8.333e-011 7.317e-011 -10.079 -10.136 -0.056 -2.76 -H(0) 1.275e-014 - H2 6.375e-015 6.376e-015 -14.196 -14.195 0.000 28.55 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -56.633 -56.633 0.000 31.74 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(323 K, 85 atm) - - CH4(g) -19.59 -22.50 -2.91 CH4 - CO2(g) 1.69 0.02 -1.67 CO2 Pressure 84.5 atm, phi 0.668. - H2(g) -11.06 -14.20 -3.14 H2 - H2O(g) -0.90 -0.01 0.89 H2O Pressure 0.3 atm, phi 0.406. - O2(g) -53.55 -56.63 -3.08 O2 - - -Reaction step 9. - -Using solution 1. -Using gas phase 1. -Using temperature 2. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 90.48 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 1.44e-001 liters/mole - P * Vm / RT: 0.49099 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.95 9.013e+001 0.648 5.952e+000 6.922e+000 9.708e-001 -H2O(g) -0.46 3.475e-001 0.365 2.189e-002 2.669e-002 4.804e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.078e+000 1.078e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.117 Charge balance - pe = 2.454 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50 oC) = 496 - Density (g/cm3) = 1.01063 - Volume (L) = 1.08818 - Activity of water = 0.982 - Ionic strength = 7.887e-004 - Mass of water (kg) = 9.995e-001 - Total alkalinity (eq/kg) = 1.216e-009 - Total CO2 (mol/kg) = 1.078e+000 - Temperature (deg C) = 50.00 - Pressure (atm) = 90.48 - Electrical balance (eq) = -1.215e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 31 - Total H = 1.109590e+002 - Total O = 5.763458e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 7.887e-004 7.641e-004 -3.103 -3.117 -0.014 0.00 - OH- 7.832e-011 7.576e-011 -10.106 -10.121 -0.014 -3.90 - H2O 5.551e+001 9.817e-001 1.744 -0.008 0.000 18.16 -C(-4) 3.740e-024 - CH4 3.740e-024 3.741e-024 -23.427 -23.427 0.000 32.22 -C(4) 1.078e+000 - CO2 1.077e+000 1.077e+000 0.032 0.032 0.000 26.23 - HCO3- 7.887e-004 7.633e-004 -3.103 -3.117 -0.014 25.78 - CO3-2 8.391e-011 7.361e-011 -10.076 -10.133 -0.057 -2.72 -H(0) 7.390e-015 - H2 3.695e-015 3.695e-015 -14.432 -14.432 0.000 28.54 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -56.164 -56.164 0.000 31.72 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(323 K, 90 atm) - - CH4(g) -20.52 -23.43 -2.90 CH4 - CO2(g) 1.70 0.03 -1.66 CO2 Pressure 90.1 atm, phi 0.648. - H2(g) -11.30 -14.43 -3.14 H2 - H2O(g) -0.90 -0.01 0.89 H2O Pressure 0.3 atm, phi 0.365. - O2(g) -53.08 -56.16 -3.08 O2 - - -Reaction step 10. - -Using solution 1. -Using gas phase 1. -Using temperature 2. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 95.31 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 1.26e-001 liters/mole - P * Vm / RT: 0.45304 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.98 9.492e+001 0.630 6.922e+000 7.901e+000 9.787e-001 -H2O(g) -0.41 3.869e-001 0.328 2.669e-002 3.221e-002 5.513e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.100e+000 1.099e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.112 Charge balance - pe = 12.846 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50 oC) = 502 - Density (g/cm3) = 1.01115 - Volume (L) = 1.08948 - Activity of water = 0.981 - Ionic strength = 7.979e-004 - Mass of water (kg) = 9.994e-001 - Total alkalinity (eq/kg) = 1.216e-009 - Total CO2 (mol/kg) = 1.100e+000 - Temperature (deg C) = 50.00 - Pressure (atm) = 95.31 - Electrical balance (eq) = -1.215e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 55 - Total H = 1.109480e+002 - Total O = 5.767171e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 7.979e-004 7.729e-004 -3.098 -3.112 -0.014 0.00 - OH- 7.773e-011 7.517e-011 -10.109 -10.124 -0.015 -3.91 - H2O 5.551e+001 9.813e-001 1.744 -0.008 0.000 18.16 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -106.520 -106.520 0.000 32.22 -C(4) 1.100e+000 - CO2 1.099e+000 1.099e+000 0.041 0.041 0.000 26.27 - HCO3- 7.979e-004 7.721e-004 -3.098 -3.112 -0.014 25.79 - CO3-2 8.440e-011 7.398e-011 -10.074 -10.131 -0.057 -2.68 -H(0) 1.235e-035 - H2 6.177e-036 6.178e-036 -35.209 -35.209 0.000 28.54 -O(0) 4.850e-015 - O2 2.425e-015 2.425e-015 -14.615 -14.615 0.000 31.71 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(323 K, 95 atm) - - CH4(g) -103.62 -106.52 -2.90 CH4 - CO2(g) 1.70 0.04 -1.66 CO2 Pressure 94.9 atm, phi 0.630. - H2(g) -32.07 -35.21 -3.14 H2 - H2O(g) -0.90 -0.01 0.89 H2O Pressure 0.4 atm, phi 0.328. - O2(g) -11.53 -14.62 -3.09 O2 - - -Reaction step 11. - -Using solution 1. -Using gas phase 1. -Using temperature 2. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 99.73 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 1.12e-001 liters/mole - P * Vm / RT: 0.42149 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.00 9.930e+001 0.614 7.901e+000 8.884e+000 9.831e-001 -H2O(g) -0.37 4.297e-001 0.296 3.221e-002 3.845e-002 6.244e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.117e+000 1.116e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.108 Charge balance - pe = 13.248 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50 oC) = 507 - Density (g/cm3) = 1.01158 - Volume (L) = 1.09046 - Activity of water = 0.981 - Ionic strength = 8.053e-004 - Mass of water (kg) = 9.993e-001 - Total alkalinity (eq/kg) = 1.216e-009 - Total CO2 (mol/kg) = 1.117e+000 - Temperature (deg C) = 50.00 - Pressure (atm) = 99.73 - Electrical balance (eq) = -1.215e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 88 - Total H = 1.109355e+002 - Total O = 5.769920e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.053e-004 7.800e-004 -3.094 -3.108 -0.014 0.00 - OH- 7.730e-011 7.474e-011 -10.112 -10.126 -0.015 -3.91 - H2O 5.551e+001 9.810e-001 1.744 -0.008 0.000 18.16 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -109.700 -109.700 0.000 32.22 -C(4) 1.117e+000 - CO2 1.116e+000 1.116e+000 0.048 0.048 0.000 26.31 - HCO3- 8.053e-004 7.792e-004 -3.094 -3.108 -0.014 25.80 - CO3-2 8.483e-011 7.433e-011 -10.071 -10.129 -0.057 -2.65 -H(0) 1.966e-036 - H2 9.832e-037 9.833e-037 -36.007 -36.007 0.000 28.54 -O(0) 1.897e-013 - O2 9.483e-014 9.485e-014 -13.023 -13.023 0.000 31.70 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(323 K, 100 atm) - - CH4(g) -106.80 -109.70 -2.90 CH4 - CO2(g) 1.71 0.05 -1.66 CO2 Pressure 99.3 atm, phi 0.614. - H2(g) -32.87 -36.01 -3.14 H2 - H2O(g) -0.89 -0.01 0.89 H2O Pressure 0.4 atm, phi 0.296. - O2(g) -9.93 -13.02 -3.09 O2 - - -Reaction step 12. - -Using solution 1. -Using gas phase 1. -Using temperature 2. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 104.19 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 1.01e-001 liters/mole - P * Vm / RT: 0.39627 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.02 1.037e+002 0.599 8.884e+000 9.869e+000 9.852e-001 -H2O(g) -0.32 4.774e-001 0.268 3.845e-002 4.543e-002 6.985e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.131e+000 1.131e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.104 Charge balance - pe = 13.258 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50 oC) = 511 - Density (g/cm3) = 1.01198 - Volume (L) = 1.09127 - Activity of water = 0.981 - Ionic strength = 8.120e-004 - Mass of water (kg) = 9.992e-001 - Total alkalinity (eq/kg) = 1.216e-009 - Total CO2 (mol/kg) = 1.131e+000 - Temperature (deg C) = 50.00 - Pressure (atm) = 104.19 - Electrical balance (eq) = -1.215e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 35 - Total H = 1.109216e+002 - Total O = 5.772189e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.120e-004 7.864e-004 -3.090 -3.104 -0.014 0.00 - OH- 7.694e-011 7.439e-011 -10.114 -10.128 -0.015 -3.92 - H2O 5.551e+001 9.808e-001 1.744 -0.008 0.000 18.15 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -109.749 -109.749 0.000 32.22 -C(4) 1.131e+000 - CO2 1.131e+000 1.131e+000 0.053 0.053 0.000 26.35 - HCO3- 8.120e-004 7.855e-004 -3.090 -3.105 -0.014 25.80 - CO3-2 8.527e-011 7.467e-011 -10.069 -10.127 -0.058 -2.61 -H(0) 1.899e-036 - H2 9.497e-037 9.498e-037 -36.022 -36.022 0.000 28.54 -O(0) 2.014e-013 - O2 1.007e-013 1.007e-013 -12.997 -12.997 0.000 31.69 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(323 K, 104 atm) - - CH4(g) -106.86 -109.75 -2.89 CH4 - CO2(g) 1.71 0.05 -1.66 CO2 Pressure 103.7 atm, phi 0.599. - H2(g) -32.89 -36.02 -3.14 H2 - H2O(g) -0.89 -0.01 0.89 H2O Pressure 0.5 atm, phi 0.268. - O2(g) -9.91 -13.00 -3.09 O2 - - -Reaction step 13. - -Using solution 1. -Using gas phase 1. -Using temperature 2. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 109.15 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 9.17e-002 liters/mole - P * Vm / RT: 0.37734 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.04 1.086e+002 0.582 9.869e+000 1.085e+001 9.855e-001 -H2O(g) -0.27 5.319e-001 0.241 4.543e-002 5.316e-002 7.726e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.146e+000 1.145e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.101 Charge balance - pe = 13.260 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50 oC) = 515 - Density (g/cm3) = 1.01238 - Volume (L) = 1.09203 - Activity of water = 0.981 - Ionic strength = 8.188e-004 - Mass of water (kg) = 9.990e-001 - Total alkalinity (eq/kg) = 1.217e-009 - Total CO2 (mol/kg) = 1.146e+000 - Temperature (deg C) = 50.00 - Pressure (atm) = 109.15 - Electrical balance (eq) = -1.215e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 35 - Total H = 1.109061e+002 - Total O = 5.774322e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.188e-004 7.928e-004 -3.087 -3.101 -0.014 0.00 - OH- 7.662e-011 7.407e-011 -10.116 -10.130 -0.015 -3.92 - H2O 5.551e+001 9.805e-001 1.744 -0.009 0.000 18.15 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -109.734 -109.733 0.000 32.22 -C(4) 1.146e+000 - CO2 1.145e+000 1.146e+000 0.059 0.059 0.000 26.40 - HCO3- 8.188e-004 7.920e-004 -3.087 -3.101 -0.014 25.81 - CO3-2 8.576e-011 7.506e-011 -10.067 -10.125 -0.058 -2.57 -H(0) 1.903e-036 - H2 9.517e-037 9.519e-037 -36.021 -36.021 0.000 28.54 -O(0) 1.985e-013 - O2 9.923e-014 9.925e-014 -13.003 -13.003 0.000 31.68 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(323 K, 109 atm) - - CH4(g) -106.85 -109.73 -2.89 CH4 - CO2(g) 1.72 0.06 -1.66 CO2 Pressure 108.6 atm, phi 0.582. - H2(g) -32.89 -36.02 -3.14 H2 - H2O(g) -0.89 -0.01 0.88 H2O Pressure 0.5 atm, phi 0.241. - O2(g) -9.91 -13.00 -3.09 O2 - - -Reaction step 14. - -Using solution 1. -Using gas phase 1. -Using temperature 2. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 115.11 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 8.40e-002 liters/mole - P * Vm / RT: 0.36473 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.06 1.145e+002 0.563 1.085e+001 1.184e+001 9.845e-001 -H2O(g) -0.22 5.959e-001 0.216 5.316e-002 6.161e-002 8.453e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.162e+000 1.161e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.097 Charge balance - pe = 13.265 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50 oC) = 520 - Density (g/cm3) = 1.01284 - Volume (L) = 1.09282 - Activity of water = 0.980 - Ionic strength = 8.262e-004 - Mass of water (kg) = 9.989e-001 - Total alkalinity (eq/kg) = 1.217e-009 - Total CO2 (mol/kg) = 1.162e+000 - Temperature (deg C) = 50.00 - Pressure (atm) = 115.11 - Electrical balance (eq) = -1.215e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 34 - Total H = 1.108892e+002 - Total O = 5.776576e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.262e-004 7.999e-004 -3.083 -3.097 -0.014 0.00 - OH- 7.632e-011 7.376e-011 -10.117 -10.132 -0.015 -3.93 - H2O 5.551e+001 9.802e-001 1.744 -0.009 0.000 18.14 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -109.739 -109.739 0.000 32.22 -C(4) 1.162e+000 - CO2 1.161e+000 1.161e+000 0.065 0.065 0.000 26.45 - HCO3- 8.262e-004 7.990e-004 -3.083 -3.097 -0.015 25.82 - CO3-2 8.634e-011 7.553e-011 -10.064 -10.122 -0.058 -2.53 -H(0) 1.883e-036 - H2 9.414e-037 9.416e-037 -36.026 -36.026 0.000 28.53 -O(0) 2.003e-013 - O2 1.002e-013 1.002e-013 -12.999 -12.999 0.000 31.67 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(323 K, 115 atm) - - CH4(g) -106.86 -109.74 -2.88 CH4 - CO2(g) 1.72 0.06 -1.66 CO2 Pressure 114.5 atm, phi 0.563. - H2(g) -32.89 -36.03 -3.14 H2 - H2O(g) -0.89 -0.01 0.88 H2O Pressure 0.6 atm, phi 0.216. - O2(g) -9.90 -13.00 -3.10 O2 - - -Reaction step 15. - -Using solution 1. -Using gas phase 1. -Using temperature 2. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 122.59 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 7.76e-002 liters/mole - P * Vm / RT: 0.35858 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.09 1.219e+002 0.541 1.184e+001 1.282e+001 9.826e-001 -H2O(g) -0.17 6.729e-001 0.192 6.161e-002 7.076e-002 9.149e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.180e+000 1.178e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.093 Charge balance - pe = 13.271 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50 oC) = 525 - Density (g/cm3) = 1.01337 - Volume (L) = 1.09368 - Activity of water = 0.980 - Ionic strength = 8.347e-004 - Mass of water (kg) = 9.987e-001 - Total alkalinity (eq/kg) = 1.217e-009 - Total CO2 (mol/kg) = 1.180e+000 - Temperature (deg C) = 50.00 - Pressure (atm) = 122.59 - Electrical balance (eq) = -1.215e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 - Total H = 1.108709e+002 - Total O = 5.779145e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.347e-004 8.080e-004 -3.078 -3.093 -0.014 0.00 - OH- 7.601e-011 7.345e-011 -10.119 -10.134 -0.015 -3.93 - H2O 5.551e+001 9.799e-001 1.744 -0.009 0.000 18.14 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -109.756 -109.756 0.000 32.22 -C(4) 1.180e+000 - CO2 1.179e+000 1.179e+000 0.071 0.071 0.000 26.52 - HCO3- 8.347e-004 8.072e-004 -3.078 -3.093 -0.015 25.83 - CO3-2 8.706e-011 7.612e-011 -10.060 -10.119 -0.058 -2.47 -H(0) 1.848e-036 - H2 9.239e-037 9.241e-037 -36.034 -36.034 0.000 28.53 -O(0) 2.048e-013 - O2 1.024e-013 1.024e-013 -12.990 -12.990 0.000 31.65 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(323 K, 123 atm) - - CH4(g) -106.88 -109.76 -2.87 CH4 - CO2(g) 1.73 0.07 -1.65 CO2 Pressure 121.9 atm, phi 0.541. - H2(g) -32.90 -36.03 -3.14 H2 - H2O(g) -0.89 -0.01 0.88 H2O Pressure 0.7 atm, phi 0.192. - O2(g) -9.89 -12.99 -3.10 O2 - - -Reaction step 16. - -Using solution 1. -Using gas phase 1. -Using temperature 2. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 132.19 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 7.20e-002 liters/mole - P * Vm / RT: 0.35909 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.12 1.314e+002 0.516 1.282e+001 1.380e+001 9.799e-001 -H2O(g) -0.12 7.671e-001 0.170 7.076e-002 8.056e-002 9.798e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.200e+000 1.198e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.087 Charge balance - pe = 13.270 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50 oC) = 531 - Density (g/cm3) = 1.01401 - Volume (L) = 1.09466 - Activity of water = 0.980 - Ionic strength = 8.449e-004 - Mass of water (kg) = 9.985e-001 - Total alkalinity (eq/kg) = 1.217e-009 - Total CO2 (mol/kg) = 1.200e+000 - Temperature (deg C) = 50.00 - Pressure (atm) = 132.19 - Electrical balance (eq) = -1.215e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 22 - Total H = 1.108513e+002 - Total O = 5.782185e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.449e-004 8.177e-004 -3.073 -3.087 -0.014 0.00 - OH- 7.569e-011 7.314e-011 -10.121 -10.136 -0.015 -3.94 - H2O 5.551e+001 9.796e-001 1.744 -0.009 0.000 18.13 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -109.703 -109.703 0.000 32.22 -C(4) 1.200e+000 - CO2 1.199e+000 1.199e+000 0.079 0.079 0.000 26.61 - HCO3- 8.449e-004 8.168e-004 -3.073 -3.088 -0.015 25.84 - CO3-2 8.799e-011 7.688e-011 -10.056 -10.114 -0.059 -2.40 -H(0) 1.884e-036 - H2 9.419e-037 9.421e-037 -36.026 -36.026 0.000 28.53 -O(0) 1.933e-013 - O2 9.664e-014 9.665e-014 -13.015 -13.015 0.000 31.63 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(323 K, 132 atm) - - CH4(g) -106.84 -109.70 -2.87 CH4 - CO2(g) 1.73 0.08 -1.65 CO2 Pressure 131.4 atm, phi 0.516. - H2(g) -32.89 -36.03 -3.14 H2 - H2O(g) -0.89 -0.01 0.88 H2O Pressure 0.8 atm, phi 0.170. - O2(g) -9.91 -13.01 -3.11 O2 - - -Reaction step 17. - -Using solution 1. -Using gas phase 1. -Using temperature 2. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 144.55 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 6.73e-002 liters/mole - P * Vm / RT: 0.36659 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.16 1.437e+002 0.488 1.380e+001 1.478e+001 9.766e-001 -H2O(g) -0.05 8.840e-001 0.148 8.056e-002 9.094e-002 1.038e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.224e+000 1.221e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.081 Charge balance - pe = 13.276 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50 oC) = 539 - Density (g/cm3) = 1.01478 - Volume (L) = 1.09578 - Activity of water = 0.979 - Ionic strength = 8.571e-004 - Mass of water (kg) = 9.983e-001 - Total alkalinity (eq/kg) = 1.218e-009 - Total CO2 (mol/kg) = 1.224e+000 - Temperature (deg C) = 50.00 - Pressure (atm) = 144.55 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 61 - Total H = 1.108306e+002 - Total O = 5.785824e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.571e-004 8.294e-004 -3.067 -3.081 -0.014 0.00 - OH- 7.538e-011 7.282e-011 -10.123 -10.138 -0.015 -3.96 - H2O 5.551e+001 9.792e-001 1.744 -0.009 0.000 18.12 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -109.697 -109.697 0.000 32.22 -C(4) 1.224e+000 - CO2 1.223e+000 1.223e+000 0.087 0.087 0.000 26.72 - HCO3- 8.571e-004 8.285e-004 -3.067 -3.082 -0.015 25.86 - CO3-2 8.920e-011 7.786e-011 -10.050 -10.109 -0.059 -2.30 -H(0) 1.865e-036 - H2 9.325e-037 9.327e-037 -36.030 -36.030 0.000 28.52 -O(0) 1.923e-013 - O2 9.614e-014 9.616e-014 -13.017 -13.017 0.000 31.61 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(323 K, 145 atm) - - CH4(g) -106.84 -109.70 -2.85 CH4 - CO2(g) 1.73 0.09 -1.65 CO2 Pressure 143.7 atm, phi 0.488. - H2(g) -32.89 -36.03 -3.14 H2 - H2O(g) -0.88 -0.01 0.87 H2O Pressure 0.9 atm, phi 0.148. - O2(g) -9.90 -13.02 -3.12 O2 - - -Reaction step 18. - -Using solution 1. -Using gas phase 1. -Using temperature 2. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 160.38 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 6.31e-002 liters/mole - P * Vm / RT: 0.38152 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.20 1.594e+002 0.457 1.478e+001 1.575e+001 9.728e-001 -H2O(g) 0.01 1.030e+000 0.129 9.094e-002 1.018e-001 1.087e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.251e+000 1.249e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.074 Charge balance - pe = 13.282 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50 oC) = 548 - Density (g/cm3) = 1.01572 - Volume (L) = 1.09707 - Activity of water = 0.979 - Ionic strength = 8.719e-004 - Mass of water (kg) = 9.982e-001 - Total alkalinity (eq/kg) = 1.225e-009 - Total CO2 (mol/kg) = 1.251e+000 - Temperature (deg C) = 50.00 - Pressure (atm) = 160.38 - Electrical balance (eq) = -1.223e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 55 - Total H = 1.108088e+002 - Total O = 5.790177e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.719e-004 8.435e-004 -3.060 -3.074 -0.014 0.00 - OH- 7.509e-011 7.252e-011 -10.124 -10.140 -0.015 -3.97 - H2O 5.551e+001 9.787e-001 1.744 -0.009 0.000 18.11 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -109.691 -109.691 0.000 32.22 -C(4) 1.251e+000 - CO2 1.250e+000 1.250e+000 0.097 0.097 0.000 26.86 - HCO3- 8.719e-004 8.426e-004 -3.060 -3.074 -0.015 25.88 - CO3-2 9.074e-011 7.913e-011 -10.042 -10.102 -0.059 -2.18 -H(0) 1.840e-036 - H2 9.202e-037 9.204e-037 -36.036 -36.036 0.000 28.51 -O(0) 1.912e-013 - O2 9.560e-014 9.562e-014 -13.020 -13.019 0.000 31.58 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(323 K, 160 atm) - - CH4(g) -106.85 -109.69 -2.84 CH4 - CO2(g) 1.74 0.10 -1.64 CO2 Pressure 159.4 atm, phi 0.457. - H2(g) -32.90 -36.04 -3.14 H2 - H2O(g) -0.88 -0.01 0.87 H2O Pressure 1.0 atm, phi 0.129. - O2(g) -9.89 -13.02 -3.12 O2 - - -Reaction step 19. - -Using solution 1. -Using gas phase 1. -Using temperature 2. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 180.54 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 5.94e-002 liters/mole - P * Vm / RT: 0.40446 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.25 1.793e+002 0.426 1.575e+001 1.672e+001 9.686e-001 -H2O(g) 0.08 1.213e+000 0.111 1.018e-001 1.131e-001 1.125e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.283e+000 1.280e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.065 Charge balance - pe = 13.297 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50 oC) = 559 - Density (g/cm3) = 1.01686 - Volume (L) = 1.09852 - Activity of water = 0.978 - Ionic strength = 8.898e-004 - Mass of water (kg) = 9.979e-001 - Total alkalinity (eq/kg) = 1.225e-009 - Total CO2 (mol/kg) = 1.283e+000 - Temperature (deg C) = 50.00 - Pressure (atm) = 180.54 - Electrical balance (eq) = -1.223e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 71 - Total H = 1.107863e+002 - Total O = 5.795340e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.898e-004 8.606e-004 -3.051 -3.065 -0.014 0.00 - OH- 7.484e-011 7.225e-011 -10.126 -10.141 -0.015 -3.99 - H2O 5.551e+001 9.782e-001 1.744 -0.010 0.000 18.09 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -109.742 -109.742 0.000 32.22 -C(4) 1.283e+000 - CO2 1.282e+000 1.282e+000 0.108 0.108 0.000 27.03 - HCO3- 8.898e-004 8.596e-004 -3.051 -3.066 -0.015 25.90 - CO3-2 9.273e-011 8.077e-011 -10.033 -10.093 -0.060 -2.03 -H(0) 1.750e-036 - H2 8.752e-037 8.754e-037 -36.058 -36.058 0.000 28.51 -O(0) 2.029e-013 - O2 1.015e-013 1.015e-013 -12.994 -12.994 0.000 31.53 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(323 K, 181 atm) - - CH4(g) -106.92 -109.74 -2.82 CH4 - CO2(g) 1.74 0.11 -1.64 CO2 Pressure 179.3 atm, phi 0.426. - H2(g) -32.92 -36.06 -3.14 H2 - H2O(g) -0.87 -0.01 0.86 H2O Pressure 1.2 atm, phi 0.111. - O2(g) -9.86 -12.99 -3.14 O2 - - -Reaction step 20. - -Using solution 1. -Using gas phase 1. -Using temperature 2. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 205.97 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 5.62e-002 liters/mole - P * Vm / RT: 0.43616 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.31 2.045e+002 0.395 1.672e+001 1.768e+001 9.640e-001 -H2O(g) 0.16 1.441e+000 0.095 1.131e-001 1.246e-001 1.149e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.319e+000 1.316e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.055 Charge balance - pe = 13.307 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50 oC) = 573 - Density (g/cm3) = 1.01821 - Volume (L) = 1.10015 - Activity of water = 0.978 - Ionic strength = 9.113e-004 - Mass of water (kg) = 9.977e-001 - Total alkalinity (eq/kg) = 1.226e-009 - Total CO2 (mol/kg) = 1.319e+000 - Temperature (deg C) = 50.00 - Pressure (atm) = 205.97 - Electrical balance (eq) = -1.223e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 77 - Total H = 1.107633e+002 - Total O = 5.801399e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 9.113e-004 8.811e-004 -3.040 -3.055 -0.015 0.00 - OH- 7.464e-011 7.204e-011 -10.127 -10.142 -0.015 -4.01 - H2O 5.551e+001 9.776e-001 1.744 -0.010 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -109.743 -109.743 0.000 32.22 -C(4) 1.319e+000 - CO2 1.318e+000 1.319e+000 0.120 0.120 0.000 27.25 - HCO3- 9.113e-004 8.800e-004 -3.040 -3.055 -0.015 25.94 - CO3-2 9.526e-011 8.286e-011 -10.021 -10.082 -0.061 -1.85 -H(0) 1.706e-036 - H2 8.528e-037 8.530e-037 -36.069 -36.069 0.000 28.49 -O(0) 2.031e-013 - O2 1.015e-013 1.015e-013 -12.993 -12.993 0.000 31.48 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(323 K, 206 atm) - - CH4(g) -106.94 -109.74 -2.80 CH4 - CO2(g) 1.75 0.12 -1.63 CO2 Pressure 204.5 atm, phi 0.395. - H2(g) -32.93 -36.07 -3.14 H2 - H2O(g) -0.87 -0.01 0.86 H2O Pressure 1.4 atm, phi 0.095. - O2(g) -9.84 -12.99 -3.15 O2 - - -Reaction step 21. - -Using solution 1. -Using gas phase 1. -Using temperature 2. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 237.81 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 5.33e-002 liters/mole - P * Vm / RT: 0.47756 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.37 2.361e+002 0.365 1.768e+001 1.864e+001 9.591e-001 -H2O(g) 0.24 1.724e+000 0.081 1.246e-001 1.361e-001 1.157e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.360e+000 1.357e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.043 Charge balance - pe = 13.320 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50 oC) = 589 - Density (g/cm3) = 1.01982 - Volume (L) = 1.10194 - Activity of water = 0.977 - Ionic strength = 9.371e-004 - Mass of water (kg) = 9.975e-001 - Total alkalinity (eq/kg) = 1.226e-009 - Total CO2 (mol/kg) = 1.360e+000 - Temperature (deg C) = 50.00 - Pressure (atm) = 237.81 - Electrical balance (eq) = -1.223e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 89 - Total H = 1.107402e+002 - Total O = 5.808417e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 9.371e-004 9.057e-004 -3.028 -3.043 -0.015 0.00 - OH- 7.454e-011 7.191e-011 -10.128 -10.143 -0.016 -4.04 - H2O 5.551e+001 9.769e-001 1.744 -0.010 0.000 18.05 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -109.756 -109.756 0.000 32.22 -C(4) 1.360e+000 - CO2 1.359e+000 1.360e+000 0.133 0.133 0.000 27.52 - HCO3- 9.371e-004 9.046e-004 -3.028 -3.044 -0.015 25.98 - CO3-2 9.849e-011 8.553e-011 -10.007 -10.068 -0.061 -1.62 -H(0) 1.642e-036 - H2 8.212e-037 8.214e-037 -36.086 -36.085 0.000 28.48 -O(0) 2.054e-013 - O2 1.027e-013 1.027e-013 -12.988 -12.988 0.000 31.42 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(323 K, 238 atm) - - CH4(g) -106.98 -109.76 -2.77 CH4 - CO2(g) 1.75 0.13 -1.62 CO2 Pressure 236.1 atm, phi 0.365. - H2(g) -32.95 -36.09 -3.14 H2 - H2O(g) -0.86 -0.01 0.85 H2O Pressure 1.7 atm, phi 0.081. - O2(g) -9.82 -12.99 -3.17 O2 - - -Reaction step 22. - -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - -Using solution 1. -Using gas phase 1. -Using temperature 2. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 277.42 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 5.06e-002 liters/mole - P * Vm / RT: 0.52985 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.44 2.753e+002 0.338 1.864e+001 1.960e+001 9.542e-001 -H2O(g) 0.32 2.074e+000 0.069 1.361e-001 1.476e-001 1.146e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.407e+000 1.403e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.029 Charge balance - pe = 13.739 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50 oC) = 608 - Density (g/cm3) = 1.02170 - Volume (L) = 1.10387 - Activity of water = 0.976 - Ionic strength = 9.682e-004 - Mass of water (kg) = 9.973e-001 - Total alkalinity (eq/kg) = 1.227e-009 - Total CO2 (mol/kg) = 1.407e+000 - Temperature (deg C) = 50.00 - Pressure (atm) = 277.42 - Electrical balance (eq) = -1.223e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 16 - Total H = 1.107173e+002 - Total O = 5.816425e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 9.682e-004 9.354e-004 -3.014 -3.029 -0.015 0.00 - OH- 7.458e-011 7.191e-011 -10.127 -10.143 -0.016 -4.08 - H2O 5.551e+001 9.761e-001 1.744 -0.011 0.000 18.02 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -113.006 -113.005 0.000 32.22 -C(4) 1.407e+000 - CO2 1.406e+000 1.406e+000 0.148 0.148 0.000 27.84 - HCO3- 9.682e-004 9.342e-004 -3.014 -3.030 -0.016 26.03 - CO3-2 1.026e-010 8.891e-011 -9.989 -10.051 -0.062 -1.34 -H(0) 2.438e-037 - H2 1.219e-037 1.219e-037 -36.914 -36.914 0.000 28.47 -O(0) 8.612e-012 - O2 4.306e-012 4.307e-012 -11.366 -11.366 0.000 31.34 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(323 K, 277 atm) - - CH4(g) -110.27 -113.01 -2.74 CH4 - CO2(g) 1.76 0.15 -1.61 CO2 Pressure 275.3 atm, phi 0.338. - H2(g) -33.78 -36.91 -3.14 H2 - H2O(g) -0.84 -0.01 0.83 H2O Pressure 2.1 atm, phi 0.069. - O2(g) -8.17 -11.37 -3.19 O2 - - -Reaction step 23. - -Using solution 1. -Using gas phase 1. -Using temperature 2. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 326.43 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 4.83e-002 liters/mole - P * Vm / RT: 0.59453 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.51 3.239e+002 0.315 1.960e+001 2.055e+001 9.496e-001 -H2O(g) 0.40 2.502e+000 0.059 1.476e-001 1.587e-001 1.113e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.457e+000 1.453e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.013 Charge balance - pe = 13.754 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50 oC) = 632 - Density (g/cm3) = 1.02390 - Volume (L) = 1.10589 - Activity of water = 0.975 - Ionic strength = 1.006e-003 - Mass of water (kg) = 9.971e-001 - Total alkalinity (eq/kg) = 1.227e-009 - Total CO2 (mol/kg) = 1.457e+000 - Temperature (deg C) = 50.00 - Pressure (atm) = 326.43 - Electrical balance (eq) = -1.223e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 19 - Total H = 1.106950e+002 - Total O = 5.825401e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.006e-003 9.711e-004 -2.998 -3.013 -0.015 0.00 - OH- 7.481e-011 7.210e-011 -10.126 -10.142 -0.016 -4.12 - H2O 5.551e+001 9.752e-001 1.744 -0.011 0.000 17.98 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -113.013 -113.013 0.000 32.22 -C(4) 1.457e+000 - CO2 1.456e+000 1.457e+000 0.163 0.163 0.000 28.23 - HCO3- 1.006e-003 9.699e-004 -2.998 -3.013 -0.016 26.09 - CO3-2 1.078e-010 9.320e-011 -9.968 -10.031 -0.063 -1.00 -H(0) 2.323e-037 - H2 1.161e-037 1.162e-037 -36.935 -36.935 0.000 28.45 -O(0) 8.607e-012 - O2 4.303e-012 4.304e-012 -11.366 -11.366 0.000 31.25 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(323 K, 326 atm) - - CH4(g) -110.32 -113.01 -2.69 CH4 - CO2(g) 1.76 0.16 -1.59 CO2 Pressure 323.9 atm, phi 0.315. - H2(g) -33.80 -36.93 -3.14 H2 - H2O(g) -0.83 -0.01 0.82 H2O Pressure 2.5 atm, phi 0.059. - O2(g) -8.14 -11.37 -3.22 O2 - - -Reaction step 24. - -Using solution 1. -Using gas phase 1. -Using temperature 2. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 386.88 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 4.62e-002 liters/mole - P * Vm / RT: 0.67352 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.58 3.839e+002 0.296 2.055e+001 2.149e+001 9.455e-001 -H2O(g) 0.48 3.023e+000 0.051 1.587e-001 1.693e-001 1.055e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.512e+000 1.508e+000 - -----------------------------Description of solution---------------------------- - - pH = 2.994 Charge balance - pe = 13.772 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50 oC) = 660 - Density (g/cm3) = 1.02643 - Volume (L) = 1.10792 - Activity of water = 0.974 - Ionic strength = 1.051e-003 - Mass of water (kg) = 9.969e-001 - Total alkalinity (eq/kg) = 1.227e-009 - Total CO2 (mol/kg) = 1.512e+000 - Temperature (deg C) = 50.00 - Pressure (atm) = 386.88 - Electrical balance (eq) = -1.223e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 21 - Total H = 1.106739e+002 - Total O = 5.835241e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.051e-003 1.014e-003 -2.978 -2.994 -0.015 0.00 - OH- 7.531e-011 7.253e-011 -10.123 -10.139 -0.016 -4.16 - H2O 5.551e+001 9.743e-001 1.744 -0.011 0.000 17.94 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -113.025 -113.025 0.000 32.22 -C(4) 1.512e+000 - CO2 1.511e+000 1.512e+000 0.179 0.179 0.000 28.69 - HCO3- 1.051e-003 1.013e-003 -2.978 -2.994 -0.016 26.16 - CO3-2 1.144e-010 9.866e-011 -9.942 -10.006 -0.064 -0.60 -H(0) 2.186e-037 - H2 1.093e-037 1.093e-037 -36.961 -36.961 0.000 28.42 -O(0) 8.617e-012 - O2 4.308e-012 4.310e-012 -11.366 -11.366 0.000 31.14 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(323 K, 387 atm) - - CH4(g) -110.38 -113.02 -2.64 CH4 - CO2(g) 1.76 0.18 -1.58 CO2 Pressure 383.9 atm, phi 0.296. - H2(g) -33.82 -36.96 -3.14 H2 - H2O(g) -0.81 -0.01 0.80 H2O Pressure 3.0 atm, phi 0.051. - O2(g) -8.11 -11.37 -3.26 O2 - - -Reaction step 25. - -Using solution 1. -Using gas phase 1. -Using temperature 2. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 461.38 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 4.42e-002 liters/mole - P * Vm / RT: 0.76939 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.66 4.577e+002 0.282 2.149e+001 2.244e+001 9.428e-001 -H2O(g) 0.56 3.651e+000 0.044 1.693e-001 1.789e-001 9.688e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.570e+000 1.565e+000 - -----------------------------Description of solution---------------------------- - - pH = 2.972 Charge balance - pe = 13.793 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50 oC) = 694 - Density (g/cm3) = 1.02933 - Volume (L) = 1.10979 - Activity of water = 0.973 - Ionic strength = 1.106e-003 - Mass of water (kg) = 9.968e-001 - Total alkalinity (eq/kg) = 1.227e-009 - Total CO2 (mol/kg) = 1.570e+000 - Temperature (deg C) = 50.00 - Pressure (atm) = 461.38 - Electrical balance (eq) = -1.223e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 23 - Total H = 1.106545e+002 - Total O = 5.845704e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.106e-003 1.067e-003 -2.956 -2.972 -0.016 0.00 - OH- 7.618e-011 7.330e-011 -10.118 -10.135 -0.017 -4.22 - H2O 5.551e+001 9.733e-001 1.744 -0.012 0.000 17.89 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -113.042 -113.042 0.000 32.22 -C(4) 1.570e+000 - CO2 1.569e+000 1.569e+000 0.196 0.196 0.000 29.24 - HCO3- 1.106e-003 1.065e-003 -2.956 -2.973 -0.016 26.25 - CO3-2 1.228e-010 1.056e-010 -9.911 -9.976 -0.066 -0.12 -H(0) 2.029e-037 - H2 1.015e-037 1.015e-037 -36.994 -36.994 0.000 28.40 -O(0) 8.631e-012 - O2 4.316e-012 4.317e-012 -11.365 -11.365 0.000 31.01 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(323 K, 461 atm) - - CH4(g) -110.46 -113.04 -2.58 CH4 - CO2(g) 1.76 0.20 -1.56 CO2 Pressure 457.7 atm, phi 0.282. - H2(g) -33.86 -36.99 -3.14 H2 - H2O(g) -0.79 -0.01 0.78 H2O Pressure 3.7 atm, phi 0.044. - O2(g) -8.07 -11.36 -3.30 O2 - - -Reaction step 26. - -Using solution 1. -Using gas phase 1. -Using temperature 2. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 553.39 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 4.24e-002 liters/mole - P * Vm / RT: 0.88558 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.74 5.490e+002 0.274 2.244e+001 2.338e+001 9.426e-001 -H2O(g) 0.64 4.402e+000 0.039 1.789e-001 1.875e-001 8.515e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.628e+000 1.622e+000 - -----------------------------Description of solution---------------------------- - - pH = 2.946 Charge balance - pe = 13.817 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50 oC) = 736 - Density (g/cm3) = 1.03265 - Volume (L) = 1.11125 - Activity of water = 0.972 - Ionic strength = 1.174e-003 - Mass of water (kg) = 9.966e-001 - Total alkalinity (eq/kg) = 1.226e-009 - Total CO2 (mol/kg) = 1.628e+000 - Temperature (deg C) = 50.00 - Pressure (atm) = 553.39 - Electrical balance (eq) = -1.222e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 30 - Total H = 1.106375e+002 - Total O = 5.856342e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.174e-003 1.131e-003 -2.930 -2.946 -0.016 0.00 - OH- 7.755e-011 7.455e-011 -10.110 -10.128 -0.017 -4.28 - H2O 5.551e+001 9.723e-001 1.744 -0.012 0.000 17.82 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -113.064 -113.063 0.000 32.22 -C(4) 1.628e+000 - CO2 1.627e+000 1.627e+000 0.211 0.211 0.000 29.87 - HCO3- 1.174e-003 1.130e-003 -2.930 -2.947 -0.017 26.35 - CO3-2 1.338e-010 1.146e-010 -9.874 -9.941 -0.067 0.45 -H(0) 1.855e-037 - H2 9.273e-038 9.276e-038 -37.033 -37.033 0.000 28.36 -O(0) 8.625e-012 - O2 4.312e-012 4.314e-012 -11.365 -11.365 0.000 30.86 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(323 K, 553 atm) - - CH4(g) -110.56 -113.06 -2.51 CH4 - CO2(g) 1.75 0.21 -1.54 CO2 Pressure 549.0 atm, phi 0.274. - H2(g) -33.90 -37.03 -3.14 H2 - H2O(g) -0.77 -0.01 0.75 H2O Pressure 4.4 atm, phi 0.039. - O2(g) -8.01 -11.37 -3.35 O2 - - -Reaction step 27. - -Using solution 1. -Using gas phase 1. -Using temperature 2. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 667.73 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 4.08e-002 liters/mole - P * Vm / RT: 1.02701 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.82 6.624e+002 0.272 2.338e+001 2.432e+001 9.463e-001 -H2O(g) 0.72 5.295e+000 0.035 1.875e-001 1.944e-001 6.976e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.682e+000 1.676e+000 - -----------------------------Description of solution---------------------------- - - pH = 2.917 Charge balance - pe = 13.845 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50 oC) = 789 - Density (g/cm3) = 1.03642 - Volume (L) = 1.11190 - Activity of water = 0.971 - Ionic strength = 1.259e-003 - Mass of water (kg) = 9.965e-001 - Total alkalinity (eq/kg) = 1.226e-009 - Total CO2 (mol/kg) = 1.682e+000 - Temperature (deg C) = 50.00 - Pressure (atm) = 667.73 - Electrical balance (eq) = -1.222e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 - Total H = 1.106236e+002 - Total O = 5.866378e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.259e-003 1.212e-003 -2.900 -2.917 -0.017 0.00 - OH- 7.963e-011 7.647e-011 -10.099 -10.117 -0.018 -4.35 - H2O 5.551e+001 9.714e-001 1.744 -0.013 0.000 17.74 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -113.094 -113.094 0.000 32.22 -C(4) 1.682e+000 - CO2 1.681e+000 1.681e+000 0.225 0.226 0.000 30.61 - HCO3- 1.259e-003 1.210e-003 -2.900 -2.917 -0.017 26.48 - CO3-2 1.482e-010 1.264e-010 -9.829 -9.898 -0.069 1.12 -H(0) 1.658e-037 - H2 8.289e-038 8.291e-038 -37.081 -37.081 0.000 28.33 -O(0) 8.632e-012 - O2 4.316e-012 4.317e-012 -11.365 -11.365 0.000 30.68 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(323 K, 668 atm) - - CH4(g) -110.67 -113.09 -2.42 CH4 - CO2(g) 1.74 0.23 -1.51 CO2 Pressure 662.4 atm, phi 0.272. - H2(g) -33.95 -37.08 -3.14 H2 - H2O(g) -0.73 -0.01 0.72 H2O Pressure 5.3 atm, phi 0.035. - O2(g) -7.95 -11.36 -3.42 O2 - - -Reaction step 28. - -Using solution 1. -Using gas phase 1. -Using temperature 2. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 811.50 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 3.92e-002 liters/mole - P * Vm / RT: 1.20102 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.91 8.051e+002 0.278 2.432e+001 2.528e+001 9.569e-001 -H2O(g) 0.80 6.351e+000 0.032 1.944e-001 1.994e-001 4.991e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.725e+000 1.719e+000 - -----------------------------Description of solution---------------------------- - - pH = 2.881 Charge balance - pe = 13.877 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50 oC) = 856 - Density (g/cm3) = 1.04075 - Volume (L) = 1.11105 - Activity of water = 0.971 - Ionic strength = 1.367e-003 - Mass of water (kg) = 9.964e-001 - Total alkalinity (eq/kg) = 1.226e-009 - Total CO2 (mol/kg) = 1.725e+000 - Temperature (deg C) = 50.00 - Pressure (atm) = 811.50 - Electrical balance (eq) = -1.221e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 33 - Total H = 1.106136e+002 - Total O = 5.874504e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.367e-003 1.314e-003 -2.864 -2.881 -0.017 0.00 - OH- 8.276e-011 7.937e-011 -10.082 -10.100 -0.018 -4.42 - H2O 5.551e+001 9.706e-001 1.744 -0.013 0.000 17.65 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -113.135 -113.135 0.000 32.22 -C(4) 1.725e+000 - CO2 1.724e+000 1.725e+000 0.237 0.237 0.000 31.47 - HCO3- 1.367e-003 1.312e-003 -2.864 -2.882 -0.018 26.62 - CO3-2 1.676e-010 1.422e-010 -9.776 -9.847 -0.071 1.90 -H(0) 1.441e-037 - H2 7.203e-038 7.205e-038 -37.143 -37.142 0.000 28.29 -O(0) 8.644e-012 - O2 4.322e-012 4.323e-012 -11.364 -11.364 0.000 30.48 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(323 K, 811 atm) - - CH4(g) -110.82 -113.13 -2.31 CH4 - CO2(g) 1.72 0.24 -1.49 CO2 Pressure 805.1 atm, phi 0.278. - H2(g) -34.01 -37.14 -3.14 H2 - H2O(g) -0.69 -0.01 0.68 H2O Pressure 6.4 atm, phi 0.032. - O2(g) -7.87 -11.36 -3.50 O2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 3. ------------------------------------- - - USE solution 1 - USE gas_phase 1 - USE reaction 1 - REACTION_TEMPERATURE 3 - 75 - USER_GRAPH 2 - -headings 75C - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -WARNING: Element C is contained in gas CO2(g) (which has 0.0 mass), -but is not in solution or other phases. -Using solution 1. -Using gas phase 1. -Using temperature 3. -Using reaction 1. - -Reaction 1. - - 0.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 0.38 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 7.51e+001 liters/mole - P * Vm / RT: 0.99605 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) -99.99 0.000e+000 1.000 0.000e+000 0.000e+000 0.000e+000 -H2O(g) -0.42 3.792e-001 0.996 0.000e+000 1.332e-002 1.332e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Pure water - -----------------------------Description of solution---------------------------- - - pH = 6.344 Charge balance - pe = 7.913 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75 oC) = 0 - Density (g/cm3) = 0.97481 - Volume (L) = 1.02560 - Activity of water = 1.000 - Ionic strength = 4.534e-007 - Mass of water (kg) = 9.998e-001 - Total alkalinity (eq/kg) = 1.217e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 75.00 - Pressure (atm) = 0.38 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.13 - Iterations = 19 - Total H = 1.109858e+002 - Total O = 5.549289e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 4.540e-007 4.536e-007 -6.343 -6.343 -0.000 -4.48 - H+ 4.528e-007 4.524e-007 -6.344 -6.344 -0.000 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.48 -H(0) 2.829e-032 - H2 1.415e-032 1.415e-032 -31.849 -31.849 0.000 28.58 -O(0) 2.745e-015 - O2 1.372e-015 1.372e-015 -14.863 -14.863 0.000 32.99 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(348 K, 0 atm) - - H2(g) -28.72 -31.85 -3.13 H2 - H2O(g) -0.42 -0.00 0.42 H2O Pressure 0.4 atm, phi 0.996. - O2(g) -11.76 -14.86 -3.10 O2 - - -Reaction step 2. - -Using solution 1. -Using gas phase 1. -Using temperature 3. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 20.22 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 1.31e+000 liters/mole - P * Vm / RT: 0.92873 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.30 1.978e+001 0.933 0.000e+000 7.456e-001 7.456e-001 -H2O(g) -0.36 4.352e-001 0.875 1.332e-002 1.640e-002 3.078e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 2.544e-001 2.544e-001 - -----------------------------Description of solution---------------------------- - - pH = 3.457 Charge balance - pe = 10.810 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75 oC) = 326 - Density (g/cm3) = 0.98108 - Volume (L) = 1.04310 - Activity of water = 0.996 - Ionic strength = 3.573e-004 - Mass of water (kg) = 9.997e-001 - Total alkalinity (eq/kg) = 1.216e-009 - Total CO2 (mol/kg) = 2.544e-001 - Temperature (deg C) = 75.00 - Pressure (atm) = 20.22 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 32 - Total H = 1.109796e+002 - Total O = 5.599852e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 3.573e-004 3.491e-004 -3.447 -3.457 -0.010 0.00 - OH- 6.089e-010 5.945e-010 -9.215 -9.226 -0.010 -4.52 - H2O 5.551e+001 9.957e-001 1.744 -0.002 0.000 18.46 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -96.541 -96.541 0.000 32.22 -C(4) 2.544e-001 - CO2 2.541e-001 2.541e-001 -0.595 -0.595 0.000 22.79 - HCO3- 3.573e-004 3.489e-004 -3.447 -3.457 -0.010 25.59 - CO3-2 8.408e-011 7.646e-011 -10.075 -10.117 -0.041 -4.97 -H(0) 2.653e-032 - H2 1.327e-032 1.327e-032 -31.877 -31.877 0.000 28.57 -O(0) 2.985e-015 - O2 1.492e-015 1.492e-015 -14.826 -14.826 0.000 32.93 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(348 K, 20 atm) - - CH4(g) -93.50 -96.54 -3.04 CH4 - CO2(g) 1.25 -0.60 -1.85 CO2 Pressure 19.8 atm, phi 0.933. - H2(g) -28.74 -31.88 -3.13 H2 - H2O(g) -0.42 -0.00 0.42 H2O Pressure 0.4 atm, phi 0.875. - O2(g) -11.72 -14.83 -3.11 O2 - - -Reaction step 3. - -Using solution 1. -Using gas phase 1. -Using temperature 3. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 38.63 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 6.38e-001 liters/mole - P * Vm / RT: 0.86269 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.58 3.813e+001 0.875 7.456e-001 1.547e+000 8.016e-001 -H2O(g) -0.30 4.989e-001 0.770 1.640e-002 2.024e-002 3.840e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 4.529e-001 4.528e-001 - -----------------------------Description of solution---------------------------- - - pH = 3.330 Charge balance - pe = 11.398 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75 oC) = 438 - Density (g/cm3) = 0.98595 - Volume (L) = 1.05660 - Activity of water = 0.992 - Ionic strength = 4.802e-004 - Mass of water (kg) = 9.996e-001 - Total alkalinity (eq/kg) = 1.217e-009 - Total CO2 (mol/kg) = 4.529e-001 - Temperature (deg C) = 75.00 - Pressure (atm) = 38.63 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 - Total H = 1.109719e+002 - Total O = 5.639151e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 4.802e-004 4.675e-004 -3.319 -3.330 -0.012 0.00 - OH- 4.616e-010 4.490e-010 -9.336 -9.348 -0.012 -4.58 - H2O 5.551e+001 9.923e-001 1.744 -0.003 0.000 18.45 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -99.991 -99.991 0.000 32.22 -C(4) 4.529e-001 - CO2 4.525e-001 4.525e-001 -0.344 -0.344 0.000 23.05 - HCO3- 4.802e-004 4.672e-004 -3.319 -3.330 -0.012 25.63 - CO3-2 8.696e-011 7.796e-011 -10.061 -10.108 -0.047 -4.79 -H(0) 3.112e-033 - H2 1.556e-033 1.556e-033 -32.808 -32.808 0.000 28.56 -O(0) 2.082e-013 - O2 1.041e-013 1.041e-013 -12.983 -12.982 0.000 32.88 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(348 K, 39 atm) - - CH4(g) -96.97 -99.99 -3.02 CH4 - CO2(g) 1.50 -0.34 -1.84 CO2 Pressure 38.1 atm, phi 0.875. - H2(g) -29.68 -32.81 -3.13 H2 - H2O(g) -0.42 -0.00 0.41 H2O Pressure 0.5 atm, phi 0.770. - O2(g) -9.86 -12.98 -3.12 O2 - - -Reaction step 4. - -Using solution 1. -Using gas phase 1. -Using temperature 3. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 55.37 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 4.13e-001 liters/mole - P * Vm / RT: 0.80076 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.74 5.480e+001 0.825 1.547e+000 2.395e+000 8.481e-001 -H2O(g) -0.24 5.705e-001 0.679 2.024e-002 2.494e-002 4.695e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 6.049e-001 6.047e-001 - -----------------------------Description of solution---------------------------- - - pH = 3.266 Charge balance - pe = 11.464 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75 oC) = 508 - Density (g/cm3) = 0.98968 - Volume (L) = 1.06680 - Activity of water = 0.990 - Ionic strength = 5.580e-004 - Mass of water (kg) = 9.995e-001 - Total alkalinity (eq/kg) = 1.217e-009 - Total CO2 (mol/kg) = 6.049e-001 - Temperature (deg C) = 75.00 - Pressure (atm) = 55.37 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 21 - Total H = 1.109626e+002 - Total O = 5.669061e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 5.580e-004 5.423e-004 -3.253 -3.266 -0.012 0.00 - OH- 4.032e-010 3.914e-010 -9.394 -9.407 -0.013 -4.64 - H2O 5.551e+001 9.897e-001 1.744 -0.004 0.000 18.43 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -99.884 -99.883 0.000 32.22 -C(4) 6.049e-001 - CO2 6.044e-001 6.045e-001 -0.219 -0.219 0.000 23.28 - HCO3- 5.580e-004 5.419e-004 -3.253 -3.266 -0.013 25.67 - CO3-2 8.921e-011 7.933e-011 -10.050 -10.101 -0.051 -4.62 -H(0) 3.045e-033 - H2 1.523e-033 1.523e-033 -32.817 -32.817 0.000 28.55 -O(0) 2.097e-013 - O2 1.048e-013 1.049e-013 -12.979 -12.979 0.000 32.83 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(348 K, 55 atm) - - CH4(g) -96.88 -99.88 -3.00 CH4 - CO2(g) 1.62 -0.22 -1.84 CO2 Pressure 54.8 atm, phi 0.825. - H2(g) -29.68 -32.82 -3.13 H2 - H2O(g) -0.41 -0.00 0.41 H2O Pressure 0.6 atm, phi 0.679. - O2(g) -9.85 -12.98 -3.13 O2 - - -Reaction step 5. - -Using solution 1. -Using gas phase 1. -Using temperature 3. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 70.36 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 3.02e-001 liters/mole - P * Vm / RT: 0.74391 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.84 6.971e+001 0.782 2.395e+000 3.280e+000 8.849e-001 -H2O(g) -0.19 6.498e-001 0.600 2.494e-002 3.057e-002 5.638e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 7.202e-001 7.198e-001 - -----------------------------Description of solution---------------------------- - - pH = 3.226 Charge balance - pe = 11.505 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75 oC) = 557 - Density (g/cm3) = 0.99253 - Volume (L) = 1.07443 - Activity of water = 0.988 - Ionic strength = 6.117e-004 - Mass of water (kg) = 9.994e-001 - Total alkalinity (eq/kg) = 1.217e-009 - Total CO2 (mol/kg) = 7.202e-001 - Temperature (deg C) = 75.00 - Pressure (atm) = 70.36 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 19 - Total H = 1.109513e+002 - Total O = 5.691516e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 6.117e-004 5.938e-004 -3.213 -3.226 -0.013 0.00 - OH- 3.725e-010 3.611e-010 -9.429 -9.442 -0.014 -4.69 - H2O 5.551e+001 9.877e-001 1.744 -0.005 0.000 18.42 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -99.835 -99.835 0.000 32.22 -C(4) 7.202e-001 - CO2 7.196e-001 7.197e-001 -0.143 -0.143 0.000 23.48 - HCO3- 6.117e-004 5.933e-004 -3.213 -3.227 -0.013 25.70 - CO3-2 9.108e-011 8.058e-011 -10.041 -10.094 -0.053 -4.48 -H(0) 2.968e-033 - H2 1.484e-033 1.484e-033 -32.829 -32.828 0.000 28.54 -O(0) 2.138e-013 - O2 1.069e-013 1.069e-013 -12.971 -12.971 0.000 32.79 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(348 K, 70 atm) - - CH4(g) -96.84 -99.83 -2.99 CH4 - CO2(g) 1.69 -0.14 -1.83 CO2 Pressure 69.7 atm, phi 0.782. - H2(g) -29.70 -32.83 -3.13 H2 - H2O(g) -0.41 -0.01 0.40 H2O Pressure 0.6 atm, phi 0.600. - O2(g) -9.83 -12.97 -3.14 O2 - - -Reaction step 6. - -Using solution 1. -Using gas phase 1. -Using temperature 3. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 83.71 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 2.36e-001 liters/mole - P * Vm / RT: 0.69269 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.92 8.298e+001 0.745 3.280e+000 4.193e+000 9.128e-001 -H2O(g) -0.13 7.367e-001 0.533 3.057e-002 3.723e-002 6.652e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 8.075e-001 8.069e-001 - -----------------------------Description of solution---------------------------- - - pH = 3.200 Charge balance - pe = 11.524 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75 oC) = 592 - Density (g/cm3) = 0.99472 - Volume (L) = 1.08010 - Activity of water = 0.986 - Ionic strength = 6.504e-004 - Mass of water (kg) = 9.993e-001 - Total alkalinity (eq/kg) = 1.221e-009 - Total CO2 (mol/kg) = 8.075e-001 - Temperature (deg C) = 75.00 - Pressure (atm) = 83.71 - Electrical balance (eq) = -1.220e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 19 - Total H = 1.109380e+002 - Total O = 5.708286e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 6.504e-004 6.308e-004 -3.187 -3.200 -0.013 0.00 - OH- 3.543e-010 3.431e-010 -9.451 -9.465 -0.014 -4.73 - H2O 5.551e+001 9.863e-001 1.744 -0.006 0.000 18.41 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -99.735 -99.735 0.000 32.22 -C(4) 8.075e-001 - CO2 8.068e-001 8.070e-001 -0.093 -0.093 0.000 23.66 - HCO3- 6.504e-004 6.302e-004 -3.187 -3.200 -0.014 25.72 - CO3-2 9.267e-011 8.169e-011 -10.033 -10.088 -0.055 -4.36 -H(0) 3.028e-033 - H2 1.514e-033 1.514e-033 -32.820 -32.820 0.000 28.54 -O(0) 1.999e-013 - O2 9.994e-014 9.996e-014 -13.000 -13.000 0.000 32.75 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(348 K, 84 atm) - - CH4(g) -96.76 -99.74 -2.98 CH4 - CO2(g) 1.73 -0.09 -1.83 CO2 Pressure 83.0 atm, phi 0.745. - H2(g) -29.69 -32.82 -3.13 H2 - H2O(g) -0.41 -0.01 0.40 H2O Pressure 0.7 atm, phi 0.533. - O2(g) -9.86 -13.00 -3.14 O2 - - -Reaction step 7. - -Using solution 1. -Using gas phase 1. -Using temperature 3. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 95.64 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 1.93e-001 liters/mole - P * Vm / RT: 0.64738 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.98 9.481e+001 0.714 4.193e+000 5.126e+000 9.333e-001 -H2O(g) -0.08 8.313e-001 0.476 3.723e-002 4.495e-002 7.722e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 8.744e-001 8.737e-001 - -----------------------------Description of solution---------------------------- - - pH = 3.181 Charge balance - pe = 11.544 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75 oC) = 618 - Density (g/cm3) = 0.99642 - Volume (L) = 1.08434 - Activity of water = 0.985 - Ionic strength = 6.793e-004 - Mass of water (kg) = 9.992e-001 - Total alkalinity (eq/kg) = 1.220e-009 - Total CO2 (mol/kg) = 8.744e-001 - Temperature (deg C) = 75.00 - Pressure (atm) = 95.64 - Electrical balance (eq) = -1.219e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 23 - Total H = 1.109225e+002 - Total O = 5.720860e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 6.793e-004 6.585e-004 -3.168 -3.181 -0.014 0.00 - OH- 3.426e-010 3.316e-010 -9.465 -9.479 -0.014 -4.77 - H2O 5.551e+001 9.851e-001 1.744 -0.007 0.000 18.40 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -99.714 -99.714 0.000 32.22 -C(4) 8.744e-001 - CO2 8.737e-001 8.738e-001 -0.059 -0.059 0.000 23.82 - HCO3- 6.793e-004 6.578e-004 -3.168 -3.182 -0.014 25.75 - CO3-2 9.405e-011 8.270e-011 -10.027 -10.082 -0.056 -4.25 -H(0) 2.981e-033 - H2 1.490e-033 1.491e-033 -32.827 -32.827 0.000 28.53 -O(0) 2.013e-013 - O2 1.006e-013 1.007e-013 -12.997 -12.997 0.000 32.72 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(348 K, 96 atm) - - CH4(g) -96.75 -99.71 -2.97 CH4 - CO2(g) 1.76 -0.06 -1.82 CO2 Pressure 94.8 atm, phi 0.714. - H2(g) -29.69 -32.83 -3.13 H2 - H2O(g) -0.40 -0.01 0.40 H2O Pressure 0.8 atm, phi 0.476. - O2(g) -9.85 -13.00 -3.15 O2 - - -Reaction step 8. - -Using solution 1. -Using gas phase 1. -Using temperature 3. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 106.45 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 1.63e-001 liters/mole - P * Vm / RT: 0.60806 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.02 1.055e+002 0.686 5.126e+000 6.074e+000 9.478e-001 -H2O(g) -0.03 9.343e-001 0.426 4.495e-002 5.378e-002 8.833e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 9.268e-001 9.259e-001 - -----------------------------Description of solution---------------------------- - - pH = 3.168 Charge balance - pe = 11.554 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75 oC) = 638 - Density (g/cm3) = 0.99779 - Volume (L) = 1.08756 - Activity of water = 0.984 - Ionic strength = 7.017e-004 - Mass of water (kg) = 9.990e-001 - Total alkalinity (eq/kg) = 1.221e-009 - Total CO2 (mol/kg) = 9.268e-001 - Temperature (deg C) = 75.00 - Pressure (atm) = 106.45 - Electrical balance (eq) = -1.220e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 27 - Total H = 1.109049e+002 - Total O = 5.730418e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 7.017e-004 6.799e-004 -3.154 -3.168 -0.014 0.00 - OH- 3.346e-010 3.237e-010 -9.475 -9.490 -0.014 -4.81 - H2O 5.551e+001 9.842e-001 1.744 -0.007 0.000 18.39 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -99.664 -99.664 0.000 32.22 -C(4) 9.268e-001 - CO2 9.261e-001 9.262e-001 -0.033 -0.033 0.000 23.97 - HCO3- 7.017e-004 6.792e-004 -3.154 -3.168 -0.014 25.77 - CO3-2 9.528e-011 8.362e-011 -10.021 -10.078 -0.057 -4.16 -H(0) 3.003e-033 - H2 1.501e-033 1.501e-033 -32.824 -32.823 0.000 28.53 -O(0) 1.941e-013 - O2 9.705e-014 9.706e-014 -13.013 -13.013 0.000 32.69 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(348 K, 106 atm) - - CH4(g) -96.70 -99.66 -2.96 CH4 - CO2(g) 1.79 -0.03 -1.82 CO2 Pressure 105.5 atm, phi 0.686. - H2(g) -29.69 -32.82 -3.13 H2 - H2O(g) -0.40 -0.01 0.39 H2O Pressure 0.9 atm, phi 0.426. - O2(g) -9.86 -13.01 -3.16 O2 - - -Reaction step 9. - -Using solution 1. -Using gas phase 1. -Using temperature 3. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 116.50 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 1.41e-001 liters/mole - P * Vm / RT: 0.57471 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.06 1.155e+002 0.662 6.074e+000 7.032e+000 9.578e-001 -H2O(g) 0.02 1.047e+000 0.382 5.378e-002 6.375e-002 9.970e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 9.692e-001 9.681e-001 - -----------------------------Description of solution---------------------------- - - pH = 3.157 Charge balance - pe = 11.561 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75 oC) = 655 - Density (g/cm3) = 0.99892 - Volume (L) = 1.09008 - Activity of water = 0.984 - Ionic strength = 7.199e-004 - Mass of water (kg) = 9.988e-001 - Total alkalinity (eq/kg) = 1.221e-009 - Total CO2 (mol/kg) = 9.692e-001 - Temperature (deg C) = 75.00 - Pressure (atm) = 116.50 - Electrical balance (eq) = -1.220e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 30 - Total H = 1.108849e+002 - Total O = 5.737868e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 7.199e-004 6.972e-004 -3.143 -3.157 -0.014 0.00 - OH- 3.289e-010 3.180e-010 -9.483 -9.498 -0.015 -4.84 - H2O 5.551e+001 9.835e-001 1.744 -0.007 0.000 18.38 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -99.620 -99.620 0.000 32.22 -C(4) 9.692e-001 - CO2 9.685e-001 9.687e-001 -0.014 -0.014 0.000 24.10 - HCO3- 7.199e-004 6.965e-004 -3.143 -3.157 -0.014 25.79 - CO3-2 9.641e-011 8.448e-011 -10.016 -10.073 -0.057 -4.07 -H(0) 3.025e-033 - H2 1.513e-033 1.513e-033 -32.820 -32.820 0.000 28.52 -O(0) 1.874e-013 - O2 9.370e-014 9.371e-014 -13.028 -13.028 0.000 32.67 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(348 K, 117 atm) - - CH4(g) -96.67 -99.62 -2.95 CH4 - CO2(g) 1.80 -0.01 -1.82 CO2 Pressure 115.5 atm, phi 0.662. - H2(g) -29.69 -32.82 -3.13 H2 - H2O(g) -0.40 -0.01 0.39 H2O Pressure 1.0 atm, phi 0.382. - O2(g) -9.87 -13.03 -3.16 O2 - - -Reaction step 10. - -Using solution 1. -Using gas phase 1. -Using temperature 3. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 126.18 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 1.24e-001 liters/mole - P * Vm / RT: 0.54724 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.10 1.250e+002 0.639 7.032e+000 7.996e+000 9.643e-001 -H2O(g) 0.07 1.170e+000 0.344 6.375e-002 7.487e-002 1.112e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.005e+000 1.004e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.148 Charge balance - pe = 11.567 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75 oC) = 669 - Density (g/cm3) = 0.99991 - Volume (L) = 1.09213 - Activity of water = 0.983 - Ionic strength = 7.353e-004 - Mass of water (kg) = 9.986e-001 - Total alkalinity (eq/kg) = 1.221e-009 - Total CO2 (mol/kg) = 1.005e+000 - Temperature (deg C) = 75.00 - Pressure (atm) = 126.18 - Electrical balance (eq) = -1.219e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 30 - Total H = 1.108627e+002 - Total O = 5.743891e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 7.353e-004 7.120e-004 -3.134 -3.148 -0.014 0.00 - OH- 3.246e-010 3.137e-010 -9.489 -9.503 -0.015 -4.87 - H2O 5.551e+001 9.829e-001 1.744 -0.007 0.000 18.38 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -99.588 -99.588 0.000 32.22 -C(4) 1.005e+000 - CO2 1.004e+000 1.005e+000 0.002 0.002 0.000 24.22 - HCO3- 7.353e-004 7.112e-004 -3.134 -3.148 -0.014 25.81 - CO3-2 9.748e-011 8.531e-011 -10.011 -10.069 -0.058 -3.98 -H(0) 3.034e-033 - H2 1.517e-033 1.517e-033 -32.819 -32.819 0.000 28.52 -O(0) 1.828e-013 - O2 9.140e-014 9.141e-014 -13.039 -13.039 0.000 32.64 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(348 K, 126 atm) - - CH4(g) -96.65 -99.59 -2.94 CH4 - CO2(g) 1.81 0.00 -1.81 CO2 Pressure 125.0 atm, phi 0.639. - H2(g) -29.69 -32.82 -3.13 H2 - H2O(g) -0.40 -0.01 0.39 H2O Pressure 1.2 atm, phi 0.344. - O2(g) -9.87 -13.04 -3.17 O2 - - -Reaction step 11. - -Using solution 1. -Using gas phase 1. -Using temperature 3. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 135.92 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 1.10e-001 liters/mole - P * Vm / RT: 0.52559 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.13 1.346e+002 0.618 7.996e+000 8.965e+000 9.683e-001 -H2O(g) 0.12 1.308e+000 0.309 7.487e-002 8.712e-002 1.226e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.037e+000 1.035e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.140 Charge balance - pe = 11.574 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75 oC) = 681 - Density (g/cm3) = 1.00081 - Volume (L) = 1.09386 - Activity of water = 0.982 - Ionic strength = 7.492e-004 - Mass of water (kg) = 9.984e-001 - Total alkalinity (eq/kg) = 1.221e-009 - Total CO2 (mol/kg) = 1.037e+000 - Temperature (deg C) = 75.00 - Pressure (atm) = 135.92 - Electrical balance (eq) = -1.219e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 - Total H = 1.108382e+002 - Total O = 5.749000e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 7.492e-004 7.252e-004 -3.125 -3.140 -0.014 0.00 - OH- 3.211e-010 3.103e-010 -9.493 -9.508 -0.015 -4.90 - H2O 5.551e+001 9.824e-001 1.744 -0.008 0.000 18.37 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -99.570 -99.570 0.000 32.22 -C(4) 1.037e+000 - CO2 1.036e+000 1.037e+000 0.016 0.016 0.000 24.35 - HCO3- 7.492e-004 7.245e-004 -3.125 -3.140 -0.015 25.83 - CO3-2 9.855e-011 8.615e-011 -10.006 -10.065 -0.058 -3.90 -H(0) 3.023e-033 - H2 1.511e-033 1.512e-033 -32.821 -32.821 0.000 28.51 -O(0) 1.807e-013 - O2 9.035e-014 9.036e-014 -13.044 -13.044 0.000 32.62 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(348 K, 136 atm) - - CH4(g) -96.64 -99.57 -2.93 CH4 - CO2(g) 1.82 0.02 -1.81 CO2 Pressure 134.6 atm, phi 0.618. - H2(g) -29.69 -32.82 -3.13 H2 - H2O(g) -0.39 -0.01 0.39 H2O Pressure 1.3 atm, phi 0.309. - O2(g) -9.87 -13.04 -3.17 O2 - - -Reaction step 12. - -Using solution 1. -Using gas phase 1. -Using temperature 3. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 146.14 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 9.96e-002 liters/mole - P * Vm / RT: 0.50973 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.16 1.447e+002 0.597 8.965e+000 9.935e+000 9.704e-001 -H2O(g) 0.17 1.463e+000 0.278 8.712e-002 1.005e-001 1.337e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.067e+000 1.065e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.132 Charge balance - pe = 11.582 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75 oC) = 693 - Density (g/cm3) = 1.00168 - Volume (L) = 1.09542 - Activity of water = 0.982 - Ionic strength = 7.625e-004 - Mass of water (kg) = 9.982e-001 - Total alkalinity (eq/kg) = 1.222e-009 - Total CO2 (mol/kg) = 1.067e+000 - Temperature (deg C) = 75.00 - Pressure (atm) = 146.14 - Electrical balance (eq) = -1.220e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 - Total H = 1.108114e+002 - Total O = 5.753585e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 7.625e-004 7.379e-004 -3.118 -3.132 -0.014 0.00 - OH- 3.182e-010 3.074e-010 -9.497 -9.512 -0.015 -4.94 - H2O 5.551e+001 9.818e-001 1.744 -0.008 0.000 18.36 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -99.567 -99.567 0.000 32.22 -C(4) 1.067e+000 - CO2 1.066e+000 1.066e+000 0.028 0.028 0.000 24.48 - HCO3- 7.625e-004 7.371e-004 -3.118 -3.132 -0.015 25.85 - CO3-2 9.967e-011 8.704e-011 -10.001 -10.060 -0.059 -3.81 -H(0) 2.986e-033 - H2 1.493e-033 1.493e-033 -32.826 -32.826 0.000 28.51 -O(0) 1.815e-013 - O2 9.073e-014 9.075e-014 -13.042 -13.042 0.000 32.59 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(348 K, 146 atm) - - CH4(g) -96.64 -99.57 -2.92 CH4 - CO2(g) 1.83 0.03 -1.81 CO2 Pressure 144.7 atm, phi 0.597. - H2(g) -29.69 -32.83 -3.13 H2 - H2O(g) -0.39 -0.01 0.38 H2O Pressure 1.5 atm, phi 0.278. - O2(g) -9.86 -13.04 -3.18 O2 - - -Reaction step 13. - -Using solution 1. -Using gas phase 1. -Using temperature 3. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 157.33 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 9.07e-002 liters/mole - P * Vm / RT: 0.49969 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.19 1.557e+002 0.576 9.935e+000 1.091e+001 9.710e-001 -H2O(g) 0.22 1.641e+000 0.250 1.005e-001 1.149e-001 1.443e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.096e+000 1.094e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.125 Charge balance - pe = 11.588 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75 oC) = 705 - Density (g/cm3) = 1.00256 - Volume (L) = 1.09689 - Activity of water = 0.981 - Ionic strength = 7.757e-004 - Mass of water (kg) = 9.979e-001 - Total alkalinity (eq/kg) = 1.222e-009 - Total CO2 (mol/kg) = 1.096e+000 - Temperature (deg C) = 75.00 - Pressure (atm) = 157.33 - Electrical balance (eq) = -1.219e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 20 - Total H = 1.107826e+002 - Total O = 5.757943e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 7.757e-004 7.505e-004 -3.110 -3.125 -0.014 0.00 - OH- 3.157e-010 3.049e-010 -9.501 -9.516 -0.015 -4.97 - H2O 5.551e+001 9.813e-001 1.744 -0.008 0.000 18.35 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -99.549 -99.549 0.000 32.22 -C(4) 1.096e+000 - CO2 1.096e+000 1.096e+000 0.040 0.040 0.000 24.62 - HCO3- 7.757e-004 7.497e-004 -3.110 -3.125 -0.015 25.87 - CO3-2 1.009e-010 8.802e-011 -9.996 -10.055 -0.059 -3.72 -H(0) 2.975e-033 - H2 1.488e-033 1.488e-033 -32.827 -32.827 0.000 28.50 -O(0) 1.789e-013 - O2 8.945e-014 8.946e-014 -13.048 -13.048 0.000 32.56 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(348 K, 157 atm) - - CH4(g) -96.63 -99.55 -2.91 CH4 - CO2(g) 1.84 0.04 -1.80 CO2 Pressure 155.7 atm, phi 0.576. - H2(g) -29.69 -32.83 -3.13 H2 - H2O(g) -0.39 -0.01 0.38 H2O Pressure 1.6 atm, phi 0.250. - O2(g) -9.86 -13.05 -3.19 O2 - - -Reaction step 14. - -Using solution 1. -Using gas phase 1. -Using temperature 3. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 169.99 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 8.33e-002 liters/mole - P * Vm / RT: 0.49556 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.23 1.681e+002 0.555 1.091e+001 1.188e+001 9.704e-001 -H2O(g) 0.27 1.846e+000 0.224 1.149e-001 1.304e-001 1.543e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.126e+000 1.124e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.117 Charge balance - pe = 11.603 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75 oC) = 718 - Density (g/cm3) = 1.00348 - Volume (L) = 1.09835 - Activity of water = 0.981 - Ionic strength = 7.895e-004 - Mass of water (kg) = 9.976e-001 - Total alkalinity (eq/kg) = 1.222e-009 - Total CO2 (mol/kg) = 1.126e+000 - Temperature (deg C) = 75.00 - Pressure (atm) = 169.99 - Electrical balance (eq) = -1.220e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 - Total H = 1.107517e+002 - Total O = 5.762311e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 7.895e-004 7.636e-004 -3.103 -3.117 -0.014 0.00 - OH- 3.134e-010 3.027e-010 -9.504 -9.519 -0.015 -5.01 - H2O 5.551e+001 9.808e-001 1.744 -0.008 0.000 18.34 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -99.608 -99.608 0.000 32.22 -C(4) 1.126e+000 - CO2 1.125e+000 1.126e+000 0.051 0.051 0.000 24.78 - HCO3- 7.895e-004 7.628e-004 -3.103 -3.118 -0.015 25.89 - CO3-2 1.023e-010 8.914e-011 -9.990 -10.050 -0.060 -3.61 -H(0) 2.834e-033 - H2 1.417e-033 1.417e-033 -32.849 -32.849 0.000 28.50 -O(0) 1.925e-013 - O2 9.624e-014 9.625e-014 -13.017 -13.017 0.000 32.53 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(348 K, 170 atm) - - CH4(g) -96.70 -99.61 -2.90 CH4 - CO2(g) 1.85 0.05 -1.80 CO2 Pressure 168.1 atm, phi 0.555. - H2(g) -29.72 -32.85 -3.13 H2 - H2O(g) -0.38 -0.01 0.38 H2O Pressure 1.8 atm, phi 0.224. - O2(g) -9.82 -13.02 -3.19 O2 - - -Reaction step 15. - -Using solution 1. -Using gas phase 1. -Using temperature 3. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 184.67 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 7.70e-002 liters/mole - P * Vm / RT: 0.49753 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.26 1.826e+002 0.532 1.188e+001 1.285e+001 9.690e-001 -H2O(g) 0.32 2.085e+000 0.200 1.304e-001 1.467e-001 1.633e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.158e+000 1.155e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.109 Charge balance - pe = 11.614 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75 oC) = 731 - Density (g/cm3) = 1.00448 - Volume (L) = 1.09983 - Activity of water = 0.980 - Ionic strength = 8.044e-004 - Mass of water (kg) = 9.973e-001 - Total alkalinity (eq/kg) = 1.223e-009 - Total CO2 (mol/kg) = 1.158e+000 - Temperature (deg C) = 75.00 - Pressure (atm) = 184.67 - Electrical balance (eq) = -1.220e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 - Total H = 1.107191e+002 - Total O = 5.766882e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.044e-004 7.778e-004 -3.095 -3.109 -0.015 0.00 - OH- 3.114e-010 3.006e-010 -9.507 -9.522 -0.015 -5.05 - H2O 5.551e+001 9.803e-001 1.744 -0.009 0.000 18.33 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -99.631 -99.631 0.000 32.22 -C(4) 1.158e+000 - CO2 1.157e+000 1.157e+000 0.063 0.063 0.000 24.97 - HCO3- 8.044e-004 7.770e-004 -3.095 -3.110 -0.015 25.92 - CO3-2 1.039e-010 9.044e-011 -9.983 -10.044 -0.060 -3.48 -H(0) 2.751e-033 - H2 1.376e-033 1.376e-033 -32.862 -32.861 0.000 28.49 -O(0) 1.986e-013 - O2 9.928e-014 9.930e-014 -13.003 -13.003 0.000 32.49 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(348 K, 185 atm) - - CH4(g) -96.74 -99.63 -2.89 CH4 - CO2(g) 1.86 0.06 -1.79 CO2 Pressure 182.6 atm, phi 0.532. - H2(g) -29.73 -32.86 -3.13 H2 - H2O(g) -0.38 -0.01 0.37 H2O Pressure 2.1 atm, phi 0.200. - O2(g) -9.80 -13.00 -3.20 O2 - - -Reaction step 16. - -Using solution 1. -Using gas phase 1. -Using temperature 3. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 201.97 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 7.16e-002 liters/mole - P * Vm / RT: 0.50585 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.30 1.996e+002 0.510 1.285e+001 1.381e+001 9.668e-001 -H2O(g) 0.37 2.367e+000 0.178 1.467e-001 1.638e-001 1.710e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.191e+000 1.188e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.100 Charge balance - pe = 11.627 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75 oC) = 746 - Density (g/cm3) = 1.00558 - Volume (L) = 1.10140 - Activity of water = 0.980 - Ionic strength = 8.208e-004 - Mass of water (kg) = 9.970e-001 - Total alkalinity (eq/kg) = 1.226e-009 - Total CO2 (mol/kg) = 1.191e+000 - Temperature (deg C) = 75.00 - Pressure (atm) = 201.97 - Electrical balance (eq) = -1.222e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 31 - Total H = 1.106849e+002 - Total O = 5.771813e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.208e-004 7.935e-004 -3.086 -3.100 -0.015 0.00 - OH- 3.097e-010 2.988e-010 -9.509 -9.525 -0.015 -5.11 - H2O 5.551e+001 9.797e-001 1.744 -0.009 0.000 18.32 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -99.661 -99.660 0.000 32.22 -C(4) 1.191e+000 - CO2 1.191e+000 1.191e+000 0.076 0.076 0.000 25.18 - HCO3- 8.208e-004 7.926e-004 -3.086 -3.101 -0.015 25.95 - CO3-2 1.058e-010 9.199e-011 -9.976 -10.036 -0.061 -3.34 -H(0) 2.655e-033 - H2 1.327e-033 1.328e-033 -32.877 -32.877 0.000 28.49 -O(0) 2.063e-013 - O2 1.032e-013 1.032e-013 -12.986 -12.986 0.000 32.45 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(348 K, 202 atm) - - CH4(g) -96.78 -99.66 -2.88 CH4 - CO2(g) 1.86 0.08 -1.79 CO2 Pressure 199.6 atm, phi 0.510. - H2(g) -29.74 -32.88 -3.13 H2 - H2O(g) -0.38 -0.01 0.37 H2O Pressure 2.4 atm, phi 0.178. - O2(g) -9.78 -12.99 -3.21 O2 - - -Reaction step 17. - -Using solution 1. -Using gas phase 1. -Using temperature 3. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 222.59 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 6.69e-002 liters/mole - P * Vm / RT: 0.52089 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.34 2.199e+002 0.486 1.381e+001 1.478e+001 9.640e-001 -H2O(g) 0.43 2.701e+000 0.158 1.638e-001 1.815e-001 1.771e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.228e+000 1.224e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.091 Charge balance - pe = 11.637 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75 oC) = 762 - Density (g/cm3) = 1.00681 - Volume (L) = 1.10306 - Activity of water = 0.979 - Ionic strength = 8.392e-004 - Mass of water (kg) = 9.967e-001 - Total alkalinity (eq/kg) = 1.227e-009 - Total CO2 (mol/kg) = 1.228e+000 - Temperature (deg C) = 75.00 - Pressure (atm) = 222.59 - Electrical balance (eq) = -1.223e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 66 - Total H = 1.106495e+002 - Total O = 5.777239e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.392e-004 8.110e-004 -3.076 -3.091 -0.015 0.00 - OH- 3.081e-010 2.973e-010 -9.511 -9.527 -0.016 -5.17 - H2O 5.551e+001 9.791e-001 1.744 -0.009 0.000 18.30 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -99.666 -99.666 0.000 32.22 -C(4) 1.228e+000 - CO2 1.227e+000 1.227e+000 0.089 0.089 0.000 25.43 - HCO3- 8.392e-004 8.101e-004 -3.076 -3.091 -0.015 25.99 - CO3-2 1.081e-010 9.386e-011 -9.966 -10.028 -0.061 -3.17 -H(0) 2.592e-033 - H2 1.296e-033 1.296e-033 -32.887 -32.887 0.000 28.48 -O(0) 2.082e-013 - O2 1.041e-013 1.041e-013 -12.983 -12.982 0.000 32.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(348 K, 223 atm) - - CH4(g) -96.81 -99.67 -2.86 CH4 - CO2(g) 1.87 0.09 -1.78 CO2 Pressure 219.9 atm, phi 0.486. - H2(g) -29.75 -32.89 -3.13 H2 - H2O(g) -0.37 -0.01 0.36 H2O Pressure 2.7 atm, phi 0.158. - O2(g) -9.76 -12.98 -3.22 O2 - - -Reaction step 18. - -Using solution 1. -Using gas phase 1. -Using temperature 3. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 247.29 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 6.27e-002 liters/mole - P * Vm / RT: 0.54314 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.39 2.442e+002 0.463 1.478e+001 1.574e+001 9.608e-001 -H2O(g) 0.49 3.098e+000 0.140 1.815e-001 1.996e-001 1.814e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.268e+000 1.263e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.080 Charge balance - pe = 11.647 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75 oC) = 781 - Density (g/cm3) = 1.00818 - Volume (L) = 1.10485 - Activity of water = 0.978 - Ionic strength = 8.601e-004 - Mass of water (kg) = 9.964e-001 - Total alkalinity (eq/kg) = 1.228e-009 - Total CO2 (mol/kg) = 1.268e+000 - Temperature (deg C) = 75.00 - Pressure (atm) = 247.29 - Electrical balance (eq) = -1.223e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 75 - Total H = 1.106132e+002 - Total O = 5.783273e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.601e-004 8.309e-004 -3.065 -3.080 -0.015 0.00 - OH- 3.069e-010 2.960e-010 -9.513 -9.529 -0.016 -5.24 - H2O 5.551e+001 9.784e-001 1.744 -0.009 0.000 18.28 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -99.661 -99.661 0.000 32.22 -C(4) 1.268e+000 - CO2 1.267e+000 1.267e+000 0.103 0.103 0.000 25.73 - HCO3- 8.601e-004 8.300e-004 -3.065 -3.081 -0.015 26.03 - CO3-2 1.109e-010 9.612e-011 -9.955 -10.017 -0.062 -2.97 -H(0) 2.537e-033 - H2 1.269e-033 1.269e-033 -32.897 -32.897 0.000 28.47 -O(0) 2.073e-013 - O2 1.037e-013 1.037e-013 -12.984 -12.984 0.000 32.34 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(348 K, 247 atm) - - CH4(g) -96.82 -99.66 -2.84 CH4 - CO2(g) 1.88 0.10 -1.78 CO2 Pressure 244.2 atm, phi 0.463. - H2(g) -29.76 -32.90 -3.13 H2 - H2O(g) -0.36 -0.01 0.35 H2O Pressure 3.1 atm, phi 0.140. - O2(g) -9.75 -12.98 -3.23 O2 - - -Reaction step 19. - -Using solution 1. -Using gas phase 1. -Using temperature 3. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 276.96 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 5.91e-002 liters/mole - P * Vm / RT: 0.57321 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.44 2.734e+002 0.441 1.574e+001 1.669e+001 9.572e-001 -H2O(g) 0.55 3.570e+000 0.123 1.996e-001 2.180e-001 1.834e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.311e+000 1.306e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.069 Charge balance - pe = 11.664 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75 oC) = 803 - Density (g/cm3) = 1.00973 - Volume (L) = 1.10678 - Activity of water = 0.978 - Ionic strength = 8.841e-004 - Mass of water (kg) = 9.961e-001 - Total alkalinity (eq/kg) = 1.228e-009 - Total CO2 (mol/kg) = 1.311e+000 - Temperature (deg C) = 75.00 - Pressure (atm) = 276.96 - Electrical balance (eq) = -1.224e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 82 - Total H = 1.105765e+002 - Total O = 5.790002e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.841e-004 8.538e-004 -3.054 -3.069 -0.015 0.00 - OH- 3.062e-010 2.952e-010 -9.514 -9.530 -0.016 -5.33 - H2O 5.551e+001 9.777e-001 1.744 -0.010 0.000 18.26 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -99.708 -99.708 0.000 32.22 -C(4) 1.311e+000 - CO2 1.310e+000 1.310e+000 0.117 0.117 0.000 26.08 - HCO3- 8.841e-004 8.528e-004 -3.054 -3.069 -0.016 26.08 - CO3-2 1.142e-010 9.888e-011 -9.942 -10.005 -0.063 -2.73 -H(0) 2.401e-033 - H2 1.201e-033 1.201e-033 -32.921 -32.921 0.000 28.45 -O(0) 2.189e-013 - O2 1.095e-013 1.095e-013 -12.961 -12.961 0.000 32.27 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(348 K, 277 atm) - - CH4(g) -96.89 -99.71 -2.81 CH4 - CO2(g) 1.88 0.12 -1.77 CO2 Pressure 273.4 atm, phi 0.441. - H2(g) -29.79 -32.92 -3.13 H2 - H2O(g) -0.36 -0.01 0.35 H2O Pressure 3.6 atm, phi 0.123. - O2(g) -9.71 -12.96 -3.25 O2 - - -Reaction step 20. - -Using solution 1. -Using gas phase 1. -Using temperature 3. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 312.64 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 5.59e-002 liters/mole - P * Vm / RT: 0.61190 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.49 3.085e+002 0.420 1.669e+001 1.765e+001 9.535e-001 -H2O(g) 0.62 4.130e+000 0.109 2.180e-001 2.363e-001 1.829e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.358e+000 1.352e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.055 Charge balance - pe = 11.676 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75 oC) = 828 - Density (g/cm3) = 1.01146 - Volume (L) = 1.10884 - Activity of water = 0.977 - Ionic strength = 9.118e-004 - Mass of water (kg) = 9.957e-001 - Total alkalinity (eq/kg) = 1.229e-009 - Total CO2 (mol/kg) = 1.358e+000 - Temperature (deg C) = 75.00 - Pressure (atm) = 312.64 - Electrical balance (eq) = -1.224e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 86 - Total H = 1.105399e+002 - Total O = 5.797480e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 9.118e-004 8.802e-004 -3.040 -3.055 -0.015 0.00 - OH- 3.060e-010 2.949e-010 -9.514 -9.530 -0.016 -5.43 - H2O 5.551e+001 9.769e-001 1.744 -0.010 0.000 18.23 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -99.699 -99.699 0.000 32.22 -C(4) 1.358e+000 - CO2 1.357e+000 1.358e+000 0.133 0.133 0.000 26.49 - HCO3- 9.118e-004 8.791e-004 -3.040 -3.056 -0.016 26.15 - CO3-2 1.183e-010 1.023e-010 -9.927 -9.990 -0.063 -2.46 -H(0) 2.335e-033 - H2 1.168e-033 1.168e-033 -32.933 -32.933 0.000 28.44 -O(0) 2.165e-013 - O2 1.082e-013 1.083e-013 -12.966 -12.966 0.000 32.18 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(348 K, 313 atm) - - CH4(g) -96.92 -99.70 -2.78 CH4 - CO2(g) 1.89 0.13 -1.76 CO2 Pressure 308.5 atm, phi 0.420. - H2(g) -29.80 -32.93 -3.13 H2 - H2O(g) -0.35 -0.01 0.34 H2O Pressure 4.1 atm, phi 0.109. - O2(g) -9.69 -12.97 -3.27 O2 - - -Reaction step 21. - -Using solution 1. -Using gas phase 1. -Using temperature 3. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 355.56 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 5.30e-002 liters/mole - P * Vm / RT: 0.66019 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.55 3.508e+002 0.401 1.765e+001 1.860e+001 9.499e-001 -H2O(g) 0.68 4.795e+000 0.096 2.363e-001 2.542e-001 1.795e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.409e+000 1.403e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.041 Charge balance - pe = 11.686 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75 oC) = 857 - Density (g/cm3) = 1.01340 - Volume (L) = 1.11100 - Activity of water = 0.976 - Ionic strength = 9.440e-004 - Mass of water (kg) = 9.954e-001 - Total alkalinity (eq/kg) = 1.229e-009 - Total CO2 (mol/kg) = 1.409e+000 - Temperature (deg C) = 75.00 - Pressure (atm) = 355.56 - Electrical balance (eq) = -1.224e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 93 - Total H = 1.105040e+002 - Total O = 5.805714e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 9.440e-004 9.108e-004 -3.025 -3.041 -0.016 0.00 - OH- 3.066e-010 2.953e-010 -9.513 -9.530 -0.016 -5.54 - H2O 5.551e+001 9.760e-001 1.744 -0.011 0.000 18.20 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -99.666 -99.666 0.000 32.22 -C(4) 1.409e+000 - CO2 1.408e+000 1.408e+000 0.149 0.149 0.000 26.97 - HCO3- 9.440e-004 9.097e-004 -3.025 -3.041 -0.016 26.22 - CO3-2 1.234e-010 1.064e-010 -9.909 -9.973 -0.064 -2.13 -H(0) 2.292e-033 - H2 1.146e-033 1.146e-033 -32.941 -32.941 0.000 28.42 -O(0) 2.075e-013 - O2 1.037e-013 1.038e-013 -12.984 -12.984 0.000 32.08 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(348 K, 356 atm) - - CH4(g) -96.92 -99.67 -2.75 CH4 - CO2(g) 1.89 0.15 -1.75 CO2 Pressure 350.8 atm, phi 0.401. - H2(g) -29.81 -32.94 -3.13 H2 - H2O(g) -0.34 -0.01 0.32 H2O Pressure 4.8 atm, phi 0.096. - O2(g) -9.69 -12.98 -3.29 O2 - - -Reaction step 22. - -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - -Using solution 1. -Using gas phase 1. -Using temperature 3. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 407.24 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 5.05e-002 liters/mole - P * Vm / RT: 0.71936 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.60 4.017e+002 0.385 1.860e+001 1.954e+001 9.467e-001 -H2O(g) 0.75 5.580e+000 0.085 2.542e-001 2.715e-001 1.729e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.463e+000 1.456e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.024 Charge balance - pe = 12.317 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75 oC) = 891 - Density (g/cm3) = 1.01555 - Volume (L) = 1.11322 - Activity of water = 0.975 - Ionic strength = 9.817e-004 - Mass of water (kg) = 9.951e-001 - Total alkalinity (eq/kg) = 1.229e-009 - Total CO2 (mol/kg) = 1.463e+000 - Temperature (deg C) = 75.00 - Pressure (atm) = 407.24 - Electrical balance (eq) = -1.223e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 15 - Total H = 1.104694e+002 - Total O = 5.814643e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 9.817e-004 9.466e-004 -3.008 -3.024 -0.016 0.00 - OH- 3.083e-010 2.967e-010 -9.511 -9.528 -0.017 -5.68 - H2O 5.551e+001 9.751e-001 1.744 -0.011 0.000 18.16 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -104.594 -104.594 0.000 32.22 -C(4) 1.463e+000 - CO2 1.462e+000 1.462e+000 0.165 0.165 0.000 27.53 - HCO3- 9.817e-004 9.454e-004 -3.008 -3.024 -0.016 26.31 - CO3-2 1.296e-010 1.115e-010 -9.887 -9.953 -0.065 -1.74 -H(0) 1.285e-034 - H2 6.425e-035 6.426e-035 -34.192 -34.192 0.000 28.40 -O(0) 5.997e-011 - O2 2.998e-011 2.999e-011 -10.523 -10.523 0.000 31.97 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(348 K, 407 atm) - - CH4(g) -101.89 -104.59 -2.71 CH4 - CO2(g) 1.90 0.17 -1.73 CO2 Pressure 401.7 atm, phi 0.385. - H2(g) -31.06 -34.19 -3.13 H2 - H2O(g) -0.32 -0.01 0.31 H2O Pressure 5.6 atm, phi 0.085. - O2(g) -7.20 -10.52 -3.32 O2 - - -Reaction step 23. - -Using solution 1. -Using gas phase 1. -Using temperature 3. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 469.52 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 4.81e-002 liters/mole - P * Vm / RT: 0.79102 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.67 4.630e+002 0.372 1.954e+001 2.049e+001 9.446e-001 -H2O(g) 0.81 6.503e+000 0.076 2.715e-001 2.878e-001 1.627e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.519e+000 1.511e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.005 Charge balance - pe = 12.335 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75 oC) = 931 - Density (g/cm3) = 1.01793 - Volume (L) = 1.11539 - Activity of water = 0.974 - Ionic strength = 1.026e-003 - Mass of water (kg) = 9.948e-001 - Total alkalinity (eq/kg) = 1.230e-009 - Total CO2 (mol/kg) = 1.519e+000 - Temperature (deg C) = 75.00 - Pressure (atm) = 469.52 - Electrical balance (eq) = -1.223e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 21 - Total H = 1.104369e+002 - Total O = 5.824097e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.026e-003 9.888e-004 -2.989 -3.005 -0.016 0.00 - OH- 3.113e-010 2.994e-010 -9.507 -9.524 -0.017 -5.83 - H2O 5.551e+001 9.742e-001 1.744 -0.011 0.000 18.11 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -104.603 -104.603 0.000 32.22 -C(4) 1.519e+000 - CO2 1.518e+000 1.519e+000 0.181 0.181 0.000 28.18 - HCO3- 1.026e-003 9.875e-004 -2.989 -3.005 -0.017 26.41 - CO3-2 1.374e-010 1.179e-010 -9.862 -9.929 -0.067 -1.30 -H(0) 1.213e-034 - H2 6.065e-035 6.067e-035 -34.217 -34.217 0.000 28.38 -O(0) 5.998e-011 - O2 2.999e-011 3.000e-011 -10.523 -10.523 0.000 31.84 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(348 K, 470 atm) - - CH4(g) -101.94 -104.60 -2.66 CH4 - CO2(g) 1.90 0.18 -1.72 CO2 Pressure 463.0 atm, phi 0.372. - H2(g) -31.08 -34.22 -3.13 H2 - H2O(g) -0.31 -0.01 0.29 H2O Pressure 6.5 atm, phi 0.076. - O2(g) -7.17 -10.52 -3.36 O2 - - -Reaction step 24. - -Using solution 1. -Using gas phase 1. -Using temperature 3. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 544.80 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 4.60e-002 liters/mole - P * Vm / RT: 0.87735 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.73 5.372e+002 0.364 2.049e+001 2.143e+001 9.443e-001 -H2O(g) 0.88 7.586e+000 0.068 2.878e-001 3.026e-001 1.485e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.576e+000 1.567e+000 - -----------------------------Description of solution---------------------------- - - pH = 2.983 Charge balance - pe = 12.355 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75 oC) = 978 - Density (g/cm3) = 1.02055 - Volume (L) = 1.11734 - Activity of water = 0.973 - Ionic strength = 1.079e-003 - Mass of water (kg) = 9.945e-001 - Total alkalinity (eq/kg) = 1.230e-009 - Total CO2 (mol/kg) = 1.576e+000 - Temperature (deg C) = 75.00 - Pressure (atm) = 544.80 - Electrical balance (eq) = -1.223e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 20 - Total H = 1.104072e+002 - Total O = 5.833750e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.079e-003 1.039e-003 -2.967 -2.983 -0.016 0.00 - OH- 3.163e-010 3.039e-010 -9.500 -9.517 -0.017 -6.01 - H2O 5.551e+001 9.732e-001 1.744 -0.012 0.000 18.06 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -104.617 -104.617 0.000 32.22 -C(4) 1.576e+000 - CO2 1.574e+000 1.575e+000 0.197 0.197 0.000 28.93 - HCO3- 1.079e-003 1.038e-003 -2.967 -2.984 -0.017 26.52 - CO3-2 1.471e-010 1.258e-010 -9.832 -9.900 -0.068 -0.77 -H(0) 1.132e-034 - H2 5.659e-035 5.660e-035 -34.247 -34.247 0.000 28.36 -O(0) 6.001e-011 - O2 3.000e-011 3.001e-011 -10.523 -10.523 0.000 31.68 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(348 K, 545 atm) - - CH4(g) -102.02 -104.62 -2.60 CH4 - CO2(g) 1.90 0.20 -1.70 CO2 Pressure 537.2 atm, phi 0.364. - H2(g) -31.11 -34.25 -3.13 H2 - H2O(g) -0.29 -0.01 0.27 H2O Pressure 7.6 atm, phi 0.068. - O2(g) -7.13 -10.52 -3.40 O2 - - -Reaction step 25. - -Using solution 1. -Using gas phase 1. -Using temperature 3. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 636.28 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 4.41e-002 liters/mole - P * Vm / RT: 0.98131 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.80 6.274e+002 0.360 2.143e+001 2.238e+001 9.471e-001 -H2O(g) 0.95 8.849e+000 0.062 3.026e-001 3.156e-001 1.300e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.629e+000 1.620e+000 - -----------------------------Description of solution---------------------------- - - pH = 2.959 Charge balance - pe = 12.378 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75 oC) = 1035 - Density (g/cm3) = 1.02342 - Volume (L) = 1.11879 - Activity of water = 0.972 - Ionic strength = 1.142e-003 - Mass of water (kg) = 9.943e-001 - Total alkalinity (eq/kg) = 1.230e-009 - Total CO2 (mol/kg) = 1.629e+000 - Temperature (deg C) = 75.00 - Pressure (atm) = 636.28 - Electrical balance (eq) = -1.223e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 - Total H = 1.103812e+002 - Total O = 5.843032e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.142e-003 1.099e-003 -2.942 -2.959 -0.017 0.00 - OH- 3.239e-010 3.109e-010 -9.490 -9.507 -0.018 -6.21 - H2O 5.551e+001 9.723e-001 1.744 -0.012 0.000 17.99 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -104.635 -104.635 0.000 32.22 -C(4) 1.629e+000 - CO2 1.628e+000 1.628e+000 0.212 0.212 0.000 29.79 - HCO3- 1.142e-003 1.098e-003 -2.942 -2.960 -0.017 26.66 - CO3-2 1.594e-010 1.359e-010 -9.797 -9.867 -0.069 -0.17 -H(0) 1.041e-034 - H2 5.206e-035 5.207e-035 -34.284 -34.283 0.000 28.33 -O(0) 6.001e-011 - O2 3.001e-011 3.001e-011 -10.523 -10.523 0.000 31.51 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(348 K, 636 atm) - - CH4(g) -102.10 -104.64 -2.53 CH4 - CO2(g) 1.89 0.21 -1.68 CO2 Pressure 627.4 atm, phi 0.360. - H2(g) -31.15 -34.28 -3.13 H2 - H2O(g) -0.26 -0.01 0.25 H2O Pressure 8.8 atm, phi 0.062. - O2(g) -7.08 -10.52 -3.45 O2 - - -Reaction step 26. - -Using solution 1. -Using gas phase 1. -Using temperature 3. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 748.40 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 4.23e-002 liters/mole - P * Vm / RT: 1.10714 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.87 7.381e+002 0.363 2.238e+001 2.333e+001 9.548e-001 -H2O(g) 1.01 1.032e+001 0.057 3.156e-001 3.263e-001 1.063e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.675e+000 1.665e+000 - -----------------------------Description of solution---------------------------- - - pH = 2.931 Charge balance - pe = 12.405 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75 oC) = 1105 - Density (g/cm3) = 1.02658 - Volume (L) = 1.11926 - Activity of water = 0.972 - Ionic strength = 1.220e-003 - Mass of water (kg) = 9.941e-001 - Total alkalinity (eq/kg) = 1.229e-009 - Total CO2 (mol/kg) = 1.675e+000 - Temperature (deg C) = 75.00 - Pressure (atm) = 748.40 - Electrical balance (eq) = -1.222e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 27 - Total H = 1.103599e+002 - Total O = 5.851008e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.220e-003 1.173e-003 -2.914 -2.931 -0.017 0.00 - OH- 3.352e-010 3.215e-010 -9.475 -9.493 -0.018 -6.44 - H2O 5.551e+001 9.715e-001 1.744 -0.013 0.000 17.91 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -104.660 -104.660 0.000 32.22 -C(4) 1.675e+000 - CO2 1.674e+000 1.674e+000 0.224 0.224 0.000 30.79 - HCO3- 1.220e-003 1.171e-003 -2.914 -2.931 -0.018 26.82 - CO3-2 1.753e-010 1.488e-010 -9.756 -9.827 -0.071 0.53 -H(0) 9.405e-035 - H2 4.702e-035 4.704e-035 -34.328 -34.328 0.000 28.29 -O(0) 6.001e-011 - O2 3.000e-011 3.001e-011 -10.523 -10.523 0.000 31.30 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(348 K, 748 atm) - - CH4(g) -102.21 -104.66 -2.45 CH4 - CO2(g) 1.88 0.22 -1.66 CO2 Pressure 738.1 atm, phi 0.363. - H2(g) -31.19 -34.33 -3.13 H2 - H2O(g) -0.23 -0.01 0.22 H2O Pressure 10.3 atm, phi 0.057. - O2(g) -7.02 -10.52 -3.51 O2 - - -Reaction step 27. - -Using solution 1. -Using gas phase 1. -Using temperature 3. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 887.80 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 4.06e-002 liters/mole - P * Vm / RT: 1.26122 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.94 8.758e+002 0.375 2.333e+001 2.431e+001 9.704e-001 -H2O(g) 1.08 1.203e+001 0.053 3.263e-001 3.339e-001 7.633e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.705e+000 1.695e+000 - -----------------------------Description of solution---------------------------- - - pH = 2.898 Charge balance - pe = 12.435 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75 oC) = 1192 - Density (g/cm3) = 1.03007 - Volume (L) = 1.11800 - Activity of water = 0.971 - Ionic strength = 1.317e-003 - Mass of water (kg) = 9.940e-001 - Total alkalinity (eq/kg) = 1.228e-009 - Total CO2 (mol/kg) = 1.705e+000 - Temperature (deg C) = 75.00 - Pressure (atm) = 887.80 - Electrical balance (eq) = -1.221e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 31 - Total H = 1.103446e+002 - Total O = 5.856166e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.317e-003 1.265e-003 -2.880 -2.898 -0.018 0.00 - OH- 3.522e-010 3.373e-010 -9.453 -9.472 -0.019 -6.70 - H2O 5.551e+001 9.710e-001 1.744 -0.013 0.000 17.82 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -104.693 -104.693 0.000 32.22 -C(4) 1.705e+000 - CO2 1.704e+000 1.704e+000 0.231 0.232 0.000 31.94 - HCO3- 1.317e-003 1.263e-003 -2.880 -2.899 -0.018 27.01 - CO3-2 1.964e-010 1.659e-010 -9.707 -9.780 -0.073 1.35 -H(0) 8.295e-035 - H2 4.147e-035 4.149e-035 -34.382 -34.382 0.000 28.25 -O(0) 6.001e-011 - O2 3.001e-011 3.002e-011 -10.523 -10.523 0.000 31.07 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(348 K, 888 atm) - - CH4(g) -102.34 -104.69 -2.35 CH4 - CO2(g) 1.86 0.23 -1.63 CO2 Pressure 875.8 atm, phi 0.375. - H2(g) -31.25 -34.38 -3.13 H2 - H2O(g) -0.20 -0.01 0.18 H2O Pressure 12.0 atm, phi 0.053. - O2(g) -6.94 -10.52 -3.58 O2 - - -Reaction step 28. - -Using solution 1. -Using gas phase 1. -Using temperature 3. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 1064.99 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 3.90e-002 liters/mole - P * Vm / RT: 1.45380 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 3.02 1.051e+003 0.401 2.431e+001 2.530e+001 9.986e-001 -H2O(g) 1.15 1.403e+001 0.051 3.339e-001 3.377e-001 3.793e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.706e+000 1.696e+000 - -----------------------------Description of solution---------------------------- - - pH = 2.859 Charge balance - pe = 12.471 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75 oC) = 1305 - Density (g/cm3) = 1.03404 - Volume (L) = 1.11377 - Activity of water = 0.971 - Ionic strength = 1.443e-003 - Mass of water (kg) = 9.939e-001 - Total alkalinity (eq/kg) = 1.228e-009 - Total CO2 (mol/kg) = 1.706e+000 - Temperature (deg C) = 75.00 - Pressure (atm) = 1064.99 - Electrical balance (eq) = -1.220e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 37 - Total H = 1.103371e+002 - Total O = 5.856063e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.443e-003 1.383e-003 -2.841 -2.859 -0.018 0.00 - OH- 3.781e-010 3.616e-010 -9.422 -9.442 -0.019 -7.01 - H2O 5.551e+001 9.710e-001 1.744 -0.013 0.000 17.71 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -104.738 -104.738 0.000 32.22 -C(4) 1.706e+000 - CO2 1.705e+000 1.706e+000 0.232 0.232 0.000 33.27 - HCO3- 1.443e-003 1.381e-003 -2.841 -2.860 -0.019 27.23 - CO3-2 2.252e-010 1.892e-010 -9.647 -9.723 -0.076 2.32 -H(0) 7.079e-035 - H2 3.539e-035 3.541e-035 -34.451 -34.451 0.000 28.21 -O(0) 6.002e-011 - O2 3.001e-011 3.002e-011 -10.523 -10.523 0.000 30.79 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(348 K, 1065 atm) - - CH4(g) -102.51 -104.74 -2.23 CH4 - CO2(g) 1.84 0.23 -1.61 CO2 Pressure 1051.0 atm, phi 0.401. - H2(g) -31.32 -34.45 -3.13 H2 - H2O(g) -0.15 -0.01 0.14 H2O Pressure 14.0 atm, phi 0.051. - O2(g) -6.85 -10.52 -3.67 O2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 4. ------------------------------------- - - USE solution 1 - USE gas_phase 1 - USE reaction 1 - REACTION_TEMPERATURE 4 - 100 - USER_GRAPH 2 - -headings 100C - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -WARNING: Element C is contained in gas CO2(g) (which has 0.0 mass), -but is not in solution or other phases. -Using solution 1. -Using gas phase 1. -Using temperature 4. -Using reaction 1. - -Reaction 1. - - 0.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 1.00 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 3.04e+001 liters/mole - P * Vm / RT: 0.99132 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) -99.99 0.000e+000 1.000 0.000e+000 0.000e+000 0.000e+000 -H2O(g) -0.00 9.971e-001 0.991 0.000e+000 3.285e-002 3.285e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Pure water - -----------------------------Description of solution---------------------------- - - pH = 6.120 Charge balance - pe = 6.720 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100 oC) = 1 - Density (g/cm3) = 0.95835 - Volume (L) = 1.04285 - Activity of water = 1.000 - Ionic strength = 7.610e-007 - Mass of water (kg) = 9.994e-001 - Total alkalinity (eq/kg) = 1.217e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 100.00 - Pressure (atm) = 1.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.08 - Iterations = 23 - Total H = 1.109467e+002 - Total O = 5.547337e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 7.616e-007 7.607e-007 -6.118 -6.119 -0.001 -5.96 - H+ 7.604e-007 7.594e-007 -6.119 -6.120 -0.001 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.80 -H(0) 1.629e-029 - H2 8.146e-030 8.146e-030 -29.089 -29.089 0.000 28.57 -O(0) 2.746e-015 - O2 1.373e-015 1.373e-015 -14.862 -14.862 0.000 33.90 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(373 K, 1 atm) - - H2(g) -25.99 -29.09 -3.10 H2 - H2O(g) -0.00 -0.00 0.00 H2O Pressure 1.0 atm, phi 0.991. - O2(g) -11.75 -14.86 -3.11 O2 - - -Reaction step 2. - -Using solution 1. -Using gas phase 1. -Using temperature 4. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 23.30 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 1.23e+000 liters/mole - P * Vm / RT: 0.93389 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.35 2.216e+001 0.939 0.000e+000 7.749e-001 7.749e-001 -H2O(g) 0.06 1.138e+000 0.877 3.285e-002 3.980e-002 6.953e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 2.253e-001 2.251e-001 - -----------------------------Description of solution---------------------------- - - pH = 3.536 Charge balance - pe = 9.310 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100 oC) = 365 - Density (g/cm3) = 0.96456 - Volume (L) = 1.05771 - Activity of water = 0.996 - Ionic strength = 2.980e-004 - Mass of water (kg) = 9.993e-001 - Total alkalinity (eq/kg) = 1.217e-009 - Total CO2 (mol/kg) = 2.253e-001 - Temperature (deg C) = 100.00 - Pressure (atm) = 23.30 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 31 - Total H = 1.109328e+002 - Total O = 5.591664e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 2.980e-004 2.914e-004 -3.526 -3.536 -0.010 0.00 - OH- 2.059e-009 2.011e-009 -8.686 -8.697 -0.010 -6.02 - H2O 5.551e+001 9.962e-001 1.744 -0.002 0.000 18.78 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -87.927 -87.927 0.000 32.22 -C(4) 2.253e-001 - CO2 2.250e-001 2.250e-001 -0.648 -0.648 0.000 21.03 - HCO3- 2.980e-004 2.912e-004 -3.526 -3.536 -0.010 24.63 - CO3-2 7.857e-011 7.164e-011 -10.105 -10.145 -0.040 -8.82 -H(0) 1.556e-029 - H2 7.780e-030 7.781e-030 -29.109 -29.109 0.000 28.56 -O(0) 2.872e-015 - O2 1.436e-015 1.436e-015 -14.843 -14.843 0.000 33.82 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(373 K, 23 atm) - - CH4(g) -84.88 -87.93 -3.04 CH4 - CO2(g) 1.30 -0.65 -1.95 CO2 Pressure 22.2 atm, phi 0.939. - H2(g) -26.01 -29.11 -3.10 H2 - H2O(g) -0.00 -0.00 -0.00 H2O Pressure 1.1 atm, phi 0.877. - O2(g) -11.72 -14.84 -3.13 O2 - - -Reaction step 3. - -Using solution 1. -Using gas phase 1. -Using temperature 4. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 44.13 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 6.09e-001 liters/mole - P * Vm / RT: 0.87714 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.63 4.284e+001 0.888 7.749e-001 1.595e+000 8.200e-001 -H2O(g) 0.11 1.293e+000 0.779 3.980e-002 4.815e-002 8.344e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 4.055e-001 4.052e-001 - -----------------------------Description of solution---------------------------- - - pH = 3.406 Charge balance - pe = 1.982 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100 oC) = 492 - Density (g/cm3) = 0.96949 - Volume (L) = 1.06944 - Activity of water = 0.993 - Ionic strength = 4.029e-004 - Mass of water (kg) = 9.991e-001 - Total alkalinity (eq/kg) = 1.217e-009 - Total CO2 (mol/kg) = 4.055e-001 - Temperature (deg C) = 100.00 - Pressure (atm) = 44.13 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 35 - Total H = 1.109161e+002 - Total O = 5.626837e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 4.029e-004 3.925e-004 -3.395 -3.406 -0.011 0.00 - OH- 1.555e-009 1.514e-009 -8.808 -8.820 -0.012 -6.11 - H2O 5.551e+001 9.931e-001 1.744 -0.003 0.000 18.76 -C(-4) 9.398e-029 - CH4 9.398e-029 9.399e-029 -28.027 -28.027 0.000 32.22 -C(4) 4.055e-001 - CO2 4.051e-001 4.051e-001 -0.392 -0.392 0.000 21.38 - HCO3- 4.029e-004 3.923e-004 -3.395 -3.406 -0.012 24.70 - CO3-2 8.150e-011 7.325e-011 -10.089 -10.135 -0.046 -8.56 -H(0) 1.252e-014 - H2 6.258e-015 6.259e-015 -14.204 -14.204 0.000 28.55 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -44.672 -44.672 0.000 33.76 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(373 K, 44 atm) - - CH4(g) -25.00 -28.03 -3.02 CH4 - CO2(g) 1.55 -0.39 -1.94 CO2 Pressure 42.8 atm, phi 0.888. - H2(g) -11.10 -14.20 -3.10 H2 - H2O(g) 0.00 -0.00 -0.01 H2O Pressure 1.3 atm, phi 0.779. - O2(g) -41.53 -44.67 -3.14 O2 - - -Reaction step 4. - -Using solution 1. -Using gas phase 1. -Using temperature 4. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 63.41 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 3.98e-001 liters/mole - P * Vm / RT: 0.82509 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.79 6.194e+001 0.843 1.595e+000 2.452e+000 8.568e-001 -H2O(g) 0.17 1.465e+000 0.694 4.815e-002 5.800e-002 9.850e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.489e-001 5.483e-001 - -----------------------------Description of solution---------------------------- - - pH = 3.339 Charge balance - pe = 1.909 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100 oC) = 576 - Density (g/cm3) = 0.97342 - Volume (L) = 1.07863 - Activity of water = 0.991 - Ionic strength = 4.715e-004 - Mass of water (kg) = 9.989e-001 - Total alkalinity (eq/kg) = 1.217e-009 - Total CO2 (mol/kg) = 5.489e-001 - Temperature (deg C) = 100.00 - Pressure (atm) = 63.41 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 24 - Total H = 1.108964e+002 - Total O = 5.654487e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 4.715e-004 4.585e-004 -3.327 -3.339 -0.012 0.00 - OH- 1.352e-009 1.313e-009 -8.869 -8.882 -0.013 -6.19 - H2O 5.551e+001 9.907e-001 1.744 -0.004 0.000 18.74 -C(-4) 1.669e-027 - CH4 1.669e-027 1.669e-027 -26.778 -26.778 0.000 32.22 -C(4) 5.489e-001 - CO2 5.484e-001 5.485e-001 -0.261 -0.261 0.000 21.69 - HCO3- 4.715e-004 4.582e-004 -3.327 -3.339 -0.012 24.76 - CO3-2 8.387e-011 7.477e-011 -10.076 -10.126 -0.050 -8.33 -H(0) 2.354e-014 - H2 1.177e-014 1.177e-014 -13.929 -13.929 0.000 28.54 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -45.238 -45.238 0.000 33.69 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(373 K, 63 atm) - - CH4(g) -23.77 -26.78 -3.01 CH4 - CO2(g) 1.67 -0.26 -1.94 CO2 Pressure 61.9 atm, phi 0.843. - H2(g) -10.83 -13.93 -3.10 H2 - H2O(g) 0.01 -0.00 -0.01 H2O Pressure 1.5 atm, phi 0.694. - O2(g) -42.09 -45.24 -3.15 O2 - - -Reaction step 5. - -Using solution 1. -Using gas phase 1. -Using temperature 4. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 81.19 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 2.94e-001 liters/mole - P * Vm / RT: 0.77826 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.90 7.954e+001 0.804 2.452e+000 3.338e+000 8.859e-001 -H2O(g) 0.22 1.655e+000 0.620 5.800e-002 6.944e-002 1.144e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 6.632e-001 6.624e-001 - -----------------------------Description of solution---------------------------- - - pH = 3.296 Charge balance - pe = 1.857 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100 oC) = 636 - Density (g/cm3) = 0.97657 - Volume (L) = 1.08581 - Activity of water = 0.989 - Ionic strength = 5.210e-004 - Mass of water (kg) = 9.987e-001 - Total alkalinity (eq/kg) = 1.218e-009 - Total CO2 (mol/kg) = 6.632e-001 - Temperature (deg C) = 100.00 - Pressure (atm) = 81.19 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 22 - Total H = 1.108736e+002 - Total O = 5.676155e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 5.210e-004 5.060e-004 -3.283 -3.296 -0.013 0.00 - OH- 1.243e-009 1.205e-009 -8.906 -8.919 -0.013 -6.27 - H2O 5.551e+001 9.887e-001 1.744 -0.005 0.000 18.72 -C(-4) 1.121e-026 - CH4 1.121e-026 1.121e-026 -25.950 -25.950 0.000 32.22 -C(4) 6.632e-001 - CO2 6.627e-001 6.628e-001 -0.179 -0.179 0.000 21.98 - HCO3- 5.210e-004 5.056e-004 -3.283 -3.296 -0.013 24.81 - CO3-2 8.593e-011 7.619e-011 -10.066 -10.118 -0.052 -8.12 -H(0) 3.576e-014 - H2 1.788e-014 1.788e-014 -13.748 -13.748 0.000 28.53 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -45.616 -45.616 0.000 33.64 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(373 K, 81 atm) - - CH4(g) -22.96 -25.95 -2.99 CH4 - CO2(g) 1.75 -0.18 -1.93 CO2 Pressure 79.5 atm, phi 0.804. - H2(g) -10.65 -13.75 -3.10 H2 - H2O(g) 0.01 -0.00 -0.02 H2O Pressure 1.7 atm, phi 0.620. - O2(g) -42.46 -45.62 -3.16 O2 - - -Reaction step 6. - -Using solution 1. -Using gas phase 1. -Using temperature 4. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 97.67 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 2.31e-001 liters/mole - P * Vm / RT: 0.73690 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 1.98 9.580e+001 0.770 3.338e+000 4.246e+000 9.083e-001 -H2O(g) 0.27 1.862e+000 0.556 6.944e-002 8.254e-002 1.310e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 7.553e-001 7.541e-001 - -----------------------------Description of solution---------------------------- - - pH = 3.266 Charge balance - pe = 2.060 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100 oC) = 681 - Density (g/cm3) = 0.97912 - Volume (L) = 1.09145 - Activity of water = 0.987 - Ionic strength = 5.587e-004 - Mass of water (kg) = 9.985e-001 - Total alkalinity (eq/kg) = 1.218e-009 - Total CO2 (mol/kg) = 7.553e-001 - Temperature (deg C) = 100.00 - Pressure (atm) = 97.67 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 23 - Total H = 1.108474e+002 - Total O = 5.693194e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 5.587e-004 5.420e-004 -3.253 -3.266 -0.013 0.00 - OH- 1.175e-009 1.139e-009 -8.930 -8.944 -0.014 -6.33 - H2O 5.551e+001 9.872e-001 1.744 -0.006 0.000 18.71 -C(-4) 5.146e-028 - CH4 5.146e-028 5.147e-028 -27.288 -27.288 0.000 32.22 -C(4) 7.553e-001 - CO2 7.547e-001 7.548e-001 -0.122 -0.122 0.000 22.25 - HCO3- 5.587e-004 5.416e-004 -3.253 -3.266 -0.013 24.86 - CO3-2 8.777e-011 7.751e-011 -10.057 -10.111 -0.054 -7.93 -H(0) 1.586e-014 - H2 7.932e-015 7.933e-015 -14.101 -14.101 0.000 28.52 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -44.924 -44.924 0.000 33.58 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(373 K, 98 atm) - - CH4(g) -24.31 -27.29 -2.98 CH4 - CO2(g) 1.80 -0.12 -1.92 CO2 Pressure 95.8 atm, phi 0.770. - H2(g) -11.00 -14.10 -3.10 H2 - H2O(g) 0.02 -0.01 -0.02 H2O Pressure 1.9 atm, phi 0.556. - O2(g) -41.76 -44.92 -3.17 O2 - - -Reaction step 7. - -Using solution 1. -Using gas phase 1. -Using temperature 4. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 113.09 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 1.90e-001 liters/mole - P * Vm / RT: 0.70109 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.05 1.110e+002 0.740 4.246e+000 5.171e+000 9.249e-001 -H2O(g) 0.32 2.089e+000 0.499 8.254e-002 9.733e-002 1.479e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 8.307e-001 8.292e-001 - -----------------------------Description of solution---------------------------- - - pH = 3.244 Charge balance - pe = 2.015 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100 oC) = 717 - Density (g/cm3) = 0.98123 - Volume (L) = 1.09595 - Activity of water = 0.986 - Ionic strength = 5.885e-004 - Mass of water (kg) = 9.982e-001 - Total alkalinity (eq/kg) = 1.219e-009 - Total CO2 (mol/kg) = 8.307e-001 - Temperature (deg C) = 100.00 - Pressure (atm) = 113.09 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 22 - Total H = 1.108178e+002 - Total O = 5.706733e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 5.885e-004 5.706e-004 -3.230 -3.244 -0.013 0.00 - OH- 1.130e-009 1.094e-009 -8.947 -8.961 -0.014 -6.40 - H2O 5.551e+001 9.859e-001 1.744 -0.006 0.000 18.70 -C(-4) 1.918e-027 - CH4 1.918e-027 1.918e-027 -26.717 -26.717 0.000 32.22 -C(4) 8.307e-001 - CO2 8.301e-001 8.302e-001 -0.081 -0.081 0.000 22.49 - HCO3- 5.885e-004 5.701e-004 -3.230 -3.244 -0.014 24.90 - CO3-2 8.945e-011 7.876e-011 -10.048 -10.104 -0.055 -7.75 -H(0) 2.132e-014 - H2 1.066e-014 1.066e-014 -13.972 -13.972 0.000 28.52 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -45.193 -45.193 0.000 33.54 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(373 K, 113 atm) - - CH4(g) -23.75 -26.72 -2.96 CH4 - CO2(g) 1.84 -0.08 -1.92 CO2 Pressure 111.0 atm, phi 0.740. - H2(g) -10.87 -13.97 -3.10 H2 - H2O(g) 0.02 -0.01 -0.02 H2O Pressure 2.1 atm, phi 0.499. - O2(g) -42.02 -45.19 -3.17 O2 - - -Reaction step 8. - -Using solution 1. -Using gas phase 1. -Using temperature 4. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 127.80 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 1.61e-001 liters/mole - P * Vm / RT: 0.67082 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.10 1.255e+002 0.713 5.171e+000 6.108e+000 9.370e-001 -H2O(g) 0.37 2.338e+000 0.450 9.733e-002 1.138e-001 1.649e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 8.940e-001 8.922e-001 - -----------------------------Description of solution---------------------------- - - pH = 3.226 Charge balance - pe = 1.887 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100 oC) = 747 - Density (g/cm3) = 0.98304 - Volume (L) = 1.09959 - Activity of water = 0.985 - Ionic strength = 6.132e-004 - Mass of water (kg) = 9.979e-001 - Total alkalinity (eq/kg) = 1.220e-009 - Total CO2 (mol/kg) = 8.940e-001 - Temperature (deg C) = 100.00 - Pressure (atm) = 127.80 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 21 - Total H = 1.107848e+002 - Total O = 5.717674e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 6.132e-004 5.942e-004 -3.212 -3.226 -0.014 0.00 - OH- 1.098e-009 1.062e-009 -8.959 -8.974 -0.014 -6.46 - H2O 5.551e+001 9.848e-001 1.744 -0.007 0.000 18.68 -C(-4) 2.979e-026 - CH4 2.979e-026 2.979e-026 -25.526 -25.526 0.000 32.22 -C(4) 8.940e-001 - CO2 8.934e-001 8.935e-001 -0.049 -0.049 0.000 22.72 - HCO3- 6.132e-004 5.936e-004 -3.212 -3.226 -0.014 24.94 - CO3-2 9.104e-011 7.996e-011 -10.041 -10.097 -0.056 -7.59 -H(0) 4.120e-014 - H2 2.060e-014 2.060e-014 -13.686 -13.686 0.000 28.51 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -45.777 -45.777 0.000 33.49 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(373 K, 128 atm) - - CH4(g) -22.58 -25.53 -2.95 CH4 - CO2(g) 1.86 -0.05 -1.91 CO2 Pressure 125.5 atm, phi 0.713. - H2(g) -10.59 -13.69 -3.10 H2 - H2O(g) 0.02 -0.01 -0.03 H2O Pressure 2.3 atm, phi 0.450. - O2(g) -42.60 -45.78 -3.18 O2 - - -Reaction step 9. - -Using solution 1. -Using gas phase 1. -Using temperature 4. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 142.14 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 1.39e-001 liters/mole - P * Vm / RT: 0.64603 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.14 1.395e+002 0.688 6.108e+000 7.053e+000 9.456e-001 -H2O(g) 0.42 2.611e+000 0.406 1.138e-001 1.320e-001 1.818e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 9.488e-001 9.465e-001 - -----------------------------Description of solution---------------------------- - - pH = 3.212 Charge balance - pe = 1.838 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100 oC) = 773 - Density (g/cm3) = 0.98462 - Volume (L) = 1.10262 - Activity of water = 0.984 - Ionic strength = 6.344e-004 - Mass of water (kg) = 9.976e-001 - Total alkalinity (eq/kg) = 1.220e-009 - Total CO2 (mol/kg) = 9.488e-001 - Temperature (deg C) = 100.00 - Pressure (atm) = 142.14 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 22 - Total H = 1.107484e+002 - Total O = 5.726730e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 6.344e-004 6.144e-004 -3.198 -3.212 -0.014 0.00 - OH- 1.074e-009 1.039e-009 -8.969 -8.983 -0.015 -6.51 - H2O 5.551e+001 9.839e-001 1.744 -0.007 0.000 18.67 -C(-4) 9.902e-026 - CH4 9.902e-026 9.903e-026 -25.004 -25.004 0.000 32.22 -C(4) 9.488e-001 - CO2 9.482e-001 9.483e-001 -0.023 -0.023 0.000 22.94 - HCO3- 6.344e-004 6.139e-004 -3.198 -3.212 -0.014 24.99 - CO3-2 9.257e-011 8.114e-011 -10.034 -10.091 -0.057 -7.43 -H(0) 5.434e-014 - H2 2.717e-014 2.717e-014 -13.566 -13.566 0.000 28.50 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -46.029 -46.029 0.000 33.45 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(373 K, 142 atm) - - CH4(g) -22.07 -25.00 -2.94 CH4 - CO2(g) 1.88 -0.02 -1.91 CO2 Pressure 139.5 atm, phi 0.688. - H2(g) -10.47 -13.57 -3.10 H2 - H2O(g) 0.03 -0.01 -0.03 H2O Pressure 2.6 atm, phi 0.406. - O2(g) -42.84 -46.03 -3.19 O2 - - -Reaction step 10. - -Using solution 1. -Using gas phase 1. -Using temperature 4. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 156.52 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 1.23e-001 liters/mole - P * Vm / RT: 0.62666 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.19 1.536e+002 0.665 7.053e+000 8.005e+000 9.515e-001 -H2O(g) 0.46 2.913e+000 0.367 1.320e-001 1.518e-001 1.983e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 9.978e-001 9.951e-001 - -----------------------------Description of solution---------------------------- - - pH = 3.199 Charge balance - pe = 1.906 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100 oC) = 796 - Density (g/cm3) = 0.98607 - Volume (L) = 1.10522 - Activity of water = 0.983 - Ionic strength = 6.534e-004 - Mass of water (kg) = 9.973e-001 - Total alkalinity (eq/kg) = 1.221e-009 - Total CO2 (mol/kg) = 9.978e-001 - Temperature (deg C) = 100.00 - Pressure (atm) = 156.52 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 23 - Total H = 1.107088e+002 - Total O = 5.734457e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 6.534e-004 6.326e-004 -3.185 -3.199 -0.014 0.00 - OH- 1.056e-009 1.020e-009 -8.977 -8.991 -0.015 -6.57 - H2O 5.551e+001 9.830e-001 1.744 -0.007 0.000 18.66 -C(-4) 3.722e-026 - CH4 3.722e-026 3.722e-026 -25.429 -25.429 0.000 32.22 -C(4) 9.978e-001 - CO2 9.972e-001 9.973e-001 -0.001 -0.001 0.000 23.16 - HCO3- 6.534e-004 6.320e-004 -3.185 -3.199 -0.014 25.03 - CO3-2 9.409e-011 8.234e-011 -10.026 -10.084 -0.058 -7.28 -H(0) 4.165e-014 - H2 2.083e-014 2.083e-014 -13.681 -13.681 0.000 28.50 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -45.810 -45.810 0.000 33.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(373 K, 157 atm) - - CH4(g) -22.50 -25.43 -2.92 CH4 - CO2(g) 1.90 -0.00 -1.90 CO2 Pressure 153.6 atm, phi 0.665. - H2(g) -10.58 -13.68 -3.10 H2 - H2O(g) 0.03 -0.01 -0.04 H2O Pressure 2.9 atm, phi 0.367. - O2(g) -42.61 -45.81 -3.20 O2 - - -Reaction step 11. - -Using solution 1. -Using gas phase 1. -Using temperature 4. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 171.35 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 1.09e-001 liters/mole - P * Vm / RT: 0.61268 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.23 1.681e+002 0.644 8.005e+000 8.960e+000 9.551e-001 -H2O(g) 0.51 3.250e+000 0.331 1.518e-001 1.732e-001 2.140e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.043e+000 1.040e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.187 Charge balance - pe = 1.818 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100 oC) = 817 - Density (g/cm3) = 0.98743 - Volume (L) = 1.10753 - Activity of water = 0.982 - Ionic strength = 6.712e-004 - Mass of water (kg) = 9.969e-001 - Total alkalinity (eq/kg) = 1.222e-009 - Total CO2 (mol/kg) = 1.043e+000 - Temperature (deg C) = 100.00 - Pressure (atm) = 171.35 - Electrical balance (eq) = -1.218e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 - Total H = 1.106660e+002 - Total O = 5.741290e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 6.712e-004 6.495e-004 -3.173 -3.187 -0.014 0.00 - OH- 1.041e-009 1.005e-009 -8.983 -8.998 -0.015 -6.63 - H2O 5.551e+001 9.823e-001 1.744 -0.008 0.000 18.64 -C(-4) 2.372e-025 - CH4 2.372e-025 2.372e-025 -24.625 -24.625 0.000 32.22 -C(4) 1.043e+000 - CO2 1.043e+000 1.043e+000 0.018 0.018 0.000 23.39 - HCO3- 6.712e-004 6.489e-004 -3.173 -3.188 -0.015 25.07 - CO3-2 9.566e-011 8.358e-011 -10.019 -10.078 -0.059 -7.12 -H(0) 6.487e-014 - H2 3.243e-014 3.244e-014 -13.489 -13.489 0.000 28.49 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -46.206 -46.206 0.000 33.36 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(373 K, 171 atm) - - CH4(g) -21.71 -24.62 -2.91 CH4 - CO2(g) 1.92 0.02 -1.90 CO2 Pressure 168.1 atm, phi 0.644. - H2(g) -10.39 -13.49 -3.10 H2 - H2O(g) 0.03 -0.01 -0.04 H2O Pressure 3.2 atm, phi 0.331. - O2(g) -43.00 -46.21 -3.20 O2 - - -Reaction step 12. - -Using solution 1. -Using gas phase 1. -Using temperature 4. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 187.08 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 9.89e-002 liters/mole - P * Vm / RT: 0.60411 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.26 1.835e+002 0.623 8.960e+000 9.917e+000 9.571e-001 -H2O(g) 0.56 3.628e+000 0.300 1.732e-001 1.961e-001 2.288e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.087e+000 1.083e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.177 Charge balance - pe = 2.005 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100 oC) = 838 - Density (g/cm3) = 0.98876 - Volume (L) = 1.10966 - Activity of water = 0.982 - Ionic strength = 6.884e-004 - Mass of water (kg) = 9.965e-001 - Total alkalinity (eq/kg) = 1.222e-009 - Total CO2 (mol/kg) = 1.087e+000 - Temperature (deg C) = 100.00 - Pressure (atm) = 187.08 - Electrical balance (eq) = -1.218e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 27 - Total H = 1.106202e+002 - Total O = 5.747576e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 6.884e-004 6.659e-004 -3.162 -3.177 -0.014 0.00 - OH- 1.028e-009 9.930e-010 -8.988 -9.003 -0.015 -6.69 - H2O 5.551e+001 9.815e-001 1.744 -0.008 0.000 18.63 -C(-4) 9.500e-027 - CH4 9.500e-027 9.501e-027 -26.022 -26.022 0.000 32.22 -C(4) 1.087e+000 - CO2 1.086e+000 1.086e+000 0.036 0.036 0.000 23.63 - HCO3- 6.884e-004 6.653e-004 -3.162 -3.177 -0.015 25.11 - CO3-2 9.733e-011 8.491e-011 -10.012 -10.071 -0.059 -6.95 -H(0) 2.845e-014 - H2 1.423e-014 1.423e-014 -13.847 -13.847 0.000 28.48 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -45.503 -45.503 0.000 33.31 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(373 K, 187 atm) - - CH4(g) -23.12 -26.02 -2.90 CH4 - CO2(g) 1.93 0.04 -1.89 CO2 Pressure 183.5 atm, phi 0.623. - H2(g) -10.75 -13.85 -3.10 H2 - H2O(g) 0.04 -0.01 -0.04 H2O Pressure 3.6 atm, phi 0.300. - O2(g) -42.29 -45.50 -3.21 O2 - - -Reaction step 13. - -Using solution 1. -Using gas phase 1. -Using temperature 4. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 204.19 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 9.01e-002 liters/mole - P * Vm / RT: 0.60102 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.30 2.001e+002 0.602 9.917e+000 1.087e+001 9.578e-001 -H2O(g) 0.61 4.055e+000 0.271 1.961e-001 2.203e-001 2.422e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.130e+000 1.125e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.166 Charge balance - pe = 1.964 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100 oC) = 859 - Density (g/cm3) = 0.99010 - Volume (L) = 1.11168 - Activity of water = 0.981 - Ionic strength = 7.056e-004 - Mass of water (kg) = 9.960e-001 - Total alkalinity (eq/kg) = 1.224e-009 - Total CO2 (mol/kg) = 1.130e+000 - Temperature (deg C) = 100.00 - Pressure (atm) = 204.19 - Electrical balance (eq) = -1.219e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 - Total H = 1.105718e+002 - Total O = 5.753594e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 7.056e-004 6.824e-004 -3.151 -3.166 -0.015 0.00 - OH- 1.018e-009 9.825e-010 -8.992 -9.008 -0.015 -6.76 - H2O 5.551e+001 9.808e-001 1.744 -0.008 0.000 18.61 -C(-4) 2.496e-026 - CH4 2.496e-026 2.497e-026 -25.603 -25.603 0.000 32.22 -C(4) 1.130e+000 - CO2 1.129e+000 1.129e+000 0.053 0.053 0.000 23.88 - HCO3- 7.056e-004 6.817e-004 -3.151 -3.166 -0.015 25.16 - CO3-2 9.914e-011 8.636e-011 -10.004 -10.064 -0.060 -6.77 -H(0) 3.551e-014 - H2 1.776e-014 1.776e-014 -13.751 -13.751 0.000 28.48 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -45.709 -45.709 0.000 33.26 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(373 K, 204 atm) - - CH4(g) -22.72 -25.60 -2.88 CH4 - CO2(g) 1.94 0.05 -1.89 CO2 Pressure 200.1 atm, phi 0.602. - H2(g) -10.65 -13.75 -3.10 H2 - H2O(g) 0.04 -0.01 -0.05 H2O Pressure 4.1 atm, phi 0.271. - O2(g) -42.49 -45.71 -3.22 O2 - - -Reaction step 14. - -Using solution 1. -Using gas phase 1. -Using temperature 4. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 223.21 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 8.28e-002 liters/mole - P * Vm / RT: 0.60354 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.34 2.187e+002 0.582 1.087e+001 1.183e+001 9.574e-001 -H2O(g) 0.66 4.541e+000 0.244 2.203e-001 2.457e-001 2.540e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.173e+000 1.168e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.155 Charge balance - pe = 1.953 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100 oC) = 880 - Density (g/cm3) = 0.99148 - Volume (L) = 1.11367 - Activity of water = 0.980 - Ionic strength = 7.234e-004 - Mass of water (kg) = 9.956e-001 - Total alkalinity (eq/kg) = 1.231e-009 - Total CO2 (mol/kg) = 1.173e+000 - Temperature (deg C) = 100.00 - Pressure (atm) = 223.21 - Electrical balance (eq) = -1.225e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 - Total H = 1.105210e+002 - Total O = 5.759571e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 7.234e-004 6.994e-004 -3.141 -3.155 -0.015 0.00 - OH- 1.009e-009 9.735e-010 -8.996 -9.012 -0.015 -6.83 - H2O 5.551e+001 9.800e-001 1.744 -0.009 0.000 18.60 -C(-4) 3.727e-026 - CH4 3.727e-026 3.728e-026 -25.429 -25.429 0.000 32.22 -C(4) 1.173e+000 - CO2 1.172e+000 1.172e+000 0.069 0.069 0.000 24.16 - HCO3- 7.234e-004 6.986e-004 -3.141 -3.156 -0.015 25.21 - CO3-2 1.012e-010 8.800e-011 -9.995 -10.056 -0.061 -6.57 -H(0) 3.844e-014 - H2 1.922e-014 1.922e-014 -13.716 -13.716 0.000 28.47 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -45.793 -45.793 0.000 33.21 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(373 K, 223 atm) - - CH4(g) -22.56 -25.43 -2.87 CH4 - CO2(g) 1.95 0.07 -1.88 CO2 Pressure 218.7 atm, phi 0.582. - H2(g) -10.62 -13.72 -3.10 H2 - H2O(g) 0.04 -0.01 -0.05 H2O Pressure 4.5 atm, phi 0.244. - O2(g) -42.56 -45.79 -3.23 O2 - - -Reaction step 15. - -Using solution 1. -Using gas phase 1. -Using temperature 4. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 244.71 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 7.66e-002 liters/mole - P * Vm / RT: 0.61189 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.38 2.396e+002 0.562 1.183e+001 1.279e+001 9.562e-001 -H2O(g) 0.71 5.098e+000 0.220 2.457e-001 2.721e-001 2.636e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.217e+000 1.211e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.144 Charge balance - pe = 1.922 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100 oC) = 903 - Density (g/cm3) = 0.99292 - Volume (L) = 1.11568 - Activity of water = 0.979 - Ionic strength = 7.423e-004 - Mass of water (kg) = 9.951e-001 - Total alkalinity (eq/kg) = 1.232e-009 - Total CO2 (mol/kg) = 1.217e+000 - Temperature (deg C) = 100.00 - Pressure (atm) = 244.71 - Electrical balance (eq) = -1.226e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 36 - Total H = 1.104682e+002 - Total O = 5.765697e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 7.423e-004 7.174e-004 -3.129 -3.144 -0.015 0.00 - OH- 1.001e-009 9.659e-010 -8.999 -9.015 -0.016 -6.91 - H2O 5.551e+001 9.793e-001 1.744 -0.009 0.000 18.58 -C(-4) 8.224e-026 - CH4 8.224e-026 8.225e-026 -25.085 -25.085 0.000 32.22 -C(4) 1.217e+000 - CO2 1.217e+000 1.217e+000 0.085 0.085 0.000 24.47 - HCO3- 7.423e-004 7.166e-004 -3.129 -3.145 -0.015 25.26 - CO3-2 1.035e-010 8.986e-011 -9.985 -10.046 -0.061 -6.36 -H(0) 4.582e-014 - H2 2.291e-014 2.291e-014 -13.640 -13.640 0.000 28.46 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -45.962 -45.962 0.000 33.14 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(373 K, 245 atm) - - CH4(g) -22.24 -25.08 -2.85 CH4 - CO2(g) 1.96 0.09 -1.87 CO2 Pressure 239.6 atm, phi 0.562. - H2(g) -10.54 -13.64 -3.10 H2 - H2O(g) 0.05 -0.01 -0.06 H2O Pressure 5.1 atm, phi 0.220. - O2(g) -42.72 -45.96 -3.24 O2 - - -Reaction step 16. - -Using solution 1. -Using gas phase 1. -Using temperature 4. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 269.32 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 7.12e-002 liters/mole - P * Vm / RT: 0.62636 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.42 2.636e+002 0.543 1.279e+001 1.374e+001 9.543e-001 -H2O(g) 0.76 5.738e+000 0.198 2.721e-001 2.992e-001 2.708e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.264e+000 1.257e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.133 Charge balance - pe = 2.034 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100 oC) = 928 - Density (g/cm3) = 0.99446 - Volume (L) = 1.11774 - Activity of water = 0.978 - Ionic strength = 7.627e-004 - Mass of water (kg) = 9.946e-001 - Total alkalinity (eq/kg) = 1.233e-009 - Total CO2 (mol/kg) = 1.264e+000 - Temperature (deg C) = 100.00 - Pressure (atm) = 269.32 - Electrical balance (eq) = -1.226e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 42 - Total H = 1.104141e+002 - Total O = 5.772131e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 7.627e-004 7.368e-004 -3.118 -3.133 -0.015 0.00 - OH- 9.952e-010 9.598e-010 -9.002 -9.018 -0.016 -7.00 - H2O 5.551e+001 9.785e-001 1.744 -0.009 0.000 18.56 -C(-4) 1.298e-026 - CH4 1.298e-026 1.298e-026 -25.887 -25.887 0.000 32.22 -C(4) 1.264e+000 - CO2 1.263e+000 1.263e+000 0.101 0.102 0.000 24.82 - HCO3- 7.627e-004 7.360e-004 -3.118 -3.133 -0.015 25.33 - CO3-2 1.061e-010 9.203e-011 -9.974 -10.036 -0.062 -6.11 -H(0) 2.818e-014 - H2 1.409e-014 1.409e-014 -13.851 -13.851 0.000 28.45 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -45.559 -45.559 0.000 33.07 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(373 K, 269 atm) - - CH4(g) -23.06 -25.89 -2.83 CH4 - CO2(g) 1.97 0.10 -1.87 CO2 Pressure 263.6 atm, phi 0.543. - H2(g) -10.75 -13.85 -3.10 H2 - H2O(g) 0.06 -0.01 -0.07 H2O Pressure 5.7 atm, phi 0.198. - O2(g) -42.30 -45.56 -3.26 O2 - - -Reaction step 17. - -Using solution 1. -Using gas phase 1. -Using temperature 4. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 297.77 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 6.66e-002 liters/mole - P * Vm / RT: 0.64737 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.46 2.913e+002 0.524 1.374e+001 1.469e+001 9.519e-001 -H2O(g) 0.81 6.476e+000 0.179 2.992e-001 3.267e-001 2.751e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.313e+000 1.305e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.120 Charge balance - pe = 2.103 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100 oC) = 955 - Density (g/cm3) = 0.99611 - Volume (L) = 1.11989 - Activity of water = 0.978 - Ionic strength = 7.850e-004 - Mass of water (kg) = 9.941e-001 - Total alkalinity (eq/kg) = 1.234e-009 - Total CO2 (mol/kg) = 1.313e+000 - Temperature (deg C) = 100.00 - Pressure (atm) = 297.77 - Electrical balance (eq) = -1.227e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 75 - Total H = 1.103591e+002 - Total O = 5.778999e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 7.850e-004 7.580e-004 -3.105 -3.120 -0.015 0.00 - OH- 9.909e-010 9.552e-010 -9.004 -9.020 -0.016 -7.10 - H2O 5.551e+001 9.777e-001 1.744 -0.010 0.000 18.54 -C(-4) 4.623e-027 - CH4 4.623e-027 4.624e-027 -26.335 -26.335 0.000 32.22 -C(4) 1.313e+000 - CO2 1.312e+000 1.312e+000 0.118 0.118 0.000 25.21 - HCO3- 7.850e-004 7.572e-004 -3.105 -3.121 -0.016 25.40 - CO3-2 1.092e-010 9.456e-011 -9.962 -10.024 -0.063 -5.83 -H(0) 2.119e-014 - H2 1.060e-014 1.060e-014 -13.975 -13.975 0.000 28.44 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -45.333 -45.333 0.000 33.00 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(373 K, 298 atm) - - CH4(g) -23.53 -26.34 -2.81 CH4 - CO2(g) 1.98 0.12 -1.86 CO2 Pressure 291.3 atm, phi 0.524. - H2(g) -10.87 -13.97 -3.10 H2 - H2O(g) 0.06 -0.01 -0.07 H2O Pressure 6.5 atm, phi 0.179. - O2(g) -42.06 -45.33 -3.27 O2 - - -Reaction step 18. - -Using solution 1. -Using gas phase 1. -Using temperature 4. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 330.87 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 6.25e-002 liters/mole - P * Vm / RT: 0.67541 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.51 3.235e+002 0.507 1.469e+001 1.564e+001 9.492e-001 -H2O(g) 0.86 7.327e+000 0.161 3.267e-001 3.543e-001 2.760e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.365e+000 1.356e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.107 Charge balance - pe = 10.664 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100 oC) = 984 - Density (g/cm3) = 0.99788 - Volume (L) = 1.12213 - Activity of water = 0.977 - Ionic strength = 8.098e-004 - Mass of water (kg) = 9.936e-001 - Total alkalinity (eq/kg) = 1.235e-009 - Total CO2 (mol/kg) = 1.365e+000 - Temperature (deg C) = 100.00 - Pressure (atm) = 330.87 - Electrical balance (eq) = -1.227e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 95 - Total H = 1.103039e+002 - Total O = 5.786398e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.098e-004 7.816e-004 -3.092 -3.107 -0.015 0.00 - OH- 9.885e-010 9.524e-010 -9.005 -9.021 -0.016 -7.22 - H2O 5.551e+001 9.768e-001 1.744 -0.010 0.000 18.51 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -94.720 -94.720 0.000 32.22 -C(4) 1.365e+000 - CO2 1.364e+000 1.364e+000 0.135 0.135 0.000 25.66 - HCO3- 8.098e-004 7.807e-004 -3.092 -3.108 -0.016 25.48 - CO3-2 1.129e-010 9.755e-011 -9.947 -10.011 -0.063 -5.51 -H(0) 1.647e-031 - H2 8.236e-032 8.237e-032 -31.084 -31.084 0.000 28.43 -O(0) 1.451e-011 - O2 7.256e-012 7.257e-012 -11.139 -11.139 0.000 32.91 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(373 K, 331 atm) - - CH4(g) -91.94 -94.72 -2.78 CH4 - CO2(g) 1.98 0.13 -1.85 CO2 Pressure 323.5 atm, phi 0.507. - H2(g) -27.98 -31.08 -3.10 H2 - H2O(g) 0.07 -0.01 -0.08 H2O Pressure 7.3 atm, phi 0.161. - O2(g) -7.85 -11.14 -3.29 O2 - - -Reaction step 19. - -Using solution 1. -Using gas phase 1. -Using temperature 4. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 369.58 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 5.89e-002 liters/mole - P * Vm / RT: 0.71115 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.56 3.613e+002 0.490 1.564e+001 1.659e+001 9.464e-001 -H2O(g) 0.92 8.310e+000 0.145 3.543e-001 3.816e-001 2.732e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.419e+000 1.410e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.093 Charge balance - pe = 10.678 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100 oC) = 1018 - Density (g/cm3) = 0.99979 - Volume (L) = 1.12448 - Activity of water = 0.976 - Ionic strength = 8.376e-004 - Mass of water (kg) = 9.931e-001 - Total alkalinity (eq/kg) = 1.235e-009 - Total CO2 (mol/kg) = 1.419e+000 - Temperature (deg C) = 100.00 - Pressure (atm) = 369.58 - Electrical balance (eq) = -1.227e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 87 - Total H = 1.102492e+002 - Total O = 5.794382e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.376e-004 8.081e-004 -3.077 -3.093 -0.016 0.00 - OH- 9.885e-010 9.519e-010 -9.005 -9.021 -0.016 -7.35 - H2O 5.551e+001 9.759e-001 1.744 -0.011 0.000 18.48 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -94.720 -94.720 0.000 32.22 -C(4) 1.419e+000 - CO2 1.419e+000 1.419e+000 0.152 0.152 0.000 26.18 - HCO3- 8.376e-004 8.071e-004 -3.077 -3.093 -0.016 25.58 - CO3-2 1.173e-010 1.011e-010 -9.931 -9.995 -0.064 -5.14 -H(0) 1.592e-031 - H2 7.962e-032 7.964e-032 -31.099 -31.099 0.000 28.41 -O(0) 1.451e-011 - O2 7.254e-012 7.255e-012 -11.139 -11.139 0.000 32.80 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(373 K, 370 atm) - - CH4(g) -91.97 -94.72 -2.75 CH4 - CO2(g) 1.99 0.15 -1.84 CO2 Pressure 361.3 atm, phi 0.490. - H2(g) -28.00 -31.10 -3.10 H2 - H2O(g) 0.08 -0.01 -0.09 H2O Pressure 8.3 atm, phi 0.145. - O2(g) -7.83 -11.14 -3.31 O2 - - -Reaction step 20. - -Using solution 1. -Using gas phase 1. -Using temperature 4. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 415.02 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 5.57e-002 liters/mole - P * Vm / RT: 0.75540 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.61 4.056e+002 0.476 1.659e+001 1.753e+001 9.439e-001 -H2O(g) 0.98 9.442e+000 0.131 3.816e-001 4.082e-001 2.662e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.477e+000 1.466e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.077 Charge balance - pe = 10.693 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100 oC) = 1056 - Density (g/cm3) = 1.00185 - Volume (L) = 1.12690 - Activity of water = 0.975 - Ionic strength = 8.691e-004 - Mass of water (kg) = 9.926e-001 - Total alkalinity (eq/kg) = 1.236e-009 - Total CO2 (mol/kg) = 1.477e+000 - Temperature (deg C) = 100.00 - Pressure (atm) = 415.02 - Electrical balance (eq) = -1.227e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 95 - Total H = 1.101960e+002 - Total O = 5.802948e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.691e-004 8.381e-004 -3.061 -3.077 -0.016 0.00 - OH- 9.914e-010 9.542e-010 -9.004 -9.020 -0.017 -7.50 - H2O 5.551e+001 9.749e-001 1.744 -0.011 0.000 18.44 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -94.722 -94.722 0.000 32.22 -C(4) 1.477e+000 - CO2 1.476e+000 1.476e+000 0.169 0.169 0.000 26.77 - HCO3- 8.691e-004 8.371e-004 -3.061 -3.077 -0.016 25.68 - CO3-2 1.225e-010 1.054e-010 -9.912 -9.977 -0.065 -4.72 -H(0) 1.530e-031 - H2 7.652e-032 7.654e-032 -31.116 -31.116 0.000 28.39 -O(0) 1.451e-011 - O2 7.255e-012 7.257e-012 -11.139 -11.139 0.000 32.69 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(373 K, 415 atm) - - CH4(g) -92.01 -94.72 -2.71 CH4 - CO2(g) 1.99 0.17 -1.82 CO2 Pressure 405.6 atm, phi 0.476. - H2(g) -28.02 -31.12 -3.10 H2 - H2O(g) 0.09 -0.01 -0.10 H2O Pressure 9.4 atm, phi 0.131. - O2(g) -7.81 -11.14 -3.33 O2 - - -Reaction step 21. - -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - -Using solution 1. -Using gas phase 1. -Using temperature 4. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 468.56 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 5.29e-002 liters/mole - P * Vm / RT: 0.80922 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.66 4.578e+002 0.465 1.753e+001 1.848e+001 9.419e-001 -H2O(g) 1.03 1.075e+001 0.119 4.082e-001 4.337e-001 2.547e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.536e+000 1.524e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.059 Charge balance - pe = 10.710 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100 oC) = 1099 - Density (g/cm3) = 1.00407 - Volume (L) = 1.12934 - Activity of water = 0.974 - Ionic strength = 9.052e-004 - Mass of water (kg) = 9.922e-001 - Total alkalinity (eq/kg) = 1.237e-009 - Total CO2 (mol/kg) = 1.536e+000 - Temperature (deg C) = 100.00 - Pressure (atm) = 468.56 - Electrical balance (eq) = -1.227e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 11 - Total H = 1.101451e+002 - Total O = 5.812017e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 9.052e-004 8.724e-004 -3.043 -3.059 -0.016 0.00 - OH- 9.982e-010 9.601e-010 -9.001 -9.018 -0.017 -7.67 - H2O 5.551e+001 9.739e-001 1.744 -0.011 0.000 18.40 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -94.726 -94.726 0.000 32.22 -C(4) 1.536e+000 - CO2 1.535e+000 1.535e+000 0.186 0.186 0.000 27.44 - HCO3- 9.052e-004 8.713e-004 -3.043 -3.060 -0.017 25.81 - CO3-2 1.288e-010 1.105e-010 -9.890 -9.957 -0.066 -4.24 -H(0) 1.461e-031 - H2 7.305e-032 7.306e-032 -31.136 -31.136 0.000 28.38 -O(0) 1.451e-011 - O2 7.257e-012 7.259e-012 -11.139 -11.139 0.000 32.55 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(373 K, 469 atm) - - CH4(g) -92.06 -94.73 -2.67 CH4 - CO2(g) 2.00 0.19 -1.81 CO2 Pressure 457.8 atm, phi 0.465. - H2(g) -28.04 -31.14 -3.10 H2 - H2O(g) 0.11 -0.01 -0.12 H2O Pressure 10.7 atm, phi 0.119. - O2(g) -7.78 -11.14 -3.36 O2 - - -Reaction step 22. - -Using solution 1. -Using gas phase 1. -Using temperature 4. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 531.88 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 5.03e-002 liters/mole - P * Vm / RT: 0.87397 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.72 5.196e+002 0.456 1.848e+001 1.942e+001 9.412e-001 -H2O(g) 1.09 1.224e+001 0.108 4.337e-001 4.575e-001 2.382e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.596e+000 1.583e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.040 Charge balance - pe = 10.729 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100 oC) = 1150 - Density (g/cm3) = 1.00643 - Volume (L) = 1.13169 - Activity of water = 0.973 - Ionic strength = 9.468e-004 - Mass of water (kg) = 9.917e-001 - Total alkalinity (eq/kg) = 1.237e-009 - Total CO2 (mol/kg) = 1.596e+000 - Temperature (deg C) = 100.00 - Pressure (atm) = 531.88 - Electrical balance (eq) = -1.227e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 21 - Total H = 1.100974e+002 - Total O = 5.821394e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 9.468e-004 9.119e-004 -3.024 -3.040 -0.016 0.00 - OH- 1.010e-009 9.708e-010 -8.996 -9.013 -0.017 -7.86 - H2O 5.551e+001 9.729e-001 1.744 -0.012 0.000 18.35 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -94.733 -94.733 0.000 32.22 -C(4) 1.596e+000 - CO2 1.595e+000 1.595e+000 0.203 0.203 0.000 28.20 - HCO3- 9.468e-004 9.107e-004 -3.024 -3.041 -0.017 25.95 - CO3-2 1.364e-010 1.168e-010 -9.865 -9.933 -0.067 -3.69 -H(0) 1.383e-031 - H2 6.917e-032 6.919e-032 -31.160 -31.160 0.000 28.35 -O(0) 1.451e-011 - O2 7.257e-012 7.259e-012 -11.139 -11.139 0.000 32.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(373 K, 532 atm) - - CH4(g) -92.11 -94.73 -2.62 CH4 - CO2(g) 2.00 0.20 -1.79 CO2 Pressure 519.6 atm, phi 0.456. - H2(g) -28.06 -31.16 -3.10 H2 - H2O(g) 0.12 -0.01 -0.13 H2O Pressure 12.2 atm, phi 0.108. - O2(g) -7.75 -11.14 -3.39 O2 - - -Reaction step 23. - -Using solution 1. -Using gas phase 1. -Using temperature 4. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 607.13 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 4.80e-002 liters/mole - P * Vm / RT: 0.95145 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.77 5.932e+002 0.452 1.942e+001 2.036e+001 9.425e-001 -H2O(g) 1.14 1.396e+001 0.099 4.575e-001 4.791e-001 2.163e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.654e+000 1.640e+000 - -----------------------------Description of solution---------------------------- - - pH = 3.019 Charge balance - pe = 10.749 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100 oC) = 1208 - Density (g/cm3) = 1.00895 - Volume (L) = 1.13378 - Activity of water = 0.972 - Ionic strength = 9.952e-004 - Mass of water (kg) = 9.914e-001 - Total alkalinity (eq/kg) = 1.237e-009 - Total CO2 (mol/kg) = 1.654e+000 - Temperature (deg C) = 100.00 - Pressure (atm) = 607.13 - Electrical balance (eq) = -1.227e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 23 - Total H = 1.100542e+002 - Total O = 5.830723e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 9.952e-004 9.579e-004 -3.002 -3.019 -0.017 0.00 - OH- 1.028e-009 9.878e-010 -8.988 -9.005 -0.018 -8.08 - H2O 5.551e+001 9.719e-001 1.744 -0.012 0.000 18.29 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -94.743 -94.743 0.000 32.22 -C(4) 1.654e+000 - CO2 1.653e+000 1.654e+000 0.218 0.218 0.000 29.06 - HCO3- 9.952e-004 9.566e-004 -3.002 -3.019 -0.017 26.11 - CO3-2 1.458e-010 1.245e-010 -9.836 -9.905 -0.069 -3.07 -H(0) 1.297e-031 - H2 6.485e-032 6.486e-032 -31.188 -31.188 0.000 28.33 -O(0) 1.452e-011 - O2 7.259e-012 7.261e-012 -11.139 -11.139 0.000 32.23 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(373 K, 607 atm) - - CH4(g) -92.18 -94.74 -2.57 CH4 - CO2(g) 1.99 0.22 -1.78 CO2 Pressure 593.2 atm, phi 0.452. - H2(g) -28.09 -31.19 -3.10 H2 - H2O(g) 0.14 -0.01 -0.15 H2O Pressure 14.0 atm, phi 0.099. - O2(g) -7.71 -11.14 -3.43 O2 - - -Reaction step 24. - -Using solution 1. -Using gas phase 1. -Using temperature 4. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 697.15 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 4.59e-002 liters/mole - P * Vm / RT: 1.04413 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.83 6.812e+002 0.452 2.036e+001 2.131e+001 9.472e-001 -H2O(g) 1.20 1.592e+001 0.091 4.791e-001 4.980e-001 1.886e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.708e+000 1.693e+000 - -----------------------------Description of solution---------------------------- - - pH = 2.995 Charge balance - pe = 10.772 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100 oC) = 1277 - Density (g/cm3) = 1.01163 - Volume (L) = 1.13530 - Activity of water = 0.971 - Ionic strength = 1.052e-003 - Mass of water (kg) = 9.910e-001 - Total alkalinity (eq/kg) = 1.238e-009 - Total CO2 (mol/kg) = 1.708e+000 - Temperature (deg C) = 100.00 - Pressure (atm) = 697.15 - Electrical balance (eq) = -1.226e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 - Total H = 1.100164e+002 - Total O = 5.839405e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.052e-003 1.012e-003 -2.978 -2.995 -0.017 0.00 - OH- 1.056e-009 1.013e-009 -8.976 -8.994 -0.018 -8.33 - H2O 5.551e+001 9.709e-001 1.744 -0.013 0.000 18.22 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -94.758 -94.758 0.000 32.22 -C(4) 1.708e+000 - CO2 1.707e+000 1.708e+000 0.232 0.232 0.000 30.05 - HCO3- 1.052e-003 1.011e-003 -2.978 -2.995 -0.018 26.30 - CO3-2 1.575e-010 1.340e-010 -9.803 -9.873 -0.070 -2.36 -H(0) 1.201e-031 - H2 6.006e-032 6.007e-032 -31.221 -31.221 0.000 28.30 -O(0) 1.453e-011 - O2 7.263e-012 7.265e-012 -11.139 -11.139 0.000 32.03 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(373 K, 697 atm) - - CH4(g) -92.26 -94.76 -2.50 CH4 - CO2(g) 1.99 0.23 -1.76 CO2 Pressure 681.2 atm, phi 0.452. - H2(g) -28.12 -31.22 -3.10 H2 - H2O(g) 0.16 -0.01 -0.17 H2O Pressure 15.9 atm, phi 0.091. - O2(g) -7.66 -11.14 -3.47 O2 - - -Reaction step 25. - -Using solution 1. -Using gas phase 1. -Using temperature 4. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 805.91 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 4.39e-002 liters/mole - P * Vm / RT: 1.15550 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.90 7.877e+002 0.460 2.131e+001 2.226e+001 9.569e-001 -H2O(g) 1.26 1.817e+001 0.085 4.980e-001 5.134e-001 1.541e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.752e+000 1.736e+000 - -----------------------------Description of solution---------------------------- - - pH = 2.968 Charge balance - pe = 10.797 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100 oC) = 1359 - Density (g/cm3) = 1.01447 - Volume (L) = 1.13580 - Activity of water = 0.970 - Ionic strength = 1.121e-003 - Mass of water (kg) = 9.907e-001 - Total alkalinity (eq/kg) = 1.237e-009 - Total CO2 (mol/kg) = 1.752e+000 - Temperature (deg C) = 100.00 - Pressure (atm) = 805.91 - Electrical balance (eq) = -1.226e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 27 - Total H = 1.099856e+002 - Total O = 5.846487e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.121e-003 1.077e-003 -2.950 -2.968 -0.017 0.00 - OH- 1.096e-009 1.051e-009 -8.960 -8.978 -0.018 -8.61 - H2O 5.551e+001 9.702e-001 1.744 -0.013 0.000 18.15 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -94.778 -94.778 0.000 32.22 -C(4) 1.752e+000 - CO2 1.751e+000 1.752e+000 0.243 0.243 0.000 31.16 - HCO3- 1.121e-003 1.076e-003 -2.950 -2.968 -0.018 26.51 - CO3-2 1.723e-010 1.460e-010 -9.764 -9.836 -0.072 -1.55 -H(0) 1.095e-031 - H2 5.477e-032 5.478e-032 -31.261 -31.261 0.000 28.27 -O(0) 1.454e-011 - O2 7.269e-012 7.271e-012 -11.139 -11.138 0.000 31.81 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(373 K, 806 atm) - - CH4(g) -92.35 -94.78 -2.43 CH4 - CO2(g) 1.98 0.24 -1.73 CO2 Pressure 787.7 atm, phi 0.460. - H2(g) -28.16 -31.26 -3.10 H2 - H2O(g) 0.19 -0.01 -0.20 H2O Pressure 18.2 atm, phi 0.085. - O2(g) -7.61 -11.14 -3.53 O2 - - -Reaction step 26. - -Using solution 1. -Using gas phase 1. -Using temperature 4. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 939.21 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 4.21e-002 liters/mole - P * Vm / RT: 1.29076 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 2.96 9.185e+002 0.476 2.226e+001 2.324e+001 9.745e-001 -H2O(g) 1.32 2.073e+001 0.080 5.134e-001 5.245e-001 1.114e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.778e+000 1.762e+000 - -----------------------------Description of solution---------------------------- - - pH = 2.937 Charge balance - pe = 10.826 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100 oC) = 1460 - Density (g/cm3) = 1.01752 - Volume (L) = 1.13453 - Activity of water = 0.970 - Ionic strength = 1.205e-003 - Mass of water (kg) = 9.905e-001 - Total alkalinity (eq/kg) = 1.237e-009 - Total CO2 (mol/kg) = 1.778e+000 - Temperature (deg C) = 100.00 - Pressure (atm) = 939.21 - Electrical balance (eq) = -1.225e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 31 - Total H = 1.099633e+002 - Total O = 5.850478e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.205e-003 1.157e-003 -2.919 -2.937 -0.018 0.00 - OH- 1.156e-009 1.107e-009 -8.937 -8.956 -0.019 -8.93 - H2O 5.551e+001 9.697e-001 1.744 -0.013 0.000 18.05 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -94.806 -94.806 0.000 32.22 -C(4) 1.778e+000 - CO2 1.777e+000 1.778e+000 0.250 0.250 0.000 32.44 - HCO3- 1.205e-003 1.155e-003 -2.919 -2.937 -0.018 26.75 - CO3-2 1.914e-010 1.615e-010 -9.718 -9.792 -0.074 -0.61 -H(0) 9.790e-032 - H2 4.895e-032 4.896e-032 -31.310 -31.310 0.000 28.23 -O(0) 1.456e-011 - O2 7.280e-012 7.282e-012 -11.138 -11.138 0.000 31.55 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(373 K, 939 atm) - - CH4(g) -92.47 -94.81 -2.34 CH4 - CO2(g) 1.96 0.25 -1.71 CO2 Pressure 918.5 atm, phi 0.476. - H2(g) -28.21 -31.31 -3.10 H2 - H2O(g) 0.22 -0.01 -0.24 H2O Pressure 20.7 atm, phi 0.080. - O2(g) -7.54 -11.14 -3.60 O2 - - -Reaction step 27. - -Using solution 1. -Using gas phase 1. -Using temperature 4. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 1106.10 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 4.04e-002 liters/mole - P * Vm / RT: 1.45815 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 3.03 1.082e+003 0.507 2.324e+001 2.424e+001 1.004e+000 -H2O(g) 1.37 2.368e+001 0.077 5.245e-001 5.303e-001 5.798e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.774e+000 1.757e+000 - -----------------------------Description of solution---------------------------- - - pH = 2.901 Charge balance - pe = 10.859 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100 oC) = 1588 - Density (g/cm3) = 1.02085 - Volume (L) = 1.13033 - Activity of water = 0.970 - Ionic strength = 1.311e-003 - Mass of water (kg) = 9.904e-001 - Total alkalinity (eq/kg) = 1.236e-009 - Total CO2 (mol/kg) = 1.774e+000 - Temperature (deg C) = 100.00 - Pressure (atm) = 1106.10 - Electrical balance (eq) = -1.225e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 37 - Total H = 1.099517e+002 - Total O = 5.849044e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.311e-003 1.257e-003 -2.882 -2.901 -0.018 0.00 - OH- 1.245e-009 1.191e-009 -8.905 -8.924 -0.019 -9.29 - H2O 5.551e+001 9.698e-001 1.744 -0.013 0.000 17.94 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -94.841 -94.841 0.000 32.22 -C(4) 1.774e+000 - CO2 1.773e+000 1.774e+000 0.249 0.249 0.000 33.90 - HCO3- 1.311e-003 1.255e-003 -2.882 -2.901 -0.019 27.03 - CO3-2 2.170e-010 1.821e-010 -9.664 -9.740 -0.076 0.46 -H(0) 8.523e-032 - H2 4.261e-032 4.263e-032 -31.370 -31.370 0.000 28.19 -O(0) 1.456e-011 - O2 7.280e-012 7.283e-012 -11.138 -11.138 0.000 31.26 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(373 K, 1106 atm) - - CH4(g) -92.61 -94.84 -2.23 CH4 - CO2(g) 1.93 0.25 -1.69 CO2 Pressure 1082.4 atm, phi 0.507. - H2(g) -28.27 -31.37 -3.10 H2 - H2O(g) 0.26 -0.01 -0.28 H2O Pressure 23.7 atm, phi 0.077. - O2(g) -7.46 -11.14 -3.68 O2 - - -Reaction step 28. - -Using solution 1. -Using gas phase 1. -Using temperature 4. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CO2 1.00000 - - Relative - Element moles - C 1.00000 - O 2.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 1321.82 atmospheres (Peng-Robinson calculation) - Gas volume: 1.00e+000 liters - Molar volume: 3.87e-002 liters/mole - P * Vm / RT: 1.67152 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CO2(g) 3.11 1.295e+003 0.562 2.424e+001 2.530e+001 1.053e+000 -H2O(g) 1.43 2.709e+001 0.076 5.303e-001 5.292e-001 -1.129e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.720e+000 1.704e+000 - -----------------------------Description of solution---------------------------- - - pH = 2.858 Charge balance - pe = 10.898 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100 oC) = 1755 - Density (g/cm3) = 1.02462 - Volume (L) = 1.12136 - Activity of water = 0.971 - Ionic strength = 1.450e-003 - Mass of water (kg) = 9.904e-001 - Total alkalinity (eq/kg) = 1.236e-009 - Total CO2 (mol/kg) = 1.720e+000 - Temperature (deg C) = 100.00 - Pressure (atm) = 1321.82 - Electrical balance (eq) = -1.224e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 43 - Total H = 1.099540e+002 - Total O = 5.838492e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.450e-003 1.388e-003 -2.839 -2.858 -0.019 0.00 - OH- 1.387e-009 1.324e-009 -8.858 -8.878 -0.020 -9.71 - H2O 5.551e+001 9.707e-001 1.744 -0.013 0.000 17.81 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -94.891 -94.891 0.000 32.22 -C(4) 1.720e+000 - CO2 1.719e+000 1.720e+000 0.235 0.235 0.000 35.61 - HCO3- 1.450e-003 1.386e-003 -2.839 -2.858 -0.020 27.36 - CO3-2 2.529e-010 2.109e-010 -9.597 -9.676 -0.079 1.73 -H(0) 7.133e-032 - H2 3.567e-032 3.568e-032 -31.448 -31.448 0.000 28.14 -O(0) 1.457e-011 - O2 7.286e-012 7.288e-012 -11.138 -11.137 0.000 30.92 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(373 K, 1322 atm) - - CH4(g) -92.80 -94.89 -2.10 CH4 - CO2(g) 1.89 0.24 -1.66 CO2 Pressure 1294.7 atm, phi 0.562. - H2(g) -28.35 -31.45 -3.10 H2 - H2O(g) 0.32 -0.01 -0.33 H2O Pressure 27.1 atm, phi 0.076. - O2(g) -7.36 -11.14 -3.78 O2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 5. ------------------------------------- - -------------------------------- -End of Run after 0.842 Seconds. -------------------------------- - diff --git a/examples_pc/ex2b.out b/examples_pc/ex2b.out deleted file mode 100644 index efa25ece..00000000 --- a/examples_pc/ex2b.out +++ /dev/null @@ -1,29 +0,0 @@ - Input file: ..\examples\ex2b - Output file: ex2b.out -Database file: ..\database\phreeqc.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - PHASES - EXCHANGE_MASTER_SPECIES - EXCHANGE_SPECIES - SURFACE_MASTER_SPECIES - SURFACE_SPECIES - RATES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Calculate gypsum/anhydrite transitions, 30 - 170 oC, 1 - 1000 atm - Data in ex2b.tsv from Blount and Dickson, 1973, Am. Mineral. 58, 323, fig. 2. - PRINT - reset false -------------------------------- -End of Run after 0.673 Seconds. -------------------------------- - diff --git a/examples_pc/ex3.out b/examples_pc/ex3.out deleted file mode 100644 index 2e70c4d5..00000000 --- a/examples_pc/ex3.out +++ /dev/null @@ -1,812 +0,0 @@ - Input file: ..\examples\ex3 - Output file: ex3.out -Database file: ..\database\phreeqc.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - PHASES - EXCHANGE_MASTER_SPECIES - EXCHANGE_SPECIES - SURFACE_MASTER_SPECIES - SURFACE_SPECIES - RATES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Example 3, part A.--Calcite equilibrium at log Pco2 = -2.0 and 25C. - SOLUTION 1 Pure water - pH 7.0 - temp 25.0 - EQUILIBRIUM_PHASES - CO2(g) -2.0 - Calcite 0.0 - SAVE solution 1 - END ------ -TITLE ------ - - Example 3, part A.--Calcite equilibrium at log Pco2 = -2.0 and 25C. - -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 1. Pure water - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Pure water - -----------------------------Description of solution---------------------------- - - pH = 7.000 - pe = 4.000 - Specific Conductance (uS/cm, 25 oC) = 0 - Density (g/cm3) = 0.99704 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 1.007e-007 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.217e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.60 - Iterations = 0 - Total H = 1.110124e+002 - Total O = 5.550622e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.013e-007 1.012e-007 -6.995 -6.995 -0.000 -4.14 - H+ 1.001e-007 1.000e-007 -7.000 -7.000 -0.000 0.00 - H2O 5.551e+001 1.000e+000 1.744 0.000 0.000 18.07 -H(0) 1.416e-025 - H2 7.079e-026 7.079e-026 -25.150 -25.150 0.000 28.61 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -42.080 -42.080 0.000 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - H2(g) -22.05 -25.15 -3.10 H2 - H2O(g) -1.50 0.00 1.50 H2O - O2(g) -39.19 -42.08 -2.89 O2 - - ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Pure water -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -CO2(g) -2.00 -3.46 -1.46 1.000e+001 9.998e+000 -1.993e-003 -Calcite 0.00 -8.48 -8.48 1.000e+001 9.998e+000 -1.657e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 3.650e-003 3.650e-003 - Ca 1.657e-003 1.657e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.292 Charge balance - pe = -1.570 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 308 - Density (g/cm3) = 0.99726 - Volume (L) = 1.00318 - Activity of water = 1.000 - Ionic strength = 4.858e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 3.313e-003 - Total CO2 (mol/kg) = 3.650e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 - Total H = 1.110124e+002 - Total O = 5.551517e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 2.137e-007 1.981e-007 -6.670 -6.703 -0.033 -4.07 - H+ 5.467e-008 5.109e-008 -7.262 -7.292 -0.029 0.00 - H2O 5.551e+001 9.999e-001 1.744 -0.000 0.000 18.07 -C(-4) 1.422e-025 - CH4 1.422e-025 1.423e-025 -24.847 -24.847 0.000 32.22 -C(4) 3.650e-003 - HCO3- 3.245e-003 3.017e-003 -2.489 -2.520 -0.032 24.64 - CO2 3.462e-004 3.466e-004 -3.461 -3.460 0.000 30.26 - CaHCO3+ 4.947e-005 4.604e-005 -4.306 -4.337 -0.031 9.70 - CaCO3 5.559e-006 5.565e-006 -5.255 -5.255 0.000 -14.60 - CO3-2 3.707e-006 2.770e-006 -5.431 -5.558 -0.127 -4.22 -Ca 1.657e-003 - Ca+2 1.602e-003 1.196e-003 -2.795 -2.922 -0.127 -18.02 - CaHCO3+ 4.947e-005 4.604e-005 -4.306 -4.337 -0.031 9.70 - CaCO3 5.559e-006 5.565e-006 -5.255 -5.255 0.000 -14.60 - CaOH+ 4.187e-009 3.885e-009 -8.378 -8.411 -0.032 (0) -H(0) 5.085e-015 - H2 2.543e-015 2.546e-015 -14.595 -14.594 0.000 28.61 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -63.192 -63.192 0.000 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Aragonite -0.14 -8.48 -8.34 CaCO3 - Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -22.00 -24.85 -2.84 CH4 - CO2(g) -2.00 -3.46 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - H2(g) -11.49 -14.59 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - O2(g) -60.30 -63.19 -2.89 O2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 2. ------------------------------------- - - TITLE Example 3, part B.--Definition of seawater. - SOLUTION 2 Seawater - units ppm - pH 8.22 - pe 8.451 - density 1.023 - temp 25.0 - Ca 412.3 - Mg 1291.8 - Na 10768.0 - K 399.1 - Si 4.28 - Cl 19353.0 - Alkalinity 141.682 as HCO3 - S(6) 2712.0 - END ------ -TITLE ------ - - Example 3, part B.--Definition of seawater. - -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 2. Seawater - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Alkalinity 2.406e-003 2.406e-003 - Ca 1.066e-002 1.066e-002 - Cl 5.657e-001 5.657e-001 - K 1.058e-002 1.058e-002 - Mg 5.507e-002 5.507e-002 - Na 4.854e-001 4.854e-001 - S(6) 2.926e-002 2.926e-002 - Si 7.382e-005 7.382e-005 - -----------------------------Description of solution---------------------------- - - pH = 8.220 - pe = 8.451 - Specific Conductance (uS/cm, 25 oC) = 53257 - Density (g/cm3) = 1.02327 - Volume (L) = 1.01472 - Activity of water = 0.981 - Ionic strength = 6.745e-001 - Mass of water (kg) = 1.000e+000 - Total carbon (mol/kg) = 2.257e-003 - Total CO2 (mol/kg) = 2.257e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 7.967e-004 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.07 - Iterations = 7 - Total H = 1.110148e+002 - Total O = 5.563032e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 2.705e-006 1.647e-006 -5.568 -5.783 -0.215 -2.63 - H+ 7.983e-009 6.026e-009 -8.098 -8.220 -0.122 0.00 - H2O 5.551e+001 9.806e-001 1.744 -0.009 0.000 18.07 -C(4) 2.257e-003 - HCO3- 1.238e-003 8.360e-004 -2.907 -3.078 -0.170 27.87 - NaHCO3 6.169e-004 7.205e-004 -3.210 -3.142 0.067 19.41 - MgHCO3+ 2.137e-004 1.344e-004 -3.670 -3.872 -0.201 5.82 - MgCO3 7.301e-005 8.528e-005 -4.137 -4.069 0.067 -17.09 - CaHCO3+ 3.717e-005 2.572e-005 -4.430 -4.590 -0.160 9.96 - CO3-2 3.128e-005 6.506e-006 -4.505 -5.187 -0.682 -0.33 - CaCO3 2.257e-005 2.636e-005 -4.647 -4.579 0.067 -14.60 - NaCO3- 1.477e-005 9.972e-006 -4.831 -5.001 -0.170 1.78 - CO2 9.888e-006 1.155e-005 -5.005 -4.937 0.067 30.26 -Ca 1.066e-002 - Ca+2 9.645e-003 2.412e-003 -2.016 -2.618 -0.602 -16.69 - CaSO4 9.560e-004 1.117e-003 -3.020 -2.952 0.067 7.50 - CaHCO3+ 3.717e-005 2.572e-005 -4.430 -4.590 -0.160 9.96 - CaCO3 2.257e-005 2.636e-005 -4.647 -4.579 0.067 -14.60 - CaOH+ 8.721e-008 6.513e-008 -7.059 -7.186 -0.127 (0) - CaHSO4+ 5.922e-011 4.422e-011 -10.228 -10.354 -0.127 (0) -Cl 5.657e-001 - Cl- 5.657e-001 3.568e-001 -0.247 -0.448 -0.200 18.79 -H(0) 5.515e-037 - H2 2.758e-037 3.221e-037 -36.559 -36.492 0.067 28.61 -K 1.058e-002 - K+ 1.040e-002 6.483e-003 -1.983 -2.188 -0.205 9.66 - KSO4- 1.756e-004 1.186e-004 -3.755 -3.926 -0.170 (0) -Mg 5.507e-002 - Mg+2 4.759e-002 1.374e-002 -1.322 -1.862 -0.540 -20.41 - MgSO4 7.178e-003 8.384e-003 -2.144 -2.077 0.067 5.84 - MgHCO3+ 2.137e-004 1.344e-004 -3.670 -3.872 -0.201 5.82 - MgCO3 7.301e-005 8.528e-005 -4.137 -4.069 0.067 -17.09 - MgOH+ 1.152e-005 8.116e-006 -4.939 -5.091 -0.152 (0) -Na 4.854e-001 - Na+ 4.781e-001 3.431e-001 -0.320 -0.465 -0.144 -0.58 - NaSO4- 6.631e-003 4.478e-003 -2.178 -2.349 -0.170 22.62 - NaHCO3 6.169e-004 7.205e-004 -3.210 -3.142 0.067 19.41 - NaCO3- 1.477e-005 9.972e-006 -4.831 -5.001 -0.170 1.78 - NaOH 4.839e-017 5.652e-017 -16.315 -16.248 0.067 (0) -O(0) 6.615e-020 - O2 3.308e-020 3.863e-020 -19.480 -19.413 0.067 30.40 -S(6) 2.926e-002 - SO4-2 1.432e-002 2.604e-003 -1.844 -2.584 -0.740 16.99 - MgSO4 7.178e-003 8.384e-003 -2.144 -2.077 0.067 5.84 - NaSO4- 6.631e-003 4.478e-003 -2.178 -2.349 -0.170 22.62 - CaSO4 9.560e-004 1.117e-003 -3.020 -2.952 0.067 7.50 - KSO4- 1.756e-004 1.186e-004 -3.755 -3.926 -0.170 (0) - HSO4- 2.042e-009 1.525e-009 -8.690 -8.817 -0.127 40.96 - CaHSO4+ 5.922e-011 4.422e-011 -10.228 -10.354 -0.127 (0) -Si 7.382e-005 - H4SiO4 7.061e-005 8.248e-005 -4.151 -4.084 0.067 52.08 - H3SiO4- 3.210e-006 2.018e-006 -5.494 -5.695 -0.201 28.72 - H2SiO4-2 1.095e-010 2.278e-011 -9.960 -10.642 -0.682 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -0.92 -5.20 -4.28 CaSO4 - Aragonite 0.53 -7.80 -8.34 CaCO3 - Calcite 0.68 -7.80 -8.48 CaCO3 - Chalcedony -0.52 -4.07 -3.55 SiO2 - Chrysotile 3.36 35.56 32.20 Mg3Si2O5(OH)4 - CO2(g) -3.48 -4.94 -1.46 CO2 - Dolomite 2.24 -14.85 -17.09 CaMg(CO3)2 - Gypsum -0.64 -5.22 -4.58 CaSO4:2H2O - H2(g) -33.39 -36.49 -3.10 H2 - H2O(g) -1.51 -0.01 1.50 H2O - Halite -2.48 -0.91 1.57 NaCl - O2(g) -16.52 -19.41 -2.89 O2 - Quartz -0.09 -4.07 -3.98 SiO2 - Sepiolite 1.15 16.91 15.76 Mg2Si3O7.5OH:3H2O - Sepiolite(d) -1.75 16.91 18.66 Mg2Si3O7.5OH:3H2O - SiO2(a) -1.35 -4.07 -2.71 SiO2 - Sylvite -3.54 -2.64 0.90 KCl - Talc 6.03 27.43 21.40 Mg3Si4O10(OH)2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 3. ------------------------------------- - - TITLE Example 3, part C.--Mix 70% groundwater, 30% seawater. - MIX 1 - 1 0.7 - 2 0.3 - SAVE solution 3 - END ------ -TITLE ------ - - Example 3, part C.--Mix 70% groundwater, 30% seawater. - ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using mix 1. - -Mixture 1. - - 7.000e-001 Solution 1 Solution after simulation 1. - 3.000e-001 Solution 2 Seawater - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 3.232e-003 3.232e-003 - Ca 4.358e-003 4.358e-003 - Cl 1.697e-001 1.697e-001 - K 3.173e-003 3.173e-003 - Mg 1.652e-002 1.652e-002 - Na 1.456e-001 1.456e-001 - S 8.777e-003 8.777e-003 - Si 2.215e-005 2.215e-005 - -----------------------------Description of solution---------------------------- - - pH = 7.263 Charge balance - pe = 10.530 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 18711 - Density (g/cm3) = 1.00526 - Volume (L) = 1.00651 - Activity of water = 0.994 - Ionic strength = 2.085e-001 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 3.041e-003 - Total CO2 (mol/kg) = 3.232e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.390e-004 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.06 - Iterations = 15 - Total H = 1.110132e+002 - Total O = 5.554972e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 2.622e-007 1.845e-007 -6.581 -6.734 -0.153 -3.48 - H+ 6.852e-008 5.454e-008 -7.164 -7.263 -0.099 0.00 - H2O 5.551e+001 9.941e-001 1.744 -0.003 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -121.637 -121.616 0.021 32.22 -C(4) 3.232e-003 - HCO3- 2.374e-003 1.765e-003 -2.625 -2.753 -0.129 25.77 - NaHCO3 4.539e-004 4.762e-004 -3.343 -3.322 0.021 19.41 - CO2 2.075e-004 2.177e-004 -3.683 -3.662 0.021 30.26 - MgHCO3+ 1.434e-004 1.025e-004 -3.844 -3.989 -0.146 5.72 - CaHCO3+ 3.774e-005 2.846e-005 -4.423 -4.546 -0.123 9.88 - MgCO3 6.854e-006 7.191e-006 -5.164 -5.143 0.021 -17.09 - CO3-2 4.964e-006 1.518e-006 -5.304 -5.819 -0.515 -2.44 - CaCO3 3.071e-006 3.222e-006 -5.513 -5.492 0.021 -14.60 - NaCO3- 9.793e-007 7.282e-007 -6.009 -6.138 -0.129 0.26 -Ca 4.358e-003 - Ca+2 3.978e-003 1.264e-003 -2.400 -2.898 -0.498 -17.20 - CaSO4 3.393e-004 3.560e-004 -3.469 -3.449 0.021 7.50 - CaHCO3+ 3.774e-005 2.846e-005 -4.423 -4.546 -0.123 9.88 - CaCO3 3.071e-006 3.222e-006 -5.513 -5.492 0.021 -14.60 - CaOH+ 5.133e-009 3.823e-009 -8.290 -8.418 -0.128 (0) - CaHSO4+ 1.714e-010 1.276e-010 -9.766 -9.894 -0.128 (0) -Cl 1.697e-001 - Cl- 1.697e-001 1.209e-001 -0.770 -0.918 -0.147 18.47 -H(0) 3.491e-039 - H2 1.745e-039 1.831e-039 -38.758 -38.737 0.021 28.61 -K 3.173e-003 - K+ 3.140e-003 2.225e-003 -2.503 -2.653 -0.150 9.35 - KSO4- 3.330e-005 2.477e-005 -4.477 -4.606 -0.129 (0) -Mg 1.652e-002 - Mg+2 1.461e-002 4.966e-003 -1.835 -2.304 -0.469 -20.91 - MgSO4 1.757e-003 1.844e-003 -2.755 -2.734 0.021 5.84 - MgHCO3+ 1.434e-004 1.025e-004 -3.844 -3.989 -0.146 5.72 - MgCO3 6.854e-006 7.191e-006 -5.164 -5.143 0.021 -17.09 - MgOH+ 4.311e-007 3.286e-007 -6.365 -6.483 -0.118 (0) -Na 1.456e-001 - Na+ 1.440e-001 1.074e-001 -0.842 -0.969 -0.127 -0.95 - NaSO4- 1.147e-003 8.527e-004 -2.941 -3.069 -0.129 20.22 - NaHCO3 4.539e-004 4.762e-004 -3.343 -3.322 0.021 19.41 - NaCO3- 9.793e-007 7.282e-007 -6.009 -6.138 -0.129 0.26 - NaOH 1.889e-018 1.982e-018 -17.724 -17.703 0.021 (0) -O(0) 2.342e-015 - O2 1.171e-015 1.229e-015 -14.931 -14.911 0.021 30.40 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -118.600 -118.752 -0.153 21.00 - H2S 0.000e+000 0.000e+000 -119.095 -119.074 0.021 37.16 - S-2 0.000e+000 0.000e+000 -123.875 -124.407 -0.532 (0) -S(6) 8.777e-003 - SO4-2 5.501e-003 1.584e-003 -2.260 -2.800 -0.541 15.62 - MgSO4 1.757e-003 1.844e-003 -2.755 -2.734 0.021 5.84 - NaSO4- 1.147e-003 8.527e-004 -2.941 -3.069 -0.129 20.22 - CaSO4 3.393e-004 3.560e-004 -3.469 -3.449 0.021 7.50 - KSO4- 3.330e-005 2.477e-005 -4.477 -4.606 -0.129 (0) - HSO4- 1.128e-008 8.399e-009 -7.948 -8.076 -0.128 40.66 - CaHSO4+ 1.714e-010 1.276e-010 -9.766 -9.894 -0.128 (0) -Si 2.215e-005 - H4SiO4 2.206e-005 2.314e-005 -4.656 -4.636 0.021 52.08 - H3SiO4- 8.749e-008 6.257e-008 -7.058 -7.204 -0.146 28.37 - H2SiO4-2 2.553e-013 7.804e-014 -12.593 -13.108 -0.515 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -1.42 -5.70 -4.28 CaSO4 - Aragonite -0.38 -8.72 -8.34 CaCO3 - Calcite -0.24 -8.72 -8.48 CaCO3 - CH4(g) -118.77 -121.62 -2.84 CH4 - Chalcedony -1.08 -4.63 -3.55 SiO2 - Chrysotile -4.81 27.39 32.20 Mg3Si2O5(OH)4 - CO2(g) -2.20 -3.66 -1.46 CO2 - Dolomite 0.25 -16.84 -17.09 CaMg(CO3)2 - Gypsum -1.12 -5.70 -4.58 CaSO4:2H2O - H2(g) -35.64 -38.74 -3.10 H2 - H2O(g) -1.51 -0.00 1.50 H2O - H2S(g) -118.02 -126.02 -7.99 H2S - Halite -3.46 -1.89 1.57 NaCl - O2(g) -12.02 -14.91 -2.89 O2 - Quartz -0.65 -4.63 -3.98 SiO2 - Sepiolite -5.22 10.54 15.76 Mg2Si3O7.5OH:3H2O - Sepiolite(d) -8.12 10.54 18.66 Mg2Si3O7.5OH:3H2O - SiO2(a) -1.92 -4.63 -2.71 SiO2 - Sulfur -88.37 -83.49 4.88 S - Sylvite -4.47 -3.57 0.90 KCl - Talc -3.26 18.14 21.40 Mg3Si4O10(OH)2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 4. ------------------------------------- - - TITLE Example 3, part D.--Equilibrate mixture with calcite and dolomite. - EQUILIBRIUM_PHASES 1 - Calcite 0.0 - Dolomite 0.0 - USE solution 3 - END ------ -TITLE ------ - - Example 3, part D.--Equilibrate mixture with calcite and dolomite. - ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 3. Solution after simulation 3. -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Calcite 0.00 -8.48 -8.48 1.000e+001 9.984e+000 -1.561e-002 -Dolomite 0.00 -17.09 -17.09 1.000e+001 1.001e+001 7.853e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 3.139e-003 3.139e-003 - Ca 1.212e-002 1.212e-002 - Cl 1.697e-001 1.697e-001 - K 3.173e-003 3.173e-003 - Mg 8.667e-003 8.667e-003 - Na 1.456e-001 1.456e-001 - S 8.777e-003 8.777e-003 - Si 2.215e-005 2.215e-005 - -----------------------------Description of solution---------------------------- - - pH = 7.083 Charge balance - pe = 10.793 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 18770 - Density (g/cm3) = 1.00534 - Volume (L) = 1.00654 - Activity of water = 0.994 - Ionic strength = 2.090e-001 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 2.855e-003 - Total CO2 (mol/kg) = 3.139e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.390e-004 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.06 - Iterations = 5 - Total H = 1.110132e+002 - Total O = 5.554944e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.733e-007 1.219e-007 -6.761 -6.914 -0.153 -3.48 - H+ 1.037e-007 8.253e-008 -6.984 -7.083 -0.099 0.00 - H2O 5.551e+001 9.941e-001 1.744 -0.003 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -122.148 -122.127 0.021 32.22 -C(4) 3.139e-003 - HCO3- 2.235e-003 1.662e-003 -2.651 -2.779 -0.129 25.77 - NaHCO3 4.273e-004 4.483e-004 -3.369 -3.348 0.021 19.41 - CO2 2.956e-004 3.102e-004 -3.529 -3.508 0.021 30.26 - CaHCO3+ 9.865e-005 7.438e-005 -4.006 -4.129 -0.123 9.88 - MgHCO3+ 7.066e-005 5.053e-005 -4.151 -4.296 -0.146 5.72 - CaCO3 5.303e-006 5.565e-006 -5.275 -5.255 0.021 -14.60 - CO3-2 3.091e-006 9.443e-007 -5.510 -6.025 -0.515 -2.44 - MgCO3 2.231e-006 2.341e-006 -5.651 -5.631 0.021 -17.09 - NaCO3- 6.093e-007 4.530e-007 -6.215 -6.344 -0.129 0.26 -Ca 1.212e-002 - Ca+2 1.105e-002 3.508e-003 -1.957 -2.455 -0.498 -17.20 - CaSO4 9.671e-004 1.015e-003 -3.015 -2.994 0.021 7.50 - CaHCO3+ 9.865e-005 7.438e-005 -4.006 -4.129 -0.123 9.88 - CaCO3 5.303e-006 5.565e-006 -5.275 -5.255 0.021 -14.60 - CaOH+ 9.416e-009 7.012e-009 -8.026 -8.154 -0.128 (0) - CaHSO4+ 7.393e-010 5.505e-010 -9.131 -9.259 -0.128 (0) -Cl 1.697e-001 - Cl- 1.697e-001 1.209e-001 -0.770 -0.918 -0.147 18.47 -H(0) 2.380e-039 - H2 1.190e-039 1.248e-039 -38.925 -38.904 0.021 28.61 -K 3.173e-003 - K+ 3.139e-003 2.224e-003 -2.503 -2.653 -0.150 9.35 - KSO4- 3.419e-005 2.542e-005 -4.466 -4.595 -0.129 (0) -Mg 8.667e-003 - Mg+2 7.650e-003 2.598e-003 -2.116 -2.585 -0.469 -20.91 - MgSO4 9.444e-004 9.909e-004 -3.025 -3.004 0.021 5.84 - MgHCO3+ 7.066e-005 5.053e-005 -4.151 -4.296 -0.146 5.72 - MgCO3 2.231e-006 2.341e-006 -5.651 -5.631 0.021 -17.09 - MgOH+ 1.491e-007 1.136e-007 -6.827 -6.944 -0.118 (0) -Na 1.456e-001 - Na+ 1.440e-001 1.074e-001 -0.842 -0.969 -0.127 -0.95 - NaSO4- 1.178e-003 8.756e-004 -2.929 -3.058 -0.129 20.22 - NaHCO3 4.273e-004 4.483e-004 -3.369 -3.348 0.021 19.41 - NaCO3- 6.093e-007 4.530e-007 -6.215 -6.344 -0.129 0.26 - NaOH 1.248e-018 1.309e-018 -17.904 -17.883 0.021 (0) -O(0) 5.038e-015 - O2 2.519e-015 2.643e-015 -14.599 -14.578 0.021 30.40 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -119.073 -119.226 -0.153 21.00 - H2S 0.000e+000 0.000e+000 -119.389 -119.368 0.021 37.16 - S-2 0.000e+000 0.000e+000 -124.528 -125.061 -0.533 (0) -S(6) 8.777e-003 - SO4-2 5.654e-003 1.627e-003 -2.248 -2.789 -0.541 15.62 - NaSO4- 1.178e-003 8.756e-004 -2.929 -3.058 -0.129 20.22 - CaSO4 9.671e-004 1.015e-003 -3.015 -2.994 0.021 7.50 - MgSO4 9.444e-004 9.909e-004 -3.025 -3.004 0.021 5.84 - KSO4- 3.419e-005 2.542e-005 -4.466 -4.595 -0.129 (0) - HSO4- 1.753e-008 1.305e-008 -7.756 -7.884 -0.128 40.66 - CaHSO4+ 7.393e-010 5.505e-010 -9.131 -9.259 -0.128 (0) -Si 2.215e-005 - H4SiO4 2.209e-005 2.318e-005 -4.656 -4.635 0.021 52.08 - H3SiO4- 5.791e-008 4.141e-008 -7.237 -7.383 -0.146 28.38 - H2SiO4-2 1.117e-013 3.413e-014 -12.952 -13.467 -0.515 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -0.97 -5.24 -4.28 CaSO4 - Aragonite -0.14 -8.48 -8.34 CaCO3 - Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -119.28 -122.13 -2.84 CH4 - Chalcedony -1.08 -4.63 -3.55 SiO2 - Chrysotile -6.73 25.47 32.20 Mg3Si2O5(OH)4 - CO2(g) -2.05 -3.51 -1.46 CO2 - Dolomite 0.00 -17.09 -17.09 CaMg(CO3)2 - Gypsum -0.67 -5.25 -4.58 CaSO4:2H2O - H2(g) -35.80 -38.90 -3.10 H2 - H2O(g) -1.51 -0.00 1.50 H2O - H2S(g) -118.32 -126.31 -7.99 H2S - Halite -3.46 -1.89 1.57 NaCl - O2(g) -11.69 -14.58 -2.89 O2 - Quartz -0.65 -4.63 -3.98 SiO2 - Sepiolite -6.50 9.26 15.76 Mg2Si3O7.5OH:3H2O - Sepiolite(d) -9.40 9.26 18.66 Mg2Si3O7.5OH:3H2O - SiO2(a) -1.92 -4.63 -2.71 SiO2 - Sulfur -88.50 -83.61 4.88 S - Sylvite -4.47 -3.57 0.90 KCl - Talc -5.18 16.21 21.40 Mg3Si4O10(OH)2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 5. ------------------------------------- - - TITLE Example 3, part E.--Equilibrate mixture with calcite only. - EQUILIBRIUM_PHASES 2 - Calcite 0.0 - USE solution 3 - END ------ -TITLE ------ - - Example 3, part E.--Equilibrate mixture with calcite only. - ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 3. Solution after simulation 3. -Using pure phase assemblage 2. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Calcite 0.00 -8.48 -8.48 1.000e+001 1.000e+001 -8.465e-005 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 3.317e-003 3.317e-003 - Ca 4.443e-003 4.442e-003 - Cl 1.697e-001 1.697e-001 - K 3.173e-003 3.173e-003 - Mg 1.652e-002 1.652e-002 - Na 1.456e-001 1.456e-001 - S 8.777e-003 8.777e-003 - Si 2.215e-005 2.215e-005 - -----------------------------Description of solution---------------------------- - - pH = 7.472 Charge balance - pe = 10.405 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 18719 - Density (g/cm3) = 1.00526 - Volume (L) = 1.00652 - Activity of water = 0.994 - Ionic strength = 2.087e-001 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 3.210e-003 - Total CO2 (mol/kg) = 3.317e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.390e-004 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.06 - Iterations = 5 - Total H = 1.110132e+002 - Total O = 5.554997e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 4.242e-007 2.984e-007 -6.372 -6.525 -0.153 -3.48 - H+ 4.237e-008 3.372e-008 -7.373 -7.472 -0.099 0.00 - H2O 5.551e+001 9.941e-001 1.744 -0.003 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -122.496 -122.475 0.021 32.22 -C(4) 3.317e-003 - HCO3- 2.489e-003 1.851e-003 -2.604 -2.733 -0.129 25.77 - NaHCO3 4.758e-004 4.992e-004 -3.323 -3.302 0.021 19.41 - MgHCO3+ 1.502e-004 1.074e-004 -3.823 -3.969 -0.146 5.72 - CO2 1.345e-004 1.411e-004 -3.871 -3.850 0.021 30.26 - CaHCO3+ 4.030e-005 3.039e-005 -4.395 -4.517 -0.123 9.88 - MgCO3 1.161e-005 1.219e-005 -4.935 -4.914 0.021 -17.09 - CO3-2 8.421e-006 2.574e-006 -5.075 -5.589 -0.515 -2.44 - CaCO3 5.304e-006 5.565e-006 -5.275 -5.255 0.021 -14.60 - NaCO3- 1.660e-006 1.235e-006 -5.780 -5.908 -0.129 0.26 -Ca 4.443e-003 - Ca+2 4.052e-003 1.287e-003 -2.392 -2.890 -0.498 -17.20 - CaSO4 3.453e-004 3.623e-004 -3.462 -3.441 0.021 7.50 - CaHCO3+ 4.030e-005 3.039e-005 -4.395 -4.517 -0.123 9.88 - CaCO3 5.304e-006 5.565e-006 -5.275 -5.255 0.021 -14.60 - CaOH+ 8.456e-009 6.297e-009 -8.073 -8.201 -0.128 (0) - CaHSO4+ 1.078e-010 8.030e-011 -9.967 -10.095 -0.128 (0) -Cl 1.697e-001 - Cl- 1.697e-001 1.209e-001 -0.770 -0.918 -0.147 18.47 -H(0) 2.373e-039 - H2 1.186e-039 1.245e-039 -38.926 -38.905 0.021 28.61 -K 3.173e-003 - K+ 3.140e-003 2.225e-003 -2.503 -2.653 -0.150 9.35 - KSO4- 3.328e-005 2.475e-005 -4.478 -4.607 -0.129 (0) -Mg 1.652e-002 - Mg+2 1.460e-002 4.961e-003 -1.836 -2.304 -0.469 -20.91 - MgSO4 1.755e-003 1.841e-003 -2.756 -2.735 0.021 5.84 - MgHCO3+ 1.502e-004 1.074e-004 -3.823 -3.969 -0.146 5.72 - MgCO3 1.161e-005 1.219e-005 -4.935 -4.914 0.021 -17.09 - MgOH+ 6.968e-007 5.311e-007 -6.157 -6.275 -0.118 (0) -Na 1.456e-001 - Na+ 1.440e-001 1.074e-001 -0.842 -0.969 -0.127 -0.95 - NaSO4- 1.146e-003 8.519e-004 -2.941 -3.070 -0.129 20.22 - NaHCO3 4.758e-004 4.992e-004 -3.323 -3.302 0.021 19.41 - NaCO3- 1.660e-006 1.235e-006 -5.780 -5.908 -0.129 0.26 - NaOH 3.054e-018 3.204e-018 -17.515 -17.494 0.021 (0) -O(0) 5.068e-015 - O2 2.534e-015 2.659e-015 -14.596 -14.575 0.021 30.40 -S(-2) 0.000e+000 - HS- 0.000e+000 0.000e+000 -119.479 -119.632 -0.153 21.00 - H2S 0.000e+000 0.000e+000 -120.183 -120.163 0.021 37.16 - S-2 0.000e+000 0.000e+000 -124.546 -125.078 -0.532 (0) -S(6) 8.777e-003 - SO4-2 5.498e-003 1.583e-003 -2.260 -2.801 -0.541 15.62 - MgSO4 1.755e-003 1.841e-003 -2.756 -2.735 0.021 5.84 - NaSO4- 1.146e-003 8.519e-004 -2.941 -3.070 -0.129 20.22 - CaSO4 3.453e-004 3.623e-004 -3.462 -3.441 0.021 7.50 - KSO4- 3.328e-005 2.475e-005 -4.478 -4.607 -0.129 (0) - HSO4- 6.968e-009 5.189e-009 -8.157 -8.285 -0.128 40.66 - CaHSO4+ 1.078e-010 8.030e-011 -9.967 -10.095 -0.128 (0) -Si 2.215e-005 - H4SiO4 2.201e-005 2.309e-005 -4.657 -4.637 0.021 52.08 - H3SiO4- 1.412e-007 1.010e-007 -6.850 -6.996 -0.146 28.37 - H2SiO4-2 6.664e-013 2.037e-013 -12.176 -12.691 -0.515 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -1.41 -5.69 -4.28 CaSO4 - Aragonite -0.14 -8.48 -8.34 CaCO3 - Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -119.63 -122.47 -2.84 CH4 - Chalcedony -1.08 -4.63 -3.55 SiO2 - Chrysotile -3.56 28.64 32.20 Mg3Si2O5(OH)4 - CO2(g) -2.39 -3.85 -1.46 CO2 - Dolomite 0.72 -16.37 -17.09 CaMg(CO3)2 - Gypsum -1.12 -5.70 -4.58 CaSO4:2H2O - H2(g) -35.80 -38.90 -3.10 H2 - H2O(g) -1.51 -0.00 1.50 H2O - H2S(g) -119.11 -127.10 -7.99 H2S - Halite -3.46 -1.89 1.57 NaCl - O2(g) -11.68 -14.58 -2.89 O2 - Quartz -0.65 -4.63 -3.98 SiO2 - Sepiolite -4.39 11.37 15.76 Mg2Si3O7.5OH:3H2O - Sepiolite(d) -7.29 11.37 18.66 Mg2Si3O7.5OH:3H2O - SiO2(a) -1.92 -4.63 -2.71 SiO2 - Sulfur -89.29 -84.41 4.88 S - Sylvite -4.47 -3.57 0.90 KCl - Talc -2.02 19.38 21.40 Mg3Si4O10(OH)2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 6. ------------------------------------- - -------------------------------- -End of Run after 0.574 Seconds. -------------------------------- - diff --git a/examples_pc/ex4.out b/examples_pc/ex4.out deleted file mode 100644 index d7eff533..00000000 --- a/examples_pc/ex4.out +++ /dev/null @@ -1,489 +0,0 @@ - Input file: ..\examples\ex4 - Output file: ex4.out -Database file: ..\database\phreeqc.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - PHASES - EXCHANGE_MASTER_SPECIES - EXCHANGE_SPECIES - SURFACE_MASTER_SPECIES - SURFACE_SPECIES - RATES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Example 4a.--Rainwater evaporation - SOLUTION 1 Precipitation from Central Oklahoma - units mg/L - pH 4.5 # estimated - temp 25.0 - Ca .384 - Mg .043 - Na .141 - K .036 - Cl .236 - C(4) .1 CO2(g) -3.5 - S(6) 1.3 - N(-3) .208 - N(5) .237 - REACTION 1 - H2O -1.0 - 52.73 moles - SAVE solution 2 - END ------ -TITLE ------ - - Example 4a.--Rainwater evaporation - -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 1. Precipitation from Central Oklahoma - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C(4) 1.112e-005 1.112e-005 Equilibrium with CO2(g) - Ca 9.581e-006 9.581e-006 - Cl 6.657e-006 6.657e-006 - K 9.207e-007 9.207e-007 - Mg 1.769e-006 1.769e-006 - N(-3) 1.485e-005 1.485e-005 - N(5) 1.692e-005 1.692e-005 - Na 6.133e-006 6.133e-006 - S(6) 1.353e-005 1.353e-005 - -----------------------------Description of solution---------------------------- - - pH = 4.500 - pe = 4.000 - Specific Conductance (uS/cm, 25 oC) = 17 - Density (g/cm3) = 0.99705 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 8.839e-005 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = -3.185e-005 - Total CO2 (mol/kg) = 1.112e-005 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.581e-005 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 20.29 - Iterations = 3 - Total H = 1.110125e+002 - Total O = 5.550634e+001 - ----------------------------------Redox couples--------------------------------- - - Redox couple pe Eh (volts) - - N(-3)/N(5) 9.2667 0.5482 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 3.196e-005 3.162e-005 -4.495 -4.500 -0.005 0.00 - OH- 3.236e-010 3.201e-010 -9.490 -9.495 -0.005 -4.13 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -C(4) 1.112e-005 - CO2 1.096e-005 1.096e-005 -4.960 -4.960 0.000 30.26 - HCO3- 1.558e-007 1.541e-007 -6.807 -6.812 -0.005 24.57 - CaHCO3+ 1.820e-011 1.800e-011 -10.740 -10.745 -0.005 9.65 - MgHCO3+ 3.079e-012 3.046e-012 -11.512 -11.516 -0.005 5.46 - NaHCO3 2.349e-012 2.349e-012 -11.629 -11.629 0.000 19.41 - CO3-2 2.388e-013 2.286e-013 -12.622 -12.641 -0.019 -4.46 - CaCO3 3.515e-015 3.515e-015 -14.454 -14.454 0.000 -14.60 - MgCO3 3.684e-016 3.684e-016 -15.434 -15.434 0.000 -17.09 - NaCO3- 6.262e-018 6.195e-018 -17.203 -17.208 -0.005 -0.68 -Ca 9.581e-006 - Ca+2 9.560e-006 9.153e-006 -5.020 -5.038 -0.019 -18.22 - CaSO4 2.098e-008 2.098e-008 -7.678 -7.678 0.000 7.50 - CaHCO3+ 1.820e-011 1.800e-011 -10.740 -10.745 -0.005 9.65 - CaHSO4+ 4.409e-012 4.361e-012 -11.356 -11.360 -0.005 (0) - CaOH+ 4.856e-014 4.804e-014 -13.314 -13.318 -0.005 (0) - CaCO3 3.515e-015 3.515e-015 -14.454 -14.454 0.000 -14.60 -Cl 6.657e-006 - Cl- 6.657e-006 6.584e-006 -5.177 -5.181 -0.005 18.05 -H(0) 1.416e-020 - H2 7.079e-021 7.079e-021 -20.150 -20.150 0.000 28.61 -K 9.207e-007 - K+ 9.206e-007 9.106e-007 -6.036 -6.041 -0.005 8.99 - KSO4- 8.338e-011 8.248e-011 -10.079 -10.084 -0.005 (0) -Mg 1.769e-006 - Mg+2 1.764e-006 1.689e-006 -5.754 -5.772 -0.019 -21.90 - MgSO4 5.103e-009 5.103e-009 -8.292 -8.292 0.000 5.84 - MgHCO3+ 3.079e-012 3.046e-012 -11.512 -11.516 -0.005 5.46 - MgOH+ 1.960e-013 1.939e-013 -12.708 -12.712 -0.005 (0) - MgCO3 3.684e-016 3.684e-016 -15.434 -15.434 0.000 -17.09 -N(-3) 1.485e-005 - NH4+ 1.485e-005 1.469e-005 -4.828 -4.833 -0.005 17.94 - NH4SO4- 2.465e-009 2.439e-009 -8.608 -8.613 -0.005 (0) - NH3 2.646e-010 2.646e-010 -9.577 -9.577 0.000 24.46 -N(5) 1.692e-005 - NO3- 1.692e-005 1.674e-005 -4.772 -4.776 -0.005 29.51 -Na 6.133e-006 - Na+ 6.133e-006 6.066e-006 -5.212 -5.217 -0.005 -1.41 - NaSO4- 3.962e-010 3.919e-010 -9.402 -9.407 -0.005 18.39 - NaHCO3 2.349e-012 2.349e-012 -11.629 -11.629 0.000 19.41 - NaCO3- 6.262e-018 6.195e-018 -17.203 -17.208 -0.005 -0.68 - NaOH 1.942e-025 1.942e-025 -24.712 -24.712 0.000 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -52.080 -52.080 0.000 30.40 -S(6) 1.353e-005 - SO4-2 1.346e-005 1.289e-005 -4.871 -4.890 -0.019 13.93 - HSO4- 4.007e-008 3.963e-008 -7.397 -7.402 -0.005 40.26 - CaSO4 2.098e-008 2.098e-008 -7.678 -7.678 0.000 7.50 - MgSO4 5.103e-009 5.103e-009 -8.292 -8.292 0.000 5.84 - NH4SO4- 2.465e-009 2.439e-009 -8.608 -8.613 -0.005 (0) - NaSO4- 3.962e-010 3.919e-010 -9.402 -9.407 -0.005 18.39 - KSO4- 8.338e-011 8.248e-011 -10.079 -10.084 -0.005 (0) - CaHSO4+ 4.409e-012 4.361e-012 -11.356 -11.360 -0.005 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -5.65 -9.93 -4.28 CaSO4 - Aragonite -9.34 -17.68 -8.34 CaCO3 - Calcite -9.20 -17.68 -8.48 CaCO3 - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Dolomite -19.00 -36.09 -17.09 CaMg(CO3)2 - Gypsum -5.35 -9.93 -4.58 CaSO4:2H2O - H2(g) -17.05 -20.15 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - Halite -11.97 -10.40 1.57 NaCl - NH3(g) -11.37 -9.58 1.80 NH3 - O2(g) -49.19 -52.08 -2.89 O2 - Sylvite -12.12 -11.22 0.90 KCl - - ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Precipitation from Central Oklahoma -Using reaction 1. - -Reaction 1. - - 5.273e+001 moles of the following reaction have been added: - - Relative - Reactant moles - - H2O -1.00000 - - Relative - Element moles - H -2.00000 - O -1.00000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 2.222e-004 1.112e-005 - Ca 1.916e-004 9.581e-006 - Cl 1.331e-004 6.657e-006 - K 1.841e-005 9.207e-007 - Mg 3.536e-005 1.769e-006 - N 6.352e-004 3.177e-005 - Na 1.226e-004 6.133e-006 - S 2.706e-004 1.353e-005 - -----------------------------Description of solution---------------------------- - - pH = 3.148 Charge balance - pe = 16.529 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 342 - Density (g/cm3) = 0.99709 - Volume (L) = 0.05017 - Activity of water = 1.000 - Ionic strength = 1.531e-003 - Mass of water (kg) = 5.002e-002 - Total alkalinity (eq/kg) = -7.555e-004 - Total CO2 (mol/kg) = 2.222e-004 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.581e-005 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 24.28 - Iterations = 30 - Total H = 5.552525e+000 - Total O = 2.776344e+000 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 7.405e-004 7.106e-004 -3.130 -3.148 -0.018 0.00 - OH- 1.488e-011 1.424e-011 -10.827 -10.846 -0.019 -4.10 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -136.686 -136.685 0.000 32.22 -C(4) 2.222e-004 - CO2 2.221e-004 2.222e-004 -3.653 -3.653 0.000 30.26 - HCO3- 1.451e-007 1.390e-007 -6.838 -6.857 -0.019 24.60 - CaHCO3+ 2.895e-010 2.774e-010 -9.538 -9.557 -0.019 9.68 - MgHCO3+ 4.865e-011 4.657e-011 -10.313 -10.332 -0.019 5.48 - NaHCO3 4.095e-011 4.097e-011 -10.388 -10.388 0.000 19.41 - CO3-2 1.090e-014 9.176e-015 -13.963 -14.037 -0.075 -4.34 - CaCO3 2.409e-015 2.410e-015 -14.618 -14.618 0.000 -14.60 - MgCO3 2.505e-016 2.506e-016 -15.601 -15.601 0.000 -17.09 - NaCO3- 5.019e-018 4.807e-018 -17.299 -17.318 -0.019 -0.65 -Ca 1.916e-004 - Ca+2 1.857e-004 1.564e-004 -3.731 -3.806 -0.075 -18.12 - CaSO4 5.802e-006 5.804e-006 -5.236 -5.236 0.000 7.50 - CaHSO4+ 2.832e-008 2.711e-008 -7.548 -7.567 -0.019 (0) - CaHCO3+ 2.895e-010 2.774e-010 -9.538 -9.557 -0.019 9.68 - CaOH+ 3.814e-014 3.651e-014 -13.419 -13.438 -0.019 (0) - CaCO3 2.409e-015 2.410e-015 -14.618 -14.618 0.000 -14.60 -Cl 1.331e-004 - Cl- 1.331e-004 1.274e-004 -3.876 -3.895 -0.019 18.08 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -42.506 -42.506 0.000 28.61 -K 1.841e-005 - K+ 1.838e-005 1.759e-005 -4.736 -4.755 -0.019 9.02 - KSO4- 2.693e-008 2.580e-008 -7.570 -7.588 -0.019 (0) -Mg 3.536e-005 - Mg+2 3.396e-005 2.863e-005 -4.469 -4.543 -0.074 -21.80 - MgSO4 1.400e-006 1.401e-006 -5.854 -5.854 0.000 5.84 - MgHCO3+ 4.865e-011 4.657e-011 -10.313 -10.332 -0.019 5.48 - MgOH+ 1.526e-013 1.462e-013 -12.817 -12.835 -0.018 (0) - MgCO3 2.505e-016 2.506e-016 -15.601 -15.601 0.000 -17.09 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -48.437 -48.457 -0.019 17.97 - NH4SO4- 0.000e+000 0.000e+000 -51.008 -51.027 -0.019 (0) - NH3 0.000e+000 0.000e+000 -54.553 -54.553 0.000 24.46 -N(0) 4.751e-004 - N2 2.375e-004 2.376e-004 -3.624 -3.624 0.000 29.29 -N(3) 2.623e-015 - NO2- 2.623e-015 2.510e-015 -14.581 -14.600 -0.019 24.97 -N(5) 1.601e-004 - NO3- 1.601e-004 1.532e-004 -3.796 -3.815 -0.019 29.54 -Na 1.226e-004 - Na+ 1.225e-004 1.173e-004 -3.912 -3.931 -0.019 -1.38 - NaSO4- 1.281e-007 1.227e-007 -6.892 -6.911 -0.019 18.45 - NaHCO3 4.095e-011 4.097e-011 -10.388 -10.388 0.000 19.41 - NaCO3- 5.019e-018 4.807e-018 -17.299 -17.318 -0.019 -0.65 - NaOH 1.670e-025 1.671e-025 -24.777 -24.777 0.000 (0) -O(0) 8.551e-008 - O2 4.276e-008 4.277e-008 -7.369 -7.369 0.000 30.40 -S(-2) 0.000e+000 - H2S 0.000e+000 0.000e+000 -126.808 -126.808 0.000 37.16 - HS- 0.000e+000 0.000e+000 -130.582 -130.601 -0.019 20.61 - S-2 0.000e+000 0.000e+000 -140.296 -140.371 -0.075 (0) -S(6) 2.706e-004 - SO4-2 2.481e-004 2.087e-004 -3.605 -3.680 -0.075 14.04 - HSO4- 1.507e-005 1.442e-005 -4.822 -4.841 -0.019 40.28 - CaSO4 5.802e-006 5.804e-006 -5.236 -5.236 0.000 7.50 - MgSO4 1.400e-006 1.401e-006 -5.854 -5.854 0.000 5.84 - NaSO4- 1.281e-007 1.227e-007 -6.892 -6.911 -0.019 18.45 - CaHSO4+ 2.832e-008 2.711e-008 -7.548 -7.567 -0.019 (0) - KSO4- 2.693e-008 2.580e-008 -7.570 -7.588 -0.019 (0) - NH4SO4- 0.000e+000 0.000e+000 -51.008 -51.027 -0.019 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -3.21 -7.49 -4.28 CaSO4 - Aragonite -9.51 -17.84 -8.34 CaCO3 - Calcite -9.36 -17.84 -8.48 CaCO3 - CH4(g) -133.84 -136.69 -2.84 CH4 - CO2(g) -2.19 -3.65 -1.46 CO2 - Dolomite -19.33 -36.42 -17.09 CaMg(CO3)2 - Gypsum -2.91 -7.49 -4.58 CaSO4:2H2O - H2(g) -39.40 -42.51 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -125.76 -133.75 -7.99 H2S - Halite -9.40 -7.83 1.57 NaCl - N2(g) -0.45 -3.62 -3.18 N2 - NH3(g) -56.35 -54.55 1.80 NH3 - O2(g) -4.48 -7.37 -2.89 O2 - Sulfur -92.33 -87.45 4.88 S - Sylvite -9.55 -8.65 0.90 KCl - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 2. ------------------------------------- - - TITLE Example 4b.--Factor of 20 more solution - MIX - 2 20. - SAVE solution 3 - END ------ -TITLE ------ - - Example 4b.--Factor of 20 more solution - ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using mix 1. - -Mixture 1. - - 2.000e+001 Solution 2 Solution after simulation 1. - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 2.222e-004 2.223e-004 - Ca 1.916e-004 1.916e-004 - Cl 1.331e-004 1.331e-004 - K 1.841e-005 1.841e-005 - Mg 3.536e-005 3.537e-005 - N 6.352e-004 6.354e-004 - Na 1.226e-004 1.227e-004 - S 2.706e-004 2.707e-004 - -----------------------------Description of solution---------------------------- - - pH = 3.148 Charge balance - pe = 16.529 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 342 - Density (g/cm3) = 0.99709 - Volume (L) = 1.00335 - Activity of water = 1.000 - Ionic strength = 1.531e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = -7.555e-004 - Total CO2 (mol/kg) = 2.222e-004 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 5.162e-004 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 24.28 - Iterations = 6 - Total H = 1.110505e+002 - Total O = 5.552688e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 7.405e-004 7.106e-004 -3.130 -3.148 -0.018 0.00 - OH- 1.488e-011 1.424e-011 -10.827 -10.846 -0.019 -4.10 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -C(-4) 0.000e+000 - CH4 0.000e+000 0.000e+000 -136.686 -136.685 0.000 32.22 -C(4) 2.222e-004 - CO2 2.221e-004 2.222e-004 -3.653 -3.653 0.000 30.26 - HCO3- 1.451e-007 1.390e-007 -6.838 -6.857 -0.019 24.60 - CaHCO3+ 2.895e-010 2.774e-010 -9.538 -9.557 -0.019 9.68 - MgHCO3+ 4.865e-011 4.657e-011 -10.313 -10.332 -0.019 5.48 - NaHCO3 4.095e-011 4.097e-011 -10.388 -10.388 0.000 19.41 - CO3-2 1.090e-014 9.176e-015 -13.963 -14.037 -0.075 -4.34 - CaCO3 2.409e-015 2.410e-015 -14.618 -14.618 0.000 -14.60 - MgCO3 2.505e-016 2.506e-016 -15.601 -15.601 0.000 -17.09 - NaCO3- 5.019e-018 4.807e-018 -17.299 -17.318 -0.019 -0.65 -Ca 1.916e-004 - Ca+2 1.857e-004 1.564e-004 -3.731 -3.806 -0.075 -18.12 - CaSO4 5.802e-006 5.804e-006 -5.236 -5.236 0.000 7.50 - CaHSO4+ 2.832e-008 2.711e-008 -7.548 -7.567 -0.019 (0) - CaHCO3+ 2.895e-010 2.774e-010 -9.538 -9.557 -0.019 9.68 - CaOH+ 3.814e-014 3.651e-014 -13.419 -13.438 -0.019 (0) - CaCO3 2.409e-015 2.410e-015 -14.618 -14.618 0.000 -14.60 -Cl 1.331e-004 - Cl- 1.331e-004 1.274e-004 -3.876 -3.895 -0.019 18.08 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -42.506 -42.506 0.000 28.61 -K 1.841e-005 - K+ 1.838e-005 1.759e-005 -4.736 -4.755 -0.019 9.02 - KSO4- 2.693e-008 2.580e-008 -7.570 -7.588 -0.019 (0) -Mg 3.536e-005 - Mg+2 3.396e-005 2.863e-005 -4.469 -4.543 -0.074 -21.80 - MgSO4 1.400e-006 1.401e-006 -5.854 -5.854 0.000 5.84 - MgHCO3+ 4.865e-011 4.657e-011 -10.313 -10.332 -0.019 5.48 - MgOH+ 1.526e-013 1.462e-013 -12.817 -12.835 -0.018 (0) - MgCO3 2.505e-016 2.506e-016 -15.601 -15.601 0.000 -17.09 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -48.437 -48.457 -0.019 17.97 - NH4SO4- 0.000e+000 0.000e+000 -51.008 -51.027 -0.019 (0) - NH3 0.000e+000 0.000e+000 -54.553 -54.553 0.000 24.46 -N(0) 4.751e-004 - N2 2.375e-004 2.376e-004 -3.624 -3.624 0.000 29.29 -N(3) 2.623e-015 - NO2- 2.623e-015 2.510e-015 -14.581 -14.600 -0.019 24.97 -N(5) 1.601e-004 - NO3- 1.601e-004 1.532e-004 -3.796 -3.815 -0.019 29.54 -Na 1.226e-004 - Na+ 1.225e-004 1.173e-004 -3.912 -3.931 -0.019 -1.38 - NaSO4- 1.281e-007 1.227e-007 -6.892 -6.911 -0.019 18.45 - NaHCO3 4.095e-011 4.097e-011 -10.388 -10.388 0.000 19.41 - NaCO3- 5.019e-018 4.807e-018 -17.299 -17.318 -0.019 -0.65 - NaOH 1.670e-025 1.671e-025 -24.777 -24.777 0.000 (0) -O(0) 8.551e-008 - O2 4.276e-008 4.277e-008 -7.369 -7.369 0.000 30.40 -S(-2) 0.000e+000 - H2S 0.000e+000 0.000e+000 -126.808 -126.808 0.000 37.16 - HS- 0.000e+000 0.000e+000 -130.582 -130.601 -0.019 20.61 - S-2 0.000e+000 0.000e+000 -140.296 -140.371 -0.075 (0) -S(6) 2.706e-004 - SO4-2 2.481e-004 2.087e-004 -3.605 -3.680 -0.075 14.04 - HSO4- 1.507e-005 1.442e-005 -4.822 -4.841 -0.019 40.28 - CaSO4 5.802e-006 5.804e-006 -5.236 -5.236 0.000 7.50 - MgSO4 1.400e-006 1.401e-006 -5.854 -5.854 0.000 5.84 - NaSO4- 1.281e-007 1.227e-007 -6.892 -6.911 -0.019 18.45 - CaHSO4+ 2.832e-008 2.711e-008 -7.548 -7.567 -0.019 (0) - KSO4- 2.693e-008 2.580e-008 -7.570 -7.588 -0.019 (0) - NH4SO4- 0.000e+000 0.000e+000 -51.008 -51.027 -0.019 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -3.21 -7.49 -4.28 CaSO4 - Aragonite -9.51 -17.84 -8.34 CaCO3 - Calcite -9.36 -17.84 -8.48 CaCO3 - CH4(g) -133.84 -136.69 -2.84 CH4 - CO2(g) -2.19 -3.65 -1.46 CO2 - Dolomite -19.33 -36.42 -17.09 CaMg(CO3)2 - Gypsum -2.91 -7.49 -4.58 CaSO4:2H2O - H2(g) -39.40 -42.51 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -125.76 -133.75 -7.99 H2S - Halite -9.40 -7.83 1.57 NaCl - N2(g) -0.45 -3.62 -3.18 N2 - NH3(g) -56.35 -54.55 1.80 NH3 - O2(g) -4.48 -7.37 -2.89 O2 - Sulfur -92.33 -87.45 4.88 S - Sylvite -9.55 -8.65 0.90 KCl - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 3. ------------------------------------- - -------------------------------- -End of Run after 0.563 Seconds. -------------------------------- - diff --git a/examples_pc/ex5.out b/examples_pc/ex5.out deleted file mode 100644 index a959ac7c..00000000 --- a/examples_pc/ex5.out +++ /dev/null @@ -1,1162 +0,0 @@ - Input file: ..\examples\ex5 - Output file: ex5.out -Database file: ..\database\phreeqc.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - PHASES - EXCHANGE_MASTER_SPECIES - EXCHANGE_SPECIES - SURFACE_MASTER_SPECIES - SURFACE_SPECIES - RATES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Example 5.--Add oxygen, equilibrate with pyrite, calcite, and goethite. - SOLUTION 1 PURE WATER - pH 7.0 - temp 25.0 - EQUILIBRIUM_PHASES 1 - Pyrite 0.0 - Goethite 0.0 - Calcite 0.0 - CO2(g) -3.5 - Gypsum 0.0 0.0 - REACTION 1 - O2 1.0 - NaCl 0.5 - 0.0 0.001 0.005 0.01 0.03 0.05 - SELECTED_OUTPUT - file ex5.sel - totals Cl - si Gypsum - equilibrium_phases pyrite goethite calcite CO2(g) gypsum - USER_GRAPH Example 5 - -headings Pyrite Goethite Calcite CO2(g) Gypsum SI_Gypsum - -chart_title "Pyrite Oxidation" - -axis_titles "O2 added, in millimoles" "Millimoles dissolved" "Saturation index" - 10 x = RXN * 1e3 - 20 PLOT_XY x, 1e3 * (10 - EQUI("Pyrite")), symbol = Plus - 30 PLOT_XY x, 1e3 * (10 - EQUI("Goethite")), symbol = Plus - 40 PLOT_XY x, 1e3 * (10 - EQUI("Calcite")), symbol = Plus - 50 PLOT_XY x, 1e3 * (10 - EQUI("CO2(g)")), symbol = Plus - 60 PLOT_XY x, 1e3 * (-EQUI("Gypsum")), symbol = Plus, color = Magenta - 70 PLOT_XY x, SI("Gypsum"), y-axis = 2, line_width = 2, symbol = Circle, symbol_size = 8, color = Magenta - END ------ -TITLE ------ - - Example 5.--Add oxygen, equilibrate with pyrite, calcite, and goethite. - -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 1. PURE WATER - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Pure water - -----------------------------Description of solution---------------------------- - - pH = 7.000 - pe = 4.000 - Specific Conductance (uS/cm, 25 oC) = 0 - Density (g/cm3) = 0.99704 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 1.007e-007 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.217e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.60 - Iterations = 0 - Total H = 1.110124e+002 - Total O = 5.550622e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.013e-007 1.012e-007 -6.995 -6.995 -0.000 -4.14 - H+ 1.001e-007 1.000e-007 -7.000 -7.000 -0.000 0.00 - H2O 5.551e+001 1.000e+000 1.744 0.000 0.000 18.07 -H(0) 1.416e-025 - H2 7.079e-026 7.079e-026 -25.150 -25.150 0.000 28.61 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -42.080 -42.080 0.000 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - H2(g) -22.05 -25.15 -3.10 H2 - H2O(g) -1.50 0.00 1.50 H2O - O2(g) -39.19 -42.08 -2.89 O2 - - ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. PURE WATER -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 0.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - NaCl 0.50000 - O2 1.00000 - - Relative - Element moles - Cl 0.50000 - Na 0.50000 - O 2.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -CO2(g) -3.50 -4.96 -1.46 1.000e+001 1.000e+001 -4.902e-004 -Calcite 0.00 -8.48 -8.48 1.000e+001 1.000e+001 -4.964e-004 -Goethite 0.00 -1.00 -1.00 1.000e+001 1.000e+001 1.044e-008 -Gypsum -6.13 -10.71 -4.58 0.000e+000 0 0.000e+000 -Pyrite -0.00 -18.48 -18.48 1.000e+001 1.000e+001 -3.134e-008 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 9.867e-004 9.867e-004 - Ca 4.964e-004 4.964e-004 - Fe 2.090e-008 2.090e-008 - S 6.269e-008 6.269e-008 - -----------------------------Description of solution---------------------------- - - pH = 8.274 Charge balance - pe = -4.936 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 97 - Density (g/cm3) = 0.99711 - Volume (L) = 1.00302 - Activity of water = 1.000 - Ionic strength = 1.472e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 9.928e-004 - Total CO2 (mol/kg) = 9.866e-004 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 14 - Total H = 1.110124e+002 - Total O = 5.550869e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.986e-006 1.902e-006 -5.702 -5.721 -0.019 -4.10 - H+ 5.541e-009 5.321e-009 -8.256 -8.274 -0.018 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -C(-4) 5.365e-008 - CH4 5.365e-008 5.367e-008 -7.270 -7.270 0.000 32.22 -C(4) 9.866e-004 - HCO3- 9.555e-004 9.161e-004 -3.020 -3.038 -0.018 24.60 - CO2 1.096e-005 1.096e-005 -4.960 -4.960 0.000 30.26 - CO3-2 9.558e-006 8.074e-006 -5.020 -5.093 -0.073 -4.35 - CaCO3 5.563e-006 5.565e-006 -5.255 -5.255 0.000 -14.60 - CaHCO3+ 5.001e-006 4.795e-006 -5.301 -5.319 -0.018 9.68 - FeCO3 2.639e-009 2.640e-009 -8.579 -8.578 0.000 (0) - FeHCO3+ 1.303e-009 1.249e-009 -8.885 -8.904 -0.019 (0) -Ca 4.964e-004 - Ca+2 4.858e-004 4.103e-004 -3.314 -3.387 -0.073 -18.12 - CaCO3 5.563e-006 5.565e-006 -5.255 -5.255 0.000 -14.60 - CaHCO3+ 5.001e-006 4.795e-006 -5.301 -5.319 -0.018 9.68 - CaOH+ 1.336e-008 1.280e-008 -7.874 -7.893 -0.019 (0) - CaSO4 3.492e-009 3.493e-009 -8.457 -8.457 0.000 7.50 - CaHSO4+ 1.275e-016 1.222e-016 -15.894 -15.913 -0.019 (0) -Fe(2) 2.090e-008 - Fe+2 1.612e-008 1.363e-008 -7.793 -7.866 -0.073 -22.11 - FeCO3 2.639e-009 2.640e-009 -8.579 -8.578 0.000 (0) - FeHCO3+ 1.303e-009 1.249e-009 -8.885 -8.904 -0.019 (0) - FeOH+ 8.450e-010 8.100e-010 -9.073 -9.092 -0.018 (0) - Fe(OH)2 1.295e-012 1.296e-012 -11.888 -11.888 0.000 (0) - FeSO4 1.160e-013 1.160e-013 -12.936 -12.935 0.000 (0) - Fe(OH)3- 9.437e-015 9.046e-015 -14.025 -14.044 -0.018 (0) - Fe(HS)2 6.248e-017 6.250e-017 -16.204 -16.204 0.000 (0) - FeHSO4+ 4.236e-021 4.058e-021 -20.373 -20.392 -0.019 (0) - Fe(HS)3- 1.612e-023 1.544e-023 -22.793 -22.811 -0.019 (0) -Fe(3) 3.364e-014 - Fe(OH)3 2.753e-014 2.754e-014 -13.560 -13.560 0.000 (0) - Fe(OH)4- 4.924e-015 4.720e-015 -14.308 -14.326 -0.018 (0) - Fe(OH)2+ 1.187e-015 1.138e-015 -14.926 -14.944 -0.018 (0) - FeOH+2 2.166e-020 1.828e-020 -19.664 -19.738 -0.074 (0) - Fe+3 2.169e-026 1.507e-026 -25.664 -25.822 -0.158 (0) - FeSO4+ 8.251e-030 7.909e-030 -29.083 -29.102 -0.018 (0) - Fe(SO4)2- 8.646e-036 8.283e-036 -35.063 -35.082 -0.019 (0) - FeHSO4+2 1.338e-037 1.127e-037 -36.874 -36.948 -0.074 (0) - Fe2(OH)2+4 1.786e-038 8.996e-039 -37.748 -38.046 -0.298 (0) - Fe3(OH)4+5 0.000e+000 0.000e+000 -50.204 -50.670 -0.466 (0) -H(0) 2.991e-010 - H2 1.495e-010 1.496e-010 -9.825 -9.825 0.000 28.61 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -72.730 -72.730 0.000 30.40 -S(-2) 2.474e-009 - HS- 2.368e-009 2.268e-009 -8.626 -8.644 -0.019 20.61 - H2S 1.055e-010 1.055e-010 -9.977 -9.977 0.000 37.16 - S-2 6.100e-014 5.149e-014 -13.215 -13.288 -0.074 (0) - Fe(HS)2 6.248e-017 6.250e-017 -16.204 -16.204 0.000 (0) - Fe(HS)3- 1.612e-023 1.544e-023 -22.793 -22.811 -0.019 (0) -S(6) 6.022e-008 - SO4-2 5.672e-008 4.787e-008 -7.246 -7.320 -0.074 14.04 - CaSO4 3.492e-009 3.493e-009 -8.457 -8.457 0.000 7.50 - FeSO4 1.160e-013 1.160e-013 -12.936 -12.935 0.000 (0) - HSO4- 2.585e-014 2.477e-014 -13.588 -13.606 -0.019 40.28 - CaHSO4+ 1.275e-016 1.222e-016 -15.894 -15.913 -0.019 (0) - FeHSO4+ 4.236e-021 4.058e-021 -20.373 -20.392 -0.019 (0) - FeSO4+ 8.251e-030 7.909e-030 -29.083 -29.102 -0.018 (0) - Fe(SO4)2- 8.646e-036 8.283e-036 -35.063 -35.082 -0.019 (0) - FeHSO4+2 1.338e-037 1.127e-037 -36.874 -36.948 -0.074 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -6.43 -10.71 -4.28 CaSO4 - Aragonite -0.14 -8.48 -8.34 CaCO3 - Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -4.43 -7.27 -2.84 CH4 - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 - FeS(ppt) -4.32 -8.24 -3.92 FeS - Goethite 0.00 -1.00 -1.00 FeOOH - Gypsum -6.13 -10.71 -4.58 CaSO4:2H2O - H2(g) -6.72 -9.83 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -8.93 -16.92 -7.99 H2S - Hematite 2.01 -2.00 -4.01 Fe2O3 - Mackinawite -3.59 -8.24 -4.65 FeS - Melanterite -12.98 -15.19 -2.21 FeSO4:7H2O - O2(g) -69.84 -72.73 -2.89 O2 - Pyrite -0.00 -18.48 -18.48 FeS2 - Siderite -2.07 -12.96 -10.89 FeCO3 - Sulfur -8.18 -3.30 4.88 S - - -Reaction step 2. - -Using solution 1. PURE WATER -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 1.000e-003 moles of the following reaction have been added: - - Relative - Reactant moles - - NaCl 0.50000 - O2 1.00000 - - Relative - Element moles - Cl 0.50000 - Na 0.50000 - O 2.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -CO2(g) -3.50 -4.96 -1.46 1.000e+001 1.000e+001 1.391e-004 -Calcite 0.00 -8.48 -8.48 1.000e+001 9.999e+000 -9.301e-004 -Goethite -0.00 -1.00 -1.00 1.000e+001 1.000e+001 2.667e-004 -Gypsum -2.01 -6.59 -4.58 0.000e+000 0 0.000e+000 -Pyrite 0.00 -18.48 -18.48 1.000e+001 1.000e+001 -2.667e-004 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 7.910e-004 7.910e-004 - Ca 9.301e-004 9.301e-004 - Cl 5.000e-004 5.000e-004 - Fe 1.015e-008 1.015e-008 - Na 5.000e-004 5.000e-004 - S 5.333e-004 5.333e-004 - -----------------------------Description of solution---------------------------- - - pH = 8.166 Charge balance - pe = -4.280 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 257 - Density (g/cm3) = 0.99719 - Volume (L) = 1.00305 - Activity of water = 1.000 - Ionic strength = 3.617e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 7.936e-004 - Total CO2 (mol/kg) = 7.910e-004 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 28 - Total H = 1.110122e+002 - Total O = 5.551020e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.583e-006 1.482e-006 -5.800 -5.829 -0.029 -4.08 - H+ 7.251e-009 6.829e-009 -8.140 -8.166 -0.026 0.00 - H2O 5.551e+001 9.999e-001 1.744 -0.000 0.000 18.07 -C(-4) 2.201e-012 - CH4 2.201e-012 2.203e-012 -11.657 -11.657 0.000 32.22 -C(4) 7.910e-004 - HCO3- 7.608e-004 7.138e-004 -3.119 -3.146 -0.028 24.63 - CO2 1.095e-005 1.096e-005 -4.961 -4.960 0.000 30.26 - CaHCO3+ 6.555e-006 6.154e-006 -5.183 -5.211 -0.027 9.70 - CO3-2 6.327e-006 4.902e-006 -5.199 -5.310 -0.111 -4.26 - CaCO3 5.560e-006 5.565e-006 -5.255 -5.255 0.000 -14.60 - NaHCO3 8.366e-007 8.373e-007 -6.077 -6.077 0.000 19.41 - NaCO3- 1.090e-008 1.023e-008 -7.963 -7.990 -0.028 -0.63 - FeCO3 7.462e-010 7.468e-010 -9.127 -9.127 0.000 (0) - FeHCO3+ 4.840e-010 4.533e-010 -9.315 -9.344 -0.028 (0) -Ca 9.301e-004 - Ca+2 8.728e-004 6.758e-004 -3.059 -3.170 -0.111 -18.05 - CaSO4 4.522e-005 4.526e-005 -4.345 -4.344 0.000 7.50 - CaHCO3+ 6.555e-006 6.154e-006 -5.183 -5.211 -0.027 9.70 - CaCO3 5.560e-006 5.565e-006 -5.255 -5.255 0.000 -14.60 - CaOH+ 1.753e-008 1.642e-008 -7.756 -7.785 -0.028 (0) - CaHSO4+ 2.169e-012 2.032e-012 -11.664 -11.692 -0.028 (0) -Cl 5.000e-004 - Cl- 5.000e-004 4.682e-004 -3.301 -3.330 -0.029 18.10 - FeCl+ 4.382e-012 4.105e-012 -11.358 -11.387 -0.028 (0) - FeCl+2 5.824e-028 4.503e-028 -27.235 -27.346 -0.112 (0) - FeCl2+ 1.004e-030 9.418e-031 -29.998 -30.026 -0.028 (0) - FeCl3 4.406e-035 4.409e-035 -34.356 -34.356 0.000 (0) -Fe(2) 1.015e-008 - Fe+2 8.176e-009 6.351e-009 -8.087 -8.197 -0.110 -22.04 - FeCO3 7.462e-010 7.468e-010 -9.127 -9.127 0.000 (0) - FeHCO3+ 4.840e-010 4.533e-010 -9.315 -9.344 -0.028 (0) - FeSO4 4.250e-010 4.254e-010 -9.372 -9.371 0.000 (0) - FeOH+ 3.136e-010 2.941e-010 -9.504 -9.532 -0.028 (0) - FeCl+ 4.382e-012 4.105e-012 -11.358 -11.387 -0.028 (0) - Fe(OH)2 3.662e-013 3.665e-013 -12.436 -12.436 0.000 (0) - Fe(OH)3- 2.126e-015 1.994e-015 -14.672 -14.700 -0.028 (0) - FeHSO4+ 2.038e-017 1.909e-017 -16.691 -16.719 -0.028 (0) - Fe(HS)2 4.999e-018 5.003e-018 -17.301 -17.301 0.000 (0) - Fe(HS)3- 5.467e-025 5.121e-025 -24.262 -24.291 -0.028 (0) -Fe(3) 3.299e-014 - Fe(OH)3 2.752e-014 2.754e-014 -13.560 -13.560 0.000 (0) - Fe(OH)4- 3.920e-015 3.678e-015 -14.407 -14.434 -0.028 (0) - Fe(OH)2+ 1.556e-015 1.460e-015 -14.808 -14.836 -0.028 (0) - FeOH+2 3.894e-020 3.011e-020 -19.410 -19.521 -0.112 (0) - FeSO4+ 1.403e-025 1.315e-025 -24.853 -24.881 -0.028 (0) - Fe+3 5.464e-026 3.185e-026 -25.262 -25.497 -0.234 (0) - Fe(SO4)2- 1.157e-027 1.084e-027 -26.937 -26.965 -0.028 (0) - FeCl+2 5.824e-028 4.503e-028 -27.235 -27.346 -0.112 (0) - FeCl2+ 1.004e-030 9.418e-031 -29.998 -30.026 -0.028 (0) - FeHSO4+2 3.124e-033 2.405e-033 -32.505 -32.619 -0.114 (0) - FeCl3 4.406e-035 4.409e-035 -34.356 -34.356 0.000 (0) - Fe2(OH)2+4 6.943e-038 2.441e-038 -37.158 -37.613 -0.454 (0) - Fe3(OH)4+5 0.000e+000 0.000e+000 -49.419 -50.128 -0.709 (0) -H(0) 2.393e-011 - H2 1.196e-011 1.197e-011 -10.922 -10.922 0.000 28.61 -Na 5.000e-004 - Na+ 4.982e-004 4.670e-004 -3.303 -3.331 -0.028 -1.36 - NaSO4- 9.396e-007 8.815e-007 -6.027 -6.055 -0.028 18.50 - NaHCO3 8.366e-007 8.373e-007 -6.077 -6.077 0.000 19.41 - NaCO3- 1.090e-008 1.023e-008 -7.963 -7.990 -0.028 -0.63 - NaOH 6.916e-020 6.921e-020 -19.160 -19.160 0.000 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -70.537 -70.536 0.000 30.40 -S(-2) 1.060e-009 - HS- 1.004e-009 9.401e-010 -8.998 -9.027 -0.029 20.63 - H2S 5.608e-011 5.613e-011 -10.251 -10.251 0.000 37.16 - S-2 2.150e-014 1.663e-014 -13.668 -13.779 -0.112 (0) - Fe(HS)2 4.999e-018 5.003e-018 -17.301 -17.301 0.000 (0) - Fe(HS)3- 5.467e-025 5.121e-025 -24.262 -24.291 -0.028 (0) -S(6) 5.333e-004 - SO4-2 4.872e-004 3.766e-004 -3.312 -3.424 -0.112 14.12 - CaSO4 4.522e-005 4.526e-005 -4.345 -4.344 0.000 7.50 - NaSO4- 9.396e-007 8.815e-007 -6.027 -6.055 -0.028 18.50 - FeSO4 4.250e-010 4.254e-010 -9.372 -9.371 0.000 (0) - HSO4- 2.669e-010 2.500e-010 -9.574 -9.602 -0.028 40.30 - CaHSO4+ 2.169e-012 2.032e-012 -11.664 -11.692 -0.028 (0) - FeHSO4+ 2.038e-017 1.909e-017 -16.691 -16.719 -0.028 (0) - FeSO4+ 1.403e-025 1.315e-025 -24.853 -24.881 -0.028 (0) - Fe(SO4)2- 1.157e-027 1.084e-027 -26.937 -26.965 -0.028 (0) - FeHSO4+2 3.124e-033 2.405e-033 -32.505 -32.619 -0.114 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -2.32 -6.59 -4.28 CaSO4 - Aragonite -0.14 -8.48 -8.34 CaCO3 - Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -8.81 -11.66 -2.84 CH4 - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 - FeS(ppt) -5.14 -9.06 -3.92 FeS - Goethite -0.00 -1.00 -1.00 FeOOH - Gypsum -2.01 -6.59 -4.58 CaSO4:2H2O - H2(g) -7.82 -10.92 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -9.20 -17.19 -7.99 H2S - Halite -8.23 -6.66 1.57 NaCl - Hematite 2.01 -2.00 -4.01 Fe2O3 - Mackinawite -4.41 -9.06 -4.65 FeS - Melanterite -9.41 -11.62 -2.21 FeSO4:7H2O - O2(g) -67.64 -70.54 -2.89 O2 - Pyrite 0.00 -18.48 -18.48 FeS2 - Siderite -2.62 -13.51 -10.89 FeCO3 - Sulfur -7.36 -2.48 4.88 S - - -Reaction step 3. - -Using solution 1. PURE WATER -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 5.000e-003 moles of the following reaction have been added: - - Relative - Reactant moles - - NaCl 0.50000 - O2 1.00000 - - Relative - Element moles - Cl 0.50000 - Na 0.50000 - O 2.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -CO2(g) -3.50 -4.96 -1.46 1.000e+001 1.000e+001 2.393e-003 -Calcite 0.00 -8.48 -8.48 1.000e+001 9.997e+000 -2.939e-003 -Goethite 0.00 -1.00 -1.00 1.000e+001 1.000e+001 1.333e-003 -Gypsum -1.05 -5.63 -4.58 0.000e+000 0 0.000e+000 -Pyrite 0.00 -18.48 -18.48 1.000e+001 9.999e+000 -1.333e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 5.462e-004 5.462e-004 - Ca 2.939e-003 2.939e-003 - Cl 2.500e-003 2.500e-003 - Fe 2.185e-008 2.185e-008 - Na 2.500e-003 2.500e-003 - S 2.667e-003 2.667e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.975 Charge balance - pe = -3.961 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 863 - Density (g/cm3) = 0.99755 - Volume (L) = 1.00319 - Activity of water = 1.000 - Ionic strength = 1.226e-002 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 5.451e-004 - Total CO2 (mol/kg) = 5.462e-004 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.215e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 27 - Total H = 1.110111e+002 - Total O = 5.551758e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.073e-006 9.562e-007 -5.969 -6.019 -0.050 -4.02 - H+ 1.167e-008 1.058e-008 -7.933 -7.975 -0.043 0.00 - H2O 5.551e+001 9.998e-001 1.744 -0.000 0.000 18.07 -C(-4) 2.066e-013 - CH4 2.066e-013 2.071e-013 -12.685 -12.684 0.001 32.22 -C(4) 5.462e-004 - HCO3- 5.134e-004 4.605e-004 -3.290 -3.337 -0.047 24.71 - CO2 1.093e-005 1.096e-005 -4.961 -4.960 0.001 30.26 - CaHCO3+ 1.061e-005 9.538e-006 -4.974 -5.021 -0.046 9.73 - CaCO3 5.549e-006 5.565e-006 -5.256 -5.255 0.001 -14.60 - CO3-2 3.151e-006 2.040e-006 -5.501 -5.690 -0.189 -4.06 - NaHCO3 2.560e-006 2.567e-006 -5.592 -5.591 0.001 19.41 - NaCO3- 2.255e-008 2.023e-008 -7.647 -7.694 -0.047 -0.56 - FeHCO3+ 5.853e-010 5.229e-010 -9.233 -9.282 -0.049 (0) - FeCO3 5.542e-010 5.558e-010 -9.256 -9.255 0.001 (0) -Ca 2.939e-003 - Ca+2 2.509e-003 1.623e-003 -2.600 -2.790 -0.189 -17.90 - CaSO4 4.139e-004 4.151e-004 -3.383 -3.382 0.001 7.50 - CaHCO3+ 1.061e-005 9.538e-006 -4.974 -5.021 -0.046 9.73 - CaCO3 5.549e-006 5.565e-006 -5.256 -5.255 0.001 -14.60 - CaOH+ 2.849e-008 2.545e-008 -7.545 -7.594 -0.049 (0) - CaHSO4+ 3.232e-011 2.888e-011 -10.491 -10.539 -0.049 (0) -Cl 2.500e-003 - Cl- 2.500e-003 2.230e-003 -2.602 -2.652 -0.050 18.15 - FeCl+ 3.912e-011 3.495e-011 -10.408 -10.457 -0.049 (0) - FeCl+2 1.240e-026 7.986e-027 -25.907 -26.098 -0.191 (0) - FeCl2+ 8.880e-029 7.955e-029 -28.052 -28.099 -0.048 (0) - FeCl3 1.769e-032 1.774e-032 -31.752 -31.751 0.001 (0) -Fe(2) 2.185e-008 - Fe+2 1.740e-008 1.135e-008 -7.759 -7.945 -0.185 -21.89 - FeSO4 2.895e-009 2.903e-009 -8.538 -8.537 0.001 (0) - FeHCO3+ 5.853e-010 5.229e-010 -9.233 -9.282 -0.049 (0) - FeCO3 5.542e-010 5.558e-010 -9.256 -9.255 0.001 (0) - FeOH+ 3.787e-010 3.392e-010 -9.422 -9.470 -0.048 (0) - FeCl+ 3.912e-011 3.495e-011 -10.408 -10.457 -0.049 (0) - Fe(OH)2 2.720e-013 2.727e-013 -12.565 -12.564 0.001 (0) - Fe(OH)3- 1.069e-015 9.573e-016 -14.971 -15.019 -0.048 (0) - FeHSO4+ 2.261e-016 2.020e-016 -15.646 -15.695 -0.049 (0) - Fe(HS)2 2.762e-018 2.770e-018 -17.559 -17.557 0.001 (0) - Fe(HS)3- 1.767e-025 1.578e-025 -24.753 -24.802 -0.049 (0) -Fe(3) 3.263e-014 - Fe(OH)3 2.746e-014 2.754e-014 -13.561 -13.560 0.001 (0) - Fe(OH)4- 2.645e-015 2.372e-015 -14.578 -14.625 -0.047 (0) - Fe(OH)2+ 2.523e-015 2.263e-015 -14.598 -14.645 -0.047 (0) - FeOH+2 1.123e-019 7.234e-020 -18.950 -19.141 -0.191 (0) - FeSO4+ 2.087e-024 1.870e-024 -23.680 -23.728 -0.048 (0) - Fe+3 2.864e-025 1.186e-025 -24.543 -24.926 -0.383 (0) - Fe(SO4)2- 6.582e-026 5.881e-026 -25.182 -25.231 -0.049 (0) - FeCl+2 1.240e-026 7.986e-027 -25.907 -26.098 -0.191 (0) - FeCl2+ 8.880e-029 7.955e-029 -28.052 -28.099 -0.048 (0) - FeHSO4+2 8.318e-032 5.299e-032 -31.080 -31.276 -0.196 (0) - FeCl3 1.769e-032 1.774e-032 -31.752 -31.751 0.001 (0) - Fe2(OH)2+4 8.552e-037 1.408e-037 -36.068 -36.851 -0.783 (0) - Fe3(OH)4+5 0.000e+000 0.000e+000 -47.953 -49.177 -1.224 (0) -H(0) 1.322e-011 - H2 6.611e-012 6.630e-012 -11.180 -11.178 0.001 28.61 -Na 2.500e-003 - Na+ 2.480e-003 2.219e-003 -2.606 -2.654 -0.048 -1.30 - NaSO4- 1.783e-005 1.599e-005 -4.749 -4.796 -0.047 18.64 - NaHCO3 2.560e-006 2.567e-006 -5.592 -5.591 0.001 19.41 - NaCO3- 2.255e-008 2.023e-008 -7.647 -7.694 -0.047 -0.56 - NaOH 2.116e-019 2.122e-019 -18.674 -18.673 0.001 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -70.024 -70.023 0.001 30.40 -S(-2) 6.354e-010 - HS- 5.871e-010 5.232e-010 -9.231 -9.281 -0.050 20.68 - H2S 4.828e-011 4.841e-011 -10.316 -10.315 0.001 37.16 - S-2 9.271e-015 5.971e-015 -14.033 -14.224 -0.191 (0) - Fe(HS)2 2.762e-018 2.770e-018 -17.559 -17.557 0.001 (0) - Fe(HS)3- 1.767e-025 1.578e-025 -24.753 -24.802 -0.049 (0) -S(6) 2.667e-003 - SO4-2 2.235e-003 1.438e-003 -2.651 -2.842 -0.192 14.31 - CaSO4 4.139e-004 4.151e-004 -3.383 -3.382 0.001 7.50 - NaSO4- 1.783e-005 1.599e-005 -4.749 -4.796 -0.047 18.64 - FeSO4 2.895e-009 2.903e-009 -8.538 -8.537 0.001 (0) - HSO4- 1.656e-009 1.479e-009 -8.781 -8.830 -0.049 40.35 - CaHSO4+ 3.232e-011 2.888e-011 -10.491 -10.539 -0.049 (0) - FeHSO4+ 2.261e-016 2.020e-016 -15.646 -15.695 -0.049 (0) - FeSO4+ 2.087e-024 1.870e-024 -23.680 -23.728 -0.048 (0) - Fe(SO4)2- 6.582e-026 5.881e-026 -25.182 -25.231 -0.049 (0) - FeHSO4+2 8.318e-032 5.299e-032 -31.080 -31.276 -0.196 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -1.35 -5.63 -4.28 CaSO4 - Aragonite -0.14 -8.48 -8.34 CaCO3 - Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -9.84 -12.68 -2.84 CH4 - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 - FeS(ppt) -5.34 -9.25 -3.92 FeS - Goethite 0.00 -1.00 -1.00 FeOOH - Gypsum -1.05 -5.63 -4.58 CaSO4:2H2O - H2(g) -8.08 -11.18 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -9.26 -17.26 -7.99 H2S - Halite -6.88 -5.31 1.57 NaCl - Hematite 2.01 -2.00 -4.01 Fe2O3 - Mackinawite -4.60 -9.25 -4.65 FeS - Melanterite -8.58 -10.79 -2.21 FeSO4:7H2O - O2(g) -67.13 -70.02 -2.89 O2 - Pyrite 0.00 -18.48 -18.48 FeS2 - Siderite -2.75 -13.64 -10.89 FeCO3 - Sulfur -7.17 -2.29 4.88 S - - -Reaction step 4. - -Using solution 1. PURE WATER -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 1.000e-002 moles of the following reaction have been added: - - Relative - Reactant moles - - NaCl 0.50000 - O2 1.00000 - - Relative - Element moles - Cl 0.50000 - Na 0.50000 - O 2.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -CO2(g) -3.50 -4.96 -1.46 1.000e+001 1.001e+001 5.103e-003 -Calcite 0.00 -8.48 -8.48 1.000e+001 9.994e+000 -5.561e-003 -Goethite 0.00 -1.00 -1.00 1.000e+001 1.000e+001 2.667e-003 -Gypsum -0.64 -5.22 -4.58 0.000e+000 0 0.000e+000 -Pyrite 0.00 -18.48 -18.48 1.000e+001 9.997e+000 -2.667e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 4.580e-004 4.580e-004 - Ca 5.561e-003 5.561e-003 - Cl 5.000e-003 5.000e-003 - Fe 3.546e-008 3.546e-008 - Na 5.000e-003 5.000e-003 - S 5.333e-003 5.333e-003 - -----------------------------Description of solution---------------------------- - - pH = 7.877 Charge balance - pe = -3.807 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 1546 - Density (g/cm3) = 0.99801 - Volume (L) = 1.00339 - Activity of water = 1.000 - Ionic strength = 2.255e-002 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 4.558e-004 - Total CO2 (mol/kg) = 4.580e-004 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 27 - Total H = 1.110098e+002 - Total O = 5.552736e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 8.853e-007 7.617e-007 -6.053 -6.118 -0.065 -3.97 - H+ 1.501e-008 1.328e-008 -7.824 -7.877 -0.053 0.00 - H2O 5.551e+001 9.997e-001 1.744 -0.000 0.000 18.07 -C(-4) 7.412e-014 - CH4 7.412e-014 7.451e-014 -13.130 -13.128 0.002 32.22 -C(4) 4.580e-004 - HCO3- 4.217e-004 3.668e-004 -3.375 -3.436 -0.060 24.78 - CaHCO3+ 1.372e-005 1.197e-005 -4.863 -4.922 -0.059 9.76 - CO2 1.090e-005 1.096e-005 -4.962 -4.960 0.002 30.26 - CaCO3 5.536e-006 5.565e-006 -5.257 -5.255 0.002 -14.60 - NaHCO3 3.925e-006 3.945e-006 -5.406 -5.404 0.002 19.41 - CO3-2 2.261e-006 1.295e-006 -5.646 -5.888 -0.242 -3.89 - NaCO3- 2.847e-008 2.477e-008 -7.546 -7.606 -0.060 -0.49 - FeHCO3+ 6.680e-010 5.776e-010 -9.175 -9.238 -0.063 (0) - FeCO3 4.866e-010 4.892e-010 -9.313 -9.311 0.002 (0) -Ca 5.561e-003 - Ca+2 4.466e-003 2.558e-003 -2.350 -2.592 -0.242 -17.79 - CaSO4 1.077e-003 1.082e-003 -2.968 -2.966 0.002 7.50 - CaHCO3+ 1.372e-005 1.197e-005 -4.863 -4.922 -0.059 9.76 - CaCO3 5.536e-006 5.565e-006 -5.257 -5.255 0.002 -14.60 - CaOH+ 3.694e-008 3.194e-008 -7.432 -7.496 -0.063 (0) - CaHSO4+ 1.093e-010 9.449e-011 -9.961 -10.025 -0.063 (0) -Cl 5.000e-003 - Cl- 5.000e-003 4.309e-003 -2.301 -2.366 -0.065 18.19 - FeCl+ 1.083e-010 9.366e-011 -9.965 -10.028 -0.063 (0) - FeCl+2 5.375e-026 3.052e-026 -25.270 -25.515 -0.246 (0) - FeCl2+ 6.768e-028 5.876e-028 -27.170 -27.231 -0.061 (0) - FeCl3 2.519e-031 2.532e-031 -30.599 -30.597 0.002 (0) -Fe(2) 3.546e-008 - Fe+2 2.713e-008 1.575e-008 -7.566 -7.803 -0.236 -21.79 - FeSO4 6.627e-009 6.662e-009 -8.179 -8.176 0.002 (0) - FeHCO3+ 6.680e-010 5.776e-010 -9.175 -9.238 -0.063 (0) - FeCO3 4.866e-010 4.892e-010 -9.313 -9.311 0.002 (0) - FeOH+ 4.316e-010 3.747e-010 -9.365 -9.426 -0.061 (0) - FeCl+ 1.083e-010 9.366e-011 -9.965 -10.028 -0.063 (0) - Fe(OH)2 2.388e-013 2.400e-013 -12.622 -12.620 0.002 (0) - Fe(OH)3- 7.730e-016 6.711e-016 -15.112 -15.173 -0.061 (0) - FeHSO4+ 6.727e-016 5.816e-016 -15.172 -15.235 -0.063 (0) - Fe(HS)2 2.134e-018 2.145e-018 -17.671 -17.669 0.002 (0) - Fe(HS)3- 1.056e-025 9.133e-026 -24.976 -25.039 -0.063 (0) -Fe(3) 3.283e-014 - Fe(OH)3 2.739e-014 2.753e-014 -13.562 -13.560 0.002 (0) - Fe(OH)2+ 3.264e-015 2.840e-015 -14.486 -14.547 -0.060 (0) - Fe(OH)4- 2.172e-015 1.890e-015 -14.663 -14.724 -0.060 (0) - FeOH+2 2.007e-019 1.140e-019 -18.697 -18.943 -0.246 (0) - FeSO4+ 7.048e-024 6.119e-024 -23.152 -23.213 -0.061 (0) - Fe+3 7.040e-025 2.345e-025 -24.152 -24.630 -0.477 (0) - Fe(SO4)2- 3.683e-025 3.185e-025 -24.434 -24.497 -0.063 (0) - FeCl+2 5.375e-026 3.052e-026 -25.270 -25.515 -0.246 (0) - FeCl2+ 6.768e-028 5.876e-028 -27.170 -27.231 -0.061 (0) - FeHSO4+2 3.893e-031 2.176e-031 -30.410 -30.662 -0.253 (0) - FeCl3 2.519e-031 2.532e-031 -30.599 -30.597 0.002 (0) - Fe2(OH)2+4 3.579e-036 3.496e-037 -35.446 -36.456 -1.010 (0) - Fe3(OH)4+5 0.000e+000 0.000e+000 -47.105 -48.683 -1.578 (0) -H(0) 1.021e-011 - H2 5.107e-012 5.134e-012 -11.292 -11.290 0.002 28.61 -Na 5.000e-003 - Na+ 4.938e-003 4.282e-003 -2.306 -2.368 -0.062 -1.26 - NaSO4- 5.868e-005 5.105e-005 -4.231 -4.292 -0.060 18.77 - NaHCO3 3.925e-006 3.945e-006 -5.406 -5.404 0.002 19.41 - NaCO3- 2.847e-008 2.477e-008 -7.546 -7.606 -0.060 -0.49 - NaOH 3.244e-019 3.261e-019 -18.489 -18.487 0.002 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -69.803 -69.801 0.002 30.40 -S(-2) 4.996e-010 - HS- 4.544e-010 3.910e-010 -9.343 -9.408 -0.065 20.71 - H2S 4.517e-011 4.541e-011 -10.345 -10.343 0.002 37.16 - S-2 6.260e-015 3.555e-015 -14.203 -14.449 -0.246 (0) - Fe(HS)2 2.134e-018 2.145e-018 -17.671 -17.669 0.002 (0) - Fe(HS)3- 1.056e-025 9.133e-026 -24.976 -25.039 -0.063 (0) -S(6) 5.333e-003 - SO4-2 4.198e-003 2.379e-003 -2.377 -2.624 -0.247 14.46 - CaSO4 1.077e-003 1.082e-003 -2.968 -2.966 0.002 7.50 - NaSO4- 5.868e-005 5.105e-005 -4.231 -4.292 -0.060 18.77 - FeSO4 6.627e-009 6.662e-009 -8.179 -8.176 0.002 (0) - HSO4- 3.553e-009 3.073e-009 -8.449 -8.512 -0.063 40.39 - CaHSO4+ 1.093e-010 9.449e-011 -9.961 -10.025 -0.063 (0) - FeHSO4+ 6.727e-016 5.816e-016 -15.172 -15.235 -0.063 (0) - FeSO4+ 7.048e-024 6.119e-024 -23.152 -23.213 -0.061 (0) - Fe(SO4)2- 3.683e-025 3.185e-025 -24.434 -24.497 -0.063 (0) - FeHSO4+2 3.893e-031 2.176e-031 -30.410 -30.662 -0.253 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -0.94 -5.22 -4.28 CaSO4 - Aragonite -0.14 -8.48 -8.34 CaCO3 - Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -10.28 -13.13 -2.84 CH4 - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 - FeS(ppt) -5.42 -9.33 -3.92 FeS - Goethite 0.00 -1.00 -1.00 FeOOH - Gypsum -0.64 -5.22 -4.58 CaSO4:2H2O - H2(g) -8.19 -11.29 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -9.29 -17.28 -7.99 H2S - Halite -6.30 -4.73 1.57 NaCl - Hematite 2.01 -2.00 -4.01 Fe2O3 - Mackinawite -4.69 -9.33 -4.65 FeS - Melanterite -8.22 -10.43 -2.21 FeSO4:7H2O - O2(g) -66.91 -69.80 -2.89 O2 - Pyrite 0.00 -18.48 -18.48 FeS2 - Siderite -2.80 -13.69 -10.89 FeCO3 - Sulfur -7.09 -2.20 4.88 S - - -Reaction step 5. - -Using solution 1. PURE WATER -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 3.000e-002 moles of the following reaction have been added: - - Relative - Reactant moles - - NaCl 0.50000 - O2 1.00000 - - Relative - Element moles - Cl 0.50000 - Na 0.50000 - O 2.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -CO2(g) -3.50 -4.96 -1.46 1.000e+001 1.002e+001 1.582e-002 -Calcite 0.00 -8.48 -8.48 1.000e+001 9.984e+000 -1.618e-002 -Goethite 0.00 -1.00 -1.00 1.000e+001 1.001e+001 8.000e-003 -Gypsum -0.01 -4.59 -4.58 0.000e+000 0 0.000e+000 -Pyrite -0.00 -18.48 -18.48 1.000e+001 9.992e+000 -8.000e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 3.596e-004 3.595e-004 - Ca 1.618e-002 1.618e-002 - Cl 1.500e-002 1.500e-002 - Fe 8.321e-008 8.320e-008 - Na 1.500e-002 1.500e-002 - S 1.600e-002 1.600e-002 - -----------------------------Description of solution---------------------------- - - pH = 7.721 Charge balance - pe = -3.568 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 3928 - Density (g/cm3) = 0.99985 - Volume (L) = 1.00420 - Activity of water = 0.999 - Ionic strength = 6.087e-002 - Mass of water (kg) = 9.999e-001 - Total alkalinity (eq/kg) = 3.564e-004 - Total CO2 (mol/kg) = 3.596e-004 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.206e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 27 - Total H = 1.110044e+002 - Total O = 5.556711e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 6.668e-007 5.320e-007 -6.176 -6.274 -0.098 -3.84 - H+ 2.247e-008 1.901e-008 -7.648 -7.721 -0.073 0.00 - H2O 5.551e+001 9.990e-001 1.744 -0.000 0.000 18.07 -C(-4) 1.590e-014 - CH4 1.590e-014 1.613e-014 -13.798 -13.792 0.006 32.22 -C(4) 3.596e-004 - HCO3- 3.134e-004 2.562e-004 -3.504 -3.591 -0.088 25.02 - CaHCO3+ 2.081e-005 1.713e-005 -4.682 -4.766 -0.085 9.81 - CO2 1.081e-005 1.096e-005 -4.966 -4.960 0.006 30.26 - NaHCO3 7.559e-006 7.665e-006 -5.122 -5.115 0.006 19.41 - CaCO3 5.487e-006 5.565e-006 -5.261 -5.255 0.006 -14.60 - CO3-2 1.416e-006 6.323e-007 -5.849 -6.199 -0.350 -3.47 - NaCO3- 4.115e-008 3.364e-008 -7.386 -7.473 -0.088 -0.31 - FeHCO3+ 8.432e-010 6.828e-010 -9.074 -9.166 -0.092 (0) - FeCO3 3.986e-010 4.042e-010 -9.399 -9.393 0.006 (0) -Ca 1.618e-002 - Ca+2 1.168e-002 5.239e-003 -1.933 -2.281 -0.348 -17.57 - CaSO4 4.474e-003 4.537e-003 -2.349 -2.343 0.006 7.50 - CaHCO3+ 2.081e-005 1.713e-005 -4.682 -4.766 -0.085 9.81 - CaCO3 5.487e-006 5.565e-006 -5.261 -5.255 0.006 -14.60 - CaOH+ 5.644e-008 4.571e-008 -7.248 -7.340 -0.092 (0) - CaHSO4+ 6.999e-010 5.668e-010 -9.155 -9.247 -0.092 (0) -Cl 1.500e-002 - Cl- 1.500e-002 1.202e-002 -1.824 -1.920 -0.096 18.27 - FeCl+ 5.461e-010 4.422e-010 -9.263 -9.354 -0.092 (0) - FeCl+2 5.696e-025 2.497e-025 -24.244 -24.603 -0.358 (0) - FeCl2+ 1.648e-026 1.341e-026 -25.783 -25.873 -0.090 (0) - FeCl3 1.589e-029 1.612e-029 -28.799 -28.793 0.006 (0) -Fe(2) 8.321e-008 - Fe+2 5.812e-008 2.665e-008 -7.236 -7.574 -0.339 -21.57 - FeSO4 2.276e-008 2.308e-008 -7.643 -7.637 0.006 (0) - FeHCO3+ 8.432e-010 6.828e-010 -9.074 -9.166 -0.092 (0) - FeCl+ 5.461e-010 4.422e-010 -9.263 -9.354 -0.092 (0) - FeOH+ 5.444e-010 4.430e-010 -9.264 -9.354 -0.090 (0) - FeCO3 3.986e-010 4.042e-010 -9.399 -9.393 0.006 (0) - Fe(OH)2 1.954e-013 1.982e-013 -12.709 -12.703 0.006 (0) - FeHSO4+ 3.560e-015 2.883e-015 -14.449 -14.540 -0.092 (0) - Fe(OH)3- 4.757e-016 3.871e-016 -15.323 -15.412 -0.090 (0) - Fe(HS)2 1.442e-018 1.463e-018 -17.841 -17.835 0.006 (0) - Fe(HS)3- 4.881e-026 3.953e-026 -25.311 -25.403 -0.092 (0) -Fe(3) 3.372e-014 - Fe(OH)3 2.713e-014 2.752e-014 -13.567 -13.560 0.006 (0) - Fe(OH)2+ 4.971e-015 4.063e-015 -14.304 -14.391 -0.088 (0) - Fe(OH)4- 1.614e-015 1.319e-015 -14.792 -14.880 -0.088 (0) - FeOH+2 5.326e-019 2.334e-019 -18.274 -18.632 -0.358 (0) - FeSO4+ 4.514e-023 3.673e-023 -22.345 -22.435 -0.090 (0) - Fe(SO4)2- 4.832e-024 3.913e-024 -23.316 -23.408 -0.092 (0) - Fe+3 3.107e-024 6.878e-025 -23.508 -24.163 -0.655 (0) - FeCl+2 5.696e-025 2.497e-025 -24.244 -24.603 -0.358 (0) - FeCl2+ 1.648e-026 1.341e-026 -25.783 -25.873 -0.090 (0) - FeCl3 1.589e-029 1.612e-029 -28.799 -28.793 0.006 (0) - FeHSO4+2 4.346e-030 1.869e-030 -29.362 -29.728 -0.366 (0) - Fe2(OH)2+4 4.288e-035 1.467e-036 -34.368 -35.834 -1.466 (0) - Fe3(OH)4+5 0.000e+000 0.000e+000 -45.614 -47.905 -2.290 (0) -H(0) 6.904e-012 - H2 3.452e-012 3.501e-012 -11.462 -11.456 0.006 28.61 -Na 1.500e-002 - Na+ 1.464e-002 1.191e-002 -1.835 -1.924 -0.090 -1.16 - NaSO4- 3.556e-004 2.907e-004 -3.449 -3.537 -0.088 19.16 - NaHCO3 7.559e-006 7.665e-006 -5.122 -5.115 0.006 19.41 - NaCO3- 4.115e-008 3.364e-008 -7.386 -7.473 -0.088 -0.31 - NaOH 6.248e-019 6.337e-019 -18.204 -18.198 0.006 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -69.475 -69.469 0.006 30.40 -S(-2) 3.517e-010 - HS- 3.110e-010 2.482e-010 -9.507 -9.605 -0.098 20.81 - H2S 4.066e-011 4.124e-011 -10.391 -10.385 0.006 37.16 - S-2 3.598e-015 1.577e-015 -14.444 -14.802 -0.358 (0) - Fe(HS)2 1.442e-018 1.463e-018 -17.841 -17.835 0.006 (0) - Fe(HS)3- 4.881e-026 3.953e-026 -25.311 -25.403 -0.092 (0) -S(6) 1.600e-002 - SO4-2 1.117e-002 4.870e-003 -1.952 -2.312 -0.361 14.82 - CaSO4 4.474e-003 4.537e-003 -2.349 -2.343 0.006 7.50 - NaSO4- 3.556e-004 2.907e-004 -3.449 -3.537 -0.088 19.16 - FeSO4 2.276e-008 2.308e-008 -7.643 -7.637 0.006 (0) - HSO4- 1.111e-008 8.998e-009 -7.954 -8.046 -0.092 40.47 - CaHSO4+ 6.999e-010 5.668e-010 -9.155 -9.247 -0.092 (0) - FeHSO4+ 3.560e-015 2.883e-015 -14.449 -14.540 -0.092 (0) - FeSO4+ 4.514e-023 3.673e-023 -22.345 -22.435 -0.090 (0) - Fe(SO4)2- 4.832e-024 3.913e-024 -23.316 -23.408 -0.092 (0) - FeHSO4+2 4.346e-030 1.869e-030 -29.362 -29.728 -0.366 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -0.32 -4.59 -4.28 CaSO4 - Aragonite -0.14 -8.48 -8.34 CaCO3 - Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -10.95 -13.79 -2.84 CH4 - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 - FeS(ppt) -5.54 -9.46 -3.92 FeS - Goethite 0.00 -1.00 -1.00 FeOOH - Gypsum -0.01 -4.59 -4.58 CaSO4:2H2O - H2(g) -8.35 -11.46 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -9.33 -17.33 -7.99 H2S - Halite -5.41 -3.84 1.57 NaCl - Hematite 2.01 -2.00 -4.01 Fe2O3 - Mackinawite -4.81 -9.46 -4.65 FeS - Melanterite -7.68 -9.89 -2.21 FeSO4:7H2O - O2(g) -66.58 -69.47 -2.89 O2 - Pyrite -0.00 -18.48 -18.48 FeS2 - Siderite -2.88 -13.77 -10.89 FeCO3 - Sulfur -6.96 -2.08 4.88 S - - -Reaction step 6. - -Using solution 1. PURE WATER -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 5.000e-002 moles of the following reaction have been added: - - Relative - Reactant moles - - NaCl 0.50000 - O2 1.00000 - - Relative - Element moles - Cl 0.50000 - Na 0.50000 - O 2.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -CO2(g) -3.50 -4.96 -1.46 1.000e+001 1.003e+001 2.648e-002 -Calcite -0.00 -8.48 -8.48 1.000e+001 9.973e+000 -2.685e-002 -Goethite -0.00 -1.00 -1.00 1.000e+001 1.001e+001 1.333e-002 -Gypsum 0.00 -4.58 -4.58 0.000e+000 9.552e-003 9.552e-003 -Pyrite 0.00 -18.48 -18.48 1.000e+001 9.987e+000 -1.333e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 3.650e-004 3.648e-004 - Ca 1.730e-002 1.730e-002 - Cl 2.501e-002 2.500e-002 - Fe 8.880e-008 8.876e-008 - Na 2.501e-002 2.500e-002 - S 1.712e-002 1.711e-002 - -----------------------------Description of solution---------------------------- - - pH = 7.715 Charge balance - pe = -3.561 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 5121 - Density (g/cm3) = 1.00041 - Volume (L) = 1.00405 - Activity of water = 0.999 - Ionic strength = 7.438e-002 - Mass of water (kg) = 9.995e-001 - Total alkalinity (eq/kg) = 3.619e-004 - Total CO2 (mol/kg) = 3.650e-004 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.203e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 - Total H = 1.109609e+002 - Total O = 5.554981e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 6.697e-007 5.248e-007 -6.174 -6.280 -0.106 -3.80 - H+ 2.300e-008 1.926e-008 -7.638 -7.715 -0.077 0.00 - H2O 5.551e+001 9.986e-001 1.744 -0.001 0.000 18.07 -C(-4) 1.532e-014 - CH4 1.532e-014 1.559e-014 -13.815 -13.807 0.007 32.22 -C(4) 3.650e-004 - HCO3- 3.136e-004 2.528e-004 -3.504 -3.597 -0.094 25.09 - CaHCO3+ 2.138e-005 1.736e-005 -4.670 -4.761 -0.090 9.82 - NaHCO3 1.222e-005 1.243e-005 -4.913 -4.906 0.007 19.41 - CO2 1.077e-005 1.096e-005 -4.968 -4.960 0.007 30.26 - CaCO3 5.470e-006 5.565e-006 -5.262 -5.255 0.007 -14.60 - CO3-2 1.459e-006 6.154e-007 -5.836 -6.211 -0.375 -3.35 - NaCO3- 6.678e-008 5.381e-008 -7.175 -7.269 -0.094 -0.25 - FeHCO3+ 8.635e-010 6.892e-010 -9.064 -9.162 -0.098 (0) - FeCO3 3.958e-010 4.026e-010 -9.403 -9.395 0.007 (0) -Ca 1.730e-002 - Ca+2 1.268e-002 5.383e-003 -1.897 -2.269 -0.372 -17.52 - CaSO4 4.601e-003 4.680e-003 -2.337 -2.330 0.007 7.50 - CaHCO3+ 2.138e-005 1.736e-005 -4.670 -4.761 -0.090 9.82 - CaCO3 5.470e-006 5.565e-006 -5.262 -5.255 0.007 -14.60 - CaOH+ 5.803e-008 4.632e-008 -7.236 -7.334 -0.098 (0) - CaHSO4+ 7.423e-010 5.925e-010 -9.129 -9.227 -0.098 (0) -Cl 2.501e-002 - Cl- 2.501e-002 1.970e-002 -1.602 -1.706 -0.104 18.30 - FeCl+ 9.290e-010 7.415e-010 -9.032 -9.130 -0.098 (0) - FeCl+2 1.032e-024 4.262e-025 -23.986 -24.370 -0.384 (0) - FeCl2+ 4.678e-026 3.750e-026 -25.330 -25.426 -0.096 (0) - FeCl3 7.262e-029 7.387e-029 -28.139 -28.132 0.007 (0) -Fe(2) 8.880e-008 - Fe+2 6.274e-008 2.727e-008 -7.202 -7.564 -0.362 -21.52 - FeSO4 2.331e-008 2.371e-008 -7.632 -7.625 0.007 (0) - FeCl+ 9.290e-010 7.415e-010 -9.032 -9.130 -0.098 (0) - FeHCO3+ 8.635e-010 6.892e-010 -9.064 -9.162 -0.098 (0) - FeOH+ 5.578e-010 4.471e-010 -9.253 -9.350 -0.096 (0) - FeCO3 3.958e-010 4.026e-010 -9.403 -9.395 0.007 (0) - Fe(OH)2 1.940e-013 1.973e-013 -12.712 -12.705 0.007 (0) - FeHSO4+ 3.761e-015 3.002e-015 -14.425 -14.523 -0.098 (0) - Fe(OH)3- 4.743e-016 3.801e-016 -15.324 -15.420 -0.096 (0) - Fe(HS)2 1.425e-018 1.450e-018 -17.846 -17.839 0.007 (0) - Fe(HS)3- 4.832e-026 3.857e-026 -25.316 -25.414 -0.098 (0) -Fe(3) 3.376e-014 - Fe(OH)3 2.704e-014 2.751e-014 -13.568 -13.561 0.007 (0) - Fe(OH)2+ 5.110e-015 4.118e-015 -14.292 -14.385 -0.094 (0) - Fe(OH)4- 1.614e-015 1.301e-015 -14.792 -14.886 -0.094 (0) - FeOH+2 5.810e-019 2.398e-019 -18.236 -18.620 -0.384 (0) - FeSO4+ 4.792e-023 3.841e-023 -22.320 -22.416 -0.096 (0) - Fe(SO4)2- 5.148e-024 4.109e-024 -23.288 -23.386 -0.098 (0) - Fe+3 3.534e-024 7.164e-025 -23.452 -24.145 -0.693 (0) - FeCl+2 1.032e-024 4.262e-025 -23.986 -24.370 -0.384 (0) - FeCl2+ 4.678e-026 3.750e-026 -25.330 -25.426 -0.096 (0) - FeCl3 7.262e-029 7.387e-029 -28.139 -28.132 0.007 (0) - FeHSO4+2 4.881e-030 1.981e-030 -29.312 -29.703 -0.392 (0) - Fe2(OH)2+4 5.706e-035 1.548e-036 -34.244 -35.810 -1.567 (0) - Fe3(OH)4+5 0.000e+000 0.000e+000 -45.428 -47.876 -2.448 (0) -H(0) 6.823e-012 - H2 3.412e-012 3.471e-012 -11.467 -11.460 0.007 28.61 -Na 2.501e-002 - Na+ 2.440e-002 1.957e-002 -1.613 -1.708 -0.096 -1.14 - NaSO4- 5.953e-004 4.797e-004 -3.225 -3.319 -0.094 19.27 - NaHCO3 1.222e-005 1.243e-005 -4.913 -4.906 0.007 19.41 - NaCO3- 6.678e-008 5.381e-008 -7.175 -7.269 -0.094 -0.25 - NaOH 1.010e-018 1.027e-018 -17.996 -17.988 0.007 (0) -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -69.469 -69.462 0.007 30.40 -S(-2) 3.521e-010 - HS- 3.117e-010 2.443e-010 -9.506 -9.612 -0.106 20.83 - H2S 4.043e-011 4.113e-011 -10.393 -10.386 0.007 37.16 - S-2 3.711e-015 1.532e-015 -14.431 -14.815 -0.384 (0) - Fe(HS)2 1.425e-018 1.450e-018 -17.846 -17.839 0.007 (0) - Fe(HS)3- 4.832e-026 3.857e-026 -25.316 -25.414 -0.098 (0) -S(6) 1.712e-002 - SO4-2 1.193e-002 4.890e-003 -1.923 -2.311 -0.387 14.92 - CaSO4 4.601e-003 4.680e-003 -2.337 -2.330 0.007 7.50 - NaSO4- 5.953e-004 4.797e-004 -3.225 -3.319 -0.094 19.27 - FeSO4 2.331e-008 2.371e-008 -7.632 -7.625 0.007 (0) - HSO4- 1.147e-008 9.156e-009 -7.940 -8.038 -0.098 40.50 - CaHSO4+ 7.423e-010 5.925e-010 -9.129 -9.227 -0.098 (0) - FeHSO4+ 3.761e-015 3.002e-015 -14.425 -14.523 -0.098 (0) - FeSO4+ 4.792e-023 3.841e-023 -22.320 -22.416 -0.096 (0) - Fe(SO4)2- 5.148e-024 4.109e-024 -23.288 -23.386 -0.098 (0) - FeHSO4+2 4.881e-030 1.981e-030 -29.312 -29.703 -0.392 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Anhydrite -0.30 -4.58 -4.28 CaSO4 - Aragonite -0.14 -8.48 -8.34 CaCO3 - Calcite -0.00 -8.48 -8.48 CaCO3 - CH4(g) -10.96 -13.81 -2.84 CH4 - CO2(g) -3.50 -4.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 - FeS(ppt) -5.55 -9.46 -3.92 FeS - Goethite -0.00 -1.00 -1.00 FeOOH - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2(g) -8.36 -11.46 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -9.34 -17.33 -7.99 H2S - Halite -4.98 -3.41 1.57 NaCl - Hematite 2.01 -2.00 -4.01 Fe2O3 - Mackinawite -4.81 -9.46 -4.65 FeS - Melanterite -7.67 -9.88 -2.21 FeSO4:7H2O - O2(g) -66.57 -69.46 -2.89 O2 - Pyrite 0.00 -18.48 -18.48 FeS2 - Siderite -2.89 -13.78 -10.89 FeCO3 - Sulfur -6.96 -2.08 4.88 S - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 2. ------------------------------------- - -------------------------------- -End of Run after 0.693 Seconds. -------------------------------- - diff --git a/examples_pc/ex5.sel b/examples_pc/ex5.sel deleted file mode 100644 index e662eab9..00000000 --- a/examples_pc/ex5.sel +++ /dev/null @@ -1,8 +0,0 @@ - sim state soln dist_x time step pH pe Cl pyrite d_pyrite goethite d_goethite calcite d_calcite CO2(g) d_CO2(g) gypsum d_gypsum si_Gypsum - 1 i_soln 1 -99 -99 -99 7 4 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 -999.9990 - 1 react 1 -99 0 1 8.274 -4.93645 0.0000e+000 1.0000e+001 -3.1345e-008 1.0000e+001 1.0441e-008 9.9995e+000 -4.9642e-004 9.9995e+000 -4.9023e-004 0.0000e+000 0.0000e+000 -6.1259 - 1 react 1 -99 0 2 8.16564 -4.27974 5.0000e-004 9.9997e+000 -2.6667e-004 1.0000e+001 2.6666e-004 9.9991e+000 -9.3011e-004 1.0000e+001 1.3908e-004 0.0000e+000 0.0000e+000 -2.0134 - 1 react 1 -99 0 3 7.97536 -3.96112 2.5000e-003 9.9987e+000 -1.3333e-003 1.0001e+001 1.3333e-003 9.9971e+000 -2.9392e-003 1.0002e+001 2.3930e-003 0.0000e+000 0.0000e+000 -1.0511 - 1 react 1 -99 0 4 7.87669 -3.80692 5.0001e-003 9.9973e+000 -2.6667e-003 1.0003e+001 2.6666e-003 9.9944e+000 -5.5612e-003 1.0005e+001 5.1032e-003 0.0000e+000 0.0000e+000 -0.6351 - 1 react 1 -99 0 5 7.72112 -3.56821 1.5001e-002 9.9920e+000 -8.0000e-003 1.0008e+001 7.9999e-003 9.9838e+000 -1.6178e-002 1.0016e+001 1.5819e-002 0.0000e+000 0.0000e+000 -0.0132 - 1 react 1 -99 0 6 7.71535 -3.56054 2.5012e-002 9.9867e+000 -1.3333e-002 1.0013e+001 1.3333e-002 9.9732e+000 -2.6847e-002 1.0026e+001 2.6483e-002 9.5521e-003 9.5521e-003 0.0000 diff --git a/examples_pc/ex6.out b/examples_pc/ex6.out deleted file mode 100644 index 49f9b9a5..00000000 --- a/examples_pc/ex6.out +++ /dev/null @@ -1,3814 +0,0 @@ - Input file: ..\examples\ex6 - Output file: ex6.out -Database file: ..\database\phreeqc.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - PHASES - EXCHANGE_MASTER_SPECIES - EXCHANGE_SPECIES - SURFACE_MASTER_SPECIES - SURFACE_SPECIES - RATES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Simulation 6A.--React to phase boundaries. - SOLUTION 1 PURE WATER - pH 7.0 charge - temp 25.0 - PHASES - Gibbsite - Al(OH)3 + 3 H+ = Al+3 + 3 H2O - log_k 8.049 - delta_h -22.792 kcal - Kaolinite - Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 - log_k 5.708 - delta_h -35.306 kcal - K-mica - KAl3Si3O10(OH)2 + 10 H+ = 3 Al+3 + 3 H4SiO4 + K+ - log_k 12.970 - delta_h -59.377 kcal - K-feldspar - KAlSi3O8 + 4 H2O + 4 H+ = Al+3 + 3 H4SiO4 + K+ - log_k 0.875 - delta_h -12.467 kcal - SELECTED_OUTPUT - file ex6A-B.sel - activities K+ H+ H4SiO4 - si Gibbsite Kaolinite K-mica K-feldspar - equilibrium_phases Gibbsite Kaolinite K-mica K-feldspar - END ------ -TITLE ------ - - Simulation 6A.--React to phase boundaries. - -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 1. PURE WATER - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Pure water - -----------------------------Description of solution---------------------------- - - pH = 6.997 Charge balance - pe = 4.000 - Specific Conductance (uS/cm, 25 oC) = 0 - Density (g/cm3) = 0.99704 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 1.006e-007 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 3.040e-017 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.040e-017 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 2 - Total H = 1.110124e+002 - Total O = 5.550622e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.006e-007 1.006e-007 -6.997 -6.997 -0.000 -4.14 - H+ 1.006e-007 1.006e-007 -6.997 -6.997 -0.000 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -H(0) 1.433e-025 - H2 7.166e-026 7.166e-026 -25.145 -25.145 0.000 28.61 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -42.090 -42.090 0.000 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - H2(g) -22.04 -25.14 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - O2(g) -39.20 -42.09 -2.89 O2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 2. ------------------------------------- - - TITLE Simulation 6A1.--Find amount of K-feldspar dissolved to - reach gibbsite saturation. - USE solution 1 - EQUILIBRIUM_PHASES 1 - Gibbsite 0.0 KAlSi3O8 10.0 - Kaolinite 0.0 0.0 - K-mica 0.0 0.0 - K-feldspar 0.0 0.0 - USER_GRAPH 1 Simulation 6 - -headings 6A--Intersections - -chart_title "K-Feldspar Reaction Path" - -axis_titles "Log[H4SiO4]" "Log([K+] / [H+])" - -axis_scale x_axis -8.0 0.0 1 1 - -axis_scale y_axis -1.0 8.0 1 1 - 10 PLOT_XY LA("H4SiO4"),(LA("K+")-LA("H+")), color = Red, line_w = 0, symbol = Circle, symbol_size = 10 - END ------ -TITLE ------ - - Simulation 6A1.--Find amount of K-feldspar dissolved to - reach gibbsite saturation. - ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. PURE WATER -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Gibbsite -0.00 8.05 8.05 - KAlSi3O8 is reactant 1.000e+001 1.000e+001 -2.658e-008 -K-feldspar -14.69 -13.82 0.88 0.000e+000 0 0.000e+000 -K-mica -10.69 2.28 12.97 0.000e+000 0 0.000e+000 -Kaolinite -3.81 1.90 5.71 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 2.658e-008 2.658e-008 - K 2.658e-008 2.658e-008 - Si 7.974e-008 7.974e-008 - -----------------------------Description of solution---------------------------- - - pH = 7.004 Charge balance - pe = 10.368 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 0 - Density (g/cm3) = 0.99704 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 1.267e-007 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.063e-007 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.065e-017 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 10 - Total H = 1.110124e+002 - Total O = 5.550622e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.021e-007 1.021e-007 -6.991 -6.991 -0.000 -4.14 - H+ 9.919e-008 9.915e-008 -7.004 -7.004 -0.000 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 2.658e-008 - Al(OH)4- 2.442e-008 2.441e-008 -7.612 -7.612 -0.000 (0) - Al(OH)3 1.284e-009 1.284e-009 -8.891 -8.891 0.000 (0) - Al(OH)2+ 8.645e-010 8.641e-010 -9.063 -9.063 -0.000 (0) - AlOH+2 1.095e-011 1.093e-011 -10.961 -10.961 -0.001 -27.81 - Al+3 1.095e-013 1.091e-013 -12.960 -12.962 -0.002 -44.55 -H(0) 2.553e-038 - H2 1.276e-038 1.276e-038 -37.894 -37.894 0.000 28.61 -K 2.658e-008 - K+ 2.658e-008 2.657e-008 -7.575 -7.576 -0.000 8.98 -O(0) 5.119e-017 - O2 2.559e-017 2.559e-017 -16.592 -16.592 0.000 30.40 -Si 7.974e-008 - H4SiO4 7.962e-008 7.962e-008 -7.099 -7.099 0.000 52.08 - H3SiO4- 1.184e-010 1.184e-010 -9.926 -9.927 -0.000 27.94 - H2SiO4-2 8.136e-017 8.123e-017 -16.090 -16.090 -0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 - Chalcedony -3.55 -7.10 -3.55 SiO2 - Gibbsite -0.00 8.05 8.05 Al(OH)3 - H2(g) -34.79 -37.89 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -14.69 -13.82 0.88 KAlSi3O8 - K-mica -10.69 2.28 12.97 KAl3Si3O10(OH)2 - Kaolinite -3.81 1.90 5.71 Al2Si2O5(OH)4 - O2(g) -13.70 -16.59 -2.89 O2 - Quartz -3.12 -7.10 -3.98 SiO2 - SiO2(a) -4.39 -7.10 -2.71 SiO2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 3. ------------------------------------- - - TITLE Simulation 6A2.--Find amount of K-feldspar dissolved to - reach kaolinite saturation. - USE solution 1 - EQUILIBRIUM_PHASES 1 - Gibbsite 0.0 0.0 - Kaolinite 0.0 KAlSi3O8 10.0 - K-mica 0.0 0.0 - K-feldspar 0.0 0.0 - END ------ -TITLE ------ - - Simulation 6A2.--Find amount of K-feldspar dissolved to - reach kaolinite saturation. - ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. PURE WATER -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Gibbsite 0.00 8.05 8.05 0.000e+000 1.785e-006 1.785e-006 -K-feldspar -5.86 -4.99 0.88 0.000e+000 0 0.000e+000 -K-mica -1.86 11.11 12.97 0.000e+000 0 0.000e+000 -Kaolinite 0.00 5.71 5.71 - KAlSi3O8 is reactant 1.000e+001 1.000e+001 -2.178e-006 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 3.935e-007 3.935e-007 - K 2.178e-006 2.178e-006 - Si 6.535e-006 6.535e-006 - -----------------------------Description of solution---------------------------- - - pH = 8.209 Charge balance - pe = 9.163 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 0 - Density (g/cm3) = 0.99704 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 2.185e-006 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 3.359e-006 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.044e-017 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 14 - Total H = 1.110124e+002 - Total O = 5.550623e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.640e-006 1.637e-006 -5.785 -5.786 -0.001 -4.14 - H+ 6.193e-009 6.182e-009 -8.208 -8.209 -0.001 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 3.935e-007 - Al(OH)4- 3.921e-007 3.915e-007 -6.407 -6.407 -0.001 (0) - Al(OH)3 1.284e-009 1.284e-009 -8.891 -8.891 0.000 (0) - Al(OH)2+ 5.397e-011 5.388e-011 -10.268 -10.269 -0.001 (0) - AlOH+2 4.280e-014 4.250e-014 -13.369 -13.372 -0.003 -27.80 - Al+3 2.687e-017 2.645e-017 -16.571 -16.578 -0.007 -44.54 -H(0) 2.557e-038 - H2 1.279e-038 1.279e-038 -37.893 -37.893 0.000 28.61 -K 2.178e-006 - K+ 2.178e-006 2.175e-006 -5.662 -5.663 -0.001 8.98 -O(0) 5.099e-017 - O2 2.550e-017 2.550e-017 -16.594 -16.594 0.000 30.40 -Si 6.535e-006 - H4SiO4 6.383e-006 6.383e-006 -5.195 -5.195 0.000 52.08 - H3SiO4- 1.525e-007 1.522e-007 -6.817 -6.818 -0.001 27.95 - H2SiO4-2 1.687e-012 1.675e-012 -11.773 -11.776 -0.003 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 - Chalcedony -1.64 -5.20 -3.55 SiO2 - Gibbsite 0.00 8.05 8.05 Al(OH)3 - H2(g) -34.79 -37.89 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -5.86 -4.99 0.88 KAlSi3O8 - K-mica -1.86 11.11 12.97 KAl3Si3O10(OH)2 - Kaolinite 0.00 5.71 5.71 Al2Si2O5(OH)4 - O2(g) -13.70 -16.59 -2.89 O2 - Quartz -1.21 -5.20 -3.98 SiO2 - SiO2(a) -2.48 -5.20 -2.71 SiO2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 4. ------------------------------------- - - TITLE Simulation 6A3.--Find amount of K-feldspar dissolved to - reach K-mica saturation. - USE solution 1 - EQUILIBRIUM_PHASES 1 - Gibbsite 0.0 0.0 - Kaolinite 0.0 0.0 - K-mica 0.0 KAlSi3O8 10.0 - K-feldspar 0.0 0.0 - END ------ -TITLE ------ - - Simulation 6A3.--Find amount of K-feldspar dissolved to - reach K-mica saturation. - ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. PURE WATER -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Gibbsite -0.73 7.32 8.05 0.000e+000 0 0.000e+000 -K-feldspar -2.54 -1.67 0.88 0.000e+000 0 0.000e+000 -K-mica -0.00 12.97 12.97 - KAlSi3O8 is reactant 1.000e+001 1.000e+001 -2.010e-005 -Kaolinite -0.00 5.71 5.71 0.000e+000 9.760e-006 9.760e-006 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 5.799e-007 5.799e-007 - K 2.010e-005 2.010e-005 - Si 4.078e-005 4.078e-005 - -----------------------------Description of solution---------------------------- - - pH = 9.107 Charge balance - pe = 8.265 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 4 - Density (g/cm3) = 0.99705 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 2.010e-005 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 2.184e-005 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 1.180e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 - Total H = 1.110124e+002 - Total O = 5.550629e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.302e-005 1.295e-005 -4.885 -4.888 -0.002 -4.13 - H+ 7.856e-010 7.815e-010 -9.105 -9.107 -0.002 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 5.799e-007 - Al(OH)4- 5.796e-007 5.766e-007 -6.237 -6.239 -0.002 (0) - Al(OH)3 2.391e-010 2.391e-010 -9.621 -9.621 0.000 (0) - Al(OH)2+ 1.275e-012 1.268e-012 -11.895 -11.897 -0.002 (0) - AlOH+2 1.291e-016 1.265e-016 -15.889 -15.898 -0.009 -27.79 - Al+3 1.043e-020 9.949e-021 -19.982 -20.002 -0.020 -44.52 -H(0) 2.557e-038 - H2 1.279e-038 1.279e-038 -37.893 -37.893 0.000 28.61 -K 2.010e-005 - K+ 2.010e-005 2.000e-005 -4.697 -4.699 -0.002 8.98 -O(0) 5.100e-017 - O2 2.550e-017 2.550e-017 -16.593 -16.593 0.000 30.40 -Si 4.078e-005 - H4SiO4 3.428e-005 3.428e-005 -4.465 -4.465 0.000 52.08 - H3SiO4- 6.501e-006 6.468e-006 -5.187 -5.189 -0.002 27.95 - H2SiO4-2 5.748e-010 5.629e-010 -9.240 -9.250 -0.009 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -3.48 7.32 10.80 Al(OH)3 - Chalcedony -0.91 -4.46 -3.55 SiO2 - Gibbsite -0.73 7.32 8.05 Al(OH)3 - H2(g) -34.79 -37.89 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -2.54 -1.67 0.88 KAlSi3O8 - K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 - Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 - O2(g) -13.70 -16.59 -2.89 O2 - Quartz -0.48 -4.46 -3.98 SiO2 - SiO2(a) -1.75 -4.46 -2.71 SiO2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 5. ------------------------------------- - - TITLE Simulation 6A4.--Find amount of K-feldspar dissolved to - reach K-feldspar saturation. - USE solution 1 - EQUILIBRIUM_PHASES 1 - Gibbsite 0.0 0.0 - Kaolinite 0.0 0.0 - K-mica 0.0 0.0 - K-feldspar 0.0 KAlSi3O8 10.0 - END ------ -TITLE ------ - - Simulation 6A4.--Find amount of K-feldspar dissolved to - reach K-feldspar saturation. - ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. PURE WATER -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Gibbsite -2.00 6.05 8.05 0.000e+000 0 0.000e+000 -K-feldspar 0.00 0.88 0.88 - KAlSi3O8 is reactant 1.000e+001 1.000e+001 -1.909e-004 -K-mica 0.00 12.97 12.97 0.000e+000 6.362e-005 6.362e-005 -Kaolinite -0.72 4.99 5.71 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 5.973e-008 5.973e-008 - K 1.273e-004 1.273e-004 - Si 3.819e-004 3.819e-004 - -----------------------------Description of solution---------------------------- - - pH = 9.388 Charge balance - pe = 7.984 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 14 - Density (g/cm3) = 0.99707 - Volume (L) = 1.00298 - Activity of water = 1.000 - Ionic strength = 1.273e-004 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.275e-004 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 1.290e-016 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 15 - Total H = 1.110123e+002 - Total O = 5.550698e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 2.506e-005 2.474e-005 -4.601 -4.607 -0.006 -4.13 - H+ 4.144e-010 4.092e-010 -9.383 -9.388 -0.006 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 5.973e-008 - Al(OH)4- 5.972e-008 5.895e-008 -7.224 -7.230 -0.006 (0) - Al(OH)3 1.280e-011 1.280e-011 -10.893 -10.893 0.000 (0) - Al(OH)2+ 3.600e-014 3.554e-014 -13.444 -13.449 -0.006 (0) - AlOH+2 1.954e-018 1.855e-018 -17.709 -17.732 -0.023 -27.77 - Al+3 8.576e-023 7.641e-023 -22.067 -22.117 -0.050 -44.46 -H(0) 2.557e-038 - H2 1.278e-038 1.278e-038 -37.893 -37.893 0.000 28.61 -K 1.273e-004 - K+ 1.273e-004 1.256e-004 -3.895 -3.901 -0.006 8.99 -O(0) 5.101e-017 - O2 2.551e-017 2.551e-017 -16.593 -16.593 0.000 30.40 -Si 3.819e-004 - H4SiO4 2.797e-004 2.797e-004 -3.553 -3.553 0.000 52.08 - H3SiO4- 1.021e-004 1.008e-004 -3.991 -3.996 -0.006 27.95 - H2SiO4-2 1.765e-008 1.676e-008 -7.753 -7.776 -0.023 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -4.75 6.05 10.80 Al(OH)3 - Chalcedony -0.00 -3.55 -3.55 SiO2 - Gibbsite -2.00 6.05 8.05 Al(OH)3 - H2(g) -34.79 -37.89 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar 0.00 0.88 0.88 KAlSi3O8 - K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 - Kaolinite -0.72 4.99 5.71 Al2Si2O5(OH)4 - O2(g) -13.70 -16.59 -2.89 O2 - Quartz 0.43 -3.55 -3.98 SiO2 - SiO2(a) -0.84 -3.55 -2.71 SiO2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 6. ------------------------------------- - - TITLE Simulation 6A5.--Find point with kaolinite present, - but no gibbsite. - USE solution 1 - EQUILIBRIUM_PHASES 1 - Gibbsite 0.0 KAlSi3O8 10.0 - Kaolinite 0.0 1.0 - END ------ -TITLE ------ - - Simulation 6A5.--Find point with kaolinite present, - but no gibbsite. - ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. PURE WATER -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Gibbsite 0.00 8.05 8.05 - KAlSi3O8 is reactant 1.000e+001 1.000e+001 -3.025e-006 -Kaolinite -0.00 5.71 5.71 1.000e+000 1.000e+000 1.240e-006 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 5.450e-007 5.450e-007 - K 3.025e-006 3.025e-006 - Si 6.594e-006 6.594e-006 - -----------------------------Description of solution---------------------------- - - pH = 8.351 Charge balance - pe = 9.021 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 0 - Density (g/cm3) = 0.99704 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 3.029e-006 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 4.660e-006 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.602e-016 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 12 - Total H = 1.110124e+002 - Total O = 5.550623e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 2.274e-006 2.269e-006 -5.643 -5.644 -0.001 -4.14 - H+ 4.469e-009 4.460e-009 -8.350 -8.351 -0.001 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 5.450e-007 - Al(OH)4- 5.437e-007 5.426e-007 -6.265 -6.266 -0.001 (0) - Al(OH)3 1.284e-009 1.284e-009 -8.891 -8.891 0.000 (0) - Al(OH)2+ 3.895e-011 3.887e-011 -10.409 -10.410 -0.001 (0) - AlOH+2 2.230e-014 2.212e-014 -13.652 -13.655 -0.004 -27.80 - Al+3 1.012e-017 9.934e-018 -16.995 -17.003 -0.008 -44.54 -H(0) 2.557e-038 - H2 1.279e-038 1.279e-038 -37.893 -37.893 0.000 28.61 -K 3.025e-006 - K+ 3.025e-006 3.018e-006 -5.519 -5.520 -0.001 8.98 -O(0) 5.099e-017 - O2 2.549e-017 2.549e-017 -16.594 -16.594 0.000 30.40 -Si 6.594e-006 - H4SiO4 6.383e-006 6.383e-006 -5.195 -5.195 0.000 52.08 - H3SiO4- 2.114e-007 2.110e-007 -6.675 -6.676 -0.001 27.95 - H2SiO4-2 3.244e-012 3.218e-012 -11.489 -11.492 -0.004 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 - Chalcedony -1.64 -5.20 -3.55 SiO2 - Gibbsite 0.00 8.05 8.05 Al(OH)3 - H2(g) -34.79 -37.89 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -5.58 -4.71 0.88 KAlSi3O8 - K-mica -1.58 11.39 12.97 KAl3Si3O10(OH)2 - Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 - O2(g) -13.70 -16.59 -2.89 O2 - Quartz -1.21 -5.20 -3.98 SiO2 - SiO2(a) -2.48 -5.20 -2.71 SiO2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 7. ------------------------------------- - - TITLE Simulation 6A6.--Find point with K-mica present, - but no kaolinite - USE solution 1 - EQUILIBRIUM_PHASES 1 - Kaolinite 0.0 KAlSi3O8 10.0 - K-mica 0.0 1.0 - END ------ -TITLE ------ - - Simulation 6A6.--Find point with K-mica present, - but no kaolinite - ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. PURE WATER -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -K-mica -0.00 12.97 12.97 1.000e+000 1.000e+000 1.083e-005 -Kaolinite -0.00 5.71 5.71 - KAlSi3O8 is reactant 1.000e+001 1.000e+001 -3.281e-005 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 3.235e-007 3.235e-007 - K 2.198e-005 2.198e-005 - Si 6.595e-005 6.595e-005 - -----------------------------Description of solution---------------------------- - - pH = 9.068 Charge balance - pe = -3.259 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 3 - Density (g/cm3) = 0.99705 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 2.199e-005 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 2.295e-005 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -6.401e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 12 - Total H = 1.110124e+002 - Total O = 5.550635e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.191e-005 1.184e-005 -4.924 -4.926 -0.002 -4.13 - H+ 8.592e-010 8.545e-010 -9.066 -9.068 -0.002 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 3.235e-007 - Al(OH)4- 3.234e-007 3.216e-007 -6.490 -6.493 -0.002 (0) - Al(OH)3 1.458e-010 1.458e-010 -9.836 -9.836 0.000 (0) - Al(OH)2+ 8.504e-013 8.458e-013 -12.070 -12.073 -0.002 (0) - AlOH+2 9.425e-017 9.222e-017 -16.026 -16.035 -0.009 -27.79 - Al+3 8.331e-021 7.933e-021 -20.079 -20.101 -0.021 -44.52 -H(0) 3.401e-015 - H2 1.701e-015 1.701e-015 -14.769 -14.769 0.000 28.61 -K 2.198e-005 - K+ 2.198e-005 2.186e-005 -4.658 -4.660 -0.002 8.98 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -62.841 -62.841 0.000 30.40 -Si 6.595e-005 - H4SiO4 5.620e-005 5.620e-005 -4.250 -4.250 0.000 52.08 - H3SiO4- 9.751e-006 9.697e-006 -5.011 -5.013 -0.002 27.95 - H2SiO4-2 7.890e-010 7.719e-010 -9.103 -9.112 -0.009 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -3.70 7.10 10.80 Al(OH)3 - Chalcedony -0.70 -4.25 -3.55 SiO2 - Gibbsite -0.94 7.10 8.05 Al(OH)3 - H2(g) -11.67 -14.77 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -2.11 -1.24 0.88 KAlSi3O8 - K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 - Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 - O2(g) -59.95 -62.84 -2.89 O2 - Quartz -0.27 -4.25 -3.98 SiO2 - SiO2(a) -1.54 -4.25 -2.71 SiO2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 8. ------------------------------------- - - TITLE Simulation 6B.--Path between phase boundaries. - USE solution 1 - EQUILIBRIUM_PHASES 1 - Kaolinite 0.0 0.0 - Gibbsite 0.0 0.0 - K-mica 0.0 0.0 - K-feldspar 0.0 0.0 - REACTION 1 - K-feldspar 1.0 - 0.04 0.08 0.16 0.32 0.64 1.0 2.0 4.0 - 8.0 16.0 32.0 64.0 100 200 umol - USER_GRAPH - -headings 6B--Increments - 10 PLOT_XY LA("H4SiO4"),(LA("K+")-LA("H+")), color = Blue, line_w = 0, symbol = XCross, symbol_size = 7 - END ------ -TITLE ------ - - Simulation 6B.--Path between phase boundaries. - ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. PURE WATER -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 4.000e-008 moles of the following reaction have been added: - - Relative - Reactant moles - - K-feldspar 1.00000 - - Relative - Element moles - Al 1.00000 - K 1.00000 - O 8.00000 - Si 3.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Gibbsite 0.00 8.05 8.05 0.000e+000 1.200e-008 1.200e-008 -K-feldspar -13.96 -13.08 0.88 0.000e+000 0 0.000e+000 -K-mica -9.96 3.01 12.97 0.000e+000 0 0.000e+000 -Kaolinite -3.45 2.25 5.71 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 2.800e-008 2.800e-008 - K 4.000e-008 4.000e-008 - Si 1.200e-007 1.200e-007 - -----------------------------Description of solution---------------------------- - - pH = 7.029 Charge balance - pe = -1.250 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 0 - Density (g/cm3) = 0.99704 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 1.344e-007 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.240e-007 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.040e-017 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 10 - Total H = 1.110124e+002 - Total O = 5.550622e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.083e-007 1.082e-007 -6.965 -6.966 -0.000 -4.14 - H+ 9.354e-008 9.350e-008 -7.029 -7.029 -0.000 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 2.800e-008 - Al(OH)4- 2.589e-008 2.588e-008 -7.587 -7.587 -0.000 (0) - Al(OH)3 1.284e-009 1.284e-009 -8.891 -8.891 0.000 (0) - Al(OH)2+ 8.152e-010 8.149e-010 -9.089 -9.089 -0.000 (0) - AlOH+2 9.738e-012 9.722e-012 -11.012 -11.012 -0.001 -27.81 - Al+3 9.187e-014 9.151e-014 -13.037 -13.039 -0.002 -44.55 -H(0) 3.920e-015 - H2 1.960e-015 1.960e-015 -14.708 -14.708 0.000 28.61 -K 4.000e-008 - K+ 4.000e-008 3.998e-008 -7.398 -7.398 -0.000 8.98 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -62.965 -62.965 0.000 30.40 -Si 1.200e-007 - H4SiO4 1.198e-007 1.198e-007 -6.922 -6.922 0.000 52.08 - H3SiO4- 1.890e-010 1.889e-010 -9.723 -9.724 -0.000 27.94 - H2SiO4-2 1.377e-016 1.374e-016 -15.861 -15.862 -0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 - Chalcedony -3.37 -6.92 -3.55 SiO2 - Gibbsite 0.00 8.05 8.05 Al(OH)3 - H2(g) -11.61 -14.71 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -13.96 -13.08 0.88 KAlSi3O8 - K-mica -9.96 3.01 12.97 KAl3Si3O10(OH)2 - Kaolinite -3.45 2.25 5.71 Al2Si2O5(OH)4 - O2(g) -60.07 -62.96 -2.89 O2 - Quartz -2.94 -6.92 -3.98 SiO2 - SiO2(a) -4.21 -6.92 -2.71 SiO2 - - -Reaction step 2. - -Using solution 1. PURE WATER -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 8.000e-008 moles of the following reaction have been added: - - Relative - Reactant moles - - K-feldspar 1.00000 - - Relative - Element moles - Al 1.00000 - K 1.00000 - O 8.00000 - Si 3.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Gibbsite 0.00 8.05 8.05 0.000e+000 4.731e-008 4.731e-008 -K-feldspar -12.68 -11.81 0.88 0.000e+000 0 0.000e+000 -K-mica -8.68 4.29 12.97 0.000e+000 0 0.000e+000 -Kaolinite -2.85 2.86 5.71 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 3.269e-008 3.269e-008 - K 8.000e-008 8.000e-008 - Si 2.400e-007 2.400e-007 - -----------------------------Description of solution---------------------------- - - pH = 7.103 Charge balance - pe = 10.720 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 0 - Density (g/cm3) = 0.99704 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 1.596e-007 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.781e-007 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.040e-017 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 10 - Total H = 1.110124e+002 - Total O = 5.550622e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.284e-007 1.284e-007 -6.891 -6.892 -0.000 -4.14 - H+ 7.888e-008 7.885e-008 -7.103 -7.103 -0.000 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 3.269e-008 - Al(OH)4- 3.071e-008 3.069e-008 -7.513 -7.513 -0.000 (0) - Al(OH)3 1.284e-009 1.284e-009 -8.891 -8.891 0.000 (0) - Al(OH)2+ 6.875e-010 6.872e-010 -9.163 -9.163 -0.000 (0) - AlOH+2 6.926e-012 6.913e-012 -11.160 -11.160 -0.001 -27.81 - Al+3 5.511e-014 5.487e-014 -13.259 -13.261 -0.002 -44.55 -H(0) 3.203e-039 - H2 1.602e-039 1.602e-039 -38.795 -38.795 0.000 28.61 -K 8.000e-008 - K+ 8.000e-008 7.996e-008 -7.097 -7.097 -0.000 8.98 -O(0) 3.251e-015 - O2 1.625e-015 1.625e-015 -14.789 -14.789 0.000 30.40 -Si 2.400e-007 - H4SiO4 2.396e-007 2.396e-007 -6.621 -6.621 0.000 52.08 - H3SiO4- 4.482e-010 4.480e-010 -9.349 -9.349 -0.000 27.94 - H2SiO4-2 3.872e-016 3.865e-016 -15.412 -15.413 -0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 - Chalcedony -3.07 -6.62 -3.55 SiO2 - Gibbsite 0.00 8.05 8.05 Al(OH)3 - H2(g) -35.69 -38.80 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -12.68 -11.81 0.88 KAlSi3O8 - K-mica -8.68 4.29 12.97 KAl3Si3O10(OH)2 - Kaolinite -2.85 2.86 5.71 Al2Si2O5(OH)4 - O2(g) -11.90 -14.79 -2.89 O2 - Quartz -2.64 -6.62 -3.98 SiO2 - SiO2(a) -3.91 -6.62 -2.71 SiO2 - - -Reaction step 3. - -Using solution 1. PURE WATER -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 1.600e-007 moles of the following reaction have been added: - - Relative - Reactant moles - - K-feldspar 1.00000 - - Relative - Element moles - Al 1.00000 - K 1.00000 - O 8.00000 - Si 3.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Gibbsite -0.00 8.05 8.05 0.000e+000 1.163e-007 1.163e-007 -K-feldspar -11.34 -10.47 0.88 0.000e+000 0 0.000e+000 -K-mica -7.34 5.63 12.97 0.000e+000 0 0.000e+000 -Kaolinite -2.25 3.46 5.71 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 4.369e-008 4.369e-008 - K 1.600e-007 1.600e-007 - Si 4.800e-007 4.800e-007 - -----------------------------Description of solution---------------------------- - - pH = 7.238 Charge balance - pe = -1.232 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 0 - Density (g/cm3) = 0.99704 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 2.183e-007 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 2.911e-007 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.121e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 9 - Total H = 1.110124e+002 - Total O = 5.550622e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.752e-007 1.751e-007 -6.756 -6.757 -0.000 -4.14 - H+ 5.783e-008 5.780e-008 -7.238 -7.238 -0.000 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 4.369e-008 - Al(OH)4- 4.190e-008 4.187e-008 -7.378 -7.378 -0.000 (0) - Al(OH)3 1.284e-009 1.284e-009 -8.891 -8.891 0.000 (0) - Al(OH)2+ 5.040e-010 5.037e-010 -9.298 -9.298 -0.000 (0) - AlOH+2 3.723e-012 3.714e-012 -11.429 -11.430 -0.001 -27.81 - Al+3 2.172e-014 2.161e-014 -13.663 -13.665 -0.002 -44.55 -H(0) 1.378e-015 - H2 6.889e-016 6.889e-016 -15.162 -15.162 0.000 28.61 -K 1.600e-007 - K+ 1.600e-007 1.599e-007 -6.796 -6.796 -0.000 8.98 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -62.056 -62.056 0.000 30.40 -Si 4.800e-007 - H4SiO4 4.788e-007 4.788e-007 -6.320 -6.320 0.000 52.08 - H3SiO4- 1.222e-009 1.221e-009 -8.913 -8.913 -0.000 27.94 - H2SiO4-2 1.441e-015 1.438e-015 -14.841 -14.842 -0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 - Chalcedony -2.77 -6.32 -3.55 SiO2 - Gibbsite -0.00 8.05 8.05 Al(OH)3 - H2(g) -12.06 -15.16 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -11.34 -10.47 0.88 KAlSi3O8 - K-mica -7.34 5.63 12.97 KAl3Si3O10(OH)2 - Kaolinite -2.25 3.46 5.71 Al2Si2O5(OH)4 - O2(g) -59.16 -62.06 -2.89 O2 - Quartz -2.34 -6.32 -3.98 SiO2 - SiO2(a) -3.61 -6.32 -2.71 SiO2 - - -Reaction step 4. - -Using solution 1. PURE WATER -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 3.200e-007 moles of the following reaction have been added: - - Relative - Reactant moles - - K-feldspar 1.00000 - - Relative - Element moles - Al 1.00000 - K 1.00000 - O 8.00000 - Si 3.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Gibbsite -0.00 8.05 8.05 0.000e+000 2.505e-007 2.505e-007 -K-feldspar -9.93 -9.06 0.88 0.000e+000 0 0.000e+000 -K-mica -5.93 7.04 12.97 0.000e+000 0 0.000e+000 -Kaolinite -1.65 4.06 5.71 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 6.953e-008 6.953e-008 - K 3.200e-007 3.200e-007 - Si 9.600e-007 9.600e-007 - -----------------------------Description of solution---------------------------- - - pH = 7.448 Charge balance - pe = -1.590 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 0 - Density (g/cm3) = 0.99704 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 3.560e-007 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 5.286e-007 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.042e-017 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 10 - Total H = 1.110124e+002 - Total O = 5.550622e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 2.841e-007 2.839e-007 -6.547 -6.547 -0.000 -4.14 - H+ 3.568e-008 3.565e-008 -7.448 -7.448 -0.000 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 6.953e-008 - Al(OH)4- 6.793e-008 6.788e-008 -7.168 -7.168 -0.000 (0) - Al(OH)3 1.284e-009 1.284e-009 -8.891 -8.891 0.000 (0) - Al(OH)2+ 3.109e-010 3.107e-010 -9.507 -9.508 -0.000 (0) - AlOH+2 1.417e-012 1.413e-012 -11.849 -11.850 -0.001 -27.81 - Al+3 5.105e-015 5.073e-015 -14.292 -14.295 -0.003 -44.55 -H(0) 2.725e-015 - H2 1.363e-015 1.363e-015 -14.866 -14.866 0.000 28.61 -K 3.200e-007 - K+ 3.200e-007 3.198e-007 -6.495 -6.495 -0.000 8.98 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -62.649 -62.649 0.000 30.40 -Si 9.600e-007 - H4SiO4 9.560e-007 9.560e-007 -6.020 -6.020 0.000 52.08 - H3SiO4- 3.957e-009 3.954e-009 -8.403 -8.403 -0.000 27.94 - H2SiO4-2 7.565e-015 7.544e-015 -14.121 -14.122 -0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 - Chalcedony -2.47 -6.02 -3.55 SiO2 - Gibbsite -0.00 8.05 8.05 Al(OH)3 - H2(g) -11.76 -14.87 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -9.93 -9.06 0.88 KAlSi3O8 - K-mica -5.93 7.04 12.97 KAl3Si3O10(OH)2 - Kaolinite -1.65 4.06 5.71 Al2Si2O5(OH)4 - O2(g) -59.76 -62.65 -2.89 O2 - Quartz -2.04 -6.02 -3.98 SiO2 - SiO2(a) -3.31 -6.02 -2.71 SiO2 - - -Reaction step 5. - -Using solution 1. PURE WATER -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 6.400e-007 moles of the following reaction have been added: - - Relative - Reactant moles - - K-feldspar 1.00000 - - Relative - Element moles - Al 1.00000 - K 1.00000 - O 8.00000 - Si 3.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Gibbsite 0.00 8.05 8.05 0.000e+000 5.140e-007 5.140e-007 -K-feldspar -8.47 -7.59 0.88 0.000e+000 0 0.000e+000 -K-mica -4.47 8.50 12.97 0.000e+000 0 0.000e+000 -Kaolinite -1.05 4.66 5.71 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 1.260e-007 1.260e-007 - K 6.400e-007 6.400e-007 - Si 1.920e-006 1.920e-006 - -----------------------------Description of solution---------------------------- - - pH = 7.711 Charge balance - pe = -2.002 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 0 - Density (g/cm3) = 0.99704 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 6.596e-007 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.018e-006 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.374e-016 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 10 - Total H = 1.110124e+002 - Total O = 5.550622e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 5.207e-007 5.202e-007 -6.283 -6.284 -0.000 -4.14 - H+ 1.948e-008 1.946e-008 -7.711 -7.711 -0.000 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 1.260e-007 - Al(OH)4- 1.245e-007 1.244e-007 -6.905 -6.905 -0.000 (0) - Al(OH)3 1.284e-009 1.284e-009 -8.891 -8.891 0.000 (0) - Al(OH)2+ 1.697e-010 1.696e-010 -9.770 -9.771 -0.000 (0) - AlOH+2 4.226e-013 4.210e-013 -12.374 -12.376 -0.002 -27.81 - Al+3 8.317e-016 8.246e-016 -15.080 -15.084 -0.004 -44.55 -H(0) 5.420e-015 - H2 2.710e-015 2.710e-015 -14.567 -14.567 0.000 28.61 -K 6.400e-007 - K+ 6.400e-007 6.394e-007 -6.194 -6.194 -0.000 8.98 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -63.246 -63.246 0.000 30.40 -Si 1.920e-006 - H4SiO4 1.906e-006 1.906e-006 -5.720 -5.720 0.000 52.08 - H3SiO4- 1.445e-008 1.444e-008 -7.840 -7.840 -0.000 27.94 - H2SiO4-2 5.068e-014 5.048e-014 -13.295 -13.297 -0.002 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 - Chalcedony -2.17 -5.72 -3.55 SiO2 - Gibbsite 0.00 8.05 8.05 Al(OH)3 - H2(g) -11.47 -14.57 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -8.47 -7.59 0.88 KAlSi3O8 - K-mica -4.47 8.50 12.97 KAl3Si3O10(OH)2 - Kaolinite -1.05 4.66 5.71 Al2Si2O5(OH)4 - O2(g) -60.35 -63.25 -2.89 O2 - Quartz -1.74 -5.72 -3.98 SiO2 - SiO2(a) -3.01 -5.72 -2.71 SiO2 - - -Reaction step 6. - -Using solution 1. PURE WATER -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 1.000e-006 moles of the following reaction have been added: - - Relative - Reactant moles - - K-feldspar 1.00000 - - Relative - Element moles - Al 1.00000 - K 1.00000 - O 8.00000 - Si 3.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Gibbsite 0.00 8.05 8.05 0.000e+000 8.097e-007 8.097e-007 -K-feldspar -7.52 -6.64 0.88 0.000e+000 0 0.000e+000 -K-mica -3.52 9.45 12.97 0.000e+000 0 0.000e+000 -Kaolinite -0.67 5.04 5.71 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 1.903e-007 1.903e-007 - K 1.000e-006 1.000e-006 - Si 3.000e-006 3.000e-006 - -----------------------------Description of solution---------------------------- - - pH = 7.892 Charge balance - pe = 9.814 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 0 - Density (g/cm3) = 0.99704 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 1.013e-006 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.571e-006 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.791e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 10 - Total H = 1.110124e+002 - Total O = 5.550622e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 7.899e-007 7.890e-007 -6.102 -6.103 -0.001 -4.14 - H+ 1.284e-008 1.283e-008 -7.891 -7.892 -0.001 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 1.903e-007 - Al(OH)4- 1.889e-007 1.887e-007 -6.724 -6.724 -0.001 (0) - Al(OH)3 1.284e-009 1.284e-009 -8.891 -8.891 0.000 (0) - Al(OH)2+ 1.119e-010 1.118e-010 -9.951 -9.952 -0.001 (0) - AlOH+2 1.839e-013 1.830e-013 -12.736 -12.738 -0.002 -27.81 - Al+3 2.388e-016 2.363e-016 -15.622 -15.626 -0.005 -44.55 -H(0) 5.499e-039 - H2 2.749e-039 2.749e-039 -38.561 -38.561 0.000 28.61 -K 1.000e-006 - K+ 1.000e-006 9.988e-007 -6.000 -6.001 -0.001 8.98 -O(0) 1.103e-015 - O2 5.515e-016 5.515e-016 -15.258 -15.258 0.000 30.40 -Si 3.000e-006 - H4SiO4 2.966e-006 2.966e-006 -5.528 -5.528 0.000 52.08 - H3SiO4- 3.413e-008 3.409e-008 -7.467 -7.467 -0.001 27.94 - H2SiO4-2 1.816e-013 1.808e-013 -12.741 -12.743 -0.002 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 - Chalcedony -1.98 -5.53 -3.55 SiO2 - Gibbsite 0.00 8.05 8.05 Al(OH)3 - H2(g) -35.46 -38.56 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -7.52 -6.64 0.88 KAlSi3O8 - K-mica -3.52 9.45 12.97 KAl3Si3O10(OH)2 - Kaolinite -0.67 5.04 5.71 Al2Si2O5(OH)4 - O2(g) -12.37 -15.26 -2.89 O2 - Quartz -1.55 -5.53 -3.98 SiO2 - SiO2(a) -2.82 -5.53 -2.71 SiO2 - - -Reaction step 7. - -Using solution 1. PURE WATER -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 2.000e-006 moles of the following reaction have been added: - - Relative - Reactant moles - - K-feldspar 1.00000 - - Relative - Element moles - Al 1.00000 - K 1.00000 - O 8.00000 - Si 3.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Gibbsite -0.00 8.05 8.05 0.000e+000 1.636e-006 1.636e-006 -K-feldspar -6.05 -5.17 0.88 0.000e+000 0 0.000e+000 -K-mica -2.04 10.93 12.97 0.000e+000 0 0.000e+000 -Kaolinite -0.07 5.64 5.71 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 3.636e-007 3.636e-007 - K 2.000e-006 2.000e-006 - Si 6.000e-006 6.000e-006 - -----------------------------Description of solution---------------------------- - - pH = 8.174 Charge balance - pe = 9.607 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 0 - Density (g/cm3) = 0.99704 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 2.007e-006 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 3.091e-006 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.567e-016 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 11 - Total H = 1.110124e+002 - Total O = 5.550623e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.515e-006 1.512e-006 -5.820 -5.820 -0.001 -4.14 - H+ 6.703e-009 6.692e-009 -8.174 -8.174 -0.001 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 3.636e-007 - Al(OH)4- 3.622e-007 3.616e-007 -6.441 -6.442 -0.001 (0) - Al(OH)3 1.284e-009 1.284e-009 -8.891 -8.891 0.000 (0) - Al(OH)2+ 5.842e-011 5.832e-011 -10.233 -10.234 -0.001 (0) - AlOH+2 5.013e-014 4.980e-014 -13.300 -13.303 -0.003 -27.80 - Al+3 3.406e-017 3.355e-017 -16.468 -16.474 -0.006 -44.54 -H(0) 3.875e-039 - H2 1.937e-039 1.937e-039 -38.713 -38.713 0.000 28.61 -K 2.000e-006 - K+ 2.000e-006 1.997e-006 -5.699 -5.700 -0.001 8.98 -O(0) 2.221e-015 - O2 1.111e-015 1.111e-015 -14.954 -14.954 0.000 30.40 -Si 6.000e-006 - H4SiO4 5.870e-006 5.870e-006 -5.231 -5.231 0.000 52.08 - H3SiO4- 1.296e-007 1.293e-007 -6.888 -6.888 -0.001 27.95 - H2SiO4-2 1.323e-012 1.315e-012 -11.878 -11.881 -0.003 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 - Chalcedony -1.68 -5.23 -3.55 SiO2 - Gibbsite -0.00 8.05 8.05 Al(OH)3 - H2(g) -35.61 -38.71 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -6.05 -5.17 0.88 KAlSi3O8 - K-mica -2.04 10.93 12.97 KAl3Si3O10(OH)2 - Kaolinite -0.07 5.64 5.71 Al2Si2O5(OH)4 - O2(g) -12.06 -14.95 -2.89 O2 - Quartz -1.25 -5.23 -3.98 SiO2 - SiO2(a) -2.52 -5.23 -2.71 SiO2 - - -Reaction step 8. - -Using solution 1. PURE WATER -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 4.000e-006 moles of the following reaction have been added: - - Relative - Reactant moles - - K-feldspar 1.00000 - - Relative - Element moles - Al 1.00000 - K 1.00000 - O 8.00000 - Si 3.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Gibbsite -0.11 7.94 8.05 0.000e+000 0 0.000e+000 -K-feldspar -5.11 -4.24 0.88 0.000e+000 0 0.000e+000 -K-mica -1.33 11.64 12.97 0.000e+000 0 0.000e+000 -Kaolinite -0.00 5.71 5.71 0.000e+000 1.714e-006 1.714e-006 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 5.714e-007 5.714e-007 - K 4.000e-006 4.000e-006 - Si 8.571e-006 8.571e-006 - -----------------------------Description of solution---------------------------- - - pH = 8.480 Charge balance - pe = -2.767 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 0 - Density (g/cm3) = 0.99704 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 4.003e-006 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 5.714e-006 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.400e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 11 - Total H = 1.110124e+002 - Total O = 5.550623e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 3.066e-006 3.059e-006 -5.513 -5.514 -0.001 -4.14 - H+ 3.316e-009 3.309e-009 -8.479 -8.480 -0.001 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 5.714e-007 - Al(OH)4- 5.704e-007 5.690e-007 -6.244 -6.245 -0.001 (0) - Al(OH)3 9.989e-010 9.989e-010 -9.000 -9.000 0.000 (0) - Al(OH)2+ 2.248e-011 2.243e-011 -10.648 -10.649 -0.001 (0) - AlOH+2 9.558e-015 9.469e-015 -14.020 -14.024 -0.004 -27.80 - Al+3 3.221e-018 3.154e-018 -17.492 -17.501 -0.009 -44.54 -H(0) 5.295e-015 - H2 2.648e-015 2.648e-015 -14.577 -14.577 0.000 28.61 -K 4.000e-006 - K+ 4.000e-006 3.991e-006 -5.398 -5.399 -0.001 8.98 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -63.226 -63.226 0.000 30.40 -Si 8.571e-006 - H4SiO4 8.205e-006 8.205e-006 -5.086 -5.086 0.000 52.08 - H3SiO4- 3.665e-007 3.657e-007 -6.436 -6.437 -0.001 27.95 - H2SiO4-2 7.589e-012 7.518e-012 -11.120 -11.124 -0.004 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -2.86 7.94 10.80 Al(OH)3 - Chalcedony -1.53 -5.09 -3.55 SiO2 - Gibbsite -0.11 7.94 8.05 Al(OH)3 - H2(g) -11.48 -14.58 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -5.11 -4.24 0.88 KAlSi3O8 - K-mica -1.33 11.64 12.97 KAl3Si3O10(OH)2 - Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 - O2(g) -60.33 -63.23 -2.89 O2 - Quartz -1.11 -5.09 -3.98 SiO2 - SiO2(a) -2.37 -5.09 -2.71 SiO2 - - -Reaction step 9. - -Using solution 1. PURE WATER -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 8.000e-006 moles of the following reaction have been added: - - Relative - Reactant moles - - K-feldspar 1.00000 - - Relative - Element moles - Al 1.00000 - K 1.00000 - O 8.00000 - Si 3.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Gibbsite -0.38 7.67 8.05 0.000e+000 0 0.000e+000 -K-feldspar -3.98 -3.10 0.88 0.000e+000 0 0.000e+000 -K-mica -0.73 12.24 12.97 0.000e+000 0 0.000e+000 -Kaolinite 0.00 5.71 5.71 0.000e+000 3.697e-006 3.697e-006 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 6.057e-007 6.057e-007 - K 8.000e-006 8.000e-006 - Si 1.661e-005 1.661e-005 - -----------------------------Description of solution---------------------------- - - pH = 8.775 Charge balance - pe = 8.985 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 1 - Density (g/cm3) = 0.99704 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 8.002e-006 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 9.817e-006 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.043e-017 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 13 - Total H = 1.110124e+002 - Total O = 5.550625e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 6.051e-006 6.031e-006 -5.218 -5.220 -0.001 -4.14 - H+ 1.684e-009 1.678e-009 -8.774 -8.775 -0.001 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 6.057e-007 - Al(OH)4- 6.052e-007 6.032e-007 -6.218 -6.220 -0.001 (0) - Al(OH)3 5.371e-010 5.371e-010 -9.270 -9.270 0.000 (0) - Al(OH)2+ 6.137e-012 6.117e-012 -11.212 -11.213 -0.001 (0) - AlOH+2 1.327e-015 1.310e-015 -14.877 -14.883 -0.006 -27.80 - Al+3 2.280e-019 2.213e-019 -18.642 -18.655 -0.013 -44.53 -H(0) 4.275e-039 - H2 2.137e-039 2.137e-039 -38.670 -38.670 0.000 28.61 -K 8.000e-006 - K+ 8.000e-006 7.974e-006 -5.097 -5.098 -0.001 8.98 -O(0) 1.825e-015 - O2 9.126e-016 9.126e-016 -15.040 -15.040 0.000 30.40 -Si 1.661e-005 - H4SiO4 1.526e-005 1.526e-005 -4.816 -4.816 0.000 52.08 - H3SiO4- 1.345e-006 1.341e-006 -5.871 -5.873 -0.001 27.95 - H2SiO4-2 5.507e-011 5.435e-011 -10.259 -10.265 -0.006 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -3.13 7.67 10.80 Al(OH)3 - Chalcedony -1.27 -4.82 -3.55 SiO2 - Gibbsite -0.38 7.67 8.05 Al(OH)3 - H2(g) -35.57 -38.67 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -3.98 -3.10 0.88 KAlSi3O8 - K-mica -0.73 12.24 12.97 KAl3Si3O10(OH)2 - Kaolinite 0.00 5.71 5.71 Al2Si2O5(OH)4 - O2(g) -12.15 -15.04 -2.89 O2 - Quartz -0.84 -4.82 -3.98 SiO2 - SiO2(a) -2.10 -4.82 -2.71 SiO2 - - -Reaction step 10. - -Using solution 1. PURE WATER -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 1.600e-005 moles of the following reaction have been added: - - Relative - Reactant moles - - K-feldspar 1.00000 - - Relative - Element moles - Al 1.00000 - K 1.00000 - O 8.00000 - Si 3.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Gibbsite -0.64 7.41 8.05 0.000e+000 0 0.000e+000 -K-feldspar -2.89 -2.01 0.88 0.000e+000 0 0.000e+000 -K-mica -0.17 12.80 12.97 0.000e+000 0 0.000e+000 -Kaolinite 0.00 5.71 5.71 0.000e+000 7.703e-006 7.703e-006 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 5.936e-007 5.936e-007 - K 1.600e-005 1.600e-005 - Si 3.259e-005 3.259e-005 - -----------------------------Description of solution---------------------------- - - pH = 9.031 Charge balance - pe = -3.375 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 3 - Density (g/cm3) = 0.99705 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 1.600e-005 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.778e-005 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.041e-017 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 13 - Total H = 1.110124e+002 - Total O = 5.550628e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.093e-005 1.088e-005 -4.961 -4.963 -0.002 -4.13 - H+ 9.347e-010 9.304e-010 -9.029 -9.031 -0.002 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 5.936e-007 - Al(OH)4- 5.933e-007 5.905e-007 -6.227 -6.229 -0.002 (0) - Al(OH)3 2.915e-010 2.915e-010 -9.535 -9.535 0.000 (0) - Al(OH)2+ 1.849e-012 1.841e-012 -11.733 -11.735 -0.002 (0) - AlOH+2 2.226e-016 2.185e-016 -15.652 -15.661 -0.008 -27.79 - Al+3 2.134e-020 2.046e-020 -19.671 -19.689 -0.018 -44.52 -H(0) 6.880e-015 - H2 3.440e-015 3.440e-015 -14.463 -14.463 0.000 28.61 -K 1.600e-005 - K+ 1.600e-005 1.593e-005 -4.796 -4.798 -0.002 8.98 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -63.453 -63.453 0.000 30.40 -Si 3.259e-005 - H4SiO4 2.812e-005 2.812e-005 -4.551 -4.551 0.000 52.08 - H3SiO4- 4.477e-006 4.456e-006 -5.349 -5.351 -0.002 27.95 - H2SiO4-2 3.319e-010 3.258e-010 -9.479 -9.487 -0.008 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -3.39 7.41 10.80 Al(OH)3 - Chalcedony -1.00 -4.55 -3.55 SiO2 - Gibbsite -0.64 7.41 8.05 Al(OH)3 - H2(g) -11.36 -14.46 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -2.89 -2.01 0.88 KAlSi3O8 - K-mica -0.17 12.80 12.97 KAl3Si3O10(OH)2 - Kaolinite 0.00 5.71 5.71 Al2Si2O5(OH)4 - O2(g) -60.56 -63.45 -2.89 O2 - Quartz -0.57 -4.55 -3.98 SiO2 - SiO2(a) -1.84 -4.55 -2.71 SiO2 - - -Reaction step 11. - -Using solution 1. PURE WATER -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 3.200e-005 moles of the following reaction have been added: - - Relative - Reactant moles - - K-feldspar 1.00000 - - Relative - Element moles - Al 1.00000 - K 1.00000 - O 8.00000 - Si 3.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Gibbsite -0.93 7.12 8.05 0.000e+000 0 0.000e+000 -K-feldspar -2.14 -1.26 0.88 0.000e+000 0 0.000e+000 -K-mica 0.00 12.97 12.97 0.000e+000 1.014e-005 1.014e-005 -Kaolinite -0.00 5.71 5.71 0.000e+000 6.295e-007 6.295e-007 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 3.338e-007 3.338e-007 - K 2.186e-005 2.186e-005 - Si 6.433e-005 6.433e-005 - -----------------------------Description of solution---------------------------- - - pH = 9.071 Charge balance - pe = 8.470 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 3 - Density (g/cm3) = 0.99705 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 2.187e-005 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 2.287e-005 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 8.617e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 - Total H = 1.110124e+002 - Total O = 5.550635e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.197e-005 1.191e-005 -4.922 -4.924 -0.002 -4.13 - H+ 8.545e-010 8.499e-010 -9.068 -9.071 -0.002 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 3.338e-007 - Al(OH)4- 3.336e-007 3.318e-007 -6.477 -6.479 -0.002 (0) - Al(OH)3 1.496e-010 1.496e-010 -9.825 -9.825 0.000 (0) - Al(OH)2+ 8.678e-013 8.630e-013 -12.062 -12.064 -0.002 (0) - AlOH+2 9.565e-017 9.359e-017 -16.019 -16.029 -0.009 -27.79 - Al+3 8.407e-021 8.007e-021 -20.075 -20.097 -0.021 -44.52 -H(0) 1.177e-038 - H2 5.884e-039 5.884e-039 -38.230 -38.230 0.000 28.61 -K 2.186e-005 - K+ 2.186e-005 2.175e-005 -4.660 -4.663 -0.002 8.98 -O(0) 2.408e-016 - O2 1.204e-016 1.204e-016 -15.919 -15.919 0.000 30.40 -Si 6.433e-005 - H4SiO4 5.478e-005 5.478e-005 -4.261 -4.261 0.000 52.08 - H3SiO4- 9.556e-006 9.504e-006 -5.020 -5.022 -0.002 27.95 - H2SiO4-2 7.774e-010 7.606e-010 -9.109 -9.119 -0.009 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -3.68 7.12 10.80 Al(OH)3 - Chalcedony -0.71 -4.26 -3.55 SiO2 - Gibbsite -0.93 7.12 8.05 Al(OH)3 - H2(g) -35.13 -38.23 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -2.14 -1.26 0.88 KAlSi3O8 - K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 - Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 - O2(g) -13.03 -15.92 -2.89 O2 - Quartz -0.28 -4.26 -3.98 SiO2 - SiO2(a) -1.55 -4.26 -2.71 SiO2 - - -Reaction step 12. - -Using solution 1. PURE WATER -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 6.400e-005 moles of the following reaction have been added: - - Relative - Reactant moles - - K-feldspar 1.00000 - - Relative - Element moles - Al 1.00000 - K 1.00000 - O 8.00000 - Si 3.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Gibbsite -1.35 6.70 8.05 0.000e+000 0 0.000e+000 -K-feldspar -1.30 -0.42 0.88 0.000e+000 0 0.000e+000 -K-mica 0.00 12.97 12.97 0.000e+000 2.127e-005 2.127e-005 -Kaolinite -0.29 5.41 5.71 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 1.804e-007 1.804e-007 - K 4.273e-005 4.273e-005 - Si 1.282e-004 1.282e-004 - -----------------------------Description of solution---------------------------- - - pH = 9.223 Charge balance - pe = 8.396 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 6 - Density (g/cm3) = 0.99705 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 4.273e-005 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 4.327e-005 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -9.748e-014 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 - Total H = 1.110124e+002 - Total O = 5.550647e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.704e-005 1.692e-005 -4.768 -4.772 -0.003 -4.13 - H+ 6.029e-010 5.984e-010 -9.220 -9.223 -0.003 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 1.804e-007 - Al(OH)4- 1.804e-007 1.790e-007 -6.744 -6.747 -0.003 (0) - Al(OH)3 5.684e-011 5.684e-011 -10.245 -10.245 0.000 (0) - Al(OH)2+ 2.326e-013 2.308e-013 -12.633 -12.637 -0.003 (0) - AlOH+2 1.816e-017 1.762e-017 -16.741 -16.754 -0.013 -27.79 - Al+3 1.136e-021 1.062e-021 -20.945 -20.974 -0.029 -44.50 -H(0) 8.193e-039 - H2 4.096e-039 4.096e-039 -38.388 -38.388 0.000 28.61 -K 4.273e-005 - K+ 4.273e-005 4.240e-005 -4.369 -4.373 -0.003 8.99 -O(0) 4.969e-016 - O2 2.484e-016 2.484e-016 -15.605 -15.605 0.000 30.40 -Si 1.282e-004 - H4SiO4 1.027e-004 1.027e-004 -3.989 -3.989 0.000 52.08 - H3SiO4- 2.550e-005 2.530e-005 -4.594 -4.597 -0.003 27.95 - H2SiO4-2 2.965e-009 2.877e-009 -8.528 -8.541 -0.013 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -4.10 6.70 10.80 Al(OH)3 - Chalcedony -0.44 -3.99 -3.55 SiO2 - Gibbsite -1.35 6.70 8.05 Al(OH)3 - H2(g) -35.29 -38.39 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -1.30 -0.42 0.88 KAlSi3O8 - K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 - Kaolinite -0.29 5.41 5.71 Al2Si2O5(OH)4 - O2(g) -12.71 -15.60 -2.89 O2 - Quartz -0.01 -3.99 -3.98 SiO2 - SiO2(a) -1.28 -3.99 -2.71 SiO2 - - -Reaction step 13. - -Using solution 1. PURE WATER -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 1.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - K-feldspar 1.00000 - - Relative - Element moles - Al 1.00000 - K 1.00000 - O 8.00000 - Si 3.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Gibbsite -1.62 6.43 8.05 0.000e+000 0 0.000e+000 -K-feldspar -0.76 0.11 0.88 0.000e+000 0 0.000e+000 -K-mica 0.00 12.97 12.97 0.000e+000 3.329e-005 3.329e-005 -Kaolinite -0.48 5.23 5.71 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 1.175e-007 1.175e-007 - K 6.671e-005 6.671e-005 - Si 2.001e-004 2.001e-004 - -----------------------------Description of solution---------------------------- - - pH = 9.303 Charge balance - pe = -3.515 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 8 - Density (g/cm3) = 0.99706 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 6.671e-005 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 6.706e-005 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.245e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 16 - Total H = 1.110124e+002 - Total O = 5.550662e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 2.052e-005 2.033e-005 -4.688 -4.692 -0.004 -4.13 - H+ 5.026e-010 4.979e-010 -9.299 -9.303 -0.004 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 1.175e-007 - Al(OH)4- 1.174e-007 1.163e-007 -6.930 -6.934 -0.004 (0) - Al(OH)3 3.073e-011 3.073e-011 -10.512 -10.512 0.000 (0) - Al(OH)2+ 1.049e-013 1.039e-013 -12.979 -12.984 -0.004 (0) - AlOH+2 6.853e-018 6.599e-018 -17.164 -17.181 -0.016 -27.78 - Al+3 3.599e-022 3.308e-022 -21.444 -21.480 -0.037 -44.49 -H(0) 3.759e-015 - H2 1.879e-015 1.879e-015 -14.726 -14.726 0.000 28.61 -K 6.671e-005 - K+ 6.671e-005 6.608e-005 -4.176 -4.180 -0.004 8.99 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -62.928 -62.928 0.000 30.40 -Si 2.001e-004 - H4SiO4 1.541e-004 1.541e-004 -3.812 -3.812 0.000 52.08 - H3SiO4- 4.606e-005 4.562e-005 -4.337 -4.341 -0.004 27.95 - H2SiO4-2 6.472e-009 6.232e-009 -8.189 -8.205 -0.016 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -4.37 6.43 10.80 Al(OH)3 - Chalcedony -0.26 -3.81 -3.55 SiO2 - Gibbsite -1.62 6.43 8.05 Al(OH)3 - H2(g) -11.62 -14.73 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -0.76 0.11 0.88 KAlSi3O8 - K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 - Kaolinite -0.48 5.23 5.71 Al2Si2O5(OH)4 - O2(g) -60.04 -62.93 -2.89 O2 - Quartz 0.17 -3.81 -3.98 SiO2 - SiO2(a) -1.10 -3.81 -2.71 SiO2 - - -Reaction step 14. - -Using solution 1. PURE WATER -Using pure phase assemblage 1. -Using reaction 1. - -Reaction 1. - - 2.000e-004 moles of the following reaction have been added: - - Relative - Reactant moles - - K-feldspar 1.00000 - - Relative - Element moles - Al 1.00000 - K 1.00000 - O 8.00000 - Si 3.00000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Gibbsite -2.00 6.05 8.05 0.000e+000 0 0.000e+000 -K-feldspar 0.00 0.88 0.88 0.000e+000 9.093e-006 9.093e-006 -K-mica -0.00 12.97 12.97 0.000e+000 6.362e-005 6.362e-005 -Kaolinite -0.72 4.99 5.71 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 5.973e-008 5.973e-008 - K 1.273e-004 1.273e-004 - Si 3.819e-004 3.819e-004 - -----------------------------Description of solution---------------------------- - - pH = 9.388 Charge balance - pe = 8.438 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 14 - Density (g/cm3) = 0.99707 - Volume (L) = 1.00298 - Activity of water = 1.000 - Ionic strength = 1.273e-004 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.275e-004 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 3.871e-015 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 - Total H = 1.110123e+002 - Total O = 5.550698e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 2.506e-005 2.474e-005 -4.601 -4.607 -0.006 -4.13 - H+ 4.144e-010 4.092e-010 -9.383 -9.388 -0.006 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 5.973e-008 - Al(OH)4- 5.972e-008 5.895e-008 -7.224 -7.230 -0.006 (0) - Al(OH)3 1.280e-011 1.280e-011 -10.893 -10.893 0.000 (0) - Al(OH)2+ 3.600e-014 3.554e-014 -13.444 -13.449 -0.006 (0) - AlOH+2 1.954e-018 1.855e-018 -17.709 -17.732 -0.023 -27.77 - Al+3 8.576e-023 7.641e-023 -22.067 -22.117 -0.050 -44.46 -H(0) 3.150e-039 - H2 1.575e-039 1.575e-039 -38.803 -38.803 0.000 28.61 -K 1.273e-004 - K+ 1.273e-004 1.256e-004 -3.895 -3.901 -0.006 8.99 -O(0) 3.362e-015 - O2 1.681e-015 1.681e-015 -14.774 -14.774 0.000 30.40 -Si 3.819e-004 - H4SiO4 2.797e-004 2.797e-004 -3.553 -3.553 0.000 52.08 - H3SiO4- 1.021e-004 1.008e-004 -3.991 -3.996 -0.006 27.95 - H2SiO4-2 1.765e-008 1.676e-008 -7.753 -7.776 -0.023 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -4.75 6.05 10.80 Al(OH)3 - Chalcedony -0.00 -3.55 -3.55 SiO2 - Gibbsite -2.00 6.05 8.05 Al(OH)3 - H2(g) -35.70 -38.80 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar 0.00 0.88 0.88 KAlSi3O8 - K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 - Kaolinite -0.72 4.99 5.71 Al2Si2O5(OH)4 - O2(g) -11.88 -14.77 -2.89 O2 - Quartz 0.43 -3.55 -3.98 SiO2 - SiO2(a) -0.84 -3.55 -2.71 SiO2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 9. ------------------------------------- - - TITLE Simulation 6C.--kinetic calculation - SOLUTION 1 - units mol/kgw - Al 1.e-13 - K 1.e-13 - Si 3.e-13 - EQUILIBRIUM_PHASES 1 - Gibbsite 0.0 0.0 - Kaolinite 0.0 0.0 - K-mica 0.0 0.0 - KINETICS 1 - K-feldspar - parms 1.36e-11 - m0 2.16 - m 1.94 - step_divide 1e-6 - steps 1e2 1e3 1e4 1e5 1e6 1e7 1e8 - INCREMENTAL_REACTIONS true - RATES - K-feldspar - start - 10 REM store the initial amount of K-feldspar - 20 IF EXISTS(1) = 0 THEN PUT(M, 1) - 30 REM calculate moles of reaction - 40 SR_kfld = SR("K-feldspar") - 50 moles = PARM(1) * (M/M0)^0.67 * (1 - SR_kfld) * TIME - 60 REM The following is for printout of phase transitions - 80 REM Start Gibbsite - 90 if ABS(SI("Gibbsite")) > 1e-3 THEN GOTO 150 - 100 i = 2 - 110 GOSUB 1500 - 150 REM Start Gibbsite -> Kaolinite - 160 if ABS(SI("Kaolinite")) > 1e-3 THEN GOTO 200 - 170 i = 3 - 180 GOSUB 1500 - 200 REM End Gibbsite -> Kaolinite - 210 if ABS(SI("Kaolinite")) > 1e-3 OR EQUI("Gibbsite") > 0 THEN GOTO 250 - 220 i = 4 - 230 GOSUB 1500 - 250 REM Start Kaolinite -> K-mica - 260 if ABS(SI("K-mica")) > 1e-3 THEN GOTO 300 - 270 i = 5 - 280 GOSUB 1500 - 300 REM End Kaolinite -> K-mica - 310 if ABS(SI("K-mica")) > 1e-3 OR EQUI("Kaolinite") > 0 THEN GOTO 350 - 320 i = 6 - 330 GOSUB 1500 - 350 REM Start K-mica -> K-feldspar - 360 if ABS(SI("K-feldspar")) > 1e-3 THEN GOTO 1000 - 370 i = 7 - 380 GOSUB 1500 - 1000 SAVE moles - 1010 END - 1500 REM subroutine to store data - 1510 if GET(i) >= M THEN RETURN - 1520 PUT(M, i) - 1530 PUT(TOTAL_TIME, i, 1) - 1540 PUT(LA("K+")-LA("H+"), i, 2) - 1550 PUT(LA("H4SiO4"), i, 3) - 1560 RETURN - end - USER_PRINT - 10 DATA "A: Gibbsite ", "B: Gibbsite -> Kaolinite ", "C: Gibbsite -> Kaolinite ", "D: Kaolinite -> K-mica ", "E: Kaolinite -> K-mica ", "F: K-mica -> K-feldspar" - 20 PRINT " Transition Time K-feldspar LA(K/H) LA(H4SiO4)" - 30 PRINT " transfer" - 40 PRINT " (umoles)" - 50 FOR i = 2 TO 7 - 60 READ s$ - 70 IF EXISTS(i) THEN PRINT s$, GET(i,1), (GET(1) - GET(i))*1e6, GET(i,2), GET(i,3) - 80 NEXT i - SELECTED_OUTPUT - file ex6C.sel - reset false - USER_PUNCH - headings pH+log[K] log[H4SiO4] - 10 PUNCH LA("K+")-LA("H+") LA("H4SiO4") - USER_GRAPH - -headings 6C--Kinetics - 10 PLOT_XY LA("H4SiO4"),(LA("K+")-LA("H+")), color = Blue, line_w = 2, symbol = None - END ------ -TITLE ------ - - Simulation 6C.--kinetic calculation - -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 1. - -----------------------------------User print----------------------------------- - - Transition Time K-feldspar LA(K/H) LA(H4SiO4) - transfer - (umoles) - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 1.000e-013 1.000e-013 - K 1.000e-013 1.000e-013 - Si 3.000e-013 3.000e-013 - -----------------------------Description of solution---------------------------- - - pH = 7.000 - pe = 4.000 - Specific Conductance (uS/cm, 25 oC) = 0 - Density (g/cm3) = 0.99704 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 1.006e-007 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.217e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.60 - Iterations = 2 - Total H = 1.110124e+002 - Total O = 5.550622e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.013e-007 1.012e-007 -6.995 -6.995 -0.000 -4.14 - H+ 1.000e-007 1.000e-007 -7.000 -7.000 -0.000 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 1.000e-013 - Al(OH)4- 9.178e-014 9.175e-014 -13.037 -13.037 -0.000 (0) - Al(OH)3 4.868e-015 4.868e-015 -14.313 -14.313 0.000 (0) - Al(OH)2+ 3.305e-015 3.304e-015 -14.481 -14.481 -0.000 (0) - AlOH+2 4.222e-017 4.215e-017 -16.375 -16.375 -0.001 -27.81 - Al+3 4.258e-019 4.244e-019 -18.371 -18.372 -0.001 -44.55 -H(0) 1.416e-025 - H2 7.079e-026 7.079e-026 -25.150 -25.150 0.000 28.61 -K 1.000e-013 - K+ 1.000e-013 9.996e-014 -13.000 -13.000 -0.000 8.98 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -42.080 -42.080 0.000 30.40 -Si 3.000e-013 - H4SiO4 2.996e-013 2.996e-013 -12.524 -12.524 0.000 52.08 - H3SiO4- 4.419e-016 4.417e-016 -15.355 -15.355 -0.000 27.94 - H2SiO4-2 3.009e-022 3.005e-022 -21.522 -21.522 -0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -8.17 2.63 10.80 Al(OH)3 - Chalcedony -8.97 -12.52 -3.55 SiO2 - Gibbsite -5.42 2.63 8.05 Al(OH)3 - H2(g) -22.05 -25.15 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -41.82 -40.94 0.88 KAlSi3O8 - K-mica -48.66 -35.69 12.97 KAl3Si3O10(OH)2 - Kaolinite -25.50 -19.79 5.71 Al2Si2O5(OH)4 - O2(g) -39.19 -42.08 -2.89 O2 - Quartz -8.54 -12.52 -3.98 SiO2 - SiO2(a) -9.81 -12.52 -2.71 SiO2 - - ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. -Using pure phase assemblage 1. -Using kinetics 1. - -Kinetics 1. - - Time step: 100 seconds (Incremented time: 100 seconds) - - Rate name Delta Moles Total Moles Reactant Coefficient - - K-feldspar -1.266e-009 1.940e+000 K-feldspar 1 - -----------------------------------User print----------------------------------- - - Transition Time K-feldspar LA(K/H) LA(H4SiO4) - transfer - (umoles) - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Gibbsite -1.32 6.73 8.05 0.000e+000 0 0.000e+000 -K-mica -19.94 -6.97 12.97 0.000e+000 0 0.000e+000 -Kaolinite -9.09 -3.38 5.71 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 1.266e-009 1.266e-009 - K 1.266e-009 1.266e-009 - Si 3.797e-009 3.797e-009 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 11.411 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 0 - Density (g/cm3) = 0.99704 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 1.019e-007 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 6.279e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.60 - Iterations = 42 - Total H = 1.110124e+002 - Total O = 5.550622e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.013e-007 1.013e-007 -6.994 -6.994 -0.000 -4.14 - H+ 9.997e-008 9.993e-008 -7.000 -7.000 -0.000 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 1.266e-009 - Al(OH)4- 1.162e-009 1.161e-009 -8.935 -8.935 -0.000 (0) - Al(OH)3 6.157e-011 6.157e-011 -10.211 -10.211 0.000 (0) - Al(OH)2+ 4.178e-011 4.176e-011 -10.379 -10.379 -0.000 (0) - AlOH+2 5.332e-013 5.324e-013 -12.273 -12.274 -0.001 -27.81 - Al+3 5.375e-015 5.357e-015 -14.270 -14.271 -0.001 -44.55 -H(0) 2.129e-040 - H2 1.065e-040 1.065e-040 -39.973 -39.973 0.000 28.61 -K 1.266e-009 - K+ 1.266e-009 1.265e-009 -8.898 -8.898 -0.000 8.98 -O(0) 7.354e-013 - O2 3.677e-013 3.677e-013 -12.434 -12.434 0.000 30.40 -Si 3.797e-009 - H4SiO4 3.791e-009 3.791e-009 -8.421 -8.421 0.000 52.08 - H3SiO4- 5.596e-012 5.594e-012 -11.252 -11.252 -0.000 27.94 - H2SiO4-2 3.814e-018 3.808e-018 -17.419 -17.419 -0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -4.07 6.73 10.80 Al(OH)3 - Chalcedony -4.87 -8.42 -3.55 SiO2 - Gibbsite -1.32 6.73 8.05 Al(OH)3 - H2(g) -36.87 -39.97 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -21.31 -20.43 0.88 KAlSi3O8 - K-mica -19.94 -6.97 12.97 KAl3Si3O10(OH)2 - Kaolinite -9.09 -3.38 5.71 Al2Si2O5(OH)4 - O2(g) -9.54 -12.43 -2.89 O2 - Quartz -4.44 -8.42 -3.98 SiO2 - SiO2(a) -5.71 -8.42 -2.71 SiO2 - - -Reaction step 2. - -Using solution 1. -Using pure phase assemblage 1. -Using kinetics 1. - -Kinetics 1. - - Time step: 1000 seconds (Incremented time: 1100 seconds) - - Rate name Delta Moles Total Moles Reactant Coefficient - - K-feldspar -1.266e-008 1.940e+000 K-feldspar 1 - -----------------------------------User print----------------------------------- - - Transition Time K-feldspar LA(K/H) LA(H4SiO4) - transfer - (umoles) - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Gibbsite -0.28 7.77 8.05 0.000e+000 0 0.000e+000 -K-mica -12.66 0.31 12.97 0.000e+000 0 0.000e+000 -Kaolinite -4.93 0.78 5.71 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 1.392e-008 1.392e-008 - K 1.392e-008 1.392e-008 - Si 4.176e-008 4.176e-008 - -----------------------------Description of solution---------------------------- - - pH = 7.003 Charge balance - pe = 11.408 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 0 - Density (g/cm3) = 0.99704 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 1.143e-007 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 5.690e-008 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.53 - Iterations = 17 - Total H = 1.110124e+002 - Total O = 5.550622e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.020e-007 1.020e-007 -6.991 -6.991 -0.000 -4.14 - H+ 9.928e-008 9.924e-008 -7.003 -7.003 -0.000 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 1.392e-008 - Al(OH)4- 1.279e-008 1.278e-008 -7.893 -7.893 -0.000 (0) - Al(OH)3 6.731e-010 6.731e-010 -9.172 -9.172 0.000 (0) - Al(OH)2+ 4.535e-010 4.534e-010 -9.343 -9.344 -0.000 (0) - AlOH+2 5.750e-012 5.741e-012 -11.240 -11.241 -0.001 -27.81 - Al+3 5.756e-014 5.735e-014 -13.240 -13.241 -0.002 -44.55 -H(0) 2.133e-040 - H2 1.067e-040 1.067e-040 -39.972 -39.972 0.000 28.61 -K 1.392e-008 - K+ 1.392e-008 1.392e-008 -7.856 -7.856 -0.000 8.98 -O(0) 7.328e-013 - O2 3.664e-013 3.664e-013 -12.436 -12.436 0.000 30.40 -Si 4.176e-008 - H4SiO4 4.170e-008 4.170e-008 -7.380 -7.380 0.000 52.08 - H3SiO4- 6.198e-011 6.196e-011 -10.208 -10.208 -0.000 27.94 - H2SiO4-2 4.254e-017 4.247e-017 -16.371 -16.372 -0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -3.03 7.77 10.80 Al(OH)3 - Chalcedony -3.83 -7.38 -3.55 SiO2 - Gibbsite -0.28 7.77 8.05 Al(OH)3 - H2(g) -36.87 -39.97 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -16.10 -15.22 0.88 KAlSi3O8 - K-mica -12.66 0.31 12.97 KAl3Si3O10(OH)2 - Kaolinite -4.93 0.78 5.71 Al2Si2O5(OH)4 - O2(g) -9.54 -12.44 -2.89 O2 - Quartz -3.40 -7.38 -3.98 SiO2 - SiO2(a) -4.67 -7.38 -2.71 SiO2 - - -Reaction step 3. - -Using solution 1. -Using pure phase assemblage 1. -Using kinetics 1. - -Kinetics 1. - - Time step: 10000 seconds (Incremented time: 11100 seconds) - - Rate name Delta Moles Total Moles Reactant Coefficient - - K-feldspar -1.266e-007 1.940e+000 K-feldspar 1 - -----------------------------------User print----------------------------------- - - Transition Time K-feldspar LA(K/H) LA(H4SiO4) - transfer - (umoles) -A: Gibbsite 1100 1.4048e-001 3.5642e-001 -6.3763e+000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Gibbsite -0.00 8.05 8.05 0.000e+000 9.946e-008 9.946e-008 -K-mica -7.60 5.37 12.97 0.000e+000 0 0.000e+000 -Kaolinite -2.36 3.35 5.71 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 4.101e-008 4.101e-008 - K 1.405e-007 1.405e-007 - Si 4.214e-007 4.214e-007 - -----------------------------Description of solution---------------------------- - - pH = 7.209 Charge balance - pe = 11.202 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 0 - Density (g/cm3) = 0.99704 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 2.035e-007 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 2.647e-007 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.30 - Iterations = 17 - Total H = 1.110124e+002 - Total O = 5.550622e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.639e-007 1.638e-007 -6.785 -6.786 -0.000 -4.14 - H+ 6.183e-008 6.180e-008 -7.209 -7.209 -0.000 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 4.101e-008 - Al(OH)4- 3.919e-008 3.916e-008 -7.407 -7.407 -0.000 (0) - Al(OH)3 1.284e-009 1.284e-009 -8.891 -8.891 0.000 (0) - Al(OH)2+ 5.388e-010 5.386e-010 -9.269 -9.269 -0.000 (0) - AlOH+2 4.255e-012 4.246e-012 -11.371 -11.372 -0.001 -27.81 - Al+3 2.654e-014 2.642e-014 -13.576 -13.578 -0.002 -44.55 -H(0) 2.135e-040 - H2 1.068e-040 1.068e-040 -39.972 -39.972 0.000 28.61 -K 1.405e-007 - K+ 1.405e-007 1.404e-007 -6.852 -6.853 -0.000 8.98 -O(0) 7.316e-013 - O2 3.658e-013 3.658e-013 -12.437 -12.437 0.000 30.40 -Si 4.214e-007 - H4SiO4 4.204e-007 4.204e-007 -6.376 -6.376 0.000 52.08 - H3SiO4- 1.004e-009 1.003e-009 -8.998 -8.999 -0.000 27.94 - H2SiO4-2 1.107e-015 1.104e-015 -14.956 -14.957 -0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 - Chalcedony -2.82 -6.38 -3.55 SiO2 - Gibbsite -0.00 8.05 8.05 Al(OH)3 - H2(g) -36.87 -39.97 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -11.60 -10.72 0.88 KAlSi3O8 - K-mica -7.60 5.37 12.97 KAl3Si3O10(OH)2 - Kaolinite -2.36 3.35 5.71 Al2Si2O5(OH)4 - O2(g) -9.54 -12.44 -2.89 O2 - Quartz -2.40 -6.38 -3.98 SiO2 - SiO2(a) -3.66 -6.38 -2.71 SiO2 - - -Reaction step 4. - -Using solution 1. -Using pure phase assemblage 1. -Using kinetics 1. - -Kinetics 1. - - Time step: 100000 seconds (Incremented time: 111100 seconds) - - Rate name Delta Moles Total Moles Reactant Coefficient - - K-feldspar -1.266e-006 1.940e+000 K-feldspar 1 - -----------------------------------User print----------------------------------- - - Transition Time K-feldspar LA(K/H) LA(H4SiO4) - transfer - (umoles) -A: Gibbsite 1100 1.4048e-001 3.5642e-001 -6.3763e+000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Gibbsite -0.00 8.05 8.05 9.946e-008 1.144e-006 1.045e-006 -K-mica -2.79 10.18 12.97 0.000e+000 0 0.000e+000 -Kaolinite -0.37 5.33 5.71 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 2.620e-007 2.620e-007 - K 1.406e-006 1.406e-006 - Si 4.218e-006 4.218e-006 - -----------------------------Description of solution---------------------------- - - pH = 8.032 Charge balance - pe = 10.378 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 0 - Density (g/cm3) = 0.99704 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 1.416e-006 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 2.193e-006 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.04 - Iterations = 76 - Total H = 1.110124e+002 - Total O = 5.550622e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.090e-006 1.089e-006 -5.963 -5.963 -0.001 -4.14 - H+ 9.311e-009 9.298e-009 -8.031 -8.032 -0.001 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 2.620e-007 - Al(OH)4- 2.606e-007 2.603e-007 -6.584 -6.585 -0.001 (0) - Al(OH)3 1.284e-009 1.284e-009 -8.891 -8.891 0.000 (0) - Al(OH)2+ 8.115e-011 8.104e-011 -10.091 -10.091 -0.001 (0) - AlOH+2 9.668e-014 9.614e-014 -13.015 -13.017 -0.002 -27.81 - Al+3 9.113e-017 8.999e-017 -16.040 -16.046 -0.005 -44.54 -H(0) 2.144e-040 - H2 1.072e-040 1.072e-040 -39.970 -39.970 0.000 28.61 -K 1.406e-006 - K+ 1.406e-006 1.404e-006 -5.852 -5.853 -0.001 8.98 -O(0) 7.256e-013 - O2 3.628e-013 3.628e-013 -12.440 -12.440 0.000 30.40 -Si 4.218e-006 - H4SiO4 4.152e-006 4.152e-006 -5.382 -5.382 0.000 52.08 - H3SiO4- 6.594e-008 6.584e-008 -7.181 -7.181 -0.001 27.94 - H2SiO4-2 4.844e-013 4.817e-013 -12.315 -12.317 -0.002 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 - Chalcedony -1.83 -5.38 -3.55 SiO2 - Gibbsite -0.00 8.05 8.05 Al(OH)3 - H2(g) -36.87 -39.97 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -6.79 -5.92 0.88 KAlSi3O8 - K-mica -2.79 10.18 12.97 KAl3Si3O10(OH)2 - Kaolinite -0.37 5.33 5.71 Al2Si2O5(OH)4 - O2(g) -9.55 -12.44 -2.89 O2 - Quartz -1.40 -5.38 -3.98 SiO2 - SiO2(a) -2.67 -5.38 -2.71 SiO2 - - -Reaction step 5. - -Using solution 1. -Using pure phase assemblage 1. -Using kinetics 1. - -Kinetics 1. - - Time step: 1e+006 seconds (Incremented time: 1.1111e+006 seconds) - - Rate name Delta Moles Total Moles Reactant Coefficient - - K-feldspar -1.265e-005 1.940e+000 K-feldspar 1 - -----------------------------------User print----------------------------------- - - Transition Time K-feldspar LA(K/H) LA(H4SiO4) - transfer - (umoles) -A: Gibbsite 1100 1.4048e-001 3.5642e-001 -6.3763e+000 -B: Gibbsite -> Kaolinite 1.7434e+005 2.2064e+000 2.5575e+000 -5.1950e+000 -C: Gibbsite -> Kaolinite 2.3929e+005 3.0284e+000 2.8317e+000 -5.1945e+000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Gibbsite -0.59 7.45 8.05 1.144e-006 0 -1.144e-006 -K-mica -0.28 12.69 12.97 0.000e+000 0 0.000e+000 -Kaolinite -0.00 5.71 5.71 0.000e+000 6.730e-006 6.730e-006 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 5.993e-007 5.993e-007 - K 1.406e-005 1.406e-005 - Si 2.872e-005 2.872e-005 - -----------------------------Description of solution---------------------------- - - pH = 8.987 Charge balance - pe = 9.416 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 2 - Density (g/cm3) = 0.99705 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 1.406e-005 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.586e-005 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 823 - Total H = 1.110124e+002 - Total O = 5.550627e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 9.856e-006 9.813e-006 -5.006 -5.008 -0.002 -4.13 - H+ 1.036e-009 1.031e-009 -8.985 -8.987 -0.002 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 5.993e-007 - Al(OH)4- 5.990e-007 5.964e-007 -6.223 -6.224 -0.002 (0) - Al(OH)3 3.264e-010 3.264e-010 -9.486 -9.486 0.000 (0) - Al(OH)2+ 2.295e-012 2.285e-012 -11.639 -11.641 -0.002 (0) - AlOH+2 3.060e-016 3.007e-016 -15.514 -15.522 -0.008 -27.80 - Al+3 3.247e-020 3.122e-020 -19.489 -19.506 -0.017 -44.52 -H(0) 2.218e-040 - H2 1.109e-040 1.109e-040 -39.955 -39.955 0.000 28.61 -K 1.406e-005 - K+ 1.406e-005 1.400e-005 -4.852 -4.854 -0.002 8.98 -O(0) 6.780e-013 - O2 3.390e-013 3.390e-013 -12.470 -12.470 0.000 30.40 -Si 2.872e-005 - H4SiO4 2.511e-005 2.511e-005 -4.600 -4.600 0.000 52.08 - H3SiO4- 3.606e-006 3.590e-006 -5.443 -5.445 -0.002 27.95 - H2SiO4-2 2.409e-010 2.368e-010 -9.618 -9.626 -0.008 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -3.35 7.45 10.80 Al(OH)3 - Chalcedony -1.05 -4.60 -3.55 SiO2 - Gibbsite -0.59 7.45 8.05 Al(OH)3 - H2(g) -36.85 -39.96 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -3.09 -2.21 0.88 KAlSi3O8 - K-mica -0.28 12.69 12.97 KAl3Si3O10(OH)2 - Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 - O2(g) -9.58 -12.47 -2.89 O2 - Quartz -0.62 -4.60 -3.98 SiO2 - SiO2(a) -1.89 -4.60 -2.71 SiO2 - - -Reaction step 6. - -Using solution 1. -Using pure phase assemblage 1. -Using kinetics 1. - -Kinetics 1. - - Time step: 1e+007 seconds (Incremented time: 1.11111e+007 seconds) - - Rate name Delta Moles Total Moles Reactant Coefficient - - K-feldspar -1.126e-004 1.940e+000 K-feldspar 1 - -----------------------------------User print----------------------------------- - - Transition Time K-feldspar LA(K/H) LA(H4SiO4) - transfer - (umoles) -A: Gibbsite 1100 1.4048e-001 3.5642e-001 -6.3763e+000 -B: Gibbsite -> Kaolinite 1.7434e+005 2.2064e+000 2.5575e+000 -5.1950e+000 -C: Gibbsite -> Kaolinite 2.3929e+005 3.0284e+000 2.8317e+000 -5.1945e+000 -D: Kaolinite -> K-mica 1.5967e+006 2.0194e+001 4.4080e+000 -4.4630e+000 -E: Kaolinite -> K-mica 2.6017e+006 3.2848e+001 4.4087e+000 -4.2499e+000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Gibbsite -1.76 6.29 8.05 0.000e+000 0 0.000e+000 -K-mica -0.00 12.97 12.97 0.000e+000 4.218e-005 4.218e-005 -Kaolinite -0.57 5.14 5.71 6.730e-006 0 -6.730e-006 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 9.244e-008 9.244e-008 - K 8.445e-005 8.445e-005 - Si 2.534e-004 2.533e-004 - -----------------------------Description of solution---------------------------- - - pH = 9.338 Charge balance - pe = 9.073 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 10 - Density (g/cm3) = 0.99706 - Volume (L) = 1.00298 - Activity of water = 1.000 - Ionic strength = 8.446e-005 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 8.473e-005 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 7480 - Total H = 1.110123e+002 - Total O = 5.550672e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 2.227e-005 2.204e-005 -4.652 -4.657 -0.005 -4.13 - H+ 4.641e-010 4.593e-010 -9.333 -9.338 -0.005 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 9.244e-008 - Al(OH)4- 9.242e-008 9.144e-008 -7.034 -7.039 -0.005 (0) - Al(OH)3 2.228e-011 2.228e-011 -10.652 -10.652 0.000 (0) - Al(OH)2+ 7.020e-014 6.946e-014 -13.154 -13.158 -0.005 (0) - AlOH+2 4.247e-018 4.070e-018 -17.372 -17.390 -0.018 -27.78 - Al+3 2.069e-022 1.882e-022 -21.684 -21.725 -0.041 -44.48 -H(0) 2.131e-040 - H2 1.066e-040 1.066e-040 -39.972 -39.972 0.000 28.61 -K 8.445e-005 - K+ 8.445e-005 8.355e-005 -4.073 -4.078 -0.005 8.99 -O(0) 7.342e-013 - O2 3.671e-013 3.671e-013 -12.435 -12.435 0.000 30.40 -Si 2.534e-004 - H4SiO4 1.913e-004 1.913e-004 -3.718 -3.718 0.000 52.08 - H3SiO4- 6.207e-005 6.141e-005 -4.207 -4.212 -0.005 27.95 - H2SiO4-2 9.490e-009 9.095e-009 -8.023 -8.041 -0.018 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -4.51 6.29 10.80 Al(OH)3 - Chalcedony -0.17 -3.72 -3.55 SiO2 - Gibbsite -1.76 6.29 8.05 Al(OH)3 - H2(g) -36.87 -39.97 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -0.48 0.39 0.88 KAlSi3O8 - K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 - Kaolinite -0.57 5.14 5.71 Al2Si2O5(OH)4 - O2(g) -9.54 -12.44 -2.89 O2 - Quartz 0.26 -3.72 -3.98 SiO2 - SiO2(a) -1.01 -3.72 -2.71 SiO2 - - -Reaction step 7. - -Using solution 1. -Using pure phase assemblage 1. -Using kinetics 1. - -Kinetics 1. - - Time step: 1e+008 seconds (Incremented time: 1.11111e+008 seconds) - - Rate name Delta Moles Total Moles Reactant Coefficient - - K-feldspar -6.428e-005 1.940e+000 K-feldspar 1 - -----------------------------------User print----------------------------------- - - Transition Time K-feldspar LA(K/H) LA(H4SiO4) - transfer - (umoles) -A: Gibbsite 1100 1.4048e-001 3.5642e-001 -6.3763e+000 -B: Gibbsite -> Kaolinite 1.7434e+005 2.2064e+000 2.5575e+000 -5.1950e+000 -C: Gibbsite -> Kaolinite 2.3929e+005 3.0284e+000 2.8317e+000 -5.1945e+000 -D: Kaolinite -> K-mica 1.5967e+006 2.0194e+001 4.4080e+000 -4.4630e+000 -E: Kaolinite -> K-mica 2.6017e+006 3.2848e+001 4.4087e+000 -4.2499e+000 -F: K-mica -> K-feldspar 4.7638e+007 1.9074e+002 5.4868e+000 -3.5536e+000 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Gibbsite -2.00 6.05 8.05 0.000e+000 0 0.000e+000 -K-mica 0.00 12.97 12.97 4.218e-005 6.362e-005 2.144e-005 -Kaolinite -0.72 4.99 5.71 0.000e+000 0 0.000e+000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 5.973e-008 5.973e-008 - K 1.273e-004 1.273e-004 - Si 3.819e-004 3.819e-004 - -----------------------------Description of solution---------------------------- - - pH = 9.388 Charge balance - pe = 9.034 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 14 - Density (g/cm3) = 0.99707 - Volume (L) = 1.00298 - Activity of water = 1.000 - Ionic strength = 1.273e-004 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.275e-004 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 4540 - Total H = 1.110123e+002 - Total O = 5.550698e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 2.506e-005 2.474e-005 -4.601 -4.607 -0.006 -4.13 - H+ 4.144e-010 4.091e-010 -9.383 -9.388 -0.006 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 5.973e-008 - Al(OH)4- 5.972e-008 5.895e-008 -7.224 -7.230 -0.006 (0) - Al(OH)3 1.280e-011 1.280e-011 -10.893 -10.893 0.000 (0) - Al(OH)2+ 3.600e-014 3.553e-014 -13.444 -13.449 -0.006 (0) - AlOH+2 1.954e-018 1.855e-018 -17.709 -17.732 -0.023 -27.77 - Al+3 8.576e-023 7.641e-023 -22.067 -22.117 -0.050 -44.46 -H(0) 2.027e-040 - H2 1.014e-040 1.014e-040 -39.994 -39.994 0.000 28.61 -K 1.273e-004 - K+ 1.273e-004 1.256e-004 -3.895 -3.901 -0.006 8.99 -O(0) 8.115e-013 - O2 4.057e-013 4.058e-013 -12.392 -12.392 0.000 30.40 -Si 3.819e-004 - H4SiO4 2.797e-004 2.797e-004 -3.553 -3.553 0.000 52.08 - H3SiO4- 1.021e-004 1.008e-004 -3.991 -3.996 -0.006 27.95 - H2SiO4-2 1.765e-008 1.676e-008 -7.753 -7.776 -0.023 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -4.75 6.05 10.80 Al(OH)3 - Chalcedony -0.00 -3.55 -3.55 SiO2 - Gibbsite -2.00 6.05 8.05 Al(OH)3 - H2(g) -36.89 -39.99 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -0.00 0.87 0.88 KAlSi3O8 - K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 - Kaolinite -0.72 4.99 5.71 Al2Si2O5(OH)4 - O2(g) -9.50 -12.39 -2.89 O2 - Quartz 0.43 -3.55 -3.98 SiO2 - SiO2(a) -0.84 -3.55 -2.71 SiO2 - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 10. -------------------------------------- - - PRINT - user_print false - PHASES - K_H - KH = K+ - H+ - no_check - USER_GRAPH - -initial_solutions true - 10 PLOT_XY LA("H4SiO4"), SI("K_H"), color = Black, symbol = None - SOLUTION 1 - pH 11 - K 1 K_H 8 - Al 1 Gibbsite - Si 1 K-mica - SOLUTION 2 - pH 7 - K 1 K-mica - Al 1 Gibbsite - Si 1 Kaolinite - SOLUTION 3 - pH 7 - K 1 K-mica - Al 1 K-feldspar - Si 1 Kaolinite - SOLUTION 4 - pH 7 - K 1 K_H -1 - Al 1 Kaolinite - Si 1 K-feldspar - END -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 1. - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 2.515e-004 2.515e-004 Equilibrium with Gibbsite - K 1.039e-003 1.039e-003 Equilibrium with K_H - Si 6.661e-006 6.661e-006 Equilibrium with K-mica - -----------------------------Description of solution---------------------------- - - pH = 11.000 - pe = 4.000 - Specific Conductance (uS/cm, 25 oC) = 278 - Density (g/cm3) = 0.99712 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 1.175e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 2.064e-003 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.704e-004 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -11.51 - Iterations = 5 - Total H = 1.110145e+002 - Total O = 5.550830e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.052e-003 1.012e-003 -2.978 -2.995 -0.017 -4.10 - H+ 1.037e-011 1.000e-011 -10.984 -11.000 -0.016 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 2.515e-004 - Al(OH)4- 2.515e-004 2.420e-004 -3.600 -3.616 -0.017 (0) - Al(OH)3 1.284e-009 1.284e-009 -8.892 -8.891 0.000 (0) - Al(OH)2+ 9.053e-014 8.715e-014 -13.043 -13.060 -0.016 (0) - AlOH+2 1.294e-019 1.112e-019 -18.888 -18.954 -0.066 -27.69 - Al+3 1.556e-025 1.120e-025 -24.808 -24.951 -0.143 -44.29 -H(0) 1.416e-033 - H2 7.078e-034 7.079e-034 -33.150 -33.150 0.000 28.61 -K 1.039e-003 - K+ 1.039e-003 1.000e-003 -2.983 -3.000 -0.017 9.01 -O(0) 1.663e-026 - O2 8.315e-027 8.317e-027 -26.080 -26.080 0.000 30.40 -Si 6.661e-006 - H3SiO4- 6.208e-006 5.974e-006 -5.207 -5.224 -0.017 27.98 - H4SiO4 4.050e-007 4.051e-007 -6.393 -6.392 0.000 52.08 - H2SiO4-2 4.730e-008 4.064e-008 -7.325 -7.391 -0.066 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 - Chalcedony -2.84 -6.39 -3.55 SiO2 - Gibbsite -0.00 8.05 8.05 Al(OH)3 - H2(g) -30.05 -33.15 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -4.00 -3.13 0.88 KAlSi3O8 - K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 - K_H 8.00 8.00 0.00 KH - Kaolinite -2.39 3.31 5.71 Al2Si2O5(OH)4 - O2(g) -23.19 -26.08 -2.89 O2 - Quartz -2.41 -6.39 -3.98 SiO2 - SiO2(a) -3.68 -6.39 -2.71 SiO2 - - -Initial solution 2. - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 2.741e-008 2.741e-008 Equilibrium with Gibbsite - K 2.666e-003 2.666e-003 Equilibrium with K-mica - Si 6.390e-006 6.390e-006 Equilibrium with Kaolinite - -----------------------------Description of solution---------------------------- - - pH = 7.000 - pe = 4.000 - Specific Conductance (uS/cm, 25 oC) = 191 - Density (g/cm3) = 0.99712 - Volume (L) = 1.00299 - Activity of water = 1.000 - Ionic strength = 1.333e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.178e-007 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.666e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 99.99 - Iterations = 7 - Total H = 1.110125e+002 - Total O = 5.550624e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.055e-007 1.012e-007 -6.977 -6.995 -0.018 -4.10 - H+ 1.039e-007 1.000e-007 -6.983 -7.000 -0.017 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 2.741e-008 - Al(OH)4- 2.521e-008 2.420e-008 -7.598 -7.616 -0.018 (0) - Al(OH)3 1.284e-009 1.284e-009 -8.892 -8.891 0.000 (0) - Al(OH)2+ 9.074e-010 8.716e-010 -9.042 -9.060 -0.017 (0) - AlOH+2 1.306e-011 1.112e-011 -10.884 -10.954 -0.070 -27.68 - Al+3 1.586e-013 1.120e-013 -12.800 -12.951 -0.151 -44.27 -H(0) 1.415e-025 - H2 7.077e-026 7.079e-026 -25.150 -25.150 0.000 28.61 -K 2.666e-003 - K+ 2.666e-003 2.558e-003 -2.574 -2.592 -0.018 9.01 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -42.080 -42.080 0.000 30.40 -Si 6.390e-006 - H4SiO4 6.380e-006 6.382e-006 -5.195 -5.195 0.000 52.08 - H3SiO4- 9.803e-009 9.410e-009 -8.009 -8.026 -0.018 27.98 - H2SiO4-2 7.520e-015 6.401e-015 -14.124 -14.194 -0.070 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 - Chalcedony -1.64 -5.20 -3.55 SiO2 - Gibbsite -0.00 8.05 8.05 Al(OH)3 - H2(g) -22.05 -25.15 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -4.00 -3.13 0.88 KAlSi3O8 - K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 - K_H 4.41 4.41 0.00 KH - Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 - O2(g) -39.19 -42.08 -2.89 O2 - Quartz -1.21 -5.20 -3.98 SiO2 - SiO2(a) -2.48 -5.20 -2.71 SiO2 - - -Initial solution 3. - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 2.731e-010 2.731e-010 Equilibrium with K-feldspar - K 2.666e-003 2.666e-003 Equilibrium with K-mica - Si 6.412e-004 6.412e-004 Equilibrium with Kaolinite - -----------------------------Description of solution---------------------------- - - pH = 7.000 - pe = 4.000 - Specific Conductance (uS/cm, 25 oC) = 191 - Density (g/cm3) = 0.99715 - Volume (L) = 1.00304 - Activity of water = 1.000 - Ionic strength = 1.333e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 9.863e-007 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.665e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 99.92 - Iterations = 7 - Total H = 1.110150e+002 - Total O = 5.550878e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.055e-007 1.012e-007 -6.977 -6.995 -0.018 -4.10 - H+ 1.039e-007 1.000e-007 -6.983 -7.000 -0.017 0.00 - H2O 5.551e+001 9.999e-001 1.744 -0.000 0.000 18.07 -Al 2.731e-010 - Al(OH)4- 2.512e-010 2.412e-010 -9.600 -9.618 -0.018 (0) - Al(OH)3 1.279e-011 1.280e-011 -10.893 -10.893 0.000 (0) - Al(OH)2+ 9.042e-012 8.685e-012 -11.044 -11.061 -0.017 (0) - AlOH+2 1.302e-013 1.108e-013 -12.885 -12.955 -0.070 -27.68 - Al+3 1.581e-015 1.116e-015 -14.801 -14.952 -0.151 -44.27 -H(0) 1.415e-025 - H2 7.077e-026 7.079e-026 -25.150 -25.150 0.000 28.61 -K 2.666e-003 - K+ 2.666e-003 2.558e-003 -2.574 -2.592 -0.018 9.01 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -42.080 -42.080 0.000 30.40 -Si 6.412e-004 - H4SiO4 6.402e-004 6.404e-004 -3.194 -3.194 0.000 52.08 - H3SiO4- 9.837e-007 9.443e-007 -6.007 -6.025 -0.018 27.98 - H2SiO4-2 7.546e-013 6.423e-013 -12.122 -12.192 -0.070 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -4.75 6.05 10.80 Al(OH)3 - Chalcedony 0.36 -3.19 -3.55 SiO2 - Gibbsite -2.00 6.05 8.05 Al(OH)3 - H2(g) -22.05 -25.15 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar 0.00 0.88 0.88 KAlSi3O8 - K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 - K_H 4.41 4.41 0.00 KH - Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 - O2(g) -39.19 -42.08 -2.89 O2 - Quartz 0.79 -3.19 -3.98 SiO2 - SiO2(a) -0.48 -3.19 -2.71 SiO2 - - -Initial solution 4. - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 5.251e-013 5.251e-013 Equilibrium with Kaolinite - K 1.018e-008 1.018e-008 Equilibrium with K_H - Si 3.205e-001 3.205e-001 Equilibrium with K-feldspar - -----------------------------Description of solution---------------------------- - - pH = 7.000 - pe = 4.000 - Specific Conductance (uS/cm, 25 oC) = 0 - Density (g/cm3) = 1.01094 - Volume (L) = 1.02979 - Activity of water = 0.995 - Ionic strength = 2.403e-004 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 4.803e-004 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.803e-004 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -99.95 - Iterations = 10 - Total H = 1.122938e+002 - Total O = 5.678810e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.025e-007 1.007e-007 -6.989 -6.997 -0.008 -4.12 - H+ 1.018e-007 1.000e-007 -6.992 -7.000 -0.008 0.00 - H2O 5.551e+001 9.946e-001 1.744 -0.002 0.000 18.07 -Al 5.251e-013 - Al(OH)4- 4.821e-013 4.736e-013 -12.317 -12.325 -0.008 (0) - Al(OH)3 2.526e-014 2.526e-014 -13.598 -13.597 0.000 (0) - Al(OH)2+ 1.755e-014 1.724e-014 -13.756 -13.763 -0.008 (0) - AlOH+2 2.374e-016 2.212e-016 -15.624 -15.655 -0.031 -27.75 - Al+3 2.619e-018 2.239e-018 -17.582 -17.650 -0.068 -44.43 -H(0) 1.416e-025 - H2 7.079e-026 7.079e-026 -25.150 -25.150 0.000 28.61 -K 1.018e-008 - K+ 1.018e-008 1.000e-008 -7.992 -8.000 -0.008 8.99 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -42.085 -42.085 0.000 30.40 -Si 3.205e-001 - H4SiO4 3.200e-001 3.200e-001 -0.495 -0.495 0.000 52.08 - H3SiO4- 4.803e-004 4.719e-004 -3.318 -3.326 -0.008 27.96 - H2SiO4-2 3.445e-010 3.210e-010 -9.463 -9.494 -0.031 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -7.46 3.34 10.80 Al(OH)3 - Chalcedony 3.06 -0.49 -3.55 SiO2 - Gibbsite -4.71 3.34 8.05 Al(OH)3 - H2(g) -22.05 -25.15 -3.10 H2 - H2O(g) -1.51 -0.00 1.50 H2O - K-feldspar 0.00 0.88 0.88 KAlSi3O8 - K-mica -5.40 7.57 12.97 KAl3Si3O10(OH)2 - K_H -1.00 -1.00 0.00 KH - Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 - O2(g) -39.19 -42.08 -2.89 O2 - Quartz 3.49 -0.49 -3.98 SiO2 - SiO2(a) 2.22 -0.49 -2.71 SiO2 - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 11. -------------------------------------- - - USER_GRAPH - 10 PLOT_XY LA("H4SiO4"), SI("K_H"), color = Black, symbol = None - SOLUTION 1 - pH 11 - K 1 K_H 8 - Al 1 K-feldspar - Si 1 K-mica - SOLUTION 2 - pH 7 - K 1 K-mica - Al 1 K-feldspar - Si 1 Kaolinite - SOLUTION 3 - pH 7 - K 1 K-mica - Al 1 Gibbsite - Si 1 Kaolinite - SOLUTION 4 - pH 7 - K 1 K_H -1 - Al 1 Gibbsite - Si 1 Kaolinite - END -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 1. - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 2.513e-006 2.513e-006 Equilibrium with K-feldspar - K 1.043e-003 1.043e-003 Equilibrium with K_H - Si 6.703e-004 6.703e-004 Equilibrium with K-mica - -----------------------------Description of solution---------------------------- - - pH = 11.000 - pe = 4.000 - Specific Conductance (uS/cm, 25 oC) = 278 - Density (g/cm3) = 0.99714 - Volume (L) = 1.00301 - Activity of water = 1.000 - Ionic strength = 1.372e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.700e-003 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -6.497e-004 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -23.76 - Iterations = 5 - Total H = 1.110155e+002 - Total O = 5.550996e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.055e-003 1.012e-003 -2.977 -2.995 -0.018 -4.10 - H+ 1.040e-011 1.000e-011 -10.983 -11.000 -0.017 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 2.513e-006 - Al(OH)4- 2.513e-006 2.412e-006 -5.600 -5.618 -0.018 (0) - Al(OH)3 1.279e-011 1.280e-011 -10.893 -10.893 0.000 (0) - Al(OH)2+ 9.047e-016 8.685e-016 -15.043 -15.061 -0.018 (0) - AlOH+2 1.305e-021 1.108e-021 -20.884 -20.955 -0.071 -27.68 - Al+3 1.588e-027 1.116e-027 -26.799 -26.952 -0.153 -44.27 -H(0) 1.415e-033 - H2 7.077e-034 7.079e-034 -33.150 -33.150 0.000 28.61 -K 1.043e-003 - K+ 1.043e-003 1.000e-003 -2.982 -3.000 -0.018 9.01 -O(0) 1.663e-026 - O2 8.314e-027 8.317e-027 -26.080 -26.080 0.000 30.40 -Si 6.703e-004 - H3SiO4- 6.249e-004 5.995e-004 -3.204 -3.222 -0.018 27.98 - H4SiO4 4.064e-005 4.066e-005 -4.391 -4.391 0.000 52.08 - H2SiO4-2 4.801e-006 4.078e-006 -5.319 -5.390 -0.071 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -4.75 6.05 10.80 Al(OH)3 - Chalcedony -0.84 -4.39 -3.55 SiO2 - Gibbsite -2.00 6.05 8.05 Al(OH)3 - H2(g) -30.05 -33.15 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar 0.00 0.88 0.88 KAlSi3O8 - K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 - K_H 8.00 8.00 0.00 KH - Kaolinite -2.39 3.31 5.71 Al2Si2O5(OH)4 - O2(g) -23.19 -26.08 -2.89 O2 - Quartz -0.41 -4.39 -3.98 SiO2 - SiO2(a) -1.68 -4.39 -2.71 SiO2 - - -Initial solution 2. - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 2.731e-010 2.731e-010 Equilibrium with K-feldspar - K 2.666e-003 2.666e-003 Equilibrium with K-mica - Si 6.412e-004 6.412e-004 Equilibrium with Kaolinite - -----------------------------Description of solution---------------------------- - - pH = 7.000 - pe = 4.000 - Specific Conductance (uS/cm, 25 oC) = 191 - Density (g/cm3) = 0.99715 - Volume (L) = 1.00304 - Activity of water = 1.000 - Ionic strength = 1.333e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 9.863e-007 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.665e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 99.92 - Iterations = 7 - Total H = 1.110150e+002 - Total O = 5.550878e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.055e-007 1.012e-007 -6.977 -6.995 -0.018 -4.10 - H+ 1.039e-007 1.000e-007 -6.983 -7.000 -0.017 0.00 - H2O 5.551e+001 9.999e-001 1.744 -0.000 0.000 18.07 -Al 2.731e-010 - Al(OH)4- 2.512e-010 2.412e-010 -9.600 -9.618 -0.018 (0) - Al(OH)3 1.279e-011 1.280e-011 -10.893 -10.893 0.000 (0) - Al(OH)2+ 9.042e-012 8.685e-012 -11.044 -11.061 -0.017 (0) - AlOH+2 1.302e-013 1.108e-013 -12.885 -12.955 -0.070 -27.68 - Al+3 1.581e-015 1.116e-015 -14.801 -14.952 -0.151 -44.27 -H(0) 1.415e-025 - H2 7.077e-026 7.079e-026 -25.150 -25.150 0.000 28.61 -K 2.666e-003 - K+ 2.666e-003 2.558e-003 -2.574 -2.592 -0.018 9.01 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -42.080 -42.080 0.000 30.40 -Si 6.412e-004 - H4SiO4 6.402e-004 6.404e-004 -3.194 -3.194 0.000 52.08 - H3SiO4- 9.837e-007 9.443e-007 -6.007 -6.025 -0.018 27.98 - H2SiO4-2 7.546e-013 6.423e-013 -12.122 -12.192 -0.070 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -4.75 6.05 10.80 Al(OH)3 - Chalcedony 0.36 -3.19 -3.55 SiO2 - Gibbsite -2.00 6.05 8.05 Al(OH)3 - H2(g) -22.05 -25.15 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar 0.00 0.88 0.88 KAlSi3O8 - K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 - K_H 4.41 4.41 0.00 KH - Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 - O2(g) -39.19 -42.08 -2.89 O2 - Quartz 0.79 -3.19 -3.98 SiO2 - SiO2(a) -0.48 -3.19 -2.71 SiO2 - - -Initial solution 3. - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 2.741e-008 2.741e-008 Equilibrium with Gibbsite - K 2.666e-003 2.666e-003 Equilibrium with K-mica - Si 6.390e-006 6.390e-006 Equilibrium with Kaolinite - -----------------------------Description of solution---------------------------- - - pH = 7.000 - pe = 4.000 - Specific Conductance (uS/cm, 25 oC) = 191 - Density (g/cm3) = 0.99712 - Volume (L) = 1.00299 - Activity of water = 1.000 - Ionic strength = 1.333e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.178e-007 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 2.666e-003 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 99.99 - Iterations = 7 - Total H = 1.110125e+002 - Total O = 5.550624e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.055e-007 1.012e-007 -6.977 -6.995 -0.018 -4.10 - H+ 1.039e-007 1.000e-007 -6.983 -7.000 -0.017 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 2.741e-008 - Al(OH)4- 2.521e-008 2.420e-008 -7.598 -7.616 -0.018 (0) - Al(OH)3 1.284e-009 1.284e-009 -8.892 -8.891 0.000 (0) - Al(OH)2+ 9.074e-010 8.716e-010 -9.042 -9.060 -0.017 (0) - AlOH+2 1.306e-011 1.112e-011 -10.884 -10.954 -0.070 -27.68 - Al+3 1.586e-013 1.120e-013 -12.800 -12.951 -0.151 -44.27 -H(0) 1.415e-025 - H2 7.077e-026 7.079e-026 -25.150 -25.150 0.000 28.61 -K 2.666e-003 - K+ 2.666e-003 2.558e-003 -2.574 -2.592 -0.018 9.01 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -42.080 -42.080 0.000 30.40 -Si 6.390e-006 - H4SiO4 6.380e-006 6.382e-006 -5.195 -5.195 0.000 52.08 - H3SiO4- 9.803e-009 9.410e-009 -8.009 -8.026 -0.018 27.98 - H2SiO4-2 7.520e-015 6.401e-015 -14.124 -14.194 -0.070 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 - Chalcedony -1.64 -5.20 -3.55 SiO2 - Gibbsite -0.00 8.05 8.05 Al(OH)3 - H2(g) -22.05 -25.15 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -4.00 -3.13 0.88 KAlSi3O8 - K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 - K_H 4.41 4.41 0.00 KH - Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 - O2(g) -39.19 -42.08 -2.89 O2 - Quartz -1.21 -5.20 -3.98 SiO2 - SiO2(a) -2.48 -5.20 -2.71 SiO2 - - -Initial solution 4. - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Al 2.638e-008 2.638e-008 Equilibrium with Gibbsite - K 1.000e-008 1.000e-008 Equilibrium with K_H - Si 6.392e-006 6.392e-006 Equilibrium with Kaolinite - -----------------------------Description of solution---------------------------- - - pH = 7.000 - pe = 4.000 - Specific Conductance (uS/cm, 25 oC) = 0 - Density (g/cm3) = 0.99704 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 1.229e-007 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.131e-007 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.394e-008 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -9.74 - Iterations = 6 - Total H = 1.110125e+002 - Total O = 5.550624e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.013e-007 1.012e-007 -6.995 -6.995 -0.000 -4.14 - H+ 1.000e-007 1.000e-007 -7.000 -7.000 -0.000 0.00 - H2O 5.551e+001 1.000e+000 1.744 -0.000 0.000 18.07 -Al 2.638e-008 - Al(OH)4- 2.421e-008 2.420e-008 -7.616 -7.616 -0.000 (0) - Al(OH)3 1.284e-009 1.284e-009 -8.891 -8.891 0.000 (0) - Al(OH)2+ 8.719e-010 8.715e-010 -9.060 -9.060 -0.000 (0) - AlOH+2 1.114e-011 1.112e-011 -10.953 -10.954 -0.001 -27.81 - Al+3 1.124e-013 1.119e-013 -12.949 -12.951 -0.002 -44.55 -H(0) 1.416e-025 - H2 7.079e-026 7.079e-026 -25.150 -25.150 0.000 28.61 -K 1.000e-008 - K+ 1.000e-008 1.000e-008 -8.000 -8.000 -0.000 8.98 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -42.080 -42.080 0.000 30.40 -Si 6.392e-006 - H4SiO4 6.383e-006 6.383e-006 -5.195 -5.195 0.000 52.08 - H3SiO4- 9.415e-009 9.411e-009 -8.026 -8.026 -0.000 27.94 - H2SiO4-2 6.412e-015 6.402e-015 -14.193 -14.194 -0.001 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 - Chalcedony -1.64 -5.20 -3.55 SiO2 - Gibbsite -0.00 8.05 8.05 Al(OH)3 - H2(g) -22.05 -25.15 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -9.41 -8.54 0.88 KAlSi3O8 - K-mica -5.41 7.56 12.97 KAl3Si3O10(OH)2 - K_H -1.00 -1.00 0.00 KH - Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 - O2(g) -39.19 -42.08 -2.89 O2 - Quartz -1.21 -5.20 -3.98 SiO2 - SiO2(a) -2.48 -5.20 -2.71 SiO2 - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 12. -------------------------------------- - -------------------------------- -End of Run after 1.759 Seconds. -------------------------------- - diff --git a/examples_pc/ex6A-B.sel b/examples_pc/ex6A-B.sel deleted file mode 100644 index 6a7e5ff9..00000000 --- a/examples_pc/ex6A-B.sel +++ /dev/null @@ -1,22 +0,0 @@ - sim state soln dist_x time step pH pe la_K+ la_H+ la_H4SiO4 Gibbsite d_Gibbsite Kaolinite d_Kaolinite K-mica d_K-mica K-feldspar d_K-feldspar si_Gibbsite si_Kaolinite si_K-mica si_K-feldspar - 1 i_soln 1 -99 -99 -99 6.99738 4 -1.0000e+003 -6.9974e+000 -1.0000e+003 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 -999.9990 -999.9990 -999.9990 -999.9990 - 2 react 1 -99 0 1 7.00369 10.3683 -7.5756e+000 -7.0037e+000 -7.0990e+000 1.0000e+001 -2.6579e-008 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 -0.0000 -3.8080 -10.6919 -14.6949 - 3 react 1 -99 0 1 8.20884 9.16278 -5.6626e+000 -8.2088e+000 -5.1950e+000 1.7849e-006 1.7849e-006 1.0000e+001 -2.1784e-006 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000 0.0000 -1.8618 -5.8648 - 4 react 1 -99 0 1 9.10706 8.26458 -4.6991e+000 -9.1071e+000 -4.4650e+000 0.0000e+000 0.0000e+000 9.7604e-006 9.7604e-006 1.0000e+001 -2.0101e-005 0.0000e+000 0.0000e+000 -0.7300 -0.0000 -0.0000 -2.5429 - 5 react 1 -99 0 1 9.38811 7.98355 -3.9009e+000 -9.3881e+000 -3.5533e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 6.3616e-005 6.3616e-005 9.9998e+000 -1.9091e-004 -2.0015 -0.7195 0.0000 0.0000 - 6 react 1 -99 0 1 8.35063 9.02098 -5.5202e+000 -8.3506e+000 -5.1950e+000 1.0000e+001 -3.0245e-006 1.0000e+000 1.2397e-006 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000 -0.0000 -1.5776 -5.5806 - 7 react 1 -99 0 1 9.06827 -3.25856 -4.6603e+000 -9.0683e+000 -4.2503e+000 0.0000e+000 0.0000e+000 1.0000e+001 -3.2815e-005 1.0000e+000 1.0830e-005 0.0000e+000 0.0000e+000 -0.9448 -0.0000 -0.0000 -2.1135 - 8 react 1 -99 0 1 7.02917 -1.2503 -7.3981e+000 -7.0292e+000 -6.9215e+000 1.1996e-008 1.1996e-008 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000 -3.4530 -9.9565 -13.9595 - 8 react 1 -99 0 2 7.10321 10.7195 -7.0971e+000 -7.1032e+000 -6.6206e+000 4.7312e-008 4.7312e-008 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000 -2.8512 -8.6787 -12.6817 - 8 react 1 -99 0 3 7.2381 -1.23219 -6.7961e+000 -7.2381e+000 -6.3199e+000 1.1631e-007 1.1631e-007 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 -0.0000 -2.2497 -7.3406 -11.3436 - 8 react 1 -99 0 4 7.44792 -1.59012 -6.4952e+000 -7.4479e+000 -6.0195e+000 2.5047e-007 2.5047e-007 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 -0.0000 -1.6490 -5.9288 -9.9318 - 8 react 1 -99 0 5 7.71092 -2.00241 -6.1942e+000 -7.7109e+000 -5.7200e+000 5.1404e-007 5.1404e-007 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000 -1.0500 -4.4663 -8.4693 - 8 react 1 -99 0 6 7.89183 9.81356 -6.0005e+000 -7.8918e+000 -5.5278e+000 8.0972e-007 8.0972e-007 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000 -0.6657 -3.5152 -7.5182 - 8 react 1 -99 0 7 8.17443 9.60696 -5.6997e+000 -8.1744e+000 -5.2313e+000 1.6364e-006 1.6364e-006 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 -0.0000 -0.0727 -2.0422 -6.0452 - 8 react 1 -99 0 8 8.48037 -2.7668 -5.3990e+000 -8.4804e+000 -5.0859e+000 0.0000e+000 0.0000e+000 1.7143e-006 1.7143e-006 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 -0.1091 -0.0000 -1.3266 -5.1114 - 8 react 1 -99 0 9 8.77515 8.98492 -5.0983e+000 -8.7752e+000 -4.8164e+000 0.0000e+000 0.0000e+000 3.6971e-006 3.6971e-006 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 -0.3786 0.0000 -0.7312 -3.9771 - 8 react 1 -99 0 10 9.03134 -3.37462 -4.7979e+000 -9.0313e+000 -4.5510e+000 0.0000e+000 0.0000e+000 7.7032e-006 7.7032e-006 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 -0.6440 0.0000 -0.1746 -2.8896 - 8 react 1 -99 0 11 9.07064 8.46953 -4.6626e+000 -9.0706e+000 -4.2614e+000 0.0000e+000 0.0000e+000 6.2948e-007 6.2948e-007 1.0136e-005 1.0136e-005 0.0000e+000 0.0000e+000 -0.9336 -0.0000 0.0000 -2.1358 - 8 react 1 -99 0 12 9.22303 8.39577 -4.3726e+000 -9.2230e+000 -3.9885e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 2.1273e-005 2.1273e-005 0.0000e+000 0.0000e+000 -1.3540 -0.2950 0.0000 -1.2950 - 8 react 1 -99 0 13 9.30283 -3.51484 -4.1800e+000 -9.3028e+000 -3.8123e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 3.3294e-005 3.3294e-005 0.0000e+000 0.0000e+000 -1.6210 -0.4766 0.0000 -0.7610 - 8 react 1 -99 0 14 9.38811 8.43827 -3.9009e+000 -9.3881e+000 -3.5533e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 6.3616e-005 6.3616e-005 9.0932e-006 9.0932e-006 -2.0015 -0.7195 -0.0000 0.0000 diff --git a/examples_pc/ex6C.sel b/examples_pc/ex6C.sel deleted file mode 100644 index 628230f5..00000000 --- a/examples_pc/ex6C.sel +++ /dev/null @@ -1,17 +0,0 @@ - pH+log[K] log[H4SiO4] --6.0002e+000 -1.2524e+001 --1.8975e+000 -8.4212e+000 --8.5318e-001 -7.3798e+000 - 3.5642e-001 -6.3763e+000 - 2.1790e+000 -5.3817e+000 - 4.1326e+000 -4.6001e+000 - 5.2599e+000 -3.7183e+000 - 5.4872e+000 -3.5533e+000 - 8.0000e+000 -6.3924e+000 - 4.4080e+000 -5.1950e+000 - 4.4080e+000 -3.1935e+000 --1.0000e+000 -4.9484e-001 - 8.0000e+000 -4.3909e+000 - 4.4080e+000 -3.1935e+000 - 4.4080e+000 -5.1950e+000 --1.0000e+000 -5.1950e+000 diff --git a/examples_pc/ex7.out b/examples_pc/ex7.out deleted file mode 100644 index 5482c454..00000000 --- a/examples_pc/ex7.out +++ /dev/null @@ -1,3088 +0,0 @@ - Input file: ..\examples\ex7 - Output file: ex7.out -Database file: ..\database\phreeqc.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - PHASES - EXCHANGE_MASTER_SPECIES - EXCHANGE_SPECIES - SURFACE_MASTER_SPECIES - SURFACE_SPECIES - RATES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Example 7.--Organic decomposition with fixed-pressure and - fixed-volume gas phases - SOLUTION_MASTER_SPECIES - N(-3) NH4+ 0.0 N - SOLUTION_SPECIES - NH4+ = NH3 + H+ - log_k -9.252 - delta_h 12.48 kcal - analytical_expression 0.6322 -0.001225 -2835.76 - NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O - log_k 119.077 - delta_h -187.055 kcal - gamma 2.5000 0.0000 - PHASES - NH3(g) - NH3 = NH3 - log_k 1.770 - delta_h -8.170 kcal - SOLUTION 1 - EQUILIBRIUM_PHASES 1 - Calcite - CO2(g) -1.5 - SAVE solution 1 - SELECTED_OUTPUT - reset false - file ex7.sel - simulation true - state true - reaction true - si CO2(g) CH4(g) N2(g) NH3(g) - gases CO2(g) CH4(g) N2(g) NH3(g) - END ------ -TITLE ------ - - Example 7.--Organic decomposition with fixed-pressure and - fixed-volume gas phases - -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 1. - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Pure water - -----------------------------Description of solution---------------------------- - - pH = 7.000 - pe = 4.000 - Specific Conductance (uS/cm, 25 oC) = 0 - Density (g/cm3) = 0.99704 - Volume (L) = 1.00297 - Activity of water = 1.000 - Ionic strength = 1.007e-007 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.217e-009 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.217e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.60 - Iterations = 0 - Total H = 1.110124e+002 - Total O = 5.550622e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.013e-007 1.012e-007 -6.995 -6.995 -0.000 -4.14 - H+ 1.001e-007 1.000e-007 -7.000 -7.000 -0.000 0.00 - H2O 5.551e+001 1.000e+000 1.744 0.000 0.000 18.07 -H(0) 1.416e-025 - H2 7.079e-026 7.079e-026 -25.150 -25.150 0.000 28.61 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -42.080 -42.080 0.000 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - H2(g) -22.05 -25.15 -3.10 H2 - H2O(g) -1.50 0.00 1.50 H2O - O2(g) -39.19 -42.08 -2.89 O2 - - ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -CO2(g) -1.50 -2.96 -1.46 1.000e+001 9.996e+000 -3.604e-003 -Calcite 0.00 -8.48 -8.48 1.000e+001 9.997e+000 -2.519e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 6.124e-003 6.123e-003 - Ca 2.519e-003 2.519e-003 - -----------------------------Description of solution---------------------------- - - pH = 6.966 Charge balance - pe = -1.244 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 458 - Density (g/cm3) = 0.99739 - Volume (L) = 1.00333 - Activity of water = 1.000 - Ionic strength = 7.331e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 5.038e-003 - Total CO2 (mol/kg) = 6.124e-003 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 - Total H = 1.110124e+002 - Total O = 5.552098e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.172e-007 1.082e-007 -6.931 -6.966 -0.035 0.00 - OH- 1.025e-007 9.354e-008 -6.989 -7.029 -0.040 -4.05 - H2O 5.551e+001 9.999e-001 1.744 -0.000 0.000 18.07 -C(-4) 4.494e-025 - CH4 4.494e-025 4.501e-025 -24.347 -24.347 0.001 32.22 -C(4) 6.124e-003 - HCO3- 4.915e-003 4.504e-003 -2.308 -2.346 -0.038 24.66 - CO2 1.094e-003 1.096e-003 -2.961 -2.960 0.001 30.26 - CaHCO3+ 1.063e-004 9.750e-005 -3.974 -4.011 -0.037 9.71 - CaCO3 5.555e-006 5.565e-006 -5.255 -5.255 0.001 -14.60 - CO3-2 2.768e-006 1.952e-006 -5.558 -5.709 -0.152 -4.16 -Ca 2.519e-003 - Ca+2 2.407e-003 1.697e-003 -2.618 -2.770 -0.152 -17.97 - CaHCO3+ 1.063e-004 9.750e-005 -3.974 -4.011 -0.037 9.71 - CaCO3 5.555e-006 5.565e-006 -5.255 -5.255 0.001 -14.60 - CaOH+ 2.847e-009 2.602e-009 -8.546 -8.585 -0.039 (0) -H(0) 5.083e-015 - H2 2.541e-015 2.546e-015 -14.595 -14.594 0.001 28.61 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -63.192 -63.192 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Aragonite -0.14 -8.48 -8.34 CaCO3 - Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -21.50 -24.35 -2.84 CH4 - CO2(g) -1.50 -2.96 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - H2(g) -11.49 -14.59 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - O2(g) -60.30 -63.19 -2.89 O2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 2. ------------------------------------- - - USE solution 1 - GAS_PHASE 1 Fixed-pressure gas phase - fixed_pressure - pressure 1.1 - CO2(g) 0.0 - CH4(g) 0.0 - N2(g) 0.0 - H2O(g) 0.0 - REACTION 1 - CH2O(NH3)0.07 1.0 - 1. 2. 3. 4. 8. 16. 32 64. 125. 250. 500. 1000. mmol - USER_GRAPH 1 Example 7 - -headings Fixed_Pressure: CH4 CO2 N2 H2O - -chart_title "Gas Composition" - -axis_titles "Organic matter reacted, in millimoles" "Log(Partial pressure, in atmospheres)" "Volume, in liters" - -axis_scale x_axis 1 1e3 auto auto log - -axis_scale y_axis -5.0 1.0 1 1 - -connect_simulations false - -start - 10 IF GAS("CH4(g)") < 1e-10 THEN GOTO 100 - 20 mM_OM = RXN * 1e3 - 30 PLOT_XY -10, -10, line_width = 0, symbol_size = 0 - 40 PLOT_XY mM_OM, SI("CH4(g)"), color = Black, symbol = XCross - 50 PLOT_XY mM_OM, SI("CO2(g)"), color = Red, symbol = XCross - 60 PLOT_XY mM_OM, SI("N2(g)"), color = Teal, symbol = XCross - 70 PLOT_XY mM_OM, SI("H2O(g)"), color = Blue, symbol = XCross - 100 REM end of program - -end - USER_GRAPH 2 Example 7 - -headings Fixed_P:...Pressure Fixed_P:...Volume - -chart_title "Total Gas Pressure and Volume" - -axis_titles "Organic matter reacted, in millimoles" "Log(Pressure, in atmospheres)" "Volume, in liters" - -axis_scale x_axis 1 1e3 auto auto log - -axis_scale y_axis -5.0 1.0 1 1 - -axis_scale y2_axis 1e-3 1e5 auto auto log - -connect_simulations false - -start - 10 IF GAS("CH4(g)") < 1e-10 THEN GOTO 100 - 20 mM_OM = RXN * 1e3 - 30 moles = (GAS("CH4(g)") + GAS("CO2(g)") + GAS("N2(g)") + GAS("H2O(g)")) - 40 vol = moles * 0.08207 * TK / 1.1 - 50 PLOT_XY mM_OM, LOG10(1.1), color = Magenta, symbol = XCross - 60 PLOT_XY mM_OM, vol, color = Cyan, symbol = XCross, y_axis = 2 - 100 REM end of program - -end - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 1. -Using gas phase 1. Fixed-pressure gas phase -Using reaction 1. - -Reaction 1. - - 1.000e-003 moles of the following reaction have been added: - - Relative - Reactant moles - - CH2O(NH3)0.07 1.00000 - - Relative - Element moles - C 1.00000 - H 2.21000 - N 0.07000 - O 1.00000 - -----------------Fixed-pressure gas phase 1 dissolved completely---------------- - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 7.124e-003 7.123e-003 - Ca 2.519e-003 2.519e-003 - N 7.000e-005 7.000e-005 - -----------------------------Description of solution---------------------------- - - pH = 6.829 Charge balance - pe = -3.719 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 461 - Density (g/cm3) = 0.99739 - Volume (L) = 1.00341 - Activity of water = 1.000 - Ionic strength = 7.401e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 5.108e-003 - Total CO2 (mol/kg) = 6.624e-003 - Temperature (deg C) = 25.00 - Pressure (atm) = 1.10 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 12 - Total H = 1.110146e+002 - Total O = 5.552198e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.608e-007 1.484e-007 -6.794 -6.829 -0.035 0.00 - OH- 7.477e-008 6.820e-008 -7.126 -7.166 -0.040 -4.05 - H2O 5.551e+001 9.998e-001 1.744 -0.000 0.000 18.07 -C(-4) 5.001e-004 - CH4 5.001e-004 5.009e-004 -3.301 -3.300 0.001 32.22 -C(4) 6.624e-003 - HCO3- 4.988e-003 4.569e-003 -2.302 -2.340 -0.038 24.67 - CO2 1.522e-003 1.525e-003 -2.818 -2.817 0.001 30.26 - CaHCO3+ 1.077e-004 9.876e-005 -3.968 -4.005 -0.038 9.71 - CaCO3 4.103e-006 4.110e-006 -5.387 -5.386 0.001 -14.60 - CO3-2 2.051e-006 1.444e-006 -5.688 -5.840 -0.152 -4.15 -Ca 2.519e-003 - Ca+2 2.407e-003 1.694e-003 -2.618 -2.771 -0.153 -17.97 - CaHCO3+ 1.077e-004 9.876e-005 -3.968 -4.005 -0.038 9.71 - CaCO3 4.103e-006 4.110e-006 -5.387 -5.386 0.001 -14.60 - CaOH+ 2.074e-009 1.894e-009 -8.683 -8.723 -0.039 (0) -H(0) 8.547e-010 - H2 4.273e-010 4.281e-010 -9.369 -9.368 0.001 28.61 -N(-3) 6.986e-005 - NH4+ 6.962e-005 6.335e-005 -4.157 -4.198 -0.041 (0) - NH3 2.429e-007 2.433e-007 -6.615 -6.614 0.001 (0) -N(0) 1.388e-007 - N2 6.938e-008 6.950e-008 -7.159 -7.158 0.001 29.29 -N(3) 0.000e+000 - NO2- 0.000e+000 0.000e+000 -62.352 -62.393 -0.040 25.02 -N(5) 0.000e+000 - NO3- 0.000e+000 0.000e+000 -84.704 -84.745 -0.040 29.58 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -73.644 -73.643 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Aragonite -0.28 -8.61 -8.34 CaCO3 - Calcite -0.13 -8.61 -8.48 CaCO3 - CH4(g) -0.46 -3.30 -2.84 CH4 - CO2(g) -1.36 -2.82 -1.46 CO2 - H2(g) -6.27 -9.37 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.98 -7.16 -3.18 N2 - NH3(g) -8.38 -6.61 1.77 NH3 - O2(g) -70.75 -73.64 -2.89 O2 - - -Reaction step 2. - -Using solution 1. Solution after simulation 1. -Using gas phase 1. Fixed-pressure gas phase -Using reaction 1. - -Reaction 1. - - 2.000e-003 moles of the following reaction have been added: - - Relative - Reactant moles - - CH2O(NH3)0.07 1.00000 - - Relative - Element moles - C 1.00000 - H 2.21000 - N 0.07000 - O 1.00000 - -----------------Fixed-pressure gas phase 1 dissolved completely---------------- - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 8.124e-003 8.123e-003 - Ca 2.519e-003 2.519e-003 - N 1.400e-004 1.400e-004 - -----------------------------Description of solution---------------------------- - - pH = 6.727 Charge balance - pe = -3.642 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 463 - Density (g/cm3) = 0.99739 - Volume (L) = 1.00349 - Activity of water = 1.000 - Ionic strength = 7.470e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 5.178e-003 - Total CO2 (mol/kg) = 7.124e-003 - Temperature (deg C) = 25.00 - Pressure (atm) = 1.10 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 13 - Total H = 1.110169e+002 - Total O = 5.552298e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 2.034e-007 1.876e-007 -6.692 -6.727 -0.035 0.00 - OH- 5.916e-008 5.394e-008 -7.228 -7.268 -0.040 -4.05 - H2O 5.551e+001 9.998e-001 1.744 -0.000 0.000 18.07 -C(-4) 1.000e-003 - CH4 1.000e-003 1.002e-003 -3.000 -2.999 0.001 32.22 -C(4) 7.124e-003 - HCO3- 5.059e-003 4.632e-003 -2.296 -2.334 -0.038 24.67 - CO2 1.951e-003 1.954e-003 -2.710 -2.709 0.001 30.26 - CaHCO3+ 1.090e-004 9.996e-005 -3.962 -4.000 -0.038 9.71 - CaCO3 3.285e-006 3.290e-006 -5.484 -5.483 0.001 -14.60 - CO3-2 1.647e-006 1.158e-006 -5.783 -5.936 -0.153 -4.15 -Ca 2.519e-003 - Ca+2 2.407e-003 1.691e-003 -2.619 -2.772 -0.153 -17.97 - CaHCO3+ 1.090e-004 9.996e-005 -3.962 -4.000 -0.038 9.71 - CaCO3 3.285e-006 3.290e-006 -5.484 -5.483 0.001 -14.60 - CaOH+ 1.638e-009 1.496e-009 -8.786 -8.825 -0.039 (0) -H(0) 9.552e-010 - H2 4.776e-010 4.784e-010 -9.321 -9.320 0.001 28.61 -N(-3) 1.398e-004 - NH4+ 1.394e-004 1.268e-004 -3.856 -3.897 -0.041 (0) - NH3 3.844e-007 3.850e-007 -6.415 -6.414 0.001 (0) -N(0) 2.490e-007 - N2 1.245e-007 1.247e-007 -6.905 -6.904 0.001 29.29 -N(3) 0.000e+000 - NO2- 0.000e+000 0.000e+000 -62.400 -62.440 -0.041 25.02 -N(5) 0.000e+000 - NO3- 0.000e+000 0.000e+000 -84.800 -84.840 -0.041 29.58 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -73.741 -73.740 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Aragonite -0.37 -8.71 -8.34 CaCO3 - Calcite -0.23 -8.71 -8.48 CaCO3 - CH4(g) -0.16 -3.00 -2.84 CH4 - CO2(g) -1.25 -2.71 -1.46 CO2 - H2(g) -6.22 -9.32 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.73 -6.90 -3.18 N2 - NH3(g) -8.18 -6.41 1.77 NH3 - O2(g) -70.85 -73.74 -2.89 O2 - - -Reaction step 3. - -Using solution 1. Solution after simulation 1. -Using gas phase 1. Fixed-pressure gas phase -Using reaction 1. - -Reaction 1. - - 3.000e-003 moles of the following reaction have been added: - - Relative - Reactant moles - - CH2O(NH3)0.07 1.00000 - - Relative - Element moles - C 1.00000 - H 2.21000 - N 0.07000 - O 1.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 1.10 atmospheres (Peng-Robinson calculation) - Gas volume: 1.76e-003 liters - Molar volume: 2.22e+001 liters/mole - P * Vm / RT: 0.99727 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CH4(g) -0.00 9.991e-001 0.998 0.000e+000 7.201e-005 7.201e-005 -CO2(g) -1.16 6.906e-002 0.994 0.000e+000 4.977e-006 4.977e-006 -H2O(g) -1.50 3.157e-002 0.995 0.000e+000 2.275e-006 2.275e-006 -N2(g) -3.59 2.586e-004 1.000 0.000e+000 1.864e-008 1.864e-008 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 9.047e-003 9.046e-003 - Ca 2.519e-003 2.519e-003 - N 2.100e-004 2.100e-004 - -----------------------------Description of solution---------------------------- - - pH = 6.647 Charge balance - pe = -3.571 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 466 - Density (g/cm3) = 0.99740 - Volume (L) = 1.00356 - Activity of water = 1.000 - Ionic strength = 7.539e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 5.248e-003 - Total CO2 (mol/kg) = 7.619e-003 - Temperature (deg C) = 25.00 - Pressure (atm) = 1.10 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 - Total H = 1.110188e+002 - Total O = 5.552397e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 2.444e-007 2.254e-007 -6.612 -6.647 -0.035 0.00 - OH- 4.926e-008 4.490e-008 -7.307 -7.348 -0.040 -4.05 - H2O 5.551e+001 9.998e-001 1.744 -0.000 0.000 18.07 -C(-4) 1.428e-003 - CH4 1.428e-003 1.431e-003 -2.845 -2.844 0.001 32.22 -C(4) 7.619e-003 - HCO3- 5.129e-003 4.695e-003 -2.290 -2.328 -0.038 24.67 - CO2 2.375e-003 2.380e-003 -2.624 -2.624 0.001 30.26 - CaHCO3+ 1.103e-004 1.011e-004 -3.957 -3.995 -0.038 9.71 - CaCO3 2.766e-006 2.771e-006 -5.558 -5.557 0.001 -14.60 - CO3-2 1.391e-006 9.770e-007 -5.857 -6.010 -0.153 -4.15 -Ca 2.519e-003 - Ca+2 2.406e-003 1.688e-003 -2.619 -2.773 -0.154 -17.96 - CaHCO3+ 1.103e-004 1.011e-004 -3.957 -3.995 -0.038 9.71 - CaCO3 2.766e-006 2.771e-006 -5.558 -5.557 0.001 -14.60 - CaOH+ 1.362e-009 1.243e-009 -8.866 -8.906 -0.040 (0) -H(0) 9.940e-010 - H2 4.970e-010 4.979e-010 -9.304 -9.303 0.001 28.61 -N(-3) 2.096e-004 - NH4+ 2.091e-004 1.902e-004 -3.680 -3.721 -0.041 (0) - NH3 4.800e-007 4.808e-007 -6.319 -6.318 0.001 (0) -N(0) 3.444e-007 - N2 1.722e-007 1.725e-007 -6.764 -6.763 0.001 29.29 -N(3) 0.000e+000 - NO2- 0.000e+000 0.000e+000 -62.435 -62.475 -0.041 25.02 -N(5) 0.000e+000 - NO3- 0.000e+000 0.000e+000 -84.852 -84.893 -0.041 29.58 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -73.775 -73.774 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Aragonite -0.45 -8.78 -8.34 CaCO3 - Calcite -0.30 -8.78 -8.48 CaCO3 - CH4(g) -0.00 -2.84 -2.84 CH4 Pressure 1.0 atm, phi 0.998. - CO2(g) -1.16 -2.62 -1.46 CO2 Pressure 0.1 atm, phi 0.994. - H2(g) -6.20 -9.30 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.995. - N2(g) -3.59 -6.76 -3.18 N2 Pressure 0.0 atm, phi 1.000. - NH3(g) -8.09 -6.32 1.77 NH3 - O2(g) -70.88 -73.77 -2.89 O2 - - -Reaction step 4. - -Using solution 1. Solution after simulation 1. -Using gas phase 1. Fixed-pressure gas phase -Using reaction 1. - -Reaction 1. - - 4.000e-003 moles of the following reaction have been added: - - Relative - Reactant moles - - CH2O(NH3)0.07 1.00000 - - Relative - Element moles - C 1.00000 - H 2.21000 - N 0.07000 - O 1.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 1.10 atmospheres (Peng-Robinson calculation) - Gas volume: 1.45e-002 liters - Molar volume: 2.22e+001 liters/mole - P * Vm / RT: 0.99723 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CH4(g) -0.01 9.877e-001 0.998 0.000e+000 5.885e-004 5.885e-004 -CO2(g) -1.10 8.032e-002 0.994 0.000e+000 4.786e-005 4.786e-005 -H2O(g) -1.50 3.157e-002 0.995 0.000e+000 1.881e-005 1.881e-005 -N2(g) -3.41 3.926e-004 1.000 0.000e+000 2.340e-007 2.340e-007 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 9.487e-003 9.487e-003 - Ca 2.519e-003 2.519e-003 - N 2.795e-004 2.795e-004 - -----------------------------Description of solution---------------------------- - - pH = 6.587 Charge balance - pe = -3.502 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 469 - Density (g/cm3) = 0.99741 - Volume (L) = 1.00359 - Activity of water = 1.000 - Ionic strength = 7.606e-003 - Mass of water (kg) = 9.999e-001 - Total alkalinity (eq/kg) = 5.317e-003 - Total CO2 (mol/kg) = 8.076e-003 - Temperature (deg C) = 25.00 - Pressure (atm) = 1.10 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 - Total H = 1.110189e+002 - Total O = 5.552487e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 2.807e-007 2.587e-007 -6.552 -6.587 -0.035 0.00 - OH- 4.293e-008 3.912e-008 -7.367 -7.408 -0.040 -4.05 - H2O 5.551e+001 9.998e-001 1.744 -0.000 0.000 18.07 -C(-4) 1.412e-003 - CH4 1.412e-003 1.414e-003 -2.850 -2.849 0.001 32.22 -C(4) 8.076e-003 - HCO3- 5.198e-003 4.757e-003 -2.284 -2.323 -0.039 24.67 - CO2 2.762e-003 2.767e-003 -2.559 -2.558 0.001 30.26 - CaHCO3+ 1.116e-004 1.023e-004 -3.952 -3.990 -0.038 9.72 - CaCO3 2.437e-006 2.441e-006 -5.613 -5.612 0.001 -14.60 - CO3-2 1.229e-006 8.623e-007 -5.910 -6.064 -0.154 -4.15 -Ca 2.519e-003 - Ca+2 2.405e-003 1.685e-003 -2.619 -2.773 -0.154 -17.96 - CaHCO3+ 1.116e-004 1.023e-004 -3.952 -3.990 -0.038 9.72 - CaCO3 2.437e-006 2.441e-006 -5.613 -5.612 0.001 -14.60 - CaOH+ 1.184e-009 1.081e-009 -8.926 -8.966 -0.040 (0) -H(0) 9.544e-010 - H2 4.772e-010 4.781e-010 -9.321 -9.321 0.001 28.61 -N(-3) 2.790e-004 - NH4+ 2.785e-004 2.531e-004 -3.555 -3.597 -0.042 (0) - NH3 5.565e-007 5.574e-007 -6.255 -6.254 0.001 (0) -N(0) 5.230e-007 - N2 2.615e-007 2.620e-007 -6.583 -6.582 0.001 29.29 -N(3) 0.000e+000 - NO2- 0.000e+000 0.000e+000 -62.377 -62.418 -0.041 25.02 -N(5) 0.000e+000 - NO3- 0.000e+000 0.000e+000 -84.777 -84.818 -0.041 29.58 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -73.740 -73.739 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Aragonite -0.50 -8.84 -8.34 CaCO3 - Calcite -0.36 -8.84 -8.48 CaCO3 - CH4(g) -0.01 -2.85 -2.84 CH4 Pressure 1.0 atm, phi 0.998. - CO2(g) -1.10 -2.56 -1.46 CO2 Pressure 0.1 atm, phi 0.994. - H2(g) -6.22 -9.32 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.995. - N2(g) -3.41 -6.58 -3.18 N2 Pressure 0.0 atm, phi 1.000. - NH3(g) -8.02 -6.25 1.77 NH3 - O2(g) -70.85 -73.74 -2.89 O2 - - -Reaction step 5. - -Using solution 1. Solution after simulation 1. -Using gas phase 1. Fixed-pressure gas phase -Using reaction 1. - -Reaction 1. - - 8.000e-003 moles of the following reaction have been added: - - Relative - Reactant moles - - CH2O(NH3)0.07 1.00000 - - Relative - Element moles - C 1.00000 - H 2.21000 - N 0.07000 - O 1.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 1.10 atmospheres (Peng-Robinson calculation) - Gas volume: 6.84e-002 liters - Molar volume: 2.22e+001 liters/mole - P * Vm / RT: 0.99711 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CH4(g) -0.02 9.455e-001 0.998 0.000e+000 2.651e-003 2.651e-003 -CO2(g) -0.91 1.219e-001 0.994 0.000e+000 3.418e-004 3.418e-004 -H2O(g) -1.50 3.158e-002 0.995 0.000e+000 8.855e-005 8.855e-005 -N2(g) -2.98 1.042e-003 1.000 0.000e+000 2.922e-006 2.922e-006 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.113e-002 1.113e-002 - Ca 2.519e-003 2.519e-003 - N 5.542e-004 5.542e-004 - -----------------------------Description of solution---------------------------- - - pH = 6.428 Charge balance - pe = -3.317 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 479 - Density (g/cm3) = 0.99744 - Volume (L) = 1.00371 - Activity of water = 1.000 - Ionic strength = 7.872e-003 - Mass of water (kg) = 9.999e-001 - Total alkalinity (eq/kg) = 5.591e-003 - Total CO2 (mol/kg) = 9.779e-003 - Temperature (deg C) = 25.00 - Pressure (atm) = 1.10 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 - Total H = 1.110193e+002 - Total O = 5.552821e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 4.058e-007 3.737e-007 -6.392 -6.428 -0.036 0.00 - OH- 2.977e-008 2.708e-008 -7.526 -7.567 -0.041 -4.05 - H2O 5.551e+001 9.998e-001 1.744 -0.000 0.000 18.07 -C(-4) 1.351e-003 - CH4 1.351e-003 1.354e-003 -2.869 -2.868 0.001 32.22 -C(4) 9.779e-003 - HCO3- 5.469e-003 4.998e-003 -2.262 -2.301 -0.039 24.67 - CO2 4.192e-003 4.199e-003 -2.378 -2.377 0.001 30.26 - CaHCO3+ 1.166e-004 1.067e-004 -3.933 -3.972 -0.039 9.72 - CaCO3 1.760e-006 1.764e-006 -5.754 -5.754 0.001 -14.60 - CO3-2 8.993e-007 6.273e-007 -6.046 -6.203 -0.156 -4.14 -Ca 2.519e-003 - Ca+2 2.401e-003 1.674e-003 -2.620 -2.776 -0.157 -17.96 - CaHCO3+ 1.166e-004 1.067e-004 -3.933 -3.972 -0.039 9.72 - CaCO3 1.760e-006 1.764e-006 -5.754 -5.754 0.001 -14.60 - CaOH+ 8.155e-010 7.431e-010 -9.089 -9.129 -0.040 (0) -H(0) 8.505e-010 - H2 4.253e-010 4.260e-010 -9.371 -9.371 0.001 28.61 -N(-3) 5.528e-004 - NH4+ 5.520e-004 5.009e-004 -3.258 -3.300 -0.042 (0) - NH3 7.626e-007 7.640e-007 -6.118 -6.117 0.001 (0) -N(0) 1.388e-006 - N2 6.940e-007 6.952e-007 -6.159 -6.158 0.001 29.29 -N(3) 0.000e+000 - NO2- 0.000e+000 0.000e+000 -62.249 -62.291 -0.042 25.02 -N(5) 0.000e+000 - NO3- 0.000e+000 0.000e+000 -84.599 -84.640 -0.042 29.58 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -73.640 -73.639 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Aragonite -0.64 -8.98 -8.34 CaCO3 - Calcite -0.50 -8.98 -8.48 CaCO3 - CH4(g) -0.03 -2.87 -2.84 CH4 Pressure 0.9 atm, phi 0.998. - CO2(g) -0.92 -2.38 -1.46 CO2 Pressure 0.1 atm, phi 0.994. - H2(g) -6.27 -9.37 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.995. - N2(g) -2.98 -6.16 -3.18 N2 Pressure 0.0 atm, phi 1.000. - NH3(g) -7.89 -6.12 1.77 NH3 - O2(g) -70.75 -73.64 -2.89 O2 - - -Reaction step 6. - -Using solution 1. Solution after simulation 1. -Using gas phase 1. Fixed-pressure gas phase -Using reaction 1. - -Reaction 1. - - 1.600e-002 moles of the following reaction have been added: - - Relative - Reactant moles - - CH2O(NH3)0.07 1.00000 - - Relative - Element moles - C 1.00000 - H 2.21000 - N 0.07000 - O 1.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 1.10 atmospheres (Peng-Robinson calculation) - Gas volume: 1.88e-001 liters - Molar volume: 2.22e+001 liters/mole - P * Vm / RT: 0.99690 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CH4(g) -0.06 8.757e-001 0.998 0.000e+000 6.766e-003 6.766e-003 -CO2(g) -0.72 1.899e-001 0.994 0.000e+000 1.468e-003 1.468e-003 -H2O(g) -1.50 3.159e-002 0.994 0.000e+000 2.441e-004 2.441e-004 -N2(g) -2.55 2.827e-003 1.000 0.000e+000 2.185e-005 2.185e-005 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.389e-002 1.389e-002 - Ca 2.519e-003 2.519e-003 - N 1.076e-003 1.076e-003 - -----------------------------Description of solution---------------------------- - - pH = 6.273 Charge balance - pe = -3.134 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 499 - Density (g/cm3) = 0.99750 - Volume (L) = 1.00392 - Activity of water = 1.000 - Ionic strength = 8.374e-003 - Mass of water (kg) = 9.999e-001 - Total alkalinity (eq/kg) = 6.111e-003 - Total CO2 (mol/kg) = 1.264e-002 - Temperature (deg C) = 25.00 - Pressure (atm) = 1.10 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 18 - Total H = 1.110202e+002 - Total O = 5.553380e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 5.808e-007 5.337e-007 -6.236 -6.273 -0.037 0.00 - OH- 2.090e-008 1.896e-008 -7.680 -7.722 -0.042 -4.04 - H2O 5.551e+001 9.997e-001 1.744 -0.000 0.000 18.07 -C(-4) 1.252e-003 - CH4 1.252e-003 1.254e-003 -2.903 -2.902 0.001 32.22 -C(4) 1.264e-002 - CO2 6.531e-003 6.543e-003 -2.185 -2.184 0.001 30.26 - HCO3- 5.980e-003 5.452e-003 -2.223 -2.263 -0.040 24.67 - CaHCO3+ 1.258e-004 1.149e-004 -3.900 -3.940 -0.040 9.72 - CaCO3 1.327e-006 1.329e-006 -5.877 -5.876 0.001 -14.60 - CO3-2 6.936e-007 4.792e-007 -6.159 -6.319 -0.161 -4.13 -Ca 2.519e-003 - Ca+2 2.392e-003 1.651e-003 -2.621 -2.782 -0.161 -17.95 - CaHCO3+ 1.258e-004 1.149e-004 -3.900 -3.940 -0.040 9.72 - CaCO3 1.327e-006 1.329e-006 -5.877 -5.876 0.001 -14.60 - CaOH+ 5.648e-010 5.134e-010 -9.248 -9.290 -0.041 (0) -H(0) 7.467e-010 - H2 3.734e-010 3.741e-010 -9.428 -9.427 0.001 28.61 -N(-3) 1.073e-003 - NH4+ 1.072e-003 9.696e-004 -2.970 -3.013 -0.043 (0) - NH3 1.033e-006 1.035e-006 -5.986 -5.985 0.001 (0) -N(0) 3.766e-006 - N2 1.883e-006 1.887e-006 -5.725 -5.724 0.001 29.29 -N(3) 0.000e+000 - NO2- 0.000e+000 0.000e+000 -62.101 -62.144 -0.043 25.02 -N(5) 0.000e+000 - NO3- 0.000e+000 0.000e+000 -84.394 -84.437 -0.043 29.59 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -73.527 -73.526 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Aragonite -0.77 -9.10 -8.34 CaCO3 - Calcite -0.62 -9.10 -8.48 CaCO3 - CH4(g) -0.06 -2.90 -2.84 CH4 Pressure 0.9 atm, phi 0.998. - CO2(g) -0.72 -2.18 -1.46 CO2 Pressure 0.2 atm, phi 0.994. - H2(g) -6.33 -9.43 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.994. - N2(g) -2.55 -5.72 -3.18 N2 Pressure 0.0 atm, phi 1.000. - NH3(g) -7.75 -5.98 1.77 NH3 - O2(g) -70.63 -73.53 -2.89 O2 - - -Reaction step 7. - -Using solution 1. Solution after simulation 1. -Using gas phase 1. Fixed-pressure gas phase -Using reaction 1. - -Reaction 1. - - 3.200e-002 moles of the following reaction have been added: - - Relative - Reactant moles - - CH2O(NH3)0.07 1.00000 - - Relative - Element moles - C 1.00000 - H 2.21000 - N 0.07000 - O 1.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 1.10 atmospheres (Peng-Robinson calculation) - Gas volume: 4.69e-001 liters - Molar volume: 2.22e+001 liters/mole - P * Vm / RT: 0.99663 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CH4(g) -0.11 7.800e-001 0.998 0.000e+000 1.500e-002 1.500e-002 -CO2(g) -0.55 2.806e-001 0.994 0.000e+000 5.397e-003 5.397e-003 -H2O(g) -1.50 3.161e-002 0.994 0.000e+000 6.079e-004 6.079e-004 -N2(g) -2.11 7.836e-003 1.000 0.000e+000 1.507e-004 1.507e-004 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.772e-002 1.772e-002 - Ca 2.519e-003 2.519e-003 - N 1.939e-003 1.939e-003 - -----------------------------Description of solution---------------------------- - - pH = 6.159 Charge balance - pe = -2.993 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 531 - Density (g/cm3) = 0.99760 - Volume (L) = 1.00420 - Activity of water = 1.000 - Ionic strength = 9.201e-003 - Mass of water (kg) = 9.999e-001 - Total alkalinity (eq/kg) = 6.966e-003 - Total CO2 (mol/kg) = 1.661e-002 - Temperature (deg C) = 25.00 - Pressure (atm) = 1.10 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 20 - Total H = 1.110219e+002 - Total O = 5.554158e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 7.574e-007 6.938e-007 -6.121 -6.159 -0.038 0.00 - OH- 1.614e-008 1.459e-008 -7.792 -7.836 -0.044 -4.04 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.07 -C(-4) 1.115e-003 - CH4 1.115e-003 1.117e-003 -2.953 -2.952 0.001 32.22 -C(4) 1.661e-002 - CO2 9.646e-003 9.667e-003 -2.016 -2.015 0.001 30.26 - HCO3- 6.822e-003 6.196e-003 -2.166 -2.208 -0.042 24.68 - CaHCO3+ 1.405e-004 1.278e-004 -3.852 -3.894 -0.041 9.72 - CaCO3 1.135e-006 1.137e-006 -5.945 -5.944 0.001 -14.60 - CO3-2 6.156e-007 4.189e-007 -6.211 -6.378 -0.167 -4.12 -Ca 2.519e-003 - Ca+2 2.377e-003 1.617e-003 -2.624 -2.791 -0.168 -17.94 - CaHCO3+ 1.405e-004 1.278e-004 -3.852 -3.894 -0.041 9.72 - CaCO3 1.135e-006 1.137e-006 -5.945 -5.944 0.001 -14.60 - CaOH+ 4.270e-010 3.866e-010 -9.370 -9.413 -0.043 (0) -H(0) 6.578e-010 - H2 3.289e-010 3.296e-010 -9.483 -9.482 0.001 28.61 -N(-3) 1.928e-003 - NH4+ 1.927e-003 1.736e-003 -2.715 -2.760 -0.045 (0) - NH3 1.423e-006 1.426e-006 -5.847 -5.846 0.001 (0) -N(0) 1.044e-005 - N2 5.218e-006 5.229e-006 -5.282 -5.282 0.001 29.29 -N(3) 0.000e+000 - NO2- 0.000e+000 0.000e+000 -61.910 -61.954 -0.045 25.03 -N(5) 0.000e+000 - NO3- 0.000e+000 0.000e+000 -84.148 -84.193 -0.045 29.59 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -73.417 -73.416 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Aragonite -0.83 -9.17 -8.34 CaCO3 - Calcite -0.69 -9.17 -8.48 CaCO3 - CH4(g) -0.11 -2.95 -2.84 CH4 Pressure 0.8 atm, phi 0.998. - CO2(g) -0.55 -2.01 -1.46 CO2 Pressure 0.3 atm, phi 0.994. - H2(g) -6.38 -9.48 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.994. - N2(g) -2.11 -5.28 -3.18 N2 Pressure 0.0 atm, phi 1.000. - NH3(g) -7.62 -5.85 1.77 NH3 - O2(g) -70.52 -73.42 -2.89 O2 - - -Reaction step 8. - -Using solution 1. Solution after simulation 1. -Using gas phase 1. Fixed-pressure gas phase -Using reaction 1. - -Reaction 1. - - 6.400e-002 moles of the following reaction have been added: - - Relative - Reactant moles - - CH2O(NH3)0.07 1.00000 - - Relative - Element moles - C 1.00000 - H 2.21000 - N 0.07000 - O 1.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 1.10 atmospheres (Peng-Robinson calculation) - Gas volume: 1.13e+000 liters - Molar volume: 2.22e+001 liters/mole - P * Vm / RT: 0.99637 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CH4(g) -0.17 6.838e-001 0.998 0.000e+000 3.163e-002 3.163e-002 -CO2(g) -0.43 3.674e-001 0.994 0.000e+000 1.699e-002 1.699e-002 -H2O(g) -1.50 3.162e-002 0.993 0.000e+000 1.463e-003 1.463e-003 -N2(g) -1.76 1.724e-002 1.000 0.000e+000 7.973e-004 7.973e-004 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 2.150e-002 2.150e-002 - Ca 2.519e-003 2.519e-003 - N 2.886e-003 2.885e-003 - -----------------------------Description of solution---------------------------- - - pH = 6.095 Charge balance - pe = -2.907 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 566 - Density (g/cm3) = 0.99769 - Volume (L) = 1.00448 - Activity of water = 1.000 - Ionic strength = 1.010e-002 - Mass of water (kg) = 9.999e-001 - Total alkalinity (eq/kg) = 7.901e-003 - Total CO2 (mol/kg) = 2.052e-002 - Temperature (deg C) = 25.00 - Pressure (atm) = 1.10 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 24 - Total H = 1.110244e+002 - Total O = 5.554953e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 8.800e-007 8.035e-007 -6.055 -6.095 -0.040 0.00 - OH- 1.400e-008 1.259e-008 -7.854 -7.900 -0.046 -4.03 - H2O 5.551e+001 9.995e-001 1.744 -0.000 0.000 18.07 -C(-4) 9.770e-004 - CH4 9.770e-004 9.792e-004 -3.010 -3.009 0.001 32.22 -C(4) 2.052e-002 - CO2 1.263e-002 1.266e-002 -1.899 -1.898 0.001 30.26 - HCO3- 7.741e-003 7.003e-003 -2.111 -2.155 -0.044 24.69 - CaHCO3+ 1.559e-004 1.413e-004 -3.807 -3.850 -0.043 9.72 - CaCO3 1.083e-006 1.086e-006 -5.965 -5.964 0.001 -14.60 - CO3-2 6.103e-007 4.088e-007 -6.214 -6.389 -0.174 -4.10 -Ca 2.519e-003 - Ca+2 2.362e-003 1.581e-003 -2.627 -2.801 -0.174 -17.93 - CaHCO3+ 1.559e-004 1.413e-004 -3.807 -3.850 -0.043 9.72 - CaCO3 1.083e-006 1.086e-006 -5.965 -5.964 0.001 -14.60 - CaOH+ 3.621e-010 3.264e-010 -9.441 -9.486 -0.045 (0) -H(0) 5.949e-010 - H2 2.975e-010 2.982e-010 -9.527 -9.526 0.001 28.61 -N(-3) 2.863e-003 - NH4+ 2.861e-003 2.565e-003 -2.543 -2.591 -0.047 (0) - NH3 1.815e-006 1.819e-006 -5.741 -5.740 0.001 (0) -N(0) 2.295e-005 - N2 1.148e-005 1.150e-005 -4.940 -4.939 0.001 29.29 -N(3) 0.000e+000 - NO2- 0.000e+000 0.000e+000 -61.735 -61.782 -0.047 25.03 -N(5) 0.000e+000 - NO3- 0.000e+000 0.000e+000 -83.930 -83.976 -0.047 29.60 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -73.330 -73.329 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Aragonite -0.85 -9.19 -8.34 CaCO3 - Calcite -0.71 -9.19 -8.48 CaCO3 - CH4(g) -0.17 -3.01 -2.84 CH4 Pressure 0.7 atm, phi 0.998. - CO2(g) -0.44 -1.90 -1.46 CO2 Pressure 0.4 atm, phi 0.994. - H2(g) -6.42 -9.53 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.993. - N2(g) -1.76 -4.94 -3.18 N2 Pressure 0.0 atm, phi 1.000. - NH3(g) -7.51 -5.74 1.77 NH3 - O2(g) -70.44 -73.33 -2.89 O2 - - -Reaction step 9. - -Using solution 1. Solution after simulation 1. -Using gas phase 1. Fixed-pressure gas phase -Using reaction 1. - -Reaction 1. - - 1.250e-001 moles of the following reaction have been added: - - Relative - Reactant moles - - CH2O(NH3)0.07 1.00000 - - Relative - Element moles - C 1.00000 - H 2.21000 - N 0.07000 - O 1.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 1.10 atmospheres (Peng-Robinson calculation) - Gas volume: 2.51e+000 liters - Molar volume: 2.22e+001 liters/mole - P * Vm / RT: 0.99620 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CH4(g) -0.21 6.187e-001 0.998 0.000e+000 6.361e-002 6.361e-002 -CO2(g) -0.37 4.240e-001 0.994 0.000e+000 4.359e-002 4.359e-002 -H2O(g) -1.50 3.163e-002 0.993 0.000e+000 3.251e-003 3.251e-003 -N2(g) -1.59 2.565e-002 1.001 0.000e+000 2.636e-003 2.636e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 2.393e-002 2.393e-002 - Ca 2.519e-003 2.519e-003 - N 3.477e-003 3.477e-003 - -----------------------------Description of solution---------------------------- - - pH = 6.063 Charge balance - pe = -2.862 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 588 - Density (g/cm3) = 0.99775 - Volume (L) = 1.00468 - Activity of water = 0.999 - Ionic strength = 1.067e-002 - Mass of water (kg) = 9.999e-001 - Total alkalinity (eq/kg) = 8.481e-003 - Total CO2 (mol/kg) = 2.305e-002 - Temperature (deg C) = 25.00 - Pressure (atm) = 1.10 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 23 - Total H = 1.110278e+002 - Total O = 5.555556e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 9.498e-007 8.655e-007 -6.022 -6.063 -0.040 0.00 - OH- 1.303e-008 1.169e-008 -7.885 -7.932 -0.047 -4.03 - H2O 5.551e+001 9.995e-001 1.744 -0.000 0.000 18.07 -C(-4) 8.840e-004 - CH4 8.840e-004 8.861e-004 -3.054 -3.053 0.001 32.22 -C(4) 2.305e-002 - CO2 1.457e-002 1.461e-002 -1.837 -1.835 0.001 30.26 - HCO3- 8.312e-003 7.502e-003 -2.080 -2.125 -0.045 24.69 - CaHCO3+ 1.652e-004 1.493e-004 -3.782 -3.826 -0.044 9.73 - CaCO3 1.063e-006 1.066e-006 -5.973 -5.972 0.001 -14.60 - CO3-2 6.126e-007 4.065e-007 -6.213 -6.391 -0.178 -4.08 -Ca 2.519e-003 - Ca+2 2.353e-003 1.560e-003 -2.628 -2.807 -0.178 -17.92 - CaHCO3+ 1.652e-004 1.493e-004 -3.782 -3.826 -0.044 9.73 - CaCO3 1.063e-006 1.066e-006 -5.973 -5.972 0.001 -14.60 - CaOH+ 3.325e-010 2.990e-010 -9.478 -9.524 -0.046 (0) -H(0) 5.598e-010 - H2 2.799e-010 2.806e-010 -9.553 -9.552 0.001 28.61 -N(-3) 3.443e-003 - NH4+ 3.441e-003 3.077e-003 -2.463 -2.512 -0.049 (0) - NH3 2.021e-006 2.026e-006 -5.694 -5.693 0.001 (0) -N(0) 3.415e-005 - N2 1.708e-005 1.712e-005 -4.768 -4.767 0.001 29.29 -N(3) 0.000e+000 - NO2- 0.000e+000 0.000e+000 -61.640 -61.688 -0.048 25.03 -N(5) 0.000e+000 - NO3- 0.000e+000 0.000e+000 -83.809 -83.856 -0.048 29.60 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -73.278 -73.277 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Aragonite -0.86 -9.20 -8.34 CaCO3 - Calcite -0.72 -9.20 -8.48 CaCO3 - CH4(g) -0.21 -3.05 -2.84 CH4 Pressure 0.6 atm, phi 0.998. - CO2(g) -0.38 -1.84 -1.46 CO2 Pressure 0.4 atm, phi 0.994. - H2(g) -6.45 -9.55 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.993. - N2(g) -1.59 -4.77 -3.18 N2 Pressure 0.0 atm, phi 1.001. - NH3(g) -7.46 -5.69 1.77 NH3 - O2(g) -70.38 -73.28 -2.89 O2 - - -Reaction step 10. - -Using solution 1. Solution after simulation 1. -Using gas phase 1. Fixed-pressure gas phase -Using reaction 1. - -Reaction 1. - - 2.500e-001 moles of the following reaction have been added: - - Relative - Reactant moles - - CH2O(NH3)0.07 1.00000 - - Relative - Element moles - C 1.00000 - H 2.21000 - N 0.07000 - O 1.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 1.10 atmospheres (Peng-Robinson calculation) - Gas volume: 5.42e+000 liters - Molar volume: 2.22e+001 liters/mole - P * Vm / RT: 0.99611 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CH4(g) -0.24 5.813e-001 0.998 0.000e+000 1.293e-001 1.293e-001 -CO2(g) -0.34 4.563e-001 0.994 0.000e+000 1.015e-001 1.015e-001 -H2O(g) -1.50 3.163e-002 0.993 0.000e+000 7.038e-003 7.038e-003 -N2(g) -1.51 3.083e-002 1.001 0.000e+000 6.860e-003 6.860e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 2.528e-002 2.528e-002 - Ca 2.519e-003 2.519e-003 - N 3.780e-003 3.780e-003 - -----------------------------Description of solution---------------------------- - - pH = 6.045 Charge balance - pe = -2.837 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 599 - Density (g/cm3) = 0.99778 - Volume (L) = 1.00482 - Activity of water = 0.999 - Ionic strength = 1.095e-002 - Mass of water (kg) = 9.999e-001 - Total alkalinity (eq/kg) = 8.777e-003 - Total CO2 (mol/kg) = 2.445e-002 - Temperature (deg C) = 25.00 - Pressure (atm) = 1.10 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 21 - Total H = 1.110335e+002 - Total O = 5.556092e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 9.895e-007 9.009e-007 -6.005 -6.045 -0.041 0.00 - OH- 1.253e-008 1.123e-008 -7.902 -7.950 -0.048 -4.03 - H2O 5.551e+001 9.995e-001 1.744 -0.000 0.000 18.07 -C(-4) 8.304e-004 - CH4 8.304e-004 8.325e-004 -3.081 -3.080 0.001 32.22 -C(4) 2.445e-002 - CO2 1.568e-002 1.572e-002 -1.805 -1.804 0.001 30.26 - HCO3- 8.603e-003 7.756e-003 -2.065 -2.110 -0.045 24.70 - CaHCO3+ 1.698e-004 1.534e-004 -3.770 -3.814 -0.044 9.73 - CaCO3 1.049e-006 1.051e-006 -5.979 -5.978 0.001 -14.60 - CO3-2 6.113e-007 4.038e-007 -6.214 -6.394 -0.180 -4.08 -Ca 2.519e-003 - Ca+2 2.348e-003 1.550e-003 -2.629 -2.810 -0.180 -17.91 - CaHCO3+ 1.698e-004 1.534e-004 -3.770 -3.814 -0.044 9.73 - CaCO3 1.049e-006 1.051e-006 -5.979 -5.978 0.001 -14.60 - CaOH+ 3.178e-010 2.854e-010 -9.498 -9.545 -0.047 (0) -H(0) 5.410e-010 - H2 2.705e-010 2.712e-010 -9.568 -9.567 0.001 28.61 -N(-3) 3.739e-003 - NH4+ 3.737e-003 3.337e-003 -2.427 -2.477 -0.049 (0) - NH3 2.106e-006 2.111e-006 -5.677 -5.675 0.001 (0) -N(0) 4.106e-005 - N2 2.053e-005 2.058e-005 -4.688 -4.687 0.001 29.29 -N(3) 0.000e+000 - NO2- 0.000e+000 0.000e+000 -61.595 -61.643 -0.048 25.04 -N(5) 0.000e+000 - NO3- 0.000e+000 0.000e+000 -83.749 -83.797 -0.048 29.60 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -73.248 -73.247 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Aragonite -0.87 -9.20 -8.34 CaCO3 - Calcite -0.72 -9.20 -8.48 CaCO3 - CH4(g) -0.24 -3.08 -2.84 CH4 Pressure 0.6 atm, phi 0.998. - CO2(g) -0.34 -1.80 -1.46 CO2 Pressure 0.5 atm, phi 0.994. - H2(g) -6.47 -9.57 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.993. - N2(g) -1.51 -4.69 -3.18 N2 Pressure 0.0 atm, phi 1.001. - NH3(g) -7.45 -5.68 1.77 NH3 - O2(g) -70.35 -73.25 -2.89 O2 - - -Reaction step 11. - -Using solution 1. Solution after simulation 1. -Using gas phase 1. Fixed-pressure gas phase -Using reaction 1. - -Reaction 1. - - 5.000e-001 moles of the following reaction have been added: - - Relative - Reactant moles - - CH2O(NH3)0.07 1.00000 - - Relative - Element moles - C 1.00000 - H 2.21000 - N 0.07000 - O 1.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 1.10 atmospheres (Peng-Robinson calculation) - Gas volume: 1.13e+001 liters - Molar volume: 2.22e+001 liters/mole - P * Vm / RT: 0.99606 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CH4(g) -0.25 5.622e-001 0.998 0.000e+000 2.609e-001 2.609e-001 -CO2(g) -0.33 4.726e-001 0.994 0.000e+000 2.193e-001 2.193e-001 -H2O(g) -1.50 3.164e-002 0.993 0.000e+000 1.468e-002 1.468e-002 -N2(g) -1.48 3.349e-002 1.001 0.000e+000 1.554e-002 1.554e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 2.596e-002 2.596e-002 - Ca 2.519e-003 2.519e-003 - N 3.923e-003 3.923e-003 - -----------------------------Description of solution---------------------------- - - pH = 6.037 Charge balance - pe = -2.825 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 604 - Density (g/cm3) = 0.99780 - Volume (L) = 1.00497 - Activity of water = 0.999 - Ionic strength = 1.109e-002 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 8.915e-003 - Total CO2 (mol/kg) = 2.515e-002 - Temperature (deg C) = 25.00 - Pressure (atm) = 1.10 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 - Total H = 1.110446e+002 - Total O = 5.556770e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.010e-006 9.192e-007 -5.996 -6.037 -0.041 0.00 - OH- 1.229e-008 1.101e-008 -7.910 -7.958 -0.048 -4.03 - H2O 5.551e+001 9.995e-001 1.744 -0.000 0.000 18.07 -C(-4) 8.032e-004 - CH4 8.032e-004 8.052e-004 -3.095 -3.094 0.001 32.22 -C(4) 2.515e-002 - CO2 1.624e-002 1.628e-002 -1.789 -1.788 0.001 30.26 - HCO3- 8.739e-003 7.874e-003 -2.059 -2.104 -0.045 24.70 - CaHCO3+ 1.720e-004 1.552e-004 -3.765 -3.809 -0.044 9.73 - CaCO3 1.040e-006 1.043e-006 -5.983 -5.982 0.001 -14.60 - CO3-2 6.095e-007 4.018e-007 -6.215 -6.396 -0.181 -4.08 -Ca 2.519e-003 - Ca+2 2.346e-003 1.545e-003 -2.630 -2.811 -0.181 -17.91 - CaHCO3+ 1.720e-004 1.552e-004 -3.765 -3.809 -0.044 9.73 - CaCO3 1.040e-006 1.043e-006 -5.983 -5.982 0.001 -14.60 - CaOH+ 3.106e-010 2.788e-010 -9.508 -9.555 -0.047 (0) -H(0) 5.318e-010 - H2 2.659e-010 2.666e-010 -9.575 -9.574 0.001 28.61 -N(-3) 3.878e-003 - NH4+ 3.876e-003 3.459e-003 -2.412 -2.461 -0.049 (0) - NH3 2.139e-006 2.144e-006 -5.670 -5.669 0.001 (0) -N(0) 4.460e-005 - N2 2.230e-005 2.236e-005 -4.652 -4.651 0.001 29.29 -N(3) 0.000e+000 - NO2- 0.000e+000 0.000e+000 -61.574 -61.623 -0.049 25.04 -N(5) 0.000e+000 - NO3- 0.000e+000 0.000e+000 -83.720 -83.769 -0.049 29.60 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -73.233 -73.232 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Aragonite -0.87 -9.21 -8.34 CaCO3 - Calcite -0.73 -9.21 -8.48 CaCO3 - CH4(g) -0.25 -3.09 -2.84 CH4 Pressure 0.6 atm, phi 0.998. - CO2(g) -0.33 -1.79 -1.46 CO2 Pressure 0.5 atm, phi 0.994. - H2(g) -6.47 -9.57 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.993. - N2(g) -1.47 -4.65 -3.18 N2 Pressure 0.0 atm, phi 1.001. - NH3(g) -7.44 -5.67 1.77 NH3 - O2(g) -70.34 -73.23 -2.89 O2 - - -Reaction step 12. - -Using solution 1. Solution after simulation 1. -Using gas phase 1. Fixed-pressure gas phase -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CH2O(NH3)0.07 1.00000 - - Relative - Element moles - C 1.00000 - H 2.21000 - N 0.07000 - O 1.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 1.10 atmospheres (Peng-Robinson calculation) - Gas volume: 2.31e+001 liters - Molar volume: 2.22e+001 liters/mole - P * Vm / RT: 0.99604 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CH4(g) -0.26 5.527e-001 0.998 0.000e+000 5.240e-001 5.240e-001 -CO2(g) -0.32 4.808e-001 0.994 0.000e+000 4.558e-001 4.558e-001 -H2O(g) -1.50 3.164e-002 0.993 0.000e+000 2.999e-002 2.999e-002 -N2(g) -1.46 3.481e-002 1.001 0.000e+000 3.300e-002 3.300e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 2.629e-002 2.629e-002 - Ca 2.518e-003 2.519e-003 - N 3.991e-003 3.991e-003 - -----------------------------Description of solution---------------------------- - - pH = 6.032 Charge balance - pe = -2.818 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 606 - Density (g/cm3) = 0.99780 - Volume (L) = 1.00519 - Activity of water = 0.999 - Ionic strength = 1.115e-002 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 8.981e-003 - Total CO2 (mol/kg) = 2.550e-002 - Temperature (deg C) = 25.00 - Pressure (atm) = 1.10 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 - Total H = 1.110665e+002 - Total O = 5.557929e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.021e-006 9.285e-007 -5.991 -6.032 -0.041 0.00 - OH- 1.217e-008 1.090e-008 -7.915 -7.963 -0.048 -4.03 - H2O 5.551e+001 9.994e-001 1.744 -0.000 0.000 18.07 -C(-4) 7.896e-004 - CH4 7.896e-004 7.916e-004 -3.103 -3.101 0.001 32.22 -C(4) 2.550e-002 - CO2 1.652e-002 1.656e-002 -1.782 -1.781 0.001 30.26 - HCO3- 8.803e-003 7.930e-003 -2.055 -2.101 -0.045 24.70 - CaHCO3+ 1.730e-004 1.561e-004 -3.762 -3.807 -0.045 9.73 - CaCO3 1.035e-006 1.038e-006 -5.985 -5.984 0.001 -14.60 - CO3-2 6.083e-007 4.006e-007 -6.216 -6.397 -0.181 -4.08 -Ca 2.518e-003 - Ca+2 2.344e-003 1.543e-003 -2.630 -2.812 -0.182 -17.91 - CaHCO3+ 1.730e-004 1.561e-004 -3.762 -3.807 -0.045 9.73 - CaCO3 1.035e-006 1.038e-006 -5.985 -5.984 0.001 -14.60 - CaOH+ 3.071e-010 2.756e-010 -9.513 -9.560 -0.047 (0) -H(0) 5.273e-010 - H2 2.636e-010 2.643e-010 -9.579 -9.578 0.001 28.61 -N(-3) 3.944e-003 - NH4+ 3.942e-003 3.517e-003 -2.404 -2.454 -0.050 (0) - NH3 2.153e-006 2.158e-006 -5.667 -5.666 0.001 (0) -N(0) 4.636e-005 - N2 2.318e-005 2.324e-005 -4.635 -4.634 0.001 29.29 -N(3) 0.000e+000 - NO2- 0.000e+000 0.000e+000 -61.565 -61.613 -0.049 25.04 -N(5) 0.000e+000 - NO3- 0.000e+000 0.000e+000 -83.707 -83.756 -0.049 29.60 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -73.226 -73.225 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Aragonite -0.87 -9.21 -8.34 CaCO3 - Calcite -0.73 -9.21 -8.48 CaCO3 - CH4(g) -0.26 -3.10 -2.84 CH4 Pressure 0.6 atm, phi 0.998. - CO2(g) -0.32 -1.78 -1.46 CO2 Pressure 0.5 atm, phi 0.994. - H2(g) -6.48 -9.58 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.993. - N2(g) -1.46 -4.63 -3.18 N2 Pressure 0.0 atm, phi 1.001. - NH3(g) -7.44 -5.67 1.77 NH3 - O2(g) -70.33 -73.22 -2.89 O2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 3. ------------------------------------- - - USE solution 1 - USE reaction 1 - GAS_PHASE 1 Fixed volume gas phase - fixed_volume - volume 23.19 - CO2(g) 0.0 - CH4(g) 0.0 - N2(g) 0.0 - H2O(g) 0.0 - equilibrate 1 - USER_GRAPH 1 - -headings Fixed_Volume: CH4 CO2 N2 H2O - -start - 10 mM_OM = RXN * 1e3 - 20 PLOT_XY -10, -10, line_width = 0, symbol_size = 0 - 30 PLOT_XY mM_OM, SI("CH4(g)"), color = Black, symbol = Circle - 40 PLOT_XY mM_OM, SI("CO2(g)"), color = Red, symbol = Circle - 50 PLOT_XY mM_OM, SI("N2(g)"), color = Teal, symbol = Circle - 60 PLOT_XY mM_OM, SI("H2O(g)"), color = Blue, symbol = Circle, symbol_size = 5 - -end - USER_GRAPH 2 - -headings Fixed_V:...Pressure Fixed_V:...Volume - -start - 10 mM_OM = RXN * 1e3 - 20 tot_p = SR("CH4(g)") + SR("CO2(g)") + SR("N2(g)") + SR("H2O(g)") - 30 PLOT_XY mM_OM, LOG10(tot_p), color = Magenta, symbol = Circle - 40 PLOT_XY mM_OM, 23.19, color = Cyan, line_width = 1 symbol = Circle, y_axis = 2 - -end - END --------------------------------------------------------- -Beginning of initial gas_phase-composition calculations. --------------------------------------------------------- - -Gas_Phase 1. Fixed volume gas phase - ------------------------------------Gas phase----------------------------------- - -Total pressure: 0.06 atmospheres - Gas volume: 2.32e+001 liters - Molar volume: 3.88e+002 liters/mole - - Moles in gas - ---------------------------------- -Component log P P Initial Final Delta - -CH4(g) -21.50 3.135e-022 2.972e-022 2.972e-022 0.000e+000 -CO2(g) -1.50 3.162e-002 2.997e-002 2.997e-002 0.000e+000 -H2O(g) -1.50 3.141e-002 2.977e-002 2.977e-002 0.000e+000 -N2(g) -99.99 0.000e+000 0.000e+000 0.000e+000 0.000e+000 - -WARNING: While initializing gas phase composition by equilibrating: - Found definitions of gas' critical temperature and pressure. - Going to use Peng-Robinson in subsequent calculations. - ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. Solution after simulation 1. -Using gas phase 1. Gas phase after simulation 3. -Using reaction 1. - -Reaction 1. - - 1.000e-003 moles of the following reaction have been added: - - Relative - Reactant moles - - CH2O(NH3)0.07 1.00000 - - Relative - Element moles - C 1.00000 - H 2.21000 - N 0.07000 - O 1.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 0.06 atmospheres (Peng-Robinson calculation) - Gas volume: 2.32e+001 liters - Molar volume: 3.81e+002 liters/mole - P * Vm / RT: 0.99943 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CH4(g) -3.26 5.529e-004 1.000 2.972e-022 5.243e-004 5.243e-004 -CO2(g) -1.49 3.208e-002 1.000 2.997e-002 3.042e-002 4.560e-004 -H2O(g) -1.50 3.144e-002 0.999 2.977e-002 2.982e-002 4.337e-005 -N2(g) -4.45 3.529e-005 1.000 0.000e+000 3.347e-005 3.347e-005 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 6.143e-003 6.143e-003 - Ca 2.519e-003 2.519e-003 - N 3.065e-006 3.065e-006 - -----------------------------Description of solution---------------------------- - - pH = 6.960 Charge balance - pe = -3.518 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 458 - Density (g/cm3) = 0.99734 - Volume (L) = 1.00338 - Activity of water = 1.000 - Ionic strength = 7.334e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 5.041e-003 - Total CO2 (mol/kg) = 6.142e-003 - Temperature (deg C) = 25.00 - Pressure (atm) = 0.06 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 24 - Total H = 1.110125e+002 - Total O = 5.552103e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.188e-007 1.097e-007 -6.925 -6.960 -0.035 0.00 - OH- 1.011e-007 9.227e-008 -6.995 -7.035 -0.040 -4.05 - H2O 5.551e+001 9.999e-001 1.744 -0.000 0.000 18.07 -C(-4) 7.925e-007 - CH4 7.925e-007 7.939e-007 -6.101 -6.100 0.001 32.22 -C(4) 6.142e-003 - HCO3- 4.918e-003 4.507e-003 -2.308 -2.346 -0.038 24.66 - CO2 1.110e-003 1.112e-003 -2.955 -2.954 0.001 30.25 - CaHCO3+ 1.063e-004 9.755e-005 -3.973 -4.011 -0.037 9.71 - CaCO3 5.483e-006 5.492e-006 -5.261 -5.260 0.001 -14.61 - CO3-2 2.733e-006 1.927e-006 -5.563 -5.715 -0.152 -4.17 -Ca 2.519e-003 - Ca+2 2.407e-003 1.696e-003 -2.618 -2.770 -0.152 -17.98 - CaHCO3+ 1.063e-004 9.755e-005 -3.973 -4.011 -0.037 9.71 - CaCO3 5.483e-006 5.492e-006 -5.261 -5.260 0.001 -14.61 - CaOH+ 2.809e-009 2.567e-009 -8.552 -8.591 -0.039 (0) -H(0) 1.846e-010 - H2 9.228e-011 9.244e-011 -10.035 -10.034 0.001 28.61 -N(-3) 3.018e-006 - NH4+ 3.004e-006 2.735e-006 -5.522 -5.563 -0.041 (0) - NH3 1.419e-008 1.421e-008 -7.848 -7.847 0.001 (0) -N(0) 4.703e-008 - N2 2.351e-008 2.355e-008 -7.629 -7.628 0.001 29.29 -N(3) 0.000e+000 - NO2- 0.000e+000 0.000e+000 -61.458 -61.498 -0.040 25.02 -N(5) 0.000e+000 - NO3- 0.000e+000 0.000e+000 -83.144 -83.184 -0.040 29.58 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -72.313 -72.312 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 0 atm) - - Aragonite -0.15 -8.49 -8.34 CaCO3 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -3.26 -6.10 -2.84 CH4 Pressure 0.0 atm, phi 1.000. - CO2(g) -1.49 -2.95 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - H2(g) -6.93 -10.03 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.999. - N2(g) -4.45 -7.63 -3.18 N2 Pressure 0.0 atm, phi 1.000. - NH3(g) -9.62 -7.85 1.77 NH3 - O2(g) -69.42 -72.31 -2.89 O2 - - -Reaction step 2. - -Using solution 1. Solution after simulation 1. -Using gas phase 1. Gas phase after simulation 3. -Using reaction 1. - -Reaction 1. - - 2.000e-003 moles of the following reaction have been added: - - Relative - Reactant moles - - CH2O(NH3)0.07 1.00000 - - Relative - Element moles - C 1.00000 - H 2.21000 - N 0.07000 - O 1.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 0.07 atmospheres (Peng-Robinson calculation) - Gas volume: 2.32e+001 liters - Molar volume: 3.75e+002 liters/mole - P * Vm / RT: 0.99943 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CH4(g) -2.96 1.106e-003 1.000 2.972e-022 1.049e-003 1.049e-003 -CO2(g) -1.49 3.256e-002 1.000 2.997e-002 3.088e-002 9.115e-004 -H2O(g) -1.50 3.144e-002 0.999 2.977e-002 2.982e-002 4.367e-005 -N2(g) -4.15 7.081e-005 1.000 0.000e+000 6.716e-005 6.716e-005 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 6.163e-003 6.163e-003 - Ca 2.519e-003 2.519e-003 - N 5.688e-006 5.688e-006 - -----------------------------Description of solution---------------------------- - - pH = 6.954 Charge balance - pe = -3.548 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 458 - Density (g/cm3) = 0.99734 - Volume (L) = 1.00338 - Activity of water = 1.000 - Ionic strength = 7.336e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 5.044e-003 - Total CO2 (mol/kg) = 6.162e-003 - Temperature (deg C) = 25.00 - Pressure (atm) = 0.07 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 - Total H = 1.110126e+002 - Total O = 5.552112e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.206e-007 1.113e-007 -6.919 -6.954 -0.035 0.00 - OH- 9.969e-008 9.096e-008 -7.001 -7.041 -0.040 -4.05 - H2O 5.551e+001 9.999e-001 1.744 -0.000 0.000 18.07 -C(-4) 1.585e-006 - CH4 1.585e-006 1.588e-006 -5.800 -5.799 0.001 32.22 -C(4) 6.162e-003 - HCO3- 4.921e-003 4.509e-003 -2.308 -2.346 -0.038 24.66 - CO2 1.126e-003 1.128e-003 -2.948 -2.948 0.001 30.25 - CaHCO3+ 1.064e-004 9.760e-005 -3.973 -4.011 -0.037 9.71 - CaCO3 5.408e-006 5.417e-006 -5.267 -5.266 0.001 -14.61 - CO3-2 2.696e-006 1.901e-006 -5.569 -5.721 -0.152 -4.17 -Ca 2.519e-003 - Ca+2 2.407e-003 1.696e-003 -2.618 -2.770 -0.152 -17.98 - CaHCO3+ 1.064e-004 9.760e-005 -3.973 -4.011 -0.037 9.71 - CaCO3 5.408e-006 5.417e-006 -5.267 -5.266 0.001 -14.61 - CaOH+ 2.769e-009 2.530e-009 -8.558 -8.597 -0.039 (0) -H(0) 2.187e-010 - H2 1.093e-010 1.095e-010 -9.961 -9.960 0.001 28.61 -N(-3) 5.594e-006 - NH4+ 5.568e-006 5.068e-006 -5.254 -5.295 -0.041 (0) - NH3 2.592e-008 2.596e-008 -7.586 -7.586 0.001 (0) -N(0) 9.437e-008 - N2 4.718e-008 4.726e-008 -7.326 -7.325 0.001 29.29 -N(3) 0.000e+000 - NO2- 0.000e+000 0.000e+000 -61.423 -61.463 -0.040 25.02 -N(5) 0.000e+000 - NO3- 0.000e+000 0.000e+000 -83.183 -83.223 -0.040 29.58 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -72.460 -72.459 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 0 atm) - - Aragonite -0.16 -8.49 -8.34 CaCO3 - Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -2.96 -5.80 -2.84 CH4 Pressure 0.0 atm, phi 1.000. - CO2(g) -1.49 -2.95 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - H2(g) -6.86 -9.96 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.999. - N2(g) -4.15 -7.33 -3.18 N2 Pressure 0.0 atm, phi 1.000. - NH3(g) -9.36 -7.59 1.77 NH3 - O2(g) -69.57 -72.46 -2.89 O2 - - -Reaction step 3. - -Using solution 1. Solution after simulation 1. -Using gas phase 1. Gas phase after simulation 3. -Using reaction 1. - -Reaction 1. - - 3.000e-003 moles of the following reaction have been added: - - Relative - Reactant moles - - CH2O(NH3)0.07 1.00000 - - Relative - Element moles - C 1.00000 - H 2.21000 - N 0.07000 - O 1.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 0.07 atmospheres (Peng-Robinson calculation) - Gas volume: 2.32e+001 liters - Molar volume: 3.69e+002 liters/mole - P * Vm / RT: 0.99943 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CH4(g) -2.78 1.659e-003 1.000 2.972e-022 1.573e-003 1.573e-003 -CO2(g) -1.48 3.304e-002 1.000 2.997e-002 3.134e-002 1.367e-003 -H2O(g) -1.50 3.144e-002 0.999 2.977e-002 2.982e-002 4.397e-005 -N2(g) -3.97 1.064e-004 1.000 0.000e+000 1.009e-004 1.009e-004 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 6.183e-003 6.183e-003 - Ca 2.519e-003 2.519e-003 - N 8.193e-006 8.193e-006 - -----------------------------Description of solution---------------------------- - - pH = 6.948 Charge balance - pe = -3.564 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 458 - Density (g/cm3) = 0.99735 - Volume (L) = 1.00338 - Activity of water = 1.000 - Ionic strength = 7.339e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 5.046e-003 - Total CO2 (mol/kg) = 6.181e-003 - Temperature (deg C) = 25.00 - Pressure (atm) = 0.07 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 28 - Total H = 1.110127e+002 - Total O = 5.552120e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.223e-007 1.128e-007 -6.913 -6.948 -0.035 0.00 - OH- 9.829e-008 8.969e-008 -7.007 -7.047 -0.040 -4.05 - H2O 5.551e+001 9.999e-001 1.744 -0.000 0.000 18.07 -C(-4) 2.378e-006 - CH4 2.378e-006 2.382e-006 -5.624 -5.623 0.001 32.22 -C(4) 6.181e-003 - HCO3- 4.924e-003 4.512e-003 -2.308 -2.346 -0.038 24.66 - CO2 1.143e-003 1.145e-003 -2.942 -2.941 0.001 30.25 - CaHCO3+ 1.064e-004 9.765e-005 -3.973 -4.010 -0.037 9.71 - CaCO3 5.335e-006 5.344e-006 -5.273 -5.272 0.001 -14.61 - CO3-2 2.659e-006 1.875e-006 -5.575 -5.727 -0.152 -4.17 -Ca 2.519e-003 - Ca+2 2.407e-003 1.696e-003 -2.618 -2.770 -0.152 -17.98 - CaHCO3+ 1.064e-004 9.765e-005 -3.973 -4.010 -0.037 9.71 - CaCO3 5.335e-006 5.344e-006 -5.273 -5.272 0.001 -14.61 - CaOH+ 2.730e-009 2.495e-009 -8.564 -8.603 -0.039 (0) -H(0) 2.411e-010 - H2 1.206e-010 1.208e-010 -9.919 -9.918 0.001 28.61 -N(-3) 8.051e-006 - NH4+ 8.015e-006 7.296e-006 -5.096 -5.137 -0.041 (0) - NH3 3.678e-008 3.685e-008 -7.434 -7.434 0.001 (0) -N(0) 1.418e-007 - N2 7.089e-008 7.101e-008 -7.149 -7.149 0.001 29.29 -N(3) 0.000e+000 - NO2- 0.000e+000 0.000e+000 -61.405 -61.445 -0.040 25.02 -N(5) 0.000e+000 - NO3- 0.000e+000 0.000e+000 -83.207 -83.247 -0.040 29.58 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -72.545 -72.544 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 0 atm) - - Aragonite -0.16 -8.50 -8.34 CaCO3 - Calcite -0.02 -8.50 -8.48 CaCO3 - CH4(g) -2.78 -5.62 -2.84 CH4 Pressure 0.0 atm, phi 1.000. - CO2(g) -1.48 -2.94 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - H2(g) -6.82 -9.92 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.999. - N2(g) -3.97 -7.15 -3.18 N2 Pressure 0.0 atm, phi 1.000. - NH3(g) -9.20 -7.43 1.77 NH3 - O2(g) -69.65 -72.54 -2.89 O2 - - -Reaction step 4. - -Using solution 1. Solution after simulation 1. -Using gas phase 1. Gas phase after simulation 3. -Using reaction 1. - -Reaction 1. - - 4.000e-003 moles of the following reaction have been added: - - Relative - Reactant moles - - CH2O(NH3)0.07 1.00000 - - Relative - Element moles - C 1.00000 - H 2.21000 - N 0.07000 - O 1.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 0.07 atmospheres (Peng-Robinson calculation) - Gas volume: 2.32e+001 liters - Molar volume: 3.63e+002 liters/mole - P * Vm / RT: 0.99943 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CH4(g) -2.66 2.212e-003 1.000 2.972e-022 2.098e-003 2.098e-003 -CO2(g) -1.47 3.352e-002 1.000 2.997e-002 3.179e-002 1.823e-003 -H2O(g) -1.50 3.144e-002 0.999 2.977e-002 2.982e-002 4.427e-005 -N2(g) -3.85 1.420e-004 1.000 0.000e+000 1.347e-004 1.347e-004 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 6.203e-003 6.203e-003 - Ca 2.519e-003 2.519e-003 - N 1.064e-005 1.064e-005 - -----------------------------Description of solution---------------------------- - - pH = 6.942 Charge balance - pe = -3.572 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 458 - Density (g/cm3) = 0.99735 - Volume (L) = 1.00338 - Activity of water = 1.000 - Ionic strength = 7.341e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 5.048e-003 - Total CO2 (mol/kg) = 6.200e-003 - Temperature (deg C) = 25.00 - Pressure (atm) = 0.07 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 27 - Total H = 1.110128e+002 - Total O = 5.552129e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.240e-007 1.144e-007 -6.907 -6.942 -0.035 0.00 - OH- 9.693e-008 8.845e-008 -7.014 -7.053 -0.040 -4.05 - H2O 5.551e+001 9.999e-001 1.744 -0.000 0.000 18.07 -C(-4) 3.171e-006 - CH4 3.171e-006 3.176e-006 -5.499 -5.498 0.001 32.22 -C(4) 6.200e-003 - HCO3- 4.926e-003 4.514e-003 -2.307 -2.345 -0.038 24.66 - CO2 1.159e-003 1.161e-003 -2.936 -2.935 0.001 30.25 - CaHCO3+ 1.065e-004 9.769e-005 -3.973 -4.010 -0.037 9.71 - CaCO3 5.263e-006 5.272e-006 -5.279 -5.278 0.001 -14.61 - CO3-2 2.624e-006 1.850e-006 -5.581 -5.733 -0.152 -4.17 -Ca 2.519e-003 - Ca+2 2.407e-003 1.696e-003 -2.618 -2.771 -0.152 -17.98 - CaHCO3+ 1.065e-004 9.769e-005 -3.973 -4.010 -0.037 9.71 - CaCO3 5.263e-006 5.272e-006 -5.279 -5.278 0.001 -14.61 - CaOH+ 2.692e-009 2.460e-009 -8.570 -8.609 -0.039 (0) -H(0) 2.582e-010 - H2 1.291e-010 1.293e-010 -9.889 -9.888 0.001 28.61 -N(-3) 1.045e-005 - NH4+ 1.040e-005 9.469e-006 -4.983 -5.024 -0.041 (0) - NH3 4.708e-008 4.716e-008 -7.327 -7.326 0.001 (0) -N(0) 1.893e-007 - N2 9.463e-008 9.479e-008 -7.024 -7.023 0.001 29.29 -N(3) 0.000e+000 - NO2- 0.000e+000 0.000e+000 -61.392 -61.433 -0.040 25.02 -N(5) 0.000e+000 - NO3- 0.000e+000 0.000e+000 -83.224 -83.264 -0.040 29.58 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -72.604 -72.603 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 0 atm) - - Aragonite -0.17 -8.50 -8.34 CaCO3 - Calcite -0.02 -8.50 -8.48 CaCO3 - CH4(g) -2.66 -5.50 -2.84 CH4 Pressure 0.0 atm, phi 1.000. - CO2(g) -1.47 -2.94 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - H2(g) -6.79 -9.89 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.999. - N2(g) -3.85 -7.02 -3.18 N2 Pressure 0.0 atm, phi 1.000. - NH3(g) -9.10 -7.33 1.77 NH3 - O2(g) -69.71 -72.60 -2.89 O2 - - -Reaction step 5. - -Using solution 1. Solution after simulation 1. -Using gas phase 1. Gas phase after simulation 3. -Using reaction 1. - -Reaction 1. - - 8.000e-003 moles of the following reaction have been added: - - Relative - Reactant moles - - CH2O(NH3)0.07 1.00000 - - Relative - Element moles - C 1.00000 - H 2.21000 - N 0.07000 - O 1.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 0.07 atmospheres (Peng-Robinson calculation) - Gas volume: 2.32e+001 liters - Molar volume: 3.42e+002 liters/mole - P * Vm / RT: 0.99943 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CH4(g) -2.35 4.425e-003 1.000 2.972e-022 4.196e-003 4.196e-003 -CO2(g) -1.45 3.544e-002 1.000 2.997e-002 3.361e-002 3.645e-003 -H2O(g) -1.50 3.144e-002 0.999 2.977e-002 2.982e-002 4.547e-005 -N2(g) -3.55 2.846e-004 1.000 0.000e+000 2.699e-004 2.699e-004 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 6.282e-003 6.282e-003 - Ca 2.519e-003 2.519e-003 - N 2.020e-005 2.020e-005 - -----------------------------Description of solution---------------------------- - - pH = 6.918 Charge balance - pe = -3.584 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 458 - Density (g/cm3) = 0.99735 - Volume (L) = 1.00339 - Activity of water = 1.000 - Ionic strength = 7.351e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 5.058e-003 - Total CO2 (mol/kg) = 6.276e-003 - Temperature (deg C) = 25.00 - Pressure (atm) = 0.07 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 - Total H = 1.110132e+002 - Total O = 5.552165e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.308e-007 1.207e-007 -6.883 -6.918 -0.035 0.00 - OH- 9.187e-008 8.382e-008 -7.037 -7.077 -0.040 -4.05 - H2O 5.551e+001 9.999e-001 1.744 -0.000 0.000 18.07 -C(-4) 6.342e-006 - CH4 6.342e-006 6.353e-006 -5.198 -5.197 0.001 32.22 -C(4) 6.276e-003 - HCO3- 4.936e-003 4.523e-003 -2.307 -2.345 -0.038 24.66 - CO2 1.226e-003 1.228e-003 -2.912 -2.911 0.001 30.25 - CaHCO3+ 1.067e-004 9.787e-005 -3.972 -4.009 -0.037 9.71 - CaCO3 4.997e-006 5.005e-006 -5.301 -5.301 0.001 -14.61 - CO3-2 2.492e-006 1.757e-006 -5.603 -5.755 -0.152 -4.16 -Ca 2.519e-003 - Ca+2 2.407e-003 1.696e-003 -2.618 -2.771 -0.152 -17.98 - CaHCO3+ 1.067e-004 9.787e-005 -3.972 -4.009 -0.037 9.71 - CaCO3 4.997e-006 5.005e-006 -5.301 -5.301 0.001 -14.61 - CaOH+ 2.551e-009 2.331e-009 -8.593 -8.632 -0.039 (0) -H(0) 3.028e-010 - H2 1.514e-010 1.517e-010 -9.820 -9.819 0.001 28.61 -N(-3) 1.982e-005 - NH4+ 1.974e-005 1.796e-005 -4.705 -4.746 -0.041 (0) - NH3 8.465e-008 8.479e-008 -7.072 -7.072 0.001 (0) -N(0) 3.793e-007 - N2 1.896e-007 1.899e-007 -6.722 -6.721 0.001 29.29 -N(3) 0.000e+000 - NO2- 0.000e+000 0.000e+000 -61.369 -61.409 -0.040 25.02 -N(5) 0.000e+000 - NO3- 0.000e+000 0.000e+000 -83.270 -83.310 -0.040 29.58 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -72.743 -72.742 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 0 atm) - - Aragonite -0.19 -8.53 -8.34 CaCO3 - Calcite -0.05 -8.53 -8.48 CaCO3 - CH4(g) -2.35 -5.20 -2.84 CH4 Pressure 0.0 atm, phi 1.000. - CO2(g) -1.45 -2.91 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - H2(g) -6.72 -9.82 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.999. - N2(g) -3.55 -6.72 -3.18 N2 Pressure 0.0 atm, phi 1.000. - NH3(g) -8.84 -7.07 1.77 NH3 - O2(g) -69.85 -72.74 -2.89 O2 - - -Reaction step 6. - -Using solution 1. Solution after simulation 1. -Using gas phase 1. Gas phase after simulation 3. -Using reaction 1. - -Reaction 1. - - 1.600e-002 moles of the following reaction have been added: - - Relative - Reactant moles - - CH2O(NH3)0.07 1.00000 - - Relative - Element moles - C 1.00000 - H 2.21000 - N 0.07000 - O 1.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 0.08 atmospheres (Peng-Robinson calculation) - Gas volume: 2.32e+001 liters - Molar volume: 3.05e+002 liters/mole - P * Vm / RT: 0.99942 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CH4(g) -2.05 8.850e-003 1.000 2.972e-022 8.393e-003 8.393e-003 -CO2(g) -1.41 3.929e-002 1.000 2.997e-002 3.726e-002 7.290e-003 -H2O(g) -1.50 3.145e-002 0.999 2.977e-002 2.982e-002 4.787e-005 -N2(g) -3.24 5.697e-004 1.000 0.000e+000 5.403e-004 5.403e-004 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 6.441e-003 6.441e-003 - Ca 2.519e-003 2.519e-003 - N 3.938e-005 3.938e-005 - -----------------------------Description of solution---------------------------- - - pH = 6.875 Charge balance - pe = -3.573 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 459 - Density (g/cm3) = 0.99735 - Volume (L) = 1.00341 - Activity of water = 1.000 - Ionic strength = 7.370e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 5.077e-003 - Total CO2 (mol/kg) = 6.428e-003 - Temperature (deg C) = 25.00 - Pressure (atm) = 0.08 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 - Total H = 1.110141e+002 - Total O = 5.552236e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.445e-007 1.333e-007 -6.840 -6.875 -0.035 0.00 - OH- 8.322e-008 7.592e-008 -7.080 -7.120 -0.040 -4.05 - H2O 5.551e+001 9.998e-001 1.744 -0.000 0.000 18.07 -C(-4) 1.268e-005 - CH4 1.268e-005 1.271e-005 -4.897 -4.896 0.001 32.22 -C(4) 6.428e-003 - HCO3- 4.956e-003 4.541e-003 -2.305 -2.343 -0.038 24.66 - CO2 1.359e-003 1.361e-003 -2.867 -2.866 0.001 30.25 - CaHCO3+ 1.071e-004 9.821e-005 -3.970 -4.008 -0.037 9.71 - CaCO3 4.542e-006 4.550e-006 -5.343 -5.342 0.001 -14.61 - CO3-2 2.267e-006 1.597e-006 -5.645 -5.797 -0.152 -4.16 -Ca 2.519e-003 - Ca+2 2.407e-003 1.695e-003 -2.618 -2.771 -0.152 -17.98 - CaHCO3+ 1.071e-004 9.821e-005 -3.970 -4.008 -0.037 9.71 - CaCO3 4.542e-006 4.550e-006 -5.343 -5.342 0.001 -14.61 - CaOH+ 2.310e-009 2.110e-009 -8.636 -8.676 -0.039 (0) -H(0) 3.509e-010 - H2 1.755e-010 1.758e-010 -9.756 -9.755 0.001 28.61 -N(-3) 3.862e-005 - NH4+ 3.847e-005 3.501e-005 -4.415 -4.456 -0.041 (0) - NH3 1.494e-007 1.497e-007 -6.826 -6.825 0.001 (0) -N(0) 7.592e-007 - N2 3.796e-007 3.802e-007 -6.421 -6.420 0.001 29.29 -N(3) 0.000e+000 - NO2- 0.000e+000 0.000e+000 -61.357 -61.397 -0.040 25.02 -N(5) 0.000e+000 - NO3- 0.000e+000 0.000e+000 -83.322 -83.362 -0.040 29.58 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -72.871 -72.870 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 0 atm) - - Aragonite -0.23 -8.57 -8.34 CaCO3 - Calcite -0.09 -8.57 -8.48 CaCO3 - CH4(g) -2.05 -4.90 -2.84 CH4 Pressure 0.0 atm, phi 1.000. - CO2(g) -1.41 -2.87 -1.46 CO2 Pressure 0.0 atm, phi 1.000. - H2(g) -6.65 -9.76 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.999. - N2(g) -3.24 -6.42 -3.18 N2 Pressure 0.0 atm, phi 1.000. - NH3(g) -8.59 -6.82 1.77 NH3 - O2(g) -69.98 -72.87 -2.89 O2 - - -Reaction step 7. - -Using solution 1. Solution after simulation 1. -Using gas phase 1. Gas phase after simulation 3. -Using reaction 1. - -Reaction 1. - - 3.200e-002 moles of the following reaction have been added: - - Relative - Reactant moles - - CH2O(NH3)0.07 1.00000 - - Relative - Element moles - C 1.00000 - H 2.21000 - N 0.07000 - O 1.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 0.10 atmospheres (Peng-Robinson calculation) - Gas volume: 2.32e+001 liters - Molar volume: 2.51e+002 liters/mole - P * Vm / RT: 0.99938 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CH4(g) -1.75 1.770e-002 1.000 2.972e-022 1.679e-002 1.679e-002 -CO2(g) -1.33 4.697e-002 0.999 2.997e-002 4.455e-002 1.458e-002 -H2O(g) -1.50 3.145e-002 0.999 2.977e-002 2.983e-002 5.267e-005 -N2(g) -2.94 1.139e-003 1.000 0.000e+000 1.080e-003 1.080e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 6.760e-003 6.760e-003 - Ca 2.519e-003 2.519e-003 - N 8.002e-005 8.002e-005 - -----------------------------Description of solution---------------------------- - - pH = 6.801 Charge balance - pe = -3.527 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 461 - Density (g/cm3) = 0.99736 - Volume (L) = 1.00345 - Activity of water = 1.000 - Ionic strength = 7.410e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 5.116e-003 - Total CO2 (mol/kg) = 6.735e-003 - Temperature (deg C) = 25.00 - Pressure (atm) = 0.10 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 24 - Total H = 1.110159e+002 - Total O = 5.552377e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.713e-007 1.581e-007 -6.766 -6.801 -0.035 0.00 - OH- 7.019e-008 6.402e-008 -7.154 -7.194 -0.040 -4.05 - H2O 5.551e+001 9.998e-001 1.744 -0.000 0.000 18.07 -C(-4) 2.537e-005 - CH4 2.537e-005 2.541e-005 -4.596 -4.595 0.001 32.22 -C(4) 6.735e-003 - HCO3- 4.997e-003 4.577e-003 -2.301 -2.339 -0.038 24.66 - CO2 1.624e-003 1.627e-003 -2.789 -2.789 0.001 30.25 - CaHCO3+ 1.078e-004 9.892e-005 -3.967 -4.005 -0.038 9.71 - CaCO3 3.857e-006 3.864e-006 -5.414 -5.413 0.001 -14.61 - CO3-2 1.929e-006 1.358e-006 -5.715 -5.867 -0.152 -4.16 -Ca 2.519e-003 - Ca+2 2.407e-003 1.694e-003 -2.618 -2.771 -0.153 -17.97 - CaHCO3+ 1.078e-004 9.892e-005 -3.967 -4.005 -0.038 9.71 - CaCO3 3.857e-006 3.864e-006 -5.414 -5.413 0.001 -14.61 - CaOH+ 1.946e-009 1.778e-009 -8.711 -8.750 -0.039 (0) -H(0) 3.991e-010 - H2 1.996e-010 1.999e-010 -9.700 -9.699 0.001 28.61 -N(-3) 7.850e-005 - NH4+ 7.825e-005 7.120e-005 -4.107 -4.148 -0.041 (0) - NH3 2.562e-007 2.567e-007 -6.591 -6.591 0.001 (0) -N(0) 1.517e-006 - N2 7.587e-007 7.600e-007 -6.120 -6.119 0.001 29.29 -N(3) 0.000e+000 - NO2- 0.000e+000 0.000e+000 -61.364 -61.405 -0.040 25.02 -N(5) 0.000e+000 - NO3- 0.000e+000 0.000e+000 -83.385 -83.426 -0.040 29.58 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -72.982 -72.982 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 0 atm) - - Aragonite -0.30 -8.64 -8.34 CaCO3 - Calcite -0.16 -8.64 -8.48 CaCO3 - CH4(g) -1.75 -4.60 -2.84 CH4 Pressure 0.0 atm, phi 1.000. - CO2(g) -1.33 -2.79 -1.46 CO2 Pressure 0.0 atm, phi 0.999. - H2(g) -6.60 -9.70 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.999. - N2(g) -2.94 -6.12 -3.18 N2 Pressure 0.0 atm, phi 1.000. - NH3(g) -8.36 -6.59 1.77 NH3 - O2(g) -70.09 -72.98 -2.89 O2 - - -Reaction step 8. - -Using solution 1. Solution after simulation 1. -Using gas phase 1. Gas phase after simulation 3. -Using reaction 1. - -Reaction 1. - - 6.400e-002 moles of the following reaction have been added: - - Relative - Reactant moles - - CH2O(NH3)0.07 1.00000 - - Relative - Element moles - C 1.00000 - H 2.21000 - N 0.07000 - O 1.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 0.13 atmospheres (Peng-Robinson calculation) - Gas volume: 2.32e+001 liters - Molar volume: 1.86e+002 liters/mole - P * Vm / RT: 0.99930 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CH4(g) -1.45 3.539e-002 1.000 2.972e-022 3.357e-002 3.357e-002 -CO2(g) -1.21 6.233e-002 0.999 2.997e-002 5.912e-002 2.915e-002 -H2O(g) -1.50 3.146e-002 0.999 2.977e-002 2.984e-002 6.225e-005 -N2(g) -2.64 2.271e-003 1.000 0.000e+000 2.154e-003 2.154e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 7.407e-003 7.407e-003 - Ca 2.519e-003 2.519e-003 - N 1.715e-004 1.715e-004 - -----------------------------Description of solution---------------------------- - - pH = 6.686 Charge balance - pe = -3.434 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 464 - Density (g/cm3) = 0.99737 - Volume (L) = 1.00353 - Activity of water = 1.000 - Ionic strength = 7.498e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 5.206e-003 - Total CO2 (mol/kg) = 7.356e-003 - Temperature (deg C) = 25.00 - Pressure (atm) = 0.13 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 - Total H = 1.110195e+002 - Total O = 5.552662e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 2.235e-007 2.061e-007 -6.651 -6.686 -0.035 0.00 - OH- 5.387e-008 4.911e-008 -7.269 -7.309 -0.040 -4.05 - H2O 5.551e+001 9.998e-001 1.744 -0.000 0.000 18.07 -C(-4) 5.071e-005 - CH4 5.071e-005 5.080e-005 -4.295 -4.294 0.001 32.22 -C(4) 7.356e-003 - HCO3- 5.087e-003 4.658e-003 -2.294 -2.332 -0.038 24.67 - CO2 2.155e-003 2.159e-003 -2.667 -2.666 0.001 30.25 - CaHCO3+ 1.096e-004 1.004e-004 -3.960 -3.998 -0.038 9.71 - CaCO3 3.005e-006 3.010e-006 -5.522 -5.521 0.001 -14.61 - CO3-2 1.508e-006 1.060e-006 -5.822 -5.975 -0.153 -4.16 -Ca 2.519e-003 - Ca+2 2.406e-003 1.690e-003 -2.619 -2.772 -0.153 -17.97 - CaHCO3+ 1.096e-004 1.004e-004 -3.960 -3.998 -0.038 9.71 - CaCO3 3.005e-006 3.010e-006 -5.522 -5.521 0.001 -14.61 - CaOH+ 1.490e-009 1.361e-009 -8.827 -8.866 -0.039 (0) -H(0) 4.422e-010 - H2 2.211e-010 2.215e-010 -9.655 -9.655 0.001 28.61 -N(-3) 1.685e-004 - NH4+ 1.681e-004 1.529e-004 -3.774 -3.816 -0.041 (0) - NH3 4.220e-007 4.227e-007 -6.375 -6.374 0.001 (0) -N(0) 3.026e-006 - N2 1.513e-006 1.516e-006 -5.820 -5.819 0.001 29.29 -N(3) 0.000e+000 - NO2- 0.000e+000 0.000e+000 -61.396 -61.437 -0.041 25.02 -N(5) 0.000e+000 - NO3- 0.000e+000 0.000e+000 -83.462 -83.502 -0.041 29.58 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -73.072 -73.071 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 0 atm) - - Aragonite -0.41 -8.75 -8.34 CaCO3 - Calcite -0.27 -8.75 -8.48 CaCO3 - CH4(g) -1.45 -4.29 -2.84 CH4 Pressure 0.0 atm, phi 1.000. - CO2(g) -1.21 -2.67 -1.46 CO2 Pressure 0.1 atm, phi 0.999. - H2(g) -6.55 -9.65 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.999. - N2(g) -2.64 -5.82 -3.18 N2 Pressure 0.0 atm, phi 1.000. - NH3(g) -8.14 -6.37 1.77 NH3 - O2(g) -70.18 -73.07 -2.89 O2 - - -Reaction step 9. - -Using solution 1. Solution after simulation 1. -Using gas phase 1. Gas phase after simulation 3. -Using reaction 1. - -Reaction 1. - - 1.250e-001 moles of the following reaction have been added: - - Relative - Reactant moles - - CH2O(NH3)0.07 1.00000 - - Relative - Element moles - C 1.00000 - H 2.21000 - N 0.07000 - O 1.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 0.20 atmospheres (Peng-Robinson calculation) - Gas volume: 2.32e+001 liters - Molar volume: 1.24e+002 liters/mole - P * Vm / RT: 0.99910 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CH4(g) -1.16 6.909e-002 1.000 2.972e-022 6.554e-002 6.554e-002 -CO2(g) -1.04 9.158e-002 0.999 2.997e-002 8.688e-002 5.691e-002 -H2O(g) -1.50 3.147e-002 0.998 2.977e-002 2.986e-002 8.048e-005 -N2(g) -2.36 4.414e-003 1.000 0.000e+000 4.187e-003 4.187e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 8.667e-003 8.668e-003 - Ca 2.519e-003 2.519e-003 - N 3.757e-004 3.758e-004 - -----------------------------Description of solution---------------------------- - - pH = 6.535 Charge balance - pe = -3.298 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 472 - Density (g/cm3) = 0.99740 - Volume (L) = 1.00368 - Activity of water = 1.000 - Ionic strength = 7.694e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 5.407e-003 - Total CO2 (mol/kg) = 8.568e-003 - Temperature (deg C) = 25.00 - Pressure (atm) = 0.20 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 28 - Total H = 1.110263e+002 - Total O = 5.553208e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 3.164e-007 2.915e-007 -6.500 -6.535 -0.036 0.00 - OH- 3.812e-008 3.471e-008 -7.419 -7.460 -0.041 -4.05 - H2O 5.551e+001 9.998e-001 1.744 -0.000 0.000 18.07 -C(-4) 9.899e-005 - CH4 9.899e-005 9.916e-005 -4.004 -4.004 0.001 32.22 -C(4) 8.568e-003 - HCO3- 5.287e-003 4.836e-003 -2.277 -2.315 -0.039 24.67 - CO2 3.165e-003 3.170e-003 -2.500 -2.499 0.001 30.25 - CaHCO3+ 1.133e-004 1.037e-004 -3.946 -3.984 -0.038 9.71 - CaCO3 2.194e-006 2.197e-006 -5.659 -5.658 0.001 -14.60 - CO3-2 1.111e-006 7.780e-007 -5.954 -6.109 -0.155 -4.16 -Ca 2.519e-003 - Ca+2 2.403e-003 1.681e-003 -2.619 -2.774 -0.155 -17.97 - CaHCO3+ 1.133e-004 1.037e-004 -3.946 -3.984 -0.038 9.71 - CaCO3 2.194e-006 2.197e-006 -5.659 -5.658 0.001 -14.60 - CaOH+ 1.049e-009 9.570e-010 -8.979 -9.019 -0.040 (0) -H(0) 4.747e-010 - H2 2.374e-010 2.378e-010 -9.625 -9.624 0.001 28.61 -N(-3) 3.699e-004 - NH4+ 3.692e-004 3.354e-004 -3.433 -3.474 -0.042 (0) - NH3 6.545e-007 6.556e-007 -6.184 -6.183 0.001 (0) -N(0) 5.881e-006 - N2 2.940e-006 2.946e-006 -5.532 -5.531 0.001 29.29 -N(3) 0.000e+000 - NO2- 0.000e+000 0.000e+000 -61.448 -61.490 -0.041 25.02 -N(5) 0.000e+000 - NO3- 0.000e+000 0.000e+000 -83.545 -83.586 -0.041 29.58 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -73.133 -73.133 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 0 atm) - - Aragonite -0.55 -8.88 -8.34 CaCO3 - Calcite -0.40 -8.88 -8.48 CaCO3 - CH4(g) -1.16 -4.00 -2.84 CH4 Pressure 0.1 atm, phi 1.000. - CO2(g) -1.04 -2.50 -1.46 CO2 Pressure 0.1 atm, phi 0.999. - H2(g) -6.52 -9.62 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.998. - N2(g) -2.36 -5.53 -3.18 N2 Pressure 0.0 atm, phi 1.000. - NH3(g) -7.95 -6.18 1.77 NH3 - O2(g) -70.24 -73.13 -2.89 O2 - - -Reaction step 10. - -Using solution 1. Solution after simulation 1. -Using gas phase 1. Gas phase after simulation 3. -Using reaction 1. - -Reaction 1. - - 2.500e-001 moles of the following reaction have been added: - - Relative - Reactant moles - - CH2O(NH3)0.07 1.00000 - - Relative - Element moles - C 1.00000 - H 2.21000 - N 0.07000 - O 1.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 0.33 atmospheres (Peng-Robinson calculation) - Gas volume: 2.32e+001 liters - Molar volume: 7.41e+001 liters/mole - P * Vm / RT: 0.99866 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CH4(g) -0.86 1.381e-001 0.999 2.972e-022 1.310e-001 1.310e-001 -CO2(g) -0.82 1.514e-001 0.998 2.997e-002 1.437e-001 1.138e-001 -H2O(g) -1.50 3.150e-002 0.997 2.977e-002 2.989e-002 1.178e-004 -N2(g) -2.06 8.764e-003 1.000 0.000e+000 8.318e-003 8.318e-003 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.131e-002 1.131e-002 - Ca 2.518e-003 2.519e-003 - N 8.639e-004 8.640e-004 - -----------------------------Description of solution---------------------------- - - pH = 6.354 Charge balance - pe = -3.127 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 490 - Density (g/cm3) = 0.99746 - Volume (L) = 1.00398 - Activity of water = 1.000 - Ionic strength = 8.159e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 5.889e-003 - Total CO2 (mol/kg) = 1.112e-002 - Temperature (deg C) = 25.00 - Pressure (atm) = 0.33 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 - Total H = 1.110405e+002 - Total O = 5.554334e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 4.817e-007 4.430e-007 -6.317 -6.354 -0.036 0.00 - OH- 2.515e-008 2.284e-008 -7.600 -7.641 -0.042 -4.05 - H2O 5.551e+001 9.998e-001 1.744 -0.000 0.000 18.07 -C(-4) 1.977e-004 - CH4 1.977e-004 1.981e-004 -3.704 -3.703 0.001 32.22 -C(4) 1.112e-002 - HCO3- 5.762e-003 5.259e-003 -2.239 -2.279 -0.040 24.67 - CO2 5.229e-003 5.239e-003 -2.282 -2.281 0.001 30.25 - CaHCO3+ 1.219e-004 1.114e-004 -3.914 -3.953 -0.039 9.72 - CaCO3 1.550e-006 1.553e-006 -5.810 -5.809 0.001 -14.60 - CO3-2 8.025e-007 5.567e-007 -6.096 -6.254 -0.159 -4.14 -Ca 2.518e-003 - Ca+2 2.395e-003 1.660e-003 -2.621 -2.780 -0.159 -17.96 - CaHCO3+ 1.219e-004 1.114e-004 -3.914 -3.953 -0.039 9.72 - CaCO3 1.550e-006 1.553e-006 -5.810 -5.809 0.001 -14.60 - CaOH+ 6.834e-010 6.218e-010 -9.165 -9.206 -0.041 (0) -H(0) 4.977e-010 - H2 2.489e-010 2.493e-010 -9.604 -9.603 0.001 28.61 -N(-3) 8.522e-004 - NH4+ 8.512e-004 7.712e-004 -3.070 -3.113 -0.043 (0) - NH3 9.902e-007 9.920e-007 -6.004 -6.003 0.001 (0) -N(0) 1.168e-005 - N2 5.838e-006 5.849e-006 -5.234 -5.233 0.001 29.29 -N(3) 0.000e+000 - NO2- 0.000e+000 0.000e+000 -61.511 -61.553 -0.042 25.02 -N(5) 0.000e+000 - NO3- 0.000e+000 0.000e+000 -83.628 -83.670 -0.042 29.59 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -73.175 -73.174 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 0 atm) - - Aragonite -0.70 -9.03 -8.34 CaCO3 - Calcite -0.55 -9.03 -8.48 CaCO3 - CH4(g) -0.86 -3.70 -2.84 CH4 Pressure 0.1 atm, phi 0.999. - CO2(g) -0.82 -2.28 -1.46 CO2 Pressure 0.2 atm, phi 0.998. - H2(g) -6.50 -9.60 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.997. - N2(g) -2.06 -5.23 -3.18 N2 Pressure 0.0 atm, phi 1.000. - NH3(g) -7.77 -6.00 1.77 NH3 - O2(g) -70.28 -73.17 -2.89 O2 - - -Reaction step 11. - -Using solution 1. Solution after simulation 1. -Using gas phase 1. Gas phase after simulation 3. -Using reaction 1. - -Reaction 1. - - 5.000e-001 moles of the following reaction have been added: - - Relative - Reactant moles - - CH2O(NH3)0.07 1.00000 - - Relative - Element moles - C 1.00000 - H 2.21000 - N 0.07000 - O 1.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 0.60 atmospheres (Peng-Robinson calculation) - Gas volume: 2.32e+001 liters - Molar volume: 4.10e+001 liters/mole - P * Vm / RT: 0.99774 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CH4(g) -0.56 2.758e-001 0.999 2.972e-022 2.620e-001 2.620e-001 -CO2(g) -0.57 2.709e-001 0.997 2.997e-002 2.574e-001 2.274e-001 -H2O(g) -1.50 3.154e-002 0.996 2.977e-002 2.997e-002 1.923e-004 -N2(g) -1.76 1.740e-002 1.000 0.000e+000 1.653e-002 1.653e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 1.668e-002 1.669e-002 - Ca 2.518e-003 2.519e-003 - N 1.936e-003 1.937e-003 - -----------------------------Description of solution---------------------------- - - pH = 6.172 Charge balance - pe = -2.951 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 530 - Density (g/cm3) = 0.99758 - Volume (L) = 1.00459 - Activity of water = 1.000 - Ionic strength = 9.183e-003 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 6.949e-003 - Total CO2 (mol/kg) = 1.629e-002 - Temperature (deg C) = 25.00 - Pressure (atm) = 0.60 - Electrical balance (eq) = -1.216e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 - Total H = 1.110690e+002 - Total O = 5.556594e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 7.350e-007 6.733e-007 -6.134 -6.172 -0.038 0.00 - OH- 1.663e-008 1.503e-008 -7.779 -7.823 -0.044 -4.04 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.07 -C(-4) 3.947e-004 - CH4 3.947e-004 3.955e-004 -3.404 -3.403 0.001 32.22 -C(4) 1.629e-002 - CO2 9.340e-003 9.359e-003 -2.030 -2.029 0.001 30.26 - HCO3- 6.804e-003 6.180e-003 -2.167 -2.209 -0.042 24.68 - CaHCO3+ 1.401e-004 1.275e-004 -3.854 -3.895 -0.041 9.72 - CaCO3 1.166e-006 1.169e-006 -5.933 -5.932 0.001 -14.60 - CO3-2 6.324e-007 4.304e-007 -6.199 -6.366 -0.167 -4.12 -Ca 2.518e-003 - Ca+2 2.377e-003 1.616e-003 -2.624 -2.791 -0.167 -17.94 - CaHCO3+ 1.401e-004 1.275e-004 -3.854 -3.895 -0.041 9.72 - CaCO3 1.166e-006 1.169e-006 -5.933 -5.932 0.001 -14.60 - CaOH+ 4.399e-010 3.983e-010 -9.357 -9.400 -0.043 (0) -H(0) 5.116e-010 - H2 2.558e-010 2.563e-010 -9.592 -9.591 0.001 28.61 -N(-3) 1.913e-003 - NH4+ 1.911e-003 1.722e-003 -2.719 -2.764 -0.045 (0) - NH3 1.454e-006 1.457e-006 -5.837 -5.836 0.001 (0) -N(0) 2.318e-005 - N2 1.159e-005 1.162e-005 -4.936 -4.935 0.001 29.29 -N(3) 0.000e+000 - NO2- 0.000e+000 0.000e+000 -61.560 -61.604 -0.045 25.03 -N(5) 0.000e+000 - NO3- 0.000e+000 0.000e+000 -83.689 -83.733 -0.045 29.59 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -73.199 -73.198 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Aragonite -0.82 -9.16 -8.34 CaCO3 - Calcite -0.68 -9.16 -8.48 CaCO3 - CH4(g) -0.56 -3.40 -2.84 CH4 Pressure 0.3 atm, phi 0.999. - CO2(g) -0.57 -2.03 -1.46 CO2 Pressure 0.3 atm, phi 0.997. - H2(g) -6.49 -9.59 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.996. - N2(g) -1.76 -4.93 -3.18 N2 Pressure 0.0 atm, phi 1.000. - NH3(g) -7.61 -5.84 1.77 NH3 - O2(g) -70.31 -73.20 -2.89 O2 - - -Reaction step 12. - -Using solution 1. Solution after simulation 1. -Using gas phase 1. Gas phase after simulation 3. -Using reaction 1. - -Reaction 1. - - 1.000e+000 moles of the following reaction have been added: - - Relative - Reactant moles - - CH2O(NH3)0.07 1.00000 - - Relative - Element moles - C 1.00000 - H 2.21000 - N 0.07000 - O 1.00000 - ------------------------------------Gas phase----------------------------------- - -Total pressure: 1.13 atmospheres (Peng-Robinson calculation) - Gas volume: 2.32e+001 liters - Molar volume: 2.16e+001 liters/mole - P * Vm / RT: 0.99589 (Compressibility Factor Z) - - Moles in gas - ---------------------------------- -Component log P P phi Initial Final Delta - -CH4(g) -0.26 5.505e-001 0.998 2.972e-022 5.239e-001 5.239e-001 -CO2(g) -0.29 5.093e-001 0.994 2.997e-002 4.848e-001 4.548e-001 -H2O(g) -1.50 3.165e-002 0.992 2.977e-002 3.012e-002 3.446e-004 -N2(g) -1.46 3.463e-002 1.001 0.000e+000 3.296e-002 3.296e-002 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - C 2.735e-002 2.737e-002 - Ca 2.517e-003 2.519e-003 - N 4.080e-003 4.084e-003 - -----------------------------Description of solution---------------------------- - - pH = 6.011 Charge balance - pe = -2.794 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 610 - Density (g/cm3) = 0.99782 - Volume (L) = 1.00581 - Activity of water = 0.999 - Ionic strength = 1.123e-002 - Mass of water (kg) = 1.001e+000 - Total alkalinity (eq/kg) = 9.068e-003 - Total CO2 (mol/kg) = 2.656e-002 - Temperature (deg C) = 25.00 - Pressure (atm) = 1.13 - Electrical balance (eq) = -1.230e-009 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 - Total H = 1.111259e+002 - Total O = 5.561103e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.071e-006 9.741e-007 -5.970 -6.011 -0.041 0.00 - OH- 1.160e-008 1.039e-008 -7.935 -7.984 -0.048 -4.03 - H2O 5.551e+001 9.994e-001 1.744 -0.000 0.000 18.07 -C(-4) 7.863e-004 - CH4 7.863e-004 7.884e-004 -3.104 -3.103 0.001 32.22 -C(4) 2.656e-002 - CO2 1.750e-002 1.754e-002 -1.757 -1.756 0.001 30.26 - HCO3- 8.890e-003 8.006e-003 -2.051 -2.097 -0.046 24.70 - CaHCO3+ 1.742e-004 1.572e-004 -3.759 -3.804 -0.045 9.73 - CaCO3 9.939e-007 9.965e-007 -6.003 -6.002 0.001 -14.60 - CO3-2 5.861e-007 3.855e-007 -6.232 -6.414 -0.182 -4.07 -Ca 2.517e-003 - Ca+2 2.342e-003 1.539e-003 -2.630 -2.813 -0.182 -17.91 - CaHCO3+ 1.742e-004 1.572e-004 -3.759 -3.804 -0.045 9.73 - CaCO3 9.939e-007 9.965e-007 -6.003 -6.002 0.001 -14.60 - CaOH+ 2.921e-010 2.620e-010 -9.534 -9.582 -0.047 (0) -H(0) 5.192e-010 - H2 2.596e-010 2.603e-010 -9.586 -9.585 0.001 28.61 -N(-3) 4.034e-003 - NH4+ 4.032e-003 3.596e-003 -2.394 -2.444 -0.050 (0) - NH3 2.098e-006 2.104e-006 -5.678 -5.677 0.001 (0) -N(0) 4.611e-005 - N2 2.306e-005 2.312e-005 -4.637 -4.636 0.001 29.29 -N(3) 0.000e+000 - NO2- 0.000e+000 0.000e+000 -61.576 -61.625 -0.049 25.04 -N(5) 0.000e+000 - NO3- 0.000e+000 0.000e+000 -83.712 -83.761 -0.049 29.60 -O(0) 0.000e+000 - O2 0.000e+000 0.000e+000 -73.213 -73.211 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Aragonite -0.89 -9.23 -8.34 CaCO3 - Calcite -0.75 -9.23 -8.48 CaCO3 - CH4(g) -0.26 -3.10 -2.84 CH4 Pressure 0.6 atm, phi 0.998. - CO2(g) -0.30 -1.76 -1.46 CO2 Pressure 0.5 atm, phi 0.994. - H2(g) -6.48 -9.58 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.992. - N2(g) -1.46 -4.64 -3.18 N2 Pressure 0.0 atm, phi 1.001. - NH3(g) -7.45 -5.68 1.77 NH3 - O2(g) -70.32 -73.21 -2.89 O2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 4. ------------------------------------- - -------------------------------- -End of Run after 0.726 Seconds. -------------------------------- - diff --git a/examples_pc/ex7.sel b/examples_pc/ex7.sel deleted file mode 100644 index f1ab515c..00000000 --- a/examples_pc/ex7.sel +++ /dev/null @@ -1,28 +0,0 @@ - sim state reaction si_CO2(g) si_CH4(g) si_N2(g) si_NH3(g) pressure total mol volume g_CO2(g) g_CH4(g) g_N2(g) g_NH3(g) - 1 i_soln -99 -999.9990 -999.9990 -999.9990 -999.9990 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 - 1 react -99 -1.5001 -21.5037 -999.9990 -999.9990 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 - 2 react 1.0000e-003 -1.3566 -0.4572 -3.9823 -8.3839 1.1000e+000 1.0000e-025 3.0000e-027 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 - 2 react 2.0000e-003 -1.2487 -0.1562 -3.7283 -8.1845 1.1000e+000 1.0000e-025 3.0000e-027 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 - 2 react 3.0000e-003 -1.1633 -0.0015 -3.5874 -8.0880 1.1000e+000 7.9277e-005 2.3783e-006 4.9773e-006 7.2006e-005 1.8636e-008 0.0000e+000 - 2 react 4.0000e-003 -1.0977 -0.0064 -3.4060 -8.0238 1.1000e+000 6.5544e-004 1.9663e-005 4.7858e-005 5.8854e-004 2.3395e-007 0.0000e+000 - 2 react 8.0000e-003 -0.9166 -0.0254 -2.9821 -7.8869 1.1000e+000 3.0845e-003 9.2536e-005 3.4177e-004 2.6513e-003 2.9219e-006 0.0000e+000 - 2 react 1.6000e-002 -0.7240 -0.0587 -2.5485 -7.7548 1.1000e+000 8.4999e-003 2.5500e-004 1.4676e-003 6.7663e-003 2.1847e-005 0.0000e+000 - 2 react 3.2000e-002 -0.5545 -0.1090 -2.1058 -7.6159 1.1000e+000 2.1159e-002 6.3476e-004 5.3975e-003 1.5002e-002 1.5072e-004 0.0000e+000 - 2 react 6.4000e-002 -0.4375 -0.1661 -1.7634 -7.5100 1.1000e+000 5.0884e-002 1.5265e-003 1.6994e-002 3.1630e-002 7.9728e-004 0.0000e+000 - 2 react 1.2500e-001 -0.3752 -0.2095 -1.5908 -7.4633 1.1000e+000 1.1308e-001 3.3924e-003 4.3587e-002 6.3606e-002 2.6365e-003 0.0000e+000 - 2 react 2.5000e-001 -0.3434 -0.2366 -1.5108 -7.4454 1.1000e+000 2.4474e-001 7.3422e-003 1.0151e-001 1.2933e-001 6.8599e-003 0.0000e+000 - 2 react 5.0000e-001 -0.3281 -0.2511 -1.4748 -7.4387 1.1000e+000 5.1038e-001 1.5312e-002 2.1930e-001 2.6087e-001 1.5539e-002 0.0000e+000 - 2 react 1.0000e+000 -0.3206 -0.2585 -1.4580 -7.4358 1.1000e+000 1.0428e+000 3.1285e-002 4.5585e-001 5.2398e-001 3.3004e-002 0.0000e+000 - 3 i_gas -99 -1.5001 -21.5037 -999.9990 -999.9990 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 - 3 react 1.0000e-003 -1.4939 -3.2573 -4.4522 -9.6174 6.4110e-002 6.0800e-002 1.8240e-003 3.0424e-002 5.2433e-004 3.3467e-005 0.0000e+000 - 3 react 2.0000e-003 -1.4874 -2.9562 -4.1498 -9.3557 6.5179e-002 6.1814e-002 1.8544e-003 3.0880e-002 1.0488e-003 6.7156e-005 0.0000e+000 - 3 react 3.0000e-003 -1.4811 -2.7801 -3.9729 -9.2036 6.6248e-002 6.2828e-002 1.8848e-003 3.1335e-002 1.5734e-003 1.0090e-004 0.0000e+000 - 3 react 4.0000e-003 -1.4748 -2.6551 -3.8475 -9.0964 6.7318e-002 6.3842e-002 1.9153e-003 3.1791e-002 2.0979e-003 1.3468e-004 0.0000e+000 - 3 react 8.0000e-003 -1.4506 -2.3541 -3.5456 -8.8416 7.1596e-002 6.7899e-002 2.0370e-003 3.3613e-002 4.1962e-003 2.6990e-004 0.0000e+000 - 3 react 1.6000e-002 -1.4059 -2.0530 -3.2442 -8.5948 8.0150e-002 7.6014e-002 2.2804e-003 3.7258e-002 8.3928e-003 5.4031e-004 0.0000e+000 - 3 react 3.2000e-002 -1.3284 -1.7521 -2.9435 -8.3606 9.7256e-002 9.2239e-002 2.7672e-003 4.4546e-002 1.6785e-002 1.0800e-003 0.0000e+000 - 3 react 6.4000e-002 -1.2056 -1.4512 -2.6436 -8.1439 1.3144e-001 1.2468e-001 3.7403e-003 5.9118e-002 3.3566e-002 2.1542e-003 0.0000e+000 - 3 react 1.2500e-001 -1.0387 -1.1607 -2.3551 -7.9533 1.9655e-001 1.8647e-001 5.5940e-003 8.6880e-002 6.5544e-002 4.1871e-003 0.0000e+000 - 3 react 2.5000e-001 -0.8206 -0.8601 -2.0572 -7.7735 3.2977e-001 3.1299e-001 9.3896e-003 1.4373e-001 1.3105e-001 8.3180e-003 0.0000e+000 - 3 react 5.0000e-001 -0.5686 -0.5599 -1.7592 -7.6065 5.9570e-001 5.6590e-001 1.6977e-002 2.5739e-001 2.6201e-001 1.6532e-002 0.0000e+000 - 3 react 1.0000e+000 -0.2957 -0.2602 -1.4603 -7.4470 1.1261e+000 1.0718e+000 3.2154e-002 4.8477e-001 5.2395e-001 3.2958e-002 0.0000e+000 diff --git a/examples_pc/ex8.out b/examples_pc/ex8.out deleted file mode 100644 index 4e7de900..00000000 --- a/examples_pc/ex8.out +++ /dev/null @@ -1,3829 +0,0 @@ - Input file: ..\examples\ex8 - Output file: ex8.out -Database file: ..\database\phreeqc.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - PHASES - EXCHANGE_MASTER_SPECIES - EXCHANGE_SPECIES - SURFACE_MASTER_SPECIES - SURFACE_SPECIES - RATES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Example 8.--Sorption of zinc on hydrous iron oxides. - SURFACE_SPECIES - Hfo_sOH + H+ = Hfo_sOH2+ - log_k 7.18 - Hfo_sOH = Hfo_sO- + H+ - log_k -8.82 - Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ - log_k 0.66 - Hfo_wOH + H+ = Hfo_wOH2+ - log_k 7.18 - Hfo_wOH = Hfo_wO- + H+ - log_k -8.82 - Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ - log_k -2.32 - SURFACE 1 - Hfo_sOH 5e-6 600. 0.09 - Hfo_wOH 2e-4 - END ------ -TITLE ------ - - Example 8.--Sorption of zinc on hydrous iron oxides. - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 2. ------------------------------------- - - SOLUTION 1 - units mmol/kgw - pH 8.0 - Zn 0.0001 - Na 100. charge - N(5) 100. - SELECTED_OUTPUT - file Zn1e_7 - reset false - USER_PUNCH - 10 FOR i = 5.0 to 8 STEP 0.25 - 20 a$ = EOL$ + "USE solution 1" + CHR$(59) + " USE surface 1" + EOL$ - 30 a$ = a$ + "EQUILIBRIUM_PHASES 1" + EOL$ - 40 a$ = a$ + " Fix_H+ " + STR$(-i) + " NaOH 10.0" + EOL$ - 50 a$ = a$ + "END" + EOL$ - 60 PUNCH a$ - 70 NEXT i - END -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 1. - -WARNING: USER_PUNCH: Headings count doesn't match number of calls to PUNCH. - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - N(5) 1.000e-001 1.000e-001 - Na 1.000e-001 1.000e-001 Charge balance - Zn 1.000e-007 1.000e-007 - -----------------------------Description of solution---------------------------- - - pH = 8.000 - pe = 4.000 - Specific Conductance (uS/cm, 25 oC) = 10341 - Density (g/cm3) = 1.00265 - Volume (L) = 1.00584 - Activity of water = 0.997 - Ionic strength = 1.000e-001 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.326e-006 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 7.223e-016 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 9 - Total H = 1.110124e+002 - Total O = 5.580622e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.324e-006 1.009e-006 -5.878 -5.996 -0.118 -3.73 - H+ 1.212e-008 1.000e-008 -7.917 -8.000 -0.083 0.00 - H2O 5.551e+001 9.966e-001 1.744 -0.001 0.000 18.07 -H(0) 1.384e-027 - H2 6.918e-028 7.079e-028 -27.160 -27.150 0.010 28.61 -N(5) 1.000e-001 - NO3- 1.000e-001 7.534e-002 -1.000 -1.123 -0.123 29.81 -Na 1.000e-001 - Na+ 1.000e-001 7.851e-002 -1.000 -1.105 -0.105 -1.09 - NaOH 7.739e-018 7.920e-018 -17.111 -17.101 0.010 (0) -O(0) 1.615e-038 - O2 8.073e-039 8.261e-039 -38.093 -38.083 0.010 30.40 -Zn 1.000e-007 - Zn+2 9.102e-008 3.424e-008 -7.041 -7.465 -0.425 -23.59 - ZnOH+ 4.790e-009 3.742e-009 -8.320 -8.427 -0.107 (0) - Zn(OH)2 4.184e-009 4.282e-009 -8.378 -8.368 0.010 (0) - Zn(OH)3- 1.727e-012 1.349e-012 -11.763 -11.870 -0.107 (0) - Zn(OH)4-2 5.722e-017 2.131e-017 -16.242 -16.671 -0.429 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - H2(g) -24.05 -27.15 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - O2(g) -35.19 -38.08 -2.89 O2 - Zn(OH)2(e) -2.97 8.53 11.50 Zn(OH)2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 3. ------------------------------------- - - SOLUTION 2 - units mmol/kgw - pH 8.0 - Zn 0.1 - Na 100. charge - N(5) 100. - SELECTED_OUTPUT - file Zn1e_4 - reset false - USER_PUNCH - 10 FOR i = 5 to 8 STEP 0.25 - 20 a$ = EOL$ + "USE solution 2" + CHR$(59) + " USE surface 1" + EOL$ - 30 a$ = a$ + "EQUILIBRIUM_PHASES 1" + EOL$ - 40 a$ = a$ + " Fix_H+ " + STR$(-i) + " NaOH 10.0" + EOL$ - 50 a$ = a$ + "END" + EOL$ - 60 PUNCH a$ - 70 NEXT i - END -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 2. - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - N(5) 1.000e-001 1.000e-001 - Na 9.981e-002 9.981e-002 Charge balance - Zn 1.000e-004 1.000e-004 - -----------------------------Description of solution---------------------------- - - pH = 8.000 - pe = 4.000 - Specific Conductance (uS/cm, 25 oC) = 10339 - Density (g/cm3) = 1.00265 - Volume (L) = 1.00584 - Activity of water = 0.997 - Ionic strength = 1.001e-001 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.447e-005 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 7.308e-016 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 9 - Total H = 1.110124e+002 - Total O = 5.580623e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.325e-006 1.009e-006 -5.878 -5.996 -0.118 -3.73 - H+ 1.212e-008 1.000e-008 -7.917 -8.000 -0.083 0.00 - H2O 5.551e+001 9.966e-001 1.744 -0.001 0.000 18.07 -H(0) 1.384e-027 - H2 6.918e-028 7.079e-028 -27.160 -27.150 0.010 28.61 -N(5) 1.000e-001 - NO3- 1.000e-001 7.533e-002 -1.000 -1.123 -0.123 29.81 -Na 9.981e-002 - Na+ 9.981e-002 7.836e-002 -1.001 -1.106 -0.105 -1.09 - NaOH 7.724e-018 7.904e-018 -17.112 -17.102 0.010 (0) -O(0) 1.615e-038 - O2 8.073e-039 8.261e-039 -38.093 -38.083 0.010 30.40 -Zn 1.000e-004 - Zn+2 9.103e-005 3.423e-005 -4.041 -4.466 -0.425 -23.59 - ZnOH+ 4.789e-006 3.741e-006 -5.320 -5.427 -0.107 (0) - Zn(OH)2 4.183e-006 4.280e-006 -5.379 -5.369 0.010 (0) - Zn(OH)3- 1.727e-009 1.349e-009 -8.763 -8.870 -0.107 (0) - Zn(OH)4-2 5.722e-014 2.131e-014 -13.242 -13.671 -0.429 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - H2(g) -24.05 -27.15 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - O2(g) -35.19 -38.08 -2.89 O2 - Zn(OH)2(e) 0.03 11.53 11.50 Zn(OH)2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 4. ------------------------------------- - - PHASES - Fix_H+ - H+ = H+ - log_k 0.0 - END ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 5. ------------------------------------- - - SELECTED_OUTPUT - file ex8.sel - reset true - molalities Zn+2 Hfo_wOZn+ Hfo_sOZn+ - USER_PUNCH - 10 - USER_GRAPH 1 Example 8 - -headings pH Zn_solute Zn_weak_sites Zn_strong_sites Charge_balance - -chart_title "Total Zn = 1e-7 molal" - -axis_titles pH "Moles per kilogram water" "Charge balance, in milliequivalents" - -axis_scale x_axis 5.0 8.0 1 0.25 - -axis_scale y_axis 1e-11 1e-6 1 1 log - -axis_scale sy_axis -0.15 0 0.03 - -start - 10 GRAPH_X -LA("H+") - 20 GRAPH_Y MOL("Zn+2"), MOL("Hfo_wOZn+"), MOL("Hfo_sOZn+") - 30 GRAPH_SY CHARGE_BALANCE * 1e3 - -end - USE solution 1 - USE surface 1 - EQUILIBRIUM_PHASES 1 - Fix_H+ -5 NaOH 10.0 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. -Using surface 1. -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Fix_H+ -5.00 -5.00 0.00 - NaOH is reactant 1.000e+001 1.000e+001 1.272e-004 - -------------------------------Surface composition------------------------------ - -Hfo - 1.123e-004 Surface charge, eq - 2.006e-001 sigma, C/m**2 - 1.228e-001 psi, V - -4.779e+000 -F*psi/RT - 8.404e-003 exp(-F*psi/RT) - 6.000e+002 specific area, m**2/g - 5.400e+001 m**2 for 9.000e-002 g - - -Hfo_s - 5.000e-006 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_sOH2+ 2.777e-006 0.555 2.777e-006 -5.556 - Hfo_sOH 2.183e-006 0.437 2.183e-006 -5.661 - Hfo_sO- 3.932e-008 0.008 3.932e-008 -7.405 - Hfo_sOZn+ 3.145e-010 0.000 3.145e-010 -9.502 - -Hfo_w - 2.000e-004 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_wOH2+ 1.111e-004 0.555 1.111e-004 -3.954 - Hfo_wOH 8.734e-005 0.437 8.734e-005 -4.059 - Hfo_wO- 1.573e-006 0.008 1.573e-006 -5.803 - Hfo_wOZn+ 1.317e-011 0.000 1.317e-011 -10.880 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - N 1.000e-001 1.000e-001 - Na 9.987e-002 9.987e-002 - Zn 9.967e-008 9.967e-008 - -----------------------------Description of solution---------------------------- - - pH = 5.000 Charge balance - pe = 15.095 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 10339 - Density (g/cm3) = 1.00264 - Volume (L) = 1.00583 - Activity of water = 0.997 - Ionic strength = 9.994e-002 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = -1.211e-005 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.123e-004 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.06 - Iterations = 17 - Total H = 1.110122e+002 - Total O = 5.580609e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.212e-005 1.000e-005 -4.917 -5.000 -0.083 0.00 - OH- 1.324e-009 1.009e-009 -8.878 -8.996 -0.118 -3.73 - H2O 5.551e+001 9.966e-001 1.744 -0.001 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -43.349 -43.339 0.010 28.61 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -52.670 -52.798 -0.128 18.17 - NH3 0.000e+000 0.000e+000 -57.052 -57.042 0.010 24.46 -N(0) 1.543e-006 - N2 7.715e-007 7.895e-007 -6.113 -6.103 0.010 29.29 -N(3) 2.412e-013 - NO2- 2.412e-013 1.817e-013 -12.618 -12.741 -0.123 25.24 -N(5) 1.000e-001 - NO3- 1.000e-001 7.535e-002 -1.000 -1.123 -0.123 29.81 -Na 9.987e-002 - Na+ 9.987e-002 7.841e-002 -1.001 -1.106 -0.105 -1.09 - NaOH 7.730e-021 7.910e-021 -20.112 -20.102 0.010 (0) -O(0) 3.858e-006 - O2 1.929e-006 1.974e-006 -5.715 -5.705 0.010 30.40 -Zn 9.967e-008 - Zn+2 9.967e-008 3.750e-008 -7.001 -7.426 -0.425 -23.59 - ZnOH+ 5.245e-012 4.098e-012 -11.280 -11.387 -0.107 (0) - Zn(OH)2 4.582e-015 4.689e-015 -14.339 -14.329 0.010 (0) - Zn(OH)3- 1.892e-021 1.478e-021 -20.723 -20.830 -0.107 (0) - Zn(OH)4-2 6.266e-029 2.334e-029 -28.203 -28.632 -0.429 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Fix_H+ -5.00 -5.00 0.00 H+ - H2(g) -40.24 -43.34 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -2.93 -6.10 -3.18 N2 - NH3(g) -58.84 -57.04 1.80 NH3 - O2(g) -2.81 -5.70 -2.89 O2 - Zn(OH)2(e) -8.93 2.57 11.50 Zn(OH)2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 6. ------------------------------------- - - USE solution 1 - USE surface 1 - EQUILIBRIUM_PHASES 1 - Fix_H+ -5.2500e+000 NaOH 10.0 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. -Using surface 1. -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Fix_H+ -5.25 -5.25 0.00 - NaOH is reactant 1.000e+001 1.000e+001 1.059e-004 - -------------------------------Surface composition------------------------------ - -Hfo - 9.667e-005 Surface charge, eq - 1.727e-001 sigma, C/m**2 - 1.152e-001 psi, V - -4.486e+000 -F*psi/RT - 1.127e-002 exp(-F*psi/RT) - 6.000e+002 specific area, m**2/g - 5.400e+001 m**2 for 9.000e-002 g - - -Hfo_s - 5.000e-006 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_sOH 2.521e-006 0.504 2.521e-006 -5.598 - Hfo_sOH2+ 2.418e-006 0.484 2.418e-006 -5.617 - Hfo_sO- 6.023e-008 0.012 6.023e-008 -7.220 - Hfo_sOZn+ 8.608e-010 0.000 8.608e-010 -9.065 - -Hfo_w - 2.000e-004 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_wOH 1.009e-004 0.504 1.009e-004 -3.996 - Hfo_wOH2+ 9.673e-005 0.484 9.673e-005 -4.014 - Hfo_wO- 2.410e-006 0.012 2.410e-006 -5.618 - Hfo_wOZn+ 3.606e-011 0.000 3.606e-011 -10.443 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - N 1.000e-001 1.000e-001 - Na 9.990e-002 9.990e-002 - Zn 9.910e-008 9.910e-008 - -----------------------------Description of solution---------------------------- - - pH = 5.250 Charge balance - pe = 14.809 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 10339 - Density (g/cm3) = 1.00264 - Volume (L) = 1.00584 - Activity of water = 0.997 - Ionic strength = 9.995e-002 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = -6.811e-006 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -9.667e-005 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.05 - Iterations = 21 - Total H = 1.110122e+002 - Total O = 5.580611e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 6.813e-006 5.623e-006 -5.167 -5.250 -0.083 0.00 - OH- 2.355e-009 1.794e-009 -8.628 -8.746 -0.118 -3.73 - H2O 5.551e+001 9.966e-001 1.744 -0.001 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -43.278 -43.268 0.010 28.61 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -52.884 -53.012 -0.128 18.17 - NH3 0.000e+000 0.000e+000 -57.017 -57.007 0.010 24.46 -N(0) 1.111e-006 - N2 5.553e-007 5.682e-007 -6.255 -6.246 0.010 29.29 -N(3) 2.843e-013 - NO2- 2.843e-013 2.142e-013 -12.546 -12.669 -0.123 25.24 -N(5) 1.000e-001 - NO3- 1.000e-001 7.535e-002 -1.000 -1.123 -0.123 29.81 -Na 9.990e-002 - Na+ 9.990e-002 7.843e-002 -1.000 -1.106 -0.105 -1.09 - NaOH 1.375e-020 1.407e-020 -19.862 -19.852 0.010 (0) -O(0) 2.776e-006 - O2 1.388e-006 1.420e-006 -5.858 -5.848 0.010 30.40 -Zn 9.910e-008 - Zn+2 9.909e-008 3.728e-008 -7.004 -7.428 -0.425 -23.59 - ZnOH+ 9.274e-012 7.245e-012 -11.033 -11.140 -0.107 (0) - Zn(OH)2 1.441e-014 1.474e-014 -13.841 -13.831 0.010 (0) - Zn(OH)3- 1.058e-020 8.262e-021 -19.976 -20.083 -0.107 (0) - Zn(OH)4-2 6.230e-028 2.321e-028 -27.206 -27.634 -0.429 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Fix_H+ -5.25 -5.25 0.00 H+ - H2(g) -40.17 -43.27 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.07 -6.25 -3.18 N2 - NH3(g) -58.80 -57.01 1.80 NH3 - O2(g) -2.96 -5.85 -2.89 O2 - Zn(OH)2(e) -8.43 3.07 11.50 Zn(OH)2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 7. ------------------------------------- - - USE solution 1 - USE surface 1 - EQUILIBRIUM_PHASES 1 - Fix_H+ -5.5000e+000 NaOH 10.0 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. -Using surface 1. -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Fix_H+ -5.50 -5.50 0.00 - NaOH is reactant 1.000e+001 1.000e+001 8.808e-005 - -------------------------------Surface composition------------------------------ - -Hfo - 8.214e-005 Surface charge, eq - 1.468e-001 sigma, C/m**2 - 1.071e-001 psi, V - -4.168e+000 -F*psi/RT - 1.548e-002 exp(-F*psi/RT) - 6.000e+002 specific area, m**2/g - 5.400e+001 m**2 for 9.000e-002 g - - -Hfo_s - 5.000e-006 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_sOH 2.821e-006 0.564 2.821e-006 -5.550 - Hfo_sOH2+ 2.090e-006 0.418 2.090e-006 -5.680 - Hfo_sO- 8.724e-008 0.017 8.724e-008 -7.059 - Hfo_sOZn+ 2.317e-009 0.000 2.317e-009 -8.635 - -Hfo_w - 2.000e-004 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_wOH 1.129e-004 0.564 1.129e-004 -3.947 - Hfo_wOH2+ 8.362e-005 0.418 8.362e-005 -4.078 - Hfo_wO- 3.491e-006 0.017 3.491e-006 -5.457 - Hfo_wOZn+ 9.707e-011 0.000 9.707e-011 -10.013 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - N 1.000e-001 1.000e-001 - Na 9.991e-002 9.991e-002 - Zn 9.759e-008 9.759e-008 - -----------------------------Description of solution---------------------------- - - pH = 5.500 Charge balance - pe = 14.523 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 10338 - Density (g/cm3) = 1.00265 - Volume (L) = 1.00584 - Activity of water = 0.997 - Ionic strength = 9.996e-002 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = -3.827e-006 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -8.214e-005 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.04 - Iterations = 20 - Total H = 1.110123e+002 - Total O = 5.580613e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 3.831e-006 3.162e-006 -5.417 -5.500 -0.083 0.00 - OH- 4.188e-009 3.190e-009 -8.378 -8.496 -0.118 -3.73 - H2O 5.551e+001 9.966e-001 1.744 -0.001 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -43.206 -43.196 0.010 28.61 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -53.098 -53.226 -0.128 18.17 - NH3 0.000e+000 0.000e+000 -56.981 -56.971 0.010 24.46 -N(0) 7.998e-007 - N2 3.999e-007 4.092e-007 -6.398 -6.388 0.010 29.29 -N(3) 3.352e-013 - NO2- 3.352e-013 2.525e-013 -12.475 -12.598 -0.123 25.24 -N(5) 1.000e-001 - NO3- 1.000e-001 7.534e-002 -1.000 -1.123 -0.123 29.81 -Na 9.991e-002 - Na+ 9.991e-002 7.844e-002 -1.000 -1.105 -0.105 -1.09 - NaOH 2.445e-020 2.502e-020 -19.612 -19.602 0.010 (0) -O(0) 1.997e-006 - O2 9.987e-007 1.022e-006 -6.001 -5.991 0.010 30.40 -Zn 9.759e-008 - Zn+2 9.757e-008 3.671e-008 -7.011 -7.435 -0.425 -23.59 - ZnOH+ 1.624e-011 1.269e-011 -10.789 -10.897 -0.107 (0) - Zn(OH)2 4.486e-014 4.590e-014 -13.348 -13.338 0.010 (0) - Zn(OH)3- 5.855e-020 4.574e-020 -19.232 -19.340 -0.107 (0) - Zn(OH)4-2 6.134e-027 2.285e-027 -26.212 -26.641 -0.429 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Fix_H+ -5.50 -5.50 0.00 H+ - H2(g) -40.10 -43.20 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.21 -6.39 -3.18 N2 - NH3(g) -58.77 -56.97 1.80 NH3 - O2(g) -3.10 -5.99 -2.89 O2 - Zn(OH)2(e) -7.94 3.56 11.50 Zn(OH)2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 8. ------------------------------------- - - USE solution 1 - USE surface 1 - EQUILIBRIUM_PHASES 1 - Fix_H+ -5.7500e+000 NaOH 10.0 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. -Using surface 1. -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Fix_H+ -5.75 -5.75 0.00 - NaOH is reactant 1.000e+001 1.000e+001 7.292e-005 - -------------------------------Surface composition------------------------------ - -Hfo - 6.888e-005 Surface charge, eq - 1.231e-001 sigma, C/m**2 - 9.838e-002 psi, V - -3.829e+000 -F*psi/RT - 2.173e-002 exp(-F*psi/RT) - 6.000e+002 specific area, m**2/g - 5.400e+001 m**2 for 9.000e-002 g - - -Hfo_s - 5.000e-006 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_sOH 3.075e-006 0.615 3.075e-006 -5.512 - Hfo_sOH2+ 1.798e-006 0.360 1.798e-006 -5.745 - Hfo_sO- 1.205e-007 0.024 1.205e-007 -6.919 - Hfo_sOZn+ 6.052e-009 0.001 6.052e-009 -8.218 - -Hfo_w - 2.000e-004 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_wOH 1.232e-004 0.616 1.232e-004 -3.910 - Hfo_wOH2+ 7.202e-005 0.360 7.202e-005 -4.143 - Hfo_wO- 4.824e-006 0.024 4.824e-006 -5.317 - Hfo_wOZn+ 2.538e-010 0.000 2.538e-010 -9.596 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - N 1.000e-001 1.000e-001 - Na 9.993e-002 9.993e-002 - Zn 9.369e-008 9.369e-008 - -----------------------------Description of solution---------------------------- - - pH = 5.750 Charge balance - pe = 14.237 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 10339 - Density (g/cm3) = 1.00265 - Volume (L) = 1.00584 - Activity of water = 0.997 - Ionic strength = 9.997e-002 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = -2.147e-006 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -6.888e-005 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.03 - Iterations = 22 - Total H = 1.110123e+002 - Total O = 5.580615e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 2.155e-006 1.778e-006 -5.667 -5.750 -0.083 0.00 - OH- 7.448e-009 5.672e-009 -8.128 -8.246 -0.118 -3.73 - H2O 5.551e+001 9.966e-001 1.744 -0.001 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -43.135 -43.125 0.010 28.61 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -53.313 -53.441 -0.128 18.17 - NH3 0.000e+000 0.000e+000 -56.945 -56.935 0.010 24.46 -N(0) 5.752e-007 - N2 2.876e-007 2.943e-007 -6.541 -6.531 0.010 29.29 -N(3) 3.950e-013 - NO2- 3.950e-013 2.976e-013 -12.403 -12.526 -0.123 25.24 -N(5) 1.000e-001 - NO3- 1.000e-001 7.534e-002 -1.000 -1.123 -0.123 29.81 -Na 9.993e-002 - Na+ 9.993e-002 7.846e-002 -1.000 -1.105 -0.105 -1.09 - NaOH 4.349e-020 4.450e-020 -19.362 -19.352 0.010 (0) -O(0) 1.438e-006 - O2 7.190e-007 7.357e-007 -6.143 -6.133 0.010 30.40 -Zn 9.369e-008 - Zn+2 9.367e-008 3.524e-008 -7.028 -7.453 -0.425 -23.59 - ZnOH+ 2.772e-011 2.165e-011 -10.557 -10.664 -0.107 (0) - Zn(OH)2 1.362e-013 1.393e-013 -12.866 -12.856 0.010 (0) - Zn(OH)3- 3.161e-019 2.469e-019 -18.500 -18.607 -0.107 (0) - Zn(OH)4-2 5.889e-026 2.193e-026 -25.230 -25.659 -0.429 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Fix_H+ -5.75 -5.75 0.00 H+ - H2(g) -40.02 -43.12 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.36 -6.53 -3.18 N2 - NH3(g) -58.73 -56.94 1.80 NH3 - O2(g) -3.24 -6.13 -2.89 O2 - Zn(OH)2(e) -7.46 4.04 11.50 Zn(OH)2 - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 9. ------------------------------------- - - USE solution 1 - USE surface 1 - EQUILIBRIUM_PHASES 1 - Fix_H+ -6 NaOH 10.0 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. -Using surface 1. -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Fix_H+ -6.00 -6.00 0.00 - NaOH is reactant 1.000e+001 1.000e+001 5.991e-005 - -------------------------------Surface composition------------------------------ - -Hfo - 5.700e-005 Surface charge, eq - 1.019e-001 sigma, C/m**2 - 8.914e-002 psi, V - -3.470e+000 -F*psi/RT - 3.113e-002 exp(-F*psi/RT) - 6.000e+002 specific area, m**2/g - 5.400e+001 m**2 for 9.000e-002 g - - -Hfo_s - 5.000e-006 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_sOH 3.280e-006 0.656 3.280e-006 -5.484 - Hfo_sOH2+ 1.545e-006 0.309 1.545e-006 -5.811 - Hfo_sO- 1.595e-007 0.032 1.595e-007 -6.797 - Hfo_sOZn+ 1.484e-008 0.003 1.484e-008 -7.829 - -Hfo_w - 2.000e-004 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_wOH 1.316e-004 0.658 1.316e-004 -3.881 - Hfo_wOH2+ 6.200e-005 0.310 6.200e-005 -4.208 - Hfo_wO- 6.399e-006 0.032 6.399e-006 -5.194 - Hfo_wOZn+ 6.232e-010 0.000 6.232e-010 -9.205 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - N 1.000e-001 1.000e-001 - Na 9.994e-002 9.994e-002 - Zn 8.454e-008 8.454e-008 - -----------------------------Description of solution---------------------------- - - pH = 6.000 Charge balance - pe = 13.952 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 10339 - Density (g/cm3) = 1.00265 - Volume (L) = 1.00584 - Activity of water = 0.997 - Ionic strength = 9.997e-002 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = -1.198e-006 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -5.700e-005 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.03 - Iterations = 21 - Total H = 1.110123e+002 - Total O = 5.580616e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.212e-006 1.000e-006 -5.917 -6.000 -0.083 0.00 - OH- 1.324e-008 1.009e-008 -7.878 -7.996 -0.118 -3.73 - H2O 5.551e+001 9.966e-001 1.744 -0.001 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -43.063 -43.053 0.010 28.61 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -53.527 -53.655 -0.128 18.17 - NH3 0.000e+000 0.000e+000 -56.909 -56.899 0.010 24.46 -N(0) 4.140e-007 - N2 2.070e-007 2.118e-007 -6.684 -6.674 0.010 29.29 -N(3) 4.657e-013 - NO2- 4.657e-013 3.508e-013 -12.332 -12.455 -0.123 25.24 -N(5) 1.000e-001 - NO3- 1.000e-001 7.534e-002 -1.000 -1.123 -0.123 29.81 -Na 9.994e-002 - Na+ 9.994e-002 7.847e-002 -1.000 -1.105 -0.105 -1.09 - NaOH 7.735e-020 7.915e-020 -19.112 -19.102 0.010 (0) -O(0) 1.035e-006 - O2 5.174e-007 5.295e-007 -6.286 -6.276 0.010 30.40 -Zn 8.454e-008 - Zn+2 8.450e-008 3.179e-008 -7.073 -7.498 -0.425 -23.59 - ZnOH+ 4.447e-011 3.474e-011 -10.352 -10.459 -0.107 (0) - Zn(OH)2 3.884e-013 3.975e-013 -12.411 -12.401 0.010 (0) - Zn(OH)3- 1.603e-018 1.253e-018 -17.795 -17.902 -0.107 (0) - Zn(OH)4-2 5.312e-025 1.979e-025 -24.275 -24.704 -0.429 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Fix_H+ -6.00 -6.00 0.00 H+ - H2(g) -39.95 -43.05 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.50 -6.67 -3.18 N2 - NH3(g) -58.70 -56.90 1.80 NH3 - O2(g) -3.38 -6.28 -2.89 O2 - Zn(OH)2(e) -7.00 4.50 11.50 Zn(OH)2 - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 10. -------------------------------------- - - USE solution 1 - USE surface 1 - EQUILIBRIUM_PHASES 1 - Fix_H+ -6.2500e+000 NaOH 10.0 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. -Using surface 1. -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Fix_H+ -6.25 -6.25 0.00 - NaOH is reactant 1.000e+001 1.000e+001 4.869e-005 - -------------------------------Surface composition------------------------------ - -Hfo - 4.647e-005 Surface charge, eq - 8.304e-002 sigma, C/m**2 - 7.941e-002 psi, V - -3.091e+000 -F*psi/RT - 4.545e-002 exp(-F*psi/RT) - 6.000e+002 specific area, m**2/g - 5.400e+001 m**2 for 9.000e-002 g - - -Hfo_s - 5.000e-006 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_sOH 3.436e-006 0.687 3.436e-006 -5.464 - Hfo_sOH2+ 1.329e-006 0.266 1.329e-006 -5.876 - Hfo_sO- 2.034e-007 0.041 2.034e-007 -6.692 - Hfo_sOZn+ 3.186e-008 0.006 3.186e-008 -7.497 - -Hfo_w - 2.000e-004 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_wOH 1.383e-004 0.692 1.383e-004 -3.859 - Hfo_wOH2+ 5.350e-005 0.268 5.350e-005 -4.272 - Hfo_wO- 8.190e-006 0.041 8.190e-006 -5.087 - Hfo_wOZn+ 1.343e-009 0.000 1.343e-009 -8.872 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - N 1.000e-001 1.000e-001 - Na 9.995e-002 9.995e-002 - Zn 6.679e-008 6.679e-008 - -----------------------------Description of solution---------------------------- - - pH = 6.250 Charge balance - pe = 13.666 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 10339 - Density (g/cm3) = 1.00265 - Volume (L) = 1.00584 - Activity of water = 0.997 - Ionic strength = 9.998e-002 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = -6.577e-007 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.647e-005 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.02 - Iterations = 23 - Total H = 1.110123e+002 - Total O = 5.580617e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 6.813e-007 5.623e-007 -6.167 -6.250 -0.083 0.00 - OH- 2.355e-008 1.794e-008 -7.628 -7.746 -0.118 -3.73 - H2O 5.551e+001 9.966e-001 1.744 -0.001 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -42.992 -42.982 0.010 28.61 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -53.741 -53.869 -0.128 18.17 - NH3 0.000e+000 0.000e+000 -56.874 -56.864 0.010 24.46 -N(0) 2.979e-007 - N2 1.490e-007 1.524e-007 -6.827 -6.817 0.010 29.29 -N(3) 5.489e-013 - NO2- 5.489e-013 4.136e-013 -12.261 -12.383 -0.123 25.24 -N(5) 1.000e-001 - NO3- 1.000e-001 7.534e-002 -1.000 -1.123 -0.123 29.81 -Na 9.995e-002 - Na+ 9.995e-002 7.847e-002 -1.000 -1.105 -0.105 -1.09 - NaOH 1.376e-019 1.408e-019 -18.862 -18.852 0.010 (0) -O(0) 7.448e-007 - O2 3.724e-007 3.811e-007 -6.429 -6.419 0.010 30.40 -Zn 6.679e-008 - Zn+2 6.673e-008 2.510e-008 -7.176 -7.600 -0.425 -23.59 - ZnOH+ 6.244e-011 4.878e-011 -10.205 -10.312 -0.107 (0) - Zn(OH)2 9.700e-013 9.926e-013 -12.013 -12.003 0.010 (0) - Zn(OH)3- 7.121e-018 5.563e-018 -17.147 -17.255 -0.107 (0) - Zn(OH)4-2 4.195e-024 1.563e-024 -23.377 -23.806 -0.429 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Fix_H+ -6.25 -6.25 0.00 H+ - H2(g) -39.88 -42.98 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.64 -6.82 -3.18 N2 - NH3(g) -58.66 -56.86 1.80 NH3 - O2(g) -3.53 -6.42 -2.89 O2 - Zn(OH)2(e) -6.60 4.90 11.50 Zn(OH)2 - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 11. -------------------------------------- - - USE solution 1 - USE surface 1 - EQUILIBRIUM_PHASES 1 - Fix_H+ -6.5000e+000 NaOH 10.0 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. -Using surface 1. -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Fix_H+ -6.50 -6.50 0.00 - NaOH is reactant 1.000e+001 1.000e+001 3.898e-005 - -------------------------------Surface composition------------------------------ - -Hfo - 3.722e-005 Surface charge, eq - 6.651e-002 sigma, C/m**2 - 6.921e-002 psi, V - -2.694e+000 -F*psi/RT - 6.762e-002 exp(-F*psi/RT) - 6.000e+002 specific area, m**2/g - 5.400e+001 m**2 for 9.000e-002 g - - -Hfo_s - 5.000e-006 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_sOH 3.546e-006 0.709 3.546e-006 -5.450 - Hfo_sOH2+ 1.148e-006 0.230 1.148e-006 -5.940 - Hfo_sO- 2.510e-007 0.050 2.510e-007 -6.600 - Hfo_sOZn+ 5.523e-008 0.011 5.523e-008 -7.258 - -Hfo_w - 2.000e-004 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_wOH 1.434e-004 0.717 1.434e-004 -3.843 - Hfo_wOH2+ 4.642e-005 0.232 4.642e-005 -4.333 - Hfo_wO- 1.015e-005 0.051 1.015e-005 -4.993 - Hfo_wOZn+ 2.339e-009 0.000 2.339e-009 -8.631 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - N 1.000e-001 1.000e-001 - Na 9.996e-002 9.996e-002 - Zn 4.243e-008 4.243e-008 - -----------------------------Description of solution---------------------------- - - pH = 6.500 Charge balance - pe = 13.380 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 10339 - Density (g/cm3) = 1.00265 - Volume (L) = 1.00584 - Activity of water = 0.997 - Ionic strength = 9.998e-002 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = -3.412e-007 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.722e-005 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.02 - Iterations = 21 - Total H = 1.110124e+002 - Total O = 5.580618e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 3.831e-007 3.162e-007 -6.417 -6.500 -0.083 0.00 - OH- 4.188e-008 3.190e-008 -7.378 -7.496 -0.118 -3.73 - H2O 5.551e+001 9.966e-001 1.744 -0.001 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -42.920 -42.910 0.010 28.61 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -53.955 -54.084 -0.128 18.17 - NH3 0.000e+000 0.000e+000 -56.838 -56.828 0.010 24.46 -N(0) 2.145e-007 - N2 1.073e-007 1.098e-007 -6.970 -6.960 0.010 29.29 -N(3) 6.471e-013 - NO2- 6.471e-013 4.876e-013 -12.189 -12.312 -0.123 25.24 -N(5) 1.000e-001 - NO3- 1.000e-001 7.534e-002 -1.000 -1.123 -0.123 29.81 -Na 9.996e-002 - Na+ 9.996e-002 7.848e-002 -1.000 -1.105 -0.105 -1.09 - NaOH 2.446e-019 2.503e-019 -18.611 -18.601 0.010 (0) -O(0) 5.359e-007 - O2 2.679e-007 2.742e-007 -6.572 -6.562 0.010 30.40 -Zn 4.243e-008 - Zn+2 4.236e-008 1.594e-008 -7.373 -7.798 -0.425 -23.59 - ZnOH+ 7.049e-011 5.507e-011 -10.152 -10.259 -0.107 (0) - Zn(OH)2 1.947e-012 1.993e-012 -11.711 -11.701 0.010 (0) - Zn(OH)3- 2.542e-017 1.986e-017 -16.595 -16.702 -0.107 (0) - Zn(OH)4-2 2.663e-023 9.919e-024 -22.575 -23.004 -0.429 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Fix_H+ -6.50 -6.50 0.00 H+ - H2(g) -39.81 -42.91 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.78 -6.96 -3.18 N2 - NH3(g) -58.62 -56.83 1.80 NH3 - O2(g) -3.67 -6.56 -2.89 O2 - Zn(OH)2(e) -6.30 5.20 11.50 Zn(OH)2 - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 12. -------------------------------------- - - USE solution 1 - USE surface 1 - EQUILIBRIUM_PHASES 1 - Fix_H+ -6.7500e+000 NaOH 10.0 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. -Using surface 1. -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Fix_H+ -6.75 -6.75 0.00 - NaOH is reactant 1.000e+001 1.000e+001 3.058e-005 - -------------------------------Surface composition------------------------------ - -Hfo - 2.911e-005 Surface charge, eq - 5.203e-002 sigma, C/m**2 - 5.854e-002 psi, V - -2.279e+000 -F*psi/RT - 1.024e-001 exp(-F*psi/RT) - 6.000e+002 specific area, m**2/g - 5.400e+001 m**2 for 9.000e-002 g - - -Hfo_s - 5.000e-006 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_sOH 3.624e-006 0.725 3.624e-006 -5.441 - Hfo_sOH2+ 9.990e-007 0.200 9.990e-007 -6.000 - Hfo_sO- 3.012e-007 0.060 3.012e-007 -6.521 - Hfo_sOZn+ 7.564e-008 0.015 7.564e-008 -7.121 - -Hfo_w - 2.000e-004 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_wOH 1.472e-004 0.736 1.472e-004 -3.832 - Hfo_wOH2+ 4.057e-005 0.203 4.057e-005 -4.392 - Hfo_wO- 1.223e-005 0.061 1.223e-005 -4.912 - Hfo_wOZn+ 3.217e-009 0.000 3.217e-009 -8.493 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - N 1.000e-001 1.000e-001 - Na 9.997e-002 9.997e-002 - Zn 2.114e-008 2.114e-008 - -----------------------------Description of solution---------------------------- - - pH = 6.750 Charge balance - pe = 13.094 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 10340 - Density (g/cm3) = 1.00265 - Volume (L) = 1.00584 - Activity of water = 0.997 - Ionic strength = 9.999e-002 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = -1.409e-007 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.911e-005 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 - Iterations = 21 - Total H = 1.110124e+002 - Total O = 5.580619e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 2.155e-007 1.778e-007 -6.667 -6.750 -0.083 0.00 - OH- 7.448e-008 5.672e-008 -7.128 -7.246 -0.118 -3.73 - H2O 5.551e+001 9.966e-001 1.744 -0.001 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -42.849 -42.839 0.010 28.61 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -54.169 -54.297 -0.128 18.17 - NH3 0.000e+000 0.000e+000 -56.802 -56.792 0.010 24.46 -N(0) 1.546e-007 - N2 7.728e-008 7.908e-008 -7.112 -7.102 0.010 29.29 -N(3) 7.630e-013 - NO2- 7.630e-013 5.748e-013 -12.117 -12.240 -0.123 25.24 -N(5) 1.000e-001 - NO3- 1.000e-001 7.534e-002 -1.000 -1.123 -0.123 29.81 -Na 9.997e-002 - Na+ 9.997e-002 7.849e-002 -1.000 -1.105 -0.105 -1.09 - NaOH 4.351e-019 4.452e-019 -18.361 -18.351 0.010 (0) -O(0) 3.855e-007 - O2 1.927e-007 1.972e-007 -6.715 -6.705 0.010 30.40 -Zn 2.114e-008 - Zn+2 2.108e-008 7.929e-009 -7.676 -8.101 -0.425 -23.59 - ZnOH+ 6.237e-011 4.872e-011 -10.205 -10.312 -0.107 (0) - Zn(OH)2 3.064e-012 3.135e-012 -11.514 -11.504 0.010 (0) - Zn(OH)3- 7.112e-017 5.556e-017 -16.148 -16.255 -0.107 (0) - Zn(OH)4-2 1.325e-022 4.935e-023 -21.878 -22.307 -0.429 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Fix_H+ -6.75 -6.75 0.00 H+ - H2(g) -39.74 -42.84 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.93 -7.10 -3.18 N2 - NH3(g) -58.59 -56.79 1.80 NH3 - O2(g) -3.81 -6.71 -2.89 O2 - Zn(OH)2(e) -6.10 5.40 11.50 Zn(OH)2 - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 13. -------------------------------------- - - USE solution 1 - USE surface 1 - EQUILIBRIUM_PHASES 1 - Fix_H+ -7 NaOH 10.0 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. -Using surface 1. -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Fix_H+ -7.00 -7.00 0.00 - NaOH is reactant 1.000e+001 1.000e+001 2.326e-005 - -------------------------------Surface composition------------------------------ - -Hfo - 2.201e-005 Surface charge, eq - 3.934e-002 sigma, C/m**2 - 4.745e-002 psi, V - -1.847e+000 -F*psi/RT - 1.577e-001 exp(-F*psi/RT) - 6.000e+002 specific area, m**2/g - 5.400e+001 m**2 for 9.000e-002 g - - -Hfo_s - 5.000e-006 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_sOH 3.681e-006 0.736 3.681e-006 -5.434 - Hfo_sOH2+ 8.787e-007 0.176 8.787e-007 -6.056 - Hfo_sO- 3.532e-007 0.071 3.532e-007 -6.452 - Hfo_sOZn+ 8.746e-008 0.017 8.746e-008 -7.058 - -Hfo_w - 2.000e-004 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_wOH 1.498e-004 0.749 1.498e-004 -3.824 - Hfo_wOH2+ 3.577e-005 0.179 3.577e-005 -4.446 - Hfo_wO- 1.438e-005 0.072 1.438e-005 -4.842 - Hfo_wOZn+ 3.728e-009 0.000 3.728e-009 -8.428 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - N 1.000e-001 1.000e-001 - Na 9.998e-002 9.998e-002 - Zn 8.811e-009 8.811e-009 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.809 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 10340 - Density (g/cm3) = 1.00265 - Volume (L) = 1.00584 - Activity of water = 0.997 - Ionic strength = 9.999e-002 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.134e-008 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.201e-005 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 - Iterations = 10 - Total H = 1.110124e+002 - Total O = 5.580619e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.324e-007 1.009e-007 -6.878 -6.996 -0.118 -3.73 - H+ 1.212e-007 1.000e-007 -6.917 -7.000 -0.083 0.00 - H2O 5.551e+001 9.966e-001 1.744 -0.001 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -42.778 -42.768 0.010 28.61 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -54.384 -54.512 -0.128 18.17 - NH3 0.000e+000 0.000e+000 -56.767 -56.757 0.010 24.46 -N(0) 1.111e-007 - N2 5.553e-008 5.682e-008 -7.256 -7.246 0.010 29.29 -N(3) 8.991e-013 - NO2- 8.991e-013 6.774e-013 -12.046 -12.169 -0.123 25.24 -N(5) 1.000e-001 - NO3- 1.000e-001 7.534e-002 -1.000 -1.123 -0.123 29.81 -Na 9.998e-002 - Na+ 9.998e-002 7.849e-002 -1.000 -1.105 -0.105 -1.09 - NaOH 7.738e-019 7.918e-019 -18.111 -18.101 0.010 (0) -O(0) 2.776e-007 - O2 1.388e-007 1.420e-007 -6.858 -6.848 0.010 30.40 -Zn 8.811e-009 - Zn+2 8.761e-009 3.296e-009 -8.057 -8.482 -0.425 -23.59 - ZnOH+ 4.610e-011 3.601e-011 -10.336 -10.444 -0.107 (0) - Zn(OH)2 4.027e-012 4.121e-012 -11.395 -11.385 0.010 (0) - Zn(OH)3- 1.662e-016 1.299e-016 -15.779 -15.886 -0.107 (0) - Zn(OH)4-2 5.508e-022 2.051e-022 -21.259 -21.688 -0.429 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Fix_H+ -7.00 -7.00 0.00 H+ - H2(g) -39.67 -42.77 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -4.07 -7.25 -3.18 N2 - NH3(g) -58.55 -56.76 1.80 NH3 - O2(g) -3.96 -6.85 -2.89 O2 - Zn(OH)2(e) -5.99 5.51 11.50 Zn(OH)2 - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 14. -------------------------------------- - - USE solution 1 - USE surface 1 - EQUILIBRIUM_PHASES 1 - Fix_H+ -7.2500e+000 NaOH 10.0 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. -Using surface 1. -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Fix_H+ -7.25 -7.25 0.00 - NaOH is reactant 1.000e+001 1.000e+001 1.679e-005 - -------------------------------Surface composition------------------------------ - -Hfo - 1.575e-005 Surface charge, eq - 2.814e-002 sigma, C/m**2 - 3.597e-002 psi, V - -1.400e+000 -F*psi/RT - 2.466e-001 exp(-F*psi/RT) - 6.000e+002 specific area, m**2/g - 5.400e+001 m**2 for 9.000e-002 g - - -Hfo_s - 5.000e-006 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_sOH 3.720e-006 0.744 3.720e-006 -5.429 - Hfo_sOH2+ 7.809e-007 0.156 7.809e-007 -6.107 - Hfo_sO- 4.060e-007 0.081 4.060e-007 -6.391 - Hfo_sOZn+ 9.270e-008 0.019 9.270e-008 -7.033 - -Hfo_w - 2.000e-004 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_wOH 1.516e-004 0.758 1.516e-004 -3.819 - Hfo_wOH2+ 3.183e-005 0.159 3.183e-005 -4.497 - Hfo_wO- 1.655e-005 0.083 1.655e-005 -4.781 - Hfo_wOZn+ 3.956e-009 0.000 3.956e-009 -8.403 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - N 1.000e-001 1.000e-001 - Na 9.998e-002 9.998e-002 - Zn 3.340e-009 3.340e-009 - -----------------------------Description of solution---------------------------- - - pH = 7.250 Charge balance - pe = 12.523 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 10340 - Density (g/cm3) = 1.00265 - Volume (L) = 1.00584 - Activity of water = 0.997 - Ionic strength = 9.999e-002 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.674e-007 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.575e-005 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 - Iterations = 10 - Total H = 1.110124e+002 - Total O = 5.580620e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 2.355e-007 1.794e-007 -6.628 -6.746 -0.118 -3.73 - H+ 6.813e-008 5.623e-008 -7.167 -7.250 -0.083 0.00 - H2O 5.551e+001 9.966e-001 1.744 -0.001 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -42.706 -42.696 0.010 28.61 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -54.598 -54.726 -0.128 18.17 - NH3 0.000e+000 0.000e+000 -56.731 -56.721 0.010 24.46 -N(0) 7.997e-008 - N2 3.998e-008 4.091e-008 -7.398 -7.388 0.010 29.29 -N(3) 1.060e-012 - NO2- 1.060e-012 7.986e-013 -11.975 -12.098 -0.123 25.24 -N(5) 1.000e-001 - NO3- 1.000e-001 7.534e-002 -1.000 -1.123 -0.123 29.81 -Na 9.998e-002 - Na+ 9.998e-002 7.850e-002 -1.000 -1.105 -0.105 -1.09 - NaOH 1.376e-018 1.408e-018 -17.861 -17.851 0.010 (0) -O(0) 1.998e-007 - O2 9.988e-008 1.022e-007 -7.001 -6.991 0.010 30.40 -Zn 3.340e-009 - Zn+2 3.304e-009 1.243e-009 -8.481 -8.905 -0.425 -23.59 - ZnOH+ 3.092e-011 2.416e-011 -10.510 -10.617 -0.107 (0) - Zn(OH)2 4.803e-012 4.915e-012 -11.318 -11.308 0.010 (0) - Zn(OH)3- 3.526e-016 2.755e-016 -15.453 -15.560 -0.107 (0) - Zn(OH)4-2 2.077e-021 7.737e-022 -20.682 -21.111 -0.429 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Fix_H+ -7.25 -7.25 0.00 H+ - H2(g) -39.60 -42.70 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -4.21 -7.39 -3.18 N2 - NH3(g) -58.52 -56.72 1.80 NH3 - O2(g) -4.10 -6.99 -2.89 O2 - Zn(OH)2(e) -5.91 5.59 11.50 Zn(OH)2 - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 15. -------------------------------------- - - USE solution 1 - USE surface 1 - EQUILIBRIUM_PHASES 1 - Fix_H+ -7.5000e+000 NaOH 10.0 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. -Using surface 1. -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Fix_H+ -7.50 -7.50 0.00 - NaOH is reactant 1.000e+001 1.000e+001 1.094e-005 - -------------------------------Surface composition------------------------------ - -Hfo - 1.013e-005 Surface charge, eq - 1.811e-002 sigma, C/m**2 - 2.418e-002 psi, V - -9.410e-001 -F*psi/RT - 3.902e-001 exp(-F*psi/RT) - 6.000e+002 specific area, m**2/g - 5.400e+001 m**2 for 9.000e-002 g - - -Hfo_s - 5.000e-006 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_sOH 3.746e-006 0.749 3.746e-006 -5.426 - Hfo_sOH2+ 6.997e-007 0.140 6.997e-007 -6.155 - Hfo_sO- 4.595e-007 0.092 4.595e-007 -6.338 - Hfo_sOZn+ 9.474e-008 0.019 9.474e-008 -7.023 - -Hfo_w - 2.000e-004 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_wOH 1.527e-004 0.764 1.527e-004 -3.816 - Hfo_wOH2+ 2.853e-005 0.143 2.853e-005 -4.545 - Hfo_wO- 1.873e-005 0.094 1.873e-005 -4.727 - Hfo_wOZn+ 4.045e-009 0.000 4.045e-009 -8.393 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - N 1.000e-001 1.000e-001 - Na 9.999e-002 9.999e-002 - Zn 1.217e-009 1.217e-009 - -----------------------------Description of solution---------------------------- - - pH = 7.500 Charge balance - pe = 12.237 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 10341 - Density (g/cm3) = 1.00265 - Volume (L) = 1.00584 - Activity of water = 0.997 - Ionic strength = 1.000e-001 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 3.806e-007 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.013e-005 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 - Iterations = 10 - Total H = 1.110124e+002 - Total O = 5.580621e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 4.188e-007 3.190e-007 -6.378 -6.496 -0.118 -3.73 - H+ 3.831e-008 3.162e-008 -7.417 -7.500 -0.083 0.00 - H2O 5.551e+001 9.966e-001 1.744 -0.001 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -42.635 -42.625 0.010 28.61 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -54.813 -54.941 -0.128 18.17 - NH3 0.000e+000 0.000e+000 -56.695 -56.685 0.010 24.46 -N(0) 5.753e-008 - N2 2.876e-008 2.943e-008 -7.541 -7.531 0.010 29.29 -N(3) 1.249e-012 - NO2- 1.249e-012 9.412e-013 -11.903 -12.026 -0.123 25.24 -N(5) 1.000e-001 - NO3- 1.000e-001 7.534e-002 -1.000 -1.123 -0.123 29.81 -Na 9.999e-002 - Na+ 9.999e-002 7.850e-002 -1.000 -1.105 -0.105 -1.09 - NaOH 2.447e-018 2.504e-018 -17.611 -17.601 0.010 (0) -O(0) 1.438e-007 - O2 7.189e-008 7.357e-008 -7.143 -7.133 0.010 30.40 -Zn 1.217e-009 - Zn+2 1.192e-009 4.484e-010 -8.924 -9.348 -0.425 -23.59 - ZnOH+ 1.983e-011 1.549e-011 -10.703 -10.810 -0.107 (0) - Zn(OH)2 5.479e-012 5.606e-012 -11.261 -11.251 0.010 (0) - Zn(OH)3- 7.152e-016 5.587e-016 -15.146 -15.253 -0.107 (0) - Zn(OH)4-2 7.493e-021 2.791e-021 -20.125 -20.554 -0.429 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Fix_H+ -7.50 -7.50 0.00 H+ - H2(g) -39.52 -42.62 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -4.36 -7.53 -3.18 N2 - NH3(g) -58.48 -56.69 1.80 NH3 - O2(g) -4.24 -7.13 -2.89 O2 - Zn(OH)2(e) -5.85 5.65 11.50 Zn(OH)2 - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 16. -------------------------------------- - - USE solution 1 - USE surface 1 - EQUILIBRIUM_PHASES 1 - Fix_H+ -7.7500e+000 NaOH 10.0 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. -Using surface 1. -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Fix_H+ -7.75 -7.75 0.00 - NaOH is reactant 1.000e+001 1.000e+001 5.407e-006 - -------------------------------Surface composition------------------------------ - -Hfo - 4.962e-006 Surface charge, eq - 8.867e-003 sigma, C/m**2 - 1.217e-002 psi, V - -4.736e-001 -F*psi/RT - 6.228e-001 exp(-F*psi/RT) - 6.000e+002 specific area, m**2/g - 5.400e+001 m**2 for 9.000e-002 g - - -Hfo_s - 5.000e-006 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_sOH 3.760e-006 0.752 3.760e-006 -5.425 - Hfo_sOH2+ 6.303e-007 0.126 6.303e-007 -6.200 - Hfo_sO- 5.139e-007 0.103 5.139e-007 -6.289 - Hfo_sOZn+ 9.548e-008 0.019 9.548e-008 -7.020 - -Hfo_w - 2.000e-004 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_wOH 1.533e-004 0.767 1.533e-004 -3.814 - Hfo_wOH2+ 2.570e-005 0.129 2.570e-005 -4.590 - Hfo_wO- 2.096e-005 0.105 2.096e-005 -4.679 - Hfo_wOZn+ 4.077e-009 0.000 4.077e-009 -8.390 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - N 1.000e-001 1.000e-001 - Na 1.000e-001 1.000e-001 - Zn 4.403e-010 4.403e-010 - -----------------------------Description of solution---------------------------- - - pH = 7.750 Charge balance - pe = 11.952 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 10341 - Density (g/cm3) = 1.00265 - Volume (L) = 1.00584 - Activity of water = 0.997 - Ionic strength = 1.000e-001 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 7.233e-007 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.962e-006 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 11 - Total H = 1.110124e+002 - Total O = 5.580621e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 7.448e-007 5.672e-007 -6.128 -6.246 -0.118 -3.73 - H+ 2.155e-008 1.778e-008 -7.667 -7.750 -0.083 0.00 - H2O 5.551e+001 9.966e-001 1.744 -0.001 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -42.563 -42.553 0.010 28.61 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -55.027 -55.155 -0.128 18.17 - NH3 0.000e+000 0.000e+000 -56.659 -56.649 0.010 24.46 -N(0) 4.139e-008 - N2 2.070e-008 2.118e-008 -7.684 -7.674 0.010 29.29 -N(3) 1.473e-012 - NO2- 1.473e-012 1.109e-012 -11.832 -11.955 -0.123 25.24 -N(5) 1.000e-001 - NO3- 1.000e-001 7.534e-002 -1.000 -1.123 -0.123 29.81 -Na 1.000e-001 - Na+ 1.000e-001 7.851e-002 -1.000 -1.105 -0.105 -1.09 - NaOH 4.352e-018 4.453e-018 -17.361 -17.351 0.010 (0) -O(0) 1.035e-007 - O2 5.174e-008 5.295e-008 -7.286 -7.276 0.010 30.40 -Zn 4.403e-010 - Zn+2 4.217e-010 1.586e-010 -9.375 -9.800 -0.425 -23.59 - ZnOH+ 1.248e-011 9.748e-012 -10.904 -11.011 -0.107 (0) - Zn(OH)2 6.129e-012 6.272e-012 -11.213 -11.203 0.010 (0) - Zn(OH)3- 1.423e-015 1.112e-015 -14.847 -14.954 -0.107 (0) - Zn(OH)4-2 2.651e-020 9.873e-021 -19.577 -20.006 -0.429 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Fix_H+ -7.75 -7.75 0.00 H+ - H2(g) -39.45 -42.55 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -4.50 -7.67 -3.18 N2 - NH3(g) -58.45 -56.65 1.80 NH3 - O2(g) -4.38 -7.28 -2.89 O2 - Zn(OH)2(e) -5.80 5.70 11.50 Zn(OH)2 - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 17. -------------------------------------- - - USE solution 1 - USE surface 1 - EQUILIBRIUM_PHASES 1 - Fix_H+ -8 NaOH 10.0 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 1. -Using surface 1. -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Fix_H+ -8.00 -8.00 0.00 - NaOH is reactant 1.000e+001 1.000e+001 -1.389e-007 - -------------------------------Surface composition------------------------------ - -Hfo - 1.787e-008 Surface charge, eq - 3.193e-005 sigma, C/m**2 - 4.423e-005 psi, V - -1.722e-003 -F*psi/RT - 9.983e-001 exp(-F*psi/RT) - 6.000e+002 specific area, m**2/g - 5.400e+001 m**2 for 9.000e-002 g - - -Hfo_s - 5.000e-006 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_sOH 3.765e-006 0.753 3.765e-006 -5.424 - Hfo_sO- 5.708e-007 0.114 5.708e-007 -6.244 - Hfo_sOH2+ 5.688e-007 0.114 5.688e-007 -6.245 - Hfo_sOZn+ 9.575e-008 0.019 9.575e-008 -7.019 - -Hfo_w - 2.000e-004 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_wOH 1.535e-004 0.768 1.535e-004 -3.814 - Hfo_wO- 2.328e-005 0.116 2.328e-005 -4.633 - Hfo_wOH2+ 2.320e-005 0.116 2.320e-005 -4.635 - Hfo_wOZn+ 4.089e-009 0.000 4.089e-009 -8.388 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - N 1.000e-001 1.000e-001 - Na 1.000e-001 1.000e-001 - Zn 1.628e-010 1.628e-010 - -----------------------------Description of solution---------------------------- - - pH = 8.000 Charge balance - pe = 11.666 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 10341 - Density (g/cm3) = 1.00265 - Volume (L) = 1.00584 - Activity of water = 0.997 - Ionic strength = 1.000e-001 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.312e-006 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.787e-008 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 11 - Total H = 1.110124e+002 - Total O = 5.580622e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.324e-006 1.009e-006 -5.878 -5.996 -0.118 -3.73 - H+ 1.212e-008 1.000e-008 -7.917 -8.000 -0.083 0.00 - H2O 5.551e+001 9.966e-001 1.744 -0.001 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -42.492 -42.482 0.010 28.61 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -55.241 -55.369 -0.128 18.17 - NH3 0.000e+000 0.000e+000 -56.624 -56.614 0.010 24.46 -N(0) 2.979e-008 - N2 1.490e-008 1.524e-008 -7.827 -7.817 0.010 29.29 -N(3) 1.736e-012 - NO2- 1.736e-012 1.308e-012 -11.760 -11.883 -0.123 25.24 -N(5) 1.000e-001 - NO3- 1.000e-001 7.534e-002 -1.000 -1.123 -0.123 29.81 -Na 1.000e-001 - Na+ 1.000e-001 7.851e-002 -1.000 -1.105 -0.105 -1.09 - NaOH 7.739e-018 7.920e-018 -17.111 -17.101 0.010 (0) -O(0) 7.448e-008 - O2 3.724e-008 3.811e-008 -7.429 -7.419 0.010 30.40 -Zn 1.628e-010 - Zn+2 1.482e-010 5.574e-011 -9.829 -10.254 -0.425 -23.59 - ZnOH+ 7.797e-012 6.091e-012 -11.108 -11.215 -0.107 (0) - Zn(OH)2 6.811e-012 6.969e-012 -11.167 -11.157 0.010 (0) - Zn(OH)3- 2.812e-015 2.196e-015 -14.551 -14.658 -0.107 (0) - Zn(OH)4-2 9.315e-020 3.469e-020 -19.031 -19.460 -0.429 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Fix_H+ -8.00 -8.00 0.00 H+ - H2(g) -39.38 -42.48 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -4.64 -7.82 -3.18 N2 - NH3(g) -58.41 -56.61 1.80 NH3 - O2(g) -4.53 -7.42 -2.89 O2 - Zn(OH)2(e) -5.76 5.74 11.50 Zn(OH)2 - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 18. -------------------------------------- - - END ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 19. -------------------------------------- - - USER_GRAPH 1 - -detach - END ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 20. -------------------------------------- - - USER_GRAPH 2 Example 8 - -chart_title "Total Zn = 1e-4 molal" - -headings pH Zn_solute Zn_weak_sites Zn_strong_sites Charge_balance - -axis_titles pH "Moles per kilogram water" "Charge balance, in milliequivalents" - -axis_scale x_axis 5.0 8.0 1 0.25 - -axis_scale y_axis 1e-8 1e-3 1 1 log - -axis_scale sy_axis -0.15 0 0.03 - -start - 10 GRAPH_X -LA("H+") - 20 GRAPH_Y MOL("Zn+2"), MOL("Hfo_wOZn+"), MOL("Hfo_sOZn+") - 30 GRAPH_SY CHARGE_BALANCE * 1e3 - -end - USE solution 2 - USE surface 1 - EQUILIBRIUM_PHASES 1 - Fix_H+ -5 NaOH 10.0 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 2. -Using surface 1. -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Fix_H+ -5.00 -5.00 0.00 - NaOH is reactant 1.000e+001 1.000e+001 1.399e-004 - -------------------------------Surface composition------------------------------ - -Hfo - 1.124e-004 Surface charge, eq - 2.008e-001 sigma, C/m**2 - 1.228e-001 psi, V - -4.780e+000 -F*psi/RT - 8.398e-003 exp(-F*psi/RT) - 6.000e+002 specific area, m**2/g - 5.400e+001 m**2 for 9.000e-002 g - - -Hfo_s - 5.000e-006 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_sOH2+ 2.612e-006 0.522 2.612e-006 -5.583 - Hfo_sOH 2.055e-006 0.411 2.055e-006 -5.687 - Hfo_sOZn+ 2.958e-007 0.059 2.958e-007 -6.529 - Hfo_sO- 3.704e-008 0.007 3.704e-008 -7.431 - -Hfo_w - 2.000e-004 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_wOH2+ 1.110e-004 0.555 1.110e-004 -3.954 - Hfo_wOH 8.737e-005 0.437 8.737e-005 -4.059 - Hfo_wO- 1.575e-006 0.008 1.575e-006 -5.803 - Hfo_wOZn+ 1.317e-008 0.000 1.317e-008 -7.881 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - N 1.000e-001 1.000e-001 - Na 9.967e-002 9.967e-002 - Zn 9.969e-005 9.969e-005 - -----------------------------Description of solution---------------------------- - - pH = 5.000 Charge balance - pe = 15.095 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 10337 - Density (g/cm3) = 1.00265 - Volume (L) = 1.00583 - Activity of water = 0.997 - Ionic strength = 1.000e-001 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = -1.211e-005 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.124e-004 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.06 - Iterations = 21 - Total H = 1.110122e+002 - Total O = 5.580609e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.212e-005 1.000e-005 -4.917 -5.000 -0.083 0.00 - OH- 1.325e-009 1.009e-009 -8.878 -8.996 -0.118 -3.73 - H2O 5.551e+001 9.966e-001 1.744 -0.001 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -43.349 -43.339 0.010 28.61 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -52.670 -52.798 -0.128 18.17 - NH3 0.000e+000 0.000e+000 -57.052 -57.042 0.010 24.46 -N(0) 1.543e-006 - N2 7.716e-007 7.896e-007 -6.113 -6.103 0.010 29.29 -N(3) 2.412e-013 - NO2- 2.412e-013 1.817e-013 -12.618 -12.741 -0.123 25.24 -N(5) 1.000e-001 - NO3- 1.000e-001 7.534e-002 -1.000 -1.123 -0.123 29.81 -Na 9.967e-002 - Na+ 9.967e-002 7.825e-002 -1.001 -1.107 -0.105 -1.09 - NaOH 7.714e-021 7.893e-021 -20.113 -20.103 0.010 (0) -O(0) 3.857e-006 - O2 1.929e-006 1.974e-006 -5.715 -5.705 0.010 30.40 -Zn 9.969e-005 - Zn+2 9.969e-005 3.749e-005 -4.001 -4.426 -0.425 -23.59 - ZnOH+ 5.245e-009 4.097e-009 -8.280 -8.388 -0.107 (0) - Zn(OH)2 4.582e-012 4.688e-012 -11.339 -11.329 0.010 (0) - Zn(OH)3- 1.891e-018 1.478e-018 -17.723 -17.830 -0.107 (0) - Zn(OH)4-2 6.267e-026 2.334e-026 -25.203 -25.632 -0.429 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Fix_H+ -5.00 -5.00 0.00 H+ - H2(g) -40.24 -43.34 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -2.93 -6.10 -3.18 N2 - NH3(g) -58.84 -57.04 1.80 NH3 - O2(g) -2.81 -5.70 -2.89 O2 - Zn(OH)2(e) -5.93 5.57 11.50 Zn(OH)2 - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 21. -------------------------------------- - - USE solution 2 - USE surface 1 - EQUILIBRIUM_PHASES 1 - Fix_H+ -5.2500e+000 NaOH 10.0 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 2. -Using surface 1. -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Fix_H+ -5.25 -5.25 0.00 - NaOH is reactant 1.000e+001 1.000e+001 1.177e-004 - -------------------------------Surface composition------------------------------ - -Hfo - 9.689e-005 Surface charge, eq - 1.731e-001 sigma, C/m**2 - 1.153e-001 psi, V - -4.489e+000 -F*psi/RT - 1.123e-002 exp(-F*psi/RT) - 6.000e+002 specific area, m**2/g - 5.400e+001 m**2 for 9.000e-002 g - - -Hfo_s - 5.000e-006 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_sOH 2.155e-006 0.431 2.155e-006 -5.667 - Hfo_sOH2+ 2.059e-006 0.412 2.059e-006 -5.686 - Hfo_sOZn+ 7.340e-007 0.147 7.340e-007 -6.134 - Hfo_sO- 5.165e-008 0.010 5.166e-008 -7.287 - -Hfo_w - 2.000e-004 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_wOH 1.010e-004 0.505 1.010e-004 -3.996 - Hfo_wOH2+ 9.653e-005 0.483 9.653e-005 -4.015 - Hfo_wO- 2.421e-006 0.012 2.421e-006 -5.616 - Hfo_wOZn+ 3.603e-008 0.000 3.603e-008 -7.443 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - N 1.000e-001 1.000e-001 - Na 9.970e-002 9.970e-002 - Zn 9.923e-005 9.923e-005 - -----------------------------Description of solution---------------------------- - - pH = 5.250 Charge balance - pe = 14.809 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 10337 - Density (g/cm3) = 1.00265 - Volume (L) = 1.00583 - Activity of water = 0.997 - Ionic strength = 1.000e-001 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = -6.802e-006 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -9.689e-005 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.05 - Iterations = 22 - Total H = 1.110122e+002 - Total O = 5.580611e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 6.813e-006 5.623e-006 -5.167 -5.250 -0.083 0.00 - OH- 2.355e-009 1.794e-009 -8.628 -8.746 -0.118 -3.73 - H2O 5.551e+001 9.966e-001 1.744 -0.001 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -43.278 -43.268 0.010 28.61 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -52.884 -53.012 -0.128 18.17 - NH3 0.000e+000 0.000e+000 -57.017 -57.007 0.010 24.46 -N(0) 1.110e-006 - N2 5.552e-007 5.682e-007 -6.256 -6.246 0.010 29.29 -N(3) 2.843e-013 - NO2- 2.843e-013 2.142e-013 -12.546 -12.669 -0.123 25.24 -N(5) 1.000e-001 - NO3- 1.000e-001 7.534e-002 -1.000 -1.123 -0.123 29.81 -Na 9.970e-002 - Na+ 9.970e-002 7.827e-002 -1.001 -1.106 -0.105 -1.09 - NaOH 1.372e-020 1.404e-020 -19.863 -19.853 0.010 (0) -O(0) 2.776e-006 - O2 1.388e-006 1.420e-006 -5.858 -5.848 0.010 30.40 -Zn 9.923e-005 - Zn+2 9.922e-005 3.732e-005 -4.003 -4.428 -0.425 -23.59 - ZnOH+ 9.283e-009 7.252e-009 -8.032 -8.140 -0.107 (0) - Zn(OH)2 1.442e-011 1.476e-011 -10.841 -10.831 0.010 (0) - Zn(OH)3- 1.059e-017 8.270e-018 -16.975 -17.083 -0.107 (0) - Zn(OH)4-2 6.238e-025 2.323e-025 -24.205 -24.634 -0.429 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Fix_H+ -5.25 -5.25 0.00 H+ - H2(g) -40.17 -43.27 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.07 -6.25 -3.18 N2 - NH3(g) -58.80 -57.01 1.80 NH3 - O2(g) -2.96 -5.85 -2.89 O2 - Zn(OH)2(e) -5.43 6.07 11.50 Zn(OH)2 - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 22. -------------------------------------- - - USE solution 2 - USE surface 1 - EQUILIBRIUM_PHASES 1 - Fix_H+ -5.5000e+000 NaOH 10.0 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 2. -Using surface 1. -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Fix_H+ -5.50 -5.50 0.00 - NaOH is reactant 1.000e+001 1.000e+001 9.831e-005 - -------------------------------Surface composition------------------------------ - -Hfo - 8.259e-005 Surface charge, eq - 1.476e-001 sigma, C/m**2 - 1.073e-001 psi, V - -4.178e+000 -F*psi/RT - 1.533e-002 exp(-F*psi/RT) - 6.000e+002 specific area, m**2/g - 5.400e+001 m**2 for 9.000e-002 g - - -Hfo_s - 5.000e-006 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_sOH 1.935e-006 0.387 1.935e-006 -5.713 - Hfo_sOZn+ 1.585e-006 0.317 1.585e-006 -5.800 - Hfo_sOH2+ 1.419e-006 0.284 1.419e-006 -5.848 - Hfo_sO- 6.044e-008 0.012 6.044e-008 -7.219 - -Hfo_w - 2.000e-004 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_wOH 1.133e-004 0.566 1.133e-004 -3.946 - Hfo_wOH2+ 8.309e-005 0.415 8.309e-005 -4.080 - Hfo_wO- 3.538e-006 0.018 3.538e-006 -5.451 - Hfo_wOZn+ 9.715e-008 0.000 9.715e-008 -7.013 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - N 1.000e-001 1.000e-001 - Na 9.972e-002 9.972e-002 - Zn 9.832e-005 9.832e-005 - -----------------------------Description of solution---------------------------- - - pH = 5.500 Charge balance - pe = 14.523 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 10336 - Density (g/cm3) = 1.00265 - Volume (L) = 1.00583 - Activity of water = 0.997 - Ionic strength = 1.001e-001 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = -3.811e-006 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -8.259e-005 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.04 - Iterations = 22 - Total H = 1.110123e+002 - Total O = 5.580613e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 3.831e-006 3.162e-006 -5.417 -5.500 -0.083 0.00 - OH- 4.189e-009 3.190e-009 -8.378 -8.496 -0.118 -3.73 - H2O 5.551e+001 9.966e-001 1.744 -0.001 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -43.206 -43.196 0.010 28.61 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -53.099 -53.227 -0.128 18.17 - NH3 0.000e+000 0.000e+000 -56.981 -56.971 0.010 24.46 -N(0) 7.992e-007 - N2 3.996e-007 4.089e-007 -6.398 -6.388 0.010 29.29 -N(3) 3.351e-013 - NO2- 3.351e-013 2.525e-013 -12.475 -12.598 -0.123 25.24 -N(5) 1.000e-001 - NO3- 1.000e-001 7.534e-002 -1.000 -1.123 -0.123 29.81 -Na 9.972e-002 - Na+ 9.972e-002 7.828e-002 -1.001 -1.106 -0.105 -1.09 - NaOH 2.440e-020 2.497e-020 -19.613 -19.603 0.010 (0) -O(0) 1.998e-006 - O2 9.990e-007 1.022e-006 -6.000 -5.990 0.010 30.40 -Zn 9.832e-005 - Zn+2 9.830e-005 3.697e-005 -4.007 -4.432 -0.425 -23.59 - ZnOH+ 1.636e-008 1.278e-008 -7.786 -7.894 -0.107 (0) - Zn(OH)2 4.518e-011 4.623e-011 -10.345 -10.335 0.010 (0) - Zn(OH)3- 5.898e-017 4.607e-017 -16.229 -16.337 -0.107 (0) - Zn(OH)4-2 6.180e-024 2.301e-024 -23.209 -23.638 -0.429 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Fix_H+ -5.50 -5.50 0.00 H+ - H2(g) -40.10 -43.20 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.21 -6.39 -3.18 N2 - NH3(g) -58.77 -56.97 1.80 NH3 - O2(g) -3.10 -5.99 -2.89 O2 - Zn(OH)2(e) -4.94 6.56 11.50 Zn(OH)2 - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 23. -------------------------------------- - - USE solution 2 - USE surface 1 - EQUILIBRIUM_PHASES 1 - Fix_H+ -5.7500e+000 NaOH 10.0 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 2. -Using surface 1. -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Fix_H+ -5.75 -5.75 0.00 - NaOH is reactant 1.000e+001 1.000e+001 8.082e-005 - -------------------------------Surface composition------------------------------ - -Hfo - 6.970e-005 Surface charge, eq - 1.245e-001 sigma, C/m**2 - 9.893e-002 psi, V - -3.851e+000 -F*psi/RT - 2.126e-002 exp(-F*psi/RT) - 6.000e+002 specific area, m**2/g - 5.400e+001 m**2 for 9.000e-002 g - - -Hfo_s - 5.000e-006 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_sOZn+ 2.764e-006 0.553 2.764e-006 -5.558 - Hfo_sOH 1.387e-006 0.277 1.387e-006 -5.858 - Hfo_sOH2+ 7.937e-007 0.159 7.937e-007 -6.100 - Hfo_sO- 5.552e-008 0.011 5.552e-008 -7.256 - -Hfo_w - 2.000e-004 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_wOH 1.239e-004 0.619 1.239e-004 -3.907 - Hfo_wOH2+ 7.090e-005 0.354 7.090e-005 -4.149 - Hfo_wO- 4.959e-006 0.025 4.959e-006 -5.305 - Hfo_wOZn+ 2.585e-007 0.001 2.585e-007 -6.588 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - N 1.000e-001 1.000e-001 - Na 9.973e-002 9.973e-002 - Zn 9.698e-005 9.698e-005 - -----------------------------Description of solution---------------------------- - - pH = 5.750 Charge balance - pe = 14.237 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 10336 - Density (g/cm3) = 1.00265 - Volume (L) = 1.00583 - Activity of water = 0.997 - Ionic strength = 1.001e-001 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = -2.118e-006 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -6.970e-005 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.03 - Iterations = 22 - Total H = 1.110123e+002 - Total O = 5.580615e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 2.155e-006 1.778e-006 -5.667 -5.750 -0.083 0.00 - OH- 7.449e-009 5.672e-009 -8.128 -8.246 -0.118 -3.73 - H2O 5.551e+001 9.966e-001 1.744 -0.001 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -43.135 -43.125 0.010 28.61 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -53.313 -53.441 -0.128 18.17 - NH3 0.000e+000 0.000e+000 -56.945 -56.935 0.010 24.46 -N(0) 5.751e-007 - N2 2.876e-007 2.943e-007 -6.541 -6.531 0.010 29.29 -N(3) 3.950e-013 - NO2- 3.950e-013 2.976e-013 -12.403 -12.526 -0.123 25.24 -N(5) 1.000e-001 - NO3- 1.000e-001 7.534e-002 -1.000 -1.123 -0.123 29.81 -Na 9.973e-002 - Na+ 9.973e-002 7.830e-002 -1.001 -1.106 -0.105 -1.09 - NaOH 4.340e-020 4.441e-020 -19.362 -19.352 0.010 (0) -O(0) 1.438e-006 - O2 7.189e-007 7.357e-007 -6.143 -6.133 0.010 30.40 -Zn 9.698e-005 - Zn+2 9.695e-005 3.646e-005 -4.013 -4.438 -0.425 -23.59 - ZnOH+ 2.868e-008 2.241e-008 -7.542 -7.650 -0.107 (0) - Zn(OH)2 1.409e-010 1.442e-010 -9.851 -9.841 0.010 (0) - Zn(OH)3- 3.271e-016 2.555e-016 -15.485 -15.593 -0.107 (0) - Zn(OH)4-2 6.095e-023 2.270e-023 -22.215 -22.644 -0.429 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Fix_H+ -5.75 -5.75 0.00 H+ - H2(g) -40.02 -43.12 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.36 -6.53 -3.18 N2 - NH3(g) -58.73 -56.94 1.80 NH3 - O2(g) -3.24 -6.13 -2.89 O2 - Zn(OH)2(e) -4.44 7.06 11.50 Zn(OH)2 - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 24. -------------------------------------- - - USE solution 2 - USE surface 1 - EQUILIBRIUM_PHASES 1 - Fix_H+ -6 NaOH 10.0 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 2. -Using surface 1. -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Fix_H+ -6.00 -6.00 0.00 - NaOH is reactant 1.000e+001 1.000e+001 6.522e-005 - -------------------------------Surface composition------------------------------ - -Hfo - 5.821e-005 Surface charge, eq - 1.040e-001 sigma, C/m**2 - 9.013e-002 psi, V - -3.508e+000 -F*psi/RT - 2.995e-002 exp(-F*psi/RT) - 6.000e+002 specific area, m**2/g - 5.400e+001 m**2 for 9.000e-002 g - - -Hfo_s - 5.000e-006 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_sOZn+ 3.828e-006 0.766 3.828e-006 -5.417 - Hfo_sOH 7.791e-007 0.156 7.791e-007 -6.108 - Hfo_sOH2+ 3.532e-007 0.071 3.532e-007 -6.452 - Hfo_sO- 3.937e-008 0.008 3.937e-008 -7.405 - -Hfo_w - 2.000e-004 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_wOH 1.325e-004 0.663 1.325e-004 -3.878 - Hfo_wOH2+ 6.008e-005 0.300 6.008e-005 -4.221 - Hfo_wO- 6.698e-006 0.033 6.698e-006 -5.174 - Hfo_wOZn+ 6.820e-007 0.003 6.820e-007 -6.166 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - N 1.000e-001 1.000e-001 - Na 9.975e-002 9.975e-002 - Zn 9.549e-005 9.549e-005 - -----------------------------Description of solution---------------------------- - - pH = 6.000 Charge balance - pe = 13.952 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 10337 - Density (g/cm3) = 1.00265 - Volume (L) = 1.00583 - Activity of water = 0.997 - Ionic strength = 1.001e-001 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = -1.147e-006 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -5.821e-005 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.03 - Iterations = 24 - Total H = 1.110123e+002 - Total O = 5.580617e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.212e-006 1.000e-006 -5.917 -6.000 -0.083 0.00 - OH- 1.325e-008 1.009e-008 -7.878 -7.996 -0.118 -3.73 - H2O 5.551e+001 9.966e-001 1.744 -0.001 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -43.063 -43.053 0.010 28.61 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -53.527 -53.655 -0.128 18.17 - NH3 0.000e+000 0.000e+000 -56.909 -56.899 0.010 24.46 -N(0) 4.139e-007 - N2 2.070e-007 2.118e-007 -6.684 -6.674 0.010 29.29 -N(3) 4.657e-013 - NO2- 4.657e-013 3.508e-013 -12.332 -12.455 -0.123 25.24 -N(5) 1.000e-001 - NO3- 1.000e-001 7.534e-002 -1.000 -1.123 -0.123 29.81 -Na 9.975e-002 - Na+ 9.975e-002 7.831e-002 -1.001 -1.106 -0.105 -1.09 - NaOH 7.719e-020 7.899e-020 -19.112 -19.102 0.010 (0) -O(0) 1.035e-006 - O2 5.174e-007 5.295e-007 -6.286 -6.276 0.010 30.40 -Zn 9.549e-005 - Zn+2 9.544e-005 3.589e-005 -4.020 -4.445 -0.425 -23.59 - ZnOH+ 5.021e-008 3.922e-008 -7.299 -7.406 -0.107 (0) - Zn(OH)2 4.386e-010 4.488e-010 -9.358 -9.348 0.010 (0) - Zn(OH)3- 1.811e-015 1.414e-015 -14.742 -14.849 -0.107 (0) - Zn(OH)4-2 6.000e-022 2.234e-022 -21.222 -21.651 -0.429 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Fix_H+ -6.00 -6.00 0.00 H+ - H2(g) -39.95 -43.05 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.50 -6.67 -3.18 N2 - NH3(g) -58.70 -56.90 1.80 NH3 - O2(g) -3.38 -6.28 -2.89 O2 - Zn(OH)2(e) -3.95 7.55 11.50 Zn(OH)2 - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 25. -------------------------------------- - - USE solution 2 - USE surface 1 - EQUILIBRIUM_PHASES 1 - Fix_H+ -6.2500e+000 NaOH 10.0 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 2. -Using surface 1. -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Fix_H+ -6.25 -6.25 0.00 - NaOH is reactant 1.000e+001 1.000e+001 5.093e-005 - -------------------------------Surface composition------------------------------ - -Hfo - 4.811e-005 Surface charge, eq - 8.597e-002 sigma, C/m**2 - 8.102e-002 psi, V - -3.154e+000 -F*psi/RT - 4.270e-002 exp(-F*psi/RT) - 6.000e+002 specific area, m**2/g - 5.400e+001 m**2 for 9.000e-002 g - - -Hfo_s - 5.000e-006 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_sOZn+ 4.478e-006 0.896 4.478e-006 -5.349 - Hfo_sOH 3.663e-007 0.073 3.663e-007 -6.436 - Hfo_sOH2+ 1.331e-007 0.027 1.331e-007 -6.876 - Hfo_sO- 2.309e-008 0.005 2.309e-008 -7.637 - -Hfo_w - 2.000e-004 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_wOH 1.390e-004 0.695 1.390e-004 -3.857 - Hfo_wOH2+ 5.050e-005 0.253 5.050e-005 -4.297 - Hfo_wO- 8.759e-006 0.044 8.759e-006 -5.058 - Hfo_wOZn+ 1.779e-006 0.009 1.779e-006 -5.750 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - N 1.000e-001 1.000e-001 - Na 9.976e-002 9.976e-002 - Zn 9.374e-005 9.374e-005 - -----------------------------Description of solution---------------------------- - - pH = 6.250 Charge balance - pe = 13.666 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 10337 - Density (g/cm3) = 1.00265 - Volume (L) = 1.00583 - Activity of water = 0.997 - Ionic strength = 1.001e-001 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = -5.675e-007 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.811e-005 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.02 - Iterations = 22 - Total H = 1.110124e+002 - Total O = 5.580618e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 6.813e-007 5.623e-007 -6.167 -6.250 -0.083 0.00 - OH- 2.355e-008 1.794e-008 -7.628 -7.746 -0.118 -3.73 - H2O 5.551e+001 9.966e-001 1.744 -0.001 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -42.992 -42.982 0.010 28.61 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -53.741 -53.869 -0.128 18.17 - NH3 0.000e+000 0.000e+000 -56.874 -56.864 0.010 24.46 -N(0) 2.980e-007 - N2 1.490e-007 1.525e-007 -6.827 -6.817 0.010 29.29 -N(3) 5.489e-013 - NO2- 5.489e-013 4.136e-013 -12.260 -12.383 -0.123 25.24 -N(5) 1.000e-001 - NO3- 1.000e-001 7.534e-002 -1.000 -1.123 -0.123 29.81 -Na 9.976e-002 - Na+ 9.976e-002 7.832e-002 -1.001 -1.106 -0.105 -1.09 - NaOH 1.373e-019 1.405e-019 -18.862 -18.852 0.010 (0) -O(0) 7.447e-007 - O2 3.723e-007 3.810e-007 -6.429 -6.419 0.010 30.40 -Zn 9.374e-005 - Zn+2 9.365e-005 3.522e-005 -4.028 -4.453 -0.425 -23.59 - ZnOH+ 8.762e-008 6.845e-008 -7.057 -7.165 -0.107 (0) - Zn(OH)2 1.361e-009 1.393e-009 -8.866 -8.856 0.010 (0) - Zn(OH)3- 9.992e-015 7.805e-015 -14.000 -14.108 -0.107 (0) - Zn(OH)4-2 5.888e-021 2.192e-021 -20.230 -20.659 -0.429 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Fix_H+ -6.25 -6.25 0.00 H+ - H2(g) -39.88 -42.98 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.64 -6.82 -3.18 N2 - NH3(g) -58.66 -56.86 1.80 NH3 - O2(g) -3.53 -6.42 -2.89 O2 - Zn(OH)2(e) -3.46 8.04 11.50 Zn(OH)2 - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 26. -------------------------------------- - - USE solution 2 - USE surface 1 - EQUILIBRIUM_PHASES 1 - Fix_H+ -6.5000e+000 NaOH 10.0 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 2. -Using surface 1. -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Fix_H+ -6.50 -6.50 0.00 - NaOH is reactant 1.000e+001 1.000e+001 3.593e-005 - -------------------------------Surface composition------------------------------ - -Hfo - 3.957e-005 Surface charge, eq - 7.070e-002 sigma, C/m**2 - 7.195e-002 psi, V - -2.801e+000 -F*psi/RT - 6.077e-002 exp(-F*psi/RT) - 6.000e+002 specific area, m**2/g - 5.400e+001 m**2 for 9.000e-002 g - - -Hfo_s - 5.000e-006 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_sOZn+ 4.781e-006 0.956 4.781e-006 -5.320 - Hfo_sOH 1.598e-007 0.032 1.598e-007 -6.797 - Hfo_sOH2+ 4.647e-008 0.009 4.647e-008 -7.333 - Hfo_sO- 1.258e-008 0.003 1.258e-008 -7.900 - -Hfo_w - 2.000e-004 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_wOH 1.428e-004 0.714 1.428e-004 -3.845 - Hfo_wOH2+ 4.152e-005 0.208 4.152e-005 -4.382 - Hfo_wO- 1.124e-005 0.056 1.124e-005 -4.949 - Hfo_wOZn+ 4.474e-006 0.022 4.474e-006 -5.349 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - N 1.000e-001 1.000e-001 - Na 9.978e-002 9.978e-002 - Zn 9.075e-005 9.075e-005 - -----------------------------Description of solution---------------------------- - - pH = 6.500 Charge balance - pe = 13.380 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 10337 - Density (g/cm3) = 1.00265 - Volume (L) = 1.00583 - Activity of water = 0.997 - Ionic strength = 1.001e-001 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = -1.822e-007 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.957e-005 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.02 - Iterations = 22 - Total H = 1.110124e+002 - Total O = 5.580620e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 3.832e-007 3.162e-007 -6.417 -6.500 -0.083 0.00 - OH- 4.189e-008 3.190e-008 -7.378 -7.496 -0.118 -3.73 - H2O 5.551e+001 9.966e-001 1.744 -0.001 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -42.920 -42.910 0.010 28.61 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -53.955 -54.083 -0.128 18.17 - NH3 0.000e+000 0.000e+000 -56.837 -56.827 0.010 24.46 -N(0) 2.147e-007 - N2 1.074e-007 1.099e-007 -6.969 -6.959 0.010 29.29 -N(3) 6.473e-013 - NO2- 6.473e-013 4.876e-013 -12.189 -12.312 -0.123 25.24 -N(5) 1.000e-001 - NO3- 1.000e-001 7.534e-002 -1.000 -1.123 -0.123 29.81 -Na 9.978e-002 - Na+ 9.978e-002 7.833e-002 -1.001 -1.106 -0.105 -1.09 - NaOH 2.442e-019 2.499e-019 -18.612 -18.602 0.010 (0) -O(0) 5.356e-007 - O2 2.678e-007 2.741e-007 -6.572 -6.562 0.010 30.40 -Zn 9.075e-005 - Zn+2 9.059e-005 3.407e-005 -4.043 -4.468 -0.425 -23.59 - ZnOH+ 1.507e-007 1.177e-007 -6.822 -6.929 -0.107 (0) - Zn(OH)2 4.163e-009 4.260e-009 -8.381 -8.371 0.010 (0) - Zn(OH)3- 5.435e-014 4.246e-014 -13.265 -13.372 -0.107 (0) - Zn(OH)4-2 5.695e-020 2.121e-020 -19.245 -19.674 -0.429 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Fix_H+ -6.50 -6.50 0.00 H+ - H2(g) -39.81 -42.91 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.78 -6.96 -3.18 N2 - NH3(g) -58.62 -56.83 1.80 NH3 - O2(g) -3.67 -6.56 -2.89 O2 - Zn(OH)2(e) -2.97 8.53 11.50 Zn(OH)2 - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 27. -------------------------------------- - - USE solution 2 - USE surface 1 - EQUILIBRIUM_PHASES 1 - Fix_H+ -6.7500e+000 NaOH 10.0 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 2. -Using surface 1. -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Fix_H+ -6.75 -6.75 0.00 - NaOH is reactant 1.000e+001 1.000e+001 1.705e-005 - -------------------------------Surface composition------------------------------ - -Hfo - 3.287e-005 Surface charge, eq - 5.874e-002 sigma, C/m**2 - 6.371e-002 psi, V - -2.480e+000 -F*psi/RT - 8.376e-002 exp(-F*psi/RT) - 6.000e+002 specific area, m**2/g - 5.400e+001 m**2 for 9.000e-002 g - - -Hfo_s - 5.000e-006 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_sOZn+ 4.905e-006 0.981 4.905e-006 -5.309 - Hfo_sOH 7.162e-008 0.014 7.162e-008 -7.145 - Hfo_sOH2+ 1.615e-008 0.003 1.615e-008 -7.792 - Hfo_sO- 7.277e-009 0.001 7.277e-009 -8.138 - -Hfo_w - 2.000e-004 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_wOH 1.430e-004 0.715 1.430e-004 -3.845 - Hfo_wOH2+ 3.224e-005 0.161 3.224e-005 -4.492 - Hfo_wO- 1.453e-005 0.073 1.453e-005 -4.838 - Hfo_wOZn+ 1.025e-005 0.051 1.025e-005 -4.989 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - N 1.000e-001 1.000e-001 - Na 9.980e-002 9.980e-002 - Zn 8.484e-005 8.484e-005 - -----------------------------Description of solution---------------------------- - - pH = 6.750 Charge balance - pe = 13.094 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 10338 - Density (g/cm3) = 1.00265 - Volume (L) = 1.00584 - Activity of water = 0.997 - Ionic strength = 1.001e-001 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.338e-007 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.287e-005 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.02 - Iterations = 22 - Total H = 1.110124e+002 - Total O = 5.580621e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 2.155e-007 1.778e-007 -6.667 -6.750 -0.083 0.00 - OH- 7.449e-008 5.672e-008 -7.128 -7.246 -0.118 -3.73 - H2O 5.551e+001 9.966e-001 1.744 -0.001 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -42.849 -42.839 0.010 28.61 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -54.169 -54.297 -0.128 18.17 - NH3 0.000e+000 0.000e+000 -56.802 -56.792 0.010 24.46 -N(0) 1.546e-007 - N2 7.730e-008 7.910e-008 -7.112 -7.102 0.010 29.29 -N(3) 7.630e-013 - NO2- 7.630e-013 5.748e-013 -12.117 -12.240 -0.123 25.24 -N(5) 1.000e-001 - NO3- 1.000e-001 7.534e-002 -1.000 -1.123 -0.123 29.81 -Na 9.980e-002 - Na+ 9.980e-002 7.835e-002 -1.001 -1.106 -0.105 -1.09 - NaOH 4.343e-019 4.444e-019 -18.362 -18.352 0.010 (0) -O(0) 3.854e-007 - O2 1.927e-007 1.972e-007 -6.715 -6.705 0.010 30.40 -Zn 8.484e-005 - Zn+2 8.458e-005 3.181e-005 -4.073 -4.497 -0.425 -23.59 - ZnOH+ 2.502e-007 1.955e-007 -6.602 -6.709 -0.107 (0) - Zn(OH)2 1.229e-008 1.258e-008 -7.910 -7.900 0.010 (0) - Zn(OH)3- 2.854e-013 2.229e-013 -12.545 -12.652 -0.107 (0) - Zn(OH)4-2 5.317e-019 1.980e-019 -18.274 -18.703 -0.429 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Fix_H+ -6.75 -6.75 0.00 H+ - H2(g) -39.74 -42.84 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.93 -7.10 -3.18 N2 - NH3(g) -58.59 -56.79 1.80 NH3 - O2(g) -3.81 -6.71 -2.89 O2 - Zn(OH)2(e) -2.50 9.00 11.50 Zn(OH)2 - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 28. -------------------------------------- - - USE solution 2 - USE surface 1 - EQUILIBRIUM_PHASES 1 - Fix_H+ -7 NaOH 10.0 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 2. -Using surface 1. -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Fix_H+ -7.00 -7.00 0.00 - NaOH is reactant 1.000e+001 1.000e+001 -7.649e-006 - -------------------------------Surface composition------------------------------ - -Hfo - 2.819e-005 Surface charge, eq - 5.037e-002 sigma, C/m**2 - 5.718e-002 psi, V - -2.226e+000 -F*psi/RT - 1.080e-001 exp(-F*psi/RT) - 6.000e+002 specific area, m**2/g - 5.400e+001 m**2 for 9.000e-002 g - - -Hfo_s - 5.000e-006 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_sOZn+ 4.953e-006 0.991 4.953e-006 -5.305 - Hfo_sOH 3.577e-008 0.007 3.577e-008 -7.447 - Hfo_sOH2+ 5.846e-009 0.001 5.846e-009 -8.233 - Hfo_sO- 5.014e-009 0.001 5.014e-009 -8.300 - -Hfo_w - 2.000e-004 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_wOH 1.381e-004 0.690 1.381e-004 -3.860 - Hfo_wOH2+ 2.256e-005 0.113 2.256e-005 -4.647 - Hfo_wOZn+ 2.002e-005 0.100 2.002e-005 -4.699 - Hfo_wO- 1.935e-005 0.097 1.935e-005 -4.713 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - N 1.000e-001 1.000e-001 - Na 9.982e-002 9.982e-002 - Zn 7.503e-005 7.503e-005 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.809 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 10338 - Density (g/cm3) = 1.00265 - Volume (L) = 1.00584 - Activity of water = 0.997 - Ionic strength = 1.001e-001 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 4.724e-007 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.819e-005 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 - Iterations = 24 - Total H = 1.110125e+002 - Total O = 5.580624e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.325e-007 1.009e-007 -6.878 -6.996 -0.118 -3.73 - H+ 1.212e-007 1.000e-007 -6.917 -7.000 -0.083 0.00 - H2O 5.551e+001 9.966e-001 1.744 -0.001 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -42.778 -42.768 0.010 28.61 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -54.384 -54.512 -0.128 18.17 - NH3 0.000e+000 0.000e+000 -56.767 -56.757 0.010 24.46 -N(0) 1.110e-007 - N2 5.552e-008 5.682e-008 -7.256 -7.246 0.010 29.29 -N(3) 8.991e-013 - NO2- 8.991e-013 6.773e-013 -12.046 -12.169 -0.123 25.24 -N(5) 1.000e-001 - NO3- 1.000e-001 7.534e-002 -1.000 -1.123 -0.123 29.81 -Na 9.982e-002 - Na+ 9.982e-002 7.837e-002 -1.001 -1.106 -0.105 -1.09 - NaOH 7.725e-019 7.905e-019 -18.112 -18.102 0.010 (0) -O(0) 2.776e-007 - O2 1.388e-007 1.420e-007 -6.858 -6.848 0.010 30.40 -Zn 7.503e-005 - Zn+2 7.460e-005 2.806e-005 -4.127 -4.552 -0.425 -23.59 - ZnOH+ 3.925e-007 3.066e-007 -6.406 -6.513 -0.107 (0) - Zn(OH)2 3.428e-008 3.508e-008 -7.465 -7.455 0.010 (0) - Zn(OH)3- 1.415e-012 1.106e-012 -11.849 -11.956 -0.107 (0) - Zn(OH)4-2 4.690e-018 1.746e-018 -17.329 -17.758 -0.429 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Fix_H+ -7.00 -7.00 0.00 H+ - H2(g) -39.67 -42.77 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -4.07 -7.25 -3.18 N2 - NH3(g) -58.55 -56.76 1.80 NH3 - O2(g) -3.96 -6.85 -2.89 O2 - Zn(OH)2(e) -2.05 9.45 11.50 Zn(OH)2 - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 29. -------------------------------------- - - USE solution 2 - USE surface 1 - EQUILIBRIUM_PHASES 1 - Fix_H+ -7.2500e+000 NaOH 10.0 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 2. -Using surface 1. -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Fix_H+ -7.25 -7.25 0.00 - NaOH is reactant 1.000e+001 1.000e+001 -3.630e-005 - -------------------------------Surface composition------------------------------ - -Hfo - 2.512e-005 Surface charge, eq - 4.488e-002 sigma, C/m**2 - 5.252e-002 psi, V - -2.044e+000 -F*psi/RT - 1.295e-001 exp(-F*psi/RT) - 6.000e+002 specific area, m**2/g - 5.400e+001 m**2 for 9.000e-002 g - - -Hfo_s - 5.000e-006 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_sOZn+ 4.973e-006 0.995 4.973e-006 -5.303 - Hfo_sOH 2.032e-008 0.004 2.032e-008 -7.692 - Hfo_sO- 4.224e-009 0.001 4.224e-009 -8.374 - Hfo_sOH2+ 2.240e-009 0.000 2.240e-009 -8.650 - -Hfo_w - 2.000e-004 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_wOH 1.270e-004 0.635 1.270e-004 -3.896 - Hfo_wOZn+ 3.255e-005 0.163 3.255e-005 -4.487 - Hfo_wO- 2.641e-005 0.132 2.641e-005 -4.578 - Hfo_wOH2+ 1.400e-005 0.070 1.400e-005 -4.854 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - N 1.000e-001 1.000e-001 - Na 9.985e-002 9.985e-002 - Zn 6.248e-005 6.248e-005 - -----------------------------Description of solution---------------------------- - - pH = 7.250 Charge balance - pe = 12.523 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 10339 - Density (g/cm3) = 1.00265 - Volume (L) = 1.00584 - Activity of water = 0.997 - Ionic strength = 1.000e-001 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 9.254e-007 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.512e-005 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 - Iterations = 23 - Total H = 1.110125e+002 - Total O = 5.580627e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 2.355e-007 1.794e-007 -6.628 -6.746 -0.118 -3.73 - H+ 6.813e-008 5.623e-008 -7.167 -7.250 -0.083 0.00 - H2O 5.551e+001 9.966e-001 1.744 -0.001 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -42.706 -42.696 0.010 28.61 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -54.598 -54.726 -0.128 18.17 - NH3 0.000e+000 0.000e+000 -56.731 -56.721 0.010 24.46 -N(0) 7.994e-008 - N2 3.997e-008 4.090e-008 -7.398 -7.388 0.010 29.29 -N(3) 1.060e-012 - NO2- 1.060e-012 7.985e-013 -11.975 -12.098 -0.123 25.24 -N(5) 1.000e-001 - NO3- 1.000e-001 7.534e-002 -1.000 -1.123 -0.123 29.81 -Na 9.985e-002 - Na+ 9.985e-002 7.839e-002 -1.001 -1.106 -0.105 -1.09 - NaOH 1.374e-018 1.406e-018 -17.862 -17.852 0.010 (0) -O(0) 1.998e-007 - O2 9.989e-008 1.022e-007 -7.000 -6.990 0.010 30.40 -Zn 6.248e-005 - Zn+2 6.181e-005 2.325e-005 -4.209 -4.634 -0.425 -23.59 - ZnOH+ 5.783e-007 4.517e-007 -6.238 -6.345 -0.107 (0) - Zn(OH)2 8.983e-008 9.192e-008 -7.047 -7.037 0.010 (0) - Zn(OH)3- 6.595e-012 5.152e-012 -11.181 -11.288 -0.107 (0) - Zn(OH)4-2 3.886e-017 1.447e-017 -16.411 -16.840 -0.429 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Fix_H+ -7.25 -7.25 0.00 H+ - H2(g) -39.60 -42.70 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -4.21 -7.39 -3.18 N2 - NH3(g) -58.52 -56.72 1.80 NH3 - O2(g) -4.10 -6.99 -2.89 O2 - Zn(OH)2(e) -1.64 9.86 11.50 Zn(OH)2 - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 30. -------------------------------------- - - USE solution 2 - USE surface 1 - EQUILIBRIUM_PHASES 1 - Fix_H+ -7.5000e+000 NaOH 10.0 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 2. -Using surface 1. -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Fix_H+ -7.50 -7.50 0.00 - NaOH is reactant 1.000e+001 1.000e+001 -6.535e-005 - -------------------------------Surface composition------------------------------ - -Hfo - 2.288e-005 Surface charge, eq - 4.088e-002 sigma, C/m**2 - 4.889e-002 psi, V - -1.903e+000 -F*psi/RT - 1.491e-001 exp(-F*psi/RT) - 6.000e+002 specific area, m**2/g - 5.400e+001 m**2 for 9.000e-002 g - - -Hfo_s - 5.000e-006 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_sOZn+ 4.982e-006 0.996 4.982e-006 -5.303 - Hfo_sOH 1.269e-008 0.003 1.269e-008 -7.896 - Hfo_sO- 4.074e-009 0.001 4.074e-009 -8.390 - Hfo_sOH2+ 9.061e-010 0.000 9.061e-010 -9.043 - -Hfo_w - 2.000e-004 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_wOH 1.109e-004 0.555 1.109e-004 -3.955 - Hfo_wOZn+ 4.558e-005 0.228 4.558e-005 -4.341 - Hfo_wO- 3.560e-005 0.178 3.560e-005 -4.449 - Hfo_wOH2+ 7.916e-006 0.040 7.916e-006 -5.102 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - N 1.000e-001 1.000e-001 - Na 9.988e-002 9.988e-002 - Zn 4.944e-005 4.944e-005 - -----------------------------Description of solution---------------------------- - - pH = 7.500 Charge balance - pe = 12.237 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 10339 - Density (g/cm3) = 1.00265 - Volume (L) = 1.00584 - Activity of water = 0.997 - Ionic strength = 1.000e-001 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.631e-006 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.288e-005 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 - Iterations = 23 - Total H = 1.110126e+002 - Total O = 5.580630e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 4.189e-007 3.190e-007 -6.378 -6.496 -0.118 -3.73 - H+ 3.831e-008 3.162e-008 -7.417 -7.500 -0.083 0.00 - H2O 5.551e+001 9.966e-001 1.744 -0.001 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -42.635 -42.625 0.010 28.61 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -54.812 -54.940 -0.128 18.17 - NH3 0.000e+000 0.000e+000 -56.694 -56.684 0.010 24.46 -N(0) 5.762e-008 - N2 2.881e-008 2.948e-008 -7.540 -7.530 0.010 29.29 -N(3) 1.250e-012 - NO2- 1.250e-012 9.415e-013 -11.903 -12.026 -0.123 25.24 -N(5) 1.000e-001 - NO3- 1.000e-001 7.534e-002 -1.000 -1.123 -0.123 29.81 -Na 9.988e-002 - Na+ 9.988e-002 7.841e-002 -1.001 -1.106 -0.105 -1.09 - NaOH 2.444e-018 2.501e-018 -17.612 -17.602 0.010 (0) -O(0) 1.437e-007 - O2 7.184e-008 7.352e-008 -7.144 -7.134 0.010 30.40 -Zn 4.944e-005 - Zn+2 4.841e-005 1.821e-005 -4.315 -4.740 -0.425 -23.59 - ZnOH+ 8.055e-007 6.292e-007 -6.094 -6.201 -0.107 (0) - Zn(OH)2 2.225e-007 2.277e-007 -6.653 -6.643 0.010 (0) - Zn(OH)3- 2.905e-011 2.269e-011 -10.537 -10.644 -0.107 (0) - Zn(OH)4-2 3.043e-016 1.133e-016 -15.517 -15.946 -0.429 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Fix_H+ -7.50 -7.50 0.00 H+ - H2(g) -39.52 -42.62 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -4.35 -7.53 -3.18 N2 - NH3(g) -58.48 -56.68 1.80 NH3 - O2(g) -4.24 -7.13 -2.89 O2 - Zn(OH)2(e) -1.24 10.26 11.50 Zn(OH)2 - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 31. -------------------------------------- - - USE solution 2 - USE surface 1 - EQUILIBRIUM_PHASES 1 - Fix_H+ -7.7500e+000 NaOH 10.0 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 2. -Using surface 1. -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Fix_H+ -7.75 -7.75 0.00 - NaOH is reactant 1.000e+001 1.000e+001 -9.247e-005 - -------------------------------Surface composition------------------------------ - -Hfo - 2.080e-005 Surface charge, eq - 3.717e-002 sigma, C/m**2 - 4.535e-002 psi, V - -1.765e+000 -F*psi/RT - 1.711e-001 exp(-F*psi/RT) - 6.000e+002 specific area, m**2/g - 5.400e+001 m**2 for 9.000e-002 g - - -Hfo_s - 5.000e-006 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_sOZn+ 4.987e-006 0.997 4.987e-006 -5.302 - Hfo_sOH 8.387e-009 0.002 8.387e-009 -8.076 - Hfo_sO- 4.171e-009 0.001 4.171e-009 -8.380 - Hfo_sOH2+ 3.863e-010 0.000 3.863e-010 -9.413 - -Hfo_w - 2.000e-004 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_wOH 9.233e-005 0.462 9.233e-005 -4.035 - Hfo_wOZn+ 5.749e-005 0.287 5.749e-005 -4.240 - Hfo_wO- 4.592e-005 0.230 4.592e-005 -4.338 - Hfo_wOH2+ 4.253e-006 0.021 4.253e-006 -5.371 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - N 1.000e-001 1.000e-001 - Na 9.991e-002 9.991e-002 - Zn 3.752e-005 3.752e-005 - -----------------------------Description of solution---------------------------- - - pH = 7.750 Charge balance - pe = 11.952 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 10339 - Density (g/cm3) = 1.00265 - Volume (L) = 1.00584 - Activity of water = 0.997 - Ionic strength = 1.000e-001 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 2.832e-006 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.080e-005 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 - Iterations = 25 - Total H = 1.110126e+002 - Total O = 5.580632e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 7.448e-007 5.672e-007 -6.128 -6.246 -0.118 -3.73 - H+ 2.155e-008 1.778e-008 -7.667 -7.750 -0.083 0.00 - H2O 5.551e+001 9.966e-001 1.744 -0.001 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -42.563 -42.553 0.010 28.61 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -55.027 -55.155 -0.128 18.17 - NH3 0.000e+000 0.000e+000 -56.659 -56.649 0.010 24.46 -N(0) 4.139e-008 - N2 2.070e-008 2.118e-008 -7.684 -7.674 0.010 29.29 -N(3) 1.473e-012 - NO2- 1.473e-012 1.109e-012 -11.832 -11.955 -0.123 25.24 -N(5) 1.000e-001 - NO3- 1.000e-001 7.534e-002 -1.000 -1.123 -0.123 29.81 -Na 9.991e-002 - Na+ 9.991e-002 7.844e-002 -1.000 -1.105 -0.105 -1.09 - NaOH 4.348e-018 4.449e-018 -17.362 -17.352 0.010 (0) -O(0) 1.035e-007 - O2 5.174e-008 5.295e-008 -7.286 -7.276 0.010 30.40 -Zn 3.752e-005 - Zn+2 3.594e-005 1.352e-005 -4.444 -4.869 -0.425 -23.59 - ZnOH+ 1.063e-006 8.307e-007 -5.973 -6.081 -0.107 (0) - Zn(OH)2 5.223e-007 5.345e-007 -6.282 -6.272 0.010 (0) - Zn(OH)3- 1.213e-010 9.473e-011 -9.916 -10.024 -0.107 (0) - Zn(OH)4-2 2.259e-015 8.414e-016 -14.646 -15.075 -0.429 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Fix_H+ -7.75 -7.75 0.00 H+ - H2(g) -39.45 -42.55 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -4.50 -7.67 -3.18 N2 - NH3(g) -58.45 -56.65 1.80 NH3 - O2(g) -4.38 -7.28 -2.89 O2 - Zn(OH)2(e) -0.87 10.63 11.50 Zn(OH)2 - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 32. -------------------------------------- - - USE solution 2 - USE surface 1 - EQUILIBRIUM_PHASES 1 - Fix_H+ -8 NaOH 10.0 - END ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -Using solution 2. -Using surface 1. -Using pure phase assemblage 1. - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -Fix_H+ -8.00 -8.00 0.00 - NaOH is reactant 1.000e+001 1.000e+001 -1.167e-004 - -------------------------------Surface composition------------------------------ - -Hfo - 1.854e-005 Surface charge, eq - 3.313e-002 sigma, C/m**2 - 4.129e-002 psi, V - -1.607e+000 -F*psi/RT - 2.004e-001 exp(-F*psi/RT) - 6.000e+002 specific area, m**2/g - 5.400e+001 m**2 for 9.000e-002 g - - -Hfo_s - 5.000e-006 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_sOZn+ 4.990e-006 0.998 4.990e-006 -5.302 - Hfo_sOH 5.759e-009 0.001 5.759e-009 -8.240 - Hfo_sO- 4.349e-009 0.001 4.349e-009 -8.362 - Hfo_sOH2+ 1.747e-010 0.000 1.747e-010 -9.758 - -Hfo_w - 2.000e-004 moles - Mole Log - Species Moles Fraction Molality Molality - - Hfo_wOH 7.427e-005 0.371 7.427e-005 -4.129 - Hfo_wOZn+ 6.739e-005 0.337 6.739e-005 -4.171 - Hfo_wO- 5.609e-005 0.280 5.609e-005 -4.251 - Hfo_wOH2+ 2.253e-006 0.011 2.253e-006 -5.647 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - N 1.000e-001 1.000e-001 - Na 9.993e-002 9.993e-002 - Zn 2.762e-005 2.762e-005 - -----------------------------Description of solution---------------------------- - - pH = 8.000 Charge balance - pe = 11.666 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 10340 - Density (g/cm3) = 1.00265 - Volume (L) = 1.00584 - Activity of water = 0.997 - Ionic strength = 1.000e-001 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 4.948e-006 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -1.854e-005 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 - Iterations = 24 - Total H = 1.110127e+002 - Total O = 5.580635e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.325e-006 1.009e-006 -5.878 -5.996 -0.118 -3.73 - H+ 1.212e-008 1.000e-008 -7.917 -8.000 -0.083 0.00 - H2O 5.551e+001 9.966e-001 1.744 -0.001 0.000 18.07 -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -42.492 -42.482 0.010 28.61 -N(-3) 0.000e+000 - NH4+ 0.000e+000 0.000e+000 -55.241 -55.369 -0.128 18.17 - NH3 0.000e+000 0.000e+000 -56.624 -56.614 0.010 24.46 -N(0) 2.980e-008 - N2 1.490e-008 1.525e-008 -7.827 -7.817 0.010 29.29 -N(3) 1.736e-012 - NO2- 1.736e-012 1.308e-012 -11.760 -11.883 -0.123 25.24 -N(5) 1.000e-001 - NO3- 1.000e-001 7.534e-002 -1.000 -1.123 -0.123 29.81 -Na 9.993e-002 - Na+ 9.993e-002 7.845e-002 -1.000 -1.105 -0.105 -1.09 - NaOH 7.734e-018 7.914e-018 -17.112 -17.102 0.010 (0) -O(0) 7.447e-008 - O2 3.724e-008 3.810e-008 -7.429 -7.419 0.010 30.40 -Zn 2.762e-005 - Zn+2 2.514e-005 9.458e-006 -4.600 -5.024 -0.425 -23.59 - ZnOH+ 1.323e-006 1.033e-006 -5.878 -5.986 -0.107 (0) - Zn(OH)2 1.156e-006 1.183e-006 -5.937 -5.927 0.010 (0) - Zn(OH)3- 4.771e-010 3.727e-010 -9.321 -9.429 -0.107 (0) - Zn(OH)4-2 1.581e-014 5.887e-015 -13.801 -14.230 -0.429 (0) - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Fix_H+ -8.00 -8.00 0.00 H+ - H2(g) -39.38 -42.48 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -4.64 -7.82 -3.18 N2 - NH3(g) -58.41 -56.61 1.80 NH3 - O2(g) -4.53 -7.42 -2.89 O2 - Zn(OH)2(e) -0.53 10.97 11.50 Zn(OH)2 - - ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 33. -------------------------------------- - - END ------------------- -End of simulation. ------------------- - -------------------------------------- -Reading input data for simulation 34. -------------------------------------- - -------------------------------- -End of Run after 1.058 Seconds. -------------------------------- - diff --git a/examples_pc/ex8.sel b/examples_pc/ex8.sel deleted file mode 100644 index c1e22320..00000000 --- a/examples_pc/ex8.sel +++ /dev/null @@ -1,27 +0,0 @@ - sim state soln dist_x time step pH pe reaction temp Alk mu mass_H2O charge pct_err m_Zn+2 m_Hfo_wOZn+ m_Hfo_sOZn+ - 5 react 1 -99 0 1 5 15.0946 -99 25.000 -1.21142e-005 0.0999427 0.999998 -0.000112255 -0.0561601 9.9667e-008 1.3174e-011 3.1450e-010 - 6 react 1 -99 0 1 5.25 14.8088 -99 25.000 -6.81073e-006 0.0999508 0.999998 -9.66739e-005 -0.0483609 9.9094e-008 3.6062e-011 8.6083e-010 - 7 react 1 -99 0 1 5.5 14.5231 -99 25.000 -3.8271e-006 0.0999584 0.999998 -8.21357e-005 -0.0410851 9.7570e-008 9.7072e-011 2.3165e-009 - 8 react 1 -99 0 1 5.75 14.2374 -99 25.000 -2.14703e-006 0.0999652 0.999999 -6.88825e-005 -0.0344533 9.3666e-008 2.5380e-010 6.0522e-009 - 9 react 1 -99 0 1 6 13.9517 -99 25.000 -1.19828e-006 0.0999713 0.999999 -5.70006e-005 -0.0285086 8.4496e-008 6.2324e-010 1.4836e-008 - 10 react 1 -99 0 1 6.25 13.666 -99 25.000 -6.57701e-007 0.0999766 0.999999 -4.64735e-005 -0.0232422 6.6729e-008 1.3432e-009 3.1864e-008 - 11 react 1 -99 0 1 6.5 13.3802 -99 25.000 -3.41177e-007 0.0999813 0.999999 -3.7219e-005 -0.018613 4.2359e-008 2.3391e-009 5.5230e-008 - 12 react 1 -99 0 1 6.75 13.0945 -99 25.000 -1.40904e-007 0.0999854 0.999999 -2.91148e-005 -0.0145595 2.1076e-008 3.2169e-009 7.5642e-008 - 13 react 1 -99 0 1 7 12.8088 -99 25.000 1.13439e-008 0.0999891 1 -2.20135e-005 -0.011008 8.7607e-009 3.7285e-009 8.7461e-008 - 14 react 1 -99 0 1 7.25 12.5231 -99 25.000 1.67438e-007 0.0999923 1 -1.57484e-005 -0.0078748 3.3044e-009 3.9562e-009 9.2704e-008 - 15 react 1 -99 0 1 7.5 12.2374 -99 25.000 3.80557e-007 0.0999953 1 -1.01328e-005 -0.00506666 1.1918e-009 4.0447e-009 9.4738e-008 - 16 react 1 -99 0 1 7.75 11.9517 -99 25.000 7.23295e-007 0.0999982 1 -4.96214e-006 -0.00248112 4.2167e-010 4.0771e-009 9.5483e-008 - 17 react 1 -99 0 1 8 11.666 -99 25.000 1.3124e-006 0.100001 1 -1.7871e-008 -8.9354e-006 1.4817e-010 4.0887e-009 9.5749e-008 - 20 react 2 -99 0 1 5 15.0945 -99 25.000 -1.21096e-005 0.100042 0.999998 -0.000112354 -0.0562096 9.9686e-005 1.3167e-008 2.9577e-007 - 21 react 2 -99 0 1 5.25 14.8088 -99 25.000 -6.80176e-006 0.10005 0.999998 -9.68903e-005 -0.0484692 9.9221e-005 3.6026e-008 7.3398e-007 - 22 react 2 -99 0 1 5.5 14.5231 -99 25.000 -3.81085e-006 0.100056 0.999998 -8.25933e-005 -0.041314 9.8302e-005 9.7147e-008 1.5849e-006 - 23 react 2 -99 0 1 5.75 14.2374 -99 25.000 -2.1182e-006 0.100062 0.999999 -6.96993e-005 -0.034862 9.6949e-005 2.5852e-007 2.7639e-006 - 24 react 2 -99 0 1 6 13.9517 -99 25.000 -1.14729e-006 0.100066 0.999999 -5.82072e-005 -0.0291122 9.5439e-005 6.8198e-007 3.8284e-006 - 25 react 2 -99 0 1 6.25 13.666 -99 25.000 -5.67452e-007 0.100069 0.999999 -4.8109e-005 -0.0240603 9.3655e-005 1.7788e-006 4.4775e-006 - 26 react 2 -99 0 1 6.5 13.3802 -99 25.000 -1.82222e-007 0.100071 1 -3.95664e-005 -0.0197871 9.0590e-005 4.4736e-006 4.7812e-006 - 27 react 2 -99 0 1 6.75 13.0945 -99 25.000 1.33839e-007 0.100068 1 -3.28748e-005 -0.0164401 8.4578e-005 1.0254e-005 4.9050e-006 - 28 react 2 -99 0 1 7 12.8088 -99 25.000 4.7235e-007 0.10006 1 -2.81879e-005 -0.0140959 7.4599e-005 2.0021e-005 4.9534e-006 - 29 react 2 -99 0 1 7.25 12.5231 -99 25.000 9.25371e-007 0.100049 1 -2.51184e-005 -0.0125608 6.1808e-005 3.2551e-005 4.9732e-006 - 30 react 2 -99 0 1 7.5 12.2373 -99 25.000 1.63108e-006 0.100037 1 -2.28778e-005 -0.0114402 4.8410e-005 4.5580e-005 4.9823e-006 - 31 react 2 -99 0 1 7.75 11.9517 -99 25.000 2.83165e-006 0.100026 1 -2.08025e-005 -0.0104023 3.5937e-005 5.7490e-005 4.9870e-006 - 32 react 2 -99 0 1 8 11.666 -99 25.000 4.94809e-006 0.100017 1 -1.85413e-005 -0.00927139 2.5143e-005 6.7388e-005 4.9897e-006 diff --git a/examples_pc/ex9.out b/examples_pc/ex9.out deleted file mode 100644 index eb429e1b..00000000 --- a/examples_pc/ex9.out +++ /dev/null @@ -1,1336 +0,0 @@ - Input file: ..\examples\ex9 - Output file: ex9.out -Database file: ..\database\phreeqc.dat - ------------------- -Reading data base. ------------------- - - SOLUTION_MASTER_SPECIES - SOLUTION_SPECIES - PHASES - EXCHANGE_MASTER_SPECIES - EXCHANGE_SPECIES - SURFACE_MASTER_SPECIES - SURFACE_SPECIES - RATES - END ------------------------------------- -Reading input data for simulation 1. ------------------------------------- - - TITLE Example 9.--Kinetically controlled oxidation of ferrous - iron. Decoupled valence states of iron. - SOLUTION_MASTER_SPECIES - Fe_di Fe_di+2 0.0 Fe_di 55.847 - Fe_tri Fe_tri+3 0.0 Fe_tri 55.847 - SOLUTION_SPECIES - Fe_di+2 = Fe_di+2 - log_k 0.0 - Fe_tri+3 = Fe_tri+3 - log_k 0.0 - Fe_di+2 + H2O = Fe_diOH+ + H+ - log_k -9.5 - delta_h 13.20 kcal - Fe_di+2 + Cl- = Fe_diCl+ - log_k 0.14 - Fe_di+2 + CO3-2 = Fe_diCO3 - log_k 4.38 - Fe_di+2 + HCO3- = Fe_diHCO3+ - log_k 2.0 - Fe_di+2 + SO4-2 = Fe_diSO4 - log_k 2.25 - delta_h 3.230 kcal - Fe_di+2 + HSO4- = Fe_diHSO4+ - log_k 1.08 - Fe_di+2 + 2HS- = Fe_di(HS)2 - log_k 8.95 - Fe_di+2 + 3HS- = Fe_di(HS)3- - log_k 10.987 - Fe_di+2 + HPO4-2 = Fe_diHPO4 - log_k 3.6 - Fe_di+2 + H2PO4- = Fe_diH2PO4+ - log_k 2.7 - Fe_di+2 + F- = Fe_diF+ - log_k 1.0 - Fe_tri+3 + H2O = Fe_triOH+2 + H+ - log_k -2.19 - delta_h 10.4 kcal - Fe_tri+3 + 2 H2O = Fe_tri(OH)2+ + 2 H+ - log_k -5.67 - delta_h 17.1 kcal - Fe_tri+3 + 3 H2O = Fe_tri(OH)3 + 3 H+ - log_k -12.56 - delta_h 24.8 kcal - Fe_tri+3 + 4 H2O = Fe_tri(OH)4- + 4 H+ - log_k -21.6 - delta_h 31.9 kcal - 2 Fe_tri+3 + 2 H2O = Fe_tri2(OH)2+4 + 2 H+ - log_k -2.95 - delta_h 13.5 kcal - 3 Fe_tri+3 + 4 H2O = Fe_tri3(OH)4+5 + 4 H+ - log_k -6.3 - delta_h 14.3 kcal - Fe_tri+3 + Cl- = Fe_triCl+2 - log_k 1.48 - delta_h 5.6 kcal - Fe_tri+3 + 2 Cl- = Fe_triCl2+ - log_k 2.13 - Fe_tri+3 + 3 Cl- = Fe_triCl3 - log_k 1.13 - Fe_tri+3 + SO4-2 = Fe_triSO4+ - log_k 4.04 - delta_h 3.91 kcal - Fe_tri+3 + HSO4- = Fe_triHSO4+2 - log_k 2.48 - Fe_tri+3 + 2 SO4-2 = Fe_tri(SO4)2- - log_k 5.38 - delta_h 4.60 kcal - Fe_tri+3 + HPO4-2 = Fe_triHPO4+ - log_k 5.43 - delta_h 5.76 kcal - Fe_tri+3 + H2PO4- = Fe_triH2PO4+2 - log_k 5.43 - Fe_tri+3 + F- = Fe_triF+2 - log_k 6.2 - delta_h 2.7 kcal - Fe_tri+3 + 2 F- = Fe_triF2+ - log_k 10.8 - delta_h 4.8 kcal - Fe_tri+3 + 3 F- = Fe_triF3 - log_k 14.0 - delta_h 5.4 kcal - PHASES - Goethite - Fe_triOOH + 3 H+ = Fe_tri+3 + 2 H2O - log_k -1.0 - END ------ -TITLE ------ - - Example 9.--Kinetically controlled oxidation of ferrous - iron. Decoupled valence states of iron. - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 2. ------------------------------------- - - SOLUTION 1 - pH 7.0 - pe 10.0 O2(g) -0.67 - Fe_di 0.1 - Na 10. - Cl 10. charge - EQUILIBRIUM_PHASES 1 - O2(g) -0.67 - RATES - Fe_di_ox - start - 10 Fe_di = TOT("Fe_di") - 20 if (Fe_di <= 0) then goto 200 - 30 p_o2 = SR("O2(g)") - 40 moles = (2.91e-9 + 1.33e12 * (ACT("OH-"))^2 * p_o2) * Fe_di * TIME - 200 SAVE moles - end - KINETICS 1 - Fe_di_ox - formula Fe_di -1.0 Fe_tri 1.0 - steps 100 400 3100 10800 21600 5.04e4 8.64e4 1.728e5 1.728e5 1.728e5 1.728e5 - step_divide 1e-4 - INCREMENTAL_REACTIONS true - SELECTED_OUTPUT - file ex9.sel - reset false - USER_PUNCH - headings Days Fe(2) Fe(3) pH si_goethite - 10 PUNCH SIM_TIME / 3600 / 24, TOT("Fe_di")*1e6, TOT("Fe_tri")*1e6, -LA("H+"), SI("Goethite") - USER_GRAPH Example 9 - -headings _time_ Fe(2) Fe(3) pH - -chart_title "Oxidation of Ferrous Iron" - -axis_titles "Time, in days" "Micromole per kilogram water" "pH" - -axis_scale secondary_y_axis 4.0 7.0 1.0 0.5 - -start - 10 GRAPH_X TOTAL_TIME / 3600 / 24 - 20 GRAPH_Y TOT("Fe_tri")*1e6, TOT("Fe_di")*1e6 - 30 GRAPH_SY -LA("H+") - -end - END -------------------------------------------- -Beginning of initial solution calculations. -------------------------------------------- - -Initial solution 1. - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Cl 1.020e-002 1.020e-002 Charge balance - Fe_di 1.000e-004 1.000e-004 - Na 1.000e-002 1.000e-002 - -----------------------------Description of solution---------------------------- - - pH = 7.000 - pe = 13.629 Equilibrium with O2(g) - Specific Conductance (uS/cm, 25 oC) = 1199 - Density (g/cm3) = 0.99747 - Volume (L) = 1.00315 - Activity of water = 1.000 - Ionic strength = 1.030e-002 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 2.313e-007 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = 3.500e-018 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 9 - Total H = 1.110124e+002 - Total O = 5.550676e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - OH- 1.126e-007 1.012e-007 -6.949 -6.995 -0.046 -4.03 - H+ 1.096e-007 1.000e-007 -6.960 -7.000 -0.040 0.00 - H2O 5.551e+001 9.997e-001 1.744 -0.000 0.000 18.07 -Cl 1.020e-002 - Cl- 1.020e-002 9.174e-003 -1.991 -2.037 -0.046 18.14 - Fe_diCl+ 9.148e-007 8.240e-007 -6.039 -6.084 -0.045 (0) -Fe_di 1.000e-004 - Fe_di+2 9.886e-005 6.507e-005 -4.005 -4.187 -0.182 (0) - Fe_diCl+ 9.148e-007 8.240e-007 -6.039 -6.084 -0.045 (0) - Fe_diOH+ 2.284e-007 2.057e-007 -6.641 -6.687 -0.045 (0) -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.410 -44.409 0.001 28.61 -Na 1.000e-002 - Na+ 1.000e-002 9.022e-003 -2.000 -2.045 -0.045 -1.31 - NaOH 9.106e-020 9.128e-020 -19.041 -19.040 0.001 (0) -O(0) 5.465e-004 - O2 2.732e-004 2.739e-004 -3.563 -3.562 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - H2(g) -41.31 -44.41 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - Halite -5.65 -4.08 1.57 NaCl - O2(g) -0.67 -3.56 -2.89 O2 Pressure 0.2 atm, phi 1.000. - - ------------------------------------------ -Beginning of batch-reaction calculations. ------------------------------------------ - -Reaction step 1. - -WARNING: Negative moles in solution for Fe_tri, -6.101497e-006. Recovering... -WARNING: Negative moles in solution for Fe_tri, -1.392301e-006. Recovering... -Using solution 1. -Using pure phase assemblage 1. -Using kinetics 1. - -Kinetics 1. - - Time step: 100 seconds (Incremented time: 100 seconds) - - Rate name Delta Moles Total Moles Reactant Coefficient - - Fe_di_ox -1.066e-006 1.000e+000 Fe_di -1 - Fe_tri 1 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -O2(g) -0.67 -3.56 -2.89 1.000e+001 1.000e+001 -2.665e-007 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Cl 1.020e-002 1.020e-002 - Fe_di 9.893e-005 9.893e-005 - Fe_tri 1.066e-006 1.066e-006 - Na 1.000e-002 1.000e-002 - -----------------------------Description of solution---------------------------- - - pH = 6.044 Charge balance - pe = 14.585 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 1199 - Density (g/cm3) = 0.99747 - Volume (L) = 1.00315 - Activity of water = 1.000 - Ionic strength = 1.030e-002 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.297e-006 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -5.102e-017 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 248 - Total H = 1.110124e+002 - Total O = 5.550676e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 9.895e-007 9.029e-007 -6.005 -6.044 -0.040 0.00 - OH- 1.247e-008 1.121e-008 -7.904 -7.951 -0.046 -4.03 - H2O 5.551e+001 9.997e-001 1.744 -0.000 0.000 18.07 -Cl 1.020e-002 - Cl- 1.020e-002 9.174e-003 -1.991 -2.037 -0.046 18.14 - Fe_diCl+ 9.069e-007 8.169e-007 -6.042 -6.088 -0.045 (0) - Fe_triCl+2 1.362e-013 8.965e-014 -12.866 -13.047 -0.182 (0) - Fe_triCl2+ 4.079e-015 3.674e-015 -14.389 -14.435 -0.045 (0) - Fe_triCl3 3.362e-018 3.370e-018 -17.473 -17.472 0.001 (0) -Fe_di 9.893e-005 - Fe_di+2 9.800e-005 6.450e-005 -4.009 -4.190 -0.182 (0) - Fe_diCl+ 9.069e-007 8.169e-007 -6.042 -6.088 -0.045 (0) - Fe_diOH+ 2.507e-008 2.259e-008 -7.601 -7.646 -0.045 (0) -Fe_tri 1.066e-006 - Fe_tri(OH)2+ 9.416e-007 8.481e-007 -6.026 -6.072 -0.045 (0) - Fe_tri(OH)3 1.207e-007 1.210e-007 -6.918 -6.917 0.001 (0) - Fe_triOH+2 3.514e-009 2.313e-009 -8.454 -8.636 -0.182 (0) - Fe_tri(OH)4- 1.356e-010 1.221e-010 -9.868 -9.913 -0.045 (0) - Fe_tri+3 8.292e-013 3.236e-013 -12.081 -12.490 -0.409 (0) - Fe_triCl+2 1.362e-013 8.965e-014 -12.866 -13.047 -0.182 (0) - Fe_triCl2+ 4.079e-015 3.674e-015 -14.389 -14.435 -0.045 (0) - Fe_tri2(OH)2+4 7.673e-016 1.440e-016 -15.115 -15.842 -0.727 (0) - Fe_triCl3 3.362e-018 3.370e-018 -17.473 -17.472 0.001 (0) - Fe_tri3(OH)4+5 3.484e-019 2.552e-020 -18.458 -19.593 -1.135 (0) -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.410 -44.409 0.001 28.61 -Na 1.000e-002 - Na+ 1.000e-002 9.022e-003 -2.000 -2.045 -0.045 -1.31 - NaOH 1.009e-020 1.011e-020 -19.996 -19.995 0.001 (0) -O(0) 5.465e-004 - O2 2.732e-004 2.739e-004 -3.563 -3.562 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Goethite 6.64 5.64 -1.00 Fe_triOOH - H2(g) -41.31 -44.41 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - Halite -5.65 -4.08 1.57 NaCl - O2(g) -0.67 -3.56 -2.89 O2 Pressure 0.2 atm, phi 1.000. - - -Reaction step 2. - -Using solution 1. -Using pure phase assemblage 1. -Using kinetics 1. - -Kinetics 1. - - Time step: 400 seconds (Incremented time: 500 seconds) - - Rate name Delta Moles Total Moles Reactant Coefficient - - Fe_di_ox -7.416e-007 1.000e+000 Fe_di -1 - Fe_tri 1 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -O2(g) -0.67 -3.56 -2.89 1.000e+001 1.000e+001 -1.854e-007 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Cl 1.020e-002 1.020e-002 - Fe_di 9.819e-005 9.819e-005 - Fe_tri 1.808e-006 1.808e-006 - Na 1.000e-002 1.000e-002 - -----------------------------Description of solution---------------------------- - - pH = 5.807 Charge balance - pe = 14.823 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 1199 - Density (g/cm3) = 0.99747 - Volume (L) = 1.00315 - Activity of water = 1.000 - Ionic strength = 1.030e-002 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 2.039e-006 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.712e-017 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 40 - Total H = 1.110124e+002 - Total O = 5.550676e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.711e-006 1.561e-006 -5.767 -5.807 -0.040 0.00 - OH- 7.211e-009 6.481e-009 -8.142 -8.188 -0.046 -4.03 - H2O 5.551e+001 9.997e-001 1.744 -0.000 0.000 18.07 -Cl 1.020e-002 - Cl- 1.020e-002 9.174e-003 -1.991 -2.037 -0.046 18.14 - Fe_diCl+ 9.002e-007 8.108e-007 -6.046 -6.091 -0.045 (0) - Fe_triCl+2 7.235e-013 4.762e-013 -12.141 -12.322 -0.182 (0) - Fe_triCl2+ 2.167e-014 1.951e-014 -13.664 -13.710 -0.045 (0) - Fe_triCl3 1.786e-017 1.790e-017 -16.748 -16.747 0.001 (0) -Fe_di 9.819e-005 - Fe_di+2 9.728e-005 6.403e-005 -4.012 -4.194 -0.182 (0) - Fe_diCl+ 9.002e-007 8.108e-007 -6.046 -6.091 -0.045 (0) - Fe_diOH+ 1.439e-008 1.296e-008 -7.842 -7.887 -0.045 (0) -Fe_tri 1.808e-006 - Fe_tri(OH)2+ 1.673e-006 1.507e-006 -5.777 -5.822 -0.045 (0) - Fe_tri(OH)3 1.240e-007 1.243e-007 -6.907 -6.906 0.001 (0) - Fe_triOH+2 1.080e-008 7.106e-009 -7.967 -8.148 -0.182 (0) - Fe_tri(OH)4- 8.057e-011 7.257e-011 -10.094 -10.139 -0.045 (0) - Fe_tri+3 4.405e-012 1.719e-012 -11.356 -11.765 -0.409 (0) - Fe_triCl+2 7.235e-013 4.762e-013 -12.141 -12.322 -0.182 (0) - Fe_triCl2+ 2.167e-014 1.951e-014 -13.664 -13.710 -0.045 (0) - Fe_tri2(OH)2+4 7.241e-015 1.359e-015 -14.140 -14.867 -0.727 (0) - Fe_triCl3 1.786e-017 1.790e-017 -16.748 -16.747 0.001 (0) - Fe_tri3(OH)4+5 5.841e-018 4.278e-019 -17.234 -18.369 -1.135 (0) -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.410 -44.409 0.001 28.61 -Na 1.000e-002 - Na+ 1.000e-002 9.022e-003 -2.000 -2.045 -0.045 -1.31 - NaOH 5.833e-021 5.847e-021 -20.234 -20.233 0.001 (0) -O(0) 5.465e-004 - O2 2.732e-004 2.739e-004 -3.563 -3.562 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Goethite 6.65 5.65 -1.00 Fe_triOOH - H2(g) -41.31 -44.41 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - Halite -5.65 -4.08 1.57 NaCl - O2(g) -0.67 -3.56 -2.89 O2 Pressure 0.2 atm, phi 1.000. - - -Reaction step 3. - -Using solution 1. -Using pure phase assemblage 1. -Using kinetics 1. - -Kinetics 1. - - Time step: 3100 seconds (Incremented time: 3600 seconds) - - Rate name Delta Moles Total Moles Reactant Coefficient - - Fe_di_ox -1.626e-006 1.000e+000 Fe_di -1 - Fe_tri 1 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -O2(g) -0.67 -3.56 -2.89 1.000e+001 1.000e+001 -4.065e-007 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Cl 1.020e-002 1.020e-002 - Fe_di 9.657e-005 9.657e-005 - Fe_tri 3.433e-006 3.433e-006 - Na 1.000e-002 1.000e-002 - -----------------------------Description of solution---------------------------- - - pH = 5.522 Charge balance - pe = 15.108 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 1200 - Density (g/cm3) = 0.99747 - Volume (L) = 1.00315 - Activity of water = 1.000 - Ionic strength = 1.029e-002 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 3.665e-006 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.429e-017 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 95 - Total H = 1.110124e+002 - Total O = 5.550677e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 3.298e-006 3.009e-006 -5.482 -5.522 -0.040 0.00 - OH- 3.741e-009 3.362e-009 -8.427 -8.473 -0.046 -4.03 - H2O 5.551e+001 9.997e-001 1.744 -0.000 0.000 18.07 -Cl 1.020e-002 - Cl- 1.020e-002 9.174e-003 -1.991 -2.037 -0.046 18.14 - Fe_diCl+ 8.854e-007 7.975e-007 -6.053 -6.098 -0.045 (0) - Fe_triCl+2 5.249e-012 3.455e-012 -11.280 -11.462 -0.182 (0) - Fe_triCl2+ 1.572e-013 1.416e-013 -12.804 -12.849 -0.045 (0) - Fe_triCl3 1.296e-016 1.299e-016 -15.887 -15.886 0.001 (0) -Fe_di 9.657e-005 - Fe_di+2 9.567e-005 6.298e-005 -4.019 -4.201 -0.182 (0) - Fe_diCl+ 8.854e-007 7.975e-007 -6.053 -6.098 -0.045 (0) - Fe_diOH+ 7.345e-009 6.616e-009 -8.134 -8.179 -0.045 (0) -Fe_tri 3.433e-006 - Fe_tri(OH)2+ 3.267e-006 2.943e-006 -5.486 -5.531 -0.045 (0) - Fe_tri(OH)3 1.256e-007 1.259e-007 -6.901 -6.900 0.001 (0) - Fe_triOH+2 4.064e-008 2.675e-008 -7.391 -7.573 -0.182 (0) - Fe_tri(OH)4- 4.236e-011 3.815e-011 -10.373 -10.418 -0.045 (0) - Fe_tri+3 3.196e-011 1.247e-011 -10.495 -10.904 -0.409 (0) - Fe_triCl+2 5.249e-012 3.455e-012 -11.280 -11.462 -0.182 (0) - Fe_triCl2+ 1.572e-013 1.416e-013 -12.804 -12.849 -0.045 (0) - Fe_tri2(OH)2+4 1.026e-013 1.926e-014 -12.989 -13.715 -0.727 (0) - Fe_tri3(OH)4+5 1.616e-016 1.184e-017 -15.791 -16.927 -1.135 (0) - Fe_triCl3 1.296e-016 1.299e-016 -15.887 -15.886 0.001 (0) -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.410 -44.409 0.001 28.61 -Na 1.000e-002 - Na+ 1.000e-002 9.022e-003 -2.000 -2.045 -0.045 -1.31 - NaOH 3.026e-021 3.034e-021 -20.519 -20.518 0.001 (0) -O(0) 5.465e-004 - O2 2.732e-004 2.739e-004 -3.563 -3.562 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Goethite 6.66 5.66 -1.00 Fe_triOOH - H2(g) -41.31 -44.41 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - Halite -5.65 -4.08 1.57 NaCl - O2(g) -0.67 -3.56 -2.89 O2 Pressure 0.2 atm, phi 1.000. - - -Reaction step 4. - -Using solution 1. -Using pure phase assemblage 1. -Using kinetics 1. - -Kinetics 1. - - Time step: 10800 seconds (Incremented time: 14400 seconds) - - Rate name Delta Moles Total Moles Reactant Coefficient - - Fe_di_ox -1.967e-006 1.000e+000 Fe_di -1 - Fe_tri 1 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -O2(g) -0.67 -3.56 -2.89 1.000e+001 1.000e+001 -4.919e-007 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Cl 1.020e-002 1.020e-002 - Fe_di 9.460e-005 9.460e-005 - Fe_tri 5.400e-006 5.400e-006 - Na 1.000e-002 1.000e-002 - -----------------------------Description of solution---------------------------- - - pH = 5.324 Charge balance - pe = 15.306 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 1201 - Density (g/cm3) = 0.99747 - Volume (L) = 1.00315 - Activity of water = 1.000 - Ionic strength = 1.029e-002 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 5.632e-006 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.114e-017 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 40 - Total H = 1.110124e+002 - Total O = 5.550677e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 5.200e-006 4.745e-006 -5.284 -5.324 -0.040 0.00 - OH- 2.373e-009 2.132e-009 -8.625 -8.671 -0.046 -4.03 - H2O 5.551e+001 9.997e-001 1.744 -0.000 0.000 18.07 -Cl 1.020e-002 - Cl- 1.020e-002 9.174e-003 -1.991 -2.037 -0.046 18.14 - Fe_diCl+ 8.674e-007 7.813e-007 -6.062 -6.107 -0.045 (0) - Fe_triCl+2 2.066e-011 1.360e-011 -10.685 -10.866 -0.182 (0) - Fe_triCl2+ 6.189e-013 5.574e-013 -12.208 -12.254 -0.045 (0) - Fe_triCl3 5.102e-016 5.114e-016 -15.292 -15.291 0.001 (0) -Fe_di 9.460e-005 - Fe_di+2 9.373e-005 6.170e-005 -4.028 -4.210 -0.182 (0) - Fe_diCl+ 8.674e-007 7.813e-007 -6.062 -6.107 -0.045 (0) - Fe_diOH+ 4.563e-009 4.110e-009 -8.341 -8.386 -0.045 (0) -Fe_tri 5.400e-006 - Fe_tri(OH)2+ 5.172e-006 4.659e-006 -5.286 -5.332 -0.045 (0) - Fe_tri(OH)3 1.262e-007 1.265e-007 -6.899 -6.898 0.001 (0) - Fe_triOH+2 1.015e-007 6.678e-008 -6.994 -7.175 -0.182 (0) - Fe_tri+3 1.258e-010 4.910e-011 -9.900 -10.309 -0.409 (0) - Fe_tri(OH)4- 2.697e-011 2.430e-011 -10.569 -10.614 -0.045 (0) - Fe_triCl+2 2.066e-011 1.360e-011 -10.685 -10.866 -0.182 (0) - Fe_tri2(OH)2+4 6.394e-013 1.200e-013 -12.194 -12.921 -0.726 (0) - Fe_triCl2+ 6.189e-013 5.574e-013 -12.208 -12.254 -0.045 (0) - Fe_tri3(OH)4+5 1.595e-015 1.169e-016 -14.797 -15.932 -1.135 (0) - Fe_triCl3 5.102e-016 5.114e-016 -15.292 -15.291 0.001 (0) -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.410 -44.409 0.001 28.61 -Na 1.000e-002 - Na+ 1.000e-002 9.022e-003 -2.000 -2.045 -0.045 -1.31 - NaOH 1.919e-021 1.924e-021 -20.717 -20.716 0.001 (0) -O(0) 5.465e-004 - O2 2.732e-004 2.739e-004 -3.563 -3.562 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Goethite 6.66 5.66 -1.00 Fe_triOOH - H2(g) -41.31 -44.41 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - Halite -5.65 -4.08 1.57 NaCl - O2(g) -0.67 -3.56 -2.89 O2 Pressure 0.2 atm, phi 1.000. - - -Reaction step 5. - -Using solution 1. -Using pure phase assemblage 1. -Using kinetics 1. - -Kinetics 1. - - Time step: 21600 seconds (Incremented time: 36000 seconds) - - Rate name Delta Moles Total Moles Reactant Coefficient - - Fe_di_ox -1.889e-006 1.000e+000 Fe_di -1 - Fe_tri 1 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -O2(g) -0.67 -3.56 -2.89 1.000e+001 1.000e+001 -4.723e-007 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Cl 1.020e-002 1.020e-002 - Fe_di 9.271e-005 9.271e-005 - Fe_tri 7.289e-006 7.289e-006 - Na 1.000e-002 1.000e-002 - -----------------------------Description of solution---------------------------- - - pH = 5.194 Charge balance - pe = 15.435 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 1201 - Density (g/cm3) = 0.99747 - Volume (L) = 1.00315 - Activity of water = 1.000 - Ionic strength = 1.029e-002 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 7.520e-006 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.136e-017 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 40 - Total H = 1.110124e+002 - Total O = 5.550677e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 7.004e-006 6.391e-006 -5.155 -5.194 -0.040 0.00 - OH- 1.762e-009 1.583e-009 -8.754 -8.800 -0.046 -4.03 - H2O 5.551e+001 9.997e-001 1.744 -0.000 0.000 18.07 -Cl 1.020e-002 - Cl- 1.020e-002 9.174e-003 -1.991 -2.037 -0.046 18.14 - Fe_diCl+ 8.501e-007 7.658e-007 -6.071 -6.116 -0.045 (0) - Fe_triCl+2 5.057e-011 3.329e-011 -10.296 -10.478 -0.182 (0) - Fe_triCl2+ 1.514e-012 1.364e-012 -11.820 -11.865 -0.045 (0) - Fe_triCl3 1.249e-015 1.252e-015 -14.904 -14.903 0.001 (0) -Fe_di 9.271e-005 - Fe_di+2 9.186e-005 6.047e-005 -4.037 -4.218 -0.182 (0) - Fe_diCl+ 8.501e-007 7.658e-007 -6.071 -6.116 -0.045 (0) - Fe_diOH+ 3.321e-009 2.991e-009 -8.479 -8.524 -0.045 (0) -Fe_tri 7.289e-006 - Fe_tri(OH)2+ 6.978e-006 6.285e-006 -5.156 -5.202 -0.045 (0) - Fe_triOH+2 1.843e-007 1.213e-007 -6.734 -6.916 -0.182 (0) - Fe_tri(OH)3 1.264e-007 1.267e-007 -6.898 -6.897 0.001 (0) - Fe_tri+3 3.078e-010 1.201e-010 -9.512 -9.920 -0.409 (0) - Fe_triCl+2 5.057e-011 3.329e-011 -10.296 -10.478 -0.182 (0) - Fe_tri(OH)4- 2.006e-011 1.807e-011 -10.698 -10.743 -0.045 (0) - Fe_tri2(OH)2+4 2.111e-012 3.963e-013 -11.676 -12.402 -0.726 (0) - Fe_triCl2+ 1.514e-012 1.364e-012 -11.820 -11.865 -0.045 (0) - Fe_tri3(OH)4+5 7.101e-015 5.204e-016 -14.149 -15.284 -1.135 (0) - Fe_triCl3 1.249e-015 1.252e-015 -14.904 -14.903 0.001 (0) -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.410 -44.409 0.001 28.61 -Na 1.000e-002 - Na+ 1.000e-002 9.022e-003 -2.000 -2.045 -0.045 -1.31 - NaOH 1.425e-021 1.428e-021 -20.846 -20.845 0.001 (0) -O(0) 5.465e-004 - O2 2.732e-004 2.739e-004 -3.563 -3.562 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Goethite 6.66 5.66 -1.00 Fe_triOOH - H2(g) -41.31 -44.41 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - Halite -5.65 -4.08 1.57 NaCl - O2(g) -0.67 -3.56 -2.89 O2 Pressure 0.2 atm, phi 1.000. - - -Reaction step 6. - -Using solution 1. -Using pure phase assemblage 1. -Using kinetics 1. - -Kinetics 1. - - Time step: 50400 seconds (Incremented time: 86400 seconds) - - Rate name Delta Moles Total Moles Reactant Coefficient - - Fe_di_ox -2.424e-006 1.000e+000 Fe_di -1 - Fe_tri 1 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -O2(g) -0.67 -3.56 -2.89 1.000e+001 1.000e+001 -6.060e-007 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Cl 1.020e-002 1.020e-002 - Fe_di 9.029e-005 9.029e-005 - Fe_tri 9.712e-006 9.712e-006 - Na 1.000e-002 1.000e-002 - -----------------------------Description of solution---------------------------- - - pH = 5.072 Charge balance - pe = 15.557 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 1202 - Density (g/cm3) = 0.99747 - Volume (L) = 1.00315 - Activity of water = 1.000 - Ionic strength = 1.029e-002 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 9.944e-006 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.944e-017 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 40 - Total H = 1.110124e+002 - Total O = 5.550677e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 9.285e-006 8.472e-006 -5.032 -5.072 -0.040 0.00 - OH- 1.329e-009 1.194e-009 -8.877 -8.923 -0.046 -4.03 - H2O 5.551e+001 9.997e-001 1.744 -0.000 0.000 18.07 -Cl 1.020e-002 - Cl- 1.020e-002 9.174e-003 -1.991 -2.037 -0.046 18.14 - Fe_diCl+ 8.280e-007 7.458e-007 -6.082 -6.127 -0.045 (0) - Fe_triCl+2 1.180e-010 7.765e-011 -9.928 -10.110 -0.182 (0) - Fe_triCl2+ 3.533e-012 3.182e-012 -11.452 -11.497 -0.045 (0) - Fe_triCl3 2.912e-015 2.919e-015 -14.536 -14.535 0.001 (0) -Fe_di 9.029e-005 - Fe_di+2 8.946e-005 5.889e-005 -4.048 -4.230 -0.182 (0) - Fe_diCl+ 8.280e-007 7.458e-007 -6.082 -6.127 -0.045 (0) - Fe_diOH+ 2.439e-009 2.197e-009 -8.613 -8.658 -0.045 (0) -Fe_tri 9.712e-006 - Fe_tri(OH)2+ 9.261e-006 8.342e-006 -5.033 -5.079 -0.045 (0) - Fe_triOH+2 3.243e-007 2.135e-007 -6.489 -6.671 -0.182 (0) - Fe_tri(OH)3 1.265e-007 1.268e-007 -6.898 -6.897 0.001 (0) - Fe_tri+3 7.180e-010 2.803e-010 -9.144 -9.552 -0.409 (0) - Fe_triCl+2 1.180e-010 7.765e-011 -9.928 -10.110 -0.182 (0) - Fe_tri(OH)4- 1.515e-011 1.364e-011 -10.820 -10.865 -0.045 (0) - Fe_tri2(OH)2+4 6.533e-012 1.227e-012 -11.185 -11.911 -0.726 (0) - Fe_triCl2+ 3.533e-012 3.182e-012 -11.452 -11.497 -0.045 (0) - Fe_tri3(OH)4+5 2.917e-014 2.138e-015 -13.535 -14.670 -1.135 (0) - Fe_triCl3 2.912e-015 2.919e-015 -14.536 -14.535 0.001 (0) -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.410 -44.409 0.001 28.61 -Na 1.000e-002 - Na+ 1.000e-002 9.022e-003 -2.000 -2.045 -0.045 -1.31 - NaOH 1.075e-021 1.077e-021 -20.969 -20.968 0.001 (0) -O(0) 5.465e-004 - O2 2.732e-004 2.739e-004 -3.563 -3.562 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Goethite 6.66 5.66 -1.00 Fe_triOOH - H2(g) -41.31 -44.41 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - Halite -5.65 -4.08 1.57 NaCl - O2(g) -0.67 -3.56 -2.89 O2 Pressure 0.2 atm, phi 1.000. - - -Reaction step 7. - -Using solution 1. -Using pure phase assemblage 1. -Using kinetics 1. - -Kinetics 1. - - Time step: 86400 seconds (Incremented time: 172800 seconds) - - Rate name Delta Moles Total Moles Reactant Coefficient - - Fe_di_ox -2.479e-006 1.000e+000 Fe_di -1 - Fe_tri 1 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -O2(g) -0.67 -3.56 -2.89 1.000e+001 1.000e+001 -6.200e-007 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Cl 1.020e-002 1.020e-002 - Fe_di 8.781e-005 8.781e-005 - Fe_tri 1.219e-005 1.219e-005 - Na 1.000e-002 1.000e-002 - -----------------------------Description of solution---------------------------- - - pH = 4.976 Charge balance - pe = 15.653 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 1203 - Density (g/cm3) = 0.99747 - Volume (L) = 1.00315 - Activity of water = 1.000 - Ionic strength = 1.029e-002 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.242e-005 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.882e-017 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 40 - Total H = 1.110124e+002 - Total O = 5.550677e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.158e-005 1.057e-005 -4.936 -4.976 -0.040 0.00 - OH- 1.065e-009 9.574e-010 -8.973 -9.019 -0.046 -4.03 - H2O 5.551e+001 9.997e-001 1.744 -0.000 0.000 18.07 -Cl 1.020e-002 - Cl- 1.020e-002 9.175e-003 -1.991 -2.037 -0.046 18.14 - Fe_diCl+ 8.053e-007 7.253e-007 -6.094 -6.139 -0.045 (0) - Fe_triCl+2 2.291e-010 1.508e-010 -9.640 -9.822 -0.182 (0) - Fe_triCl2+ 6.860e-012 6.180e-012 -11.164 -11.209 -0.045 (0) - Fe_triCl3 5.656e-015 5.669e-015 -14.247 -14.246 0.001 (0) -Fe_di 8.781e-005 - Fe_di+2 8.700e-005 5.727e-005 -4.060 -4.242 -0.182 (0) - Fe_diCl+ 8.053e-007 7.253e-007 -6.094 -6.139 -0.045 (0) - Fe_diOH+ 1.902e-009 1.713e-009 -8.721 -8.766 -0.045 (0) -Fe_tri 1.219e-005 - Fe_tri(OH)2+ 1.156e-005 1.041e-005 -4.937 -4.982 -0.045 (0) - Fe_triOH+2 5.049e-007 3.324e-007 -6.297 -6.478 -0.182 (0) - Fe_tri(OH)3 1.266e-007 1.269e-007 -6.898 -6.897 0.001 (0) - Fe_tri+3 1.394e-009 5.442e-010 -8.856 -9.264 -0.409 (0) - Fe_triCl+2 2.291e-010 1.508e-010 -9.640 -9.822 -0.182 (0) - Fe_tri2(OH)2+4 1.583e-011 2.974e-012 -10.800 -11.527 -0.726 (0) - Fe_tri(OH)4- 1.215e-011 1.095e-011 -10.915 -10.961 -0.045 (0) - Fe_triCl2+ 6.860e-012 6.180e-012 -11.164 -11.209 -0.045 (0) - Fe_tri3(OH)4+5 8.822e-014 6.469e-015 -13.054 -14.189 -1.135 (0) - Fe_triCl3 5.656e-015 5.669e-015 -14.247 -14.246 0.001 (0) -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.410 -44.409 0.001 28.61 -Na 1.000e-002 - Na+ 1.000e-002 9.022e-003 -2.000 -2.045 -0.045 -1.31 - NaOH 8.618e-022 8.638e-022 -21.065 -21.064 0.001 (0) -O(0) 5.465e-004 - O2 2.732e-004 2.739e-004 -3.563 -3.562 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Goethite 6.66 5.66 -1.00 Fe_triOOH - H2(g) -41.31 -44.41 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - Halite -5.65 -4.08 1.57 NaCl - O2(g) -0.67 -3.56 -2.89 O2 Pressure 0.2 atm, phi 1.000. - - -Reaction step 8. - -Using solution 1. -Using pure phase assemblage 1. -Using kinetics 1. - -Kinetics 1. - - Time step: 172800 seconds (Incremented time: 345600 seconds) - - Rate name Delta Moles Total Moles Reactant Coefficient - - Fe_di_ox -3.110e-006 1.000e+000 Fe_di -1 - Fe_tri 1 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -O2(g) -0.67 -3.56 -2.89 1.000e+001 1.000e+001 -7.777e-007 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Cl 1.020e-002 1.020e-002 - Fe_di 8.470e-005 8.470e-005 - Fe_tri 1.530e-005 1.530e-005 - Na 1.000e-002 1.000e-002 - -----------------------------Description of solution---------------------------- - - pH = 4.881 Charge balance - pe = 15.748 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 1204 - Density (g/cm3) = 0.99747 - Volume (L) = 1.00315 - Activity of water = 1.000 - Ionic strength = 1.028e-002 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.553e-005 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -2.377e-017 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 40 - Total H = 1.110124e+002 - Total O = 5.550677e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.441e-005 1.315e-005 -4.841 -4.881 -0.040 0.00 - OH- 8.561e-010 7.695e-010 -9.067 -9.114 -0.046 -4.03 - H2O 5.551e+001 9.997e-001 1.744 -0.000 0.000 18.07 -Cl 1.020e-002 - Cl- 1.020e-002 9.175e-003 -1.991 -2.037 -0.046 18.14 - Fe_diCl+ 7.768e-007 6.997e-007 -6.110 -6.155 -0.045 (0) - Fe_triCl+2 4.415e-010 2.907e-010 -9.355 -9.537 -0.182 (0) - Fe_triCl2+ 1.322e-011 1.191e-011 -10.879 -10.924 -0.045 (0) - Fe_triCl3 1.090e-014 1.093e-014 -13.962 -13.961 0.001 (0) -Fe_di 8.470e-005 - Fe_di+2 8.392e-005 5.525e-005 -4.076 -4.258 -0.182 (0) - Fe_diCl+ 7.768e-007 6.997e-007 -6.110 -6.155 -0.045 (0) - Fe_diOH+ 1.475e-009 1.328e-009 -8.831 -8.877 -0.045 (0) -Fe_tri 1.530e-005 - Fe_tri(OH)2+ 1.439e-005 1.296e-005 -4.842 -4.887 -0.045 (0) - Fe_triOH+2 7.821e-007 5.149e-007 -6.107 -6.288 -0.182 (0) - Fe_tri(OH)3 1.266e-007 1.269e-007 -6.897 -6.896 0.001 (0) - Fe_tri+3 2.687e-009 1.049e-009 -8.571 -8.979 -0.408 (0) - Fe_triCl+2 4.415e-010 2.907e-010 -9.355 -9.537 -0.182 (0) - Fe_tri2(OH)2+4 3.799e-011 7.136e-012 -10.420 -11.147 -0.726 (0) - Fe_triCl2+ 1.322e-011 1.191e-011 -10.879 -10.924 -0.045 (0) - Fe_tri(OH)4- 9.771e-012 8.802e-012 -11.010 -11.055 -0.045 (0) - Fe_tri3(OH)4+5 2.635e-013 1.933e-014 -12.579 -13.714 -1.135 (0) - Fe_triCl3 1.090e-014 1.093e-014 -13.962 -13.961 0.001 (0) -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.410 -44.409 0.001 28.61 -Na 1.000e-002 - Na+ 1.000e-002 9.022e-003 -2.000 -2.045 -0.045 -1.31 - NaOH 6.926e-022 6.942e-022 -21.160 -21.158 0.001 (0) -O(0) 5.465e-004 - O2 2.732e-004 2.739e-004 -3.563 -3.562 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Goethite 6.66 5.66 -1.00 Fe_triOOH - H2(g) -41.31 -44.41 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - Halite -5.65 -4.08 1.57 NaCl - O2(g) -0.67 -3.56 -2.89 O2 Pressure 0.2 atm, phi 1.000. - - -Reaction step 9. - -Using solution 1. -Using pure phase assemblage 1. -Using kinetics 1. - -Kinetics 1. - - Time step: 172800 seconds (Incremented time: 518400 seconds) - - Rate name Delta Moles Total Moles Reactant Coefficient - - Fe_di_ox -2.172e-006 1.000e+000 Fe_di -1 - Fe_tri 1 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -O2(g) -0.67 -3.56 -2.89 1.000e+001 1.000e+001 -5.431e-007 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Cl 1.020e-002 1.020e-002 - Fe_di 8.253e-005 8.253e-005 - Fe_tri 1.747e-005 1.747e-005 - Na 1.000e-002 1.000e-002 - -----------------------------Description of solution---------------------------- - - pH = 4.826 Charge balance - pe = 15.803 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 1204 - Density (g/cm3) = 0.99747 - Volume (L) = 1.00315 - Activity of water = 1.000 - Ionic strength = 1.028e-002 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.771e-005 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -3.593e-017 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 40 - Total H = 1.110124e+002 - Total O = 5.550677e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.635e-005 1.492e-005 -4.786 -4.826 -0.040 0.00 - OH- 7.543e-010 6.780e-010 -9.122 -9.169 -0.046 -4.03 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.07 -Cl 1.020e-002 - Cl- 1.020e-002 9.175e-003 -1.991 -2.037 -0.046 18.14 - Fe_diCl+ 7.569e-007 6.818e-007 -6.121 -6.166 -0.045 (0) - Fe_triCl+2 6.454e-010 4.249e-010 -9.190 -9.372 -0.182 (0) - Fe_triCl2+ 1.933e-011 1.742e-011 -10.714 -10.759 -0.045 (0) - Fe_triCl3 1.594e-014 1.598e-014 -13.798 -13.796 0.001 (0) -Fe_di 8.253e-005 - Fe_di+2 8.177e-005 5.383e-005 -4.087 -4.269 -0.182 (0) - Fe_diCl+ 7.569e-007 6.818e-007 -6.121 -6.166 -0.045 (0) - Fe_diOH+ 1.266e-009 1.140e-009 -8.898 -8.943 -0.045 (0) -Fe_tri 1.747e-005 - Fe_tri(OH)2+ 1.633e-005 1.471e-005 -4.787 -4.832 -0.045 (0) - Fe_triOH+2 1.008e-006 6.633e-007 -5.997 -6.178 -0.182 (0) - Fe_tri(OH)3 1.267e-007 1.270e-007 -6.897 -6.896 0.001 (0) - Fe_tri+3 3.928e-009 1.534e-009 -8.406 -8.814 -0.408 (0) - Fe_triCl+2 6.454e-010 4.249e-010 -9.190 -9.372 -0.182 (0) - Fe_tri2(OH)2+4 6.303e-011 1.184e-011 -10.200 -10.927 -0.726 (0) - Fe_triCl2+ 1.933e-011 1.742e-011 -10.714 -10.759 -0.045 (0) - Fe_tri(OH)4- 8.612e-012 7.758e-012 -11.065 -11.110 -0.045 (0) - Fe_tri3(OH)4+5 4.963e-013 3.641e-014 -12.304 -13.439 -1.135 (0) - Fe_triCl3 1.594e-014 1.598e-014 -13.798 -13.796 0.001 (0) -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.410 -44.409 0.001 28.61 -Na 1.000e-002 - Na+ 1.000e-002 9.022e-003 -2.000 -2.045 -0.045 -1.31 - NaOH 6.103e-022 6.117e-022 -21.214 -21.213 0.001 (0) -O(0) 5.465e-004 - O2 2.732e-004 2.739e-004 -3.563 -3.562 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Goethite 6.66 5.66 -1.00 Fe_triOOH - H2(g) -41.31 -44.41 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - Halite -5.65 -4.08 1.57 NaCl - O2(g) -0.67 -3.56 -2.89 O2 Pressure 0.2 atm, phi 1.000. - - -Reaction step 10. - -Using solution 1. -Using pure phase assemblage 1. -Using kinetics 1. - -Kinetics 1. - - Time step: 172800 seconds (Incremented time: 691200 seconds) - - Rate name Delta Moles Total Moles Reactant Coefficient - - Fe_di_ox -1.723e-006 1.000e+000 Fe_di -1 - Fe_tri 1 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -O2(g) -0.67 -3.56 -2.89 1.000e+001 1.000e+001 -4.308e-007 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Cl 1.020e-002 1.020e-002 - Fe_di 8.080e-005 8.080e-005 - Fe_tri 1.920e-005 1.920e-005 - Na 1.000e-002 1.000e-002 - -----------------------------Description of solution---------------------------- - - pH = 4.787 Charge balance - pe = 15.842 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 1205 - Density (g/cm3) = 0.99747 - Volume (L) = 1.00315 - Activity of water = 1.000 - Ionic strength = 1.028e-002 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 1.943e-005 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.265e-017 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 40 - Total H = 1.110124e+002 - Total O = 5.550677e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.788e-005 1.631e-005 -4.748 -4.787 -0.040 0.00 - OH- 6.901e-010 6.203e-010 -9.161 -9.207 -0.046 -4.03 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.07 -Cl 1.020e-002 - Cl- 1.020e-002 9.175e-003 -1.991 -2.037 -0.046 18.14 - Fe_diCl+ 7.411e-007 6.676e-007 -6.130 -6.175 -0.045 (0) - Fe_triCl+2 8.433e-010 5.552e-010 -9.074 -9.256 -0.182 (0) - Fe_triCl2+ 2.526e-011 2.275e-011 -10.598 -10.643 -0.045 (0) - Fe_triCl3 2.083e-014 2.088e-014 -13.681 -13.680 0.001 (0) -Fe_di 8.080e-005 - Fe_di+2 8.006e-005 5.271e-005 -4.097 -4.278 -0.182 (0) - Fe_diCl+ 7.411e-007 6.676e-007 -6.130 -6.175 -0.045 (0) - Fe_diOH+ 1.134e-009 1.021e-009 -8.945 -8.991 -0.045 (0) -Fe_tri 1.920e-005 - Fe_tri(OH)2+ 1.786e-005 1.609e-005 -4.748 -4.794 -0.045 (0) - Fe_triOH+2 1.204e-006 7.928e-007 -5.919 -6.101 -0.182 (0) - Fe_tri(OH)3 1.267e-007 1.270e-007 -6.897 -6.896 0.001 (0) - Fe_tri+3 5.132e-009 2.004e-009 -8.290 -8.698 -0.408 (0) - Fe_triCl+2 8.433e-010 5.552e-010 -9.074 -9.256 -0.182 (0) - Fe_tri2(OH)2+4 9.004e-011 1.692e-011 -10.046 -10.772 -0.726 (0) - Fe_triCl2+ 2.526e-011 2.275e-011 -10.598 -10.643 -0.045 (0) - Fe_tri(OH)4- 7.880e-012 7.098e-012 -11.103 -11.149 -0.045 (0) - Fe_tri3(OH)4+5 7.750e-013 5.687e-014 -12.111 -13.245 -1.134 (0) - Fe_triCl3 2.083e-014 2.088e-014 -13.681 -13.680 0.001 (0) -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.410 -44.409 0.001 28.61 -Na 1.000e-002 - Na+ 1.000e-002 9.022e-003 -2.000 -2.045 -0.045 -1.31 - NaOH 5.583e-022 5.596e-022 -21.253 -21.252 0.001 (0) -O(0) 5.465e-004 - O2 2.732e-004 2.739e-004 -3.563 -3.562 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Goethite 6.66 5.66 -1.00 Fe_triOOH - H2(g) -41.31 -44.41 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - Halite -5.65 -4.08 1.57 NaCl - O2(g) -0.67 -3.56 -2.89 O2 Pressure 0.2 atm, phi 1.000. - - -Reaction step 11. - -Using solution 1. -Using pure phase assemblage 1. -Using kinetics 1. - -Kinetics 1. - - Time step: 172800 seconds (Incremented time: 864000 seconds) - - Rate name Delta Moles Total Moles Reactant Coefficient - - Fe_di_ox -1.451e-006 1.000e+000 Fe_di -1 - Fe_tri 1 - --------------------------------Phase assemblage-------------------------------- - - Moles in assemblage -Phase SI log IAP log K(T, P) Initial Final Delta - -O2(g) -0.67 -3.56 -2.89 1.000e+001 1.000e+001 -3.627e-007 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Cl 1.020e-002 1.020e-002 - Fe_di 7.935e-005 7.935e-005 - Fe_tri 2.065e-005 2.065e-005 - Na 1.000e-002 1.000e-002 - -----------------------------Description of solution---------------------------- - - pH = 4.758 Charge balance - pe = 15.872 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25 oC) = 1205 - Density (g/cm3) = 0.99747 - Volume (L) = 1.00315 - Activity of water = 1.000 - Ionic strength = 1.028e-002 - Mass of water (kg) = 1.000e+000 - Total alkalinity (eq/kg) = 2.088e-005 - Total carbon (mol/kg) = 0.000e+000 - Total CO2 (mol/kg) = 0.000e+000 - Temperature (deg C) = 25.00 - Electrical balance (eq) = -4.574e-017 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 40 - Total H = 1.110124e+002 - Total O = 5.550677e+001 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol - - H+ 1.915e-005 1.747e-005 -4.718 -4.758 -0.040 0.00 - OH- 6.443e-010 5.791e-010 -9.191 -9.237 -0.046 -4.03 - H2O 5.551e+001 9.996e-001 1.744 -0.000 0.000 18.07 -Cl 1.020e-002 - Cl- 1.020e-002 9.175e-003 -1.991 -2.037 -0.046 18.14 - Fe_diCl+ 7.278e-007 6.556e-007 -6.138 -6.183 -0.045 (0) - Fe_triCl+2 1.036e-009 6.823e-010 -8.985 -9.166 -0.182 (0) - Fe_triCl2+ 3.104e-011 2.796e-011 -10.508 -10.553 -0.045 (0) - Fe_triCl3 2.559e-014 2.565e-014 -13.592 -13.591 0.001 (0) -Fe_di 7.935e-005 - Fe_di+2 7.862e-005 5.177e-005 -4.104 -4.286 -0.182 (0) - Fe_diCl+ 7.278e-007 6.556e-007 -6.138 -6.183 -0.045 (0) - Fe_diOH+ 1.040e-009 9.366e-010 -8.983 -9.028 -0.045 (0) -Fe_tri 2.065e-005 - Fe_tri(OH)2+ 1.913e-005 1.723e-005 -4.718 -4.764 -0.045 (0) - Fe_triOH+2 1.382e-006 9.096e-007 -5.860 -6.041 -0.182 (0) - Fe_tri(OH)3 1.267e-007 1.270e-007 -6.897 -6.896 0.001 (0) - Fe_tri+3 6.306e-009 2.462e-009 -8.200 -8.609 -0.408 (0) - Fe_triCl+2 1.036e-009 6.823e-010 -8.985 -9.166 -0.182 (0) - Fe_tri2(OH)2+4 1.185e-010 2.227e-011 -9.926 -10.652 -0.726 (0) - Fe_triCl2+ 3.104e-011 2.796e-011 -10.508 -10.553 -0.045 (0) - Fe_tri(OH)4- 7.358e-012 6.628e-012 -11.133 -11.179 -0.045 (0) - Fe_tri3(OH)4+5 1.093e-012 8.019e-014 -11.961 -13.096 -1.134 (0) - Fe_triCl3 2.559e-014 2.565e-014 -13.592 -13.591 0.001 (0) -H(0) 0.000e+000 - H2 0.000e+000 0.000e+000 -44.410 -44.409 0.001 28.61 -Na 1.000e-002 - Na+ 1.000e-002 9.022e-003 -2.000 -2.045 -0.045 -1.31 - NaOH 5.213e-022 5.225e-022 -21.283 -21.282 0.001 (0) -O(0) 5.465e-004 - O2 2.732e-004 2.739e-004 -3.563 -3.562 0.001 30.40 - -------------------------------Saturation indices------------------------------- - - Phase SI log IAP log K(298 K, 1 atm) - - Goethite 6.66 5.66 -1.00 Fe_triOOH - H2(g) -41.31 -44.41 -3.10 H2 - H2O(g) -1.50 -0.00 1.50 H2O - Halite -5.65 -4.08 1.57 NaCl - O2(g) -0.67 -3.56 -2.89 O2 Pressure 0.2 atm, phi 1.000. - - ------------------- -End of simulation. ------------------- - ------------------------------------- -Reading input data for simulation 3. ------------------------------------- - ------------------------------- -End of Run after 0.74 Seconds. ------------------------------- - diff --git a/examples_pc/ex9.sel b/examples_pc/ex9.sel deleted file mode 100644 index 1faabefa..00000000 --- a/examples_pc/ex9.sel +++ /dev/null @@ -1,13 +0,0 @@ - Days Fe(2) Fe(3) pH si_goethite - 0.0000e+000 1.0000e+002 0.0000e+000 7.0000e+000 -9.9990e+001 - 1.1574e-003 9.8934e+001 1.0659e+000 6.0444e+000 6.6428e+000 - 5.7870e-003 9.8192e+001 1.8075e+000 5.8065e+000 6.6545e+000 - 4.1667e-002 9.6567e+001 3.4332e+000 5.5216e+000 6.6603e+000 - 1.6667e-001 9.4600e+001 5.4003e+000 5.3238e+000 6.6621e+000 - 4.1667e-001 9.2711e+001 7.2889e+000 5.1945e+000 6.6628e+000 - 1.0000e+000 9.0288e+001 9.7124e+000 5.0720e+000 6.6633e+000 - 2.0000e+000 8.7808e+001 1.2192e+001 4.9760e+000 6.6635e+000 - 4.0000e+000 8.4698e+001 1.5302e+001 4.8811e+000 6.6638e+000 - 6.0000e+000 8.2526e+001 1.7474e+001 4.8262e+000 6.6639e+000 - 8.0000e+000 8.0803e+001 1.9197e+001 4.7875e+000 6.6640e+000 - 1.0000e+001 7.9352e+001 2.0648e+001 4.7577e+000 6.6640e+000 From 91b76cb48a00684fed9651bcc85774a1b977fa27 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Mon, 14 Oct 2024 15:49:58 -0600 Subject: [PATCH 221/384] Tony's changes for viscosity and heat in transport. ex13_impl failed in Release. --- ex12b | 37 +- ex12b.out | 9240 ++++++++++++++--------------------------------------- 2 files changed, 2360 insertions(+), 6917 deletions(-) diff --git a/ex12b b/ex12b index f7f3af99..0130b7dc 100644 --- a/ex12b +++ b/ex12b @@ -1,4 +1,4 @@ -#DATABASE ../database/phreeqc.dat +DATABASE ../database/phreeqc.dat #PRINT # -reset false @@ -15,14 +15,16 @@ EXCHANGE 1-31 KX 0.048 END TRANSPORT - -cells 30 + -cells 10 -lengths 0.3333333 -shifts 1 -flow_direction diffusion -boundary_conditions constant closed -thermal_diffusion 3.0 # heat is retarded equal to Na -diffusion_coefficient 0.3e-9 # m^2/s - -time_step 1.0e+10 1 # max_mixf = 2/9 = Dt_max * De / Dx^2. Dt_max = 8.2140e+07 seconds, Number of mixes = 1e10 / 8.214e7 = 122 +# -multi_d true 0.3e-9 1 0.05 1.0 false +# -implicit true + -time_step 1.0e+9 1 # max_mixf = 2/9 = Dt_max * De / Dx^2. Dt_max = 8.2140e+07 seconds, Number of mixes = 1e10 / 8.214e7 = 122 USER_GRAPH 1 Example 12b -headings Tradit:Na Cl TC Analyt # -headings TC Analyt @@ -57,18 +59,35 @@ USER_GRAPH 1 Example 12b -end END -Reinitialize the column... +# Reinitialize the column... copy cell 31 1-30 END TRANSPORT - -multi_d true 0.3e-9 1 0.05 0 false # will give the traditional results when tc = 25 throughout - -thermal_diffusion 3.0 1.33e-9 # efine the diffusion coefficient for heat to be equal to Na +-shifts 1 + -multi_d true 2.33e-9 1 0.05 0 false # will give the traditional results when tc = 25 throughout + -thermal_diffusion 3.0 2.33e-9 # define the diffusion coefficient for heat equal to Na +USER_GRAPH 1 Example 12b + -headings MultiD&Visc:Na Cl TC + -start + 10 x = DIST + 20 PLOT_XY x, TOT("Na")*1000, symbol = Circle, line_width = 0, symbol_size = 5, color = Red + 30 PLOT_XY x, TOT("Cl")*1000, symbol = Circle, line_width = 0, symbol_size = 5, color = Green + 40 PLOT_XY x, TC, symbol = Circle, line_width = 0, symbol_size = 5, y-axis 2, color = Blue +END +# Reinitialize the column... +copy cell 31 1-30 +USER_GRAPH 1; -connect_simulations false +END +TRANSPORT +-shifts 1 + -multi_d true 2.33e-9 1 0.05 0 false # will give the traditional results when tc = 25 throughout + -thermal_diffusion 3.0 2.33e-9 # define the diffusion coefficient for heat equal to Na -implicit true 3 -12 # max_mixf = 3, min_dif_LM = -12 USER_GRAPH 1 Example 12b -headings MultiD&Visc&Implicit:Na Cl TC -start 10 x = DIST - 20 PLOT_XY x, TOT("Na")*1000, symbol = Circle, line_width = 0, symbol_size = 5, color = Red - 30 PLOT_XY x, TOT("Cl")*1000, symbol = Circle, line_width = 0, symbol_size = 5, color = Green - 40 PLOT_XY x, TC, symbol = Circle, line_width = 0, symbol_size = 8, y-axis 2, color = Blue + 20 PLOT_XY x, TOT("Na")*1000, symbol = XCross, line_width = 0, symbol_size = 9, color = Red + 30 PLOT_XY x, TOT("Cl")*1000, symbol = XCross, line_width = 0, symbol_size = 9, color = Green + 40 PLOT_XY x, TC, symbol = XCross, line_width = 0, symbol_size = 9, y-axis 2, color = Blue END diff --git a/ex12b.out b/ex12b.out index 00f8b1d0..291017e7 100644 --- a/ex12b.out +++ b/ex12b.out @@ -118,10 +118,10 @@ Initial solution 1. 24 mM KBr, initial temp 0C pH = 7.000 pe = 4.000 - Specific Conductance (µS/cm, 0°C) = 1804 + Specific Conductance (µS/cm, 0°C) = 1805 Density (g/cm³) = 1.00197 Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 + Viscosity (mPa s) = 1.78740 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.400e-02 Mass of water (kg) = 1.000e+00 @@ -249,16 +249,16 @@ Reading input data for simulation 2. ------------------------------------ TRANSPORT - cells 30 + cells 10 lengths 0.3333333 shifts 1 flow_direction diffusion boundary_conditions constant closed thermal_diffusion 3.0 # heat is retarded equal to Na diffusion_coefficient 0.3e-9 # m^2/s - time_step 1.0e+10 1 # max_mixf = 2/9 = Dt_max * De / Dx^2. Dt_max = 8.2140e+07 seconds, Number of mixes = 1e10 / 8.214e7 = 122 + time_step 1.0e+9 1 # max_mixf = 2/9 = Dt_max * De / Dx^2. Dt_max = 8.2140e+07 seconds, Number of mixes = 1e10 / 8.214e7 = 122 USER_GRAPH 1 Example 12b -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 30. +WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 10. WARNING: No dispersivities were read; disp = 0 assumed. -headings Tradit:Na Cl TC Analyt -chart_title "Compare traditional and multicomponent diffusive transport" @@ -376,10 +376,10 @@ X 4.800e-02 mol pH = 7.000 Charge balance pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 + Specific Conductance (µS/cm, 0°C) = 1805 Density (g/cm³) = 1.00197 Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 + Viscosity (mPa s) = 1.78740 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.400e-02 Mass of water (kg) = 1.000e+00 @@ -442,10 +442,10 @@ X 4.800e-02 mol pH = 7.000 Charge balance pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 + Specific Conductance (µS/cm, 0°C) = 1805 Density (g/cm³) = 1.00197 Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 + Viscosity (mPa s) = 1.78740 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.400e-02 Mass of water (kg) = 1.000e+00 @@ -508,10 +508,10 @@ X 4.800e-02 mol pH = 7.000 Charge balance pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 + Specific Conductance (µS/cm, 0°C) = 1805 Density (g/cm³) = 1.00197 Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 + Viscosity (mPa s) = 1.78740 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.400e-02 Mass of water (kg) = 1.000e+00 @@ -574,10 +574,10 @@ X 4.800e-02 mol pH = 7.000 Charge balance pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 + Specific Conductance (µS/cm, 0°C) = 1805 Density (g/cm³) = 1.00197 Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 + Viscosity (mPa s) = 1.78740 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.400e-02 Mass of water (kg) = 1.000e+00 @@ -640,10 +640,10 @@ X 4.800e-02 mol pH = 7.000 Charge balance pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 + Specific Conductance (µS/cm, 0°C) = 1805 Density (g/cm³) = 1.00197 Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 + Viscosity (mPa s) = 1.78740 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.400e-02 Mass of water (kg) = 1.000e+00 @@ -706,10 +706,10 @@ X 4.800e-02 mol pH = 7.000 Charge balance pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 + Specific Conductance (µS/cm, 0°C) = 1805 Density (g/cm³) = 1.00197 Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 + Viscosity (mPa s) = 1.78740 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.400e-02 Mass of water (kg) = 1.000e+00 @@ -772,10 +772,10 @@ X 4.800e-02 mol pH = 7.000 Charge balance pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 + Specific Conductance (µS/cm, 0°C) = 1805 Density (g/cm³) = 1.00197 Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 + Viscosity (mPa s) = 1.78740 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.400e-02 Mass of water (kg) = 1.000e+00 @@ -838,10 +838,10 @@ X 4.800e-02 mol pH = 7.000 Charge balance pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 + Specific Conductance (µS/cm, 0°C) = 1805 Density (g/cm³) = 1.00197 Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 + Viscosity (mPa s) = 1.78740 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.400e-02 Mass of water (kg) = 1.000e+00 @@ -904,10 +904,10 @@ X 4.800e-02 mol pH = 7.000 Charge balance pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 + Specific Conductance (µS/cm, 0°C) = 1805 Density (g/cm³) = 1.00197 Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 + Viscosity (mPa s) = 1.78740 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.400e-02 Mass of water (kg) = 1.000e+00 @@ -970,10 +970,10 @@ X 4.800e-02 mol pH = 7.000 Charge balance pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 + Specific Conductance (µS/cm, 0°C) = 1805 Density (g/cm³) = 1.00197 Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 + Viscosity (mPa s) = 1.78740 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.400e-02 Mass of water (kg) = 1.000e+00 @@ -1013,1328 +1013,8 @@ O(0) 1.011e-15 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. -Using solution 11. 24 mM KBr, initial temp 0C -Using exchange 11. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (143 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 12. 24 mM KBr, initial temp 0C -Using exchange 12. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (156 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 13. 24 mM KBr, initial temp 0C -Using exchange 13. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (169 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 14. 24 mM KBr, initial temp 0C -Using exchange 14. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (182 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 15. 24 mM KBr, initial temp 0C -Using exchange 15. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (195 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 16. 24 mM KBr, initial temp 0C -Using exchange 16. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (208 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 17. 24 mM KBr, initial temp 0C -Using exchange 17. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (221 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 18. 24 mM KBr, initial temp 0C -Using exchange 18. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (234 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 19. 24 mM KBr, initial temp 0C -Using exchange 19. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (247 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 20. 24 mM KBr, initial temp 0C -Using exchange 20. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (260 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 21. 24 mM KBr, initial temp 0C -Using exchange 21. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (273 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 22. 24 mM KBr, initial temp 0C -Using exchange 22. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (286 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 23. 24 mM KBr, initial temp 0C -Using exchange 23. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (299 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 24. 24 mM KBr, initial temp 0C -Using exchange 24. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (312 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 25. 24 mM KBr, initial temp 0C -Using exchange 25. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (325 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 26. 24 mM KBr, initial temp 0C -Using exchange 26. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (338 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 27. 24 mM KBr, initial temp 0C -Using exchange 27. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (351 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 28. 24 mM KBr, initial temp 0C -Using exchange 28. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (364 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 29. 24 mM KBr, initial temp 0C -Using exchange 29. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (377 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 30. 24 mM KBr, initial temp 0C -Using exchange 30. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (390 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - WARNING: -Calculating transport: 30 (mobile) cells, 1 shifts, 122 mixruns... +Calculating transport: 10 (mobile) cells, 1 shifts, 13 mixruns... Transport step 1. Mixrun 1. @@ -2363,225 +1043,6 @@ Transport step 1. Mixrun 12. Transport step 1. Mixrun 13. -Transport step 1. Mixrun 14. - -Transport step 1. Mixrun 15. - -Transport step 1. Mixrun 16. - -Transport step 1. Mixrun 17. - -Transport step 1. Mixrun 18. - -Transport step 1. Mixrun 19. - -Transport step 1. Mixrun 20. - -Transport step 1. Mixrun 21. - -Transport step 1. Mixrun 22. - -Transport step 1. Mixrun 23. - -Transport step 1. Mixrun 24. - -Transport step 1. Mixrun 25. - -Transport step 1. Mixrun 26. - -Transport step 1. Mixrun 27. - -Transport step 1. Mixrun 28. - -Transport step 1. Mixrun 29. - -Transport step 1. Mixrun 30. - -Transport step 1. Mixrun 31. - -Transport step 1. Mixrun 32. - -Transport step 1. Mixrun 33. - -Transport step 1. Mixrun 34. - -Transport step 1. Mixrun 35. - -Transport step 1. Mixrun 36. - -Transport step 1. Mixrun 37. - -Transport step 1. Mixrun 38. - -Transport step 1. Mixrun 39. - -Transport step 1. Mixrun 40. - -Transport step 1. Mixrun 41. - -Transport step 1. Mixrun 42. - -Transport step 1. Mixrun 43. - -Transport step 1. Mixrun 44. - -Transport step 1. Mixrun 45. - -Transport step 1. Mixrun 46. - -Transport step 1. Mixrun 47. - -Transport step 1. Mixrun 48. - -Transport step 1. Mixrun 49. - -Transport step 1. Mixrun 50. - -Transport step 1. Mixrun 51. - -Transport step 1. Mixrun 52. - -Transport step 1. Mixrun 53. - -Transport step 1. Mixrun 54. - -Transport step 1. Mixrun 55. - -Transport step 1. Mixrun 56. - -Transport step 1. Mixrun 57. - -Transport step 1. Mixrun 58. - -Transport step 1. Mixrun 59. - -Transport step 1. Mixrun 60. - -Transport step 1. Mixrun 61. - -Transport step 1. Mixrun 62. - -Transport step 1. Mixrun 63. - -Transport step 1. Mixrun 64. - -Transport step 1. Mixrun 65. - -Transport step 1. Mixrun 66. - -Transport step 1. Mixrun 67. - -Transport step 1. Mixrun 68. - -Transport step 1. Mixrun 69. - -Transport step 1. Mixrun 70. - -Transport step 1. Mixrun 71. - -Transport step 1. Mixrun 72. - -Transport step 1. Mixrun 73. - -Transport step 1. Mixrun 74. - -Transport step 1. Mixrun 75. - -Transport step 1. Mixrun 76. - -Transport step 1. Mixrun 77. - -Transport step 1. Mixrun 78. - -Transport step 1. Mixrun 79. - -Transport step 1. Mixrun 80. - -Transport step 1. Mixrun 81. - -Transport step 1. Mixrun 82. - -Transport step 1. Mixrun 83. - -Transport step 1. Mixrun 84. - -Transport step 1. Mixrun 85. - -Transport step 1. Mixrun 86. - -Transport step 1. Mixrun 87. - -Transport step 1. Mixrun 88. - -Transport step 1. Mixrun 89. - -Transport step 1. Mixrun 90. - -Transport step 1. Mixrun 91. - -Transport step 1. Mixrun 92. - -Transport step 1. Mixrun 93. - -Transport step 1. Mixrun 94. - -Transport step 1. Mixrun 95. - -Transport step 1. Mixrun 96. - -Transport step 1. Mixrun 97. - -Transport step 1. Mixrun 98. - -Transport step 1. Mixrun 99. - -Transport step 1. Mixrun 100. - -Transport step 1. Mixrun 101. - -Transport step 1. Mixrun 102. - -Transport step 1. Mixrun 103. - -Transport step 1. Mixrun 104. - -Transport step 1. Mixrun 105. - -Transport step 1. Mixrun 106. - -Transport step 1. Mixrun 107. - -Transport step 1. Mixrun 108. - -Transport step 1. Mixrun 109. - -Transport step 1. Mixrun 110. - -Transport step 1. Mixrun 111. - -Transport step 1. Mixrun 112. - -Transport step 1. Mixrun 113. - -Transport step 1. Mixrun 114. - -Transport step 1. Mixrun 115. - -Transport step 1. Mixrun 116. - -Transport step 1. Mixrun 117. - -Transport step 1. Mixrun 118. - -Transport step 1. Mixrun 119. - -Transport step 1. Mixrun 120. - -Transport step 1. Mixrun 121. - -Transport step 1. Mixrun 122. - - 24 1.9917e-09 Using solution 0. Solution after simulation 2. -----------------------------Solution composition------------------------------ @@ -2640,15 +1101,14 @@ O(0) 0.000e+00 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. - 2.1734e+01 1.8991e-09 Using mix 1. Using exchange 1. Exchange assemblage after simulation 2. Mixture 1. - 4.426e-01 Solution 0 Solution after simulation 2. - 3.361e-01 Solution 1 Solution after simulation 2. - 2.213e-01 Solution 2 Solution after simulation 2. + 4.154e-01 Solution 0 Solution after simulation 2. + 3.769e-01 Solution 1 Solution after simulation 2. + 2.077e-01 Solution 2 Solution after simulation 2. -----------------------------Exchange composition------------------------------ @@ -2657,33 +1117,529 @@ X 4.800e-02 mol Equiv- Equivalent Log Species Moles alents Fraction Gamma - NaX 4.400e-02 4.400e-02 9.168e-01 -0.063 - KX 3.995e-03 3.995e-03 8.323e-02 0.000 + NaX 3.418e-02 3.418e-02 7.121e-01 -0.063 + KX 1.382e-02 1.382e-02 2.879e-01 0.000 -----------------------------Solution composition------------------------------ Elements Molality Moles - Br 1.302e-03 1.302e-03 - Cl 2.270e-02 2.270e-02 - K 2.296e-03 2.296e-03 - Na 2.170e-02 2.170e-02 + Br 4.098e-03 4.098e-03 + Cl 1.990e-02 1.990e-02 + K 7.678e-03 7.678e-03 + Na 1.632e-02 1.632e-02 ----------------------------Description of solution---------------------------- - pH = 7.027 Charge balance - pe = 11.834 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 22°C) = 2615 - Density (g/cm³) = 0.99889 - Volume (L) = 1.00261 - Viscosity (mPa s) = 0.96277 + pH = 7.086 Charge balance + pe = 12.300 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 16°C) = 2435 + Density (g/cm³) = 1.00009 + Volume (L) = 1.00162 + Viscosity (mPa s) = 1.09808 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.400e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.820e-09 - Temperature (°C) = 21.73 + Total alkalinity (eq/kg) = -2.086e-08 + Temperature (°C) = 16.41 Pressure (atm) = 1.00 - Electrical balance (eq) = 9.826e-09 + Electrical balance (eq) = 2.086e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 9 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.278e-08 8.203e-08 -7.033 -7.086 -0.053 0.00 + OH- 7.242e-08 6.218e-08 -7.140 -7.206 -0.066 -4.40 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.04 +Br 4.098e-03 + Br- 4.098e-03 3.507e-03 -2.387 -2.455 -0.068 24.19 +Cl 1.990e-02 + Cl- 1.990e-02 1.712e-02 -1.701 -1.766 -0.065 17.86 + HCl 4.984e-10 5.103e-10 -9.302 -9.292 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -41.887 -41.885 0.002 28.62 +K 7.678e-03 + K+ 7.678e-03 6.599e-03 -2.115 -2.181 -0.066 8.79 +Na 1.632e-02 + Na+ 1.632e-02 1.413e-02 -1.787 -1.850 -0.063 -1.81 +O(0) 6.791e-12 + O2 3.395e-12 3.414e-12 -11.469 -11.467 0.002 29.65 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(289 K, 1 atm) + + H2(g) -38.81 -41.88 -3.08 H2 + H2O(g) -1.73 -0.00 1.73 H2O + Halite -5.18 -3.62 1.56 NaCl + O2(g) -8.64 -11.47 -2.82 O2 + Sylvite -4.80 -3.95 0.86 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 2. +Using exchange 2. Exchange assemblage after simulation 2. + +Mixture 2. + + 2.077e-01 Solution 1 Solution after simulation 2. + 5.846e-01 Solution 2 Solution after simulation 2. + 2.077e-01 Solution 3 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 3.576e-02 3.576e-02 7.450e-01 0.000 + NaX 1.224e-02 1.224e-02 2.550e-01 -0.062 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.158e-02 1.158e-02 + Cl 1.242e-02 1.242e-02 + K 1.854e-02 1.854e-02 + Na 5.464e-03 5.464e-03 + +----------------------------Description of solution---------------------------- + + pH = 7.138 Charge balance + pe = 13.226 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 6°C) = 2040 + Density (g/cm³) = 1.00154 + Volume (L) = 1.00067 + Viscosity (mPa s) = 1.47979 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -5.042e-08 + Temperature (°C) = 5.80 + Pressure (atm) = 1.00 + Electrical balance (eq) = 5.042e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 8.216e-08 7.276e-08 -7.085 -7.138 -0.053 0.00 + OH- 3.204e-08 2.757e-08 -7.494 -7.560 -0.065 -5.30 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 1.158e-02 + Br- 1.158e-02 9.936e-03 -1.936 -2.003 -0.067 23.24 +Cl 1.242e-02 + Cl- 1.242e-02 1.071e-02 -1.906 -1.970 -0.064 17.14 + HCl 2.953e-10 3.023e-10 -9.530 -9.520 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -43.792 -43.790 0.002 28.63 +K 1.854e-02 + K+ 1.854e-02 1.597e-02 -1.732 -1.797 -0.065 8.25 +Na 5.464e-03 + Na+ 5.464e-03 4.742e-03 -2.262 -2.324 -0.062 -2.69 +O(0) 7.479e-12 + O2 3.739e-12 3.760e-12 -11.427 -11.425 0.002 28.40 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(278 K, 1 atm) + + H2(g) -40.75 -43.79 -3.04 H2 + H2O(g) -2.03 -0.00 2.03 H2O + Halite -5.85 -4.29 1.55 NaCl + O2(g) -8.70 -11.42 -2.72 O2 + Sylvite -4.56 -3.77 0.80 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 3. +Using exchange 3. Exchange assemblage after simulation 2. + +Mixture 3. + + 2.077e-01 Solution 2 Solution after simulation 2. + 5.846e-01 Solution 3 Solution after simulation 2. + 2.077e-01 Solution 4 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.514e-02 4.514e-02 9.405e-01 0.000 + NaX 2.855e-03 2.855e-03 5.948e-02 -0.061 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.728e-02 1.728e-02 + Cl 6.719e-03 6.719e-03 + K 2.276e-02 2.276e-02 + Na 1.241e-03 1.241e-03 + +----------------------------Description of solution---------------------------- + + pH = 7.090 Charge balance + pe = 13.856 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 1°C) = 1862 + Density (g/cm³) = 1.00177 + Volume (L) = 1.00076 + Viscosity (mPa s) = 1.70216 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -7.292e-08 + Temperature (°C) = 1.44 + Pressure (atm) = 1.00 + Electrical balance (eq) = 7.292e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 4 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.168e-08 8.125e-08 -7.038 -7.090 -0.052 0.00 + OH- 1.895e-08 1.632e-08 -7.722 -7.787 -0.065 -5.84 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 1.728e-02 + Br- 1.728e-02 1.484e-02 -1.762 -1.829 -0.066 22.70 +Cl 6.719e-03 + Cl- 6.719e-03 5.798e-03 -2.173 -2.237 -0.064 16.70 + HCl 1.835e-10 1.879e-10 -9.736 -9.726 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -44.935 -44.932 0.002 28.64 +K 2.276e-02 + K+ 2.276e-02 1.962e-02 -1.643 -1.707 -0.064 7.95 +Na 1.241e-03 + Na+ 1.241e-03 1.078e-03 -2.906 -2.967 -0.061 -3.16 +O(0) 3.370e-11 + O2 1.685e-11 1.694e-11 -10.773 -10.771 0.002 27.74 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(274 K, 1 atm) + + H2(g) -41.91 -44.93 -3.02 H2 + H2O(g) -2.17 -0.00 2.17 H2O + Halite -6.75 -5.20 1.55 NaCl + O2(g) -8.10 -10.77 -2.68 O2 + Sylvite -4.72 -3.94 0.77 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 4. +Using exchange 4. Exchange assemblage after simulation 2. + +Mixture 4. + + 2.077e-01 Solution 3 Solution after simulation 2. + 5.846e-01 Solution 4 Solution after simulation 2. + 2.077e-01 Solution 5 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.753e-02 4.753e-02 9.902e-01 0.000 + NaX 4.680e-04 4.680e-04 9.751e-03 -0.061 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.089e-02 2.089e-02 + Cl 3.110e-03 3.110e-03 + K 2.380e-02 2.380e-02 + Na 2.021e-04 2.021e-04 + +----------------------------Description of solution---------------------------- + + pH = 7.043 Charge balance + pe = 14.257 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1813 + Density (g/cm³) = 1.00186 + Volume (L) = 1.00085 + Viscosity (mPa s) = 1.77161 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -8.717e-08 + Temperature (°C) = 0.26 + Pressure (atm) = 1.00 + Electrical balance (eq) = 8.717e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 7 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.022e-07 9.060e-08 -6.991 -7.043 -0.052 0.00 + OH- 1.513e-08 1.304e-08 -7.820 -7.885 -0.065 -6.01 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.089e-02 + Br- 2.089e-02 1.794e-02 -1.680 -1.746 -0.066 22.53 +Cl 3.110e-03 + Cl- 3.110e-03 2.684e-03 -2.507 -2.571 -0.064 16.57 + HCl 9.542e-11 9.769e-11 -10.020 -10.010 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -45.635 -45.633 0.002 28.64 +K 2.380e-02 + K+ 2.380e-02 2.052e-02 -1.623 -1.688 -0.064 7.86 +Na 2.021e-04 + Na+ 2.021e-04 1.755e-04 -3.694 -3.756 -0.061 -3.30 +O(0) 3.001e-10 + O2 1.501e-10 1.509e-10 -9.824 -9.821 0.002 27.53 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -42.62 -45.63 -3.01 H2 + H2O(g) -2.20 -0.00 2.20 H2O + Halite -7.88 -6.33 1.55 NaCl + O2(g) -7.16 -9.82 -2.66 O2 + Sylvite -5.02 -4.26 0.77 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 5. +Using exchange 5. Exchange assemblage after simulation 2. + +Mixture 5. + + 2.077e-01 Solution 4 Solution after simulation 2. + 5.846e-01 Solution 5 Solution after simulation 2. + 2.077e-01 Solution 6 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.794e-02 4.794e-02 9.988e-01 0.000 + NaX 5.659e-05 5.659e-05 1.179e-03 -0.061 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.278e-02 2.278e-02 + Cl 1.216e-03 1.216e-03 + K 2.398e-02 2.398e-02 + Na 2.441e-05 2.441e-05 + +----------------------------Description of solution---------------------------- + + pH = 7.017 Charge balance + pe = 14.153 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1805 + Density (g/cm³) = 1.00192 + Volume (L) = 1.00088 + Viscosity (mPa s) = 1.78531 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.465e-08 + Temperature (°C) = 0.04 + Pressure (atm) = 1.00 + Electrical balance (eq) = 9.465e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 14 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.085e-07 9.622e-08 -6.964 -7.017 -0.052 0.00 + OH- 1.393e-08 1.201e-08 -7.856 -7.921 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.278e-02 + Br- 2.278e-02 1.957e-02 -1.642 -1.708 -0.066 22.49 +Cl 1.216e-03 + Cl- 1.216e-03 1.049e-03 -2.915 -2.979 -0.064 16.54 + HCl 3.967e-11 4.061e-11 -10.402 -10.391 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -45.374 -45.371 0.002 28.65 +K 2.398e-02 + K+ 2.398e-02 2.068e-02 -1.620 -1.685 -0.064 7.84 +Na 2.441e-05 + Na+ 2.441e-05 2.120e-05 -4.613 -4.674 -0.061 -3.33 +O(0) 7.373e-11 + O2 3.687e-11 3.707e-11 -10.433 -10.431 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -42.36 -45.37 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + Halite -9.20 -7.65 1.55 NaCl + O2(g) -7.77 -10.43 -2.66 O2 + Sylvite -5.43 -4.66 0.76 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 6. +Using exchange 6. Exchange assemblage after simulation 2. + +Mixture 6. + + 2.077e-01 Solution 5 Solution after simulation 2. + 5.846e-01 Solution 6 Solution after simulation 2. + 2.077e-01 Solution 7 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.799e-02 4.799e-02 9.999e-01 0.000 + NaX 5.158e-06 5.158e-06 1.074e-04 -0.061 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.360e-02 2.360e-02 + Cl 3.957e-04 3.957e-04 + K 2.400e-02 2.400e-02 + Na 2.224e-06 2.224e-06 + +----------------------------Description of solution---------------------------- + + pH = 7.005 Charge balance + pe = 13.211 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00195 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78721 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.789e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.787e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 14 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.114e-07 9.876e-08 -6.953 -7.005 -0.052 0.00 + OH- 1.353e-08 1.166e-08 -7.869 -7.933 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.360e-02 + Br- 2.360e-02 2.027e-02 -1.627 -1.693 -0.066 22.49 +Cl 3.957e-04 + Cl- 3.957e-04 3.416e-04 -3.403 -3.466 -0.064 16.53 + HCl 1.326e-11 1.357e-11 -10.878 -10.867 0.010 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -43.467 -43.464 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +Na 2.224e-06 + Na+ 2.224e-06 1.932e-06 -5.653 -5.714 -0.061 -3.34 +O(0) 1.099e-14 + O2 5.495e-15 5.525e-15 -14.260 -14.258 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -40.45 -43.46 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + Halite -10.73 -9.18 1.55 NaCl + O2(g) -11.60 -14.26 -2.66 O2 + Sylvite -5.91 -5.15 0.76 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 7. +Using exchange 7. Exchange assemblage after simulation 2. + +Mixture 7. + + 2.077e-01 Solution 6 Solution after simulation 2. + 5.846e-01 Solution 7 Solution after simulation 2. + 2.077e-01 Solution 8 Solution after simulation 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 0.000 + NaX 3.567e-07 3.567e-07 7.432e-06 -0.061 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.389e-02 2.389e-02 + Cl 1.056e-04 1.056e-04 + K 2.400e-02 2.400e-02 + Na 1.538e-07 1.538e-07 + +----------------------------Description of solution---------------------------- + + pH = 7.001 Charge balance + pe = 13.764 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1804 + Density (g/cm³) = 1.00196 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78739 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.903e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.900e-08 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 8 Total H = 1.110124e+02 @@ -2694,1389 +1650,44 @@ X 4.800e-02 mol Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.065e-07 9.407e-08 -6.973 -7.027 -0.054 0.00 - OH- 9.732e-08 8.346e-08 -7.012 -7.079 -0.067 -4.11 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.06 -Br 1.302e-03 - Br- 1.302e-03 1.113e-03 -2.885 -2.954 -0.068 24.51 -Cl 2.270e-02 - Cl- 2.270e-02 1.950e-02 -1.644 -1.710 -0.066 18.08 - HCl 6.299e-10 6.449e-10 -9.201 -9.191 0.010 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.859 -40.857 0.002 28.61 -K 2.296e-03 - K+ 2.296e-03 1.971e-03 -2.639 -2.705 -0.066 9.00 -Na 2.170e-02 - Na+ 2.170e-02 1.877e-02 -1.663 -1.727 -0.063 -1.48 -O(0) 3.678e-12 - O2 1.839e-12 1.849e-12 -11.735 -11.733 0.002 30.14 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(294 K, 1 atm) - - H2(g) -37.76 -40.86 -3.09 H2 - H2O(g) -1.59 -0.00 1.59 H2O - Halite -5.00 -3.44 1.57 NaCl - O2(g) -8.87 -11.73 -2.87 O2 - Sylvite -5.30 -4.42 0.88 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - - 1.7329e+01 1.7225e-09 -Using mix 2. -Using exchange 2. Exchange assemblage after simulation 2. - -Mixture 2. - - 2.213e-01 Solution 1 Solution after simulation 2. - 5.574e-01 Solution 2 Solution after simulation 2. - 2.213e-01 Solution 3 Solution after simulation 2. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - NaX 3.589e-02 3.589e-02 7.476e-01 -0.063 - KX 1.211e-02 1.211e-02 2.524e-01 0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 3.882e-03 3.882e-03 - Cl 2.012e-02 2.012e-02 - K 6.770e-03 6.770e-03 - Na 1.723e-02 1.723e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.074 Charge balance - pe = 12.143 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 17°C) = 2468 - Density (g/cm³) = 0.99992 - Volume (L) = 1.00177 - Viscosity (mPa s) = 1.07259 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -2.001e-08 - Temperature (°C) = 17.33 - Pressure (atm) = 1.00 - Electrical balance (eq) = 2.002e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 9.547e-08 8.439e-08 -7.020 -7.074 -0.054 0.00 - OH- 7.598e-08 6.523e-08 -7.119 -7.186 -0.066 -4.34 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.04 -Br 3.882e-03 - Br- 3.882e-03 3.322e-03 -2.411 -2.479 -0.068 24.25 -Cl 2.012e-02 - Cl- 2.012e-02 1.730e-02 -1.696 -1.762 -0.065 17.90 - HCl 5.153e-10 5.275e-10 -9.288 -9.278 0.010 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.551 -41.549 0.002 28.61 -K 6.770e-03 - K+ 6.770e-03 5.817e-03 -2.169 -2.235 -0.066 8.83 -Na 1.723e-02 - Na+ 1.723e-02 1.491e-02 -1.764 -1.826 -0.063 -1.75 -O(0) 2.986e-12 - O2 1.493e-12 1.501e-12 -11.826 -11.824 0.002 29.74 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(290 K, 1 atm) - - H2(g) -38.47 -41.55 -3.08 H2 - H2O(g) -1.71 -0.00 1.71 H2O - Halite -5.15 -3.59 1.56 NaCl - O2(g) -8.99 -11.82 -2.83 O2 - Sylvite -4.86 -4.00 0.86 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - - 1.3281e+01 1.5645e-09 -Using mix 3. -Using exchange 3. Exchange assemblage after simulation 2. - -Mixture 3. - - 2.213e-01 Solution 2 Solution after simulation 2. - 5.574e-01 Solution 3 Solution after simulation 2. - 2.213e-01 Solution 4 Solution after simulation 2. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - NaX 2.799e-02 2.799e-02 5.830e-01 -0.062 - KX 2.001e-02 2.001e-02 4.170e-01 0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 6.391e-03 6.391e-03 - Cl 1.761e-02 1.761e-02 - K 1.090e-02 1.090e-02 - Na 1.310e-02 1.310e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.109 Charge balance - pe = 12.441 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 13°C) = 2325 - Density (g/cm³) = 1.00067 - Volume (L) = 1.00119 - Viscosity (mPa s) = 1.19248 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -2.992e-08 - Temperature (°C) = 13.28 - Pressure (atm) = 1.00 - Electrical balance (eq) = 2.993e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 8.801e-08 7.786e-08 -7.055 -7.109 -0.053 0.00 - OH- 5.852e-08 5.029e-08 -7.233 -7.299 -0.066 -4.62 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.03 -Br 6.391e-03 - Br- 6.391e-03 5.474e-03 -2.194 -2.262 -0.067 23.96 -Cl 1.761e-02 - Cl- 1.761e-02 1.516e-02 -1.754 -1.819 -0.065 17.68 - HCl 4.271e-10 4.372e-10 -9.370 -9.359 0.010 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.199 -42.197 0.002 28.62 -K 1.090e-02 - K+ 1.090e-02 9.371e-03 -1.963 -2.028 -0.065 8.65 -Na 1.310e-02 - Na+ 1.310e-02 1.135e-02 -1.883 -1.945 -0.062 -2.04 -O(0) 2.368e-12 - O2 1.184e-12 1.190e-12 -11.927 -11.924 0.002 29.32 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(286 K, 1 atm) - - H2(g) -39.13 -42.20 -3.07 H2 - H2O(g) -1.82 -0.00 1.82 H2O - Halite -5.32 -3.76 1.56 NaCl - O2(g) -9.13 -11.92 -2.80 O2 - Sylvite -4.69 -3.85 0.84 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - - 9.7648e+00 1.4309e-09 -Using mix 4. -Using exchange 4. Exchange assemblage after simulation 2. - -Mixture 4. - - 2.213e-01 Solution 3 Solution after simulation 2. - 5.574e-01 Solution 4 Solution after simulation 2. - 2.213e-01 Solution 5 Solution after simulation 2. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 2.723e-02 2.723e-02 5.672e-01 0.000 - NaX 2.077e-02 2.077e-02 4.328e-01 -0.062 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 8.788e-03 8.788e-03 - Cl 1.521e-02 1.521e-02 - K 1.449e-02 1.449e-02 - Na 9.513e-03 9.513e-03 - -----------------------------Description of solution---------------------------- - - pH = 7.129 Charge balance - pe = 12.714 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 10°C) = 2194 - Density (g/cm³) = 1.00117 - Volume (L) = 1.00085 - Viscosity (mPa s) = 1.31518 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -3.938e-08 - Temperature (°C) = 9.76 - Pressure (atm) = 1.00 - Electrical balance (eq) = 3.939e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 8.402e-08 7.437e-08 -7.076 -7.129 -0.053 0.00 - OH- 4.500e-08 3.870e-08 -7.347 -7.412 -0.066 -4.91 + H+ 1.124e-07 9.967e-08 -6.949 -7.001 -0.052 0.00 + OH- 1.341e-08 1.155e-08 -7.873 -7.937 -0.065 -6.05 H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 8.788e-03 - Br- 8.788e-03 7.532e-03 -2.056 -2.123 -0.067 23.65 -Cl 1.521e-02 - Cl- 1.521e-02 1.311e-02 -1.818 -1.883 -0.065 17.45 - HCl 3.605e-10 3.691e-10 -9.443 -9.433 0.010 (0) +Br 2.389e-02 + Br- 2.389e-02 2.052e-02 -1.622 -1.688 -0.066 22.49 +Cl 1.056e-04 + Cl- 1.056e-04 9.118e-05 -3.976 -4.040 -0.064 16.53 + HCl 3.571e-12 3.656e-12 -11.447 -11.437 0.010 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.767 -42.765 0.002 28.63 -K 1.449e-02 - K+ 1.449e-02 1.247e-02 -1.839 -1.904 -0.065 8.48 -Na 9.513e-03 - Na+ 9.513e-03 8.249e-03 -2.022 -2.084 -0.062 -2.32 -O(0) 1.845e-12 - O2 9.226e-13 9.277e-13 -12.035 -12.033 0.002 28.92 + H2 0.000e+00 0.000e+00 -44.566 -44.563 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +Na 1.538e-07 + Na+ 1.538e-07 1.336e-07 -6.813 -6.874 -0.061 -3.34 +O(0) 1.729e-12 + O2 8.646e-13 8.694e-13 -12.063 -12.061 0.002 27.49 ------------------------------Saturation indices------------------------------- - Phase SI** log IAP log K(282 K, 1 atm) + Phase SI** log IAP log K(273 K, 1 atm) - H2(g) -39.71 -42.76 -3.05 H2 - H2O(g) -1.92 -0.00 1.92 H2O - Halite -5.52 -3.97 1.56 NaCl - O2(g) -9.27 -12.03 -2.76 O2 - Sylvite -4.61 -3.79 0.82 KCl + H2(g) -41.55 -44.56 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + Halite -12.46 -10.91 1.55 NaCl + O2(g) -9.40 -12.06 -2.66 O2 + Sylvite -6.49 -5.72 0.76 KCl **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. - 6.8770e+00 1.3238e-09 -Using mix 5. -Using exchange 5. Exchange assemblage after simulation 2. - -Mixture 5. - - 2.213e-01 Solution 4 Solution after simulation 2. - 5.574e-01 Solution 5 Solution after simulation 2. - 2.213e-01 Solution 6 Solution after simulation 2. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 3.337e-02 3.337e-02 6.953e-01 0.000 - NaX 1.463e-02 1.463e-02 3.047e-01 -0.062 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 1.103e-02 1.103e-02 - Cl 1.297e-02 1.297e-02 - K 1.742e-02 1.742e-02 - Na 6.576e-03 6.576e-03 - -----------------------------Description of solution---------------------------- - - pH = 7.134 Charge balance - pe = 12.949 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 7°C) = 2083 - Density (g/cm³) = 1.00147 - Volume (L) = 1.00070 - Viscosity (mPa s) = 1.43191 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -4.825e-08 - Temperature (°C) = 6.88 - Pressure (atm) = 1.00 - Electrical balance (eq) = 4.826e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 8.299e-08 7.349e-08 -7.081 -7.134 -0.053 0.00 - OH- 3.505e-08 3.016e-08 -7.455 -7.521 -0.065 -5.19 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 1.103e-02 - Br- 1.103e-02 9.464e-03 -1.957 -2.024 -0.067 23.36 -Cl 1.297e-02 - Cl- 1.297e-02 1.118e-02 -1.887 -1.952 -0.064 17.23 - HCl 3.093e-10 3.167e-10 -9.510 -9.499 0.010 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -43.235 -43.233 0.002 28.63 -K 1.742e-02 - K+ 1.742e-02 1.501e-02 -1.759 -1.824 -0.065 8.31 -Na 6.576e-03 - Na+ 6.576e-03 5.705e-03 -2.182 -2.244 -0.062 -2.58 -O(0) 1.434e-12 - O2 7.171e-13 7.210e-13 -12.144 -12.142 0.002 28.55 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(280 K, 1 atm) - - H2(g) -40.19 -43.23 -3.04 H2 - H2O(g) -2.00 -0.00 2.00 H2O - Halite -5.75 -4.20 1.55 NaCl - O2(g) -9.41 -12.14 -2.73 O2 - Sylvite -4.58 -3.78 0.80 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - - 4.6334e+00 1.2424e-09 -Using mix 6. -Using exchange 6. Exchange assemblage after simulation 2. - -Mixture 6. - - 2.213e-01 Solution 5 Solution after simulation 2. - 5.574e-01 Solution 6 Solution after simulation 2. - 2.213e-01 Solution 7 Solution after simulation 2. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 3.826e-02 3.826e-02 7.970e-01 0.000 - NaX 9.745e-03 9.745e-03 2.030e-01 -0.062 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 1.310e-02 1.310e-02 - Cl 1.090e-02 1.090e-02 - K 1.968e-02 1.968e-02 - Na 4.319e-03 4.319e-03 - -----------------------------Description of solution---------------------------- - - pH = 7.127 Charge balance - pe = 13.142 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 5°C) = 1993 - Density (g/cm³) = 1.00163 - Volume (L) = 1.00067 - Viscosity (mPa s) = 1.53455 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -5.641e-08 - Temperature (°C) = 4.63 - Pressure (atm) = 1.00 - Electrical balance (eq) = 5.642e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 8.418e-08 7.457e-08 -7.075 -7.127 -0.053 0.00 - OH- 2.803e-08 2.413e-08 -7.552 -7.617 -0.065 -5.44 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 1.310e-02 - Br- 1.310e-02 1.124e-02 -1.883 -1.949 -0.066 23.11 -Cl 1.090e-02 - Cl- 1.090e-02 9.399e-03 -1.963 -2.027 -0.064 17.03 - HCl 2.676e-10 2.740e-10 -9.572 -9.562 0.010 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -43.596 -43.594 0.002 28.64 -K 1.968e-02 - K+ 1.968e-02 1.696e-02 -1.706 -1.771 -0.065 8.17 -Na 4.319e-03 - Na+ 4.319e-03 3.749e-03 -2.365 -2.426 -0.062 -2.80 -O(0) 1.123e-12 - O2 5.613e-13 5.644e-13 -12.251 -12.248 0.002 28.23 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(277 K, 1 atm) - - H2(g) -40.56 -43.59 -3.03 H2 - H2O(g) -2.07 -0.00 2.07 H2O - Halite -6.01 -4.45 1.55 NaCl - O2(g) -9.54 -12.25 -2.71 O2 - Sylvite -4.59 -3.80 0.79 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - - 2.9840e+00 1.1834e-09 -Using mix 7. -Using exchange 7. Exchange assemblage after simulation 2. - -Mixture 7. - - 2.213e-01 Solution 6 Solution after simulation 2. - 5.574e-01 Solution 7 Solution after simulation 2. - 2.213e-01 Solution 8 Solution after simulation 2. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.186e-02 4.186e-02 8.721e-01 -0.000 - NaX 6.140e-03 6.140e-03 1.279e-01 -0.061 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 1.497e-02 1.497e-02 - Cl 9.031e-03 9.031e-03 - K 2.131e-02 2.131e-02 - Na 2.694e-03 2.694e-03 - -----------------------------Description of solution---------------------------- - - pH = 7.114 Charge balance - pe = 13.287 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 3°C) = 1926 - Density (g/cm³) = 1.00172 - Volume (L) = 1.00069 - Viscosity (mPa s) = 1.61774 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -6.379e-08 - Temperature (°C) = 2.98 - Pressure (atm) = 1.00 - Electrical balance (eq) = 6.379e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 8.679e-08 7.690e-08 -7.062 -7.114 -0.053 0.00 - OH- 2.324e-08 2.001e-08 -7.634 -7.699 -0.065 -5.64 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 1.497e-02 - Br- 1.497e-02 1.285e-02 -1.825 -1.891 -0.066 22.90 -Cl 9.031e-03 - Cl- 9.031e-03 7.791e-03 -2.044 -2.108 -0.064 16.87 - HCl 2.311e-10 2.366e-10 -9.636 -9.626 0.010 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -43.852 -43.850 0.002 28.64 -K 2.131e-02 - K+ 2.131e-02 1.836e-02 -1.671 -1.736 -0.065 8.06 -Na 2.694e-03 - Na+ 2.694e-03 2.339e-03 -2.570 -2.631 -0.061 -2.98 -O(0) 8.835e-13 - O2 4.417e-13 4.442e-13 -12.355 -12.352 0.002 27.98 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(276 K, 1 atm) - - H2(g) -40.82 -43.85 -3.03 H2 - H2O(g) -2.12 -0.00 2.12 H2O - Halite -6.29 -4.74 1.55 NaCl - O2(g) -9.66 -12.35 -2.69 O2 - Sylvite -4.63 -3.84 0.78 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - - 1.8357e+00 1.1429e-09 Using mix 8. Using exchange 8. Exchange assemblage after simulation 2. Mixture 8. - 2.213e-01 Solution 7 Solution after simulation 2. - 5.574e-01 Solution 8 Solution after simulation 2. - 2.213e-01 Solution 9 Solution after simulation 2. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.434e-02 4.434e-02 9.237e-01 0.000 - NaX 3.660e-03 3.660e-03 7.625e-02 -0.061 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 1.662e-02 1.662e-02 - Cl 7.375e-03 7.375e-03 - K 2.241e-02 2.241e-02 - Na 1.594e-03 1.594e-03 - -----------------------------Description of solution---------------------------- - - pH = 7.098 Charge balance - pe = 13.392 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 2°C) = 1879 - Density (g/cm³) = 1.00176 - Volume (L) = 1.00074 - Viscosity (mPa s) = 1.68000 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -7.033e-08 - Temperature (°C) = 1.84 - Pressure (atm) = 1.00 - Electrical balance (eq) = 7.033e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 9.015e-08 7.989e-08 -7.045 -7.098 -0.052 0.00 - OH- 2.002e-08 1.725e-08 -7.699 -7.763 -0.065 -5.79 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 1.662e-02 - Br- 1.662e-02 1.427e-02 -1.779 -1.845 -0.066 22.75 -Cl 7.375e-03 - Cl- 7.375e-03 6.364e-03 -2.132 -2.196 -0.064 16.75 - HCl 1.975e-10 2.022e-10 -9.704 -9.694 0.010 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.023 -44.021 0.002 28.64 -K 2.241e-02 - K+ 2.241e-02 1.932e-02 -1.650 -1.714 -0.064 7.98 -Na 1.594e-03 - Na+ 1.594e-03 1.385e-03 -2.797 -2.859 -0.061 -3.11 -O(0) 7.146e-13 - O2 3.573e-13 3.593e-13 -12.447 -12.445 0.002 27.80 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(274 K, 1 atm) - - H2(g) -41.00 -44.02 -3.02 H2 - H2O(g) -2.15 -0.00 2.15 H2O - Halite -6.60 -5.05 1.55 NaCl - O2(g) -9.76 -12.44 -2.68 O2 - Sylvite -4.68 -3.91 0.77 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - - 1.0783e+00 1.1165e-09 -Using mix 9. -Using exchange 9. Exchange assemblage after simulation 2. - -Mixture 9. - - 2.213e-01 Solution 8 Solution after simulation 2. - 5.574e-01 Solution 9 Solution after simulation 2. - 2.213e-01 Solution 10 Solution after simulation 2. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.593e-02 4.593e-02 9.570e-01 0.000 - NaX 2.066e-03 2.066e-03 4.303e-02 -0.061 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 1.807e-02 1.807e-02 - Cl 5.933e-03 5.933e-03 - K 2.310e-02 2.310e-02 - Na 8.958e-04 8.958e-04 - -----------------------------Description of solution---------------------------- - - pH = 7.081 Charge balance - pe = 13.461 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 1°C) = 1847 - Density (g/cm³) = 1.00179 - Volume (L) = 1.00079 - Viscosity (mPa s) = 1.72318 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -7.602e-08 - Temperature (°C) = 1.08 - Pressure (atm) = 1.00 - Electrical balance (eq) = 7.602e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 9.374e-08 8.308e-08 -7.028 -7.081 -0.052 0.00 - OH- 1.788e-08 1.541e-08 -7.748 -7.812 -0.065 -5.89 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 1.807e-02 - Br- 1.807e-02 1.551e-02 -1.743 -1.809 -0.066 22.65 -Cl 5.933e-03 - Cl- 5.933e-03 5.121e-03 -2.227 -2.291 -0.064 16.66 - HCl 1.661e-10 1.700e-10 -9.780 -9.770 0.010 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.122 -44.120 0.002 28.64 -K 2.310e-02 - K+ 2.310e-02 1.992e-02 -1.636 -1.701 -0.064 7.92 -Na 8.958e-04 - Na+ 8.958e-04 7.780e-04 -3.048 -3.109 -0.061 -3.20 -O(0) 5.807e-13 - O2 2.903e-13 2.919e-13 -12.537 -12.535 0.002 27.67 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(274 K, 1 atm) - - H2(g) -41.10 -44.12 -3.02 H2 - H2O(g) -2.18 -0.00 2.18 H2O - Halite -6.95 -5.40 1.55 NaCl - O2(g) -9.86 -12.53 -2.67 O2 - Sylvite -4.76 -3.99 0.77 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - - 6.0473e-01 1.1000e-09 -Using mix 10. -Using exchange 10. Exchange assemblage after simulation 2. - -Mixture 10. - - 2.213e-01 Solution 9 Solution after simulation 2. - 5.574e-01 Solution 10 Solution after simulation 2. - 2.213e-01 Solution 11 Solution after simulation 2. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.690e-02 4.690e-02 9.770e-01 0.000 - NaX 1.105e-03 1.105e-03 2.302e-02 -0.061 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 1.930e-02 1.930e-02 - Cl 4.701e-03 4.701e-03 - K 2.352e-02 2.352e-02 - Na 4.779e-04 4.779e-04 - -----------------------------Description of solution---------------------------- - - pH = 7.065 Charge balance - pe = 13.504 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 1°C) = 1827 - Density (g/cm³) = 1.00182 - Volume (L) = 1.00082 - Viscosity (mPa s) = 1.75106 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -8.088e-08 - Temperature (°C) = 0.60 - Pressure (atm) = 1.00 - Electrical balance (eq) = 8.089e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 9.721e-08 8.616e-08 -7.012 -7.065 -0.052 0.00 - OH- 1.646e-08 1.418e-08 -7.784 -7.848 -0.065 -5.96 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 1.930e-02 - Br- 1.930e-02 1.657e-02 -1.714 -1.781 -0.066 22.58 -Cl 4.701e-03 - Cl- 4.701e-03 4.058e-03 -2.328 -2.392 -0.064 16.61 - HCl 1.369e-10 1.401e-10 -9.864 -9.853 0.010 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.176 -44.173 0.002 28.64 -K 2.352e-02 - K+ 2.352e-02 2.028e-02 -1.629 -1.693 -0.064 7.88 -Na 4.779e-04 - Na+ 4.779e-04 4.151e-04 -3.321 -3.382 -0.061 -3.26 -O(0) 4.898e-13 - O2 2.449e-13 2.462e-13 -12.611 -12.609 0.002 27.59 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -41.16 -44.17 -3.01 H2 - H2O(g) -2.19 -0.00 2.19 H2O - Halite -7.32 -5.77 1.55 NaCl - O2(g) -9.94 -12.61 -2.67 O2 - Sylvite -4.85 -4.08 0.77 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - - 3.2377e-01 1.0903e-09 -Using mix 11. -Using exchange 11. Exchange assemblage after simulation 2. - -Mixture 11. - - 2.213e-01 Solution 10 Solution after simulation 2. - 5.574e-01 Solution 11 Solution after simulation 2. - 2.213e-01 Solution 12 Solution after simulation 2. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.744e-02 4.744e-02 9.883e-01 0.000 - NaX 5.610e-04 5.610e-04 1.169e-02 -0.061 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.033e-02 2.033e-02 - Cl 3.668e-03 3.668e-03 - K 2.376e-02 2.376e-02 - Na 2.423e-04 2.423e-04 - -----------------------------Description of solution---------------------------- - - pH = 7.051 Charge balance - pe = 13.530 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1816 - Density (g/cm³) = 1.00184 - Volume (L) = 1.00084 - Viscosity (mPa s) = 1.76793 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -8.497e-08 - Temperature (°C) = 0.32 - Pressure (atm) = 1.00 - Electrical balance (eq) = 8.497e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.004e-07 8.896e-08 -6.998 -7.051 -0.052 0.00 - OH- 1.551e-08 1.336e-08 -7.809 -7.874 -0.065 -6.00 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.033e-02 - Br- 2.033e-02 1.746e-02 -1.692 -1.758 -0.066 22.54 -Cl 3.668e-03 - Cl- 3.668e-03 3.166e-03 -2.436 -2.500 -0.064 16.57 - HCl 1.105e-10 1.131e-10 -9.957 -9.947 0.010 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.198 -44.196 0.002 28.64 -K 2.376e-02 - K+ 2.376e-02 2.049e-02 -1.624 -1.689 -0.064 7.86 -Na 2.423e-04 - Na+ 2.423e-04 2.104e-04 -3.616 -3.677 -0.061 -3.30 -O(0) 4.239e-13 - O2 2.120e-13 2.131e-13 -12.674 -12.671 0.002 27.54 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -41.18 -44.20 -3.01 H2 - H2O(g) -2.20 -0.00 2.20 H2O - Halite -7.72 -6.18 1.55 NaCl - O2(g) -10.01 -12.67 -2.66 O2 - Sylvite -4.95 -4.19 0.77 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - - 1.6551e-01 1.0848e-09 -Using mix 12. -Using exchange 12. Exchange assemblage after simulation 2. - -Mixture 12. - - 2.213e-01 Solution 11 Solution after simulation 2. - 5.574e-01 Solution 12 Solution after simulation 2. - 2.213e-01 Solution 13 Solution after simulation 2. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.773e-02 4.773e-02 9.944e-01 0.000 - NaX 2.705e-04 2.705e-04 5.636e-03 -0.061 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.118e-02 2.118e-02 - Cl 2.817e-03 2.817e-03 - K 2.388e-02 2.388e-02 - Na 1.167e-04 1.167e-04 - -----------------------------Description of solution---------------------------- - - pH = 7.039 Charge balance - pe = 13.544 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1809 - Density (g/cm³) = 1.00187 - Volume (L) = 1.00086 - Viscosity (mPa s) = 1.77752 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -8.833e-08 - Temperature (°C) = 0.17 - Pressure (atm) = 1.00 - Electrical balance (eq) = 8.833e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.031e-07 9.139e-08 -6.987 -7.039 -0.052 0.00 - OH- 1.486e-08 1.280e-08 -7.828 -7.893 -0.065 -6.03 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.118e-02 - Br- 2.118e-02 1.819e-02 -1.674 -1.740 -0.066 22.51 -Cl 2.817e-03 - Cl- 2.817e-03 2.431e-03 -2.550 -2.614 -0.064 16.55 - HCl 8.723e-11 8.930e-11 -10.059 -10.049 0.010 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.202 -44.200 0.002 28.65 -K 2.388e-02 - K+ 2.388e-02 2.060e-02 -1.622 -1.686 -0.064 7.85 -Na 1.167e-04 - Na+ 1.167e-04 1.014e-04 -3.933 -3.994 -0.061 -3.32 -O(0) 3.758e-13 - O2 1.879e-13 1.889e-13 -12.726 -12.724 0.002 27.52 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -41.19 -44.20 -3.01 H2 - H2O(g) -2.21 -0.00 2.20 H2O - Halite -8.16 -6.61 1.55 NaCl - O2(g) -10.06 -12.72 -2.66 O2 - Sylvite -5.07 -4.30 0.76 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - - 8.0802e-02 1.0819e-09 -Using mix 13. -Using exchange 13. Exchange assemblage after simulation 2. - -Mixture 13. - - 2.213e-01 Solution 12 Solution after simulation 2. - 5.574e-01 Solution 13 Solution after simulation 2. - 2.213e-01 Solution 14 Solution after simulation 2. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.788e-02 4.788e-02 9.974e-01 0.000 - NaX 1.241e-04 1.241e-04 2.585e-03 -0.061 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.187e-02 2.187e-02 - Cl 2.129e-03 2.129e-03 - K 2.395e-02 2.395e-02 - Na 5.352e-05 5.352e-05 - -----------------------------Description of solution---------------------------- - - pH = 7.030 Charge balance - pe = 13.541 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1806 - Density (g/cm³) = 1.00189 - Volume (L) = 1.00087 - Viscosity (mPa s) = 1.78267 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.104e-08 - Temperature (°C) = 0.08 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.104e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.054e-07 9.342e-08 -6.977 -7.030 -0.052 0.00 - OH- 1.442e-08 1.242e-08 -7.841 -7.906 -0.065 -6.04 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.187e-02 - Br- 2.187e-02 1.878e-02 -1.660 -1.726 -0.066 22.50 -Cl 2.129e-03 - Cl- 2.129e-03 1.838e-03 -2.672 -2.736 -0.064 16.54 - HCl 6.743e-11 6.903e-11 -10.171 -10.161 0.010 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.176 -44.173 0.002 28.65 -K 2.395e-02 - K+ 2.395e-02 2.065e-02 -1.621 -1.685 -0.064 7.84 -Na 5.352e-05 - Na+ 5.352e-05 4.649e-05 -4.272 -4.333 -0.061 -3.33 -O(0) 3.084e-13 - O2 1.542e-13 1.551e-13 -12.812 -12.809 0.002 27.50 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -41.16 -44.17 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - Halite -8.62 -7.07 1.55 NaCl - O2(g) -10.15 -12.81 -2.66 O2 - Sylvite -5.19 -4.42 0.76 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - - 3.7685e-02 1.0804e-09 -Using mix 14. -Using exchange 14. Exchange assemblage after simulation 2. - -Mixture 14. - - 2.213e-01 Solution 13 Solution after simulation 2. - 5.574e-01 Solution 14 Solution after simulation 2. - 2.213e-01 Solution 15 Solution after simulation 2. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.795e-02 4.795e-02 9.989e-01 0.000 - NaX 5.415e-05 5.415e-05 1.128e-03 -0.061 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.242e-02 2.242e-02 - Cl 1.583e-03 1.583e-03 - K 2.398e-02 2.398e-02 - Na 2.335e-05 2.335e-05 - -----------------------------Description of solution---------------------------- - - pH = 7.022 Charge balance - pe = 13.534 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1805 - Density (g/cm³) = 1.00191 - Volume (L) = 1.00088 - Viscosity (mPa s) = 1.78529 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.320e-08 - Temperature (°C) = 0.04 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.320e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.073e-07 9.507e-08 -6.970 -7.022 -0.052 0.00 - OH- 1.411e-08 1.215e-08 -7.851 -7.915 -0.065 -6.04 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.242e-02 - Br- 2.242e-02 1.925e-02 -1.649 -1.715 -0.066 22.49 -Cl 1.583e-03 - Cl- 1.583e-03 1.366e-03 -2.801 -2.864 -0.064 16.54 - HCl 5.104e-11 5.225e-11 -10.292 -10.282 0.010 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.147 -44.145 0.002 28.65 -K 2.398e-02 - K+ 2.398e-02 2.068e-02 -1.620 -1.685 -0.064 7.84 -Na 2.335e-05 - Na+ 2.335e-05 2.029e-05 -4.632 -4.693 -0.061 -3.33 -O(0) 2.600e-13 - O2 1.300e-13 1.307e-13 -12.886 -12.884 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -41.13 -44.14 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - Halite -9.11 -7.56 1.55 NaCl - O2(g) -10.22 -12.88 -2.66 O2 - Sylvite -5.31 -4.55 0.76 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - - 1.6798e-02 1.0797e-09 -Using mix 15. -Using exchange 15. Exchange assemblage after simulation 2. - -Mixture 15. - - 2.213e-01 Solution 14 Solution after simulation 2. - 5.574e-01 Solution 15 Solution after simulation 2. - 2.213e-01 Solution 16 Solution after simulation 2. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.798e-02 4.798e-02 9.995e-01 0.000 - NaX 2.251e-05 2.251e-05 4.690e-04 -0.061 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.284e-02 2.284e-02 - Cl 1.158e-03 1.158e-03 - K 2.399e-02 2.399e-02 - Na 9.707e-06 9.707e-06 - -----------------------------Description of solution---------------------------- - - pH = 7.016 Charge balance - pe = 13.532 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00192 - Volume (L) = 1.00088 - Viscosity (mPa s) = 1.78655 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.488e-08 - Temperature (°C) = 0.02 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.488e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.087e-07 9.638e-08 -6.964 -7.016 -0.052 0.00 - OH- 1.389e-08 1.197e-08 -7.857 -7.922 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.284e-02 - Br- 2.284e-02 1.962e-02 -1.641 -1.707 -0.066 22.49 -Cl 1.158e-03 - Cl- 1.158e-03 9.995e-04 -2.936 -3.000 -0.064 16.54 - HCl 3.785e-11 3.875e-11 -10.422 -10.412 0.010 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.131 -44.129 0.002 28.65 -K 2.399e-02 - K+ 2.399e-02 2.069e-02 -1.620 -1.684 -0.064 7.84 -Na 9.707e-06 - Na+ 9.707e-06 8.433e-06 -5.013 -5.074 -0.061 -3.34 -O(0) 2.376e-13 - O2 1.188e-13 1.195e-13 -12.925 -12.923 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -41.12 -44.13 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - Halite -9.62 -8.07 1.55 NaCl - O2(g) -10.26 -12.92 -2.66 O2 - Sylvite -5.45 -4.68 0.76 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - - 7.1587e-03 1.0793e-09 -Using mix 16. -Using exchange 16. Exchange assemblage after simulation 2. - -Mixture 16. - - 2.213e-01 Solution 15 Solution after simulation 2. - 5.574e-01 Solution 16 Solution after simulation 2. - 2.213e-01 Solution 17 Solution after simulation 2. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.799e-02 4.799e-02 9.998e-01 0.000 - NaX 8.920e-06 8.920e-06 1.858e-04 -0.061 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.317e-02 2.317e-02 - Cl 8.331e-04 8.331e-04 - K 2.400e-02 2.400e-02 - Na 3.846e-06 3.846e-06 - -----------------------------Description of solution---------------------------- - - pH = 7.012 Charge balance - pe = 13.517 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00193 - Volume (L) = 1.00088 - Viscosity (mPa s) = 1.78712 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.616e-08 - Temperature (°C) = 0.01 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.616e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.099e-07 9.739e-08 -6.959 -7.012 -0.052 0.00 - OH- 1.373e-08 1.183e-08 -7.862 -7.927 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.317e-02 - Br- 2.317e-02 1.990e-02 -1.635 -1.701 -0.066 22.49 -Cl 8.331e-04 - Cl- 8.331e-04 7.191e-04 -3.079 -3.143 -0.064 16.53 - HCl 2.752e-11 2.818e-11 -10.560 -10.550 0.010 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.091 -44.088 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.069e-02 -1.620 -1.684 -0.064 7.84 -Na 3.846e-06 - Na+ 3.846e-06 3.341e-06 -5.415 -5.476 -0.061 -3.34 -O(0) 1.952e-13 - O2 9.760e-14 9.814e-14 -13.011 -13.008 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -41.08 -44.09 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - Halite -10.17 -8.62 1.55 NaCl - O2(g) -10.35 -13.01 -2.66 O2 - Sylvite -5.59 -4.83 0.76 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - - 2.9184e-03 1.0792e-09 -Using mix 17. -Using exchange 17. Exchange assemblage after simulation 2. - -Mixture 17. - - 2.213e-01 Solution 16 Solution after simulation 2. - 5.574e-01 Solution 17 Solution after simulation 2. - 2.213e-01 Solution 18 Solution after simulation 2. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 9.999e-01 0.000 - NaX 3.371e-06 3.371e-06 7.023e-05 -0.061 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.341e-02 2.341e-02 - Cl 5.894e-04 5.894e-04 - K 2.400e-02 2.400e-02 - Na 1.454e-06 1.454e-06 - -----------------------------Description of solution---------------------------- - - pH = 7.008 Charge balance - pe = 13.506 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00194 - Volume (L) = 1.00088 - Viscosity (mPa s) = 1.78736 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.712e-08 - Temperature (°C) = 0.00 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.712e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.107e-07 9.815e-08 -6.956 -7.008 -0.052 0.00 - OH- 1.362e-08 1.173e-08 -7.866 -7.931 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.341e-02 - Br- 2.341e-02 2.011e-02 -1.631 -1.697 -0.066 22.49 -Cl 5.894e-04 - Cl- 5.894e-04 5.088e-04 -3.230 -3.293 -0.064 16.53 - HCl 1.962e-11 2.009e-11 -10.707 -10.697 0.010 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.063 -44.061 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -Na 1.454e-06 - Na+ 1.454e-06 1.263e-06 -5.838 -5.899 -0.061 -3.34 -O(0) 1.716e-13 - O2 8.580e-14 8.627e-14 -13.067 -13.064 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -41.05 -44.06 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - Halite -10.74 -9.19 1.55 NaCl - O2(g) -10.41 -13.06 -2.66 O2 - Sylvite -5.74 -4.98 0.76 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - - 1.1387e-03 1.0791e-09 -Using mix 18. -Using exchange 18. Exchange assemblage after simulation 2. - -Mixture 18. - - 2.213e-01 Solution 17 Solution after simulation 2. - 5.574e-01 Solution 18 Solution after simulation 2. - 2.213e-01 Solution 19 Solution after simulation 2. + 2.077e-01 Solution 7 Solution after simulation 2. + 5.846e-01 Solution 8 Solution after simulation 2. + 2.077e-01 Solution 9 Solution after simulation 2. -----------------------------Exchange composition------------------------------ @@ -4086,622 +1697,34 @@ X 4.800e-02 mol Species Moles alents Fraction Gamma KX 4.800e-02 4.800e-02 1.000e+00 0.000 - NaX 1.216e-06 1.216e-06 2.534e-05 -0.061 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.359e-02 2.359e-02 - Cl 4.100e-04 4.100e-04 - K 2.400e-02 2.400e-02 - Na 5.244e-07 5.244e-07 - -----------------------------Description of solution---------------------------- - - pH = 7.006 Charge balance - pe = 13.488 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00195 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78746 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.783e-08 - Temperature (°C) = 0.00 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.783e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.114e-07 9.871e-08 -6.953 -7.006 -0.052 0.00 - OH- 1.354e-08 1.166e-08 -7.868 -7.933 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.359e-02 - Br- 2.359e-02 2.026e-02 -1.627 -1.693 -0.066 22.49 -Cl 4.100e-04 - Cl- 4.100e-04 3.539e-04 -3.387 -3.451 -0.064 16.53 - HCl 1.373e-11 1.405e-11 -10.862 -10.852 0.010 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.022 -44.020 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -Na 5.244e-07 - Na+ 5.244e-07 4.555e-07 -6.280 -6.341 -0.061 -3.34 -O(0) 1.415e-13 - O2 7.077e-14 7.116e-14 -13.150 -13.148 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -41.01 -44.02 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - Halite -11.34 -9.79 1.55 NaCl - O2(g) -10.49 -13.15 -2.66 O2 - Sylvite -5.90 -5.14 0.76 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - - 4.2546e-04 1.0791e-09 -Using mix 19. -Using exchange 19. Exchange assemblage after simulation 2. - -Mixture 19. - - 2.213e-01 Solution 18 Solution after simulation 2. - 5.574e-01 Solution 19 Solution after simulation 2. - 2.213e-01 Solution 20 Solution after simulation 2. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 0.000 - NaX 4.191e-07 4.191e-07 8.731e-06 -0.061 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.372e-02 2.372e-02 - Cl 2.804e-04 2.804e-04 - K 2.400e-02 2.400e-02 - Na 1.807e-07 1.807e-07 - -----------------------------Description of solution---------------------------- - - pH = 7.004 Charge balance - pe = 13.473 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00196 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78749 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.834e-08 - Temperature (°C) = 0.00 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.834e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.118e-07 9.912e-08 -6.952 -7.004 -0.052 0.00 - OH- 1.348e-08 1.162e-08 -7.870 -7.935 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.372e-02 - Br- 2.372e-02 2.037e-02 -1.625 -1.691 -0.066 22.49 -Cl 2.804e-04 - Cl- 2.804e-04 2.420e-04 -3.552 -3.616 -0.064 16.53 - HCl 9.426e-12 9.650e-12 -11.026 -11.015 0.010 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -43.987 -43.985 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -Na 1.807e-07 - Na+ 1.807e-07 1.570e-07 -6.743 -6.804 -0.061 -3.34 -O(0) 1.206e-13 - O2 6.030e-14 6.064e-14 -13.220 -13.217 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -40.97 -43.98 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - Halite -11.97 -10.42 1.55 NaCl - O2(g) -10.56 -13.22 -2.66 O2 - Sylvite -6.06 -5.30 0.76 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - - 1.5231e-04 1.0791e-09 -Using mix 20. -Using exchange 20. Exchange assemblage after simulation 2. - -Mixture 20. - - 2.213e-01 Solution 19 Solution after simulation 2. - 5.574e-01 Solution 20 Solution after simulation 2. - 2.213e-01 Solution 21 Solution after simulation 2. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 0.000 - NaX 1.381e-07 1.381e-07 2.876e-06 -0.061 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.381e-02 2.381e-02 - Cl 1.884e-04 1.884e-04 - K 2.400e-02 2.400e-02 - Na 5.953e-08 5.953e-08 - -----------------------------Description of solution---------------------------- - - pH = 7.003 Charge balance - pe = 13.444 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00196 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.870e-08 - Temperature (°C) = 0.00 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.870e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.121e-07 9.941e-08 -6.950 -7.003 -0.052 0.00 - OH- 1.344e-08 1.158e-08 -7.872 -7.936 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.381e-02 - Br- 2.381e-02 2.045e-02 -1.623 -1.689 -0.066 22.49 -Cl 1.884e-04 - Cl- 1.884e-04 1.626e-04 -3.725 -3.789 -0.064 16.53 - HCl 6.354e-12 6.505e-12 -11.197 -11.187 0.010 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -43.928 -43.925 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -Na 5.953e-08 - Na+ 5.953e-08 5.172e-08 -7.225 -7.286 -0.061 -3.34 -O(0) 9.158e-14 - O2 4.579e-14 4.604e-14 -13.339 -13.337 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -40.91 -43.93 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - Halite -12.62 -11.08 1.55 NaCl - O2(g) -10.68 -13.34 -2.66 O2 - Sylvite -6.24 -5.47 0.76 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - - 5.2272e-05 1.0791e-09 -Using mix 21. -Using exchange 21. Exchange assemblage after simulation 2. - -Mixture 21. - - 2.213e-01 Solution 20 Solution after simulation 2. - 5.574e-01 Solution 21 Solution after simulation 2. - 2.213e-01 Solution 22 Solution after simulation 2. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 0.000 - NaX 4.351e-08 4.351e-08 9.065e-07 -0.061 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.388e-02 2.388e-02 - Cl 1.245e-04 1.245e-04 - K 2.400e-02 2.400e-02 - Na 1.876e-08 1.876e-08 - -----------------------------Description of solution---------------------------- - - pH = 7.002 Charge balance - pe = 13.436 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00196 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.896e-08 - Temperature (°C) = 0.00 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.896e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.124e-07 9.961e-08 -6.949 -7.002 -0.052 0.00 - OH- 1.341e-08 1.156e-08 -7.872 -7.937 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.388e-02 - Br- 2.388e-02 2.051e-02 -1.622 -1.688 -0.066 22.49 -Cl 1.245e-04 - Cl- 1.245e-04 1.074e-04 -3.905 -3.969 -0.064 16.53 - HCl 4.205e-12 4.305e-12 -11.376 -11.366 0.010 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -43.909 -43.907 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -Na 1.876e-08 - Na+ 1.876e-08 1.630e-08 -7.727 -7.788 -0.061 -3.34 -O(0) 8.413e-14 - O2 4.206e-14 4.230e-14 -13.376 -13.374 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -40.90 -43.91 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - Halite -13.30 -11.76 1.55 NaCl - O2(g) -10.72 -13.37 -2.66 O2 - Sylvite -6.42 -5.65 0.76 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - - 1.7207e-05 1.0791e-09 -Using mix 22. -Using exchange 22. Exchange assemblage after simulation 2. - -Mixture 22. - - 2.213e-01 Solution 21 Solution after simulation 2. - 5.574e-01 Solution 22 Solution after simulation 2. - 2.213e-01 Solution 23 Solution after simulation 2. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - NaX 1.313e-08 1.313e-08 2.735e-07 -0.061 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.392e-02 2.392e-02 - Cl 8.078e-05 8.078e-05 - K 2.400e-02 2.400e-02 - Na 5.660e-09 5.660e-09 - -----------------------------Description of solution---------------------------- - - pH = 7.001 Charge balance - pe = 13.429 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00196 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.913e-08 - Temperature (°C) = 0.00 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.913e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.125e-07 9.975e-08 -6.949 -7.001 -0.052 0.00 - OH- 1.340e-08 1.154e-08 -7.873 -7.938 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.392e-02 - Br- 2.392e-02 2.054e-02 -1.621 -1.687 -0.066 22.49 -Cl 8.078e-05 - Cl- 8.078e-05 6.973e-05 -4.093 -4.157 -0.064 16.53 - HCl 2.733e-12 2.798e-12 -11.563 -11.553 0.010 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -43.895 -43.892 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -Na 5.660e-09 - Na+ 5.660e-09 4.917e-09 -8.247 -8.308 -0.061 -3.34 -O(0) 7.871e-14 - O2 3.935e-14 3.957e-14 -13.405 -13.403 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -40.88 -43.89 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - Halite -14.01 -12.46 1.55 NaCl - O2(g) -10.74 -13.40 -2.66 O2 - Sylvite -6.60 -5.84 0.76 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - - 5.4361e-06 1.0791e-09 -Using mix 23. -Using exchange 23. Exchange assemblage after simulation 2. - -Mixture 23. - - 2.213e-01 Solution 22 Solution after simulation 2. - 5.574e-01 Solution 23 Solution after simulation 2. - 2.213e-01 Solution 24 Solution after simulation 2. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 0.000 - NaX 3.794e-09 3.794e-09 7.904e-08 -0.061 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.395e-02 2.395e-02 - Cl 5.151e-05 5.151e-05 - K 2.400e-02 2.400e-02 - Na 1.636e-09 1.636e-09 - -----------------------------Description of solution---------------------------- - - pH = 7.001 Charge balance - pe = 13.405 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00196 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.925e-08 - Temperature (°C) = 0.00 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.925e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.126e-07 9.984e-08 -6.948 -7.001 -0.052 0.00 - OH- 1.338e-08 1.153e-08 -7.873 -7.938 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.395e-02 - Br- 2.395e-02 2.057e-02 -1.621 -1.687 -0.066 22.49 -Cl 5.151e-05 - Cl- 5.151e-05 4.446e-05 -4.288 -4.352 -0.064 16.53 - HCl 1.744e-12 1.786e-12 -11.758 -11.748 0.010 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -43.846 -43.844 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -Na 1.636e-09 - Na+ 1.636e-09 1.421e-09 -8.786 -8.847 -0.061 -3.34 -O(0) 6.298e-14 - O2 3.149e-14 3.167e-14 -13.502 -13.499 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -40.83 -43.84 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - Halite -14.75 -13.20 1.55 NaCl - O2(g) -10.84 -13.50 -2.66 O2 - Sylvite -6.80 -6.04 0.76 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - - 1.6491e-06 1.0791e-09 -Using mix 24. -Using exchange 24. Exchange assemblage after simulation 2. - -Mixture 24. - - 2.213e-01 Solution 23 Solution after simulation 2. - 5.574e-01 Solution 24 Solution after simulation 2. - 2.213e-01 Solution 25 Solution after simulation 2. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - NaX 1.051e-09 1.051e-09 2.190e-08 -0.061 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.397e-02 2.397e-02 - Cl 3.228e-05 3.228e-05 - K 2.400e-02 2.400e-02 - Na 4.532e-10 4.532e-10 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 13.416 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.932e-08 - Temperature (°C) = 0.00 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.932e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.127e-07 9.990e-08 -6.948 -7.000 -0.052 0.00 - OH- 1.337e-08 1.152e-08 -7.874 -7.938 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.397e-02 - Br- 2.397e-02 2.059e-02 -1.620 -1.686 -0.066 22.49 -Cl 3.228e-05 - Cl- 3.228e-05 2.786e-05 -4.491 -4.555 -0.064 16.53 - HCl 1.094e-12 1.120e-12 -11.961 -11.951 0.010 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -43.866 -43.864 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -Na 4.532e-10 - Na+ 4.532e-10 3.937e-10 -9.344 -9.405 -0.061 -3.34 -O(0) 6.910e-14 - O2 3.455e-14 3.474e-14 -13.462 -13.459 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -40.85 -43.86 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - Halite -15.51 -13.96 1.55 NaCl - O2(g) -10.80 -13.46 -2.66 O2 - Sylvite -7.00 -6.24 0.76 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - - 4.8063e-07 1.0791e-09 -Using mix 25. -Using exchange 25. Exchange assemblage after simulation 2. - -Mixture 25. - - 2.213e-01 Solution 24 Solution after simulation 2. - 5.574e-01 Solution 25 Solution after simulation 2. - 2.213e-01 Solution 26 Solution after simulation 2. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 0.000 - NaX 2.793e-10 2.793e-10 5.819e-09 -0.061 + NaX 1.866e-08 1.866e-08 3.887e-07 -0.061 -----------------------------Solution composition------------------------------ Elements Molality Moles Br 2.398e-02 2.398e-02 - Cl 1.988e-05 1.988e-05 + Cl 2.266e-05 2.266e-05 K 2.400e-02 2.400e-02 - Na 1.204e-10 1.204e-10 + Na 8.045e-09 8.045e-09 ----------------------------Description of solution---------------------------- pH = 7.000 Charge balance - pe = 13.376 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 + pe = 13.704 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1805 Density (g/cm³) = 1.00197 Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 + Viscosity (mPa s) = 1.78740 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.400e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.937e-08 + Total alkalinity (eq/kg) = -9.936e-08 Temperature (°C) = 0.00 Pressure (atm) = 1.00 - Electrical balance (eq) = 9.937e-08 + Electrical balance (eq) = 9.932e-08 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 + Iterations = 5 Total H = 1.110124e+02 Total O = 5.550622e+01 @@ -4710,45 +1733,44 @@ X 4.800e-02 mol Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.127e-07 9.994e-08 -6.948 -7.000 -0.052 0.00 + H+ 1.127e-07 9.993e-08 -6.948 -7.000 -0.052 0.00 OH- 1.337e-08 1.152e-08 -7.874 -7.939 -0.065 -6.05 H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 Br 2.398e-02 - Br- 2.398e-02 2.060e-02 -1.620 -1.686 -0.066 22.49 -Cl 1.988e-05 - Cl- 1.988e-05 1.716e-05 -4.702 -4.766 -0.064 16.53 - HCl 6.739e-13 6.899e-13 -12.171 -12.161 0.010 (0) + Br- 2.398e-02 2.059e-02 -1.620 -1.686 -0.066 22.49 +Cl 2.266e-05 + Cl- 2.266e-05 1.956e-05 -4.645 -4.709 -0.064 16.53 + HCl 7.682e-13 7.865e-13 -12.115 -12.104 0.010 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -43.788 -43.785 0.002 28.65 + H2 0.000e+00 0.000e+00 -44.444 -44.441 0.002 28.65 K 2.400e-02 K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -Na 1.204e-10 - Na+ 1.204e-10 1.046e-10 -9.919 -9.980 -0.061 -3.34 -O(0) 4.806e-14 - O2 2.403e-14 2.416e-14 -13.619 -13.617 0.002 27.49 +Na 8.045e-09 + Na+ 8.045e-09 6.989e-09 -8.094 -8.156 -0.061 -3.34 +O(0) 9.863e-13 + O2 4.932e-13 4.959e-13 -12.307 -12.305 0.002 27.49 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(273 K, 1 atm) - H2(g) -40.77 -43.79 -3.01 H2 + H2(g) -41.43 -44.44 -3.01 H2 H2O(g) -2.21 -0.00 2.21 H2O - Halite -16.29 -14.75 1.55 NaCl - O2(g) -10.96 -13.62 -2.66 O2 - Sylvite -7.21 -6.45 0.76 KCl + Halite -14.41 -12.86 1.55 NaCl + O2(g) -9.65 -12.30 -2.66 O2 + Sylvite -7.16 -6.39 0.76 KCl **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. - 1.3465e-07 1.0791e-09 -Using mix 26. -Using exchange 26. Exchange assemblage after simulation 2. +Using mix 9. +Using exchange 9. Exchange assemblage after simulation 2. -Mixture 26. +Mixture 9. - 2.213e-01 Solution 25 Solution after simulation 2. - 5.574e-01 Solution 26 Solution after simulation 2. - 2.213e-01 Solution 27 Solution after simulation 2. + 2.077e-01 Solution 8 Solution after simulation 2. + 5.846e-01 Solution 9 Solution after simulation 2. + 2.077e-01 Solution 10 Solution after simulation 2. -----------------------------Exchange composition------------------------------ @@ -4758,202 +1780,33 @@ X 4.800e-02 mol Species Moles alents Fraction Gamma KX 4.800e-02 4.800e-02 1.000e+00 0.000 - NaX 7.125e-11 7.125e-11 1.484e-09 -0.061 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.399e-02 2.399e-02 - Cl 1.205e-05 1.205e-05 - K 2.400e-02 2.400e-02 - Na 3.072e-11 3.072e-11 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 13.376 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.940e-08 - Temperature (°C) = 0.00 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.940e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 9.996e-08 -6.948 -7.000 -0.052 0.00 - OH- 1.337e-08 1.152e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.399e-02 - Br- 2.399e-02 2.060e-02 -1.620 -1.686 -0.066 22.49 -Cl 1.205e-05 - Cl- 1.205e-05 1.040e-05 -4.919 -4.983 -0.064 16.53 - HCl 4.086e-13 4.183e-13 -12.389 -12.378 0.010 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -43.787 -43.785 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -Na 3.072e-11 - Na+ 3.072e-11 2.669e-11 -10.513 -10.574 -0.061 -3.34 -O(0) 4.792e-14 - O2 2.396e-14 2.409e-14 -13.620 -13.618 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -40.77 -43.78 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - Halite -17.10 -15.56 1.55 NaCl - O2(g) -10.96 -13.62 -2.66 O2 - Sylvite -7.43 -6.67 0.76 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - - 3.6283e-08 1.0791e-09 -Using mix 27. -Using exchange 27. Exchange assemblage after simulation 2. - -Mixture 27. - - 2.213e-01 Solution 26 Solution after simulation 2. - 5.574e-01 Solution 27 Solution after simulation 2. - 2.213e-01 Solution 28 Solution after simulation 2. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - NaX 1.746e-11 1.746e-11 3.637e-10 -0.061 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.399e-02 2.399e-02 - Cl 7.227e-06 7.227e-06 - K 2.400e-02 2.400e-02 - Na 7.527e-12 7.527e-12 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 13.381 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.942e-08 - Temperature (°C) = 0.00 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.942e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 9.998e-08 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.152e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.399e-02 - Br- 2.399e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -Cl 7.227e-06 - Cl- 7.227e-06 6.238e-06 -5.141 -5.205 -0.064 16.53 - HCl 2.451e-13 2.509e-13 -12.611 -12.600 0.010 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -43.796 -43.794 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -Na 7.527e-12 - Na+ 7.527e-12 6.538e-12 -11.123 -11.185 -0.061 -3.34 -O(0) 4.999e-14 - O2 2.500e-14 2.513e-14 -13.602 -13.600 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -40.78 -43.79 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - Halite -17.94 -16.39 1.55 NaCl - O2(g) -10.94 -13.60 -2.66 O2 - Sylvite -7.65 -6.89 0.76 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - - 9.4125e-09 1.0791e-09 -Using mix 28. -Using exchange 28. Exchange assemblage after simulation 2. - -Mixture 28. - - 2.213e-01 Solution 27 Solution after simulation 2. - 5.574e-01 Solution 28 Solution after simulation 2. - 2.213e-01 Solution 29 Solution after simulation 2. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - NaX 4.111e-12 4.111e-12 8.565e-11 -0.061 + NaX 7.270e-10 7.270e-10 1.515e-08 -0.061 -----------------------------Solution composition------------------------------ Elements Molality Moles Br 2.400e-02 2.400e-02 - Cl 4.357e-06 4.357e-06 + Cl 3.808e-06 3.808e-06 K 2.400e-02 2.400e-02 - Na 1.773e-12 1.773e-12 + Na 3.135e-10 3.135e-10 ----------------------------Description of solution---------------------------- pH = 7.000 Charge balance - pe = 13.370 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 + pe = 13.610 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1805 Density (g/cm³) = 1.00197 Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 + Viscosity (mPa s) = 1.78740 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.400e-02 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = -9.943e-08 Temperature (°C) = 0.00 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.943e-08 + Electrical balance (eq) = 9.940e-08 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 + Iterations = 6 Total H = 1.110124e+02 Total O = 5.550622e+01 @@ -4967,40 +1820,39 @@ X 4.800e-02 mol H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 Br 2.400e-02 Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -Cl 4.357e-06 - Cl- 4.357e-06 3.761e-06 -5.361 -5.425 -0.064 16.53 - HCl 1.478e-13 1.513e-13 -12.830 -12.820 0.010 (0) +Cl 3.808e-06 + Cl- 3.808e-06 3.287e-06 -5.419 -5.483 -0.064 16.53 + HCl 1.291e-13 1.322e-13 -12.889 -12.879 0.010 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -43.775 -43.773 0.002 28.65 + H2 0.000e+00 0.000e+00 -44.255 -44.252 0.002 28.65 K 2.400e-02 K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -Na 1.773e-12 - Na+ 1.773e-12 1.540e-12 -11.751 -11.812 -0.061 -3.34 -O(0) 4.538e-14 - O2 2.269e-14 2.282e-14 -13.644 -13.642 0.002 27.49 +Na 3.135e-10 + Na+ 3.135e-10 2.723e-10 -9.504 -9.565 -0.061 -3.34 +O(0) 4.131e-13 + O2 2.065e-13 2.077e-13 -12.685 -12.683 0.002 27.49 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(273 K, 1 atm) - H2(g) -40.76 -43.77 -3.01 H2 + H2(g) -41.24 -44.25 -3.01 H2 H2O(g) -2.21 -0.00 2.21 H2O - Halite -18.79 -17.24 1.55 NaCl - O2(g) -10.98 -13.64 -2.66 O2 - Sylvite -7.87 -7.11 0.76 KCl + Halite -16.60 -15.05 1.55 NaCl + O2(g) -10.02 -12.68 -2.66 O2 + Sylvite -7.93 -7.17 0.76 KCl **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. - 2.3768e-09 1.0791e-09 -Using mix 29. -Using exchange 29. Exchange assemblage after simulation 2. +Using mix 10. +Using exchange 10. Exchange assemblage after simulation 2. -Mixture 29. +Mixture 10. - 2.213e-01 Solution 28 Solution after simulation 2. - 5.574e-01 Solution 29 Solution after simulation 2. - 2.213e-01 Solution 30 Solution after simulation 2. + 2.077e-01 Solution 9 Solution after simulation 2. + 7.923e-01 Solution 10 Solution after simulation 2. + 0.000e+00 Solution 11 24 mM KBr, initial temp 0C -----------------------------Exchange composition------------------------------ @@ -5010,34 +1862,33 @@ X 4.800e-02 mol Species Moles alents Fraction Gamma KX 4.800e-02 4.800e-02 1.000e+00 0.000 - NaX 9.388e-13 9.388e-13 1.956e-11 -0.061 + NaX 2.088e-11 2.088e-11 4.350e-10 -0.061 -----------------------------Solution composition------------------------------ Elements Molality Moles Br 2.400e-02 2.400e-02 - Cl 2.769e-06 2.769e-06 + Cl 5.237e-07 5.237e-07 K 2.400e-02 2.400e-02 - Na 4.048e-13 4.048e-13 + Na 9.004e-12 9.004e-12 ----------------------------Description of solution---------------------------- pH = 7.000 Charge balance - pe = 13.313 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 + pe = 13.522 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1805 Density (g/cm³) = 1.00197 Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 + Viscosity (mPa s) = 1.78740 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.400e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.944e-08 + Total alkalinity (eq/kg) = -9.945e-08 Temperature (°C) = 0.00 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.944e-08 + Electrical balance (eq) = 9.943e-08 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 + Iterations = 5 Total H = 1.110124e+02 Total O = 5.550622e+01 @@ -5046,116 +1897,32 @@ X 4.800e-02 mol Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.128e-07 9.999e-08 -6.948 -7.000 -0.052 0.00 + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 Br 2.400e-02 Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -Cl 2.769e-06 - Cl- 2.769e-06 2.390e-06 -5.558 -5.622 -0.064 16.53 - HCl 9.391e-14 9.615e-14 -13.027 -13.017 0.010 (0) +Cl 5.237e-07 + Cl- 5.237e-07 4.521e-07 -6.281 -6.345 -0.064 16.53 + HCl 1.777e-14 1.819e-14 -13.750 -13.740 0.010 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -43.661 -43.658 0.002 28.65 + H2 0.000e+00 0.000e+00 -44.078 -44.076 0.002 28.65 K 2.400e-02 K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -Na 4.048e-13 - Na+ 4.048e-13 3.517e-13 -12.393 -12.454 -0.061 -3.34 -O(0) 2.678e-14 - O2 1.339e-14 1.346e-14 -13.873 -13.871 0.002 27.49 +Na 9.004e-12 + Na+ 9.004e-12 7.822e-12 -11.046 -11.107 -0.061 -3.34 +O(0) 1.831e-13 + O2 9.154e-14 9.204e-14 -13.038 -13.036 0.002 27.49 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(273 K, 1 atm) - H2(g) -40.65 -43.66 -3.01 H2 + H2(g) -41.06 -44.08 -3.01 H2 H2O(g) -2.21 -0.00 2.21 H2O - Halite -19.62 -18.08 1.55 NaCl - O2(g) -11.21 -13.87 -2.66 O2 - Sylvite -8.07 -7.31 0.76 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - - 6.9499e-10 1.0791e-09 -Using mix 30. -Using exchange 30. Exchange assemblage after simulation 2. - -Mixture 30. - - 2.213e-01 Solution 29 Solution after simulation 2. - 7.787e-01 Solution 30 Solution after simulation 2. - 0.000e+00 Solution 31 24 mM KBr, initial temp 0C - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - NaX 2.451e-13 2.451e-13 5.105e-12 -0.061 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - Cl 2.066e-06 2.066e-06 - K 2.400e-02 2.400e-02 - Na 1.057e-13 1.057e-13 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 13.323 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.944e-08 - Temperature (°C) = 0.00 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.944e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 9.999e-08 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -Cl 2.066e-06 - Cl- 2.066e-06 1.783e-06 -5.685 -5.749 -0.064 16.53 - HCl 7.007e-14 7.174e-14 -13.154 -13.144 0.010 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -43.680 -43.678 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -Na 1.057e-13 - Na+ 1.057e-13 9.179e-14 -12.976 -13.037 -0.061 -3.34 -O(0) 2.933e-14 - O2 1.467e-14 1.475e-14 -13.834 -13.831 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -40.67 -43.68 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - Halite -20.33 -18.79 1.55 NaCl - O2(g) -11.17 -13.83 -2.66 O2 - Sylvite -8.20 -7.43 0.76 KCl + Halite -19.00 -17.45 1.55 NaCl + O2(g) -10.38 -13.04 -2.66 O2 + Sylvite -8.79 -8.03 0.76 KCl **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5168,8 +1935,6 @@ End of simulation. Reading input data for simulation 3. ------------------------------------ - Reinitialize the column... -WARNING: Unknown input, no keyword has been specified. copy cell 31 1-30 END ------------------ @@ -5181,21 +1946,21 @@ Reading input data for simulation 4. ------------------------------------ TRANSPORT - multi_d true 0.3e-9 1 0.05 0 false # will give the traditional results when tc = 25 throughout - thermal_diffusion 3.0 1.33e-9 # efine the diffusion coefficient for heat to be equal to Na - implicit true 3 -12 # max_mixf = 3, min_dif_LM = -12 + shifts 1 + multi_d true 2.33e-9 1 0.05 0 false # will give the traditional results when tc = 25 throughout + thermal_diffusion 3.0 2.33e-9 # define the diffusion coefficient for heat equal to Na USER_GRAPH 1 Example 12b WARNING: No porosities were read; used the value 1.00e+00 from -multi_D. ------------------------------------ Column data retained from former run ------------------------------------ - -headings MultiD&Visc&Implicit:Na Cl TC + -headings MultiD&Visc:Na Cl TC -start 10 x = DIST 20 PLOT_XY x, TOT("Na")*1000, symbol = Circle, line_width = 0, symbol_size = 5, color = Red 30 PLOT_XY x, TOT("Cl")*1000, symbol = Circle, line_width = 0, symbol_size = 5, color = Green - 40 PLOT_XY x, TC, symbol = Circle, line_width = 0, symbol_size = 8, y-axis 2, color = Blue + 40 PLOT_XY x, TC, symbol = Circle, line_width = 0, symbol_size = 5, y-axis 2, color = Blue END ------------------------------------ Beginning of transport calculations. @@ -5286,10 +2051,10 @@ X 4.800e-02 mol pH = 7.000 Charge balance pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 + Specific Conductance (µS/cm, 0°C) = 1805 Density (g/cm³) = 1.00197 Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 + Viscosity (mPa s) = 1.78740 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.400e-02 Mass of water (kg) = 1.000e+00 @@ -5352,10 +2117,10 @@ X 4.800e-02 mol pH = 7.000 Charge balance pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 + Specific Conductance (µS/cm, 0°C) = 1805 Density (g/cm³) = 1.00197 Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 + Viscosity (mPa s) = 1.78740 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.400e-02 Mass of water (kg) = 1.000e+00 @@ -5418,10 +2183,10 @@ X 4.800e-02 mol pH = 7.000 Charge balance pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 + Specific Conductance (µS/cm, 0°C) = 1805 Density (g/cm³) = 1.00197 Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 + Viscosity (mPa s) = 1.78740 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.400e-02 Mass of water (kg) = 1.000e+00 @@ -5484,10 +2249,10 @@ X 4.800e-02 mol pH = 7.000 Charge balance pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 + Specific Conductance (µS/cm, 0°C) = 1805 Density (g/cm³) = 1.00197 Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 + Viscosity (mPa s) = 1.78740 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.400e-02 Mass of water (kg) = 1.000e+00 @@ -5550,10 +2315,10 @@ X 4.800e-02 mol pH = 7.000 Charge balance pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 + Specific Conductance (µS/cm, 0°C) = 1805 Density (g/cm³) = 1.00197 Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 + Viscosity (mPa s) = 1.78740 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.400e-02 Mass of water (kg) = 1.000e+00 @@ -5616,10 +2381,10 @@ X 4.800e-02 mol pH = 7.000 Charge balance pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 + Specific Conductance (µS/cm, 0°C) = 1805 Density (g/cm³) = 1.00197 Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 + Viscosity (mPa s) = 1.78740 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.400e-02 Mass of water (kg) = 1.000e+00 @@ -5682,10 +2447,10 @@ X 4.800e-02 mol pH = 7.000 Charge balance pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 + Specific Conductance (µS/cm, 0°C) = 1805 Density (g/cm³) = 1.00197 Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 + Viscosity (mPa s) = 1.78740 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.400e-02 Mass of water (kg) = 1.000e+00 @@ -5748,10 +2513,10 @@ X 4.800e-02 mol pH = 7.000 Charge balance pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 + Specific Conductance (µS/cm, 0°C) = 1805 Density (g/cm³) = 1.00197 Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 + Viscosity (mPa s) = 1.78740 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.400e-02 Mass of water (kg) = 1.000e+00 @@ -5814,10 +2579,10 @@ X 4.800e-02 mol pH = 7.000 Charge balance pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 + Specific Conductance (µS/cm, 0°C) = 1805 Density (g/cm³) = 1.00197 Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 + Viscosity (mPa s) = 1.78740 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.400e-02 Mass of water (kg) = 1.000e+00 @@ -5880,10 +2645,10 @@ X 4.800e-02 mol pH = 7.000 Charge balance pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 + Specific Conductance (µS/cm, 0°C) = 1805 Density (g/cm³) = 1.00197 Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 + Viscosity (mPa s) = 1.78740 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.400e-02 Mass of water (kg) = 1.000e+00 @@ -5923,1331 +2688,11 @@ O(0) 1.011e-15 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. -Using solution 11. 24 mM KBr, initial temp 0C -Using exchange 11. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (143 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 12. 24 mM KBr, initial temp 0C -Using exchange 12. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (156 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 13. 24 mM KBr, initial temp 0C -Using exchange 13. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (169 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 14. 24 mM KBr, initial temp 0C -Using exchange 14. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (182 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 15. 24 mM KBr, initial temp 0C -Using exchange 15. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (195 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 16. 24 mM KBr, initial temp 0C -Using exchange 16. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (208 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 17. 24 mM KBr, initial temp 0C -Using exchange 17. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (221 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 18. 24 mM KBr, initial temp 0C -Using exchange 18. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (234 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 19. 24 mM KBr, initial temp 0C -Using exchange 19. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (247 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 20. 24 mM KBr, initial temp 0C -Using exchange 20. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (260 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 21. 24 mM KBr, initial temp 0C -Using exchange 21. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (273 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 22. 24 mM KBr, initial temp 0C -Using exchange 22. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (286 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 23. 24 mM KBr, initial temp 0C -Using exchange 23. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (299 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 24. 24 mM KBr, initial temp 0C -Using exchange 24. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (312 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 25. 24 mM KBr, initial temp 0C -Using exchange 25. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (325 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 26. 24 mM KBr, initial temp 0C -Using exchange 26. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (338 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 27. 24 mM KBr, initial temp 0C -Using exchange 27. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (351 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 28. 24 mM KBr, initial temp 0C -Using exchange 28. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (364 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 29. 24 mM KBr, initial temp 0C -Using exchange 29. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (377 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using solution 30. 24 mM KBr, initial temp 0C -Using exchange 30. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.800e-02 4.800e-02 1.000e+00 -0.000 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 2.400e-02 2.400e-02 - K 2.400e-02 2.400e-02 - -----------------------------Description of solution---------------------------- - - pH = 7.000 Charge balance - pe = 12.957 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1804 - Density (g/cm³) = 1.00197 - Volume (L) = 1.00089 - Viscosity (mPa s) = 1.78750 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.400e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.945e-08 - Temperature (°C) = 0.00 - Electrical balance (eq) = 9.945e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 13 (390 overall) - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 - OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 2.400e-02 - Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 -K 2.400e-02 - K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 -O(0) 1.011e-15 - O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -39.94 -42.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - O2(g) -12.64 -15.29 -2.66 O2 - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - WARNING: -Calculating implicit transport: 30 (mobile) cells, 1 shifts, 723 mixruns, max. mixf = 3. +Calculating transport: 10 (mobile) cells, 1 shifts, 373 mixruns... -Transport step 1. Multicomponent diffusion run 723. +Transport step 1. Multicomponent diffusion run 373. Using solution 0. Solution after simulation 4. @@ -7323,33 +2768,32 @@ X 4.800e-02 mol Equiv- Equivalent Log Species Moles alents Fraction Gamma - NaX 4.651e-02 4.651e-02 9.689e-01 -0.063 - KX 1.493e-03 1.493e-03 3.111e-02 0.000 + NaX 4.315e-02 4.315e-02 8.990e-01 -0.063 + KX 4.847e-03 4.847e-03 1.010e-01 0.000 -----------------------------Solution composition------------------------------ Elements Molality Moles - Br 5.009e-04 5.009e-04 - Cl 2.337e-02 2.337e-02 - K 8.607e-04 8.607e-04 - Na 2.301e-02 2.301e-02 + Br 1.468e-03 1.468e-03 + Cl 2.205e-02 2.205e-02 + K 2.719e-03 2.719e-03 + Na 2.080e-02 2.080e-02 ----------------------------Description of solution---------------------------- - pH = 7.009 Charge balance - pe = 11.983 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 23°C) = 2634 - Density (g/cm³) = 0.99857 - Volume (L) = 1.00286 - Viscosity (mPa s) = 0.93620 + pH = 7.015 Charge balance + pe = 12.225 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 22°C) = 2564 + Density (g/cm³) = 0.99893 + Volume (L) = 1.00256 + Viscosity (mPa s) = 0.96748 Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.387e-02 + Ionic strength (mol/kgw) = 2.352e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -9.009e-09 - Temperature (°C) = 22.92 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.972e-08 + Total alkalinity (eq/kg) = -1.672e-08 + Temperature (°C) = 21.53 + Electrical balance (eq) = 1.018e-07 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110124e+02 @@ -7360,32 +2804,32 @@ X 4.800e-02 mol Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.109e-07 9.797e-08 -6.955 -7.009 -0.054 0.00 - OH- 1.026e-07 8.798e-08 -6.989 -7.056 -0.067 -4.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.06 -Br 5.009e-04 - Br- 5.009e-04 4.281e-04 -3.300 -3.368 -0.068 24.57 -Cl 2.337e-02 - Cl- 2.337e-02 2.008e-02 -1.631 -1.697 -0.066 18.12 - HCl 6.705e-10 6.864e-10 -9.174 -9.163 0.010 (0) + H+ 1.092e-07 9.656e-08 -6.962 -7.015 -0.054 0.00 + OH- 9.314e-08 7.998e-08 -7.031 -7.097 -0.066 -4.12 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.05 +Br 1.468e-03 + Br- 1.468e-03 1.257e-03 -2.833 -2.901 -0.068 24.50 +Cl 2.205e-02 + Cl- 2.205e-02 1.897e-02 -1.657 -1.722 -0.065 18.07 + HCl 6.302e-10 6.449e-10 -9.201 -9.191 0.010 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.128 -41.126 0.002 28.61 -K 8.607e-04 - K+ 8.607e-04 7.388e-04 -3.065 -3.131 -0.066 9.04 -Na 2.301e-02 - Na+ 2.301e-02 1.990e-02 -1.638 -1.701 -0.063 -1.41 -O(0) 3.126e-11 - O2 1.563e-11 1.572e-11 -10.806 -10.804 0.002 30.23 + H2 0.000e+00 0.000e+00 -41.617 -41.615 0.002 28.61 +K 2.719e-03 + K+ 2.719e-03 2.337e-03 -2.566 -2.631 -0.066 8.99 +Na 2.080e-02 + Na+ 2.080e-02 1.801e-02 -1.682 -1.744 -0.063 -1.50 +O(0) 1.031e-10 + O2 5.156e-11 5.184e-11 -10.288 -10.285 0.002 30.12 ------------------------------Saturation indices------------------------------- - Phase SI** log IAP log K(296 K, 1 atm) + Phase SI** log IAP log K(294 K, 1 atm) - H2(g) -38.03 -41.13 -3.10 H2 - H2O(g) -1.56 -0.00 1.56 H2O - Halite -4.97 -3.40 1.57 NaCl - O2(g) -7.93 -10.80 -2.88 O2 - Sylvite -5.72 -4.83 0.89 KCl + H2(g) -38.52 -41.61 -3.09 H2 + H2O(g) -1.59 -0.00 1.59 H2O + Halite -5.03 -3.47 1.57 NaCl + O2(g) -7.42 -10.29 -2.87 O2 + Sylvite -5.24 -4.35 0.88 KCl **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7406,33 +2850,32 @@ X 4.800e-02 mol Equiv- Equivalent Log Species Moles alents Fraction Gamma - NaX 4.341e-02 4.341e-02 9.044e-01 -0.063 - KX 4.590e-03 4.590e-03 9.563e-02 0.000 + NaX 3.173e-02 3.173e-02 6.611e-01 -0.061 + KX 1.627e-02 1.627e-02 3.389e-01 0.000 -----------------------------Solution composition------------------------------ Elements Molality Moles - Br 1.489e-03 1.489e-03 - Cl 2.212e-02 2.212e-02 - K 2.587e-03 2.587e-03 - Na 2.102e-02 2.102e-02 + Br 4.424e-03 4.424e-03 + Cl 1.815e-02 1.815e-02 + K 8.416e-03 8.416e-03 + Na 1.416e-02 1.416e-02 ----------------------------Description of solution---------------------------- - pH = 7.025 Charge balance - pe = 12.267 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 21°C) = 2530 - Density (g/cm³) = 0.99910 - Volume (L) = 1.00239 - Viscosity (mPa s) = 0.98472 + pH = 7.043 Charge balance + pe = 12.789 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 16°C) = 2304 + Density (g/cm³) = 1.00010 + Volume (L) = 1.00155 + Viscosity (mPa s) = 1.10687 Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.361e-02 + Ionic strength (mol/kgw) = 2.258e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -1.733e-08 - Temperature (°C) = 20.79 - Pressure (atm) = 1.00 - Electrical balance (eq) = 1.008e-07 + Total alkalinity (eq/kg) = -3.923e-08 + Temperature (°C) = 16.09 + Electrical balance (eq) = 1.002e-07 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110124e+02 @@ -7443,32 +2886,32 @@ X 4.800e-02 mol Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.067e-07 9.431e-08 -6.972 -7.025 -0.054 0.00 - OH- 8.998e-08 7.727e-08 -7.046 -7.112 -0.066 -4.15 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.05 -Br 1.489e-03 - Br- 1.489e-03 1.274e-03 -2.827 -2.895 -0.068 24.46 -Cl 2.212e-02 - Cl- 2.212e-02 1.903e-02 -1.655 -1.721 -0.065 18.05 - HCl 6.200e-10 6.345e-10 -9.208 -9.198 0.010 (0) + H+ 1.023e-07 9.067e-08 -6.990 -7.043 -0.052 0.00 + OH- 6.356e-08 5.480e-08 -7.197 -7.261 -0.064 -4.43 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.04 +Br 4.424e-03 + Br- 4.424e-03 3.802e-03 -2.354 -2.420 -0.066 24.16 +Cl 1.815e-02 + Cl- 1.815e-02 1.568e-02 -1.741 -1.805 -0.064 17.84 + HCl 5.062e-10 5.175e-10 -9.296 -9.286 0.010 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.718 -41.715 0.002 28.61 -K 2.587e-03 - K+ 2.587e-03 2.223e-03 -2.587 -2.653 -0.066 8.97 -Na 2.102e-02 - Na+ 2.102e-02 1.820e-02 -1.677 -1.740 -0.063 -1.54 -O(0) 9.366e-11 - O2 4.683e-11 4.709e-11 -10.329 -10.327 0.002 30.05 + H2 0.000e+00 0.000e+00 -42.776 -42.774 0.002 28.62 +K 8.416e-03 + K+ 8.416e-03 7.261e-03 -2.075 -2.139 -0.064 8.78 +Na 1.416e-02 + Na+ 1.416e-02 1.231e-02 -1.849 -1.910 -0.061 -1.84 +O(0) 3.178e-10 + O2 1.589e-10 1.597e-10 -9.799 -9.797 0.002 29.62 ------------------------------Saturation indices------------------------------- - Phase SI** log IAP log K(293 K, 1 atm) + Phase SI** log IAP log K(289 K, 1 atm) - H2(g) -38.63 -41.72 -3.09 H2 - H2O(g) -1.61 -0.00 1.61 H2O - Halite -5.03 -3.46 1.57 NaCl - O2(g) -7.47 -10.33 -2.86 O2 - Sylvite -5.25 -4.37 0.88 KCl + H2(g) -39.70 -42.77 -3.08 H2 + H2O(g) -1.74 -0.00 1.74 H2O + Halite -5.28 -3.71 1.56 NaCl + O2(g) -6.97 -9.80 -2.82 O2 + Sylvite -4.80 -3.94 0.85 KCl **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7489,33 +2932,32 @@ X 4.800e-02 mol Equiv- Equivalent Log Species Moles alents Fraction Gamma - NaX 4.017e-02 4.017e-02 8.369e-01 -0.062 - KX 7.827e-03 7.827e-03 1.631e-01 0.000 + KX 2.914e-02 2.914e-02 6.071e-01 0.000 + NaX 1.886e-02 1.886e-02 3.929e-01 -0.060 -----------------------------Solution composition------------------------------ Elements Molality Moles - Br 2.450e-03 2.450e-03 - Cl 2.090e-02 2.090e-02 - K 4.311e-03 4.311e-03 - Na 1.904e-02 1.904e-02 + Br 7.490e-03 7.490e-03 + Cl 1.435e-02 1.435e-02 + K 1.400e-02 1.400e-02 + Na 7.840e-03 7.840e-03 ----------------------------Description of solution---------------------------- - pH = 7.040 Charge balance - pe = 12.487 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 19°C) = 2429 - Density (g/cm³) = 0.99956 - Volume (L) = 1.00198 - Viscosity (mPa s) = 1.03639 + pH = 7.059 Charge balance + pe = 13.313 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 11°C) = 2066 + Density (g/cm³) = 1.00094 + Volume (L) = 1.00090 + Viscosity (mPa s) = 1.27974 Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.335e-02 + Ionic strength (mol/kgw) = 2.184e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -2.501e-08 - Temperature (°C) = 18.70 - Pressure (atm) = 1.00 - Electrical balance (eq) = 1.002e-07 + Total alkalinity (eq/kg) = -5.732e-08 + Temperature (°C) = 10.72 + Electrical balance (eq) = 9.993e-08 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110124e+02 @@ -7526,32 +2968,32 @@ X 4.800e-02 mol Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 1.030e-07 9.115e-08 -6.987 -7.040 -0.053 0.00 - OH- 7.859e-08 6.756e-08 -7.105 -7.170 -0.066 -4.27 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.04 -Br 2.450e-03 - Br- 2.450e-03 2.100e-03 -2.611 -2.678 -0.067 24.34 -Cl 2.090e-02 - Cl- 2.090e-02 1.800e-02 -1.680 -1.745 -0.065 17.96 - HCl 5.745e-10 5.878e-10 -9.241 -9.231 0.010 (0) + H+ 9.835e-08 8.738e-08 -7.007 -7.059 -0.051 0.00 + OH- 4.144e-08 3.584e-08 -7.383 -7.446 -0.063 -4.83 + H2O 5.551e+01 9.993e-01 1.744 -0.000 0.000 18.02 +Br 7.490e-03 + Br- 7.490e-03 6.458e-03 -2.126 -2.190 -0.064 23.73 +Cl 1.435e-02 + Cl- 1.435e-02 1.243e-02 -1.843 -1.906 -0.062 17.52 + HCl 4.002e-10 4.088e-10 -9.398 -9.388 0.009 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.178 -42.176 0.002 28.61 -K 4.311e-03 - K+ 4.311e-03 3.709e-03 -2.365 -2.431 -0.065 8.89 -Na 1.904e-02 - Na+ 1.904e-02 1.650e-02 -1.720 -1.782 -0.062 -1.67 -O(0) 1.558e-10 - O2 7.789e-11 7.831e-11 -10.109 -10.106 0.002 29.87 + H2 0.000e+00 0.000e+00 -43.831 -43.829 0.002 28.62 +K 1.400e-02 + K+ 1.400e-02 1.212e-02 -1.854 -1.917 -0.063 8.52 +Na 7.840e-03 + Na+ 7.840e-03 6.832e-03 -2.106 -2.165 -0.060 -2.25 +O(0) 5.419e-10 + O2 2.710e-10 2.723e-10 -9.567 -9.565 0.002 29.03 ------------------------------Saturation indices------------------------------- - Phase SI** log IAP log K(291 K, 1 atm) + Phase SI** log IAP log K(283 K, 1 atm) - H2(g) -39.09 -42.18 -3.08 H2 - H2O(g) -1.67 -0.00 1.67 H2O - Halite -5.09 -3.53 1.56 NaCl - O2(g) -7.26 -10.11 -2.84 O2 - Sylvite -5.04 -4.18 0.87 KCl + H2(g) -40.77 -43.83 -3.06 H2 + H2O(g) -1.89 -0.00 1.89 H2O + Halite -5.63 -4.07 1.56 NaCl + O2(g) -6.79 -9.56 -2.77 O2 + Sylvite -4.65 -3.82 0.83 KCl **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7572,33 +3014,32 @@ X 4.800e-02 mol Equiv- Equivalent Log Species Moles alents Fraction Gamma - NaX 3.683e-02 3.683e-02 7.673e-01 -0.062 - KX 1.117e-02 1.117e-02 2.327e-01 0.000 + KX 3.971e-02 3.971e-02 8.274e-01 0.000 + NaX 8.286e-03 8.286e-03 1.726e-01 -0.059 -----------------------------Solution composition------------------------------ Elements Molality Moles - Br 3.385e-03 3.385e-03 - Cl 1.972e-02 1.972e-02 - K 6.015e-03 6.015e-03 - Na 1.709e-02 1.709e-02 + Br 1.068e-02 1.068e-02 + Cl 1.093e-02 1.093e-02 + K 1.829e-02 1.829e-02 + Na 3.309e-03 3.309e-03 ----------------------------Description of solution---------------------------- - pH = 7.053 Charge balance - pe = 12.686 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 17°C) = 2333 - Density (g/cm³) = 0.99997 - Volume (L) = 1.00163 - Viscosity (mPa s) = 1.09077 + pH = 7.065 Charge balance + pe = 13.763 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 6°C) = 1889 + Density (g/cm³) = 1.00139 + Volume (L) = 1.00064 + Viscosity (mPa s) = 1.46185 Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.310e-02 + Ionic strength (mol/kgw) = 2.160e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -3.205e-08 - Temperature (°C) = 16.67 - Pressure (atm) = 1.00 - Electrical balance (eq) = 1.001e-07 + Total alkalinity (eq/kg) = -6.914e-08 + Temperature (°C) = 6.19 + Electrical balance (eq) = 9.964e-08 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110124e+02 @@ -7609,32 +3050,32 @@ X 4.800e-02 mol Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.996e-08 8.851e-08 -7.000 -7.053 -0.053 0.00 - OH- 6.844e-08 5.891e-08 -7.165 -7.230 -0.065 -4.39 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.04 -Br 3.385e-03 - Br- 3.385e-03 2.904e-03 -2.470 -2.537 -0.067 24.20 -Cl 1.972e-02 - Cl- 1.972e-02 1.700e-02 -1.705 -1.770 -0.064 17.87 - HCl 5.336e-10 5.458e-10 -9.273 -9.263 0.010 (0) + H+ 9.674e-08 8.605e-08 -7.014 -7.065 -0.051 0.00 + OH- 2.791e-08 2.418e-08 -7.554 -7.617 -0.062 -5.27 + H2O 5.551e+01 9.993e-01 1.744 -0.000 0.000 18.02 +Br 1.068e-02 + Br- 1.068e-02 9.222e-03 -1.972 -2.035 -0.064 23.28 +Cl 1.093e-02 + Cl- 1.093e-02 9.481e-03 -1.962 -2.023 -0.062 17.16 + HCl 3.092e-10 3.159e-10 -9.510 -9.501 0.009 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.594 -42.592 0.002 28.62 -K 6.015e-03 - K+ 6.015e-03 5.182e-03 -2.221 -2.286 -0.065 8.80 -Na 1.709e-02 - Na+ 1.709e-02 1.482e-02 -1.767 -1.829 -0.062 -1.80 -O(0) 2.174e-10 - O2 1.087e-10 1.093e-10 -9.964 -9.961 0.002 29.67 + H2 0.000e+00 0.000e+00 -44.722 -44.720 0.002 28.63 +K 1.829e-02 + K+ 1.829e-02 1.586e-02 -1.738 -1.800 -0.062 8.26 +Na 3.309e-03 + Na+ 3.309e-03 2.888e-03 -2.480 -2.539 -0.059 -2.66 +O(0) 7.563e-10 + O2 3.781e-10 3.800e-10 -9.422 -9.420 0.002 28.46 ------------------------------Saturation indices------------------------------- - Phase SI** log IAP log K(289 K, 1 atm) + Phase SI** log IAP log K(279 K, 1 atm) - H2(g) -39.51 -42.59 -3.08 H2 - H2O(g) -1.72 -0.00 1.72 H2O - Halite -5.16 -3.60 1.56 NaCl - O2(g) -7.13 -9.96 -2.83 O2 - Sylvite -4.91 -4.06 0.86 KCl + H2(g) -41.68 -44.72 -3.04 H2 + H2O(g) -2.02 -0.00 2.02 H2O + Halite -6.12 -4.56 1.55 NaCl + O2(g) -6.69 -9.42 -2.73 O2 + Sylvite -4.62 -3.82 0.80 KCl **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7655,33 +3096,32 @@ X 4.800e-02 mol Equiv- Equivalent Log Species Moles alents Fraction Gamma - NaX 3.341e-02 3.341e-02 6.961e-01 -0.061 - KX 1.459e-02 1.459e-02 3.039e-01 0.000 + KX 4.530e-02 4.530e-02 9.438e-01 0.000 + NaX 2.700e-03 2.700e-03 5.625e-02 -0.059 -----------------------------Solution composition------------------------------ Elements Molality Moles - Br 4.291e-03 4.291e-03 - Cl 1.857e-02 1.857e-02 - K 7.684e-03 7.684e-03 - Na 1.518e-02 1.518e-02 + Br 1.388e-02 1.388e-02 + Cl 8.013e-03 8.013e-03 + K 2.082e-02 2.082e-02 + Na 1.075e-03 1.075e-03 ----------------------------Description of solution---------------------------- - pH = 7.064 Charge balance - pe = 12.874 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 15°C) = 2242 - Density (g/cm³) = 1.00032 - Volume (L) = 1.00133 - Viscosity (mPa s) = 1.14723 + pH = 7.068 Charge balance + pe = 14.080 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 3°C) = 1788 + Density (g/cm³) = 1.00158 + Volume (L) = 1.00065 + Viscosity (mPa s) = 1.61216 Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.286e-02 + Ionic strength (mol/kgw) = 2.189e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -3.840e-08 - Temperature (°C) = 14.73 - Pressure (atm) = 1.00 - Electrical balance (eq) = 1.000e-07 + Total alkalinity (eq/kg) = -7.547e-08 + Temperature (°C) = 3.09 + Electrical balance (eq) = 9.935e-08 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110124e+02 @@ -7692,32 +3132,32 @@ X 4.800e-02 mol Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.746e-08 8.636e-08 -7.011 -7.064 -0.052 0.00 - OH- 5.955e-08 5.132e-08 -7.225 -7.290 -0.065 -4.52 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.03 -Br 4.291e-03 - Br- 4.291e-03 3.686e-03 -2.367 -2.433 -0.066 24.06 -Cl 1.857e-02 - Cl- 1.857e-02 1.603e-02 -1.731 -1.795 -0.064 17.76 - HCl 4.970e-10 5.083e-10 -9.304 -9.294 0.010 (0) + H+ 9.621e-08 8.557e-08 -7.017 -7.068 -0.051 0.00 + OH- 2.097e-08 1.816e-08 -7.678 -7.741 -0.062 -5.63 + H2O 5.551e+01 9.993e-01 1.744 -0.000 0.000 18.02 +Br 1.388e-02 + Br- 1.388e-02 1.198e-02 -1.858 -1.921 -0.064 22.91 +Cl 8.013e-03 + Cl- 8.013e-03 6.951e-03 -2.096 -2.158 -0.062 16.87 + HCl 2.298e-10 2.348e-10 -9.639 -9.629 0.009 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.981 -42.979 0.002 28.62 -K 7.684e-03 - K+ 7.684e-03 6.627e-03 -2.114 -2.179 -0.064 8.72 -Na 1.518e-02 - Na+ 1.518e-02 1.318e-02 -1.819 -1.880 -0.061 -1.94 -O(0) 2.784e-10 - O2 1.392e-10 1.399e-10 -9.856 -9.854 0.002 29.48 + H2 0.000e+00 0.000e+00 -45.345 -45.343 0.002 28.64 +K 2.082e-02 + K+ 2.082e-02 1.804e-02 -1.682 -1.744 -0.062 8.06 +Na 1.075e-03 + Na+ 1.075e-03 9.384e-04 -2.968 -3.028 -0.059 -2.98 +O(0) 9.363e-10 + O2 4.682e-10 4.705e-10 -9.330 -9.327 0.002 28.00 ------------------------------Saturation indices------------------------------- - Phase SI** log IAP log K(287 K, 1 atm) + Phase SI** log IAP log K(276 K, 1 atm) - H2(g) -39.91 -42.98 -3.07 H2 - H2O(g) -1.78 -0.00 1.78 H2O - Halite -5.24 -3.68 1.56 NaCl - O2(g) -7.04 -9.85 -2.81 O2 - Sylvite -4.82 -3.97 0.85 KCl + H2(g) -42.32 -45.34 -3.03 H2 + H2O(g) -2.12 -0.00 2.11 H2O + Halite -6.74 -5.19 1.55 NaCl + O2(g) -6.63 -9.33 -2.69 O2 + Sylvite -4.68 -3.90 0.78 KCl **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7738,33 +3178,32 @@ X 4.800e-02 mol Equiv- Equivalent Log Species Moles alents Fraction Gamma - NaX 2.997e-02 2.997e-02 6.243e-01 -0.061 - KX 1.803e-02 1.803e-02 3.757e-01 0.000 + KX 4.730e-02 4.730e-02 9.854e-01 0.000 + NaX 7.029e-04 7.029e-04 1.464e-02 -0.060 -----------------------------Solution composition------------------------------ Elements Molality Moles - Br 5.168e-03 5.168e-03 - Cl 1.747e-02 1.747e-02 - K 9.300e-03 9.300e-03 - Na 1.334e-02 1.334e-02 + Br 1.678e-02 1.678e-02 + Cl 5.626e-03 5.626e-03 + K 2.212e-02 2.212e-02 + Na 2.847e-04 2.847e-04 ----------------------------Description of solution---------------------------- - pH = 7.072 Charge balance - pe = 13.050 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 13°C) = 2158 - Density (g/cm³) = 1.00061 - Volume (L) = 1.00110 - Viscosity (mPa s) = 1.20503 + pH = 7.068 Charge balance + pe = 14.262 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 1°C) = 1751 + Density (g/cm³) = 1.00168 + Volume (L) = 1.00073 + Viscosity (mPa s) = 1.70747 Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.264e-02 + Ionic strength (mol/kgw) = 2.241e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -4.405e-08 - Temperature (°C) = 12.90 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.996e-08 + Total alkalinity (eq/kg) = -7.855e-08 + Temperature (°C) = 1.35 + Electrical balance (eq) = 9.910e-08 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110124e+02 @@ -7775,32 +3214,32 @@ X 4.800e-02 mol Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.548e-08 8.467e-08 -7.020 -7.072 -0.052 0.00 - OH- 5.189e-08 4.476e-08 -7.285 -7.349 -0.064 -4.65 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.03 -Br 5.168e-03 - Br- 5.168e-03 4.444e-03 -2.287 -2.352 -0.066 23.92 -Cl 1.747e-02 - Cl- 1.747e-02 1.510e-02 -1.758 -1.821 -0.063 17.66 - HCl 4.643e-10 4.747e-10 -9.333 -9.324 0.010 (0) + H+ 9.617e-08 8.547e-08 -7.017 -7.068 -0.051 0.00 + OH- 1.777e-08 1.538e-08 -7.750 -7.813 -0.063 -5.86 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 1.678e-02 + Br- 1.678e-02 1.447e-02 -1.775 -1.839 -0.064 22.68 +Cl 5.626e-03 + Cl- 5.626e-03 4.876e-03 -2.250 -2.312 -0.062 16.69 + HCl 1.626e-10 1.663e-10 -9.789 -9.779 0.010 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -43.343 -43.341 0.002 28.62 -K 9.300e-03 - K+ 9.300e-03 8.028e-03 -2.032 -2.095 -0.064 8.63 -Na 1.334e-02 - Na+ 1.334e-02 1.160e-02 -1.875 -1.936 -0.061 -2.07 -O(0) 3.385e-10 - O2 1.692e-10 1.701e-10 -9.771 -9.769 0.002 29.28 + H2 0.000e+00 0.000e+00 -45.702 -45.700 0.002 28.64 +K 2.212e-02 + K+ 2.212e-02 1.916e-02 -1.655 -1.718 -0.063 7.94 +Na 2.847e-04 + Na+ 2.847e-04 2.482e-04 -3.546 -3.605 -0.060 -3.18 +O(0) 1.066e-09 + O2 5.330e-10 5.358e-10 -9.273 -9.271 0.002 27.72 ------------------------------Saturation indices------------------------------- - Phase SI** log IAP log K(286 K, 1 atm) + Phase SI** log IAP log K(274 K, 1 atm) - H2(g) -40.28 -43.34 -3.07 H2 - H2O(g) -1.83 -0.00 1.83 H2O - Halite -5.32 -3.76 1.56 NaCl - O2(g) -6.98 -9.77 -2.79 O2 - Sylvite -4.75 -3.92 0.84 KCl + H2(g) -42.68 -45.70 -3.02 H2 + H2O(g) -2.17 -0.00 2.17 H2O + Halite -7.47 -5.92 1.55 NaCl + O2(g) -6.60 -9.27 -2.67 O2 + Sylvite -4.80 -4.03 0.77 KCl **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7821,33 +3260,32 @@ X 4.800e-02 mol Equiv- Equivalent Log Species Moles alents Fraction Gamma - NaX 2.654e-02 2.654e-02 5.530e-01 -0.060 - KX 2.146e-02 2.146e-02 4.470e-01 0.000 + KX 4.784e-02 4.784e-02 9.967e-01 0.000 + NaX 1.567e-04 1.567e-04 3.264e-03 -0.060 -----------------------------Solution composition------------------------------ Elements Molality Moles - Br 6.018e-03 6.018e-03 - Cl 1.642e-02 1.642e-02 - K 1.085e-02 1.085e-02 - Na 1.159e-02 1.159e-02 + Br 1.911e-02 1.911e-02 + Cl 3.791e-03 3.791e-03 + K 2.284e-02 2.284e-02 + Na 6.468e-05 6.468e-05 ----------------------------Description of solution---------------------------- - pH = 7.079 Charge balance - pe = 13.216 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 11°C) = 2080 - Density (g/cm³) = 1.00084 - Volume (L) = 1.00091 - Viscosity (mPa s) = 1.26331 + pH = 7.067 Charge balance + pe = 14.352 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 1°C) = 1748 + Density (g/cm³) = 1.00175 + Volume (L) = 1.00080 + Viscosity (mPa s) = 1.75568 Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.244e-02 + Ionic strength (mol/kgw) = 2.290e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -4.903e-08 - Temperature (°C) = 11.19 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.990e-08 + Total alkalinity (eq/kg) = -8.018e-08 + Temperature (°C) = 0.53 + Electrical balance (eq) = 9.886e-08 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110124e+02 @@ -7858,32 +3296,32 @@ X 4.800e-02 mol Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.396e-08 8.338e-08 -7.027 -7.079 -0.052 0.00 - OH- 4.536e-08 3.916e-08 -7.343 -7.407 -0.064 -4.79 + H+ 9.645e-08 8.566e-08 -7.016 -7.067 -0.052 0.00 + OH- 1.638e-08 1.416e-08 -7.786 -7.849 -0.063 -5.98 H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 6.018e-03 - Br- 6.018e-03 5.179e-03 -2.221 -2.286 -0.065 23.78 -Cl 1.642e-02 - Cl- 1.642e-02 1.420e-02 -1.785 -1.848 -0.063 17.55 - HCl 4.348e-10 4.445e-10 -9.362 -9.352 0.010 (0) +Br 1.911e-02 + Br- 1.911e-02 1.646e-02 -1.719 -1.783 -0.065 22.56 +Cl 3.791e-03 + Cl- 3.791e-03 3.282e-03 -2.421 -2.484 -0.063 16.59 + HCl 1.102e-10 1.127e-10 -9.958 -9.948 0.010 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -43.679 -43.677 0.002 28.62 -K 1.085e-02 - K+ 1.085e-02 9.372e-03 -1.965 -2.028 -0.063 8.55 -Na 1.159e-02 - Na+ 1.159e-02 1.009e-02 -1.936 -1.996 -0.060 -2.21 -O(0) 3.976e-10 - O2 1.988e-10 1.998e-10 -9.702 -9.699 0.002 29.09 + H2 0.000e+00 0.000e+00 -45.875 -45.873 0.002 28.64 +K 2.284e-02 + K+ 2.284e-02 1.975e-02 -1.641 -1.704 -0.063 7.88 +Na 6.468e-05 + Na+ 6.468e-05 5.633e-05 -4.189 -4.249 -0.060 -3.28 +O(0) 1.146e-09 + O2 5.732e-10 5.763e-10 -9.242 -9.239 0.002 27.58 ------------------------------Saturation indices------------------------------- - Phase SI** log IAP log K(284 K, 1 atm) + Phase SI** log IAP log K(273 K, 1 atm) - H2(g) -40.62 -43.68 -3.06 H2 - H2O(g) -1.88 -0.00 1.88 H2O - Halite -5.40 -3.84 1.56 NaCl - O2(g) -6.92 -9.70 -2.78 O2 - Sylvite -4.70 -3.88 0.83 KCl + H2(g) -42.86 -45.87 -3.01 H2 + H2O(g) -2.19 -0.00 2.19 H2O + Halite -8.28 -6.73 1.55 NaCl + O2(g) -6.57 -9.24 -2.66 O2 + Sylvite -4.96 -4.19 0.77 KCl **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7904,33 +3342,32 @@ X 4.800e-02 mol Equiv- Equivalent Log Species Moles alents Fraction Gamma - KX 2.480e-02 2.480e-02 5.167e-01 0.000 - NaX 2.320e-02 2.320e-02 4.833e-01 -0.060 + KX 4.797e-02 4.797e-02 9.994e-01 0.000 + NaX 3.110e-05 3.110e-05 6.480e-04 -0.060 -----------------------------Solution composition------------------------------ Elements Molality Moles - Br 6.839e-03 6.839e-03 - Cl 1.542e-02 1.542e-02 - K 1.231e-02 1.231e-02 - Na 9.954e-03 9.954e-03 + Br 2.078e-02 2.078e-02 + Cl 2.497e-03 2.497e-03 + K 2.327e-02 2.327e-02 + Na 1.303e-05 1.303e-05 ----------------------------Description of solution---------------------------- - pH = 7.084 Charge balance - pe = 13.370 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 10°C) = 2011 - Density (g/cm³) = 1.00102 - Volume (L) = 1.00078 - Viscosity (mPa s) = 1.32113 + pH = 7.066 Charge balance + pe = 14.391 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1759 + Density (g/cm³) = 1.00182 + Volume (L) = 1.00084 + Viscosity (mPa s) = 1.77619 Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.226e-02 + Ionic strength (mol/kgw) = 2.328e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -5.337e-08 - Temperature (°C) = 9.62 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.984e-08 + Total alkalinity (eq/kg) = -8.111e-08 + Temperature (°C) = 0.19 + Electrical balance (eq) = 9.860e-08 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110124e+02 @@ -7941,32 +3378,32 @@ X 4.800e-02 mol Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.284e-08 8.243e-08 -7.032 -7.084 -0.052 0.00 - OH- 3.987e-08 3.446e-08 -7.399 -7.463 -0.063 -4.93 + H+ 9.684e-08 8.595e-08 -7.014 -7.066 -0.052 0.00 + OH- 1.581e-08 1.365e-08 -7.801 -7.865 -0.064 -6.03 H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 6.839e-03 - Br- 6.839e-03 5.891e-03 -2.165 -2.230 -0.065 23.63 -Cl 1.542e-02 - Cl- 1.542e-02 1.335e-02 -1.812 -1.875 -0.063 17.44 - HCl 4.081e-10 4.171e-10 -9.389 -9.380 0.009 (0) +Br 2.078e-02 + Br- 2.078e-02 1.788e-02 -1.682 -1.748 -0.065 22.51 +Cl 2.497e-03 + Cl- 2.497e-03 2.159e-03 -2.603 -2.666 -0.063 16.55 + HCl 7.290e-11 7.459e-11 -10.137 -10.127 0.010 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -43.990 -43.988 0.002 28.63 -K 1.231e-02 - K+ 1.231e-02 1.064e-02 -1.910 -1.973 -0.063 8.46 -Na 9.954e-03 - Na+ 9.954e-03 8.668e-03 -2.002 -2.062 -0.060 -2.34 -O(0) 4.554e-10 - O2 2.277e-10 2.289e-10 -9.643 -9.640 0.002 28.90 + H2 0.000e+00 0.000e+00 -45.948 -45.946 0.002 28.65 +K 2.327e-02 + K+ 2.327e-02 2.010e-02 -1.633 -1.697 -0.063 7.85 +Na 1.303e-05 + Na+ 1.303e-05 1.134e-05 -4.885 -4.945 -0.060 -3.32 +O(0) 1.190e-09 + O2 5.952e-10 5.984e-10 -9.225 -9.223 0.002 27.52 ------------------------------Saturation indices------------------------------- - Phase SI** log IAP log K(282 K, 1 atm) + Phase SI** log IAP log K(273 K, 1 atm) - H2(g) -40.93 -43.99 -3.05 H2 - H2O(g) -1.92 -0.00 1.92 H2O - Halite -5.49 -3.94 1.56 NaCl - O2(g) -6.88 -9.64 -2.76 O2 - Sylvite -4.67 -3.85 0.82 KCl + H2(g) -42.93 -45.95 -3.01 H2 + H2O(g) -2.20 -0.00 2.20 H2O + Halite -9.16 -7.61 1.55 NaCl + O2(g) -6.56 -9.22 -2.66 O2 + Sylvite -5.13 -4.36 0.76 KCl **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7987,35 +3424,34 @@ X 4.800e-02 mol Equiv- Equivalent Log Species Moles alents Fraction Gamma - KX 2.801e-02 2.801e-02 5.836e-01 0.000 - NaX 1.999e-02 1.999e-02 4.164e-01 -0.060 + KX 4.799e-02 4.799e-02 9.999e-01 -0.000 + NaX 5.623e-06 5.623e-06 1.172e-04 -0.061 -----------------------------Solution composition------------------------------ Elements Molality Moles - Br 7.634e-03 7.634e-03 - Cl 1.448e-02 1.448e-02 - K 1.367e-02 1.367e-02 - Na 8.441e-03 8.441e-03 + Br 2.183e-02 2.183e-02 + Cl 1.689e-03 1.689e-03 + K 2.351e-02 2.351e-02 + Na 2.379e-06 2.379e-06 ----------------------------Description of solution---------------------------- - pH = 7.087 Charge balance - pe = 13.512 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 8°C) = 1949 - Density (g/cm³) = 1.00116 - Volume (L) = 1.00069 - Viscosity (mPa s) = 1.37753 + pH = 7.064 Charge balance + pe = 14.406 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1771 + Density (g/cm³) = 1.00186 + Volume (L) = 1.00086 + Viscosity (mPa s) = 1.78379 Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.211e-02 + Ionic strength (mol/kgw) = 2.352e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -5.712e-08 - Temperature (°C) = 8.18 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.978e-08 + Total alkalinity (eq/kg) = -8.165e-08 + Temperature (°C) = 0.06 + Electrical balance (eq) = 9.833e-08 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 2 + Iterations = 3 Total H = 1.110124e+02 Total O = 5.550622e+01 @@ -8024,32 +3460,32 @@ X 4.800e-02 mol Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.205e-08 8.177e-08 -7.036 -7.087 -0.051 0.00 - OH- 3.531e-08 3.053e-08 -7.452 -7.515 -0.063 -5.06 + H+ 9.717e-08 8.621e-08 -7.012 -7.064 -0.052 0.00 + OH- 1.557e-08 1.344e-08 -7.808 -7.872 -0.064 -6.04 H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 7.634e-03 - Br- 7.634e-03 6.581e-03 -2.117 -2.182 -0.064 23.49 -Cl 1.448e-02 - Cl- 1.448e-02 1.254e-02 -1.839 -1.902 -0.062 17.33 - HCl 3.837e-10 3.921e-10 -9.416 -9.407 0.009 (0) +Br 2.183e-02 + Br- 2.183e-02 1.877e-02 -1.661 -1.726 -0.065 22.50 +Cl 1.689e-03 + Cl- 1.689e-03 1.459e-03 -2.772 -2.836 -0.063 16.54 + HCl 4.945e-11 5.060e-11 -10.306 -10.296 0.010 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.274 -44.272 0.002 28.63 -K 1.367e-02 - K+ 1.367e-02 1.183e-02 -1.864 -1.927 -0.063 8.38 -Na 8.441e-03 - Na+ 8.441e-03 7.355e-03 -2.074 -2.133 -0.060 -2.47 -O(0) 5.119e-10 - O2 2.560e-10 2.573e-10 -9.592 -9.590 0.002 28.72 + H2 0.000e+00 0.000e+00 -45.976 -45.974 0.002 28.65 +K 2.351e-02 + K+ 2.351e-02 2.030e-02 -1.629 -1.692 -0.064 7.84 +Na 2.379e-06 + Na+ 2.379e-06 2.069e-06 -5.624 -5.684 -0.061 -3.33 +O(0) 1.212e-09 + O2 6.059e-10 6.092e-10 -9.218 -9.215 0.002 27.50 ------------------------------Saturation indices------------------------------- - Phase SI** log IAP log K(281 K, 1 atm) + Phase SI** log IAP log K(273 K, 1 atm) - H2(g) -41.22 -44.27 -3.05 H2 - H2O(g) -1.96 -0.00 1.96 H2O - Halite -5.59 -4.04 1.56 NaCl - O2(g) -6.84 -9.59 -2.75 O2 - Sylvite -4.64 -3.83 0.81 KCl + H2(g) -42.96 -45.97 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + Halite -10.07 -8.52 1.55 NaCl + O2(g) -6.56 -9.22 -2.66 O2 + Sylvite -5.29 -4.53 0.76 KCl **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8061,7 +3497,7 @@ Mixture 10. 0.000e+00 Solution 9 Solution after simulation 4. 1.000e+00 Solution 10 Solution after simulation 4. - 0.000e+00 Solution 11 Solution after simulation 4. + 0.000e+00 Solution 11 24 mM KBr, initial temp 0C -----------------------------Exchange composition------------------------------ @@ -8070,35 +3506,34 @@ X 4.800e-02 mol Equiv- Equivalent Log Species Moles alents Fraction Gamma - KX 3.103e-02 3.103e-02 6.465e-01 0.000 - NaX 1.697e-02 1.697e-02 3.535e-01 -0.060 + KX 4.800e-02 4.800e-02 1.000e+00 0.000 + NaX 1.066e-06 1.066e-06 2.220e-05 -0.061 -----------------------------Solution composition------------------------------ Elements Molality Moles - Br 8.403e-03 8.403e-03 - Cl 1.359e-02 1.359e-02 - K 1.493e-02 1.493e-02 - Na 7.066e-03 7.066e-03 + Br 2.233e-02 2.233e-02 + Cl 1.304e-03 1.304e-03 + K 2.363e-02 2.363e-02 + Na 4.529e-07 4.529e-07 ----------------------------Description of solution---------------------------- - pH = 7.090 Charge balance - pe = 13.641 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 7°C) = 1895 - Density (g/cm³) = 1.00127 - Volume (L) = 1.00063 - Viscosity (mPa s) = 1.43158 + pH = 7.064 Charge balance + pe = 14.412 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1777 + Density (g/cm³) = 1.00189 + Volume (L) = 1.00087 + Viscosity (mPa s) = 1.78613 Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.199e-02 + Ionic strength (mol/kgw) = 2.363e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -6.032e-08 - Temperature (°C) = 6.89 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.972e-08 + Total alkalinity (eq/kg) = -8.190e-08 + Temperature (°C) = 0.02 + Electrical balance (eq) = 9.887e-08 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 2 + Iterations = 3 Total H = 1.110124e+02 Total O = 5.550622e+01 @@ -8107,81 +3542,107 @@ X 4.800e-02 mol Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.151e-08 8.132e-08 -7.039 -7.090 -0.051 0.00 - OH- 3.155e-08 2.730e-08 -7.501 -7.564 -0.063 -5.19 - H2O 5.551e+01 9.993e-01 1.744 -0.000 0.000 18.02 -Br 8.403e-03 - Br- 8.403e-03 7.248e-03 -2.076 -2.140 -0.064 23.36 -Cl 1.359e-02 - Cl- 1.359e-02 1.178e-02 -1.867 -1.929 -0.062 17.23 - HCl 3.613e-10 3.692e-10 -9.442 -9.433 0.009 (0) + H+ 9.735e-08 8.636e-08 -7.012 -7.064 -0.052 0.00 + OH- 1.549e-08 1.336e-08 -7.810 -7.874 -0.064 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.233e-02 + Br- 2.233e-02 1.919e-02 -1.651 -1.717 -0.066 22.49 +Cl 1.304e-03 + Cl- 1.304e-03 1.127e-03 -2.885 -2.948 -0.063 16.54 + HCl 3.824e-11 3.913e-11 -10.418 -10.407 0.010 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.531 -44.528 0.002 28.63 -K 1.493e-02 - K+ 1.493e-02 1.292e-02 -1.826 -1.889 -0.063 8.31 -Na 7.066e-03 - Na+ 7.066e-03 6.160e-03 -2.151 -2.210 -0.060 -2.59 -O(0) 5.669e-10 - O2 2.835e-10 2.849e-10 -9.548 -9.545 0.002 28.55 + H2 0.000e+00 0.000e+00 -45.985 -45.983 0.002 28.65 +K 2.363e-02 + K+ 2.363e-02 2.040e-02 -1.627 -1.690 -0.064 7.84 +Na 4.529e-07 + Na+ 4.529e-07 3.938e-07 -6.344 -6.405 -0.061 -3.34 +O(0) 1.221e-09 + O2 6.103e-10 6.136e-10 -9.214 -9.212 0.002 27.49 ------------------------------Saturation indices------------------------------- - Phase SI** log IAP log K(280 K, 1 atm) + Phase SI** log IAP log K(273 K, 1 atm) - H2(g) -41.49 -44.53 -3.04 H2 - H2O(g) -2.00 -0.00 2.00 H2O - Halite -5.69 -4.14 1.55 NaCl - O2(g) -6.81 -9.55 -2.73 O2 - Sylvite -4.62 -3.82 0.80 KCl + H2(g) -42.97 -45.98 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + Halite -10.90 -9.35 1.55 NaCl + O2(g) -6.55 -9.21 -2.66 O2 + Sylvite -5.40 -4.64 0.76 KCl **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. -Using mix 11. -Using exchange 11. Exchange assemblage after simulation 4. +------------------ +End of simulation. +------------------ -Mixture 11. +------------------------------------ +Reading input data for simulation 5. +------------------------------------ - 0.000e+00 Solution 10 Solution after simulation 4. - 1.000e+00 Solution 11 Solution after simulation 4. - 0.000e+00 Solution 12 Solution after simulation 4. + copy cell 31 1-30 + USER_GRAPH 1 + -connect_simulations false + END +------------------ +End of simulation. +------------------ ------------------------------Exchange composition------------------------------ +------------------------------------ +Reading input data for simulation 6. +------------------------------------ -X 4.800e-02 mol + TRANSPORT + shifts 1 + multi_d true 2.33e-9 1 0.05 0 false # will give the traditional results when tc = 25 throughout + thermal_diffusion 3.0 2.33e-9 # define the diffusion coefficient for heat equal to Na + implicit true 3 -12 # max_mixf = 3, min_dif_LM = -12 + USER_GRAPH 1 Example 12b +WARNING: No porosities were read; used the value 1.00e+00 from -multi_D. +------------------------------------ +Column data retained from former run +------------------------------------ - Equiv- Equivalent Log - Species Moles alents Fraction Gamma + -headings MultiD&Visc&Implicit:Na Cl TC + -start + 10 x = DIST + 20 PLOT_XY x, TOT("Na")*1000, symbol = XCross, line_width = 0, symbol_size = 9, color = Red + 30 PLOT_XY x, TOT("Cl")*1000, symbol = XCross, line_width = 0, symbol_size = 9, color = Green + 40 PLOT_XY x, TC, symbol = XCross, line_width = 0, symbol_size = 9, y-axis 2, color = Blue + END +------------------------------------ +Beginning of transport calculations. +------------------------------------ - KX 3.381e-02 3.381e-02 7.045e-01 0.000 - NaX 1.419e-02 1.419e-02 2.955e-01 -0.059 +------------------------------- +Equilibrating initial solutions +------------------------------- + +Using solution 0. Solution after simulation 4. -----------------------------Solution composition------------------------------ Elements Molality Moles - Br 9.147e-03 9.147e-03 - Cl 1.275e-02 1.275e-02 - K 1.606e-02 1.606e-02 - Na 5.837e-03 5.837e-03 + Cl 2.400e-02 2.400e-02 + Na 2.400e-02 2.400e-02 ----------------------------Description of solution---------------------------- - pH = 7.091 Charge balance - pe = 13.757 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 6°C) = 1849 - Density (g/cm³) = 1.00134 - Volume (L) = 1.00060 - Viscosity (mPa s) = 1.48246 + pH = 7.000 Charge balance + pe = 4.000 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 24°C) = 2687 + Density (g/cm³) = 0.99829 + Volume (L) = 1.00312 + Viscosity (mPa s) = 0.91317 Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.190e-02 + Ionic strength (mol/kgw) = 2.400e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -6.302e-08 - Temperature (°C) = 5.75 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.967e-08 + Total alkalinity (eq/kg) = -4.679e-09 + Temperature (°C) = 24.00 + Electrical balance (eq) = 4.679e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 2 + Iterations = 0 Total H = 1.110124e+02 Total O = 5.550622e+01 @@ -8190,44 +3651,33 @@ X 4.800e-02 mol Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.115e-08 8.104e-08 -7.040 -7.091 -0.051 0.00 - OH- 2.847e-08 2.465e-08 -7.546 -7.608 -0.063 -5.32 - H2O 5.551e+01 9.993e-01 1.744 -0.000 0.000 18.02 -Br 9.147e-03 - Br- 9.147e-03 7.894e-03 -2.039 -2.103 -0.064 23.23 -Cl 1.275e-02 - Cl- 1.275e-02 1.106e-02 -1.894 -1.956 -0.062 17.13 - HCl 3.405e-10 3.478e-10 -9.468 -9.459 0.009 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.760 -44.758 0.002 28.63 -K 1.606e-02 - K+ 1.606e-02 1.391e-02 -1.794 -1.857 -0.062 8.24 -Na 5.837e-03 - Na+ 5.837e-03 5.091e-03 -2.234 -2.293 -0.059 -2.70 -O(0) 6.202e-10 - O2 3.101e-10 3.116e-10 -9.509 -9.506 0.002 28.39 + H+ 1.133e-07 1.000e-07 -6.946 -7.000 -0.054 0.00 + OH- 1.093e-07 9.367e-08 -6.961 -7.028 -0.067 -4.01 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.06 +Cl 2.400e-02 + Cl- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 18.16 + HCl 6.977e-10 7.143e-10 -9.156 -9.146 0.010 (0) +H(0) 1.422e-25 + H2 7.111e-26 7.151e-26 -25.148 -25.146 0.002 28.61 +Na 2.400e-02 + Na+ 2.400e-02 2.074e-02 -1.620 -1.683 -0.063 -1.36 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -42.416 -42.413 0.002 30.32 ------------------------------Saturation indices------------------------------- - Phase SI** log IAP log K(278 K, 1 atm) + Phase SI** log IAP log K(297 K, 1 atm) - H2(g) -41.72 -44.76 -3.04 H2 - H2O(g) -2.04 -0.00 2.03 H2O - Halite -5.80 -4.25 1.55 NaCl - O2(g) -6.78 -9.51 -2.72 O2 - Sylvite -4.61 -3.81 0.80 KCl + H2(g) -22.05 -25.15 -3.10 H2 + H2O(g) -1.53 -0.00 1.53 H2O + Halite -4.94 -3.37 1.57 NaCl + O2(g) -39.53 -42.41 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. -Using mix 12. -Using exchange 12. Exchange assemblage after simulation 4. - -Mixture 12. - - 0.000e+00 Solution 11 Solution after simulation 4. - 1.000e+00 Solution 12 Solution after simulation 4. - 0.000e+00 Solution 13 Solution after simulation 4. +Using solution 1. 24 mM KBr, initial temp 0C +Using exchange 1. -----------------------------Exchange composition------------------------------ @@ -8236,32 +3686,761 @@ X 4.800e-02 mol Equiv- Equivalent Log Species Moles alents Fraction Gamma - KX 3.632e-02 3.632e-02 7.567e-01 0.000 - NaX 1.168e-02 1.168e-02 2.433e-01 -0.059 + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 -----------------------------Solution composition------------------------------ Elements Molality Moles - Br 9.867e-03 9.867e-03 - Cl 1.197e-02 1.197e-02 - K 1.708e-02 1.708e-02 - Na 4.758e-03 4.758e-03 + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 ----------------------------Description of solution---------------------------- - pH = 7.092 Charge balance - pe = 13.860 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 5°C) = 1809 - Density (g/cm³) = 1.00140 - Volume (L) = 1.00059 - Viscosity (mPa s) = 1.52948 + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1805 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78740 Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.183e-02 + Ionic strength (mol/kgw) = 2.400e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -6.529e-08 - Temperature (°C) = 4.75 - Pressure (atm) = 1.00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 2. 24 mM KBr, initial temp 0C +Using exchange 2. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1805 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78740 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (26 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 3. 24 mM KBr, initial temp 0C +Using exchange 3. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1805 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78740 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (39 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 4. 24 mM KBr, initial temp 0C +Using exchange 4. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1805 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78740 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (52 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 5. 24 mM KBr, initial temp 0C +Using exchange 5. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1805 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78740 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (65 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 6. 24 mM KBr, initial temp 0C +Using exchange 6. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1805 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78740 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (78 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 7. 24 mM KBr, initial temp 0C +Using exchange 7. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1805 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78740 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (91 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 8. 24 mM KBr, initial temp 0C +Using exchange 8. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1805 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78740 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (104 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 9. 24 mM KBr, initial temp 0C +Using exchange 9. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1805 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78740 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (117 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using solution 10. 24 mM KBr, initial temp 0C +Using exchange 10. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.800e-02 4.800e-02 1.000e+00 -0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 2.400e-02 2.400e-02 + K 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 12.957 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1805 + Density (g/cm³) = 1.00197 + Volume (L) = 1.00089 + Viscosity (mPa s) = 1.78740 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -9.945e-08 + Temperature (°C) = 0.00 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 13 (130 overall) + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.128e-07 1.000e-07 -6.948 -7.000 -0.052 0.00 + OH- 1.336e-08 1.151e-08 -7.874 -7.939 -0.065 -6.05 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 2.400e-02 + Br- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 22.49 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.949 -42.947 0.002 28.65 +K 2.400e-02 + K+ 2.400e-02 2.070e-02 -1.620 -1.684 -0.064 7.84 +O(0) 1.011e-15 + O2 5.053e-16 5.081e-16 -15.296 -15.294 0.002 27.49 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(273 K, 1 atm) + + H2(g) -39.94 -42.95 -3.01 H2 + H2O(g) -2.21 -0.00 2.21 H2O + O2(g) -12.64 -15.29 -2.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +WARNING: +Calculating implicit transport: 10 (mobile) cells, 1 shifts, 56 mixruns, max. mixf = 3. + + +Transport step 1. Multicomponent diffusion run 56. + +Using solution 0. Solution after simulation 6. + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Cl 2.400e-02 2.400e-02 + Na 2.400e-02 2.400e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.000 Charge balance + pe = 4.000 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 24°C) = 2687 + Density (g/cm³) = 0.99829 + Volume (L) = 1.00312 + Viscosity (mPa s) = 0.91317 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.400e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -4.679e-09 + Temperature (°C) = 24.00 + Electrical balance (eq) = 4.679e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 0 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 1.133e-07 1.000e-07 -6.946 -7.000 -0.054 0.00 + OH- 1.093e-07 9.367e-08 -6.961 -7.028 -0.067 -4.01 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.06 +Cl 2.400e-02 + Cl- 2.400e-02 2.061e-02 -1.620 -1.686 -0.066 18.16 + HCl 6.977e-10 7.143e-10 -9.156 -9.146 0.010 (0) +H(0) 1.422e-25 + H2 7.111e-26 7.151e-26 -25.148 -25.146 0.002 28.61 +Na 2.400e-02 + Na+ 2.400e-02 2.074e-02 -1.620 -1.683 -0.063 -1.36 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -42.416 -42.413 0.002 30.32 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(297 K, 1 atm) + + H2(g) -22.05 -25.15 -3.10 H2 + H2O(g) -1.53 -0.00 1.53 H2O + Halite -4.94 -3.37 1.57 NaCl + O2(g) -39.53 -42.41 -2.89 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 1. +Using exchange 1. Exchange assemblage after simulation 6. + +Mixture 1. + + 0.000e+00 Solution 0 Solution after simulation 6. + 1.000e+00 Solution 1 Solution after simulation 6. + 0.000e+00 Solution 2 Solution after simulation 6. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + NaX 4.288e-02 4.288e-02 8.933e-01 -0.063 + KX 5.119e-03 5.119e-03 1.067e-01 0.000 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.496e-03 1.496e-03 + Cl 2.204e-02 2.204e-02 + K 2.870e-03 2.870e-03 + Na 2.066e-02 2.066e-02 + +----------------------------Description of solution---------------------------- + + pH = 7.016 Charge balance + pe = 12.155 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 21°C) = 2563 + Density (g/cm³) = 0.99896 + Volume (L) = 1.00254 + Viscosity (mPa s) = 0.96986 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.353e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -1.698e-08 + Temperature (°C) = 21.42 Electrical balance (eq) = 9.963e-08 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 @@ -8273,44 +4452,44 @@ X 4.800e-02 mol Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.094e-08 8.087e-08 -7.041 -7.092 -0.051 0.00 - OH- 2.597e-08 2.249e-08 -7.585 -7.648 -0.062 -5.43 - H2O 5.551e+01 9.993e-01 1.744 -0.000 0.000 18.02 -Br 9.867e-03 - Br- 9.867e-03 8.519e-03 -2.006 -2.070 -0.064 23.12 -Cl 1.197e-02 - Cl- 1.197e-02 1.038e-02 -1.922 -1.984 -0.062 17.03 - HCl 3.210e-10 3.279e-10 -9.494 -9.484 0.009 (0) + H+ 1.090e-07 9.632e-08 -6.963 -7.016 -0.054 0.00 + OH- 9.261e-08 7.953e-08 -7.033 -7.099 -0.066 -4.12 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.05 +Br 1.496e-03 + Br- 1.496e-03 1.280e-03 -2.825 -2.893 -0.068 24.49 +Cl 2.204e-02 + Cl- 2.204e-02 1.896e-02 -1.657 -1.722 -0.065 18.07 + HCl 6.286e-10 6.432e-10 -9.202 -9.192 0.010 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.963 -44.961 0.002 28.64 -K 1.708e-02 - K+ 1.708e-02 1.480e-02 -1.768 -1.830 -0.062 8.17 -Na 4.758e-03 - Na+ 4.758e-03 4.152e-03 -2.323 -2.382 -0.059 -2.80 -O(0) 6.716e-10 - O2 3.358e-10 3.375e-10 -9.474 -9.472 0.002 28.25 + H2 0.000e+00 0.000e+00 -41.479 -41.476 0.002 28.61 +K 2.870e-03 + K+ 2.870e-03 2.467e-03 -2.542 -2.608 -0.066 8.99 +Na 2.066e-02 + Na+ 2.066e-02 1.789e-02 -1.685 -1.747 -0.063 -1.50 +O(0) 5.031e-11 + O2 2.515e-11 2.529e-11 -10.599 -10.597 0.002 30.11 ------------------------------Saturation indices------------------------------- - Phase SI** log IAP log K(277 K, 1 atm) + Phase SI** log IAP log K(294 K, 1 atm) - H2(g) -41.93 -44.96 -3.03 H2 - H2O(g) -2.07 -0.00 2.06 H2O - Halite -5.92 -4.37 1.55 NaCl - O2(g) -6.76 -9.47 -2.71 O2 - Sylvite -4.61 -3.81 0.79 KCl + H2(g) -38.38 -41.48 -3.09 H2 + H2O(g) -1.60 -0.00 1.60 H2O + Halite -5.04 -3.47 1.57 NaCl + O2(g) -7.73 -10.60 -2.87 O2 + Sylvite -5.21 -4.33 0.88 KCl **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. -Using mix 13. -Using exchange 13. Exchange assemblage after simulation 4. +Using mix 2. +Using exchange 2. Exchange assemblage after simulation 6. -Mixture 13. +Mixture 2. - 0.000e+00 Solution 12 Solution after simulation 4. - 1.000e+00 Solution 13 Solution after simulation 4. - 0.000e+00 Solution 14 Solution after simulation 4. + 0.000e+00 Solution 1 Solution after simulation 6. + 1.000e+00 Solution 2 Solution after simulation 6. + 0.000e+00 Solution 3 Solution after simulation 6. -----------------------------Exchange composition------------------------------ @@ -8319,33 +4498,32 @@ X 4.800e-02 mol Equiv- Equivalent Log Species Moles alents Fraction Gamma - KX 3.853e-02 3.853e-02 8.028e-01 0.000 - NaX 9.468e-03 9.468e-03 1.972e-01 -0.059 + NaX 3.084e-02 3.084e-02 6.425e-01 -0.061 + KX 1.716e-02 1.716e-02 3.575e-01 0.000 -----------------------------Solution composition------------------------------ Elements Molality Moles - Br 1.056e-02 1.056e-02 - Cl 1.123e-02 1.123e-02 - K 1.797e-02 1.797e-02 - Na 3.828e-03 3.828e-03 + Br 4.518e-03 4.518e-03 + Cl 1.812e-02 1.812e-02 + K 8.876e-03 8.876e-03 + Na 1.376e-02 1.376e-02 ----------------------------Description of solution---------------------------- - pH = 7.093 Charge balance - pe = 13.950 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 4°C) = 1777 - Density (g/cm³) = 1.00144 - Volume (L) = 1.00060 - Viscosity (mPa s) = 1.57214 + pH = 7.039 Charge balance + pe = 12.713 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 16°C) = 2321 + Density (g/cm³) = 1.00010 + Volume (L) = 1.00157 + Viscosity (mPa s) = 1.10528 Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.180e-02 + Ionic strength (mol/kgw) = 2.264e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -6.717e-08 - Temperature (°C) = 3.88 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.960e-08 + Total alkalinity (eq/kg) = -4.020e-08 + Temperature (°C) = 16.15 + Electrical balance (eq) = 1.004e-07 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110124e+02 @@ -8356,44 +4534,44 @@ X 4.800e-02 mol Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.082e-08 8.078e-08 -7.042 -7.093 -0.051 0.00 - OH- 2.395e-08 2.075e-08 -7.621 -7.683 -0.062 -5.54 - H2O 5.551e+01 9.993e-01 1.744 -0.000 0.000 18.02 -Br 1.056e-02 - Br- 1.056e-02 9.123e-03 -1.976 -2.040 -0.064 23.01 -Cl 1.123e-02 - Cl- 1.123e-02 9.746e-03 -1.950 -2.011 -0.062 16.95 - HCl 3.027e-10 3.092e-10 -9.519 -9.510 0.009 (0) + H+ 1.031e-07 9.135e-08 -6.987 -7.039 -0.052 0.00 + OH- 6.338e-08 5.463e-08 -7.198 -7.263 -0.065 -4.42 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.04 +Br 4.518e-03 + Br- 4.518e-03 3.882e-03 -2.345 -2.411 -0.066 24.17 +Cl 1.812e-02 + Cl- 1.812e-02 1.565e-02 -1.742 -1.806 -0.064 17.84 + HCl 5.088e-10 5.202e-10 -9.293 -9.284 0.010 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -45.140 -45.138 0.002 28.64 -K 1.797e-02 - K+ 1.797e-02 1.558e-02 -1.745 -1.808 -0.062 8.12 -Na 3.828e-03 - Na+ 3.828e-03 3.340e-03 -2.417 -2.476 -0.059 -2.90 -O(0) 7.211e-10 - O2 3.605e-10 3.623e-10 -9.443 -9.441 0.002 28.12 + H2 0.000e+00 0.000e+00 -42.617 -42.614 0.002 28.62 +K 8.876e-03 + K+ 8.876e-03 7.657e-03 -2.052 -2.116 -0.064 8.78 +Na 1.376e-02 + Na+ 1.376e-02 1.196e-02 -1.861 -1.922 -0.061 -1.84 +O(0) 1.592e-10 + O2 7.962e-11 8.003e-11 -10.099 -10.097 0.002 29.62 ------------------------------Saturation indices------------------------------- - Phase SI** log IAP log K(277 K, 1 atm) + Phase SI** log IAP log K(289 K, 1 atm) - H2(g) -42.11 -45.14 -3.03 H2 - H2O(g) -2.09 -0.00 2.09 H2O - Halite -6.04 -4.49 1.55 NaCl - O2(g) -6.74 -9.44 -2.70 O2 - Sylvite -4.61 -3.82 0.79 KCl + H2(g) -39.54 -42.61 -3.08 H2 + H2O(g) -1.74 -0.00 1.74 H2O + Halite -5.29 -3.73 1.56 NaCl + O2(g) -7.27 -10.10 -2.82 O2 + Sylvite -4.78 -3.92 0.85 KCl **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. -Using mix 14. -Using exchange 14. Exchange assemblage after simulation 4. +Using mix 3. +Using exchange 3. Exchange assemblage after simulation 6. -Mixture 14. +Mixture 3. - 0.000e+00 Solution 13 Solution after simulation 4. - 1.000e+00 Solution 14 Solution after simulation 4. - 0.000e+00 Solution 15 Solution after simulation 4. + 0.000e+00 Solution 2 Solution after simulation 6. + 1.000e+00 Solution 3 Solution after simulation 6. + 0.000e+00 Solution 4 Solution after simulation 6. -----------------------------Exchange composition------------------------------ @@ -8402,35 +4580,34 @@ X 4.800e-02 mol Equiv- Equivalent Log Species Moles alents Fraction Gamma - KX 4.044e-02 4.044e-02 8.425e-01 0.000 - NaX 7.559e-03 7.559e-03 1.575e-01 -0.059 + KX 3.025e-02 3.025e-02 6.301e-01 0.000 + NaX 1.775e-02 1.775e-02 3.699e-01 -0.060 -----------------------------Solution composition------------------------------ Elements Molality Moles - Br 1.124e-02 1.124e-02 - Cl 1.055e-02 1.055e-02 - K 1.875e-02 1.875e-02 - Na 3.038e-03 3.038e-03 + Br 7.621e-03 7.621e-03 + Cl 1.437e-02 1.437e-02 + K 1.458e-02 1.458e-02 + Na 7.407e-03 7.407e-03 ----------------------------Description of solution---------------------------- - pH = 7.093 Charge balance - pe = 14.028 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 3°C) = 1750 - Density (g/cm³) = 1.00146 - Volume (L) = 1.00061 - Viscosity (mPa s) = 1.61015 + pH = 7.052 Charge balance + pe = 13.230 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 11°C) = 2101 + Density (g/cm³) = 1.00093 + Volume (L) = 1.00093 + Viscosity (mPa s) = 1.27129 Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.178e-02 + Ionic strength (mol/kgw) = 2.199e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -6.871e-08 - Temperature (°C) = 3.14 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.957e-08 + Total alkalinity (eq/kg) = -5.872e-08 + Temperature (°C) = 10.95 + Electrical balance (eq) = 9.946e-08 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 2 + Iterations = 3 Total H = 1.110124e+02 Total O = 5.550622e+01 @@ -8439,44 +4616,208 @@ X 4.800e-02 mol Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.075e-08 8.073e-08 -7.042 -7.093 -0.051 0.00 - OH- 2.233e-08 1.935e-08 -7.651 -7.713 -0.062 -5.63 + H+ 9.996e-08 8.878e-08 -7.000 -7.052 -0.052 0.00 + OH- 4.165e-08 3.600e-08 -7.380 -7.444 -0.063 -4.81 H2O 5.551e+01 9.993e-01 1.744 -0.000 0.000 18.02 -Br 1.124e-02 - Br- 1.124e-02 9.706e-03 -1.949 -2.013 -0.064 22.92 -Cl 1.055e-02 - Cl- 1.055e-02 9.153e-03 -1.977 -2.038 -0.062 16.88 - HCl 2.854e-10 2.916e-10 -9.545 -9.535 0.009 (0) +Br 7.621e-03 + Br- 7.621e-03 6.568e-03 -2.118 -2.183 -0.065 23.75 +Cl 1.437e-02 + Cl- 1.437e-02 1.244e-02 -1.843 -1.905 -0.063 17.53 + HCl 4.064e-10 4.153e-10 -9.391 -9.382 0.009 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -45.293 -45.290 0.002 28.64 -K 1.875e-02 - K+ 1.875e-02 1.625e-02 -1.727 -1.789 -0.062 8.07 -Na 3.038e-03 - Na+ 3.038e-03 2.652e-03 -2.517 -2.576 -0.059 -2.98 -O(0) 7.684e-10 - O2 3.842e-10 3.861e-10 -9.415 -9.413 0.002 28.01 + H2 0.000e+00 0.000e+00 -43.652 -43.650 0.002 28.62 +K 1.458e-02 + K+ 1.458e-02 1.262e-02 -1.836 -1.899 -0.063 8.53 +Na 7.407e-03 + Na+ 7.407e-03 6.452e-03 -2.130 -2.190 -0.060 -2.23 +O(0) 2.879e-10 + O2 1.440e-10 1.447e-10 -9.842 -9.840 0.002 29.06 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(284 K, 1 atm) + + H2(g) -40.59 -43.65 -3.06 H2 + H2O(g) -1.88 -0.00 1.88 H2O + Halite -5.65 -4.10 1.56 NaCl + O2(g) -7.06 -9.84 -2.77 O2 + Sylvite -4.63 -3.80 0.83 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 4. +Using exchange 4. Exchange assemblage after simulation 6. + +Mixture 4. + + 0.000e+00 Solution 3 Solution after simulation 6. + 1.000e+00 Solution 4 Solution after simulation 6. + 0.000e+00 Solution 5 Solution after simulation 6. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.013e-02 4.013e-02 8.359e-01 0.000 + NaX 7.874e-03 7.874e-03 1.641e-01 -0.059 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.083e-02 1.083e-02 + Cl 1.100e-02 1.100e-02 + K 1.866e-02 1.866e-02 + Na 3.173e-03 3.173e-03 + +----------------------------Description of solution---------------------------- + + pH = 7.058 Charge balance + pe = 13.682 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 7°C) = 1928 + Density (g/cm³) = 1.00139 + Volume (L) = 1.00067 + Viscosity (mPa s) = 1.44790 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.184e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -7.033e-08 + Temperature (°C) = 6.50 + Electrical balance (eq) = 9.945e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.832e-08 8.741e-08 -7.007 -7.058 -0.051 0.00 + OH- 2.830e-08 2.450e-08 -7.548 -7.611 -0.063 -5.24 + H2O 5.551e+01 9.993e-01 1.744 -0.000 0.000 18.02 +Br 1.083e-02 + Br- 1.083e-02 9.349e-03 -1.965 -2.029 -0.064 23.32 +Cl 1.100e-02 + Cl- 1.100e-02 9.542e-03 -1.958 -2.020 -0.062 17.19 + HCl 3.155e-10 3.223e-10 -9.501 -9.492 0.009 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -44.548 -44.546 0.002 28.63 +K 1.866e-02 + K+ 1.866e-02 1.617e-02 -1.729 -1.791 -0.062 8.28 +Na 3.173e-03 + Na+ 3.173e-03 2.767e-03 -2.499 -2.558 -0.059 -2.63 +O(0) 4.412e-10 + O2 2.206e-10 2.217e-10 -9.656 -9.654 0.002 28.50 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(279 K, 1 atm) + + H2(g) -41.50 -44.55 -3.04 H2 + H2O(g) -2.01 -0.00 2.01 H2O + Halite -6.13 -4.58 1.55 NaCl + O2(g) -6.92 -9.65 -2.73 O2 + Sylvite -4.61 -3.81 0.80 KCl + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Using mix 5. +Using exchange 5. Exchange assemblage after simulation 6. + +Mixture 5. + + 0.000e+00 Solution 4 Solution after simulation 6. + 1.000e+00 Solution 5 Solution after simulation 6. + 0.000e+00 Solution 6 Solution after simulation 6. + +-----------------------------Exchange composition------------------------------ + +X 4.800e-02 mol + + Equiv- Equivalent Log + Species Moles alents Fraction Gamma + + KX 4.519e-02 4.519e-02 9.414e-01 0.000 + NaX 2.810e-03 2.810e-03 5.855e-02 -0.059 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Br 1.401e-02 1.401e-02 + Cl 8.098e-03 8.098e-03 + K 2.098e-02 2.098e-02 + Na 1.130e-03 1.130e-03 + +----------------------------Description of solution---------------------------- + + pH = 7.063 Charge balance + pe = 14.015 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 3°C) = 1819 + Density (g/cm³) = 1.00160 + Volume (L) = 1.00066 + Viscosity (mPa s) = 1.59878 + Activity of water = 0.999 + Ionic strength (mol/kgw) = 2.211e-02 + Mass of water (kg) = 1.000e+00 + Total alkalinity (eq/kg) = -7.635e-08 + Temperature (°C) = 3.34 + Electrical balance (eq) = 9.944e-08 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 + Iterations = 3 + Total H = 1.110124e+02 + Total O = 5.550622e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm³/mol + + H+ 9.737e-08 8.656e-08 -7.012 -7.063 -0.051 0.00 + OH- 2.126e-08 1.840e-08 -7.673 -7.735 -0.063 -5.60 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 1.401e-02 + Br- 1.401e-02 1.209e-02 -1.853 -1.917 -0.064 22.94 +Cl 8.098e-03 + Cl- 8.098e-03 7.020e-03 -2.092 -2.154 -0.062 16.90 + HCl 2.343e-10 2.395e-10 -9.630 -9.621 0.009 (0) +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -45.207 -45.205 0.002 28.64 +K 2.098e-02 + K+ 2.098e-02 1.817e-02 -1.678 -1.741 -0.062 8.08 +Na 1.130e-03 + Na+ 1.130e-03 9.857e-04 -2.947 -3.006 -0.059 -2.95 +O(0) 6.194e-10 + O2 3.097e-10 3.113e-10 -9.509 -9.507 0.002 28.04 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(276 K, 1 atm) - H2(g) -42.26 -45.29 -3.03 H2 + H2(g) -42.18 -45.21 -3.03 H2 H2O(g) -2.11 -0.00 2.11 H2O - Halite -6.17 -4.61 1.55 NaCl - O2(g) -6.72 -9.41 -2.69 O2 - Sylvite -4.61 -3.83 0.78 KCl + Halite -6.71 -5.16 1.55 NaCl + O2(g) -6.81 -9.51 -2.70 O2 + Sylvite -4.68 -3.89 0.78 KCl **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. -Using mix 15. -Using exchange 15. Exchange assemblage after simulation 4. +Using mix 6. +Using exchange 6. Exchange assemblage after simulation 6. -Mixture 15. +Mixture 6. - 0.000e+00 Solution 14 Solution after simulation 4. - 1.000e+00 Solution 15 Solution after simulation 4. - 0.000e+00 Solution 16 Solution after simulation 4. + 0.000e+00 Solution 5 Solution after simulation 6. + 1.000e+00 Solution 6 Solution after simulation 6. + 0.000e+00 Solution 7 Solution after simulation 6. -----------------------------Exchange composition------------------------------ @@ -8485,35 +4826,34 @@ X 4.800e-02 mol Equiv- Equivalent Log Species Moles alents Fraction Gamma - KX 4.205e-02 4.205e-02 8.761e-01 0.000 - NaX 5.947e-03 5.947e-03 1.239e-01 -0.059 + KX 4.713e-02 4.713e-02 9.819e-01 0.000 + NaX 8.677e-04 8.677e-04 1.808e-02 -0.060 -----------------------------Solution composition------------------------------ Elements Molality Moles - Br 1.188e-02 1.188e-02 - Cl 9.910e-03 9.910e-03 - K 1.941e-02 1.941e-02 - Na 2.380e-03 2.380e-03 + Br 1.686e-02 1.686e-02 + Cl 5.701e-03 5.701e-03 + K 2.221e-02 2.221e-02 + Na 3.538e-04 3.538e-04 ----------------------------Description of solution---------------------------- - pH = 7.093 Charge balance - pe = 14.095 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 3°C) = 1729 - Density (g/cm³) = 1.00148 - Volume (L) = 1.00063 - Viscosity (mPa s) = 1.64339 + pH = 7.064 Charge balance + pe = 14.222 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 2°C) = 1769 + Density (g/cm³) = 1.00169 + Volume (L) = 1.00073 + Viscosity (mPa s) = 1.69862 Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.179e-02 + Ionic strength (mol/kgw) = 2.256e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -6.996e-08 - Temperature (°C) = 2.51 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.955e-08 + Total alkalinity (eq/kg) = -7.938e-08 + Temperature (°C) = 1.50 + Electrical balance (eq) = 9.945e-08 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 2 + Iterations = 3 Total H = 1.110124e+02 Total O = 5.550622e+01 @@ -8522,210 +4862,44 @@ X 4.800e-02 mol Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.072e-08 8.071e-08 -7.042 -7.093 -0.051 0.00 - OH- 2.103e-08 1.822e-08 -7.677 -7.739 -0.062 -5.71 - H2O 5.551e+01 9.993e-01 1.744 -0.000 0.000 18.02 -Br 1.188e-02 - Br- 1.188e-02 1.027e-02 -1.925 -1.989 -0.064 22.84 -Cl 9.910e-03 - Cl- 9.910e-03 8.601e-03 -2.004 -2.065 -0.062 16.81 - HCl 2.691e-10 2.750e-10 -9.570 -9.561 0.009 (0) + H+ 9.709e-08 8.627e-08 -7.013 -7.064 -0.051 0.00 + OH- 1.788e-08 1.546e-08 -7.748 -7.811 -0.063 -5.84 + H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 +Br 1.686e-02 + Br- 1.686e-02 1.454e-02 -1.773 -1.838 -0.064 22.70 +Cl 5.701e-03 + Cl- 5.701e-03 4.938e-03 -2.244 -2.306 -0.062 16.70 + HCl 1.661e-10 1.698e-10 -9.780 -9.770 0.010 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -45.423 -45.421 0.002 28.64 -K 1.941e-02 - K+ 1.941e-02 1.683e-02 -1.712 -1.774 -0.062 8.02 -Na 2.380e-03 - Na+ 2.380e-03 2.078e-03 -2.623 -2.682 -0.059 -3.05 -O(0) 8.135e-10 - O2 4.068e-10 4.088e-10 -9.391 -9.388 0.002 27.91 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(275 K, 1 atm) - - H2(g) -42.40 -45.42 -3.02 H2 - H2O(g) -2.13 -0.00 2.13 H2O - Halite -6.30 -4.75 1.55 NaCl - O2(g) -6.70 -9.39 -2.69 O2 - Sylvite -4.62 -3.84 0.78 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using mix 16. -Using exchange 16. Exchange assemblage after simulation 4. - -Mixture 16. - - 0.000e+00 Solution 15 Solution after simulation 4. - 1.000e+00 Solution 16 Solution after simulation 4. - 0.000e+00 Solution 17 Solution after simulation 4. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.339e-02 4.339e-02 9.039e-01 0.000 - NaX 4.611e-03 4.611e-03 9.606e-02 -0.059 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 1.250e-02 1.250e-02 - Cl 9.317e-03 9.317e-03 - K 1.998e-02 1.998e-02 - Na 1.841e-03 1.841e-03 - -----------------------------Description of solution---------------------------- - - pH = 7.093 Charge balance - pe = 14.151 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 2°C) = 1713 - Density (g/cm³) = 1.00150 - Volume (L) = 1.00065 - Viscosity (mPa s) = 1.67196 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.182e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -7.097e-08 - Temperature (°C) = 1.99 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.953e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 2 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 9.071e-08 8.071e-08 -7.042 -7.093 -0.051 0.00 - OH- 2.000e-08 1.733e-08 -7.699 -7.761 -0.062 -5.78 - H2O 5.551e+01 9.993e-01 1.744 -0.000 0.000 18.02 -Br 1.250e-02 - Br- 1.250e-02 1.080e-02 -1.903 -1.966 -0.064 22.77 -Cl 9.317e-03 - Cl- 9.317e-03 8.086e-03 -2.031 -2.092 -0.062 16.76 - HCl 2.538e-10 2.593e-10 -9.595 -9.586 0.009 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -45.533 -45.531 0.002 28.64 -K 1.998e-02 - K+ 1.998e-02 1.733e-02 -1.699 -1.761 -0.062 7.98 -Na 1.841e-03 - Na+ 1.841e-03 1.607e-03 -2.735 -2.794 -0.059 -3.11 -O(0) 8.563e-10 - O2 4.282e-10 4.303e-10 -9.368 -9.366 0.002 27.83 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(275 K, 1 atm) - - H2(g) -42.51 -45.53 -3.02 H2 - H2O(g) -2.15 -0.00 2.15 H2O - Halite -6.44 -4.89 1.55 NaCl - O2(g) -6.68 -9.37 -2.68 O2 - Sylvite -4.63 -3.85 0.78 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using mix 17. -Using exchange 17. Exchange assemblage after simulation 4. - -Mixture 17. - - 0.000e+00 Solution 16 Solution after simulation 4. - 1.000e+00 Solution 17 Solution after simulation 4. - 0.000e+00 Solution 18 Solution after simulation 4. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.447e-02 4.447e-02 9.265e-01 0.000 - NaX 3.526e-03 3.526e-03 7.346e-02 -0.059 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 1.310e-02 1.310e-02 - Cl 8.768e-03 8.768e-03 - K 2.046e-02 2.046e-02 - Na 1.406e-03 1.406e-03 - -----------------------------Description of solution---------------------------- - - pH = 7.093 Charge balance - pe = 14.198 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 2°C) = 1700 - Density (g/cm³) = 1.00151 - Volume (L) = 1.00068 - Viscosity (mPa s) = 1.69610 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.186e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -7.177e-08 - Temperature (°C) = 1.56 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.951e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 2 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 9.071e-08 8.070e-08 -7.042 -7.093 -0.051 0.00 - OH- 1.918e-08 1.662e-08 -7.717 -7.779 -0.062 -5.83 - H2O 5.551e+01 9.993e-01 1.744 -0.000 0.000 18.02 -Br 1.310e-02 - Br- 1.310e-02 1.131e-02 -1.883 -1.946 -0.064 22.71 -Cl 8.768e-03 - Cl- 8.768e-03 7.609e-03 -2.057 -2.119 -0.062 16.71 - HCl 2.395e-10 2.447e-10 -9.621 -9.611 0.009 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -45.625 -45.622 0.002 28.64 -K 2.046e-02 - K+ 2.046e-02 1.774e-02 -1.689 -1.751 -0.062 7.95 -Na 1.406e-03 - Na+ 1.406e-03 1.228e-03 -2.852 -2.911 -0.059 -3.16 -O(0) 8.967e-10 - O2 4.484e-10 4.506e-10 -9.348 -9.346 0.002 27.75 + H2 0.000e+00 0.000e+00 -45.615 -45.612 0.002 28.64 +K 2.221e-02 + K+ 2.221e-02 1.922e-02 -1.653 -1.716 -0.063 7.95 +Na 3.538e-04 + Na+ 3.538e-04 3.083e-04 -3.451 -3.511 -0.060 -3.16 +O(0) 8.151e-10 + O2 4.076e-10 4.097e-10 -9.390 -9.388 0.002 27.75 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(274 K, 1 atm) - H2(g) -42.60 -45.62 -3.02 H2 + H2(g) -42.59 -45.61 -3.02 H2 H2O(g) -2.16 -0.00 2.16 H2O - Halite -6.58 -5.03 1.55 NaCl - O2(g) -6.67 -9.35 -2.68 O2 - Sylvite -4.64 -3.87 0.77 KCl + Halite -7.37 -5.82 1.55 NaCl + O2(g) -6.71 -9.39 -2.68 O2 + Sylvite -4.80 -4.02 0.77 KCl **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. -Using mix 18. -Using exchange 18. Exchange assemblage after simulation 4. +Using mix 7. +Using exchange 7. Exchange assemblage after simulation 6. -Mixture 18. +Mixture 7. - 0.000e+00 Solution 17 Solution after simulation 4. - 1.000e+00 Solution 18 Solution after simulation 4. - 0.000e+00 Solution 19 Solution after simulation 4. + 0.000e+00 Solution 6 Solution after simulation 6. + 1.000e+00 Solution 7 Solution after simulation 6. + 0.000e+00 Solution 8 Solution after simulation 6. -----------------------------Exchange composition------------------------------ @@ -8734,450 +4908,34 @@ X 4.800e-02 mol Equiv- Equivalent Log Species Moles alents Fraction Gamma - KX 4.534e-02 4.534e-02 9.446e-01 0.000 - NaX 2.661e-03 2.661e-03 5.543e-02 -0.059 + KX 4.776e-02 4.776e-02 9.949e-01 0.000 + NaX 2.446e-04 2.446e-04 5.096e-03 -0.060 -----------------------------Solution composition------------------------------ Elements Molality Moles - Br 1.366e-02 1.366e-02 - Cl 8.260e-03 8.260e-03 - K 2.086e-02 2.086e-02 - Na 1.061e-03 1.061e-03 + Br 1.913e-02 1.913e-02 + Cl 3.862e-03 3.862e-03 + K 2.289e-02 2.289e-02 + Na 1.014e-04 1.014e-04 ----------------------------Description of solution---------------------------- - pH = 7.093 Charge balance - pe = 14.237 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 1°C) = 1692 - Density (g/cm³) = 1.00152 - Volume (L) = 1.00070 - Viscosity (mPa s) = 1.71615 + pH = 7.064 Charge balance + pe = 14.334 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 1°C) = 1759 + Density (g/cm³) = 1.00176 + Volume (L) = 1.00080 + Viscosity (mPa s) = 1.75105 Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.192e-02 + Ionic strength (mol/kgw) = 2.299e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -7.240e-08 - Temperature (°C) = 1.21 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.949e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 2 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 9.072e-08 8.070e-08 -7.042 -7.093 -0.051 0.00 - OH- 1.854e-08 1.606e-08 -7.732 -7.794 -0.062 -5.88 - H2O 5.551e+01 9.993e-01 1.744 -0.000 0.000 18.02 -Br 1.366e-02 - Br- 1.366e-02 1.180e-02 -1.865 -1.928 -0.064 22.66 -Cl 8.260e-03 - Cl- 8.260e-03 7.167e-03 -2.083 -2.145 -0.062 16.67 - HCl 2.261e-10 2.310e-10 -9.646 -9.636 0.009 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -45.700 -45.698 0.002 28.64 -K 2.086e-02 - K+ 2.086e-02 1.808e-02 -1.681 -1.743 -0.062 7.93 -Na 1.061e-03 - Na+ 1.061e-03 9.263e-04 -2.974 -3.033 -0.059 -3.20 -O(0) 9.346e-10 - O2 4.673e-10 4.696e-10 -9.330 -9.328 0.002 27.70 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(274 K, 1 atm) - - H2(g) -42.68 -45.70 -3.02 H2 - H2O(g) -2.17 -0.00 2.17 H2O - Halite -6.73 -5.18 1.55 NaCl - O2(g) -6.66 -9.33 -2.67 O2 - Sylvite -4.66 -3.89 0.77 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using mix 19. -Using exchange 19. Exchange assemblage after simulation 4. - -Mixture 19. - - 0.000e+00 Solution 18 Solution after simulation 4. - 1.000e+00 Solution 19 Solution after simulation 4. - 0.000e+00 Solution 20 Solution after simulation 4. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.602e-02 4.602e-02 9.587e-01 0.000 - NaX 1.982e-03 1.982e-03 4.130e-02 -0.059 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 1.419e-02 1.419e-02 - Cl 7.792e-03 7.792e-03 - K 2.119e-02 2.119e-02 - Na 7.913e-04 7.913e-04 - -----------------------------Description of solution---------------------------- - - pH = 7.093 Charge balance - pe = 14.268 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 1°C) = 1686 - Density (g/cm³) = 1.00154 - Volume (L) = 1.00072 - Viscosity (mPa s) = 1.73253 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.198e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -7.290e-08 - Temperature (°C) = 0.93 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.948e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 2 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 9.072e-08 8.070e-08 -7.042 -7.093 -0.051 0.00 - OH- 1.804e-08 1.563e-08 -7.744 -7.806 -0.062 -5.92 - H2O 5.551e+01 9.993e-01 1.744 -0.000 0.000 18.02 -Br 1.419e-02 - Br- 1.419e-02 1.225e-02 -1.848 -1.912 -0.064 22.62 -Cl 7.792e-03 - Cl- 7.792e-03 6.761e-03 -2.108 -2.170 -0.062 16.64 - HCl 2.136e-10 2.183e-10 -9.670 -9.661 0.009 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -45.762 -45.760 0.002 28.64 -K 2.119e-02 - K+ 2.119e-02 1.837e-02 -1.674 -1.736 -0.062 7.90 -Na 7.913e-04 - Na+ 7.913e-04 6.906e-04 -3.102 -3.161 -0.059 -3.23 -O(0) 9.698e-10 - O2 4.849e-10 4.873e-10 -9.314 -9.312 0.002 27.65 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(274 K, 1 atm) - - H2(g) -42.74 -45.76 -3.02 H2 - H2O(g) -2.18 -0.00 2.18 H2O - Halite -6.88 -5.33 1.55 NaCl - O2(g) -6.64 -9.31 -2.67 O2 - Sylvite -4.68 -3.91 0.77 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using mix 20. -Using exchange 20. Exchange assemblage after simulation 4. - -Mixture 20. - - 0.000e+00 Solution 19 Solution after simulation 4. - 1.000e+00 Solution 20 Solution after simulation 4. - 0.000e+00 Solution 21 Solution after simulation 4. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.654e-02 4.654e-02 9.696e-01 0.000 - NaX 1.459e-03 1.459e-03 3.040e-02 -0.059 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 1.468e-02 1.468e-02 - Cl 7.364e-03 7.364e-03 - K 2.146e-02 2.146e-02 - Na 5.832e-04 5.832e-04 - -----------------------------Description of solution---------------------------- - - pH = 7.093 Charge balance - pe = 14.294 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 1°C) = 1683 - Density (g/cm³) = 1.00155 - Volume (L) = 1.00074 - Viscosity (mPa s) = 1.74572 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.205e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -7.328e-08 - Temperature (°C) = 0.70 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.947e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 2 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 9.073e-08 8.070e-08 -7.042 -7.093 -0.051 0.00 - OH- 1.765e-08 1.529e-08 -7.753 -7.816 -0.062 -5.95 - H2O 5.551e+01 9.993e-01 1.744 -0.000 0.000 18.02 -Br 1.468e-02 - Br- 1.468e-02 1.268e-02 -1.833 -1.897 -0.064 22.59 -Cl 7.364e-03 - Cl- 7.364e-03 6.389e-03 -2.133 -2.195 -0.062 16.61 - HCl 2.021e-10 2.065e-10 -9.694 -9.685 0.009 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -45.812 -45.810 0.002 28.64 -K 2.146e-02 - K+ 2.146e-02 1.860e-02 -1.668 -1.730 -0.062 7.89 -Na 5.832e-04 - Na+ 5.832e-04 5.089e-04 -3.234 -3.293 -0.059 -3.26 -O(0) 1.002e-09 - O2 5.012e-10 5.037e-10 -9.300 -9.298 0.002 27.61 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -42.80 -45.81 -3.01 H2 - H2O(g) -2.19 -0.00 2.19 H2O - Halite -7.04 -5.49 1.55 NaCl - O2(g) -6.63 -9.30 -2.67 O2 - Sylvite -4.69 -3.92 0.77 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using mix 21. -Using exchange 21. Exchange assemblage after simulation 4. - -Mixture 21. - - 0.000e+00 Solution 20 Solution after simulation 4. - 1.000e+00 Solution 21 Solution after simulation 4. - 0.000e+00 Solution 22 Solution after simulation 4. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.694e-02 4.694e-02 9.779e-01 0.000 - NaX 1.061e-03 1.061e-03 2.211e-02 -0.059 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 1.514e-02 1.514e-02 - Cl 6.976e-03 6.976e-03 - K 2.169e-02 2.169e-02 - Na 4.250e-04 4.250e-04 - -----------------------------Description of solution---------------------------- - - pH = 7.093 Charge balance - pe = 14.314 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 1°C) = 1681 - Density (g/cm³) = 1.00156 - Volume (L) = 1.00075 - Viscosity (mPa s) = 1.75616 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.211e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -7.357e-08 - Temperature (°C) = 0.53 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.946e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 2 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 9.074e-08 8.070e-08 -7.042 -7.093 -0.051 0.00 - OH- 1.736e-08 1.503e-08 -7.761 -7.823 -0.062 -5.98 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 1.514e-02 - Br- 1.514e-02 1.307e-02 -1.820 -1.884 -0.064 22.56 -Cl 6.976e-03 - Cl- 6.976e-03 6.051e-03 -2.156 -2.218 -0.062 16.59 - HCl 1.916e-10 1.958e-10 -9.718 -9.708 0.009 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -45.852 -45.850 0.002 28.64 -K 2.169e-02 - K+ 2.169e-02 1.880e-02 -1.664 -1.726 -0.062 7.87 -Na 4.250e-04 - Na+ 4.250e-04 3.708e-04 -3.372 -3.431 -0.059 -3.28 -O(0) 1.032e-09 - O2 5.160e-10 5.187e-10 -9.287 -9.285 0.002 27.58 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -42.84 -45.85 -3.01 H2 - H2O(g) -2.19 -0.00 2.19 H2O - Halite -7.20 -5.65 1.55 NaCl - O2(g) -6.62 -9.29 -2.66 O2 - Sylvite -4.71 -3.94 0.77 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using mix 22. -Using exchange 22. Exchange assemblage after simulation 4. - -Mixture 22. - - 0.000e+00 Solution 21 Solution after simulation 4. - 1.000e+00 Solution 22 Solution after simulation 4. - 0.000e+00 Solution 23 Solution after simulation 4. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.724e-02 4.724e-02 9.841e-01 0.000 - NaX 7.634e-04 7.634e-04 1.590e-02 -0.059 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 1.555e-02 1.555e-02 - Cl 6.626e-03 6.626e-03 - K 2.187e-02 2.187e-02 - Na 3.063e-04 3.063e-04 - -----------------------------Description of solution---------------------------- - - pH = 7.093 Charge balance - pe = 14.330 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1681 - Density (g/cm³) = 1.00157 - Volume (L) = 1.00077 - Viscosity (mPa s) = 1.76432 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.218e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -7.380e-08 - Temperature (°C) = 0.39 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.946e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 2 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 9.074e-08 8.070e-08 -7.042 -7.093 -0.051 0.00 - OH- 1.713e-08 1.483e-08 -7.766 -7.829 -0.063 -6.00 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 1.555e-02 - Br- 1.555e-02 1.343e-02 -1.808 -1.872 -0.064 22.54 -Cl 6.626e-03 - Cl- 6.626e-03 5.746e-03 -2.179 -2.241 -0.062 16.58 - HCl 1.821e-10 1.861e-10 -9.740 -9.730 0.009 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -45.883 -45.881 0.002 28.64 -K 2.187e-02 - K+ 2.187e-02 1.895e-02 -1.660 -1.722 -0.062 7.86 -Na 3.063e-04 - Na+ 3.063e-04 2.672e-04 -3.514 -3.573 -0.059 -3.30 -O(0) 1.059e-09 - O2 5.295e-10 5.322e-10 -9.276 -9.274 0.002 27.56 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -42.87 -45.88 -3.01 H2 - H2O(g) -2.20 -0.00 2.20 H2O - Halite -7.36 -5.81 1.55 NaCl - O2(g) -6.61 -9.27 -2.66 O2 - Sylvite -4.73 -3.96 0.77 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using mix 23. -Using exchange 23. Exchange assemblage after simulation 4. - -Mixture 23. - - 0.000e+00 Solution 22 Solution after simulation 4. - 1.000e+00 Solution 23 Solution after simulation 4. - 0.000e+00 Solution 24 Solution after simulation 4. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.746e-02 4.746e-02 9.887e-01 0.000 - NaX 5.434e-04 5.434e-04 1.132e-02 -0.059 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 1.593e-02 1.593e-02 - Cl 6.314e-03 6.314e-03 - K 2.202e-02 2.202e-02 - Na 2.185e-04 2.185e-04 - -----------------------------Description of solution---------------------------- - - pH = 7.093 Charge balance - pe = 14.343 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1682 - Density (g/cm³) = 1.00158 - Volume (L) = 1.00078 - Viscosity (mPa s) = 1.77059 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.224e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -7.396e-08 - Temperature (°C) = 0.29 - Pressure (atm) = 1.00 + Total alkalinity (eq/kg) = -8.102e-08 + Temperature (°C) = 0.60 Electrical balance (eq) = 9.945e-08 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 2 + Iterations = 3 Total H = 1.110124e+02 Total O = 5.550622e+01 @@ -9186,44 +4944,44 @@ X 4.800e-02 mol Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.075e-08 8.069e-08 -7.042 -7.093 -0.051 0.00 - OH- 1.696e-08 1.468e-08 -7.771 -7.833 -0.063 -6.01 + H+ 9.728e-08 8.638e-08 -7.012 -7.064 -0.052 0.00 + OH- 1.637e-08 1.415e-08 -7.786 -7.849 -0.064 -5.97 H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 1.593e-02 - Br- 1.593e-02 1.375e-02 -1.798 -1.862 -0.064 22.53 -Cl 6.314e-03 - Cl- 6.314e-03 5.475e-03 -2.200 -2.262 -0.062 16.56 - HCl 1.736e-10 1.774e-10 -9.760 -9.751 0.009 (0) +Br 1.913e-02 + Br- 1.913e-02 1.648e-02 -1.718 -1.783 -0.065 22.57 +Cl 3.862e-03 + Cl- 3.862e-03 3.342e-03 -2.413 -2.476 -0.063 16.60 + HCl 1.131e-10 1.157e-10 -9.946 -9.937 0.010 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -45.908 -45.906 0.002 28.64 -K 2.202e-02 - K+ 2.202e-02 1.908e-02 -1.657 -1.719 -0.062 7.86 -Na 2.185e-04 - Na+ 2.185e-04 1.906e-04 -3.661 -3.720 -0.059 -3.31 -O(0) 1.083e-09 - O2 5.416e-10 5.443e-10 -9.266 -9.264 0.002 27.54 + H2 0.000e+00 0.000e+00 -45.834 -45.831 0.002 28.64 +K 2.289e-02 + K+ 2.289e-02 1.979e-02 -1.640 -1.704 -0.063 7.88 +Na 1.014e-04 + Na+ 1.014e-04 8.826e-05 -3.994 -4.054 -0.060 -3.27 +O(0) 1.013e-09 + O2 5.067e-10 5.094e-10 -9.295 -9.293 0.002 27.59 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(273 K, 1 atm) - H2(g) -42.89 -45.91 -3.01 H2 - H2O(g) -2.20 -0.00 2.20 H2O - Halite -7.53 -5.98 1.55 NaCl - O2(g) -6.60 -9.26 -2.66 O2 - Sylvite -4.75 -3.98 0.77 KCl + H2(g) -42.82 -45.83 -3.01 H2 + H2O(g) -2.19 -0.00 2.19 H2O + Halite -8.08 -6.53 1.55 NaCl + O2(g) -6.63 -9.29 -2.67 O2 + Sylvite -4.95 -4.18 0.77 KCl **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. -Using mix 24. -Using exchange 24. Exchange assemblage after simulation 4. +Using mix 8. +Using exchange 8. Exchange assemblage after simulation 6. -Mixture 24. +Mixture 8. - 0.000e+00 Solution 23 Solution after simulation 4. - 1.000e+00 Solution 24 Solution after simulation 4. - 0.000e+00 Solution 25 Solution after simulation 4. + 0.000e+00 Solution 7 Solution after simulation 6. + 1.000e+00 Solution 8 Solution after simulation 6. + 0.000e+00 Solution 9 Solution after simulation 6. -----------------------------Exchange composition------------------------------ @@ -9232,35 +4990,34 @@ X 4.800e-02 mol Equiv- Equivalent Log Species Moles alents Fraction Gamma - KX 4.762e-02 4.762e-02 9.920e-01 0.000 - NaX 3.832e-04 3.832e-04 7.982e-03 -0.059 + KX 4.794e-02 4.794e-02 9.986e-01 0.000 + NaX 6.490e-05 6.490e-05 1.352e-03 -0.060 -----------------------------Solution composition------------------------------ Elements Molality Moles - Br 1.626e-02 1.626e-02 - Cl 6.041e-03 6.041e-03 - K 2.215e-02 2.215e-02 - Na 1.544e-04 1.544e-04 + Br 2.075e-02 2.075e-02 + Cl 2.570e-03 2.570e-03 + K 2.329e-02 2.329e-02 + Na 2.724e-05 2.724e-05 ----------------------------Description of solution---------------------------- - pH = 7.093 Charge balance - pe = 14.353 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1683 - Density (g/cm³) = 1.00160 - Volume (L) = 1.00079 - Viscosity (mPa s) = 1.77534 + pH = 7.062 Charge balance + pe = 14.391 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1764 + Density (g/cm³) = 1.00182 + Volume (L) = 1.00084 + Viscosity (mPa s) = 1.77408 Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.230e-02 + Ionic strength (mol/kgw) = 2.332e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -7.409e-08 - Temperature (°C) = 0.21 - Pressure (atm) = 1.00 + Total alkalinity (eq/kg) = -8.198e-08 + Temperature (°C) = 0.22 Electrical balance (eq) = 9.945e-08 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 2 + Iterations = 3 Total H = 1.110124e+02 Total O = 5.550622e+01 @@ -9269,127 +5026,44 @@ X 4.800e-02 mol Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.075e-08 8.069e-08 -7.042 -7.093 -0.051 0.00 - OH- 1.683e-08 1.457e-08 -7.774 -7.837 -0.063 -6.03 + H+ 9.764e-08 8.665e-08 -7.010 -7.062 -0.052 0.00 + OH- 1.573e-08 1.358e-08 -7.803 -7.867 -0.064 -6.02 H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 1.626e-02 - Br- 1.626e-02 1.403e-02 -1.789 -1.853 -0.064 22.52 -Cl 6.041e-03 - Cl- 6.041e-03 5.238e-03 -2.219 -2.281 -0.062 16.55 - HCl 1.662e-10 1.698e-10 -9.779 -9.770 0.009 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -45.927 -45.925 0.002 28.65 -K 2.215e-02 - K+ 2.215e-02 1.918e-02 -1.655 -1.717 -0.062 7.85 -Na 1.544e-04 - Na+ 1.544e-04 1.346e-04 -3.811 -3.871 -0.059 -3.32 -O(0) 1.104e-09 - O2 5.521e-10 5.550e-10 -9.258 -9.256 0.002 27.53 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -42.91 -45.93 -3.01 H2 - H2O(g) -2.20 -0.00 2.20 H2O - Halite -7.70 -6.15 1.55 NaCl - O2(g) -6.59 -9.26 -2.66 O2 - Sylvite -4.76 -4.00 0.76 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using mix 25. -Using exchange 25. Exchange assemblage after simulation 4. - -Mixture 25. - - 0.000e+00 Solution 24 Solution after simulation 4. - 1.000e+00 Solution 25 Solution after simulation 4. - 0.000e+00 Solution 26 Solution after simulation 4. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.773e-02 4.773e-02 9.944e-01 0.000 - NaX 2.681e-04 2.681e-04 5.586e-03 -0.059 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 1.655e-02 1.655e-02 - Cl 5.807e-03 5.807e-03 - K 2.224e-02 2.224e-02 - Na 1.082e-04 1.082e-04 - -----------------------------Description of solution---------------------------- - - pH = 7.093 Charge balance - pe = 14.360 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1685 - Density (g/cm³) = 1.00161 - Volume (L) = 1.00079 - Viscosity (mPa s) = 1.77888 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.235e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -7.418e-08 - Temperature (°C) = 0.15 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.944e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 2 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 9.076e-08 8.069e-08 -7.042 -7.093 -0.051 0.00 - OH- 1.674e-08 1.449e-08 -7.776 -7.839 -0.063 -6.03 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 1.655e-02 - Br- 1.655e-02 1.428e-02 -1.781 -1.845 -0.064 22.51 -Cl 5.807e-03 - Cl- 5.807e-03 5.034e-03 -2.236 -2.298 -0.062 16.55 - HCl 1.597e-10 1.633e-10 -9.797 -9.787 0.010 (0) +Br 2.075e-02 + Br- 2.075e-02 1.786e-02 -1.683 -1.748 -0.065 22.52 +Cl 2.570e-03 + Cl- 2.570e-03 2.222e-03 -2.590 -2.653 -0.063 16.56 + HCl 7.561e-11 7.735e-11 -10.121 -10.112 0.010 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -45.942 -45.940 0.002 28.65 -K 2.224e-02 - K+ 2.224e-02 1.927e-02 -1.653 -1.715 -0.062 7.85 -Na 1.082e-04 - Na+ 1.082e-04 9.439e-05 -3.966 -4.025 -0.059 -3.33 -O(0) 1.122e-09 - O2 5.612e-10 5.641e-10 -9.251 -9.249 0.002 27.51 +K 2.329e-02 + K+ 2.329e-02 2.012e-02 -1.633 -1.696 -0.064 7.85 +Na 2.724e-05 + Na+ 2.724e-05 2.370e-05 -4.565 -4.625 -0.060 -3.31 +O(0) 1.193e-09 + O2 5.966e-10 5.998e-10 -9.224 -9.222 0.002 27.53 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(273 K, 1 atm) H2(g) -42.93 -45.94 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - Halite -7.87 -6.32 1.55 NaCl - O2(g) -6.59 -9.25 -2.66 O2 - Sylvite -4.78 -4.01 0.76 KCl + H2O(g) -2.20 -0.00 2.20 H2O + Halite -8.83 -7.28 1.55 NaCl + O2(g) -6.56 -9.22 -2.66 O2 + Sylvite -5.11 -4.35 0.77 KCl **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. -Using mix 26. -Using exchange 26. Exchange assemblage after simulation 4. +Using mix 9. +Using exchange 9. Exchange assemblage after simulation 6. -Mixture 26. +Mixture 9. - 0.000e+00 Solution 25 Solution after simulation 4. - 1.000e+00 Solution 26 Solution after simulation 4. - 0.000e+00 Solution 27 Solution after simulation 4. + 0.000e+00 Solution 8 Solution after simulation 6. + 1.000e+00 Solution 9 Solution after simulation 6. + 0.000e+00 Solution 10 Solution after simulation 6. -----------------------------Exchange composition------------------------------ @@ -9398,118 +5072,34 @@ X 4.800e-02 mol Equiv- Equivalent Log Species Moles alents Fraction Gamma - KX 4.781e-02 4.781e-02 9.961e-01 0.000 - NaX 1.870e-04 1.870e-04 3.896e-03 -0.059 + KX 4.798e-02 4.798e-02 9.997e-01 0.000 + NaX 1.662e-05 1.662e-05 3.462e-04 -0.061 -----------------------------Solution composition------------------------------ Elements Molality Moles - Br 1.679e-02 1.679e-02 - Cl 5.612e-03 5.612e-03 - K 2.232e-02 2.232e-02 - Na 7.562e-05 7.562e-05 + Br 2.177e-02 2.177e-02 + Cl 1.765e-03 1.765e-03 + K 2.352e-02 2.352e-02 + Na 7.034e-06 7.034e-06 ----------------------------Description of solution---------------------------- - pH = 7.093 Charge balance - pe = 14.366 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1687 - Density (g/cm³) = 1.00162 - Volume (L) = 1.00080 - Viscosity (mPa s) = 1.78146 + pH = 7.061 Charge balance + pe = 14.419 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1773 + Density (g/cm³) = 1.00186 + Volume (L) = 1.00086 + Viscosity (mPa s) = 1.78288 Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.240e-02 + Ionic strength (mol/kgw) = 2.353e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -7.425e-08 - Temperature (°C) = 0.11 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.944e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 2 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 9.076e-08 8.069e-08 -7.042 -7.093 -0.051 0.00 - OH- 1.667e-08 1.443e-08 -7.778 -7.841 -0.063 -6.04 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 1.679e-02 - Br- 1.679e-02 1.448e-02 -1.775 -1.839 -0.064 22.50 -Cl 5.612e-03 - Cl- 5.612e-03 4.864e-03 -2.251 -2.313 -0.062 16.54 - HCl 1.544e-10 1.578e-10 -9.811 -9.802 0.010 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -45.953 -45.951 0.002 28.65 -K 2.232e-02 - K+ 2.232e-02 1.933e-02 -1.651 -1.714 -0.062 7.84 -Na 7.562e-05 - Na+ 7.562e-05 6.594e-05 -4.121 -4.181 -0.059 -3.33 -O(0) 1.138e-09 - O2 5.689e-10 5.718e-10 -9.245 -9.243 0.002 27.51 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -42.94 -45.95 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - Halite -8.04 -6.49 1.55 NaCl - O2(g) -6.58 -9.24 -2.66 O2 - Sylvite -4.79 -4.03 0.76 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using mix 27. -Using exchange 27. Exchange assemblage after simulation 4. - -Mixture 27. - - 0.000e+00 Solution 26 Solution after simulation 4. - 1.000e+00 Solution 27 Solution after simulation 4. - 0.000e+00 Solution 28 Solution after simulation 4. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.787e-02 4.787e-02 9.973e-01 0.000 - NaX 1.312e-04 1.312e-04 2.734e-03 -0.060 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 1.698e-02 1.698e-02 - Cl 5.455e-03 5.455e-03 - K 2.238e-02 2.238e-02 - Na 5.313e-05 5.313e-05 - -----------------------------Description of solution---------------------------- - - pH = 7.093 Charge balance - pe = 14.370 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1688 - Density (g/cm³) = 1.00162 - Volume (L) = 1.00080 - Viscosity (mPa s) = 1.78330 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.244e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -7.429e-08 + Total alkalinity (eq/kg) = -8.253e-08 Temperature (°C) = 0.08 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.944e-08 + Electrical balance (eq) = 9.945e-08 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 2 + Iterations = 3 Total H = 1.110124e+02 Total O = 5.550622e+01 @@ -9518,44 +5108,44 @@ X 4.800e-02 mol Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.077e-08 8.068e-08 -7.042 -7.093 -0.051 0.00 - OH- 1.662e-08 1.438e-08 -7.779 -7.842 -0.063 -6.04 + H+ 9.795e-08 8.690e-08 -7.009 -7.061 -0.052 0.00 + OH- 1.547e-08 1.335e-08 -7.810 -7.875 -0.064 -6.04 H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 1.698e-02 - Br- 1.698e-02 1.465e-02 -1.770 -1.834 -0.064 22.50 -Cl 5.455e-03 - Cl- 5.455e-03 4.728e-03 -2.263 -2.325 -0.062 16.54 - HCl 1.501e-10 1.534e-10 -9.824 -9.814 0.010 (0) +Br 2.177e-02 + Br- 2.177e-02 1.872e-02 -1.662 -1.728 -0.066 22.50 +Cl 1.765e-03 + Cl- 1.765e-03 1.526e-03 -2.753 -2.817 -0.063 16.54 + HCl 5.210e-11 5.331e-11 -10.283 -10.273 0.010 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -45.961 -45.959 0.002 28.65 -K 2.238e-02 - K+ 2.238e-02 1.938e-02 -1.650 -1.713 -0.062 7.84 -Na 5.313e-05 - Na+ 5.313e-05 4.632e-05 -4.275 -4.334 -0.060 -3.34 -O(0) 1.150e-09 - O2 5.750e-10 5.779e-10 -9.240 -9.238 0.002 27.50 + H2 0.000e+00 0.000e+00 -45.994 -45.992 0.002 28.65 +K 2.352e-02 + K+ 2.352e-02 2.031e-02 -1.628 -1.692 -0.064 7.84 +Na 7.034e-06 + Na+ 7.034e-06 6.117e-06 -5.153 -5.213 -0.061 -3.33 +O(0) 1.331e-09 + O2 6.656e-10 6.693e-10 -9.177 -9.174 0.002 27.50 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(273 K, 1 atm) - H2(g) -42.95 -45.96 -3.01 H2 + H2(g) -42.98 -45.99 -3.01 H2 H2O(g) -2.21 -0.00 2.21 H2O - Halite -8.21 -6.66 1.55 NaCl - O2(g) -6.58 -9.24 -2.66 O2 - Sylvite -4.80 -4.04 0.76 KCl + Halite -9.58 -8.03 1.55 NaCl + O2(g) -6.51 -9.17 -2.66 O2 + Sylvite -5.27 -4.51 0.76 KCl **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. -Using mix 28. -Using exchange 28. Exchange assemblage after simulation 4. +Using mix 10. +Using exchange 10. Exchange assemblage after simulation 6. -Mixture 28. +Mixture 10. - 0.000e+00 Solution 27 Solution after simulation 4. - 1.000e+00 Solution 28 Solution after simulation 4. - 0.000e+00 Solution 29 Solution after simulation 4. + 0.000e+00 Solution 9 Solution after simulation 6. + 1.000e+00 Solution 10 Solution after simulation 6. + 0.000e+00 Solution 11 Solution after simulation 6. -----------------------------Exchange composition------------------------------ @@ -9564,35 +5154,34 @@ X 4.800e-02 mol Equiv- Equivalent Log Species Moles alents Fraction Gamma - KX 4.791e-02 4.791e-02 9.980e-01 0.000 - NaX 9.436e-05 9.436e-05 1.966e-03 -0.060 + KX 4.800e-02 4.800e-02 9.999e-01 0.000 + NaX 4.922e-06 4.922e-06 1.025e-04 -0.061 -----------------------------Solution composition------------------------------ Elements Molality Moles - Br 1.713e-02 1.713e-02 - Cl 5.337e-03 5.337e-03 - K 2.243e-02 2.243e-02 - Na 3.825e-05 3.825e-05 + Br 2.225e-02 2.225e-02 + Cl 1.383e-03 1.383e-03 + K 2.363e-02 2.363e-02 + Na 2.092e-06 2.092e-06 ----------------------------Description of solution---------------------------- - pH = 7.093 Charge balance - pe = 14.373 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1689 - Density (g/cm³) = 1.00163 - Volume (L) = 1.00081 - Viscosity (mPa s) = 1.78454 + pH = 7.060 Charge balance + pe = 14.430 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 0°C) = 1778 + Density (g/cm³) = 1.00188 + Volume (L) = 1.00087 + Viscosity (mPa s) = 1.78568 Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.246e-02 + Ionic strength (mol/kgw) = 2.363e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -7.433e-08 - Temperature (°C) = 0.06 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.944e-08 + Total alkalinity (eq/kg) = -8.279e-08 + Temperature (°C) = 0.03 + Electrical balance (eq) = 9.945e-08 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 2 + Iterations = 3 Total H = 1.110124e+02 Total O = 5.550622e+01 @@ -9601,210 +5190,45 @@ X 4.800e-02 mol Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 9.077e-08 8.068e-08 -7.042 -7.093 -0.051 0.00 - OH- 1.659e-08 1.435e-08 -7.780 -7.843 -0.063 -6.05 + H+ 9.813e-08 8.704e-08 -7.008 -7.060 -0.052 0.00 + OH- 1.538e-08 1.327e-08 -7.813 -7.877 -0.064 -6.05 H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 1.713e-02 - Br- 1.713e-02 1.477e-02 -1.766 -1.831 -0.064 22.49 -Cl 5.337e-03 - Cl- 5.337e-03 4.626e-03 -2.273 -2.335 -0.062 16.54 - HCl 1.468e-10 1.501e-10 -9.833 -9.824 0.010 (0) +Br 2.225e-02 + Br- 2.225e-02 1.913e-02 -1.653 -1.718 -0.066 22.49 +Cl 1.383e-03 + Cl- 1.383e-03 1.195e-03 -2.859 -2.923 -0.063 16.54 + HCl 4.088e-11 4.184e-11 -10.388 -10.378 0.010 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -45.967 -45.965 0.002 28.65 -K 2.243e-02 - K+ 2.243e-02 1.942e-02 -1.649 -1.712 -0.063 7.84 -Na 3.825e-05 - Na+ 3.825e-05 3.335e-05 -4.417 -4.477 -0.060 -3.34 -O(0) 1.159e-09 - O2 5.795e-10 5.826e-10 -9.237 -9.235 0.002 27.50 + H2 0.000e+00 0.000e+00 -46.015 -46.012 0.002 28.65 +K 2.363e-02 + K+ 2.363e-02 2.040e-02 -1.627 -1.690 -0.064 7.84 +Na 2.092e-06 + Na+ 2.092e-06 1.819e-06 -5.680 -5.740 -0.061 -3.34 +O(0) 1.407e-09 + O2 7.033e-10 7.071e-10 -9.153 -9.151 0.002 27.49 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(273 K, 1 atm) - H2(g) -42.95 -45.96 -3.01 H2 + H2(g) -43.00 -46.01 -3.01 H2 H2O(g) -2.21 -0.00 2.21 H2O - Halite -8.36 -6.81 1.55 NaCl - O2(g) -6.58 -9.23 -2.66 O2 - Sylvite -4.81 -4.05 0.76 KCl + Halite -10.21 -8.66 1.55 NaCl + O2(g) -6.49 -9.15 -2.66 O2 + Sylvite -5.38 -4.61 0.76 KCl **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. -Using mix 29. -Using exchange 29. Exchange assemblage after simulation 4. - -Mixture 29. - - 0.000e+00 Solution 28 Solution after simulation 4. - 1.000e+00 Solution 29 Solution after simulation 4. - 0.000e+00 Solution 30 Solution after simulation 4. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.793e-02 4.793e-02 9.985e-01 0.000 - NaX 7.208e-05 7.208e-05 1.502e-03 -0.060 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 1.722e-02 1.722e-02 - Cl 5.259e-03 5.259e-03 - K 2.245e-02 2.245e-02 - Na 2.924e-05 2.924e-05 - -----------------------------Description of solution---------------------------- - - pH = 7.093 Charge balance - pe = 14.375 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1690 - Density (g/cm³) = 1.00163 - Volume (L) = 1.00081 - Viscosity (mPa s) = 1.78531 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.248e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -7.435e-08 - Temperature (°C) = 0.05 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.944e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 2 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 9.077e-08 8.068e-08 -7.042 -7.093 -0.051 0.00 - OH- 1.657e-08 1.434e-08 -7.781 -7.844 -0.063 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 1.722e-02 - Br- 1.722e-02 1.486e-02 -1.764 -1.828 -0.064 22.49 -Cl 5.259e-03 - Cl- 5.259e-03 4.558e-03 -2.279 -2.341 -0.062 16.54 - HCl 1.447e-10 1.479e-10 -9.840 -9.830 0.010 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -45.971 -45.968 0.002 28.65 -K 2.245e-02 - K+ 2.245e-02 1.944e-02 -1.649 -1.711 -0.063 7.84 -Na 2.924e-05 - Na+ 2.924e-05 2.549e-05 -4.534 -4.594 -0.060 -3.34 -O(0) 1.165e-09 - O2 5.826e-10 5.856e-10 -9.235 -9.232 0.002 27.50 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -42.96 -45.97 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - Halite -8.48 -6.93 1.55 NaCl - O2(g) -6.57 -9.23 -2.66 O2 - Sylvite -4.82 -4.05 0.76 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -Using mix 30. -Using exchange 30. Exchange assemblage after simulation 4. - -Mixture 30. - - 0.000e+00 Solution 29 Solution after simulation 4. - 1.000e+00 Solution 30 Solution after simulation 4. - 0.000e+00 Solution 31 Solution after simulation 4. - ------------------------------Exchange composition------------------------------ - -X 4.800e-02 mol - - Equiv- Equivalent Log - Species Moles alents Fraction Gamma - - KX 4.794e-02 4.794e-02 9.987e-01 0.000 - NaX 6.161e-05 6.161e-05 1.284e-03 -0.060 - ------------------------------Solution composition------------------------------ - - Elements Molality Moles - - Br 1.727e-02 1.727e-02 - Cl 5.220e-03 5.220e-03 - K 2.247e-02 2.247e-02 - Na 2.500e-05 2.500e-05 - -----------------------------Description of solution---------------------------- - - pH = 7.093 Charge balance - pe = 14.376 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 0°C) = 1691 - Density (g/cm³) = 1.00163 - Volume (L) = 1.00081 - Viscosity (mPa s) = 1.78567 - Activity of water = 0.999 - Ionic strength (mol/kgw) = 2.249e-02 - Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -7.436e-08 - Temperature (°C) = 0.04 - Pressure (atm) = 1.00 - Electrical balance (eq) = 9.944e-08 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 2 - Total H = 1.110124e+02 - Total O = 5.550622e+01 - -----------------------------Distribution of species---------------------------- - - Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol - - H+ 9.077e-08 8.068e-08 -7.042 -7.093 -0.051 0.00 - OH- 1.656e-08 1.433e-08 -7.781 -7.844 -0.063 -6.05 - H2O 5.551e+01 9.992e-01 1.744 -0.000 0.000 18.02 -Br 1.727e-02 - Br- 1.727e-02 1.490e-02 -1.763 -1.827 -0.064 22.49 -Cl 5.220e-03 - Cl- 5.220e-03 4.523e-03 -2.282 -2.345 -0.062 16.53 - HCl 1.436e-10 1.468e-10 -9.843 -9.833 0.010 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -45.972 -45.970 0.002 28.65 -K 2.247e-02 - K+ 2.247e-02 1.945e-02 -1.648 -1.711 -0.063 7.84 -Na 2.500e-05 - Na+ 2.500e-05 2.180e-05 -4.602 -4.662 -0.060 -3.34 -O(0) 1.168e-09 - O2 5.841e-10 5.872e-10 -9.233 -9.231 0.002 27.50 - -------------------------------Saturation indices------------------------------- - - Phase SI** log IAP log K(273 K, 1 atm) - - H2(g) -42.96 -45.97 -3.01 H2 - H2O(g) -2.21 -0.00 2.21 H2O - Halite -8.55 -7.01 1.55 NaCl - O2(g) -6.57 -9.23 -2.66 O2 - Sylvite -4.82 -4.06 0.76 KCl - -**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. - For ideal gases, phi = 1. - -WARNING: -For balancing negative concentrations in MCD, added in total to the system: -WARNING: 6.3961e-12 moles Na. ------------------ End of simulation. ------------------ ------------------------------------ -Reading input data for simulation 5. +Reading input data for simulation 7. ------------------------------------ +------------------------------- +End of Run after 0.327 Seconds. +------------------------------- + From 46e71825e0d0a81858837381c57ecd149b39efba Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Wed, 16 Oct 2024 21:12:05 -0600 Subject: [PATCH 222/384] Tony's tweak to transport, updated RELEASE.TXT --- RELEASE.TXT | 9 ++++++--- 1 file changed, 6 insertions(+), 3 deletions(-) diff --git a/RELEASE.TXT b/RELEASE.TXT index 90c99ad9..fe1208dc 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -3,8 +3,8 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ ----------------- October 8, 2024 ----------------- - PHREEQC: Improved algorithem for transport of heat in TRANSPORT, and included - additional viscosity effects in transport calculations. + PHREEQC: Revised the multicomponent diffusion calculation of heat and solutes, + accounting now for the heat also for the T-dependent viscosity of the solutions. ----------------- October 8, 2024 @@ -17,7 +17,10 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ October 8, 2024 ----------------- PHREEQC: Fixed bug in MIX that produced erroneous temperature and pressure - if the solutions being mixed did not have 1 kg of water. + if the solutions being mixed did not have 1 kg of water. (Note that PHREEQC does + not consider the heat content of the solutions when the temperature of the mixture + is calculated.) + Version 3.8.2: August 29, 2024 ----------------- From c703f2f3e055b9157a06a59f09926a5caba04764 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Mon, 21 Oct 2024 18:46:00 -0600 Subject: [PATCH 223/384] [phreeqc3] Updated outputs for 3.8.3 --- RELEASE.TXT | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/RELEASE.TXT b/RELEASE.TXT index fe1208dc..c16e29ad 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -9,9 +9,9 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ ----------------- October 8, 2024 ----------------- - PHREEQC: Corrected spelling errors thoughout PHREEQC as supplied by Mike Toews. + PHREEQC: Corrected spelling errors throughout PHREEQC as supplied by Mike Toews. Modified "lamda" to "lambda" internally as suggested by Toews, but "lamda" and - "lambda" are both acceptable in Ptzer database files for backward compatibility. + "lambda" are both acceptable in Pitzer database files for backward compatibility. ----------------- October 8, 2024 From 4a6ad41ab22a95803c115b7464ae27664f1ba9db Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Mon, 21 Oct 2024 18:46:00 -0600 Subject: [PATCH 224/384] [phreeqc3] Updated outputs for 3.8.3 --- ex11trn.sel | 20 +++---- ex12.sel | 120 +++++++++++++++++++-------------------- ex12a.sel | 160 ++++++++++++++++++++++++++-------------------------- ex17b.out | 2 +- ex18.out | 6 +- ex2.out | 138 ++++++++++++++++++++++---------------------- ex21.out | 4 +- ex22.out | 124 ++++++++++++++++++++-------------------- ex3.out | 68 +++++++++++----------- 9 files changed, 321 insertions(+), 321 deletions(-) diff --git a/ex11trn.sel b/ex11trn.sel index 79b36acc..c7d13157 100644 --- a/ex11trn.sel +++ b/ex11trn.sel @@ -56,28 +56,28 @@ 54 8.761960899973e-04 1.119606249493e-03 3.238039099878e-04 0.000000000000e+00 1.362500000000e+00 55 8.344533301406e-04 1.131625845338e-03 3.655466698441e-04 0.000000000000e+00 1.387500000000e+00 56 7.847919650475e-04 1.142020362045e-03 4.152080349369e-04 0.000000000000e+00 1.412500000000e+00 - 57 7.284538372959e-04 1.150973656035e-03 4.715461626881e-04 3.531139650212e-28 1.437500000000e+00 + 57 7.284538372959e-04 1.150973656035e-03 4.715461626881e-04 3.531139650213e-28 1.437500000000e+00 58 6.674661295231e-04 1.158656441394e-03 5.325338704605e-04 4.216133178352e-26 1.462500000000e+00 59 6.042301758578e-04 1.165225432017e-03 5.957698241254e-04 2.112623929847e-24 1.487500000000e+00 - 60 5.410707042902e-04 1.170823053923e-03 6.589292956926e-04 9.154192241147e-23 1.512500000000e+00 - 61 4.799177066706e-04 1.175577598779e-03 7.200822933118e-04 3.514353871101e-21 1.537500000000e+00 + 60 5.410707042902e-04 1.170823053923e-03 6.589292956926e-04 9.154192241148e-23 1.512500000000e+00 + 61 4.799177066706e-04 1.175577598779e-03 7.200822933118e-04 3.514353871102e-21 1.537500000000e+00 62 4.221746364521e-04 1.179603706071e-03 7.778253635299e-04 1.207213754642e-19 1.562500000000e+00 63 3.687296865690e-04 1.183003078326e-03 8.312703134126e-04 3.694071268301e-18 1.587500000000e+00 - 64 3.200378094467e-04 1.185865350144e-03 8.799621905343e-04 1.035721724514e-16 1.612500000000e+00 + 64 3.200378094467e-04 1.185865350144e-03 8.799621905343e-04 1.035721724513e-16 1.612500000000e+00 65 2.762284431584e-04 1.188269047043e-03 9.237715568171e-04 2.657316487700e-15 1.637500000000e+00 - 66 2.371960440990e-04 1.190282583741e-03 9.628039557559e-04 6.272120678986e-14 1.662500000000e+00 + 66 2.371960440990e-04 1.190282583741e-03 9.628039557559e-04 6.272120678985e-14 1.662500000000e+00 67 2.026802660677e-04 1.191965263410e-03 9.973197311041e-04 1.404108206640e-12 1.687500000000e+00 68 1.723175379753e-04 1.193368249524e-03 1.027682402586e-03 2.970943178734e-11 1.712500000000e+00 - 69 1.456986526365e-04 1.194535490349e-03 1.054300174205e-03 5.865691832667e-10 1.737500000000e+00 - 70 1.223834694923e-04 1.195504582884e-03 1.077593516927e-03 1.150677988346e-08 1.762500000000e+00 - 71 1.019262303182e-04 1.196307568531e-03 1.097657241059e-03 2.082643005568e-07 1.787500000000e+00 + 69 1.456986526365e-04 1.194535490349e-03 1.054300174205e-03 5.865691832666e-10 1.737500000000e+00 + 70 1.223834694923e-04 1.195504582884e-03 1.077593516927e-03 1.150677988345e-08 1.762500000000e+00 + 71 1.019262303182e-04 1.196307568531e-03 1.097657241059e-03 2.082643005567e-07 1.787500000000e+00 72 8.381480436917e-05 1.196971656899e-03 1.109525476375e-03 3.329859617448e-06 1.812500000000e+00 73 6.668225222783e-05 1.197519877322e-03 1.024937206784e-03 5.419027048446e-05 1.837500000000e+00 74 5.053198367604e-05 1.197971659937e-03 7.350507107061e-04 2.072086528030e-04 1.862500000000e+00 75 3.879701357395e-05 1.198343349753e-03 5.356918142767e-04 3.127555860708e-04 1.887500000000e+00 76 3.007678322722e-05 1.198648658204e-03 4.021188008094e-04 3.839022079790e-04 1.912500000000e+00 77 2.344463549483e-05 1.198899057198e-03 3.068522371411e-04 4.348515636801e-04 1.937500000000e+00 - 78 1.834047972307e-05 1.199104120993e-03 2.366187847944e-04 4.725203677398e-04 1.962500000000e+00 + 78 1.834047972307e-05 1.199104120993e-03 2.366187847945e-04 4.725203677398e-04 1.962500000000e+00 79 1.438416333582e-05 1.199271821253e-03 1.838015689086e-04 5.009071338768e-04 1.987500000000e+00 80 1.130287552755e-05 1.199408780437e-03 1.435541337153e-04 5.225714953778e-04 2.012500000000e+00 81 8.894854154099e-06 1.199520488471e-03 1.125953626079e-04 5.392548916185e-04 2.037500000000e+00 @@ -86,7 +86,7 @@ 84 4.362237388672e-06 1.199745698858e-03 5.532050326743e-05 5.701586296717e-04 2.112500000000e+00 85 3.445231625616e-06 1.199794545990e-03 4.384740222256e-05 5.763536830758e-04 2.137500000000e+00 86 2.722483623513e-06 1.199834157394e-03 3.481279241283e-05 5.812323619826e-04 2.162500000000e+00 - 87 2.152343734153e-06 1.199866246232e-03 2.768046312192e-05 5.850835965725e-04 2.187500000000e+00 + 87 2.152343734153e-06 1.199866246232e-03 2.768046312193e-05 5.850835965725e-04 2.187500000000e+00 88 1.702259902002e-06 1.199892215323e-03 2.203774543638e-05 5.881299973317e-04 2.212500000000e+00 89 1.346733078607e-06 1.199913211686e-03 1.756522033724e-05 5.905440232928e-04 2.237500000000e+00 90 1.065752199293e-06 1.199930171882e-03 1.401446577327e-05 5.924598910143e-04 2.262500000000e+00 diff --git a/ex12.sel b/ex12.sel index d549d47f..50a93134 100644 --- a/ex12.sel +++ b/ex12.sel @@ -64,63 +64,63 @@ 19.5 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 19.8333 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 0 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 - 0.166666 2.173421535788e+01 2.173403615953e+01 2.265963837554e+00 2.269804797032e+01 - 0.499999 1.732877881413e+01 1.732819001087e+01 6.671809981447e+00 2.011807085412e+01 - 0.833333 1.328084086748e+01 1.327978568454e+01 1.072021430458e+01 1.760856603204e+01 - 1.16667 9.764795286473e+00 9.763307030585e+00 1.423669295683e+01 1.521227157407e+01 - 1.5 6.876991640216e+00 6.875215357913e+00 1.712478462908e+01 1.296595961051e+01 - 1.83333 4.633455928133e+00 4.631602980060e+00 1.936839700747e+01 1.089879733963e+01 - 2.16666 2.983966658034e+00 2.982242889576e+00 2.101775709910e+01 9.031344427781e+00 - 2.5 1.835677067050e+00 1.834226374349e+00 2.216577361580e+01 7.375229710910e+00 - 2.83333 1.078314727713e+00 1.077198297073e+00 2.292280169464e+01 5.933476222844e+00 - 3.16666 6.047305557783e-01 6.039382767914e-01 2.339606171644e+01 4.701379781820e+00 - 3.5 3.237709470080e-01 3.232490525632e-01 2.367675094204e+01 3.667800399953e+00 - 3.83333 1.655104664086e-01 1.651896628002e-01 2.383481033299e+01 2.816701882844e+00 - 4.16666 8.080257204240e-02 8.061777229753e-02 2.391938222449e+01 2.128773573946e+00 - 4.5 3.768568646672e-02 3.758557520676e-02 2.396241442239e+01 1.582986272153e+00 - 4.83333 1.679767756894e-02 1.674652868459e-02 2.398325346955e+01 1.157966472262e+00 - 5.16666 7.158752063679e-03 7.134045500782e-03 2.399286595322e+01 8.331126368298e-01 - 5.49999 2.918449214332e-03 2.907143229955e-03 2.399709285586e+01 5.894176946328e-01 - 5.83333 1.138722696040e-03 1.133812460285e-03 2.399886618691e+01 4.099979928622e-01 - 6.16666 4.254688736287e-04 4.234417524596e-04 2.399957655782e+01 2.803568840129e-01 - 6.49999 1.523139982618e-04 1.515173752178e-04 2.399984848233e+01 1.884293356574e-01 - 6.83333 5.227267557720e-05 5.197429168637e-05 2.399994802552e+01 1.244625136586e-01 - 7.16666 1.720732480116e-05 1.710067686712e-05 2.399998289920e+01 8.078763518547e-02 - 7.49999 5.436192373459e-06 5.399780020770e-06 2.399999460014e+01 5.153271367855e-02 - 7.83333 1.649130959657e-06 1.637243353861e-06 2.399999836271e+01 3.231654723819e-02 - 8.16666 4.806491381349e-07 4.769347036557e-07 2.399999952303e+01 1.995365519988e-02 - 8.49999 1.346725366297e-07 1.335606226401e-07 2.399999986642e+01 1.218958904340e-02 - 8.83332 3.634765898121e-08 3.602792250445e-08 2.399999996396e+01 7.477287156789e-03 - 9.16666 9.688623034758e-09 9.597781456237e-09 2.399999999039e+01 4.798487471577e-03 - 9.49999 3.521368975345e-09 3.486221174512e-09 2.399999999651e+01 3.529761278078e-03 - 9.83332 5.266906600210e-09 5.215747970494e-09 2.399999999478e+01 3.350250042338e-03 - 10.1667 1.826871464229e-08 1.810246493779e-08 2.399999998189e+01 4.187235209478e-03 - 10.5 6.734356349056e-08 6.676736728859e-08 2.399999993322e+01 6.195716015130e-03 - 10.8333 2.402639314420e-07 2.383343475339e-07 2.399999976165e+01 9.768664014259e-03 - 11.1667 8.242843018529e-07 8.180891310115e-07 2.399999918189e+01 1.557505013666e-02 - 11.5 2.716922549622e-06 2.697877300187e-06 2.399999730208e+01 2.462264894765e-02 - 11.8333 8.598959192629e-06 8.542946913518e-06 2.399999145699e+01 3.834165440595e-02 - 12.1667 2.611819663843e-05 2.596074280454e-05 2.399997403917e+01 5.868305693760e-02 - 12.5 7.608967015818e-05 7.566701745618e-05 2.399992433285e+01 8.822247450200e-02 - 12.8333 2.124941138159e-04 2.114118449125e-04 2.399978858795e+01 1.302558794738e-01 - 13.1667 5.685367828663e-04 5.658959587685e-04 2.399943410375e+01 1.888688939345e-01 - 13.5 1.456506511045e-03 1.450373187822e-03 2.399854962640e+01 2.689568433456e-01 - 13.8333 3.570772369452e-03 3.557230846966e-03 2.399644276858e+01 3.761696764504e-01 - 14.1667 8.372702446682e-03 8.344318209114e-03 2.399165568100e+01 5.167554989993e-01 - 14.5 1.876668623423e-02 1.871028306262e-02 2.398128971588e+01 6.972801618698e-01 - 14.8333 4.018855158439e-02 4.008246069532e-02 2.395991753791e+01 9.242091443386e-01 - 15.1667 8.218587185627e-02 8.199729506180e-02 2.391800270313e+01 1.203352315083e+00 - 15.5 1.604262488969e-01 1.601100284715e-01 2.383988996925e+01 1.539191520808e+00 - 15.8333 2.987859018573e-01 2.982865097097e-01 2.370171348749e+01 1.934133647612e+00 - 16.1667 5.307585250720e-01 5.300169112943e-01 2.346998308535e+01 2.387754908519e+00 - 16.5 8.989956902916e-01 8.979611508074e-01 2.310203884528e+01 2.896121734265e+00 - 16.8333 1.451582042996e+00 1.450226361452e+00 2.254977363414e+01 3.451285434101e+00 - 17.1666 2.233972730862e+00 2.232300602876e+00 2.176769939234e+01 4.041047732561e+00 - 17.5 3.276610346604e+00 3.274658958333e+00 2.072534103671e+01 4.649079608377e+00 - 17.8333 4.580032365347e+00 4.577856581120e+00 1.942214341402e+01 5.255445898756e+00 - 18.1666 6.101263069883e+00 6.098911107801e+00 1.790108888775e+01 5.837544906627e+00 - 18.5 7.746550873541e+00 7.744044086582e+00 1.625595590970e+01 6.371420572385e+00 - 18.8333 9.375124349924e+00 9.372456106636e+00 1.462754389061e+01 6.833351769770e+00 - 19.1666 1.081616435699e+01 1.081332243663e+01 1.318667756164e+01 7.201577340318e+00 - 19.5 1.189711477283e+01 1.189411416971e+01 1.210588582943e+01 7.457984760712e+00 - 19.8333 1.247718192302e+01 1.247408415261e+01 1.152591584704e+01 7.589581188889e+00 + 0.166666 2.173421535646e+01 2.173403615953e+01 2.265963837554e+00 2.269804797032e+01 + 0.499999 1.732877881136e+01 1.732819001087e+01 6.671809981447e+00 2.011807085412e+01 + 0.833333 1.328084086481e+01 1.327978568454e+01 1.072021430458e+01 1.760856603204e+01 + 1.16667 9.764795284605e+00 9.763307030585e+00 1.423669295683e+01 1.521227157407e+01 + 1.5 6.876991639258e+00 6.875215357913e+00 1.712478462908e+01 1.296595961051e+01 + 1.83333 4.633455927868e+00 4.631602980060e+00 1.936839700747e+01 1.089879733963e+01 + 2.16666 2.983966658160e+00 2.982242889576e+00 2.101775709910e+01 9.031344427781e+00 + 2.5 1.835677067321e+00 1.834226374349e+00 2.216577361580e+01 7.375229710910e+00 + 2.83333 1.078314727984e+00 1.077198297073e+00 2.292280169464e+01 5.933476222844e+00 + 3.16666 6.047305559881e-01 6.039382767914e-01 2.339606171644e+01 4.701379781820e+00 + 3.5 3.237709471477e-01 3.232490525632e-01 2.367675094204e+01 3.667800399953e+00 + 3.83333 1.655104664919e-01 1.651896628002e-01 2.383481033299e+01 2.816701882844e+00 + 4.16666 8.080257208790e-02 8.061777229753e-02 2.391938222449e+01 2.128773573946e+00 + 4.5 3.768568648974e-02 3.758557520676e-02 2.396241442239e+01 1.582986272153e+00 + 4.83333 1.679767757983e-02 1.674652868459e-02 2.398325346955e+01 1.157966472262e+00 + 5.16666 7.158752068527e-03 7.134045500783e-03 2.399286595322e+01 8.331126368298e-01 + 5.49999 2.918449216371e-03 2.907143229955e-03 2.399709285586e+01 5.894176946328e-01 + 5.83333 1.138722696853e-03 1.133812460285e-03 2.399886618691e+01 4.099979928622e-01 + 6.16666 4.254688739372e-04 4.234417524596e-04 2.399957655782e+01 2.803568840129e-01 + 6.49999 1.523139983733e-04 1.515173752178e-04 2.399984848233e+01 1.884293356574e-01 + 6.83333 5.227267561574e-05 5.197429168637e-05 2.399994802552e+01 1.244625136586e-01 + 7.16666 1.720732481390e-05 1.710067686712e-05 2.399998289920e+01 8.078763518547e-02 + 7.49999 5.436192377492e-06 5.399780020770e-06 2.399999460014e+01 5.153271367855e-02 + 7.83333 1.649130960882e-06 1.637243353861e-06 2.399999836271e+01 3.231654723819e-02 + 8.16666 4.806491384918e-07 4.769347036557e-07 2.399999952303e+01 1.995365519988e-02 + 8.49999 1.346725367296e-07 1.335606226401e-07 2.399999986642e+01 1.218958904340e-02 + 8.83332 3.634765900813e-08 3.602792250445e-08 2.399999996396e+01 7.477287156789e-03 + 9.16666 9.688623041821e-09 9.597781456237e-09 2.399999999039e+01 4.798487471577e-03 + 9.49999 3.521368977494e-09 3.486221174512e-09 2.399999999651e+01 3.529761278078e-03 + 9.83332 5.266906602284e-09 5.215747970494e-09 2.399999999478e+01 3.350250042338e-03 + 10.1667 1.826871464878e-08 1.810246493779e-08 2.399999998189e+01 4.187235209478e-03 + 10.5 6.734356351424e-08 6.676736728859e-08 2.399999993322e+01 6.195716015130e-03 + 10.8333 2.402639315261e-07 2.383343475339e-07 2.399999976165e+01 9.768664014259e-03 + 11.1667 8.242843021403e-07 8.180891310115e-07 2.399999918189e+01 1.557505013666e-02 + 11.5 2.716922550563e-06 2.697877300187e-06 2.399999730208e+01 2.462264894765e-02 + 11.8333 8.598959195576e-06 8.542946913518e-06 2.399999145699e+01 3.834165440595e-02 + 12.1667 2.611819664726e-05 2.596074280454e-05 2.399997403917e+01 5.868305693760e-02 + 12.5 7.608967018345e-05 7.566701745618e-05 2.399992433285e+01 8.822247450201e-02 + 12.8333 2.124941138848e-04 2.114118449125e-04 2.399978858795e+01 1.302558794738e-01 + 13.1667 5.685367830447e-04 5.658959587685e-04 2.399943410375e+01 1.888688939345e-01 + 13.5 1.456506511482e-03 1.450373187822e-03 2.399854962640e+01 2.689568433456e-01 + 13.8333 3.570772370464e-03 3.557230846966e-03 2.399644276858e+01 3.761696764504e-01 + 14.1667 8.372702448878e-03 8.344318209114e-03 2.399165568100e+01 5.167554989993e-01 + 14.5 1.876668623866e-02 1.871028306262e-02 2.398128971588e+01 6.972801618698e-01 + 14.8333 4.018855159260e-02 4.008246069532e-02 2.395991753791e+01 9.242091443387e-01 + 15.1667 8.218587186998e-02 8.199729506180e-02 2.391800270313e+01 1.203352315083e+00 + 15.5 1.604262489166e-01 1.601100284715e-01 2.383988996925e+01 1.539191520809e+00 + 15.8333 2.987859018794e-01 2.982865097097e-01 2.370171348749e+01 1.934133647612e+00 + 16.1667 5.307585250826e-01 5.300169112943e-01 2.346998308535e+01 2.387754908519e+00 + 16.5 8.989956902585e-01 8.979611508074e-01 2.310203884528e+01 2.896121734266e+00 + 16.8333 1.451582042860e+00 1.450226361452e+00 2.254977363414e+01 3.451285434102e+00 + 17.1666 2.233972730531e+00 2.232300602876e+00 2.176769939234e+01 4.041047732562e+00 + 17.5 3.276610345963e+00 3.274658958333e+00 2.072534103671e+01 4.649079608378e+00 + 17.8333 4.580032364282e+00 4.577856581120e+00 1.942214341402e+01 5.255445898757e+00 + 18.1666 6.101263068319e+00 6.098911107801e+00 1.790108888775e+01 5.837544906627e+00 + 18.5 7.746550871479e+00 7.744044086582e+00 1.625595590970e+01 6.371420572385e+00 + 18.8333 9.375124347455e+00 9.372456106636e+00 1.462754389061e+01 6.833351769771e+00 + 19.1666 1.081616435426e+01 1.081332243663e+01 1.318667756164e+01 7.201577340319e+00 + 19.5 1.189711476997e+01 1.189411416971e+01 1.210588582943e+01 7.457984760712e+00 + 19.8333 1.247718192013e+01 1.247408415261e+01 1.152591584704e+01 7.589581188890e+00 diff --git a/ex12a.sel b/ex12a.sel index caa7d6cc..4ad41f40 100644 --- a/ex12a.sel +++ b/ex12a.sel @@ -21,26 +21,26 @@ 18.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 19.5 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 0 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 -2.400000337355e-11 -2.400000684299e-11 - 0.5 1.686181418415e+01 1.686133609177e+01 7.138663899854e+00 2.011377529319e+01 4.381717856952e-06 5.068336357464e-04 - 1.5 6.421492325960e+00 6.419558988189e+00 1.758044099840e+01 1.294968671940e+01 1.730376476416e-05 5.127073405313e-04 - 2.5 1.759908541854e+00 1.758534659759e+00 2.224146533044e+01 7.342808261286e+00 3.561257293540e-05 9.186006161037e-05 - 3.5 3.571924631562e-01 3.567054178264e-01 2.364329457693e+01 3.623408283676e+00 4.959925524514e-05 -3.682506955347e-05 - 4.5 5.490209781371e-02 5.479279662416e-02 2.394520720113e+01 1.538555967128e+00 5.006313596864e-05 -1.968447681416e-05 - 5.5 6.484238380348e-03 6.467124486998e-03 2.399353287476e+01 5.556625533105e-01 3.820767165789e-05 -4.051252484614e-06 - 6.5 5.926340095484e-04 5.906785140029e-04 2.399940932133e+01 1.684990632467e-01 2.262672987221e-05 -4.873052767777e-07 - 7.5 4.190926756604e-05 4.174299654826e-05 2.399995825704e+01 4.224784404200e-02 1.054699173428e-05 -3.900783491551e-08 - 8.5 2.276345750780e-06 2.265781717011e-06 2.399999773430e+01 8.664946370886e-03 3.823149392516e-06 -2.221207693063e-09 - 9.5 1.396593677778e-07 1.389123928275e-07 2.399999986118e+01 2.055609847092e-03 - 10.5 1.138869021831e-06 1.133447609651e-06 2.399999886664e+01 4.374443607422e-03 - 11.5 2.090811414205e-05 2.082226931298e-05 2.399997917780e+01 2.044715368546e-02 - 12.5 2.951795282278e-04 2.941575642002e-04 2.399970584241e+01 7.995922685932e-02 - 13.5 3.221164570742e-03 3.212049565193e-03 2.399678795014e+01 2.567109777338e-01 - 14.5 2.715473190226e-02 2.709461903675e-02 2.397290538002e+01 6.850286499837e-01 - 15.5 1.753541123879e-01 1.750694114109e-01 2.382493058642e+01 1.533872870595e+00 - 16.5 8.525032220200e-01 8.515834471049e-01 2.314841654903e+01 2.902126148036e+00 - 17.5 3.032149931402e+00 3.030261194920e+00 2.096973880000e+01 4.663139220088e+00 - 18.5 7.550952821146e+00 7.548456392624e+00 1.645154360352e+01 6.385483516912e+00 - 19.5 1.235834674495e+01 1.235529368931e+01 1.164470631041e+01 7.468268986451e+00 + 0.5 1.686181418171e+01 1.686133609177e+01 7.138663899854e+00 2.011377529319e+01 4.381717856952e-06 5.068336357464e-04 + 1.5 6.421492325340e+00 6.419558988189e+00 1.758044099840e+01 1.294968671940e+01 1.730376476416e-05 5.127073405313e-04 + 2.5 1.759908542190e+00 1.758534659759e+00 2.224146533044e+01 7.342808261286e+00 3.561257293540e-05 9.186006161036e-05 + 3.5 3.571924633149e-01 3.567054178264e-01 2.364329457693e+01 3.623408283676e+00 4.959925524514e-05 -3.682506955347e-05 + 4.5 5.490209784602e-02 5.479279662416e-02 2.394520720113e+01 1.538555967128e+00 5.006313596864e-05 -1.968447681416e-05 + 5.5 6.484238384543e-03 6.467124486998e-03 2.399353287476e+01 5.556625533105e-01 3.820767165789e-05 -4.051252484614e-06 + 6.5 5.926340099388e-04 5.906785140030e-04 2.399940932133e+01 1.684990632467e-01 2.262672987221e-05 -4.873052767777e-07 + 7.5 4.190926759329e-05 4.174299654826e-05 2.399995825704e+01 4.224784404200e-02 1.054699173428e-05 -3.900783491551e-08 + 8.5 2.276345752225e-06 2.265781717011e-06 2.399999773430e+01 8.664946370886e-03 3.823149392516e-06 -2.221207693063e-09 + 9.5 1.396593678491e-07 1.389123928275e-07 2.399999986118e+01 2.055609847092e-03 + 10.5 1.138869022165e-06 1.133447609651e-06 2.399999886664e+01 4.374443607422e-03 + 11.5 2.090811414807e-05 2.082226931298e-05 2.399997917780e+01 2.044715368546e-02 + 12.5 2.951795283095e-04 2.941575642002e-04 2.399970584241e+01 7.995922685932e-02 + 13.5 3.221164571556e-03 3.212049565193e-03 2.399678795014e+01 2.567109777338e-01 + 14.5 2.715473190776e-02 2.709461903675e-02 2.397290538002e+01 6.850286499837e-01 + 15.5 1.753541124074e-01 1.750694114109e-01 2.382493058642e+01 1.533872870595e+00 + 16.5 8.525032219987e-01 8.515834471049e-01 2.314841654903e+01 2.902126148036e+00 + 17.5 3.032149930886e+00 3.030261194920e+00 2.096973880000e+01 4.663139220088e+00 + 18.5 7.550952819370e+00 7.548456392624e+00 1.645154360352e+01 6.385483516912e+00 + 19.5 1.235834674267e+01 1.235529368931e+01 1.164470631041e+01 7.468268986451e+00 0.166667 0.000000000000e+00 0.000000000000e+00 2.400000000000e+01 0.000000000000e+00 0.5 0.000000000000e+00 0.000000000000e+00 2.400000000000e+01 0.000000000000e+00 0.833333 0.000000000000e+00 0.000000000000e+00 2.400000000000e+01 0.000000000000e+00 @@ -101,64 +101,64 @@ 19.1667 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 19.5 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 19.8333 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 - 0.166667 2.173421305916e+01 2.173403386063e+01 2.265966136452e+00 2.269804666231e+01 - 0.5 1.732877230198e+01 1.732818349806e+01 6.671816494265e+00 2.011806700218e+01 9.000885944563e-08 3.998622946029e-05 - 0.833333 1.328083118787e+01 1.327977600374e+01 1.072022398538e+01 1.760855984595e+01 - 1.16667 9.764783869793e+00 9.763295612551e+00 1.423670437487e+01 1.521226338238e+01 - 1.5 6.876979954453e+00 6.875203671273e+00 1.712479631572e+01 1.296594983169e+01 1.040652470925e-06 5.706265744742e-05 - 1.83333 4.633445178532e+00 4.631592230628e+00 1.936840775690e+01 1.089878644681e+01 - 2.16667 2.983957613764e+00 2.982233846716e+00 2.101776614197e+01 9.031332911150e+00 - 2.5 1.835670035272e+00 1.834219344984e+00 2.216578064517e+01 7.375218041922e+00 3.202792299443e-06 1.617537638526e-05 - 2.83333 1.078309641703e+00 1.077193213980e+00 2.292280677773e+01 5.933464823767e+00 - 3.16667 6.047271172834e-01 6.039348411906e-01 2.339606515204e+01 4.701369003156e+00 - 3.5 3.237687663205e-01 3.232468743679e-01 2.367675312023e+01 3.667790507028e+00 5.217031892201e-06 -3.366526094913e-06 - 3.83333 1.655091653734e-01 1.651883636811e-01 2.383481163211e+01 2.816693051604e+00 - 4.16667 8.080184009388e-02 8.061704168687e-02 2.391938295510e+01 2.128765894911e+00 - 4.5 3.768529738011e-02 3.758518697824e-02 2.396241481061e+01 1.582979760724e+00 5.639342372485e-06 -2.476867168242e-06 - 4.83333 1.679748179371e-02 1.674633341902e-02 2.398325366481e+01 1.157961083143e+00 - 5.16667 7.158658672534e-03 7.133952391643e-03 2.399286604633e+01 8.331082803354e-01 - 5.5 2.918406916536e-03 2.907101078212e-03 2.399709289802e+01 5.894142528789e-01 4.455972089510e-06 -4.912290758279e-07 - 5.83333 1.138704483513e-03 1.133794318823e-03 2.399886620505e+01 4.099953343114e-01 - 6.16667 4.254614091982e-04 4.234343206137e-04 2.399957656525e+01 2.803548753976e-01 - 6.5 1.523110828883e-04 1.515144739607e-04 2.399984848524e+01 1.884278508358e-01 2.697942283073e-06 -4.814123673546e-08 - 6.83333 5.227158933236e-05 5.197321123247e-05 2.399994802660e+01 1.244614394110e-01 - 7.16667 1.720693831522e-05 1.710029263504e-05 2.399998289958e+01 8.078687428981e-02 - 7.5 5.436060934909e-06 5.399649415897e-06 2.399999460027e+01 5.153218579103e-02 1.262649985252e-06 -2.664487783140e-09 - 7.83333 1.649088195275e-06 1.637200882995e-06 2.399999836275e+01 3.231618817631e-02 - 8.16667 4.806358157844e-07 4.769214798034e-07 2.399999952305e+01 1.995341519604e-02 - 8.5 1.346685590700e-07 1.335566766312e-07 2.399999986642e+01 1.218943044882e-02 2.986653145795e-07 -8.898265268244e-11 - 8.83333 3.634651793240e-08 3.602679113544e-08 2.399999996396e+01 7.477181955864e-03 - 9.16667 9.688299803978e-09 9.597461159243e-09 2.399999999040e+01 4.798414843917e-03 - 9.5 3.521245209155e-09 3.486098607350e-09 2.399999999651e+01 3.529705336616e-03 - 9.83333 5.266729325119e-09 5.215572366276e-09 2.399999999478e+01 3.350197792357e-03 - 10.1667 1.826814042878e-08 1.810189577525e-08 2.399999998189e+01 4.187174719459e-03 - 10.5 6.734157441183e-08 6.676539459885e-08 2.399999993322e+01 6.195634766519e-03 - 10.8333 2.402572726136e-07 2.383277400061e-07 2.399999976166e+01 9.768547401637e-03 - 11.1667 8.242629300769e-07 8.180679126564e-07 2.399999918191e+01 1.557488011882e-02 - 11.5 2.716856871595e-06 2.697812059732e-06 2.399999730215e+01 2.462240289906e-02 - 11.8333 8.598766106045e-06 8.542755015542e-06 2.399999145719e+01 3.834130428025e-02 - 12.1667 2.611765408526e-05 2.596020332212e-05 2.399997403971e+01 5.868256892109e-02 - 12.5 7.608821445992e-05 7.566556929142e-05 2.399992433429e+01 8.822180939210e-02 - 12.8333 2.124903882618e-04 2.114081368791e-04 2.399978859166e+01 1.302549940497e-01 - 13.1667 5.685276979853e-04 5.658869124423e-04 2.399943411280e+01 1.888677435760e-01 - 13.5 1.456485427866e-03 1.450352184743e-03 2.399854964740e+01 2.689553860821e-01 - 13.8333 3.570725867122e-03 3.557184501357e-03 2.399644281492e+01 3.761678784769e-01 - 14.1667 8.372605102191e-03 8.344221152563e-03 2.399165577806e+01 5.167533414733e-01 - 14.5 1.876649314861e-02 1.871009047208e-02 2.398128990847e+01 6.972776485204e-01 - 14.8333 4.018818934234e-02 4.008209924661e-02 2.395991789936e+01 9.242063091066e-01 - 15.1667 8.218523044497e-02 8.199665482934e-02 2.391800334337e+01 1.203349228728e+00 - 15.5 1.604251797020e-01 1.601089608909e-01 2.383989103683e+01 1.539188295218e+00 - 15.8333 2.987842293055e-01 2.982848391787e-01 2.370171515802e+01 1.934130436525e+00 - 16.1667 5.307560799548e-01 5.300144684670e-01 2.346998552818e+01 2.387751903539e+00 - 16.5 8.989923689458e-01 8.979578317801e-01 2.310204216431e+01 2.896119155486e+00 - 16.8333 1.451577886835e+00 1.450222207355e+00 2.254977778824e+01 3.451283515303e+00 - 17.1667 2.233968006579e+00 2.232295880177e+00 2.176770411504e+01 4.041046701772e+00 - 17.5 3.276605594066e+00 3.274654206826e+00 2.072534578822e+01 4.649079665430e+00 - 17.8333 4.580028376255e+00 4.577852592597e+00 1.942214740254e+01 5.255447192243e+00 - 18.1667 6.101260773083e+00 6.098908811274e+00 1.790109118428e+01 5.837547513122e+00 - 18.5 7.746551133352e+00 7.744044346459e+00 1.625595564982e+01 6.371424480909e+00 - 18.8333 9.375127722697e+00 9.372459479193e+00 1.462754051805e+01 6.833356874077e+00 - 19.1667 1.081617088116e+01 1.081332896013e+01 1.318667103814e+01 7.201583440738e+00 - 19.5 1.189712387179e+01 1.189412326748e+01 1.210587673167e+01 7.457991576092e+00 - 19.8333 1.247719247117e+01 1.247409469920e+01 1.152590530045e+01 7.589588377780e+00 + 0.166667 2.173421305774e+01 2.173403386063e+01 2.265966136452e+00 2.269804666231e+01 + 0.5 1.732877229921e+01 1.732818349806e+01 6.671816494265e+00 2.011806700218e+01 9.000885942481e-08 3.998622946025e-05 + 0.833333 1.328083118520e+01 1.327977600374e+01 1.072022398538e+01 1.760855984595e+01 + 1.16667 9.764783867926e+00 9.763295612551e+00 1.423670437487e+01 1.521226338238e+01 + 1.5 6.876979953496e+00 6.875203671273e+00 1.712479631572e+01 1.296594983169e+01 1.040652470932e-06 5.706265744738e-05 + 1.83333 4.633445178267e+00 4.631592230628e+00 1.936840775690e+01 1.089878644681e+01 + 2.16667 2.983957613890e+00 2.982233846716e+00 2.101776614196e+01 9.031332911150e+00 + 2.5 1.835670035543e+00 1.834219344984e+00 2.216578064517e+01 7.375218041922e+00 3.202792299458e-06 1.617537638523e-05 + 2.83333 1.078309641974e+00 1.077193213980e+00 2.292280677773e+01 5.933464823767e+00 + 3.16667 6.047271174932e-01 6.039348411906e-01 2.339606515204e+01 4.701369003156e+00 + 3.5 3.237687664602e-01 3.232468743679e-01 2.367675312023e+01 3.667790507028e+00 5.217031892212e-06 -3.366526094922e-06 + 3.83333 1.655091654568e-01 1.651883636811e-01 2.383481163211e+01 2.816693051604e+00 + 4.16667 8.080184013938e-02 8.061704168687e-02 2.391938295510e+01 2.128765894911e+00 + 4.5 3.768529740313e-02 3.758518697825e-02 2.396241481061e+01 1.582979760724e+00 5.639342372492e-06 -2.476867168244e-06 + 4.83333 1.679748180460e-02 1.674633341902e-02 2.398325366481e+01 1.157961083143e+00 + 5.16667 7.158658677381e-03 7.133952391644e-03 2.399286604633e+01 8.331082803354e-01 + 5.5 2.918406918575e-03 2.907101078212e-03 2.399709289802e+01 5.894142528789e-01 4.455972089512e-06 -4.912290758281e-07 + 5.83333 1.138704484326e-03 1.133794318823e-03 2.399886620505e+01 4.099953343114e-01 + 6.16667 4.254614095066e-04 4.234343206137e-04 2.399957656525e+01 2.803548753976e-01 + 6.5 1.523110829998e-04 1.515144739607e-04 2.399984848524e+01 1.884278508358e-01 2.697942283073e-06 -4.814123673548e-08 + 6.83333 5.227158937090e-05 5.197321123247e-05 2.399994802660e+01 1.244614394110e-01 + 7.16667 1.720693832796e-05 1.710029263504e-05 2.399998289958e+01 8.078687428981e-02 + 7.5 5.436060938942e-06 5.399649415898e-06 2.399999460027e+01 5.153218579103e-02 1.262649985252e-06 -2.664487783141e-09 + 7.83333 1.649088196500e-06 1.637200882995e-06 2.399999836275e+01 3.231618817631e-02 + 8.16667 4.806358161413e-07 4.769214798035e-07 2.399999952305e+01 1.995341519604e-02 + 8.5 1.346685591699e-07 1.335566766312e-07 2.399999986642e+01 1.218943044882e-02 2.986653145795e-07 -8.898265268248e-11 + 8.83333 3.634651795932e-08 3.602679113545e-08 2.399999996396e+01 7.477181955864e-03 + 9.16667 9.688299811041e-09 9.597461159246e-09 2.399999999039e+01 4.798414843917e-03 + 9.5 3.521245211305e-09 3.486098607351e-09 2.399999999651e+01 3.529705336616e-03 + 9.83333 5.266729327194e-09 5.215572366278e-09 2.399999999478e+01 3.350197792357e-03 + 10.1667 1.826814043527e-08 1.810189577526e-08 2.399999998189e+01 4.187174719459e-03 + 10.5 6.734157443551e-08 6.676539459886e-08 2.399999993322e+01 6.195634766519e-03 + 10.8333 2.402572726978e-07 2.383277400061e-07 2.399999976166e+01 9.768547401637e-03 + 11.1667 8.242629303642e-07 8.180679126566e-07 2.399999918191e+01 1.557488011882e-02 + 11.5 2.716856872536e-06 2.697812059732e-06 2.399999730215e+01 2.462240289906e-02 + 11.8333 8.598766108992e-06 8.542755015543e-06 2.399999145719e+01 3.834130428025e-02 + 12.1667 2.611765409409e-05 2.596020332213e-05 2.399997403971e+01 5.868256892109e-02 + 12.5 7.608821448518e-05 7.566556929143e-05 2.399992433429e+01 8.822180939210e-02 + 12.8333 2.124903883306e-04 2.114081368791e-04 2.399978859166e+01 1.302549940497e-01 + 13.1667 5.685276981636e-04 5.658869124423e-04 2.399943411280e+01 1.888677435760e-01 + 13.5 1.456485428304e-03 1.450352184743e-03 2.399854964740e+01 2.689553860821e-01 + 13.8333 3.570725868134e-03 3.557184501357e-03 2.399644281492e+01 3.761678784769e-01 + 14.1667 8.372605104386e-03 8.344221152564e-03 2.399165577806e+01 5.167533414733e-01 + 14.5 1.876649315304e-02 1.871009047208e-02 2.398128990847e+01 6.972776485204e-01 + 14.8333 4.018818935056e-02 4.008209924661e-02 2.395991789935e+01 9.242063091066e-01 + 15.1667 8.218523045868e-02 8.199665482934e-02 2.391800334337e+01 1.203349228728e+00 + 15.5 1.604251797218e-01 1.601089608909e-01 2.383989103683e+01 1.539188295218e+00 + 15.8333 2.987842293275e-01 2.982848391787e-01 2.370171515802e+01 1.934130436525e+00 + 16.1667 5.307560799654e-01 5.300144684670e-01 2.346998552817e+01 2.387751903539e+00 + 16.5 8.989923689127e-01 8.979578317801e-01 2.310204216431e+01 2.896119155486e+00 + 16.8333 1.451577886699e+00 1.450222207355e+00 2.254977778824e+01 3.451283515303e+00 + 17.1667 2.233968006248e+00 2.232295880177e+00 2.176770411504e+01 4.041046701772e+00 + 17.5 3.276605593426e+00 3.274654206826e+00 2.072534578822e+01 4.649079665430e+00 + 17.8333 4.580028375190e+00 4.577852592597e+00 1.942214740254e+01 5.255447192243e+00 + 18.1667 6.101260771518e+00 6.098908811274e+00 1.790109118428e+01 5.837547513122e+00 + 18.5 7.746551131291e+00 7.744044346459e+00 1.625595564982e+01 6.371424480909e+00 + 18.8333 9.375127720227e+00 9.372459479193e+00 1.462754051805e+01 6.833356874077e+00 + 19.1667 1.081617087842e+01 1.081332896013e+01 1.318667103814e+01 7.201583440738e+00 + 19.5 1.189712386893e+01 1.189412326748e+01 1.210587673167e+01 7.457991576092e+00 + 19.8333 1.247719246828e+01 1.247409469920e+01 1.152590530045e+01 7.589588377780e+00 -99 2.500000000000e+01 0.000000000000e+00 0.000000000000e+00 0.000000000000e+00 diff --git a/ex17b.out b/ex17b.out index f0064627..af74a5b1 100644 --- a/ex17b.out +++ b/ex17b.out @@ -2641,7 +2641,7 @@ Polyhalite -0.08 -13.82 -13.74 0.000e+00 0 0.000e+00 pH = 7.379 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 176352 + Specific Conductance (µS/cm, 25°C) = 176353 Density (g/cm³) = 1.24332 Volume (L) = 0.01472 Viscosity (mPa s) = 2.98015 diff --git a/ex18.out b/ex18.out index f1a3a1fd..754b31a2 100644 --- a/ex18.out +++ b/ex18.out @@ -121,7 +121,7 @@ Initial solution 1. Recharge number 3 Specific Conductance (µS/cm, 10°C) = 278 Density (g/cm³) = 0.99999 Volume (L) = 1.00035 - Viscosity (mPa s) = 1.31409 + Viscosity (mPa s) = 1.31401 Activity of water = 1.000 Ionic strength (mol/kgw) = 6.588e-03 Mass of water (kg) = 1.000e+00 @@ -255,10 +255,10 @@ Initial solution 2. Mysse pH = 6.610 pe = 0.000 - Specific Conductance (µS/cm, 63°C) = 10505 + Specific Conductance (µS/cm, 63°C) = 10503 Density (g/cm³) = 0.98520 Volume (L) = 1.01942 - Viscosity (mPa s) = 0.45631 + Viscosity (mPa s) = 0.45647 Activity of water = 0.999 Ionic strength (mol/kgw) = 7.101e-02 Mass of water (kg) = 1.000e+00 diff --git a/ex2.out b/ex2.out index 84e5f510..5f7b0134 100644 --- a/ex2.out +++ b/ex2.out @@ -306,7 +306,7 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.854e-01 Specific Conductance (µS/cm, 27°C) = 2606 Density (g/cm³) = 0.99849 Volume (L) = 0.96794 - Viscosity (mPa s) = 0.85909 + Viscosity (mPa s) = 0.85911 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.185e-02 Mass of water (kg) = 9.645e-01 @@ -389,7 +389,7 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.854e-01 Specific Conductance (µS/cm, 28°C) = 2667 Density (g/cm³) = 0.99821 Volume (L) = 0.96822 - Viscosity (mPa s) = 0.84040 + Viscosity (mPa s) = 0.84043 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.189e-02 Mass of water (kg) = 9.645e-01 @@ -472,7 +472,7 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.853e-01 Specific Conductance (µS/cm, 29°C) = 2727 Density (g/cm³) = 0.99793 Volume (L) = 0.96850 - Viscosity (mPa s) = 0.82236 + Viscosity (mPa s) = 0.82239 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.193e-02 Mass of water (kg) = 9.645e-01 @@ -555,7 +555,7 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.853e-01 Specific Conductance (µS/cm, 30°C) = 2788 Density (g/cm³) = 0.99763 Volume (L) = 0.96879 - Viscosity (mPa s) = 0.80493 + Viscosity (mPa s) = 0.80498 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.196e-02 Mass of water (kg) = 9.645e-01 @@ -638,7 +638,7 @@ Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.853e-01 Specific Conductance (µS/cm, 31°C) = 2849 Density (g/cm³) = 0.99733 Volume (L) = 0.96909 - Viscosity (mPa s) = 0.78810 + Viscosity (mPa s) = 0.78815 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.198e-02 Mass of water (kg) = 9.645e-01 @@ -721,7 +721,7 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.852e-01 Specific Conductance (µS/cm, 32°C) = 2910 Density (g/cm³) = 0.99702 Volume (L) = 0.96940 - Viscosity (mPa s) = 0.77182 + Viscosity (mPa s) = 0.77188 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.200e-02 Mass of water (kg) = 9.645e-01 @@ -804,7 +804,7 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.852e-01 Specific Conductance (µS/cm, 33°C) = 2971 Density (g/cm³) = 0.99669 Volume (L) = 0.96972 - Viscosity (mPa s) = 0.75608 + Viscosity (mPa s) = 0.75615 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.201e-02 Mass of water (kg) = 9.645e-01 @@ -887,7 +887,7 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.852e-01 Specific Conductance (µS/cm, 34°C) = 3031 Density (g/cm³) = 0.99636 Volume (L) = 0.97005 - Viscosity (mPa s) = 0.74085 + Viscosity (mPa s) = 0.74093 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.201e-02 Mass of water (kg) = 9.645e-01 @@ -970,7 +970,7 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.852e-01 Specific Conductance (µS/cm, 35°C) = 3092 Density (g/cm³) = 0.99603 Volume (L) = 0.97038 - Viscosity (mPa s) = 0.72612 + Viscosity (mPa s) = 0.72620 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.200e-02 Mass of water (kg) = 9.645e-01 @@ -1050,10 +1050,10 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.851e-01 pH = 6.922 Charge balance pe = 10.009 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 36°C) = 3153 + Specific Conductance (µS/cm, 36°C) = 3152 Density (g/cm³) = 0.99568 Volume (L) = 0.97072 - Viscosity (mPa s) = 0.71185 + Viscosity (mPa s) = 0.71194 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.199e-02 Mass of water (kg) = 9.645e-01 @@ -1136,7 +1136,7 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.851e-01 Specific Conductance (µS/cm, 37°C) = 3213 Density (g/cm³) = 0.99532 Volume (L) = 0.97107 - Viscosity (mPa s) = 0.69803 + Viscosity (mPa s) = 0.69812 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.197e-02 Mass of water (kg) = 9.645e-01 @@ -1219,7 +1219,7 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.851e-01 Specific Conductance (µS/cm, 38°C) = 3273 Density (g/cm³) = 0.99496 Volume (L) = 0.97143 - Viscosity (mPa s) = 0.68464 + Viscosity (mPa s) = 0.68474 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.194e-02 Mass of water (kg) = 9.645e-01 @@ -1302,7 +1302,7 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.851e-01 Specific Conductance (µS/cm, 39°C) = 3333 Density (g/cm³) = 0.99459 Volume (L) = 0.97179 - Viscosity (mPa s) = 0.67166 + Viscosity (mPa s) = 0.67177 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.191e-02 Mass of water (kg) = 9.645e-01 @@ -1385,7 +1385,7 @@ Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 Specific Conductance (µS/cm, 40°C) = 3392 Density (g/cm³) = 0.99421 Volume (L) = 0.97216 - Viscosity (mPa s) = 0.65908 + Viscosity (mPa s) = 0.65919 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.187e-02 Mass of water (kg) = 9.645e-01 @@ -1468,7 +1468,7 @@ Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 Specific Conductance (µS/cm, 41°C) = 3452 Density (g/cm³) = 0.99382 Volume (L) = 0.97254 - Viscosity (mPa s) = 0.64688 + Viscosity (mPa s) = 0.64699 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.182e-02 Mass of water (kg) = 9.645e-01 @@ -1551,7 +1551,7 @@ Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 Specific Conductance (µS/cm, 42°C) = 3511 Density (g/cm³) = 0.99343 Volume (L) = 0.97293 - Viscosity (mPa s) = 0.63504 + Viscosity (mPa s) = 0.63516 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.177e-02 Mass of water (kg) = 9.645e-01 @@ -1631,10 +1631,10 @@ Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 pH = 6.839 Charge balance pe = 9.566 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 43°C) = 3570 + Specific Conductance (µS/cm, 43°C) = 3569 Density (g/cm³) = 0.99302 Volume (L) = 0.97332 - Viscosity (mPa s) = 0.62355 + Viscosity (mPa s) = 0.62367 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.171e-02 Mass of water (kg) = 9.645e-01 @@ -1717,7 +1717,7 @@ Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 Specific Conductance (µS/cm, 44°C) = 3628 Density (g/cm³) = 0.99261 Volume (L) = 0.97372 - Viscosity (mPa s) = 0.61239 + Viscosity (mPa s) = 0.61252 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.165e-02 Mass of water (kg) = 9.645e-01 @@ -1800,7 +1800,7 @@ Gypsum 0.00 -4.61 -4.61 1.000e+00 1.985e+00 9.851e-01 Specific Conductance (µS/cm, 45°C) = 3686 Density (g/cm³) = 0.99220 Volume (L) = 0.97413 - Viscosity (mPa s) = 0.60156 + Viscosity (mPa s) = 0.60169 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.158e-02 Mass of water (kg) = 9.645e-01 @@ -1880,10 +1880,10 @@ Gypsum 0.00 -4.61 -4.61 1.000e+00 1.985e+00 9.851e-01 pH = 6.805 Charge balance pe = 9.381 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 46°C) = 3744 + Specific Conductance (µS/cm, 46°C) = 3743 Density (g/cm³) = 0.99177 Volume (L) = 0.97454 - Viscosity (mPa s) = 0.59103 + Viscosity (mPa s) = 0.59117 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.151e-02 Mass of water (kg) = 9.645e-01 @@ -1963,10 +1963,10 @@ Gypsum 0.00 -4.61 -4.61 1.000e+00 1.985e+00 9.852e-01 pH = 6.794 Charge balance pe = 9.319 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 47°C) = 3801 + Specific Conductance (µS/cm, 47°C) = 3800 Density (g/cm³) = 0.99134 Volume (L) = 0.97497 - Viscosity (mPa s) = 0.58080 + Viscosity (mPa s) = 0.58095 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.142e-02 Mass of water (kg) = 9.645e-01 @@ -2046,10 +2046,10 @@ Gypsum 0.00 -4.61 -4.61 1.000e+00 1.985e+00 9.852e-01 pH = 6.783 Charge balance pe = 9.215 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 48°C) = 3858 + Specific Conductance (µS/cm, 48°C) = 3857 Density (g/cm³) = 0.99090 Volume (L) = 0.97540 - Viscosity (mPa s) = 0.57086 + Viscosity (mPa s) = 0.57101 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.134e-02 Mass of water (kg) = 9.645e-01 @@ -2129,10 +2129,10 @@ Gypsum 0.00 -4.62 -4.62 1.000e+00 1.985e+00 9.852e-01 pH = 6.773 Charge balance pe = 9.197 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 49°C) = 3914 + Specific Conductance (µS/cm, 49°C) = 3913 Density (g/cm³) = 0.99045 Volume (L) = 0.97583 - Viscosity (mPa s) = 0.56120 + Viscosity (mPa s) = 0.56135 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.125e-02 Mass of water (kg) = 9.645e-01 @@ -2212,10 +2212,10 @@ Gypsum 0.00 -4.62 -4.62 1.000e+00 1.985e+00 9.852e-01 pH = 6.762 Charge balance pe = -1.655 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 3970 + Specific Conductance (µS/cm, 50°C) = 3969 Density (g/cm³) = 0.99000 Volume (L) = 0.97627 - Viscosity (mPa s) = 0.55180 + Viscosity (mPa s) = 0.55195 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.115e-02 Mass of water (kg) = 9.645e-01 @@ -2295,10 +2295,10 @@ Gypsum 0.00 -4.62 -4.62 1.000e+00 1.985e+00 9.852e-01 pH = 6.752 Charge balance pe = -2.096 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 51°C) = 4025 + Specific Conductance (µS/cm, 51°C) = 4024 Density (g/cm³) = 0.98954 Volume (L) = 0.97672 - Viscosity (mPa s) = 0.54265 + Viscosity (mPa s) = 0.54281 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.105e-02 Mass of water (kg) = 9.645e-01 @@ -2381,7 +2381,7 @@ Gypsum 0.00 -4.63 -4.63 1.000e+00 1.985e+00 9.853e-01 Specific Conductance (µS/cm, 52°C) = 4079 Density (g/cm³) = 0.98908 Volume (L) = 0.97718 - Viscosity (mPa s) = 0.53376 + Viscosity (mPa s) = 0.53392 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.094e-02 Mass of water (kg) = 9.645e-01 @@ -2461,10 +2461,10 @@ Gypsum 0.00 -4.63 -4.63 1.000e+00 1.985e+00 9.853e-01 pH = 6.732 Charge balance pe = 8.915 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 53°C) = 4134 + Specific Conductance (µS/cm, 53°C) = 4133 Density (g/cm³) = 0.98860 Volume (L) = 0.97764 - Viscosity (mPa s) = 0.52510 + Viscosity (mPa s) = 0.52526 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.083e-02 Mass of water (kg) = 9.645e-01 @@ -2547,7 +2547,7 @@ Gypsum 0.00 -4.63 -4.63 1.000e+00 1.985e+00 9.853e-01 Specific Conductance (µS/cm, 54°C) = 4187 Density (g/cm³) = 0.98812 Volume (L) = 0.97811 - Viscosity (mPa s) = 0.51666 + Viscosity (mPa s) = 0.51684 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.071e-02 Mass of water (kg) = 9.645e-01 @@ -2630,7 +2630,7 @@ Gypsum -0.01 -4.64 -4.63 1.000e+00 0 -1.000e+00 Specific Conductance (µS/cm, 55°C) = 4201 Density (g/cm³) = 0.98762 Volume (L) = 1.05117 - Viscosity (mPa s) = 0.50842 + Viscosity (mPa s) = 0.50859 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.020e-02 Mass of water (kg) = 1.036e+00 @@ -2713,7 +2713,7 @@ Gypsum -0.02 -4.65 -4.64 1.000e+00 0 -1.000e+00 Specific Conductance (µS/cm, 56°C) = 4190 Density (g/cm³) = 0.98709 Volume (L) = 1.05168 - Viscosity (mPa s) = 0.50037 + Viscosity (mPa s) = 0.50054 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.946e-02 Mass of water (kg) = 1.036e+00 @@ -2796,7 +2796,7 @@ Gypsum -0.03 -4.67 -4.64 1.000e+00 0 -1.000e+00 Specific Conductance (µS/cm, 57°C) = 4178 Density (g/cm³) = 0.98656 Volume (L) = 1.05221 - Viscosity (mPa s) = 0.49252 + Viscosity (mPa s) = 0.49270 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.874e-02 Mass of water (kg) = 1.036e+00 @@ -2879,7 +2879,7 @@ Gypsum -0.04 -4.68 -4.64 1.000e+00 0 -1.000e+00 Specific Conductance (µS/cm, 58°C) = 4165 Density (g/cm³) = 0.98602 Volume (L) = 1.05274 - Viscosity (mPa s) = 0.48488 + Viscosity (mPa s) = 0.48506 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.802e-02 Mass of water (kg) = 1.036e+00 @@ -2962,7 +2962,7 @@ Gypsum -0.04 -4.69 -4.65 1.000e+00 0 -1.000e+00 Specific Conductance (µS/cm, 59°C) = 4151 Density (g/cm³) = 0.98548 Volume (L) = 1.05328 - Viscosity (mPa s) = 0.47744 + Viscosity (mPa s) = 0.47762 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.731e-02 Mass of water (kg) = 1.036e+00 @@ -3042,10 +3042,10 @@ Gypsum -0.05 -4.71 -4.65 1.000e+00 0 -1.000e+00 pH = 6.658 Charge balance pe = 8.549 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 60°C) = 4137 + Specific Conductance (µS/cm, 60°C) = 4136 Density (g/cm³) = 0.98493 Volume (L) = 1.05382 - Viscosity (mPa s) = 0.47018 + Viscosity (mPa s) = 0.47036 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.662e-02 Mass of water (kg) = 1.036e+00 @@ -3125,10 +3125,10 @@ Gypsum -0.06 -4.72 -4.66 1.000e+00 0 -1.000e+00 pH = 6.648 Charge balance pe = 8.493 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 61°C) = 4121 + Specific Conductance (µS/cm, 61°C) = 4120 Density (g/cm³) = 0.98438 Volume (L) = 1.05438 - Viscosity (mPa s) = 0.46310 + Viscosity (mPa s) = 0.46328 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.594e-02 Mass of water (kg) = 1.036e+00 @@ -3208,10 +3208,10 @@ Gypsum -0.07 -4.73 -4.66 1.000e+00 0 -1.000e+00 pH = 6.638 Charge balance pe = 8.491 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 62°C) = 4105 + Specific Conductance (µS/cm, 62°C) = 4104 Density (g/cm³) = 0.98382 Volume (L) = 1.05493 - Viscosity (mPa s) = 0.45620 + Viscosity (mPa s) = 0.45638 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.526e-02 Mass of water (kg) = 1.036e+00 @@ -3294,7 +3294,7 @@ Gypsum -0.08 -4.75 -4.66 1.000e+00 0 -1.000e+00 Specific Conductance (µS/cm, 63°C) = 4087 Density (g/cm³) = 0.98326 Volume (L) = 1.05550 - Viscosity (mPa s) = 0.44947 + Viscosity (mPa s) = 0.44965 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.460e-02 Mass of water (kg) = 1.036e+00 @@ -3377,7 +3377,7 @@ Gypsum -0.09 -4.76 -4.67 1.000e+00 0 -1.000e+00 Specific Conductance (µS/cm, 64°C) = 4069 Density (g/cm³) = 0.98269 Volume (L) = 1.05607 - Viscosity (mPa s) = 0.44290 + Viscosity (mPa s) = 0.44309 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.395e-02 Mass of water (kg) = 1.036e+00 @@ -3457,10 +3457,10 @@ Gypsum -0.10 -4.77 -4.67 1.000e+00 0 -1.000e+00 pH = 6.608 Charge balance pe = 8.273 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 65°C) = 4051 + Specific Conductance (µS/cm, 65°C) = 4050 Density (g/cm³) = 0.98212 Volume (L) = 1.05665 - Viscosity (mPa s) = 0.43649 + Viscosity (mPa s) = 0.43668 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.331e-02 Mass of water (kg) = 1.036e+00 @@ -3540,10 +3540,10 @@ Gypsum -0.11 -4.79 -4.67 1.000e+00 0 -1.000e+00 pH = 6.598 Charge balance pe = 8.218 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 66°C) = 4031 + Specific Conductance (µS/cm, 66°C) = 4030 Density (g/cm³) = 0.98154 Volume (L) = 1.05724 - Viscosity (mPa s) = 0.43024 + Viscosity (mPa s) = 0.43043 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.268e-02 Mass of water (kg) = 1.036e+00 @@ -3623,10 +3623,10 @@ Gypsum -0.12 -4.80 -4.68 1.000e+00 0 -1.000e+00 pH = 6.589 Charge balance pe = 8.164 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 67°C) = 4011 + Specific Conductance (µS/cm, 67°C) = 4010 Density (g/cm³) = 0.98095 Volume (L) = 1.05783 - Viscosity (mPa s) = 0.42414 + Viscosity (mPa s) = 0.42433 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.206e-02 Mass of water (kg) = 1.036e+00 @@ -3706,10 +3706,10 @@ Gypsum -0.13 -4.81 -4.68 1.000e+00 0 -1.000e+00 pH = 6.579 Charge balance pe = 8.110 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 68°C) = 3990 + Specific Conductance (µS/cm, 68°C) = 3989 Density (g/cm³) = 0.98037 Volume (L) = 1.05843 - Viscosity (mPa s) = 0.41818 + Viscosity (mPa s) = 0.41837 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.145e-02 Mass of water (kg) = 1.036e+00 @@ -3789,10 +3789,10 @@ Gypsum -0.14 -4.83 -4.69 1.000e+00 0 -1.000e+00 pH = 6.570 Charge balance pe = 8.057 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 69°C) = 3969 + Specific Conductance (µS/cm, 69°C) = 3968 Density (g/cm³) = 0.97977 Volume (L) = 1.05904 - Viscosity (mPa s) = 0.41236 + Viscosity (mPa s) = 0.41255 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.086e-02 Mass of water (kg) = 1.036e+00 @@ -3875,7 +3875,7 @@ Gypsum -0.15 -4.84 -4.69 1.000e+00 0 -1.000e+00 Specific Conductance (µS/cm, 70°C) = 3946 Density (g/cm³) = 0.97917 Volume (L) = 1.05965 - Viscosity (mPa s) = 0.40667 + Viscosity (mPa s) = 0.40686 Activity of water = 1.000 Ionic strength (mol/kgw) = 3.027e-02 Mass of water (kg) = 1.036e+00 @@ -3955,10 +3955,10 @@ Gypsum -0.16 -4.85 -4.70 1.000e+00 0 -1.000e+00 pH = 6.552 Charge balance pe = 7.950 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 71°C) = 3924 + Specific Conductance (µS/cm, 71°C) = 3923 Density (g/cm³) = 0.97857 Volume (L) = 1.06027 - Viscosity (mPa s) = 0.40112 + Viscosity (mPa s) = 0.40131 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.969e-02 Mass of water (kg) = 1.036e+00 @@ -4041,7 +4041,7 @@ Gypsum -0.17 -4.87 -4.70 1.000e+00 0 -1.000e+00 Specific Conductance (µS/cm, 72°C) = 3900 Density (g/cm³) = 0.97796 Volume (L) = 1.06090 - Viscosity (mPa s) = 0.39569 + Viscosity (mPa s) = 0.39588 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.912e-02 Mass of water (kg) = 1.036e+00 @@ -4124,7 +4124,7 @@ Gypsum -0.18 -4.88 -4.70 1.000e+00 0 -1.000e+00 Specific Conductance (µS/cm, 73°C) = 3876 Density (g/cm³) = 0.97735 Volume (L) = 1.06153 - Viscosity (mPa s) = 0.39039 + Viscosity (mPa s) = 0.39058 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.856e-02 Mass of water (kg) = 1.036e+00 @@ -4204,10 +4204,10 @@ Gypsum -0.18 -4.89 -4.71 1.000e+00 0 -1.000e+00 pH = 6.525 Charge balance pe = 7.790 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 74°C) = 3852 + Specific Conductance (µS/cm, 74°C) = 3851 Density (g/cm³) = 0.97673 Volume (L) = 1.06217 - Viscosity (mPa s) = 0.38521 + Viscosity (mPa s) = 0.38540 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.802e-02 Mass of water (kg) = 1.036e+00 @@ -4287,10 +4287,10 @@ Gypsum -0.19 -4.91 -4.71 1.000e+00 0 -1.000e+00 pH = 6.516 Charge balance pe = 7.738 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 3827 + Specific Conductance (µS/cm, 75°C) = 3826 Density (g/cm³) = 0.97611 Volume (L) = 1.06282 - Viscosity (mPa s) = 0.38014 + Viscosity (mPa s) = 0.38033 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.748e-02 Mass of water (kg) = 1.036e+00 diff --git a/ex21.out b/ex21.out index e4d8058a..0f28b739 100644 --- a/ex21.out +++ b/ex21.out @@ -435,10 +435,10 @@ WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. pH = 7.600 pe = 13.120 Equilibrium with O2(g) - Specific Conductance (µS/cm, 23°C) = 29068 + Specific Conductance (µS/cm, 23°C) = 29069 Density (g/cm³) = 1.01168 Volume (L) = 0.20147 - Viscosity (mPa s) = 0.96935 + Viscosity (mPa s) = 0.96932 Activity of water = 0.990 Ionic strength (mol/kgw) = 3.633e-01 Mass of water (kg) = 2.000e-01 diff --git a/ex22.out b/ex22.out index c57ca3a5..ca9d6a6e 100644 --- a/ex22.out +++ b/ex22.out @@ -3031,7 +3031,7 @@ H2O(g) -0.79 1.615e-01 0.761 5.717e-03 7.178e-03 1.461e-03 Specific Conductance (µS/cm, 50°C) = 258 Density (g/cm³) = 0.99409 Volume (L) = 1.03007 - Viscosity (mPa s) = 0.56004 + Viscosity (mPa s) = 0.56005 Activity of water = 0.991 Ionic strength (mol/kgw) = 5.432e-04 Mass of water (kg) = 9.999e-01 @@ -3126,7 +3126,7 @@ H2O(g) -0.73 1.861e-01 0.665 7.178e-03 9.044e-03 1.866e-03 Specific Conductance (µS/cm, 50°C) = 290 Density (g/cm³) = 0.99620 Volume (L) = 1.03584 - Viscosity (mPa s) = 0.56435 + Viscosity (mPa s) = 0.56436 Activity of water = 0.988 Ionic strength (mol/kgw) = 6.276e-04 Mass of water (kg) = 9.998e-01 @@ -3316,7 +3316,7 @@ H2O(g) -0.61 2.437e-01 0.514 1.139e-02 1.427e-02 2.881e-03 Specific Conductance (µS/cm, 50°C) = 322 Density (g/cm³) = 0.99898 Volume (L) = 1.04261 - Viscosity (mPa s) = 0.56970 + Viscosity (mPa s) = 0.56971 Activity of water = 0.984 Ionic strength (mol/kgw) = 7.202e-04 Mass of water (kg) = 9.997e-01 @@ -3411,7 +3411,7 @@ H2O(g) -0.56 2.762e-01 0.456 1.427e-02 1.774e-02 3.477e-03 Specific Conductance (µS/cm, 50°C) = 331 Density (g/cm³) = 0.99985 Volume (L) = 1.04438 - Viscosity (mPa s) = 0.57125 + Viscosity (mPa s) = 0.57126 Activity of water = 0.983 Ionic strength (mol/kgw) = 7.453e-04 Mass of water (kg) = 9.997e-01 @@ -3506,7 +3506,7 @@ H2O(g) -0.51 3.107e-01 0.407 1.774e-02 2.186e-02 4.119e-03 Specific Conductance (µS/cm, 50°C) = 336 Density (g/cm³) = 1.00049 Volume (L) = 1.04551 - Viscosity (mPa s) = 0.57233 + Viscosity (mPa s) = 0.57234 Activity of water = 0.983 Ionic strength (mol/kgw) = 7.626e-04 Mass of water (kg) = 9.996e-01 @@ -3696,7 +3696,7 @@ H2O(g) -0.41 3.869e-01 0.329 2.666e-02 3.217e-02 5.510e-03 Specific Conductance (µS/cm, 50°C) = 343 Density (g/cm³) = 1.00135 Volume (L) = 1.04665 - Viscosity (mPa s) = 0.57367 + Viscosity (mPa s) = 0.57368 Activity of water = 0.982 Ionic strength (mol/kgw) = 7.838e-04 Mass of water (kg) = 9.994e-01 @@ -3886,7 +3886,7 @@ H2O(g) -0.32 4.775e-01 0.268 3.841e-02 4.540e-02 6.987e-03 Specific Conductance (µS/cm, 50°C) = 348 Density (g/cm³) = 1.00199 Volume (L) = 1.04712 - Viscosity (mPa s) = 0.57455 + Viscosity (mPa s) = 0.57456 Activity of water = 0.981 Ionic strength (mol/kgw) = 7.977e-04 Mass of water (kg) = 9.992e-01 @@ -4171,7 +4171,7 @@ H2O(g) -0.17 6.730e-01 0.192 6.160e-02 7.077e-02 9.169e-03 Specific Conductance (µS/cm, 50°C) = 356 Density (g/cm³) = 1.00313 Volume (L) = 1.04741 - Viscosity (mPa s) = 0.57594 + Viscosity (mPa s) = 0.57595 Activity of water = 0.981 Ionic strength (mol/kgw) = 8.198e-04 Mass of water (kg) = 9.987e-01 @@ -4456,7 +4456,7 @@ H2O(g) 0.01 1.031e+00 0.129 9.102e-02 1.020e-01 1.094e-02 Specific Conductance (µS/cm, 50°C) = 368 Density (g/cm³) = 1.00524 Volume (L) = 1.04738 - Viscosity (mPa s) = 0.57818 + Viscosity (mPa s) = 0.57819 Activity of water = 0.980 Ionic strength (mol/kgw) = 8.561e-04 Mass of water (kg) = 9.981e-01 @@ -4551,7 +4551,7 @@ H2O(g) 0.08 1.215e+00 0.111 1.020e-01 1.133e-01 1.134e-02 Specific Conductance (µS/cm, 50°C) = 375 Density (g/cm³) = 1.00631 Volume (L) = 1.04724 - Viscosity (mPa s) = 0.57924 + Viscosity (mPa s) = 0.57925 Activity of water = 0.979 Ionic strength (mol/kgw) = 8.735e-04 Mass of water (kg) = 9.979e-01 @@ -5142,7 +5142,7 @@ H2O(g) 0.57 3.696e+00 0.044 1.702e-01 1.801e-01 9.820e-03 Specific Conductance (µS/cm, 50°C) = 453 Density (g/cm³) = 1.01986 Volume (L) = 1.04226 - Viscosity (mPa s) = 0.59149 + Viscosity (mPa s) = 0.59150 Activity of water = 0.976 Ionic strength (mol/kgw) = 1.082e-03 Mass of water (kg) = 9.967e-01 @@ -5346,7 +5346,7 @@ H2O(g) 0.73 5.366e+00 0.035 1.886e-01 1.956e-01 6.925e-03 Specific Conductance (µS/cm, 50°C) = 508 Density (g/cm³) = 1.02885 Volume (L) = 1.03737 - Viscosity (mPa s) = 0.59951 + Viscosity (mPa s) = 0.59952 Activity of water = 0.974 Ionic strength (mol/kgw) = 1.223e-03 Mass of water (kg) = 9.965e-01 @@ -5650,7 +5650,7 @@ H2O(g) -0.36 4.356e-01 0.874 1.332e-02 1.642e-02 3.100e-03 Specific Conductance (µS/cm, 75°C) = 212 Density (g/cm³) = 0.97762 Volume (L) = 1.03384 - Viscosity (mPa s) = 0.38077 + Viscosity (mPa s) = 0.38078 Activity of water = 0.996 Ionic strength (mol/kgw) = 3.505e-04 Mass of water (kg) = 9.997e-01 @@ -5745,7 +5745,7 @@ H2O(g) -0.30 4.993e-01 0.769 1.642e-02 2.026e-02 3.838e-03 Specific Conductance (µS/cm, 75°C) = 278 Density (g/cm³) = 0.97995 Volume (L) = 1.04028 - Viscosity (mPa s) = 0.38321 + Viscosity (mPa s) = 0.38322 Activity of water = 0.993 Ionic strength (mol/kgw) = 4.703e-04 Mass of water (kg) = 9.996e-01 @@ -5840,7 +5840,7 @@ H2O(g) -0.24 5.707e-01 0.679 2.026e-02 2.494e-02 4.679e-03 Specific Conductance (µS/cm, 75°C) = 317 Density (g/cm³) = 0.98185 Volume (L) = 1.04514 - Viscosity (mPa s) = 0.38513 + Viscosity (mPa s) = 0.38514 Activity of water = 0.990 Ionic strength (mol/kgw) = 5.462e-04 Mass of water (kg) = 9.995e-01 @@ -5935,7 +5935,7 @@ H2O(g) -0.19 6.497e-01 0.601 2.494e-02 3.056e-02 5.615e-03 Specific Conductance (µS/cm, 75°C) = 343 Density (g/cm³) = 0.98339 Volume (L) = 1.04871 - Viscosity (mPa s) = 0.38664 + Viscosity (mPa s) = 0.38665 Activity of water = 0.988 Ionic strength (mol/kgw) = 5.986e-04 Mass of water (kg) = 9.994e-01 @@ -6125,7 +6125,7 @@ H2O(g) -0.08 8.308e-01 0.476 3.718e-02 4.488e-02 7.699e-03 Specific Conductance (µS/cm, 75°C) = 374 Density (g/cm³) = 0.98568 Volume (L) = 1.05312 - Viscosity (mPa s) = 0.38879 + Viscosity (mPa s) = 0.38880 Activity of water = 0.986 Ionic strength (mol/kgw) = 6.648e-04 Mass of water (kg) = 9.992e-01 @@ -6220,7 +6220,7 @@ H2O(g) -0.03 9.337e-01 0.426 4.488e-02 5.370e-02 8.815e-03 Specific Conductance (µS/cm, 75°C) = 384 Density (g/cm³) = 0.98654 Volume (L) = 1.05442 - Viscosity (mPa s) = 0.38958 + Viscosity (mPa s) = 0.38959 Activity of water = 0.985 Ionic strength (mol/kgw) = 6.867e-04 Mass of water (kg) = 9.990e-01 @@ -6315,7 +6315,7 @@ H2O(g) 0.02 1.046e+00 0.383 5.370e-02 6.365e-02 9.958e-03 Specific Conductance (µS/cm, 75°C) = 392 Density (g/cm³) = 0.98730 Volume (L) = 1.05534 - Viscosity (mPa s) = 0.39025 + Viscosity (mPa s) = 0.39026 Activity of water = 0.984 Ionic strength (mol/kgw) = 7.045e-04 Mass of water (kg) = 9.988e-01 @@ -6407,7 +6407,7 @@ H2O(g) 0.07 1.170e+00 0.344 6.365e-02 7.477e-02 1.111e-02 pH = 3.157 Charge balance pe = 2.153 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 399 + Specific Conductance (µS/cm, 75°C) = 398 Density (g/cm³) = 0.98799 Volume (L) = 1.05600 Viscosity (mPa s) = 0.39085 @@ -6505,7 +6505,7 @@ H2O(g) 0.12 1.308e+00 0.310 7.477e-02 8.703e-02 1.226e-02 Specific Conductance (µS/cm, 75°C) = 405 Density (g/cm³) = 0.98864 Volume (L) = 1.05647 - Viscosity (mPa s) = 0.39140 + Viscosity (mPa s) = 0.39141 Activity of water = 0.983 Ionic strength (mol/kgw) = 7.333e-04 Mass of water (kg) = 9.984e-01 @@ -6600,7 +6600,7 @@ H2O(g) 0.17 1.463e+00 0.278 8.703e-02 1.004e-01 1.338e-02 Specific Conductance (µS/cm, 75°C) = 410 Density (g/cm³) = 0.98930 Volume (L) = 1.05681 - Viscosity (mPa s) = 0.39195 + Viscosity (mPa s) = 0.39196 Activity of water = 0.983 Ionic strength (mol/kgw) = 7.462e-04 Mass of water (kg) = 9.982e-01 @@ -6885,7 +6885,7 @@ H2O(g) 0.32 2.085e+00 0.200 1.303e-01 1.467e-01 1.639e-02 Specific Conductance (µS/cm, 75°C) = 429 Density (g/cm³) = 0.99159 Volume (L) = 1.05726 - Viscosity (mPa s) = 0.39380 + Viscosity (mPa s) = 0.39381 Activity of water = 0.981 Ionic strength (mol/kgw) = 7.871e-04 Mass of water (kg) = 9.973e-01 @@ -6980,7 +6980,7 @@ H2O(g) 0.37 2.368e+00 0.178 1.467e-01 1.639e-01 1.719e-02 Specific Conductance (µS/cm, 75°C) = 436 Density (g/cm³) = 0.99256 Volume (L) = 1.05726 - Viscosity (mPa s) = 0.39456 + Viscosity (mPa s) = 0.39457 Activity of water = 0.981 Ionic strength (mol/kgw) = 8.031e-04 Mass of water (kg) = 9.970e-01 @@ -7075,7 +7075,7 @@ H2O(g) 0.43 2.704e+00 0.158 1.639e-01 1.818e-01 1.784e-02 Specific Conductance (µS/cm, 75°C) = 444 Density (g/cm³) = 0.99369 Volume (L) = 1.05716 - Viscosity (mPa s) = 0.39544 + Viscosity (mPa s) = 0.39545 Activity of water = 0.980 Ionic strength (mol/kgw) = 8.210e-04 Mass of water (kg) = 9.967e-01 @@ -7170,7 +7170,7 @@ H2O(g) 0.49 3.103e+00 0.140 1.818e-01 2.001e-01 1.830e-02 Specific Conductance (µS/cm, 75°C) = 454 Density (g/cm³) = 0.99500 Volume (L) = 1.05696 - Viscosity (mPa s) = 0.39646 + Viscosity (mPa s) = 0.39647 Activity of water = 0.980 Ionic strength (mol/kgw) = 8.413e-04 Mass of water (kg) = 9.964e-01 @@ -7265,7 +7265,7 @@ H2O(g) 0.55 3.579e+00 0.123 2.001e-01 2.186e-01 1.854e-02 Specific Conductance (µS/cm, 75°C) = 464 Density (g/cm³) = 0.99654 Volume (L) = 1.05664 - Viscosity (mPa s) = 0.39764 + Viscosity (mPa s) = 0.39765 Activity of water = 0.979 Ionic strength (mol/kgw) = 8.646e-04 Mass of water (kg) = 9.960e-01 @@ -7360,7 +7360,7 @@ H2O(g) 0.62 4.146e+00 0.109 2.186e-01 2.371e-01 1.851e-02 Specific Conductance (µS/cm, 75°C) = 477 Density (g/cm³) = 0.99835 Volume (L) = 1.05616 - Viscosity (mPa s) = 0.39903 + Viscosity (mPa s) = 0.39904 Activity of water = 0.979 Ionic strength (mol/kgw) = 8.914e-04 Mass of water (kg) = 9.957e-01 @@ -7455,7 +7455,7 @@ H2O(g) 0.68 4.819e+00 0.096 2.371e-01 2.553e-01 1.819e-02 Specific Conductance (µS/cm, 75°C) = 491 Density (g/cm³) = 1.00048 Volume (L) = 1.05549 - Viscosity (mPa s) = 0.40067 + Viscosity (mPa s) = 0.40068 Activity of water = 0.978 Ionic strength (mol/kgw) = 9.224e-04 Mass of water (kg) = 9.954e-01 @@ -7557,7 +7557,7 @@ H2O(g) 0.75 5.616e+00 0.085 2.553e-01 2.728e-01 1.752e-02 Specific Conductance (µS/cm, 75°C) = 508 Density (g/cm³) = 1.00298 Volume (L) = 1.05459 - Viscosity (mPa s) = 0.40259 + Viscosity (mPa s) = 0.40260 Activity of water = 0.977 Ionic strength (mol/kgw) = 9.585e-04 Mass of water (kg) = 9.951e-01 @@ -7659,7 +7659,7 @@ H2O(g) 0.82 6.552e+00 0.076 2.728e-01 2.893e-01 1.646e-02 Specific Conductance (µS/cm, 75°C) = 527 Density (g/cm³) = 1.00591 Volume (L) = 1.05341 - Viscosity (mPa s) = 0.40486 + Viscosity (mPa s) = 0.40487 Activity of water = 0.977 Ionic strength (mol/kgw) = 1.001e-03 Mass of water (kg) = 9.948e-01 @@ -7761,7 +7761,7 @@ H2O(g) 0.88 7.646e+00 0.068 2.893e-01 3.042e-01 1.496e-02 Specific Conductance (µS/cm, 75°C) = 550 Density (g/cm³) = 1.00936 Volume (L) = 1.05188 - Viscosity (mPa s) = 0.40754 + Viscosity (mPa s) = 0.40755 Activity of water = 0.976 Ionic strength (mol/kgw) = 1.050e-03 Mass of water (kg) = 9.945e-01 @@ -7863,7 +7863,7 @@ H2O(g) 0.95 8.913e+00 0.062 3.042e-01 3.172e-01 1.297e-02 Specific Conductance (µS/cm, 75°C) = 577 Density (g/cm³) = 1.01339 Volume (L) = 1.04992 - Viscosity (mPa s) = 0.41073 + Viscosity (mPa s) = 0.41074 Activity of water = 0.975 Ionic strength (mol/kgw) = 1.108e-03 Mass of water (kg) = 9.943e-01 @@ -7965,7 +7965,7 @@ H2O(g) 1.02 1.037e+01 0.057 3.172e-01 3.276e-01 1.043e-02 Specific Conductance (µS/cm, 75°C) = 609 Density (g/cm³) = 1.01812 Volume (L) = 1.04745 - Viscosity (mPa s) = 0.41454 + Viscosity (mPa s) = 0.41455 Activity of water = 0.974 Ionic strength (mol/kgw) = 1.177e-03 Mass of water (kg) = 9.941e-01 @@ -8067,7 +8067,7 @@ H2O(g) 1.08 1.202e+01 0.053 3.276e-01 3.349e-01 7.291e-03 Specific Conductance (µS/cm, 75°C) = 646 Density (g/cm³) = 1.02365 Volume (L) = 1.04435 - Viscosity (mPa s) = 0.41910 + Viscosity (mPa s) = 0.41911 Activity of water = 0.973 Ionic strength (mol/kgw) = 1.259e-03 Mass of water (kg) = 9.939e-01 @@ -8169,7 +8169,7 @@ H2O(g) 1.14 1.386e+01 0.051 3.349e-01 3.384e-01 3.493e-03 Specific Conductance (µS/cm, 75°C) = 692 Density (g/cm³) = 1.03011 Volume (L) = 1.04050 - Viscosity (mPa s) = 0.42462 + Viscosity (mPa s) = 0.42463 Activity of water = 0.972 Ionic strength (mol/kgw) = 1.357e-03 Mass of water (kg) = 9.939e-01 @@ -8368,10 +8368,10 @@ H2O(g) 0.06 1.139e+00 0.877 3.285e-02 3.984e-02 6.990e-03 pH = 3.544 Charge balance pe = 9.305 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 204 + Specific Conductance (µS/cm, 100°C) = 203 Density (g/cm³) = 0.96086 Volume (L) = 1.05014 - Viscosity (mPa s) = 0.28373 + Viscosity (mPa s) = 0.28374 Activity of water = 0.996 Ionic strength (mol/kgw) = 2.920e-04 Mass of water (kg) = 9.993e-01 @@ -8561,7 +8561,7 @@ H2O(g) 0.17 1.465e+00 0.695 4.816e-02 5.795e-02 9.787e-03 Specific Conductance (µS/cm, 100°C) = 310 Density (g/cm³) = 0.96489 Volume (L) = 1.06054 - Viscosity (mPa s) = 0.28657 + Viscosity (mPa s) = 0.28658 Activity of water = 0.991 Ionic strength (mol/kgw) = 4.610e-04 Mass of water (kg) = 9.989e-01 @@ -8656,7 +8656,7 @@ H2O(g) 0.22 1.653e+00 0.621 5.795e-02 6.931e-02 1.136e-02 Specific Conductance (µS/cm, 100°C) = 338 Density (g/cm³) = 0.96649 Volume (L) = 1.06404 - Viscosity (mPa s) = 0.28765 + Viscosity (mPa s) = 0.28766 Activity of water = 0.989 Ionic strength (mol/kgw) = 5.093e-04 Mass of water (kg) = 9.987e-01 @@ -8751,7 +8751,7 @@ H2O(g) 0.27 1.859e+00 0.557 6.931e-02 8.231e-02 1.301e-02 Specific Conductance (µS/cm, 100°C) = 359 Density (g/cm³) = 0.96788 Volume (L) = 1.06668 - Viscosity (mPa s) = 0.28858 + Viscosity (mPa s) = 0.28859 Activity of water = 0.988 Ionic strength (mol/kgw) = 5.462e-04 Mass of water (kg) = 9.985e-01 @@ -8846,7 +8846,7 @@ H2O(g) 0.32 2.085e+00 0.501 8.231e-02 9.701e-02 1.470e-02 Specific Conductance (µS/cm, 100°C) = 375 Density (g/cm³) = 0.96910 Volume (L) = 1.06867 - Viscosity (mPa s) = 0.28939 + Viscosity (mPa s) = 0.28940 Activity of water = 0.986 Ionic strength (mol/kgw) = 5.755e-04 Mass of water (kg) = 9.982e-01 @@ -8941,7 +8941,7 @@ H2O(g) 0.37 2.333e+00 0.451 9.701e-02 1.134e-01 1.641e-02 Specific Conductance (µS/cm, 100°C) = 388 Density (g/cm³) = 0.97021 Volume (L) = 1.07015 - Viscosity (mPa s) = 0.29012 + Viscosity (mPa s) = 0.29013 Activity of water = 0.985 Ionic strength (mol/kgw) = 5.997e-04 Mass of water (kg) = 9.979e-01 @@ -9036,7 +9036,7 @@ H2O(g) 0.42 2.605e+00 0.407 1.134e-01 1.315e-01 1.811e-02 Specific Conductance (µS/cm, 100°C) = 399 Density (g/cm³) = 0.97124 Volume (L) = 1.07126 - Viscosity (mPa s) = 0.29079 + Viscosity (mPa s) = 0.29080 Activity of water = 0.985 Ionic strength (mol/kgw) = 6.205e-04 Mass of water (kg) = 9.976e-01 @@ -9226,7 +9226,7 @@ H2O(g) 0.51 3.242e+00 0.332 1.513e-01 1.727e-01 2.137e-02 Specific Conductance (µS/cm, 100°C) = 418 Density (g/cm³) = 0.97320 Volume (L) = 1.07268 - Viscosity (mPa s) = 0.29206 + Viscosity (mPa s) = 0.29207 Activity of water = 0.983 Ionic strength (mol/kgw) = 6.566e-04 Mass of water (kg) = 9.969e-01 @@ -9321,7 +9321,7 @@ H2O(g) 0.56 3.618e+00 0.300 1.727e-01 1.955e-01 2.287e-02 Specific Conductance (µS/cm, 100°C) = 426 Density (g/cm³) = 0.97420 Volume (L) = 1.07311 - Viscosity (mPa s) = 0.29270 + Viscosity (mPa s) = 0.29271 Activity of water = 0.982 Ionic strength (mol/kgw) = 6.734e-04 Mass of water (kg) = 9.965e-01 @@ -9416,7 +9416,7 @@ H2O(g) 0.61 4.045e+00 0.271 1.955e-01 2.198e-01 2.424e-02 Specific Conductance (µS/cm, 100°C) = 435 Density (g/cm³) = 0.97525 Volume (L) = 1.07339 - Viscosity (mPa s) = 0.29338 + Viscosity (mPa s) = 0.29339 Activity of water = 0.982 Ionic strength (mol/kgw) = 6.903e-04 Mass of water (kg) = 9.960e-01 @@ -9511,7 +9511,7 @@ H2O(g) 0.66 4.530e+00 0.245 2.198e-01 2.452e-01 2.545e-02 Specific Conductance (µS/cm, 100°C) = 444 Density (g/cm³) = 0.97639 Volume (L) = 1.07355 - Viscosity (mPa s) = 0.29410 + Viscosity (mPa s) = 0.29411 Activity of water = 0.981 Ionic strength (mol/kgw) = 7.077e-04 Mass of water (kg) = 9.956e-01 @@ -9701,7 +9701,7 @@ H2O(g) 0.76 5.727e+00 0.199 2.717e-01 2.989e-01 2.722e-02 Specific Conductance (µS/cm, 100°C) = 464 Density (g/cm³) = 0.97902 Volume (L) = 1.07352 - Viscosity (mPa s) = 0.29580 + Viscosity (mPa s) = 0.29581 Activity of water = 0.980 Ionic strength (mol/kgw) = 7.459e-04 Mass of water (kg) = 9.946e-01 @@ -9796,7 +9796,7 @@ H2O(g) 0.81 6.466e+00 0.179 2.989e-01 3.266e-01 2.770e-02 Specific Conductance (µS/cm, 100°C) = 475 Density (g/cm³) = 0.98059 Volume (L) = 1.07333 - Viscosity (mPa s) = 0.29681 + Viscosity (mPa s) = 0.29682 Activity of water = 0.979 Ionic strength (mol/kgw) = 7.676e-04 Mass of water (kg) = 9.941e-01 @@ -9888,10 +9888,10 @@ H2O(g) 0.86 7.319e+00 0.161 3.266e-01 3.544e-01 2.783e-02 pH = 3.117 Charge balance pe = 1.787 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 488 + Specific Conductance (µS/cm, 100°C) = 487 Density (g/cm³) = 0.98238 Volume (L) = 1.07300 - Viscosity (mPa s) = 0.29796 + Viscosity (mPa s) = 0.29797 Activity of water = 0.979 Ionic strength (mol/kgw) = 7.916e-04 Mass of water (kg) = 9.936e-01 @@ -9986,7 +9986,7 @@ H2O(g) 0.92 8.305e+00 0.145 3.544e-01 3.820e-01 2.758e-02 Specific Conductance (µS/cm, 100°C) = 501 Density (g/cm³) = 0.98441 Volume (L) = 1.07253 - Viscosity (mPa s) = 0.29928 + Viscosity (mPa s) = 0.29929 Activity of water = 0.978 Ionic strength (mol/kgw) = 8.184e-04 Mass of water (kg) = 9.931e-01 @@ -10081,7 +10081,7 @@ H2O(g) 0.98 9.442e+00 0.131 3.820e-01 4.089e-01 2.690e-02 Specific Conductance (µS/cm, 100°C) = 517 Density (g/cm³) = 0.98675 Volume (L) = 1.07187 - Viscosity (mPa s) = 0.30081 + Viscosity (mPa s) = 0.30082 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.487e-04 Mass of water (kg) = 9.926e-01 @@ -10176,7 +10176,7 @@ H2O(g) 1.03 1.075e+01 0.119 4.089e-01 4.347e-01 2.572e-02 Specific Conductance (µS/cm, 100°C) = 534 Density (g/cm³) = 0.98942 Volume (L) = 1.07102 - Viscosity (mPa s) = 0.30257 + Viscosity (mPa s) = 0.30258 Activity of water = 0.976 Ionic strength (mol/kgw) = 8.829e-04 Mass of water (kg) = 9.922e-01 @@ -10278,7 +10278,7 @@ H2O(g) 1.09 1.225e+01 0.108 4.347e-01 4.587e-01 2.401e-02 Specific Conductance (µS/cm, 100°C) = 554 Density (g/cm³) = 0.99250 Volume (L) = 1.06991 - Viscosity (mPa s) = 0.30462 + Viscosity (mPa s) = 0.30463 Activity of water = 0.975 Ionic strength (mol/kgw) = 9.220e-04 Mass of water (kg) = 9.917e-01 @@ -10380,7 +10380,7 @@ H2O(g) 1.14 1.395e+01 0.099 4.587e-01 4.804e-01 2.170e-02 Specific Conductance (µS/cm, 100°C) = 577 Density (g/cm³) = 0.99605 Volume (L) = 1.06852 - Viscosity (mPa s) = 0.30700 + Viscosity (mPa s) = 0.30701 Activity of water = 0.974 Ionic strength (mol/kgw) = 9.668e-04 Mass of water (kg) = 9.913e-01 @@ -10482,7 +10482,7 @@ H2O(g) 1.20 1.588e+01 0.091 4.804e-01 4.991e-01 1.875e-02 Specific Conductance (µS/cm, 100°C) = 603 Density (g/cm³) = 1.00012 Volume (L) = 1.06679 - Viscosity (mPa s) = 0.30979 + Viscosity (mPa s) = 0.30980 Activity of water = 0.973 Ionic strength (mol/kgw) = 1.018e-03 Mass of water (kg) = 9.910e-01 @@ -10584,7 +10584,7 @@ H2O(g) 1.26 1.804e+01 0.085 4.991e-01 5.142e-01 1.511e-02 Specific Conductance (µS/cm, 100°C) = 633 Density (g/cm³) = 1.00480 Volume (L) = 1.06465 - Viscosity (mPa s) = 0.31305 + Viscosity (mPa s) = 0.31306 Activity of water = 0.972 Ionic strength (mol/kgw) = 1.078e-03 Mass of water (kg) = 9.907e-01 @@ -10686,7 +10686,7 @@ H2O(g) 1.31 2.044e+01 0.081 5.142e-01 5.250e-01 1.075e-02 Specific Conductance (µS/cm, 100°C) = 667 Density (g/cm³) = 1.01017 Volume (L) = 1.06205 - Viscosity (mPa s) = 0.31688 + Viscosity (mPa s) = 0.31689 Activity of water = 0.971 Ionic strength (mol/kgw) = 1.147e-03 Mass of water (kg) = 9.905e-01 @@ -10788,7 +10788,7 @@ H2O(g) 1.36 2.308e+01 0.078 5.250e-01 5.306e-01 5.633e-03 Specific Conductance (µS/cm, 100°C) = 707 Density (g/cm³) = 1.01630 Volume (L) = 1.05892 - Viscosity (mPa s) = 0.32137 + Viscosity (mPa s) = 0.32138 Activity of water = 0.970 Ionic strength (mol/kgw) = 1.228e-03 Mass of water (kg) = 9.904e-01 @@ -10890,7 +10890,7 @@ H2O(g) 1.41 2.593e+01 0.076 5.306e-01 5.304e-01 -2.391e-04 Specific Conductance (µS/cm, 100°C) = 753 Density (g/cm³) = 1.02323 Volume (L) = 1.05524 - Viscosity (mPa s) = 0.32662 + Viscosity (mPa s) = 0.32664 Activity of water = 0.969 Ionic strength (mol/kgw) = 1.323e-03 Mass of water (kg) = 9.904e-01 diff --git a/ex3.out b/ex3.out index 3671a05c..acc4b804 100644 --- a/ex3.out +++ b/ex3.out @@ -388,7 +388,7 @@ Mixture 1. ----------------------------Description of solution---------------------------- pH = 7.327 Charge balance - pe = 10.560 Adjusted to redox equilibrium + pe = 10.559 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 18310 Density (g/cm³) = 1.00526 Volume (L) = 1.00578 @@ -414,7 +414,7 @@ Mixture 1. H+ 5.921e-08 4.715e-08 -7.228 -7.327 -0.099 0.00 H2O 5.551e+01 9.941e-01 1.744 -0.003 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.397 -122.377 0.021 35.46 + CH4 0.000e+00 0.000e+00 -122.396 -122.375 0.021 35.46 C(4) 3.175e-03 HCO3- 2.615e-03 1.945e-03 -2.583 -2.711 -0.128 25.15 CO2 2.010e-04 2.074e-04 -3.697 -3.683 0.014 34.43 @@ -436,8 +436,8 @@ Ca 4.334e-03 Cl 1.697e-01 Cl- 1.697e-01 1.210e-01 -0.770 -0.917 -0.147 18.46 HCl 1.605e-09 1.965e-09 -8.795 -8.707 0.088 (0) -H(0) 2.281e-39 - H2 1.140e-39 1.196e-39 -38.943 -38.922 0.021 28.61 +H(0) 2.283e-39 + H2 1.142e-39 1.197e-39 -38.942 -38.922 0.021 28.61 K 3.173e-03 K+ 3.122e-03 2.214e-03 -2.506 -2.655 -0.149 9.35 KSO4- 4.986e-05 4.061e-05 -4.302 -4.391 -0.089 14.03 @@ -453,13 +453,13 @@ Na 1.456e-01 Na+ 1.427e-01 1.065e-01 -0.846 -0.973 -0.127 -0.92 NaSO4- 2.801e-03 2.089e-03 -2.553 -2.680 -0.127 -0.72 NaHCO3 1.640e-04 1.804e-04 -3.785 -3.744 0.041 31.73 -O(0) 5.492e-15 - O2 2.746e-15 2.880e-15 -14.561 -14.541 0.021 30.40 +O(0) 5.481e-15 + O2 2.740e-15 2.874e-15 -14.562 -14.541 0.021 30.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -119.522 -119.674 -0.152 21.00 - H2S 0.000e+00 0.000e+00 -120.080 -120.059 0.021 36.27 - S-2 0.000e+00 0.000e+00 -124.735 -125.266 -0.531 (0) - (H2S)2 0.000e+00 0.000e+00 -241.417 -241.396 0.021 30.09 + HS- 0.000e+00 0.000e+00 -119.520 -119.672 -0.152 21.00 + H2S 0.000e+00 0.000e+00 -120.078 -120.057 0.021 36.27 + S-2 0.000e+00 0.000e+00 -124.733 -125.264 -0.531 (0) + (H2S)2 0.000e+00 0.000e+00 -241.413 -241.393 0.021 30.09 S(6) 8.777e-03 SO4-2 4.174e-03 1.206e-03 -2.379 -2.919 -0.539 28.42 NaSO4- 2.801e-03 2.089e-03 -2.553 -2.680 -0.127 -0.72 @@ -482,7 +482,7 @@ Si 2.215e-05 Aragonite -0.27 -8.60 -8.34 CaCO3 Arcanite -6.35 -8.23 -1.88 K2SO4 Calcite -0.12 -8.60 -8.48 CaCO3 - CH4(g) -119.57 -122.38 -2.80 CH4 + CH4(g) -119.57 -122.37 -2.80 CH4 Chalcedony -1.08 -4.63 -3.55 SiO2 Chrysotile -4.40 27.80 32.20 Mg3Si2O5(OH)4 CO2(g) -2.21 -3.68 -1.47 CO2 @@ -562,7 +562,7 @@ Dolomite 0.00 -17.08 -17.08 1.000e+01 1.001e+01 7.786e-03 ----------------------------Description of solution---------------------------- pH = 7.047 Charge balance - pe = 10.927 Adjusted to redox equilibrium + pe = 10.928 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 18478 Density (g/cm³) = 1.00533 Volume (L) = 1.00583 @@ -588,7 +588,7 @@ Dolomite 0.00 -17.08 -17.08 1.000e+01 1.001e+01 7.786e-03 H+ 1.127e-07 8.972e-08 -6.948 -7.047 -0.099 0.00 H2O 5.551e+01 9.941e-01 1.744 -0.003 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.863 -122.843 0.021 35.46 + CH4 0.000e+00 0.000e+00 -122.866 -122.845 0.021 35.46 C(4) 3.016e-03 HCO3- 2.394e-03 1.781e-03 -2.621 -2.749 -0.128 25.15 CO2 3.502e-04 3.614e-04 -3.456 -3.442 0.014 34.43 @@ -610,8 +610,8 @@ Ca 1.196e-02 Cl 1.697e-01 Cl- 1.697e-01 1.210e-01 -0.770 -0.917 -0.147 18.47 HCl 3.053e-09 3.740e-09 -8.515 -8.427 0.088 (0) -H(0) 1.518e-39 - H2 7.590e-40 7.961e-40 -39.120 -39.099 0.021 28.61 +H(0) 1.516e-39 + H2 7.579e-40 7.949e-40 -39.120 -39.100 0.021 28.61 K 3.173e-03 K+ 3.120e-03 2.213e-03 -2.506 -2.655 -0.149 9.35 KSO4- 5.122e-05 4.172e-05 -4.291 -4.380 -0.089 14.03 @@ -627,13 +627,13 @@ Na 1.456e-01 Na+ 1.426e-01 1.064e-01 -0.846 -0.973 -0.127 -0.92 NaSO4- 2.878e-03 2.146e-03 -2.541 -2.668 -0.127 -0.71 NaHCO3 1.500e-04 1.650e-04 -3.824 -3.782 0.041 31.73 -O(0) 1.239e-14 - O2 6.197e-15 6.500e-15 -14.208 -14.187 0.021 30.40 +O(0) 1.243e-14 + O2 6.216e-15 6.519e-15 -14.207 -14.186 0.021 30.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -119.937 -120.090 -0.152 21.00 - H2S 0.000e+00 0.000e+00 -120.216 -120.195 0.021 36.27 - S-2 0.000e+00 0.000e+00 -125.429 -125.961 -0.531 (0) - (H2S)2 0.000e+00 0.000e+00 -241.689 -241.669 0.021 30.09 + HS- 0.000e+00 0.000e+00 -119.940 -120.092 -0.152 21.00 + H2S 0.000e+00 0.000e+00 -120.218 -120.198 0.021 36.27 + S-2 0.000e+00 0.000e+00 -125.432 -125.963 -0.531 (0) + (H2S)2 0.000e+00 0.000e+00 -241.694 -241.674 0.021 30.09 S(6) 8.777e-03 SO4-2 4.293e-03 1.239e-03 -2.367 -2.907 -0.540 28.43 NaSO4- 2.878e-03 2.146e-03 -2.541 -2.668 -0.127 -0.71 @@ -656,7 +656,7 @@ Si 2.215e-05 Aragonite -0.14 -8.48 -8.34 CaCO3 Arcanite -6.34 -8.22 -1.88 K2SO4 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -120.04 -122.84 -2.80 CH4 + CH4(g) -120.04 -122.85 -2.80 CH4 Chalcedony -1.08 -4.63 -3.55 SiO2 Chrysotile -6.91 25.29 32.20 Mg3Si2O5(OH)4 CO2(g) -1.97 -3.44 -1.47 CO2 @@ -760,7 +760,7 @@ Calcite 0.00 -8.48 -8.48 1.000e+01 1.000e+01 -4.587e-05 H+ 4.632e-08 3.688e-08 -7.334 -7.433 -0.099 0.00 H2O 5.551e+01 9.941e-01 1.744 -0.003 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.203 -123.182 0.021 35.46 + CH4 0.000e+00 0.000e+00 -123.204 -123.183 0.021 35.46 C(4) 3.221e-03 HCO3- 2.685e-03 1.998e-03 -2.571 -2.699 -0.128 25.15 NaHCO3 1.684e-04 1.852e-04 -3.774 -3.732 0.041 31.73 @@ -782,8 +782,8 @@ Ca 4.380e-03 Cl 1.697e-01 Cl- 1.697e-01 1.210e-01 -0.770 -0.917 -0.147 18.47 HCl 1.255e-09 1.538e-09 -8.901 -8.813 0.088 (0) -H(0) 1.515e-39 - H2 7.577e-40 7.946e-40 -39.121 -39.100 0.021 28.61 +H(0) 1.514e-39 + H2 7.572e-40 7.942e-40 -39.121 -39.100 0.021 28.61 K 3.173e-03 K+ 3.122e-03 2.214e-03 -2.506 -2.655 -0.149 9.35 KSO4- 4.984e-05 4.060e-05 -4.302 -4.392 -0.089 14.03 @@ -799,13 +799,13 @@ Na 1.456e-01 Na+ 1.427e-01 1.064e-01 -0.846 -0.973 -0.127 -0.92 NaSO4- 2.800e-03 2.088e-03 -2.553 -2.680 -0.127 -0.72 NaHCO3 1.684e-04 1.852e-04 -3.774 -3.732 0.041 31.73 -O(0) 1.244e-14 - O2 6.221e-15 6.524e-15 -14.206 -14.185 0.021 30.40 +O(0) 1.246e-14 + O2 6.228e-15 6.532e-15 -14.206 -14.185 0.021 30.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -120.339 -120.491 -0.152 21.00 - H2S 0.000e+00 0.000e+00 -121.003 -120.983 0.021 36.27 - S-2 0.000e+00 0.000e+00 -125.445 -125.976 -0.531 (0) - (H2S)2 0.000e+00 0.000e+00 -243.264 -243.243 0.021 30.09 + HS- 0.000e+00 0.000e+00 -120.340 -120.492 -0.152 21.00 + H2S 0.000e+00 0.000e+00 -121.004 -120.984 0.021 36.27 + S-2 0.000e+00 0.000e+00 -125.446 -125.977 -0.531 (0) + (H2S)2 0.000e+00 0.000e+00 -243.266 -243.245 0.021 30.09 S(6) 8.777e-03 SO4-2 4.174e-03 1.205e-03 -2.379 -2.919 -0.539 28.43 NaSO4- 2.800e-03 2.088e-03 -2.553 -2.680 -0.127 -0.72 @@ -837,17 +837,17 @@ Si 2.215e-05 Gypsum -1.23 -5.81 -4.58 CaSO4:2H2O H2(g) -36.00 -39.10 -3.10 H2 H2O(g) -1.51 -0.00 1.50 H2O - H2S(g) -119.99 -127.92 -7.94 H2S + H2S(g) -119.99 -127.93 -7.94 H2S Halite -3.46 -1.89 1.57 NaCl Hexahydrite -3.66 -5.23 -1.57 MgSO4:6H2O Kieserite -4.06 -5.22 -1.16 MgSO4:H2O Mirabilite -3.65 -4.89 -1.24 Na2SO4:10H2O - O2(g) -11.29 -14.19 -2.89 O2 + O2(g) -11.29 -14.18 -2.89 O2 Quartz -0.65 -4.63 -3.98 SiO2 Sepiolite -4.53 11.23 15.76 Mg2Si3O7.5OH:3H2O Sepiolite(d) -7.43 11.23 18.66 Mg2Si3O7.5OH:3H2O SiO2(a) -1.92 -4.63 -2.71 SiO2 - Sulfur -89.91 -85.03 4.88 S + Sulfur -89.92 -85.03 4.88 S Sylvite -4.47 -3.57 0.90 KCl Talc -2.22 19.18 21.40 Mg3Si4O10(OH)2 Thenardite -4.56 -4.86 -0.30 Na2SO4 From 301276613dd66ac3d604656ae135d9087e98ad69 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Tue, 22 Oct 2024 01:04:23 +0000 Subject: [PATCH 225/384] Squashed 'phreeqcpp/' changes from 8c0d001..455b49c 455b49c Tony's tweak to transport, updated RELEASE.TXT 7233c29 fixed viscos_0 as new datum in solution class. 9f438c1 Tony's changes for viscosity and heat in transport. ex13_impl failed in Release. git-subtree-dir: phreeqcpp git-subtree-split: 455b49c2a7e20aef296e2cbd08348391c1e8d9e5 --- Solution.cxx | 18 +++- Solution.h | 3 + global_structures.h | 17 +-- kinetics.cpp | 3 +- mainsubs.cpp | 2 + step.cpp | 2 + transport.cpp | 252 +++++++++++++++++++++----------------------- 7 files changed, 158 insertions(+), 139 deletions(-) diff --git a/Solution.cxx b/Solution.cxx index 9bf4a56e..231db416 100644 --- a/Solution.cxx +++ b/Solution.cxx @@ -48,6 +48,7 @@ cxxSolution::cxxSolution(PHRQ_io * io) this->cb = 0.0; this->density = 1.0; this->viscosity = 1.0; + this->viscos_0 = 1.0; this->mass_water = 1.0; this->soln_vol = 1.0; this->total_alkalinity = 0.0; @@ -82,6 +83,7 @@ cxxSolution::operator =(const cxxSolution &rhs) this->total_o = rhs.total_o; this->density = rhs.density; this->viscosity = rhs.viscosity; + this->viscos_0 = rhs.viscos_0; this->cb = rhs.cb; this->mass_water = rhs.mass_water; this->soln_vol = rhs.soln_vol; @@ -274,6 +276,8 @@ cxxSolution::dump_raw(std::ostream & s_oss, unsigned int indent, int *n_out) con // new identifier s_oss << indent1; s_oss << "-viscosity " << this->viscosity << "\n"; + s_oss << indent1; + s_oss << "-viscos_0 " << this->viscos_0 << "\n"; // soln_total conc structures s_oss << indent1; @@ -1086,6 +1090,16 @@ cxxSolution::read_raw(CParser & parser, bool check) } opt_save = CParser::OPT_DEFAULT; break; + case 29: // viscos_0 + if (!(parser.get_iss() >> this->viscos_0)) + { + this->viscos_0 = 1.0; + parser.incr_input_error(); + parser.error_msg("Expected numeric value for viscos_0.", + PHRQ_io::OT_CONTINUE); + } + opt_save = CParser::OPT_DEFAULT; + break; } if (opt == CParser::OPT_EOF || opt == CParser::OPT_KEYWORD) break; @@ -1415,6 +1429,7 @@ cxxSolution::add(const cxxSolution & addee, LDBLE extensive) this->cb += addee.cb * extensive; this->density = f1 * this->density + f2 * addee.density; this->viscosity = f1 * this->viscosity + f2 * addee.viscosity; + this->viscos_0 = f1 * this->viscos_0 + f2 * addee.viscos_0; this->patm = f1 * this->patm + f2 * addee.patm; // this->potV = f1 * this->potV + f2 * addee.potV; // appt this->mass_water += addee.mass_water * extensive; @@ -1773,6 +1788,7 @@ const std::vector< std::string >::value_type temp_vopts[] = { std::vector< std::string >::value_type("log_gamma_map"), // 25 std::vector< std::string >::value_type("potential"), // 26 std::vector< std::string >::value_type("log_molalities_map"), // 27 - std::vector< std::string >::value_type("viscosity") // 28 + std::vector< std::string >::value_type("viscosity"), // 28 + std::vector< std::string >::value_type("viscos_0") // 29 }; const std::vector< std::string > cxxSolution::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); diff --git a/Solution.h b/Solution.h index c4326a8a..3e16e289 100644 --- a/Solution.h +++ b/Solution.h @@ -51,6 +51,8 @@ class cxxSolution:public cxxNumKeyword void Set_density(LDBLE l_density) {this->density = l_density;} LDBLE Get_viscosity() const { return this->viscosity; } void Set_viscosity(LDBLE l_viscos) { this->viscosity = l_viscos; } + LDBLE Get_viscos_0() const { return this->viscos_0; } + void Set_viscos_0(LDBLE l_viscos_0) { this->viscos_0 = l_viscos_0; } LDBLE Get_mass_water() const {return this->mass_water;} void Set_mass_water(LDBLE l_mass_water) {this->mass_water = l_mass_water;} LDBLE Get_total_alkalinity() const {return this->total_alkalinity;} @@ -134,6 +136,7 @@ class cxxSolution:public cxxNumKeyword LDBLE mass_water; LDBLE density; LDBLE viscosity; + LDBLE viscos_0; LDBLE soln_vol; LDBLE total_alkalinity; cxxNameDouble totals; diff --git a/global_structures.h b/global_structures.h index 69a7748f..3e7cc701 100644 --- a/global_structures.h +++ b/global_structures.h @@ -109,7 +109,7 @@ #define TRANSPORT 8 #define PHAST 9 -/* constants in mass balance */ +/* constraints in mass balance */ #define EITHER 0 #define DISSOLVE 1 #define PRECIPITATE -1 @@ -1486,7 +1486,9 @@ public: c = 0; // charge number z = 0; - // temperature corrected free water diffusion coefficient, m2/s + // free water diffusion coefficient, m2/s + Dw = 0; + // temperature and viscosity corrected free water diffusion coefficient, m2/s Dwt = 0; // temperature factor for Dw dw_t = 0; @@ -1503,6 +1505,7 @@ public: LDBLE lg; LDBLE c; LDBLE z; + LDBLE Dw; LDBLE Dwt; LDBLE dw_t; LDBLE dw_a_v_dif; @@ -1521,17 +1524,17 @@ public: count_exch_spec = 0; // total moles of X-, max X- in transport step in sol_D[1], tk exch_total = 0, x_max = 0, tk_x = 0; - // (tk_x * viscos_0_25) / (298 * viscos_0) - viscos_f0 = 0; - // (viscos_0) / (298 * viscos) - viscos_f = 0; + // viscos_0 at I = 0 + viscos_0 = 0; + // viscosity of solution + viscos = 0; spec = NULL; spec_size = 0; } int count_spec; int count_exch_spec; LDBLE exch_total, x_max, tk_x; - LDBLE viscos_f0, viscos_f; + LDBLE viscos_0, viscos; class spec* spec; int spec_size; }; diff --git a/kinetics.cpp b/kinetics.cpp index d1158e2f..2f6f6592 100644 --- a/kinetics.cpp +++ b/kinetics.cpp @@ -1581,7 +1581,8 @@ set_and_run(int i, int use_mix, int use_kinetics, int nsaver, sum_species(); viscos = viscosity(NULL); use.Get_solution_ptr()->Set_viscosity(viscos); - if (use.Get_surface_ptr() != NULL && dl_type_x != cxxSurface::NO_DL) + use.Get_solution_ptr()->Set_viscos_0(viscos_0); + if (use.Get_surface_ptr() != NULL && dl_type_x != cxxSurface::NO_DL && use.Get_surface_ptr()->Get_calc_viscosity()) use.Get_surface_ptr()->Set_DDL_viscosity(viscosity(use.Get_surface_ptr())); return (converge); } diff --git a/mainsubs.cpp b/mainsubs.cpp index 64d65549..27cb9ad2 100644 --- a/mainsubs.cpp +++ b/mainsubs.cpp @@ -438,6 +438,7 @@ initial_solutions(int print) sum_species(); viscos = viscosity(NULL); use.Get_solution_ptr()->Set_viscosity(viscos); + use.Get_solution_ptr()->Set_viscos_0(viscos_0); if (use.Get_surface_ptr() != NULL && dl_type_x != cxxSurface::NO_DL) use.Get_surface_ptr()->Set_DDL_viscosity(viscosity(use.Get_surface_ptr())); add_isotopes(solution_ref); @@ -1267,6 +1268,7 @@ xsolution_save(int n_user) // the subroutine is called at the start of a new simulation, and the following 2 go wrong since s_x is not updated temp_solution.Set_density(density_x); temp_solution.Set_viscosity(viscos); + temp_solution.Set_viscos_0(viscos_0); temp_solution.Set_total_h(total_h_x); temp_solution.Set_total_o(total_o_x); temp_solution.Set_cb(cb_x); /* cb_x does not include surface charge after sum_species */ diff --git a/step.cpp b/step.cpp index 7d3dc148..131aec3a 100644 --- a/step.cpp +++ b/step.cpp @@ -328,6 +328,7 @@ xsolution_zero(void) mu_x = 0.0; ah2o_x = 0.0; viscos = 0.0; + viscos_0 = 0.0; density_x = 0.0; total_h_x = 0.0; total_o_x = 0.0; @@ -381,6 +382,7 @@ add_solution(cxxSolution *solution_ptr, LDBLE extensive, LDBLE intensive) mu_x += solution_ptr->Get_mu() * intensive; ah2o_x += solution_ptr->Get_ah2o() * intensive; viscos += solution_ptr->Get_viscosity() * intensive; + viscos_0 += solution_ptr->Get_viscos_0() * intensive; density_x += solution_ptr->Get_density() * intensive; total_h_x += solution_ptr->Get_total_h() * extensive; diff --git a/transport.cpp b/transport.cpp index 4f84778c..7bde99d4 100644 --- a/transport.cpp +++ b/transport.cpp @@ -52,6 +52,7 @@ struct MOLES_ADDED /* total moles added to balance negative conc's */ } *moles_added; int count_moles_added; +#if !defined(NPP) #if defined(_MSC_VER) && (_MSC_VER <= 1400) // VS2005 # define nullptr NULL #endif @@ -61,7 +62,7 @@ int count_moles_added; # define nullptr NULL # endif #endif - +#endif #if defined(PHREEQCI_GUI) #ifdef _DEBUG #define new DEBUG_NEW @@ -125,8 +126,8 @@ transport(void) sol_D[i].count_exch_spec = 0; sol_D[i].exch_total = 0; sol_D[i].x_max = 0; - sol_D[i].viscos_f0 = 1.0; - sol_D[i].viscos_f = 1.0; + sol_D[i].viscos_0 = viscos_0_25; + sol_D[i].viscos = viscos_0_25; sol_D[i].tk_x = 298.15; sol_D[i].spec = NULL; sol_D[i].spec_size = 0; @@ -1544,13 +1545,13 @@ init_heat_mix(int l_nmix) /* * Check for need to model thermal diffusion... */ - if (heat_diffc <= diffc && !implicit) + if (heat_diffc <= diffc && !multi_Dflag) return (0); if (count_cells < 2) return (0); l_heat_nmix = 0; - if (implicit) + if (multi_Dflag) l_diffc = heat_diffc; else l_diffc = heat_diffc - diffc_tr; @@ -1653,24 +1654,21 @@ init_heat_mix(int l_nmix) { if (implicit) { - LDBLE viscos_f; - l_heat_nmix = l_nmix; for (i = 1; i <= count_cells + 1; i++) { - heat_mix_array[i - 1] = heat_mix_array[i] / l_heat_nmix; /* for implicit, m[i] has mixf with higher cell */ - if (print_viscosity) - { - viscos_f = sol_D[i - 1].viscos_f * exp(heat_diffc / sol_D[i - 1].tk_x - heat_diffc / 298.15); - viscos_f += sol_D[i].viscos_f * exp(heat_diffc / sol_D[i].tk_x - heat_diffc / 298.15); - heat_mix_array[i - 1] *= (viscos_f / 2); - } + heat_mix_array[i - 1] = heat_mix_array[i] / l_nmix; /* for implicit, m[i] has mixf with higher cell */ + //heat_mix_array[i - 1] *= viscos_0_25 / ((sol_D[i - 1].viscos_0 + sol_D[i].viscos_0) / 2); // 10/14/24: done in diffuse implicit } } else { l_heat_nmix = 1 + (int)floor(3.0 * maxmix); for (i = 1; i <= count_cells + 1; i++) + { heat_mix_array[i] /= l_heat_nmix; + if (multi_Dflag && nmix >= 2) // apptxx + heat_mix_array[i] /= l_nmix; + } } } @@ -1683,6 +1681,7 @@ heat_mix(int l_heat_nmix) /* ---------------------------------------------------------------------- */ { int i, j; + LDBLE viscos_f = 1, viscos_f1 = 1; for (i = 1; i <= count_cells; i++) temp1[i] = Utilities::Rxn_find(Rxn_solution_map, i)->Get_tc(); @@ -1693,9 +1692,16 @@ heat_mix(int l_heat_nmix) for (i = 1; i <= l_heat_nmix; i++) { for (j = 1; j <= count_cells; j++) + { + if (multi_Dflag) + { + viscos_f = viscos_0_25 / sol_D[j].viscos_0; + viscos_f1 = viscos_0_25 / sol_D[j + 1].viscos_0; + } temp2[j] = - heat_mix_array[j] * temp1[j - 1] + heat_mix_array[j + 1] * temp1[j + 1] + - (1 - heat_mix_array[j] - heat_mix_array[j + 1]) * temp1[j]; + heat_mix_array[j] * viscos_f * temp1[j - 1] + heat_mix_array[j + 1] * viscos_f1 * temp1[j + 1] + + (1 - heat_mix_array[j] * viscos_f - heat_mix_array[j + 1] * viscos_f1) * temp1[j]; + } for (j = 1; j <= count_cells; j++) temp1[j] = temp2[j]; } @@ -1835,9 +1841,9 @@ fill_spec(int l_cell_no, int ref_cell) const char * name; class species *s_ptr, *s_ptr2; class master *master_ptr; - LDBLE dum, dum2; + LDBLE dum, dum2, l_tk_x; LDBLE lm; - LDBLE por, por_il, viscos_f0, viscos_f, viscos_il_f0, viscos_il_f, viscos; + LDBLE por, por_il, viscos_f0, viscos_f, viscos_il_f0, viscos, viscos0; bool x_max_done = false; std::set loc_spec_names; @@ -1874,6 +1880,7 @@ fill_spec(int l_cell_no, int ref_cell) sol_D[l_cell_no].spec[i].lg = -0.04; sol_D[l_cell_no].spec[i].c = 0.0; sol_D[l_cell_no].spec[i].z = 0.0; + sol_D[l_cell_no].spec[i].Dw = 0.0; sol_D[l_cell_no].spec[i].Dwt = 0.0; sol_D[l_cell_no].spec[i].dw_t = 0.0; sol_D[l_cell_no].spec[i].dw_a_v_dif = 0.0; @@ -1881,9 +1888,9 @@ fill_spec(int l_cell_no, int ref_cell) sol_D[l_cell_no].count_exch_spec = sol_D[l_cell_no].count_spec = 0; } - sol_D[l_cell_no].tk_x = tk_x; + sol_D[l_cell_no].tk_x = l_tk_x = Utilities::Rxn_find(Rxn_solution_map, l_cell_no)->Get_tc() + 273.15; - viscos_f0 = viscos_il_f0 = viscos_f = viscos_il_f = 1.0; + viscos_f0 = viscos_il_f0 = viscos_f = 1.0; if (l_cell_no == 0) { por = cell_data[1].por; @@ -1903,26 +1910,23 @@ fill_spec(int l_cell_no, int ref_cell) por = viscos_f0 = viscos_f = 0.0; if (por_il < interlayer_Dpor_lim) - por_il = viscos_il_f0 = viscos_il_f = 0.0; + por_il = viscos_il_f0 = 0.0; /* - * correct diffusion coefficient for temperature and viscosity, D_T = D_298 * viscos_298 / viscos - * modify viscosity effect: Dw(TK) = Dw(298.15) * exp(dw_t / TK - dw_t / 298.15), SC data from Robinson and Stokes, 1959 + * correct diffusion coefficient for temperature Dw(TK) = Dw(298.15) * exp(dw_t / TK - dw_t / 298.15), SC data from Robinson and Stokes, 1959 + * and viscosity, D_T = D_298 * viscos_0_298 / viscos_0_tk */ - if (print_viscosity) - viscos = Utilities::Rxn_find(Rxn_solution_map, l_cell_no)->Get_viscosity(); - else - viscos = viscos_0; + sol_D[l_cell_no].viscos = viscos = Utilities::Rxn_find(Rxn_solution_map, l_cell_no)->Get_viscosity(); + sol_D[l_cell_no].viscos_0 = viscos0 = Utilities::Rxn_find(Rxn_solution_map, l_cell_no)->Get_viscos_0(); + if (!sol_D[l_cell_no].viscos_0) + sol_D[l_cell_no].viscos_0 = viscos0 = viscos; /* * put temperature factor in por_factor which corrects for porous medium... */ - dum = viscos_0_25 / viscos_0; - dum2 = viscos_0 / viscos; + dum = viscos_0_25 / viscos0; + dum2 = viscos0 / viscos; viscos_f0 *= dum; viscos_il_f0 *= dum; - sol_D[l_cell_no].viscos_f0 = dum; viscos_f *= dum2; - viscos_il_f *= dum2; - sol_D[l_cell_no].viscos_f = dum2; count_spec = count_exch_spec = 0; /* @@ -1945,14 +1949,8 @@ fill_spec(int l_cell_no, int ref_cell) if (s_ptr->type > HPLUS && !(s_ptr->type == EX && interlayer_Dflag)) continue; - //if (s_ptr->type == EX && !interlayer_Dflag) - // continue; - //if (s_ptr->type == SURF) - // continue; if (i > 0 && strcmp(s_ptr->name, species_list[(size_t)i - 1].s->name) == 0) continue; - //if (s_ptr == s_h2o) - // continue; if (s_ptr->type == EX) { @@ -2011,17 +2009,19 @@ fill_spec(int l_cell_no, int ref_cell) //string_hsave(s_ptr2->name); sol_D[l_cell_no].spec[count_spec].z = s_ptr2->z; if (s_ptr2->dw == 0) - sol_D[l_cell_no].spec[count_spec].Dwt = default_Dw * viscos_il_f; + { + sol_D[l_cell_no].spec[count_spec].Dw = default_Dw; + sol_D[l_cell_no].spec[count_spec].Dwt = default_Dw * viscos_il_f0; + } else { + sol_D[l_cell_no].spec[count_spec].Dw = s_ptr2->dw; + sol_D[l_cell_no].spec[count_spec].Dwt = s_ptr2->dw * viscos_il_f0; if (s_ptr2->dw_t) { - sol_D[l_cell_no].spec[count_spec].Dwt = s_ptr2->dw * - exp(s_ptr2->dw_t / 298.15 - s_ptr2->dw_t / tk_x) * viscos_il_f; + sol_D[l_cell_no].spec[count_spec].Dwt *= exp(s_ptr2->dw_t / l_tk_x - s_ptr2->dw_t / 298.15); sol_D[l_cell_no].spec[count_spec].dw_t = s_ptr2->dw_t; } - else - sol_D[l_cell_no].spec[count_spec].Dwt = s_ptr2->dw * viscos_il_f; } if (s_ptr2->dw_a_v_dif) sol_D[l_cell_no].spec[count_spec].dw_a_v_dif = s_ptr2->dw_a_v_dif; @@ -2114,22 +2114,25 @@ fill_spec(int l_cell_no, int ref_cell) sol_D[l_cell_no].spec[count_spec].lg = s_ptr->lg; sol_D[l_cell_no].spec[count_spec].z = s_ptr->z; if (s_ptr->dw == 0) - sol_D[l_cell_no].spec[count_spec].Dwt = default_Dw; + { + sol_D[l_cell_no].spec[count_spec].Dw = default_Dw; + sol_D[l_cell_no].spec[count_spec].Dwt = default_Dw * viscos_f0; + } else { + sol_D[l_cell_no].spec[count_spec].Dw = s_ptr->dw; + sol_D[l_cell_no].spec[count_spec].Dwt = s_ptr->dw * viscos_f0; if (s_ptr->dw_t) { - sol_D[l_cell_no].spec[count_spec].Dwt = s_ptr->dw * - exp(s_ptr->dw_t / tk_x - s_ptr->dw_t / 298.15); + + sol_D[l_cell_no].spec[count_spec].Dwt *= exp(s_ptr->dw_t / l_tk_x - s_ptr->dw_t / 298.15); sol_D[l_cell_no].spec[count_spec].dw_t = s_ptr->dw_t; } - else - sol_D[l_cell_no].spec[count_spec].Dwt = s_ptr->dw; } if (s_ptr->dw_a_v_dif) { sol_D[l_cell_no].spec[count_spec].dw_a_v_dif = s_ptr->dw_a_v_dif; - sol_D[l_cell_no].spec[count_spec].Dwt *= pow(viscos_0 / viscos, s_ptr->dw_a_v_dif); + sol_D[l_cell_no].spec[count_spec].Dwt *= pow(viscos0 / viscos, s_ptr->dw_a_v_dif); } else sol_D[l_cell_no].spec[count_spec].dw_a_v_dif = 0.0; @@ -2465,8 +2468,8 @@ diffuse_implicit(LDBLE DDt, int stagnant) // boundary cells ... if (heat_nmix && cp == comp - 1) { - mfr = mixf[0][cp] = heat_mix_array[0]; - mfr1 = mixf[1][cp] = heat_mix_array[1]; + mfr = mixf[0][cp] = heat_mix_array[0] * viscos_0_25 / sol_D[1].viscos_0; + mfr1 = mixf[1][cp] = heat_mix_array[1] * viscos_0_25 / ((sol_D[1].viscos_0 + sol_D[2].viscos_0) / 2); } else { @@ -2533,8 +2536,8 @@ diffuse_implicit(LDBLE DDt, int stagnant) } if (heat_nmix && cp == comp - 1) { - mfr = mixf[c_1][cp] = heat_mix_array[c_1]; - mfr1 = mixf[count_cells][cp] = heat_mix_array[count_cells]; + mfr = mixf[c_1][cp] = heat_mix_array[c_1] * viscos_0_25 / ((sol_D[c_1].viscos_0 + sol_D[c].viscos_0) / 2); + mfr1 = mixf[count_cells][cp] = heat_mix_array[count_cells] * viscos_0_25 / sol_D[c].viscos_0; } else { @@ -2607,8 +2610,8 @@ diffuse_implicit(LDBLE DDt, int stagnant) { if (heat_nmix && cp == comp - 1) { - mfr = mixf[i - 1][cp] = heat_mix_array[i - 1]; - mfr1 = mixf[i][cp] = heat_mix_array[i]; + mfr = mixf[i - 1][cp] = heat_mix_array[i - 1] * viscos_0_25 / ((sol_D[i - 1].viscos_0 + sol_D[i].viscos_0) / 2); + mfr1 = mixf[i][cp] = heat_mix_array[i] * viscos_0_25 / ((sol_D[i].viscos_0 + sol_D[i + 1].viscos_0) / 2); } else { @@ -3952,21 +3955,26 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) { if (s_ptr1->Get_dl_type() != cxxSurface::NO_DL) { - if (s_ptr1->Get_calc_viscosity()) - { - viscosity(s_ptr1); - ct[icell].visc1 = s_ptr1->Get_DDL_viscosity(); - } - else - ct[icell].visc1 = s_ptr1->Get_DDL_viscosity() * Utilities::Rxn_find(Rxn_solution_map, icell)->Get_viscosity(); - - s_charge_p.assign(s_ptr1->Get_surface_charges().begin(), s_ptr1->Get_surface_charges().end()); - s_com_p.assign(s_ptr1->Get_surface_comps().begin(), s_ptr1->Get_surface_comps().end()); - if (s_ptr1->Get_only_counter_ions()) only_counter = TRUE; + if (print_viscosity) + { + if (s_ptr1->Get_calc_viscosity()) + { + viscosity(s_ptr1); // calculate DDL_viscosity() + ct[icell].visc1 = viscos_0 / s_ptr1->Get_DDL_viscosity(); // ratio for visc1^a_v_dif + } + else + { + viscos_0 = Utilities::Rxn_find(Rxn_solution_map, icell)->Get_viscos_0(); + ct[icell].visc1 = viscos_0 / (s_ptr1->Get_DDL_viscosity() * Utilities::Rxn_find(Rxn_solution_map, icell)->Get_viscosity()); + } + } /* find the immobile surface charges with DL... */ + s_charge_p.assign(s_ptr1->Get_surface_charges().begin(), s_ptr1->Get_surface_charges().end()); + s_com_p.assign(s_ptr1->Get_surface_comps().begin(), s_ptr1->Get_surface_comps().end()); + for (i = 0; i < (int)s_charge_p.size(); i++) { for (i1 = 0; i1 < (int)s_com_p.size(); i1++) @@ -3986,20 +3994,24 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) { if (s_ptr2->Get_dl_type() != cxxSurface::NO_DL) { - if (s_ptr2->Get_calc_viscosity()) - { - viscosity(s_ptr2); - ct[icell].visc2 = s_ptr2->Get_DDL_viscosity(); - } - else - ct[icell].visc2 = s_ptr2->Get_DDL_viscosity() * Utilities::Rxn_find(Rxn_solution_map, jcell)->Get_viscosity(); - - s_charge_p.assign(s_ptr2->Get_surface_charges().begin(), s_ptr2->Get_surface_charges().end()); - s_com_p.assign(s_ptr2->Get_surface_comps().begin(), s_ptr2->Get_surface_comps().end()); - if (s_ptr2->Get_only_counter_ions()) only_counter = TRUE; + if (print_viscosity) + { + if (s_ptr2->Get_calc_viscosity()) + { + viscosity(s_ptr2); + ct[icell].visc2 = viscos_0 / s_ptr2->Get_DDL_viscosity(); + } + else + { + viscos_0 = Utilities::Rxn_find(Rxn_solution_map, jcell)->Get_viscos_0(); + ct[icell].visc2 = viscos_0 / (s_ptr2->Get_DDL_viscosity() * Utilities::Rxn_find(Rxn_solution_map, jcell)->Get_viscosity()); + } + } + s_charge_p.assign(s_ptr2->Get_surface_charges().begin(), s_ptr2->Get_surface_charges().end()); + s_com_p.assign(s_ptr2->Get_surface_comps().begin(), s_ptr2->Get_surface_comps().end()); for (i = 0; i < (int)s_charge_p.size(); i++) { for (i1 = 0; i1 < (int)s_com_p.size(); i1++) @@ -4014,7 +4026,6 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) } } } - viscosity(nullptr); if (!stagnant) { if (icell == 0) @@ -4266,7 +4277,7 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) if (il_calcs && sol_D[icell].spec[i].type == EX) { ct[icell].J_ij_il[k_il].name = sol_D[icell].spec[i].name; - ct[icell].v_m_il[k_il].D = sol_D[icell].spec[i].Dwt; + ct[icell].v_m_il[k_il].D = sol_D[icell].spec[i].Dwt; // .Dwt = dw * tk_corr * (visc_0_25/visc_0) ct[icell].v_m_il[k_il].z = sol_D[icell].spec[i].z; ct[icell].v_m_il[k_il].Dz = ct[icell].v_m_il[k_il].D * ct[icell].v_m_il[k_il].z; dum = sol_D[icell].spec[i].c * cec12 / (2 * ct[icell].v_m_il[k_il].z); @@ -4314,11 +4325,9 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) { g_i += it_sc->Get_z_gMCD_map()[ct[icell].v_m[k].z]; } - dum = ct[icell].visc1; + g_i *= sol_D[icell].spec[i].erm_ddl; if (sol_D[icell].spec[i].dw_a_v_dif) - dum = pow(dum, sol_D[icell].spec[i].dw_a_v_dif); - g_i *= sol_D[icell].spec[i].erm_ddl / dum; - //g_i *= sol_D[icell].spec[i].erm_ddl / ct[icell].visc1; + g_i *= pow(ct[icell].visc1, sol_D[icell].spec[i].dw_a_v_dif); // .visc1 = viscos_0 / DDL_visc } if (dl_aq2) { @@ -4341,27 +4350,25 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) } } } - dum = ct[icell].visc2; + g_j *= sol_D[icell].spec[i].erm_ddl; if (sol_D[icell].spec[i].dw_a_v_dif) - dum = pow(dum, sol_D[icell].spec[i].dw_a_v_dif); - g_j *= sol_D[icell].spec[i].erm_ddl / dum; - //g_j *= sol_D[icell].spec[i].erm_ddl / ct[icell].visc2; + g_j *= pow(ct[icell].visc2, sol_D[icell].spec[i].dw_a_v_dif); } } - b_i = A1 * sol_D[icell].spec[i].Dwt; + b_i = A1 * sol_D[icell].spec[i].Dwt; // .Dwt = dw * tk_corr * (visc_0_25/visc_0) * (visc_0 / visc)**dw_a_v_dif b_j = A2; if (sol_D[icell].tk_x == sol_D[jcell].tk_x) b_j *= sol_D[icell].spec[i].Dwt; else { - dum2 = sol_D[icell].spec[i].Dwt / sol_D[icell].viscos_f; - dum2 *= exp(sol_D[icell].spec[i].dw_t / sol_D[jcell].tk_x - sol_D[icell].spec[i].dw_t / sol_D[icell].tk_x); - dum2 *= sol_D[jcell].viscos_f; - b_j *= dum2; + dum2 = viscos_0_25 / sol_D[jcell].viscos_0; + if (sol_D[icell].spec[i].dw_t) + dum2 *= exp(sol_D[icell].spec[i].dw_t / sol_D[jcell].tk_x - sol_D[icell].spec[i].dw_t / 298.15); + if (sol_D[icell].spec[i].dw_a_v_dif) + dum2 *= pow(sol_D[jcell].viscos_0 / sol_D[jcell].viscos, sol_D[icell].spec[i].dw_a_v_dif); + b_j *= sol_D[icell].spec[i].Dw * dum2; } - if (sol_D[icell].spec[i].dw_a_v_dif) - b_j *= pow(sol_D[jcell].viscos_f / sol_D[icell].viscos_f, sol_D[icell].spec[i].dw_a_v_dif); calc_b_ij(icell, jcell, k, b_i, b_j, g_i, g_j, f_free_i, f_free_j, stagnant); k++; @@ -4440,11 +4447,9 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) } } } - dum = ct[icell].visc1; + g_i *= sol_D[jcell].spec[j].erm_ddl; if (sol_D[jcell].spec[j].dw_a_v_dif) - dum = pow(dum, sol_D[icell].spec[j].dw_a_v_dif); - g_i *= sol_D[jcell].spec[j].erm_ddl / dum; - //g_i *= sol_D[jcell].spec[j].erm_ddl / ct[icell].visc1; + g_i *= pow(ct[icell].visc1, sol_D[jcell].spec[j].dw_a_v_dif); } if (dl_aq2) { @@ -4452,12 +4457,9 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) { g_j += it_sc->Get_z_gMCD_map()[ct[icell].v_m[k].z]; } - - dum = ct[icell].visc2; + g_j *= sol_D[jcell].spec[j].erm_ddl; if (sol_D[jcell].spec[j].dw_a_v_dif) - dum = pow(dum, sol_D[jcell].spec[j].dw_a_v_dif); - g_j *= sol_D[jcell].spec[j].erm_ddl / dum; - //g_j *= sol_D[jcell].spec[j].erm_ddl / ct[icell].visc2; + g_j *= pow(ct[jcell].visc2, sol_D[jcell].spec[j].dw_a_v_dif); } } b_i = A1; @@ -4466,14 +4468,13 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) b_i *= sol_D[jcell].spec[j].Dwt; else { - dum2 = sol_D[jcell].spec[j].Dwt / sol_D[jcell].viscos_f; - dum2 *= exp(sol_D[jcell].spec[j].dw_t / sol_D[icell].tk_x - sol_D[jcell].spec[j].dw_t / sol_D[jcell].tk_x); - dum2 *= sol_D[icell].viscos_f; - b_i *= dum2; + dum2 = viscos_0_25 / sol_D[icell].viscos_0; + if (sol_D[jcell].spec[j].dw_t) + dum2 *= exp(sol_D[jcell].spec[j].dw_t / sol_D[icell].tk_x - sol_D[jcell].spec[j].dw_t / 298.15); + if (sol_D[jcell].spec[j].dw_a_v_dif) + dum2 *= pow(sol_D[icell].viscos_0 / sol_D[icell].viscos, sol_D[jcell].spec[j].dw_a_v_dif); + b_i *= sol_D[jcell].spec[j].Dw * dum2; } - if (sol_D[icell].spec[i].dw_a_v_dif) - b_i *= pow(sol_D[icell].viscos_f / sol_D[jcell].viscos_f, sol_D[icell].spec[i].dw_a_v_dif); - calc_b_ij(icell, jcell, k, b_i, b_j, g_i, g_j, f_free_i, f_free_j, stagnant); k++; @@ -4546,11 +4547,9 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) { g_i += it_sc->Get_z_gMCD_map()[ct[icell].v_m[k].z]; } - dum = ct[icell].visc1; + g_i *= sol_D[icell].spec[i].erm_ddl; if (sol_D[icell].spec[i].dw_a_v_dif) - dum = pow(dum, sol_D[icell].spec[i].dw_a_v_dif); - g_i *= sol_D[icell].spec[i].erm_ddl / dum; - //g_i *= sol_D[icell].spec[i].erm_ddl / ct[icell].visc1; + g_i *= pow(ct[icell].visc1, sol_D[icell].spec[i].dw_a_v_dif); } if (dl_aq2) { @@ -4558,11 +4557,9 @@ find_J(int icell, int jcell, LDBLE mixf, LDBLE DDt, int stagnant) { g_j += it_sc->Get_z_gMCD_map()[ct[icell].v_m[k].z]; } - dum = ct[icell].visc2; + g_j *= sol_D[jcell].spec[j].erm_ddl; if (sol_D[jcell].spec[j].dw_a_v_dif) - dum = pow(dum, sol_D[jcell].spec[j].dw_a_v_dif); - g_j *= sol_D[jcell].spec[j].erm_ddl / dum; - //g_j *= sol_D[jcell].spec[j].erm_ddl / ct[icell].visc2; + g_j *= pow(ct[jcell].visc2, sol_D[jcell].spec[j].dw_a_v_dif); } } b_i = A1 * sol_D[icell].spec[i].Dwt; @@ -6006,11 +6003,6 @@ viscosity(cxxSurface *surf_ptr) return surf_ptr->Get_DDL_viscosity(); } - /* from Atkins, 1994. Physical Chemistry, 5th ed. */ - //viscos = - // pow((LDBLE) 10., - // -(1.37023 * (tc_x - 20) + - // 0.000836 * (tc_x - 20) * (tc_x - 20)) / (109 + tc_x)); /* Huber et al., 2009, J. Phys. Chem. Ref. Data, Vol. 38, 101-125 */ LDBLE H[4] = { 1.67752, 2.20462, 0.6366564, -0.241605 }; LDBLE Tb = (tc_x + 273.15) / 647.096, denom = H[0], mu0; @@ -6204,17 +6196,17 @@ viscosity(cxxSurface *surf_ptr) } // parms for A and V_an. 7/26/24: added V_an calculation for gases z = 0 if ((l_z = s_x[i]->z) == 0) - { - if (s_x[i]->Jones_Dole[6]) { - V_an += s_x[i]->logk[vm_tc] * s_x[i]->Jones_Dole[6] * l_moles; - m_an += l_moles; + if (s_x[i]->Jones_Dole[6]) + { + V_an += s_x[i]->logk[vm_tc] * s_x[i]->Jones_Dole[6] * l_moles; + m_an += l_moles; + } + continue; } - continue; - } if ((Dw = s_x[i]->dw) == 0) continue; - Dw *= (0.89 / viscos_0 * tk_x / 298.15); + Dw *= viscos_0_25 / viscos_0; if (s_x[i]->dw_t) Dw *= exp(s_x[i]->dw_t / tk_x - s_x[i]->dw_t / 298.15); if (l_z < 0) From 5e9815843e3a0854497d8191449a21ed24ebac47 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Tue, 22 Oct 2024 23:29:47 +0000 Subject: [PATCH 226/384] Squashed 'phreeqcpp/' changes from 455b49c..ccb9ba3 ccb9ba3 Fixed uninitialized memory errors git-subtree-dir: phreeqcpp git-subtree-split: ccb9ba3c63b17166035f42586010bb43f217220b --- Solution.cxx | 1 + 1 file changed, 1 insertion(+) diff --git a/Solution.cxx b/Solution.cxx index 231db416..b2f4187a 100644 --- a/Solution.cxx +++ b/Solution.cxx @@ -1396,6 +1396,7 @@ cxxSolution::zero() this->cb = 0.0; this->density = 1.0; this->viscosity = 1.0; + this->viscos_0 = 1.0; this->mass_water = 0.0; this->soln_vol = 0.0; this->total_alkalinity = 0.0; From 98fcfd3d56bd3774b057c02ef647c64f2b07e143 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Fri, 25 Oct 2024 12:11:34 -0600 Subject: [PATCH 227/384] [iphreeqc] Updated RELEASE.TXT --- RELEASE.TXT | 6918 ++++++++++++++++++++++++++------------------------- 1 file changed, 3463 insertions(+), 3455 deletions(-) diff --git a/RELEASE.TXT b/RELEASE.TXT index c16e29ad..71ed3a8c 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,21 +1,28 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ - ----------------- + ----------------- + October 24, 2024 + ----------------- + IPhreeqc: Updated IPhreeqc unit tests. + +Version 3.8.3: October 22, 2024 + + ----------------- October 8, 2024 - ----------------- + ----------------- PHREEQC: Revised the multicomponent diffusion calculation of heat and solutes, accounting now for the heat also for the T-dependent viscosity of the solutions. ----------------- October 8, 2024 - ----------------- + ----------------- PHREEQC: Corrected spelling errors throughout PHREEQC as supplied by Mike Toews. Modified "lamda" to "lambda" internally as suggested by Toews, but "lamda" and "lambda" are both acceptable in Pitzer database files for backward compatibility. - ----------------- + ----------------- October 8, 2024 - ----------------- + ----------------- PHREEQC: Fixed bug in MIX that produced erroneous temperature and pressure if the solutions being mixed did not have 1 kg of water. (Note that PHREEQC does not consider the heat content of the solutions when the temperature of the mixture @@ -23,9 +30,10 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ Version 3.8.2: August 29, 2024 - ----------------- + + ----------------- August 27, 2024 - ----------------- + ----------------- Added variable "viscos_DDL" in EDL("viscos_DDL", "surface_name") to give the viscosity of a Donnan layer on a surface in BASIC. Note that the "surface_name" should not contain an underscore "_", the Donnan properties are for the surface, @@ -41,9 +49,9 @@ Version 3.8.2: August 29, 2024 Version 3.8.1: August 23, 2024 - ----------------- + ----------------- August 20, 2024 - ----------------- + ----------------- PhreeqcRM (Python): Expanded documentation in BMI Python example notebook for PHREEQC example 11 (ex11-advect.ipynb), courtesy of LimnoTech. @@ -69,13 +77,13 @@ Version 3.8.1: August 23, 2024 ----------------- August 8, 2024 - ----------------- + ----------------- PhreeqcRM (Python): Fixed one docstring. Added code to handle numpy arrays in yamlphreeqc. - ----------------- + ----------------- July 11, 2024 - ----------------- + ----------------- PHREEQC: Fixed a bug in the DUMP routines. Under some circumstances erroneous output was dumped for a user number. In most cases, the correct output was dumped following the erroneous output, which @@ -83,9 +91,9 @@ Version 3.8.1: August 23, 2024 Version 3.8.0: July 3, 2024 - ----------------- + ----------------- May 18, 2024 - ----------------- + ----------------- DATABASES: sit.dat was updated to version 12a (Aug 22, 2023) from www.thermochimie-tdb.com. @@ -93,9 +101,9 @@ Version 3.8.0: July 3, 2024 phreeqc_rates.dat, pitzer.dat. Tipping_Hurley.dat, and wateq4f.dat were reformatted by using the lsp utility by David Kinniburgh from phreeplot.org. - ----------------- + ----------------- May 3, 2024 - ----------------- + ----------------- PHREEQC: The -dw identifier of SOLUTION_SPECIES now has up to 7 items. -dw Dw(25C) dw_T a a2 visc a3 a_v_dif @@ -126,13 +134,13 @@ Version 3.8.0: July 3, 2024 The diffusion coefficient of H+ is handled differently with Falkenhagen equations. - ----------------- + ----------------- May 3, 2024 - ----------------- - PHREEQC: The ionic strength correction is for electromigration calculations + ----------------- + PHREEQC: The ionic strength correction is for electromigration calculations (Appelo, 2017, CCR 101, 102). The correction is applied when the 6th parameter option is set to true for -multi_D in TRANSPORT: - + -multi_d true/false 1e-9 0.3 0.05 1.0 true/false # multicomponent diffusion true/false, multicomponent diffusion is used, @@ -143,22 +151,22 @@ Version 3.8.0: July 3, 2024 porewater diffusion coefficient Dp = Dw * por^n, true/false: correct Dw for ionic strength (false by default). - ----------------- + ----------------- May 3, 2024 - ----------------- + ----------------- Database: Added new database phreeqc_rates.dat. The database augments phreeqc.dat with rate parameters from Palandri and Kharaka (2004), Sverdrup, Oelkers, Lampa, Belyazid, Kurz, and Akselsson (2019) (only Albite and quartz), and Hermanska, Voigt, Marieni, Declercq, - and Oelkers (2023). Parameters are defined in data blocks + and Oelkers (2023). Parameters are defined in data blocks RATE_PARAMETERS_PK, RATE_PARAMETERS_SVD, and RATE_PARAMETERS_HERMANSKA. All minerals with rate parameters have been added in a PHASES data block. Example RATES definitions using the different RATE_PARAMETERS_ parameters are provided for Albite and Quartz. - ----------------- + ----------------- April 27, 2024 - ----------------- + ----------------- Databases: Added new keyword data block MEAN_GAMMAS. Each line of the data block defines how to calculate the mean activity coefficient for a salt with a series of pairs of @@ -174,9 +182,9 @@ Version 3.8.0: July 3, 2024 10 g_MgCl2 = MEANG("MgCl2") - ----------------- + ----------------- April 27, 2024 - ----------------- + ----------------- PHREEQC: Added new keyword data blocks RATE_PARAMETERS_PK, RATE_PARAMETERS_SVD, and RATE_PARAMETERS_HERMANSKA and Basic functions RATE_PK, RATE_SVD, and RATE_HERMANSKA @@ -235,9 +243,9 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 10 rate = RATE_HERMANSKA("Anthophyllite") - ----------------- + ----------------- April 21, 2024 - ----------------- + ----------------- PHREEQC: Added Basic functions GET$ and PUT$. They are are the same as GET and PUT, except the first argument for PUT$ is a character string, and GET$ returns a character string. You may use one or more indices as @@ -246,9 +254,9 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 PUT$("MgCl2", 1, 1, 1) x$ = GET$(1, 1, 1) - ----------------- + ----------------- April 19, 2024 - ----------------- + ----------------- DATABASE: Kinec.v2.dat is a new llnl.dat style database from the CarbFix2 and GECO projects that is included in new distributions of PHREEQC. This database contains the parameters for calculating mineral @@ -258,9 +266,9 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 equations and parameters reported by Oelkers and Addassi (2024, in preparation). - ----------------- + ----------------- April 15, 2024 - ----------------- + ----------------- PHREEQC: Fixed a memory error with iso.dat because it uses H3O+ instead of H+. The SC variable was uninitialized in that situation. @@ -271,9 +279,9 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 internal testing and list generators used the default temperature of 25C, which caused an error if the temperature grid did not span 25C. - ----------------- + ----------------- March 25, 2024 - ----------------- + ----------------- DATABASES phreeqc.dat, Amm.dat, and pitzer.dat: The calculation of the specific conductance can now be done with a Debye-Hückel-Onsager equation that has both the electrophoretic and the relaxation term. (The standard @@ -312,47 +320,47 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 H2S(g) solubilities). However, without the limits, all water turned into H2O(g) in some cases and calculations failed. - ----------------- + ----------------- November 15, 2023 - ----------------- + ----------------- PHREEQC programs: Fixed a couple malloc checks, some compiler warnings, and removed some deprecated calls to strcpy and strcat. - ----------------- + ----------------- November 5, 2023 - ----------------- + ----------------- PHREEQC programs: Automatic testing was expanded to include MPI and additional compilers. - ----------------- + ----------------- November 1, 2023 - ----------------- + ----------------- PHREEQC: Logical statement in k_temp was modified to work with Intel optimization. The statement at the beginning of the routine was not handled correctly when some values were NaN. - ----------------- + ----------------- August 29, 2023 - ----------------- + ----------------- PhreeqcRM: Fixed bug in memory allocation for selected output. One array accumulated lines indefinitely, leading to ever increasing memory use. Memory use should now be relatively constant once all selected output has been defined and used. - ----------------- + ----------------- June 1, 2023 - ----------------- + ----------------- PhreeqcRM: Finalizing a Python version of PhreeqcRM that includes the BMI capabilities. Methods are documented in Python style and two test cases are available, one of which uses every Python method that is available. - ----------------- + ----------------- May 22, 2023 - ----------------- + ----------------- PhreeqcRM: Revised all F90 methods that return arrays to use allocatable arrays, so that, getter arrays are automatically dimensioned to the correct sizes - ----------------- + ----------------- May 22, 2023 - ----------------- + ----------------- PHREEQC: (See https://hydrochemistry.eu/ph3/release.html for html version of changes.) Added Basic function f_visc("H+") that returns the fractional contribution of a species to viscosity of the solution when parameters are defined for the species with -viscosity. @@ -472,9 +480,9 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 which diffusion stops, exponent n (1.0) used in calculating the porewater diffusion coefficient Dp = Dw * por^n, true/false: correct Dw for ionic strength (false by default). - ----------------- + ----------------- May 19, 2023 - ----------------- + ----------------- PhreeqcRM: Changed documentation of GetDensity and related functions to GetDensityCalculated. (GetDensity still exists for backward compatibility.) @@ -510,9 +518,9 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 The change in method names is intended to emphasize the difference between the user-specified saturations and and the module-calculated saturations. - ----------------- + ----------------- April 16, 2023 - ----------------- + ----------------- PhreeqcRM: Added new methods to simplify getting and setting component and aqueous species concentrations. @@ -537,9 +545,9 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 RM_SetIthConcentration(id, i, c) RM_SetIthSpeciesConcentration(id, i, c) - ----------------- + ----------------- April 14, 2023 - ----------------- + ----------------- PhreeqcRM: Added new methods to simplify setting initial conditions. New initial conditions methods: @@ -567,20 +575,20 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 RM_InitialSolidSolutions2Module(id, solid_solutions); RM_InitialSurfaces2Module(id, surfaces); - ----------------- + ----------------- February 28, 2023 - ----------------- + ----------------- PhreeqcRM: Revised names for PhreeqcRM test case source and output files (Tests subdirectory of distribution). Added tests SimpleAdvect_cpp, - SimpleAdvect_c and SimpleAdvect_f90. All transport results are the same for + SimpleAdvect_c and SimpleAdvect_f90. All transport results are the same for Advect_cpp, Advect_c, and Advect_f90, SimpleAdvect_cpp, - SimpleAdvect_c and SimpleAdvect_f90; however, the SimpleAdvect cases use - a minimal set of method calls, whereas the other cases demonstrate most - of the features of PhreeqcRM. + SimpleAdvect_c and SimpleAdvect_f90; however, the SimpleAdvect cases use + a minimal set of method calls, whereas the other cases demonstrate most + of the features of PhreeqcRM. - ----------------- + ----------------- February 26, 2023 - ----------------- + ----------------- PhreeqcRM: Added method InitializeYAML to initialize a PhreeqcRM instance. @@ -590,10 +598,10 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 contains names of PhreeqcRM methods and associated data, for example: RunFile: - workers: true - initial_phreeqc: true - utility: true - chemistry_name: advect.pqi + workers: true + initial_phreeqc: true + utility: true + chemistry_name: advect.pqi InitializeYAML can be used to process the directives defined in the YAML file. The method InitializeYAML is equivalent to BMI_Initialize. @@ -604,9 +612,9 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 and advection_bmi_cpp.cpp reads and processes the file to initialize a PhreeqcRM instance. - ----------------- + ----------------- February 26, 2023 - ----------------- + ----------------- PhreeqcRM: Added a BMI (Basic Model Interface) for C++ and Fortran. The interface is a repackaging of the available methods of PhreeqcRM. All PhreeqcRM methods are available in addition @@ -634,23 +642,23 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 a sequential, noniterative transport calculation: PhreeqcRM phreeqc_rm(nxyz, nthreads); - phreeqc_rm.Initialize("myfile.yaml"); - int ncomps; - phreeqc_rm.GetValue("ComponentCount", &ncomps); - int ngrid; - phreeqc_rm.GetValue("GridCellCount", ngrid); - std::vector c(ngrid*ncomps, 0.0); - phreeqc_rm.GetValue("Concentrations", c.data()); - phreeqc_rm.SetValue("TimeStep", 86400); - for(double time = 0; time < 864000; time+=86400) - { - // Take a transport time step here and update the vector c. + phreeqc_rm.Initialize("myfile.yaml"); + int ncomps; + phreeqc_rm.GetValue("ComponentCount", &ncomps); + int ngrid; + phreeqc_rm.GetValue("GridCellCount", ngrid); + std::vector c(ngrid*ncomps, 0.0); + phreeqc_rm.GetValue("Concentrations", c.data()); + phreeqc_rm.SetValue("TimeStep", 86400); + for(double time = 0; time < 864000; time+=86400) + { + // Take a transport time step here and update the vector c. your_transport(c); - phreeqc_rm.SetValue("Time", time); - phreeqc_rm.SetValue("Concentrations", c.data()); - phreeqc_rm.Update(); - phreeqc_rm.GetValue("Concentrations", c.data()); - } + phreeqc_rm.SetValue("Time", time); + phreeqc_rm.SetValue("Concentrations", c.data()); + phreeqc_rm.Update(); + phreeqc_rm.GetValue("Concentrations", c.data()); + } The set of BMI methods is as follows: @@ -723,26 +731,26 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 prefix "bmif" and have an additional initial argument to identify the instance of BMIPhreeqcRM that is being used. - ----------------- + ----------------- February 26, 2023 - ----------------- + ----------------- PHREEQC: Fixed bug with Basic functions PR_P and PR_PHI. Values were incorrect after the first step when INCREMENTAL_REACTIONS was set to true. ----------------- February 25, 2023 - ----------------- + ----------------- ALL PROGRAMS: Added the latest version of the database Thermoddem to the distributions of PHREEQC programs. The database was downloaded from https://thermoddem.brgm.fr/. ----------------- March 23, 2022 - ----------------- + ----------------- PHREEQC: "MacInnes" was misspelled in one of the warning messages. - ----------------- + ----------------- December 18, 2021 ----------------- PHREEQC: Fixed transport bug where the end cell should not have @@ -750,7 +758,7 @@ Anthophyllite -12.4 5.70E-04 52 0.4 -13.7 5.00E-06 48 Version 3.7.3: December 2, 2021 - ----------------- + ----------------- November 27, 2021 ----------------- PHREEQC: Fixed a recently introduced bug in the options @@ -763,14 +771,14 @@ Version 3.7.3: December 2, 2021 were not read properly. Ranges of cells are now read correctly. - ---------------- + ---------------- November 7, 2021 ---------------- PHREEQC: Modified the initial guess for the potential terms when a surface related to a phase comes into existence; that is when the phase begins to precipitate. - ---------------- + ---------------- October 25, 2021 ---------------- PHREEQC: The Basic function DIFF_C returned an incorrect value at @@ -788,7 +796,7 @@ Version 3.7.3: December 2, 2021 The Basic functions are provided only for user output, so all TRANSPORT calculations used the correct temperature-dependent diffusion coefficients. - ---------------- + ---------------- October 25, 2021 ---------------- PHREEQC: Revised a bug fix from May 28, 2021 making Fe(+3) and Fe(3) @@ -801,21 +809,21 @@ Version 3.7.3: December 2, 2021 Version 3.7.1: September 21, 2021 --------------------------------------------------------------------------------------------- - -------------- + -------------- August 25, 2021 -------------- PHREEQC: Added new Basic functions MCD_JTOT and MCD_JCONC that return - multicomponent diffusion fluxes. MCD_JTOT returns the value of equation - 10 in the description of the TRANSPORT keyword in the PHREEQC 3 manual - for an aqueous species. MCD_JCONC returns the flux calculated by the - first term of equation 10. The functions ignore interlayer diffusion + multicomponent diffusion fluxes. MCD_JTOT returns the value of equation + 10 in the description of the TRANSPORT keyword in the PHREEQC 3 manual + for an aqueous species. MCD_JCONC returns the flux calculated by the + first term of equation 10. The functions ignore interlayer diffusion and only apply to multicomponent diffusion. Here are Basic examples. Uphill diffusion occurs when the two functions have opposite signs. 10 jtot = MCD_JTOT("Cl-") 20 jconc = MCD_JCONC("Cl-") - -------------- + -------------- July 30, 2021 -------------- PHREEQC: Modified the numerical method for Pitzer calculations when using @@ -823,7 +831,7 @@ Version 3.7.1: September 21, 2021 modified to account for the sequence of calculations, particularly that the mole fractions of gases are calculated within the molalities method. - ------------- + ------------- June 14, 2021 ------------- PhreeqcRM: Added capability to save the chemical state of the module in memory to @@ -836,15 +844,15 @@ Version 3.7.1: September 21, 2021 ... status = phreeqcrm.StateApply(i); status = phreeqcrm.StateDelete(i); - - -------------- + + -------------- May 28, 2021 -------------- PHREEQC: Fixed SELECTED_OUTPUT feature where Fe(+3) (and others) were not identified as legitimate redox states. Absence of "+" worked as expected. Same fix for Basic functions TOT and TOTMOL. - -------------- + -------------- April 10, 2021 -------------- PHREEQC: Fixed -add_constant for phases and aqueous, exchange, surface species. @@ -863,18 +871,18 @@ Version 3.7.0: April 29, 2021 Summary of Basic functions not include in PhreeqcI help: ADD_HEADING("NewHeading") Append a new heading to the list of -headings defined - in USER_PUNCH. Note: only useful in PhreeqcRM and takes effect - at next RunString, RunFile, or RunCells. + in USER_PUNCH. Note: only useful in PhreeqcRM and takes effect + at next RunString, RunFile, or RunCells. DEBYE_LENGTH Value of the Debye length. DELTA_H_PHASE("Calcite") Delta H in KJ/mol. If an analytic expression exists, - Delta H is at reaction temperature; otherwise - Delta H at 25 C. + Delta H is at reaction temperature; otherwise + Delta H at 25 C. DELTA_H_SPECIES("CaHCO3+") Delta H in KJ/mol. If an analytic expression exists, - Delta H is at reaction temperature, otherwise - Delta H at 25C. + Delta H is at reaction temperature, otherwise + Delta H at 25C. DH_A0(Na+") Debye-Hückel species-specific ion size parameter. @@ -885,11 +893,11 @@ EOL_NOTAB$ Omits the tab that is normally printed after ITERATIONS Total number of iterations for the calculation. NO_NEWLINE$ Omits the new line normally written after printing a USER_PUNCH block. - This function can be used to completely eliminate a line for a cell - (assuming no SELECTED_OUTPUT fields are defined). + This function can be used to completely eliminate a line for a cell + (assuming no SELECTED_OUTPUT fields are defined). SETDIFF_C("CO3-2", 1.18e-9) Sets dw for a species (see SOLUTION_SPECIES), returns - calculated diffusion coefficient at reaction temperature. + calculated diffusion coefficient at reaction temperature. SYS("element", count , name$, Sixth argument is new and determines the sort order, type$ , moles, 1) 0 sorted by 5th argument, 1, sorted by 3rd argument. @@ -922,7 +930,7 @@ DH_A0(Na+") Debye-Hückel species-specific ion size parameter. DH_BDOT("Na+") Debye-Hückel species-specific ionic strength coefficient. - ------------- + ------------- March 10, 2021 ------------- PHREEQC: Merged changes from Tony Appelo's version. @@ -944,7 +952,7 @@ DH_BDOT("Na+") Debye-Hückel species-specific ionic strength coefficient. and Robie (1994) and 50-175 °C from Bénézeth et al. (2018), GCA 224, 262-275. - ------------- + ------------- March 2, 2021 ------------- PhreeqcRM: Added new methods to retrieve and set the volumes @@ -959,21 +967,21 @@ DH_BDOT("Na+") Debye-Hückel species-specific ionic strength coefficient. equal to zero, the volume is applied to the cell, and the gas phase is forced to be a fixed-volume gas phase. - C++: + C++: IRM_RESULT GetGasPhaseVolume(std::vector& gas_pressure); IRM_RESULT setGasPhaseVolume(const std::vector& gas_pressure); Size of the vector is nxyz, the number of cells in the transport model. - C: + C: IRM_RESULT RM_GetGasPhaseVolume(int id, double* gas_volume); IRM_RESULT RM_SetGasPhaseVolume(int id, double* gas_volume); Size of the array is nxyz*sizeof(double), where nxyz is the number of cells in the transport model. - Fortran90: + Fortran90: IRM_RESULT RM_GetGasPhaseVolume(int id, double precision gas_volume(:)); IRM_RESULT RM_SetGasPhaseVolume(int id, double precision gas_volume(:)); @@ -984,7 +992,7 @@ DH_BDOT("Na+") Debye-Hückel species-specific ionic strength coefficient. https://water.usgs.gov/water-resources/software/PHREEQC/documentation/phreeqcrm/. - ----------------- + ----------------- February 26, 2021 ----------------- @@ -1042,7 +1050,7 @@ DH_BDOT("Na+") Debye-Hückel species-specific ionic strength coefficient. See HTML documentation of PhreeqcRM in download distributions or https://water.usgs.gov/water-resources/software/PHREEQC/documentation/phreeqcrm/. - ----------------- + ----------------- February 21, 2021 ----------------- PhreeqcRM: Added a new method to retrieve log10 molality (mol/kgw) @@ -1054,7 +1062,7 @@ DH_BDOT("Na+") Debye-Hückel species-specific ionic strength coefficient. C: IRM_RESULT RM_GetSpeciesLog10Molalities(int id, double * species_log10molalities) - Fortran90: + Fortran90: integer function RM_GetSpeciesLog10Molalities(id, species_log10molalities) The first argument (id) is an integer, and the second argument is a @@ -1063,7 +1071,7 @@ DH_BDOT("Na+") Debye-Hückel species-specific ionic strength coefficient. See HTML documentation of PhreeqcRM in download distributions or https://water.usgs.gov/water-resources/software/PHREEQC/documentation/phreeqcrm/. - ----------------- + ----------------- February 20, 2021 ----------------- Phreeqc: Added optional 6th argument to Basic function SYS that @@ -1077,7 +1085,7 @@ DH_BDOT("Na+") Debye-Hückel species-specific ionic strength coefficient. SYS("element", count , name$ , type$ , moles, 0) Sort by 3rd field (name$): - SYS("element", count , name$ , type$ , moles, 1) + SYS("element", count , name$ , type$ , moles, 1) ----------------- @@ -1085,7 +1093,7 @@ DH_BDOT("Na+") Debye-Hückel species-specific ionic strength coefficient. ----------------- PhreeqcRM: Fixed zero divide dumping one-cell model. . - ---------------- + ---------------- November 24, 2020 ---------------- PHREEQC: Added new Basic functions to control USER_PUNCH output. @@ -1118,7 +1126,7 @@ USER_PUNCH 2 30 PUT(999,1) 100 REM - ---------------- + ---------------- August 17, 2020 ---------------- PHREEQC: Changes to implicit Nernst Planck calculations for electro-migration. @@ -1211,7 +1219,7 @@ Version 3.6.2: January 28, 2020 January 23, 2020 ---------------- - Updated documentation in phreeqc.chm and online + Updated documentation in phreeqc.chm and online https://water.usgs.gov/water-resources/software/PHREEQC/documentation/phreeqc3-html/phreeqc3.htm PHREEQC: Added silicate sorption to Hfo_w from Swedlund, P.J. and Webster, J.G., 1999, @@ -1237,8 +1245,8 @@ Version 3.6.1: January 7, 2020 PHREEQC: SURFACE 8 Constant capacitance model - Ha_aH 3.70E-06 1500 0.010 - -ccm 3.196 + Ha_aH 3.70E-06 1500 0.010 + -ccm 3.196 -ccm indicates that the surfaces in the surface assemblage use the constant-capacitance model. The single parameter is the @@ -1283,7 +1291,7 @@ Version 3.6.1: January 7, 2020 be bypassed. PHREEQC: - TRANSPORT + TRANSPORT -same model 2-5 8-11 Added an option to use the chemical model structure of the previous @@ -1373,9 +1381,9 @@ Version 3.6.1: January 7, 2020 solutions: SOLUTION_MIX 2-4 # new solutions 2, 3 and 4: - 1 0.5 # solution number, fraction - 4 1.5 # solution number, fraction - 6 0.3 # etc. + 1 0.5 # solution number, fraction + 4 1.5 # solution number, fraction + 6 0.3 # etc. ----------------- January 31, 2019 @@ -1389,16 +1397,16 @@ Version 3.6.1: January 7, 2020 ----------------- PHREEQC: Bug fix of incorrect mass added in solid solutions with a component - containing an element not present initially, but added with - INCREMENTAL_REACTIONS. + containing an element not present initially, but added with + INCREMENTAL_REACTIONS. PHREEQC: Enabled active_fraction factors for EXCHANGE_SPECIES in Pitzer activity - models, and generally improved the convergence of exchange calculations with - active_fraction factors. - + models, and generally improved the convergence of exchange calculations with + active_fraction factors. + Active_fraction factors are useful for modeling non-ideal ion exchange, see - https://hydrochemistry.eu/exmpls/a_f.html for an example of active - fraction model for varying exchange selectivity. + https://hydrochemistry.eu/exmpls/a_f.html for an example of active + fraction model for varying exchange selectivity. The aquia example https://hydrochemistry.eu/exmpls/aquia.html now runs 3 times faster. @@ -1718,9 +1726,9 @@ Version 3.6.1: January 7, 2020 C++ method: IRM_RESULT GetSpeciesLog10Gammas (std::vector< double > &species_log10gammas) - Fortran method: + Fortran method: integer function RM_GetSpeciesLog10Gammas(integer, intent(in) id, - double precision, dimension(:,:), intent(out) species_log10gammas) + double precision, dimension(:,:), intent(out) species_log10gammas) C method: IRM_RESULT RM_GetSpeciesLog10Gammas(int id, double * species_log10gammas) @@ -2287,112 +2295,112 @@ Version 3.3.5 (10806): February 3, 2016 PHREEQC: Erroneous input could cause a segmentation fault for surfaces related to minerals or kinetics. - --------- - svn 10644 - --------- + --------- + svn 10644 + --------- PHREEQC: Minor format change for specific conductance. - --------- - svn 10640 - --------- + --------- + svn 10640 + --------- PhreeqcRM: Advection example in C and C++ had wrong MPI type for integer transfers. Example code in documentation also had wrong MPI type for some integer transfers. Integer transfers in Fortran should use MPI_INTEGER, while integer transfers in C and C++ should use MPI_INT. - --------- - svn 10632 - --------- + --------- + svn 10632 + --------- PhreeqcRM: Revised transfer of data for MPI when rebalancing. Serializes lists of characters, integers, and doubles, instead of writing full "dump" version of each reaction. Is much faster for cell transfers when rebalancing among processes. - --------- - svn 10630 - --------- + --------- + svn 10630 + --------- PhreeqcRM: Fixed bug when transferring data for MPI. Surface related to kinetics lost concentrations of sorbed elements. - --------- - svn 10585 - --------- + --------- + svn 10585 + --------- Phreeqc: New set of convergence parameters that delay the removal of an unstable phase by 1 iteration. Also new KNOBS identifier, -equi_delay n, where n is the number of iterations to retain an unstable phase. - --------- - svn 10537 - --------- + --------- + svn 10537 + --------- Phreeqc: Comments for K-spar and Albite RATEs were incorrect for phreeqc.dat and wateq4f.dat - --------- - svn 10521 - --------- + --------- + svn 10521 + --------- PhreeqcRM: Provided better error message for CreateMapping errors. Version 3.3.3 (10424): October 23, 2015 - --------- - svn 10409 - --------- + --------- + svn 10409 + --------- PhreeqcRM: C function clock() does not provide sufficient resolution. Efficiency calculation generated NaN, and rebalancing was poor. Revised to use MPI and OpenMP timers when available. - --------- - svn 10393 - --------- + --------- + svn 10393 + --------- PhreeqcRM: Efficiency calculation generated NaN for OpenMP calculations. - --------- - svn 10385 - --------- + --------- + svn 10385 + --------- PHREEQC: Fixed formula for pressure dependence of B1, B2, F1, F2 in the Pitzer formulation. Previously had a limit of -10C; temperatures less than -10 produced a floating point exception and convergence failure. - --------- - svn 10364 - --------- + --------- + svn 10364 + --------- IPhreeqc and PhreeqcRM: Debug version asserted when trying to write an error message to std::cerr. - --------- - svn 10359 - --------- + --------- + svn 10359 + --------- PhreeqcRM: Added methods and documentation for RM_GetEndCell and RM_GetStartCell for C and Fortran. C++ methods already existed. The methods give the range of chemistry cell numbers that are assigned by each worker (OpenMP) or process (MPI). If rebalancing is enabled, these numbers may change as cells are shifted among workers or processes. Version 3.3.2 (10335): October 2, 2015 - --------- - svn 10332 - --------- - PhreeqcRM: Bug in configure scripts required developer zlib to be installed. Now - zlib is only needed if the --with-zlib option is given in order to write compressed - dump files (USE_GZ). + --------- + svn 10332 + --------- + PhreeqcRM: Bug in configure scripts required developer zlib to be installed. Now + zlib is only needed if the --with-zlib option is given in order to write compressed + dump files (USE_GZ). - --------- - svn 10327 - --------- - PHREEQC: Fixed bug with SOLUTION_SPREAD. Element names starting with "[" were - not handled correctly. - + --------- + svn 10327 + --------- + PHREEQC: Fixed bug with SOLUTION_SPREAD. Element names starting with "[" were + not handled correctly. + --------- svn 10317 --------- PHREEQC: Handled case where GAS_PHASE components were not defined in PHASES. - - --------- - svn 10311 - --------- - New R version submitted. + + --------- + svn 10311 + --------- + New R version submitted. - --------- - svn 10255 - --------- - PhreeqcRM: Added new method SetScreenOn (RM_SetScreenOn) to control messages - about rebalancing and any messages written with ScreenMessage (RM_ScreenMessage). - + --------- + svn 10255 + --------- + PhreeqcRM: Added new method SetScreenOn (RM_SetScreenOn) to control messages + about rebalancing and any messages written with ScreenMessage (RM_ScreenMessage). + Version 3.3.0: September 15, 2015 --------------- @@ -2404,104 +2412,104 @@ Version 3.3.0: September 15, 2015 had lists of these variables for all nxyz cells in the model. The changes should decrease the total amount of memory needed for MPI runs using PhreeqcRM. - --------------- - svn 10231&10237 - --------------- - IPhreeqc: Fixed a bug in the Fortran module, where logical variables (such as + --------------- + svn 10231&10237 + --------------- + IPhreeqc: Fixed a bug in the Fortran module, where logical variables (such as print control) could be set to true, but not back to false. - --------- - svn 10177 - --------- - PHREEQC: Additional print for Donnan layer. + --------- + svn 10177 + --------- + PHREEQC: Additional print for Donnan layer. - --------- - svn 10176 - --------- - Pitzer.dat: Updates to CO2 and CH4 in pitzer.dat affecting gas solubilities. + --------- + svn 10176 + --------- + Pitzer.dat: Updates to CO2 and CH4 in pitzer.dat affecting gas solubilities. Version 3.2.2: August 24, 2015 - --------- - svn 10118 - --------- - PhreeqcRM: Fixed same "feature" in C RM_GetBackwardMapping that - resulted in very slow callback function response. - - --------- - svn 10112 - --------- - Modified exceptions IPhreeqcStop and PhreeqcRMStop to - compile on Linux. - - --------- - svn 10107 - --------- - Modified exceptions IPhreeqcStop and PhreeqcRMStop to - allow them to be caught with other std::exceptions. - - --------- - svn 10089 - --------- - Modified open_output_files and close_output_files so that - stderr, stdout, and stdlog cannot be closed. - - --------- - svn 10072 - --------- - PhreeqcRM: Fixed a "feature" in Fortran RM_GetBackwardMapping that - resulted in very slow callback function response. - - - --------- - svn 10053 - --------- - Moved files to /common directory for files that are used in both - phreeqc and phastinput. - - --------- - svn 10047 - --------- - In PhreeqcRM, made default rebalance fraction 0.0. - - --------- - svn 10040 - --------- - Bug in solution constructor caused PhreeqcRM debug tests to fail. - - --------- - svn 10030 - --------- - Null pointer if K-Cl interaction parameters (b0, b1, c0) were not defined. - - --------- - svn 10013 - --------- - The enrichment factor for diffusion in the diffuse layer was incorrectly - implemented. + --------- + svn 10118 + --------- + PhreeqcRM: Fixed same "feature" in C RM_GetBackwardMapping that + resulted in very slow callback function response. + + --------- + svn 10112 + --------- + Modified exceptions IPhreeqcStop and PhreeqcRMStop to + compile on Linux. + + --------- + svn 10107 + --------- + Modified exceptions IPhreeqcStop and PhreeqcRMStop to + allow them to be caught with other std::exceptions. + + --------- + svn 10089 + --------- + Modified open_output_files and close_output_files so that + stderr, stdout, and stdlog cannot be closed. + + --------- + svn 10072 + --------- + PhreeqcRM: Fixed a "feature" in Fortran RM_GetBackwardMapping that + resulted in very slow callback function response. + + + --------- + svn 10053 + --------- + Moved files to /common directory for files that are used in both + phreeqc and phastinput. + + --------- + svn 10047 + --------- + In PhreeqcRM, made default rebalance fraction 0.0. + + --------- + svn 10040 + --------- + Bug in solution constructor caused PhreeqcRM debug tests to fail. + + --------- + svn 10030 + --------- + Null pointer if K-Cl interaction parameters (b0, b1, c0) were not defined. + + --------- + svn 10013 + --------- + The enrichment factor for diffusion in the diffuse layer was incorrectly + implemented. - --------- - svn 10006 - --------- - Fix rare instance where mu = 0 caused a divide by zero. - - -------- - svn 9998 - -------- - Pitzer.dat was adjusted to fit CO2 pressure and density by changing - Vm, analytical expression, and adding a CO2-CO2 interaction parameter. - - -------- - svn 9995 - -------- - Pressure of a gas phase mixture was calculated incorrectly in some - elevated T,P cases. - - -------- - svn 9915 - -------- - New Basic function EDL_SPECIES returns the moles of - species in the electrical double layer. Applies when -DONNAN or - -DIFFUSE_LAYER are defined in SURFACE calculations. + --------- + svn 10006 + --------- + Fix rare instance where mu = 0 caused a divide by zero. + + -------- + svn 9998 + -------- + Pitzer.dat was adjusted to fit CO2 pressure and density by changing + Vm, analytical expression, and adding a CO2-CO2 interaction parameter. + + -------- + svn 9995 + -------- + Pressure of a gas phase mixture was calculated incorrectly in some + elevated T,P cases. + + -------- + svn 9915 + -------- + New Basic function EDL_SPECIES returns the moles of + species in the electrical double layer. Applies when -DONNAN or + -DIFFUSE_LAYER are defined in SURFACE calculations. EDL_SPECIES(surf$, count, name$, moles, area, thickness) @@ -2524,8 +2532,8 @@ Version 3.2.2: August 24, 2015 The volume of the diffuse layer is area * thickness, and the concentrations of the species in the diffuse layer are the number of moles divided by the volume. - - Example: + + Example: 10 t = EDL_SPECIES("Hfo", count, name$, moles, area, thickness) 20 PRINT "Surface: Hfo" 30 PRINT "Area: ", area @@ -2537,91 +2545,91 @@ Version 3.2.2: August 24, 2015 Version 3.2.1: July 7, 2015 - -------- - svn 9930 - -------- - PhreeqcRM had a serious error in the conversion of units from transport - to themodule. The error occurred when using H2O as a component and mg/L - as the transport unit. + -------- + svn 9930 + -------- + PhreeqcRM had a serious error in the conversion of units from transport + to themodule. The error occurred when using H2O as a component and mg/L + as the transport unit. Version 3.2.0: June 10, 2015 - -------- - svn 9809 - -------- - Pitzer calculations were optimized. The etheta calculation was improved - thans to Wouter Falkena and the MoReS team. Inefficient loops were also - rewritten. + -------- + svn 9809 + -------- + Pitzer calculations were optimized. The etheta calculation was improved + thans to Wouter Falkena and the MoReS team. Inefficient loops were also + rewritten. - -------- - svn 9665 - -------- - See README.IPhreeqc.TXT for additional information about the IPhreeqc Module. + -------- + svn 9665 + -------- + See README.IPhreeqc.TXT for additional information about the IPhreeqc Module. - The IPhreeqc module has been updated to use CMake (build process manager) - for Visual Studio builds. CMake can be downloaded from http://www.cmake.org. - - Fortran, you will need to include the source file IPhreeqc_interface.F90 - in your project files. This file defines the IPhreeqc Fortran module. - - For example: + The IPhreeqc module has been updated to use CMake (build process manager) + for Visual Studio builds. CMake can be downloaded from http://www.cmake.org. + + Fortran, you will need to include the source file IPhreeqc_interface.F90 + in your project files. This file defines the IPhreeqc Fortran module. + + For example: - USE IPhreeqc - INTEGER(KIND=4) id - id = CreateIPhreeqc() - - This replaces the need to use the include files IPhreeqc.f.inc/IPhreeqc.f90.inc. + USE IPhreeqc + INTEGER(KIND=4) id + id = CreateIPhreeqc() + + This replaces the need to use the include files IPhreeqc.f.inc/IPhreeqc.f90.inc. - You will need to link to the IPhreeqc(d).lib/libiphreeqc.a that is created - during the build process. + You will need to link to the IPhreeqc(d).lib/libiphreeqc.a that is created + during the build process. - -------- - svn 9639 - -------- - After reading a dumped surface (SURFACE_RAW), it was later processed - incorrectly, resulting in a mass loss of the elements that were attached - to the surface. - - -------- - svn 9639 - -------- - Revised SIT database from www.thermochimie-tdb.com (sit.dat). Version 9a, - released 7/28/2014. - - -------- - svn 9639 - -------- - Revised numerical method for SIT aqueous model. Optimized processing of lists - of SIT parameters, revised method to obtain initial values of master variables, - added basis switching. + -------- + svn 9639 + -------- + After reading a dumped surface (SURFACE_RAW), it was later processed + incorrectly, resulting in a mass loss of the elements that were attached + to the surface. + + -------- + svn 9639 + -------- + Revised SIT database from www.thermochimie-tdb.com (sit.dat). Version 9a, + released 7/28/2014. + + -------- + svn 9639 + -------- + Revised numerical method for SIT aqueous model. Optimized processing of lists + of SIT parameters, revised method to obtain initial values of master variables, + added basis switching. - -------- - svn 9462 - -------- - RATES definitions were revised in all databases. The area parameter - was changed to specific area (area per mole of reactant). Also, for aqueous kinetic - reactions, the solution volume was added explicitly. The changes - were made to facilitate a new version of PHAST that uses a representative - volume that does not have one liter of water. - - -------- - svn 9434 - -------- - Basic function lk_phase did not account for pressure properly. - - -------- - svn 9424 - -------- - IPhreeqc Basic callback was modified to use ISO_C_BINDING. IPhreeqc - will ultimately be a Fortran module. - - -------- - svn 9386 - -------- - Basic function SYS was missing the "equi" option to return - the equilibrium phases in the current system. - + -------- + svn 9462 + -------- + RATES definitions were revised in all databases. The area parameter + was changed to specific area (area per mole of reactant). Also, for aqueous kinetic + reactions, the solution volume was added explicitly. The changes + were made to facilitate a new version of PHAST that uses a representative + volume that does not have one liter of water. + + -------- + svn 9434 + -------- + Basic function lk_phase did not account for pressure properly. + + -------- + svn 9424 + -------- + IPhreeqc Basic callback was modified to use ISO_C_BINDING. IPhreeqc + will ultimately be a Fortran module. + + -------- + svn 9386 + -------- + Basic function SYS was missing the "equi" option to return + the equilibrium phases in the current system. + USER_PRINT 10 t = SYS("equi", count, name$, type$, moles) 15 PRINT "Number of equilibrium phases: ", count @@ -2629,395 +2637,395 @@ Version 3.2.0: June 10, 2015 30 PRINT PAD(name$(i),20), moles(i) 40 next i END - - t is the total number of moles of equilibrium phases - count is the number of equilibrium phases - name$ is an array with the names of the equilibrium phases - type$ is an array with "equi" for each equilibrium phase - moles is an array with the number of moles of each equilibrium phase - + + t is the total number of moles of equilibrium phases + count is the number of equilibrium phases + name$ is an array with the names of the equilibrium phases + type$ is an array with "equi" for each equilibrium phase + moles is an array with the number of moles of each equilibrium phase + - -------- - svn 9386 - -------- - New frezchem.dat database from Jonathon Toner and the - developers of the frezchem code (Toner and Sletten (2013), - Marion and coworkers). Frezchem is a Pitzer model for temperatures - of 0 C and below. - - -------- - svn 9345 - -------- - Initial solution number for a reaction calculation is now assigned - for SOLUTION_SPREAD in all cases. - - -------- - svn 9345 - -------- - Adjustment to the Peng-Robinson calculation for example with SO2. - - -------- - svn 9324 - -------- - Fixed divide by zero if gas phase components had all zero partial - pressures. - - -------- - svn 9309 - -------- - The function SURF gave incorrect results for O and H if O and H - were in the master species (SurfOH, for example). + -------- + svn 9386 + -------- + New frezchem.dat database from Jonathon Toner and the + developers of the frezchem code (Toner and Sletten (2013), + Marion and coworkers). Frezchem is a Pitzer model for temperatures + of 0 C and below. + + -------- + svn 9345 + -------- + Initial solution number for a reaction calculation is now assigned + for SOLUTION_SPREAD in all cases. + + -------- + svn 9345 + -------- + Adjustment to the Peng-Robinson calculation for example with SO2. + + -------- + svn 9324 + -------- + Fixed divide by zero if gas phase components had all zero partial + pressures. + + -------- + svn 9309 + -------- + The function SURF gave incorrect results for O and H if O and H + were in the master species (SurfOH, for example). - -------- - svn 9308 - -------- - Bug with case dependence of mineral names when running transport. If - case differed in adjacent cells for an EQUILIBRIUM_PHASE name, it could - lead to a program failure. Revised to remove case dependence. - - -------- - svn 9302 - -------- - Fixed Visual Studio static checker warnings. + -------- + svn 9308 + -------- + Bug with case dependence of mineral names when running transport. If + case differed in adjacent cells for an EQUILIBRIUM_PHASE name, it could + lead to a program failure. Revised to remove case dependence. + + -------- + svn 9302 + -------- + Fixed Visual Studio static checker warnings. - -------- - svn 9250 - -------- - Revised parameters for pitzer.dat. Additional temperature dependence, - element Si was added, calcite parameters adjusted for higher temperature. + -------- + svn 9250 + -------- + Revised parameters for pitzer.dat. Additional temperature dependence, + element Si was added, calcite parameters adjusted for higher temperature. Version 3.1.7: February 10, 2015 - -------- - svn 9203 - -------- - Fixed IPhreeqc. An error occurred when an empty string was sent to - IPhreeqc from Fortran. + -------- + svn 9203 + -------- + Fixed IPhreeqc. An error occurred when an empty string was sent to + IPhreeqc from Fortran. Version 3.1.6: January 21, 2015 - -------- - svn 9191 - -------- - IPhreeqc "any" distribution was missing file fimpl.h for Windows builds. + -------- + svn 9191 + -------- + IPhreeqc "any" distribution was missing file fimpl.h for Windows builds. - -------- - svn 9084 - -------- - Fixed initialization of cxxPPassemblage. - - -------- - svn 9165 - -------- - Fixed initialization of NameDouble. + -------- + svn 9084 + -------- + Fixed initialization of cxxPPassemblage. + + -------- + svn 9165 + -------- + Fixed initialization of NameDouble. Version 3.1.5: December 18, 2014 - -------- - svn 9084 - -------- - Fixed warnings identified by CRAN. - - -------- - svn 9073 - -------- - Aqueous species H+ was missing from the list of species returned by - SYS("aq", count, name$, type$, moles). - - -------- - svn 9072 - -------- - Added Basic function diff_c, which returns the diffusion coefficient - for a species at 25 C. - - For example, - d = DIFF_C("CO3-2") - - -------- - svn 9029 - -------- - In inverse modeling, the writing of input files for NetpathXL was - incorrect. Revisions to the program had eliminated a speciation - calculation necessary to provide the correct values. - - -------- - svn 9000 - -------- - Kinetic names were not saved correctly to allow unique retrieval by name. - The error could have lead to misidentification of kinetic reactions for a - cell. - - -------- - svn 8957 - -------- - Uninitialized variable for commands of USER_PUNCH. + -------- + svn 9084 + -------- + Fixed warnings identified by CRAN. + + -------- + svn 9073 + -------- + Aqueous species H+ was missing from the list of species returned by + SYS("aq", count, name$, type$, moles). + + -------- + svn 9072 + -------- + Added Basic function diff_c, which returns the diffusion coefficient + for a species at 25 C. + + For example, + d = DIFF_C("CO3-2") + + -------- + svn 9029 + -------- + In inverse modeling, the writing of input files for NetpathXL was + incorrect. Revisions to the program had eliminated a speciation + calculation necessary to provide the correct values. + + -------- + svn 9000 + -------- + Kinetic names were not saved correctly to allow unique retrieval by name. + The error could have lead to misidentification of kinetic reactions for a + cell. + + -------- + svn 8957 + -------- + Uninitialized variable for commands of USER_PUNCH. Version 3.1.4: August 20, 2014 - -------- - svn 8925 - -------- - - Molar volume was not calculated correctly in mixing a gas. - - -------- - svn 8923 - -------- - - Acentric factor for H2(g) had positive sign. Corrected to - negative for H2(g) and Hdg(g) in phreeqc.dat, Amm.dat, and pitzer.dat. + -------- + svn 8925 + -------- + + Molar volume was not calculated correctly in mixing a gas. + + -------- + svn 8923 + -------- + + Acentric factor for H2(g) had positive sign. Corrected to + negative for H2(g) and Hdg(g) in phreeqc.dat, Amm.dat, and pitzer.dat. - -------- - svn 8919 - -------- - - When a batch kinetic reaction was simulated, followed by a transport - simulation with kinetics, the time was not reset between the - two simulations. + -------- + svn 8919 + -------- + + When a batch kinetic reaction was simulated, followed by a transport + simulation with kinetics, the time was not reset between the + two simulations. Version 3.1.3: August 6, 2014 - -------- - svn 8895 - -------- - - Missing initializations in class_main. - - -------- - svn 8879 - -------- - - Pressure was incorrect in mix of GAS_PHASE. Also fixed - a NULL pointer when the element in a gas phase was missing - from the system. - - -------- - svn 8875 - -------- - - Error reading dump of SURFACE when using no_edl option. - - -------- - svn 8847 - -------- - - Series of changes to correct memory leaks, uninitialized - variables, variables set but not used, and other warnings - detected by Valgrind and Visual Studio. - - -------- - svn 8756 - -------- - - Relative dielectric constant was not calculated correctly. - - -------- - svn 8755 - -------- - - Basic function LK_SPECIES was changed to use the - the log K as found in the SOLUTION_SPECIES - definition. Previously, the log K was for the - equations rewritten to the current master species. - - -------- - svn 8741 - -------- - - Handling of isotopes uncertainty was inconsistent with - documentation in INVERSE_MODELING. Also missing - defaults for O and H redox states. - - -------- - svn 8628 - -------- - - Entities with negative user numbers are not dumped. - - -------- - svn 8622 - -------- - - Modifications to meet R requirements. - - -------- - svn 8576 - -------- - - Fixed error when Pitzer or SIT parameter was redefined. - + -------- + svn 8895 + -------- + + Missing initializations in class_main. + + -------- + svn 8879 + -------- + + Pressure was incorrect in mix of GAS_PHASE. Also fixed + a NULL pointer when the element in a gas phase was missing + from the system. + + -------- + svn 8875 + -------- + + Error reading dump of SURFACE when using no_edl option. + + -------- + svn 8847 + -------- + + Series of changes to correct memory leaks, uninitialized + variables, variables set but not used, and other warnings + detected by Valgrind and Visual Studio. + + -------- + svn 8756 + -------- + + Relative dielectric constant was not calculated correctly. + + -------- + svn 8755 + -------- + + Basic function LK_SPECIES was changed to use the + the log K as found in the SOLUTION_SPECIES + definition. Previously, the log K was for the + equations rewritten to the current master species. + + -------- + svn 8741 + -------- + + Handling of isotopes uncertainty was inconsistent with + documentation in INVERSE_MODELING. Also missing + defaults for O and H redox states. + + -------- + svn 8628 + -------- + + Entities with negative user numbers are not dumped. + + -------- + svn 8622 + -------- + + Modifications to meet R requirements. + + -------- + svn 8576 + -------- + + Fixed error when Pitzer or SIT parameter was redefined. + Version 3.1.2: March 1, 2014 - -------- - svn 8532 - -------- - - Changed the way the pressure is assigned to a fixed-pressure - gas phase in a reaction calculation. Previously, pressure - of the gas phase did not change (unless GAS_PHASE_MODIFY - was used). Now, if REACTION_PRESSURE is defined, it is - used for the fixed pressure of the gas. - + -------- + svn 8532 + -------- + + Changed the way the pressure is assigned to a fixed-pressure + gas phase in a reaction calculation. Previously, pressure + of the gas phase did not change (unless GAS_PHASE_MODIFY + was used). Now, if REACTION_PRESSURE is defined, it is + used for the fixed pressure of the gas. + - -------- - svn 8520 - -------- - - Changes in MCD to accommodate unequal cell lengths. - - -------- - svn 8502 - -------- - - Modified not to DUMP temporary entities with negative user numbers. + -------- + svn 8520 + -------- + + Changes in MCD to accommodate unequal cell lengths. + + -------- + svn 8502 + -------- + + Modified not to DUMP temporary entities with negative user numbers. - -------- - svn 8484 - -------- - - Modified to allow diffusion calculations in TRANSPORT with unequal - cell lengths. + -------- + svn 8484 + -------- + + Modified to allow diffusion calculations in TRANSPORT with unequal + cell lengths. - -------- - svn 8469 - -------- - - Logic for connecting points in USER_GRAPH was revised. + -------- + svn 8469 + -------- + + Logic for connecting points in USER_GRAPH was revised. - -------- - svn 8453 - -------- - - Error where punch file was deleted twice if there was a Basic error. - No longer an error if you try to modify a non-existing entity (SOLUTION, - EXCHANGE, etc), only a warning. - - -------- - svn 8378 - -------- - - Removed yellow from colors for graphing; it was sometimes hard to see. - Changed Li molar volume in pitzer.dat, Amm.dat, and phreeqc.dat. + -------- + svn 8453 + -------- + + Error where punch file was deleted twice if there was a Basic error. + No longer an error if you try to modify a non-existing entity (SOLUTION, + EXCHANGE, etc), only a warning. + + -------- + svn 8378 + -------- + + Removed yellow from colors for graphing; it was sometimes hard to see. + Changed Li molar volume in pitzer.dat, Amm.dat, and phreeqc.dat. - ------------- - svn 8371-8375 - ------------- - - Multiple bug fixes pointed out by Marco De-Vroed. Set basic_interpreter - to NULL after deleting. Revised handling of initial data for initial-solution - calculations. Revised logic for switching to numerical derivatives for - high-pressure calculations, the variable switch_numerical was removed. - - -------- - svn 8356 - -------- - - Fixed bug with solution volume in initial solutions - containing Alkalinity. + ------------- + svn 8371-8375 + ------------- + + Multiple bug fixes pointed out by Marco De-Vroed. Set basic_interpreter + to NULL after deleting. Revised handling of initial data for initial-solution + calculations. Revised logic for switching to numerical derivatives for + high-pressure calculations, the variable switch_numerical was removed. + + -------- + svn 8356 + -------- + + Fixed bug with solution volume in initial solutions + containing Alkalinity. - -------- - svn 8301 - -------- + -------- + svn 8301 + -------- - Density was not stored with the solution after a calculation. - - -------- - svn 8293 - -------- - - Solution volume was not initialized in zero(), and pressure was not set correctly - when mixing solutions. - + Density was not stored with the solution after a calculation. + + -------- + svn 8293 + -------- + + Solution volume was not initialized in zero(), and pressure was not set correctly + when mixing solutions. + Version 3.1.1: December 6, 2013 - -------- - svn 8203 - -------- - - Updated more molar volumes in phreeqc.dat, Amm.dat, and - pitzer.dat. Mn+2, Al+3, PO4-3, F-, Li+, Br-, Zn+2, Cd+2, - Cu+2, NH4+, HPO4-2, H2PO4-, and H3PO4, and other related - ion pairs or complexes. Also estimated more ion size parameters - for pairs and complexes. Molar volume approach is published - in Appelo, Parkhurst, and Post, 2013, Geochimica et Cosmochimica - Acta, v. 125, p. 49-67. + -------- + svn 8203 + -------- + + Updated more molar volumes in phreeqc.dat, Amm.dat, and + pitzer.dat. Mn+2, Al+3, PO4-3, F-, Li+, Br-, Zn+2, Cd+2, + Cu+2, NH4+, HPO4-2, H2PO4-, and H3PO4, and other related + ion pairs or complexes. Also estimated more ion size parameters + for pairs and complexes. Molar volume approach is published + in Appelo, Parkhurst, and Post, 2013, Geochimica et Cosmochimica + Acta, v. 125, p. 49-67. - -------- - svn 7997 - -------- - - Modified chart handling for PhreeqcI to allow charts from + -------- + svn 7997 + -------- + + Modified chart handling for PhreeqcI to allow charts from multiple runs to remain open for comparison. Charts will remain visible until closed. - -------- - svn 7992 - -------- - - Identifier -high_precision was added to the PRINT data + -------- + svn 7992 + -------- + + Identifier -high_precision was added to the PRINT data block to allow higher precision for the PRINT Basic command, which is generally used in USER_PRINT definitions. - -------- - svn 7987 - -------- - - Now can have multiple SELECTED_OUTPUT n and USER_PUNCH n. + -------- + svn 7987 + -------- + + Now can have multiple SELECTED_OUTPUT n and USER_PUNCH n. SELECTED_OUTPUT 1 has the same functionality as previous versions of SELECTED_OUTPUT, with a set of default print definitions. SELECTED_OUTPUT n, where n is not equal to 1, has no fields initially defined; it is equivalent to an automatic -reset false. - - A file may be defined for each SELECTED_OUTPUT n that will + + A file may be defined for each SELECTED_OUTPUT n that will receive the output from the data block. Using i to represent a specific integer, USER_PUNCH i will write to the file defined for SELECTED_OUTPUT i. If USER_PUNCH i is defined, but SELECTED_OUTPUT i is not, then no data will be written from USER_PUNCH i. - - Printing to the selected-output files is controlled - by three identifiers. PRINT; -selected_output true/false - will enable/disable printing of all selected-output - files. For an individual SELECTED_OUTPUT i definition, - -active true/false will enable/disable both - SELECTED_OUTPUT i and USER_PUNCH i. Again for - SELECTED_OUTPUT i, -user_punch true/false will enable/ - disable the USER_PUNCH i data (rarely used). - - If SELECTED_OUTPUT i has been defined, a new data block - of SELECTED_OUTPUT i will retain the previous definition - if only -active and (or) -user_punch are defined. Defining - any other identifier will cause the old definition - to be removed and its file closed; the data for - SELECTED_OUTPUT i will be defined entirely by the new - data block. + + Printing to the selected-output files is controlled + by three identifiers. PRINT; -selected_output true/false + will enable/disable printing of all selected-output + files. For an individual SELECTED_OUTPUT i definition, + -active true/false will enable/disable both + SELECTED_OUTPUT i and USER_PUNCH i. Again for + SELECTED_OUTPUT i, -user_punch true/false will enable/ + disable the USER_PUNCH i data (rarely used). + + If SELECTED_OUTPUT i has been defined, a new data block + of SELECTED_OUTPUT i will retain the previous definition + if only -active and (or) -user_punch are defined. Defining + any other identifier will cause the old definition + to be removed and its file closed; the data for + SELECTED_OUTPUT i will be defined entirely by the new + data block. - -------- - svn 7962 - -------- - - Database modifications: - - pitzer.dat: Parameters have been reordered to alphabetical order. + -------- + svn 7962 + -------- + + Database modifications: + + pitzer.dat: Parameters have been reordered to alphabetical order. - phreeqc.dat and Amm.dat: Vm refit for aqueous species Na+, CO3-2, SO4-2, NO3-, - HCO3-, NaCO3-, NaHCO3, NaSO4, KSO4. Analytical expression adjusted for gypsum, - anhydrite, and sylvite (delta H). - - -------- - svn 7916 - -------- - - Addition of a temperature-dependent pressure correction for the Debye-Hueckel term + phreeqc.dat and Amm.dat: Vm refit for aqueous species Na+, CO3-2, SO4-2, NO3-, + HCO3-, NaCO3-, NaHCO3, NaSO4, KSO4. Analytical expression adjusted for gypsum, + anhydrite, and sylvite (delta H). + + -------- + svn 7916 + -------- + + Addition of a temperature-dependent pressure correction for the Debye-Hueckel term for the Pitzer formulation. An empirical, temperature-dependent pressure correction has been introduced in the Debye-Hueckel part of Pitzer's equation for gamma (activity coefficient), which lets the factor B vary from 1.2 to 1. Pitzer defined this number to be 1.2 for all pressures and temperatures. - - For monovalent species the correction is: + + For monovalent species the correction is: pap = (7e-5 + 1.93e-9 * (TK - 250)^ 2.0) * patm_x For divalent species the correction is: pap = (9.65e-10 * (TK - 263)^ 2.773) * (patm_x^0.623) @@ -3030,33 +3038,33 @@ Version 3.1.1: December 6, 2013 F = = -A0 * (DI / (1.0 + B * DI) + 2.0 * log(1.0 + B * DI) / B) where DI is the square root of the ionic strength. - -------- - svn 7972 - -------- - - A revised version of the manual is now distributed as a + -------- + svn 7972 + -------- + + A revised version of the manual is now distributed as a compiled HTML file (phreeqc3.chm). It has corrections and new features highlighted in forest green. - - -------- - svn 7920 - -------- - - GAS_PHASE processing was incorrect for fixe-volume gas with - multiple components. The wrong number of moles of gas - some gas components was calculated. + + -------- + svn 7920 + -------- + + GAS_PHASE processing was incorrect for fixe-volume gas with + multiple components. The wrong number of moles of gas + some gas components was calculated. - -------- - svn 7896 - -------- - - The manual wording was wrong or confusing in some places + -------- + svn 7896 + -------- + + The manual wording was wrong or confusing in some places regarding the difference between fugacity (F) and (partial) pressure (P) of a gas. For ideal gases, P = F. However for Peng-Robinson gases F = P * phi / 1 atm (unitless). - - In EQUILIBRIUM_PHASES, the target saturation index for a + + In EQUILIBRIUM_PHASES, the target saturation index for a gas is log10(P). In SELECTED_OUTPUT -saturation_index, for gases, the value printed will be the fugacity. For Basic functions SI and SR, the values are based on the fugacity. @@ -3067,128 +3075,128 @@ Version 3.1.1: December 6, 2013 the SI for a gas is its fugacity. However, for Peng-Robinson gases, P and phi are appended to the output line. - - -------- - svn 7884 - -------- - IPHREEQC: added a Basic function, CALLBACK, which - allows data be passed to and from the calling - program. The new IPhreeqc method is - - for C, - iresult = SetBasicCallback(ID, function name, cookie) - - and for Fortran, - iresult = SetBasicFortranCallback(ID, function name) - - The two methods are necessary because arguments - are handled differenctly between C and Fortran. - The void pointer cookie in the C callback can be - used to allow the user-defined callback function - to find necessary data. - - The user-defined function for C must be of the form - double my_callback(double, double, const char *, void *) - - For Fortran the function must be of the form - double precision my_callback(double precision, - double precision, character(*)) - - As an example, to get the current time for - a calculation, the callback could be used as follows: - - Basic: - 10 date = CALLBACK(dummy, dummy, "Year") - - Fortran after registering my_callback by using - SetBasicFortranCallback - - double precision function my_callback(x1, x2, string) - USE date_module, only: year - double precision x1, x2, my_callback - character(*) string - if (string .eq. "Year") then - return dble(year) - endif - end - - A usage of the callback feature has been added to the + + -------- + svn 7884 + -------- + IPHREEQC: added a Basic function, CALLBACK, which + allows data be passed to and from the calling + program. The new IPhreeqc method is + + for C, + iresult = SetBasicCallback(ID, function name, cookie) + + and for Fortran, + iresult = SetBasicFortranCallback(ID, function name) + + The two methods are necessary because arguments + are handled differenctly between C and Fortran. + The void pointer cookie in the C callback can be + used to allow the user-defined callback function + to find necessary data. + + The user-defined function for C must be of the form + double my_callback(double, double, const char *, void *) + + For Fortran the function must be of the form + double precision my_callback(double precision, + double precision, character(*)) + + As an example, to get the current time for + a calculation, the callback could be used as follows: + + Basic: + 10 date = CALLBACK(dummy, dummy, "Year") + + Fortran after registering my_callback by using + SetBasicFortranCallback + + double precision function my_callback(x1, x2, string) + USE date_module, only: year + double precision x1, x2, my_callback + character(*) string + if (string .eq. "Year") then + return dble(year) + endif + end + + A usage of the callback feature has been added to the IPhreeqc example advect for Fortran, C, and C++. Additional documentation is in the .chm documentation files for IPhreeqc. - -------- - svn 7867 - -------- - - SOLUTION_MODIFY and SOLUTION_RAW were missing the - -pressure identifier. It has now been added. + -------- + svn 7867 + -------- + + SOLUTION_MODIFY and SOLUTION_RAW were missing the + -pressure identifier. It has now been added. - -------- - svn 7857 - -------- - - Trapped error when solid-solution components were - not defined correctly. + -------- + svn 7857 + -------- + + Trapped error when solid-solution components were + not defined correctly. - -------- - svn 7855 - -------- - - Error in pressure dependence when Pitzer or SIT - aqueous model was used. The pressure dependence - was not calculated if the pressure was changed, - but the temperature was not. - - -------- - svn 7829 - -------- - - Added Basic function EQUIV_FRAC that returns the - equivalent fraction of a surface or exchange - species. The three arguments are - (1) Species name (input), - (2) Equivalents of exchange or surface sites - per mole of the species (output), - (3) The name of the surface or exchange site - (output). - For example, - - 10 f = EQUIV_FRAC("AlX3", eq, x$) - - f = equivalent fraction of AlX3 relative to - total equivalents of X sites. - eq = 3.0 - x$ = "X" - - If the species name is not found to be a surface - or exchange species, the return value is 0, - the second argument is set to 0, and the third - argument is set to an empty string. - - Also added synonyms for Basic functions - PHASE_FORMULA and SPECIES_FORMULA with trailing - $ signs--PHASE_FORMULA$ and SPECIES_FORMULA$. - To be consistent with Basic, the functions should - have $ signs because they return strings. - - - -------- - svn 7828 - -------- - - Added Basic function SPECIES_FORMULA that returns the - stoichiometry of an aqueous, exchange, or surface - species. The function returns a string: "aq" for - aqueous, "ex" for exchange, "surf" for surface, - and "none" if there is no species of that name. - The four arguments are - (1) the name of the species (input), - (2) the number of elements, including charge (output), - (3) an string array of element names (output), - (4) a number array of coefficients corresponding to the elements (output). - The following example: - + -------- + svn 7855 + -------- + + Error in pressure dependence when Pitzer or SIT + aqueous model was used. The pressure dependence + was not calculated if the pressure was changed, + but the temperature was not. + + -------- + svn 7829 + -------- + + Added Basic function EQUIV_FRAC that returns the + equivalent fraction of a surface or exchange + species. The three arguments are + (1) Species name (input), + (2) Equivalents of exchange or surface sites + per mole of the species (output), + (3) The name of the surface or exchange site + (output). + For example, + + 10 f = EQUIV_FRAC("AlX3", eq, x$) + + f = equivalent fraction of AlX3 relative to + total equivalents of X sites. + eq = 3.0 + x$ = "X" + + If the species name is not found to be a surface + or exchange species, the return value is 0, + the second argument is set to 0, and the third + argument is set to an empty string. + + Also added synonyms for Basic functions + PHASE_FORMULA and SPECIES_FORMULA with trailing + $ signs--PHASE_FORMULA$ and SPECIES_FORMULA$. + To be consistent with Basic, the functions should + have $ signs because they return strings. + + + -------- + svn 7828 + -------- + + Added Basic function SPECIES_FORMULA that returns the + stoichiometry of an aqueous, exchange, or surface + species. The function returns a string: "aq" for + aqueous, "ex" for exchange, "surf" for surface, + and "none" if there is no species of that name. + The four arguments are + (1) the name of the species (input), + (2) the number of elements, including charge (output), + (3) an string array of element names (output), + (4) a number array of coefficients corresponding to the elements (output). + The following example: + 10 name$ = "AlX3" 20 ty$ = SPECIES_FORMULA(name$, count_s, elt$, coef) 20 print pad(name$, 15), ty$ @@ -3199,20 +3207,20 @@ Version 3.1.1: December 6, 2013 Produces the following output: AlX3 ex - Al 1 - X 3 - charge 0 + Al 1 + X 3 + charge 0 - -------- - svn 7781 - -------- - - Basic function SYS("phases",...) returned 0.0, rather + -------- + svn 7781 + -------- + + Basic function SYS("phases",...) returned 0.0, rather than the maximum saturation index if the maximum saturation index was less than zero. Now returns the maximum saturation index even if it is less than zero. - - Added new Basic function STR_E$(x, w, d) that produces + + Added new Basic function STR_E$(x, w, d) that produces a string with exponential format from a number with a given width (w) and number of decimal places (d). w is the minimum width of the string. The string is padded @@ -3224,11 +3232,11 @@ AlX3 ex 1.23457e+005 - -------- - svn 7766 - -------- - - Added new Basic function STR_F$(x, w, d) that produces + -------- + svn 7766 + -------- + + Added new Basic function STR_F$(x, w, d) that produces a string from a number with a given width (w) and number of decimal places (d). w is the minimum width of the string. The string is padded with spaces to the @@ -3240,33 +3248,33 @@ AlX3 ex 123456.78900 - -------- - svn 7763 - -------- - - Fixed bug with isotopes. Moles and molalities were + -------- + svn 7763 + -------- + + Fixed bug with isotopes. Moles and molalities were incorrect if the mass of water in the SOLUTION was not 1.0. Version 3.0.6: June 4, 2013 - -------- - svn 7757 - -------- - - Fixed bug introduced in version 3.0.5 if two DELETE + -------- + svn 7757 + -------- + + Fixed bug introduced in version 3.0.5 if two DELETE keywords were used in a run. Fixed a bug with fixed- pressure gas, where the volume was 1.0 even when no moles of gas were present in the gas phase. Minor optimizations for initialization of Peng-Robinson gas data. - + Version 3.0.5: May 31, 2013 - -------- - svn 7748 - -------- - - Optimizations for equilibrium phases, using pointers + -------- + svn 7748 + -------- + + Optimizations for equilibrium phases, using pointers instead of lookup function. Other optimizations for SURFACE calculations to limit uses of std::map find, eliminate strcmps, and skip inverse setup when not @@ -3275,42 +3283,42 @@ Version 3.0.5: May 31, 2013 Removed lower limit on ionic strength. Version 3.0.4: May 14, 2013 - -------- - svn 7703 - -------- - Fixed bug in PhreeqcI that caused no warnings to be - included in the output file. + -------- + svn 7703 + -------- + Fixed bug in PhreeqcI that caused no warnings to be + included in the output file. - -------- - svn 7677 - -------- - Gas-phase volume was not correct in SELECTED_OUTPUT - -gas printout for Peng-Robinson calculations. + -------- + svn 7677 + -------- + Gas-phase volume was not correct in SELECTED_OUTPUT + -gas printout for Peng-Robinson calculations. - -------- - svn 7677 - -------- - Added KIN_TIME Basic function, which gives the - time interval in seconds of the last kinetic - integration. KIN_DELTA("xxx")/KIN_TIME will give - the average rate over the time interval for - reaction xxx. - - For example, - - KINETICS - Calcite - -m 1 - -step 864 8640 - - KIN_TIME will return 864 after the first - step and 8640 after the second. The result of - KIN_TIME will be the same whether INCREMENTAL_ - REACTIONS is true or false (although TOTAL_ - TIME will differ). - + -------- + svn 7677 + -------- + Added KIN_TIME Basic function, which gives the + time interval in seconds of the last kinetic + integration. KIN_DELTA("xxx")/KIN_TIME will give + the average rate over the time interval for + reaction xxx. + + For example, + + KINETICS + Calcite + -m 1 + -step 864 8640 + + KIN_TIME will return 864 after the first + step and 8640 after the second. The result of + KIN_TIME will be the same whether INCREMENTAL_ + REACTIONS is true or false (although TOTAL_ + TIME will differ). + - + Version 3.0.3: April 30, 2013 Fixed errors in GAS_PHASE, -fixed_pressure used the @@ -3382,20 +3390,20 @@ Version 3.0.0: February 1, 2013 ------------------------------------------------------------ Version 2.18.2: April 9, 2011 ------------------------------------------------------------ - -------- - svn 5471 - -------- - Added PHASE_FORMULA and LIST_S_S Basic functions. - - PHASE_FORMULA returns a string value with the - chemical formula for the phase as defined in - PHASES data. If 4 arguments are provide, a list - of the elements and stoichiometric coefficients for - elements are returned. - - USER_PRINT - 10 min$ = "Calcite" - 20 form$ = PHASE_FORMULA(min$) + -------- + svn 5471 + -------- + Added PHASE_FORMULA and LIST_S_S Basic functions. + + PHASE_FORMULA returns a string value with the + chemical formula for the phase as defined in + PHASES data. If 4 arguments are provide, a list + of the elements and stoichiometric coefficients for + elements are returned. + + USER_PRINT + 10 min$ = "Calcite" + 20 form$ = PHASE_FORMULA(min$) 30 print min$, form$ 40 form$ = PHASE_FORMULA(min$, count, elts$, coefs) 50 for i = 1 to count @@ -3409,88 +3417,88 @@ Calcite CaCO3 Ca 1 O 3 - LIST_S_S returns the sum of moles of all components - in a specified solid solution. Lists of the components - and the number of moles of each component are also - returned. + LIST_S_S returns the sum of moles of all components + in a specified solid solution. Lists of the components + and the number of moles of each component are also + returned. SOLID_SOLUTIONS 1 Calcite_s_s - -comp Calcite 0.01 - -comp Smithsonite 0.001 - -comp Strontianite 0.02 + -comp Calcite 0.01 + -comp Smithsonite 0.001 + -comp Strontianite 0.02 USER_PRINT - 10 name$ = "Calcite_s_s" + 10 name$ = "Calcite_s_s" 20 total = LIST_S_S(name$, count, comp$, moles) 30 print PAD(name$, 20), total 40 for i = 1 to count 50 print " ", PAD(comp$[i], 20), moles[i], moles[i]/total 60 next i - This example produces the following output: - + This example produces the following output: + Calcite_s_s 3.0876e-002 - Calcite 9.9316e-003 3.2166e-001 - Smithsonite 9.6666e-004 3.1308e-002 - Strontianite 1.9978e-002 6.4704e-001 - - -------- - svn 5455 - -------- - REACTION_MODIFY keyword was added to the modules. Previously, - REACTION_MODIFY was not recognized as a keyword. - - -------- - svn 5453 - -------- - Fixed bug with in READ_SOLUTION_RAW. A read error occurred - when -isotopes was encountered. - - -------- - svn 5448 - -------- - Reading of default user number, but specified description - was in error under some conditions. + Calcite 9.9316e-003 3.2166e-001 + Smithsonite 9.6666e-004 3.1308e-002 + Strontianite 1.9978e-002 6.4704e-001 + + -------- + svn 5455 + -------- + REACTION_MODIFY keyword was added to the modules. Previously, + REACTION_MODIFY was not recognized as a keyword. + + -------- + svn 5453 + -------- + Fixed bug with in READ_SOLUTION_RAW. A read error occurred + when -isotopes was encountered. + + -------- + svn 5448 + -------- + Reading of default user number, but specified description + was in error under some conditions. - -------- - svn 5431 - -------- - RUN_CELLS was rewritten to perform multiple calculations - if multiple steps are defined in REACTION, REACTION_TEMPERATURE, - or KINETICS. It now operates in the same way that a - series of USE and SAVES would operate. Previously, only - one step of a series of reaction steps was taken. If a - time step is provided in RUN_CELLS for kinetic reactions and - nmax is the maximum number of steps defined for REACTION, - REACTION_TEMPERATURE, and KINETICS, the time step is divided - into nmax equal increments. It is equivalent to the following - definition in kinetics: -step time_step in nmax steps. - - -------- - svn 5324 - -------- - Modified solution method for solid solutions so that - mole transfers were limited to the total amount - available in the system. - + -------- + svn 5431 + -------- + RUN_CELLS was rewritten to perform multiple calculations + if multiple steps are defined in REACTION, REACTION_TEMPERATURE, + or KINETICS. It now operates in the same way that a + series of USE and SAVES would operate. Previously, only + one step of a series of reaction steps was taken. If a + time step is provided in RUN_CELLS for kinetic reactions and + nmax is the maximum number of steps defined for REACTION, + REACTION_TEMPERATURE, and KINETICS, the time step is divided + into nmax equal increments. It is equivalent to the following + definition in kinetics: -step time_step in nmax steps. + + -------- + svn 5324 + -------- + Modified solution method for solid solutions so that + mole transfers were limited to the total amount + available in the system. + ------------------------------------------------------------ Version 2.18.0: April 9, 2011 ------------------------------------------------------------ - -------- - svn 5281 - -------- - If SOLUTION_MODIFY is used to change a total for an element, - the activities for the master species of the element are - automatically updated by the ratio of the new total to the - old total, unless activities are specifically set for the - element with -activities. All valence states of redox elements - are adjusted. + -------- + svn 5281 + -------- + If SOLUTION_MODIFY is used to change a total for an element, + the activities for the master species of the element are + automatically updated by the ratio of the new total to the + old total, unless activities are specifically set for the + element with -activities. All valence states of redox elements + are adjusted. - -------- - svn 5270 - -------- + -------- + svn 5270 + -------- Added logic to update estimates of log activity when modifying totals in SOLUTION_MODIFY. The initial guesses for activities are adjusted proportionally @@ -3508,82 +3516,82 @@ Version 2.18.0: April 9, 2011 a given set of equations and, consequently, should lessen the total CPU time for a simulation. - -------- - svn 4897 - -------- - Added capability to include files within the input - file. Files included in include files are also - included. Files are included verbatim and need not - contain complete keyword datablocks; however, the - combination of included files must result in a - legal PHREEQC input file. Files are included as - simulations are proceeding, so it is possible to - write a file at one point of a run that is included - later in the same run. Included files can contain - INCLUDE$ directives. - - SOLUTION - INCLUDE$ file_name - END - - where "file_name" contains: - EQUILIBRIUM_PHASES - Calcite 0 10 - - is the same as a single file with - SOLUTION - EQUILIBRIUM_PHASES - Calcite 0 10 - END - - -------- - svn 4856 - -------- - Revised logic of searching pitzer parameters so that - order of ions in a parameter definition does not - matter. - - -------- - svn 4823 - -------- - Added -cells to DUMP and DELETE; cell option to COPY. - Example: - - COPY cell 1 4 - COPY cell 1 5-10 - DUMP - -cell 1 2-3 10 - DELETE - -cell 1-3 4 8-10 - - COPY cell n range - - The cell option of the COPY keyword causes all reactants - defined with identifying number n to be copied to a single - range of numbers. The range of numbers can be a single - number or a range of numbers given by an integer, a - hyphen, and an integer, with no intervening spaces. - - DUMP - -cell list - - The -cell option writes _RAW formatted output to a - specified file(see below for more details) for each - reactant that is defined in the list. - - DUMP - -cell list - The -cell deletes from memory all reactants that are - defined with identifying numbers in the list. - - The list of numbers for DUMP and DELETE are - more flexible than for COPY. A list of ranges can be - given for DUMP and DELETE, where each element of - the list can be a single number or a range of numbers - defined by an integer, a hyphen, and an ingeger, with - no intervening spaces. - - -------- + -------- + svn 4897 + -------- + Added capability to include files within the input + file. Files included in include files are also + included. Files are included verbatim and need not + contain complete keyword datablocks; however, the + combination of included files must result in a + legal PHREEQC input file. Files are included as + simulations are proceeding, so it is possible to + write a file at one point of a run that is included + later in the same run. Included files can contain + INCLUDE$ directives. + + SOLUTION + INCLUDE$ file_name + END + + where "file_name" contains: + EQUILIBRIUM_PHASES + Calcite 0 10 + + is the same as a single file with + SOLUTION + EQUILIBRIUM_PHASES + Calcite 0 10 + END + + -------- + svn 4856 + -------- + Revised logic of searching pitzer parameters so that + order of ions in a parameter definition does not + matter. + + -------- + svn 4823 + -------- + Added -cells to DUMP and DELETE; cell option to COPY. + Example: + + COPY cell 1 4 + COPY cell 1 5-10 + DUMP + -cell 1 2-3 10 + DELETE + -cell 1-3 4 8-10 + + COPY cell n range + + The cell option of the COPY keyword causes all reactants + defined with identifying number n to be copied to a single + range of numbers. The range of numbers can be a single + number or a range of numbers given by an integer, a + hyphen, and an integer, with no intervening spaces. + + DUMP + -cell list + + The -cell option writes _RAW formatted output to a + specified file(see below for more details) for each + reactant that is defined in the list. + + DUMP + -cell list + The -cell deletes from memory all reactants that are + defined with identifying numbers in the list. + + The list of numbers for DUMP and DELETE are + more flexible than for COPY. A list of ranges can be + given for DUMP and DELETE, where each element of + the list can be a single number or a range of numbers + defined by an integer, a hyphen, and an ingeger, with + no intervening spaces. + + -------- svn 4816 -------- Added compile capability to use #include file_name @@ -3660,7 +3668,7 @@ Version 2.18.0: April 9, 2011 -count_temps 3 -equal_increments 1 -temps - 25 45 + 25 45 -------- @@ -3772,9 +3780,9 @@ SOLUTION_MODIFY 1 -total_o 55.506216800086 (*) -cb -3.6579285790756e-010 (*) -totals - Cl 0.0010000000000003 (*) - H(0) 1.4155655514601e-025 (*) - Na 0.0010000000000003 (*) + Cl 0.0010000000000003 (*) + H(0) 1.4155655514601e-025 (*) + Na 0.0010000000000003 (*) -Isotopes -pH 7 -pe 4 @@ -3783,40 +3791,40 @@ SOLUTION_MODIFY 1 -mass_water 1 -total_alkalinity 3.6579283856577e-010 -activities - Cl -3.0155266404974 - E -4 - H(0) -25.15 - Na -3.0153891985103 - O(0) -42.080029535586 + Cl -3.0155266404974 + E -4 + H(0) -25.15 + Na -3.0153891985103 + O(0) -42.080029535586 -gammas EQUILIBRIUM_PHASES_MODIFY 1 -eltList - Ba 1 - O 4 - S 1 + Ba 1 + O 4 + S 1 -component * - -name Barite - -si 0 * - -moles 10 * - -delta 0 - -initial_moles 0 - -force_equality 0 - -dissolve_only 0 - -precipitate_only 0 + -name Barite + -si 0 * + -moles 10 * + -delta 0 + -initial_moles 0 + -force_equality 0 + -dissolve_only 0 + -precipitate_only 0 EXCHANGE_MODIFY 1 -pitzer_exchange_gammas 1 -component - -formula X - -totals - Na 1.0000000058717 (*) - X 1.0000000058717 (*) - -charge_balance 0 - -moles 0 - -la 3.0000000302372 - -phase_proportion 0 - -formula_z 0 - -formula_totals - X 1 + -formula X + -totals + Na 1.0000000058717 (*) + X 1.0000000058717 (*) + -charge_balance 0 + -moles 0 + -la 3.0000000302372 + -phase_proportion 0 + -formula_z 0 + -formula_totals + X 1 SURFACE_MODIFY 1 . -type 2 -dl_type 0 @@ -3828,50 +3836,50 @@ SURFACE_MODIFY 1 . -DDL_limit 0.8 -transport 0 -component - -formula Hfo_s - -formula_z 0 - -moles 0 - -la -0.11486188676541 - -charge_balance 3.7853465372651e-005 - -phase_proportion 0 - -Dw 0 - -formula_totals - Hfo_s 0.01 - -totals - H 0.01003785346547 (*) - Hfo_s 0.010000000000097 (*) - O 0.010000000000097 (*) + -formula Hfo_s + -formula_z 0 + -moles 0 + -la -0.11486188676541 + -charge_balance 3.7853465372651e-005 + -phase_proportion 0 + -Dw 0 + -formula_totals + Hfo_s 0.01 + -totals + H 0.01003785346547 (*) + Hfo_s 0.010000000000097 (*) + O 0.010000000000097 (*) -charge_component - -name Hfo - -specific_area 600 - -grams 1 - -charge_balance 3.7853465372651e-005 (*) - -mass_water 0 - -la_psi 0.55146269389617 - -la_psi1 0 - -la_psi2 0 - -capacitance0 1 - -capacitance1 5 - -diffuse_layer_totals + -name Hfo + -specific_area 600 + -grams 1 + -charge_balance 3.7853465372651e-005 (*) + -mass_water 0 + -la_psi 0.55146269389617 + -la_psi1 0 + -la_psi2 0 + -capacitance0 1 + -capacitance1 5 + -diffuse_layer_totals SOLID_SOLUTIONS_MODIFY 1 -solid_solution - -name Calcite - -a0 0 - -a1 0 - -ag0 0 - -ag1 0 - -miscibility 0 - -xb1 0.0 - -xb2 0.0 - -component - calcite 0.1 * - siderite 0.001 * + -name Calcite + -a0 0 + -a1 0 + -ag0 0 + -ag1 0 + -miscibility 0 + -xb1 0.0 + -xb2 0.0 + -component + calcite 0.1 * + siderite 0.001 * GAS_PHASE_MODIFY 1 -type 0 -total_p 1 -volume 1 -component - CO2(g) 1.4305508698401e-005 * + CO2(g) 1.4305508698401e-005 * KINETICS_MODIFY 1 -step_divide 1 -rk 1 @@ -3880,19 +3888,19 @@ KINETICS_MODIFY 1 -cvode_steps 100 -cvode_order 5 -component - -rate_name Calcite - -tol 1e-008 - -m 0.9999999999991 * - -m0 1 - -moles 8.9805940461929e-013 - -namecoef - CaCO3 1 - -d_params - 1 1 1 1 * + -rate_name Calcite + -tol 1e-008 + -m 0.9999999999991 * + -m0 1 + -moles 8.9805940461929e-013 + -namecoef + CaCO3 1 + -d_params + 1 1 1 1 * -totals - C 8.9801193858101e-013 - Ca 8.9801193858101e-013 - O 2.694035815743e-012 + C 8.9801193858101e-013 + Ca 8.9801193858101e-013 + O 2.694035815743e-012 -steps -------- @@ -4128,10 +4136,10 @@ KINETICS_MODIFY 1 ------------------------------------------------------------ Version 2.18.3: April 10, 2011 ------------------------------------------------------------ - -------- - svn 5570 - -------- - If -high_precision is set to true in SELECTED_OUTPUT, + -------- + svn 5570 + -------- + If -high_precision is set to true in SELECTED_OUTPUT, convergence tolerance is set to 1e-12. If -high_precision is set to false, convergence tolerance is not changed. KNOBS; -convergence_tolerance sets the @@ -4139,78 +4147,78 @@ Version 2.18.3: April 10, 2011 definition (-high_precision true or -convergence_tolerance) takes precedence for a calculation. - + ------------------------------------------------------------ Version 2.18.0: April 9, 2011 ------------------------------------------------------------ - -------- - svn 5212 - -------- - Added gfm (gram formula mass) as a synonym to gfw in - reading concentration data for SOLUTION. - - S(6) 1 gfm 96 - - is equivalent to - - S(6) 1 gfw 96. + -------- + svn 5212 + -------- + Added gfm (gram formula mass) as a synonym to gfw in + reading concentration data for SOLUTION. + + S(6) 1 gfm 96 + + is equivalent to + + S(6) 1 gfw 96. - -------- - svn 5170 - -------- - Added ceil and floor Basic functions. Ceil(x) is the - smallest integer greater than or equal to x. Floor(x) - is the largest integer less than or equal to x. Note - that all numbers in Basic are of type double in C. - - USER_PRINT - 10 print ceil(2.8), floor(2.8), ceil(-2.8), floor(-2.8) - - This USER_PRINT Basic program has the following output: - - 3 2 -2 -3 + -------- + svn 5170 + -------- + Added ceil and floor Basic functions. Ceil(x) is the + smallest integer greater than or equal to x. Floor(x) + is the largest integer less than or equal to x. Note + that all numbers in Basic are of type double in C. + + USER_PRINT + 10 print ceil(2.8), floor(2.8), ceil(-2.8), floor(-2.8) + + This USER_PRINT Basic program has the following output: + + 3 2 -2 -3 - -------- - svn 4988 - -------- - Added EOL$ Basic function. EOL$ is the end of line - character for whatever operating system you are - running. - - USER_PRINT - 10 PRINT "line 1"+EOL$+"line 2"+EOL$ - - The result of this USER_PRINT is - - line 1 + -------- + svn 4988 + -------- + Added EOL$ Basic function. EOL$ is the end of line + character for whatever operating system you are + running. + + USER_PRINT + 10 PRINT "line 1"+EOL$+"line 2"+EOL$ + + The result of this USER_PRINT is + + line 1 line 2 - - -------- - svn 4942 - -------- - Added additional parameter in PRINT for status. Writing - the status line to the screen can slow calculations - substantially under some conditions. - - PRINT - -status (t|f|n) - - t--Print status line. - f--Do not print status line. - n--Print status line every n milliseconds. - - -status 1000 would print the status line every - second. - - -------- - svn 4830 - -------- - Changed default for exchange species activity - coefficients to be equal to the Pitzer - aqueous activity coefficients when using Pitzer - aqueous model. Default is - -pitzer_exchange_gammas true. + + -------- + svn 4942 + -------- + Added additional parameter in PRINT for status. Writing + the status line to the screen can slow calculations + substantially under some conditions. + + PRINT + -status (t|f|n) + + t--Print status line. + f--Do not print status line. + n--Print status line every n milliseconds. + + -status 1000 would print the status line every + second. + + -------- + svn 4830 + -------- + Changed default for exchange species activity + coefficients to be equal to the Pitzer + aqueous activity coefficients when using Pitzer + aqueous model. Default is + -pitzer_exchange_gammas true. ------------------------------------------------------------ @@ -4221,23 +4229,23 @@ Version 2.17.5: September 7, 2010 Version 2.17.4: September 2, 2010 ------------------------------------------------------------ - -------- - svn 4771 - -------- - Added synonyms to TOTMOLE: TOTMOL, TOTMOLES - + -------- + svn 4771 + -------- + Added synonyms to TOTMOLE: TOTMOL, TOTMOLES + ------------------------------------------------------------ Version 2.17.3: August 12, 2010 ------------------------------------------------------------ - -------- - svn 4191 - -------- - Added new Basic functions: - - 10 total_Ca_in_moles = TOTMOLE("Ca") - - TOTMOLE provides the total number of moles of an element + -------- + svn 4191 + -------- + Added new Basic functions: + + 10 total_Ca_in_moles = TOTMOLE("Ca") + + TOTMOLE provides the total number of moles of an element or element valence state in solution. Special values are "water", which gives number of moles of water, and "charge", which gives total equivalents of charge @@ -4245,1140 +4253,1140 @@ Version 2.17.3: August 12, 2010 CHARGE_BALANCE). In contrast, the Basic function TOT returns moles per kilogram of water, or equivalents per kilogram of water for TOT("charge"). - - 10 O18_permil = ISO("[18O]") - - - ISO gives an isotopic composition in the input units for + + 10 O18_permil = ISO("[18O]") + + + ISO gives an isotopic composition in the input units for an isotope--permil, pmc, or TU in current version of iso.dat. The string argument can be an isotope name, or any item defined in the ISOTOPE_RATIOS data block, For example, ISO("R(13C)_Calcite") will return the carbon-13 composition of the calcite solid solution in permil because of the definitions in iso.dat. - - 10 D_units$ = ISO_UNITS("D") - - ISO_UNITS gives the input units for the isotope, D_units$ = + + 10 D_units$ = ISO_UNITS("D") + + ISO_UNITS gives the input units for the isotope, D_units$ = "permil" in the example. The string argument can be an isotope name or an item defined in the ISOTOPE_RATIOS data block as explained for the Basic function ISO. - + ------------------------------------------------------------ Version 2.17.0: February 25, 2010 ------------------------------------------------------------ - -------- - svn 4006 - -------- + -------- + svn 4006 + -------- - Changed the calculation of Specific Conductance (SC, uS/cm) - to be for the actual temperature of the SOLUTION (in output - and in BASIC function SC). - Previous versions calculated SC for 25 °C, whereas the - complexation model is done at the actual temperature. - To obtain SC at 25 °C, use keyword REACTION_TEMPERATURE, - for example: - - SOLUTION 1; K 1; Cl 1; -temp 99 - REACTION_TEMPERATURE; 25 - END - - The following example prints to the selected output - file the equivalent conductance in (mmho/cm / eq/L) at - 20 degrees C for a 1:1 chloride salt solution: + Changed the calculation of Specific Conductance (SC, uS/cm) + to be for the actual temperature of the SOLUTION (in output + and in BASIC function SC). + Previous versions calculated SC for 25 °C, whereas the + complexation model is done at the actual temperature. + To obtain SC at 25 °C, use keyword REACTION_TEMPERATURE, + for example: + + SOLUTION 1; K 1; Cl 1; -temp 99 + REACTION_TEMPERATURE; 25 + END + + The following example prints to the selected output + file the equivalent conductance in (mmho/cm / eq/L) at + 20 degrees C for a 1:1 chloride salt solution: - USER_PUNCH - -head conc eq_EC_20 - -start - 10 punch tot("Cl"), SC / tot("Cl") * 1e-3 - -end + USER_PUNCH + -head conc eq_EC_20 + -start + 10 punch tot("Cl"), SC / tot("Cl") * 1e-3 + -end - where 1e-3 converts from microSiemens/cm to mmho/cm. - (The example given with svn 2448 multiplies SC's incorrectly - with the ratio of the temperatures.) - -------- - svn 3986 - -------- - Added an option for time-substepping in multicomponent - diffusion (-multi_D true), keyword TRANSPORT: - - -time_step 3600 3.0 # 3 time-substeps of 1200 seconds - - This option is useful to avoid a warning about negative - concentrations that may occur in MCD simulations. - - -------- - svn 3902 - -------- - Added four basic functions for use only with PHAST. The - functions are related to the volume, porosity, and - water saturation of a PHAST finite-difference cell: - - CELL_VOLUME--The total volume of the cell in liters. - CELL_PORE_VOLUME--The void volume of the cell in liters. - CELL_SATURATION--The fraction of the void volume filled - with water, unitless. - CELL_POROSITY--The porosity of the cell, equal to - CELL_PORE_VOLUME / CELL_VOLUME, unitless. - - - For example, in a USER_PUNCH program for a PHAST run, - the number of moles of dissolved chloride in a cell is - TOT("Cl")*CELL_PORE_VOLUME for confined flow simulations. - More generally, the number of moles of dissolved chloride - is TOT("Cl")*CELL_SATURATION*CELL_PORE_VOLUME, for confined - or unconfined flow. - - For solids, the number of moles of calcite in the - saturated part of a cell is - EQUI("Calcite")*CELL_SATURATION*CELL_PORE_VOLUME. For - unconfined flow, the solid reactants are distributed - between the saturated and unsaturated part of a water- - table cell. It is a limitation of PHAST that it is not - possible to determine the amounts of solid reactants - in the unsaturated part of a cell. Note that for - steady-state, unconfined flow, the saturation of cells is - constant and the unsaturated part of a water-table cell - is never part of the active domain. - - -------- - svn 3600 - -------- - A new 1/T^2 term (A5 coefficient) was added for all Pitzer-parameter - temperature expressions. - - P = A0 + A1*(1/TK - 1/TR) + A2log(TK/TR) + A3*(TK-TR) + - A4*(TK*TK - TR*TR) + A5*(1/(TK*TK) - 1/(TR*TR)) - - where TK is temperature in Kelvin. The optional A5 parameter - is read following A4. + where 1e-3 converts from microSiemens/cm to mmho/cm. + (The example given with svn 2448 multiplies SC's incorrectly + with the ratio of the temperatures.) + -------- + svn 3986 + -------- + Added an option for time-substepping in multicomponent + diffusion (-multi_D true), keyword TRANSPORT: + + -time_step 3600 3.0 # 3 time-substeps of 1200 seconds + + This option is useful to avoid a warning about negative + concentrations that may occur in MCD simulations. + + -------- + svn 3902 + -------- + Added four basic functions for use only with PHAST. The + functions are related to the volume, porosity, and + water saturation of a PHAST finite-difference cell: + + CELL_VOLUME--The total volume of the cell in liters. + CELL_PORE_VOLUME--The void volume of the cell in liters. + CELL_SATURATION--The fraction of the void volume filled + with water, unitless. + CELL_POROSITY--The porosity of the cell, equal to + CELL_PORE_VOLUME / CELL_VOLUME, unitless. + + + For example, in a USER_PUNCH program for a PHAST run, + the number of moles of dissolved chloride in a cell is + TOT("Cl")*CELL_PORE_VOLUME for confined flow simulations. + More generally, the number of moles of dissolved chloride + is TOT("Cl")*CELL_SATURATION*CELL_PORE_VOLUME, for confined + or unconfined flow. + + For solids, the number of moles of calcite in the + saturated part of a cell is + EQUI("Calcite")*CELL_SATURATION*CELL_PORE_VOLUME. For + unconfined flow, the solid reactants are distributed + between the saturated and unsaturated part of a water- + table cell. It is a limitation of PHAST that it is not + possible to determine the amounts of solid reactants + in the unsaturated part of a cell. Note that for + steady-state, unconfined flow, the saturation of cells is + constant and the unsaturated part of a water-table cell + is never part of the active domain. + + -------- + svn 3600 + -------- + A new 1/T^2 term (A5 coefficient) was added for all Pitzer-parameter + temperature expressions. + + P = A0 + A1*(1/TK - 1/TR) + A2log(TK/TR) + A3*(TK-TR) + + A4*(TK*TK - TR*TR) + A5*(1/(TK*TK) - 1/(TR*TR)) + + where TK is temperature in Kelvin. The optional A5 parameter + is read following A4. - -------- - svn 3591 - -------- - Added T^2 term to analytical expressions for log k. A T^2 term - can now be used in the analytical expressions for any log K. - The analytical expression is as follows: - - log10(K) = A1 + A2*TK + A3/TK + A4*log10(TK) + A5/TK^2 + A6*TK^2, - - where TK is in Kelvin. The A6 term is the new addition. The optional - A6 parameter is read following A5. - - -------- - svn 3485 - -------- - Added the active fraction model for calculating exchanger - compositions described by Appelo (1994), Water Resour. Res. 30, - 2793-2805. The active fraction model is useful for calculating - the decrease of selectivity when concentrations increase (more - specific sites being filled first). In the active fraction model, - log(K) of an exchange-half reaction depends on the equivalent - fraction on the exchanger: + -------- + svn 3591 + -------- + Added T^2 term to analytical expressions for log k. A T^2 term + can now be used in the analytical expressions for any log K. + The analytical expression is as follows: + + log10(K) = A1 + A2*TK + A3/TK + A4*log10(TK) + A5/TK^2 + A6*TK^2, + + where TK is in Kelvin. The A6 term is the new addition. The optional + A6 parameter is read following A5. + + -------- + svn 3485 + -------- + Added the active fraction model for calculating exchanger + compositions described by Appelo (1994), Water Resour. Res. 30, + 2793-2805. The active fraction model is useful for calculating + the decrease of selectivity when concentrations increase (more + specific sites being filled first). In the active fraction model, + log(K) of an exchange-half reaction depends on the equivalent + fraction on the exchanger: - log(K) = log_k + a_f * (1 - x_i) + log(K) = log_k + a_f * (1 - x_i) - where log_k is the log of the equilibrium constant when all the - sites are occupied by ion i, - a_f is an empirical coefficient, and - x_i is the equivalent fraction of i. + where log_k is the log of the equilibrium constant when all the + sites are occupied by ion i, + a_f is an empirical coefficient, and + x_i is the equivalent fraction of i. - a_f can be defined in EXCHANGE_SPECIES with -gamma after the WATEQ - Debye-Hueckel parameters. - Example: + a_f can be defined in EXCHANGE_SPECIES with -gamma after the WATEQ + Debye-Hueckel parameters. + Example: - EXCHANGE_SPECIES - Na+ + X- = NaX; log_k -0.5 - -gamma 4.0 0.075 0.50 + EXCHANGE_SPECIES + Na+ + X- = NaX; log_k -0.5 + -gamma 4.0 0.075 0.50 - The association constant for NaX becomes: - log(K) = -0.5 + 0.50 * (1 - x_Na) - - -------- - svn 3453 - -------- - Added Specific ion Interaction Theory (SIT) activity coefficient - model as described in Grenthe, Ingmar, Plyasunov, A.V., and - Spahiu, Kastriot, 1997, Estimations of medium effects on - thermodynamic data, in Modelling in Aquatic Chemistry, - Grenthe, Ingmar, and Puigdomenech, Inasi, eds, OECD - Publications, ISBN 92-64-15569-4, 724 p. + The association constant for NaX becomes: + log(K) = -0.5 + 0.50 * (1 - x_Na) + + -------- + svn 3453 + -------- + Added Specific ion Interaction Theory (SIT) activity coefficient + model as described in Grenthe, Ingmar, Plyasunov, A.V., and + Spahiu, Kastriot, 1997, Estimations of medium effects on + thermodynamic data, in Modelling in Aquatic Chemistry, + Grenthe, Ingmar, and Puigdomenech, Inasi, eds, OECD + Publications, ISBN 92-64-15569-4, 724 p. - Implementation is similar to the PITZER implementation, a - database with the SIT keyword invokes the SIT activity - coefficient model. Currently, No database is provided. + Implementation is similar to the PITZER implementation, a + database with the SIT keyword invokes the SIT activity + coefficient model. Currently, No database is provided. - The SIT keyword has two identifiers, - -epsilon and -epsilon1, where -epsilon gives the pairwise - interaction parameters and -epsilon1 gives the linear ionic - strength dependency of epsilon, if available. Both parameters - allow for temperature dependence with the same expression used - in PITZER. The five-term expression for temperature dependence is - as follows: + The SIT keyword has two identifiers, + -epsilon and -epsilon1, where -epsilon gives the pairwise + interaction parameters and -epsilon1 gives the linear ionic + strength dependency of epsilon, if available. Both parameters + allow for temperature dependence with the same expression used + in PITZER. The five-term expression for temperature dependence is + as follows: - P = A0 + A1*(1/TK - 1/TR) + A2log(TK/TR) + A3*(TK-TR) + - A4*(TK*TK - TR*TR), + P = A0 + A1*(1/TK - 1/TR) + A2log(TK/TR) + A3*(TK-TR) + + A4*(TK*TK - TR*TR), - where TK is Kelvin and TR is 298.15. + where TK is Kelvin and TR is 298.15. - Example: - SIT - -epsilon - Na+ Br- 0.05 # 0.01 - Na+ Cl- 0.03 # 0.01 + Example: + SIT + -epsilon + Na+ Br- 0.05 # 0.01 + Na+ Cl- 0.03 # 0.01 - -epsilon1 # not currently used + -epsilon1 # not currently used - -------- - svn 3288 - -------- + -------- + svn 3288 + -------- - Additional arguments for the EDL function for the CD_MUSIC - surface complexation model. The values of charge, sigma, and psi - for the 0, 1, and 2 planes can be obtained from the EDL function. + Additional arguments for the EDL function for the CD_MUSIC + surface complexation model. The values of charge, sigma, and psi + for the 0, 1, and 2 planes can be obtained from the EDL function. - EDL("element", "surface") gives the amount of - element in the diffuse layer for "surface". - not including sorbed species. "surface" should - be the surface name, not the surface-site name - (that is, no underscore). + EDL("element", "surface") gives the amount of + element in the diffuse layer for "surface". + not including sorbed species. "surface" should + be the surface name, not the surface-site name + (that is, no underscore). - Special values for "element" include: - "charge" - surface charge, equivalents. - For CD_MUSIC "charge" refers to plane 0. - "charge1"- surface charge on plane 1, equivalents - (CD_MUSIC only). - "charge2"- surface charge on plane 2, equivalents - (CD_MUSIC only). - "sigma" - surface charge density, C/m**2. - For CD_MUSIC "sigma" refers to plane 0. - "sigma1" - surface charge density on plane 1, - equivalents (CD_MUSIC only). - "sigma2" - surface charge density on plane 2, - equivalents (CD_MUSIC only). - "psi" - potential at the surface, Volts. - For CD_MUSIC "psi" refers to plane 0. - "psi1" - surface charge density on plane 1, - equivalents (CD_MUSIC only). - "psi2" - surface charge density on plane 2, - equivalents (CD_MUSIC only). - "water" - mass of water in the diffuse layer, kg. - -------- - svn 3189 - -------- - Density of solutions is now calculated from the concentrations - of dissolved species. The algorithm has been described by Millero - (1974), Millero (2000), Millero (2001) and has been used - successfully by Millero and Lepple (1973), Millero et al (1976), - Fernendez et al. (1982) and Millero (2000) to calculate the - density of seawater, estuaries, lagoons and lakes. - - The calculation relies on apparent molar volumes phi(i), - for individual aqueous species according to the following formula: - - phi(i) = phi(i,inf) + s(t)I^0.5 + beta(i)I - - where phi(i,inf) is the apparent molar volume of species i at - infinite dilution, s(t) is the Debije-Hückel limiting slope, beta(i) - is an empirical constant, and I is the ionic strength. - - s(t) is calculated as a function of temperature. Parameterizations of - phi(i,inf) and beta(i) use the following formulas: - - phi(i,inf) = a + bt +ct^2 - beta(i) = d + et + ft^2 - - where a, b, c, d, e, and f are empirical constants and t in Celsius. - Data input of the constants are in the keyword data block SOLUTION_SPECIES - using the new identifier -millero. - - Example: - - SOLUTION_SPECIES - Na+ = Na+ - log k 0.0 - -gamma 4.0 0.075 - -dw 1.33e-9 - -millero -3.46 0.1092 -0.000768 2.698 -0.106 0.001651 - - Apparent molar volume parameters have been included in the database - phreeqd.dat. Calculations made with this database will include - the calculated density in the "Description of solution". - - A new basic function, RHO, can be used to obtain the density in - USER_PRINT, USER_PUNCH, and RATES data blocks. - - Example: - - USER_PUNCH - -heading density - 10 PUNCH RHO - - -------- - svn 3183 - -------- - Added option for an equilibrium-phase to precipitate only, - parallel to dissolve_only option. - "pre" is added at the end of a line defining an equilibrium- - phase. No data fields may be omitted. Should not - be used when adding an alternative reaction. - Example: - EQUILIBRIUM_PHASES - Dolomite 0 0.1 dissolve_only - Quartz 0 1.5 precipitate_only - - -------- - svn 3160 - -------- + Special values for "element" include: + "charge" - surface charge, equivalents. + For CD_MUSIC "charge" refers to plane 0. + "charge1"- surface charge on plane 1, equivalents + (CD_MUSIC only). + "charge2"- surface charge on plane 2, equivalents + (CD_MUSIC only). + "sigma" - surface charge density, C/m**2. + For CD_MUSIC "sigma" refers to plane 0. + "sigma1" - surface charge density on plane 1, + equivalents (CD_MUSIC only). + "sigma2" - surface charge density on plane 2, + equivalents (CD_MUSIC only). + "psi" - potential at the surface, Volts. + For CD_MUSIC "psi" refers to plane 0. + "psi1" - surface charge density on plane 1, + equivalents (CD_MUSIC only). + "psi2" - surface charge density on plane 2, + equivalents (CD_MUSIC only). + "water" - mass of water in the diffuse layer, kg. + -------- + svn 3189 + -------- + Density of solutions is now calculated from the concentrations + of dissolved species. The algorithm has been described by Millero + (1974), Millero (2000), Millero (2001) and has been used + successfully by Millero and Lepple (1973), Millero et al (1976), + Fernendez et al. (1982) and Millero (2000) to calculate the + density of seawater, estuaries, lagoons and lakes. + + The calculation relies on apparent molar volumes phi(i), + for individual aqueous species according to the following formula: + + phi(i) = phi(i,inf) + s(t)I^0.5 + beta(i)I + + where phi(i,inf) is the apparent molar volume of species i at + infinite dilution, s(t) is the Debije-Hückel limiting slope, beta(i) + is an empirical constant, and I is the ionic strength. + + s(t) is calculated as a function of temperature. Parameterizations of + phi(i,inf) and beta(i) use the following formulas: + + phi(i,inf) = a + bt +ct^2 + beta(i) = d + et + ft^2 + + where a, b, c, d, e, and f are empirical constants and t in Celsius. + Data input of the constants are in the keyword data block SOLUTION_SPECIES + using the new identifier -millero. + + Example: + + SOLUTION_SPECIES + Na+ = Na+ + log k 0.0 + -gamma 4.0 0.075 + -dw 1.33e-9 + -millero -3.46 0.1092 -0.000768 2.698 -0.106 0.001651 + + Apparent molar volume parameters have been included in the database + phreeqd.dat. Calculations made with this database will include + the calculated density in the "Description of solution". + + A new basic function, RHO, can be used to obtain the density in + USER_PRINT, USER_PUNCH, and RATES data blocks. + + Example: + + USER_PUNCH + -heading density + 10 PUNCH RHO + + -------- + svn 3183 + -------- + Added option for an equilibrium-phase to precipitate only, + parallel to dissolve_only option. + "pre" is added at the end of a line defining an equilibrium- + phase. No data fields may be omitted. Should not + be used when adding an alternative reaction. + Example: + EQUILIBRIUM_PHASES + Dolomite 0 0.1 dissolve_only + Quartz 0 1.5 precipitate_only + + -------- + svn 3160 + -------- - Surface charge must be higher than -3000 equivalents, - when the diffuse double layer composition is - calculated with option -donnan. + Surface charge must be higher than -3000 equivalents, + when the diffuse double layer composition is + calculated with option -donnan. - -------- - svn 3149 - -------- - - Diffusion through DDL water is multiplied with c_DDL,i / c_i - with option -only_counter false. c_DDL,i is the concentration in - DDL water, c_i is the concentration in free porewater. (Previous - versions used a multiplier of 1). + -------- + svn 3149 + -------- + + Diffusion through DDL water is multiplied with c_DDL,i / c_i + with option -only_counter false. c_DDL,i is the concentration in + DDL water, c_i is the concentration in free porewater. (Previous + versions used a multiplier of 1). - Added -erm_ddl as parameter for aqueous species, to be defined - with keyword SOLUTION_SPECIES. erm_ddl (> 0) is an - enrichment factor in DDL water calculated with option -donnan: - c_DDL,i = c_i * Boltzmann_factor * erm_ddl - Example: - SOLUTION_SPECIES; Cs+ = Cs+; log_k 0; -erm_ddl 2.1 - Default: erm_ddl = 1.0. + Added -erm_ddl as parameter for aqueous species, to be defined + with keyword SOLUTION_SPECIES. erm_ddl (> 0) is an + enrichment factor in DDL water calculated with option -donnan: + c_DDL,i = c_i * Boltzmann_factor * erm_ddl + Example: + SOLUTION_SPECIES; Cs+ = Cs+; log_k 0; -erm_ddl 2.1 + Default: erm_ddl = 1.0. - Added optional multicomponent diffusion of cations in interlayer - space of montmorillonite to keyword TRANSPORT. - In the example, - interlayer diffusion is true (default = false), - interlayer porosity is 0.09 (default = 0.1), - the porosity where interlayer diffusion stops is 0.01 - (default is 0), - the tortuosity factor is 150 (default = 100). + Added optional multicomponent diffusion of cations in interlayer + space of montmorillonite to keyword TRANSPORT. + In the example, + interlayer diffusion is true (default = false), + interlayer porosity is 0.09 (default = 0.1), + the porosity where interlayer diffusion stops is 0.01 + (default is 0), + the tortuosity factor is 150 (default = 100). - TRANSPORT - -interlayer_D true 0.09 0.01 150 + TRANSPORT + -interlayer_D true 0.09 0.01 150 - With interlayer_D true, also -multi_D true (and other - parameters) must be set, for example: - -multi_d true 1e-9 0.3 0.05 1.0 - Interlayer diffusion is calculated for the cations associated with X-, - defined with keyword EXCHANGE. - Mass_transfer = -A * (Dw' / t_f) * c_CEC * grad(beta) - A is surface area, A_porewater * (interlayer porosity / free - porewater porosity), - Dw' is the temperature corrected diffusion coefficient of the - aqueous species (defined in SOLUTION_SPECIES), - corrected to zero charge transfer, - t_f is the interlayer tortuosity factor (-), - c_CEC is concentration of total X-, mol(X-) / (L interlayer - water). L interlayer water = (L porewater + L DDL- - water) * (interlayer porosity / free porewater porosity), - grad(beta) is the gradient of the equivalent fraction. + With interlayer_D true, also -multi_D true (and other + parameters) must be set, for example: + -multi_d true 1e-9 0.3 0.05 1.0 + Interlayer diffusion is calculated for the cations associated with X-, + defined with keyword EXCHANGE. + Mass_transfer = -A * (Dw' / t_f) * c_CEC * grad(beta) + A is surface area, A_porewater * (interlayer porosity / free + porewater porosity), + Dw' is the temperature corrected diffusion coefficient of the + aqueous species (defined in SOLUTION_SPECIES), + corrected to zero charge transfer, + t_f is the interlayer tortuosity factor (-), + c_CEC is concentration of total X-, mol(X-) / (L interlayer + water). L interlayer water = (L porewater + L DDL- + water) * (interlayer porosity / free porewater porosity), + grad(beta) is the gradient of the equivalent fraction. - -------- - svn 2969 - -------- - Added basic functions that return the activity coefficient of - an aqueous species (gamma) and the log base 10 of the activity - coefficient of an aqueous species (lg). + -------- + svn 2969 + -------- + Added basic functions that return the activity coefficient of + an aqueous species (gamma) and the log base 10 of the activity + coefficient of an aqueous species (lg). - USER_PUNCH - -start - 10 punch gamma("H+") # activity coefficient - 20 punch lg("H+") # log base 10 activity coefficient - -end + USER_PUNCH + -start + 10 punch gamma("H+") # activity coefficient + 20 punch lg("H+") # log base 10 activity coefficient + -end - The functions return zero if the species is not defined for - the aqueous model or if the species is an exchange or surface - species. + The functions return zero if the species is not defined for + the aqueous model or if the species is an exchange or surface + species. ------------------------------------------------------------ Version 2.15.0: February 5, 2008 ------------------------------------------------------------ - -------- - svn 2680 - -------- + -------- + svn 2680 + -------- - Identifiers for parameters controlling the integration by - CVODE have been added in the KINETICS data block. - - -bad_step_max bad_steps - -cvode_steps steps - -cvode_order order + Identifiers for parameters controlling the integration by + CVODE have been added in the KINETICS data block. + + -bad_step_max bad_steps + -cvode_steps steps + -cvode_order order - -bad_step_max bad_steps--This option was used only in the - Runge-Kutta method. Now, the value of this option is used for - CVODE as well. The value entered is the number of times that - PHREEQC will invoke CVODE to try to integrate a set of - rates over a time interval. Default is 500. + -bad_step_max bad_steps--This option was used only in the + Runge-Kutta method. Now, the value of this option is used for + CVODE as well. The value entered is the number of times that + PHREEQC will invoke CVODE to try to integrate a set of + rates over a time interval. Default is 500. - -cvode_steps steps--The value given is the maximum number of - steps that will taken during one invocation of CVODE. - Default is 100. + -cvode_steps steps--The value given is the maximum number of + steps that will taken during one invocation of CVODE. + Default is 100. - -cvode_order order--CVODE uses a specified number of terms in - an extrapolation of rates using the BFD method. Legal values - are 1 through 5. A smaller value (2) may be needed if the rate - equations are poorly behaved. The default is 5. + -cvode_order order--CVODE uses a specified number of terms in + an extrapolation of rates using the BFD method. Legal values + are 1 through 5. A smaller value (2) may be needed if the rate + equations are poorly behaved. The default is 5. - -------- - svn 2457 - -------- - Added options to inverse modeling to translate current - solution definitions in PHREEQC to a Netpath .lon file and - (or) to .pat and model files. + -------- + svn 2457 + -------- + Added options to inverse modeling to translate current + solution definitions in PHREEQC to a Netpath .lon file and + (or) to .pat and model files. - INVERSE_MODELING - -lon_netpath prefix + INVERSE_MODELING + -lon_netpath prefix - At the beginning of the inverse modeling calculation, each - solution that has been defined (or saved) to PHREEQC, is - written to the file prefix.lon in a format readable by - DBXL (NetpathXL distribution). + At the beginning of the inverse modeling calculation, each + solution that has been defined (or saved) to PHREEQC, is + written to the file prefix.lon in a format readable by + DBXL (NetpathXL distribution). - INVERSE_MODELING - -pat_netpath prefix + INVERSE_MODELING + -pat_netpath prefix - A NETPATH model file is written for each inverse model that is - found. The model files are named prefix-n.mod, where n refers - to the sequence number of the model. In addition, a file named - prefix.pat is written that contains the solutions associated - with each model. The solutions are adjusted in accordance with - the deltas calculated for the inverse model. Thus, a solution - could be used for model 1 and model 2, but the concentrations - could be slightly different for the two models. The solutions - are identified by an initial integer corresponding to the - sequence number of the model, followed by the solution description. + A NETPATH model file is written for each inverse model that is + found. The model files are named prefix-n.mod, where n refers + to the sequence number of the model. In addition, a file named + prefix.pat is written that contains the solutions associated + with each model. The solutions are adjusted in accordance with + the deltas calculated for the inverse model. Thus, a solution + could be used for model 1 and model 2, but the concentrations + could be slightly different for the two models. The solutions + are identified by an initial integer corresponding to the + sequence number of the model, followed by the solution description. - -------- - svn 2448 - -------- - Added calculation of specific conductance. Requires the - use of phreeqd.dat, which contains the diffusion coefficients - of aqueous species. If phreeqd.dat is used, the specific - conductance (uS/cm at 25 C) is printed in the - "Description of solution". + -------- + svn 2448 + -------- + Added calculation of specific conductance. Requires the + use of phreeqd.dat, which contains the diffusion coefficients + of aqueous species. If phreeqd.dat is used, the specific + conductance (uS/cm at 25 C) is printed in the + "Description of solution". - The Basic function SC returns the value of the specific - conductance for the solution at 25 C. The following example - would print to the selected output file the equivalent conductance - in (mmho/cm / eq/L) at 20 degrees C for a 1:1 chloride salt - solution: + The Basic function SC returns the value of the specific + conductance for the solution at 25 C. The following example + would print to the selected output file the equivalent conductance + in (mmho/cm / eq/L) at 20 degrees C for a 1:1 chloride salt + solution: - USER_PUNCH - -head conc eq_EC_20 - -start - 10 punch tot("Cl"), SC / tot("Cl") / 1e3 * .89 * 298 / 293 - -end + USER_PUNCH + -head conc eq_EC_20 + -start + 10 punch tot("Cl"), SC / tot("Cl") / 1e3 * .89 * 298 / 293 + -end - where 1e-3 converts from microSiemens/cm to mmho/cm, .89 - accounts for the viscosity at 20 C, and 298/293 - accounts for the temperature of 20 C. + where 1e-3 converts from microSiemens/cm to mmho/cm, .89 + accounts for the viscosity at 20 C, and 298/293 + accounts for the temperature of 20 C. ------------------------------------------------------------ Version 2.14.3: November 17, 2007 ------------------------------------------------------------ - -------- - svn 2312 - -------- - Added new option to PITZER datablock, use_etheta t/f. - If true, the nonsymmetric mixing terms--cation/cation and - anion/anion of different charge--are included; if false - these terms are excluded from all equations. Default is true. + -------- + svn 2312 + -------- + Added new option to PITZER datablock, use_etheta t/f. + If true, the nonsymmetric mixing terms--cation/cation and + anion/anion of different charge--are included; if false + these terms are excluded from all equations. Default is true. - PITZER - -use_etheta true + PITZER + -use_etheta true - -------- - svn 2270 - -------- - Added additional parameters Pitzer activity formulation for - neutral species, MU and ETA. MU applies to nnn, nnn', nn'n'', - nna, nn'a, nnc, nn'c interactions, where n, n', and n'' are - neutral species, a is an anion and c is a cation. ETA applies - to ncc' and naa' interactions. Also modified LAMDA for the - special case of nn interactions (coefficients in osmotic and - ln equations are different than other interaction types). - Source of equations is Clegg and Whitfield, 1991, Activity - coefficients in natural waters, Chapter 6, in Pitzer, K.S. - (Ed.) Activity Coefficients in Electrolyte Solutions, 2nd - Ed. CRC Press, Boca Raton. Removal of the 6 coefficient in - last two terms of eq 35 and 36 (p. 2404) per Cleg and - Whitfield, 1995, Geochimica et Cosmochemica Acta, v. 59, - no. 12, pp 2403-2421. Order of species in definitions should - not matter. + -------- + svn 2270 + -------- + Added additional parameters Pitzer activity formulation for + neutral species, MU and ETA. MU applies to nnn, nnn', nn'n'', + nna, nn'a, nnc, nn'c interactions, where n, n', and n'' are + neutral species, a is an anion and c is a cation. ETA applies + to ncc' and naa' interactions. Also modified LAMDA for the + special case of nn interactions (coefficients in osmotic and + ln equations are different than other interaction types). + Source of equations is Clegg and Whitfield, 1991, Activity + coefficients in natural waters, Chapter 6, in Pitzer, K.S. + (Ed.) Activity Coefficients in Electrolyte Solutions, 2nd + Ed. CRC Press, Boca Raton. Removal of the 6 coefficient in + last two terms of eq 35 and 36 (p. 2404) per Cleg and + Whitfield, 1995, Geochimica et Cosmochemica Acta, v. 59, + no. 12, pp 2403-2421. Order of species in definitions should + not matter. - PITZER - -MU - CO2 CO2 CO2 ? # nnn - CO2 CO2 NH3 ? # nnn' - CO2 B(OH)3 NH3 ? # nn'n'' - CO2 CO2 Ca+2 ? # nnc - CO2 CO2 Cl- ? # nna - CO2 NH3 Ca+2 ? # nn'c - CO2 NH3 Cl- ? # nn'a - -ETA - CO2 Ca+2 Mg+2 ? # ncc' - CO2 Cl- SO4-2 ? # naa' + PITZER + -MU + CO2 CO2 CO2 ? # nnn + CO2 CO2 NH3 ? # nnn' + CO2 B(OH)3 NH3 ? # nn'n'' + CO2 CO2 Ca+2 ? # nnc + CO2 CO2 Cl- ? # nna + CO2 NH3 Ca+2 ? # nn'c + CO2 NH3 Cl- ? # nn'a + -ETA + CO2 Ca+2 Mg+2 ? # ncc' + CO2 Cl- SO4-2 ? # naa' - As with all other Pitzer parameters, a five-term expression - for temperature dependence is available: - - P = A0 + A1*(1/TK - 1/TR) + A2log(TK/TR) + A3*(TK-TR) + - A4*(TK*TK - TR*TR), - - where TK is Kelvin and TR is 298.15. A0 through A4 are - defined in order. Any undefined values are assumed to - be zero. + As with all other Pitzer parameters, a five-term expression + for temperature dependence is available: + + P = A0 + A1*(1/TK - 1/TR) + A2log(TK/TR) + A3*(TK-TR) + + A4*(TK*TK - TR*TR), + + where TK is Kelvin and TR is 298.15. A0 through A4 are + defined in order. Any undefined values are assumed to + be zero. - -MU - CO2 CO2 CO2 ? ? ? ? ? # nnn + -MU + CO2 CO2 CO2 ? ? ? ? ? # nnn ------------------------------------------------------------ Version 2.14.2: September 17, 2007 ------------------------------------------------------------ - Fixed logic of memory checking for PhreeqcI. This serious - bug makes versions 2.14.0 and 2.14.1 unusable. + Fixed logic of memory checking for PhreeqcI. This serious + bug makes versions 2.14.0 and 2.14.1 unusable. ------------------------------------------------------------ Version 2.14.1: September 5, 2007 ------------------------------------------------------------ - No new features. + No new features. ------------------------------------------------------------ Version 2.14.0: August 30, 2007 ------------------------------------------------------------ - No new features. + No new features. ------------------------------------------------------------ Version 2.13.3: February 15, 2007 ------------------------------------------------------------ - No new features. + No new features. ------------------------------------------------------------ Version 2.13.2: February 1, 2007 ------------------------------------------------------------ - No new features. + No new features. ------------------------------------------------------------ Version 2.13.1: January 16, 2007 ------------------------------------------------------------ - No new features. + No new features. ------------------------------------------------------------ Version 2.13.0: November 3, 2006 ------------------------------------------------------------ - -------- - svn 1368 - -------- + -------- + svn 1368 + -------- (1) Added multicomponent diffusion (MCD) to transport - capabilities. MCD allows different tracer diffusion - coefficients for species, but calculates charge balanced - transport. In the example, MCD is specified to be true, - default tracer diffusion coefficient for species (Dw) is 1e-9, - porosity is set to 0.3, porosity limit is set to 0.05, and an - exponent of porosity (n) is set to 1.0. Effective diffusion - coefficient is defined by the equation: De = Dw * porosity^n. - Diffusion stops when the porosity falls below the porosity - limit. + capabilities. MCD allows different tracer diffusion + coefficients for species, but calculates charge balanced + transport. In the example, MCD is specified to be true, + default tracer diffusion coefficient for species (Dw) is 1e-9, + porosity is set to 0.3, porosity limit is set to 0.05, and an + exponent of porosity (n) is set to 1.0. Effective diffusion + coefficient is defined by the equation: De = Dw * porosity^n. + Diffusion stops when the porosity falls below the porosity + limit. - TRANSPORT - -multi_d true 1e-9 0.3 0.05 1.0 + TRANSPORT + -multi_d true 1e-9 0.3 0.05 1.0 - Added tracer diffusion coefficient to SOLUTION_SPECIES - definitions, -dw identifier. + Added tracer diffusion coefficient to SOLUTION_SPECIES + definitions, -dw identifier. - SOLUTION_SPECIES - H+ = H+ - log_k 0.0 - -gamma 9.0 0.0 - -dw 9.31e-9 + SOLUTION_SPECIES + H+ = H+ + log_k 0.0 + -gamma 9.0 0.0 + -dw 9.31e-9 (2) Added phreeqd.dat database with diffusion coefficients (-dw) - defined for aqueous species in database directory. + defined for aqueous species in database directory. (3) Added BASIC functions to obtain and modify the porosity - in a cell. The functions can be used in BASIC programs - defined with keyword RATES, USER_PRINT, USER_PUNCH and - USER_GRAPH. + in a cell. The functions can be used in BASIC programs + defined with keyword RATES, USER_PRINT, USER_PUNCH and + USER_GRAPH. - get_por(cell_no) # returns the porosity in cell - # 'cell_no' + get_por(cell_no) # returns the porosity in cell + # 'cell_no' - change_por(0.21, cell_no) # porosity of cell 'cell_no' - # becomes 0.21 + change_por(0.21, cell_no) # porosity of cell 'cell_no' + # becomes 0.21 (4) Mobile surface and Donnan option in SURFACE. Mobile surfaces - are meant for modeling transport of colloids. Only surfaces with - a diffuse double layer can be transported (the ensemble must be - electrically neutral). Surfaces related to equilibrium-phases - and kinetics cannot be transported. + are meant for modeling transport of colloids. Only surfaces with + a diffuse double layer can be transported (the ensemble must be + electrically neutral). Surfaces related to equilibrium-phases + and kinetics cannot be transported. - Example 1: Use donnan assumption to calculate the explicit - composition of the diffuse layer of surfaces. Thickness of the - diffuse layer is defined to be 1e-7 meters. (Default thickness - is 1e-8 meters.) Hfo (both sites Hfo_w and Hfo_s) is a surface - that is transported with advection and dispersion. The diffusion - coefficient of 1e-13 m^2/s is used with option -multi_d true in - TRANSPORT. Sfo is an immobile surface (Dw = 0). + Example 1: Use donnan assumption to calculate the explicit + composition of the diffuse layer of surfaces. Thickness of the + diffuse layer is defined to be 1e-7 meters. (Default thickness + is 1e-8 meters.) Hfo (both sites Hfo_w and Hfo_s) is a surface + that is transported with advection and dispersion. The diffusion + coefficient of 1e-13 m^2/s is used with option -multi_d true in + TRANSPORT. Sfo is an immobile surface (Dw = 0). - SURFACE - -donnan 1e-7 - Hfo_w 97.5e-5 600 88e-3 Dw 1e-13 - Hfo_s 2.5e-5 - Sfo_w 97.5e-5 600 88e-3 Dw 0 - Sfo_s 2.5e-5 + SURFACE + -donnan 1e-7 + Hfo_w 97.5e-5 600 88e-3 Dw 1e-13 + Hfo_s 2.5e-5 + Sfo_w 97.5e-5 600 88e-3 Dw 0 + Sfo_s 2.5e-5 - Example 2: Define Donnan calculation information. Thickness - of the diffuse layer is 1e-8 meters, and relative viscosity is - 0.5. Relative viscosity only applies to multicomponent diffusion - of solutes in the diffuse layer. (Default viscosity is 1.0.) + Example 2: Define Donnan calculation information. Thickness + of the diffuse layer is 1e-8 meters, and relative viscosity is + 0.5. Relative viscosity only applies to multicomponent diffusion + of solutes in the diffuse layer. (Default viscosity is 1.0.) - SURFACE - -donnan 1e-8 viscosity 0.5 + SURFACE + -donnan 1e-8 viscosity 0.5 - Example 3: Define Donnan calculation information. Thickness - of the diffuse layer is 1.5 Debye lengths, maximum fraction of - water that can be in the diffuse layer is 0.9. (Default - thickness in Debye lengths is 1, default limit is 0.8.) + Example 3: Define Donnan calculation information. Thickness + of the diffuse layer is 1.5 Debye lengths, maximum fraction of + water that can be in the diffuse layer is 0.9. (Default + thickness in Debye lengths is 1, default limit is 0.8.) - SURFACE - -donnan debye_lengths 1.5 limit_ddl 0.9 + SURFACE + -donnan debye_lengths 1.5 limit_ddl 0.9 - When option '-only_counter_ions' is used in conjunction with - with '-donnan', all the co-ions (with the same sign of charge as - the surface) will be excluded from the DDL, and will be given a - concentration of (near) zero in the DDL. + When option '-only_counter_ions' is used in conjunction with + with '-donnan', all the co-ions (with the same sign of charge as + the surface) will be excluded from the DDL, and will be given a + concentration of (near) zero in the DDL. (5) Added special BASIC function to change the diffusion - coefficient of (part of) a SURFACE, and hence to change the - status from mobile to immobile or immobile to mobile. + coefficient of (part of) a SURFACE, and hence to change the + status from mobile to immobile or immobile to mobile. - Example 1: take a fraction 0.2 of 'Hfo', rename it to - 'Sorbedhfo', with a diffusion coefficient of 0, in cell 'cell_no' + Example 1: take a fraction 0.2 of 'Hfo', rename it to + 'Sorbedhfo', with a diffusion coefficient of 0, in cell 'cell_no' - USER_PRINT - 10 print 'Changing surface in cell ', cell_no - 20 change_surf("Hfo", 0.2, "Sorbedhfo", 0, cell_no) + USER_PRINT + 10 print 'Changing surface in cell ', cell_no + 20 change_surf("Hfo", 0.2, "Sorbedhfo", 0, cell_no) - Example 2: change the diffusion coefficient of 'Hfo' to 1e-12 - m2/s in cell 'cell_no' + Example 2: change the diffusion coefficient of 'Hfo' to 1e-12 + m2/s in cell 'cell_no' - 10 change_surf("Hfo", 1, "Hfo", 1e-12, cell_no) + 10 change_surf("Hfo", 1, "Hfo", 1e-12, cell_no) - This function can be used in BASIC programs defined with keywords - RATES, USER_PRINT, USER_PUNCH and USER_GRAPH. For correct - operation of 'change_surf', the surface components must have - been defined with the same surface species (the association - constants may differ) and the same diffuse layer thickness or - Debye length. The surfaces will be adapted at the end of a - calculation step. The result of change_surf does not show up in - print or punch results of that step, but the reformatting is - effective in the next timestep calculations. + This function can be used in BASIC programs defined with keywords + RATES, USER_PRINT, USER_PUNCH and USER_GRAPH. For correct + operation of 'change_surf', the surface components must have + been defined with the same surface species (the association + constants may differ) and the same diffuse layer thickness or + Debye length. The surfaces will be adapted at the end of a + calculation step. The result of change_surf does not show up in + print or punch results of that step, but the reformatting is + effective in the next timestep calculations. - -------- - svn 1337 - -------- - Added -add_logk to NAMED_EXPRESSIONS keyword. + -------- + svn 1337 + -------- + Added -add_logk to NAMED_EXPRESSIONS keyword. - NAMED_EXPRESSIONS - Log_alpha_14C_CO3-2/CO2(aq) - -add_logk Log_alpha_14C_CO3-2/CO2(g) 1 - -add_logk Log_alpha_14C_CO2(aq)/CO2(g) -1 + NAMED_EXPRESSIONS + Log_alpha_14C_CO3-2/CO2(aq) + -add_logk Log_alpha_14C_CO3-2/CO2(g) 1 + -add_logk Log_alpha_14C_CO2(aq)/CO2(g) -1 - -------- - svn 1281 - -------- - Added new option to PITZER data block to allow definition of - alpha1 and alpha2 for specific electrolytes. Entries are - following -ALPHAS are Ion1, Ion2, alpha1, alpha2. Both - alpha1 and alpha2 should be defined. Default is 0.0 for - undefined values following Ion1 and Ion2. + -------- + svn 1281 + -------- + Added new option to PITZER data block to allow definition of + alpha1 and alpha2 for specific electrolytes. Entries are + following -ALPHAS are Ion1, Ion2, alpha1, alpha2. Both + alpha1 and alpha2 should be defined. Default is 0.0 for + undefined values following Ion1 and Ion2. - Example: + Example: - PITZER - -ALPHAS - # - # Defaults for ion valences in salts - # - # 1-N (only B1): alpha1 = 2 - # 2-2: alpha1 = 1.4 alpha2 = 12.0 - # 3-2, 4-2: alpha1 = 2 alpha2 = 50 - # - #Ion1 Ion2 Alpha1 Alpha2 - Fe+2 Cl- 2 1 - Fe+2 SO4-2 1.559 5.268 + PITZER + -ALPHAS + # + # Defaults for ion valences in salts + # + # 1-N (only B1): alpha1 = 2 + # 2-2: alpha1 = 1.4 alpha2 = 12.0 + # 3-2, 4-2: alpha1 = 2 alpha2 = 50 + # + #Ion1 Ion2 Alpha1 Alpha2 + Fe+2 Cl- 2 1 + Fe+2 SO4-2 1.559 5.268 - -------- - svn 1279 - -------- - Added new Basic function OSMOTIC that returns the - osmotic coefficient if the Pitzer model (PITZER keyword data - block) is used or 0.0 if the ion-association model is used. + -------- + svn 1279 + -------- + Added new Basic function OSMOTIC that returns the + osmotic coefficient if the Pitzer model (PITZER keyword data + block) is used or 0.0 if the ion-association model is used. - Example: + Example: - USER_PRINT - 10 PRINT "Osmotic coefficient: ", OSMOTIC + USER_PRINT + 10 PRINT "Osmotic coefficient: ", OSMOTIC - -------- - svn 1245 - -------- - Enabled redox in Pitzer model with option in - PITZER keyword. Typically, the option will be included - in the pitzer database file. + -------- + svn 1245 + -------- + Enabled redox in Pitzer model with option in + PITZER keyword. Typically, the option will be included + in the pitzer database file. - Example: + Example: - PITZER - -redox TRUE + PITZER + -redox TRUE - The default database for the Pitzer model does not contain - any redox definitions and the default value for the option - is FALSE. At a minimum, species O2 and H2 must be defined - in the database or input file to allow redox calculations. - - -------- - svn 1207 - -------- - Added option to force an equilibrium phase to be - included in the equality constraints. Normally, the SIs of - equilibrium phases are optimized to be negative and the - sum of SIs is minimized. If -force_equality is used, then - the phase must reach its target SI or the calculation fails - with an error. + The default database for the Pitzer model does not contain + any redox definitions and the default value for the option + is FALSE. At a minimum, species O2 and H2 must be defined + in the database or input file to allow redox calculations. + + -------- + svn 1207 + -------- + Added option to force an equilibrium phase to be + included in the equality constraints. Normally, the SIs of + equilibrium phases are optimized to be negative and the + sum of SIs is minimized. If -force_equality is used, then + the phase must reach its target SI or the calculation fails + with an error. - Example: + Example: - EQUILIBRIUM_PHASES - Fix_pH -7 NaOH - -force_equality - Calcite 0 - Dolomite 0 - CO2 -3.5 + EQUILIBRIUM_PHASES + Fix_pH -7 NaOH + -force_equality + Calcite 0 + Dolomite 0 + CO2 -3.5 - One example of using the new option would be to ensure that - a target pH is attained, as in the example above. + One example of using the new option would be to ensure that + a target pH is attained, as in the example above. - -------- - svn 1179 - -------- - New option (-sites_units or -sites) allows alternative - units (sites/nm^2) for definition of number of sites for a - surface. This approach requires better consistency among the - parameters as both the number of sites and the surface area - are based on the mass. It makes more sense than the default, - which requires the number of sites (first numeric item in a - line) to be defined in units of moles, independently of the - number of grams of sorbent. Units descriptor is either DENSITY, - for defining number sites/nm^2, or ABSOLUTE, for defining - number of sites in moles. Optionally, sites, sites_units, or - -s[ites_units]. ABSOLUTE is the default for backward - compatibility with input files. + -------- + svn 1179 + -------- + New option (-sites_units or -sites) allows alternative + units (sites/nm^2) for definition of number of sites for a + surface. This approach requires better consistency among the + parameters as both the number of sites and the surface area + are based on the mass. It makes more sense than the default, + which requires the number of sites (first numeric item in a + line) to be defined in units of moles, independently of the + number of grams of sorbent. Units descriptor is either DENSITY, + for defining number sites/nm^2, or ABSOLUTE, for defining + number of sites in moles. Optionally, sites, sites_units, or + -s[ites_units]. ABSOLUTE is the default for backward + compatibility with input files. - Example: + Example: - SURFACE 1 - -sites_units DENSITY - SurfOH 2.6 600. 1.0 - SurfaOH 2.6 30. 2.0 + SURFACE 1 + -sites_units DENSITY + SurfOH 2.6 600. 1.0 + SurfaOH 2.6 30. 2.0 - Explanation: + Explanation: - In this example, Surf has a site density of 2.6 sites per - nanometer squared, a specific area of 600 meters squared per - gram, and a mass of 1 gram. Surfa has a site density of 2.6 - sites per nanometer squared, a specific area of 30 meters - squared per gram, and mass of 2 grams. + In this example, Surf has a site density of 2.6 sites per + nanometer squared, a specific area of 600 meters squared per + gram, and a mass of 1 gram. Surfa has a site density of 2.6 + sites per nanometer squared, a specific area of 30 meters + squared per gram, and mass of 2 grams. - -------- - svn 1096 - -------- + -------- + svn 1096 + -------- - Allows solids and gases in the equations for PHASES. This - capability simplifies the definitions for gas and solid - isotopic components. Solids must be identified with "(s)" and - gases with "(g)". The first entity on the left- hand-side of - the equation must be the stoichiometric formula of the solid - or gas component being defined, optionally with (g) or (s). In - turn gases and solids included in the equation must be defined - with reactions that ultimately allow the defined species - (C[18O]2(g) in this case) in terms of aqueous species. + Allows solids and gases in the equations for PHASES. This + capability simplifies the definitions for gas and solid + isotopic components. Solids must be identified with "(s)" and + gases with "(g)". The first entity on the left- hand-side of + the equation must be the stoichiometric formula of the solid + or gas component being defined, optionally with (g) or (s). In + turn gases and solids included in the equation must be defined + with reactions that ultimately allow the defined species + (C[18O]2(g) in this case) in terms of aqueous species. - Example: + Example: - PHASES - C[18O]2(g) - C[18O]2(g) + CO2(g) = 2CO[18O](g) - log_k 0.602059991327962396 # log10(4) + PHASES + C[18O]2(g) + C[18O]2(g) + CO2(g) = 2CO[18O](g) + log_k 0.602059991327962396 # log10(4) - -------- - svn 1092 - -------- - CD_MUSIC sorption model has been implemented. - Still missing logic for surfaces related to equilibrium- - phases and kinetics. Has explicit calculation of diffuse - layer composition with Donnan assumption. Old diffuse-layer - calculation will not be implemented. - - Example: + -------- + svn 1092 + -------- + CD_MUSIC sorption model has been implemented. + Still missing logic for surfaces related to equilibrium- + phases and kinetics. Has explicit calculation of diffuse + layer composition with Donnan assumption. Old diffuse-layer + calculation will not be implemented. + + Example: - SURFACE - Goe_uniOH .000552 96.387 1 - -capacitance 1.1 5 - Goe_triO .000432 - -cd_music - -donnan + SURFACE + Goe_uniOH .000552 96.387 1 + -capacitance 1.1 5 + Goe_triO .000432 + -cd_music + -donnan - Explanation: + Explanation: - 1.1 5 are capacitances for the cd-music model for 0-1 and 1-2 - planes, respectively. - -cd_music specifies that the surface is a cd-music surface. - -donnan optionally calculates the diffuse layer composition - with the Donnan model. + 1.1 5 are capacitances for the cd-music model for 0-1 and 1-2 + planes, respectively. + -cd_music specifies that the surface is a cd-music surface. + -donnan optionally calculates the diffuse layer composition + with the Donnan model. - Example: + Example: - SURFACE_SPECIES - Goe_uniOH-0.5 + H+ + AsO4-3 = Goe_uniOAsO3-2.5 + H2O - log_k 20.1 # eq 7 K1, Kin1 - -cd_music -1 -6 0 0.25 5 + SURFACE_SPECIES + Goe_uniOH-0.5 + H+ + AsO4-3 = Goe_uniOAsO3-2.5 + H2O + log_k 20.1 # eq 7 K1, Kin1 + -cd_music -1 -6 0 0.25 5 - Explanation: + Explanation: - -cd_music--this option is used to specify the change in charge - by the reaction for three planes, 0 (specific sorption at the - surface), 1 (Stern layer), and 2 (or d, the diffuse layer). - The five numbers in the form above are (1) the change - in charge for plane 0 due to loss or gain of hydrogen and - oxygen at plane 0, (2) the change in charge for plane 1 due to - the hydrogen and oxygen in the ligand that are located at - plane 1, (3) the change in charge in diffuse layer, plane 2, - (4) the fraction of the central ion charge that is - associated with plane 0, and (5) the charge on the central - ion. + -cd_music--this option is used to specify the change in charge + by the reaction for three planes, 0 (specific sorption at the + surface), 1 (Stern layer), and 2 (or d, the diffuse layer). + The five numbers in the form above are (1) the change + in charge for plane 0 due to loss or gain of hydrogen and + oxygen at plane 0, (2) the change in charge for plane 1 due to + the hydrogen and oxygen in the ligand that are located at + plane 1, (3) the change in charge in diffuse layer, plane 2, + (4) the fraction of the central ion charge that is + associated with plane 0, and (5) the charge on the central + ion. - In this example the change in charge at plane 0 is (delta z0) = - -1 (loss of one hydrogen) + 0.25*5 (contribution from As+5) = - 0.25. The charge at plane 0 becomes -0.5 + 0.25 = -0.25. - The change in charge at plane 1 is (delta z1) = -6 (3 oxygens of - the ligand are located at plane 1) + (1-0.25)*5 (contribution - from As+5) = -2.25. The charge at plane 1 becomes 0 + (-2.25) = - -2.25. There is no change in charge associated with plane 2. - The total charge of the species is -0.25 (plane 0) + -2.25 - (plane 1) + 0 (plane 2) = -2.5. + In this example the change in charge at plane 0 is (delta z0) = + -1 (loss of one hydrogen) + 0.25*5 (contribution from As+5) = + 0.25. The charge at plane 0 becomes -0.5 + 0.25 = -0.25. + The change in charge at plane 1 is (delta z1) = -6 (3 oxygens of + the ligand are located at plane 1) + (1-0.25)*5 (contribution + from As+5) = -2.25. The charge at plane 1 becomes 0 + (-2.25) = + -2.25. There is no change in charge associated with plane 2. + The total charge of the species is -0.25 (plane 0) + -2.25 + (plane 1) + 0 (plane 2) = -2.5. - Alternatively to the form above, the changes in charge - on the three planes can be entered directly as the first - three numbers in the option, followed by two zeros. Thus, the - following is equivalent to the -cd_music definition above, and - consistent with more recent papers which would list - delta z0 = 0.25, delta z1 = -2.25 and delta z2 = 0: + Alternatively to the form above, the changes in charge + on the three planes can be entered directly as the first + three numbers in the option, followed by two zeros. Thus, the + following is equivalent to the -cd_music definition above, and + consistent with more recent papers which would list + delta z0 = 0.25, delta z1 = -2.25 and delta z2 = 0: - SURFACE_SPECIES - Goe_uniOH-0.5 + H+ + AsO4-3 = Goe_uniOAsO3-2.5 + H2O - log_k 20.1 # eq 7 K1, Kin1 - -cd_music 0.25 -2.25 0 0 0 + SURFACE_SPECIES + Goe_uniOH-0.5 + H+ + AsO4-3 = Goe_uniOAsO3-2.5 + H2O + log_k 20.1 # eq 7 K1, Kin1 + -cd_music 0.25 -2.25 0 0 0 - -------- - svn 675: - -------- - Added PRINT option to print the species that contribute - to alkalinity. Alkalinity distribution is printed in - the output file following the distribution of species. - Default at program startup is false. + -------- + svn 675: + -------- + Added PRINT option to print the species that contribute + to alkalinity. Alkalinity distribution is printed in + the output file following the distribution of species. + Default at program startup is false. - Example: + Example: - PRINT - -alkalinity true + PRINT + -alkalinity true ------------------------------------------------------------ Version 2.12: ------------------------------------------------------------ * Made aqueous activity coefficients the default activity - coefficients for exchange species when using the - Pitzer formulation. New option in EXCHANGE is - -pitzer_exchange_gammas T/F, default is true; - defining "false" sets exchange activity coefficients - to 1.0. Option has no effect for ion-association - model (non-Pitzer). + coefficients for exchange species when using the + Pitzer formulation. New option in EXCHANGE is + -pitzer_exchange_gammas T/F, default is true; + defining "false" sets exchange activity coefficients + to 1.0. Option has no effect for ion-association + model (non-Pitzer). * Added multiplier format to REACTION steps and KINETICS steps, - which simplifies definition of multiple equal reaction increments. + which simplifies definition of multiple equal reaction increments. - This definition: + This definition: - INCREMENTAL_REACTIONS true - REACTION - H2O 1 - -36 3*-4 2*-.25 -0.19 4*-0.1 3*-0.05 moles + INCREMENTAL_REACTIONS true + REACTION + H2O 1 + -36 3*-4 2*-.25 -0.19 4*-0.1 3*-0.05 moles - is equivalent to this definition: + is equivalent to this definition: - INCREMENTAL_REACTIONS true - REACTION - H2O 1 - -36 -4 -4 -4 -.25 -.25 -0.19 -0.1 -0.1 -0.1 - -0.1 -0.05 -0.05 -0.05 moles + INCREMENTAL_REACTIONS true + REACTION + H2O 1 + -36 -4 -4 -4 -.25 -.25 -0.19 -0.1 -0.1 -0.1 + -0.1 -0.05 -0.05 -0.05 moles - + * Added Pitzer activity formulation. Use pitzer.dat database - to invoke the Pitzer model. Should have same capabilities - as ion-association model except explicit diffuse layer - calculation is not implemented with the Pitzer model. - New keyword is PITZER with following options: + to invoke the Pitzer model. Should have same capabilities + as ion-association model except explicit diffuse layer + calculation is not implemented with the Pitzer model. + New keyword is PITZER with following options: - PITZER - -MacInnes T/F # uses MacInnes assumption or unscaled for - # individual activities and activity coefficients - -B0 - Na+ Cl- 0.0765 -777.03 -4.4706 0.008946 -3.3158E-6 - -B1 - Na+ Cl- 0.2664 0 0 6.1608E-5 1.0715E-6 - -B2 - Mg+2 SO4-2 -37.23 0 0 -0.253 - -C0 - Na+ Cl- 0.00127 33.317 0.09421 -4.655E-5 - -THETA - K+ Na+ -0.012 - -LAMDA - Na+ CO2 0.1 - -ZETA - H+ Cl- B(OH)3 -0.0102 - -PSI - Na+ K+ Cl- -0.0018 + PITZER + -MacInnes T/F # uses MacInnes assumption or unscaled for + # individual activities and activity coefficients + -B0 + Na+ Cl- 0.0765 -777.03 -4.4706 0.008946 -3.3158E-6 + -B1 + Na+ Cl- 0.2664 0 0 6.1608E-5 1.0715E-6 + -B2 + Mg+2 SO4-2 -37.23 0 0 -0.253 + -C0 + Na+ Cl- 0.00127 33.317 0.09421 -4.655E-5 + -THETA + K+ Na+ -0.012 + -LAMDA + Na+ CO2 0.1 + -ZETA + H+ Cl- B(OH)3 -0.0102 + -PSI + Na+ K+ Cl- -0.0018 - A five-term expression for temperature dependence is available - for all Pitzer parameter values: - P = A0 + A1*(1/TK - 1/TR) + A2log(TK/TR) + A3*(TK-TR) + - A4*(TK*TK - TR*TR), - where TK is Kelvin and TR is 298.15. + A five-term expression for temperature dependence is available + for all Pitzer parameter values: + P = A0 + A1*(1/TK - 1/TR) + A2log(TK/TR) + A3*(TK-TR) + + A4*(TK*TK - TR*TR), + where TK is Kelvin and TR is 298.15. * Cl1mp is a new multiple precision version of routine cl1, - a simplex-based optimization routine. Cl1mp was develeped - by using the Gnu Multiple Precision package (gmp). - Calculations are carried out to about 30 significant - digits. Cl1mp may help in some situations where roundoff - errors are a problem, but it is still possible that roundoff - errors will cause cl1mp to fail to find a solution to an - optimization problem. The mp version has the following - options in INVERSE_MODELING: + a simplex-based optimization routine. Cl1mp was develeped + by using the Gnu Multiple Precision package (gmp). + Calculations are carried out to about 30 significant + digits. Cl1mp may help in some situations where roundoff + errors are a problem, but it is still possible that roundoff + errors will cause cl1mp to fail to find a solution to an + optimization problem. The mp version has the following + options in INVERSE_MODELING: - -multiple_precision T/F--causes the mp version - to be used in inverse modeling calculations. - -mp_tolerance 1e-12--tolerance for mp version of - cl1. As in cl1, numbers less than the - tolerance are considered to be zero. - 1e-12 is the default. - -censor_mp 1e-20--as calculations occur in the - linear equation array, elements less - than this value are set to zero. Default - is 1e-20. A value of 0.0 causes no - censoring to occur. + -multiple_precision T/F--causes the mp version + to be used in inverse modeling calculations. + -mp_tolerance 1e-12--tolerance for mp version of + cl1. As in cl1, numbers less than the + tolerance are considered to be zero. + 1e-12 is the default. + -censor_mp 1e-20--as calculations occur in the + linear equation array, elements less + than this value are set to zero. Default + is 1e-20. A value of 0.0 causes no + censoring to occur. ------------------------------------------------------------ Version 2.11: ------------------------------------------------------------ * A new database, minteq.v4.dat, has been translated from - version 4.02 of MINTEQA2 and is included in all - distributions. The database minteq.dat from earlier - version of MINTEQA2 has been slightly revised and is - also included. + version 4.02 of MINTEQA2 and is included in all + distributions. The database minteq.dat from earlier + version of MINTEQA2 has been slightly revised and is + also included. ------------------------------------------------------------ Version 2.10: ------------------------------------------------------------ - No new features. + No new features. ------------------------------------------------------------ Version 2.9: ------------------------------------------------------------ * Added new keyword COPY that allows a data entity - to be copied from one index to a new index - or to a range of indices. Format is + to be copied from one index to a new index + or to a range of indices. Format is - COPY keyword index index_start[-index_end] + COPY keyword index index_start[-index_end] - where keyword may be SOLUTION - EQUILIBRIUM_PHASES - EXCHANGE - GAS_PHASE - KINETICS - MIX - REACTION - REACTION_TEMPERATURE - SOLID_SOLUTION - SURFACE + where keyword may be SOLUTION + EQUILIBRIUM_PHASES + EXCHANGE + GAS_PHASE + KINETICS + MIX + REACTION + REACTION_TEMPERATURE + SOLID_SOLUTION + SURFACE * Added new Basic functions - b$ = PAD(a$, 20) pads a$ to a total of 20 characters - with spaces and stores result in b$. PAD returns - a copy of a$ if a$ is more than 20 characters. - i = INSTR(a$, b$) sets i to the character position of - string b$ in a$, 0 in not found. - b$ = LTRIM(a$) trims white space from beginning of - string a$ and stores result in b$. - b$ = RTRIM(a$) trims white space from end of string - a$ and stores result in b$. - b$ = TRIM(a$) trims white space from beginning and - end of string a$ and stores result in b$. + b$ = PAD(a$, 20) pads a$ to a total of 20 characters + with spaces and stores result in b$. PAD returns + a copy of a$ if a$ is more than 20 characters. + i = INSTR(a$, b$) sets i to the character position of + string b$ in a$, 0 in not found. + b$ = LTRIM(a$) trims white space from beginning of + string a$ and stores result in b$. + b$ = RTRIM(a$) trims white space from end of string + a$ and stores result in b$. + b$ = TRIM(a$) trims white space from beginning and + end of string a$ and stores result in b$. * Added new Basic function SYS that calculates the - total amount of an element in all phases (solution, - equilibrium_phases, surfaces, exchangers, solid solutions, - and gas phase). KINETIC reactions are not included. - The function has two forms: (1) one element name as an - argument (variable names are user specified) + total amount of an element in all phases (solution, + equilibrium_phases, surfaces, exchangers, solid solutions, + and gas phase). KINETIC reactions are not included. + The function has two forms: (1) one element name as an + argument (variable names are user specified) - 10 t = SYS("As") + 10 t = SYS("As") - the function will return the total arsenic in the system. - (2) 5 arguments + the function will return the total arsenic in the system. + (2) 5 arguments - 10 t = SYS("As", count_species, names$, types$, moles) + 10 t = SYS("As", count_species, names$, types$, moles) - will return the total arsenic in the system to t; count_species-- - the number of species that contain arsenic, including - solution, equilibrium_phases, surfaces, exchangers, solid solutions, - and gas phase species; names$--a character array that has the - name of each species; type$--a character array that specifies the - type of phase for the species, aq, equi, surf, ex, s_s, gas, diff. - Diff refers to the amount of the element in the diffuse layer of - a surface when the explicit diffuse layer calculation is used; - moles--an array containing the number of moles of the element in - the species. The sum of moles(i) is equal to tot. + will return the total arsenic in the system to t; count_species-- + the number of species that contain arsenic, including + solution, equilibrium_phases, surfaces, exchangers, solid solutions, + and gas phase species; names$--a character array that has the + name of each species; type$--a character array that specifies the + type of phase for the species, aq, equi, surf, ex, s_s, gas, diff. + Diff refers to the amount of the element in the diffuse layer of + a surface when the explicit diffuse layer calculation is used; + moles--an array containing the number of moles of the element in + the species. The sum of moles(i) is equal to tot. - SYS has several special arguments for the form - SYS("arg", count, names$, types$, values) - arg is one of the options listed below. - count is a single numeric value and is the number of elements - in the following arrays. - name$ is an array of string values. - type$ is an array of string values. - values is an array of numeric values. + SYS has several special arguments for the form + SYS("arg", count, names$, types$, values) + arg is one of the options listed below. + count is a single numeric value and is the number of elements + in the following arrays. + name$ is an array of string values. + type$ is an array of string values. + values is an array of numeric values. - Values of arg: + Values of arg: - elt_name returns total number of moles of element in system. - count is the number of species for the element in - the system, including aqueous, exchange, surface, - equilibrium_phase, solid solution component, and - gas phase "species". - Arrays are filled for each "species"; values are moles. - "elements" returns total number of moles of dissolved elements other - than H and O. - count is number of elements, valence states, - exchangers, and surfaces. - Arrays are filled for each element and valence state, - type is "dis"; exchanger, type is "ex", - and surface, type is "surf". Values are moles. - "phases" returns maximum saturation index of all phases. - count is number of phases in system. - Arrays are filled for each phase; values are - saturation indexes. - "aq" returns sum of moles of all aqueous species. - count is number of aqueous species in system. - Arrays are filled with each aqueous species; - values are moles. - "ex" returns sum of moles of all exchange species. - count is number of exchange species in system. - Arrays are filled with each exchange species; - values are moles. - "surf" returns sum of moles of all surface species. - count is number of surface species in system. - Arrays are filled with each surface species; - values are moles. - "s_s" returns sum of moles of all solid solution components. - count is number of solid solution components in system. - Arrays are filled with each solid solution component; - values are moles. - "gas" returns sum of moles of all gas components. - count is number of gas components in system. - Arrays are filled with each gas component; - values are moles. + elt_name returns total number of moles of element in system. + count is the number of species for the element in + the system, including aqueous, exchange, surface, + equilibrium_phase, solid solution component, and + gas phase "species". + Arrays are filled for each "species"; values are moles. + "elements" returns total number of moles of dissolved elements other + than H and O. + count is number of elements, valence states, + exchangers, and surfaces. + Arrays are filled for each element and valence state, + type is "dis"; exchanger, type is "ex", + and surface, type is "surf". Values are moles. + "phases" returns maximum saturation index of all phases. + count is number of phases in system. + Arrays are filled for each phase; values are + saturation indexes. + "aq" returns sum of moles of all aqueous species. + count is number of aqueous species in system. + Arrays are filled with each aqueous species; + values are moles. + "ex" returns sum of moles of all exchange species. + count is number of exchange species in system. + Arrays are filled with each exchange species; + values are moles. + "surf" returns sum of moles of all surface species. + count is number of surface species in system. + Arrays are filled with each surface species; + values are moles. + "s_s" returns sum of moles of all solid solution components. + count is number of solid solution components in system. + Arrays are filled with each solid solution component; + values are moles. + "gas" returns sum of moles of all gas components. + count is number of gas components in system. + Arrays are filled with each gas component; + values are moles. * Added new Basic function, DESCRIPTION, that has the value - defined for the description field of the SOLUTION keyword line. + defined for the description field of the SOLUTION keyword line. * Added alternative ordinary differential equation solver - called CVODE, a set of C routines from the Lawrence - Livermore National Labs. CVODE is part of the SUNDIALS - package. CVODE is used in place of the Runge Kutta method - when "-cvode true" is used within a KINETICS data block. + called CVODE, a set of C routines from the Lawrence + Livermore National Labs. CVODE is part of the SUNDIALS + package. CVODE is used in place of the Runge Kutta method + when "-cvode true" is used within a KINETICS data block. - KINETICS - -cvode true + KINETICS + -cvode true ------------------------------------------------------------ Version 2.8: ------------------------------------------------------------ - No new features. + No new features. ------------------------------------------------------------ Version 2.7: ------------------------------------------------------------ Changed format of selected output file: - Removed quotations surrounding strings in headings. - Removed quotations surrounding strings in state variable. - All fields are 12 or 20 places depending on - -high_precision. - Headings are not truncated even if longer than - specified precision. - For isotopes, missing value is -9999.9 - Selected output is updated each simulation. - If a species or phase is defined - subsequent to the simulation where SELECTED_OUTPUT - was defined it will appear in the selected output - file in the simulation in which it is defined and - in subsequent simulations. + Removed quotations surrounding strings in headings. + Removed quotations surrounding strings in state variable. + All fields are 12 or 20 places depending on + -high_precision. + Headings are not truncated even if longer than + specified precision. + For isotopes, missing value is -9999.9 + Selected output is updated each simulation. + If a species or phase is defined + subsequent to the simulation where SELECTED_OUTPUT + was defined it will appear in the selected output + file in the simulation in which it is defined and + in subsequent simulations. Added strings for each file, which can be extracted from the - executable file with the "ident" command. + executable file with the "ident" command. Fixed null pointer for isotope_ratios if Basic routine - was undefined. + was undefined. Fixed problem in C++ if structure name is same as member name. - logk member of logk structure was renamed to log_k. + logk member of logk structure was renamed to log_k. Added identifier -add_constant to PHASES, EXCHANGE_SPECIES, - SOLUTION_SPECIES, and SURFACE_SPECIES. + SOLUTION_SPECIES, and SURFACE_SPECIES. - -add_constant -0.301 + -add_constant -0.301 - log K is augmented by the specified constant. + log K is augmented by the specified constant. Theory and implementation of isotopes in PHREEQC is documented in: @@ -5391,153 +5399,153 @@ Investigations Report 02-4172, 129 p. Added KEYWORDS: ISOTOPES - Element - -isotope isotope_name units standard_ratio - -total_is_major T/F (OPTION IS DISABLED!!) + Element + -isotope isotope_name units standard_ratio + -total_is_major T/F (OPTION IS DISABLED!!) CALCULATE_VALUES - Name - -start - Basic statements, must have SAVE - -end + Name + -start + Basic statements, must have SAVE + -end ISOTOPE_RATIOS (for printing) - Name=Calculate_values_name Isotope_name + Name=Calculate_values_name Isotope_name ISOTOPE_ALPHAS (for printing) - Name=Calculate_values_name Named_logk=named_expression_name + Name=Calculate_values_name Named_logk=named_expression_name Basic functions: - calc_value("calc_value_name") evaluates a definition of CALCULATE_VALUES - lk_named("name") log10(K) of definition in NAMED_EXPRESSIONS - lk_phase("name") log10(K) of definition in PHASES - lk_species("name") log10(K) of definition in (SOLUTION, EXCHANGE, SURFACE)_SPECIES - sum_gas("template","element") Sum of element in gases with specified template, moles. - Example: - template="{C,[13C],[14C]}{O,[18O]}2" includes all CO2 gases - sum_species("template","element") Sum of element in aqueous, exchange, and surface species with - specified template (moles) - sum_s_s("s_s_name","element") Sum of element in a specified solid solution (moles) + calc_value("calc_value_name") evaluates a definition of CALCULATE_VALUES + lk_named("name") log10(K) of definition in NAMED_EXPRESSIONS + lk_phase("name") log10(K) of definition in PHASES + lk_species("name") log10(K) of definition in (SOLUTION, EXCHANGE, SURFACE)_SPECIES + sum_gas("template","element") Sum of element in gases with specified template, moles. + Example: + template="{C,[13C],[14C]}{O,[18O]}2" includes all CO2 gases + sum_species("template","element") Sum of element in aqueous, exchange, and surface species with + specified template (moles) + sum_s_s("s_s_name","element") Sum of element in a specified solid solution (moles) PRINT keyword: - -initial_isotopes T/F - -isotope_ratios T/F - -isotope_alphas T/F - -censor_species 1e-8 # omit species from Distribution of Species if less than - # relative minimum of an element or element redox state - # total concentration + -initial_isotopes T/F + -isotope_ratios T/F + -isotope_alphas T/F + -censor_species 1e-8 # omit species from Distribution of Species if less than + # relative minimum of an element or element redox state + # total concentration SELECTED_OUTPUT keyword: - -calculate_values name1 name2 ... - -isotopes minor_isotope1 minor_isotope2 .... + -calculate_values name1 name2 ... + -isotopes minor_isotope1 minor_isotope2 .... Added functions LK_SPECIES, LK_NAMED, LK_PHASE for Basic - interpreter. LK_SPECIES("CaHCO3+") returns the - log k for the association reaction for the ion pair - CaHCO3+ at the current temperature. The log K is - for the reaction as defined in the database or - input file. Similarly, - LK_NAMED("Log_alpha_18O_CO2(aq)/CO2(g)") returns the - value for the log K at the current temperature using - expressions defined in NAMED_LOG_K data block; - LK_PHASE("Calcite") returns the value of log K - for calcite at the current temperature for the - dissociation reaction defined in the database or - input file. Values are "log10" values. + interpreter. LK_SPECIES("CaHCO3+") returns the + log k for the association reaction for the ion pair + CaHCO3+ at the current temperature. The log K is + for the reaction as defined in the database or + input file. Similarly, + LK_NAMED("Log_alpha_18O_CO2(aq)/CO2(g)") returns the + value for the log K at the current temperature using + expressions defined in NAMED_LOG_K data block; + LK_PHASE("Calcite") returns the value of log K + for calcite at the current temperature for the + dissociation reaction defined in the database or + input file. Values are "log10" values. Example for Basic program: - 10 PRINT "Log10 KCalcite: ", LK_PHASE("Calcite") - 20 PRINT "Log10 KCaHCO3+: ", LK_SPECIES("CaHCO3+") - 30 PRINT " 1000ln(alpha): ", LK_NAMED("Log_alpha_18O_CO2(aq)/CO2(g)")*LOG(10)*1000 + 10 PRINT "Log10 KCalcite: ", LK_PHASE("Calcite") + 20 PRINT "Log10 KCaHCO3+: ", LK_SPECIES("CaHCO3+") + 30 PRINT " 1000ln(alpha): ", LK_NAMED("Log_alpha_18O_CO2(aq)/CO2(g)")*LOG(10)*1000 NAMED_EXPRESSION--New keyword data block. - This data block was implemented to facilitate isotopic - calculations. It allows analytical expressions that - are functions of temperature to be defined. The purpose - is to separate the fractionation factors from the log - K, so that the fractionation factor or its temperature - dependence can be easily modified. The named expression - can be added to a log K for a species or phase by the - -add_logk identifier in SOLUTION_SPECIES - EXCHANGE_SPECIES, SURFACE_SPECIES, or PHASES data - block. Log K, Delta H, and analytical expressions for a - log K can be defined with identifiers -log_k, -delta_h, - and -analytical_expression as described in SOLUTION_SPECIES - in WRIR 99-4259. Fractionation factors are often defined - as 1000*ln(alpha). The identifier -ln_alpha1000 can be used - to enter data in this form. The analytical expression is the - same as defined in SOLUTION_SPECIES, but the result of the - expression is converted to log10(alpha) by dividing by - 1000*ln(10) before it is summed into log K values. + This data block was implemented to facilitate isotopic + calculations. It allows analytical expressions that + are functions of temperature to be defined. The purpose + is to separate the fractionation factors from the log + K, so that the fractionation factor or its temperature + dependence can be easily modified. The named expression + can be added to a log K for a species or phase by the + -add_logk identifier in SOLUTION_SPECIES + EXCHANGE_SPECIES, SURFACE_SPECIES, or PHASES data + block. Log K, Delta H, and analytical expressions for a + log K can be defined with identifiers -log_k, -delta_h, + and -analytical_expression as described in SOLUTION_SPECIES + in WRIR 99-4259. Fractionation factors are often defined + as 1000*ln(alpha). The identifier -ln_alpha1000 can be used + to enter data in this form. The analytical expression is the + same as defined in SOLUTION_SPECIES, but the result of the + expression is converted to log10(alpha) by dividing by + 1000*ln(10) before it is summed into log K values. NAMED_EXPRESSIONS - Log_K_calcite # CaCO3 + 2H3O+ = Ca+2 + 3H2O + CO2 - log_k 8.201 - delta_h -8.035 kcal - -analytic 292.29 0.015455 -24146.841 -94.16451 2248628.9 + Log_K_calcite # CaCO3 + 2H3O+ = Ca+2 + 3H2O + CO2 + log_k 8.201 + delta_h -8.035 kcal + -analytic 292.29 0.015455 -24146.841 -94.16451 2248628.9 - Log_alpha_18O_CO2(aq)/Calcite - -ln_alpha1000 3.8498 0.0 10.611e3 0.0 -1.8034e6 + Log_alpha_18O_CO2(aq)/Calcite + -ln_alpha1000 3.8498 0.0 10.611e3 0.0 -1.8034e6 - Log_alpha_13C_CO2(aq)/Calcite - -ln_alpha1000 2.72 0.0 0.0 0.0 -1.1877e6 + Log_alpha_13C_CO2(aq)/Calcite + -ln_alpha1000 2.72 0.0 0.0 0.0 -1.1877e6 ------------------------------------------------------------ Added identifier -add_logk to SOLUTION_SPECIES - EXCHANGE_SPECIES, SURFACE_SPECIES, and PHASES data - block. + EXCHANGE_SPECIES, SURFACE_SPECIES, and PHASES data + block. - Allows a named expression to be added to the definition - of the log K for a species or phase. In the following - example, the log K for the phase Ca[14C][18O]3 is summed from - four parts, one defined with the log_k identifier and the - other three parts from expressions defined in NAMED_EXPRESSIONS. - The named expression is multiplied by the coefficient at the - end of the line before it is summed into the log K. A missing - coefficient is 1.0 by default. + Allows a named expression to be added to the definition + of the log K for a species or phase. In the following + example, the log K for the phase Ca[14C][18O]3 is summed from + four parts, one defined with the log_k identifier and the + other three parts from expressions defined in NAMED_EXPRESSIONS. + The named expression is multiplied by the coefficient at the + end of the line before it is summed into the log K. A missing + coefficient is 1.0 by default. PHASES - Ca[13C][18O]3 - Ca[13C][18O]3 + 3CO2 + 2H3O+ = Ca+2 + 3H2O + 3CO[18O] + [13C]O2 - log_k 0.903089986991 # 3*log10(2) - -add_logk Log_K_calcite 1.0 - -add_logk Log_alpha_13C_CO2(aq)/Calcite 1.0 - -add_logk Log_alpha_18O_CO2(aq)/Calcite 3.0 + Ca[13C][18O]3 + Ca[13C][18O]3 + 3CO2 + 2H3O+ = Ca+2 + 3H2O + 3CO[18O] + [13C]O2 + log_k 0.903089986991 # 3*log10(2) + -add_logk Log_K_calcite 1.0 + -add_logk Log_alpha_13C_CO2(aq)/Calcite 1.0 + -add_logk Log_alpha_18O_CO2(aq)/Calcite 3.0 SOLUTION keyword: - At present, can only define isotopes in the units defined in ISOTOPES. + At present, can only define isotopes in the units defined in ISOTOPES. ------------------------------------------------------------ Version 2.6: ------------------------------------------------------------ - No new features. + No new features. ------------------------------------------------------------ Version 2.5: ------------------------------------------------------------ Added the capability to use square brackets to define an - "element" name. The brackets act like quotation marks - in that any character string can be used within the - brackets as an element name. For example, [Fe3], [13C], - and [N5] are now legal "element" names. All element - names without brackets must begin with a capital letter, - followed by zero or more lower case letters and underscores. + "element" name. The brackets act like quotation marks + in that any character string can be used within the + brackets as an element name. For example, [Fe3], [13C], + and [N5] are now legal "element" names. All element + names without brackets must begin with a capital letter, + followed by zero or more lower case letters and underscores. Added identifier -activity_water for a species in SOLUTION_SPECIES - data block. This identifier has been added for future updates - that will allow isotopic calculations. It is intended to be - used only for isotopic variations of H2O, like D2O or - H2[O18]. It forces the activity coefficient for the - species to be activity(water)/55.5. This effectively sets - the activity of the species to the mole fraction in - solution. + data block. This identifier has been added for future updates + that will allow isotopic calculations. It is intended to be + used only for isotopic variations of H2O, like D2O or + H2[O18]. It forces the activity coefficient for the + species to be activity(water)/55.5. This effectively sets + the activity of the species to the mole fraction in + solution. Added identifier -bad_step_max to KINETICS data block. - An integer following -bad_step_max gives the maximum number - of times a rate integration may fail before execution of the - program is terminated. Default is 500. + An integer following -bad_step_max gives the maximum number + of times a rate integration may fail before execution of the + program is terminated. Default is 500. ------------------------------------------------------------ Version 2.4: @@ -5546,120 +5554,120 @@ Version 2.4: ------------------------------------------------------------ Added identifier -warnings to PRINT keyword. - An integer following -warnings gives the maximum number - of warnings to print into the output file. A negative - number allows all warnings to be printed. + An integer following -warnings gives the maximum number + of warnings to print into the output file. A negative + number allows all warnings to be printed. - Example: -warnings 20 + Example: -warnings 20 ------------------------------------------------------------ Changed the results of the function CELL_NO in Basic programs. - Function cell_no in Basic now prints a number equivalent - to -solution in SELECTED_OUTPUT data block. It gives the - solution number for initial solution calculations and the - solution being used in batch reaction calculations. - Result is the same as previous versions for ADVECTION or - TRANSPORT calculations. + Function cell_no in Basic now prints a number equivalent + to -solution in SELECTED_OUTPUT data block. It gives the + solution number for initial solution calculations and the + solution being used in batch reaction calculations. + Result is the same as previous versions for ADVECTION or + TRANSPORT calculations. ------------------------------------------------------------ Version 2.3: ------------------------------------------------------------ DATABASE--New keyword data block - It must be the first keyword in the input file. - The character string following the keyword is - the pathname for the database file to be used - in the calculation. The file that is specified - takes precedence over any default database - name, including environmental variable - PHREEQC_DATABASE and command line arguments. + It must be the first keyword in the input file. + The character string following the keyword is + the pathname for the database file to be used + in the calculation. The file that is specified + takes precedence over any default database + name, including environmental variable + PHREEQC_DATABASE and command line arguments. LLNL_AQUEOUS_MODEL_PARAMETERS--New keyword data block - Added new keyword to make aqueous model similar to - EQ3/6 and Geochemists Workbench when using - llnl.dat as the database file. Values - of Debye-Hückel a and b and bdot (ionic strength - coefficient) are read at fixed temperatures. - Linear interpolation occurs between temperatures. + Added new keyword to make aqueous model similar to + EQ3/6 and Geochemists Workbench when using + llnl.dat as the database file. Values + of Debye-Hückel a and b and bdot (ionic strength + coefficient) are read at fixed temperatures. + Linear interpolation occurs between temperatures. - New options for SOLUTION_SPECIES are - -llnl_gamma a , where a is the ion-size parameter. - -co2_llnl_gamma , indicates the temperature dependent - function for the bdot term given in - -co2_coefs of LLNL_AQUEOUS_MODEL_PARAMETERS - will be used. Applies to uncharged - species only. + New options for SOLUTION_SPECIES are + -llnl_gamma a , where a is the ion-size parameter. + -co2_llnl_gamma , indicates the temperature dependent + function for the bdot term given in + -co2_coefs of LLNL_AQUEOUS_MODEL_PARAMETERS + will be used. Applies to uncharged + species only. LLNL_AQUEOUS_MODEL_PARAMETERS -temperatures - 0.0100 25.0000 60.0000 100.0000 - 150.0000 200.0000 250.0000 300.0000 + 0.0100 25.0000 60.0000 100.0000 + 150.0000 200.0000 250.0000 300.0000 #debye huckel a (adh) -dh_a - 0.4939 0.5114 0.5465 0.5995 - 0.6855 0.7994 0.9593 1.2180 + 0.4939 0.5114 0.5465 0.5995 + 0.6855 0.7994 0.9593 1.2180 #debye huckel b (bdh) -dh_b - 0.3253 0.3288 0.3346 0.3421 - 0.3525 0.3639 0.3766 0.3925 + 0.3253 0.3288 0.3346 0.3421 + 0.3525 0.3639 0.3766 0.3925 -bdot - 0.0394 0.0410 0.0438 0.0460 - 0.0470 0.0470 0.0340 0.0000 + 0.0394 0.0410 0.0438 0.0460 + 0.0470 0.0470 0.0340 0.0000 #cco2 (coefficients for the Drummond (1981) polynomial) -co2_coefs - -1.0312 0.0012806 - 255.9 0.4445 - -0.001606 + -1.0312 0.0012806 + 255.9 0.4445 + -0.001606 ------------------------------------------------------------ Added function SURF to Basic. - SURF("element", "surface") gives the amount of element - sorbed on "surface". "surface" should be the surface - name, not the surface-site name (that is, no underscore). + SURF("element", "surface") gives the amount of element + sorbed on "surface". "surface" should be the surface + name, not the surface-site name (that is, no underscore). ------------------------------------------------------------ Allow decimals in definition of secondary master species. - Some redox states do not average to integers, - for convenience in identifying them, decimal numbers - may be used within the parentheses that define the - redox state, example S(0.3) could be used in the - MASTER_SPECIES data block for the valence state of - aqueous species S6-2. + Some redox states do not average to integers, + for convenience in identifying them, decimal numbers + may be used within the parentheses that define the + redox state, example S(0.3) could be used in the + MASTER_SPECIES data block for the valence state of + aqueous species S6-2. ------------------------------------------------------------ Eliminate echo of input file in PRINT data block. - -echo_input T/F turns echoing on and off. - Default is true, initial value is true. - + -echo_input T/F turns echoing on and off. + Default is true, initial value is true. + ------------------------------------------------------------ Added option for an equilibrium-phase to dissolve only. - "dis" is added at the end of a line defining an equilibrium- - phase. No data fields may be omitted. Should not - be used when adding an alternative reaction. - Example: - EQUILIBRIUM_PHASES - Dolomite 0.0 0.001 dis + "dis" is added at the end of a line defining an equilibrium- + phase. No data fields may be omitted. Should not + be used when adding an alternative reaction. + Example: + EQUILIBRIUM_PHASES + Dolomite 0.0 0.001 dis ------------------------------------------------------------ Version 2.2: ------------------------------------------------------------ Added function EDL to Basic. - EDL("element", "surface") gives the amount of - element in the diffuse layer for "surface", not - including sorbed species. "surface" should be - the surface name, not the surface-site name - (that is, no underscore). + EDL("element", "surface") gives the amount of + element in the diffuse layer for "surface", not + including sorbed species. "surface" should be + the surface name, not the surface-site name + (that is, no underscore). - Special values for "element" include: - "charge" - gives surface charge, equivalents. - "sigma" - surface charge density, C/m**2. - "psi" - potential at the surface, Volts. - "water" - mass of water in the diffuse layer, kg. + Special values for "element" include: + "charge" - gives surface charge, equivalents. + "sigma" - surface charge density, C/m**2. + "psi" - potential at the surface, Volts. + "water" - mass of water in the diffuse layer, kg. ------------------------------------------------------------ End of Features not documented in WRIR 99-4259. @@ -5676,1544 +5684,1544 @@ End of Features not documented in WRIR 99-4259. ------------------------------------------------------------ Version @PHREEQC_VER@: @PHREEQC_DATE@ ------------------------------------------------------------ - -------- - svn 5570 - -------- - In SELECTED_OUTPUT; -totals, a redox state defined - with a "+" sign, such as Fe(+3), was not recognized - ("Fe(3)" worked correctly). Now Fe(+3) is - synonymous with Fe(3). - + -------- + svn 5570 + -------- + In SELECTED_OUTPUT; -totals, a redox state defined + with a "+" sign, such as Fe(+3), was not recognized + ("Fe(3)" worked correctly). Now Fe(+3) is + synonymous with Fe(3). + ------------------------------------------------------------ Version 2.18.0: April 9, 2011 ------------------------------------------------------------ - -------- - svn 5212 - -------- - Subscript error in solver (ineq) when resetting deltas - after optimization failed. - - -------- - svn 4996 - -------- - Had conversion conversion to Kelvin as 273.16 in Basic - function TK, should be 273.15. - - -------- - svn 4955 - -------- - Changed O2(g) constant in Amm.dat and iso.dat to - definition from llnl.dat. - - -------- - svn 4954 - -------- - Added two more parameter sets in series of attempts - to converge: tolerance/100 and tolerance/1000. - - -------- - svn 4943 - -------- - Added separate As(3) in sit.dat. - - -------- - svn 4854 - -------- - Added two additional convergence parameter sets: - ineq_tol/100 and ineq_tol/1000. - - -------- - svn 4840 - -------- - Added missing -dw parameters to MgCO3, MgHCO3, and - MgSO4 aqueous species in phreeqc.dat. - + -------- + svn 5212 + -------- + Subscript error in solver (ineq) when resetting deltas + after optimization failed. + + -------- + svn 4996 + -------- + Had conversion conversion to Kelvin as 273.16 in Basic + function TK, should be 273.15. + + -------- + svn 4955 + -------- + Changed O2(g) constant in Amm.dat and iso.dat to + definition from llnl.dat. + + -------- + svn 4954 + -------- + Added two more parameter sets in series of attempts + to converge: tolerance/100 and tolerance/1000. + + -------- + svn 4943 + -------- + Added separate As(3) in sit.dat. + + -------- + svn 4854 + -------- + Added two additional convergence parameter sets: + ineq_tol/100 and ineq_tol/1000. + + -------- + svn 4840 + -------- + Added missing -dw parameters to MgCO3, MgHCO3, and + MgSO4 aqueous species in phreeqc.dat. + ------------------------------------------------------------ Version 2.17.5: September 7, 2010 ------------------------------------------------------------ - -------- - svn 4793 - -------- + -------- + svn 4793 + -------- Revised fix for exponential of negative number in Basic. Error message for negative number raised to a fractional power. - + ------------------------------------------------------------ Version 2.17.4: September 2, 2010 ------------------------------------------------------------ - -------- - svn 4771 - -------- - Added synonyms to TOTMOLE: TOTMOL, TOTMOLES - Fixed bug with negative exponential in basic, - for example -0.006^0.9 + -------- + svn 4771 + -------- + Added synonyms to TOTMOLE: TOTMOL, TOTMOLES + Fixed bug with negative exponential in basic, + for example -0.006^0.9 ------------------------------------------------------------ Version 2.17.3: August 12, 2010 ------------------------------------------------------------ - -------- - svn 4727 - -------- - Increased maximum iterations in cl1 solver. One test - case failed after new compiler was installed. - - -------- - svn 4700 - -------- - Initialized (nearly) all variables in class. - - -------- - svn 4697 - -------- - Fixed bug with second PITZER data block, parameters - were not updated if temperature was not changed. - - -------- - svn 4698 - -------- - Modified PHRQ_malloc and PHRQ_free logic. These routines - are used in almost all cases. + -------- + svn 4727 + -------- + Increased maximum iterations in cl1 solver. One test + case failed after new compiler was installed. + + -------- + svn 4700 + -------- + Initialized (nearly) all variables in class. + + -------- + svn 4697 + -------- + Fixed bug with second PITZER data block, parameters + were not updated if temperature was not changed. + + -------- + svn 4698 + -------- + Modified PHRQ_malloc and PHRQ_free logic. These routines + are used in almost all cases. - -------- - svn 4694 - -------- - Initialized variables for V_M structure, rxn->dz (for CD_MUSIC), - Fixed problem where definitions in second SIT data block were - not added to model. - - -------- - svn 4677 - -------- - Renamed all variables that "shadowed" class variables. + -------- + svn 4694 + -------- + Initialized variables for V_M structure, rxn->dz (for CD_MUSIC), + Fixed problem where definitions in second SIT data block were + not added to model. + + -------- + svn 4677 + -------- + Renamed all variables that "shadowed" class variables. - -------- - svn 4643 - -------- - Made isfinite a macro. - - -------- - svn 4539 - -------- - Fixed bug with long file names in inverse modeling files - netpath.fil or model.fil. - - -------- - svn 4490 - -------- + -------- + svn 4643 + -------- + Made isfinite a macro. + + -------- + svn 4539 + -------- + Fixed bug with long file names in inverse modeling files + netpath.fil or model.fil. + + -------- + svn 4490 + -------- Redox had never been enabled for the SIT formulation. Added the switch to include the hydrogen balance - equation for SIT. + equation for SIT. - -------- - svn 4458 - -------- - Tweaked the convergence parameters for Pitzer log - gamma unknowns. Set a maximum step size for these - unknowns. Also changed usage of internal flags - for Pitzer calculations related to initial solution - calculations. Corrected print of Gamma iterations. - - -------- - svn 4399 - -------- - Error in PHRQ_calloc. Size of allocated block was - not set. Under some situations, could cause serious - errors and a crash. - - -------- - svn 4376 - -------- - Error in logic for removing unstable phases for Pitzer - and SIT. - - -------- - svn 4233 - -------- - Removed duplicate parameter for Na+ -- Cl- in sit.dat. - Value of 0.03 was entered erroneously for both Na/Cl and Cl/Na. - + -------- + svn 4458 + -------- + Tweaked the convergence parameters for Pitzer log + gamma unknowns. Set a maximum step size for these + unknowns. Also changed usage of internal flags + for Pitzer calculations related to initial solution + calculations. Corrected print of Gamma iterations. + + -------- + svn 4399 + -------- + Error in PHRQ_calloc. Size of allocated block was + not set. Under some situations, could cause serious + errors and a crash. + + -------- + svn 4376 + -------- + Error in logic for removing unstable phases for Pitzer + and SIT. + + -------- + svn 4233 + -------- + Removed duplicate parameter for Na+ -- Cl- in sit.dat. + Value of 0.03 was entered erroneously for both Na/Cl and Cl/Na. + ------------------------------------------------------------ Version 2.17.0: February 25, 2010 ------------------------------------------------------------ - -------- - svn 4115 - -------- - Fixed bugs with uninitialized strings in Basic, which - caused an error in renumbering with PhreeqcI. Tested - most Basic functions. Fixed bugs with LG and GAMMA - functions, which did not return the correct values - for H+. GET_POR now returns 0 if it is not a TRANSPORT - calculation. + -------- + svn 4115 + -------- + Fixed bugs with uninitialized strings in Basic, which + caused an error in renumbering with PhreeqcI. Tested + most Basic functions. Fixed bugs with LG and GAMMA + functions, which did not return the correct values + for H+. GET_POR now returns 0 if it is not a TRANSPORT + calculation. - -------- - svn 4066 - -------- - Fixed bug with SIT calculations (and Pitzer). The - number of solver iterations was too few (200). With - SIT and Pitzer, each species has an unknown, so the - number of unknowns is large for a system with many - elements. Now set the maximum iterations to be - equal to the number of unknowns plus the number of - equations/inequalities. + -------- + svn 4066 + -------- + Fixed bug with SIT calculations (and Pitzer). The + number of solver iterations was too few (200). With + SIT and Pitzer, each species has an unknown, so the + number of unknowns is large for a system with many + elements. Now set the maximum iterations to be + equal to the number of unknowns plus the number of + equations/inequalities. - -------- - svn 4023 - -------- - Trapped error when -mole_balance option was used in - SOLUTION_SPECIES and one of the stated elements was - not defined. - - -------- - svn 4022 - -------- - Redefined CN- and SCN- to be new elements Cyanide and - thiocyanate in llnl.dat. Former definitions were not - useful because cyanide and thiocyanate were never - stable and defining a master species as CN- caused - problems with mole balances, appearing in solutions - without any carbon. - - -------- - svn 3901 - -------- - Error with equations that included (s) or (g). The - equation and log K were correct only for the simulation - when initially read. Now equations an log Ks are correct - for all simulations. Calculates saturation index from - the equation after (s) and (g) are eliminated. - - - -------- - svn 3695 - -------- - For transport calculations, fixed step_fraction when - nmix == 1 and ishift == 0. - - -------- - svn 3684 - -------- - Added more precision in writing dump file fields. - - Multiple REACTIONS were not sorted correctly. Added sort - routine to tidy.c. + -------- + svn 4023 + -------- + Trapped error when -mole_balance option was used in + SOLUTION_SPECIES and one of the stated elements was + not defined. + + -------- + svn 4022 + -------- + Redefined CN- and SCN- to be new elements Cyanide and + thiocyanate in llnl.dat. Former definitions were not + useful because cyanide and thiocyanate were never + stable and defining a master species as CN- caused + problems with mole balances, appearing in solutions + without any carbon. + + -------- + svn 3901 + -------- + Error with equations that included (s) or (g). The + equation and log K were correct only for the simulation + when initially read. Now equations an log Ks are correct + for all simulations. Calculates saturation index from + the equation after (s) and (g) are eliminated. + + + -------- + svn 3695 + -------- + For transport calculations, fixed step_fraction when + nmix == 1 and ishift == 0. + + -------- + svn 3684 + -------- + Added more precision in writing dump file fields. + + Multiple REACTIONS were not sorted correctly. Added sort + routine to tidy.c. - -------- - svn 3640 - -------- - Print correct temperature for gas phase dump. - - Correct total moles of exchanger for function sys("X"). - - -------- - svn 3568 - -------- - minteq.dat: Changing log K of gypsum to minteq version - 4 value (-4.61). Old value (-4.848) is too stable. + -------- + svn 3640 + -------- + Print correct temperature for gas phase dump. + + Correct total moles of exchanger for function sys("X"). + + -------- + svn 3568 + -------- + minteq.dat: Changing log K of gypsum to minteq version + 4 value (-4.61). Old value (-4.848) is too stable. - -------- - svn 3483 - -------- - Alkalinity is now printed to the selected output file - when the Alkalinity is used with -totals. - - SELECTED_OUTPUT; -totals Alkalinity - - Modified numerical method to attempt to produce a numerical - solution when complexes are extremely strong. llnl.dat As and F - complexes caused PHREEQC to fail on an initial solution - calculation. The terms of the As and F mass balance equations - were identical to machine precision. One unknown log activity - was adjusted but the other was not. Now attempts an adjustment - for the unadjusted log activity. - + -------- + svn 3483 + -------- + Alkalinity is now printed to the selected output file + when the Alkalinity is used with -totals. + + SELECTED_OUTPUT; -totals Alkalinity + + Modified numerical method to attempt to produce a numerical + solution when complexes are extremely strong. llnl.dat As and F + complexes caused PHREEQC to fail on an initial solution + calculation. The terms of the As and F mass balance equations + were identical to machine precision. One unknown log activity + was adjusted but the other was not. Now attempts an adjustment + for the unadjusted log activity. + - -------- - svn 3463 - -------- - Modified handling of not-a-number in places that - affected the adjustment of log activities (reset and - revise guesses). Uses isfinite function that is available - on Linux and is ifdef'd in global.h for Visual Studio. - The NaN problem occurred rarely and was related to - bad results from the solver and when poor estimates were - available in revise_guesses. Also insured that log activity - for new master species was well defined in switch_bases. + -------- + svn 3463 + -------- + Modified handling of not-a-number in places that + affected the adjustment of log activities (reset and + revise guesses). Uses isfinite function that is available + on Linux and is ifdef'd in global.h for Visual Studio. + The NaN problem occurred rarely and was related to + bad results from the solver and when poor estimates were + available in revise_guesses. Also insured that log activity + for new master species was well defined in switch_bases. - -------- - svn 3446 - -------- - Fixed errors in casting for long double version. + -------- + svn 3446 + -------- + Fixed errors in casting for long double version. - -------- - svn 3440 - -------- - Adjusted numerical calculation to avoid extremely large - calculated specific conductances in high ionic strength - waters. + -------- + svn 3440 + -------- + Adjusted numerical calculation to avoid extremely large + calculated specific conductances in high ionic strength + waters. - -------- - svn 3433 - -------- - -dw and -millero added to phreeqc.dat, which allows - calculation of specific conductance and density. - phreeqd.dat is now redundant and removed from distribution. + -------- + svn 3433 + -------- + -dw and -millero added to phreeqc.dat, which allows + calculation of specific conductance and density. + phreeqd.dat is now redundant and removed from distribution. - -------- - svn 3425 - -------- - Added error message to require -multi_d for transport of - surfaces. + -------- + svn 3425 + -------- + Added error message to require -multi_d for transport of + surfaces. - -------- - svn 3424 - -------- - Checked for misspellings in EXCHANGE definitions, which - previously caused crash. + -------- + svn 3424 + -------- + Checked for misspellings in EXCHANGE definitions, which + previously caused crash. - -------- - svn 3423 - -------- - -dw and -millero added to pitzer.dat, which allows - calculation of specific conductance and density. + -------- + svn 3423 + -------- + -dw and -millero added to pitzer.dat, which allows + calculation of specific conductance and density. - -------- - svn 3292 - -------- - Removed redundant warnings related to transport of exchanger - and surface. + -------- + svn 3292 + -------- + Removed redundant warnings related to transport of exchanger + and surface. - -------- - svn 3287 - -------- - Fixed error in CD_MUSIC surface complexation model. - If reaction equation for a surface species was not - written with the primary surface species, the calculation - was incorrect. The logic to accumulate the change in - charges on the planes was erroneously not included when - rewriting the equations to the master species. + -------- + svn 3287 + -------- + Fixed error in CD_MUSIC surface complexation model. + If reaction equation for a surface species was not + written with the primary surface species, the calculation + was incorrect. The logic to accumulate the change in + charges on the planes was erroneously not included when + rewriting the equations to the master species. - -------- - svn 3247 - -------- - Revised donnan layer calculation with CD_MUSIC. Fixed - a bug related to moles versus concentration and stream - lined calculation. Minor differences in relevant test - cases. - - -------- - svn 3207 - -------- - Modifications to convergence criteria for surfaces - related to minerals, when moles of mineral is near - zero (<= 1e-14). + -------- + svn 3247 + -------- + Revised donnan layer calculation with CD_MUSIC. Fixed + a bug related to moles versus concentration and stream + lined calculation. Minor differences in relevant test + cases. + + -------- + svn 3207 + -------- + Modifications to convergence criteria for surfaces + related to minerals, when moles of mineral is near + zero (<= 1e-14). - -------- - svn 3100 - -------- - Error when multiple surfaces were used. Sometimes the - surface area from one surface was used for another. - Results were probably incorrect if the surfaces were - not in alphabetical order in their definition in - SURFACE. + -------- + svn 3100 + -------- + Error when multiple surfaces were used. Sometimes the + surface area from one surface was used for another. + Results were probably incorrect if the surfaces were + not in alphabetical order in their definition in + SURFACE. - -------- - svn 2711 - -------- - Cleaned up compiler warnings for functions called - with constant strings. + -------- + svn 2711 + -------- + Cleaned up compiler warnings for functions called + with constant strings. ------------------------------------------------------------ Version 2.15.0: February 5, 2008 ------------------------------------------------------------ - -------- - svn 2386 - -------- - Fixed bug for SELECTED_OUTPUT; -activities H2O. The - resulting value was -30; now produces the correct - result. + -------- + svn 2386 + -------- + Fixed bug for SELECTED_OUTPUT; -activities H2O. The + resulting value was -30; now produces the correct + result. ------------------------------------------------------------ Version 2.14.3: November 17, 2007 ------------------------------------------------------------ - -------- - svn 2386 - -------- - Fixed bug in routine find_Jstag. Incorrect index (cell_no) - caused segmentation violation in rare instances. + -------- + svn 2386 + -------- + Fixed bug in routine find_Jstag. Incorrect index (cell_no) + caused segmentation violation in rare instances. - -------- - svn 2312 - -------- - Added new option to PITZER datablock, use_etheta t/f. + -------- + svn 2312 + -------- + Added new option to PITZER datablock, use_etheta t/f. - -------- - svn 2279 - -------- - Error lost 200 moles of mineral. Should only be a problem - in some cases where moles of mineral is greater than 200. + -------- + svn 2279 + -------- + Error lost 200 moles of mineral. Should only be a problem + in some cases where moles of mineral is greater than 200. - -------- - svn 2270 - -------- - Added additional parameters Pitzer activity formulation for - neutral species, MU and ETA. + -------- + svn 2270 + -------- + Added additional parameters Pitzer activity formulation for + neutral species, MU and ETA. - -------- - svn 2269 - -------- - Fixed buffer overrun in SOLUTION_SPREAD when pasting. + -------- + svn 2269 + -------- + Fixed buffer overrun in SOLUTION_SPREAD when pasting. - -------- - svn 2268 - -------- - Fixed error in prep.c where realloc was called instead - of PHRQ_realloc, which eliminated a memory leak. + -------- + svn 2268 + -------- + Fixed error in prep.c where realloc was called instead + of PHRQ_realloc, which eliminated a memory leak. ------------------------------------------------------------ Version 2.14.2: September 17, 2007 ------------------------------------------------------------ - - -------- - svn 2267 - -------- - Fixed logic of memory checking for PhreeqcI. This serious - bug makes versions 2.14.0 and 2.14.1 unusable. + + -------- + svn 2267 + -------- + Fixed logic of memory checking for PhreeqcI. This serious + bug makes versions 2.14.0 and 2.14.1 unusable. ------------------------------------------------------------ Version 2.14.1: September 5, 2007 ------------------------------------------------------------ - -------- - svn 2219 - -------- - Updated transport.c to adjust transport in diffuse - layer to be charge balanced for MCD calculation. + -------- + svn 2219 + -------- + Updated transport.c to adjust transport in diffuse + layer to be charge balanced for MCD calculation. ------------------------------------------------------------ Version 2.14.0: August 30, 2007 ------------------------------------------------------------ - ------------- - svn 2203-2204 - ------------- - Revised logic for using phqalloc memory checker. Compiler - option USE_PHRQ_ALLOC now turns on memory checker. If - USE_PHRQ_ALLOC is defined and NDEBUG is not defined, file name - and line number are also used in memory checking. Model.c - now uses same compile options as all other files. + ------------- + svn 2203-2204 + ------------- + Revised logic for using phqalloc memory checker. Compiler + option USE_PHRQ_ALLOC now turns on memory checker. If + USE_PHRQ_ALLOC is defined and NDEBUG is not defined, file name + and line number are also used in memory checking. Model.c + now uses same compile options as all other files. - -------- - svn 2199 - -------- - Initialized variables that caused problems when rerunning - simulations in PfW and PhreeqcI. + -------- + svn 2199 + -------- + Initialized variables that caused problems when rerunning + simulations in PfW and PhreeqcI. - -------- - svn 2138 - -------- - Fixed bugs in MCD calculation related to saving solutions - after initialization. + -------- + svn 2138 + -------- + Fixed bugs in MCD calculation related to saving solutions + after initialization. - -------- - svn 2055 - -------- - Profiled and optimized of code. Automatic string in Basic - factor saves many mallocs. Reordered to minimize call to - strcmp_nocase in basicsubs.c and xsolution_save. Minimized - mallocs for solver. + -------- + svn 2055 + -------- + Profiled and optimized of code. Automatic string in Basic + factor saves many mallocs. Reordered to minimize call to + strcmp_nocase in basicsubs.c and xsolution_save. Minimized + mallocs for solver. - -------- - svn 2051 - -------- - Fixed bugs in MCD calculation. + -------- + svn 2051 + -------- + Fixed bugs in MCD calculation. - -------- - svn 2040 - -------- - Fixed warnings for type-punned with new gcc. + -------- + svn 2040 + -------- + Fixed warnings for type-punned with new gcc. - Reverted to 2.12 for infilling solutions for transport. - Only solutions are used, not additional reactants for solution - 0 and n+1. + Reverted to 2.12 for infilling solutions for transport. + Only solutions are used, not additional reactants for solution + 0 and n+1. - Added digits to printout of REACTION stoichiometry. + Added digits to printout of REACTION stoichiometry. - -------- - svn 1852 - -------- - Fixed error in CDMUSIC surface related to a phase. - Stoichiometry of H was calculated incorrectly. + -------- + svn 1852 + -------- + Fixed error in CDMUSIC surface related to a phase. + Stoichiometry of H was calculated incorrectly. - -------- - svn 1837 - -------- - Initialize flag for MCD calculation. PhreeqcI would - do MCD calculation after TRANSPORT was redefined not - to do MCD calculation. + -------- + svn 1837 + -------- + Initialize flag for MCD calculation. PhreeqcI would + do MCD calculation after TRANSPORT was redefined not + to do MCD calculation. ------------------------------------------------------------ Version 2.13.2: February 1, 2007 ------------------------------------------------------------ - -------- - svn 1700 - -------- - Fixed bug with redox elements in multi_diffusion - stagnant zones. + -------- + svn 1700 + -------- + Fixed bug with redox elements in multi_diffusion + stagnant zones. - -------- - svn 1683 - -------- - Worked on convergence problems when optimizer fails to - find a solution. Censored values greater than 1e8. + -------- + svn 1683 + -------- + Worked on convergence problems when optimizer fails to + find a solution. Censored values greater than 1e8. - -------- - svn 1637 - -------- - Fixed bug with dissolve only in ADVECTION calculations. + -------- + svn 1637 + -------- + Fixed bug with dissolve only in ADVECTION calculations. - -------- - svn 1629 - -------- - Fixed bug with redox elements in multi_diffusions. Added - Phreeqc For Windows changes from 2.13.1. + -------- + svn 1629 + -------- + Fixed bug with redox elements in multi_diffusions. Added + Phreeqc For Windows changes from 2.13.1. ------------------------------------------------------------ Version 2.13.1: January 16, 2007 ------------------------------------------------------------ - -------- - svn 1600 - -------- - Fixed logic error that required rebuilding aqueous model - when not necessary. Now runs faster (sometimes 3X) than - version 2.13.0. + -------- + svn 1600 + -------- + Fixed logic error that required rebuilding aqueous model + when not necessary. Now runs faster (sometimes 3X) than + version 2.13.0. - -------- - svn 1590 - -------- - Removed porosity from one statement to eliminate oscillations - in multicomponent diffusion calculation. + -------- + svn 1590 + -------- + Removed porosity from one statement to eliminate oscillations + in multicomponent diffusion calculation. - -------- - svn 1558 - -------- - Dissolve-only option did not work correctly for stagnant cells - in TRANSPORT calculations. The moles of equilibrium phases, - kinetics, gas_phase, and solid solutions were not initialized - at the beginning of each transport step. Thus, the printed values - for delta moles for the step in the output and punch file were - incorrect for stagnant-zone cells. "Dissolve only" was - always tested relative to the number of moles initially in the - cells, not the amount remaining at a given time step. + -------- + svn 1558 + -------- + Dissolve-only option did not work correctly for stagnant cells + in TRANSPORT calculations. The moles of equilibrium phases, + kinetics, gas_phase, and solid solutions were not initialized + at the beginning of each transport step. Thus, the printed values + for delta moles for the step in the output and punch file were + incorrect for stagnant-zone cells. "Dissolve only" was + always tested relative to the number of moles initially in the + cells, not the amount remaining at a given time step. - -------- - svn 1485 - -------- - Pitzer version with gas_phase did not work. Added - gas_phase and cd_music to numerical derivative routine. + -------- + svn 1485 + -------- + Pitzer version with gas_phase did not work. Added + gas_phase and cd_music to numerical derivative routine. - svn 1368: (1) Added multicomponent diffusion in transport and - SOLUTION_SPECIES. (2) Added BASIC functions to obtain and - modify the porosity in a cell. (3) Added mobile surface and Donnan - option in SURFACE. (4) Added special BASIC function to change - the diffusion coefficient of a SURFACE, and hence to - change the status from mobile to immobile or immobile to - mobile. + svn 1368: (1) Added multicomponent diffusion in transport and + SOLUTION_SPECIES. (2) Added BASIC functions to obtain and + modify the porosity in a cell. (3) Added mobile surface and Donnan + option in SURFACE. (4) Added special BASIC function to change + the diffusion coefficient of a SURFACE, and hence to + change the status from mobile to immobile or immobile to + mobile. - svn 1337: Added -add_logk to NAMED_EXPRESSIONS keyword. + svn 1337: Added -add_logk to NAMED_EXPRESSIONS keyword. - svn 1306: Revised printing of distribution of species, - pure phase assemblages, and solid solutions to use - longer fields for names. More revisions to logic - for using gases and solids in equations for phases. - Revised logic for solid solutions with small (1e-25) amounts - of component. + svn 1306: Revised printing of distribution of species, + pure phase assemblages, and solid solutions to use + longer fields for names. More revisions to logic + for using gases and solids in equations for phases. + Revised logic for solid solutions with small (1e-25) amounts + of component. - svn 1282: Fixed bug when gas phase had no gas components. - Looked the same as not having a gas phase at all. + svn 1282: Fixed bug when gas phase had no gas components. + Looked the same as not having a gas phase at all. - svn 1245: Enabled redox in Pitzer model with option in - PITZER keyword. Typically, the option will be included - in the pitzer database file. + svn 1245: Enabled redox in Pitzer model with option in + PITZER keyword. Typically, the option will be included + in the pitzer database file. PITZER - -redox TRUE + -redox TRUE - The default database for the Pitzer model does not contain - any redox definitions and the default value for the option - is FALSE. At a minimum, species O2 and H2 must be defined - in the database or input file to allow redox calculations. + The default database for the Pitzer model does not contain + any redox definitions and the default value for the option + is FALSE. At a minimum, species O2 and H2 must be defined + in the database or input file to allow redox calculations. - svn 1179: New option (-sites_units density) allows alternative - units (sites/nm^2) for definition of number of sites for a - surface. This approach requires better consistency among the - parameters as both the number of sites and the surface area - are based on the mass. It makes more sense than the default, - which requires the number of sites (first numeric item in a - line) to be defined in units of moles, independently of the - number of grams of sorbent. + svn 1179: New option (-sites_units density) allows alternative + units (sites/nm^2) for definition of number of sites for a + surface. This approach requires better consistency among the + parameters as both the number of sites and the surface area + are based on the mass. It makes more sense than the default, + which requires the number of sites (first numeric item in a + line) to be defined in units of moles, independently of the + number of grams of sorbent. SURFACE 1 - -sites DENSITY - SurfOH 2.6 600. 1.0 - SurfaOH 2.6 30. 2.0 + -sites DENSITY + SurfOH 2.6 600. 1.0 + SurfaOH 2.6 30. 2.0 - In this example, Surf has a site density of 2.6 sites per - nanometer squared, a specific area of 600 meters squared per - gram, and a mass of 1 gram. Surfa has a site density of 2.6 - sites per nanometer squared, a specific area of 30 meters - squared per gram, and mass of 2 grams. + In this example, Surf has a site density of 2.6 sites per + nanometer squared, a specific area of 600 meters squared per + gram, and a mass of 1 gram. Surfa has a site density of 2.6 + sites per nanometer squared, a specific area of 30 meters + squared per gram, and mass of 2 grams. - svn 1128: Fixed bug with value of time printed to selected - output file when using cvode. Value printed was an - intermediate integration time step, not time at end - of integration. - - svn 1096: Allows solids and gases in the equations for - PHASES. This capability simplifies the definitions for - gas and solid isotopic components. Solids must be identified - with "(s)" and gases with "(g)". The first entity on the left- - hand-side of the equation must be the stoichiometric formula - of the solid of gas component being defined, optionally with - (g) or (s). In turn gases and solids included in the equation - must be defined with reactions that ultimately allow the - defined species (C[18O]2(g) in this case) in terms of aqueous - species. + svn 1128: Fixed bug with value of time printed to selected + output file when using cvode. Value printed was an + intermediate integration time step, not time at end + of integration. + + svn 1096: Allows solids and gases in the equations for + PHASES. This capability simplifies the definitions for + gas and solid isotopic components. Solids must be identified + with "(s)" and gases with "(g)". The first entity on the left- + hand-side of the equation must be the stoichiometric formula + of the solid of gas component being defined, optionally with + (g) or (s). In turn gases and solids included in the equation + must be defined with reactions that ultimately allow the + defined species (C[18O]2(g) in this case) in terms of aqueous + species. C[18O]2(g) - C[18O]2(g) + CO2(g) = 2CO[18O](g) - log_k 0.602059991327962396 # log10(4) + C[18O]2(g) + CO2(g) = 2CO[18O](g) + log_k 0.602059991327962396 # log10(4) - svn 1092: CD_MUSIC sorption model has been implemented. - Still missing logic for surfaces related to equilibrium- - phases and kinetics. Has explicit calculation of diffuse - layer composition with Donnan assumption. Old diffuse-layer - calculation will not be implemented. - - Example: + svn 1092: CD_MUSIC sorption model has been implemented. + Still missing logic for surfaces related to equilibrium- + phases and kinetics. Has explicit calculation of diffuse + layer composition with Donnan assumption. Old diffuse-layer + calculation will not be implemented. + + Example: SURFACE - Goe_uniOH .000552 96.387 1 - -capacitance 1.1 5 - Goe_triO .000432 - -cd_music - -donnan + Goe_uniOH .000552 96.387 1 + -capacitance 1.1 5 + Goe_triO .000432 + -cd_music + -donnan - 1.1 5 are capacitances for the cd-music model for 0-1 and 1-2 - planes, respectively. - -cd_music specifies that the surface is a cd-music surface. - -donnan optionally calculates the diffuse layer composition - with the Donnan model. + 1.1 5 are capacitances for the cd-music model for 0-1 and 1-2 + planes, respectively. + -cd_music specifies that the surface is a cd-music surface. + -donnan optionally calculates the diffuse layer composition + with the Donnan model. SURFACE_SPECIES - Goe_uniOH-0.5 + H+ + AsO4-3 = Goe_uniOAsO3-2.5 + H2O - log_k 20.1 # eq 7 K1, Kin1 - -cd_music -1 -6 0 0.25 5 + Goe_uniOH-0.5 + H+ + AsO4-3 = Goe_uniOAsO3-2.5 + H2O + log_k 20.1 # eq 7 K1, Kin1 + -cd_music -1 -6 0 0.25 5 - -cd_music gives the charge contribution of the surface - species to the three planes. Plane 0 is - -1 + 0.25*5; Plane 1 is -6 + (1-0.25)*5; - Plane 2 (or d) is 0. + -cd_music gives the charge contribution of the surface + species to the three planes. Plane 0 is + -1 + 0.25*5; Plane 1 is -6 + (1-0.25)*5; + Plane 2 (or d) is 0. - svn 1030: Fixed bug in transport. Mixing was not printed - when using -cvode in kinetics. + svn 1030: Fixed bug in transport. Mixing was not printed + when using -cvode in kinetics. - svn 984: Fixed bug in transport when cell without a - surface followed a cell with a diffuse-layer surface. - Fixed bug in TOTAL function; code ran of the end of - the list of master species; changed logic to recognize - the end of the list. + svn 984: Fixed bug in transport when cell without a + surface followed a cell with a diffuse-layer surface. + Fixed bug in TOTAL function; code ran of the end of + the list of master species; changed logic to recognize + the end of the list. - svn 874: Fixed bug in check_same_model. Thought surface - calculation was the same even though -edl switch was - different, which gave irratic results and possible - crash. Now checks more carefully to make sure calculation - for surfaces is really the same and reinitializes if - not. + svn 874: Fixed bug in check_same_model. Thought surface + calculation was the same even though -edl switch was + different, which gave irratic results and possible + crash. Now checks more carefully to make sure calculation + for surfaces is really the same and reinitializes if + not. - svn 847: Fixed bug with DESCRIPTION function. Did not - give correct solution description for reactions. + svn 847: Fixed bug with DESCRIPTION function. Did not + give correct solution description for reactions. - svn 826: Update tally.c to avoid conflicts in C++ - version of phast. + svn 826: Update tally.c to avoid conflicts in C++ + version of phast. - svn 801: Wrote around underflow in fabs in subroutine - reset. + svn 801: Wrote around underflow in fabs in subroutine + reset. - svn 794: Errors in minteq.v4.dat database. Several redox - reactions had delta H listed as kcal instead of kJ. kcal - is correct only for the following species H2, NO2-, and - NH4+. + svn 794: Errors in minteq.v4.dat database. Several redox + reactions had delta H listed as kcal instead of kJ. kcal + is correct only for the following species H2, NO2-, and + NH4+. - svn 675: - Added PRINT option to print the species that contribute - to alkalinity. Alkalinity distribution is printed in - the output file following the distribution of species. - Default at program startup is false. + svn 675: + Added PRINT option to print the species that contribute + to alkalinity. Alkalinity distribution is printed in + the output file following the distribution of species. + Default at program startup is false. - PRINT - -alkalinity true - - svn 655: - IAP and log K printed in Phase assemblage data - block were calculated from reactions rewritten to - new master species. Now the original data base - reaction is used to calculate IAP and log K. - Also fixed check that ensured all elements of - phase in are in solution before SI is calculated. + PRINT + -alkalinity true + + svn 655: + IAP and log K printed in Phase assemblage data + block were calculated from reactions rewritten to + new master species. Now the original data base + reaction is used to calculate IAP and log K. + Also fixed check that ensured all elements of + phase in are in solution before SI is calculated. - svn 631: - Fixed bug with alternate formula for equilibrium phase, - nothing happened if all other equations were satisfied - at beginning of reaction calculation. + svn 631: + Fixed bug with alternate formula for equilibrium phase, + nothing happened if all other equations were satisfied + at beginning of reaction calculation. - svn 603: - Link gmp library statically. + svn 603: + Link gmp library statically. - svn 601: - Fixed statement on multiprecision. + svn 601: + Fixed statement on multiprecision. - svn 581: - Fixed bug in PhreeqcI that did not reinitialize - Chebyschev parameters leading to incorrect results - with Pitzer activity coefficients. Results were - correct on first run, but erroneous on subsequent - runs. + svn 581: + Fixed bug in PhreeqcI that did not reinitialize + Chebyschev parameters leading to incorrect results + with Pitzer activity coefficients. Results were + correct on first run, but erroneous on subsequent + runs. - Added statement to identify multiprecision or - standard solver for inverse modeling. + Added statement to identify multiprecision or + standard solver for inverse modeling. - svn 578: + svn 578: - Distribution changes. Fixed names in README file. - Modified Makefile to use specified version. Split - Linux and source distribution procedure. + Distribution changes. Fixed names in README file. + Modified Makefile to use specified version. Split + Linux and source distribution procedure. ------------------------------------------------------------ Version 2.12 Date: Wed September 28, 2005 ------------------------------------------------------------ - Executables and output files for Sun operating systems - are no longer provided. + Executables and output files for Sun operating systems + are no longer provided. - Limited log activities of master species to be greater - than the smallest machine precision exponential number. - Avoids a matherr exception and allows trial of additional - parameter sets to attempt to solve the system of - equations. + Limited log activities of master species to be greater + than the smallest machine precision exponential number. + Avoids a matherr exception and allows trial of additional + parameter sets to attempt to solve the system of + equations. - Made aqueous activity coefficients the default activity - coefficients for exchange species when using the - Pitzer formulation. New option in EXCHANGE is - -pitzer_exchange_gammas T/F, default is true; - defining "false" sets exchange activity coefficients - to 1.0. Option has no effect for ion-association - model (non-Pitzer). + Made aqueous activity coefficients the default activity + coefficients for exchange species when using the + Pitzer formulation. New option in EXCHANGE is + -pitzer_exchange_gammas T/F, default is true; + defining "false" sets exchange activity coefficients + to 1.0. Option has no effect for ion-association + model (non-Pitzer). - Edited phreeqc.dat to add -gamma expression for - CdX2 and PbX2. + Edited phreeqc.dat to add -gamma expression for + CdX2 and PbX2. - Replaced O2(g) log K in phreeqc.dat and wateq4f.dat - with data from llnl.dat, which appears to be better. + Replaced O2(g) log K in phreeqc.dat and wateq4f.dat + with data from llnl.dat, which appears to be better. - Added multiplier format to REACTION increments, which - simplifies definition of multiple equal reaction increments. + Added multiplier format to REACTION increments, which + simplifies definition of multiple equal reaction increments. - REACTION - H2O 1 - -36 3*-4 2*-.25 -0.19 4*-0.1 3*-0.05 moles + REACTION + H2O 1 + -36 3*-4 2*-.25 -0.19 4*-0.1 3*-0.05 moles - Added Pitzer activity formulation. Use pizer.dat database - to invoke the Pitzer model. Should have same capabilities - as ion-association model except explicit diffuse layer - calculation is not implemented with the Pitzer model. + Added Pitzer activity formulation. Use pizer.dat database + to invoke the Pitzer model. Should have same capabilities + as ion-association model except explicit diffuse layer + calculation is not implemented with the Pitzer model. - Fixed bug in surface sites related to mineral and exchange - sites related to mineral. Did not have complete logic to - handle redox valence states in formula for species. + Fixed bug in surface sites related to mineral and exchange + sites related to mineral. Did not have complete logic to + handle redox valence states in formula for species. - Modified to remove non standard usage of va_list. + Modified to remove non standard usage of va_list. - Removed exchange master species from SYS("ex",..) - list of species. This species is fictive and should - not be included in the list. + Removed exchange master species from SYS("ex",..) + list of species. This species is fictive and should + not be included in the list. - Changed -redox in SOLUTION so that if one of the - redox states of a couple is not defined, then - redox defaults to pe. + Changed -redox in SOLUTION so that if one of the + redox states of a couple is not defined, then + redox defaults to pe. - Fixed buffer overrun in PhreeqcI with SOLUTION_SPREAD, - caused segmenatation fault with lines greater than - 500 characters. + Fixed buffer overrun in PhreeqcI with SOLUTION_SPREAD, + caused segmenatation fault with lines greater than + 500 characters. - Added bigger string for some error messages to avoid - access violation in cvode. + Added bigger string for some error messages to avoid + access violation in cvode. - Changed output_msg to warning_msg for combinations - of convergence parameters so that message would - be controlled by -warnings identifier. + Changed output_msg to warning_msg for combinations + of convergence parameters so that message would + be controlled by -warnings identifier. - Carriage returns are now stripped from Basic program - statements. Switching files from Windows to Unix sometimes - leaves extra carriage returns at the ends of lines, which - caused a syntax error for some Basic commands. + Carriage returns are now stripped from Basic program + statements. Switching files from Windows to Unix sometimes + leaves extra carriage returns at the ends of lines, which + caused a syntax error for some Basic commands. - Two bugs were fixed in inverse modeling. (1) Potential - models are now checked for all equality and inequality - constraints. Previously some constraints were not checked. - (2) One loop of cl1 did not include the last row when - checking for the pivot element. Also printing of headers - was slightly modified for inverse modeling. + Two bugs were fixed in inverse modeling. (1) Potential + models are now checked for all equality and inequality + constraints. Previously some constraints were not checked. + (2) One loop of cl1 did not include the last row when + checking for the pivot element. Also printing of headers + was slightly modified for inverse modeling. - A new multiple precision version of cl1 was develeped by - using the Gnu Multiple Precision package (gmp). Calculations - are carried out to about 30 significant digits. The mp - version may help in some situations where roundoff errors are - a problem, but it is still possible that roundoff errors will - cause cl1mp to fail to find a solution to the optimization - problem. The mp version has the following options in - INVERSE_MODELING: - -multiple_precision T/F--causes the mp version - to be used in inverse modeling calculations. - -mp_tolerance 1e-12--tolerance for mp version of - cl1. As in cl1, numbers less than the - tolerance are considered to be zero. - 1e-12 is the default. - -censor_mp 1e-20--as calculations occur in the - linear equation array, elements less - than this value are set to zero. Default - is 1e-20. A value of 0.0 causes no - censoring to occur. + A new multiple precision version of cl1 was develeped by + using the Gnu Multiple Precision package (gmp). Calculations + are carried out to about 30 significant digits. The mp + version may help in some situations where roundoff errors are + a problem, but it is still possible that roundoff errors will + cause cl1mp to fail to find a solution to the optimization + problem. The mp version has the following options in + INVERSE_MODELING: + -multiple_precision T/F--causes the mp version + to be used in inverse modeling calculations. + -mp_tolerance 1e-12--tolerance for mp version of + cl1. As in cl1, numbers less than the + tolerance are considered to be zero. + 1e-12 is the default. + -censor_mp 1e-20--as calculations occur in the + linear equation array, elements less + than this value are set to zero. Default + is 1e-20. A value of 0.0 causes no + censoring to occur. ------------------------------------------------------------ Version 2.11 Date: Mon February 7, 2005 ------------------------------------------------------------ - Fixed error in selected output file with mixing reaction. - MIX number was written to two columns, should be one. + Fixed error in selected output file with mixing reaction. + MIX number was written to two columns, should be one. - Fixed memory leak with PAD function. + Fixed memory leak with PAD function. - New database minteq.v4.dat has been translated from version - 4.02 of MINTEQA2. An older version of the MINTEQA2 database is - retained in file minteq.dat. + New database minteq.v4.dat has been translated from version + 4.02 of MINTEQA2. An older version of the MINTEQA2 database is + retained in file minteq.dat. - Switched version control to subversion. Simplified, - reorganized makefiles. + Switched version control to subversion. Simplified, + reorganized makefiles. - Fixed bug with PRINT; -warnings n. Use of this option - generally eliminated all warning messages instead of - all messages after the nth. Default number of warning - messages printed in now 100 per simulation. + Fixed bug with PRINT; -warnings n. Use of this option + generally eliminated all warning messages instead of + all messages after the nth. Default number of warning + messages printed in now 100 per simulation. - Fixed memory leaks in cvode that caused phreeqci to crash. - Now uses PHRQ_malloc in case of other memory leaks. Also - fixed potential memory error with PAD Basic function. + Fixed memory leaks in cvode that caused phreeqci to crash. + Now uses PHRQ_malloc in case of other memory leaks. Also + fixed potential memory error with PAD Basic function. - Saturation index phases that included water had wrong - value if distribution of species, exchange, or surface - not written also. + Saturation index phases that included water had wrong + value if distribution of species, exchange, or surface + not written also. - Fixed error message in cvode, if max iterations exceeded - the error caused a segmentation fault. + Fixed error message in cvode, if max iterations exceeded + the error caused a segmentation fault. - Made printing of parameter combination message a warning - message so that it could be turned off. + Made printing of parameter combination message a warning + message so that it could be turned off. ------------------------------------------------------------ Version 2.10 Date: Tue November 2, 2004 ------------------------------------------------------------ - Rearranged i/o for PHREEQC and reorganized driver - subroutine. The object of these changes is to make - the program more functional as a module for other - programs (PHAST) and eventually to produce a callable - C and Fortran module. + Rearranged i/o for PHREEQC and reorganized driver + subroutine. The object of these changes is to make + the program more functional as a module for other + programs (PHAST) and eventually to produce a callable + C and Fortran module. - Fixed a problem with surface related to a phase, when - phase was not part of system (for example, Fe(OH)3a when - there is no iron in system. + Fixed a problem with surface related to a phase, when + phase was not part of system (for example, Fe(OH)3a when + there is no iron in system. - Added convergence parameter set that requires mineral - transfers to produce positive concentrations in the - event that negative concentrations have been produced in - the prior Newton-Raphson iteration. (Fluorite example). + Added convergence parameter set that requires mineral + transfers to produce positive concentrations in the + event that negative concentrations have been produced in + the prior Newton-Raphson iteration. (Fluorite example). - Fixed bug with kinetics formulas; did not account for - stoichiometric coefficient correctly when using - phase names. Generalized to allow multiple phase - names in the -formula definition. + Fixed bug with kinetics formulas; did not account for + stoichiometric coefficient correctly when using + phase names. Generalized to allow multiple phase + names in the -formula definition. ------------------------------------------------------------ Version 2.9 Date: Wed September 15, 2004 ------------------------------------------------------------ - In inverse modeling, program terminates if sum of initial - solutions and phases is > 32. + In inverse modeling, program terminates if sum of initial + solutions and phases is > 32. - Fixed bug with isotopes. Log activity estimate after initial - solution calculation was inf under some conditions. An initial - surface calculation failed when using D. + Fixed bug with isotopes. Log activity estimate after initial + solution calculation was inf under some conditions. An initial + surface calculation failed when using D. - Changed saturation index print out to use reaction and log K - defined in PHASES definition. Previously, reaction could be - rewritten to predominant redox species. + Changed saturation index print out to use reaction and log K + defined in PHASES definition. Previously, reaction could be + rewritten to predominant redox species. - Fixed incorrect print of elapsed time for kinetics in advection. + Fixed incorrect print of elapsed time for kinetics in advection. - Added phrqproto.h prototype file and phrqtype.h for - switching compilation to long double. + Added phrqproto.h prototype file and phrqtype.h for + switching compilation to long double. - Fixed incorrect printout of kinetics delta moles with - advection. + Fixed incorrect printout of kinetics delta moles with + advection. - Added convergence parameter set that skips mineral - equations for first 5 iterations. + Added convergence parameter set that skips mineral + equations for first 5 iterations. - Added entity_exists for module. + Added entity_exists for module. - Tried to fix bug with mix index incorrect (-2) for - mixing with kinetics. + Tried to fix bug with mix index incorrect (-2) for + mixing with kinetics. - Added new keyword COPY that allows a data entity - to be copied from one index to a new index - or to a range of indices. Format is + Added new keyword COPY that allows a data entity + to be copied from one index to a new index + or to a range of indices. Format is - COPY keyword index index_start[-index_end] - - where keyword is one of the following: - SOLUTION - EQUILIBRIUM_PHASES - EXCHANGE - GAS_PHASE - KINETICS - MIX - REACTION - REACTION_TEMPERATURE - SOLID_SOLUTION - SURFACE + COPY keyword index index_start[-index_end] + + where keyword is one of the following: + SOLUTION + EQUILIBRIUM_PHASES + EXCHANGE + GAS_PHASE + KINETICS + MIX + REACTION + REACTION_TEMPERATURE + SOLID_SOLUTION + SURFACE - Numerical method had a bug with ionic strength, if - mass of water was not approximately 1. Routine - revise_guesses did not divide by the mass of - water. Also changed check in routine molalities - to check by molality, not moles. + Numerical method had a bug with ionic strength, if + mass of water was not approximately 1. Routine + revise_guesses did not divide by the mass of + water. Also changed check in routine molalities + to check by molality, not moles. - Fixed a null pointer when surface was related to a - mineral and mineral was not in database. + Fixed a null pointer when surface was related to a + mineral and mineral was not in database. - Added new Basic functions - i = INSTR(a$, b$) sets i to the character position of - string b$ in a$, 0 in not found. - b$ = LTRIM(a$) trims white space from beginning of - string a$ and stores result in b$. - b$ = RTRIM(a$) trims white space from end of string - a$ and stores result in b$. - b$ = LTRIM(a$) trims white space from beginning and - end of string a$ and stores result in b$. + Added new Basic functions + i = INSTR(a$, b$) sets i to the character position of + string b$ in a$, 0 in not found. + b$ = LTRIM(a$) trims white space from beginning of + string a$ and stores result in b$. + b$ = RTRIM(a$) trims white space from end of string + a$ and stores result in b$. + b$ = LTRIM(a$) trims white space from beginning and + end of string a$ and stores result in b$. - Added new Basic function SYS that calculates the to - total amount of an element in all phases (solution, - equilibrium_phases, surfaces, exchangers, solid solutions, - and gas phase). KINETIC reactions are not included. - The function has two forms: (1) one element name as an - argument (variable names are user specified) + Added new Basic function SYS that calculates the to + total amount of an element in all phases (solution, + equilibrium_phases, surfaces, exchangers, solid solutions, + and gas phase). KINETIC reactions are not included. + The function has two forms: (1) one element name as an + argument (variable names are user specified) - 10 t = SYS("As") + 10 t = SYS("As") - the function will return the total arsenic in the system. - (2) 5 arguments + the function will return the total arsenic in the system. + (2) 5 arguments - 10 t = SYS("As", count_species, names$, types$, moles) + 10 t = SYS("As", count_species, names$, types$, moles) - will return the total arsenic in the system to tot; count_species-- - the number of species that contain arsenic, including - solution, equilibrium_phases, surfaces, exchangers, solid solutions, - and gas phase species; names$--a character array that has the - name of each species; type$--a character array that specifies the - type of phase for the species, aq, equi, surf, ex, s_s, gas, diff. - Diff refers to the amount of the element in the diffuse layer of - a surface when the explicit diffuse layer calculation is used; - moles--an array containing the number of moles of the element in - the species. The sum of moles(i) is equal to tot. + will return the total arsenic in the system to tot; count_species-- + the number of species that contain arsenic, including + solution, equilibrium_phases, surfaces, exchangers, solid solutions, + and gas phase species; names$--a character array that has the + name of each species; type$--a character array that specifies the + type of phase for the species, aq, equi, surf, ex, s_s, gas, diff. + Diff refers to the amount of the element in the diffuse layer of + a surface when the explicit diffuse layer calculation is used; + moles--an array containing the number of moles of the element in + the species. The sum of moles(i) is equal to tot. - SYS has several special arguments for the form - SYS("arg", count, names$, types$, values) - arg is one of the options listed below. - count is a single numeric value and is the number of elements - in the following arrays. - name$ is an array of string values. - type$ is an array of string values. - values is an array of numeric values. + SYS has several special arguments for the form + SYS("arg", count, names$, types$, values) + arg is one of the options listed below. + count is a single numeric value and is the number of elements + in the following arrays. + name$ is an array of string values. + type$ is an array of string values. + values is an array of numeric values. - Values of arg: + Values of arg: - elt_name returns total number of moles of element in system. - count is the number of species for the element in - the system, including aqueous, exchange, surface, - equilibrium_phase, solid solution component, and - gas phase "species". - Arrays are filled for each "species"; values are moles. - "elements" returns total number of moles of all elements, - valence states, exchangers, and surfaces. - count is number of elements, valence states, - exchangers, and surfaces. - Arrays are filled for each element, valence state, - exchanger, and surface; values are moles. - "phases" returns maximum saturation index of all phases. - count is number of phases in system. - Arrays are filled for each phase; values are - saturation indexes. - "aq" returns sum of moles of all aqueous species. - count is number of aqueous species in system. - Arrays are filled with each aqueous species; - values are moles. - "ex" returns sum of moles of all exchange species. - count is number of exchange species in system. - Arrays are filled with each exchange species; - values are moles. - "surf" returns sum of moles of all surface species. - count is number of surface species in system. - Arrays are filled with each surface species; - values are moles. - "s_s" returns sum of moles of all solid solution components. - count is number of solid solution components in system. - Arrays are filled with each solid solution component; - values are moles. - "gas" returns sum of moles of all gas components. - count is number of gas components in system. - Arrays are filled with each gas component; - values are moles. + elt_name returns total number of moles of element in system. + count is the number of species for the element in + the system, including aqueous, exchange, surface, + equilibrium_phase, solid solution component, and + gas phase "species". + Arrays are filled for each "species"; values are moles. + "elements" returns total number of moles of all elements, + valence states, exchangers, and surfaces. + count is number of elements, valence states, + exchangers, and surfaces. + Arrays are filled for each element, valence state, + exchanger, and surface; values are moles. + "phases" returns maximum saturation index of all phases. + count is number of phases in system. + Arrays are filled for each phase; values are + saturation indexes. + "aq" returns sum of moles of all aqueous species. + count is number of aqueous species in system. + Arrays are filled with each aqueous species; + values are moles. + "ex" returns sum of moles of all exchange species. + count is number of exchange species in system. + Arrays are filled with each exchange species; + values are moles. + "surf" returns sum of moles of all surface species. + count is number of surface species in system. + Arrays are filled with each surface species; + values are moles. + "s_s" returns sum of moles of all solid solution components. + count is number of solid solution components in system. + Arrays are filled with each solid solution component; + values are moles. + "gas" returns sum of moles of all gas components. + count is number of gas components in system. + Arrays are filled with each gas component; + values are moles. - Added new Basic function, DESCRIPTION, that has the value - defined for the description field of the SOLUTION keyword line. + Added new Basic function, DESCRIPTION, that has the value + defined for the description field of the SOLUTION keyword line. - Added alternative ordinary differential equation solver - called CVODE, a set of C routines from the Lawrence - Livermore National Labs. CVODE is part of the SUNDIALS - package. CVODE is used in place of the Runge Kutta method - when "-cvode true" is used within a KINETICS data block. + Added alternative ordinary differential equation solver + called CVODE, a set of C routines from the Lawrence + Livermore National Labs. CVODE is part of the SUNDIALS + package. CVODE is used in place of the Runge Kutta method + when "-cvode true" is used within a KINETICS data block. - KINETICS - -cvode true + KINETICS + -cvode true - Fixed error in SOLUTION_SPREAD, defining -redox - did not set the default redox for the solutions - that were defined; pe was always used as default. + Fixed error in SOLUTION_SPREAD, defining -redox + did not set the default redox for the solutions + that were defined; pe was always used as default. - Modified code to allocate space differently for - pp_assemblage, exchange, surface, gas_phase, - kinetics, and s_s_assemblage. Enough space is allocated - at beginning of distribute_initial_conditions. - May speed up phast initialization and make better - use of available memory. + Modified code to allocate space differently for + pp_assemblage, exchange, surface, gas_phase, + kinetics, and s_s_assemblage. Enough space is allocated + at beginning of distribute_initial_conditions. + May speed up phast initialization and make better + use of available memory. - Changed gfw of water to 18 if isotopes of water are - included. Solvent is [1H]2[16O]. + Changed gfw of water to 18 if isotopes of water are + included. Solvent is [1H]2[16O]. - Fixed a bug in surface integration where order of ions - in the list of g's was incorrect. + Fixed a bug in surface integration where order of ions + in the list of g's was incorrect. - Pyrite rate was not 0 if supersaturated in phreeqc.dat - and wateq4f.dat + Pyrite rate was not 0 if supersaturated in phreeqc.dat + and wateq4f.dat - Segmentation error if a surface species was not - defined with an equation that contained another surface - species. In this case, the surface master species - had been redefined to be an aqueous species (SOLUTION_SPECIES). + Segmentation error if a surface species was not + defined with an equation that contained another surface + species. In this case, the surface master species + had been redefined to be an aqueous species (SOLUTION_SPECIES). ------------------------------------------------------------ Version 2.8 Date: Tue April 15, 2003 ------------------------------------------------------------ - Updated arsenic data in wateq4f.dat to be consistent with - Archer and Nordstrom (2002). + Updated arsenic data in wateq4f.dat to be consistent with + Archer and Nordstrom (2002). - Revised Basic interpreter to allow lines of any length - and character strings of any length. + Revised Basic interpreter to allow lines of any length + and character strings of any length. - Renumbering basic statement that included the function - SURF in PhreeqcI caused SURF to be omitted and generated - a syntax error. SURF and other functions had not been - implemented in PhreeqcI. + Renumbering basic statement that included the function + SURF in PhreeqcI caused SURF to be omitted and generated + a syntax error. SURF and other functions had not been + implemented in PhreeqcI. - Fixed a bug in the Basic Interpreter. If elements of - a dimensioned variable (character or number) were used on - both sides of an equation, the result was erroneously - stored in the last element of the variable used on the - right-hand side instead of the element specified on the - left-hand side. + Fixed a bug in the Basic Interpreter. If elements of + a dimensioned variable (character or number) were used on + both sides of an equation, the result was erroneously + stored in the last element of the variable used on the + right-hand side instead of the element specified on the + left-hand side. - Using comma in some fields caused an infinite loop. + Using comma in some fields caused an infinite loop. - Fixed bug with SOLUTION_SPREAD, Phreeqc was not - calculating solution numbers for solution_spread - solutions without solution numbers. + Fixed bug with SOLUTION_SPREAD, Phreeqc was not + calculating solution numbers for solution_spread + solutions without solution numbers. - Fixed bug with stagnant zone calculations. If solutions - not defined for stagnant cells, PhreeqcI crashed. + Fixed bug with stagnant zone calculations. If solutions + not defined for stagnant cells, PhreeqcI crashed. - Added new state for calculations, PHAST. Previously - phast used the state TRANSPORT, which caused some - erroneous results with temperature when TRANSPORT was - used in the PHREEQC part of the calculation. + Added new state for calculations, PHAST. Previously + phast used the state TRANSPORT, which caused some + erroneous results with temperature when TRANSPORT was + used in the PHREEQC part of the calculation. - Trying to define dump file in TRANSPORT caused a file - opening error. Fixed logic so now can open a file - and the name can include blanks. + Trying to define dump file in TRANSPORT caused a file + opening error. Fixed logic so now can open a file + and the name can include blanks. ------------------------------------------------------------ Version 2.7 Date: Fri February 14, 2003 ------------------------------------------------------------ - Initialized gfw in elements structure. + Initialized gfw in elements structure. - Fixed bug where "time" would be wrong for initial - solution calculation. Needed to initialize - rate variables for PhreeqcI. + Fixed bug where "time" would be wrong for initial + solution calculation. Needed to initialize + rate variables for PhreeqcI. - Added print of simulation number to error file for - phreeqci + Added print of simulation number to error file for + phreeqci - Limited printing of cell numbers to output file in advection - calculations. Cell numbers only printed if results - for cell are going to be printed. + Limited printing of cell numbers to output file in advection + calculations. Cell numbers only printed if results + for cell are going to be printed. - PhreeqcI captured status messages for kinetics, which - made a very large error file in some cases and - a long wait to view the output file in PhreeqcI. - Now PhreeqcI does not capture these intermediate - status messages. + PhreeqcI captured status messages for kinetics, which + made a very large error file in some cases and + a long wait to view the output file in PhreeqcI. + Now PhreeqcI does not capture these intermediate + status messages. - Removed old code related to redirecting error file + Removed old code related to redirecting error file - Corrected error in transport where wrong time step was used - for integration. + Corrected error in transport where wrong time step was used + for integration. - Changes to speed up transport algorithm. + Changes to speed up transport algorithm. - Allow file names with spaces in selected_output file name and - dump_file name. + Allow file names with spaces in selected_output file name and + dump_file name. - Modifications to work with RC1 phast log file. + Modifications to work with RC1 phast log file. - Allow any characters in square brackets for element name. - - and + and perhaps others caused problems before. + Allow any characters in square brackets for element name. + - and + and perhaps others caused problems before. - Fixed log molality of water in species printout, was - equal to log activity of water. Also fixed - basic function for LM. + Fixed log molality of water in species printout, was + equal to log activity of water. Also fixed + basic function for LM. - Changed solid solution prints to print 0 if solid solution - is not present. + Changed solid solution prints to print 0 if solid solution + is not present. - Fixed bug if no rate name was defined before options - in RATES. + Fixed bug if no rate name was defined before options + in RATES. - Fixed warning on Mac compilation in fpunchf. + Fixed warning on Mac compilation in fpunchf. - Fixed bug if isotopes were used but H and O isotopes - were not defined. + Fixed bug if isotopes were used but H and O isotopes + were not defined. - Fixed bug where special initial solution calculations - were done at later calculation stages. - Needed to set initial_solution_isotopes = FALSE; + Fixed bug where special initial solution calculations + were done at later calculation stages. + Needed to set initial_solution_isotopes = FALSE; - Fixed problem in C++ if structure name is same as member name. - logk member of logk structure was renamed to log_k. + Fixed problem in C++ if structure name is same as member name. + logk member of logk structure was renamed to log_k. - Added identifier -add_constant to PHASES, EXCHANGE_SPECIES, - SOLUTION_SPECIES, and SURFACE_SPECIES. + Added identifier -add_constant to PHASES, EXCHANGE_SPECIES, + SOLUTION_SPECIES, and SURFACE_SPECIES. - -add_constant -0.301 + -add_constant -0.301 - log K is augmented by the specified constant. + log K is augmented by the specified constant. - Added punch_isotopes and punch_calculate_values to allow - printing isotope ratios and any CALCULATE_VALUES result. + Added punch_isotopes and punch_calculate_values to allow + printing isotope ratios and any CALCULATE_VALUES result. - Added KEYWORDS: + Added KEYWORDS: - ISOTOPES - Element - -isotope isotope_name units standard_ratio - -total_is_major T/F (OPTION IS DISABLED!!) + ISOTOPES + Element + -isotope isotope_name units standard_ratio + -total_is_major T/F (OPTION IS DISABLED!!) - CALCULATE_VALUES - Name - -start - Basic statements, must have SAVE - -end + CALCULATE_VALUES + Name + -start + Basic statements, must have SAVE + -end - ISOTOPE_RATIOS (for printing) - Name=Calculate_values_name Isotope_name + ISOTOPE_RATIOS (for printing) + Name=Calculate_values_name Isotope_name - ISOTOPE_ALPHAS (for printing) - Name=Calculate_values_name Named_logk=named_expression_name + ISOTOPE_ALPHAS (for printing) + Name=Calculate_values_name Named_logk=named_expression_name - Basic functions: - calc_value("calc_value_name") evaluates a definition of CALCULATE_VALUES - lk_named("name") log10(K) of definition in NAMED_EXPRESSIONS - lk_phase("name") log10(K) of definition in PHASES - lk_species("name") log10(K) of definition in (SOLUTION, EXCHANGE, SURFACE)_SPECIES - sum_gas("template","element") Sum of element in gases with specified template - template="{C,[13C],[14C]}{O,[18O]}2" includes all CO2 gases - sum_species("template","element") Sum of element in aqueous, exchange, and surface species with - specified template - sum_s_s("s_s_name","element") Sum of element in a specified solid solution + Basic functions: + calc_value("calc_value_name") evaluates a definition of CALCULATE_VALUES + lk_named("name") log10(K) of definition in NAMED_EXPRESSIONS + lk_phase("name") log10(K) of definition in PHASES + lk_species("name") log10(K) of definition in (SOLUTION, EXCHANGE, SURFACE)_SPECIES + sum_gas("template","element") Sum of element in gases with specified template + template="{C,[13C],[14C]}{O,[18O]}2" includes all CO2 gases + sum_species("template","element") Sum of element in aqueous, exchange, and surface species with + specified template + sum_s_s("s_s_name","element") Sum of element in a specified solid solution - PRINT keyword: - -initial_isotopes T/F - -isotope_ratios T/F - -isotope_alphas T/F - -censor_species 1e-8 # Omits print of species if less than relative criterion + PRINT keyword: + -initial_isotopes T/F + -isotope_ratios T/F + -isotope_alphas T/F + -censor_species 1e-8 # Omits print of species if less than relative criterion - SELECTED_OUTPUT keyword: - -calculate_values name1 name2 ... - -isotopes minor_isotope1 minor_isotope2 .... + SELECTED_OUTPUT keyword: + -calculate_values name1 name2 ... + -isotopes minor_isotope1 minor_isotope2 .... - Added functions LK_SPECIES, LK_NAMED, LK_PHASE for Basic - interpreter. LK_SPECIES("CaHCO3+") returns the - log k for the association reaction for the ion pair - CaHCO3+ at the current temperature. The log K is - for the reaction as defined in the database or - input file. Similarly, - LK_NAMED("Log_alpha_18O_CO2(aq)/CO2(g)") returns the - value for the log K at the current temperature using - expressions defined in NAMED_LOG_K data block; - LK_PHASE("Calcite") returns the value of log K - for calcite at the current temperature for the - dissociation reaction defined in the database or - input file. Values are "log10" values. - Example for Basic program: + Added functions LK_SPECIES, LK_NAMED, LK_PHASE for Basic + interpreter. LK_SPECIES("CaHCO3+") returns the + log k for the association reaction for the ion pair + CaHCO3+ at the current temperature. The log K is + for the reaction as defined in the database or + input file. Similarly, + LK_NAMED("Log_alpha_18O_CO2(aq)/CO2(g)") returns the + value for the log K at the current temperature using + expressions defined in NAMED_LOG_K data block; + LK_PHASE("Calcite") returns the value of log K + for calcite at the current temperature for the + dissociation reaction defined in the database or + input file. Values are "log10" values. + Example for Basic program: - 10 PRINT "Log10 KCalcite: ", LK_PHASE("Calcite") - 20 PRINT "Log10 KCaHCO3+: ", LK_SPECIES("CaHCO3+") - 30 PRINT " 1000ln(alpha): ", LK_NAMED("Log_alpha_18O_CO2(aq)/CO2(g)")*LOG(10)*1000 + 10 PRINT "Log10 KCalcite: ", LK_PHASE("Calcite") + 20 PRINT "Log10 KCaHCO3+: ", LK_SPECIES("CaHCO3+") + 30 PRINT " 1000ln(alpha): ", LK_NAMED("Log_alpha_18O_CO2(aq)/CO2(g)")*LOG(10)*1000 - Added NAMED_EXPRESSIONS data block. This data block was - implemented to facilitate isotopic calculations. - It allows analytical expressions that are functions - of temperature to be defined. The purpose is to - separate the fractionation factors from the log K, - so that the fractionation factor or its temperature - dependence can be easily modified. The named - expression can be added to a log K for a species - or phase by the -add_logk identifier in SOLUTION_SPECIES - EXCHANGE_SPECIES, SURFACE_SPECIES, or PHASES data - block. + Added NAMED_EXPRESSIONS data block. This data block was + implemented to facilitate isotopic calculations. + It allows analytical expressions that are functions + of temperature to be defined. The purpose is to + separate the fractionation factors from the log K, + so that the fractionation factor or its temperature + dependence can be easily modified. The named + expression can be added to a log K for a species + or phase by the -add_logk identifier in SOLUTION_SPECIES + EXCHANGE_SPECIES, SURFACE_SPECIES, or PHASES data + block. ------------------------------------------------------------ Version 2.6 Date: Mon April 22, 2002 ------------------------------------------------------------ - PhreeqcI released. + PhreeqcI released. - All selected_output is routed through a single routine. + All selected_output is routed through a single routine. - Allow "_" inside square brackets, [A_bcd]. + Allow "_" inside square brackets, [A_bcd]. - Fixed bug match_elts_in_species, check for "e-" was wrong. + Fixed bug match_elts_in_species, check for "e-" was wrong. - Modified minteq.dat to put CuS4S5-3, Cu(S4)2-3 in - in Cu(1) mole balance equations instead of - Cu(2). Before the change, the program would - not converge if Cu(2) were defined in an - initial solution. - - Made revisions hopefully to improve SOLID_SOLUTIONS - convergence with small numbers of moles of - solids. + Modified minteq.dat to put CuS4S5-3, Cu(S4)2-3 in + in Cu(1) mole balance equations instead of + Cu(2). Before the change, the program would + not converge if Cu(2) were defined in an + initial solution. + + Made revisions hopefully to improve SOLID_SOLUTIONS + convergence with small numbers of moles of + solids. - Made changes related to dump file and PhreeqcI. + Made changes related to dump file and PhreeqcI. - Iterations now sums iterations in all kinetics calculations + Iterations now sums iterations in all kinetics calculations - Fixed bug with LA("H2O"), which was returning natural log - of activity of water. - + Fixed bug with LA("H2O"), which was returning natural log + of activity of water. + ------------------------------------------------------------ Version 2.5 Date: Mon October 1, 2001 ------------------------------------------------------------ - In llnl.dat, fixed sign errors in RRE (rare earth elements) - for some redox reactions and removed some redundant - species, generally ReeO2- was retained and Ree(OH)4- - was removed. + In llnl.dat, fixed sign errors in RRE (rare earth elements) + for some redox reactions and removed some redundant + species, generally ReeO2- was retained and Ree(OH)4- + was removed. - Added the capability to use square brackets to define an - "element" name. The brackets act like quotation marks - in that any character string can be used within the - brackets as an element name. This was introduced to - simplify expansion of the model to isotopic species. - [13C], [14C], and [18O] are legal element names. + Added the capability to use square brackets to define an + "element" name. The brackets act like quotation marks + in that any character string can be used within the + brackets as an element name. This was introduced to + simplify expansion of the model to isotopic species. + [13C], [14C], and [18O] are legal element names. - Added identifier -activity_water for a species in - SOLUTION_SPECIES data block. This identifier has been - added for future updates that will allow isotopic - calculations. It is intended to be used only for - isotopic variations of H2O, like D2O or H2[O18]. It - forces the activity coefficient for the species to be - activity(water)/55.5. This effectively sets the activity - of the species to the mole fraction in solution. + Added identifier -activity_water for a species in + SOLUTION_SPECIES data block. This identifier has been + added for future updates that will allow isotopic + calculations. It is intended to be used only for + isotopic variations of H2O, like D2O or H2[O18]. It + forces the activity coefficient for the species to be + activity(water)/55.5. This effectively sets the activity + of the species to the mole fraction in solution. - Fixed bug in checking solid solutions for presence or - absence of elements in the system. Programming - error caused segmentation fault if an error - was detected under certain conditions. + Fixed bug in checking solid solutions for presence or + absence of elements in the system. Programming + error caused segmentation fault if an error + was detected under certain conditions. - Changed return value of MOL to be molality of water - if argument is "H2O". Also changed return value - of LA to be activity of water if argument is - "H2O". + Changed return value of MOL to be molality of water + if argument is "H2O". Also changed return value + of LA to be activity of water if argument is + "H2O". - Diffuse layer calculation was incorrect if aqueous phase did not - have 1 kilogram of water. Eq. 74 of manual has molality, - but code used moles. The code was corrected by adding - the mass of water to the formulation. + Diffuse layer calculation was incorrect if aqueous phase did not + have 1 kilogram of water. Eq. 74 of manual has molality, + but code used moles. The code was corrected by adding + the mass of water to the formulation. - Stagnant zones with first-order exchange approximation (1 stagnant - cell, exchange factor, and porosities defined) did not work - correctly if mobile and immobile cells did not have equal - volumes of water. The mixing factors were revised to account - for the masses of water in the stagnant and mobile zones. + Stagnant zones with first-order exchange approximation (1 stagnant + cell, exchange factor, and porosities defined) did not work + correctly if mobile and immobile cells did not have equal + volumes of water. The mixing factors were revised to account + for the masses of water in the stagnant and mobile zones. - A fatal error was erroneously detected if the database file - had a DATABASE data block. DATABASE data block is - now ignored while reading the database file. + A fatal error was erroneously detected if the database file + had a DATABASE data block. DATABASE data block is + now ignored while reading the database file. - Added identifier -bad_step_max to KINETICS data block. - An integer following -bad_step_max gives the maximum number - of times a rate integration may fail before execution of the - program is terminated. Default is 500. + Added identifier -bad_step_max to KINETICS data block. + An integer following -bad_step_max gives the maximum number + of times a rate integration may fail before execution of the + program is terminated. Default is 500. ------------------------------------------------------------ Version 2.4.2: Date: Fri June 15, 2001 ------------------------------------------------------------ - Fixed spreadsheet bug. Program was not ignoring columns - that could not be identified as either element - names or allowed data (ph, pe, number, description, - etc). Also, the program failed if a spreadsheet solution - number was negative. + Fixed spreadsheet bug. Program was not ignoring columns + that could not be identified as either element + names or allowed data (ph, pe, number, description, + etc). Also, the program failed if a spreadsheet solution + number was negative. ------------------------------------------------------------ Version 2.4.1: Date: Mon June 4, 2001 ------------------------------------------------------------ - Fixed spreadsheet bugs with isotopes. + Fixed spreadsheet bugs with isotopes. ------------------------------------------------------------ Version 2.4: Date: Fri June 1, 2001 ------------------------------------------------------------ - Added structure for spreadsheet for use by PhreeqcI. + Added structure for spreadsheet for use by PhreeqcI. - Isotope value initialized incorrectly if only an -uncertainty was - defined in SOLUTION_SPREAD. + Isotope value initialized incorrectly if only an -uncertainty was + defined in SOLUTION_SPREAD. - Fixed segmentation violation when primary and secondary master - species were defined improperly. + Fixed segmentation violation when primary and secondary master + species were defined improperly. - Corrected enthalpies of reaction in llnl.dat. Previous release had - erroneously had enthalpies of formation in -delta_H - parameter; the values should be enthalpies of reaction. - Enthalpies of reaction were calculated from the - enthalpies of formation and these values are now included - in the -delta_H parameter. This change will have very - little impact on calculations because the analytical - expression has precedence over -delta_H in calculating - temperature dependence of log K, and nearly all species - and minerals have an analytical expression or lack both - an analytical expression and an enthalpy of reaction. + Corrected enthalpies of reaction in llnl.dat. Previous release had + erroneously had enthalpies of formation in -delta_H + parameter; the values should be enthalpies of reaction. + Enthalpies of reaction were calculated from the + enthalpies of formation and these values are now included + in the -delta_H parameter. This change will have very + little impact on calculations because the analytical + expression has precedence over -delta_H in calculating + temperature dependence of log K, and nearly all species + and minerals have an analytical expression or lack both + an analytical expression and an enthalpy of reaction. - Corrected bugs in punch of solid solution components that caused - both selected output and output file errors: moles - were incorrect in selected output, and total moles and - mole fraction were incorrect in output file. + Corrected bugs in punch of solid solution components that caused + both selected output and output file errors: moles + were incorrect in selected output, and total moles and + mole fraction were incorrect in output file. - Added surface complexation constants for Fe+2; two complexes for - weak sites and one complex for strong sites. phreeqc.dat - and wateq4f.dat modified. + Added surface complexation constants for Fe+2; two complexes for + weak sites and one complex for strong sites. phreeqc.dat + and wateq4f.dat modified. - Comment for units of parameters for calcite rate equation was - wrong. Rate equation now uses cm^2/L for area parameter. - Previously the correct units would have been 1/decimeter. - phreeqc.dat and wateq4f.dat modified. + Comment for units of parameters for calcite rate equation was + wrong. Rate equation now uses cm^2/L for area parameter. + Previously the correct units would have been 1/decimeter. + phreeqc.dat and wateq4f.dat modified. - Fixed a bug when rates were equal within tolerance, but negative - concentrations occurred because of small initial - concentrations. + Fixed a bug when rates were equal within tolerance, but negative + concentrations occurred because of small initial + concentrations. - Added -warnings to PRINT keyword for specification of maximum - number of warnings to print. Negative number allows - all warnings to be printed. + Added -warnings to PRINT keyword for specification of maximum + number of warnings to print. Negative number allows + all warnings to be printed. - Function CELL_NO in Basic now prints a number equivalent to - -solution in SELECTED_OUTPUT data block. This does not - change printing for ADVECTION or TRANSPORT calculations. + Function CELL_NO in Basic now prints a number equivalent to + -solution in SELECTED_OUTPUT data block. This does not + change printing for ADVECTION or TRANSPORT calculations. - Kinetics time is halved for advective part of reaction in - transport; time incorrectly accounted for before. + Kinetics time is halved for advective part of reaction in + transport; time incorrectly accounted for before. - -punch_ identifiers printed -1 instead of the correct solution - number for batch-reaction calculations. + -punch_ identifiers printed -1 instead of the correct solution + number for batch-reaction calculations. - -high_precision is no longer reset to false with every - SELECTED_OUTPUT data block. + -high_precision is no longer reset to false with every + SELECTED_OUTPUT data block. - SELECTED_OUTPUT file name stored for use by PhreeqcI. + SELECTED_OUTPUT file name stored for use by PhreeqcI. - Alkalinity for NH3 corrected to 1.0 in llnl.dat. + Alkalinity for NH3 corrected to 1.0 in llnl.dat. - Fixed bug with USER_PRINT of kinetics. Did not find correct - kinetics information in some cases. + Fixed bug with USER_PRINT of kinetics. Did not find correct + kinetics information in some cases. - Fixed bug in default values for SOLUTION_SPREAD. Cannot use phase - name and SI for pH or pe, and bug did not allow PHREEQC - to run. Now PHREEQC runs, but warns that this is not - allowed. + Fixed bug in default values for SOLUTION_SPREAD. Cannot use phase + name and SI for pH or pe, and bug did not allow PHREEQC + to run. Now PHREEQC runs, but warns that this is not + allowed. ------------------------------------------------------------ Version 2.3: Date: Tue January 2, 2001 ------------------------------------------------------------ - Added new keyword DATABASE. It must be the first keyword in - the input file. The character string following the - keyword is the pathname for the database file to - be used in the calculation. The file that is - specified takes precedence over any default - database name, including environmental variable - PHREEQC_DATABASE and command line arguments. + Added new keyword DATABASE. It must be the first keyword in + the input file. The character string following the + keyword is the pathname for the database file to + be used in the calculation. The file that is + specified takes precedence over any default + database name, including environmental variable + PHREEQC_DATABASE and command line arguments. - Fixed bug in SOLUTION_SPREAD. If first heading in - the spread-sheet input was an identifier--pH, - pe, units, etc--then the headings were interpreted - as an identifier and bad things happened. + Fixed bug in SOLUTION_SPREAD. If first heading in + the spread-sheet input was an identifier--pH, + pe, units, etc--then the headings were interpreted + as an identifier and bad things happened. - Added new keyword to make aqueous model similar to - LLNL and Geochemists Workbench when using - llnl.dat as the database file. Values - of Debye-Hückel a and b and bdot (ionic strength - coefficient) are read at fixed temperatures. - Linear interpolation occurs between temperatures. + Added new keyword to make aqueous model similar to + LLNL and Geochemists Workbench when using + llnl.dat as the database file. Values + of Debye-Hückel a and b and bdot (ionic strength + coefficient) are read at fixed temperatures. + Linear interpolation occurs between temperatures. - New options for SOLUTION_SPECIES are - -llnl_gamma a , where a is the ion-size parameter. - -co2_llnl_gamma , indicates the temperature dependent - function for the bdot term given in - -co2_coefs of LLNL_AQUEOUS_MODEL_PARAMETERS - will be used. Applies to uncharged - species only. + New options for SOLUTION_SPECIES are + -llnl_gamma a , where a is the ion-size parameter. + -co2_llnl_gamma , indicates the temperature dependent + function for the bdot term given in + -co2_coefs of LLNL_AQUEOUS_MODEL_PARAMETERS + will be used. Applies to uncharged + species only. LLNL_AQUEOUS_MODEL_PARAMETERS -temperatures - 0.0100 25.0000 60.0000 100.0000 - 150.0000 200.0000 250.0000 300.0000 + 0.0100 25.0000 60.0000 100.0000 + 150.0000 200.0000 250.0000 300.0000 #debye huckel a (adh) -dh_a - 0.4939 0.5114 0.5465 0.5995 - 0.6855 0.7994 0.9593 1.2180 + 0.4939 0.5114 0.5465 0.5995 + 0.6855 0.7994 0.9593 1.2180 #debye huckel b (bdh) -dh_b - 0.3253 0.3288 0.3346 0.3421 - 0.3525 0.3639 0.3766 0.3925 + 0.3253 0.3288 0.3346 0.3421 + 0.3525 0.3639 0.3766 0.3925 -bdot - 0.0394 0.0410 0.0438 0.0460 - 0.0470 0.0470 0.0340 0.0000 + 0.0394 0.0410 0.0438 0.0460 + 0.0470 0.0470 0.0340 0.0000 #cco2 (coefficients for the Drummond (1981) polynomial) -co2_coefs - -1.0312 0.0012806 - 255.9 0.4445 - -0.001606 - + -1.0312 0.0012806 + 255.9 0.4445 + -0.001606 + - Fixed bug in basic interpreter. A number like "..524" would - cause an infinite loop. + Fixed bug in basic interpreter. A number like "..524" would + cause an infinite loop. - Added function SURF to Basic. - SURF("element", "surface") gives the amount of - element sorbed on "surface". "surface" - should be the surface name, not the - surface-site name (that is, no underscore). + Added function SURF to Basic. + SURF("element", "surface") gives the amount of + element sorbed on "surface". "surface" + should be the surface name, not the + surface-site name (that is, no underscore). - Fixed option to "runge_kutta" from "runge-kutta" to match - documentation for KINETICS. + Fixed option to "runge_kutta" from "runge-kutta" to match + documentation for KINETICS. - Fixed UO2+2 and Mn+2 reaction stoichiometry for Hfo surface complexation - in wateq4f.dat. + Fixed UO2+2 and Mn+2 reaction stoichiometry for Hfo surface complexation + in wateq4f.dat. - Added option for an equilibrium-phase to dissolve only. - "dis" is added at the end of a line defining an equilibrium- - phase. No data fields may be omitted. Should not - be used when adding an alternative reaction. - Example: - EQUILIBRIUM_PHASES - Dolomite 0.0 0.001 dis - R-K integration failed when only the final rate generated - negative concentrations. - Allow decimals in definition of secondary master species, for - example S(0.3). - Fixed bug if description was more than about 85 characters; - now allows about 400 characters. - Fixed bug for surface/exchange sites related to phases. Was - checking internal copies of surfaces/exchange with negative - numbers. - Fixed bug in quick prep that did not set the correct pointer - for gas phases. - Fixed segmentation fault that occurred if all elements for - phase-boundary mineral were not in the solution. - Only applied to a phase used to define concentration - in an initial solution calculation. - Added option to eliminate echo of input file in PRINT - data block. -echo_input T/F turns echoing on - and off. Default is on. - + Added option for an equilibrium-phase to dissolve only. + "dis" is added at the end of a line defining an equilibrium- + phase. No data fields may be omitted. Should not + be used when adding an alternative reaction. + Example: + EQUILIBRIUM_PHASES + Dolomite 0.0 0.001 dis + R-K integration failed when only the final rate generated + negative concentrations. + Allow decimals in definition of secondary master species, for + example S(0.3). + Fixed bug if description was more than about 85 characters; + now allows about 400 characters. + Fixed bug for surface/exchange sites related to phases. Was + checking internal copies of surfaces/exchange with negative + numbers. + Fixed bug in quick prep that did not set the correct pointer + for gas phases. + Fixed segmentation fault that occurred if all elements for + phase-boundary mineral were not in the solution. + Only applied to a phase used to define concentration + in an initial solution calculation. + Added option to eliminate echo of input file in PRINT + data block. -echo_input T/F turns echoing on + and off. Default is on. + ------------------------------------------------------------ Release 2.2: Date: Wed March 1, 2000 ------------------------------------------------------------ - Fixed bug in MIX if no solutions are defined. - Changed printout for surface. - Only gives net surface charge for diffuse layer - calculation. - Prints correct value for the surface charge and - surface charge density for diffuse-layer - calculation. + Fixed bug in MIX if no solutions are defined. + Changed printout for surface. + Only gives net surface charge for diffuse layer + calculation. + Prints correct value for the surface charge and + surface charge density for diffuse-layer + calculation. - Added function EDL to Basic. - EDL("element", "surface") gives the amount of - element in the diffuse layer for "surface". - not including sorbed species. "surface" should - be the surface name, not the surface-site name - (that is, no underscore). + Added function EDL to Basic. + EDL("element", "surface") gives the amount of + element in the diffuse layer for "surface". + not including sorbed species. "surface" should + be the surface name, not the surface-site name + (that is, no underscore). - Special values for "element" include: - "charge" - gives surface charge, equivalents. - "sigma" - surface charge density, C/m**2. - "psi" - potential at the surface, Volts. - "water" - mass of water in the diffuse layer, kg. - Changed distribution to be more consistent with other USGS - water-resources applications. + Special values for "element" include: + "charge" - gives surface charge, equivalents. + "sigma" - surface charge density, C/m**2. + "psi" - potential at the surface, Volts. + "water" - mass of water in the diffuse layer, kg. + Changed distribution to be more consistent with other USGS + water-resources applications. ------------------------------------------------------------ Release 2.1: Date: Wed January 19, 2000 ------------------------------------------------------------ - Added additional #ifdef's for PhreeqcI. - Fixed problem with formats for USER_PUNCH and - others with Microsoft C++ 3 digit - exponents. + Added additional #ifdef's for PhreeqcI. + Fixed problem with formats for USER_PUNCH and + others with Microsoft C++ 3 digit + exponents. Initial Release 2.0: Date: Wed December 15, 1999 Version: C_54 = Version 2.0 - + From 6dbd4864998dcf80db0e603769f944ba9e5e6b86 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Fri, 1 Nov 2024 09:05:00 -0600 Subject: [PATCH 228/384] Tony's changes to example 22 --- CMakeLists.txt | 2 + co2.dat | 84 + co2_VP.dat | 140 + ex22 | 57 +- ex22.out | 6745 ++++++++++++++++++++++++++++++++++++------------ 5 files changed, 5306 insertions(+), 1722 deletions(-) create mode 100644 co2.dat create mode 100644 co2_VP.dat diff --git a/CMakeLists.txt b/CMakeLists.txt index ac885a5a..e8ef0e1e 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -1,7 +1,9 @@ cmake_minimum_required (VERSION 3.9) SET(phreeqc_EXAMPLES +co2.dat co2.tsv +co2_VP.dat ex1 ex2 ex2b diff --git a/co2.dat b/co2.dat new file mode 100644 index 00000000..42eb366c --- /dev/null +++ b/co2.dat @@ -0,0 +1,84 @@ +P 25.oC 50.oC 75.oC 100oC +10.7 0.3000 +26.3 0.7068 +35.8 0.9356 +50.1 1.2051 +50.1 1.2203 +75.2 1.3932 +100.2 1.4186 +101.4 1.4339 +136.0 1.4695 +150.4 1.4695 +151.6 1.4898 +176.6 1.5254 +200.5 1.5203 +202.9 1.5610 +249.4 1.5763 +299.5 1.6220 +399.8 1.7237 +9.5 0.1831 +25.3 0.433 +40.5 0.612 +50.6 0.771 +50.7 0.769 +60.6 0.908 +68.2 0.932 +70.8 0.994 +75.3 0.989 +76.0 1.005 +80.8 1.075 +87.2 0.999 +90.9 1.133 +100.9 1.162 +101 1.176 +101.3 1.180 +101.3 1.143 +101.3 1.121 +111.0 1.191 +121.0 1.214 +122.1 1.188 +126.7 1.194 +141.1 1.231 +147.5 1.257 +147.5 1.253 +152.0 1.234 +152.0 1.191 +176.8 1.285 +200 1.307 +201 1.334 +202.7 1.300 +301 1.431 +304.0 1.398 +405.3 1.485 +500 1.599 +608 1.639 +709.3 1.710 +8.4 0.0864 +25.1 0.3051 +51.3 0.5695 +75.2 0.7576 +101.4 0.9153 +150.4 1.0983 +199.3 1.1898 +201.7 1.1898 +299.5 1.3119 +399.8 1.4237 +699.3 1.6729 +3.2 0.025 +5.9 0.054 +9.1 0.088 +11.8 0.116 +14.3 0.145 +17.9 0.183 +22.8 0.231 +25.0 0.239 +50.0 0.454 +75.0 0.637 +100.0 0.788 +150.0 1.014 +197.4 1.133 +200.0 1.146 +300.0 1.317 +400.0 1.445 +493.5 1.599 +700.0 1.718 diff --git a/co2_VP.dat b/co2_VP.dat new file mode 100644 index 00000000..da032c14 --- /dev/null +++ b/co2_VP.dat @@ -0,0 +1,140 @@ +Vm 25C 50C 100C 150C +1.195 18.537 +0.955 22.572 +0.796 26.371 +0.684 29.865 +0.596 33.307 +0.528 36.494 +0.476 39.407 +0.432 42.170 +0.490 38.585 +0.324 50.489 +0.246 57.871 +0.200 62.155 +0.058 74.739 +0.053 109.870 +0.049 180.783 +0.046 308.620 +0.043 523.452 +0.040 864.844 +0.038 1325.170 +0.188 63.114 +0.186 63.247 +0.184 63.403 +0.180 63.451 +0.175 63.446 +0.163 63.450 +0.119 63.468 +0.077 63.467 +0.077 63.456 +0.062 63.474 +0.062 63.513 +0.062 63.593 +0.062 63.760 +0.062 64.151 +0.061 65.259 +0.061 65.370 +0.060 67.514 +0.190 62.946 +0.186 63.231 +0.184 63.377 +0.178 63.450 +0.114 63.462 +0.068 63.459 +0.062 63.550 +0.062 64.073 + +1.195 20.445 +0.955 25.026 +0.796 29.397 +0.684 33.475 +0.596 37.559 +0.528 41.400 +0.476 44.982 +0.324 59.524 +0.246 70.782 +0.200 79.158 +0.168 85.738 +0.146 90.682 +0.132 94.048 +0.119 97.232 +0.109 100.111 +0.109 100.118 +0.099 103.257 +0.091 106.665 +0.084 110.491 +0.078 115.297 +0.073 121.776 +0.068 130.848 +0.064 142.376 +0.064 145.229 +0.058 180.898 +0.053 245.038 +0.049 350.279 +0.046 518.686 +0.043 781.537 +0.040 1178.980 +0.038 1697.790 + +1.195 24.2483 +0.955 29.8914 +0.796 35.3693 +0.684 40.5672 +0.596 45.863 +0.528 50.959 +0.476 55.798 +0.490 54.413 +0.324 76.745 +0.246 95.130 +0.200 110.947 +0.168 125.564 +0.146 138.669 +0.132 149.054 +0.119 160.256 +0.109 171.567 +0.099 184.991 +0.091 199.951 +0.084 216.386 +0.078 235.395 +0.073 258.216 +0.068 286.180 +0.064 317.264 +0.064 324.641 +0.058 403.553 +0.053 522.315 +0.049 691.824 +0.043 1289.390 +0.040 1792.290 +0.038 2419.970 + +1.195 28.031 +0.955 34.713 +0.796 41.266 +0.684 47.547 +0.596 54.026 +0.528 60.318 +0.476 66.370 +0.490 64.628 +0.324 93.426 +0.246 111.587 +0.200 141.534 +0.168 164.001 +0.146 185.206 +0.132 202.746 +0.119 222.250 +0.109 242.450 +0.109 242.478 +0.099 266.859 +0.091 294.204 +0.084 324.034 +0.078 357.992 +0.073 397.723 +0.068 444.846 +0.064 495.431 +0.064 507.212 +0.058 628.422 +0.053 799.215 +0.049 1030.05 +0.043 1782.41 +0.040 2384.27 +0.038 3117.01 diff --git a/ex22 b/ex22 index 0bc0fb9e..5aa44f78 100644 --- a/ex22 +++ b/ex22 @@ -1,58 +1,67 @@ -TITLE Example 22.--Compare experimental CO2 solubilities at high CO2 pressure - with Peng-Robinson calc'ns with fixed-volume gas_phase, 25, 50, 75, 100 oC. +TITLE Example 22.--Compare experimental CO2 solubilities at high CO2 pressure with + Peng-Robinson calc`ns with fixed-volume gas_phase, 25, 50, 75, 100, 150 oC. +#PRINT; -reset false SOLUTION 1 GAS_PHASE 1 -fixed_volume CO2(g) 0 H2O(g) 0 REACTION - CO2 1; 0 27*1 + CO2 1; 0 31*1 INCREMENTAL_REACTIONS true -USER_GRAPH 1 Example 22, CO2 solubility at high pressures, 25 - 100C - -plot_tsv_file co2.tsv - -axis_titles "Pressure, in atmospheres" \ - "CO2 concentration, in moles per kilogram water" +USER_GRAPH 1 Example 22, + -chart_title "CO2 solubility at high pressures, 25 - 100 C" + -plot_csv_file co2.dat + -axis_titles "Pressure / atm" "CO2 / (mol/kgw)" -axis_scale x_axis 0 500 -axis_scale y_axis 0 2 -connect_simulations false 10 graph_x PR_P("CO2(g)") 20 graph_y TOT("C(4)") -end -USER_GRAPH 2 Example 22, P-Vm of CO2 gas, 25 - 100C - -headings 25C - -axis_titles "Molar volume of CO2 gas, in liters per mole" \ - "CO2 pressure, in atmospheres" - -axis_scale x_axis 0 1 - -axis_scale y_axis 0 500 +USER_GRAPH 2 Example 22, P-Vm of CO2 gas, 25 - 150 C + -chart_title "P-Vm of CO2 gas, data from Michels et al., 1935, 1937" + -plot_csv_file co2_VP.dat + -axis_titles "molar volume of CO2 gas / (L/mol)" "CO2 pressure / atm" + -axis_scale x_axis 0 0.7 + -axis_scale y_axis 0 700 -connect_simulations false - 10 plot_xy gas_vm, gas_p symbol = None - -end + 10 graph_x gas_vm : graph_y gas_p END USE solution 1 USE gas_phase 1 -USE reaction 1 +REACTION + CO2 1; 0 29*1 REACTION_TEMPERATURE 2 50 -USER_GRAPH 2 - -headings 50C END USE solution 1 USE gas_phase 1 -USE reaction 1 +REACTION + CO2 1; 0 27*1 REACTION_TEMPERATURE 3 75 -USER_GRAPH 2 - -headings 75C +USER_GRAPH 2; -active false END USE solution 1 USE gas_phase 1 -USE reaction 1 +REACTION + CO2 1; 0 28*1 REACTION_TEMPERATURE 4 100 -USER_GRAPH 2 - -headings 100C +USER_GRAPH 2; -active true +END + +USE solution 1 +USE gas_phase 1 +REACTION + CO2 1; 0 26*1 +REACTION_TEMPERATURE 5 + 150 +USER_GRAPH 1; -active false +USER_GRAPH 2; -active true END diff --git a/ex22.out b/ex22.out index ca9d6a6e..12ba92e7 100644 --- a/ex22.out +++ b/ex22.out @@ -1,6 +1,6 @@ - Input file: ../examples/ex22 - Output file: ex22.out -Database file: ../database/phreeqc.dat + Input file: C:\GitPrograms\phreeqc3-1\examples\ex22 + Output file: C:\GitPrograms\phreeqc3-1\examples\ex22.out +Database file: C:\Program Files (x86)\USGS\Phreeqc Interactive 3.8.2-16969\database\phreeqc.dat ------------------ Reading data base. @@ -20,8 +20,8 @@ Reading data base. Reading input data for simulation 1. ------------------------------------ - TITLE Example 22.--Compare experimental CO2 solubilities at high CO2 pressure - with Peng-Robinson calc'ns with fixed-volume gas_phase, 25, 50, 75, 100 oC. + TITLE Example 22.--Compare experimental CO2 solubilities at high CO2 pressure with + Peng-Robinson calc`ns with fixed-volume gas_phase, 25, 50, 75, 100, 150 oC. SOLUTION 1 GAS_PHASE 1 fixed_volume @@ -29,32 +29,33 @@ Reading input data for simulation 1. H2O(g) 0 REACTION CO2 1 - 0 27*1 + 0 31*1 INCREMENTAL_REACTIONS true - USER_GRAPH 1 Example 22, CO2 solubility at high pressures, 25 - 100C - -plot_tsv_file co2.tsv - -axis_titles "Pressure, in atmospheres" "CO2 concentration, in moles per kilogram water" + USER_GRAPH 1 Example 22, + -chart_title "CO2 solubility at high pressures, 25 - 100 C" + -plot_csv_file co2.dat + -axis_titles "Pressure / atm" "CO2 / (mol/kgw)" -axis_scale x_axis 0 500 -axis_scale y_axis 0 2 -connect_simulations false 10 graph_x PR_P("CO2(g)") 20 graph_y TOT("C(4)") -end - USER_GRAPH 2 Example 22, P-Vm of CO2 gas, 25 - 100C - -headings 25C - -axis_titles "Molar volume of CO2 gas, in liters per mole" "CO2 pressure, in atmospheres" - -axis_scale x_axis 0 1 - -axis_scale y_axis 0 500 + USER_GRAPH 2 Example 22, P-Vm of CO2 gas, 25 - 150 C + -chart_title "P-Vm of CO2 gas, data from Michels et al., 1935, 1937" + -plot_csv_file co2_VP.dat + -axis_titles "molar volume of CO2 gas / (L/mol)" "CO2 pressure / atm" + -axis_scale x_axis 0 0.7 + -axis_scale y_axis 0 700 -connect_simulations false - 10 plot_xy gas_vm, gas_p symbol = None - -end + 10 graph_x gas_vm : graph_y gas_p END ----- TITLE ----- - Example 22.--Compare experimental CO2 solubilities at high CO2 pressure - with Peng-Robinson calc'ns with fixed-volume gas_phase, 25, 50, 75, 100 oC. + Example 22.--Compare experimental CO2 solubilities at high CO2 pressure with + Peng-Robinson calc`ns with fixed-volume gas_phase, 25, 50, 75, 100, 150 oC. ------------------------------------------- Beginning of initial solution calculations. @@ -72,15 +73,15 @@ Initial solution 1. pH = 7.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 0 - Density (g/cm³) = 0.99704 + Specific Conductance (uS/cm, 25oC) = 0 + Density (g/cm3) = 0.99704 Volume (L) = 1.00297 Viscosity (mPa s) = 0.89002 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.007e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.217e-09 - Temperature (°C) = 25.00 + Temperature (oC) = 25.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.60 Iterations = 0 @@ -90,7 +91,7 @@ Initial solution 1. ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol OH- 1.013e-07 1.012e-07 -6.995 -6.995 -0.000 -4.14 H+ 1.001e-07 1.000e-07 -7.000 -7.000 -0.000 0.00 @@ -161,15 +162,15 @@ H2O(g) -1.50 3.143e-02 1.000 0.000e+00 1.285e-03 1.285e-03 pH = 7.000 Charge balance pe = 11.047 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 0 - Density (g/cm³) = 0.99700 + Specific Conductance (uS/cm, 25oC) = 0 + Density (g/cm3) = 0.99700 Volume (L) = 1.00299 Viscosity (mPa s) = 0.89004 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.006e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.217e-09 - Temperature (°C) = 25.00 + Temperature (oC) = 25.00 Pressure (atm) = 0.03 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.60 @@ -180,7 +181,7 @@ H2O(g) -1.50 3.143e-02 1.000 0.000e+00 1.285e-03 1.285e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol OH- 1.013e-07 1.012e-07 -6.995 -6.995 -0.000 -4.14 H+ 1.000e-07 1.000e-07 -7.000 -7.000 -0.000 0.00 @@ -244,17 +245,17 @@ H2O(g) -1.45 3.586e-02 0.878 1.285e-03 1.587e-03 3.014e-04 ----------------------------Description of solution---------------------------- pH = 3.368 Charge balance - pe = 14.672 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 155 - Density (g/cm³) = 1.00156 + pe = 14.674 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 165 + Density (g/cm3) = 1.00156 Volume (L) = 1.01670 - Viscosity (mPa s) = 0.91920 + Viscosity (mPa s) = 0.89006 Activity of water = 0.993 Ionic strength (mol/kgw) = 4.384e-04 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 4.161e-01 - Temperature (°C) = 25.00 + Temperature (oC) = 25.00 Pressure (atm) = 13.23 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -265,28 +266,28 @@ H2O(g) -1.45 3.586e-02 0.878 1.285e-03 1.587e-03 3.014e-04 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 4.384e-04 4.284e-04 -3.358 -3.368 -0.010 0.00 OH- 2.430e-11 2.372e-11 -10.614 -10.625 -0.010 -4.07 H2O 5.551e+01 9.930e-01 1.744 -0.003 0.000 18.06 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.321 -120.321 0.000 35.47 + CH4 0.000e+00 0.000e+00 -120.337 -120.337 0.000 35.47 C(4) 4.161e-01 CO2 4.095e-01 4.096e-01 -0.388 -0.388 0.000 34.43 (CO2)2 3.079e-03 3.079e-03 -2.512 -2.512 0.000 68.85 HCO3- 4.384e-04 4.282e-04 -3.358 -3.368 -0.010 24.61 CO3-2 5.227e-11 4.754e-11 -10.282 -10.323 -0.041 -3.86 -H(0) 1.160e-39 - H2 5.798e-40 5.798e-40 -39.237 -39.237 0.000 28.60 -O(0) 2.383e-14 - O2 1.191e-14 1.192e-14 -13.924 -13.924 0.000 30.38 +H(0) 1.149e-39 + H2 5.745e-40 5.746e-40 -39.241 -39.241 0.000 28.60 +O(0) 2.426e-14 + O2 1.213e-14 1.213e-14 -13.916 -13.916 0.000 30.38 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 13 atm) - CH4(g) -117.51 -120.32 -2.81 CH4 + CH4(g) -117.53 -120.34 -2.81 CH4 CO2(g) 1.09 -0.39 -1.48 CO2 Pressure 13.2 atm, phi 0.928 H2(g) -36.13 -39.24 -3.11 H2 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.878 @@ -338,17 +339,17 @@ H2O(g) -1.38 4.125e-02 0.766 1.587e-03 1.998e-03 4.108e-04 ----------------------------Description of solution---------------------------- pH = 3.241 Charge balance - pe = 14.793 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 193 - Density (g/cm³) = 1.00523 + pe = 14.795 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 218 + Density (g/cm3) = 1.00523 Volume (L) = 1.02762 - Viscosity (mPa s) = 0.94202 + Viscosity (mPa s) = 0.88995 Activity of water = 0.987 Ionic strength (mol/kgw) = 5.901e-04 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 7.506e-01 - Temperature (°C) = 25.00 + Temperature (oC) = 25.00 Pressure (atm) = 25.84 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -359,32 +360,32 @@ H2O(g) -1.38 4.125e-02 0.766 1.587e-03 1.998e-03 4.108e-04 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 5.901e-04 5.746e-04 -3.229 -3.241 -0.012 0.00 OH- 1.829e-11 1.779e-11 -10.738 -10.750 -0.012 -4.02 H2O 5.551e+01 9.874e-01 1.744 -0.006 0.000 18.05 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.022 -120.022 0.000 35.49 + CH4 0.000e+00 0.000e+00 -120.036 -120.036 0.000 35.49 C(4) 7.506e-01 CO2 7.304e-01 7.304e-01 -0.136 -0.136 0.000 34.42 (CO2)2 9.792e-03 9.794e-03 -2.009 -2.009 0.000 68.84 HCO3- 5.901e-04 5.742e-04 -3.229 -3.241 -0.012 24.66 CO3-2 5.380e-11 4.823e-11 -10.269 -10.317 -0.047 -3.73 -H(0) 1.177e-39 - H2 5.884e-40 5.885e-40 -39.230 -39.230 0.000 28.59 -O(0) 2.227e-14 - O2 1.114e-14 1.114e-14 -13.953 -13.953 0.000 30.36 +H(0) 1.167e-39 + H2 5.836e-40 5.837e-40 -39.234 -39.234 0.000 28.59 +O(0) 2.264e-14 + O2 1.132e-14 1.132e-14 -13.946 -13.946 0.000 30.36 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 26 atm) - CH4(g) -117.20 -120.02 -2.82 CH4 + CH4(g) -117.22 -120.04 -2.82 CH4 CO2(g) 1.35 -0.14 -1.48 CO2 Pressure 25.8 atm, phi 0.862 H2(g) -36.12 -39.23 -3.11 H2 H2O(g) -1.50 -0.01 1.49 H2O Pressure 0.0 atm, phi 0.766 - O2(g) -11.05 -13.95 -2.91 O2 + O2(g) -11.04 -13.95 -2.91 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -432,17 +433,17 @@ H2O(g) -1.32 4.764e-02 0.666 1.998e-03 2.555e-03 5.569e-04 ----------------------------Description of solution---------------------------- pH = 3.178 Charge balance - pe = 14.865 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 212 - Density (g/cm³) = 1.00802 + pe = 14.834 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 248 + Density (g/cm3) = 1.00802 Volume (L) = 1.03574 - Viscosity (mPa s) = 0.95902 + Viscosity (mPa s) = 0.88983 Activity of water = 0.983 Ionic strength (mol/kgw) = 6.833e-04 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.002e+00 - Temperature (°C) = 25.00 + Temperature (oC) = 25.00 Pressure (atm) = 37.31 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -453,32 +454,32 @@ H2O(g) -1.32 4.764e-02 0.666 1.998e-03 2.555e-03 5.569e-04 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 6.833e-04 6.641e-04 -3.165 -3.178 -0.012 0.00 OH- 1.595e-11 1.548e-11 -10.797 -10.810 -0.013 -3.98 H2O 5.551e+01 9.832e-01 1.744 -0.007 0.000 18.04 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.972 -119.972 0.000 35.51 + CH4 0.000e+00 0.000e+00 -119.730 -119.730 0.000 35.51 C(4) 1.002e+00 CO2 9.669e-01 9.670e-01 -0.015 -0.015 0.000 34.42 (CO2)2 1.716e-02 1.717e-02 -1.765 -1.765 0.000 68.83 HCO3- 6.833e-04 6.636e-04 -3.165 -3.178 -0.013 24.70 CO3-2 5.494e-11 4.887e-11 -10.260 -10.311 -0.051 -3.61 -H(0) 1.117e-39 - H2 5.584e-40 5.585e-40 -39.253 -39.253 0.000 28.59 -O(0) 2.393e-14 - O2 1.197e-14 1.197e-14 -13.922 -13.922 0.000 30.35 +H(0) 1.283e-39 + H2 6.416e-40 6.418e-40 -39.193 -39.193 0.000 28.59 +O(0) 1.813e-14 + O2 9.065e-15 9.066e-15 -14.043 -14.043 0.000 30.35 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 37 atm) - CH4(g) -117.15 -119.97 -2.82 CH4 + CH4(g) -116.91 -119.73 -2.82 CH4 CO2(g) 1.48 -0.01 -1.49 CO2 Pressure 37.3 atm, phi 0.803 - H2(g) -36.13 -39.25 -3.12 H2 + H2(g) -36.07 -39.19 -3.12 H2 H2O(g) -1.50 -0.01 1.49 H2O Pressure 0.0 atm, phi 0.666 - O2(g) -11.01 -13.92 -2.91 O2 + O2(g) -11.13 -14.04 -2.91 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -526,17 +527,17 @@ H2O(g) -1.26 5.498e-02 0.580 2.555e-03 3.300e-03 7.455e-04 ----------------------------Description of solution---------------------------- pH = 3.142 Charge balance - pe = 14.877 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 222 - Density (g/cm³) = 1.01002 + pe = 14.904 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 267 + Density (g/cm3) = 1.01002 Volume (L) = 1.04130 - Viscosity (mPa s) = 0.97075 + Viscosity (mPa s) = 0.88973 Activity of water = 0.980 Ionic strength (mol/kgw) = 7.422e-04 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.177e+00 - Temperature (°C) = 25.00 + Temperature (oC) = 25.00 Pressure (atm) = 47.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -547,32 +548,32 @@ H2O(g) -1.26 5.498e-02 0.580 2.555e-03 3.300e-03 7.455e-04 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 7.422e-04 7.206e-04 -3.129 -3.142 -0.013 0.00 OH- 1.480e-11 1.435e-11 -10.830 -10.843 -0.013 -3.94 H2O 5.551e+01 9.804e-01 1.744 -0.009 0.000 18.03 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.727 -119.727 0.000 35.52 + CH4 0.000e+00 0.000e+00 -119.941 -119.941 0.000 35.52 C(4) 1.177e+00 CO2 1.129e+00 1.129e+00 0.053 0.053 0.000 34.41 (CO2)2 2.341e-02 2.341e-02 -1.631 -1.631 0.000 68.82 HCO3- 7.422e-04 7.200e-04 -3.129 -3.143 -0.013 24.73 CO3-2 5.582e-11 4.942e-11 -10.253 -10.306 -0.053 -3.52 -H(0) 1.226e-39 - H2 6.128e-40 6.130e-40 -39.213 -39.213 0.000 28.58 -O(0) 1.936e-14 - O2 9.678e-15 9.679e-15 -14.014 -14.014 0.000 30.33 +H(0) 1.083e-39 + H2 5.416e-40 5.417e-40 -39.266 -39.266 0.000 28.58 +O(0) 2.478e-14 + O2 1.239e-14 1.239e-14 -13.907 -13.907 0.000 30.33 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 47 atm) - CH4(g) -116.90 -119.73 -2.83 CH4 + CH4(g) -117.11 -119.94 -2.83 CH4 CO2(g) 1.55 0.05 -1.50 CO2 Pressure 47.0 atm, phi 0.753 - H2(g) -36.09 -39.21 -3.12 H2 + H2(g) -36.14 -39.27 -3.12 H2 H2O(g) -1.50 -0.01 1.49 H2O Pressure 0.1 atm, phi 0.580 - O2(g) -11.10 -14.01 -2.92 O2 + O2(g) -10.99 -13.91 -2.92 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -620,17 +621,17 @@ H2O(g) -1.20 6.307e-02 0.507 3.300e-03 4.278e-03 9.775e-04 ----------------------------Description of solution---------------------------- pH = 3.122 Charge balance - pe = 14.890 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 228 - Density (g/cm³) = 1.01134 + pe = 14.847 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 278 + Density (g/cm3) = 1.01134 Volume (L) = 1.04476 - Viscosity (mPa s) = 0.97819 + Viscosity (mPa s) = 0.88965 Activity of water = 0.979 Ionic strength (mol/kgw) = 7.783e-04 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.288e+00 - Temperature (°C) = 25.00 + Temperature (oC) = 25.00 Pressure (atm) = 54.79 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -641,32 +642,32 @@ H2O(g) -1.20 6.307e-02 0.507 3.300e-03 4.278e-03 9.775e-04 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 7.783e-04 7.552e-04 -3.109 -3.122 -0.013 0.00 OH- 1.421e-11 1.376e-11 -10.848 -10.861 -0.014 -3.91 H2O 5.551e+01 9.786e-01 1.744 -0.009 0.000 18.03 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.630 -119.630 0.000 35.53 + CH4 0.000e+00 0.000e+00 -119.289 -119.289 0.000 35.53 C(4) 1.288e+00 CO2 1.232e+00 1.232e+00 0.090 0.091 0.000 34.41 (CO2)2 2.784e-02 2.785e-02 -1.555 -1.555 0.000 68.82 HCO3- 7.783e-04 7.545e-04 -3.109 -3.122 -0.014 24.76 CO3-2 5.646e-11 4.985e-11 -10.248 -10.302 -0.054 -3.44 -H(0) 1.260e-39 - H2 6.298e-40 6.299e-40 -39.201 -39.201 0.000 28.58 -O(0) 1.797e-14 - O2 8.983e-15 8.984e-15 -14.047 -14.047 0.000 30.32 +H(0) 1.533e-39 + H2 7.663e-40 7.664e-40 -39.116 -39.116 0.000 28.58 +O(0) 1.214e-14 + O2 6.068e-15 6.069e-15 -14.217 -14.217 0.000 30.32 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 55 atm) - CH4(g) -116.79 -119.63 -2.84 CH4 + CH4(g) -116.45 -119.29 -2.84 CH4 CO2(g) 1.59 0.09 -1.50 CO2 Pressure 54.7 atm, phi 0.713 - H2(g) -36.07 -39.20 -3.13 H2 + H2(g) -35.99 -39.12 -3.13 H2 H2O(g) -1.50 -0.01 1.49 H2O Pressure 0.1 atm, phi 0.507 - O2(g) -11.13 -14.05 -2.92 O2 + O2(g) -11.30 -14.22 -2.92 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -714,17 +715,17 @@ H2O(g) -1.15 7.157e-02 0.448 4.278e-03 5.528e-03 1.251e-03 ----------------------------Description of solution---------------------------- pH = 3.111 Charge balance - pe = 14.943 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 231 - Density (g/cm³) = 1.01215 + pe = 14.888 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 284 + Density (g/cm3) = 1.01215 Volume (L) = 1.04668 - Viscosity (mPa s) = 0.98243 + Viscosity (mPa s) = 0.88959 Activity of water = 0.978 Ionic strength (mol/kgw) = 7.989e-04 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.352e+00 - Temperature (°C) = 25.00 + Temperature (oC) = 25.00 Pressure (atm) = 60.25 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -735,32 +736,32 @@ H2O(g) -1.15 7.157e-02 0.448 4.278e-03 5.528e-03 1.251e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 7.989e-04 7.748e-04 -3.098 -3.111 -0.013 0.00 OH- 1.390e-11 1.347e-11 -10.857 -10.871 -0.014 -3.89 H2O 5.551e+01 9.775e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.948 -119.948 0.000 35.54 + CH4 0.000e+00 0.000e+00 -119.509 -119.509 0.000 35.54 C(4) 1.352e+00 CO2 1.290e+00 1.290e+00 0.111 0.111 0.000 34.40 (CO2)2 3.055e-02 3.055e-02 -1.515 -1.515 0.000 68.81 HCO3- 7.989e-04 7.741e-04 -3.098 -3.111 -0.014 24.77 CO3-2 5.690e-11 5.016e-11 -10.245 -10.300 -0.055 -3.39 -H(0) 1.032e-39 - H2 5.158e-40 5.159e-40 -39.288 -39.287 0.000 28.58 -O(0) 2.643e-14 - O2 1.321e-14 1.322e-14 -13.879 -13.879 0.000 30.31 +H(0) 1.328e-39 + H2 6.640e-40 6.641e-40 -39.178 -39.178 0.000 28.58 +O(0) 1.595e-14 + O2 7.973e-15 7.975e-15 -14.098 -14.098 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 60 atm) - CH4(g) -117.11 -119.95 -2.84 CH4 + CH4(g) -116.67 -119.51 -2.84 CH4 CO2(g) 1.62 0.11 -1.50 CO2 Pressure 60.2 atm, phi 0.685 - H2(g) -36.16 -39.29 -3.13 H2 + H2(g) -36.05 -39.18 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.448 - O2(g) -10.95 -13.88 -2.92 O2 + O2(g) -11.17 -14.10 -2.92 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -808,17 +809,17 @@ H2O(g) -1.10 8.014e-02 0.401 5.528e-03 7.089e-03 1.561e-03 ----------------------------Description of solution---------------------------- pH = 3.105 Charge balance - pe = 14.977 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 233 - Density (g/cm³) = 1.01257 + pe = 14.924 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 287 + Density (g/cm3) = 1.01257 Volume (L) = 1.04759 - Viscosity (mPa s) = 0.98452 + Viscosity (mPa s) = 0.88955 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.092e-04 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.384e+00 - Temperature (°C) = 25.00 + Temperature (oC) = 25.00 Pressure (atm) = 63.57 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -829,32 +830,32 @@ H2O(g) -1.10 8.014e-02 0.401 5.528e-03 7.089e-03 1.561e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.092e-04 7.847e-04 -3.092 -3.105 -0.013 0.00 OH- 1.376e-11 1.333e-11 -10.861 -10.875 -0.014 -3.88 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.171 -120.171 0.000 35.54 + CH4 0.000e+00 0.000e+00 -119.743 -119.742 0.000 35.54 C(4) 1.384e+00 CO2 1.319e+00 1.319e+00 0.120 0.120 0.000 34.40 (CO2)2 3.193e-02 3.194e-02 -1.496 -1.496 0.000 68.81 HCO3- 8.092e-04 7.839e-04 -3.092 -3.106 -0.014 24.78 CO3-2 5.716e-11 5.035e-11 -10.243 -10.298 -0.055 -3.36 -H(0) 8.998e-40 - H2 4.499e-40 4.500e-40 -39.347 -39.347 0.000 28.58 -O(0) 3.445e-14 - O2 1.723e-14 1.723e-14 -13.764 -13.764 0.000 30.31 +H(0) 1.151e-39 + H2 5.757e-40 5.758e-40 -39.240 -39.240 0.000 28.58 +O(0) 2.104e-14 + O2 1.052e-14 1.052e-14 -13.978 -13.978 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 64 atm) - CH4(g) -117.33 -120.17 -2.84 CH4 + CH4(g) -116.90 -119.74 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 63.5 atm, phi 0.667 - H2(g) -36.21 -39.35 -3.13 H2 + H2(g) -36.11 -39.24 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.401 - O2(g) -10.84 -13.76 -2.93 O2 + O2(g) -11.05 -13.98 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -902,17 +903,17 @@ H2O(g) -1.05 8.845e-02 0.364 7.089e-03 8.995e-03 1.905e-03 ----------------------------Description of solution---------------------------- pH = 3.103 Charge balance - pe = 14.980 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 233 - Density (g/cm³) = 1.01273 + pe = 14.798 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 289 + Density (g/cm3) = 1.01273 Volume (L) = 1.04788 - Viscosity (mPa s) = 0.98529 + Viscosity (mPa s) = 0.88954 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.131e-04 Mass of water (kg) = 9.998e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.395e+00 - Temperature (°C) = 25.00 + Temperature (oC) = 25.00 Pressure (atm) = 65.04 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -923,32 +924,32 @@ H2O(g) -1.05 8.845e-02 0.364 7.089e-03 8.995e-03 1.905e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.131e-04 7.884e-04 -3.090 -3.103 -0.013 0.00 OH- 1.372e-11 1.328e-11 -10.863 -10.877 -0.014 -3.87 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.173 -120.173 0.000 35.54 + CH4 0.000e+00 0.000e+00 -118.718 -118.718 0.000 35.54 C(4) 1.395e+00 CO2 1.329e+00 1.330e+00 0.124 0.124 0.000 34.40 (CO2)2 3.244e-02 3.245e-02 -1.489 -1.489 0.000 68.81 HCO3- 8.131e-04 7.876e-04 -3.090 -3.104 -0.014 24.79 CO3-2 5.727e-11 5.043e-11 -10.242 -10.297 -0.055 -3.35 -H(0) 8.956e-40 - H2 4.478e-40 4.479e-40 -39.349 -39.349 0.000 28.58 -O(0) 3.466e-14 - O2 1.733e-14 1.733e-14 -13.761 -13.761 0.000 30.31 +H(0) 2.069e-39 + H2 1.035e-39 1.035e-39 -38.985 -38.985 0.000 28.58 +O(0) 6.492e-15 + O2 3.246e-15 3.246e-15 -14.489 -14.489 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -117.33 -120.17 -2.84 CH4 + CH4(g) -115.88 -118.72 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.0 atm, phi 0.658 - H2(g) -36.22 -39.35 -3.13 H2 + H2(g) -35.85 -38.99 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.364 - O2(g) -10.83 -13.76 -2.93 O2 + O2(g) -11.56 -14.49 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -996,53 +997,53 @@ H2O(g) -1.02 9.646e-02 0.334 8.995e-03 1.127e-02 2.272e-03 ----------------------------Description of solution---------------------------- pH = 3.103 Charge balance - pe = 14.928 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 233 - Density (g/cm³) = 1.01275 + pe = 2.388 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 289 + Density (g/cm3) = 1.01275 Volume (L) = 1.04787 - Viscosity (mPa s) = 0.98535 + Viscosity (mPa s) = 0.88954 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.134e-04 Mass of water (kg) = 9.998e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.396e+00 - Temperature (°C) = 25.00 + Temperature (oC) = 25.00 Pressure (atm) = 65.20 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 44 + Iterations = 64 Total H = 1.109899e+02 Total O = 5.828669e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.134e-04 7.888e-04 -3.090 -3.103 -0.013 0.00 OH- 1.371e-11 1.328e-11 -10.863 -10.877 -0.014 -3.87 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.02 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.759 -119.759 0.000 35.54 +C(-4) 3.632e-20 + CH4 3.632e-20 3.632e-20 -19.440 -19.440 0.000 35.54 C(4) 1.396e+00 CO2 1.330e+00 1.331e+00 0.124 0.124 0.000 34.40 (CO2)2 3.249e-02 3.250e-02 -1.488 -1.488 0.000 68.81 HCO3- 8.134e-04 7.880e-04 -3.090 -3.103 -0.014 24.79 CO3-2 5.728e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 -H(0) 1.136e-39 - H2 5.681e-40 5.682e-40 -39.246 -39.245 0.000 28.58 -O(0) 2.152e-14 - O2 1.076e-14 1.076e-14 -13.968 -13.968 0.000 30.31 +H(0) 1.366e-14 + H2 6.828e-15 6.830e-15 -14.166 -14.166 0.000 28.58 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -64.128 -64.128 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -116.92 -119.76 -2.84 CH4 + CH4(g) -16.60 -19.44 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.1 atm, phi 0.657 - H2(g) -36.11 -39.25 -3.13 H2 + H2(g) -11.03 -14.17 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.334 - O2(g) -11.04 -13.97 -2.93 O2 + O2(g) -61.20 -64.13 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1090,17 +1091,17 @@ H2O(g) -0.98 1.051e-01 0.306 1.127e-02 1.389e-02 2.628e-03 ----------------------------Description of solution---------------------------- pH = 3.103 Charge balance - pe = 14.901 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 233 - Density (g/cm³) = 1.01275 + pe = 2.213 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 289 + Density (g/cm3) = 1.01275 Volume (L) = 1.04780 - Viscosity (mPa s) = 0.98532 + Viscosity (mPa s) = 0.88954 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.133e-04 Mass of water (kg) = 9.997e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.396e+00 - Temperature (°C) = 25.00 + Temperature (oC) = 25.00 Pressure (atm) = 65.19 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -1111,32 +1112,32 @@ H2O(g) -0.98 1.051e-01 0.306 1.127e-02 1.389e-02 2.628e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.133e-04 7.886e-04 -3.090 -3.103 -0.013 0.00 OH- 1.371e-11 1.328e-11 -10.863 -10.877 -0.014 -3.87 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.02 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.538 -119.538 0.000 35.54 +C(-4) 9.177e-19 + CH4 9.177e-19 9.179e-19 -18.037 -18.037 0.000 35.54 C(4) 1.396e+00 CO2 1.330e+00 1.330e+00 0.124 0.124 0.000 34.40 (CO2)2 3.246e-02 3.247e-02 -1.489 -1.489 0.000 68.81 HCO3- 8.133e-04 7.878e-04 -3.090 -3.104 -0.014 24.79 CO3-2 5.728e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 -H(0) 1.291e-39 - H2 6.453e-40 6.454e-40 -39.190 -39.190 0.000 28.58 -O(0) 1.668e-14 - O2 8.341e-15 8.343e-15 -14.079 -14.079 0.000 30.31 +H(0) 3.062e-14 + H2 1.531e-14 1.531e-14 -13.815 -13.815 0.000 28.58 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -64.829 -64.829 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -116.70 -119.54 -2.84 CH4 + CH4(g) -15.19 -18.04 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.1 atm, phi 0.657 - H2(g) -36.06 -39.19 -3.13 H2 + H2(g) -10.68 -13.81 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.306 - O2(g) -11.15 -14.08 -2.93 O2 + O2(g) -61.90 -64.83 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1184,53 +1185,53 @@ H2O(g) -0.94 1.145e-01 0.281 1.389e-02 1.691e-02 3.018e-03 ----------------------------Description of solution---------------------------- pH = 3.103 Charge balance - pe = 14.638 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 233 - Density (g/cm³) = 1.01273 + pe = 2.090 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 289 + Density (g/cm3) = 1.01273 Volume (L) = 1.04770 - Viscosity (mPa s) = 0.98522 + Viscosity (mPa s) = 0.88954 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.129e-04 Mass of water (kg) = 9.997e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.394e+00 - Temperature (°C) = 25.00 + Temperature (oC) = 25.00 Pressure (atm) = 65.17 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 47 + Iterations = 46 Total H = 1.109786e+02 Total O = 5.827687e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.129e-04 7.882e-04 -3.090 -3.103 -0.013 0.00 OH- 1.372e-11 1.328e-11 -10.863 -10.877 -0.014 -3.87 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.02 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -117.437 -117.437 0.000 35.54 +C(-4) 8.861e-18 + CH4 8.861e-18 8.863e-18 -17.052 -17.052 0.000 35.54 C(4) 1.394e+00 CO2 1.329e+00 1.329e+00 0.123 0.123 0.000 34.40 (CO2)2 3.240e-02 3.241e-02 -1.489 -1.489 0.000 68.81 HCO3- 8.129e-04 7.875e-04 -3.090 -3.104 -0.014 24.79 CO3-2 5.727e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 -H(0) 4.327e-39 - H2 2.163e-39 2.164e-39 -38.665 -38.665 0.000 28.58 -O(0) 1.484e-15 - O2 7.422e-16 7.423e-16 -15.129 -15.129 0.000 30.31 +H(0) 5.400e-14 + H2 2.700e-14 2.700e-14 -13.569 -13.569 0.000 28.58 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.322 -65.322 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -114.59 -117.44 -2.84 CH4 + CH4(g) -14.21 -17.05 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.1 atm, phi 0.657 - H2(g) -35.53 -38.66 -3.13 H2 + H2(g) -10.43 -13.57 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.281 - O2(g) -12.20 -15.13 -2.93 O2 + O2(g) -62.39 -65.32 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1278,53 +1279,53 @@ H2O(g) -0.90 1.248e-01 0.258 1.691e-02 2.036e-02 3.449e-03 ----------------------------Description of solution---------------------------- pH = 3.104 Charge balance - pe = 2.312 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 233 - Density (g/cm³) = 1.01271 + pe = 2.210 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 288 + Density (g/cm3) = 1.01271 Volume (L) = 1.04756 - Viscosity (mPa s) = 0.98509 + Viscosity (mPa s) = 0.88954 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.123e-04 Mass of water (kg) = 9.996e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.392e+00 - Temperature (°C) = 25.00 + Temperature (oC) = 25.00 Pressure (atm) = 65.15 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 58 + Iterations = 46 Total H = 1.109717e+02 Total O = 5.826914e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.123e-04 7.877e-04 -3.090 -3.104 -0.013 0.00 OH- 1.373e-11 1.329e-11 -10.862 -10.876 -0.014 -3.87 H2O 5.551e+01 9.769e-01 1.744 -0.010 0.000 18.02 -C(-4) 1.454e-19 - CH4 1.454e-19 1.455e-19 -18.837 -18.837 0.000 35.54 +C(-4) 9.541e-19 + CH4 9.541e-19 9.543e-19 -18.020 -18.020 0.000 35.54 C(4) 1.392e+00 CO2 1.327e+00 1.327e+00 0.123 0.123 0.000 34.40 (CO2)2 3.231e-02 3.232e-02 -1.491 -1.491 0.000 68.81 HCO3- 8.123e-04 7.869e-04 -3.090 -3.104 -0.014 24.79 CO3-2 5.727e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 -H(0) 1.933e-14 - H2 9.667e-15 9.669e-15 -14.015 -14.015 0.000 28.58 +H(0) 3.094e-14 + H2 1.547e-14 1.547e-14 -13.810 -13.810 0.000 28.58 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.430 -64.430 0.000 30.31 + O2 0.000e+00 0.000e+00 -64.838 -64.838 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -15.99 -18.84 -2.84 CH4 + CH4(g) -15.18 -18.02 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.0 atm, phi 0.656 - H2(g) -10.88 -14.01 -3.13 H2 + H2(g) -10.68 -13.81 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.258 - O2(g) -61.50 -64.43 -2.93 O2 + O2(g) -61.91 -64.84 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1372,53 +1373,53 @@ H2O(g) -0.87 1.359e-01 0.237 2.036e-02 2.428e-02 3.919e-03 ----------------------------Description of solution---------------------------- pH = 3.104 Charge balance - pe = 14.806 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 233 - Density (g/cm³) = 1.01269 + pe = 2.153 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 288 + Density (g/cm3) = 1.01269 Volume (L) = 1.04741 - Viscosity (mPa s) = 0.98492 + Viscosity (mPa s) = 0.88954 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.116e-04 Mass of water (kg) = 9.995e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.390e+00 - Temperature (°C) = 25.00 + Temperature (oC) = 25.00 Pressure (atm) = 65.14 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 60 + Iterations = 45 Total H = 1.109639e+02 Total O = 5.826024e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.116e-04 7.870e-04 -3.091 -3.104 -0.013 0.00 OH- 1.374e-11 1.331e-11 -10.862 -10.876 -0.014 -3.87 H2O 5.551e+01 9.769e-01 1.744 -0.010 0.000 18.02 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -118.793 -118.793 0.000 35.54 +C(-4) 2.731e-18 + CH4 2.731e-18 2.731e-18 -17.564 -17.564 0.000 35.54 C(4) 1.390e+00 CO2 1.325e+00 1.325e+00 0.122 0.122 0.000 34.40 (CO2)2 3.221e-02 3.221e-02 -1.492 -1.492 0.000 68.81 HCO3- 8.116e-04 7.863e-04 -3.091 -3.104 -0.014 24.79 CO3-2 5.727e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 -H(0) 1.984e-39 - H2 9.922e-40 9.923e-40 -39.003 -39.003 0.000 28.58 -O(0) 7.060e-15 - O2 3.530e-15 3.531e-15 -14.452 -14.452 0.000 30.31 +H(0) 4.026e-14 + H2 2.013e-14 2.014e-14 -13.696 -13.696 0.000 28.58 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.067 -65.067 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -115.95 -118.79 -2.84 CH4 + CH4(g) -14.72 -17.56 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.0 atm, phi 0.655 - H2(g) -35.87 -39.00 -3.13 H2 + H2(g) -10.56 -13.70 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.237 - O2(g) -11.53 -14.45 -2.93 O2 + O2(g) -62.14 -65.07 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1466,17 +1467,17 @@ H2O(g) -0.83 1.479e-01 0.218 2.428e-02 2.871e-02 4.427e-03 ----------------------------Description of solution---------------------------- pH = 3.104 Charge balance - pe = 14.718 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 233 - Density (g/cm³) = 1.01267 + pe = 2.096 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 288 + Density (g/cm3) = 1.01267 Volume (L) = 1.04724 - Viscosity (mPa s) = 0.98477 + Viscosity (mPa s) = 0.88954 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.110e-04 Mass of water (kg) = 9.995e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.387e+00 - Temperature (°C) = 25.00 + Temperature (oC) = 25.00 Pressure (atm) = 65.12 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -1487,32 +1488,32 @@ H2O(g) -0.83 1.479e-01 0.218 2.428e-02 2.871e-02 4.427e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.110e-04 7.864e-04 -3.091 -3.104 -0.013 0.00 OH- 1.375e-11 1.332e-11 -10.862 -10.876 -0.014 -3.87 H2O 5.551e+01 9.769e-01 1.744 -0.010 0.000 18.02 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -118.092 -118.092 0.000 35.54 +C(-4) 7.689e-18 + CH4 7.689e-18 7.690e-18 -17.114 -17.114 0.000 35.54 C(4) 1.387e+00 CO2 1.322e+00 1.323e+00 0.121 0.121 0.000 34.40 (CO2)2 3.210e-02 3.211e-02 -1.493 -1.493 0.000 68.81 HCO3- 8.110e-04 7.856e-04 -3.091 -3.105 -0.014 24.79 CO3-2 5.726e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 -H(0) 2.972e-39 - H2 1.486e-39 1.486e-39 -38.828 -38.828 0.000 28.58 -O(0) 3.147e-15 - O2 1.573e-15 1.574e-15 -14.803 -14.803 0.000 30.31 +H(0) 5.218e-14 + H2 2.609e-14 2.609e-14 -13.584 -13.583 0.000 28.58 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.292 -65.292 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -115.25 -118.09 -2.84 CH4 + CH4(g) -14.27 -17.11 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.0 atm, phi 0.655 - H2(g) -35.69 -38.83 -3.13 H2 + H2(g) -10.45 -13.58 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.218 - O2(g) -11.88 -14.80 -2.93 O2 + O2(g) -62.37 -65.29 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1560,17 +1561,17 @@ H2O(g) -0.79 1.606e-01 0.200 2.871e-02 3.368e-02 4.970e-03 ----------------------------Description of solution---------------------------- pH = 3.105 Charge balance - pe = 14.909 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 233 - Density (g/cm³) = 1.01265 + pe = 2.293 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 288 + Density (g/cm3) = 1.01265 Volume (L) = 1.04709 - Viscosity (mPa s) = 0.98465 + Viscosity (mPa s) = 0.88954 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.105e-04 Mass of water (kg) = 9.994e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.386e+00 - Temperature (°C) = 25.00 + Temperature (oC) = 25.00 Pressure (atm) = 65.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -1581,32 +1582,32 @@ H2O(g) -0.79 1.606e-01 0.200 2.871e-02 3.368e-02 4.970e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.105e-04 7.859e-04 -3.091 -3.105 -0.013 0.00 OH- 1.376e-11 1.332e-11 -10.861 -10.875 -0.014 -3.87 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 18.02 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.621 -119.621 0.000 35.54 +C(-4) 2.034e-19 + CH4 2.034e-19 2.034e-19 -18.692 -18.692 0.000 35.54 C(4) 1.386e+00 CO2 1.321e+00 1.321e+00 0.121 0.121 0.000 34.40 (CO2)2 3.202e-02 3.203e-02 -1.495 -1.494 0.000 68.81 HCO3- 8.105e-04 7.852e-04 -3.091 -3.105 -0.014 24.79 CO3-2 5.726e-11 5.043e-11 -10.242 -10.297 -0.055 -3.35 -H(0) 1.233e-39 - H2 6.164e-40 6.165e-40 -39.210 -39.210 0.000 28.58 -O(0) 1.829e-14 - O2 9.147e-15 9.149e-15 -14.039 -14.039 0.000 30.31 +H(0) 2.105e-14 + H2 1.053e-14 1.053e-14 -13.978 -13.978 0.000 28.58 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -64.503 -64.503 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -116.78 -119.62 -2.84 CH4 + CH4(g) -15.85 -18.69 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 64.9 atm, phi 0.654 - H2(g) -36.08 -39.21 -3.13 H2 + H2(g) -10.84 -13.98 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.2 atm, phi 0.200 - O2(g) -11.11 -14.04 -2.93 O2 + O2(g) -61.58 -64.50 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1654,17 +1655,17 @@ H2O(g) -0.76 1.742e-01 0.185 3.368e-02 3.922e-02 5.546e-03 ----------------------------Description of solution---------------------------- pH = 3.105 Charge balance - pe = 14.952 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 233 - Density (g/cm³) = 1.01265 + pe = 2.566 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 288 + Density (g/cm3) = 1.01265 Volume (L) = 1.04696 - Viscosity (mPa s) = 0.98459 + Viscosity (mPa s) = 0.88954 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.102e-04 Mass of water (kg) = 9.993e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.385e+00 - Temperature (°C) = 25.00 + Temperature (oC) = 25.00 Pressure (atm) = 65.07 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -1675,32 +1676,32 @@ H2O(g) -0.76 1.742e-01 0.185 3.368e-02 3.922e-02 5.546e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.102e-04 7.857e-04 -3.091 -3.105 -0.013 0.00 OH- 1.377e-11 1.333e-11 -10.861 -10.875 -0.014 -3.87 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 18.02 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.965 -119.965 0.000 35.54 +C(-4) 1.337e-21 + CH4 1.337e-21 1.338e-21 -20.874 -20.874 0.000 35.54 C(4) 1.385e+00 CO2 1.320e+00 1.320e+00 0.121 0.121 0.000 34.40 (CO2)2 3.198e-02 3.199e-02 -1.495 -1.495 0.000 68.81 HCO3- 8.102e-04 7.849e-04 -3.091 -3.105 -0.014 24.79 CO3-2 5.726e-11 5.043e-11 -10.242 -10.297 -0.055 -3.35 -H(0) 1.012e-39 - H2 5.058e-40 5.059e-40 -39.296 -39.296 0.000 28.58 -O(0) 2.717e-14 - O2 1.359e-14 1.359e-14 -13.867 -13.867 0.000 30.31 +H(0) 5.995e-15 + H2 2.998e-15 2.998e-15 -14.523 -14.523 0.000 28.58 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -63.413 -63.412 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -117.12 -119.96 -2.84 CH4 + CH4(g) -18.03 -20.87 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 64.9 atm, phi 0.654 - H2(g) -36.16 -39.30 -3.13 H2 + H2(g) -11.39 -14.52 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.2 atm, phi 0.185 - O2(g) -10.94 -13.87 -2.93 O2 + O2(g) -60.49 -63.41 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1748,53 +1749,53 @@ H2O(g) -0.69 2.026e-01 0.159 3.922e-02 4.502e-02 5.801e-03 ----------------------------Description of solution---------------------------- pH = 3.102 Charge balance - pe = 14.961 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 234 - Density (g/cm³) = 1.01297 + pe = 2.863 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 290 + Density (g/cm3) = 1.01297 Volume (L) = 1.04694 - Viscosity (mPa s) = 0.98520 + Viscosity (mPa s) = 0.88947 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.154e-04 Mass of water (kg) = 9.992e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.395e+00 - Temperature (°C) = 25.00 + Temperature (oC) = 25.00 Pressure (atm) = 70.42 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 38 + Iterations = 46 Total H = 1.109224e+02 Total O = 5.824824e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.154e-04 7.907e-04 -3.089 -3.102 -0.013 0.00 OH- 1.374e-11 1.331e-11 -10.862 -10.876 -0.014 -3.86 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.01 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.015 -120.014 0.000 35.55 +C(-4) 5.910e-24 + CH4 5.910e-24 5.911e-24 -23.228 -23.228 0.000 35.55 C(4) 1.395e+00 CO2 1.329e+00 1.329e+00 0.124 0.124 0.000 34.40 (CO2)2 3.242e-02 3.243e-02 -1.489 -1.489 0.000 68.80 HCO3- 8.154e-04 7.899e-04 -3.089 -3.102 -0.014 24.81 CO3-2 5.762e-11 5.074e-11 -10.239 -10.295 -0.055 -3.30 -H(0) 9.773e-40 - H2 4.886e-40 4.887e-40 -39.311 -39.311 0.000 28.57 -O(0) 2.878e-14 - O2 1.439e-14 1.439e-14 -13.842 -13.842 0.000 30.30 +H(0) 1.537e-15 + H2 7.683e-16 7.684e-16 -15.114 -15.114 0.000 28.57 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -62.235 -62.235 0.000 30.30 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 70 atm) - CH4(g) -117.17 -120.01 -2.85 CH4 + CH4(g) -20.38 -23.23 -2.85 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 70.2 atm, phi 0.613 - H2(g) -36.17 -39.31 -3.14 H2 + H2(g) -11.98 -15.11 -3.14 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.2 atm, phi 0.159 - O2(g) -10.91 -13.84 -2.93 O2 + O2(g) -59.31 -62.23 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1842,53 +1843,53 @@ H2O(g) -0.61 2.464e-01 0.132 4.502e-02 5.114e-02 6.118e-03 ----------------------------Description of solution---------------------------- pH = 3.097 Charge balance - pe = 14.914 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 236 - Density (g/cm³) = 1.01354 + pe = 1.972 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 293 + Density (g/cm3) = 1.01354 Volume (L) = 1.04694 - Viscosity (mPa s) = 0.98618 + Viscosity (mPa s) = 0.88936 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.244e-04 Mass of water (kg) = 9.991e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.411e+00 - Temperature (°C) = 25.00 + Temperature (oC) = 25.00 Pressure (atm) = 80.18 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 44 + Iterations = 46 Total H = 1.109101e+02 Total O = 5.827411e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.244e-04 7.993e-04 -3.084 -3.097 -0.013 0.00 OH- 1.371e-11 1.327e-11 -10.863 -10.877 -0.014 -3.82 H2O 5.551e+01 9.766e-01 1.744 -0.010 0.000 18.01 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.602 -119.602 0.000 35.56 +C(-4) 8.526e-17 + CH4 8.526e-17 8.528e-17 -16.069 -16.069 0.000 35.56 C(4) 1.411e+00 CO2 1.344e+00 1.344e+00 0.128 0.128 0.000 34.40 (CO2)2 3.314e-02 3.315e-02 -1.480 -1.480 0.000 68.79 HCO3- 8.244e-04 7.985e-04 -3.084 -3.098 -0.014 24.84 CO3-2 5.830e-11 5.130e-11 -10.234 -10.290 -0.056 -3.21 -H(0) 1.226e-39 - H2 6.131e-40 6.132e-40 -39.212 -39.212 0.000 28.57 -O(0) 1.790e-14 - O2 8.949e-15 8.951e-15 -14.048 -14.048 0.000 30.29 +H(0) 9.370e-14 + H2 4.685e-14 4.686e-14 -13.329 -13.329 0.000 28.57 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.815 -65.814 0.000 30.29 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 80 atm) - CH4(g) -116.75 -119.60 -2.85 CH4 + CH4(g) -13.22 -16.07 -2.85 CH4 CO2(g) 1.64 0.13 -1.52 CO2 Pressure 79.9 atm, phi 0.552 - H2(g) -36.07 -39.21 -3.14 H2 + H2(g) -10.19 -13.33 -3.14 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.2 atm, phi 0.132 - O2(g) -11.11 -14.05 -2.93 O2 + O2(g) -62.88 -65.81 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1936,17 +1937,17 @@ H2O(g) -0.51 3.084e-01 0.107 5.114e-02 5.758e-02 6.433e-03 ----------------------------Description of solution---------------------------- pH = 3.091 Charge balance - pe = 14.977 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 239 - Density (g/cm³) = 1.01434 + pe = 1.958 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 297 + Density (g/cm3) = 1.01434 Volume (L) = 1.04689 - Viscosity (mPa s) = 0.98743 + Viscosity (mPa s) = 0.88921 Activity of water = 0.976 Ionic strength (mol/kgw) = 8.368e-04 Mass of water (kg) = 9.989e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.432e+00 - Temperature (°C) = 25.00 + Temperature (oC) = 25.00 Pressure (atm) = 94.41 Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -1957,32 +1958,32 @@ H2O(g) -0.51 3.084e-01 0.107 5.114e-02 5.758e-02 6.433e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.368e-04 8.111e-04 -3.077 -3.091 -0.014 0.00 OH- 1.368e-11 1.324e-11 -10.864 -10.878 -0.014 -3.77 H2O 5.551e+01 9.762e-01 1.744 -0.010 0.000 17.99 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.056 -120.056 0.000 35.58 +C(-4) 1.247e-16 + CH4 1.247e-16 1.247e-16 -15.904 -15.904 0.000 35.58 C(4) 1.432e+00 CO2 1.363e+00 1.363e+00 0.134 0.134 0.000 34.39 (CO2)2 3.408e-02 3.409e-02 -1.467 -1.467 0.000 68.78 HCO3- 8.368e-04 8.103e-04 -3.077 -3.091 -0.014 24.89 CO3-2 5.929e-11 5.213e-11 -10.227 -10.283 -0.056 -3.08 -H(0) 9.303e-40 - H2 4.651e-40 4.652e-40 -39.332 -39.332 0.000 28.56 -O(0) 3.016e-14 - O2 1.508e-14 1.508e-14 -13.822 -13.821 0.000 30.26 +H(0) 1.015e-13 + H2 5.076e-14 5.077e-14 -13.294 -13.294 0.000 28.56 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.897 -65.897 0.000 30.26 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 94 atm) - CH4(g) -117.20 -120.06 -2.86 CH4 + CH4(g) -13.04 -15.90 -2.86 CH4 CO2(g) 1.66 0.13 -1.53 CO2 Pressure 94.1 atm, phi 0.485 - H2(g) -36.18 -39.33 -3.15 H2 + H2(g) -10.15 -13.29 -3.15 H2 H2O(g) -1.48 -0.01 1.47 H2O Pressure 0.3 atm, phi 0.107 - O2(g) -10.88 -13.82 -2.94 O2 + O2(g) -62.95 -65.90 -2.94 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2030,19 +2031,19 @@ H2O(g) -0.40 3.942e-01 0.085 5.758e-02 6.425e-02 6.677e-03 ----------------------------Description of solution---------------------------- pH = 3.083 Charge balance - pe = 14.941 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 243 - Density (g/cm³) = 1.01543 + pe = 2.009 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 303 + Density (g/cm3) = 1.01543 Volume (L) = 1.04675 - Viscosity (mPa s) = 0.98895 + Viscosity (mPa s) = 0.88900 Activity of water = 0.976 Ionic strength (mol/kgw) = 8.532e-04 Mass of water (kg) = 9.988e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.457e+00 - Temperature (°C) = 25.00 + Temperature (oC) = 25.00 Pressure (atm) = 114.16 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 61 Total H = 1.108839e+02 @@ -2051,32 +2052,32 @@ H2O(g) -0.40 3.942e-01 0.085 5.758e-02 6.425e-02 6.677e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.532e-04 8.268e-04 -3.069 -3.083 -0.014 0.00 OH- 1.365e-11 1.321e-11 -10.865 -10.879 -0.014 -3.70 H2O 5.551e+01 9.758e-01 1.744 -0.011 0.000 17.98 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.713 -119.713 0.000 35.61 +C(-4) 5.517e-17 + CH4 5.517e-17 5.518e-17 -16.258 -16.258 0.000 35.61 C(4) 1.457e+00 CO2 1.386e+00 1.386e+00 0.142 0.142 0.000 34.38 (CO2)2 3.526e-02 3.526e-02 -1.453 -1.453 0.000 68.76 HCO3- 8.532e-04 8.259e-04 -3.069 -3.083 -0.014 24.95 CO3-2 6.067e-11 5.329e-11 -10.217 -10.273 -0.056 -2.90 -H(0) 1.111e-39 - H2 5.555e-40 5.556e-40 -39.255 -39.255 0.000 28.55 -O(0) 2.028e-14 - O2 1.014e-14 1.014e-14 -13.994 -13.994 0.000 30.24 +H(0) 8.117e-14 + H2 4.058e-14 4.059e-14 -13.392 -13.392 0.000 28.55 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.721 -65.721 0.000 30.24 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 114 atm) - CH4(g) -116.84 -119.71 -2.87 CH4 + CH4(g) -13.38 -16.26 -2.87 CH4 CO2(g) 1.68 0.14 -1.54 CO2 Pressure 113.8 atm, phi 0.420 - H2(g) -36.10 -39.26 -3.16 H2 + H2(g) -10.23 -13.39 -3.16 H2 H2O(g) -1.48 -0.01 1.47 H2O Pressure 0.4 atm, phi 0.085 - O2(g) -11.04 -13.99 -2.95 O2 + O2(g) -62.77 -65.72 -2.95 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2124,19 +2125,19 @@ H2O(g) -0.29 5.106e-01 0.066 6.425e-02 7.108e-02 6.829e-03 ----------------------------Description of solution---------------------------- pH = 3.072 Charge balance - pe = 14.978 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 248 - Density (g/cm³) = 1.01684 + pe = 2.176 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 311 + Density (g/cm3) = 1.01684 Volume (L) = 1.04648 - Viscosity (mPa s) = 0.99076 + Viscosity (mPa s) = 0.88875 Activity of water = 0.975 Ionic strength (mol/kgw) = 8.742e-04 Mass of water (kg) = 9.987e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.488e+00 - Temperature (°C) = 25.00 + Temperature (oC) = 25.00 Pressure (atm) = 140.69 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 74 Total H = 1.108703e+02 @@ -2145,32 +2146,32 @@ H2O(g) -0.29 5.106e-01 0.066 6.425e-02 7.108e-02 6.829e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.742e-04 8.470e-04 -3.058 -3.072 -0.014 0.00 OH- 1.363e-11 1.318e-11 -10.866 -10.880 -0.014 -3.61 H2O 5.551e+01 9.753e-01 1.744 -0.011 0.000 17.96 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.928 -119.928 0.000 35.64 +C(-4) 3.027e-18 + CH4 3.027e-18 3.028e-18 -17.519 -17.519 0.000 35.64 C(4) 1.488e+00 CO2 1.413e+00 1.414e+00 0.150 0.150 0.000 34.37 (CO2)2 3.667e-02 3.668e-02 -1.436 -1.436 0.000 68.73 HCO3- 8.742e-04 8.461e-04 -3.058 -3.073 -0.014 25.03 CO3-2 6.256e-11 5.487e-11 -10.204 -10.261 -0.057 -2.66 -H(0) 9.564e-40 - H2 4.782e-40 4.783e-40 -39.320 -39.320 0.000 28.54 -O(0) 2.585e-14 - O2 1.292e-14 1.293e-14 -13.889 -13.889 0.000 30.20 +H(0) 3.828e-14 + H2 1.914e-14 1.914e-14 -13.718 -13.718 0.000 28.54 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.093 -65.093 0.000 30.20 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 141 atm) - CH4(g) -117.04 -119.93 -2.89 CH4 + CH4(g) -14.63 -17.52 -2.89 CH4 CO2(g) 1.70 0.15 -1.55 CO2 Pressure 140.2 atm, phi 0.361 - H2(g) -36.15 -39.32 -3.17 H2 + H2(g) -10.55 -13.72 -3.17 H2 H2O(g) -1.47 -0.01 1.46 H2O Pressure 0.5 atm, phi 0.066 - O2(g) -10.92 -13.89 -2.97 O2 + O2(g) -62.13 -65.09 -2.97 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2225,53 +2226,53 @@ H2O(g) -0.18 6.655e-01 0.052 7.108e-02 7.795e-02 6.869e-03 ----------------------------Description of solution---------------------------- pH = 3.059 Charge balance - pe = 15.552 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 254 - Density (g/cm³) = 1.01866 + pe = 16.234 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 320 + Density (g/cm3) = 1.01866 Volume (L) = 1.04600 - Viscosity (mPa s) = 0.99284 + Viscosity (mPa s) = 0.88844 Activity of water = 0.975 Ionic strength (mol/kgw) = 9.010e-04 Mass of water (kg) = 9.986e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.523e+00 - Temperature (°C) = 25.00 + Temperature (oC) = 25.00 Pressure (atm) = 175.50 Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 48 (149 overall) + Iterations = 153 (254 overall) Total H = 1.108565e+02 Total O = 5.846928e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 9.010e-04 8.725e-04 -3.045 -3.059 -0.014 0.00 OH- 1.363e-11 1.317e-11 -10.866 -10.880 -0.015 -3.49 H2O 5.551e+01 9.748e-01 1.744 -0.011 0.000 17.93 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.435 -124.435 0.000 35.68 + CH4 0.000e+00 0.000e+00 -129.890 -129.889 0.000 35.68 C(4) 1.523e+00 CO2 1.445e+00 1.445e+00 0.160 0.160 0.000 34.35 (CO2)2 3.833e-02 3.834e-02 -1.416 -1.416 0.000 68.70 HCO3- 9.010e-04 8.715e-04 -3.045 -3.060 -0.014 25.14 CO3-2 6.509e-11 5.700e-11 -10.186 -10.244 -0.058 -2.36 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.461 -40.461 0.000 28.53 -O(0) 4.595e-12 - O2 2.298e-12 2.298e-12 -11.639 -11.639 0.000 30.15 + H2 0.000e+00 0.000e+00 -41.825 -41.825 0.000 28.53 +O(0) 2.453e-09 + O2 1.227e-09 1.227e-09 -8.911 -8.911 0.000 30.15 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 176 atm) - CH4(g) -121.52 -124.43 -2.91 CH4 + CH4(g) -126.98 -129.89 -2.91 CH4 CO2(g) 1.73 0.16 -1.57 CO2 Pressure 174.8 atm, phi 0.310 - H2(g) -37.27 -40.46 -3.19 H2 + H2(g) -38.64 -41.83 -3.19 H2 H2O(g) -1.46 -0.01 1.45 H2O Pressure 0.7 atm, phi 0.052 - O2(g) -8.65 -11.64 -2.99 O2 + O2(g) -5.93 -8.91 -2.99 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2326,53 +2327,53 @@ H2O(g) -0.06 8.678e-01 0.041 7.795e-02 8.472e-02 6.772e-03 ----------------------------Description of solution---------------------------- pH = 3.044 Charge balance - pe = 16.115 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 263 - Density (g/cm³) = 1.02093 + pe = 16.249 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 333 + Density (g/cm3) = 1.02093 Volume (L) = 1.04525 - Viscosity (mPa s) = 0.99523 + Viscosity (mPa s) = 0.88812 Activity of water = 0.974 Ionic strength (mol/kgw) = 9.345e-04 Mass of water (kg) = 9.985e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.562e+00 - Temperature (°C) = 25.00 + Temperature (oC) = 25.00 Pressure (atm) = 220.47 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 38 (139 overall) + Iterations = 35 (136 overall) Total H = 1.108430e+02 Total O = 5.854160e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 9.345e-04 9.045e-04 -3.029 -3.044 -0.014 0.00 OH- 1.365e-11 1.319e-11 -10.865 -10.880 -0.015 -3.34 H2O 5.551e+01 9.741e-01 1.744 -0.011 0.000 17.89 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -128.831 -128.831 0.000 35.73 + CH4 0.000e+00 0.000e+00 -129.900 -129.900 0.000 35.73 C(4) 1.562e+00 CO2 1.481e+00 1.481e+00 0.171 0.171 0.000 34.33 (CO2)2 4.026e-02 4.027e-02 -1.395 -1.395 0.000 68.66 HCO3- 9.345e-04 9.035e-04 -3.029 -3.044 -0.015 25.28 CO3-2 6.845e-11 5.982e-11 -10.165 -10.223 -0.059 -1.98 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.579 -41.578 0.000 28.51 -O(0) 7.163e-10 - O2 3.582e-10 3.582e-10 -9.446 -9.446 0.000 30.09 + H2 0.000e+00 0.000e+00 -41.846 -41.846 0.000 28.51 +O(0) 2.454e-09 + O2 1.227e-09 1.227e-09 -8.911 -8.911 0.000 30.09 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 220 atm) - CH4(g) -125.89 -128.83 -2.94 CH4 + CH4(g) -126.96 -129.90 -2.94 CH4 CO2(g) 1.77 0.17 -1.60 CO2 Pressure 219.6 atm, phi 0.270 - H2(g) -38.37 -41.58 -3.21 H2 + H2(g) -38.63 -41.85 -3.21 H2 H2O(g) -1.44 -0.01 1.43 H2O Pressure 0.9 atm, phi 0.041 - O2(g) -6.44 -9.45 -3.01 O2 + O2(g) -5.90 -8.91 -3.01 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2427,19 +2428,19 @@ H2O(g) 0.05 1.127e+00 0.033 8.472e-02 9.124e-02 6.514e-03 ----------------------------Description of solution---------------------------- pH = 3.025 Charge balance - pe = 16.133 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 273 - Density (g/cm³) = 1.02376 + pe = 16.266 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 349 + Density (g/cm3) = 1.02376 Volume (L) = 1.04415 - Viscosity (mPa s) = 0.99796 + Viscosity (mPa s) = 0.88780 Activity of water = 0.973 Ionic strength (mol/kgw) = 9.763e-04 Mass of water (kg) = 9.983e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.607e+00 - Temperature (°C) = 25.00 + Temperature (oC) = 25.00 Pressure (atm) = 277.89 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.108300e+02 @@ -2448,32 +2449,32 @@ H2O(g) 0.05 1.127e+00 0.033 8.472e-02 9.124e-02 6.514e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 9.763e-04 9.444e-04 -3.010 -3.025 -0.014 0.00 OH- 1.370e-11 1.323e-11 -10.863 -10.878 -0.015 -3.15 H2O 5.551e+01 9.734e-01 1.744 -0.012 0.000 17.85 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -128.847 -128.846 0.000 35.80 + CH4 0.000e+00 0.000e+00 -129.916 -129.916 0.000 35.80 C(4) 1.607e+00 CO2 1.521e+00 1.521e+00 0.182 0.182 0.000 34.30 (CO2)2 4.246e-02 4.247e-02 -1.372 -1.372 0.000 68.61 HCO3- 9.763e-04 9.433e-04 -3.010 -3.025 -0.015 25.45 CO3-2 7.290e-11 6.355e-11 -10.137 -10.197 -0.060 -1.51 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.605 -41.605 0.000 28.48 -O(0) 7.164e-10 - O2 3.582e-10 3.583e-10 -9.446 -9.446 0.000 30.02 + H2 0.000e+00 0.000e+00 -41.872 -41.872 0.000 28.48 +O(0) 2.454e-09 + O2 1.227e-09 1.227e-09 -8.911 -8.911 0.000 30.02 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 278 atm) - CH4(g) -125.87 -128.85 -2.98 CH4 + CH4(g) -126.94 -129.92 -2.98 CH4 CO2(g) 1.82 0.18 -1.64 CO2 Pressure 276.8 atm, phi 0.238 - H2(g) -38.36 -41.60 -3.24 H2 + H2(g) -38.63 -41.87 -3.24 H2 H2O(g) -1.43 -0.01 1.42 H2O Pressure 1.1 atm, phi 0.033 - O2(g) -6.41 -9.45 -3.04 O2 + O2(g) -5.87 -8.91 -3.04 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2528,19 +2529,19 @@ H2O(g) 0.16 1.455e+00 0.027 9.124e-02 9.730e-02 6.064e-03 ----------------------------Description of solution---------------------------- pH = 3.003 Charge balance - pe = 16.153 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 287 - Density (g/cm³) = 1.02723 + pe = 16.287 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 368 + Density (g/cm3) = 1.02723 Volume (L) = 1.04258 - Viscosity (mPa s) = 1.00108 + Viscosity (mPa s) = 0.88755 Activity of water = 0.973 Ionic strength (mol/kgw) = 1.028e-03 Mass of water (kg) = 9.982e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.655e+00 - Temperature (°C) = 25.00 + Temperature (oC) = 25.00 Pressure (atm) = 350.70 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.108178e+02 @@ -2549,32 +2550,32 @@ H2O(g) 0.16 1.455e+00 0.027 9.124e-02 9.730e-02 6.064e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 1.028e-03 9.942e-04 -2.988 -3.003 -0.015 0.00 OH- 1.380e-11 1.332e-11 -10.860 -10.876 -0.016 -2.93 H2O 5.551e+01 9.726e-01 1.744 -0.012 0.000 17.79 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -128.869 -128.869 0.000 35.87 + CH4 0.000e+00 0.000e+00 -129.938 -129.938 0.000 35.87 C(4) 1.655e+00 CO2 1.564e+00 1.565e+00 0.194 0.194 0.000 34.27 (CO2)2 4.492e-02 4.493e-02 -1.348 -1.347 0.000 68.54 HCO3- 1.028e-03 9.930e-04 -2.988 -3.003 -0.015 25.66 CO3-2 7.880e-11 6.850e-11 -10.103 -10.164 -0.061 -0.93 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.638 -41.638 0.000 28.46 -O(0) 7.165e-10 - O2 3.583e-10 3.583e-10 -9.446 -9.446 0.000 29.93 + H2 0.000e+00 0.000e+00 -41.906 -41.906 0.000 28.46 +O(0) 2.454e-09 + O2 1.227e-09 1.227e-09 -8.911 -8.911 0.000 29.93 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 351 atm) - CH4(g) -125.84 -128.87 -3.02 CH4 + CH4(g) -126.91 -129.94 -3.02 CH4 CO2(g) 1.88 0.19 -1.68 CO2 Pressure 349.2 atm, phi 0.215 - H2(g) -38.36 -41.64 -3.28 H2 + H2(g) -38.63 -41.91 -3.28 H2 H2O(g) -1.40 -0.01 1.39 H2O Pressure 1.5 atm, phi 0.027 - O2(g) -6.37 -9.45 -3.08 O2 + O2(g) -5.83 -8.91 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2629,19 +2630,19 @@ H2O(g) 0.27 1.863e+00 0.023 9.730e-02 1.027e-01 5.386e-03 ----------------------------Description of solution---------------------------- pH = 2.976 Charge balance - pe = 16.178 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 304 - Density (g/cm³) = 1.03147 + pe = 16.311 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 393 + Density (g/cm3) = 1.03147 Volume (L) = 1.04041 - Viscosity (mPa s) = 1.00471 + Viscosity (mPa s) = 0.88750 Activity of water = 0.972 Ionic strength (mol/kgw) = 1.094e-03 Mass of water (kg) = 9.981e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.707e+00 - Temperature (°C) = 25.00 + Temperature (oC) = 25.00 Pressure (atm) = 442.66 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.108071e+02 @@ -2650,32 +2651,32 @@ H2O(g) 0.27 1.863e+00 0.023 9.730e-02 1.027e-01 5.386e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 1.094e-03 1.056e-03 -2.961 -2.976 -0.015 0.00 OH- 1.395e-11 1.345e-11 -10.855 -10.871 -0.016 -2.66 H2O 5.551e+01 9.718e-01 1.744 -0.012 0.000 17.73 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -128.900 -128.899 0.000 35.96 + CH4 0.000e+00 0.000e+00 -129.969 -129.969 0.000 35.96 C(4) 1.707e+00 CO2 1.611e+00 1.611e+00 0.207 0.207 0.000 34.23 (CO2)2 4.764e-02 4.765e-02 -1.322 -1.322 0.000 68.46 HCO3- 1.094e-03 1.055e-03 -2.961 -2.977 -0.016 25.91 CO3-2 8.669e-11 7.509e-11 -10.062 -10.124 -0.062 -0.24 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.680 -41.680 0.000 28.42 -O(0) 7.166e-10 - O2 3.583e-10 3.584e-10 -9.446 -9.446 0.000 29.83 + H2 0.000e+00 0.000e+00 -41.948 -41.948 0.000 28.42 +O(0) 2.454e-09 + O2 1.227e-09 1.227e-09 -8.911 -8.911 0.000 29.83 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 443 atm) - CH4(g) -125.82 -128.90 -3.08 CH4 + CH4(g) -126.88 -129.97 -3.08 CH4 CO2(g) 1.94 0.21 -1.74 CO2 Pressure 440.8 atm, phi 0.199 - H2(g) -38.36 -41.68 -3.32 H2 + H2(g) -38.62 -41.95 -3.32 H2 H2O(g) -1.38 -0.01 1.36 H2O Pressure 1.9 atm, phi 0.023 - O2(g) -6.32 -9.45 -3.13 O2 + O2(g) -5.78 -8.91 -3.13 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2730,17 +2731,17 @@ H2O(g) 0.37 2.361e+00 0.019 1.027e-01 1.071e-01 4.442e-03 ----------------------------Description of solution---------------------------- pH = 2.945 Charge balance - pe = 16.206 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 326 - Density (g/cm³) = 1.03663 + pe = 16.340 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 425 + Density (g/cm3) = 1.03663 Volume (L) = 1.03747 - Viscosity (mPa s) = 1.00901 + Viscosity (mPa s) = 0.88783 Activity of water = 0.971 Ionic strength (mol/kgw) = 1.176e-03 Mass of water (kg) = 9.980e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.762e+00 - Temperature (°C) = 25.00 + Temperature (oC) = 25.00 Pressure (atm) = 558.75 Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -2751,32 +2752,436 @@ H2O(g) 0.37 2.361e+00 0.019 1.027e-01 1.071e-01 4.442e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 1.176e-03 1.135e-03 -2.930 -2.945 -0.015 0.00 OH- 1.418e-11 1.366e-11 -10.848 -10.865 -0.016 -2.33 H2O 5.551e+01 9.709e-01 1.744 -0.013 0.000 17.64 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -128.942 -128.941 0.000 36.07 + CH4 0.000e+00 0.000e+00 -130.011 -130.011 0.000 36.07 C(4) 1.762e+00 CO2 1.660e+00 1.660e+00 0.220 0.220 0.000 34.18 (CO2)2 5.057e-02 5.059e-02 -1.296 -1.296 0.000 68.35 HCO3- 1.176e-03 1.133e-03 -2.930 -2.946 -0.016 26.21 CO3-2 9.737e-11 8.398e-11 -10.012 -10.076 -0.064 0.59 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.733 -41.733 0.000 28.38 -O(0) 7.167e-10 - O2 3.583e-10 3.584e-10 -9.446 -9.446 0.000 29.70 + H2 0.000e+00 0.000e+00 -42.001 -42.001 0.000 28.38 +O(0) 2.455e-09 + O2 1.227e-09 1.228e-09 -8.911 -8.911 0.000 29.70 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 559 atm) - CH4(g) -125.78 -128.94 -3.16 CH4 + CH4(g) -126.85 -130.01 -3.16 CH4 CO2(g) 2.03 0.22 -1.81 CO2 Pressure 556.4 atm, phi 0.191 - H2(g) -38.35 -41.73 -3.38 H2 + H2(g) -38.62 -42.00 -3.38 H2 H2O(g) -1.34 -0.01 1.33 H2O Pressure 2.4 atm, phi 0.019 - O2(g) -6.26 -9.45 -3.19 O2 + O2(g) -5.72 -8.91 -3.19 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 29. + +WARNING: Numerical method failed, switching to numerical derivatives. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying smaller step size, pe step size 10, 5 ... + +Using solution 1. +Using gas phase 1. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 705.72 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 3.80e-02 liters/mole + P * Vm / RT: 1.09694 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 2.85 7.028e+02 0.191 2.524e+01 2.619e+01 9.441e-01 +H2O(g) 0.47 2.960e+00 0.017 1.071e-01 1.103e-01 3.179e-03 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 1.818e+00 1.815e+00 + +----------------------------Description of solution---------------------------- + + pH = 2.909 Charge balance + pe = 16.373 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 465 + Density (g/cm3) = 1.04287 + Volume (L) = 1.03356 + Viscosity (mPa s) = 0.88888 + Activity of water = 0.970 + Ionic strength (mol/kgw) = 1.280e-03 + Mass of water (kg) = 9.980e-01 + Total alkalinity (eq/kg) = 1.216e-09 + Total CO2 (mol/kg) = 1.818e+00 + Temperature (oC) = 25.00 + Pressure (atm) = 705.72 + Electrical balance (eq) = -1.213e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 37 (138 overall) + Total H = 1.107918e+02 + Total O = 5.902505e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 1.280e-03 1.234e-03 -2.893 -2.909 -0.016 0.00 + OH- 1.451e-11 1.395e-11 -10.838 -10.855 -0.017 -1.95 + H2O 5.551e+01 9.700e-01 1.744 -0.013 0.000 17.54 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -130.068 -130.068 0.000 36.18 +C(4) 1.818e+00 + CO2 1.710e+00 1.710e+00 0.233 0.233 0.000 34.11 + (CO2)2 5.365e-02 5.367e-02 -1.270 -1.270 0.000 68.22 + HCO3- 1.280e-03 1.232e-03 -2.893 -2.909 -0.017 26.56 + CO3-2 1.121e-10 9.622e-11 -9.950 -10.017 -0.066 1.56 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.068 -42.068 0.000 28.34 +O(0) 2.455e-09 + O2 1.227e-09 1.228e-09 -8.911 -8.911 0.000 29.55 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(298 K, 706 atm) + + CH4(g) -126.81 -130.07 -3.25 CH4 + CO2(g) 2.13 0.23 -1.89 CO2 Pressure 702.8 atm, phi 0.191 + H2(g) -38.61 -42.07 -3.46 H2 + H2O(g) -1.30 -0.01 1.28 H2O Pressure 3.0 atm, phi 0.017 + O2(g) -5.65 -8.91 -3.26 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 30. + +WARNING: Numerical method failed, switching to numerical derivatives. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying smaller step size, pe step size 10, 5 ... + +Using solution 1. +Using gas phase 1. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 893.08 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 3.67e-02 liters/mole + P * Vm / RT: 1.33993 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 2.95 8.894e+02 0.201 2.619e+01 2.713e+01 9.449e-01 +H2O(g) 0.56 3.666e+00 0.016 1.103e-01 1.118e-01 1.531e-03 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 1.873e+00 1.870e+00 + +----------------------------Description of solution---------------------------- + + pH = 2.866 Charge balance + pe = 16.412 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 518 + Density (g/cm3) = 1.05046 + Volume (L) = 1.02838 + Viscosity (mPa s) = 0.89123 + Activity of water = 0.969 + Ionic strength (mol/kgw) = 1.414e-03 + Mass of water (kg) = 9.980e-01 + Total alkalinity (eq/kg) = 1.216e-09 + Total CO2 (mol/kg) = 1.873e+00 + Temperature (oC) = 25.00 + Pressure (atm) = 893.08 + Electrical balance (eq) = -1.214e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 47 (148 overall) + Total H = 1.107888e+02 + Total O = 5.913372e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 1.414e-03 1.361e-03 -2.849 -2.866 -0.017 0.00 + OH- 1.496e-11 1.436e-11 -10.825 -10.843 -0.018 -1.51 + H2O 5.551e+01 9.691e-01 1.744 -0.014 0.000 17.42 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -130.145 -130.145 0.000 36.31 +C(4) 1.873e+00 + CO2 1.759e+00 1.759e+00 0.245 0.245 0.000 34.03 + (CO2)2 5.677e-02 5.679e-02 -1.246 -1.246 0.000 68.06 + HCO3- 1.414e-03 1.359e-03 -2.849 -2.867 -0.017 26.97 + CO3-2 1.330e-10 1.135e-10 -9.876 -9.945 -0.069 2.69 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.153 -42.153 0.000 28.28 +O(0) 2.455e-09 + O2 1.227e-09 1.228e-09 -8.911 -8.911 0.000 29.38 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(298 K, 893 atm) + + CH4(g) -126.77 -130.14 -3.38 CH4 + CO2(g) 2.25 0.25 -2.01 CO2 Pressure 889.4 atm, phi 0.201 + H2(g) -38.60 -42.15 -3.55 H2 + H2O(g) -1.24 -0.01 1.23 H2O Pressure 3.7 atm, phi 0.016 + O2(g) -5.55 -8.91 -3.36 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 31. + +WARNING: Numerical method failed, switching to numerical derivatives. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying smaller step size, pe step size 10, 5 ... + +Using solution 1. +Using gas phase 1. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 1134.73 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 3.55e-02 liters/mole + P * Vm / RT: 1.64522 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 3.05 1.130e+03 0.226 2.713e+01 2.808e+01 9.490e-01 +H2O(g) 0.65 4.478e+00 0.015 1.118e-01 1.112e-01 -5.962e-04 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 1.925e+00 1.921e+00 + +----------------------------Description of solution---------------------------- + + pH = 2.816 Charge balance + pe = 16.457 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 587 + Density (g/cm3) = 1.05981 + Volume (L) = 1.02144 + Viscosity (mPa s) = 0.89590 + Activity of water = 0.968 + Ionic strength (mol/kgw) = 1.591e-03 + Mass of water (kg) = 9.980e-01 + Total alkalinity (eq/kg) = 1.217e-09 + Total CO2 (mol/kg) = 1.925e+00 + Temperature (oC) = 25.00 + Pressure (atm) = 1134.73 + Electrical balance (eq) = -1.214e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 57 (158 overall) + Total H = 1.107900e+02 + Total O = 5.923633e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 1.591e-03 1.529e-03 -2.798 -2.816 -0.017 0.00 + OH- 1.558e-11 1.493e-11 -10.807 -10.826 -0.018 -0.99 + H2O 5.551e+01 9.683e-01 1.744 -0.014 0.000 17.26 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -130.250 -130.250 0.000 36.45 +C(4) 1.925e+00 + CO2 1.804e+00 1.804e+00 0.256 0.256 0.000 33.93 + (CO2)2 5.971e-02 5.974e-02 -1.224 -1.224 0.000 67.87 + HCO3- 1.591e-03 1.527e-03 -2.798 -2.816 -0.018 27.45 + CO3-2 1.638e-10 1.387e-10 -9.786 -9.858 -0.072 4.01 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.263 -42.263 0.000 28.22 +O(0) 2.455e-09 + O2 1.227e-09 1.228e-09 -8.911 -8.911 0.000 29.18 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(298 K, 1135 atm) + + CH4(g) -126.71 -130.25 -3.54 CH4 + CO2(g) 2.41 0.26 -2.15 CO2 Pressure 1130.2 atm, phi 0.226 + H2(g) -38.59 -42.26 -3.67 H2 + H2O(g) -1.17 -0.01 1.16 H2O Pressure 4.5 atm, phi 0.015 + O2(g) -5.43 -8.91 -3.48 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 32. + +WARNING: Numerical method failed, switching to numerical derivatives. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying smaller step size, pe step size 10, 5 ... + +Using solution 1. +Using gas phase 1. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 1452.23 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 3.43e-02 liters/mole + P * Vm / RT: 2.03657 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 3.16 1.447e+03 0.278 2.808e+01 2.904e+01 9.583e-01 +H2O(g) 0.73 5.375e+00 0.016 1.112e-01 1.079e-01 -3.372e-03 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 1.966e+00 1.962e+00 + +----------------------------Description of solution---------------------------- + + pH = 2.756 Charge balance + pe = 16.510 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 25oC) = 681 + Density (g/cm3) = 1.07179 + Volume (L) = 1.01178 + Viscosity (mPa s) = 0.90519 + Activity of water = 0.968 + Ionic strength (mol/kgw) = 1.831e-03 + Mass of water (kg) = 9.980e-01 + Total alkalinity (eq/kg) = 1.217e-09 + Total CO2 (mol/kg) = 1.966e+00 + Temperature (oC) = 25.00 + Pressure (atm) = 1452.23 + Electrical balance (eq) = -1.215e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 66 (167 overall) + Total H = 1.107967e+02 + Total O = 5.932304e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 1.831e-03 1.755e-03 -2.737 -2.756 -0.018 0.00 + OH- 1.644e-11 1.572e-11 -10.784 -10.804 -0.020 -0.40 + H2O 5.551e+01 9.676e-01 1.744 -0.014 0.000 17.07 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -130.396 -130.396 0.000 36.60 +C(4) 1.966e+00 + CO2 1.840e+00 1.841e+00 0.265 0.265 0.000 33.81 + (CO2)2 6.216e-02 6.218e-02 -1.207 -1.206 0.000 67.63 + HCO3- 1.831e-03 1.752e-03 -2.737 -2.756 -0.019 28.01 + CO3-2 2.117e-10 1.776e-10 -9.674 -9.751 -0.076 5.53 +H(0) 0.000e+00 + H2 0.000e+00 0.000e+00 -42.408 -42.407 0.000 28.15 +O(0) 2.455e-09 + O2 1.227e-09 1.228e-09 -8.911 -8.911 0.000 28.96 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(298 K, 1452 atm) + + CH4(g) -126.65 -130.40 -3.74 CH4 + CO2(g) 2.60 0.26 -2.34 CO2 Pressure 1446.9 atm, phi 0.278 + H2(g) -38.58 -42.41 -3.83 H2 + H2O(g) -1.08 -0.01 1.06 H2O Pressure 5.4 atm, phi 0.016 + O2(g) -5.27 -8.91 -3.64 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2791,11 +3196,11 @@ Reading input data for simulation 2. USE solution 1 USE gas_phase 1 - USE reaction 1 + REACTION + CO2 1 + 0 29*1 REACTION_TEMPERATURE 2 50 - USER_GRAPH 2 - -headings 50C END ----------------------------------------- Beginning of batch-reaction calculations. @@ -2835,7 +3240,7 @@ Total pressure: 0.12 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CO2(g) -99.99 0.000e+00 0.191 0.000e+00 0.000e+00 0.000e+00 +CO2(g) -99.99 0.000e+00 0.278 0.000e+00 0.000e+00 0.000e+00 H2O(g) -0.92 1.216e-01 0.998 0.000e+00 4.591e-03 4.591e-03 -----------------------------Solution composition------------------------------ @@ -2848,15 +3253,15 @@ H2O(g) -0.92 1.216e-01 0.998 0.000e+00 4.591e-03 4.591e-03 pH = 6.632 Charge balance pe = 9.262 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 0 - Density (g/cm³) = 0.98799 + Specific Conductance (uS/cm, 50oC) = 0 + Density (g/cm3) = 0.98799 Volume (L) = 1.01207 Viscosity (mPa s) = 0.54650 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.341e-07 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.217e-09 - Temperature (°C) = 50.00 + Temperature (oC) = 50.00 Pressure (atm) = 0.12 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.26 @@ -2867,7 +3272,7 @@ H2O(g) -0.92 1.216e-01 0.998 0.000e+00 4.591e-03 4.591e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol OH- 2.347e-07 2.346e-07 -6.629 -6.630 -0.000 -3.83 H+ 2.335e-07 2.334e-07 -6.632 -6.632 -0.000 0.00 @@ -2932,17 +3337,17 @@ H2O(g) -0.85 1.400e-01 0.872 4.591e-03 5.717e-03 1.126e-03 ----------------------------Description of solution---------------------------- pH = 3.402 Charge balance - pe = 12.495 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 200 - Density (g/cm³) = 0.99137 + pe = 12.491 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 50oC) = 205 + Density (g/cm3) = 0.99137 Volume (L) = 1.02222 - Viscosity (mPa s) = 0.55428 + Viscosity (mPa s) = 0.54698 Activity of water = 0.995 Ionic strength (mol/kgw) = 4.059e-04 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 3.070e-01 - Temperature (°C) = 50.00 + Temperature (oC) = 50.00 Pressure (atm) = 17.11 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -2953,32 +3358,32 @@ H2O(g) -0.85 1.400e-01 0.872 4.591e-03 5.717e-03 1.126e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 4.059e-04 3.965e-04 -3.392 -3.402 -0.010 0.00 OH- 1.426e-10 1.392e-10 -9.846 -9.856 -0.011 -3.83 H2O 5.551e+01 9.948e-01 1.744 -0.002 0.000 18.22 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -106.551 -106.551 0.000 37.34 + CH4 0.000e+00 0.000e+00 -106.522 -106.522 0.000 37.34 C(4) 3.070e-01 CO2 2.998e-01 2.998e-01 -0.523 -0.523 0.000 35.64 (CO2)2 3.375e-03 3.375e-03 -2.472 -2.472 0.000 71.28 HCO3- 4.059e-04 3.963e-04 -3.392 -3.402 -0.010 25.62 CO3-2 7.490e-11 6.807e-11 -10.126 -10.167 -0.042 -3.09 -H(0) 1.781e-35 - H2 8.907e-36 8.908e-36 -35.050 -35.050 0.000 28.58 -O(0) 2.799e-15 - O2 1.399e-15 1.400e-15 -14.854 -14.854 0.000 31.89 +H(0) 1.812e-35 + H2 9.059e-36 9.060e-36 -35.043 -35.043 0.000 28.58 +O(0) 2.706e-15 + O2 1.353e-15 1.353e-15 -14.869 -14.869 0.000 31.89 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 17 atm) - CH4(g) -103.58 -106.55 -2.97 CH4 + CH4(g) -103.55 -106.52 -2.97 CH4 CO2(g) 1.20 -0.52 -1.72 CO2 Pressure 17.0 atm, phi 0.928 - H2(g) -31.91 -35.05 -3.14 H2 + H2(g) -31.90 -35.04 -3.14 H2 H2O(g) -0.91 -0.00 0.91 H2O Pressure 0.1 atm, phi 0.872 - O2(g) -11.82 -14.85 -3.04 O2 + O2(g) -11.83 -14.87 -3.04 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3027,53 +3432,53 @@ H2O(g) -0.79 1.615e-01 0.761 5.717e-03 7.178e-03 1.461e-03 ----------------------------Description of solution---------------------------- pH = 3.277 Charge balance - pe = 2.454 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 258 - Density (g/cm³) = 0.99409 + pe = 2.472 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 50oC) = 270 + Density (g/cm3) = 0.99409 Volume (L) = 1.03007 - Viscosity (mPa s) = 0.56005 + Viscosity (mPa s) = 0.54734 Activity of water = 0.991 Ionic strength (mol/kgw) = 5.432e-04 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 5.478e-01 - Temperature (°C) = 50.00 + Temperature (oC) = 50.00 Pressure (atm) = 32.84 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 35 + Iterations = 36 Total H = 1.109981e+02 Total O = 5.659456e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 5.432e-04 5.288e-04 -3.265 -3.277 -0.012 0.00 OH- 1.083e-10 1.053e-10 -9.965 -9.978 -0.012 -3.84 H2O 5.551e+01 9.909e-01 1.744 -0.004 0.000 18.21 -C(-4) 1.040e-25 - CH4 1.040e-25 1.040e-25 -24.983 -24.983 0.000 37.35 +C(-4) 7.379e-26 + CH4 7.379e-26 7.379e-26 -25.132 -25.132 0.000 37.35 C(4) 5.478e-01 CO2 5.265e-01 5.265e-01 -0.279 -0.279 0.000 35.62 (CO2)2 1.041e-02 1.041e-02 -1.983 -1.983 0.000 71.25 HCO3- 5.432e-04 5.284e-04 -3.265 -3.277 -0.012 25.68 CO3-2 7.726e-11 6.922e-11 -10.112 -10.160 -0.048 -2.93 -H(0) 3.765e-15 - H2 1.883e-15 1.883e-15 -14.725 -14.725 0.000 28.57 +H(0) 3.456e-15 + H2 1.728e-15 1.728e-15 -14.762 -14.762 0.000 28.57 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -55.521 -55.521 0.000 31.85 + O2 0.000e+00 0.000e+00 -55.447 -55.447 0.000 31.85 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 33 atm) - CH4(g) -22.00 -24.98 -2.98 CH4 + CH4(g) -22.15 -25.13 -2.98 CH4 CO2(g) 1.45 -0.28 -1.73 CO2 Pressure 32.7 atm, phi 0.864 - H2(g) -11.57 -14.73 -3.15 H2 + H2(g) -11.61 -14.76 -3.15 H2 H2O(g) -0.91 -0.00 0.91 H2O Pressure 0.2 atm, phi 0.761 - O2(g) -52.47 -55.52 -3.05 O2 + O2(g) -52.40 -55.45 -3.05 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3122,53 +3527,53 @@ H2O(g) -0.73 1.861e-01 0.665 7.178e-03 9.044e-03 1.866e-03 ----------------------------Description of solution---------------------------- pH = 3.215 Charge balance - pe = 2.643 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 290 - Density (g/cm³) = 0.99620 + pe = 12.788 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 50oC) = 308 + Density (g/cm3) = 0.99620 Volume (L) = 1.03584 - Viscosity (mPa s) = 0.56436 + Viscosity (mPa s) = 0.54765 Activity of water = 0.988 Ionic strength (mol/kgw) = 6.276e-04 Mass of water (kg) = 9.998e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 7.286e-01 - Temperature (°C) = 50.00 + Temperature (oC) = 50.00 Pressure (atm) = 46.93 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 + Iterations = 30 Total H = 1.109943e+02 Total O = 5.695410e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 6.276e-04 6.099e-04 -3.202 -3.215 -0.012 0.00 OH- 9.491e-11 9.211e-11 -10.023 -10.036 -0.013 -3.86 H2O 5.551e+01 9.879e-01 1.744 -0.005 0.000 18.20 -C(-4) 1.291e-26 - CH4 1.291e-26 1.291e-26 -25.889 -25.889 0.000 37.36 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -107.050 -107.050 0.000 37.36 C(4) 7.286e-01 CO2 6.920e-01 6.921e-01 -0.160 -0.160 0.000 35.61 (CO2)2 1.798e-02 1.798e-02 -1.745 -1.745 0.000 71.22 HCO3- 6.276e-04 6.094e-04 -3.202 -3.215 -0.013 25.74 CO3-2 7.904e-11 7.026e-11 -10.102 -10.153 -0.051 -2.79 -H(0) 2.063e-15 - H2 1.032e-15 1.032e-15 -14.986 -14.986 0.000 28.57 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -55.013 -55.013 0.000 31.82 +H(0) 1.058e-35 + H2 5.288e-36 5.289e-36 -35.277 -35.277 0.000 28.57 +O(0) 7.379e-15 + O2 3.690e-15 3.690e-15 -14.433 -14.433 0.000 31.82 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 47 atm) - CH4(g) -22.90 -25.89 -2.99 CH4 + CH4(g) -104.06 -107.05 -2.99 CH4 CO2(g) 1.58 -0.16 -1.74 CO2 Pressure 46.7 atm, phi 0.809 - H2(g) -11.83 -14.99 -3.16 H2 + H2(g) -32.12 -35.28 -3.16 H2 H2O(g) -0.91 -0.01 0.90 H2O Pressure 0.2 atm, phi 0.665 - O2(g) -51.96 -55.01 -3.05 O2 + O2(g) -11.38 -14.43 -3.05 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3217,53 +3622,53 @@ H2O(g) -0.67 2.136e-01 0.583 9.044e-03 1.139e-02 2.342e-03 ----------------------------Description of solution---------------------------- pH = 3.178 Charge balance - pe = 12.681 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 310 - Density (g/cm³) = 0.99780 + pe = 12.809 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 50oC) = 333 + Density (g/cm3) = 0.99780 Volume (L) = 1.03988 - Viscosity (mPa s) = 0.56749 + Viscosity (mPa s) = 0.54791 Activity of water = 0.986 Ionic strength (mol/kgw) = 6.831e-04 Mass of water (kg) = 9.998e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 8.589e-01 - Temperature (°C) = 50.00 + Temperature (oC) = 50.00 Pressure (atm) = 59.15 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 30 + Iterations = 22 Total H = 1.109897e+02 Total O = 5.721235e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 6.831e-04 6.630e-04 -3.166 -3.178 -0.013 0.00 OH- 8.811e-11 8.541e-11 -10.055 -10.068 -0.014 -3.87 H2O 5.551e+01 9.858e-01 1.744 -0.006 0.000 18.19 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -105.840 -105.840 0.000 37.37 + CH4 0.000e+00 0.000e+00 -106.865 -106.865 0.000 37.37 C(4) 8.589e-01 CO2 8.091e-01 8.092e-01 -0.092 -0.092 0.000 35.60 (CO2)2 2.458e-02 2.458e-02 -1.609 -1.609 0.000 71.19 HCO3- 6.831e-04 6.625e-04 -3.166 -3.179 -0.013 25.79 CO3-2 8.045e-11 7.117e-11 -10.094 -10.148 -0.053 -2.68 -H(0) 2.022e-35 - H2 1.011e-35 1.011e-35 -34.995 -34.995 0.000 28.56 -O(0) 1.963e-15 - O2 9.815e-16 9.816e-16 -15.008 -15.008 0.000 31.79 +H(0) 1.120e-35 + H2 5.602e-36 5.603e-36 -35.252 -35.252 0.000 28.56 +O(0) 6.391e-15 + O2 3.196e-15 3.196e-15 -14.495 -14.495 0.000 31.79 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 59 atm) - CH4(g) -102.84 -105.84 -2.99 CH4 + CH4(g) -103.87 -106.86 -2.99 CH4 CO2(g) 1.65 -0.09 -1.74 CO2 Pressure 58.9 atm, phi 0.763 - H2(g) -31.83 -35.00 -3.16 H2 + H2(g) -32.09 -35.25 -3.16 H2 H2O(g) -0.90 -0.01 0.90 H2O Pressure 0.2 atm, phi 0.583 - O2(g) -11.95 -15.01 -3.06 O2 + O2(g) -11.44 -14.50 -3.06 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3312,17 +3717,17 @@ H2O(g) -0.61 2.437e-01 0.514 1.139e-02 1.427e-02 2.881e-03 ----------------------------Description of solution---------------------------- pH = 3.156 Charge balance - pe = 12.723 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 322 - Density (g/cm³) = 0.99898 + pe = 12.907 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 50oC) = 349 + Density (g/cm3) = 0.99898 Volume (L) = 1.04261 - Viscosity (mPa s) = 0.56971 + Viscosity (mPa s) = 0.54813 Activity of water = 0.984 Ionic strength (mol/kgw) = 7.202e-04 Mass of water (kg) = 9.997e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 9.501e-01 - Temperature (°C) = 50.00 + Temperature (oC) = 50.00 Pressure (atm) = 69.44 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -3333,32 +3738,32 @@ H2O(g) -0.61 2.437e-01 0.514 1.139e-02 1.427e-02 2.881e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 7.202e-04 6.986e-04 -3.143 -3.156 -0.013 0.00 OH- 8.429e-11 8.164e-11 -10.074 -10.088 -0.014 -3.88 H2O 5.551e+01 9.843e-01 1.744 -0.007 0.000 18.18 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -105.961 -105.961 0.000 37.37 + CH4 0.000e+00 0.000e+00 -107.436 -107.436 0.000 37.37 C(4) 9.501e-01 CO2 8.899e-01 8.900e-01 -0.051 -0.051 0.000 35.58 (CO2)2 2.973e-02 2.974e-02 -1.527 -1.527 0.000 71.17 HCO3- 7.202e-04 6.979e-04 -3.143 -3.156 -0.014 25.83 CO3-2 8.158e-11 7.195e-11 -10.088 -10.143 -0.055 -2.58 -H(0) 1.826e-35 - H2 9.132e-36 9.134e-36 -35.039 -35.039 0.000 28.55 -O(0) 2.350e-15 - O2 1.175e-15 1.175e-15 -14.930 -14.930 0.000 31.77 +H(0) 7.813e-36 + H2 3.906e-36 3.907e-36 -35.408 -35.408 0.000 28.55 +O(0) 1.284e-14 + O2 6.421e-15 6.422e-15 -14.192 -14.192 0.000 31.77 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 69 atm) - CH4(g) -102.96 -105.96 -3.00 CH4 + CH4(g) -104.43 -107.44 -3.00 CH4 CO2(g) 1.70 -0.05 -1.75 CO2 Pressure 69.2 atm, phi 0.724 - H2(g) -31.87 -35.04 -3.17 H2 + H2(g) -32.24 -35.41 -3.17 H2 H2O(g) -0.90 -0.01 0.90 H2O Pressure 0.2 atm, phi 0.514 - O2(g) -11.86 -14.93 -3.07 O2 + O2(g) -11.13 -14.19 -3.07 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3407,17 +3812,17 @@ H2O(g) -0.56 2.762e-01 0.456 1.427e-02 1.774e-02 3.477e-03 ----------------------------Description of solution---------------------------- pH = 3.141 Charge balance - pe = 12.654 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 331 - Density (g/cm³) = 0.99985 + pe = 12.977 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 50oC) = 359 + Density (g/cm3) = 0.99985 Volume (L) = 1.04438 - Viscosity (mPa s) = 0.57126 + Viscosity (mPa s) = 0.54831 Activity of water = 0.983 Ionic strength (mol/kgw) = 7.453e-04 Mass of water (kg) = 9.997e-01 Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.013e+00 - Temperature (°C) = 50.00 + Temperature (oC) = 50.00 Pressure (atm) = 77.91 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -3428,32 +3833,32 @@ H2O(g) -0.56 2.762e-01 0.456 1.427e-02 1.774e-02 3.477e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 7.453e-04 7.226e-04 -3.128 -3.141 -0.013 0.00 OH- 8.202e-11 7.941e-11 -10.086 -10.100 -0.014 -3.89 H2O 5.551e+01 9.833e-01 1.744 -0.007 0.000 18.17 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -105.271 -105.271 0.000 37.38 + CH4 0.000e+00 0.000e+00 -107.851 -107.851 0.000 37.38 C(4) 1.013e+00 CO2 9.448e-01 9.449e-01 -0.025 -0.025 0.000 35.58 (CO2)2 3.351e-02 3.352e-02 -1.475 -1.475 0.000 71.15 HCO3- 7.453e-04 7.219e-04 -3.128 -3.142 -0.014 25.86 CO3-2 8.247e-11 7.259e-11 -10.084 -10.139 -0.055 -2.50 -H(0) 2.659e-35 - H2 1.330e-35 1.330e-35 -34.876 -34.876 0.000 28.55 -O(0) 1.088e-15 - O2 5.440e-16 5.441e-16 -15.264 -15.264 0.000 31.75 +H(0) 6.019e-36 + H2 3.010e-36 3.010e-36 -35.521 -35.521 0.000 28.55 +O(0) 2.123e-14 + O2 1.062e-14 1.062e-14 -13.974 -13.974 0.000 31.75 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 78 atm) - CH4(g) -102.26 -105.27 -3.01 CH4 + CH4(g) -104.84 -107.85 -3.01 CH4 CO2(g) 1.73 -0.02 -1.76 CO2 Pressure 77.6 atm, phi 0.693 - H2(g) -31.70 -34.88 -3.17 H2 + H2(g) -32.35 -35.52 -3.17 H2 H2O(g) -0.90 -0.01 0.89 H2O Pressure 0.3 atm, phi 0.456 - O2(g) -12.19 -15.26 -3.07 O2 + O2(g) -10.90 -13.97 -3.07 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3502,53 +3907,53 @@ H2O(g) -0.51 3.107e-01 0.407 1.774e-02 2.186e-02 4.119e-03 ----------------------------Description of solution---------------------------- pH = 3.131 Charge balance - pe = 2.402 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 336 - Density (g/cm³) = 1.00049 + pe = 13.010 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 50oC) = 367 + Density (g/cm3) = 1.00049 Volume (L) = 1.04551 - Viscosity (mPa s) = 0.57234 + Viscosity (mPa s) = 0.54846 Activity of water = 0.983 Ionic strength (mol/kgw) = 7.626e-04 Mass of water (kg) = 9.996e-01 Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.055e+00 - Temperature (°C) = 50.00 + Temperature (oC) = 50.00 Pressure (atm) = 84.81 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 43 + Iterations = 31 Total H = 1.109687e+02 Total O = 5.759384e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 7.626e-04 7.391e-04 -3.118 -3.131 -0.014 0.00 OH- 8.063e-11 7.803e-11 -10.094 -10.108 -0.014 -3.90 H2O 5.551e+01 9.827e-01 1.744 -0.008 0.000 18.17 -C(-4) 6.907e-24 - CH4 6.907e-24 6.908e-24 -23.161 -23.161 0.000 37.38 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -108.026 -108.026 0.000 37.38 C(4) 1.055e+00 CO2 9.820e-01 9.821e-01 -0.008 -0.008 0.000 35.57 (CO2)2 3.620e-02 3.621e-02 -1.441 -1.441 0.000 71.14 HCO3- 7.626e-04 7.384e-04 -3.118 -3.132 -0.014 25.88 CO3-2 8.319e-11 7.312e-11 -10.080 -10.136 -0.056 -2.44 -H(0) 8.826e-15 - H2 4.413e-15 4.414e-15 -14.355 -14.355 0.000 28.55 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -56.313 -56.313 0.000 31.74 +H(0) 5.362e-36 + H2 2.681e-36 2.682e-36 -35.572 -35.572 0.000 28.55 +O(0) 2.635e-14 + O2 1.318e-14 1.318e-14 -13.880 -13.880 0.000 31.74 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 85 atm) - CH4(g) -20.15 -23.16 -3.01 CH4 + CH4(g) -105.02 -108.03 -3.01 CH4 CO2(g) 1.75 -0.01 -1.76 CO2 Pressure 84.5 atm, phi 0.668 - H2(g) -11.18 -14.36 -3.18 H2 + H2(g) -32.40 -35.57 -3.18 H2 H2O(g) -0.90 -0.01 0.89 H2O Pressure 0.3 atm, phi 0.407 - O2(g) -53.24 -56.31 -3.07 O2 + O2(g) -10.81 -13.88 -3.07 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3597,53 +4002,53 @@ H2O(g) -0.46 3.475e-01 0.365 2.186e-02 2.666e-02 4.799e-03 ----------------------------Description of solution---------------------------- pH = 3.125 Charge balance - pe = 12.650 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 340 - Density (g/cm³) = 1.00098 + pe = 13.026 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 50oC) = 372 + Density (g/cm3) = 1.00098 Volume (L) = 1.04621 - Viscosity (mPa s) = 0.57310 + Viscosity (mPa s) = 0.54858 Activity of water = 0.982 Ionic strength (mol/kgw) = 7.747e-04 Mass of water (kg) = 9.995e-01 Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.085e+00 - Temperature (°C) = 50.00 + Temperature (oC) = 50.00 Pressure (atm) = 90.49 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 54 + Iterations = 34 Total H = 1.109591e+02 Total O = 5.764790e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 7.747e-04 7.507e-04 -3.111 -3.125 -0.014 0.00 OH- 7.974e-11 7.715e-11 -10.098 -10.113 -0.014 -3.90 H2O 5.551e+01 9.822e-01 1.744 -0.008 0.000 18.16 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -105.082 -105.082 0.000 37.38 + CH4 0.000e+00 0.000e+00 -108.092 -108.092 0.000 37.38 C(4) 1.085e+00 CO2 1.008e+00 1.008e+00 0.003 0.003 0.000 35.56 (CO2)2 3.812e-02 3.813e-02 -1.419 -1.419 0.000 71.12 HCO3- 7.747e-04 7.500e-04 -3.111 -3.125 -0.014 25.90 CO3-2 8.376e-11 7.356e-11 -10.077 -10.133 -0.056 -2.39 -H(0) 2.889e-35 - H2 1.445e-35 1.445e-35 -34.840 -34.840 0.000 28.54 -O(0) 8.968e-16 - O2 4.484e-16 4.485e-16 -15.348 -15.348 0.000 31.72 +H(0) 5.107e-36 + H2 2.553e-36 2.554e-36 -35.593 -35.593 0.000 28.54 +O(0) 2.871e-14 + O2 1.435e-14 1.436e-14 -13.843 -13.843 0.000 31.72 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 90 atm) - CH4(g) -102.07 -105.08 -3.01 CH4 + CH4(g) -105.08 -108.09 -3.01 CH4 CO2(g) 1.77 0.00 -1.76 CO2 Pressure 90.1 atm, phi 0.648 - H2(g) -31.66 -34.84 -3.18 H2 + H2(g) -32.41 -35.59 -3.18 H2 H2O(g) -0.90 -0.01 0.89 H2O Pressure 0.3 atm, phi 0.365 - O2(g) -12.27 -15.35 -3.08 O2 + O2(g) -10.77 -13.84 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3692,17 +4097,17 @@ H2O(g) -0.41 3.869e-01 0.329 2.666e-02 3.217e-02 5.510e-03 ----------------------------Description of solution---------------------------- pH = 3.120 Charge balance - pe = 12.901 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 343 - Density (g/cm³) = 1.00135 + pe = 13.039 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 50oC) = 376 + Density (g/cm3) = 1.00135 Volume (L) = 1.04665 - Viscosity (mPa s) = 0.57368 + Viscosity (mPa s) = 0.54868 Activity of water = 0.982 Ionic strength (mol/kgw) = 7.838e-04 Mass of water (kg) = 9.994e-01 Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.106e+00 - Temperature (°C) = 50.00 + Temperature (oC) = 50.00 Pressure (atm) = 95.32 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -3713,32 +4118,32 @@ H2O(g) -0.41 3.869e-01 0.329 2.666e-02 3.217e-02 5.510e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 7.838e-04 7.594e-04 -3.106 -3.120 -0.014 0.00 OH- 7.914e-11 7.655e-11 -10.102 -10.116 -0.014 -3.91 H2O 5.551e+01 9.819e-01 1.744 -0.008 0.000 18.16 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.050 -107.050 0.000 37.39 + CH4 0.000e+00 0.000e+00 -108.154 -108.154 0.000 37.39 C(4) 1.106e+00 CO2 1.026e+00 1.026e+00 0.011 0.011 0.000 35.56 (CO2)2 3.954e-02 3.955e-02 -1.403 -1.403 0.000 71.11 HCO3- 7.838e-04 7.586e-04 -3.106 -3.120 -0.014 25.92 CO3-2 8.424e-11 7.393e-11 -10.074 -10.131 -0.057 -2.34 -H(0) 9.229e-36 - H2 4.615e-36 4.615e-36 -35.336 -35.336 0.000 28.54 -O(0) 8.699e-15 - O2 4.350e-15 4.351e-15 -14.362 -14.361 0.000 31.71 +H(0) 4.890e-36 + H2 2.445e-36 2.445e-36 -35.612 -35.612 0.000 28.54 +O(0) 3.099e-14 + O2 1.550e-14 1.550e-14 -13.810 -13.810 0.000 31.71 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 95 atm) - CH4(g) -104.03 -107.05 -3.02 CH4 + CH4(g) -105.14 -108.15 -3.02 CH4 CO2(g) 1.78 0.01 -1.77 CO2 Pressure 94.9 atm, phi 0.630 - H2(g) -32.16 -35.34 -3.18 H2 + H2(g) -32.43 -35.61 -3.18 H2 H2O(g) -0.90 -0.01 0.89 H2O Pressure 0.4 atm, phi 0.329 - O2(g) -11.28 -14.36 -3.08 O2 + O2(g) -10.73 -13.81 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3787,17 +4192,17 @@ H2O(g) -0.37 4.298e-01 0.297 3.217e-02 3.841e-02 6.243e-03 ----------------------------Description of solution---------------------------- pH = 3.116 Charge balance - pe = 12.991 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 346 - Density (g/cm³) = 1.00168 + pe = 13.045 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 50oC) = 379 + Density (g/cm3) = 1.00168 Volume (L) = 1.04693 - Viscosity (mPa s) = 0.57414 + Viscosity (mPa s) = 0.54877 Activity of water = 0.982 Ionic strength (mol/kgw) = 7.911e-04 Mass of water (kg) = 9.993e-01 Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.123e+00 - Temperature (°C) = 50.00 + Temperature (oC) = 50.00 Pressure (atm) = 99.75 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -3808,32 +4213,32 @@ H2O(g) -0.37 4.298e-01 0.297 3.217e-02 3.841e-02 6.243e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 7.911e-04 7.664e-04 -3.102 -3.116 -0.014 0.00 OH- 7.869e-11 7.611e-11 -10.104 -10.119 -0.014 -3.91 H2O 5.551e+01 9.816e-01 1.744 -0.008 0.000 18.16 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.730 -107.730 0.000 37.39 + CH4 0.000e+00 0.000e+00 -108.160 -108.159 0.000 37.39 C(4) 1.123e+00 CO2 1.041e+00 1.041e+00 0.017 0.017 0.000 35.55 (CO2)2 4.066e-02 4.067e-02 -1.391 -1.391 0.000 71.10 HCO3- 7.911e-04 7.656e-04 -3.102 -3.116 -0.014 25.94 CO3-2 8.468e-11 7.427e-11 -10.072 -10.129 -0.057 -2.30 -H(0) 6.199e-36 - H2 3.100e-36 3.100e-36 -35.509 -35.509 0.000 28.54 -O(0) 1.910e-14 - O2 9.552e-15 9.553e-15 -14.020 -14.020 0.000 31.70 +H(0) 4.840e-36 + H2 2.420e-36 2.420e-36 -35.616 -35.616 0.000 28.54 +O(0) 3.134e-14 + O2 1.567e-14 1.567e-14 -13.805 -13.805 0.000 31.70 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 100 atm) - CH4(g) -104.71 -107.73 -3.02 CH4 + CH4(g) -105.14 -108.16 -3.02 CH4 CO2(g) 1.79 0.02 -1.77 CO2 Pressure 99.3 atm, phi 0.615 - H2(g) -32.33 -35.51 -3.18 H2 + H2(g) -32.43 -35.62 -3.18 H2 H2O(g) -0.89 -0.01 0.89 H2O Pressure 0.4 atm, phi 0.297 - O2(g) -10.94 -14.02 -3.08 O2 + O2(g) -10.72 -13.80 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3882,17 +4287,17 @@ H2O(g) -0.32 4.775e-01 0.268 3.841e-02 4.540e-02 6.987e-03 ----------------------------Description of solution---------------------------- pH = 3.112 Charge balance - pe = 12.971 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 348 - Density (g/cm³) = 1.00199 + pe = 13.061 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 50oC) = 382 + Density (g/cm3) = 1.00199 Volume (L) = 1.04712 - Viscosity (mPa s) = 0.57456 + Viscosity (mPa s) = 0.54887 Activity of water = 0.981 Ionic strength (mol/kgw) = 7.977e-04 Mass of water (kg) = 9.992e-01 Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.137e+00 - Temperature (°C) = 50.00 + Temperature (oC) = 50.00 Pressure (atm) = 104.21 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -3903,32 +4308,32 @@ H2O(g) -0.32 4.775e-01 0.268 3.841e-02 4.540e-02 6.987e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 7.977e-04 7.726e-04 -3.098 -3.112 -0.014 0.00 OH- 7.834e-11 7.576e-11 -10.106 -10.121 -0.015 -3.92 H2O 5.551e+01 9.814e-01 1.744 -0.008 0.000 18.15 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.544 -107.544 0.000 37.39 + CH4 0.000e+00 0.000e+00 -108.258 -108.258 0.000 37.39 C(4) 1.137e+00 CO2 1.053e+00 1.053e+00 0.023 0.023 0.000 35.55 (CO2)2 4.165e-02 4.166e-02 -1.380 -1.380 0.000 71.09 HCO3- 7.977e-04 7.718e-04 -3.098 -3.112 -0.014 25.96 CO3-2 8.511e-11 7.462e-11 -10.070 -10.127 -0.057 -2.26 -H(0) 6.854e-36 - H2 3.427e-36 3.428e-36 -35.465 -35.465 0.000 28.54 -O(0) 1.548e-14 - O2 7.742e-15 7.744e-15 -14.111 -14.111 0.000 31.69 +H(0) 4.546e-36 + H2 2.273e-36 2.273e-36 -35.643 -35.643 0.000 28.54 +O(0) 3.520e-14 + O2 1.760e-14 1.760e-14 -13.754 -13.754 0.000 31.69 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 104 atm) - CH4(g) -104.52 -107.54 -3.02 CH4 + CH4(g) -105.23 -108.26 -3.02 CH4 CO2(g) 1.79 0.02 -1.77 CO2 Pressure 103.7 atm, phi 0.599 - H2(g) -32.28 -35.47 -3.18 H2 + H2(g) -32.46 -35.64 -3.18 H2 H2O(g) -0.89 -0.01 0.89 H2O Pressure 0.5 atm, phi 0.268 - O2(g) -11.03 -14.11 -3.08 O2 + O2(g) -10.67 -13.75 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3977,53 +4382,53 @@ H2O(g) -0.27 5.320e-01 0.241 4.540e-02 5.313e-02 7.732e-03 ----------------------------Description of solution---------------------------- pH = 3.109 Charge balance - pe = 12.832 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 350 - Density (g/cm³) = 1.00231 + pe = 13.069 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 50oC) = 385 + Density (g/cm3) = 1.00231 Volume (L) = 1.04725 - Viscosity (mPa s) = 0.57497 + Viscosity (mPa s) = 0.54897 Activity of water = 0.981 Ionic strength (mol/kgw) = 8.043e-04 Mass of water (kg) = 9.990e-01 Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.151e+00 - Temperature (°C) = 50.00 + Temperature (oC) = 50.00 Pressure (atm) = 109.16 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 37 + Iterations = 33 Total H = 1.109062e+02 Total O = 5.775348e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.043e-04 7.789e-04 -3.095 -3.109 -0.014 0.00 OH- 7.802e-11 7.544e-11 -10.108 -10.122 -0.015 -3.92 H2O 5.551e+01 9.811e-01 1.744 -0.008 0.000 18.15 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -106.401 -106.401 0.000 37.39 + CH4 0.000e+00 0.000e+00 -108.292 -108.292 0.000 37.39 C(4) 1.151e+00 CO2 1.065e+00 1.065e+00 0.027 0.028 0.000 35.54 (CO2)2 4.261e-02 4.262e-02 -1.371 -1.370 0.000 71.08 HCO3- 8.043e-04 7.781e-04 -3.095 -3.109 -0.014 25.97 CO3-2 8.560e-11 7.500e-11 -10.068 -10.125 -0.057 -2.22 -H(0) 1.315e-35 - H2 6.574e-36 6.575e-36 -35.182 -35.182 0.000 28.54 -O(0) 4.165e-15 - O2 2.083e-15 2.083e-15 -14.681 -14.681 0.000 31.68 +H(0) 4.428e-36 + H2 2.214e-36 2.214e-36 -35.655 -35.655 0.000 28.54 +O(0) 3.672e-14 + O2 1.836e-14 1.836e-14 -13.736 -13.736 0.000 31.68 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 109 atm) - CH4(g) -103.38 -106.40 -3.03 CH4 + CH4(g) -105.27 -108.29 -3.03 CH4 CO2(g) 1.80 0.03 -1.77 CO2 Pressure 108.6 atm, phi 0.583 - H2(g) -32.00 -35.18 -3.19 H2 + H2(g) -32.47 -35.65 -3.19 H2 H2O(g) -0.89 -0.01 0.88 H2O Pressure 0.5 atm, phi 0.241 - O2(g) -11.60 -14.68 -3.09 O2 + O2(g) -10.65 -13.74 -3.09 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4072,17 +4477,17 @@ H2O(g) -0.22 5.960e-01 0.216 5.313e-02 6.160e-02 8.464e-03 ----------------------------Description of solution---------------------------- pH = 3.105 Charge balance - pe = 12.852 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 353 - Density (g/cm³) = 1.00268 + pe = 13.064 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 50oC) = 388 + Density (g/cm3) = 1.00268 Volume (L) = 1.04734 - Viscosity (mPa s) = 0.57542 + Viscosity (mPa s) = 0.54910 Activity of water = 0.981 Ionic strength (mol/kgw) = 8.115e-04 Mass of water (kg) = 9.989e-01 Total alkalinity (eq/kg) = 1.222e-09 Total CO2 (mol/kg) = 1.166e+00 - Temperature (°C) = 50.00 + Temperature (oC) = 50.00 Pressure (atm) = 115.10 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -4093,32 +4498,32 @@ H2O(g) -0.22 5.960e-01 0.216 5.313e-02 6.160e-02 8.464e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.115e-04 7.858e-04 -3.091 -3.105 -0.014 0.00 OH- 7.771e-11 7.513e-11 -10.110 -10.124 -0.015 -3.93 H2O 5.551e+01 9.809e-01 1.744 -0.008 0.000 18.14 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -106.526 -106.526 0.000 37.40 + CH4 0.000e+00 0.000e+00 -108.222 -108.222 0.000 37.40 C(4) 1.166e+00 CO2 1.078e+00 1.078e+00 0.033 0.033 0.000 35.54 (CO2)2 4.362e-02 4.363e-02 -1.360 -1.360 0.000 71.07 HCO3- 8.115e-04 7.850e-04 -3.091 -3.105 -0.014 25.99 CO3-2 8.617e-11 7.547e-11 -10.065 -10.122 -0.058 -2.16 -H(0) 1.215e-35 - H2 6.074e-36 6.075e-36 -35.217 -35.216 0.000 28.53 -O(0) 4.819e-15 - O2 2.410e-15 2.410e-15 -14.618 -14.618 0.000 31.67 +H(0) 4.577e-36 + H2 2.289e-36 2.289e-36 -35.640 -35.640 0.000 28.53 +O(0) 3.395e-14 + O2 1.698e-14 1.698e-14 -13.770 -13.770 0.000 31.67 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 115 atm) - CH4(g) -103.50 -106.53 -3.03 CH4 + CH4(g) -105.19 -108.22 -3.03 CH4 CO2(g) 1.81 0.03 -1.78 CO2 Pressure 114.5 atm, phi 0.564 - H2(g) -32.03 -35.22 -3.19 H2 + H2(g) -32.45 -35.64 -3.19 H2 H2O(g) -0.89 -0.01 0.88 H2O Pressure 0.6 atm, phi 0.216 - O2(g) -11.53 -14.62 -3.09 O2 + O2(g) -10.68 -13.77 -3.09 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4167,17 +4572,17 @@ H2O(g) -0.17 6.730e-01 0.192 6.160e-02 7.077e-02 9.169e-03 ----------------------------Description of solution---------------------------- pH = 3.100 Charge balance - pe = 12.941 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 356 - Density (g/cm³) = 1.00313 + pe = 13.068 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 50oC) = 391 + Density (g/cm3) = 1.00313 Volume (L) = 1.04741 - Viscosity (mPa s) = 0.57595 + Viscosity (mPa s) = 0.54926 Activity of water = 0.981 Ionic strength (mol/kgw) = 8.198e-04 Mass of water (kg) = 9.987e-01 Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.182e+00 - Temperature (°C) = 50.00 + Temperature (oC) = 50.00 Pressure (atm) = 122.58 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -4188,32 +4593,32 @@ H2O(g) -0.17 6.730e-01 0.192 6.160e-02 7.077e-02 9.169e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.198e-04 7.938e-04 -3.086 -3.100 -0.014 0.00 OH- 7.740e-11 7.482e-11 -10.111 -10.126 -0.015 -3.93 H2O 5.551e+01 9.806e-01 1.744 -0.008 0.000 18.14 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.201 -107.201 0.000 37.40 + CH4 0.000e+00 0.000e+00 -108.217 -108.216 0.000 37.40 C(4) 1.182e+00 CO2 1.092e+00 1.092e+00 0.038 0.038 0.000 35.53 (CO2)2 4.476e-02 4.477e-02 -1.349 -1.349 0.000 71.05 HCO3- 8.198e-04 7.930e-04 -3.086 -3.101 -0.014 26.02 CO3-2 8.689e-11 7.606e-11 -10.061 -10.119 -0.058 -2.10 -H(0) 8.166e-36 - H2 4.083e-36 4.084e-36 -35.389 -35.389 0.000 28.53 -O(0) 1.051e-14 - O2 5.253e-15 5.254e-15 -14.280 -14.280 0.000 31.65 +H(0) 4.551e-36 + H2 2.275e-36 2.276e-36 -35.643 -35.643 0.000 28.53 +O(0) 3.382e-14 + O2 1.691e-14 1.691e-14 -13.772 -13.772 0.000 31.65 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 123 atm) - CH4(g) -104.17 -107.20 -3.03 CH4 + CH4(g) -105.18 -108.22 -3.03 CH4 CO2(g) 1.82 0.04 -1.78 CO2 Pressure 121.9 atm, phi 0.542 - H2(g) -32.20 -35.39 -3.19 H2 + H2(g) -32.45 -35.64 -3.19 H2 H2O(g) -0.89 -0.01 0.88 H2O Pressure 0.7 atm, phi 0.192 - O2(g) -11.19 -14.28 -3.09 O2 + O2(g) -10.68 -13.77 -3.09 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4262,17 +4667,17 @@ H2O(g) -0.12 7.673e-01 0.170 7.077e-02 8.060e-02 9.828e-03 ----------------------------Description of solution---------------------------- pH = 3.095 Charge balance - pe = 13.004 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 359 - Density (g/cm³) = 1.00368 + pe = 13.123 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 50oC) = 396 + Density (g/cm3) = 1.00368 Volume (L) = 1.04745 - Viscosity (mPa s) = 0.57656 + Viscosity (mPa s) = 0.54946 Activity of water = 0.980 Ionic strength (mol/kgw) = 8.298e-04 Mass of water (kg) = 9.985e-01 Total alkalinity (eq/kg) = 1.222e-09 Total CO2 (mol/kg) = 1.201e+00 - Temperature (°C) = 50.00 + Temperature (oC) = 50.00 Pressure (atm) = 132.16 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -4283,32 +4688,32 @@ H2O(g) -0.12 7.673e-01 0.170 7.077e-02 8.060e-02 9.828e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.298e-04 8.033e-04 -3.081 -3.095 -0.014 0.00 OH- 7.709e-11 7.451e-11 -10.113 -10.128 -0.015 -3.94 H2O 5.551e+01 9.804e-01 1.744 -0.009 0.000 18.13 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.663 -107.662 0.000 37.41 + CH4 0.000e+00 0.000e+00 -108.618 -108.618 0.000 37.41 C(4) 1.201e+00 CO2 1.108e+00 1.108e+00 0.044 0.044 0.000 35.52 (CO2)2 4.606e-02 4.607e-02 -1.337 -1.337 0.000 71.03 HCO3- 8.298e-04 8.024e-04 -3.081 -3.096 -0.015 26.06 CO3-2 8.782e-11 7.681e-11 -10.056 -10.115 -0.058 -2.01 -H(0) 6.194e-36 - H2 3.097e-36 3.098e-36 -35.509 -35.509 0.000 28.53 -O(0) 1.790e-14 - O2 8.951e-15 8.953e-15 -14.048 -14.048 0.000 31.63 +H(0) 3.575e-36 + H2 1.787e-36 1.788e-36 -35.748 -35.748 0.000 28.53 +O(0) 5.376e-14 + O2 2.688e-14 2.688e-14 -13.571 -13.571 0.000 31.63 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 132 atm) - CH4(g) -104.62 -107.66 -3.04 CH4 + CH4(g) -105.58 -108.62 -3.04 CH4 CO2(g) 1.83 0.04 -1.79 CO2 Pressure 131.4 atm, phi 0.516 - H2(g) -32.31 -35.51 -3.20 H2 + H2(g) -32.55 -35.75 -3.20 H2 H2O(g) -0.89 -0.01 0.88 H2O Pressure 0.8 atm, phi 0.170 - O2(g) -10.95 -14.05 -3.10 O2 + O2(g) -10.47 -13.57 -3.10 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4357,17 +4762,17 @@ H2O(g) -0.05 8.845e-01 0.148 8.060e-02 9.102e-02 1.042e-02 ----------------------------Description of solution---------------------------- pH = 3.089 Charge balance - pe = 13.053 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 363 - Density (g/cm³) = 1.00438 + pe = 13.132 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 50oC) = 401 + Density (g/cm3) = 1.00438 Volume (L) = 1.04745 - Viscosity (mPa s) = 0.57730 + Viscosity (mPa s) = 0.54972 Activity of water = 0.980 Ionic strength (mol/kgw) = 8.417e-04 Mass of water (kg) = 9.983e-01 Total alkalinity (eq/kg) = 1.222e-09 Total CO2 (mol/kg) = 1.221e+00 - Temperature (°C) = 50.00 + Temperature (oC) = 50.00 Pressure (atm) = 144.52 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -4378,32 +4783,32 @@ H2O(g) -0.05 8.845e-01 0.148 8.060e-02 9.102e-02 1.042e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.417e-04 8.147e-04 -3.075 -3.089 -0.014 0.00 OH- 7.679e-11 7.420e-11 -10.115 -10.130 -0.015 -3.96 H2O 5.551e+01 9.800e-01 1.744 -0.009 0.000 18.12 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -108.005 -108.005 0.000 37.41 + CH4 0.000e+00 0.000e+00 -108.636 -108.636 0.000 37.41 C(4) 1.221e+00 CO2 1.125e+00 1.126e+00 0.051 0.051 0.000 35.50 (CO2)2 4.756e-02 4.757e-02 -1.323 -1.323 0.000 71.01 HCO3- 8.417e-04 8.138e-04 -3.075 -3.089 -0.015 26.10 CO3-2 8.902e-11 7.780e-11 -10.051 -10.109 -0.059 -1.91 -H(0) 5.019e-36 - H2 2.510e-36 2.510e-36 -35.600 -35.600 0.000 28.52 -O(0) 2.659e-14 - O2 1.330e-14 1.330e-14 -13.876 -13.876 0.000 31.61 +H(0) 3.491e-36 + H2 1.746e-36 1.746e-36 -35.758 -35.758 0.000 28.52 +O(0) 5.496e-14 + O2 2.748e-14 2.749e-14 -13.561 -13.561 0.000 31.61 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 145 atm) - CH4(g) -104.96 -108.01 -3.05 CH4 + CH4(g) -105.59 -108.64 -3.05 CH4 CO2(g) 1.85 0.05 -1.79 CO2 Pressure 143.6 atm, phi 0.488 - H2(g) -32.40 -35.60 -3.20 H2 + H2(g) -32.55 -35.76 -3.20 H2 H2O(g) -0.88 -0.01 0.87 H2O Pressure 0.9 atm, phi 0.148 - O2(g) -10.77 -13.88 -3.10 O2 + O2(g) -10.46 -13.56 -3.10 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4452,17 +4857,17 @@ H2O(g) 0.01 1.031e+00 0.129 9.102e-02 1.020e-01 1.094e-02 ----------------------------Description of solution---------------------------- pH = 3.082 Charge balance - pe = 12.930 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 368 - Density (g/cm³) = 1.00524 + pe = 13.118 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 50oC) = 408 + Density (g/cm3) = 1.00524 Volume (L) = 1.04738 - Viscosity (mPa s) = 0.57819 + Viscosity (mPa s) = 0.55006 Activity of water = 0.980 Ionic strength (mol/kgw) = 8.561e-04 Mass of water (kg) = 9.981e-01 Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.245e+00 - Temperature (°C) = 50.00 + Temperature (oC) = 50.00 Pressure (atm) = 160.38 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -4473,32 +4878,32 @@ H2O(g) 0.01 1.031e+00 0.129 9.102e-02 1.020e-01 1.094e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.561e-04 8.285e-04 -3.067 -3.082 -0.014 0.00 OH- 7.651e-11 7.391e-11 -10.116 -10.131 -0.015 -3.97 H2O 5.551e+01 9.797e-01 1.744 -0.009 0.000 18.11 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -106.970 -106.970 0.000 37.42 + CH4 0.000e+00 0.000e+00 -108.474 -108.474 0.000 37.42 C(4) 1.245e+00 CO2 1.146e+00 1.146e+00 0.059 0.059 0.000 35.49 (CO2)2 4.929e-02 4.930e-02 -1.307 -1.307 0.000 70.97 HCO3- 8.561e-04 8.276e-04 -3.067 -3.082 -0.015 26.16 CO3-2 9.056e-11 7.907e-11 -10.043 -10.102 -0.059 -1.77 -H(0) 8.964e-36 - H2 4.482e-36 4.483e-36 -35.349 -35.348 0.000 28.51 -O(0) 8.076e-15 - O2 4.038e-15 4.039e-15 -14.394 -14.394 0.000 31.58 +H(0) 3.772e-36 + H2 1.886e-36 1.886e-36 -35.724 -35.724 0.000 28.51 +O(0) 4.561e-14 + O2 2.280e-14 2.281e-14 -13.642 -13.642 0.000 31.58 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 160 atm) - CH4(g) -103.91 -106.97 -3.06 CH4 + CH4(g) -105.42 -108.47 -3.06 CH4 CO2(g) 1.86 0.06 -1.80 CO2 Pressure 159.3 atm, phi 0.457 - H2(g) -32.14 -35.35 -3.21 H2 + H2(g) -32.51 -35.72 -3.21 H2 H2O(g) -0.88 -0.01 0.87 H2O Pressure 1.0 atm, phi 0.129 - O2(g) -11.28 -14.39 -3.11 O2 + O2(g) -10.53 -13.64 -3.11 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4547,17 +4952,17 @@ H2O(g) 0.08 1.215e+00 0.111 1.020e-01 1.133e-01 1.134e-02 ----------------------------Description of solution---------------------------- pH = 3.073 Charge balance - pe = 12.959 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 375 - Density (g/cm³) = 1.00631 + pe = 13.159 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 50oC) = 416 + Density (g/cm3) = 1.00631 Volume (L) = 1.04724 - Viscosity (mPa s) = 0.57925 + Viscosity (mPa s) = 0.55049 Activity of water = 0.979 Ionic strength (mol/kgw) = 8.735e-04 Mass of water (kg) = 9.979e-01 Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.272e+00 - Temperature (°C) = 50.00 + Temperature (oC) = 50.00 Pressure (atm) = 180.60 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -4568,32 +4973,32 @@ H2O(g) 0.08 1.215e+00 0.111 1.020e-01 1.133e-01 1.134e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.735e-04 8.451e-04 -3.059 -3.073 -0.014 0.00 OH- 7.627e-11 7.366e-11 -10.118 -10.133 -0.015 -3.99 H2O 5.551e+01 9.792e-01 1.744 -0.009 0.000 18.09 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.134 -107.134 0.000 37.43 + CH4 0.000e+00 0.000e+00 -108.733 -108.733 0.000 37.43 C(4) 1.272e+00 CO2 1.169e+00 1.169e+00 0.068 0.068 0.000 35.47 (CO2)2 5.130e-02 5.131e-02 -1.290 -1.290 0.000 70.93 HCO3- 8.735e-04 8.441e-04 -3.059 -3.074 -0.015 26.23 CO3-2 9.255e-11 8.072e-11 -10.034 -10.093 -0.059 -1.59 -H(0) 7.998e-36 - H2 3.999e-36 4.000e-36 -35.398 -35.398 0.000 28.51 -O(0) 9.740e-15 - O2 4.870e-15 4.871e-15 -14.312 -14.312 0.000 31.53 +H(0) 3.186e-36 + H2 1.593e-36 1.593e-36 -35.798 -35.798 0.000 28.51 +O(0) 6.139e-14 + O2 3.069e-14 3.070e-14 -13.513 -13.513 0.000 31.53 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 181 atm) - CH4(g) -104.06 -107.13 -3.07 CH4 + CH4(g) -105.66 -108.73 -3.07 CH4 CO2(g) 1.88 0.07 -1.82 CO2 Pressure 179.4 atm, phi 0.426 - H2(g) -32.18 -35.40 -3.22 H2 + H2(g) -32.58 -35.80 -3.22 H2 H2O(g) -0.87 -0.01 0.86 H2O Pressure 1.2 atm, phi 0.111 - O2(g) -11.19 -14.31 -3.12 O2 + O2(g) -10.39 -13.51 -3.12 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4642,17 +5047,17 @@ H2O(g) 0.16 1.445e+00 0.095 1.133e-01 1.249e-01 1.161e-02 ----------------------------Description of solution---------------------------- pH = 3.063 Charge balance - pe = 13.006 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 382 - Density (g/cm³) = 1.00763 + pe = 13.170 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 50oC) = 425 + Density (g/cm3) = 1.00763 Volume (L) = 1.04697 - Viscosity (mPa s) = 0.58051 + Viscosity (mPa s) = 0.55104 Activity of water = 0.979 Ionic strength (mol/kgw) = 8.944e-04 Mass of water (kg) = 9.977e-01 Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.303e+00 - Temperature (°C) = 50.00 + Temperature (oC) = 50.00 Pressure (atm) = 206.19 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -4663,32 +5068,32 @@ H2O(g) 0.16 1.445e+00 0.095 1.133e-01 1.249e-01 1.161e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.944e-04 8.650e-04 -3.048 -3.063 -0.015 0.00 OH- 7.611e-11 7.347e-11 -10.119 -10.134 -0.015 -4.02 H2O 5.551e+01 9.787e-01 1.744 -0.009 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.434 -107.434 0.000 37.44 + CH4 0.000e+00 0.000e+00 -108.750 -108.750 0.000 37.44 C(4) 1.303e+00 CO2 1.195e+00 1.195e+00 0.077 0.077 0.000 35.44 (CO2)2 5.359e-02 5.360e-02 -1.271 -1.271 0.000 70.88 HCO3- 8.944e-04 8.641e-04 -3.048 -3.063 -0.015 26.32 CO3-2 9.511e-11 8.283e-11 -10.022 -10.082 -0.060 -1.38 -H(0) 6.572e-36 - H2 3.286e-36 3.287e-36 -35.483 -35.483 0.000 28.49 -O(0) 1.370e-14 - O2 6.852e-15 6.853e-15 -14.164 -14.164 0.000 31.48 +H(0) 3.080e-36 + H2 1.540e-36 1.540e-36 -35.812 -35.812 0.000 28.49 +O(0) 6.240e-14 + O2 3.120e-14 3.121e-14 -13.506 -13.506 0.000 31.48 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 206 atm) - CH4(g) -104.35 -107.43 -3.09 CH4 + CH4(g) -105.67 -108.75 -3.09 CH4 CO2(g) 1.91 0.08 -1.83 CO2 Pressure 204.7 atm, phi 0.394 - H2(g) -32.25 -35.48 -3.23 H2 + H2(g) -32.58 -35.81 -3.23 H2 H2O(g) -0.86 -0.01 0.86 H2O Pressure 1.4 atm, phi 0.095 - O2(g) -11.03 -14.16 -3.14 O2 + O2(g) -10.37 -13.51 -3.14 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4737,17 +5142,17 @@ H2O(g) 0.24 1.731e+00 0.081 1.249e-01 1.366e-01 1.171e-02 ----------------------------Description of solution---------------------------- pH = 3.051 Charge balance - pe = 13.077 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 392 - Density (g/cm³) = 1.00924 + pe = 13.198 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 50oC) = 437 + Density (g/cm3) = 1.00924 Volume (L) = 1.04656 - Viscosity (mPa s) = 0.58202 + Viscosity (mPa s) = 0.55174 Activity of water = 0.978 Ionic strength (mol/kgw) = 9.196e-04 Mass of water (kg) = 9.975e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.337e+00 - Temperature (°C) = 50.00 + Temperature (oC) = 50.00 Pressure (atm) = 238.31 Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -4758,32 +5163,32 @@ H2O(g) 0.24 1.731e+00 0.081 1.249e-01 1.366e-01 1.171e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 9.196e-04 8.890e-04 -3.036 -3.051 -0.015 0.00 OH- 7.605e-11 7.339e-11 -10.119 -10.134 -0.015 -4.04 H2O 5.551e+01 9.782e-01 1.744 -0.010 0.000 18.05 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.915 -107.915 0.000 37.46 + CH4 0.000e+00 0.000e+00 -108.887 -108.887 0.000 37.46 C(4) 1.337e+00 CO2 1.223e+00 1.224e+00 0.088 0.088 0.000 35.41 (CO2)2 5.620e-02 5.621e-02 -1.250 -1.250 0.000 70.81 HCO3- 9.196e-04 8.880e-04 -3.036 -3.052 -0.015 26.43 CO3-2 9.837e-11 8.553e-11 -10.007 -10.068 -0.061 -1.11 -H(0) 4.838e-36 - H2 2.419e-36 2.419e-36 -35.616 -35.616 0.000 28.48 -O(0) 2.372e-14 - O2 1.186e-14 1.186e-14 -13.926 -13.926 0.000 31.42 +H(0) 2.766e-36 + H2 1.383e-36 1.383e-36 -35.859 -35.859 0.000 28.48 +O(0) 7.258e-14 + O2 3.629e-14 3.630e-14 -13.440 -13.440 0.000 31.42 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 238 atm) - CH4(g) -104.81 -107.92 -3.10 CH4 + CH4(g) -105.78 -108.89 -3.10 CH4 CO2(g) 1.94 0.09 -1.85 CO2 Pressure 236.6 atm, phi 0.365 - H2(g) -32.37 -35.62 -3.25 H2 + H2(g) -32.61 -35.86 -3.25 H2 H2O(g) -0.86 -0.01 0.85 H2O Pressure 1.7 atm, phi 0.081 - O2(g) -10.77 -13.93 -3.15 O2 + O2(g) -10.29 -13.44 -3.15 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4832,17 +5237,17 @@ H2O(g) 0.32 2.086e+00 0.069 1.366e-01 1.482e-01 1.162e-02 ----------------------------Description of solution---------------------------- pH = 3.037 Charge balance - pe = 13.058 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 403 - Density (g/cm³) = 1.01120 + pe = 13.225 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 50oC) = 451 + Density (g/cm3) = 1.01120 Volume (L) = 1.04594 - Viscosity (mPa s) = 0.58381 + Viscosity (mPa s) = 0.55262 Activity of water = 0.978 Ionic strength (mol/kgw) = 9.498e-04 Mass of water (kg) = 9.973e-01 Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.374e+00 - Temperature (°C) = 50.00 + Temperature (oC) = 50.00 Pressure (atm) = 278.39 Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -4853,32 +5258,32 @@ H2O(g) 0.32 2.086e+00 0.069 1.366e-01 1.482e-01 1.162e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 9.498e-04 9.178e-04 -3.022 -3.037 -0.015 0.00 OH- 7.616e-11 7.346e-11 -10.118 -10.134 -0.016 -4.08 H2O 5.551e+01 9.776e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.667 -107.667 0.000 37.48 + CH4 0.000e+00 0.000e+00 -109.005 -109.005 0.000 37.48 C(4) 1.374e+00 CO2 1.255e+00 1.255e+00 0.099 0.099 0.000 35.37 (CO2)2 5.915e-02 5.916e-02 -1.228 -1.228 0.000 70.73 HCO3- 9.498e-04 9.167e-04 -3.022 -3.038 -0.015 26.56 CO3-2 1.025e-10 8.898e-11 -9.989 -10.051 -0.062 -0.79 -H(0) 5.390e-36 - H2 2.695e-36 2.695e-36 -35.569 -35.569 0.000 28.46 -O(0) 1.765e-14 - O2 8.823e-15 8.825e-15 -14.054 -14.054 0.000 31.34 +H(0) 2.494e-36 + H2 1.247e-36 1.247e-36 -35.904 -35.904 0.000 28.46 +O(0) 8.242e-14 + O2 4.121e-14 4.122e-14 -13.385 -13.385 0.000 31.34 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 278 atm) - CH4(g) -104.54 -107.67 -3.13 CH4 + CH4(g) -105.88 -109.01 -3.13 CH4 CO2(g) 1.97 0.10 -1.87 CO2 Pressure 276.3 atm, phi 0.338 - H2(g) -32.30 -35.57 -3.27 H2 + H2(g) -32.64 -35.90 -3.27 H2 H2O(g) -0.84 -0.01 0.83 H2O Pressure 2.1 atm, phi 0.069 - O2(g) -10.88 -14.05 -3.17 O2 + O2(g) -10.21 -13.38 -3.17 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4934,53 +5339,53 @@ H2O(g) 0.40 2.523e+00 0.059 1.482e-01 1.595e-01 1.130e-02 ----------------------------Description of solution---------------------------- pH = 3.021 Charge balance - pe = 14.519 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 417 - Density (g/cm³) = 1.01357 + pe = 14.328 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 50oC) = 467 + Density (g/cm3) = 1.01357 Volume (L) = 1.04507 - Viscosity (mPa s) = 0.58594 + Viscosity (mPa s) = 0.55373 Activity of water = 0.977 Ionic strength (mol/kgw) = 9.860e-04 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.416e+00 - Temperature (°C) = 50.00 + Temperature (oC) = 50.00 Pressure (atm) = 328.12 Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 43 (144 overall) + Iterations = 37 (138 overall) Total H = 1.106934e+02 Total O = 5.816996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 9.860e-04 9.524e-04 -3.006 -3.021 -0.015 0.00 OH- 7.650e-11 7.375e-11 -10.116 -10.132 -0.016 -4.12 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 17.98 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.243 -119.243 0.000 37.50 + CH4 0.000e+00 0.000e+00 -117.715 -117.715 0.000 37.50 C(4) 1.416e+00 CO2 1.290e+00 1.290e+00 0.111 0.111 0.000 35.32 (CO2)2 6.246e-02 6.248e-02 -1.204 -1.204 0.000 70.63 HCO3- 9.860e-04 9.512e-04 -3.006 -3.022 -0.016 26.72 CO3-2 1.078e-10 9.339e-11 -9.967 -10.030 -0.062 -0.39 -H(0) 6.592e-39 - H2 3.296e-39 3.297e-39 -38.482 -38.482 0.000 28.45 -O(0) 1.069e-08 - O2 5.344e-09 5.345e-09 -8.272 -8.272 0.000 31.25 +H(0) 1.589e-38 + H2 7.944e-39 7.946e-39 -38.100 -38.100 0.000 28.45 +O(0) 1.840e-09 + O2 9.201e-10 9.203e-10 -9.036 -9.036 0.000 31.25 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 328 atm) - CH4(g) -116.08 -119.24 -3.16 CH4 + CH4(g) -114.55 -117.71 -3.16 CH4 CO2(g) 2.01 0.11 -1.90 CO2 Pressure 325.6 atm, phi 0.315 - H2(g) -35.19 -38.48 -3.29 H2 + H2(g) -34.81 -38.10 -3.29 H2 H2O(g) -0.83 -0.01 0.82 H2O Pressure 2.5 atm, phi 0.059 - O2(g) -5.07 -8.27 -3.20 O2 + O2(g) -5.84 -9.04 -3.20 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5036,17 +5441,17 @@ H2O(g) 0.48 3.055e+00 0.050 1.595e-01 1.702e-01 1.071e-02 ----------------------------Description of solution---------------------------- pH = 3.003 Charge balance - pe = 14.536 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 433 - Density (g/cm³) = 1.01643 + pe = 14.345 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 50oC) = 488 + Density (g/cm3) = 1.01643 Volume (L) = 1.04387 - Viscosity (mPa s) = 0.58847 + Viscosity (mPa s) = 0.55513 Activity of water = 0.976 Ionic strength (mol/kgw) = 1.030e-03 Mass of water (kg) = 9.969e-01 Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.461e+00 - Temperature (°C) = 50.00 + Temperature (oC) = 50.00 Pressure (atm) = 389.62 Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -5057,32 +5462,32 @@ H2O(g) 0.48 3.055e+00 0.050 1.595e-01 1.702e-01 1.071e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 1.030e-03 9.938e-04 -2.987 -3.003 -0.015 0.00 OH- 7.716e-11 7.434e-11 -10.113 -10.129 -0.016 -4.17 H2O 5.551e+01 9.763e-01 1.744 -0.010 0.000 17.94 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.260 -119.260 0.000 37.52 + CH4 0.000e+00 0.000e+00 -117.732 -117.732 0.000 37.52 C(4) 1.461e+00 CO2 1.327e+00 1.328e+00 0.123 0.123 0.000 35.26 (CO2)2 6.615e-02 6.616e-02 -1.179 -1.179 0.000 70.51 HCO3- 1.030e-03 9.926e-04 -2.987 -3.003 -0.016 26.91 CO3-2 1.147e-10 9.905e-11 -9.941 -10.004 -0.064 0.08 -H(0) 6.203e-39 - H2 3.102e-39 3.102e-39 -38.508 -38.508 0.000 28.42 -O(0) 1.069e-08 - O2 5.345e-09 5.346e-09 -8.272 -8.272 0.000 31.14 +H(0) 1.495e-38 + H2 7.475e-39 7.477e-39 -38.126 -38.126 0.000 28.42 +O(0) 1.840e-09 + O2 9.202e-10 9.205e-10 -9.036 -9.036 0.000 31.14 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 390 atm) - CH4(g) -116.06 -119.26 -3.20 CH4 + CH4(g) -114.53 -117.73 -3.20 CH4 CO2(g) 2.06 0.12 -1.94 CO2 Pressure 386.6 atm, phi 0.296 - H2(g) -35.19 -38.51 -3.32 H2 + H2(g) -34.81 -38.13 -3.32 H2 H2O(g) -0.81 -0.01 0.80 H2O Pressure 3.1 atm, phi 0.050 - O2(g) -5.04 -8.27 -3.23 O2 + O2(g) -5.81 -9.04 -3.23 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5138,17 +5543,17 @@ H2O(g) 0.57 3.696e+00 0.044 1.702e-01 1.801e-01 9.820e-03 ----------------------------Description of solution---------------------------- pH = 2.981 Charge balance - pe = 14.556 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 453 - Density (g/cm³) = 1.01986 + pe = 14.365 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 50oC) = 512 + Density (g/cm3) = 1.01986 Volume (L) = 1.04226 - Viscosity (mPa s) = 0.59150 + Viscosity (mPa s) = 0.55689 Activity of water = 0.976 Ionic strength (mol/kgw) = 1.082e-03 Mass of water (kg) = 9.967e-01 Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.509e+00 - Temperature (°C) = 50.00 + Temperature (oC) = 50.00 Pressure (atm) = 465.50 Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -5159,32 +5564,32 @@ H2O(g) 0.57 3.696e+00 0.044 1.702e-01 1.801e-01 9.820e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 1.082e-03 1.044e-03 -2.966 -2.981 -0.016 0.00 OH- 7.827e-11 7.534e-11 -10.106 -10.123 -0.017 -4.22 H2O 5.551e+01 9.755e-01 1.744 -0.011 0.000 17.88 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.283 -119.283 0.000 37.55 + CH4 0.000e+00 0.000e+00 -117.755 -117.755 0.000 37.55 C(4) 1.509e+00 CO2 1.368e+00 1.368e+00 0.136 0.136 0.000 35.18 (CO2)2 7.022e-02 7.023e-02 -1.154 -1.153 0.000 70.37 HCO3- 1.082e-03 1.042e-03 -2.966 -2.982 -0.016 27.14 CO3-2 1.235e-10 1.063e-10 -9.909 -9.973 -0.065 0.64 -H(0) 5.756e-39 - H2 2.878e-39 2.879e-39 -38.541 -38.541 0.000 28.39 -O(0) 1.069e-08 - O2 5.346e-09 5.347e-09 -8.272 -8.272 0.000 31.01 +H(0) 1.387e-38 + H2 6.936e-39 6.938e-39 -38.159 -38.159 0.000 28.39 +O(0) 1.841e-09 + O2 9.204e-10 9.206e-10 -9.036 -9.036 0.000 31.01 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 466 atm) - CH4(g) -116.04 -119.28 -3.25 CH4 + CH4(g) -114.51 -117.76 -3.25 CH4 CO2(g) 2.11 0.14 -1.98 CO2 Pressure 461.8 atm, phi 0.282 - H2(g) -35.19 -38.54 -3.35 H2 + H2(g) -34.81 -38.16 -3.35 H2 H2O(g) -0.79 -0.01 0.78 H2O Pressure 3.7 atm, phi 0.044 - O2(g) -5.01 -8.27 -3.27 O2 + O2(g) -5.77 -9.04 -3.27 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5240,17 +5645,17 @@ H2O(g) 0.65 4.463e+00 0.039 1.801e-01 1.886e-01 8.575e-03 ----------------------------Description of solution---------------------------- pH = 2.957 Charge balance - pe = 14.579 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 478 - Density (g/cm³) = 1.02395 + pe = 14.388 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 50oC) = 542 + Density (g/cm3) = 1.02395 Volume (L) = 1.04014 - Viscosity (mPa s) = 0.59512 + Viscosity (mPa s) = 0.55913 Activity of water = 0.975 Ionic strength (mol/kgw) = 1.146e-03 Mass of water (kg) = 9.966e-01 Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.561e+00 - Temperature (°C) = 50.00 + Temperature (oC) = 50.00 Pressure (atm) = 559.09 Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -5261,32 +5666,32 @@ H2O(g) 0.65 4.463e+00 0.039 1.801e-01 1.886e-01 8.575e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 1.146e-03 1.104e-03 -2.941 -2.957 -0.016 0.00 OH- 7.998e-11 7.693e-11 -10.097 -10.114 -0.017 -4.28 H2O 5.551e+01 9.747e-01 1.744 -0.011 0.000 17.82 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.314 -119.314 0.000 37.58 + CH4 0.000e+00 0.000e+00 -117.786 -117.786 0.000 37.58 C(4) 1.561e+00 CO2 1.410e+00 1.410e+00 0.149 0.149 0.000 35.10 (CO2)2 7.466e-02 7.468e-02 -1.127 -1.127 0.000 70.20 HCO3- 1.146e-03 1.103e-03 -2.941 -2.958 -0.017 27.41 CO3-2 1.349e-10 1.158e-10 -9.870 -9.936 -0.066 1.29 -H(0) 5.251e-39 - H2 2.626e-39 2.626e-39 -38.581 -38.581 0.000 28.36 -O(0) 1.069e-08 - O2 5.347e-09 5.348e-09 -8.272 -8.272 0.000 30.85 +H(0) 1.266e-38 + H2 6.328e-39 6.330e-39 -38.199 -38.199 0.000 28.36 +O(0) 1.841e-09 + O2 9.205e-10 9.208e-10 -9.036 -9.036 0.000 30.85 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 559 atm) - CH4(g) -116.01 -119.31 -3.30 CH4 + CH4(g) -114.48 -117.79 -3.30 CH4 CO2(g) 2.18 0.15 -2.03 CO2 Pressure 554.6 atm, phi 0.274 - H2(g) -35.19 -38.58 -3.40 H2 + H2(g) -34.80 -38.20 -3.40 H2 H2O(g) -0.76 -0.01 0.75 H2O Pressure 4.5 atm, phi 0.039 - O2(g) -4.96 -8.27 -3.31 O2 + O2(g) -5.72 -9.04 -3.31 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5342,17 +5747,17 @@ H2O(g) 0.73 5.366e+00 0.035 1.886e-01 1.956e-01 6.925e-03 ----------------------------Description of solution---------------------------- pH = 2.929 Charge balance - pe = 14.605 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 508 - Density (g/cm³) = 1.02885 + pe = 14.414 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 50oC) = 579 + Density (g/cm3) = 1.02885 Volume (L) = 1.03737 - Viscosity (mPa s) = 0.59952 + Viscosity (mPa s) = 0.56199 Activity of water = 0.974 Ionic strength (mol/kgw) = 1.223e-03 Mass of water (kg) = 9.965e-01 Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.615e+00 - Temperature (°C) = 50.00 + Temperature (oC) = 50.00 Pressure (atm) = 674.65 Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -5363,32 +5768,32 @@ H2O(g) 0.73 5.366e+00 0.035 1.886e-01 1.956e-01 6.925e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 1.223e-03 1.178e-03 -2.913 -2.929 -0.016 0.00 OH- 8.256e-11 7.933e-11 -10.083 -10.101 -0.017 -4.35 H2O 5.551e+01 9.739e-01 1.744 -0.011 0.000 17.74 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.355 -119.355 0.000 37.61 + CH4 0.000e+00 0.000e+00 -117.827 -117.827 0.000 37.61 C(4) 1.615e+00 CO2 1.455e+00 1.455e+00 0.163 0.163 0.000 35.00 (CO2)2 7.945e-02 7.947e-02 -1.100 -1.100 0.000 69.99 HCO3- 1.223e-03 1.176e-03 -2.913 -2.930 -0.017 27.73 CO3-2 1.500e-10 1.283e-10 -9.824 -9.892 -0.068 2.06 -H(0) 4.690e-39 - H2 2.345e-39 2.346e-39 -38.630 -38.630 0.000 28.33 -O(0) 1.069e-08 - O2 5.347e-09 5.349e-09 -8.272 -8.272 0.000 30.67 +H(0) 1.130e-38 + H2 5.652e-39 5.654e-39 -38.248 -38.248 0.000 28.33 +O(0) 1.841e-09 + O2 9.207e-10 9.209e-10 -9.036 -9.036 0.000 30.67 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 675 atm) - CH4(g) -115.98 -119.35 -3.37 CH4 + CH4(g) -114.45 -117.83 -3.37 CH4 CO2(g) 2.26 0.16 -2.10 CO2 Pressure 669.3 atm, phi 0.272 - H2(g) -35.18 -38.63 -3.45 H2 + H2(g) -34.80 -38.25 -3.45 H2 H2O(g) -0.73 -0.01 0.72 H2O Pressure 5.4 atm, phi 0.035 - O2(g) -4.90 -8.27 -3.37 O2 + O2(g) -5.67 -9.04 -3.37 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5444,17 +5849,17 @@ H2O(g) 0.81 6.418e+00 0.032 1.956e-01 2.004e-01 4.813e-03 ----------------------------Description of solution---------------------------- pH = 2.897 Charge balance - pe = 14.634 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 544 - Density (g/cm³) = 1.03468 + pe = 14.443 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 50oC) = 623 + Density (g/cm3) = 1.03468 Volume (L) = 1.03381 - Viscosity (mPa s) = 0.60489 + Viscosity (mPa s) = 0.56567 Activity of water = 0.973 Ionic strength (mol/kgw) = 1.318e-03 Mass of water (kg) = 9.964e-01 Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.671e+00 - Temperature (°C) = 50.00 + Temperature (oC) = 50.00 Pressure (atm) = 817.86 Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -5465,32 +5870,236 @@ H2O(g) 0.81 6.418e+00 0.032 1.956e-01 2.004e-01 4.813e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 1.318e-03 1.268e-03 -2.880 -2.897 -0.017 0.00 OH- 8.639e-11 8.290e-11 -10.064 -10.081 -0.018 -4.43 H2O 5.551e+01 9.730e-01 1.744 -0.012 0.000 17.64 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.408 -119.408 0.000 37.65 + CH4 0.000e+00 0.000e+00 -117.880 -117.880 0.000 37.65 C(4) 1.671e+00 CO2 1.501e+00 1.501e+00 0.176 0.176 0.000 34.88 (CO2)2 8.454e-02 8.456e-02 -1.073 -1.073 0.000 69.76 HCO3- 1.318e-03 1.266e-03 -2.880 -2.898 -0.017 28.09 CO3-2 1.703e-10 1.450e-10 -9.769 -9.839 -0.070 2.95 -H(0) 4.080e-39 - H2 2.040e-39 2.041e-39 -38.690 -38.690 0.000 28.28 -O(0) 1.070e-08 - O2 5.348e-09 5.349e-09 -8.272 -8.272 0.000 30.47 +H(0) 9.833e-39 + H2 4.916e-39 4.918e-39 -38.308 -38.308 0.000 28.28 +O(0) 1.841e-09 + O2 9.207e-10 9.210e-10 -9.036 -9.036 0.000 30.47 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 818 atm) - CH4(g) -115.94 -119.41 -3.46 CH4 + CH4(g) -114.42 -117.88 -3.46 CH4 CO2(g) 2.35 0.18 -2.18 CO2 Pressure 811.4 atm, phi 0.278 - H2(g) -35.18 -38.69 -3.51 H2 + H2(g) -34.79 -38.31 -3.51 H2 H2O(g) -0.69 -0.01 0.68 H2O Pressure 6.4 atm, phi 0.032 - O2(g) -4.83 -8.27 -3.44 O2 + O2(g) -5.60 -9.04 -3.44 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 29. + +WARNING: Numerical method failed, switching to numerical derivatives. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying smaller step size, pe step size 10, 5 ... + +Using solution 1. +Using gas phase 1. +Using temperature 2. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 996.34 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 3.78e-02 liters/mole + P * Vm / RT: 1.41885 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 3.00 9.887e+02 0.296 2.534e+01 2.628e+01 9.435e-01 +H2O(g) 0.88 7.621e+00 0.030 2.004e-01 2.025e-01 2.166e-03 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 1.728e+00 1.721e+00 + +----------------------------Description of solution---------------------------- + + pH = 2.860 Charge balance + pe = 14.476 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 50oC) = 679 + Density (g/cm3) = 1.04167 + Volume (L) = 1.02922 + Viscosity (mPa s) = 0.57050 + Activity of water = 0.972 + Ionic strength (mol/kgw) = 1.435e-03 + Mass of water (kg) = 9.963e-01 + Total alkalinity (eq/kg) = 1.219e-09 + Total CO2 (mol/kg) = 1.728e+00 + Temperature (oC) = 50.00 + Pressure (atm) = 996.34 + Electrical balance (eq) = -1.215e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 44 (145 overall) + Total H = 1.106074e+02 + Total O = 5.874637e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 1.435e-03 1.379e-03 -2.843 -2.860 -0.017 0.00 + OH- 9.204e-11 8.821e-11 -10.036 -10.054 -0.018 -4.50 + H2O 5.551e+01 9.721e-01 1.744 -0.012 0.000 17.53 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -117.950 -117.950 0.000 37.68 +C(4) 1.728e+00 + CO2 1.547e+00 1.547e+00 0.189 0.189 0.000 34.74 + (CO2)2 8.981e-02 8.984e-02 -1.047 -1.047 0.000 69.48 + HCO3- 1.435e-03 1.377e-03 -2.843 -2.861 -0.018 28.52 + CO3-2 1.982e-10 1.679e-10 -9.703 -9.775 -0.072 3.97 +H(0) 8.269e-39 + H2 4.134e-39 4.136e-39 -38.384 -38.383 0.000 28.24 +O(0) 1.842e-09 + O2 9.208e-10 9.211e-10 -9.036 -9.036 0.000 30.24 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(323 K, 996 atm) + + CH4(g) -114.38 -117.95 -3.57 CH4 + CO2(g) 2.47 0.19 -2.28 CO2 Pressure 988.7 atm, phi 0.296 + H2(g) -34.79 -38.38 -3.60 H2 + H2O(g) -0.64 -0.01 0.63 H2O Pressure 7.6 atm, phi 0.030 + O2(g) -5.51 -9.04 -3.52 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 30. + +WARNING: Numerical method failed, switching to numerical derivatives. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying smaller step size, pe step size 10, 5 ... + +Using solution 1. +Using gas phase 1. +Using temperature 2. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 1220.78 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 3.65e-02 liters/mole + P * Vm / RT: 1.67866 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 3.08 1.212e+03 0.331 2.628e+01 2.722e+01 9.445e-01 +H2O(g) 0.95 8.967e+00 0.029 2.025e-01 2.014e-01 -1.108e-03 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 1.783e+00 1.777e+00 + +----------------------------Description of solution---------------------------- + + pH = 2.818 Charge balance + pe = 14.514 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 50oC) = 749 + Density (g/cm3) = 1.05008 + Volume (L) = 1.02332 + Viscosity (mPa s) = 0.57699 + Activity of water = 0.971 + Ionic strength (mol/kgw) = 1.583e-03 + Mass of water (kg) = 9.963e-01 + Total alkalinity (eq/kg) = 1.219e-09 + Total CO2 (mol/kg) = 1.783e+00 + Temperature (oC) = 50.00 + Pressure (atm) = 1220.78 + Electrical balance (eq) = -1.214e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 55 (156 overall) + Total H = 1.106096e+02 + Total O = 5.885843e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 1.583e-03 1.519e-03 -2.801 -2.818 -0.018 0.00 + OH- 1.005e-10 9.618e-11 -9.998 -10.017 -0.019 -4.59 + H2O 5.551e+01 9.713e-01 1.744 -0.013 0.000 17.39 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -118.041 -118.041 0.000 37.71 +C(4) 1.783e+00 + CO2 1.592e+00 1.592e+00 0.202 0.202 0.000 34.57 + (CO2)2 9.511e-02 9.514e-02 -1.022 -1.022 0.000 69.15 + HCO3- 1.583e-03 1.516e-03 -2.801 -2.819 -0.019 29.00 + CO3-2 2.378e-10 2.002e-10 -9.624 -9.699 -0.075 5.14 +H(0) 6.654e-39 + H2 3.327e-39 3.328e-39 -38.478 -38.478 0.000 28.18 +O(0) 1.842e-09 + O2 9.208e-10 9.211e-10 -9.036 -9.036 0.000 29.97 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(323 K, 1221 atm) + + CH4(g) -114.33 -118.04 -3.71 CH4 + CO2(g) 2.60 0.20 -2.40 CO2 Pressure 1211.8 atm, phi 0.331 + H2(g) -34.78 -38.48 -3.70 H2 + H2O(g) -0.58 -0.01 0.57 H2O Pressure 9.0 atm, phi 0.029 + O2(g) -5.41 -9.04 -3.63 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5505,11 +6114,13 @@ Reading input data for simulation 3. USE solution 1 USE gas_phase 1 - USE reaction 1 + REACTION + CO2 1 + 0 27*1 REACTION_TEMPERATURE 3 75 USER_GRAPH 2 - -headings 75C + -active false END ----------------------------------------- Beginning of batch-reaction calculations. @@ -5549,7 +6160,7 @@ Total pressure: 0.38 atmospheres (Peng-Robinson calculation) ---------------------------------- Component log P P phi Initial Final Delta -CO2(g) -99.99 0.000e+00 0.278 0.000e+00 0.000e+00 0.000e+00 +CO2(g) -99.99 0.000e+00 0.331 0.000e+00 0.000e+00 0.000e+00 H2O(g) -0.42 3.792e-01 0.996 0.000e+00 1.332e-02 1.332e-02 -----------------------------Solution composition------------------------------ @@ -5562,15 +6173,15 @@ H2O(g) -0.42 3.792e-01 0.996 0.000e+00 1.332e-02 1.332e-02 pH = 6.344 Charge balance pe = 7.913 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 0 - Density (g/cm³) = 0.97481 + Specific Conductance (uS/cm, 75oC) = 0 + Density (g/cm3) = 0.97481 Volume (L) = 1.02560 Viscosity (mPa s) = 0.37740 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.534e-07 Mass of water (kg) = 9.998e-01 Total alkalinity (eq/kg) = 1.217e-09 - Temperature (°C) = 75.00 + Temperature (oC) = 75.00 Pressure (atm) = 0.38 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.13 @@ -5581,7 +6192,7 @@ H2O(g) -0.42 3.792e-01 0.996 0.000e+00 1.332e-02 1.332e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol OH- 4.540e-07 4.536e-07 -6.343 -6.343 -0.000 -4.48 H+ 4.528e-07 4.524e-07 -6.344 -6.344 -0.000 0.00 @@ -5647,16 +6258,16 @@ H2O(g) -0.36 4.356e-01 0.874 1.332e-02 1.642e-02 3.100e-03 pH = 3.465 Charge balance pe = 10.797 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 212 - Density (g/cm³) = 0.97762 + Specific Conductance (uS/cm, 75oC) = 215 + Density (g/cm3) = 0.97762 Volume (L) = 1.03384 - Viscosity (mPa s) = 0.38078 + Viscosity (mPa s) = 0.37804 Activity of water = 0.996 Ionic strength (mol/kgw) = 3.505e-04 Mass of water (kg) = 9.997e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 2.500e-01 - Temperature (°C) = 75.00 + Temperature (oC) = 75.00 Pressure (atm) = 20.33 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -5667,7 +6278,7 @@ H2O(g) -0.36 4.356e-01 0.874 1.332e-02 1.642e-02 3.100e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 3.505e-04 3.426e-04 -3.455 -3.465 -0.010 0.00 OH- 6.206e-10 6.060e-10 -9.207 -9.218 -0.010 -4.53 @@ -5741,17 +6352,17 @@ H2O(g) -0.30 4.993e-01 0.769 1.642e-02 2.026e-02 3.838e-03 ----------------------------Description of solution---------------------------- pH = 3.339 Charge balance - pe = 2.019 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 278 - Density (g/cm³) = 0.97995 + pe = 2.020 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 75oC) = 285 + Density (g/cm3) = 0.97995 Volume (L) = 1.04028 - Viscosity (mPa s) = 0.38322 + Viscosity (mPa s) = 0.37856 Activity of water = 0.993 Ionic strength (mol/kgw) = 4.703e-04 Mass of water (kg) = 9.996e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 4.496e-01 - Temperature (°C) = 75.00 + Temperature (oC) = 75.00 Pressure (atm) = 38.71 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -5762,28 +6373,28 @@ H2O(g) -0.30 4.993e-01 0.769 1.642e-02 2.026e-02 3.838e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 4.703e-04 4.580e-04 -3.328 -3.339 -0.011 0.00 OH- 4.712e-10 4.585e-10 -9.327 -9.339 -0.012 -4.59 H2O 5.551e+01 9.925e-01 1.744 -0.003 0.000 18.45 -C(-4) 8.775e-26 - CH4 8.775e-26 8.775e-26 -25.057 -25.057 0.000 39.07 +C(-4) 8.675e-26 + CH4 8.675e-26 8.676e-26 -25.062 -25.062 0.000 39.07 C(4) 4.496e-01 CO2 4.260e-01 4.261e-01 -0.371 -0.371 0.000 37.01 (CO2)2 1.155e-02 1.155e-02 -1.937 -1.937 0.000 74.01 HCO3- 4.703e-04 4.577e-04 -3.328 -3.339 -0.012 25.34 CO3-2 8.682e-11 7.791e-11 -10.061 -10.108 -0.047 -4.59 -H(0) 1.707e-14 - H2 8.536e-15 8.537e-15 -14.069 -14.069 0.000 28.56 +H(0) 1.702e-14 + H2 8.512e-15 8.512e-15 -14.070 -14.070 0.000 28.56 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.461 -50.461 0.000 32.88 + O2 0.000e+00 0.000e+00 -50.458 -50.458 0.000 32.88 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 39 atm) - CH4(g) -22.02 -25.06 -3.04 CH4 + CH4(g) -22.03 -25.06 -3.04 CH4 CO2(g) 1.52 -0.37 -1.89 CO2 Pressure 38.2 atm, phi 0.875 H2(g) -10.92 -14.07 -3.15 H2 H2O(g) -0.42 -0.00 0.41 H2O Pressure 0.5 atm, phi 0.769 @@ -5836,17 +6447,17 @@ H2O(g) -0.24 5.707e-01 0.679 2.026e-02 2.494e-02 4.679e-03 ----------------------------Description of solution---------------------------- pH = 3.275 Charge balance - pe = 1.995 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 317 - Density (g/cm³) = 0.98185 + pe = 2.069 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 75oC) = 327 + Density (g/cm3) = 0.98185 Volume (L) = 1.04514 - Viscosity (mPa s) = 0.38514 + Viscosity (mPa s) = 0.37903 Activity of water = 0.990 Ionic strength (mol/kgw) = 5.462e-04 Mass of water (kg) = 9.995e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 6.050e-01 - Temperature (°C) = 75.00 + Temperature (oC) = 75.00 Pressure (atm) = 55.38 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -5857,32 +6468,32 @@ H2O(g) -0.24 5.707e-01 0.679 2.026e-02 2.494e-02 4.679e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 5.461e-04 5.309e-04 -3.263 -3.275 -0.012 0.00 OH- 4.119e-10 3.999e-10 -9.385 -9.398 -0.013 -4.64 H2O 5.551e+01 9.901e-01 1.744 -0.004 0.000 18.43 -C(-4) 5.788e-25 - CH4 5.788e-25 5.789e-25 -24.237 -24.237 0.000 39.07 +C(-4) 1.494e-25 + CH4 1.494e-25 1.495e-25 -24.826 -24.825 0.000 39.07 C(4) 6.050e-01 CO2 5.640e-01 5.640e-01 -0.249 -0.249 0.000 36.98 (CO2)2 2.024e-02 2.024e-02 -1.694 -1.694 0.000 73.95 HCO3- 5.462e-04 5.305e-04 -3.263 -3.275 -0.013 25.42 CO3-2 8.903e-11 7.926e-11 -10.050 -10.101 -0.050 -4.41 -H(0) 2.520e-14 - H2 1.260e-14 1.260e-14 -13.900 -13.900 0.000 28.55 +H(0) 1.796e-14 + H2 8.981e-15 8.982e-15 -14.047 -14.047 0.000 28.55 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.815 -50.815 0.000 32.83 + O2 0.000e+00 0.000e+00 -50.521 -50.520 0.000 32.83 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 55 atm) - CH4(g) -21.19 -24.24 -3.05 CH4 + CH4(g) -21.78 -24.83 -3.05 CH4 CO2(g) 1.66 -0.25 -1.90 CO2 Pressure 54.8 atm, phi 0.825 - H2(g) -10.74 -13.90 -3.16 H2 + H2(g) -10.89 -14.05 -3.16 H2 H2O(g) -0.41 -0.00 0.41 H2O Pressure 0.6 atm, phi 0.679 - O2(g) -47.69 -50.81 -3.13 O2 + O2(g) -47.40 -50.52 -3.13 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5931,17 +6542,17 @@ H2O(g) -0.19 6.497e-01 0.601 2.494e-02 3.056e-02 5.615e-03 ----------------------------Description of solution---------------------------- pH = 3.236 Charge balance - pe = 2.005 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 343 - Density (g/cm³) = 0.98339 + pe = 2.032 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 75oC) = 356 + Density (g/cm3) = 0.98339 Volume (L) = 1.04871 - Viscosity (mPa s) = 0.38665 + Viscosity (mPa s) = 0.37944 Activity of water = 0.988 Ionic strength (mol/kgw) = 5.986e-04 Mass of water (kg) = 9.994e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 7.238e-01 - Temperature (°C) = 75.00 + Temperature (oC) = 75.00 Pressure (atm) = 70.32 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -5952,32 +6563,32 @@ H2O(g) -0.19 6.497e-01 0.601 2.494e-02 3.056e-02 5.615e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 5.986e-04 5.812e-04 -3.223 -3.236 -0.013 0.00 OH- 3.806e-10 3.691e-10 -9.419 -9.433 -0.013 -4.69 H2O 5.551e+01 9.882e-01 1.744 -0.005 0.000 18.42 -C(-4) 1.164e-24 - CH4 1.164e-24 1.164e-24 -23.934 -23.934 0.000 39.07 +C(-4) 7.122e-25 + CH4 7.122e-25 7.123e-25 -24.147 -24.147 0.000 39.07 C(4) 7.238e-01 CO2 6.667e-01 6.667e-01 -0.176 -0.176 0.000 36.95 (CO2)2 2.828e-02 2.829e-02 -1.548 -1.548 0.000 73.90 HCO3- 5.986e-04 5.807e-04 -3.223 -3.236 -0.013 25.49 CO3-2 9.086e-11 8.049e-11 -10.042 -10.094 -0.053 -4.25 -H(0) 2.847e-14 - H2 1.423e-14 1.424e-14 -13.847 -13.847 0.000 28.54 +H(0) 2.518e-14 + H2 1.259e-14 1.259e-14 -13.900 -13.900 0.000 28.54 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.934 -50.934 0.000 32.79 + O2 0.000e+00 0.000e+00 -50.828 -50.828 0.000 32.79 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 70 atm) - CH4(g) -20.88 -23.93 -3.05 CH4 + CH4(g) -21.09 -24.15 -3.05 CH4 CO2(g) 1.74 -0.18 -1.91 CO2 Pressure 69.7 atm, phi 0.782 - H2(g) -10.68 -13.85 -3.16 H2 + H2(g) -10.74 -13.90 -3.16 H2 H2O(g) -0.41 -0.01 0.40 H2O Pressure 0.6 atm, phi 0.601 - O2(g) -47.80 -50.93 -3.13 O2 + O2(g) -47.69 -50.83 -3.13 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6026,17 +6637,17 @@ H2O(g) -0.13 7.364e-01 0.534 3.056e-02 3.718e-02 6.627e-03 ----------------------------Description of solution---------------------------- pH = 3.209 Charge balance - pe = 1.984 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 361 - Density (g/cm³) = 0.98464 + pe = 2.092 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 75oC) = 376 + Density (g/cm3) = 0.98464 Volume (L) = 1.05128 - Viscosity (mPa s) = 0.38784 + Viscosity (mPa s) = 0.37980 Activity of water = 0.987 Ionic strength (mol/kgw) = 6.364e-04 Mass of water (kg) = 9.993e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 8.142e-01 - Temperature (°C) = 75.00 + Temperature (oC) = 75.00 Pressure (atm) = 83.65 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -6047,32 +6658,32 @@ H2O(g) -0.13 7.364e-01 0.534 3.056e-02 3.718e-02 6.627e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 6.364e-04 6.174e-04 -3.196 -3.209 -0.013 0.00 OH- 3.620e-10 3.507e-10 -9.441 -9.455 -0.014 -4.73 H2O 5.551e+01 9.867e-01 1.744 -0.006 0.000 18.41 -C(-4) 3.073e-24 - CH4 3.073e-24 3.073e-24 -23.512 -23.512 0.000 39.07 +C(-4) 4.194e-25 + CH4 4.194e-25 4.195e-25 -24.377 -24.377 0.000 39.07 C(4) 8.142e-01 CO2 7.432e-01 7.433e-01 -0.129 -0.129 0.000 36.92 (CO2)2 3.515e-02 3.516e-02 -1.454 -1.454 0.000 73.85 HCO3- 6.364e-04 6.169e-04 -3.196 -3.210 -0.014 25.55 CO3-2 9.243e-11 8.159e-11 -10.034 -10.088 -0.054 -4.11 -H(0) 3.498e-14 - H2 1.749e-14 1.749e-14 -13.757 -13.757 0.000 28.54 +H(0) 2.126e-14 + H2 1.063e-14 1.063e-14 -13.973 -13.973 0.000 28.54 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -51.125 -51.125 0.000 32.75 + O2 0.000e+00 0.000e+00 -50.693 -50.693 0.000 32.75 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 84 atm) - CH4(g) -20.45 -23.51 -3.06 CH4 + CH4(g) -21.32 -24.38 -3.06 CH4 CO2(g) 1.79 -0.13 -1.92 CO2 Pressure 82.9 atm, phi 0.746 - H2(g) -10.59 -13.76 -3.17 H2 + H2(g) -10.80 -13.97 -3.17 H2 H2O(g) -0.41 -0.01 0.40 H2O Pressure 0.7 atm, phi 0.534 - O2(g) -47.99 -51.13 -3.14 O2 + O2(g) -47.55 -50.69 -3.14 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6121,17 +6732,17 @@ H2O(g) -0.08 8.308e-01 0.476 3.718e-02 4.488e-02 7.699e-03 ----------------------------Description of solution---------------------------- pH = 3.191 Charge balance - pe = 1.945 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 374 - Density (g/cm³) = 0.98568 + pe = 2.141 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 75oC) = 391 + Density (g/cm3) = 0.98568 Volume (L) = 1.05312 - Viscosity (mPa s) = 0.38880 + Viscosity (mPa s) = 0.38013 Activity of water = 0.986 Ionic strength (mol/kgw) = 6.648e-04 Mass of water (kg) = 9.992e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 8.833e-01 - Temperature (°C) = 75.00 + Temperature (oC) = 75.00 Pressure (atm) = 95.56 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -6142,32 +6753,32 @@ H2O(g) -0.08 8.308e-01 0.476 3.718e-02 4.488e-02 7.699e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 6.648e-04 6.445e-04 -3.177 -3.191 -0.013 0.00 OH- 3.500e-10 3.389e-10 -9.456 -9.470 -0.014 -4.77 H2O 5.551e+01 9.857e-01 1.744 -0.006 0.000 18.40 -C(-4) 9.441e-24 - CH4 9.441e-24 9.442e-24 -23.025 -23.025 0.000 39.06 +C(-4) 2.526e-25 + CH4 2.526e-25 2.526e-25 -24.598 -24.598 0.000 39.06 C(4) 8.833e-01 CO2 8.010e-01 8.010e-01 -0.096 -0.096 0.000 36.90 (CO2)2 4.082e-02 4.083e-02 -1.389 -1.389 0.000 73.80 HCO3- 6.648e-04 6.439e-04 -3.177 -3.191 -0.014 25.60 CO3-2 9.379e-11 8.258e-11 -10.028 -10.083 -0.055 -3.99 -H(0) 4.508e-14 - H2 2.254e-14 2.254e-14 -13.647 -13.647 0.000 28.53 +H(0) 1.823e-14 + H2 9.115e-15 9.116e-15 -14.040 -14.040 0.000 28.53 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -51.356 -51.356 0.000 32.72 + O2 0.000e+00 0.000e+00 -50.570 -50.570 0.000 32.72 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 96 atm) - CH4(g) -19.96 -23.02 -3.07 CH4 + CH4(g) -21.53 -24.60 -3.07 CH4 CO2(g) 1.83 -0.10 -1.93 CO2 Pressure 94.7 atm, phi 0.714 - H2(g) -10.47 -13.65 -3.17 H2 + H2(g) -10.87 -14.04 -3.17 H2 H2O(g) -0.40 -0.01 0.40 H2O Pressure 0.8 atm, phi 0.476 - O2(g) -48.21 -51.36 -3.15 O2 + O2(g) -47.42 -50.57 -3.15 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6216,17 +6827,17 @@ H2O(g) -0.03 9.337e-01 0.426 4.488e-02 5.370e-02 8.815e-03 ----------------------------Description of solution---------------------------- pH = 3.177 Charge balance - pe = 1.879 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 384 - Density (g/cm³) = 0.98654 + pe = 2.127 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 75oC) = 402 + Density (g/cm3) = 0.98654 Volume (L) = 1.05442 - Viscosity (mPa s) = 0.38959 + Viscosity (mPa s) = 0.38042 Activity of water = 0.985 Ionic strength (mol/kgw) = 6.867e-04 Mass of water (kg) = 9.990e-01 Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 9.370e-01 - Temperature (°C) = 75.00 + Temperature (oC) = 75.00 Pressure (atm) = 106.37 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -6237,32 +6848,32 @@ H2O(g) -0.03 9.337e-01 0.426 4.488e-02 5.370e-02 8.815e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 6.867e-04 6.655e-04 -3.163 -3.177 -0.014 0.00 OH- 3.419e-10 3.308e-10 -9.466 -9.480 -0.014 -4.81 H2O 5.551e+01 9.848e-01 1.744 -0.007 0.000 18.39 -C(-4) 4.230e-23 - CH4 4.230e-23 4.231e-23 -22.374 -22.374 0.000 39.06 +C(-4) 4.446e-25 + CH4 4.446e-25 4.446e-25 -24.352 -24.352 0.000 39.06 C(4) 9.370e-01 CO2 8.454e-01 8.455e-01 -0.073 -0.073 0.000 36.88 (CO2)2 4.548e-02 4.549e-02 -1.342 -1.342 0.000 73.77 HCO3- 6.867e-04 6.649e-04 -3.163 -3.177 -0.014 25.65 CO3-2 9.501e-11 8.349e-11 -10.022 -10.078 -0.056 -3.88 -H(0) 6.421e-14 - H2 3.211e-14 3.211e-14 -13.493 -13.493 0.000 28.53 +H(0) 2.056e-14 + H2 1.028e-14 1.028e-14 -13.988 -13.988 0.000 28.53 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -51.673 -51.673 0.000 32.69 + O2 0.000e+00 0.000e+00 -50.684 -50.683 0.000 32.69 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 106 atm) - CH4(g) -19.30 -22.37 -3.08 CH4 + CH4(g) -21.28 -24.35 -3.08 CH4 CO2(g) 1.86 -0.07 -1.93 CO2 Pressure 105.4 atm, phi 0.687 - H2(g) -10.31 -13.49 -3.18 H2 + H2(g) -10.81 -13.99 -3.18 H2 H2O(g) -0.40 -0.01 0.39 H2O Pressure 0.9 atm, phi 0.426 - O2(g) -48.52 -51.67 -3.15 O2 + O2(g) -47.53 -50.68 -3.15 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6311,17 +6922,17 @@ H2O(g) 0.02 1.046e+00 0.383 5.370e-02 6.365e-02 9.958e-03 ----------------------------Description of solution---------------------------- pH = 3.166 Charge balance - pe = 1.968 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 392 - Density (g/cm³) = 0.98730 + pe = 2.251 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 75oC) = 411 + Density (g/cm3) = 0.98730 Volume (L) = 1.05534 - Viscosity (mPa s) = 0.39026 + Viscosity (mPa s) = 0.38069 Activity of water = 0.984 Ionic strength (mol/kgw) = 7.045e-04 Mass of water (kg) = 9.988e-01 Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 9.802e-01 - Temperature (°C) = 75.00 + Temperature (oC) = 75.00 Pressure (atm) = 116.43 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -6332,32 +6943,32 @@ H2O(g) 0.02 1.046e+00 0.383 5.370e-02 6.365e-02 9.958e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 7.045e-04 6.825e-04 -3.152 -3.166 -0.014 0.00 OH- 3.360e-10 3.251e-10 -9.474 -9.488 -0.014 -4.84 H2O 5.551e+01 9.842e-01 1.744 -0.007 0.000 18.38 -C(-4) 1.039e-23 - CH4 1.039e-23 1.039e-23 -22.983 -22.983 0.000 39.06 +C(-4) 5.673e-26 + CH4 5.673e-26 5.674e-26 -25.246 -25.246 0.000 39.06 C(4) 9.802e-01 CO2 8.807e-01 8.808e-01 -0.055 -0.055 0.000 36.87 (CO2)2 4.936e-02 4.937e-02 -1.307 -1.307 0.000 73.73 HCO3- 7.045e-04 6.819e-04 -3.152 -3.166 -0.014 25.70 CO3-2 9.612e-11 8.434e-11 -10.017 -10.074 -0.057 -3.78 -H(0) 4.444e-14 - H2 2.222e-14 2.222e-14 -13.653 -13.653 0.000 28.52 +H(0) 1.208e-14 + H2 6.040e-15 6.041e-15 -14.219 -14.219 0.000 28.52 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -51.362 -51.362 0.000 32.67 + O2 0.000e+00 0.000e+00 -50.230 -50.230 0.000 32.67 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 116 atm) - CH4(g) -19.90 -22.98 -3.08 CH4 + CH4(g) -22.16 -25.25 -3.08 CH4 CO2(g) 1.88 -0.06 -1.94 CO2 Pressure 115.4 atm, phi 0.662 - H2(g) -10.47 -13.65 -3.18 H2 + H2(g) -11.04 -14.22 -3.18 H2 H2O(g) -0.40 -0.01 0.39 H2O Pressure 1.0 atm, phi 0.383 - O2(g) -48.21 -51.36 -3.16 O2 + O2(g) -47.07 -50.23 -3.16 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6406,53 +7017,53 @@ H2O(g) 0.07 1.170e+00 0.344 6.365e-02 7.477e-02 1.111e-02 ----------------------------Description of solution---------------------------- pH = 3.157 Charge balance - pe = 2.153 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 398 - Density (g/cm³) = 0.98799 + pe = 11.237 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 75oC) = 419 + Density (g/cm3) = 0.98799 Volume (L) = 1.05600 - Viscosity (mPa s) = 0.39085 + Viscosity (mPa s) = 0.38095 Activity of water = 0.984 Ionic strength (mol/kgw) = 7.197e-04 Mass of water (kg) = 9.986e-01 Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.016e+00 - Temperature (°C) = 75.00 + Temperature (oC) = 75.00 Pressure (atm) = 126.11 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 26 + Iterations = 32 Total H = 1.108629e+02 Total O = 5.746111e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 7.197e-04 6.970e-04 -3.143 -3.157 -0.014 0.00 OH- 3.316e-10 3.207e-10 -9.479 -9.494 -0.015 -4.87 H2O 5.551e+01 9.836e-01 1.744 -0.007 0.000 18.38 -C(-4) 4.141e-25 - CH4 4.141e-25 4.141e-25 -24.383 -24.383 0.000 39.06 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -97.049 -97.049 0.000 39.06 C(4) 1.016e+00 CO2 9.101e-01 9.102e-01 -0.041 -0.041 0.000 36.85 (CO2)2 5.270e-02 5.271e-02 -1.278 -1.278 0.000 73.70 HCO3- 7.197e-04 6.963e-04 -3.143 -3.157 -0.014 25.74 CO3-2 9.718e-11 8.517e-11 -10.012 -10.070 -0.057 -3.68 -H(0) 1.956e-14 - H2 9.781e-15 9.783e-15 -14.010 -14.010 0.000 28.52 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.657 -50.657 0.000 32.64 +H(0) 1.333e-32 + H2 6.667e-33 6.669e-33 -32.176 -32.176 0.000 28.52 +O(0) 9.477e-15 + O2 4.739e-15 4.739e-15 -14.324 -14.324 0.000 32.64 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 126 atm) - CH4(g) -21.30 -24.38 -3.09 CH4 + CH4(g) -93.96 -97.05 -3.09 CH4 CO2(g) 1.90 -0.04 -1.94 CO2 Pressure 124.9 atm, phi 0.640 - H2(g) -10.82 -14.01 -3.19 H2 + H2(g) -28.99 -32.18 -3.19 H2 H2O(g) -0.40 -0.01 0.39 H2O Pressure 1.2 atm, phi 0.344 - O2(g) -47.50 -50.66 -3.16 O2 + O2(g) -11.16 -14.32 -3.16 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6501,17 +7112,17 @@ H2O(g) 0.12 1.308e+00 0.310 7.477e-02 8.703e-02 1.226e-02 ----------------------------Description of solution---------------------------- pH = 3.149 Charge balance - pe = 2.246 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 405 - Density (g/cm³) = 0.98864 + pe = 11.175 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 75oC) = 426 + Density (g/cm3) = 0.98864 Volume (L) = 1.05647 - Viscosity (mPa s) = 0.39141 + Viscosity (mPa s) = 0.38121 Activity of water = 0.983 Ionic strength (mol/kgw) = 7.333e-04 Mass of water (kg) = 9.984e-01 Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.048e+00 - Temperature (°C) = 75.00 + Temperature (oC) = 75.00 Pressure (atm) = 135.84 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -6522,32 +7133,32 @@ H2O(g) 0.12 1.308e+00 0.310 7.477e-02 8.703e-02 1.226e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 7.333e-04 7.100e-04 -3.135 -3.149 -0.014 0.00 OH- 3.281e-10 3.172e-10 -9.484 -9.499 -0.015 -4.90 H2O 5.551e+01 9.831e-01 1.744 -0.007 0.000 18.37 -C(-4) 8.872e-26 - CH4 8.872e-26 8.874e-26 -25.052 -25.052 0.000 39.06 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -96.489 -96.489 0.000 39.06 C(4) 1.048e+00 CO2 9.357e-01 9.358e-01 -0.029 -0.029 0.000 36.83 (CO2)2 5.571e-02 5.572e-02 -1.254 -1.254 0.000 73.66 HCO3- 7.333e-04 7.093e-04 -3.135 -3.149 -0.014 25.78 CO3-2 9.824e-11 8.600e-11 -10.008 -10.065 -0.058 -3.59 -H(0) 1.313e-14 - H2 6.565e-15 6.566e-15 -14.183 -14.183 0.000 28.51 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.319 -50.319 0.000 32.62 +H(0) 1.816e-32 + H2 9.079e-33 9.080e-33 -32.042 -32.042 0.000 28.51 +O(0) 5.016e-15 + O2 2.508e-15 2.508e-15 -14.601 -14.601 0.000 32.62 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 136 atm) - CH4(g) -21.96 -25.05 -3.09 CH4 + CH4(g) -93.40 -96.49 -3.09 CH4 CO2(g) 1.92 -0.03 -1.95 CO2 Pressure 134.5 atm, phi 0.618 - H2(g) -10.99 -14.18 -3.19 H2 + H2(g) -28.85 -32.04 -3.19 H2 H2O(g) -0.39 -0.01 0.39 H2O Pressure 1.3 atm, phi 0.310 - O2(g) -47.15 -50.32 -3.16 O2 + O2(g) -11.44 -14.60 -3.16 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6596,53 +7207,53 @@ H2O(g) 0.17 1.463e+00 0.278 8.703e-02 1.004e-01 1.338e-02 ----------------------------Description of solution---------------------------- pH = 3.141 Charge balance - pe = 2.060 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 410 - Density (g/cm³) = 0.98930 + pe = 2.144 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 75oC) = 433 + Density (g/cm3) = 0.98930 Volume (L) = 1.05681 - Viscosity (mPa s) = 0.39196 + Viscosity (mPa s) = 0.38149 Activity of water = 0.983 Ionic strength (mol/kgw) = 7.462e-04 Mass of water (kg) = 9.982e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.077e+00 - Temperature (°C) = 75.00 + Temperature (oC) = 75.00 Pressure (atm) = 146.06 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 22 + Iterations = 29 Total H = 1.108116e+02 Total O = 5.755578e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 7.462e-04 7.224e-04 -3.127 -3.141 -0.014 0.00 OH- 3.252e-10 3.143e-10 -9.488 -9.503 -0.015 -4.94 H2O 5.551e+01 9.827e-01 1.744 -0.008 0.000 18.36 -C(-4) 3.179e-24 - CH4 3.179e-24 3.180e-24 -23.498 -23.498 0.000 39.05 +C(-4) 6.783e-25 + CH4 6.783e-25 6.784e-25 -24.169 -24.168 0.000 39.05 C(4) 1.077e+00 CO2 9.591e-01 9.592e-01 -0.018 -0.018 0.000 36.81 (CO2)2 5.854e-02 5.855e-02 -1.233 -1.232 0.000 73.63 HCO3- 7.462e-04 7.216e-04 -3.127 -3.142 -0.015 25.82 CO3-2 9.935e-11 8.688e-11 -10.003 -10.061 -0.058 -3.49 -H(0) 3.171e-14 - H2 1.585e-14 1.586e-14 -13.800 -13.800 0.000 28.51 +H(0) 2.155e-14 + H2 1.077e-14 1.078e-14 -13.968 -13.968 0.000 28.51 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -51.093 -51.093 0.000 32.59 + O2 0.000e+00 0.000e+00 -50.758 -50.758 0.000 32.59 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 146 atm) - CH4(g) -20.40 -23.50 -3.10 CH4 + CH4(g) -21.07 -24.17 -3.10 CH4 CO2(g) 1.94 -0.02 -1.95 CO2 Pressure 144.6 atm, phi 0.598 - H2(g) -10.60 -13.80 -3.20 H2 + H2(g) -10.77 -13.97 -3.20 H2 H2O(g) -0.39 -0.01 0.38 H2O Pressure 1.5 atm, phi 0.278 - O2(g) -47.92 -51.09 -3.17 O2 + O2(g) -47.59 -50.76 -3.17 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6691,53 +7302,53 @@ H2O(g) 0.21 1.640e+00 0.250 1.004e-01 1.149e-01 1.446e-02 ----------------------------Description of solution---------------------------- pH = 3.134 Charge balance - pe = 1.950 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 416 - Density (g/cm³) = 0.98999 + pe = 11.244 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 75oC) = 440 + Density (g/cm3) = 0.98999 Volume (L) = 1.05704 - Viscosity (mPa s) = 0.39252 + Viscosity (mPa s) = 0.38179 Activity of water = 0.982 Ionic strength (mol/kgw) = 7.592e-04 Mass of water (kg) = 9.979e-01 - Total alkalinity (eq/kg) = 1.220e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.105e+00 - Temperature (°C) = 75.00 + Temperature (oC) = 75.00 Pressure (atm) = 157.24 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 19 + Iterations = 37 Total H = 1.107827e+02 Total O = 5.759684e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 7.591e-04 7.347e-04 -3.120 -3.134 -0.014 0.00 OH- 3.226e-10 3.117e-10 -9.491 -9.506 -0.015 -4.97 H2O 5.551e+01 9.822e-01 1.744 -0.008 0.000 18.35 -C(-4) 2.777e-23 - CH4 2.777e-23 2.777e-23 -22.556 -22.556 0.000 39.05 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -96.909 -96.909 0.000 39.05 C(4) 1.105e+00 CO2 9.817e-01 9.818e-01 -0.008 -0.008 0.000 36.79 (CO2)2 6.132e-02 6.133e-02 -1.212 -1.212 0.000 73.59 HCO3- 7.592e-04 7.339e-04 -3.120 -3.134 -0.015 25.87 CO3-2 1.006e-10 8.786e-11 -9.998 -10.056 -0.059 -3.38 -H(0) 5.378e-14 - H2 2.689e-14 2.690e-14 -13.570 -13.570 0.000 28.50 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -51.562 -51.562 0.000 32.56 +H(0) 1.389e-32 + H2 6.943e-33 6.944e-33 -32.158 -32.158 0.000 28.50 +O(0) 8.229e-15 + O2 4.115e-15 4.115e-15 -14.386 -14.386 0.000 32.56 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 157 atm) - CH4(g) -19.45 -22.56 -3.11 CH4 + CH4(g) -93.80 -96.91 -3.11 CH4 CO2(g) 1.95 -0.01 -1.96 CO2 Pressure 155.6 atm, phi 0.577 - H2(g) -10.37 -13.57 -3.20 H2 + H2(g) -28.96 -32.16 -3.20 H2 H2O(g) -0.39 -0.01 0.38 H2O Pressure 1.6 atm, phi 0.250 - O2(g) -48.39 -51.56 -3.18 O2 + O2(g) -11.21 -14.39 -3.18 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6786,19 +7397,19 @@ H2O(g) 0.27 1.845e+00 0.224 1.149e-01 1.303e-01 1.547e-02 ----------------------------Description of solution---------------------------- pH = 3.126 Charge balance - pe = 1.990 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 422 - Density (g/cm³) = 0.99075 + pe = 11.176 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 75oC) = 447 + Density (g/cm3) = 0.99075 Volume (L) = 1.05719 - Viscosity (mPa s) = 0.39313 + Viscosity (mPa s) = 0.38213 Activity of water = 0.982 Ionic strength (mol/kgw) = 7.726e-04 Mass of water (kg) = 9.976e-01 - Total alkalinity (eq/kg) = 1.220e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.133e+00 - Temperature (°C) = 75.00 + Temperature (oC) = 75.00 Pressure (atm) = 169.89 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 24 Total H = 1.107517e+02 @@ -6807,32 +7418,32 @@ H2O(g) 0.27 1.845e+00 0.224 1.149e-01 1.303e-01 1.547e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 7.726e-04 7.475e-04 -3.112 -3.126 -0.014 0.00 OH- 3.204e-10 3.095e-10 -9.494 -9.509 -0.015 -5.01 H2O 5.551e+01 9.818e-01 1.744 -0.008 0.000 18.34 -C(-4) 1.540e-23 - CH4 1.540e-23 1.540e-23 -22.812 -22.812 0.000 39.05 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -96.305 -96.305 0.000 39.05 C(4) 1.133e+00 CO2 1.004e+00 1.004e+00 0.002 0.002 0.000 36.77 (CO2)2 6.416e-02 6.417e-02 -1.193 -1.193 0.000 73.54 HCO3- 7.726e-04 7.468e-04 -3.112 -3.127 -0.015 25.92 CO3-2 1.019e-10 8.896e-11 -9.992 -10.051 -0.059 -3.26 -H(0) 4.576e-14 - H2 2.288e-14 2.288e-14 -13.641 -13.640 0.000 28.50 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -51.432 -51.432 0.000 32.53 +H(0) 1.938e-32 + H2 9.688e-33 9.690e-33 -32.014 -32.014 0.000 28.50 +O(0) 4.126e-15 + O2 2.063e-15 2.063e-15 -14.686 -14.685 0.000 32.53 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 170 atm) - CH4(g) -19.70 -22.81 -3.11 CH4 + CH4(g) -93.19 -96.31 -3.11 CH4 CO2(g) 1.97 0.00 -1.97 CO2 Pressure 168.0 atm, phi 0.555 - H2(g) -10.43 -13.64 -3.21 H2 + H2(g) -28.81 -32.01 -3.21 H2 H2O(g) -0.38 -0.01 0.38 H2O Pressure 1.8 atm, phi 0.224 - O2(g) -48.25 -51.43 -3.18 O2 + O2(g) -11.50 -14.69 -3.18 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6881,19 +7492,19 @@ H2O(g) 0.32 2.085e+00 0.200 1.303e-01 1.467e-01 1.639e-02 ----------------------------Description of solution---------------------------- pH = 3.118 Charge balance - pe = 2.109 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 429 - Density (g/cm³) = 0.99159 + pe = 11.226 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 75oC) = 454 + Density (g/cm3) = 0.99159 Volume (L) = 1.05726 - Viscosity (mPa s) = 0.39381 + Viscosity (mPa s) = 0.38252 Activity of water = 0.981 Ionic strength (mol/kgw) = 7.871e-04 Mass of water (kg) = 9.973e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.162e+00 - Temperature (°C) = 75.00 + Temperature (oC) = 75.00 Pressure (atm) = 184.57 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 28 Total H = 1.107190e+02 @@ -6902,32 +7513,32 @@ H2O(g) 0.32 2.085e+00 0.200 1.303e-01 1.467e-01 1.639e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 7.871e-04 7.614e-04 -3.104 -3.118 -0.014 0.00 OH- 3.184e-10 3.074e-10 -9.497 -9.512 -0.015 -5.05 H2O 5.551e+01 9.814e-01 1.744 -0.008 0.000 18.33 -C(-4) 1.984e-24 - CH4 1.984e-24 1.984e-24 -23.703 -23.702 0.000 39.05 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -96.635 -96.635 0.000 39.05 C(4) 1.162e+00 CO2 1.027e+00 1.027e+00 0.012 0.012 0.000 36.75 (CO2)2 6.714e-02 6.716e-02 -1.173 -1.173 0.000 73.49 HCO3- 7.871e-04 7.606e-04 -3.104 -3.119 -0.015 25.99 CO3-2 1.035e-10 9.026e-11 -9.985 -10.045 -0.060 -3.12 -H(0) 2.699e-14 - H2 1.350e-14 1.350e-14 -13.870 -13.870 0.000 28.49 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.986 -50.986 0.000 32.49 +H(0) 1.578e-32 + H2 7.890e-33 7.891e-33 -32.103 -32.103 0.000 28.49 +O(0) 6.050e-15 + O2 3.025e-15 3.026e-15 -14.519 -14.519 0.000 32.49 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 185 atm) - CH4(g) -20.58 -23.70 -3.12 CH4 + CH4(g) -93.51 -96.64 -3.12 CH4 CO2(g) 1.99 0.01 -1.98 CO2 Pressure 182.5 atm, phi 0.533 - H2(g) -10.66 -13.87 -3.21 H2 + H2(g) -28.89 -32.10 -3.21 H2 H2O(g) -0.38 -0.01 0.37 H2O Pressure 2.1 atm, phi 0.200 - O2(g) -47.80 -50.99 -3.19 O2 + O2(g) -11.33 -14.52 -3.19 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6976,19 +7587,19 @@ H2O(g) 0.37 2.368e+00 0.178 1.467e-01 1.639e-01 1.719e-02 ----------------------------Description of solution---------------------------- pH = 3.110 Charge balance - pe = 2.181 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 436 - Density (g/cm³) = 0.99256 + pe = 11.350 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 75oC) = 462 + Density (g/cm3) = 0.99256 Volume (L) = 1.05726 - Viscosity (mPa s) = 0.39457 + Viscosity (mPa s) = 0.38298 Activity of water = 0.981 Ionic strength (mol/kgw) = 8.031e-04 Mass of water (kg) = 9.970e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.193e+00 - Temperature (°C) = 75.00 + Temperature (oC) = 75.00 Pressure (atm) = 201.89 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 30 Total H = 1.106846e+02 @@ -6997,32 +7608,32 @@ H2O(g) 0.37 2.368e+00 0.178 1.467e-01 1.639e-01 1.719e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.031e-04 7.766e-04 -3.095 -3.110 -0.015 0.00 OH- 3.166e-10 3.056e-10 -9.499 -9.515 -0.015 -5.11 H2O 5.551e+01 9.809e-01 1.744 -0.008 0.000 18.32 -C(-4) 6.179e-25 - CH4 6.179e-25 6.180e-25 -24.209 -24.209 0.000 39.04 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -97.563 -97.563 0.000 39.04 C(4) 1.193e+00 CO2 1.051e+00 1.052e+00 0.022 0.022 0.000 36.72 (CO2)2 7.034e-02 7.035e-02 -1.153 -1.153 0.000 73.43 HCO3- 8.031e-04 7.758e-04 -3.095 -3.110 -0.015 26.06 CO3-2 1.054e-10 9.180e-11 -9.977 -10.037 -0.060 -2.95 -H(0) 1.982e-14 - H2 9.909e-15 9.911e-15 -14.004 -14.004 0.000 28.49 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.731 -50.731 0.000 32.45 +H(0) 9.091e-33 + H2 4.545e-33 4.546e-33 -32.342 -32.342 0.000 28.49 +O(0) 1.764e-14 + O2 8.820e-15 8.822e-15 -14.055 -14.054 0.000 32.45 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 202 atm) - CH4(g) -21.08 -24.21 -3.13 CH4 + CH4(g) -94.43 -97.56 -3.13 CH4 CO2(g) 2.01 0.02 -1.99 CO2 Pressure 199.5 atm, phi 0.510 - H2(g) -10.78 -14.00 -3.22 H2 + H2(g) -29.12 -32.34 -3.22 H2 H2O(g) -0.38 -0.01 0.37 H2O Pressure 2.4 atm, phi 0.178 - O2(g) -47.53 -50.73 -3.20 O2 + O2(g) -10.86 -14.05 -3.20 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7071,19 +7682,19 @@ H2O(g) 0.43 2.704e+00 0.158 1.639e-01 1.818e-01 1.784e-02 ----------------------------Description of solution---------------------------- pH = 3.100 Charge balance - pe = 2.157 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 444 - Density (g/cm³) = 0.99369 + pe = 11.270 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 75oC) = 472 + Density (g/cm3) = 0.99369 Volume (L) = 1.05716 - Viscosity (mPa s) = 0.39545 + Viscosity (mPa s) = 0.38353 Activity of water = 0.980 Ionic strength (mol/kgw) = 8.210e-04 Mass of water (kg) = 9.967e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.214e-09 Total CO2 (mol/kg) = 1.226e+00 - Temperature (°C) = 75.00 + Temperature (oC) = 75.00 Pressure (atm) = 222.54 - Electrical balance (eq) = -1.212e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 52 Total H = 1.106489e+02 @@ -7092,32 +7703,32 @@ H2O(g) 0.43 2.704e+00 0.158 1.639e-01 1.818e-01 1.784e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.210e-04 7.937e-04 -3.086 -3.100 -0.015 0.00 OH- 3.151e-10 3.041e-10 -9.502 -9.517 -0.015 -5.17 H2O 5.551e+01 9.804e-01 1.744 -0.009 0.000 18.30 -C(-4) 1.149e-24 - CH4 1.149e-24 1.149e-24 -23.940 -23.940 0.000 39.04 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -96.850 -96.850 0.000 39.04 C(4) 1.226e+00 CO2 1.077e+00 1.077e+00 0.032 0.032 0.000 36.68 (CO2)2 7.382e-02 7.383e-02 -1.132 -1.132 0.000 73.37 HCO3- 8.210e-04 7.928e-04 -3.086 -3.101 -0.015 26.14 CO3-2 1.077e-10 9.367e-11 -9.968 -10.028 -0.061 -2.76 -H(0) 2.269e-14 - H2 1.134e-14 1.135e-14 -13.945 -13.945 0.000 28.48 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.866 -50.866 0.000 32.40 +H(0) 1.344e-32 + H2 6.718e-33 6.719e-33 -32.173 -32.173 0.000 28.48 +O(0) 7.768e-15 + O2 3.884e-15 3.885e-15 -14.411 -14.411 0.000 32.40 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 223 atm) - CH4(g) -20.80 -23.94 -3.14 CH4 + CH4(g) -93.71 -96.85 -3.14 CH4 CO2(g) 2.03 0.03 -2.00 CO2 Pressure 219.8 atm, phi 0.487 - H2(g) -10.72 -13.95 -3.23 H2 + H2(g) -28.94 -32.17 -3.23 H2 H2O(g) -0.37 -0.01 0.36 H2O Pressure 2.7 atm, phi 0.158 - O2(g) -47.66 -50.87 -3.21 O2 + O2(g) -11.20 -14.41 -3.21 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7166,53 +7777,53 @@ H2O(g) 0.49 3.103e+00 0.140 1.818e-01 2.001e-01 1.830e-02 ----------------------------Description of solution---------------------------- pH = 3.090 Charge balance - pe = 2.124 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 454 - Density (g/cm³) = 0.99500 + pe = 9.947 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 75oC) = 482 + Density (g/cm3) = 0.99500 Volume (L) = 1.05696 - Viscosity (mPa s) = 0.39647 + Viscosity (mPa s) = 0.38420 Activity of water = 0.980 Ionic strength (mol/kgw) = 8.413e-04 Mass of water (kg) = 9.964e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.261e+00 - Temperature (°C) = 75.00 + Temperature (oC) = 75.00 Pressure (atm) = 247.32 - Electrical balance (eq) = -1.212e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 60 + Iterations = 64 Total H = 1.106123e+02 Total O = 5.781815e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.413e-04 8.131e-04 -3.075 -3.090 -0.015 0.00 OH- 3.140e-10 3.030e-10 -9.503 -9.519 -0.016 -5.24 H2O 5.551e+01 9.799e-01 1.744 -0.009 0.000 18.28 -C(-4) 2.508e-24 - CH4 2.508e-24 2.509e-24 -23.601 -23.601 0.000 39.03 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -86.179 -86.178 0.000 39.03 C(4) 1.261e+00 CO2 1.104e+00 1.105e+00 0.043 0.043 0.000 36.64 (CO2)2 7.762e-02 7.764e-02 -1.110 -1.110 0.000 73.28 HCO3- 8.413e-04 8.122e-04 -3.075 -3.090 -0.015 26.24 CO3-2 1.105e-10 9.594e-11 -9.957 -10.018 -0.061 -2.53 -H(0) 2.696e-14 - H2 1.348e-14 1.348e-14 -13.870 -13.870 0.000 28.47 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -51.036 -51.036 0.000 32.34 +H(0) 6.113e-30 + H2 3.057e-30 3.057e-30 -29.515 -29.515 0.000 28.47 +O(0) 3.582e-20 + O2 1.791e-20 1.791e-20 -19.747 -19.747 0.000 32.34 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 247 atm) - CH4(g) -20.44 -23.60 -3.16 CH4 + CH4(g) -83.02 -86.18 -3.16 CH4 CO2(g) 2.05 0.04 -2.01 CO2 Pressure 244.2 atm, phi 0.464 - H2(g) -10.63 -13.87 -3.24 H2 + H2(g) -26.28 -29.51 -3.24 H2 H2O(g) -0.36 -0.01 0.35 H2O Pressure 3.1 atm, phi 0.140 - O2(g) -47.82 -51.04 -3.22 O2 + O2(g) -16.53 -19.75 -3.22 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7261,19 +7872,19 @@ H2O(g) 0.55 3.579e+00 0.123 2.001e-01 2.186e-01 1.854e-02 ----------------------------Description of solution---------------------------- pH = 3.078 Charge balance - pe = 2.151 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 464 - Density (g/cm³) = 0.99654 + pe = 11.302 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 75oC) = 495 + Density (g/cm3) = 0.99654 Volume (L) = 1.05664 - Viscosity (mPa s) = 0.39765 + Viscosity (mPa s) = 0.38499 Activity of water = 0.979 Ionic strength (mol/kgw) = 8.646e-04 Mass of water (kg) = 9.960e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.298e+00 - Temperature (°C) = 75.00 + Temperature (oC) = 75.00 Pressure (atm) = 277.14 - Electrical balance (eq) = -1.212e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 67 Total H = 1.105752e+02 @@ -7282,32 +7893,32 @@ H2O(g) 0.55 3.579e+00 0.123 2.001e-01 2.186e-01 1.854e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.646e-04 8.353e-04 -3.063 -3.078 -0.015 0.00 OH- 3.134e-10 3.023e-10 -9.504 -9.520 -0.016 -5.33 H2O 5.551e+01 9.793e-01 1.744 -0.009 0.000 18.26 -C(-4) 1.866e-24 - CH4 1.866e-24 1.866e-24 -23.729 -23.729 0.000 39.03 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -96.937 -96.937 0.000 39.03 C(4) 1.298e+00 CO2 1.134e+00 1.134e+00 0.055 0.055 0.000 36.59 (CO2)2 8.181e-02 8.183e-02 -1.087 -1.087 0.000 73.19 HCO3- 8.646e-04 8.343e-04 -3.063 -3.079 -0.015 26.36 CO3-2 1.139e-10 9.872e-11 -9.944 -10.006 -0.062 -2.26 -H(0) 2.439e-14 - H2 1.219e-14 1.220e-14 -13.914 -13.914 0.000 28.45 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.973 -50.973 0.000 32.27 +H(0) 1.216e-32 + H2 6.082e-33 6.084e-33 -32.216 -32.216 0.000 28.45 +O(0) 8.554e-15 + O2 4.277e-15 4.278e-15 -14.369 -14.369 0.000 32.27 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 277 atm) - CH4(g) -20.55 -23.73 -3.18 CH4 + CH4(g) -93.76 -96.94 -3.18 CH4 CO2(g) 2.08 0.05 -2.03 CO2 Pressure 273.6 atm, phi 0.441 - H2(g) -10.66 -13.91 -3.25 H2 + H2(g) -28.96 -32.22 -3.25 H2 H2O(g) -0.36 -0.01 0.35 H2O Pressure 3.6 atm, phi 0.123 - O2(g) -47.74 -50.97 -3.23 O2 + O2(g) -11.14 -14.37 -3.23 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7356,19 +7967,19 @@ H2O(g) 0.62 4.146e+00 0.109 2.186e-01 2.371e-01 1.851e-02 ----------------------------Description of solution---------------------------- pH = 3.065 Charge balance - pe = 2.230 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 477 - Density (g/cm³) = 0.99835 + pe = 11.366 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 75oC) = 509 + Density (g/cm3) = 0.99835 Volume (L) = 1.05616 - Viscosity (mPa s) = 0.39904 + Viscosity (mPa s) = 0.38595 Activity of water = 0.979 Ionic strength (mol/kgw) = 8.914e-04 Mass of water (kg) = 9.957e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.339e+00 - Temperature (°C) = 75.00 + Temperature (oC) = 75.00 Pressure (atm) = 313.08 - Electrical balance (eq) = -1.212e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 76 Total H = 1.105382e+02 @@ -7377,32 +7988,32 @@ H2O(g) 0.62 4.146e+00 0.109 2.186e-01 2.371e-01 1.851e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.914e-04 8.608e-04 -3.050 -3.065 -0.015 0.00 OH- 3.135e-10 3.022e-10 -9.504 -9.520 -0.016 -5.43 H2O 5.551e+01 9.787e-01 1.744 -0.009 0.000 18.23 -C(-4) 5.452e-25 - CH4 5.452e-25 5.453e-25 -24.263 -24.263 0.000 39.02 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -97.349 -97.349 0.000 39.02 C(4) 1.339e+00 CO2 1.165e+00 1.166e+00 0.066 0.067 0.000 36.53 (CO2)2 8.643e-02 8.645e-02 -1.063 -1.063 0.000 73.07 HCO3- 8.914e-04 8.598e-04 -3.050 -3.066 -0.016 26.50 CO3-2 1.180e-10 1.021e-10 -9.928 -9.991 -0.063 -1.94 -H(0) 1.739e-14 - H2 8.695e-15 8.697e-15 -14.061 -14.061 0.000 28.44 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.708 -50.708 0.000 32.18 +H(0) 9.308e-33 + H2 4.654e-33 4.655e-33 -32.332 -32.332 0.000 28.44 +O(0) 1.367e-14 + O2 6.833e-15 6.834e-15 -14.165 -14.165 0.000 32.18 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 313 atm) - CH4(g) -21.07 -24.26 -3.20 CH4 + CH4(g) -94.15 -97.35 -3.20 CH4 CO2(g) 2.11 0.07 -2.05 CO2 Pressure 308.9 atm, phi 0.420 - H2(g) -10.79 -14.06 -3.27 H2 + H2(g) -29.06 -32.33 -3.27 H2 H2O(g) -0.35 -0.01 0.34 H2O Pressure 4.1 atm, phi 0.109 - O2(g) -47.46 -50.71 -3.25 O2 + O2(g) -10.91 -14.17 -3.25 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7451,66 +8062,59 @@ H2O(g) 0.68 4.819e+00 0.096 2.371e-01 2.553e-01 1.819e-02 ----------------------------Description of solution---------------------------- pH = 3.050 Charge balance - pe = 2.295 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 491 - Density (g/cm³) = 1.00048 + pe = 11.467 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 75oC) = 525 + Density (g/cm3) = 1.00048 Volume (L) = 1.05549 - Viscosity (mPa s) = 0.40068 + Viscosity (mPa s) = 0.38711 Activity of water = 0.978 Ionic strength (mol/kgw) = 9.224e-04 Mass of water (kg) = 9.954e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.383e+00 - Temperature (°C) = 75.00 + Temperature (oC) = 75.00 Pressure (atm) = 356.38 - Electrical balance (eq) = -1.212e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 86 + Iterations = 85 Total H = 1.105018e+02 Total O = 5.800454e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 9.224e-04 8.903e-04 -3.035 -3.050 -0.015 0.00 OH- 3.144e-10 3.029e-10 -9.502 -9.519 -0.016 -5.54 H2O 5.551e+01 9.780e-01 1.744 -0.010 0.000 18.20 -C(-4) 2.089e-25 - CH4 2.089e-25 2.090e-25 -24.680 -24.680 0.000 39.01 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -98.051 -98.051 0.000 39.01 C(4) 1.383e+00 CO2 1.199e+00 1.199e+00 0.079 0.079 0.000 36.47 (CO2)2 9.152e-02 9.154e-02 -1.038 -1.038 0.000 72.93 HCO3- 9.224e-04 8.892e-04 -3.035 -3.051 -0.016 26.67 CO3-2 1.231e-10 1.064e-10 -9.910 -9.973 -0.064 -1.57 -H(0) 1.320e-14 - H2 6.602e-15 6.603e-15 -14.180 -14.180 0.000 28.42 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.504 -50.504 0.000 32.08 +H(0) 5.997e-33 + H2 2.998e-33 2.999e-33 -32.523 -32.523 0.000 28.42 +O(0) 3.038e-14 + O2 1.519e-14 1.519e-14 -13.818 -13.818 0.000 32.08 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 356 atm) - CH4(g) -21.46 -24.68 -3.22 CH4 + CH4(g) -94.83 -98.05 -3.22 CH4 CO2(g) 2.15 0.08 -2.07 CO2 Pressure 351.6 atm, phi 0.401 - H2(g) -10.89 -14.18 -3.29 H2 + H2(g) -29.24 -32.52 -3.29 H2 H2O(g) -0.33 -0.01 0.32 H2O Pressure 4.8 atm, phi 0.096 - O2(g) -47.23 -50.50 -3.27 O2 + O2(g) -10.55 -13.82 -3.27 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. Reaction step 22. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 3. @@ -7553,53 +8157,53 @@ H2O(g) 0.75 5.616e+00 0.085 2.553e-01 2.728e-01 1.752e-02 ----------------------------Description of solution---------------------------- pH = 3.034 Charge balance - pe = 12.341 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 508 - Density (g/cm³) = 1.00298 + pe = 11.488 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 75oC) = 544 + Density (g/cm3) = 1.00298 Volume (L) = 1.05459 - Viscosity (mPa s) = 0.40260 + Viscosity (mPa s) = 0.38850 Activity of water = 0.977 Ionic strength (mol/kgw) = 9.585e-04 Mass of water (kg) = 9.951e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.431e+00 - Temperature (°C) = 75.00 + Temperature (oC) = 75.00 Pressure (atm) = 408.56 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 122 (223 overall) + Iterations = 96 Total H = 1.104668e+02 Total O = 5.808036e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 9.585e-04 9.247e-04 -3.018 -3.034 -0.016 0.00 OH- 3.166e-10 3.048e-10 -9.500 -9.516 -0.016 -5.68 H2O 5.551e+01 9.773e-01 1.744 -0.010 0.000 18.16 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -104.932 -104.932 0.000 39.00 + CH4 0.000e+00 0.000e+00 -98.108 -98.108 0.000 39.00 C(4) 1.431e+00 CO2 1.235e+00 1.236e+00 0.092 0.092 0.000 36.39 (CO2)2 9.711e-02 9.713e-02 -1.013 -1.013 0.000 72.77 HCO3- 9.585e-04 9.235e-04 -3.018 -3.035 -0.016 26.86 CO3-2 1.295e-10 1.116e-10 -9.888 -9.952 -0.065 -1.13 -H(0) 1.096e-34 - H2 5.478e-35 5.479e-35 -34.261 -34.261 0.000 28.40 -O(0) 8.268e-11 - O2 4.134e-11 4.135e-11 -10.384 -10.384 0.000 31.97 +H(0) 5.566e-33 + H2 2.783e-33 2.784e-33 -32.555 -32.555 0.000 28.40 +O(0) 3.202e-14 + O2 1.601e-14 1.602e-14 -13.796 -13.795 0.000 31.97 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 409 atm) - CH4(g) -101.68 -104.93 -3.25 CH4 + CH4(g) -94.85 -98.11 -3.25 CH4 CO2(g) 2.19 0.09 -2.10 CO2 Pressure 402.9 atm, phi 0.385 - H2(g) -30.95 -34.26 -3.31 H2 + H2(g) -29.25 -32.56 -3.31 H2 H2O(g) -0.32 -0.01 0.31 H2O Pressure 5.6 atm, phi 0.085 - O2(g) -7.09 -10.38 -3.30 O2 + O2(g) -10.50 -13.80 -3.30 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7655,53 +8259,53 @@ H2O(g) 0.82 6.552e+00 0.076 2.728e-01 2.893e-01 1.646e-02 ----------------------------Description of solution---------------------------- pH = 3.016 Charge balance - pe = 12.359 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 527 - Density (g/cm³) = 1.00591 + pe = 12.726 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 75oC) = 567 + Density (g/cm3) = 1.00591 Volume (L) = 1.05341 - Viscosity (mPa s) = 0.40487 + Viscosity (mPa s) = 0.39018 Activity of water = 0.977 Ionic strength (mol/kgw) = 1.001e-03 Mass of water (kg) = 9.948e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.481e+00 - Temperature (°C) = 75.00 + Temperature (oC) = 75.00 Pressure (atm) = 471.44 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.209e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 35 (136 overall) + Iterations = 37 (138 overall) Total H = 1.104339e+02 Total O = 5.816398e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 1.001e-03 9.647e-04 -3.000 -3.016 -0.016 0.00 OH- 3.203e-10 3.082e-10 -9.494 -9.511 -0.017 -5.84 H2O 5.551e+01 9.766e-01 1.744 -0.010 0.000 18.11 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -104.948 -104.948 0.000 38.98 + CH4 0.000e+00 0.000e+00 -107.886 -107.886 0.000 38.98 C(4) 1.481e+00 CO2 1.274e+00 1.274e+00 0.105 0.105 0.000 36.29 (CO2)2 1.032e-01 1.033e-01 -0.986 -0.986 0.000 72.58 HCO3- 1.001e-03 9.634e-04 -3.000 -3.016 -0.016 27.09 CO3-2 1.374e-10 1.181e-10 -9.862 -9.928 -0.066 -0.62 -H(0) 1.034e-34 - H2 5.169e-35 5.170e-35 -34.287 -34.286 0.000 28.38 -O(0) 8.270e-11 - O2 4.135e-11 4.136e-11 -10.384 -10.383 0.000 31.83 +H(0) 1.905e-35 + H2 9.523e-36 9.525e-36 -35.021 -35.021 0.000 28.38 +O(0) 2.437e-09 + O2 1.218e-09 1.219e-09 -8.914 -8.914 0.000 31.83 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 471 atm) - CH4(g) -101.66 -104.95 -3.29 CH4 + CH4(g) -104.59 -107.89 -3.29 CH4 CO2(g) 2.24 0.11 -2.13 CO2 Pressure 464.9 atm, phi 0.372 - H2(g) -30.95 -34.29 -3.34 H2 + H2(g) -31.69 -35.02 -3.34 H2 H2O(g) -0.30 -0.01 0.29 H2O Pressure 6.6 atm, phi 0.076 - O2(g) -7.06 -10.38 -3.33 O2 + O2(g) -5.59 -8.91 -3.33 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7757,53 +8361,53 @@ H2O(g) 0.88 7.646e+00 0.068 2.893e-01 3.042e-01 1.496e-02 ----------------------------Description of solution---------------------------- pH = 2.995 Charge balance - pe = 12.378 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 550 - Density (g/cm³) = 1.00936 + pe = 12.745 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 75oC) = 593 + Density (g/cm3) = 1.00936 Volume (L) = 1.05188 - Viscosity (mPa s) = 0.40755 + Viscosity (mPa s) = 0.39221 Activity of water = 0.976 Ionic strength (mol/kgw) = 1.050e-03 Mass of water (kg) = 9.945e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.535e+00 - Temperature (°C) = 75.00 + Temperature (oC) = 75.00 Pressure (atm) = 547.25 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.209e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 36 (137 overall) + Iterations = 35 (136 overall) Total H = 1.104039e+02 Total O = 5.825586e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 1.050e-03 1.012e-03 -2.979 -2.995 -0.016 0.00 OH- 3.262e-10 3.137e-10 -9.486 -9.504 -0.017 -6.01 H2O 5.551e+01 9.757e-01 1.744 -0.011 0.000 18.05 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -104.969 -104.969 0.000 38.96 + CH4 0.000e+00 0.000e+00 -107.907 -107.907 0.000 38.96 C(4) 1.535e+00 CO2 1.314e+00 1.315e+00 0.119 0.119 0.000 36.18 (CO2)2 1.099e-01 1.100e-01 -0.959 -0.959 0.000 72.36 HCO3- 1.050e-03 1.010e-03 -2.979 -2.996 -0.017 27.35 CO3-2 1.474e-10 1.263e-10 -9.832 -9.899 -0.067 -0.02 -H(0) 9.645e-35 - H2 4.822e-35 4.824e-35 -34.317 -34.317 0.000 28.36 -O(0) 8.270e-11 - O2 4.135e-11 4.136e-11 -10.383 -10.383 0.000 31.68 +H(0) 1.777e-35 + H2 8.883e-36 8.886e-36 -35.051 -35.051 0.000 28.36 +O(0) 2.437e-09 + O2 1.219e-09 1.219e-09 -8.914 -8.914 0.000 31.68 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 547 atm) - CH4(g) -101.63 -104.97 -3.34 CH4 + CH4(g) -104.57 -107.91 -3.34 CH4 CO2(g) 2.29 0.12 -2.17 CO2 Pressure 539.6 atm, phi 0.364 - H2(g) -30.95 -34.32 -3.37 H2 + H2(g) -31.68 -35.05 -3.37 H2 H2O(g) -0.28 -0.01 0.27 H2O Pressure 7.6 atm, phi 0.068 - O2(g) -7.02 -10.38 -3.36 O2 + O2(g) -5.55 -8.91 -3.36 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7859,19 +8463,19 @@ H2O(g) 0.95 8.913e+00 0.062 3.042e-01 3.172e-01 1.297e-02 ----------------------------Description of solution---------------------------- pH = 2.972 Charge balance - pe = 12.400 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 577 - Density (g/cm³) = 1.01339 + pe = 12.767 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 75oC) = 624 + Density (g/cm3) = 1.01339 Volume (L) = 1.04992 - Viscosity (mPa s) = 0.41074 + Viscosity (mPa s) = 0.39467 Activity of water = 0.975 Ionic strength (mol/kgw) = 1.108e-03 Mass of water (kg) = 9.943e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.593e+00 - Temperature (°C) = 75.00 + Temperature (oC) = 75.00 Pressure (atm) = 638.75 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.209e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.103780e+02 @@ -7880,32 +8484,32 @@ H2O(g) 0.95 8.913e+00 0.062 3.042e-01 3.172e-01 1.297e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 1.108e-03 1.067e-03 -2.955 -2.972 -0.016 0.00 OH- 3.351e-10 3.220e-10 -9.475 -9.492 -0.017 -6.22 H2O 5.551e+01 9.749e-01 1.744 -0.011 0.000 17.99 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -104.996 -104.996 0.000 38.94 + CH4 0.000e+00 0.000e+00 -107.935 -107.935 0.000 38.94 C(4) 1.593e+00 CO2 1.357e+00 1.357e+00 0.133 0.133 0.000 36.05 (CO2)2 1.172e-01 1.173e-01 -0.931 -0.931 0.000 72.11 HCO3- 1.108e-03 1.065e-03 -2.955 -2.973 -0.017 27.65 CO3-2 1.600e-10 1.367e-10 -9.796 -9.864 -0.068 0.66 -H(0) 8.872e-35 - H2 4.436e-35 4.437e-35 -34.353 -34.353 0.000 28.33 -O(0) 8.272e-11 - O2 4.136e-11 4.137e-11 -10.383 -10.383 0.000 31.50 +H(0) 1.634e-35 + H2 8.171e-36 8.174e-36 -35.088 -35.088 0.000 28.33 +O(0) 2.438e-09 + O2 1.219e-09 1.219e-09 -8.914 -8.914 0.000 31.50 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 639 atm) - CH4(g) -101.61 -105.00 -3.39 CH4 + CH4(g) -104.54 -107.93 -3.39 CH4 CO2(g) 2.36 0.13 -2.22 CO2 Pressure 629.8 atm, phi 0.360 - H2(g) -30.95 -34.35 -3.41 H2 + H2(g) -31.68 -35.09 -3.41 H2 H2O(g) -0.26 -0.01 0.25 H2O Pressure 8.9 atm, phi 0.062 - O2(g) -6.98 -10.38 -3.40 O2 + O2(g) -5.51 -8.91 -3.40 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7961,53 +8565,53 @@ H2O(g) 1.02 1.037e+01 0.057 3.172e-01 3.276e-01 1.043e-02 ----------------------------Description of solution---------------------------- pH = 2.946 Charge balance - pe = 12.424 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 609 - Density (g/cm³) = 1.01812 + pe = 12.791 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 75oC) = 660 + Density (g/cm3) = 1.01812 Volume (L) = 1.04745 - Viscosity (mPa s) = 0.41455 + Viscosity (mPa s) = 0.39767 Activity of water = 0.974 Ionic strength (mol/kgw) = 1.177e-03 Mass of water (kg) = 9.941e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.653e+00 - Temperature (°C) = 75.00 + Temperature (oC) = 75.00 Pressure (atm) = 749.41 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.209e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 33 (134 overall) + Iterations = 36 (137 overall) Total H = 1.103572e+02 Total O = 5.846543e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 1.177e-03 1.132e-03 -2.929 -2.946 -0.017 0.00 OH- 3.482e-10 3.342e-10 -9.458 -9.476 -0.018 -6.45 H2O 5.551e+01 9.740e-01 1.744 -0.011 0.000 17.91 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -105.032 -105.032 0.000 38.91 + CH4 0.000e+00 0.000e+00 -107.971 -107.971 0.000 38.91 C(4) 1.653e+00 CO2 1.402e+00 1.402e+00 0.147 0.147 0.000 35.91 (CO2)2 1.251e-01 1.251e-01 -0.903 -0.903 0.000 71.82 HCO3- 1.177e-03 1.131e-03 -2.929 -2.947 -0.017 27.99 CO3-2 1.762e-10 1.500e-10 -9.754 -9.824 -0.070 1.44 -H(0) 8.024e-35 - H2 4.012e-35 4.013e-35 -34.397 -34.397 0.000 28.29 -O(0) 8.272e-11 - O2 4.136e-11 4.137e-11 -10.383 -10.383 0.000 31.30 +H(0) 1.478e-35 + H2 7.390e-36 7.392e-36 -35.131 -35.131 0.000 28.29 +O(0) 2.438e-09 + O2 1.219e-09 1.219e-09 -8.914 -8.914 0.000 31.30 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 749 atm) - CH4(g) -101.58 -105.03 -3.46 CH4 + CH4(g) -104.51 -107.97 -3.46 CH4 CO2(g) 2.43 0.15 -2.28 CO2 Pressure 739.0 atm, phi 0.363 - H2(g) -30.94 -34.40 -3.45 H2 + H2(g) -31.68 -35.13 -3.45 H2 H2O(g) -0.23 -0.01 0.22 H2O Pressure 10.4 atm, phi 0.057 - O2(g) -6.93 -10.38 -3.45 O2 + O2(g) -5.46 -8.91 -3.45 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8063,53 +8667,53 @@ H2O(g) 1.08 1.202e+01 0.053 3.276e-01 3.349e-01 7.291e-03 ----------------------------Description of solution---------------------------- pH = 2.917 Charge balance - pe = 12.450 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 646 - Density (g/cm³) = 1.02365 + pe = 12.818 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 75oC) = 704 + Density (g/cm3) = 1.02365 Volume (L) = 1.04435 - Viscosity (mPa s) = 0.41911 + Viscosity (mPa s) = 0.40132 Activity of water = 0.973 Ionic strength (mol/kgw) = 1.259e-03 Mass of water (kg) = 9.939e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.716e+00 - Temperature (°C) = 75.00 + Temperature (oC) = 75.00 Pressure (atm) = 883.67 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.209e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 36 (137 overall) + Iterations = 34 (135 overall) Total H = 1.103426e+02 Total O = 5.858312e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 1.259e-03 1.210e-03 -2.900 -2.917 -0.017 0.00 OH- 3.673e-10 3.521e-10 -9.435 -9.453 -0.018 -6.70 H2O 5.551e+01 9.731e-01 1.744 -0.012 0.000 17.82 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -105.078 -105.077 0.000 38.88 + CH4 0.000e+00 0.000e+00 -108.016 -108.016 0.000 38.88 C(4) 1.716e+00 CO2 1.448e+00 1.448e+00 0.161 0.161 0.000 35.74 (CO2)2 1.335e-01 1.335e-01 -0.875 -0.875 0.000 71.48 HCO3- 1.259e-03 1.208e-03 -2.900 -2.918 -0.018 28.38 CO3-2 1.974e-10 1.673e-10 -9.705 -9.776 -0.072 2.33 -H(0) 7.106e-35 - H2 3.553e-35 3.554e-35 -34.449 -34.449 0.000 28.26 -O(0) 8.273e-11 - O2 4.137e-11 4.138e-11 -10.383 -10.383 0.000 31.07 +H(0) 1.309e-35 + H2 6.545e-36 6.546e-36 -35.184 -35.184 0.000 28.26 +O(0) 2.439e-09 + O2 1.219e-09 1.220e-09 -8.914 -8.914 0.000 31.07 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 884 atm) - CH4(g) -101.54 -105.08 -3.53 CH4 + CH4(g) -104.48 -108.02 -3.53 CH4 CO2(g) 2.51 0.16 -2.35 CO2 Pressure 871.7 atm, phi 0.375 - H2(g) -30.94 -34.45 -3.51 H2 + H2(g) -31.67 -35.18 -3.51 H2 H2O(g) -0.20 -0.01 0.18 H2O Pressure 12.0 atm, phi 0.053 - O2(g) -6.87 -10.38 -3.52 O2 + O2(g) -5.40 -8.91 -3.52 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8165,53 +8769,53 @@ H2O(g) 1.14 1.386e+01 0.051 3.349e-01 3.384e-01 3.493e-03 ----------------------------Description of solution---------------------------- pH = 2.885 Charge balance - pe = 12.480 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 692 - Density (g/cm³) = 1.03011 + pe = 12.847 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 75oC) = 756 + Density (g/cm3) = 1.03011 Volume (L) = 1.04050 - Viscosity (mPa s) = 0.42463 + Viscosity (mPa s) = 0.40581 Activity of water = 0.972 Ionic strength (mol/kgw) = 1.357e-03 Mass of water (kg) = 9.939e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.781e+00 - Temperature (°C) = 75.00 + Temperature (oC) = 75.00 Pressure (atm) = 1047.32 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.209e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 34 (135 overall) + Iterations = 37 (138 overall) Total H = 1.103356e+02 Total O = 5.870889e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 1.357e-03 1.303e-03 -2.867 -2.885 -0.018 0.00 OH- 3.950e-10 3.783e-10 -9.403 -9.422 -0.019 -6.98 H2O 5.551e+01 9.721e-01 1.744 -0.012 0.000 17.72 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -105.136 -105.136 0.000 38.84 + CH4 0.000e+00 0.000e+00 -108.075 -108.075 0.000 38.84 C(4) 1.781e+00 CO2 1.495e+00 1.496e+00 0.175 0.175 0.000 35.55 (CO2)2 1.423e-01 1.424e-01 -0.847 -0.847 0.000 71.10 HCO3- 1.357e-03 1.301e-03 -2.867 -2.886 -0.018 28.83 CO3-2 2.254e-10 1.903e-10 -9.647 -9.721 -0.074 3.34 -H(0) 6.132e-35 - H2 3.066e-35 3.067e-35 -34.513 -34.513 0.000 28.21 -O(0) 8.274e-11 - O2 4.137e-11 4.138e-11 -10.383 -10.383 0.000 30.82 +H(0) 1.130e-35 + H2 5.648e-36 5.649e-36 -35.248 -35.248 0.000 28.21 +O(0) 2.439e-09 + O2 1.219e-09 1.220e-09 -8.914 -8.914 0.000 30.82 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 1047 atm) - CH4(g) -101.50 -105.14 -3.63 CH4 + CH4(g) -104.44 -108.07 -3.63 CH4 CO2(g) 2.61 0.17 -2.44 CO2 Pressure 1033.5 atm, phi 0.398 - H2(g) -30.93 -34.51 -3.58 H2 + H2(g) -31.67 -35.25 -3.58 H2 H2O(g) -0.15 -0.01 0.14 H2O Pressure 13.9 atm, phi 0.051 - O2(g) -6.79 -10.38 -3.59 O2 + O2(g) -5.33 -8.91 -3.59 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8226,11 +8830,13 @@ Reading input data for simulation 4. USE solution 1 USE gas_phase 1 - USE reaction 1 + REACTION + CO2 1 + 0 28*1 REACTION_TEMPERATURE 4 100 USER_GRAPH 2 - -headings 100C + -active true END ----------------------------------------- Beginning of batch-reaction calculations. @@ -8283,15 +8889,15 @@ H2O(g) -0.00 9.971e-01 0.991 0.000e+00 3.285e-02 3.285e-02 pH = 6.120 Charge balance pe = 6.720 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 0 - Density (g/cm³) = 0.95835 + Specific Conductance (uS/cm, 100oC) = 0 + Density (g/cm3) = 0.95835 Volume (L) = 1.04285 Viscosity (mPa s) = 0.28158 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.610e-07 Mass of water (kg) = 9.994e-01 Total alkalinity (eq/kg) = 1.217e-09 - Temperature (°C) = 100.00 + Temperature (oC) = 100.00 Pressure (atm) = 1.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.08 @@ -8302,7 +8908,7 @@ H2O(g) -0.00 9.971e-01 0.991 0.000e+00 3.285e-02 3.285e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol OH- 7.616e-07 7.607e-07 -6.118 -6.119 -0.001 -5.96 H+ 7.604e-07 7.594e-07 -6.119 -6.120 -0.001 0.00 @@ -8367,17 +8973,17 @@ H2O(g) 0.06 1.139e+00 0.877 3.285e-02 3.984e-02 6.990e-03 ----------------------------Description of solution---------------------------- pH = 3.544 Charge balance - pe = 9.305 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 203 - Density (g/cm³) = 0.96086 + pe = 9.299 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 100oC) = 206 + Density (g/cm3) = 0.96086 Volume (L) = 1.05014 - Viscosity (mPa s) = 0.28374 + Viscosity (mPa s) = 0.28228 Activity of water = 0.996 Ionic strength (mol/kgw) = 2.920e-04 Mass of water (kg) = 9.993e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 2.218e-01 - Temperature (°C) = 100.00 + Temperature (oC) = 100.00 Pressure (atm) = 23.39 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -8388,32 +8994,32 @@ H2O(g) 0.06 1.139e+00 0.877 3.285e-02 3.984e-02 6.990e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 2.920e-04 2.855e-04 -3.535 -3.544 -0.010 0.00 OH- 2.101e-09 2.053e-09 -8.678 -8.688 -0.010 -6.03 H2O 5.551e+01 9.963e-01 1.744 -0.002 0.000 18.78 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -87.982 -87.982 0.000 41.03 + CH4 0.000e+00 0.000e+00 -87.930 -87.930 0.000 41.03 C(4) 2.218e-01 CO2 2.131e-01 2.131e-01 -0.671 -0.671 0.000 38.83 (CO2)2 4.215e-03 4.215e-03 -2.375 -2.375 0.000 77.65 HCO3- 2.920e-04 2.854e-04 -3.535 -3.545 -0.010 23.81 CO3-2 7.845e-11 7.159e-11 -10.105 -10.145 -0.040 -8.64 -H(0) 1.525e-29 - H2 7.627e-30 7.628e-30 -29.118 -29.118 0.000 28.56 -O(0) 2.989e-15 - O2 1.494e-15 1.494e-15 -14.826 -14.826 0.000 33.82 +H(0) 1.572e-29 + H2 7.860e-30 7.860e-30 -29.105 -29.105 0.000 28.56 +O(0) 2.815e-15 + O2 1.407e-15 1.407e-15 -14.852 -14.852 0.000 33.82 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 23 atm) - CH4(g) -84.96 -87.98 -3.02 CH4 + CH4(g) -84.91 -87.93 -3.02 CH4 CO2(g) 1.32 -0.67 -1.99 CO2 Pressure 22.3 atm, phi 0.939 - H2(g) -26.01 -29.12 -3.11 H2 + H2(g) -25.99 -29.10 -3.11 H2 H2O(g) -0.00 -0.00 -0.00 H2O Pressure 1.1 atm, phi 0.877 - O2(g) -11.70 -14.83 -3.13 O2 + O2(g) -11.73 -14.85 -3.13 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8462,17 +9068,17 @@ H2O(g) 0.11 1.294e+00 0.779 3.984e-02 4.816e-02 8.320e-03 ----------------------------Description of solution---------------------------- pH = 3.416 Charge balance - pe = 2.060 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 269 - Density (g/cm³) = 0.96303 + pe = 2.087 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 100oC) = 273 + Density (g/cm3) = 0.96303 Volume (L) = 1.05598 - Viscosity (mPa s) = 0.28529 + Viscosity (mPa s) = 0.28288 Activity of water = 0.993 Ionic strength (mol/kgw) = 3.941e-04 Mass of water (kg) = 9.991e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 4.049e-01 - Temperature (°C) = 100.00 + Temperature (oC) = 100.00 Pressure (atm) = 44.15 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -8483,32 +9089,32 @@ H2O(g) 0.11 1.294e+00 0.779 3.984e-02 4.816e-02 8.320e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 3.941e-04 3.841e-04 -3.404 -3.416 -0.011 0.00 OH- 1.589e-09 1.547e-09 -8.799 -8.810 -0.012 -6.11 H2O 5.551e+01 9.933e-01 1.744 -0.003 0.000 18.76 -C(-4) 1.776e-29 - CH4 1.776e-29 1.776e-29 -28.751 -28.751 0.000 41.01 +C(-4) 1.085e-29 + CH4 1.085e-29 1.085e-29 -28.965 -28.965 0.000 41.01 C(4) 4.049e-01 CO2 3.780e-01 3.780e-01 -0.423 -0.422 0.000 38.77 (CO2)2 1.326e-02 1.326e-02 -1.877 -1.877 0.000 77.53 HCO3- 3.941e-04 3.838e-04 -3.404 -3.416 -0.011 23.93 CO3-2 8.130e-11 7.316e-11 -10.090 -10.136 -0.046 -8.35 -H(0) 8.372e-15 - H2 4.186e-15 4.186e-15 -14.378 -14.378 0.000 28.55 +H(0) 7.401e-15 + H2 3.701e-15 3.701e-15 -14.432 -14.432 0.000 28.55 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -44.323 -44.323 0.000 33.76 + O2 0.000e+00 0.000e+00 -44.216 -44.216 0.000 33.76 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 44 atm) - CH4(g) -25.72 -28.75 -3.03 CH4 + CH4(g) -25.94 -28.96 -3.03 CH4 CO2(g) 1.58 -0.42 -2.00 CO2 Pressure 42.9 atm, phi 0.888 - H2(g) -11.26 -14.38 -3.12 H2 + H2(g) -11.31 -14.43 -3.12 H2 H2O(g) 0.00 -0.00 -0.01 H2O Pressure 1.3 atm, phi 0.779 - O2(g) -41.19 -44.32 -3.14 O2 + O2(g) -41.08 -44.22 -3.14 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8557,53 +9163,53 @@ H2O(g) 0.17 1.465e+00 0.695 4.816e-02 5.795e-02 9.787e-03 ----------------------------Description of solution---------------------------- pH = 3.348 Charge balance - pe = 9.623 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 310 - Density (g/cm³) = 0.96489 + pe = 1.983 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 100oC) = 316 + Density (g/cm3) = 0.96489 Volume (L) = 1.06054 - Viscosity (mPa s) = 0.28658 + Viscosity (mPa s) = 0.28342 Activity of water = 0.991 Ionic strength (mol/kgw) = 4.610e-04 Mass of water (kg) = 9.989e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 5.538e-01 - Temperature (°C) = 100.00 + Temperature (oC) = 100.00 Pressure (atm) = 63.31 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 31 + Iterations = 28 Total H = 1.108965e+02 Total O = 5.655464e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 4.610e-04 4.484e-04 -3.336 -3.348 -0.012 0.00 OH- 1.382e-09 1.343e-09 -8.859 -8.872 -0.013 -6.19 H2O 5.551e+01 9.910e-01 1.744 -0.004 0.000 18.74 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -88.598 -88.598 0.000 40.98 +C(-4) 3.334e-28 + CH4 3.334e-28 3.335e-28 -27.477 -27.477 0.000 40.98 C(4) 5.538e-01 CO2 5.058e-01 5.059e-01 -0.296 -0.296 0.000 38.71 (CO2)2 2.375e-02 2.375e-02 -1.624 -1.624 0.000 77.42 HCO3- 4.610e-04 4.481e-04 -3.336 -3.349 -0.012 24.05 CO3-2 8.360e-11 7.462e-11 -10.078 -10.127 -0.049 -8.10 -H(0) 8.388e-30 - H2 4.194e-30 4.195e-30 -29.377 -29.377 0.000 28.54 -O(0) 9.122e-15 - O2 4.561e-15 4.562e-15 -14.341 -14.341 0.000 33.69 +H(0) 1.600e-14 + H2 7.998e-15 7.999e-15 -14.097 -14.097 0.000 28.54 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -44.902 -44.902 0.000 33.69 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 63 atm) - CH4(g) -85.56 -88.60 -3.04 CH4 + CH4(g) -24.44 -27.48 -3.04 CH4 CO2(g) 1.72 -0.30 -2.01 CO2 Pressure 61.8 atm, phi 0.844 - H2(g) -26.25 -29.38 -3.13 H2 + H2(g) -10.97 -14.10 -3.13 H2 H2O(g) 0.01 -0.00 -0.01 H2O Pressure 1.5 atm, phi 0.695 - O2(g) -11.20 -14.34 -3.14 O2 + O2(g) -41.76 -44.90 -3.14 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8652,17 +9258,17 @@ H2O(g) 0.22 1.653e+00 0.621 5.795e-02 6.931e-02 1.136e-02 ----------------------------Description of solution---------------------------- pH = 3.306 Charge balance - pe = 9.528 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 338 - Density (g/cm³) = 0.96649 + pe = 1.912 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 100oC) = 346 + Density (g/cm3) = 0.96649 Volume (L) = 1.06404 - Viscosity (mPa s) = 0.28766 + Viscosity (mPa s) = 0.28391 Activity of water = 0.989 Ionic strength (mol/kgw) = 5.093e-04 Mass of water (kg) = 9.987e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 6.740e-01 - Temperature (°C) = 100.00 + Temperature (oC) = 100.00 Pressure (atm) = 81.00 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -8673,32 +9279,32 @@ H2O(g) 0.22 1.653e+00 0.621 5.795e-02 6.931e-02 1.136e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 5.093e-04 4.948e-04 -3.293 -3.306 -0.013 0.00 OH- 1.271e-09 1.233e-09 -8.896 -8.909 -0.013 -6.27 H2O 5.551e+01 9.891e-01 1.744 -0.005 0.000 18.72 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -87.422 -87.422 0.000 40.96 +C(-4) 3.161e-27 + CH4 3.161e-27 3.162e-27 -26.500 -26.500 0.000 40.96 C(4) 6.740e-01 CO2 6.055e-01 6.055e-01 -0.218 -0.218 0.000 38.66 (CO2)2 3.402e-02 3.403e-02 -1.468 -1.468 0.000 77.32 HCO3- 5.093e-04 4.944e-04 -3.293 -3.306 -0.013 24.15 CO3-2 8.560e-11 7.599e-11 -10.068 -10.119 -0.052 -7.87 -H(0) 1.560e-29 - H2 7.802e-30 7.803e-30 -29.108 -29.108 0.000 28.53 -O(0) 2.547e-15 - O2 1.274e-15 1.274e-15 -14.895 -14.895 0.000 33.64 +H(0) 2.652e-14 + H2 1.326e-14 1.326e-14 -13.877 -13.877 0.000 28.53 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -45.356 -45.356 0.000 33.64 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 81 atm) - CH4(g) -84.37 -87.42 -3.05 CH4 + CH4(g) -23.45 -26.50 -3.05 CH4 CO2(g) 1.81 -0.22 -2.02 CO2 Pressure 79.3 atm, phi 0.805 - H2(g) -25.97 -29.11 -3.13 H2 + H2(g) -10.74 -13.88 -3.13 H2 H2O(g) 0.01 -0.00 -0.02 H2O Pressure 1.7 atm, phi 0.621 - O2(g) -11.74 -14.89 -3.15 O2 + O2(g) -42.20 -45.36 -3.15 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8747,53 +9353,53 @@ H2O(g) 0.27 1.859e+00 0.557 6.931e-02 8.231e-02 1.301e-02 ----------------------------Description of solution---------------------------- pH = 3.276 Charge balance - pe = 2.016 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 359 - Density (g/cm³) = 0.96788 + pe = 1.959 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 100oC) = 369 + Density (g/cm3) = 0.96788 Volume (L) = 1.06668 - Viscosity (mPa s) = 0.28859 + Viscosity (mPa s) = 0.28436 Activity of water = 0.988 Ionic strength (mol/kgw) = 5.462e-04 Mass of water (kg) = 9.985e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 7.714e-01 - Temperature (°C) = 100.00 + Temperature (oC) = 100.00 Pressure (atm) = 97.41 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 31 + Iterations = 25 Total H = 1.108478e+02 Total O = 5.696443e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 5.462e-04 5.301e-04 -3.263 -3.276 -0.013 0.00 OH- 1.202e-09 1.165e-09 -8.920 -8.934 -0.014 -6.33 H2O 5.551e+01 9.876e-01 1.744 -0.005 0.000 18.71 -C(-4) 8.959e-28 - CH4 8.959e-28 8.960e-28 -27.048 -27.048 0.000 40.94 +C(-4) 2.595e-27 + CH4 2.595e-27 2.595e-27 -26.586 -26.586 0.000 40.94 C(4) 7.714e-01 CO2 6.840e-01 6.841e-01 -0.165 -0.165 0.000 38.62 (CO2)2 4.343e-02 4.343e-02 -1.362 -1.362 0.000 77.23 HCO3- 5.462e-04 5.296e-04 -3.263 -3.276 -0.013 24.24 CO3-2 8.739e-11 7.727e-11 -10.059 -10.112 -0.053 -7.66 -H(0) 1.857e-14 - H2 9.286e-15 9.287e-15 -14.032 -14.032 0.000 28.52 +H(0) 2.423e-14 + H2 1.211e-14 1.212e-14 -13.917 -13.917 0.000 28.52 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.060 -45.060 0.000 33.58 + O2 0.000e+00 0.000e+00 -45.291 -45.291 0.000 33.58 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 97 atm) - CH4(g) -23.99 -27.05 -3.06 CH4 + CH4(g) -23.53 -26.59 -3.06 CH4 CO2(g) 1.87 -0.16 -2.03 CO2 Pressure 95.5 atm, phi 0.771 - H2(g) -10.89 -14.03 -3.14 H2 + H2(g) -10.78 -13.92 -3.14 H2 H2O(g) 0.02 -0.01 -0.02 H2O Pressure 1.9 atm, phi 0.557 - O2(g) -41.90 -45.06 -3.16 O2 + O2(g) -42.13 -45.29 -3.16 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8842,19 +9448,19 @@ H2O(g) 0.32 2.085e+00 0.501 8.231e-02 9.701e-02 1.470e-02 ----------------------------Description of solution---------------------------- pH = 3.253 Charge balance - pe = 1.941 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 375 - Density (g/cm³) = 0.96910 + pe = 1.882 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 100oC) = 386 + Density (g/cm3) = 0.96910 Volume (L) = 1.06867 - Viscosity (mPa s) = 0.28940 + Viscosity (mPa s) = 0.28479 Activity of water = 0.986 Ionic strength (mol/kgw) = 5.755e-04 Mass of water (kg) = 9.982e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 8.512e-01 - Temperature (°C) = 100.00 + Temperature (oC) = 100.00 Pressure (atm) = 112.79 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 24 Total H = 1.108184e+02 @@ -8863,32 +9469,32 @@ H2O(g) 0.32 2.085e+00 0.501 8.231e-02 9.701e-02 1.470e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 5.755e-04 5.581e-04 -3.240 -3.253 -0.013 0.00 OH- 1.155e-09 1.119e-09 -8.937 -8.951 -0.014 -6.40 H2O 5.551e+01 9.864e-01 1.744 -0.006 0.000 18.70 -C(-4) 5.827e-27 - CH4 5.827e-27 5.827e-27 -26.235 -26.235 0.000 40.93 +C(-4) 1.714e-26 + CH4 1.714e-26 1.714e-26 -25.766 -25.766 0.000 40.93 C(4) 8.512e-01 CO2 7.471e-01 7.471e-01 -0.127 -0.127 0.000 38.57 (CO2)2 5.180e-02 5.181e-02 -1.286 -1.286 0.000 77.15 HCO3- 5.755e-04 5.576e-04 -3.240 -3.254 -0.014 24.33 CO3-2 8.902e-11 7.849e-11 -10.050 -10.105 -0.055 -7.47 -H(0) 2.872e-14 - H2 1.436e-14 1.436e-14 -13.843 -13.843 0.000 28.52 +H(0) 3.762e-14 + H2 1.881e-14 1.881e-14 -13.726 -13.726 0.000 28.52 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.451 -45.451 0.000 33.54 + O2 0.000e+00 0.000e+00 -45.686 -45.686 0.000 33.54 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 113 atm) - CH4(g) -23.17 -26.23 -3.07 CH4 + CH4(g) -22.70 -25.77 -3.07 CH4 CO2(g) 1.91 -0.13 -2.04 CO2 Pressure 110.7 atm, phi 0.741 - H2(g) -10.70 -13.84 -3.15 H2 + H2(g) -10.58 -13.73 -3.15 H2 H2O(g) 0.02 -0.01 -0.02 H2O Pressure 2.1 atm, phi 0.501 - O2(g) -42.28 -45.45 -3.17 O2 + O2(g) -42.52 -45.69 -3.17 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8937,19 +9543,19 @@ H2O(g) 0.37 2.333e+00 0.451 9.701e-02 1.134e-01 1.641e-02 ----------------------------Description of solution---------------------------- pH = 3.236 Charge balance - pe = 1.889 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 388 - Density (g/cm³) = 0.97021 + pe = 1.906 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 100oC) = 400 + Density (g/cm3) = 0.97021 Volume (L) = 1.07015 - Viscosity (mPa s) = 0.29013 + Viscosity (mPa s) = 0.28519 Activity of water = 0.985 Ionic strength (mol/kgw) = 5.997e-04 Mass of water (kg) = 9.979e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 9.180e-01 - Temperature (°C) = 100.00 + Temperature (oC) = 100.00 Pressure (atm) = 127.46 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 24 Total H = 1.107856e+02 @@ -8958,32 +9564,32 @@ H2O(g) 0.37 2.333e+00 0.451 9.701e-02 1.134e-01 1.641e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 5.997e-04 5.813e-04 -3.222 -3.236 -0.014 0.00 OH- 1.122e-09 1.086e-09 -8.950 -8.964 -0.014 -6.46 H2O 5.551e+01 9.854e-01 1.744 -0.006 0.000 18.68 -C(-4) 2.189e-26 - CH4 2.189e-26 2.190e-26 -25.660 -25.660 0.000 40.91 +C(-4) 1.613e-26 + CH4 1.613e-26 1.613e-26 -25.792 -25.792 0.000 40.91 C(4) 9.180e-01 CO2 7.989e-01 7.990e-01 -0.098 -0.097 0.000 38.53 (CO2)2 5.924e-02 5.925e-02 -1.227 -1.227 0.000 77.07 HCO3- 5.997e-04 5.807e-04 -3.222 -3.236 -0.014 24.41 CO3-2 9.057e-11 7.966e-11 -10.043 -10.099 -0.056 -7.29 -H(0) 3.896e-14 - H2 1.948e-14 1.948e-14 -13.710 -13.710 0.000 28.51 +H(0) 3.609e-14 + H2 1.805e-14 1.805e-14 -13.744 -13.744 0.000 28.51 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.728 -45.728 0.000 33.49 + O2 0.000e+00 0.000e+00 -45.662 -45.662 0.000 33.49 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 127 atm) - CH4(g) -22.58 -25.66 -3.08 CH4 + CH4(g) -22.71 -25.79 -3.08 CH4 CO2(g) 1.95 -0.10 -2.05 CO2 Pressure 125.1 atm, phi 0.714 - H2(g) -10.56 -13.71 -3.15 H2 + H2(g) -10.59 -13.74 -3.15 H2 H2O(g) 0.02 -0.01 -0.03 H2O Pressure 2.3 atm, phi 0.451 - O2(g) -42.55 -45.73 -3.17 O2 + O2(g) -42.49 -45.66 -3.17 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9032,19 +9638,19 @@ H2O(g) 0.42 2.605e+00 0.407 1.134e-01 1.315e-01 1.811e-02 ----------------------------Description of solution---------------------------- pH = 3.221 Charge balance - pe = 1.824 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 399 - Density (g/cm³) = 0.97124 + pe = 1.804 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 100oC) = 413 + Density (g/cm3) = 0.97124 Volume (L) = 1.07126 - Viscosity (mPa s) = 0.29080 + Viscosity (mPa s) = 0.28558 Activity of water = 0.985 Ionic strength (mol/kgw) = 6.205e-04 Mass of water (kg) = 9.976e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 9.752e-01 - Temperature (°C) = 100.00 + Temperature (oC) = 100.00 Pressure (atm) = 141.77 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 24 Total H = 1.107494e+02 @@ -9053,32 +9659,32 @@ H2O(g) 0.42 2.605e+00 0.407 1.134e-01 1.315e-01 1.811e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 6.205e-04 6.012e-04 -3.207 -3.221 -0.014 0.00 OH- 1.098e-09 1.062e-09 -8.959 -8.974 -0.014 -6.51 H2O 5.551e+01 9.845e-01 1.744 -0.007 0.000 18.67 -C(-4) 9.904e-26 - CH4 9.904e-26 9.905e-26 -25.004 -25.004 0.000 40.89 +C(-4) 1.425e-25 + CH4 1.425e-25 1.425e-25 -24.846 -24.846 0.000 40.89 C(4) 9.752e-01 CO2 8.428e-01 8.429e-01 -0.074 -0.074 0.000 38.49 (CO2)2 6.592e-02 6.593e-02 -1.181 -1.181 0.000 76.99 HCO3- 6.205e-04 6.006e-04 -3.207 -3.221 -0.014 24.49 CO3-2 9.206e-11 8.081e-11 -10.036 -10.093 -0.057 -7.11 -H(0) 5.556e-14 - H2 2.778e-14 2.778e-14 -13.556 -13.556 0.000 28.50 +H(0) 6.085e-14 + H2 3.042e-14 3.043e-14 -13.517 -13.517 0.000 28.50 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.048 -46.048 0.000 33.45 + O2 0.000e+00 0.000e+00 -46.127 -46.127 0.000 33.45 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 142 atm) - CH4(g) -21.92 -25.00 -3.09 CH4 + CH4(g) -21.76 -24.85 -3.09 CH4 CO2(g) 1.98 -0.07 -2.06 CO2 Pressure 139.2 atm, phi 0.689 - H2(g) -10.40 -13.56 -3.16 H2 + H2(g) -10.36 -13.52 -3.16 H2 H2O(g) 0.03 -0.01 -0.03 H2O Pressure 2.6 atm, phi 0.407 - O2(g) -42.87 -46.05 -3.18 O2 + O2(g) -42.95 -46.13 -3.18 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9127,19 +9733,19 @@ H2O(g) 0.46 2.906e+00 0.368 1.315e-01 1.513e-01 1.977e-02 ----------------------------Description of solution---------------------------- pH = 3.208 Charge balance - pe = 1.845 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 409 - Density (g/cm³) = 0.97222 + pe = 1.838 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 100oC) = 423 + Density (g/cm3) = 0.97222 Volume (L) = 1.07208 - Viscosity (mPa s) = 0.29143 + Viscosity (mPa s) = 0.28597 Activity of water = 0.984 Ionic strength (mol/kgw) = 6.392e-04 Mass of water (kg) = 9.973e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.026e+00 - Temperature (°C) = 100.00 + Temperature (oC) = 100.00 Pressure (atm) = 156.12 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 24 Total H = 1.107098e+02 @@ -9148,32 +9754,32 @@ H2O(g) 0.46 2.906e+00 0.368 1.315e-01 1.513e-01 1.977e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 6.392e-04 6.190e-04 -3.194 -3.208 -0.014 0.00 OH- 1.079e-09 1.043e-09 -8.967 -8.982 -0.015 -6.57 H2O 5.551e+01 9.838e-01 1.744 -0.007 0.000 18.66 -C(-4) 8.725e-26 - CH4 8.725e-26 8.726e-26 -25.059 -25.059 0.000 40.88 +C(-4) 9.894e-26 + CH4 9.894e-26 9.895e-26 -25.005 -25.005 0.000 40.88 C(4) 1.026e+00 CO2 8.812e-01 8.812e-01 -0.055 -0.055 0.000 38.46 (CO2)2 7.207e-02 7.208e-02 -1.142 -1.142 0.000 76.91 HCO3- 6.392e-04 6.184e-04 -3.194 -3.209 -0.014 24.57 CO3-2 9.355e-11 8.197e-11 -10.029 -10.086 -0.057 -6.94 -H(0) 5.275e-14 - H2 2.637e-14 2.638e-14 -13.579 -13.579 0.000 28.50 +H(0) 5.443e-14 + H2 2.722e-14 2.722e-14 -13.565 -13.565 0.000 28.50 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.014 -46.014 0.000 33.40 + O2 0.000e+00 0.000e+00 -46.041 -46.041 0.000 33.40 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 156 atm) - CH4(g) -21.96 -25.06 -3.09 CH4 + CH4(g) -21.91 -25.00 -3.09 CH4 CO2(g) 2.01 -0.05 -2.06 CO2 Pressure 153.2 atm, phi 0.666 - H2(g) -10.42 -13.58 -3.16 H2 + H2(g) -10.40 -13.57 -3.16 H2 H2O(g) 0.03 -0.01 -0.04 H2O Pressure 2.9 atm, phi 0.368 - O2(g) -42.83 -46.01 -3.19 O2 + O2(g) -42.85 -46.04 -3.19 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9222,17 +9828,17 @@ H2O(g) 0.51 3.242e+00 0.332 1.513e-01 1.727e-01 2.137e-02 ----------------------------Description of solution---------------------------- pH = 3.197 Charge balance - pe = 1.796 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 418 - Density (g/cm³) = 0.97320 + pe = 1.782 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 100oC) = 434 + Density (g/cm3) = 0.97320 Volume (L) = 1.07268 - Viscosity (mPa s) = 0.29207 + Viscosity (mPa s) = 0.28637 Activity of water = 0.983 Ionic strength (mol/kgw) = 6.566e-04 Mass of water (kg) = 9.969e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.072e+00 - Temperature (°C) = 100.00 + Temperature (oC) = 100.00 Pressure (atm) = 170.91 Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -9243,32 +9849,32 @@ H2O(g) 0.51 3.242e+00 0.332 1.513e-01 1.727e-01 2.137e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 6.566e-04 6.356e-04 -3.183 -3.197 -0.014 0.00 OH- 1.063e-09 1.028e-09 -8.973 -8.988 -0.015 -6.63 H2O 5.551e+01 9.831e-01 1.744 -0.007 0.000 18.64 -C(-4) 2.742e-25 - CH4 2.742e-25 2.743e-25 -24.562 -24.562 0.000 40.86 +C(-4) 3.513e-25 + CH4 3.513e-25 3.514e-25 -24.454 -24.454 0.000 40.86 C(4) 1.072e+00 CO2 9.159e-01 9.160e-01 -0.038 -0.038 0.000 38.42 (CO2)2 7.786e-02 7.787e-02 -1.109 -1.109 0.000 76.83 HCO3- 6.566e-04 6.350e-04 -3.183 -3.197 -0.015 24.65 CO3-2 9.508e-11 8.318e-11 -10.022 -10.080 -0.058 -6.76 -H(0) 6.891e-14 - H2 3.446e-14 3.446e-14 -13.463 -13.463 0.000 28.49 +H(0) 7.332e-14 + H2 3.666e-14 3.666e-14 -13.436 -13.436 0.000 28.49 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.258 -46.258 0.000 33.36 + O2 0.000e+00 0.000e+00 -46.312 -46.312 0.000 33.36 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 171 atm) - CH4(g) -21.46 -24.56 -3.10 CH4 + CH4(g) -21.35 -24.45 -3.10 CH4 CO2(g) 2.03 -0.04 -2.07 CO2 Pressure 167.7 atm, phi 0.645 - H2(g) -10.29 -13.46 -3.17 H2 + H2(g) -10.27 -13.44 -3.17 H2 H2O(g) 0.03 -0.01 -0.04 H2O Pressure 3.2 atm, phi 0.332 - O2(g) -43.06 -46.26 -3.20 O2 + O2(g) -43.12 -46.31 -3.20 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9317,19 +9923,19 @@ H2O(g) 0.56 3.618e+00 0.300 1.727e-01 1.955e-01 2.287e-02 ----------------------------Description of solution---------------------------- pH = 3.186 Charge balance - pe = 1.849 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 426 - Density (g/cm³) = 0.97420 + pe = 1.719 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 100oC) = 443 + Density (g/cm3) = 0.97420 Volume (L) = 1.07311 - Viscosity (mPa s) = 0.29271 + Viscosity (mPa s) = 0.28679 Activity of water = 0.982 Ionic strength (mol/kgw) = 6.734e-04 Mass of water (kg) = 9.965e-01 Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.116e+00 - Temperature (°C) = 100.00 + Temperature (oC) = 100.00 Pressure (atm) = 186.59 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 28 Total H = 1.106214e+02 @@ -9338,32 +9944,32 @@ H2O(g) 0.56 3.618e+00 0.300 1.727e-01 1.955e-01 2.287e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 6.734e-04 6.517e-04 -3.172 -3.186 -0.014 0.00 OH- 1.051e-09 1.015e-09 -8.979 -8.993 -0.015 -6.69 H2O 5.551e+01 9.824e-01 1.744 -0.008 0.000 18.63 -C(-4) 1.283e-25 - CH4 1.283e-25 1.283e-25 -24.892 -24.892 0.000 40.84 +C(-4) 1.403e-24 + CH4 1.403e-24 1.403e-24 -23.853 -23.853 0.000 40.84 C(4) 1.116e+00 CO2 9.484e-01 9.485e-01 -0.023 -0.023 0.000 38.38 (CO2)2 8.348e-02 8.349e-02 -1.078 -1.078 0.000 76.75 HCO3- 6.734e-04 6.511e-04 -3.172 -3.186 -0.015 24.73 CO3-2 9.670e-11 8.448e-11 -10.015 -10.073 -0.059 -6.58 -H(0) 5.594e-14 - H2 2.797e-14 2.798e-14 -13.553 -13.553 0.000 28.48 +H(0) 1.017e-13 + H2 5.087e-14 5.088e-14 -13.294 -13.293 0.000 28.48 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.089 -46.089 0.000 33.31 + O2 0.000e+00 0.000e+00 -46.609 -46.609 0.000 33.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 187 atm) - CH4(g) -21.78 -24.89 -3.11 CH4 + CH4(g) -20.74 -23.85 -3.11 CH4 CO2(g) 2.06 -0.02 -2.08 CO2 Pressure 183.0 atm, phi 0.624 - H2(g) -10.38 -13.55 -3.18 H2 + H2(g) -10.12 -13.29 -3.18 H2 H2O(g) 0.04 -0.01 -0.04 H2O Pressure 3.6 atm, phi 0.300 - O2(g) -42.89 -46.09 -3.20 O2 + O2(g) -43.41 -46.61 -3.20 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9412,19 +10018,19 @@ H2O(g) 0.61 4.045e+00 0.271 1.955e-01 2.198e-01 2.424e-02 ----------------------------Description of solution---------------------------- pH = 3.175 Charge balance - pe = 1.832 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 435 - Density (g/cm³) = 0.97525 + pe = 1.721 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 100oC) = 453 + Density (g/cm3) = 0.97525 Volume (L) = 1.07339 - Viscosity (mPa s) = 0.29339 + Viscosity (mPa s) = 0.28725 Activity of water = 0.982 Ionic strength (mol/kgw) = 6.903e-04 Mass of water (kg) = 9.960e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.158e+00 - Temperature (°C) = 100.00 + Temperature (oC) = 100.00 Pressure (atm) = 203.65 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 29 Total H = 1.105729e+02 @@ -9433,32 +10039,32 @@ H2O(g) 0.61 4.045e+00 0.271 1.955e-01 2.198e-01 2.424e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 6.903e-04 6.678e-04 -3.161 -3.175 -0.014 0.00 OH- 1.040e-09 1.005e-09 -8.983 -8.998 -0.015 -6.75 H2O 5.551e+01 9.818e-01 1.744 -0.008 0.000 18.62 -C(-4) 2.155e-25 - CH4 2.155e-25 2.156e-25 -24.666 -24.666 0.000 40.82 +C(-4) 1.641e-24 + CH4 1.641e-24 1.642e-24 -23.785 -23.785 0.000 40.82 C(4) 1.158e+00 CO2 9.797e-01 9.798e-01 -0.009 -0.009 0.000 38.33 (CO2)2 8.908e-02 8.909e-02 -1.050 -1.050 0.000 76.66 HCO3- 6.903e-04 6.671e-04 -3.161 -3.176 -0.015 24.82 CO3-2 9.847e-11 8.590e-11 -10.007 -10.066 -0.059 -6.38 -H(0) 6.252e-14 - H2 3.126e-14 3.126e-14 -13.505 -13.505 0.000 28.48 +H(0) 1.038e-13 + H2 5.192e-14 5.193e-14 -13.285 -13.285 0.000 28.48 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.199 -46.199 0.000 33.26 + O2 0.000e+00 0.000e+00 -46.640 -46.640 0.000 33.26 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 204 atm) - CH4(g) -21.54 -24.67 -3.12 CH4 + CH4(g) -20.66 -23.78 -3.12 CH4 CO2(g) 2.08 -0.01 -2.09 CO2 Pressure 199.6 atm, phi 0.603 - H2(g) -10.32 -13.50 -3.18 H2 + H2(g) -10.10 -13.28 -3.18 H2 H2O(g) 0.04 -0.01 -0.05 H2O Pressure 4.0 atm, phi 0.271 - O2(g) -42.99 -46.20 -3.21 O2 + O2(g) -43.43 -46.64 -3.21 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9507,17 +10113,17 @@ H2O(g) 0.66 4.530e+00 0.245 2.198e-01 2.452e-01 2.545e-02 ----------------------------Description of solution---------------------------- pH = 3.165 Charge balance - pe = 1.850 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 444 - Density (g/cm³) = 0.97639 + pe = 1.777 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 100oC) = 463 + Density (g/cm3) = 0.97639 Volume (L) = 1.07355 - Viscosity (mPa s) = 0.29411 + Viscosity (mPa s) = 0.28776 Activity of water = 0.981 Ionic strength (mol/kgw) = 7.077e-04 Mass of water (kg) = 9.956e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.201e+00 - Temperature (°C) = 100.00 + Temperature (oC) = 100.00 Pressure (atm) = 222.60 Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -9528,32 +10134,32 @@ H2O(g) 0.66 4.530e+00 0.245 2.198e-01 2.452e-01 2.545e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 7.077e-04 6.844e-04 -3.150 -3.165 -0.015 0.00 OH- 1.031e-09 9.955e-10 -8.987 -9.002 -0.015 -6.83 H2O 5.551e+01 9.812e-01 1.744 -0.008 0.000 18.60 -C(-4) 1.890e-25 - CH4 1.890e-25 1.890e-25 -24.724 -24.724 0.000 40.80 +C(-4) 7.229e-25 + CH4 7.229e-25 7.231e-25 -24.141 -24.141 0.000 40.80 C(4) 1.201e+00 CO2 1.011e+00 1.011e+00 0.005 0.005 0.000 38.28 (CO2)2 9.478e-02 9.480e-02 -1.023 -1.023 0.000 76.56 HCO3- 7.077e-04 6.837e-04 -3.150 -3.165 -0.015 24.92 CO3-2 1.004e-10 8.750e-11 -9.998 -10.058 -0.060 -6.16 -H(0) 5.932e-14 - H2 2.966e-14 2.967e-14 -13.528 -13.528 0.000 28.47 +H(0) 8.297e-14 + H2 4.148e-14 4.149e-14 -13.382 -13.382 0.000 28.47 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.168 -46.168 0.000 33.21 + O2 0.000e+00 0.000e+00 -46.459 -46.459 0.000 33.21 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 223 atm) - CH4(g) -21.59 -24.72 -3.13 CH4 + CH4(g) -21.01 -24.14 -3.13 CH4 CO2(g) 2.10 0.00 -2.10 CO2 Pressure 218.1 atm, phi 0.583 - H2(g) -10.34 -13.53 -3.19 H2 + H2(g) -10.19 -13.38 -3.19 H2 H2O(g) 0.05 -0.01 -0.05 H2O Pressure 4.5 atm, phi 0.245 - O2(g) -42.95 -46.17 -3.22 O2 + O2(g) -43.24 -46.46 -3.22 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9602,19 +10208,19 @@ H2O(g) 0.71 5.087e+00 0.221 2.452e-01 2.717e-01 2.646e-02 ----------------------------Description of solution---------------------------- pH = 3.154 Charge balance - pe = 1.840 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 454 - Density (g/cm³) = 0.97763 + pe = 1.823 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 100oC) = 474 + Density (g/cm3) = 0.97763 Volume (L) = 1.07359 - Viscosity (mPa s) = 0.29491 + Viscosity (mPa s) = 0.28833 Activity of water = 0.981 Ionic strength (mol/kgw) = 7.261e-04 Mass of water (kg) = 9.951e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.244e+00 - Temperature (°C) = 100.00 + Temperature (oC) = 100.00 Pressure (atm) = 244.02 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 37 Total H = 1.104690e+02 @@ -9623,32 +10229,32 @@ H2O(g) 0.71 5.087e+00 0.221 2.452e-01 2.717e-01 2.646e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 7.261e-04 7.020e-04 -3.139 -3.154 -0.015 0.00 OH- 1.024e-09 9.879e-10 -8.990 -9.005 -0.015 -6.91 H2O 5.551e+01 9.806e-01 1.744 -0.009 0.000 18.58 -C(-4) 2.769e-25 - CH4 2.769e-25 2.769e-25 -24.558 -24.558 0.000 40.78 +C(-4) 3.822e-25 + CH4 3.822e-25 3.823e-25 -24.418 -24.418 0.000 40.78 C(4) 1.244e+00 CO2 1.042e+00 1.042e+00 0.018 0.018 0.000 38.23 (CO2)2 1.007e-01 1.007e-01 -0.997 -0.997 0.000 76.46 HCO3- 7.261e-04 7.012e-04 -3.139 -3.154 -0.015 25.03 CO3-2 1.027e-10 8.933e-11 -9.988 -10.049 -0.061 -5.92 -H(0) 6.392e-14 - H2 3.196e-14 3.197e-14 -13.495 -13.495 0.000 28.46 +H(0) 6.929e-14 + H2 3.464e-14 3.465e-14 -13.460 -13.460 0.000 28.46 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.249 -46.249 0.000 33.15 + O2 0.000e+00 0.000e+00 -46.319 -46.319 0.000 33.15 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 244 atm) - CH4(g) -21.41 -24.56 -3.14 CH4 + CH4(g) -21.27 -24.42 -3.14 CH4 CO2(g) 2.13 0.02 -2.11 CO2 Pressure 238.9 atm, phi 0.563 - H2(g) -10.30 -13.50 -3.20 H2 + H2(g) -10.26 -13.46 -3.20 H2 H2O(g) 0.05 -0.01 -0.06 H2O Pressure 5.1 atm, phi 0.221 - O2(g) -43.02 -46.25 -3.23 O2 + O2(g) -43.09 -46.32 -3.23 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9697,19 +10303,19 @@ H2O(g) 0.76 5.727e+00 0.199 2.717e-01 2.989e-01 2.722e-02 ----------------------------Description of solution---------------------------- pH = 3.142 Charge balance - pe = 1.755 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 464 - Density (g/cm³) = 0.97902 + pe = 1.967 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 100oC) = 485 + Density (g/cm3) = 0.97902 Volume (L) = 1.07352 - Viscosity (mPa s) = 0.29581 + Viscosity (mPa s) = 0.28899 Activity of water = 0.980 Ionic strength (mol/kgw) = 7.459e-04 Mass of water (kg) = 9.946e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.288e+00 - Temperature (°C) = 100.00 + Temperature (oC) = 100.00 Pressure (atm) = 268.56 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 43 Total H = 1.104146e+02 @@ -9718,32 +10324,32 @@ H2O(g) 0.76 5.727e+00 0.199 2.717e-01 2.989e-01 2.722e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 7.459e-04 7.209e-04 -3.127 -3.142 -0.015 0.00 OH- 1.018e-09 9.817e-10 -8.992 -9.008 -0.016 -7.00 H2O 5.551e+01 9.799e-01 1.744 -0.009 0.000 18.56 -C(-4) 1.641e-24 - CH4 1.641e-24 1.641e-24 -23.785 -23.785 0.000 40.75 +C(-4) 3.312e-26 + CH4 3.312e-26 3.313e-26 -25.480 -25.480 0.000 40.75 C(4) 1.288e+00 CO2 1.073e+00 1.074e+00 0.031 0.031 0.000 38.17 (CO2)2 1.070e-01 1.070e-01 -0.971 -0.971 0.000 76.33 HCO3- 7.459e-04 7.201e-04 -3.127 -3.143 -0.015 25.15 CO3-2 1.053e-10 9.145e-11 -9.978 -10.039 -0.061 -5.65 -H(0) 9.751e-14 - H2 4.875e-14 4.876e-14 -13.312 -13.312 0.000 28.45 +H(0) 3.675e-14 + H2 1.838e-14 1.838e-14 -13.736 -13.736 0.000 28.45 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.635 -46.635 0.000 33.08 + O2 0.000e+00 0.000e+00 -45.787 -45.787 0.000 33.08 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 269 atm) - CH4(g) -20.63 -23.78 -3.16 CH4 + CH4(g) -22.32 -25.48 -3.16 CH4 CO2(g) 2.15 0.03 -2.12 CO2 Pressure 262.8 atm, phi 0.544 - H2(g) -10.10 -13.31 -3.21 H2 + H2(g) -10.53 -13.74 -3.21 H2 H2O(g) 0.06 -0.01 -0.07 H2O Pressure 5.7 atm, phi 0.199 - O2(g) -43.39 -46.63 -3.24 O2 + O2(g) -42.55 -45.79 -3.24 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9792,17 +10398,17 @@ H2O(g) 0.81 6.466e+00 0.179 2.989e-01 3.266e-01 2.770e-02 ----------------------------Description of solution---------------------------- pH = 3.130 Charge balance - pe = 1.795 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 475 - Density (g/cm³) = 0.98059 + pe = 2.175 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 100oC) = 497 + Density (g/cm3) = 0.98059 Volume (L) = 1.07333 - Viscosity (mPa s) = 0.29682 + Viscosity (mPa s) = 0.28974 Activity of water = 0.979 Ionic strength (mol/kgw) = 7.676e-04 Mass of water (kg) = 9.941e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.334e+00 - Temperature (°C) = 100.00 + Temperature (oC) = 100.00 Pressure (atm) = 296.94 Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -9813,32 +10419,32 @@ H2O(g) 0.81 6.466e+00 0.179 2.989e-01 3.266e-01 2.770e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 7.676e-04 7.415e-04 -3.115 -3.130 -0.015 0.00 OH- 1.013e-09 9.773e-10 -8.994 -9.010 -0.016 -7.10 H2O 5.551e+01 9.792e-01 1.744 -0.009 0.000 18.54 -C(-4) 9.754e-25 - CH4 9.754e-25 9.756e-25 -24.011 -24.011 0.000 40.72 +C(-4) 8.935e-28 + CH4 8.935e-28 8.936e-28 -27.049 -27.049 0.000 40.72 C(4) 1.334e+00 CO2 1.106e+00 1.107e+00 0.044 0.044 0.000 38.10 (CO2)2 1.136e-01 1.136e-01 -0.945 -0.944 0.000 76.19 HCO3- 7.676e-04 7.407e-04 -3.115 -3.130 -0.015 25.29 CO3-2 1.084e-10 9.394e-11 -9.965 -10.027 -0.062 -5.34 -H(0) 8.350e-14 - H2 4.175e-14 4.176e-14 -13.379 -13.379 0.000 28.44 +H(0) 1.453e-14 + H2 7.263e-15 7.265e-15 -14.139 -14.139 0.000 28.44 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.522 -46.522 0.000 33.00 + O2 0.000e+00 0.000e+00 -45.003 -45.003 0.000 33.00 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 297 atm) - CH4(g) -20.84 -24.01 -3.18 CH4 + CH4(g) -23.87 -27.05 -3.18 CH4 CO2(g) 2.18 0.04 -2.14 CO2 Pressure 290.5 atm, phi 0.525 - H2(g) -10.16 -13.38 -3.22 H2 + H2(g) -10.92 -14.14 -3.22 H2 H2O(g) 0.06 -0.01 -0.07 H2O Pressure 6.5 atm, phi 0.179 - O2(g) -43.27 -46.52 -3.25 O2 + O2(g) -41.75 -45.00 -3.25 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9887,19 +10493,19 @@ H2O(g) 0.86 7.319e+00 0.161 3.266e-01 3.544e-01 2.783e-02 ----------------------------Description of solution---------------------------- pH = 3.117 Charge balance - pe = 1.787 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 487 - Density (g/cm³) = 0.98238 + pe = 1.927 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 100oC) = 511 + Density (g/cm3) = 0.98238 Volume (L) = 1.07300 - Viscosity (mPa s) = 0.29797 + Viscosity (mPa s) = 0.29062 Activity of water = 0.979 Ionic strength (mol/kgw) = 7.916e-04 Mass of water (kg) = 9.936e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.383e+00 - Temperature (°C) = 100.00 + Temperature (oC) = 100.00 Pressure (atm) = 329.97 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.209e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 70 Total H = 1.103035e+02 @@ -9908,32 +10514,32 @@ H2O(g) 0.86 7.319e+00 0.161 3.266e-01 3.544e-01 2.783e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 7.916e-04 7.644e-04 -3.101 -3.117 -0.015 0.00 OH- 1.011e-09 9.749e-10 -8.995 -9.011 -0.016 -7.21 H2O 5.551e+01 9.785e-01 1.744 -0.009 0.000 18.51 -C(-4) 1.444e-24 - CH4 1.444e-24 1.444e-24 -23.840 -23.840 0.000 40.69 +C(-4) 1.094e-25 + CH4 1.094e-25 1.094e-25 -24.961 -24.961 0.000 40.69 C(4) 1.383e+00 CO2 1.141e+00 1.141e+00 0.057 0.057 0.000 38.02 (CO2)2 1.208e-01 1.208e-01 -0.918 -0.918 0.000 76.03 HCO3- 7.916e-04 7.635e-04 -3.101 -3.117 -0.016 25.46 CO3-2 1.120e-10 9.689e-11 -9.951 -10.014 -0.063 -4.98 -H(0) 8.958e-14 - H2 4.479e-14 4.480e-14 -13.349 -13.349 0.000 28.43 +H(0) 4.699e-14 + H2 2.350e-14 2.350e-14 -13.629 -13.629 0.000 28.43 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.608 -46.608 0.000 32.91 + O2 0.000e+00 0.000e+00 -46.048 -46.048 0.000 32.91 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 330 atm) - CH4(g) -20.65 -23.84 -3.19 CH4 + CH4(g) -21.77 -24.96 -3.19 CH4 CO2(g) 2.21 0.06 -2.16 CO2 Pressure 322.7 atm, phi 0.507 - H2(g) -10.12 -13.35 -3.23 H2 + H2(g) -10.40 -13.63 -3.23 H2 H2O(g) 0.07 -0.01 -0.08 H2O Pressure 7.3 atm, phi 0.161 - O2(g) -43.34 -46.61 -3.27 O2 + O2(g) -42.78 -46.05 -3.27 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9982,19 +10588,19 @@ H2O(g) 0.92 8.305e+00 0.145 3.544e-01 3.820e-01 2.758e-02 ----------------------------Description of solution---------------------------- pH = 3.102 Charge balance - pe = 1.799 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 501 - Density (g/cm³) = 0.98441 + pe = 1.903 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 100oC) = 526 + Density (g/cm3) = 0.98441 Volume (L) = 1.07253 - Viscosity (mPa s) = 0.29929 + Viscosity (mPa s) = 0.29164 Activity of water = 0.978 Ionic strength (mol/kgw) = 8.184e-04 Mass of water (kg) = 9.931e-01 Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.434e+00 - Temperature (°C) = 100.00 + Temperature (oC) = 100.00 Pressure (atm) = 368.63 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.209e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 77 Total H = 1.102484e+02 @@ -10003,32 +10609,32 @@ H2O(g) 0.92 8.305e+00 0.145 3.544e-01 3.820e-01 2.758e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.184e-04 7.899e-04 -3.087 -3.102 -0.015 0.00 OH- 1.012e-09 9.749e-10 -8.995 -9.011 -0.016 -7.34 H2O 5.551e+01 9.778e-01 1.744 -0.010 0.000 18.48 -C(-4) 1.481e-24 - CH4 1.481e-24 1.481e-24 -23.830 -23.830 0.000 40.65 +C(-4) 2.173e-25 + CH4 2.173e-25 2.174e-25 -24.663 -24.663 0.000 40.65 C(4) 1.434e+00 CO2 1.177e+00 1.177e+00 0.071 0.071 0.000 37.92 (CO2)2 1.285e-01 1.285e-01 -0.891 -0.891 0.000 75.85 HCO3- 8.184e-04 7.890e-04 -3.087 -3.103 -0.016 25.64 CO3-2 1.163e-10 1.004e-10 -9.935 -9.998 -0.064 -4.58 -H(0) 8.736e-14 - H2 4.368e-14 4.369e-14 -13.360 -13.360 0.000 28.41 +H(0) 5.407e-14 + H2 2.704e-14 2.704e-14 -13.568 -13.568 0.000 28.41 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.615 -46.615 0.000 32.81 + O2 0.000e+00 0.000e+00 -46.199 -46.199 0.000 32.81 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 369 atm) - CH4(g) -20.61 -23.83 -3.22 CH4 + CH4(g) -21.45 -24.66 -3.22 CH4 CO2(g) 2.25 0.07 -2.18 CO2 Pressure 360.3 atm, phi 0.491 - H2(g) -10.11 -13.36 -3.25 H2 + H2(g) -10.32 -13.57 -3.25 H2 H2O(g) 0.08 -0.01 -0.09 H2O Pressure 8.3 atm, phi 0.145 - O2(g) -43.33 -46.62 -3.29 O2 + O2(g) -42.91 -46.20 -3.29 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10077,19 +10683,19 @@ H2O(g) 0.98 9.442e+00 0.131 3.820e-01 4.089e-01 2.690e-02 ----------------------------Description of solution---------------------------- pH = 3.087 Charge balance - pe = 1.822 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 517 - Density (g/cm³) = 0.98675 + pe = 1.844 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 100oC) = 544 + Density (g/cm3) = 0.98675 Volume (L) = 1.07187 - Viscosity (mPa s) = 0.30082 + Viscosity (mPa s) = 0.29284 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.487e-04 Mass of water (kg) = 9.926e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.489e+00 - Temperature (°C) = 100.00 + Temperature (oC) = 100.00 Pressure (atm) = 414.00 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.209e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 85 Total H = 1.101946e+02 @@ -10098,32 +10704,32 @@ H2O(g) 0.98 9.442e+00 0.131 3.820e-01 4.089e-01 2.690e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.487e-04 8.187e-04 -3.071 -3.087 -0.016 0.00 OH- 1.016e-09 9.781e-10 -8.993 -9.010 -0.016 -7.50 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 18.44 -C(-4) 1.248e-24 - CH4 1.248e-24 1.248e-24 -23.904 -23.904 0.000 40.60 +C(-4) 8.427e-25 + CH4 8.427e-25 8.428e-25 -24.074 -24.074 0.000 40.60 C(4) 1.489e+00 CO2 1.214e+00 1.214e+00 0.084 0.084 0.000 37.82 (CO2)2 1.368e-01 1.369e-01 -0.864 -0.864 0.000 75.64 HCO3- 8.487e-04 8.177e-04 -3.071 -3.087 -0.016 25.85 CO3-2 1.214e-10 1.047e-10 -9.916 -9.980 -0.065 -4.12 -H(0) 8.078e-14 - H2 4.039e-14 4.040e-14 -13.394 -13.394 0.000 28.40 +H(0) 7.323e-14 + H2 3.662e-14 3.662e-14 -13.436 -13.436 0.000 28.40 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.582 -46.582 0.000 32.69 + O2 0.000e+00 0.000e+00 -46.496 -46.496 0.000 32.69 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 414 atm) - CH4(g) -20.66 -23.90 -3.24 CH4 + CH4(g) -20.83 -24.07 -3.24 CH4 CO2(g) 2.29 0.08 -2.20 CO2 Pressure 404.6 atm, phi 0.477 - H2(g) -10.13 -13.39 -3.27 H2 + H2(g) -10.17 -13.44 -3.27 H2 H2O(g) 0.09 -0.01 -0.10 H2O Pressure 9.4 atm, phi 0.131 - O2(g) -43.28 -46.58 -3.31 O2 + O2(g) -43.19 -46.50 -3.31 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10172,19 +10778,19 @@ H2O(g) 1.03 1.075e+01 0.119 4.089e-01 4.347e-01 2.572e-02 ----------------------------Description of solution---------------------------- pH = 3.070 Charge balance - pe = 1.820 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 534 - Density (g/cm³) = 0.98942 + pe = 1.912 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 100oC) = 563 + Density (g/cm3) = 0.98942 Volume (L) = 1.07102 - Viscosity (mPa s) = 0.30258 + Viscosity (mPa s) = 0.29424 Activity of water = 0.976 Ionic strength (mol/kgw) = 8.829e-04 Mass of water (kg) = 9.922e-01 Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.546e+00 - Temperature (°C) = 100.00 + Temperature (oC) = 100.00 Pressure (atm) = 467.40 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.209e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 95 Total H = 1.101431e+02 @@ -10193,32 +10799,32 @@ H2O(g) 1.03 1.075e+01 0.119 4.089e-01 4.347e-01 2.572e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 8.829e-04 8.513e-04 -3.054 -3.070 -0.016 0.00 OH- 1.024e-09 9.852e-10 -8.990 -9.006 -0.017 -7.67 H2O 5.551e+01 9.762e-01 1.744 -0.010 0.000 18.40 -C(-4) 1.728e-24 - CH4 1.728e-24 1.728e-24 -23.762 -23.762 0.000 40.55 +C(-4) 3.163e-25 + CH4 3.163e-25 3.163e-25 -24.500 -24.500 0.000 40.55 C(4) 1.546e+00 CO2 1.254e+00 1.254e+00 0.098 0.098 0.000 37.70 (CO2)2 1.459e-01 1.459e-01 -0.836 -0.836 0.000 75.40 HCO3- 8.829e-04 8.503e-04 -3.054 -3.070 -0.016 26.09 CO3-2 1.277e-10 1.098e-10 -9.894 -9.959 -0.066 -3.59 -H(0) 8.416e-14 - H2 4.208e-14 4.209e-14 -13.376 -13.376 0.000 28.38 +H(0) 5.505e-14 + H2 2.752e-14 2.753e-14 -13.560 -13.560 0.000 28.38 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.657 -46.657 0.000 32.56 + O2 0.000e+00 0.000e+00 -46.289 -46.288 0.000 32.56 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 467 atm) - CH4(g) -20.49 -23.76 -3.27 CH4 + CH4(g) -21.23 -24.50 -3.27 CH4 CO2(g) 2.33 0.10 -2.23 CO2 Pressure 456.6 atm, phi 0.465 - H2(g) -10.09 -13.38 -3.29 H2 + H2(g) -10.27 -13.56 -3.29 H2 H2O(g) 0.11 -0.01 -0.12 H2O Pressure 10.7 atm, phi 0.119 - O2(g) -43.33 -46.66 -3.33 O2 + O2(g) -42.96 -46.29 -3.33 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10274,53 +10880,53 @@ H2O(g) 1.09 1.225e+01 0.108 4.347e-01 4.587e-01 2.401e-02 ----------------------------Description of solution---------------------------- pH = 3.051 Charge balance - pe = 1.790 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 554 - Density (g/cm³) = 0.99250 + pe = 1.950 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 100oC) = 586 + Density (g/cm3) = 0.99250 Volume (L) = 1.06991 - Viscosity (mPa s) = 0.30463 + Viscosity (mPa s) = 0.29588 Activity of water = 0.975 Ionic strength (mol/kgw) = 9.220e-04 Mass of water (kg) = 9.917e-01 - Total alkalinity (eq/kg) = 1.220e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.607e+00 - Temperature (°C) = 100.00 + Temperature (oC) = 100.00 Pressure (atm) = 530.35 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.209e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 38 (139 overall) + Iterations = 39 (140 overall) Total H = 1.100951e+02 Total O = 5.823576e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 9.220e-04 8.885e-04 -3.035 -3.051 -0.016 0.00 OH- 1.037e-09 9.976e-10 -8.984 -9.001 -0.017 -7.86 H2O 5.551e+01 9.753e-01 1.744 -0.011 0.000 18.35 -C(-4) 4.003e-24 - CH4 4.003e-24 4.004e-24 -23.398 -23.397 0.000 40.49 +C(-4) 2.095e-25 + CH4 2.095e-25 2.095e-25 -24.679 -24.679 0.000 40.49 C(4) 1.607e+00 CO2 1.295e+00 1.295e+00 0.112 0.112 0.000 37.56 (CO2)2 1.557e-01 1.557e-01 -0.808 -0.808 0.000 75.12 HCO3- 9.220e-04 8.873e-04 -3.035 -3.052 -0.017 26.36 CO3-2 1.353e-10 1.160e-10 -9.869 -9.935 -0.067 -2.99 -H(0) 9.914e-14 - H2 4.957e-14 4.958e-14 -13.305 -13.305 0.000 28.35 +H(0) 4.742e-14 + H2 2.371e-14 2.371e-14 -13.625 -13.625 0.000 28.35 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.846 -46.846 0.000 32.41 + O2 0.000e+00 0.000e+00 -46.206 -46.206 0.000 32.41 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 530 atm) - CH4(g) -20.09 -23.40 -3.31 CH4 + CH4(g) -21.37 -24.68 -3.31 CH4 CO2(g) 2.37 0.11 -2.26 CO2 Pressure 518.1 atm, phi 0.456 - H2(g) -9.99 -13.30 -3.31 H2 + H2(g) -10.31 -13.63 -3.31 H2 H2O(g) 0.12 -0.01 -0.13 H2O Pressure 12.2 atm, phi 0.108 - O2(g) -43.49 -46.85 -3.36 O2 + O2(g) -42.85 -46.21 -3.36 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10376,53 +10982,53 @@ H2O(g) 1.14 1.395e+01 0.099 4.587e-01 4.804e-01 2.170e-02 ----------------------------Description of solution---------------------------- pH = 3.031 Charge balance - pe = 1.764 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 577 - Density (g/cm³) = 0.99605 + pe = 1.893 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 100oC) = 611 + Density (g/cm3) = 0.99605 Volume (L) = 1.06852 - Viscosity (mPa s) = 0.30701 + Viscosity (mPa s) = 0.29782 Activity of water = 0.974 Ionic strength (mol/kgw) = 9.668e-04 Mass of water (kg) = 9.913e-01 - Total alkalinity (eq/kg) = 1.214e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.672e+00 - Temperature (°C) = 100.00 + Temperature (oC) = 100.00 Pressure (atm) = 604.71 - Electrical balance (eq) = -1.204e-09 + Electrical balance (eq) = -1.209e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 139 (240 overall) + Iterations = 39 (140 overall) Total H = 1.100517e+02 Total O = 5.834105e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 9.668e-04 9.310e-04 -3.015 -3.031 -0.016 0.00 OH- 1.058e-09 1.017e-09 -8.975 -8.993 -0.017 -8.07 H2O 5.551e+01 9.744e-01 1.744 -0.011 0.000 18.29 -C(-4) 8.886e-24 - CH4 8.886e-24 8.888e-24 -23.051 -23.051 0.000 40.42 +C(-4) 8.145e-25 + CH4 8.145e-25 8.147e-25 -24.089 -24.089 0.000 40.42 C(4) 1.672e+00 CO2 1.339e+00 1.339e+00 0.127 0.127 0.000 37.41 (CO2)2 1.663e-01 1.663e-01 -0.779 -0.779 0.000 74.81 HCO3- 9.668e-04 9.298e-04 -3.015 -3.032 -0.017 26.67 CO3-2 1.446e-10 1.237e-10 -9.840 -9.908 -0.068 -2.30 -H(0) 1.147e-13 - H2 5.737e-14 5.738e-14 -13.241 -13.241 0.000 28.33 +H(0) 6.313e-14 + H2 3.157e-14 3.157e-14 -13.501 -13.501 0.000 28.33 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -47.029 -47.029 0.000 32.23 + O2 0.000e+00 0.000e+00 -46.510 -46.510 0.000 32.23 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 605 atm) - CH4(g) -19.70 -23.05 -3.35 CH4 + CH4(g) -20.74 -24.09 -3.35 CH4 CO2(g) 2.43 0.13 -2.30 CO2 Pressure 590.8 atm, phi 0.452 - H2(g) -9.90 -13.24 -3.34 H2 + H2(g) -10.16 -13.50 -3.34 H2 H2O(g) 0.14 -0.01 -0.15 H2O Pressure 14.0 atm, phi 0.099 - O2(g) -43.64 -47.03 -3.39 O2 + O2(g) -43.12 -46.51 -3.39 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10478,53 +11084,53 @@ H2O(g) 1.20 1.588e+01 0.091 4.804e-01 4.991e-01 1.875e-02 ----------------------------Description of solution---------------------------- pH = 3.009 Charge balance - pe = 11.341 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 603 - Density (g/cm³) = 1.00012 + pe = 1.730 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 100oC) = 640 + Density (g/cm3) = 1.00012 Volume (L) = 1.06679 - Viscosity (mPa s) = 0.30980 + Viscosity (mPa s) = 0.30011 Activity of water = 0.973 Ionic strength (mol/kgw) = 1.018e-03 Mass of water (kg) = 9.910e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.740e+00 - Temperature (°C) = 100.00 + Temperature (oC) = 100.00 Pressure (atm) = 692.70 - Electrical balance (eq) = -1.204e-09 + Electrical balance (eq) = -1.208e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 65 (166 overall) + Iterations = 58 (159 overall) Total H = 1.100142e+02 Total O = 5.845661e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 1.018e-03 9.800e-04 -2.992 -3.009 -0.017 0.00 OH- 1.089e-09 1.045e-09 -8.963 -8.981 -0.018 -8.32 H2O 5.551e+01 9.734e-01 1.744 -0.012 0.000 18.23 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -99.529 -99.529 0.000 40.34 +C(-4) 2.287e-23 + CH4 2.287e-23 2.288e-23 -22.641 -22.641 0.000 40.34 C(4) 1.740e+00 CO2 1.384e+00 1.384e+00 0.141 0.141 0.000 37.23 (CO2)2 1.778e-01 1.778e-01 -0.750 -0.750 0.000 74.46 HCO3- 1.018e-03 9.786e-04 -2.992 -3.009 -0.017 27.02 CO3-2 1.561e-10 1.331e-10 -9.807 -9.876 -0.069 -1.53 -H(0) 8.197e-33 - H2 4.099e-33 4.100e-33 -32.387 -32.387 0.000 28.30 -O(0) 3.158e-09 - O2 1.579e-09 1.580e-09 -8.802 -8.801 0.000 32.04 +H(0) 1.367e-13 + H2 6.834e-14 6.835e-14 -13.165 -13.165 0.000 28.30 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -47.246 -47.246 0.000 32.04 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 693 atm) - CH4(g) -96.13 -99.53 -3.40 CH4 + CH4(g) -19.24 -22.64 -3.40 CH4 CO2(g) 2.49 0.14 -2.34 CO2 Pressure 676.8 atm, phi 0.452 - H2(g) -29.01 -32.39 -3.38 H2 + H2(g) -9.79 -13.17 -3.38 H2 H2O(g) 0.16 -0.01 -0.17 H2O Pressure 15.9 atm, phi 0.091 - O2(g) -5.37 -8.80 -3.43 O2 + O2(g) -43.82 -47.25 -3.43 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10580,53 +11186,53 @@ H2O(g) 1.26 1.804e+01 0.085 4.991e-01 5.142e-01 1.511e-02 ----------------------------Description of solution---------------------------- pH = 2.984 Charge balance - pe = 11.364 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 633 - Density (g/cm³) = 1.00480 + pe = 10.986 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 100oC) = 674 + Density (g/cm3) = 1.00480 Volume (L) = 1.06465 - Viscosity (mPa s) = 0.31306 + Viscosity (mPa s) = 0.30281 Activity of water = 0.972 Ionic strength (mol/kgw) = 1.078e-03 Mass of water (kg) = 9.907e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.812e+00 - Temperature (°C) = 100.00 + Temperature (oC) = 100.00 Pressure (atm) = 797.06 - Electrical balance (eq) = -1.204e-09 + Electrical balance (eq) = -1.208e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 36 (137 overall) + Iterations = 75 (176 overall) Total H = 1.099840e+02 Total O = 5.858319e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 1.078e-03 1.036e-03 -2.967 -2.984 -0.017 0.00 OH- 1.132e-09 1.086e-09 -8.946 -8.964 -0.018 -8.59 H2O 5.551e+01 9.724e-01 1.744 -0.012 0.000 18.15 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -99.559 -99.559 0.000 40.25 + CH4 0.000e+00 0.000e+00 -96.533 -96.533 0.000 40.25 C(4) 1.812e+00 CO2 1.431e+00 1.431e+00 0.156 0.156 0.000 37.03 (CO2)2 1.901e-01 1.902e-01 -0.721 -0.721 0.000 74.06 HCO3- 1.078e-03 1.035e-03 -2.967 -2.985 -0.018 27.42 CO3-2 1.706e-10 1.450e-10 -9.768 -9.839 -0.071 -0.67 -H(0) 7.503e-33 - H2 3.751e-33 3.752e-33 -32.426 -32.426 0.000 28.27 -O(0) 3.159e-09 - O2 1.580e-09 1.580e-09 -8.801 -8.801 0.000 31.83 +H(0) 4.283e-32 + H2 2.142e-32 2.142e-32 -31.669 -31.669 0.000 28.27 +O(0) 9.694e-11 + O2 4.847e-11 4.848e-11 -10.315 -10.314 0.000 31.83 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 797 atm) - CH4(g) -96.10 -99.56 -3.46 CH4 + CH4(g) -93.07 -96.53 -3.46 CH4 CO2(g) 2.55 0.16 -2.40 CO2 Pressure 779.0 atm, phi 0.459 - H2(g) -29.01 -32.43 -3.42 H2 + H2(g) -28.25 -31.67 -3.42 H2 H2O(g) 0.19 -0.01 -0.20 H2O Pressure 18.0 atm, phi 0.085 - O2(g) -5.33 -8.80 -3.47 O2 + O2(g) -6.84 -10.31 -3.47 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10682,53 +11288,53 @@ H2O(g) 1.31 2.044e+01 0.081 5.142e-01 5.250e-01 1.075e-02 ----------------------------Description of solution---------------------------- pH = 2.958 Charge balance - pe = 11.389 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 667 - Density (g/cm³) = 1.01017 + pe = 11.011 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 100oC) = 713 + Density (g/cm3) = 1.01017 Volume (L) = 1.06205 - Viscosity (mPa s) = 0.31689 + Viscosity (mPa s) = 0.30601 Activity of water = 0.971 Ionic strength (mol/kgw) = 1.147e-03 Mass of water (kg) = 9.905e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.888e+00 - Temperature (°C) = 100.00 + Temperature (oC) = 100.00 Pressure (atm) = 921.15 - Electrical balance (eq) = -1.204e-09 + Electrical balance (eq) = -1.208e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 44 (145 overall) + Iterations = 35 (136 overall) Total H = 1.099625e+02 Total O = 5.872141e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 1.147e-03 1.102e-03 -2.940 -2.958 -0.017 0.00 OH- 1.194e-09 1.144e-09 -8.923 -8.941 -0.018 -8.89 H2O 5.551e+01 9.713e-01 1.744 -0.013 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -99.597 -99.597 0.000 40.15 + CH4 0.000e+00 0.000e+00 -96.571 -96.571 0.000 40.15 C(4) 1.888e+00 CO2 1.480e+00 1.480e+00 0.170 0.170 0.000 36.81 (CO2)2 2.033e-01 2.034e-01 -0.692 -0.692 0.000 73.62 HCO3- 1.147e-03 1.100e-03 -2.940 -2.958 -0.018 27.86 CO3-2 1.888e-10 1.599e-10 -9.724 -9.796 -0.072 0.29 -H(0) 6.757e-33 - H2 3.379e-33 3.379e-33 -32.471 -32.471 0.000 28.24 -O(0) 3.160e-09 - O2 1.580e-09 1.580e-09 -8.801 -8.801 0.000 31.59 +H(0) 3.857e-32 + H2 1.929e-32 1.929e-32 -31.715 -31.715 0.000 28.24 +O(0) 9.696e-11 + O2 4.848e-11 4.849e-11 -10.314 -10.314 0.000 31.59 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 921 atm) - CH4(g) -96.07 -99.60 -3.53 CH4 + CH4(g) -93.04 -96.57 -3.53 CH4 CO2(g) 2.63 0.17 -2.46 CO2 Pressure 900.7 atm, phi 0.474 - H2(g) -29.00 -32.47 -3.47 H2 + H2(g) -28.25 -31.71 -3.47 H2 H2O(g) 0.22 -0.01 -0.23 H2O Pressure 20.4 atm, phi 0.081 - O2(g) -5.27 -8.80 -3.53 O2 + O2(g) -6.79 -10.31 -3.53 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10784,53 +11390,53 @@ H2O(g) 1.36 2.308e+01 0.078 5.250e-01 5.306e-01 5.633e-03 ----------------------------Description of solution---------------------------- pH = 2.929 Charge balance - pe = 11.416 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 707 - Density (g/cm³) = 1.01630 + pe = 11.037 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 100oC) = 758 + Density (g/cm3) = 1.01630 Volume (L) = 1.05892 - Viscosity (mPa s) = 0.32138 + Viscosity (mPa s) = 0.30979 Activity of water = 0.970 Ionic strength (mol/kgw) = 1.228e-03 Mass of water (kg) = 9.904e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.967e+00 - Temperature (°C) = 100.00 + Temperature (oC) = 100.00 Pressure (atm) = 1069.23 - Electrical balance (eq) = -1.205e-09 + Electrical balance (eq) = -1.209e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 37 (138 overall) + Iterations = 39 (140 overall) Total H = 1.099512e+02 Total O = 5.887174e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 1.228e-03 1.179e-03 -2.911 -2.929 -0.018 0.00 OH- 1.282e-09 1.227e-09 -8.892 -8.911 -0.019 -9.21 H2O 5.551e+01 9.702e-01 1.744 -0.013 0.000 17.97 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -99.644 -99.644 0.000 40.04 + CH4 0.000e+00 0.000e+00 -96.618 -96.618 0.000 40.04 C(4) 1.967e+00 CO2 1.531e+00 1.531e+00 0.185 0.185 0.000 36.56 (CO2)2 2.175e-01 2.175e-01 -0.663 -0.662 0.000 73.13 HCO3- 1.228e-03 1.177e-03 -2.911 -2.929 -0.018 28.34 CO3-2 2.122e-10 1.790e-10 -9.673 -9.747 -0.074 1.36 -H(0) 5.967e-33 - H2 2.984e-33 2.985e-33 -32.525 -32.525 0.000 28.20 -O(0) 3.160e-09 - O2 1.580e-09 1.581e-09 -8.801 -8.801 0.000 31.32 +H(0) 3.407e-32 + H2 1.703e-32 1.704e-32 -31.769 -31.769 0.000 28.20 +O(0) 9.697e-11 + O2 4.848e-11 4.850e-11 -10.314 -10.314 0.000 31.32 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 1069 atm) - CH4(g) -96.03 -99.64 -3.61 CH4 + CH4(g) -93.01 -96.62 -3.61 CH4 CO2(g) 2.72 0.18 -2.53 CO2 Pressure 1046.2 atm, phi 0.500 - H2(g) -29.00 -32.53 -3.53 H2 + H2(g) -28.24 -31.77 -3.53 H2 H2O(g) 0.25 -0.01 -0.27 H2O Pressure 23.1 atm, phi 0.078 - O2(g) -5.21 -8.80 -3.59 O2 + O2(g) -6.73 -10.31 -3.59 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10886,53 +11492,155 @@ H2O(g) 1.41 2.593e+01 0.076 5.306e-01 5.304e-01 -2.391e-04 ----------------------------Description of solution---------------------------- pH = 2.897 Charge balance - pe = 11.445 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 100°C) = 753 - Density (g/cm³) = 1.02323 + pe = 11.066 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 100oC) = 810 + Density (g/cm3) = 1.02323 Volume (L) = 1.05524 - Viscosity (mPa s) = 0.32664 + Viscosity (mPa s) = 0.31423 Activity of water = 0.969 Ionic strength (mol/kgw) = 1.323e-03 Mass of water (kg) = 9.904e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 2.049e+00 - Temperature (°C) = 100.00 + Temperature (oC) = 100.00 Pressure (atm) = 1246.74 - Electrical balance (eq) = -1.205e-09 + Electrical balance (eq) = -1.209e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 42 (143 overall) + Iterations = 43 (144 overall) Total H = 1.099517e+02 Total O = 5.903436e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm³/mol + Species Molality Activity Molality Activity Gamma cm3/mol H+ 1.323e-03 1.268e-03 -2.879 -2.897 -0.018 0.00 OH- 1.409e-09 1.347e-09 -8.851 -8.871 -0.019 -9.57 H2O 5.551e+01 9.691e-01 1.744 -0.014 0.000 17.86 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -99.703 -99.703 0.000 39.91 + CH4 0.000e+00 0.000e+00 -96.677 -96.677 0.000 39.91 C(4) 2.049e+00 CO2 1.583e+00 1.583e+00 0.199 0.199 0.000 36.29 (CO2)2 2.325e-01 2.326e-01 -0.634 -0.633 0.000 72.59 HCO3- 1.323e-03 1.266e-03 -2.879 -2.898 -0.019 28.88 CO3-2 2.428e-10 2.039e-10 -9.615 -9.691 -0.076 2.54 -H(0) 5.145e-33 - H2 2.573e-33 2.573e-33 -32.590 -32.589 0.000 28.16 -O(0) 3.160e-09 - O2 1.580e-09 1.581e-09 -8.801 -8.801 0.000 31.03 +H(0) 2.937e-32 + H2 1.469e-32 1.469e-32 -31.833 -31.833 0.000 28.16 +O(0) 9.696e-11 + O2 4.848e-11 4.850e-11 -10.314 -10.314 0.000 31.03 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 1247 atm) - CH4(g) -95.99 -99.70 -3.71 CH4 + CH4(g) -92.97 -96.68 -3.71 CH4 CO2(g) 2.82 0.20 -2.62 CO2 Pressure 1220.8 atm, phi 0.541 - H2(g) -28.99 -32.59 -3.60 H2 + H2(g) -28.23 -31.83 -3.60 H2 H2O(g) 0.30 -0.01 -0.31 H2O Pressure 25.9 atm, phi 0.076 - O2(g) -5.14 -8.80 -3.66 O2 + O2(g) -6.65 -10.31 -3.66 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 29. + +WARNING: Numerical method failed, switching to numerical derivatives. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying smaller step size, pe step size 10, 5 ... + +Using solution 1. +Using gas phase 1. +Using temperature 4. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 1460.80 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 3.79e-02 liters/mole + P * Vm / RT: 1.80635 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 3.16 1.432e+03 0.606 2.497e+01 2.589e+01 9.161e-01 +H2O(g) 1.46 2.896e+01 0.077 5.304e-01 5.236e-01 -6.811e-03 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 2.133e+00 2.113e+00 + +----------------------------Description of solution---------------------------- + + pH = 2.862 Charge balance + pe = 11.098 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 100oC) = 872 + Density (g/cm3) = 1.03092 + Volume (L) = 1.05107 + Viscosity (mPa s) = 0.31935 + Activity of water = 0.968 + Ionic strength (mol/kgw) = 1.435e-03 + Mass of water (kg) = 9.905e-01 + Total alkalinity (eq/kg) = 1.221e-09 + Total CO2 (mol/kg) = 2.133e+00 + Temperature (oC) = 100.00 + Pressure (atm) = 1460.80 + Electrical balance (eq) = -1.209e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 57 (158 overall) + Total H = 1.099653e+02 + Total O = 5.920895e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 1.435e-03 1.374e-03 -2.843 -2.862 -0.019 0.00 + OH- 1.595e-09 1.523e-09 -8.797 -8.817 -0.020 -9.96 + H2O 5.551e+01 9.679e-01 1.744 -0.014 0.000 17.73 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -96.750 -96.749 0.000 39.77 +C(4) 2.133e+00 + CO2 1.635e+00 1.636e+00 0.214 0.214 0.000 36.00 + (CO2)2 2.483e-01 2.483e-01 -0.605 -0.605 0.000 71.99 + HCO3- 1.435e-03 1.372e-03 -2.843 -2.863 -0.019 29.47 + CO3-2 2.835e-10 2.370e-10 -9.547 -9.625 -0.078 3.83 +H(0) 2.459e-32 + H2 1.230e-32 1.230e-32 -31.910 -31.910 0.000 28.11 +O(0) 9.695e-11 + O2 4.848e-11 4.849e-11 -10.314 -10.314 0.000 30.71 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(373 K, 1461 atm) + + CH4(g) -92.92 -96.75 -3.83 CH4 + CO2(g) 2.94 0.21 -2.72 CO2 Pressure 1431.8 atm, phi 0.606 + H2(g) -28.23 -31.91 -3.68 H2 + H2O(g) 0.35 -0.01 -0.36 H2O Pressure 29.0 atm, phi 0.077 + O2(g) -6.56 -10.31 -3.75 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10945,3 +11653,2644 @@ End of simulation. Reading input data for simulation 5. ------------------------------------ + USE solution 1 + USE gas_phase 1 + REACTION + CO2 1 + 0 26*1 + REACTION_TEMPERATURE 5 + 150 + USER_GRAPH 1 + -active false + USER_GRAPH 2 + -active true + END +----------------------------------------- +Beginning of batch-reaction calculations. +----------------------------------------- + +Reaction step 1. + +WARNING: Element C is contained in gas CO2(g) (which has 0.0 mass), +but is not in solution or other phases. +Using solution 1. +Using gas phase 1. +Using temperature 5. +Using reaction 1. + +Reaction 1. + + 0.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 4.70 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 7.17e+00 liters/mole + P * Vm / RT: 0.97037 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) -99.99 0.000e+00 0.606 0.000e+00 0.000e+00 0.000e+00 +H2O(g) 0.67 4.702e+00 0.971 0.000e+00 1.395e-01 1.395e-01 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + Pure water + +----------------------------Description of solution---------------------------- + + pH = 5.813 Charge balance + pe = 4.695 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 150oC) = 1 + Density (g/cm3) = 0.91701 + Volume (L) = 1.08776 + Viscosity (mPa s) = 0.18261 + Activity of water = 1.000 + Ionic strength (mol/kgw) = 1.541e-06 + Mass of water (kg) = 9.975e-01 + Total alkalinity (eq/kg) = 1.220e-09 + Temperature (oC) = 150.00 + Pressure (atm) = 4.70 + Electrical balance (eq) = -1.217e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.04 + Iterations = 31 + Total H = 1.107333e+02 + Total O = 5.536667e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + OH- 1.542e-06 1.539e-06 -5.812 -5.813 -0.001 -12.11 + H+ 1.540e-06 1.537e-06 -5.812 -5.813 -0.001 0.00 + H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 19.65 +H(0) 5.655e-25 + H2 2.828e-25 2.828e-25 -24.549 -24.549 0.000 28.56 +O(0) 2.751e-15 + O2 1.376e-15 1.376e-15 -14.862 -14.862 0.000 35.91 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(423 K, 5 atm) + + H2(g) -21.57 -24.55 -2.98 H2 + H2O(g) 0.66 -0.00 -0.66 H2O Pressure 4.7 atm, phi 0.971 + O2(g) -11.82 -14.86 -3.04 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 2. + +Using solution 1. +Using gas phase 1. +Using temperature 5. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 30.98 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 1.05e+00 liters/mole + P * Vm / RT: 0.93531 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 1.41 2.567e+01 0.952 0.000e+00 7.904e-01 7.904e-01 +H2O(g) 0.73 5.310e+00 0.870 1.395e-01 1.635e-01 2.395e-02 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 2.102e-01 2.096e-01 + +----------------------------Description of solution---------------------------- + + pH = 3.727 Charge balance + pe = 1.882 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 150oC) = 157 + Density (g/cm3) = 0.91912 + Volume (L) = 1.09483 + Viscosity (mPa s) = 0.18330 + Activity of water = 0.997 + Ionic strength (mol/kgw) = 1.914e-04 + Mass of water (kg) = 9.971e-01 + Total alkalinity (eq/kg) = 1.219e-09 + Total CO2 (mol/kg) = 2.102e-01 + Temperature (oC) = 150.00 + Pressure (atm) = 30.98 + Electrical balance (eq) = -1.216e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 32 + Total H = 1.106854e+02 + Total O = 5.576192e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 1.914e-04 1.874e-04 -3.718 -3.727 -0.009 0.00 + OH- 1.316e-08 1.288e-08 -7.881 -7.890 -0.009 -12.11 + H2O 5.551e+01 9.965e-01 1.744 -0.002 0.000 19.61 +C(-4) 1.296e-35 + CH4 1.296e-35 1.296e-35 -34.887 -34.887 0.000 46.77 +C(4) 2.102e-01 + CO2 1.989e-01 1.990e-01 -0.701 -0.701 0.000 44.58 + (CO2)2 5.541e-03 5.541e-03 -2.256 -2.256 0.000 89.15 + HCO3- 1.914e-04 1.873e-04 -3.718 -3.727 -0.009 17.09 + CO3-2 4.629e-11 4.250e-11 -10.335 -10.372 -0.037 -24.46 +H(0) 3.479e-15 + H2 1.740e-15 1.740e-15 -14.760 -14.759 0.000 28.55 +O(0) 6.929e-35 + O2 3.465e-35 3.465e-35 -34.460 -34.460 0.000 35.79 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(423 K, 31 atm) + + CH4(g) -31.98 -34.89 -2.91 CH4 + CO2(g) 1.39 -0.70 -2.09 CO2 Pressure 25.7 atm, phi 0.952 + H2(g) -11.77 -14.76 -2.99 H2 + H2O(g) 0.66 -0.00 -0.67 H2O Pressure 5.3 atm, phi 0.870 + O2(g) -31.41 -34.46 -3.05 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 3. + +Using solution 1. +Using gas phase 1. +Using temperature 5. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 55.85 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 5.57e-01 liters/mole + P * Vm / RT: 0.89570 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 1.70 4.992e+01 0.913 7.904e-01 1.605e+00 8.147e-01 +H2O(g) 0.77 5.925e+00 0.788 1.635e-01 1.905e-01 2.700e-02 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 3.962e-01 3.949e-01 + +----------------------------Description of solution---------------------------- + + pH = 3.592 Charge balance + pe = 1.777 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 150oC) = 212 + Density (g/cm3) = 0.92109 + Volume (L) = 1.10082 + Viscosity (mPa s) = 0.18394 + Activity of water = 0.994 + Ionic strength (mol/kgw) = 2.622e-04 + Mass of water (kg) = 9.966e-01 + Total alkalinity (eq/kg) = 1.219e-09 + Total CO2 (mol/kg) = 3.962e-01 + Temperature (oC) = 150.00 + Pressure (atm) = 55.85 + Electrical balance (eq) = -1.215e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 30 + Total H = 1.106314e+02 + Total O = 5.610546e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 2.622e-04 2.559e-04 -3.581 -3.592 -0.011 0.00 + OH- 9.869e-09 9.625e-09 -8.006 -8.017 -0.011 -12.16 + H2O 5.551e+01 9.936e-01 1.744 -0.003 0.000 19.58 +C(-4) 1.889e-33 + CH4 1.889e-33 1.889e-33 -32.724 -32.724 0.000 46.64 +C(4) 3.962e-01 + CO2 3.597e-01 3.598e-01 -0.444 -0.444 0.000 44.40 + (CO2)2 1.812e-02 1.812e-02 -1.742 -1.742 0.000 88.80 + HCO3- 2.621e-04 2.557e-04 -3.581 -3.592 -0.011 17.38 + CO3-2 4.832e-11 4.375e-11 -10.316 -10.359 -0.043 -23.81 +H(0) 1.028e-14 + H2 5.138e-15 5.138e-15 -14.289 -14.289 0.000 28.53 +O(0) 7.600e-36 + O2 3.800e-36 3.800e-36 -35.420 -35.420 0.000 35.67 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(423 K, 56 atm) + + CH4(g) -29.80 -32.72 -2.93 CH4 + CO2(g) 1.66 -0.44 -2.10 CO2 Pressure 49.9 atm, phi 0.913 + H2(g) -11.29 -14.29 -3.00 H2 + H2O(g) 0.67 -0.00 -0.67 H2O Pressure 5.9 atm, phi 0.788 + O2(g) -32.36 -35.42 -3.06 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 4. + +Using solution 1. +Using gas phase 1. +Using temperature 5. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 79.56 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 3.75e-01 liters/mole + P * Vm / RT: 0.86026 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 1.86 7.297e+01 0.880 1.605e+00 2.443e+00 8.376e-01 +H2O(g) 0.82 6.593e+00 0.716 1.905e-01 2.207e-01 3.020e-02 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 5.595e-01 5.572e-01 + +----------------------------Description of solution---------------------------- + + pH = 3.518 Charge balance + pe = 1.683 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 150oC) = 248 + Density (g/cm3) = 0.92293 + Volume (L) = 1.10577 + Viscosity (mPa s) = 0.18455 + Activity of water = 0.991 + Ionic strength (mol/kgw) = 3.114e-04 + Mass of water (kg) = 9.960e-01 + Total alkalinity (eq/kg) = 1.219e-09 + Total CO2 (mol/kg) = 5.595e-01 + Temperature (oC) = 150.00 + Pressure (atm) = 79.56 + Electrical balance (eq) = -1.214e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 30 + Total H = 1.105710e+02 + Total O = 5.640001e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 3.114e-04 3.033e-04 -3.507 -3.518 -0.011 0.00 + OH- 8.504e-09 8.275e-09 -8.070 -8.082 -0.012 -12.20 + H2O 5.551e+01 9.911e-01 1.744 -0.004 0.000 19.56 +C(-4) 5.592e-32 + CH4 5.592e-32 5.592e-32 -31.252 -31.252 0.000 46.52 +C(4) 5.595e-01 + CO2 4.915e-01 4.915e-01 -0.308 -0.308 0.000 44.24 + (CO2)2 3.382e-02 3.382e-02 -1.471 -1.471 0.000 88.47 + HCO3- 3.114e-04 3.032e-04 -3.507 -3.518 -0.012 17.65 + CO3-2 5.008e-11 4.496e-11 -10.300 -10.347 -0.047 -23.21 +H(0) 2.187e-14 + H2 1.093e-14 1.094e-14 -13.961 -13.961 0.000 28.52 +O(0) 1.610e-36 + O2 8.049e-37 8.050e-37 -36.094 -36.094 0.000 35.57 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(423 K, 80 atm) + + CH4(g) -28.31 -31.25 -2.94 CH4 + CO2(g) 1.81 -0.31 -2.12 CO2 Pressure 73.0 atm, phi 0.880 + H2(g) -10.95 -13.96 -3.01 H2 + H2O(g) 0.67 -0.00 -0.68 H2O Pressure 6.6 atm, phi 0.716 + O2(g) -33.02 -36.09 -3.07 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 5. + +Using solution 1. +Using gas phase 1. +Using temperature 5. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 102.37 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 2.81e-01 liters/mole + P * Vm / RT: 0.82934 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 1.98 9.505e+01 0.850 2.443e+00 3.301e+00 8.578e-01 +H2O(g) 0.86 7.320e+00 0.652 2.207e-01 2.542e-01 3.349e-02 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 7.026e-01 6.994e-01 + +----------------------------Description of solution---------------------------- + + pH = 3.469 Charge balance + pe = 1.893 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 150oC) = 275 + Density (g/cm3) = 0.92467 + Volume (L) = 1.10980 + Viscosity (mPa s) = 0.18513 + Activity of water = 0.989 + Ionic strength (mol/kgw) = 3.496e-04 + Mass of water (kg) = 9.954e-01 + Total alkalinity (eq/kg) = 1.219e-09 + Total CO2 (mol/kg) = 7.026e-01 + Temperature (oC) = 150.00 + Pressure (atm) = 102.37 + Electrical balance (eq) = -1.213e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 31 + Total H = 1.105041e+02 + Total O = 5.665087e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 3.496e-04 3.400e-04 -3.456 -3.469 -0.012 0.00 + OH- 7.742e-09 7.522e-09 -8.111 -8.124 -0.012 -12.24 + H2O 5.551e+01 9.889e-01 1.744 -0.005 0.000 19.53 +C(-4) 3.488e-33 + CH4 3.488e-33 3.488e-33 -32.457 -32.457 0.000 46.41 +C(4) 7.026e-01 + CO2 6.011e-01 6.012e-01 -0.221 -0.221 0.000 44.08 + (CO2)2 5.059e-02 5.059e-02 -1.296 -1.296 0.000 88.16 + HCO3- 3.496e-04 3.398e-04 -3.456 -3.469 -0.012 17.90 + CO3-2 5.169e-11 4.614e-11 -10.287 -10.336 -0.049 -22.66 +H(0) 1.026e-14 + H2 5.129e-15 5.129e-15 -14.290 -14.290 0.000 28.51 +O(0) 7.034e-36 + O2 3.517e-36 3.518e-36 -35.454 -35.454 0.000 35.47 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(423 K, 102 atm) + + CH4(g) -29.50 -32.46 -2.95 CH4 + CO2(g) 1.91 -0.22 -2.13 CO2 Pressure 95.0 atm, phi 0.850 + H2(g) -11.27 -14.29 -3.02 H2 + H2O(g) 0.68 -0.00 -0.68 H2O Pressure 7.3 atm, phi 0.652 + O2(g) -32.37 -35.45 -3.08 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 6. + +Using solution 1. +Using gas phase 1. +Using temperature 5. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 124.54 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 2.24e-01 liters/mole + P * Vm / RT: 0.80302 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 2.07 1.164e+02 0.823 3.301e+00 4.175e+00 8.749e-01 +H2O(g) 0.91 8.113e+00 0.594 2.542e-01 2.910e-01 3.678e-02 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 8.289e-01 8.246e-01 + +----------------------------Description of solution---------------------------- + + pH = 3.432 Charge balance + pe = 2.140 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 150oC) = 297 + Density (g/cm3) = 0.92633 + Volume (L) = 1.11305 + Viscosity (mPa s) = 0.18569 + Activity of water = 0.987 + Ionic strength (mol/kgw) = 3.809e-04 + Mass of water (kg) = 9.948e-01 + Total alkalinity (eq/kg) = 1.219e-09 + Total CO2 (mol/kg) = 8.289e-01 + Temperature (oC) = 150.00 + Pressure (atm) = 124.54 + Electrical balance (eq) = -1.212e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 31 + Total H = 1.104305e+02 + Total O = 5.686437e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 3.809e-04 3.700e-04 -3.419 -3.432 -0.013 0.00 + OH- 7.255e-09 7.041e-09 -8.139 -8.152 -0.013 -12.28 + H2O 5.551e+01 9.870e-01 1.744 -0.006 0.000 19.50 +C(-4) 8.103e-35 + CH4 8.103e-35 8.104e-35 -34.091 -34.091 0.000 46.30 +C(4) 8.289e-01 + CO2 6.938e-01 6.938e-01 -0.159 -0.159 0.000 43.93 + (CO2)2 6.738e-02 6.739e-02 -1.171 -1.171 0.000 87.87 + HCO3- 3.808e-04 3.698e-04 -3.419 -3.432 -0.013 18.14 + CO3-2 5.323e-11 4.730e-11 -10.274 -10.325 -0.051 -22.13 +H(0) 3.816e-15 + H2 1.908e-15 1.908e-15 -14.719 -14.719 0.000 28.50 +O(0) 4.896e-35 + O2 2.448e-35 2.448e-35 -34.611 -34.611 0.000 35.37 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(423 K, 125 atm) + + CH4(g) -31.13 -34.09 -2.97 CH4 + CO2(g) 1.98 -0.16 -2.14 CO2 Pressure 116.4 atm, phi 0.823 + H2(g) -11.70 -14.72 -3.02 H2 + H2O(g) 0.68 -0.01 -0.69 H2O Pressure 8.1 atm, phi 0.594 + O2(g) -31.52 -34.61 -3.09 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 7. + +Using solution 1. +Using gas phase 1. +Using temperature 5. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 146.37 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 1.85e-01 liters/mole + P * Vm / RT: 0.78132 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 2.14 1.374e+02 0.799 4.175e+00 5.064e+00 8.887e-01 +H2O(g) 0.95 8.979e+00 0.543 2.910e-01 3.310e-01 4.000e-02 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 9.415e-01 9.358e-01 + +----------------------------Description of solution---------------------------- + + pH = 3.403 Charge balance + pe = 7.177 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 150oC) = 315 + Density (g/cm3) = 0.92793 + Volume (L) = 1.11563 + Viscosity (mPa s) = 0.18624 + Activity of water = 0.985 + Ionic strength (mol/kgw) = 4.076e-04 + Mass of water (kg) = 9.940e-01 + Total alkalinity (eq/kg) = 1.221e-09 + Total CO2 (mol/kg) = 9.415e-01 + Temperature (oC) = 150.00 + Pressure (atm) = 146.37 + Electrical balance (eq) = -1.213e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 28 + Total H = 1.103505e+02 + Total O = 5.704694e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 4.076e-04 3.957e-04 -3.390 -3.403 -0.013 0.00 + OH- 6.917e-09 6.707e-09 -8.160 -8.173 -0.013 -12.33 + H2O 5.551e+01 9.854e-01 1.744 -0.006 0.000 19.48 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -74.110 -74.110 0.000 46.20 +C(4) 9.415e-01 + CO2 7.735e-01 7.736e-01 -0.112 -0.111 0.000 43.79 + (CO2)2 8.376e-02 8.377e-02 -1.077 -1.077 0.000 87.58 + HCO3- 4.076e-04 3.954e-04 -3.390 -3.403 -0.013 18.38 + CO3-2 5.474e-11 4.846e-11 -10.262 -10.315 -0.053 -21.62 +H(0) 3.630e-25 + H2 1.815e-25 1.815e-25 -24.741 -24.741 0.000 28.49 +O(0) 5.215e-15 + O2 2.608e-15 2.608e-15 -14.584 -14.584 0.000 35.28 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(423 K, 146 atm) + + CH4(g) -71.13 -74.11 -2.98 CH4 + CO2(g) 2.04 -0.11 -2.15 CO2 Pressure 137.4 atm, phi 0.799 + H2(g) -21.71 -24.74 -3.03 H2 + H2O(g) 0.69 -0.01 -0.69 H2O Pressure 9.0 atm, phi 0.543 + O2(g) -11.48 -14.58 -3.10 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 8. + +Using solution 1. +Using gas phase 1. +Using temperature 5. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 168.19 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 1.58e-01 liters/mole + P * Vm / RT: 0.76424 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 2.20 1.583e+02 0.777 5.064e+00 5.964e+00 8.996e-01 +H2O(g) 1.00 9.926e+00 0.496 3.310e-01 3.740e-01 4.308e-02 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 1.043e+00 1.036e+00 + +----------------------------Description of solution---------------------------- + + pH = 3.378 Charge balance + pe = 7.286 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 150oC) = 330 + Density (g/cm3) = 0.92950 + Volume (L) = 1.11766 + Viscosity (mPa s) = 0.18678 + Activity of water = 0.984 + Ionic strength (mol/kgw) = 4.313e-04 + Mass of water (kg) = 9.933e-01 + Total alkalinity (eq/kg) = 1.219e-09 + Total CO2 (mol/kg) = 1.043e+00 + Temperature (oC) = 150.00 + Pressure (atm) = 168.19 + Electrical balance (eq) = -1.211e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 31 + Total H = 1.102643e+02 + Total O = 5.720459e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 4.313e-04 4.184e-04 -3.365 -3.378 -0.013 0.00 + OH- 6.670e-09 6.462e-09 -8.176 -8.190 -0.014 -12.37 + H2O 5.551e+01 9.840e-01 1.744 -0.007 0.000 19.45 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -74.766 -74.766 0.000 46.09 +C(4) 1.043e+00 + CO2 8.436e-01 8.436e-01 -0.074 -0.074 0.000 43.65 + (CO2)2 9.962e-02 9.963e-02 -1.002 -1.002 0.000 87.31 + HCO3- 4.313e-04 4.180e-04 -3.365 -3.379 -0.014 18.60 + CO3-2 5.623e-11 4.962e-11 -10.250 -10.304 -0.054 -21.12 +H(0) 2.405e-25 + H2 1.202e-25 1.202e-25 -24.920 -24.920 0.000 28.48 +O(0) 1.146e-14 + O2 5.731e-15 5.731e-15 -14.242 -14.242 0.000 35.18 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(423 K, 168 atm) + + CH4(g) -71.78 -74.77 -2.99 CH4 + CO2(g) 2.09 -0.07 -2.16 CO2 Pressure 158.3 atm, phi 0.777 + H2(g) -21.88 -24.92 -3.04 H2 + H2O(g) 0.69 -0.01 -0.70 H2O Pressure 9.9 atm, phi 0.496 + O2(g) -11.13 -14.24 -3.11 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 9. + +Using solution 1. +Using gas phase 1. +Using temperature 5. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 190.35 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 1.37e-01 liters/mole + P * Vm / RT: 0.75179 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 2.25 1.794e+02 0.757 5.964e+00 6.872e+00 9.080e-01 +H2O(g) 1.04 1.096e+01 0.454 3.740e-01 4.200e-01 4.597e-02 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 1.137e+00 1.128e+00 + +----------------------------Description of solution---------------------------- + + pH = 3.357 Charge balance + pe = 7.380 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 150oC) = 344 + Density (g/cm3) = 0.93106 + Volume (L) = 1.11925 + Viscosity (mPa s) = 0.18733 + Activity of water = 0.983 + Ionic strength (mol/kgw) = 4.530e-04 + Mass of water (kg) = 9.924e-01 + Total alkalinity (eq/kg) = 1.218e-09 + Total CO2 (mol/kg) = 1.137e+00 + Temperature (oC) = 150.00 + Pressure (atm) = 190.35 + Electrical balance (eq) = -1.209e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 32 + Total H = 1.101724e+02 + Total O = 5.734268e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 4.530e-04 4.391e-04 -3.344 -3.357 -0.014 0.00 + OH- 6.481e-09 6.275e-09 -8.188 -8.202 -0.014 -12.41 + H2O 5.551e+01 9.826e-01 1.744 -0.008 0.000 19.43 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -75.329 -75.329 0.000 45.99 +C(4) 1.137e+00 + CO2 9.064e-01 9.064e-01 -0.043 -0.043 0.000 43.51 + (CO2)2 1.150e-01 1.150e-01 -0.939 -0.939 0.000 87.03 + HCO3- 4.530e-04 4.387e-04 -3.344 -3.358 -0.014 18.83 + CO3-2 5.774e-11 5.082e-11 -10.239 -10.294 -0.055 -20.63 +H(0) 1.687e-25 + H2 8.436e-26 8.437e-26 -25.074 -25.074 0.000 28.47 +O(0) 2.245e-14 + O2 1.122e-14 1.123e-14 -13.950 -13.950 0.000 35.09 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(423 K, 190 atm) + + CH4(g) -72.33 -75.33 -3.00 CH4 + CO2(g) 2.13 -0.04 -2.18 CO2 Pressure 179.4 atm, phi 0.757 + H2(g) -22.03 -25.07 -3.05 H2 + H2O(g) 0.70 -0.01 -0.70 H2O Pressure 11.0 atm, phi 0.454 + O2(g) -10.83 -13.95 -3.12 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 10. + +Using solution 1. +Using gas phase 1. +Using temperature 5. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 213.25 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 1.21e-01 liters/mole + P * Vm / RT: 0.74399 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 2.30 2.011e+02 0.738 6.872e+00 7.786e+00 9.141e-01 +H2O(g) 1.08 1.211e+01 0.416 4.200e-01 4.686e-01 4.860e-02 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 1.225e+00 1.214e+00 + +----------------------------Description of solution---------------------------- + + pH = 3.339 Charge balance + pe = 7.276 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 150oC) = 357 + Density (g/cm3) = 0.93265 + Volume (L) = 1.12046 + Viscosity (mPa s) = 0.18790 + Activity of water = 0.981 + Ionic strength (mol/kgw) = 4.734e-04 + Mass of water (kg) = 9.915e-01 + Total alkalinity (eq/kg) = 1.218e-09 + Total CO2 (mol/kg) = 1.225e+00 + Temperature (oC) = 150.00 + Pressure (atm) = 213.25 + Electrical balance (eq) = -1.208e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 36 + Total H = 1.100752e+02 + Total O = 5.746592e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 4.734e-04 4.586e-04 -3.325 -3.339 -0.014 0.00 + OH- 6.334e-09 6.128e-09 -8.198 -8.213 -0.014 -12.45 + H2O 5.551e+01 9.814e-01 1.744 -0.008 0.000 19.40 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -74.325 -74.325 0.000 45.89 +C(4) 1.225e+00 + CO2 9.639e-01 9.640e-01 -0.016 -0.016 0.000 43.37 + (CO2)2 1.301e-01 1.301e-01 -0.886 -0.886 0.000 86.75 + HCO3- 4.734e-04 4.582e-04 -3.325 -3.339 -0.014 19.06 + CO3-2 5.931e-11 5.207e-11 -10.227 -10.283 -0.056 -20.12 +H(0) 2.925e-25 + H2 1.462e-25 1.463e-25 -24.835 -24.835 0.000 28.46 +O(0) 7.198e-15 + O2 3.599e-15 3.599e-15 -14.444 -14.444 0.000 35.00 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(423 K, 213 atm) + + CH4(g) -71.31 -74.33 -3.02 CH4 + CO2(g) 2.17 -0.02 -2.19 CO2 Pressure 201.1 atm, phi 0.738 + H2(g) -21.78 -24.83 -3.05 H2 + H2O(g) 0.70 -0.01 -0.71 H2O Pressure 12.1 atm, phi 0.416 + O2(g) -11.31 -14.44 -3.13 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 11. + +Using solution 1. +Using gas phase 1. +Using temperature 5. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 237.29 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 1.08e-01 liters/mole + P * Vm / RT: 0.74089 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 2.35 2.239e+02 0.721 7.786e+00 8.704e+00 9.183e-01 +H2O(g) 1.13 1.337e+01 0.381 4.686e-01 5.195e-01 5.091e-02 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 1.308e+00 1.296e+00 + +----------------------------Description of solution---------------------------- + + pH = 3.321 Charge balance + pe = 7.321 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 150oC) = 369 + Density (g/cm3) = 0.93428 + Volume (L) = 1.12137 + Viscosity (mPa s) = 0.18849 + Activity of water = 0.980 + Ionic strength (mol/kgw) = 4.931e-04 + Mass of water (kg) = 9.906e-01 + Total alkalinity (eq/kg) = 1.219e-09 + Total CO2 (mol/kg) = 1.308e+00 + Temperature (oC) = 150.00 + Pressure (atm) = 237.29 + Electrical balance (eq) = -1.208e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 39 + Total H = 1.099734e+02 + Total O = 5.757837e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 4.931e-04 4.775e-04 -3.307 -3.321 -0.014 0.00 + OH- 6.217e-09 6.011e-09 -8.206 -8.221 -0.015 -12.50 + H2O 5.551e+01 9.802e-01 1.744 -0.009 0.000 19.38 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -74.536 -74.536 0.000 45.78 +C(4) 1.308e+00 + CO2 1.018e+00 1.018e+00 0.008 0.008 0.000 43.23 + (CO2)2 1.450e-01 1.450e-01 -0.839 -0.839 0.000 86.46 + HCO3- 4.931e-04 4.771e-04 -3.307 -3.321 -0.014 19.30 + CO3-2 6.096e-11 5.340e-11 -10.215 -10.272 -0.057 -19.61 +H(0) 2.522e-25 + H2 1.261e-25 1.261e-25 -24.899 -24.899 0.000 28.45 +O(0) 9.315e-15 + O2 4.658e-15 4.658e-15 -14.332 -14.332 0.000 34.90 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(423 K, 237 atm) + + CH4(g) -71.51 -74.54 -3.03 CH4 + CO2(g) 2.21 0.01 -2.20 CO2 Pressure 223.9 atm, phi 0.721 + H2(g) -21.84 -24.90 -3.06 H2 + H2O(g) 0.71 -0.01 -0.72 H2O Pressure 13.4 atm, phi 0.381 + O2(g) -11.19 -14.33 -3.14 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 12. + +Using solution 1. +Using gas phase 1. +Using temperature 5. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 262.95 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 9.81e-02 liters/mole + P * Vm / RT: 0.74259 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 2.39 2.482e+02 0.704 8.704e+00 9.625e+00 9.210e-01 +H2O(g) 1.17 1.476e+01 0.350 5.195e-01 5.723e-01 5.282e-02 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 1.389e+00 1.375e+00 + +----------------------------Description of solution---------------------------- + + pH = 3.304 Charge balance + pe = 7.382 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 150oC) = 382 + Density (g/cm3) = 0.93600 + Volume (L) = 1.12201 + Viscosity (mPa s) = 0.18912 + Activity of water = 0.979 + Ionic strength (mol/kgw) = 5.127e-04 + Mass of water (kg) = 9.897e-01 + Total alkalinity (eq/kg) = 1.220e-09 + Total CO2 (mol/kg) = 1.389e+00 + Temperature (oC) = 150.00 + Pressure (atm) = 262.95 + Electrical balance (eq) = -1.207e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 43 + Total H = 1.098677e+02 + Total O = 5.768358e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 5.127e-04 4.962e-04 -3.290 -3.304 -0.014 0.00 + OH- 6.123e-09 5.917e-09 -8.213 -8.228 -0.015 -12.55 + H2O 5.551e+01 9.791e-01 1.744 -0.009 0.000 19.35 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -74.885 -74.885 0.000 45.67 +C(4) 1.389e+00 + CO2 1.069e+00 1.069e+00 0.029 0.029 0.000 43.08 + (CO2)2 1.599e-01 1.599e-01 -0.796 -0.796 0.000 86.15 + HCO3- 5.127e-04 4.957e-04 -3.290 -3.305 -0.015 19.54 + CO3-2 6.273e-11 5.484e-11 -10.202 -10.261 -0.058 -19.07 +H(0) 2.010e-25 + H2 1.005e-25 1.005e-25 -24.998 -24.998 0.000 28.44 +O(0) 1.408e-14 + O2 7.038e-15 7.038e-15 -14.153 -14.153 0.000 34.80 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(423 K, 263 atm) + + CH4(g) -71.84 -74.89 -3.04 CH4 + CO2(g) 2.24 0.03 -2.21 CO2 Pressure 248.2 atm, phi 0.704 + H2(g) -21.93 -25.00 -3.07 H2 + H2O(g) 0.71 -0.01 -0.72 H2O Pressure 14.8 atm, phi 0.350 + O2(g) -11.00 -14.15 -3.15 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 13. + +Using solution 1. +Using gas phase 1. +Using temperature 5. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 290.70 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 8.95e-02 liters/mole + P * Vm / RT: 0.74922 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 2.44 2.744e+02 0.689 9.625e+00 1.055e+01 9.223e-01 +H2O(g) 1.21 1.630e+01 0.321 5.723e-01 6.266e-01 5.427e-02 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 1.469e+00 1.453e+00 + +----------------------------Description of solution---------------------------- + + pH = 3.288 Charge balance + pe = 7.447 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 150oC) = 394 + Density (g/cm3) = 0.93782 + Volume (L) = 1.12243 + Viscosity (mPa s) = 0.18980 + Activity of water = 0.978 + Ionic strength (mol/kgw) = 5.324e-04 + Mass of water (kg) = 9.887e-01 + Total alkalinity (eq/kg) = 1.221e-09 + Total CO2 (mol/kg) = 1.469e+00 + Temperature (oC) = 150.00 + Pressure (atm) = 290.70 + Electrical balance (eq) = -1.207e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 46 + Total H = 1.097592e+02 + Total O = 5.778462e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 5.324e-04 5.150e-04 -3.274 -3.288 -0.014 0.00 + OH- 6.048e-09 5.842e-09 -8.218 -8.233 -0.015 -12.60 + H2O 5.551e+01 9.780e-01 1.744 -0.010 0.000 19.32 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -75.264 -75.264 0.000 45.55 +C(4) 1.469e+00 + CO2 1.118e+00 1.118e+00 0.049 0.049 0.000 42.92 + (CO2)2 1.751e-01 1.751e-01 -0.757 -0.757 0.000 85.83 + HCO3- 5.324e-04 5.146e-04 -3.274 -3.289 -0.015 19.80 + CO3-2 6.467e-11 5.641e-11 -10.189 -10.249 -0.059 -18.50 +H(0) 1.574e-25 + H2 7.869e-26 7.870e-26 -25.104 -25.104 0.000 28.43 +O(0) 2.197e-14 + O2 1.098e-14 1.098e-14 -13.959 -13.959 0.000 34.70 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(423 K, 291 atm) + + CH4(g) -72.20 -75.26 -3.06 CH4 + CO2(g) 2.28 0.05 -2.23 CO2 Pressure 274.4 atm, phi 0.689 + H2(g) -22.02 -25.10 -3.08 H2 + H2O(g) 0.72 -0.01 -0.73 H2O Pressure 16.3 atm, phi 0.321 + O2(g) -10.79 -13.96 -3.17 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 14. + +Using solution 1. +Using gas phase 1. +Using temperature 5. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 321.10 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 8.23e-02 liters/mole + P * Vm / RT: 0.76099 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 2.48 3.031e+02 0.675 1.055e+01 1.147e+01 9.226e-01 +H2O(g) 1.26 1.802e+01 0.295 6.266e-01 6.818e-01 5.518e-02 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 1.549e+00 1.530e+00 + +----------------------------Description of solution---------------------------- + + pH = 3.272 Charge balance + pe = 7.462 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 150oC) = 406 + Density (g/cm3) = 0.93978 + Volume (L) = 1.12265 + Viscosity (mPa s) = 0.19054 + Activity of water = 0.977 + Ionic strength (mol/kgw) = 5.529e-04 + Mass of water (kg) = 9.877e-01 + Total alkalinity (eq/kg) = 1.222e-09 + Total CO2 (mol/kg) = 1.549e+00 + Temperature (oC) = 150.00 + Pressure (atm) = 321.10 + Electrical balance (eq) = -1.207e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 50 + Total H = 1.096489e+02 + Total O = 5.788425e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 5.529e-04 5.345e-04 -3.257 -3.272 -0.015 0.00 + OH- 5.991e-09 5.783e-09 -8.223 -8.238 -0.015 -12.66 + H2O 5.551e+01 9.769e-01 1.744 -0.010 0.000 19.28 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -75.249 -75.249 0.000 45.43 +C(4) 1.549e+00 + CO2 1.167e+00 1.167e+00 0.067 0.067 0.000 42.75 + (CO2)2 1.907e-01 1.907e-01 -0.720 -0.720 0.000 85.49 + HCO3- 5.528e-04 5.340e-04 -3.257 -3.272 -0.015 20.08 + CO3-2 6.681e-11 5.815e-11 -10.175 -10.235 -0.060 -17.89 +H(0) 1.545e-25 + H2 7.727e-26 7.728e-26 -25.112 -25.112 0.000 28.42 +O(0) 2.171e-14 + O2 1.086e-14 1.086e-14 -13.964 -13.964 0.000 34.58 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(423 K, 321 atm) + + CH4(g) -72.17 -75.25 -3.08 CH4 + CO2(g) 2.31 0.07 -2.24 CO2 Pressure 303.1 atm, phi 0.675 + H2(g) -22.02 -25.11 -3.09 H2 + H2O(g) 0.73 -0.01 -0.74 H2O Pressure 18.0 atm, phi 0.295 + O2(g) -10.79 -13.96 -3.18 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 15. + +Using solution 1. +Using gas phase 1. +Using temperature 5. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 354.75 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 7.62e-02 liters/mole + P * Vm / RT: 0.77814 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 2.52 3.348e+02 0.662 1.147e+01 1.239e+01 9.219e-01 +H2O(g) 1.30 1.992e+01 0.272 6.818e-01 7.373e-01 5.548e-02 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 1.630e+00 1.608e+00 + +----------------------------Description of solution---------------------------- + + pH = 3.256 Charge balance + pe = 7.411 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 150oC) = 419 + Density (g/cm3) = 0.94192 + Volume (L) = 1.12269 + Viscosity (mPa s) = 0.19135 + Activity of water = 0.976 + Ionic strength (mol/kgw) = 5.742e-04 + Mass of water (kg) = 9.867e-01 + Total alkalinity (eq/kg) = 1.223e-09 + Total CO2 (mol/kg) = 1.630e+00 + Temperature (oC) = 150.00 + Pressure (atm) = 354.75 + Electrical balance (eq) = -1.207e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 55 + Total H = 1.095379e+02 + Total O = 5.798496e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 5.742e-04 5.549e-04 -3.241 -3.256 -0.015 0.00 + OH- 5.950e-09 5.741e-09 -8.225 -8.241 -0.016 -12.72 + H2O 5.551e+01 9.758e-01 1.744 -0.011 0.000 19.25 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -74.713 -74.713 0.000 45.29 +C(4) 1.630e+00 + CO2 1.215e+00 1.216e+00 0.085 0.085 0.000 42.56 + (CO2)2 2.068e-01 2.068e-01 -0.684 -0.684 0.000 85.12 + HCO3- 5.742e-04 5.543e-04 -3.241 -3.256 -0.015 20.39 + CO3-2 6.921e-11 6.011e-11 -10.160 -10.221 -0.061 -17.24 +H(0) 2.045e-25 + H2 1.023e-25 1.023e-25 -24.990 -24.990 0.000 28.41 +O(0) 1.176e-14 + O2 5.882e-15 5.882e-15 -14.231 -14.230 0.000 34.46 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(423 K, 355 atm) + + CH4(g) -71.62 -74.71 -3.09 CH4 + CO2(g) 2.35 0.08 -2.26 CO2 Pressure 334.8 atm, phi 0.662 + H2(g) -21.89 -24.99 -3.10 H2 + H2O(g) 0.73 -0.01 -0.74 H2O Pressure 19.9 atm, phi 0.272 + O2(g) -11.04 -14.23 -3.19 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 16. + +Using solution 1. +Using gas phase 1. +Using temperature 5. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 392.31 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 7.09e-02 liters/mole + P * Vm / RT: 0.80101 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 2.57 3.703e+02 0.650 1.239e+01 1.331e+01 9.204e-01 +H2O(g) 1.34 2.204e+01 0.250 7.373e-01 7.924e-01 5.509e-02 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 1.712e+00 1.688e+00 + +----------------------------Description of solution---------------------------- + + pH = 3.239 Charge balance + pe = 7.482 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 150oC) = 433 + Density (g/cm3) = 0.94427 + Volume (L) = 1.12256 + Viscosity (mPa s) = 0.19225 + Activity of water = 0.975 + Ionic strength (mol/kgw) = 5.969e-04 + Mass of water (kg) = 9.857e-01 + Total alkalinity (eq/kg) = 1.224e-09 + Total CO2 (mol/kg) = 1.712e+00 + Temperature (oC) = 150.00 + Pressure (atm) = 392.31 + Electrical balance (eq) = -1.207e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 61 + Total H = 1.094277e+02 + Total O = 5.808901e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 5.969e-04 5.766e-04 -3.224 -3.239 -0.015 0.00 + OH- 5.927e-09 5.716e-09 -8.227 -8.243 -0.016 -12.79 + H2O 5.551e+01 9.747e-01 1.744 -0.011 0.000 19.21 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -75.151 -75.151 0.000 45.15 +C(4) 1.712e+00 + CO2 1.264e+00 1.264e+00 0.102 0.102 0.000 42.36 + (CO2)2 2.237e-01 2.237e-01 -0.650 -0.650 0.000 84.72 + HCO3- 5.969e-04 5.760e-04 -3.224 -3.240 -0.016 20.71 + CO3-2 7.193e-11 6.234e-11 -10.143 -10.205 -0.062 -16.53 +H(0) 1.543e-25 + H2 7.715e-26 7.716e-26 -25.113 -25.113 0.000 28.39 +O(0) 1.949e-14 + O2 9.746e-15 9.747e-15 -14.011 -14.011 0.000 34.32 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(423 K, 392 atm) + + CH4(g) -72.04 -75.15 -3.12 CH4 + CO2(g) 2.38 0.10 -2.28 CO2 Pressure 370.3 atm, phi 0.650 + H2(g) -21.99 -25.11 -3.12 H2 + H2O(g) 0.74 -0.01 -0.75 H2O Pressure 22.0 atm, phi 0.250 + O2(g) -10.80 -14.01 -3.21 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 17. + +Using solution 1. +Using gas phase 1. +Using temperature 5. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 434.51 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 6.63e-02 liters/mole + P * Vm / RT: 0.82997 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 2.61 4.101e+02 0.640 1.331e+01 1.423e+01 9.182e-01 +H2O(g) 1.39 2.439e+01 0.231 7.924e-01 8.463e-01 5.394e-02 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 1.797e+00 1.769e+00 + +----------------------------Description of solution---------------------------- + + pH = 3.222 Charge balance + pe = 7.562 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 150oC) = 448 + Density (g/cm3) = 0.94686 + Volume (L) = 1.12226 + Viscosity (mPa s) = 0.19326 + Activity of water = 0.974 + Ionic strength (mol/kgw) = 6.213e-04 + Mass of water (kg) = 9.847e-01 + Total alkalinity (eq/kg) = 1.225e-09 + Total CO2 (mol/kg) = 1.797e+00 + Temperature (oC) = 150.00 + Pressure (atm) = 434.51 + Electrical balance (eq) = -1.207e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 83 + Total H = 1.093198e+02 + Total O = 5.819857e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 6.213e-04 5.998e-04 -3.207 -3.222 -0.015 0.00 + OH- 5.923e-09 5.708e-09 -8.227 -8.244 -0.016 -12.87 + H2O 5.551e+01 9.735e-01 1.744 -0.012 0.000 19.17 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -75.658 -75.658 0.000 44.99 +C(4) 1.797e+00 + CO2 1.313e+00 1.313e+00 0.118 0.118 0.000 42.14 + (CO2)2 2.414e-01 2.415e-01 -0.617 -0.617 0.000 84.28 + HCO3- 6.213e-04 5.991e-04 -3.207 -3.222 -0.016 21.07 + CO3-2 7.503e-11 6.488e-11 -10.125 -10.188 -0.063 -15.75 +H(0) 1.116e-25 + H2 5.581e-26 5.582e-26 -25.253 -25.253 0.000 28.38 +O(0) 3.490e-14 + O2 1.745e-14 1.745e-14 -13.758 -13.758 0.000 34.18 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(423 K, 435 atm) + + CH4(g) -72.52 -75.66 -3.14 CH4 + CO2(g) 2.42 0.12 -2.30 CO2 Pressure 410.1 atm, phi 0.640 + H2(g) -22.12 -25.25 -3.13 H2 + H2O(g) 0.75 -0.01 -0.76 H2O Pressure 24.4 atm, phi 0.231 + O2(g) -10.53 -13.76 -3.22 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 18. + +Using solution 1. +Using gas phase 1. +Using temperature 5. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 482.20 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 6.23e-02 liters/mole + P * Vm / RT: 0.86552 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 2.66 4.552e+02 0.633 1.423e+01 1.515e+01 9.155e-01 +H2O(g) 1.43 2.700e+01 0.214 8.463e-01 8.983e-01 5.197e-02 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 1.884e+00 1.854e+00 + +----------------------------Description of solution---------------------------- + + pH = 3.204 Charge balance + pe = 7.564 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 150oC) = 463 + Density (g/cm3) = 0.94973 + Volume (L) = 1.12180 + Viscosity (mPa s) = 0.19439 + Activity of water = 0.972 + Ionic strength (mol/kgw) = 6.477e-04 + Mass of water (kg) = 9.838e-01 + Total alkalinity (eq/kg) = 1.226e-09 + Total CO2 (mol/kg) = 1.884e+00 + Temperature (oC) = 150.00 + Pressure (atm) = 482.20 + Electrical balance (eq) = -1.206e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 89 + Total H = 1.092159e+02 + Total O = 5.831568e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 6.477e-04 6.249e-04 -3.189 -3.204 -0.016 0.00 + OH- 5.940e-09 5.721e-09 -8.226 -8.243 -0.016 -12.96 + H2O 5.551e+01 9.724e-01 1.744 -0.012 0.000 19.12 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -75.537 -75.537 0.000 44.82 +C(4) 1.884e+00 + CO2 1.363e+00 1.363e+00 0.135 0.135 0.000 41.90 + (CO2)2 2.602e-01 2.602e-01 -0.585 -0.585 0.000 83.81 + HCO3- 6.477e-04 6.243e-04 -3.189 -3.205 -0.016 21.46 + CO3-2 7.860e-11 6.782e-11 -10.105 -10.169 -0.064 -14.91 +H(0) 1.156e-25 + H2 5.778e-26 5.779e-26 -25.238 -25.238 0.000 28.36 +O(0) 3.025e-14 + O2 1.513e-14 1.513e-14 -13.820 -13.820 0.000 34.02 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(423 K, 482 atm) + + CH4(g) -72.37 -75.54 -3.16 CH4 + CO2(g) 2.46 0.13 -2.32 CO2 Pressure 455.2 atm, phi 0.633 + H2(g) -22.09 -25.24 -3.15 H2 + H2O(g) 0.76 -0.01 -0.77 H2O Pressure 27.0 atm, phi 0.214 + O2(g) -10.58 -13.82 -3.24 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 19. + +Using solution 1. +Using gas phase 1. +Using temperature 5. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 536.30 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 5.88e-02 liters/mole + P * Vm / RT: 0.90821 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 2.70 5.064e+02 0.627 1.515e+01 1.606e+01 9.121e-01 +H2O(g) 1.48 2.988e+01 0.199 8.983e-01 9.474e-01 4.911e-02 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 1.975e+00 1.942e+00 + +----------------------------Description of solution---------------------------- + + pH = 3.185 Charge balance + pe = 7.561 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 150oC) = 480 + Density (g/cm3) = 0.95293 + Volume (L) = 1.12117 + Viscosity (mPa s) = 0.19566 + Activity of water = 0.971 + Ionic strength (mol/kgw) = 6.766e-04 + Mass of water (kg) = 9.829e-01 + Total alkalinity (eq/kg) = 1.227e-09 + Total CO2 (mol/kg) = 1.975e+00 + Temperature (oC) = 150.00 + Pressure (atm) = 536.30 + Electrical balance (eq) = -1.206e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 96 + Total H = 1.091177e+02 + Total O = 5.844233e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 6.766e-04 6.524e-04 -3.170 -3.185 -0.016 0.00 + OH- 5.982e-09 5.758e-09 -8.223 -8.240 -0.017 -13.06 + H2O 5.551e+01 9.712e-01 1.744 -0.013 0.000 19.07 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -75.377 -75.377 0.000 44.63 +C(4) 1.975e+00 + CO2 1.415e+00 1.415e+00 0.151 0.151 0.000 41.65 + (CO2)2 2.801e-01 2.802e-01 -0.553 -0.553 0.000 83.29 + HCO3- 6.766e-04 6.517e-04 -3.170 -3.186 -0.016 21.88 + CO3-2 8.275e-11 7.122e-11 -10.082 -10.147 -0.065 -13.99 +H(0) 1.220e-25 + H2 6.102e-26 6.103e-26 -25.215 -25.214 0.000 28.34 +O(0) 2.497e-14 + O2 1.249e-14 1.249e-14 -13.904 -13.903 0.000 33.84 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(423 K, 536 atm) + + CH4(g) -72.18 -75.38 -3.19 CH4 + CO2(g) 2.50 0.15 -2.35 CO2 Pressure 506.4 atm, phi 0.627 + H2(g) -22.05 -25.21 -3.17 H2 + H2O(g) 0.77 -0.01 -0.79 H2O Pressure 29.9 atm, phi 0.199 + O2(g) -10.64 -13.90 -3.27 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 20. + +WARNING: Numerical method failed, switching to numerical derivatives. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying smaller step size, pe step size 10, 5 ... + +Using solution 1. +Using gas phase 1. +Using temperature 5. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 597.87 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 5.57e-02 liters/mole + P * Vm / RT: 0.95873 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 2.75 5.648e+02 0.625 1.606e+01 1.697e+01 9.083e-01 +H2O(g) 1.52 3.305e+01 0.185 9.474e-01 9.927e-01 4.531e-02 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 2.071e+00 2.033e+00 + +----------------------------Description of solution---------------------------- + + pH = 3.166 Charge balance + pe = 8.309 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 150oC) = 499 + Density (g/cm3) = 0.95649 + Volume (L) = 1.12036 + Viscosity (mPa s) = 0.19710 + Activity of water = 0.970 + Ionic strength (mol/kgw) = 7.082e-04 + Mass of water (kg) = 9.821e-01 + Total alkalinity (eq/kg) = 1.228e-09 + Total CO2 (mol/kg) = 2.071e+00 + Temperature (oC) = 150.00 + Pressure (atm) = 597.87 + Electrical balance (eq) = -1.206e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 42 (143 overall) + Total H = 1.090271e+02 + Total O = 5.858049e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 7.082e-04 6.825e-04 -3.150 -3.166 -0.016 0.00 + OH- 6.054e-09 5.824e-09 -8.218 -8.235 -0.017 -13.17 + H2O 5.551e+01 9.699e-01 1.744 -0.013 0.000 19.01 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -81.216 -81.216 0.000 44.42 +C(4) 2.071e+00 + CO2 1.467e+00 1.467e+00 0.166 0.167 0.000 41.36 + (CO2)2 3.013e-01 3.014e-01 -0.521 -0.521 0.000 82.73 + HCO3- 7.082e-04 6.817e-04 -3.150 -3.166 -0.017 22.34 + CO3-2 8.758e-11 7.519e-11 -10.058 -10.124 -0.066 -12.98 +H(0) 4.060e-27 + H2 2.030e-27 2.030e-27 -26.693 -26.692 0.000 28.32 +O(0) 2.055e-11 + O2 1.028e-11 1.028e-11 -10.988 -10.988 0.000 33.65 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(423 K, 598 atm) + + CH4(g) -77.99 -81.22 -3.23 CH4 + CO2(g) 2.55 0.17 -2.38 CO2 Pressure 564.8 atm, phi 0.625 + H2(g) -23.50 -26.69 -3.19 H2 + H2O(g) 0.79 -0.01 -0.80 H2O Pressure 33.0 atm, phi 0.185 + O2(g) -7.70 -10.99 -3.29 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 21. + +WARNING: Numerical method failed, switching to numerical derivatives. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying smaller step size, pe step size 10, 5 ... + +Using solution 1. +Using gas phase 1. +Using temperature 5. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 668.12 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 5.29e-02 liters/mole + P * Vm / RT: 1.01785 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 2.80 6.316e+02 0.626 1.697e+01 1.787e+01 9.039e-01 +H2O(g) 1.56 3.652e+01 0.174 9.927e-01 1.033e+00 4.054e-02 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 2.170e+00 2.130e+00 + +----------------------------Description of solution---------------------------- + + pH = 3.145 Charge balance + pe = 8.329 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 150oC) = 519 + Density (g/cm3) = 0.96046 + Volume (L) = 1.11937 + Viscosity (mPa s) = 0.19873 + Activity of water = 0.969 + Ionic strength (mol/kgw) = 7.432e-04 + Mass of water (kg) = 9.814e-01 + Total alkalinity (eq/kg) = 1.229e-09 + Total CO2 (mol/kg) = 2.170e+00 + Temperature (oC) = 150.00 + Pressure (atm) = 668.12 + Electrical balance (eq) = -1.206e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 35 (136 overall) + Total H = 1.089460e+02 + Total O = 5.873211e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 7.432e-04 7.158e-04 -3.129 -3.145 -0.016 0.00 + OH- 6.164e-09 5.926e-09 -8.210 -8.227 -0.017 -13.29 + H2O 5.551e+01 9.686e-01 1.744 -0.014 0.000 18.94 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -81.229 -81.229 0.000 44.20 +C(4) 2.170e+00 + CO2 1.521e+00 1.521e+00 0.182 0.182 0.000 41.06 + (CO2)2 3.240e-01 3.240e-01 -0.489 -0.489 0.000 82.11 + HCO3- 7.432e-04 7.149e-04 -3.129 -3.146 -0.017 22.84 + CO3-2 9.326e-11 7.984e-11 -10.030 -10.098 -0.067 -11.89 +H(0) 3.848e-27 + H2 1.924e-27 1.924e-27 -26.716 -26.716 0.000 28.30 +O(0) 2.058e-11 + O2 1.029e-11 1.029e-11 -10.988 -10.988 0.000 33.44 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(423 K, 668 atm) + + CH4(g) -77.97 -81.23 -3.26 CH4 + CO2(g) 2.60 0.18 -2.42 CO2 Pressure 631.6 atm, phi 0.626 + H2(g) -23.50 -26.72 -3.22 H2 + H2O(g) 0.80 -0.01 -0.82 H2O Pressure 36.5 atm, phi 0.174 + O2(g) -7.67 -10.99 -3.32 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 22. + +WARNING: Numerical method failed, switching to numerical derivatives. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying smaller step size, pe step size 10, 5 ... + +Using solution 1. +Using gas phase 1. +Using temperature 5. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 748.42 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 5.04e-02 liters/mole + P * Vm / RT: 1.08651 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 2.85 7.081e+02 0.632 1.787e+01 1.877e+01 8.991e-01 +H2O(g) 1.61 4.029e+01 0.164 1.033e+00 1.068e+00 3.480e-02 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 2.274e+00 2.230e+00 + +----------------------------Description of solution---------------------------- + + pH = 3.123 Charge balance + pe = 8.350 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 150oC) = 542 + Density (g/cm3) = 0.96488 + Volume (L) = 1.11819 + Viscosity (mPa s) = 0.20057 + Activity of water = 0.967 + Ionic strength (mol/kgw) = 7.819e-04 + Mass of water (kg) = 9.807e-01 + Total alkalinity (eq/kg) = 1.229e-09 + Total CO2 (mol/kg) = 2.274e+00 + Temperature (oC) = 150.00 + Pressure (atm) = 748.42 + Electrical balance (eq) = -1.205e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 31 (132 overall) + Total H = 1.088764e+02 + Total O = 5.889912e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 7.819e-04 7.526e-04 -3.107 -3.123 -0.017 0.00 + OH- 6.322e-09 6.072e-09 -8.199 -8.217 -0.017 -13.43 + H2O 5.551e+01 9.672e-01 1.744 -0.014 0.000 18.87 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -81.246 -81.245 0.000 43.96 +C(4) 2.274e+00 + CO2 1.577e+00 1.577e+00 0.198 0.198 0.000 40.72 + (CO2)2 3.482e-01 3.483e-01 -0.458 -0.458 0.000 81.45 + HCO3- 7.819e-04 7.516e-04 -3.107 -3.124 -0.017 23.39 + CO3-2 9.996e-11 8.534e-11 -10.000 -10.069 -0.069 -10.71 +H(0) 3.622e-27 + H2 1.811e-27 1.811e-27 -26.742 -26.742 0.000 28.28 +O(0) 2.058e-11 + O2 1.029e-11 1.029e-11 -10.988 -10.987 0.000 33.21 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(423 K, 748 atm) + + CH4(g) -77.94 -81.25 -3.31 CH4 + CO2(g) 2.65 0.20 -2.45 CO2 Pressure 708.1 atm, phi 0.632 + H2(g) -23.50 -26.74 -3.24 H2 + H2O(g) 0.82 -0.01 -0.84 H2O Pressure 40.3 atm, phi 0.164 + O2(g) -7.64 -10.99 -3.35 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 23. + +WARNING: Numerical method failed, switching to numerical derivatives. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying smaller step size, pe step size 10, 5 ... + +Using solution 1. +Using gas phase 1. +Using temperature 5. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 840.34 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 4.82e-02 liters/mole + P * Vm / RT: 1.16578 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 2.90 7.960e+02 0.644 1.877e+01 1.966e+01 8.938e-01 +H2O(g) 1.65 4.437e+01 0.156 1.068e+00 1.096e+00 2.810e-02 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 2.384e+00 2.337e+00 + +----------------------------Description of solution---------------------------- + + pH = 3.101 Charge balance + pe = 8.372 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 150oC) = 567 + Density (g/cm3) = 0.96981 + Volume (L) = 1.11681 + Viscosity (mPa s) = 0.20266 + Activity of water = 0.966 + Ionic strength (mol/kgw) = 8.249e-04 + Mass of water (kg) = 9.802e-01 + Total alkalinity (eq/kg) = 1.229e-09 + Total CO2 (mol/kg) = 2.384e+00 + Temperature (oC) = 150.00 + Pressure (atm) = 840.34 + Electrical balance (eq) = -1.205e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 35 (136 overall) + Total H = 1.088202e+02 + Total O = 5.908349e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 8.249e-04 7.934e-04 -3.084 -3.101 -0.017 0.00 + OH- 6.539e-09 6.276e-09 -8.184 -8.202 -0.018 -13.58 + H2O 5.551e+01 9.658e-01 1.744 -0.015 0.000 18.79 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -81.266 -81.266 0.000 43.71 +C(4) 2.384e+00 + CO2 1.635e+00 1.635e+00 0.213 0.214 0.000 40.37 + (CO2)2 3.741e-01 3.742e-01 -0.427 -0.427 0.000 80.73 + HCO3- 8.249e-04 7.923e-04 -3.084 -3.101 -0.017 23.97 + CO3-2 1.079e-10 9.186e-11 -9.967 -10.037 -0.070 -9.44 +H(0) 3.381e-27 + H2 1.690e-27 1.691e-27 -26.772 -26.772 0.000 28.25 +O(0) 2.059e-11 + O2 1.030e-11 1.030e-11 -10.987 -10.987 0.000 32.97 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(423 K, 840 atm) + + CH4(g) -77.91 -81.27 -3.35 CH4 + CO2(g) 2.71 0.21 -2.50 CO2 Pressure 796.0 atm, phi 0.644 + H2(g) -23.50 -26.77 -3.28 H2 + H2O(g) 0.84 -0.02 -0.86 H2O Pressure 44.4 atm, phi 0.156 + O2(g) -7.60 -10.99 -3.39 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 24. + +WARNING: Numerical method failed, switching to numerical derivatives. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying smaller step size, pe step size 10, 5 ... + +Using solution 1. +Using gas phase 1. +Using temperature 5. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 945.69 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 4.62e-02 liters/mole + P * Vm / RT: 1.25693 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 2.95 8.970e+02 0.663 1.966e+01 2.055e+01 8.879e-01 +H2O(g) 1.69 4.873e+01 0.150 1.096e+00 1.117e+00 2.047e-02 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 2.499e+00 2.449e+00 + +----------------------------Description of solution---------------------------- + + pH = 3.076 Charge balance + pe = 8.394 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 150oC) = 594 + Density (g/cm3) = 0.97529 + Volume (L) = 1.11521 + Viscosity (mPa s) = 0.20503 + Activity of water = 0.964 + Ionic strength (mol/kgw) = 8.727e-04 + Mass of water (kg) = 9.799e-01 + Total alkalinity (eq/kg) = 1.231e-09 + Total CO2 (mol/kg) = 2.499e+00 + Temperature (oC) = 150.00 + Pressure (atm) = 945.69 + Electrical balance (eq) = -1.206e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 32 (133 overall) + Total H = 1.087793e+02 + Total O = 5.928720e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 8.727e-04 8.387e-04 -3.059 -3.076 -0.017 0.00 + OH- 6.834e-09 6.554e-09 -8.165 -8.183 -0.018 -13.75 + H2O 5.551e+01 9.643e-01 1.744 -0.016 0.000 18.70 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -81.291 -81.291 0.000 43.43 +C(4) 2.499e+00 + CO2 1.694e+00 1.695e+00 0.229 0.229 0.000 39.98 + (CO2)2 4.019e-01 4.020e-01 -0.396 -0.396 0.000 79.97 + HCO3- 8.727e-04 8.376e-04 -3.059 -3.077 -0.018 24.60 + CO3-2 1.174e-10 9.965e-11 -9.930 -10.002 -0.071 -8.08 +H(0) 3.126e-27 + H2 1.563e-27 1.563e-27 -26.806 -26.806 0.000 28.22 +O(0) 2.060e-11 + O2 1.030e-11 1.030e-11 -10.987 -10.987 0.000 32.70 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(423 K, 946 atm) + + CH4(g) -77.88 -81.29 -3.41 CH4 + CO2(g) 2.77 0.23 -2.54 CO2 Pressure 897.0 atm, phi 0.663 + H2(g) -23.49 -26.81 -3.31 H2 + H2O(g) 0.86 -0.02 -0.88 H2O Pressure 48.7 atm, phi 0.150 + O2(g) -7.56 -10.99 -3.43 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 25. + +WARNING: Numerical method failed, switching to numerical derivatives. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying smaller step size, pe step size 10, 5 ... + +Using solution 1. +Using gas phase 1. +Using temperature 5. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 1066.57 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 4.43e-02 liters/mole + P * Vm / RT: 1.36145 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 3.01 1.013e+03 0.690 2.055e+01 2.143e+01 8.815e-01 +H2O(g) 1.73 5.335e+01 0.146 1.117e+00 1.129e+00 1.199e-02 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 2.621e+00 2.567e+00 + +----------------------------Description of solution---------------------------- + + pH = 3.051 Charge balance + pe = 8.418 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 150oC) = 623 + Density (g/cm3) = 0.98137 + Volume (L) = 1.11340 + Viscosity (mPa s) = 0.20773 + Activity of water = 0.963 + Ionic strength (mol/kgw) = 9.259e-04 + Mass of water (kg) = 9.797e-01 + Total alkalinity (eq/kg) = 1.232e-09 + Total CO2 (mol/kg) = 2.621e+00 + Temperature (oC) = 150.00 + Pressure (atm) = 1066.57 + Electrical balance (eq) = -1.207e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 41 (142 overall) + Total H = 1.087553e+02 + Total O = 5.951221e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 9.259e-04 8.893e-04 -3.033 -3.051 -0.018 0.00 + OH- 7.232e-09 6.930e-09 -8.141 -8.159 -0.019 -13.95 + H2O 5.551e+01 9.628e-01 1.744 -0.016 0.000 18.61 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -81.321 -81.321 0.000 43.14 +C(4) 2.621e+00 + CO2 1.756e+00 1.756e+00 0.245 0.245 0.000 39.58 + (CO2)2 4.318e-01 4.319e-01 -0.365 -0.365 0.000 79.16 + HCO3- 9.259e-04 8.880e-04 -3.033 -3.052 -0.018 25.27 + CO3-2 1.289e-10 1.090e-10 -9.890 -9.963 -0.073 -6.63 +H(0) 2.858e-27 + H2 1.429e-27 1.429e-27 -26.845 -26.845 0.000 28.19 +O(0) 2.061e-11 + O2 1.030e-11 1.031e-11 -10.987 -10.987 0.000 32.42 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(423 K, 1067 atm) + + CH4(g) -77.85 -81.32 -3.47 CH4 + CO2(g) 2.84 0.24 -2.60 CO2 Pressure 1013.2 atm, phi 0.690 + H2(g) -23.49 -26.84 -3.35 H2 + H2O(g) 0.89 -0.02 -0.91 H2O Pressure 53.4 atm, phi 0.146 + O2(g) -7.52 -10.99 -3.47 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 26. + +WARNING: Numerical method failed, switching to numerical derivatives. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying smaller step size, pe step size 10, 5 ... + +Using solution 1. +Using gas phase 1. +Using temperature 5. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 1205.43 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 4.27e-02 liters/mole + P * Vm / RT: 1.48111 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 3.06 1.147e+03 0.729 2.143e+01 2.231e+01 8.745e-01 +H2O(g) 1.76 5.818e+01 0.143 1.129e+00 1.131e+00 2.758e-03 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 2.749e+00 2.693e+00 + +----------------------------Description of solution---------------------------- + + pH = 3.024 Charge balance + pe = 8.443 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 150oC) = 656 + Density (g/cm3) = 0.98809 + Volume (L) = 1.11136 + Viscosity (mPa s) = 0.21078 + Activity of water = 0.961 + Ionic strength (mol/kgw) = 9.853e-04 + Mass of water (kg) = 9.796e-01 + Total alkalinity (eq/kg) = 1.232e-09 + Total CO2 (mol/kg) = 2.749e+00 + Temperature (oC) = 150.00 + Pressure (atm) = 1205.43 + Electrical balance (eq) = -1.207e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 42 (143 overall) + Total H = 1.087498e+02 + Total O = 5.976045e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 9.853e-04 9.455e-04 -3.006 -3.024 -0.018 0.00 + OH- 7.769e-09 7.438e-09 -8.110 -8.129 -0.019 -14.16 + H2O 5.551e+01 9.611e-01 1.744 -0.017 0.000 18.50 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -81.357 -81.356 0.000 42.84 +C(4) 2.749e+00 + CO2 1.820e+00 1.820e+00 0.260 0.260 0.000 39.15 + (CO2)2 4.638e-01 4.639e-01 -0.334 -0.334 0.000 78.30 + HCO3- 9.853e-04 9.441e-04 -3.006 -3.025 -0.019 25.98 + CO3-2 1.427e-10 1.203e-10 -9.845 -9.920 -0.074 -5.10 +H(0) 2.581e-27 + H2 1.291e-27 1.291e-27 -26.889 -26.889 0.000 28.16 +O(0) 2.060e-11 + O2 1.030e-11 1.030e-11 -10.987 -10.987 0.000 32.11 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(423 K, 1205 atm) + + CH4(g) -77.82 -81.36 -3.54 CH4 + CO2(g) 2.92 0.26 -2.66 CO2 Pressure 1147.2 atm, phi 0.729 + H2(g) -23.49 -26.89 -3.40 H2 + H2O(g) 0.92 -0.02 -0.94 H2O Pressure 58.2 atm, phi 0.143 + O2(g) -7.46 -10.99 -3.52 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +Reaction step 27. + +WARNING: Numerical method failed, switching to numerical derivatives. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying smaller step size, pe step size 10, 5 ... + +Using solution 1. +Using gas phase 1. +Using temperature 5. +Using reaction 1. + +Reaction 1. + + 1.000e+00 moles of the following reaction have been added: + + Relative + Reactant moles + + CO2 1.00000 + + Relative + Element moles + C 1.00000 + O 2.00000 + +-----------------------------------Gas phase----------------------------------- + +Total pressure: 1365.16 atmospheres (Peng-Robinson calculation) + Gas volume: 1.00e+00 liters + Molar volume: 4.12e-02 liters/mole + P * Vm / RT: 1.61801 (Compressibility Factor Z) + + Moles in gas + ---------------------------------- +Component log P P phi Initial Final Delta + +CO2(g) 3.11 1.302e+03 0.783 2.231e+01 2.317e+01 8.669e-01 +H2O(g) 1.80 6.316e+01 0.143 1.131e+00 1.124e+00 -7.074e-03 + +-----------------------------Solution composition------------------------------ + + Elements Molality Moles + + C 2.884e+00 2.826e+00 + +----------------------------Description of solution---------------------------- + + pH = 2.996 Charge balance + pe = 8.468 Adjusted to redox equilibrium + Specific Conductance (uS/cm, 150oC) = 692 + Density (g/cm3) = 0.99549 + Volume (L) = 1.10912 + Viscosity (mPa s) = 0.21423 + Activity of water = 0.959 + Ionic strength (mol/kgw) = 1.052e-03 + Mass of water (kg) = 9.797e-01 + Total alkalinity (eq/kg) = 1.233e-09 + Total CO2 (mol/kg) = 2.884e+00 + Temperature (oC) = 150.00 + Pressure (atm) = 1365.16 + Electrical balance (eq) = -1.208e-09 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 46 (147 overall) + Total H = 1.087639e+02 + Total O = 6.003374e+01 + +----------------------------Distribution of species---------------------------- + + Log Log Log mole V + Species Molality Activity Molality Activity Gamma cm3/mol + + H+ 1.052e-03 1.008e-03 -2.978 -2.996 -0.018 0.00 + OH- 8.498e-09 8.128e-09 -8.071 -8.090 -0.019 -14.39 + H2O 5.551e+01 9.594e-01 1.744 -0.018 0.000 18.38 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -81.400 -81.399 0.000 42.52 +C(4) 2.884e+00 + CO2 1.887e+00 1.887e+00 0.276 0.276 0.000 38.70 + (CO2)2 4.983e-01 4.984e-01 -0.302 -0.302 0.000 77.40 + HCO3- 1.052e-03 1.007e-03 -2.978 -2.997 -0.019 26.72 + CO3-2 1.597e-10 1.342e-10 -9.797 -9.872 -0.076 -3.49 +H(0) 2.296e-27 + H2 1.148e-27 1.148e-27 -26.940 -26.940 0.000 28.12 +O(0) 2.059e-11 + O2 1.030e-11 1.030e-11 -10.987 -10.987 0.000 31.79 + +------------------------------Saturation indices------------------------------- + + Phase SI** log IAP log K(423 K, 1365 atm) + + CH4(g) -77.78 -81.40 -3.62 CH4 + CO2(g) 3.01 0.28 -2.73 CO2 Pressure 1302.0 atm, phi 0.783 + H2(g) -23.48 -26.94 -3.46 H2 + H2O(g) 0.95 -0.02 -0.97 H2O Pressure 63.2 atm, phi 0.143 + O2(g) -7.41 -10.99 -3.58 O2 + +**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. + For ideal gases, phi = 1. + +------------------ +End of simulation. +------------------ + +------------------------------------ +Reading input data for simulation 6. +------------------------------------ + +------------------------------- +End of Run after 0.695 Seconds. +------------------------------- + From c1dd17c7b22ee0b289f00a87013e80d974c097cd Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Fri, 1 Nov 2024 15:59:36 -0600 Subject: [PATCH 229/384] Tweaked H+ viscosity in databases, new test cases fig1 and H_HCl_HBr --- Amm.dat | 16 ++++++---------- phreeqc.dat | 12 ++++++------ phreeqc_rates.dat | 16 ++++++---------- pitzer.dat | 16 ++++++---------- 4 files changed, 24 insertions(+), 36 deletions(-) diff --git a/Amm.dat b/Amm.dat index 17d8d243..dfe55cbe 100644 --- a/Amm.dat +++ b/Amm.dat @@ -1,7 +1,3 @@ -# File 1 = C:\GitPrograms\phreeqc3-1\database\Amm.dat, 22/05/2024 19:38, 1948 lines, 55817 bytes, md5=78b3659799b73ddca128328b6ee7533b -# Created 22 May 2024 19:55:37 -# C:\3rdParty\lsp\lsp.exe -f2 -k=asis -ts Amm.dat - # PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: # diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. # Details are given at the end of this file. @@ -67,13 +63,13 @@ SOLUTION_SPECIES H+ = H+ -gamma 9 0 -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 - -dw 9.31e-9 838 16.315 0 2.376 24.01 0 -# Dw(25 C) dw_T a a2 visc a3 a_v_dif + -dw 9.31e-9 838 6.96 -2.285 0.206 24.01 0 +# Dw(25 C) dw_T a a2 visc a3 a_v_dif # Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc -# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif +# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif for tracer diffusion. -# For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 2.376 for H+) -# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Debye-Onsager eqn. (a2 = Vm = 0 for H+, the reference for Vm) +# For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 0.206 for H+) +# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Onsager-Falkenhagen eqn. (For H+, the reference ion, vm = v0 = 0, a *= (1 + mu)^a2.) # a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10, not used in this database.) (a3 = 24.01 for H+, a flag.) # -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database) @@ -176,7 +172,7 @@ F- = F- Br- = Br- -gamma 3 0 -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 - -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.82 + -viscosity -6.98e-2 -0.141 1.78e-2 0.159 7.76e-3 6.25e-2 0.859 -dw 2.09e-9 208 3.5 0 0.5737 Zn+2 = Zn+2 -gamma 5 0 diff --git a/phreeqc.dat b/phreeqc.dat index 9d281f84..dbb3d081 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -67,13 +67,13 @@ SOLUTION_SPECIES H+ = H+ -gamma 9 0 -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 - -dw 9.31e-9 838 16.315 0 2.376 24.01 0 -# Dw(25 C) dw_T a a2 visc a3 a_v_dif + -dw 9.31e-9 838 6.96 -2.285 0.206 24.01 0 +# Dw(25 C) dw_T a a2 visc a3 a_v_dif # Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc -# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif +# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif for tracer diffusion. -# For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 2.376 for H+) -# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Debye-Onsager eqn. (a2 = Vm = 0 for H+, the reference for Vm) +# For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 0.206 for H+) +# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Onsager-Falkenhagen eqn. (For H+, the reference ion, vm = v0 = 0, a *= (1 + mu)^a2.) # a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10, not used in this database.) (a3 = 24.01 for H+, a flag.) # -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database) @@ -176,7 +176,7 @@ F- = F- Br- = Br- -gamma 3 0 -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 - -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.82 + -viscosity -6.98e-2 -0.141 1.78e-2 0.159 7.76e-3 6.25e-2 0.859 -dw 2.09e-9 208 3.5 0 0.5737 Zn+2 = Zn+2 -gamma 5 0 diff --git a/phreeqc_rates.dat b/phreeqc_rates.dat index aa397b64..d709df8b 100644 --- a/phreeqc_rates.dat +++ b/phreeqc_rates.dat @@ -1,7 +1,3 @@ -# File 1 = C:\GitPrograms\phreeqc3-1\database\phreeqc_rates.dat, 24/05/2024 01:41, 3147 lines, 110328 bytes, md5=7fc916311a573d0ad7ce880f996a9bbf -# Created 24 May 2024 01:58:45 -# C:\3rdParty\lsp\lsp.exe -f2 -k=asis -ts phreeqc_rates.dat - # PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Augmented with kinetic rates for minerals from compilations. Based on: # diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. # Details are given at the end of this file. @@ -67,13 +63,13 @@ SOLUTION_SPECIES H+ = H+ -gamma 9 0 -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 - -dw 9.31e-9 838 16.315 0 2.376 24.01 0 -# Dw(25 C) dw_T a a2 visc a3 a_v_dif + -dw 9.31e-9 838 6.96 -2.285 0.206 24.01 0 +# Dw(25 C) dw_T a a2 visc a3 a_v_dif # Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc -# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif +# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif for tracer diffusion. -# For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 2.376 for H+) -# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Debye-Onsager eqn. (a2 = Vm = 0 for H+, the reference for Vm) +# For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 0.206 for H+) +# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Onsager-Falkenhagen eqn. (For H+, the reference ion, vm = v0 = 0, a *= (1 + mu)^a2.) # a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10, not used in this database.) (a3 = 24.01 for H+, a flag.) # -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database) @@ -176,7 +172,7 @@ F- = F- Br- = Br- -gamma 3 0 -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 - -viscosity -1.15e-2 -5.75e-2 5.72e-2 1.46e-2 0.116 0.9295 0.82 + -viscosity -6.98e-2 -0.141 1.78e-2 0.159 7.76e-3 6.25e-2 0.859 -dw 2.09e-9 208 3.5 0 0.5737 Zn+2 = Zn+2 -gamma 5 0 diff --git a/pitzer.dat b/pitzer.dat index 508bd1c3..5b0a9f5a 100644 --- a/pitzer.dat +++ b/pitzer.dat @@ -1,7 +1,3 @@ -# File 1 = C:\GitPrograms\phreeqc3-1\database\pitzer.dat, 22/05/2024 19:46, 1033 lines, 38088 bytes, md5=d70476773ed110a269ebbcaf334f1133 -# Created 22 May 2024 19:49:25 -# C:\3rdParty\lsp\lsp.exe -f2 -k=asis -ts pitzer.dat - # Pitzer.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution, using # diffusion coefficients of species, molal volumina of aqueous species and minerals, and critical temperatures and pressures of gases used in Peng-Robinson's EOS. # Details are given at the end of this file. @@ -40,13 +36,13 @@ Ntg Ntg 0 Ntg 28.0134 # N2 gas SOLUTION_SPECIES H+ = H+ -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 - -dw 9.31e-9 823 5.55 0 3.07 24.01 0 -# Dw(25 C) dw_T a a2 visc a3 a_v_dif + -dw 9.31e-9 838 4.02 -1.836 0.415 24.01 0 +# Dw(25 C) dw_T a a2 visc a3 a_v_dif # Dw(TK) = 9.31e-9 * exp(823 / TK - 823 / 298.15) * viscos_0_25 / viscos_0_tc -# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif +# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif for tracer diffusion. -# For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 3.07 for H+) -# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Debye-Onsager eqn. (a2 = Vm = 0 for H+, the reference for Vm) +# For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 0.415 for H+) +# a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Onsager-Falkenhagen eqn. (For H+, the reference ion, vm = v0 = 0, a *= (1 + mu)^a2.) # a3 = -10 ? ka = DH_B * a * mu^a2 in DHO. (Define a3 = -10.) # -5 < a3 < 5 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) @@ -107,7 +103,7 @@ B(OH)3 = B(OH)3 -dw 1.1e-9 Br- = Br- -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 - -viscosity -1.16e-2 -5.23e-2 5.54e-2 1.22e-2 0.119 0.9969 0.818 + -viscosity -6.98e-2 -0.141 1.78e-2 0.159 7.76e-3 6.25e-2 0.859 -dw 2.09e-9 208 3.5 0 0.5737 H4SiO4 = H4SiO4 -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt 2*H2O in a1 From 09bf7c8cb15817a78f4e9cbc06a1823a8f51ee56 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Fri, 1 Nov 2024 17:14:06 -0600 Subject: [PATCH 230/384] fixed ex22 for graphing. Updated RELEASE.TXT --- RELEASE.TXT | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/RELEASE.TXT b/RELEASE.TXT index 71ed3a8c..127637ee 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,5 +1,11 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + ----------------- + November 1, 2024 + ----------------- + Phreeqc: Updated H+ and Br- viscosity in Amm.dat, phreeqc.dat, phreeqc_rates.dat, and pitzer.dat. + Small change to basicsubs.cpp. + ----------------- October 24, 2024 ----------------- From ae35abae47dd2420e7664a65dc4de20b4eac5589 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Fri, 1 Nov 2024 17:14:06 -0600 Subject: [PATCH 231/384] fixed ex22 for graphing. Updated RELEASE.TXT --- CMakeLists.txt | 12 ++++++++++++ 1 file changed, 12 insertions(+) diff --git a/CMakeLists.txt b/CMakeLists.txt index e8ef0e1e..4da5d523 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -114,6 +114,18 @@ configure_file ( "co2.tsv" ) +# co2.dat +configure_file ( + "co2.dat" + "co2.dat" + ) + +# co2_VP.dat +configure_file ( + "co2_VP.dat" + "co2_VP.dat" + ) + # # run examples for testing # From 1f0c405f3f8730b39289e41ea0b93a162920f2aa Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Thu, 7 Nov 2024 21:44:36 -0700 Subject: [PATCH 232/384] Updated Release.txt with PhreeqcRM bug fix --- RELEASE.TXT | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/RELEASE.TXT b/RELEASE.TXT index 127637ee..0d956415 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,5 +1,12 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + ----------------- + November 7, 2024 + ----------------- + PhreeqcRM: Fixed a bug when multiple PhreeqcRM instances were created with + debug compilation. Some debugging code caused a failure if the instances did + not have the same number of cells. + ----------------- November 1, 2024 ----------------- From e5780c953e04776b2c40ff626b9bd7df7b5ce3b5 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Sat, 9 Nov 2024 10:27:38 -0700 Subject: [PATCH 233/384] GAS_BINARY_PARAMETERS implemented. gas_binary_parameters test case --- phreeqc.dat | 12 +++++++++++- 1 file changed, 11 insertions(+), 1 deletion(-) diff --git a/phreeqc.dat b/phreeqc.dat index dbb3d081..9ead9b54 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -1327,7 +1327,17 @@ Pb(OH)2 389 Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O -log_k 8.15 -delta_h -13.99 kcal - +GAS_BINARY_PARAMETERS +H2O(g) CO2(g) 0.19 +H2O(g) H2S(g) 0.19 +H2O(g) H2Sg(g) 0.19 +H2O(g) CH4(g) 0.49 +H2O(g) Mtg(g) 0.49 +H2O(g) Methane(g) 0.49 +H2O(g) N2(g) 0.49 +H2O(g) Ntg(g) 0.49 +H2O(g) Ethane(g) 0.49 +H2O(g) Propane(g) 0.55 EXCHANGE_MASTER_SPECIES X X- EXCHANGE_SPECIES From a3cbc5d8cd3365a23346d48fca1bd0d3445b905e Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Mon, 11 Nov 2024 09:16:50 -0700 Subject: [PATCH 234/384] Made GAS_BINARY_PARAMETERS backward compatible --- Amm.dat | 12 +++++++++++- phreeqc_rates.dat | 12 +++++++++++- pitzer.dat | 11 +++++++++++ 3 files changed, 33 insertions(+), 2 deletions(-) diff --git a/Amm.dat b/Amm.dat index dfe55cbe..b8cbdf86 100644 --- a/Amm.dat +++ b/Amm.dat @@ -1323,7 +1323,17 @@ Pb(OH)2 389 Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O -log_k 8.15 -delta_h -13.99 kcal - +GAS_BINARY_PARAMETERS +H2O(g) CO2(g) 0.19 +H2O(g) H2S(g) 0.19 +H2O(g) H2Sg(g) 0.19 +H2O(g) CH4(g) 0.49 +H2O(g) Mtg(g) 0.49 +H2O(g) Methane(g) 0.49 +H2O(g) N2(g) 0.49 +H2O(g) Ntg(g) 0.49 +H2O(g) Ethane(g) 0.49 +H2O(g) Propane(g) 0.55 EXCHANGE_MASTER_SPECIES X X- EXCHANGE_SPECIES diff --git a/phreeqc_rates.dat b/phreeqc_rates.dat index d709df8b..fb2715b5 100644 --- a/phreeqc_rates.dat +++ b/phreeqc_rates.dat @@ -1323,7 +1323,17 @@ Pb(OH)2 389 Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O -log_k 8.15 -delta_h -13.99 kcal - +GAS_BINARY_PARAMETERS +H2O(g) CO2(g) 0.19 +H2O(g) H2S(g) 0.19 +H2O(g) H2Sg(g) 0.19 +H2O(g) CH4(g) 0.49 +H2O(g) Mtg(g) 0.49 +H2O(g) Methane(g) 0.49 +H2O(g) N2(g) 0.49 +H2O(g) Ntg(g) 0.49 +H2O(g) Ethane(g) 0.49 +H2O(g) Propane(g) 0.55 EXCHANGE_MASTER_SPECIES X X- EXCHANGE_SPECIES diff --git a/pitzer.dat b/pitzer.dat index 5b0a9f5a..73042e31 100644 --- a/pitzer.dat +++ b/pitzer.dat @@ -783,6 +783,17 @@ PITZER K+ OH- SO4-2 -0.05 Mg+2 Na+ SO4-2 -0.015 Na+ OH- SO4-2 -0.009 +GAS_BINARY_PARAMETERS +H2O(g) CO2(g) 0.19 +H2O(g) H2S(g) 0.19 +H2O(g) H2Sg(g) 0.19 +H2O(g) CH4(g) 0.49 +H2O(g) Mtg(g) 0.49 +H2O(g) Methane(g) 0.49 +H2O(g) N2(g) 0.49 +H2O(g) Ntg(g) 0.49 +H2O(g) Ethane(g) 0.49 +H2O(g) Propane(g) 0.55 EXCHANGE_MASTER_SPECIES X X- EXCHANGE_SPECIES From 1cc308a15bb182db55c2fa68b1455164cd27ac07 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Mon, 11 Nov 2024 10:39:19 -0700 Subject: [PATCH 235/384] Added documentation for GAS_BINARY_PARAMETERS --- RELEASE.TXT | 19 +++++++++++++++++++ 1 file changed, 19 insertions(+) diff --git a/RELEASE.TXT b/RELEASE.TXT index 0d956415..29a685ed 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,4 +1,23 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + ----------------- + November 11, 2024 + ----------------- + PHREEQC: Added a new keyword data block GAS_BINARY_PARAMETERS that define + binary interaction coefficients for pairs of gas components. PHREEQC retains + some hard-coded interaction parameters, but these can be modified, and new + interaction parameters can be added with the new data block. The following + data block gives the hard-coded values in PHREEQC: + GAS_BINARY_PARAMETERS + H2O(g) CO2(g) 0.19 + H2O(g) H2S(g) 0.19 + H2O(g) H2Sg(g) 0.19 + H2O(g) CH4(g) 0.49 + H2O(g) Mtg(g) 0.49 + H2O(g) Methane(g) 0.49 + H2O(g) N2(g) 0.49 + H2O(g) Ntg(g) 0.49 + H2O(g) Ethane(g) 0.49 + H2O(g) Propane(g) 0.55 ----------------- November 7, 2024 From 6ff8cfe34150e60683b6ceb5c252ae07c211f976 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Mon, 11 Nov 2024 10:39:19 -0700 Subject: [PATCH 236/384] Added documentation for GAS_BINARY_PARAMETERS --- Amm.dat | 3 ++- phreeqc.dat | 3 ++- phreeqc_rates.dat | 3 ++- pitzer.dat | 3 ++- 4 files changed, 8 insertions(+), 4 deletions(-) diff --git a/Amm.dat b/Amm.dat index b8cbdf86..604e8e32 100644 --- a/Amm.dat +++ b/Amm.dat @@ -1914,10 +1914,11 @@ END # PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT). # Vm(A) is volume of A, cm3/mol, P is pressure, atm, R is the gas constant, T is Kelvin. # Gas-pressures and fugacity coefficients are calculated with Peng-Robinson's EOS. -# Binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are +# These binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are # hard-coded in calc_PR(): # kij CH4 CO2 H2S N2 # H2O 0.49 0.19 0.19 0.49 +# but are overwritten by the data block GAS_BINARY_PARAMETERS of this file. # ============================================================================================= # The molar volumes of solids are entered with # -Vm vm cm3/mol diff --git a/phreeqc.dat b/phreeqc.dat index 9ead9b54..00ca4920 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -1918,10 +1918,11 @@ END # PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT). # Vm(A) is volume of A, cm3/mol, P is pressure, atm, R is the gas constant, T is Kelvin. # Gas-pressures and fugacity coefficients are calculated with Peng-Robinson's EOS. -# Binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are +# These binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are # hard-coded in calc_PR(): # kij CH4 CO2 H2S N2 # H2O 0.49 0.19 0.19 0.49 +# but are overwritten by the data block GAS_BINARY_PARAMETERS of this file. # ============================================================================================= # The molar volumes of solids are entered with # -Vm vm cm3/mol diff --git a/phreeqc_rates.dat b/phreeqc_rates.dat index fb2715b5..9ee0f4d6 100644 --- a/phreeqc_rates.dat +++ b/phreeqc_rates.dat @@ -3104,10 +3104,11 @@ Wollastonite -6.97 700 56 0.4 0 0 # PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT). # Vm(A) is volume of A, cm3/mol, P is pressure, atm, R is the gas constant, T is Kelvin. # Gas-pressures and fugacity coefficients are calculated with Peng-Robinson's EOS. -# Binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are +# These binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are # hard-coded in calc_PR(): # kij CH4 CO2 H2S N2 # H2O 0.49 0.19 0.19 0.49 +# but are overwritten by the data block GAS_BINARY_PARAMETERS of this file. # ============================================================================================= # The molar volumes of solids are entered with # -Vm vm cm3/mol diff --git a/pitzer.dat b/pitzer.dat index 73042e31..eb1c87f2 100644 --- a/pitzer.dat +++ b/pitzer.dat @@ -987,10 +987,11 @@ END # PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT). # Vm(A) is volume of A, cm3/mol, P is pressure, atm, R is the gas constant, T is Kelvin. # Gas-pressures and fugacity coefficients are calculated with Peng-Robinson's EOS. -# Binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are +# These binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are # hard-coded in calc_PR(): # kij CH4 CO2 H2S N2 # H2O 0.49 0.19 0.19 0.49 +# but are overwritten by the data block GAS_BINARY_PARAMETERS of this file. # ============================================================================================= # The molar volumes of solids are entered with # -Vm vm cm3/mol From 48e4f3231506cb50a96f0064e3ce6fb2e52565ea Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Wed, 13 Nov 2024 18:19:41 -0700 Subject: [PATCH 237/384] [phreeqc3] Updated outputs for 3.8.4 --- ex1.out | 1 + ex10.out | 1 + ex11.out | 1 + ex12.out | 1 + ex12a.out | 1 + ex13a.out | 1 + ex13ac.out | 1 + ex13b.out | 1 + ex13c.out | 1 + ex14.out | 1 + ex16.out | 1 + ex17.out | 9 +- ex17b.out | 97 +- ex18.out | 1 + ex19.out | 1 + ex19b.out | 1 + ex2.out | 1 + ex21.out | 1 + ex22.out | 4410 ++++++++++++++++++++++++++-------------------------- ex2b.out | 1 + ex3.out | 1 + ex4.out | 1 + ex5.out | 1 + ex6.out | 1 + ex7.out | 1 + ex8.out | 3 +- ex9.out | 1 + 27 files changed, 2286 insertions(+), 2256 deletions(-) diff --git a/ex1.out b/ex1.out index 62b2a326..5fba5bd6 100644 --- a/ex1.out +++ b/ex1.out @@ -9,6 +9,7 @@ Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES + GAS_BINARY_PARAMETERS EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES diff --git a/ex10.out b/ex10.out index 5a0f521d..0734f3a0 100644 --- a/ex10.out +++ b/ex10.out @@ -9,6 +9,7 @@ Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES + GAS_BINARY_PARAMETERS EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES diff --git a/ex11.out b/ex11.out index 47df60a7..cdb77f30 100644 --- a/ex11.out +++ b/ex11.out @@ -9,6 +9,7 @@ Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES + GAS_BINARY_PARAMETERS EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES diff --git a/ex12.out b/ex12.out index 3ce78bc9..9058b864 100644 --- a/ex12.out +++ b/ex12.out @@ -9,6 +9,7 @@ Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES + GAS_BINARY_PARAMETERS EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES diff --git a/ex12a.out b/ex12a.out index f8fc81e7..b66ac9d5 100644 --- a/ex12a.out +++ b/ex12a.out @@ -9,6 +9,7 @@ Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES + GAS_BINARY_PARAMETERS EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES diff --git a/ex13a.out b/ex13a.out index b4c072b2..466f1b4d 100644 --- a/ex13a.out +++ b/ex13a.out @@ -9,6 +9,7 @@ Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES + GAS_BINARY_PARAMETERS EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES diff --git a/ex13ac.out b/ex13ac.out index a83605a0..270f50d0 100644 --- a/ex13ac.out +++ b/ex13ac.out @@ -9,6 +9,7 @@ Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES + GAS_BINARY_PARAMETERS EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES diff --git a/ex13b.out b/ex13b.out index d91b1ae3..f344d133 100644 --- a/ex13b.out +++ b/ex13b.out @@ -9,6 +9,7 @@ Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES + GAS_BINARY_PARAMETERS EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES diff --git a/ex13c.out b/ex13c.out index 815ca21b..133a732a 100644 --- a/ex13c.out +++ b/ex13c.out @@ -9,6 +9,7 @@ Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES + GAS_BINARY_PARAMETERS EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES diff --git a/ex14.out b/ex14.out index fc3343ab..7880b9ae 100644 --- a/ex14.out +++ b/ex14.out @@ -9,6 +9,7 @@ Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES + GAS_BINARY_PARAMETERS EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES diff --git a/ex16.out b/ex16.out index 996b5b97..be43be0f 100644 --- a/ex16.out +++ b/ex16.out @@ -9,6 +9,7 @@ Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES + GAS_BINARY_PARAMETERS EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES diff --git a/ex17.out b/ex17.out index 261b7534..144f5053 100644 --- a/ex17.out +++ b/ex17.out @@ -10,6 +10,7 @@ Reading data base. SOLUTION_SPECIES PHASES PITZER + GAS_BINARY_PARAMETERS EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES @@ -91,10 +92,10 @@ Initial solution 1. Black Sea water pH = 8.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 29777 + Specific Conductance (µS/cm, 25°C) = 29778 Density (g/cm³) = 1.01091 Volume (L) = 1.00789 - Viscosity (mPa s) = 0.92658 + Viscosity (mPa s) = 0.92655 Activity of water = 0.990 Ionic strength (mol/kgw) = 3.751e-01 Mass of water (kg) = 1.000e+00 @@ -213,10 +214,10 @@ Initial solution 2. Composition during halite precipitation pH = 5.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 150248 + Specific Conductance (µS/cm, 25°C) = 150307 Density (g/cm³) = 1.27237 Volume (L) = 1.13163 - Viscosity (mPa s) = 3.75438 + Viscosity (mPa s) = 3.75254 Activity of water = 0.678 Ionic strength (mol/kgw) = 1.111e+01 Mass of water (kg) = 1.000e+00 diff --git a/ex17b.out b/ex17b.out index af74a5b1..54395b15 100644 --- a/ex17b.out +++ b/ex17b.out @@ -10,6 +10,7 @@ Reading data base. SOLUTION_SPECIES PHASES PITZER + GAS_BINARY_PARAMETERS EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES @@ -93,10 +94,10 @@ Initial solution 1. Black Sea water pH = 8.000 pe = 4.000 - Specific Conductance (µS/cm, 25°C) = 29777 + Specific Conductance (µS/cm, 25°C) = 29778 Density (g/cm³) = 1.01091 Volume (L) = 1.00789 - Viscosity (mPa s) = 0.92658 + Viscosity (mPa s) = 0.92655 Activity of water = 0.990 Ionic strength (mol/kgw) = 3.751e-01 Mass of water (kg) = 1.000e+00 @@ -256,10 +257,10 @@ Polyhalite -9.73 -23.47 -13.74 0.000e+00 0 0.000e+00 pH = 8.000 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 29777 + Specific Conductance (µS/cm, 25°C) = 29778 Density (g/cm³) = 1.01091 Volume (L) = 1.00789 - Viscosity (mPa s) = 0.92658 + Viscosity (mPa s) = 0.92655 Activity of water = 0.990 Ionic strength (mol/kgw) = 3.751e-01 Mass of water (kg) = 1.000e+00 @@ -415,10 +416,10 @@ Polyhalite -7.26 -21.00 -13.74 0.000e+00 0 0.000e+00 pH = 7.848 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 73063 + Specific Conductance (µS/cm, 25°C) = 73067 Density (g/cm³) = 1.03527 Volume (L) = 0.35767 - Viscosity (mPa s) = 0.99372 + Viscosity (mPa s) = 0.99366 Activity of water = 0.972 Ionic strength (mol/kgw) = 1.065e+00 Mass of water (kg) = 3.514e-01 @@ -574,10 +575,10 @@ Polyhalite -6.70 -20.44 -13.74 0.000e+00 0 0.000e+00 pH = 7.793 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 88035 + Specific Conductance (µS/cm, 25°C) = 88040 Density (g/cm³) = 1.04464 Volume (L) = 0.28547 - Viscosity (mPa s) = 1.02215 + Viscosity (mPa s) = 1.02207 Activity of water = 0.965 Ionic strength (mol/kgw) = 1.340e+00 Mass of water (kg) = 2.794e-01 @@ -733,10 +734,10 @@ Polyhalite -5.93 -19.68 -13.74 0.000e+00 0 0.000e+00 pH = 7.710 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 111017 + Specific Conductance (µS/cm, 25°C) = 111026 Density (g/cm³) = 1.06016 Volume (L) = 0.21331 - Viscosity (mPa s) = 1.07296 + Viscosity (mPa s) = 1.07286 Activity of water = 0.952 Ionic strength (mol/kgw) = 1.805e+00 Mass of water (kg) = 2.073e-01 @@ -892,10 +893,10 @@ Polyhalite -4.92 -18.67 -13.74 0.000e+00 0 0.000e+00 pH = 7.595 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 149892 + Specific Conductance (µS/cm, 25°C) = 149908 Density (g/cm³) = 1.09018 Volume (L) = 0.14120 - Viscosity (mPa s) = 1.18635 + Viscosity (mPa s) = 1.18620 Activity of water = 0.923 Ionic strength (mol/kgw) = 2.742e+00 Mass of water (kg) = 1.352e-01 @@ -1051,10 +1052,10 @@ Polyhalite -4.70 -18.44 -13.74 0.000e+00 0 0.000e+00 pH = 7.573 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 163822 + Specific Conductance (µS/cm, 25°C) = 163840 Density (g/cm³) = 1.10237 Volume (L) = 0.12317 - Viscosity (mPa s) = 1.23905 + Viscosity (mPa s) = 1.23888 Activity of water = 0.909 Ionic strength (mol/kgw) = 3.136e+00 Mass of water (kg) = 1.172e-01 @@ -1210,10 +1211,10 @@ Polyhalite -4.40 -18.15 -13.74 0.000e+00 0 0.000e+00 pH = 7.546 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 180062 + Specific Conductance (µS/cm, 25°C) = 180084 Density (g/cm³) = 1.11850 Volume (L) = 0.10515 - Viscosity (mPa s) = 1.31607 + Viscosity (mPa s) = 1.31587 Activity of water = 0.890 Ionic strength (mol/kgw) = 3.673e+00 Mass of water (kg) = 9.912e-02 @@ -1369,10 +1370,10 @@ Polyhalite -4.00 -17.74 -13.74 0.000e+00 0 0.000e+00 pH = 7.508 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 198454 + Specific Conductance (µS/cm, 25°C) = 198480 Density (g/cm³) = 1.14090 Volume (L) = 0.08716 - Viscosity (mPa s) = 1.43886 + Viscosity (mPa s) = 1.43861 Activity of water = 0.861 Ionic strength (mol/kgw) = 4.446e+00 Mass of water (kg) = 8.107e-02 @@ -1528,10 +1529,10 @@ Polyhalite -3.38 -17.12 -13.74 0.000e+00 0 0.000e+00 pH = 7.454 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 217024 + Specific Conductance (µS/cm, 25°C) = 217055 Density (g/cm³) = 1.17419 Volume (L) = 0.06922 - Viscosity (mPa s) = 1.66307 + Viscosity (mPa s) = 1.66275 Activity of water = 0.811 Ionic strength (mol/kgw) = 5.663e+00 Mass of water (kg) = 6.302e-02 @@ -1687,10 +1688,10 @@ Polyhalite -2.55 -16.29 -13.74 0.000e+00 0 0.000e+00 pH = 7.359 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 226248 + Specific Conductance (µS/cm, 25°C) = 226285 Density (g/cm³) = 1.21418 Volume (L) = 0.05088 - Viscosity (mPa s) = 2.03087 + Viscosity (mPa s) = 2.03044 Activity of water = 0.739 Ionic strength (mol/kgw) = 7.301e+00 Mass of water (kg) = 4.504e-02 @@ -1846,10 +1847,10 @@ Polyhalite -1.68 -15.43 -13.74 0.000e+00 0 0.000e+00 pH = 7.364 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 214242 + Specific Conductance (µS/cm, 25°C) = 214294 Density (g/cm³) = 1.21997 Volume (L) = 0.03050 - Viscosity (mPa s) = 2.19817 + Viscosity (mPa s) = 2.19748 Activity of water = 0.729 Ionic strength (mol/kgw) = 7.901e+00 Mass of water (kg) = 2.709e-02 @@ -2005,10 +2006,10 @@ Polyhalite -1.34 -15.08 -13.74 0.000e+00 0 0.000e+00 pH = 7.367 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 207916 + Specific Conductance (µS/cm, 25°C) = 207974 Density (g/cm³) = 1.22336 Volume (L) = 0.02541 - Viscosity (mPa s) = 2.30055 + Viscosity (mPa s) = 2.29973 Activity of water = 0.724 Ionic strength (mol/kgw) = 8.219e+00 Mass of water (kg) = 2.260e-02 @@ -2164,10 +2165,10 @@ Polyhalite -0.87 -14.62 -13.74 0.000e+00 0 0.000e+00 pH = 7.371 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 197853 + Specific Conductance (µS/cm, 25°C) = 197917 Density (g/cm³) = 1.22919 Volume (L) = 0.02033 - Viscosity (mPa s) = 2.48495 + Viscosity (mPa s) = 2.48392 Activity of water = 0.714 Ionic strength (mol/kgw) = 8.723e+00 Mass of water (kg) = 1.810e-02 @@ -2323,10 +2324,10 @@ Polyhalite -0.42 -14.16 -13.74 0.000e+00 0 0.000e+00 pH = 7.375 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 186206 + Specific Conductance (µS/cm, 25°C) = 186274 Density (g/cm³) = 1.23656 Volume (L) = 0.01675 - Viscosity (mPa s) = 2.73450 + Viscosity (mPa s) = 2.73323 Activity of water = 0.702 Ionic strength (mol/kgw) = 9.307e+00 Mass of water (kg) = 1.493e-02 @@ -2482,10 +2483,10 @@ Polyhalite -0.26 -14.00 -13.74 0.000e+00 0 0.000e+00 pH = 7.377 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 181677 + Specific Conductance (µS/cm, 25°C) = 181746 Density (g/cm³) = 1.23961 Volume (L) = 0.01574 - Viscosity (mPa s) = 2.84317 + Viscosity (mPa s) = 2.84181 Activity of water = 0.697 Ionic strength (mol/kgw) = 9.534e+00 Mass of water (kg) = 1.403e-02 @@ -2641,10 +2642,10 @@ Polyhalite -0.08 -13.82 -13.74 0.000e+00 0 0.000e+00 pH = 7.379 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 176353 + Specific Conductance (µS/cm, 25°C) = 176422 Density (g/cm³) = 1.24332 Volume (L) = 0.01472 - Viscosity (mPa s) = 2.98015 + Viscosity (mPa s) = 2.97868 Activity of water = 0.691 Ionic strength (mol/kgw) = 9.803e+00 Mass of water (kg) = 1.313e-02 @@ -2800,10 +2801,10 @@ Polyhalite 0.00 -13.74 -13.74 0.000e+00 2.746e-04 2.746e-04 pH = 7.379 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 170258 + Specific Conductance (µS/cm, 25°C) = 170327 Density (g/cm³) = 1.24638 Volume (L) = 0.01369 - Viscosity (mPa s) = 3.12540 + Viscosity (mPa s) = 3.12380 Activity of water = 0.686 Ionic strength (mol/kgw) = 1.005e+01 Mass of water (kg) = 1.221e-02 @@ -2959,10 +2960,10 @@ Polyhalite 0.00 -13.74 -13.74 2.746e-04 7.008e-04 4.262e-04 pH = 7.378 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 163252 + Specific Conductance (µS/cm, 25°C) = 163322 Density (g/cm³) = 1.24930 Volume (L) = 0.01264 - Viscosity (mPa s) = 3.29229 + Viscosity (mPa s) = 3.29053 Activity of water = 0.680 Ionic strength (mol/kgw) = 1.029e+01 Mass of water (kg) = 1.130e-02 @@ -3118,10 +3119,10 @@ Polyhalite 0.00 -13.74 -13.74 7.008e-04 9.425e-04 2.417e-04 pH = 7.377 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 158442 + Specific Conductance (µS/cm, 25°C) = 158512 Density (g/cm³) = 1.25155 Volume (L) = 0.01201 - Viscosity (mPa s) = 3.41850 + Viscosity (mPa s) = 3.41663 Activity of water = 0.676 Ionic strength (mol/kgw) = 1.047e+01 Mass of water (kg) = 1.075e-02 @@ -3277,10 +3278,10 @@ Polyhalite 0.00 -13.74 -13.74 9.425e-04 1.172e-03 2.296e-04 pH = 7.376 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 153077 + Specific Conductance (µS/cm, 25°C) = 153147 Density (g/cm³) = 1.25429 Volume (L) = 0.01139 - Viscosity (mPa s) = 3.57162 + Viscosity (mPa s) = 3.56962 Activity of water = 0.672 Ionic strength (mol/kgw) = 1.068e+01 Mass of water (kg) = 1.020e-02 @@ -3436,10 +3437,10 @@ Polyhalite 0.00 -13.74 -13.74 1.172e-03 1.369e-03 1.969e-04 pH = 7.378 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 147417 + Specific Conductance (µS/cm, 25°C) = 147486 Density (g/cm³) = 1.25755 Volume (L) = 0.01081 - Viscosity (mPa s) = 3.74839 + Viscosity (mPa s) = 3.74624 Activity of water = 0.667 Ionic strength (mol/kgw) = 1.091e+01 Mass of water (kg) = 9.689e-03 @@ -3595,10 +3596,10 @@ Polyhalite 0.00 -13.74 -13.74 1.369e-03 1.563e-03 1.942e-04 pH = 7.386 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 140319 + Specific Conductance (µS/cm, 25°C) = 140386 Density (g/cm³) = 1.26219 Volume (L) = 0.01020 - Viscosity (mPa s) = 3.99402 + Viscosity (mPa s) = 3.99168 Activity of water = 0.660 Ionic strength (mol/kgw) = 1.122e+01 Mass of water (kg) = 9.142e-03 @@ -3754,10 +3755,10 @@ Polyhalite 0.00 -13.74 -13.74 1.563e-03 1.740e-03 1.768e-04 pH = 7.394 Charge balance pe = 4.000 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 132216 + Specific Conductance (µS/cm, 25°C) = 132282 Density (g/cm³) = 1.26804 Volume (L) = 0.00958 - Viscosity (mPa s) = 4.31212 + Viscosity (mPa s) = 4.30954 Activity of water = 0.652 Ionic strength (mol/kgw) = 1.158e+01 Mass of water (kg) = 8.595e-03 diff --git a/ex18.out b/ex18.out index 754b31a2..a049fc33 100644 --- a/ex18.out +++ b/ex18.out @@ -9,6 +9,7 @@ Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES + GAS_BINARY_PARAMETERS EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES diff --git a/ex19.out b/ex19.out index c2e5f346..50db0d4f 100644 --- a/ex19.out +++ b/ex19.out @@ -9,6 +9,7 @@ Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES + GAS_BINARY_PARAMETERS EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES diff --git a/ex19b.out b/ex19b.out index b006a676..9d4101bb 100644 --- a/ex19b.out +++ b/ex19b.out @@ -9,6 +9,7 @@ Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES + GAS_BINARY_PARAMETERS EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES diff --git a/ex2.out b/ex2.out index 5f7b0134..cd8e570f 100644 --- a/ex2.out +++ b/ex2.out @@ -9,6 +9,7 @@ Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES + GAS_BINARY_PARAMETERS EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES diff --git a/ex21.out b/ex21.out index 0f28b739..d0770472 100644 --- a/ex21.out +++ b/ex21.out @@ -9,6 +9,7 @@ Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES + GAS_BINARY_PARAMETERS EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES diff --git a/ex22.out b/ex22.out index 12ba92e7..c955f765 100644 --- a/ex22.out +++ b/ex22.out @@ -1,6 +1,6 @@ - Input file: C:\GitPrograms\phreeqc3-1\examples\ex22 - Output file: C:\GitPrograms\phreeqc3-1\examples\ex22.out -Database file: C:\Program Files (x86)\USGS\Phreeqc Interactive 3.8.2-16969\database\phreeqc.dat + Input file: ../examples/ex22 + Output file: ex22.out +Database file: ../database/phreeqc.dat ------------------ Reading data base. @@ -9,6 +9,7 @@ Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES + GAS_BINARY_PARAMETERS EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES @@ -73,15 +74,15 @@ Initial solution 1. pH = 7.000 pe = 4.000 - Specific Conductance (uS/cm, 25oC) = 0 - Density (g/cm3) = 0.99704 + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99704 Volume (L) = 1.00297 Viscosity (mPa s) = 0.89002 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.007e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.217e-09 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.60 Iterations = 0 @@ -91,7 +92,7 @@ Initial solution 1. ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.013e-07 1.012e-07 -6.995 -6.995 -0.000 -4.14 H+ 1.001e-07 1.000e-07 -7.000 -7.000 -0.000 0.00 @@ -162,15 +163,15 @@ H2O(g) -1.50 3.143e-02 1.000 0.000e+00 1.285e-03 1.285e-03 pH = 7.000 Charge balance pe = 11.047 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 0 - Density (g/cm3) = 0.99700 + Specific Conductance (µS/cm, 25°C) = 0 + Density (g/cm³) = 0.99700 Volume (L) = 1.00299 Viscosity (mPa s) = 0.89004 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.006e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.217e-09 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 0.03 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.60 @@ -181,7 +182,7 @@ H2O(g) -1.50 3.143e-02 1.000 0.000e+00 1.285e-03 1.285e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.013e-07 1.012e-07 -6.995 -6.995 -0.000 -4.14 H+ 1.000e-07 1.000e-07 -7.000 -7.000 -0.000 0.00 @@ -245,17 +246,17 @@ H2O(g) -1.45 3.586e-02 0.878 1.285e-03 1.587e-03 3.014e-04 ----------------------------Description of solution---------------------------- pH = 3.368 Charge balance - pe = 14.674 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 165 - Density (g/cm3) = 1.00156 + pe = 14.672 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 164 + Density (g/cm³) = 1.00156 Volume (L) = 1.01670 - Viscosity (mPa s) = 0.89006 + Viscosity (mPa s) = 0.91920 Activity of water = 0.993 Ionic strength (mol/kgw) = 4.384e-04 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 4.161e-01 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 13.23 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -266,28 +267,28 @@ H2O(g) -1.45 3.586e-02 0.878 1.285e-03 1.587e-03 3.014e-04 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 4.384e-04 4.284e-04 -3.358 -3.368 -0.010 0.00 OH- 2.430e-11 2.372e-11 -10.614 -10.625 -0.010 -4.07 H2O 5.551e+01 9.930e-01 1.744 -0.003 0.000 18.06 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.337 -120.337 0.000 35.47 + CH4 0.000e+00 0.000e+00 -120.321 -120.321 0.000 35.47 C(4) 4.161e-01 CO2 4.095e-01 4.096e-01 -0.388 -0.388 0.000 34.43 (CO2)2 3.079e-03 3.079e-03 -2.512 -2.512 0.000 68.85 HCO3- 4.384e-04 4.282e-04 -3.358 -3.368 -0.010 24.61 CO3-2 5.227e-11 4.754e-11 -10.282 -10.323 -0.041 -3.86 -H(0) 1.149e-39 - H2 5.745e-40 5.746e-40 -39.241 -39.241 0.000 28.60 -O(0) 2.426e-14 - O2 1.213e-14 1.213e-14 -13.916 -13.916 0.000 30.38 +H(0) 1.160e-39 + H2 5.798e-40 5.798e-40 -39.237 -39.237 0.000 28.60 +O(0) 2.383e-14 + O2 1.191e-14 1.192e-14 -13.924 -13.924 0.000 30.38 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 13 atm) - CH4(g) -117.53 -120.34 -2.81 CH4 + CH4(g) -117.51 -120.32 -2.81 CH4 CO2(g) 1.09 -0.39 -1.48 CO2 Pressure 13.2 atm, phi 0.928 H2(g) -36.13 -39.24 -3.11 H2 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.878 @@ -339,17 +340,17 @@ H2O(g) -1.38 4.125e-02 0.766 1.587e-03 1.998e-03 4.108e-04 ----------------------------Description of solution---------------------------- pH = 3.241 Charge balance - pe = 14.795 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 218 - Density (g/cm3) = 1.00523 + pe = 14.793 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 216 + Density (g/cm³) = 1.00523 Volume (L) = 1.02762 - Viscosity (mPa s) = 0.88995 + Viscosity (mPa s) = 0.94202 Activity of water = 0.987 Ionic strength (mol/kgw) = 5.901e-04 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 7.506e-01 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 25.84 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -360,32 +361,32 @@ H2O(g) -1.38 4.125e-02 0.766 1.587e-03 1.998e-03 4.108e-04 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 5.901e-04 5.746e-04 -3.229 -3.241 -0.012 0.00 OH- 1.829e-11 1.779e-11 -10.738 -10.750 -0.012 -4.02 H2O 5.551e+01 9.874e-01 1.744 -0.006 0.000 18.05 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.036 -120.036 0.000 35.49 + CH4 0.000e+00 0.000e+00 -120.022 -120.022 0.000 35.49 C(4) 7.506e-01 CO2 7.304e-01 7.304e-01 -0.136 -0.136 0.000 34.42 (CO2)2 9.792e-03 9.794e-03 -2.009 -2.009 0.000 68.84 HCO3- 5.901e-04 5.742e-04 -3.229 -3.241 -0.012 24.66 CO3-2 5.380e-11 4.823e-11 -10.269 -10.317 -0.047 -3.73 -H(0) 1.167e-39 - H2 5.836e-40 5.837e-40 -39.234 -39.234 0.000 28.59 -O(0) 2.264e-14 - O2 1.132e-14 1.132e-14 -13.946 -13.946 0.000 30.36 +H(0) 1.177e-39 + H2 5.884e-40 5.885e-40 -39.230 -39.230 0.000 28.59 +O(0) 2.227e-14 + O2 1.114e-14 1.114e-14 -13.953 -13.953 0.000 30.36 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 26 atm) - CH4(g) -117.22 -120.04 -2.82 CH4 + CH4(g) -117.20 -120.02 -2.82 CH4 CO2(g) 1.35 -0.14 -1.48 CO2 Pressure 25.8 atm, phi 0.862 H2(g) -36.12 -39.23 -3.11 H2 H2O(g) -1.50 -0.01 1.49 H2O Pressure 0.0 atm, phi 0.766 - O2(g) -11.04 -13.95 -2.91 O2 + O2(g) -11.05 -13.95 -2.91 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -433,17 +434,17 @@ H2O(g) -1.32 4.764e-02 0.666 1.998e-03 2.555e-03 5.569e-04 ----------------------------Description of solution---------------------------- pH = 3.178 Charge balance - pe = 14.834 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 248 - Density (g/cm3) = 1.00802 + pe = 14.865 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 245 + Density (g/cm³) = 1.00802 Volume (L) = 1.03574 - Viscosity (mPa s) = 0.88983 + Viscosity (mPa s) = 0.95902 Activity of water = 0.983 Ionic strength (mol/kgw) = 6.833e-04 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.002e+00 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 37.31 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -454,32 +455,32 @@ H2O(g) -1.32 4.764e-02 0.666 1.998e-03 2.555e-03 5.569e-04 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 6.833e-04 6.641e-04 -3.165 -3.178 -0.012 0.00 OH- 1.595e-11 1.548e-11 -10.797 -10.810 -0.013 -3.98 H2O 5.551e+01 9.832e-01 1.744 -0.007 0.000 18.04 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.730 -119.730 0.000 35.51 + CH4 0.000e+00 0.000e+00 -119.972 -119.972 0.000 35.51 C(4) 1.002e+00 CO2 9.669e-01 9.670e-01 -0.015 -0.015 0.000 34.42 (CO2)2 1.716e-02 1.717e-02 -1.765 -1.765 0.000 68.83 HCO3- 6.833e-04 6.636e-04 -3.165 -3.178 -0.013 24.70 CO3-2 5.494e-11 4.887e-11 -10.260 -10.311 -0.051 -3.61 -H(0) 1.283e-39 - H2 6.416e-40 6.418e-40 -39.193 -39.193 0.000 28.59 -O(0) 1.813e-14 - O2 9.065e-15 9.066e-15 -14.043 -14.043 0.000 30.35 +H(0) 1.117e-39 + H2 5.584e-40 5.585e-40 -39.253 -39.253 0.000 28.59 +O(0) 2.393e-14 + O2 1.197e-14 1.197e-14 -13.922 -13.922 0.000 30.35 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 37 atm) - CH4(g) -116.91 -119.73 -2.82 CH4 + CH4(g) -117.15 -119.97 -2.82 CH4 CO2(g) 1.48 -0.01 -1.49 CO2 Pressure 37.3 atm, phi 0.803 - H2(g) -36.07 -39.19 -3.12 H2 + H2(g) -36.13 -39.25 -3.12 H2 H2O(g) -1.50 -0.01 1.49 H2O Pressure 0.0 atm, phi 0.666 - O2(g) -11.13 -14.04 -2.91 O2 + O2(g) -11.01 -13.92 -2.91 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -527,17 +528,17 @@ H2O(g) -1.26 5.498e-02 0.580 2.555e-03 3.300e-03 7.455e-04 ----------------------------Description of solution---------------------------- pH = 3.142 Charge balance - pe = 14.904 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 267 - Density (g/cm3) = 1.01002 + pe = 14.877 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 263 + Density (g/cm³) = 1.01002 Volume (L) = 1.04130 - Viscosity (mPa s) = 0.88973 + Viscosity (mPa s) = 0.97075 Activity of water = 0.980 Ionic strength (mol/kgw) = 7.422e-04 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.177e+00 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 47.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -548,32 +549,32 @@ H2O(g) -1.26 5.498e-02 0.580 2.555e-03 3.300e-03 7.455e-04 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 7.422e-04 7.206e-04 -3.129 -3.142 -0.013 0.00 OH- 1.480e-11 1.435e-11 -10.830 -10.843 -0.013 -3.94 H2O 5.551e+01 9.804e-01 1.744 -0.009 0.000 18.03 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.941 -119.941 0.000 35.52 + CH4 0.000e+00 0.000e+00 -119.727 -119.727 0.000 35.52 C(4) 1.177e+00 CO2 1.129e+00 1.129e+00 0.053 0.053 0.000 34.41 (CO2)2 2.341e-02 2.341e-02 -1.631 -1.631 0.000 68.82 HCO3- 7.422e-04 7.200e-04 -3.129 -3.143 -0.013 24.73 CO3-2 5.582e-11 4.942e-11 -10.253 -10.306 -0.053 -3.52 -H(0) 1.083e-39 - H2 5.416e-40 5.417e-40 -39.266 -39.266 0.000 28.58 -O(0) 2.478e-14 - O2 1.239e-14 1.239e-14 -13.907 -13.907 0.000 30.33 +H(0) 1.226e-39 + H2 6.128e-40 6.130e-40 -39.213 -39.213 0.000 28.58 +O(0) 1.936e-14 + O2 9.678e-15 9.679e-15 -14.014 -14.014 0.000 30.33 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 47 atm) - CH4(g) -117.11 -119.94 -2.83 CH4 + CH4(g) -116.90 -119.73 -2.83 CH4 CO2(g) 1.55 0.05 -1.50 CO2 Pressure 47.0 atm, phi 0.753 - H2(g) -36.14 -39.27 -3.12 H2 + H2(g) -36.09 -39.21 -3.12 H2 H2O(g) -1.50 -0.01 1.49 H2O Pressure 0.1 atm, phi 0.580 - O2(g) -10.99 -13.91 -2.92 O2 + O2(g) -11.10 -14.01 -2.92 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -621,17 +622,17 @@ H2O(g) -1.20 6.307e-02 0.507 3.300e-03 4.278e-03 9.775e-04 ----------------------------Description of solution---------------------------- pH = 3.122 Charge balance - pe = 14.847 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 278 - Density (g/cm3) = 1.01134 + pe = 14.890 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 273 + Density (g/cm³) = 1.01134 Volume (L) = 1.04476 - Viscosity (mPa s) = 0.88965 + Viscosity (mPa s) = 0.97819 Activity of water = 0.979 Ionic strength (mol/kgw) = 7.783e-04 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.288e+00 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 54.79 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -642,32 +643,32 @@ H2O(g) -1.20 6.307e-02 0.507 3.300e-03 4.278e-03 9.775e-04 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 7.783e-04 7.552e-04 -3.109 -3.122 -0.013 0.00 OH- 1.421e-11 1.376e-11 -10.848 -10.861 -0.014 -3.91 H2O 5.551e+01 9.786e-01 1.744 -0.009 0.000 18.03 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.289 -119.289 0.000 35.53 + CH4 0.000e+00 0.000e+00 -119.630 -119.630 0.000 35.53 C(4) 1.288e+00 CO2 1.232e+00 1.232e+00 0.090 0.091 0.000 34.41 (CO2)2 2.784e-02 2.785e-02 -1.555 -1.555 0.000 68.82 HCO3- 7.783e-04 7.545e-04 -3.109 -3.122 -0.014 24.76 CO3-2 5.646e-11 4.985e-11 -10.248 -10.302 -0.054 -3.44 -H(0) 1.533e-39 - H2 7.663e-40 7.664e-40 -39.116 -39.116 0.000 28.58 -O(0) 1.214e-14 - O2 6.068e-15 6.069e-15 -14.217 -14.217 0.000 30.32 +H(0) 1.260e-39 + H2 6.298e-40 6.299e-40 -39.201 -39.201 0.000 28.58 +O(0) 1.797e-14 + O2 8.983e-15 8.984e-15 -14.047 -14.047 0.000 30.32 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 55 atm) - CH4(g) -116.45 -119.29 -2.84 CH4 + CH4(g) -116.79 -119.63 -2.84 CH4 CO2(g) 1.59 0.09 -1.50 CO2 Pressure 54.7 atm, phi 0.713 - H2(g) -35.99 -39.12 -3.13 H2 + H2(g) -36.07 -39.20 -3.13 H2 H2O(g) -1.50 -0.01 1.49 H2O Pressure 0.1 atm, phi 0.507 - O2(g) -11.30 -14.22 -2.92 O2 + O2(g) -11.13 -14.05 -2.92 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -715,17 +716,17 @@ H2O(g) -1.15 7.157e-02 0.448 4.278e-03 5.528e-03 1.251e-03 ----------------------------Description of solution---------------------------- pH = 3.111 Charge balance - pe = 14.888 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 284 - Density (g/cm3) = 1.01215 + pe = 14.943 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 279 + Density (g/cm³) = 1.01215 Volume (L) = 1.04668 - Viscosity (mPa s) = 0.88959 + Viscosity (mPa s) = 0.98243 Activity of water = 0.978 Ionic strength (mol/kgw) = 7.989e-04 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.352e+00 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 60.25 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -736,32 +737,32 @@ H2O(g) -1.15 7.157e-02 0.448 4.278e-03 5.528e-03 1.251e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 7.989e-04 7.748e-04 -3.098 -3.111 -0.013 0.00 OH- 1.390e-11 1.347e-11 -10.857 -10.871 -0.014 -3.89 H2O 5.551e+01 9.775e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.509 -119.509 0.000 35.54 + CH4 0.000e+00 0.000e+00 -119.948 -119.948 0.000 35.54 C(4) 1.352e+00 CO2 1.290e+00 1.290e+00 0.111 0.111 0.000 34.40 (CO2)2 3.055e-02 3.055e-02 -1.515 -1.515 0.000 68.81 HCO3- 7.989e-04 7.741e-04 -3.098 -3.111 -0.014 24.77 CO3-2 5.690e-11 5.016e-11 -10.245 -10.300 -0.055 -3.39 -H(0) 1.328e-39 - H2 6.640e-40 6.641e-40 -39.178 -39.178 0.000 28.58 -O(0) 1.595e-14 - O2 7.973e-15 7.975e-15 -14.098 -14.098 0.000 30.31 +H(0) 1.032e-39 + H2 5.158e-40 5.159e-40 -39.288 -39.287 0.000 28.58 +O(0) 2.643e-14 + O2 1.321e-14 1.322e-14 -13.879 -13.879 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 60 atm) - CH4(g) -116.67 -119.51 -2.84 CH4 + CH4(g) -117.11 -119.95 -2.84 CH4 CO2(g) 1.62 0.11 -1.50 CO2 Pressure 60.2 atm, phi 0.685 - H2(g) -36.05 -39.18 -3.13 H2 + H2(g) -36.16 -39.29 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.448 - O2(g) -11.17 -14.10 -2.92 O2 + O2(g) -10.95 -13.88 -2.92 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -809,17 +810,17 @@ H2O(g) -1.10 8.014e-02 0.401 5.528e-03 7.089e-03 1.561e-03 ----------------------------Description of solution---------------------------- pH = 3.105 Charge balance - pe = 14.924 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 287 - Density (g/cm3) = 1.01257 + pe = 14.977 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 282 + Density (g/cm³) = 1.01257 Volume (L) = 1.04759 - Viscosity (mPa s) = 0.88955 + Viscosity (mPa s) = 0.98452 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.092e-04 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.384e+00 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 63.57 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -830,32 +831,32 @@ H2O(g) -1.10 8.014e-02 0.401 5.528e-03 7.089e-03 1.561e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.092e-04 7.847e-04 -3.092 -3.105 -0.013 0.00 OH- 1.376e-11 1.333e-11 -10.861 -10.875 -0.014 -3.88 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.743 -119.742 0.000 35.54 + CH4 0.000e+00 0.000e+00 -120.171 -120.171 0.000 35.54 C(4) 1.384e+00 CO2 1.319e+00 1.319e+00 0.120 0.120 0.000 34.40 (CO2)2 3.193e-02 3.194e-02 -1.496 -1.496 0.000 68.81 HCO3- 8.092e-04 7.839e-04 -3.092 -3.106 -0.014 24.78 CO3-2 5.716e-11 5.035e-11 -10.243 -10.298 -0.055 -3.36 -H(0) 1.151e-39 - H2 5.757e-40 5.758e-40 -39.240 -39.240 0.000 28.58 -O(0) 2.104e-14 - O2 1.052e-14 1.052e-14 -13.978 -13.978 0.000 30.31 +H(0) 8.998e-40 + H2 4.499e-40 4.500e-40 -39.347 -39.347 0.000 28.58 +O(0) 3.445e-14 + O2 1.723e-14 1.723e-14 -13.764 -13.764 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 64 atm) - CH4(g) -116.90 -119.74 -2.84 CH4 + CH4(g) -117.33 -120.17 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 63.5 atm, phi 0.667 - H2(g) -36.11 -39.24 -3.13 H2 + H2(g) -36.21 -39.35 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.401 - O2(g) -11.05 -13.98 -2.93 O2 + O2(g) -10.84 -13.76 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -903,17 +904,17 @@ H2O(g) -1.05 8.845e-02 0.364 7.089e-03 8.995e-03 1.905e-03 ----------------------------Description of solution---------------------------- pH = 3.103 Charge balance - pe = 14.798 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 289 - Density (g/cm3) = 1.01273 + pe = 14.980 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 283 + Density (g/cm³) = 1.01273 Volume (L) = 1.04788 - Viscosity (mPa s) = 0.88954 + Viscosity (mPa s) = 0.98529 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.131e-04 Mass of water (kg) = 9.998e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.395e+00 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 65.04 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -924,32 +925,32 @@ H2O(g) -1.05 8.845e-02 0.364 7.089e-03 8.995e-03 1.905e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.131e-04 7.884e-04 -3.090 -3.103 -0.013 0.00 OH- 1.372e-11 1.328e-11 -10.863 -10.877 -0.014 -3.87 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -118.718 -118.718 0.000 35.54 + CH4 0.000e+00 0.000e+00 -120.173 -120.173 0.000 35.54 C(4) 1.395e+00 CO2 1.329e+00 1.330e+00 0.124 0.124 0.000 34.40 (CO2)2 3.244e-02 3.245e-02 -1.489 -1.489 0.000 68.81 HCO3- 8.131e-04 7.876e-04 -3.090 -3.104 -0.014 24.79 CO3-2 5.727e-11 5.043e-11 -10.242 -10.297 -0.055 -3.35 -H(0) 2.069e-39 - H2 1.035e-39 1.035e-39 -38.985 -38.985 0.000 28.58 -O(0) 6.492e-15 - O2 3.246e-15 3.246e-15 -14.489 -14.489 0.000 30.31 +H(0) 8.956e-40 + H2 4.478e-40 4.479e-40 -39.349 -39.349 0.000 28.58 +O(0) 3.466e-14 + O2 1.733e-14 1.733e-14 -13.761 -13.761 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -115.88 -118.72 -2.84 CH4 + CH4(g) -117.33 -120.17 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.0 atm, phi 0.658 - H2(g) -35.85 -38.99 -3.13 H2 + H2(g) -36.22 -39.35 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.364 - O2(g) -11.56 -14.49 -2.93 O2 + O2(g) -10.83 -13.76 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -997,53 +998,53 @@ H2O(g) -1.02 9.646e-02 0.334 8.995e-03 1.127e-02 2.272e-03 ----------------------------Description of solution---------------------------- pH = 3.103 Charge balance - pe = 2.388 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 289 - Density (g/cm3) = 1.01275 + pe = 14.928 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 283 + Density (g/cm³) = 1.01275 Volume (L) = 1.04787 - Viscosity (mPa s) = 0.88954 + Viscosity (mPa s) = 0.98535 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.134e-04 Mass of water (kg) = 9.998e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.396e+00 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 65.20 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 64 + Iterations = 44 Total H = 1.109899e+02 Total O = 5.828669e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.134e-04 7.888e-04 -3.090 -3.103 -0.013 0.00 OH- 1.371e-11 1.328e-11 -10.863 -10.877 -0.014 -3.87 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.02 -C(-4) 3.632e-20 - CH4 3.632e-20 3.632e-20 -19.440 -19.440 0.000 35.54 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.759 -119.759 0.000 35.54 C(4) 1.396e+00 CO2 1.330e+00 1.331e+00 0.124 0.124 0.000 34.40 (CO2)2 3.249e-02 3.250e-02 -1.488 -1.488 0.000 68.81 HCO3- 8.134e-04 7.880e-04 -3.090 -3.103 -0.014 24.79 CO3-2 5.728e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 -H(0) 1.366e-14 - H2 6.828e-15 6.830e-15 -14.166 -14.166 0.000 28.58 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.128 -64.128 0.000 30.31 +H(0) 1.136e-39 + H2 5.681e-40 5.682e-40 -39.246 -39.245 0.000 28.58 +O(0) 2.152e-14 + O2 1.076e-14 1.076e-14 -13.968 -13.968 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -16.60 -19.44 -2.84 CH4 + CH4(g) -116.92 -119.76 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.1 atm, phi 0.657 - H2(g) -11.03 -14.17 -3.13 H2 + H2(g) -36.11 -39.25 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.334 - O2(g) -61.20 -64.13 -2.93 O2 + O2(g) -11.04 -13.97 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1091,17 +1092,17 @@ H2O(g) -0.98 1.051e-01 0.306 1.127e-02 1.389e-02 2.628e-03 ----------------------------Description of solution---------------------------- pH = 3.103 Charge balance - pe = 2.213 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 289 - Density (g/cm3) = 1.01275 + pe = 14.901 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 283 + Density (g/cm³) = 1.01275 Volume (L) = 1.04780 - Viscosity (mPa s) = 0.88954 + Viscosity (mPa s) = 0.98532 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.133e-04 Mass of water (kg) = 9.997e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.396e+00 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 65.19 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -1112,32 +1113,32 @@ H2O(g) -0.98 1.051e-01 0.306 1.127e-02 1.389e-02 2.628e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.133e-04 7.886e-04 -3.090 -3.103 -0.013 0.00 OH- 1.371e-11 1.328e-11 -10.863 -10.877 -0.014 -3.87 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.02 -C(-4) 9.177e-19 - CH4 9.177e-19 9.179e-19 -18.037 -18.037 0.000 35.54 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.538 -119.538 0.000 35.54 C(4) 1.396e+00 CO2 1.330e+00 1.330e+00 0.124 0.124 0.000 34.40 (CO2)2 3.246e-02 3.247e-02 -1.489 -1.489 0.000 68.81 HCO3- 8.133e-04 7.878e-04 -3.090 -3.104 -0.014 24.79 CO3-2 5.728e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 -H(0) 3.062e-14 - H2 1.531e-14 1.531e-14 -13.815 -13.815 0.000 28.58 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.829 -64.829 0.000 30.31 +H(0) 1.291e-39 + H2 6.453e-40 6.454e-40 -39.190 -39.190 0.000 28.58 +O(0) 1.668e-14 + O2 8.341e-15 8.343e-15 -14.079 -14.079 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -15.19 -18.04 -2.84 CH4 + CH4(g) -116.70 -119.54 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.1 atm, phi 0.657 - H2(g) -10.68 -13.81 -3.13 H2 + H2(g) -36.06 -39.19 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.306 - O2(g) -61.90 -64.83 -2.93 O2 + O2(g) -11.15 -14.08 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1185,53 +1186,53 @@ H2O(g) -0.94 1.145e-01 0.281 1.389e-02 1.691e-02 3.018e-03 ----------------------------Description of solution---------------------------- pH = 3.103 Charge balance - pe = 2.090 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 289 - Density (g/cm3) = 1.01273 + pe = 14.638 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 283 + Density (g/cm³) = 1.01273 Volume (L) = 1.04770 - Viscosity (mPa s) = 0.88954 + Viscosity (mPa s) = 0.98522 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.129e-04 Mass of water (kg) = 9.997e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.394e+00 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 65.17 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 46 + Iterations = 47 Total H = 1.109786e+02 Total O = 5.827687e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.129e-04 7.882e-04 -3.090 -3.103 -0.013 0.00 OH- 1.372e-11 1.328e-11 -10.863 -10.877 -0.014 -3.87 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.02 -C(-4) 8.861e-18 - CH4 8.861e-18 8.863e-18 -17.052 -17.052 0.000 35.54 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -117.437 -117.437 0.000 35.54 C(4) 1.394e+00 CO2 1.329e+00 1.329e+00 0.123 0.123 0.000 34.40 (CO2)2 3.240e-02 3.241e-02 -1.489 -1.489 0.000 68.81 HCO3- 8.129e-04 7.875e-04 -3.090 -3.104 -0.014 24.79 CO3-2 5.727e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 -H(0) 5.400e-14 - H2 2.700e-14 2.700e-14 -13.569 -13.569 0.000 28.58 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.322 -65.322 0.000 30.31 +H(0) 4.327e-39 + H2 2.163e-39 2.164e-39 -38.665 -38.665 0.000 28.58 +O(0) 1.484e-15 + O2 7.422e-16 7.423e-16 -15.129 -15.129 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -14.21 -17.05 -2.84 CH4 + CH4(g) -114.59 -117.44 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.1 atm, phi 0.657 - H2(g) -10.43 -13.57 -3.13 H2 + H2(g) -35.53 -38.66 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.281 - O2(g) -62.39 -65.32 -2.93 O2 + O2(g) -12.20 -15.13 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1279,53 +1280,53 @@ H2O(g) -0.90 1.248e-01 0.258 1.691e-02 2.036e-02 3.449e-03 ----------------------------Description of solution---------------------------- pH = 3.104 Charge balance - pe = 2.210 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 288 - Density (g/cm3) = 1.01271 + pe = 2.312 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 283 + Density (g/cm³) = 1.01271 Volume (L) = 1.04756 - Viscosity (mPa s) = 0.88954 + Viscosity (mPa s) = 0.98509 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.123e-04 Mass of water (kg) = 9.996e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.392e+00 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 65.15 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 46 + Iterations = 58 Total H = 1.109717e+02 Total O = 5.826914e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.123e-04 7.877e-04 -3.090 -3.104 -0.013 0.00 OH- 1.373e-11 1.329e-11 -10.862 -10.876 -0.014 -3.87 H2O 5.551e+01 9.769e-01 1.744 -0.010 0.000 18.02 -C(-4) 9.541e-19 - CH4 9.541e-19 9.543e-19 -18.020 -18.020 0.000 35.54 +C(-4) 1.454e-19 + CH4 1.454e-19 1.455e-19 -18.837 -18.837 0.000 35.54 C(4) 1.392e+00 CO2 1.327e+00 1.327e+00 0.123 0.123 0.000 34.40 (CO2)2 3.231e-02 3.232e-02 -1.491 -1.491 0.000 68.81 HCO3- 8.123e-04 7.869e-04 -3.090 -3.104 -0.014 24.79 CO3-2 5.727e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 -H(0) 3.094e-14 - H2 1.547e-14 1.547e-14 -13.810 -13.810 0.000 28.58 +H(0) 1.933e-14 + H2 9.667e-15 9.669e-15 -14.015 -14.015 0.000 28.58 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.838 -64.838 0.000 30.31 + O2 0.000e+00 0.000e+00 -64.430 -64.430 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -15.18 -18.02 -2.84 CH4 + CH4(g) -15.99 -18.84 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.0 atm, phi 0.656 - H2(g) -10.68 -13.81 -3.13 H2 + H2(g) -10.88 -14.01 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.258 - O2(g) -61.91 -64.84 -2.93 O2 + O2(g) -61.50 -64.43 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1373,53 +1374,53 @@ H2O(g) -0.87 1.359e-01 0.237 2.036e-02 2.428e-02 3.919e-03 ----------------------------Description of solution---------------------------- pH = 3.104 Charge balance - pe = 2.153 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 288 - Density (g/cm3) = 1.01269 + pe = 14.806 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 283 + Density (g/cm³) = 1.01269 Volume (L) = 1.04741 - Viscosity (mPa s) = 0.88954 + Viscosity (mPa s) = 0.98492 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.116e-04 Mass of water (kg) = 9.995e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.390e+00 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 65.14 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 45 + Iterations = 60 Total H = 1.109639e+02 Total O = 5.826024e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.116e-04 7.870e-04 -3.091 -3.104 -0.013 0.00 OH- 1.374e-11 1.331e-11 -10.862 -10.876 -0.014 -3.87 H2O 5.551e+01 9.769e-01 1.744 -0.010 0.000 18.02 -C(-4) 2.731e-18 - CH4 2.731e-18 2.731e-18 -17.564 -17.564 0.000 35.54 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -118.793 -118.793 0.000 35.54 C(4) 1.390e+00 CO2 1.325e+00 1.325e+00 0.122 0.122 0.000 34.40 (CO2)2 3.221e-02 3.221e-02 -1.492 -1.492 0.000 68.81 HCO3- 8.116e-04 7.863e-04 -3.091 -3.104 -0.014 24.79 CO3-2 5.727e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 -H(0) 4.026e-14 - H2 2.013e-14 2.014e-14 -13.696 -13.696 0.000 28.58 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.067 -65.067 0.000 30.31 +H(0) 1.984e-39 + H2 9.922e-40 9.923e-40 -39.003 -39.003 0.000 28.58 +O(0) 7.060e-15 + O2 3.530e-15 3.531e-15 -14.452 -14.452 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -14.72 -17.56 -2.84 CH4 + CH4(g) -115.95 -118.79 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.0 atm, phi 0.655 - H2(g) -10.56 -13.70 -3.13 H2 + H2(g) -35.87 -39.00 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.237 - O2(g) -62.14 -65.07 -2.93 O2 + O2(g) -11.53 -14.45 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1467,17 +1468,17 @@ H2O(g) -0.83 1.479e-01 0.218 2.428e-02 2.871e-02 4.427e-03 ----------------------------Description of solution---------------------------- pH = 3.104 Charge balance - pe = 2.096 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 288 - Density (g/cm3) = 1.01267 + pe = 14.718 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 283 + Density (g/cm³) = 1.01267 Volume (L) = 1.04724 - Viscosity (mPa s) = 0.88954 + Viscosity (mPa s) = 0.98477 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.110e-04 Mass of water (kg) = 9.995e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.387e+00 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 65.12 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -1488,32 +1489,32 @@ H2O(g) -0.83 1.479e-01 0.218 2.428e-02 2.871e-02 4.427e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.110e-04 7.864e-04 -3.091 -3.104 -0.013 0.00 OH- 1.375e-11 1.332e-11 -10.862 -10.876 -0.014 -3.87 H2O 5.551e+01 9.769e-01 1.744 -0.010 0.000 18.02 -C(-4) 7.689e-18 - CH4 7.689e-18 7.690e-18 -17.114 -17.114 0.000 35.54 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -118.092 -118.092 0.000 35.54 C(4) 1.387e+00 CO2 1.322e+00 1.323e+00 0.121 0.121 0.000 34.40 (CO2)2 3.210e-02 3.211e-02 -1.493 -1.493 0.000 68.81 HCO3- 8.110e-04 7.856e-04 -3.091 -3.105 -0.014 24.79 CO3-2 5.726e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 -H(0) 5.218e-14 - H2 2.609e-14 2.609e-14 -13.584 -13.583 0.000 28.58 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.292 -65.292 0.000 30.31 +H(0) 2.972e-39 + H2 1.486e-39 1.486e-39 -38.828 -38.828 0.000 28.58 +O(0) 3.147e-15 + O2 1.573e-15 1.574e-15 -14.803 -14.803 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -14.27 -17.11 -2.84 CH4 + CH4(g) -115.25 -118.09 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.0 atm, phi 0.655 - H2(g) -10.45 -13.58 -3.13 H2 + H2(g) -35.69 -38.83 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.218 - O2(g) -62.37 -65.29 -2.93 O2 + O2(g) -11.88 -14.80 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1561,17 +1562,17 @@ H2O(g) -0.79 1.606e-01 0.200 2.871e-02 3.368e-02 4.970e-03 ----------------------------Description of solution---------------------------- pH = 3.105 Charge balance - pe = 2.293 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 288 - Density (g/cm3) = 1.01265 + pe = 14.909 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 283 + Density (g/cm³) = 1.01265 Volume (L) = 1.04709 - Viscosity (mPa s) = 0.88954 + Viscosity (mPa s) = 0.98465 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.105e-04 Mass of water (kg) = 9.994e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.386e+00 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 65.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -1582,32 +1583,32 @@ H2O(g) -0.79 1.606e-01 0.200 2.871e-02 3.368e-02 4.970e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.105e-04 7.859e-04 -3.091 -3.105 -0.013 0.00 OH- 1.376e-11 1.332e-11 -10.861 -10.875 -0.014 -3.87 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 18.02 -C(-4) 2.034e-19 - CH4 2.034e-19 2.034e-19 -18.692 -18.692 0.000 35.54 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.621 -119.621 0.000 35.54 C(4) 1.386e+00 CO2 1.321e+00 1.321e+00 0.121 0.121 0.000 34.40 (CO2)2 3.202e-02 3.203e-02 -1.495 -1.494 0.000 68.81 HCO3- 8.105e-04 7.852e-04 -3.091 -3.105 -0.014 24.79 CO3-2 5.726e-11 5.043e-11 -10.242 -10.297 -0.055 -3.35 -H(0) 2.105e-14 - H2 1.053e-14 1.053e-14 -13.978 -13.978 0.000 28.58 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.503 -64.503 0.000 30.31 +H(0) 1.233e-39 + H2 6.164e-40 6.165e-40 -39.210 -39.210 0.000 28.58 +O(0) 1.829e-14 + O2 9.147e-15 9.149e-15 -14.039 -14.039 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -15.85 -18.69 -2.84 CH4 + CH4(g) -116.78 -119.62 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 64.9 atm, phi 0.654 - H2(g) -10.84 -13.98 -3.13 H2 + H2(g) -36.08 -39.21 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.2 atm, phi 0.200 - O2(g) -61.58 -64.50 -2.93 O2 + O2(g) -11.11 -14.04 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1655,17 +1656,17 @@ H2O(g) -0.76 1.742e-01 0.185 3.368e-02 3.922e-02 5.546e-03 ----------------------------Description of solution---------------------------- pH = 3.105 Charge balance - pe = 2.566 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 288 - Density (g/cm3) = 1.01265 + pe = 14.952 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 282 + Density (g/cm³) = 1.01265 Volume (L) = 1.04696 - Viscosity (mPa s) = 0.88954 + Viscosity (mPa s) = 0.98459 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.102e-04 Mass of water (kg) = 9.993e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.385e+00 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 65.07 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -1676,32 +1677,32 @@ H2O(g) -0.76 1.742e-01 0.185 3.368e-02 3.922e-02 5.546e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.102e-04 7.857e-04 -3.091 -3.105 -0.013 0.00 OH- 1.377e-11 1.333e-11 -10.861 -10.875 -0.014 -3.87 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 18.02 -C(-4) 1.337e-21 - CH4 1.337e-21 1.338e-21 -20.874 -20.874 0.000 35.54 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.965 -119.965 0.000 35.54 C(4) 1.385e+00 CO2 1.320e+00 1.320e+00 0.121 0.121 0.000 34.40 (CO2)2 3.198e-02 3.199e-02 -1.495 -1.495 0.000 68.81 HCO3- 8.102e-04 7.849e-04 -3.091 -3.105 -0.014 24.79 CO3-2 5.726e-11 5.043e-11 -10.242 -10.297 -0.055 -3.35 -H(0) 5.995e-15 - H2 2.998e-15 2.998e-15 -14.523 -14.523 0.000 28.58 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.413 -63.412 0.000 30.31 +H(0) 1.012e-39 + H2 5.058e-40 5.059e-40 -39.296 -39.296 0.000 28.58 +O(0) 2.717e-14 + O2 1.359e-14 1.359e-14 -13.867 -13.867 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -18.03 -20.87 -2.84 CH4 + CH4(g) -117.12 -119.96 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 64.9 atm, phi 0.654 - H2(g) -11.39 -14.52 -3.13 H2 + H2(g) -36.16 -39.30 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.2 atm, phi 0.185 - O2(g) -60.49 -63.41 -2.93 O2 + O2(g) -10.94 -13.87 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1749,53 +1750,53 @@ H2O(g) -0.69 2.026e-01 0.159 3.922e-02 4.502e-02 5.801e-03 ----------------------------Description of solution---------------------------- pH = 3.102 Charge balance - pe = 2.863 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 290 - Density (g/cm3) = 1.01297 + pe = 14.961 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 284 + Density (g/cm³) = 1.01297 Volume (L) = 1.04694 - Viscosity (mPa s) = 0.88947 + Viscosity (mPa s) = 0.98520 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.154e-04 Mass of water (kg) = 9.992e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.395e+00 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 70.42 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 46 + Iterations = 38 Total H = 1.109224e+02 Total O = 5.824824e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.154e-04 7.907e-04 -3.089 -3.102 -0.013 0.00 OH- 1.374e-11 1.331e-11 -10.862 -10.876 -0.014 -3.86 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.01 -C(-4) 5.910e-24 - CH4 5.910e-24 5.911e-24 -23.228 -23.228 0.000 35.55 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -120.015 -120.014 0.000 35.55 C(4) 1.395e+00 CO2 1.329e+00 1.329e+00 0.124 0.124 0.000 34.40 (CO2)2 3.242e-02 3.243e-02 -1.489 -1.489 0.000 68.80 HCO3- 8.154e-04 7.899e-04 -3.089 -3.102 -0.014 24.81 CO3-2 5.762e-11 5.074e-11 -10.239 -10.295 -0.055 -3.30 -H(0) 1.537e-15 - H2 7.683e-16 7.684e-16 -15.114 -15.114 0.000 28.57 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -62.235 -62.235 0.000 30.30 +H(0) 9.773e-40 + H2 4.886e-40 4.887e-40 -39.311 -39.311 0.000 28.57 +O(0) 2.878e-14 + O2 1.439e-14 1.439e-14 -13.842 -13.842 0.000 30.30 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 70 atm) - CH4(g) -20.38 -23.23 -2.85 CH4 + CH4(g) -117.17 -120.01 -2.85 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 70.2 atm, phi 0.613 - H2(g) -11.98 -15.11 -3.14 H2 + H2(g) -36.17 -39.31 -3.14 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.2 atm, phi 0.159 - O2(g) -59.31 -62.23 -2.93 O2 + O2(g) -10.91 -13.84 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1843,53 +1844,53 @@ H2O(g) -0.61 2.464e-01 0.132 4.502e-02 5.114e-02 6.118e-03 ----------------------------Description of solution---------------------------- pH = 3.097 Charge balance - pe = 1.972 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 293 - Density (g/cm3) = 1.01354 + pe = 14.914 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 287 + Density (g/cm³) = 1.01354 Volume (L) = 1.04694 - Viscosity (mPa s) = 0.88936 + Viscosity (mPa s) = 0.98618 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.244e-04 Mass of water (kg) = 9.991e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.411e+00 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 80.18 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 46 + Iterations = 44 Total H = 1.109101e+02 Total O = 5.827411e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.244e-04 7.993e-04 -3.084 -3.097 -0.013 0.00 OH- 1.371e-11 1.327e-11 -10.863 -10.877 -0.014 -3.82 H2O 5.551e+01 9.766e-01 1.744 -0.010 0.000 18.01 -C(-4) 8.526e-17 - CH4 8.526e-17 8.528e-17 -16.069 -16.069 0.000 35.56 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.602 -119.602 0.000 35.56 C(4) 1.411e+00 CO2 1.344e+00 1.344e+00 0.128 0.128 0.000 34.40 (CO2)2 3.314e-02 3.315e-02 -1.480 -1.480 0.000 68.79 HCO3- 8.244e-04 7.985e-04 -3.084 -3.098 -0.014 24.84 CO3-2 5.830e-11 5.130e-11 -10.234 -10.290 -0.056 -3.21 -H(0) 9.370e-14 - H2 4.685e-14 4.686e-14 -13.329 -13.329 0.000 28.57 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.815 -65.814 0.000 30.29 +H(0) 1.226e-39 + H2 6.131e-40 6.132e-40 -39.212 -39.212 0.000 28.57 +O(0) 1.790e-14 + O2 8.949e-15 8.951e-15 -14.048 -14.048 0.000 30.29 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 80 atm) - CH4(g) -13.22 -16.07 -2.85 CH4 + CH4(g) -116.75 -119.60 -2.85 CH4 CO2(g) 1.64 0.13 -1.52 CO2 Pressure 79.9 atm, phi 0.552 - H2(g) -10.19 -13.33 -3.14 H2 + H2(g) -36.07 -39.21 -3.14 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.2 atm, phi 0.132 - O2(g) -62.88 -65.81 -2.93 O2 + O2(g) -11.11 -14.05 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1937,17 +1938,17 @@ H2O(g) -0.51 3.084e-01 0.107 5.114e-02 5.758e-02 6.433e-03 ----------------------------Description of solution---------------------------- pH = 3.091 Charge balance - pe = 1.958 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 297 - Density (g/cm3) = 1.01434 + pe = 14.977 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 291 + Density (g/cm³) = 1.01434 Volume (L) = 1.04689 - Viscosity (mPa s) = 0.88921 + Viscosity (mPa s) = 0.98743 Activity of water = 0.976 Ionic strength (mol/kgw) = 8.368e-04 Mass of water (kg) = 9.989e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.432e+00 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 94.41 Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -1958,32 +1959,32 @@ H2O(g) -0.51 3.084e-01 0.107 5.114e-02 5.758e-02 6.433e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.368e-04 8.111e-04 -3.077 -3.091 -0.014 0.00 OH- 1.368e-11 1.324e-11 -10.864 -10.878 -0.014 -3.77 H2O 5.551e+01 9.762e-01 1.744 -0.010 0.000 17.99 -C(-4) 1.247e-16 - CH4 1.247e-16 1.247e-16 -15.904 -15.904 0.000 35.58 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -120.056 -120.056 0.000 35.58 C(4) 1.432e+00 CO2 1.363e+00 1.363e+00 0.134 0.134 0.000 34.39 (CO2)2 3.408e-02 3.409e-02 -1.467 -1.467 0.000 68.78 HCO3- 8.368e-04 8.103e-04 -3.077 -3.091 -0.014 24.89 CO3-2 5.929e-11 5.213e-11 -10.227 -10.283 -0.056 -3.08 -H(0) 1.015e-13 - H2 5.076e-14 5.077e-14 -13.294 -13.294 0.000 28.56 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.897 -65.897 0.000 30.26 +H(0) 9.303e-40 + H2 4.651e-40 4.652e-40 -39.332 -39.332 0.000 28.56 +O(0) 3.016e-14 + O2 1.508e-14 1.508e-14 -13.822 -13.821 0.000 30.26 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 94 atm) - CH4(g) -13.04 -15.90 -2.86 CH4 + CH4(g) -117.20 -120.06 -2.86 CH4 CO2(g) 1.66 0.13 -1.53 CO2 Pressure 94.1 atm, phi 0.485 - H2(g) -10.15 -13.29 -3.15 H2 + H2(g) -36.18 -39.33 -3.15 H2 H2O(g) -1.48 -0.01 1.47 H2O Pressure 0.3 atm, phi 0.107 - O2(g) -62.95 -65.90 -2.94 O2 + O2(g) -10.88 -13.82 -2.94 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2031,19 +2032,19 @@ H2O(g) -0.40 3.942e-01 0.085 5.758e-02 6.425e-02 6.677e-03 ----------------------------Description of solution---------------------------- pH = 3.083 Charge balance - pe = 2.009 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 303 - Density (g/cm3) = 1.01543 + pe = 14.941 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 297 + Density (g/cm³) = 1.01543 Volume (L) = 1.04675 - Viscosity (mPa s) = 0.88900 + Viscosity (mPa s) = 0.98895 Activity of water = 0.976 Ionic strength (mol/kgw) = 8.532e-04 Mass of water (kg) = 9.988e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.457e+00 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 114.16 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 61 Total H = 1.108839e+02 @@ -2052,32 +2053,32 @@ H2O(g) -0.40 3.942e-01 0.085 5.758e-02 6.425e-02 6.677e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.532e-04 8.268e-04 -3.069 -3.083 -0.014 0.00 OH- 1.365e-11 1.321e-11 -10.865 -10.879 -0.014 -3.70 H2O 5.551e+01 9.758e-01 1.744 -0.011 0.000 17.98 -C(-4) 5.517e-17 - CH4 5.517e-17 5.518e-17 -16.258 -16.258 0.000 35.61 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.713 -119.713 0.000 35.61 C(4) 1.457e+00 CO2 1.386e+00 1.386e+00 0.142 0.142 0.000 34.38 (CO2)2 3.526e-02 3.526e-02 -1.453 -1.453 0.000 68.76 HCO3- 8.532e-04 8.259e-04 -3.069 -3.083 -0.014 24.95 CO3-2 6.067e-11 5.329e-11 -10.217 -10.273 -0.056 -2.90 -H(0) 8.117e-14 - H2 4.058e-14 4.059e-14 -13.392 -13.392 0.000 28.55 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.721 -65.721 0.000 30.24 +H(0) 1.111e-39 + H2 5.555e-40 5.556e-40 -39.255 -39.255 0.000 28.55 +O(0) 2.028e-14 + O2 1.014e-14 1.014e-14 -13.994 -13.994 0.000 30.24 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 114 atm) - CH4(g) -13.38 -16.26 -2.87 CH4 + CH4(g) -116.84 -119.71 -2.87 CH4 CO2(g) 1.68 0.14 -1.54 CO2 Pressure 113.8 atm, phi 0.420 - H2(g) -10.23 -13.39 -3.16 H2 + H2(g) -36.10 -39.26 -3.16 H2 H2O(g) -1.48 -0.01 1.47 H2O Pressure 0.4 atm, phi 0.085 - O2(g) -62.77 -65.72 -2.95 O2 + O2(g) -11.04 -13.99 -2.95 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2125,19 +2126,19 @@ H2O(g) -0.29 5.106e-01 0.066 6.425e-02 7.108e-02 6.829e-03 ----------------------------Description of solution---------------------------- pH = 3.072 Charge balance - pe = 2.176 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 311 - Density (g/cm3) = 1.01684 + pe = 14.978 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 305 + Density (g/cm³) = 1.01684 Volume (L) = 1.04648 - Viscosity (mPa s) = 0.88875 + Viscosity (mPa s) = 0.99076 Activity of water = 0.975 Ionic strength (mol/kgw) = 8.742e-04 Mass of water (kg) = 9.987e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.488e+00 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 140.69 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 74 Total H = 1.108703e+02 @@ -2146,32 +2147,32 @@ H2O(g) -0.29 5.106e-01 0.066 6.425e-02 7.108e-02 6.829e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.742e-04 8.470e-04 -3.058 -3.072 -0.014 0.00 OH- 1.363e-11 1.318e-11 -10.866 -10.880 -0.014 -3.61 H2O 5.551e+01 9.753e-01 1.744 -0.011 0.000 17.96 -C(-4) 3.027e-18 - CH4 3.027e-18 3.028e-18 -17.519 -17.519 0.000 35.64 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.928 -119.928 0.000 35.64 C(4) 1.488e+00 CO2 1.413e+00 1.414e+00 0.150 0.150 0.000 34.37 (CO2)2 3.667e-02 3.668e-02 -1.436 -1.436 0.000 68.73 HCO3- 8.742e-04 8.461e-04 -3.058 -3.073 -0.014 25.03 CO3-2 6.256e-11 5.487e-11 -10.204 -10.261 -0.057 -2.66 -H(0) 3.828e-14 - H2 1.914e-14 1.914e-14 -13.718 -13.718 0.000 28.54 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.093 -65.093 0.000 30.20 +H(0) 9.564e-40 + H2 4.782e-40 4.783e-40 -39.320 -39.320 0.000 28.54 +O(0) 2.585e-14 + O2 1.292e-14 1.293e-14 -13.889 -13.889 0.000 30.20 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 141 atm) - CH4(g) -14.63 -17.52 -2.89 CH4 + CH4(g) -117.04 -119.93 -2.89 CH4 CO2(g) 1.70 0.15 -1.55 CO2 Pressure 140.2 atm, phi 0.361 - H2(g) -10.55 -13.72 -3.17 H2 + H2(g) -36.15 -39.32 -3.17 H2 H2O(g) -1.47 -0.01 1.46 H2O Pressure 0.5 atm, phi 0.066 - O2(g) -62.13 -65.09 -2.97 O2 + O2(g) -10.92 -13.89 -2.97 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2226,53 +2227,53 @@ H2O(g) -0.18 6.655e-01 0.052 7.108e-02 7.795e-02 6.869e-03 ----------------------------Description of solution---------------------------- pH = 3.059 Charge balance - pe = 16.234 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 320 - Density (g/cm3) = 1.01866 + pe = 15.552 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 314 + Density (g/cm³) = 1.01866 Volume (L) = 1.04600 - Viscosity (mPa s) = 0.88844 + Viscosity (mPa s) = 0.99284 Activity of water = 0.975 Ionic strength (mol/kgw) = 9.010e-04 Mass of water (kg) = 9.986e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.523e+00 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 175.50 Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 153 (254 overall) + Iterations = 48 (149 overall) Total H = 1.108565e+02 Total O = 5.846928e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 9.010e-04 8.725e-04 -3.045 -3.059 -0.014 0.00 OH- 1.363e-11 1.317e-11 -10.866 -10.880 -0.015 -3.49 H2O 5.551e+01 9.748e-01 1.744 -0.011 0.000 17.93 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -129.890 -129.889 0.000 35.68 + CH4 0.000e+00 0.000e+00 -124.435 -124.435 0.000 35.68 C(4) 1.523e+00 CO2 1.445e+00 1.445e+00 0.160 0.160 0.000 34.35 (CO2)2 3.833e-02 3.834e-02 -1.416 -1.416 0.000 68.70 HCO3- 9.010e-04 8.715e-04 -3.045 -3.060 -0.014 25.14 CO3-2 6.509e-11 5.700e-11 -10.186 -10.244 -0.058 -2.36 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.825 -41.825 0.000 28.53 -O(0) 2.453e-09 - O2 1.227e-09 1.227e-09 -8.911 -8.911 0.000 30.15 + H2 0.000e+00 0.000e+00 -40.461 -40.461 0.000 28.53 +O(0) 4.595e-12 + O2 2.298e-12 2.298e-12 -11.639 -11.639 0.000 30.15 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 176 atm) - CH4(g) -126.98 -129.89 -2.91 CH4 + CH4(g) -121.52 -124.43 -2.91 CH4 CO2(g) 1.73 0.16 -1.57 CO2 Pressure 174.8 atm, phi 0.310 - H2(g) -38.64 -41.83 -3.19 H2 + H2(g) -37.27 -40.46 -3.19 H2 H2O(g) -1.46 -0.01 1.45 H2O Pressure 0.7 atm, phi 0.052 - O2(g) -5.93 -8.91 -2.99 O2 + O2(g) -8.65 -11.64 -2.99 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2327,53 +2328,53 @@ H2O(g) -0.06 8.678e-01 0.041 7.795e-02 8.472e-02 6.772e-03 ----------------------------Description of solution---------------------------- pH = 3.044 Charge balance - pe = 16.249 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 333 - Density (g/cm3) = 1.02093 + pe = 16.115 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 326 + Density (g/cm³) = 1.02093 Volume (L) = 1.04525 - Viscosity (mPa s) = 0.88812 + Viscosity (mPa s) = 0.99523 Activity of water = 0.974 Ionic strength (mol/kgw) = 9.345e-04 Mass of water (kg) = 9.985e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.562e+00 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 220.47 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 35 (136 overall) + Iterations = 38 (139 overall) Total H = 1.108430e+02 Total O = 5.854160e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 9.345e-04 9.045e-04 -3.029 -3.044 -0.014 0.00 OH- 1.365e-11 1.319e-11 -10.865 -10.880 -0.015 -3.34 H2O 5.551e+01 9.741e-01 1.744 -0.011 0.000 17.89 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -129.900 -129.900 0.000 35.73 + CH4 0.000e+00 0.000e+00 -128.831 -128.831 0.000 35.73 C(4) 1.562e+00 CO2 1.481e+00 1.481e+00 0.171 0.171 0.000 34.33 (CO2)2 4.026e-02 4.027e-02 -1.395 -1.395 0.000 68.66 HCO3- 9.345e-04 9.035e-04 -3.029 -3.044 -0.015 25.28 CO3-2 6.845e-11 5.982e-11 -10.165 -10.223 -0.059 -1.98 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.846 -41.846 0.000 28.51 -O(0) 2.454e-09 - O2 1.227e-09 1.227e-09 -8.911 -8.911 0.000 30.09 + H2 0.000e+00 0.000e+00 -41.579 -41.578 0.000 28.51 +O(0) 7.163e-10 + O2 3.582e-10 3.582e-10 -9.446 -9.446 0.000 30.09 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 220 atm) - CH4(g) -126.96 -129.90 -2.94 CH4 + CH4(g) -125.89 -128.83 -2.94 CH4 CO2(g) 1.77 0.17 -1.60 CO2 Pressure 219.6 atm, phi 0.270 - H2(g) -38.63 -41.85 -3.21 H2 + H2(g) -38.37 -41.58 -3.21 H2 H2O(g) -1.44 -0.01 1.43 H2O Pressure 0.9 atm, phi 0.041 - O2(g) -5.90 -8.91 -3.01 O2 + O2(g) -6.44 -9.45 -3.01 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2428,19 +2429,19 @@ H2O(g) 0.05 1.127e+00 0.033 8.472e-02 9.124e-02 6.514e-03 ----------------------------Description of solution---------------------------- pH = 3.025 Charge balance - pe = 16.266 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 349 - Density (g/cm3) = 1.02376 + pe = 16.133 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 341 + Density (g/cm³) = 1.02376 Volume (L) = 1.04415 - Viscosity (mPa s) = 0.88780 + Viscosity (mPa s) = 0.99796 Activity of water = 0.973 Ionic strength (mol/kgw) = 9.763e-04 Mass of water (kg) = 9.983e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.607e+00 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 277.89 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.108300e+02 @@ -2449,32 +2450,32 @@ H2O(g) 0.05 1.127e+00 0.033 8.472e-02 9.124e-02 6.514e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 9.763e-04 9.444e-04 -3.010 -3.025 -0.014 0.00 OH- 1.370e-11 1.323e-11 -10.863 -10.878 -0.015 -3.15 H2O 5.551e+01 9.734e-01 1.744 -0.012 0.000 17.85 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -129.916 -129.916 0.000 35.80 + CH4 0.000e+00 0.000e+00 -128.847 -128.846 0.000 35.80 C(4) 1.607e+00 CO2 1.521e+00 1.521e+00 0.182 0.182 0.000 34.30 (CO2)2 4.246e-02 4.247e-02 -1.372 -1.372 0.000 68.61 HCO3- 9.763e-04 9.433e-04 -3.010 -3.025 -0.015 25.45 CO3-2 7.290e-11 6.355e-11 -10.137 -10.197 -0.060 -1.51 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.872 -41.872 0.000 28.48 -O(0) 2.454e-09 - O2 1.227e-09 1.227e-09 -8.911 -8.911 0.000 30.02 + H2 0.000e+00 0.000e+00 -41.605 -41.605 0.000 28.48 +O(0) 7.164e-10 + O2 3.582e-10 3.583e-10 -9.446 -9.446 0.000 30.02 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 278 atm) - CH4(g) -126.94 -129.92 -2.98 CH4 + CH4(g) -125.87 -128.85 -2.98 CH4 CO2(g) 1.82 0.18 -1.64 CO2 Pressure 276.8 atm, phi 0.238 - H2(g) -38.63 -41.87 -3.24 H2 + H2(g) -38.36 -41.60 -3.24 H2 H2O(g) -1.43 -0.01 1.42 H2O Pressure 1.1 atm, phi 0.033 - O2(g) -5.87 -8.91 -3.04 O2 + O2(g) -6.41 -9.45 -3.04 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2529,19 +2530,19 @@ H2O(g) 0.16 1.455e+00 0.027 9.124e-02 9.730e-02 6.064e-03 ----------------------------Description of solution---------------------------- pH = 3.003 Charge balance - pe = 16.287 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 368 - Density (g/cm3) = 1.02723 + pe = 16.153 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 360 + Density (g/cm³) = 1.02723 Volume (L) = 1.04258 - Viscosity (mPa s) = 0.88755 + Viscosity (mPa s) = 1.00108 Activity of water = 0.973 Ionic strength (mol/kgw) = 1.028e-03 Mass of water (kg) = 9.982e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.655e+00 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 350.70 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.108178e+02 @@ -2550,32 +2551,32 @@ H2O(g) 0.16 1.455e+00 0.027 9.124e-02 9.730e-02 6.064e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.028e-03 9.942e-04 -2.988 -3.003 -0.015 0.00 OH- 1.380e-11 1.332e-11 -10.860 -10.876 -0.016 -2.93 H2O 5.551e+01 9.726e-01 1.744 -0.012 0.000 17.79 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -129.938 -129.938 0.000 35.87 + CH4 0.000e+00 0.000e+00 -128.869 -128.869 0.000 35.87 C(4) 1.655e+00 CO2 1.564e+00 1.565e+00 0.194 0.194 0.000 34.27 (CO2)2 4.492e-02 4.493e-02 -1.348 -1.347 0.000 68.54 HCO3- 1.028e-03 9.930e-04 -2.988 -3.003 -0.015 25.66 CO3-2 7.880e-11 6.850e-11 -10.103 -10.164 -0.061 -0.93 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.906 -41.906 0.000 28.46 -O(0) 2.454e-09 - O2 1.227e-09 1.227e-09 -8.911 -8.911 0.000 29.93 + H2 0.000e+00 0.000e+00 -41.638 -41.638 0.000 28.46 +O(0) 7.165e-10 + O2 3.583e-10 3.583e-10 -9.446 -9.446 0.000 29.93 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 351 atm) - CH4(g) -126.91 -129.94 -3.02 CH4 + CH4(g) -125.84 -128.87 -3.02 CH4 CO2(g) 1.88 0.19 -1.68 CO2 Pressure 349.2 atm, phi 0.215 - H2(g) -38.63 -41.91 -3.28 H2 + H2(g) -38.36 -41.64 -3.28 H2 H2O(g) -1.40 -0.01 1.39 H2O Pressure 1.5 atm, phi 0.027 - O2(g) -5.83 -8.91 -3.08 O2 + O2(g) -6.37 -9.45 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2630,19 +2631,19 @@ H2O(g) 0.27 1.863e+00 0.023 9.730e-02 1.027e-01 5.386e-03 ----------------------------Description of solution---------------------------- pH = 2.976 Charge balance - pe = 16.311 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 393 - Density (g/cm3) = 1.03147 + pe = 16.178 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 384 + Density (g/cm³) = 1.03147 Volume (L) = 1.04041 - Viscosity (mPa s) = 0.88750 + Viscosity (mPa s) = 1.00471 Activity of water = 0.972 Ionic strength (mol/kgw) = 1.094e-03 Mass of water (kg) = 9.981e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.707e+00 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 442.66 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.108071e+02 @@ -2651,32 +2652,32 @@ H2O(g) 0.27 1.863e+00 0.023 9.730e-02 1.027e-01 5.386e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.094e-03 1.056e-03 -2.961 -2.976 -0.015 0.00 OH- 1.395e-11 1.345e-11 -10.855 -10.871 -0.016 -2.66 H2O 5.551e+01 9.718e-01 1.744 -0.012 0.000 17.73 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -129.969 -129.969 0.000 35.96 + CH4 0.000e+00 0.000e+00 -128.900 -128.899 0.000 35.96 C(4) 1.707e+00 CO2 1.611e+00 1.611e+00 0.207 0.207 0.000 34.23 (CO2)2 4.764e-02 4.765e-02 -1.322 -1.322 0.000 68.46 HCO3- 1.094e-03 1.055e-03 -2.961 -2.977 -0.016 25.91 CO3-2 8.669e-11 7.509e-11 -10.062 -10.124 -0.062 -0.24 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.948 -41.948 0.000 28.42 -O(0) 2.454e-09 - O2 1.227e-09 1.227e-09 -8.911 -8.911 0.000 29.83 + H2 0.000e+00 0.000e+00 -41.680 -41.680 0.000 28.42 +O(0) 7.166e-10 + O2 3.583e-10 3.584e-10 -9.446 -9.446 0.000 29.83 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 443 atm) - CH4(g) -126.88 -129.97 -3.08 CH4 + CH4(g) -125.82 -128.90 -3.08 CH4 CO2(g) 1.94 0.21 -1.74 CO2 Pressure 440.8 atm, phi 0.199 - H2(g) -38.62 -41.95 -3.32 H2 + H2(g) -38.36 -41.68 -3.32 H2 H2O(g) -1.38 -0.01 1.36 H2O Pressure 1.9 atm, phi 0.023 - O2(g) -5.78 -8.91 -3.13 O2 + O2(g) -6.32 -9.45 -3.13 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2731,17 +2732,17 @@ H2O(g) 0.37 2.361e+00 0.019 1.027e-01 1.071e-01 4.442e-03 ----------------------------Description of solution---------------------------- pH = 2.945 Charge balance - pe = 16.340 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 425 - Density (g/cm3) = 1.03663 + pe = 16.206 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 415 + Density (g/cm³) = 1.03663 Volume (L) = 1.03747 - Viscosity (mPa s) = 0.88783 + Viscosity (mPa s) = 1.00901 Activity of water = 0.971 Ionic strength (mol/kgw) = 1.176e-03 Mass of water (kg) = 9.980e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.762e+00 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 558.75 Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -2752,32 +2753,32 @@ H2O(g) 0.37 2.361e+00 0.019 1.027e-01 1.071e-01 4.442e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.176e-03 1.135e-03 -2.930 -2.945 -0.015 0.00 OH- 1.418e-11 1.366e-11 -10.848 -10.865 -0.016 -2.33 H2O 5.551e+01 9.709e-01 1.744 -0.013 0.000 17.64 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -130.011 -130.011 0.000 36.07 + CH4 0.000e+00 0.000e+00 -128.942 -128.941 0.000 36.07 C(4) 1.762e+00 CO2 1.660e+00 1.660e+00 0.220 0.220 0.000 34.18 (CO2)2 5.057e-02 5.059e-02 -1.296 -1.296 0.000 68.35 HCO3- 1.176e-03 1.133e-03 -2.930 -2.946 -0.016 26.21 CO3-2 9.737e-11 8.398e-11 -10.012 -10.076 -0.064 0.59 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.001 -42.001 0.000 28.38 -O(0) 2.455e-09 - O2 1.227e-09 1.228e-09 -8.911 -8.911 0.000 29.70 + H2 0.000e+00 0.000e+00 -41.733 -41.733 0.000 28.38 +O(0) 7.167e-10 + O2 3.583e-10 3.584e-10 -9.446 -9.446 0.000 29.70 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 559 atm) - CH4(g) -126.85 -130.01 -3.16 CH4 + CH4(g) -125.78 -128.94 -3.16 CH4 CO2(g) 2.03 0.22 -1.81 CO2 Pressure 556.4 atm, phi 0.191 - H2(g) -38.62 -42.00 -3.38 H2 + H2(g) -38.35 -41.73 -3.38 H2 H2O(g) -1.34 -0.01 1.33 H2O Pressure 2.4 atm, phi 0.019 - O2(g) -5.72 -8.91 -3.19 O2 + O2(g) -6.26 -9.45 -3.19 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2832,19 +2833,19 @@ H2O(g) 0.47 2.960e+00 0.017 1.071e-01 1.103e-01 3.179e-03 ----------------------------Description of solution---------------------------- pH = 2.909 Charge balance - pe = 16.373 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 465 - Density (g/cm3) = 1.04287 + pe = 16.239 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 454 + Density (g/cm³) = 1.04287 Volume (L) = 1.03356 - Viscosity (mPa s) = 0.88888 + Viscosity (mPa s) = 1.01430 Activity of water = 0.970 Ionic strength (mol/kgw) = 1.280e-03 Mass of water (kg) = 9.980e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.818e+00 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 705.72 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.212e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 37 (138 overall) Total H = 1.107918e+02 @@ -2853,32 +2854,32 @@ H2O(g) 0.47 2.960e+00 0.017 1.071e-01 1.103e-01 3.179e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.280e-03 1.234e-03 -2.893 -2.909 -0.016 0.00 OH- 1.451e-11 1.395e-11 -10.838 -10.855 -0.017 -1.95 H2O 5.551e+01 9.700e-01 1.744 -0.013 0.000 17.54 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -130.068 -130.068 0.000 36.18 + CH4 0.000e+00 0.000e+00 -128.999 -128.998 0.000 36.18 C(4) 1.818e+00 CO2 1.710e+00 1.710e+00 0.233 0.233 0.000 34.11 (CO2)2 5.365e-02 5.367e-02 -1.270 -1.270 0.000 68.22 HCO3- 1.280e-03 1.232e-03 -2.893 -2.909 -0.017 26.56 CO3-2 1.121e-10 9.622e-11 -9.950 -10.017 -0.066 1.56 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.068 -42.068 0.000 28.34 -O(0) 2.455e-09 - O2 1.227e-09 1.228e-09 -8.911 -8.911 0.000 29.55 + H2 0.000e+00 0.000e+00 -41.800 -41.800 0.000 28.34 +O(0) 7.167e-10 + O2 3.583e-10 3.585e-10 -9.446 -9.446 0.000 29.55 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 706 atm) - CH4(g) -126.81 -130.07 -3.25 CH4 + CH4(g) -125.74 -129.00 -3.25 CH4 CO2(g) 2.13 0.23 -1.89 CO2 Pressure 702.8 atm, phi 0.191 - H2(g) -38.61 -42.07 -3.46 H2 + H2(g) -38.34 -41.80 -3.46 H2 H2O(g) -1.30 -0.01 1.28 H2O Pressure 3.0 atm, phi 0.017 - O2(g) -5.65 -8.91 -3.26 O2 + O2(g) -6.18 -9.45 -3.26 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2933,53 +2934,53 @@ H2O(g) 0.56 3.666e+00 0.016 1.103e-01 1.118e-01 1.531e-03 ----------------------------Description of solution---------------------------- pH = 2.866 Charge balance - pe = 16.412 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 518 - Density (g/cm3) = 1.05046 + pe = 16.278 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 505 + Density (g/cm³) = 1.05046 Volume (L) = 1.02838 - Viscosity (mPa s) = 0.89123 + Viscosity (mPa s) = 1.02112 Activity of water = 0.969 Ionic strength (mol/kgw) = 1.414e-03 Mass of water (kg) = 9.980e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.873e+00 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 893.08 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 47 (148 overall) + Iterations = 46 (147 overall) Total H = 1.107888e+02 Total O = 5.913372e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.414e-03 1.361e-03 -2.849 -2.866 -0.017 0.00 OH- 1.496e-11 1.436e-11 -10.825 -10.843 -0.018 -1.51 H2O 5.551e+01 9.691e-01 1.744 -0.014 0.000 17.42 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -130.145 -130.145 0.000 36.31 + CH4 0.000e+00 0.000e+00 -129.076 -129.076 0.000 36.31 C(4) 1.873e+00 CO2 1.759e+00 1.759e+00 0.245 0.245 0.000 34.03 (CO2)2 5.677e-02 5.679e-02 -1.246 -1.246 0.000 68.06 HCO3- 1.414e-03 1.359e-03 -2.849 -2.867 -0.017 26.97 CO3-2 1.330e-10 1.135e-10 -9.876 -9.945 -0.069 2.69 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.153 -42.153 0.000 28.28 -O(0) 2.455e-09 - O2 1.227e-09 1.228e-09 -8.911 -8.911 0.000 29.38 + H2 0.000e+00 0.000e+00 -41.886 -41.886 0.000 28.28 +O(0) 7.167e-10 + O2 3.584e-10 3.585e-10 -9.446 -9.446 0.000 29.38 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 893 atm) - CH4(g) -126.77 -130.14 -3.38 CH4 + CH4(g) -125.70 -129.08 -3.38 CH4 CO2(g) 2.25 0.25 -2.01 CO2 Pressure 889.4 atm, phi 0.201 - H2(g) -38.60 -42.15 -3.55 H2 + H2(g) -38.34 -41.89 -3.55 H2 H2O(g) -1.24 -0.01 1.23 H2O Pressure 3.7 atm, phi 0.016 - O2(g) -5.55 -8.91 -3.36 O2 + O2(g) -6.09 -9.45 -3.36 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3034,53 +3035,53 @@ H2O(g) 0.65 4.478e+00 0.015 1.118e-01 1.112e-01 -5.962e-04 ----------------------------Description of solution---------------------------- pH = 2.816 Charge balance - pe = 16.457 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 587 - Density (g/cm3) = 1.05981 + pe = 16.323 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 572 + Density (g/cm³) = 1.05981 Volume (L) = 1.02144 - Viscosity (mPa s) = 0.89590 + Viscosity (mPa s) = 1.03051 Activity of water = 0.968 Ionic strength (mol/kgw) = 1.591e-03 Mass of water (kg) = 9.980e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.925e+00 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 1134.73 Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 57 (158 overall) + Iterations = 54 (155 overall) Total H = 1.107900e+02 Total O = 5.923633e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.591e-03 1.529e-03 -2.798 -2.816 -0.017 0.00 OH- 1.558e-11 1.493e-11 -10.807 -10.826 -0.018 -0.99 H2O 5.551e+01 9.683e-01 1.744 -0.014 0.000 17.26 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -130.250 -130.250 0.000 36.45 + CH4 0.000e+00 0.000e+00 -129.181 -129.181 0.000 36.45 C(4) 1.925e+00 CO2 1.804e+00 1.804e+00 0.256 0.256 0.000 33.93 (CO2)2 5.971e-02 5.974e-02 -1.224 -1.224 0.000 67.87 HCO3- 1.591e-03 1.527e-03 -2.798 -2.816 -0.018 27.45 CO3-2 1.638e-10 1.387e-10 -9.786 -9.858 -0.072 4.01 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.263 -42.263 0.000 28.22 -O(0) 2.455e-09 - O2 1.227e-09 1.228e-09 -8.911 -8.911 0.000 29.18 + H2 0.000e+00 0.000e+00 -41.996 -41.995 0.000 28.22 +O(0) 7.167e-10 + O2 3.584e-10 3.585e-10 -9.446 -9.446 0.000 29.18 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1135 atm) - CH4(g) -126.71 -130.25 -3.54 CH4 + CH4(g) -125.65 -129.18 -3.54 CH4 CO2(g) 2.41 0.26 -2.15 CO2 Pressure 1130.2 atm, phi 0.226 - H2(g) -38.59 -42.26 -3.67 H2 + H2(g) -38.33 -42.00 -3.67 H2 H2O(g) -1.17 -0.01 1.16 H2O Pressure 4.5 atm, phi 0.015 - O2(g) -5.43 -8.91 -3.48 O2 + O2(g) -5.97 -9.45 -3.48 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3135,53 +3136,53 @@ H2O(g) 0.73 5.375e+00 0.016 1.112e-01 1.079e-01 -3.372e-03 ----------------------------Description of solution---------------------------- pH = 2.756 Charge balance - pe = 16.510 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 25oC) = 681 - Density (g/cm3) = 1.07179 + pe = 16.377 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 663 + Density (g/cm³) = 1.07179 Volume (L) = 1.01178 - Viscosity (mPa s) = 0.90519 + Viscosity (mPa s) = 1.04480 Activity of water = 0.968 Ionic strength (mol/kgw) = 1.831e-03 Mass of water (kg) = 9.980e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.966e+00 - Temperature (oC) = 25.00 + Temperature (°C) = 25.00 Pressure (atm) = 1452.23 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 66 (167 overall) + Iterations = 67 (168 overall) Total H = 1.107967e+02 Total O = 5.932304e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.831e-03 1.755e-03 -2.737 -2.756 -0.018 0.00 OH- 1.644e-11 1.572e-11 -10.784 -10.804 -0.020 -0.40 H2O 5.551e+01 9.676e-01 1.744 -0.014 0.000 17.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -130.396 -130.396 0.000 36.60 + CH4 0.000e+00 0.000e+00 -129.327 -129.327 0.000 36.60 C(4) 1.966e+00 CO2 1.840e+00 1.841e+00 0.265 0.265 0.000 33.81 (CO2)2 6.216e-02 6.218e-02 -1.207 -1.206 0.000 67.63 HCO3- 1.831e-03 1.752e-03 -2.737 -2.756 -0.019 28.01 CO3-2 2.117e-10 1.776e-10 -9.674 -9.751 -0.076 5.53 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.408 -42.407 0.000 28.15 -O(0) 2.455e-09 - O2 1.227e-09 1.228e-09 -8.911 -8.911 0.000 28.96 + H2 0.000e+00 0.000e+00 -42.140 -42.140 0.000 28.15 +O(0) 7.167e-10 + O2 3.583e-10 3.585e-10 -9.446 -9.446 0.000 28.96 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1452 atm) - CH4(g) -126.65 -130.40 -3.74 CH4 + CH4(g) -125.58 -129.33 -3.74 CH4 CO2(g) 2.60 0.26 -2.34 CO2 Pressure 1446.9 atm, phi 0.278 - H2(g) -38.58 -42.41 -3.83 H2 + H2(g) -38.31 -42.14 -3.83 H2 H2O(g) -1.08 -0.01 1.06 H2O Pressure 5.4 atm, phi 0.016 - O2(g) -5.27 -8.91 -3.64 O2 + O2(g) -5.81 -9.45 -3.64 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3253,15 +3254,15 @@ H2O(g) -0.92 1.216e-01 0.998 0.000e+00 4.591e-03 4.591e-03 pH = 6.632 Charge balance pe = 9.262 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 0 - Density (g/cm3) = 0.98799 + Specific Conductance (µS/cm, 50°C) = 0 + Density (g/cm³) = 0.98799 Volume (L) = 1.01207 Viscosity (mPa s) = 0.54650 Activity of water = 1.000 Ionic strength (mol/kgw) = 2.341e-07 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.217e-09 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 0.12 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.26 @@ -3272,7 +3273,7 @@ H2O(g) -0.92 1.216e-01 0.998 0.000e+00 4.591e-03 4.591e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 2.347e-07 2.346e-07 -6.629 -6.630 -0.000 -3.83 H+ 2.335e-07 2.334e-07 -6.632 -6.632 -0.000 0.00 @@ -3337,17 +3338,17 @@ H2O(g) -0.85 1.400e-01 0.872 4.591e-03 5.717e-03 1.126e-03 ----------------------------Description of solution---------------------------- pH = 3.402 Charge balance - pe = 12.491 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 205 - Density (g/cm3) = 0.99137 + pe = 12.495 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 205 + Density (g/cm³) = 0.99137 Volume (L) = 1.02222 - Viscosity (mPa s) = 0.54698 + Viscosity (mPa s) = 0.55428 Activity of water = 0.995 Ionic strength (mol/kgw) = 4.059e-04 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 3.070e-01 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 17.11 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -3358,32 +3359,32 @@ H2O(g) -0.85 1.400e-01 0.872 4.591e-03 5.717e-03 1.126e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 4.059e-04 3.965e-04 -3.392 -3.402 -0.010 0.00 OH- 1.426e-10 1.392e-10 -9.846 -9.856 -0.011 -3.83 H2O 5.551e+01 9.948e-01 1.744 -0.002 0.000 18.22 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -106.522 -106.522 0.000 37.34 + CH4 0.000e+00 0.000e+00 -106.551 -106.551 0.000 37.34 C(4) 3.070e-01 CO2 2.998e-01 2.998e-01 -0.523 -0.523 0.000 35.64 (CO2)2 3.375e-03 3.375e-03 -2.472 -2.472 0.000 71.28 HCO3- 4.059e-04 3.963e-04 -3.392 -3.402 -0.010 25.62 CO3-2 7.490e-11 6.807e-11 -10.126 -10.167 -0.042 -3.09 -H(0) 1.812e-35 - H2 9.059e-36 9.060e-36 -35.043 -35.043 0.000 28.58 -O(0) 2.706e-15 - O2 1.353e-15 1.353e-15 -14.869 -14.869 0.000 31.89 +H(0) 1.781e-35 + H2 8.907e-36 8.908e-36 -35.050 -35.050 0.000 28.58 +O(0) 2.799e-15 + O2 1.399e-15 1.400e-15 -14.854 -14.854 0.000 31.89 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 17 atm) - CH4(g) -103.55 -106.52 -2.97 CH4 + CH4(g) -103.58 -106.55 -2.97 CH4 CO2(g) 1.20 -0.52 -1.72 CO2 Pressure 17.0 atm, phi 0.928 - H2(g) -31.90 -35.04 -3.14 H2 + H2(g) -31.91 -35.05 -3.14 H2 H2O(g) -0.91 -0.00 0.91 H2O Pressure 0.1 atm, phi 0.872 - O2(g) -11.83 -14.87 -3.04 O2 + O2(g) -11.82 -14.85 -3.04 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3432,53 +3433,53 @@ H2O(g) -0.79 1.615e-01 0.761 5.717e-03 7.178e-03 1.461e-03 ----------------------------Description of solution---------------------------- pH = 3.277 Charge balance - pe = 2.472 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 270 - Density (g/cm3) = 0.99409 + pe = 2.454 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 269 + Density (g/cm³) = 0.99409 Volume (L) = 1.03007 - Viscosity (mPa s) = 0.54734 + Viscosity (mPa s) = 0.56005 Activity of water = 0.991 Ionic strength (mol/kgw) = 5.432e-04 Mass of water (kg) = 9.999e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 5.478e-01 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 32.84 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 36 + Iterations = 35 Total H = 1.109981e+02 Total O = 5.659456e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 5.432e-04 5.288e-04 -3.265 -3.277 -0.012 0.00 OH- 1.083e-10 1.053e-10 -9.965 -9.978 -0.012 -3.84 H2O 5.551e+01 9.909e-01 1.744 -0.004 0.000 18.21 -C(-4) 7.379e-26 - CH4 7.379e-26 7.379e-26 -25.132 -25.132 0.000 37.35 +C(-4) 1.040e-25 + CH4 1.040e-25 1.040e-25 -24.983 -24.983 0.000 37.35 C(4) 5.478e-01 CO2 5.265e-01 5.265e-01 -0.279 -0.279 0.000 35.62 (CO2)2 1.041e-02 1.041e-02 -1.983 -1.983 0.000 71.25 HCO3- 5.432e-04 5.284e-04 -3.265 -3.277 -0.012 25.68 CO3-2 7.726e-11 6.922e-11 -10.112 -10.160 -0.048 -2.93 -H(0) 3.456e-15 - H2 1.728e-15 1.728e-15 -14.762 -14.762 0.000 28.57 +H(0) 3.765e-15 + H2 1.883e-15 1.883e-15 -14.725 -14.725 0.000 28.57 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -55.447 -55.447 0.000 31.85 + O2 0.000e+00 0.000e+00 -55.521 -55.521 0.000 31.85 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 33 atm) - CH4(g) -22.15 -25.13 -2.98 CH4 + CH4(g) -22.00 -24.98 -2.98 CH4 CO2(g) 1.45 -0.28 -1.73 CO2 Pressure 32.7 atm, phi 0.864 - H2(g) -11.61 -14.76 -3.15 H2 + H2(g) -11.57 -14.73 -3.15 H2 H2O(g) -0.91 -0.00 0.91 H2O Pressure 0.2 atm, phi 0.761 - O2(g) -52.40 -55.45 -3.05 O2 + O2(g) -52.47 -55.52 -3.05 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3527,53 +3528,53 @@ H2O(g) -0.73 1.861e-01 0.665 7.178e-03 9.044e-03 1.866e-03 ----------------------------Description of solution---------------------------- pH = 3.215 Charge balance - pe = 12.788 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 308 - Density (g/cm3) = 0.99620 + pe = 2.643 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 307 + Density (g/cm³) = 0.99620 Volume (L) = 1.03584 - Viscosity (mPa s) = 0.54765 + Viscosity (mPa s) = 0.56436 Activity of water = 0.988 Ionic strength (mol/kgw) = 6.276e-04 Mass of water (kg) = 9.998e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 7.286e-01 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 46.93 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 30 + Iterations = 25 Total H = 1.109943e+02 Total O = 5.695410e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 6.276e-04 6.099e-04 -3.202 -3.215 -0.012 0.00 OH- 9.491e-11 9.211e-11 -10.023 -10.036 -0.013 -3.86 H2O 5.551e+01 9.879e-01 1.744 -0.005 0.000 18.20 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.050 -107.050 0.000 37.36 +C(-4) 1.291e-26 + CH4 1.291e-26 1.291e-26 -25.889 -25.889 0.000 37.36 C(4) 7.286e-01 CO2 6.920e-01 6.921e-01 -0.160 -0.160 0.000 35.61 (CO2)2 1.798e-02 1.798e-02 -1.745 -1.745 0.000 71.22 HCO3- 6.276e-04 6.094e-04 -3.202 -3.215 -0.013 25.74 CO3-2 7.904e-11 7.026e-11 -10.102 -10.153 -0.051 -2.79 -H(0) 1.058e-35 - H2 5.288e-36 5.289e-36 -35.277 -35.277 0.000 28.57 -O(0) 7.379e-15 - O2 3.690e-15 3.690e-15 -14.433 -14.433 0.000 31.82 +H(0) 2.063e-15 + H2 1.032e-15 1.032e-15 -14.986 -14.986 0.000 28.57 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -55.013 -55.013 0.000 31.82 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 47 atm) - CH4(g) -104.06 -107.05 -2.99 CH4 + CH4(g) -22.90 -25.89 -2.99 CH4 CO2(g) 1.58 -0.16 -1.74 CO2 Pressure 46.7 atm, phi 0.809 - H2(g) -32.12 -35.28 -3.16 H2 + H2(g) -11.83 -14.99 -3.16 H2 H2O(g) -0.91 -0.01 0.90 H2O Pressure 0.2 atm, phi 0.665 - O2(g) -11.38 -14.43 -3.05 O2 + O2(g) -51.96 -55.01 -3.05 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3622,53 +3623,53 @@ H2O(g) -0.67 2.136e-01 0.583 9.044e-03 1.139e-02 2.342e-03 ----------------------------Description of solution---------------------------- pH = 3.178 Charge balance - pe = 12.809 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 333 - Density (g/cm3) = 0.99780 + pe = 12.681 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 330 + Density (g/cm³) = 0.99780 Volume (L) = 1.03988 - Viscosity (mPa s) = 0.54791 + Viscosity (mPa s) = 0.56749 Activity of water = 0.986 Ionic strength (mol/kgw) = 6.831e-04 Mass of water (kg) = 9.998e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 8.589e-01 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 59.15 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 22 + Iterations = 30 Total H = 1.109897e+02 Total O = 5.721235e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 6.831e-04 6.630e-04 -3.166 -3.178 -0.013 0.00 OH- 8.811e-11 8.541e-11 -10.055 -10.068 -0.014 -3.87 H2O 5.551e+01 9.858e-01 1.744 -0.006 0.000 18.19 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -106.865 -106.865 0.000 37.37 + CH4 0.000e+00 0.000e+00 -105.840 -105.840 0.000 37.37 C(4) 8.589e-01 CO2 8.091e-01 8.092e-01 -0.092 -0.092 0.000 35.60 (CO2)2 2.458e-02 2.458e-02 -1.609 -1.609 0.000 71.19 HCO3- 6.831e-04 6.625e-04 -3.166 -3.179 -0.013 25.79 CO3-2 8.045e-11 7.117e-11 -10.094 -10.148 -0.053 -2.68 -H(0) 1.120e-35 - H2 5.602e-36 5.603e-36 -35.252 -35.252 0.000 28.56 -O(0) 6.391e-15 - O2 3.196e-15 3.196e-15 -14.495 -14.495 0.000 31.79 +H(0) 2.022e-35 + H2 1.011e-35 1.011e-35 -34.995 -34.995 0.000 28.56 +O(0) 1.963e-15 + O2 9.815e-16 9.816e-16 -15.008 -15.008 0.000 31.79 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 59 atm) - CH4(g) -103.87 -106.86 -2.99 CH4 + CH4(g) -102.84 -105.84 -2.99 CH4 CO2(g) 1.65 -0.09 -1.74 CO2 Pressure 58.9 atm, phi 0.763 - H2(g) -32.09 -35.25 -3.16 H2 + H2(g) -31.83 -35.00 -3.16 H2 H2O(g) -0.90 -0.01 0.90 H2O Pressure 0.2 atm, phi 0.583 - O2(g) -11.44 -14.50 -3.06 O2 + O2(g) -11.95 -15.01 -3.06 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3717,17 +3718,17 @@ H2O(g) -0.61 2.437e-01 0.514 1.139e-02 1.427e-02 2.881e-03 ----------------------------Description of solution---------------------------- pH = 3.156 Charge balance - pe = 12.907 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 349 - Density (g/cm3) = 0.99898 + pe = 12.723 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 346 + Density (g/cm³) = 0.99898 Volume (L) = 1.04261 - Viscosity (mPa s) = 0.54813 + Viscosity (mPa s) = 0.56971 Activity of water = 0.984 Ionic strength (mol/kgw) = 7.202e-04 Mass of water (kg) = 9.997e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 9.501e-01 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 69.44 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -3738,32 +3739,32 @@ H2O(g) -0.61 2.437e-01 0.514 1.139e-02 1.427e-02 2.881e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 7.202e-04 6.986e-04 -3.143 -3.156 -0.013 0.00 OH- 8.429e-11 8.164e-11 -10.074 -10.088 -0.014 -3.88 H2O 5.551e+01 9.843e-01 1.744 -0.007 0.000 18.18 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.436 -107.436 0.000 37.37 + CH4 0.000e+00 0.000e+00 -105.961 -105.961 0.000 37.37 C(4) 9.501e-01 CO2 8.899e-01 8.900e-01 -0.051 -0.051 0.000 35.58 (CO2)2 2.973e-02 2.974e-02 -1.527 -1.527 0.000 71.17 HCO3- 7.202e-04 6.979e-04 -3.143 -3.156 -0.014 25.83 CO3-2 8.158e-11 7.195e-11 -10.088 -10.143 -0.055 -2.58 -H(0) 7.813e-36 - H2 3.906e-36 3.907e-36 -35.408 -35.408 0.000 28.55 -O(0) 1.284e-14 - O2 6.421e-15 6.422e-15 -14.192 -14.192 0.000 31.77 +H(0) 1.826e-35 + H2 9.132e-36 9.134e-36 -35.039 -35.039 0.000 28.55 +O(0) 2.350e-15 + O2 1.175e-15 1.175e-15 -14.930 -14.930 0.000 31.77 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 69 atm) - CH4(g) -104.43 -107.44 -3.00 CH4 + CH4(g) -102.96 -105.96 -3.00 CH4 CO2(g) 1.70 -0.05 -1.75 CO2 Pressure 69.2 atm, phi 0.724 - H2(g) -32.24 -35.41 -3.17 H2 + H2(g) -31.87 -35.04 -3.17 H2 H2O(g) -0.90 -0.01 0.90 H2O Pressure 0.2 atm, phi 0.514 - O2(g) -11.13 -14.19 -3.07 O2 + O2(g) -11.86 -14.93 -3.07 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3812,17 +3813,17 @@ H2O(g) -0.56 2.762e-01 0.456 1.427e-02 1.774e-02 3.477e-03 ----------------------------Description of solution---------------------------- pH = 3.141 Charge balance - pe = 12.977 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 359 - Density (g/cm3) = 0.99985 + pe = 12.654 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 357 + Density (g/cm³) = 0.99985 Volume (L) = 1.04438 - Viscosity (mPa s) = 0.54831 + Viscosity (mPa s) = 0.57126 Activity of water = 0.983 Ionic strength (mol/kgw) = 7.453e-04 Mass of water (kg) = 9.997e-01 Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.013e+00 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 77.91 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -3833,32 +3834,32 @@ H2O(g) -0.56 2.762e-01 0.456 1.427e-02 1.774e-02 3.477e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 7.453e-04 7.226e-04 -3.128 -3.141 -0.013 0.00 OH- 8.202e-11 7.941e-11 -10.086 -10.100 -0.014 -3.89 H2O 5.551e+01 9.833e-01 1.744 -0.007 0.000 18.17 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.851 -107.851 0.000 37.38 + CH4 0.000e+00 0.000e+00 -105.271 -105.271 0.000 37.38 C(4) 1.013e+00 CO2 9.448e-01 9.449e-01 -0.025 -0.025 0.000 35.58 (CO2)2 3.351e-02 3.352e-02 -1.475 -1.475 0.000 71.15 HCO3- 7.453e-04 7.219e-04 -3.128 -3.142 -0.014 25.86 CO3-2 8.247e-11 7.259e-11 -10.084 -10.139 -0.055 -2.50 -H(0) 6.019e-36 - H2 3.010e-36 3.010e-36 -35.521 -35.521 0.000 28.55 -O(0) 2.123e-14 - O2 1.062e-14 1.062e-14 -13.974 -13.974 0.000 31.75 +H(0) 2.659e-35 + H2 1.330e-35 1.330e-35 -34.876 -34.876 0.000 28.55 +O(0) 1.088e-15 + O2 5.440e-16 5.441e-16 -15.264 -15.264 0.000 31.75 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 78 atm) - CH4(g) -104.84 -107.85 -3.01 CH4 + CH4(g) -102.26 -105.27 -3.01 CH4 CO2(g) 1.73 -0.02 -1.76 CO2 Pressure 77.6 atm, phi 0.693 - H2(g) -32.35 -35.52 -3.17 H2 + H2(g) -31.70 -34.88 -3.17 H2 H2O(g) -0.90 -0.01 0.89 H2O Pressure 0.3 atm, phi 0.456 - O2(g) -10.90 -13.97 -3.07 O2 + O2(g) -12.19 -15.26 -3.07 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3907,53 +3908,53 @@ H2O(g) -0.51 3.107e-01 0.407 1.774e-02 2.186e-02 4.119e-03 ----------------------------Description of solution---------------------------- pH = 3.131 Charge balance - pe = 13.010 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 367 - Density (g/cm3) = 1.00049 + pe = 2.402 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 364 + Density (g/cm³) = 1.00049 Volume (L) = 1.04551 - Viscosity (mPa s) = 0.54846 + Viscosity (mPa s) = 0.57234 Activity of water = 0.983 Ionic strength (mol/kgw) = 7.626e-04 Mass of water (kg) = 9.996e-01 Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.055e+00 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 84.81 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 31 + Iterations = 43 Total H = 1.109687e+02 Total O = 5.759384e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 7.626e-04 7.391e-04 -3.118 -3.131 -0.014 0.00 OH- 8.063e-11 7.803e-11 -10.094 -10.108 -0.014 -3.90 H2O 5.551e+01 9.827e-01 1.744 -0.008 0.000 18.17 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -108.026 -108.026 0.000 37.38 +C(-4) 6.907e-24 + CH4 6.907e-24 6.908e-24 -23.161 -23.161 0.000 37.38 C(4) 1.055e+00 CO2 9.820e-01 9.821e-01 -0.008 -0.008 0.000 35.57 (CO2)2 3.620e-02 3.621e-02 -1.441 -1.441 0.000 71.14 HCO3- 7.626e-04 7.384e-04 -3.118 -3.132 -0.014 25.88 CO3-2 8.319e-11 7.312e-11 -10.080 -10.136 -0.056 -2.44 -H(0) 5.362e-36 - H2 2.681e-36 2.682e-36 -35.572 -35.572 0.000 28.55 -O(0) 2.635e-14 - O2 1.318e-14 1.318e-14 -13.880 -13.880 0.000 31.74 +H(0) 8.826e-15 + H2 4.413e-15 4.414e-15 -14.355 -14.355 0.000 28.55 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -56.313 -56.313 0.000 31.74 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 85 atm) - CH4(g) -105.02 -108.03 -3.01 CH4 + CH4(g) -20.15 -23.16 -3.01 CH4 CO2(g) 1.75 -0.01 -1.76 CO2 Pressure 84.5 atm, phi 0.668 - H2(g) -32.40 -35.57 -3.18 H2 + H2(g) -11.18 -14.36 -3.18 H2 H2O(g) -0.90 -0.01 0.89 H2O Pressure 0.3 atm, phi 0.407 - O2(g) -10.81 -13.88 -3.07 O2 + O2(g) -53.24 -56.31 -3.07 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4002,53 +4003,53 @@ H2O(g) -0.46 3.475e-01 0.365 2.186e-02 2.666e-02 4.799e-03 ----------------------------Description of solution---------------------------- pH = 3.125 Charge balance - pe = 13.026 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 372 - Density (g/cm3) = 1.00098 + pe = 12.650 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 369 + Density (g/cm³) = 1.00098 Volume (L) = 1.04621 - Viscosity (mPa s) = 0.54858 + Viscosity (mPa s) = 0.57310 Activity of water = 0.982 Ionic strength (mol/kgw) = 7.747e-04 Mass of water (kg) = 9.995e-01 Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.085e+00 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 90.49 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 34 + Iterations = 54 Total H = 1.109591e+02 Total O = 5.764790e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 7.747e-04 7.507e-04 -3.111 -3.125 -0.014 0.00 OH- 7.974e-11 7.715e-11 -10.098 -10.113 -0.014 -3.90 H2O 5.551e+01 9.822e-01 1.744 -0.008 0.000 18.16 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -108.092 -108.092 0.000 37.38 + CH4 0.000e+00 0.000e+00 -105.082 -105.082 0.000 37.38 C(4) 1.085e+00 CO2 1.008e+00 1.008e+00 0.003 0.003 0.000 35.56 (CO2)2 3.812e-02 3.813e-02 -1.419 -1.419 0.000 71.12 HCO3- 7.747e-04 7.500e-04 -3.111 -3.125 -0.014 25.90 CO3-2 8.376e-11 7.356e-11 -10.077 -10.133 -0.056 -2.39 -H(0) 5.107e-36 - H2 2.553e-36 2.554e-36 -35.593 -35.593 0.000 28.54 -O(0) 2.871e-14 - O2 1.435e-14 1.436e-14 -13.843 -13.843 0.000 31.72 +H(0) 2.889e-35 + H2 1.445e-35 1.445e-35 -34.840 -34.840 0.000 28.54 +O(0) 8.968e-16 + O2 4.484e-16 4.485e-16 -15.348 -15.348 0.000 31.72 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 90 atm) - CH4(g) -105.08 -108.09 -3.01 CH4 + CH4(g) -102.07 -105.08 -3.01 CH4 CO2(g) 1.77 0.00 -1.76 CO2 Pressure 90.1 atm, phi 0.648 - H2(g) -32.41 -35.59 -3.18 H2 + H2(g) -31.66 -34.84 -3.18 H2 H2O(g) -0.90 -0.01 0.89 H2O Pressure 0.3 atm, phi 0.365 - O2(g) -10.77 -13.84 -3.08 O2 + O2(g) -12.27 -15.35 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4097,17 +4098,17 @@ H2O(g) -0.41 3.869e-01 0.329 2.666e-02 3.217e-02 5.510e-03 ----------------------------Description of solution---------------------------- pH = 3.120 Charge balance - pe = 13.039 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 376 - Density (g/cm3) = 1.00135 + pe = 12.901 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 373 + Density (g/cm³) = 1.00135 Volume (L) = 1.04665 - Viscosity (mPa s) = 0.54868 + Viscosity (mPa s) = 0.57368 Activity of water = 0.982 Ionic strength (mol/kgw) = 7.838e-04 Mass of water (kg) = 9.994e-01 Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.106e+00 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 95.32 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -4118,32 +4119,32 @@ H2O(g) -0.41 3.869e-01 0.329 2.666e-02 3.217e-02 5.510e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 7.838e-04 7.594e-04 -3.106 -3.120 -0.014 0.00 OH- 7.914e-11 7.655e-11 -10.102 -10.116 -0.014 -3.91 H2O 5.551e+01 9.819e-01 1.744 -0.008 0.000 18.16 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -108.154 -108.154 0.000 37.39 + CH4 0.000e+00 0.000e+00 -107.050 -107.050 0.000 37.39 C(4) 1.106e+00 CO2 1.026e+00 1.026e+00 0.011 0.011 0.000 35.56 (CO2)2 3.954e-02 3.955e-02 -1.403 -1.403 0.000 71.11 HCO3- 7.838e-04 7.586e-04 -3.106 -3.120 -0.014 25.92 CO3-2 8.424e-11 7.393e-11 -10.074 -10.131 -0.057 -2.34 -H(0) 4.890e-36 - H2 2.445e-36 2.445e-36 -35.612 -35.612 0.000 28.54 -O(0) 3.099e-14 - O2 1.550e-14 1.550e-14 -13.810 -13.810 0.000 31.71 +H(0) 9.229e-36 + H2 4.615e-36 4.615e-36 -35.336 -35.336 0.000 28.54 +O(0) 8.699e-15 + O2 4.350e-15 4.351e-15 -14.362 -14.361 0.000 31.71 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 95 atm) - CH4(g) -105.14 -108.15 -3.02 CH4 + CH4(g) -104.03 -107.05 -3.02 CH4 CO2(g) 1.78 0.01 -1.77 CO2 Pressure 94.9 atm, phi 0.630 - H2(g) -32.43 -35.61 -3.18 H2 + H2(g) -32.16 -35.34 -3.18 H2 H2O(g) -0.90 -0.01 0.89 H2O Pressure 0.4 atm, phi 0.329 - O2(g) -10.73 -13.81 -3.08 O2 + O2(g) -11.28 -14.36 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4192,17 +4193,17 @@ H2O(g) -0.37 4.298e-01 0.297 3.217e-02 3.841e-02 6.243e-03 ----------------------------Description of solution---------------------------- pH = 3.116 Charge balance - pe = 13.045 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 379 - Density (g/cm3) = 1.00168 + pe = 12.991 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 376 + Density (g/cm³) = 1.00168 Volume (L) = 1.04693 - Viscosity (mPa s) = 0.54877 + Viscosity (mPa s) = 0.57414 Activity of water = 0.982 Ionic strength (mol/kgw) = 7.911e-04 Mass of water (kg) = 9.993e-01 Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.123e+00 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 99.75 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -4213,32 +4214,32 @@ H2O(g) -0.37 4.298e-01 0.297 3.217e-02 3.841e-02 6.243e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 7.911e-04 7.664e-04 -3.102 -3.116 -0.014 0.00 OH- 7.869e-11 7.611e-11 -10.104 -10.119 -0.014 -3.91 H2O 5.551e+01 9.816e-01 1.744 -0.008 0.000 18.16 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -108.160 -108.159 0.000 37.39 + CH4 0.000e+00 0.000e+00 -107.730 -107.730 0.000 37.39 C(4) 1.123e+00 CO2 1.041e+00 1.041e+00 0.017 0.017 0.000 35.55 (CO2)2 4.066e-02 4.067e-02 -1.391 -1.391 0.000 71.10 HCO3- 7.911e-04 7.656e-04 -3.102 -3.116 -0.014 25.94 CO3-2 8.468e-11 7.427e-11 -10.072 -10.129 -0.057 -2.30 -H(0) 4.840e-36 - H2 2.420e-36 2.420e-36 -35.616 -35.616 0.000 28.54 -O(0) 3.134e-14 - O2 1.567e-14 1.567e-14 -13.805 -13.805 0.000 31.70 +H(0) 6.199e-36 + H2 3.100e-36 3.100e-36 -35.509 -35.509 0.000 28.54 +O(0) 1.910e-14 + O2 9.552e-15 9.553e-15 -14.020 -14.020 0.000 31.70 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 100 atm) - CH4(g) -105.14 -108.16 -3.02 CH4 + CH4(g) -104.71 -107.73 -3.02 CH4 CO2(g) 1.79 0.02 -1.77 CO2 Pressure 99.3 atm, phi 0.615 - H2(g) -32.43 -35.62 -3.18 H2 + H2(g) -32.33 -35.51 -3.18 H2 H2O(g) -0.89 -0.01 0.89 H2O Pressure 0.4 atm, phi 0.297 - O2(g) -10.72 -13.80 -3.08 O2 + O2(g) -10.94 -14.02 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4287,17 +4288,17 @@ H2O(g) -0.32 4.775e-01 0.268 3.841e-02 4.540e-02 6.987e-03 ----------------------------Description of solution---------------------------- pH = 3.112 Charge balance - pe = 13.061 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 382 - Density (g/cm3) = 1.00199 + pe = 12.971 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 379 + Density (g/cm³) = 1.00199 Volume (L) = 1.04712 - Viscosity (mPa s) = 0.54887 + Viscosity (mPa s) = 0.57456 Activity of water = 0.981 Ionic strength (mol/kgw) = 7.977e-04 Mass of water (kg) = 9.992e-01 Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.137e+00 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 104.21 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -4308,32 +4309,32 @@ H2O(g) -0.32 4.775e-01 0.268 3.841e-02 4.540e-02 6.987e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 7.977e-04 7.726e-04 -3.098 -3.112 -0.014 0.00 OH- 7.834e-11 7.576e-11 -10.106 -10.121 -0.015 -3.92 H2O 5.551e+01 9.814e-01 1.744 -0.008 0.000 18.15 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -108.258 -108.258 0.000 37.39 + CH4 0.000e+00 0.000e+00 -107.544 -107.544 0.000 37.39 C(4) 1.137e+00 CO2 1.053e+00 1.053e+00 0.023 0.023 0.000 35.55 (CO2)2 4.165e-02 4.166e-02 -1.380 -1.380 0.000 71.09 HCO3- 7.977e-04 7.718e-04 -3.098 -3.112 -0.014 25.96 CO3-2 8.511e-11 7.462e-11 -10.070 -10.127 -0.057 -2.26 -H(0) 4.546e-36 - H2 2.273e-36 2.273e-36 -35.643 -35.643 0.000 28.54 -O(0) 3.520e-14 - O2 1.760e-14 1.760e-14 -13.754 -13.754 0.000 31.69 +H(0) 6.854e-36 + H2 3.427e-36 3.428e-36 -35.465 -35.465 0.000 28.54 +O(0) 1.548e-14 + O2 7.742e-15 7.744e-15 -14.111 -14.111 0.000 31.69 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 104 atm) - CH4(g) -105.23 -108.26 -3.02 CH4 + CH4(g) -104.52 -107.54 -3.02 CH4 CO2(g) 1.79 0.02 -1.77 CO2 Pressure 103.7 atm, phi 0.599 - H2(g) -32.46 -35.64 -3.18 H2 + H2(g) -32.28 -35.47 -3.18 H2 H2O(g) -0.89 -0.01 0.89 H2O Pressure 0.5 atm, phi 0.268 - O2(g) -10.67 -13.75 -3.08 O2 + O2(g) -11.03 -14.11 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4382,53 +4383,53 @@ H2O(g) -0.27 5.320e-01 0.241 4.540e-02 5.313e-02 7.732e-03 ----------------------------Description of solution---------------------------- pH = 3.109 Charge balance - pe = 13.069 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 385 - Density (g/cm3) = 1.00231 + pe = 12.832 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 381 + Density (g/cm³) = 1.00231 Volume (L) = 1.04725 - Viscosity (mPa s) = 0.54897 + Viscosity (mPa s) = 0.57497 Activity of water = 0.981 Ionic strength (mol/kgw) = 8.043e-04 Mass of water (kg) = 9.990e-01 Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.151e+00 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 109.16 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 33 + Iterations = 37 Total H = 1.109062e+02 Total O = 5.775348e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.043e-04 7.789e-04 -3.095 -3.109 -0.014 0.00 OH- 7.802e-11 7.544e-11 -10.108 -10.122 -0.015 -3.92 H2O 5.551e+01 9.811e-01 1.744 -0.008 0.000 18.15 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -108.292 -108.292 0.000 37.39 + CH4 0.000e+00 0.000e+00 -106.401 -106.401 0.000 37.39 C(4) 1.151e+00 CO2 1.065e+00 1.065e+00 0.027 0.028 0.000 35.54 (CO2)2 4.261e-02 4.262e-02 -1.371 -1.370 0.000 71.08 HCO3- 8.043e-04 7.781e-04 -3.095 -3.109 -0.014 25.97 CO3-2 8.560e-11 7.500e-11 -10.068 -10.125 -0.057 -2.22 -H(0) 4.428e-36 - H2 2.214e-36 2.214e-36 -35.655 -35.655 0.000 28.54 -O(0) 3.672e-14 - O2 1.836e-14 1.836e-14 -13.736 -13.736 0.000 31.68 +H(0) 1.315e-35 + H2 6.574e-36 6.575e-36 -35.182 -35.182 0.000 28.54 +O(0) 4.165e-15 + O2 2.083e-15 2.083e-15 -14.681 -14.681 0.000 31.68 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 109 atm) - CH4(g) -105.27 -108.29 -3.03 CH4 + CH4(g) -103.38 -106.40 -3.03 CH4 CO2(g) 1.80 0.03 -1.77 CO2 Pressure 108.6 atm, phi 0.583 - H2(g) -32.47 -35.65 -3.19 H2 + H2(g) -32.00 -35.18 -3.19 H2 H2O(g) -0.89 -0.01 0.88 H2O Pressure 0.5 atm, phi 0.241 - O2(g) -10.65 -13.74 -3.09 O2 + O2(g) -11.60 -14.68 -3.09 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4477,17 +4478,17 @@ H2O(g) -0.22 5.960e-01 0.216 5.313e-02 6.160e-02 8.464e-03 ----------------------------Description of solution---------------------------- pH = 3.105 Charge balance - pe = 13.064 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 388 - Density (g/cm3) = 1.00268 + pe = 12.852 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 384 + Density (g/cm³) = 1.00268 Volume (L) = 1.04734 - Viscosity (mPa s) = 0.54910 + Viscosity (mPa s) = 0.57542 Activity of water = 0.981 Ionic strength (mol/kgw) = 8.115e-04 Mass of water (kg) = 9.989e-01 Total alkalinity (eq/kg) = 1.222e-09 Total CO2 (mol/kg) = 1.166e+00 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 115.10 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -4498,32 +4499,32 @@ H2O(g) -0.22 5.960e-01 0.216 5.313e-02 6.160e-02 8.464e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.115e-04 7.858e-04 -3.091 -3.105 -0.014 0.00 OH- 7.771e-11 7.513e-11 -10.110 -10.124 -0.015 -3.93 H2O 5.551e+01 9.809e-01 1.744 -0.008 0.000 18.14 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -108.222 -108.222 0.000 37.40 + CH4 0.000e+00 0.000e+00 -106.526 -106.526 0.000 37.40 C(4) 1.166e+00 CO2 1.078e+00 1.078e+00 0.033 0.033 0.000 35.54 (CO2)2 4.362e-02 4.363e-02 -1.360 -1.360 0.000 71.07 HCO3- 8.115e-04 7.850e-04 -3.091 -3.105 -0.014 25.99 CO3-2 8.617e-11 7.547e-11 -10.065 -10.122 -0.058 -2.16 -H(0) 4.577e-36 - H2 2.289e-36 2.289e-36 -35.640 -35.640 0.000 28.53 -O(0) 3.395e-14 - O2 1.698e-14 1.698e-14 -13.770 -13.770 0.000 31.67 +H(0) 1.215e-35 + H2 6.074e-36 6.075e-36 -35.217 -35.216 0.000 28.53 +O(0) 4.819e-15 + O2 2.410e-15 2.410e-15 -14.618 -14.618 0.000 31.67 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 115 atm) - CH4(g) -105.19 -108.22 -3.03 CH4 + CH4(g) -103.50 -106.53 -3.03 CH4 CO2(g) 1.81 0.03 -1.78 CO2 Pressure 114.5 atm, phi 0.564 - H2(g) -32.45 -35.64 -3.19 H2 + H2(g) -32.03 -35.22 -3.19 H2 H2O(g) -0.89 -0.01 0.88 H2O Pressure 0.6 atm, phi 0.216 - O2(g) -10.68 -13.77 -3.09 O2 + O2(g) -11.53 -14.62 -3.09 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4572,17 +4573,17 @@ H2O(g) -0.17 6.730e-01 0.192 6.160e-02 7.077e-02 9.169e-03 ----------------------------Description of solution---------------------------- pH = 3.100 Charge balance - pe = 13.068 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 391 - Density (g/cm3) = 1.00313 + pe = 12.941 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 388 + Density (g/cm³) = 1.00313 Volume (L) = 1.04741 - Viscosity (mPa s) = 0.54926 + Viscosity (mPa s) = 0.57595 Activity of water = 0.981 Ionic strength (mol/kgw) = 8.198e-04 Mass of water (kg) = 9.987e-01 Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.182e+00 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 122.58 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -4593,32 +4594,32 @@ H2O(g) -0.17 6.730e-01 0.192 6.160e-02 7.077e-02 9.169e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.198e-04 7.938e-04 -3.086 -3.100 -0.014 0.00 OH- 7.740e-11 7.482e-11 -10.111 -10.126 -0.015 -3.93 H2O 5.551e+01 9.806e-01 1.744 -0.008 0.000 18.14 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -108.217 -108.216 0.000 37.40 + CH4 0.000e+00 0.000e+00 -107.201 -107.201 0.000 37.40 C(4) 1.182e+00 CO2 1.092e+00 1.092e+00 0.038 0.038 0.000 35.53 (CO2)2 4.476e-02 4.477e-02 -1.349 -1.349 0.000 71.05 HCO3- 8.198e-04 7.930e-04 -3.086 -3.101 -0.014 26.02 CO3-2 8.689e-11 7.606e-11 -10.061 -10.119 -0.058 -2.10 -H(0) 4.551e-36 - H2 2.275e-36 2.276e-36 -35.643 -35.643 0.000 28.53 -O(0) 3.382e-14 - O2 1.691e-14 1.691e-14 -13.772 -13.772 0.000 31.65 +H(0) 8.166e-36 + H2 4.083e-36 4.084e-36 -35.389 -35.389 0.000 28.53 +O(0) 1.051e-14 + O2 5.253e-15 5.254e-15 -14.280 -14.280 0.000 31.65 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 123 atm) - CH4(g) -105.18 -108.22 -3.03 CH4 + CH4(g) -104.17 -107.20 -3.03 CH4 CO2(g) 1.82 0.04 -1.78 CO2 Pressure 121.9 atm, phi 0.542 - H2(g) -32.45 -35.64 -3.19 H2 + H2(g) -32.20 -35.39 -3.19 H2 H2O(g) -0.89 -0.01 0.88 H2O Pressure 0.7 atm, phi 0.192 - O2(g) -10.68 -13.77 -3.09 O2 + O2(g) -11.19 -14.28 -3.09 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4667,17 +4668,17 @@ H2O(g) -0.12 7.673e-01 0.170 7.077e-02 8.060e-02 9.828e-03 ----------------------------Description of solution---------------------------- pH = 3.095 Charge balance - pe = 13.123 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 396 - Density (g/cm3) = 1.00368 + pe = 13.004 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 392 + Density (g/cm³) = 1.00368 Volume (L) = 1.04745 - Viscosity (mPa s) = 0.54946 + Viscosity (mPa s) = 0.57656 Activity of water = 0.980 Ionic strength (mol/kgw) = 8.298e-04 Mass of water (kg) = 9.985e-01 Total alkalinity (eq/kg) = 1.222e-09 Total CO2 (mol/kg) = 1.201e+00 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 132.16 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -4688,32 +4689,32 @@ H2O(g) -0.12 7.673e-01 0.170 7.077e-02 8.060e-02 9.828e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.298e-04 8.033e-04 -3.081 -3.095 -0.014 0.00 OH- 7.709e-11 7.451e-11 -10.113 -10.128 -0.015 -3.94 H2O 5.551e+01 9.804e-01 1.744 -0.009 0.000 18.13 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -108.618 -108.618 0.000 37.41 + CH4 0.000e+00 0.000e+00 -107.663 -107.662 0.000 37.41 C(4) 1.201e+00 CO2 1.108e+00 1.108e+00 0.044 0.044 0.000 35.52 (CO2)2 4.606e-02 4.607e-02 -1.337 -1.337 0.000 71.03 HCO3- 8.298e-04 8.024e-04 -3.081 -3.096 -0.015 26.06 CO3-2 8.782e-11 7.681e-11 -10.056 -10.115 -0.058 -2.01 -H(0) 3.575e-36 - H2 1.787e-36 1.788e-36 -35.748 -35.748 0.000 28.53 -O(0) 5.376e-14 - O2 2.688e-14 2.688e-14 -13.571 -13.571 0.000 31.63 +H(0) 6.194e-36 + H2 3.097e-36 3.098e-36 -35.509 -35.509 0.000 28.53 +O(0) 1.790e-14 + O2 8.951e-15 8.953e-15 -14.048 -14.048 0.000 31.63 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 132 atm) - CH4(g) -105.58 -108.62 -3.04 CH4 + CH4(g) -104.62 -107.66 -3.04 CH4 CO2(g) 1.83 0.04 -1.79 CO2 Pressure 131.4 atm, phi 0.516 - H2(g) -32.55 -35.75 -3.20 H2 + H2(g) -32.31 -35.51 -3.20 H2 H2O(g) -0.89 -0.01 0.88 H2O Pressure 0.8 atm, phi 0.170 - O2(g) -10.47 -13.57 -3.10 O2 + O2(g) -10.95 -14.05 -3.10 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4762,17 +4763,17 @@ H2O(g) -0.05 8.845e-01 0.148 8.060e-02 9.102e-02 1.042e-02 ----------------------------Description of solution---------------------------- pH = 3.089 Charge balance - pe = 13.132 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 401 - Density (g/cm3) = 1.00438 + pe = 13.053 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 398 + Density (g/cm³) = 1.00438 Volume (L) = 1.04745 - Viscosity (mPa s) = 0.54972 + Viscosity (mPa s) = 0.57730 Activity of water = 0.980 Ionic strength (mol/kgw) = 8.417e-04 Mass of water (kg) = 9.983e-01 Total alkalinity (eq/kg) = 1.222e-09 Total CO2 (mol/kg) = 1.221e+00 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 144.52 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -4783,32 +4784,32 @@ H2O(g) -0.05 8.845e-01 0.148 8.060e-02 9.102e-02 1.042e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.417e-04 8.147e-04 -3.075 -3.089 -0.014 0.00 OH- 7.679e-11 7.420e-11 -10.115 -10.130 -0.015 -3.96 H2O 5.551e+01 9.800e-01 1.744 -0.009 0.000 18.12 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -108.636 -108.636 0.000 37.41 + CH4 0.000e+00 0.000e+00 -108.005 -108.005 0.000 37.41 C(4) 1.221e+00 CO2 1.125e+00 1.126e+00 0.051 0.051 0.000 35.50 (CO2)2 4.756e-02 4.757e-02 -1.323 -1.323 0.000 71.01 HCO3- 8.417e-04 8.138e-04 -3.075 -3.089 -0.015 26.10 CO3-2 8.902e-11 7.780e-11 -10.051 -10.109 -0.059 -1.91 -H(0) 3.491e-36 - H2 1.746e-36 1.746e-36 -35.758 -35.758 0.000 28.52 -O(0) 5.496e-14 - O2 2.748e-14 2.749e-14 -13.561 -13.561 0.000 31.61 +H(0) 5.019e-36 + H2 2.510e-36 2.510e-36 -35.600 -35.600 0.000 28.52 +O(0) 2.659e-14 + O2 1.330e-14 1.330e-14 -13.876 -13.876 0.000 31.61 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 145 atm) - CH4(g) -105.59 -108.64 -3.05 CH4 + CH4(g) -104.96 -108.01 -3.05 CH4 CO2(g) 1.85 0.05 -1.79 CO2 Pressure 143.6 atm, phi 0.488 - H2(g) -32.55 -35.76 -3.20 H2 + H2(g) -32.40 -35.60 -3.20 H2 H2O(g) -0.88 -0.01 0.87 H2O Pressure 0.9 atm, phi 0.148 - O2(g) -10.46 -13.56 -3.10 O2 + O2(g) -10.77 -13.88 -3.10 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4857,17 +4858,17 @@ H2O(g) 0.01 1.031e+00 0.129 9.102e-02 1.020e-01 1.094e-02 ----------------------------Description of solution---------------------------- pH = 3.082 Charge balance - pe = 13.118 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 408 - Density (g/cm3) = 1.00524 + pe = 12.930 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 404 + Density (g/cm³) = 1.00524 Volume (L) = 1.04738 - Viscosity (mPa s) = 0.55006 + Viscosity (mPa s) = 0.57819 Activity of water = 0.980 Ionic strength (mol/kgw) = 8.561e-04 Mass of water (kg) = 9.981e-01 Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.245e+00 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 160.38 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -4878,32 +4879,32 @@ H2O(g) 0.01 1.031e+00 0.129 9.102e-02 1.020e-01 1.094e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.561e-04 8.285e-04 -3.067 -3.082 -0.014 0.00 OH- 7.651e-11 7.391e-11 -10.116 -10.131 -0.015 -3.97 H2O 5.551e+01 9.797e-01 1.744 -0.009 0.000 18.11 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -108.474 -108.474 0.000 37.42 + CH4 0.000e+00 0.000e+00 -106.970 -106.970 0.000 37.42 C(4) 1.245e+00 CO2 1.146e+00 1.146e+00 0.059 0.059 0.000 35.49 (CO2)2 4.929e-02 4.930e-02 -1.307 -1.307 0.000 70.97 HCO3- 8.561e-04 8.276e-04 -3.067 -3.082 -0.015 26.16 CO3-2 9.056e-11 7.907e-11 -10.043 -10.102 -0.059 -1.77 -H(0) 3.772e-36 - H2 1.886e-36 1.886e-36 -35.724 -35.724 0.000 28.51 -O(0) 4.561e-14 - O2 2.280e-14 2.281e-14 -13.642 -13.642 0.000 31.58 +H(0) 8.964e-36 + H2 4.482e-36 4.483e-36 -35.349 -35.348 0.000 28.51 +O(0) 8.076e-15 + O2 4.038e-15 4.039e-15 -14.394 -14.394 0.000 31.58 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 160 atm) - CH4(g) -105.42 -108.47 -3.06 CH4 + CH4(g) -103.91 -106.97 -3.06 CH4 CO2(g) 1.86 0.06 -1.80 CO2 Pressure 159.3 atm, phi 0.457 - H2(g) -32.51 -35.72 -3.21 H2 + H2(g) -32.14 -35.35 -3.21 H2 H2O(g) -0.88 -0.01 0.87 H2O Pressure 1.0 atm, phi 0.129 - O2(g) -10.53 -13.64 -3.11 O2 + O2(g) -11.28 -14.39 -3.11 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4952,17 +4953,17 @@ H2O(g) 0.08 1.215e+00 0.111 1.020e-01 1.133e-01 1.134e-02 ----------------------------Description of solution---------------------------- pH = 3.073 Charge balance - pe = 13.159 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 416 - Density (g/cm3) = 1.00631 + pe = 12.959 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 412 + Density (g/cm³) = 1.00631 Volume (L) = 1.04724 - Viscosity (mPa s) = 0.55049 + Viscosity (mPa s) = 0.57925 Activity of water = 0.979 Ionic strength (mol/kgw) = 8.735e-04 Mass of water (kg) = 9.979e-01 Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.272e+00 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 180.60 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -4973,32 +4974,32 @@ H2O(g) 0.08 1.215e+00 0.111 1.020e-01 1.133e-01 1.134e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.735e-04 8.451e-04 -3.059 -3.073 -0.014 0.00 OH- 7.627e-11 7.366e-11 -10.118 -10.133 -0.015 -3.99 H2O 5.551e+01 9.792e-01 1.744 -0.009 0.000 18.09 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -108.733 -108.733 0.000 37.43 + CH4 0.000e+00 0.000e+00 -107.134 -107.134 0.000 37.43 C(4) 1.272e+00 CO2 1.169e+00 1.169e+00 0.068 0.068 0.000 35.47 (CO2)2 5.130e-02 5.131e-02 -1.290 -1.290 0.000 70.93 HCO3- 8.735e-04 8.441e-04 -3.059 -3.074 -0.015 26.23 CO3-2 9.255e-11 8.072e-11 -10.034 -10.093 -0.059 -1.59 -H(0) 3.186e-36 - H2 1.593e-36 1.593e-36 -35.798 -35.798 0.000 28.51 -O(0) 6.139e-14 - O2 3.069e-14 3.070e-14 -13.513 -13.513 0.000 31.53 +H(0) 7.998e-36 + H2 3.999e-36 4.000e-36 -35.398 -35.398 0.000 28.51 +O(0) 9.740e-15 + O2 4.870e-15 4.871e-15 -14.312 -14.312 0.000 31.53 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 181 atm) - CH4(g) -105.66 -108.73 -3.07 CH4 + CH4(g) -104.06 -107.13 -3.07 CH4 CO2(g) 1.88 0.07 -1.82 CO2 Pressure 179.4 atm, phi 0.426 - H2(g) -32.58 -35.80 -3.22 H2 + H2(g) -32.18 -35.40 -3.22 H2 H2O(g) -0.87 -0.01 0.86 H2O Pressure 1.2 atm, phi 0.111 - O2(g) -10.39 -13.51 -3.12 O2 + O2(g) -11.19 -14.31 -3.12 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5047,17 +5048,17 @@ H2O(g) 0.16 1.445e+00 0.095 1.133e-01 1.249e-01 1.161e-02 ----------------------------Description of solution---------------------------- pH = 3.063 Charge balance - pe = 13.170 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 425 - Density (g/cm3) = 1.00763 + pe = 13.006 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 421 + Density (g/cm³) = 1.00763 Volume (L) = 1.04697 - Viscosity (mPa s) = 0.55104 + Viscosity (mPa s) = 0.58051 Activity of water = 0.979 Ionic strength (mol/kgw) = 8.944e-04 Mass of water (kg) = 9.977e-01 Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.303e+00 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 206.19 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -5068,32 +5069,32 @@ H2O(g) 0.16 1.445e+00 0.095 1.133e-01 1.249e-01 1.161e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.944e-04 8.650e-04 -3.048 -3.063 -0.015 0.00 OH- 7.611e-11 7.347e-11 -10.119 -10.134 -0.015 -4.02 H2O 5.551e+01 9.787e-01 1.744 -0.009 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -108.750 -108.750 0.000 37.44 + CH4 0.000e+00 0.000e+00 -107.434 -107.434 0.000 37.44 C(4) 1.303e+00 CO2 1.195e+00 1.195e+00 0.077 0.077 0.000 35.44 (CO2)2 5.359e-02 5.360e-02 -1.271 -1.271 0.000 70.88 HCO3- 8.944e-04 8.641e-04 -3.048 -3.063 -0.015 26.32 CO3-2 9.511e-11 8.283e-11 -10.022 -10.082 -0.060 -1.38 -H(0) 3.080e-36 - H2 1.540e-36 1.540e-36 -35.812 -35.812 0.000 28.49 -O(0) 6.240e-14 - O2 3.120e-14 3.121e-14 -13.506 -13.506 0.000 31.48 +H(0) 6.572e-36 + H2 3.286e-36 3.287e-36 -35.483 -35.483 0.000 28.49 +O(0) 1.370e-14 + O2 6.852e-15 6.853e-15 -14.164 -14.164 0.000 31.48 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 206 atm) - CH4(g) -105.67 -108.75 -3.09 CH4 + CH4(g) -104.35 -107.43 -3.09 CH4 CO2(g) 1.91 0.08 -1.83 CO2 Pressure 204.7 atm, phi 0.394 - H2(g) -32.58 -35.81 -3.23 H2 + H2(g) -32.25 -35.48 -3.23 H2 H2O(g) -0.86 -0.01 0.86 H2O Pressure 1.4 atm, phi 0.095 - O2(g) -10.37 -13.51 -3.14 O2 + O2(g) -11.03 -14.16 -3.14 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5142,17 +5143,17 @@ H2O(g) 0.24 1.731e+00 0.081 1.249e-01 1.366e-01 1.171e-02 ----------------------------Description of solution---------------------------- pH = 3.051 Charge balance - pe = 13.198 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 437 - Density (g/cm3) = 1.00924 + pe = 13.077 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 432 + Density (g/cm³) = 1.00924 Volume (L) = 1.04656 - Viscosity (mPa s) = 0.55174 + Viscosity (mPa s) = 0.58202 Activity of water = 0.978 Ionic strength (mol/kgw) = 9.196e-04 Mass of water (kg) = 9.975e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.337e+00 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 238.31 Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -5163,32 +5164,32 @@ H2O(g) 0.24 1.731e+00 0.081 1.249e-01 1.366e-01 1.171e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 9.196e-04 8.890e-04 -3.036 -3.051 -0.015 0.00 OH- 7.605e-11 7.339e-11 -10.119 -10.134 -0.015 -4.04 H2O 5.551e+01 9.782e-01 1.744 -0.010 0.000 18.05 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -108.887 -108.887 0.000 37.46 + CH4 0.000e+00 0.000e+00 -107.915 -107.915 0.000 37.46 C(4) 1.337e+00 CO2 1.223e+00 1.224e+00 0.088 0.088 0.000 35.41 (CO2)2 5.620e-02 5.621e-02 -1.250 -1.250 0.000 70.81 HCO3- 9.196e-04 8.880e-04 -3.036 -3.052 -0.015 26.43 CO3-2 9.837e-11 8.553e-11 -10.007 -10.068 -0.061 -1.11 -H(0) 2.766e-36 - H2 1.383e-36 1.383e-36 -35.859 -35.859 0.000 28.48 -O(0) 7.258e-14 - O2 3.629e-14 3.630e-14 -13.440 -13.440 0.000 31.42 +H(0) 4.838e-36 + H2 2.419e-36 2.419e-36 -35.616 -35.616 0.000 28.48 +O(0) 2.372e-14 + O2 1.186e-14 1.186e-14 -13.926 -13.926 0.000 31.42 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 238 atm) - CH4(g) -105.78 -108.89 -3.10 CH4 + CH4(g) -104.81 -107.92 -3.10 CH4 CO2(g) 1.94 0.09 -1.85 CO2 Pressure 236.6 atm, phi 0.365 - H2(g) -32.61 -35.86 -3.25 H2 + H2(g) -32.37 -35.62 -3.25 H2 H2O(g) -0.86 -0.01 0.85 H2O Pressure 1.7 atm, phi 0.081 - O2(g) -10.29 -13.44 -3.15 O2 + O2(g) -10.77 -13.93 -3.15 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5237,17 +5238,17 @@ H2O(g) 0.32 2.086e+00 0.069 1.366e-01 1.482e-01 1.162e-02 ----------------------------Description of solution---------------------------- pH = 3.037 Charge balance - pe = 13.225 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 451 - Density (g/cm3) = 1.01120 + pe = 13.058 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 446 + Density (g/cm³) = 1.01120 Volume (L) = 1.04594 - Viscosity (mPa s) = 0.55262 + Viscosity (mPa s) = 0.58381 Activity of water = 0.978 Ionic strength (mol/kgw) = 9.498e-04 Mass of water (kg) = 9.973e-01 Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.374e+00 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 278.39 Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -5258,32 +5259,32 @@ H2O(g) 0.32 2.086e+00 0.069 1.366e-01 1.482e-01 1.162e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 9.498e-04 9.178e-04 -3.022 -3.037 -0.015 0.00 OH- 7.616e-11 7.346e-11 -10.118 -10.134 -0.016 -4.08 H2O 5.551e+01 9.776e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -109.005 -109.005 0.000 37.48 + CH4 0.000e+00 0.000e+00 -107.667 -107.667 0.000 37.48 C(4) 1.374e+00 CO2 1.255e+00 1.255e+00 0.099 0.099 0.000 35.37 (CO2)2 5.915e-02 5.916e-02 -1.228 -1.228 0.000 70.73 HCO3- 9.498e-04 9.167e-04 -3.022 -3.038 -0.015 26.56 CO3-2 1.025e-10 8.898e-11 -9.989 -10.051 -0.062 -0.79 -H(0) 2.494e-36 - H2 1.247e-36 1.247e-36 -35.904 -35.904 0.000 28.46 -O(0) 8.242e-14 - O2 4.121e-14 4.122e-14 -13.385 -13.385 0.000 31.34 +H(0) 5.390e-36 + H2 2.695e-36 2.695e-36 -35.569 -35.569 0.000 28.46 +O(0) 1.765e-14 + O2 8.823e-15 8.825e-15 -14.054 -14.054 0.000 31.34 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 278 atm) - CH4(g) -105.88 -109.01 -3.13 CH4 + CH4(g) -104.54 -107.67 -3.13 CH4 CO2(g) 1.97 0.10 -1.87 CO2 Pressure 276.3 atm, phi 0.338 - H2(g) -32.64 -35.90 -3.27 H2 + H2(g) -32.30 -35.57 -3.27 H2 H2O(g) -0.84 -0.01 0.83 H2O Pressure 2.1 atm, phi 0.069 - O2(g) -10.21 -13.38 -3.17 O2 + O2(g) -10.88 -14.05 -3.17 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5339,53 +5340,53 @@ H2O(g) 0.40 2.523e+00 0.059 1.482e-01 1.595e-01 1.130e-02 ----------------------------Description of solution---------------------------- pH = 3.021 Charge balance - pe = 14.328 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 467 - Density (g/cm3) = 1.01357 + pe = 14.519 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 463 + Density (g/cm³) = 1.01357 Volume (L) = 1.04507 - Viscosity (mPa s) = 0.55373 + Viscosity (mPa s) = 0.58594 Activity of water = 0.977 Ionic strength (mol/kgw) = 9.860e-04 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.416e+00 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 328.12 Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 37 (138 overall) + Iterations = 43 (144 overall) Total H = 1.106934e+02 Total O = 5.816996e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 9.860e-04 9.524e-04 -3.006 -3.021 -0.015 0.00 OH- 7.650e-11 7.375e-11 -10.116 -10.132 -0.016 -4.12 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 17.98 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -117.715 -117.715 0.000 37.50 + CH4 0.000e+00 0.000e+00 -119.243 -119.243 0.000 37.50 C(4) 1.416e+00 CO2 1.290e+00 1.290e+00 0.111 0.111 0.000 35.32 (CO2)2 6.246e-02 6.248e-02 -1.204 -1.204 0.000 70.63 HCO3- 9.860e-04 9.512e-04 -3.006 -3.022 -0.016 26.72 CO3-2 1.078e-10 9.339e-11 -9.967 -10.030 -0.062 -0.39 -H(0) 1.589e-38 - H2 7.944e-39 7.946e-39 -38.100 -38.100 0.000 28.45 -O(0) 1.840e-09 - O2 9.201e-10 9.203e-10 -9.036 -9.036 0.000 31.25 +H(0) 6.592e-39 + H2 3.296e-39 3.297e-39 -38.482 -38.482 0.000 28.45 +O(0) 1.069e-08 + O2 5.344e-09 5.345e-09 -8.272 -8.272 0.000 31.25 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 328 atm) - CH4(g) -114.55 -117.71 -3.16 CH4 + CH4(g) -116.08 -119.24 -3.16 CH4 CO2(g) 2.01 0.11 -1.90 CO2 Pressure 325.6 atm, phi 0.315 - H2(g) -34.81 -38.10 -3.29 H2 + H2(g) -35.19 -38.48 -3.29 H2 H2O(g) -0.83 -0.01 0.82 H2O Pressure 2.5 atm, phi 0.059 - O2(g) -5.84 -9.04 -3.20 O2 + O2(g) -5.07 -8.27 -3.20 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5441,17 +5442,17 @@ H2O(g) 0.48 3.055e+00 0.050 1.595e-01 1.702e-01 1.071e-02 ----------------------------Description of solution---------------------------- pH = 3.003 Charge balance - pe = 14.345 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 488 - Density (g/cm3) = 1.01643 + pe = 14.536 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 482 + Density (g/cm³) = 1.01643 Volume (L) = 1.04387 - Viscosity (mPa s) = 0.55513 + Viscosity (mPa s) = 0.58847 Activity of water = 0.976 Ionic strength (mol/kgw) = 1.030e-03 Mass of water (kg) = 9.969e-01 Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.461e+00 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 389.62 Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -5462,32 +5463,32 @@ H2O(g) 0.48 3.055e+00 0.050 1.595e-01 1.702e-01 1.071e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.030e-03 9.938e-04 -2.987 -3.003 -0.015 0.00 OH- 7.716e-11 7.434e-11 -10.113 -10.129 -0.016 -4.17 H2O 5.551e+01 9.763e-01 1.744 -0.010 0.000 17.94 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -117.732 -117.732 0.000 37.52 + CH4 0.000e+00 0.000e+00 -119.260 -119.260 0.000 37.52 C(4) 1.461e+00 CO2 1.327e+00 1.328e+00 0.123 0.123 0.000 35.26 (CO2)2 6.615e-02 6.616e-02 -1.179 -1.179 0.000 70.51 HCO3- 1.030e-03 9.926e-04 -2.987 -3.003 -0.016 26.91 CO3-2 1.147e-10 9.905e-11 -9.941 -10.004 -0.064 0.08 -H(0) 1.495e-38 - H2 7.475e-39 7.477e-39 -38.126 -38.126 0.000 28.42 -O(0) 1.840e-09 - O2 9.202e-10 9.205e-10 -9.036 -9.036 0.000 31.14 +H(0) 6.203e-39 + H2 3.102e-39 3.102e-39 -38.508 -38.508 0.000 28.42 +O(0) 1.069e-08 + O2 5.345e-09 5.346e-09 -8.272 -8.272 0.000 31.14 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 390 atm) - CH4(g) -114.53 -117.73 -3.20 CH4 + CH4(g) -116.06 -119.26 -3.20 CH4 CO2(g) 2.06 0.12 -1.94 CO2 Pressure 386.6 atm, phi 0.296 - H2(g) -34.81 -38.13 -3.32 H2 + H2(g) -35.19 -38.51 -3.32 H2 H2O(g) -0.81 -0.01 0.80 H2O Pressure 3.1 atm, phi 0.050 - O2(g) -5.81 -9.04 -3.23 O2 + O2(g) -5.04 -8.27 -3.23 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5543,17 +5544,17 @@ H2O(g) 0.57 3.696e+00 0.044 1.702e-01 1.801e-01 9.820e-03 ----------------------------Description of solution---------------------------- pH = 2.981 Charge balance - pe = 14.365 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 512 - Density (g/cm3) = 1.01986 + pe = 14.556 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 507 + Density (g/cm³) = 1.01986 Volume (L) = 1.04226 - Viscosity (mPa s) = 0.55689 + Viscosity (mPa s) = 0.59150 Activity of water = 0.976 Ionic strength (mol/kgw) = 1.082e-03 Mass of water (kg) = 9.967e-01 Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.509e+00 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 465.50 Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -5564,32 +5565,32 @@ H2O(g) 0.57 3.696e+00 0.044 1.702e-01 1.801e-01 9.820e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.082e-03 1.044e-03 -2.966 -2.981 -0.016 0.00 OH- 7.827e-11 7.534e-11 -10.106 -10.123 -0.017 -4.22 H2O 5.551e+01 9.755e-01 1.744 -0.011 0.000 17.88 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -117.755 -117.755 0.000 37.55 + CH4 0.000e+00 0.000e+00 -119.283 -119.283 0.000 37.55 C(4) 1.509e+00 CO2 1.368e+00 1.368e+00 0.136 0.136 0.000 35.18 (CO2)2 7.022e-02 7.023e-02 -1.154 -1.153 0.000 70.37 HCO3- 1.082e-03 1.042e-03 -2.966 -2.982 -0.016 27.14 CO3-2 1.235e-10 1.063e-10 -9.909 -9.973 -0.065 0.64 -H(0) 1.387e-38 - H2 6.936e-39 6.938e-39 -38.159 -38.159 0.000 28.39 -O(0) 1.841e-09 - O2 9.204e-10 9.206e-10 -9.036 -9.036 0.000 31.01 +H(0) 5.756e-39 + H2 2.878e-39 2.879e-39 -38.541 -38.541 0.000 28.39 +O(0) 1.069e-08 + O2 5.346e-09 5.347e-09 -8.272 -8.272 0.000 31.01 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 466 atm) - CH4(g) -114.51 -117.76 -3.25 CH4 + CH4(g) -116.04 -119.28 -3.25 CH4 CO2(g) 2.11 0.14 -1.98 CO2 Pressure 461.8 atm, phi 0.282 - H2(g) -34.81 -38.16 -3.35 H2 + H2(g) -35.19 -38.54 -3.35 H2 H2O(g) -0.79 -0.01 0.78 H2O Pressure 3.7 atm, phi 0.044 - O2(g) -5.77 -9.04 -3.27 O2 + O2(g) -5.01 -8.27 -3.27 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5645,17 +5646,17 @@ H2O(g) 0.65 4.463e+00 0.039 1.801e-01 1.886e-01 8.575e-03 ----------------------------Description of solution---------------------------- pH = 2.957 Charge balance - pe = 14.388 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 542 - Density (g/cm3) = 1.02395 + pe = 14.579 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 536 + Density (g/cm³) = 1.02395 Volume (L) = 1.04014 - Viscosity (mPa s) = 0.55913 + Viscosity (mPa s) = 0.59512 Activity of water = 0.975 Ionic strength (mol/kgw) = 1.146e-03 Mass of water (kg) = 9.966e-01 Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.561e+00 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 559.09 Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -5666,32 +5667,32 @@ H2O(g) 0.65 4.463e+00 0.039 1.801e-01 1.886e-01 8.575e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.146e-03 1.104e-03 -2.941 -2.957 -0.016 0.00 OH- 7.998e-11 7.693e-11 -10.097 -10.114 -0.017 -4.28 H2O 5.551e+01 9.747e-01 1.744 -0.011 0.000 17.82 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -117.786 -117.786 0.000 37.58 + CH4 0.000e+00 0.000e+00 -119.314 -119.314 0.000 37.58 C(4) 1.561e+00 CO2 1.410e+00 1.410e+00 0.149 0.149 0.000 35.10 (CO2)2 7.466e-02 7.468e-02 -1.127 -1.127 0.000 70.20 HCO3- 1.146e-03 1.103e-03 -2.941 -2.958 -0.017 27.41 CO3-2 1.349e-10 1.158e-10 -9.870 -9.936 -0.066 1.29 -H(0) 1.266e-38 - H2 6.328e-39 6.330e-39 -38.199 -38.199 0.000 28.36 -O(0) 1.841e-09 - O2 9.205e-10 9.208e-10 -9.036 -9.036 0.000 30.85 +H(0) 5.251e-39 + H2 2.626e-39 2.626e-39 -38.581 -38.581 0.000 28.36 +O(0) 1.069e-08 + O2 5.347e-09 5.348e-09 -8.272 -8.272 0.000 30.85 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 559 atm) - CH4(g) -114.48 -117.79 -3.30 CH4 + CH4(g) -116.01 -119.31 -3.30 CH4 CO2(g) 2.18 0.15 -2.03 CO2 Pressure 554.6 atm, phi 0.274 - H2(g) -34.80 -38.20 -3.40 H2 + H2(g) -35.19 -38.58 -3.40 H2 H2O(g) -0.76 -0.01 0.75 H2O Pressure 4.5 atm, phi 0.039 - O2(g) -5.72 -9.04 -3.31 O2 + O2(g) -4.96 -8.27 -3.31 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5747,17 +5748,17 @@ H2O(g) 0.73 5.366e+00 0.035 1.886e-01 1.956e-01 6.925e-03 ----------------------------Description of solution---------------------------- pH = 2.929 Charge balance - pe = 14.414 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 579 - Density (g/cm3) = 1.02885 + pe = 14.605 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 572 + Density (g/cm³) = 1.02885 Volume (L) = 1.03737 - Viscosity (mPa s) = 0.56199 + Viscosity (mPa s) = 0.59952 Activity of water = 0.974 Ionic strength (mol/kgw) = 1.223e-03 Mass of water (kg) = 9.965e-01 Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.615e+00 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 674.65 Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -5768,32 +5769,32 @@ H2O(g) 0.73 5.366e+00 0.035 1.886e-01 1.956e-01 6.925e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.223e-03 1.178e-03 -2.913 -2.929 -0.016 0.00 OH- 8.256e-11 7.933e-11 -10.083 -10.101 -0.017 -4.35 H2O 5.551e+01 9.739e-01 1.744 -0.011 0.000 17.74 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -117.827 -117.827 0.000 37.61 + CH4 0.000e+00 0.000e+00 -119.355 -119.355 0.000 37.61 C(4) 1.615e+00 CO2 1.455e+00 1.455e+00 0.163 0.163 0.000 35.00 (CO2)2 7.945e-02 7.947e-02 -1.100 -1.100 0.000 69.99 HCO3- 1.223e-03 1.176e-03 -2.913 -2.930 -0.017 27.73 CO3-2 1.500e-10 1.283e-10 -9.824 -9.892 -0.068 2.06 -H(0) 1.130e-38 - H2 5.652e-39 5.654e-39 -38.248 -38.248 0.000 28.33 -O(0) 1.841e-09 - O2 9.207e-10 9.209e-10 -9.036 -9.036 0.000 30.67 +H(0) 4.690e-39 + H2 2.345e-39 2.346e-39 -38.630 -38.630 0.000 28.33 +O(0) 1.069e-08 + O2 5.347e-09 5.349e-09 -8.272 -8.272 0.000 30.67 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 675 atm) - CH4(g) -114.45 -117.83 -3.37 CH4 + CH4(g) -115.98 -119.35 -3.37 CH4 CO2(g) 2.26 0.16 -2.10 CO2 Pressure 669.3 atm, phi 0.272 - H2(g) -34.80 -38.25 -3.45 H2 + H2(g) -35.18 -38.63 -3.45 H2 H2O(g) -0.73 -0.01 0.72 H2O Pressure 5.4 atm, phi 0.035 - O2(g) -5.67 -9.04 -3.37 O2 + O2(g) -4.90 -8.27 -3.37 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5849,17 +5850,17 @@ H2O(g) 0.81 6.418e+00 0.032 1.956e-01 2.004e-01 4.813e-03 ----------------------------Description of solution---------------------------- pH = 2.897 Charge balance - pe = 14.443 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 623 - Density (g/cm3) = 1.03468 + pe = 14.634 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 616 + Density (g/cm³) = 1.03468 Volume (L) = 1.03381 - Viscosity (mPa s) = 0.56567 + Viscosity (mPa s) = 0.60489 Activity of water = 0.973 Ionic strength (mol/kgw) = 1.318e-03 Mass of water (kg) = 9.964e-01 Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.671e+00 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 817.86 Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -5870,32 +5871,32 @@ H2O(g) 0.81 6.418e+00 0.032 1.956e-01 2.004e-01 4.813e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.318e-03 1.268e-03 -2.880 -2.897 -0.017 0.00 OH- 8.639e-11 8.290e-11 -10.064 -10.081 -0.018 -4.43 H2O 5.551e+01 9.730e-01 1.744 -0.012 0.000 17.64 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -117.880 -117.880 0.000 37.65 + CH4 0.000e+00 0.000e+00 -119.408 -119.408 0.000 37.65 C(4) 1.671e+00 CO2 1.501e+00 1.501e+00 0.176 0.176 0.000 34.88 (CO2)2 8.454e-02 8.456e-02 -1.073 -1.073 0.000 69.76 HCO3- 1.318e-03 1.266e-03 -2.880 -2.898 -0.017 28.09 CO3-2 1.703e-10 1.450e-10 -9.769 -9.839 -0.070 2.95 -H(0) 9.833e-39 - H2 4.916e-39 4.918e-39 -38.308 -38.308 0.000 28.28 -O(0) 1.841e-09 - O2 9.207e-10 9.210e-10 -9.036 -9.036 0.000 30.47 +H(0) 4.080e-39 + H2 2.040e-39 2.041e-39 -38.690 -38.690 0.000 28.28 +O(0) 1.070e-08 + O2 5.348e-09 5.349e-09 -8.272 -8.272 0.000 30.47 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 818 atm) - CH4(g) -114.42 -117.88 -3.46 CH4 + CH4(g) -115.94 -119.41 -3.46 CH4 CO2(g) 2.35 0.18 -2.18 CO2 Pressure 811.4 atm, phi 0.278 - H2(g) -34.79 -38.31 -3.51 H2 + H2(g) -35.18 -38.69 -3.51 H2 H2O(g) -0.69 -0.01 0.68 H2O Pressure 6.4 atm, phi 0.032 - O2(g) -5.60 -9.04 -3.44 O2 + O2(g) -4.83 -8.27 -3.44 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5951,53 +5952,53 @@ H2O(g) 0.88 7.621e+00 0.030 2.004e-01 2.025e-01 2.166e-03 ----------------------------Description of solution---------------------------- pH = 2.860 Charge balance - pe = 14.476 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 679 - Density (g/cm3) = 1.04167 + pe = 14.667 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 670 + Density (g/cm³) = 1.04167 Volume (L) = 1.02922 - Viscosity (mPa s) = 0.57050 + Viscosity (mPa s) = 0.61160 Activity of water = 0.972 Ionic strength (mol/kgw) = 1.435e-03 Mass of water (kg) = 9.963e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.728e+00 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 996.34 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 44 (145 overall) + Iterations = 42 (143 overall) Total H = 1.106074e+02 Total O = 5.874637e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.435e-03 1.379e-03 -2.843 -2.860 -0.017 0.00 OH- 9.204e-11 8.821e-11 -10.036 -10.054 -0.018 -4.50 H2O 5.551e+01 9.721e-01 1.744 -0.012 0.000 17.53 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -117.950 -117.950 0.000 37.68 + CH4 0.000e+00 0.000e+00 -119.478 -119.478 0.000 37.68 C(4) 1.728e+00 CO2 1.547e+00 1.547e+00 0.189 0.189 0.000 34.74 (CO2)2 8.981e-02 8.984e-02 -1.047 -1.047 0.000 69.48 HCO3- 1.435e-03 1.377e-03 -2.843 -2.861 -0.018 28.52 CO3-2 1.982e-10 1.679e-10 -9.703 -9.775 -0.072 3.97 -H(0) 8.269e-39 - H2 4.134e-39 4.136e-39 -38.384 -38.383 0.000 28.24 -O(0) 1.842e-09 - O2 9.208e-10 9.211e-10 -9.036 -9.036 0.000 30.24 +H(0) 3.431e-39 + H2 1.716e-39 1.716e-39 -38.766 -38.765 0.000 28.24 +O(0) 1.070e-08 + O2 5.348e-09 5.350e-09 -8.272 -8.272 0.000 30.24 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 996 atm) - CH4(g) -114.38 -117.95 -3.57 CH4 + CH4(g) -115.90 -119.48 -3.57 CH4 CO2(g) 2.47 0.19 -2.28 CO2 Pressure 988.7 atm, phi 0.296 - H2(g) -34.79 -38.38 -3.60 H2 + H2(g) -35.17 -38.77 -3.60 H2 H2O(g) -0.64 -0.01 0.63 H2O Pressure 7.6 atm, phi 0.030 - O2(g) -5.51 -9.04 -3.52 O2 + O2(g) -4.75 -8.27 -3.52 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6053,19 +6054,19 @@ H2O(g) 0.95 8.967e+00 0.029 2.025e-01 2.014e-01 -1.108e-03 ----------------------------Description of solution---------------------------- pH = 2.818 Charge balance - pe = 14.514 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 50oC) = 749 - Density (g/cm3) = 1.05008 + pe = 14.705 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 739 + Density (g/cm³) = 1.05008 Volume (L) = 1.02332 - Viscosity (mPa s) = 0.57699 + Viscosity (mPa s) = 0.62017 Activity of water = 0.971 Ionic strength (mol/kgw) = 1.583e-03 Mass of water (kg) = 9.963e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.783e+00 - Temperature (oC) = 50.00 + Temperature (°C) = 50.00 Pressure (atm) = 1220.78 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 55 (156 overall) Total H = 1.106096e+02 @@ -6074,32 +6075,32 @@ H2O(g) 0.95 8.967e+00 0.029 2.025e-01 2.014e-01 -1.108e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.583e-03 1.519e-03 -2.801 -2.818 -0.018 0.00 OH- 1.005e-10 9.618e-11 -9.998 -10.017 -0.019 -4.59 H2O 5.551e+01 9.713e-01 1.744 -0.013 0.000 17.39 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -118.041 -118.041 0.000 37.71 + CH4 0.000e+00 0.000e+00 -119.569 -119.569 0.000 37.71 C(4) 1.783e+00 CO2 1.592e+00 1.592e+00 0.202 0.202 0.000 34.57 (CO2)2 9.511e-02 9.514e-02 -1.022 -1.022 0.000 69.15 HCO3- 1.583e-03 1.516e-03 -2.801 -2.819 -0.019 29.00 CO3-2 2.378e-10 2.002e-10 -9.624 -9.699 -0.075 5.14 -H(0) 6.654e-39 - H2 3.327e-39 3.328e-39 -38.478 -38.478 0.000 28.18 -O(0) 1.842e-09 - O2 9.208e-10 9.211e-10 -9.036 -9.036 0.000 29.97 +H(0) 2.761e-39 + H2 1.381e-39 1.381e-39 -38.860 -38.860 0.000 28.18 +O(0) 1.070e-08 + O2 5.348e-09 5.350e-09 -8.272 -8.272 0.000 29.97 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 1221 atm) - CH4(g) -114.33 -118.04 -3.71 CH4 + CH4(g) -115.86 -119.57 -3.71 CH4 CO2(g) 2.60 0.20 -2.40 CO2 Pressure 1211.8 atm, phi 0.331 - H2(g) -34.78 -38.48 -3.70 H2 + H2(g) -35.16 -38.86 -3.70 H2 H2O(g) -0.58 -0.01 0.57 H2O Pressure 9.0 atm, phi 0.029 - O2(g) -5.41 -9.04 -3.63 O2 + O2(g) -4.64 -8.27 -3.63 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6173,15 +6174,15 @@ H2O(g) -0.42 3.792e-01 0.996 0.000e+00 1.332e-02 1.332e-02 pH = 6.344 Charge balance pe = 7.913 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75oC) = 0 - Density (g/cm3) = 0.97481 + Specific Conductance (µS/cm, 75°C) = 0 + Density (g/cm³) = 0.97481 Volume (L) = 1.02560 Viscosity (mPa s) = 0.37740 Activity of water = 1.000 Ionic strength (mol/kgw) = 4.534e-07 Mass of water (kg) = 9.998e-01 Total alkalinity (eq/kg) = 1.217e-09 - Temperature (oC) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 0.38 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.13 @@ -6192,7 +6193,7 @@ H2O(g) -0.42 3.792e-01 0.996 0.000e+00 1.332e-02 1.332e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 4.540e-07 4.536e-07 -6.343 -6.343 -0.000 -4.48 H+ 4.528e-07 4.524e-07 -6.344 -6.344 -0.000 0.00 @@ -6258,16 +6259,16 @@ H2O(g) -0.36 4.356e-01 0.874 1.332e-02 1.642e-02 3.100e-03 pH = 3.465 Charge balance pe = 10.797 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75oC) = 215 - Density (g/cm3) = 0.97762 + Specific Conductance (µS/cm, 75°C) = 215 + Density (g/cm³) = 0.97762 Volume (L) = 1.03384 - Viscosity (mPa s) = 0.37804 + Viscosity (mPa s) = 0.38078 Activity of water = 0.996 Ionic strength (mol/kgw) = 3.505e-04 Mass of water (kg) = 9.997e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 2.500e-01 - Temperature (oC) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 20.33 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -6278,7 +6279,7 @@ H2O(g) -0.36 4.356e-01 0.874 1.332e-02 1.642e-02 3.100e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 3.505e-04 3.426e-04 -3.455 -3.465 -0.010 0.00 OH- 6.206e-10 6.060e-10 -9.207 -9.218 -0.010 -4.53 @@ -6352,17 +6353,17 @@ H2O(g) -0.30 4.993e-01 0.769 1.642e-02 2.026e-02 3.838e-03 ----------------------------Description of solution---------------------------- pH = 3.339 Charge balance - pe = 2.020 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75oC) = 285 - Density (g/cm3) = 0.97995 + pe = 2.019 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 284 + Density (g/cm³) = 0.97995 Volume (L) = 1.04028 - Viscosity (mPa s) = 0.37856 + Viscosity (mPa s) = 0.38322 Activity of water = 0.993 Ionic strength (mol/kgw) = 4.703e-04 Mass of water (kg) = 9.996e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 4.496e-01 - Temperature (oC) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 38.71 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -6373,28 +6374,28 @@ H2O(g) -0.30 4.993e-01 0.769 1.642e-02 2.026e-02 3.838e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 4.703e-04 4.580e-04 -3.328 -3.339 -0.011 0.00 OH- 4.712e-10 4.585e-10 -9.327 -9.339 -0.012 -4.59 H2O 5.551e+01 9.925e-01 1.744 -0.003 0.000 18.45 -C(-4) 8.675e-26 - CH4 8.675e-26 8.676e-26 -25.062 -25.062 0.000 39.07 +C(-4) 8.775e-26 + CH4 8.775e-26 8.775e-26 -25.057 -25.057 0.000 39.07 C(4) 4.496e-01 CO2 4.260e-01 4.261e-01 -0.371 -0.371 0.000 37.01 (CO2)2 1.155e-02 1.155e-02 -1.937 -1.937 0.000 74.01 HCO3- 4.703e-04 4.577e-04 -3.328 -3.339 -0.012 25.34 CO3-2 8.682e-11 7.791e-11 -10.061 -10.108 -0.047 -4.59 -H(0) 1.702e-14 - H2 8.512e-15 8.512e-15 -14.070 -14.070 0.000 28.56 +H(0) 1.707e-14 + H2 8.536e-15 8.537e-15 -14.069 -14.069 0.000 28.56 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.458 -50.458 0.000 32.88 + O2 0.000e+00 0.000e+00 -50.461 -50.461 0.000 32.88 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 39 atm) - CH4(g) -22.03 -25.06 -3.04 CH4 + CH4(g) -22.02 -25.06 -3.04 CH4 CO2(g) 1.52 -0.37 -1.89 CO2 Pressure 38.2 atm, phi 0.875 H2(g) -10.92 -14.07 -3.15 H2 H2O(g) -0.42 -0.00 0.41 H2O Pressure 0.5 atm, phi 0.769 @@ -6447,17 +6448,17 @@ H2O(g) -0.24 5.707e-01 0.679 2.026e-02 2.494e-02 4.679e-03 ----------------------------Description of solution---------------------------- pH = 3.275 Charge balance - pe = 2.069 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75oC) = 327 - Density (g/cm3) = 0.98185 + pe = 1.995 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 326 + Density (g/cm³) = 0.98185 Volume (L) = 1.04514 - Viscosity (mPa s) = 0.37903 + Viscosity (mPa s) = 0.38514 Activity of water = 0.990 Ionic strength (mol/kgw) = 5.462e-04 Mass of water (kg) = 9.995e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 6.050e-01 - Temperature (oC) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 55.38 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -6468,32 +6469,32 @@ H2O(g) -0.24 5.707e-01 0.679 2.026e-02 2.494e-02 4.679e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 5.461e-04 5.309e-04 -3.263 -3.275 -0.012 0.00 OH- 4.119e-10 3.999e-10 -9.385 -9.398 -0.013 -4.64 H2O 5.551e+01 9.901e-01 1.744 -0.004 0.000 18.43 -C(-4) 1.494e-25 - CH4 1.494e-25 1.495e-25 -24.826 -24.825 0.000 39.07 +C(-4) 5.788e-25 + CH4 5.788e-25 5.789e-25 -24.237 -24.237 0.000 39.07 C(4) 6.050e-01 CO2 5.640e-01 5.640e-01 -0.249 -0.249 0.000 36.98 (CO2)2 2.024e-02 2.024e-02 -1.694 -1.694 0.000 73.95 HCO3- 5.462e-04 5.305e-04 -3.263 -3.275 -0.013 25.42 CO3-2 8.903e-11 7.926e-11 -10.050 -10.101 -0.050 -4.41 -H(0) 1.796e-14 - H2 8.981e-15 8.982e-15 -14.047 -14.047 0.000 28.55 +H(0) 2.520e-14 + H2 1.260e-14 1.260e-14 -13.900 -13.900 0.000 28.55 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.521 -50.520 0.000 32.83 + O2 0.000e+00 0.000e+00 -50.815 -50.815 0.000 32.83 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 55 atm) - CH4(g) -21.78 -24.83 -3.05 CH4 + CH4(g) -21.19 -24.24 -3.05 CH4 CO2(g) 1.66 -0.25 -1.90 CO2 Pressure 54.8 atm, phi 0.825 - H2(g) -10.89 -14.05 -3.16 H2 + H2(g) -10.74 -13.90 -3.16 H2 H2O(g) -0.41 -0.00 0.41 H2O Pressure 0.6 atm, phi 0.679 - O2(g) -47.40 -50.52 -3.13 O2 + O2(g) -47.69 -50.81 -3.13 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6542,17 +6543,17 @@ H2O(g) -0.19 6.497e-01 0.601 2.494e-02 3.056e-02 5.615e-03 ----------------------------Description of solution---------------------------- pH = 3.236 Charge balance - pe = 2.032 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75oC) = 356 - Density (g/cm3) = 0.98339 + pe = 2.005 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 354 + Density (g/cm³) = 0.98339 Volume (L) = 1.04871 - Viscosity (mPa s) = 0.37944 + Viscosity (mPa s) = 0.38665 Activity of water = 0.988 Ionic strength (mol/kgw) = 5.986e-04 Mass of water (kg) = 9.994e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 7.238e-01 - Temperature (oC) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 70.32 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -6563,32 +6564,32 @@ H2O(g) -0.19 6.497e-01 0.601 2.494e-02 3.056e-02 5.615e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 5.986e-04 5.812e-04 -3.223 -3.236 -0.013 0.00 OH- 3.806e-10 3.691e-10 -9.419 -9.433 -0.013 -4.69 H2O 5.551e+01 9.882e-01 1.744 -0.005 0.000 18.42 -C(-4) 7.122e-25 - CH4 7.122e-25 7.123e-25 -24.147 -24.147 0.000 39.07 +C(-4) 1.164e-24 + CH4 1.164e-24 1.164e-24 -23.934 -23.934 0.000 39.07 C(4) 7.238e-01 CO2 6.667e-01 6.667e-01 -0.176 -0.176 0.000 36.95 (CO2)2 2.828e-02 2.829e-02 -1.548 -1.548 0.000 73.90 HCO3- 5.986e-04 5.807e-04 -3.223 -3.236 -0.013 25.49 CO3-2 9.086e-11 8.049e-11 -10.042 -10.094 -0.053 -4.25 -H(0) 2.518e-14 - H2 1.259e-14 1.259e-14 -13.900 -13.900 0.000 28.54 +H(0) 2.847e-14 + H2 1.423e-14 1.424e-14 -13.847 -13.847 0.000 28.54 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.828 -50.828 0.000 32.79 + O2 0.000e+00 0.000e+00 -50.934 -50.934 0.000 32.79 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 70 atm) - CH4(g) -21.09 -24.15 -3.05 CH4 + CH4(g) -20.88 -23.93 -3.05 CH4 CO2(g) 1.74 -0.18 -1.91 CO2 Pressure 69.7 atm, phi 0.782 - H2(g) -10.74 -13.90 -3.16 H2 + H2(g) -10.68 -13.85 -3.16 H2 H2O(g) -0.41 -0.01 0.40 H2O Pressure 0.6 atm, phi 0.601 - O2(g) -47.69 -50.83 -3.13 O2 + O2(g) -47.80 -50.93 -3.13 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6637,17 +6638,17 @@ H2O(g) -0.13 7.364e-01 0.534 3.056e-02 3.718e-02 6.627e-03 ----------------------------Description of solution---------------------------- pH = 3.209 Charge balance - pe = 2.092 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75oC) = 376 - Density (g/cm3) = 0.98464 + pe = 1.984 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 374 + Density (g/cm³) = 0.98464 Volume (L) = 1.05128 - Viscosity (mPa s) = 0.37980 + Viscosity (mPa s) = 0.38784 Activity of water = 0.987 Ionic strength (mol/kgw) = 6.364e-04 Mass of water (kg) = 9.993e-01 Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 8.142e-01 - Temperature (oC) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 83.65 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -6658,32 +6659,32 @@ H2O(g) -0.13 7.364e-01 0.534 3.056e-02 3.718e-02 6.627e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 6.364e-04 6.174e-04 -3.196 -3.209 -0.013 0.00 OH- 3.620e-10 3.507e-10 -9.441 -9.455 -0.014 -4.73 H2O 5.551e+01 9.867e-01 1.744 -0.006 0.000 18.41 -C(-4) 4.194e-25 - CH4 4.194e-25 4.195e-25 -24.377 -24.377 0.000 39.07 +C(-4) 3.073e-24 + CH4 3.073e-24 3.073e-24 -23.512 -23.512 0.000 39.07 C(4) 8.142e-01 CO2 7.432e-01 7.433e-01 -0.129 -0.129 0.000 36.92 (CO2)2 3.515e-02 3.516e-02 -1.454 -1.454 0.000 73.85 HCO3- 6.364e-04 6.169e-04 -3.196 -3.210 -0.014 25.55 CO3-2 9.243e-11 8.159e-11 -10.034 -10.088 -0.054 -4.11 -H(0) 2.126e-14 - H2 1.063e-14 1.063e-14 -13.973 -13.973 0.000 28.54 +H(0) 3.498e-14 + H2 1.749e-14 1.749e-14 -13.757 -13.757 0.000 28.54 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.693 -50.693 0.000 32.75 + O2 0.000e+00 0.000e+00 -51.125 -51.125 0.000 32.75 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 84 atm) - CH4(g) -21.32 -24.38 -3.06 CH4 + CH4(g) -20.45 -23.51 -3.06 CH4 CO2(g) 1.79 -0.13 -1.92 CO2 Pressure 82.9 atm, phi 0.746 - H2(g) -10.80 -13.97 -3.17 H2 + H2(g) -10.59 -13.76 -3.17 H2 H2O(g) -0.41 -0.01 0.40 H2O Pressure 0.7 atm, phi 0.534 - O2(g) -47.55 -50.69 -3.14 O2 + O2(g) -47.99 -51.13 -3.14 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6732,17 +6733,17 @@ H2O(g) -0.08 8.308e-01 0.476 3.718e-02 4.488e-02 7.699e-03 ----------------------------Description of solution---------------------------- pH = 3.191 Charge balance - pe = 2.141 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75oC) = 391 - Density (g/cm3) = 0.98568 + pe = 1.945 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 389 + Density (g/cm³) = 0.98568 Volume (L) = 1.05312 - Viscosity (mPa s) = 0.38013 + Viscosity (mPa s) = 0.38880 Activity of water = 0.986 Ionic strength (mol/kgw) = 6.648e-04 Mass of water (kg) = 9.992e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 8.833e-01 - Temperature (oC) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 95.56 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -6753,32 +6754,32 @@ H2O(g) -0.08 8.308e-01 0.476 3.718e-02 4.488e-02 7.699e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 6.648e-04 6.445e-04 -3.177 -3.191 -0.013 0.00 OH- 3.500e-10 3.389e-10 -9.456 -9.470 -0.014 -4.77 H2O 5.551e+01 9.857e-01 1.744 -0.006 0.000 18.40 -C(-4) 2.526e-25 - CH4 2.526e-25 2.526e-25 -24.598 -24.598 0.000 39.06 +C(-4) 9.441e-24 + CH4 9.441e-24 9.442e-24 -23.025 -23.025 0.000 39.06 C(4) 8.833e-01 CO2 8.010e-01 8.010e-01 -0.096 -0.096 0.000 36.90 (CO2)2 4.082e-02 4.083e-02 -1.389 -1.389 0.000 73.80 HCO3- 6.648e-04 6.439e-04 -3.177 -3.191 -0.014 25.60 CO3-2 9.379e-11 8.258e-11 -10.028 -10.083 -0.055 -3.99 -H(0) 1.823e-14 - H2 9.115e-15 9.116e-15 -14.040 -14.040 0.000 28.53 +H(0) 4.508e-14 + H2 2.254e-14 2.254e-14 -13.647 -13.647 0.000 28.53 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.570 -50.570 0.000 32.72 + O2 0.000e+00 0.000e+00 -51.356 -51.356 0.000 32.72 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 96 atm) - CH4(g) -21.53 -24.60 -3.07 CH4 + CH4(g) -19.96 -23.02 -3.07 CH4 CO2(g) 1.83 -0.10 -1.93 CO2 Pressure 94.7 atm, phi 0.714 - H2(g) -10.87 -14.04 -3.17 H2 + H2(g) -10.47 -13.65 -3.17 H2 H2O(g) -0.40 -0.01 0.40 H2O Pressure 0.8 atm, phi 0.476 - O2(g) -47.42 -50.57 -3.15 O2 + O2(g) -48.21 -51.36 -3.15 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6827,17 +6828,17 @@ H2O(g) -0.03 9.337e-01 0.426 4.488e-02 5.370e-02 8.815e-03 ----------------------------Description of solution---------------------------- pH = 3.177 Charge balance - pe = 2.127 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75oC) = 402 - Density (g/cm3) = 0.98654 + pe = 1.879 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 400 + Density (g/cm³) = 0.98654 Volume (L) = 1.05442 - Viscosity (mPa s) = 0.38042 + Viscosity (mPa s) = 0.38959 Activity of water = 0.985 Ionic strength (mol/kgw) = 6.867e-04 Mass of water (kg) = 9.990e-01 Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 9.370e-01 - Temperature (oC) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 106.37 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -6848,32 +6849,32 @@ H2O(g) -0.03 9.337e-01 0.426 4.488e-02 5.370e-02 8.815e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 6.867e-04 6.655e-04 -3.163 -3.177 -0.014 0.00 OH- 3.419e-10 3.308e-10 -9.466 -9.480 -0.014 -4.81 H2O 5.551e+01 9.848e-01 1.744 -0.007 0.000 18.39 -C(-4) 4.446e-25 - CH4 4.446e-25 4.446e-25 -24.352 -24.352 0.000 39.06 +C(-4) 4.230e-23 + CH4 4.230e-23 4.231e-23 -22.374 -22.374 0.000 39.06 C(4) 9.370e-01 CO2 8.454e-01 8.455e-01 -0.073 -0.073 0.000 36.88 (CO2)2 4.548e-02 4.549e-02 -1.342 -1.342 0.000 73.77 HCO3- 6.867e-04 6.649e-04 -3.163 -3.177 -0.014 25.65 CO3-2 9.501e-11 8.349e-11 -10.022 -10.078 -0.056 -3.88 -H(0) 2.056e-14 - H2 1.028e-14 1.028e-14 -13.988 -13.988 0.000 28.53 +H(0) 6.421e-14 + H2 3.211e-14 3.211e-14 -13.493 -13.493 0.000 28.53 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.684 -50.683 0.000 32.69 + O2 0.000e+00 0.000e+00 -51.673 -51.673 0.000 32.69 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 106 atm) - CH4(g) -21.28 -24.35 -3.08 CH4 + CH4(g) -19.30 -22.37 -3.08 CH4 CO2(g) 1.86 -0.07 -1.93 CO2 Pressure 105.4 atm, phi 0.687 - H2(g) -10.81 -13.99 -3.18 H2 + H2(g) -10.31 -13.49 -3.18 H2 H2O(g) -0.40 -0.01 0.39 H2O Pressure 0.9 atm, phi 0.426 - O2(g) -47.53 -50.68 -3.15 O2 + O2(g) -48.52 -51.67 -3.15 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6922,17 +6923,17 @@ H2O(g) 0.02 1.046e+00 0.383 5.370e-02 6.365e-02 9.958e-03 ----------------------------Description of solution---------------------------- pH = 3.166 Charge balance - pe = 2.251 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75oC) = 411 - Density (g/cm3) = 0.98730 + pe = 1.968 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 409 + Density (g/cm³) = 0.98730 Volume (L) = 1.05534 - Viscosity (mPa s) = 0.38069 + Viscosity (mPa s) = 0.39026 Activity of water = 0.984 Ionic strength (mol/kgw) = 7.045e-04 Mass of water (kg) = 9.988e-01 Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 9.802e-01 - Temperature (oC) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 116.43 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -6943,32 +6944,32 @@ H2O(g) 0.02 1.046e+00 0.383 5.370e-02 6.365e-02 9.958e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 7.045e-04 6.825e-04 -3.152 -3.166 -0.014 0.00 OH- 3.360e-10 3.251e-10 -9.474 -9.488 -0.014 -4.84 H2O 5.551e+01 9.842e-01 1.744 -0.007 0.000 18.38 -C(-4) 5.673e-26 - CH4 5.673e-26 5.674e-26 -25.246 -25.246 0.000 39.06 +C(-4) 1.039e-23 + CH4 1.039e-23 1.039e-23 -22.983 -22.983 0.000 39.06 C(4) 9.802e-01 CO2 8.807e-01 8.808e-01 -0.055 -0.055 0.000 36.87 (CO2)2 4.936e-02 4.937e-02 -1.307 -1.307 0.000 73.73 HCO3- 7.045e-04 6.819e-04 -3.152 -3.166 -0.014 25.70 CO3-2 9.612e-11 8.434e-11 -10.017 -10.074 -0.057 -3.78 -H(0) 1.208e-14 - H2 6.040e-15 6.041e-15 -14.219 -14.219 0.000 28.52 +H(0) 4.444e-14 + H2 2.222e-14 2.222e-14 -13.653 -13.653 0.000 28.52 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.230 -50.230 0.000 32.67 + O2 0.000e+00 0.000e+00 -51.362 -51.362 0.000 32.67 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 116 atm) - CH4(g) -22.16 -25.25 -3.08 CH4 + CH4(g) -19.90 -22.98 -3.08 CH4 CO2(g) 1.88 -0.06 -1.94 CO2 Pressure 115.4 atm, phi 0.662 - H2(g) -11.04 -14.22 -3.18 H2 + H2(g) -10.47 -13.65 -3.18 H2 H2O(g) -0.40 -0.01 0.39 H2O Pressure 1.0 atm, phi 0.383 - O2(g) -47.07 -50.23 -3.16 O2 + O2(g) -48.21 -51.36 -3.16 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7017,53 +7018,53 @@ H2O(g) 0.07 1.170e+00 0.344 6.365e-02 7.477e-02 1.111e-02 ----------------------------Description of solution---------------------------- pH = 3.157 Charge balance - pe = 11.237 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75oC) = 419 - Density (g/cm3) = 0.98799 + pe = 2.153 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 417 + Density (g/cm³) = 0.98799 Volume (L) = 1.05600 - Viscosity (mPa s) = 0.38095 + Viscosity (mPa s) = 0.39085 Activity of water = 0.984 Ionic strength (mol/kgw) = 7.197e-04 Mass of water (kg) = 9.986e-01 Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.016e+00 - Temperature (oC) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 126.11 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 32 + Iterations = 26 Total H = 1.108629e+02 Total O = 5.746111e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 7.197e-04 6.970e-04 -3.143 -3.157 -0.014 0.00 OH- 3.316e-10 3.207e-10 -9.479 -9.494 -0.015 -4.87 H2O 5.551e+01 9.836e-01 1.744 -0.007 0.000 18.38 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -97.049 -97.049 0.000 39.06 +C(-4) 4.141e-25 + CH4 4.141e-25 4.141e-25 -24.383 -24.383 0.000 39.06 C(4) 1.016e+00 CO2 9.101e-01 9.102e-01 -0.041 -0.041 0.000 36.85 (CO2)2 5.270e-02 5.271e-02 -1.278 -1.278 0.000 73.70 HCO3- 7.197e-04 6.963e-04 -3.143 -3.157 -0.014 25.74 CO3-2 9.718e-11 8.517e-11 -10.012 -10.070 -0.057 -3.68 -H(0) 1.333e-32 - H2 6.667e-33 6.669e-33 -32.176 -32.176 0.000 28.52 -O(0) 9.477e-15 - O2 4.739e-15 4.739e-15 -14.324 -14.324 0.000 32.64 +H(0) 1.956e-14 + H2 9.781e-15 9.783e-15 -14.010 -14.010 0.000 28.52 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -50.657 -50.657 0.000 32.64 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 126 atm) - CH4(g) -93.96 -97.05 -3.09 CH4 + CH4(g) -21.30 -24.38 -3.09 CH4 CO2(g) 1.90 -0.04 -1.94 CO2 Pressure 124.9 atm, phi 0.640 - H2(g) -28.99 -32.18 -3.19 H2 + H2(g) -10.82 -14.01 -3.19 H2 H2O(g) -0.40 -0.01 0.39 H2O Pressure 1.2 atm, phi 0.344 - O2(g) -11.16 -14.32 -3.16 O2 + O2(g) -47.50 -50.66 -3.16 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7112,17 +7113,17 @@ H2O(g) 0.12 1.308e+00 0.310 7.477e-02 8.703e-02 1.226e-02 ----------------------------Description of solution---------------------------- pH = 3.149 Charge balance - pe = 11.175 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75oC) = 426 - Density (g/cm3) = 0.98864 + pe = 2.246 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 424 + Density (g/cm³) = 0.98864 Volume (L) = 1.05647 - Viscosity (mPa s) = 0.38121 + Viscosity (mPa s) = 0.39141 Activity of water = 0.983 Ionic strength (mol/kgw) = 7.333e-04 Mass of water (kg) = 9.984e-01 Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.048e+00 - Temperature (oC) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 135.84 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -7133,32 +7134,32 @@ H2O(g) 0.12 1.308e+00 0.310 7.477e-02 8.703e-02 1.226e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 7.333e-04 7.100e-04 -3.135 -3.149 -0.014 0.00 OH- 3.281e-10 3.172e-10 -9.484 -9.499 -0.015 -4.90 H2O 5.551e+01 9.831e-01 1.744 -0.007 0.000 18.37 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -96.489 -96.489 0.000 39.06 +C(-4) 8.872e-26 + CH4 8.872e-26 8.874e-26 -25.052 -25.052 0.000 39.06 C(4) 1.048e+00 CO2 9.357e-01 9.358e-01 -0.029 -0.029 0.000 36.83 (CO2)2 5.571e-02 5.572e-02 -1.254 -1.254 0.000 73.66 HCO3- 7.333e-04 7.093e-04 -3.135 -3.149 -0.014 25.78 CO3-2 9.824e-11 8.600e-11 -10.008 -10.065 -0.058 -3.59 -H(0) 1.816e-32 - H2 9.079e-33 9.080e-33 -32.042 -32.042 0.000 28.51 -O(0) 5.016e-15 - O2 2.508e-15 2.508e-15 -14.601 -14.601 0.000 32.62 +H(0) 1.313e-14 + H2 6.565e-15 6.566e-15 -14.183 -14.183 0.000 28.51 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -50.319 -50.319 0.000 32.62 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 136 atm) - CH4(g) -93.40 -96.49 -3.09 CH4 + CH4(g) -21.96 -25.05 -3.09 CH4 CO2(g) 1.92 -0.03 -1.95 CO2 Pressure 134.5 atm, phi 0.618 - H2(g) -28.85 -32.04 -3.19 H2 + H2(g) -10.99 -14.18 -3.19 H2 H2O(g) -0.39 -0.01 0.39 H2O Pressure 1.3 atm, phi 0.310 - O2(g) -11.44 -14.60 -3.16 O2 + O2(g) -47.15 -50.32 -3.16 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7207,53 +7208,53 @@ H2O(g) 0.17 1.463e+00 0.278 8.703e-02 1.004e-01 1.338e-02 ----------------------------Description of solution---------------------------- pH = 3.141 Charge balance - pe = 2.144 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75oC) = 433 - Density (g/cm3) = 0.98930 + pe = 2.060 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 431 + Density (g/cm³) = 0.98930 Volume (L) = 1.05681 - Viscosity (mPa s) = 0.38149 + Viscosity (mPa s) = 0.39196 Activity of water = 0.983 Ionic strength (mol/kgw) = 7.462e-04 Mass of water (kg) = 9.982e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.077e+00 - Temperature (oC) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 146.06 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 + Iterations = 22 Total H = 1.108116e+02 Total O = 5.755578e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 7.462e-04 7.224e-04 -3.127 -3.141 -0.014 0.00 OH- 3.252e-10 3.143e-10 -9.488 -9.503 -0.015 -4.94 H2O 5.551e+01 9.827e-01 1.744 -0.008 0.000 18.36 -C(-4) 6.783e-25 - CH4 6.783e-25 6.784e-25 -24.169 -24.168 0.000 39.05 +C(-4) 3.179e-24 + CH4 3.179e-24 3.180e-24 -23.498 -23.498 0.000 39.05 C(4) 1.077e+00 CO2 9.591e-01 9.592e-01 -0.018 -0.018 0.000 36.81 (CO2)2 5.854e-02 5.855e-02 -1.233 -1.232 0.000 73.63 HCO3- 7.462e-04 7.216e-04 -3.127 -3.142 -0.015 25.82 CO3-2 9.935e-11 8.688e-11 -10.003 -10.061 -0.058 -3.49 -H(0) 2.155e-14 - H2 1.077e-14 1.078e-14 -13.968 -13.968 0.000 28.51 +H(0) 3.171e-14 + H2 1.585e-14 1.586e-14 -13.800 -13.800 0.000 28.51 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.758 -50.758 0.000 32.59 + O2 0.000e+00 0.000e+00 -51.093 -51.093 0.000 32.59 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 146 atm) - CH4(g) -21.07 -24.17 -3.10 CH4 + CH4(g) -20.40 -23.50 -3.10 CH4 CO2(g) 1.94 -0.02 -1.95 CO2 Pressure 144.6 atm, phi 0.598 - H2(g) -10.77 -13.97 -3.20 H2 + H2(g) -10.60 -13.80 -3.20 H2 H2O(g) -0.39 -0.01 0.38 H2O Pressure 1.5 atm, phi 0.278 - O2(g) -47.59 -50.76 -3.17 O2 + O2(g) -47.92 -51.09 -3.17 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7302,53 +7303,53 @@ H2O(g) 0.21 1.640e+00 0.250 1.004e-01 1.149e-01 1.446e-02 ----------------------------Description of solution---------------------------- pH = 3.134 Charge balance - pe = 11.244 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75oC) = 440 - Density (g/cm3) = 0.98999 + pe = 1.950 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 437 + Density (g/cm³) = 0.98999 Volume (L) = 1.05704 - Viscosity (mPa s) = 0.38179 + Viscosity (mPa s) = 0.39252 Activity of water = 0.982 Ionic strength (mol/kgw) = 7.592e-04 Mass of water (kg) = 9.979e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.105e+00 - Temperature (oC) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 157.24 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 37 + Iterations = 19 Total H = 1.107827e+02 Total O = 5.759684e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 7.591e-04 7.347e-04 -3.120 -3.134 -0.014 0.00 OH- 3.226e-10 3.117e-10 -9.491 -9.506 -0.015 -4.97 H2O 5.551e+01 9.822e-01 1.744 -0.008 0.000 18.35 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -96.909 -96.909 0.000 39.05 +C(-4) 2.777e-23 + CH4 2.777e-23 2.777e-23 -22.556 -22.556 0.000 39.05 C(4) 1.105e+00 CO2 9.817e-01 9.818e-01 -0.008 -0.008 0.000 36.79 (CO2)2 6.132e-02 6.133e-02 -1.212 -1.212 0.000 73.59 HCO3- 7.592e-04 7.339e-04 -3.120 -3.134 -0.015 25.87 CO3-2 1.006e-10 8.786e-11 -9.998 -10.056 -0.059 -3.38 -H(0) 1.389e-32 - H2 6.943e-33 6.944e-33 -32.158 -32.158 0.000 28.50 -O(0) 8.229e-15 - O2 4.115e-15 4.115e-15 -14.386 -14.386 0.000 32.56 +H(0) 5.378e-14 + H2 2.689e-14 2.690e-14 -13.570 -13.570 0.000 28.50 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -51.562 -51.562 0.000 32.56 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 157 atm) - CH4(g) -93.80 -96.91 -3.11 CH4 + CH4(g) -19.45 -22.56 -3.11 CH4 CO2(g) 1.95 -0.01 -1.96 CO2 Pressure 155.6 atm, phi 0.577 - H2(g) -28.96 -32.16 -3.20 H2 + H2(g) -10.37 -13.57 -3.20 H2 H2O(g) -0.39 -0.01 0.38 H2O Pressure 1.6 atm, phi 0.250 - O2(g) -11.21 -14.39 -3.18 O2 + O2(g) -48.39 -51.56 -3.18 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7397,19 +7398,19 @@ H2O(g) 0.27 1.845e+00 0.224 1.149e-01 1.303e-01 1.547e-02 ----------------------------Description of solution---------------------------- pH = 3.126 Charge balance - pe = 11.176 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75oC) = 447 - Density (g/cm3) = 0.99075 + pe = 1.990 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 444 + Density (g/cm³) = 0.99075 Volume (L) = 1.05719 - Viscosity (mPa s) = 0.38213 + Viscosity (mPa s) = 0.39313 Activity of water = 0.982 Ionic strength (mol/kgw) = 7.726e-04 Mass of water (kg) = 9.976e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.133e+00 - Temperature (oC) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 169.89 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 24 Total H = 1.107517e+02 @@ -7418,32 +7419,32 @@ H2O(g) 0.27 1.845e+00 0.224 1.149e-01 1.303e-01 1.547e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 7.726e-04 7.475e-04 -3.112 -3.126 -0.014 0.00 OH- 3.204e-10 3.095e-10 -9.494 -9.509 -0.015 -5.01 H2O 5.551e+01 9.818e-01 1.744 -0.008 0.000 18.34 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -96.305 -96.305 0.000 39.05 +C(-4) 1.540e-23 + CH4 1.540e-23 1.540e-23 -22.812 -22.812 0.000 39.05 C(4) 1.133e+00 CO2 1.004e+00 1.004e+00 0.002 0.002 0.000 36.77 (CO2)2 6.416e-02 6.417e-02 -1.193 -1.193 0.000 73.54 HCO3- 7.726e-04 7.468e-04 -3.112 -3.127 -0.015 25.92 CO3-2 1.019e-10 8.896e-11 -9.992 -10.051 -0.059 -3.26 -H(0) 1.938e-32 - H2 9.688e-33 9.690e-33 -32.014 -32.014 0.000 28.50 -O(0) 4.126e-15 - O2 2.063e-15 2.063e-15 -14.686 -14.685 0.000 32.53 +H(0) 4.576e-14 + H2 2.288e-14 2.288e-14 -13.641 -13.640 0.000 28.50 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -51.432 -51.432 0.000 32.53 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 170 atm) - CH4(g) -93.19 -96.31 -3.11 CH4 + CH4(g) -19.70 -22.81 -3.11 CH4 CO2(g) 1.97 0.00 -1.97 CO2 Pressure 168.0 atm, phi 0.555 - H2(g) -28.81 -32.01 -3.21 H2 + H2(g) -10.43 -13.64 -3.21 H2 H2O(g) -0.38 -0.01 0.38 H2O Pressure 1.8 atm, phi 0.224 - O2(g) -11.50 -14.69 -3.18 O2 + O2(g) -48.25 -51.43 -3.18 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7492,19 +7493,19 @@ H2O(g) 0.32 2.085e+00 0.200 1.303e-01 1.467e-01 1.639e-02 ----------------------------Description of solution---------------------------- pH = 3.118 Charge balance - pe = 11.226 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75oC) = 454 - Density (g/cm3) = 0.99159 + pe = 2.109 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 452 + Density (g/cm³) = 0.99159 Volume (L) = 1.05726 - Viscosity (mPa s) = 0.38252 + Viscosity (mPa s) = 0.39381 Activity of water = 0.981 Ionic strength (mol/kgw) = 7.871e-04 Mass of water (kg) = 9.973e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.162e+00 - Temperature (oC) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 184.57 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 28 Total H = 1.107190e+02 @@ -7513,32 +7514,32 @@ H2O(g) 0.32 2.085e+00 0.200 1.303e-01 1.467e-01 1.639e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 7.871e-04 7.614e-04 -3.104 -3.118 -0.014 0.00 OH- 3.184e-10 3.074e-10 -9.497 -9.512 -0.015 -5.05 H2O 5.551e+01 9.814e-01 1.744 -0.008 0.000 18.33 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -96.635 -96.635 0.000 39.05 +C(-4) 1.984e-24 + CH4 1.984e-24 1.984e-24 -23.703 -23.702 0.000 39.05 C(4) 1.162e+00 CO2 1.027e+00 1.027e+00 0.012 0.012 0.000 36.75 (CO2)2 6.714e-02 6.716e-02 -1.173 -1.173 0.000 73.49 HCO3- 7.871e-04 7.606e-04 -3.104 -3.119 -0.015 25.99 CO3-2 1.035e-10 9.026e-11 -9.985 -10.045 -0.060 -3.12 -H(0) 1.578e-32 - H2 7.890e-33 7.891e-33 -32.103 -32.103 0.000 28.49 -O(0) 6.050e-15 - O2 3.025e-15 3.026e-15 -14.519 -14.519 0.000 32.49 +H(0) 2.699e-14 + H2 1.350e-14 1.350e-14 -13.870 -13.870 0.000 28.49 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -50.986 -50.986 0.000 32.49 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 185 atm) - CH4(g) -93.51 -96.64 -3.12 CH4 + CH4(g) -20.58 -23.70 -3.12 CH4 CO2(g) 1.99 0.01 -1.98 CO2 Pressure 182.5 atm, phi 0.533 - H2(g) -28.89 -32.10 -3.21 H2 + H2(g) -10.66 -13.87 -3.21 H2 H2O(g) -0.38 -0.01 0.37 H2O Pressure 2.1 atm, phi 0.200 - O2(g) -11.33 -14.52 -3.19 O2 + O2(g) -47.80 -50.99 -3.19 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7587,19 +7588,19 @@ H2O(g) 0.37 2.368e+00 0.178 1.467e-01 1.639e-01 1.719e-02 ----------------------------Description of solution---------------------------- pH = 3.110 Charge balance - pe = 11.350 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75oC) = 462 - Density (g/cm3) = 0.99256 + pe = 2.181 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 460 + Density (g/cm³) = 0.99256 Volume (L) = 1.05726 - Viscosity (mPa s) = 0.38298 + Viscosity (mPa s) = 0.39457 Activity of water = 0.981 Ionic strength (mol/kgw) = 8.031e-04 Mass of water (kg) = 9.970e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.193e+00 - Temperature (oC) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 201.89 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 30 Total H = 1.106846e+02 @@ -7608,32 +7609,32 @@ H2O(g) 0.37 2.368e+00 0.178 1.467e-01 1.639e-01 1.719e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.031e-04 7.766e-04 -3.095 -3.110 -0.015 0.00 OH- 3.166e-10 3.056e-10 -9.499 -9.515 -0.015 -5.11 H2O 5.551e+01 9.809e-01 1.744 -0.008 0.000 18.32 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -97.563 -97.563 0.000 39.04 +C(-4) 6.179e-25 + CH4 6.179e-25 6.180e-25 -24.209 -24.209 0.000 39.04 C(4) 1.193e+00 CO2 1.051e+00 1.052e+00 0.022 0.022 0.000 36.72 (CO2)2 7.034e-02 7.035e-02 -1.153 -1.153 0.000 73.43 HCO3- 8.031e-04 7.758e-04 -3.095 -3.110 -0.015 26.06 CO3-2 1.054e-10 9.180e-11 -9.977 -10.037 -0.060 -2.95 -H(0) 9.091e-33 - H2 4.545e-33 4.546e-33 -32.342 -32.342 0.000 28.49 -O(0) 1.764e-14 - O2 8.820e-15 8.822e-15 -14.055 -14.054 0.000 32.45 +H(0) 1.982e-14 + H2 9.909e-15 9.911e-15 -14.004 -14.004 0.000 28.49 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -50.731 -50.731 0.000 32.45 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 202 atm) - CH4(g) -94.43 -97.56 -3.13 CH4 + CH4(g) -21.08 -24.21 -3.13 CH4 CO2(g) 2.01 0.02 -1.99 CO2 Pressure 199.5 atm, phi 0.510 - H2(g) -29.12 -32.34 -3.22 H2 + H2(g) -10.78 -14.00 -3.22 H2 H2O(g) -0.38 -0.01 0.37 H2O Pressure 2.4 atm, phi 0.178 - O2(g) -10.86 -14.05 -3.20 O2 + O2(g) -47.53 -50.73 -3.20 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7682,19 +7683,19 @@ H2O(g) 0.43 2.704e+00 0.158 1.639e-01 1.818e-01 1.784e-02 ----------------------------Description of solution---------------------------- pH = 3.100 Charge balance - pe = 11.270 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75oC) = 472 - Density (g/cm3) = 0.99369 + pe = 2.157 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 469 + Density (g/cm³) = 0.99369 Volume (L) = 1.05716 - Viscosity (mPa s) = 0.38353 + Viscosity (mPa s) = 0.39545 Activity of water = 0.980 Ionic strength (mol/kgw) = 8.210e-04 Mass of water (kg) = 9.967e-01 - Total alkalinity (eq/kg) = 1.214e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.226e+00 - Temperature (oC) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 222.54 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.212e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 52 Total H = 1.106489e+02 @@ -7703,32 +7704,32 @@ H2O(g) 0.43 2.704e+00 0.158 1.639e-01 1.818e-01 1.784e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.210e-04 7.937e-04 -3.086 -3.100 -0.015 0.00 OH- 3.151e-10 3.041e-10 -9.502 -9.517 -0.015 -5.17 H2O 5.551e+01 9.804e-01 1.744 -0.009 0.000 18.30 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -96.850 -96.850 0.000 39.04 +C(-4) 1.149e-24 + CH4 1.149e-24 1.149e-24 -23.940 -23.940 0.000 39.04 C(4) 1.226e+00 CO2 1.077e+00 1.077e+00 0.032 0.032 0.000 36.68 (CO2)2 7.382e-02 7.383e-02 -1.132 -1.132 0.000 73.37 HCO3- 8.210e-04 7.928e-04 -3.086 -3.101 -0.015 26.14 CO3-2 1.077e-10 9.367e-11 -9.968 -10.028 -0.061 -2.76 -H(0) 1.344e-32 - H2 6.718e-33 6.719e-33 -32.173 -32.173 0.000 28.48 -O(0) 7.768e-15 - O2 3.884e-15 3.885e-15 -14.411 -14.411 0.000 32.40 +H(0) 2.269e-14 + H2 1.134e-14 1.135e-14 -13.945 -13.945 0.000 28.48 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -50.866 -50.866 0.000 32.40 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 223 atm) - CH4(g) -93.71 -96.85 -3.14 CH4 + CH4(g) -20.80 -23.94 -3.14 CH4 CO2(g) 2.03 0.03 -2.00 CO2 Pressure 219.8 atm, phi 0.487 - H2(g) -28.94 -32.17 -3.23 H2 + H2(g) -10.72 -13.95 -3.23 H2 H2O(g) -0.37 -0.01 0.36 H2O Pressure 2.7 atm, phi 0.158 - O2(g) -11.20 -14.41 -3.21 O2 + O2(g) -47.66 -50.87 -3.21 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7777,53 +7778,53 @@ H2O(g) 0.49 3.103e+00 0.140 1.818e-01 2.001e-01 1.830e-02 ----------------------------Description of solution---------------------------- pH = 3.090 Charge balance - pe = 9.947 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75oC) = 482 - Density (g/cm3) = 0.99500 + pe = 2.124 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 480 + Density (g/cm³) = 0.99500 Volume (L) = 1.05696 - Viscosity (mPa s) = 0.38420 + Viscosity (mPa s) = 0.39647 Activity of water = 0.980 Ionic strength (mol/kgw) = 8.413e-04 Mass of water (kg) = 9.964e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.261e+00 - Temperature (oC) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 247.32 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.212e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 64 + Iterations = 60 Total H = 1.106123e+02 Total O = 5.781815e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.413e-04 8.131e-04 -3.075 -3.090 -0.015 0.00 OH- 3.140e-10 3.030e-10 -9.503 -9.519 -0.016 -5.24 H2O 5.551e+01 9.799e-01 1.744 -0.009 0.000 18.28 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -86.179 -86.178 0.000 39.03 +C(-4) 2.508e-24 + CH4 2.508e-24 2.509e-24 -23.601 -23.601 0.000 39.03 C(4) 1.261e+00 CO2 1.104e+00 1.105e+00 0.043 0.043 0.000 36.64 (CO2)2 7.762e-02 7.764e-02 -1.110 -1.110 0.000 73.28 HCO3- 8.413e-04 8.122e-04 -3.075 -3.090 -0.015 26.24 CO3-2 1.105e-10 9.594e-11 -9.957 -10.018 -0.061 -2.53 -H(0) 6.113e-30 - H2 3.057e-30 3.057e-30 -29.515 -29.515 0.000 28.47 -O(0) 3.582e-20 - O2 1.791e-20 1.791e-20 -19.747 -19.747 0.000 32.34 +H(0) 2.696e-14 + H2 1.348e-14 1.348e-14 -13.870 -13.870 0.000 28.47 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -51.036 -51.036 0.000 32.34 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 247 atm) - CH4(g) -83.02 -86.18 -3.16 CH4 + CH4(g) -20.44 -23.60 -3.16 CH4 CO2(g) 2.05 0.04 -2.01 CO2 Pressure 244.2 atm, phi 0.464 - H2(g) -26.28 -29.51 -3.24 H2 + H2(g) -10.63 -13.87 -3.24 H2 H2O(g) -0.36 -0.01 0.35 H2O Pressure 3.1 atm, phi 0.140 - O2(g) -16.53 -19.75 -3.22 O2 + O2(g) -47.82 -51.04 -3.22 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7872,19 +7873,19 @@ H2O(g) 0.55 3.579e+00 0.123 2.001e-01 2.186e-01 1.854e-02 ----------------------------Description of solution---------------------------- pH = 3.078 Charge balance - pe = 11.302 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75oC) = 495 - Density (g/cm3) = 0.99654 + pe = 2.151 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 492 + Density (g/cm³) = 0.99654 Volume (L) = 1.05664 - Viscosity (mPa s) = 0.38499 + Viscosity (mPa s) = 0.39765 Activity of water = 0.979 Ionic strength (mol/kgw) = 8.646e-04 Mass of water (kg) = 9.960e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.298e+00 - Temperature (oC) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 277.14 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.212e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 67 Total H = 1.105752e+02 @@ -7893,32 +7894,32 @@ H2O(g) 0.55 3.579e+00 0.123 2.001e-01 2.186e-01 1.854e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.646e-04 8.353e-04 -3.063 -3.078 -0.015 0.00 OH- 3.134e-10 3.023e-10 -9.504 -9.520 -0.016 -5.33 H2O 5.551e+01 9.793e-01 1.744 -0.009 0.000 18.26 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -96.937 -96.937 0.000 39.03 +C(-4) 1.866e-24 + CH4 1.866e-24 1.866e-24 -23.729 -23.729 0.000 39.03 C(4) 1.298e+00 CO2 1.134e+00 1.134e+00 0.055 0.055 0.000 36.59 (CO2)2 8.181e-02 8.183e-02 -1.087 -1.087 0.000 73.19 HCO3- 8.646e-04 8.343e-04 -3.063 -3.079 -0.015 26.36 CO3-2 1.139e-10 9.872e-11 -9.944 -10.006 -0.062 -2.26 -H(0) 1.216e-32 - H2 6.082e-33 6.084e-33 -32.216 -32.216 0.000 28.45 -O(0) 8.554e-15 - O2 4.277e-15 4.278e-15 -14.369 -14.369 0.000 32.27 +H(0) 2.439e-14 + H2 1.219e-14 1.220e-14 -13.914 -13.914 0.000 28.45 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -50.973 -50.973 0.000 32.27 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 277 atm) - CH4(g) -93.76 -96.94 -3.18 CH4 + CH4(g) -20.55 -23.73 -3.18 CH4 CO2(g) 2.08 0.05 -2.03 CO2 Pressure 273.6 atm, phi 0.441 - H2(g) -28.96 -32.22 -3.25 H2 + H2(g) -10.66 -13.91 -3.25 H2 H2O(g) -0.36 -0.01 0.35 H2O Pressure 3.6 atm, phi 0.123 - O2(g) -11.14 -14.37 -3.23 O2 + O2(g) -47.74 -50.97 -3.23 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7967,19 +7968,19 @@ H2O(g) 0.62 4.146e+00 0.109 2.186e-01 2.371e-01 1.851e-02 ----------------------------Description of solution---------------------------- pH = 3.065 Charge balance - pe = 11.366 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75oC) = 509 - Density (g/cm3) = 0.99835 + pe = 2.230 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 506 + Density (g/cm³) = 0.99835 Volume (L) = 1.05616 - Viscosity (mPa s) = 0.38595 + Viscosity (mPa s) = 0.39904 Activity of water = 0.979 Ionic strength (mol/kgw) = 8.914e-04 Mass of water (kg) = 9.957e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.339e+00 - Temperature (oC) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 313.08 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.212e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 76 Total H = 1.105382e+02 @@ -7988,32 +7989,32 @@ H2O(g) 0.62 4.146e+00 0.109 2.186e-01 2.371e-01 1.851e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.914e-04 8.608e-04 -3.050 -3.065 -0.015 0.00 OH- 3.135e-10 3.022e-10 -9.504 -9.520 -0.016 -5.43 H2O 5.551e+01 9.787e-01 1.744 -0.009 0.000 18.23 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -97.349 -97.349 0.000 39.02 +C(-4) 5.452e-25 + CH4 5.452e-25 5.453e-25 -24.263 -24.263 0.000 39.02 C(4) 1.339e+00 CO2 1.165e+00 1.166e+00 0.066 0.067 0.000 36.53 (CO2)2 8.643e-02 8.645e-02 -1.063 -1.063 0.000 73.07 HCO3- 8.914e-04 8.598e-04 -3.050 -3.066 -0.016 26.50 CO3-2 1.180e-10 1.021e-10 -9.928 -9.991 -0.063 -1.94 -H(0) 9.308e-33 - H2 4.654e-33 4.655e-33 -32.332 -32.332 0.000 28.44 -O(0) 1.367e-14 - O2 6.833e-15 6.834e-15 -14.165 -14.165 0.000 32.18 +H(0) 1.739e-14 + H2 8.695e-15 8.697e-15 -14.061 -14.061 0.000 28.44 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -50.708 -50.708 0.000 32.18 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 313 atm) - CH4(g) -94.15 -97.35 -3.20 CH4 + CH4(g) -21.07 -24.26 -3.20 CH4 CO2(g) 2.11 0.07 -2.05 CO2 Pressure 308.9 atm, phi 0.420 - H2(g) -29.06 -32.33 -3.27 H2 + H2(g) -10.79 -14.06 -3.27 H2 H2O(g) -0.35 -0.01 0.34 H2O Pressure 4.1 atm, phi 0.109 - O2(g) -10.91 -14.17 -3.25 O2 + O2(g) -47.46 -50.71 -3.25 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8062,59 +8063,66 @@ H2O(g) 0.68 4.819e+00 0.096 2.371e-01 2.553e-01 1.819e-02 ----------------------------Description of solution---------------------------- pH = 3.050 Charge balance - pe = 11.467 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75oC) = 525 - Density (g/cm3) = 1.00048 + pe = 2.295 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 522 + Density (g/cm³) = 1.00048 Volume (L) = 1.05549 - Viscosity (mPa s) = 0.38711 + Viscosity (mPa s) = 0.40068 Activity of water = 0.978 Ionic strength (mol/kgw) = 9.224e-04 Mass of water (kg) = 9.954e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.383e+00 - Temperature (oC) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 356.38 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.212e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 85 + Iterations = 86 Total H = 1.105018e+02 Total O = 5.800454e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 9.224e-04 8.903e-04 -3.035 -3.050 -0.015 0.00 OH- 3.144e-10 3.029e-10 -9.502 -9.519 -0.016 -5.54 H2O 5.551e+01 9.780e-01 1.744 -0.010 0.000 18.20 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -98.051 -98.051 0.000 39.01 +C(-4) 2.089e-25 + CH4 2.089e-25 2.090e-25 -24.680 -24.680 0.000 39.01 C(4) 1.383e+00 CO2 1.199e+00 1.199e+00 0.079 0.079 0.000 36.47 (CO2)2 9.152e-02 9.154e-02 -1.038 -1.038 0.000 72.93 HCO3- 9.224e-04 8.892e-04 -3.035 -3.051 -0.016 26.67 CO3-2 1.231e-10 1.064e-10 -9.910 -9.973 -0.064 -1.57 -H(0) 5.997e-33 - H2 2.998e-33 2.999e-33 -32.523 -32.523 0.000 28.42 -O(0) 3.038e-14 - O2 1.519e-14 1.519e-14 -13.818 -13.818 0.000 32.08 +H(0) 1.320e-14 + H2 6.602e-15 6.603e-15 -14.180 -14.180 0.000 28.42 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -50.504 -50.504 0.000 32.08 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 356 atm) - CH4(g) -94.83 -98.05 -3.22 CH4 + CH4(g) -21.46 -24.68 -3.22 CH4 CO2(g) 2.15 0.08 -2.07 CO2 Pressure 351.6 atm, phi 0.401 - H2(g) -29.24 -32.52 -3.29 H2 + H2(g) -10.89 -14.18 -3.29 H2 H2O(g) -0.33 -0.01 0.32 H2O Pressure 4.8 atm, phi 0.096 - O2(g) -10.55 -13.82 -3.27 O2 + O2(g) -47.23 -50.50 -3.27 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. Reaction step 22. +WARNING: Numerical method failed, switching to numerical derivatives. +WARNING: Maximum iterations exceeded, 100 + +WARNING: Numerical method failed with this set of convergence parameters. + +WARNING: Trying smaller step size, pe step size 10, 5 ... + Using solution 1. Using gas phase 1. Using temperature 3. @@ -8157,53 +8165,53 @@ H2O(g) 0.75 5.616e+00 0.085 2.553e-01 2.728e-01 1.752e-02 ----------------------------Description of solution---------------------------- pH = 3.034 Charge balance - pe = 11.488 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75oC) = 544 - Density (g/cm3) = 1.00298 + pe = 12.341 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 541 + Density (g/cm³) = 1.00298 Volume (L) = 1.05459 - Viscosity (mPa s) = 0.38850 + Viscosity (mPa s) = 0.40260 Activity of water = 0.977 Ionic strength (mol/kgw) = 9.585e-04 Mass of water (kg) = 9.951e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.431e+00 - Temperature (oC) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 408.56 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 96 + Iterations = 122 (223 overall) Total H = 1.104668e+02 Total O = 5.808036e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 9.585e-04 9.247e-04 -3.018 -3.034 -0.016 0.00 OH- 3.166e-10 3.048e-10 -9.500 -9.516 -0.016 -5.68 H2O 5.551e+01 9.773e-01 1.744 -0.010 0.000 18.16 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -98.108 -98.108 0.000 39.00 + CH4 0.000e+00 0.000e+00 -104.932 -104.932 0.000 39.00 C(4) 1.431e+00 CO2 1.235e+00 1.236e+00 0.092 0.092 0.000 36.39 (CO2)2 9.711e-02 9.713e-02 -1.013 -1.013 0.000 72.77 HCO3- 9.585e-04 9.235e-04 -3.018 -3.035 -0.016 26.86 CO3-2 1.295e-10 1.116e-10 -9.888 -9.952 -0.065 -1.13 -H(0) 5.566e-33 - H2 2.783e-33 2.784e-33 -32.555 -32.555 0.000 28.40 -O(0) 3.202e-14 - O2 1.601e-14 1.602e-14 -13.796 -13.795 0.000 31.97 +H(0) 1.096e-34 + H2 5.478e-35 5.479e-35 -34.261 -34.261 0.000 28.40 +O(0) 8.268e-11 + O2 4.134e-11 4.135e-11 -10.384 -10.384 0.000 31.97 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 409 atm) - CH4(g) -94.85 -98.11 -3.25 CH4 + CH4(g) -101.68 -104.93 -3.25 CH4 CO2(g) 2.19 0.09 -2.10 CO2 Pressure 402.9 atm, phi 0.385 - H2(g) -29.25 -32.56 -3.31 H2 + H2(g) -30.95 -34.26 -3.31 H2 H2O(g) -0.32 -0.01 0.31 H2O Pressure 5.6 atm, phi 0.085 - O2(g) -10.50 -13.80 -3.30 O2 + O2(g) -7.09 -10.38 -3.30 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8259,53 +8267,53 @@ H2O(g) 0.82 6.552e+00 0.076 2.728e-01 2.893e-01 1.646e-02 ----------------------------Description of solution---------------------------- pH = 3.016 Charge balance - pe = 12.726 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75oC) = 567 - Density (g/cm3) = 1.00591 + pe = 12.359 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 563 + Density (g/cm³) = 1.00591 Volume (L) = 1.05341 - Viscosity (mPa s) = 0.39018 + Viscosity (mPa s) = 0.40487 Activity of water = 0.977 Ionic strength (mol/kgw) = 1.001e-03 Mass of water (kg) = 9.948e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.481e+00 - Temperature (oC) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 471.44 - Electrical balance (eq) = -1.209e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 37 (138 overall) + Iterations = 35 (136 overall) Total H = 1.104339e+02 Total O = 5.816398e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.001e-03 9.647e-04 -3.000 -3.016 -0.016 0.00 OH- 3.203e-10 3.082e-10 -9.494 -9.511 -0.017 -5.84 H2O 5.551e+01 9.766e-01 1.744 -0.010 0.000 18.11 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.886 -107.886 0.000 38.98 + CH4 0.000e+00 0.000e+00 -104.948 -104.948 0.000 38.98 C(4) 1.481e+00 CO2 1.274e+00 1.274e+00 0.105 0.105 0.000 36.29 (CO2)2 1.032e-01 1.033e-01 -0.986 -0.986 0.000 72.58 HCO3- 1.001e-03 9.634e-04 -3.000 -3.016 -0.016 27.09 CO3-2 1.374e-10 1.181e-10 -9.862 -9.928 -0.066 -0.62 -H(0) 1.905e-35 - H2 9.523e-36 9.525e-36 -35.021 -35.021 0.000 28.38 -O(0) 2.437e-09 - O2 1.218e-09 1.219e-09 -8.914 -8.914 0.000 31.83 +H(0) 1.034e-34 + H2 5.169e-35 5.170e-35 -34.287 -34.286 0.000 28.38 +O(0) 8.270e-11 + O2 4.135e-11 4.136e-11 -10.384 -10.383 0.000 31.83 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 471 atm) - CH4(g) -104.59 -107.89 -3.29 CH4 + CH4(g) -101.66 -104.95 -3.29 CH4 CO2(g) 2.24 0.11 -2.13 CO2 Pressure 464.9 atm, phi 0.372 - H2(g) -31.69 -35.02 -3.34 H2 + H2(g) -30.95 -34.29 -3.34 H2 H2O(g) -0.30 -0.01 0.29 H2O Pressure 6.6 atm, phi 0.076 - O2(g) -5.59 -8.91 -3.33 O2 + O2(g) -7.06 -10.38 -3.33 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8361,53 +8369,53 @@ H2O(g) 0.88 7.646e+00 0.068 2.893e-01 3.042e-01 1.496e-02 ----------------------------Description of solution---------------------------- pH = 2.995 Charge balance - pe = 12.745 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75oC) = 593 - Density (g/cm3) = 1.00936 + pe = 12.378 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 589 + Density (g/cm³) = 1.00936 Volume (L) = 1.05188 - Viscosity (mPa s) = 0.39221 + Viscosity (mPa s) = 0.40755 Activity of water = 0.976 Ionic strength (mol/kgw) = 1.050e-03 Mass of water (kg) = 9.945e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.535e+00 - Temperature (oC) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 547.25 - Electrical balance (eq) = -1.209e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 35 (136 overall) + Iterations = 36 (137 overall) Total H = 1.104039e+02 Total O = 5.825586e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.050e-03 1.012e-03 -2.979 -2.995 -0.016 0.00 OH- 3.262e-10 3.137e-10 -9.486 -9.504 -0.017 -6.01 H2O 5.551e+01 9.757e-01 1.744 -0.011 0.000 18.05 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.907 -107.907 0.000 38.96 + CH4 0.000e+00 0.000e+00 -104.969 -104.969 0.000 38.96 C(4) 1.535e+00 CO2 1.314e+00 1.315e+00 0.119 0.119 0.000 36.18 (CO2)2 1.099e-01 1.100e-01 -0.959 -0.959 0.000 72.36 HCO3- 1.050e-03 1.010e-03 -2.979 -2.996 -0.017 27.35 CO3-2 1.474e-10 1.263e-10 -9.832 -9.899 -0.067 -0.02 -H(0) 1.777e-35 - H2 8.883e-36 8.886e-36 -35.051 -35.051 0.000 28.36 -O(0) 2.437e-09 - O2 1.219e-09 1.219e-09 -8.914 -8.914 0.000 31.68 +H(0) 9.645e-35 + H2 4.822e-35 4.824e-35 -34.317 -34.317 0.000 28.36 +O(0) 8.270e-11 + O2 4.135e-11 4.136e-11 -10.383 -10.383 0.000 31.68 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 547 atm) - CH4(g) -104.57 -107.91 -3.34 CH4 + CH4(g) -101.63 -104.97 -3.34 CH4 CO2(g) 2.29 0.12 -2.17 CO2 Pressure 539.6 atm, phi 0.364 - H2(g) -31.68 -35.05 -3.37 H2 + H2(g) -30.95 -34.32 -3.37 H2 H2O(g) -0.28 -0.01 0.27 H2O Pressure 7.6 atm, phi 0.068 - O2(g) -5.55 -8.91 -3.36 O2 + O2(g) -7.02 -10.38 -3.36 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8463,19 +8471,19 @@ H2O(g) 0.95 8.913e+00 0.062 3.042e-01 3.172e-01 1.297e-02 ----------------------------Description of solution---------------------------- pH = 2.972 Charge balance - pe = 12.767 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75oC) = 624 - Density (g/cm3) = 1.01339 + pe = 12.400 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 619 + Density (g/cm³) = 1.01339 Volume (L) = 1.04992 - Viscosity (mPa s) = 0.39467 + Viscosity (mPa s) = 0.41074 Activity of water = 0.975 Ionic strength (mol/kgw) = 1.108e-03 Mass of water (kg) = 9.943e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.593e+00 - Temperature (oC) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 638.75 - Electrical balance (eq) = -1.209e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.103780e+02 @@ -8484,32 +8492,32 @@ H2O(g) 0.95 8.913e+00 0.062 3.042e-01 3.172e-01 1.297e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.108e-03 1.067e-03 -2.955 -2.972 -0.016 0.00 OH- 3.351e-10 3.220e-10 -9.475 -9.492 -0.017 -6.22 H2O 5.551e+01 9.749e-01 1.744 -0.011 0.000 17.99 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.935 -107.935 0.000 38.94 + CH4 0.000e+00 0.000e+00 -104.996 -104.996 0.000 38.94 C(4) 1.593e+00 CO2 1.357e+00 1.357e+00 0.133 0.133 0.000 36.05 (CO2)2 1.172e-01 1.173e-01 -0.931 -0.931 0.000 72.11 HCO3- 1.108e-03 1.065e-03 -2.955 -2.973 -0.017 27.65 CO3-2 1.600e-10 1.367e-10 -9.796 -9.864 -0.068 0.66 -H(0) 1.634e-35 - H2 8.171e-36 8.174e-36 -35.088 -35.088 0.000 28.33 -O(0) 2.438e-09 - O2 1.219e-09 1.219e-09 -8.914 -8.914 0.000 31.50 +H(0) 8.872e-35 + H2 4.436e-35 4.437e-35 -34.353 -34.353 0.000 28.33 +O(0) 8.272e-11 + O2 4.136e-11 4.137e-11 -10.383 -10.383 0.000 31.50 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 639 atm) - CH4(g) -104.54 -107.93 -3.39 CH4 + CH4(g) -101.61 -105.00 -3.39 CH4 CO2(g) 2.36 0.13 -2.22 CO2 Pressure 629.8 atm, phi 0.360 - H2(g) -31.68 -35.09 -3.41 H2 + H2(g) -30.95 -34.35 -3.41 H2 H2O(g) -0.26 -0.01 0.25 H2O Pressure 8.9 atm, phi 0.062 - O2(g) -5.51 -8.91 -3.40 O2 + O2(g) -6.98 -10.38 -3.40 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8565,53 +8573,53 @@ H2O(g) 1.02 1.037e+01 0.057 3.172e-01 3.276e-01 1.043e-02 ----------------------------Description of solution---------------------------- pH = 2.946 Charge balance - pe = 12.791 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75oC) = 660 - Density (g/cm3) = 1.01812 + pe = 12.424 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 655 + Density (g/cm³) = 1.01812 Volume (L) = 1.04745 - Viscosity (mPa s) = 0.39767 + Viscosity (mPa s) = 0.41455 Activity of water = 0.974 Ionic strength (mol/kgw) = 1.177e-03 Mass of water (kg) = 9.941e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.653e+00 - Temperature (oC) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 749.41 - Electrical balance (eq) = -1.209e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 36 (137 overall) + Iterations = 33 (134 overall) Total H = 1.103572e+02 Total O = 5.846543e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.177e-03 1.132e-03 -2.929 -2.946 -0.017 0.00 OH- 3.482e-10 3.342e-10 -9.458 -9.476 -0.018 -6.45 H2O 5.551e+01 9.740e-01 1.744 -0.011 0.000 17.91 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.971 -107.971 0.000 38.91 + CH4 0.000e+00 0.000e+00 -105.032 -105.032 0.000 38.91 C(4) 1.653e+00 CO2 1.402e+00 1.402e+00 0.147 0.147 0.000 35.91 (CO2)2 1.251e-01 1.251e-01 -0.903 -0.903 0.000 71.82 HCO3- 1.177e-03 1.131e-03 -2.929 -2.947 -0.017 27.99 CO3-2 1.762e-10 1.500e-10 -9.754 -9.824 -0.070 1.44 -H(0) 1.478e-35 - H2 7.390e-36 7.392e-36 -35.131 -35.131 0.000 28.29 -O(0) 2.438e-09 - O2 1.219e-09 1.219e-09 -8.914 -8.914 0.000 31.30 +H(0) 8.024e-35 + H2 4.012e-35 4.013e-35 -34.397 -34.397 0.000 28.29 +O(0) 8.272e-11 + O2 4.136e-11 4.137e-11 -10.383 -10.383 0.000 31.30 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 749 atm) - CH4(g) -104.51 -107.97 -3.46 CH4 + CH4(g) -101.58 -105.03 -3.46 CH4 CO2(g) 2.43 0.15 -2.28 CO2 Pressure 739.0 atm, phi 0.363 - H2(g) -31.68 -35.13 -3.45 H2 + H2(g) -30.94 -34.40 -3.45 H2 H2O(g) -0.23 -0.01 0.22 H2O Pressure 10.4 atm, phi 0.057 - O2(g) -5.46 -8.91 -3.45 O2 + O2(g) -6.93 -10.38 -3.45 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8667,53 +8675,53 @@ H2O(g) 1.08 1.202e+01 0.053 3.276e-01 3.349e-01 7.291e-03 ----------------------------Description of solution---------------------------- pH = 2.917 Charge balance - pe = 12.818 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75oC) = 704 - Density (g/cm3) = 1.02365 + pe = 12.450 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 698 + Density (g/cm³) = 1.02365 Volume (L) = 1.04435 - Viscosity (mPa s) = 0.40132 + Viscosity (mPa s) = 0.41911 Activity of water = 0.973 Ionic strength (mol/kgw) = 1.259e-03 Mass of water (kg) = 9.939e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.716e+00 - Temperature (oC) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 883.67 - Electrical balance (eq) = -1.209e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 34 (135 overall) + Iterations = 36 (137 overall) Total H = 1.103426e+02 Total O = 5.858312e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.259e-03 1.210e-03 -2.900 -2.917 -0.017 0.00 OH- 3.673e-10 3.521e-10 -9.435 -9.453 -0.018 -6.70 H2O 5.551e+01 9.731e-01 1.744 -0.012 0.000 17.82 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -108.016 -108.016 0.000 38.88 + CH4 0.000e+00 0.000e+00 -105.078 -105.077 0.000 38.88 C(4) 1.716e+00 CO2 1.448e+00 1.448e+00 0.161 0.161 0.000 35.74 (CO2)2 1.335e-01 1.335e-01 -0.875 -0.875 0.000 71.48 HCO3- 1.259e-03 1.208e-03 -2.900 -2.918 -0.018 28.38 CO3-2 1.974e-10 1.673e-10 -9.705 -9.776 -0.072 2.33 -H(0) 1.309e-35 - H2 6.545e-36 6.546e-36 -35.184 -35.184 0.000 28.26 -O(0) 2.439e-09 - O2 1.219e-09 1.220e-09 -8.914 -8.914 0.000 31.07 +H(0) 7.106e-35 + H2 3.553e-35 3.554e-35 -34.449 -34.449 0.000 28.26 +O(0) 8.273e-11 + O2 4.137e-11 4.138e-11 -10.383 -10.383 0.000 31.07 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 884 atm) - CH4(g) -104.48 -108.02 -3.53 CH4 + CH4(g) -101.54 -105.08 -3.53 CH4 CO2(g) 2.51 0.16 -2.35 CO2 Pressure 871.7 atm, phi 0.375 - H2(g) -31.67 -35.18 -3.51 H2 + H2(g) -30.94 -34.45 -3.51 H2 H2O(g) -0.20 -0.01 0.18 H2O Pressure 12.0 atm, phi 0.053 - O2(g) -5.40 -8.91 -3.52 O2 + O2(g) -6.87 -10.38 -3.52 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8769,53 +8777,53 @@ H2O(g) 1.14 1.386e+01 0.051 3.349e-01 3.384e-01 3.493e-03 ----------------------------Description of solution---------------------------- pH = 2.885 Charge balance - pe = 12.847 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 75oC) = 756 - Density (g/cm3) = 1.03011 + pe = 12.480 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 749 + Density (g/cm³) = 1.03011 Volume (L) = 1.04050 - Viscosity (mPa s) = 0.40581 + Viscosity (mPa s) = 0.42463 Activity of water = 0.972 Ionic strength (mol/kgw) = 1.357e-03 Mass of water (kg) = 9.939e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.781e+00 - Temperature (oC) = 75.00 + Temperature (°C) = 75.00 Pressure (atm) = 1047.32 - Electrical balance (eq) = -1.209e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 37 (138 overall) + Iterations = 34 (135 overall) Total H = 1.103356e+02 Total O = 5.870889e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.357e-03 1.303e-03 -2.867 -2.885 -0.018 0.00 OH- 3.950e-10 3.783e-10 -9.403 -9.422 -0.019 -6.98 H2O 5.551e+01 9.721e-01 1.744 -0.012 0.000 17.72 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -108.075 -108.075 0.000 38.84 + CH4 0.000e+00 0.000e+00 -105.136 -105.136 0.000 38.84 C(4) 1.781e+00 CO2 1.495e+00 1.496e+00 0.175 0.175 0.000 35.55 (CO2)2 1.423e-01 1.424e-01 -0.847 -0.847 0.000 71.10 HCO3- 1.357e-03 1.301e-03 -2.867 -2.886 -0.018 28.83 CO3-2 2.254e-10 1.903e-10 -9.647 -9.721 -0.074 3.34 -H(0) 1.130e-35 - H2 5.648e-36 5.649e-36 -35.248 -35.248 0.000 28.21 -O(0) 2.439e-09 - O2 1.219e-09 1.220e-09 -8.914 -8.914 0.000 30.82 +H(0) 6.132e-35 + H2 3.066e-35 3.067e-35 -34.513 -34.513 0.000 28.21 +O(0) 8.274e-11 + O2 4.137e-11 4.138e-11 -10.383 -10.383 0.000 30.82 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 1047 atm) - CH4(g) -104.44 -108.07 -3.63 CH4 + CH4(g) -101.50 -105.14 -3.63 CH4 CO2(g) 2.61 0.17 -2.44 CO2 Pressure 1033.5 atm, phi 0.398 - H2(g) -31.67 -35.25 -3.58 H2 + H2(g) -30.93 -34.51 -3.58 H2 H2O(g) -0.15 -0.01 0.14 H2O Pressure 13.9 atm, phi 0.051 - O2(g) -5.33 -8.91 -3.59 O2 + O2(g) -6.79 -10.38 -3.59 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8889,15 +8897,15 @@ H2O(g) -0.00 9.971e-01 0.991 0.000e+00 3.285e-02 3.285e-02 pH = 6.120 Charge balance pe = 6.720 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100oC) = 0 - Density (g/cm3) = 0.95835 + Specific Conductance (µS/cm, 100°C) = 0 + Density (g/cm³) = 0.95835 Volume (L) = 1.04285 Viscosity (mPa s) = 0.28158 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.610e-07 Mass of water (kg) = 9.994e-01 Total alkalinity (eq/kg) = 1.217e-09 - Temperature (oC) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 1.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.08 @@ -8908,7 +8916,7 @@ H2O(g) -0.00 9.971e-01 0.991 0.000e+00 3.285e-02 3.285e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 7.616e-07 7.607e-07 -6.118 -6.119 -0.001 -5.96 H+ 7.604e-07 7.594e-07 -6.119 -6.120 -0.001 0.00 @@ -8973,17 +8981,17 @@ H2O(g) 0.06 1.139e+00 0.877 3.285e-02 3.984e-02 6.990e-03 ----------------------------Description of solution---------------------------- pH = 3.544 Charge balance - pe = 9.299 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100oC) = 206 - Density (g/cm3) = 0.96086 + pe = 9.305 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 205 + Density (g/cm³) = 0.96086 Volume (L) = 1.05014 - Viscosity (mPa s) = 0.28228 + Viscosity (mPa s) = 0.28374 Activity of water = 0.996 Ionic strength (mol/kgw) = 2.920e-04 Mass of water (kg) = 9.993e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 2.218e-01 - Temperature (oC) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 23.39 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -8994,32 +9002,32 @@ H2O(g) 0.06 1.139e+00 0.877 3.285e-02 3.984e-02 6.990e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 2.920e-04 2.855e-04 -3.535 -3.544 -0.010 0.00 OH- 2.101e-09 2.053e-09 -8.678 -8.688 -0.010 -6.03 H2O 5.551e+01 9.963e-01 1.744 -0.002 0.000 18.78 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -87.930 -87.930 0.000 41.03 + CH4 0.000e+00 0.000e+00 -87.982 -87.982 0.000 41.03 C(4) 2.218e-01 CO2 2.131e-01 2.131e-01 -0.671 -0.671 0.000 38.83 (CO2)2 4.215e-03 4.215e-03 -2.375 -2.375 0.000 77.65 HCO3- 2.920e-04 2.854e-04 -3.535 -3.545 -0.010 23.81 CO3-2 7.845e-11 7.159e-11 -10.105 -10.145 -0.040 -8.64 -H(0) 1.572e-29 - H2 7.860e-30 7.860e-30 -29.105 -29.105 0.000 28.56 -O(0) 2.815e-15 - O2 1.407e-15 1.407e-15 -14.852 -14.852 0.000 33.82 +H(0) 1.525e-29 + H2 7.627e-30 7.628e-30 -29.118 -29.118 0.000 28.56 +O(0) 2.989e-15 + O2 1.494e-15 1.494e-15 -14.826 -14.826 0.000 33.82 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 23 atm) - CH4(g) -84.91 -87.93 -3.02 CH4 + CH4(g) -84.96 -87.98 -3.02 CH4 CO2(g) 1.32 -0.67 -1.99 CO2 Pressure 22.3 atm, phi 0.939 - H2(g) -25.99 -29.10 -3.11 H2 + H2(g) -26.01 -29.12 -3.11 H2 H2O(g) -0.00 -0.00 -0.00 H2O Pressure 1.1 atm, phi 0.877 - O2(g) -11.73 -14.85 -3.13 O2 + O2(g) -11.70 -14.83 -3.13 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9068,17 +9076,17 @@ H2O(g) 0.11 1.294e+00 0.779 3.984e-02 4.816e-02 8.320e-03 ----------------------------Description of solution---------------------------- pH = 3.416 Charge balance - pe = 2.087 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100oC) = 273 - Density (g/cm3) = 0.96303 + pe = 2.060 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 273 + Density (g/cm³) = 0.96303 Volume (L) = 1.05598 - Viscosity (mPa s) = 0.28288 + Viscosity (mPa s) = 0.28529 Activity of water = 0.993 Ionic strength (mol/kgw) = 3.941e-04 Mass of water (kg) = 9.991e-01 Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 4.049e-01 - Temperature (oC) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 44.15 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -9089,32 +9097,32 @@ H2O(g) 0.11 1.294e+00 0.779 3.984e-02 4.816e-02 8.320e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 3.941e-04 3.841e-04 -3.404 -3.416 -0.011 0.00 OH- 1.589e-09 1.547e-09 -8.799 -8.810 -0.012 -6.11 H2O 5.551e+01 9.933e-01 1.744 -0.003 0.000 18.76 -C(-4) 1.085e-29 - CH4 1.085e-29 1.085e-29 -28.965 -28.965 0.000 41.01 +C(-4) 1.776e-29 + CH4 1.776e-29 1.776e-29 -28.751 -28.751 0.000 41.01 C(4) 4.049e-01 CO2 3.780e-01 3.780e-01 -0.423 -0.422 0.000 38.77 (CO2)2 1.326e-02 1.326e-02 -1.877 -1.877 0.000 77.53 HCO3- 3.941e-04 3.838e-04 -3.404 -3.416 -0.011 23.93 CO3-2 8.130e-11 7.316e-11 -10.090 -10.136 -0.046 -8.35 -H(0) 7.401e-15 - H2 3.701e-15 3.701e-15 -14.432 -14.432 0.000 28.55 +H(0) 8.372e-15 + H2 4.186e-15 4.186e-15 -14.378 -14.378 0.000 28.55 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -44.216 -44.216 0.000 33.76 + O2 0.000e+00 0.000e+00 -44.323 -44.323 0.000 33.76 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 44 atm) - CH4(g) -25.94 -28.96 -3.03 CH4 + CH4(g) -25.72 -28.75 -3.03 CH4 CO2(g) 1.58 -0.42 -2.00 CO2 Pressure 42.9 atm, phi 0.888 - H2(g) -11.31 -14.43 -3.12 H2 + H2(g) -11.26 -14.38 -3.12 H2 H2O(g) 0.00 -0.00 -0.01 H2O Pressure 1.3 atm, phi 0.779 - O2(g) -41.08 -44.22 -3.14 O2 + O2(g) -41.19 -44.32 -3.14 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9163,53 +9171,53 @@ H2O(g) 0.17 1.465e+00 0.695 4.816e-02 5.795e-02 9.787e-03 ----------------------------Description of solution---------------------------- pH = 3.348 Charge balance - pe = 1.983 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100oC) = 316 - Density (g/cm3) = 0.96489 + pe = 9.623 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 316 + Density (g/cm³) = 0.96489 Volume (L) = 1.06054 - Viscosity (mPa s) = 0.28342 + Viscosity (mPa s) = 0.28658 Activity of water = 0.991 Ionic strength (mol/kgw) = 4.610e-04 Mass of water (kg) = 9.989e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 5.538e-01 - Temperature (oC) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 63.31 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 28 + Iterations = 31 Total H = 1.108965e+02 Total O = 5.655464e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 4.610e-04 4.484e-04 -3.336 -3.348 -0.012 0.00 OH- 1.382e-09 1.343e-09 -8.859 -8.872 -0.013 -6.19 H2O 5.551e+01 9.910e-01 1.744 -0.004 0.000 18.74 -C(-4) 3.334e-28 - CH4 3.334e-28 3.335e-28 -27.477 -27.477 0.000 40.98 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -88.598 -88.598 0.000 40.98 C(4) 5.538e-01 CO2 5.058e-01 5.059e-01 -0.296 -0.296 0.000 38.71 (CO2)2 2.375e-02 2.375e-02 -1.624 -1.624 0.000 77.42 HCO3- 4.610e-04 4.481e-04 -3.336 -3.349 -0.012 24.05 CO3-2 8.360e-11 7.462e-11 -10.078 -10.127 -0.049 -8.10 -H(0) 1.600e-14 - H2 7.998e-15 7.999e-15 -14.097 -14.097 0.000 28.54 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -44.902 -44.902 0.000 33.69 +H(0) 8.388e-30 + H2 4.194e-30 4.195e-30 -29.377 -29.377 0.000 28.54 +O(0) 9.122e-15 + O2 4.561e-15 4.562e-15 -14.341 -14.341 0.000 33.69 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 63 atm) - CH4(g) -24.44 -27.48 -3.04 CH4 + CH4(g) -85.56 -88.60 -3.04 CH4 CO2(g) 1.72 -0.30 -2.01 CO2 Pressure 61.8 atm, phi 0.844 - H2(g) -10.97 -14.10 -3.13 H2 + H2(g) -26.25 -29.38 -3.13 H2 H2O(g) 0.01 -0.00 -0.01 H2O Pressure 1.5 atm, phi 0.695 - O2(g) -41.76 -44.90 -3.14 O2 + O2(g) -11.20 -14.34 -3.14 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9258,17 +9266,17 @@ H2O(g) 0.22 1.653e+00 0.621 5.795e-02 6.931e-02 1.136e-02 ----------------------------Description of solution---------------------------- pH = 3.306 Charge balance - pe = 1.912 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100oC) = 346 - Density (g/cm3) = 0.96649 + pe = 9.528 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 346 + Density (g/cm³) = 0.96649 Volume (L) = 1.06404 - Viscosity (mPa s) = 0.28391 + Viscosity (mPa s) = 0.28766 Activity of water = 0.989 Ionic strength (mol/kgw) = 5.093e-04 Mass of water (kg) = 9.987e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 6.740e-01 - Temperature (oC) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 81.00 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -9279,32 +9287,32 @@ H2O(g) 0.22 1.653e+00 0.621 5.795e-02 6.931e-02 1.136e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 5.093e-04 4.948e-04 -3.293 -3.306 -0.013 0.00 OH- 1.271e-09 1.233e-09 -8.896 -8.909 -0.013 -6.27 H2O 5.551e+01 9.891e-01 1.744 -0.005 0.000 18.72 -C(-4) 3.161e-27 - CH4 3.161e-27 3.162e-27 -26.500 -26.500 0.000 40.96 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -87.422 -87.422 0.000 40.96 C(4) 6.740e-01 CO2 6.055e-01 6.055e-01 -0.218 -0.218 0.000 38.66 (CO2)2 3.402e-02 3.403e-02 -1.468 -1.468 0.000 77.32 HCO3- 5.093e-04 4.944e-04 -3.293 -3.306 -0.013 24.15 CO3-2 8.560e-11 7.599e-11 -10.068 -10.119 -0.052 -7.87 -H(0) 2.652e-14 - H2 1.326e-14 1.326e-14 -13.877 -13.877 0.000 28.53 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.356 -45.356 0.000 33.64 +H(0) 1.560e-29 + H2 7.802e-30 7.803e-30 -29.108 -29.108 0.000 28.53 +O(0) 2.547e-15 + O2 1.274e-15 1.274e-15 -14.895 -14.895 0.000 33.64 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 81 atm) - CH4(g) -23.45 -26.50 -3.05 CH4 + CH4(g) -84.37 -87.42 -3.05 CH4 CO2(g) 1.81 -0.22 -2.02 CO2 Pressure 79.3 atm, phi 0.805 - H2(g) -10.74 -13.88 -3.13 H2 + H2(g) -25.97 -29.11 -3.13 H2 H2O(g) 0.01 -0.00 -0.02 H2O Pressure 1.7 atm, phi 0.621 - O2(g) -42.20 -45.36 -3.15 O2 + O2(g) -11.74 -14.89 -3.15 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9353,53 +9361,53 @@ H2O(g) 0.27 1.859e+00 0.557 6.931e-02 8.231e-02 1.301e-02 ----------------------------Description of solution---------------------------- pH = 3.276 Charge balance - pe = 1.959 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100oC) = 369 - Density (g/cm3) = 0.96788 + pe = 2.016 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 368 + Density (g/cm³) = 0.96788 Volume (L) = 1.06668 - Viscosity (mPa s) = 0.28436 + Viscosity (mPa s) = 0.28859 Activity of water = 0.988 Ionic strength (mol/kgw) = 5.462e-04 Mass of water (kg) = 9.985e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 7.714e-01 - Temperature (oC) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 97.41 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 + Iterations = 31 Total H = 1.108478e+02 Total O = 5.696443e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 5.462e-04 5.301e-04 -3.263 -3.276 -0.013 0.00 OH- 1.202e-09 1.165e-09 -8.920 -8.934 -0.014 -6.33 H2O 5.551e+01 9.876e-01 1.744 -0.005 0.000 18.71 -C(-4) 2.595e-27 - CH4 2.595e-27 2.595e-27 -26.586 -26.586 0.000 40.94 +C(-4) 8.959e-28 + CH4 8.959e-28 8.960e-28 -27.048 -27.048 0.000 40.94 C(4) 7.714e-01 CO2 6.840e-01 6.841e-01 -0.165 -0.165 0.000 38.62 (CO2)2 4.343e-02 4.343e-02 -1.362 -1.362 0.000 77.23 HCO3- 5.462e-04 5.296e-04 -3.263 -3.276 -0.013 24.24 CO3-2 8.739e-11 7.727e-11 -10.059 -10.112 -0.053 -7.66 -H(0) 2.423e-14 - H2 1.211e-14 1.212e-14 -13.917 -13.917 0.000 28.52 +H(0) 1.857e-14 + H2 9.286e-15 9.287e-15 -14.032 -14.032 0.000 28.52 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.291 -45.291 0.000 33.58 + O2 0.000e+00 0.000e+00 -45.060 -45.060 0.000 33.58 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 97 atm) - CH4(g) -23.53 -26.59 -3.06 CH4 + CH4(g) -23.99 -27.05 -3.06 CH4 CO2(g) 1.87 -0.16 -2.03 CO2 Pressure 95.5 atm, phi 0.771 - H2(g) -10.78 -13.92 -3.14 H2 + H2(g) -10.89 -14.03 -3.14 H2 H2O(g) 0.02 -0.01 -0.02 H2O Pressure 1.9 atm, phi 0.557 - O2(g) -42.13 -45.29 -3.16 O2 + O2(g) -41.90 -45.06 -3.16 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9448,19 +9456,19 @@ H2O(g) 0.32 2.085e+00 0.501 8.231e-02 9.701e-02 1.470e-02 ----------------------------Description of solution---------------------------- pH = 3.253 Charge balance - pe = 1.882 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100oC) = 386 - Density (g/cm3) = 0.96910 + pe = 1.941 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 385 + Density (g/cm³) = 0.96910 Volume (L) = 1.06867 - Viscosity (mPa s) = 0.28479 + Viscosity (mPa s) = 0.28940 Activity of water = 0.986 Ionic strength (mol/kgw) = 5.755e-04 Mass of water (kg) = 9.982e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 8.512e-01 - Temperature (oC) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 112.79 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 24 Total H = 1.108184e+02 @@ -9469,32 +9477,32 @@ H2O(g) 0.32 2.085e+00 0.501 8.231e-02 9.701e-02 1.470e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 5.755e-04 5.581e-04 -3.240 -3.253 -0.013 0.00 OH- 1.155e-09 1.119e-09 -8.937 -8.951 -0.014 -6.40 H2O 5.551e+01 9.864e-01 1.744 -0.006 0.000 18.70 -C(-4) 1.714e-26 - CH4 1.714e-26 1.714e-26 -25.766 -25.766 0.000 40.93 +C(-4) 5.827e-27 + CH4 5.827e-27 5.827e-27 -26.235 -26.235 0.000 40.93 C(4) 8.512e-01 CO2 7.471e-01 7.471e-01 -0.127 -0.127 0.000 38.57 (CO2)2 5.180e-02 5.181e-02 -1.286 -1.286 0.000 77.15 HCO3- 5.755e-04 5.576e-04 -3.240 -3.254 -0.014 24.33 CO3-2 8.902e-11 7.849e-11 -10.050 -10.105 -0.055 -7.47 -H(0) 3.762e-14 - H2 1.881e-14 1.881e-14 -13.726 -13.726 0.000 28.52 +H(0) 2.872e-14 + H2 1.436e-14 1.436e-14 -13.843 -13.843 0.000 28.52 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.686 -45.686 0.000 33.54 + O2 0.000e+00 0.000e+00 -45.451 -45.451 0.000 33.54 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 113 atm) - CH4(g) -22.70 -25.77 -3.07 CH4 + CH4(g) -23.17 -26.23 -3.07 CH4 CO2(g) 1.91 -0.13 -2.04 CO2 Pressure 110.7 atm, phi 0.741 - H2(g) -10.58 -13.73 -3.15 H2 + H2(g) -10.70 -13.84 -3.15 H2 H2O(g) 0.02 -0.01 -0.02 H2O Pressure 2.1 atm, phi 0.501 - O2(g) -42.52 -45.69 -3.17 O2 + O2(g) -42.28 -45.45 -3.17 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9543,19 +9551,19 @@ H2O(g) 0.37 2.333e+00 0.451 9.701e-02 1.134e-01 1.641e-02 ----------------------------Description of solution---------------------------- pH = 3.236 Charge balance - pe = 1.906 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100oC) = 400 - Density (g/cm3) = 0.97021 + pe = 1.889 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 399 + Density (g/cm³) = 0.97021 Volume (L) = 1.07015 - Viscosity (mPa s) = 0.28519 + Viscosity (mPa s) = 0.29013 Activity of water = 0.985 Ionic strength (mol/kgw) = 5.997e-04 Mass of water (kg) = 9.979e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 9.180e-01 - Temperature (oC) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 127.46 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 24 Total H = 1.107856e+02 @@ -9564,32 +9572,32 @@ H2O(g) 0.37 2.333e+00 0.451 9.701e-02 1.134e-01 1.641e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 5.997e-04 5.813e-04 -3.222 -3.236 -0.014 0.00 OH- 1.122e-09 1.086e-09 -8.950 -8.964 -0.014 -6.46 H2O 5.551e+01 9.854e-01 1.744 -0.006 0.000 18.68 -C(-4) 1.613e-26 - CH4 1.613e-26 1.613e-26 -25.792 -25.792 0.000 40.91 +C(-4) 2.189e-26 + CH4 2.189e-26 2.190e-26 -25.660 -25.660 0.000 40.91 C(4) 9.180e-01 CO2 7.989e-01 7.990e-01 -0.098 -0.097 0.000 38.53 (CO2)2 5.924e-02 5.925e-02 -1.227 -1.227 0.000 77.07 HCO3- 5.997e-04 5.807e-04 -3.222 -3.236 -0.014 24.41 CO3-2 9.057e-11 7.966e-11 -10.043 -10.099 -0.056 -7.29 -H(0) 3.609e-14 - H2 1.805e-14 1.805e-14 -13.744 -13.744 0.000 28.51 +H(0) 3.896e-14 + H2 1.948e-14 1.948e-14 -13.710 -13.710 0.000 28.51 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.662 -45.662 0.000 33.49 + O2 0.000e+00 0.000e+00 -45.728 -45.728 0.000 33.49 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 127 atm) - CH4(g) -22.71 -25.79 -3.08 CH4 + CH4(g) -22.58 -25.66 -3.08 CH4 CO2(g) 1.95 -0.10 -2.05 CO2 Pressure 125.1 atm, phi 0.714 - H2(g) -10.59 -13.74 -3.15 H2 + H2(g) -10.56 -13.71 -3.15 H2 H2O(g) 0.02 -0.01 -0.03 H2O Pressure 2.3 atm, phi 0.451 - O2(g) -42.49 -45.66 -3.17 O2 + O2(g) -42.55 -45.73 -3.17 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9638,19 +9646,19 @@ H2O(g) 0.42 2.605e+00 0.407 1.134e-01 1.315e-01 1.811e-02 ----------------------------Description of solution---------------------------- pH = 3.221 Charge balance - pe = 1.804 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100oC) = 413 - Density (g/cm3) = 0.97124 + pe = 1.824 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 411 + Density (g/cm³) = 0.97124 Volume (L) = 1.07126 - Viscosity (mPa s) = 0.28558 + Viscosity (mPa s) = 0.29080 Activity of water = 0.985 Ionic strength (mol/kgw) = 6.205e-04 Mass of water (kg) = 9.976e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 9.752e-01 - Temperature (oC) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 141.77 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 24 Total H = 1.107494e+02 @@ -9659,32 +9667,32 @@ H2O(g) 0.42 2.605e+00 0.407 1.134e-01 1.315e-01 1.811e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 6.205e-04 6.012e-04 -3.207 -3.221 -0.014 0.00 OH- 1.098e-09 1.062e-09 -8.959 -8.974 -0.014 -6.51 H2O 5.551e+01 9.845e-01 1.744 -0.007 0.000 18.67 -C(-4) 1.425e-25 - CH4 1.425e-25 1.425e-25 -24.846 -24.846 0.000 40.89 +C(-4) 9.904e-26 + CH4 9.904e-26 9.905e-26 -25.004 -25.004 0.000 40.89 C(4) 9.752e-01 CO2 8.428e-01 8.429e-01 -0.074 -0.074 0.000 38.49 (CO2)2 6.592e-02 6.593e-02 -1.181 -1.181 0.000 76.99 HCO3- 6.205e-04 6.006e-04 -3.207 -3.221 -0.014 24.49 CO3-2 9.206e-11 8.081e-11 -10.036 -10.093 -0.057 -7.11 -H(0) 6.085e-14 - H2 3.042e-14 3.043e-14 -13.517 -13.517 0.000 28.50 +H(0) 5.556e-14 + H2 2.778e-14 2.778e-14 -13.556 -13.556 0.000 28.50 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.127 -46.127 0.000 33.45 + O2 0.000e+00 0.000e+00 -46.048 -46.048 0.000 33.45 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 142 atm) - CH4(g) -21.76 -24.85 -3.09 CH4 + CH4(g) -21.92 -25.00 -3.09 CH4 CO2(g) 1.98 -0.07 -2.06 CO2 Pressure 139.2 atm, phi 0.689 - H2(g) -10.36 -13.52 -3.16 H2 + H2(g) -10.40 -13.56 -3.16 H2 H2O(g) 0.03 -0.01 -0.03 H2O Pressure 2.6 atm, phi 0.407 - O2(g) -42.95 -46.13 -3.18 O2 + O2(g) -42.87 -46.05 -3.18 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9733,19 +9741,19 @@ H2O(g) 0.46 2.906e+00 0.368 1.315e-01 1.513e-01 1.977e-02 ----------------------------Description of solution---------------------------- pH = 3.208 Charge balance - pe = 1.838 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100oC) = 423 - Density (g/cm3) = 0.97222 + pe = 1.845 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 422 + Density (g/cm³) = 0.97222 Volume (L) = 1.07208 - Viscosity (mPa s) = 0.28597 + Viscosity (mPa s) = 0.29143 Activity of water = 0.984 Ionic strength (mol/kgw) = 6.392e-04 Mass of water (kg) = 9.973e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.026e+00 - Temperature (oC) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 156.12 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 24 Total H = 1.107098e+02 @@ -9754,32 +9762,32 @@ H2O(g) 0.46 2.906e+00 0.368 1.315e-01 1.513e-01 1.977e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 6.392e-04 6.190e-04 -3.194 -3.208 -0.014 0.00 OH- 1.079e-09 1.043e-09 -8.967 -8.982 -0.015 -6.57 H2O 5.551e+01 9.838e-01 1.744 -0.007 0.000 18.66 -C(-4) 9.894e-26 - CH4 9.894e-26 9.895e-26 -25.005 -25.005 0.000 40.88 +C(-4) 8.725e-26 + CH4 8.725e-26 8.726e-26 -25.059 -25.059 0.000 40.88 C(4) 1.026e+00 CO2 8.812e-01 8.812e-01 -0.055 -0.055 0.000 38.46 (CO2)2 7.207e-02 7.208e-02 -1.142 -1.142 0.000 76.91 HCO3- 6.392e-04 6.184e-04 -3.194 -3.209 -0.014 24.57 CO3-2 9.355e-11 8.197e-11 -10.029 -10.086 -0.057 -6.94 -H(0) 5.443e-14 - H2 2.722e-14 2.722e-14 -13.565 -13.565 0.000 28.50 +H(0) 5.275e-14 + H2 2.637e-14 2.638e-14 -13.579 -13.579 0.000 28.50 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.041 -46.041 0.000 33.40 + O2 0.000e+00 0.000e+00 -46.014 -46.014 0.000 33.40 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 156 atm) - CH4(g) -21.91 -25.00 -3.09 CH4 + CH4(g) -21.96 -25.06 -3.09 CH4 CO2(g) 2.01 -0.05 -2.06 CO2 Pressure 153.2 atm, phi 0.666 - H2(g) -10.40 -13.57 -3.16 H2 + H2(g) -10.42 -13.58 -3.16 H2 H2O(g) 0.03 -0.01 -0.04 H2O Pressure 2.9 atm, phi 0.368 - O2(g) -42.85 -46.04 -3.19 O2 + O2(g) -42.83 -46.01 -3.19 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9828,17 +9836,17 @@ H2O(g) 0.51 3.242e+00 0.332 1.513e-01 1.727e-01 2.137e-02 ----------------------------Description of solution---------------------------- pH = 3.197 Charge balance - pe = 1.782 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100oC) = 434 - Density (g/cm3) = 0.97320 + pe = 1.796 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 432 + Density (g/cm³) = 0.97320 Volume (L) = 1.07268 - Viscosity (mPa s) = 0.28637 + Viscosity (mPa s) = 0.29207 Activity of water = 0.983 Ionic strength (mol/kgw) = 6.566e-04 Mass of water (kg) = 9.969e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.072e+00 - Temperature (oC) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 170.91 Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -9849,32 +9857,32 @@ H2O(g) 0.51 3.242e+00 0.332 1.513e-01 1.727e-01 2.137e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 6.566e-04 6.356e-04 -3.183 -3.197 -0.014 0.00 OH- 1.063e-09 1.028e-09 -8.973 -8.988 -0.015 -6.63 H2O 5.551e+01 9.831e-01 1.744 -0.007 0.000 18.64 -C(-4) 3.513e-25 - CH4 3.513e-25 3.514e-25 -24.454 -24.454 0.000 40.86 +C(-4) 2.742e-25 + CH4 2.742e-25 2.743e-25 -24.562 -24.562 0.000 40.86 C(4) 1.072e+00 CO2 9.159e-01 9.160e-01 -0.038 -0.038 0.000 38.42 (CO2)2 7.786e-02 7.787e-02 -1.109 -1.109 0.000 76.83 HCO3- 6.566e-04 6.350e-04 -3.183 -3.197 -0.015 24.65 CO3-2 9.508e-11 8.318e-11 -10.022 -10.080 -0.058 -6.76 -H(0) 7.332e-14 - H2 3.666e-14 3.666e-14 -13.436 -13.436 0.000 28.49 +H(0) 6.891e-14 + H2 3.446e-14 3.446e-14 -13.463 -13.463 0.000 28.49 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.312 -46.312 0.000 33.36 + O2 0.000e+00 0.000e+00 -46.258 -46.258 0.000 33.36 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 171 atm) - CH4(g) -21.35 -24.45 -3.10 CH4 + CH4(g) -21.46 -24.56 -3.10 CH4 CO2(g) 2.03 -0.04 -2.07 CO2 Pressure 167.7 atm, phi 0.645 - H2(g) -10.27 -13.44 -3.17 H2 + H2(g) -10.29 -13.46 -3.17 H2 H2O(g) 0.03 -0.01 -0.04 H2O Pressure 3.2 atm, phi 0.332 - O2(g) -43.12 -46.31 -3.20 O2 + O2(g) -43.06 -46.26 -3.20 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9923,19 +9931,19 @@ H2O(g) 0.56 3.618e+00 0.300 1.727e-01 1.955e-01 2.287e-02 ----------------------------Description of solution---------------------------- pH = 3.186 Charge balance - pe = 1.719 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100oC) = 443 - Density (g/cm3) = 0.97420 + pe = 1.849 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 442 + Density (g/cm³) = 0.97420 Volume (L) = 1.07311 - Viscosity (mPa s) = 0.28679 + Viscosity (mPa s) = 0.29271 Activity of water = 0.982 Ionic strength (mol/kgw) = 6.734e-04 Mass of water (kg) = 9.965e-01 Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.116e+00 - Temperature (oC) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 186.59 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 28 Total H = 1.106214e+02 @@ -9944,32 +9952,32 @@ H2O(g) 0.56 3.618e+00 0.300 1.727e-01 1.955e-01 2.287e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 6.734e-04 6.517e-04 -3.172 -3.186 -0.014 0.00 OH- 1.051e-09 1.015e-09 -8.979 -8.993 -0.015 -6.69 H2O 5.551e+01 9.824e-01 1.744 -0.008 0.000 18.63 -C(-4) 1.403e-24 - CH4 1.403e-24 1.403e-24 -23.853 -23.853 0.000 40.84 +C(-4) 1.283e-25 + CH4 1.283e-25 1.283e-25 -24.892 -24.892 0.000 40.84 C(4) 1.116e+00 CO2 9.484e-01 9.485e-01 -0.023 -0.023 0.000 38.38 (CO2)2 8.348e-02 8.349e-02 -1.078 -1.078 0.000 76.75 HCO3- 6.734e-04 6.511e-04 -3.172 -3.186 -0.015 24.73 CO3-2 9.670e-11 8.448e-11 -10.015 -10.073 -0.059 -6.58 -H(0) 1.017e-13 - H2 5.087e-14 5.088e-14 -13.294 -13.293 0.000 28.48 +H(0) 5.594e-14 + H2 2.797e-14 2.798e-14 -13.553 -13.553 0.000 28.48 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.609 -46.609 0.000 33.31 + O2 0.000e+00 0.000e+00 -46.089 -46.089 0.000 33.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 187 atm) - CH4(g) -20.74 -23.85 -3.11 CH4 + CH4(g) -21.78 -24.89 -3.11 CH4 CO2(g) 2.06 -0.02 -2.08 CO2 Pressure 183.0 atm, phi 0.624 - H2(g) -10.12 -13.29 -3.18 H2 + H2(g) -10.38 -13.55 -3.18 H2 H2O(g) 0.04 -0.01 -0.04 H2O Pressure 3.6 atm, phi 0.300 - O2(g) -43.41 -46.61 -3.20 O2 + O2(g) -42.89 -46.09 -3.20 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10018,19 +10026,19 @@ H2O(g) 0.61 4.045e+00 0.271 1.955e-01 2.198e-01 2.424e-02 ----------------------------Description of solution---------------------------- pH = 3.175 Charge balance - pe = 1.721 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100oC) = 453 - Density (g/cm3) = 0.97525 + pe = 1.832 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 451 + Density (g/cm³) = 0.97525 Volume (L) = 1.07339 - Viscosity (mPa s) = 0.28725 + Viscosity (mPa s) = 0.29339 Activity of water = 0.982 Ionic strength (mol/kgw) = 6.903e-04 Mass of water (kg) = 9.960e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.158e+00 - Temperature (oC) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 203.65 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 29 Total H = 1.105729e+02 @@ -10039,32 +10047,32 @@ H2O(g) 0.61 4.045e+00 0.271 1.955e-01 2.198e-01 2.424e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 6.903e-04 6.678e-04 -3.161 -3.175 -0.014 0.00 OH- 1.040e-09 1.005e-09 -8.983 -8.998 -0.015 -6.75 H2O 5.551e+01 9.818e-01 1.744 -0.008 0.000 18.62 -C(-4) 1.641e-24 - CH4 1.641e-24 1.642e-24 -23.785 -23.785 0.000 40.82 +C(-4) 2.155e-25 + CH4 2.155e-25 2.156e-25 -24.666 -24.666 0.000 40.82 C(4) 1.158e+00 CO2 9.797e-01 9.798e-01 -0.009 -0.009 0.000 38.33 (CO2)2 8.908e-02 8.909e-02 -1.050 -1.050 0.000 76.66 HCO3- 6.903e-04 6.671e-04 -3.161 -3.176 -0.015 24.82 CO3-2 9.847e-11 8.590e-11 -10.007 -10.066 -0.059 -6.38 -H(0) 1.038e-13 - H2 5.192e-14 5.193e-14 -13.285 -13.285 0.000 28.48 +H(0) 6.252e-14 + H2 3.126e-14 3.126e-14 -13.505 -13.505 0.000 28.48 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.640 -46.640 0.000 33.26 + O2 0.000e+00 0.000e+00 -46.199 -46.199 0.000 33.26 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 204 atm) - CH4(g) -20.66 -23.78 -3.12 CH4 + CH4(g) -21.54 -24.67 -3.12 CH4 CO2(g) 2.08 -0.01 -2.09 CO2 Pressure 199.6 atm, phi 0.603 - H2(g) -10.10 -13.28 -3.18 H2 + H2(g) -10.32 -13.50 -3.18 H2 H2O(g) 0.04 -0.01 -0.05 H2O Pressure 4.0 atm, phi 0.271 - O2(g) -43.43 -46.64 -3.21 O2 + O2(g) -42.99 -46.20 -3.21 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10113,17 +10121,17 @@ H2O(g) 0.66 4.530e+00 0.245 2.198e-01 2.452e-01 2.545e-02 ----------------------------Description of solution---------------------------- pH = 3.165 Charge balance - pe = 1.777 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100oC) = 463 - Density (g/cm3) = 0.97639 + pe = 1.850 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 461 + Density (g/cm³) = 0.97639 Volume (L) = 1.07355 - Viscosity (mPa s) = 0.28776 + Viscosity (mPa s) = 0.29411 Activity of water = 0.981 Ionic strength (mol/kgw) = 7.077e-04 Mass of water (kg) = 9.956e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.201e+00 - Temperature (oC) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 222.60 Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -10134,32 +10142,32 @@ H2O(g) 0.66 4.530e+00 0.245 2.198e-01 2.452e-01 2.545e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 7.077e-04 6.844e-04 -3.150 -3.165 -0.015 0.00 OH- 1.031e-09 9.955e-10 -8.987 -9.002 -0.015 -6.83 H2O 5.551e+01 9.812e-01 1.744 -0.008 0.000 18.60 -C(-4) 7.229e-25 - CH4 7.229e-25 7.231e-25 -24.141 -24.141 0.000 40.80 +C(-4) 1.890e-25 + CH4 1.890e-25 1.890e-25 -24.724 -24.724 0.000 40.80 C(4) 1.201e+00 CO2 1.011e+00 1.011e+00 0.005 0.005 0.000 38.28 (CO2)2 9.478e-02 9.480e-02 -1.023 -1.023 0.000 76.56 HCO3- 7.077e-04 6.837e-04 -3.150 -3.165 -0.015 24.92 CO3-2 1.004e-10 8.750e-11 -9.998 -10.058 -0.060 -6.16 -H(0) 8.297e-14 - H2 4.148e-14 4.149e-14 -13.382 -13.382 0.000 28.47 +H(0) 5.932e-14 + H2 2.966e-14 2.967e-14 -13.528 -13.528 0.000 28.47 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.459 -46.459 0.000 33.21 + O2 0.000e+00 0.000e+00 -46.168 -46.168 0.000 33.21 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 223 atm) - CH4(g) -21.01 -24.14 -3.13 CH4 + CH4(g) -21.59 -24.72 -3.13 CH4 CO2(g) 2.10 0.00 -2.10 CO2 Pressure 218.1 atm, phi 0.583 - H2(g) -10.19 -13.38 -3.19 H2 + H2(g) -10.34 -13.53 -3.19 H2 H2O(g) 0.05 -0.01 -0.05 H2O Pressure 4.5 atm, phi 0.245 - O2(g) -43.24 -46.46 -3.22 O2 + O2(g) -42.95 -46.17 -3.22 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10208,19 +10216,19 @@ H2O(g) 0.71 5.087e+00 0.221 2.452e-01 2.717e-01 2.646e-02 ----------------------------Description of solution---------------------------- pH = 3.154 Charge balance - pe = 1.823 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100oC) = 474 - Density (g/cm3) = 0.97763 + pe = 1.840 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 472 + Density (g/cm³) = 0.97763 Volume (L) = 1.07359 - Viscosity (mPa s) = 0.28833 + Viscosity (mPa s) = 0.29491 Activity of water = 0.981 Ionic strength (mol/kgw) = 7.261e-04 Mass of water (kg) = 9.951e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.244e+00 - Temperature (oC) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 244.02 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 37 Total H = 1.104690e+02 @@ -10229,32 +10237,32 @@ H2O(g) 0.71 5.087e+00 0.221 2.452e-01 2.717e-01 2.646e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 7.261e-04 7.020e-04 -3.139 -3.154 -0.015 0.00 OH- 1.024e-09 9.879e-10 -8.990 -9.005 -0.015 -6.91 H2O 5.551e+01 9.806e-01 1.744 -0.009 0.000 18.58 -C(-4) 3.822e-25 - CH4 3.822e-25 3.823e-25 -24.418 -24.418 0.000 40.78 +C(-4) 2.769e-25 + CH4 2.769e-25 2.769e-25 -24.558 -24.558 0.000 40.78 C(4) 1.244e+00 CO2 1.042e+00 1.042e+00 0.018 0.018 0.000 38.23 (CO2)2 1.007e-01 1.007e-01 -0.997 -0.997 0.000 76.46 HCO3- 7.261e-04 7.012e-04 -3.139 -3.154 -0.015 25.03 CO3-2 1.027e-10 8.933e-11 -9.988 -10.049 -0.061 -5.92 -H(0) 6.929e-14 - H2 3.464e-14 3.465e-14 -13.460 -13.460 0.000 28.46 +H(0) 6.392e-14 + H2 3.196e-14 3.197e-14 -13.495 -13.495 0.000 28.46 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.319 -46.319 0.000 33.15 + O2 0.000e+00 0.000e+00 -46.249 -46.249 0.000 33.15 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 244 atm) - CH4(g) -21.27 -24.42 -3.14 CH4 + CH4(g) -21.41 -24.56 -3.14 CH4 CO2(g) 2.13 0.02 -2.11 CO2 Pressure 238.9 atm, phi 0.563 - H2(g) -10.26 -13.46 -3.20 H2 + H2(g) -10.30 -13.50 -3.20 H2 H2O(g) 0.05 -0.01 -0.06 H2O Pressure 5.1 atm, phi 0.221 - O2(g) -43.09 -46.32 -3.23 O2 + O2(g) -43.02 -46.25 -3.23 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10303,19 +10311,19 @@ H2O(g) 0.76 5.727e+00 0.199 2.717e-01 2.989e-01 2.722e-02 ----------------------------Description of solution---------------------------- pH = 3.142 Charge balance - pe = 1.967 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100oC) = 485 - Density (g/cm3) = 0.97902 + pe = 1.755 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 483 + Density (g/cm³) = 0.97902 Volume (L) = 1.07352 - Viscosity (mPa s) = 0.28899 + Viscosity (mPa s) = 0.29581 Activity of water = 0.980 Ionic strength (mol/kgw) = 7.459e-04 Mass of water (kg) = 9.946e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.288e+00 - Temperature (oC) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 268.56 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 43 Total H = 1.104146e+02 @@ -10324,32 +10332,32 @@ H2O(g) 0.76 5.727e+00 0.199 2.717e-01 2.989e-01 2.722e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 7.459e-04 7.209e-04 -3.127 -3.142 -0.015 0.00 OH- 1.018e-09 9.817e-10 -8.992 -9.008 -0.016 -7.00 H2O 5.551e+01 9.799e-01 1.744 -0.009 0.000 18.56 -C(-4) 3.312e-26 - CH4 3.312e-26 3.313e-26 -25.480 -25.480 0.000 40.75 +C(-4) 1.641e-24 + CH4 1.641e-24 1.641e-24 -23.785 -23.785 0.000 40.75 C(4) 1.288e+00 CO2 1.073e+00 1.074e+00 0.031 0.031 0.000 38.17 (CO2)2 1.070e-01 1.070e-01 -0.971 -0.971 0.000 76.33 HCO3- 7.459e-04 7.201e-04 -3.127 -3.143 -0.015 25.15 CO3-2 1.053e-10 9.145e-11 -9.978 -10.039 -0.061 -5.65 -H(0) 3.675e-14 - H2 1.838e-14 1.838e-14 -13.736 -13.736 0.000 28.45 +H(0) 9.751e-14 + H2 4.875e-14 4.876e-14 -13.312 -13.312 0.000 28.45 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.787 -45.787 0.000 33.08 + O2 0.000e+00 0.000e+00 -46.635 -46.635 0.000 33.08 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 269 atm) - CH4(g) -22.32 -25.48 -3.16 CH4 + CH4(g) -20.63 -23.78 -3.16 CH4 CO2(g) 2.15 0.03 -2.12 CO2 Pressure 262.8 atm, phi 0.544 - H2(g) -10.53 -13.74 -3.21 H2 + H2(g) -10.10 -13.31 -3.21 H2 H2O(g) 0.06 -0.01 -0.07 H2O Pressure 5.7 atm, phi 0.199 - O2(g) -42.55 -45.79 -3.24 O2 + O2(g) -43.39 -46.63 -3.24 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10398,17 +10406,17 @@ H2O(g) 0.81 6.466e+00 0.179 2.989e-01 3.266e-01 2.770e-02 ----------------------------Description of solution---------------------------- pH = 3.130 Charge balance - pe = 2.175 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100oC) = 497 - Density (g/cm3) = 0.98059 + pe = 1.795 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 495 + Density (g/cm³) = 0.98059 Volume (L) = 1.07333 - Viscosity (mPa s) = 0.28974 + Viscosity (mPa s) = 0.29682 Activity of water = 0.979 Ionic strength (mol/kgw) = 7.676e-04 Mass of water (kg) = 9.941e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.334e+00 - Temperature (oC) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 296.94 Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -10419,32 +10427,32 @@ H2O(g) 0.81 6.466e+00 0.179 2.989e-01 3.266e-01 2.770e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 7.676e-04 7.415e-04 -3.115 -3.130 -0.015 0.00 OH- 1.013e-09 9.773e-10 -8.994 -9.010 -0.016 -7.10 H2O 5.551e+01 9.792e-01 1.744 -0.009 0.000 18.54 -C(-4) 8.935e-28 - CH4 8.935e-28 8.936e-28 -27.049 -27.049 0.000 40.72 +C(-4) 9.754e-25 + CH4 9.754e-25 9.756e-25 -24.011 -24.011 0.000 40.72 C(4) 1.334e+00 CO2 1.106e+00 1.107e+00 0.044 0.044 0.000 38.10 (CO2)2 1.136e-01 1.136e-01 -0.945 -0.944 0.000 76.19 HCO3- 7.676e-04 7.407e-04 -3.115 -3.130 -0.015 25.29 CO3-2 1.084e-10 9.394e-11 -9.965 -10.027 -0.062 -5.34 -H(0) 1.453e-14 - H2 7.263e-15 7.265e-15 -14.139 -14.139 0.000 28.44 +H(0) 8.350e-14 + H2 4.175e-14 4.176e-14 -13.379 -13.379 0.000 28.44 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.003 -45.003 0.000 33.00 + O2 0.000e+00 0.000e+00 -46.522 -46.522 0.000 33.00 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 297 atm) - CH4(g) -23.87 -27.05 -3.18 CH4 + CH4(g) -20.84 -24.01 -3.18 CH4 CO2(g) 2.18 0.04 -2.14 CO2 Pressure 290.5 atm, phi 0.525 - H2(g) -10.92 -14.14 -3.22 H2 + H2(g) -10.16 -13.38 -3.22 H2 H2O(g) 0.06 -0.01 -0.07 H2O Pressure 6.5 atm, phi 0.179 - O2(g) -41.75 -45.00 -3.25 O2 + O2(g) -43.27 -46.52 -3.25 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10493,19 +10501,19 @@ H2O(g) 0.86 7.319e+00 0.161 3.266e-01 3.544e-01 2.783e-02 ----------------------------Description of solution---------------------------- pH = 3.117 Charge balance - pe = 1.927 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100oC) = 511 - Density (g/cm3) = 0.98238 + pe = 1.787 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 509 + Density (g/cm³) = 0.98238 Volume (L) = 1.07300 - Viscosity (mPa s) = 0.29062 + Viscosity (mPa s) = 0.29797 Activity of water = 0.979 Ionic strength (mol/kgw) = 7.916e-04 Mass of water (kg) = 9.936e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.383e+00 - Temperature (oC) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 329.97 - Electrical balance (eq) = -1.209e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 70 Total H = 1.103035e+02 @@ -10514,32 +10522,32 @@ H2O(g) 0.86 7.319e+00 0.161 3.266e-01 3.544e-01 2.783e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 7.916e-04 7.644e-04 -3.101 -3.117 -0.015 0.00 OH- 1.011e-09 9.749e-10 -8.995 -9.011 -0.016 -7.21 H2O 5.551e+01 9.785e-01 1.744 -0.009 0.000 18.51 -C(-4) 1.094e-25 - CH4 1.094e-25 1.094e-25 -24.961 -24.961 0.000 40.69 +C(-4) 1.444e-24 + CH4 1.444e-24 1.444e-24 -23.840 -23.840 0.000 40.69 C(4) 1.383e+00 CO2 1.141e+00 1.141e+00 0.057 0.057 0.000 38.02 (CO2)2 1.208e-01 1.208e-01 -0.918 -0.918 0.000 76.03 HCO3- 7.916e-04 7.635e-04 -3.101 -3.117 -0.016 25.46 CO3-2 1.120e-10 9.689e-11 -9.951 -10.014 -0.063 -4.98 -H(0) 4.699e-14 - H2 2.350e-14 2.350e-14 -13.629 -13.629 0.000 28.43 +H(0) 8.958e-14 + H2 4.479e-14 4.480e-14 -13.349 -13.349 0.000 28.43 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.048 -46.048 0.000 32.91 + O2 0.000e+00 0.000e+00 -46.608 -46.608 0.000 32.91 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 330 atm) - CH4(g) -21.77 -24.96 -3.19 CH4 + CH4(g) -20.65 -23.84 -3.19 CH4 CO2(g) 2.21 0.06 -2.16 CO2 Pressure 322.7 atm, phi 0.507 - H2(g) -10.40 -13.63 -3.23 H2 + H2(g) -10.12 -13.35 -3.23 H2 H2O(g) 0.07 -0.01 -0.08 H2O Pressure 7.3 atm, phi 0.161 - O2(g) -42.78 -46.05 -3.27 O2 + O2(g) -43.34 -46.61 -3.27 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10588,19 +10596,19 @@ H2O(g) 0.92 8.305e+00 0.145 3.544e-01 3.820e-01 2.758e-02 ----------------------------Description of solution---------------------------- pH = 3.102 Charge balance - pe = 1.903 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100oC) = 526 - Density (g/cm3) = 0.98441 + pe = 1.799 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 524 + Density (g/cm³) = 0.98441 Volume (L) = 1.07253 - Viscosity (mPa s) = 0.29164 + Viscosity (mPa s) = 0.29929 Activity of water = 0.978 Ionic strength (mol/kgw) = 8.184e-04 Mass of water (kg) = 9.931e-01 Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.434e+00 - Temperature (oC) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 368.63 - Electrical balance (eq) = -1.209e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 77 Total H = 1.102484e+02 @@ -10609,32 +10617,32 @@ H2O(g) 0.92 8.305e+00 0.145 3.544e-01 3.820e-01 2.758e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.184e-04 7.899e-04 -3.087 -3.102 -0.015 0.00 OH- 1.012e-09 9.749e-10 -8.995 -9.011 -0.016 -7.34 H2O 5.551e+01 9.778e-01 1.744 -0.010 0.000 18.48 -C(-4) 2.173e-25 - CH4 2.173e-25 2.174e-25 -24.663 -24.663 0.000 40.65 +C(-4) 1.481e-24 + CH4 1.481e-24 1.481e-24 -23.830 -23.830 0.000 40.65 C(4) 1.434e+00 CO2 1.177e+00 1.177e+00 0.071 0.071 0.000 37.92 (CO2)2 1.285e-01 1.285e-01 -0.891 -0.891 0.000 75.85 HCO3- 8.184e-04 7.890e-04 -3.087 -3.103 -0.016 25.64 CO3-2 1.163e-10 1.004e-10 -9.935 -9.998 -0.064 -4.58 -H(0) 5.407e-14 - H2 2.704e-14 2.704e-14 -13.568 -13.568 0.000 28.41 +H(0) 8.736e-14 + H2 4.368e-14 4.369e-14 -13.360 -13.360 0.000 28.41 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.199 -46.199 0.000 32.81 + O2 0.000e+00 0.000e+00 -46.615 -46.615 0.000 32.81 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 369 atm) - CH4(g) -21.45 -24.66 -3.22 CH4 + CH4(g) -20.61 -23.83 -3.22 CH4 CO2(g) 2.25 0.07 -2.18 CO2 Pressure 360.3 atm, phi 0.491 - H2(g) -10.32 -13.57 -3.25 H2 + H2(g) -10.11 -13.36 -3.25 H2 H2O(g) 0.08 -0.01 -0.09 H2O Pressure 8.3 atm, phi 0.145 - O2(g) -42.91 -46.20 -3.29 O2 + O2(g) -43.33 -46.62 -3.29 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10683,19 +10691,19 @@ H2O(g) 0.98 9.442e+00 0.131 3.820e-01 4.089e-01 2.690e-02 ----------------------------Description of solution---------------------------- pH = 3.087 Charge balance - pe = 1.844 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100oC) = 544 - Density (g/cm3) = 0.98675 + pe = 1.822 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 541 + Density (g/cm³) = 0.98675 Volume (L) = 1.07187 - Viscosity (mPa s) = 0.29284 + Viscosity (mPa s) = 0.30082 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.487e-04 Mass of water (kg) = 9.926e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.489e+00 - Temperature (oC) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 414.00 - Electrical balance (eq) = -1.209e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 85 Total H = 1.101946e+02 @@ -10704,32 +10712,32 @@ H2O(g) 0.98 9.442e+00 0.131 3.820e-01 4.089e-01 2.690e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.487e-04 8.187e-04 -3.071 -3.087 -0.016 0.00 OH- 1.016e-09 9.781e-10 -8.993 -9.010 -0.016 -7.50 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 18.44 -C(-4) 8.427e-25 - CH4 8.427e-25 8.428e-25 -24.074 -24.074 0.000 40.60 +C(-4) 1.248e-24 + CH4 1.248e-24 1.248e-24 -23.904 -23.904 0.000 40.60 C(4) 1.489e+00 CO2 1.214e+00 1.214e+00 0.084 0.084 0.000 37.82 (CO2)2 1.368e-01 1.369e-01 -0.864 -0.864 0.000 75.64 HCO3- 8.487e-04 8.177e-04 -3.071 -3.087 -0.016 25.85 CO3-2 1.214e-10 1.047e-10 -9.916 -9.980 -0.065 -4.12 -H(0) 7.323e-14 - H2 3.662e-14 3.662e-14 -13.436 -13.436 0.000 28.40 +H(0) 8.078e-14 + H2 4.039e-14 4.040e-14 -13.394 -13.394 0.000 28.40 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.496 -46.496 0.000 32.69 + O2 0.000e+00 0.000e+00 -46.582 -46.582 0.000 32.69 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 414 atm) - CH4(g) -20.83 -24.07 -3.24 CH4 + CH4(g) -20.66 -23.90 -3.24 CH4 CO2(g) 2.29 0.08 -2.20 CO2 Pressure 404.6 atm, phi 0.477 - H2(g) -10.17 -13.44 -3.27 H2 + H2(g) -10.13 -13.39 -3.27 H2 H2O(g) 0.09 -0.01 -0.10 H2O Pressure 9.4 atm, phi 0.131 - O2(g) -43.19 -46.50 -3.31 O2 + O2(g) -43.28 -46.58 -3.31 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10778,19 +10786,19 @@ H2O(g) 1.03 1.075e+01 0.119 4.089e-01 4.347e-01 2.572e-02 ----------------------------Description of solution---------------------------- pH = 3.070 Charge balance - pe = 1.912 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100oC) = 563 - Density (g/cm3) = 0.98942 + pe = 1.820 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 560 + Density (g/cm³) = 0.98942 Volume (L) = 1.07102 - Viscosity (mPa s) = 0.29424 + Viscosity (mPa s) = 0.30258 Activity of water = 0.976 Ionic strength (mol/kgw) = 8.829e-04 Mass of water (kg) = 9.922e-01 Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.546e+00 - Temperature (oC) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 467.40 - Electrical balance (eq) = -1.209e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 95 Total H = 1.101431e+02 @@ -10799,32 +10807,32 @@ H2O(g) 1.03 1.075e+01 0.119 4.089e-01 4.347e-01 2.572e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.829e-04 8.513e-04 -3.054 -3.070 -0.016 0.00 OH- 1.024e-09 9.852e-10 -8.990 -9.006 -0.017 -7.67 H2O 5.551e+01 9.762e-01 1.744 -0.010 0.000 18.40 -C(-4) 3.163e-25 - CH4 3.163e-25 3.163e-25 -24.500 -24.500 0.000 40.55 +C(-4) 1.728e-24 + CH4 1.728e-24 1.728e-24 -23.762 -23.762 0.000 40.55 C(4) 1.546e+00 CO2 1.254e+00 1.254e+00 0.098 0.098 0.000 37.70 (CO2)2 1.459e-01 1.459e-01 -0.836 -0.836 0.000 75.40 HCO3- 8.829e-04 8.503e-04 -3.054 -3.070 -0.016 26.09 CO3-2 1.277e-10 1.098e-10 -9.894 -9.959 -0.066 -3.59 -H(0) 5.505e-14 - H2 2.752e-14 2.753e-14 -13.560 -13.560 0.000 28.38 +H(0) 8.416e-14 + H2 4.208e-14 4.209e-14 -13.376 -13.376 0.000 28.38 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.289 -46.288 0.000 32.56 + O2 0.000e+00 0.000e+00 -46.657 -46.657 0.000 32.56 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 467 atm) - CH4(g) -21.23 -24.50 -3.27 CH4 + CH4(g) -20.49 -23.76 -3.27 CH4 CO2(g) 2.33 0.10 -2.23 CO2 Pressure 456.6 atm, phi 0.465 - H2(g) -10.27 -13.56 -3.29 H2 + H2(g) -10.09 -13.38 -3.29 H2 H2O(g) 0.11 -0.01 -0.12 H2O Pressure 10.7 atm, phi 0.119 - O2(g) -42.96 -46.29 -3.33 O2 + O2(g) -43.33 -46.66 -3.33 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10880,53 +10888,53 @@ H2O(g) 1.09 1.225e+01 0.108 4.347e-01 4.587e-01 2.401e-02 ----------------------------Description of solution---------------------------- pH = 3.051 Charge balance - pe = 1.950 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100oC) = 586 - Density (g/cm3) = 0.99250 + pe = 1.790 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 582 + Density (g/cm³) = 0.99250 Volume (L) = 1.06991 - Viscosity (mPa s) = 0.29588 + Viscosity (mPa s) = 0.30463 Activity of water = 0.975 Ionic strength (mol/kgw) = 9.220e-04 Mass of water (kg) = 9.917e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.607e+00 - Temperature (oC) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 530.35 - Electrical balance (eq) = -1.209e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 39 (140 overall) + Iterations = 38 (139 overall) Total H = 1.100951e+02 Total O = 5.823576e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 9.220e-04 8.885e-04 -3.035 -3.051 -0.016 0.00 OH- 1.037e-09 9.976e-10 -8.984 -9.001 -0.017 -7.86 H2O 5.551e+01 9.753e-01 1.744 -0.011 0.000 18.35 -C(-4) 2.095e-25 - CH4 2.095e-25 2.095e-25 -24.679 -24.679 0.000 40.49 +C(-4) 4.003e-24 + CH4 4.003e-24 4.004e-24 -23.398 -23.397 0.000 40.49 C(4) 1.607e+00 CO2 1.295e+00 1.295e+00 0.112 0.112 0.000 37.56 (CO2)2 1.557e-01 1.557e-01 -0.808 -0.808 0.000 75.12 HCO3- 9.220e-04 8.873e-04 -3.035 -3.052 -0.017 26.36 CO3-2 1.353e-10 1.160e-10 -9.869 -9.935 -0.067 -2.99 -H(0) 4.742e-14 - H2 2.371e-14 2.371e-14 -13.625 -13.625 0.000 28.35 +H(0) 9.914e-14 + H2 4.957e-14 4.958e-14 -13.305 -13.305 0.000 28.35 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.206 -46.206 0.000 32.41 + O2 0.000e+00 0.000e+00 -46.846 -46.846 0.000 32.41 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 530 atm) - CH4(g) -21.37 -24.68 -3.31 CH4 + CH4(g) -20.09 -23.40 -3.31 CH4 CO2(g) 2.37 0.11 -2.26 CO2 Pressure 518.1 atm, phi 0.456 - H2(g) -10.31 -13.63 -3.31 H2 + H2(g) -9.99 -13.30 -3.31 H2 H2O(g) 0.12 -0.01 -0.13 H2O Pressure 12.2 atm, phi 0.108 - O2(g) -42.85 -46.21 -3.36 O2 + O2(g) -43.49 -46.85 -3.36 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10982,53 +10990,53 @@ H2O(g) 1.14 1.395e+01 0.099 4.587e-01 4.804e-01 2.170e-02 ----------------------------Description of solution---------------------------- pH = 3.031 Charge balance - pe = 1.893 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100oC) = 611 - Density (g/cm3) = 0.99605 + pe = 1.764 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 607 + Density (g/cm³) = 0.99605 Volume (L) = 1.06852 - Viscosity (mPa s) = 0.29782 + Viscosity (mPa s) = 0.30701 Activity of water = 0.974 Ionic strength (mol/kgw) = 9.668e-04 Mass of water (kg) = 9.913e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.214e-09 Total CO2 (mol/kg) = 1.672e+00 - Temperature (oC) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 604.71 - Electrical balance (eq) = -1.209e-09 + Electrical balance (eq) = -1.204e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 39 (140 overall) + Iterations = 139 (240 overall) Total H = 1.100517e+02 Total O = 5.834105e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 9.668e-04 9.310e-04 -3.015 -3.031 -0.016 0.00 OH- 1.058e-09 1.017e-09 -8.975 -8.993 -0.017 -8.07 H2O 5.551e+01 9.744e-01 1.744 -0.011 0.000 18.29 -C(-4) 8.145e-25 - CH4 8.145e-25 8.147e-25 -24.089 -24.089 0.000 40.42 +C(-4) 8.886e-24 + CH4 8.886e-24 8.888e-24 -23.051 -23.051 0.000 40.42 C(4) 1.672e+00 CO2 1.339e+00 1.339e+00 0.127 0.127 0.000 37.41 (CO2)2 1.663e-01 1.663e-01 -0.779 -0.779 0.000 74.81 HCO3- 9.668e-04 9.298e-04 -3.015 -3.032 -0.017 26.67 CO3-2 1.446e-10 1.237e-10 -9.840 -9.908 -0.068 -2.30 -H(0) 6.313e-14 - H2 3.157e-14 3.157e-14 -13.501 -13.501 0.000 28.33 +H(0) 1.147e-13 + H2 5.737e-14 5.738e-14 -13.241 -13.241 0.000 28.33 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.510 -46.510 0.000 32.23 + O2 0.000e+00 0.000e+00 -47.029 -47.029 0.000 32.23 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 605 atm) - CH4(g) -20.74 -24.09 -3.35 CH4 + CH4(g) -19.70 -23.05 -3.35 CH4 CO2(g) 2.43 0.13 -2.30 CO2 Pressure 590.8 atm, phi 0.452 - H2(g) -10.16 -13.50 -3.34 H2 + H2(g) -9.90 -13.24 -3.34 H2 H2O(g) 0.14 -0.01 -0.15 H2O Pressure 14.0 atm, phi 0.099 - O2(g) -43.12 -46.51 -3.39 O2 + O2(g) -43.64 -47.03 -3.39 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11084,53 +11092,53 @@ H2O(g) 1.20 1.588e+01 0.091 4.804e-01 4.991e-01 1.875e-02 ----------------------------Description of solution---------------------------- pH = 3.009 Charge balance - pe = 1.730 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100oC) = 640 - Density (g/cm3) = 1.00012 + pe = 11.341 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 636 + Density (g/cm³) = 1.00012 Volume (L) = 1.06679 - Viscosity (mPa s) = 0.30011 + Viscosity (mPa s) = 0.30980 Activity of water = 0.973 Ionic strength (mol/kgw) = 1.018e-03 Mass of water (kg) = 9.910e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.740e+00 - Temperature (oC) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 692.70 - Electrical balance (eq) = -1.208e-09 + Electrical balance (eq) = -1.204e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 58 (159 overall) + Iterations = 65 (166 overall) Total H = 1.100142e+02 Total O = 5.845661e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.018e-03 9.800e-04 -2.992 -3.009 -0.017 0.00 OH- 1.089e-09 1.045e-09 -8.963 -8.981 -0.018 -8.32 H2O 5.551e+01 9.734e-01 1.744 -0.012 0.000 18.23 -C(-4) 2.287e-23 - CH4 2.287e-23 2.288e-23 -22.641 -22.641 0.000 40.34 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -99.529 -99.529 0.000 40.34 C(4) 1.740e+00 CO2 1.384e+00 1.384e+00 0.141 0.141 0.000 37.23 (CO2)2 1.778e-01 1.778e-01 -0.750 -0.750 0.000 74.46 HCO3- 1.018e-03 9.786e-04 -2.992 -3.009 -0.017 27.02 CO3-2 1.561e-10 1.331e-10 -9.807 -9.876 -0.069 -1.53 -H(0) 1.367e-13 - H2 6.834e-14 6.835e-14 -13.165 -13.165 0.000 28.30 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -47.246 -47.246 0.000 32.04 +H(0) 8.197e-33 + H2 4.099e-33 4.100e-33 -32.387 -32.387 0.000 28.30 +O(0) 3.158e-09 + O2 1.579e-09 1.580e-09 -8.802 -8.801 0.000 32.04 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 693 atm) - CH4(g) -19.24 -22.64 -3.40 CH4 + CH4(g) -96.13 -99.53 -3.40 CH4 CO2(g) 2.49 0.14 -2.34 CO2 Pressure 676.8 atm, phi 0.452 - H2(g) -9.79 -13.17 -3.38 H2 + H2(g) -29.01 -32.39 -3.38 H2 H2O(g) 0.16 -0.01 -0.17 H2O Pressure 15.9 atm, phi 0.091 - O2(g) -43.82 -47.25 -3.43 O2 + O2(g) -5.37 -8.80 -3.43 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11186,53 +11194,53 @@ H2O(g) 1.26 1.804e+01 0.085 4.991e-01 5.142e-01 1.511e-02 ----------------------------Description of solution---------------------------- pH = 2.984 Charge balance - pe = 10.986 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100oC) = 674 - Density (g/cm3) = 1.00480 + pe = 11.364 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 669 + Density (g/cm³) = 1.00480 Volume (L) = 1.06465 - Viscosity (mPa s) = 0.30281 + Viscosity (mPa s) = 0.31306 Activity of water = 0.972 Ionic strength (mol/kgw) = 1.078e-03 Mass of water (kg) = 9.907e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.812e+00 - Temperature (oC) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 797.06 - Electrical balance (eq) = -1.208e-09 + Electrical balance (eq) = -1.204e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 75 (176 overall) + Iterations = 36 (137 overall) Total H = 1.099840e+02 Total O = 5.858319e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.078e-03 1.036e-03 -2.967 -2.984 -0.017 0.00 OH- 1.132e-09 1.086e-09 -8.946 -8.964 -0.018 -8.59 H2O 5.551e+01 9.724e-01 1.744 -0.012 0.000 18.15 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -96.533 -96.533 0.000 40.25 + CH4 0.000e+00 0.000e+00 -99.559 -99.559 0.000 40.25 C(4) 1.812e+00 CO2 1.431e+00 1.431e+00 0.156 0.156 0.000 37.03 (CO2)2 1.901e-01 1.902e-01 -0.721 -0.721 0.000 74.06 HCO3- 1.078e-03 1.035e-03 -2.967 -2.985 -0.018 27.42 CO3-2 1.706e-10 1.450e-10 -9.768 -9.839 -0.071 -0.67 -H(0) 4.283e-32 - H2 2.142e-32 2.142e-32 -31.669 -31.669 0.000 28.27 -O(0) 9.694e-11 - O2 4.847e-11 4.848e-11 -10.315 -10.314 0.000 31.83 +H(0) 7.503e-33 + H2 3.751e-33 3.752e-33 -32.426 -32.426 0.000 28.27 +O(0) 3.159e-09 + O2 1.580e-09 1.580e-09 -8.801 -8.801 0.000 31.83 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 797 atm) - CH4(g) -93.07 -96.53 -3.46 CH4 + CH4(g) -96.10 -99.56 -3.46 CH4 CO2(g) 2.55 0.16 -2.40 CO2 Pressure 779.0 atm, phi 0.459 - H2(g) -28.25 -31.67 -3.42 H2 + H2(g) -29.01 -32.43 -3.42 H2 H2O(g) 0.19 -0.01 -0.20 H2O Pressure 18.0 atm, phi 0.085 - O2(g) -6.84 -10.31 -3.47 O2 + O2(g) -5.33 -8.80 -3.47 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11288,53 +11296,53 @@ H2O(g) 1.31 2.044e+01 0.081 5.142e-01 5.250e-01 1.075e-02 ----------------------------Description of solution---------------------------- pH = 2.958 Charge balance - pe = 11.011 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100oC) = 713 - Density (g/cm3) = 1.01017 + pe = 11.389 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 708 + Density (g/cm³) = 1.01017 Volume (L) = 1.06205 - Viscosity (mPa s) = 0.30601 + Viscosity (mPa s) = 0.31689 Activity of water = 0.971 Ionic strength (mol/kgw) = 1.147e-03 Mass of water (kg) = 9.905e-01 - Total alkalinity (eq/kg) = 1.220e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.888e+00 - Temperature (oC) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 921.15 - Electrical balance (eq) = -1.208e-09 + Electrical balance (eq) = -1.204e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 35 (136 overall) + Iterations = 44 (145 overall) Total H = 1.099625e+02 Total O = 5.872141e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.147e-03 1.102e-03 -2.940 -2.958 -0.017 0.00 OH- 1.194e-09 1.144e-09 -8.923 -8.941 -0.018 -8.89 H2O 5.551e+01 9.713e-01 1.744 -0.013 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -96.571 -96.571 0.000 40.15 + CH4 0.000e+00 0.000e+00 -99.597 -99.597 0.000 40.15 C(4) 1.888e+00 CO2 1.480e+00 1.480e+00 0.170 0.170 0.000 36.81 (CO2)2 2.033e-01 2.034e-01 -0.692 -0.692 0.000 73.62 HCO3- 1.147e-03 1.100e-03 -2.940 -2.958 -0.018 27.86 CO3-2 1.888e-10 1.599e-10 -9.724 -9.796 -0.072 0.29 -H(0) 3.857e-32 - H2 1.929e-32 1.929e-32 -31.715 -31.715 0.000 28.24 -O(0) 9.696e-11 - O2 4.848e-11 4.849e-11 -10.314 -10.314 0.000 31.59 +H(0) 6.757e-33 + H2 3.379e-33 3.379e-33 -32.471 -32.471 0.000 28.24 +O(0) 3.160e-09 + O2 1.580e-09 1.580e-09 -8.801 -8.801 0.000 31.59 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 921 atm) - CH4(g) -93.04 -96.57 -3.53 CH4 + CH4(g) -96.07 -99.60 -3.53 CH4 CO2(g) 2.63 0.17 -2.46 CO2 Pressure 900.7 atm, phi 0.474 - H2(g) -28.25 -31.71 -3.47 H2 + H2(g) -29.00 -32.47 -3.47 H2 H2O(g) 0.22 -0.01 -0.23 H2O Pressure 20.4 atm, phi 0.081 - O2(g) -6.79 -10.31 -3.53 O2 + O2(g) -5.27 -8.80 -3.53 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11390,53 +11398,53 @@ H2O(g) 1.36 2.308e+01 0.078 5.250e-01 5.306e-01 5.633e-03 ----------------------------Description of solution---------------------------- pH = 2.929 Charge balance - pe = 11.037 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100oC) = 758 - Density (g/cm3) = 1.01630 + pe = 11.416 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 752 + Density (g/cm³) = 1.01630 Volume (L) = 1.05892 - Viscosity (mPa s) = 0.30979 + Viscosity (mPa s) = 0.32138 Activity of water = 0.970 Ionic strength (mol/kgw) = 1.228e-03 Mass of water (kg) = 9.904e-01 - Total alkalinity (eq/kg) = 1.221e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.967e+00 - Temperature (oC) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 1069.23 - Electrical balance (eq) = -1.209e-09 + Electrical balance (eq) = -1.205e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 39 (140 overall) + Iterations = 37 (138 overall) Total H = 1.099512e+02 Total O = 5.887174e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.228e-03 1.179e-03 -2.911 -2.929 -0.018 0.00 OH- 1.282e-09 1.227e-09 -8.892 -8.911 -0.019 -9.21 H2O 5.551e+01 9.702e-01 1.744 -0.013 0.000 17.97 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -96.618 -96.618 0.000 40.04 + CH4 0.000e+00 0.000e+00 -99.644 -99.644 0.000 40.04 C(4) 1.967e+00 CO2 1.531e+00 1.531e+00 0.185 0.185 0.000 36.56 (CO2)2 2.175e-01 2.175e-01 -0.663 -0.662 0.000 73.13 HCO3- 1.228e-03 1.177e-03 -2.911 -2.929 -0.018 28.34 CO3-2 2.122e-10 1.790e-10 -9.673 -9.747 -0.074 1.36 -H(0) 3.407e-32 - H2 1.703e-32 1.704e-32 -31.769 -31.769 0.000 28.20 -O(0) 9.697e-11 - O2 4.848e-11 4.850e-11 -10.314 -10.314 0.000 31.32 +H(0) 5.967e-33 + H2 2.984e-33 2.985e-33 -32.525 -32.525 0.000 28.20 +O(0) 3.160e-09 + O2 1.580e-09 1.581e-09 -8.801 -8.801 0.000 31.32 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 1069 atm) - CH4(g) -93.01 -96.62 -3.61 CH4 + CH4(g) -96.03 -99.64 -3.61 CH4 CO2(g) 2.72 0.18 -2.53 CO2 Pressure 1046.2 atm, phi 0.500 - H2(g) -28.24 -31.77 -3.53 H2 + H2(g) -29.00 -32.53 -3.53 H2 H2O(g) 0.25 -0.01 -0.27 H2O Pressure 23.1 atm, phi 0.078 - O2(g) -6.73 -10.31 -3.59 O2 + O2(g) -5.21 -8.80 -3.59 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11492,53 +11500,53 @@ H2O(g) 1.41 2.593e+01 0.076 5.306e-01 5.304e-01 -2.391e-04 ----------------------------Description of solution---------------------------- pH = 2.897 Charge balance - pe = 11.066 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100oC) = 810 - Density (g/cm3) = 1.02323 + pe = 11.445 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 803 + Density (g/cm³) = 1.02323 Volume (L) = 1.05524 - Viscosity (mPa s) = 0.31423 + Viscosity (mPa s) = 0.32664 Activity of water = 0.969 Ionic strength (mol/kgw) = 1.323e-03 Mass of water (kg) = 9.904e-01 - Total alkalinity (eq/kg) = 1.221e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 2.049e+00 - Temperature (oC) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 1246.74 - Electrical balance (eq) = -1.209e-09 + Electrical balance (eq) = -1.205e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 43 (144 overall) + Iterations = 42 (143 overall) Total H = 1.099517e+02 Total O = 5.903436e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.323e-03 1.268e-03 -2.879 -2.897 -0.018 0.00 OH- 1.409e-09 1.347e-09 -8.851 -8.871 -0.019 -9.57 H2O 5.551e+01 9.691e-01 1.744 -0.014 0.000 17.86 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -96.677 -96.677 0.000 39.91 + CH4 0.000e+00 0.000e+00 -99.703 -99.703 0.000 39.91 C(4) 2.049e+00 CO2 1.583e+00 1.583e+00 0.199 0.199 0.000 36.29 (CO2)2 2.325e-01 2.326e-01 -0.634 -0.633 0.000 72.59 HCO3- 1.323e-03 1.266e-03 -2.879 -2.898 -0.019 28.88 CO3-2 2.428e-10 2.039e-10 -9.615 -9.691 -0.076 2.54 -H(0) 2.937e-32 - H2 1.469e-32 1.469e-32 -31.833 -31.833 0.000 28.16 -O(0) 9.696e-11 - O2 4.848e-11 4.850e-11 -10.314 -10.314 0.000 31.03 +H(0) 5.145e-33 + H2 2.573e-33 2.573e-33 -32.590 -32.589 0.000 28.16 +O(0) 3.160e-09 + O2 1.580e-09 1.581e-09 -8.801 -8.801 0.000 31.03 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 1247 atm) - CH4(g) -92.97 -96.68 -3.71 CH4 + CH4(g) -95.99 -99.70 -3.71 CH4 CO2(g) 2.82 0.20 -2.62 CO2 Pressure 1220.8 atm, phi 0.541 - H2(g) -28.23 -31.83 -3.60 H2 + H2(g) -28.99 -32.59 -3.60 H2 H2O(g) 0.30 -0.01 -0.31 H2O Pressure 25.9 atm, phi 0.076 - O2(g) -6.65 -10.31 -3.66 O2 + O2(g) -5.14 -8.80 -3.66 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11594,19 +11602,19 @@ H2O(g) 1.46 2.896e+01 0.077 5.304e-01 5.236e-01 -6.811e-03 ----------------------------Description of solution---------------------------- pH = 2.862 Charge balance - pe = 11.098 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 100oC) = 872 - Density (g/cm3) = 1.03092 + pe = 11.476 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 100°C) = 864 + Density (g/cm³) = 1.03092 Volume (L) = 1.05107 - Viscosity (mPa s) = 0.31935 + Viscosity (mPa s) = 0.33268 Activity of water = 0.968 Ionic strength (mol/kgw) = 1.435e-03 Mass of water (kg) = 9.905e-01 - Total alkalinity (eq/kg) = 1.221e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 2.133e+00 - Temperature (oC) = 100.00 + Temperature (°C) = 100.00 Pressure (atm) = 1460.80 - Electrical balance (eq) = -1.209e-09 + Electrical balance (eq) = -1.205e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 57 (158 overall) Total H = 1.099653e+02 @@ -11615,32 +11623,32 @@ H2O(g) 1.46 2.896e+01 0.077 5.304e-01 5.236e-01 -6.811e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.435e-03 1.374e-03 -2.843 -2.862 -0.019 0.00 OH- 1.595e-09 1.523e-09 -8.797 -8.817 -0.020 -9.96 H2O 5.551e+01 9.679e-01 1.744 -0.014 0.000 17.73 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -96.750 -96.749 0.000 39.77 + CH4 0.000e+00 0.000e+00 -99.776 -99.776 0.000 39.77 C(4) 2.133e+00 CO2 1.635e+00 1.636e+00 0.214 0.214 0.000 36.00 (CO2)2 2.483e-01 2.483e-01 -0.605 -0.605 0.000 71.99 HCO3- 1.435e-03 1.372e-03 -2.843 -2.863 -0.019 29.47 CO3-2 2.835e-10 2.370e-10 -9.547 -9.625 -0.078 3.83 -H(0) 2.459e-32 - H2 1.230e-32 1.230e-32 -31.910 -31.910 0.000 28.11 -O(0) 9.695e-11 - O2 4.848e-11 4.849e-11 -10.314 -10.314 0.000 30.71 +H(0) 4.307e-33 + H2 2.154e-33 2.154e-33 -32.667 -32.667 0.000 28.11 +O(0) 3.160e-09 + O2 1.580e-09 1.580e-09 -8.801 -8.801 0.000 30.71 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 1461 atm) - CH4(g) -92.92 -96.75 -3.83 CH4 + CH4(g) -95.95 -99.78 -3.83 CH4 CO2(g) 2.94 0.21 -2.72 CO2 Pressure 1431.8 atm, phi 0.606 - H2(g) -28.23 -31.91 -3.68 H2 + H2(g) -28.98 -32.67 -3.68 H2 H2O(g) 0.35 -0.01 -0.36 H2O Pressure 29.0 atm, phi 0.077 - O2(g) -6.56 -10.31 -3.75 O2 + O2(g) -5.05 -8.80 -3.75 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11716,15 +11724,15 @@ H2O(g) 0.67 4.702e+00 0.971 0.000e+00 1.395e-01 1.395e-01 pH = 5.813 Charge balance pe = 4.695 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 150oC) = 1 - Density (g/cm3) = 0.91701 + Specific Conductance (µS/cm, 150°C) = 1 + Density (g/cm³) = 0.91701 Volume (L) = 1.08776 Viscosity (mPa s) = 0.18261 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.541e-06 Mass of water (kg) = 9.975e-01 Total alkalinity (eq/kg) = 1.220e-09 - Temperature (oC) = 150.00 + Temperature (°C) = 150.00 Pressure (atm) = 4.70 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.04 @@ -11735,7 +11743,7 @@ H2O(g) 0.67 4.702e+00 0.971 0.000e+00 1.395e-01 1.395e-01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.542e-06 1.539e-06 -5.812 -5.813 -0.001 -12.11 H+ 1.540e-06 1.537e-06 -5.812 -5.813 -0.001 0.00 @@ -11800,17 +11808,17 @@ H2O(g) 0.73 5.310e+00 0.870 1.395e-01 1.635e-01 2.395e-02 ----------------------------Description of solution---------------------------- pH = 3.727 Charge balance - pe = 1.882 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 150oC) = 157 - Density (g/cm3) = 0.91912 + pe = 1.888 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 150°C) = 157 + Density (g/cm³) = 0.91912 Volume (L) = 1.09483 - Viscosity (mPa s) = 0.18330 + Viscosity (mPa s) = 0.18399 Activity of water = 0.997 Ionic strength (mol/kgw) = 1.914e-04 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 2.102e-01 - Temperature (oC) = 150.00 + Temperature (°C) = 150.00 Pressure (atm) = 30.98 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -11821,32 +11829,32 @@ H2O(g) 0.73 5.310e+00 0.870 1.395e-01 1.635e-01 2.395e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.914e-04 1.874e-04 -3.718 -3.727 -0.009 0.00 OH- 1.316e-08 1.288e-08 -7.881 -7.890 -0.009 -12.11 H2O 5.551e+01 9.965e-01 1.744 -0.002 0.000 19.61 -C(-4) 1.296e-35 - CH4 1.296e-35 1.296e-35 -34.887 -34.887 0.000 46.77 +C(-4) 1.161e-35 + CH4 1.161e-35 1.161e-35 -34.935 -34.935 0.000 46.77 C(4) 2.102e-01 CO2 1.989e-01 1.990e-01 -0.701 -0.701 0.000 44.58 (CO2)2 5.541e-03 5.541e-03 -2.256 -2.256 0.000 89.15 HCO3- 1.914e-04 1.873e-04 -3.718 -3.727 -0.009 17.09 CO3-2 4.629e-11 4.250e-11 -10.335 -10.372 -0.037 -24.46 -H(0) 3.479e-15 - H2 1.740e-15 1.740e-15 -14.760 -14.759 0.000 28.55 -O(0) 6.929e-35 - O2 3.465e-35 3.465e-35 -34.460 -34.460 0.000 35.79 +H(0) 3.385e-15 + H2 1.693e-15 1.693e-15 -14.771 -14.771 0.000 28.55 +O(0) 7.320e-35 + O2 3.660e-35 3.660e-35 -34.436 -34.436 0.000 35.79 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 31 atm) - CH4(g) -31.98 -34.89 -2.91 CH4 + CH4(g) -32.02 -34.94 -2.91 CH4 CO2(g) 1.39 -0.70 -2.09 CO2 Pressure 25.7 atm, phi 0.952 - H2(g) -11.77 -14.76 -2.99 H2 + H2(g) -11.78 -14.77 -2.99 H2 H2O(g) 0.66 -0.00 -0.67 H2O Pressure 5.3 atm, phi 0.870 - O2(g) -31.41 -34.46 -3.05 O2 + O2(g) -31.38 -34.44 -3.05 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11895,17 +11903,17 @@ H2O(g) 0.77 5.925e+00 0.788 1.635e-01 1.905e-01 2.700e-02 ----------------------------Description of solution---------------------------- pH = 3.592 Charge balance - pe = 1.777 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 150oC) = 212 - Density (g/cm3) = 0.92109 + pe = 1.691 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 150°C) = 211 + Density (g/cm³) = 0.92109 Volume (L) = 1.10082 - Viscosity (mPa s) = 0.18394 + Viscosity (mPa s) = 0.18503 Activity of water = 0.994 Ionic strength (mol/kgw) = 2.622e-04 Mass of water (kg) = 9.966e-01 Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 3.962e-01 - Temperature (oC) = 150.00 + Temperature (°C) = 150.00 Pressure (atm) = 55.85 Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -11916,32 +11924,32 @@ H2O(g) 0.77 5.925e+00 0.788 1.635e-01 1.905e-01 2.700e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 2.622e-04 2.559e-04 -3.581 -3.592 -0.011 0.00 OH- 9.869e-09 9.625e-09 -8.006 -8.017 -0.011 -12.16 H2O 5.551e+01 9.936e-01 1.744 -0.003 0.000 19.58 -C(-4) 1.889e-33 - CH4 1.889e-33 1.889e-33 -32.724 -32.724 0.000 46.64 +C(-4) 9.231e-33 + CH4 9.231e-33 9.231e-33 -32.035 -32.035 0.000 46.64 C(4) 3.962e-01 CO2 3.597e-01 3.598e-01 -0.444 -0.444 0.000 44.40 (CO2)2 1.812e-02 1.812e-02 -1.742 -1.742 0.000 88.80 HCO3- 2.621e-04 2.557e-04 -3.581 -3.592 -0.011 17.38 CO3-2 4.832e-11 4.375e-11 -10.316 -10.359 -0.043 -23.81 -H(0) 1.028e-14 - H2 5.138e-15 5.138e-15 -14.289 -14.289 0.000 28.53 -O(0) 7.600e-36 - O2 3.800e-36 3.800e-36 -35.420 -35.420 0.000 35.67 +H(0) 1.528e-14 + H2 7.639e-15 7.640e-15 -14.117 -14.117 0.000 28.53 +O(0) 3.438e-36 + O2 1.719e-36 1.719e-36 -35.765 -35.765 0.000 35.67 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 56 atm) - CH4(g) -29.80 -32.72 -2.93 CH4 + CH4(g) -29.11 -32.03 -2.93 CH4 CO2(g) 1.66 -0.44 -2.10 CO2 Pressure 49.9 atm, phi 0.913 - H2(g) -11.29 -14.29 -3.00 H2 + H2(g) -11.12 -14.12 -3.00 H2 H2O(g) 0.67 -0.00 -0.67 H2O Pressure 5.9 atm, phi 0.788 - O2(g) -32.36 -35.42 -3.06 O2 + O2(g) -32.70 -35.76 -3.06 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11990,17 +11998,17 @@ H2O(g) 0.82 6.593e+00 0.716 1.905e-01 2.207e-01 3.020e-02 ----------------------------Description of solution---------------------------- pH = 3.518 Charge balance - pe = 1.683 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 150oC) = 248 - Density (g/cm3) = 0.92293 + pe = 1.836 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 150°C) = 248 + Density (g/cm³) = 0.92293 Volume (L) = 1.10577 - Viscosity (mPa s) = 0.18455 + Viscosity (mPa s) = 0.18596 Activity of water = 0.991 Ionic strength (mol/kgw) = 3.114e-04 Mass of water (kg) = 9.960e-01 Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 5.595e-01 - Temperature (oC) = 150.00 + Temperature (°C) = 150.00 Pressure (atm) = 79.56 Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -12011,32 +12019,32 @@ H2O(g) 0.82 6.593e+00 0.716 1.905e-01 2.207e-01 3.020e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 3.114e-04 3.033e-04 -3.507 -3.518 -0.011 0.00 OH- 8.504e-09 8.275e-09 -8.070 -8.082 -0.012 -12.20 H2O 5.551e+01 9.911e-01 1.744 -0.004 0.000 19.56 -C(-4) 5.592e-32 - CH4 5.592e-32 5.592e-32 -31.252 -31.252 0.000 46.52 +C(-4) 3.349e-33 + CH4 3.349e-33 3.349e-33 -32.475 -32.475 0.000 46.52 C(4) 5.595e-01 CO2 4.915e-01 4.915e-01 -0.308 -0.308 0.000 44.24 (CO2)2 3.382e-02 3.382e-02 -1.471 -1.471 0.000 88.47 HCO3- 3.114e-04 3.032e-04 -3.507 -3.518 -0.012 17.65 CO3-2 5.008e-11 4.496e-11 -10.300 -10.347 -0.047 -23.21 -H(0) 2.187e-14 - H2 1.093e-14 1.094e-14 -13.961 -13.961 0.000 28.52 -O(0) 1.610e-36 - O2 8.049e-37 8.050e-37 -36.094 -36.094 0.000 35.57 +H(0) 1.082e-14 + H2 5.409e-15 5.410e-15 -14.267 -14.267 0.000 28.52 +O(0) 6.578e-36 + O2 3.289e-36 3.289e-36 -35.483 -35.483 0.000 35.57 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 80 atm) - CH4(g) -28.31 -31.25 -2.94 CH4 + CH4(g) -29.53 -32.48 -2.94 CH4 CO2(g) 1.81 -0.31 -2.12 CO2 Pressure 73.0 atm, phi 0.880 - H2(g) -10.95 -13.96 -3.01 H2 + H2(g) -11.26 -14.27 -3.01 H2 H2O(g) 0.67 -0.00 -0.68 H2O Pressure 6.6 atm, phi 0.716 - O2(g) -33.02 -36.09 -3.07 O2 + O2(g) -32.41 -35.48 -3.07 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12085,53 +12093,53 @@ H2O(g) 0.86 7.320e+00 0.652 2.207e-01 2.542e-01 3.349e-02 ----------------------------Description of solution---------------------------- pH = 3.469 Charge balance - pe = 1.893 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 150oC) = 275 - Density (g/cm3) = 0.92467 + pe = 6.992 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 150°C) = 275 + Density (g/cm³) = 0.92467 Volume (L) = 1.10980 - Viscosity (mPa s) = 0.18513 + Viscosity (mPa s) = 0.18681 Activity of water = 0.989 Ionic strength (mol/kgw) = 3.496e-04 Mass of water (kg) = 9.954e-01 Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 7.026e-01 - Temperature (oC) = 150.00 + Temperature (°C) = 150.00 Pressure (atm) = 102.37 Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 31 + Iterations = 34 Total H = 1.105041e+02 Total O = 5.665087e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 3.496e-04 3.400e-04 -3.456 -3.469 -0.012 0.00 OH- 7.742e-09 7.522e-09 -8.111 -8.124 -0.012 -12.24 H2O 5.551e+01 9.889e-01 1.744 -0.005 0.000 19.53 -C(-4) 3.488e-33 - CH4 3.488e-33 3.488e-33 -32.457 -32.457 0.000 46.41 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -73.252 -73.252 0.000 46.41 C(4) 7.026e-01 CO2 6.011e-01 6.012e-01 -0.221 -0.221 0.000 44.08 (CO2)2 5.059e-02 5.059e-02 -1.296 -1.296 0.000 88.16 HCO3- 3.496e-04 3.398e-04 -3.456 -3.469 -0.012 17.90 CO3-2 5.169e-11 4.614e-11 -10.287 -10.336 -0.049 -22.66 -H(0) 1.026e-14 - H2 5.129e-15 5.129e-15 -14.290 -14.290 0.000 28.51 -O(0) 7.034e-36 - O2 3.517e-36 3.518e-36 -35.454 -35.454 0.000 35.47 +H(0) 6.493e-25 + H2 3.247e-25 3.247e-25 -24.489 -24.489 0.000 28.51 +O(0) 1.756e-15 + O2 8.778e-16 8.778e-16 -15.057 -15.057 0.000 35.47 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 102 atm) - CH4(g) -29.50 -32.46 -2.95 CH4 + CH4(g) -70.30 -73.25 -2.95 CH4 CO2(g) 1.91 -0.22 -2.13 CO2 Pressure 95.0 atm, phi 0.850 - H2(g) -11.27 -14.29 -3.02 H2 + H2(g) -21.47 -24.49 -3.02 H2 H2O(g) 0.68 -0.00 -0.68 H2O Pressure 7.3 atm, phi 0.652 - O2(g) -32.37 -35.45 -3.08 O2 + O2(g) -11.97 -15.06 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12180,17 +12188,17 @@ H2O(g) 0.91 8.113e+00 0.594 2.542e-01 2.910e-01 3.678e-02 ----------------------------Description of solution---------------------------- pH = 3.432 Charge balance - pe = 2.140 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 150oC) = 297 - Density (g/cm3) = 0.92633 + pe = 7.038 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 150°C) = 296 + Density (g/cm³) = 0.92633 Volume (L) = 1.11305 - Viscosity (mPa s) = 0.18569 + Viscosity (mPa s) = 0.18760 Activity of water = 0.987 Ionic strength (mol/kgw) = 3.809e-04 Mass of water (kg) = 9.948e-01 Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 8.289e-01 - Temperature (oC) = 150.00 + Temperature (°C) = 150.00 Pressure (atm) = 124.54 Electrical balance (eq) = -1.212e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 @@ -12201,32 +12209,32 @@ H2O(g) 0.91 8.113e+00 0.594 2.542e-01 2.910e-01 3.678e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 3.809e-04 3.700e-04 -3.419 -3.432 -0.013 0.00 OH- 7.255e-09 7.041e-09 -8.139 -8.152 -0.013 -12.28 H2O 5.551e+01 9.870e-01 1.744 -0.006 0.000 19.50 -C(-4) 8.103e-35 - CH4 8.103e-35 8.104e-35 -34.091 -34.091 0.000 46.30 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -73.270 -73.270 0.000 46.30 C(4) 8.289e-01 CO2 6.938e-01 6.938e-01 -0.159 -0.159 0.000 43.93 (CO2)2 6.738e-02 6.739e-02 -1.171 -1.171 0.000 87.87 HCO3- 3.808e-04 3.698e-04 -3.419 -3.432 -0.013 18.14 CO3-2 5.323e-11 4.730e-11 -10.274 -10.325 -0.051 -22.13 -H(0) 3.816e-15 - H2 1.908e-15 1.908e-15 -14.719 -14.719 0.000 28.50 -O(0) 4.896e-35 - O2 2.448e-35 2.448e-35 -34.611 -34.611 0.000 35.37 +H(0) 6.122e-25 + H2 3.061e-25 3.061e-25 -24.514 -24.514 0.000 28.50 +O(0) 1.902e-15 + O2 9.509e-16 9.510e-16 -15.022 -15.022 0.000 35.37 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 125 atm) - CH4(g) -31.13 -34.09 -2.97 CH4 + CH4(g) -70.30 -73.27 -2.97 CH4 CO2(g) 1.98 -0.16 -2.14 CO2 Pressure 116.4 atm, phi 0.823 - H2(g) -11.70 -14.72 -3.02 H2 + H2(g) -21.49 -24.51 -3.02 H2 H2O(g) 0.68 -0.01 -0.69 H2O Pressure 8.1 atm, phi 0.594 - O2(g) -31.52 -34.61 -3.09 O2 + O2(g) -11.93 -15.02 -3.09 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12275,53 +12283,53 @@ H2O(g) 0.95 8.979e+00 0.543 2.910e-01 3.310e-01 4.000e-02 ----------------------------Description of solution---------------------------- pH = 3.403 Charge balance - pe = 7.177 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 150oC) = 315 - Density (g/cm3) = 0.92793 + pe = 7.221 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 150°C) = 314 + Density (g/cm³) = 0.92793 Volume (L) = 1.11563 - Viscosity (mPa s) = 0.18624 + Viscosity (mPa s) = 0.18836 Activity of water = 0.985 Ionic strength (mol/kgw) = 4.076e-04 Mass of water (kg) = 9.940e-01 - Total alkalinity (eq/kg) = 1.221e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 9.415e-01 - Temperature (oC) = 150.00 + Temperature (°C) = 150.00 Pressure (atm) = 146.37 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 28 + Iterations = 31 Total H = 1.103505e+02 Total O = 5.704694e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 4.076e-04 3.957e-04 -3.390 -3.403 -0.013 0.00 OH- 6.917e-09 6.707e-09 -8.160 -8.173 -0.013 -12.33 H2O 5.551e+01 9.854e-01 1.744 -0.006 0.000 19.48 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -74.110 -74.110 0.000 46.20 + CH4 0.000e+00 0.000e+00 -74.466 -74.466 0.000 46.20 C(4) 9.415e-01 CO2 7.735e-01 7.736e-01 -0.112 -0.111 0.000 43.79 (CO2)2 8.376e-02 8.377e-02 -1.077 -1.077 0.000 87.58 HCO3- 4.076e-04 3.954e-04 -3.390 -3.403 -0.013 18.38 CO3-2 5.474e-11 4.846e-11 -10.262 -10.315 -0.053 -21.62 -H(0) 3.630e-25 - H2 1.815e-25 1.815e-25 -24.741 -24.741 0.000 28.49 -O(0) 5.215e-15 - O2 2.608e-15 2.608e-15 -14.584 -14.584 0.000 35.28 +H(0) 2.957e-25 + H2 1.478e-25 1.478e-25 -24.830 -24.830 0.000 28.49 +O(0) 7.861e-15 + O2 3.931e-15 3.931e-15 -14.406 -14.405 0.000 35.28 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 146 atm) - CH4(g) -71.13 -74.11 -2.98 CH4 + CH4(g) -71.49 -74.47 -2.98 CH4 CO2(g) 2.04 -0.11 -2.15 CO2 Pressure 137.4 atm, phi 0.799 - H2(g) -21.71 -24.74 -3.03 H2 + H2(g) -21.80 -24.83 -3.03 H2 H2O(g) 0.69 -0.01 -0.69 H2O Pressure 9.0 atm, phi 0.543 - O2(g) -11.48 -14.58 -3.10 O2 + O2(g) -11.30 -14.41 -3.10 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12370,19 +12378,19 @@ H2O(g) 1.00 9.926e+00 0.496 3.310e-01 3.740e-01 4.308e-02 ----------------------------Description of solution---------------------------- pH = 3.378 Charge balance - pe = 7.286 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 150oC) = 330 - Density (g/cm3) = 0.92950 + pe = 7.289 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 150°C) = 329 + Density (g/cm³) = 0.92950 Volume (L) = 1.11766 - Viscosity (mPa s) = 0.18678 + Viscosity (mPa s) = 0.18910 Activity of water = 0.984 Ionic strength (mol/kgw) = 4.313e-04 Mass of water (kg) = 9.933e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.043e+00 - Temperature (oC) = 150.00 + Temperature (°C) = 150.00 Pressure (atm) = 168.19 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.208e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 31 Total H = 1.102643e+02 @@ -12391,32 +12399,32 @@ H2O(g) 1.00 9.926e+00 0.496 3.310e-01 3.740e-01 4.308e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 4.313e-04 4.184e-04 -3.365 -3.378 -0.013 0.00 OH- 6.670e-09 6.462e-09 -8.176 -8.190 -0.014 -12.37 H2O 5.551e+01 9.840e-01 1.744 -0.007 0.000 19.45 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -74.766 -74.766 0.000 46.09 + CH4 0.000e+00 0.000e+00 -74.791 -74.791 0.000 46.09 C(4) 1.043e+00 CO2 8.436e-01 8.436e-01 -0.074 -0.074 0.000 43.65 (CO2)2 9.962e-02 9.963e-02 -1.002 -1.002 0.000 87.31 HCO3- 4.313e-04 4.180e-04 -3.365 -3.379 -0.014 18.60 CO3-2 5.623e-11 4.962e-11 -10.250 -10.304 -0.054 -21.12 -H(0) 2.405e-25 - H2 1.202e-25 1.202e-25 -24.920 -24.920 0.000 28.48 -O(0) 1.146e-14 - O2 5.731e-15 5.731e-15 -14.242 -14.242 0.000 35.18 +H(0) 2.370e-25 + H2 1.185e-25 1.185e-25 -24.926 -24.926 0.000 28.48 +O(0) 1.180e-14 + O2 5.899e-15 5.900e-15 -14.229 -14.229 0.000 35.18 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 168 atm) - CH4(g) -71.78 -74.77 -2.99 CH4 + CH4(g) -71.80 -74.79 -2.99 CH4 CO2(g) 2.09 -0.07 -2.16 CO2 Pressure 158.3 atm, phi 0.777 - H2(g) -21.88 -24.92 -3.04 H2 + H2(g) -21.89 -24.93 -3.04 H2 H2O(g) 0.69 -0.01 -0.70 H2O Pressure 9.9 atm, phi 0.496 - O2(g) -11.13 -14.24 -3.11 O2 + O2(g) -11.12 -14.23 -3.11 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12465,19 +12473,19 @@ H2O(g) 1.04 1.096e+01 0.454 3.740e-01 4.200e-01 4.597e-02 ----------------------------Description of solution---------------------------- pH = 3.357 Charge balance - pe = 7.380 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 150oC) = 344 - Density (g/cm3) = 0.93106 + pe = 7.298 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 150°C) = 343 + Density (g/cm³) = 0.93106 Volume (L) = 1.11925 - Viscosity (mPa s) = 0.18733 + Viscosity (mPa s) = 0.18984 Activity of water = 0.983 Ionic strength (mol/kgw) = 4.530e-04 Mass of water (kg) = 9.924e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.137e+00 - Temperature (oC) = 150.00 + Temperature (°C) = 150.00 Pressure (atm) = 190.35 - Electrical balance (eq) = -1.209e-09 + Electrical balance (eq) = -1.206e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 32 Total H = 1.101724e+02 @@ -12486,32 +12494,32 @@ H2O(g) 1.04 1.096e+01 0.454 3.740e-01 4.200e-01 4.597e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 4.530e-04 4.391e-04 -3.344 -3.357 -0.014 0.00 OH- 6.481e-09 6.275e-09 -8.188 -8.202 -0.014 -12.41 H2O 5.551e+01 9.826e-01 1.744 -0.008 0.000 19.43 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -75.329 -75.329 0.000 45.99 + CH4 0.000e+00 0.000e+00 -74.675 -74.675 0.000 45.99 C(4) 1.137e+00 CO2 9.064e-01 9.064e-01 -0.043 -0.043 0.000 43.51 (CO2)2 1.150e-01 1.150e-01 -0.939 -0.939 0.000 87.03 HCO3- 4.530e-04 4.387e-04 -3.344 -3.358 -0.014 18.83 CO3-2 5.774e-11 5.082e-11 -10.239 -10.294 -0.055 -20.63 -H(0) 1.687e-25 - H2 8.436e-26 8.437e-26 -25.074 -25.074 0.000 28.47 -O(0) 2.245e-14 - O2 1.122e-14 1.123e-14 -13.950 -13.950 0.000 35.09 +H(0) 2.459e-25 + H2 1.230e-25 1.230e-25 -24.910 -24.910 0.000 28.47 +O(0) 1.057e-14 + O2 5.283e-15 5.284e-15 -14.277 -14.277 0.000 35.09 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 190 atm) - CH4(g) -72.33 -75.33 -3.00 CH4 + CH4(g) -71.67 -74.67 -3.00 CH4 CO2(g) 2.13 -0.04 -2.18 CO2 Pressure 179.4 atm, phi 0.757 - H2(g) -22.03 -25.07 -3.05 H2 + H2(g) -21.86 -24.91 -3.05 H2 H2O(g) 0.70 -0.01 -0.70 H2O Pressure 11.0 atm, phi 0.454 - O2(g) -10.83 -13.95 -3.12 O2 + O2(g) -11.15 -14.28 -3.12 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12560,19 +12568,19 @@ H2O(g) 1.08 1.211e+01 0.416 4.200e-01 4.686e-01 4.860e-02 ----------------------------Description of solution---------------------------- pH = 3.339 Charge balance - pe = 7.276 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 150oC) = 357 - Density (g/cm3) = 0.93265 + pe = 7.321 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 150°C) = 356 + Density (g/cm³) = 0.93265 Volume (L) = 1.12046 - Viscosity (mPa s) = 0.18790 + Viscosity (mPa s) = 0.19058 Activity of water = 0.981 Ionic strength (mol/kgw) = 4.734e-04 Mass of water (kg) = 9.915e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.225e+00 - Temperature (oC) = 150.00 + Temperature (°C) = 150.00 Pressure (atm) = 213.25 - Electrical balance (eq) = -1.208e-09 + Electrical balance (eq) = -1.205e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 Total H = 1.100752e+02 @@ -12581,32 +12589,32 @@ H2O(g) 1.08 1.211e+01 0.416 4.200e-01 4.686e-01 4.860e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 4.734e-04 4.586e-04 -3.325 -3.339 -0.014 0.00 OH- 6.334e-09 6.128e-09 -8.198 -8.213 -0.014 -12.45 H2O 5.551e+01 9.814e-01 1.744 -0.008 0.000 19.40 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -74.325 -74.325 0.000 45.89 + CH4 0.000e+00 0.000e+00 -74.686 -74.686 0.000 45.89 C(4) 1.225e+00 CO2 9.639e-01 9.640e-01 -0.016 -0.016 0.000 43.37 (CO2)2 1.301e-01 1.301e-01 -0.886 -0.886 0.000 86.75 HCO3- 4.734e-04 4.582e-04 -3.325 -3.339 -0.014 19.06 CO3-2 5.931e-11 5.207e-11 -10.227 -10.283 -0.056 -20.12 -H(0) 2.925e-25 - H2 1.462e-25 1.463e-25 -24.835 -24.835 0.000 28.46 -O(0) 7.198e-15 - O2 3.599e-15 3.599e-15 -14.444 -14.444 0.000 35.00 +H(0) 2.376e-25 + H2 1.188e-25 1.188e-25 -24.925 -24.925 0.000 28.46 +O(0) 1.091e-14 + O2 5.454e-15 5.454e-15 -14.263 -14.263 0.000 35.00 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 213 atm) - CH4(g) -71.31 -74.33 -3.02 CH4 + CH4(g) -71.67 -74.69 -3.02 CH4 CO2(g) 2.17 -0.02 -2.19 CO2 Pressure 201.1 atm, phi 0.738 - H2(g) -21.78 -24.83 -3.05 H2 + H2(g) -21.87 -24.93 -3.05 H2 H2O(g) 0.70 -0.01 -0.71 H2O Pressure 12.1 atm, phi 0.416 - O2(g) -11.31 -14.44 -3.13 O2 + O2(g) -11.13 -14.26 -3.13 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12655,19 +12663,19 @@ H2O(g) 1.13 1.337e+01 0.381 4.686e-01 5.195e-01 5.091e-02 ----------------------------Description of solution---------------------------- pH = 3.321 Charge balance - pe = 7.321 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 150oC) = 369 - Density (g/cm3) = 0.93428 + pe = 7.422 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 150°C) = 368 + Density (g/cm³) = 0.93428 Volume (L) = 1.12137 - Viscosity (mPa s) = 0.18849 + Viscosity (mPa s) = 0.19135 Activity of water = 0.980 Ionic strength (mol/kgw) = 4.931e-04 Mass of water (kg) = 9.906e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.308e+00 - Temperature (oC) = 150.00 + Temperature (°C) = 150.00 Pressure (atm) = 237.29 - Electrical balance (eq) = -1.208e-09 + Electrical balance (eq) = -1.205e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 39 Total H = 1.099734e+02 @@ -12676,32 +12684,32 @@ H2O(g) 1.13 1.337e+01 0.381 4.686e-01 5.195e-01 5.091e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 4.931e-04 4.775e-04 -3.307 -3.321 -0.014 0.00 OH- 6.217e-09 6.011e-09 -8.206 -8.221 -0.015 -12.50 H2O 5.551e+01 9.802e-01 1.744 -0.009 0.000 19.38 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -74.536 -74.536 0.000 45.78 + CH4 0.000e+00 0.000e+00 -75.344 -75.344 0.000 45.78 C(4) 1.308e+00 CO2 1.018e+00 1.018e+00 0.008 0.008 0.000 43.23 (CO2)2 1.450e-01 1.450e-01 -0.839 -0.839 0.000 86.46 HCO3- 4.931e-04 4.771e-04 -3.307 -3.321 -0.014 19.30 CO3-2 6.096e-11 5.340e-11 -10.215 -10.272 -0.057 -19.61 -H(0) 2.522e-25 - H2 1.261e-25 1.261e-25 -24.899 -24.899 0.000 28.45 -O(0) 9.315e-15 - O2 4.658e-15 4.658e-15 -14.332 -14.332 0.000 34.90 +H(0) 1.584e-25 + H2 7.922e-26 7.923e-26 -25.101 -25.101 0.000 28.45 +O(0) 2.359e-14 + O2 1.180e-14 1.180e-14 -13.928 -13.928 0.000 34.90 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 237 atm) - CH4(g) -71.51 -74.54 -3.03 CH4 + CH4(g) -72.31 -75.34 -3.03 CH4 CO2(g) 2.21 0.01 -2.20 CO2 Pressure 223.9 atm, phi 0.721 - H2(g) -21.84 -24.90 -3.06 H2 + H2(g) -22.04 -25.10 -3.06 H2 H2O(g) 0.71 -0.01 -0.72 H2O Pressure 13.4 atm, phi 0.381 - O2(g) -11.19 -14.33 -3.14 O2 + O2(g) -10.79 -13.93 -3.14 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12750,19 +12758,19 @@ H2O(g) 1.17 1.476e+01 0.350 5.195e-01 5.723e-01 5.282e-02 ----------------------------Description of solution---------------------------- pH = 3.304 Charge balance - pe = 7.382 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 150oC) = 382 - Density (g/cm3) = 0.93600 + pe = 7.469 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 150°C) = 380 + Density (g/cm³) = 0.93600 Volume (L) = 1.12201 - Viscosity (mPa s) = 0.18912 + Viscosity (mPa s) = 0.19216 Activity of water = 0.979 Ionic strength (mol/kgw) = 5.127e-04 Mass of water (kg) = 9.897e-01 - Total alkalinity (eq/kg) = 1.220e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.389e+00 - Temperature (oC) = 150.00 + Temperature (°C) = 150.00 Pressure (atm) = 262.95 - Electrical balance (eq) = -1.207e-09 + Electrical balance (eq) = -1.205e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 43 Total H = 1.098677e+02 @@ -12771,32 +12779,32 @@ H2O(g) 1.17 1.476e+01 0.350 5.195e-01 5.723e-01 5.282e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 5.127e-04 4.962e-04 -3.290 -3.304 -0.014 0.00 OH- 6.123e-09 5.917e-09 -8.213 -8.228 -0.015 -12.55 H2O 5.551e+01 9.791e-01 1.744 -0.009 0.000 19.35 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -74.885 -74.885 0.000 45.67 + CH4 0.000e+00 0.000e+00 -75.579 -75.579 0.000 45.67 C(4) 1.389e+00 CO2 1.069e+00 1.069e+00 0.029 0.029 0.000 43.08 (CO2)2 1.599e-01 1.599e-01 -0.796 -0.796 0.000 86.15 HCO3- 5.127e-04 4.957e-04 -3.290 -3.305 -0.015 19.54 CO3-2 6.273e-11 5.484e-11 -10.202 -10.261 -0.058 -19.07 -H(0) 2.010e-25 - H2 1.005e-25 1.005e-25 -24.998 -24.998 0.000 28.44 -O(0) 1.408e-14 - O2 7.038e-15 7.038e-15 -14.153 -14.153 0.000 34.80 +H(0) 1.348e-25 + H2 6.741e-26 6.741e-26 -25.171 -25.171 0.000 28.44 +O(0) 3.128e-14 + O2 1.564e-14 1.564e-14 -13.806 -13.806 0.000 34.80 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 263 atm) - CH4(g) -71.84 -74.89 -3.04 CH4 + CH4(g) -72.53 -75.58 -3.04 CH4 CO2(g) 2.24 0.03 -2.21 CO2 Pressure 248.2 atm, phi 0.704 - H2(g) -21.93 -25.00 -3.07 H2 + H2(g) -22.10 -25.17 -3.07 H2 H2O(g) 0.71 -0.01 -0.72 H2O Pressure 14.8 atm, phi 0.350 - O2(g) -11.00 -14.15 -3.15 O2 + O2(g) -10.65 -13.81 -3.15 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12845,19 +12853,19 @@ H2O(g) 1.21 1.630e+01 0.321 5.723e-01 6.266e-01 5.427e-02 ----------------------------Description of solution---------------------------- pH = 3.288 Charge balance - pe = 7.447 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 150oC) = 394 - Density (g/cm3) = 0.93782 + pe = 7.460 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 150°C) = 392 + Density (g/cm³) = 0.93782 Volume (L) = 1.12243 - Viscosity (mPa s) = 0.18980 + Viscosity (mPa s) = 0.19301 Activity of water = 0.978 Ionic strength (mol/kgw) = 5.324e-04 Mass of water (kg) = 9.887e-01 - Total alkalinity (eq/kg) = 1.221e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.469e+00 - Temperature (oC) = 150.00 + Temperature (°C) = 150.00 Pressure (atm) = 290.70 - Electrical balance (eq) = -1.207e-09 + Electrical balance (eq) = -1.204e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 46 Total H = 1.097592e+02 @@ -12866,32 +12874,32 @@ H2O(g) 1.21 1.630e+01 0.321 5.723e-01 6.266e-01 5.427e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 5.324e-04 5.150e-04 -3.274 -3.288 -0.014 0.00 OH- 6.048e-09 5.842e-09 -8.218 -8.233 -0.015 -12.60 H2O 5.551e+01 9.780e-01 1.744 -0.010 0.000 19.32 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -75.264 -75.264 0.000 45.55 + CH4 0.000e+00 0.000e+00 -75.370 -75.370 0.000 45.55 C(4) 1.469e+00 CO2 1.118e+00 1.118e+00 0.049 0.049 0.000 42.92 (CO2)2 1.751e-01 1.751e-01 -0.757 -0.757 0.000 85.83 HCO3- 5.324e-04 5.146e-04 -3.274 -3.289 -0.015 19.80 CO3-2 6.467e-11 5.641e-11 -10.189 -10.249 -0.059 -18.50 -H(0) 1.574e-25 - H2 7.869e-26 7.870e-26 -25.104 -25.104 0.000 28.43 -O(0) 2.197e-14 - O2 1.098e-14 1.098e-14 -13.959 -13.959 0.000 34.70 +H(0) 1.481e-25 + H2 7.404e-26 7.405e-26 -25.131 -25.130 0.000 28.43 +O(0) 2.481e-14 + O2 1.241e-14 1.241e-14 -13.906 -13.906 0.000 34.70 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 291 atm) - CH4(g) -72.20 -75.26 -3.06 CH4 + CH4(g) -72.31 -75.37 -3.06 CH4 CO2(g) 2.28 0.05 -2.23 CO2 Pressure 274.4 atm, phi 0.689 - H2(g) -22.02 -25.10 -3.08 H2 + H2(g) -22.05 -25.13 -3.08 H2 H2O(g) 0.72 -0.01 -0.73 H2O Pressure 16.3 atm, phi 0.321 - O2(g) -10.79 -13.96 -3.17 O2 + O2(g) -10.74 -13.91 -3.17 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12940,19 +12948,19 @@ H2O(g) 1.26 1.802e+01 0.295 6.266e-01 6.818e-01 5.518e-02 ----------------------------Description of solution---------------------------- pH = 3.272 Charge balance - pe = 7.462 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 150oC) = 406 - Density (g/cm3) = 0.93978 + pe = 7.400 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 150°C) = 405 + Density (g/cm³) = 0.93978 Volume (L) = 1.12265 - Viscosity (mPa s) = 0.19054 + Viscosity (mPa s) = 0.19394 Activity of water = 0.977 Ionic strength (mol/kgw) = 5.529e-04 Mass of water (kg) = 9.877e-01 - Total alkalinity (eq/kg) = 1.222e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.549e+00 - Temperature (oC) = 150.00 + Temperature (°C) = 150.00 Pressure (atm) = 321.10 - Electrical balance (eq) = -1.207e-09 + Electrical balance (eq) = -1.204e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 50 Total H = 1.096489e+02 @@ -12961,32 +12969,32 @@ H2O(g) 1.26 1.802e+01 0.295 6.266e-01 6.818e-01 5.518e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 5.529e-04 5.345e-04 -3.257 -3.272 -0.015 0.00 OH- 5.991e-09 5.783e-09 -8.223 -8.238 -0.015 -12.66 H2O 5.551e+01 9.769e-01 1.744 -0.010 0.000 19.28 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -75.249 -75.249 0.000 45.43 + CH4 0.000e+00 0.000e+00 -74.754 -74.754 0.000 45.43 C(4) 1.549e+00 CO2 1.167e+00 1.167e+00 0.067 0.067 0.000 42.75 (CO2)2 1.907e-01 1.907e-01 -0.720 -0.720 0.000 85.49 HCO3- 5.528e-04 5.340e-04 -3.257 -3.272 -0.015 20.08 CO3-2 6.681e-11 5.815e-11 -10.175 -10.235 -0.060 -17.89 -H(0) 1.545e-25 - H2 7.727e-26 7.728e-26 -25.112 -25.112 0.000 28.42 -O(0) 2.171e-14 - O2 1.086e-14 1.086e-14 -13.964 -13.964 0.000 34.58 +H(0) 2.054e-25 + H2 1.027e-25 1.027e-25 -24.988 -24.988 0.000 28.42 +O(0) 1.229e-14 + O2 6.145e-15 6.145e-15 -14.211 -14.211 0.000 34.58 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 321 atm) - CH4(g) -72.17 -75.25 -3.08 CH4 + CH4(g) -71.68 -74.75 -3.08 CH4 CO2(g) 2.31 0.07 -2.24 CO2 Pressure 303.1 atm, phi 0.675 - H2(g) -22.02 -25.11 -3.09 H2 + H2(g) -21.90 -24.99 -3.09 H2 H2O(g) 0.73 -0.01 -0.74 H2O Pressure 18.0 atm, phi 0.295 - O2(g) -10.79 -13.96 -3.18 O2 + O2(g) -11.03 -14.21 -3.18 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13035,19 +13043,19 @@ H2O(g) 1.30 1.992e+01 0.272 6.818e-01 7.373e-01 5.548e-02 ----------------------------Description of solution---------------------------- pH = 3.256 Charge balance - pe = 7.411 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 150oC) = 419 - Density (g/cm3) = 0.94192 + pe = 7.402 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 150°C) = 417 + Density (g/cm³) = 0.94192 Volume (L) = 1.12269 - Viscosity (mPa s) = 0.19135 + Viscosity (mPa s) = 0.19496 Activity of water = 0.976 Ionic strength (mol/kgw) = 5.742e-04 Mass of water (kg) = 9.867e-01 - Total alkalinity (eq/kg) = 1.223e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.630e+00 - Temperature (oC) = 150.00 + Temperature (°C) = 150.00 Pressure (atm) = 354.75 - Electrical balance (eq) = -1.207e-09 + Electrical balance (eq) = -1.204e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 55 Total H = 1.095379e+02 @@ -13056,32 +13064,32 @@ H2O(g) 1.30 1.992e+01 0.272 6.818e-01 7.373e-01 5.548e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 5.742e-04 5.549e-04 -3.241 -3.256 -0.015 0.00 OH- 5.950e-09 5.741e-09 -8.225 -8.241 -0.016 -12.72 H2O 5.551e+01 9.758e-01 1.744 -0.011 0.000 19.25 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -74.713 -74.713 0.000 45.29 + CH4 0.000e+00 0.000e+00 -74.637 -74.637 0.000 45.29 C(4) 1.630e+00 CO2 1.215e+00 1.216e+00 0.085 0.085 0.000 42.56 (CO2)2 2.068e-01 2.068e-01 -0.684 -0.684 0.000 85.12 HCO3- 5.742e-04 5.543e-04 -3.241 -3.256 -0.015 20.39 CO3-2 6.921e-11 6.011e-11 -10.160 -10.221 -0.061 -17.24 -H(0) 2.045e-25 - H2 1.023e-25 1.023e-25 -24.990 -24.990 0.000 28.41 -O(0) 1.176e-14 - O2 5.882e-15 5.882e-15 -14.231 -14.230 0.000 34.46 +H(0) 2.137e-25 + H2 1.068e-25 1.069e-25 -24.971 -24.971 0.000 28.41 +O(0) 1.077e-14 + O2 5.387e-15 5.387e-15 -14.269 -14.269 0.000 34.46 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 355 atm) - CH4(g) -71.62 -74.71 -3.09 CH4 + CH4(g) -71.54 -74.64 -3.09 CH4 CO2(g) 2.35 0.08 -2.26 CO2 Pressure 334.8 atm, phi 0.662 - H2(g) -21.89 -24.99 -3.10 H2 + H2(g) -21.87 -24.97 -3.10 H2 H2O(g) 0.73 -0.01 -0.74 H2O Pressure 19.9 atm, phi 0.272 - O2(g) -11.04 -14.23 -3.19 O2 + O2(g) -11.08 -14.27 -3.19 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13130,19 +13138,19 @@ H2O(g) 1.34 2.204e+01 0.250 7.373e-01 7.924e-01 5.509e-02 ----------------------------Description of solution---------------------------- pH = 3.239 Charge balance - pe = 7.482 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 150oC) = 433 - Density (g/cm3) = 0.94427 + pe = 7.377 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 150°C) = 431 + Density (g/cm³) = 0.94427 Volume (L) = 1.12256 - Viscosity (mPa s) = 0.19225 + Viscosity (mPa s) = 0.19607 Activity of water = 0.975 Ionic strength (mol/kgw) = 5.969e-04 Mass of water (kg) = 9.857e-01 - Total alkalinity (eq/kg) = 1.224e-09 + Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.712e+00 - Temperature (oC) = 150.00 + Temperature (°C) = 150.00 Pressure (atm) = 392.31 - Electrical balance (eq) = -1.207e-09 + Electrical balance (eq) = -1.204e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 61 Total H = 1.094277e+02 @@ -13151,32 +13159,32 @@ H2O(g) 1.34 2.204e+01 0.250 7.373e-01 7.924e-01 5.509e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 5.969e-04 5.766e-04 -3.224 -3.239 -0.015 0.00 OH- 5.927e-09 5.716e-09 -8.227 -8.243 -0.016 -12.79 H2O 5.551e+01 9.747e-01 1.744 -0.011 0.000 19.21 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -75.151 -75.151 0.000 45.15 + CH4 0.000e+00 0.000e+00 -74.309 -74.309 0.000 45.15 C(4) 1.712e+00 CO2 1.264e+00 1.264e+00 0.102 0.102 0.000 42.36 (CO2)2 2.237e-01 2.237e-01 -0.650 -0.650 0.000 84.72 HCO3- 5.969e-04 5.760e-04 -3.224 -3.240 -0.016 20.71 CO3-2 7.193e-11 6.234e-11 -10.143 -10.205 -0.062 -16.53 -H(0) 1.543e-25 - H2 7.715e-26 7.716e-26 -25.113 -25.113 0.000 28.39 -O(0) 1.949e-14 - O2 9.746e-15 9.747e-15 -14.011 -14.011 0.000 34.32 +H(0) 2.505e-25 + H2 1.252e-25 1.253e-25 -24.902 -24.902 0.000 28.39 +O(0) 7.396e-15 + O2 3.698e-15 3.698e-15 -14.432 -14.432 0.000 34.32 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 392 atm) - CH4(g) -72.04 -75.15 -3.12 CH4 + CH4(g) -71.19 -74.31 -3.12 CH4 CO2(g) 2.38 0.10 -2.28 CO2 Pressure 370.3 atm, phi 0.650 - H2(g) -21.99 -25.11 -3.12 H2 + H2(g) -21.78 -24.90 -3.12 H2 H2O(g) 0.74 -0.01 -0.75 H2O Pressure 22.0 atm, phi 0.250 - O2(g) -10.80 -14.01 -3.21 O2 + O2(g) -11.22 -14.43 -3.21 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13225,19 +13233,19 @@ H2O(g) 1.39 2.439e+01 0.231 7.924e-01 8.463e-01 5.394e-02 ----------------------------Description of solution---------------------------- pH = 3.222 Charge balance - pe = 7.562 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 150oC) = 448 - Density (g/cm3) = 0.94686 + pe = 7.495 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 150°C) = 445 + Density (g/cm³) = 0.94686 Volume (L) = 1.12226 - Viscosity (mPa s) = 0.19326 + Viscosity (mPa s) = 0.19732 Activity of water = 0.974 Ionic strength (mol/kgw) = 6.213e-04 Mass of water (kg) = 9.847e-01 - Total alkalinity (eq/kg) = 1.225e-09 + Total alkalinity (eq/kg) = 1.223e-09 Total CO2 (mol/kg) = 1.797e+00 - Temperature (oC) = 150.00 + Temperature (°C) = 150.00 Pressure (atm) = 434.51 - Electrical balance (eq) = -1.207e-09 + Electrical balance (eq) = -1.204e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 83 Total H = 1.093198e+02 @@ -13246,32 +13254,32 @@ H2O(g) 1.39 2.439e+01 0.231 7.924e-01 8.463e-01 5.394e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 6.213e-04 5.998e-04 -3.207 -3.222 -0.015 0.00 OH- 5.923e-09 5.708e-09 -8.227 -8.244 -0.016 -12.87 H2O 5.551e+01 9.735e-01 1.744 -0.012 0.000 19.17 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -75.658 -75.658 0.000 44.99 + CH4 0.000e+00 0.000e+00 -75.118 -75.118 0.000 44.99 C(4) 1.797e+00 CO2 1.313e+00 1.313e+00 0.118 0.118 0.000 42.14 (CO2)2 2.414e-01 2.415e-01 -0.617 -0.617 0.000 84.28 HCO3- 6.213e-04 5.991e-04 -3.207 -3.222 -0.016 21.07 CO3-2 7.503e-11 6.488e-11 -10.125 -10.188 -0.063 -15.75 -H(0) 1.116e-25 - H2 5.581e-26 5.582e-26 -25.253 -25.253 0.000 28.38 -O(0) 3.490e-14 - O2 1.745e-14 1.745e-14 -13.758 -13.758 0.000 34.18 +H(0) 1.523e-25 + H2 7.614e-26 7.616e-26 -25.118 -25.118 0.000 28.38 +O(0) 1.875e-14 + O2 9.373e-15 9.374e-15 -14.028 -14.028 0.000 34.18 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 435 atm) - CH4(g) -72.52 -75.66 -3.14 CH4 + CH4(g) -71.98 -75.12 -3.14 CH4 CO2(g) 2.42 0.12 -2.30 CO2 Pressure 410.1 atm, phi 0.640 - H2(g) -22.12 -25.25 -3.13 H2 + H2(g) -21.99 -25.12 -3.13 H2 H2O(g) 0.75 -0.01 -0.76 H2O Pressure 24.4 atm, phi 0.231 - O2(g) -10.53 -13.76 -3.22 O2 + O2(g) -10.80 -14.03 -3.22 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13320,19 +13328,19 @@ H2O(g) 1.43 2.700e+01 0.214 8.463e-01 8.983e-01 5.197e-02 ----------------------------Description of solution---------------------------- pH = 3.204 Charge balance - pe = 7.564 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 150oC) = 463 - Density (g/cm3) = 0.94973 + pe = 7.495 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 150°C) = 461 + Density (g/cm³) = 0.94973 Volume (L) = 1.12180 - Viscosity (mPa s) = 0.19439 + Viscosity (mPa s) = 0.19870 Activity of water = 0.972 Ionic strength (mol/kgw) = 6.477e-04 Mass of water (kg) = 9.838e-01 - Total alkalinity (eq/kg) = 1.226e-09 + Total alkalinity (eq/kg) = 1.224e-09 Total CO2 (mol/kg) = 1.884e+00 - Temperature (oC) = 150.00 + Temperature (°C) = 150.00 Pressure (atm) = 482.20 - Electrical balance (eq) = -1.206e-09 + Electrical balance (eq) = -1.204e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 89 Total H = 1.092159e+02 @@ -13341,32 +13349,32 @@ H2O(g) 1.43 2.700e+01 0.214 8.463e-01 8.983e-01 5.197e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 6.477e-04 6.249e-04 -3.189 -3.204 -0.016 0.00 OH- 5.940e-09 5.721e-09 -8.226 -8.243 -0.016 -12.96 H2O 5.551e+01 9.724e-01 1.744 -0.012 0.000 19.12 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -75.537 -75.537 0.000 44.82 + CH4 0.000e+00 0.000e+00 -74.984 -74.984 0.000 44.82 C(4) 1.884e+00 CO2 1.363e+00 1.363e+00 0.135 0.135 0.000 41.90 (CO2)2 2.602e-01 2.602e-01 -0.585 -0.585 0.000 83.81 HCO3- 6.477e-04 6.243e-04 -3.189 -3.205 -0.016 21.46 CO3-2 7.860e-11 6.782e-11 -10.105 -10.169 -0.064 -14.91 -H(0) 1.156e-25 - H2 5.778e-26 5.779e-26 -25.238 -25.238 0.000 28.36 -O(0) 3.025e-14 - O2 1.513e-14 1.513e-14 -13.820 -13.820 0.000 34.02 +H(0) 1.589e-25 + H2 7.944e-26 7.945e-26 -25.100 -25.100 0.000 28.36 +O(0) 1.600e-14 + O2 8.002e-15 8.004e-15 -14.097 -14.097 0.000 34.02 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 482 atm) - CH4(g) -72.37 -75.54 -3.16 CH4 + CH4(g) -71.82 -74.98 -3.16 CH4 CO2(g) 2.46 0.13 -2.32 CO2 Pressure 455.2 atm, phi 0.633 - H2(g) -22.09 -25.24 -3.15 H2 + H2(g) -21.95 -25.10 -3.15 H2 H2O(g) 0.76 -0.01 -0.77 H2O Pressure 27.0 atm, phi 0.214 - O2(g) -10.58 -13.82 -3.24 O2 + O2(g) -10.85 -14.10 -3.24 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13415,19 +13423,19 @@ H2O(g) 1.48 2.988e+01 0.199 8.983e-01 9.474e-01 4.911e-02 ----------------------------Description of solution---------------------------- pH = 3.185 Charge balance - pe = 7.561 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 150oC) = 480 - Density (g/cm3) = 0.95293 + pe = 7.542 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 150°C) = 478 + Density (g/cm³) = 0.95293 Volume (L) = 1.12117 - Viscosity (mPa s) = 0.19566 + Viscosity (mPa s) = 0.20026 Activity of water = 0.971 Ionic strength (mol/kgw) = 6.766e-04 Mass of water (kg) = 9.829e-01 - Total alkalinity (eq/kg) = 1.227e-09 + Total alkalinity (eq/kg) = 1.225e-09 Total CO2 (mol/kg) = 1.975e+00 - Temperature (oC) = 150.00 + Temperature (°C) = 150.00 Pressure (atm) = 536.30 - Electrical balance (eq) = -1.206e-09 + Electrical balance (eq) = -1.204e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 96 Total H = 1.091177e+02 @@ -13436,32 +13444,32 @@ H2O(g) 1.48 2.988e+01 0.199 8.983e-01 9.474e-01 4.911e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 6.766e-04 6.524e-04 -3.170 -3.185 -0.016 0.00 OH- 5.982e-09 5.758e-09 -8.223 -8.240 -0.017 -13.06 H2O 5.551e+01 9.712e-01 1.744 -0.013 0.000 19.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -75.377 -75.377 0.000 44.63 + CH4 0.000e+00 0.000e+00 -75.224 -75.224 0.000 44.63 C(4) 1.975e+00 CO2 1.415e+00 1.415e+00 0.151 0.151 0.000 41.65 (CO2)2 2.801e-01 2.802e-01 -0.553 -0.553 0.000 83.29 HCO3- 6.766e-04 6.517e-04 -3.170 -3.186 -0.016 21.88 CO3-2 8.275e-11 7.122e-11 -10.082 -10.147 -0.065 -13.99 -H(0) 1.220e-25 - H2 6.102e-26 6.103e-26 -25.215 -25.214 0.000 28.34 -O(0) 2.497e-14 - O2 1.249e-14 1.249e-14 -13.904 -13.903 0.000 33.84 +H(0) 1.332e-25 + H2 6.660e-26 6.661e-26 -25.176 -25.176 0.000 28.34 +O(0) 2.096e-14 + O2 1.048e-14 1.048e-14 -13.980 -13.980 0.000 33.84 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 536 atm) - CH4(g) -72.18 -75.38 -3.19 CH4 + CH4(g) -72.03 -75.22 -3.19 CH4 CO2(g) 2.50 0.15 -2.35 CO2 Pressure 506.4 atm, phi 0.627 - H2(g) -22.05 -25.21 -3.17 H2 + H2(g) -22.01 -25.18 -3.17 H2 H2O(g) 0.77 -0.01 -0.79 H2O Pressure 29.9 atm, phi 0.199 - O2(g) -10.64 -13.90 -3.27 O2 + O2(g) -10.71 -13.98 -3.27 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13517,53 +13525,53 @@ H2O(g) 1.52 3.305e+01 0.185 9.474e-01 9.927e-01 4.531e-02 ----------------------------Description of solution---------------------------- pH = 3.166 Charge balance - pe = 8.309 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 150oC) = 499 - Density (g/cm3) = 0.95649 + pe = 8.088 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 150°C) = 496 + Density (g/cm³) = 0.95649 Volume (L) = 1.12036 - Viscosity (mPa s) = 0.19710 + Viscosity (mPa s) = 0.20201 Activity of water = 0.970 Ionic strength (mol/kgw) = 7.082e-04 Mass of water (kg) = 9.821e-01 - Total alkalinity (eq/kg) = 1.228e-09 + Total alkalinity (eq/kg) = 1.226e-09 Total CO2 (mol/kg) = 2.071e+00 - Temperature (oC) = 150.00 + Temperature (°C) = 150.00 Pressure (atm) = 597.87 - Electrical balance (eq) = -1.206e-09 + Electrical balance (eq) = -1.204e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 42 (143 overall) + Iterations = 38 (139 overall) Total H = 1.090271e+02 Total O = 5.858049e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 7.082e-04 6.825e-04 -3.150 -3.166 -0.016 0.00 OH- 6.054e-09 5.824e-09 -8.218 -8.235 -0.017 -13.17 H2O 5.551e+01 9.699e-01 1.744 -0.013 0.000 19.01 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -81.216 -81.216 0.000 44.42 + CH4 0.000e+00 0.000e+00 -79.450 -79.450 0.000 44.42 C(4) 2.071e+00 CO2 1.467e+00 1.467e+00 0.166 0.167 0.000 41.36 (CO2)2 3.013e-01 3.014e-01 -0.521 -0.521 0.000 82.73 HCO3- 7.082e-04 6.817e-04 -3.150 -3.166 -0.017 22.34 CO3-2 8.758e-11 7.519e-11 -10.058 -10.124 -0.066 -12.98 -H(0) 4.060e-27 - H2 2.030e-27 2.030e-27 -26.693 -26.692 0.000 28.32 -O(0) 2.055e-11 - O2 1.028e-11 1.028e-11 -10.988 -10.988 0.000 33.65 +H(0) 1.122e-26 + H2 5.610e-27 5.611e-27 -26.251 -26.251 0.000 28.32 +O(0) 2.691e-12 + O2 1.345e-12 1.346e-12 -11.871 -11.871 0.000 33.65 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 598 atm) - CH4(g) -77.99 -81.22 -3.23 CH4 + CH4(g) -76.22 -79.45 -3.23 CH4 CO2(g) 2.55 0.17 -2.38 CO2 Pressure 564.8 atm, phi 0.625 - H2(g) -23.50 -26.69 -3.19 H2 + H2(g) -23.06 -26.25 -3.19 H2 H2O(g) 0.79 -0.01 -0.80 H2O Pressure 33.0 atm, phi 0.185 - O2(g) -7.70 -10.99 -3.29 O2 + O2(g) -8.58 -11.87 -3.29 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13619,53 +13627,53 @@ H2O(g) 1.56 3.652e+01 0.174 9.927e-01 1.033e+00 4.054e-02 ----------------------------Description of solution---------------------------- pH = 3.145 Charge balance - pe = 8.329 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 150oC) = 519 - Density (g/cm3) = 0.96046 + pe = 8.426 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 150°C) = 516 + Density (g/cm³) = 0.96046 Volume (L) = 1.11937 - Viscosity (mPa s) = 0.19873 + Viscosity (mPa s) = 0.20398 Activity of water = 0.969 Ionic strength (mol/kgw) = 7.432e-04 Mass of water (kg) = 9.814e-01 - Total alkalinity (eq/kg) = 1.229e-09 + Total alkalinity (eq/kg) = 1.226e-09 Total CO2 (mol/kg) = 2.170e+00 - Temperature (oC) = 150.00 + Temperature (°C) = 150.00 Pressure (atm) = 668.12 - Electrical balance (eq) = -1.206e-09 + Electrical balance (eq) = -1.203e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 35 (136 overall) + Iterations = 36 (137 overall) Total H = 1.089460e+02 Total O = 5.873211e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 7.432e-04 7.158e-04 -3.129 -3.145 -0.016 0.00 OH- 6.164e-09 5.926e-09 -8.210 -8.227 -0.017 -13.29 H2O 5.551e+01 9.686e-01 1.744 -0.014 0.000 18.94 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -81.229 -81.229 0.000 44.20 + CH4 0.000e+00 0.000e+00 -82.004 -82.004 0.000 44.20 C(4) 2.170e+00 CO2 1.521e+00 1.521e+00 0.182 0.182 0.000 41.06 (CO2)2 3.240e-01 3.240e-01 -0.489 -0.489 0.000 82.11 HCO3- 7.432e-04 7.149e-04 -3.129 -3.146 -0.017 22.84 CO3-2 9.326e-11 7.984e-11 -10.030 -10.098 -0.067 -11.89 -H(0) 3.848e-27 - H2 1.924e-27 1.924e-27 -26.716 -26.716 0.000 28.30 -O(0) 2.058e-11 - O2 1.029e-11 1.029e-11 -10.988 -10.988 0.000 33.44 +H(0) 2.464e-27 + H2 1.232e-27 1.232e-27 -26.909 -26.909 0.000 28.30 +O(0) 5.019e-11 + O2 2.509e-11 2.510e-11 -10.600 -10.600 0.000 33.44 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 668 atm) - CH4(g) -77.97 -81.23 -3.26 CH4 + CH4(g) -78.74 -82.00 -3.26 CH4 CO2(g) 2.60 0.18 -2.42 CO2 Pressure 631.6 atm, phi 0.626 - H2(g) -23.50 -26.72 -3.22 H2 + H2(g) -23.69 -26.91 -3.22 H2 H2O(g) 0.80 -0.01 -0.82 H2O Pressure 36.5 atm, phi 0.174 - O2(g) -7.67 -10.99 -3.32 O2 + O2(g) -7.28 -10.60 -3.32 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13721,53 +13729,53 @@ H2O(g) 1.61 4.029e+01 0.164 1.033e+00 1.068e+00 3.480e-02 ----------------------------Description of solution---------------------------- pH = 3.123 Charge balance - pe = 8.350 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 150oC) = 542 - Density (g/cm3) = 0.96488 + pe = 8.447 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 150°C) = 538 + Density (g/cm³) = 0.96488 Volume (L) = 1.11819 - Viscosity (mPa s) = 0.20057 + Viscosity (mPa s) = 0.20621 Activity of water = 0.967 Ionic strength (mol/kgw) = 7.819e-04 Mass of water (kg) = 9.807e-01 - Total alkalinity (eq/kg) = 1.229e-09 + Total alkalinity (eq/kg) = 1.234e-09 Total CO2 (mol/kg) = 2.274e+00 - Temperature (oC) = 150.00 + Temperature (°C) = 150.00 Pressure (atm) = 748.42 - Electrical balance (eq) = -1.205e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 31 (132 overall) + Iterations = 30 (131 overall) Total H = 1.088764e+02 Total O = 5.889912e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 7.819e-04 7.526e-04 -3.107 -3.123 -0.017 0.00 OH- 6.322e-09 6.072e-09 -8.199 -8.217 -0.017 -13.43 H2O 5.551e+01 9.672e-01 1.744 -0.014 0.000 18.87 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -81.246 -81.245 0.000 43.96 + CH4 0.000e+00 0.000e+00 -82.020 -82.020 0.000 43.96 C(4) 2.274e+00 CO2 1.577e+00 1.577e+00 0.198 0.198 0.000 40.72 (CO2)2 3.482e-01 3.483e-01 -0.458 -0.458 0.000 81.45 HCO3- 7.819e-04 7.516e-04 -3.107 -3.124 -0.017 23.39 CO3-2 9.996e-11 8.534e-11 -10.000 -10.069 -0.069 -10.71 -H(0) 3.622e-27 - H2 1.811e-27 1.811e-27 -26.742 -26.742 0.000 28.28 -O(0) 2.058e-11 - O2 1.029e-11 1.029e-11 -10.988 -10.987 0.000 33.21 +H(0) 2.319e-27 + H2 1.160e-27 1.160e-27 -26.936 -26.936 0.000 28.28 +O(0) 5.021e-11 + O2 2.510e-11 2.511e-11 -10.600 -10.600 0.000 33.21 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 748 atm) - CH4(g) -77.94 -81.25 -3.31 CH4 + CH4(g) -78.71 -82.02 -3.31 CH4 CO2(g) 2.65 0.20 -2.45 CO2 Pressure 708.1 atm, phi 0.632 - H2(g) -23.50 -26.74 -3.24 H2 + H2(g) -23.69 -26.94 -3.24 H2 H2O(g) 0.82 -0.01 -0.84 H2O Pressure 40.3 atm, phi 0.164 - O2(g) -7.64 -10.99 -3.35 O2 + O2(g) -7.25 -10.60 -3.35 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13823,19 +13831,19 @@ H2O(g) 1.65 4.437e+01 0.156 1.068e+00 1.096e+00 2.810e-02 ----------------------------Description of solution---------------------------- pH = 3.101 Charge balance - pe = 8.372 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 150oC) = 567 - Density (g/cm3) = 0.96981 + pe = 8.469 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 150°C) = 562 + Density (g/cm³) = 0.96981 Volume (L) = 1.11681 - Viscosity (mPa s) = 0.20266 + Viscosity (mPa s) = 0.20874 Activity of water = 0.966 Ionic strength (mol/kgw) = 8.249e-04 Mass of water (kg) = 9.802e-01 - Total alkalinity (eq/kg) = 1.229e-09 + Total alkalinity (eq/kg) = 1.235e-09 Total CO2 (mol/kg) = 2.384e+00 - Temperature (oC) = 150.00 + Temperature (°C) = 150.00 Pressure (atm) = 840.34 - Electrical balance (eq) = -1.205e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 35 (136 overall) Total H = 1.088202e+02 @@ -13844,32 +13852,32 @@ H2O(g) 1.65 4.437e+01 0.156 1.068e+00 1.096e+00 2.810e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.249e-04 7.934e-04 -3.084 -3.101 -0.017 0.00 OH- 6.539e-09 6.276e-09 -8.184 -8.202 -0.018 -13.58 H2O 5.551e+01 9.658e-01 1.744 -0.015 0.000 18.79 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -81.266 -81.266 0.000 43.71 + CH4 0.000e+00 0.000e+00 -82.040 -82.040 0.000 43.71 C(4) 2.384e+00 CO2 1.635e+00 1.635e+00 0.213 0.214 0.000 40.37 (CO2)2 3.741e-01 3.742e-01 -0.427 -0.427 0.000 80.73 HCO3- 8.249e-04 7.923e-04 -3.084 -3.101 -0.017 23.97 CO3-2 1.079e-10 9.186e-11 -9.967 -10.037 -0.070 -9.44 -H(0) 3.381e-27 - H2 1.690e-27 1.691e-27 -26.772 -26.772 0.000 28.25 -O(0) 2.059e-11 - O2 1.030e-11 1.030e-11 -10.987 -10.987 0.000 32.97 +H(0) 2.165e-27 + H2 1.082e-27 1.083e-27 -26.966 -26.966 0.000 28.25 +O(0) 5.024e-11 + O2 2.512e-11 2.512e-11 -10.600 -10.600 0.000 32.97 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 840 atm) - CH4(g) -77.91 -81.27 -3.35 CH4 + CH4(g) -78.69 -82.04 -3.35 CH4 CO2(g) 2.71 0.21 -2.50 CO2 Pressure 796.0 atm, phi 0.644 - H2(g) -23.50 -26.77 -3.28 H2 + H2(g) -23.69 -26.97 -3.28 H2 H2O(g) 0.84 -0.02 -0.86 H2O Pressure 44.4 atm, phi 0.156 - O2(g) -7.60 -10.99 -3.39 O2 + O2(g) -7.21 -10.60 -3.39 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13925,19 +13933,19 @@ H2O(g) 1.69 4.873e+01 0.150 1.096e+00 1.117e+00 2.047e-02 ----------------------------Description of solution---------------------------- pH = 3.076 Charge balance - pe = 8.394 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 150oC) = 594 - Density (g/cm3) = 0.97529 + pe = 8.491 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 150°C) = 589 + Density (g/cm³) = 0.97529 Volume (L) = 1.11521 - Viscosity (mPa s) = 0.20503 + Viscosity (mPa s) = 0.21160 Activity of water = 0.964 Ionic strength (mol/kgw) = 8.727e-04 Mass of water (kg) = 9.799e-01 - Total alkalinity (eq/kg) = 1.231e-09 + Total alkalinity (eq/kg) = 1.236e-09 Total CO2 (mol/kg) = 2.499e+00 - Temperature (oC) = 150.00 + Temperature (°C) = 150.00 Pressure (atm) = 945.69 - Electrical balance (eq) = -1.206e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 32 (133 overall) Total H = 1.087793e+02 @@ -13946,32 +13954,32 @@ H2O(g) 1.69 4.873e+01 0.150 1.096e+00 1.117e+00 2.047e-02 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 8.727e-04 8.387e-04 -3.059 -3.076 -0.017 0.00 OH- 6.834e-09 6.554e-09 -8.165 -8.183 -0.018 -13.75 H2O 5.551e+01 9.643e-01 1.744 -0.016 0.000 18.70 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -81.291 -81.291 0.000 43.43 + CH4 0.000e+00 0.000e+00 -82.066 -82.065 0.000 43.43 C(4) 2.499e+00 CO2 1.694e+00 1.695e+00 0.229 0.229 0.000 39.98 (CO2)2 4.019e-01 4.020e-01 -0.396 -0.396 0.000 79.97 HCO3- 8.727e-04 8.376e-04 -3.059 -3.077 -0.018 24.60 CO3-2 1.174e-10 9.965e-11 -9.930 -10.002 -0.071 -8.08 -H(0) 3.126e-27 - H2 1.563e-27 1.563e-27 -26.806 -26.806 0.000 28.22 -O(0) 2.060e-11 - O2 1.030e-11 1.030e-11 -10.987 -10.987 0.000 32.70 +H(0) 2.001e-27 + H2 1.001e-27 1.001e-27 -27.000 -27.000 0.000 28.22 +O(0) 5.026e-11 + O2 2.513e-11 2.514e-11 -10.600 -10.600 0.000 32.70 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 946 atm) - CH4(g) -77.88 -81.29 -3.41 CH4 + CH4(g) -78.66 -82.07 -3.41 CH4 CO2(g) 2.77 0.23 -2.54 CO2 Pressure 897.0 atm, phi 0.663 - H2(g) -23.49 -26.81 -3.31 H2 + H2(g) -23.69 -27.00 -3.31 H2 H2O(g) 0.86 -0.02 -0.88 H2O Pressure 48.7 atm, phi 0.150 - O2(g) -7.56 -10.99 -3.43 O2 + O2(g) -7.17 -10.60 -3.43 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -14027,53 +14035,53 @@ H2O(g) 1.73 5.335e+01 0.146 1.117e+00 1.129e+00 1.199e-02 ----------------------------Description of solution---------------------------- pH = 3.051 Charge balance - pe = 8.418 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 150oC) = 623 - Density (g/cm3) = 0.98137 + pe = 8.515 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 150°C) = 618 + Density (g/cm³) = 0.98137 Volume (L) = 1.11340 - Viscosity (mPa s) = 0.20773 + Viscosity (mPa s) = 0.21484 Activity of water = 0.963 Ionic strength (mol/kgw) = 9.259e-04 Mass of water (kg) = 9.797e-01 - Total alkalinity (eq/kg) = 1.232e-09 + Total alkalinity (eq/kg) = 1.237e-09 Total CO2 (mol/kg) = 2.621e+00 - Temperature (oC) = 150.00 + Temperature (°C) = 150.00 Pressure (atm) = 1066.57 - Electrical balance (eq) = -1.207e-09 + Electrical balance (eq) = -1.212e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 41 (142 overall) + Iterations = 38 (139 overall) Total H = 1.087553e+02 Total O = 5.951221e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 9.259e-04 8.893e-04 -3.033 -3.051 -0.018 0.00 OH- 7.232e-09 6.930e-09 -8.141 -8.159 -0.019 -13.95 H2O 5.551e+01 9.628e-01 1.744 -0.016 0.000 18.61 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -81.321 -81.321 0.000 43.14 + CH4 0.000e+00 0.000e+00 -82.096 -82.096 0.000 43.14 C(4) 2.621e+00 CO2 1.756e+00 1.756e+00 0.245 0.245 0.000 39.58 (CO2)2 4.318e-01 4.319e-01 -0.365 -0.365 0.000 79.16 HCO3- 9.259e-04 8.880e-04 -3.033 -3.052 -0.018 25.27 CO3-2 1.289e-10 1.090e-10 -9.890 -9.963 -0.073 -6.63 -H(0) 2.858e-27 - H2 1.429e-27 1.429e-27 -26.845 -26.845 0.000 28.19 -O(0) 2.061e-11 - O2 1.030e-11 1.031e-11 -10.987 -10.987 0.000 32.42 +H(0) 1.830e-27 + H2 9.149e-28 9.151e-28 -27.039 -27.039 0.000 28.19 +O(0) 5.028e-11 + O2 2.514e-11 2.514e-11 -10.600 -10.600 0.000 32.42 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 1067 atm) - CH4(g) -77.85 -81.32 -3.47 CH4 + CH4(g) -78.63 -82.10 -3.47 CH4 CO2(g) 2.84 0.24 -2.60 CO2 Pressure 1013.2 atm, phi 0.690 - H2(g) -23.49 -26.84 -3.35 H2 + H2(g) -23.68 -27.04 -3.35 H2 H2O(g) 0.89 -0.02 -0.91 H2O Pressure 53.4 atm, phi 0.146 - O2(g) -7.52 -10.99 -3.47 O2 + O2(g) -7.13 -10.60 -3.47 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -14129,19 +14137,19 @@ H2O(g) 1.76 5.818e+01 0.143 1.129e+00 1.131e+00 2.758e-03 ----------------------------Description of solution---------------------------- pH = 3.024 Charge balance - pe = 8.443 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 150oC) = 656 - Density (g/cm3) = 0.98809 + pe = 8.540 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 150°C) = 650 + Density (g/cm³) = 0.98809 Volume (L) = 1.11136 - Viscosity (mPa s) = 0.21078 + Viscosity (mPa s) = 0.21850 Activity of water = 0.961 Ionic strength (mol/kgw) = 9.853e-04 Mass of water (kg) = 9.796e-01 - Total alkalinity (eq/kg) = 1.232e-09 + Total alkalinity (eq/kg) = 1.238e-09 Total CO2 (mol/kg) = 2.749e+00 - Temperature (oC) = 150.00 + Temperature (°C) = 150.00 Pressure (atm) = 1205.43 - Electrical balance (eq) = -1.207e-09 + Electrical balance (eq) = -1.212e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 42 (143 overall) Total H = 1.087498e+02 @@ -14150,32 +14158,32 @@ H2O(g) 1.76 5.818e+01 0.143 1.129e+00 1.131e+00 2.758e-03 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 9.853e-04 9.455e-04 -3.006 -3.024 -0.018 0.00 OH- 7.769e-09 7.438e-09 -8.110 -8.129 -0.019 -14.16 H2O 5.551e+01 9.611e-01 1.744 -0.017 0.000 18.50 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -81.357 -81.356 0.000 42.84 + CH4 0.000e+00 0.000e+00 -82.132 -82.132 0.000 42.84 C(4) 2.749e+00 CO2 1.820e+00 1.820e+00 0.260 0.260 0.000 39.15 (CO2)2 4.638e-01 4.639e-01 -0.334 -0.334 0.000 78.30 HCO3- 9.853e-04 9.441e-04 -3.006 -3.025 -0.019 25.98 CO3-2 1.427e-10 1.203e-10 -9.845 -9.920 -0.074 -5.10 -H(0) 2.581e-27 - H2 1.291e-27 1.291e-27 -26.889 -26.889 0.000 28.16 -O(0) 2.060e-11 - O2 1.030e-11 1.030e-11 -10.987 -10.987 0.000 32.11 +H(0) 1.652e-27 + H2 8.261e-28 8.263e-28 -27.083 -27.083 0.000 28.16 +O(0) 5.027e-11 + O2 2.514e-11 2.514e-11 -10.600 -10.600 0.000 32.11 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 1205 atm) - CH4(g) -77.82 -81.36 -3.54 CH4 + CH4(g) -78.59 -82.13 -3.54 CH4 CO2(g) 2.92 0.26 -2.66 CO2 Pressure 1147.2 atm, phi 0.729 - H2(g) -23.49 -26.89 -3.40 H2 + H2(g) -23.68 -27.08 -3.40 H2 H2O(g) 0.92 -0.02 -0.94 H2O Pressure 58.2 atm, phi 0.143 - O2(g) -7.46 -10.99 -3.52 O2 + O2(g) -7.08 -10.60 -3.52 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -14231,53 +14239,53 @@ H2O(g) 1.80 6.316e+01 0.143 1.131e+00 1.124e+00 -7.074e-03 ----------------------------Description of solution---------------------------- pH = 2.996 Charge balance - pe = 8.468 Adjusted to redox equilibrium - Specific Conductance (uS/cm, 150oC) = 692 - Density (g/cm3) = 0.99549 + pe = 8.565 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 150°C) = 685 + Density (g/cm³) = 0.99549 Volume (L) = 1.10912 - Viscosity (mPa s) = 0.21423 + Viscosity (mPa s) = 0.22265 Activity of water = 0.959 Ionic strength (mol/kgw) = 1.052e-03 Mass of water (kg) = 9.797e-01 - Total alkalinity (eq/kg) = 1.233e-09 + Total alkalinity (eq/kg) = 1.238e-09 Total CO2 (mol/kg) = 2.884e+00 - Temperature (oC) = 150.00 + Temperature (°C) = 150.00 Pressure (atm) = 1365.16 - Electrical balance (eq) = -1.208e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 46 (147 overall) + Iterations = 49 (150 overall) Total H = 1.087639e+02 Total O = 6.003374e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V - Species Molality Activity Molality Activity Gamma cm3/mol + Species Molality Activity Molality Activity Gamma cm³/mol H+ 1.052e-03 1.008e-03 -2.978 -2.996 -0.018 0.00 OH- 8.498e-09 8.128e-09 -8.071 -8.090 -0.019 -14.39 H2O 5.551e+01 9.594e-01 1.744 -0.018 0.000 18.38 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -81.400 -81.399 0.000 42.52 + CH4 0.000e+00 0.000e+00 -82.175 -82.175 0.000 42.52 C(4) 2.884e+00 CO2 1.887e+00 1.887e+00 0.276 0.276 0.000 38.70 (CO2)2 4.983e-01 4.984e-01 -0.302 -0.302 0.000 77.40 HCO3- 1.052e-03 1.007e-03 -2.978 -2.997 -0.019 26.72 CO3-2 1.597e-10 1.342e-10 -9.797 -9.872 -0.076 -3.49 -H(0) 2.296e-27 - H2 1.148e-27 1.148e-27 -26.940 -26.940 0.000 28.12 -O(0) 2.059e-11 - O2 1.030e-11 1.030e-11 -10.987 -10.987 0.000 31.79 +H(0) 1.470e-27 + H2 7.349e-28 7.351e-28 -27.134 -27.134 0.000 28.12 +O(0) 5.027e-11 + O2 2.513e-11 2.514e-11 -10.600 -10.600 0.000 31.79 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 1365 atm) - CH4(g) -77.78 -81.40 -3.62 CH4 + CH4(g) -78.55 -82.17 -3.62 CH4 CO2(g) 3.01 0.28 -2.73 CO2 Pressure 1302.0 atm, phi 0.783 - H2(g) -23.48 -26.94 -3.46 H2 + H2(g) -23.67 -27.13 -3.46 H2 H2O(g) 0.95 -0.02 -0.97 H2O Pressure 63.2 atm, phi 0.143 - O2(g) -7.41 -10.99 -3.58 O2 + O2(g) -7.02 -10.60 -3.58 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -14290,7 +14298,3 @@ End of simulation. Reading input data for simulation 6. ------------------------------------ -------------------------------- -End of Run after 0.695 Seconds. -------------------------------- - diff --git a/ex2b.out b/ex2b.out index 2d9eb972..ec6460de 100644 --- a/ex2b.out +++ b/ex2b.out @@ -9,6 +9,7 @@ Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES + GAS_BINARY_PARAMETERS EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES diff --git a/ex3.out b/ex3.out index acc4b804..ff959210 100644 --- a/ex3.out +++ b/ex3.out @@ -9,6 +9,7 @@ Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES + GAS_BINARY_PARAMETERS EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES diff --git a/ex4.out b/ex4.out index 1eb01521..58cf2dad 100644 --- a/ex4.out +++ b/ex4.out @@ -9,6 +9,7 @@ Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES + GAS_BINARY_PARAMETERS EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES diff --git a/ex5.out b/ex5.out index 4a57105f..c19862ef 100644 --- a/ex5.out +++ b/ex5.out @@ -9,6 +9,7 @@ Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES + GAS_BINARY_PARAMETERS EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES diff --git a/ex6.out b/ex6.out index 3bb55293..8138bb08 100644 --- a/ex6.out +++ b/ex6.out @@ -9,6 +9,7 @@ Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES + GAS_BINARY_PARAMETERS EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES diff --git a/ex7.out b/ex7.out index e0b00695..344fbc59 100644 --- a/ex7.out +++ b/ex7.out @@ -9,6 +9,7 @@ Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES + GAS_BINARY_PARAMETERS EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES diff --git a/ex8.out b/ex8.out index 62430fd4..8cdf27c8 100644 --- a/ex8.out +++ b/ex8.out @@ -9,6 +9,7 @@ Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES + GAS_BINARY_PARAMETERS EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES @@ -618,7 +619,7 @@ Hfo_w pH = 5.500 Charge balance pe = 14.523 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 9914 + Specific Conductance (µS/cm, 25°C) = 9913 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 Viscosity (mPa s) = 0.89480 diff --git a/ex9.out b/ex9.out index 38a8cab1..bbae3a73 100644 --- a/ex9.out +++ b/ex9.out @@ -9,6 +9,7 @@ Reading data base. SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES + GAS_BINARY_PARAMETERS EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES From b34eedb91d08cd3b5fd34a70311fad8c14c7854d Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Thu, 14 Nov 2024 01:37:56 +0000 Subject: [PATCH 238/384] Squashed 'phreeqcpp/' changes from ccb9ba3..f5587da f5587da Made GAS_BINARY_PARAMETERS backward compatible f57db33 GAS_BINARY_PARAMETERS implemented. gas_binary_parameters test case f4f1f69 Tweaked H+ viscosity in databases, new test cases fig1 and H_HCl_HBr git-subtree-dir: phreeqcpp git-subtree-split: f5587dae0a068b1346a04108be71e266860e4706 --- Phreeqc.cpp | 1 + Phreeqc.h | 3 + PhreeqcKeywords/Keywords.cpp | 4 +- PhreeqcKeywords/Keywords.h | 1 + basicsubs.cpp | 6 +- gases.cpp | 116 +++++++++++++++++++++++++---------- prep.cpp | 64 +++++++++---------- read.cpp | 100 ++++++++++++++++++++++++++++++ 8 files changed, 229 insertions(+), 66 deletions(-) diff --git a/Phreeqc.cpp b/Phreeqc.cpp index 672b22d2..c5c892c4 100644 --- a/Phreeqc.cpp +++ b/Phreeqc.cpp @@ -1756,6 +1756,7 @@ Phreeqc::InternalCopy(const Phreeqc* pSrc) b2 = pSrc->b2; b_sum = pSrc->b_sum; R_TK = pSrc->R_TK; + gas_binary_parameters = pSrc->gas_binary_parameters; /* input.cpp ------------------------------- */ check_line_return = 0; reading_db = FALSE; diff --git a/Phreeqc.h b/Phreeqc.h index ddff8262..cd542516 100644 --- a/Phreeqc.h +++ b/Phreeqc.h @@ -473,6 +473,7 @@ public: #endif int calc_gas_pressures(void); int calc_fixed_volume_gas_pressures(void); + double calc_gas_binary_parameter(std::string name1, std::string name2) const; int calc_ss_fractions(void); int gammas(LDBLE mu); int gammas_a_f(int i); @@ -700,6 +701,7 @@ public: int read_rate_parameters_svd(void); int read_rate_parameters_hermanska(void); int read_mean_gammas(void); + int read_gas_binary_parameters(void); int read_mix(void); int read_entity_mix(std::map& mix_map); //int read_solution_mix(void); @@ -1674,6 +1676,7 @@ protected: std::vector x_arg, res_arg, scratch; /* gases.cpp ------------------------------- */ LDBLE a_aa_sum, b2, b_sum, R_TK; + std::map < std::pair, double > gas_binary_parameters; /* input.cpp ------------------------------- */ int check_line_return; diff --git a/PhreeqcKeywords/Keywords.cpp b/PhreeqcKeywords/Keywords.cpp index 8b0e8c00..590fc597 100644 --- a/PhreeqcKeywords/Keywords.cpp +++ b/PhreeqcKeywords/Keywords.cpp @@ -134,6 +134,7 @@ std::map::value_type("rate_parameters_pk" std::map::value_type("rate_parameters_svd", Keywords::KEY_RATE_PARAMETERS_SVD), std::map::value_type("rate_parameters_hermanska", Keywords::KEY_RATE_PARAMETERS_HERMANSKA), std::map::value_type("mean_gammas", Keywords::KEY_MEAN_GAMMAS), +std::map::value_type("gas_binary_parameters", Keywords::KEY_GAS_BINARY_PARAMETERS), std::map::value_type("solution_mix", Keywords::KEY_SOLUTION_MIX), std::map::value_type("mix_solution", Keywords::KEY_SOLUTION_MIX), std::map::value_type("exchange_mix", Keywords::KEY_EXCHANGE_MIX), @@ -228,7 +229,8 @@ std::map::value_type(Keywords::KEY_REACTI std::map::value_type(Keywords::KEY_RATE_PARAMETERS_PK, "RATE_PARAMETERS_PK"), std::map::value_type(Keywords::KEY_RATE_PARAMETERS_SVD, "RATE_PARAMETERS_SVD"), std::map::value_type(Keywords::KEY_RATE_PARAMETERS_HERMANSKA, "RATE_PARAMETERS_HERMANSKA"), -std::map::value_type(Keywords::KEY_MEAN_GAMMAS, "RATE_MEAN_GAMMAS"), +std::map::value_type(Keywords::KEY_MEAN_GAMMAS, "MEAN_GAMMAS"), +std::map::value_type(Keywords::KEY_GAS_BINARY_PARAMETERS, "GAS_BINARY_PARAMETERS"), std::map::value_type(Keywords::KEY_SOLUTION_MIX, "SOLUTION_MIX"), std::map::value_type(Keywords::KEY_EXCHANGE_MIX, "EXCHANGE_MIX"), std::map::value_type(Keywords::KEY_GAS_PHASE_MIX, "GAS_PHASE_MIX"), diff --git a/PhreeqcKeywords/Keywords.h b/PhreeqcKeywords/Keywords.h index 06de5596..ae10e6fa 100644 --- a/PhreeqcKeywords/Keywords.h +++ b/PhreeqcKeywords/Keywords.h @@ -80,6 +80,7 @@ public: KEY_RATE_PARAMETERS_SVD, KEY_RATE_PARAMETERS_HERMANSKA, KEY_MEAN_GAMMAS, + KEY_GAS_BINARY_PARAMETERS, KEY_SOLUTION_MIX, KEY_EXCHANGE_MIX, KEY_GAS_PHASE_MIX, diff --git a/basicsubs.cpp b/basicsubs.cpp index 917353da..adac2736 100644 --- a/basicsubs.cpp +++ b/basicsubs.cpp @@ -420,7 +420,7 @@ calc_SC(void) q = 1 / ((t1 / z_plus + (1 - t1) / z_min) * (z_min + z_plus)); sqrt_q = sqrt(q); - // B1 = relaxtion, B2 = electrophoresis in ll = (ll0 - B2 * sqrt(mu) / f2(1 + ka)) * (1 - B1 * sqrt(mu) / f1(1 + ka)) + // B1 = relaxation, B2 = electrophoresis in ll = (ll0 - B2 * sqrt(mu) / f2(1 + ka)) * (1 - B1 * sqrt(mu) / f1(1 + ka)) a = 1.60218e-19 * 1.60218e-19 / (6 * pi); B1 = a / (2 * 8.8542e-12 * eps_r * 1.38066e-23 * tk_x) * q / (1 + sqrt_q) * DH_B * 1e10 * z_plus * z_min; // DH_B is per Angstrom (*1e10) B2 = a * AVOGADRO / viscos_0 * DH_B * 1e17; // DH_B per Angstrom (*1e10), viscos in mPa.s (*1e3), B2 in cm2 (*1e4) @@ -486,8 +486,10 @@ calc_SC(void) //av += 0 * t1; } Dw *= Dw_SC * l_z; - if (!a2 || !strcmp(s_x[i]->name, "H+")) + if (!a2) t1 = 1; + else if (!strcmp(s_x[i]->name, "H+")) + t1 = pow(1 + mu_x, a2); else { v0 = calc_vm0(s_x[i]->name, tc_x, 1, 0); diff --git a/gases.cpp b/gases.cpp index bfcc64d7..dea1e551 100644 --- a/gases.cpp +++ b/gases.cpp @@ -432,36 +432,37 @@ calc_PR(void) continue; a_aa = sqrt(phase_ptr->pr_a * phase_ptr->pr_alpha * phase_ptr1->pr_a * phase_ptr1->pr_alpha); - if (!strcmp(phase_ptr->name, "H2O(g)")) - { - if (!strcmp(phase_ptr1->name, "CO2(g)")) - a_aa *= 0.81; // Soreide and Whitson, 1992, FPE 77, 217 - else if (!strcmp(phase_ptr1->name, "H2S(g)") || !strcmp(phase_ptr1->name, "H2Sg(g)")) - a_aa *= 0.81; - else if (!strcmp(phase_ptr1->name, "CH4(g)") || !strcmp(phase_ptr1->name, "Mtg(g)") || !strcmp(phase_ptr1->name, "Methane(g)")) - a_aa *= 0.51; - else if (!strcmp(phase_ptr1->name, "N2(g)") || !strcmp(phase_ptr1->name, "Ntg(g)")) - a_aa *= 0.51; - else if (!strcmp(phase_ptr1->name, "Ethane(g)")) - a_aa *= 0.51; - else if (!strcmp(phase_ptr1->name, "Propane(g)")) - a_aa *= 0.45; - } - if (!strcmp(phase_ptr1->name, "H2O(g)")) - { - if (!strcmp(phase_ptr->name, "CO2(g)")) - a_aa *= 0.81; - else if (!strcmp(phase_ptr->name, "H2S(g)") || !strcmp(phase_ptr->name, "H2Sg(g)")) - a_aa *= 0.81; - else if (!strcmp(phase_ptr->name, "CH4(g)") || !strcmp(phase_ptr->name, "Mtg(g)") || !strcmp(phase_ptr->name, "Methane(g)")) - a_aa *= 0.51; - else if (!strcmp(phase_ptr->name, "N2(g)") || !strcmp(phase_ptr->name, "Ntg(g)")) - a_aa *= 0.51; - else if (!strcmp(phase_ptr->name, "Ethane(g)")) - a_aa *= 0.51; - else if (!strcmp(phase_ptr->name, "Propane(g)")) - a_aa *= 0.45; - } + a_aa *= calc_gas_binary_parameter(phase_ptr->name, phase_ptr1->name); + //if (!strcmp(phase_ptr->name, "H2O(g)")) + //{ + // if (!strcmp(phase_ptr1->name, "CO2(g)")) + // a_aa *= 0.81; // Soreide and Whitson, 1992, FPE 77, 217 + // else if (!strcmp(phase_ptr1->name, "H2S(g)") || !strcmp(phase_ptr1->name, "H2Sg(g)")) + // a_aa *= 0.81; + // else if (!strcmp(phase_ptr1->name, "CH4(g)") || !strcmp(phase_ptr1->name, "Mtg(g)") || !strcmp(phase_ptr1->name, "Methane(g)")) + // a_aa *= 0.51; + // else if (!strcmp(phase_ptr1->name, "N2(g)") || !strcmp(phase_ptr1->name, "Ntg(g)")) + // a_aa *= 0.51; + // else if (!strcmp(phase_ptr1->name, "Ethane(g)")) + // a_aa *= 0.51; + // else if (!strcmp(phase_ptr1->name, "Propane(g)")) + // a_aa *= 0.45; + //} + //if (!strcmp(phase_ptr1->name, "H2O(g)")) + //{ + // if (!strcmp(phase_ptr->name, "CO2(g)")) + // a_aa *= 0.81; + // else if (!strcmp(phase_ptr->name, "H2S(g)") || !strcmp(phase_ptr->name, "H2Sg(g)")) + // a_aa *= 0.81; + // else if (!strcmp(phase_ptr->name, "CH4(g)") || !strcmp(phase_ptr->name, "Mtg(g)") || !strcmp(phase_ptr->name, "Methane(g)")) + // a_aa *= 0.51; + // else if (!strcmp(phase_ptr->name, "N2(g)") || !strcmp(phase_ptr->name, "Ntg(g)")) + // a_aa *= 0.51; + // else if (!strcmp(phase_ptr->name, "Ethane(g)")) + // a_aa *= 0.51; + // else if (!strcmp(phase_ptr->name, "Propane(g)")) + // a_aa *= 0.45; + //} a_aa_sum += phase_ptr->fraction_x * phase_ptr1->fraction_x * a_aa; a_aa_sum2 += phase_ptr1->fraction_x * a_aa; } @@ -566,12 +567,14 @@ calc_PR(void) if (ri + rq / 2 <= 0) { V_m = pow(ri - rq / 2, one_3) + pow(- ri - rq / 2, one_3) - r3[1] / 3; - } else + } + else { ri = - pow(ri + rq / 2, one_3); V_m = ri - rp / (3.0 * ri) - r3[1] / 3; } - } else // use complex plane... + } + else // use complex plane... { ri = sqrt(- rp3 / 27); // rp < 0 ri1 = acos(- rq / 2 / ri); @@ -695,3 +698,52 @@ calc_fixed_volume_gas_pressures(void) return (OK); } +/* ---------------------------------------------------------------------- */ +double Phreeqc:: +calc_gas_binary_parameter(std::string name1, std::string name2) const +/* ---------------------------------------------------------------------- */ +{ + double f = 1.0; + std::pair < std::string, std::string > p; + p = { name1, name2 }; + std::map, double>::const_iterator gas_pair_it; + gas_pair_it = gas_binary_parameters.find(p); + if (gas_pair_it != gas_binary_parameters.end()) + { + f = (1.0 - gas_pair_it->second); + } + else + { + if (!strcmp(name1.c_str(), "H2O(g)")) + { + if (!strcmp(name2.c_str(), "CO2(g)")) + f = 0.81; // Soreide and Whitson, 1992, FPE 77, 217 + else if (!strcmp(name2.c_str(), "H2S(g)") || !strcmp(name2.c_str(), "H2Sg(g)")) + f = 0.81; + else if (!strcmp(name2.c_str(), "CH4(g)") || !strcmp(name2.c_str(), "Mtg(g)") || !strcmp(name2.c_str(), "Methane(g)")) + f = 0.51; + else if (!strcmp(name2.c_str(), "N2(g)") || !strcmp(name2.c_str(), "Ntg(g)")) + f = 0.51; + else if (!strcmp(name2.c_str(), "Ethane(g)")) + f = 0.51; + else if (!strcmp(name2.c_str(), "Propane(g)")) + f = 0.45; + } + if (!strcmp(name2.c_str(), "H2O(g)")) + { + if (!strcmp(name1.c_str(), "CO2(g)")) + f = 0.81; + else if (!strcmp(name1.c_str(), "H2S(g)") || !strcmp(name1.c_str(), "H2Sg(g)")) + f = 0.81; + else if (!strcmp(name1.c_str(), "CH4(g)") || !strcmp(name1.c_str(), "Mtg(g)") || !strcmp(name1.c_str(), "Methane(g)")) + f = 0.51; + else if (!strcmp(name1.c_str(), "N2(g)") || !strcmp(name1.c_str(), "Ntg(g)")) + f = 0.51; + else if (!strcmp(name1.c_str(), "Ethane(g)")) + f = 0.51; + else if (!strcmp(name1.c_str(), "Propane(g)")) + f = 0.45; + } + } + return f; +} \ No newline at end of file diff --git a/prep.cpp b/prep.cpp index fb867e08..9ab2668e 100644 --- a/prep.cpp +++ b/prep.cpp @@ -3843,36 +3843,37 @@ calc_PR(std::vector phase_ptrs, LDBLE P, LDBLE TK, LDBLE V_m) continue; a_aa = sqrt(phase_ptr->pr_a * phase_ptr->pr_alpha * phase_ptr1->pr_a * phase_ptr1->pr_alpha); - if (!strcmp(phase_ptr->name, "H2O(g)")) - { - if (!strcmp(phase_ptr1->name, "CO2(g)")) - a_aa *= 0.81; // Soreide and Whitson, 1992, FPE 77, 217 - else if (!strcmp(phase_ptr1->name, "H2S(g)") || !strcmp(phase_ptr1->name, "H2Sg(g)")) - a_aa *= 0.81; - else if (!strcmp(phase_ptr1->name, "CH4(g)") || !strcmp(phase_ptr1->name, "Mtg(g)") || !strcmp(phase_ptr1->name, "Methane(g)")) - a_aa *= 0.51; - else if (!strcmp(phase_ptr1->name, "N2(g)") || !strcmp(phase_ptr1->name, "Ntg(g)")) - a_aa *= 0.51; - else if (!strcmp(phase_ptr1->name, "Ethane(g)")) - a_aa *= 0.51; - else if (!strcmp(phase_ptr1->name, "Propane(g)")) - a_aa *= 0.45; - } - if (!strcmp(phase_ptr1->name, "H2O(g)")) - { - if (!strcmp(phase_ptr->name, "CO2(g)")) - a_aa *= 0.81; - else if (!strcmp(phase_ptr->name, "H2S(g)") || !strcmp(phase_ptr->name, "H2Sg(g)")) - a_aa *= 0.81; - else if (!strcmp(phase_ptr->name, "CH4(g)") || !strcmp(phase_ptr->name, "Mtg(g)") || !strcmp(phase_ptr->name, "Methane(g)")) - a_aa *= 0.51; - else if (!strcmp(phase_ptr->name, "N2(g)") || !strcmp(phase_ptr->name, "Ntg(g)")) - a_aa *= 0.51; - else if (!strcmp(phase_ptr->name, "Ethane(g)")) - a_aa *= 0.51; - else if (!strcmp(phase_ptr->name, "Propane(g)")) - a_aa *= 0.45; - } + a_aa *= calc_gas_binary_parameter(phase_ptr->name, phase_ptr1->name); + //if (!strcmp(phase_ptr->name, "H2O(g)")) + //{ + // if (!strcmp(phase_ptr1->name, "CO2(g)")) + // a_aa *= 0.81; // Soreide and Whitson, 1992, FPE 77, 217 + // else if (!strcmp(phase_ptr1->name, "H2S(g)") || !strcmp(phase_ptr1->name, "H2Sg(g)")) + // a_aa *= 0.81; + // else if (!strcmp(phase_ptr1->name, "CH4(g)") || !strcmp(phase_ptr1->name, "Mtg(g)") || !strcmp(phase_ptr1->name, "Methane(g)")) + // a_aa *= 0.51; + // else if (!strcmp(phase_ptr1->name, "N2(g)") || !strcmp(phase_ptr1->name, "Ntg(g)")) + // a_aa *= 0.51; + // else if (!strcmp(phase_ptr1->name, "Ethane(g)")) + // a_aa *= 0.51; + // else if (!strcmp(phase_ptr1->name, "Propane(g)")) + // a_aa *= 0.45; + //} + //if (!strcmp(phase_ptr1->name, "H2O(g)")) + //{ + // if (!strcmp(phase_ptr->name, "CO2(g)")) + // a_aa *= 0.81; + // else if (!strcmp(phase_ptr->name, "H2S(g)") || !strcmp(phase_ptr->name, "H2Sg(g)")) + // a_aa *= 0.81; + // else if (!strcmp(phase_ptr->name, "CH4(g)") || !strcmp(phase_ptr->name, "Mtg(g)") || !strcmp(phase_ptr->name, "Methane(g)")) + // a_aa *= 0.51; + // else if (!strcmp(phase_ptr->name, "N2(g)") || !strcmp(phase_ptr->name, "Ntg(g)")) + // a_aa *= 0.51; + // else if (!strcmp(phase_ptr->name, "Ethane(g)")) + // a_aa *= 0.51; + // else if (!strcmp(phase_ptr->name, "Propane(g)")) + // a_aa *= 0.45; + //} a_aa_sum += phase_ptr->fraction_x * phase_ptr1->fraction_x * a_aa; a_aa_sum2 += phase_ptr1->fraction_x * a_aa; } @@ -3946,7 +3947,8 @@ calc_PR(std::vector phase_ptrs, LDBLE P, LDBLE TK, LDBLE V_m) } if (P <= 0) // iterations = -1 P = 1; - } else + } + else { if (P < 1e-10) P = 1e-10; diff --git a/read.cpp b/read.cpp index bb451db6..1b0bb84d 100644 --- a/read.cpp +++ b/read.cpp @@ -147,6 +147,9 @@ read_input(void) case Keywords::KEY_MEAN_GAMMAS: read_mean_gammas(); break; + case Keywords::KEY_GAS_BINARY_PARAMETERS: + read_gas_binary_parameters(); + break; case Keywords::KEY_SOLUTION_MIX: //read_solution_mix(); read_entity_mix(Rxn_solution_mix_map); @@ -2551,6 +2554,103 @@ read_mean_gammas(void) } /* ---------------------------------------------------------------------- */ int Phreeqc:: +read_gas_binary_parameters(void) +/* ---------------------------------------------------------------------- */ +{ + /* + * Reads GAS_BINARY_PARAMETERS data + * + * Arguments: + * none + * + * Returns: + * KEYWORD if keyword encountered, input_error may be incremented if + * a keyword is encountered in an unexpected position + * EOF if eof encountered while reading mass balance concentrations + * ERROR if error occurred reading data + * + */ + std::string token; + int return_value, opt; + const char* next_char; + const char* opt_list[] = { + "xxxx", /* 0 */ + }; + int count_opt_list = 0; + /* + * Read rate parameters + */ + return_value = UNKNOWN; + for (;;) + { + opt = get_option(opt_list, count_opt_list, &next_char); + switch (opt) + { + case OPTION_EOF: /* end of file */ + return_value = EOF; + break; + case OPTION_KEYWORD: /* keyword */ + return_value = KEYWORD; + break; + case OPTION_DEFAULT: /* add to gas_binary_parameters map */ + { + bool error = false; + std::string gas1, gas2; + int j = copy_token(token, &next_char); + if (j != EMPTY) + { + gas1 = token; + } + else + { + error = true; + } + j = copy_token(token, &next_char); + if (j != EMPTY) + { + gas2 = token; + } + else + { + error = true; + } + j = copy_token(token, &next_char); + double d; + if (j != EMPTY) + { + j = sscanf(token.c_str(), SCANFORMAT, &d); + } + else + { + error = true; + } + if (!error) + { + std::pair p; + p = { gas1, gas2 }; + gas_binary_parameters[p] = d; + p = { gas2, gas1 }; + gas_binary_parameters[p] = d; + } + else + { + error_msg("Error reading gas binary parameter", CONTINUE); + } + } + break; + case OPTION_ERROR: + input_error++; + error_msg("Unknown input in GAS_BINARY_PARAMETERS keyword.", CONTINUE); + error_msg(line_save, CONTINUE); + break; + } + if (return_value == EOF || return_value == KEYWORD) + break; + } + return (return_value); +} +/* ---------------------------------------------------------------------- */ +int Phreeqc:: read_rate_parameters_svd(void) /* ---------------------------------------------------------------------- */ { From 70e57ae2d734c2f7e7985f3361c6b10be6fc3324 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Thu, 14 Nov 2024 09:49:46 -0700 Subject: [PATCH 239/384] Added PHREEQCI fix --- RELEASE.TXT | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/RELEASE.TXT b/RELEASE.TXT index 29a685ed..7402e4bb 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,4 +1,11 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + + ----------------- + November 13, 2024 + ----------------- + PHREEQCI: Resolved a bug that caused a buffer overflow and led to PHREEQCI + freezing when loaded under the Simplified Chinese locale. + ----------------- November 11, 2024 ----------------- From 44aaa0e612d11fca64338ae8f88f79d238e71740 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Sat, 16 Nov 2024 12:00:50 -0700 Subject: [PATCH 240/384] updated Release.txt for diffuse layer error. --- RELEASE.TXT | 8 ++++++++ 1 file changed, 8 insertions(+) diff --git a/RELEASE.TXT b/RELEASE.TXT index 29a685ed..4ce04e59 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,4 +1,12 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + ----------------- + November 15, 2024 + ----------------- + PhreeqcRM: Fixed a bug when the diffuse-layer was lost in a PhreeqcRM calculation + with a Runge-Kutta integration and the rate went to zero. The error produced charge + imbalance because the surface transformed to a no-EDL surface; charge accumulated + on the surface was balance by a charge imbalance in the solution. + ----------------- November 11, 2024 ----------------- From ef355d837638ea2bbaf9b92ea5081b5f9b2f3432 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Sat, 16 Nov 2024 12:31:29 -0700 Subject: [PATCH 241/384] tweak to Release.txt --- RELEASE.TXT | 13 ++++++------- 1 file changed, 6 insertions(+), 7 deletions(-) diff --git a/RELEASE.TXT b/RELEASE.TXT index ecef71c2..dca50812 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,11 +1,4 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ - - ----------------- - November 13, 2024 - ----------------- - PHREEQCI: Resolved a bug that caused a buffer overflow and led to PHREEQCI - freezing when loaded under the Simplified Chinese locale. - ----------------- November 15, 2024 ----------------- @@ -13,6 +6,12 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ with a Runge-Kutta integration and the rate went to zero. The error produced charge imbalance because the surface transformed to a no-EDL surface; charge accumulated on the surface was balance by a charge imbalance in the solution. + + ----------------- + November 13, 2024 + ----------------- + PHREEQCI: Resolved a bug that caused a buffer overflow and led to PHREEQCI + freezing when loaded under the Simplified Chinese locale. ----------------- November 11, 2024 From fd438d3e1f3c02dafee64fa92caea2a4c65344e8 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Sat, 16 Nov 2024 14:41:37 -0700 Subject: [PATCH 242/384] slight changes to Release.txt --- RELEASE.TXT | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/RELEASE.TXT b/RELEASE.TXT index dca50812..145842f6 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -2,10 +2,10 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ ----------------- November 15, 2024 ----------------- - PhreeqcRM: Fixed a bug when the diffuse-layer was lost in a PhreeqcRM calculation + PhreeqcRM: Fixed a bug when the diffuse-layer disappeared in a PhreeqcRM calculation with a Runge-Kutta integration and the rate went to zero. The error produced charge imbalance because the surface transformed to a no-EDL surface; charge accumulated - on the surface was balance by a charge imbalance in the solution. + on the surface and was balanced by an opposite charge imbalance in the solution. ----------------- November 13, 2024 @@ -36,8 +36,8 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ ----------------- November 7, 2024 ----------------- - PhreeqcRM: Fixed a bug when multiple PhreeqcRM instances were created with - debug compilation. Some debugging code caused a failure if the instances did + PhreeqcRM: Fixed a bug when multiple PhreeqcRM instances were created in Fortran + with debug compilation. Some debugging code caused a failure if the instances did not have the same number of cells. ----------------- From 8184121c90728d5026fa0485302e4584a559ffd8 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Mon, 18 Nov 2024 21:28:16 +0000 Subject: [PATCH 243/384] Squashed 'phreeqcpp/' changes from f5587da..b576c75 b576c75 two fixes for charge balance error when using PhreeqcRM. git-subtree-dir: phreeqcpp git-subtree-split: b576c752b474cafb9036e6c7b387cfc61d8f6c8d --- kinetics.cpp | 14 +++++++------- mainsubs.cpp | 3 ++- 2 files changed, 9 insertions(+), 8 deletions(-) diff --git a/kinetics.cpp b/kinetics.cpp index 2f6f6592..8b427856 100644 --- a/kinetics.cpp +++ b/kinetics.cpp @@ -1880,13 +1880,13 @@ set_reaction(int i, int use_mix, int use_kinetics) /* * Find surface */ - if (use.Get_surface_in() && use.Get_kinetics_in() && use.Get_kinetics_ptr() && !use.Get_kinetics_ptr()->Get_use_cvode() && reaction_step > 1) - { - // use.Set_surface_ptr(Utilities::Rxn_find(Rxn_surface_map, i)); - // appt: we may come here with zero kinetic reaction, but surface may have to keep DONNAN_DL - } - else - dl_type_x = cxxSurface::NO_DL; + //if (use.Get_surface_in() && use.Get_kinetics_in() && use.Get_kinetics_ptr() && !use.Get_kinetics_ptr()->Get_use_cvode() && reaction_step > 1) + //{ + // // use.Set_surface_ptr(Utilities::Rxn_find(Rxn_surface_map, i)); + // // appt: we may come here with zero kinetic reaction, but surface may have to keep DONNAN_DL + //} + //else + // dl_type_x = cxxSurface::NO_DL; if (use.Get_surface_in() == TRUE) { use.Set_surface_ptr(Utilities::Rxn_find(Rxn_surface_map, i)); diff --git a/mainsubs.cpp b/mainsubs.cpp index 27cb9ad2..ba317af0 100644 --- a/mainsubs.cpp +++ b/mainsubs.cpp @@ -1444,7 +1444,8 @@ xsurface_save(int n_user) temp_surface.Set_n_user(n_user); temp_surface.Set_n_user_end(n_user); temp_surface.Set_new_def(false); - temp_surface.Set_dl_type(dl_type_x); + //temp_surface.Set_dl_type(dl_type_x); + temp_surface.Set_dl_type(use.Get_surface_ptr()->Get_dl_type()); temp_surface.Set_solution_equilibria(false); temp_surface.Set_n_solution(-999); From 3fd5b896c90fe029b01f96490c6dc786bcf59f68 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Mon, 18 Nov 2024 18:10:42 -0700 Subject: [PATCH 244/384] 59 compiler error on macos (#60) * Closes usgs-coupled/iphreeqc#59 --- phreeqcpp/gases.cpp | 3 +-- phreeqcpp/read.cpp | 7 ++----- 2 files changed, 3 insertions(+), 7 deletions(-) diff --git a/phreeqcpp/gases.cpp b/phreeqcpp/gases.cpp index dea1e551..924be9b8 100644 --- a/phreeqcpp/gases.cpp +++ b/phreeqcpp/gases.cpp @@ -704,8 +704,7 @@ calc_gas_binary_parameter(std::string name1, std::string name2) const /* ---------------------------------------------------------------------- */ { double f = 1.0; - std::pair < std::string, std::string > p; - p = { name1, name2 }; + std::pair p(name1, name2); std::map, double>::const_iterator gas_pair_it; gas_pair_it = gas_binary_parameters.find(p); if (gas_pair_it != gas_binary_parameters.end()) diff --git a/phreeqcpp/read.cpp b/phreeqcpp/read.cpp index 1b0bb84d..3ed98d7c 100644 --- a/phreeqcpp/read.cpp +++ b/phreeqcpp/read.cpp @@ -2626,11 +2626,8 @@ read_gas_binary_parameters(void) } if (!error) { - std::pair p; - p = { gas1, gas2 }; - gas_binary_parameters[p] = d; - p = { gas2, gas1 }; - gas_binary_parameters[p] = d; + gas_binary_parameters[std::make_pair(gas1, gas2)] = d; + gas_binary_parameters[std::make_pair(gas2, gas1)] = d; } else { From 8b2126270cef5a100baee75a4598dcda71252cd6 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Mon, 18 Nov 2024 18:10:42 -0700 Subject: [PATCH 245/384] 59 compiler error on macos (#60) * Closes usgs-coupled/iphreeqc#59 --- phreeqcpp/gases.cpp | 3 +-- phreeqcpp/read.cpp | 7 ++----- 2 files changed, 3 insertions(+), 7 deletions(-) diff --git a/phreeqcpp/gases.cpp b/phreeqcpp/gases.cpp index dea1e551..924be9b8 100644 --- a/phreeqcpp/gases.cpp +++ b/phreeqcpp/gases.cpp @@ -704,8 +704,7 @@ calc_gas_binary_parameter(std::string name1, std::string name2) const /* ---------------------------------------------------------------------- */ { double f = 1.0; - std::pair < std::string, std::string > p; - p = { name1, name2 }; + std::pair p(name1, name2); std::map, double>::const_iterator gas_pair_it; gas_pair_it = gas_binary_parameters.find(p); if (gas_pair_it != gas_binary_parameters.end()) diff --git a/phreeqcpp/read.cpp b/phreeqcpp/read.cpp index 1b0bb84d..3ed98d7c 100644 --- a/phreeqcpp/read.cpp +++ b/phreeqcpp/read.cpp @@ -2626,11 +2626,8 @@ read_gas_binary_parameters(void) } if (!error) { - std::pair p; - p = { gas1, gas2 }; - gas_binary_parameters[p] = d; - p = { gas2, gas1 }; - gas_binary_parameters[p] = d; + gas_binary_parameters[std::make_pair(gas1, gas2)] = d; + gas_binary_parameters[std::make_pair(gas2, gas1)] = d; } else { From 80bf22d292021bc23620baa144f0a685fa73a82f Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Tue, 19 Nov 2024 01:17:49 +0000 Subject: [PATCH 246/384] Squashed 'phreeqcpp/' changes from b576c75..c369020 c369020 59 compiler error on macos (#60) git-subtree-dir: phreeqcpp git-subtree-split: c369020dbdaee3179efad614d3e841ed4b470ccf --- gases.cpp | 3 +-- read.cpp | 7 ++----- 2 files changed, 3 insertions(+), 7 deletions(-) diff --git a/gases.cpp b/gases.cpp index dea1e551..924be9b8 100644 --- a/gases.cpp +++ b/gases.cpp @@ -704,8 +704,7 @@ calc_gas_binary_parameter(std::string name1, std::string name2) const /* ---------------------------------------------------------------------- */ { double f = 1.0; - std::pair < std::string, std::string > p; - p = { name1, name2 }; + std::pair p(name1, name2); std::map, double>::const_iterator gas_pair_it; gas_pair_it = gas_binary_parameters.find(p); if (gas_pair_it != gas_binary_parameters.end()) diff --git a/read.cpp b/read.cpp index 1b0bb84d..3ed98d7c 100644 --- a/read.cpp +++ b/read.cpp @@ -2626,11 +2626,8 @@ read_gas_binary_parameters(void) } if (!error) { - std::pair p; - p = { gas1, gas2 }; - gas_binary_parameters[p] = d; - p = { gas2, gas1 }; - gas_binary_parameters[p] = d; + gas_binary_parameters[std::make_pair(gas1, gas2)] = d; + gas_binary_parameters[std::make_pair(gas2, gas1)] = d; } else { From 1421798482260cc1490c159749ca5554b3f4e391 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Tue, 19 Nov 2024 12:56:43 -0700 Subject: [PATCH 247/384] Re-encoded ex22 to utf-8 --- ex22 | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/ex22 b/ex22 index 5aa44f78..7309ad8e 100644 --- a/ex22 +++ b/ex22 @@ -11,7 +11,7 @@ REACTION INCREMENTAL_REACTIONS true USER_GRAPH 1 Example 22, - -chart_title "CO2 solubility at high pressures, 25 - 100 C" + -chart_title "CO2 solubility at high pressures, 25 - 100 ºC" -plot_csv_file co2.dat -axis_titles "Pressure / atm" "CO2 / (mol/kgw)" -axis_scale x_axis 0 500 @@ -20,7 +20,7 @@ USER_GRAPH 1 Example 22, 10 graph_x PR_P("CO2(g)") 20 graph_y TOT("C(4)") -end -USER_GRAPH 2 Example 22, P-Vm of CO2 gas, 25 - 150 C +USER_GRAPH 2 Example 22, P-Vm of CO2 gas, 25 - 150 ºC -chart_title "P-Vm of CO2 gas, data from Michels et al., 1935, 1937" -plot_csv_file co2_VP.dat -axis_titles "molar volume of CO2 gas / (L/mol)" "CO2 pressure / atm" From 8bf423592e4a25662a9204d8da692f90dd6a4f45 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Tue, 19 Nov 2024 14:16:37 -0700 Subject: [PATCH 248/384] [phreeqc3] Updated outputs for 3.8.5 --- ex22.out | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/ex22.out b/ex22.out index c955f765..c0201883 100644 --- a/ex22.out +++ b/ex22.out @@ -33,7 +33,7 @@ Reading input data for simulation 1. 0 31*1 INCREMENTAL_REACTIONS true USER_GRAPH 1 Example 22, - -chart_title "CO2 solubility at high pressures, 25 - 100 C" + -chart_title "CO2 solubility at high pressures, 25 - 100 ºC" -plot_csv_file co2.dat -axis_titles "Pressure / atm" "CO2 / (mol/kgw)" -axis_scale x_axis 0 500 @@ -42,7 +42,7 @@ Reading input data for simulation 1. 10 graph_x PR_P("CO2(g)") 20 graph_y TOT("C(4)") -end - USER_GRAPH 2 Example 22, P-Vm of CO2 gas, 25 - 150 C + USER_GRAPH 2 Example 22, P-Vm of CO2 gas, 25 - 150 ºC -chart_title "P-Vm of CO2 gas, data from Michels et al., 1935, 1937" -plot_csv_file co2_VP.dat -axis_titles "molar volume of CO2 gas / (L/mol)" "CO2 pressure / atm" From 1a221cd778c932dbc43f6d7601a3e43985f3e935 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Wed, 20 Nov 2024 14:49:09 -0700 Subject: [PATCH 249/384] (NH4)2SO4 database update from Tony --- Amm.dat | 10 +++++----- phreeqc.dat | 10 +++++----- phreeqc_rates.dat | 10 +++++----- 3 files changed, 15 insertions(+), 15 deletions(-) diff --git a/Amm.dat b/Amm.dat index 604e8e32..d38840e9 100644 --- a/Amm.dat +++ b/Amm.dat @@ -316,11 +316,11 @@ AmmH+ = Amm + H+ -dw 2.28e-9 AmmH+ + SO4-2 = AmmHSO4- #NH4+ + SO4-2 = NH4SO4- - -gamma 6.54 -0.08 - -log_k 1.106; -delta_h 4.3 kcal - -Vm -3.23 0 -68.42 0 -14.27 0 68.51 0 -0.4099 0.2339 - -viscosity 0.24 0 0 3.3e-3 -0.1 0.528 0.748 - -dw 1.35e-9 500 12.5 3 -1 + -gamma 2.08 -0.0416 + -log_k 1.211; -delta_h 8.56 kJ + -Vm -8.78 0 -36.09 0 -8.60 0 87.62 0 -0.3123 0.1172 + -viscosity 0 0.116 -8.6e-3 0.159 -9.3e-3 0.522 0.627 + -dw 0.9e-9 100 2.1 2 0 H3BO3 = H2BO3- + H+ -log_k -9.24 -delta_h 3.224 kcal diff --git a/phreeqc.dat b/phreeqc.dat index 00ca4920..01cdbe3c 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -320,11 +320,11 @@ NH4+ = NH3 + H+ -dw 2.28e-9 #AmmH+ + SO4-2 = AmmHSO4- NH4+ + SO4-2 = NH4SO4- - -gamma 6.54 -0.08 - -log_k 1.106; -delta_h 4.3 kcal - -Vm -3.23 0 -68.42 0 -14.27 0 68.51 0 -0.4099 0.2339 - -viscosity 0.24 0 0 3.3e-3 -0.1 0.528 0.748 - -dw 1.35e-9 500 12.5 3 -1 + -gamma 2.08 -0.0416 + -log_k 1.211; -delta_h 8.56 kJ + -Vm -8.78 0 -36.09 0 -8.60 0 87.62 0 -0.3123 0.1172 + -viscosity 0 0.116 -8.6e-3 0.159 -9.3e-3 0.522 0.627 + -dw 0.9e-9 100 2.1 2 0 H3BO3 = H2BO3- + H+ -log_k -9.24 -delta_h 3.224 kcal diff --git a/phreeqc_rates.dat b/phreeqc_rates.dat index 9ee0f4d6..2c777a45 100644 --- a/phreeqc_rates.dat +++ b/phreeqc_rates.dat @@ -316,11 +316,11 @@ NH4+ = NH3 + H+ -dw 2.28e-9 #AmmH+ + SO4-2 = AmmHSO4- NH4+ + SO4-2 = NH4SO4- - -gamma 6.54 -0.08 - -log_k 1.106; -delta_h 4.3 kcal - -Vm -3.23 0 -68.42 0 -14.27 0 68.51 0 -0.4099 0.2339 - -viscosity 0.24 0 0 3.3e-3 -0.1 0.528 0.748 - -dw 1.35e-9 500 12.5 3 -1 + -gamma 2.08 -0.0416 + -log_k 1.211; -delta_h 8.56 kJ + -Vm -8.78 0 -36.09 0 -8.60 0 87.62 0 -0.3123 0.1172 + -viscosity 0 0.116 -8.6e-3 0.159 -9.3e-3 0.522 0.627 + -dw 0.9e-9 100 2.1 2 0 H3BO3 = H2BO3- + H+ -log_k -9.24 -delta_h 3.224 kcal From 09d4a0ba8e3de3165be534cfe76128a746b8e306 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Wed, 20 Nov 2024 17:25:39 -0700 Subject: [PATCH 250/384] [phreeqc3] (NH4)2SO4 database update from Tony --- ex1.out | 24 ++++++++++++------------ ex4.out | 30 +++++++++++++++--------------- 2 files changed, 27 insertions(+), 27 deletions(-) diff --git a/ex1.out b/ex1.out index 5fba5bd6..a6dea035 100644 --- a/ex1.out +++ b/ex1.out @@ -142,7 +142,7 @@ Initial solution 1. SEAWATER FROM NORDSTROM AND OTHERS (1979) Redox couple pe Eh (volts) - N(-3)/N(5) 4.6747 0.2765 + N(-3)/N(5) 4.6753 0.2766 O(-2)/O(0) 12.4061 0.7339 ----------------------------Distribution of species---------------------------- @@ -239,9 +239,9 @@ Mn(2) 3.773e-09 Mn(3) 5.345e-26 Mn+3 5.345e-26 4.258e-27 -25.272 -26.371 -1.099 (0) N(-3) 1.724e-06 - NH4+ 1.618e-06 9.103e-07 -5.791 -6.041 -0.250 18.48 - NH3 7.378e-08 8.610e-08 -7.132 -7.065 0.067 24.42 - NH4SO4- 3.206e-08 2.000e-08 -7.494 -7.699 -0.205 18.66 + NH4+ 1.601e-06 9.008e-07 -5.796 -6.045 -0.250 18.48 + NH3 7.301e-08 8.519e-08 -7.137 -7.070 0.067 24.42 + NH4SO4- 4.978e-08 2.520e-08 -7.303 -7.599 -0.296 26.92 N(5) 4.847e-06 NO3- 4.847e-06 2.847e-06 -5.314 -5.546 -0.231 30.29 Mn(NO3)2 1.349e-20 1.574e-20 -19.870 -19.803 0.067 41.04 @@ -258,7 +258,7 @@ S(6) 2.926e-02 CaSO4 6.537e-04 7.628e-04 -3.185 -3.118 0.067 7.50 KSO4- 1.873e-04 1.696e-04 -3.728 -3.770 -0.043 11.34 Mg(SO4)2-2 1.296e-04 3.671e-05 -3.887 -4.435 -0.548 32.91 - NH4SO4- 3.206e-08 2.000e-08 -7.494 -7.699 -0.205 18.66 + NH4SO4- 4.978e-08 2.520e-08 -7.303 -7.599 -0.296 26.92 HSO4- 1.351e-09 1.008e-09 -8.869 -8.996 -0.127 40.96 MnSO4 1.279e-10 1.493e-10 -9.893 -9.826 0.067 22.54 CaHSO4+ 4.048e-11 3.021e-11 -10.393 -10.520 -0.127 (0) @@ -271,12 +271,12 @@ Si 7.382e-05 H4SiO4 7.062e-05 8.241e-05 -4.151 -4.084 0.067 52.08 H3SiO4- 3.205e-06 2.017e-06 -5.494 -5.695 -0.201 28.72 H2SiO4-2 1.092e-10 2.276e-11 -9.962 -10.643 -0.681 (0) -U(4) 9.706e-22 - U(OH)5- 9.704e-22 7.243e-22 -21.013 -21.140 -0.127 (0) - U(OH)4 1.550e-25 1.809e-25 -24.810 -24.743 0.067 (0) - U+4 0.000e+00 0.000e+00 -47.018 -49.051 -2.032 (0) -U(5) 1.521e-18 - UO2+ 1.521e-18 1.135e-18 -17.818 -17.945 -0.127 (0) +U(4) 9.680e-22 + U(OH)5- 9.679e-22 7.224e-22 -21.014 -21.141 -0.127 (0) + U(OH)4 1.546e-25 1.804e-25 -24.811 -24.744 0.067 (0) + U+4 0.000e+00 0.000e+00 -47.019 -49.052 -2.032 (0) +U(5) 1.519e-18 + UO2+ 1.519e-18 1.134e-18 -17.818 -17.945 -0.127 (0) U(6) 1.437e-08 UO2(CO3)3-4 1.259e-08 1.169e-10 -7.900 -9.932 -2.032 (0) UO2(CO3)2-2 1.767e-09 5.484e-10 -8.753 -9.261 -0.508 (0) @@ -313,7 +313,7 @@ U(6) 1.437e-08 Manganite 2.40 27.74 25.34 MnOOH Melanterite -19.57 -21.77 -2.21 FeSO4:7H2O Mirabilite -2.55 -3.79 -1.24 Na2SO4:10H2O - NH3(g) -8.86 -7.07 1.80 NH3 + NH3(g) -8.87 -7.07 1.80 NH3 O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000 Pyrochroite -8.09 7.11 15.20 Mn(OH)2 Pyrolusite 6.97 48.35 41.38 MnO2:H2O diff --git a/ex4.out b/ex4.out index 58cf2dad..274885d9 100644 --- a/ex4.out +++ b/ex4.out @@ -115,7 +115,7 @@ Ca 9.581e-06 Ca+2 9.560e-06 9.153e-06 -5.020 -5.038 -0.019 -18.22 CaSO4 2.098e-08 2.098e-08 -7.678 -7.678 0.000 7.50 CaHCO3+ 5.402e-12 5.344e-12 -11.267 -11.272 -0.005 122.62 - CaHSO4+ 4.409e-12 4.361e-12 -11.356 -11.360 -0.005 (0) + CaHSO4+ 4.408e-12 4.361e-12 -11.356 -11.360 -0.005 (0) CaOH+ 4.856e-14 4.804e-14 -13.314 -13.318 -0.005 (0) CaCO3 3.451e-15 3.451e-15 -14.462 -14.462 0.000 -14.60 Cl 6.657e-06 @@ -129,20 +129,20 @@ K 9.207e-07 KHCO3 6.155e-14 6.155e-14 -13.211 -13.211 0.000 41.03 Mg 1.769e-06 Mg+2 1.763e-06 1.688e-06 -5.754 -5.773 -0.019 -21.90 - MgSO4 5.697e-09 5.697e-09 -8.244 -8.244 0.000 -7.92 + MgSO4 5.696e-09 5.697e-09 -8.244 -8.244 0.000 -7.92 MgHCO3+ 3.022e-12 2.989e-12 -11.520 -11.524 -0.005 5.46 - Mg(SO4)2-2 2.525e-13 2.419e-13 -12.598 -12.616 -0.019 -15.61 + Mg(SO4)2-2 2.525e-13 2.418e-13 -12.598 -12.616 -0.019 -15.61 MgOH+ 1.959e-13 1.938e-13 -12.708 -12.713 -0.005 (0) MgCO3 3.616e-16 3.616e-16 -15.442 -15.442 0.000 -17.09 N(-3) 1.485e-05 - NH4+ 1.485e-05 1.469e-05 -4.828 -4.833 -0.005 17.87 - NH4SO4- 2.442e-09 2.416e-09 -8.612 -8.617 -0.005 -13.83 + NH4+ 1.485e-05 1.468e-05 -4.828 -4.833 -0.005 17.87 + NH4SO4- 3.111e-09 3.077e-09 -8.507 -8.512 -0.005 -14.54 NH3 2.646e-10 2.646e-10 -9.577 -9.577 0.000 24.42 N(5) 1.692e-05 NO3- 1.692e-05 1.674e-05 -4.772 -4.776 -0.005 29.47 Na 6.133e-06 Na+ 6.132e-06 6.065e-06 -5.212 -5.217 -0.005 -1.51 - NaSO4- 1.287e-09 1.273e-09 -8.891 -8.895 -0.005 -24.48 + NaSO4- 1.286e-09 1.273e-09 -8.891 -8.895 -0.005 -24.48 NaHCO3 7.995e-13 7.995e-13 -12.097 -12.097 0.000 31.73 O(0) 0.000e+00 O2 0.000e+00 0.000e+00 -52.080 -52.080 0.000 30.40 @@ -150,12 +150,12 @@ S(6) 1.353e-05 SO4-2 1.346e-05 1.289e-05 -4.871 -4.890 -0.019 14.77 HSO4- 4.006e-08 3.963e-08 -7.397 -7.402 -0.005 40.26 CaSO4 2.098e-08 2.098e-08 -7.678 -7.678 0.000 7.50 - MgSO4 5.697e-09 5.697e-09 -8.244 -8.244 0.000 -7.92 - NH4SO4- 2.442e-09 2.416e-09 -8.612 -8.617 -0.005 -13.83 - NaSO4- 1.287e-09 1.273e-09 -8.891 -8.895 -0.005 -24.48 + MgSO4 5.696e-09 5.697e-09 -8.244 -8.244 0.000 -7.92 + NH4SO4- 3.111e-09 3.077e-09 -8.507 -8.512 -0.005 -14.54 + NaSO4- 1.286e-09 1.273e-09 -8.891 -8.895 -0.005 -24.48 KSO4- 1.805e-10 1.786e-10 -9.744 -9.748 -0.005 14.12 - CaHSO4+ 4.409e-12 4.361e-12 -11.356 -11.360 -0.005 (0) - Mg(SO4)2-2 2.525e-13 2.419e-13 -12.598 -12.616 -0.019 -15.61 + CaHSO4+ 4.408e-12 4.361e-12 -11.356 -11.360 -0.005 (0) + Mg(SO4)2-2 2.525e-13 2.418e-13 -12.598 -12.616 -0.019 -15.61 ------------------------------Saturation indices------------------------------- @@ -285,7 +285,7 @@ Mg 3.536e-05 MgCO3 2.448e-16 2.449e-16 -15.611 -15.611 0.000 -17.09 N(-3) 0.000e+00 NH4+ 0.000e+00 0.000e+00 -48.437 -48.457 -0.019 17.90 - NH4SO4- 0.000e+00 0.000e+00 -51.013 -51.032 -0.019 -9.55 + NH4SO4- 0.000e+00 0.000e+00 -50.907 -50.927 -0.019 -5.79 NH3 0.000e+00 0.000e+00 -54.553 -54.553 0.000 24.42 N(0) 4.751e-04 N2 2.375e-04 2.376e-04 -3.624 -3.624 0.000 29.29 @@ -313,7 +313,7 @@ S(6) 2.706e-04 KSO4- 5.808e-08 5.568e-08 -7.236 -7.254 -0.018 14.15 CaHSO4+ 2.828e-08 2.707e-08 -7.549 -7.568 -0.019 (0) Mg(SO4)2-2 1.263e-09 1.067e-09 -8.899 -8.972 -0.073 -2.63 - NH4SO4- 0.000e+00 0.000e+00 -51.013 -51.032 -0.019 -9.55 + NH4SO4- 0.000e+00 0.000e+00 -50.907 -50.927 -0.019 -5.79 ------------------------------Saturation indices------------------------------- @@ -455,7 +455,7 @@ Mg 3.536e-05 MgCO3 2.448e-16 2.449e-16 -15.611 -15.611 0.000 -17.09 N(-3) 0.000e+00 NH4+ 0.000e+00 0.000e+00 -48.437 -48.457 -0.019 17.90 - NH4SO4- 0.000e+00 0.000e+00 -51.013 -51.032 -0.019 -9.55 + NH4SO4- 0.000e+00 0.000e+00 -50.907 -50.927 -0.019 -5.79 NH3 0.000e+00 0.000e+00 -54.553 -54.553 0.000 24.42 N(0) 4.751e-04 N2 2.375e-04 2.376e-04 -3.624 -3.624 0.000 29.29 @@ -483,7 +483,7 @@ S(6) 2.706e-04 KSO4- 5.808e-08 5.568e-08 -7.236 -7.254 -0.018 14.15 CaHSO4+ 2.828e-08 2.707e-08 -7.549 -7.568 -0.019 (0) Mg(SO4)2-2 1.263e-09 1.067e-09 -8.899 -8.972 -0.073 -2.63 - NH4SO4- 0.000e+00 0.000e+00 -51.013 -51.032 -0.019 -9.55 + NH4SO4- 0.000e+00 0.000e+00 -50.907 -50.927 -0.019 -5.79 ------------------------------Saturation indices------------------------------- From cb1ebf2d7ff4173ac99849968dee6709fa99e8d4 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Thu, 21 Nov 2024 14:33:39 -0700 Subject: [PATCH 251/384] Added devel for macos and windows --- .github/workflows/cmake.yml | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/.github/workflows/cmake.yml b/.github/workflows/cmake.yml index 1e6f48c6..3f684486 100644 --- a/.github/workflows/cmake.yml +++ b/.github/workflows/cmake.yml @@ -234,9 +234,11 @@ jobs: fail-fast: false matrix: config: + - {os: macos-latest, r: 'devel'} - {os: macos-latest, r: 'release'} + - {os: windows-latest, r: 'devel'} - {os: windows-latest, r: 'release'} - - {os: ubuntu-latest, r: 'devel', http-user-agent: 'release'} + - {os: ubuntu-latest, r: 'devel'} - {os: ubuntu-latest, r: 'release'} - {os: ubuntu-latest, r: 'oldrel-1'} From f849e9f29fc8eb422608263a209e92543549f121 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Thu, 21 Nov 2024 15:15:08 -0700 Subject: [PATCH 252/384] Changed http -> https --- R/phreeqc.R.in | 74 +++++++++++++++++++++++++------------------------- 1 file changed, 37 insertions(+), 37 deletions(-) diff --git a/R/phreeqc.R.in b/R/phreeqc.R.in index b53d6655..311db924 100644 --- a/R/phreeqc.R.in +++ b/R/phreeqc.R.in @@ -338,7 +338,7 @@ function() { ##' @useDynLib phreeqc, .registration = TRUE ##' @return TRUE if log messages are currently being stored as a character vector. ##' @family Log -##' @references \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @references \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' phrGetLogStringsOn <- function() { @@ -1386,7 +1386,7 @@ function(nuser, value) { ##' @docType data ##' @family Databases ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @usage Amm.dat # phrLoadDatabaseString(Amm.dat) ##' @keywords dataset NULL @@ -1401,7 +1401,7 @@ NULL ##' The database has been reformatted for use by \code{\link{phrLoadDatabaseString}}. ##' @docType data ##' @family Databases -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @usage ColdChem.dat # phrLoadDatabaseString(ColdChem.dat) ##' @keywords dataset NULL @@ -1433,7 +1433,7 @@ NULL ##' @docType data ##' @family Databases ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @usage ex15.dat # phrLoadDatabaseString(ex15.dat) ##' @keywords dataset NULL @@ -1464,7 +1464,7 @@ NULL ##' @docType data ##' @family Databases ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @usage iso.dat # phrLoadDatabaseString(iso.dat) ##' @keywords dataset NULL @@ -1481,7 +1481,7 @@ NULL ##' @docType data ##' @family Databases ##' @references Hermanska et al. (2022, 2003) and Oelkers and Addassi (2024, in preparation). -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @usage Kinec_v3.dat # phrLoadDatabaseString(Kinec_v3.dat) ##' @keywords dataset NULL @@ -1498,7 +1498,7 @@ NULL ##' @docType data ##' @family Databases ##' @references Hermanska et al. (2022, 2003) and Oelkers and Addassi (2024, in preparation). -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @usage Kinec.v2.dat # phrLoadDatabaseString(Kinec.v2.dat) ##' @keywords dataset NULL @@ -1528,7 +1528,7 @@ NULL ##' @docType data ##' @family Databases ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @usage minteq.dat # phrLoadDatabaseString(minteq.dat) ##' @keywords dataset NULL @@ -1543,7 +1543,7 @@ NULL ##' @docType data ##' @family Databases ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @usage minteq.v4.dat # phrLoadDatabaseString(minteq.v4.dat) ##' @keywords dataset NULL @@ -1564,7 +1564,7 @@ NULL ##' @family Databases ##' @references Hermanska and others (2023), Palandri and Kharaka (2004), ##' and Sverdrup and others (2019). -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @usage phreeqc_rates.dat # phrLoadDatabaseString(phreeqc_rates.dat) ##' @keywords dataset NULL @@ -1577,7 +1577,7 @@ NULL ##' @docType data ##' @family Databases ##' @references \url{https://thermoddem.brgm.fr/} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @usage PHREEQC_ThermoddemV1.10_15Dec2020.dat ##' # phrLoadDatabaseString(PHREEQC_ThermoddemV1.10_15Dec2020.dat) NULL @@ -1593,7 +1593,7 @@ NULL ##' @docType data ##' @family Databases ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @usage phreeqc.dat # phrLoadDatabaseString(phreeqc.dat) ##' @keywords dataset NULL @@ -1608,7 +1608,7 @@ NULL ##' @docType data ##' @family Databases ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @usage pitzer.dat # phrLoadDatabaseString(pitzer.dat) ##' @keywords dataset NULL @@ -1624,7 +1624,7 @@ NULL ##' @docType data ##' @family Databases ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @usage sit.dat # phrLoadDatabaseString(sit.dat) ##' @keywords dataset NULL @@ -1651,7 +1651,7 @@ NULL ##' @docType data ##' @family Databases ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @usage wateq4f.dat # phrLoadDatabaseString(wateq4f.dat) ##' @keywords dataset NULL @@ -1668,7 +1668,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @keywords dataset ##' @examples ##' @@ -1689,7 +1689,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @keywords dataset ##' @examples ##' @@ -1721,7 +1721,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @keywords dataset ##' @examples ##' @@ -1753,7 +1753,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @keywords dataset ##' @examples ##' @@ -1780,7 +1780,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @keywords dataset ##' @examples ##' @@ -1806,7 +1806,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @keywords dataset ##' @examples ##' @@ -1841,7 +1841,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @keywords dataset ##' @examples ##' @@ -1866,7 +1866,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @keywords dataset ##' @examples ##' @@ -1905,7 +1905,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @keywords dataset ##' @examples ##' @@ -1933,7 +1933,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @keywords dataset ##' @examples ##' @@ -1960,7 +1960,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @keywords dataset ##' @examples ##' @@ -1995,7 +1995,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @keywords dataset ##' @examples ##' @@ -2025,7 +2025,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @keywords dataset ##' @examples ##' @@ -2058,7 +2058,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @keywords dataset ##' @examples ##' @@ -2088,7 +2088,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @keywords dataset ##' @examples ##' @@ -2121,7 +2121,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @keywords dataset ##' @examples ##' @@ -2153,7 +2153,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @keywords dataset ##' @examples ##' @@ -2195,7 +2195,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @keywords dataset ##' @examples ##' @@ -2223,7 +2223,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @keywords dataset ##' @examples ##' @@ -2259,7 +2259,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @keywords dataset ##' @examples ##' @@ -2291,7 +2291,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @keywords dataset ##' @examples ##' @@ -2324,7 +2324,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} ##' @keywords dataset ##' @examples ##' From f2a8c8ee700d11fd07bb513dee640c362bb935ed Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Fri, 22 Nov 2024 14:46:02 -0700 Subject: [PATCH 253/384] Added README.md --- .github/workflows/cmake.yml | 6 ++++++ README.md | 1 + 2 files changed, 7 insertions(+) create mode 100644 README.md diff --git a/.github/workflows/cmake.yml b/.github/workflows/cmake.yml index 3f684486..17d5f940 100644 --- a/.github/workflows/cmake.yml +++ b/.github/workflows/cmake.yml @@ -7,6 +7,12 @@ on: branches: - master + paths-ignore: + - 'doc/**' + - '!doc/CMakeLists.txt' + - '!doc/Makefile.am' + - 'README.md' + schedule: - cron: '15 14 4,11,18,25 * *' diff --git a/README.md b/README.md new file mode 100644 index 00000000..bb8beafa --- /dev/null +++ b/README.md @@ -0,0 +1 @@ +# IPhreeqc ![workflow](https://github.com/usgs-coupled/iphreeqc/actions/workflows/cmake.yml/badge.svg) From 980068c1dca09434dbf29637c06bff08ce1e2d81 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Fri, 22 Nov 2024 15:45:14 -0700 Subject: [PATCH 254/384] Added Authors@R field --- R/DESCRIPTION.in | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/R/DESCRIPTION.in b/R/DESCRIPTION.in index dda3d9cf..d12094b9 100644 --- a/R/DESCRIPTION.in +++ b/R/DESCRIPTION.in @@ -4,6 +4,10 @@ Version: @VERSION@ License: GPL-3 NeedsCompilation: yes Depends: R (>= 3.5.0) +Authors@R: c(person(given = "S.R.", + family = "Charlton", + role = c("aut", "cre"), + email = "charlton@usgs.gov")) Author: S.R. Charlton [aut, cre], D.L. Parkhurst [aut], and C.A.J. Appelo [aut], with contributions from D. Gillespie [ctb] for Chipmunk BASIC and S.D. Cohen [ctb], A.C. Hindmarsh [ctb], R. Serban [ctb], D. Shumaker [ctb], and A.G. Taylor [ctb] for CVODE/SUNDIALS From 31af15ae73d340f65c8d2c0b6ad50239d0b1aa5a Mon Sep 17 00:00:00 2001 From: Mike Taves Date: Mon, 2 Dec 2024 15:28:05 +1300 Subject: [PATCH 255/384] Fix typos --- CMakeLists.txt | 2 +- IPhreeqc.makefile | 2 +- R/Makefile | 2 +- R/phreeqc.R.in | 2 +- R/valgrind.R | 2 +- build/dist.sh | 2 +- .../CEMDATA18-31-03-2022-phaseVol.dat | 2 +- .../CEMDATA18.1-16-01-2019-phaseVol.dat | 2 +- database/OtherDatabases/CEMDATA18.dat | 2 +- .../PSINA_12_07_110615_DAV_s_win.dat | 2 +- examples/com/python/parallel_advect.py | 2 +- gtest/TestIPhreeqc.cpp | 6 +++--- gtest/TestIPhreeqcLib.cpp | 4 ++-- jenkins-dist.sh | 2 +- packages/dist.sh | 2 +- src/CSelectedOutput.cpp | 8 ++++---- src/IPhreeqc.cpp | 14 +++++++------- src/IPhreeqc.h | 10 +++++----- src/IPhreeqc.hpp | 4 ++-- test_ieee/cdmusic_hiemstra.dat | 4 ++-- unit/TestIPhreeqc.cpp | 2 +- unit/TestIPhreeqcLib.cpp | 2 +- 22 files changed, 40 insertions(+), 40 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index f3d0785e..ec286708 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -26,7 +26,7 @@ if (STANDALONE_BUILD) endif() endif() -# overide docdir on windows +# override docdir on windows if (WIN32 AND NOT CMAKE_INSTALL_DOCDIR) set(CMAKE_INSTALL_DOCDIR "" CACHE PATH "documentation root (doc)") set(CMAKE_INSTALL_DOCDIR "doc") diff --git a/IPhreeqc.makefile b/IPhreeqc.makefile index 6b11e201..a231f297 100644 --- a/IPhreeqc.makefile +++ b/IPhreeqc.makefile @@ -42,7 +42,7 @@ ReleaseDll_Preprocessor_Definitions=-D NDEBUG -D GCC_BUILD -D _LIB Release_Preprocessor_Definitions=-D NDEBUG -D GCC_BUILD -D _LIB Release_Preprocessor_Definitions=-D NDEBUG -D GCC_BUILD -D _LIB -# Implictly linked object files... +# Implicitly linked object files... DebugDll_Implicitly_Linked_Objects= DebugDll_Implicitly_Linked_Objects= Debug_Implicitly_Linked_Objects= diff --git a/R/Makefile b/R/Makefile index 7e599e8c..ab04a0a0 100644 --- a/R/Makefile +++ b/R/Makefile @@ -885,7 +885,7 @@ $(IDEST): $(DEST): mkdir $(DEST) -# Force directory creation everytime make is executed +# Force directory creation every time make is executed # see https://www.cmcrossroads.com/article/making-directories-gnu-make $(shell mkdir -p $(TOPDIR)/R) diff --git a/R/phreeqc.R.in b/R/phreeqc.R.in index 311db924..03eba552 100644 --- a/R/phreeqc.R.in +++ b/R/phreeqc.R.in @@ -32,7 +32,7 @@ ##' # plot the results ##' attach(so$n1) ##' title <- "Gypsum-Anhydrite Stability" -##' xlabel <- "Temperature, in degrees celcius" +##' xlabel <- "Temperature, in degrees celsius" ##' ylabel <- "Saturation index" ##' plot(temp.C., si_gypsum, main = title, xlab = xlabel, ylab = ylabel, ##' col = "darkred", xlim = c(25, 75), ylim = c(-0.4, 0.0)) diff --git a/R/valgrind.R b/R/valgrind.R index 3d7e3b23..6fe9246e 100644 --- a/R/valgrind.R +++ b/R/valgrind.R @@ -1606,7 +1606,7 @@ so <- phrGetSelectedOutput() # plot the results attach(so$n1) title <- "Gypsum-Anhydrite Stability" -xlabel <- "Temperature, in degrees celcius" +xlabel <- "Temperature, in degrees celsius" ylabel <- "Saturation index" plot(temp.C., si_gypsum, main = title, xlab = xlabel, ylab = ylabel, col = "darkred", xlim = c(25, 75), ylim = c(-0.4, 0.0)) diff --git a/build/dist.sh b/build/dist.sh index 4c41ca39..d0f355be 100755 --- a/build/dist.sh +++ b/build/dist.sh @@ -17,7 +17,7 @@ # from the top-level of a branches/0.24.2 working copy will create # the 0.24.2 release tarball. # -# When building a alpha, beta or rc tarballs pass the apppropriate flag +# When building a alpha, beta or rc tarballs pass the appropriate flag # followed by the number for that release. For example you'd do # the following for a Beta 1 release: # ./dist.sh -v 1.1.0 -r 10277 -pr branches/1.1.x -beta 1 diff --git a/database/OtherDatabases/CEMDATA18-31-03-2022-phaseVol.dat b/database/OtherDatabases/CEMDATA18-31-03-2022-phaseVol.dat index 1006f59b..02b98dc6 100644 --- a/database/OtherDatabases/CEMDATA18-31-03-2022-phaseVol.dat +++ b/database/OtherDatabases/CEMDATA18-31-03-2022-phaseVol.dat @@ -24,7 +24,7 @@ SOLUTION_MASTER_SPECIES # -# elemen species alk gfw_formula element_gfw atomic number +# element species alk gfw_formula element_gfw atomic number # diff --git a/database/OtherDatabases/CEMDATA18.1-16-01-2019-phaseVol.dat b/database/OtherDatabases/CEMDATA18.1-16-01-2019-phaseVol.dat index c27d0cd5..37a27609 100644 --- a/database/OtherDatabases/CEMDATA18.1-16-01-2019-phaseVol.dat +++ b/database/OtherDatabases/CEMDATA18.1-16-01-2019-phaseVol.dat @@ -22,7 +22,7 @@ SOLUTION_MASTER_SPECIES # -# elemen species alk gfw_formula element_gfw atomic number +# element species alk gfw_formula element_gfw atomic number # diff --git a/database/OtherDatabases/CEMDATA18.dat b/database/OtherDatabases/CEMDATA18.dat index 80be5ba5..961964fc 100644 --- a/database/OtherDatabases/CEMDATA18.dat +++ b/database/OtherDatabases/CEMDATA18.dat @@ -18,7 +18,7 @@ SOLUTION_MASTER_SPECIES # -# elemen species alk gfw_formula element_gfw atomic number +# element species alk gfw_formula element_gfw atomic number # diff --git a/database/OtherDatabases/PSINA_12_07_110615_DAV_s_win.dat b/database/OtherDatabases/PSINA_12_07_110615_DAV_s_win.dat index 0e6c024f..23d30410 100644 --- a/database/OtherDatabases/PSINA_12_07_110615_DAV_s_win.dat +++ b/database/OtherDatabases/PSINA_12_07_110615_DAV_s_win.dat @@ -61,7 +61,7 @@ SOLUTION_MASTER_SPECIES # # # -# elemen species alk gfw_formula element_gfw atomic Disposition Source of data +# element species alk gfw_formula element_gfw atomic Disposition Source of data # number PMATCHC # H H+ -1.0 H 1.008 # 1 Ele NAGRA NTB 91-17 diff --git a/examples/com/python/parallel_advect.py b/examples/com/python/parallel_advect.py index a1229d8b..74b01084 100644 --- a/examples/com/python/parallel_advect.py +++ b/examples/com/python/parallel_advect.py @@ -214,7 +214,7 @@ class ReactionModel(object): class PhreeqcCalculator(object): """All PHREEQC calculations happen here. - This is the only place where we interact wit IPhreeqc. + This is the only place where we interact with IPhreeqc. Each instance of this class might run in a different process using `multiprocessing`. """ diff --git a/gtest/TestIPhreeqc.cpp b/gtest/TestIPhreeqc.cpp index d387b741..d734bc96 100644 --- a/gtest/TestIPhreeqc.cpp +++ b/gtest/TestIPhreeqc.cpp @@ -283,7 +283,7 @@ TEST(TestIPhreeqc, TestSetErrorOn) ASSERT_EQ(false, ::FileExists("missing.file")); IPhreeqc obj; - ASSERT_EQ(true, obj.GetErrorOn()); // intial setting is true + ASSERT_EQ(true, obj.GetErrorOn()); // initial setting is true obj.SetErrorOn(false); ASSERT_EQ(false, obj.GetErrorOn()); @@ -314,7 +314,7 @@ TEST(TestIPhreeqc, TestSetErrorOn2) obj.SetErrorFileOn(true); obj.SetErrorFileName(ERR_FILENAME); - ASSERT_EQ(true, obj.GetErrorOn()); // intial setting is true + ASSERT_EQ(true, obj.GetErrorOn()); // initial setting is true obj.SetErrorOn(false); ASSERT_EQ(false, obj.GetErrorOn()); @@ -3829,7 +3829,7 @@ TEST(TestIPhreeqc, TestCErrorReporter) TEST(TestIPhreeqc, TestDelete) { const char input[] = - "SOLUTION 1 # definition of intial condition 1\n" + "SOLUTION 1 # definition of initial condition 1\n" "COPY cell 1 7405 # copy cell 1 to placeholder cell with index larger than the number of cells in the model domain\n" "END\n" "DELETE # delete initial condition 1 to allow for a redefinition of all reactions\n" diff --git a/gtest/TestIPhreeqcLib.cpp b/gtest/TestIPhreeqcLib.cpp index c25cf48c..6fadd9f7 100644 --- a/gtest/TestIPhreeqcLib.cpp +++ b/gtest/TestIPhreeqcLib.cpp @@ -190,7 +190,7 @@ TEST(TestIPhreeqcLib, TestSetErrorOn) int n = ::CreateIPhreeqc(); ASSERT_TRUE(n >= 0); - ASSERT_EQ(1, ::GetErrorOn(n)); // intial setting is true + ASSERT_EQ(1, ::GetErrorOn(n)); // initial setting is true ASSERT_EQ(IPQ_OK, ::SetErrorOn(n, 0)); ASSERT_EQ(0, ::GetErrorOn(n)); @@ -4005,7 +4005,7 @@ TEST(TestIPhreeqcLib, TestIEEE) TEST(TestIPhreeqcLib, TestDelete) { const char input[] = - "SOLUTION 1 # definition of intial condition 1\n" + "SOLUTION 1 # definition of initial condition 1\n" "COPY cell 1 7405 # copy cell 1 to placeholder cell with index larger than the number of cells in the model domain\n" "END\n" "DELETE # delete initial condition 1 to allow for a redefinition of all reactions\n" diff --git a/jenkins-dist.sh b/jenkins-dist.sh index 3dfe3c8b..c360a650 100755 --- a/jenkins-dist.sh +++ b/jenkins-dist.sh @@ -17,7 +17,7 @@ # from the top-level of a branches/0.24.2 working copy will create # the 0.24.2 release tarball. # -# When building a alpha, beta or rc tarballs pass the apppropriate flag +# When building a alpha, beta or rc tarballs pass the appropriate flag # followed by the number for that release. For example you'd do # the following for a Beta 1 release: # ./dist.sh -v 1.1.0 -r 10277 -pr branches/1.1.x -beta 1 diff --git a/packages/dist.sh b/packages/dist.sh index 1b1d8ad2..8cb2f8a3 100755 --- a/packages/dist.sh +++ b/packages/dist.sh @@ -17,7 +17,7 @@ # from the top-level of a branches/0.24.2 working copy will create # the 0.24.2 release tarball. # -# When building a alpha, beta or rc tarballs pass the apppropriate flag +# When building a alpha, beta or rc tarballs pass the appropriate flag # followed by the number for that release. For example you'd do # the following for a Beta 1 release: # ./dist.sh -v 1.1.0 -r 10277 -pr branches/1.1.x -beta 1 diff --git a/src/CSelectedOutput.cpp b/src/CSelectedOutput.cpp index 5298f1cb..23aeb60d 100644 --- a/src/CSelectedOutput.cpp +++ b/src/CSelectedOutput.cpp @@ -247,8 +247,8 @@ std::ostream& operator<< (std::ostream &os, const CSelectedOutput &a) void CSelectedOutput::Serialize( int row_number, std::vector &types, // each column for each row types, including headings - std::vector &longs, // in order by occurance - std::vector &doubles, // in order by occurance + std::vector &longs, // in order by occurrence + std::vector &doubles, // in order by occurrence std::string &strings) { types.clear(); @@ -300,8 +300,8 @@ void CSelectedOutput::Serialize( } void CSelectedOutput::DeSerialize( std::vector &types, // each column for each row types, including headings - std::vector &longs, // in order by occurance - std::vector &doubles, // in order by occurance + std::vector &longs, // in order by occurrence + std::vector &doubles, // in order by occurrence std::string &strings) { size_t i_types = 0, i_longs = 0, i_doubles = 0; diff --git a/src/IPhreeqc.cpp b/src/IPhreeqc.cpp index 20b967b4..e5b45017 100644 --- a/src/IPhreeqc.cpp +++ b/src/IPhreeqc.cpp @@ -110,7 +110,7 @@ VRESULT IPhreeqc::AccumulateLine(const char *line) } catch (...) { - this->AddError("AccumulateLine: An unhandled exception occured.\n"); + this->AddError("AccumulateLine: An unhandled exception occurred.\n"); throw; } return VR_OUTOFMEMORY; @@ -607,7 +607,7 @@ int IPhreeqc::load_db(const char* filename) } catch (...) { - const char *errmsg = "LoadDatabase: An unhandled exception occured.\n"; + const char *errmsg = "LoadDatabase: An unhandled exception occurred.\n"; try { this->PhreeqcPtr->error_msg(errmsg, STOP); // throws IPhreeqcStop @@ -670,7 +670,7 @@ int IPhreeqc::load_db_str(const char* input) } catch(...) { - const char *errmsg = "LoadDatabaseString: An unhandled exception occured.\n"; + const char *errmsg = "LoadDatabaseString: An unhandled exception occurred.\n"; try { this->PhreeqcPtr->error_msg(errmsg, STOP); // throws PhreeqcStop @@ -773,7 +773,7 @@ int IPhreeqc::RunAccumulated(void) } catch(...) { - const char *errmsg = "RunAccumulated: An unhandled exception occured.\n"; + const char *errmsg = "RunAccumulated: An unhandled exception occurred.\n"; try { this->PhreeqcPtr->error_msg(errmsg, STOP); // throws PhreeqcStop @@ -844,7 +844,7 @@ int IPhreeqc::RunFile(const char* filename) } catch(...) { - const char *errmsg = "RunFile: An unhandled exception occured.\n"; + const char *errmsg = "RunFile: An unhandled exception occurred.\n"; try { this->PhreeqcPtr->error_msg(errmsg, STOP); // throws PhreeqcStop @@ -907,7 +907,7 @@ int IPhreeqc::RunString(const char* input) } catch(...) { - const char *errmsg = "RunString: An unhandled exception occured.\n"; + const char *errmsg = "RunString: An unhandled exception occurred.\n"; try { this->PhreeqcPtr->error_msg(errmsg, STOP); // throws PhreeqcStop @@ -1285,7 +1285,7 @@ void IPhreeqc::do_run(const char* sz_routine, std::istream* pis, PFN_PRERUN_CALL // (punch.in == TRUE) when any "RUN" has contained // a SELECTED_OUTPUT block since the last LoadDatabase call. // - // Since LoadDatabase inititializes punch.in to FALSE + // Since LoadDatabase initializes punch.in to FALSE // (via UnLoadDatabase...do_initialize) // and punch.in is set to TRUE in read_selected_output // diff --git a/src/IPhreeqc.h b/src/IPhreeqc.h index 6be24c24..a45b9b9d 100644 --- a/src/IPhreeqc.h +++ b/src/IPhreeqc.h @@ -73,7 +73,7 @@ extern "C" { * Internally used to create an error condition. * @param id The instance id returned from @ref CreateIPhreeqc. * @param error_msg The error message to display. - * @return The current error count if successful; otherwise a negative value indicates an error occured (see @ref IPQ_RESULT). + * @return The current error count if successful; otherwise a negative value indicates an error occurred (see @ref IPQ_RESULT). * @see GetErrorString, GetErrorStringLine, GetErrorStringLineCount, OutputErrorString * @par Fortran90 Interface: * @htmlonly @@ -96,7 +96,7 @@ extern "C" { * Internally used to create a warning condition. * @param id The instance id returned from @ref CreateIPhreeqc. * @param warn_msg The warning message to display. - * @return The current warning count if successful; otherwise a negative value indicates an error occured (see @ref IPQ_RESULT). + * @return The current warning count if successful; otherwise a negative value indicates an error occurred (see @ref IPQ_RESULT). * @see GetWarningString, GetWarningStringLine, GetWarningStringLineCount, OutputWarningString * @par Fortran90 Interface: * @htmlonly @@ -137,7 +137,7 @@ extern "C" { /** * Create a new IPhreeqc instance. - * @return A non-negative value if successful; otherwise a negative value indicates an error occured (see @ref IPQ_RESULT). + * @return A non-negative value if successful; otherwise a negative value indicates an error occurred (see @ref IPQ_RESULT). * @see DestroyIPhreeqc * @par Fortran90 Interface: * @htmlonly @@ -224,7 +224,7 @@ extern "C" { * Retrieves the number of components in the current component list. * @param id The instance id returned from @ref CreateIPhreeqc. * @return The current count of components. - * A negative value indicates an error occured (see @ref IPQ_RESULT). + * A negative value indicates an error occurred (see @ref IPQ_RESULT). * @see GetComponent * @par Fortran90 Interface: * @htmlonly @@ -671,7 +671,7 @@ extern "C" { * Retrieves the nth user number of the currently defined SELECTED_OUTPUT keyword blocks. * @param id The instance id returned from @ref CreateIPhreeqc. * @param n The zero-based index of the SELECTED_OUTPUT user number to retrieve. - * @return The nth defined user number; a negative value indicates an error occured. + * @return The nth defined user number; a negative value indicates an error occurred. * @see GetCurrentSelectedOutputUserNumber, GetSelectedOutputCount, SetCurrentSelectedOutputUserNumber * @pre @ref RunAccumulated, @ref RunFile, @ref RunString must have been called and returned 0 (zero) errors. * @par Fortran90 Interface: diff --git a/src/IPhreeqc.hpp b/src/IPhreeqc.hpp index 036b14ca..71427478 100644 --- a/src/IPhreeqc.hpp +++ b/src/IPhreeqc.hpp @@ -25,7 +25,7 @@ class SelectedOutput; * @class IPhreeqcStop * * @brief This class is derived from std::exception and is thrown - * when an unrecoverable error has occured. + * when an unrecoverable error has occurred. */ class IPQ_DLL_EXPORT IPhreeqcStop : public std::exception { @@ -289,7 +289,7 @@ public: /** * Retrieves the nth user number of the currently defined SELECTED_OUTPUT blocks. * @param n The zero-based index of the SELECTED_OUTPUT user number to retrieve. - * @return The nth defined user number; a negative value indicates an error occured. + * @return The nth defined user number; a negative value indicates an error occurred. * @see GetCurrentSelectedOutputUserNumber, GetSelectedOutputCount, SetCurrentSelectedOutputUserNumber */ int GetNthSelectedOutputUserNumber(int n)const; diff --git a/test_ieee/cdmusic_hiemstra.dat b/test_ieee/cdmusic_hiemstra.dat index 49419f8a..0f71dcb9 100644 --- a/test_ieee/cdmusic_hiemstra.dat +++ b/test_ieee/cdmusic_hiemstra.dat @@ -347,7 +347,7 @@ SURFACE_SPECIES Fhy_triOH0.5 = Fhy_triO-0.5 + 0.5H+ -cd_music -0.5 0 0 0 0 - log_k 10 # make neglible + log_k 10 # make negligible Fhy_triO-0.5 + H+ = Fhy_triOH+0.5 -cd_music 1 0 0 0 0 @@ -427,7 +427,7 @@ SURFACE_SPECIES Fhy_unicOH1.5 = Fhy_unicOH-0.5 + 0.5H+ -cd_music -0.5 0 0 0 0 - log_k 10 # make neglible + log_k 10 # make negligible Fhy_unicOH-0.5 + H+ = Fhy_unicOH2+0.5 -cd_music 1 0 0 0 0 diff --git a/unit/TestIPhreeqc.cpp b/unit/TestIPhreeqc.cpp index b0321a4f..a73f9aed 100644 --- a/unit/TestIPhreeqc.cpp +++ b/unit/TestIPhreeqc.cpp @@ -3592,7 +3592,7 @@ void TestIPhreeqc::TestCErrorReporter(void) void TestIPhreeqc::TestDelete(void) { const char input[] = - "SOLUTION 1 # definition of intial condition 1\n" + "SOLUTION 1 # definition of initial condition 1\n" "COPY cell 1 7405 # copy cell 1 to placeholder cell with index larger than the number of cells in the model domain\n" "END\n" "DELETE # delete initial condition 1 to allow for a redefinition of all reactions\n" diff --git a/unit/TestIPhreeqcLib.cpp b/unit/TestIPhreeqcLib.cpp index 9648b406..04dce512 100644 --- a/unit/TestIPhreeqcLib.cpp +++ b/unit/TestIPhreeqcLib.cpp @@ -3971,7 +3971,7 @@ void TestIPhreeqcLib::TestIEEE(void) void TestIPhreeqcLib::TestDelete(void) { const char input[] = - "SOLUTION 1 # definition of intial condition 1\n" + "SOLUTION 1 # definition of initial condition 1\n" "COPY cell 1 7405 # copy cell 1 to placeholder cell with index larger than the number of cells in the model domain\n" "END\n" "DELETE # delete initial condition 1 to allow for a redefinition of all reactions\n" From 8a45f9f23aada771e87e17e365437bbb65f21bfe Mon Sep 17 00:00:00 2001 From: Mike Taves Date: Mon, 2 Dec 2024 15:28:05 +1300 Subject: [PATCH 256/384] Fix typos --- CSelectedOutput.cpp | 8 ++++---- IPhreeqc.cpp | 14 +++++++------- IPhreeqc.h | 10 +++++----- IPhreeqc.hpp | 4 ++-- 4 files changed, 18 insertions(+), 18 deletions(-) diff --git a/CSelectedOutput.cpp b/CSelectedOutput.cpp index 5298f1cb..23aeb60d 100644 --- a/CSelectedOutput.cpp +++ b/CSelectedOutput.cpp @@ -247,8 +247,8 @@ std::ostream& operator<< (std::ostream &os, const CSelectedOutput &a) void CSelectedOutput::Serialize( int row_number, std::vector &types, // each column for each row types, including headings - std::vector &longs, // in order by occurance - std::vector &doubles, // in order by occurance + std::vector &longs, // in order by occurrence + std::vector &doubles, // in order by occurrence std::string &strings) { types.clear(); @@ -300,8 +300,8 @@ void CSelectedOutput::Serialize( } void CSelectedOutput::DeSerialize( std::vector &types, // each column for each row types, including headings - std::vector &longs, // in order by occurance - std::vector &doubles, // in order by occurance + std::vector &longs, // in order by occurrence + std::vector &doubles, // in order by occurrence std::string &strings) { size_t i_types = 0, i_longs = 0, i_doubles = 0; diff --git a/IPhreeqc.cpp b/IPhreeqc.cpp index 20b967b4..e5b45017 100644 --- a/IPhreeqc.cpp +++ b/IPhreeqc.cpp @@ -110,7 +110,7 @@ VRESULT IPhreeqc::AccumulateLine(const char *line) } catch (...) { - this->AddError("AccumulateLine: An unhandled exception occured.\n"); + this->AddError("AccumulateLine: An unhandled exception occurred.\n"); throw; } return VR_OUTOFMEMORY; @@ -607,7 +607,7 @@ int IPhreeqc::load_db(const char* filename) } catch (...) { - const char *errmsg = "LoadDatabase: An unhandled exception occured.\n"; + const char *errmsg = "LoadDatabase: An unhandled exception occurred.\n"; try { this->PhreeqcPtr->error_msg(errmsg, STOP); // throws IPhreeqcStop @@ -670,7 +670,7 @@ int IPhreeqc::load_db_str(const char* input) } catch(...) { - const char *errmsg = "LoadDatabaseString: An unhandled exception occured.\n"; + const char *errmsg = "LoadDatabaseString: An unhandled exception occurred.\n"; try { this->PhreeqcPtr->error_msg(errmsg, STOP); // throws PhreeqcStop @@ -773,7 +773,7 @@ int IPhreeqc::RunAccumulated(void) } catch(...) { - const char *errmsg = "RunAccumulated: An unhandled exception occured.\n"; + const char *errmsg = "RunAccumulated: An unhandled exception occurred.\n"; try { this->PhreeqcPtr->error_msg(errmsg, STOP); // throws PhreeqcStop @@ -844,7 +844,7 @@ int IPhreeqc::RunFile(const char* filename) } catch(...) { - const char *errmsg = "RunFile: An unhandled exception occured.\n"; + const char *errmsg = "RunFile: An unhandled exception occurred.\n"; try { this->PhreeqcPtr->error_msg(errmsg, STOP); // throws PhreeqcStop @@ -907,7 +907,7 @@ int IPhreeqc::RunString(const char* input) } catch(...) { - const char *errmsg = "RunString: An unhandled exception occured.\n"; + const char *errmsg = "RunString: An unhandled exception occurred.\n"; try { this->PhreeqcPtr->error_msg(errmsg, STOP); // throws PhreeqcStop @@ -1285,7 +1285,7 @@ void IPhreeqc::do_run(const char* sz_routine, std::istream* pis, PFN_PRERUN_CALL // (punch.in == TRUE) when any "RUN" has contained // a SELECTED_OUTPUT block since the last LoadDatabase call. // - // Since LoadDatabase inititializes punch.in to FALSE + // Since LoadDatabase initializes punch.in to FALSE // (via UnLoadDatabase...do_initialize) // and punch.in is set to TRUE in read_selected_output // diff --git a/IPhreeqc.h b/IPhreeqc.h index 6be24c24..a45b9b9d 100644 --- a/IPhreeqc.h +++ b/IPhreeqc.h @@ -73,7 +73,7 @@ extern "C" { * Internally used to create an error condition. * @param id The instance id returned from @ref CreateIPhreeqc. * @param error_msg The error message to display. - * @return The current error count if successful; otherwise a negative value indicates an error occured (see @ref IPQ_RESULT). + * @return The current error count if successful; otherwise a negative value indicates an error occurred (see @ref IPQ_RESULT). * @see GetErrorString, GetErrorStringLine, GetErrorStringLineCount, OutputErrorString * @par Fortran90 Interface: * @htmlonly @@ -96,7 +96,7 @@ extern "C" { * Internally used to create a warning condition. * @param id The instance id returned from @ref CreateIPhreeqc. * @param warn_msg The warning message to display. - * @return The current warning count if successful; otherwise a negative value indicates an error occured (see @ref IPQ_RESULT). + * @return The current warning count if successful; otherwise a negative value indicates an error occurred (see @ref IPQ_RESULT). * @see GetWarningString, GetWarningStringLine, GetWarningStringLineCount, OutputWarningString * @par Fortran90 Interface: * @htmlonly @@ -137,7 +137,7 @@ extern "C" { /** * Create a new IPhreeqc instance. - * @return A non-negative value if successful; otherwise a negative value indicates an error occured (see @ref IPQ_RESULT). + * @return A non-negative value if successful; otherwise a negative value indicates an error occurred (see @ref IPQ_RESULT). * @see DestroyIPhreeqc * @par Fortran90 Interface: * @htmlonly @@ -224,7 +224,7 @@ extern "C" { * Retrieves the number of components in the current component list. * @param id The instance id returned from @ref CreateIPhreeqc. * @return The current count of components. - * A negative value indicates an error occured (see @ref IPQ_RESULT). + * A negative value indicates an error occurred (see @ref IPQ_RESULT). * @see GetComponent * @par Fortran90 Interface: * @htmlonly @@ -671,7 +671,7 @@ extern "C" { * Retrieves the nth user number of the currently defined SELECTED_OUTPUT keyword blocks. * @param id The instance id returned from @ref CreateIPhreeqc. * @param n The zero-based index of the SELECTED_OUTPUT user number to retrieve. - * @return The nth defined user number; a negative value indicates an error occured. + * @return The nth defined user number; a negative value indicates an error occurred. * @see GetCurrentSelectedOutputUserNumber, GetSelectedOutputCount, SetCurrentSelectedOutputUserNumber * @pre @ref RunAccumulated, @ref RunFile, @ref RunString must have been called and returned 0 (zero) errors. * @par Fortran90 Interface: diff --git a/IPhreeqc.hpp b/IPhreeqc.hpp index 036b14ca..71427478 100644 --- a/IPhreeqc.hpp +++ b/IPhreeqc.hpp @@ -25,7 +25,7 @@ class SelectedOutput; * @class IPhreeqcStop * * @brief This class is derived from std::exception and is thrown - * when an unrecoverable error has occured. + * when an unrecoverable error has occurred. */ class IPQ_DLL_EXPORT IPhreeqcStop : public std::exception { @@ -289,7 +289,7 @@ public: /** * Retrieves the nth user number of the currently defined SELECTED_OUTPUT blocks. * @param n The zero-based index of the SELECTED_OUTPUT user number to retrieve. - * @return The nth defined user number; a negative value indicates an error occured. + * @return The nth defined user number; a negative value indicates an error occurred. * @see GetCurrentSelectedOutputUserNumber, GetSelectedOutputCount, SetCurrentSelectedOutputUserNumber */ int GetNthSelectedOutputUserNumber(int n)const; From a0ea2708e5bace20877bdafb23bbe9f14b84c82d Mon Sep 17 00:00:00 2001 From: Mike Taves Date: Mon, 2 Dec 2024 15:28:05 +1300 Subject: [PATCH 257/384] Fix typos --- python/parallel_advect.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/python/parallel_advect.py b/python/parallel_advect.py index a1229d8b..74b01084 100644 --- a/python/parallel_advect.py +++ b/python/parallel_advect.py @@ -214,7 +214,7 @@ class ReactionModel(object): class PhreeqcCalculator(object): """All PHREEQC calculations happen here. - This is the only place where we interact wit IPhreeqc. + This is the only place where we interact with IPhreeqc. Each instance of this class might run in a different process using `multiprocessing`. """ From 26ffbfee947389c596d449bf6771a163c5d74b4a Mon Sep 17 00:00:00 2001 From: Mike Taves Date: Mon, 2 Dec 2024 15:28:05 +1300 Subject: [PATCH 258/384] Fix typos --- python/parallel_advect.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/python/parallel_advect.py b/python/parallel_advect.py index a1229d8b..74b01084 100644 --- a/python/parallel_advect.py +++ b/python/parallel_advect.py @@ -214,7 +214,7 @@ class ReactionModel(object): class PhreeqcCalculator(object): """All PHREEQC calculations happen here. - This is the only place where we interact wit IPhreeqc. + This is the only place where we interact with IPhreeqc. Each instance of this class might run in a different process using `multiprocessing`. """ From 51eedbc27a828ff36a1ca732abea394e7f7f32bd Mon Sep 17 00:00:00 2001 From: Mike Taves Date: Mon, 2 Dec 2024 15:28:05 +1300 Subject: [PATCH 259/384] Fix typos --- CSelectedOutput.cpp | 8 ++++---- IPhreeqc.cpp | 14 +++++++------- IPhreeqc.h | 10 +++++----- IPhreeqc.hpp | 4 ++-- 4 files changed, 18 insertions(+), 18 deletions(-) diff --git a/CSelectedOutput.cpp b/CSelectedOutput.cpp index 5298f1cb..23aeb60d 100644 --- a/CSelectedOutput.cpp +++ b/CSelectedOutput.cpp @@ -247,8 +247,8 @@ std::ostream& operator<< (std::ostream &os, const CSelectedOutput &a) void CSelectedOutput::Serialize( int row_number, std::vector &types, // each column for each row types, including headings - std::vector &longs, // in order by occurance - std::vector &doubles, // in order by occurance + std::vector &longs, // in order by occurrence + std::vector &doubles, // in order by occurrence std::string &strings) { types.clear(); @@ -300,8 +300,8 @@ void CSelectedOutput::Serialize( } void CSelectedOutput::DeSerialize( std::vector &types, // each column for each row types, including headings - std::vector &longs, // in order by occurance - std::vector &doubles, // in order by occurance + std::vector &longs, // in order by occurrence + std::vector &doubles, // in order by occurrence std::string &strings) { size_t i_types = 0, i_longs = 0, i_doubles = 0; diff --git a/IPhreeqc.cpp b/IPhreeqc.cpp index 20b967b4..e5b45017 100644 --- a/IPhreeqc.cpp +++ b/IPhreeqc.cpp @@ -110,7 +110,7 @@ VRESULT IPhreeqc::AccumulateLine(const char *line) } catch (...) { - this->AddError("AccumulateLine: An unhandled exception occured.\n"); + this->AddError("AccumulateLine: An unhandled exception occurred.\n"); throw; } return VR_OUTOFMEMORY; @@ -607,7 +607,7 @@ int IPhreeqc::load_db(const char* filename) } catch (...) { - const char *errmsg = "LoadDatabase: An unhandled exception occured.\n"; + const char *errmsg = "LoadDatabase: An unhandled exception occurred.\n"; try { this->PhreeqcPtr->error_msg(errmsg, STOP); // throws IPhreeqcStop @@ -670,7 +670,7 @@ int IPhreeqc::load_db_str(const char* input) } catch(...) { - const char *errmsg = "LoadDatabaseString: An unhandled exception occured.\n"; + const char *errmsg = "LoadDatabaseString: An unhandled exception occurred.\n"; try { this->PhreeqcPtr->error_msg(errmsg, STOP); // throws PhreeqcStop @@ -773,7 +773,7 @@ int IPhreeqc::RunAccumulated(void) } catch(...) { - const char *errmsg = "RunAccumulated: An unhandled exception occured.\n"; + const char *errmsg = "RunAccumulated: An unhandled exception occurred.\n"; try { this->PhreeqcPtr->error_msg(errmsg, STOP); // throws PhreeqcStop @@ -844,7 +844,7 @@ int IPhreeqc::RunFile(const char* filename) } catch(...) { - const char *errmsg = "RunFile: An unhandled exception occured.\n"; + const char *errmsg = "RunFile: An unhandled exception occurred.\n"; try { this->PhreeqcPtr->error_msg(errmsg, STOP); // throws PhreeqcStop @@ -907,7 +907,7 @@ int IPhreeqc::RunString(const char* input) } catch(...) { - const char *errmsg = "RunString: An unhandled exception occured.\n"; + const char *errmsg = "RunString: An unhandled exception occurred.\n"; try { this->PhreeqcPtr->error_msg(errmsg, STOP); // throws PhreeqcStop @@ -1285,7 +1285,7 @@ void IPhreeqc::do_run(const char* sz_routine, std::istream* pis, PFN_PRERUN_CALL // (punch.in == TRUE) when any "RUN" has contained // a SELECTED_OUTPUT block since the last LoadDatabase call. // - // Since LoadDatabase inititializes punch.in to FALSE + // Since LoadDatabase initializes punch.in to FALSE // (via UnLoadDatabase...do_initialize) // and punch.in is set to TRUE in read_selected_output // diff --git a/IPhreeqc.h b/IPhreeqc.h index 6be24c24..a45b9b9d 100644 --- a/IPhreeqc.h +++ b/IPhreeqc.h @@ -73,7 +73,7 @@ extern "C" { * Internally used to create an error condition. * @param id The instance id returned from @ref CreateIPhreeqc. * @param error_msg The error message to display. - * @return The current error count if successful; otherwise a negative value indicates an error occured (see @ref IPQ_RESULT). + * @return The current error count if successful; otherwise a negative value indicates an error occurred (see @ref IPQ_RESULT). * @see GetErrorString, GetErrorStringLine, GetErrorStringLineCount, OutputErrorString * @par Fortran90 Interface: * @htmlonly @@ -96,7 +96,7 @@ extern "C" { * Internally used to create a warning condition. * @param id The instance id returned from @ref CreateIPhreeqc. * @param warn_msg The warning message to display. - * @return The current warning count if successful; otherwise a negative value indicates an error occured (see @ref IPQ_RESULT). + * @return The current warning count if successful; otherwise a negative value indicates an error occurred (see @ref IPQ_RESULT). * @see GetWarningString, GetWarningStringLine, GetWarningStringLineCount, OutputWarningString * @par Fortran90 Interface: * @htmlonly @@ -137,7 +137,7 @@ extern "C" { /** * Create a new IPhreeqc instance. - * @return A non-negative value if successful; otherwise a negative value indicates an error occured (see @ref IPQ_RESULT). + * @return A non-negative value if successful; otherwise a negative value indicates an error occurred (see @ref IPQ_RESULT). * @see DestroyIPhreeqc * @par Fortran90 Interface: * @htmlonly @@ -224,7 +224,7 @@ extern "C" { * Retrieves the number of components in the current component list. * @param id The instance id returned from @ref CreateIPhreeqc. * @return The current count of components. - * A negative value indicates an error occured (see @ref IPQ_RESULT). + * A negative value indicates an error occurred (see @ref IPQ_RESULT). * @see GetComponent * @par Fortran90 Interface: * @htmlonly @@ -671,7 +671,7 @@ extern "C" { * Retrieves the nth user number of the currently defined SELECTED_OUTPUT keyword blocks. * @param id The instance id returned from @ref CreateIPhreeqc. * @param n The zero-based index of the SELECTED_OUTPUT user number to retrieve. - * @return The nth defined user number; a negative value indicates an error occured. + * @return The nth defined user number; a negative value indicates an error occurred. * @see GetCurrentSelectedOutputUserNumber, GetSelectedOutputCount, SetCurrentSelectedOutputUserNumber * @pre @ref RunAccumulated, @ref RunFile, @ref RunString must have been called and returned 0 (zero) errors. * @par Fortran90 Interface: diff --git a/IPhreeqc.hpp b/IPhreeqc.hpp index 036b14ca..71427478 100644 --- a/IPhreeqc.hpp +++ b/IPhreeqc.hpp @@ -25,7 +25,7 @@ class SelectedOutput; * @class IPhreeqcStop * * @brief This class is derived from std::exception and is thrown - * when an unrecoverable error has occured. + * when an unrecoverable error has occurred. */ class IPQ_DLL_EXPORT IPhreeqcStop : public std::exception { @@ -289,7 +289,7 @@ public: /** * Retrieves the nth user number of the currently defined SELECTED_OUTPUT blocks. * @param n The zero-based index of the SELECTED_OUTPUT user number to retrieve. - * @return The nth defined user number; a negative value indicates an error occured. + * @return The nth defined user number; a negative value indicates an error occurred. * @see GetCurrentSelectedOutputUserNumber, GetSelectedOutputCount, SetCurrentSelectedOutputUserNumber */ int GetNthSelectedOutputUserNumber(int n)const; From bf60c1ca9d528f429086991e96e445f6b3976981 Mon Sep 17 00:00:00 2001 From: Mike Taves Date: Mon, 2 Dec 2024 15:28:05 +1300 Subject: [PATCH 260/384] Fix typos --- OtherDatabases/CEMDATA18-31-03-2022-phaseVol.dat | 2 +- OtherDatabases/CEMDATA18.1-16-01-2019-phaseVol.dat | 2 +- OtherDatabases/CEMDATA18.dat | 2 +- OtherDatabases/PSINA_12_07_110615_DAV_s_win.dat | 2 +- 4 files changed, 4 insertions(+), 4 deletions(-) diff --git a/OtherDatabases/CEMDATA18-31-03-2022-phaseVol.dat b/OtherDatabases/CEMDATA18-31-03-2022-phaseVol.dat index 1006f59b..02b98dc6 100644 --- a/OtherDatabases/CEMDATA18-31-03-2022-phaseVol.dat +++ b/OtherDatabases/CEMDATA18-31-03-2022-phaseVol.dat @@ -24,7 +24,7 @@ SOLUTION_MASTER_SPECIES # -# elemen species alk gfw_formula element_gfw atomic number +# element species alk gfw_formula element_gfw atomic number # diff --git a/OtherDatabases/CEMDATA18.1-16-01-2019-phaseVol.dat b/OtherDatabases/CEMDATA18.1-16-01-2019-phaseVol.dat index c27d0cd5..37a27609 100644 --- a/OtherDatabases/CEMDATA18.1-16-01-2019-phaseVol.dat +++ b/OtherDatabases/CEMDATA18.1-16-01-2019-phaseVol.dat @@ -22,7 +22,7 @@ SOLUTION_MASTER_SPECIES # -# elemen species alk gfw_formula element_gfw atomic number +# element species alk gfw_formula element_gfw atomic number # diff --git a/OtherDatabases/CEMDATA18.dat b/OtherDatabases/CEMDATA18.dat index 80be5ba5..961964fc 100644 --- a/OtherDatabases/CEMDATA18.dat +++ b/OtherDatabases/CEMDATA18.dat @@ -18,7 +18,7 @@ SOLUTION_MASTER_SPECIES # -# elemen species alk gfw_formula element_gfw atomic number +# element species alk gfw_formula element_gfw atomic number # diff --git a/OtherDatabases/PSINA_12_07_110615_DAV_s_win.dat b/OtherDatabases/PSINA_12_07_110615_DAV_s_win.dat index 0e6c024f..23d30410 100644 --- a/OtherDatabases/PSINA_12_07_110615_DAV_s_win.dat +++ b/OtherDatabases/PSINA_12_07_110615_DAV_s_win.dat @@ -61,7 +61,7 @@ SOLUTION_MASTER_SPECIES # # # -# elemen species alk gfw_formula element_gfw atomic Disposition Source of data +# element species alk gfw_formula element_gfw atomic Disposition Source of data # number PMATCHC # H H+ -1.0 H 1.008 # 1 Ele NAGRA NTB 91-17 From b392fb02f6e2bfdc696c6310cc311298f34c09de Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Tue, 3 Dec 2024 15:28:50 -0700 Subject: [PATCH 261/384] Updated phreeqc urls for R --- R/phreeqc.R.in | 74 +++++++++++++++++++++++++------------------------- 1 file changed, 37 insertions(+), 37 deletions(-) diff --git a/R/phreeqc.R.in b/R/phreeqc.R.in index 311db924..d6600436 100644 --- a/R/phreeqc.R.in +++ b/R/phreeqc.R.in @@ -338,7 +338,7 @@ function() { ##' @useDynLib phreeqc, .registration = TRUE ##' @return TRUE if log messages are currently being stored as a character vector. ##' @family Log -##' @references \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @references \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' phrGetLogStringsOn <- function() { @@ -1386,7 +1386,7 @@ function(nuser, value) { ##' @docType data ##' @family Databases ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @usage Amm.dat # phrLoadDatabaseString(Amm.dat) ##' @keywords dataset NULL @@ -1401,7 +1401,7 @@ NULL ##' The database has been reformatted for use by \code{\link{phrLoadDatabaseString}}. ##' @docType data ##' @family Databases -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @usage ColdChem.dat # phrLoadDatabaseString(ColdChem.dat) ##' @keywords dataset NULL @@ -1433,7 +1433,7 @@ NULL ##' @docType data ##' @family Databases ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @usage ex15.dat # phrLoadDatabaseString(ex15.dat) ##' @keywords dataset NULL @@ -1464,7 +1464,7 @@ NULL ##' @docType data ##' @family Databases ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @usage iso.dat # phrLoadDatabaseString(iso.dat) ##' @keywords dataset NULL @@ -1481,7 +1481,7 @@ NULL ##' @docType data ##' @family Databases ##' @references Hermanska et al. (2022, 2003) and Oelkers and Addassi (2024, in preparation). -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @usage Kinec_v3.dat # phrLoadDatabaseString(Kinec_v3.dat) ##' @keywords dataset NULL @@ -1498,7 +1498,7 @@ NULL ##' @docType data ##' @family Databases ##' @references Hermanska et al. (2022, 2003) and Oelkers and Addassi (2024, in preparation). -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @usage Kinec.v2.dat # phrLoadDatabaseString(Kinec.v2.dat) ##' @keywords dataset NULL @@ -1528,7 +1528,7 @@ NULL ##' @docType data ##' @family Databases ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @usage minteq.dat # phrLoadDatabaseString(minteq.dat) ##' @keywords dataset NULL @@ -1543,7 +1543,7 @@ NULL ##' @docType data ##' @family Databases ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @usage minteq.v4.dat # phrLoadDatabaseString(minteq.v4.dat) ##' @keywords dataset NULL @@ -1564,7 +1564,7 @@ NULL ##' @family Databases ##' @references Hermanska and others (2023), Palandri and Kharaka (2004), ##' and Sverdrup and others (2019). -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @usage phreeqc_rates.dat # phrLoadDatabaseString(phreeqc_rates.dat) ##' @keywords dataset NULL @@ -1577,7 +1577,7 @@ NULL ##' @docType data ##' @family Databases ##' @references \url{https://thermoddem.brgm.fr/} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @usage PHREEQC_ThermoddemV1.10_15Dec2020.dat ##' # phrLoadDatabaseString(PHREEQC_ThermoddemV1.10_15Dec2020.dat) NULL @@ -1593,7 +1593,7 @@ NULL ##' @docType data ##' @family Databases ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @usage phreeqc.dat # phrLoadDatabaseString(phreeqc.dat) ##' @keywords dataset NULL @@ -1608,7 +1608,7 @@ NULL ##' @docType data ##' @family Databases ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @usage pitzer.dat # phrLoadDatabaseString(pitzer.dat) ##' @keywords dataset NULL @@ -1624,7 +1624,7 @@ NULL ##' @docType data ##' @family Databases ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @usage sit.dat # phrLoadDatabaseString(sit.dat) ##' @keywords dataset NULL @@ -1651,7 +1651,7 @@ NULL ##' @docType data ##' @family Databases ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @usage wateq4f.dat # phrLoadDatabaseString(wateq4f.dat) ##' @keywords dataset NULL @@ -1668,7 +1668,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @keywords dataset ##' @examples ##' @@ -1689,7 +1689,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @keywords dataset ##' @examples ##' @@ -1721,7 +1721,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @keywords dataset ##' @examples ##' @@ -1753,7 +1753,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @keywords dataset ##' @examples ##' @@ -1780,7 +1780,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @keywords dataset ##' @examples ##' @@ -1806,7 +1806,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @keywords dataset ##' @examples ##' @@ -1841,7 +1841,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @keywords dataset ##' @examples ##' @@ -1866,7 +1866,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @keywords dataset ##' @examples ##' @@ -1905,7 +1905,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @keywords dataset ##' @examples ##' @@ -1933,7 +1933,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @keywords dataset ##' @examples ##' @@ -1960,7 +1960,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @keywords dataset ##' @examples ##' @@ -1995,7 +1995,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @keywords dataset ##' @examples ##' @@ -2025,7 +2025,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @keywords dataset ##' @examples ##' @@ -2058,7 +2058,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @keywords dataset ##' @examples ##' @@ -2088,7 +2088,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @keywords dataset ##' @examples ##' @@ -2121,7 +2121,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @keywords dataset ##' @examples ##' @@ -2153,7 +2153,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @keywords dataset ##' @examples ##' @@ -2195,7 +2195,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @keywords dataset ##' @examples ##' @@ -2223,7 +2223,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @keywords dataset ##' @examples ##' @@ -2259,7 +2259,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @keywords dataset ##' @examples ##' @@ -2291,7 +2291,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @keywords dataset ##' @examples ##' @@ -2324,7 +2324,7 @@ NULL ##' @docType data ##' @family Examples ##' @references \url{https://pubs.usgs.gov/tm/06/a43/pdf/tm6-A43.pdf} -##' @source \url{https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc} +##' @source \url{https://www.usgs.gov/software/phreeqc-version-3/} ##' @keywords dataset ##' @examples ##' From 4783d836719ccacc52264cfc1866ad1f1ccfd08a Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Tue, 3 Dec 2024 16:13:01 -0700 Subject: [PATCH 262/384] Changed http to https --- R/CITATION | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/R/CITATION b/R/CITATION index a808f4fc..2cff6fb1 100644 --- a/R/CITATION +++ b/R/CITATION @@ -32,7 +32,7 @@ citEntry(entry="Article", journal = "Computers & Geosciences", volume = "37", pages = "1653-1663", - url = "http://dx.doi.org/10.1016/j.cageo.2011.02.005", + url = "https://dx.doi.org/10.1016/j.cageo.2011.02.005", textVersion = paste("Charlton, S.R., and Parkhurst, D.L, 2011, Modules based ", From 7e412da938f8c163004a17d5e30a874a045d541c Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Tue, 3 Dec 2024 17:10:50 -0700 Subject: [PATCH 263/384] Updated Author metadata --- R/DESCRIPTION.in | 36 +++++++++++++++++++++++++++++------- 1 file changed, 29 insertions(+), 7 deletions(-) diff --git a/R/DESCRIPTION.in b/R/DESCRIPTION.in index d12094b9..440b0f74 100644 --- a/R/DESCRIPTION.in +++ b/R/DESCRIPTION.in @@ -4,13 +4,35 @@ Version: @VERSION@ License: GPL-3 NeedsCompilation: yes Depends: R (>= 3.5.0) -Authors@R: c(person(given = "S.R.", - family = "Charlton", - role = c("aut", "cre"), - email = "charlton@usgs.gov")) -Author: S.R. Charlton [aut, cre], D.L. Parkhurst [aut], and C.A.J. Appelo [aut], with contributions - from D. Gillespie [ctb] for Chipmunk BASIC and S.D. Cohen [ctb], A.C. Hindmarsh [ctb], - R. Serban [ctb], D. Shumaker [ctb], and A.G. Taylor [ctb] for CVODE/SUNDIALS +Authors@R: + c(person(given = "S.R.", + family = "Charlton", + role = c("aut", "cre"), + email = "charlton@usgs.gov"), + person(given = "D.L.", + family = "Parkhurst", + role = "aut"), + person(given = "C.A.J.", + family = "Appelo", + role = "aut"), + person(given = c("with", "contributions", "from", "D.", "Gillespie", "for", "Chipmunk"), + family = "BASIC", + role = "aut"), + person(given = "S.D.", + family = "Cohen", + role = "aut"), + person(given = "A.C.", + family = "Hindmarsh", + role = "aut"), + person(given = "R.", + family = "Serban", + role = "aut"), + person(given = "D.", + family = "Shumaker", + role = "aut"), + person(given = c("A.G.", "Taylor", "for"), + family = "CVODE/SUNDIALS", + role = "aut")) URL: https://www.usgs.gov/software/phreeqc-version-3 Description: A geochemical modeling program developed by the US Geological Survey that is designed to perform a wide variety of aqueous geochemical From 8f9acfc77c9261e87c156056b8acafc21946298f Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Thu, 5 Dec 2024 16:52:03 -0700 Subject: [PATCH 264/384] Updated cmake_minimum_required and fixed surf_error test --- CMakeLists.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index 4da5d523..64a40b1b 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -1,4 +1,4 @@ -cmake_minimum_required (VERSION 3.9) +cmake_minimum_required (VERSION 3.10) SET(phreeqc_EXAMPLES co2.dat From 3e3c06308338cfdb1eda420553ff9b6058a95643 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Fri, 6 Dec 2024 00:27:53 +0000 Subject: [PATCH 265/384] Squashed 'src/' changes from 7bae85a3..51eedbc2 51eedbc2 Fix typos git-subtree-dir: src git-subtree-split: 51eedbc27a828ff36a1ca732abea394e7f7f32bd --- CSelectedOutput.cpp | 8 ++++---- IPhreeqc.cpp | 14 +++++++------- IPhreeqc.h | 10 +++++----- IPhreeqc.hpp | 4 ++-- 4 files changed, 18 insertions(+), 18 deletions(-) diff --git a/CSelectedOutput.cpp b/CSelectedOutput.cpp index 5298f1cb..23aeb60d 100644 --- a/CSelectedOutput.cpp +++ b/CSelectedOutput.cpp @@ -247,8 +247,8 @@ std::ostream& operator<< (std::ostream &os, const CSelectedOutput &a) void CSelectedOutput::Serialize( int row_number, std::vector &types, // each column for each row types, including headings - std::vector &longs, // in order by occurance - std::vector &doubles, // in order by occurance + std::vector &longs, // in order by occurrence + std::vector &doubles, // in order by occurrence std::string &strings) { types.clear(); @@ -300,8 +300,8 @@ void CSelectedOutput::Serialize( } void CSelectedOutput::DeSerialize( std::vector &types, // each column for each row types, including headings - std::vector &longs, // in order by occurance - std::vector &doubles, // in order by occurance + std::vector &longs, // in order by occurrence + std::vector &doubles, // in order by occurrence std::string &strings) { size_t i_types = 0, i_longs = 0, i_doubles = 0; diff --git a/IPhreeqc.cpp b/IPhreeqc.cpp index 20b967b4..e5b45017 100644 --- a/IPhreeqc.cpp +++ b/IPhreeqc.cpp @@ -110,7 +110,7 @@ VRESULT IPhreeqc::AccumulateLine(const char *line) } catch (...) { - this->AddError("AccumulateLine: An unhandled exception occured.\n"); + this->AddError("AccumulateLine: An unhandled exception occurred.\n"); throw; } return VR_OUTOFMEMORY; @@ -607,7 +607,7 @@ int IPhreeqc::load_db(const char* filename) } catch (...) { - const char *errmsg = "LoadDatabase: An unhandled exception occured.\n"; + const char *errmsg = "LoadDatabase: An unhandled exception occurred.\n"; try { this->PhreeqcPtr->error_msg(errmsg, STOP); // throws IPhreeqcStop @@ -670,7 +670,7 @@ int IPhreeqc::load_db_str(const char* input) } catch(...) { - const char *errmsg = "LoadDatabaseString: An unhandled exception occured.\n"; + const char *errmsg = "LoadDatabaseString: An unhandled exception occurred.\n"; try { this->PhreeqcPtr->error_msg(errmsg, STOP); // throws PhreeqcStop @@ -773,7 +773,7 @@ int IPhreeqc::RunAccumulated(void) } catch(...) { - const char *errmsg = "RunAccumulated: An unhandled exception occured.\n"; + const char *errmsg = "RunAccumulated: An unhandled exception occurred.\n"; try { this->PhreeqcPtr->error_msg(errmsg, STOP); // throws PhreeqcStop @@ -844,7 +844,7 @@ int IPhreeqc::RunFile(const char* filename) } catch(...) { - const char *errmsg = "RunFile: An unhandled exception occured.\n"; + const char *errmsg = "RunFile: An unhandled exception occurred.\n"; try { this->PhreeqcPtr->error_msg(errmsg, STOP); // throws PhreeqcStop @@ -907,7 +907,7 @@ int IPhreeqc::RunString(const char* input) } catch(...) { - const char *errmsg = "RunString: An unhandled exception occured.\n"; + const char *errmsg = "RunString: An unhandled exception occurred.\n"; try { this->PhreeqcPtr->error_msg(errmsg, STOP); // throws PhreeqcStop @@ -1285,7 +1285,7 @@ void IPhreeqc::do_run(const char* sz_routine, std::istream* pis, PFN_PRERUN_CALL // (punch.in == TRUE) when any "RUN" has contained // a SELECTED_OUTPUT block since the last LoadDatabase call. // - // Since LoadDatabase inititializes punch.in to FALSE + // Since LoadDatabase initializes punch.in to FALSE // (via UnLoadDatabase...do_initialize) // and punch.in is set to TRUE in read_selected_output // diff --git a/IPhreeqc.h b/IPhreeqc.h index 6be24c24..a45b9b9d 100644 --- a/IPhreeqc.h +++ b/IPhreeqc.h @@ -73,7 +73,7 @@ extern "C" { * Internally used to create an error condition. * @param id The instance id returned from @ref CreateIPhreeqc. * @param error_msg The error message to display. - * @return The current error count if successful; otherwise a negative value indicates an error occured (see @ref IPQ_RESULT). + * @return The current error count if successful; otherwise a negative value indicates an error occurred (see @ref IPQ_RESULT). * @see GetErrorString, GetErrorStringLine, GetErrorStringLineCount, OutputErrorString * @par Fortran90 Interface: * @htmlonly @@ -96,7 +96,7 @@ extern "C" { * Internally used to create a warning condition. * @param id The instance id returned from @ref CreateIPhreeqc. * @param warn_msg The warning message to display. - * @return The current warning count if successful; otherwise a negative value indicates an error occured (see @ref IPQ_RESULT). + * @return The current warning count if successful; otherwise a negative value indicates an error occurred (see @ref IPQ_RESULT). * @see GetWarningString, GetWarningStringLine, GetWarningStringLineCount, OutputWarningString * @par Fortran90 Interface: * @htmlonly @@ -137,7 +137,7 @@ extern "C" { /** * Create a new IPhreeqc instance. - * @return A non-negative value if successful; otherwise a negative value indicates an error occured (see @ref IPQ_RESULT). + * @return A non-negative value if successful; otherwise a negative value indicates an error occurred (see @ref IPQ_RESULT). * @see DestroyIPhreeqc * @par Fortran90 Interface: * @htmlonly @@ -224,7 +224,7 @@ extern "C" { * Retrieves the number of components in the current component list. * @param id The instance id returned from @ref CreateIPhreeqc. * @return The current count of components. - * A negative value indicates an error occured (see @ref IPQ_RESULT). + * A negative value indicates an error occurred (see @ref IPQ_RESULT). * @see GetComponent * @par Fortran90 Interface: * @htmlonly @@ -671,7 +671,7 @@ extern "C" { * Retrieves the nth user number of the currently defined SELECTED_OUTPUT keyword blocks. * @param id The instance id returned from @ref CreateIPhreeqc. * @param n The zero-based index of the SELECTED_OUTPUT user number to retrieve. - * @return The nth defined user number; a negative value indicates an error occured. + * @return The nth defined user number; a negative value indicates an error occurred. * @see GetCurrentSelectedOutputUserNumber, GetSelectedOutputCount, SetCurrentSelectedOutputUserNumber * @pre @ref RunAccumulated, @ref RunFile, @ref RunString must have been called and returned 0 (zero) errors. * @par Fortran90 Interface: diff --git a/IPhreeqc.hpp b/IPhreeqc.hpp index 036b14ca..71427478 100644 --- a/IPhreeqc.hpp +++ b/IPhreeqc.hpp @@ -25,7 +25,7 @@ class SelectedOutput; * @class IPhreeqcStop * * @brief This class is derived from std::exception and is thrown - * when an unrecoverable error has occured. + * when an unrecoverable error has occurred. */ class IPQ_DLL_EXPORT IPhreeqcStop : public std::exception { @@ -289,7 +289,7 @@ public: /** * Retrieves the nth user number of the currently defined SELECTED_OUTPUT blocks. * @param n The zero-based index of the SELECTED_OUTPUT user number to retrieve. - * @return The nth defined user number; a negative value indicates an error occured. + * @return The nth defined user number; a negative value indicates an error occurred. * @see GetCurrentSelectedOutputUserNumber, GetSelectedOutputCount, SetCurrentSelectedOutputUserNumber */ int GetNthSelectedOutputUserNumber(int n)const; From fc1d6ef789171ce6feef8a7ad5fe0ce298a2a4d9 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Fri, 6 Dec 2024 00:27:54 +0000 Subject: [PATCH 266/384] Squashed 'examples/com/' changes from af8d7af7..a0ea2708 a0ea2708 Fix typos git-subtree-dir: examples/com git-subtree-split: a0ea2708e5bace20877bdafb23bbe9f14b84c82d --- python/parallel_advect.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/python/parallel_advect.py b/python/parallel_advect.py index a1229d8b..74b01084 100644 --- a/python/parallel_advect.py +++ b/python/parallel_advect.py @@ -214,7 +214,7 @@ class ReactionModel(object): class PhreeqcCalculator(object): """All PHREEQC calculations happen here. - This is the only place where we interact wit IPhreeqc. + This is the only place where we interact with IPhreeqc. Each instance of this class might run in a different process using `multiprocessing`. """ From 47a34ca634047faf645ba7302fee4f6de934dcfd Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Fri, 6 Dec 2024 00:27:57 +0000 Subject: [PATCH 267/384] Squashed 'database/' changes from 1a221cd7..bf60c1ca bf60c1ca Fix typos git-subtree-dir: database git-subtree-split: bf60c1ca9d528f429086991e96e445f6b3976981 --- OtherDatabases/CEMDATA18-31-03-2022-phaseVol.dat | 2 +- OtherDatabases/CEMDATA18.1-16-01-2019-phaseVol.dat | 2 +- OtherDatabases/CEMDATA18.dat | 2 +- OtherDatabases/PSINA_12_07_110615_DAV_s_win.dat | 2 +- 4 files changed, 4 insertions(+), 4 deletions(-) diff --git a/OtherDatabases/CEMDATA18-31-03-2022-phaseVol.dat b/OtherDatabases/CEMDATA18-31-03-2022-phaseVol.dat index 1006f59b..02b98dc6 100644 --- a/OtherDatabases/CEMDATA18-31-03-2022-phaseVol.dat +++ b/OtherDatabases/CEMDATA18-31-03-2022-phaseVol.dat @@ -24,7 +24,7 @@ SOLUTION_MASTER_SPECIES # -# elemen species alk gfw_formula element_gfw atomic number +# element species alk gfw_formula element_gfw atomic number # diff --git a/OtherDatabases/CEMDATA18.1-16-01-2019-phaseVol.dat b/OtherDatabases/CEMDATA18.1-16-01-2019-phaseVol.dat index c27d0cd5..37a27609 100644 --- a/OtherDatabases/CEMDATA18.1-16-01-2019-phaseVol.dat +++ b/OtherDatabases/CEMDATA18.1-16-01-2019-phaseVol.dat @@ -22,7 +22,7 @@ SOLUTION_MASTER_SPECIES # -# elemen species alk gfw_formula element_gfw atomic number +# element species alk gfw_formula element_gfw atomic number # diff --git a/OtherDatabases/CEMDATA18.dat b/OtherDatabases/CEMDATA18.dat index 80be5ba5..961964fc 100644 --- a/OtherDatabases/CEMDATA18.dat +++ b/OtherDatabases/CEMDATA18.dat @@ -18,7 +18,7 @@ SOLUTION_MASTER_SPECIES # -# elemen species alk gfw_formula element_gfw atomic number +# element species alk gfw_formula element_gfw atomic number # diff --git a/OtherDatabases/PSINA_12_07_110615_DAV_s_win.dat b/OtherDatabases/PSINA_12_07_110615_DAV_s_win.dat index 0e6c024f..23d30410 100644 --- a/OtherDatabases/PSINA_12_07_110615_DAV_s_win.dat +++ b/OtherDatabases/PSINA_12_07_110615_DAV_s_win.dat @@ -61,7 +61,7 @@ SOLUTION_MASTER_SPECIES # # # -# elemen species alk gfw_formula element_gfw atomic Disposition Source of data +# element species alk gfw_formula element_gfw atomic Disposition Source of data # number PMATCHC # H H+ -1.0 H 1.008 # 1 Ele NAGRA NTB 91-17 From 3c8e294fd35563abbf53316d100d9f900e2b5b5a Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Fri, 6 Dec 2024 16:49:25 +0000 Subject: [PATCH 268/384] Squashed 'phreeqcpp/' changes from c369020..b948e30 b948e30 Exception caught in PhreeqcI. Null pointer for bad definition in SURFACE_MASTER_SPECIES. Test case surf_error added, which catches the error, but run exits. git-subtree-dir: phreeqcpp git-subtree-split: b948e30d1ef801f52c99736b58e79dcff5537e23 --- tidy.cpp | 9 +++++++++ 1 file changed, 9 insertions(+) diff --git a/tidy.cpp b/tidy.cpp index 9449e350..c6dc3ebf 100644 --- a/tidy.cpp +++ b/tidy.cpp @@ -2312,6 +2312,15 @@ tidy_species(void) } /* store sequence number in master structure */ master[i]->number = i; + if (master[i]->s == NULL) + { + input_error++; + error_string = sformatf( + "Species pointer is null for, %s. Check your _MASTER_ and _SPECIES definitions.", + master[i]->elt->name); + error_msg(error_string, STOP); + } + if (strcmp(master[i]->elt->name, "Alkalinity") != 0) { if (master[i]->primary == TRUE) From d3b4c500de84f4dd207eb30b3a612fac16db167d Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Fri, 6 Dec 2024 16:50:05 +0000 Subject: [PATCH 269/384] Squashed 'src/' changes from 51eedbc2..b4a1f672 b4a1f672 Merge commit '3c8e294fd35563abbf53316d100d9f900e2b5b5a' 3c8e294f Squashed 'phreeqcpp/' changes from c369020..b948e30 git-subtree-dir: src git-subtree-split: b4a1f672db7d7203a306a7c499cf8c67142da2bc --- phreeqcpp/tidy.cpp | 9 +++++++++ 1 file changed, 9 insertions(+) diff --git a/phreeqcpp/tidy.cpp b/phreeqcpp/tidy.cpp index 9449e350..c6dc3ebf 100644 --- a/phreeqcpp/tidy.cpp +++ b/phreeqcpp/tidy.cpp @@ -2312,6 +2312,15 @@ tidy_species(void) } /* store sequence number in master structure */ master[i]->number = i; + if (master[i]->s == NULL) + { + input_error++; + error_string = sformatf( + "Species pointer is null for, %s. Check your _MASTER_ and _SPECIES definitions.", + master[i]->elt->name); + error_msg(error_string, STOP); + } + if (strcmp(master[i]->elt->name, "Alkalinity") != 0) { if (master[i]->primary == TRUE) From 0574a86c4ee8888db3264728889b391638cd3c29 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Fri, 6 Dec 2024 16:50:10 +0000 Subject: [PATCH 270/384] Squashed 'phreeqc3-examples/' changes from 09d4a0ba..8f9acfc7 8f9acfc7 Updated cmake_minimum_required and fixed surf_error test git-subtree-dir: phreeqc3-examples git-subtree-split: 8f9acfc77c9261e87c156056b8acafc21946298f --- CMakeLists.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index 4da5d523..64a40b1b 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -1,4 +1,4 @@ -cmake_minimum_required (VERSION 3.9) +cmake_minimum_required (VERSION 3.10) SET(phreeqc_EXAMPLES co2.dat From da8a610a668bae761ba95addfde3ca5809cab95d Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Sat, 4 Jan 2025 13:13:06 -0700 Subject: [PATCH 271/384] Fixed examples to have fewer warnings. Fixed headers of some database files. Changed some output from warnings to comments. --- Makefile.am | 2 ++ ex11 | 4 ++-- ex12 | 4 ++-- ex12a | 7 ++++--- ex13a | 4 ++-- ex13ac | 8 ++++---- ex13b | 4 ++-- ex13c | 4 ++-- ex15 | 8 ++++---- ex15a | 8 ++++---- ex15b | 8 ++++---- ex20b | 1 + ex21 | 1 + ex22 | 2 ++ ex9 | 2 ++ 15 files changed, 38 insertions(+), 29 deletions(-) diff --git a/Makefile.am b/Makefile.am index 2987311e..39faa04d 100644 --- a/Makefile.am +++ b/Makefile.am @@ -8,6 +8,8 @@ examplesdir = $(docdir)/examples dist_examples_DATA = $(EXAMPLES) EXAMPLES= \ + co2.dat \ + co2_VP.dat \ co2.tsv \ ex1 \ ex2 \ diff --git a/ex11 b/ex11 index 963492ce..4e79007a 100644 --- a/ex11 +++ b/ex11 @@ -58,13 +58,13 @@ USER_GRAPH 1 END TRANSPORT -cells 40 - -lengths 0.002 + -lengths 40*0.002 -shifts 100 -time_step 720.0 -flow_direction forward -boundary_conditions flux flux -diffusion_coefficient 0.0e-9 - -dispersivities 0.002 + -dispersivities 40*0.002 -correct_disp true -punch_cells 40 -punch_frequency 1 diff --git a/ex12 b/ex12 index ec562301..512e4b75 100644 --- a/ex12 +++ b/ex12 @@ -47,8 +47,8 @@ TRANSPORT # Make column temperature 0C, displace Cl -shifts 60 -flow_direction forward -boundary_conditions flux flux - -lengths 0.333333 - -dispersivities 0.0 # No dispersion + -lengths 60*0.333333 + -dispersivities 60*0.0 # No dispersion -diffusion_coefficient 0.0 # No diffusion -thermal_diffusion 1.0 # No retardation for heat END diff --git a/ex12a b/ex12a index cfbe4262..d0209b7c 100644 --- a/ex12a +++ b/ex12a @@ -56,9 +56,9 @@ TRANSPORT # Diffuse 24C, NaCl solution from column ends -shifts 1 -flow_direction diffusion -boundary_conditions constant closed - -lengths 1.0 + -lengths 20*1.0 -thermal_diffusion 3.0 # Heat is retarded equal to Na - -dispersivities 0.0 # No dispersion + -dispersivities 20*0.0 # No dispersion -diffusion_coefficient 0.3e-9 # m^2/s -time_step 1.0e+10 # 317 years, 19 substeps will be used SELECTED_OUTPUT @@ -121,7 +121,8 @@ END # TRANSPORT # no need to redefine parameters that don't change from 20 cell model -cells 60 - -lengths 0.33333333333333333 + -lengths 60*0.33333333333333333 + -disp 60*0.0 -punch_cells 1-60 SELECTED_OUTPUT -active true # See also PRINT; selected_output false diff --git a/ex13a b/ex13a index 129b568c..97d393df 100644 --- a/ex13a +++ b/ex13a @@ -34,8 +34,8 @@ TRANSPORT -time_step 3600 -boundary_conditions flux flux -diffusion_coefficient 0.0 - -lengths 0.1 - -dispersivities 0.015 + -lengths 20*0.1 + -dispersivities 20*0.015 -stagnant 1 6.8e-6 0.3 0.1 # 1 stagnant layer^, ^alpha, ^epsil(m), ^epsil(im) END diff --git a/ex13ac b/ex13ac index eeb735ac..2f5b8d8f 100644 --- a/ex13ac +++ b/ex13ac @@ -34,8 +34,8 @@ TRANSPORT -time_step 3600 -boundary_conditions flux flux -diffusion_coefficient 0.0 - -lengths 0.1 - -dispersivities 0.015 + -lengths 20*0.1 + -dispersivities 20*0.015 -stagnant 1 6.8e-6 0.3 0.1 # 1 stagnant layer^, ^alpha, ^epsil(m), ^epsil(im) END @@ -228,8 +228,8 @@ TRANSPORT -time_step 3600 -boundary_conditions flux flux -diffusion_coefficient 0.0 - -lengths 0.1 - -dispersivities 0.015 + -lengths 20*0.1 + -dispersivities 20*0.015 -stagnant 5 END SOLUTION 0 # Original solution reenters diff --git a/ex13b b/ex13b index 259d0236..500f8a3d 100644 --- a/ex13b +++ b/ex13b @@ -55,8 +55,8 @@ TRANSPORT -time_step 3600 -boundary_conditions flux flux -diffusion_coefficient 0.0 - -lengths 0.1 - -dispersivities 0.015 + -lengths 20*0.1 + -dispersivities 20*0.015 -stagnant 1 END SOLUTION 0 # Original solution reenters diff --git a/ex13c b/ex13c index f5abdca9..49cf2903 100644 --- a/ex13c +++ b/ex13c @@ -155,8 +155,8 @@ TRANSPORT -time_step 3600 -boundary_conditions flux flux -diffusion_coefficient 0.0 - -lengths 0.1 - -dispersivities 0.015 + -lengths 20*0.1 + -dispersivities 20*0.015 -stagnant 5 END SOLUTION 0 # Original solution reenters diff --git a/ex15 b/ex15 index c6b73165..61a92d25 100644 --- a/ex15 +++ b/ex15 @@ -135,12 +135,12 @@ USER_GRAPH 2 Example 15 -end -end TRANSPORT First 20 hours have NTA and cobalt in infilling solution -cells 10 - -lengths 1 + -lengths 10*1 -shifts 20 -time_step 3600 -flow_direction forward -boundary_conditions flux flux - -dispersivities .05 + -dispersivities 10*.05 -correct_disp true -diffusion_coefficient 0.0 -punch_cells 10 @@ -183,13 +183,13 @@ USER_GRAPH 2 -end TRANSPORT First 20 hours have NTA and cobalt in infilling solution -cells 20 - -lengths 0.5 + -lengths 20*0.5 -shifts 40 -initial_time 0 -time_step 1800 -flow_direction forward -boundary_conditions flux flux - -dispersivities .05 + -dispersivities 20*.05 -correct_disp true -diffusion_coefficient 0.0 -punch_cells 20 diff --git a/ex15a b/ex15a index aa49f946..05baccd3 100644 --- a/ex15a +++ b/ex15a @@ -118,12 +118,12 @@ USER_GRAPH Example 15A -end TRANSPORT First 20 hours have NTA and cobalt in infilling solution -cells 10 - -lengths 1 + -lengths 10*1 -shifts 20 -time_step 3600 -flow_direction forward -boundary_conditions flux flux - -dispersivities .05 + -dispersivities 10*.05 -correct_disp true -diffusion_coefficient 0.0 -punch_cells 10 @@ -156,13 +156,13 @@ USER_GRAPH -end TRANSPORT First 20 hours have NTA and cobalt in infilling solution -cells 20 - -lengths 0.5 + -lengths 20*0.5 -shifts 40 -initial_time 0 -time_step 1800 -flow_direction forward -boundary_conditions flux flux - -dispersivities .05 + -dispersivities 20*.05 -correct_disp true -diffusion_coefficient 0.0 -punch_cells 20 diff --git a/ex15b b/ex15b index 219074e7..e836b898 100644 --- a/ex15b +++ b/ex15b @@ -103,12 +103,12 @@ USER_PUNCH -end TRANSPORT First 20 hours have NTA and cobalt in infilling solution -cells 10 - -lengths 1 + -lengths 10*1 -shifts 20 -time_step 3600 -flow_direction forward -boundary_conditions flux flux - -dispersivities .05 + -dispersivities 10*.05 -correct_disp true -diffusion_coefficient 0.0 -punch_cells 10 @@ -147,13 +147,13 @@ USER_PUNCH -end TRANSPORT First 20 hours have NTA and cobalt in infilling solution -cells 20 - -lengths 0.5 + -lengths 20*0.5 -shifts 40 -initial_time 0 -time_step 1800 -flow_direction forward -boundary_conditions flux flux - -dispersivities .05 + -dispersivities 20*.05 -correct_disp true -diffusion_coefficient 0.0 -punch_cells 20 diff --git a/ex20b b/ex20b index 9fc9687c..52fbd08b 100644 --- a/ex20b +++ b/ex20b @@ -96,6 +96,7 @@ USER_PUNCH END PRINT -selected_output false + -warnings 0 END INCLUDE$ ex20_open END diff --git a/ex21 b/ex21 index e255d814..6ba0a3c8 100644 --- a/ex21 +++ b/ex21 @@ -357,5 +357,6 @@ USER_PUNCH END PRINT -selected_out false + -status false INCLUDE$ radial END diff --git a/ex22 b/ex22 index 7309ad8e..5dc3a51e 100644 --- a/ex22 +++ b/ex22 @@ -1,6 +1,8 @@ TITLE Example 22.--Compare experimental CO2 solubilities at high CO2 pressure with Peng-Robinson calc`ns with fixed-volume gas_phase, 25, 50, 75, 100, 150 oC. #PRINT; -reset false +PRINT +-warnings 0 SOLUTION 1 GAS_PHASE 1 -fixed_volume diff --git a/ex9 b/ex9 index 48855840..cd34f3fe 100644 --- a/ex9 +++ b/ex9 @@ -96,6 +96,8 @@ Goethite Fe_triOOH + 3 H+ = Fe_tri+3 + 2 H2O log_k -1.0 END +PRINT +-warnings 0 SOLUTION 1 pH 7.0 pe 10.0 O2(g) -0.67 From 20d3a9e5e6e6b2b27c53394ca1eab37b9fdef414 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Sat, 4 Jan 2025 13:13:06 -0700 Subject: [PATCH 272/384] Fixed examples to have fewer warnings. Fixed headers of some database files. Changed some output from warnings to comments. --- Amm.dat | 2 +- Kinec.v2.dat | 2 +- Kinec_v3.dat | 2 +- Tipping_Hurley.dat | 1 - phreeqc.dat | 6 +++--- phreeqc_rates.dat | 2 +- pitzer.dat | 2 +- 7 files changed, 8 insertions(+), 9 deletions(-) diff --git a/Amm.dat b/Amm.dat index d38840e9..c095a395 100644 --- a/Amm.dat +++ b/Amm.dat @@ -1,4 +1,4 @@ -# PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: +# Amm.dat for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: # diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. # Details are given at the end of this file. diff --git a/Kinec.v2.dat b/Kinec.v2.dat index e4c1339b..e3cb6865 100644 --- a/Kinec.v2.dat +++ b/Kinec.v2.dat @@ -1,4 +1,4 @@ -# KINEC.v2.dat - last edited April 18, 2024 by MA and EHO. +# Kinec.v2.dat - last edited April 18, 2024 by MA and EHO. # # This database contains the parameters for calculating mineral dissolution rates for primary and secondary silicate minerals using the equations and parameters reported by Hermanska et al. (2022, 2023), # and dissolution rates for other non)-silicate mineral systems using the equations and parameters reported by Oelkers and Addassi (2024, in preparation). diff --git a/Kinec_v3.dat b/Kinec_v3.dat index fd613fd7..8a753756 100644 --- a/Kinec_v3.dat +++ b/Kinec_v3.dat @@ -1,4 +1,4 @@ -# KINEC_v3.dat - last edited July 23, 2024 by MA and EHO. +# Kinec_v3.dat - last edited July 23, 2024 by MA and EHO. # # This database contains the parameters for calculating mineral dissolution rates for primary and secondary silicate minerals using the equations and parameters reported by Hermanska et al. (2022, 2023), # and dissolution rates for other mineral systems using the equations and parameters reported by Oelkers and addassi (2024*). diff --git a/Tipping_Hurley.dat b/Tipping_Hurley.dat index 471fe128..ea61af2b 100644 --- a/Tipping_Hurley.dat +++ b/Tipping_Hurley.dat @@ -2,7 +2,6 @@ # Created 17 May 2024 14:30:44 # c:\3rdParty\lsp\lsp.exe -f2 -k="asis" -ts "Tipping_Hurley.dat" -# $Id: wateq4f.dat 6895 2012-08-21 18:10:05Z dlpark $ # Revised arsenic data from Archer and Nordstrom (2002) SOLUTION_MASTER_SPECIES diff --git a/phreeqc.dat b/phreeqc.dat index 01cdbe3c..d89cef0d 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -1,8 +1,8 @@ -# File 1 = C:\GitPrograms\phreeqc3-1\database\Amm.dat, 22/05/2024 19:38, 1948 lines, 55817 bytes, md5=78b3659799b73ddca128328b6ee7533b +# File 1 = C:\GitPrograms\phreeqc3-1\database\phreeqc.dat, 22/05/2024 19:38, 1948 lines, 55817 bytes, md5=78b3659799b73ddca128328b6ee7533b # Created 22 May 2024 19:55:37 -# C:\3rdParty\lsp\lsp.exe -f2 -k=asis -ts Amm.dat +# C:\3rdParty\lsp\lsp.exe -f2 -k=asis -ts phreeqc.dat -# PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: +# phreeqc.dat for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: # diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. # Details are given at the end of this file. diff --git a/phreeqc_rates.dat b/phreeqc_rates.dat index 2c777a45..2721908d 100644 --- a/phreeqc_rates.dat +++ b/phreeqc_rates.dat @@ -1,4 +1,4 @@ -# PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Augmented with kinetic rates for minerals from compilations. Based on: +# phreeqc_rates.dat for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Augmented with kinetic rates for minerals from compilations. Based on: # diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. # Details are given at the end of this file. diff --git a/pitzer.dat b/pitzer.dat index eb1c87f2..d18b8023 100644 --- a/pitzer.dat +++ b/pitzer.dat @@ -1,4 +1,4 @@ -# Pitzer.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution, using +# pitzer.dat for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution, using # diffusion coefficients of species, molal volumina of aqueous species and minerals, and critical temperatures and pressures of gases used in Peng-Robinson's EOS. # Details are given at the end of this file. From 7afa4755116f041a37c52ecdeb716a64033fdd1f Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Tue, 7 Jan 2025 19:59:19 +0000 Subject: [PATCH 273/384] Squashed 'phreeqcpp/' changes from b948e30..c81916a c81916a Fixed examples to have fewer warnings. Fixed headers of some database files. Changed some output from warnings to comments. git-subtree-dir: phreeqcpp git-subtree-split: c81916ad120db26b431bae629b25e64447b72c75 --- mainsubs.cpp | 12 +++++++++--- transport.cpp | 18 +++++++++++------- 2 files changed, 20 insertions(+), 10 deletions(-) diff --git a/mainsubs.cpp b/mainsubs.cpp index ba317af0..11ee782d 100644 --- a/mainsubs.cpp +++ b/mainsubs.cpp @@ -681,9 +681,15 @@ initial_gas_phases(int print) if (pr.user_print) print_user_print(); if (PR /*&& use.Get_gas_phase_ptr()->total_p > 1.0*/) - warning_msg("While initializing gas phase composition by equilibrating:\n" - " Found definitions of gas` critical temperature and pressure.\n" - " Going to use Peng-Robinson in subsequent calculations.\n"); + { + std::ostringstream msg; + msg << "\nWhile initializing gas phase composition by equilibrating:\n"; + msg << " Found definitions of gas critical temperature and pressure.\n"; + msg << " Going to use Peng-Robinson in subsequent calculations.\n"; + screen_msg(msg.str().c_str()); + output_msg(msg.str().c_str()); + log_msg(msg.str().c_str()); + } xgas_save(n_user); punch_all(); /* free_model_allocs(); */ diff --git a/transport.cpp b/transport.cpp index 7bde99d4..f7ee9b4e 100644 --- a/transport.cpp +++ b/transport.cpp @@ -508,13 +508,17 @@ transport(void) /* * Now transport */ - if (implicit) - snprintf(token, sizeof(token), "\nCalculating implicit transport: %d (mobile) cells, %d shifts, %d mixruns, max. mixf = %g.\n\n", - count_cells, count_shifts - transport_start + 1, nmix, max_mixf); - else - snprintf(token, sizeof(token), "\nCalculating transport: %d (mobile) cells, %d shifts, %d mixruns...\n\n", - count_cells, count_shifts - transport_start + 1, nmix); - warning_msg(token); + { + if (implicit) + snprintf(token, sizeof(token), "\nCalculating implicit transport: %d (mobile) cells, %d shifts, %d mixruns, max. mixf = %g.\n\n", + count_cells, count_shifts - transport_start + 1, nmix, max_mixf); + else + snprintf(token, sizeof(token), "\nCalculating transport: %d (mobile) cells, %d shifts, %d mixruns...\n\n", + count_cells, count_shifts - transport_start + 1, nmix); + screen_msg(token); + output_msg(token); + log_msg(token); + } max_iter = 0; for (transport_step = transport_start; transport_step <= count_shifts; transport_step++) From 35f13a0f66449dd0d7f01732a52d2c2078728e2a Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Tue, 7 Jan 2025 19:59:57 +0000 Subject: [PATCH 274/384] Squashed 'src/' changes from b4a1f672..47bcb44d 47bcb44d Merge commit '7afa4755116f041a37c52ecdeb716a64033fdd1f' 7afa4755 Squashed 'phreeqcpp/' changes from b948e30..c81916a git-subtree-dir: src git-subtree-split: 47bcb44d5ee21759c606efe72f0a50d8d7c3b638 --- phreeqcpp/mainsubs.cpp | 12 +++++++++--- phreeqcpp/transport.cpp | 18 +++++++++++------- 2 files changed, 20 insertions(+), 10 deletions(-) diff --git a/phreeqcpp/mainsubs.cpp b/phreeqcpp/mainsubs.cpp index ba317af0..11ee782d 100644 --- a/phreeqcpp/mainsubs.cpp +++ b/phreeqcpp/mainsubs.cpp @@ -681,9 +681,15 @@ initial_gas_phases(int print) if (pr.user_print) print_user_print(); if (PR /*&& use.Get_gas_phase_ptr()->total_p > 1.0*/) - warning_msg("While initializing gas phase composition by equilibrating:\n" - " Found definitions of gas` critical temperature and pressure.\n" - " Going to use Peng-Robinson in subsequent calculations.\n"); + { + std::ostringstream msg; + msg << "\nWhile initializing gas phase composition by equilibrating:\n"; + msg << " Found definitions of gas critical temperature and pressure.\n"; + msg << " Going to use Peng-Robinson in subsequent calculations.\n"; + screen_msg(msg.str().c_str()); + output_msg(msg.str().c_str()); + log_msg(msg.str().c_str()); + } xgas_save(n_user); punch_all(); /* free_model_allocs(); */ diff --git a/phreeqcpp/transport.cpp b/phreeqcpp/transport.cpp index 7bde99d4..f7ee9b4e 100644 --- a/phreeqcpp/transport.cpp +++ b/phreeqcpp/transport.cpp @@ -508,13 +508,17 @@ transport(void) /* * Now transport */ - if (implicit) - snprintf(token, sizeof(token), "\nCalculating implicit transport: %d (mobile) cells, %d shifts, %d mixruns, max. mixf = %g.\n\n", - count_cells, count_shifts - transport_start + 1, nmix, max_mixf); - else - snprintf(token, sizeof(token), "\nCalculating transport: %d (mobile) cells, %d shifts, %d mixruns...\n\n", - count_cells, count_shifts - transport_start + 1, nmix); - warning_msg(token); + { + if (implicit) + snprintf(token, sizeof(token), "\nCalculating implicit transport: %d (mobile) cells, %d shifts, %d mixruns, max. mixf = %g.\n\n", + count_cells, count_shifts - transport_start + 1, nmix, max_mixf); + else + snprintf(token, sizeof(token), "\nCalculating transport: %d (mobile) cells, %d shifts, %d mixruns...\n\n", + count_cells, count_shifts - transport_start + 1, nmix); + screen_msg(token); + output_msg(token); + log_msg(token); + } max_iter = 0; for (transport_step = transport_start; transport_step <= count_shifts; transport_step++) From 48d952740c344516d2d238bc7f1ae41807a0b7d2 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Tue, 7 Jan 2025 20:00:03 +0000 Subject: [PATCH 275/384] Squashed 'database/' changes from bf60c1ca..4e898381 4e898381 Merge branch 'master' into mix_error 20d3a9e5 Fixed examples to have fewer warnings. Fixed headers of some database files. Changed some output from warnings to comments. git-subtree-dir: database git-subtree-split: 4e898381542ce722cd7c3c74fe9c2592ec34d41b --- Amm.dat | 2 +- Kinec.v2.dat | 2 +- Kinec_v3.dat | 2 +- Tipping_Hurley.dat | 1 - phreeqc.dat | 6 +++--- phreeqc_rates.dat | 2 +- pitzer.dat | 2 +- 7 files changed, 8 insertions(+), 9 deletions(-) diff --git a/Amm.dat b/Amm.dat index d38840e9..c095a395 100644 --- a/Amm.dat +++ b/Amm.dat @@ -1,4 +1,4 @@ -# PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: +# Amm.dat for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: # diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. # Details are given at the end of this file. diff --git a/Kinec.v2.dat b/Kinec.v2.dat index e4c1339b..e3cb6865 100644 --- a/Kinec.v2.dat +++ b/Kinec.v2.dat @@ -1,4 +1,4 @@ -# KINEC.v2.dat - last edited April 18, 2024 by MA and EHO. +# Kinec.v2.dat - last edited April 18, 2024 by MA and EHO. # # This database contains the parameters for calculating mineral dissolution rates for primary and secondary silicate minerals using the equations and parameters reported by Hermanska et al. (2022, 2023), # and dissolution rates for other non)-silicate mineral systems using the equations and parameters reported by Oelkers and Addassi (2024, in preparation). diff --git a/Kinec_v3.dat b/Kinec_v3.dat index fd613fd7..8a753756 100644 --- a/Kinec_v3.dat +++ b/Kinec_v3.dat @@ -1,4 +1,4 @@ -# KINEC_v3.dat - last edited July 23, 2024 by MA and EHO. +# Kinec_v3.dat - last edited July 23, 2024 by MA and EHO. # # This database contains the parameters for calculating mineral dissolution rates for primary and secondary silicate minerals using the equations and parameters reported by Hermanska et al. (2022, 2023), # and dissolution rates for other mineral systems using the equations and parameters reported by Oelkers and addassi (2024*). diff --git a/Tipping_Hurley.dat b/Tipping_Hurley.dat index 471fe128..ea61af2b 100644 --- a/Tipping_Hurley.dat +++ b/Tipping_Hurley.dat @@ -2,7 +2,6 @@ # Created 17 May 2024 14:30:44 # c:\3rdParty\lsp\lsp.exe -f2 -k="asis" -ts "Tipping_Hurley.dat" -# $Id: wateq4f.dat 6895 2012-08-21 18:10:05Z dlpark $ # Revised arsenic data from Archer and Nordstrom (2002) SOLUTION_MASTER_SPECIES diff --git a/phreeqc.dat b/phreeqc.dat index 01cdbe3c..d89cef0d 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -1,8 +1,8 @@ -# File 1 = C:\GitPrograms\phreeqc3-1\database\Amm.dat, 22/05/2024 19:38, 1948 lines, 55817 bytes, md5=78b3659799b73ddca128328b6ee7533b +# File 1 = C:\GitPrograms\phreeqc3-1\database\phreeqc.dat, 22/05/2024 19:38, 1948 lines, 55817 bytes, md5=78b3659799b73ddca128328b6ee7533b # Created 22 May 2024 19:55:37 -# C:\3rdParty\lsp\lsp.exe -f2 -k=asis -ts Amm.dat +# C:\3rdParty\lsp\lsp.exe -f2 -k=asis -ts phreeqc.dat -# PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: +# phreeqc.dat for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: # diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. # Details are given at the end of this file. diff --git a/phreeqc_rates.dat b/phreeqc_rates.dat index 2c777a45..2721908d 100644 --- a/phreeqc_rates.dat +++ b/phreeqc_rates.dat @@ -1,4 +1,4 @@ -# PHREEQC.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Augmented with kinetic rates for minerals from compilations. Based on: +# phreeqc_rates.dat for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Augmented with kinetic rates for minerals from compilations. Based on: # diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. # Details are given at the end of this file. diff --git a/pitzer.dat b/pitzer.dat index eb1c87f2..d18b8023 100644 --- a/pitzer.dat +++ b/pitzer.dat @@ -1,4 +1,4 @@ -# Pitzer.DAT for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution, using +# pitzer.dat for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution, using # diffusion coefficients of species, molal volumina of aqueous species and minerals, and critical temperatures and pressures of gases used in Peng-Robinson's EOS. # Details are given at the end of this file. From 3d759f69973bad20c855f53a0a75a3db3b35516a Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Tue, 7 Jan 2025 20:00:06 +0000 Subject: [PATCH 276/384] Squashed 'phreeqc3-examples/' changes from 8f9acfc7..1777f2bc 1777f2bc Merge branch 'mix_error' of github.com:dlparkhurst/phreeqc3-1 into mix_error da8a610a Fixed examples to have fewer warnings. Fixed headers of some database files. Changed some output from warnings to comments. git-subtree-dir: phreeqc3-examples git-subtree-split: 1777f2bc99bd9b655e838908e0fdfb81bfdd1e3f --- Makefile.am | 2 ++ ex11 | 4 ++-- ex12 | 4 ++-- ex12a | 7 ++++--- ex13a | 4 ++-- ex13ac | 8 ++++---- ex13b | 4 ++-- ex13c | 4 ++-- ex15 | 8 ++++---- ex15a | 8 ++++---- ex15b | 8 ++++---- ex20b | 1 + ex21 | 1 + ex22 | 2 ++ ex9 | 2 ++ 15 files changed, 38 insertions(+), 29 deletions(-) diff --git a/Makefile.am b/Makefile.am index 2987311e..39faa04d 100644 --- a/Makefile.am +++ b/Makefile.am @@ -8,6 +8,8 @@ examplesdir = $(docdir)/examples dist_examples_DATA = $(EXAMPLES) EXAMPLES= \ + co2.dat \ + co2_VP.dat \ co2.tsv \ ex1 \ ex2 \ diff --git a/ex11 b/ex11 index 963492ce..4e79007a 100644 --- a/ex11 +++ b/ex11 @@ -58,13 +58,13 @@ USER_GRAPH 1 END TRANSPORT -cells 40 - -lengths 0.002 + -lengths 40*0.002 -shifts 100 -time_step 720.0 -flow_direction forward -boundary_conditions flux flux -diffusion_coefficient 0.0e-9 - -dispersivities 0.002 + -dispersivities 40*0.002 -correct_disp true -punch_cells 40 -punch_frequency 1 diff --git a/ex12 b/ex12 index ec562301..512e4b75 100644 --- a/ex12 +++ b/ex12 @@ -47,8 +47,8 @@ TRANSPORT # Make column temperature 0C, displace Cl -shifts 60 -flow_direction forward -boundary_conditions flux flux - -lengths 0.333333 - -dispersivities 0.0 # No dispersion + -lengths 60*0.333333 + -dispersivities 60*0.0 # No dispersion -diffusion_coefficient 0.0 # No diffusion -thermal_diffusion 1.0 # No retardation for heat END diff --git a/ex12a b/ex12a index cfbe4262..d0209b7c 100644 --- a/ex12a +++ b/ex12a @@ -56,9 +56,9 @@ TRANSPORT # Diffuse 24C, NaCl solution from column ends -shifts 1 -flow_direction diffusion -boundary_conditions constant closed - -lengths 1.0 + -lengths 20*1.0 -thermal_diffusion 3.0 # Heat is retarded equal to Na - -dispersivities 0.0 # No dispersion + -dispersivities 20*0.0 # No dispersion -diffusion_coefficient 0.3e-9 # m^2/s -time_step 1.0e+10 # 317 years, 19 substeps will be used SELECTED_OUTPUT @@ -121,7 +121,8 @@ END # TRANSPORT # no need to redefine parameters that don't change from 20 cell model -cells 60 - -lengths 0.33333333333333333 + -lengths 60*0.33333333333333333 + -disp 60*0.0 -punch_cells 1-60 SELECTED_OUTPUT -active true # See also PRINT; selected_output false diff --git a/ex13a b/ex13a index 129b568c..97d393df 100644 --- a/ex13a +++ b/ex13a @@ -34,8 +34,8 @@ TRANSPORT -time_step 3600 -boundary_conditions flux flux -diffusion_coefficient 0.0 - -lengths 0.1 - -dispersivities 0.015 + -lengths 20*0.1 + -dispersivities 20*0.015 -stagnant 1 6.8e-6 0.3 0.1 # 1 stagnant layer^, ^alpha, ^epsil(m), ^epsil(im) END diff --git a/ex13ac b/ex13ac index eeb735ac..2f5b8d8f 100644 --- a/ex13ac +++ b/ex13ac @@ -34,8 +34,8 @@ TRANSPORT -time_step 3600 -boundary_conditions flux flux -diffusion_coefficient 0.0 - -lengths 0.1 - -dispersivities 0.015 + -lengths 20*0.1 + -dispersivities 20*0.015 -stagnant 1 6.8e-6 0.3 0.1 # 1 stagnant layer^, ^alpha, ^epsil(m), ^epsil(im) END @@ -228,8 +228,8 @@ TRANSPORT -time_step 3600 -boundary_conditions flux flux -diffusion_coefficient 0.0 - -lengths 0.1 - -dispersivities 0.015 + -lengths 20*0.1 + -dispersivities 20*0.015 -stagnant 5 END SOLUTION 0 # Original solution reenters diff --git a/ex13b b/ex13b index 259d0236..500f8a3d 100644 --- a/ex13b +++ b/ex13b @@ -55,8 +55,8 @@ TRANSPORT -time_step 3600 -boundary_conditions flux flux -diffusion_coefficient 0.0 - -lengths 0.1 - -dispersivities 0.015 + -lengths 20*0.1 + -dispersivities 20*0.015 -stagnant 1 END SOLUTION 0 # Original solution reenters diff --git a/ex13c b/ex13c index f5abdca9..49cf2903 100644 --- a/ex13c +++ b/ex13c @@ -155,8 +155,8 @@ TRANSPORT -time_step 3600 -boundary_conditions flux flux -diffusion_coefficient 0.0 - -lengths 0.1 - -dispersivities 0.015 + -lengths 20*0.1 + -dispersivities 20*0.015 -stagnant 5 END SOLUTION 0 # Original solution reenters diff --git a/ex15 b/ex15 index c6b73165..61a92d25 100644 --- a/ex15 +++ b/ex15 @@ -135,12 +135,12 @@ USER_GRAPH 2 Example 15 -end -end TRANSPORT First 20 hours have NTA and cobalt in infilling solution -cells 10 - -lengths 1 + -lengths 10*1 -shifts 20 -time_step 3600 -flow_direction forward -boundary_conditions flux flux - -dispersivities .05 + -dispersivities 10*.05 -correct_disp true -diffusion_coefficient 0.0 -punch_cells 10 @@ -183,13 +183,13 @@ USER_GRAPH 2 -end TRANSPORT First 20 hours have NTA and cobalt in infilling solution -cells 20 - -lengths 0.5 + -lengths 20*0.5 -shifts 40 -initial_time 0 -time_step 1800 -flow_direction forward -boundary_conditions flux flux - -dispersivities .05 + -dispersivities 20*.05 -correct_disp true -diffusion_coefficient 0.0 -punch_cells 20 diff --git a/ex15a b/ex15a index aa49f946..05baccd3 100644 --- a/ex15a +++ b/ex15a @@ -118,12 +118,12 @@ USER_GRAPH Example 15A -end TRANSPORT First 20 hours have NTA and cobalt in infilling solution -cells 10 - -lengths 1 + -lengths 10*1 -shifts 20 -time_step 3600 -flow_direction forward -boundary_conditions flux flux - -dispersivities .05 + -dispersivities 10*.05 -correct_disp true -diffusion_coefficient 0.0 -punch_cells 10 @@ -156,13 +156,13 @@ USER_GRAPH -end TRANSPORT First 20 hours have NTA and cobalt in infilling solution -cells 20 - -lengths 0.5 + -lengths 20*0.5 -shifts 40 -initial_time 0 -time_step 1800 -flow_direction forward -boundary_conditions flux flux - -dispersivities .05 + -dispersivities 20*.05 -correct_disp true -diffusion_coefficient 0.0 -punch_cells 20 diff --git a/ex15b b/ex15b index 219074e7..e836b898 100644 --- a/ex15b +++ b/ex15b @@ -103,12 +103,12 @@ USER_PUNCH -end TRANSPORT First 20 hours have NTA and cobalt in infilling solution -cells 10 - -lengths 1 + -lengths 10*1 -shifts 20 -time_step 3600 -flow_direction forward -boundary_conditions flux flux - -dispersivities .05 + -dispersivities 10*.05 -correct_disp true -diffusion_coefficient 0.0 -punch_cells 10 @@ -147,13 +147,13 @@ USER_PUNCH -end TRANSPORT First 20 hours have NTA and cobalt in infilling solution -cells 20 - -lengths 0.5 + -lengths 20*0.5 -shifts 40 -initial_time 0 -time_step 1800 -flow_direction forward -boundary_conditions flux flux - -dispersivities .05 + -dispersivities 20*.05 -correct_disp true -diffusion_coefficient 0.0 -punch_cells 20 diff --git a/ex20b b/ex20b index 9fc9687c..52fbd08b 100644 --- a/ex20b +++ b/ex20b @@ -96,6 +96,7 @@ USER_PUNCH END PRINT -selected_output false + -warnings 0 END INCLUDE$ ex20_open END diff --git a/ex21 b/ex21 index e255d814..6ba0a3c8 100644 --- a/ex21 +++ b/ex21 @@ -357,5 +357,6 @@ USER_PUNCH END PRINT -selected_out false + -status false INCLUDE$ radial END diff --git a/ex22 b/ex22 index 7309ad8e..5dc3a51e 100644 --- a/ex22 +++ b/ex22 @@ -1,6 +1,8 @@ TITLE Example 22.--Compare experimental CO2 solubilities at high CO2 pressure with Peng-Robinson calc`ns with fixed-volume gas_phase, 25, 50, 75, 100, 150 oC. #PRINT; -reset false +PRINT +-warnings 0 SOLUTION 1 GAS_PHASE 1 -fixed_volume diff --git a/ex9 b/ex9 index 48855840..cd34f3fe 100644 --- a/ex9 +++ b/ex9 @@ -96,6 +96,8 @@ Goethite Fe_triOOH + 3 H+ = Fe_tri+3 + 2 H2O log_k -1.0 END +PRINT +-warnings 0 SOLUTION 1 pH 7.0 pe 10.0 O2(g) -0.67 From 797e95aadd3e1dd2932a04e862b1716867e21c11 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Tue, 7 Jan 2025 14:02:43 -0700 Subject: [PATCH 277/384] Updated RELEASE.TXT for 3.8.6 --- RELEASE.TXT | 21 +++++++++++++++++++++ 1 file changed, 21 insertions(+) diff --git a/RELEASE.TXT b/RELEASE.TXT index 145842f6..6d34bc1b 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,4 +1,25 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + + ----------------- + January 7, 2025 + ----------------- + PHREEQC: Refactored github actions to test CMake build based on autotools + distribution. + + ----------------- + January 4, 2025 + ----------------- + PHREEQC: Fixed examples to have fewer warnings. Fixed headers of + some database files. Changed some output from warnings to comments. + + ----------------- + January 3, 2025 + ----------------- + PHREEQC: Fixed version and date string replacements in source distribution. + + +Version 3.8.5: November 20, 2024 + ----------------- November 15, 2024 ----------------- From bc33cd74844e5f14f8771f6cc85e6e89165ad2e9 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Tue, 7 Jan 2025 21:05:42 +0000 Subject: [PATCH 278/384] Squashed 'phreeqc3-doc/' changes from fd438d3e..797e95aa 797e95aa Updated RELEASE.TXT for 3.8.6 git-subtree-dir: phreeqc3-doc git-subtree-split: 797e95aadd3e1dd2932a04e862b1716867e21c11 --- RELEASE.TXT | 21 +++++++++++++++++++++ 1 file changed, 21 insertions(+) diff --git a/RELEASE.TXT b/RELEASE.TXT index 145842f6..6d34bc1b 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,4 +1,25 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + + ----------------- + January 7, 2025 + ----------------- + PHREEQC: Refactored github actions to test CMake build based on autotools + distribution. + + ----------------- + January 4, 2025 + ----------------- + PHREEQC: Fixed examples to have fewer warnings. Fixed headers of + some database files. Changed some output from warnings to comments. + + ----------------- + January 3, 2025 + ----------------- + PHREEQC: Fixed version and date string replacements in source distribution. + + +Version 3.8.5: November 20, 2024 + ----------------- November 15, 2024 ----------------- From 31517c71c70af07af992b2dceb8ebc1b8ff74e3d Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Tue, 7 Jan 2025 15:23:23 -0700 Subject: [PATCH 279/384] Updated output for 3.8.6 release --- ex11.out | 5 +- ex12.out | 6 +- ex12a.out | 17 ++- ex13a.out | 12 +-- ex13ac.out | 24 ++--- ex13b.out | 12 +-- ex13c.out | 12 +-- ex15.out | 24 ++--- ex15a.out | 24 ++--- ex15b.out | 24 +++-- ex20b.out | 295 +--------------------------------------------------- ex21.out | 4 +- ex22.out | 299 +---------------------------------------------------- ex7.out | 6 +- ex9.out | 4 +- 15 files changed, 70 insertions(+), 698 deletions(-) diff --git a/ex11.out b/ex11.out index cdb77f30..dff27f2c 100644 --- a/ex11.out +++ b/ex11.out @@ -209,9 +209,6 @@ Reading input data for simulation 3. print_frequency 20 PRINT reset false -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 40. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 40. -WARNING: + Calculating transport: 40 (mobile) cells, 100 shifts, 4 mixruns... - diff --git a/ex12.out b/ex12.out index 9058b864..36435bf9 100644 --- a/ex12.out +++ b/ex12.out @@ -52,13 +52,9 @@ Reading input data for simulation 1. KX 0.048 PRINT reset false -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 60. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 60. -WARNING: + Calculating transport: 60 (mobile) cells, 60 shifts, 0 mixruns... -WARNING: Calculating transport: 60 (mobile) cells, 1 shifts, 122 mixruns... - diff --git a/ex12a.out b/ex12a.out index b66ac9d5..3e639b14 100644 --- a/ex12a.out +++ b/ex12a.out @@ -72,14 +72,12 @@ Reading input data for simulation 1. shifts 1 flow_direction diffusion boundary_conditions constant closed - lengths 1.0 + lengths 20*1.0 thermal_diffusion 3.0 # Heat is retarded equal to Na - dispersivities 0.0 # No dispersion + dispersivities 20*0.0 # No dispersion diffusion_coefficient 0.3e-9 # m^2/s time_step 1.0e+10 # 317 years, 19 substeps will be used SELECTED_OUTPUT -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. file ex12a.sel high_precision true reset false @@ -115,9 +113,8 @@ WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. 2060 erfc = b * (a1 + b * (a2 + b * (a3 + b * (a4 + b * a5)))) * EXP(-(z * z)) 2080 RETURN END -WARNING: -Calculating transport: 20 (mobile) cells, 1 shifts, 14 mixruns... +Calculating transport: 20 (mobile) cells, 1 shifts, 14 mixruns... SELECTED_OUTPUT active false # See also PRINT; selected_output false @@ -133,16 +130,14 @@ Calculating transport: 20 (mobile) cells, 1 shifts, 14 mixruns... END TRANSPORT # no need to redefine parameters that don't change from 20 cell model cells 60 - lengths 0.33333333333333333 + lengths 60*0.33333333333333333 + disp 60*0.0 punch_cells 1-60 SELECTED_OUTPUT -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 60. -WARNING: No dispersivities were read; disp = 0 assumed. active true # See also PRINT; selected_output false END -WARNING: -Calculating transport: 60 (mobile) cells, 1 shifts, 122 mixruns... +Calculating transport: 60 (mobile) cells, 1 shifts, 122 mixruns... SOLUTION # Initial solution calculation for pure water PRINT diff --git a/ex13a.out b/ex13a.out index 466f1b4d..2bfcc91d 100644 --- a/ex13a.out +++ b/ex13a.out @@ -298,15 +298,12 @@ Reading input data for simulation 3. time_step 3600 boundary_conditions flux flux diffusion_coefficient 0.0 - lengths 0.1 - dispersivities 0.015 + lengths 20*0.1 + dispersivities 20*0.015 stagnant 1 6.8e-6 0.3 0.1 END -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. -WARNING: -Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... +Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... SOLUTION 0 # Original solution with KNO3 reenters units mmol/l @@ -339,7 +336,6 @@ Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... 20 GRAPH_Y TOT("Na")*1000 TOT("Cl")*1000 -end END -WARNING: + Calculating transport: 20 (mobile) cells, 10 shifts, 1 mixruns... - diff --git a/ex13ac.out b/ex13ac.out index 270f50d0..80af4cc0 100644 --- a/ex13ac.out +++ b/ex13ac.out @@ -298,15 +298,12 @@ Reading input data for simulation 3. time_step 3600 boundary_conditions flux flux diffusion_coefficient 0.0 - lengths 0.1 - dispersivities 0.015 + lengths 20*0.1 + dispersivities 20*0.015 stagnant 1 6.8e-6 0.3 0.1 END -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. -WARNING: -Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... +Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... SOLUTION 0 # Original solution with KNO3 reenters units mmol/l @@ -340,9 +337,8 @@ Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... 30 plot_xy dist, TOT("Cl")*1000, color = Green, symbol = Diamond, symbol_size = 7 -end END -WARNING: -Calculating transport: 20 (mobile) cells, 10 shifts, 1 mixruns... +Calculating transport: 20 (mobile) cells, 10 shifts, 1 mixruns... PRINT user_graph false @@ -819,15 +815,12 @@ Calculating transport: 20 (mobile) cells, 10 shifts, 1 mixruns... time_step 3600 boundary_conditions flux flux diffusion_coefficient 0.0 - lengths 0.1 - dispersivities 0.015 + lengths 20*0.1 + dispersivities 20*0.015 stagnant 5 END -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. -WARNING: -Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... +Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... SOLUTION 0 # Original solution reenters units mmol/l @@ -858,7 +851,6 @@ Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... 30 plot_xy dist, TOT("Cl")*1000, color = Green, symbol = Plus -end END -WARNING: + Calculating transport: 20 (mobile) cells, 10 shifts, 1 mixruns... - diff --git a/ex13b.out b/ex13b.out index f344d133..d4289e43 100644 --- a/ex13b.out +++ b/ex13b.out @@ -418,15 +418,12 @@ Reading input data for simulation 3. time_step 3600 boundary_conditions flux flux diffusion_coefficient 0.0 - lengths 0.1 - dispersivities 0.015 + lengths 20*0.1 + dispersivities 20*0.015 stagnant 1 END -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. -WARNING: -Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... +Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... SOLUTION 0 # Original solution reenters units mmol/l @@ -459,7 +456,6 @@ Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... 20 GRAPH_Y TOT("Na")*1000 TOT("Cl")*1000 -end END -WARNING: + Calculating transport: 20 (mobile) cells, 10 shifts, 1 mixruns... - diff --git a/ex13c.out b/ex13c.out index 133a732a..915fc706 100644 --- a/ex13c.out +++ b/ex13c.out @@ -738,15 +738,12 @@ Reading input data for simulation 3. time_step 3600 boundary_conditions flux flux diffusion_coefficient 0.0 - lengths 0.1 - dispersivities 0.015 + lengths 20*0.1 + dispersivities 20*0.015 stagnant 5 END -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. -WARNING: -Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... +Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... SOLUTION 0 # Original solution reenters units mmol/l @@ -779,7 +776,6 @@ Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... 20 GRAPH_Y TOT("Na")*1000 TOT("Cl")*1000 -end END -WARNING: + Calculating transport: 20 (mobile) cells, 10 shifts, 1 mixruns... - diff --git a/ex15.out b/ex15.out index 9a9a3664..ee723fbf 100644 --- a/ex15.out +++ b/ex15.out @@ -141,12 +141,12 @@ Reading input data for simulation 1. -end -end TRANSPORT First 20 hours have NTA and cobalt in infilling solution cells 10 - lengths 1 + lengths 10*1 shifts 20 time_step 3600 flow_direction forward boundary_conditions flux flux - dispersivities .05 + dispersivities 10*.05 correct_disp true diffusion_coefficient 0.0 punch_cells 10 @@ -154,21 +154,17 @@ Reading input data for simulation 1. print_cells 10 print_frequency 5 COPY solution 101 0 # initial column solution becomes influent -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 10. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 10. END -WARNING: -Calculating transport: 10 (mobile) cells, 20 shifts, 1 mixruns... +Calculating transport: 10 (mobile) cells, 20 shifts, 1 mixruns... TRANSPORT Last 55 hours with background infilling solution shifts 55 COPY cell 100 0 # for the 20 cell model... COPY cell 101 1-20 END -WARNING: -Calculating transport: 10 (mobile) cells, 55 shifts, 1 mixruns... +Calculating transport: 10 (mobile) cells, 55 shifts, 1 mixruns... USER_PUNCH start @@ -198,13 +194,13 @@ Calculating transport: 10 (mobile) cells, 55 shifts, 1 mixruns... -end TRANSPORT First 20 hours have NTA and cobalt in infilling solution cells 20 - lengths 0.5 + lengths 20*0.5 shifts 40 initial_time 0 time_step 1800 flow_direction forward boundary_conditions flux flux - dispersivities .05 + dispersivities 20*.05 correct_disp true diffusion_coefficient 0.0 punch_cells 20 @@ -212,19 +208,15 @@ Calculating transport: 10 (mobile) cells, 55 shifts, 1 mixruns... print_cells 20 print_frequency 10 COPY cell 101 0 -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. END WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. -WARNING: -Calculating transport: 20 (mobile) cells, 40 shifts, 1 mixruns... +Calculating transport: 20 (mobile) cells, 40 shifts, 1 mixruns... TRANSPORT Last 55 hours with background infilling solution shifts 110 END -WARNING: + Calculating transport: 20 (mobile) cells, 110 shifts, 1 mixruns... - diff --git a/ex15a.out b/ex15a.out index 0c18f49f..747e04f0 100644 --- a/ex15a.out +++ b/ex15a.out @@ -127,12 +127,12 @@ Reading input data for simulation 1. -end TRANSPORT First 20 hours have NTA and cobalt in infilling solution cells 10 - lengths 1 + lengths 10*1 shifts 20 time_step 3600 flow_direction forward boundary_conditions flux flux - dispersivities .05 + dispersivities 10*.05 correct_disp true diffusion_coefficient 0.0 punch_cells 10 @@ -140,21 +140,17 @@ Reading input data for simulation 1. print_cells 10 print_frequency 5 COPY solution 101 0 # initial column solution becomes influent -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 10. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 10. END -WARNING: -Calculating transport: 10 (mobile) cells, 20 shifts, 1 mixruns... +Calculating transport: 10 (mobile) cells, 20 shifts, 1 mixruns... TRANSPORT Last 55 hours with background infilling solution shifts 55 COPY cell 100 0 # for the 20 cell model... COPY cell 101 1-20 END -WARNING: -Calculating transport: 10 (mobile) cells, 55 shifts, 1 mixruns... +Calculating transport: 10 (mobile) cells, 55 shifts, 1 mixruns... USER_PUNCH start @@ -175,13 +171,13 @@ Calculating transport: 10 (mobile) cells, 55 shifts, 1 mixruns... -end TRANSPORT First 20 hours have NTA and cobalt in infilling solution cells 20 - lengths 0.5 + lengths 20*0.5 shifts 40 initial_time 0 time_step 1800 flow_direction forward boundary_conditions flux flux - dispersivities .05 + dispersivities 20*.05 correct_disp true diffusion_coefficient 0.0 punch_cells 20 @@ -189,19 +185,15 @@ Calculating transport: 10 (mobile) cells, 55 shifts, 1 mixruns... print_cells 20 print_frequency 10 COPY cell 101 0 -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. END WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. -WARNING: -Calculating transport: 20 (mobile) cells, 40 shifts, 1 mixruns... +Calculating transport: 20 (mobile) cells, 40 shifts, 1 mixruns... TRANSPORT Last 55 hours with background infilling solution shifts 110 END -WARNING: + Calculating transport: 20 (mobile) cells, 110 shifts, 1 mixruns... - diff --git a/ex15b.out b/ex15b.out index 3b5dcddd..e7fde239 100644 --- a/ex15b.out +++ b/ex15b.out @@ -111,12 +111,12 @@ Reading input data for simulation 1. end TRANSPORT First 20 hours have NTA and cobalt in infilling solution cells 10 - lengths 1 + lengths 10*1 shifts 20 time_step 3600 flow_direction forward boundary_conditions flux flux - dispersivities .05 + dispersivities 10*.05 correct_disp true diffusion_coefficient 0.0 punch_cells 10 @@ -125,8 +125,6 @@ Reading input data for simulation 1. print_frequency 5 warnings false USER_GRAPH Example 15B -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 10. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 10. -headings 10_cells: Co+2 CoNTA- Biomass -chart_title "Example 15, Sorbed Species" -axis_titles "Time / hours" "nmol / kgw" "Biomass / (mg/L)" @@ -143,11 +141,17 @@ WARNING: Dispersivities were read for 1 cells. Last value is used till cell 10. -end COPY solution 101 0 END + +Calculating transport: 10 (mobile) cells, 20 shifts, 1 mixruns... + TRANSPORT Last 55 hours with background infilling solution shifts 55 COPY cell 100 0 COPY cell 101 1-20 END + +Calculating transport: 10 (mobile) cells, 55 shifts, 1 mixruns... + USER_PUNCH start 10 punch TOTAL_TIME/3600 + 3600/4/3600 @@ -157,13 +161,13 @@ WARNING: Dispersivities were read for 1 cells. Last value is used till cell 10. end TRANSPORT First 20 hours have NTA and cobalt in infilling solution cells 20 - lengths 0.5 + lengths 20*0.5 shifts 40 initial_time 0 time_step 1800 flow_direction forward boundary_conditions flux flux - dispersivities .05 + dispersivities 20*.05 correct_disp true diffusion_coefficient 0.0 punch_cells 20 @@ -171,8 +175,6 @@ WARNING: Dispersivities were read for 1 cells. Last value is used till cell 10. print_cells 20 print_frequency 10 USER_GRAPH -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. -headings 20_cells: Co+2 CoNTA- Biomass -start 10 x = TOTAL_TIME/3600 + 3600/4/3600 @@ -183,6 +185,12 @@ WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. -end COPY cell 101 0 END + +Calculating transport: 20 (mobile) cells, 40 shifts, 1 mixruns... + TRANSPORT Last 55 hours with background infilling solution shifts 110 END + +Calculating transport: 20 (mobile) cells, 110 shifts, 1 mixruns... + diff --git a/ex20b.out b/ex20b.out index ac7b8d00..0dfc16cc 100644 --- a/ex20b.out +++ b/ex20b.out @@ -250,6 +250,7 @@ Reading input data for simulation 7. PRINT selected_output false + warnings 0 END ------------------ End of simulation. @@ -1603,12 +1604,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 12. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -1885,12 +1880,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 13. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -3271,12 +3260,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 18. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -3553,12 +3536,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 19. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -3835,12 +3812,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 20. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -4117,12 +4088,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 21. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -4399,12 +4364,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 22. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -4679,12 +4638,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 23. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -5511,12 +5464,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 26. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -6065,12 +6012,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 28. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -7997,12 +7938,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 35. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -8279,12 +8214,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 36. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -9111,12 +9040,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 39. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -9943,12 +9866,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 42. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -10777,12 +10694,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 45. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -11059,12 +10970,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 46. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -11893,12 +11798,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 49. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -12451,12 +12350,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 51. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -12733,12 +12626,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 52. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -13291,12 +13178,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 54. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -13573,12 +13454,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 55. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -13855,12 +13730,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 56. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -14413,12 +14282,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 58. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -15523,12 +15386,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 62. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -15805,12 +15662,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 63. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -16363,12 +16214,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 65. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -16645,12 +16490,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 66. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -16927,12 +16766,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 67. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -17209,12 +17042,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 68. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -17767,12 +17594,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 70. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -18049,12 +17870,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 71. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -18331,12 +18146,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 72. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -18613,12 +18422,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 73. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -18895,12 +18698,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 74. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -19729,12 +19526,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 77. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -20287,12 +20078,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 79. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -20845,12 +20630,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 81. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -21127,12 +20906,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 82. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -22237,12 +22010,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 86. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -23623,12 +23390,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 91. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -24733,12 +24494,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 95. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -25015,12 +24770,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 96. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -25573,18 +25322,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying increased tolerance 1e-14 ... - Using solution 1. Solution after simulation 98. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -25861,12 +25598,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 99. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -26419,12 +26150,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 101. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -26701,12 +26426,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 102. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -26983,12 +26702,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 103. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -27265,12 +26978,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 104. Using solid solution assemblage 1. With [14C] Using reaction 1. diff --git a/ex21.out b/ex21.out index d0770472..26fac9cb 100644 --- a/ex21.out +++ b/ex21.out @@ -558,6 +558,7 @@ Reading input data for simulation 3. PRINT selected_output false + status false Reading data from radial ... PRINT @@ -933,8 +934,7 @@ WARNING: No porosities were read; used the value 1.59e-01 from -multi_D. 60 put(a, 2) 70 plot_xy days, equi("A_Hto"), y_axis = 2, color = Red, symbol = None END -WARNING: + Calculating transport: 1 (mobile) cells, 1120 shifts, 1 mixruns... - END diff --git a/ex22.out b/ex22.out index c0201883..09fbe689 100644 --- a/ex22.out +++ b/ex22.out @@ -23,6 +23,8 @@ Reading input data for simulation 1. TITLE Example 22.--Compare experimental CO2 solubilities at high CO2 pressure with Peng-Robinson calc`ns with fixed-volume gas_phase, 25, 50, 75, 100, 150 oC. + PRINT + warnings 0 SOLUTION 1 GAS_PHASE 1 fixed_volume @@ -119,8 +121,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Element C is contained in gas CO2(g) (which has 0.0 mass), -but is not in solution or other phases. Using solution 1. Using gas phase 1. Using reaction 1. @@ -2179,13 +2179,6 @@ O(0) 2.585e-14 Reaction step 23. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using reaction 1. @@ -2280,13 +2273,6 @@ O(0) 4.595e-12 Reaction step 24. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using reaction 1. @@ -2381,13 +2367,6 @@ O(0) 7.163e-10 Reaction step 25. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using reaction 1. @@ -2482,13 +2461,6 @@ O(0) 7.164e-10 Reaction step 26. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using reaction 1. @@ -2583,13 +2555,6 @@ O(0) 7.165e-10 Reaction step 27. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using reaction 1. @@ -2684,13 +2649,6 @@ O(0) 7.166e-10 Reaction step 28. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using reaction 1. @@ -2785,13 +2743,6 @@ O(0) 7.167e-10 Reaction step 29. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using reaction 1. @@ -2886,13 +2837,6 @@ O(0) 7.167e-10 Reaction step 30. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using reaction 1. @@ -2987,13 +2931,6 @@ O(0) 7.167e-10 Reaction step 31. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using reaction 1. @@ -3088,13 +3025,6 @@ O(0) 7.167e-10 Reaction step 32. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using reaction 1. @@ -3209,8 +3139,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Element C is contained in gas CO2(g) (which has 0.0 mass), -but is not in solution or other phases. Using solution 1. Using gas phase 1. Using temperature 2. @@ -5291,13 +5219,6 @@ O(0) 1.765e-14 Reaction step 23. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 2. @@ -5393,13 +5314,6 @@ O(0) 1.069e-08 Reaction step 24. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 2. @@ -5495,13 +5409,6 @@ O(0) 1.069e-08 Reaction step 25. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 2. @@ -5597,13 +5504,6 @@ O(0) 1.069e-08 Reaction step 26. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 2. @@ -5699,13 +5599,6 @@ O(0) 1.069e-08 Reaction step 27. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 2. @@ -5801,13 +5694,6 @@ O(0) 1.069e-08 Reaction step 28. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 2. @@ -5903,13 +5789,6 @@ O(0) 1.070e-08 Reaction step 29. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 2. @@ -6005,13 +5884,6 @@ O(0) 1.070e-08 Reaction step 30. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 2. @@ -6129,8 +6001,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Element C is contained in gas CO2(g) (which has 0.0 mass), -but is not in solution or other phases. Using solution 1. Using gas phase 1. Using temperature 3. @@ -8116,13 +7986,6 @@ O(0) 0.000e+00 Reaction step 22. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 3. @@ -8218,13 +8081,6 @@ O(0) 8.268e-11 Reaction step 23. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 3. @@ -8320,13 +8176,6 @@ O(0) 8.270e-11 Reaction step 24. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 3. @@ -8422,13 +8271,6 @@ O(0) 8.270e-11 Reaction step 25. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 3. @@ -8524,13 +8366,6 @@ O(0) 8.272e-11 Reaction step 26. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 3. @@ -8626,13 +8461,6 @@ O(0) 8.272e-11 Reaction step 27. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 3. @@ -8728,13 +8556,6 @@ O(0) 8.273e-11 Reaction step 28. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 3. @@ -8852,8 +8673,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Element C is contained in gas CO2(g) (which has 0.0 mass), -but is not in solution or other phases. Using solution 1. Using gas phase 1. Using temperature 4. @@ -10839,13 +10658,6 @@ O(0) 0.000e+00 Reaction step 22. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 4. @@ -10941,13 +10753,6 @@ O(0) 0.000e+00 Reaction step 23. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 4. @@ -11043,13 +10848,6 @@ O(0) 0.000e+00 Reaction step 24. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 4. @@ -11145,13 +10943,6 @@ O(0) 3.158e-09 Reaction step 25. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 4. @@ -11247,13 +11038,6 @@ O(0) 3.159e-09 Reaction step 26. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 4. @@ -11349,13 +11133,6 @@ O(0) 3.160e-09 Reaction step 27. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 4. @@ -11451,13 +11228,6 @@ O(0) 3.160e-09 Reaction step 28. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 4. @@ -11553,13 +11323,6 @@ O(0) 3.160e-09 Reaction step 29. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 4. @@ -11679,8 +11442,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Element C is contained in gas CO2(g) (which has 0.0 mass), -but is not in solution or other phases. Using solution 1. Using gas phase 1. Using temperature 5. @@ -13476,13 +13237,6 @@ O(0) 2.096e-14 Reaction step 20. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 5. @@ -13578,13 +13332,6 @@ O(0) 2.691e-12 Reaction step 21. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 5. @@ -13680,13 +13427,6 @@ O(0) 5.019e-11 Reaction step 22. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 5. @@ -13782,13 +13522,6 @@ O(0) 5.021e-11 Reaction step 23. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 5. @@ -13884,13 +13617,6 @@ O(0) 5.024e-11 Reaction step 24. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 5. @@ -13986,13 +13712,6 @@ O(0) 5.026e-11 Reaction step 25. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 5. @@ -14088,13 +13807,6 @@ O(0) 5.028e-11 Reaction step 26. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 5. @@ -14190,13 +13902,6 @@ O(0) 5.027e-11 Reaction step 27. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 5. diff --git a/ex7.out b/ex7.out index 344fbc59..c2e715a7 100644 --- a/ex7.out +++ b/ex7.out @@ -1715,10 +1715,10 @@ CO2(g) -1.50 3.162e-02 2.997e-02 2.997e-02 0.000e+00 H2O(g) -1.50 3.141e-02 2.977e-02 2.977e-02 0.000e+00 N2(g) -99.99 0.000e+00 0.000e+00 0.000e+00 0.000e+00 -WARNING: While initializing gas phase composition by equilibrating: - Found definitions of gas` critical temperature and pressure. - Going to use Peng-Robinson in subsequent calculations. +While initializing gas phase composition by equilibrating: + Found definitions of gas critical temperature and pressure. + Going to use Peng-Robinson in subsequent calculations. ----------------------------------------- Beginning of batch-reaction calculations. ----------------------------------------- diff --git a/ex9.out b/ex9.out index bbae3a73..349e2e55 100644 --- a/ex9.out +++ b/ex9.out @@ -122,6 +122,8 @@ End of simulation. Reading input data for simulation 2. ------------------------------------ + PRINT + warnings 0 SOLUTION 1 pH 7.0 pe 10.0 O2(g) -0.67 @@ -236,8 +238,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Negative moles in solution 1 for Fe_tri, -6.102356e-06. Recovering... -WARNING: Negative moles in solution 1 for Fe_tri, -1.391921e-06. Recovering... Using solution 1. Using pure phase assemblage 1. Using kinetics 1. From 1680cde7ab23a71e3b514013815ccf08498a0dc8 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Tue, 7 Jan 2025 22:28:23 +0000 Subject: [PATCH 280/384] Squashed 'phreeqc3-examples/' changes from 1777f2bc..31517c71 31517c71 Updated output for 3.8.6 release git-subtree-dir: phreeqc3-examples git-subtree-split: 31517c71c70af07af992b2dceb8ebc1b8ff74e3d --- ex11.out | 5 +- ex12.out | 6 +- ex12a.out | 17 ++- ex13a.out | 12 +-- ex13ac.out | 24 ++--- ex13b.out | 12 +-- ex13c.out | 12 +-- ex15.out | 24 ++--- ex15a.out | 24 ++--- ex15b.out | 24 +++-- ex20b.out | 295 +--------------------------------------------------- ex21.out | 4 +- ex22.out | 299 +---------------------------------------------------- ex7.out | 6 +- ex9.out | 4 +- 15 files changed, 70 insertions(+), 698 deletions(-) diff --git a/ex11.out b/ex11.out index cdb77f30..dff27f2c 100644 --- a/ex11.out +++ b/ex11.out @@ -209,9 +209,6 @@ Reading input data for simulation 3. print_frequency 20 PRINT reset false -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 40. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 40. -WARNING: + Calculating transport: 40 (mobile) cells, 100 shifts, 4 mixruns... - diff --git a/ex12.out b/ex12.out index 9058b864..36435bf9 100644 --- a/ex12.out +++ b/ex12.out @@ -52,13 +52,9 @@ Reading input data for simulation 1. KX 0.048 PRINT reset false -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 60. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 60. -WARNING: + Calculating transport: 60 (mobile) cells, 60 shifts, 0 mixruns... -WARNING: Calculating transport: 60 (mobile) cells, 1 shifts, 122 mixruns... - diff --git a/ex12a.out b/ex12a.out index b66ac9d5..3e639b14 100644 --- a/ex12a.out +++ b/ex12a.out @@ -72,14 +72,12 @@ Reading input data for simulation 1. shifts 1 flow_direction diffusion boundary_conditions constant closed - lengths 1.0 + lengths 20*1.0 thermal_diffusion 3.0 # Heat is retarded equal to Na - dispersivities 0.0 # No dispersion + dispersivities 20*0.0 # No dispersion diffusion_coefficient 0.3e-9 # m^2/s time_step 1.0e+10 # 317 years, 19 substeps will be used SELECTED_OUTPUT -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. file ex12a.sel high_precision true reset false @@ -115,9 +113,8 @@ WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. 2060 erfc = b * (a1 + b * (a2 + b * (a3 + b * (a4 + b * a5)))) * EXP(-(z * z)) 2080 RETURN END -WARNING: -Calculating transport: 20 (mobile) cells, 1 shifts, 14 mixruns... +Calculating transport: 20 (mobile) cells, 1 shifts, 14 mixruns... SELECTED_OUTPUT active false # See also PRINT; selected_output false @@ -133,16 +130,14 @@ Calculating transport: 20 (mobile) cells, 1 shifts, 14 mixruns... END TRANSPORT # no need to redefine parameters that don't change from 20 cell model cells 60 - lengths 0.33333333333333333 + lengths 60*0.33333333333333333 + disp 60*0.0 punch_cells 1-60 SELECTED_OUTPUT -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 60. -WARNING: No dispersivities were read; disp = 0 assumed. active true # See also PRINT; selected_output false END -WARNING: -Calculating transport: 60 (mobile) cells, 1 shifts, 122 mixruns... +Calculating transport: 60 (mobile) cells, 1 shifts, 122 mixruns... SOLUTION # Initial solution calculation for pure water PRINT diff --git a/ex13a.out b/ex13a.out index 466f1b4d..2bfcc91d 100644 --- a/ex13a.out +++ b/ex13a.out @@ -298,15 +298,12 @@ Reading input data for simulation 3. time_step 3600 boundary_conditions flux flux diffusion_coefficient 0.0 - lengths 0.1 - dispersivities 0.015 + lengths 20*0.1 + dispersivities 20*0.015 stagnant 1 6.8e-6 0.3 0.1 END -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. -WARNING: -Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... +Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... SOLUTION 0 # Original solution with KNO3 reenters units mmol/l @@ -339,7 +336,6 @@ Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... 20 GRAPH_Y TOT("Na")*1000 TOT("Cl")*1000 -end END -WARNING: + Calculating transport: 20 (mobile) cells, 10 shifts, 1 mixruns... - diff --git a/ex13ac.out b/ex13ac.out index 270f50d0..80af4cc0 100644 --- a/ex13ac.out +++ b/ex13ac.out @@ -298,15 +298,12 @@ Reading input data for simulation 3. time_step 3600 boundary_conditions flux flux diffusion_coefficient 0.0 - lengths 0.1 - dispersivities 0.015 + lengths 20*0.1 + dispersivities 20*0.015 stagnant 1 6.8e-6 0.3 0.1 END -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. -WARNING: -Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... +Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... SOLUTION 0 # Original solution with KNO3 reenters units mmol/l @@ -340,9 +337,8 @@ Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... 30 plot_xy dist, TOT("Cl")*1000, color = Green, symbol = Diamond, symbol_size = 7 -end END -WARNING: -Calculating transport: 20 (mobile) cells, 10 shifts, 1 mixruns... +Calculating transport: 20 (mobile) cells, 10 shifts, 1 mixruns... PRINT user_graph false @@ -819,15 +815,12 @@ Calculating transport: 20 (mobile) cells, 10 shifts, 1 mixruns... time_step 3600 boundary_conditions flux flux diffusion_coefficient 0.0 - lengths 0.1 - dispersivities 0.015 + lengths 20*0.1 + dispersivities 20*0.015 stagnant 5 END -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. -WARNING: -Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... +Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... SOLUTION 0 # Original solution reenters units mmol/l @@ -858,7 +851,6 @@ Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... 30 plot_xy dist, TOT("Cl")*1000, color = Green, symbol = Plus -end END -WARNING: + Calculating transport: 20 (mobile) cells, 10 shifts, 1 mixruns... - diff --git a/ex13b.out b/ex13b.out index f344d133..d4289e43 100644 --- a/ex13b.out +++ b/ex13b.out @@ -418,15 +418,12 @@ Reading input data for simulation 3. time_step 3600 boundary_conditions flux flux diffusion_coefficient 0.0 - lengths 0.1 - dispersivities 0.015 + lengths 20*0.1 + dispersivities 20*0.015 stagnant 1 END -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. -WARNING: -Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... +Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... SOLUTION 0 # Original solution reenters units mmol/l @@ -459,7 +456,6 @@ Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... 20 GRAPH_Y TOT("Na")*1000 TOT("Cl")*1000 -end END -WARNING: + Calculating transport: 20 (mobile) cells, 10 shifts, 1 mixruns... - diff --git a/ex13c.out b/ex13c.out index 133a732a..915fc706 100644 --- a/ex13c.out +++ b/ex13c.out @@ -738,15 +738,12 @@ Reading input data for simulation 3. time_step 3600 boundary_conditions flux flux diffusion_coefficient 0.0 - lengths 0.1 - dispersivities 0.015 + lengths 20*0.1 + dispersivities 20*0.015 stagnant 5 END -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. -WARNING: -Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... +Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... SOLUTION 0 # Original solution reenters units mmol/l @@ -779,7 +776,6 @@ Calculating transport: 20 (mobile) cells, 5 shifts, 1 mixruns... 20 GRAPH_Y TOT("Na")*1000 TOT("Cl")*1000 -end END -WARNING: + Calculating transport: 20 (mobile) cells, 10 shifts, 1 mixruns... - diff --git a/ex15.out b/ex15.out index 9a9a3664..ee723fbf 100644 --- a/ex15.out +++ b/ex15.out @@ -141,12 +141,12 @@ Reading input data for simulation 1. -end -end TRANSPORT First 20 hours have NTA and cobalt in infilling solution cells 10 - lengths 1 + lengths 10*1 shifts 20 time_step 3600 flow_direction forward boundary_conditions flux flux - dispersivities .05 + dispersivities 10*.05 correct_disp true diffusion_coefficient 0.0 punch_cells 10 @@ -154,21 +154,17 @@ Reading input data for simulation 1. print_cells 10 print_frequency 5 COPY solution 101 0 # initial column solution becomes influent -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 10. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 10. END -WARNING: -Calculating transport: 10 (mobile) cells, 20 shifts, 1 mixruns... +Calculating transport: 10 (mobile) cells, 20 shifts, 1 mixruns... TRANSPORT Last 55 hours with background infilling solution shifts 55 COPY cell 100 0 # for the 20 cell model... COPY cell 101 1-20 END -WARNING: -Calculating transport: 10 (mobile) cells, 55 shifts, 1 mixruns... +Calculating transport: 10 (mobile) cells, 55 shifts, 1 mixruns... USER_PUNCH start @@ -198,13 +194,13 @@ Calculating transport: 10 (mobile) cells, 55 shifts, 1 mixruns... -end TRANSPORT First 20 hours have NTA and cobalt in infilling solution cells 20 - lengths 0.5 + lengths 20*0.5 shifts 40 initial_time 0 time_step 1800 flow_direction forward boundary_conditions flux flux - dispersivities .05 + dispersivities 20*.05 correct_disp true diffusion_coefficient 0.0 punch_cells 20 @@ -212,19 +208,15 @@ Calculating transport: 10 (mobile) cells, 55 shifts, 1 mixruns... print_cells 20 print_frequency 10 COPY cell 101 0 -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. END WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. -WARNING: -Calculating transport: 20 (mobile) cells, 40 shifts, 1 mixruns... +Calculating transport: 20 (mobile) cells, 40 shifts, 1 mixruns... TRANSPORT Last 55 hours with background infilling solution shifts 110 END -WARNING: + Calculating transport: 20 (mobile) cells, 110 shifts, 1 mixruns... - diff --git a/ex15a.out b/ex15a.out index 0c18f49f..747e04f0 100644 --- a/ex15a.out +++ b/ex15a.out @@ -127,12 +127,12 @@ Reading input data for simulation 1. -end TRANSPORT First 20 hours have NTA and cobalt in infilling solution cells 10 - lengths 1 + lengths 10*1 shifts 20 time_step 3600 flow_direction forward boundary_conditions flux flux - dispersivities .05 + dispersivities 10*.05 correct_disp true diffusion_coefficient 0.0 punch_cells 10 @@ -140,21 +140,17 @@ Reading input data for simulation 1. print_cells 10 print_frequency 5 COPY solution 101 0 # initial column solution becomes influent -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 10. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 10. END -WARNING: -Calculating transport: 10 (mobile) cells, 20 shifts, 1 mixruns... +Calculating transport: 10 (mobile) cells, 20 shifts, 1 mixruns... TRANSPORT Last 55 hours with background infilling solution shifts 55 COPY cell 100 0 # for the 20 cell model... COPY cell 101 1-20 END -WARNING: -Calculating transport: 10 (mobile) cells, 55 shifts, 1 mixruns... +Calculating transport: 10 (mobile) cells, 55 shifts, 1 mixruns... USER_PUNCH start @@ -175,13 +171,13 @@ Calculating transport: 10 (mobile) cells, 55 shifts, 1 mixruns... -end TRANSPORT First 20 hours have NTA and cobalt in infilling solution cells 20 - lengths 0.5 + lengths 20*0.5 shifts 40 initial_time 0 time_step 1800 flow_direction forward boundary_conditions flux flux - dispersivities .05 + dispersivities 20*.05 correct_disp true diffusion_coefficient 0.0 punch_cells 20 @@ -189,19 +185,15 @@ Calculating transport: 10 (mobile) cells, 55 shifts, 1 mixruns... print_cells 20 print_frequency 10 COPY cell 101 0 -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. END WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. -WARNING: -Calculating transport: 20 (mobile) cells, 40 shifts, 1 mixruns... +Calculating transport: 20 (mobile) cells, 40 shifts, 1 mixruns... TRANSPORT Last 55 hours with background infilling solution shifts 110 END -WARNING: + Calculating transport: 20 (mobile) cells, 110 shifts, 1 mixruns... - diff --git a/ex15b.out b/ex15b.out index 3b5dcddd..e7fde239 100644 --- a/ex15b.out +++ b/ex15b.out @@ -111,12 +111,12 @@ Reading input data for simulation 1. end TRANSPORT First 20 hours have NTA and cobalt in infilling solution cells 10 - lengths 1 + lengths 10*1 shifts 20 time_step 3600 flow_direction forward boundary_conditions flux flux - dispersivities .05 + dispersivities 10*.05 correct_disp true diffusion_coefficient 0.0 punch_cells 10 @@ -125,8 +125,6 @@ Reading input data for simulation 1. print_frequency 5 warnings false USER_GRAPH Example 15B -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 10. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 10. -headings 10_cells: Co+2 CoNTA- Biomass -chart_title "Example 15, Sorbed Species" -axis_titles "Time / hours" "nmol / kgw" "Biomass / (mg/L)" @@ -143,11 +141,17 @@ WARNING: Dispersivities were read for 1 cells. Last value is used till cell 10. -end COPY solution 101 0 END + +Calculating transport: 10 (mobile) cells, 20 shifts, 1 mixruns... + TRANSPORT Last 55 hours with background infilling solution shifts 55 COPY cell 100 0 COPY cell 101 1-20 END + +Calculating transport: 10 (mobile) cells, 55 shifts, 1 mixruns... + USER_PUNCH start 10 punch TOTAL_TIME/3600 + 3600/4/3600 @@ -157,13 +161,13 @@ WARNING: Dispersivities were read for 1 cells. Last value is used till cell 10. end TRANSPORT First 20 hours have NTA and cobalt in infilling solution cells 20 - lengths 0.5 + lengths 20*0.5 shifts 40 initial_time 0 time_step 1800 flow_direction forward boundary_conditions flux flux - dispersivities .05 + dispersivities 20*.05 correct_disp true diffusion_coefficient 0.0 punch_cells 20 @@ -171,8 +175,6 @@ WARNING: Dispersivities were read for 1 cells. Last value is used till cell 10. print_cells 20 print_frequency 10 USER_GRAPH -WARNING: Cell-lengths were read for 1 cells. Last value is used till cell 20. -WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. -headings 20_cells: Co+2 CoNTA- Biomass -start 10 x = TOTAL_TIME/3600 + 3600/4/3600 @@ -183,6 +185,12 @@ WARNING: Dispersivities were read for 1 cells. Last value is used till cell 20. -end COPY cell 101 0 END + +Calculating transport: 20 (mobile) cells, 40 shifts, 1 mixruns... + TRANSPORT Last 55 hours with background infilling solution shifts 110 END + +Calculating transport: 20 (mobile) cells, 110 shifts, 1 mixruns... + diff --git a/ex20b.out b/ex20b.out index ac7b8d00..0dfc16cc 100644 --- a/ex20b.out +++ b/ex20b.out @@ -250,6 +250,7 @@ Reading input data for simulation 7. PRINT selected_output false + warnings 0 END ------------------ End of simulation. @@ -1603,12 +1604,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 12. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -1885,12 +1880,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 13. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -3271,12 +3260,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 18. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -3553,12 +3536,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 19. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -3835,12 +3812,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 20. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -4117,12 +4088,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 21. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -4399,12 +4364,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 22. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -4679,12 +4638,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 23. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -5511,12 +5464,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 26. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -6065,12 +6012,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 28. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -7997,12 +7938,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 35. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -8279,12 +8214,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 36. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -9111,12 +9040,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 39. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -9943,12 +9866,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 42. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -10777,12 +10694,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 45. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -11059,12 +10970,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 46. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -11893,12 +11798,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 49. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -12451,12 +12350,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 51. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -12733,12 +12626,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 52. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -13291,12 +13178,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 54. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -13573,12 +13454,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 55. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -13855,12 +13730,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 56. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -14413,12 +14282,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 58. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -15523,12 +15386,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 62. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -15805,12 +15662,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 63. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -16363,12 +16214,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 65. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -16645,12 +16490,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 66. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -16927,12 +16766,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 67. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -17209,12 +17042,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 68. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -17767,12 +17594,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 70. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -18049,12 +17870,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 71. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -18331,12 +18146,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 72. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -18613,12 +18422,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 73. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -18895,12 +18698,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 74. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -19729,12 +19526,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 77. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -20287,12 +20078,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 79. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -20845,12 +20630,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 81. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -21127,12 +20906,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 82. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -22237,12 +22010,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 86. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -23623,12 +23390,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 91. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -24733,12 +24494,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 95. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -25015,12 +24770,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 96. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -25573,18 +25322,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - -WARNING: Maximum iterations exceeded, 200 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying increased tolerance 1e-14 ... - Using solution 1. Solution after simulation 98. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -25861,12 +25598,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 99. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -26419,12 +26150,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 101. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -26701,12 +26426,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 102. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -26983,12 +26702,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 103. Using solid solution assemblage 1. With [14C] Using reaction 1. @@ -27265,12 +26978,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying reduced tolerance 1e-16 ... - Using solution 1. Solution after simulation 104. Using solid solution assemblage 1. With [14C] Using reaction 1. diff --git a/ex21.out b/ex21.out index d0770472..26fac9cb 100644 --- a/ex21.out +++ b/ex21.out @@ -558,6 +558,7 @@ Reading input data for simulation 3. PRINT selected_output false + status false Reading data from radial ... PRINT @@ -933,8 +934,7 @@ WARNING: No porosities were read; used the value 1.59e-01 from -multi_D. 60 put(a, 2) 70 plot_xy days, equi("A_Hto"), y_axis = 2, color = Red, symbol = None END -WARNING: + Calculating transport: 1 (mobile) cells, 1120 shifts, 1 mixruns... - END diff --git a/ex22.out b/ex22.out index c0201883..09fbe689 100644 --- a/ex22.out +++ b/ex22.out @@ -23,6 +23,8 @@ Reading input data for simulation 1. TITLE Example 22.--Compare experimental CO2 solubilities at high CO2 pressure with Peng-Robinson calc`ns with fixed-volume gas_phase, 25, 50, 75, 100, 150 oC. + PRINT + warnings 0 SOLUTION 1 GAS_PHASE 1 fixed_volume @@ -119,8 +121,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Element C is contained in gas CO2(g) (which has 0.0 mass), -but is not in solution or other phases. Using solution 1. Using gas phase 1. Using reaction 1. @@ -2179,13 +2179,6 @@ O(0) 2.585e-14 Reaction step 23. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using reaction 1. @@ -2280,13 +2273,6 @@ O(0) 4.595e-12 Reaction step 24. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using reaction 1. @@ -2381,13 +2367,6 @@ O(0) 7.163e-10 Reaction step 25. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using reaction 1. @@ -2482,13 +2461,6 @@ O(0) 7.164e-10 Reaction step 26. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using reaction 1. @@ -2583,13 +2555,6 @@ O(0) 7.165e-10 Reaction step 27. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using reaction 1. @@ -2684,13 +2649,6 @@ O(0) 7.166e-10 Reaction step 28. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using reaction 1. @@ -2785,13 +2743,6 @@ O(0) 7.167e-10 Reaction step 29. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using reaction 1. @@ -2886,13 +2837,6 @@ O(0) 7.167e-10 Reaction step 30. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using reaction 1. @@ -2987,13 +2931,6 @@ O(0) 7.167e-10 Reaction step 31. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using reaction 1. @@ -3088,13 +3025,6 @@ O(0) 7.167e-10 Reaction step 32. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using reaction 1. @@ -3209,8 +3139,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Element C is contained in gas CO2(g) (which has 0.0 mass), -but is not in solution or other phases. Using solution 1. Using gas phase 1. Using temperature 2. @@ -5291,13 +5219,6 @@ O(0) 1.765e-14 Reaction step 23. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 2. @@ -5393,13 +5314,6 @@ O(0) 1.069e-08 Reaction step 24. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 2. @@ -5495,13 +5409,6 @@ O(0) 1.069e-08 Reaction step 25. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 2. @@ -5597,13 +5504,6 @@ O(0) 1.069e-08 Reaction step 26. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 2. @@ -5699,13 +5599,6 @@ O(0) 1.069e-08 Reaction step 27. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 2. @@ -5801,13 +5694,6 @@ O(0) 1.069e-08 Reaction step 28. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 2. @@ -5903,13 +5789,6 @@ O(0) 1.070e-08 Reaction step 29. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 2. @@ -6005,13 +5884,6 @@ O(0) 1.070e-08 Reaction step 30. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 2. @@ -6129,8 +6001,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Element C is contained in gas CO2(g) (which has 0.0 mass), -but is not in solution or other phases. Using solution 1. Using gas phase 1. Using temperature 3. @@ -8116,13 +7986,6 @@ O(0) 0.000e+00 Reaction step 22. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 3. @@ -8218,13 +8081,6 @@ O(0) 8.268e-11 Reaction step 23. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 3. @@ -8320,13 +8176,6 @@ O(0) 8.270e-11 Reaction step 24. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 3. @@ -8422,13 +8271,6 @@ O(0) 8.270e-11 Reaction step 25. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 3. @@ -8524,13 +8366,6 @@ O(0) 8.272e-11 Reaction step 26. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 3. @@ -8626,13 +8461,6 @@ O(0) 8.272e-11 Reaction step 27. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 3. @@ -8728,13 +8556,6 @@ O(0) 8.273e-11 Reaction step 28. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 3. @@ -8852,8 +8673,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Element C is contained in gas CO2(g) (which has 0.0 mass), -but is not in solution or other phases. Using solution 1. Using gas phase 1. Using temperature 4. @@ -10839,13 +10658,6 @@ O(0) 0.000e+00 Reaction step 22. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 4. @@ -10941,13 +10753,6 @@ O(0) 0.000e+00 Reaction step 23. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 4. @@ -11043,13 +10848,6 @@ O(0) 0.000e+00 Reaction step 24. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 4. @@ -11145,13 +10943,6 @@ O(0) 3.158e-09 Reaction step 25. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 4. @@ -11247,13 +11038,6 @@ O(0) 3.159e-09 Reaction step 26. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 4. @@ -11349,13 +11133,6 @@ O(0) 3.160e-09 Reaction step 27. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 4. @@ -11451,13 +11228,6 @@ O(0) 3.160e-09 Reaction step 28. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 4. @@ -11553,13 +11323,6 @@ O(0) 3.160e-09 Reaction step 29. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 4. @@ -11679,8 +11442,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Element C is contained in gas CO2(g) (which has 0.0 mass), -but is not in solution or other phases. Using solution 1. Using gas phase 1. Using temperature 5. @@ -13476,13 +13237,6 @@ O(0) 2.096e-14 Reaction step 20. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 5. @@ -13578,13 +13332,6 @@ O(0) 2.691e-12 Reaction step 21. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 5. @@ -13680,13 +13427,6 @@ O(0) 5.019e-11 Reaction step 22. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 5. @@ -13782,13 +13522,6 @@ O(0) 5.021e-11 Reaction step 23. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 5. @@ -13884,13 +13617,6 @@ O(0) 5.024e-11 Reaction step 24. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 5. @@ -13986,13 +13712,6 @@ O(0) 5.026e-11 Reaction step 25. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 5. @@ -14088,13 +13807,6 @@ O(0) 5.028e-11 Reaction step 26. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 5. @@ -14190,13 +13902,6 @@ O(0) 5.027e-11 Reaction step 27. -WARNING: Numerical method failed, switching to numerical derivatives. -WARNING: Maximum iterations exceeded, 100 - -WARNING: Numerical method failed with this set of convergence parameters. - -WARNING: Trying smaller step size, pe step size 10, 5 ... - Using solution 1. Using gas phase 1. Using temperature 5. diff --git a/ex7.out b/ex7.out index 344fbc59..c2e715a7 100644 --- a/ex7.out +++ b/ex7.out @@ -1715,10 +1715,10 @@ CO2(g) -1.50 3.162e-02 2.997e-02 2.997e-02 0.000e+00 H2O(g) -1.50 3.141e-02 2.977e-02 2.977e-02 0.000e+00 N2(g) -99.99 0.000e+00 0.000e+00 0.000e+00 0.000e+00 -WARNING: While initializing gas phase composition by equilibrating: - Found definitions of gas` critical temperature and pressure. - Going to use Peng-Robinson in subsequent calculations. +While initializing gas phase composition by equilibrating: + Found definitions of gas critical temperature and pressure. + Going to use Peng-Robinson in subsequent calculations. ----------------------------------------- Beginning of batch-reaction calculations. ----------------------------------------- diff --git a/ex9.out b/ex9.out index bbae3a73..349e2e55 100644 --- a/ex9.out +++ b/ex9.out @@ -122,6 +122,8 @@ End of simulation. Reading input data for simulation 2. ------------------------------------ + PRINT + warnings 0 SOLUTION 1 pH 7.0 pe 10.0 O2(g) -0.67 @@ -236,8 +238,6 @@ Beginning of batch-reaction calculations. Reaction step 1. -WARNING: Negative moles in solution 1 for Fe_tri, -6.102356e-06. Recovering... -WARNING: Negative moles in solution 1 for Fe_tri, -1.391921e-06. Recovering... Using solution 1. Using pure phase assemblage 1. Using kinetics 1. From b0491191e773d3b017a2a626ba26a8c7259a6a5c Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Fri, 10 Jan 2025 12:23:44 -0700 Subject: [PATCH 281/384] Updated cran artifacts --- .github/workflows/cmake.yml | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/.github/workflows/cmake.yml b/.github/workflows/cmake.yml index 17d5f940..a8fcbe56 100644 --- a/.github/workflows/cmake.yml +++ b/.github/workflows/cmake.yml @@ -297,8 +297,10 @@ jobs: - uses: actions/upload-artifact@v4 if: matrix.config.os == 'ubuntu-latest' && matrix.config.r == 'release' with: - name: cran - path: ${{ github.workspace }}/R/phreeqc/check/phreeqc_*.tar.gz + name: cran-${{ github.run_number }} + path: | + R/phreeqc/check/phreeqc_*.tar.gz + R/phreeqc/check/phreeqc.Rcheck/00check.log # r-build: From 3cf80a8adfb6e46aef2034c692d5d80b0e65b8aa Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Wed, 12 Feb 2025 21:48:14 -0700 Subject: [PATCH 282/384] Added simela.dat-from Peter de Moel. Fixed bug in write_raw/read_raw GasComp, order of options --- CMakeLists.txt | 1 + Makefile.am | 1 + stimela.dat | 2129 ++++++++++++++++++++++++++++++++++++++++++++++++ 3 files changed, 2131 insertions(+) create mode 100644 stimela.dat diff --git a/CMakeLists.txt b/CMakeLists.txt index 75d594f5..113817fb 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -16,6 +16,7 @@ set(phreeqc_DATABASE phreeqc.dat pitzer.dat sit.dat + stimela.dat Tipping_Hurley.dat wateq4f.dat ) diff --git a/Makefile.am b/Makefile.am index abe19d83..df221e25 100644 --- a/Makefile.am +++ b/Makefile.am @@ -24,5 +24,6 @@ DATABASE=\ phreeqc.dat\ pitzer.dat\ sit.dat\ + stimela.dat\ Tipping_Hurley.dat\ wateq4f.dat diff --git a/stimela.dat b/stimela.dat new file mode 100644 index 00000000..7b06dca3 --- /dev/null +++ b/stimela.dat @@ -0,0 +1,2129 @@ +# stimela.dat (version 3.8.6) (stimela version of phreeqc.dat) +# under development by Peter de Moel (Omnisys) for Stimela platform at Delft University of Technology +# based on: phreeqc.dat (file date 2025-01-07, in IPhreeqcCOM-3.8.6-17100-x64.msi) +# Stimela is focussed on modelling for water and waste water treatment +# Further info on using PHREEQC for water treatment, and PHREEQC in Excel can be found on https://ac4e.omnisys.nl/ + +# list of modifications: +# - added Amm (with master species AmmH+) as used in amm.dat for redox-uncoupled NH3 (for using Tony Appelo's input files) +# - added [N-3] (with master species [N-3]H4+) as alternative for redox-uncoupled Amm (for readable chemical formula) +# - added [Fe+2], [Mn+2] and [N+3] (with master species [Fe+2]+2 , [Mn+2]+2 and [N+3]O2-) for redox-uncoupled Fe+2, Mn+2 and NO2- +# - added [C-4] and [S-2] (with master species [C-4]H4 and H2[S-2]) as alternatives for redox-uncoupled Mtg and Sg) +# - added solid Vaterite (CaCO3) (included in Standard Methods 2330 (2010)) +# - unchanged analytic for solid Calcite (phreeqc 3.7.0. introduced modified version, deviated from Standard Methods 2330 - 2016) +# - modified values for element_gfw according to Abridged Standard Atomic Weights from TSAW 2013 (CIAAW/IUPAC) (https://www.ciaaw.org/abridged-atomic-weights.htm) +# end of list of modifications + +# File 1 = C:\GitPrograms\phreeqc3-1\database\phreeqc.dat, 22/05/2024 19:38, 1948 lines, 55817 bytes, md5=78b3659799b73ddca128328b6ee7533b +# Created 22 May 2024 19:55:37 +# C:\3rdParty\lsp\lsp.exe -f2 -k=asis -ts phreeqc.dat + +# phreeqc.dat for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: +# diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. +# Details are given at the end of this file. + +SOLUTION_MASTER_SPECIES +# Modified acc. TSAW calculated +#element species alk gfw_formula element_gfw # phreeqc.dat (if modified) +# +H H+ -1 H 1.0080 1.008 1,008 +H(0) H2 0 H +H(1) H+ -1 0 +E e- 0 0.0 0 +O H2O 0 O 15.999 # 16 15,999 +O(0) O2 0 O +O(-2) H2O 0 0 +Ca Ca+2 0 Ca 40.078 # 40.08 40,078 +Mg Mg+2 0 Mg 24.305 # 24.312 +Na Na+ 0 Na 22.990 # 22.9898 +K K+ 0 K 39.098 # 39.102 +Fe Fe+2 0 Fe 55.845 # 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2 Fe +Mn Mn+2 0 Mn 54.938 +Mn(+2) Mn+2 0 Mn +Mn(+3) Mn+3 0 Mn +Al Al+3 0 Al 26.982 # 26.9815 +Ba Ba+2 0 Ba 137.33 # 137.34 +Sr Sr+2 0 Sr 87.62 +Si H4SiO4 0 SiO2 28.085 # 28.0843 +Cl Cl- 0 Cl 35.45 # 35.453 +C CO3-2 2 HCO3 12.011 # 12.0111 12,011 +C(+4) CO3-2 2 HCO3 +C(-4) CH4 0 CH4 +Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.043 # 50.05 50,043 +S SO4-2 0 SO4 32.06 # 32.064 32,06 +S(6) SO4-2 0 SO4 +S(-2) HS- 1 S +N NO3- 0 N 14.007 # 14.0067 14,007 +N(+5) NO3- 0 N +N(+3) NO2- 0 N +N(0) N2 0 N +N(-3) NH4+ 0 N # 14.0067 +# begin modification stimela.dat +# uncommented Amm definitions +Amm AmmH+ 0 AmmH 17.031 # 17,031 +# end modification stimela.dat +B H3BO3 0 B 10.81 +P PO4-3 2 P 30.974 # 30.9738 +F F- 0 F 18.998 # 18.9984 +Li Li+ 0 Li 6.94 # 6.939 +Br Br- 0 Br 79.904 +Zn Zn+2 0 Zn 65.38 # 65.37 +Cd Cd+2 0 Cd 112.41 # 112.4 +Pb Pb+2 0 Pb 207.2 # 207.19 +Cu Cu+2 0 Cu 63.546 +Cu(+2) Cu+2 0 Cu +Cu(+1) Cu+1 0 Cu +# redox-uncoupled gases +Hdg Hdg 0 Hdg 2.016 # H2 gas 2,016 +Oxg Oxg 0 Oxg 31.998 # 32 O2 gas 31,998 +Mtg Mtg 0 Mtg 16.043 # 16.032 CH4 gas 16,043 +Sg H2Sg 0 H2Sg 34.076 # 34.064 H2S gas 34,076 +Ntg Ntg 0 Ntg 28.014 # 28.0134 N2 gas 28,014 +# begin modification stimela.dat +# added redox-uncoupled (inert) elements: [Fe+2], [Mn+2] and [N+3] +[Fe+2] [Fe+2]+2 0 Fe 55.845 +[Mn+2] [Mn+2]+2 0 Mn 54.938 +[N+3] [N+3]O2- 0 N 14.007 +# redox_uncoupled elements Amm (NH3), Mtg (CH4) and Sg (H2S) are not readable chemical formula +# replaced with uniform notation for redox-uncoupled (inert) elements: [N-3], [C-4] and [S-2] +[N-3] [N-3]H4+ 0 NH4 14.007 # Amm = [N-3]H3 +[C-4] [C-4]H4 0 CH4 12.011 # Mtg = [C-4]H4 +[S-2] H2[S-2] 0 H2S 32.06 # Sg = [S-2] +# uniform notation omitted for Oxg (O2), Hdg (H2) and Ntg (N2), to limit modifications from phreeqc.dat +# end modification stimela.dat +SOLUTION_SPECIES +H+ = H+ + -gamma 9 0 + -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 + -dw 9.31e-9 838 6.96 -2.285 0.206 24.01 0 + # Dw(25 C) dw_T a a2 visc a3 a_v_dif + # Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc + # a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif for tracer diffusion. + + # For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 0.206 for H+) + # a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Onsager-Falkenhagen eqn. (For H+, the reference ion, vm = v0 = 0, a *= (1 + mu)^a2.) + # a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10, not used in this database.) (a3 = 24.01 for H+, a flag.) + # -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database) + + # If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. +e- = e- +H2O = H2O + -dw 2.299e-9 -254 + # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence +Li+ = Li+ + -gamma 6 0 # The apparent volume parameters are defined in ref. 1 & 2 + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 + -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl + -dw 1.03e-9 -14 4.03 0.8341 1.679 +Na+ = Na+ + -gamma 4 0.075 + -gamma 4.08 0.082 # halite solubility + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 + # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 # for densities (rho) when I > 3. + -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 + -dw 1.33e-9 75 3.627 0 0.7037 +K+ = K+ + -gamma 3.5 0.015 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 + -viscosity 0.116 -0.191 1.52e-2 1.4e-2 2.59e-2 0.9028 + -dw 1.96e-9 254 3.484 0 0.1964 +Mg+2 = Mg+2 + -gamma 5.5 0.2 + -Vm -1.41 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 + -dw 0.705e-9 -4 5.569 0 1.047 +Ca+2 = Ca+2 + -gamma 5 0.165 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.6 -57.1 -6.12e-3 1 + -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.3 # ref. 4, CaCl2 < 6 M + -dw 0.792e-9 34 5.411 0 1.046 +Sr+2 = Sr+2 + -gamma 5.26 0.121 + -Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97 + -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 + -dw 0.794e-9 149 0.805 1.961 1e-9 0.7876 +Ba+2 = Ba+2 + -gamma 5 0 + -gamma 4 0.153 # Barite solubility + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 + -dw 0.848e-9 174 10.53 0 3 +Fe+2 = Fe+2 + -gamma 6 0 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -dw 0.719e-9 +Mn+2 = Mn+2 + -gamma 6 0 + -Vm -1.1 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 + -dw 0.688e-9 +Al+3 = Al+3 + -gamma 9 0 + -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353 + -dw 0.559e-9 +H4SiO4 = H4SiO4 + -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt 2*H2O in a1 + -dw 1.1e-9 +Cl- = Cl- + -gamma 3.5 0.015 + -gamma 3.63 0.017 # cf. pitzer.dat + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -viscosity 0 0 0 0 0 0 1 # the reference solute + -dw 2.033e-9 216 3.16 0.2071 0.7432 +CO3-2 = CO3-2 + -gamma 5.4 0 + -Vm 6.09 -2.78 -0.405 -5.3 5.02 0 0.169 101 -1.38e-2 0.9316 + -viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147 + -dw 0.955e-9 -103 2.246 7.13e-2 0.3686 +SO4-2 = SO4-2 + -gamma 5 -0.04 + -Vm -7.77 43.17 176 -51.45 3.794 0 42.99 -541 -0.145 0.45 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC + -viscosity -0.3 0.501 2.57e-3 0.195 3.14e-2 2.015 0.605 + -dw 1.07e-9 -114 17 6.02e-2 4.94e-2 +NO3- = NO3- + -gamma 3 0 + -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 + -viscosity 8.37e-2 -0.458 1.54e-2 0.34 1.79e-2 5.02e-2 0.7381 + -dw 1.9e-9 104 1.11 +# begin modification stimela.dat +# uncommented Amm definitions +AmmH+ = AmmH+ + -gamma 2.5 0 + -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 + -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -dw 1.98e-9 203 1.47 2.644 6.81e-2 +# added [N-3]H4+, [N+3]O2-, [Fe+2]+2 and [Mn+2]+2 +[N-3]H4+ = [N-3]H4+ + -gamma 2.5 0 + -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 + -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -dw 1.98e-9 203 1.47 2.644 6.81e-2 +[N+3]O2- = [N+3]O2- + -gamma 3 0 + -Vm 5.5864 5.859 3.4472 -3.0212 1.1847 # supcrt + -dw 1.91e-9 +[Fe+2]+2 = [Fe+2]+2 + -gamma 6 0 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -dw 0.719e-9 +[Mn+2]+2 = [Mn+2]+2 + -gamma 6 0 + -Vm -1.1 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 + -dw 0.688e-9 +# end modification stimela.dat +H3BO3 = H3BO3 + -Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt + -dw 1.1e-9 +PO4-3 = PO4-3 + -gamma 4 0 + -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 + -dw 0.612e-9 +F- = F- + -gamma 3.5 0 + -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 + -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 + -dw 1.46e-9 -36 4.352 +Br- = Br- + -gamma 3 0 + -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 + -viscosity -6.98e-2 -0.141 1.78e-2 0.159 7.76e-3 6.25e-2 0.859 + -dw 2.09e-9 208 3.5 0 0.5737 +Zn+2 = Zn+2 + -gamma 5 0 + -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 + -dw 0.715e-9 +Cd+2 = Cd+2 + -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 + -dw 0.717e-9 +Pb+2 = Pb+2 + -Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt + -dw 0.945e-9 +Cu+2 = Cu+2 + -gamma 6 0 + -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 + -dw 0.733e-9 +# redox-uncoupled gases +Hdg = Hdg # H2 + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 +Oxg = Oxg # O2 + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 +Mtg = Mtg # CH4 + -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 +Ntg = Ntg # N2 + -Vm 7 # Pray et al., 1952, IEC 44 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 +H2Sg = H2Sg # H2S + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 +# begin modification stimela.dat +[C-4]H4 = [C-4]H4 # CH4 + -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 +H2[S-2] = H2[S-2] # H2S + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 +# end modification stimela.dat +# aqueous species +H2O = OH- + H+ + -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 + -gamma 3.5 0 + -Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1 + -viscosity -2.26e-2 0.106 2.184e-2 -3.2e-3 0 0.4082 -1.634 # < 5 M Li,Na,KOH + -dw 5.27e-9 478 0.8695 +2 H2O = O2 + 4 H+ + 4 e- + -log_k -86.08 + -delta_h 134.79 kcal + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 +2 H+ + 2 e- = H2 + -log_k -3.15 + -delta_h -1.759 kcal + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 +H+ + Cl- = HCl + -log_k -0.5 + -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50°C + -gamma 0 0.4256 + -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 +CO3-2 + H+ = HCO3- + -log_k 10.329; -delta_h -3.561 kcal + -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 + -Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144 + -viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253 + -dw 1.18e-9 -190 11.386 +CO3-2 + 2 H+ = CO2 + H2O + -log_k 16.681 + -delta_h -5.738 kcal + -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171 + -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 + -viscosity 6.8e-3 9.03e-2 3.27e-2 0 0 0 0.18 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 +2 CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T + -log_k -1.8 + -analytical_expression 8.68 -0.0103 -2190 + -Vm 14.58 1.84 4.14 -2.46 -3.2 + -viscosity 1.36e-2 0.1806 3.27e-2 0 0 0 0.36 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 +CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O + -log_k 41.071 + -delta_h -61.039 kcal + -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 +SO4-2 + H+ = HSO4- + -log_k 1.988; -delta_h 3.85 kcal + -analytic -56.889 0.006473 2307.9 19.8858 + -Vm 8.2 9.259 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987 + -dw 1.22e-9 1000 15 2.861 +HS- = S-2 + H+ + -log_k -12.918 + -delta_h 12.1 kcal + -gamma 5 0 + -dw 0.731e-9 +SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O + -log_k 33.65 + -delta_h -60.14 kcal + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt + -dw 1.73e-9 +HS- + H+ = H2S + -log_k 6.994; -delta_h -5.3 kcal + -analytical -11.17 0.02386 3279 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 +2 H2S = (H2S)2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 +H2Sg = HSg- + H+ + -log_k -6.994; -delta_h 5.3 kcal + -analytical_expression 11.17 -0.02386 -3279 + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt + -dw 1.73e-9 +2 H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 +# begin modification stimela.dat +H2[S-2] = H[S-2]- + H+ + -log_k -6.994; -delta_h 5.3 kcal + -analytical_expression 11.17 -0.02386 -3279 + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt + -dw 1.73e-9 1.73e-9 +2 H2[S-2] = (H2[S-2])2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 +# end modification stimela.dat +NO3- + 2 H+ + 2 e- = NO2- + H2O + -log_k 28.57 + -delta_h -43.76 kcal + -gamma 3 0 + -Vm 5.5864 5.859 3.4472 -3.0212 1.1847 # supcrt + -dw 1.91e-9 +2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O + -log_k 207.08 + -delta_h -312.13 kcal + -Vm 7 # Pray et al., 1952, IEC 44 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 +NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O + -log_k 119.077 + -delta_h -187.055 kcal + -gamma 2.5 0 + -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 + -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -dw 1.98e-9 203 1.47 2.644 6.81e-2 +# begin modification stimela.dat +# uncommented Amm definitions +AmmH+ = Amm + H+ + -log_k -9.252 + -delta_h 12.48 kcal + -analytic 0.6322 -0.001225 -2835.76 + -Vm 6.69 2.8 3.58 -2.88 1.43 + -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -dw 2.28e-9 +# definition [N-3]H3 +[N-3]H4+ = [N-3]H3 + H+ + -log_k -9.252 + -delta_h 12.48 kcal + -analytic 0.6322 -0.001225 -2835.76 + -Vm 6.69 2.8 3.58 -2.88 1.43 + -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -dw 2.28e-9 +# end modification stimela.dat +NH4+ = NH3 + H+ + -log_k -9.252 + -delta_h 12.48 kcal + -analytic 0.6322 -0.001225 -2835.76 + -Vm 6.69 2.8 3.58 -2.88 1.43 + -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -dw 2.28e-9 +# begin modification stimela.dat +# uncommented Amm definitions +AmmH+ + SO4-2 = AmmHSO4- + -gamma 2.08 -0.0416 + -log_k 1.211; -delta_h 8.56 kJ + -Vm -8.78 0 -36.09 0 -8.60 0 87.62 0 -0.3123 0.1172 + -viscosity 0 0.116 -8.6e-3 0.159 -9.3e-3 0.522 0.627 + -dw 0.9e-9 100 2.1 2 0 +# definition [N-3]H4SO4- +[N-3]H4+ + SO4-2 = [N-3]H4SO4- + -gamma 2.08 -0.0416 + -log_k 1.211; -delta_h 8.56 kJ + -Vm -8.78 0 -36.09 0 -8.60 0 87.62 0 -0.3123 0.1172 + -viscosity 0 0.116 -8.6e-3 0.159 -9.3e-3 0.522 0.627 + -dw 0.9e-9 100 2.1 2 0 +# end modification stimela.dat +NH4+ + SO4-2 = NH4SO4- + -gamma 2.08 -0.0416 + -log_k 1.211; -delta_h 8.56 kJ + -Vm -8.78 0 -36.09 0 -8.60 0 87.62 0 -0.3123 0.1172 + -viscosity 0 0.116 -8.6e-3 0.159 -9.3e-3 0.522 0.627 + -dw 0.9e-9 100 2.1 2 0 +H3BO3 = H2BO3- + H+ + -log_k -9.24 + -delta_h 3.224 kcal +H3BO3 + F- = BF(OH)3- + -log_k -0.4 + -delta_h 1.85 kcal +H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O + -log_k 7.63 + -delta_h 1.618 kcal +H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O + -log_k 13.67 + -delta_h -1.614 kcal +H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O + -log_k 20.28 + -delta_h -1.846 kcal +PO4-3 + H+ = HPO4-2 + -log_k 12.346 + -delta_h -3.53 kcal + -gamma 5 0 + -dw 0.69e-9 + -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 +PO4-3 + 2 H+ = H2PO4- + -log_k 19.553 + -delta_h -4.52 kcal + -gamma 5.4 0 + -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 + -dw 0.846e-9 +PO4-3 + 3 H+ = H3PO4 + log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 + delta_h -10.1 kJ + -Vm 7.47 12.4 6.29 -3.29 0 +H+ + F- = HF + -log_k 3.18 + -delta_h 3.18 kcal + -analytic -2.033 0.012645 429.01 + -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt +H+ + 2 F- = HF2- + -log_k 3.76 + -delta_h 4.55 kcal + -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt +Ca+2 + H2O = CaOH+ + H+ + -log_k -12.78 +Ca+2 + CO3-2 = CaCO3 + -log_k 3.224; -delta_h 3.545 kcal + -analytic -1228.732 -0.29944 35512.75 485.818 + -dw 4.46e-10 # complexes: calc'd with the Pikal formula + -Vm -.243 -8.3748 9.0417 -2.4328 -.03 # supcrt +Ca+2 + CO3-2 + H+ = CaHCO3+ + -log_k 10.91; -delta_h 4.38 kcal + -analytic -6.009 3.377e-2 2044 + -gamma 6 0 + -Vm 30.19 .01 5.75 -2.78 .308 5.4 + -dw 5.06e-10 +Ca+2 + SO4-2 = CaSO4 + -log_k 2.25 + -delta_h 1.325 kcal + -dw 4.71e-10 + -Vm 2.791 -.9666 6.13 -2.739 -.001 # supcrt +Ca+2 + HSO4- = CaHSO4+ + -log_k 1.08 +Ca+2 + PO4-3 = CaPO4- + -log_k 6.459 + -delta_h 3.1 kcal + -gamma 5.4 0 +Ca+2 + HPO4-2 = CaHPO4 + -log_k 2.739 + -delta_h 3.3 kcal +Ca+2 + H2PO4- = CaH2PO4+ + -log_k 1.408 + -delta_h 3.4 kcal + -gamma 5.4 0 +# Ca+2 + F- = CaF+ + # -log_k 0.94 + # -delta_h 4.120 kcal + # -gamma 5.5 0.0 + # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt +Mg+2 + H2O = MgOH+ + H+ + -log_k -11.44 + -delta_h 15.952 kcal + -gamma 6.5 0 +Mg+2 + CO3-2 = MgCO3 + -log_k 2.98 + -delta_h 2.713 kcal + -analytic 0.991 0.00667 + -Vm -0.5837 -9.2067 9.3687 -2.3984 -.03 # supcrt + -dw 4.21e-10 +Mg+2 + H+ + CO3-2 = MgHCO3+ + -log_k 11.399 + -delta_h -2.771 kcal + -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 + -gamma 4 0 + -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt + -dw 4.78e-10 +Mg+2 + SO4-2 = MgSO4 + -gamma 0 0.2 + -log_k 2.42; -delta_h 19 kJ + -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm 8.65 -10.21 29.58 -18.6 1.061 + -viscosity 0.318 -5.4e-4 -3.42e-2 0.708 3.7e-3 0.696 + -dw 4.45e-10 +SO4-2 + MgSO4 = Mg(SO4)2-2 + -gamma 7 0.047 + -log_k 0.52; -delta_h -13.6 kJ + -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm -8.14 -62.2 -15.96 3.29 -3.01 0 150 0 0.153 3.79e-2 + -viscosity -0.169 5e-4 -5.69e-2 0.11 2.03e-3 2.027 -1e-3 + -dw 0.845e-9 -200 8 0 0.965 +Mg+2 + PO4-3 = MgPO4- + -log_k 6.589 + -delta_h 3.1 kcal + -gamma 5.4 0 +Mg+2 + HPO4-2 = MgHPO4 + -log_k 2.87 + -delta_h 3.3 kcal +Mg+2 + H2PO4- = MgH2PO4+ + -log_k 1.513 + -delta_h 3.4 kcal + -gamma 5.4 0 +Mg+2 + F- = MgF+ + -log_k 1.82 + -delta_h 3.2 kcal + -gamma 4.5 0 + -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt +# Na+ + OH- = NaOH + # -log_k -14.7 # remove this complex +Na+ + HCO3- = NaHCO3 + -log_k -0.06; -delta_h 21 kJ + -gamma 0 0.2 + -Vm 7.95 0 0 0 0.609 + -viscosity -4e-2 -2.717 1.67e-5 + -dw 6.73e-10 +Na+ + SO4-2 = NaSO4- + -gamma 5.5 0 + -log_k 0.6; -delta_h -14.4 kJ + -analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC + -Vm 1.99 -10.78 21.88 -12.7 1.601 5 32.38 501 1.565e-2 0.2325 + -viscosity 0.2 -5.93e-2 -4e-4 8.46e-3 1.78e-3 2.308 -0.208 + -dw 1.13e-9 -23 8.5 0.392 0.521 +Na+ + HPO4-2 = NaHPO4- + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 +Na+ + F- = NaF + -log_k -0.24 + -Vm 2.7483 -1.0708 6.1709 -2.7347 -.03 # supcrt +K+ + HCO3- = KHCO3 + -log_k -0.35; -delta_h 12 kJ + -gamma 0 9.4e-3 + -Vm 9.48 0 0 0 -0.542 + -viscosity 0.7 -1.289 9e-2 +K+ + SO4-2 = KSO4- + -gamma 5.4 0.19 + -log_k 0.6; -delta_h -10.4 kJ + -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC + -Vm 13.48 -18.03 61.74 -19.6 2.046 5.4 -17.32 0 0.1522 1.919 + -viscosity -1 1.06 1e-4 -0.464 3.78e-2 0.539 -0.69 + -dw 0.9e-9 63 8.48 0 1.8 +K+ + HPO4-2 = KHPO4- + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 +Fe+2 + H2O = FeOH+ + H+ + -log_k -9.5 + -delta_h 13.2 kcal + -gamma 5 0 +Fe+2 + 3 H2O = Fe(OH)3- + 3 H+ + -log_k -31 + -delta_h 30.3 kcal + -gamma 5 0 +Fe+2 + Cl- = FeCl+ + -log_k 0.14 +Fe+2 + CO3-2 = FeCO3 + -log_k 4.38 +Fe+2 + HCO3- = FeHCO3+ + -log_k 2 +Fe+2 + SO4-2 = FeSO4 + -log_k 2.25 + -delta_h 3.23 kcal + -Vm -13 0 123 +Fe+2 + HSO4- = FeHSO4+ + -log_k 1.08 +Fe+2 + 2 HS- = Fe(HS)2 + -log_k 8.95 +Fe+2 + 3 HS- = Fe(HS)3- + -log_k 10.987 +Fe+2 + HPO4-2 = FeHPO4 + -log_k 3.6 +Fe+2 + H2PO4- = FeH2PO4+ + -log_k 2.7 + -gamma 5.4 0 +Fe+2 + F- = FeF+ + -log_k 1 +Fe+2 = Fe+3 + e- + -log_k -13.02 + -delta_h 9.68 kcal + -gamma 9 0 +Fe+3 + H2O = FeOH+2 + H+ + -log_k -2.19 + -delta_h 10.4 kcal + -gamma 5 0 +Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ + -log_k -5.67 + -delta_h 17.1 kcal + -gamma 5.4 0 +Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ + -log_k -12.56 + -delta_h 24.8 kcal +Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ + -log_k -21.6 + -delta_h 31.9 kcal + -gamma 5.4 0 +Fe+2 + 2 H2O = Fe(OH)2 + 2 H+ + -log_k -20.57 + -delta_h 28.565 kcal +2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ + -log_k -2.95 + -delta_h 13.5 kcal +3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ + -log_k -6.3 + -delta_h 14.3 kcal +Fe+3 + Cl- = FeCl+2 + -log_k 1.48 + -delta_h 5.6 kcal + -gamma 5 0 +Fe+3 + 2 Cl- = FeCl2+ + -log_k 2.13 + -gamma 5 0 +Fe+3 + 3 Cl- = FeCl3 + -log_k 1.13 +Fe+3 + SO4-2 = FeSO4+ + -log_k 4.04 + -delta_h 3.91 kcal + -gamma 5 0 +Fe+3 + HSO4- = FeHSO4+2 + -log_k 2.48 +Fe+3 + 2 SO4-2 = Fe(SO4)2- + -log_k 5.38 + -delta_h 4.6 kcal +Fe+3 + HPO4-2 = FeHPO4+ + -log_k 5.43 + -delta_h 5.76 kcal + -gamma 5 0 +Fe+3 + H2PO4- = FeH2PO4+2 + -log_k 5.43 + -gamma 5.4 0 +Fe+3 + F- = FeF+2 + -log_k 6.2 + -delta_h 2.7 kcal + -gamma 5 0 +Fe+3 + 2 F- = FeF2+ + -log_k 10.8 + -delta_h 4.8 kcal + -gamma 5 0 +Fe+3 + 3 F- = FeF3 + -log_k 14 + -delta_h 5.4 kcal +Mn+2 + H2O = MnOH+ + H+ + -log_k -10.59 + -delta_h 14.4 kcal + -gamma 5 0 +Mn+2 + 3 H2O = Mn(OH)3- + 3 H+ + -log_k -34.8 + -gamma 5 0 +Mn+2 + Cl- = MnCl+ + -log_k 0.61 + -gamma 5 0 + -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 +Mn+2 + 2 Cl- = MnCl2 + -log_k 0.25 + -Vm 1e-5 0 144 +Mn+2 + 3 Cl- = MnCl3- + -log_k -0.31 + -gamma 5 0 + -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 +Mn+2 + CO3-2 = MnCO3 + -log_k 4.9 +Mn+2 + HCO3- = MnHCO3+ + -log_k 1.95 + -gamma 5 0 +Mn+2 + SO4-2 = MnSO4 + -log_k 2.25 + -delta_h 3.37 kcal + -Vm -1.31 -1.83 62.3 -2.7 +Mn+2 + 2 NO3- = Mn(NO3)2 + -log_k 0.6 + -delta_h -0.396 kcal + -Vm 6.16 0 29.4 0 0.9 +Mn+2 + F- = MnF+ + -log_k 0.84 + -gamma 5 0 +Mn+2 = Mn+3 + e- + -log_k -25.51 + -delta_h 25.8 kcal + -gamma 9 0 +Al+3 + H2O = AlOH+2 + H+ + -log_k -5 + -delta_h 11.49 kcal + -analytic -38.253 0 -656.27 14.327 + -gamma 5.4 0 + -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353 +Al+3 + 2 H2O = Al(OH)2+ + 2 H+ + -log_k -10.1 + -delta_h 26.9 kcal + -gamma 5.4 0 + -analytic 88.5 0 -9391.6 -27.121 +Al+3 + 3 H2O = Al(OH)3 + 3 H+ + -log_k -16.9 + -delta_h 39.89 kcal + -analytic 226.374 0 -18247.8 -73.597 +Al+3 + 4 H2O = Al(OH)4- + 4 H+ + -log_k -22.7 + -delta_h 42.3 kcal + -analytic 51.578 0 -11168.9 -14.865 + -gamma 4.5 0 + -dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959 +Al+3 + SO4-2 = AlSO4+ + -log_k 3.5 + -delta_h 2.29 kcal + -gamma 4.5 0 +Al+3 + 2 SO4-2 = Al(SO4)2- + -log_k 5 + -delta_h 3.11 kcal + -gamma 4.5 0 +Al+3 + HSO4- = AlHSO4+2 + -log_k 0.46 +Al+3 + F- = AlF+2 + -log_k 7 + -delta_h 1.06 kcal + -gamma 5.4 0 +Al+3 + 2 F- = AlF2+ + -log_k 12.7 + -delta_h 1.98 kcal + -gamma 5.4 0 +Al+3 + 3 F- = AlF3 + -log_k 16.8 + -delta_h 2.16 kcal +Al+3 + 4 F- = AlF4- + -log_k 19.4 + -delta_h 2.2 kcal + -gamma 4.5 0 +# Al+3 + 5 F- = AlF5-2 + # log_k 20.6 + # delta_h 1.840 kcal +# Al+3 + 6 F- = AlF6-3 + # log_k 20.6 + # delta_h -1.670 kcal +H4SiO4 = H3SiO4- + H+ + -log_k -9.83 + -delta_h 6.12 kcal + -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669 + -gamma 4 0 + -Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt + H2O in a1 +H4SiO4 = H2SiO4-2 + 2 H+ + -log_k -23 + -delta_h 17.6 kcal + -analytic -294.0184 -0.07265 11204.49 108.18466 -1119669 + -gamma 5.4 0 +H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O + -log_k 30.18 + -delta_h -16.26 kcal + -gamma 5 0 + -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt +Ba+2 + H2O = BaOH+ + H+ + -log_k -13.47 + -gamma 5 0 +Ba+2 + CO3-2 = BaCO3 + -log_k 2.71 + -delta_h 3.55 kcal + -analytic 0.113 0.008721 + -Vm .2907 -7.0717 8.5295 -2.4867 -.03 # supcrt +Ba+2 + HCO3- = BaHCO3+ + -log_k 0.982 + -delta_h 5.56 kcal + -analytic -3.0938 0.013669 +Ba+2 + SO4-2 = BaSO4 + -log_k 2.7 +Sr+2 + H2O = SrOH+ + H+ + -log_k -13.29 + -gamma 5 0 +Sr+2 + CO3-2 + H+ = SrHCO3+ + -log_k 11.509 + -delta_h 2.489 kcal + -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 +Sr+2 + CO3-2 = SrCO3 + -log_k 2.81 + -delta_h 5.22 kcal + -analytic -1.019 0.012826 + -Vm -.1787 -8.2177 8.9799 -2.4393 -.03 # supcrt +Sr+2 + SO4-2 = SrSO4 + -log_k 2.29 + -delta_h 2.08 kcal + -Vm 6.791 -.9666 6.13 -2.739 -.001 # celestite solubility +Li+ + SO4-2 = LiSO4- + -log_k 0.64 + -gamma 5 0 +Cu+2 + e- = Cu+ + -log_k 2.72 + -delta_h 1.65 kcal + -gamma 2.5 0 +Cu+ + 2 Cl- = CuCl2- + -log_k 5.5 + -delta_h -0.42 kcal + -gamma 4 0 +Cu+ + 3 Cl- = CuCl3-2 + -log_k 5.7 + -delta_h 0.26 kcal + -gamma 5 0 +Cu+2 + CO3-2 = CuCO3 + -log_k 6.73 +Cu+2 + 2 CO3-2 = Cu(CO3)2-2 + -log_k 9.83 +Cu+2 + HCO3- = CuHCO3+ + -log_k 2.7 +Cu+2 + Cl- = CuCl+ + -log_k 0.43 + -delta_h 8.65 kcal + -gamma 4 0 + -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 +Cu+2 + 2 Cl- = CuCl2 + -log_k 0.16 + -delta_h 10.56 kcal + -Vm 26.8 0 -136 +Cu+2 + 3 Cl- = CuCl3- + -log_k -2.29 + -delta_h 13.69 kcal + -gamma 4 0 +Cu+2 + 4 Cl- = CuCl4-2 + -log_k -4.59 + -delta_h 17.78 kcal + -gamma 5 0 +Cu+2 + F- = CuF+ + -log_k 1.26 + -delta_h 1.62 kcal +Cu+2 + H2O = CuOH+ + H+ + -log_k -8 + -gamma 4 0 +Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ + -log_k -13.68 +Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ + -log_k -26.9 +Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ + -log_k -39.6 +2 Cu+2 + 2 H2O = Cu2(OH)2+2 + 2 H+ + -log_k -10.359 + -delta_h 17.539 kcal + -analytical 2.497 0 -3833 +Cu+2 + SO4-2 = CuSO4 + -log_k 2.31 + -delta_h 1.22 kcal + -Vm 5.21 0 -14.6 +Cu+2 + 3 HS- = Cu(HS)3- + -log_k 25.9 +Zn+2 + H2O = ZnOH+ + H+ + -log_k -8.96 + -delta_h 13.4 kcal +Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ + -log_k -16.9 +Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ + -log_k -28.4 +Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ + -log_k -41.2 +Zn+2 + Cl- = ZnCl+ + -log_k 0.43 + -delta_h 7.79 kcal + -gamma 4 0 + -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 +Zn+2 + 2 Cl- = ZnCl2 + -log_k 0.45 + -delta_h 8.5 kcal + -Vm -10.1 4.57 241 -2.97 -1e-3 +Zn+2 + 3 Cl- = ZnCl3- + -log_k 0.5 + -delta_h 9.56 kcal + -gamma 4 0 + -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 +Zn+2 + 4 Cl- = ZnCl4-2 + -log_k 0.2 + -delta_h 10.96 kcal + -gamma 5 0 + -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 +Zn+2 + H2O + Cl- = ZnOHCl + H+ + -log_k -7.48 +Zn+2 + 2 HS- = Zn(HS)2 + -log_k 14.94 +Zn+2 + 3 HS- = Zn(HS)3- + -log_k 16.1 +Zn+2 + CO3-2 = ZnCO3 + -log_k 5.3 +Zn+2 + 2 CO3-2 = Zn(CO3)2-2 + -log_k 9.63 +Zn+2 + HCO3- = ZnHCO3+ + -log_k 2.1 +Zn+2 + SO4-2 = ZnSO4 + -log_k 2.37 + -delta_h 1.36 kcal + -Vm 2.51 0 18.8 +Zn+2 + 2 SO4-2 = Zn(SO4)2-2 + -log_k 3.28 + -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 +Zn+2 + Br- = ZnBr+ + -log_k -0.58 +Zn+2 + 2 Br- = ZnBr2 + -log_k -0.98 +Zn+2 + F- = ZnF+ + -log_k 1.15 + -delta_h 2.22 kcal +Cd+2 + H2O = CdOH+ + H+ + -log_k -10.08 + -delta_h 13.1 kcal +Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ + -log_k -20.35 +Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ + -log_k -33.3 +Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ + -log_k -47.35 +2 Cd+2 + H2O = Cd2OH+3 + H+ + -log_k -9.39 + -delta_h 10.9 kcal +Cd+2 + H2O + Cl- = CdOHCl + H+ + -log_k -7.404 + -delta_h 4.355 kcal +Cd+2 + NO3- = CdNO3+ + -log_k 0.4 + -delta_h -5.2 kcal + -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 +Cd+2 + Cl- = CdCl+ + -log_k 1.98 + -delta_h 0.59 kcal + -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 +Cd+2 + 2 Cl- = CdCl2 + -log_k 2.6 + -delta_h 1.24 kcal + -Vm 5.53 +Cd+2 + 3 Cl- = CdCl3- + -log_k 2.4 + -delta_h 3.9 kcal + -Vm 4.6 0 83.9 0 0 0 0 0 0 1 +Cd+2 + CO3-2 = CdCO3 + -log_k 2.9 +Cd+2 + 2 CO3-2 = Cd(CO3)2-2 + -log_k 6.4 +Cd+2 + HCO3- = CdHCO3+ + -log_k 1.5 +Cd+2 + SO4-2 = CdSO4 + -log_k 2.46 + -delta_h 1.08 kcal + -Vm 10.4 0 57.9 +Cd+2 + 2 SO4-2 = Cd(SO4)2-2 + -log_k 3.5 + -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 +Cd+2 + Br- = CdBr+ + -log_k 2.17 + -delta_h -0.81 kcal +Cd+2 + 2 Br- = CdBr2 + -log_k 2.9 +Cd+2 + F- = CdF+ + -log_k 1.1 +Cd+2 + 2 F- = CdF2 + -log_k 1.5 +Cd+2 + HS- = CdHS+ + -log_k 10.17 +Cd+2 + 2 HS- = Cd(HS)2 + -log_k 16.53 +Cd+2 + 3 HS- = Cd(HS)3- + -log_k 18.71 +Cd+2 + 4 HS- = Cd(HS)4-2 + -log_k 20.9 +Pb+2 + H2O = PbOH+ + H+ + -log_k -7.71 +Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ + -log_k -17.12 +Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ + -log_k -28.06 +Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ + -log_k -39.7 +2 Pb+2 + H2O = Pb2OH+3 + H+ + -log_k -6.36 +Pb+2 + Cl- = PbCl+ + -log_k 1.6 + -delta_h 4.38 kcal + -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt +Pb+2 + 2 Cl- = PbCl2 + -log_k 1.8 + -delta_h 1.08 kcal + -Vm 6.5402 8.1879 2.5318 -3.1175 -.03 # supcrt +Pb+2 + 3 Cl- = PbCl3- + -log_k 1.7 + -delta_h 2.17 kcal + -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt +Pb+2 + 4 Cl- = PbCl4-2 + -log_k 1.38 + -delta_h 3.53 kcal + -Vm 16.415 32.2997 -6.9452 -4.1143 2.3118 # supcrt +Pb+2 + CO3-2 = PbCO3 + -log_k 7.24 +Pb+2 + 2 CO3-2 = Pb(CO3)2-2 + -log_k 10.64 +Pb+2 + HCO3- = PbHCO3+ + -log_k 2.9 +Pb+2 + SO4-2 = PbSO4 + -log_k 2.75 +Pb+2 + 2 SO4-2 = Pb(SO4)2-2 + -log_k 3.47 +Pb+2 + 2 HS- = Pb(HS)2 + -log_k 15.27 +Pb+2 + 3 HS- = Pb(HS)3- + -log_k 16.57 +3 Pb+2 + 4 H2O = Pb3(OH)4+2 + 4 H+ + -log_k -23.88 + -delta_h 26.5 kcal +Pb+2 + NO3- = PbNO3+ + -log_k 1.17 +Pb+2 + Br- = PbBr+ + -log_k 1.77 + -delta_h 2.88 kcal +Pb+2 + 2 Br- = PbBr2 + -log_k 1.44 +Pb+2 + F- = PbF+ + -log_k 1.25 +Pb+2 + 2 F- = PbF2 + -log_k 2.56 +Pb+2 + 3 F- = PbF3- + -log_k 3.42 +Pb+2 + 4 F- = PbF4-2 + -log_k 3.1 + +PHASES +Calcite + CaCO3 = CO3-2 + Ca+2 + -log_k -8.48 + -delta_h -2.297 kcal +# begin modification stimela.dat +# analytic not modified, kept as in version 3.6.2, which is in accordance to Standard Methods 2330 (2016) +# -analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982 + -analytic -171.9065 -0.077993 2839.319 71.595 # changed in version 3.7.0, March 10 2021 +# end modification stimela.dat + -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3) +Aragonite + CaCO3 = CO3-2 + Ca+2 + -log_k -8.336 + -delta_h -2.589 kcal + -analytic -171.9773 -0.077993 2903.293 71.595 + -Vm 34.04 +# begin modification stimela.dat +# adding Vaterite from Aragonite according Standard Methods 2330 (2010) +Vaterite + CaCO3 = CO3-2 + Ca+2 + -log_k -8.336 # overruled by -analytic + -delta_h -2.589 kcal # overruled by -analytic + -analytic -172.1295 -0.077993 3074.688 71.595 + -Vm 39.41 cm3/mol # MW (100.09 g/mol) / rho (2.54 g/cm3) +# end modification stimela.dat +Dolomite + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + -log_k -17.09 + -delta_h -9.436 kcal + -analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50–175°C: Bénézeth et al., 2018, GCA 224, 262-275 + -Vm 64.5 +Siderite + FeCO3 = Fe+2 + CO3-2 + -log_k -10.89 + -delta_h -2.48 kcal + -Vm 29.2 +Rhodochrosite + MnCO3 = Mn+2 + CO3-2 + -log_k -11.13 + -delta_h -1.43 kcal + -Vm 31.1 +Strontianite + SrCO3 = Sr+2 + CO3-2 + -log_k -9.271 + -delta_h -0.4 kcal + -analytic 155.0305 0 -7239.594 -56.58638 + -Vm 39.69 +Witherite + BaCO3 = Ba+2 + CO3-2 + -log_k -8.562 + -delta_h 0.703 kcal + -analytic 607.642 0.121098 -20011.25 -236.4948 + -Vm 46 +Gypsum + CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O + -log_k -4.58 + -delta_h -0.109 kcal + -analytic 68.2401 0 -3221.51 -25.0627 + -analytical_expression 93.7 5.99E-3 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 + -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) +Anhydrite + CaSO4 = Ca+2 + SO4-2 + -log_k -4.36 + -delta_h -1.71 kcal + -analytic 84.9 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323 + -Vm 46.1 # 136.14 / 2.95 +Celestite + SrSO4 = Sr+2 + SO4-2 + -log_k -6.63 + -delta_h -4.037 kcal + # -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 + -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464 + -Vm 46.4 +Barite + BaSO4 = Ba+2 + SO4-2 + -log_k -9.97 + -delta_h 6.35 kcal + -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 + -Vm 52.9 +Arcanite + K2SO4 = SO4-2 + 2 K+ + log_k -1.776; -delta_h 5 kcal + -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 + # Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06 + -Vm 65.5 +Mirabilite + Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O + -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 + Vm 216 +Thenardite + Na2SO4 = 2 Na+ + SO4-2 + -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 + -Vm 52.9 +Epsomite + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -1.74; -delta_h 10.57 kJ + -analytical_expression -3.59 6.21e-3 + Vm 147 +Hexahydrite + MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O + log_k -1.57; -delta_h 2.35 kJ + -analytical_expression -1.978 1.38e-3 + Vm 132 +Kieserite + MgSO4:H2O = Mg+2 + SO4-2 + H2O + log_k -1.16; -delta_h 9.22 kJ + -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 + Vm 53.8 +Hydroxyapatite + Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 + -log_k -3.421 + -delta_h -36.155 kcal + -Vm 128.9 +Fluorite + CaF2 = Ca+2 + 2 F- + -log_k -10.6 + -delta_h 4.69 kcal + -analytic 66.348 0 -4298.2 -25.271 + -Vm 15.7 +SiO2(a) + SiO2 + 2 H2O = H4SiO4 + -log_k -2.71 + -delta_h 3.34 kcal + -analytic -0.26 0 -731 +Chalcedony + SiO2 + 2 H2O = H4SiO4 + -log_k -3.55 + -delta_h 4.72 kcal + -analytic -0.09 0 -1032 + -Vm 23.1 +Quartz + SiO2 + 2 H2O = H4SiO4 + -log_k -3.98 + -delta_h 5.99 kcal + -analytic 0.41 0 -1309 + -Vm 22.67 +Gibbsite + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + -log_k 8.11 + -delta_h -22.8 kcal + -Vm 32.22 +Al(OH)3(a) + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + -log_k 10.8 + -delta_h -26.5 kcal +Kaolinite + Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 + -log_k 7.435 + -delta_h -35.3 kcal + -Vm 99.35 +Albite + NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 + -log_k -18.002 + -delta_h 25.896 kcal + -Vm 101.31 +Anorthite + CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 + -log_k -19.714 + -delta_h 11.58 kcal + -Vm 105.05 +K-feldspar + KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 + -log_k -20.573 + -delta_h 30.82 kcal + -Vm 108.15 +K-mica + KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 + -log_k 12.703 + -delta_h -59.376 kcal +Chlorite(14A) + Mg5Al2Si3O10(OH)8 + 16 H+ = 5 Mg+2 + 2 Al+3 + 3 H4SiO4 + 6 H2O + -log_k 68.38 + -delta_h -151.494 kcal +Ca-Montmorillonite + Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165 Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ + -log_k -45.027 + -delta_h 58.373 kcal + -Vm 156.16 +Talc + Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 + -log_k 21.399 + -delta_h -46.352 kcal + -Vm 68.34 +Illite + K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2 H2O = 0.6 K+ + 0.25 Mg+2 + 2.3 Al(OH)4- + 3.5 H4SiO4 + 1.2 H+ + -log_k -40.267 + -delta_h 54.684 kcal + -Vm 141.48 +Chrysotile + Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 + -log_k 32.2 + -delta_h -46.8 kcal + -analytic 13.248 0 10217.1 -6.1894 + -Vm 106.5808 # 277.11/2.60 +Sepiolite + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 + -log_k 15.76 + -delta_h -10.7 kcal + -Vm 143.765 +Sepiolite(d) + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 + -log_k 18.66 +Hematite + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + -log_k -4.008 + -delta_h -30.845 kcal + -Vm 30.39 +Goethite + FeOOH + 3 H+ = Fe+3 + 2 H2O + -log_k -1 + -delta_h -14.48 kcal + -Vm 20.84 +Fe(OH)3(a) + Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O + -log_k 4.891 +Pyrite + FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- + -log_k -18.479 + -delta_h 11.3 kcal + -Vm 23.48 +FeS(ppt) + FeS + H+ = Fe+2 + HS- + -log_k -3.915 +Mackinawite + FeS + H+ = Fe+2 + HS- + -log_k -4.648 + -Vm 20.45 +Sulfur + S + 2 H+ + 2 e- = H2S + -log_k 4.882 + -delta_h -9.5 kca +Vivianite + Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O + -log_k -36 +Pyrolusite # H2O added for surface calc's + MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O + -log_k 41.38 + -delta_h -65.11 kcal +Hausmannite + Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O + -log_k 61.03 + -delta_h -100.64 kcal +Manganite + MnOOH + 3 H+ + e- = Mn+2 + 2 H2O + -log_k 25.34 +Pyrochroite + Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O + -log_k 15.2 +Halite + NaCl = Cl- + Na+ + log_k 1.57 + -delta_h 1.37 + #-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915. + -Vm 27.1 +Sylvite + KCl = K+ + Cl- + log_k 0.9 + -delta_h 8.5 + # -analytic 3.984 0.0 -919.55 + Vm 37.5 +# Gases... +CO2(g) + CO2 = CO2 + -log_k -1.468 + -delta_h -4.776 kcal + -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 + -T_c 304.2 # critical T, K + -P_c 72.86 # critical P, atm + -Omega 0.225 # acentric factor +H2O(g) + H2O = H2O + -log_k 1.506; delta_h -44.03 kJ + -T_c 647.3; -P_c 217.6; -Omega 0.344 + -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 +O2(g) + O2 = O2 + -log_k -2.8983 + -analytic -7.5001 7.8981e-3 0 0 2.0027e5 + -T_c 154.6; -P_c 49.8; -Omega 0.021 +H2(g) + H2 = H2 + -log_k -3.105 + -delta_h -4.184 kJ + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + -T_c 33.2; -P_c 12.8; -Omega -0.225 +N2(g) + N2 = N2 + -log_k -3.1864 + -analytic -58.453 1.818e-3 3199 17.909 -27460 + -T_c 126.2; -P_c 33.5; -Omega 0.039 +H2S(g) + H2S = H+ + HS- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2; -P_c 88.2; -Omega 0.1 +CH4(g) + CH4 = CH4 + -log_k -2.8 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -T_c 190.6; -P_c 45.4; -Omega 0.008 +# begin modification stimela.dat +# uncommented Amm definitions +Amm(g) + Amm = Amm + -log_k 1.7966 + -analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192 + -T_c 405.6; -P_c 111.3; -Omega 0.25 +# end modification stimela.dat +NH3(g) + NH3 = NH3 + -log_k 1.7966 + -analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192 + -T_c 405.6; -P_c 111.3; -Omega 0.25 +# redox-uncoupled gases +Oxg(g) + Oxg = Oxg + -analytic -7.5001 7.8981e-3 0 0 2.0027e5 + -T_c 154.6; -P_c 49.8; -Omega 0.021 +Hdg(g) + Hdg = Hdg + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + -T_c 33.2; -P_c 12.8; -Omega -0.225 +Ntg(g) + Ntg = Ntg + -analytic -58.453 1.818e-3 3199 17.909 -27460 + T_c 126.2; -P_c 33.5; -Omega 0.039 +Mtg(g) + Mtg = Mtg + -log_k -2.8 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -T_c 190.6; -P_c 45.4; -Omega 0.008 +H2Sg(g) + H2Sg = H+ + HSg- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2; -P_c 88.2; -Omega 0.1 +# begin modification stimela.dat +# uniform notation of elements in redox-uncoupled gases +[N-3]H3(g) + [N-3]H3 = [N-3]H3 + -log_k 1.7966 + -analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192 + -T_c 405.6; -P_c 111.3; -Omega 0.25 +[C-4]H4(g) + [C-4]H4 = [C-4]H4 + -log_k -2.8 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -T_c 190.6; -P_c 45.4; -Omega 0.008 +H2[S-2](g) + H2[S-2] = H+ + H[S-2]- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2; -P_c 88.2; -Omega 0.1 +# end modification stimela.dat +Melanterite + FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 + -log_k -2.209 + -delta_h 4.91 kcal + -analytic 1.447 -0.004153 0 0 -214949 +Alunite + KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O + -log_k -1.4 + -delta_h -50.25 kcal +Jarosite-K + KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2 + -log_k -9.21 + -delta_h -31.28 kcal +Zn(OH)2(e) + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + -log_k 11.5 +Smithsonite + ZnCO3 = Zn+2 + CO3-2 + -log_k -10 + -delta_h -4.36 kcal +Sphalerite + ZnS + H+ = Zn+2 + HS- + -log_k -11.618 + -delta_h 8.25 kcal +Willemite 289 + Zn2SiO4 + 4 H+ = 2 Zn+2 + H4SiO4 + -log_k 15.33 + -delta_h -33.37 kcal +Cd(OH)2 + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + -log_k 13.65 +Otavite 315 + CdCO3 = Cd+2 + CO3-2 + -log_k -12.1 + -delta_h -0.019 kcal +CdSiO3 328 + CdSiO3 + H2O + 2 H+ = Cd+2 + H4SiO4 + -log_k 9.06 + -delta_h -16.63 kcal +CdSO4 329 + CdSO4 = Cd+2 + SO4-2 + -log_k -0.1 + -delta_h -14.74 kcal +Cerussite 365 + PbCO3 = Pb+2 + CO3-2 + -log_k -13.13 + -delta_h 4.86 kcal +Anglesite 384 + PbSO4 = Pb+2 + SO4-2 + -log_k -7.79 + -delta_h 2.15 kcal +Pb(OH)2 389 + Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O + -log_k 8.15 + -delta_h -13.99 kcal +GAS_BINARY_PARAMETERS +H2O(g) CO2(g) 0.19 +H2O(g) H2S(g) 0.19 +H2O(g) H2Sg(g) 0.19 +H2O(g) CH4(g) 0.49 +H2O(g) Mtg(g) 0.49 +H2O(g) Methane(g) 0.49 +H2O(g) N2(g) 0.49 +H2O(g) Ntg(g) 0.49 +H2O(g) Ethane(g) 0.49 +H2O(g) Propane(g) 0.55 +# begin modification stimela.dat +# define for added redox-uncoupled gases +H2O(g) H2[S-2](g) 0.19 +H2O(g) [C-4]H4(g) 0.49 +# end modification stimela.dat + +EXCHANGE_MASTER_SPECIES + X X- +EXCHANGE_SPECIES + X- = X- + -log_k 0 + + Na+ + X- = NaX + -log_k 0 + -gamma 4.08 0.082 + + K+ + X- = KX + -log_k 0.7 + -gamma 3.5 0.015 + -delta_h -4.3 # Jardine & Sparks, 1984 + + Li+ + X- = LiX + -log_k -0.08 + -gamma 6 0 + -delta_h 1.4 # Merriam & Thomas, 1956 + +# !!!!! +# H+ + X- = HX +# -log_k 1.0 +# -gamma 9.0 0 + +# begin modification stimela.dat +# uncommented Amm definitions + AmmH+ + X- = AmmHX + -log_k 0.6 + -gamma 2.5 0 + -delta_h -2.4 # Laudelout et al., 1968 +# definition [N-3]H4X + -log_k 0.6 + -gamma 2.5 0 + -delta_h -2.4 # Laudelout et al., 1968 +# end modification stimela.dat + NH4+ + X- = NH4X + -log_k 0.6 + -gamma 2.5 0 + -delta_h -2.4 # Laudelout et al., 1968 + + Ca+2 + 2 X- = CaX2 + -log_k 0.8 + -gamma 5 0.165 + -delta_h 7.2 # Van Bladel & Gheyl, 1980 + + Mg+2 + 2 X- = MgX2 + -log_k 0.6 + -gamma 5.5 0.2 + -delta_h 7.4 # Laudelout et al., 1968 + + Sr+2 + 2 X- = SrX2 + -log_k 0.91 + -gamma 5.26 0.121 + -delta_h 5.5 # Laudelout et al., 1968 + + Ba+2 + 2 X- = BaX2 + -log_k 0.91 + -gamma 4 0.153 + -delta_h 4.5 # Laudelout et al., 1968 + + Mn+2 + 2 X- = MnX2 + -log_k 0.52 + -gamma 6 0 + + Fe+2 + 2 X- = FeX2 + -log_k 0.44 + -gamma 6 0 + + Cu+2 + 2 X- = CuX2 + -log_k 0.6 + -gamma 6 0 + + Zn+2 + 2 X- = ZnX2 + -log_k 0.8 + -gamma 5 0 + + Cd+2 + 2 X- = CdX2 + -log_k 0.8 + -gamma 0 0 + + Pb+2 + 2 X- = PbX2 + -log_k 1.05 + -gamma 0 0 + + Al+3 + 3 X- = AlX3 + -log_k 0.41 + -gamma 9 0 + + AlOH+2 + 2 X- = AlOHX2 + -log_k 0.89 + -gamma 0 0 + +SURFACE_MASTER_SPECIES + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH +SURFACE_SPECIES +# All surface data from +# Dzombak and Morel, 1990 +# +# +# Acid-base data from table 5.7 +# +# strong binding site--Hfo_s, + + Hfo_sOH = Hfo_sOH + -log_k 0 + + Hfo_sOH + H+ = Hfo_sOH2+ + -log_k 7.29 # = pKa1,int + + Hfo_sOH = Hfo_sO- + H+ + -log_k -8.93 # = -pKa2,int + +# weak binding site--Hfo_w + + Hfo_wOH = Hfo_wOH + -log_k 0 + + Hfo_wOH + H+ = Hfo_wOH2+ + -log_k 7.29 # = pKa1,int + + Hfo_wOH = Hfo_wO- + H+ + -log_k -8.93 # = -pKa2,int +############################################### +# CATIONS # +############################################### +# +# Cations from table 10.1 or 10.5 +# +# Calcium + Hfo_sOH + Ca+2 = Hfo_sOHCa+2 + -log_k 4.97 + + Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ + -log_k -5.85 +# Strontium + Hfo_sOH + Sr+2 = Hfo_sOHSr+2 + -log_k 5.01 + + Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ + -log_k -6.58 + + Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2 H+ + -log_k -17.6 +# Barium + Hfo_sOH + Ba+2 = Hfo_sOHBa+2 + -log_k 5.46 + + Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ + -log_k -7.2 # table 10.5 +# +# Cations from table 10.2 +# +# Cadmium + Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ + -log_k 0.47 + + Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ + -log_k -2.91 +# Zinc + Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ + -log_k 0.99 + + Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ + -log_k -1.99 +# Copper + Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ + -log_k 2.89 + + Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ + -log_k 0.6 # table 10.5 +# Lead + Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ + -log_k 4.65 + + Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ + -log_k 0.3 # table 10.5 +# +# Derived constants table 10.5 +# +# Magnesium + Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ + -log_k -4.6 +# Manganese + Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ + -log_k -0.4 # table 10.5 + + Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ + -log_k -3.5 # table 10.5 +# Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096 + Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ + -log_k -0.95 +# Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M + Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ + -log_k -2.98 + + Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2 H+ + -log_k -11.55 +############################################### +# ANIONS # +############################################### +# +# Anions from table 10.6 +# +# Phosphate + Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O + -log_k 31.29 + + Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O + -log_k 25.39 + + Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O + -log_k 17.72 +# +# Anions from table 10.7 +# +# Borate + Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O + -log_k 0.62 +# +# Anions from table 10.8 +# +# Sulfate + Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O + -log_k 7.78 + + Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 + -log_k 0.79 +# +# Derived constants table 10.10 +# + Hfo_wOH + F- + H+ = Hfo_wF + H2O + -log_k 8.7 + + Hfo_wOH + F- = Hfo_wOHF- + -log_k 1.6 +# +# Carbonate: Van Geen et al., 1994 reoptimized for D&M model +# + Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O + -log_k 12.56 + + Hfo_wOH + CO3-2 + 2 H+ = Hfo_wHCO3 + H2O + -log_k 20.62 +# +# Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422. +# + Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 + Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O; log_K -3.22 + Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2 H+ + H2O; log_K -11.69 + +MEAN_GAMMAS +CaCl2 Ca+2 1 Cl- 2 +CaSO4 Ca+2 1 SO4-2 1 +CaCO3 Ca+2 1 CO3-2 1 +Ca(OH)2 Ca+2 1 OH- 2 +MgCl2 Mg+2 1 Cl- 2 +MgSO4 Mg+2 1 SO4-2 1 +MgCO3 Mg+2 1 CO3-2 1 +Mg(OH)2 Mg+2 1 OH- 2 +NaCl Na+ 1 Cl- 1 +Na2SO4 Na+ 2 SO4-2 1 +NaHCO3 Na+ 1 HCO3- 1 +Na2CO3 Na+ 2 CO3-2 1 +NaOH Na+ 1 OH- 1 +KCl K+ 1 Cl- 1 +K2SO4 K+ 2 SO4-2 1 +HCO3 K+ 1 HCO3- 1 +K2CO3 K+ 2 CO3-2 1 +KOH K+ 1 OH- 1 +HCl H+ 1 Cl- 1 +H2SO4 H+ 2 SO4-2 1 +HBr H+ 1 Br- 1 + +RATES + +########### +#Quartz +########### +# +####### +# Example of quartz kinetic rates block: +# KINETICS +# Quartz +# -m0 158.8 # 90 % Qu +# -parms 0.146 1.5 +# -step 3.1536e8 in 10 +# -tol 1e-12 + +Quartz + -start +1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 +2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol +3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) +4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz +5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 + +10 dif_temp = 1/TK - 1/298 +20 pk_w = 13.7 + 4700.4 * dif_temp +40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) +# Integrate... +50 SAVE moles * TIME + -end + +########### +#K-feldspar +########### +# +# Sverdrup and Warfvinge, 1995, Estimating field weathering rates +# using laboratory kinetics: Reviews in mineralogy and geochemistry, +# vol. 31, p. 485-541. +# +# As described in: +# Appelo and Postma, 2005, Geochemistry, groundwater +# and pollution, 2nd Edition: A.A. Balkema Publishers, +# p. 162-163 and 395-399. +# +# Assume soil is 10% K-feldspar by mass in 1 mm spheres (radius 0.05 mm) +# Assume density of rock and Kspar is 2600 kg/m^3 = 2.6 kg/L +# GFW Kspar 0.278 kg/mol +# +# Moles of Kspar per liter pore space calculation: +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space +# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space +# +# Specific area calculation: +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere +# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Specific area of K-feldspar in sphere 3.14e-8/4.90e-9 = 6.41 m^2/mol Kspar +# +# +# Example of KINETICS data block for K-feldspar rate: +# KINETICS 1 +# K-feldspar +# -m0 2.18 # 10% Kspar, 0.1 mm cubes +# -m 2.18 # Moles per L pore space +# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 + +K-feldspar + -start +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162: E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM K-Feldspar parameters +10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 +100 REM Generic rate follows +110 dif_temp = 1/TK - 1/281 +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +130 REM rate by H+ +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +160 REM rate by hydrolysis +170 pk_H2O = pk_H2O + e_H2O * dif_temp +180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) +190 REM rate by OH- +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +220 REM rate by CO2 +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) +280 moles = rate * TIME +290 SAVE moles + -end + + +########### +#Albite +########### +# +# Sverdrup and Warfvinge, 1995, Estimating field weathering rates +# using laboratory kinetics: Reviews in mineralogy and geochemistry, +# vol. 31, p. 485-541. +# +# As described in: +# Appelo and Postma, 2005, Geochemistry, groundwater +# and pollution, 2nd Edition: A.A. Balkema Publishers, +# p. 162-163 and 395-399. +# +# Example of KINETICS data block for Albite rate: +# KINETICS 1 +# Albite +# -m0 0.46 # 2% Albite, 0.1 mm cubes +# -m 0.46 # Moles per L pore space +# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 +# +# Assume soil is 2% Albite by mass in 1 mm spheres (radius 0.05 mm) +# Assume density of rock and Albite is 2600 kg/m^3 = 2.6 kg/L +# GFW Albite 0.262 kg/mol +# +# Moles of Albite per liter pore space calculation: +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space +# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space +# +# Specific area calculation: +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere +# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite + +Albite + -start +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Albite m^2/mol Albite +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM Albite parameters +10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 +100 REM Generic rate follows +110 dif_temp = 1/TK - 1/281 +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +130 REM rate by H+ +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +160 REM rate by hydrolysis +170 pk_H2O = pk_H2O + e_H2O * dif_temp +180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) +190 REM rate by OH- +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +220 REM rate by CO2 +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("Albite")) +280 moles = rate * TIME +290 SAVE moles + -end + +######## +#Calcite +######## +# Example of KINETICS data block for calcite rate, +# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257 +# KINETICS 1 +# Calcite +# -tol 1e-8 +# -m0 3.e-3 +# -m 3.e-3 +# -parms 1.67e5 0.6 # cm^2/mol calcite, exp factor +# -time 1 day + +Calcite + -start +1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite +2 REM PARM(2) = exponent for M/M0 + +10 si_cc = SI("Calcite") +20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 +30 k1 = 10^(0.198 - 444 / TK ) +40 k2 = 10^(2.84 - 2177 /TK ) +50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317 / TK) +60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737 / TK ) +80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M +110 rate = area * (k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O")) +120 rate = rate * (1 - 10^(2/3*si_cc)) +130 moles = rate * 0.001 * TIME # convert from mmol to mol +200 SAVE moles + -end + +####### +#Pyrite +####### +# +# Williamson, M.A. and Rimstidt, J.D., 1994, +# Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454, +# rate equation is mol m^-2 s^-1. +# +# Example of KINETICS data block for pyrite rate: +# KINETICS 1 +# Pyrite +# -tol 1e-8 +# -m0 5.e-4 +# -m 5.e-4 +# -parms 0.3 0.67 .5 -0.11 +# -time 1 day in 10 +Pyrite + -start +1 REM Williamson and Rimstidt, 1994 +2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) +3 REM PARM(2) = exp for (M/M0) +4 REM PARM(3) = exp for O2 +5 REM PARM(4) = exp for H+ + +10 REM Dissolution in presence of DO +20 if (M <= 0) THEN GOTO 200 +30 if (SI("Pyrite") >= 0) THEN GOTO 200 +40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") +50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) +60 moles = 10^(log_area + log_rate) * TIME +200 SAVE moles + -end + +########## +#Organic_C +########## +# +# Example of KINETICS data block for SOC (sediment organic carbon): +# KINETICS 1 +# Organic_C +# -formula C +# -tol 1e-8 +# -m 5e-3 # SOC in mol +# -time 30 year in 15 +Organic_C + -start +1 REM Additive Monod kinetics for SOC (sediment organic carbon) +2 REM Electron acceptors: O2, NO3, and SO4 + +10 if (M <= 0) THEN GOTO 200 +20 mO2 = MOL("O2") +30 mNO3 = TOT("N(5)") +40 mSO4 = TOT("S(6)") +50 k_O2 = 1.57e-9 # 1/sec +60 k_NO3 = 1.67e-11 # 1/sec +70 k_SO4 = 1.e-13 # 1/sec +80 rate = k_O2 * mO2/(2.94e-4 + mO2) +90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) +100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) +110 moles = rate * M * (M/M0) * TIME +200 SAVE moles + -end + +########### +#Pyrolusite +########### +# +# Postma, D. and Appelo, C.A.J., 2000, GCA, vol. 64, pp. 1237-1247. +# Rate equation given as mol L^-1 s^-1 +# +# Example of KINETICS data block for Pyrolusite +# KINETICS 1-12 +# Pyrolusite +# -tol 1.e-7 +# -m0 0.1 +# -m 0.1 +# -time 0.5 day in 10 +Pyrolusite + -start +10 if (M <= 0) THEN GOTO 200 +20 sr_pl = SR("Pyrolusite") +30 if (sr_pl > 1) THEN GOTO 100 +40 REM sr_pl <= 1, undersaturated +50 Fe_t = TOT("Fe(2)") +60 if Fe_t < 1e-8 then goto 200 +70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) +80 GOTO 200 +100 REM sr_pl > 1, supersaturated +110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME +200 SAVE moles * SOLN_VOL + -end + +END +# ============================================================================================= +#(a) means amorphous. (d) means disordered, or less crystalline. +#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt), +#precipitated, indicates an initial precipitate that is less crystalline. +#Zn(OH)2(e) indicates a specific crystal form, epsilon. +# ============================================================================================= +# For the reaction aA + bB = cC + dD, +# with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B), +# PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT). +# Vm(A) is volume of A, cm3/mol, P is pressure, atm, R is the gas constant, T is Kelvin. +# Gas-pressures and fugacity coefficients are calculated with Peng-Robinson's EOS. +# These binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are +# hard-coded in calc_PR(): +# kij CH4 CO2 H2S N2 +# H2O 0.49 0.19 0.19 0.49 +# but are overwritten by the data block GAS_BINARY_PARAMETERS of this file. +# ============================================================================================= +# The molar volumes of solids are entered with +# -Vm vm cm3/mol +# vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted. +# Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from +# Deer, Howie and Zussman, The rock-forming minerals, Longman. +# -------------------- +# Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich- +# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with +# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 +# The volume (cm3/mol) is +# Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) + +# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) +# + z^2 / 2 * Av * f(I^0.5) +# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 +# Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899). +# 41.84 transforms cal/bar/mol into cm3/mol. +# pb is pressure in bar. +# W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation, +# W is fitted on measured solution densities. +# z is charge of the solute species. +# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic). +# a0 is the ion-size parameter in the extended Debye-Hückel equation: +# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), +# a0 = -gamma x for cations, = 0 for anions. +# For details, consult ref. 1. +# ============================================================================================= +# The viscosity is calculated with a (modified) Jones-Dole equation: +# viscos / viscos_0 = 1 + A * Sum(0.5 z_i m_i) + fan * Sum(B_i m_i + D_i m_i n_i) +# Parameters are for calculating the B and D terms: +# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 +# # b0 b1 b2 d1 d2 d3 tan +# z_i is absolute charge number, m_i is molality of i +# B_i = b0 + b1 exp(-b2 * tc) +# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions +# D_i = d1 * exp(-d2 tc) +# n_i = (I^d3 * (1 + fI) + ((z_i^2 + z_i) / 2 · m_i)^d3) / (2 + fI), fI is an ionic strength term. +# For details, consult ref. 4. +# +# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. +# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725. +# ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113. +# ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp +# +# ============================================================================================= +# It remains the responsibility of the user to check the calculated results, for example with +# measured solubilities as a function of (P, T). From e7f79ef2413934217d74ebb84f9c3fc4369e648d Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Wed, 12 Feb 2025 22:31:30 -0700 Subject: [PATCH 283/384] removed tabs before eol in stimela.dat. Updated RELEASE.TXT. --- RELEASE.TXT | 32 ++++++++++++++++++++++++++++++++ 1 file changed, 32 insertions(+) diff --git a/RELEASE.TXT b/RELEASE.TXT index 6d34bc1b..2b3cd3e1 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,5 +1,37 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + ----------------- + February 12, 2025 + ----------------- + PHREEQC: Added database stimela.dat, a database for use in + drinking-water and waste-water treatment from Peter de Moel and Omnisys. + Here is an excerpt of the initial lines of the database. + +# stimela.dat (version 3.8.6) (stimela version of phreeqc.dat) +# under development by Peter de Moel (Omnisys) for Stimela platform at Delft University of Technology +# based on: phreeqc.dat (file date 2025-01-07, in IPhreeqcCOM-3.8.6-17100-x64.msi) +# Stimela is focussed on modelling for water and waste water treatment +# Further info on using PHREEQC for water treatment, and PHREEQC in Excel can be found on https://ac4e.omnisys.nl/ + +# list of modifications: +# - added Amm (with master species AmmH+) as used in amm.dat for redox-uncoupled NH3 (for using Tony Appelo's input files) +# - added [N-3] (with master species [N-3]H4+) as alternative for redox-uncoupled Amm (for readable chemical formula) +# - added [Fe+2], [Mn+2] and [N+3] (with master species [Fe+2]+2 , [Mn+2]+2 and [N+3]O2-) for redox-uncoupled Fe+2, Mn+2 and NO2- +# - added [C-4] and [S-2] (with master species [C-4]H4 and H2[S-2]) as alternatives for redox-uncoupled Mtg and Sg) +# - added solid Vaterite (CaCO3) (included in Standard Methods 2330 (2010)) +# - unchanged analytic for solid Calcite (phreeqc 3.7.0. introduced modified version, deviated from Standard Methods 2330 - 2016) +# - modified values for element_gfw according to Abridged Standard Atomic Weights from TSAW 2013 (CIAAW/IUPAC) (https://www.ciaaw.org/abridged-atomic-weights.htm) +# end of list of modifications + + ----------------- + February 12, 2025 + ----------------- + PHREEQC: Fixed bug in GasComp.cxx. The order of the options + was incorrect, which caused -p (pressure) to be misinterpreted + when reading GAS_PHASE_RAW. + + +Version 3.8.6: January 7, 2025 ----------------- January 7, 2025 ----------------- From ec0212ded233929c14fc4bc5d6f0d61604ef3c8e Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Wed, 12 Feb 2025 22:31:30 -0700 Subject: [PATCH 284/384] removed tabs before eol in stimela.dat. Updated RELEASE.TXT. --- stimela.dat | 4228 +++++++++++++++++++++++++-------------------------- 1 file changed, 2114 insertions(+), 2114 deletions(-) diff --git a/stimela.dat b/stimela.dat index 7b06dca3..09f9c650 100644 --- a/stimela.dat +++ b/stimela.dat @@ -1,2129 +1,2129 @@ -# stimela.dat (version 3.8.6) (stimela version of phreeqc.dat) -# under development by Peter de Moel (Omnisys) for Stimela platform at Delft University of Technology -# based on: phreeqc.dat (file date 2025-01-07, in IPhreeqcCOM-3.8.6-17100-x64.msi) -# Stimela is focussed on modelling for water and waste water treatment +# stimela.dat (version 3.8.6) (stimela version of phreeqc.dat) +# under development by Peter de Moel (Omnisys) for Stimela platform at Delft University of Technology +# based on: phreeqc.dat (file date 2025-01-07, in IPhreeqcCOM-3.8.6-17100-x64.msi) +# Stimela is focussed on modelling for water and waste water treatment # Further info on using PHREEQC for water treatment, and PHREEQC in Excel can be found on https://ac4e.omnisys.nl/ - -# list of modifications: -# - added Amm (with master species AmmH+) as used in amm.dat for redox-uncoupled NH3 (for using Tony Appelo's input files) -# - added [N-3] (with master species [N-3]H4+) as alternative for redox-uncoupled Amm (for readable chemical formula) -# - added [Fe+2], [Mn+2] and [N+3] (with master species [Fe+2]+2 , [Mn+2]+2 and [N+3]O2-) for redox-uncoupled Fe+2, Mn+2 and NO2- -# - added [C-4] and [S-2] (with master species [C-4]H4 and H2[S-2]) as alternatives for redox-uncoupled Mtg and Sg) -# - added solid Vaterite (CaCO3) (included in Standard Methods 2330 (2010)) -# - unchanged analytic for solid Calcite (phreeqc 3.7.0. introduced modified version, deviated from Standard Methods 2330 - 2016) -# - modified values for element_gfw according to Abridged Standard Atomic Weights from TSAW 2013 (CIAAW/IUPAC) (https://www.ciaaw.org/abridged-atomic-weights.htm) -# end of list of modifications - -# File 1 = C:\GitPrograms\phreeqc3-1\database\phreeqc.dat, 22/05/2024 19:38, 1948 lines, 55817 bytes, md5=78b3659799b73ddca128328b6ee7533b -# Created 22 May 2024 19:55:37 -# C:\3rdParty\lsp\lsp.exe -f2 -k=asis -ts phreeqc.dat - -# phreeqc.dat for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: -# diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. -# Details are given at the end of this file. - -SOLUTION_MASTER_SPECIES + +# list of modifications: +# - added Amm (with master species AmmH+) as used in amm.dat for redox-uncoupled NH3 (for using Tony Appelo's input files) +# - added [N-3] (with master species [N-3]H4+) as alternative for redox-uncoupled Amm (for readable chemical formula) +# - added [Fe+2], [Mn+2] and [N+3] (with master species [Fe+2]+2 , [Mn+2]+2 and [N+3]O2-) for redox-uncoupled Fe+2, Mn+2 and NO2- +# - added [C-4] and [S-2] (with master species [C-4]H4 and H2[S-2]) as alternatives for redox-uncoupled Mtg and Sg) +# - added solid Vaterite (CaCO3) (included in Standard Methods 2330 (2010)) +# - unchanged analytic for solid Calcite (phreeqc 3.7.0. introduced modified version, deviated from Standard Methods 2330 - 2016) +# - modified values for element_gfw according to Abridged Standard Atomic Weights from TSAW 2013 (CIAAW/IUPAC) (https://www.ciaaw.org/abridged-atomic-weights.htm) +# end of list of modifications + +# File 1 = C:\GitPrograms\phreeqc3-1\database\phreeqc.dat, 22/05/2024 19:38, 1948 lines, 55817 bytes, md5=78b3659799b73ddca128328b6ee7533b +# Created 22 May 2024 19:55:37 +# C:\3rdParty\lsp\lsp.exe -f2 -k=asis -ts phreeqc.dat + +# phreeqc.dat for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: +# diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. +# Details are given at the end of this file. + +SOLUTION_MASTER_SPECIES # Modified acc. TSAW calculated -#element species alk gfw_formula element_gfw # phreeqc.dat (if modified) -# +#element species alk gfw_formula element_gfw # phreeqc.dat (if modified) +# H H+ -1 H 1.0080 1.008 1,008 -H(0) H2 0 H -H(1) H+ -1 0 -E e- 0 0.0 0 +H(0) H2 0 H +H(1) H+ -1 0 +E e- 0 0.0 0 O H2O 0 O 15.999 # 16 15,999 -O(0) O2 0 O -O(-2) H2O 0 0 +O(0) O2 0 O +O(-2) H2O 0 0 Ca Ca+2 0 Ca 40.078 # 40.08 40,078 -Mg Mg+2 0 Mg 24.305 # 24.312 -Na Na+ 0 Na 22.990 # 22.9898 -K K+ 0 K 39.098 # 39.102 -Fe Fe+2 0 Fe 55.845 # 55.847 -Fe(+2) Fe+2 0 Fe -Fe(+3) Fe+3 -2 Fe -Mn Mn+2 0 Mn 54.938 -Mn(+2) Mn+2 0 Mn -Mn(+3) Mn+3 0 Mn -Al Al+3 0 Al 26.982 # 26.9815 -Ba Ba+2 0 Ba 137.33 # 137.34 -Sr Sr+2 0 Sr 87.62 -Si H4SiO4 0 SiO2 28.085 # 28.0843 -Cl Cl- 0 Cl 35.45 # 35.453 +Mg Mg+2 0 Mg 24.305 # 24.312 +Na Na+ 0 Na 22.990 # 22.9898 +K K+ 0 K 39.098 # 39.102 +Fe Fe+2 0 Fe 55.845 # 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2 Fe +Mn Mn+2 0 Mn 54.938 +Mn(+2) Mn+2 0 Mn +Mn(+3) Mn+3 0 Mn +Al Al+3 0 Al 26.982 # 26.9815 +Ba Ba+2 0 Ba 137.33 # 137.34 +Sr Sr+2 0 Sr 87.62 +Si H4SiO4 0 SiO2 28.085 # 28.0843 +Cl Cl- 0 Cl 35.45 # 35.453 C CO3-2 2 HCO3 12.011 # 12.0111 12,011 -C(+4) CO3-2 2 HCO3 -C(-4) CH4 0 CH4 +C(+4) CO3-2 2 HCO3 +C(-4) CH4 0 CH4 Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.043 # 50.05 50,043 S SO4-2 0 SO4 32.06 # 32.064 32,06 -S(6) SO4-2 0 SO4 -S(-2) HS- 1 S +S(6) SO4-2 0 SO4 +S(-2) HS- 1 S N NO3- 0 N 14.007 # 14.0067 14,007 -N(+5) NO3- 0 N -N(+3) NO2- 0 N -N(0) N2 0 N -N(-3) NH4+ 0 N # 14.0067 -# begin modification stimela.dat -# uncommented Amm definitions +N(+5) NO3- 0 N +N(+3) NO2- 0 N +N(0) N2 0 N +N(-3) NH4+ 0 N # 14.0067 +# begin modification stimela.dat +# uncommented Amm definitions Amm AmmH+ 0 AmmH 17.031 # 17,031 -# end modification stimela.dat -B H3BO3 0 B 10.81 -P PO4-3 2 P 30.974 # 30.9738 -F F- 0 F 18.998 # 18.9984 -Li Li+ 0 Li 6.94 # 6.939 -Br Br- 0 Br 79.904 -Zn Zn+2 0 Zn 65.38 # 65.37 -Cd Cd+2 0 Cd 112.41 # 112.4 -Pb Pb+2 0 Pb 207.2 # 207.19 -Cu Cu+2 0 Cu 63.546 -Cu(+2) Cu+2 0 Cu -Cu(+1) Cu+1 0 Cu -# redox-uncoupled gases +# end modification stimela.dat +B H3BO3 0 B 10.81 +P PO4-3 2 P 30.974 # 30.9738 +F F- 0 F 18.998 # 18.9984 +Li Li+ 0 Li 6.94 # 6.939 +Br Br- 0 Br 79.904 +Zn Zn+2 0 Zn 65.38 # 65.37 +Cd Cd+2 0 Cd 112.41 # 112.4 +Pb Pb+2 0 Pb 207.2 # 207.19 +Cu Cu+2 0 Cu 63.546 +Cu(+2) Cu+2 0 Cu +Cu(+1) Cu+1 0 Cu +# redox-uncoupled gases Hdg Hdg 0 Hdg 2.016 # H2 gas 2,016 Oxg Oxg 0 Oxg 31.998 # 32 O2 gas 31,998 Mtg Mtg 0 Mtg 16.043 # 16.032 CH4 gas 16,043 Sg H2Sg 0 H2Sg 34.076 # 34.064 H2S gas 34,076 Ntg Ntg 0 Ntg 28.014 # 28.0134 N2 gas 28,014 -# begin modification stimela.dat -# added redox-uncoupled (inert) elements: [Fe+2], [Mn+2] and [N+3] -[Fe+2] [Fe+2]+2 0 Fe 55.845 -[Mn+2] [Mn+2]+2 0 Mn 54.938 -[N+3] [N+3]O2- 0 N 14.007 -# redox_uncoupled elements Amm (NH3), Mtg (CH4) and Sg (H2S) are not readable chemical formula -# replaced with uniform notation for redox-uncoupled (inert) elements: [N-3], [C-4] and [S-2] -[N-3] [N-3]H4+ 0 NH4 14.007 # Amm = [N-3]H3 -[C-4] [C-4]H4 0 CH4 12.011 # Mtg = [C-4]H4 -[S-2] H2[S-2] 0 H2S 32.06 # Sg = [S-2] -# uniform notation omitted for Oxg (O2), Hdg (H2) and Ntg (N2), to limit modifications from phreeqc.dat -# end modification stimela.dat -SOLUTION_SPECIES -H+ = H+ - -gamma 9 0 - -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 - -dw 9.31e-9 838 6.96 -2.285 0.206 24.01 0 - # Dw(25 C) dw_T a a2 visc a3 a_v_dif - # Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc - # a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif for tracer diffusion. - - # For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 0.206 for H+) - # a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Onsager-Falkenhagen eqn. (For H+, the reference ion, vm = v0 = 0, a *= (1 + mu)^a2.) - # a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10, not used in this database.) (a3 = 24.01 for H+, a flag.) - # -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database) - - # If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. -e- = e- -H2O = H2O - -dw 2.299e-9 -254 - # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence -Li+ = Li+ - -gamma 6 0 # The apparent volume parameters are defined in ref. 1 & 2 - -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 - -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl - -dw 1.03e-9 -14 4.03 0.8341 1.679 -Na+ = Na+ - -gamma 4 0.075 - -gamma 4.08 0.082 # halite solubility - -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 - # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 # for densities (rho) when I > 3. - -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 - -dw 1.33e-9 75 3.627 0 0.7037 -K+ = K+ - -gamma 3.5 0.015 - -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 - -viscosity 0.116 -0.191 1.52e-2 1.4e-2 2.59e-2 0.9028 - -dw 1.96e-9 254 3.484 0 0.1964 -Mg+2 = Mg+2 - -gamma 5.5 0.2 - -Vm -1.41 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 - -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 - -dw 0.705e-9 -4 5.569 0 1.047 -Ca+2 = Ca+2 - -gamma 5 0.165 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.6 -57.1 -6.12e-3 1 - -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.3 # ref. 4, CaCl2 < 6 M - -dw 0.792e-9 34 5.411 0 1.046 -Sr+2 = Sr+2 - -gamma 5.26 0.121 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97 - -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 - -dw 0.794e-9 149 0.805 1.961 1e-9 0.7876 -Ba+2 = Ba+2 - -gamma 5 0 - -gamma 4 0.153 # Barite solubility - -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 - -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 - -dw 0.848e-9 174 10.53 0 3 -Fe+2 = Fe+2 - -gamma 6 0 - -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 - -dw 0.719e-9 -Mn+2 = Mn+2 - -gamma 6 0 - -Vm -1.1 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 - -dw 0.688e-9 -Al+3 = Al+3 - -gamma 9 0 - -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353 - -dw 0.559e-9 -H4SiO4 = H4SiO4 - -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt 2*H2O in a1 - -dw 1.1e-9 -Cl- = Cl- - -gamma 3.5 0.015 - -gamma 3.63 0.017 # cf. pitzer.dat - -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 - -viscosity 0 0 0 0 0 0 1 # the reference solute - -dw 2.033e-9 216 3.16 0.2071 0.7432 -CO3-2 = CO3-2 - -gamma 5.4 0 - -Vm 6.09 -2.78 -0.405 -5.3 5.02 0 0.169 101 -1.38e-2 0.9316 - -viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147 - -dw 0.955e-9 -103 2.246 7.13e-2 0.3686 -SO4-2 = SO4-2 - -gamma 5 -0.04 - -Vm -7.77 43.17 176 -51.45 3.794 0 42.99 -541 -0.145 0.45 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC - -viscosity -0.3 0.501 2.57e-3 0.195 3.14e-2 2.015 0.605 - -dw 1.07e-9 -114 17 6.02e-2 4.94e-2 -NO3- = NO3- - -gamma 3 0 - -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 - -viscosity 8.37e-2 -0.458 1.54e-2 0.34 1.79e-2 5.02e-2 0.7381 - -dw 1.9e-9 104 1.11 -# begin modification stimela.dat -# uncommented Amm definitions -AmmH+ = AmmH+ - -gamma 2.5 0 - -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 - -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 - -dw 1.98e-9 203 1.47 2.644 6.81e-2 -# added [N-3]H4+, [N+3]O2-, [Fe+2]+2 and [Mn+2]+2 -[N-3]H4+ = [N-3]H4+ - -gamma 2.5 0 - -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 - -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 - -dw 1.98e-9 203 1.47 2.644 6.81e-2 -[N+3]O2- = [N+3]O2- - -gamma 3 0 - -Vm 5.5864 5.859 3.4472 -3.0212 1.1847 # supcrt - -dw 1.91e-9 -[Fe+2]+2 = [Fe+2]+2 - -gamma 6 0 - -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 - -dw 0.719e-9 -[Mn+2]+2 = [Mn+2]+2 - -gamma 6 0 - -Vm -1.1 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 - -dw 0.688e-9 -# end modification stimela.dat -H3BO3 = H3BO3 - -Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt - -dw 1.1e-9 -PO4-3 = PO4-3 - -gamma 4 0 - -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 - -dw 0.612e-9 -F- = F- - -gamma 3.5 0 - -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 - -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 - -dw 1.46e-9 -36 4.352 -Br- = Br- - -gamma 3 0 - -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 - -viscosity -6.98e-2 -0.141 1.78e-2 0.159 7.76e-3 6.25e-2 0.859 - -dw 2.09e-9 208 3.5 0 0.5737 -Zn+2 = Zn+2 - -gamma 5 0 - -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 - -dw 0.715e-9 -Cd+2 = Cd+2 - -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 - -dw 0.717e-9 -Pb+2 = Pb+2 - -Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt - -dw 0.945e-9 -Cu+2 = Cu+2 - -gamma 6 0 - -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 - -dw 0.733e-9 -# redox-uncoupled gases -Hdg = Hdg # H2 - -Vm 6.52 0.78 0.12 # supcrt - -dw 5.13e-9 -Oxg = Oxg # O2 - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt - -dw 2.35e-9 -Mtg = Mtg # CH4 - -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 - -dw 1.85e-9 -Ntg = Ntg # N2 - -Vm 7 # Pray et al., 1952, IEC 44 1146 - -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 -H2Sg = H2Sg # H2S - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 - -dw 2.1e-9 -# begin modification stimela.dat -[C-4]H4 = [C-4]H4 # CH4 - -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 - -dw 1.85e-9 -H2[S-2] = H2[S-2] # H2S - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 - -dw 2.1e-9 -# end modification stimela.dat -# aqueous species -H2O = OH- + H+ - -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 - -gamma 3.5 0 - -Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1 - -viscosity -2.26e-2 0.106 2.184e-2 -3.2e-3 0 0.4082 -1.634 # < 5 M Li,Na,KOH - -dw 5.27e-9 478 0.8695 -2 H2O = O2 + 4 H+ + 4 e- - -log_k -86.08 - -delta_h 134.79 kcal - -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt - -dw 2.35e-9 -2 H+ + 2 e- = H2 - -log_k -3.15 - -delta_h -1.759 kcal - -Vm 6.52 0.78 0.12 # supcrt - -dw 5.13e-9 -H+ + Cl- = HCl - -log_k -0.5 - -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50°C - -gamma 0 0.4256 - -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 -CO3-2 + H+ = HCO3- - -log_k 10.329; -delta_h -3.561 kcal - -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 - -gamma 5.4 0 - -Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144 - -viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253 - -dw 1.18e-9 -190 11.386 -CO3-2 + 2 H+ = CO2 + H2O - -log_k 16.681 - -delta_h -5.738 kcal - -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 - -Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171 - -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 - -viscosity 6.8e-3 9.03e-2 3.27e-2 0 0 0 0.18 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 -2 CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T - -log_k -1.8 - -analytical_expression 8.68 -0.0103 -2190 - -Vm 14.58 1.84 4.14 -2.46 -3.2 - -viscosity 1.36e-2 0.1806 3.27e-2 0 0 0 0.36 - -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 -CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O - -log_k 41.071 - -delta_h -61.039 kcal - -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 - -dw 1.85e-9 -SO4-2 + H+ = HSO4- - -log_k 1.988; -delta_h 3.85 kcal - -analytic -56.889 0.006473 2307.9 19.8858 - -Vm 8.2 9.259 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 - -viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987 - -dw 1.22e-9 1000 15 2.861 -HS- = S-2 + H+ - -log_k -12.918 - -delta_h 12.1 kcal - -gamma 5 0 - -dw 0.731e-9 -SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O - -log_k 33.65 - -delta_h -60.14 kcal - -gamma 3.5 0 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt - -dw 1.73e-9 -HS- + H+ = H2S - -log_k 6.994; -delta_h -5.3 kcal - -analytical -11.17 0.02386 3279 - -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 - -dw 2.1e-9 -2 H2S = (H2S)2 # activity correction for H2S solubility at high P, T - -analytical_expression 10.227 -0.01384 -2200 - -Vm 36.41 -71.95 0 0 2.58 - -dw 2.1e-9 -H2Sg = HSg- + H+ - -log_k -6.994; -delta_h 5.3 kcal - -analytical_expression 11.17 -0.02386 -3279 - -gamma 3.5 0 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt - -dw 1.73e-9 -2 H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T - -analytical_expression 10.227 -0.01384 -2200 - -Vm 36.41 -71.95 0 0 2.58 - -dw 2.1e-9 -# begin modification stimela.dat -H2[S-2] = H[S-2]- + H+ - -log_k -6.994; -delta_h 5.3 kcal - -analytical_expression 11.17 -0.02386 -3279 - -gamma 3.5 0 - -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt - -dw 1.73e-9 1.73e-9 -2 H2[S-2] = (H2[S-2])2 # activity correction for H2S solubility at high P, T - -analytical_expression 10.227 -0.01384 -2200 - -Vm 36.41 -71.95 0 0 2.58 - -dw 2.1e-9 -# end modification stimela.dat -NO3- + 2 H+ + 2 e- = NO2- + H2O - -log_k 28.57 - -delta_h -43.76 kcal - -gamma 3 0 - -Vm 5.5864 5.859 3.4472 -3.0212 1.1847 # supcrt - -dw 1.91e-9 -2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O - -log_k 207.08 - -delta_h -312.13 kcal - -Vm 7 # Pray et al., 1952, IEC 44 1146 - -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 -NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O - -log_k 119.077 - -delta_h -187.055 kcal - -gamma 2.5 0 - -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 - -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 - -dw 1.98e-9 203 1.47 2.644 6.81e-2 -# begin modification stimela.dat -# uncommented Amm definitions -AmmH+ = Amm + H+ - -log_k -9.252 - -delta_h 12.48 kcal - -analytic 0.6322 -0.001225 -2835.76 - -Vm 6.69 2.8 3.58 -2.88 1.43 - -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 - -dw 2.28e-9 -# definition [N-3]H3 -[N-3]H4+ = [N-3]H3 + H+ - -log_k -9.252 - -delta_h 12.48 kcal - -analytic 0.6322 -0.001225 -2835.76 - -Vm 6.69 2.8 3.58 -2.88 1.43 - -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 - -dw 2.28e-9 -# end modification stimela.dat -NH4+ = NH3 + H+ - -log_k -9.252 - -delta_h 12.48 kcal - -analytic 0.6322 -0.001225 -2835.76 - -Vm 6.69 2.8 3.58 -2.88 1.43 - -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 - -dw 2.28e-9 -# begin modification stimela.dat -# uncommented Amm definitions -AmmH+ + SO4-2 = AmmHSO4- - -gamma 2.08 -0.0416 - -log_k 1.211; -delta_h 8.56 kJ - -Vm -8.78 0 -36.09 0 -8.60 0 87.62 0 -0.3123 0.1172 - -viscosity 0 0.116 -8.6e-3 0.159 -9.3e-3 0.522 0.627 - -dw 0.9e-9 100 2.1 2 0 -# definition [N-3]H4SO4- -[N-3]H4+ + SO4-2 = [N-3]H4SO4- - -gamma 2.08 -0.0416 - -log_k 1.211; -delta_h 8.56 kJ - -Vm -8.78 0 -36.09 0 -8.60 0 87.62 0 -0.3123 0.1172 - -viscosity 0 0.116 -8.6e-3 0.159 -9.3e-3 0.522 0.627 - -dw 0.9e-9 100 2.1 2 0 -# end modification stimela.dat -NH4+ + SO4-2 = NH4SO4- - -gamma 2.08 -0.0416 - -log_k 1.211; -delta_h 8.56 kJ - -Vm -8.78 0 -36.09 0 -8.60 0 87.62 0 -0.3123 0.1172 - -viscosity 0 0.116 -8.6e-3 0.159 -9.3e-3 0.522 0.627 - -dw 0.9e-9 100 2.1 2 0 -H3BO3 = H2BO3- + H+ - -log_k -9.24 - -delta_h 3.224 kcal -H3BO3 + F- = BF(OH)3- - -log_k -0.4 - -delta_h 1.85 kcal -H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O - -log_k 7.63 - -delta_h 1.618 kcal -H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O - -log_k 13.67 - -delta_h -1.614 kcal -H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O - -log_k 20.28 - -delta_h -1.846 kcal -PO4-3 + H+ = HPO4-2 - -log_k 12.346 - -delta_h -3.53 kcal - -gamma 5 0 - -dw 0.69e-9 - -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 -PO4-3 + 2 H+ = H2PO4- - -log_k 19.553 - -delta_h -4.52 kcal - -gamma 5.4 0 - -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 - -dw 0.846e-9 -PO4-3 + 3 H+ = H3PO4 - log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 - delta_h -10.1 kJ - -Vm 7.47 12.4 6.29 -3.29 0 -H+ + F- = HF - -log_k 3.18 - -delta_h 3.18 kcal - -analytic -2.033 0.012645 429.01 - -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt -H+ + 2 F- = HF2- - -log_k 3.76 - -delta_h 4.55 kcal - -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt -Ca+2 + H2O = CaOH+ + H+ - -log_k -12.78 -Ca+2 + CO3-2 = CaCO3 - -log_k 3.224; -delta_h 3.545 kcal - -analytic -1228.732 -0.29944 35512.75 485.818 - -dw 4.46e-10 # complexes: calc'd with the Pikal formula - -Vm -.243 -8.3748 9.0417 -2.4328 -.03 # supcrt -Ca+2 + CO3-2 + H+ = CaHCO3+ - -log_k 10.91; -delta_h 4.38 kcal - -analytic -6.009 3.377e-2 2044 - -gamma 6 0 - -Vm 30.19 .01 5.75 -2.78 .308 5.4 - -dw 5.06e-10 -Ca+2 + SO4-2 = CaSO4 - -log_k 2.25 - -delta_h 1.325 kcal - -dw 4.71e-10 - -Vm 2.791 -.9666 6.13 -2.739 -.001 # supcrt -Ca+2 + HSO4- = CaHSO4+ - -log_k 1.08 -Ca+2 + PO4-3 = CaPO4- - -log_k 6.459 - -delta_h 3.1 kcal - -gamma 5.4 0 -Ca+2 + HPO4-2 = CaHPO4 - -log_k 2.739 - -delta_h 3.3 kcal -Ca+2 + H2PO4- = CaH2PO4+ - -log_k 1.408 - -delta_h 3.4 kcal - -gamma 5.4 0 -# Ca+2 + F- = CaF+ - # -log_k 0.94 - # -delta_h 4.120 kcal - # -gamma 5.5 0.0 - # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt -Mg+2 + H2O = MgOH+ + H+ - -log_k -11.44 - -delta_h 15.952 kcal - -gamma 6.5 0 -Mg+2 + CO3-2 = MgCO3 - -log_k 2.98 - -delta_h 2.713 kcal - -analytic 0.991 0.00667 - -Vm -0.5837 -9.2067 9.3687 -2.3984 -.03 # supcrt - -dw 4.21e-10 -Mg+2 + H+ + CO3-2 = MgHCO3+ - -log_k 11.399 - -delta_h -2.771 kcal - -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 - -gamma 4 0 - -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt - -dw 4.78e-10 -Mg+2 + SO4-2 = MgSO4 - -gamma 0 0.2 - -log_k 2.42; -delta_h 19 kJ - -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -Vm 8.65 -10.21 29.58 -18.6 1.061 - -viscosity 0.318 -5.4e-4 -3.42e-2 0.708 3.7e-3 0.696 - -dw 4.45e-10 -SO4-2 + MgSO4 = Mg(SO4)2-2 - -gamma 7 0.047 - -log_k 0.52; -delta_h -13.6 kJ - -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -Vm -8.14 -62.2 -15.96 3.29 -3.01 0 150 0 0.153 3.79e-2 - -viscosity -0.169 5e-4 -5.69e-2 0.11 2.03e-3 2.027 -1e-3 - -dw 0.845e-9 -200 8 0 0.965 -Mg+2 + PO4-3 = MgPO4- - -log_k 6.589 - -delta_h 3.1 kcal - -gamma 5.4 0 -Mg+2 + HPO4-2 = MgHPO4 - -log_k 2.87 - -delta_h 3.3 kcal -Mg+2 + H2PO4- = MgH2PO4+ - -log_k 1.513 - -delta_h 3.4 kcal - -gamma 5.4 0 -Mg+2 + F- = MgF+ - -log_k 1.82 - -delta_h 3.2 kcal - -gamma 4.5 0 - -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt -# Na+ + OH- = NaOH - # -log_k -14.7 # remove this complex -Na+ + HCO3- = NaHCO3 - -log_k -0.06; -delta_h 21 kJ - -gamma 0 0.2 - -Vm 7.95 0 0 0 0.609 - -viscosity -4e-2 -2.717 1.67e-5 - -dw 6.73e-10 -Na+ + SO4-2 = NaSO4- - -gamma 5.5 0 - -log_k 0.6; -delta_h -14.4 kJ - -analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC - -Vm 1.99 -10.78 21.88 -12.7 1.601 5 32.38 501 1.565e-2 0.2325 - -viscosity 0.2 -5.93e-2 -4e-4 8.46e-3 1.78e-3 2.308 -0.208 - -dw 1.13e-9 -23 8.5 0.392 0.521 -Na+ + HPO4-2 = NaHPO4- - -log_k 0.29 - -gamma 5.4 0 - -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 -Na+ + F- = NaF - -log_k -0.24 - -Vm 2.7483 -1.0708 6.1709 -2.7347 -.03 # supcrt -K+ + HCO3- = KHCO3 - -log_k -0.35; -delta_h 12 kJ - -gamma 0 9.4e-3 - -Vm 9.48 0 0 0 -0.542 - -viscosity 0.7 -1.289 9e-2 -K+ + SO4-2 = KSO4- - -gamma 5.4 0.19 - -log_k 0.6; -delta_h -10.4 kJ - -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC - -Vm 13.48 -18.03 61.74 -19.6 2.046 5.4 -17.32 0 0.1522 1.919 - -viscosity -1 1.06 1e-4 -0.464 3.78e-2 0.539 -0.69 - -dw 0.9e-9 63 8.48 0 1.8 -K+ + HPO4-2 = KHPO4- - -log_k 0.29 - -gamma 5.4 0 - -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 -Fe+2 + H2O = FeOH+ + H+ - -log_k -9.5 - -delta_h 13.2 kcal - -gamma 5 0 -Fe+2 + 3 H2O = Fe(OH)3- + 3 H+ - -log_k -31 - -delta_h 30.3 kcal - -gamma 5 0 -Fe+2 + Cl- = FeCl+ - -log_k 0.14 -Fe+2 + CO3-2 = FeCO3 - -log_k 4.38 -Fe+2 + HCO3- = FeHCO3+ - -log_k 2 -Fe+2 + SO4-2 = FeSO4 - -log_k 2.25 - -delta_h 3.23 kcal - -Vm -13 0 123 -Fe+2 + HSO4- = FeHSO4+ - -log_k 1.08 -Fe+2 + 2 HS- = Fe(HS)2 - -log_k 8.95 -Fe+2 + 3 HS- = Fe(HS)3- - -log_k 10.987 -Fe+2 + HPO4-2 = FeHPO4 - -log_k 3.6 -Fe+2 + H2PO4- = FeH2PO4+ - -log_k 2.7 - -gamma 5.4 0 -Fe+2 + F- = FeF+ - -log_k 1 -Fe+2 = Fe+3 + e- - -log_k -13.02 - -delta_h 9.68 kcal - -gamma 9 0 -Fe+3 + H2O = FeOH+2 + H+ - -log_k -2.19 - -delta_h 10.4 kcal - -gamma 5 0 -Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ - -log_k -5.67 - -delta_h 17.1 kcal - -gamma 5.4 0 -Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ - -log_k -12.56 - -delta_h 24.8 kcal -Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ - -log_k -21.6 - -delta_h 31.9 kcal - -gamma 5.4 0 -Fe+2 + 2 H2O = Fe(OH)2 + 2 H+ - -log_k -20.57 - -delta_h 28.565 kcal -2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ - -log_k -2.95 - -delta_h 13.5 kcal -3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ - -log_k -6.3 - -delta_h 14.3 kcal -Fe+3 + Cl- = FeCl+2 - -log_k 1.48 - -delta_h 5.6 kcal - -gamma 5 0 -Fe+3 + 2 Cl- = FeCl2+ - -log_k 2.13 - -gamma 5 0 -Fe+3 + 3 Cl- = FeCl3 - -log_k 1.13 -Fe+3 + SO4-2 = FeSO4+ - -log_k 4.04 - -delta_h 3.91 kcal - -gamma 5 0 -Fe+3 + HSO4- = FeHSO4+2 - -log_k 2.48 -Fe+3 + 2 SO4-2 = Fe(SO4)2- - -log_k 5.38 - -delta_h 4.6 kcal -Fe+3 + HPO4-2 = FeHPO4+ - -log_k 5.43 - -delta_h 5.76 kcal - -gamma 5 0 -Fe+3 + H2PO4- = FeH2PO4+2 - -log_k 5.43 - -gamma 5.4 0 -Fe+3 + F- = FeF+2 - -log_k 6.2 - -delta_h 2.7 kcal - -gamma 5 0 -Fe+3 + 2 F- = FeF2+ - -log_k 10.8 - -delta_h 4.8 kcal - -gamma 5 0 -Fe+3 + 3 F- = FeF3 - -log_k 14 - -delta_h 5.4 kcal -Mn+2 + H2O = MnOH+ + H+ - -log_k -10.59 - -delta_h 14.4 kcal - -gamma 5 0 -Mn+2 + 3 H2O = Mn(OH)3- + 3 H+ - -log_k -34.8 - -gamma 5 0 -Mn+2 + Cl- = MnCl+ - -log_k 0.61 - -gamma 5 0 - -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 -Mn+2 + 2 Cl- = MnCl2 - -log_k 0.25 - -Vm 1e-5 0 144 -Mn+2 + 3 Cl- = MnCl3- - -log_k -0.31 - -gamma 5 0 - -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 -Mn+2 + CO3-2 = MnCO3 - -log_k 4.9 -Mn+2 + HCO3- = MnHCO3+ - -log_k 1.95 - -gamma 5 0 -Mn+2 + SO4-2 = MnSO4 - -log_k 2.25 - -delta_h 3.37 kcal - -Vm -1.31 -1.83 62.3 -2.7 -Mn+2 + 2 NO3- = Mn(NO3)2 - -log_k 0.6 - -delta_h -0.396 kcal - -Vm 6.16 0 29.4 0 0.9 -Mn+2 + F- = MnF+ - -log_k 0.84 - -gamma 5 0 -Mn+2 = Mn+3 + e- - -log_k -25.51 - -delta_h 25.8 kcal - -gamma 9 0 -Al+3 + H2O = AlOH+2 + H+ - -log_k -5 - -delta_h 11.49 kcal - -analytic -38.253 0 -656.27 14.327 - -gamma 5.4 0 - -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353 -Al+3 + 2 H2O = Al(OH)2+ + 2 H+ - -log_k -10.1 - -delta_h 26.9 kcal - -gamma 5.4 0 - -analytic 88.5 0 -9391.6 -27.121 -Al+3 + 3 H2O = Al(OH)3 + 3 H+ - -log_k -16.9 - -delta_h 39.89 kcal - -analytic 226.374 0 -18247.8 -73.597 -Al+3 + 4 H2O = Al(OH)4- + 4 H+ - -log_k -22.7 - -delta_h 42.3 kcal - -analytic 51.578 0 -11168.9 -14.865 - -gamma 4.5 0 - -dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959 -Al+3 + SO4-2 = AlSO4+ - -log_k 3.5 - -delta_h 2.29 kcal - -gamma 4.5 0 -Al+3 + 2 SO4-2 = Al(SO4)2- - -log_k 5 - -delta_h 3.11 kcal - -gamma 4.5 0 -Al+3 + HSO4- = AlHSO4+2 - -log_k 0.46 -Al+3 + F- = AlF+2 - -log_k 7 - -delta_h 1.06 kcal - -gamma 5.4 0 -Al+3 + 2 F- = AlF2+ - -log_k 12.7 - -delta_h 1.98 kcal - -gamma 5.4 0 -Al+3 + 3 F- = AlF3 - -log_k 16.8 - -delta_h 2.16 kcal -Al+3 + 4 F- = AlF4- - -log_k 19.4 - -delta_h 2.2 kcal - -gamma 4.5 0 -# Al+3 + 5 F- = AlF5-2 - # log_k 20.6 - # delta_h 1.840 kcal -# Al+3 + 6 F- = AlF6-3 - # log_k 20.6 - # delta_h -1.670 kcal -H4SiO4 = H3SiO4- + H+ - -log_k -9.83 - -delta_h 6.12 kcal - -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669 - -gamma 4 0 - -Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt + H2O in a1 -H4SiO4 = H2SiO4-2 + 2 H+ - -log_k -23 - -delta_h 17.6 kcal - -analytic -294.0184 -0.07265 11204.49 108.18466 -1119669 - -gamma 5.4 0 -H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O - -log_k 30.18 - -delta_h -16.26 kcal - -gamma 5 0 - -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt -Ba+2 + H2O = BaOH+ + H+ - -log_k -13.47 - -gamma 5 0 -Ba+2 + CO3-2 = BaCO3 - -log_k 2.71 - -delta_h 3.55 kcal - -analytic 0.113 0.008721 - -Vm .2907 -7.0717 8.5295 -2.4867 -.03 # supcrt -Ba+2 + HCO3- = BaHCO3+ - -log_k 0.982 - -delta_h 5.56 kcal - -analytic -3.0938 0.013669 -Ba+2 + SO4-2 = BaSO4 - -log_k 2.7 -Sr+2 + H2O = SrOH+ + H+ - -log_k -13.29 - -gamma 5 0 -Sr+2 + CO3-2 + H+ = SrHCO3+ - -log_k 11.509 - -delta_h 2.489 kcal - -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 - -gamma 5.4 0 -Sr+2 + CO3-2 = SrCO3 - -log_k 2.81 - -delta_h 5.22 kcal - -analytic -1.019 0.012826 - -Vm -.1787 -8.2177 8.9799 -2.4393 -.03 # supcrt -Sr+2 + SO4-2 = SrSO4 - -log_k 2.29 - -delta_h 2.08 kcal - -Vm 6.791 -.9666 6.13 -2.739 -.001 # celestite solubility -Li+ + SO4-2 = LiSO4- - -log_k 0.64 - -gamma 5 0 -Cu+2 + e- = Cu+ - -log_k 2.72 - -delta_h 1.65 kcal - -gamma 2.5 0 -Cu+ + 2 Cl- = CuCl2- - -log_k 5.5 - -delta_h -0.42 kcal - -gamma 4 0 -Cu+ + 3 Cl- = CuCl3-2 - -log_k 5.7 - -delta_h 0.26 kcal - -gamma 5 0 -Cu+2 + CO3-2 = CuCO3 - -log_k 6.73 -Cu+2 + 2 CO3-2 = Cu(CO3)2-2 - -log_k 9.83 -Cu+2 + HCO3- = CuHCO3+ - -log_k 2.7 -Cu+2 + Cl- = CuCl+ - -log_k 0.43 - -delta_h 8.65 kcal - -gamma 4 0 - -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 -Cu+2 + 2 Cl- = CuCl2 - -log_k 0.16 - -delta_h 10.56 kcal - -Vm 26.8 0 -136 -Cu+2 + 3 Cl- = CuCl3- - -log_k -2.29 - -delta_h 13.69 kcal - -gamma 4 0 -Cu+2 + 4 Cl- = CuCl4-2 - -log_k -4.59 - -delta_h 17.78 kcal - -gamma 5 0 -Cu+2 + F- = CuF+ - -log_k 1.26 - -delta_h 1.62 kcal -Cu+2 + H2O = CuOH+ + H+ - -log_k -8 - -gamma 4 0 -Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ - -log_k -13.68 -Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ - -log_k -26.9 -Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ - -log_k -39.6 -2 Cu+2 + 2 H2O = Cu2(OH)2+2 + 2 H+ - -log_k -10.359 - -delta_h 17.539 kcal - -analytical 2.497 0 -3833 -Cu+2 + SO4-2 = CuSO4 - -log_k 2.31 - -delta_h 1.22 kcal - -Vm 5.21 0 -14.6 -Cu+2 + 3 HS- = Cu(HS)3- - -log_k 25.9 -Zn+2 + H2O = ZnOH+ + H+ - -log_k -8.96 - -delta_h 13.4 kcal -Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ - -log_k -16.9 -Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ - -log_k -28.4 -Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ - -log_k -41.2 -Zn+2 + Cl- = ZnCl+ - -log_k 0.43 - -delta_h 7.79 kcal - -gamma 4 0 - -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 -Zn+2 + 2 Cl- = ZnCl2 - -log_k 0.45 - -delta_h 8.5 kcal - -Vm -10.1 4.57 241 -2.97 -1e-3 -Zn+2 + 3 Cl- = ZnCl3- - -log_k 0.5 - -delta_h 9.56 kcal - -gamma 4 0 - -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 -Zn+2 + 4 Cl- = ZnCl4-2 - -log_k 0.2 - -delta_h 10.96 kcal - -gamma 5 0 - -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 -Zn+2 + H2O + Cl- = ZnOHCl + H+ - -log_k -7.48 -Zn+2 + 2 HS- = Zn(HS)2 - -log_k 14.94 -Zn+2 + 3 HS- = Zn(HS)3- - -log_k 16.1 -Zn+2 + CO3-2 = ZnCO3 - -log_k 5.3 -Zn+2 + 2 CO3-2 = Zn(CO3)2-2 - -log_k 9.63 -Zn+2 + HCO3- = ZnHCO3+ - -log_k 2.1 -Zn+2 + SO4-2 = ZnSO4 - -log_k 2.37 - -delta_h 1.36 kcal - -Vm 2.51 0 18.8 -Zn+2 + 2 SO4-2 = Zn(SO4)2-2 - -log_k 3.28 - -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 -Zn+2 + Br- = ZnBr+ - -log_k -0.58 -Zn+2 + 2 Br- = ZnBr2 - -log_k -0.98 -Zn+2 + F- = ZnF+ - -log_k 1.15 - -delta_h 2.22 kcal -Cd+2 + H2O = CdOH+ + H+ - -log_k -10.08 - -delta_h 13.1 kcal -Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ - -log_k -20.35 -Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ - -log_k -33.3 -Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ - -log_k -47.35 -2 Cd+2 + H2O = Cd2OH+3 + H+ - -log_k -9.39 - -delta_h 10.9 kcal -Cd+2 + H2O + Cl- = CdOHCl + H+ - -log_k -7.404 - -delta_h 4.355 kcal -Cd+2 + NO3- = CdNO3+ - -log_k 0.4 - -delta_h -5.2 kcal - -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 -Cd+2 + Cl- = CdCl+ - -log_k 1.98 - -delta_h 0.59 kcal - -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 -Cd+2 + 2 Cl- = CdCl2 - -log_k 2.6 - -delta_h 1.24 kcal - -Vm 5.53 -Cd+2 + 3 Cl- = CdCl3- - -log_k 2.4 - -delta_h 3.9 kcal - -Vm 4.6 0 83.9 0 0 0 0 0 0 1 -Cd+2 + CO3-2 = CdCO3 - -log_k 2.9 -Cd+2 + 2 CO3-2 = Cd(CO3)2-2 - -log_k 6.4 -Cd+2 + HCO3- = CdHCO3+ - -log_k 1.5 -Cd+2 + SO4-2 = CdSO4 - -log_k 2.46 - -delta_h 1.08 kcal - -Vm 10.4 0 57.9 -Cd+2 + 2 SO4-2 = Cd(SO4)2-2 - -log_k 3.5 - -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 -Cd+2 + Br- = CdBr+ - -log_k 2.17 - -delta_h -0.81 kcal -Cd+2 + 2 Br- = CdBr2 - -log_k 2.9 -Cd+2 + F- = CdF+ - -log_k 1.1 -Cd+2 + 2 F- = CdF2 - -log_k 1.5 -Cd+2 + HS- = CdHS+ - -log_k 10.17 -Cd+2 + 2 HS- = Cd(HS)2 - -log_k 16.53 -Cd+2 + 3 HS- = Cd(HS)3- - -log_k 18.71 -Cd+2 + 4 HS- = Cd(HS)4-2 - -log_k 20.9 -Pb+2 + H2O = PbOH+ + H+ - -log_k -7.71 -Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ - -log_k -17.12 -Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ - -log_k -28.06 -Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ - -log_k -39.7 -2 Pb+2 + H2O = Pb2OH+3 + H+ - -log_k -6.36 -Pb+2 + Cl- = PbCl+ - -log_k 1.6 - -delta_h 4.38 kcal - -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt -Pb+2 + 2 Cl- = PbCl2 - -log_k 1.8 - -delta_h 1.08 kcal - -Vm 6.5402 8.1879 2.5318 -3.1175 -.03 # supcrt -Pb+2 + 3 Cl- = PbCl3- - -log_k 1.7 - -delta_h 2.17 kcal - -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt -Pb+2 + 4 Cl- = PbCl4-2 - -log_k 1.38 - -delta_h 3.53 kcal - -Vm 16.415 32.2997 -6.9452 -4.1143 2.3118 # supcrt -Pb+2 + CO3-2 = PbCO3 - -log_k 7.24 -Pb+2 + 2 CO3-2 = Pb(CO3)2-2 - -log_k 10.64 -Pb+2 + HCO3- = PbHCO3+ - -log_k 2.9 -Pb+2 + SO4-2 = PbSO4 - -log_k 2.75 -Pb+2 + 2 SO4-2 = Pb(SO4)2-2 - -log_k 3.47 -Pb+2 + 2 HS- = Pb(HS)2 - -log_k 15.27 -Pb+2 + 3 HS- = Pb(HS)3- - -log_k 16.57 -3 Pb+2 + 4 H2O = Pb3(OH)4+2 + 4 H+ - -log_k -23.88 - -delta_h 26.5 kcal -Pb+2 + NO3- = PbNO3+ - -log_k 1.17 -Pb+2 + Br- = PbBr+ - -log_k 1.77 - -delta_h 2.88 kcal -Pb+2 + 2 Br- = PbBr2 - -log_k 1.44 -Pb+2 + F- = PbF+ - -log_k 1.25 -Pb+2 + 2 F- = PbF2 - -log_k 2.56 -Pb+2 + 3 F- = PbF3- - -log_k 3.42 -Pb+2 + 4 F- = PbF4-2 - -log_k 3.1 - -PHASES -Calcite - CaCO3 = CO3-2 + Ca+2 - -log_k -8.48 - -delta_h -2.297 kcal -# begin modification stimela.dat -# analytic not modified, kept as in version 3.6.2, which is in accordance to Standard Methods 2330 (2016) -# -analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982 - -analytic -171.9065 -0.077993 2839.319 71.595 # changed in version 3.7.0, March 10 2021 -# end modification stimela.dat - -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3) -Aragonite - CaCO3 = CO3-2 + Ca+2 - -log_k -8.336 - -delta_h -2.589 kcal - -analytic -171.9773 -0.077993 2903.293 71.595 - -Vm 34.04 -# begin modification stimela.dat -# adding Vaterite from Aragonite according Standard Methods 2330 (2010) -Vaterite - CaCO3 = CO3-2 + Ca+2 - -log_k -8.336 # overruled by -analytic - -delta_h -2.589 kcal # overruled by -analytic - -analytic -172.1295 -0.077993 3074.688 71.595 - -Vm 39.41 cm3/mol # MW (100.09 g/mol) / rho (2.54 g/cm3) -# end modification stimela.dat -Dolomite - CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 - -log_k -17.09 - -delta_h -9.436 kcal - -analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50–175°C: Bénézeth et al., 2018, GCA 224, 262-275 - -Vm 64.5 -Siderite - FeCO3 = Fe+2 + CO3-2 - -log_k -10.89 - -delta_h -2.48 kcal - -Vm 29.2 -Rhodochrosite - MnCO3 = Mn+2 + CO3-2 - -log_k -11.13 - -delta_h -1.43 kcal - -Vm 31.1 -Strontianite - SrCO3 = Sr+2 + CO3-2 - -log_k -9.271 - -delta_h -0.4 kcal - -analytic 155.0305 0 -7239.594 -56.58638 - -Vm 39.69 -Witherite - BaCO3 = Ba+2 + CO3-2 - -log_k -8.562 - -delta_h 0.703 kcal - -analytic 607.642 0.121098 -20011.25 -236.4948 - -Vm 46 -Gypsum - CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O - -log_k -4.58 - -delta_h -0.109 kcal - -analytic 68.2401 0 -3221.51 -25.0627 - -analytical_expression 93.7 5.99E-3 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 - -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) -Anhydrite - CaSO4 = Ca+2 + SO4-2 - -log_k -4.36 - -delta_h -1.71 kcal - -analytic 84.9 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323 - -Vm 46.1 # 136.14 / 2.95 -Celestite - SrSO4 = Sr+2 + SO4-2 - -log_k -6.63 - -delta_h -4.037 kcal - # -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 - -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464 - -Vm 46.4 -Barite - BaSO4 = Ba+2 + SO4-2 - -log_k -9.97 - -delta_h 6.35 kcal - -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 - -Vm 52.9 -Arcanite - K2SO4 = SO4-2 + 2 K+ - log_k -1.776; -delta_h 5 kcal - -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 - # Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06 - -Vm 65.5 -Mirabilite - Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O - -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 - Vm 216 -Thenardite - Na2SO4 = 2 Na+ + SO4-2 - -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 - -Vm 52.9 -Epsomite - MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O - log_k -1.74; -delta_h 10.57 kJ - -analytical_expression -3.59 6.21e-3 - Vm 147 -Hexahydrite - MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O - log_k -1.57; -delta_h 2.35 kJ - -analytical_expression -1.978 1.38e-3 - Vm 132 -Kieserite - MgSO4:H2O = Mg+2 + SO4-2 + H2O - log_k -1.16; -delta_h 9.22 kJ - -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 - Vm 53.8 -Hydroxyapatite - Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 - -log_k -3.421 - -delta_h -36.155 kcal - -Vm 128.9 -Fluorite - CaF2 = Ca+2 + 2 F- - -log_k -10.6 - -delta_h 4.69 kcal - -analytic 66.348 0 -4298.2 -25.271 - -Vm 15.7 -SiO2(a) - SiO2 + 2 H2O = H4SiO4 - -log_k -2.71 - -delta_h 3.34 kcal - -analytic -0.26 0 -731 -Chalcedony - SiO2 + 2 H2O = H4SiO4 - -log_k -3.55 - -delta_h 4.72 kcal - -analytic -0.09 0 -1032 - -Vm 23.1 -Quartz - SiO2 + 2 H2O = H4SiO4 - -log_k -3.98 - -delta_h 5.99 kcal - -analytic 0.41 0 -1309 - -Vm 22.67 -Gibbsite - Al(OH)3 + 3 H+ = Al+3 + 3 H2O - -log_k 8.11 - -delta_h -22.8 kcal - -Vm 32.22 -Al(OH)3(a) - Al(OH)3 + 3 H+ = Al+3 + 3 H2O - -log_k 10.8 - -delta_h -26.5 kcal -Kaolinite - Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 - -log_k 7.435 - -delta_h -35.3 kcal - -Vm 99.35 -Albite - NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 - -log_k -18.002 - -delta_h 25.896 kcal - -Vm 101.31 -Anorthite - CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 - -log_k -19.714 - -delta_h 11.58 kcal - -Vm 105.05 -K-feldspar - KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 - -log_k -20.573 - -delta_h 30.82 kcal - -Vm 108.15 -K-mica - KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 - -log_k 12.703 - -delta_h -59.376 kcal -Chlorite(14A) - Mg5Al2Si3O10(OH)8 + 16 H+ = 5 Mg+2 + 2 Al+3 + 3 H4SiO4 + 6 H2O - -log_k 68.38 - -delta_h -151.494 kcal -Ca-Montmorillonite - Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165 Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ - -log_k -45.027 - -delta_h 58.373 kcal - -Vm 156.16 -Talc - Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 - -log_k 21.399 - -delta_h -46.352 kcal - -Vm 68.34 -Illite - K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2 H2O = 0.6 K+ + 0.25 Mg+2 + 2.3 Al(OH)4- + 3.5 H4SiO4 + 1.2 H+ - -log_k -40.267 - -delta_h 54.684 kcal - -Vm 141.48 -Chrysotile - Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 - -log_k 32.2 - -delta_h -46.8 kcal - -analytic 13.248 0 10217.1 -6.1894 - -Vm 106.5808 # 277.11/2.60 -Sepiolite - Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 - -log_k 15.76 - -delta_h -10.7 kcal - -Vm 143.765 -Sepiolite(d) - Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 - -log_k 18.66 -Hematite - Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O - -log_k -4.008 - -delta_h -30.845 kcal - -Vm 30.39 -Goethite - FeOOH + 3 H+ = Fe+3 + 2 H2O - -log_k -1 - -delta_h -14.48 kcal - -Vm 20.84 -Fe(OH)3(a) - Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O - -log_k 4.891 -Pyrite - FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- - -log_k -18.479 - -delta_h 11.3 kcal - -Vm 23.48 -FeS(ppt) - FeS + H+ = Fe+2 + HS- - -log_k -3.915 -Mackinawite - FeS + H+ = Fe+2 + HS- - -log_k -4.648 - -Vm 20.45 -Sulfur - S + 2 H+ + 2 e- = H2S - -log_k 4.882 - -delta_h -9.5 kca -Vivianite - Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O - -log_k -36 -Pyrolusite # H2O added for surface calc's - MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O - -log_k 41.38 - -delta_h -65.11 kcal -Hausmannite - Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O - -log_k 61.03 - -delta_h -100.64 kcal -Manganite - MnOOH + 3 H+ + e- = Mn+2 + 2 H2O - -log_k 25.34 -Pyrochroite - Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O - -log_k 15.2 -Halite - NaCl = Cl- + Na+ - log_k 1.57 - -delta_h 1.37 - #-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915. - -Vm 27.1 -Sylvite - KCl = K+ + Cl- - log_k 0.9 - -delta_h 8.5 - # -analytic 3.984 0.0 -919.55 - Vm 37.5 -# Gases... -CO2(g) - CO2 = CO2 - -log_k -1.468 - -delta_h -4.776 kcal - -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 - -T_c 304.2 # critical T, K - -P_c 72.86 # critical P, atm - -Omega 0.225 # acentric factor -H2O(g) - H2O = H2O - -log_k 1.506; delta_h -44.03 kJ - -T_c 647.3; -P_c 217.6; -Omega 0.344 - -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 -O2(g) - O2 = O2 - -log_k -2.8983 - -analytic -7.5001 7.8981e-3 0 0 2.0027e5 - -T_c 154.6; -P_c 49.8; -Omega 0.021 -H2(g) - H2 = H2 - -log_k -3.105 - -delta_h -4.184 kJ - -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 - -T_c 33.2; -P_c 12.8; -Omega -0.225 -N2(g) - N2 = N2 - -log_k -3.1864 - -analytic -58.453 1.818e-3 3199 17.909 -27460 - -T_c 126.2; -P_c 33.5; -Omega 0.039 -H2S(g) - H2S = H+ + HS- - log_k -7.93 - -delta_h 9.1 - -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 - -T_c 373.2; -P_c 88.2; -Omega 0.1 -CH4(g) - CH4 = CH4 - -log_k -2.8 - -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C - -T_c 190.6; -P_c 45.4; -Omega 0.008 -# begin modification stimela.dat -# uncommented Amm definitions -Amm(g) - Amm = Amm - -log_k 1.7966 - -analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192 - -T_c 405.6; -P_c 111.3; -Omega 0.25 -# end modification stimela.dat -NH3(g) - NH3 = NH3 - -log_k 1.7966 - -analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192 - -T_c 405.6; -P_c 111.3; -Omega 0.25 -# redox-uncoupled gases -Oxg(g) - Oxg = Oxg - -analytic -7.5001 7.8981e-3 0 0 2.0027e5 - -T_c 154.6; -P_c 49.8; -Omega 0.021 -Hdg(g) - Hdg = Hdg - -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 - -T_c 33.2; -P_c 12.8; -Omega -0.225 -Ntg(g) - Ntg = Ntg - -analytic -58.453 1.818e-3 3199 17.909 -27460 - T_c 126.2; -P_c 33.5; -Omega 0.039 -Mtg(g) - Mtg = Mtg - -log_k -2.8 - -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C - -T_c 190.6; -P_c 45.4; -Omega 0.008 -H2Sg(g) - H2Sg = H+ + HSg- - log_k -7.93 - -delta_h 9.1 - -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 - -T_c 373.2; -P_c 88.2; -Omega 0.1 -# begin modification stimela.dat -# uniform notation of elements in redox-uncoupled gases -[N-3]H3(g) - [N-3]H3 = [N-3]H3 - -log_k 1.7966 - -analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192 - -T_c 405.6; -P_c 111.3; -Omega 0.25 -[C-4]H4(g) - [C-4]H4 = [C-4]H4 - -log_k -2.8 - -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C - -T_c 190.6; -P_c 45.4; -Omega 0.008 -H2[S-2](g) - H2[S-2] = H+ + H[S-2]- - log_k -7.93 - -delta_h 9.1 - -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 - -T_c 373.2; -P_c 88.2; -Omega 0.1 -# end modification stimela.dat -Melanterite - FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 - -log_k -2.209 - -delta_h 4.91 kcal - -analytic 1.447 -0.004153 0 0 -214949 -Alunite - KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O - -log_k -1.4 - -delta_h -50.25 kcal -Jarosite-K - KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2 - -log_k -9.21 - -delta_h -31.28 kcal -Zn(OH)2(e) - Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O - -log_k 11.5 -Smithsonite - ZnCO3 = Zn+2 + CO3-2 - -log_k -10 - -delta_h -4.36 kcal -Sphalerite - ZnS + H+ = Zn+2 + HS- - -log_k -11.618 - -delta_h 8.25 kcal -Willemite 289 - Zn2SiO4 + 4 H+ = 2 Zn+2 + H4SiO4 - -log_k 15.33 - -delta_h -33.37 kcal -Cd(OH)2 - Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O - -log_k 13.65 -Otavite 315 - CdCO3 = Cd+2 + CO3-2 - -log_k -12.1 - -delta_h -0.019 kcal -CdSiO3 328 - CdSiO3 + H2O + 2 H+ = Cd+2 + H4SiO4 - -log_k 9.06 - -delta_h -16.63 kcal -CdSO4 329 - CdSO4 = Cd+2 + SO4-2 - -log_k -0.1 - -delta_h -14.74 kcal -Cerussite 365 - PbCO3 = Pb+2 + CO3-2 - -log_k -13.13 - -delta_h 4.86 kcal -Anglesite 384 - PbSO4 = Pb+2 + SO4-2 - -log_k -7.79 - -delta_h 2.15 kcal -Pb(OH)2 389 - Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O - -log_k 8.15 - -delta_h -13.99 kcal -GAS_BINARY_PARAMETERS -H2O(g) CO2(g) 0.19 -H2O(g) H2S(g) 0.19 -H2O(g) H2Sg(g) 0.19 -H2O(g) CH4(g) 0.49 -H2O(g) Mtg(g) 0.49 -H2O(g) Methane(g) 0.49 -H2O(g) N2(g) 0.49 -H2O(g) Ntg(g) 0.49 -H2O(g) Ethane(g) 0.49 -H2O(g) Propane(g) 0.55 -# begin modification stimela.dat -# define for added redox-uncoupled gases -H2O(g) H2[S-2](g) 0.19 -H2O(g) [C-4]H4(g) 0.49 -# end modification stimela.dat - -EXCHANGE_MASTER_SPECIES - X X- -EXCHANGE_SPECIES - X- = X- - -log_k 0 - - Na+ + X- = NaX - -log_k 0 - -gamma 4.08 0.082 - - K+ + X- = KX - -log_k 0.7 - -gamma 3.5 0.015 - -delta_h -4.3 # Jardine & Sparks, 1984 - - Li+ + X- = LiX - -log_k -0.08 - -gamma 6 0 - -delta_h 1.4 # Merriam & Thomas, 1956 - -# !!!!! -# H+ + X- = HX -# -log_k 1.0 -# -gamma 9.0 0 - -# begin modification stimela.dat -# uncommented Amm definitions - AmmH+ + X- = AmmHX - -log_k 0.6 - -gamma 2.5 0 - -delta_h -2.4 # Laudelout et al., 1968 -# definition [N-3]H4X - -log_k 0.6 - -gamma 2.5 0 - -delta_h -2.4 # Laudelout et al., 1968 -# end modification stimela.dat - NH4+ + X- = NH4X - -log_k 0.6 - -gamma 2.5 0 - -delta_h -2.4 # Laudelout et al., 1968 - - Ca+2 + 2 X- = CaX2 - -log_k 0.8 - -gamma 5 0.165 - -delta_h 7.2 # Van Bladel & Gheyl, 1980 - - Mg+2 + 2 X- = MgX2 - -log_k 0.6 - -gamma 5.5 0.2 - -delta_h 7.4 # Laudelout et al., 1968 - - Sr+2 + 2 X- = SrX2 - -log_k 0.91 - -gamma 5.26 0.121 - -delta_h 5.5 # Laudelout et al., 1968 - - Ba+2 + 2 X- = BaX2 - -log_k 0.91 - -gamma 4 0.153 - -delta_h 4.5 # Laudelout et al., 1968 - - Mn+2 + 2 X- = MnX2 - -log_k 0.52 - -gamma 6 0 - - Fe+2 + 2 X- = FeX2 - -log_k 0.44 - -gamma 6 0 - - Cu+2 + 2 X- = CuX2 - -log_k 0.6 - -gamma 6 0 - - Zn+2 + 2 X- = ZnX2 - -log_k 0.8 - -gamma 5 0 - - Cd+2 + 2 X- = CdX2 - -log_k 0.8 - -gamma 0 0 - - Pb+2 + 2 X- = PbX2 - -log_k 1.05 - -gamma 0 0 - - Al+3 + 3 X- = AlX3 - -log_k 0.41 - -gamma 9 0 - - AlOH+2 + 2 X- = AlOHX2 - -log_k 0.89 - -gamma 0 0 - -SURFACE_MASTER_SPECIES - Hfo_s Hfo_sOH - Hfo_w Hfo_wOH -SURFACE_SPECIES -# All surface data from -# Dzombak and Morel, 1990 -# -# -# Acid-base data from table 5.7 -# -# strong binding site--Hfo_s, - - Hfo_sOH = Hfo_sOH - -log_k 0 - - Hfo_sOH + H+ = Hfo_sOH2+ - -log_k 7.29 # = pKa1,int - - Hfo_sOH = Hfo_sO- + H+ - -log_k -8.93 # = -pKa2,int - -# weak binding site--Hfo_w - - Hfo_wOH = Hfo_wOH - -log_k 0 - - Hfo_wOH + H+ = Hfo_wOH2+ - -log_k 7.29 # = pKa1,int - - Hfo_wOH = Hfo_wO- + H+ - -log_k -8.93 # = -pKa2,int -############################################### -# CATIONS # -############################################### -# -# Cations from table 10.1 or 10.5 -# -# Calcium - Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - -log_k 4.97 - - Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ - -log_k -5.85 -# Strontium - Hfo_sOH + Sr+2 = Hfo_sOHSr+2 - -log_k 5.01 - - Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ - -log_k -6.58 - - Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2 H+ - -log_k -17.6 -# Barium - Hfo_sOH + Ba+2 = Hfo_sOHBa+2 - -log_k 5.46 - - Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - -log_k -7.2 # table 10.5 -# -# Cations from table 10.2 -# -# Cadmium - Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ - -log_k 0.47 - - Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ - -log_k -2.91 -# Zinc - Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ - -log_k 0.99 - - Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ - -log_k -1.99 -# Copper - Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ - -log_k 2.89 - - Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ - -log_k 0.6 # table 10.5 -# Lead - Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ - -log_k 4.65 - - Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ - -log_k 0.3 # table 10.5 -# -# Derived constants table 10.5 -# -# Magnesium - Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ - -log_k -4.6 -# Manganese - Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ - -log_k -0.4 # table 10.5 - - Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ - -log_k -3.5 # table 10.5 -# Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096 - Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ - -log_k -0.95 -# Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M - Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ - -log_k -2.98 - - Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2 H+ - -log_k -11.55 -############################################### -# ANIONS # -############################################### -# -# Anions from table 10.6 -# -# Phosphate - Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O - -log_k 31.29 - - Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O - -log_k 25.39 - - Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O - -log_k 17.72 -# -# Anions from table 10.7 -# -# Borate - Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O - -log_k 0.62 -# -# Anions from table 10.8 -# -# Sulfate - Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O - -log_k 7.78 - - Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - -log_k 0.79 -# -# Derived constants table 10.10 -# - Hfo_wOH + F- + H+ = Hfo_wF + H2O - -log_k 8.7 - - Hfo_wOH + F- = Hfo_wOHF- - -log_k 1.6 -# -# Carbonate: Van Geen et al., 1994 reoptimized for D&M model -# - Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O - -log_k 12.56 - - Hfo_wOH + CO3-2 + 2 H+ = Hfo_wHCO3 + H2O - -log_k 20.62 -# -# Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422. -# - Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 - Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O; log_K -3.22 - Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2 H+ + H2O; log_K -11.69 - -MEAN_GAMMAS -CaCl2 Ca+2 1 Cl- 2 -CaSO4 Ca+2 1 SO4-2 1 -CaCO3 Ca+2 1 CO3-2 1 -Ca(OH)2 Ca+2 1 OH- 2 -MgCl2 Mg+2 1 Cl- 2 -MgSO4 Mg+2 1 SO4-2 1 -MgCO3 Mg+2 1 CO3-2 1 -Mg(OH)2 Mg+2 1 OH- 2 -NaCl Na+ 1 Cl- 1 -Na2SO4 Na+ 2 SO4-2 1 -NaHCO3 Na+ 1 HCO3- 1 -Na2CO3 Na+ 2 CO3-2 1 -NaOH Na+ 1 OH- 1 -KCl K+ 1 Cl- 1 -K2SO4 K+ 2 SO4-2 1 -HCO3 K+ 1 HCO3- 1 -K2CO3 K+ 2 CO3-2 1 -KOH K+ 1 OH- 1 -HCl H+ 1 Cl- 1 -H2SO4 H+ 2 SO4-2 1 -HBr H+ 1 Br- 1 - -RATES - -########### -#Quartz -########### -# -####### -# Example of quartz kinetic rates block: -# KINETICS -# Quartz -# -m0 158.8 # 90 % Qu -# -parms 0.146 1.5 -# -step 3.1536e8 in 10 -# -tol 1e-12 - -Quartz - -start -1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 -2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol -3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) -4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz -5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 - -10 dif_temp = 1/TK - 1/298 -20 pk_w = 13.7 + 4700.4 * dif_temp -40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) -# Integrate... -50 SAVE moles * TIME - -end - -########### -#K-feldspar -########### -# -# Sverdrup and Warfvinge, 1995, Estimating field weathering rates -# using laboratory kinetics: Reviews in mineralogy and geochemistry, -# vol. 31, p. 485-541. -# -# As described in: -# Appelo and Postma, 2005, Geochemistry, groundwater -# and pollution, 2nd Edition: A.A. Balkema Publishers, -# p. 162-163 and 395-399. -# -# Assume soil is 10% K-feldspar by mass in 1 mm spheres (radius 0.05 mm) -# Assume density of rock and Kspar is 2600 kg/m^3 = 2.6 kg/L -# GFW Kspar 0.278 kg/mol -# -# Moles of Kspar per liter pore space calculation: -# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space -# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space -# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space -# -# Specific area calculation: -# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere -# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere -# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere -# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere -# Specific area of K-feldspar in sphere 3.14e-8/4.90e-9 = 6.41 m^2/mol Kspar -# -# -# Example of KINETICS data block for K-feldspar rate: -# KINETICS 1 -# K-feldspar -# -m0 2.18 # 10% Kspar, 0.1 mm cubes -# -m 2.18 # Moles per L pore space -# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate -# -time 1.5 year in 40 - -K-feldspar - -start -1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 -2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar -3 REM PARM(2) = Adjusts lab rate to field rate -4 REM temp corr: from A&P, p. 162: E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) -5 REM K-Feldspar parameters -10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 -20 RESTORE 10 -30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH -40 DATA 3500, 2000, 2500, 2000 -50 RESTORE 40 -60 READ e_H, e_H2O, e_OH, e_CO2 -70 pk_CO2 = 13 -80 n_CO2 = 0.6 -100 REM Generic rate follows -110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") -130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp -150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) -160 REM rate by hydrolysis -170 pk_H2O = pk_H2O + e_H2O * dif_temp -180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) -190 REM rate by OH- -200 pk_OH = pk_OH + e_OH * dif_temp -210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH -220 REM rate by CO2 -230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp -240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) -280 moles = rate * TIME -290 SAVE moles - -end - - -########### -#Albite -########### -# -# Sverdrup and Warfvinge, 1995, Estimating field weathering rates -# using laboratory kinetics: Reviews in mineralogy and geochemistry, -# vol. 31, p. 485-541. -# -# As described in: -# Appelo and Postma, 2005, Geochemistry, groundwater -# and pollution, 2nd Edition: A.A. Balkema Publishers, -# p. 162-163 and 395-399. -# -# Example of KINETICS data block for Albite rate: -# KINETICS 1 -# Albite -# -m0 0.46 # 2% Albite, 0.1 mm cubes -# -m 0.46 # Moles per L pore space -# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate -# -time 1.5 year in 40 -# -# Assume soil is 2% Albite by mass in 1 mm spheres (radius 0.05 mm) -# Assume density of rock and Albite is 2600 kg/m^3 = 2.6 kg/L -# GFW Albite 0.262 kg/mol -# -# Moles of Albite per liter pore space calculation: -# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space -# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space -# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space -# -# Specific area calculation: -# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere -# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere -# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere -# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere -# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite - -Albite - -start -1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 -2 REM PARM(1) = Specific area of Albite m^2/mol Albite -3 REM PARM(2) = Adjusts lab rate to field rate -4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) -5 REM Albite parameters -10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 -20 RESTORE 10 -30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH -40 DATA 3500, 2000, 2500, 2000 -50 RESTORE 40 -60 READ e_H, e_H2O, e_OH, e_CO2 -70 pk_CO2 = 13 -80 n_CO2 = 0.6 -100 REM Generic rate follows -110 dif_temp = 1/TK - 1/281 -120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") -130 REM rate by H+ -140 pk_H = pk_H + e_H * dif_temp -150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) -160 REM rate by hydrolysis -170 pk_H2O = pk_H2O + e_H2O * dif_temp -180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) -190 REM rate by OH- -200 pk_OH = pk_OH + e_OH * dif_temp -210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH -220 REM rate by CO2 -230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp -240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 -250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 -260 area = PARM(1) * M0 *(M/M0)^0.67 -270 rate = PARM(2) * area * rate * (1-SR("Albite")) -280 moles = rate * TIME -290 SAVE moles - -end - -######## -#Calcite -######## -# Example of KINETICS data block for calcite rate, -# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257 -# KINETICS 1 -# Calcite -# -tol 1e-8 -# -m0 3.e-3 -# -m 3.e-3 -# -parms 1.67e5 0.6 # cm^2/mol calcite, exp factor -# -time 1 day - -Calcite - -start -1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite -2 REM PARM(2) = exponent for M/M0 - -10 si_cc = SI("Calcite") -20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 -30 k1 = 10^(0.198 - 444 / TK ) -40 k2 = 10^(2.84 - 2177 /TK ) -50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317 / TK) -60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737 / TK ) -80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M -110 rate = area * (k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O")) -120 rate = rate * (1 - 10^(2/3*si_cc)) -130 moles = rate * 0.001 * TIME # convert from mmol to mol -200 SAVE moles - -end - -####### -#Pyrite -####### -# -# Williamson, M.A. and Rimstidt, J.D., 1994, -# Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454, -# rate equation is mol m^-2 s^-1. -# -# Example of KINETICS data block for pyrite rate: -# KINETICS 1 -# Pyrite -# -tol 1e-8 -# -m0 5.e-4 -# -m 5.e-4 -# -parms 0.3 0.67 .5 -0.11 -# -time 1 day in 10 -Pyrite - -start -1 REM Williamson and Rimstidt, 1994 -2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) -3 REM PARM(2) = exp for (M/M0) -4 REM PARM(3) = exp for O2 -5 REM PARM(4) = exp for H+ - -10 REM Dissolution in presence of DO -20 if (M <= 0) THEN GOTO 200 -30 if (SI("Pyrite") >= 0) THEN GOTO 200 -40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") -50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) -60 moles = 10^(log_area + log_rate) * TIME -200 SAVE moles - -end - -########## -#Organic_C -########## -# -# Example of KINETICS data block for SOC (sediment organic carbon): -# KINETICS 1 -# Organic_C -# -formula C -# -tol 1e-8 -# -m 5e-3 # SOC in mol -# -time 30 year in 15 -Organic_C - -start -1 REM Additive Monod kinetics for SOC (sediment organic carbon) -2 REM Electron acceptors: O2, NO3, and SO4 - -10 if (M <= 0) THEN GOTO 200 -20 mO2 = MOL("O2") -30 mNO3 = TOT("N(5)") -40 mSO4 = TOT("S(6)") -50 k_O2 = 1.57e-9 # 1/sec -60 k_NO3 = 1.67e-11 # 1/sec -70 k_SO4 = 1.e-13 # 1/sec -80 rate = k_O2 * mO2/(2.94e-4 + mO2) -90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) -100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) -110 moles = rate * M * (M/M0) * TIME -200 SAVE moles - -end - -########### -#Pyrolusite -########### -# -# Postma, D. and Appelo, C.A.J., 2000, GCA, vol. 64, pp. 1237-1247. -# Rate equation given as mol L^-1 s^-1 -# -# Example of KINETICS data block for Pyrolusite -# KINETICS 1-12 -# Pyrolusite -# -tol 1.e-7 -# -m0 0.1 -# -m 0.1 -# -time 0.5 day in 10 -Pyrolusite - -start -10 if (M <= 0) THEN GOTO 200 -20 sr_pl = SR("Pyrolusite") -30 if (sr_pl > 1) THEN GOTO 100 -40 REM sr_pl <= 1, undersaturated -50 Fe_t = TOT("Fe(2)") -60 if Fe_t < 1e-8 then goto 200 -70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) -80 GOTO 200 -100 REM sr_pl > 1, supersaturated -110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME -200 SAVE moles * SOLN_VOL - -end - -END -# ============================================================================================= -#(a) means amorphous. (d) means disordered, or less crystalline. -#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt), -#precipitated, indicates an initial precipitate that is less crystalline. -#Zn(OH)2(e) indicates a specific crystal form, epsilon. -# ============================================================================================= -# For the reaction aA + bB = cC + dD, -# with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B), -# PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT). -# Vm(A) is volume of A, cm3/mol, P is pressure, atm, R is the gas constant, T is Kelvin. -# Gas-pressures and fugacity coefficients are calculated with Peng-Robinson's EOS. -# These binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are -# hard-coded in calc_PR(): -# kij CH4 CO2 H2S N2 -# H2O 0.49 0.19 0.19 0.49 -# but are overwritten by the data block GAS_BINARY_PARAMETERS of this file. -# ============================================================================================= -# The molar volumes of solids are entered with -# -Vm vm cm3/mol -# vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted. -# Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from -# Deer, Howie and Zussman, The rock-forming minerals, Longman. -# -------------------- -# Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich- -# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with -# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 -# The volume (cm3/mol) is -# Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) + -# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) -# + z^2 / 2 * Av * f(I^0.5) -# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 -# Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899). -# 41.84 transforms cal/bar/mol into cm3/mol. -# pb is pressure in bar. -# W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation, -# W is fitted on measured solution densities. -# z is charge of the solute species. -# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic). -# a0 is the ion-size parameter in the extended Debye-Hückel equation: -# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), -# a0 = -gamma x for cations, = 0 for anions. -# For details, consult ref. 1. -# ============================================================================================= -# The viscosity is calculated with a (modified) Jones-Dole equation: -# viscos / viscos_0 = 1 + A * Sum(0.5 z_i m_i) + fan * Sum(B_i m_i + D_i m_i n_i) -# Parameters are for calculating the B and D terms: -# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 -# # b0 b1 b2 d1 d2 d3 tan -# z_i is absolute charge number, m_i is molality of i -# B_i = b0 + b1 exp(-b2 * tc) -# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions -# D_i = d1 * exp(-d2 tc) -# n_i = (I^d3 * (1 + fI) + ((z_i^2 + z_i) / 2 · m_i)^d3) / (2 + fI), fI is an ionic strength term. -# For details, consult ref. 4. -# -# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. -# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725. -# ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113. -# ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp -# -# ============================================================================================= -# It remains the responsibility of the user to check the calculated results, for example with -# measured solubilities as a function of (P, T). +# begin modification stimela.dat +# added redox-uncoupled (inert) elements: [Fe+2], [Mn+2] and [N+3] +[Fe+2] [Fe+2]+2 0 Fe 55.845 +[Mn+2] [Mn+2]+2 0 Mn 54.938 +[N+3] [N+3]O2- 0 N 14.007 +# redox_uncoupled elements Amm (NH3), Mtg (CH4) and Sg (H2S) are not readable chemical formula +# replaced with uniform notation for redox-uncoupled (inert) elements: [N-3], [C-4] and [S-2] +[N-3] [N-3]H4+ 0 NH4 14.007 # Amm = [N-3]H3 +[C-4] [C-4]H4 0 CH4 12.011 # Mtg = [C-4]H4 +[S-2] H2[S-2] 0 H2S 32.06 # Sg = [S-2] +# uniform notation omitted for Oxg (O2), Hdg (H2) and Ntg (N2), to limit modifications from phreeqc.dat +# end modification stimela.dat +SOLUTION_SPECIES +H+ = H+ + -gamma 9 0 + -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 + -dw 9.31e-9 838 6.96 -2.285 0.206 24.01 0 + # Dw(25 C) dw_T a a2 visc a3 a_v_dif + # Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc + # a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif for tracer diffusion. + + # For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 0.206 for H+) + # a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Onsager-Falkenhagen eqn. (For H+, the reference ion, vm = v0 = 0, a *= (1 + mu)^a2.) + # a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10, not used in this database.) (a3 = 24.01 for H+, a flag.) + # -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database) + + # If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. +e- = e- +H2O = H2O + -dw 2.299e-9 -254 + # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence +Li+ = Li+ + -gamma 6 0 # The apparent volume parameters are defined in ref. 1 & 2 + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 + -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl + -dw 1.03e-9 -14 4.03 0.8341 1.679 +Na+ = Na+ + -gamma 4 0.075 + -gamma 4.08 0.082 # halite solubility + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 + # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 # for densities (rho) when I > 3. + -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 + -dw 1.33e-9 75 3.627 0 0.7037 +K+ = K+ + -gamma 3.5 0.015 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 + -viscosity 0.116 -0.191 1.52e-2 1.4e-2 2.59e-2 0.9028 + -dw 1.96e-9 254 3.484 0 0.1964 +Mg+2 = Mg+2 + -gamma 5.5 0.2 + -Vm -1.41 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 + -dw 0.705e-9 -4 5.569 0 1.047 +Ca+2 = Ca+2 + -gamma 5 0.165 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.6 -57.1 -6.12e-3 1 + -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.3 # ref. 4, CaCl2 < 6 M + -dw 0.792e-9 34 5.411 0 1.046 +Sr+2 = Sr+2 + -gamma 5.26 0.121 + -Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97 + -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 + -dw 0.794e-9 149 0.805 1.961 1e-9 0.7876 +Ba+2 = Ba+2 + -gamma 5 0 + -gamma 4 0.153 # Barite solubility + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 + -dw 0.848e-9 174 10.53 0 3 +Fe+2 = Fe+2 + -gamma 6 0 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -dw 0.719e-9 +Mn+2 = Mn+2 + -gamma 6 0 + -Vm -1.1 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 + -dw 0.688e-9 +Al+3 = Al+3 + -gamma 9 0 + -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353 + -dw 0.559e-9 +H4SiO4 = H4SiO4 + -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt 2*H2O in a1 + -dw 1.1e-9 +Cl- = Cl- + -gamma 3.5 0.015 + -gamma 3.63 0.017 # cf. pitzer.dat + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -viscosity 0 0 0 0 0 0 1 # the reference solute + -dw 2.033e-9 216 3.16 0.2071 0.7432 +CO3-2 = CO3-2 + -gamma 5.4 0 + -Vm 6.09 -2.78 -0.405 -5.3 5.02 0 0.169 101 -1.38e-2 0.9316 + -viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147 + -dw 0.955e-9 -103 2.246 7.13e-2 0.3686 +SO4-2 = SO4-2 + -gamma 5 -0.04 + -Vm -7.77 43.17 176 -51.45 3.794 0 42.99 -541 -0.145 0.45 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC + -viscosity -0.3 0.501 2.57e-3 0.195 3.14e-2 2.015 0.605 + -dw 1.07e-9 -114 17 6.02e-2 4.94e-2 +NO3- = NO3- + -gamma 3 0 + -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 + -viscosity 8.37e-2 -0.458 1.54e-2 0.34 1.79e-2 5.02e-2 0.7381 + -dw 1.9e-9 104 1.11 +# begin modification stimela.dat +# uncommented Amm definitions +AmmH+ = AmmH+ + -gamma 2.5 0 + -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 + -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -dw 1.98e-9 203 1.47 2.644 6.81e-2 +# added [N-3]H4+, [N+3]O2-, [Fe+2]+2 and [Mn+2]+2 +[N-3]H4+ = [N-3]H4+ + -gamma 2.5 0 + -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 + -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -dw 1.98e-9 203 1.47 2.644 6.81e-2 +[N+3]O2- = [N+3]O2- + -gamma 3 0 + -Vm 5.5864 5.859 3.4472 -3.0212 1.1847 # supcrt + -dw 1.91e-9 +[Fe+2]+2 = [Fe+2]+2 + -gamma 6 0 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -dw 0.719e-9 +[Mn+2]+2 = [Mn+2]+2 + -gamma 6 0 + -Vm -1.1 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 + -dw 0.688e-9 +# end modification stimela.dat +H3BO3 = H3BO3 + -Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt + -dw 1.1e-9 +PO4-3 = PO4-3 + -gamma 4 0 + -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 + -dw 0.612e-9 +F- = F- + -gamma 3.5 0 + -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 + -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 + -dw 1.46e-9 -36 4.352 +Br- = Br- + -gamma 3 0 + -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 + -viscosity -6.98e-2 -0.141 1.78e-2 0.159 7.76e-3 6.25e-2 0.859 + -dw 2.09e-9 208 3.5 0 0.5737 +Zn+2 = Zn+2 + -gamma 5 0 + -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 + -dw 0.715e-9 +Cd+2 = Cd+2 + -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 + -dw 0.717e-9 +Pb+2 = Pb+2 + -Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt + -dw 0.945e-9 +Cu+2 = Cu+2 + -gamma 6 0 + -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 + -dw 0.733e-9 +# redox-uncoupled gases +Hdg = Hdg # H2 + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 +Oxg = Oxg # O2 + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 +Mtg = Mtg # CH4 + -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 +Ntg = Ntg # N2 + -Vm 7 # Pray et al., 1952, IEC 44 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 +H2Sg = H2Sg # H2S + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 +# begin modification stimela.dat +[C-4]H4 = [C-4]H4 # CH4 + -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 +H2[S-2] = H2[S-2] # H2S + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 +# end modification stimela.dat +# aqueous species +H2O = OH- + H+ + -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 + -gamma 3.5 0 + -Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1 + -viscosity -2.26e-2 0.106 2.184e-2 -3.2e-3 0 0.4082 -1.634 # < 5 M Li,Na,KOH + -dw 5.27e-9 478 0.8695 +2 H2O = O2 + 4 H+ + 4 e- + -log_k -86.08 + -delta_h 134.79 kcal + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 +2 H+ + 2 e- = H2 + -log_k -3.15 + -delta_h -1.759 kcal + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 +H+ + Cl- = HCl + -log_k -0.5 + -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50°C + -gamma 0 0.4256 + -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 +CO3-2 + H+ = HCO3- + -log_k 10.329; -delta_h -3.561 kcal + -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 + -Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144 + -viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253 + -dw 1.18e-9 -190 11.386 +CO3-2 + 2 H+ = CO2 + H2O + -log_k 16.681 + -delta_h -5.738 kcal + -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171 + -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 + -viscosity 6.8e-3 9.03e-2 3.27e-2 0 0 0 0.18 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 +2 CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T + -log_k -1.8 + -analytical_expression 8.68 -0.0103 -2190 + -Vm 14.58 1.84 4.14 -2.46 -3.2 + -viscosity 1.36e-2 0.1806 3.27e-2 0 0 0 0.36 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 +CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O + -log_k 41.071 + -delta_h -61.039 kcal + -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 +SO4-2 + H+ = HSO4- + -log_k 1.988; -delta_h 3.85 kcal + -analytic -56.889 0.006473 2307.9 19.8858 + -Vm 8.2 9.259 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987 + -dw 1.22e-9 1000 15 2.861 +HS- = S-2 + H+ + -log_k -12.918 + -delta_h 12.1 kcal + -gamma 5 0 + -dw 0.731e-9 +SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O + -log_k 33.65 + -delta_h -60.14 kcal + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt + -dw 1.73e-9 +HS- + H+ = H2S + -log_k 6.994; -delta_h -5.3 kcal + -analytical -11.17 0.02386 3279 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 +2 H2S = (H2S)2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 +H2Sg = HSg- + H+ + -log_k -6.994; -delta_h 5.3 kcal + -analytical_expression 11.17 -0.02386 -3279 + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt + -dw 1.73e-9 +2 H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 +# begin modification stimela.dat +H2[S-2] = H[S-2]- + H+ + -log_k -6.994; -delta_h 5.3 kcal + -analytical_expression 11.17 -0.02386 -3279 + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt + -dw 1.73e-9 1.73e-9 +2 H2[S-2] = (H2[S-2])2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 +# end modification stimela.dat +NO3- + 2 H+ + 2 e- = NO2- + H2O + -log_k 28.57 + -delta_h -43.76 kcal + -gamma 3 0 + -Vm 5.5864 5.859 3.4472 -3.0212 1.1847 # supcrt + -dw 1.91e-9 +2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O + -log_k 207.08 + -delta_h -312.13 kcal + -Vm 7 # Pray et al., 1952, IEC 44 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 +NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O + -log_k 119.077 + -delta_h -187.055 kcal + -gamma 2.5 0 + -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 + -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -dw 1.98e-9 203 1.47 2.644 6.81e-2 +# begin modification stimela.dat +# uncommented Amm definitions +AmmH+ = Amm + H+ + -log_k -9.252 + -delta_h 12.48 kcal + -analytic 0.6322 -0.001225 -2835.76 + -Vm 6.69 2.8 3.58 -2.88 1.43 + -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -dw 2.28e-9 +# definition [N-3]H3 +[N-3]H4+ = [N-3]H3 + H+ + -log_k -9.252 + -delta_h 12.48 kcal + -analytic 0.6322 -0.001225 -2835.76 + -Vm 6.69 2.8 3.58 -2.88 1.43 + -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -dw 2.28e-9 +# end modification stimela.dat +NH4+ = NH3 + H+ + -log_k -9.252 + -delta_h 12.48 kcal + -analytic 0.6322 -0.001225 -2835.76 + -Vm 6.69 2.8 3.58 -2.88 1.43 + -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -dw 2.28e-9 +# begin modification stimela.dat +# uncommented Amm definitions +AmmH+ + SO4-2 = AmmHSO4- + -gamma 2.08 -0.0416 + -log_k 1.211; -delta_h 8.56 kJ + -Vm -8.78 0 -36.09 0 -8.60 0 87.62 0 -0.3123 0.1172 + -viscosity 0 0.116 -8.6e-3 0.159 -9.3e-3 0.522 0.627 + -dw 0.9e-9 100 2.1 2 0 +# definition [N-3]H4SO4- +[N-3]H4+ + SO4-2 = [N-3]H4SO4- + -gamma 2.08 -0.0416 + -log_k 1.211; -delta_h 8.56 kJ + -Vm -8.78 0 -36.09 0 -8.60 0 87.62 0 -0.3123 0.1172 + -viscosity 0 0.116 -8.6e-3 0.159 -9.3e-3 0.522 0.627 + -dw 0.9e-9 100 2.1 2 0 +# end modification stimela.dat +NH4+ + SO4-2 = NH4SO4- + -gamma 2.08 -0.0416 + -log_k 1.211; -delta_h 8.56 kJ + -Vm -8.78 0 -36.09 0 -8.60 0 87.62 0 -0.3123 0.1172 + -viscosity 0 0.116 -8.6e-3 0.159 -9.3e-3 0.522 0.627 + -dw 0.9e-9 100 2.1 2 0 +H3BO3 = H2BO3- + H+ + -log_k -9.24 + -delta_h 3.224 kcal +H3BO3 + F- = BF(OH)3- + -log_k -0.4 + -delta_h 1.85 kcal +H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O + -log_k 7.63 + -delta_h 1.618 kcal +H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O + -log_k 13.67 + -delta_h -1.614 kcal +H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O + -log_k 20.28 + -delta_h -1.846 kcal +PO4-3 + H+ = HPO4-2 + -log_k 12.346 + -delta_h -3.53 kcal + -gamma 5 0 + -dw 0.69e-9 + -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 +PO4-3 + 2 H+ = H2PO4- + -log_k 19.553 + -delta_h -4.52 kcal + -gamma 5.4 0 + -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 + -dw 0.846e-9 +PO4-3 + 3 H+ = H3PO4 + log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 + delta_h -10.1 kJ + -Vm 7.47 12.4 6.29 -3.29 0 +H+ + F- = HF + -log_k 3.18 + -delta_h 3.18 kcal + -analytic -2.033 0.012645 429.01 + -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt +H+ + 2 F- = HF2- + -log_k 3.76 + -delta_h 4.55 kcal + -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt +Ca+2 + H2O = CaOH+ + H+ + -log_k -12.78 +Ca+2 + CO3-2 = CaCO3 + -log_k 3.224; -delta_h 3.545 kcal + -analytic -1228.732 -0.29944 35512.75 485.818 + -dw 4.46e-10 # complexes: calc'd with the Pikal formula + -Vm -.243 -8.3748 9.0417 -2.4328 -.03 # supcrt +Ca+2 + CO3-2 + H+ = CaHCO3+ + -log_k 10.91; -delta_h 4.38 kcal + -analytic -6.009 3.377e-2 2044 + -gamma 6 0 + -Vm 30.19 .01 5.75 -2.78 .308 5.4 + -dw 5.06e-10 +Ca+2 + SO4-2 = CaSO4 + -log_k 2.25 + -delta_h 1.325 kcal + -dw 4.71e-10 + -Vm 2.791 -.9666 6.13 -2.739 -.001 # supcrt +Ca+2 + HSO4- = CaHSO4+ + -log_k 1.08 +Ca+2 + PO4-3 = CaPO4- + -log_k 6.459 + -delta_h 3.1 kcal + -gamma 5.4 0 +Ca+2 + HPO4-2 = CaHPO4 + -log_k 2.739 + -delta_h 3.3 kcal +Ca+2 + H2PO4- = CaH2PO4+ + -log_k 1.408 + -delta_h 3.4 kcal + -gamma 5.4 0 +# Ca+2 + F- = CaF+ + # -log_k 0.94 + # -delta_h 4.120 kcal + # -gamma 5.5 0.0 + # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt +Mg+2 + H2O = MgOH+ + H+ + -log_k -11.44 + -delta_h 15.952 kcal + -gamma 6.5 0 +Mg+2 + CO3-2 = MgCO3 + -log_k 2.98 + -delta_h 2.713 kcal + -analytic 0.991 0.00667 + -Vm -0.5837 -9.2067 9.3687 -2.3984 -.03 # supcrt + -dw 4.21e-10 +Mg+2 + H+ + CO3-2 = MgHCO3+ + -log_k 11.399 + -delta_h -2.771 kcal + -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 + -gamma 4 0 + -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt + -dw 4.78e-10 +Mg+2 + SO4-2 = MgSO4 + -gamma 0 0.2 + -log_k 2.42; -delta_h 19 kJ + -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm 8.65 -10.21 29.58 -18.6 1.061 + -viscosity 0.318 -5.4e-4 -3.42e-2 0.708 3.7e-3 0.696 + -dw 4.45e-10 +SO4-2 + MgSO4 = Mg(SO4)2-2 + -gamma 7 0.047 + -log_k 0.52; -delta_h -13.6 kJ + -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm -8.14 -62.2 -15.96 3.29 -3.01 0 150 0 0.153 3.79e-2 + -viscosity -0.169 5e-4 -5.69e-2 0.11 2.03e-3 2.027 -1e-3 + -dw 0.845e-9 -200 8 0 0.965 +Mg+2 + PO4-3 = MgPO4- + -log_k 6.589 + -delta_h 3.1 kcal + -gamma 5.4 0 +Mg+2 + HPO4-2 = MgHPO4 + -log_k 2.87 + -delta_h 3.3 kcal +Mg+2 + H2PO4- = MgH2PO4+ + -log_k 1.513 + -delta_h 3.4 kcal + -gamma 5.4 0 +Mg+2 + F- = MgF+ + -log_k 1.82 + -delta_h 3.2 kcal + -gamma 4.5 0 + -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt +# Na+ + OH- = NaOH + # -log_k -14.7 # remove this complex +Na+ + HCO3- = NaHCO3 + -log_k -0.06; -delta_h 21 kJ + -gamma 0 0.2 + -Vm 7.95 0 0 0 0.609 + -viscosity -4e-2 -2.717 1.67e-5 + -dw 6.73e-10 +Na+ + SO4-2 = NaSO4- + -gamma 5.5 0 + -log_k 0.6; -delta_h -14.4 kJ + -analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC + -Vm 1.99 -10.78 21.88 -12.7 1.601 5 32.38 501 1.565e-2 0.2325 + -viscosity 0.2 -5.93e-2 -4e-4 8.46e-3 1.78e-3 2.308 -0.208 + -dw 1.13e-9 -23 8.5 0.392 0.521 +Na+ + HPO4-2 = NaHPO4- + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 +Na+ + F- = NaF + -log_k -0.24 + -Vm 2.7483 -1.0708 6.1709 -2.7347 -.03 # supcrt +K+ + HCO3- = KHCO3 + -log_k -0.35; -delta_h 12 kJ + -gamma 0 9.4e-3 + -Vm 9.48 0 0 0 -0.542 + -viscosity 0.7 -1.289 9e-2 +K+ + SO4-2 = KSO4- + -gamma 5.4 0.19 + -log_k 0.6; -delta_h -10.4 kJ + -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC + -Vm 13.48 -18.03 61.74 -19.6 2.046 5.4 -17.32 0 0.1522 1.919 + -viscosity -1 1.06 1e-4 -0.464 3.78e-2 0.539 -0.69 + -dw 0.9e-9 63 8.48 0 1.8 +K+ + HPO4-2 = KHPO4- + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 +Fe+2 + H2O = FeOH+ + H+ + -log_k -9.5 + -delta_h 13.2 kcal + -gamma 5 0 +Fe+2 + 3 H2O = Fe(OH)3- + 3 H+ + -log_k -31 + -delta_h 30.3 kcal + -gamma 5 0 +Fe+2 + Cl- = FeCl+ + -log_k 0.14 +Fe+2 + CO3-2 = FeCO3 + -log_k 4.38 +Fe+2 + HCO3- = FeHCO3+ + -log_k 2 +Fe+2 + SO4-2 = FeSO4 + -log_k 2.25 + -delta_h 3.23 kcal + -Vm -13 0 123 +Fe+2 + HSO4- = FeHSO4+ + -log_k 1.08 +Fe+2 + 2 HS- = Fe(HS)2 + -log_k 8.95 +Fe+2 + 3 HS- = Fe(HS)3- + -log_k 10.987 +Fe+2 + HPO4-2 = FeHPO4 + -log_k 3.6 +Fe+2 + H2PO4- = FeH2PO4+ + -log_k 2.7 + -gamma 5.4 0 +Fe+2 + F- = FeF+ + -log_k 1 +Fe+2 = Fe+3 + e- + -log_k -13.02 + -delta_h 9.68 kcal + -gamma 9 0 +Fe+3 + H2O = FeOH+2 + H+ + -log_k -2.19 + -delta_h 10.4 kcal + -gamma 5 0 +Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ + -log_k -5.67 + -delta_h 17.1 kcal + -gamma 5.4 0 +Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ + -log_k -12.56 + -delta_h 24.8 kcal +Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ + -log_k -21.6 + -delta_h 31.9 kcal + -gamma 5.4 0 +Fe+2 + 2 H2O = Fe(OH)2 + 2 H+ + -log_k -20.57 + -delta_h 28.565 kcal +2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ + -log_k -2.95 + -delta_h 13.5 kcal +3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ + -log_k -6.3 + -delta_h 14.3 kcal +Fe+3 + Cl- = FeCl+2 + -log_k 1.48 + -delta_h 5.6 kcal + -gamma 5 0 +Fe+3 + 2 Cl- = FeCl2+ + -log_k 2.13 + -gamma 5 0 +Fe+3 + 3 Cl- = FeCl3 + -log_k 1.13 +Fe+3 + SO4-2 = FeSO4+ + -log_k 4.04 + -delta_h 3.91 kcal + -gamma 5 0 +Fe+3 + HSO4- = FeHSO4+2 + -log_k 2.48 +Fe+3 + 2 SO4-2 = Fe(SO4)2- + -log_k 5.38 + -delta_h 4.6 kcal +Fe+3 + HPO4-2 = FeHPO4+ + -log_k 5.43 + -delta_h 5.76 kcal + -gamma 5 0 +Fe+3 + H2PO4- = FeH2PO4+2 + -log_k 5.43 + -gamma 5.4 0 +Fe+3 + F- = FeF+2 + -log_k 6.2 + -delta_h 2.7 kcal + -gamma 5 0 +Fe+3 + 2 F- = FeF2+ + -log_k 10.8 + -delta_h 4.8 kcal + -gamma 5 0 +Fe+3 + 3 F- = FeF3 + -log_k 14 + -delta_h 5.4 kcal +Mn+2 + H2O = MnOH+ + H+ + -log_k -10.59 + -delta_h 14.4 kcal + -gamma 5 0 +Mn+2 + 3 H2O = Mn(OH)3- + 3 H+ + -log_k -34.8 + -gamma 5 0 +Mn+2 + Cl- = MnCl+ + -log_k 0.61 + -gamma 5 0 + -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 +Mn+2 + 2 Cl- = MnCl2 + -log_k 0.25 + -Vm 1e-5 0 144 +Mn+2 + 3 Cl- = MnCl3- + -log_k -0.31 + -gamma 5 0 + -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 +Mn+2 + CO3-2 = MnCO3 + -log_k 4.9 +Mn+2 + HCO3- = MnHCO3+ + -log_k 1.95 + -gamma 5 0 +Mn+2 + SO4-2 = MnSO4 + -log_k 2.25 + -delta_h 3.37 kcal + -Vm -1.31 -1.83 62.3 -2.7 +Mn+2 + 2 NO3- = Mn(NO3)2 + -log_k 0.6 + -delta_h -0.396 kcal + -Vm 6.16 0 29.4 0 0.9 +Mn+2 + F- = MnF+ + -log_k 0.84 + -gamma 5 0 +Mn+2 = Mn+3 + e- + -log_k -25.51 + -delta_h 25.8 kcal + -gamma 9 0 +Al+3 + H2O = AlOH+2 + H+ + -log_k -5 + -delta_h 11.49 kcal + -analytic -38.253 0 -656.27 14.327 + -gamma 5.4 0 + -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353 +Al+3 + 2 H2O = Al(OH)2+ + 2 H+ + -log_k -10.1 + -delta_h 26.9 kcal + -gamma 5.4 0 + -analytic 88.5 0 -9391.6 -27.121 +Al+3 + 3 H2O = Al(OH)3 + 3 H+ + -log_k -16.9 + -delta_h 39.89 kcal + -analytic 226.374 0 -18247.8 -73.597 +Al+3 + 4 H2O = Al(OH)4- + 4 H+ + -log_k -22.7 + -delta_h 42.3 kcal + -analytic 51.578 0 -11168.9 -14.865 + -gamma 4.5 0 + -dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959 +Al+3 + SO4-2 = AlSO4+ + -log_k 3.5 + -delta_h 2.29 kcal + -gamma 4.5 0 +Al+3 + 2 SO4-2 = Al(SO4)2- + -log_k 5 + -delta_h 3.11 kcal + -gamma 4.5 0 +Al+3 + HSO4- = AlHSO4+2 + -log_k 0.46 +Al+3 + F- = AlF+2 + -log_k 7 + -delta_h 1.06 kcal + -gamma 5.4 0 +Al+3 + 2 F- = AlF2+ + -log_k 12.7 + -delta_h 1.98 kcal + -gamma 5.4 0 +Al+3 + 3 F- = AlF3 + -log_k 16.8 + -delta_h 2.16 kcal +Al+3 + 4 F- = AlF4- + -log_k 19.4 + -delta_h 2.2 kcal + -gamma 4.5 0 +# Al+3 + 5 F- = AlF5-2 + # log_k 20.6 + # delta_h 1.840 kcal +# Al+3 + 6 F- = AlF6-3 + # log_k 20.6 + # delta_h -1.670 kcal +H4SiO4 = H3SiO4- + H+ + -log_k -9.83 + -delta_h 6.12 kcal + -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669 + -gamma 4 0 + -Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt + H2O in a1 +H4SiO4 = H2SiO4-2 + 2 H+ + -log_k -23 + -delta_h 17.6 kcal + -analytic -294.0184 -0.07265 11204.49 108.18466 -1119669 + -gamma 5.4 0 +H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O + -log_k 30.18 + -delta_h -16.26 kcal + -gamma 5 0 + -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt +Ba+2 + H2O = BaOH+ + H+ + -log_k -13.47 + -gamma 5 0 +Ba+2 + CO3-2 = BaCO3 + -log_k 2.71 + -delta_h 3.55 kcal + -analytic 0.113 0.008721 + -Vm .2907 -7.0717 8.5295 -2.4867 -.03 # supcrt +Ba+2 + HCO3- = BaHCO3+ + -log_k 0.982 + -delta_h 5.56 kcal + -analytic -3.0938 0.013669 +Ba+2 + SO4-2 = BaSO4 + -log_k 2.7 +Sr+2 + H2O = SrOH+ + H+ + -log_k -13.29 + -gamma 5 0 +Sr+2 + CO3-2 + H+ = SrHCO3+ + -log_k 11.509 + -delta_h 2.489 kcal + -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 +Sr+2 + CO3-2 = SrCO3 + -log_k 2.81 + -delta_h 5.22 kcal + -analytic -1.019 0.012826 + -Vm -.1787 -8.2177 8.9799 -2.4393 -.03 # supcrt +Sr+2 + SO4-2 = SrSO4 + -log_k 2.29 + -delta_h 2.08 kcal + -Vm 6.791 -.9666 6.13 -2.739 -.001 # celestite solubility +Li+ + SO4-2 = LiSO4- + -log_k 0.64 + -gamma 5 0 +Cu+2 + e- = Cu+ + -log_k 2.72 + -delta_h 1.65 kcal + -gamma 2.5 0 +Cu+ + 2 Cl- = CuCl2- + -log_k 5.5 + -delta_h -0.42 kcal + -gamma 4 0 +Cu+ + 3 Cl- = CuCl3-2 + -log_k 5.7 + -delta_h 0.26 kcal + -gamma 5 0 +Cu+2 + CO3-2 = CuCO3 + -log_k 6.73 +Cu+2 + 2 CO3-2 = Cu(CO3)2-2 + -log_k 9.83 +Cu+2 + HCO3- = CuHCO3+ + -log_k 2.7 +Cu+2 + Cl- = CuCl+ + -log_k 0.43 + -delta_h 8.65 kcal + -gamma 4 0 + -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 +Cu+2 + 2 Cl- = CuCl2 + -log_k 0.16 + -delta_h 10.56 kcal + -Vm 26.8 0 -136 +Cu+2 + 3 Cl- = CuCl3- + -log_k -2.29 + -delta_h 13.69 kcal + -gamma 4 0 +Cu+2 + 4 Cl- = CuCl4-2 + -log_k -4.59 + -delta_h 17.78 kcal + -gamma 5 0 +Cu+2 + F- = CuF+ + -log_k 1.26 + -delta_h 1.62 kcal +Cu+2 + H2O = CuOH+ + H+ + -log_k -8 + -gamma 4 0 +Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ + -log_k -13.68 +Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ + -log_k -26.9 +Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ + -log_k -39.6 +2 Cu+2 + 2 H2O = Cu2(OH)2+2 + 2 H+ + -log_k -10.359 + -delta_h 17.539 kcal + -analytical 2.497 0 -3833 +Cu+2 + SO4-2 = CuSO4 + -log_k 2.31 + -delta_h 1.22 kcal + -Vm 5.21 0 -14.6 +Cu+2 + 3 HS- = Cu(HS)3- + -log_k 25.9 +Zn+2 + H2O = ZnOH+ + H+ + -log_k -8.96 + -delta_h 13.4 kcal +Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ + -log_k -16.9 +Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ + -log_k -28.4 +Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ + -log_k -41.2 +Zn+2 + Cl- = ZnCl+ + -log_k 0.43 + -delta_h 7.79 kcal + -gamma 4 0 + -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 +Zn+2 + 2 Cl- = ZnCl2 + -log_k 0.45 + -delta_h 8.5 kcal + -Vm -10.1 4.57 241 -2.97 -1e-3 +Zn+2 + 3 Cl- = ZnCl3- + -log_k 0.5 + -delta_h 9.56 kcal + -gamma 4 0 + -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 +Zn+2 + 4 Cl- = ZnCl4-2 + -log_k 0.2 + -delta_h 10.96 kcal + -gamma 5 0 + -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 +Zn+2 + H2O + Cl- = ZnOHCl + H+ + -log_k -7.48 +Zn+2 + 2 HS- = Zn(HS)2 + -log_k 14.94 +Zn+2 + 3 HS- = Zn(HS)3- + -log_k 16.1 +Zn+2 + CO3-2 = ZnCO3 + -log_k 5.3 +Zn+2 + 2 CO3-2 = Zn(CO3)2-2 + -log_k 9.63 +Zn+2 + HCO3- = ZnHCO3+ + -log_k 2.1 +Zn+2 + SO4-2 = ZnSO4 + -log_k 2.37 + -delta_h 1.36 kcal + -Vm 2.51 0 18.8 +Zn+2 + 2 SO4-2 = Zn(SO4)2-2 + -log_k 3.28 + -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 +Zn+2 + Br- = ZnBr+ + -log_k -0.58 +Zn+2 + 2 Br- = ZnBr2 + -log_k -0.98 +Zn+2 + F- = ZnF+ + -log_k 1.15 + -delta_h 2.22 kcal +Cd+2 + H2O = CdOH+ + H+ + -log_k -10.08 + -delta_h 13.1 kcal +Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ + -log_k -20.35 +Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ + -log_k -33.3 +Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ + -log_k -47.35 +2 Cd+2 + H2O = Cd2OH+3 + H+ + -log_k -9.39 + -delta_h 10.9 kcal +Cd+2 + H2O + Cl- = CdOHCl + H+ + -log_k -7.404 + -delta_h 4.355 kcal +Cd+2 + NO3- = CdNO3+ + -log_k 0.4 + -delta_h -5.2 kcal + -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 +Cd+2 + Cl- = CdCl+ + -log_k 1.98 + -delta_h 0.59 kcal + -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 +Cd+2 + 2 Cl- = CdCl2 + -log_k 2.6 + -delta_h 1.24 kcal + -Vm 5.53 +Cd+2 + 3 Cl- = CdCl3- + -log_k 2.4 + -delta_h 3.9 kcal + -Vm 4.6 0 83.9 0 0 0 0 0 0 1 +Cd+2 + CO3-2 = CdCO3 + -log_k 2.9 +Cd+2 + 2 CO3-2 = Cd(CO3)2-2 + -log_k 6.4 +Cd+2 + HCO3- = CdHCO3+ + -log_k 1.5 +Cd+2 + SO4-2 = CdSO4 + -log_k 2.46 + -delta_h 1.08 kcal + -Vm 10.4 0 57.9 +Cd+2 + 2 SO4-2 = Cd(SO4)2-2 + -log_k 3.5 + -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 +Cd+2 + Br- = CdBr+ + -log_k 2.17 + -delta_h -0.81 kcal +Cd+2 + 2 Br- = CdBr2 + -log_k 2.9 +Cd+2 + F- = CdF+ + -log_k 1.1 +Cd+2 + 2 F- = CdF2 + -log_k 1.5 +Cd+2 + HS- = CdHS+ + -log_k 10.17 +Cd+2 + 2 HS- = Cd(HS)2 + -log_k 16.53 +Cd+2 + 3 HS- = Cd(HS)3- + -log_k 18.71 +Cd+2 + 4 HS- = Cd(HS)4-2 + -log_k 20.9 +Pb+2 + H2O = PbOH+ + H+ + -log_k -7.71 +Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ + -log_k -17.12 +Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ + -log_k -28.06 +Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ + -log_k -39.7 +2 Pb+2 + H2O = Pb2OH+3 + H+ + -log_k -6.36 +Pb+2 + Cl- = PbCl+ + -log_k 1.6 + -delta_h 4.38 kcal + -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt +Pb+2 + 2 Cl- = PbCl2 + -log_k 1.8 + -delta_h 1.08 kcal + -Vm 6.5402 8.1879 2.5318 -3.1175 -.03 # supcrt +Pb+2 + 3 Cl- = PbCl3- + -log_k 1.7 + -delta_h 2.17 kcal + -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt +Pb+2 + 4 Cl- = PbCl4-2 + -log_k 1.38 + -delta_h 3.53 kcal + -Vm 16.415 32.2997 -6.9452 -4.1143 2.3118 # supcrt +Pb+2 + CO3-2 = PbCO3 + -log_k 7.24 +Pb+2 + 2 CO3-2 = Pb(CO3)2-2 + -log_k 10.64 +Pb+2 + HCO3- = PbHCO3+ + -log_k 2.9 +Pb+2 + SO4-2 = PbSO4 + -log_k 2.75 +Pb+2 + 2 SO4-2 = Pb(SO4)2-2 + -log_k 3.47 +Pb+2 + 2 HS- = Pb(HS)2 + -log_k 15.27 +Pb+2 + 3 HS- = Pb(HS)3- + -log_k 16.57 +3 Pb+2 + 4 H2O = Pb3(OH)4+2 + 4 H+ + -log_k -23.88 + -delta_h 26.5 kcal +Pb+2 + NO3- = PbNO3+ + -log_k 1.17 +Pb+2 + Br- = PbBr+ + -log_k 1.77 + -delta_h 2.88 kcal +Pb+2 + 2 Br- = PbBr2 + -log_k 1.44 +Pb+2 + F- = PbF+ + -log_k 1.25 +Pb+2 + 2 F- = PbF2 + -log_k 2.56 +Pb+2 + 3 F- = PbF3- + -log_k 3.42 +Pb+2 + 4 F- = PbF4-2 + -log_k 3.1 + +PHASES +Calcite + CaCO3 = CO3-2 + Ca+2 + -log_k -8.48 + -delta_h -2.297 kcal +# begin modification stimela.dat +# analytic not modified, kept as in version 3.6.2, which is in accordance to Standard Methods 2330 (2016) +# -analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982 + -analytic -171.9065 -0.077993 2839.319 71.595 # changed in version 3.7.0, March 10 2021 +# end modification stimela.dat + -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3) +Aragonite + CaCO3 = CO3-2 + Ca+2 + -log_k -8.336 + -delta_h -2.589 kcal + -analytic -171.9773 -0.077993 2903.293 71.595 + -Vm 34.04 +# begin modification stimela.dat +# adding Vaterite from Aragonite according Standard Methods 2330 (2010) +Vaterite + CaCO3 = CO3-2 + Ca+2 + -log_k -8.336 # overruled by -analytic + -delta_h -2.589 kcal # overruled by -analytic + -analytic -172.1295 -0.077993 3074.688 71.595 + -Vm 39.41 cm3/mol # MW (100.09 g/mol) / rho (2.54 g/cm3) +# end modification stimela.dat +Dolomite + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + -log_k -17.09 + -delta_h -9.436 kcal + -analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50–175°C: Bénézeth et al., 2018, GCA 224, 262-275 + -Vm 64.5 +Siderite + FeCO3 = Fe+2 + CO3-2 + -log_k -10.89 + -delta_h -2.48 kcal + -Vm 29.2 +Rhodochrosite + MnCO3 = Mn+2 + CO3-2 + -log_k -11.13 + -delta_h -1.43 kcal + -Vm 31.1 +Strontianite + SrCO3 = Sr+2 + CO3-2 + -log_k -9.271 + -delta_h -0.4 kcal + -analytic 155.0305 0 -7239.594 -56.58638 + -Vm 39.69 +Witherite + BaCO3 = Ba+2 + CO3-2 + -log_k -8.562 + -delta_h 0.703 kcal + -analytic 607.642 0.121098 -20011.25 -236.4948 + -Vm 46 +Gypsum + CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O + -log_k -4.58 + -delta_h -0.109 kcal + -analytic 68.2401 0 -3221.51 -25.0627 + -analytical_expression 93.7 5.99E-3 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 + -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) +Anhydrite + CaSO4 = Ca+2 + SO4-2 + -log_k -4.36 + -delta_h -1.71 kcal + -analytic 84.9 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323 + -Vm 46.1 # 136.14 / 2.95 +Celestite + SrSO4 = Sr+2 + SO4-2 + -log_k -6.63 + -delta_h -4.037 kcal + # -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 + -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464 + -Vm 46.4 +Barite + BaSO4 = Ba+2 + SO4-2 + -log_k -9.97 + -delta_h 6.35 kcal + -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 + -Vm 52.9 +Arcanite + K2SO4 = SO4-2 + 2 K+ + log_k -1.776; -delta_h 5 kcal + -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 + # Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06 + -Vm 65.5 +Mirabilite + Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O + -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 + Vm 216 +Thenardite + Na2SO4 = 2 Na+ + SO4-2 + -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 + -Vm 52.9 +Epsomite + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -1.74; -delta_h 10.57 kJ + -analytical_expression -3.59 6.21e-3 + Vm 147 +Hexahydrite + MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O + log_k -1.57; -delta_h 2.35 kJ + -analytical_expression -1.978 1.38e-3 + Vm 132 +Kieserite + MgSO4:H2O = Mg+2 + SO4-2 + H2O + log_k -1.16; -delta_h 9.22 kJ + -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 + Vm 53.8 +Hydroxyapatite + Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 + -log_k -3.421 + -delta_h -36.155 kcal + -Vm 128.9 +Fluorite + CaF2 = Ca+2 + 2 F- + -log_k -10.6 + -delta_h 4.69 kcal + -analytic 66.348 0 -4298.2 -25.271 + -Vm 15.7 +SiO2(a) + SiO2 + 2 H2O = H4SiO4 + -log_k -2.71 + -delta_h 3.34 kcal + -analytic -0.26 0 -731 +Chalcedony + SiO2 + 2 H2O = H4SiO4 + -log_k -3.55 + -delta_h 4.72 kcal + -analytic -0.09 0 -1032 + -Vm 23.1 +Quartz + SiO2 + 2 H2O = H4SiO4 + -log_k -3.98 + -delta_h 5.99 kcal + -analytic 0.41 0 -1309 + -Vm 22.67 +Gibbsite + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + -log_k 8.11 + -delta_h -22.8 kcal + -Vm 32.22 +Al(OH)3(a) + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + -log_k 10.8 + -delta_h -26.5 kcal +Kaolinite + Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 + -log_k 7.435 + -delta_h -35.3 kcal + -Vm 99.35 +Albite + NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 + -log_k -18.002 + -delta_h 25.896 kcal + -Vm 101.31 +Anorthite + CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 + -log_k -19.714 + -delta_h 11.58 kcal + -Vm 105.05 +K-feldspar + KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 + -log_k -20.573 + -delta_h 30.82 kcal + -Vm 108.15 +K-mica + KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 + -log_k 12.703 + -delta_h -59.376 kcal +Chlorite(14A) + Mg5Al2Si3O10(OH)8 + 16 H+ = 5 Mg+2 + 2 Al+3 + 3 H4SiO4 + 6 H2O + -log_k 68.38 + -delta_h -151.494 kcal +Ca-Montmorillonite + Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165 Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ + -log_k -45.027 + -delta_h 58.373 kcal + -Vm 156.16 +Talc + Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 + -log_k 21.399 + -delta_h -46.352 kcal + -Vm 68.34 +Illite + K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2 H2O = 0.6 K+ + 0.25 Mg+2 + 2.3 Al(OH)4- + 3.5 H4SiO4 + 1.2 H+ + -log_k -40.267 + -delta_h 54.684 kcal + -Vm 141.48 +Chrysotile + Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 + -log_k 32.2 + -delta_h -46.8 kcal + -analytic 13.248 0 10217.1 -6.1894 + -Vm 106.5808 # 277.11/2.60 +Sepiolite + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 + -log_k 15.76 + -delta_h -10.7 kcal + -Vm 143.765 +Sepiolite(d) + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 + -log_k 18.66 +Hematite + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + -log_k -4.008 + -delta_h -30.845 kcal + -Vm 30.39 +Goethite + FeOOH + 3 H+ = Fe+3 + 2 H2O + -log_k -1 + -delta_h -14.48 kcal + -Vm 20.84 +Fe(OH)3(a) + Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O + -log_k 4.891 +Pyrite + FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- + -log_k -18.479 + -delta_h 11.3 kcal + -Vm 23.48 +FeS(ppt) + FeS + H+ = Fe+2 + HS- + -log_k -3.915 +Mackinawite + FeS + H+ = Fe+2 + HS- + -log_k -4.648 + -Vm 20.45 +Sulfur + S + 2 H+ + 2 e- = H2S + -log_k 4.882 + -delta_h -9.5 kca +Vivianite + Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O + -log_k -36 +Pyrolusite # H2O added for surface calc's + MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O + -log_k 41.38 + -delta_h -65.11 kcal +Hausmannite + Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O + -log_k 61.03 + -delta_h -100.64 kcal +Manganite + MnOOH + 3 H+ + e- = Mn+2 + 2 H2O + -log_k 25.34 +Pyrochroite + Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O + -log_k 15.2 +Halite + NaCl = Cl- + Na+ + log_k 1.57 + -delta_h 1.37 + #-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915. + -Vm 27.1 +Sylvite + KCl = K+ + Cl- + log_k 0.9 + -delta_h 8.5 + # -analytic 3.984 0.0 -919.55 + Vm 37.5 +# Gases... +CO2(g) + CO2 = CO2 + -log_k -1.468 + -delta_h -4.776 kcal + -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 + -T_c 304.2 # critical T, K + -P_c 72.86 # critical P, atm + -Omega 0.225 # acentric factor +H2O(g) + H2O = H2O + -log_k 1.506; delta_h -44.03 kJ + -T_c 647.3; -P_c 217.6; -Omega 0.344 + -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 +O2(g) + O2 = O2 + -log_k -2.8983 + -analytic -7.5001 7.8981e-3 0 0 2.0027e5 + -T_c 154.6; -P_c 49.8; -Omega 0.021 +H2(g) + H2 = H2 + -log_k -3.105 + -delta_h -4.184 kJ + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + -T_c 33.2; -P_c 12.8; -Omega -0.225 +N2(g) + N2 = N2 + -log_k -3.1864 + -analytic -58.453 1.818e-3 3199 17.909 -27460 + -T_c 126.2; -P_c 33.5; -Omega 0.039 +H2S(g) + H2S = H+ + HS- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2; -P_c 88.2; -Omega 0.1 +CH4(g) + CH4 = CH4 + -log_k -2.8 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -T_c 190.6; -P_c 45.4; -Omega 0.008 +# begin modification stimela.dat +# uncommented Amm definitions +Amm(g) + Amm = Amm + -log_k 1.7966 + -analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192 + -T_c 405.6; -P_c 111.3; -Omega 0.25 +# end modification stimela.dat +NH3(g) + NH3 = NH3 + -log_k 1.7966 + -analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192 + -T_c 405.6; -P_c 111.3; -Omega 0.25 +# redox-uncoupled gases +Oxg(g) + Oxg = Oxg + -analytic -7.5001 7.8981e-3 0 0 2.0027e5 + -T_c 154.6; -P_c 49.8; -Omega 0.021 +Hdg(g) + Hdg = Hdg + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + -T_c 33.2; -P_c 12.8; -Omega -0.225 +Ntg(g) + Ntg = Ntg + -analytic -58.453 1.818e-3 3199 17.909 -27460 + T_c 126.2; -P_c 33.5; -Omega 0.039 +Mtg(g) + Mtg = Mtg + -log_k -2.8 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -T_c 190.6; -P_c 45.4; -Omega 0.008 +H2Sg(g) + H2Sg = H+ + HSg- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2; -P_c 88.2; -Omega 0.1 +# begin modification stimela.dat +# uniform notation of elements in redox-uncoupled gases +[N-3]H3(g) + [N-3]H3 = [N-3]H3 + -log_k 1.7966 + -analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192 + -T_c 405.6; -P_c 111.3; -Omega 0.25 +[C-4]H4(g) + [C-4]H4 = [C-4]H4 + -log_k -2.8 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -T_c 190.6; -P_c 45.4; -Omega 0.008 +H2[S-2](g) + H2[S-2] = H+ + H[S-2]- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2; -P_c 88.2; -Omega 0.1 +# end modification stimela.dat +Melanterite + FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 + -log_k -2.209 + -delta_h 4.91 kcal + -analytic 1.447 -0.004153 0 0 -214949 +Alunite + KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O + -log_k -1.4 + -delta_h -50.25 kcal +Jarosite-K + KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2 + -log_k -9.21 + -delta_h -31.28 kcal +Zn(OH)2(e) + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + -log_k 11.5 +Smithsonite + ZnCO3 = Zn+2 + CO3-2 + -log_k -10 + -delta_h -4.36 kcal +Sphalerite + ZnS + H+ = Zn+2 + HS- + -log_k -11.618 + -delta_h 8.25 kcal +Willemite 289 + Zn2SiO4 + 4 H+ = 2 Zn+2 + H4SiO4 + -log_k 15.33 + -delta_h -33.37 kcal +Cd(OH)2 + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + -log_k 13.65 +Otavite 315 + CdCO3 = Cd+2 + CO3-2 + -log_k -12.1 + -delta_h -0.019 kcal +CdSiO3 328 + CdSiO3 + H2O + 2 H+ = Cd+2 + H4SiO4 + -log_k 9.06 + -delta_h -16.63 kcal +CdSO4 329 + CdSO4 = Cd+2 + SO4-2 + -log_k -0.1 + -delta_h -14.74 kcal +Cerussite 365 + PbCO3 = Pb+2 + CO3-2 + -log_k -13.13 + -delta_h 4.86 kcal +Anglesite 384 + PbSO4 = Pb+2 + SO4-2 + -log_k -7.79 + -delta_h 2.15 kcal +Pb(OH)2 389 + Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O + -log_k 8.15 + -delta_h -13.99 kcal +GAS_BINARY_PARAMETERS +H2O(g) CO2(g) 0.19 +H2O(g) H2S(g) 0.19 +H2O(g) H2Sg(g) 0.19 +H2O(g) CH4(g) 0.49 +H2O(g) Mtg(g) 0.49 +H2O(g) Methane(g) 0.49 +H2O(g) N2(g) 0.49 +H2O(g) Ntg(g) 0.49 +H2O(g) Ethane(g) 0.49 +H2O(g) Propane(g) 0.55 +# begin modification stimela.dat +# define for added redox-uncoupled gases +H2O(g) H2[S-2](g) 0.19 +H2O(g) [C-4]H4(g) 0.49 +# end modification stimela.dat + +EXCHANGE_MASTER_SPECIES + X X- +EXCHANGE_SPECIES + X- = X- + -log_k 0 + + Na+ + X- = NaX + -log_k 0 + -gamma 4.08 0.082 + + K+ + X- = KX + -log_k 0.7 + -gamma 3.5 0.015 + -delta_h -4.3 # Jardine & Sparks, 1984 + + Li+ + X- = LiX + -log_k -0.08 + -gamma 6 0 + -delta_h 1.4 # Merriam & Thomas, 1956 + +# !!!!! +# H+ + X- = HX +# -log_k 1.0 +# -gamma 9.0 0 + +# begin modification stimela.dat +# uncommented Amm definitions + AmmH+ + X- = AmmHX + -log_k 0.6 + -gamma 2.5 0 + -delta_h -2.4 # Laudelout et al., 1968 +# definition [N-3]H4X + -log_k 0.6 + -gamma 2.5 0 + -delta_h -2.4 # Laudelout et al., 1968 +# end modification stimela.dat + NH4+ + X- = NH4X + -log_k 0.6 + -gamma 2.5 0 + -delta_h -2.4 # Laudelout et al., 1968 + + Ca+2 + 2 X- = CaX2 + -log_k 0.8 + -gamma 5 0.165 + -delta_h 7.2 # Van Bladel & Gheyl, 1980 + + Mg+2 + 2 X- = MgX2 + -log_k 0.6 + -gamma 5.5 0.2 + -delta_h 7.4 # Laudelout et al., 1968 + + Sr+2 + 2 X- = SrX2 + -log_k 0.91 + -gamma 5.26 0.121 + -delta_h 5.5 # Laudelout et al., 1968 + + Ba+2 + 2 X- = BaX2 + -log_k 0.91 + -gamma 4 0.153 + -delta_h 4.5 # Laudelout et al., 1968 + + Mn+2 + 2 X- = MnX2 + -log_k 0.52 + -gamma 6 0 + + Fe+2 + 2 X- = FeX2 + -log_k 0.44 + -gamma 6 0 + + Cu+2 + 2 X- = CuX2 + -log_k 0.6 + -gamma 6 0 + + Zn+2 + 2 X- = ZnX2 + -log_k 0.8 + -gamma 5 0 + + Cd+2 + 2 X- = CdX2 + -log_k 0.8 + -gamma 0 0 + + Pb+2 + 2 X- = PbX2 + -log_k 1.05 + -gamma 0 0 + + Al+3 + 3 X- = AlX3 + -log_k 0.41 + -gamma 9 0 + + AlOH+2 + 2 X- = AlOHX2 + -log_k 0.89 + -gamma 0 0 + +SURFACE_MASTER_SPECIES + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH +SURFACE_SPECIES +# All surface data from +# Dzombak and Morel, 1990 +# +# +# Acid-base data from table 5.7 +# +# strong binding site--Hfo_s, + + Hfo_sOH = Hfo_sOH + -log_k 0 + + Hfo_sOH + H+ = Hfo_sOH2+ + -log_k 7.29 # = pKa1,int + + Hfo_sOH = Hfo_sO- + H+ + -log_k -8.93 # = -pKa2,int + +# weak binding site--Hfo_w + + Hfo_wOH = Hfo_wOH + -log_k 0 + + Hfo_wOH + H+ = Hfo_wOH2+ + -log_k 7.29 # = pKa1,int + + Hfo_wOH = Hfo_wO- + H+ + -log_k -8.93 # = -pKa2,int +############################################### +# CATIONS # +############################################### +# +# Cations from table 10.1 or 10.5 +# +# Calcium + Hfo_sOH + Ca+2 = Hfo_sOHCa+2 + -log_k 4.97 + + Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ + -log_k -5.85 +# Strontium + Hfo_sOH + Sr+2 = Hfo_sOHSr+2 + -log_k 5.01 + + Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ + -log_k -6.58 + + Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2 H+ + -log_k -17.6 +# Barium + Hfo_sOH + Ba+2 = Hfo_sOHBa+2 + -log_k 5.46 + + Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ + -log_k -7.2 # table 10.5 +# +# Cations from table 10.2 +# +# Cadmium + Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ + -log_k 0.47 + + Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ + -log_k -2.91 +# Zinc + Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ + -log_k 0.99 + + Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ + -log_k -1.99 +# Copper + Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ + -log_k 2.89 + + Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ + -log_k 0.6 # table 10.5 +# Lead + Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ + -log_k 4.65 + + Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ + -log_k 0.3 # table 10.5 +# +# Derived constants table 10.5 +# +# Magnesium + Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ + -log_k -4.6 +# Manganese + Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ + -log_k -0.4 # table 10.5 + + Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ + -log_k -3.5 # table 10.5 +# Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096 + Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ + -log_k -0.95 +# Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M + Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ + -log_k -2.98 + + Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2 H+ + -log_k -11.55 +############################################### +# ANIONS # +############################################### +# +# Anions from table 10.6 +# +# Phosphate + Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O + -log_k 31.29 + + Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O + -log_k 25.39 + + Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O + -log_k 17.72 +# +# Anions from table 10.7 +# +# Borate + Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O + -log_k 0.62 +# +# Anions from table 10.8 +# +# Sulfate + Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O + -log_k 7.78 + + Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 + -log_k 0.79 +# +# Derived constants table 10.10 +# + Hfo_wOH + F- + H+ = Hfo_wF + H2O + -log_k 8.7 + + Hfo_wOH + F- = Hfo_wOHF- + -log_k 1.6 +# +# Carbonate: Van Geen et al., 1994 reoptimized for D&M model +# + Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O + -log_k 12.56 + + Hfo_wOH + CO3-2 + 2 H+ = Hfo_wHCO3 + H2O + -log_k 20.62 +# +# Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422. +# + Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 + Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O; log_K -3.22 + Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2 H+ + H2O; log_K -11.69 + +MEAN_GAMMAS +CaCl2 Ca+2 1 Cl- 2 +CaSO4 Ca+2 1 SO4-2 1 +CaCO3 Ca+2 1 CO3-2 1 +Ca(OH)2 Ca+2 1 OH- 2 +MgCl2 Mg+2 1 Cl- 2 +MgSO4 Mg+2 1 SO4-2 1 +MgCO3 Mg+2 1 CO3-2 1 +Mg(OH)2 Mg+2 1 OH- 2 +NaCl Na+ 1 Cl- 1 +Na2SO4 Na+ 2 SO4-2 1 +NaHCO3 Na+ 1 HCO3- 1 +Na2CO3 Na+ 2 CO3-2 1 +NaOH Na+ 1 OH- 1 +KCl K+ 1 Cl- 1 +K2SO4 K+ 2 SO4-2 1 +HCO3 K+ 1 HCO3- 1 +K2CO3 K+ 2 CO3-2 1 +KOH K+ 1 OH- 1 +HCl H+ 1 Cl- 1 +H2SO4 H+ 2 SO4-2 1 +HBr H+ 1 Br- 1 + +RATES + +########### +#Quartz +########### +# +####### +# Example of quartz kinetic rates block: +# KINETICS +# Quartz +# -m0 158.8 # 90 % Qu +# -parms 0.146 1.5 +# -step 3.1536e8 in 10 +# -tol 1e-12 + +Quartz + -start +1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 +2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol +3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) +4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz +5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 + +10 dif_temp = 1/TK - 1/298 +20 pk_w = 13.7 + 4700.4 * dif_temp +40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) +# Integrate... +50 SAVE moles * TIME + -end + +########### +#K-feldspar +########### +# +# Sverdrup and Warfvinge, 1995, Estimating field weathering rates +# using laboratory kinetics: Reviews in mineralogy and geochemistry, +# vol. 31, p. 485-541. +# +# As described in: +# Appelo and Postma, 2005, Geochemistry, groundwater +# and pollution, 2nd Edition: A.A. Balkema Publishers, +# p. 162-163 and 395-399. +# +# Assume soil is 10% K-feldspar by mass in 1 mm spheres (radius 0.05 mm) +# Assume density of rock and Kspar is 2600 kg/m^3 = 2.6 kg/L +# GFW Kspar 0.278 kg/mol +# +# Moles of Kspar per liter pore space calculation: +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space +# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space +# +# Specific area calculation: +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere +# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Specific area of K-feldspar in sphere 3.14e-8/4.90e-9 = 6.41 m^2/mol Kspar +# +# +# Example of KINETICS data block for K-feldspar rate: +# KINETICS 1 +# K-feldspar +# -m0 2.18 # 10% Kspar, 0.1 mm cubes +# -m 2.18 # Moles per L pore space +# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 + +K-feldspar + -start +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162: E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM K-Feldspar parameters +10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 +100 REM Generic rate follows +110 dif_temp = 1/TK - 1/281 +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +130 REM rate by H+ +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +160 REM rate by hydrolysis +170 pk_H2O = pk_H2O + e_H2O * dif_temp +180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) +190 REM rate by OH- +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +220 REM rate by CO2 +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) +280 moles = rate * TIME +290 SAVE moles + -end + + +########### +#Albite +########### +# +# Sverdrup and Warfvinge, 1995, Estimating field weathering rates +# using laboratory kinetics: Reviews in mineralogy and geochemistry, +# vol. 31, p. 485-541. +# +# As described in: +# Appelo and Postma, 2005, Geochemistry, groundwater +# and pollution, 2nd Edition: A.A. Balkema Publishers, +# p. 162-163 and 395-399. +# +# Example of KINETICS data block for Albite rate: +# KINETICS 1 +# Albite +# -m0 0.46 # 2% Albite, 0.1 mm cubes +# -m 0.46 # Moles per L pore space +# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 +# +# Assume soil is 2% Albite by mass in 1 mm spheres (radius 0.05 mm) +# Assume density of rock and Albite is 2600 kg/m^3 = 2.6 kg/L +# GFW Albite 0.262 kg/mol +# +# Moles of Albite per liter pore space calculation: +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space +# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space +# +# Specific area calculation: +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere +# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite + +Albite + -start +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Albite m^2/mol Albite +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM Albite parameters +10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 +100 REM Generic rate follows +110 dif_temp = 1/TK - 1/281 +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +130 REM rate by H+ +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +160 REM rate by hydrolysis +170 pk_H2O = pk_H2O + e_H2O * dif_temp +180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) +190 REM rate by OH- +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +220 REM rate by CO2 +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("Albite")) +280 moles = rate * TIME +290 SAVE moles + -end + +######## +#Calcite +######## +# Example of KINETICS data block for calcite rate, +# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257 +# KINETICS 1 +# Calcite +# -tol 1e-8 +# -m0 3.e-3 +# -m 3.e-3 +# -parms 1.67e5 0.6 # cm^2/mol calcite, exp factor +# -time 1 day + +Calcite + -start +1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite +2 REM PARM(2) = exponent for M/M0 + +10 si_cc = SI("Calcite") +20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 +30 k1 = 10^(0.198 - 444 / TK ) +40 k2 = 10^(2.84 - 2177 /TK ) +50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317 / TK) +60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737 / TK ) +80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M +110 rate = area * (k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O")) +120 rate = rate * (1 - 10^(2/3*si_cc)) +130 moles = rate * 0.001 * TIME # convert from mmol to mol +200 SAVE moles + -end + +####### +#Pyrite +####### +# +# Williamson, M.A. and Rimstidt, J.D., 1994, +# Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454, +# rate equation is mol m^-2 s^-1. +# +# Example of KINETICS data block for pyrite rate: +# KINETICS 1 +# Pyrite +# -tol 1e-8 +# -m0 5.e-4 +# -m 5.e-4 +# -parms 0.3 0.67 .5 -0.11 +# -time 1 day in 10 +Pyrite + -start +1 REM Williamson and Rimstidt, 1994 +2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) +3 REM PARM(2) = exp for (M/M0) +4 REM PARM(3) = exp for O2 +5 REM PARM(4) = exp for H+ + +10 REM Dissolution in presence of DO +20 if (M <= 0) THEN GOTO 200 +30 if (SI("Pyrite") >= 0) THEN GOTO 200 +40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") +50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) +60 moles = 10^(log_area + log_rate) * TIME +200 SAVE moles + -end + +########## +#Organic_C +########## +# +# Example of KINETICS data block for SOC (sediment organic carbon): +# KINETICS 1 +# Organic_C +# -formula C +# -tol 1e-8 +# -m 5e-3 # SOC in mol +# -time 30 year in 15 +Organic_C + -start +1 REM Additive Monod kinetics for SOC (sediment organic carbon) +2 REM Electron acceptors: O2, NO3, and SO4 + +10 if (M <= 0) THEN GOTO 200 +20 mO2 = MOL("O2") +30 mNO3 = TOT("N(5)") +40 mSO4 = TOT("S(6)") +50 k_O2 = 1.57e-9 # 1/sec +60 k_NO3 = 1.67e-11 # 1/sec +70 k_SO4 = 1.e-13 # 1/sec +80 rate = k_O2 * mO2/(2.94e-4 + mO2) +90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) +100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) +110 moles = rate * M * (M/M0) * TIME +200 SAVE moles + -end + +########### +#Pyrolusite +########### +# +# Postma, D. and Appelo, C.A.J., 2000, GCA, vol. 64, pp. 1237-1247. +# Rate equation given as mol L^-1 s^-1 +# +# Example of KINETICS data block for Pyrolusite +# KINETICS 1-12 +# Pyrolusite +# -tol 1.e-7 +# -m0 0.1 +# -m 0.1 +# -time 0.5 day in 10 +Pyrolusite + -start +10 if (M <= 0) THEN GOTO 200 +20 sr_pl = SR("Pyrolusite") +30 if (sr_pl > 1) THEN GOTO 100 +40 REM sr_pl <= 1, undersaturated +50 Fe_t = TOT("Fe(2)") +60 if Fe_t < 1e-8 then goto 200 +70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) +80 GOTO 200 +100 REM sr_pl > 1, supersaturated +110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME +200 SAVE moles * SOLN_VOL + -end + +END +# ============================================================================================= +#(a) means amorphous. (d) means disordered, or less crystalline. +#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt), +#precipitated, indicates an initial precipitate that is less crystalline. +#Zn(OH)2(e) indicates a specific crystal form, epsilon. +# ============================================================================================= +# For the reaction aA + bB = cC + dD, +# with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B), +# PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT). +# Vm(A) is volume of A, cm3/mol, P is pressure, atm, R is the gas constant, T is Kelvin. +# Gas-pressures and fugacity coefficients are calculated with Peng-Robinson's EOS. +# These binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are +# hard-coded in calc_PR(): +# kij CH4 CO2 H2S N2 +# H2O 0.49 0.19 0.19 0.49 +# but are overwritten by the data block GAS_BINARY_PARAMETERS of this file. +# ============================================================================================= +# The molar volumes of solids are entered with +# -Vm vm cm3/mol +# vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted. +# Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from +# Deer, Howie and Zussman, The rock-forming minerals, Longman. +# -------------------- +# Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich- +# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with +# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 +# The volume (cm3/mol) is +# Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) + +# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) +# + z^2 / 2 * Av * f(I^0.5) +# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 +# Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899). +# 41.84 transforms cal/bar/mol into cm3/mol. +# pb is pressure in bar. +# W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation, +# W is fitted on measured solution densities. +# z is charge of the solute species. +# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic). +# a0 is the ion-size parameter in the extended Debye-Hückel equation: +# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), +# a0 = -gamma x for cations, = 0 for anions. +# For details, consult ref. 1. +# ============================================================================================= +# The viscosity is calculated with a (modified) Jones-Dole equation: +# viscos / viscos_0 = 1 + A * Sum(0.5 z_i m_i) + fan * Sum(B_i m_i + D_i m_i n_i) +# Parameters are for calculating the B and D terms: +# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 +# # b0 b1 b2 d1 d2 d3 tan +# z_i is absolute charge number, m_i is molality of i +# B_i = b0 + b1 exp(-b2 * tc) +# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions +# D_i = d1 * exp(-d2 tc) +# n_i = (I^d3 * (1 + fI) + ((z_i^2 + z_i) / 2 · m_i)^d3) / (2 + fI), fI is an ionic strength term. +# For details, consult ref. 4. +# +# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. +# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725. +# ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113. +# ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp +# +# ============================================================================================= +# It remains the responsibility of the user to check the calculated results, for example with +# measured solubilities as a function of (P, T). From 7c05598ee390fee52f2860d8766542a615f08d9d Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Tue, 18 Feb 2025 20:25:42 +0000 Subject: [PATCH 285/384] Squashed 'phreeqcpp/' changes from c81916a..a4886d6 a4886d6 Added simela.dat-from Peter de Moel. Fixed bug in write_raw/read_raw GasComp, order of options git-subtree-dir: phreeqcpp git-subtree-split: a4886d603340240f6632bf46ddf256881eac58f9 --- GasComp.cxx | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/GasComp.cxx b/GasComp.cxx index 427d169b..b55824cb 100644 --- a/GasComp.cxx +++ b/GasComp.cxx @@ -99,7 +99,7 @@ cxxGasComp::read_raw(CParser & parser, bool check) // Allow return to Exchange for more processing break; - case 0: // phase_name + case 7: // phase_name output_msg("-phase_name is obsolete. Define with -component\n"); break; @@ -138,7 +138,7 @@ cxxGasComp::read_raw(CParser & parser, bool check) } break; - case 5: // p + case 0: // p if (!(parser.get_iss() >> this->p)) { this->p = 0; @@ -148,7 +148,7 @@ cxxGasComp::read_raw(CParser & parser, bool check) } break; - case 6: // phi + case 5: // phi if (!(parser.get_iss() >> this->phi)) { this->phi = 0; @@ -158,7 +158,7 @@ cxxGasComp::read_raw(CParser & parser, bool check) } break; - case 7: // f + case 6: // f if (!(parser.get_iss() >> this->f)) { this->f = 0; @@ -253,13 +253,13 @@ cxxGasComp::Deserialize(Dictionary & dictionary, std::vector < int >&ints, } const std::vector< std::string >::value_type temp_vopts[] = { - std::vector< std::string >::value_type("phase_name"), // 0 + std::vector< std::string >::value_type("p"), // 0 std::vector< std::string >::value_type("name"), // 1 std::vector< std::string >::value_type("p_read"), // 2 std::vector< std::string >::value_type("moles"), // 3 std::vector< std::string >::value_type("initial_moles"), // 4 - std::vector< std::string >::value_type("p"), // 5 - std::vector< std::string >::value_type("phi"), // 6 - std::vector< std::string >::value_type("f") // 7 + std::vector< std::string >::value_type("phi"), // 5 + std::vector< std::string >::value_type("f"), // 6 + std::vector< std::string >::value_type("phase_name") // 7 }; const std::vector< std::string > cxxGasComp::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); From 3a0f756ff7940772b9fdf5879b7fd0c8e744cbc5 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Tue, 18 Feb 2025 20:26:31 +0000 Subject: [PATCH 286/384] Squashed 'phreeqc3-doc/' changes from 797e95aa..e7f79ef2 e7f79ef2 removed tabs before eol in stimela.dat. Updated RELEASE.TXT. git-subtree-dir: phreeqc3-doc git-subtree-split: e7f79ef2413934217d74ebb84f9c3fc4369e648d --- RELEASE.TXT | 32 ++++++++++++++++++++++++++++++++ 1 file changed, 32 insertions(+) diff --git a/RELEASE.TXT b/RELEASE.TXT index 6d34bc1b..2b3cd3e1 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,5 +1,37 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + ----------------- + February 12, 2025 + ----------------- + PHREEQC: Added database stimela.dat, a database for use in + drinking-water and waste-water treatment from Peter de Moel and Omnisys. + Here is an excerpt of the initial lines of the database. + +# stimela.dat (version 3.8.6) (stimela version of phreeqc.dat) +# under development by Peter de Moel (Omnisys) for Stimela platform at Delft University of Technology +# based on: phreeqc.dat (file date 2025-01-07, in IPhreeqcCOM-3.8.6-17100-x64.msi) +# Stimela is focussed on modelling for water and waste water treatment +# Further info on using PHREEQC for water treatment, and PHREEQC in Excel can be found on https://ac4e.omnisys.nl/ + +# list of modifications: +# - added Amm (with master species AmmH+) as used in amm.dat for redox-uncoupled NH3 (for using Tony Appelo's input files) +# - added [N-3] (with master species [N-3]H4+) as alternative for redox-uncoupled Amm (for readable chemical formula) +# - added [Fe+2], [Mn+2] and [N+3] (with master species [Fe+2]+2 , [Mn+2]+2 and [N+3]O2-) for redox-uncoupled Fe+2, Mn+2 and NO2- +# - added [C-4] and [S-2] (with master species [C-4]H4 and H2[S-2]) as alternatives for redox-uncoupled Mtg and Sg) +# - added solid Vaterite (CaCO3) (included in Standard Methods 2330 (2010)) +# - unchanged analytic for solid Calcite (phreeqc 3.7.0. introduced modified version, deviated from Standard Methods 2330 - 2016) +# - modified values for element_gfw according to Abridged Standard Atomic Weights from TSAW 2013 (CIAAW/IUPAC) (https://www.ciaaw.org/abridged-atomic-weights.htm) +# end of list of modifications + + ----------------- + February 12, 2025 + ----------------- + PHREEQC: Fixed bug in GasComp.cxx. The order of the options + was incorrect, which caused -p (pressure) to be misinterpreted + when reading GAS_PHASE_RAW. + + +Version 3.8.6: January 7, 2025 ----------------- January 7, 2025 ----------------- From ff1bded8415c84af23ef99cbd47c0a9ef7a69a76 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Tue, 18 Feb 2025 20:26:35 +0000 Subject: [PATCH 287/384] Squashed 'src/' changes from 47bcb44d..0eb2b934 0eb2b934 Merge commit '7c05598ee390fee52f2860d8766542a615f08d9d' 7c05598e Squashed 'phreeqcpp/' changes from c81916a..a4886d6 git-subtree-dir: src git-subtree-split: 0eb2b934364f19a7a20439de35f9a9b1d4753c1c --- phreeqcpp/GasComp.cxx | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/phreeqcpp/GasComp.cxx b/phreeqcpp/GasComp.cxx index 427d169b..b55824cb 100644 --- a/phreeqcpp/GasComp.cxx +++ b/phreeqcpp/GasComp.cxx @@ -99,7 +99,7 @@ cxxGasComp::read_raw(CParser & parser, bool check) // Allow return to Exchange for more processing break; - case 0: // phase_name + case 7: // phase_name output_msg("-phase_name is obsolete. Define with -component\n"); break; @@ -138,7 +138,7 @@ cxxGasComp::read_raw(CParser & parser, bool check) } break; - case 5: // p + case 0: // p if (!(parser.get_iss() >> this->p)) { this->p = 0; @@ -148,7 +148,7 @@ cxxGasComp::read_raw(CParser & parser, bool check) } break; - case 6: // phi + case 5: // phi if (!(parser.get_iss() >> this->phi)) { this->phi = 0; @@ -158,7 +158,7 @@ cxxGasComp::read_raw(CParser & parser, bool check) } break; - case 7: // f + case 6: // f if (!(parser.get_iss() >> this->f)) { this->f = 0; @@ -253,13 +253,13 @@ cxxGasComp::Deserialize(Dictionary & dictionary, std::vector < int >&ints, } const std::vector< std::string >::value_type temp_vopts[] = { - std::vector< std::string >::value_type("phase_name"), // 0 + std::vector< std::string >::value_type("p"), // 0 std::vector< std::string >::value_type("name"), // 1 std::vector< std::string >::value_type("p_read"), // 2 std::vector< std::string >::value_type("moles"), // 3 std::vector< std::string >::value_type("initial_moles"), // 4 - std::vector< std::string >::value_type("p"), // 5 - std::vector< std::string >::value_type("phi"), // 6 - std::vector< std::string >::value_type("f") // 7 + std::vector< std::string >::value_type("phi"), // 5 + std::vector< std::string >::value_type("f"), // 6 + std::vector< std::string >::value_type("phase_name") // 7 }; const std::vector< std::string > cxxGasComp::vopts(temp_vopts, temp_vopts + sizeof temp_vopts / sizeof temp_vopts[0]); From 4a6ec6151e2f155dd16dc438023b743fbc77e6ae Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Tue, 18 Feb 2025 20:26:38 +0000 Subject: [PATCH 288/384] Squashed 'database/' changes from 4e898381..ec0212de ec0212de removed tabs before eol in stimela.dat. Updated RELEASE.TXT. 3cf80a8a Added simela.dat-from Peter de Moel. Fixed bug in write_raw/read_raw GasComp, order of options git-subtree-dir: database git-subtree-split: ec0212ded233929c14fc4bc5d6f0d61604ef3c8e --- CMakeLists.txt | 1 + Makefile.am | 1 + stimela.dat | 2129 ++++++++++++++++++++++++++++++++++++++++++++++++ 3 files changed, 2131 insertions(+) create mode 100644 stimela.dat diff --git a/CMakeLists.txt b/CMakeLists.txt index 75d594f5..113817fb 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -16,6 +16,7 @@ set(phreeqc_DATABASE phreeqc.dat pitzer.dat sit.dat + stimela.dat Tipping_Hurley.dat wateq4f.dat ) diff --git a/Makefile.am b/Makefile.am index abe19d83..df221e25 100644 --- a/Makefile.am +++ b/Makefile.am @@ -24,5 +24,6 @@ DATABASE=\ phreeqc.dat\ pitzer.dat\ sit.dat\ + stimela.dat\ Tipping_Hurley.dat\ wateq4f.dat diff --git a/stimela.dat b/stimela.dat new file mode 100644 index 00000000..09f9c650 --- /dev/null +++ b/stimela.dat @@ -0,0 +1,2129 @@ +# stimela.dat (version 3.8.6) (stimela version of phreeqc.dat) +# under development by Peter de Moel (Omnisys) for Stimela platform at Delft University of Technology +# based on: phreeqc.dat (file date 2025-01-07, in IPhreeqcCOM-3.8.6-17100-x64.msi) +# Stimela is focussed on modelling for water and waste water treatment +# Further info on using PHREEQC for water treatment, and PHREEQC in Excel can be found on https://ac4e.omnisys.nl/ + +# list of modifications: +# - added Amm (with master species AmmH+) as used in amm.dat for redox-uncoupled NH3 (for using Tony Appelo's input files) +# - added [N-3] (with master species [N-3]H4+) as alternative for redox-uncoupled Amm (for readable chemical formula) +# - added [Fe+2], [Mn+2] and [N+3] (with master species [Fe+2]+2 , [Mn+2]+2 and [N+3]O2-) for redox-uncoupled Fe+2, Mn+2 and NO2- +# - added [C-4] and [S-2] (with master species [C-4]H4 and H2[S-2]) as alternatives for redox-uncoupled Mtg and Sg) +# - added solid Vaterite (CaCO3) (included in Standard Methods 2330 (2010)) +# - unchanged analytic for solid Calcite (phreeqc 3.7.0. introduced modified version, deviated from Standard Methods 2330 - 2016) +# - modified values for element_gfw according to Abridged Standard Atomic Weights from TSAW 2013 (CIAAW/IUPAC) (https://www.ciaaw.org/abridged-atomic-weights.htm) +# end of list of modifications + +# File 1 = C:\GitPrograms\phreeqc3-1\database\phreeqc.dat, 22/05/2024 19:38, 1948 lines, 55817 bytes, md5=78b3659799b73ddca128328b6ee7533b +# Created 22 May 2024 19:55:37 +# C:\3rdParty\lsp\lsp.exe -f2 -k=asis -ts phreeqc.dat + +# phreeqc.dat for calculating temperature and pressure dependence of reactions, and the specific conductance and viscosity of the solution. Based on: +# diffusion coefficients and molal volumina of aqueous species, solubility and volume of minerals, and critical temperatures and pressures of gases in Peng-Robinson's EOS. +# Details are given at the end of this file. + +SOLUTION_MASTER_SPECIES +# Modified acc. TSAW calculated +#element species alk gfw_formula element_gfw # phreeqc.dat (if modified) +# +H H+ -1 H 1.0080 1.008 1,008 +H(0) H2 0 H +H(1) H+ -1 0 +E e- 0 0.0 0 +O H2O 0 O 15.999 # 16 15,999 +O(0) O2 0 O +O(-2) H2O 0 0 +Ca Ca+2 0 Ca 40.078 # 40.08 40,078 +Mg Mg+2 0 Mg 24.305 # 24.312 +Na Na+ 0 Na 22.990 # 22.9898 +K K+ 0 K 39.098 # 39.102 +Fe Fe+2 0 Fe 55.845 # 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2 Fe +Mn Mn+2 0 Mn 54.938 +Mn(+2) Mn+2 0 Mn +Mn(+3) Mn+3 0 Mn +Al Al+3 0 Al 26.982 # 26.9815 +Ba Ba+2 0 Ba 137.33 # 137.34 +Sr Sr+2 0 Sr 87.62 +Si H4SiO4 0 SiO2 28.085 # 28.0843 +Cl Cl- 0 Cl 35.45 # 35.453 +C CO3-2 2 HCO3 12.011 # 12.0111 12,011 +C(+4) CO3-2 2 HCO3 +C(-4) CH4 0 CH4 +Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.043 # 50.05 50,043 +S SO4-2 0 SO4 32.06 # 32.064 32,06 +S(6) SO4-2 0 SO4 +S(-2) HS- 1 S +N NO3- 0 N 14.007 # 14.0067 14,007 +N(+5) NO3- 0 N +N(+3) NO2- 0 N +N(0) N2 0 N +N(-3) NH4+ 0 N # 14.0067 +# begin modification stimela.dat +# uncommented Amm definitions +Amm AmmH+ 0 AmmH 17.031 # 17,031 +# end modification stimela.dat +B H3BO3 0 B 10.81 +P PO4-3 2 P 30.974 # 30.9738 +F F- 0 F 18.998 # 18.9984 +Li Li+ 0 Li 6.94 # 6.939 +Br Br- 0 Br 79.904 +Zn Zn+2 0 Zn 65.38 # 65.37 +Cd Cd+2 0 Cd 112.41 # 112.4 +Pb Pb+2 0 Pb 207.2 # 207.19 +Cu Cu+2 0 Cu 63.546 +Cu(+2) Cu+2 0 Cu +Cu(+1) Cu+1 0 Cu +# redox-uncoupled gases +Hdg Hdg 0 Hdg 2.016 # H2 gas 2,016 +Oxg Oxg 0 Oxg 31.998 # 32 O2 gas 31,998 +Mtg Mtg 0 Mtg 16.043 # 16.032 CH4 gas 16,043 +Sg H2Sg 0 H2Sg 34.076 # 34.064 H2S gas 34,076 +Ntg Ntg 0 Ntg 28.014 # 28.0134 N2 gas 28,014 +# begin modification stimela.dat +# added redox-uncoupled (inert) elements: [Fe+2], [Mn+2] and [N+3] +[Fe+2] [Fe+2]+2 0 Fe 55.845 +[Mn+2] [Mn+2]+2 0 Mn 54.938 +[N+3] [N+3]O2- 0 N 14.007 +# redox_uncoupled elements Amm (NH3), Mtg (CH4) and Sg (H2S) are not readable chemical formula +# replaced with uniform notation for redox-uncoupled (inert) elements: [N-3], [C-4] and [S-2] +[N-3] [N-3]H4+ 0 NH4 14.007 # Amm = [N-3]H3 +[C-4] [C-4]H4 0 CH4 12.011 # Mtg = [C-4]H4 +[S-2] H2[S-2] 0 H2S 32.06 # Sg = [S-2] +# uniform notation omitted for Oxg (O2), Hdg (H2) and Ntg (N2), to limit modifications from phreeqc.dat +# end modification stimela.dat +SOLUTION_SPECIES +H+ = H+ + -gamma 9 0 + -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.57 # for viscosity parameters see ref. 4 + -dw 9.31e-9 838 6.96 -2.285 0.206 24.01 0 + # Dw(25 C) dw_T a a2 visc a3 a_v_dif + # Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc + # a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif for tracer diffusion. + + # For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 0.206 for H+) + # a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Onsager-Falkenhagen eqn. (For H+, the reference ion, vm = v0 = 0, a *= (1 + mu)^a2.) + # a3 = -10 ? ka = DH_B * a * mu^a2 (Define a3 = -10, not used in this database.) (a3 = 24.01 for H+, a flag.) + # -3 < a3 < 4 ? ka = DH_B * a2 * mu^0.5 / (1 + mu^a3), Appelo, 2017: Dw(I) = Dw(TK) * exp(-a * DH_A * z * sqrt_mu / (1 + ka)) (Sr+2 in this database) + + # If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. +e- = e- +H2O = H2O + -dw 2.299e-9 -254 + # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence +Li+ = Li+ + -gamma 6 0 # The apparent volume parameters are defined in ref. 1 & 2 + -Vm -0.419 -0.069 13.16 -2.78 0.416 0 0.296 -12.4 -2.74e-3 1.26 # ref. 2 and Ellis, 1968, J. Chem. Soc. A, 1138 + -viscosity 0.162 -2.45e-2 3.73e-2 9.7e-4 8.1e-4 2.087 # < 10 M LiCl + -dw 1.03e-9 -14 4.03 0.8341 1.679 +Na+ = Na+ + -gamma 4 0.075 + -gamma 4.08 0.082 # halite solubility + -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.566 + # -Vm 2.28 -4.38 -4.1 -0.586 0.09 4 0.3 52 -3.33e-3 0.45 # for densities (rho) when I > 3. + -viscosity 0.1387 -8.66e-2 1.25e-2 1.45e-2 7.5e-3 1.062 + -dw 1.33e-9 75 3.627 0 0.7037 +K+ = K+ + -gamma 3.5 0.015 + -Vm 3.322 -1.473 6.534 -2.712 9.06e-2 3.5 0 29.7 0 1 + -viscosity 0.116 -0.191 1.52e-2 1.4e-2 2.59e-2 0.9028 + -dw 1.96e-9 254 3.484 0 0.1964 +Mg+2 = Mg+2 + -gamma 5.5 0.2 + -Vm -1.41 -8.6 11.13 -2.39 1.332 5.5 1.29 -32.9 -5.86e-3 1 + -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 + -dw 0.705e-9 -4 5.569 0 1.047 +Ca+2 = Ca+2 + -gamma 5 0.165 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.6 -57.1 -6.12e-3 1 + -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.3 # ref. 4, CaCl2 < 6 M + -dw 0.792e-9 34 5.411 0 1.046 +Sr+2 = Sr+2 + -gamma 5.26 0.121 + -Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97 + -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 + -dw 0.794e-9 149 0.805 1.961 1e-9 0.7876 +Ba+2 = Ba+2 + -gamma 5 0 + -gamma 4 0.153 # Barite solubility + -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 + -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 + -dw 0.848e-9 174 10.53 0 3 +Fe+2 = Fe+2 + -gamma 6 0 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -dw 0.719e-9 +Mn+2 = Mn+2 + -gamma 6 0 + -Vm -1.1 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 + -dw 0.688e-9 +Al+3 = Al+3 + -gamma 9 0 + -Vm -2.28 -17.1 10.9 -2.07 2.87 9 0 0 5.5e-3 1 # ref. 2 and Barta and Hepler, 1986, Can. J.C. 64, 353 + -dw 0.559e-9 +H4SiO4 = H4SiO4 + -Vm 10.5 1.7 20 -2.7 0.1291 # supcrt 2*H2O in a1 + -dw 1.1e-9 +Cl- = Cl- + -gamma 3.5 0.015 + -gamma 3.63 0.017 # cf. pitzer.dat + -Vm 4.465 4.801 4.325 -2.847 1.748 0 -0.331 20.16 0 1 + -viscosity 0 0 0 0 0 0 1 # the reference solute + -dw 2.033e-9 216 3.16 0.2071 0.7432 +CO3-2 = CO3-2 + -gamma 5.4 0 + -Vm 6.09 -2.78 -0.405 -5.3 5.02 0 0.169 101 -1.38e-2 0.9316 + -viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147 + -dw 0.955e-9 -103 2.246 7.13e-2 0.3686 +SO4-2 = SO4-2 + -gamma 5 -0.04 + -Vm -7.77 43.17 176 -51.45 3.794 0 42.99 -541 -0.145 0.45 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC + -viscosity -0.3 0.501 2.57e-3 0.195 3.14e-2 2.015 0.605 + -dw 1.07e-9 -114 17 6.02e-2 4.94e-2 +NO3- = NO3- + -gamma 3 0 + -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 + -viscosity 8.37e-2 -0.458 1.54e-2 0.34 1.79e-2 5.02e-2 0.7381 + -dw 1.9e-9 104 1.11 +# begin modification stimela.dat +# uncommented Amm definitions +AmmH+ = AmmH+ + -gamma 2.5 0 + -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 + -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -dw 1.98e-9 203 1.47 2.644 6.81e-2 +# added [N-3]H4+, [N+3]O2-, [Fe+2]+2 and [Mn+2]+2 +[N-3]H4+ = [N-3]H4+ + -gamma 2.5 0 + -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 + -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -dw 1.98e-9 203 1.47 2.644 6.81e-2 +[N+3]O2- = [N+3]O2- + -gamma 3 0 + -Vm 5.5864 5.859 3.4472 -3.0212 1.1847 # supcrt + -dw 1.91e-9 +[Fe+2]+2 = [Fe+2]+2 + -gamma 6 0 + -Vm -0.3255 -9.687 1.536 -2.379 0.3033 6 -4.21e-2 39.7 0 1 + -dw 0.719e-9 +[Mn+2]+2 = [Mn+2]+2 + -gamma 6 0 + -Vm -1.1 -8.03 4.08 -2.45 1.4 6 8.07 0 -1.51e-2 0.118 + -dw 0.688e-9 +# end modification stimela.dat +H3BO3 = H3BO3 + -Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt + -dw 1.1e-9 +PO4-3 = PO4-3 + -gamma 4 0 + -Vm 1.24 -9.07 9.31 -2.4 5.61 0 0 0 -1.41e-2 1 + -dw 0.612e-9 +F- = F- + -gamma 3.5 0 + -Vm 0.928 1.36 6.27 -2.84 1.84 0 0 -0.318 0 1 + -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 + -dw 1.46e-9 -36 4.352 +Br- = Br- + -gamma 3 0 + -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 + -viscosity -6.98e-2 -0.141 1.78e-2 0.159 7.76e-3 6.25e-2 0.859 + -dw 2.09e-9 208 3.5 0 0.5737 +Zn+2 = Zn+2 + -gamma 5 0 + -Vm -1.96 -10.4 14.3 -2.35 1.46 5 -1.43 24 1.67e-2 1.11 + -dw 0.715e-9 +Cd+2 = Cd+2 + -Vm 1.63 -10.7 1.01 -2.34 1.47 5 0 0 0 1 + -dw 0.717e-9 +Pb+2 = Pb+2 + -Vm -0.0051 -7.7939 8.8134 -2.4568 1.0788 4.5 # supcrt + -dw 0.945e-9 +Cu+2 = Cu+2 + -gamma 6 0 + -Vm -1.13 -10.5 7.29 -2.35 1.61 6 9.78e-2 0 3.42e-3 1 + -dw 0.733e-9 +# redox-uncoupled gases +Hdg = Hdg # H2 + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 +Oxg = Oxg # O2 + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 +Mtg = Mtg # CH4 + -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 +Ntg = Ntg # N2 + -Vm 7 # Pray et al., 1952, IEC 44 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 +H2Sg = H2Sg # H2S + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 +# begin modification stimela.dat +[C-4]H4 = [C-4]H4 # CH4 + -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 +H2[S-2] = H2[S-2] # H2S + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 +# end modification stimela.dat +# aqueous species +H2O = OH- + H+ + -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 + -gamma 3.5 0 + -Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1 + -viscosity -2.26e-2 0.106 2.184e-2 -3.2e-3 0 0.4082 -1.634 # < 5 M Li,Na,KOH + -dw 5.27e-9 478 0.8695 +2 H2O = O2 + 4 H+ + 4 e- + -log_k -86.08 + -delta_h 134.79 kcal + -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt + -dw 2.35e-9 +2 H+ + 2 e- = H2 + -log_k -3.15 + -delta_h -1.759 kcal + -Vm 6.52 0.78 0.12 # supcrt + -dw 5.13e-9 +H+ + Cl- = HCl + -log_k -0.5 + -analytical_expression 0.334 -2.684e-3 1.015 # from Pitzer.dat, up to 15 M HCl, 0 - 50°C + -gamma 0 0.4256 + -viscosity 0.921 -0.765 8.32e-3 8.25e-4 2.53e-3 4.223 +CO3-2 + H+ = HCO3- + -log_k 10.329; -delta_h -3.561 kcal + -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 + -Vm 10.26 -2.92 -12.58 -0.241 2.23 0 -5.49 320 2.83e-2 1.144 + -viscosity -0.6 1.366 -1.216e-2 0e-2 3.139e-2 -1.135 1.253 + -dw 1.18e-9 -190 11.386 +CO3-2 + 2 H+ = CO2 + H2O + -log_k 16.681 + -delta_h -5.738 kcal + -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 + -Vm 7.29 0.92 2.07 -1.23 -1.6 # McBride et al. 2015, JCED 60, 171 + -gamma 0 0.066 # Rumpf et al. 1994, J. Sol. Chem. 23, 431 + -viscosity 6.8e-3 9.03e-2 3.27e-2 0 0 0 0.18 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 +2 CO2 = (CO2)2 # activity correction for CO2 solubility at high P, T + -log_k -1.8 + -analytical_expression 8.68 -0.0103 -2190 + -Vm 14.58 1.84 4.14 -2.46 -3.2 + -viscosity 1.36e-2 0.1806 3.27e-2 0 0 0 0.36 + -dw 1.92e-9 -120 # TK dependence from Cadogan et al. 2014, , JCED 59, 519 +CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O + -log_k 41.071 + -delta_h -61.039 kcal + -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 1.85e-9 +SO4-2 + H+ = HSO4- + -log_k 1.988; -delta_h 3.85 kcal + -analytic -56.889 0.006473 2307.9 19.8858 + -Vm 8.2 9.259 2.1108 -3.1618 1.1748 0 -0.3 15 0 1 + -viscosity 0.5 -6.97e-2 6.07e-2 1e-5 -0.1333 0.4865 0.7987 + -dw 1.22e-9 1000 15 2.861 +HS- = S-2 + H+ + -log_k -12.918 + -delta_h 12.1 kcal + -gamma 5 0 + -dw 0.731e-9 +SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O + -log_k 33.65 + -delta_h -60.14 kcal + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt + -dw 1.73e-9 +HS- + H+ = H2S + -log_k 6.994; -delta_h -5.3 kcal + -analytical -11.17 0.02386 3279 + -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 + -dw 2.1e-9 +2 H2S = (H2S)2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 +H2Sg = HSg- + H+ + -log_k -6.994; -delta_h 5.3 kcal + -analytical_expression 11.17 -0.02386 -3279 + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt + -dw 1.73e-9 +2 H2Sg = (H2Sg)2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 +# begin modification stimela.dat +H2[S-2] = H[S-2]- + H+ + -log_k -6.994; -delta_h 5.3 kcal + -analytical_expression 11.17 -0.02386 -3279 + -gamma 3.5 0 + -Vm 5.0119 4.9799 3.4765 -2.9849 1.441 # supcrt + -dw 1.73e-9 1.73e-9 +2 H2[S-2] = (H2[S-2])2 # activity correction for H2S solubility at high P, T + -analytical_expression 10.227 -0.01384 -2200 + -Vm 36.41 -71.95 0 0 2.58 + -dw 2.1e-9 +# end modification stimela.dat +NO3- + 2 H+ + 2 e- = NO2- + H2O + -log_k 28.57 + -delta_h -43.76 kcal + -gamma 3 0 + -Vm 5.5864 5.859 3.4472 -3.0212 1.1847 # supcrt + -dw 1.91e-9 +2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O + -log_k 207.08 + -delta_h -312.13 kcal + -Vm 7 # Pray et al., 1952, IEC 44 1146 + -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 +NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O + -log_k 119.077 + -delta_h -187.055 kcal + -gamma 2.5 0 + -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 + -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -dw 1.98e-9 203 1.47 2.644 6.81e-2 +# begin modification stimela.dat +# uncommented Amm definitions +AmmH+ = Amm + H+ + -log_k -9.252 + -delta_h 12.48 kcal + -analytic 0.6322 -0.001225 -2835.76 + -Vm 6.69 2.8 3.58 -2.88 1.43 + -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -dw 2.28e-9 +# definition [N-3]H3 +[N-3]H4+ = [N-3]H3 + H+ + -log_k -9.252 + -delta_h 12.48 kcal + -analytic 0.6322 -0.001225 -2835.76 + -Vm 6.69 2.8 3.58 -2.88 1.43 + -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -dw 2.28e-9 +# end modification stimela.dat +NH4+ = NH3 + H+ + -log_k -9.252 + -delta_h 12.48 kcal + -analytic 0.6322 -0.001225 -2835.76 + -Vm 6.69 2.8 3.58 -2.88 1.43 + -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -dw 2.28e-9 +# begin modification stimela.dat +# uncommented Amm definitions +AmmH+ + SO4-2 = AmmHSO4- + -gamma 2.08 -0.0416 + -log_k 1.211; -delta_h 8.56 kJ + -Vm -8.78 0 -36.09 0 -8.60 0 87.62 0 -0.3123 0.1172 + -viscosity 0 0.116 -8.6e-3 0.159 -9.3e-3 0.522 0.627 + -dw 0.9e-9 100 2.1 2 0 +# definition [N-3]H4SO4- +[N-3]H4+ + SO4-2 = [N-3]H4SO4- + -gamma 2.08 -0.0416 + -log_k 1.211; -delta_h 8.56 kJ + -Vm -8.78 0 -36.09 0 -8.60 0 87.62 0 -0.3123 0.1172 + -viscosity 0 0.116 -8.6e-3 0.159 -9.3e-3 0.522 0.627 + -dw 0.9e-9 100 2.1 2 0 +# end modification stimela.dat +NH4+ + SO4-2 = NH4SO4- + -gamma 2.08 -0.0416 + -log_k 1.211; -delta_h 8.56 kJ + -Vm -8.78 0 -36.09 0 -8.60 0 87.62 0 -0.3123 0.1172 + -viscosity 0 0.116 -8.6e-3 0.159 -9.3e-3 0.522 0.627 + -dw 0.9e-9 100 2.1 2 0 +H3BO3 = H2BO3- + H+ + -log_k -9.24 + -delta_h 3.224 kcal +H3BO3 + F- = BF(OH)3- + -log_k -0.4 + -delta_h 1.85 kcal +H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O + -log_k 7.63 + -delta_h 1.618 kcal +H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O + -log_k 13.67 + -delta_h -1.614 kcal +H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O + -log_k 20.28 + -delta_h -1.846 kcal +PO4-3 + H+ = HPO4-2 + -log_k 12.346 + -delta_h -3.53 kcal + -gamma 5 0 + -dw 0.69e-9 + -Vm 3.52 1.09 8.39 -2.82 3.34 0 0 0 0 1 +PO4-3 + 2 H+ = H2PO4- + -log_k 19.553 + -delta_h -4.52 kcal + -gamma 5.4 0 + -Vm 5.58 8.06 12.2 -3.11 1.3 0 0 0 1.62e-2 1 + -dw 0.846e-9 +PO4-3 + 3 H+ = H3PO4 + log_k 21.721 # log_k and delta_h from minteq.v4.dat, NIST46.3 + delta_h -10.1 kJ + -Vm 7.47 12.4 6.29 -3.29 0 +H+ + F- = HF + -log_k 3.18 + -delta_h 3.18 kcal + -analytic -2.033 0.012645 429.01 + -Vm 3.4753 .7042 5.4732 -2.8081 -.0007 # supcrt +H+ + 2 F- = HF2- + -log_k 3.76 + -delta_h 4.55 kcal + -Vm 5.2263 4.9797 3.7928 -2.9849 1.2934 # supcrt +Ca+2 + H2O = CaOH+ + H+ + -log_k -12.78 +Ca+2 + CO3-2 = CaCO3 + -log_k 3.224; -delta_h 3.545 kcal + -analytic -1228.732 -0.29944 35512.75 485.818 + -dw 4.46e-10 # complexes: calc'd with the Pikal formula + -Vm -.243 -8.3748 9.0417 -2.4328 -.03 # supcrt +Ca+2 + CO3-2 + H+ = CaHCO3+ + -log_k 10.91; -delta_h 4.38 kcal + -analytic -6.009 3.377e-2 2044 + -gamma 6 0 + -Vm 30.19 .01 5.75 -2.78 .308 5.4 + -dw 5.06e-10 +Ca+2 + SO4-2 = CaSO4 + -log_k 2.25 + -delta_h 1.325 kcal + -dw 4.71e-10 + -Vm 2.791 -.9666 6.13 -2.739 -.001 # supcrt +Ca+2 + HSO4- = CaHSO4+ + -log_k 1.08 +Ca+2 + PO4-3 = CaPO4- + -log_k 6.459 + -delta_h 3.1 kcal + -gamma 5.4 0 +Ca+2 + HPO4-2 = CaHPO4 + -log_k 2.739 + -delta_h 3.3 kcal +Ca+2 + H2PO4- = CaH2PO4+ + -log_k 1.408 + -delta_h 3.4 kcal + -gamma 5.4 0 +# Ca+2 + F- = CaF+ + # -log_k 0.94 + # -delta_h 4.120 kcal + # -gamma 5.5 0.0 + # -Vm .9846 -5.3773 7.8635 -2.5567 .6911 5.5 # supcrt +Mg+2 + H2O = MgOH+ + H+ + -log_k -11.44 + -delta_h 15.952 kcal + -gamma 6.5 0 +Mg+2 + CO3-2 = MgCO3 + -log_k 2.98 + -delta_h 2.713 kcal + -analytic 0.991 0.00667 + -Vm -0.5837 -9.2067 9.3687 -2.3984 -.03 # supcrt + -dw 4.21e-10 +Mg+2 + H+ + CO3-2 = MgHCO3+ + -log_k 11.399 + -delta_h -2.771 kcal + -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 + -gamma 4 0 + -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt + -dw 4.78e-10 +Mg+2 + SO4-2 = MgSO4 + -gamma 0 0.2 + -log_k 2.42; -delta_h 19 kJ + -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm 8.65 -10.21 29.58 -18.6 1.061 + -viscosity 0.318 -5.4e-4 -3.42e-2 0.708 3.7e-3 0.696 + -dw 4.45e-10 +SO4-2 + MgSO4 = Mg(SO4)2-2 + -gamma 7 0.047 + -log_k 0.52; -delta_h -13.6 kJ + -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm -8.14 -62.2 -15.96 3.29 -3.01 0 150 0 0.153 3.79e-2 + -viscosity -0.169 5e-4 -5.69e-2 0.11 2.03e-3 2.027 -1e-3 + -dw 0.845e-9 -200 8 0 0.965 +Mg+2 + PO4-3 = MgPO4- + -log_k 6.589 + -delta_h 3.1 kcal + -gamma 5.4 0 +Mg+2 + HPO4-2 = MgHPO4 + -log_k 2.87 + -delta_h 3.3 kcal +Mg+2 + H2PO4- = MgH2PO4+ + -log_k 1.513 + -delta_h 3.4 kcal + -gamma 5.4 0 +Mg+2 + F- = MgF+ + -log_k 1.82 + -delta_h 3.2 kcal + -gamma 4.5 0 + -Vm .6494 -6.1958 8.1852 -2.5229 .9706 4.5 # supcrt +# Na+ + OH- = NaOH + # -log_k -14.7 # remove this complex +Na+ + HCO3- = NaHCO3 + -log_k -0.06; -delta_h 21 kJ + -gamma 0 0.2 + -Vm 7.95 0 0 0 0.609 + -viscosity -4e-2 -2.717 1.67e-5 + -dw 6.73e-10 +Na+ + SO4-2 = NaSO4- + -gamma 5.5 0 + -log_k 0.6; -delta_h -14.4 kJ + -analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC + -Vm 1.99 -10.78 21.88 -12.7 1.601 5 32.38 501 1.565e-2 0.2325 + -viscosity 0.2 -5.93e-2 -4e-4 8.46e-3 1.78e-3 2.308 -0.208 + -dw 1.13e-9 -23 8.5 0.392 0.521 +Na+ + HPO4-2 = NaHPO4- + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.2 8.1 13 -3 0.9 0 0 1.62e-2 1 +Na+ + F- = NaF + -log_k -0.24 + -Vm 2.7483 -1.0708 6.1709 -2.7347 -.03 # supcrt +K+ + HCO3- = KHCO3 + -log_k -0.35; -delta_h 12 kJ + -gamma 0 9.4e-3 + -Vm 9.48 0 0 0 -0.542 + -viscosity 0.7 -1.289 9e-2 +K+ + SO4-2 = KSO4- + -gamma 5.4 0.19 + -log_k 0.6; -delta_h -10.4 kJ + -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC + -Vm 13.48 -18.03 61.74 -19.6 2.046 5.4 -17.32 0 0.1522 1.919 + -viscosity -1 1.06 1e-4 -0.464 3.78e-2 0.539 -0.69 + -dw 0.9e-9 63 8.48 0 1.8 +K+ + HPO4-2 = KHPO4- + -log_k 0.29 + -gamma 5.4 0 + -Vm 5.4 8.1 19 -3.1 0.7 0 0 0 1.62e-2 1 +Fe+2 + H2O = FeOH+ + H+ + -log_k -9.5 + -delta_h 13.2 kcal + -gamma 5 0 +Fe+2 + 3 H2O = Fe(OH)3- + 3 H+ + -log_k -31 + -delta_h 30.3 kcal + -gamma 5 0 +Fe+2 + Cl- = FeCl+ + -log_k 0.14 +Fe+2 + CO3-2 = FeCO3 + -log_k 4.38 +Fe+2 + HCO3- = FeHCO3+ + -log_k 2 +Fe+2 + SO4-2 = FeSO4 + -log_k 2.25 + -delta_h 3.23 kcal + -Vm -13 0 123 +Fe+2 + HSO4- = FeHSO4+ + -log_k 1.08 +Fe+2 + 2 HS- = Fe(HS)2 + -log_k 8.95 +Fe+2 + 3 HS- = Fe(HS)3- + -log_k 10.987 +Fe+2 + HPO4-2 = FeHPO4 + -log_k 3.6 +Fe+2 + H2PO4- = FeH2PO4+ + -log_k 2.7 + -gamma 5.4 0 +Fe+2 + F- = FeF+ + -log_k 1 +Fe+2 = Fe+3 + e- + -log_k -13.02 + -delta_h 9.68 kcal + -gamma 9 0 +Fe+3 + H2O = FeOH+2 + H+ + -log_k -2.19 + -delta_h 10.4 kcal + -gamma 5 0 +Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ + -log_k -5.67 + -delta_h 17.1 kcal + -gamma 5.4 0 +Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ + -log_k -12.56 + -delta_h 24.8 kcal +Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ + -log_k -21.6 + -delta_h 31.9 kcal + -gamma 5.4 0 +Fe+2 + 2 H2O = Fe(OH)2 + 2 H+ + -log_k -20.57 + -delta_h 28.565 kcal +2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ + -log_k -2.95 + -delta_h 13.5 kcal +3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ + -log_k -6.3 + -delta_h 14.3 kcal +Fe+3 + Cl- = FeCl+2 + -log_k 1.48 + -delta_h 5.6 kcal + -gamma 5 0 +Fe+3 + 2 Cl- = FeCl2+ + -log_k 2.13 + -gamma 5 0 +Fe+3 + 3 Cl- = FeCl3 + -log_k 1.13 +Fe+3 + SO4-2 = FeSO4+ + -log_k 4.04 + -delta_h 3.91 kcal + -gamma 5 0 +Fe+3 + HSO4- = FeHSO4+2 + -log_k 2.48 +Fe+3 + 2 SO4-2 = Fe(SO4)2- + -log_k 5.38 + -delta_h 4.6 kcal +Fe+3 + HPO4-2 = FeHPO4+ + -log_k 5.43 + -delta_h 5.76 kcal + -gamma 5 0 +Fe+3 + H2PO4- = FeH2PO4+2 + -log_k 5.43 + -gamma 5.4 0 +Fe+3 + F- = FeF+2 + -log_k 6.2 + -delta_h 2.7 kcal + -gamma 5 0 +Fe+3 + 2 F- = FeF2+ + -log_k 10.8 + -delta_h 4.8 kcal + -gamma 5 0 +Fe+3 + 3 F- = FeF3 + -log_k 14 + -delta_h 5.4 kcal +Mn+2 + H2O = MnOH+ + H+ + -log_k -10.59 + -delta_h 14.4 kcal + -gamma 5 0 +Mn+2 + 3 H2O = Mn(OH)3- + 3 H+ + -log_k -34.8 + -gamma 5 0 +Mn+2 + Cl- = MnCl+ + -log_k 0.61 + -gamma 5 0 + -Vm 7.25 -1.08 -25.8 -2.73 3.99 5 0 0 0 1 +Mn+2 + 2 Cl- = MnCl2 + -log_k 0.25 + -Vm 1e-5 0 144 +Mn+2 + 3 Cl- = MnCl3- + -log_k -0.31 + -gamma 5 0 + -Vm 11.8 0 0 0 2.4 0 0 0 3.6e-2 1 +Mn+2 + CO3-2 = MnCO3 + -log_k 4.9 +Mn+2 + HCO3- = MnHCO3+ + -log_k 1.95 + -gamma 5 0 +Mn+2 + SO4-2 = MnSO4 + -log_k 2.25 + -delta_h 3.37 kcal + -Vm -1.31 -1.83 62.3 -2.7 +Mn+2 + 2 NO3- = Mn(NO3)2 + -log_k 0.6 + -delta_h -0.396 kcal + -Vm 6.16 0 29.4 0 0.9 +Mn+2 + F- = MnF+ + -log_k 0.84 + -gamma 5 0 +Mn+2 = Mn+3 + e- + -log_k -25.51 + -delta_h 25.8 kcal + -gamma 9 0 +Al+3 + H2O = AlOH+2 + H+ + -log_k -5 + -delta_h 11.49 kcal + -analytic -38.253 0 -656.27 14.327 + -gamma 5.4 0 + -Vm -1.46 -11.4 10.2 -2.31 1.67 5.4 0 0 0 1 # Barta and Hepler, 1986, Can. J. Chem. 64, 353 +Al+3 + 2 H2O = Al(OH)2+ + 2 H+ + -log_k -10.1 + -delta_h 26.9 kcal + -gamma 5.4 0 + -analytic 88.5 0 -9391.6 -27.121 +Al+3 + 3 H2O = Al(OH)3 + 3 H+ + -log_k -16.9 + -delta_h 39.89 kcal + -analytic 226.374 0 -18247.8 -73.597 +Al+3 + 4 H2O = Al(OH)4- + 4 H+ + -log_k -22.7 + -delta_h 42.3 kcal + -analytic 51.578 0 -11168.9 -14.865 + -gamma 4.5 0 + -dw 1.04e-9 # Mackin & Aller, 1983, GCA 47, 959 +Al+3 + SO4-2 = AlSO4+ + -log_k 3.5 + -delta_h 2.29 kcal + -gamma 4.5 0 +Al+3 + 2 SO4-2 = Al(SO4)2- + -log_k 5 + -delta_h 3.11 kcal + -gamma 4.5 0 +Al+3 + HSO4- = AlHSO4+2 + -log_k 0.46 +Al+3 + F- = AlF+2 + -log_k 7 + -delta_h 1.06 kcal + -gamma 5.4 0 +Al+3 + 2 F- = AlF2+ + -log_k 12.7 + -delta_h 1.98 kcal + -gamma 5.4 0 +Al+3 + 3 F- = AlF3 + -log_k 16.8 + -delta_h 2.16 kcal +Al+3 + 4 F- = AlF4- + -log_k 19.4 + -delta_h 2.2 kcal + -gamma 4.5 0 +# Al+3 + 5 F- = AlF5-2 + # log_k 20.6 + # delta_h 1.840 kcal +# Al+3 + 6 F- = AlF6-3 + # log_k 20.6 + # delta_h -1.670 kcal +H4SiO4 = H3SiO4- + H+ + -log_k -9.83 + -delta_h 6.12 kcal + -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669 + -gamma 4 0 + -Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt + H2O in a1 +H4SiO4 = H2SiO4-2 + 2 H+ + -log_k -23 + -delta_h 17.6 kcal + -analytic -294.0184 -0.07265 11204.49 108.18466 -1119669 + -gamma 5.4 0 +H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O + -log_k 30.18 + -delta_h -16.26 kcal + -gamma 5 0 + -Vm 8.5311 13.0492 .6211 -3.3185 2.7716 # supcrt +Ba+2 + H2O = BaOH+ + H+ + -log_k -13.47 + -gamma 5 0 +Ba+2 + CO3-2 = BaCO3 + -log_k 2.71 + -delta_h 3.55 kcal + -analytic 0.113 0.008721 + -Vm .2907 -7.0717 8.5295 -2.4867 -.03 # supcrt +Ba+2 + HCO3- = BaHCO3+ + -log_k 0.982 + -delta_h 5.56 kcal + -analytic -3.0938 0.013669 +Ba+2 + SO4-2 = BaSO4 + -log_k 2.7 +Sr+2 + H2O = SrOH+ + H+ + -log_k -13.29 + -gamma 5 0 +Sr+2 + CO3-2 + H+ = SrHCO3+ + -log_k 11.509 + -delta_h 2.489 kcal + -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 + -gamma 5.4 0 +Sr+2 + CO3-2 = SrCO3 + -log_k 2.81 + -delta_h 5.22 kcal + -analytic -1.019 0.012826 + -Vm -.1787 -8.2177 8.9799 -2.4393 -.03 # supcrt +Sr+2 + SO4-2 = SrSO4 + -log_k 2.29 + -delta_h 2.08 kcal + -Vm 6.791 -.9666 6.13 -2.739 -.001 # celestite solubility +Li+ + SO4-2 = LiSO4- + -log_k 0.64 + -gamma 5 0 +Cu+2 + e- = Cu+ + -log_k 2.72 + -delta_h 1.65 kcal + -gamma 2.5 0 +Cu+ + 2 Cl- = CuCl2- + -log_k 5.5 + -delta_h -0.42 kcal + -gamma 4 0 +Cu+ + 3 Cl- = CuCl3-2 + -log_k 5.7 + -delta_h 0.26 kcal + -gamma 5 0 +Cu+2 + CO3-2 = CuCO3 + -log_k 6.73 +Cu+2 + 2 CO3-2 = Cu(CO3)2-2 + -log_k 9.83 +Cu+2 + HCO3- = CuHCO3+ + -log_k 2.7 +Cu+2 + Cl- = CuCl+ + -log_k 0.43 + -delta_h 8.65 kcal + -gamma 4 0 + -Vm -4.19 0 30.4 0 0 4 0 0 1.94e-2 1 +Cu+2 + 2 Cl- = CuCl2 + -log_k 0.16 + -delta_h 10.56 kcal + -Vm 26.8 0 -136 +Cu+2 + 3 Cl- = CuCl3- + -log_k -2.29 + -delta_h 13.69 kcal + -gamma 4 0 +Cu+2 + 4 Cl- = CuCl4-2 + -log_k -4.59 + -delta_h 17.78 kcal + -gamma 5 0 +Cu+2 + F- = CuF+ + -log_k 1.26 + -delta_h 1.62 kcal +Cu+2 + H2O = CuOH+ + H+ + -log_k -8 + -gamma 4 0 +Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ + -log_k -13.68 +Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ + -log_k -26.9 +Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ + -log_k -39.6 +2 Cu+2 + 2 H2O = Cu2(OH)2+2 + 2 H+ + -log_k -10.359 + -delta_h 17.539 kcal + -analytical 2.497 0 -3833 +Cu+2 + SO4-2 = CuSO4 + -log_k 2.31 + -delta_h 1.22 kcal + -Vm 5.21 0 -14.6 +Cu+2 + 3 HS- = Cu(HS)3- + -log_k 25.9 +Zn+2 + H2O = ZnOH+ + H+ + -log_k -8.96 + -delta_h 13.4 kcal +Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ + -log_k -16.9 +Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ + -log_k -28.4 +Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ + -log_k -41.2 +Zn+2 + Cl- = ZnCl+ + -log_k 0.43 + -delta_h 7.79 kcal + -gamma 4 0 + -Vm 14.8 -3.91 -105.7 -2.62 0.203 4 0 0 -5.05e-2 1 +Zn+2 + 2 Cl- = ZnCl2 + -log_k 0.45 + -delta_h 8.5 kcal + -Vm -10.1 4.57 241 -2.97 -1e-3 +Zn+2 + 3 Cl- = ZnCl3- + -log_k 0.5 + -delta_h 9.56 kcal + -gamma 4 0 + -Vm 0.772 15.5 -0.349 -3.42 1.25 0 -7.77 0 0 1 +Zn+2 + 4 Cl- = ZnCl4-2 + -log_k 0.2 + -delta_h 10.96 kcal + -gamma 5 0 + -Vm 28.42 28 -5.26 -3.94 2.67 0 0 0 4.62e-2 1 +Zn+2 + H2O + Cl- = ZnOHCl + H+ + -log_k -7.48 +Zn+2 + 2 HS- = Zn(HS)2 + -log_k 14.94 +Zn+2 + 3 HS- = Zn(HS)3- + -log_k 16.1 +Zn+2 + CO3-2 = ZnCO3 + -log_k 5.3 +Zn+2 + 2 CO3-2 = Zn(CO3)2-2 + -log_k 9.63 +Zn+2 + HCO3- = ZnHCO3+ + -log_k 2.1 +Zn+2 + SO4-2 = ZnSO4 + -log_k 2.37 + -delta_h 1.36 kcal + -Vm 2.51 0 18.8 +Zn+2 + 2 SO4-2 = Zn(SO4)2-2 + -log_k 3.28 + -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 +Zn+2 + Br- = ZnBr+ + -log_k -0.58 +Zn+2 + 2 Br- = ZnBr2 + -log_k -0.98 +Zn+2 + F- = ZnF+ + -log_k 1.15 + -delta_h 2.22 kcal +Cd+2 + H2O = CdOH+ + H+ + -log_k -10.08 + -delta_h 13.1 kcal +Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ + -log_k -20.35 +Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ + -log_k -33.3 +Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ + -log_k -47.35 +2 Cd+2 + H2O = Cd2OH+3 + H+ + -log_k -9.39 + -delta_h 10.9 kcal +Cd+2 + H2O + Cl- = CdOHCl + H+ + -log_k -7.404 + -delta_h 4.355 kcal +Cd+2 + NO3- = CdNO3+ + -log_k 0.4 + -delta_h -5.2 kcal + -Vm 5.95 0 -1.11 0 2.67 7 0 0 1.53e-2 1 +Cd+2 + Cl- = CdCl+ + -log_k 1.98 + -delta_h 0.59 kcal + -Vm 5.69 0 -30.2 0 0 6 0 0 0.112 1 +Cd+2 + 2 Cl- = CdCl2 + -log_k 2.6 + -delta_h 1.24 kcal + -Vm 5.53 +Cd+2 + 3 Cl- = CdCl3- + -log_k 2.4 + -delta_h 3.9 kcal + -Vm 4.6 0 83.9 0 0 0 0 0 0 1 +Cd+2 + CO3-2 = CdCO3 + -log_k 2.9 +Cd+2 + 2 CO3-2 = Cd(CO3)2-2 + -log_k 6.4 +Cd+2 + HCO3- = CdHCO3+ + -log_k 1.5 +Cd+2 + SO4-2 = CdSO4 + -log_k 2.46 + -delta_h 1.08 kcal + -Vm 10.4 0 57.9 +Cd+2 + 2 SO4-2 = Cd(SO4)2-2 + -log_k 3.5 + -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 +Cd+2 + Br- = CdBr+ + -log_k 2.17 + -delta_h -0.81 kcal +Cd+2 + 2 Br- = CdBr2 + -log_k 2.9 +Cd+2 + F- = CdF+ + -log_k 1.1 +Cd+2 + 2 F- = CdF2 + -log_k 1.5 +Cd+2 + HS- = CdHS+ + -log_k 10.17 +Cd+2 + 2 HS- = Cd(HS)2 + -log_k 16.53 +Cd+2 + 3 HS- = Cd(HS)3- + -log_k 18.71 +Cd+2 + 4 HS- = Cd(HS)4-2 + -log_k 20.9 +Pb+2 + H2O = PbOH+ + H+ + -log_k -7.71 +Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ + -log_k -17.12 +Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ + -log_k -28.06 +Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ + -log_k -39.7 +2 Pb+2 + H2O = Pb2OH+3 + H+ + -log_k -6.36 +Pb+2 + Cl- = PbCl+ + -log_k 1.6 + -delta_h 4.38 kcal + -Vm 2.8934 -.7165 6.0316 -2.7494 .1281 6 # supcrt +Pb+2 + 2 Cl- = PbCl2 + -log_k 1.8 + -delta_h 1.08 kcal + -Vm 6.5402 8.1879 2.5318 -3.1175 -.03 # supcrt +Pb+2 + 3 Cl- = PbCl3- + -log_k 1.7 + -delta_h 2.17 kcal + -Vm 11.0396 19.1743 -1.7863 -3.5717 .7356 # supcrt +Pb+2 + 4 Cl- = PbCl4-2 + -log_k 1.38 + -delta_h 3.53 kcal + -Vm 16.415 32.2997 -6.9452 -4.1143 2.3118 # supcrt +Pb+2 + CO3-2 = PbCO3 + -log_k 7.24 +Pb+2 + 2 CO3-2 = Pb(CO3)2-2 + -log_k 10.64 +Pb+2 + HCO3- = PbHCO3+ + -log_k 2.9 +Pb+2 + SO4-2 = PbSO4 + -log_k 2.75 +Pb+2 + 2 SO4-2 = Pb(SO4)2-2 + -log_k 3.47 +Pb+2 + 2 HS- = Pb(HS)2 + -log_k 15.27 +Pb+2 + 3 HS- = Pb(HS)3- + -log_k 16.57 +3 Pb+2 + 4 H2O = Pb3(OH)4+2 + 4 H+ + -log_k -23.88 + -delta_h 26.5 kcal +Pb+2 + NO3- = PbNO3+ + -log_k 1.17 +Pb+2 + Br- = PbBr+ + -log_k 1.77 + -delta_h 2.88 kcal +Pb+2 + 2 Br- = PbBr2 + -log_k 1.44 +Pb+2 + F- = PbF+ + -log_k 1.25 +Pb+2 + 2 F- = PbF2 + -log_k 2.56 +Pb+2 + 3 F- = PbF3- + -log_k 3.42 +Pb+2 + 4 F- = PbF4-2 + -log_k 3.1 + +PHASES +Calcite + CaCO3 = CO3-2 + Ca+2 + -log_k -8.48 + -delta_h -2.297 kcal +# begin modification stimela.dat +# analytic not modified, kept as in version 3.6.2, which is in accordance to Standard Methods 2330 (2016) +# -analytic 17.118 -0.046528 -3496 # 0 - 250°C, Ellis, 1959, Plummer and Busenberg, 1982 + -analytic -171.9065 -0.077993 2839.319 71.595 # changed in version 3.7.0, March 10 2021 +# end modification stimela.dat + -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3) +Aragonite + CaCO3 = CO3-2 + Ca+2 + -log_k -8.336 + -delta_h -2.589 kcal + -analytic -171.9773 -0.077993 2903.293 71.595 + -Vm 34.04 +# begin modification stimela.dat +# adding Vaterite from Aragonite according Standard Methods 2330 (2010) +Vaterite + CaCO3 = CO3-2 + Ca+2 + -log_k -8.336 # overruled by -analytic + -delta_h -2.589 kcal # overruled by -analytic + -analytic -172.1295 -0.077993 3074.688 71.595 + -Vm 39.41 cm3/mol # MW (100.09 g/mol) / rho (2.54 g/cm3) +# end modification stimela.dat +Dolomite + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + -log_k -17.09 + -delta_h -9.436 kcal + -analytic 31.283 -0.0898 -6438 # 25°C: Hemingway and Robie, 1994; 50–175°C: Bénézeth et al., 2018, GCA 224, 262-275 + -Vm 64.5 +Siderite + FeCO3 = Fe+2 + CO3-2 + -log_k -10.89 + -delta_h -2.48 kcal + -Vm 29.2 +Rhodochrosite + MnCO3 = Mn+2 + CO3-2 + -log_k -11.13 + -delta_h -1.43 kcal + -Vm 31.1 +Strontianite + SrCO3 = Sr+2 + CO3-2 + -log_k -9.271 + -delta_h -0.4 kcal + -analytic 155.0305 0 -7239.594 -56.58638 + -Vm 39.69 +Witherite + BaCO3 = Ba+2 + CO3-2 + -log_k -8.562 + -delta_h 0.703 kcal + -analytic 607.642 0.121098 -20011.25 -236.4948 + -Vm 46 +Gypsum + CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O + -log_k -4.58 + -delta_h -0.109 kcal + -analytic 68.2401 0 -3221.51 -25.0627 + -analytical_expression 93.7 5.99E-3 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 + -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) +Anhydrite + CaSO4 = Ca+2 + SO4-2 + -log_k -4.36 + -delta_h -1.71 kcal + -analytic 84.9 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323 + -Vm 46.1 # 136.14 / 2.95 +Celestite + SrSO4 = Sr+2 + SO4-2 + -log_k -6.63 + -delta_h -4.037 kcal + # -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 + -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464 + -Vm 46.4 +Barite + BaSO4 = Ba+2 + SO4-2 + -log_k -9.97 + -delta_h 6.35 kcal + -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 + -Vm 52.9 +Arcanite + K2SO4 = SO4-2 + 2 K+ + log_k -1.776; -delta_h 5 kcal + -analytical_expression 674.142 0.30423 -18037 -280.236 0 -1.44055e-4 # ref. 3 + # Note, the Linke and Seidell data may give subsaturation in other xpt's, SI = -0.06 + -Vm 65.5 +Mirabilite + Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O + -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 + Vm 216 +Thenardite + Na2SO4 = 2 Na+ + SO4-2 + -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 + -Vm 52.9 +Epsomite + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -1.74; -delta_h 10.57 kJ + -analytical_expression -3.59 6.21e-3 + Vm 147 +Hexahydrite + MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O + log_k -1.57; -delta_h 2.35 kJ + -analytical_expression -1.978 1.38e-3 + Vm 132 +Kieserite + MgSO4:H2O = Mg+2 + SO4-2 + H2O + log_k -1.16; -delta_h 9.22 kJ + -analytical_expression 29.485 -5.07e-2 0 -2.662 -7.95e5 + Vm 53.8 +Hydroxyapatite + Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 + -log_k -3.421 + -delta_h -36.155 kcal + -Vm 128.9 +Fluorite + CaF2 = Ca+2 + 2 F- + -log_k -10.6 + -delta_h 4.69 kcal + -analytic 66.348 0 -4298.2 -25.271 + -Vm 15.7 +SiO2(a) + SiO2 + 2 H2O = H4SiO4 + -log_k -2.71 + -delta_h 3.34 kcal + -analytic -0.26 0 -731 +Chalcedony + SiO2 + 2 H2O = H4SiO4 + -log_k -3.55 + -delta_h 4.72 kcal + -analytic -0.09 0 -1032 + -Vm 23.1 +Quartz + SiO2 + 2 H2O = H4SiO4 + -log_k -3.98 + -delta_h 5.99 kcal + -analytic 0.41 0 -1309 + -Vm 22.67 +Gibbsite + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + -log_k 8.11 + -delta_h -22.8 kcal + -Vm 32.22 +Al(OH)3(a) + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + -log_k 10.8 + -delta_h -26.5 kcal +Kaolinite + Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 + -log_k 7.435 + -delta_h -35.3 kcal + -Vm 99.35 +Albite + NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 + -log_k -18.002 + -delta_h 25.896 kcal + -Vm 101.31 +Anorthite + CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 + -log_k -19.714 + -delta_h 11.58 kcal + -Vm 105.05 +K-feldspar + KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 + -log_k -20.573 + -delta_h 30.82 kcal + -Vm 108.15 +K-mica + KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 + -log_k 12.703 + -delta_h -59.376 kcal +Chlorite(14A) + Mg5Al2Si3O10(OH)8 + 16 H+ = 5 Mg+2 + 2 Al+3 + 3 H4SiO4 + 6 H2O + -log_k 68.38 + -delta_h -151.494 kcal +Ca-Montmorillonite + Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165 Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ + -log_k -45.027 + -delta_h 58.373 kcal + -Vm 156.16 +Talc + Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 + -log_k 21.399 + -delta_h -46.352 kcal + -Vm 68.34 +Illite + K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2 H2O = 0.6 K+ + 0.25 Mg+2 + 2.3 Al(OH)4- + 3.5 H4SiO4 + 1.2 H+ + -log_k -40.267 + -delta_h 54.684 kcal + -Vm 141.48 +Chrysotile + Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 + -log_k 32.2 + -delta_h -46.8 kcal + -analytic 13.248 0 10217.1 -6.1894 + -Vm 106.5808 # 277.11/2.60 +Sepiolite + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 + -log_k 15.76 + -delta_h -10.7 kcal + -Vm 143.765 +Sepiolite(d) + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 + -log_k 18.66 +Hematite + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + -log_k -4.008 + -delta_h -30.845 kcal + -Vm 30.39 +Goethite + FeOOH + 3 H+ = Fe+3 + 2 H2O + -log_k -1 + -delta_h -14.48 kcal + -Vm 20.84 +Fe(OH)3(a) + Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O + -log_k 4.891 +Pyrite + FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- + -log_k -18.479 + -delta_h 11.3 kcal + -Vm 23.48 +FeS(ppt) + FeS + H+ = Fe+2 + HS- + -log_k -3.915 +Mackinawite + FeS + H+ = Fe+2 + HS- + -log_k -4.648 + -Vm 20.45 +Sulfur + S + 2 H+ + 2 e- = H2S + -log_k 4.882 + -delta_h -9.5 kca +Vivianite + Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O + -log_k -36 +Pyrolusite # H2O added for surface calc's + MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O + -log_k 41.38 + -delta_h -65.11 kcal +Hausmannite + Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O + -log_k 61.03 + -delta_h -100.64 kcal +Manganite + MnOOH + 3 H+ + e- = Mn+2 + 2 H2O + -log_k 25.34 +Pyrochroite + Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O + -log_k 15.2 +Halite + NaCl = Cl- + Na+ + log_k 1.57 + -delta_h 1.37 + #-analytic -713.4616 -.1201241 37302.21 262.4583 -2106915. + -Vm 27.1 +Sylvite + KCl = K+ + Cl- + log_k 0.9 + -delta_h 8.5 + # -analytic 3.984 0.0 -919.55 + Vm 37.5 +# Gases... +CO2(g) + CO2 = CO2 + -log_k -1.468 + -delta_h -4.776 kcal + -analytic 10.5624 -2.3547e-2 -3972.8 0 5.8746e5 1.9194e-5 + -T_c 304.2 # critical T, K + -P_c 72.86 # critical P, atm + -Omega 0.225 # acentric factor +H2O(g) + H2O = H2O + -log_k 1.506; delta_h -44.03 kJ + -T_c 647.3; -P_c 217.6; -Omega 0.344 + -analytic -16.5066 -2.0013E-3 2710.7 3.7646 0 2.24E-6 +O2(g) + O2 = O2 + -log_k -2.8983 + -analytic -7.5001 7.8981e-3 0 0 2.0027e5 + -T_c 154.6; -P_c 49.8; -Omega 0.021 +H2(g) + H2 = H2 + -log_k -3.105 + -delta_h -4.184 kJ + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + -T_c 33.2; -P_c 12.8; -Omega -0.225 +N2(g) + N2 = N2 + -log_k -3.1864 + -analytic -58.453 1.818e-3 3199 17.909 -27460 + -T_c 126.2; -P_c 33.5; -Omega 0.039 +H2S(g) + H2S = H+ + HS- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2; -P_c 88.2; -Omega 0.1 +CH4(g) + CH4 = CH4 + -log_k -2.8 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -T_c 190.6; -P_c 45.4; -Omega 0.008 +# begin modification stimela.dat +# uncommented Amm definitions +Amm(g) + Amm = Amm + -log_k 1.7966 + -analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192 + -T_c 405.6; -P_c 111.3; -Omega 0.25 +# end modification stimela.dat +NH3(g) + NH3 = NH3 + -log_k 1.7966 + -analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192 + -T_c 405.6; -P_c 111.3; -Omega 0.25 +# redox-uncoupled gases +Oxg(g) + Oxg = Oxg + -analytic -7.5001 7.8981e-3 0 0 2.0027e5 + -T_c 154.6; -P_c 49.8; -Omega 0.021 +Hdg(g) + Hdg = Hdg + -analytic -9.3114 4.6473e-3 -49.335 1.4341 1.2815e5 + -T_c 33.2; -P_c 12.8; -Omega -0.225 +Ntg(g) + Ntg = Ntg + -analytic -58.453 1.818e-3 3199 17.909 -27460 + T_c 126.2; -P_c 33.5; -Omega 0.039 +Mtg(g) + Mtg = Mtg + -log_k -2.8 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -T_c 190.6; -P_c 45.4; -Omega 0.008 +H2Sg(g) + H2Sg = H+ + HSg- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2; -P_c 88.2; -Omega 0.1 +# begin modification stimela.dat +# uniform notation of elements in redox-uncoupled gases +[N-3]H3(g) + [N-3]H3 = [N-3]H3 + -log_k 1.7966 + -analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192 + -T_c 405.6; -P_c 111.3; -Omega 0.25 +[C-4]H4(g) + [C-4]H4 = [C-4]H4 + -log_k -2.8 + -analytic 10.44 -7.65e-3 -6669 0 1.014e6 # CH4 solubilities 25 - 100°C + -T_c 190.6; -P_c 45.4; -Omega 0.008 +H2[S-2](g) + H2[S-2] = H+ + H[S-2]- + log_k -7.93 + -delta_h 9.1 + -analytic -45.07 -0.02418 0 17.9205 # H2S solubilities, 0 - 300°C, 1 - 987 atm, Jiang et al., 2020, CG 555, 119816 + -T_c 373.2; -P_c 88.2; -Omega 0.1 +# end modification stimela.dat +Melanterite + FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 + -log_k -2.209 + -delta_h 4.91 kcal + -analytic 1.447 -0.004153 0 0 -214949 +Alunite + KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O + -log_k -1.4 + -delta_h -50.25 kcal +Jarosite-K + KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2 + -log_k -9.21 + -delta_h -31.28 kcal +Zn(OH)2(e) + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + -log_k 11.5 +Smithsonite + ZnCO3 = Zn+2 + CO3-2 + -log_k -10 + -delta_h -4.36 kcal +Sphalerite + ZnS + H+ = Zn+2 + HS- + -log_k -11.618 + -delta_h 8.25 kcal +Willemite 289 + Zn2SiO4 + 4 H+ = 2 Zn+2 + H4SiO4 + -log_k 15.33 + -delta_h -33.37 kcal +Cd(OH)2 + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + -log_k 13.65 +Otavite 315 + CdCO3 = Cd+2 + CO3-2 + -log_k -12.1 + -delta_h -0.019 kcal +CdSiO3 328 + CdSiO3 + H2O + 2 H+ = Cd+2 + H4SiO4 + -log_k 9.06 + -delta_h -16.63 kcal +CdSO4 329 + CdSO4 = Cd+2 + SO4-2 + -log_k -0.1 + -delta_h -14.74 kcal +Cerussite 365 + PbCO3 = Pb+2 + CO3-2 + -log_k -13.13 + -delta_h 4.86 kcal +Anglesite 384 + PbSO4 = Pb+2 + SO4-2 + -log_k -7.79 + -delta_h 2.15 kcal +Pb(OH)2 389 + Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O + -log_k 8.15 + -delta_h -13.99 kcal +GAS_BINARY_PARAMETERS +H2O(g) CO2(g) 0.19 +H2O(g) H2S(g) 0.19 +H2O(g) H2Sg(g) 0.19 +H2O(g) CH4(g) 0.49 +H2O(g) Mtg(g) 0.49 +H2O(g) Methane(g) 0.49 +H2O(g) N2(g) 0.49 +H2O(g) Ntg(g) 0.49 +H2O(g) Ethane(g) 0.49 +H2O(g) Propane(g) 0.55 +# begin modification stimela.dat +# define for added redox-uncoupled gases +H2O(g) H2[S-2](g) 0.19 +H2O(g) [C-4]H4(g) 0.49 +# end modification stimela.dat + +EXCHANGE_MASTER_SPECIES + X X- +EXCHANGE_SPECIES + X- = X- + -log_k 0 + + Na+ + X- = NaX + -log_k 0 + -gamma 4.08 0.082 + + K+ + X- = KX + -log_k 0.7 + -gamma 3.5 0.015 + -delta_h -4.3 # Jardine & Sparks, 1984 + + Li+ + X- = LiX + -log_k -0.08 + -gamma 6 0 + -delta_h 1.4 # Merriam & Thomas, 1956 + +# !!!!! +# H+ + X- = HX +# -log_k 1.0 +# -gamma 9.0 0 + +# begin modification stimela.dat +# uncommented Amm definitions + AmmH+ + X- = AmmHX + -log_k 0.6 + -gamma 2.5 0 + -delta_h -2.4 # Laudelout et al., 1968 +# definition [N-3]H4X + -log_k 0.6 + -gamma 2.5 0 + -delta_h -2.4 # Laudelout et al., 1968 +# end modification stimela.dat + NH4+ + X- = NH4X + -log_k 0.6 + -gamma 2.5 0 + -delta_h -2.4 # Laudelout et al., 1968 + + Ca+2 + 2 X- = CaX2 + -log_k 0.8 + -gamma 5 0.165 + -delta_h 7.2 # Van Bladel & Gheyl, 1980 + + Mg+2 + 2 X- = MgX2 + -log_k 0.6 + -gamma 5.5 0.2 + -delta_h 7.4 # Laudelout et al., 1968 + + Sr+2 + 2 X- = SrX2 + -log_k 0.91 + -gamma 5.26 0.121 + -delta_h 5.5 # Laudelout et al., 1968 + + Ba+2 + 2 X- = BaX2 + -log_k 0.91 + -gamma 4 0.153 + -delta_h 4.5 # Laudelout et al., 1968 + + Mn+2 + 2 X- = MnX2 + -log_k 0.52 + -gamma 6 0 + + Fe+2 + 2 X- = FeX2 + -log_k 0.44 + -gamma 6 0 + + Cu+2 + 2 X- = CuX2 + -log_k 0.6 + -gamma 6 0 + + Zn+2 + 2 X- = ZnX2 + -log_k 0.8 + -gamma 5 0 + + Cd+2 + 2 X- = CdX2 + -log_k 0.8 + -gamma 0 0 + + Pb+2 + 2 X- = PbX2 + -log_k 1.05 + -gamma 0 0 + + Al+3 + 3 X- = AlX3 + -log_k 0.41 + -gamma 9 0 + + AlOH+2 + 2 X- = AlOHX2 + -log_k 0.89 + -gamma 0 0 + +SURFACE_MASTER_SPECIES + Hfo_s Hfo_sOH + Hfo_w Hfo_wOH +SURFACE_SPECIES +# All surface data from +# Dzombak and Morel, 1990 +# +# +# Acid-base data from table 5.7 +# +# strong binding site--Hfo_s, + + Hfo_sOH = Hfo_sOH + -log_k 0 + + Hfo_sOH + H+ = Hfo_sOH2+ + -log_k 7.29 # = pKa1,int + + Hfo_sOH = Hfo_sO- + H+ + -log_k -8.93 # = -pKa2,int + +# weak binding site--Hfo_w + + Hfo_wOH = Hfo_wOH + -log_k 0 + + Hfo_wOH + H+ = Hfo_wOH2+ + -log_k 7.29 # = pKa1,int + + Hfo_wOH = Hfo_wO- + H+ + -log_k -8.93 # = -pKa2,int +############################################### +# CATIONS # +############################################### +# +# Cations from table 10.1 or 10.5 +# +# Calcium + Hfo_sOH + Ca+2 = Hfo_sOHCa+2 + -log_k 4.97 + + Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ + -log_k -5.85 +# Strontium + Hfo_sOH + Sr+2 = Hfo_sOHSr+2 + -log_k 5.01 + + Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ + -log_k -6.58 + + Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2 H+ + -log_k -17.6 +# Barium + Hfo_sOH + Ba+2 = Hfo_sOHBa+2 + -log_k 5.46 + + Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ + -log_k -7.2 # table 10.5 +# +# Cations from table 10.2 +# +# Cadmium + Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ + -log_k 0.47 + + Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ + -log_k -2.91 +# Zinc + Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ + -log_k 0.99 + + Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ + -log_k -1.99 +# Copper + Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ + -log_k 2.89 + + Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ + -log_k 0.6 # table 10.5 +# Lead + Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ + -log_k 4.65 + + Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ + -log_k 0.3 # table 10.5 +# +# Derived constants table 10.5 +# +# Magnesium + Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ + -log_k -4.6 +# Manganese + Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ + -log_k -0.4 # table 10.5 + + Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ + -log_k -3.5 # table 10.5 +# Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, EST 36, 3096 + Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ + -log_k -0.95 +# Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M + Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ + -log_k -2.98 + + Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2 H+ + -log_k -11.55 +############################################### +# ANIONS # +############################################### +# +# Anions from table 10.6 +# +# Phosphate + Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O + -log_k 31.29 + + Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O + -log_k 25.39 + + Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O + -log_k 17.72 +# +# Anions from table 10.7 +# +# Borate + Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O + -log_k 0.62 +# +# Anions from table 10.8 +# +# Sulfate + Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O + -log_k 7.78 + + Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 + -log_k 0.79 +# +# Derived constants table 10.10 +# + Hfo_wOH + F- + H+ = Hfo_wF + H2O + -log_k 8.7 + + Hfo_wOH + F- = Hfo_wOHF- + -log_k 1.6 +# +# Carbonate: Van Geen et al., 1994 reoptimized for D&M model +# + Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O + -log_k 12.56 + + Hfo_wOH + CO3-2 + 2 H+ = Hfo_wHCO3 + H2O + -log_k 20.62 +# +# Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research 33, 3413-3422. +# + Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O ; log_K 4.28 + Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O; log_K -3.22 + Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2 H+ + H2O; log_K -11.69 + +MEAN_GAMMAS +CaCl2 Ca+2 1 Cl- 2 +CaSO4 Ca+2 1 SO4-2 1 +CaCO3 Ca+2 1 CO3-2 1 +Ca(OH)2 Ca+2 1 OH- 2 +MgCl2 Mg+2 1 Cl- 2 +MgSO4 Mg+2 1 SO4-2 1 +MgCO3 Mg+2 1 CO3-2 1 +Mg(OH)2 Mg+2 1 OH- 2 +NaCl Na+ 1 Cl- 1 +Na2SO4 Na+ 2 SO4-2 1 +NaHCO3 Na+ 1 HCO3- 1 +Na2CO3 Na+ 2 CO3-2 1 +NaOH Na+ 1 OH- 1 +KCl K+ 1 Cl- 1 +K2SO4 K+ 2 SO4-2 1 +HCO3 K+ 1 HCO3- 1 +K2CO3 K+ 2 CO3-2 1 +KOH K+ 1 OH- 1 +HCl H+ 1 Cl- 1 +H2SO4 H+ 2 SO4-2 1 +HBr H+ 1 Br- 1 + +RATES + +########### +#Quartz +########### +# +####### +# Example of quartz kinetic rates block: +# KINETICS +# Quartz +# -m0 158.8 # 90 % Qu +# -parms 0.146 1.5 +# -step 3.1536e8 in 10 +# -tol 1e-12 + +Quartz + -start +1 REM Specific rate k from Rimstidt and Barnes, 1980, GCA 44,1683 +2 REM k = 10^-13.7 mol/m2/s (25 C), Ea = 90 kJ/mol +3 REM sp. rate * parm(2) due to salts (Dove and Rimstidt, MSA Rev. 29, 259) +4 REM PARM(1) = Specific area of Quartz, m^2/mol Quartz +5 REM PARM(2) = salt correction: (1 + 1.5 * c_Na (mM)), < 35 + +10 dif_temp = 1/TK - 1/298 +20 pk_w = 13.7 + 4700.4 * dif_temp +40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) +# Integrate... +50 SAVE moles * TIME + -end + +########### +#K-feldspar +########### +# +# Sverdrup and Warfvinge, 1995, Estimating field weathering rates +# using laboratory kinetics: Reviews in mineralogy and geochemistry, +# vol. 31, p. 485-541. +# +# As described in: +# Appelo and Postma, 2005, Geochemistry, groundwater +# and pollution, 2nd Edition: A.A. Balkema Publishers, +# p. 162-163 and 395-399. +# +# Assume soil is 10% K-feldspar by mass in 1 mm spheres (radius 0.05 mm) +# Assume density of rock and Kspar is 2600 kg/m^3 = 2.6 kg/L +# GFW Kspar 0.278 kg/mol +# +# Moles of Kspar per liter pore space calculation: +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Kspar per liter pore space 6.07x0.1 = 0.607 kg Kspar/L pore space +# Moles of Kspar per liter pore space 0.607/0.278 = 2.18 mol Kspar/L pore space +# +# Specific area calculation: +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Kspar/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Kspar/sphere +# Moles of Kspar in sphere 1.36e-9/0.278 = 4.90e-9 mol Kspar/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Specific area of K-feldspar in sphere 3.14e-8/4.90e-9 = 6.41 m^2/mol Kspar +# +# +# Example of KINETICS data block for K-feldspar rate: +# KINETICS 1 +# K-feldspar +# -m0 2.18 # 10% Kspar, 0.1 mm cubes +# -m 2.18 # Moles per L pore space +# -parms 6.41 0.1 # m^2/mol Kspar, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 + +K-feldspar + -start +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Kspar m^2/mol Kspar +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162: E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM K-Feldspar parameters +10 DATA 11.7, 0.5, 4e-6, 0.4, 500e-6, 0.15, 14.5, 0.14, 0.15, 13.1, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 +100 REM Generic rate follows +110 dif_temp = 1/TK - 1/281 +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +130 REM rate by H+ +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +160 REM rate by hydrolysis +170 pk_H2O = pk_H2O + e_H2O * dif_temp +180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) +190 REM rate by OH- +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +220 REM rate by CO2 +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("K-feldspar")) +280 moles = rate * TIME +290 SAVE moles + -end + + +########### +#Albite +########### +# +# Sverdrup and Warfvinge, 1995, Estimating field weathering rates +# using laboratory kinetics: Reviews in mineralogy and geochemistry, +# vol. 31, p. 485-541. +# +# As described in: +# Appelo and Postma, 2005, Geochemistry, groundwater +# and pollution, 2nd Edition: A.A. Balkema Publishers, +# p. 162-163 and 395-399. +# +# Example of KINETICS data block for Albite rate: +# KINETICS 1 +# Albite +# -m0 0.46 # 2% Albite, 0.1 mm cubes +# -m 0.46 # Moles per L pore space +# -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate +# -time 1.5 year in 40 +# +# Assume soil is 2% Albite by mass in 1 mm spheres (radius 0.05 mm) +# Assume density of rock and Albite is 2600 kg/m^3 = 2.6 kg/L +# GFW Albite 0.262 kg/mol +# +# Moles of Albite per liter pore space calculation: +# Mass of rock per liter pore space = 0.7*2.6/0.3 = 6.07 kg rock/L pore space +# Mass of Albite per liter pore space 6.07x0.02 = 0.121 kg Albite/L pore space +# Moles of Albite per liter pore space 0.607/0.262 = 0.46 mol Albite/L pore space +# +# Specific area calculation: +# Volume of sphere 4/3 x pi x r^3 = 5.24e-13 m^3 Albite/sphere +# Mass of sphere 2600 x 5.24e-13 = 1.36e-9 kg Albite/sphere +# Moles of Albite in sphere 1.36e-9/0.262 = 5.20e-9 mol Albite/sphere +# Surface area of one sphere 4 x pi x r^2 = 3.14e-8 m^2/sphere +# Specific area of Albite in sphere 3.14e-8/5.20e-9 = 6.04 m^2/mol Albite + +Albite + -start +1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1 +2 REM PARM(1) = Specific area of Albite m^2/mol Albite +3 REM PARM(2) = Adjusts lab rate to field rate +4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H*(1/T-1/281) +5 REM Albite parameters +10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3 +20 RESTORE 10 +30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH +40 DATA 3500, 2000, 2500, 2000 +50 RESTORE 40 +60 READ e_H, e_H2O, e_OH, e_CO2 +70 pk_CO2 = 13 +80 n_CO2 = 0.6 +100 REM Generic rate follows +110 dif_temp = 1/TK - 1/281 +120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2") +130 REM rate by H+ +140 pk_H = pk_H + e_H * dif_temp +150 rate_H = 10^-pk_H * ACT("H+")^n_H / ((1 + ACT("Al+3") / lim_Al)^x_Al * (1 + BC / lim_BC)^x_BC) +160 REM rate by hydrolysis +170 pk_H2O = pk_H2O + e_H2O * dif_temp +180 rate_H2O = 10^-pk_H2O / ((1 + ACT("Al+3") / lim_Al)^z_Al * (1 + BC / lim_BC)^z_BC) +190 REM rate by OH- +200 pk_OH = pk_OH + e_OH * dif_temp +210 rate_OH = 10^-pk_OH * ACT("OH-")^o_OH +220 REM rate by CO2 +230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp +240 rate_CO2 = 10^-pk_CO2 * (SR("CO2(g)"))^n_CO2 +250 rate = rate_H + rate_H2O + rate_OH + rate_CO2 +260 area = PARM(1) * M0 *(M/M0)^0.67 +270 rate = PARM(2) * area * rate * (1-SR("Albite")) +280 moles = rate * TIME +290 SAVE moles + -end + +######## +#Calcite +######## +# Example of KINETICS data block for calcite rate, +# in mmol/cm2/s, Plummer et al., 1978, AJS 278, 179; Appelo et al., AG 13, 257 +# KINETICS 1 +# Calcite +# -tol 1e-8 +# -m0 3.e-3 +# -m 3.e-3 +# -parms 1.67e5 0.6 # cm^2/mol calcite, exp factor +# -time 1 day + +Calcite + -start +1 REM PARM(1) = specific surface area of calcite, cm^2/mol calcite +2 REM PARM(2) = exponent for M/M0 + +10 si_cc = SI("Calcite") +20 IF (M <= 0 and si_cc < 0) THEN GOTO 200 +30 k1 = 10^(0.198 - 444 / TK ) +40 k2 = 10^(2.84 - 2177 /TK ) +50 IF TC <= 25 THEN k3 = 10^(-5.86 - 317 / TK) +60 IF TC > 25 THEN k3 = 10^(-1.1 - 1737 / TK ) +80 IF M0 > 0 THEN area = PARM(1)*M0*(M/M0)^PARM(2) ELSE area = PARM(1)*M +110 rate = area * (k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O")) +120 rate = rate * (1 - 10^(2/3*si_cc)) +130 moles = rate * 0.001 * TIME # convert from mmol to mol +200 SAVE moles + -end + +####### +#Pyrite +####### +# +# Williamson, M.A. and Rimstidt, J.D., 1994, +# Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454, +# rate equation is mol m^-2 s^-1. +# +# Example of KINETICS data block for pyrite rate: +# KINETICS 1 +# Pyrite +# -tol 1e-8 +# -m0 5.e-4 +# -m 5.e-4 +# -parms 0.3 0.67 .5 -0.11 +# -time 1 day in 10 +Pyrite + -start +1 REM Williamson and Rimstidt, 1994 +2 REM PARM(1) = log10(specific area), log10(m^2 per mole pyrite) +3 REM PARM(2) = exp for (M/M0) +4 REM PARM(3) = exp for O2 +5 REM PARM(4) = exp for H+ + +10 REM Dissolution in presence of DO +20 if (M <= 0) THEN GOTO 200 +30 if (SI("Pyrite") >= 0) THEN GOTO 200 +40 log_rate = -8.19 + PARM(3)*LM("O2") + PARM(4)*LM("H+") +50 log_area = PARM(1) + LOG10(M0) + PARM(2)*LOG10(M/M0) +60 moles = 10^(log_area + log_rate) * TIME +200 SAVE moles + -end + +########## +#Organic_C +########## +# +# Example of KINETICS data block for SOC (sediment organic carbon): +# KINETICS 1 +# Organic_C +# -formula C +# -tol 1e-8 +# -m 5e-3 # SOC in mol +# -time 30 year in 15 +Organic_C + -start +1 REM Additive Monod kinetics for SOC (sediment organic carbon) +2 REM Electron acceptors: O2, NO3, and SO4 + +10 if (M <= 0) THEN GOTO 200 +20 mO2 = MOL("O2") +30 mNO3 = TOT("N(5)") +40 mSO4 = TOT("S(6)") +50 k_O2 = 1.57e-9 # 1/sec +60 k_NO3 = 1.67e-11 # 1/sec +70 k_SO4 = 1.e-13 # 1/sec +80 rate = k_O2 * mO2/(2.94e-4 + mO2) +90 rate = rate + k_NO3 * mNO3/(1.55e-4 + mNO3) +100 rate = rate + k_SO4 * mSO4/(1.e-4 + mSO4) +110 moles = rate * M * (M/M0) * TIME +200 SAVE moles + -end + +########### +#Pyrolusite +########### +# +# Postma, D. and Appelo, C.A.J., 2000, GCA, vol. 64, pp. 1237-1247. +# Rate equation given as mol L^-1 s^-1 +# +# Example of KINETICS data block for Pyrolusite +# KINETICS 1-12 +# Pyrolusite +# -tol 1.e-7 +# -m0 0.1 +# -m 0.1 +# -time 0.5 day in 10 +Pyrolusite + -start +10 if (M <= 0) THEN GOTO 200 +20 sr_pl = SR("Pyrolusite") +30 if (sr_pl > 1) THEN GOTO 100 +40 REM sr_pl <= 1, undersaturated +50 Fe_t = TOT("Fe(2)") +60 if Fe_t < 1e-8 then goto 200 +70 moles = 6.98e-5 * Fe_t * (M/M0)^0.67 * TIME * (1 - sr_pl) +80 GOTO 200 +100 REM sr_pl > 1, supersaturated +110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME +200 SAVE moles * SOLN_VOL + -end + +END +# ============================================================================================= +#(a) means amorphous. (d) means disordered, or less crystalline. +#(14A) refers to 14 angstrom spacing of clay planes. FeS(ppt), +#precipitated, indicates an initial precipitate that is less crystalline. +#Zn(OH)2(e) indicates a specific crystal form, epsilon. +# ============================================================================================= +# For the reaction aA + bB = cC + dD, +# with delta_v = c*Vm(C) + d*Vm(D) - a*Vm(A) - b*Vm(B), +# PHREEQC adds the pressure term to log_k: -= delta_v * (P - 1) / (2.3RT). +# Vm(A) is volume of A, cm3/mol, P is pressure, atm, R is the gas constant, T is Kelvin. +# Gas-pressures and fugacity coefficients are calculated with Peng-Robinson's EOS. +# These binary interaction coefficients from Soreide and Whitson, 1992, FPE 77, 217 are +# hard-coded in calc_PR(): +# kij CH4 CO2 H2S N2 +# H2O 0.49 0.19 0.19 0.49 +# but are overwritten by the data block GAS_BINARY_PARAMETERS of this file. +# ============================================================================================= +# The molar volumes of solids are entered with +# -Vm vm cm3/mol +# vm is the molar volume, cm3/mol (default), but dm3/mol and m3/mol are permitted. +# Data for minerals' vm (= MW (g/mol) / rho (g/cm3)) are defined using rho from +# Deer, Howie and Zussman, The rock-forming minerals, Longman. +# -------------------- +# Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlich- +# type equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with +# -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4 +# The volume (cm3/mol) is +# Vm(T, pb, I) = 41.84 * (a1 * 0.1 + a2 * 100 / (2600 + pb) + a3 / (T - 228) + +# a4 * 1e4 / (2600 + pb) / (T - 228) - W * QBrn) +# + z^2 / 2 * Av * f(I^0.5) +# + (i1 + i2 / (T - 228) + i3 * (T - 228)) * I^i4 +# Volumina at I = 0 are obtained using supcrt92 formulas (Johnson et al., 1992, CG 18, 899). +# 41.84 transforms cal/bar/mol into cm3/mol. +# pb is pressure in bar. +# W * QBrn is the energy of solvation, calculated from W and the pressure dependence of the Born equation, +# W is fitted on measured solution densities. +# z is charge of the solute species. +# Av is the Debye-Hückel limiting slope (DH_AV in PHREEQC basic). +# a0 is the ion-size parameter in the extended Debye-Hückel equation: +# f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), +# a0 = -gamma x for cations, = 0 for anions. +# For details, consult ref. 1. +# ============================================================================================= +# The viscosity is calculated with a (modified) Jones-Dole equation: +# viscos / viscos_0 = 1 + A * Sum(0.5 z_i m_i) + fan * Sum(B_i m_i + D_i m_i n_i) +# Parameters are for calculating the B and D terms: +# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 +# # b0 b1 b2 d1 d2 d3 tan +# z_i is absolute charge number, m_i is molality of i +# B_i = b0 + b1 exp(-b2 * tc) +# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions +# D_i = d1 * exp(-d2 tc) +# n_i = (I^d3 * (1 + fI) + ((z_i^2 + z_i) / 2 · m_i)^d3) / (2 + fI), fI is an ionic strength term. +# For details, consult ref. 4. +# +# ref. 1: Appelo, Parkhurst and Post, 2014. Geochim. Cosmochim. Acta 125, 49–67. +# ref. 2: Procedures from ref. 1 using data compiled by Laliberté, 2009, J. Chem. Eng. Data 54, 1725. +# ref. 3: Appelo, 2017, Cem. Concr. Res. 101, 102-113. +# ref. 4: Appelo and Parkhurst in prep., for details see subroutine viscosity in transport.cpp +# +# ============================================================================================= +# It remains the responsibility of the user to check the calculated results, for example with +# measured solubilities as a function of (P, T). From 0a3757d4f3b62594cd20221591b262c39e0f01f6 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Tue, 18 Feb 2025 15:41:21 -0700 Subject: [PATCH 289/384] Added stimela.dat to installer --- README.IPhreeqc.TXT | 2 ++ README.Phreeqc.TXT | 8 +++++--- 2 files changed, 7 insertions(+), 3 deletions(-) diff --git a/README.IPhreeqc.TXT b/README.IPhreeqc.TXT index 3e7a8630..2bfe0e69 100644 --- a/README.IPhreeqc.TXT +++ b/README.IPhreeqc.TXT @@ -228,6 +228,7 @@ E. Linux compiling, testing, and installing the IPhreeqc library phreeqc.dat pitzer.dat sit.dat + stimela.dat Tipping_Hurley.dat wateq4f.dat @@ -361,6 +362,7 @@ F. Windows compiling, testing, and installing the IPhreeqc library phreeqc.dat pitzer.dat sit.dat + stimela.dat wateq4f.dat Install\doc files: diff --git a/README.Phreeqc.TXT b/README.Phreeqc.TXT index 910bd0d7..3c5a9a75 100644 --- a/README.Phreeqc.TXT +++ b/README.Phreeqc.TXT @@ -203,8 +203,8 @@ D.4. Compile and install PHREEQC Install\Database files: Amm.dat - ColdChem.dat - core10.dat + ColdChem.dat + core10.dat frezchem.dat iso.dat llnl.dat @@ -213,7 +213,8 @@ D.4. Compile and install PHREEQC phreeqc.dat pitzer.dat sit.dat - Tipping_Hurley.dat + stimela.dat + Tipping_Hurley.dat wateq4f.dat Install\doc files: @@ -351,6 +352,7 @@ E.8. Install the program. phreeqc.dat pitzer.dat sit.dat + stimela.dat wateq4f.dat Example input files: From 8e12e1d9376b8f97abcb8301cd5f9995c1fbf22e Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Tue, 18 Feb 2025 22:46:33 +0000 Subject: [PATCH 290/384] Squashed 'phreeqc3-doc/' changes from e7f79ef2..0a3757d4 0a3757d4 Added stimela.dat to installer git-subtree-dir: phreeqc3-doc git-subtree-split: 0a3757d4f3b62594cd20221591b262c39e0f01f6 --- README.IPhreeqc.TXT | 2 ++ README.Phreeqc.TXT | 8 +++++--- 2 files changed, 7 insertions(+), 3 deletions(-) diff --git a/README.IPhreeqc.TXT b/README.IPhreeqc.TXT index 3e7a8630..2bfe0e69 100644 --- a/README.IPhreeqc.TXT +++ b/README.IPhreeqc.TXT @@ -228,6 +228,7 @@ E. Linux compiling, testing, and installing the IPhreeqc library phreeqc.dat pitzer.dat sit.dat + stimela.dat Tipping_Hurley.dat wateq4f.dat @@ -361,6 +362,7 @@ F. Windows compiling, testing, and installing the IPhreeqc library phreeqc.dat pitzer.dat sit.dat + stimela.dat wateq4f.dat Install\doc files: diff --git a/README.Phreeqc.TXT b/README.Phreeqc.TXT index 910bd0d7..3c5a9a75 100644 --- a/README.Phreeqc.TXT +++ b/README.Phreeqc.TXT @@ -203,8 +203,8 @@ D.4. Compile and install PHREEQC Install\Database files: Amm.dat - ColdChem.dat - core10.dat + ColdChem.dat + core10.dat frezchem.dat iso.dat llnl.dat @@ -213,7 +213,8 @@ D.4. Compile and install PHREEQC phreeqc.dat pitzer.dat sit.dat - Tipping_Hurley.dat + stimela.dat + Tipping_Hurley.dat wateq4f.dat Install\doc files: @@ -351,6 +352,7 @@ E.8. Install the program. phreeqc.dat pitzer.dat sit.dat + stimela.dat wateq4f.dat Example input files: From 83580b365eddb714fafa058846499bab636c5aeb Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Wed, 19 Feb 2025 14:06:14 -0700 Subject: [PATCH 291/384] Set c++14 Updated googletest to 1.16.0 Added stimela.dat to tests and build-databases.R --- CMakeLists.txt | 5 ++++- R/build-databases.R | 1 + R/phreeqc.R.in | 13 +++++++++++++ gtest/CMakeLists.txt | 6 ++++++ gtest/TestIPhreeqc.cpp | 2 +- gtest/TestIPhreeqcLib.cpp | 2 +- 6 files changed, 26 insertions(+), 3 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index ec286708..d93a6e42 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -259,6 +259,9 @@ if (NOT IPHREEQC_ENABLE_MODULE) ) endif() +# c++14 +target_compile_features(IPhreeqc PUBLIC cxx_std_14) + if (${CMAKE_CXX_COMPILER_ID} STREQUAL MSVC) target_compile_options(IPhreeqc PRIVATE /wd4251 /wd4275 /wd4793) endif() @@ -421,7 +424,7 @@ if (STANDALONE_BUILD) FetchContent_Declare( googletest - URL https://github.com/google/googletest/archive/release-1.12.1.tar.gz + URL https://github.com/google/googletest/releases/download/v1.16.0/googletest-1.16.0.tar.gz ) mark_as_advanced( diff --git a/R/build-databases.R b/R/build-databases.R index 6e651cf6..34c297fc 100644 --- a/R/build-databases.R +++ b/R/build-databases.R @@ -25,6 +25,7 @@ phreeqc_rates.dat <- scan("phreeqc_rates.ascii", PHREEQC_ThermoddemV1.10_15Dec2020.dat <- scan("PHREEQC_ThermoddemV1.10_15Dec2020.ascii", what="", sep="\n") pitzer.dat <- scan("pitzer.ascii", what="", sep="\n") sit.dat <- scan("sit.ascii", what="", sep="\n") +stimela.dat <- scan("stimela.ascii", what="", sep="\n") Tipping_Hurley.dat <- scan("Tipping_Hurley.ascii", what="", sep="\n") phreeqc.dat <- scan("phreeqc.ascii", what="", sep="\n") wateq4f.dat <- scan("wateq4f.ascii", what="", sep="\n") diff --git a/R/phreeqc.R.in b/R/phreeqc.R.in index 1221c513..95532728 100644 --- a/R/phreeqc.R.in +++ b/R/phreeqc.R.in @@ -1631,6 +1631,19 @@ NULL +##' @name stimela.dat +##' @title The stimela.dat database. +##' @description stimela.dat is a database for use in drinking-water and waste-water +##' treatment from Peter de Moel and Omnisys. The database has been reformatted +##' for use by \code{\link{phrLoadDatabaseString}}. +##' @docType data +##' @family Databases +##' @usage stimela.dat # phrLoadDatabaseString(stimela.dat) +##' @keywords dataset +NULL + + + ##' @name Tipping_Hurley.dat ##' @title The Tipping_Hurley.dat database ##' @description Tipping_Hurley.dat is a database for organic-ligand diff --git a/gtest/CMakeLists.txt b/gtest/CMakeLists.txt index 565ab4a6..3446347d 100644 --- a/gtest/CMakeLists.txt +++ b/gtest/CMakeLists.txt @@ -128,6 +128,12 @@ configure_file( COPYONLY ) +configure_file( + ../database/stimela.dat + stimela.dat + COPYONLY + ) + configure_file( ../database/ColdChem.dat ColdChem.dat diff --git a/gtest/TestIPhreeqc.cpp b/gtest/TestIPhreeqc.cpp index d734bc96..46a6a685 100644 --- a/gtest/TestIPhreeqc.cpp +++ b/gtest/TestIPhreeqc.cpp @@ -26,7 +26,7 @@ TEST(TestIPhreeqc, TestLoadDatabase) std::string FILES[] = { "phreeqc.dat", "pitzer.dat", "wateq4f.dat", "Amm.dat", "frezchem.dat", "iso.dat", "llnl.dat", "minteq.dat", "minteq.v4.dat", - "sit.dat","ColdChem.dat","core10.dat", + "sit.dat", "stimela.dat" ,"ColdChem.dat","core10.dat", "Tipping_Hurley.dat" }; diff --git a/gtest/TestIPhreeqcLib.cpp b/gtest/TestIPhreeqcLib.cpp index 6fadd9f7..1244c335 100644 --- a/gtest/TestIPhreeqcLib.cpp +++ b/gtest/TestIPhreeqcLib.cpp @@ -128,7 +128,7 @@ TEST(TestIPhreeqcLib, TestLoadDatabase) std::string FILES[] = { "phreeqc.dat", "pitzer.dat", "wateq4f.dat", "Amm.dat", "frezchem.dat", "iso.dat", "llnl.dat", "minteq.dat", "minteq.v4.dat", - "sit.dat","ColdChem.dat","core10.dat", + "sit.dat", "stimela.dat", "ColdChem.dat","core10.dat", "Tipping_Hurley.dat" }; From 0547e23cdcc38deb8700127cdaf8bf1a07d0526c Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Wed, 19 Feb 2025 14:38:40 -0700 Subject: [PATCH 292/384] Added code to generate stimela.ascii --- R/Makefile | 1 + 1 file changed, 1 insertion(+) diff --git a/R/Makefile b/R/Makefile index ab04a0a0..a68bffdb 100644 --- a/R/Makefile +++ b/R/Makefile @@ -42,6 +42,7 @@ DBS = \ phreeqc.ascii \ pitzer.ascii \ sit.ascii \ + stimela.ascii \ Tipping_Hurley.ascii \ wateq4f.ascii From 71e7c5a0341c24ad2d134e18cc7f22e6ddc2435a Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Tue, 25 Feb 2025 14:47:08 -0700 Subject: [PATCH 293/384] Updated for 3.8.7 --- RELEASE.TXT | 29 ++++++++++++++++++++++++++--- 1 file changed, 26 insertions(+), 3 deletions(-) diff --git a/RELEASE.TXT b/RELEASE.TXT index 2b3cd3e1..e3bbd003 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,4 +1,9 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + ----------------- + February 20, 2025 + ----------------- + PhreeqcRM: Downgraded compiler standard from C++14 to C++11 for compatibility. + ----------------- February 12, 2025 ----------------- @@ -22,15 +27,33 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ # - modified values for element_gfw according to Abridged Standard Atomic Weights from TSAW 2013 (CIAAW/IUPAC) (https://www.ciaaw.org/abridged-atomic-weights.htm) # end of list of modifications - ----------------- February 12, 2025 ----------------- PHREEQC: Fixed bug in GasComp.cxx. The order of the options was incorrect, which caused -p (pressure) to be misinterpreted when reading GAS_PHASE_RAW. - - + + ----------------- + February 11, 2025 + ----------------- + PhreeqcRM: Increased minimum CMake version to 3.22 + ENVIRONMENT_MODIFICATION requires 3.22 + + ----------------- + February 10, 2025 + ----------------- + PhreeqcRM: Fixed CMake builds that set PHREEQCRM_STATIC_RUNTIME=ON. + When PHREEQCRM_STATIC_RUNTIME=ON, the Runtime Library is configured as /MD for Release builds and /MDd for Debug builds + + ----------------- + February 05, 2025 + ----------------- + PhreeqcRM: Fixed a Python crash that occurred when BMIPhreeqcRM::LoadDatabase was called before BMIPhreeqcRM::initialize(). + Updated to C++14 for autotools and CMake builds + BMIPhreeqcRM::LoadDatabase now throws if initialize() hasn't been called + + Version 3.8.6: January 7, 2025 ----------------- January 7, 2025 From 95c70688aa2ff904a635b4de93970bf24acaa0e0 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Tue, 25 Feb 2025 21:56:41 +0000 Subject: [PATCH 294/384] Squashed 'phreeqc3-doc/' changes from 0a3757d4..71e7c5a0 71e7c5a0 Updated for 3.8.7 git-subtree-dir: phreeqc3-doc git-subtree-split: 71e7c5a0341c24ad2d134e18cc7f22e6ddc2435a --- RELEASE.TXT | 29 ++++++++++++++++++++++++++--- 1 file changed, 26 insertions(+), 3 deletions(-) diff --git a/RELEASE.TXT b/RELEASE.TXT index 2b3cd3e1..e3bbd003 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,4 +1,9 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + ----------------- + February 20, 2025 + ----------------- + PhreeqcRM: Downgraded compiler standard from C++14 to C++11 for compatibility. + ----------------- February 12, 2025 ----------------- @@ -22,15 +27,33 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ # - modified values for element_gfw according to Abridged Standard Atomic Weights from TSAW 2013 (CIAAW/IUPAC) (https://www.ciaaw.org/abridged-atomic-weights.htm) # end of list of modifications - ----------------- February 12, 2025 ----------------- PHREEQC: Fixed bug in GasComp.cxx. The order of the options was incorrect, which caused -p (pressure) to be misinterpreted when reading GAS_PHASE_RAW. - - + + ----------------- + February 11, 2025 + ----------------- + PhreeqcRM: Increased minimum CMake version to 3.22 + ENVIRONMENT_MODIFICATION requires 3.22 + + ----------------- + February 10, 2025 + ----------------- + PhreeqcRM: Fixed CMake builds that set PHREEQCRM_STATIC_RUNTIME=ON. + When PHREEQCRM_STATIC_RUNTIME=ON, the Runtime Library is configured as /MD for Release builds and /MDd for Debug builds + + ----------------- + February 05, 2025 + ----------------- + PhreeqcRM: Fixed a Python crash that occurred when BMIPhreeqcRM::LoadDatabase was called before BMIPhreeqcRM::initialize(). + Updated to C++14 for autotools and CMake builds + BMIPhreeqcRM::LoadDatabase now throws if initialize() hasn't been called + + Version 3.8.6: January 7, 2025 ----------------- January 7, 2025 From c61c35ecee8e481b6f17e989d9242b762d691813 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Tue, 11 Mar 2025 17:12:09 -0600 Subject: [PATCH 295/384] Tony changes to basicsubs, updated viscosity for Sr, NH4, and tidied databases. --- Amm.dat | 24 +- Tipping_Hurley.dat | 132 +- iso.dat | 78 +- llnl.dat | 11074 ++++++++++----------- minteq.dat | 244 +- minteq.v4.dat | 22380 +++++++++++++++++++++---------------------- phreeqc.dat | 28 +- phreeqc_rates.dat | 18 +- pitzer.dat | 20 +- sit.dat | 269 +- wateq4f.dat | 249 +- 11 files changed, 17257 insertions(+), 17259 deletions(-) diff --git a/Amm.dat b/Amm.dat index c095a395..efdcd529 100644 --- a/Amm.dat +++ b/Amm.dat @@ -76,7 +76,7 @@ H+ = H+ # If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. e- = e- H2O = H2O - -dw 2.299e-9 -254 + -dw 2.299e-9 -249 # Holz et al., Phys. Chem. Chem. Phys., 2000, 2, 4740. # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence Li+ = Li+ -gamma 6 0 # The apparent volume parameters are defined in ref. 1 & 2 @@ -107,9 +107,9 @@ Ca+2 = Ca+2 -dw 0.792e-9 34 5.411 0 1.046 Sr+2 = Sr+2 -gamma 5.26 0.121 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97 - -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 - -dw 0.794e-9 149 0.805 1.961 1e-9 0.7876 + -Vm -5.6e-2 -10.15 9.90 -2.36 0.807 5.26 2.72 -82.7 -1.37e-2 0.956 + -viscosity 0.493 -0.255 2.3e-3 4.2e-3 -3.8e-3 1.762 + -dw 0.794e-9 18 0.681 2.069 0.965 0.271 Ba+2 = Ba+2 -gamma 5 0 -gamma 4 0.153 # Barite solubility @@ -155,7 +155,7 @@ NO3- = NO3- AmmH+ = AmmH+ -gamma 2.5 0 -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 - -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -viscosity 6.94e-2 -0.141 2.04e-2 9.4e-3 3.73e-2 0.898 -dw 1.98e-9 203 1.47 2.644 6.81e-2 H3BO3 = H3BO3 -Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt @@ -170,7 +170,7 @@ F- = F- -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 -dw 1.46e-9 -36 4.352 Br- = Br- - -gamma 3 0 + -gamma 3 0.045 -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 -viscosity -6.98e-2 -0.141 1.78e-2 0.159 7.76e-3 6.25e-2 0.859 -dw 2.09e-9 208 3.5 0 0.5737 @@ -312,14 +312,14 @@ AmmH+ = Amm + H+ -delta_h 12.48 kcal -analytic 0.6322 -0.001225 -2835.76 -Vm 6.69 2.8 3.58 -2.88 1.43 - -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -viscosity 0 -2.24e-2 0.101 8.66e-3 2.86e-2 -0.143 -0.769 -dw 2.28e-9 AmmH+ + SO4-2 = AmmHSO4- #NH4+ + SO4-2 = NH4SO4- - -gamma 2.08 -0.0416 - -log_k 1.211; -delta_h 8.56 kJ + -gamma 2.10 -0.0419 + -log_k 1.212; -delta_h 8.61 kJ -Vm -8.78 0 -36.09 0 -8.60 0 87.62 0 -0.3123 0.1172 - -viscosity 0 0.116 -8.6e-3 0.159 -9.3e-3 0.522 0.627 + -viscosity 0 0.121 -8e-3 0.177 -8e-3 0.512 0.629 -dw 0.9e-9 100 2.1 2 0 H3BO3 = H2BO3- + H+ -log_k -9.24 @@ -372,7 +372,7 @@ Ca+2 + CO3-2 + H+ = CaHCO3+ -log_k 10.91; -delta_h 4.38 kcal -analytic -6.009 3.377e-2 2044 -gamma 6 0 - -Vm 30.19 .01 5.75 -2.78 .308 5.4 + -Vm 3.19 .01 5.75 -2.78 .308 5.4 -dw 5.06e-10 Ca+2 + SO4-2 = CaSO4 -log_k 2.25 @@ -1944,7 +1944,7 @@ END # a0 is the ion-size parameter in the extended Debye-Hckel equation: # f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), # a0 = -gamma x for cations, = 0 for anions. -# For details, consult ref. 1. +# For details, consult ref. 1 and subroutine calc_vm(tc, pa) in prep.cpp. # ============================================================================================= # The viscosity is calculated with a (modified) Jones-Dole equation: # viscos / viscos_0 = 1 + A * Sum(0.5 z_i m_i) + fan * Sum(B_i m_i + D_i m_i n_i) diff --git a/Tipping_Hurley.dat b/Tipping_Hurley.dat index ea61af2b..80d2f3cb 100644 --- a/Tipping_Hurley.dat +++ b/Tipping_Hurley.dat @@ -6,72 +6,72 @@ SOLUTION_MASTER_SPECIES -Ag Ag+ 0 107.868 107.868 -Al Al+3 0 26.9815 26.9815 -Alkalinity CO3-2 1 50.05 50.05 -As H3AsO4 -1 74.9216 74.9216 -As(+3) H3AsO3 0 74.9216 74.9216 -As(+5) H3AsO4 -1 74.9216 -B H3BO3 0 10.81 10.81 -Ba Ba+2 0 137.34 137.34 -Br Br- 0 79.904 79.904 -C CO3-2 2 61.0173 12.0111 -C(+4) CO3-2 2 61.0173 -C(-4) CH4 0 16.042 -Ca Ca+2 0 40.08 40.08 -Cd Cd+2 0 112.4 112.4 -Cl Cl- 0 35.453 35.453 -Cs Cs+ 0 132.905 132.905 -Cu Cu+2 0 63.546 63.546 -Cu(+1) Cu+1 0 63.546 -Cu(+2) Cu+2 0 63.546 -E e- 1 0 0 -F F- 0 18.9984 18.9984 -Fe Fe+2 0 55.847 55.847 -Fe(+2) Fe+2 0 55.847 -Fe(+3) Fe+3 -2 55.847 -Fulvate Fulvate-2 0 650 650 -H H+ -1 1.008 1.008 -H(0) H2 0 1.008 -H(1) H+ -1 1.008 -Humate Humate-2 0 2000 2000 -I I- 0 126.9044 126.9044 -K K+ 0 39.102 39.102 -Li Li+ 0 6.939 6.939 -Mg Mg+2 0 24.312 24.312 -Mn Mn+2 0 54.938 54.938 -Mn(2) Mn+2 0 54.938 -Mn(3) Mn+3 0 54.938 -Mn(6) MnO4-2 0 54.938 -Mn(7) MnO4- 0 54.938 -N NO3- 0 14.0067 14.0067 -N(-3) NH4+ 0 14.0067 -N(0) N2 0 14.0067 -N(+3) NO2- 0 14.0067 -N(+5) NO3- 0 14.0067 -Na Na+ 0 22.9898 22.9898 -Ni Ni+2 0 58.71 58.71 -O H2O 0 16 16 -O(-2) H2O 0 18.016 -O(0) O2 0 16 -P PO4-3 2 30.9738 30.9738 -Pb Pb+2 0 207.19 207.19 -Rb Rb+ 0 85.47 85.47 -S SO4-2 0 96.0616 32.064 -S(-2) H2S 0 32.064 -S(6) SO4-2 0 96.0616 -Se SeO4-2 0 78.96 78.96 -Se(-2) HSe- 0 78.96 -Se(4) SeO3-2 0 78.96 -Se(6) SeO4-2 0 78.96 -Si H4SiO4 0 60.0843 28.0843 -Sr Sr+2 0 87.62 87.62 -Zn Zn+2 0 65.37 65.37 -U UO2+2 0 238.029 238.029 -U(3) U+3 0 238.029 238.029 -U(4) U+4 0 238.029 238.029 -U(5) UO2+ 0 238.029 238.029 -U(6) UO2+2 0 238.029 238.029 +Ag Ag+ 0.0 107.868 107.868 +Al Al+3 0.0 26.9815 26.9815 +Alkalinity CO3-2 1.0 50.05 50.05 +As H3AsO4 -1.0 74.9216 74.9216 +As(+3) H3AsO3 0.0 74.9216 74.9216 +As(+5) H3AsO4 -1.0 74.9216 +B H3BO3 0.0 10.81 10.81 +Ba Ba+2 0.0 137.34 137.34 +Br Br- 0.0 79.904 79.904 +C CO3-2 2.0 61.0173 12.0111 +C(+4) CO3-2 2.0 61.0173 +C(-4) CH4 0.0 16.042 +Ca Ca+2 0.0 40.08 40.08 +Cd Cd+2 0.0 112.4 112.4 +Cl Cl- 0.0 35.453 35.453 +Cs Cs+ 0.0 132.905 132.905 +Cu Cu+2 0.0 63.546 63.546 +Cu(+1) Cu+1 0.0 63.546 +Cu(+2) Cu+2 0.0 63.546 +E e- 0.0 0.0 0.0 +F F- 0.0 18.9984 18.9984 +Fe Fe+2 0.0 55.847 55.847 +Fe(+2) Fe+2 0.0 55.847 +Fe(+3) Fe+3 -2.0 55.847 +Fulvate Fulvate-2 0.0 650. 650. +H H+ -1. 1.008 1.008 +H(0) H2 0.0 1.008 +H(1) H+ -1. 1.008 +Humate Humate-2 0.0 2000. 2000. +I I- 0.0 126.9044 126.9044 +K K+ 0.0 39.102 39.102 +Li Li+ 0.0 6.939 6.939 +Mg Mg+2 0.0 24.312 24.312 +Mn Mn+2 0.0 54.938 54.938 +Mn(2) Mn+2 0.0 54.938 +Mn(3) Mn+3 0.0 54.938 +Mn(6) MnO4-2 0.0 54.938 +Mn(7) MnO4- 0.0 54.938 +N NO3- 0.0 14.0067 14.0067 +N(-3) NH4+ 0.0 14.0067 +N(0) N2 0.0 14.0067 +N(+3) NO2- 0.0 14.0067 +N(+5) NO3- 0.0 14.0067 +Na Na+ 0.0 22.9898 22.9898 +Ni Ni+2 0.0 58.71 58.71 +O H2O 0.0 16.00 16.00 +O(-2) H2O 0.0 18.016 +O(0) O2 0.0 16.00 +P PO4-3 2.0 30.9738 30.9738 +Pb Pb+2 0.0 207.19 207.19 +Rb Rb+ 0.0 85.47 85.47 +S SO4-2 0.0 96.0616 32.064 +S(-2) H2S 0.0 32.064 +S(6) SO4-2 0.0 96.0616 +Se SeO4-2 0.0 78.96 78.96 +Se(-2) HSe- 0.0 78.96 +Se(4) SeO3-2 0.0 78.96 +Se(6) SeO4-2 0.0 78.96 +Si H4SiO4 0.0 60.0843 28.0843 +Sr Sr+2 0.0 87.62 87.62 +Zn Zn+2 0.0 65.37 65.37 +U UO2+2 0.0 238.0290 238.0290 +U(3) U+3 0.0 238.0290 238.0290 +U(4) U+4 0.0 238.0290 238.0290 +U(5) UO2+ 0.0 238.0290 238.0290 +U(6) UO2+2 0.0 238.0290 238.0290 SOLUTION_SPECIES diff --git a/iso.dat b/iso.dat index c922df33..8ab59d2f 100644 --- a/iso.dat +++ b/iso.dat @@ -3,38 +3,38 @@ # c:\3rdParty\lsp\lsp.exe -f2 -k="asis" -ts "iso.dat" SOLUTION_MASTER_SPECIES -E e- 1 0 0 -H H3O+ -1 H 1.008 -H(0) H2 0 H -H(1) H3O+ -1 H -O H2O 0 O 16 -O(0) O2 0 O -O(-2) H2O 0 O -Ca Ca+2 0 Ca 40.08 -Mg Mg+2 0 Mg 24.312 -Na Na+ 0 Na 22.9898 -K K+ 0 K 39.102 -Fe Fe+2 0 Fe 55.847 -Fe(+2) Fe+2 0 Fe -Fe(+3) Fe+3 -2 Fe -Al Al+3 0 Al 26.9815 -Si H4SiO4 0 SiO2 28.0843 -Cl Cl- 0 Cl 35.453 -C CO2 0 HCO3 12.0111 -C(4) CO2 0 HCO3 -C(-4) CH4 0 CH4 -S SO4-2 0 S 31.972 -S(6) SO4-2 0 SO4 -S(-2) HS- 1 S -N NO3- 0 N 14.0067 -N(+5) NO3- 0 N -N(+3) NO2- 0 N -N(0) N2 0 N -N(-3) NH4+ 0 N -P PO4-3 2 P 30.9738 -F F- 0 F 18.9984 -Br Br- 0 Br 79.904 -Alkalinity CO2 0 50.05 50.05 +E e- 1 0 0 +H H3O+ -1 H 1.008 +H(0) H2 0 H +H(1) H3O+ -1 H +O H2O 0 O 16 +O(0) O2 0 O +O(-2) H2O 0 O +Ca Ca+2 0 Ca 40.08 +Mg Mg+2 0 Mg 24.312 +Na Na+ 0 Na 22.9898 +K K+ 0 K 39.102 +Fe Fe+2 0 Fe 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2 Fe +Al Al+3 0 Al 26.9815 +Si H4SiO4 0 SiO2 28.0843 +Cl Cl- 0 Cl 35.453 +C CO2 0 HCO3 12.0111 +C(4) CO2 0 HCO3 +C(-4) CH4 0 CH4 +S SO4-2 0 S 31.972 +S(6) SO4-2 0 SO4 +S(-2) HS- 1 S +N NO3- 0 N 14.0067 +N(+5) NO3- 0 N +N(+3) NO2- 0 N +N(0) N2 0 N +N(-3) NH4+ 0 N +P PO4-3 2 P 30.9738 +F F- 0 F 18.9984 +Br Br- 0 Br 79.904 +Alkalinity CO2 0 50.05 50.05 SOLUTION_SPECIES H3O+ = H3O+ @@ -639,11 +639,11 @@ CO2(g) O2(g) O2 = O2 -# log_k -2.960 -# delta_h -1.844 kcal - # log K from llnl.dat Dec 8, 2010 - log_k -2.8983 - -analytic -7.5001e+0 7.8981e-3 0e+0 0e+0 2.0027e+5 +# log_k -2.960 +# delta_h -1.844 kcal + # log K from llnl.dat Dec 8, 2010 + log_k -2.8983 + -analytic -7.5001e+0 7.8981e-3 0e+0 0e+0 2.0027e+5 H2(g) H2 = H2 @@ -1122,8 +1122,8 @@ ISOTOPE_ALPHAS # N2(aq) Alpha_15N_N2(aq)/NO3- Log_alpha_15N_N2(aq)/NO3- # NH3(aq) - Alpha_D_NH3(aq)/H2O(l) Log_alpha_D_NH3(aq)/H2O(l) - Alpha_T_NH3(aq)/H2O(l) Log_alpha_T_NH3(aq)/H2O(l) + Alpha_D_NH3(aq)/H2O(l) Log_alpha_D_NH3(aq)/H2O(l) + Alpha_T_NH3(aq)/H2O(l) Log_alpha_T_NH3(aq)/H2O(l) Alpha_15N_NH3(aq)/NO3- Log_alpha_15N_NH3(aq)/NO3- # NH4+ Alpha_D_NH4+/H2O(l) Log_alpha_D_NH4+/H2O(l) diff --git a/llnl.dat b/llnl.dat index 64b2c231..37725f06 100644 --- a/llnl.dat +++ b/llnl.dat @@ -44,684 +44,684 @@ NAMED_EXPRESSIONS # formation of O2 from H2O # 2H2O = O2 + 4H+ + 4e- # - Log_K_O2 - log_k -85.9951 - -delta_H 559.543 kJ/mol # Calculated enthalpy of reaction O2 -# Enthalpy of formation: -2.9 kcal/mol - -analytic 38.0229 7.99407E-3 -2.7655e+4 -1.4506e+1 199838.45 -# Range: 0-300 + Log_K_O2 + log_k -85.9951 + -delta_H 559.543 kJ/mol # Calculated enthalpy of reaction O2 +# Enthalpy of formation: -2.9 kcal/mol + -analytic 38.0229 7.99407E-3 -2.7655e+4 -1.4506e+1 199838.45 +# Range: 0-300 SOLUTION_MASTER_SPECIES -#element species alk gfw_formula element_gfw +#element species alk gfw_formula element_gfw -Acetate HAcetate 0 Acetate 59 -Ag Ag+ 0 Ag 107.8682 -Ag(1) Ag+ 0 Ag -Ag(2) Ag+2 0 Ag -Al Al+3 0 Al 26.9815 -Alkalinity HCO3- 1 Ca0.5(CO3)0.5 50.05 -Am Am+3 0 Am 243 -Am(+2) Am+2 0 Am -Am(+3) Am+3 0 Am -Am(+4) Am+4 0 Am -Am(+5) AmO2+ 0 Am -Am(+6) AmO2+2 0 Am -Ar Ar 0 Ar 39.948 -As H2AsO4- 0 As 74.9216 -As(-3) AsH3 0 As -As(+3) H2AsO3- 0 As -As(+5) H2AsO4- 0 As -Au Au+ 0 Au 196.9665 -Au(+1) Au+ 0 Au -Au(+3) Au+3 0 Au -#B H3BO3 0.0 B 10.811 -B B(OH)3 0 B 10.811 -B(3) B(OH)3 0 B -B(-5) BH4- 0 B -Ba Ba+2 0 Ba 137.327 -Be Be+2 0 Be 9.0122 -Br Br- 0 Br 79.904 -Br(-03) Br3- 0 Br -Br(-1) Br- 0 Br -Br(0) Br2 0 Br -Br(1) BrO- 0 Br -Br(5) BrO3- 0 Br -Br(7) BrO4- 0 Br -C(-4) CH4 0 CH4 -C(-3) C2H6 0 C2H6 -C(-2) C2H4 0 C2H4 -C HCO3- 1 HCO3 12.011 -C(+2) CO 0 C -C(+4) HCO3- 1 HCO3 -Ca Ca+2 0 Ca 40.078 -Cyanide Cyanide- 1 CN 26 -Cd Cd+2 0 Cd 112.411 -Ce Ce+3 0 Ce 140.115 -Ce(+2) Ce+2 0 Ce -Ce(+3) Ce+3 0 Ce -Ce(+4) Ce+4 0 Ce -Cl Cl- 0 Cl 35.4527 -Cl(-1) Cl- 0 Cl -Cl(1) ClO- 0 Cl -Cl(3) ClO2- 0 Cl -Cl(5) ClO3- 0 Cl -Cl(7) ClO4- 0 Cl -Co Co+2 0 Co 58.9332 -Co(+2) Co+2 0 Co -Co(+3) Co+3 0 Co -Cr CrO4-2 0 CrO4-2 51.9961 -Cr(+2) Cr+2 0 Cr -Cr(+3) Cr+3 0 Cr -Cr(+5) CrO4-3 0 Cr -Cr(+6) CrO4-2 0 Cr -Cs Cs+ 0 Cs 132.9054 -Cu Cu+2 0 Cu 63.546 -Cu(+1) Cu+1 0 Cu -Cu(+2) Cu+2 0 Cu -Dy Dy+3 0 Dy 162.5 -Dy(+2) Dy+2 0 Dy -Dy(+3) Dy+3 0 Dy -E e- 1 0 0 -Er Er+3 0 Er 167.26 -Er(+2) Er+2 0 Er -Er(+3) Er+3 0 Er -Ethylene Ethylene 0 Ethylene 28.0536 -Eu Eu+3 0 Eu 151.965 -Eu(+2) Eu+2 0 Eu -Eu(+3) Eu+3 0 Eu -F F- 0 F 18.9984 -Fe Fe+2 0 Fe 55.847 -Fe(+2) Fe+2 0 Fe -Fe(+3) Fe+3 -2 Fe -Ga Ga+3 0 Ga 69.723 -Gd Gd+3 0 Gd 157.25 -Gd(+2) Gd+2 0 Gd -Gd(+3) Gd+3 0 Gd -H H+ -1 H 1.0079 -H(0) H2 0 H -H(+1) H+ -1 0 -He He 0 He 4.0026 -He(0) He 0 He -Hf Hf+4 0 Hf 178.49 -Hg Hg+2 0 Hg 200.59 -Hg(+1) Hg2+2 0 Hg -Hg(+2) Hg+2 0 Hg -Ho Ho+3 0 Ho 164.9303 -Ho(+2) Ho+2 0 Ho -Ho(+3) Ho+3 0 Ho -I I- 0 I 126.9045 -I(-03) I3- 0 I -I(-1) I- 0 I -I(+1) IO- 0 I -I(+5) IO3- 0 I -I(+7) IO4- 0 I -In In+3 0 In 114.82 -K K+ 0 K 39.0983 -Kr Kr 0 Kr 83.8 -Kr(0) Kr 0 Kr -La La+3 0 La 138.9055 -La(2) La+2 0 La -La(3) La+3 0 La -Li Li+ 0 Li 6.941 -Lu Lu+3 0 Lu 174.967 -Mg Mg+2 0 Mg 24.305 -Mn Mn+2 0 Mn 54.938 -Mn(+2) Mn+2 0 Mn -Mn(+3) Mn+3 0 Mn -Mn(+6) MnO4-2 0 Mn -Mn(+7) MnO4- 0 Mn -Mo MoO4-2 0 Mo 95.94 -N NH3 1 N 14.0067 -N(-3) NH3 1 N -N(-03) N3- 0 N -N(0) N2 0 N -N(+3) NO2- 0 N -N(+5) NO3- 0 N -Na Na+ 0 Na 22.9898 -Nd Nd+3 0 Nd 144.24 -Nd(+2) Nd+2 0 Nd -Nd(+3) Nd+3 0 Nd -Ne Ne 0 Ne 20.1797 -#Ne(0) Ne 0.0 Ne -Ni Ni+2 0 Ni 58.69 -Np Np+4 0 Np 237.048 -Np(+3) Np+3 0 Np -Np(+4) Np+4 0 Np -Np(+5) NpO2+ 0 Np -Np(+6) NpO2+2 0 Np -O H2O 0 O 15.994 -O(-2) H2O 0 0 -O(0) O2 0 O -O_phthalate O_phthalate-2 0 1 1 -P HPO4-2 2 P 30.9738 -P(-3) PH4+ 0 P -P(5) HPO4-2 2 P -Pb Pb+2 0 Pb 207.2 -Pb(+2) Pb+2 0 Pb -Pb(+4) Pb+4 0 Pb -Pd Pd+2 0 Pd 106.42 -Pm Pm+3 0 Pm 147 -Pm(+2) Pm+2 0 Pm -Pm(+3) Pm+3 0 Pm -Pr Pr+3 0 Pr 140.9076 -Pr(+2) Pr+2 0 Pr -Pr(+3) Pr+3 0 Pr -Pu Pu+4 0 Pu 244 -Pu(+3) Pu+3 0 Pu -Pu(+4) Pu+4 0 Pu -Pu(+5) PuO2+ 0 Pu -Pu(+6) PuO2+2 0 Pu -Ra Ra+2 0 Ra 226.025 -Rb Rb+ 0 Rb 85.4678 -Re ReO4- 0 Re 186.207 -Rn Rn 0 Rn 222 -Ru RuO4-2 0 Ru 101.07 -Ru(+2) Ru+2 0 Ru -Ru(+3) Ru+3 0 Ru -Ru(+4) Ru(OH)2+2 0 Ru -Ru(+6) RuO4-2 0 Ru -Ru(+7) RuO4- 0 Ru -Ru(+8) RuO4 0 Ru -S SO4-2 0 SO4 32.066 -S(-2) HS- 1 S -S(+2) S2O3-2 0 S -S(+3) S2O4-2 0 S -S(+4) SO3-2 0 S -S(+5) S2O5-2 0 S -S(+6) SO4-2 0 SO4 -S(+7) S2O8-2 0 S -S(+8) HSO5- 0 S -Sb Sb(OH)3 0 Sb 121.75 -Sc Sc+3 0 Sc 44.9559 -Se SeO3-2 0 Se 78.96 -Se(-2) HSe- 0 Se -Se(+4) SeO3-2 0 Se -Se(+6) SeO4-2 0 Se -Si SiO2 0 SiO2 28.0855 -Sm Sm+3 0 Sm 150.36 -Sm(+2) Sm+2 0 Sm -Sm(+3) Sm+3 0 Sm -Sn Sn+2 0 Sn 118.71 -Sn(+2) Sn+2 0 Sn -Sn(+4) Sn+4 0 Sn -Sr Sr+2 0 Sr 87.62 -Tb Tb+3 0 Tb 158.9253 -Tb(+2) Tb+2 0 Tb -Tb(+3) Tb+3 0 Tb -Tc TcO4- 0 Tc 98 -Tc(+3) Tc+3 0 Tc -Tc(+4) TcO+2 0 Tc -Tc(+5) TcO4-3 0 Tc -Tc(+6) TcO4-2 0 Tc -Tc(+7) TcO4- 0 Tc -Thiocyanate Thiocyanate- 0 SCN 58 -Th Th+4 0 Th 232.0381 -Ti Ti(OH)4 0 Ti 47.88 -Tl Tl+ 0 Tl 204.3833 -Tl(+1) Tl+ 0 Tl -Tl(+3) Tl+3 0 Tl -Tm Tm+3 0 Tm 168.9342 -Tm(+2) Tm+2 0 Tm -Tm(+3) Tm+3 0 Tm -U UO2+2 0 U 238.0289 -U(+3) U+3 0 U -U(+4) U+4 0 U -U(+5) UO2+ 0 U -U(+6) UO2+2 0 U -V VO+2 0 V 50.9415 -V(+3) V+3 0 V -V(+4) VO+2 0 V -V(+5) VO2+ 0 V -W WO4-2 0 W 183.85 -Xe Xe 0 Xe 131.29 -Xe(0) Xe 0 Xe -Y Y+3 0 Y 88.9059 -Yb Yb+3 0 Yb 173.04 -Yb(+2) Yb+2 0 Yb -Yb(+3) Yb+3 0 Yb -Zn Zn+2 0 Zn 65.39 -Zr Zr(OH)2+2 0 Zr 91.224 +Acetate HAcetate 0 Acetate 59 +Ag Ag+ 0 Ag 107.8682 +Ag(1) Ag+ 0 Ag +Ag(2) Ag+2 0 Ag +Al Al+3 0 Al 26.9815 +Alkalinity HCO3- 1 Ca0.5(CO3)0.5 50.05 +Am Am+3 0 Am 243 +Am(+2) Am+2 0 Am +Am(+3) Am+3 0 Am +Am(+4) Am+4 0 Am +Am(+5) AmO2+ 0 Am +Am(+6) AmO2+2 0 Am +Ar Ar 0 Ar 39.948 +As H2AsO4- 0 As 74.9216 +As(-3) AsH3 0 As +As(+3) H2AsO3- 0 As +As(+5) H2AsO4- 0 As +Au Au+ 0 Au 196.9665 +Au(+1) Au+ 0 Au +Au(+3) Au+3 0 Au +#B H3BO3 0.0 B 10.811 +B B(OH)3 0 B 10.811 +B(3) B(OH)3 0 B +B(-5) BH4- 0 B +Ba Ba+2 0 Ba 137.327 +Be Be+2 0 Be 9.0122 +Br Br- 0 Br 79.904 +Br(-03) Br3- 0 Br +Br(-1) Br- 0 Br +Br(0) Br2 0 Br +Br(1) BrO- 0 Br +Br(5) BrO3- 0 Br +Br(7) BrO4- 0 Br +C(-4) CH4 0 CH4 +C(-3) C2H6 0 C2H6 +C(-2) C2H4 0 C2H4 +C HCO3- 1 HCO3 12.011 +C(+2) CO 0 C +C(+4) HCO3- 1 HCO3 +Ca Ca+2 0 Ca 40.078 +Cyanide Cyanide- 1 CN 26 +Cd Cd+2 0 Cd 112.411 +Ce Ce+3 0 Ce 140.115 +Ce(+2) Ce+2 0 Ce +Ce(+3) Ce+3 0 Ce +Ce(+4) Ce+4 0 Ce +Cl Cl- 0 Cl 35.4527 +Cl(-1) Cl- 0 Cl +Cl(1) ClO- 0 Cl +Cl(3) ClO2- 0 Cl +Cl(5) ClO3- 0 Cl +Cl(7) ClO4- 0 Cl +Co Co+2 0 Co 58.9332 +Co(+2) Co+2 0 Co +Co(+3) Co+3 0 Co +Cr CrO4-2 0 CrO4-2 51.9961 +Cr(+2) Cr+2 0 Cr +Cr(+3) Cr+3 0 Cr +Cr(+5) CrO4-3 0 Cr +Cr(+6) CrO4-2 0 Cr +Cs Cs+ 0 Cs 132.9054 +Cu Cu+2 0 Cu 63.546 +Cu(+1) Cu+1 0 Cu +Cu(+2) Cu+2 0 Cu +Dy Dy+3 0 Dy 162.5 +Dy(+2) Dy+2 0 Dy +Dy(+3) Dy+3 0 Dy +E e- 1 0 0 +Er Er+3 0 Er 167.26 +Er(+2) Er+2 0 Er +Er(+3) Er+3 0 Er +Ethylene Ethylene 0 Ethylene 28.0536 +Eu Eu+3 0 Eu 151.965 +Eu(+2) Eu+2 0 Eu +Eu(+3) Eu+3 0 Eu +F F- 0 F 18.9984 +Fe Fe+2 0 Fe 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2 Fe +Ga Ga+3 0 Ga 69.723 +Gd Gd+3 0 Gd 157.25 +Gd(+2) Gd+2 0 Gd +Gd(+3) Gd+3 0 Gd +H H+ -1 H 1.0079 +H(0) H2 0 H +H(+1) H+ -1 0 +He He 0 He 4.0026 +He(0) He 0 He +Hf Hf+4 0 Hf 178.49 +Hg Hg+2 0 Hg 200.59 +Hg(+1) Hg2+2 0 Hg +Hg(+2) Hg+2 0 Hg +Ho Ho+3 0 Ho 164.9303 +Ho(+2) Ho+2 0 Ho +Ho(+3) Ho+3 0 Ho +I I- 0 I 126.9045 +I(-03) I3- 0 I +I(-1) I- 0 I +I(+1) IO- 0 I +I(+5) IO3- 0 I +I(+7) IO4- 0 I +In In+3 0 In 114.82 +K K+ 0 K 39.0983 +Kr Kr 0 Kr 83.8 +Kr(0) Kr 0 Kr +La La+3 0 La 138.9055 +La(2) La+2 0 La +La(3) La+3 0 La +Li Li+ 0 Li 6.941 +Lu Lu+3 0 Lu 174.967 +Mg Mg+2 0 Mg 24.305 +Mn Mn+2 0 Mn 54.938 +Mn(+2) Mn+2 0 Mn +Mn(+3) Mn+3 0 Mn +Mn(+6) MnO4-2 0 Mn +Mn(+7) MnO4- 0 Mn +Mo MoO4-2 0 Mo 95.94 +N NH3 1 N 14.0067 +N(-3) NH3 1 N +N(-03) N3- 0 N +N(0) N2 0 N +N(+3) NO2- 0 N +N(+5) NO3- 0 N +Na Na+ 0 Na 22.9898 +Nd Nd+3 0 Nd 144.24 +Nd(+2) Nd+2 0 Nd +Nd(+3) Nd+3 0 Nd +Ne Ne 0 Ne 20.1797 +#Ne(0) Ne 0.0 Ne +Ni Ni+2 0 Ni 58.69 +Np Np+4 0 Np 237.048 +Np(+3) Np+3 0 Np +Np(+4) Np+4 0 Np +Np(+5) NpO2+ 0 Np +Np(+6) NpO2+2 0 Np +O H2O 0 O 15.994 +O(-2) H2O 0 0 +O(0) O2 0 O +O_phthalate O_phthalate-2 0 1 1 +P HPO4-2 2 P 30.9738 +P(-3) PH4+ 0 P +P(5) HPO4-2 2 P +Pb Pb+2 0 Pb 207.2 +Pb(+2) Pb+2 0 Pb +Pb(+4) Pb+4 0 Pb +Pd Pd+2 0 Pd 106.42 +Pm Pm+3 0 Pm 147 +Pm(+2) Pm+2 0 Pm +Pm(+3) Pm+3 0 Pm +Pr Pr+3 0 Pr 140.9076 +Pr(+2) Pr+2 0 Pr +Pr(+3) Pr+3 0 Pr +Pu Pu+4 0 Pu 244 +Pu(+3) Pu+3 0 Pu +Pu(+4) Pu+4 0 Pu +Pu(+5) PuO2+ 0 Pu +Pu(+6) PuO2+2 0 Pu +Ra Ra+2 0 Ra 226.025 +Rb Rb+ 0 Rb 85.4678 +Re ReO4- 0 Re 186.207 +Rn Rn 0 Rn 222 +Ru RuO4-2 0 Ru 101.07 +Ru(+2) Ru+2 0 Ru +Ru(+3) Ru+3 0 Ru +Ru(+4) Ru(OH)2+2 0 Ru +Ru(+6) RuO4-2 0 Ru +Ru(+7) RuO4- 0 Ru +Ru(+8) RuO4 0 Ru +S SO4-2 0 SO4 32.066 +S(-2) HS- 1 S +S(+2) S2O3-2 0 S +S(+3) S2O4-2 0 S +S(+4) SO3-2 0 S +S(+5) S2O5-2 0 S +S(+6) SO4-2 0 SO4 +S(+7) S2O8-2 0 S +S(+8) HSO5- 0 S +Sb Sb(OH)3 0 Sb 121.75 +Sc Sc+3 0 Sc 44.9559 +Se SeO3-2 0 Se 78.96 +Se(-2) HSe- 0 Se +Se(+4) SeO3-2 0 Se +Se(+6) SeO4-2 0 Se +Si SiO2 0 SiO2 28.0855 +Sm Sm+3 0 Sm 150.36 +Sm(+2) Sm+2 0 Sm +Sm(+3) Sm+3 0 Sm +Sn Sn+2 0 Sn 118.71 +Sn(+2) Sn+2 0 Sn +Sn(+4) Sn+4 0 Sn +Sr Sr+2 0 Sr 87.62 +Tb Tb+3 0 Tb 158.9253 +Tb(+2) Tb+2 0 Tb +Tb(+3) Tb+3 0 Tb +Tc TcO4- 0 Tc 98 +Tc(+3) Tc+3 0 Tc +Tc(+4) TcO+2 0 Tc +Tc(+5) TcO4-3 0 Tc +Tc(+6) TcO4-2 0 Tc +Tc(+7) TcO4- 0 Tc +Thiocyanate Thiocyanate- 0 SCN 58 +Th Th+4 0 Th 232.0381 +Ti Ti(OH)4 0 Ti 47.88 +Tl Tl+ 0 Tl 204.3833 +Tl(+1) Tl+ 0 Tl +Tl(+3) Tl+3 0 Tl +Tm Tm+3 0 Tm 168.9342 +Tm(+2) Tm+2 0 Tm +Tm(+3) Tm+3 0 Tm +U UO2+2 0 U 238.0289 +U(+3) U+3 0 U +U(+4) U+4 0 U +U(+5) UO2+ 0 U +U(+6) UO2+2 0 U +V VO+2 0 V 50.9415 +V(+3) V+3 0 V +V(+4) VO+2 0 V +V(+5) VO2+ 0 V +W WO4-2 0 W 183.85 +Xe Xe 0 Xe 131.29 +Xe(0) Xe 0 Xe +Y Y+3 0 Y 88.9059 +Yb Yb+3 0 Yb 173.04 +Yb(+2) Yb+2 0 Yb +Yb(+3) Yb+3 0 Yb +Zn Zn+2 0 Zn 65.39 +Zr Zr(OH)2+2 0 Zr 91.224 SOLUTION_SPECIES HAcetate = HAcetate - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction HAcetate -# Enthalpy of formation: -116.1 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction HAcetate +# Enthalpy of formation: -116.1 kcal/mol Ag+ = Ag+ - -llnl_gamma 2.5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ag+ -# Enthalpy of formation: 25.275 kcal/mol + -llnl_gamma 2.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ag+ +# Enthalpy of formation: 25.275 kcal/mol Al+3 = Al+3 - -llnl_gamma 9 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Al+3 -# Enthalpy of formation: -128.681 kcal/mol + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Al+3 +# Enthalpy of formation: -128.681 kcal/mol Am+3 = Am+3 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Am+3 -# Enthalpy of formation: -616.7 kJ/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Am+3 +# Enthalpy of formation: -616.7 kJ/mol Ar = Ar - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ar -# Enthalpy of formation: -2.87 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ar +# Enthalpy of formation: -2.87 kcal/mol Au+ = Au+ - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Au+ -# Enthalpy of formation: 47.58 kcal/mol + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Au+ +# Enthalpy of formation: 47.58 kcal/mol B(OH)3 = B(OH)3 - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction B(OH)3 -# Enthalpy of formation: -256.82 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction B(OH)3 +# Enthalpy of formation: -256.82 kcal/mol Ba+2 = Ba+2 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ba+2 -# Enthalpy of formation: -128.5 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ba+2 +# Enthalpy of formation: -128.5 kcal/mol Be+2 = Be+2 - -llnl_gamma 8 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Be+2 -# Enthalpy of formation: -91.5 kcal/mol + -llnl_gamma 8 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Be+2 +# Enthalpy of formation: -91.5 kcal/mol Br- = Br- - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Br- -# Enthalpy of formation: -29.04 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Br- +# Enthalpy of formation: -29.04 kcal/mol Ca+2 = Ca+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ca+2 -# Enthalpy of formation: -129.8 kcal/mol + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ca+2 +# Enthalpy of formation: -129.8 kcal/mol Cd+2 = Cd+2 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cd+2 -# Enthalpy of formation: -18.14 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cd+2 +# Enthalpy of formation: -18.14 kcal/mol Ce+3 = Ce+3 - -llnl_gamma 9 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ce+3 -# Enthalpy of formation: -167.4 kcal/mol + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ce+3 +# Enthalpy of formation: -167.4 kcal/mol Cl- = Cl- - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cl- -# Enthalpy of formation: -39.933 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cl- +# Enthalpy of formation: -39.933 kcal/mol Co+2 = Co+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Co+2 -# Enthalpy of formation: -13.9 kcal/mol + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Co+2 +# Enthalpy of formation: -13.9 kcal/mol CrO4-2 = CrO4-2 - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction CrO4-2 -# Enthalpy of formation: -210.6 kcal/mol + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction CrO4-2 +# Enthalpy of formation: -210.6 kcal/mol Cs+ = Cs+ - -llnl_gamma 2.5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cs+ -# Enthalpy of formation: -61.67 kcal/mol + -llnl_gamma 2.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cs+ +# Enthalpy of formation: -61.67 kcal/mol Cu+2 = Cu+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cu+2 -# Enthalpy of formation: 15.7 kcal/mol + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cu+2 +# Enthalpy of formation: 15.7 kcal/mol Dy+3 = Dy+3 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Dy+3 -# Enthalpy of formation: -166.5 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Dy+3 +# Enthalpy of formation: -166.5 kcal/mol e- = e- - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction e- -# Enthalpy of formation: -0 kJ/mol + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction e- +# Enthalpy of formation: -0 kJ/mol Er+3 = Er+3 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Er+3 -# Enthalpy of formation: -168.5 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Er+3 +# Enthalpy of formation: -168.5 kcal/mol Ethylene = Ethylene - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ethylene -# Enthalpy of formation: 8.57 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ethylene +# Enthalpy of formation: 8.57 kcal/mol Eu+3 = Eu+3 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Eu+3 -# Enthalpy of formation: -144.7 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Eu+3 +# Enthalpy of formation: -144.7 kcal/mol F- = F- - -llnl_gamma 3.5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction F- -# Enthalpy of formation: -80.15 kcal/mol + -llnl_gamma 3.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction F- +# Enthalpy of formation: -80.15 kcal/mol Fe+2 = Fe+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Fe+2 -# Enthalpy of formation: -22.05 kcal/mol + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Fe+2 +# Enthalpy of formation: -22.05 kcal/mol Ga+3 = Ga+3 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ga+3 -# Enthalpy of formation: -50.6 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ga+3 +# Enthalpy of formation: -50.6 kcal/mol Gd+3 = Gd+3 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Gd+3 -# Enthalpy of formation: -164.2 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Gd+3 +# Enthalpy of formation: -164.2 kcal/mol H+ = H+ - -llnl_gamma 9 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction H+ -# Enthalpy of formation: -0 kJ/mol + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction H+ +# Enthalpy of formation: -0 kJ/mol He = He - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction He -# Enthalpy of formation: -0.15 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction He +# Enthalpy of formation: -0.15 kcal/mol H2AsO4- = H2AsO4- - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction H2AsO4- -# Enthalpy of formation: -217.39 kcal/mol + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction H2AsO4- +# Enthalpy of formation: -217.39 kcal/mol HCO3- = HCO3- - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction HCO3- -# Enthalpy of formation: -164.898 kcal/mol + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction HCO3- +# Enthalpy of formation: -164.898 kcal/mol HPO4-2 = HPO4-2 - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction HPO4-2 -# Enthalpy of formation: -308.815 kcal/mol + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction HPO4-2 +# Enthalpy of formation: -308.815 kcal/mol Hf+4 = Hf+4 - log_k 0 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf+4 -# Enthalpy of formation: -0 kcal/mol + log_k 0 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf+4 +# Enthalpy of formation: -0 kcal/mol Hg+2 = Hg+2 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Hg+2 -# Enthalpy of formation: 40.67 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Hg+2 +# Enthalpy of formation: 40.67 kcal/mol Ho+3 = Ho+3 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ho+3 -# Enthalpy of formation: -169 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ho+3 +# Enthalpy of formation: -169 kcal/mol I- = I- - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction I- -# Enthalpy of formation: -13.6 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction I- +# Enthalpy of formation: -13.6 kcal/mol In+3 = In+3 - -llnl_gamma 9 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction In+3 -# Enthalpy of formation: -25 kcal/mol + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction In+3 +# Enthalpy of formation: -25 kcal/mol K+ = K+ - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction K+ -# Enthalpy of formation: -60.27 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction K+ +# Enthalpy of formation: -60.27 kcal/mol Kr = Kr - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Kr -# Enthalpy of formation: -3.65 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Kr +# Enthalpy of formation: -3.65 kcal/mol La+3 = La+3 - -llnl_gamma 9 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction La+3 -# Enthalpy of formation: -169.6 kcal/mol + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction La+3 +# Enthalpy of formation: -169.6 kcal/mol Li+ = Li+ - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Li+ -# Enthalpy of formation: -66.552 kcal/mol + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Li+ +# Enthalpy of formation: -66.552 kcal/mol Lu+3 = Lu+3 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Lu+3 -# Enthalpy of formation: -167.9 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Lu+3 +# Enthalpy of formation: -167.9 kcal/mol Mg+2 = Mg+2 - -llnl_gamma 8 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Mg+2 -# Enthalpy of formation: -111.367 kcal/mol + -llnl_gamma 8 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Mg+2 +# Enthalpy of formation: -111.367 kcal/mol Mn+2 = Mn+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Mn+2 -# Enthalpy of formation: -52.724 kcal/mol + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Mn+2 +# Enthalpy of formation: -52.724 kcal/mol MoO4-2 = MoO4-2 - -llnl_gamma 4.5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction MoO4-2 -# Enthalpy of formation: -238.5 kcal/mol + -llnl_gamma 4.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction MoO4-2 +# Enthalpy of formation: -238.5 kcal/mol NH3 = NH3 - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction NH3 -# Enthalpy of formation: -19.44 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction NH3 +# Enthalpy of formation: -19.44 kcal/mol Na+ = Na+ - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Na+ -# Enthalpy of formation: -57.433 kcal/mol + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Na+ +# Enthalpy of formation: -57.433 kcal/mol Nd+3 = Nd+3 - -llnl_gamma 9 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Nd+3 -# Enthalpy of formation: -166.5 kcal/mol + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Nd+3 +# Enthalpy of formation: -166.5 kcal/mol Ne = Ne - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ne -# Enthalpy of formation: -0.87 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ne +# Enthalpy of formation: -0.87 kcal/mol Ni+2 = Ni+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ni+2 -# Enthalpy of formation: -12.9 kcal/mol + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ni+2 +# Enthalpy of formation: -12.9 kcal/mol Np+4 = Np+4 - -llnl_gamma 5.5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Np+4 -# Enthalpy of formation: -556.001 kJ/mol + -llnl_gamma 5.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Np+4 +# Enthalpy of formation: -556.001 kJ/mol H2O = H2O - -llnl_gamma 3 + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction H2O -# Enthalpy of formation: -68.317 kcal/mol + -delta_H 0 kJ/mol # Calculated enthalpy of reaction H2O +# Enthalpy of formation: -68.317 kcal/mol O_phthalate-2 = O_phthalate-2 - -llnl_gamma 4 - log_k 0 - -delta_H 0 # Not possible to calculate enthalpy of reaction O_phthalate-2 -# Enthalpy of formation: -0 kcal/mol + -llnl_gamma 4 + log_k 0 + -delta_H 0 # Not possible to calculate enthalpy of reaction O_phthalate-2 +# Enthalpy of formation: -0 kcal/mol Pb+2 = Pb+2 - -llnl_gamma 4.5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pb+2 -# Enthalpy of formation: 0.22 kcal/mol + -llnl_gamma 4.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pb+2 +# Enthalpy of formation: 0.22 kcal/mol Pd+2 = Pd+2 - -llnl_gamma 4.5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pd+2 -# Enthalpy of formation: 42.08 kcal/mol + -llnl_gamma 4.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pd+2 +# Enthalpy of formation: 42.08 kcal/mol Pm+3 = Pm+3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pm+3 -# Enthalpy of formation: -688 kJ/mol + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pm+3 +# Enthalpy of formation: -688 kJ/mol Pr+3 = Pr+3 - -llnl_gamma 9 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pr+3 -# Enthalpy of formation: -168.8 kcal/mol + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pr+3 +# Enthalpy of formation: -168.8 kcal/mol Pu+4 = Pu+4 - -llnl_gamma 5.5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pu+4 -# Enthalpy of formation: -535.893 kJ/mol + -llnl_gamma 5.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pu+4 +# Enthalpy of formation: -535.893 kJ/mol Ra+2 = Ra+2 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ra+2 -# Enthalpy of formation: -126.1 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ra+2 +# Enthalpy of formation: -126.1 kcal/mol Rb+ = Rb+ - -llnl_gamma 2.5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Rb+ -# Enthalpy of formation: -60.02 kcal/mol + -llnl_gamma 2.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Rb+ +# Enthalpy of formation: -60.02 kcal/mol ReO4- = ReO4- - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction ReO4- -# Enthalpy of formation: -188.2 kcal/mol + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction ReO4- +# Enthalpy of formation: -188.2 kcal/mol Rn = Rn - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Rn -# Enthalpy of formation: -5 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Rn +# Enthalpy of formation: -5 kcal/mol RuO4-2 = RuO4-2 - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction RuO4-2 -# Enthalpy of formation: -457.075 kJ/mol + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction RuO4-2 +# Enthalpy of formation: -457.075 kJ/mol SO4-2 = SO4-2 - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction SO4-2 -# Enthalpy of formation: -217.4 kcal/mol + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction SO4-2 +# Enthalpy of formation: -217.4 kcal/mol Sb(OH)3 = Sb(OH)3 - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sb(OH)3 -# Enthalpy of formation: -773.789 kJ/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sb(OH)3 +# Enthalpy of formation: -773.789 kJ/mol Sc+3 = Sc+3 - -llnl_gamma 9 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sc+3 -# Enthalpy of formation: -146.8 kcal/mol + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sc+3 +# Enthalpy of formation: -146.8 kcal/mol SeO3-2 = SeO3-2 - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction SeO3-2 -# Enthalpy of formation: -121.7 kcal/mol + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction SeO3-2 +# Enthalpy of formation: -121.7 kcal/mol SiO2 = SiO2 - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction SiO2 -# Enthalpy of formation: -209.775 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction SiO2 +# Enthalpy of formation: -209.775 kcal/mol Sm+3 = Sm+3 - -llnl_gamma 9 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sm+3 -# Enthalpy of formation: -165.2 kcal/mol + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sm+3 +# Enthalpy of formation: -165.2 kcal/mol Sn+2 = Sn+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sn+2 -# Enthalpy of formation: -2.1 kcal/mol + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sn+2 +# Enthalpy of formation: -2.1 kcal/mol Sr+2 = Sr+2 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sr+2 -# Enthalpy of formation: -131.67 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sr+2 +# Enthalpy of formation: -131.67 kcal/mol Tb+3 = Tb+3 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tb+3 -# Enthalpy of formation: -166.9 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tb+3 +# Enthalpy of formation: -166.9 kcal/mol TcO4- = TcO4- - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction TcO4- -# Enthalpy of formation: -716.269 kJ/mol + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction TcO4- +# Enthalpy of formation: -716.269 kJ/mol Th+4 = Th+4 - -llnl_gamma 11 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Th+4 -# Enthalpy of formation: -183.8 kcal/mol + -llnl_gamma 11 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Th+4 +# Enthalpy of formation: -183.8 kcal/mol Ti(OH)4 = Ti(OH)4 - -llnl_gamma 3 - log_k 0 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti(OH)4 -# Enthalpy of formation: -0 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti(OH)4 +# Enthalpy of formation: -0 kcal/mol Tl+ = Tl+ - -llnl_gamma 2.5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tl+ -# Enthalpy of formation: 1.28 kcal/mol + -llnl_gamma 2.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tl+ +# Enthalpy of formation: 1.28 kcal/mol Tm+3 = Tm+3 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tm+3 -# Enthalpy of formation: -168.5 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tm+3 +# Enthalpy of formation: -168.5 kcal/mol UO2+2 = UO2+2 - -llnl_gamma 4.5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction UO2+2 -# Enthalpy of formation: -1019 kJ/mol + -llnl_gamma 4.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction UO2+2 +# Enthalpy of formation: -1019 kJ/mol VO+2 = VO+2 - -llnl_gamma 4.5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction VO+2 -# Enthalpy of formation: -116.3 kcal/mol + -llnl_gamma 4.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction VO+2 +# Enthalpy of formation: -116.3 kcal/mol WO4-2 = WO4-2 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction WO4-2 -# Enthalpy of formation: -257.1 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction WO4-2 +# Enthalpy of formation: -257.1 kcal/mol Xe = Xe - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Xe -# Enthalpy of formation: -4.51 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Xe +# Enthalpy of formation: -4.51 kcal/mol Y+3 = Y+3 - -llnl_gamma 9 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Y+3 -# Enthalpy of formation: -170.9 kcal/mol + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Y+3 +# Enthalpy of formation: -170.9 kcal/mol Yb+3 = Yb+3 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Yb+3 -# Enthalpy of formation: -160.3 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Yb+3 +# Enthalpy of formation: -160.3 kcal/mol Zn+2 = Zn+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Zn+2 -# Enthalpy of formation: -36.66 kcal/mol + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Zn+2 +# Enthalpy of formation: -36.66 kcal/mol Zr(OH)2+2 = Zr(OH)2+2 - -llnl_gamma 4.5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Zr(OH)2+2 -# Enthalpy of formation: -260.717 kcal/mol + -llnl_gamma 4.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Zr(OH)2+2 +# Enthalpy of formation: -260.717 kcal/mol 2 H2O = O2 + 4 H+ + 4 e- - -CO2_llnl_gamma - log_k -85.9951 - -delta_H 559.543 kJ/mol # Calculated enthalpy of reaction O2 -# Enthalpy of formation: -2.9 kcal/mol + -CO2_llnl_gamma + log_k -85.9951 + -delta_H 559.543 kJ/mol # Calculated enthalpy of reaction O2 +# Enthalpy of formation: -2.9 kcal/mol -analytic 38.0229 7.99407E-3 -2.7655e+4 -1.4506e+1 199838.45 -# Range: 0-300 +# Range: 0-300 SO4-2 + H+ = HS- + 2 O2 -llnl_gamma 3.5 log_k -138.3169 - -delta_H 869.226 kJ/mol # Calculated enthalpy of reaction HS- -# Enthalpy of formation: -3.85 kcal/mol + -delta_H 869.226 kJ/mol # Calculated enthalpy of reaction HS- +# Enthalpy of formation: -3.85 kcal/mol -analytic 2.6251e+1 3.9525e-2 -4.5443e+4 -1.1107e+1 3.1843e+5 # -Range: 0-300 @@ -729,511 +729,511 @@ Zr(OH)2+2 = Zr(OH)2+2 #2 HS- = S2-- +2 H+ + 2e- -llnl_gamma 4 log_k 33.2673 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction S2-2 +# Enthalpy of formation: -0 kcal/mol -analytic 0.2173E+2 -0.12307E-2 0.10098E+5 -0.88813E+1 0.15757E+3 - -mass_balance S(-2)2 + -mass_balance S(-2)2 # -Range: 0-300 -# -add_logk Log_K_O2 0.5 +# -add_logk Log_K_O2 0.5 2 H+ + 2 SO3-2 = S2O3-2 + O2 + H2O -llnl_gamma 4 log_k -40.2906 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O3-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O3-2 +# Enthalpy of formation: -0 kcal/mol -analytic 0.77679E+2 0.65761E-1 -0.15438E+5 -0.34651E+2 -0.24092E+3 # -Range: 0-300 H+ + Ag+ + 0.25 O2 = Ag+2 + 0.5 H2O -llnl_gamma 4.5 log_k -12.1244 - -delta_H 22.9764 kJ/mol # Calculated enthalpy of reaction Ag+2 -# Enthalpy of formation: 64.2 kcal/mol + -delta_H 22.9764 kJ/mol # Calculated enthalpy of reaction Ag+2 +# Enthalpy of formation: 64.2 kcal/mol -analytic -4.7312e+1 -1.5239e-2 -4.1954e+2 1.6622e+1 -6.5328e+0 # -Range: 0-300 Am+3 + 0.5 H2O = Am+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -60.3792 - -delta_H 401.953 kJ/mol # Calculated enthalpy of reaction Am+2 -# Enthalpy of formation: -354.633 kJ/mol + -delta_H 401.953 kJ/mol # Calculated enthalpy of reaction Am+2 +# Enthalpy of formation: -354.633 kJ/mol -analytic 1.4922e+1 3.5993e-3 -2.0987e+4 -2.4146e+0 -3.2749e+2 # -Range: 0-300 H+ + Am+3 + 0.25 O2 = Am+4 + 0.5 H2O -llnl_gamma 5.5 log_k -22.7073 - -delta_H 70.8142 kJ/mol # Calculated enthalpy of reaction Am+4 -# Enthalpy of formation: -406 kJ/mol + -delta_H 70.8142 kJ/mol # Calculated enthalpy of reaction Am+4 +# Enthalpy of formation: -406 kJ/mol -analytic -1.746e+1 -2.2336e-3 -3.5139e+3 2.9102e+0 -5.4826e+1 # -Range: 0-300 H2O + Am+3 + 0.5 O2 = AmO2+ + 2 H+ -llnl_gamma 4 log_k -15.384 - -delta_H 104.345 kJ/mol # Calculated enthalpy of reaction AmO2+ -# Enthalpy of formation: -804.26 kJ/mol + -delta_H 104.345 kJ/mol # Calculated enthalpy of reaction AmO2+ +# Enthalpy of formation: -804.26 kJ/mol -analytic 1.411e+1 6.9728e-3 -4.2098e+3 -6.0936e+0 -2.1192e+5 # -Range: 0-300 Am+3 + 0.75 O2 + 0.5 H2O = AmO2+2 + H+ -llnl_gamma 4.5 log_k -20.862 - -delta_H 117.959 kJ/mol # Calculated enthalpy of reaction AmO2+2 -# Enthalpy of formation: -650.76 kJ/mol + -delta_H 117.959 kJ/mol # Calculated enthalpy of reaction AmO2+2 +# Enthalpy of formation: -650.76 kJ/mol -analytic 5.7163e+1 4.0278e-3 -8.4633e+3 -2.055e+1 -1.3208e+2 # -Range: 0-300 H2AsO4- + H+ = AsH3 + 2 O2 -llnl_gamma 3 log_k -155.1907 - -delta_H 931.183 kJ/mol # Calculated enthalpy of reaction AsH3 -# Enthalpy of formation: 10.968 kcal/mol + -delta_H 931.183 kJ/mol # Calculated enthalpy of reaction AsH3 +# Enthalpy of formation: 10.968 kcal/mol -analytic 2.831e+2 9.6961e-2 -5.483e+4 -1.1449e+2 -9.3119e+2 # -Range: 0-200 2 H+ + Au+ + 0.5 O2 = Au+3 + H2O -llnl_gamma 5 log_k -4.3506 - -delta_H -73.2911 kJ/mol # Calculated enthalpy of reaction Au+3 -# Enthalpy of formation: 96.93 kcal/mol + -delta_H -73.2911 kJ/mol # Calculated enthalpy of reaction Au+3 +# Enthalpy of formation: 96.93 kcal/mol -analytic -6.8661e+1 -2.6838e-2 4.4549e+3 2.3178e+1 6.9534e+1 # -Range: 0-300 H2O + B(OH)3 = BH4- + 2 O2 + H+ -llnl_gamma 4 log_k -237.1028 - -delta_H 1384.24 kJ/mol # Calculated enthalpy of reaction BH4- -# Enthalpy of formation: 48.131 kJ/mol + -delta_H 1384.24 kJ/mol # Calculated enthalpy of reaction BH4- +# Enthalpy of formation: 48.131 kJ/mol -analytic -7.493e+1 -7.2794e-3 -6.9168e+4 2.9105e+1 -1.0793e+3 # -Range: 0-300 3 Br- + 2 H+ + 0.5 O2 = Br3- + H2O -llnl_gamma 4 log_k 7.0696 - -delta_H -45.6767 kJ/mol # Calculated enthalpy of reaction Br3- -# Enthalpy of formation: -31.17 kcal/mol + -delta_H -45.6767 kJ/mol # Calculated enthalpy of reaction Br3- +# Enthalpy of formation: -31.17 kcal/mol -analytic 1.4899e+2 6.4017e-2 -3.3831e+2 -6.4596e+1 -5.3232e+0 # -Range: 0-300 Br- + 0.5 O2 = BrO- -llnl_gamma 4 log_k -10.9167 - -delta_H 33.4302 kJ/mol # Calculated enthalpy of reaction BrO- -# Enthalpy of formation: -22.5 kcal/mol + -delta_H 33.4302 kJ/mol # Calculated enthalpy of reaction BrO- +# Enthalpy of formation: -22.5 kcal/mol -analytic 5.4335e+1 1.9509e-3 -4.286e+3 -2.0799e+1 -6.6896e+1 # -Range: 0-300 1.5 O2 + Br- = BrO3- -llnl_gamma 3.5 log_k -17.1443 - -delta_H 72.6342 kJ/mol # Calculated enthalpy of reaction BrO3- -# Enthalpy of formation: -16.03 kcal/mol + -delta_H 72.6342 kJ/mol # Calculated enthalpy of reaction BrO3- +# Enthalpy of formation: -16.03 kcal/mol -analytic 3.7156e+1 -4.7855e-3 -4.6208e+3 -1.4136e+1 -2.1385e+5 # -Range: 0-300 2 O2 + Br- = BrO4- -llnl_gamma 4 log_k -33.104 - -delta_H 158.741 kJ/mol # Calculated enthalpy of reaction BrO4- -# Enthalpy of formation: 3.1 kcal/mol + -delta_H 158.741 kJ/mol # Calculated enthalpy of reaction BrO4- +# Enthalpy of formation: 3.1 kcal/mol -analytic 8.1393e+1 -2.3409e-3 -1.229e+4 -2.9336e+1 -1.918e+2 # -Range: 0-300 # 1.0000 NH3 + 1.0000 HCO3- = CN- +2.0000 H2O +0.5000 O2 # -llnl_gamma 3.0 # log_k -56.0505 -# -delta_H 344.151 kJ/mol # Calculated enthalpy of reaction CN- -# # Enthalpy of formation: 36 kcal/mol +# -delta_H 344.151 kJ/mol # Calculated enthalpy of reaction CN- +# # Enthalpy of formation: 36 kcal/mol # -analytic -1.1174e+001 3.8167e-003 -1.7063e+004 4.5349e+000 -2.6625e+002 # # -Range: 0-300 Cyanide- = Cyanide- - log_k 0 + log_k 0 H+ + HCO3- + H2O = CH4 + 2 O2 -llnl_gamma 3 log_k -144.1412 - -delta_H 863.599 kJ/mol # Calculated enthalpy of reaction CH4 -# Enthalpy of formation: -21.01 kcal/mol - -analytic -0.41698E+2 0.36584E-1 -0.40675E+5 0.93479E+1 -0.63468E+3 + -delta_H 863.599 kJ/mol # Calculated enthalpy of reaction CH4 +# Enthalpy of formation: -21.01 kcal/mol + -analytic -0.41698E+2 0.36584E-1 -0.40675E+5 0.93479E+1 -0.63468E+3 # -Range: 0-300 2 H+ + 2 HCO3- + H2O = C2H6 + 3.5 O2 -llnl_gamma 3 log_k -228.6072 - -delta_H 0 # Not possible to calculate enthalpy of reaction C2H6 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction C2H6 +# Enthalpy of formation: -0 kcal/mol -analytic -0.10777E+2 0.72105E-1 -0.67489E+5 -0.13915E+2 -0.10531E+4 # -Range: 0-300 2 H+ + 2 HCO3- = C2H4 + 3 O2 -llnl_gamma 3 log_k -254.5034 - -delta_H 1446.6 kJ/mol # Calculated enthalpy of reaction C2H4 -# Enthalpy of formation: 24.65 kcal/mol + -delta_H 1446.6 kJ/mol # Calculated enthalpy of reaction C2H4 +# Enthalpy of formation: 24.65 kcal/mol -analytic -0.30329E+2 0.71187E-1 -0.7314E+5 0E+0 0E+0 # -Range: 0-300 HCO3- + H+ = CO + H2O + 0.5 O2 -llnl_gamma 3 log_k -41.7002 - -delta_H 277.069 kJ/mol # Calculated enthalpy of reaction CO -# Enthalpy of formation: -28.91 kcal/mol + -delta_H 277.069 kJ/mol # Calculated enthalpy of reaction CO +# Enthalpy of formation: -28.91 kcal/mol -analytic 1.0028e+2 4.6877e-2 -1.8062e+4 -4.0263e+1 3.8031e+5 # -Range: 0-300 Ce+3 + 0.5 H2O = Ce+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -83.6754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce+2 +# Enthalpy of formation: -0 kcal/mol H+ + Ce+3 + 0.25 O2 = Ce+4 + 0.5 H2O -llnl_gamma 5.5 log_k -7.9154 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce+4 +# Enthalpy of formation: -0 kcal/mol Cl- + 0.5 O2 = ClO- -llnl_gamma 4 log_k -15.1014 - -delta_H 66.0361 kJ/mol # Calculated enthalpy of reaction ClO- -# Enthalpy of formation: -25.6 kcal/mol + -delta_H 66.0361 kJ/mol # Calculated enthalpy of reaction ClO- +# Enthalpy of formation: -25.6 kcal/mol -analytic 6.1314e+1 3.4812e-3 -6.0952e+3 -2.3043e+1 -9.5128e+1 # -Range: 0-300 O2 + Cl- = ClO2- -llnl_gamma 4 log_k -23.108 - -delta_H 112.688 kJ/mol # Calculated enthalpy of reaction ClO2- -# Enthalpy of formation: -15.9 kcal/mol + -delta_H 112.688 kJ/mol # Calculated enthalpy of reaction ClO2- +# Enthalpy of formation: -15.9 kcal/mol -analytic 3.3638e+0 -6.1675e-3 -4.9726e+3 -2.0467e+0 -2.5769e+5 # -Range: 0-300 1.5 O2 + Cl- = ClO3- -llnl_gamma 3.5 log_k -17.2608 - -delta_H 81.3077 kJ/mol # Calculated enthalpy of reaction ClO3- -# Enthalpy of formation: -24.85 kcal/mol + -delta_H 81.3077 kJ/mol # Calculated enthalpy of reaction ClO3- +# Enthalpy of formation: -24.85 kcal/mol -analytic 2.8852e+1 -4.8281e-3 -4.6779e+3 -1.0772e+1 -2.0783e+5 # -Range: 0-300 2 O2 + Cl- = ClO4- -llnl_gamma 3.5 log_k -15.7091 - -delta_H 62.0194 kJ/mol # Calculated enthalpy of reaction ClO4- -# Enthalpy of formation: -30.91 kcal/mol + -delta_H 62.0194 kJ/mol # Calculated enthalpy of reaction ClO4- +# Enthalpy of formation: -30.91 kcal/mol -analytic 7.028e+1 -6.8927e-5 -5.569e+3 -2.6446e+1 -1.6596e+5 # -Range: 0-300 H+ + Co+2 + 0.25 O2 = Co+3 + 0.5 H2O -llnl_gamma 5 log_k -11.4845 - -delta_H 10.3198 kJ/mol # Calculated enthalpy of reaction Co+3 -# Enthalpy of formation: 22 kcal/mol + -delta_H 10.3198 kJ/mol # Calculated enthalpy of reaction Co+3 +# Enthalpy of formation: 22 kcal/mol -analytic -2.2827e+1 -1.2222e-2 -7.2117e+2 7.0306e+0 -1.1247e+1 # -Range: 0-300 4 H+ + CrO4-2 = Cr+2 + 2 H2O + O2 -llnl_gamma 4.5 log_k -21.6373 - -delta_H 153.829 kJ/mol # Calculated enthalpy of reaction Cr+2 -# Enthalpy of formation: -34.3 kcal/mol + -delta_H 153.829 kJ/mol # Calculated enthalpy of reaction Cr+2 +# Enthalpy of formation: -34.3 kcal/mol -analytic 6.9003e+1 6.2884e-2 -6.9847e+3 -3.472e+1 -1.0901e+2 # -Range: 0-300 5 H+ + CrO4-2 = Cr+3 + 2.5 H2O + 0.75 O2 -llnl_gamma 9 log_k 8.3842 - -delta_H -81.0336 kJ/mol # Calculated enthalpy of reaction Cr+3 -# Enthalpy of formation: -57 kcal/mol + -delta_H -81.0336 kJ/mol # Calculated enthalpy of reaction Cr+3 +# Enthalpy of formation: -57 kcal/mol -analytic 5.1963e+1 6.0932e-2 5.4256e+3 -3.229e+1 8.4645e+1 # -Range: 0-300 0.5 H2O + CrO4-2 = CrO4-3 + H+ + 0.25 O2 -llnl_gamma 4 log_k -19.7709 - -delta_H 0 # Not possible to calculate enthalpy of reaction CrO4-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CrO4-3 +# Enthalpy of formation: -0 kcal/mol Cu+2 + 0.5 H2O = Cu+ + H+ + 0.25 O2 -llnl_gamma 4 log_k -18.7704 - -delta_H 145.877 kJ/mol # Calculated enthalpy of reaction Cu+ -# Enthalpy of formation: 17.132 kcal/mol + -delta_H 145.877 kJ/mol # Calculated enthalpy of reaction Cu+ +# Enthalpy of formation: 17.132 kcal/mol -analytic 3.7909e+1 1.3731e-2 -8.1506e+3 -1.3508e+1 -1.2719e+2 # -Range: 0-300 Dy+3 + 0.5 H2O = Dy+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -61.0754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy+2 +# Enthalpy of formation: -0 kcal/mol Er+3 + 0.5 H2O = Er+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -70.1754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Er+2 +# Enthalpy of formation: -0 kcal/mol Eu+3 + 0.5 H2O = Eu+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -27.5115 - -delta_H 217.708 kJ/mol # Calculated enthalpy of reaction Eu+2 -# Enthalpy of formation: -126.1 kcal/mol + -delta_H 217.708 kJ/mol # Calculated enthalpy of reaction Eu+2 +# Enthalpy of formation: -126.1 kcal/mol -analytic 3.03e+1 1.4126e-2 -1.2319e+4 -9.0585e+0 1.5289e+5 # -Range: 0-300 H+ + Fe+2 + 0.25 O2 = Fe+3 + 0.5 H2O -llnl_gamma 9 log_k 8.4899 - -delta_H -97.209 kJ/mol # Calculated enthalpy of reaction Fe+3 -# Enthalpy of formation: -11.85 kcal/mol + -delta_H -97.209 kJ/mol # Calculated enthalpy of reaction Fe+3 +# Enthalpy of formation: -11.85 kcal/mol -analytic -1.7808e+1 -1.1753e-2 4.7609e+3 5.5866e+0 7.4295e+1 # -Range: 0-300 Gd+3 + 0.5 H2O = Gd+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -84.6754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd+2 +# Enthalpy of formation: -0 kcal/mol H2O = H2 + 0.5 O2 - -CO2_llnl_gamma + -CO2_llnl_gamma log_k -46.1066 - -delta_H 275.588 kJ/mol # Calculated enthalpy of reaction H2 -# Enthalpy of formation: -1 kcal/mol + -delta_H 275.588 kJ/mol # Calculated enthalpy of reaction H2 +# Enthalpy of formation: -1 kcal/mol -analytic 6.6835e+1 1.7172e-2 -1.8849e+4 -2.4092e+1 4.2501e+5 # -Range: 0-300 H2AsO4- = H2AsO3- + 0.5 O2 -llnl_gamma 4 log_k -30.5349 - -delta_H 188.698 kJ/mol # Calculated enthalpy of reaction H2AsO3- -# Enthalpy of formation: -170.84 kcal/mol + -delta_H 188.698 kJ/mol # Calculated enthalpy of reaction H2AsO3- +# Enthalpy of formation: -170.84 kcal/mol -analytic 7.4245e+1 1.4885e-2 -1.4218e+4 -2.6403e+1 3.3822e+5 # -Range: 0-300 SO4-2 + H+ + 0.5 O2 = HSO5- -llnl_gamma 4 log_k -17.2865 - -delta_H 140.038 kJ/mol # Calculated enthalpy of reaction HSO5- -# Enthalpy of formation: -185.38 kcal/mol + -delta_H 140.038 kJ/mol # Calculated enthalpy of reaction HSO5- +# Enthalpy of formation: -185.38 kcal/mol -analytic 5.9944e+1 3.0904e-2 -7.7494e+3 -2.442e+1 -1.2094e+2 # -Range: 0-300 SeO3-2 + H+ = HSe- + 1.5 O2 -llnl_gamma 4 log_k -76.8418 - -delta_H 506.892 kJ/mol # Calculated enthalpy of reaction HSe- -# Enthalpy of formation: 3.8 kcal/mol + -delta_H 506.892 kJ/mol # Calculated enthalpy of reaction HSe- +# Enthalpy of formation: 3.8 kcal/mol -analytic 4.7105e+1 4.3116e-2 -2.6949e+4 -1.9895e+1 2.5305e+5 # -Range: 0-300 2 Hg+2 + H2O = Hg2+2 + 2 H+ + 0.5 O2 -llnl_gamma 4 log_k -12.208 - -delta_H 106.261 kJ/mol # Calculated enthalpy of reaction Hg2+2 -# Enthalpy of formation: 39.87 kcal/mol + -delta_H 106.261 kJ/mol # Calculated enthalpy of reaction Hg2+2 +# Enthalpy of formation: 39.87 kcal/mol -analytic 5.501e+1 1.905e-2 -4.7967e+3 -2.2952e+1 -7.4864e+1 # -Range: 0-300 Ho+3 + 0.5 H2O = Ho+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -67.3754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho+2 +# Enthalpy of formation: -0 kcal/mol 3 I- + 2 H+ + 0.5 O2 = I3- + H2O -llnl_gamma 4 log_k 24.7278 - -delta_H -160.528 kJ/mol # Calculated enthalpy of reaction I3- -# Enthalpy of formation: -12.3 kcal/mol + -delta_H -160.528 kJ/mol # Calculated enthalpy of reaction I3- +# Enthalpy of formation: -12.3 kcal/mol -analytic 1.4788e+2 6.6206e-2 5.7407e+3 -6.5517e+1 8.9535e+1 # -Range: 0-300 I- + 0.5 O2 = IO- -llnl_gamma 4 log_k -0.9038 - -delta_H -44.5596 kJ/mol # Calculated enthalpy of reaction IO- -# Enthalpy of formation: -25.7 kcal/mol + -delta_H -44.5596 kJ/mol # Calculated enthalpy of reaction IO- +# Enthalpy of formation: -25.7 kcal/mol -analytic 2.7568e+0 -5.5671e-3 3.2484e+3 -3.9065e+0 -2.88e+5 # -Range: 0-300 1.5 O2 + I- = IO3- -llnl_gamma 4 log_k 17.6809 - -delta_H -146.231 kJ/mol # Calculated enthalpy of reaction IO3- -# Enthalpy of formation: -52.9 kcal/mol + -delta_H -146.231 kJ/mol # Calculated enthalpy of reaction IO3- +# Enthalpy of formation: -52.9 kcal/mol -analytic -2.2971e+1 -1.3478e-2 9.5977e+3 6.601e+0 -3.4371e+5 # -Range: 0-300 2 O2 + I- = IO4- -llnl_gamma 3.5 log_k 6.9621 - -delta_H -70.2912 kJ/mol # Calculated enthalpy of reaction IO4- -# Enthalpy of formation: -36.2 kcal/mol + -delta_H -70.2912 kJ/mol # Calculated enthalpy of reaction IO4- +# Enthalpy of formation: -36.2 kcal/mol -analytic 2.1232e+1 -7.8107e-3 3.5803e+3 -8.5272e+0 -2.5422e+5 # -Range: 0-300 La+3 + 0.5 H2O = La+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -72.4754 - -delta_H 0 # Not possible to calculate enthalpy of reaction La+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction La+2 +# Enthalpy of formation: -0 kcal/mol Mn+2 + H+ + 0.25 O2 = Mn+3 + 0.5 H2O -llnl_gamma 5 log_k -4.0811 - -delta_H -65.2892 kJ/mol # Calculated enthalpy of reaction Mn+3 -# Enthalpy of formation: -34.895 kcal/mol + -delta_H -65.2892 kJ/mol # Calculated enthalpy of reaction Mn+3 +# Enthalpy of formation: -34.895 kcal/mol -analytic 3.8873e+1 1.7458e-2 2.0757e+3 -2.2274e+1 3.2378e+1 # -Range: 0-300 2 H2O + O2 + Mn+2 = MnO4-2 + 4 H+ -llnl_gamma 4 log_k -32.4146 - -delta_H 151.703 kJ/mol # Calculated enthalpy of reaction MnO4-2 -# Enthalpy of formation: -156 kcal/mol + -delta_H 151.703 kJ/mol # Calculated enthalpy of reaction MnO4-2 +# Enthalpy of formation: -156 kcal/mol -analytic -1.0407e+1 -4.6464e-2 -1.0515e+4 1.0943e+1 -1.6408e+2 # -Range: 0-300 2 NH3 + 1.5 O2 = N2 + 3 H2O -llnl_gamma 3 log_k 116.4609 - -delta_H -687.08 kJ/mol # Calculated enthalpy of reaction N2 -# Enthalpy of formation: -2.495 kcal/mol + -delta_H -687.08 kJ/mol # Calculated enthalpy of reaction N2 +# Enthalpy of formation: -2.495 kcal/mol -analytic -8.2621e+1 -1.4671e-2 4.0068e+4 2.909e+1 -2.5924e+5 # -Range: 0-300 3 NH3 + 2 O2 = N3- + 4 H2O + H+ -llnl_gamma 4 log_k 96.968 - -delta_H -599.935 kJ/mol # Calculated enthalpy of reaction N3- -# Enthalpy of formation: 275.14 kJ/mol + -delta_H -599.935 kJ/mol # Calculated enthalpy of reaction N3- +# Enthalpy of formation: 275.14 kJ/mol -analytic -9.108e+1 -4.0817e-2 3.635e+4 3.4484e+1 -6.2678e+5 # -Range: 0-300 1.5 O2 + NH3 = NO2- + H+ + H2O -llnl_gamma 3 log_k 46.8653 - -delta_H -290.901 kJ/mol # Calculated enthalpy of reaction NO2- -# Enthalpy of formation: -25 kcal/mol + -delta_H -290.901 kJ/mol # Calculated enthalpy of reaction NO2- +# Enthalpy of formation: -25 kcal/mol -analytic -1.7011e+1 -3.3459e-2 1.3999e+4 1.1078e+1 -4.8255e+4 # -Range: 0-300 2 O2 + NH3 = NO3- + H+ + H2O -llnl_gamma 3 log_k 62.1001 - -delta_H -387.045 kJ/mol # Calculated enthalpy of reaction NO3- -# Enthalpy of formation: -49.429 kcal/mol + -delta_H -387.045 kJ/mol # Calculated enthalpy of reaction NO3- +# Enthalpy of formation: -49.429 kcal/mol -analytic -3.9468e+1 -3.9697e-2 2.0614e+4 1.8872e+1 -2.1917e+5 # -Range: 0-300 Nd+3 + 0.5 H2O = Nd+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -64.3754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd+2 +# Enthalpy of formation: -0 kcal/mol Np+4 + 0.5 H2O = Np+3 + H+ + 0.25 O2 -llnl_gamma 5 log_k -19.0131 - -delta_H 168.787 kJ/mol # Calculated enthalpy of reaction Np+3 -# Enthalpy of formation: -527.1 kJ/mol + -delta_H 168.787 kJ/mol # Calculated enthalpy of reaction Np+3 +# Enthalpy of formation: -527.1 kJ/mol -analytic 1.6615e+1 2.4645e-3 -8.9343e+3 -2.5829e+0 -1.3942e+2 # -Range: 0-300 1.5 H2O + Np+4 + 0.25 O2 = NpO2+ + 3 H+ -llnl_gamma 4 log_k 10.5928 - -delta_H 9.80089 kJ/mol # Calculated enthalpy of reaction NpO2+ -# Enthalpy of formation: -977.991 kJ/mol + -delta_H 9.80089 kJ/mol # Calculated enthalpy of reaction NpO2+ +# Enthalpy of formation: -977.991 kJ/mol -analytic 1.2566e+1 7.5467e-3 1.6921e+3 -2.7125e+0 -2.8381e+5 # -Range: 0-300 Np+4 + H2O + 0.5 O2 = NpO2+2 + 2 H+ -llnl_gamma 4.5 log_k 11.2107 - -delta_H -12.5719 kJ/mol # Calculated enthalpy of reaction NpO2+2 -# Enthalpy of formation: -860.478 kJ/mol + -delta_H -12.5719 kJ/mol # Calculated enthalpy of reaction NpO2+2 +# Enthalpy of formation: -860.478 kJ/mol -analytic 2.551e+1 1.1973e-3 1.2753e+3 -6.7082e+0 -2.0792e+5 # -Range: 0-300 2 H+ + Pb+2 + 0.5 O2 = Pb+4 + H2O -llnl_gamma 5.5 log_k -14.1802 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb+4 +# Enthalpy of formation: -0 kcal/mol Pm+3 + 0.5 H2O = Pm+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -65.2754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm+2 +# Enthalpy of formation: -0 kcal/mol Pr+3 + 0.5 H2O = Pr+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -79.9754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr+2 +# Enthalpy of formation: -0 kcal/mol Pu+4 + 0.5 H2O = Pu+3 + H+ + 0.25 O2 -llnl_gamma 5 log_k -4.5071 - -delta_H 84.2268 kJ/mol # Calculated enthalpy of reaction Pu+3 -# Enthalpy of formation: -591.552 kJ/mol + -delta_H 84.2268 kJ/mol # Calculated enthalpy of reaction Pu+3 +# Enthalpy of formation: -591.552 kJ/mol -analytic 2.0655e+1 3.2688e-3 -4.7434e+3 -4.1907e+0 1.2944e+4 # -Range: 0-300 1.5 H2O + Pu+4 + 0.25 O2 = PuO2+ + 3 H+ -llnl_gamma 4 log_k 2.9369 - -delta_H 53.5009 kJ/mol # Calculated enthalpy of reaction PuO2+ -# Enthalpy of formation: -914.183 kJ/mol + -delta_H 53.5009 kJ/mol # Calculated enthalpy of reaction PuO2+ +# Enthalpy of formation: -914.183 kJ/mol -analytic -2.0464e+1 2.8265e-3 1.2131e+3 9.2156e+0 -3.84e+5 # -Range: 0-300 Pu+4 + H2O + 0.5 O2 = PuO2+2 + 2 H+ -llnl_gamma 4.5 log_k 8.1273 - -delta_H 6.22013 kJ/mol # Calculated enthalpy of reaction PuO2+2 -# Enthalpy of formation: -821.578 kJ/mol + -delta_H 6.22013 kJ/mol # Calculated enthalpy of reaction PuO2+2 +# Enthalpy of formation: -821.578 kJ/mol -analytic 3.5219e+1 2.5202e-3 -2.476e+2 -1.012e+1 -1.7569e+5 # -Range: 0-300 4 H+ + RuO4-2 = Ru(OH)2+2 + H2O + 0.5 O2 -llnl_gamma 4.5 log_k 25.247 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2+2 +# Enthalpy of formation: -0 kcal/mol 4 H+ + RuO4-2 = Ru+2 + 2 H2O + O2 -llnl_gamma 4.5 log_k 0.161 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru+2 +# Enthalpy of formation: -0 kcal/mol 5 H+ + RuO4-2 = Ru+3 + 2.5 H2O + 0.75 O2 -llnl_gamma 5 log_k 17.6149 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru+3 +# Enthalpy of formation: -0 kcal/mol 2 H+ + RuO4-2 + 0.5 O2 = RuO4 + H2O -llnl_gamma 3 log_k 16.2672 - -delta_H -60.8385 kJ/mol # Calculated enthalpy of reaction RuO4 -# Enthalpy of formation: -238.142 kJ/mol + -delta_H -60.8385 kJ/mol # Calculated enthalpy of reaction RuO4 +# Enthalpy of formation: -238.142 kJ/mol -analytic 1.9964e+2 6.8286e-2 -1.202e+3 -8.0706e+1 -2.0481e+1 # -Range: 0-200 RuO4-2 + H+ + 0.25 O2 = RuO4- + 0.5 H2O -llnl_gamma 4 log_k 11.6024 - -delta_H -16.1998 kJ/mol # Calculated enthalpy of reaction RuO4- -# Enthalpy of formation: -333.389 kJ/mol + -delta_H -16.1998 kJ/mol # Calculated enthalpy of reaction RuO4- +# Enthalpy of formation: -333.389 kJ/mol -analytic -1.9653e+0 8.8623e-3 1.8588e+3 1.8998e+0 2.9005e+1 # -Range: 0-300 @@ -1241,11 +1241,11 @@ Cyanide- = Cyanide- -llnl_gamma 5 # log_k -25.2075 log_k -25.2076 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O4-2 +# Enthalpy of formation: -0 kcal/mol # -analytic -0.15158E+05 -0.31356E+01 0.47072E+06 0.58544E+04 0.73497E+04 - -analytic -2.3172e2 2.0393e-3 -7.1011e0 8.3239e1 9.4155e-1 -# changed 3/23/04, corrected to supcrt temperature dependence, GMA + -analytic -2.3172e2 2.0393e-3 -7.1011e0 8.3239e1 9.4155e-1 +# changed 3/23/04, corrected to supcrt temperature dependence, GMA # -Range: 0-300 # 2.0000 SO3-- + .500 O2 + 2.0000 H+ = S2O6-- + H2O @@ -1253,18 +1253,18 @@ Cyanide- = Cyanide- 2 SO3-2 = S2O6-2 + 2 e- -llnl_gamma 4 log_k 41.8289 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O6-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O6-2 +# Enthalpy of formation: -0 kcal/mol -analytic 0.14458E+3 0.61449E-1 0.71877E+4 -0.58657E+2 0.11211E+3 # -Range: 0-300 - -add_logk Log_K_O2 0.5 + -add_logk Log_K_O2 0.5 2 SO3-2 + 1.5 O2 + 2 H+ = S2O8-2 + H2O -llnl_gamma 4 log_k 70.7489 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O8-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O8-2 +# Enthalpy of formation: -0 kcal/mol -analytic 0.18394E+3 0.60414E-1 0.13864E+5 -0.71804E+2 0.21628E+3 # -Range: 0-300 @@ -1273,3053 +1273,3053 @@ O2 + H+ + 3 HS- = S3-2 + 2 H2O #3HS- = S3-- + 3H+ + 4e- -llnl_gamma 4 log_k 79.3915 - -delta_H 0 # Not possible to calculate enthalpy of reaction S3-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction S3-2 +# Enthalpy of formation: -0 kcal/mol -analytic -0.51626E+2 0.70208E-2 0.31797E+5 0.11927E+2 -0.64249E+6 - -mass_balance S(-2)3 + -mass_balance S(-2)3 # -Range: 0-300 -# -add_logk Log_K_O2 1.0 +# -add_logk Log_K_O2 1.0 # 3.0000 SO3-- + 4.0000 H+ = S3O6-- + .500 O2 + 2.0000 H2O # .5 O2 + 2H+ + 2e- = H2O 3 SO3-2 + 6 H+ + 2 e- = S3O6-2 + 3 H2O -llnl_gamma 4 log_k -6.2316 - -delta_H 0 # Not possible to calculate enthalpy of reaction S3O6-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction S3O6-2 +# Enthalpy of formation: -0 kcal/mol -analytic 0.23664E+3 0.12702E+0 -0.1011E+5 -0.99715E+2 -0.15783E+3 # -Range: 0-300 - -add_logk Log_K_O2 -0.5 + -add_logk Log_K_O2 -0.5 1.5 O2 + 2 H+ + 4 HS- = S4-2 + 3 H2O #4 HS- = S4-- + 4H+ + 6e- -llnl_gamma 4 log_k 125.2958 - -delta_H 0 # Not possible to calculate enthalpy of reaction S4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction S4-2 +# Enthalpy of formation: -0 kcal/mol -analytic 0.20875E+3 0.58133E-1 0.33278E+5 -0.85833E+2 0.51921E+3 - -mass_balance S(-2)4 + -mass_balance S(-2)4 # -Range: 0-300 -# -add_logk Log_K_O2 1.5 +# -add_logk Log_K_O2 1.5 # 4.0000 SO3-- + 6.0000 H+ = S4O6-- + 1.500 O2 + 3.0000 H2O 4 SO3-2 + 12 H+ + 6 e- = S4O6-2 + 6 H2O -llnl_gamma 4 log_k -38.3859 - -delta_H 0 # Not possible to calculate enthalpy of reaction S4O6-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction S4O6-2 +# Enthalpy of formation: -0 kcal/mol -analytic 0.32239E+3 0.19555E+0 -0.23617E+5 -0.13729E+3 -0.36862E+3 # -Range: 0-300 - -add_logk Log_K_O2 -1.5 + -add_logk Log_K_O2 -1.5 2 O2 + 3 H+ + 5 HS- = S5-2 + 4 H2O #5 HS- = S5-- + 5H+ + 8e- -llnl_gamma 4 log_k 170.9802 - -delta_H 0 # Not possible to calculate enthalpy of reaction S5-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction S5-2 +# Enthalpy of formation: -0 kcal/mol -analytic 0.30329E+3 0.88033E-1 0.44739E+5 -0.12471E+3 0.69803E+3 - -mass_balance S(-2)5 + -mass_balance S(-2)5 # -Range: 0-300 -# -add_logk Log_K_O2 2 +# -add_logk Log_K_O2 2 # 5.0000 SO3-- + 8.0000 H+ = S5O6-- + 2.5000 O2 + 4.0000 H2O # 2.5O2 + 10 H+ + 10e- = 5H2O 5 SO3-2 + 18 H+ + 10 e- = S5O6-2 + 9 H2O -llnl_gamma 4 log_k -99.4206 - -delta_H 0 # Not possible to calculate enthalpy of reaction S5O6-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction S5O6-2 +# Enthalpy of formation: -0 kcal/mol -analytic 0.42074E+3 0.25833E+0 -0.43878E+5 -0.18178E+3 -0.6848E+3 # -Range: 0-300 - -add_logk Log_K_O2 -2.5 + -add_logk Log_K_O2 -2.5 # 1.0000 H+ + HCO3- + HS- + NH3 = SCN- + 3.0000 H2O # -llnl_gamma 3.5 # log_k 3.0070 -# -delta_H 0 # Not possible to calculate enthalpy of reaction SCN- -## Enthalpy of formation: -0 kcal/mol +# -delta_H 0 # Not possible to calculate enthalpy of reaction SCN- +## Enthalpy of formation: -0 kcal/mol # -analytic 0.16539E+03 0.49623E-01 -0.44624E+04 -0.65544E+02 -0.69680E+02 ## -Range: 0-300 Thiocyanate- = Thiocyanate- - log_k 0 + log_k 0 SO4-2 = SO3-2 + 0.5 O2 -llnl_gamma 4.5 log_k -46.6244 - -delta_H 267.985 kJ/mol # Calculated enthalpy of reaction SO3-2 -# Enthalpy of formation: -151.9 kcal/mol + -delta_H 267.985 kJ/mol # Calculated enthalpy of reaction SO3-2 +# Enthalpy of formation: -151.9 kcal/mol -analytic -1.3771e+1 6.5102e-4 -1.333e+4 4.7164e+0 -2.08e+2 # -Range: 0-300 HSe- = Se-2 + H+ -llnl_gamma 4 log_k -14.9534 - -delta_H 0 # Not possible to calculate enthalpy of reaction Se-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Se-2 +# Enthalpy of formation: -0 kcal/mol -analytic 1.0244e+2 3.1346e-2 -5.419e+3 -4.3871e+1 -8.4589e+1 # -Range: 0-300 SeO3-2 + 0.5 O2 = SeO4-2 -llnl_gamma 4 log_k 13.9836 - -delta_H -83.8892 kJ/mol # Calculated enthalpy of reaction SeO4-2 -# Enthalpy of formation: -143.2 kcal/mol + -delta_H -83.8892 kJ/mol # Calculated enthalpy of reaction SeO4-2 +# Enthalpy of formation: -143.2 kcal/mol -analytic -7.2314e+1 -1.3657e-2 8.6969e+3 2.6182e+1 -3.1897e+5 # -Range: 0-300 Sm+3 + 0.5 H2O = Sm+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -47.9624 - -delta_H 326.911 kJ/mol # Calculated enthalpy of reaction Sm+2 -# Enthalpy of formation: -120.5 kcal/mol + -delta_H 326.911 kJ/mol # Calculated enthalpy of reaction Sm+2 +# Enthalpy of formation: -120.5 kcal/mol -analytic -1.0217e+1 7.7548e-3 -1.6285e+4 5.4711e+0 9.1931e+4 # -Range: 0-300 2 H+ + Sn+2 + 0.5 O2 = Sn+4 + H2O -llnl_gamma 11 log_k 37.702 - -delta_H -240.739 kJ/mol # Calculated enthalpy of reaction Sn+4 -# Enthalpy of formation: 7.229 kcal/mol + -delta_H -240.739 kJ/mol # Calculated enthalpy of reaction Sn+4 +# Enthalpy of formation: 7.229 kcal/mol -analytic 3.2053e+1 -9.2307e-3 1.0378e+4 -1.0666e+1 1.6193e+2 # -Range: 0-300 Tb+3 + 0.5 H2O = Tb+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -78.7754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb+2 +# Enthalpy of formation: -0 kcal/mol 4 H+ + TcO4- = Tc+3 + 2 H2O + O2 -llnl_gamma 5 log_k -47.614 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc+3 +# Enthalpy of formation: -0 kcal/mol 3 H+ + TcO4- = TcO+2 + 1.5 H2O + 0.75 O2 -llnl_gamma 4.5 log_k -31.5059 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO+2 +# Enthalpy of formation: -0 kcal/mol TcO4- + 0.5 H2O = TcO4-2 + H+ + 0.25 O2 -llnl_gamma 4 log_k -31.8197 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO4-2 +# Enthalpy of formation: -0 kcal/mol TcO4- + H2O = TcO4-3 + 2 H+ + 0.5 O2 -llnl_gamma 4 log_k -63.2889 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO4-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO4-3 +# Enthalpy of formation: -0 kcal/mol 2 H+ + Tl+ + 0.5 O2 = Tl+3 + H2O -llnl_gamma 5 log_k -0.2751 - -delta_H -88.479 kJ/mol # Calculated enthalpy of reaction Tl+3 -# Enthalpy of formation: 47 kcal/mol + -delta_H -88.479 kJ/mol # Calculated enthalpy of reaction Tl+3 +# Enthalpy of formation: 47 kcal/mol -analytic -6.7978e+1 -2.643e-2 5.3106e+3 2.334e+1 8.2887e+1 # -Range: 0-300 Tm+3 + 0.5 H2O = Tm+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -58.3754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm+2 +# Enthalpy of formation: -0 kcal/mol UO2+2 + H+ = U+3 + 0.75 O2 + 0.5 H2O -llnl_gamma 5 log_k -64.8028 - -delta_H 377.881 kJ/mol # Calculated enthalpy of reaction U+3 -# Enthalpy of formation: -489.1 kJ/mol + -delta_H 377.881 kJ/mol # Calculated enthalpy of reaction U+3 +# Enthalpy of formation: -489.1 kJ/mol -analytic 2.5133e+1 6.4088e-3 -2.2542e+4 -8.1423e+0 3.4793e+5 # -Range: 0-300 2 H+ + UO2+2 = U+4 + H2O + 0.5 O2 -llnl_gamma 5.5 log_k -33.9491 - -delta_H 135.895 kJ/mol # Calculated enthalpy of reaction U+4 -# Enthalpy of formation: -591.2 kJ/mol + -delta_H 135.895 kJ/mol # Calculated enthalpy of reaction U+4 +# Enthalpy of formation: -591.2 kJ/mol -analytic 4.4837e+1 1.0129e-2 -1.1787e+4 -1.9194e+1 4.6436e+5 # -Range: 0-300 UO2+2 + 0.5 H2O = UO2+ + H+ + 0.25 O2 -llnl_gamma 4 log_k -20.0169 - -delta_H 133.759 kJ/mol # Calculated enthalpy of reaction UO2+ -# Enthalpy of formation: -1025.13 kJ/mol + -delta_H 133.759 kJ/mol # Calculated enthalpy of reaction UO2+ +# Enthalpy of formation: -1025.13 kJ/mol -analytic 8.048e+0 9.5845e-3 -6.5994e+3 -3.5515e+0 -1.0298e+2 # -Range: 0-300 VO+2 + H+ = V+3 + 0.5 H2O + 0.25 O2 -llnl_gamma 5 log_k -15.7191 - -delta_H 79.6069 kJ/mol # Calculated enthalpy of reaction V+3 -# Enthalpy of formation: -62.39 kcal/mol + -delta_H 79.6069 kJ/mol # Calculated enthalpy of reaction V+3 +# Enthalpy of formation: -62.39 kcal/mol -analytic 1.6167e+1 1.1963e-2 -4.2112e+3 -8.6126e+0 -6.5717e+1 # -Range: 0-300 VO+2 + 0.5 H2O + 0.25 O2 = VO2+ + H+ -llnl_gamma 4 log_k 4.5774 - -delta_H -17.2234 kJ/mol # Calculated enthalpy of reaction VO2+ -# Enthalpy of formation: -155.3 kcal/mol + -delta_H -17.2234 kJ/mol # Calculated enthalpy of reaction VO2+ +# Enthalpy of formation: -155.3 kcal/mol -analytic 1.9732e+0 5.3936e-3 1.224e+3 -1.2539e+0 1.9098e+1 # -Range: 0-300 VO2+ + 2 H2O = VO4-3 + 4 H+ -llnl_gamma 4 log_k -28.4475 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO4-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VO4-3 +# Enthalpy of formation: -0 kcal/mol Yb+3 + 0.5 H2O = Yb+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -39.4595 - -delta_H 280.05 kJ/mol # Calculated enthalpy of reaction Yb+2 -# Enthalpy of formation: -126.8 kcal/mol + -delta_H 280.05 kJ/mol # Calculated enthalpy of reaction Yb+2 +# Enthalpy of formation: -126.8 kcal/mol -analytic 1.0773e+0 9.5995e-3 -1.3833e+4 1.0723e+0 3.1365e+4 # -Range: 0-300 2 H+ + Zr(OH)2+2 = Zr+4 + 2 H2O -llnl_gamma 11 log_k 0.2385 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr+4 +# Enthalpy of formation: -0 kcal/mol 4 HS- + 4 H+ + 2 Sb(OH)3 + 2 NH3 = (NH4)2Sb2S4 + 6 H2O -llnl_gamma 3 log_k 67.649 - -delta_H -424.665 kJ/mol # Calculated enthalpy of reaction (NH4)2Sb2S4 -# Enthalpy of formation: -484.321 kJ/mol + -delta_H -424.665 kJ/mol # Calculated enthalpy of reaction (NH4)2Sb2S4 +# Enthalpy of formation: -484.321 kJ/mol -analytic -3.9259e+2 -1.1727e-1 3.2073e+4 1.5667e+2 5.4478e+2 # -Range: 0-200 2 NpO2+2 + 2 H2O = (NpO2)2(OH)2+2 + 2 H+ -llnl_gamma 4.5 log_k -6.4 - -delta_H 45.4397 kJ/mol # Calculated enthalpy of reaction (NpO2)2(OH)2+2 -# Enthalpy of formation: -537.092 kcal/mol + -delta_H 45.4397 kJ/mol # Calculated enthalpy of reaction (NpO2)2(OH)2+2 +# Enthalpy of formation: -537.092 kcal/mol -analytic -4.7462e+1 -3.1413e-2 -2.1954e+3 2.3355e+1 -3.7424e+1 # -Range: 25-150 5 H2O + 3 NpO2+2 = (NpO2)3(OH)5+ + 5 H+ -llnl_gamma 4 log_k -17.5 - -delta_H 112.322 kJ/mol # Calculated enthalpy of reaction (NpO2)3(OH)5+ -# Enthalpy of formation: -931.717 kcal/mol + -delta_H 112.322 kJ/mol # Calculated enthalpy of reaction (NpO2)3(OH)5+ +# Enthalpy of formation: -931.717 kcal/mol -analytic 5.4053e+2 9.1693e-2 -2.4404e+4 -2.0349e+2 -4.1639e+2 # -Range: 25-150 2 PuO2+2 + 2 H2O = (PuO2)2(OH)2+2 + 2 H+ -llnl_gamma 4.5 log_k -8.2626 - -delta_H 57.8597 kJ/mol # Calculated enthalpy of reaction (PuO2)2(OH)2+2 -# Enthalpy of formation: -2156.97 kJ/mol + -delta_H 57.8597 kJ/mol # Calculated enthalpy of reaction (PuO2)2(OH)2+2 +# Enthalpy of formation: -2156.97 kJ/mol -analytic 6.5448e+1 -1.6194e-3 -5.9542e+3 -2.1522e+1 -9.2929e+1 # -Range: 0-300 5 H2O + 3 PuO2+2 = (PuO2)3(OH)5+ + 5 H+ -llnl_gamma 4 log_k -21.655 - -delta_H 139.617 kJ/mol # Calculated enthalpy of reaction (PuO2)3(OH)5+ -# Enthalpy of formation: -3754.31 kJ/mol + -delta_H 139.617 kJ/mol # Calculated enthalpy of reaction (PuO2)3(OH)5+ +# Enthalpy of formation: -3754.31 kJ/mol -analytic 1.6151e+2 5.8182e-3 -1.4002e+4 -5.5745e+1 -2.1854e+2 # -Range: 0-300 4 H2O + 2 TcO+2 = (TcO(OH)2)2 + 4 H+ -llnl_gamma 3 log_k -0.1271 - -delta_H 0 # Not possible to calculate enthalpy of reaction (TcO(OH)2)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction (TcO(OH)2)2 +# Enthalpy of formation: -0 kcal/mol 12 H2O + 11 UO2+2 + 6 HCO3- = (UO2)11(CO3)6(OH)12-2 + 18 H+ -llnl_gamma 4 log_k -25.7347 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)11(CO3)6(OH)12-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)11(CO3)6(OH)12-2 +# Enthalpy of formation: -0 kcal/mol 2 UO2+2 + 2 H2O = (UO2)2(OH)2+2 + 2 H+ -llnl_gamma 4.5 log_k -5.6346 - -delta_H 37.6127 kJ/mol # Calculated enthalpy of reaction (UO2)2(OH)2+2 -# Enthalpy of formation: -2572.06 kJ/mol + -delta_H 37.6127 kJ/mol # Calculated enthalpy of reaction (UO2)2(OH)2+2 +# Enthalpy of formation: -2572.06 kJ/mol -analytic 6.4509e+1 -7.6875e-4 -4.8433e+3 -2.1689e+1 -7.5593e+1 # -Range: 0-300 3 H2O + 2 UO2+2 + HCO3- = (UO2)2CO3(OH)3- + 4 H+ -llnl_gamma 4 log_k -11.2229 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)2CO3(OH)3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)2CO3(OH)3- +# Enthalpy of formation: -0 kcal/mol 2 UO2+2 + H2O = (UO2)2OH+3 + H+ -llnl_gamma 5 log_k -2.7072 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)2OH+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)2OH+3 +# Enthalpy of formation: -0 kcal/mol 6 HCO3- + 3 UO2+2 = (UO2)3(CO3)6-6 + 6 H+ -llnl_gamma 4 log_k -8.0601 - -delta_H 25.5204 kJ/mol # Calculated enthalpy of reaction (UO2)3(CO3)6-6 -# Enthalpy of formation: -7171.08 kJ/mol + -delta_H 25.5204 kJ/mol # Calculated enthalpy of reaction (UO2)3(CO3)6-6 +# Enthalpy of formation: -7171.08 kJ/mol -analytic 7.4044e+2 2.7299e-1 -1.7614e+4 -3.1149e+2 -2.7507e+2 # -Range: 0-300 4 H2O + 3 UO2+2 = (UO2)3(OH)4+2 + 4 H+ -llnl_gamma 4.5 log_k -11.929 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)4+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)4+2 +# Enthalpy of formation: -0 kcal/mol 5 H2O + 3 UO2+2 = (UO2)3(OH)5+ + 5 H+ -llnl_gamma 4 log_k -15.5862 - -delta_H 97.1056 kJ/mol # Calculated enthalpy of reaction (UO2)3(OH)5+ -# Enthalpy of formation: -4389.09 kJ/mol + -delta_H 97.1056 kJ/mol # Calculated enthalpy of reaction (UO2)3(OH)5+ +# Enthalpy of formation: -4389.09 kJ/mol -analytic 1.6004e+2 7.0827e-3 -1.17e+4 -5.5973e+1 -1.8261e+2 # -Range: 0-300 4 H2O + 3 UO2+2 + HCO3- = (UO2)3(OH)5CO2+ + 4 H+ -llnl_gamma 4 log_k -9.6194 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)5CO2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)5CO2+ +# Enthalpy of formation: -0 kcal/mol 7 H2O + 3 UO2+2 = (UO2)3(OH)7- + 7 H+ -llnl_gamma 4 log_k -31.0508 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)7- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)7- +# Enthalpy of formation: -0 kcal/mol 3 UO2+2 + 3 H2O + HCO3- = (UO2)3O(OH)2(HCO3)+ + 4 H+ -llnl_gamma 4 log_k -9.7129 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3O(OH)2(HCO3)+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3O(OH)2(HCO3)+ +# Enthalpy of formation: -0 kcal/mol 7 H2O + 4 UO2+2 = (UO2)4(OH)7+ + 7 H+ -llnl_gamma 4 log_k -21.9508 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)4(OH)7+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)4(OH)7+ +# Enthalpy of formation: -0 kcal/mol 2 VO+2 + 2 H2O = (VO)2(OH)2+2 + 2 H+ -llnl_gamma 4.5 log_k -6.67 - -delta_H 0 # Not possible to calculate enthalpy of reaction (VO)2(OH)2+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction (VO)2(OH)2+2 +# Enthalpy of formation: -0 kcal/mol HAcetate = Acetate- + H+ -llnl_gamma 4.5 log_k -4.7572 - -delta_H 0 # Not possible to calculate enthalpy of reaction Acetate- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Acetate- +# Enthalpy of formation: -0 kcal/mol -analytic -0.96597E+2 -0.34535E-1 0.19753E+4 0.38593E+2 0.3085E+2 # Range: 0-300 2 HAcetate + Ag+ = Ag(Acetate)2- + 2 H+ -llnl_gamma 4 log_k -8.8716 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ag(Acetate)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ag(Acetate)2- +# Enthalpy of formation: -0 kcal/mol -analytic -2.8207e+2 -5.3713e-2 9.5343e+3 1.0396e+2 1.4886e+2 # -Range: 0-300 2 HCO3- + Ag+ = Ag(CO3)2-3 + 2 H+ -llnl_gamma 4 log_k -18.5062 - -delta_H 1.34306 kJ/mol # Calculated enthalpy of reaction Ag(CO3)2-3 -# Enthalpy of formation: -304.2 kcal/mol + -delta_H 1.34306 kJ/mol # Calculated enthalpy of reaction Ag(CO3)2-3 +# Enthalpy of formation: -304.2 kcal/mol -analytic -1.6671e+2 -4.5571e-2 3.719e+3 6.0341e+1 5.808e+1 # -Range: 0-300 Ag+ + HAcetate = AgAcetate + H+ -llnl_gamma 3 log_k -4.0264 - -delta_H -3.4518 kJ/mol # Calculated enthalpy of reaction AgAcetate -# Enthalpy of formation: -91.65 kcal/mol + -delta_H -3.4518 kJ/mol # Calculated enthalpy of reaction AgAcetate +# Enthalpy of formation: -91.65 kcal/mol -analytic 6.9069e+0 -1.9415e-3 -1.9953e+3 -2.6175e+0 2.5092e+5 # -Range: 0-300 HCO3- + Ag+ = AgCO3- + H+ -llnl_gamma 4 log_k -7.6416 - -delta_H -8.27177 kJ/mol # Calculated enthalpy of reaction AgCO3- -# Enthalpy of formation: -141.6 kcal/mol + -delta_H -8.27177 kJ/mol # Calculated enthalpy of reaction AgCO3- +# Enthalpy of formation: -141.6 kcal/mol -analytic 6.5598e+0 -1.6477e-4 -4.7079e+2 -5.0807e+0 -7.3484e+0 # -Range: 0-300 Cl- + Ag+ = AgCl -llnl_gamma 3 log_k 3.2971 - -delta_H -15.1126 kJ/mol # Calculated enthalpy of reaction AgCl -# Enthalpy of formation: -18.27 kcal/mol + -delta_H -15.1126 kJ/mol # Calculated enthalpy of reaction AgCl +# Enthalpy of formation: -18.27 kcal/mol -analytic 1.0904e+2 3.5492e-2 -1.8455e+3 -4.4502e+1 -2.883e+1 # -Range: 0-300 2 Cl- + Ag+ = AgCl2- -llnl_gamma 4 log_k 5.2989 - -delta_H -27.3592 kJ/mol # Calculated enthalpy of reaction AgCl2- -# Enthalpy of formation: -61.13 kcal/mol + -delta_H -27.3592 kJ/mol # Calculated enthalpy of reaction AgCl2- +# Enthalpy of formation: -61.13 kcal/mol -analytic 9.2164e+1 4.0261e-2 -1.6597e+2 -3.9721e+1 -2.6171e+0 # -Range: 0-300 3 Cl- + Ag+ = AgCl3-2 -llnl_gamma 4 log_k 5.131 - -delta_H -47.7645 kJ/mol # Calculated enthalpy of reaction AgCl3-2 -# Enthalpy of formation: -105.94 kcal/mol + -delta_H -47.7645 kJ/mol # Calculated enthalpy of reaction AgCl3-2 +# Enthalpy of formation: -105.94 kcal/mol -analytic 4.3732e+0 2.9568e-2 3.9818e+3 -8.6428e+0 6.2131e+1 # -Range: 0-300 4 Cl- + Ag+ = AgCl4-3 -llnl_gamma 4 log_k 3.805 - -delta_H -32.4804 kJ/mol # Calculated enthalpy of reaction AgCl4-3 -# Enthalpy of formation: -142.22 kcal/mol + -delta_H -32.4804 kJ/mol # Calculated enthalpy of reaction AgCl4-3 +# Enthalpy of formation: -142.22 kcal/mol -analytic -1.6176e+1 2.9523e-2 0e+0 0e+0 9.9602e+5 # -Range: 0-300 F- + Ag+ = AgF -llnl_gamma 3 log_k -0.1668 - -delta_H -9.298 kJ/mol # Calculated enthalpy of reaction AgF -# Enthalpy of formation: -238.895 kJ/mol + -delta_H -9.298 kJ/mol # Calculated enthalpy of reaction AgF +# Enthalpy of formation: -238.895 kJ/mol -analytic -6.6024e+1 -2.235e-2 1.9514e+3 2.6663e+1 3.316e+1 # -Range: 0-200 NO3- + Ag+ = AgNO3 -llnl_gamma 3 log_k -0.1979 - -delta_H 4.45178 kJ/mol # Calculated enthalpy of reaction AgNO3 -# Enthalpy of formation: -23.09 kcal/mol + -delta_H 4.45178 kJ/mol # Calculated enthalpy of reaction AgNO3 +# Enthalpy of formation: -23.09 kcal/mol -analytic 7.3866e+1 2.605e-2 -1.5923e+3 -3.0904e+1 -2.4868e+1 # -Range: 0-300 2 HAcetate + Al+3 = Al(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -5.595 - -delta_H -46.8566 kJ/mol # Calculated enthalpy of reaction Al(Acetate)2+ -# Enthalpy of formation: -372.08 kcal/mol + -delta_H -46.8566 kJ/mol # Calculated enthalpy of reaction Al(Acetate)2+ +# Enthalpy of formation: -372.08 kcal/mol -analytic -4.2528e+1 2.1431e-3 3.1658e+2 1.1585e+1 5.8604e+5 # -Range: 0-300 2 H2O + Al+3 = Al(OH)2+ + 2 H+ -llnl_gamma 4 log_k -10.5945 - -delta_H 98.2822 kJ/mol # Calculated enthalpy of reaction Al(OH)2+ -# Enthalpy of formation: -241.825 kcal/mol + -delta_H 98.2822 kJ/mol # Calculated enthalpy of reaction Al(OH)2+ +# Enthalpy of formation: -241.825 kcal/mol -analytic 4.4036e+1 2.0168e-2 -5.5455e+3 -1.6987e+1 -8.6545e+1 # -Range: 0-300 2 SO4-2 + Al+3 = Al(SO4)2- -llnl_gamma 4 log_k 4.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction Al(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Al(SO4)2- +# Enthalpy of formation: -0 kcal/mol 28 H2O + 13 Al+3 = Al13O4(OH)24+7 + 32 H+ -llnl_gamma 6 log_k -98.73 - -delta_H 0 # Not possible to calculate enthalpy of reaction Al13O4(OH)24+7 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Al13O4(OH)24+7 +# Enthalpy of formation: -0 kcal/mol 2 H2O + 2 Al+3 = Al2(OH)2+4 + 2 H+ -llnl_gamma 5.5 log_k -7.6902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Al2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Al2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol 4 H2O + 3 Al+3 = Al3(OH)4+5 + 4 H+ -llnl_gamma 6 log_k -13.8803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Al3(OH)4+5 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Al3(OH)4+5 +# Enthalpy of formation: -0 kcal/mol Al+3 + HAcetate = AlAcetate+2 + H+ -llnl_gamma 4.5 log_k -2.6923 - -delta_H -18.1962 kJ/mol # Calculated enthalpy of reaction AlAcetate+2 -# Enthalpy of formation: -249.13 kcal/mol + -delta_H -18.1962 kJ/mol # Calculated enthalpy of reaction AlAcetate+2 +# Enthalpy of formation: -249.13 kcal/mol -analytic -1.9847e+1 2.0058e-3 -2.3653e+2 5.5454e+0 3.2362e+5 # -Range: 0-300 F- + Al+3 = AlF+2 -llnl_gamma 4.5 log_k 7 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlF+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AlF+2 +# Enthalpy of formation: -0 kcal/mol 2 F- + Al+3 = AlF2+ -llnl_gamma 4 log_k 12.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlF2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AlF2+ +# Enthalpy of formation: -0 kcal/mol 3 F- + Al+3 = AlF3 -llnl_gamma 3 log_k 16.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlF3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AlF3 +# Enthalpy of formation: -0 kcal/mol 4 F- + Al+3 = AlF4- -llnl_gamma 4 log_k 19.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlF4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AlF4- +# Enthalpy of formation: -0 kcal/mol HPO4-2 + H+ + Al+3 = AlH2PO4+2 -llnl_gamma 4.5 log_k 3.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlH2PO4+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AlH2PO4+2 +# Enthalpy of formation: -0 kcal/mol HPO4-2 + Al+3 = AlHPO4+ -llnl_gamma 4 log_k 7.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AlHPO4+ +# Enthalpy of formation: -0 kcal/mol 2 H2O + Al+3 = AlO2- + 4 H+ -llnl_gamma 4 log_k -22.8833 - -delta_H 180.899 kJ/mol # Calculated enthalpy of reaction AlO2- -# Enthalpy of formation: -222.079 kcal/mol + -delta_H 180.899 kJ/mol # Calculated enthalpy of reaction AlO2- +# Enthalpy of formation: -222.079 kcal/mol -analytic 1.0803e+1 -3.4379e-3 -9.7391e+3 0e+0 0e+0 # -Range: 0-300 H2O + Al+3 = AlOH+2 + H+ -llnl_gamma 4.5 log_k -4.9571 - -delta_H 49.798 kJ/mol # Calculated enthalpy of reaction AlOH+2 -# Enthalpy of formation: -185.096 kcal/mol + -delta_H 49.798 kJ/mol # Calculated enthalpy of reaction AlOH+2 +# Enthalpy of formation: -185.096 kcal/mol -analytic -2.6224e-1 8.8816e-3 -1.8686e+3 -4.3195e-1 -2.9158e+1 # -Range: 0-300 SO4-2 + Al+3 = AlSO4+ -llnl_gamma 4 log_k 3.01 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlSO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AlSO4+ +# Enthalpy of formation: -0 kcal/mol 2 HCO3- + Am+3 = Am(CO3)2- + 2 H+ -llnl_gamma 4 log_k -8.3868 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)2- +# Enthalpy of formation: -0 kcal/mol 3 HCO3- + Am+3 = Am(CO3)3-3 + 3 H+ -llnl_gamma 4 log_k -15.8302 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)3-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)3-3 +# Enthalpy of formation: -0 kcal/mol 5 HCO3- + Am+4 = Am(CO3)5-6 + 5 H+ -llnl_gamma 4 log_k -12.409 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)5-6 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)5-6 +# Enthalpy of formation: -0 kcal/mol 2 H2O + Am+3 = Am(OH)2+ + 2 H+ -llnl_gamma 4 log_k -14.1145 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)2+ +# Enthalpy of formation: -0 kcal/mol 3 H2O + Am+3 = Am(OH)3 + 3 H+ -llnl_gamma 3 log_k -25.7218 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Am+3 = Am(SO4)2- -llnl_gamma 4 log_k 5.2407 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(SO4)2- +# Enthalpy of formation: -0 kcal/mol HCO3- + Am+3 = AmCO3+ + H+ -llnl_gamma 4 log_k -2.5434 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmCO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AmCO3+ +# Enthalpy of formation: -0 kcal/mol Cl- + Am+3 = AmCl+2 -llnl_gamma 4.5 log_k 1.0374 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmCl+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AmCl+2 +# Enthalpy of formation: -0 kcal/mol F- + Am+3 = AmF+2 -llnl_gamma 4.5 log_k 3.3601 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmF+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AmF+2 +# Enthalpy of formation: -0 kcal/mol 2 F- + Am+3 = AmF2+ -llnl_gamma 4 log_k 5.7204 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmF2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AmF2+ +# Enthalpy of formation: -0 kcal/mol HPO4-2 + H+ + Am+3 = AmH2PO4+2 -llnl_gamma 4.5 log_k 11.4119 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmH2PO4+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AmH2PO4+2 +# Enthalpy of formation: -0 kcal/mol N3- + Am+3 = AmN3+2 -llnl_gamma 4.5 log_k 1.6699 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmN3+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AmN3+2 +# Enthalpy of formation: -0 kcal/mol NO3- + Am+3 = AmNO3+2 -llnl_gamma 4.5 log_k 1.3104 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmNO3+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AmNO3+2 +# Enthalpy of formation: -0 kcal/mol H2O + Am+3 = AmOH+2 + H+ -llnl_gamma 4.5 log_k -6.4072 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmOH+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AmOH+2 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Am+3 = AmSO4+ -llnl_gamma 4 log_k 3.7703 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmSO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AmSO4+ +# Enthalpy of formation: -0 kcal/mol H2AsO3- + H+ = As(OH)3 -llnl_gamma 3 log_k 9.2048 - -delta_H -27.4054 kJ/mol # Calculated enthalpy of reaction As(OH)3 -# Enthalpy of formation: -742.2 kJ/mol + -delta_H -27.4054 kJ/mol # Calculated enthalpy of reaction As(OH)3 +# Enthalpy of formation: -742.2 kJ/mol -analytic 1.302e+2 4.7513e-2 -1.1999e+3 -5.2993e+1 -2.0422e+1 # -Range: 0-200 H2AsO3- = AsO2- + H2O -llnl_gamma 4 log_k 0.0111 - -delta_H 0 # Not possible to calculate enthalpy of reaction AsO2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AsO2- +# Enthalpy of formation: -0 kcal/mol -analytic -2.1509e+1 -1.768e-2 -1.9261e+1 1.0841e+1 -2.9404e-1 # -Range: 0-300 H2AsO3- = AsO2OH-2 + H+ -llnl_gamma 4 log_k -11.0171 - -delta_H 25.514 kJ/mol # Calculated enthalpy of reaction AsO2OH-2 -# Enthalpy of formation: -164.742 kcal/mol + -delta_H 25.514 kJ/mol # Calculated enthalpy of reaction AsO2OH-2 +# Enthalpy of formation: -164.742 kcal/mol -analytic 1.4309e+2 1.862e-2 -6.8596e+3 -5.5222e+1 -1.0708e+2 # -Range: 0-300 H2AsO4- + F- = AsO3F-2 + H2O -llnl_gamma 4 log_k 40.2451 - -delta_H 0 # Not possible to calculate enthalpy of reaction AsO3F-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AsO3F-2 +# Enthalpy of formation: -0 kcal/mol H2AsO4- = AsO4-3 + 2 H+ -llnl_gamma 4 log_k -18.3604 - -delta_H 21.4198 kJ/mol # Calculated enthalpy of reaction AsO4-3 -# Enthalpy of formation: -888.14 kJ/mol + -delta_H 21.4198 kJ/mol # Calculated enthalpy of reaction AsO4-3 +# Enthalpy of formation: -888.14 kJ/mol -analytic -2.4979e+1 -1.2761e-2 2.8369e+3 3.4878e+0 -6.8736e+5 # -Range: 0-300 2 HAcetate + Au+ = Au(Acetate)2- + 2 H+ -llnl_gamma 4 log_k -9.0013 - -delta_H -8.91192 kJ/mol # Calculated enthalpy of reaction Au(Acetate)2- -# Enthalpy of formation: -186.75 kcal/mol + -delta_H -8.91192 kJ/mol # Calculated enthalpy of reaction Au(Acetate)2- +# Enthalpy of formation: -186.75 kcal/mol -analytic -2.2338e+2 -4.6312e-2 7.0942e+3 8.2606e+1 1.1076e+2 # -Range: 0-300 Au+ + HAcetate = AuAcetate + H+ -llnl_gamma 3 log_k -4.3174 - -delta_H 0.87864 kJ/mol # Calculated enthalpy of reaction AuAcetate -# Enthalpy of formation: -68.31 kcal/mol + -delta_H 0.87864 kJ/mol # Calculated enthalpy of reaction AuAcetate +# Enthalpy of formation: -68.31 kcal/mol -analytic -1.1812e+0 -4.112e-3 -1.4752e+3 4.5665e-1 1.7019e+5 # -Range: 0-300 2 B(OH)3 = B2O(OH)5- + H+ -llnl_gamma 4 log_k -18.6851 - -delta_H 0 # Not possible to calculate enthalpy of reaction B2O(OH)5- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction B2O(OH)5- +# Enthalpy of formation: -0 kcal/mol 2 F- + H+ + B(OH)3 = BF2(OH)2- + H2O -llnl_gamma 4 log_k 6.6174 - -delta_H 0 # Not possible to calculate enthalpy of reaction BF2(OH)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction BF2(OH)2- +# Enthalpy of formation: -0 kcal/mol 3 F- + 2 H+ + B(OH)3 = BF3OH- + 2 H2O -llnl_gamma 4 log_k 13.1908 - -delta_H -178.577 kJ/mol # Calculated enthalpy of reaction BF3OH- -# Enthalpy of formation: -403.317 kcal/mol + -delta_H -178.577 kJ/mol # Calculated enthalpy of reaction BF3OH- +# Enthalpy of formation: -403.317 kcal/mol -analytic 3.3411e+2 -3.7303e-2 -8.6507e+3 -1.1345e+2 -1.3508e+2 # -Range: 0-300 4 F- + 3 H+ + B(OH)3 = BF4- + 3 H2O -llnl_gamma 4 log_k 18.0049 - -delta_H -16.4473 kJ/mol # Calculated enthalpy of reaction BF4- -# Enthalpy of formation: -376.4 kcal/mol + -delta_H -16.4473 kJ/mol # Calculated enthalpy of reaction BF4- +# Enthalpy of formation: -376.4 kcal/mol -analytic 2.5491e+2 1.0443e-1 -3.3332e+3 -1.0378e+2 -5.2087e+1 # -Range: 0-300 B(OH)3 = BO2- + H+ + H2O -llnl_gamma 4 log_k -9.2449 - -delta_H 16.3302 kJ/mol # Calculated enthalpy of reaction BO2- -# Enthalpy of formation: -184.6 kcal/mol + -delta_H 16.3302 kJ/mol # Calculated enthalpy of reaction BO2- +# Enthalpy of formation: -184.6 kcal/mol -analytic -1.05e+2 -3.3447e-2 1.4706e+3 4.0724e+1 2.2978e+1 # -Range: 0-300 2 HAcetate + Ba+2 = Ba(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -8.0118 - -delta_H 11.255 kJ/mol # Calculated enthalpy of reaction Ba(Acetate)2 -# Enthalpy of formation: -358.01 kcal/mol + -delta_H 11.255 kJ/mol # Calculated enthalpy of reaction Ba(Acetate)2 +# Enthalpy of formation: -358.01 kcal/mol -analytic -1.4566e+1 3.1394e-4 -3.9564e+3 5.1906e+0 6.1407e+5 # -Range: 0-300 O_phthalate-2 + Ba+2 = Ba(O_phthalate) -llnl_gamma 3 log_k 2.33 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ba(O_phthalate) -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ba(O_phthalate) +# Enthalpy of formation: -0 kcal/mol H2O + Ba+2 + B(OH)3 = BaB(OH)4+ + H+ -llnl_gamma 4 log_k -7.8012 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaB(OH)4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction BaB(OH)4+ +# Enthalpy of formation: -0 kcal/mol Ba+2 + HAcetate = BaAcetate+ + H+ -llnl_gamma 4 log_k -3.7677 - -delta_H 7.322 kJ/mol # Calculated enthalpy of reaction BaAcetate+ -# Enthalpy of formation: -242.85 kcal/mol + -delta_H 7.322 kJ/mol # Calculated enthalpy of reaction BaAcetate+ +# Enthalpy of formation: -242.85 kcal/mol -analytic -1.5623e+1 2.9282e-3 -3.9534e+2 4.3959e+0 1.2829e+5 # -Range: 0-300 HCO3- + Ba+2 = BaCO3 + H+ -llnl_gamma 3 log_k -7.6834 - -delta_H 31.5808 kJ/mol # Calculated enthalpy of reaction BaCO3 -# Enthalpy of formation: -285.85 kcal/mol + -delta_H 31.5808 kJ/mol # Calculated enthalpy of reaction BaCO3 +# Enthalpy of formation: -285.85 kcal/mol -analytic 2.1878e+2 5.2368e-2 -8.2472e+3 -8.6644e+1 -1.2875e+2 # -Range: 0-300 Cl- + Ba+2 = BaCl+ -llnl_gamma 4 log_k -0.4977 - -delta_H 11.142 kJ/mol # Calculated enthalpy of reaction BaCl+ -# Enthalpy of formation: -165.77 kcal/mol + -delta_H 11.142 kJ/mol # Calculated enthalpy of reaction BaCl+ +# Enthalpy of formation: -165.77 kcal/mol -analytic 1.1016e+2 4.2325e-2 -2.8039e+3 -4.601e+1 -4.3785e+1 # -Range: 0-300 F- + Ba+2 = BaF+ -llnl_gamma 4 log_k -0.1833 - -delta_H 8.95376 kJ/mol # Calculated enthalpy of reaction BaF+ -# Enthalpy of formation: -206.51 kcal/mol + -delta_H 8.95376 kJ/mol # Calculated enthalpy of reaction BaF+ +# Enthalpy of formation: -206.51 kcal/mol -analytic 1.0349e+2 4.0336e-2 -2.5195e+3 -4.3334e+1 -3.9346e+1 # -Range: 0-300 NO3- + Ba+2 = BaNO3+ -llnl_gamma 4 log_k 0.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaNO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction BaNO3+ +# Enthalpy of formation: -0 kcal/mol H2O + Ba+2 = BaOH+ + H+ -llnl_gamma 4 log_k -13.47 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaOH+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction BaOH+ +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Be+2 = Be(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -6.8023 - -delta_H -52.4255 kJ/mol # Calculated enthalpy of reaction Be(Acetate)2 -# Enthalpy of formation: -336.23 kcal/mol + -delta_H -52.4255 kJ/mol # Calculated enthalpy of reaction Be(Acetate)2 +# Enthalpy of formation: -336.23 kcal/mol -analytic -3.5242e+1 5.1285e-3 -4.8914e+2 8.2862e+0 7.1774e+5 # -Range: 0-300 Be+2 + HAcetate = BeAcetate+ + H+ -llnl_gamma 4 log_k -3.1079 - -delta_H -22.761 kJ/mol # Calculated enthalpy of reaction BeAcetate+ -# Enthalpy of formation: -213.04 kcal/mol + -delta_H -22.761 kJ/mol # Calculated enthalpy of reaction BeAcetate+ +# Enthalpy of formation: -213.04 kcal/mol -analytic -1.9418e+1 5.2172e-4 -8.5071e+1 5.2755e+0 3.0215e+5 # -Range: 0-300 2 H2O + Be+2 = BeO2-2 + 4 H+ -llnl_gamma 4 log_k -32.161 - -delta_H 163.737 kJ/mol # Calculated enthalpy of reaction BeO2-2 -# Enthalpy of formation: -189 kcal/mol + -delta_H 163.737 kJ/mol # Calculated enthalpy of reaction BeO2-2 +# Enthalpy of formation: -189 kcal/mol -analytic 7.086e+0 -3.8474e-2 -1.14e+4 4.2138e+0 -1.7789e+2 # -Range: 0-300 2 H+ + 2 Br- + 0.5 O2 = Br2 + H2O -llnl_gamma 3 log_k 5.6834 - -delta_H 0 # Not possible to calculate enthalpy of reaction Br2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Br2 +# Enthalpy of formation: -0 kcal/mol HCO3- + H+ = CO2 + H2O -CO2_llnl_gamma log_k 6.3447 - -delta_H -9.7027 kJ/mol # Calculated enthalpy of reaction CO2 -# Enthalpy of formation: -98.9 kcal/mol + -delta_H -9.7027 kJ/mol # Calculated enthalpy of reaction CO2 +# Enthalpy of formation: -98.9 kcal/mol -analytic -1.0534e+1 2.1746e-2 2.5216e+3 7.9125e-1 3.9351e+1 # -Range: 0-300 HCO3- = CO3-2 + H+ -llnl_gamma 4.5 log_k -10.3288 - -delta_H 14.6984 kJ/mol # Calculated enthalpy of reaction CO3-2 -# Enthalpy of formation: -161.385 kcal/mol + -delta_H 14.6984 kJ/mol # Calculated enthalpy of reaction CO3-2 +# Enthalpy of formation: -161.385 kcal/mol -analytic -6.9958e+1 -3.3526e-2 -7.0846e+1 2.8224e+1 -1.0849e+0 # -Range: 0-300 2 HAcetate + Ca+2 = Ca(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -7.3814 - -delta_H -2.7196 kJ/mol # Calculated enthalpy of reaction Ca(Acetate)2 -# Enthalpy of formation: -362.65 kcal/mol + -delta_H -2.7196 kJ/mol # Calculated enthalpy of reaction Ca(Acetate)2 +# Enthalpy of formation: -362.65 kcal/mol -analytic -1.032e+1 4.0012e-3 -3.6281e+3 2.4421e+0 7.0175e+5 # -Range: 0-300 O_phthalate-2 + Ca+2 = Ca(O_phthalate) -llnl_gamma 3 log_k 2.42 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca(O_phthalate) -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca(O_phthalate) +# Enthalpy of formation: -0 kcal/mol H2O + Ca+2 + B(OH)3 = CaB(OH)4+ + H+ -llnl_gamma 4 log_k -7.4222 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaB(OH)4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CaB(OH)4+ +# Enthalpy of formation: -0 kcal/mol Ca+2 + HAcetate = CaAcetate+ + H+ -llnl_gamma 4 log_k -3.8263 - -delta_H 1.17152 kJ/mol # Calculated enthalpy of reaction CaAcetate+ -# Enthalpy of formation: -245.62 kcal/mol + -delta_H 1.17152 kJ/mol # Calculated enthalpy of reaction CaAcetate+ +# Enthalpy of formation: -245.62 kcal/mol -analytic -8.8826e+0 3.1672e-3 -1.0764e+3 2.0526e+0 2.3599e+5 # -Range: 0-300 HCO3- + Ca+2 = CaCO3 + H+ -llnl_gamma 3 log_k -7.0017 - -delta_H 30.5767 kJ/mol # Calculated enthalpy of reaction CaCO3 -# Enthalpy of formation: -287.39 kcal/mol + -delta_H 30.5767 kJ/mol # Calculated enthalpy of reaction CaCO3 +# Enthalpy of formation: -287.39 kcal/mol -analytic 2.3045e+2 5.535e-2 -8.5056e+3 -9.1096e+1 -1.3279e+2 # -Range: 0-300 Cl- + Ca+2 = CaCl+ -llnl_gamma 4 log_k -0.6956 - -delta_H 2.02087 kJ/mol # Calculated enthalpy of reaction CaCl+ -# Enthalpy of formation: -169.25 kcal/mol + -delta_H 2.02087 kJ/mol # Calculated enthalpy of reaction CaCl+ +# Enthalpy of formation: -169.25 kcal/mol -analytic 8.1498e+1 3.8387e-2 -1.3763e+3 -3.5968e+1 -2.1501e+1 # -Range: 0-300 2 Cl- + Ca+2 = CaCl2 -llnl_gamma 3 log_k -0.6436 - -delta_H -5.8325 kJ/mol # Calculated enthalpy of reaction CaCl2 -# Enthalpy of formation: -211.06 kcal/mol + -delta_H -5.8325 kJ/mol # Calculated enthalpy of reaction CaCl2 +# Enthalpy of formation: -211.06 kcal/mol -analytic 1.8178e+2 7.691e-2 -3.1088e+3 -7.876e+1 -4.8563e+1 # -Range: 0-300 F- + Ca+2 = CaF+ -llnl_gamma 4 log_k 0.6817 - -delta_H 5.6484 kJ/mol # Calculated enthalpy of reaction CaF+ -# Enthalpy of formation: -208.6 kcal/mol + -delta_H 5.6484 kJ/mol # Calculated enthalpy of reaction CaF+ +# Enthalpy of formation: -208.6 kcal/mol -analytic 7.8058e+1 3.8276e-2 -1.3289e+3 -3.4071e+1 -2.0759e+1 # -Range: 0-300 HPO4-2 + H+ + Ca+2 = CaH2PO4+ -llnl_gamma 4 log_k 1.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaH2PO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CaH2PO4+ +# Enthalpy of formation: -0 kcal/mol HCO3- + Ca+2 = CaHCO3+ -llnl_gamma 4 log_k 1.0467 - -delta_H 1.45603 kJ/mol # Calculated enthalpy of reaction CaHCO3+ -# Enthalpy of formation: -294.35 kcal/mol + -delta_H 1.45603 kJ/mol # Calculated enthalpy of reaction CaHCO3+ +# Enthalpy of formation: -294.35 kcal/mol -analytic 5.5985e+1 3.4639e-2 -3.6972e+2 -2.5864e+1 -5.7859e+0 # -Range: 0-300 HPO4-2 + Ca+2 = CaHPO4 -llnl_gamma 3 log_k 2.74 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaHPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CaHPO4 +# Enthalpy of formation: -0 kcal/mol NO3- + Ca+2 = CaNO3+ -llnl_gamma 4 log_k 0.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaNO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CaNO3+ +# Enthalpy of formation: -0 kcal/mol H2O + Ca+2 = CaOH+ + H+ -llnl_gamma 4 log_k -12.85 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaOH+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CaOH+ +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Ca+2 = CaP2O7-2 + H2O -llnl_gamma 4 log_k 3.0537 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaP2O7-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CaP2O7-2 +# Enthalpy of formation: -0 kcal/mol HPO4-2 + Ca+2 = CaPO4- + H+ -llnl_gamma 4 log_k -5.8618 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaPO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CaPO4- +# Enthalpy of formation: -0 kcal/mol SO4-2 + Ca+2 = CaSO4 -llnl_gamma 3 log_k 2.1111 - -delta_H 5.4392 kJ/mol # Calculated enthalpy of reaction CaSO4 -# Enthalpy of formation: -345.9 kcal/mol + -delta_H 5.4392 kJ/mol # Calculated enthalpy of reaction CaSO4 +# Enthalpy of formation: -345.9 kcal/mol -analytic 2.8618e+2 8.4084e-2 -7.688e+3 -1.1449e+2 -1.2005e+2 # -Range: 0-300 2 HAcetate + Cd+2 = Cd(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -6.3625 - -delta_H -17.4891 kJ/mol # Calculated enthalpy of reaction Cd(Acetate)2 -# Enthalpy of formation: -254.52 kcal/mol + -delta_H -17.4891 kJ/mol # Calculated enthalpy of reaction Cd(Acetate)2 +# Enthalpy of formation: -254.52 kcal/mol -analytic -1.9344e+1 2.5894e-3 -3.2847e+3 5.8489e+0 7.8041e+5 # -Range: 0-300 3 HAcetate + Cd+2 = Cd(Acetate)3- + 3 H+ -llnl_gamma 4 log_k -10.8558 - -delta_H -40.0409 kJ/mol # Calculated enthalpy of reaction Cd(Acetate)3- -# Enthalpy of formation: -376.01 kcal/mol + -delta_H -40.0409 kJ/mol # Calculated enthalpy of reaction Cd(Acetate)3- +# Enthalpy of formation: -376.01 kcal/mol -analytic 4.829e+1 -3.4317e-3 -1.5122e+4 -1.3203e+1 2.2479e+6 # -Range: 0-300 4 HAcetate + Cd+2 = Cd(Acetate)4-2 + 4 H+ -llnl_gamma 4 log_k -16.9163 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Acetate)4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Acetate)4-2 +# Enthalpy of formation: -0 kcal/mol 2 Cyanide- + Cd+2 = Cd(Cyanide)2 -llnl_gamma 3 log_k 10.3551 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)2 - # Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)2 + # Enthalpy of formation: -0 kcal/mol 3 Cyanide- + Cd+2 = Cd(Cyanide)3- -llnl_gamma 4 log_k 14.8191 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)3- - # Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)3- + # Enthalpy of formation: -0 kcal/mol 4 Cyanide- + Cd+2 = Cd(Cyanide)4-2 -llnl_gamma 4 log_k 18.267 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)4-2 - # Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)4-2 + # Enthalpy of formation: -0 kcal/mol 2 HCO3- + Cd+2 = Cd(CO3)2-2 + 2 H+ -llnl_gamma 4 log_k -14.2576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(CO3)2-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(CO3)2-2 +# Enthalpy of formation: -0 kcal/mol 2 N3- + Cd+2 = Cd(N3)2 -llnl_gamma 0 log_k 2.4606 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)2 +# Enthalpy of formation: -0 kcal/mol 3 N3- + Cd+2 = Cd(N3)3- -llnl_gamma 4 log_k 3.1263 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)3- +# Enthalpy of formation: -0 kcal/mol 4 N3- + Cd+2 = Cd(N3)4-2 -llnl_gamma 4 log_k 3.4942 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)4-2 +# Enthalpy of formation: -0 kcal/mol NH3 + Cd+2 = Cd(NH3)+2 -llnl_gamma 4.5 log_k 2.5295 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(NH3)+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(NH3)+2 +# Enthalpy of formation: -0 kcal/mol 2 NH3 + Cd+2 = Cd(NH3)2+2 -llnl_gamma 4.5 log_k 4.876 - -delta_H -27.6533 kJ/mol # Calculated enthalpy of reaction Cd(NH3)2+2 -# Enthalpy of formation: -266.225 kJ/mol + -delta_H -27.6533 kJ/mol # Calculated enthalpy of reaction Cd(NH3)2+2 +# Enthalpy of formation: -266.225 kJ/mol -analytic 1.0738e+2 1.6071e-3 -3.2536e+3 -3.7202e+1 -5.0801e+1 # -Range: 0-300 4 NH3 + Cd+2 = Cd(NH3)4+2 -llnl_gamma 4.5 log_k 7.2914 - -delta_H -49.0684 kJ/mol # Calculated enthalpy of reaction Cd(NH3)4+2 -# Enthalpy of formation: -450.314 kJ/mol + -delta_H -49.0684 kJ/mol # Calculated enthalpy of reaction Cd(NH3)4+2 +# Enthalpy of formation: -450.314 kJ/mol -analytic 1.567e+2 -9.4949e-3 -5.0986e+3 -5.2316e+1 -7.9603e+1 # -Range: 0-300 2 H2O + Cd+2 = Cd(OH)2 + 2 H+ -llnl_gamma 3 log_k -20.3402 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)2 +# Enthalpy of formation: -0 kcal/mol 3 H2O + Cd+2 = Cd(OH)3- + 3 H+ -llnl_gamma 4 log_k -33.2852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)3- +# Enthalpy of formation: -0 kcal/mol 4 H2O + Cd+2 = Cd(OH)4-2 + 4 H+ -llnl_gamma 4 log_k -47.3303 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)4-2 +# Enthalpy of formation: -0 kcal/mol H2O + Cl- + Cd+2 = Cd(OH)Cl + H+ -llnl_gamma 3 log_k -7.4328 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)Cl -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)Cl +# Enthalpy of formation: -0 kcal/mol 2 Thiocyanate- + Cd+2 = Cd(Thiocyanate)2 -llnl_gamma 3 log_k 1.8649 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Thiocyanate)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Thiocyanate)2 +# Enthalpy of formation: -0 kcal/mol 3 Thiocyanate- + Cd+2 = Cd(Thiocyanate)3- -llnl_gamma 4 log_k 1.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Thiocyanate)3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Thiocyanate)3- +# Enthalpy of formation: -0 kcal/mol 2 Cd+2 + H2O = Cd2OH+3 + H+ -llnl_gamma 5 log_k -9.3851 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd2OH+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd2OH+3 +# Enthalpy of formation: -0 kcal/mol 4 H2O + 4 Cd+2 = Cd4(OH)4+4 + 4 H+ -llnl_gamma 5.5 log_k -362.1263 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd4(OH)4+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd4(OH)4+4 +# Enthalpy of formation: -0 kcal/mol Cd+2 + Br- = CdBr+ -llnl_gamma 4 log_k 2.1424 - -delta_H -3.35588 kJ/mol # Calculated enthalpy of reaction CdBr+ -# Enthalpy of formation: -200.757 kJ/mol + -delta_H -3.35588 kJ/mol # Calculated enthalpy of reaction CdBr+ +# Enthalpy of formation: -200.757 kJ/mol -analytic 1.4922e+2 5.0059e-2 -3.3035e+3 -6.0984e+1 -5.1593e+1 # -Range: 0-300 2 Br- + Cd+2 = CdBr2 -llnl_gamma 3 log_k 2.8614 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdBr2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CdBr2 +# Enthalpy of formation: -0 kcal/mol 3 Br- + Cd+2 = CdBr3- -llnl_gamma 4 log_k 3.0968 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdBr3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CdBr3- +# Enthalpy of formation: -0 kcal/mol Cd+2 + HAcetate = CdAcetate+ + H+ -llnl_gamma 4 log_k -2.8294 - -delta_H -7.02912 kJ/mol # Calculated enthalpy of reaction CdAcetate+ -# Enthalpy of formation: -135.92 kcal/mol + -delta_H -7.02912 kJ/mol # Calculated enthalpy of reaction CdAcetate+ +# Enthalpy of formation: -135.92 kcal/mol -analytic -8.8425e+0 1.7178e-3 -1.1758e+3 2.4435e+0 3.0321e+5 # -Range: 0-300 Cd+2 + Cyanide- = CdCyanide+ -llnl_gamma 4 log_k 5.3129 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdCyanide+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CdCyanide+ +# Enthalpy of formation: -0 kcal/mol HCO3- + Cd+2 = CdCO3 + H+ -llnl_gamma 3 log_k -7.3288 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdCO3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CdCO3 +# Enthalpy of formation: -0 kcal/mol Cl- + Cd+2 = CdCl+ -llnl_gamma 4 log_k 2.7059 - -delta_H 2.33843 kJ/mol # Calculated enthalpy of reaction CdCl+ -# Enthalpy of formation: -240.639 kJ/mol + -delta_H 2.33843 kJ/mol # Calculated enthalpy of reaction CdCl+ +# Enthalpy of formation: -240.639 kJ/mol 2 Cl- + Cd+2 = CdCl2 -llnl_gamma 3 log_k 3.3384 - -delta_H 5.1261 kJ/mol # Calculated enthalpy of reaction CdCl2 -# Enthalpy of formation: -404.931 kJ/mol + -delta_H 5.1261 kJ/mol # Calculated enthalpy of reaction CdCl2 +# Enthalpy of formation: -404.931 kJ/mol -analytic 1.4052e+2 4.9221e-2 -3.2625e+3 -5.6946e+1 -5.5451e+1 # -Range: 0-200 3 Cl- + Cd+2 = CdCl3- -llnl_gamma 4 log_k 2.7112 - -delta_H 15.9388 kJ/mol # Calculated enthalpy of reaction CdCl3- -# Enthalpy of formation: -561.198 kJ/mol + -delta_H 15.9388 kJ/mol # Calculated enthalpy of reaction CdCl3- +# Enthalpy of formation: -561.198 kJ/mol -analytic 3.5108e+2 1.0219e-1 -9.9103e+3 -1.3965e+2 -1.5474e+2 # -Range: 0-300 HCO3- + Cd+2 = CdHCO3+ -llnl_gamma 4 log_k 1.5 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdHCO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CdHCO3+ +# Enthalpy of formation: -0 kcal/mol I- + Cd+2 = CdI+ -llnl_gamma 4 log_k 2.071 - -delta_H -9.02584 kJ/mol # Calculated enthalpy of reaction CdI+ -# Enthalpy of formation: -141.826 kJ/mol + -delta_H -9.02584 kJ/mol # Calculated enthalpy of reaction CdI+ +# Enthalpy of formation: -141.826 kJ/mol -analytic 1.5019e+2 5.032e-2 -3.081e+3 -6.1738e+1 -4.812e+1 # -Range: 0-300 2 I- + Cd+2 = CdI2 -llnl_gamma 3 log_k 3.4685 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdI2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CdI2 +# Enthalpy of formation: -0 kcal/mol 3 I- + Cd+2 = CdI3- -llnl_gamma 4 log_k 4.5506 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdI3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CdI3- +# Enthalpy of formation: -0 kcal/mol 4 I- + Cd+2 = CdI4-2 -llnl_gamma 4 log_k 5.3524 - -delta_H -38.8566 kJ/mol # Calculated enthalpy of reaction CdI4-2 -# Enthalpy of formation: -342.364 kJ/mol + -delta_H -38.8566 kJ/mol # Calculated enthalpy of reaction CdI4-2 +# Enthalpy of formation: -342.364 kJ/mol -analytic 4.3154e+2 1.4257e-1 -8.4464e+3 -1.7795e+2 -1.3193e+2 # -Range: 0-300 N3- + Cd+2 = CdN3+ -llnl_gamma 4 log_k 1.497 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdN3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CdN3+ +# Enthalpy of formation: -0 kcal/mol NO2- + Cd+2 = CdNO2+ -llnl_gamma 4 log_k 2.37 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdNO2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CdNO2+ +# Enthalpy of formation: -0 kcal/mol H2O + Cd+2 = CdOH+ + H+ -llnl_gamma 4 log_k -10.0751 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdOH+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CdOH+ +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Cd+2 = CdP2O7-2 + H2O -llnl_gamma 4 log_k 4.8094 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdP2O7-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CdP2O7-2 +# Enthalpy of formation: -0 kcal/mol Thiocyanate- + Cd+2 = CdThiocyanate+ -llnl_gamma 4 log_k 1.3218 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdThiocyanate+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CdThiocyanate+ +# Enthalpy of formation: -0 kcal/mol SO4-2 + Cd+2 = CdSO4 -llnl_gamma 3 log_k 0.0028 - -delta_H 0.20436 kJ/mol # Calculated enthalpy of reaction CdSO4 -# Enthalpy of formation: -985.295 kJ/mol + -delta_H 0.20436 kJ/mol # Calculated enthalpy of reaction CdSO4 +# Enthalpy of formation: -985.295 kJ/mol -analytic -8.9926e+0 -1.9109e-3 2.7454e+2 3.4949e+0 4.6651e+0 # -Range: 0-200 SeO4-2 + Cd+2 = CdSeO4 -llnl_gamma 3 log_k 2.27 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdSeO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CdSeO4 +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Ce+3 = Ce(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -4.8159 - -delta_H -22.9702 kJ/mol # Calculated enthalpy of reaction Ce(Acetate)2+ -# Enthalpy of formation: -405.09 kcal/mol + -delta_H -22.9702 kJ/mol # Calculated enthalpy of reaction Ce(Acetate)2+ +# Enthalpy of formation: -405.09 kcal/mol -analytic -3.4653e+1 2.0716e-4 -6.34e+2 1.0678e+1 4.8922e+5 # -Range: 0-300 3 HAcetate + Ce+3 = Ce(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -8.151 - -delta_H -38.7438 kJ/mol # Calculated enthalpy of reaction Ce(Acetate)3 -# Enthalpy of formation: -524.96 kcal/mol + -delta_H -38.7438 kJ/mol # Calculated enthalpy of reaction Ce(Acetate)3 +# Enthalpy of formation: -524.96 kcal/mol -analytic -2.3361e+1 2.3896e-3 -1.8035e+3 5.0888e+0 7.1021e+5 # -Range: 0-300 2 HCO3- + Ce+3 = Ce(CO3)2- + 2 H+ -llnl_gamma 4 log_k -8.1576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Ce+3 = Ce(HPO4)2- -llnl_gamma 4 log_k 8.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(HPO4)2- +# Enthalpy of formation: -0 kcal/mol 2 H2O + Ce+4 = Ce(OH)2+2 + 2 H+ -llnl_gamma 4.5 log_k 2.0098 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)2+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)2+2 +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Ce+3 = Ce(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -6.1437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 H2O + 2 Ce+4 = Ce2(OH)2+6 + 2 H+ -llnl_gamma 6 log_k 3.0098 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2(OH)2+6 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2(OH)2+6 +# Enthalpy of formation: -0 kcal/mol 5 H2O + 3 Ce+3 = Ce3(OH)5+4 + 5 H+ -llnl_gamma 5.5 log_k -33.4754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce3(OH)5+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce3(OH)5+4 +# Enthalpy of formation: -0 kcal/mol Ce+3 + Br- = CeBr+2 -llnl_gamma 4.5 log_k 0.3797 - -delta_H 3.0585 kJ/mol # Calculated enthalpy of reaction CeBr+2 -# Enthalpy of formation: -195.709 kcal/mol + -delta_H 3.0585 kJ/mol # Calculated enthalpy of reaction CeBr+2 +# Enthalpy of formation: -195.709 kcal/mol -analytic 7.579e+1 3.604e-2 -1.2647e+3 -3.3094e+1 -1.9757e+1 # -Range: 0-300 Ce+3 + HAcetate = CeAcetate+2 + H+ -llnl_gamma 4.5 log_k -2.0304 - -delta_H -12.0918 kJ/mol # Calculated enthalpy of reaction CeAcetate+2 -# Enthalpy of formation: -286.39 kcal/mol + -delta_H -12.0918 kJ/mol # Calculated enthalpy of reaction CeAcetate+2 +# Enthalpy of formation: -286.39 kcal/mol -analytic -1.608e+1 6.6239e-4 -6.0721e+2 5.0845e+0 2.9512e+5 # -Range: 0-300 HCO3- + Ce+3 = CeCO3+ + H+ -llnl_gamma 4 log_k -2.9284 - -delta_H 93.345 kJ/mol # Calculated enthalpy of reaction CeCO3+ -# Enthalpy of formation: -309.988 kcal/mol + -delta_H 93.345 kJ/mol # Calculated enthalpy of reaction CeCO3+ +# Enthalpy of formation: -309.988 kcal/mol -analytic 2.3292e+2 5.3153e-2 -7.118e+3 -9.2061e+1 -1.1114e+2 # -Range: 0-300 Cl- + Ce+3 = CeCl+2 -llnl_gamma 4.5 log_k 0.3086 - -delta_H 14.7821 kJ/mol # Calculated enthalpy of reaction CeCl+2 -# Enthalpy of formation: -203.8 kcal/mol + -delta_H 14.7821 kJ/mol # Calculated enthalpy of reaction CeCl+2 +# Enthalpy of formation: -203.8 kcal/mol -analytic 8.3534e+1 3.8166e-2 -2.0058e+3 -3.5504e+1 -3.1324e+1 # -Range: 0-300 2 Cl- + Ce+3 = CeCl2+ -llnl_gamma 4 log_k 0.0308 - -delta_H 20.7777 kJ/mol # Calculated enthalpy of reaction CeCl2+ -# Enthalpy of formation: -242.3 kcal/mol + -delta_H 20.7777 kJ/mol # Calculated enthalpy of reaction CeCl2+ +# Enthalpy of formation: -242.3 kcal/mol -analytic 2.3011e+2 8.1428e-2 -6.1292e+3 -9.4468e+1 -9.5708e+1 # -Range: 0-300 3 Cl- + Ce+3 = CeCl3 -llnl_gamma 3 log_k -0.3936 - -delta_H 15.4766 kJ/mol # Calculated enthalpy of reaction CeCl3 -# Enthalpy of formation: -283.5 kcal/mol + -delta_H 15.4766 kJ/mol # Calculated enthalpy of reaction CeCl3 +# Enthalpy of formation: -283.5 kcal/mol -analytic 4.4073e+2 1.2994e-1 -1.2308e+4 -1.7722e+2 -1.9218e+2 # -Range: 0-300 4 Cl- + Ce+3 = CeCl4- -llnl_gamma 4 log_k -0.7447 - -delta_H -1.95811 kJ/mol # Calculated enthalpy of reaction CeCl4- -# Enthalpy of formation: -327.6 kcal/mol + -delta_H -1.95811 kJ/mol # Calculated enthalpy of reaction CeCl4- +# Enthalpy of formation: -327.6 kcal/mol -analytic 5.223e+2 1.349e-1 -1.4859e+4 -2.0747e+2 -2.3201e+2 # -Range: 0-300 ClO4- + Ce+3 = CeClO4+2 -llnl_gamma 4.5 log_k 1.9102 - -delta_H -49.0197 kJ/mol # Calculated enthalpy of reaction CeClO4+2 -# Enthalpy of formation: -210.026 kcal/mol + -delta_H -49.0197 kJ/mol # Calculated enthalpy of reaction CeClO4+2 +# Enthalpy of formation: -210.026 kcal/mol -analytic -1.3609e+1 1.8115e-2 3.9869e+3 -1.3033e+0 6.2215e+1 # -Range: 0-300 F- + Ce+3 = CeF+2 -llnl_gamma 4.5 log_k 4.2221 - -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction CeF+2 -# Enthalpy of formation: -242 kcal/mol + -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction CeF+2 +# Enthalpy of formation: -242 kcal/mol -analytic 1.0303e+2 4.173e-2 -2.8424e+3 -4.1094e+1 -4.4383e+1 # -Range: 0-300 2 F- + Ce+3 = CeF2+ -llnl_gamma 4 log_k 7.2714 - -delta_H 15.0624 kJ/mol # Calculated enthalpy of reaction CeF2+ -# Enthalpy of formation: -324.1 kcal/mol + -delta_H 15.0624 kJ/mol # Calculated enthalpy of reaction CeF2+ +# Enthalpy of formation: -324.1 kcal/mol -analytic 2.5063e+2 8.5224e-2 -6.2219e+3 -1.0017e+2 -9.716e+1 # -Range: 0-300 3 F- + Ce+3 = CeF3 -llnl_gamma 3 log_k 9.5144 - -delta_H -6.0668 kJ/mol # Calculated enthalpy of reaction CeF3 -# Enthalpy of formation: -409.3 kcal/mol + -delta_H -6.0668 kJ/mol # Calculated enthalpy of reaction CeF3 +# Enthalpy of formation: -409.3 kcal/mol -analytic 4.6919e+2 1.3664e-1 -1.1745e+4 -1.8629e+2 -1.834e+2 # -Range: 0-300 4 F- + Ce+3 = CeF4- -llnl_gamma 4 log_k 11.3909 - -delta_H -45.6056 kJ/mol # Calculated enthalpy of reaction CeF4- -# Enthalpy of formation: -498.9 kcal/mol + -delta_H -45.6056 kJ/mol # Calculated enthalpy of reaction CeF4- +# Enthalpy of formation: -498.9 kcal/mol -analytic 5.3522e+2 1.3856e-1 -1.2722e+4 -2.1112e+2 -1.9868e+2 # -Range: 0-300 HPO4-2 + H+ + Ce+3 = CeH2PO4+2 -llnl_gamma 4.5 log_k 9.6684 - -delta_H -16.2548 kJ/mol # Calculated enthalpy of reaction CeH2PO4+2 -# Enthalpy of formation: -480.1 kcal/mol + -delta_H -16.2548 kJ/mol # Calculated enthalpy of reaction CeH2PO4+2 +# Enthalpy of formation: -480.1 kcal/mol -analytic 1.1338e+2 6.3771e-2 5.2908e+1 -4.9649e+1 7.9189e-1 # -Range: 0-300 HCO3- + Ce+3 = CeHCO3+2 -llnl_gamma 4.5 log_k 1.919 - -delta_H 8.77803 kJ/mol # Calculated enthalpy of reaction CeHCO3+2 -# Enthalpy of formation: -330.2 kcal/mol + -delta_H 8.77803 kJ/mol # Calculated enthalpy of reaction CeHCO3+2 +# Enthalpy of formation: -330.2 kcal/mol -analytic 4.4441e+1 3.2077e-2 -3.0714e+2 -2.0622e+1 -4.806e+0 # -Range: 0-300 HPO4-2 + Ce+3 = CeHPO4+ -llnl_gamma 4 log_k 5.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction CeHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CeHPO4+ +# Enthalpy of formation: -0 kcal/mol IO3- + Ce+3 = CeIO3+2 -llnl_gamma 4.5 log_k 1.9 - -delta_H -21.1627 kJ/mol # Calculated enthalpy of reaction CeIO3+2 -# Enthalpy of formation: -225.358 kcal/mol + -delta_H -21.1627 kJ/mol # Calculated enthalpy of reaction CeIO3+2 +# Enthalpy of formation: -225.358 kcal/mol -analytic 3.3756e+1 2.8528e-2 1.2847e+3 -1.8042e+1 2.0036e+1 # -Range: 0-300 NO3- + Ce+3 = CeNO3+2 -llnl_gamma 4.5 log_k 1.3143 - -delta_H -26.6563 kJ/mol # Calculated enthalpy of reaction CeNO3+2 -# Enthalpy of formation: -223.2 kcal/mol + -delta_H -26.6563 kJ/mol # Calculated enthalpy of reaction CeNO3+2 +# Enthalpy of formation: -223.2 kcal/mol -analytic 2.2772e+1 2.5931e-2 1.995e+3 -1.449e+1 3.1124e+1 # -Range: 0-300 H2O + Ce+3 = CeO+ + 2 H+ -llnl_gamma 4 log_k -16.4103 - -delta_H 112.202 kJ/mol # Calculated enthalpy of reaction CeO+ -# Enthalpy of formation: -208.9 kcal/mol + -delta_H 112.202 kJ/mol # Calculated enthalpy of reaction CeO+ +# Enthalpy of formation: -208.9 kcal/mol -analytic 1.9881e+2 3.1302e-2 -1.4331e+4 -7.1323e+1 -2.2368e+2 # -Range: 0-300 2 H2O + Ce+3 = CeO2- + 4 H+ -llnl_gamma 4 log_k -38.758 - -delta_H 308.503 kJ/mol # Calculated enthalpy of reaction CeO2- -# Enthalpy of formation: -230.3 kcal/mol + -delta_H 308.503 kJ/mol # Calculated enthalpy of reaction CeO2- +# Enthalpy of formation: -230.3 kcal/mol -analytic 1.0059e+2 3.4824e-3 -1.5873e+4 -3.3056e+1 -4.7656e+5 # -Range: 0-300 2 H2O + Ce+3 = CeO2H + 3 H+ -llnl_gamma 3 log_k -26.1503 - -delta_H 228.17 kJ/mol # Calculated enthalpy of reaction CeO2H -# Enthalpy of formation: -249.5 kcal/mol + -delta_H 228.17 kJ/mol # Calculated enthalpy of reaction CeO2H +# Enthalpy of formation: -249.5 kcal/mol -analytic 3.565e+2 4.6708e-2 -2.432e+4 -1.2731e+2 -3.7959e+2 # -Range: 0-300 H2O + Ce+3 = CeOH+2 + H+ -llnl_gamma 4.5 log_k -8.4206 - -delta_H 73.2911 kJ/mol # Calculated enthalpy of reaction CeOH+2 -# Enthalpy of formation: -218.2 kcal/mol + -delta_H 73.2911 kJ/mol # Calculated enthalpy of reaction CeOH+2 +# Enthalpy of formation: -218.2 kcal/mol -analytic 7.5809e+1 1.2863e-2 -6.7244e+3 -2.6473e+1 -1.0495e+2 # -Range: 0-300 H2O + Ce+4 = CeOH+3 + H+ -llnl_gamma 5 log_k 3.2049 - -delta_H 0 # Not possible to calculate enthalpy of reaction CeOH+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CeOH+3 +# Enthalpy of formation: -0 kcal/mol HPO4-2 + Ce+3 = CePO4 + H+ -llnl_gamma 3 log_k -0.9718 - -delta_H 0 # Not possible to calculate enthalpy of reaction CePO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CePO4 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Ce+3 = CeSO4+ -llnl_gamma 4 log_k -3.687 - -delta_H 19.2464 kJ/mol # Calculated enthalpy of reaction CeSO4+ -# Enthalpy of formation: -380.2 kcal/mol + -delta_H 19.2464 kJ/mol # Calculated enthalpy of reaction CeSO4+ +# Enthalpy of formation: -380.2 kcal/mol -analytic 3.0156e+2 8.5149e-2 -1.1025e+4 -1.1866e+2 -1.7213e+2 # -Range: 0-300 2 HAcetate + Co+2 = Co(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -7.1468 - -delta_H -22.4262 kJ/mol # Calculated enthalpy of reaction Co(Acetate)2 -# Enthalpy of formation: -251.46 kcal/mol + -delta_H -22.4262 kJ/mol # Calculated enthalpy of reaction Co(Acetate)2 +# Enthalpy of formation: -251.46 kcal/mol -analytic -2.0661e+1 2.9014e-3 -2.2146e+3 5.1702e+0 6.4968e+5 # -Range: 0-300 3 HAcetate + Co+2 = Co(Acetate)3- + 3 H+ -llnl_gamma 4 log_k -11.281 - -delta_H -48.2415 kJ/mol # Calculated enthalpy of reaction Co(Acetate)3- -# Enthalpy of formation: -373.73 kcal/mol + -delta_H -48.2415 kJ/mol # Calculated enthalpy of reaction Co(Acetate)3- +# Enthalpy of formation: -373.73 kcal/mol -analytic 6.3384e+1 -4.0669e-3 -1.4715e+4 -1.9518e+1 2.1524e+6 # -Range: 0-300 2 HS- + Co+2 = Co(HS)2 -llnl_gamma 3 log_k 9.0306 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(HS)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(HS)2 +# Enthalpy of formation: -0 kcal/mol 2 H2O + Co+2 = Co(OH)2 + 2 H+ -llnl_gamma 3 log_k -18.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)2 +# Enthalpy of formation: -0 kcal/mol 4 H2O + Co+2 = Co(OH)4-2 + 4 H+ -llnl_gamma 4 log_k -45.7803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)4-2 +# Enthalpy of formation: -0 kcal/mol H2O + 2 Co+2 = Co2OH+3 + H+ -llnl_gamma 5 log_k -11.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co2OH+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Co2OH+3 +# Enthalpy of formation: -0 kcal/mol 4 H2O + 4 Co+2 = Co4(OH)4+4 + 4 H+ -llnl_gamma 5.5 log_k -30.3803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co4(OH)4+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Co4(OH)4+4 +# Enthalpy of formation: -0 kcal/mol 2 Br- + Co+2 = CoBr2 -llnl_gamma 3 log_k -0.0358 - -delta_H -0.56568 kJ/mol # Calculated enthalpy of reaction CoBr2 -# Enthalpy of formation: -301.73 kJ/mol + -delta_H -0.56568 kJ/mol # Calculated enthalpy of reaction CoBr2 +# Enthalpy of formation: -301.73 kJ/mol -analytic 5.8731e+0 8.0908e-4 -1.8986e+2 -2.2295e+0 -3.2261e+0 # -Range: 0-200 Co+2 + HAcetate = CoAcetate+ + H+ -llnl_gamma 4 log_k -3.2985 - -delta_H -8.70272 kJ/mol # Calculated enthalpy of reaction CoAcetate+ -# Enthalpy of formation: -132.08 kcal/mol + -delta_H -8.70272 kJ/mol # Calculated enthalpy of reaction CoAcetate+ +# Enthalpy of formation: -132.08 kcal/mol -analytic -5.4858e+0 1.9147e-3 -1.1292e+3 9.0555e-1 2.8223e+5 # -Range: 0-300 Co+2 + Cl- = CoCl+ -llnl_gamma 4 log_k 0.1547 - -delta_H 1.71962 kJ/mol # Calculated enthalpy of reaction CoCl+ -# Enthalpy of formation: -53.422 kcal/mol + -delta_H 1.71962 kJ/mol # Calculated enthalpy of reaction CoCl+ +# Enthalpy of formation: -53.422 kcal/mol -analytic 1.5234e+2 5.6958e-2 -3.3258e+3 -6.3849e+1 -5.1942e+1 # -Range: 0-300 HS- + Co+2 = CoHS+ -llnl_gamma 4 log_k 5.9813 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoHS+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CoHS+ +# Enthalpy of formation: -0 kcal/mol 2 I- + Co+2 = CoI2 -llnl_gamma 3 log_k -0.0944 - -delta_H 3.1774 kJ/mol # Calculated enthalpy of reaction CoI2 -# Enthalpy of formation: -168.785 kJ/mol + -delta_H 3.1774 kJ/mol # Calculated enthalpy of reaction CoI2 +# Enthalpy of formation: -168.785 kJ/mol -analytic 3.6029e+1 1.0128e-2 -1.1219e+3 -1.4301e+1 -1.9064e+1 # -Range: 0-200 NO3- + Co+2 = CoNO3+ -llnl_gamma 4 log_k 0.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoNO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CoNO3+ +# Enthalpy of formation: -0 kcal/mol Co+2 + S2O3-2 = CoS2O3 -llnl_gamma 3 log_k 0.8063 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoS2O3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CoS2O3 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Co+2 = CoSO4 -llnl_gamma 3 log_k 0.0436 - -delta_H 0.3842 kJ/mol # Calculated enthalpy of reaction CoSO4 -# Enthalpy of formation: -967.375 kJ/mol + -delta_H 0.3842 kJ/mol # Calculated enthalpy of reaction CoSO4 +# Enthalpy of formation: -967.375 kJ/mol -analytic 2.4606e+0 1.0086e-3 -6.145e+1 -1.0148e+0 -1.0444e+0 # -Range: 0-200 SeO4-2 + Co+2 = CoSeO4 -llnl_gamma 3 log_k 2.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoSeO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CoSeO4 +# Enthalpy of formation: -0 kcal/mol 2 H2O + Cr+3 = Cr(OH)2+ + 2 H+ -llnl_gamma 4 log_k -9.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)2+ +# Enthalpy of formation: -0 kcal/mol 3 H2O + Cr+3 = Cr(OH)3 + 3 H+ -llnl_gamma 3 log_k -18 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)3 +# Enthalpy of formation: -0 kcal/mol 4 H2O + Cr+3 = Cr(OH)4- + 4 H+ -llnl_gamma 4 log_k -27.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)4- +# Enthalpy of formation: -0 kcal/mol 2 H2O + 2 Cr+3 = Cr2(OH)2+4 + 2 H+ -llnl_gamma 5.5 log_k -5.06 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol 2 H+ + 2 CrO4-2 = Cr2O7-2 + H2O -llnl_gamma 4 log_k 14.5192 - -delta_H -13.8783 kJ/mol # Calculated enthalpy of reaction Cr2O7-2 -# Enthalpy of formation: -356.2 kcal/mol + -delta_H -13.8783 kJ/mol # Calculated enthalpy of reaction Cr2O7-2 +# Enthalpy of formation: -356.2 kcal/mol -analytic 1.3749e+2 6.5773e-2 -7.9472e+2 -5.6525e+1 -1.2441e+1 # -Range: 0-300 4 H2O + 3 Cr+3 = Cr3(OH)4+5 + 4 H+ -llnl_gamma 6 log_k -8.15 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr3(OH)4+5 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr3(OH)4+5 +# Enthalpy of formation: -0 kcal/mol Cr+3 + Br- = CrBr+2 -llnl_gamma 4.5 log_k -2.7813 - -delta_H 33.564 kJ/mol # Calculated enthalpy of reaction CrBr+2 -# Enthalpy of formation: -78.018 kcal/mol + -delta_H 33.564 kJ/mol # Calculated enthalpy of reaction CrBr+2 +# Enthalpy of formation: -78.018 kcal/mol -analytic 9.4384e+1 3.4704e-2 -3.675e+3 -3.8461e+1 -5.7373e+1 # -Range: 0-300 Cr+3 + Cl- = CrCl+2 -llnl_gamma 4.5 log_k -0.149 - -delta_H 0 # Not possible to calculate enthalpy of reaction CrCl+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CrCl+2 +# Enthalpy of formation: -0 kcal/mol 2 Cl- + Cr+3 = CrCl2+ -llnl_gamma 4 log_k 0.1596 - -delta_H 41.2919 kJ/mol # Calculated enthalpy of reaction CrCl2+ -# Enthalpy of formation: -126.997 kcal/mol + -delta_H 41.2919 kJ/mol # Calculated enthalpy of reaction CrCl2+ +# Enthalpy of formation: -126.997 kcal/mol -analytic 2.0114e+2 7.3878e-2 -6.2218e+3 -8.1677e+1 -9.7144e+1 # -Range: 0-300 Cl- + 2 H+ + CrO4-2 = CrO3Cl- + H2O -llnl_gamma 4 log_k 7.527 - -delta_H 0 # Not possible to calculate enthalpy of reaction CrO3Cl- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CrO3Cl- +# Enthalpy of formation: -0 kcal/mol -analytic 2.7423e+2 1.0013e-1 -6.0072e+3 -1.1168e+2 -9.3817e+1 # -Range: 0-300 H2O + Cr+3 = CrOH+2 + H+ -llnl_gamma 4.5 log_k -4 - -delta_H 0 # Not possible to calculate enthalpy of reaction CrOH+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CrOH+2 +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Cs+ = Cs(Acetate)2- + 2 H+ -llnl_gamma 4 log_k -9.771 - -delta_H 1.2552 kJ/mol # Calculated enthalpy of reaction Cs(Acetate)2- -# Enthalpy of formation: -293.57 kcal/mol + -delta_H 1.2552 kJ/mol # Calculated enthalpy of reaction Cs(Acetate)2- +# Enthalpy of formation: -293.57 kcal/mol -analytic -1.6956e+2 -4.0378e-2 4.5773e+3 6.3241e+1 7.1475e+1 # -Range: 0-300 Cs+ + Br- = CsBr -llnl_gamma 3 log_k -0.2712 - -delta_H 10.9621 kJ/mol # Calculated enthalpy of reaction CsBr -# Enthalpy of formation: -88.09 kcal/mol + -delta_H 10.9621 kJ/mol # Calculated enthalpy of reaction CsBr +# Enthalpy of formation: -88.09 kcal/mol -analytic 1.2064e+2 3.2e-2 -3.877e+3 -4.7458e+1 -6.0533e+1 # -Range: 0-300 Cs+ + HAcetate = CsAcetate + H+ -llnl_gamma 3 log_k -4.7352 - -delta_H 6.0668 kJ/mol # Calculated enthalpy of reaction CsAcetate -# Enthalpy of formation: -176.32 kcal/mol + -delta_H 6.0668 kJ/mol # Calculated enthalpy of reaction CsAcetate +# Enthalpy of formation: -176.32 kcal/mol -analytic 2.428e+1 -2.8642e-3 -3.1339e+3 -8.1616e+0 2.2684e+5 # -Range: 0-300 Cs+ + Cl- = CsCl -llnl_gamma 3 log_k -0.1385 - -delta_H 2.73215 kJ/mol # Calculated enthalpy of reaction CsCl -# Enthalpy of formation: -100.95 kcal/mol + -delta_H 2.73215 kJ/mol # Calculated enthalpy of reaction CsCl +# Enthalpy of formation: -100.95 kcal/mol -analytic 1.2472e+2 3.373e-2 -3.913e+3 -4.9212e+1 -6.1096e+1 # -Range: 0-300 I- + Cs+ = CsI -llnl_gamma 3 log_k 0.2639 - -delta_H -6.56888 kJ/mol # Calculated enthalpy of reaction CsI -# Enthalpy of formation: -76.84 kcal/mol + -delta_H -6.56888 kJ/mol # Calculated enthalpy of reaction CsI +# Enthalpy of formation: -76.84 kcal/mol -analytic 1.1555e+2 3.1419e-2 -3.3496e+3 -4.5828e+1 -5.2302e+1 # -Range: 0-300 2 HAcetate + Cu+2 = Cu(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -5.8824 - -delta_H -25.899 kJ/mol # Calculated enthalpy of reaction Cu(Acetate)2 -# Enthalpy of formation: -222.69 kcal/mol + -delta_H -25.899 kJ/mol # Calculated enthalpy of reaction Cu(Acetate)2 +# Enthalpy of formation: -222.69 kcal/mol -analytic -2.6689e+1 1.8048e-3 -1.8244e+3 7.7008e+0 6.5408e+5 # -Range: 0-300 2 HAcetate + Cu+ = Cu(Acetate)2- + 2 H+ -llnl_gamma 4 log_k -9.2139 - -delta_H -19.5476 kJ/mol # Calculated enthalpy of reaction Cu(Acetate)2- -# Enthalpy of formation: -219.74 kcal/mol + -delta_H -19.5476 kJ/mol # Calculated enthalpy of reaction Cu(Acetate)2- +# Enthalpy of formation: -219.74 kcal/mol -analytic -3.2712e+2 -5.9087e-2 1.1386e+4 1.2017e+2 1.7777e+2 # -Range: 0-300 3 HAcetate + Cu+2 = Cu(Acetate)3- + 3 H+ -llnl_gamma 4 log_k -9.3788 - -delta_H -53.2205 kJ/mol # Calculated enthalpy of reaction Cu(Acetate)3- -# Enthalpy of formation: -345.32 kcal/mol + -delta_H -53.2205 kJ/mol # Calculated enthalpy of reaction Cu(Acetate)3- +# Enthalpy of formation: -345.32 kcal/mol -analytic 3.9475e+1 -6.2867e-3 -1.3233e+4 -1.0643e+1 2.1121e+6 # -Range: 0-300 2 HCO3- + Cu+2 = Cu(CO3)2-2 + 2 H+ -llnl_gamma 4 log_k -10.4757 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cu(CO3)2-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cu(CO3)2-2 +# Enthalpy of formation: -0 kcal/mol 2 NH3 + Cu+2 = Cu(NH3)2+2 -llnl_gamma 4.5 log_k 7.4512 - -delta_H -45.1269 kJ/mol # Calculated enthalpy of reaction Cu(NH3)2+2 -# Enthalpy of formation: -142.112 kJ/mol + -delta_H -45.1269 kJ/mol # Calculated enthalpy of reaction Cu(NH3)2+2 +# Enthalpy of formation: -142.112 kJ/mol -analytic 1.1526e+2 4.8192e-3 -2.5139e+3 -4.0733e+1 -3.9261e+1 # -Range: 0-300 3 NH3 + Cu+2 = Cu(NH3)3+2 -llnl_gamma 4.5 log_k 10.2719 - -delta_H -67.2779 kJ/mol # Calculated enthalpy of reaction Cu(NH3)3+2 -# Enthalpy of formation: -245.6 kJ/mol + -delta_H -67.2779 kJ/mol # Calculated enthalpy of reaction Cu(NH3)3+2 +# Enthalpy of formation: -245.6 kJ/mol -analytic 1.3945e+2 -3.8236e-4 -2.8137e+3 -4.8336e+1 -4.3946e+1 # -Range: 0-300 2 NO2- + Cu+2 = Cu(NO2)2 -llnl_gamma 3 log_k 3.03 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cu(NO2)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cu(NO2)2 +# Enthalpy of formation: -0 kcal/mol Cu+ + HAcetate = CuAcetate + H+ -llnl_gamma 3 log_k -4.4274 - -delta_H -4.19237 kJ/mol # Calculated enthalpy of reaction CuAcetate -# Enthalpy of formation: -99.97 kcal/mol + -delta_H -4.19237 kJ/mol # Calculated enthalpy of reaction CuAcetate +# Enthalpy of formation: -99.97 kcal/mol -analytic 6.3784e+0 -4.5464e-4 -1.9995e+3 -2.8359e+0 2.7224e+5 # -Range: 0-300 Cu+2 + HAcetate = CuAcetate+ + H+ -llnl_gamma 4 log_k -2.5252 - -delta_H -11.3805 kJ/mol # Calculated enthalpy of reaction CuAcetate+ -# Enthalpy of formation: -103.12 kcal/mol + -delta_H -11.3805 kJ/mol # Calculated enthalpy of reaction CuAcetate+ +# Enthalpy of formation: -103.12 kcal/mol -analytic -1.493e+1 5.1278e-4 -3.4874e+2 4.3605e+0 2.3504e+5 # -Range: 0-300 2 H2O + HCO3- + Cu+2 = CuCO3(OH)2-2 + 3 H+ -llnl_gamma 4 log_k -23.444 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCO3(OH)2-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCO3(OH)2-2 +# Enthalpy of formation: -0 kcal/mol HCO3- + Cu+2 = CuCO3 + H+ -llnl_gamma 3 log_k -3.3735 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCO3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCO3 +# Enthalpy of formation: -0 kcal/mol Cu+2 + Cl- = CuCl+ -llnl_gamma 4 log_k 0.437 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl+ +# Enthalpy of formation: -0 kcal/mol 2 Cl- + Cu+2 = CuCl2 -llnl_gamma 3 log_k 0.1585 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl2 +# Enthalpy of formation: -0 kcal/mol 2 Cl- + Cu+ = CuCl2- -llnl_gamma 4 log_k 4.8212 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl2- +# Enthalpy of formation: -0 kcal/mol 3 Cl- + Cu+ = CuCl3-2 -llnl_gamma 4 log_k 5.6289 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl3-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl3-2 +# Enthalpy of formation: -0 kcal/mol 4 Cl- + Cu+2 = CuCl4-2 -llnl_gamma 4 log_k -4.5681 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl4-2 +# Enthalpy of formation: -0 kcal/mol F- + Cu+2 = CuF+ -llnl_gamma 4 log_k 1.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuF+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuF+ +# Enthalpy of formation: -0 kcal/mol HPO4-2 + H+ + Cu+2 = CuH2PO4+ -llnl_gamma 4 log_k 8.9654 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuH2PO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuH2PO4+ +# Enthalpy of formation: -0 kcal/mol HPO4-2 + Cu+2 = CuHPO4 -llnl_gamma 3 log_k 4.06 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuHPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuHPO4 +# Enthalpy of formation: -0 kcal/mol NH3 + Cu+2 = CuNH3+2 -llnl_gamma 4.5 log_k 4.04 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuNH3+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuNH3+2 +# Enthalpy of formation: -0 kcal/mol NO2- + Cu+2 = CuNO2+ -llnl_gamma 4 log_k 2.02 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuNO2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuNO2+ +# Enthalpy of formation: -0 kcal/mol 2 H2O + Cu+2 = CuO2-2 + 4 H+ -llnl_gamma 4 log_k -39.4497 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuO2-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuO2-2 +# Enthalpy of formation: -0 kcal/mol H2O + Cu+2 = CuOH+ + H+ -llnl_gamma 4 log_k -7.2875 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuOH+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuOH+ +# Enthalpy of formation: -0 kcal/mol HPO4-2 + Cu+2 = CuPO4- + H+ -llnl_gamma 4 log_k -2.4718 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuPO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuPO4- +# Enthalpy of formation: -0 kcal/mol SO4-2 + Cu+2 = CuSO4 -llnl_gamma 0 log_k 2.36 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuSO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuSO4 +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Dy+3 = Dy(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -4.9625 - -delta_H -29.3298 kJ/mol # Calculated enthalpy of reaction Dy(Acetate)2+ -# Enthalpy of formation: -405.71 kcal/mol + -delta_H -29.3298 kJ/mol # Calculated enthalpy of reaction Dy(Acetate)2+ +# Enthalpy of formation: -405.71 kcal/mol -analytic -2.7249e+1 2.7507e-3 -1.75e+3 7.9356e+0 6.8668e+5 # -Range: 0-300 3 HAcetate + Dy+3 = Dy(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -8.3489 - -delta_H -49.4549 kJ/mol # Calculated enthalpy of reaction Dy(Acetate)3 -# Enthalpy of formation: -526.62 kcal/mol + -delta_H -49.4549 kJ/mol # Calculated enthalpy of reaction Dy(Acetate)3 +# Enthalpy of formation: -526.62 kcal/mol -analytic -2.4199e+1 6.2065e-3 -2.8937e+3 5.0176e+0 1.0069e+6 # -Range: 0-300 2 HCO3- + Dy+3 = Dy(CO3)2- + 2 H+ -llnl_gamma 4 log_k -7.4576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Dy+3 = Dy(HPO4)2- -llnl_gamma 4 log_k 9.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(HPO4)2- +# Enthalpy of formation: -0 kcal/mol # Redundant with DyO2- #4.0000 H2O + 1.0000 Dy+++ = Dy(OH)4- +4.0000 H+ # -llnl_gamma 4.0 # log_k -33.4803 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)4- -# Enthalpy of formation: -0 kcal/mol +# -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)4- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Dy+3 = Dy(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -3.4437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Dy+3 = Dy(SO4)2- -llnl_gamma 4 log_k 5 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(SO4)2- +# Enthalpy of formation: -0 kcal/mol Dy+3 + HAcetate = DyAcetate+2 + H+ -llnl_gamma 4.5 log_k -2.1037 - -delta_H -14.8532 kJ/mol # Calculated enthalpy of reaction DyAcetate+2 -# Enthalpy of formation: -286.15 kcal/mol + -delta_H -14.8532 kJ/mol # Calculated enthalpy of reaction DyAcetate+2 +# Enthalpy of formation: -286.15 kcal/mol -analytic -1.3635e+1 1.7329e-3 -9.4636e+2 4.09e+0 3.6282e+5 # -Range: 0-300 HCO3- + Dy+3 = DyCO3+ + H+ -llnl_gamma 4 log_k -2.3324 - -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction DyCO3+ -# Enthalpy of formation: -310.1 kcal/mol + -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction DyCO3+ +# Enthalpy of formation: -310.1 kcal/mol -analytic 2.3742e+2 5.4342e-2 -6.9953e+3 -9.3949e+1 -1.0922e+2 # -Range: 0-300 Dy+3 + Cl- = DyCl+2 -llnl_gamma 4.5 log_k 0.2353 - -delta_H 13.5269 kJ/mol # Calculated enthalpy of reaction DyCl+2 -# Enthalpy of formation: -203.2 kcal/mol + -delta_H 13.5269 kJ/mol # Calculated enthalpy of reaction DyCl+2 +# Enthalpy of formation: -203.2 kcal/mol -analytic 6.9134e+1 3.7129e-2 -1.3839e+3 -3.0432e+1 -2.1615e+1 # -Range: 0-300 2 Cl- + Dy+3 = DyCl2+ -llnl_gamma 4 log_k -0.0425 - -delta_H 17.4305 kJ/mol # Calculated enthalpy of reaction DyCl2+ -# Enthalpy of formation: -242.2 kcal/mol + -delta_H 17.4305 kJ/mol # Calculated enthalpy of reaction DyCl2+ +# Enthalpy of formation: -242.2 kcal/mol -analytic 1.8868e+2 7.7901e-2 -4.3528e+3 -7.9735e+1 -6.7978e+1 # -Range: 0-300 3 Cl- + Dy+3 = DyCl3 -llnl_gamma 3 log_k -0.4669 - -delta_H 8.78222 kJ/mol # Calculated enthalpy of reaction DyCl3 -# Enthalpy of formation: -284.2 kcal/mol + -delta_H 8.78222 kJ/mol # Calculated enthalpy of reaction DyCl3 +# Enthalpy of formation: -284.2 kcal/mol -analytic 3.6761e+2 1.2471e-1 -9.0651e+3 -1.5147e+2 -1.4156e+2 # -Range: 0-300 4 Cl- + Dy+3 = DyCl4- -llnl_gamma 4 log_k -0.8913 - -delta_H -14.0917 kJ/mol # Calculated enthalpy of reaction DyCl4- -# Enthalpy of formation: -329.6 kcal/mol + -delta_H -14.0917 kJ/mol # Calculated enthalpy of reaction DyCl4- +# Enthalpy of formation: -329.6 kcal/mol -analytic 3.9134e+2 1.2288e-1 -9.2351e+3 -1.6078e+2 -1.4422e+2 # -Range: 0-300 F- + Dy+3 = DyF+2 -llnl_gamma 4.5 log_k 4.6619 - -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction DyF+2 -# Enthalpy of formation: -241.1 kcal/mol + -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction DyF+2 +# Enthalpy of formation: -241.1 kcal/mol -analytic 9.112e+1 4.1193e-2 -2.3302e+3 -3.6734e+1 -3.6388e+1 # -Range: 0-300 2 F- + Dy+3 = DyF2+ -llnl_gamma 4 log_k 8.151 - -delta_H 12.552 kJ/mol # Calculated enthalpy of reaction DyF2+ -# Enthalpy of formation: -323.8 kcal/mol + -delta_H 12.552 kJ/mol # Calculated enthalpy of reaction DyF2+ +# Enthalpy of formation: -323.8 kcal/mol -analytic 2.1325e+2 8.2483e-2 -4.5864e+3 -8.6587e+1 -7.1629e+1 # -Range: 0-300 3 F- + Dy+3 = DyF3 -llnl_gamma 3 log_k 10.7605 - -delta_H -11.9244 kJ/mol # Calculated enthalpy of reaction DyF3 -# Enthalpy of formation: -409.8 kcal/mol + -delta_H -11.9244 kJ/mol # Calculated enthalpy of reaction DyF3 +# Enthalpy of formation: -409.8 kcal/mol -analytic 3.9766e+2 1.3143e-1 -8.5607e+3 -1.6056e+2 -1.337e+2 # -Range: 0-300 4 F- + Dy+3 = DyF4- -llnl_gamma 4 log_k 12.8569 - -delta_H -57.3208 kJ/mol # Calculated enthalpy of reaction DyF4- -# Enthalpy of formation: -500.8 kcal/mol + -delta_H -57.3208 kJ/mol # Calculated enthalpy of reaction DyF4- +# Enthalpy of formation: -500.8 kcal/mol -analytic 4.1672e+2 1.2922e-1 -7.4445e+3 -1.6867e+2 -1.1629e+2 # -Range: 0-300 HPO4-2 + H+ + Dy+3 = DyH2PO4+2 -llnl_gamma 4.5 log_k 9.3751 - -delta_H -18.3468 kJ/mol # Calculated enthalpy of reaction DyH2PO4+2 -# Enthalpy of formation: -479.7 kcal/mol + -delta_H -18.3468 kJ/mol # Calculated enthalpy of reaction DyH2PO4+2 +# Enthalpy of formation: -479.7 kcal/mol -analytic 9.8183e+1 6.2578e-2 7.1784e+2 -4.4383e+1 1.1172e+1 # -Range: 0-300 HCO3- + Dy+3 = DyHCO3+2 -llnl_gamma 4.5 log_k 1.6991 - -delta_H 7.10443 kJ/mol # Calculated enthalpy of reaction DyHCO3+2 -# Enthalpy of formation: -329.7 kcal/mol + -delta_H 7.10443 kJ/mol # Calculated enthalpy of reaction DyHCO3+2 +# Enthalpy of formation: -329.7 kcal/mol -analytic 2.8465e+1 3.0703e-2 3.9229e+2 -1.5036e+1 6.1127e+0 # -Range: 0-300 HPO4-2 + Dy+3 = DyHPO4+ -llnl_gamma 4 log_k 5.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction DyHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction DyHPO4+ +# Enthalpy of formation: -0 kcal/mol NO3- + Dy+3 = DyNO3+2 -llnl_gamma 4.5 log_k 0.1415 - -delta_H -30.4219 kJ/mol # Calculated enthalpy of reaction DyNO3+2 -# Enthalpy of formation: -223.2 kcal/mol + -delta_H -30.4219 kJ/mol # Calculated enthalpy of reaction DyNO3+2 +# Enthalpy of formation: -223.2 kcal/mol -analytic 6.4353e+0 2.4556e-2 2.5866e+3 -8.9975e+0 4.0359e+1 # -Range: 0-300 H2O + Dy+3 = DyO+ + 2 H+ -llnl_gamma 4 log_k -16.1171 - -delta_H 108.018 kJ/mol # Calculated enthalpy of reaction DyO+ -# Enthalpy of formation: -209 kcal/mol + -delta_H 108.018 kJ/mol # Calculated enthalpy of reaction DyO+ +# Enthalpy of formation: -209 kcal/mol -analytic 1.9069e+2 3.0358e-2 -1.3796e+4 -6.8532e+1 -2.1532e+2 # -Range: 0-300 2 H2O + Dy+3 = DyO2- + 4 H+ -llnl_gamma 4 log_k -33.4804 - -delta_H 273.776 kJ/mol # Calculated enthalpy of reaction DyO2- -# Enthalpy of formation: -237.7 kcal/mol + -delta_H 273.776 kJ/mol # Calculated enthalpy of reaction DyO2- +# Enthalpy of formation: -237.7 kcal/mol -analytic 7.7395e+1 4.4204e-4 -1.357e+4 -2.4546e+1 -4.232e+5 # -Range: 0-300 2 H2O + Dy+3 = DyO2H + 3 H+ -llnl_gamma 3 log_k -24.8309 - -delta_H 217.71 kJ/mol # Calculated enthalpy of reaction DyO2H -# Enthalpy of formation: -251.1 kcal/mol + -delta_H 217.71 kJ/mol # Calculated enthalpy of reaction DyO2H +# Enthalpy of formation: -251.1 kcal/mol -analytic 3.3576e+2 4.6004e-2 -2.2868e+4 -1.2027e+2 -3.5693e+2 # -Range: 0-300 H2O + Dy+3 = DyOH+2 + H+ -llnl_gamma 4.5 log_k -7.8342 - -delta_H 76.6383 kJ/mol # Calculated enthalpy of reaction DyOH+2 -# Enthalpy of formation: -216.5 kcal/mol + -delta_H 76.6383 kJ/mol # Calculated enthalpy of reaction DyOH+2 +# Enthalpy of formation: -216.5 kcal/mol -analytic 7.0856e+1 1.2473e-2 -6.2419e+3 -2.4841e+1 -9.742e+1 # -Range: 0-300 HPO4-2 + Dy+3 = DyPO4 + H+ -llnl_gamma 3 log_k 0.1782 - -delta_H 0 # Not possible to calculate enthalpy of reaction DyPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction DyPO4 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Dy+3 = DySO4+ -llnl_gamma 4 log_k 3.643 - -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction DySO4+ -# Enthalpy of formation: -379 kcal/mol + -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction DySO4+ +# Enthalpy of formation: -379 kcal/mol -analytic 3.0672e+2 8.6459e-2 -9.0386e+3 -1.2063e+2 -1.4113e+2 # -Range: 0-300 2 HAcetate + Er+3 = Er(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -4.9844 - -delta_H -32.8026 kJ/mol # Calculated enthalpy of reaction Er(Acetate)2+ -# Enthalpy of formation: -408.54 kcal/mol + -delta_H -32.8026 kJ/mol # Calculated enthalpy of reaction Er(Acetate)2+ +# Enthalpy of formation: -408.54 kcal/mol -analytic -3.1458e+1 1.4715e-3 -1.0556e+3 9.1586e+0 6.1669e+5 # -Range: 0-300 3 HAcetate + Er+3 = Er(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -8.3783 - -delta_H -55.187 kJ/mol # Calculated enthalpy of reaction Er(Acetate)3 -# Enthalpy of formation: -529.99 kcal/mol + -delta_H -55.187 kJ/mol # Calculated enthalpy of reaction Er(Acetate)3 +# Enthalpy of formation: -529.99 kcal/mol -analytic -2.1575e+1 5.974e-3 -2.0489e+3 3.3624e+0 8.8933e+5 # -Range: 0-300 2 HCO3- + Er+3 = Er(CO3)2- + 2 H+ -llnl_gamma 4 log_k -7.2576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Er+3 = Er(HPO4)2- -llnl_gamma 4 log_k 10 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(HPO4)2- +# Enthalpy of formation: -0 kcal/mol # Redundant with ErO2- #4.0000 H2O + 1.0000 Er+++ = Er(OH)4- +4.0000 H+ # -llnl_gamma 4.0 # log_k -32.5803 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)4- -# Enthalpy of formation: -0 kcal/mol +# -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)4- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Er+3 = Er(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -3.2437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Er+3 = Er(SO4)2- -llnl_gamma 4 log_k 5 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(SO4)2- +# Enthalpy of formation: -0 kcal/mol Er+3 + HAcetate = ErAcetate+2 + H+ -llnl_gamma 4.5 log_k -2.1184 - -delta_H -16.4013 kJ/mol # Calculated enthalpy of reaction ErAcetate+2 -# Enthalpy of formation: -288.52 kcal/mol + -delta_H -16.4013 kJ/mol # Calculated enthalpy of reaction ErAcetate+2 +# Enthalpy of formation: -288.52 kcal/mol -analytic -1.2519e+1 1.5558e-3 -8.5344e+2 3.5918e+0 3.4888e+5 # -Range: 0-300 HCO3- + Er+3 = ErCO3+ + H+ -llnl_gamma 4 log_k -2.1858 - -delta_H 87.0188 kJ/mol # Calculated enthalpy of reaction ErCO3+ -# Enthalpy of formation: -312.6 kcal/mol + -delta_H 87.0188 kJ/mol # Calculated enthalpy of reaction ErCO3+ +# Enthalpy of formation: -312.6 kcal/mol -analytic 2.3838e+2 5.4549e-2 -6.9433e+3 -9.4373e+1 -1.0841e+2 # -Range: 0-300 Er+3 + Cl- = ErCl+2 -llnl_gamma 4.5 log_k 0.3086 - -delta_H 12.6901 kJ/mol # Calculated enthalpy of reaction ErCl+2 -# Enthalpy of formation: -205.4 kcal/mol + -delta_H 12.6901 kJ/mol # Calculated enthalpy of reaction ErCl+2 +# Enthalpy of formation: -205.4 kcal/mol -analytic 7.4113e+1 3.7462e-2 -1.53e+3 -3.2257e+1 -2.3896e+1 # -Range: 0-300 2 Cl- + Er+3 = ErCl2+ -llnl_gamma 4 log_k -0.0425 - -delta_H 15.3385 kJ/mol # Calculated enthalpy of reaction ErCl2+ -# Enthalpy of formation: -244.7 kcal/mol + -delta_H 15.3385 kJ/mol # Calculated enthalpy of reaction ErCl2+ +# Enthalpy of formation: -244.7 kcal/mol -analytic 2.0259e+2 7.8907e-2 -4.8271e+3 -8.4835e+1 -7.5382e+1 # -Range: 0-300 3 Cl- + Er+3 = ErCl3 -llnl_gamma 3 log_k -0.4669 - -delta_H 5.01662 kJ/mol # Calculated enthalpy of reaction ErCl3 -# Enthalpy of formation: -287.1 kcal/mol + -delta_H 5.01662 kJ/mol # Calculated enthalpy of reaction ErCl3 +# Enthalpy of formation: -287.1 kcal/mol -analytic 3.9721e+2 1.2757e-1 -1.0045e+4 -1.6244e+2 -1.5686e+2 # -Range: 0-300 4 Cl- + Er+3 = ErCl4- -llnl_gamma 4 log_k -0.8913 - -delta_H -20.7861 kJ/mol # Calculated enthalpy of reaction ErCl4- -# Enthalpy of formation: -333.2 kcal/mol + -delta_H -20.7861 kJ/mol # Calculated enthalpy of reaction ErCl4- +# Enthalpy of formation: -333.2 kcal/mol -analytic 4.3471e+2 1.2627e-1 -1.0669e+4 -1.7677e+2 -1.666e+2 # -Range: 0-300 F- + Er+3 = ErF+2 -llnl_gamma 4.5 log_k 4.7352 - -delta_H 24.058 kJ/mol # Calculated enthalpy of reaction ErF+2 -# Enthalpy of formation: -242.9 kcal/mol + -delta_H 24.058 kJ/mol # Calculated enthalpy of reaction ErF+2 +# Enthalpy of formation: -242.9 kcal/mol -analytic 9.7079e+1 4.1707e-2 -2.6028e+3 -3.8805e+1 -4.0643e+1 # -Range: 0-300 2 F- + Er+3 = ErF2+ -llnl_gamma 4 log_k 8.2976 - -delta_H 12.9704 kJ/mol # Calculated enthalpy of reaction ErF2+ -# Enthalpy of formation: -325.7 kcal/mol + -delta_H 12.9704 kJ/mol # Calculated enthalpy of reaction ErF2+ +# Enthalpy of formation: -325.7 kcal/mol -analytic 2.2892e+2 8.3842e-2 -5.2174e+3 -9.2172e+1 -8.1481e+1 # -Range: 0-300 3 F- + Er+3 = ErF3 -llnl_gamma 3 log_k 10.9071 - -delta_H -12.3428 kJ/mol # Calculated enthalpy of reaction ErF3 -# Enthalpy of formation: -411.9 kcal/mol + -delta_H -12.3428 kJ/mol # Calculated enthalpy of reaction ErF3 +# Enthalpy of formation: -411.9 kcal/mol -analytic 4.2782e+2 1.3425e-1 -9.7064e+3 -1.7148e+2 -1.5158e+2 # -Range: 0-300 4 F- + Er+3 = ErF4- -llnl_gamma 4 log_k 13.0768 - -delta_H -60.2496 kJ/mol # Calculated enthalpy of reaction ErF4- -# Enthalpy of formation: -503.5 kcal/mol + -delta_H -60.2496 kJ/mol # Calculated enthalpy of reaction ErF4- +# Enthalpy of formation: -503.5 kcal/mol -analytic 4.6524e+2 1.3372e-1 -9.1895e+3 -1.8636e+2 -1.4353e+2 # -Range: 0-300 HPO4-2 + H+ + Er+3 = ErH2PO4+2 -llnl_gamma 4.5 log_k 9.4484 - -delta_H -20.4388 kJ/mol # Calculated enthalpy of reaction ErH2PO4+2 -# Enthalpy of formation: -482.2 kcal/mol + -delta_H -20.4388 kJ/mol # Calculated enthalpy of reaction ErH2PO4+2 +# Enthalpy of formation: -482.2 kcal/mol -analytic 1.0254e+2 6.2786e-2 6.359e+2 -4.6029e+1 9.892e+0 # -Range: 0-300 HCO3- + Er+3 = ErHCO3+2 -llnl_gamma 4.5 log_k 1.7724 - -delta_H 5.01243 kJ/mol # Calculated enthalpy of reaction ErHCO3+2 -# Enthalpy of formation: -332.2 kcal/mol + -delta_H 5.01243 kJ/mol # Calculated enthalpy of reaction ErHCO3+2 +# Enthalpy of formation: -332.2 kcal/mol -analytic 3.245e+1 3.0822e-2 3.1601e+2 -1.6528e+1 4.9212e+0 # -Range: 0-300 HPO4-2 + Er+3 = ErHPO4+ -llnl_gamma 4 log_k 5.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction ErHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ErHPO4+ +# Enthalpy of formation: -0 kcal/mol NO3- + Er+3 = ErNO3+2 -llnl_gamma 4.5 log_k 0.1415 - -delta_H -33.7691 kJ/mol # Calculated enthalpy of reaction ErNO3+2 -# Enthalpy of formation: -226 kcal/mol + -delta_H -33.7691 kJ/mol # Calculated enthalpy of reaction ErNO3+2 +# Enthalpy of formation: -226 kcal/mol -analytic 1.0381e+1 2.471e-2 2.5752e+3 -1.0596e+1 4.0181e+1 # -Range: 0-300 H2O + Er+3 = ErO+ + 2 H+ -llnl_gamma 4 log_k -15.9705 - -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction ErO+ -# Enthalpy of formation: -211.6 kcal/mol + -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction ErO+ +# Enthalpy of formation: -211.6 kcal/mol -analytic 1.7556e+2 2.8655e-2 -1.3134e+4 -6.305e+1 -2.0499e+2 # -Range: 0-300 2 H2O + Er+3 = ErO2- + 4 H+ -llnl_gamma 4 log_k -32.6008 - -delta_H 266.245 kJ/mol # Calculated enthalpy of reaction ErO2- -# Enthalpy of formation: -241.5 kcal/mol + -delta_H 266.245 kJ/mol # Calculated enthalpy of reaction ErO2- +# Enthalpy of formation: -241.5 kcal/mol -analytic 1.4987e+2 9.1241e-3 -1.8521e+4 -4.974e+1 -2.8905e+2 # -Range: 0-300 2 H2O + Er+3 = ErO2H + 3 H+ -llnl_gamma 3 log_k -24.3178 - -delta_H 212.689 kJ/mol # Calculated enthalpy of reaction ErO2H -# Enthalpy of formation: -254.3 kcal/mol + -delta_H 212.689 kJ/mol # Calculated enthalpy of reaction ErO2H +# Enthalpy of formation: -254.3 kcal/mol -analytic 3.1493e+2 4.4381e-2 -2.1821e+4 -1.1287e+2 -3.4059e+2 # -Range: 0-300 H2O + Er+3 = ErOH+2 + H+ -llnl_gamma 4.5 log_k -7.7609 - -delta_H 74.5463 kJ/mol # Calculated enthalpy of reaction ErOH+2 -# Enthalpy of formation: -219 kcal/mol + -delta_H 74.5463 kJ/mol # Calculated enthalpy of reaction ErOH+2 +# Enthalpy of formation: -219 kcal/mol -analytic 5.7142e+1 1.0986e-2 -5.6684e+3 -1.9867e+1 -8.8467e+1 # -Range: 0-300 HPO4-2 + Er+3 = ErPO4 + H+ -llnl_gamma 3 log_k 0.3782 - -delta_H 0 # Not possible to calculate enthalpy of reaction ErPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ErPO4 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Er+3 = ErSO4+ -llnl_gamma 4 log_k 3.5697 - -delta_H 20.3008 kJ/mol # Calculated enthalpy of reaction ErSO4+ -# Enthalpy of formation: -381.048 kcal/mol + -delta_H 20.3008 kJ/mol # Calculated enthalpy of reaction ErSO4+ +# Enthalpy of formation: -381.048 kcal/mol -analytic 3.0363e+2 8.5667e-2 -8.9667e+3 -1.1942e+2 -1.4001e+2 # -Range: 0-300 2 HAcetate + Eu+3 = Eu(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -4.6912 - -delta_H -28.3257 kJ/mol # Calculated enthalpy of reaction Eu(Acetate)2+ -# Enthalpy of formation: -383.67 kcal/mol + -delta_H -28.3257 kJ/mol # Calculated enthalpy of reaction Eu(Acetate)2+ +# Enthalpy of formation: -383.67 kcal/mol -analytic -2.7589e+1 1.5772e-3 -1.1008e+3 7.9899e+0 5.6652e+5 # -Range: 0-300 3 HAcetate + Eu+3 = Eu(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -7.9824 - -delta_H -47.3629 kJ/mol # Calculated enthalpy of reaction Eu(Acetate)3 -# Enthalpy of formation: -504.32 kcal/mol + -delta_H -47.3629 kJ/mol # Calculated enthalpy of reaction Eu(Acetate)3 +# Enthalpy of formation: -504.32 kcal/mol -analytic -3.747e+1 1.9276e-3 -1.0318e+3 9.7078e+0 7.4558e+5 # -Range: 0-300 2 HCO3- + Eu+3 = Eu(CO3)2- + 2 H+ -llnl_gamma 4 log_k -8.3993 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(CO3)2- +# Enthalpy of formation: -0 kcal/mol 3 HCO3- + Eu+3 = Eu(CO3)3-3 + 3 H+ -llnl_gamma 4 log_k -16.8155 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(CO3)3-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(CO3)3-3 +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Eu+3 = Eu(HPO4)2- -llnl_gamma 4 log_k 9.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(HPO4)2- +# Enthalpy of formation: -0 kcal/mol # Redundant with EuO+ #2.0000 H2O + 1.0000 Eu+++ = Eu(OH)2+ +2.0000 H+ # -llnl_gamma 4.0 # log_k -14.8609 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2+ -## Enthalpy of formation: -0 kcal/mol +# -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2+ +## Enthalpy of formation: -0 kcal/mol 2 H2O + HCO3- + Eu+3 = Eu(OH)2CO3- + 3 H+ -llnl_gamma 4 log_k -17.8462 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2CO3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2CO3- +# Enthalpy of formation: -0 kcal/mol # Redundant with EuO2H #3.0000 H2O + 1.0000 Eu+++ = Eu(OH)3 +3.0000 H+ # -llnl_gamma 3.0 # log_k -24.1253 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)3 -## Enthalpy of formation: -0 kcal/mol +# -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)3 +## Enthalpy of formation: -0 kcal/mol # Redundant with EuO2- #4.0000 H2O + 1.0000 Eu+++ = Eu(OH)4- +4.0000 H+ # -llnl_gamma 4.0 # log_k -36.5958 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)4- -## Enthalpy of formation: -0 kcal/mol +# -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)4- +## Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Eu+3 = Eu(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -3.9837 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Eu+3 = Eu(SO4)2- -llnl_gamma 4 log_k 5.4693 - -delta_H 25.627 kJ/mol # Calculated enthalpy of reaction Eu(SO4)2- -# Enthalpy of formation: -2399 kJ/mol + -delta_H 25.627 kJ/mol # Calculated enthalpy of reaction Eu(SO4)2- +# Enthalpy of formation: -2399 kJ/mol -analytic 4.5178e+2 1.2285e-1 -1.34e+4 -1.7697e+2 -2.0922e+2 # -Range: 0-300 2 H2O + 2 Eu+3 = Eu2(OH)2+4 + 2 H+ -llnl_gamma 5.5 log_k -6.9182 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol Eu+3 + Br- = EuBr+2 -llnl_gamma 4.5 log_k 0.5572 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuBr+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction EuBr+2 +# Enthalpy of formation: -0 kcal/mol 2 Br- + Eu+3 = EuBr2+ -llnl_gamma 4 log_k 0.2145 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuBr2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction EuBr2+ +# Enthalpy of formation: -0 kcal/mol Eu+3 + BrO3- = EuBrO3+2 -llnl_gamma 4.5 log_k 4.5823 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuBrO3+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction EuBrO3+2 +# Enthalpy of formation: -0 kcal/mol Eu+3 + HAcetate = EuAcetate+2 + H+ -llnl_gamma 4.5 log_k -1.9571 - -delta_H -14.5603 kJ/mol # Calculated enthalpy of reaction EuAcetate+2 -# Enthalpy of formation: -264.28 kcal/mol + -delta_H -14.5603 kJ/mol # Calculated enthalpy of reaction EuAcetate+2 +# Enthalpy of formation: -264.28 kcal/mol -analytic -1.509e+1 1.0352e-3 -6.4435e+2 4.6225e+0 3.1649e+5 # -Range: 0-300 HCO3- + Eu+3 = EuCO3+ + H+ -llnl_gamma 4 log_k -2.4057 - -delta_H 90.7844 kJ/mol # Calculated enthalpy of reaction EuCO3+ -# Enthalpy of formation: -287.9 kcal/mol + -delta_H 90.7844 kJ/mol # Calculated enthalpy of reaction EuCO3+ +# Enthalpy of formation: -287.9 kcal/mol -analytic 2.3548e+2 5.3819e-2 -6.9908e+3 -9.3137e+1 -1.0915e+2 # -Range: 0-300 Eu+2 + Cl- = EuCl+ -llnl_gamma 4 log_k 0.3819 - -delta_H 8.50607 kJ/mol # Calculated enthalpy of reaction EuCl+ -# Enthalpy of formation: -164 kcal/mol + -delta_H 8.50607 kJ/mol # Calculated enthalpy of reaction EuCl+ +# Enthalpy of formation: -164 kcal/mol -analytic 6.8695e+1 3.7619e-2 -1.0809e+3 -3.0665e+1 -1.6887e+1 # -Range: 0-300 Eu+3 + Cl- = EuCl+2 -llnl_gamma 4.5 log_k 0.3086 - -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction EuCl+2 -# Enthalpy of formation: -181.3 kcal/mol + -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction EuCl+2 +# Enthalpy of formation: -181.3 kcal/mol -analytic 7.9275e+1 3.7878e-2 -1.7895e+3 -3.4041e+1 -2.7947e+1 # -Range: 0-300 2 Cl- + Eu+2 = EuCl2 -llnl_gamma 3 log_k 1.2769 - -delta_H 5.71534 kJ/mol # Calculated enthalpy of reaction EuCl2 -# Enthalpy of formation: -204.6 kcal/mol + -delta_H 5.71534 kJ/mol # Calculated enthalpy of reaction EuCl2 +# Enthalpy of formation: -204.6 kcal/mol -analytic 1.0474e+2 6.7132e-2 -7.0448e+2 -4.8928e+1 -1.1024e+1 # -Range: 0-300 2 Cl- + Eu+3 = EuCl2+ -llnl_gamma 4 log_k -0.0425 - -delta_H 18.6857 kJ/mol # Calculated enthalpy of reaction EuCl2+ -# Enthalpy of formation: -220.1 kcal/mol + -delta_H 18.6857 kJ/mol # Calculated enthalpy of reaction EuCl2+ +# Enthalpy of formation: -220.1 kcal/mol -analytic 2.1758e+2 8.0336e-2 -5.5499e+3 -9.0087e+1 -8.6665e+1 # -Range: 0-300 3 Cl- + Eu+3 = EuCl3 -llnl_gamma 3 log_k -0.4669 - -delta_H 11.2926 kJ/mol # Calculated enthalpy of reaction EuCl3 -# Enthalpy of formation: -261.8 kcal/mol + -delta_H 11.2926 kJ/mol # Calculated enthalpy of reaction EuCl3 +# Enthalpy of formation: -261.8 kcal/mol -analytic 4.2075e+2 1.289e-1 -1.1288e+4 -1.7043e+2 -1.7627e+2 # -Range: 0-300 3 Cl- + Eu+2 = EuCl3- -llnl_gamma 4 log_k 2.0253 - -delta_H -3.76978 kJ/mol # Calculated enthalpy of reaction EuCl3- -# Enthalpy of formation: -246.8 kcal/mol + -delta_H -3.76978 kJ/mol # Calculated enthalpy of reaction EuCl3- +# Enthalpy of formation: -246.8 kcal/mol -analytic 1.1546e+1 6.4683e-2 3.7299e+3 -1.6672e+1 5.8196e+1 # -Range: 0-300 4 Cl- + Eu+3 = EuCl4- -llnl_gamma 4 log_k -0.8913 - -delta_H -9.90771 kJ/mol # Calculated enthalpy of reaction EuCl4- -# Enthalpy of formation: -306.8 kcal/mol + -delta_H -9.90771 kJ/mol # Calculated enthalpy of reaction EuCl4- +# Enthalpy of formation: -306.8 kcal/mol -analytic 4.8122e+2 1.3081e-1 -1.295e+4 -1.9302e+2 -2.0222e+2 # -Range: 0-300 4 Cl- + Eu+2 = EuCl4-2 -llnl_gamma 4 log_k 2.847 - -delta_H -19.9493 kJ/mol # Calculated enthalpy of reaction EuCl4-2 -# Enthalpy of formation: -290.6 kcal/mol + -delta_H -19.9493 kJ/mol # Calculated enthalpy of reaction EuCl4-2 +# Enthalpy of formation: -290.6 kcal/mol -analytic -1.2842e+2 5.0789e-2 9.8815e+3 3.3565e+1 1.5423e+2 # -Range: 0-300 F- + Eu+2 = EuF+ -llnl_gamma 4 log_k -1.3487 - -delta_H 16.9452 kJ/mol # Calculated enthalpy of reaction EuF+ -# Enthalpy of formation: -202.2 kcal/mol + -delta_H 16.9452 kJ/mol # Calculated enthalpy of reaction EuF+ +# Enthalpy of formation: -202.2 kcal/mol -analytic 6.2412e+1 3.5839e-2 -1.366e+3 -2.8223e+1 -2.1333e+1 # -Range: 0-300 F- + Eu+3 = EuF+2 -llnl_gamma 4.5 log_k 4.442 - -delta_H 23.6396 kJ/mol # Calculated enthalpy of reaction EuF+2 -# Enthalpy of formation: -219.2 kcal/mol + -delta_H 23.6396 kJ/mol # Calculated enthalpy of reaction EuF+2 +# Enthalpy of formation: -219.2 kcal/mol -analytic 1.0063e+2 4.1834e-2 -2.7355e+3 -4.0195e+1 -4.2714e+1 # -Range: 0-300 2 F- + Eu+2 = EuF2 -llnl_gamma 3 log_k -2.0378 - -delta_H 17.5728 kJ/mol # Calculated enthalpy of reaction EuF2 -# Enthalpy of formation: -282.2 kcal/mol + -delta_H 17.5728 kJ/mol # Calculated enthalpy of reaction EuF2 +# Enthalpy of formation: -282.2 kcal/mol -analytic 1.2065e+2 7.1705e-2 -1.7998e+3 -5.576e+1 -2.8121e+1 # -Range: 0-300 2 F- + Eu+3 = EuF2+ -llnl_gamma 4 log_k 7.7112 - -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction EuF2+ -# Enthalpy of formation: -301.7 kcal/mol + -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction EuF2+ +# Enthalpy of formation: -301.7 kcal/mol -analytic 2.4099e+2 8.4714e-2 -5.7702e+3 -9.664e+1 -9.0109e+1 # -Range: 0-300 3 F- + Eu+3 = EuF3 -llnl_gamma 3 log_k 10.1741 - -delta_H -8.9956 kJ/mol # Calculated enthalpy of reaction EuF3 -# Enthalpy of formation: -387.3 kcal/mol + -delta_H -8.9956 kJ/mol # Calculated enthalpy of reaction EuF3 +# Enthalpy of formation: -387.3 kcal/mol -analytic 4.5022e+2 1.356e-1 -1.0801e+4 -1.7951e+2 -1.6867e+2 # -Range: 0-300 3 F- + Eu+2 = EuF3- -llnl_gamma 4 log_k -2.5069 - -delta_H 3.5564 kJ/mol # Calculated enthalpy of reaction EuF3- -# Enthalpy of formation: -365.7 kcal/mol + -delta_H 3.5564 kJ/mol # Calculated enthalpy of reaction EuF3- +# Enthalpy of formation: -365.7 kcal/mol -analytic -2.8441e+1 5.5972e-2 4.4573e+3 -2.2782e+0 6.9558e+1 # -Range: 0-300 4 F- + Eu+3 = EuF4- -llnl_gamma 4 log_k 12.1239 - -delta_H -52.3 kJ/mol # Calculated enthalpy of reaction EuF4- -# Enthalpy of formation: -477.8 kcal/mol + -delta_H -52.3 kJ/mol # Calculated enthalpy of reaction EuF4- +# Enthalpy of formation: -477.8 kcal/mol -analytic 5.0246e+2 1.3629e-1 -1.1092e+4 -1.9952e+2 -1.7323e+2 # -Range: 0-300 4 F- + Eu+2 = EuF4-2 -llnl_gamma 4 log_k -2.8294 - -delta_H -37.656 kJ/mol # Calculated enthalpy of reaction EuF4-2 -# Enthalpy of formation: -455.7 kcal/mol + -delta_H -37.656 kJ/mol # Calculated enthalpy of reaction EuF4-2 +# Enthalpy of formation: -455.7 kcal/mol -analytic -1.873e+2 3.9237e-2 1.2303e+4 5.3179e+1 1.9204e+2 # -Range: 0-300 HPO4-2 + H+ + Eu+3 = EuH2PO4+2 -llnl_gamma 4.5 log_k 9.4484 - -delta_H -17.0916 kJ/mol # Calculated enthalpy of reaction EuH2PO4+2 -# Enthalpy of formation: -457.6 kcal/mol + -delta_H -17.0916 kJ/mol # Calculated enthalpy of reaction EuH2PO4+2 +# Enthalpy of formation: -457.6 kcal/mol -analytic 1.0873e+2 6.3416e-2 2.7202e+2 -4.8113e+1 4.2122e+0 # -Range: 0-300 HCO3- + Eu+3 = EuHCO3+2 -llnl_gamma 4.5 log_k 1.6258 - -delta_H 8.77803 kJ/mol # Calculated enthalpy of reaction EuHCO3+2 -# Enthalpy of formation: -307.5 kcal/mol + -delta_H 8.77803 kJ/mol # Calculated enthalpy of reaction EuHCO3+2 +# Enthalpy of formation: -307.5 kcal/mol -analytic 3.9266e+1 3.1608e-2 -9.8731e+1 -1.8875e+1 -1.5524e+0 # -Range: 0-300 HPO4-2 + Eu+3 = EuHPO4+ -llnl_gamma 4 log_k 5.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction EuHPO4+ +# Enthalpy of formation: -0 kcal/mol IO3- + Eu+3 = EuIO3+2 -llnl_gamma 4.5 log_k 2.156 - -delta_H 11.8314 kJ/mol # Calculated enthalpy of reaction EuIO3+2 -# Enthalpy of formation: -814.927 kJ/mol + -delta_H 11.8314 kJ/mol # Calculated enthalpy of reaction EuIO3+2 +# Enthalpy of formation: -814.927 kJ/mol -analytic 1.497e+2 4.7369e-2 -4.1559e+3 -5.9687e+1 -6.4893e+1 # -Range: 0-300 NO3- + Eu+3 = EuNO3+2 -llnl_gamma 4.5 log_k 0.8745 - -delta_H -32.0955 kJ/mol # Calculated enthalpy of reaction EuNO3+2 -# Enthalpy of formation: -201.8 kcal/mol + -delta_H -32.0955 kJ/mol # Calculated enthalpy of reaction EuNO3+2 +# Enthalpy of formation: -201.8 kcal/mol -analytic 1.7398e+1 2.5467e-2 2.2683e+3 -1.281e+1 3.5389e+1 # -Range: 0-300 H2O + Eu+3 = EuO+ + 2 H+ -llnl_gamma 4 log_k -16.337 - -delta_H 110.947 kJ/mol # Calculated enthalpy of reaction EuO+ -# Enthalpy of formation: -186.5 kcal/mol + -delta_H 110.947 kJ/mol # Calculated enthalpy of reaction EuO+ +# Enthalpy of formation: -186.5 kcal/mol -analytic 1.8876e+2 3.0194e-2 -1.3836e+4 -6.777e+1 -2.1595e+2 # -Range: 0-300 2 H2O + Eu+3 = EuO2- + 4 H+ -llnl_gamma 4 log_k -34.5066 - -delta_H 281.307 kJ/mol # Calculated enthalpy of reaction EuO2- -# Enthalpy of formation: -214.1 kcal/mol + -delta_H 281.307 kJ/mol # Calculated enthalpy of reaction EuO2- +# Enthalpy of formation: -214.1 kcal/mol -analytic 7.5244e+1 3.7089e-4 -1.3587e+4 -2.3859e+1 -4.6713e+5 # -Range: 0-300 2 H2O + Eu+3 = EuO2H + 3 H+ -llnl_gamma 3 log_k -25.4173 - -delta_H 222.313 kJ/mol # Calculated enthalpy of reaction EuO2H -# Enthalpy of formation: -228.2 kcal/mol + -delta_H 222.313 kJ/mol # Calculated enthalpy of reaction EuO2H +# Enthalpy of formation: -228.2 kcal/mol -analytic 3.6754e+2 5.3868e-2 -2.4034e+4 -1.3272e+2 -3.7514e+2 # -Range: 0-300 2 HCO3- + H2O + Eu+3 = EuOH(CO3)2-2 + 3 H+ -llnl_gamma 4 log_k -15.176 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuOH(CO3)2-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction EuOH(CO3)2-2 +# Enthalpy of formation: -0 kcal/mol H2O + Eu+3 = EuOH+2 + H+ -llnl_gamma 4.5 log_k -7.9075 - -delta_H 78.0065 kJ/mol # Calculated enthalpy of reaction EuOH+2 -# Enthalpy of formation: -194.373 kcal/mol + -delta_H 78.0065 kJ/mol # Calculated enthalpy of reaction EuOH+2 +# Enthalpy of formation: -194.373 kcal/mol -analytic 6.7691e+1 1.2066e-2 -6.1871e+3 -2.3617e+1 -9.6563e+1 # -Range: 0-300 HCO3- + H2O + Eu+3 = EuOHCO3 + 2 H+ -llnl_gamma 3 log_k -8.4941 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuOHCO3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction EuOHCO3 +# Enthalpy of formation: -0 kcal/mol HPO4-2 + Eu+3 = EuPO4 + H+ -llnl_gamma 3 log_k -0.1218 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction EuPO4 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Eu+3 = EuSO4+ -llnl_gamma 4 log_k 3.643 - -delta_H 62.3416 kJ/mol # Calculated enthalpy of reaction EuSO4+ -# Enthalpy of formation: -347.2 kcal/mol + -delta_H 62.3416 kJ/mol # Calculated enthalpy of reaction EuSO4+ +# Enthalpy of formation: -347.2 kcal/mol -analytic 3.0587e+2 8.6208e-2 -9.0387e+3 -1.2026e+2 -1.4113e+2 # -Range: 0-300 2 HAcetate + Fe+2 = Fe(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -7.0295 - -delta_H -20.2924 kJ/mol # Calculated enthalpy of reaction Fe(Acetate)2 -# Enthalpy of formation: -259.1 kcal/mol + -delta_H -20.2924 kJ/mol # Calculated enthalpy of reaction Fe(Acetate)2 +# Enthalpy of formation: -259.1 kcal/mol -analytic -2.9862e+1 1.3901e-3 -1.6908e+3 8.6283e+0 6.0125e+5 # -Range: 0-300 2 H2O + Fe+2 = Fe(OH)2 + 2 H+ -llnl_gamma 3 log_k -20.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)2 +# Enthalpy of formation: -0 kcal/mol 2 H2O + Fe+3 = Fe(OH)2+ + 2 H+ -llnl_gamma 4 log_k -5.67 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)2+ +# Enthalpy of formation: -0 kcal/mol 3 H2O + Fe+3 = Fe(OH)3 + 3 H+ -llnl_gamma 3 log_k -12 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)3 +# Enthalpy of formation: -0 kcal/mol 3 H2O + Fe+2 = Fe(OH)3- + 3 H+ -llnl_gamma 4 log_k -31 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)3- +# Enthalpy of formation: -0 kcal/mol 4 H2O + Fe+3 = Fe(OH)4- + 4 H+ -llnl_gamma 4 log_k -21.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)4- +# Enthalpy of formation: -0 kcal/mol 4 H2O + Fe+2 = Fe(OH)4-2 + 4 H+ -llnl_gamma 4 log_k -46 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)4-2 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Fe+3 = Fe(SO4)2- -llnl_gamma 4 log_k 3.2137 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(SO4)2- +# Enthalpy of formation: -0 kcal/mol 2 H2O + 2 Fe+3 = Fe2(OH)2+4 + 2 H+ -llnl_gamma 5.5 log_k -2.95 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol 4 H2O + 3 Fe+3 = Fe3(OH)4+5 + 4 H+ -llnl_gamma 6 log_k -6.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe3(OH)4+5 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe3(OH)4+5 +# Enthalpy of formation: -0 kcal/mol Fe+2 + HAcetate = FeAcetate+ + H+ -llnl_gamma 4 log_k -3.4671 - -delta_H -3.80744 kJ/mol # Calculated enthalpy of reaction FeAcetate+ -# Enthalpy of formation: -139.06 kcal/mol + -delta_H -3.80744 kJ/mol # Calculated enthalpy of reaction FeAcetate+ +# Enthalpy of formation: -139.06 kcal/mol -analytic -1.3781e+1 9.6253e-4 -7.531e+2 4.0135e+0 2.3416e+5 # -Range: 0-300 HCO3- + Fe+2 = FeCO3 + H+ -llnl_gamma 3 log_k -5.5988 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeCO3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeCO3 +# Enthalpy of formation: -0 kcal/mol HCO3- + Fe+3 = FeCO3+ + H+ -llnl_gamma 4 log_k -0.6088 - -delta_H -50.208 kJ/mol # Calculated enthalpy of reaction FeCO3+ -# Enthalpy of formation: -188.748 kcal/mol + -delta_H -50.208 kJ/mol # Calculated enthalpy of reaction FeCO3+ +# Enthalpy of formation: -188.748 kcal/mol -analytic 1.71e+2 8.0413e-2 -4.3217e+2 -7.8449e+1 -6.7948e+0 # -Range: 0-300 Fe+2 + Cl- = FeCl+ -llnl_gamma 4 log_k -0.1605 - -delta_H 3.02503 kJ/mol # Calculated enthalpy of reaction FeCl+ -# Enthalpy of formation: -61.26 kcal/mol + -delta_H 3.02503 kJ/mol # Calculated enthalpy of reaction FeCl+ +# Enthalpy of formation: -61.26 kcal/mol -analytic 8.2435e+1 3.7755e-2 -1.4765e+3 -3.5918e+1 -2.3064e+1 # -Range: 0-300 Fe+3 + Cl- = FeCl+2 -llnl_gamma 4.5 log_k -0.8108 - -delta_H 36.6421 kJ/mol # Calculated enthalpy of reaction FeCl+2 -# Enthalpy of formation: -180.018 kJ/mol + -delta_H 36.6421 kJ/mol # Calculated enthalpy of reaction FeCl+2 +# Enthalpy of formation: -180.018 kJ/mol -analytic 1.6186e+2 5.9436e-2 -5.1913e+3 -6.5852e+1 -8.1053e+1 # -Range: 0-300 2 Cl- + Fe+2 = FeCl2 -llnl_gamma 3 log_k -2.4541 - -delta_H 6.46846 kJ/mol # Calculated enthalpy of reaction FeCl2 -# Enthalpy of formation: -100.37 kcal/mol + -delta_H 6.46846 kJ/mol # Calculated enthalpy of reaction FeCl2 +# Enthalpy of formation: -100.37 kcal/mol -analytic 1.9171e+2 7.807e-2 -4.1048e+3 -8.2292e+1 -6.4108e+1 # -Range: 0-300 2 Cl- + Fe+3 = FeCl2+ -llnl_gamma 4 log_k 2.13 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl2+ +# Enthalpy of formation: -0 kcal/mol 4 Cl- + Fe+3 = FeCl4- -llnl_gamma 4 log_k -0.79 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl4- +# Enthalpy of formation: -0 kcal/mol 4 Cl- + Fe+2 = FeCl4-2 -llnl_gamma 4 log_k -1.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl4-2 +# Enthalpy of formation: -0 kcal/mol -analytic -2.4108e+2 -6.0086e-3 9.7979e+3 8.4084e+1 1.5296e+2 # -Range: 0-300 Fe+2 + F- = FeF+ -llnl_gamma 4 log_k 1.36 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeF+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeF+ +# Enthalpy of formation: -0 kcal/mol Fe+3 + F- = FeF+2 -llnl_gamma 4.5 log_k 4.1365 - -delta_H 14.327 kJ/mol # Calculated enthalpy of reaction FeF+2 -# Enthalpy of formation: -370.601 kJ/mol + -delta_H 14.327 kJ/mol # Calculated enthalpy of reaction FeF+2 +# Enthalpy of formation: -370.601 kJ/mol -analytic 1.7546e+2 6.3754e-2 -4.3166e+3 -7.1052e+1 -6.7408e+1 # -Range: 0-300 2 F- + Fe+3 = FeF2+ -llnl_gamma 4 log_k 8.3498 - -delta_H 23.9776 kJ/mol # Calculated enthalpy of reaction FeF2+ -# Enthalpy of formation: -696.298 kJ/mol + -delta_H 23.9776 kJ/mol # Calculated enthalpy of reaction FeF2+ +# Enthalpy of formation: -696.298 kJ/mol -analytic 2.908e+2 1.0393e-1 -7.2118e+3 -1.1688e+2 -1.1262e+2 # -Range: 0-300 HPO4-2 + H+ + Fe+2 = FeH2PO4+ -llnl_gamma 4 log_k 2.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeH2PO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeH2PO4+ +# Enthalpy of formation: -0 kcal/mol HPO4-2 + H+ + Fe+3 = FeH2PO4+2 -llnl_gamma 4.5 log_k 4.17 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeH2PO4+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeH2PO4+2 +# Enthalpy of formation: -0 kcal/mol HCO3- + Fe+2 = FeHCO3+ -llnl_gamma 4 log_k 2.72 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeHCO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeHCO3+ +# Enthalpy of formation: -0 kcal/mol HPO4-2 + Fe+2 = FeHPO4 -llnl_gamma 3 log_k 3.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeHPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeHPO4 +# Enthalpy of formation: -0 kcal/mol HPO4-2 + Fe+3 = FeHPO4+ -llnl_gamma 4 log_k 10.18 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeHPO4+ +# Enthalpy of formation: -0 kcal/mol NO2- + Fe+3 = FeNO2+2 -llnl_gamma 4.5 log_k 3.15 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeNO2+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeNO2+2 +# Enthalpy of formation: -0 kcal/mol NO3- + Fe+3 = FeNO3+2 -llnl_gamma 4.5 log_k 1 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeNO3+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeNO3+2 +# Enthalpy of formation: -0 kcal/mol H2O + Fe+2 = FeOH+ + H+ -llnl_gamma 4 log_k -9.5 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeOH+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeOH+ +# Enthalpy of formation: -0 kcal/mol H2O + Fe+3 = FeOH+2 + H+ -llnl_gamma 4.5 log_k -2.19 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeOH+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeOH+2 +# Enthalpy of formation: -0 kcal/mol HPO4-2 + Fe+2 = FePO4- + H+ -llnl_gamma 4 log_k -4.3918 - -delta_H 0 # Not possible to calculate enthalpy of reaction FePO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FePO4- +# Enthalpy of formation: -0 kcal/mol SO4-2 + Fe+2 = FeSO4 -llnl_gamma 3 log_k 2.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeSO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeSO4 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Fe+3 = FeSO4+ -llnl_gamma 4 log_k 1.9276 - -delta_H 27.181 kJ/mol # Calculated enthalpy of reaction FeSO4+ -# Enthalpy of formation: -932.001 kJ/mol + -delta_H 27.181 kJ/mol # Calculated enthalpy of reaction FeSO4+ +# Enthalpy of formation: -932.001 kJ/mol -analytic 2.5178e+2 1.008e-1 -6.0977e+3 -1.0483e+2 -9.5223e+1 # -Range: 0-300 2 HAcetate + Gd+3 = Gd(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -4.9625 - -delta_H -22.3426 kJ/mol # Calculated enthalpy of reaction Gd(Acetate)2+ -# Enthalpy of formation: -401.74 kcal/mol + -delta_H -22.3426 kJ/mol # Calculated enthalpy of reaction Gd(Acetate)2+ +# Enthalpy of formation: -401.74 kcal/mol -analytic -4.3124e+1 1.2995e-4 -4.3494e+2 1.3677e+1 5.1224e+5 # -Range: 0-300 3 HAcetate + Gd+3 = Gd(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -8.3489 - -delta_H -37.9907 kJ/mol # Calculated enthalpy of reaction Gd(Acetate)3 -# Enthalpy of formation: -521.58 kcal/mol + -delta_H -37.9907 kJ/mol # Calculated enthalpy of reaction Gd(Acetate)3 +# Enthalpy of formation: -521.58 kcal/mol -analytic -8.8296e+1 -5.0939e-3 1.2268e+3 2.8513e+1 6.0745e+5 # -Range: 0-300 2 HCO3- + Gd+3 = Gd(CO3)2- + 2 H+ -llnl_gamma 4 log_k -7.5576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Gd+3 = Gd(HPO4)2- -llnl_gamma 4 log_k 9.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(HPO4)2- +# Enthalpy of formation: -0 kcal/mol # Redundant with GdO2- #4.0000 H2O + 1.0000 Gd+++ = Gd(OH)4- +4.0000 H+ # -llnl_gamma 4.0 # log_k -33.8803 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)4- -## Enthalpy of formation: -0 kcal/mol +# -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)4- +## Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Gd+3 = Gd(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -3.9437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Gd+3 = Gd(SO4)2- -llnl_gamma 4 log_k 5.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(SO4)2- +# Enthalpy of formation: -0 kcal/mol Gd+3 + HAcetate = GdAcetate+2 + H+ -llnl_gamma 4.5 log_k -2.1037 - -delta_H -11.7152 kJ/mol # Calculated enthalpy of reaction GdAcetate+2 -# Enthalpy of formation: -283.1 kcal/mol + -delta_H -11.7152 kJ/mol # Calculated enthalpy of reaction GdAcetate+2 +# Enthalpy of formation: -283.1 kcal/mol -analytic -1.4118e+1 1.666e-3 -7.5206e+2 4.2614e+0 3.1187e+5 # -Range: 0-300 HCO3- + Gd+3 = GdCO3+ + H+ -llnl_gamma 4 log_k -2.479 - -delta_H 89.9476 kJ/mol # Calculated enthalpy of reaction GdCO3+ -# Enthalpy of formation: -307.6 kcal/mol + -delta_H 89.9476 kJ/mol # Calculated enthalpy of reaction GdCO3+ +# Enthalpy of formation: -307.6 kcal/mol -analytic 2.3628e+2 5.41e-2 -7.0746e+3 -9.3413e+1 -1.1046e+2 # -Range: 0-300 Gd+3 + Cl- = GdCl+2 -llnl_gamma 4.5 log_k 0.3086 - -delta_H 14.7821 kJ/mol # Calculated enthalpy of reaction GdCl+2 -# Enthalpy of formation: -200.6 kcal/mol + -delta_H 14.7821 kJ/mol # Calculated enthalpy of reaction GdCl+2 +# Enthalpy of formation: -200.6 kcal/mol -analytic 8.075e+1 3.8524e-2 -1.8591e+3 -3.4621e+1 -2.9034e+1 # -Range: 0-300 2 Cl- + Gd+3 = GdCl2+ -llnl_gamma 4 log_k -0.0425 - -delta_H 21.1961 kJ/mol # Calculated enthalpy of reaction GdCl2+ -# Enthalpy of formation: -239 kcal/mol + -delta_H 21.1961 kJ/mol # Calculated enthalpy of reaction GdCl2+ +# Enthalpy of formation: -239 kcal/mol -analytic 2.1754e+2 8.0996e-2 -5.6121e+3 -9.0067e+1 -8.7635e+1 # -Range: 0-300 3 Cl- + Gd+3 = GdCl3 -llnl_gamma 3 log_k -0.4669 - -delta_H 15.895 kJ/mol # Calculated enthalpy of reaction GdCl3 -# Enthalpy of formation: -280.2 kcal/mol + -delta_H 15.895 kJ/mol # Calculated enthalpy of reaction GdCl3 +# Enthalpy of formation: -280.2 kcal/mol -analytic 4.1398e+2 1.2829e-1 -1.123e+4 -1.677e+2 -1.7535e+2 # -Range: 0-300 4 Cl- + Gd+3 = GdCl4- -llnl_gamma 4 log_k -0.8913 - -delta_H -1.53971 kJ/mol # Calculated enthalpy of reaction GdCl4- -# Enthalpy of formation: -324.3 kcal/mol + -delta_H -1.53971 kJ/mol # Calculated enthalpy of reaction GdCl4- +# Enthalpy of formation: -324.3 kcal/mol -analytic 4.7684e+2 1.3157e-1 -1.3068e+4 -1.9118e+2 -2.0405e+2 # -Range: 0-300 Gd+3 + F- = GdF+2 -llnl_gamma 4.5 log_k 4.5886 - -delta_H 21.1292 kJ/mol # Calculated enthalpy of reaction GdF+2 -# Enthalpy of formation: -239.3 kcal/mol + -delta_H 21.1292 kJ/mol # Calculated enthalpy of reaction GdF+2 +# Enthalpy of formation: -239.3 kcal/mol -analytic 1.006e+2 4.2181e-2 -2.6024e+3 -4.0347e+1 -4.0637e+1 # -Range: 0-300 2 F- + Gd+3 = GdF2+ -llnl_gamma 4 log_k 7.9311 - -delta_H 11.2968 kJ/mol # Calculated enthalpy of reaction GdF2+ -# Enthalpy of formation: -321.8 kcal/mol + -delta_H 11.2968 kJ/mol # Calculated enthalpy of reaction GdF2+ +# Enthalpy of formation: -321.8 kcal/mol -analytic 2.3793e+2 8.4732e-2 -5.495e+3 -9.5689e+1 -8.5815e+1 # -Range: 0-300 3 F- + Gd+3 = GdF3 -llnl_gamma 3 log_k 10.4673 - -delta_H -11.506 kJ/mol # Calculated enthalpy of reaction GdF3 -# Enthalpy of formation: -407.4 kcal/mol + -delta_H -11.506 kJ/mol # Calculated enthalpy of reaction GdF3 +# Enthalpy of formation: -407.4 kcal/mol -analytic 4.4257e+2 1.35e-1 -1.0377e+4 -1.768e+2 -1.6205e+2 # -Range: 0-300 4 F- + Gd+3 = GdF4- -llnl_gamma 4 log_k 12.4904 - -delta_H -52.3 kJ/mol # Calculated enthalpy of reaction GdF4- -# Enthalpy of formation: -497.3 kcal/mol + -delta_H -52.3 kJ/mol # Calculated enthalpy of reaction GdF4- +# Enthalpy of formation: -497.3 kcal/mol -analytic 4.9026e+2 1.3534e-1 -1.0586e+4 -1.9501e+2 -1.6533e+2 # -Range: 0-300 HPO4-2 + H+ + Gd+3 = GdH2PO4+2 -llnl_gamma 4.5 log_k 9.4484 - -delta_H -14.9996 kJ/mol # Calculated enthalpy of reaction GdH2PO4+2 -# Enthalpy of formation: -476.6 kcal/mol + -delta_H -14.9996 kJ/mol # Calculated enthalpy of reaction GdH2PO4+2 +# Enthalpy of formation: -476.6 kcal/mol -analytic 1.1058e+2 6.4124e-2 1.3451e+2 -4.8758e+1 2.066e+0 # -Range: 0-300 HCO3- + Gd+3 = GdHCO3+2 -llnl_gamma 4.5 log_k 1.6991 - -delta_H 10.0332 kJ/mol # Calculated enthalpy of reaction GdHCO3+2 -# Enthalpy of formation: -326.7 kcal/mol + -delta_H 10.0332 kJ/mol # Calculated enthalpy of reaction GdHCO3+2 +# Enthalpy of formation: -326.7 kcal/mol -analytic 4.1973e+1 3.2521e-2 -2.3475e+2 -1.9864e+1 -3.6757e+0 # -Range: 0-300 HPO4-2 + Gd+3 = GdHPO4+ -llnl_gamma 4 log_k -185.109 - -delta_H 0 # Not possible to calculate enthalpy of reaction GdHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction GdHPO4+ +# Enthalpy of formation: -0 kcal/mol NO3- + Gd+3 = GdNO3+2 -llnl_gamma 4.5 log_k 0.4347 - -delta_H -25.8195 kJ/mol # Calculated enthalpy of reaction GdNO3+2 -# Enthalpy of formation: -219.8 kcal/mol + -delta_H -25.8195 kJ/mol # Calculated enthalpy of reaction GdNO3+2 +# Enthalpy of formation: -219.8 kcal/mol -analytic 2.0253e+1 2.6372e-2 1.8785e+3 -1.3723e+1 2.9306e+1 # -Range: 0-300 H2O + Gd+3 = GdO+ + 2 H+ -llnl_gamma 4 log_k -16.337 - -delta_H 113.039 kJ/mol # Calculated enthalpy of reaction GdO+ -# Enthalpy of formation: -205.5 kcal/mol + -delta_H 113.039 kJ/mol # Calculated enthalpy of reaction GdO+ +# Enthalpy of formation: -205.5 kcal/mol -analytic 2.0599e+2 3.2521e-2 -1.4547e+4 -7.4048e+1 -2.2705e+2 # -Range: 0-300 2 H2O + Gd+3 = GdO2- + 4 H+ -llnl_gamma 4 log_k -34.4333 - -delta_H 283.817 kJ/mol # Calculated enthalpy of reaction GdO2- -# Enthalpy of formation: -233 kcal/mol + -delta_H 283.817 kJ/mol # Calculated enthalpy of reaction GdO2- +# Enthalpy of formation: -233 kcal/mol -analytic 1.2067e+2 6.6276e-3 -1.5531e+4 -4.0448e+1 -4.3587e+5 # -Range: 0-300 2 H2O + Gd+3 = GdO2H + 3 H+ -llnl_gamma 3 log_k -25.2707 - -delta_H 224.405 kJ/mol # Calculated enthalpy of reaction GdO2H -# Enthalpy of formation: -247.2 kcal/mol + -delta_H 224.405 kJ/mol # Calculated enthalpy of reaction GdO2H +# Enthalpy of formation: -247.2 kcal/mol -analytic 3.6324e+2 4.7938e-2 -2.4275e+4 -1.2988e+2 -3.7889e+2 # -Range: 0-300 H2O + Gd+3 = GdOH+2 + H+ -llnl_gamma 4.5 log_k -7.9075 - -delta_H 79.9855 kJ/mol # Calculated enthalpy of reaction GdOH+2 -# Enthalpy of formation: -213.4 kcal/mol + -delta_H 79.9855 kJ/mol # Calculated enthalpy of reaction GdOH+2 +# Enthalpy of formation: -213.4 kcal/mol -analytic 8.3265e+1 1.4153e-2 -6.8229e+3 -2.9301e+1 -1.0649e+2 # -Range: 0-300 HPO4-2 + Gd+3 = GdPO4 + H+ -llnl_gamma 3 log_k -0.1218 - -delta_H 0 # Not possible to calculate enthalpy of reaction GdPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction GdPO4 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Gd+3 = GdSO4+ -llnl_gamma 4 log_k -3.687 - -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction GdSO4+ -# Enthalpy of formation: -376.8 kcal/mol + -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction GdSO4+ +# Enthalpy of formation: -376.8 kcal/mol -analytic 3.0783e+2 8.6798e-2 -1.1246e+4 -1.2109e+2 -1.7557e+2 # -Range: 0-300 O_phthalate-2 + H+ = H(O_phthalate)- -llnl_gamma 4 log_k 5.408 - -delta_H 0 # Not possible to calculate enthalpy of reaction H(O_phthalate)- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction H(O_phthalate)- +# Enthalpy of formation: -0 kcal/mol 2 H+ + CrO4-2 = H2CrO4 -llnl_gamma 3 log_k 5.175 - -delta_H 42.8274 kJ/mol # Calculated enthalpy of reaction H2CrO4 -# Enthalpy of formation: -200.364 kcal/mol + -delta_H 42.8274 kJ/mol # Calculated enthalpy of reaction H2CrO4 +# Enthalpy of formation: -200.364 kcal/mol -analytic 4.2958e+2 1.4939e-1 -1.1474e+4 -1.7396e+2 -1.9499e+2 # -Range: 0-200 2 H+ + 2 F- = H2F2 -llnl_gamma 3 log_k 6.768 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2F2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction H2F2 +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + 2 H+ = H2P2O7-2 + H2O -llnl_gamma 4 log_k 12.0709 - -delta_H 19.7192 kJ/mol # Calculated enthalpy of reaction H2P2O7-2 -# Enthalpy of formation: -544.6 kcal/mol + -delta_H 19.7192 kJ/mol # Calculated enthalpy of reaction H2P2O7-2 +# Enthalpy of formation: -544.6 kcal/mol -analytic 1.4825e+2 6.7021e-2 -2.8329e+3 -5.9251e+1 -4.4248e+1 # -Range: 0-300 3 H+ + HPO4-2 + F- = H2PO3F + H2O -llnl_gamma 3 log_k 12.1047 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2PO3F -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction H2PO3F +# Enthalpy of formation: -0 kcal/mol HPO4-2 + H+ = H2PO4- -llnl_gamma 4 log_k 7.2054 - -delta_H -4.20492 kJ/mol # Calculated enthalpy of reaction H2PO4- -# Enthalpy of formation: -309.82 kcal/mol + -delta_H -4.20492 kJ/mol # Calculated enthalpy of reaction H2PO4- +# Enthalpy of formation: -309.82 kcal/mol -analytic 8.2149e+1 3.4077e-2 -1.0431e+3 -3.297e+1 -1.6301e+1 # -Range: 0-300 @@ -4335,3030 +4335,3030 @@ HPO4-2 + H+ = H2PO4- HS- + H+ = H2S -llnl_gamma 3 log_k 6.9877 - -delta_H -21.5518 kJ/mol # Calculated enthalpy of reaction H2S -# Enthalpy of formation: -9.001 kcal/mol + -delta_H -21.5518 kJ/mol # Calculated enthalpy of reaction H2S +# Enthalpy of formation: -9.001 kcal/mol -analytic 3.9283e+1 2.8727e-2 1.3477e+3 -1.8331e+1 2.1018e+1 # -Range: 0-300 2 H+ + SO3-2 = H2SO3 -llnl_gamma 3 log_k 9.2132 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2SO3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction H2SO3 +# Enthalpy of formation: -0 kcal/mol 2 H+ + SO4-2 = H2SO4 -llnl_gamma 3 log_k -1.0209 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2SO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction H2SO4 +# Enthalpy of formation: -0 kcal/mol 2 H+ + Se-2 = H2Se -llnl_gamma 3 log_k 18.7606 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2Se -# Enthalpy of formation: 19.412 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction H2Se +# Enthalpy of formation: 19.412 kJ/mol -analytic 3.6902e+2 1.2855e-1 -5.59e+3 -1.4946e+2 -9.5054e+1 # -Range: 0-200 2 H+ + SeO3-2 = H2SeO3 -llnl_gamma 3 log_k 9.8589 - -delta_H 1.7238 kJ/mol # Calculated enthalpy of reaction H2SeO3 -# Enthalpy of formation: -507.469 kJ/mol + -delta_H 1.7238 kJ/mol # Calculated enthalpy of reaction H2SeO3 +# Enthalpy of formation: -507.469 kJ/mol -analytic 2.785e+2 1.046e-1 -5.4934e+3 -1.1371e+2 -9.3383e+1 # -Range: 0-200 2 H2O + SiO2 = H2SiO4-2 + 2 H+ -llnl_gamma 4 log_k -22.96 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2SiO4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction H2SiO4-2 +# Enthalpy of formation: -0 kcal/mol 2 H+ + TcO4-2 = H2TcO4 -llnl_gamma 3 log_k 9.0049 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2TcO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction H2TcO4 +# Enthalpy of formation: -0 kcal/mol 2 H2O + VO2+ = H2VO4- + 2 H+ -llnl_gamma 4 log_k -7.0922 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2VO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction H2VO4- +# Enthalpy of formation: -0 kcal/mol -analytic 1.7105e+1 -1.7503e-2 -4.2671e+3 -1.891e+0 -6.6589e+1 # -Range: 0-300 H2AsO4- + H+ = H3AsO4 -llnl_gamma 3 log_k 2.2492 - -delta_H 7.17876 kJ/mol # Calculated enthalpy of reaction H3AsO4 -# Enthalpy of formation: -902.381 kJ/mol + -delta_H 7.17876 kJ/mol # Calculated enthalpy of reaction H3AsO4 +# Enthalpy of formation: -902.381 kJ/mol -analytic 1.4043e+2 4.6288e-2 -3.5868e+3 -5.656e+1 -6.0957e+1 # -Range: 0-200 3 H+ + 2 HPO4-2 = H3P2O7- + H2O -llnl_gamma 4 log_k 14.4165 - -delta_H 21.8112 kJ/mol # Calculated enthalpy of reaction H3P2O7- -# Enthalpy of formation: -544.1 kcal/mol + -delta_H 21.8112 kJ/mol # Calculated enthalpy of reaction H3P2O7- +# Enthalpy of formation: -544.1 kcal/mol -analytic 2.3157e+2 1.0161e-1 -4.3723e+3 -9.405e+1 -6.8295e+1 # -Range: 0-300 2 H+ + HPO4-2 = H3PO4 -llnl_gamma 3 log_k 9.3751 - -delta_H 3.74468 kJ/mol # Calculated enthalpy of reaction H3PO4 -# Enthalpy of formation: -307.92 kcal/mol + -delta_H 3.74468 kJ/mol # Calculated enthalpy of reaction H3PO4 +# Enthalpy of formation: -307.92 kcal/mol -analytic 1.838e+2 6.732e-2 -3.7792e+3 -7.3463e+1 -5.9025e+1 # -Range: 0-300 8 H2O + 4 SiO2 = H4(H2SiO4)4-4 + 4 H+ -llnl_gamma 4 log_k -35.94 - -delta_H 0 # Not possible to calculate enthalpy of reaction H4(H2SiO4)4-4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction H4(H2SiO4)4-4 +# Enthalpy of formation: -0 kcal/mol 4 H+ + 2 HPO4-2 = H4P2O7 + H2O -llnl_gamma 3 log_k 15.9263 - -delta_H 29.7226 kJ/mol # Calculated enthalpy of reaction H4P2O7 -# Enthalpy of formation: -2268.6 kJ/mol + -delta_H 29.7226 kJ/mol # Calculated enthalpy of reaction H4P2O7 +# Enthalpy of formation: -2268.6 kJ/mol -analytic 6.9026e+2 2.4309e-1 -1.6165e+4 -2.7989e+2 -2.7475e+2 # -Range: 0-200 8 H2O + 4 SiO2 = H6(H2SiO4)4-2 + 2 H+ -llnl_gamma 4 log_k -13.64 - -delta_H 0 # Not possible to calculate enthalpy of reaction H6(H2SiO4)4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction H6(H2SiO4)4-2 +# Enthalpy of formation: -0 kcal/mol 2 H2O + Al+3 = HAlO2 + 3 H+ -llnl_gamma 3 log_k -16.4329 - -delta_H 144.704 kJ/mol # Calculated enthalpy of reaction HAlO2 -# Enthalpy of formation: -230.73 kcal/mol + -delta_H 144.704 kJ/mol # Calculated enthalpy of reaction HAlO2 +# Enthalpy of formation: -230.73 kcal/mol -analytic 4.2012e+1 1.998e-2 -7.7847e+3 -1.547e+1 -1.2149e+2 # -Range: 0-300 H2AsO3- + H+ = HAsO2 + H2O -llnl_gamma 3 log_k 9.2792 - -delta_H 0 # Not possible to calculate enthalpy of reaction HAsO2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HAsO2 +# Enthalpy of formation: -0 kcal/mol -analytic 3.129e+2 9.3052e-2 -6.5052e+3 -1.251e+2 -1.1058e+2 # -Range: 0-200 H2AsO4- + H+ + F- = HAsO3F- + H2O -llnl_gamma 4 log_k 46.1158 - -delta_H 0 # Not possible to calculate enthalpy of reaction HAsO3F- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HAsO3F- +# Enthalpy of formation: -0 kcal/mol H2AsO4- = HAsO4-2 + H+ -llnl_gamma 4 log_k -6.7583 - -delta_H 3.22168 kJ/mol # Calculated enthalpy of reaction HAsO4-2 -# Enthalpy of formation: -216.62 kcal/mol + -delta_H 3.22168 kJ/mol # Calculated enthalpy of reaction HAsO4-2 +# Enthalpy of formation: -216.62 kcal/mol -analytic -8.4546e+1 -3.463e-2 1.1829e+3 3.3997e+1 1.8483e+1 # -Range: 0-300 3 H+ + 2 HS- + H2AsO3- = HAsS2 + 3 H2O -llnl_gamma 3 log_k 30.4803 - -delta_H 0 # Not possible to calculate enthalpy of reaction HAsS2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HAsS2 +# Enthalpy of formation: -0 kcal/mol H+ + BrO- = HBrO -llnl_gamma 3 log_k 8.3889 - -delta_H 0 # Not possible to calculate enthalpy of reaction HBrO -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HBrO +# Enthalpy of formation: -0 kcal/mol H+ + Cyanide- = HCyanide -llnl_gamma 3 log_k 9.2359 - -delta_H -43.5136 kJ/mol # Calculated enthalpy of reaction HCyanide -# Enthalpy of formation: 25.6 kcal/mol + -delta_H -43.5136 kJ/mol # Calculated enthalpy of reaction HCyanide +# Enthalpy of formation: 25.6 kcal/mol -analytic 1.0536e+1 2.3105e-2 3.3038e+3 -7.7786e+0 5.155e+1 # -Range: 0-300 H+ + Cl- = HCl -llnl_gamma 3 log_k -0.67 - -delta_H 0 # Not possible to calculate enthalpy of reaction HCl -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HCl +# Enthalpy of formation: -0 kcal/mol -analytic 4.1893e+2 1.1103e-1 -1.1784e+4 -1.6697e+2 -1.84e+2 # -Range: 0-300 H+ + ClO- = HClO -llnl_gamma 3 log_k 7.5692 - -delta_H 0 # Not possible to calculate enthalpy of reaction HClO -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HClO +# Enthalpy of formation: -0 kcal/mol H+ + ClO2- = HClO2 -llnl_gamma 3 log_k 3.1698 - -delta_H 0 # Not possible to calculate enthalpy of reaction HClO2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HClO2 +# Enthalpy of formation: -0 kcal/mol 2 H2O + Co+2 = HCoO2- + 3 H+ -llnl_gamma 4 log_k -21.243 - -delta_H 0 # Not possible to calculate enthalpy of reaction HCoO2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HCoO2- +# Enthalpy of formation: -0 kcal/mol H+ + CrO4-2 = HCrO4- -llnl_gamma 4 log_k 6.4944 - -delta_H 2.9288 kJ/mol # Calculated enthalpy of reaction HCrO4- -# Enthalpy of formation: -209.9 kcal/mol + -delta_H 2.9288 kJ/mol # Calculated enthalpy of reaction HCrO4- +# Enthalpy of formation: -209.9 kcal/mol -analytic 4.4944e+1 3.274e-2 1.84e+2 -1.9722e+1 2.8578e+0 # -Range: 0-300 H+ + F- = HF -llnl_gamma 3 log_k 3.1681 - -delta_H 13.87 kJ/mol # Calculated enthalpy of reaction HF -# Enthalpy of formation: -76.835 kcal/mol + -delta_H 13.87 kJ/mol # Calculated enthalpy of reaction HF +# Enthalpy of formation: -76.835 kcal/mol -analytic 8.6626e+1 3.2861e-2 -2.3026e+3 -3.4559e+1 -3.5956e+1 # -Range: 0-300 2 F- + H+ = HF2- -llnl_gamma 4 log_k 2.5509 - -delta_H 20.7526 kJ/mol # Calculated enthalpy of reaction HF2- -# Enthalpy of formation: -155.34 kcal/mol + -delta_H 20.7526 kJ/mol # Calculated enthalpy of reaction HF2- +# Enthalpy of formation: -155.34 kcal/mol -analytic 1.4359e+2 4.0866e-2 -4.6776e+3 -5.5574e+1 -7.3032e+1 # -Range: 0-300 IO3- + H+ = HIO3 -llnl_gamma 3 log_k 0.4915 - -delta_H 0 # Not possible to calculate enthalpy of reaction HIO3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HIO3 +# Enthalpy of formation: -0 kcal/mol N3- + H+ = HN3 -llnl_gamma 3 log_k 4.7001 - -delta_H -15 kJ/mol # Calculated enthalpy of reaction HN3 -# Enthalpy of formation: 260.14 kJ/mol + -delta_H -15 kJ/mol # Calculated enthalpy of reaction HN3 +# Enthalpy of formation: 260.14 kJ/mol -analytic 6.9976e+1 2.4359e-2 -7.1947e+2 -2.8339e+1 -1.2242e+1 # -Range: 0-200 NO2- + H+ = HNO2 -llnl_gamma 3 log_k 3.2206 - -delta_H -14.782 kJ/mol # Calculated enthalpy of reaction HNO2 -# Enthalpy of formation: -119.382 kJ/mol + -delta_H -14.782 kJ/mol # Calculated enthalpy of reaction HNO2 +# Enthalpy of formation: -119.382 kJ/mol -analytic 1.9653e+0 -1.1603e-4 0e+0 0e+0 1.1569e+5 # -Range: 0-200 NO3- + H+ = HNO3 -llnl_gamma 3 log_k -1.3025 - -delta_H 16.8155 kJ/mol # Calculated enthalpy of reaction HNO3 -# Enthalpy of formation: -45.41 kcal/mol + -delta_H 16.8155 kJ/mol # Calculated enthalpy of reaction HNO3 +# Enthalpy of formation: -45.41 kcal/mol -analytic 9.9744e+1 3.4866e-2 -3.0975e+3 -4.083e+1 -4.8363e+1 # -Range: 0-300 2 HPO4-2 + H+ = HP2O7-3 + H2O -llnl_gamma 4 log_k 5.4498 - -delta_H 23.3326 kJ/mol # Calculated enthalpy of reaction HP2O7-3 -# Enthalpy of formation: -2274.99 kJ/mol + -delta_H 23.3326 kJ/mol # Calculated enthalpy of reaction HP2O7-3 +# Enthalpy of formation: -2274.99 kJ/mol -analytic 3.9159e+2 1.5438e-1 -8.7071e+3 -1.6283e+2 -1.3598e+2 # -Range: 0-300 2 H+ + HPO4-2 + F- = HPO3F- + H2O -llnl_gamma 4 log_k 11.2988 - -delta_H 0 # Not possible to calculate enthalpy of reaction HPO3F- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HPO3F- +# Enthalpy of formation: -0 kcal/mol RuO4 + H2O = HRuO5- + H+ -llnl_gamma 4 log_k -11.5244 - -delta_H 0 # Not possible to calculate enthalpy of reaction HRuO5- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HRuO5- +# Enthalpy of formation: -0 kcal/mol H+ + S2O3-2 = HS2O3- -llnl_gamma 4 log_k 1.0139 - -delta_H 0 # Not possible to calculate enthalpy of reaction HS2O3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HS2O3- +# Enthalpy of formation: -0 kcal/mol SO3-2 + H+ = HSO3- -llnl_gamma 4 log_k 7.2054 - -delta_H 9.33032 kJ/mol # Calculated enthalpy of reaction HSO3- -# Enthalpy of formation: -149.67 kcal/mol + -delta_H 9.33032 kJ/mol # Calculated enthalpy of reaction HSO3- +# Enthalpy of formation: -149.67 kcal/mol -analytic 5.5899e+1 3.3623e-2 -5.012e+2 -2.304e+1 -7.8373e+0 # -Range: 0-300 SO4-2 + H+ = HSO4- -llnl_gamma 4 log_k 1.9791 - -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction HSO4- -# Enthalpy of formation: -212.5 kcal/mol + -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction HSO4- +# Enthalpy of formation: -212.5 kcal/mol -analytic 4.9619e+1 3.0368e-2 -1.1558e+3 -2.1335e+1 -1.8051e+1 # -Range: 0-300 4 HS- + 3 H+ + 2 Sb(OH)3 = HSb2S4- + 6 H2O -llnl_gamma 4 log_k 50.61 - -delta_H 0 # Not possible to calculate enthalpy of reaction HSb2S4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HSb2S4- +# Enthalpy of formation: -0 kcal/mol -analytic 1.754e+2 8.2177e-2 1.0786e+4 -7.4874e+1 1.6826e+2 # -Range: 0-300 SeO3-2 + H+ = HSeO3- -llnl_gamma 4 log_k 7.2861 - -delta_H -5.35552 kJ/mol # Calculated enthalpy of reaction HSeO3- -# Enthalpy of formation: -122.98 kcal/mol + -delta_H -5.35552 kJ/mol # Calculated enthalpy of reaction HSeO3- +# Enthalpy of formation: -122.98 kcal/mol -analytic 5.0427e+1 3.225e-2 2.9603e+2 -2.1711e+1 4.6044e+0 # -Range: 0-300 SeO4-2 + H+ = HSeO4- -llnl_gamma 4 log_k 1.9058 - -delta_H 17.5728 kJ/mol # Calculated enthalpy of reaction HSeO4- -# Enthalpy of formation: -139 kcal/mol + -delta_H 17.5728 kJ/mol # Calculated enthalpy of reaction HSeO4- +# Enthalpy of formation: -139 kcal/mol -analytic 1.416e+2 3.9801e-2 -4.5392e+3 -5.5088e+1 -7.0872e+1 # -Range: 0-300 SiO2 + H2O = HSiO3- + H+ -llnl_gamma 4 log_k -9.9525 - -delta_H 25.991 kJ/mol # Calculated enthalpy of reaction HSiO3- -# Enthalpy of formation: -271.88 kcal/mol + -delta_H 25.991 kJ/mol # Calculated enthalpy of reaction HSiO3- +# Enthalpy of formation: -271.88 kcal/mol -analytic 6.4211e+1 -2.4872e-2 -1.2707e+4 -1.4681e+1 1.0853e+6 # -Range: 0-300 TcO4-2 + H+ = HTcO4- -llnl_gamma 4 log_k 8.7071 - -delta_H 0 # Not possible to calculate enthalpy of reaction HTcO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HTcO4- +# Enthalpy of formation: -0 kcal/mol 2 H2O + VO2+ = HVO4-2 + 3 H+ -llnl_gamma 4 log_k -15.1553 - -delta_H 0 # Not possible to calculate enthalpy of reaction HVO4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HVO4-2 +# Enthalpy of formation: -0 kcal/mol -analytic -7.066e+1 -5.2457e-2 -3.538e+3 3.3534e+1 -5.5186e+1 # -Range: 0-300 5 H2O + Hf+4 = Hf(OH)5- + 5 H+ -llnl_gamma 4 log_k -17.1754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(OH)5- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(OH)5- +# Enthalpy of formation: -0 kcal/mol Hf+4 + H2O = HfOH+3 + H+ -llnl_gamma 5 log_k -0.2951 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfOH+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfOH+3 +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Hg+2 = Hg(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -2.6242 - -delta_H -30.334 kJ/mol # Calculated enthalpy of reaction Hg(Acetate)2 -# Enthalpy of formation: -198.78 kcal/mol + -delta_H -30.334 kJ/mol # Calculated enthalpy of reaction Hg(Acetate)2 +# Enthalpy of formation: -198.78 kcal/mol -analytic -2.1959e+1 2.7774e-3 -3.25e+3 7.7351e+0 9.1508e+5 # -Range: 0-300 3 HAcetate + Hg+2 = Hg(Acetate)3- + 3 H+ -llnl_gamma 4 log_k -4.3247 - -delta_H -59.7057 kJ/mol # Calculated enthalpy of reaction Hg(Acetate)3- -# Enthalpy of formation: -321.9 kcal/mol + -delta_H -59.7057 kJ/mol # Calculated enthalpy of reaction Hg(Acetate)3- +# Enthalpy of formation: -321.9 kcal/mol -analytic 2.1656e+1 -2.0392e-3 -1.2866e+4 -3.2932e+0 2.3073e+6 # -Range: 0-300 Hg+2 + HAcetate = HgAcetate+ + H+ -llnl_gamma 4 log_k -0.4691 - -delta_H -16.5686 kJ/mol # Calculated enthalpy of reaction HgAcetate+ -# Enthalpy of formation: -79.39 kcal/mol + -delta_H -16.5686 kJ/mol # Calculated enthalpy of reaction HgAcetate+ +# Enthalpy of formation: -79.39 kcal/mol -analytic -1.6355e+1 1.9446e-3 -2.6676e+2 5.1978e+0 2.9805e+5 # -Range: 0-300 2 HAcetate + Ho+3 = Ho(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -4.9844 - -delta_H -28.1583 kJ/mol # Calculated enthalpy of reaction Ho(Acetate)2+ -# Enthalpy of formation: -407.93 kcal/mol + -delta_H -28.1583 kJ/mol # Calculated enthalpy of reaction Ho(Acetate)2+ +# Enthalpy of formation: -407.93 kcal/mol -analytic -2.7925e+1 2.5599e-3 -1.4779e+3 8.0785e+0 6.3736e+5 # -Range: 0-300 3 HAcetate + Ho+3 = Ho(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -8.3783 - -delta_H -47.5721 kJ/mol # Calculated enthalpy of reaction Ho(Acetate)3 -# Enthalpy of formation: -528.67 kcal/mol + -delta_H -47.5721 kJ/mol # Calculated enthalpy of reaction Ho(Acetate)3 +# Enthalpy of formation: -528.67 kcal/mol -analytic -6.5547e+1 -1.1963e-4 -1.8887e+2 1.9796e+1 7.9041e+5 # -Range: 0-300 2 HCO3- + Ho+3 = Ho(CO3)2- + 2 H+ -llnl_gamma 4 log_k -7.3576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Ho+3 = Ho(HPO4)2- -llnl_gamma 4 log_k 9.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(HPO4)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Ho+3 = Ho(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -3.3437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Ho+3 = Ho(SO4)2- -llnl_gamma 4 log_k 4.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(SO4)2- +# Enthalpy of formation: -0 kcal/mol Ho+3 + HAcetate = HoAcetate+2 + H+ -llnl_gamma 4.5 log_k -2.1184 - -delta_H -14.3093 kJ/mol # Calculated enthalpy of reaction HoAcetate+2 -# Enthalpy of formation: -288.52 kcal/mol + -delta_H -14.3093 kJ/mol # Calculated enthalpy of reaction HoAcetate+2 +# Enthalpy of formation: -288.52 kcal/mol -analytic -1.8265e+1 1.0753e-3 -6.0695e+2 5.7211e+0 3.3055e+5 # -Range: 0-300 Ho+3 + HCO3- = HoCO3+ + H+ -llnl_gamma 4 log_k -2.2591 - -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction HoCO3+ -# Enthalpy of formation: -312.6 kcal/mol + -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction HoCO3+ +# Enthalpy of formation: -312.6 kcal/mol -analytic 2.3773e+2 5.4448e-2 -6.9916e+3 -9.4063e+1 -1.0917e+2 # -Range: 0-300 Ho+3 + Cl- = HoCl+2 -llnl_gamma 4.5 log_k 0.2353 - -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction HoCl+2 -# Enthalpy of formation: -205.6 kcal/mol + -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction HoCl+2 +# Enthalpy of formation: -205.6 kcal/mol -analytic 7.3746e+1 3.7733e-2 -1.5627e+3 -3.2126e+1 -2.4407e+1 # -Range: 0-300 2 Cl- + Ho+3 = HoCl2+ -llnl_gamma 4 log_k -0.0425 - -delta_H 17.8489 kJ/mol # Calculated enthalpy of reaction HoCl2+ -# Enthalpy of formation: -244.6 kcal/mol + -delta_H 17.8489 kJ/mol # Calculated enthalpy of reaction HoCl2+ +# Enthalpy of formation: -244.6 kcal/mol -analytic 1.9928e+2 7.9025e-2 -4.7775e+3 -8.3582e+1 -7.4607e+1 # -Range: 0-300 3 Cl- + Ho+3 = HoCl3 -llnl_gamma 3 log_k -0.4669 - -delta_H 10.0374 kJ/mol # Calculated enthalpy of reaction HoCl3 -# Enthalpy of formation: -286.4 kcal/mol + -delta_H 10.0374 kJ/mol # Calculated enthalpy of reaction HoCl3 +# Enthalpy of formation: -286.4 kcal/mol -analytic 3.8608e+2 1.2638e-1 -9.8339e+3 -1.5809e+2 -1.5356e+2 # -Range: 0-300 4 Cl- + Ho+3 = HoCl4- -llnl_gamma 4 log_k -0.8913 - -delta_H -12.4181 kJ/mol # Calculated enthalpy of reaction HoCl4- -# Enthalpy of formation: -331.7 kcal/mol + -delta_H -12.4181 kJ/mol # Calculated enthalpy of reaction HoCl4- +# Enthalpy of formation: -331.7 kcal/mol -analytic 4.2179e+2 1.2576e-1 -1.0495e+4 -1.7172e+2 -1.6388e+2 # -Range: 0-300 Ho+3 + F- = HoF+2 -llnl_gamma 4.5 log_k 4.7352 - -delta_H 22.3844 kJ/mol # Calculated enthalpy of reaction HoF+2 -# Enthalpy of formation: -243.8 kcal/mol + -delta_H 22.3844 kJ/mol # Calculated enthalpy of reaction HoF+2 +# Enthalpy of formation: -243.8 kcal/mol -analytic 9.5294e+1 4.1702e-2 -2.446e+3 -3.8296e+1 -3.8195e+1 # -Range: 0-300 2 F- + Ho+3 = HoF2+ -llnl_gamma 4 log_k 8.2976 - -delta_H 11.7152 kJ/mol # Calculated enthalpy of reaction HoF2+ -# Enthalpy of formation: -326.5 kcal/mol + -delta_H 11.7152 kJ/mol # Calculated enthalpy of reaction HoF2+ +# Enthalpy of formation: -326.5 kcal/mol -analytic 2.233e+2 8.3497e-2 -4.9105e+3 -9.0272e+1 -7.669e+1 # -Range: 0-300 3 F- + Ho+3 = HoF3 -llnl_gamma 3 log_k 10.9071 - -delta_H -12.7612 kJ/mol # Calculated enthalpy of reaction HoF3 -# Enthalpy of formation: -412.5 kcal/mol + -delta_H -12.7612 kJ/mol # Calculated enthalpy of reaction HoF3 +# Enthalpy of formation: -412.5 kcal/mol -analytic 4.1587e+2 1.3308e-1 -9.2193e+3 -1.6717e+2 -1.4398e+2 # -Range: 0-300 4 F- + Ho+3 = HoF4- -llnl_gamma 4 log_k 13.0035 - -delta_H -57.7392 kJ/mol # Calculated enthalpy of reaction HoF4- -# Enthalpy of formation: -503.4 kcal/mol + -delta_H -57.7392 kJ/mol # Calculated enthalpy of reaction HoF4- +# Enthalpy of formation: -503.4 kcal/mol -analytic 4.4575e+2 1.3182e-1 -8.5485e+3 -1.7916e+2 -1.3352e+2 # -Range: 0-300 Ho+3 + HPO4-2 + H+ = HoH2PO4+2 -llnl_gamma 4.5 log_k 9.4484 - -delta_H -17.9284 kJ/mol # Calculated enthalpy of reaction HoH2PO4+2 -# Enthalpy of formation: -482.1 kcal/mol + -delta_H -17.9284 kJ/mol # Calculated enthalpy of reaction HoH2PO4+2 +# Enthalpy of formation: -482.1 kcal/mol -analytic 1.0273e+2 6.3161e-2 5.516e+2 -4.6035e+1 8.5766e+0 # -Range: 0-300 Ho+3 + HCO3- = HoHCO3+2 -llnl_gamma 4.5 log_k 1.6991 - -delta_H 7.52283 kJ/mol # Calculated enthalpy of reaction HoHCO3+2 -# Enthalpy of formation: -332.1 kcal/mol + -delta_H 7.52283 kJ/mol # Calculated enthalpy of reaction HoHCO3+2 +# Enthalpy of formation: -332.1 kcal/mol -analytic 3.342e+1 3.1394e-2 1.9804e+2 -1.6859e+1 3.0801e+0 # -Range: 0-300 Ho+3 + HPO4-2 = HoHPO4+ -llnl_gamma 4 log_k 5.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction HoHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HoHPO4+ +# Enthalpy of formation: -0 kcal/mol NO3- + Ho+3 = HoNO3+2 -llnl_gamma 4.5 log_k 0.2148 - -delta_H -30.0035 kJ/mol # Calculated enthalpy of reaction HoNO3+2 -# Enthalpy of formation: -225.6 kcal/mol + -delta_H -30.0035 kJ/mol # Calculated enthalpy of reaction HoNO3+2 +# Enthalpy of formation: -225.6 kcal/mol -analytic 1.1069e+1 2.5142e-2 2.3943e+3 -1.065e+1 3.7358e+1 # -Range: 0-300 Ho+3 + H2O = HoO+ + 2 H+ -llnl_gamma 4 log_k -16.0438 - -delta_H 108.437 kJ/mol # Calculated enthalpy of reaction HoO+ -# Enthalpy of formation: -211.4 kcal/mol + -delta_H 108.437 kJ/mol # Calculated enthalpy of reaction HoO+ +# Enthalpy of formation: -211.4 kcal/mol -analytic 1.9152e+2 3.0627e-2 -1.3817e+4 -6.8846e+1 -2.1565e+2 # -Range: 0-300 2 H2O + Ho+3 = HoO2- + 4 H+ -llnl_gamma 4 log_k -33.4804 - -delta_H 274.613 kJ/mol # Calculated enthalpy of reaction HoO2- -# Enthalpy of formation: -240 kcal/mol + -delta_H 274.613 kJ/mol # Calculated enthalpy of reaction HoO2- +# Enthalpy of formation: -240 kcal/mol -analytic 1.7987e+2 1.2731e-2 -2.0007e+4 -6.0642e+1 -3.1224e+2 # -Range: 0-300 2 H2O + Ho+3 = HoO2H + 3 H+ -llnl_gamma 3 log_k -24.5377 - -delta_H 216.873 kJ/mol # Calculated enthalpy of reaction HoO2H -# Enthalpy of formation: -253.8 kcal/mol + -delta_H 216.873 kJ/mol # Calculated enthalpy of reaction HoO2H +# Enthalpy of formation: -253.8 kcal/mol -analytic 3.3877e+2 4.6282e-2 -2.2925e+4 -1.2133e+2 -3.5782e+2 # -Range: 0-300 Ho+3 + H2O = HoOH+2 + H+ -llnl_gamma 4.5 log_k -7.7609 - -delta_H 76.6383 kJ/mol # Calculated enthalpy of reaction HoOH+2 -# Enthalpy of formation: -219 kcal/mol + -delta_H 76.6383 kJ/mol # Calculated enthalpy of reaction HoOH+2 +# Enthalpy of formation: -219 kcal/mol -analytic 7.1326e+1 1.2657e-2 -6.2461e+3 -2.5018e+1 -9.7485e+1 # -Range: 0-300 Ho+3 + HPO4-2 = HoPO4 + H+ -llnl_gamma 3 log_k 0.2782 - -delta_H 0 # Not possible to calculate enthalpy of reaction HoPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HoPO4 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Ho+3 = HoSO4+ -llnl_gamma 4 log_k 3.5697 - -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction HoSO4+ -# Enthalpy of formation: -381.5 kcal/mol + -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction HoSO4+ +# Enthalpy of formation: -381.5 kcal/mol -analytic 3.0709e+2 8.6579e-2 -9.0693e+3 -1.2078e+2 -1.4161e+2 # -Range: 0-300 2 HAcetate + K+ = K(Acetate)2- + 2 H+ -llnl_gamma 4 log_k -10.2914 - -delta_H -1.79912 kJ/mol # Calculated enthalpy of reaction K(Acetate)2- -# Enthalpy of formation: -292.9 kcal/mol + -delta_H -1.79912 kJ/mol # Calculated enthalpy of reaction K(Acetate)2- +# Enthalpy of formation: -292.9 kcal/mol -analytic -2.3036e+2 -4.6369e-2 7.0305e+3 8.4997e+1 1.0977e+2 # -Range: 0-300 K+ + Br- = KBr -llnl_gamma 3 log_k -1.7372 - -delta_H 12.5102 kJ/mol # Calculated enthalpy of reaction KBr -# Enthalpy of formation: -86.32 kcal/mol + -delta_H 12.5102 kJ/mol # Calculated enthalpy of reaction KBr +# Enthalpy of formation: -86.32 kcal/mol -analytic 1.132e+2 3.4227e-2 -3.6401e+3 -4.5633e+1 -5.6833e+1 # -Range: 0-300 K+ + HAcetate = KAcetate + H+ -llnl_gamma 3 log_k -5.0211 - -delta_H 4.8116 kJ/mol # Calculated enthalpy of reaction KAcetate -# Enthalpy of formation: -175.22 kcal/mol + -delta_H 4.8116 kJ/mol # Calculated enthalpy of reaction KAcetate +# Enthalpy of formation: -175.22 kcal/mol -analytic -2.6676e-1 -3.2675e-3 -1.7143e+3 -7.1907e-3 1.7726e+5 # -Range: 0-300 K+ + Cl- = KCl -llnl_gamma 3 log_k -1.4946 - -delta_H 14.1963 kJ/mol # Calculated enthalpy of reaction KCl -# Enthalpy of formation: -96.81 kcal/mol + -delta_H 14.1963 kJ/mol # Calculated enthalpy of reaction KCl +# Enthalpy of formation: -96.81 kcal/mol -analytic 1.365e+2 3.8405e-2 -4.4014e+3 -5.4421e+1 -6.8721e+1 # -Range: 0-300 K+ + HPO4-2 = KHPO4- -llnl_gamma 4 log_k 0.78 - -delta_H 0 # Not possible to calculate enthalpy of reaction KHPO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction KHPO4- +# Enthalpy of formation: -0 kcal/mol SO4-2 + K+ + H+ = KHSO4 -llnl_gamma 3 log_k 0.8136 - -delta_H 29.8319 kJ/mol # Calculated enthalpy of reaction KHSO4 -# Enthalpy of formation: -270.54 kcal/mol + -delta_H 29.8319 kJ/mol # Calculated enthalpy of reaction KHSO4 +# Enthalpy of formation: -270.54 kcal/mol -analytic 1.262e+2 5.7349e-2 -3.367e+3 -5.3003e+1 -5.2576e+1 # -Range: 0-300 K+ + I- = KI -llnl_gamma 3 log_k -1.598 - -delta_H 9.16296 kJ/mol # Calculated enthalpy of reaction KI -# Enthalpy of formation: -71.68 kcal/mol + -delta_H 9.16296 kJ/mol # Calculated enthalpy of reaction KI +# Enthalpy of formation: -71.68 kcal/mol -analytic 1.0816e+2 3.3683e-2 -3.2143e+3 -4.4054e+1 -5.0187e+1 # -Range: 0-300 K+ + H2O = KOH + H+ -llnl_gamma 3 log_k -14.46 - -delta_H 0 # Not possible to calculate enthalpy of reaction KOH -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction KOH +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + K+ = KP2O7-3 + H2O -llnl_gamma 4 log_k -1.4286 - -delta_H 34.1393 kJ/mol # Calculated enthalpy of reaction KP2O7-3 -# Enthalpy of formation: -2516.36 kJ/mol + -delta_H 34.1393 kJ/mol # Calculated enthalpy of reaction KP2O7-3 +# Enthalpy of formation: -2516.36 kJ/mol -analytic 4.193e+2 1.4676e-1 -1.1169e+4 -1.7255e+2 -1.7441e+2 # -Range: 0-300 SO4-2 + K+ = KSO4- -llnl_gamma 4 log_k 0.8796 - -delta_H 2.88696 kJ/mol # Calculated enthalpy of reaction KSO4- -# Enthalpy of formation: -276.98 kcal/mol + -delta_H 2.88696 kJ/mol # Calculated enthalpy of reaction KSO4- +# Enthalpy of formation: -276.98 kcal/mol -analytic 9.9073e+1 3.7817e-2 -2.1628e+3 -4.1297e+1 -3.3779e+1 # -Range: 0-300 2 HAcetate + La+3 = La(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -5.3949 - -delta_H -23.1375 kJ/mol # Calculated enthalpy of reaction La(Acetate)2+ -# Enthalpy of formation: -407.33 kcal/mol + -delta_H -23.1375 kJ/mol # Calculated enthalpy of reaction La(Acetate)2+ +# Enthalpy of formation: -407.33 kcal/mol -analytic -1.2805e+1 2.8482e-3 -2.2521e+3 2.9108e+0 6.1659e+5 # -Range: 0-300 3 HAcetate + La+3 = La(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -8.5982 - -delta_H -41.9237 kJ/mol # Calculated enthalpy of reaction La(Acetate)3 -# Enthalpy of formation: -527.92 kcal/mol + -delta_H -41.9237 kJ/mol # Calculated enthalpy of reaction La(Acetate)3 +# Enthalpy of formation: -527.92 kcal/mol -analytic -3.3456e+1 1.2371e-3 -1.5978e+3 8.6343e+0 7.5717e+5 # -Range: 0-300 2 HCO3- + La+3 = La(CO3)2- + 2 H+ -llnl_gamma 4 log_k -8.8576 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction La(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + La+3 = La(HPO4)2- -llnl_gamma 4 log_k 8.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction La(HPO4)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + La+3 = La(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -7.0437 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction La(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + La+3 = La(SO4)2- -llnl_gamma 4 log_k 5.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction La(SO4)2- +# Enthalpy of formation: -0 kcal/mol 2 La+3 + 2 H2O = La2(OH)2+4 + 2 H+ -llnl_gamma 5.5 log_k -22.9902 - -delta_H 0 # Not possible to calculate enthalpy of reaction La2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction La2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol 9 H2O + 5 La+3 = La5(OH)9+6 + 9 H+ -llnl_gamma 6 log_k -71.1557 - -delta_H 0 # Not possible to calculate enthalpy of reaction La5(OH)9+6 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction La5(OH)9+6 +# Enthalpy of formation: -0 kcal/mol La+3 + HAcetate = LaAcetate+2 + H+ -llnl_gamma 4.5 log_k -2.2063 - -delta_H -12.5938 kJ/mol # Calculated enthalpy of reaction LaAcetate+2 -# Enthalpy of formation: -288.71 kcal/mol + -delta_H -12.5938 kJ/mol # Calculated enthalpy of reaction LaAcetate+2 +# Enthalpy of formation: -288.71 kcal/mol -analytic -1.0803e+1 8.5239e-4 -1.1143e+3 3.3273e+0 3.4305e+5 # -Range: 0-300 La+3 + HCO3- = LaCO3+ + H+ -llnl_gamma 4 log_k -3.212 - -delta_H 89.5292 kJ/mol # Calculated enthalpy of reaction LaCO3+ -# Enthalpy of formation: -313.1 kcal/mol + -delta_H 89.5292 kJ/mol # Calculated enthalpy of reaction LaCO3+ +# Enthalpy of formation: -313.1 kcal/mol -analytic 2.3046e+2 5.2419e-2 -7.1063e+3 -9.1109e+1 -1.1095e+2 # -Range: 0-300 La+3 + Cl- = LaCl+2 -llnl_gamma 4.5 log_k 0.3086 - -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction LaCl+2 -# Enthalpy of formation: -206.1 kcal/mol + -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction LaCl+2 +# Enthalpy of formation: -206.1 kcal/mol -analytic 7.5802e+1 3.6641e-2 -1.7234e+3 -3.2578e+1 -2.6914e+1 # -Range: 0-300 2 Cl- + La+3 = LaCl2+ -llnl_gamma 4 log_k -0.0425 - -delta_H 19.1041 kJ/mol # Calculated enthalpy of reaction LaCl2+ -# Enthalpy of formation: -244.9 kcal/mol + -delta_H 19.1041 kJ/mol # Calculated enthalpy of reaction LaCl2+ +# Enthalpy of formation: -244.9 kcal/mol -analytic 2.1632e+2 7.9274e-2 -5.5883e+3 -8.94e+1 -8.7264e+1 # -Range: 0-300 3 Cl- + La+3 = LaCl3 -llnl_gamma 3 log_k -0.3936 - -delta_H 12.5478 kJ/mol # Calculated enthalpy of reaction LaCl3 -# Enthalpy of formation: -286.4 kcal/mol + -delta_H 12.5478 kJ/mol # Calculated enthalpy of reaction LaCl3 +# Enthalpy of formation: -286.4 kcal/mol -analytic 4.221e+2 1.2792e-1 -1.1444e+4 -1.7062e+2 -1.7869e+2 # -Range: 0-300 4 Cl- + La+3 = LaCl4- -llnl_gamma 4 log_k -0.818 - -delta_H -7.81571 kJ/mol # Calculated enthalpy of reaction LaCl4- -# Enthalpy of formation: -331.2 kcal/mol + -delta_H -7.81571 kJ/mol # Calculated enthalpy of reaction LaCl4- +# Enthalpy of formation: -331.2 kcal/mol -analytic 4.8802e+2 1.3053e-1 -1.3344e+4 -1.9518e+2 -2.0836e+2 # -Range: 0-300 La+3 + F- = LaF+2 -llnl_gamma 4.5 log_k 3.8556 - -delta_H 26.5684 kJ/mol # Calculated enthalpy of reaction LaF+2 -# Enthalpy of formation: -243.4 kcal/mol + -delta_H 26.5684 kJ/mol # Calculated enthalpy of reaction LaF+2 +# Enthalpy of formation: -243.4 kcal/mol -analytic 9.6765e+1 4.0513e-2 -2.8042e+3 -3.8617e+1 -4.3785e+1 # -Range: 0-300 2 F- + La+3 = LaF2+ -llnl_gamma 4 log_k 6.685 - -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction LaF2+ -# Enthalpy of formation: -325.2 kcal/mol + -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction LaF2+ +# Enthalpy of formation: -325.2 kcal/mol -analytic 2.3923e+2 8.3559e-2 -6.0536e+3 -9.5821e+1 -9.4531e+1 # -Range: 0-300 3 F- + La+3 = LaF3 -llnl_gamma 3 log_k 8.7081 - -delta_H -0.6276 kJ/mol # Calculated enthalpy of reaction LaF3 -# Enthalpy of formation: -410.2 kcal/mol + -delta_H -0.6276 kJ/mol # Calculated enthalpy of reaction LaF3 +# Enthalpy of formation: -410.2 kcal/mol -analytic 4.5123e+2 1.346e-1 -1.1334e+4 -1.7967e+2 -1.7699e+2 # -Range: 0-300 4 F- + La+3 = LaF4- -llnl_gamma 4 log_k 10.3647 - -delta_H -41.4216 kJ/mol # Calculated enthalpy of reaction LaF4- -# Enthalpy of formation: -500.1 kcal/mol + -delta_H -41.4216 kJ/mol # Calculated enthalpy of reaction LaF4- +# Enthalpy of formation: -500.1 kcal/mol -analytic 5.0747e+2 1.3563e-1 -1.1903e+4 -2.0108e+2 -1.8588e+2 # -Range: 0-300 La+3 + HPO4-2 + H+ = LaH2PO4+2 -llnl_gamma 4.5 log_k 9.7417 - -delta_H -18.3468 kJ/mol # Calculated enthalpy of reaction LaH2PO4+2 -# Enthalpy of formation: -482.8 kcal/mol + -delta_H -18.3468 kJ/mol # Calculated enthalpy of reaction LaH2PO4+2 +# Enthalpy of formation: -482.8 kcal/mol -analytic 1.053e+2 6.2177e-2 4.0686e+2 -4.6642e+1 6.3174e+0 # -Range: 0-300 La+3 + HCO3- = LaHCO3+2 -llnl_gamma 4.5 log_k 1.9923 - -delta_H 6.68603 kJ/mol # Calculated enthalpy of reaction LaHCO3+2 -# Enthalpy of formation: -332.9 kcal/mol + -delta_H 6.68603 kJ/mol # Calculated enthalpy of reaction LaHCO3+2 +# Enthalpy of formation: -332.9 kcal/mol -analytic 3.6032e+1 3.0405e-2 5.1281e+1 -1.7478e+1 7.8933e-1 # -Range: 0-300 La+3 + HPO4-2 = LaHPO4+ -llnl_gamma 4 log_k 5.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction LaHPO4+ +# Enthalpy of formation: -0 kcal/mol NO3- + La+3 = LaNO3+2 -llnl_gamma 4.5 log_k 0.5813 - -delta_H -29.1667 kJ/mol # Calculated enthalpy of reaction LaNO3+2 -# Enthalpy of formation: -226 kcal/mol + -delta_H -29.1667 kJ/mol # Calculated enthalpy of reaction LaNO3+2 +# Enthalpy of formation: -226 kcal/mol -analytic 1.4136e+1 2.4247e-2 2.1998e+3 -1.1371e+1 3.4322e+1 # -Range: 0-300 La+3 + H2O = LaO+ + 2 H+ -llnl_gamma 4 log_k -18.1696 - -delta_H 121.407 kJ/mol # Calculated enthalpy of reaction LaO+ -# Enthalpy of formation: -208.9 kcal/mol + -delta_H 121.407 kJ/mol # Calculated enthalpy of reaction LaO+ +# Enthalpy of formation: -208.9 kcal/mol -analytic 1.8691e+2 2.9275e-2 -1.4385e+4 -6.6906e+1 -2.2452e+2 # -Range: 0-300 2 H2O + La+3 = LaO2- + 4 H+ -llnl_gamma 4 log_k -40.8105 - -delta_H 318.126 kJ/mol # Calculated enthalpy of reaction LaO2- -# Enthalpy of formation: -230.2 kcal/mol + -delta_H 318.126 kJ/mol # Calculated enthalpy of reaction LaO2- +# Enthalpy of formation: -230.2 kcal/mol -analytic 1.8374e+2 1.2355e-2 -2.2472e+4 -6.1779e+1 -3.507e+2 # -Range: 0-300 2 H2O + La+3 = LaO2H + 3 H+ -llnl_gamma 3 log_k -27.9095 - -delta_H 237.375 kJ/mol # Calculated enthalpy of reaction LaO2H -# Enthalpy of formation: -249.5 kcal/mol + -delta_H 237.375 kJ/mol # Calculated enthalpy of reaction LaO2H +# Enthalpy of formation: -249.5 kcal/mol -analytic 3.3862e+2 4.4808e-2 -2.4083e+4 -1.2088e+2 -3.7589e+2 # -Range: 0-300 La+3 + H2O = LaOH+2 + H+ -llnl_gamma 4.5 log_k -8.6405 - -delta_H 82.4959 kJ/mol # Calculated enthalpy of reaction LaOH+2 -# Enthalpy of formation: -218.2 kcal/mol + -delta_H 82.4959 kJ/mol # Calculated enthalpy of reaction LaOH+2 +# Enthalpy of formation: -218.2 kcal/mol -analytic 6.5529e+1 1.1104e-2 -6.392e+3 -2.2646e+1 -9.976e+1 # -Range: 0-300 La+3 + HPO4-2 = LaPO4 + H+ -llnl_gamma 3 log_k -1.3618 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction LaPO4 +# Enthalpy of formation: -0 kcal/mol SO4-2 + La+3 = LaSO4+ -llnl_gamma 4 log_k 3.643 - -delta_H 18.4096 kJ/mol # Calculated enthalpy of reaction LaSO4+ -# Enthalpy of formation: -382.6 kcal/mol + -delta_H 18.4096 kJ/mol # Calculated enthalpy of reaction LaSO4+ +# Enthalpy of formation: -382.6 kcal/mol -analytic 3.0657e+2 8.4093e-2 -9.1074e+3 -1.2019e+2 -1.422e+2 # -Range: 0-300 2 HAcetate + Li+ = Li(Acetate)2- + 2 H+ -llnl_gamma 4 log_k -9.2674 - -delta_H -24.7609 kJ/mol # Calculated enthalpy of reaction Li(Acetate)2- -# Enthalpy of formation: -304.67 kcal/mol + -delta_H -24.7609 kJ/mol # Calculated enthalpy of reaction Li(Acetate)2- +# Enthalpy of formation: -304.67 kcal/mol -analytic -3.3702e+2 -6.0849e-2 1.1952e+4 1.2359e+2 1.8659e+2 # -Range: 0-300 Li+ + HAcetate = LiAcetate + H+ -llnl_gamma 3 log_k -4.4589 - -delta_H -6.64419 kJ/mol # Calculated enthalpy of reaction LiAcetate -# Enthalpy of formation: -184.24 kcal/mol + -delta_H -6.64419 kJ/mol # Calculated enthalpy of reaction LiAcetate +# Enthalpy of formation: -184.24 kcal/mol -analytic -3.8391e+0 -7.3938e-4 -1.0829e+3 3.4134e-1 2.1318e+5 # -Range: 0-300 Li+ + Cl- = LiCl -llnl_gamma 3 log_k -1.5115 - -delta_H 3.36812 kJ/mol # Calculated enthalpy of reaction LiCl -# Enthalpy of formation: -105.68 kcal/mol + -delta_H 3.36812 kJ/mol # Calculated enthalpy of reaction LiCl +# Enthalpy of formation: -105.68 kcal/mol -analytic 1.2484e+2 4.1941e-2 -3.2439e+3 -5.1708e+1 -5.0655e+1 # -Range: 0-300 Li+ + H2O = LiOH + H+ -llnl_gamma 3 log_k -13.64 - -delta_H 0 # Not possible to calculate enthalpy of reaction LiOH -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction LiOH +# Enthalpy of formation: -0 kcal/mol SO4-2 + Li+ = LiSO4- -llnl_gamma 4 log_k 0.77 - -delta_H 0 # Not possible to calculate enthalpy of reaction LiSO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction LiSO4- +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Lu+3 = Lu(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -4.9625 - -delta_H -38.5346 kJ/mol # Calculated enthalpy of reaction Lu(Acetate)2+ -# Enthalpy of formation: -409.31 kcal/mol + -delta_H -38.5346 kJ/mol # Calculated enthalpy of reaction Lu(Acetate)2+ +# Enthalpy of formation: -409.31 kcal/mol -analytic -2.7341e+1 2.5097e-3 -1.4157e+3 7.5026e+0 6.9682e+5 # -Range: 0-300 3 HAcetate + Lu+3 = Lu(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -8.3489 - -delta_H -64.5173 kJ/mol # Calculated enthalpy of reaction Lu(Acetate)3 -# Enthalpy of formation: -531.62 kcal/mol + -delta_H -64.5173 kJ/mol # Calculated enthalpy of reaction Lu(Acetate)3 +# Enthalpy of formation: -531.62 kcal/mol -analytic -5.0225e+1 3.3508e-3 -6.2901e+2 1.3262e+1 9.0737e+5 # -Range: 0-300 2 HCO3- + Lu+3 = Lu(CO3)2- + 2 H+ -llnl_gamma 4 log_k -6.8576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Lu+3 = Lu(HPO4)2- -llnl_gamma 4 log_k 10.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(HPO4)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Lu+3 = Lu(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -2.7437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Lu+3 = Lu(SO4)2- -llnl_gamma 4 log_k 5.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(SO4)2- +# Enthalpy of formation: -0 kcal/mol Lu+3 + HAcetate = LuAcetate+2 + H+ -llnl_gamma 4.5 log_k -2.1037 - -delta_H -18.9703 kJ/mol # Calculated enthalpy of reaction LuAcetate+2 -# Enthalpy of formation: -288.534 kcal/mol + -delta_H -18.9703 kJ/mol # Calculated enthalpy of reaction LuAcetate+2 +# Enthalpy of formation: -288.534 kcal/mol -analytic -6.5982e+0 2.4512e-3 -1.2666e+3 1.4226e+0 4.0045e+5 # -Range: 0-300 Lu+3 + HCO3- = LuCO3+ + H+ -llnl_gamma 4 log_k -2.0392 - -delta_H 78.2324 kJ/mol # Calculated enthalpy of reaction LuCO3+ -# Enthalpy of formation: -314.1 kcal/mol + -delta_H 78.2324 kJ/mol # Calculated enthalpy of reaction LuCO3+ +# Enthalpy of formation: -314.1 kcal/mol -analytic 2.384e+2 5.4774e-2 -6.8317e+3 -9.45e+1 -1.0667e+2 # -Range: 0-300 Lu+3 + Cl- = LuCl+2 -llnl_gamma 4.5 log_k -0.0579 - -delta_H 13.5269 kJ/mol # Calculated enthalpy of reaction LuCl+2 -# Enthalpy of formation: -204.6 kcal/mol + -delta_H 13.5269 kJ/mol # Calculated enthalpy of reaction LuCl+2 +# Enthalpy of formation: -204.6 kcal/mol -analytic 6.6161e+1 3.6521e-2 -1.2938e+3 -2.9397e+1 -2.0209e+1 # -Range: 0-300 2 Cl- + Lu+3 = LuCl2+ -llnl_gamma 4 log_k -0.6289 - -delta_H 15.7569 kJ/mol # Calculated enthalpy of reaction LuCl2+ -# Enthalpy of formation: -244 kcal/mol + -delta_H 15.7569 kJ/mol # Calculated enthalpy of reaction LuCl2+ +# Enthalpy of formation: -244 kcal/mol -analytic 1.8608e+2 7.7283e-2 -4.2349e+3 -7.9007e+1 -6.6137e+1 # -Range: 0-300 3 Cl- + Lu+3 = LuCl3 -llnl_gamma 3 log_k -1.1999 - -delta_H 3.56895 kJ/mol # Calculated enthalpy of reaction LuCl3 -# Enthalpy of formation: -286.846 kcal/mol + -delta_H 3.56895 kJ/mol # Calculated enthalpy of reaction LuCl3 +# Enthalpy of formation: -286.846 kcal/mol -analytic 3.706e+2 1.2564e-1 -8.9374e+3 -1.5325e+2 -1.3957e+2 # -Range: 0-300 4 Cl- + Lu+3 = LuCl4- -llnl_gamma 4 log_k -1.771 - -delta_H -25.8069 kJ/mol # Calculated enthalpy of reaction LuCl4- -# Enthalpy of formation: -333.8 kcal/mol + -delta_H -25.8069 kJ/mol # Calculated enthalpy of reaction LuCl4- +# Enthalpy of formation: -333.8 kcal/mol -analytic 3.8876e+2 1.22e-1 -8.6965e+3 -1.6071e+2 -1.3582e+2 # -Range: 0-300 Lu+3 + F- = LuF+2 -llnl_gamma 4.5 log_k 4.8085 - -delta_H 25.7316 kJ/mol # Calculated enthalpy of reaction LuF+2 -# Enthalpy of formation: -241.9 kcal/mol + -delta_H 25.7316 kJ/mol # Calculated enthalpy of reaction LuF+2 +# Enthalpy of formation: -241.9 kcal/mol -analytic 9.0303e+1 4.0963e-2 -2.414e+3 -3.6203e+1 -3.7694e+1 # -Range: 0-300 2 F- + Lu+3 = LuF2+ -llnl_gamma 4 log_k 8.4442 - -delta_H 14.2256 kJ/mol # Calculated enthalpy of reaction LuF2+ -# Enthalpy of formation: -324.8 kcal/mol + -delta_H 14.2256 kJ/mol # Calculated enthalpy of reaction LuF2+ +# Enthalpy of formation: -324.8 kcal/mol -analytic 2.144e+2 8.2559e-2 -4.7009e+3 -8.679e+1 -7.3417e+1 # -Range: 0-300 3 F- + Lu+3 = LuF3 -llnl_gamma 3 log_k 11.0999 - -delta_H -12.3428 kJ/mol # Calculated enthalpy of reaction LuF3 -# Enthalpy of formation: -411.3 kcal/mol + -delta_H -12.3428 kJ/mol # Calculated enthalpy of reaction LuF3 +# Enthalpy of formation: -411.3 kcal/mol -analytic 4.0247e+2 1.3233e-1 -8.6775e+3 -1.6232e+2 -1.3552e+2 # -Range: 0-300 4 F- + Lu+3 = LuF4- -llnl_gamma 4 log_k 13.2967 - -delta_H -64.0152 kJ/mol # Calculated enthalpy of reaction LuF4- -# Enthalpy of formation: -503.8 kcal/mol + -delta_H -64.0152 kJ/mol # Calculated enthalpy of reaction LuF4- +# Enthalpy of formation: -503.8 kcal/mol -analytic 4.2541e+2 1.307e-1 -7.4276e+3 -1.722e+2 -1.1603e+2 # -Range: 0-300 Lu+3 + HPO4-2 + H+ = LuH2PO4+2 -llnl_gamma 4.5 log_k 9.595 - -delta_H -23.786 kJ/mol # Calculated enthalpy of reaction LuH2PO4+2 -# Enthalpy of formation: -482.4 kcal/mol + -delta_H -23.786 kJ/mol # Calculated enthalpy of reaction LuH2PO4+2 +# Enthalpy of formation: -482.4 kcal/mol -analytic 9.4223e+1 6.1797e-2 1.1102e+3 -4.3131e+1 1.7296e+1 # -Range: 0-300 Lu+3 + HCO3- = LuHCO3+2 -llnl_gamma 4.5 log_k 1.919 - -delta_H 1.66523 kJ/mol # Calculated enthalpy of reaction LuHCO3+2 -# Enthalpy of formation: -332.4 kcal/mol + -delta_H 1.66523 kJ/mol # Calculated enthalpy of reaction LuHCO3+2 +# Enthalpy of formation: -332.4 kcal/mol -analytic 2.3187e+1 2.9604e-2 8.1268e+2 -1.3252e+1 1.2674e+1 # -Range: 0-300 Lu+3 + HPO4-2 = LuHPO4+ -llnl_gamma 4 log_k 6 - -delta_H 0 # Not possible to calculate enthalpy of reaction LuHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction LuHPO4+ +# Enthalpy of formation: -0 kcal/mol NO3- + Lu+3 = LuNO3+2 -llnl_gamma 4.5 log_k 0.5813 - -delta_H -41.7187 kJ/mol # Calculated enthalpy of reaction LuNO3+2 -# Enthalpy of formation: -227.3 kcal/mol + -delta_H -41.7187 kJ/mol # Calculated enthalpy of reaction LuNO3+2 +# Enthalpy of formation: -227.3 kcal/mol -analytic 1.7412e+0 2.3703e-2 3.2605e+3 -7.7334e+0 5.0876e+1 # -Range: 0-300 Lu+3 + H2O = LuO+ + 2 H+ -llnl_gamma 4 log_k -15.3108 - -delta_H 99.6503 kJ/mol # Calculated enthalpy of reaction LuO+ -# Enthalpy of formation: -212.4 kcal/mol + -delta_H 99.6503 kJ/mol # Calculated enthalpy of reaction LuO+ +# Enthalpy of formation: -212.4 kcal/mol -analytic 1.5946e+2 2.6603e-2 -1.2215e+4 -5.7276e+1 -1.9065e+2 # -Range: 0-300 2 H2O + Lu+3 = LuO2- + 4 H+ -llnl_gamma 4 log_k -31.9411 - -delta_H 258.713 kJ/mol # Calculated enthalpy of reaction LuO2- -# Enthalpy of formation: -242.7 kcal/mol + -delta_H 258.713 kJ/mol # Calculated enthalpy of reaction LuO2- +# Enthalpy of formation: -242.7 kcal/mol -analytic 1.1522e+2 5.0221e-3 -1.6847e+4 -3.7244e+1 -2.6292e+2 # -Range: 0-300 2 H2O + Lu+3 = LuO2H + 3 H+ -llnl_gamma 3 log_k -23.878 - -delta_H 206.832 kJ/mol # Calculated enthalpy of reaction LuO2H -# Enthalpy of formation: -255.1 kcal/mol + -delta_H 206.832 kJ/mol # Calculated enthalpy of reaction LuO2H +# Enthalpy of formation: -255.1 kcal/mol -analytic 2.8768e+2 4.2338e-2 -2.0443e+4 -1.033e+2 -3.1907e+2 # -Range: 0-300 Lu+3 + H2O = LuOH+2 + H+ -llnl_gamma 4.5 log_k -7.6143 - -delta_H 72.0359 kJ/mol # Calculated enthalpy of reaction LuOH+2 -# Enthalpy of formation: -219 kcal/mol + -delta_H 72.0359 kJ/mol # Calculated enthalpy of reaction LuOH+2 +# Enthalpy of formation: -219 kcal/mol -analytic 4.2937e+1 9.2421e-3 -4.9953e+3 -1.4769e+1 -7.796e+1 # -Range: 0-300 Lu+3 + HPO4-2 = LuPO4 + H+ -llnl_gamma 3 log_k 0.6782 - -delta_H 0 # Not possible to calculate enthalpy of reaction LuPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction LuPO4 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Lu+3 = LuSO4+ -llnl_gamma 4 log_k 3.5697 - -delta_H 19.5393 kJ/mol # Calculated enthalpy of reaction LuSO4+ -# Enthalpy of formation: -380.63 kcal/mol + -delta_H 19.5393 kJ/mol # Calculated enthalpy of reaction LuSO4+ +# Enthalpy of formation: -380.63 kcal/mol -analytic 3.0108e+2 8.5238e-2 -8.8411e+3 -1.185e+2 -1.3805e+2 # -Range: 0-300 2 HAcetate + Mg+2 = Mg(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -7.473 - -delta_H -23.8195 kJ/mol # Calculated enthalpy of reaction Mg(Acetate)2 -# Enthalpy of formation: -349.26 kcal/mol + -delta_H -23.8195 kJ/mol # Calculated enthalpy of reaction Mg(Acetate)2 +# Enthalpy of formation: -349.26 kcal/mol -analytic -4.3954e+1 -3.1842e-4 -1.2033e+3 1.3556e+1 6.3058e+5 # -Range: 0-300 4 Mg+2 + 4 H2O = Mg4(OH)4+4 + 4 H+ -llnl_gamma 5.5 log_k -39.75 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mg4(OH)4+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Mg4(OH)4+4 +# Enthalpy of formation: -0 kcal/mol Mg+2 + H2O + B(OH)3 = MgB(OH)4+ + H+ -llnl_gamma 4 log_k -7.3467 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgB(OH)4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MgB(OH)4+ +# Enthalpy of formation: -0 kcal/mol Mg+2 + HAcetate = MgAcetate+ + H+ -llnl_gamma 4 log_k -3.4781 - -delta_H -8.42239 kJ/mol # Calculated enthalpy of reaction MgAcetate+ -# Enthalpy of formation: -229.48 kcal/mol + -delta_H -8.42239 kJ/mol # Calculated enthalpy of reaction MgAcetate+ +# Enthalpy of formation: -229.48 kcal/mol -analytic -2.3548e+1 -1.6071e-3 -4.2228e+2 7.7009e+0 2.5981e+5 # -Range: 0-300 Mg+2 + HCO3- = MgCO3 + H+ -llnl_gamma 3 log_k -7.3499 - -delta_H 23.8279 kJ/mol # Calculated enthalpy of reaction MgCO3 -# Enthalpy of formation: -270.57 kcal/mol + -delta_H 23.8279 kJ/mol # Calculated enthalpy of reaction MgCO3 +# Enthalpy of formation: -270.57 kcal/mol -analytic 2.3465e+2 5.5538e-2 -8.3947e+3 -9.3104e+1 -1.3106e+2 # -Range: 0-300 Mg+2 + Cl- = MgCl+ -llnl_gamma 4 log_k -0.1349 - -delta_H -0.58576 kJ/mol # Calculated enthalpy of reaction MgCl+ -# Enthalpy of formation: -151.44 kcal/mol + -delta_H -0.58576 kJ/mol # Calculated enthalpy of reaction MgCl+ +# Enthalpy of formation: -151.44 kcal/mol -analytic 4.3363e+1 3.2858e-2 1.1878e+2 -2.1688e+1 1.8403e+0 # -Range: 0-300 Mg+2 + F- = MgF+ -llnl_gamma 4 log_k 1.3524 - -delta_H 2.37233 kJ/mol # Calculated enthalpy of reaction MgF+ -# Enthalpy of formation: -190.95 kcal/mol + -delta_H 2.37233 kJ/mol # Calculated enthalpy of reaction MgF+ +# Enthalpy of formation: -190.95 kcal/mol -analytic 6.4311e+1 3.5184e-2 -7.3241e+2 -2.8678e+1 -1.1448e+1 # -Range: 0-300 Mg+2 + HPO4-2 + H+ = MgH2PO4+ -llnl_gamma 4 log_k 1.66 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgH2PO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MgH2PO4+ +# Enthalpy of formation: -0 kcal/mol Mg+2 + HCO3- = MgHCO3+ -llnl_gamma 4 log_k 1.0357 - -delta_H 2.15476 kJ/mol # Calculated enthalpy of reaction MgHCO3+ -# Enthalpy of formation: -275.75 kcal/mol + -delta_H 2.15476 kJ/mol # Calculated enthalpy of reaction MgHCO3+ +# Enthalpy of formation: -275.75 kcal/mol -analytic 3.8459e+1 3.0076e-2 9.8068e+1 -1.8869e+1 1.5187e+0 # -Range: 0-300 Mg+2 + HPO4-2 = MgHPO4 -llnl_gamma 3 log_k 2.91 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgHPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MgHPO4 +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Mg+2 = MgP2O7-2 + H2O -llnl_gamma 4 log_k 3.4727 - -delta_H 38.5451 kJ/mol # Calculated enthalpy of reaction MgP2O7-2 -# Enthalpy of formation: -2725.74 kJ/mol + -delta_H 38.5451 kJ/mol # Calculated enthalpy of reaction MgP2O7-2 +# Enthalpy of formation: -2725.74 kJ/mol -analytic 4.8038e+2 1.253e-1 -1.5175e+4 -1.8724e+2 -2.3693e+2 # -Range: 0-300 Mg+2 + HPO4-2 = MgPO4- + H+ -llnl_gamma 4 log_k -5.7328 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgPO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MgPO4- +# Enthalpy of formation: -0 kcal/mol SO4-2 + Mg+2 = MgSO4 -llnl_gamma 3 log_k 2.4117 - -delta_H 19.6051 kJ/mol # Calculated enthalpy of reaction MgSO4 -# Enthalpy of formation: -1355.96 kJ/mol + -delta_H 19.6051 kJ/mol # Calculated enthalpy of reaction MgSO4 +# Enthalpy of formation: -1355.96 kJ/mol -analytic 1.7994e+2 6.4715e-2 -4.7314e+3 -7.3123e+1 -8.0408e+1 # -Range: 0-200 2 HAcetate + Mn+2 = Mn(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -7.4547 - -delta_H -11.4893 kJ/mol # Calculated enthalpy of reaction Mn(Acetate)2 -# Enthalpy of formation: -287.67 kcal/mol + -delta_H -11.4893 kJ/mol # Calculated enthalpy of reaction Mn(Acetate)2 +# Enthalpy of formation: -287.67 kcal/mol -analytic -9.0558e-1 5.9656e-3 -4.3531e+3 -1.1063e+0 8.0323e+5 # -Range: 0-300 3 HAcetate + Mn+2 = Mn(Acetate)3- + 3 H+ -llnl_gamma 4 log_k -11.8747 - -delta_H -30.3591 kJ/mol # Calculated enthalpy of reaction Mn(Acetate)3- -# Enthalpy of formation: -408.28 kcal/mol + -delta_H -30.3591 kJ/mol # Calculated enthalpy of reaction Mn(Acetate)3- +# Enthalpy of formation: -408.28 kcal/mol -analytic -3.8531e+0 -9.914e-3 -1.2065e+4 5.1424e+0 2.0175e+6 # -Range: 0-300 2 NO3- + Mn+2 = Mn(NO3)2 -llnl_gamma 3 log_k 0.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(NO3)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(NO3)2 +# Enthalpy of formation: -0 kcal/mol 2 H2O + Mn+2 = Mn(OH)2 + 2 H+ -llnl_gamma 3 log_k -22.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)2 +# Enthalpy of formation: -0 kcal/mol 3 H2O + Mn+2 = Mn(OH)3- + 3 H+ -llnl_gamma 4 log_k -34.2278 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)3- +# Enthalpy of formation: -0 kcal/mol 4 H2O + Mn+2 = Mn(OH)4-2 + 4 H+ -llnl_gamma 4 log_k -48.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)4-2 +# Enthalpy of formation: -0 kcal/mol 3 H2O + 2 Mn+2 = Mn2(OH)3+ + 3 H+ -llnl_gamma 4 log_k -23.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn2(OH)3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn2(OH)3+ +# Enthalpy of formation: -0 kcal/mol 2 Mn+2 + H2O = Mn2OH+3 + H+ -llnl_gamma 5 log_k -10.56 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn2OH+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn2OH+3 +# Enthalpy of formation: -0 kcal/mol Mn+2 + HAcetate = MnAcetate+ + H+ -llnl_gamma 4 log_k -3.5404 - -delta_H -3.07942 kJ/mol # Calculated enthalpy of reaction MnAcetate+ -# Enthalpy of formation: -169.56 kcal/mol + -delta_H -3.07942 kJ/mol # Calculated enthalpy of reaction MnAcetate+ +# Enthalpy of formation: -169.56 kcal/mol -analytic -1.4061e+1 1.8149e-3 -8.6438e+2 4.0354e+0 2.5831e+5 # -Range: 0-300 Mn+2 + HCO3- = MnCO3 + H+ -llnl_gamma 3 log_k -5.8088 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnCO3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnCO3 +# Enthalpy of formation: -0 kcal/mol Mn+2 + Cl- = MnCl+ -llnl_gamma 4 log_k 0.3013 - -delta_H 18.3134 kJ/mol # Calculated enthalpy of reaction MnCl+ -# Enthalpy of formation: -88.28 kcal/mol + -delta_H 18.3134 kJ/mol # Calculated enthalpy of reaction MnCl+ +# Enthalpy of formation: -88.28 kcal/mol -analytic 8.7072e+1 4.0361e-2 -2.1786e+3 -3.6966e+1 -3.4022e+1 # -Range: 0-300 3 Cl- + Mn+2 = MnCl3- -llnl_gamma 4 log_k -0.3324 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnCl3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnCl3- +# Enthalpy of formation: -0 kcal/mol Mn+2 + F- = MnF+ -llnl_gamma 4 log_k 1.43 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnF+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnF+ +# Enthalpy of formation: -0 kcal/mol Mn+2 + HPO4-2 + H+ = MnH2PO4+ -llnl_gamma 4 log_k 8.5554 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnH2PO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnH2PO4+ +# Enthalpy of formation: -0 kcal/mol Mn+2 + HCO3- = MnHCO3+ -llnl_gamma 4 log_k 0.8816 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnHCO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnHCO3+ +# Enthalpy of formation: -0 kcal/mol Mn+2 + HPO4-2 = MnHPO4 -llnl_gamma 3 log_k 3.58 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnHPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnHPO4 +# Enthalpy of formation: -0 kcal/mol NO3- + Mn+2 = MnNO3+ -llnl_gamma 4 log_k 0.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnNO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnNO3+ +# Enthalpy of formation: -0 kcal/mol 1.5 H2O + 1.25 O2 + Mn+2 = MnO4- + 3 H+ -llnl_gamma 3.5 log_k -20.2963 - -delta_H 123.112 kJ/mol # Calculated enthalpy of reaction MnO4- -# Enthalpy of formation: -129.4 kcal/mol + -delta_H 123.112 kJ/mol # Calculated enthalpy of reaction MnO4- +# Enthalpy of formation: -129.4 kcal/mol -analytic 1.8544e+1 -1.7618e-2 -6.7332e+3 -3.3193e+0 -2.4924e+5 # -Range: 0-300 Mn+2 + H2O = MnOH+ + H+ -llnl_gamma 4 log_k -10.59 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnOH+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnOH+ +# Enthalpy of formation: -0 kcal/mol Mn+2 + HPO4-2 = MnPO4- + H+ -llnl_gamma 4 log_k -5.1318 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnPO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnPO4- +# Enthalpy of formation: -0 kcal/mol SO4-2 + Mn+2 = MnSO4 -llnl_gamma 3 log_k 2.3529 - -delta_H 14.1168 kJ/mol # Calculated enthalpy of reaction MnSO4 -# Enthalpy of formation: -266.75 kcal/mol + -delta_H 14.1168 kJ/mol # Calculated enthalpy of reaction MnSO4 +# Enthalpy of formation: -266.75 kcal/mol -analytic 2.9448e+2 8.5294e-2 -8.1366e+3 -1.1729e+2 -1.2705e+2 # -Range: 0-300 SeO4-2 + Mn+2 = MnSeO4 -llnl_gamma 3 log_k 2.43 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnSeO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnSeO4 +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + NH3 = NH4(Acetate)2- + H+ -llnl_gamma 4 log_k -0.1928 - -delta_H -56.735 kJ/mol # Calculated enthalpy of reaction NH4(Acetate)2- -# Enthalpy of formation: -265.2 kcal/mol + -delta_H -56.735 kJ/mol # Calculated enthalpy of reaction NH4(Acetate)2- +# Enthalpy of formation: -265.2 kcal/mol -analytic 3.7137e+1 -1.2242e-2 -8.4764e+3 -8.4308e+0 1.3883e+6 # -Range: 0-300 NH3 + H+ = NH4+ -llnl_gamma 2.5 log_k 9.241 - -delta_H -51.9234 kJ/mol # Calculated enthalpy of reaction NH4+ -# Enthalpy of formation: -31.85 kcal/mol + -delta_H -51.9234 kJ/mol # Calculated enthalpy of reaction NH4+ +# Enthalpy of formation: -31.85 kcal/mol -analytic -1.4527e+1 -5.0518e-3 3.0447e+3 6.0865e+0 4.7515e+1 # -Range: 0-300 NH3 + HAcetate = NH4Acetate -llnl_gamma 3 log_k 4.6964 - -delta_H -48.911 kJ/mol # Calculated enthalpy of reaction NH4Acetate -# Enthalpy of formation: -147.23 kcal/mol + -delta_H -48.911 kJ/mol # Calculated enthalpy of reaction NH4Acetate +# Enthalpy of formation: -147.23 kcal/mol -analytic 1.4104e+1 -4.3664e-3 -1.0746e+3 -3.6999e+0 4.1428e+5 # -Range: 0-300 SO4-2 + NH3 + H+ = NH4SO4- -llnl_gamma 4 log_k 0.94 - -delta_H 0 # Not possible to calculate enthalpy of reaction NH4SO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NH4SO4- +# Enthalpy of formation: -0 kcal/mol Sb(OH)3 + NH3 = NH4SbO2 + H2O -llnl_gamma 3 log_k -2.5797 - -delta_H 0 # Not possible to calculate enthalpy of reaction NH4SbO2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NH4SbO2 +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Na+ = Na(Acetate)2- + 2 H+ -llnl_gamma 4 log_k -9.9989 - -delta_H -11.5771 kJ/mol # Calculated enthalpy of reaction Na(Acetate)2- -# Enthalpy of formation: -292.4 kcal/mol + -delta_H -11.5771 kJ/mol # Calculated enthalpy of reaction Na(Acetate)2- +# Enthalpy of formation: -292.4 kcal/mol -analytic -2.9232e+2 -5.5708e-2 9.6601e+3 1.0772e+2 1.5082e+2 # -Range: 0-300 O_phthalate-2 + Na+ = Na(O_phthalate)- -llnl_gamma 4 log_k 0.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na(O_phthalate)- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Na(O_phthalate)- +# Enthalpy of formation: -0 kcal/mol 2 Na+ + 2 HPO4-2 = Na2P2O7-2 + H2O -llnl_gamma 4 log_k 0.4437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na2P2O7-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Na2P2O7-2 +# Enthalpy of formation: -0 kcal/mol 2 H2O + Na+ + Al+3 = NaAlO2 + 4 H+ -llnl_gamma 3 log_k -23.6266 - -delta_H 190.326 kJ/mol # Calculated enthalpy of reaction NaAlO2 -# Enthalpy of formation: -277.259 kcal/mol + -delta_H 190.326 kJ/mol # Calculated enthalpy of reaction NaAlO2 +# Enthalpy of formation: -277.259 kcal/mol -analytic 1.2288e+2 3.4921e-2 -1.2808e+4 -4.6046e+1 -1.999e+2 # -Range: 0-300 Na+ + H2O + B(OH)3 = NaB(OH)4 + H+ -llnl_gamma 3 log_k -8.974 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaB(OH)4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NaB(OH)4 +# Enthalpy of formation: -0 kcal/mol Na+ + Br- = NaBr -llnl_gamma 3 log_k -1.3568 - -delta_H 6.87431 kJ/mol # Calculated enthalpy of reaction NaBr -# Enthalpy of formation: -84.83 kcal/mol + -delta_H 6.87431 kJ/mol # Calculated enthalpy of reaction NaBr +# Enthalpy of formation: -84.83 kcal/mol -analytic 1.1871e+2 3.7271e-2 -3.4061e+3 -4.8386e+1 -5.3184e+1 # -Range: 0-300 Na+ + HAcetate = NaAcetate + H+ -llnl_gamma 3 log_k -4.8606 - -delta_H -0.029288 kJ/mol # Calculated enthalpy of reaction NaAcetate -# Enthalpy of formation: -173.54 kcal/mol + -delta_H -0.029288 kJ/mol # Calculated enthalpy of reaction NaAcetate +# Enthalpy of formation: -173.54 kcal/mol -analytic 6.4833e+0 -1.8739e-3 -2.0902e+3 -2.6121e+0 2.399e+5 # -Range: 0-300 Na+ + HCO3- = NaCO3- + H+ -llnl_gamma 4 log_k -9.8144 - -delta_H -5.6521 kJ/mol # Calculated enthalpy of reaction NaCO3- -# Enthalpy of formation: -935.885 kJ/mol + -delta_H -5.6521 kJ/mol # Calculated enthalpy of reaction NaCO3- +# Enthalpy of formation: -935.885 kJ/mol -analytic 1.6939e+2 5.3122e-4 -7.6768e+3 -6.2078e+1 -1.1984e+2 # -Range: 0-300 Na+ + Cl- = NaCl -llnl_gamma 3 log_k -0.777 - -delta_H 5.21326 kJ/mol # Calculated enthalpy of reaction NaCl -# Enthalpy of formation: -96.12 kcal/mol + -delta_H 5.21326 kJ/mol # Calculated enthalpy of reaction NaCl +# Enthalpy of formation: -96.12 kcal/mol -analytic 1.1398e+2 3.6386e-2 -3.0847e+3 -4.6571e+1 -4.8167e+1 # -Range: 0-300 Na+ + F- = NaF -llnl_gamma 3 log_k -0.9976 - -delta_H 7.20903 kJ/mol # Calculated enthalpy of reaction NaF -# Enthalpy of formation: -135.86 kcal/mol + -delta_H 7.20903 kJ/mol # Calculated enthalpy of reaction NaF +# Enthalpy of formation: -135.86 kcal/mol -analytic 1.2507e+2 3.8619e-2 -3.5436e+3 -5.0787e+1 -5.5332e+1 # -Range: 0-300 Na+ + HCO3- = NaHCO3 -llnl_gamma 3 log_k 0.1541 - -delta_H -13.7741 kJ/mol # Calculated enthalpy of reaction NaHCO3 -# Enthalpy of formation: -944.007 kJ/mol + -delta_H -13.7741 kJ/mol # Calculated enthalpy of reaction NaHCO3 +# Enthalpy of formation: -944.007 kJ/mol -analytic -9.0668e+1 -2.9866e-2 2.7947e+3 3.6515e+1 4.7489e+1 # -Range: 0-200 2 HPO4-2 + Na+ + H+ = NaHP2O7-2 + H2O -llnl_gamma 4 log_k 6.8498 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaHP2O7-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NaHP2O7-2 +# Enthalpy of formation: -0 kcal/mol Na+ + HPO4-2 = NaHPO4- -llnl_gamma 4 log_k 0.92 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaHPO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NaHPO4- +# Enthalpy of formation: -0 kcal/mol SiO2 + Na+ + H2O = NaHSiO3 + H+ -llnl_gamma 3 log_k -8.304 - -delta_H 11.6524 kJ/mol # Calculated enthalpy of reaction NaHSiO3 -# Enthalpy of formation: -332.74 kcal/mol + -delta_H 11.6524 kJ/mol # Calculated enthalpy of reaction NaHSiO3 +# Enthalpy of formation: -332.74 kcal/mol -analytic 3.6045e+1 -9.0411e-3 -6.6605e+3 -1.0447e+1 5.8415e+5 # -Range: 0-300 Na+ + I- = NaI -llnl_gamma 3 log_k -1.54 - -delta_H 7.33455 kJ/mol # Calculated enthalpy of reaction NaI -# Enthalpy of formation: -69.28 kcal/mol + -delta_H 7.33455 kJ/mol # Calculated enthalpy of reaction NaI +# Enthalpy of formation: -69.28 kcal/mol -analytic 9.8742e+1 3.2917e-2 -2.7576e+3 -4.0748e+1 -4.3058e+1 # -Range: 0-300 Na+ + H2O = NaOH + H+ -llnl_gamma 3 log_k -14.7948 - -delta_H 53.6514 kJ/mol # Calculated enthalpy of reaction NaOH -# Enthalpy of formation: -112.927 kcal/mol + -delta_H 53.6514 kJ/mol # Calculated enthalpy of reaction NaOH +# Enthalpy of formation: -112.927 kcal/mol -analytic 8.7326e+1 2.3555e-2 -5.477e+3 -3.6678e+1 -8.5489e+1 # -Range: 0-300 2 HPO4-2 + Na+ = NaP2O7-3 + H2O -llnl_gamma 4 log_k -1.4563 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaP2O7-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NaP2O7-3 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Na+ = NaSO4- -llnl_gamma 4 log_k 0.82 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaSO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NaSO4- +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Nd+3 = Nd(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -4.9771 - -delta_H -22.6354 kJ/mol # Calculated enthalpy of reaction Nd(Acetate)2+ -# Enthalpy of formation: -404.11 kcal/mol + -delta_H -22.6354 kJ/mol # Calculated enthalpy of reaction Nd(Acetate)2+ +# Enthalpy of formation: -404.11 kcal/mol -analytic -2.2128e+1 1.0975e-3 -7.1543e+2 5.8799e+0 4.1748e+5 # -Range: 0-300 3 HAcetate + Nd+3 = Nd(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -8.2976 - -delta_H -38.8694 kJ/mol # Calculated enthalpy of reaction Nd(Acetate)3 -# Enthalpy of formation: -524.09 kcal/mol + -delta_H -38.8694 kJ/mol # Calculated enthalpy of reaction Nd(Acetate)3 +# Enthalpy of formation: -524.09 kcal/mol -analytic -4.5726e+1 -2.6143e-3 5.9389e+2 1.2679e+1 4.332e+5 # -Range: 0-300 2 HCO3- + Nd+3 = Nd(CO3)2- + 2 H+ -llnl_gamma 4 log_k -8.0576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Nd+3 = Nd(HPO4)2- -llnl_gamma 4 log_k 9.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(HPO4)2- +# Enthalpy of formation: -0 kcal/mol # Redundant with NdO2- #4.0000 H2O + 1.0000 Nd+++ = Nd(OH)4- +4.0000 H+ # -llnl_gamma 4.0 # log_k -37.0803 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)4- -## Enthalpy of formation: -0 kcal/mol +# -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)4- +## Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Nd+3 = Nd(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -5.1437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Nd+3 = Nd(SO4)2- -llnl_gamma 4 log_k -255.7478 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(SO4)2- +# Enthalpy of formation: -0 kcal/mol 2 Nd+3 + 2 H2O = Nd2(OH)2+4 + 2 H+ -llnl_gamma 5.5 log_k -13.8902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol Nd+3 + HAcetate = NdAcetate+2 + H+ -llnl_gamma 4.5 log_k -2.0891 - -delta_H -12.0081 kJ/mol # Calculated enthalpy of reaction NdAcetate+2 -# Enthalpy of formation: -285.47 kcal/mol + -delta_H -12.0081 kJ/mol # Calculated enthalpy of reaction NdAcetate+2 +# Enthalpy of formation: -285.47 kcal/mol -analytic -1.6006e+1 4.1948e-4 -3.6469e+2 4.928e+0 2.5187e+5 # -Range: 0-300 Nd+3 + HCO3- = NdCO3+ + H+ -llnl_gamma 4 log_k -2.6256 - -delta_H 91.6212 kJ/mol # Calculated enthalpy of reaction NdCO3+ -# Enthalpy of formation: -309.5 kcal/mol + -delta_H 91.6212 kJ/mol # Calculated enthalpy of reaction NdCO3+ +# Enthalpy of formation: -309.5 kcal/mol -analytic 2.3399e+2 5.3454e-2 -7.0513e+3 -9.25e+1 -1.101e+2 # -Range: 0-300 Nd+3 + Cl- = NdCl+2 -llnl_gamma 4.5 log_k 0.3086 - -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction NdCl+2 -# Enthalpy of formation: -203 kcal/mol + -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction NdCl+2 +# Enthalpy of formation: -203 kcal/mol -analytic 9.4587e+1 3.9331e-2 -2.42e+3 -3.955e+1 -3.779e+1 # -Range: 0-300 2 Cl- + Nd+3 = NdCl2+ -llnl_gamma 4 log_k 0.0308 - -delta_H 20.3593 kJ/mol # Calculated enthalpy of reaction NdCl2+ -# Enthalpy of formation: -241.5 kcal/mol + -delta_H 20.3593 kJ/mol # Calculated enthalpy of reaction NdCl2+ +# Enthalpy of formation: -241.5 kcal/mol -analytic 2.584e+2 8.4118e-2 -7.2056e+3 -1.0477e+2 -1.1251e+2 # -Range: 0-300 3 Cl- + Nd+3 = NdCl3 -llnl_gamma 3 log_k -0.3203 - -delta_H 15.0582 kJ/mol # Calculated enthalpy of reaction NdCl3 -# Enthalpy of formation: -282.7 kcal/mol + -delta_H 15.0582 kJ/mol # Calculated enthalpy of reaction NdCl3 +# Enthalpy of formation: -282.7 kcal/mol -analytic 4.9362e+2 1.3485e-1 -1.4309e+4 -1.9645e+2 -2.2343e+2 # -Range: 0-300 4 Cl- + Nd+3 = NdCl4- -llnl_gamma 4 log_k -0.7447 - -delta_H -3.21331 kJ/mol # Calculated enthalpy of reaction NdCl4- -# Enthalpy of formation: -327 kcal/mol + -delta_H -3.21331 kJ/mol # Calculated enthalpy of reaction NdCl4- +# Enthalpy of formation: -327 kcal/mol -analytic 6.0548e+2 1.4227e-1 -1.8055e+4 -2.3765e+2 -2.8191e+2 # -Range: 0-300 Nd+3 + F- = NdF+2 -llnl_gamma 4.5 log_k 4.3687 - -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction NdF+2 -# Enthalpy of formation: -241.2 kcal/mol + -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction NdF+2 +# Enthalpy of formation: -241.2 kcal/mol -analytic 1.1461e+2 4.3014e-2 -3.2461e+3 -4.5326e+1 -5.0687e+1 # -Range: 0-300 2 F- + Nd+3 = NdF2+ -llnl_gamma 4 log_k 7.5646 - -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction NdF2+ -# Enthalpy of formation: -323.5 kcal/mol + -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction NdF2+ +# Enthalpy of formation: -323.5 kcal/mol -analytic 2.7901e+2 8.791e-2 -7.2424e+3 -1.1046e+2 -1.1309e+2 # -Range: 0-300 3 F- + Nd+3 = NdF3 -llnl_gamma 3 log_k 9.8809 - -delta_H -8.1588 kJ/mol # Calculated enthalpy of reaction NdF3 -# Enthalpy of formation: -408.9 kcal/mol + -delta_H -8.1588 kJ/mol # Calculated enthalpy of reaction NdF3 +# Enthalpy of formation: -408.9 kcal/mol -analytic 5.222e+2 1.4154e-1 -1.3697e+4 -2.0551e+2 -2.1388e+2 # -Range: 0-300 4 F- + Nd+3 = NdF4- -llnl_gamma 4 log_k 11.8307 - -delta_H -48.5344 kJ/mol # Calculated enthalpy of reaction NdF4- -# Enthalpy of formation: -498.7 kcal/mol + -delta_H -48.5344 kJ/mol # Calculated enthalpy of reaction NdF4- +# Enthalpy of formation: -498.7 kcal/mol -analytic 6.1972e+2 1.462e-1 -1.5869e+4 -2.4175e+2 -2.478e+2 # -Range: 0-300 Nd+3 + HPO4-2 + H+ = NdH2PO4+2 -llnl_gamma 4.5 log_k 9.5152 - -delta_H -15.736 kJ/mol # Calculated enthalpy of reaction NdH2PO4+2 -# Enthalpy of formation: -479.076 kcal/mol + -delta_H -15.736 kJ/mol # Calculated enthalpy of reaction NdH2PO4+2 +# Enthalpy of formation: -479.076 kcal/mol -analytic 1.245e+2 6.4953e-2 -4.0524e+2 -5.3728e+1 -6.3603e+0 # -Range: 0-300 Nd+3 + HCO3- = NdHCO3+2 -llnl_gamma 4.5 log_k 1.8457 - -delta_H 9.19643 kJ/mol # Calculated enthalpy of reaction NdHCO3+2 -# Enthalpy of formation: -329.2 kcal/mol + -delta_H 9.19643 kJ/mol # Calculated enthalpy of reaction NdHCO3+2 +# Enthalpy of formation: -329.2 kcal/mol -analytic 5.553e+1 3.3254e-2 -7.3859e+2 -2.469e+1 -1.1542e+1 # -Range: 0-300 Nd+3 + HPO4-2 = NdHPO4+ -llnl_gamma 4 log_k 5.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NdHPO4+ +# Enthalpy of formation: -0 kcal/mol Nd+3 + NO3- = NdNO3+2 -llnl_gamma 4.5 log_k 0.7902 - -delta_H -27.8529 kJ/mol # Calculated enthalpy of reaction NdNO3+2 -# Enthalpy of formation: -222.586 kcal/mol + -delta_H -27.8529 kJ/mol # Calculated enthalpy of reaction NdNO3+2 +# Enthalpy of formation: -222.586 kcal/mol -analytic 3.385e+1 2.7112e-2 1.4404e+3 -1.857e+1 2.2466e+1 # -Range: 0-300 Nd+3 + H2O = NdO+ + 2 H+ -llnl_gamma 4 log_k -17.0701 - -delta_H 116.386 kJ/mol # Calculated enthalpy of reaction NdO+ -# Enthalpy of formation: -207 kcal/mol + -delta_H 116.386 kJ/mol # Calculated enthalpy of reaction NdO+ +# Enthalpy of formation: -207 kcal/mol -analytic 1.8961e+2 3.0563e-2 -1.4153e+4 -6.8024e+1 -2.2089e+2 # -Range: 0-300 2 H2O + Nd+3 = NdO2- + 4 H+ -llnl_gamma 4 log_k -37.0721 - -delta_H 298.88 kJ/mol # Calculated enthalpy of reaction NdO2- -# Enthalpy of formation: -231.7 kcal/mol + -delta_H 298.88 kJ/mol # Calculated enthalpy of reaction NdO2- +# Enthalpy of formation: -231.7 kcal/mol -analytic 1.9606e+2 1.4784e-2 -2.1838e+4 -6.6399e+1 -3.4082e+2 # -Range: 0-300 2 H2O + Nd+3 = NdO2H + 3 H+ -llnl_gamma 3 log_k -26.3702 - -delta_H 230.681 kJ/mol # Calculated enthalpy of reaction NdO2H -# Enthalpy of formation: -248 kcal/mol + -delta_H 230.681 kJ/mol # Calculated enthalpy of reaction NdO2H +# Enthalpy of formation: -248 kcal/mol -analytic 3.4617e+2 4.5955e-2 -2.396e+4 -1.2361e+2 -3.7398e+2 # -Range: 0-300 Nd+3 + H2O = NdOH+2 + H+ -llnl_gamma 4.5 log_k -8.1274 - -delta_H 80.8223 kJ/mol # Calculated enthalpy of reaction NdOH+2 -# Enthalpy of formation: -215.5 kcal/mol + -delta_H 80.8223 kJ/mol # Calculated enthalpy of reaction NdOH+2 +# Enthalpy of formation: -215.5 kcal/mol -analytic 6.6963e+1 1.2182e-2 -6.2797e+3 -2.33e+1 -9.8008e+1 # -Range: 0-300 Nd+3 + HPO4-2 = NdPO4 + H+ -llnl_gamma 3 log_k -0.5218 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NdPO4 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Nd+3 = NdSO4+ -llnl_gamma 4 log_k 3.643 - -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction NdSO4+ -# Enthalpy of formation: -379.1 kcal/mol + -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction NdSO4+ +# Enthalpy of formation: -379.1 kcal/mol -analytic 3.0267e+2 8.5362e-2 -8.9211e+3 -1.1902e+2 -1.3929e+2 # -Range: 0-300 2 HAcetate + Ni+2 = Ni(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -7.1908 - -delta_H -25.8571 kJ/mol # Calculated enthalpy of reaction Ni(Acetate)2 -# Enthalpy of formation: -251.28 kcal/mol + -delta_H -25.8571 kJ/mol # Calculated enthalpy of reaction Ni(Acetate)2 +# Enthalpy of formation: -251.28 kcal/mol -analytic -2.966e+1 1.0643e-3 -1.006e+3 7.9358e+0 5.2562e+5 # -Range: 0-300 3 HAcetate + Ni+2 = Ni(Acetate)3- + 3 H+ -llnl_gamma 4 log_k -11.3543 - -delta_H -53.6807 kJ/mol # Calculated enthalpy of reaction Ni(Acetate)3- -# Enthalpy of formation: -374.03 kcal/mol + -delta_H -53.6807 kJ/mol # Calculated enthalpy of reaction Ni(Acetate)3- +# Enthalpy of formation: -374.03 kcal/mol -analytic 5.085e+1 -8.2435e-3 -1.3049e+4 -1.541e+1 1.9704e+6 # -Range: 0-300 2 NH3 + Ni+2 = Ni(NH3)2+2 -llnl_gamma 4.5 log_k 5.0598 - -delta_H -29.7505 kJ/mol # Calculated enthalpy of reaction Ni(NH3)2+2 -# Enthalpy of formation: -246.398 kJ/mol + -delta_H -29.7505 kJ/mol # Calculated enthalpy of reaction Ni(NH3)2+2 +# Enthalpy of formation: -246.398 kJ/mol -analytic 1.0002e+2 5.2896e-3 -2.5967e+3 -3.5485e+1 -4.0548e+1 # -Range: 0-300 6 NH3 + Ni+2 = Ni(NH3)6+2 -llnl_gamma 4.5 log_k 8.7344 - -delta_H -88.0436 kJ/mol # Calculated enthalpy of reaction Ni(NH3)6+2 -# Enthalpy of formation: -630.039 kJ/mol + -delta_H -88.0436 kJ/mol # Calculated enthalpy of reaction Ni(NH3)6+2 +# Enthalpy of formation: -630.039 kJ/mol -analytic 1.9406e+2 -1.3467e-2 -5.2321e+3 -6.6168e+1 -8.1699e+1 # -Range: 0-300 2 NO3- + Ni+2 = Ni(NO3)2 -llnl_gamma 3 log_k 0.1899 - -delta_H -1.54153 kJ/mol # Calculated enthalpy of reaction Ni(NO3)2 -# Enthalpy of formation: -469.137 kJ/mol + -delta_H -1.54153 kJ/mol # Calculated enthalpy of reaction Ni(NO3)2 +# Enthalpy of formation: -469.137 kJ/mol -analytic -4.2544e+1 -1.0101e-2 1.3496e+3 1.6663e+1 2.2933e+1 # -Range: 0-200 2 H2O + Ni+2 = Ni(OH)2 + 2 H+ -llnl_gamma 3 log_k -19.9902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni(OH)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni(OH)2 +# Enthalpy of formation: -0 kcal/mol 3 H2O + Ni+2 = Ni(OH)3- + 3 H+ -llnl_gamma 4 log_k -30.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni(OH)3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni(OH)3- +# Enthalpy of formation: -0 kcal/mol 2 Ni+2 + H2O = Ni2OH+3 + H+ -llnl_gamma 5 log_k -10.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni2OH+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni2OH+3 +# Enthalpy of formation: -0 kcal/mol 4 Ni+2 + 4 H2O = Ni4(OH)4+4 + 4 H+ -llnl_gamma 5.5 log_k -27.6803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni4(OH)4+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni4(OH)4+4 +# Enthalpy of formation: -0 kcal/mol Ni+2 + Br- = NiBr+ -llnl_gamma 4 log_k -0.37 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiBr+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NiBr+ +# Enthalpy of formation: -0 kcal/mol Ni+2 + HAcetate = NiAcetate+ + H+ -llnl_gamma 4 log_k -3.3278 - -delta_H -10.2508 kJ/mol # Calculated enthalpy of reaction NiAcetate+ -# Enthalpy of formation: -131.45 kcal/mol + -delta_H -10.2508 kJ/mol # Calculated enthalpy of reaction NiAcetate+ +# Enthalpy of formation: -131.45 kcal/mol -analytic -3.311e+0 1.6895e-3 -1.0556e+3 2.7168e-2 2.635e+5 # -Range: 0-300 Ni+2 + Cl- = NiCl+ -llnl_gamma 4 log_k -0.9962 - -delta_H 5.99567 kJ/mol # Calculated enthalpy of reaction NiCl+ -# Enthalpy of formation: -51.4 kcal/mol + -delta_H 5.99567 kJ/mol # Calculated enthalpy of reaction NiCl+ +# Enthalpy of formation: -51.4 kcal/mol -analytic 9.537e+1 3.8521e-2 -2.1746e+3 -4.0629e+1 -3.3961e+1 # -Range: 0-300 2 HPO4-2 + Ni+2 + H+ = NiHP2O7- + H2O -llnl_gamma 4 log_k 9.268 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiHP2O7- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NiHP2O7- +# Enthalpy of formation: -0 kcal/mol Ni+2 + NO3- = NiNO3+ -llnl_gamma 4 log_k 0.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiNO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NiNO3+ +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Ni+2 = NiP2O7-2 + H2O -llnl_gamma 4 log_k 3.1012 - -delta_H 9.68819 kJ/mol # Calculated enthalpy of reaction NiP2O7-2 -# Enthalpy of formation: -2342.61 kJ/mol + -delta_H 9.68819 kJ/mol # Calculated enthalpy of reaction NiP2O7-2 +# Enthalpy of formation: -2342.61 kJ/mol -analytic 4.6809e+2 1.0985e-1 -1.431e+4 -1.8173e+2 -2.2344e+2 # -Range: 0-300 SO4-2 + Ni+2 = NiSO4 -llnl_gamma 3 log_k 2.1257 - -delta_H 2.36814 kJ/mol # Calculated enthalpy of reaction NiSO4 -# Enthalpy of formation: -229.734 kcal/mol + -delta_H 2.36814 kJ/mol # Calculated enthalpy of reaction NiSO4 +# Enthalpy of formation: -229.734 kcal/mol -analytic 6.1187e+1 2.4211e-2 -1.218e+3 -2.513e+1 -2.0705e+1 # -Range: 0-200 SeO4-2 + Ni+2 = NiSeO4 -llnl_gamma 3 log_k 2.67 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiSeO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NiSeO4 +# Enthalpy of formation: -0 kcal/mol 5 HCO3- + Np+4 = Np(CO3)5-6 + 5 H+ -llnl_gamma 4 log_k -13.344 - -delta_H 92.7067 kJ/mol # Calculated enthalpy of reaction Np(CO3)5-6 -# Enthalpy of formation: -935.22 kcal/mol + -delta_H 92.7067 kJ/mol # Calculated enthalpy of reaction Np(CO3)5-6 +# Enthalpy of formation: -935.22 kcal/mol -analytic 6.3005e+2 2.3388e-1 -1.8328e+4 -2.6334e+2 -2.8618e+2 # -Range: 0-300 2 HPO4-2 + 2 H+ + Np+3 = Np(H2PO4)2+ -llnl_gamma 4 log_k 3.7 - -delta_H -1.55258 kJ/mol # Calculated enthalpy of reaction Np(H2PO4)2+ -# Enthalpy of formation: -743.981 kcal/mol + -delta_H -1.55258 kJ/mol # Calculated enthalpy of reaction Np(H2PO4)2+ +# Enthalpy of formation: -743.981 kcal/mol -analytic 7.8161e+2 2.8446e-1 -1.233e+4 -3.3194e+2 -2.1056e+2 # -Range: 25-150 3 HPO4-2 + 3 H+ + Np+3 = Np(H2PO4)3 -llnl_gamma 3 log_k 5.6 - -delta_H -21.8575 kJ/mol # Calculated enthalpy of reaction Np(H2PO4)3 -# Enthalpy of formation: -1057.65 kcal/mol + -delta_H -21.8575 kJ/mol # Calculated enthalpy of reaction Np(H2PO4)3 +# Enthalpy of formation: -1057.65 kcal/mol -analytic 1.515e+3 4.4939e-1 -3.2766e+4 -6.1975e+2 -5.5934e+2 # -Range: 25-150 2 HPO4-2 + Np+4 = Np(HPO4)2 -llnl_gamma 3 log_k 23.7 - -delta_H -35.24 kJ/mol # Calculated enthalpy of reaction Np(HPO4)2 -# Enthalpy of formation: -758.94 kcal/mol + -delta_H -35.24 kJ/mol # Calculated enthalpy of reaction Np(HPO4)2 +# Enthalpy of formation: -758.94 kcal/mol -analytic 4.7722e+2 2.1099e-1 -4.7296e+3 -2.0229e+2 -8.0831e+1 # -Range: 25-150 3 HPO4-2 + Np+4 = Np(HPO4)3-2 -llnl_gamma 4 log_k 33.4 - -delta_H -44.9093 kJ/mol # Calculated enthalpy of reaction Np(HPO4)3-2 -# Enthalpy of formation: -1070.07 kcal/mol + -delta_H -44.9093 kJ/mol # Calculated enthalpy of reaction Np(HPO4)3-2 +# Enthalpy of formation: -1070.07 kcal/mol -analytic -1.5951e+3 -3.6579e-1 5.1343e+4 6.3262e+2 8.7619e+2 # -Range: 25-150 4 HPO4-2 + Np+4 = Np(HPO4)4-4 -llnl_gamma 4 log_k 43.2 - -delta_H -67.0803 kJ/mol # Calculated enthalpy of reaction Np(HPO4)4-4 -# Enthalpy of formation: -1384.18 kcal/mol + -delta_H -67.0803 kJ/mol # Calculated enthalpy of reaction Np(HPO4)4-4 +# Enthalpy of formation: -1384.18 kcal/mol -analytic 5.8359e+3 1.5194e+0 -1.6349e+5 -2.3025e+3 -2.7903e+3 # -Range: 25-150 5 HPO4-2 + Np+4 = Np(HPO4)5-6 -llnl_gamma 4 log_k 52 - -delta_H -83.5401 kJ/mol # Calculated enthalpy of reaction Np(HPO4)5-6 -# Enthalpy of formation: -1696.93 kcal/mol + -delta_H -83.5401 kJ/mol # Calculated enthalpy of reaction Np(HPO4)5-6 +# Enthalpy of formation: -1696.93 kcal/mol -analytic -1.8082e+3 -2.0018e-1 7.5155e+4 6.74e+2 1.2824e+3 # -Range: 25-150 2 H2O + Np+4 = Np(OH)2+2 + 2 H+ -llnl_gamma 4.5 log_k -2.8 - -delta_H 77.0669 kJ/mol # Calculated enthalpy of reaction Np(OH)2+2 -# Enthalpy of formation: -251.102 kcal/mol + -delta_H 77.0669 kJ/mol # Calculated enthalpy of reaction Np(OH)2+2 +# Enthalpy of formation: -251.102 kcal/mol -analytic 2.9299e+3 6.5812e-1 -9.5085e+4 -1.1356e+3 -1.6227e+3 # -Range: 25-150 3 H2O + Np+4 = Np(OH)3+ + 3 H+ -llnl_gamma 4 log_k -5.8 - -delta_H 99.5392 kJ/mol # Calculated enthalpy of reaction Np(OH)3+ -# Enthalpy of formation: -314.048 kcal/mol + -delta_H 99.5392 kJ/mol # Calculated enthalpy of reaction Np(OH)3+ +# Enthalpy of formation: -314.048 kcal/mol -analytic -4.7723e+3 -1.181e+0 1.3545e+5 1.885e+3 2.3117e+3 # -Range: 25-150 4 H2O + Np+4 = Np(OH)4 + 4 H+ -llnl_gamma 3 log_k -9.6 - -delta_H 109.585 kJ/mol # Calculated enthalpy of reaction Np(OH)4 -# Enthalpy of formation: -379.964 kcal/mol + -delta_H 109.585 kJ/mol # Calculated enthalpy of reaction Np(OH)4 +# Enthalpy of formation: -379.964 kcal/mol -analytic -5.5904e+3 -1.3639e+0 1.6112e+5 2.2013e+3 2.7498e+3 # -Range: 25-150 2 SO4-2 + Np+4 = Np(SO4)2 -llnl_gamma 3 log_k 9.9 - -delta_H 40.005 kJ/mol # Calculated enthalpy of reaction Np(SO4)2 -# Enthalpy of formation: -558.126 kcal/mol + -delta_H 40.005 kJ/mol # Calculated enthalpy of reaction Np(SO4)2 +# Enthalpy of formation: -558.126 kcal/mol -analytic -9.0765e+2 -1.8494e-1 2.7951e+4 3.5521e+2 4.7702e+2 # -Range: 25-150 Np+4 + Cl- = NpCl+3 -llnl_gamma 5 log_k 0.2 - -delta_H 20.3737 kJ/mol # Calculated enthalpy of reaction NpCl+3 -# Enthalpy of formation: -167.951 kcal/mol + -delta_H 20.3737 kJ/mol # Calculated enthalpy of reaction NpCl+3 +# Enthalpy of formation: -167.951 kcal/mol -analytic 8.3169e+2 2.6267e-1 -2.1618e+4 -3.3838e+2 -3.6898e+2 # -Range: 25-150 2 Cl- + Np+4 = NpCl2+2 -llnl_gamma 4.5 log_k -0.1 - -delta_H 94.5853 kJ/mol # Calculated enthalpy of reaction NpCl2+2 -# Enthalpy of formation: -190.147 kcal/mol + -delta_H 94.5853 kJ/mol # Calculated enthalpy of reaction NpCl2+2 +# Enthalpy of formation: -190.147 kcal/mol -analytic -1.5751e+3 -3.8759e-1 4.2054e+4 6.2619e+2 7.1777e+2 # -Range: 25-150 Np+4 + F- = NpF+3 -llnl_gamma 5 log_k 8.7 - -delta_H -3.43746 kJ/mol # Calculated enthalpy of reaction NpF+3 -# Enthalpy of formation: -213.859 kcal/mol + -delta_H -3.43746 kJ/mol # Calculated enthalpy of reaction NpF+3 +# Enthalpy of formation: -213.859 kcal/mol -analytic 2.7613e+0 1.3498e-3 -1.6411e+3 2.9074e+0 3.4192e+5 # -Range: 25-150 2 F- + Np+4 = NpF2+2 -llnl_gamma 4.5 log_k 15.4 - -delta_H 6.03094 kJ/mol # Calculated enthalpy of reaction NpF2+2 -# Enthalpy of formation: -291.746 kcal/mol + -delta_H 6.03094 kJ/mol # Calculated enthalpy of reaction NpF2+2 +# Enthalpy of formation: -291.746 kcal/mol -analytic -2.6793e+2 -4.2056e-2 9.7952e+3 1.0629e+2 1.6715e+2 # -Range: 25-150 Np+3 + HPO4-2 + H+ = NpH2PO4+2 -llnl_gamma 4.5 log_k 2.4 - -delta_H 6.0874 kJ/mol # Calculated enthalpy of reaction NpH2PO4+2 -# Enthalpy of formation: -433.34 kcal/mol + -delta_H 6.0874 kJ/mol # Calculated enthalpy of reaction NpH2PO4+2 +# Enthalpy of formation: -433.34 kcal/mol -analytic 6.0731e+3 1.4733e+0 -1.7919e+5 -2.388e+3 -3.0582e+3 # -Range: 25-150 Np+4 + HPO4-2 = NpHPO4+2 -llnl_gamma 4.5 log_k 12.9 - -delta_H 7.54554 kJ/mol # Calculated enthalpy of reaction NpHPO4+2 -# Enthalpy of formation: -439.899 kcal/mol + -delta_H 7.54554 kJ/mol # Calculated enthalpy of reaction NpHPO4+2 +# Enthalpy of formation: -439.899 kcal/mol -analytic -7.2792e+3 -1.7476e+0 2.177e+5 2.8624e+3 3.7154e+3 # -Range: 25-150 2 HCO3- + NpO2+2 = NpO2(CO3)2-2 + 2 H+ -llnl_gamma 4 log_k -6.6576 - -delta_H 57.2588 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)2-2 -# Enthalpy of formation: -521.77 kcal/mol + -delta_H 57.2588 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)2-2 +# Enthalpy of formation: -521.77 kcal/mol -analytic 2.6597e+2 7.585e-2 -9.9987e+3 -1.0576e+2 -1.561e+2 # -Range: 0-300 2 HCO3- + NpO2+ = NpO2(CO3)2-3 + 2 H+ -llnl_gamma 4 log_k -13.6576 - -delta_H 58.1553 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)2-3 -# Enthalpy of formation: -549.642 kcal/mol + -delta_H 58.1553 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)2-3 +# Enthalpy of formation: -549.642 kcal/mol -analytic 2.6012e+2 7.3174e-2 -1.025e+4 -1.0556e+2 -1.6002e+2 # -Range: 0-300 3 HCO3- + NpO2+ = NpO2(CO3)3-5 + 3 H+ -llnl_gamma 4 log_k -22.4864 - -delta_H 70.176 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)3-5 -# Enthalpy of formation: -711.667 kcal/mol + -delta_H 70.176 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)3-5 +# Enthalpy of formation: -711.667 kcal/mol -analytic 3.7433e+2 1.2938e-1 -1.2791e+4 -1.5861e+2 -1.997e+2 # -Range: 0-300 3 HCO3- + NpO2+2 = NpO2(CO3)3-4 + 3 H+ -llnl_gamma 4 log_k -10.5864 - -delta_H 3.14711 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)3-4 -# Enthalpy of formation: -699.601 kcal/mol + -delta_H 3.14711 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)3-4 +# Enthalpy of formation: -699.601 kcal/mol -analytic 3.7956e+2 1.1163e-1 -1.0607e+4 -1.5674e+2 -1.6562e+2 # -Range: 0-300 NpO2+ + HCO3- = NpO2CO3- + H+ -llnl_gamma 4 log_k -5.7288 - -delta_H 69.1634 kJ/mol # Calculated enthalpy of reaction NpO2CO3- -# Enthalpy of formation: -382.113 kcal/mol + -delta_H 69.1634 kJ/mol # Calculated enthalpy of reaction NpO2CO3- +# Enthalpy of formation: -382.113 kcal/mol -analytic 1.4634e+2 2.6576e-2 -8.2036e+3 -5.3534e+1 -1.2805e+2 # -Range: 0-300 NpO2+ + Cl- = NpO2Cl -llnl_gamma 3 log_k -0.4 - -delta_H 15.4492 kJ/mol # Calculated enthalpy of reaction NpO2Cl -# Enthalpy of formation: -269.986 kcal/mol + -delta_H 15.4492 kJ/mol # Calculated enthalpy of reaction NpO2Cl +# Enthalpy of formation: -269.986 kcal/mol -analytic 4.5109e+2 9.0437e-2 -1.5453e+4 -1.7241e+2 -2.6371e+2 # -Range: 25-150 NpO2+2 + Cl- = NpO2Cl+ -llnl_gamma 4 log_k -0.2 - -delta_H 11.6239 kJ/mol # Calculated enthalpy of reaction NpO2Cl+ -# Enthalpy of formation: -242.814 kcal/mol + -delta_H 11.6239 kJ/mol # Calculated enthalpy of reaction NpO2Cl+ +# Enthalpy of formation: -242.814 kcal/mol -analytic -1.2276e+3 -2.5435e-1 3.8507e+4 4.7447e+2 6.5715e+2 # -Range: 25-150 NpO2+ + F- = NpO2F -llnl_gamma 3 log_k 1 - -delta_H 34.2521 kJ/mol # Calculated enthalpy of reaction NpO2F -# Enthalpy of formation: -305.709 kcal/mol + -delta_H 34.2521 kJ/mol # Calculated enthalpy of reaction NpO2F +# Enthalpy of formation: -305.709 kcal/mol -analytic -1.9364e+2 -4.4083e-2 4.5602e+3 7.7791e+1 7.784e+1 # -Range: 25-150 NpO2+2 + F- = NpO2F+ -llnl_gamma 4 log_k 4.6 - -delta_H 0.883568 kJ/mol # Calculated enthalpy of reaction NpO2F+ -# Enthalpy of formation: -285.598 kcal/mol + -delta_H 0.883568 kJ/mol # Calculated enthalpy of reaction NpO2F+ +# Enthalpy of formation: -285.598 kcal/mol -analytic 9.632e+2 2.4799e-1 -2.7614e+4 -3.7985e+2 -4.7128e+2 # -Range: 25-150 2 F- + NpO2+2 = NpO2F2 -llnl_gamma 3 log_k 7.8 - -delta_H 2.60319 kJ/mol # Calculated enthalpy of reaction NpO2F2 -# Enthalpy of formation: -365.337 kcal/mol + -delta_H 2.60319 kJ/mol # Calculated enthalpy of reaction NpO2F2 +# Enthalpy of formation: -365.337 kcal/mol -analytic 1.9648e+2 6.4083e-2 -4.5601e+3 -7.779e+1 -7.784e+1 # -Range: 25-150 NpO2+ + HPO4-2 + H+ = NpO2H2PO4 -llnl_gamma 3 log_k 0.6 - -delta_H 18.717 kJ/mol # Calculated enthalpy of reaction NpO2H2PO4 -# Enthalpy of formation: -538.087 kcal/mol + -delta_H 18.717 kJ/mol # Calculated enthalpy of reaction NpO2H2PO4 +# Enthalpy of formation: -538.087 kcal/mol -analytic 1.089e+3 2.7738e-1 -3.0654e+4 -4.3171e+2 -5.2317e+2 # -Range: 25-150 NpO2+2 + HPO4-2 + H+ = NpO2H2PO4+ -llnl_gamma 4 log_k 2.3 - -delta_H 9.31014 kJ/mol # Calculated enthalpy of reaction NpO2H2PO4+ -# Enthalpy of formation: -512.249 kcal/mol + -delta_H 9.31014 kJ/mol # Calculated enthalpy of reaction NpO2H2PO4+ +# Enthalpy of formation: -512.249 kcal/mol -analytic -5.6996e+3 -1.4008e+0 1.6898e+5 2.2441e+3 2.8838e+3 # -Range: 25-150 NpO2+2 + HPO4-2 = NpO2HPO4 -llnl_gamma 3 log_k 8.2 - -delta_H -6.47609 kJ/mol # Calculated enthalpy of reaction NpO2HPO4 -# Enthalpy of formation: -516.022 kcal/mol + -delta_H -6.47609 kJ/mol # Calculated enthalpy of reaction NpO2HPO4 +# Enthalpy of formation: -516.022 kcal/mol -analytic 4.8515e+3 1.2189e+0 -1.4069e+5 -1.9135e+3 -2.4011e+3 # -Range: 25-150 NpO2+ + HPO4-2 = NpO2HPO4- -llnl_gamma 4 log_k 3.5 - -delta_H 49.8668 kJ/mol # Calculated enthalpy of reaction NpO2HPO4- -# Enthalpy of formation: -530.642 kcal/mol + -delta_H 49.8668 kJ/mol # Calculated enthalpy of reaction NpO2HPO4- +# Enthalpy of formation: -530.642 kcal/mol -analytic -4.1705e+3 -9.9302e-1 1.2287e+5 1.6399e+3 2.0969e+3 # -Range: 25-150 NpO2+ + H2O = NpO2OH + H+ -llnl_gamma 3 log_k -8.9 - -delta_H 43.6285 kJ/mol # Calculated enthalpy of reaction NpO2OH -# Enthalpy of formation: -291.635 kcal/mol + -delta_H 43.6285 kJ/mol # Calculated enthalpy of reaction NpO2OH +# Enthalpy of formation: -291.635 kcal/mol -analytic -4.571e+2 -1.2286e-1 1.064e+4 1.8151e+2 1.8163e+2 # -Range: 25-150 NpO2+2 + H2O = NpO2OH+ + H+ -llnl_gamma 4 log_k -5.2 - -delta_H 43.3805 kJ/mol # Calculated enthalpy of reaction NpO2OH+ -# Enthalpy of formation: -263.608 kcal/mol + -delta_H 43.3805 kJ/mol # Calculated enthalpy of reaction NpO2OH+ +# Enthalpy of formation: -263.608 kcal/mol -analytic 1.7485e+2 4.0017e-2 -7.5154e+3 -6.7399e+1 -1.2823e+2 # -Range: 25-150 SO4-2 + NpO2+2 = NpO2SO4 -llnl_gamma 3 log_k 3.3 - -delta_H 19.8789 kJ/mol # Calculated enthalpy of reaction NpO2SO4 -# Enthalpy of formation: -418.308 kcal/mol + -delta_H 19.8789 kJ/mol # Calculated enthalpy of reaction NpO2SO4 +# Enthalpy of formation: -418.308 kcal/mol -analytic -1.5624e+2 7.3296e-3 6.7555e+3 5.4435e+1 1.1527e+2 # -Range: 25-150 SO4-2 + NpO2+ = NpO2SO4- -llnl_gamma 4 log_k 0.4 - -delta_H 19.1395 kJ/mol # Calculated enthalpy of reaction NpO2SO4- -# Enthalpy of formation: -446.571 kcal/mol + -delta_H 19.1395 kJ/mol # Calculated enthalpy of reaction NpO2SO4- +# Enthalpy of formation: -446.571 kcal/mol -analytic -3.1804e+2 -9.3472e-2 7.6002e+3 1.2965e+2 1.2973e+2 # -Range: 25-150 Np+3 + H2O = NpOH+2 + H+ -llnl_gamma 4.5 log_k -7 - -delta_H 50.1031 kJ/mol # Calculated enthalpy of reaction NpOH+2 -# Enthalpy of formation: -182.322 kcal/mol + -delta_H 50.1031 kJ/mol # Calculated enthalpy of reaction NpOH+2 +# Enthalpy of formation: -182.322 kcal/mol -analytic 1.4062e+2 3.2671e-2 -6.7555e+3 -5.4435e+1 -1.1526e+2 # -Range: 25-150 Np+4 + H2O = NpOH+3 + H+ -llnl_gamma 5 log_k -1 - -delta_H 51.0089 kJ/mol # Calculated enthalpy of reaction NpOH+3 -# Enthalpy of formation: -189.013 kcal/mol + -delta_H 51.0089 kJ/mol # Calculated enthalpy of reaction NpOH+3 +# Enthalpy of formation: -189.013 kcal/mol -analytic -1.8373e+2 -5.2443e-2 2.7025e+3 7.6503e+1 4.6154e+1 # -Range: 25-150 SO4-2 + Np+4 = NpSO4+2 -llnl_gamma 4.5 log_k 5.5 - -delta_H 20.7377 kJ/mol # Calculated enthalpy of reaction NpSO4+2 -# Enthalpy of formation: -345.331 kcal/mol + -delta_H 20.7377 kJ/mol # Calculated enthalpy of reaction NpSO4+2 +# Enthalpy of formation: -345.331 kcal/mol -analytic 3.9477e+2 1.1981e-1 -1.0978e+4 -1.5687e+2 -1.8736e+2 # -Range: 25-150 H2O = OH- + H+ -llnl_gamma 3.5 log_k -13.9951 - -delta_H 55.8146 kJ/mol # Calculated enthalpy of reaction OH- -# Enthalpy of formation: -54.977 kcal/mol + -delta_H 55.8146 kJ/mol # Calculated enthalpy of reaction OH- +# Enthalpy of formation: -54.977 kcal/mol -analytic -6.7506e+1 -3.0619e-2 -1.9901e+3 2.8004e+1 -3.1033e+1 # -Range: 0-300 2 HPO4-2 = P2O7-4 + H2O -llnl_gamma 4 log_k -3.7463 - -delta_H 27.2256 kJ/mol # Calculated enthalpy of reaction P2O7-4 -# Enthalpy of formation: -2271.1 kJ/mol + -delta_H 27.2256 kJ/mol # Calculated enthalpy of reaction P2O7-4 +# Enthalpy of formation: -2271.1 kJ/mol -analytic 4.0885e+2 1.3243e-1 -1.1373e+4 -1.6727e+2 -1.7758e+2 # -Range: 0-300 3 H+ + HPO4-2 = PH4+ + 2 O2 -llnl_gamma 4 log_k -212.7409 - -delta_H 0 # Not possible to calculate enthalpy of reaction PH4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PH4+ +# Enthalpy of formation: -0 kcal/mol HPO4-2 + H+ + F- = PO3F-2 + H2O -llnl_gamma 4 log_k 7.1993 - -delta_H 0 # Not possible to calculate enthalpy of reaction PO3F-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PO3F-2 +# Enthalpy of formation: -0 kcal/mol HPO4-2 = PO4-3 + H+ -llnl_gamma 4 log_k -12.3218 - -delta_H 14.7068 kJ/mol # Calculated enthalpy of reaction PO4-3 -# Enthalpy of formation: -305.3 kcal/mol + -delta_H 14.7068 kJ/mol # Calculated enthalpy of reaction PO4-3 +# Enthalpy of formation: -305.3 kcal/mol -analytic -7.617e+1 -3.3574e-2 1.3405e+2 2.9658e+1 2.114e+0 # -Range: 0-300 2 BrO3- + Pb+2 = Pb(BrO3)2 -llnl_gamma 3 log_k 5.1939 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(BrO3)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(BrO3)2 +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Pb+2 = Pb(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -6.1133 - -delta_H 10.5437 kJ/mol # Calculated enthalpy of reaction Pb(Acetate)2 -# Enthalpy of formation: -229.46 kcal/mol + -delta_H 10.5437 kJ/mol # Calculated enthalpy of reaction Pb(Acetate)2 +# Enthalpy of formation: -229.46 kcal/mol -analytic -1.7315e+1 -1.0618e-3 -3.6365e+3 6.9263e+0 5.8659e+5 # -Range: 0-300 3 HAcetate + Pb+2 = Pb(Acetate)3- + 3 H+ -llnl_gamma 4 log_k -8.972 - -delta_H -2.84512 kJ/mol # Calculated enthalpy of reaction Pb(Acetate)3- -# Enthalpy of formation: -348.76 kcal/mol + -delta_H -2.84512 kJ/mol # Calculated enthalpy of reaction Pb(Acetate)3- +# Enthalpy of formation: -348.76 kcal/mol -analytic 1.2417e+1 -3.1481e-3 -9.4152e+3 -1.6846e+0 1.3623e+6 # -Range: 0-300 2 HCO3- + Pb+2 = Pb(CO3)2-2 + 2 H+ -llnl_gamma 4 log_k -11.2576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(CO3)2-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(CO3)2-2 +# Enthalpy of formation: -0 kcal/mol 2 ClO3- + Pb+2 = Pb(ClO3)2 -llnl_gamma 3 log_k -0.5133 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(ClO3)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(ClO3)2 +# Enthalpy of formation: -0 kcal/mol 2 H2O + Pb+2 = Pb(OH)2 + 2 H+ -llnl_gamma 3 log_k -17.0902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)2 +# Enthalpy of formation: -0 kcal/mol 3 H2O + Pb+2 = Pb(OH)3- + 3 H+ -llnl_gamma 4 log_k -28.0852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)3- +# Enthalpy of formation: -0 kcal/mol 2 Thiocyanate- + Pb+2 = Pb(Thiocyanate)2 -llnl_gamma 3 log_k 1.2455 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(Thiocyanate)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(Thiocyanate)2 +# Enthalpy of formation: -0 kcal/mol 2 Pb+2 + H2O = Pb2OH+3 + H+ -llnl_gamma 5 log_k -6.3951 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2OH+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2OH+3 +# Enthalpy of formation: -0 kcal/mol 4 H2O + 3 Pb+2 = Pb3(OH)4+2 + 4 H+ -llnl_gamma 4.5 log_k -23.8803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb3(OH)4+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb3(OH)4+2 +# Enthalpy of formation: -0 kcal/mol 4 Pb+2 + 4 H2O = Pb4(OH)4+4 + 4 H+ -llnl_gamma 5.5 log_k -20.8803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4(OH)4+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4(OH)4+4 +# Enthalpy of formation: -0 kcal/mol 8 H2O + 6 Pb+2 = Pb6(OH)8+4 + 8 H+ -llnl_gamma 5.5 log_k -43.5606 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb6(OH)8+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb6(OH)8+4 +# Enthalpy of formation: -0 kcal/mol Pb+2 + Br- = PbBr+ -llnl_gamma 4 log_k 1.1831 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr+ +# Enthalpy of formation: -0 kcal/mol 2 Br- + Pb+2 = PbBr2 -llnl_gamma 3 log_k 1.5062 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr2 +# Enthalpy of formation: -0 kcal/mol 3 Br- + Pb+2 = PbBr3- -llnl_gamma 4 log_k 1.2336 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr3- +# Enthalpy of formation: -0 kcal/mol Pb+2 + BrO3- = PbBrO3+ -llnl_gamma 4 log_k 1.9373 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBrO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBrO3+ +# Enthalpy of formation: -0 kcal/mol Pb+2 + HAcetate = PbAcetate+ + H+ -llnl_gamma 4 log_k -2.3603 - -delta_H -2.33147e-15 kJ/mol # Calculated enthalpy of reaction PbAcetate+ -# Enthalpy of formation: -115.88 kcal/mol + -delta_H -2.33147e-15 kJ/mol # Calculated enthalpy of reaction PbAcetate+ +# Enthalpy of formation: -115.88 kcal/mol -analytic -2.6822e+1 1.0992e-3 7.3688e+2 8.4407e+0 7.0266e+4 # -Range: 0-300 Pb+2 + HCO3- = PbCO3 + H+ -llnl_gamma 3 log_k -3.7488 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbCO3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbCO3 +# Enthalpy of formation: -0 kcal/mol Pb+2 + Cl- = PbCl+ -llnl_gamma 4 log_k 1.4374 - -delta_H 4.53127 kJ/mol # Calculated enthalpy of reaction PbCl+ -# Enthalpy of formation: -38.63 kcal/mol + -delta_H 4.53127 kJ/mol # Calculated enthalpy of reaction PbCl+ +# Enthalpy of formation: -38.63 kcal/mol -analytic 1.1948e+2 4.3527e-2 -2.7666e+3 -4.919e+1 -4.3206e+1 # -Range: 0-300 2 Cl- + Pb+2 = PbCl2 -llnl_gamma 3 log_k 2.0026 - -delta_H 8.14206 kJ/mol # Calculated enthalpy of reaction PbCl2 -# Enthalpy of formation: -77.7 kcal/mol + -delta_H 8.14206 kJ/mol # Calculated enthalpy of reaction PbCl2 +# Enthalpy of formation: -77.7 kcal/mol -analytic 2.2537e+2 7.7574e-2 -5.5112e+3 -9.2131e+1 -8.6064e+1 # -Range: 0-300 3 Cl- + Pb+2 = PbCl3- -llnl_gamma 4 log_k 1.6881 - -delta_H 7.86174 kJ/mol # Calculated enthalpy of reaction PbCl3- -# Enthalpy of formation: -117.7 kcal/mol + -delta_H 7.86174 kJ/mol # Calculated enthalpy of reaction PbCl3- +# Enthalpy of formation: -117.7 kcal/mol -analytic 2.5254e+2 8.9159e-2 -6.0116e+3 -1.0395e+2 -9.388e+1 # -Range: 0-300 4 Cl- + Pb+2 = PbCl4-2 -llnl_gamma 4 log_k 1.4909 - -delta_H -7.18811 kJ/mol # Calculated enthalpy of reaction PbCl4-2 -# Enthalpy of formation: -161.23 kcal/mol + -delta_H -7.18811 kJ/mol # Calculated enthalpy of reaction PbCl4-2 +# Enthalpy of formation: -161.23 kcal/mol -analytic 1.4048e+2 7.6332e-2 -1.1507e+3 -6.3786e+1 -1.7997e+1 # -Range: 0-300 Pb+2 + ClO3- = PbClO3+ -llnl_gamma 4 log_k -0.2208 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbClO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbClO3+ +# Enthalpy of formation: -0 kcal/mol Pb+2 + F- = PbF+ -llnl_gamma 4 log_k 0.8284 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbF+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbF+ +# Enthalpy of formation: -0 kcal/mol 2 F- + Pb+2 = PbF2 -llnl_gamma 3 log_k 1.6132 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbF2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbF2 +# Enthalpy of formation: -0 kcal/mol Pb+2 + HPO4-2 + H+ = PbH2PO4+ -llnl_gamma 4 log_k 1.5 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbH2PO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbH2PO4+ +# Enthalpy of formation: -0 kcal/mol Pb+2 + HPO4-2 = PbHPO4 -llnl_gamma 3 log_k 3.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbHPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbHPO4 +# Enthalpy of formation: -0 kcal/mol Pb+2 + I- = PbI+ -llnl_gamma 4 log_k 1.9597 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbI+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbI+ +# Enthalpy of formation: -0 kcal/mol 2 I- + Pb+2 = PbI2 -llnl_gamma 3 log_k 2.7615 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbI2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbI2 +# Enthalpy of formation: -0 kcal/mol 3 I- + Pb+2 = PbI3- -llnl_gamma 4 log_k 3.3355 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbI3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbI3- +# Enthalpy of formation: -0 kcal/mol 4 I- + Pb+2 = PbI4-2 -llnl_gamma 4 log_k 4.0672 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbI4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbI4-2 +# Enthalpy of formation: -0 kcal/mol Pb+2 + NO3- = PbNO3+ -llnl_gamma 4 log_k 1.2271 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbNO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbNO3+ +# Enthalpy of formation: -0 kcal/mol Pb+2 + H2O = PbOH+ + H+ -llnl_gamma 4 log_k -7.6951 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbOH+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbOH+ +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Pb+2 = PbP2O7-2 + H2O -llnl_gamma 4 log_k 7.4136 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbP2O7-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbP2O7-2 +# Enthalpy of formation: -0 kcal/mol Thiocyanate- + Pb+2 = PbThiocyanate+ -llnl_gamma 4 log_k 0.9827 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbThiocyanate+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbThiocyanate+ +# Enthalpy of formation: -0 kcal/mol Pd+2 + Cl- = PdCl+ -llnl_gamma 4 log_k 6.0993 - -delta_H -31.995 kJ/mol # Calculated enthalpy of reaction PdCl+ -# Enthalpy of formation: -5.5 kcal/mol + -delta_H -31.995 kJ/mol # Calculated enthalpy of reaction PdCl+ +# Enthalpy of formation: -5.5 kcal/mol -analytic 7.2852e+1 3.6886e-2 7.3102e+2 -3.2402e+1 1.1385e+1 # -Range: 0-300 2 Cl- + Pd+2 = PdCl2 -llnl_gamma 3 log_k 10.7327 - -delta_H -66.1658 kJ/mol # Calculated enthalpy of reaction PdCl2 -# Enthalpy of formation: -53.6 kcal/mol + -delta_H -66.1658 kJ/mol # Calculated enthalpy of reaction PdCl2 +# Enthalpy of formation: -53.6 kcal/mol -analytic 1.6849e+2 7.9321e-2 8.2874e+2 -7.4416e+1 1.2882e+1 # -Range: 0-300 3 Cl- + Pd+2 = PdCl3- -llnl_gamma 4 log_k 13.0937 - -delta_H -101.592 kJ/mol # Calculated enthalpy of reaction PdCl3- -# Enthalpy of formation: -102 kcal/mol + -delta_H -101.592 kJ/mol # Calculated enthalpy of reaction PdCl3- +# Enthalpy of formation: -102 kcal/mol -analytic 4.5978e+1 6.2999e-2 6.9333e+3 -3.0257e+1 1.0817e+2 # -Range: 0-300 4 Cl- + Pd+2 = PdCl4-2 -llnl_gamma 4 log_k 15.1615 - -delta_H -152.08 kJ/mol # Calculated enthalpy of reaction PdCl4-2 -# Enthalpy of formation: -154 kcal/mol + -delta_H -152.08 kJ/mol # Calculated enthalpy of reaction PdCl4-2 +# Enthalpy of formation: -154 kcal/mol -analytic -3.2209e+1 5.3432e-2 1.218e+4 -3.7814e+0 1.9006e+2 # -Range: 0-300 Pd+2 + H2O = PdO + 2 H+ -llnl_gamma 3 log_k -2.19 - -delta_H 6.43081 kJ/mol # Calculated enthalpy of reaction PdO -# Enthalpy of formation: -24.7 kcal/mol + -delta_H 6.43081 kJ/mol # Calculated enthalpy of reaction PdO +# Enthalpy of formation: -24.7 kcal/mol -analytic 1.3587e+2 2.9292e-2 -4.6645e+3 -5.2997e+1 -7.2825e+1 # -Range: 0-300 Pd+2 + H2O = PdOH+ + H+ -llnl_gamma 4 log_k -1.0905 - -delta_H -3.19239 kJ/mol # Calculated enthalpy of reaction PdOH+ -# Enthalpy of formation: -27 kcal/mol + -delta_H -3.19239 kJ/mol # Calculated enthalpy of reaction PdOH+ +# Enthalpy of formation: -27 kcal/mol -analytic 1.4291e+1 5.8382e-3 -1.9881e+2 -6.6475e+0 -3.1065e+0 # -Range: 0-300 2 HCO3- + Pm+3 = Pm(CO3)2- + 2 H+ -llnl_gamma 4 log_k -7.9576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Pm+3 = Pm(HPO4)2- -llnl_gamma 4 log_k 9.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(HPO4)2- +# Enthalpy of formation: -0 kcal/mol 2 H2O + Pm+3 = Pm(OH)2+ + 2 H+ -llnl_gamma 4 log_k -16.7902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)2+ +# Enthalpy of formation: -0 kcal/mol 3 H2O + Pm+3 = Pm(OH)3 + 3 H+ -llnl_gamma 3 log_k -26.1852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3 +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Pm+3 = Pm(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -4.6837 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Pm+3 = Pm(SO4)2- -llnl_gamma 4 log_k 5.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(SO4)2- +# Enthalpy of formation: -0 kcal/mol Pm+3 + HCO3- = PmCO3+ + H+ -llnl_gamma 4 log_k -2.6288 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmCO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PmCO3+ +# Enthalpy of formation: -0 kcal/mol Pm+3 + Cl- = PmCl+2 -llnl_gamma 4.5 log_k 0.34 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmCl+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PmCl+2 +# Enthalpy of formation: -0 kcal/mol Pm+3 + F- = PmF+2 -llnl_gamma 4.5 log_k 3.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmF+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PmF+2 +# Enthalpy of formation: -0 kcal/mol Pm+3 + HPO4-2 + H+ = PmH2PO4+2 -llnl_gamma 4.5 log_k 9.6054 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmH2PO4+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PmH2PO4+2 +# Enthalpy of formation: -0 kcal/mol Pm+3 + HCO3- = PmHCO3+2 -llnl_gamma 4.5 log_k 2.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmHCO3+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PmHCO3+2 +# Enthalpy of formation: -0 kcal/mol Pm+3 + HPO4-2 = PmHPO4+ -llnl_gamma 4 log_k 5.5 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PmHPO4+ +# Enthalpy of formation: -0 kcal/mol Pm+3 + NO3- = PmNO3+2 -llnl_gamma 4.5 log_k 1.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmNO3+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PmNO3+2 +# Enthalpy of formation: -0 kcal/mol Pm+3 + H2O = PmOH+2 + H+ -llnl_gamma 4.5 log_k -7.9951 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmOH+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PmOH+2 +# Enthalpy of formation: -0 kcal/mol Pm+3 + HPO4-2 = PmPO4 + H+ -llnl_gamma 3 log_k -0.3718 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PmPO4 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Pm+3 = PmSO4+ -llnl_gamma 4 log_k 3.5 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmSO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PmSO4+ +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Pr+3 = Pr(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -4.8525 - -delta_H -23.8906 kJ/mol # Calculated enthalpy of reaction Pr(Acetate)2+ -# Enthalpy of formation: -406.71 kcal/mol + -delta_H -23.8906 kJ/mol # Calculated enthalpy of reaction Pr(Acetate)2+ +# Enthalpy of formation: -406.71 kcal/mol -analytic -1.6464e+1 6.2989e-4 -4.4771e+2 3.6947e+0 3.3816e+5 # -Range: 0-300 3 HAcetate + Pr+3 = Pr(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -8.2023 - -delta_H -40.3756 kJ/mol # Calculated enthalpy of reaction Pr(Acetate)3 -# Enthalpy of formation: -526.75 kcal/mol + -delta_H -40.3756 kJ/mol # Calculated enthalpy of reaction Pr(Acetate)3 +# Enthalpy of formation: -526.75 kcal/mol -analytic -1.2007e+1 4.9332e-4 0e+0 0e+0 3.2789e+5 # -Range: 0-300 2 HCO3- + Pr+3 = Pr(CO3)2- + 2 H+ -llnl_gamma 4 log_k -8.1076 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Pr+3 = Pr(HPO4)2- -llnl_gamma 4 log_k 8.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(HPO4)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Pr+3 = Pr(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -5.5637 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Pr+3 = Pr(SO4)2- -llnl_gamma 4 log_k 4.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(SO4)2- +# Enthalpy of formation: -0 kcal/mol Pr+3 + HAcetate = PrAcetate+2 + H+ -llnl_gamma 4.5 log_k -2.0451 - -delta_H -12.4683 kJ/mol # Calculated enthalpy of reaction PrAcetate+2 -# Enthalpy of formation: -287.88 kcal/mol + -delta_H -12.4683 kJ/mol # Calculated enthalpy of reaction PrAcetate+2 +# Enthalpy of formation: -287.88 kcal/mol -analytic -8.5624e+0 9.3878e-4 -5.7551e+2 2.2087e+0 2.4126e+5 # -Range: 0-300 Pr+3 + HCO3- = PrCO3+ + H+ -llnl_gamma 4 log_k -2.7722 - -delta_H 92.458 kJ/mol # Calculated enthalpy of reaction PrCO3+ -# Enthalpy of formation: -311.6 kcal/mol + -delta_H 92.458 kJ/mol # Calculated enthalpy of reaction PrCO3+ +# Enthalpy of formation: -311.6 kcal/mol -analytic 2.2079e+2 5.2156e-2 -6.5821e+3 -8.7701e+1 -1.0277e+2 # -Range: 0-300 Pr+3 + Cl- = PrCl+2 -llnl_gamma 4.5 log_k 0.3086 - -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction PrCl+2 -# Enthalpy of formation: -205.3 kcal/mol + -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction PrCl+2 +# Enthalpy of formation: -205.3 kcal/mol -analytic 7.5152e+1 3.7446e-2 -1.6661e+3 -3.249e+1 -2.602e+1 # -Range: 0-300 2 Cl- + Pr+3 = PrCl2+ -llnl_gamma 4 log_k 0.0308 - -delta_H 20.3593 kJ/mol # Calculated enthalpy of reaction PrCl2+ -# Enthalpy of formation: -243.8 kcal/mol + -delta_H 20.3593 kJ/mol # Calculated enthalpy of reaction PrCl2+ +# Enthalpy of formation: -243.8 kcal/mol -analytic 2.2848e+2 8.125e-2 -6.0401e+3 -9.3909e+1 -9.4318e+1 # -Range: 0-300 3 Cl- + Pr+3 = PrCl3 -llnl_gamma 3 log_k -0.3203 - -delta_H 14.2214 kJ/mol # Calculated enthalpy of reaction PrCl3 -# Enthalpy of formation: -285.2 kcal/mol + -delta_H 14.2214 kJ/mol # Calculated enthalpy of reaction PrCl3 +# Enthalpy of formation: -285.2 kcal/mol -analytic 4.5016e+2 1.3095e-1 -1.2588e+4 -1.8075e+2 -1.9656e+2 # -Range: 0-300 4 Cl- + Pr+3 = PrCl4- -llnl_gamma 4 log_k -0.7447 - -delta_H -4.05011 kJ/mol # Calculated enthalpy of reaction PrCl4- -# Enthalpy of formation: -329.5 kcal/mol + -delta_H -4.05011 kJ/mol # Calculated enthalpy of reaction PrCl4- +# Enthalpy of formation: -329.5 kcal/mol -analytic 5.4245e+2 1.3647e-1 -1.5564e+4 -2.1485e+2 -2.4302e+2 # -Range: 0-300 Pr+3 + F- = PrF+2 -llnl_gamma 4.5 log_k 4.2221 - -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction PrF+2 -# Enthalpy of formation: -243.4 kcal/mol + -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction PrF+2 +# Enthalpy of formation: -243.4 kcal/mol -analytic 9.5146e+1 4.1115e-2 -2.5463e+3 -3.8236e+1 -3.976e+1 # -Range: 0-300 2 F- + Pr+3 = PrF2+ -llnl_gamma 4 log_k 7.3447 - -delta_H 14.644 kJ/mol # Calculated enthalpy of reaction PrF2+ -# Enthalpy of formation: -325.6 kcal/mol + -delta_H 14.644 kJ/mol # Calculated enthalpy of reaction PrF2+ +# Enthalpy of formation: -325.6 kcal/mol -analytic 2.4997e+2 8.5251e-2 -6.1908e+3 -9.9912e+1 -9.6675e+1 # -Range: 0-300 3 F- + Pr+3 = PrF3 -llnl_gamma 3 log_k 9.661 - -delta_H -6.4852 kJ/mol # Calculated enthalpy of reaction PrF3 -# Enthalpy of formation: -410.8 kcal/mol + -delta_H -6.4852 kJ/mol # Calculated enthalpy of reaction PrF3 +# Enthalpy of formation: -410.8 kcal/mol -analytic 4.7885e+2 1.3764e-1 -1.208e+4 -1.898e+2 -1.8864e+2 # -Range: 0-300 4 F- + Pr+3 = PrF4- -llnl_gamma 4 log_k 11.5375 - -delta_H -47.2792 kJ/mol # Calculated enthalpy of reaction PrF4- -# Enthalpy of formation: -500.7 kcal/mol + -delta_H -47.2792 kJ/mol # Calculated enthalpy of reaction PrF4- +# Enthalpy of formation: -500.7 kcal/mol -analytic 5.5774e+2 1.4067e-1 -1.3523e+4 -2.1933e+2 -2.1118e+2 # -Range: 0-300 Pr+3 + HPO4-2 + H+ = PrH2PO4+2 -llnl_gamma 4.5 log_k 9.595 - -delta_H -16.2548 kJ/mol # Calculated enthalpy of reaction PrH2PO4+2 -# Enthalpy of formation: -481.5 kcal/mol + -delta_H -16.2548 kJ/mol # Calculated enthalpy of reaction PrH2PO4+2 +# Enthalpy of formation: -481.5 kcal/mol -analytic 1.0501e+2 6.3059e-2 3.8161e+2 -4.6656e+1 5.9234e+0 # -Range: 0-300 Pr+3 + HCO3- = PrHCO3+2 -llnl_gamma 4.5 log_k 1.919 - -delta_H -12.9788 kJ/mol # Calculated enthalpy of reaction PrHCO3+2 -# Enthalpy of formation: -336.8 kcal/mol + -delta_H -12.9788 kJ/mol # Calculated enthalpy of reaction PrHCO3+2 +# Enthalpy of formation: -336.8 kcal/mol -analytic 2.201e+1 2.8541e-2 1.4574e+3 -1.3522e+1 2.2734e+1 # -Range: 0-300 Pr+3 + HPO4-2 = PrHPO4+ -llnl_gamma 4 log_k 5.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction PrHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PrHPO4+ +# Enthalpy of formation: -0 kcal/mol Pr+3 + NO3- = PrNO3+2 -llnl_gamma 4.5 log_k 0.6546 - -delta_H -27.9115 kJ/mol # Calculated enthalpy of reaction PrNO3+2 -# Enthalpy of formation: -224.9 kcal/mol + -delta_H -27.9115 kJ/mol # Calculated enthalpy of reaction PrNO3+2 +# Enthalpy of formation: -224.9 kcal/mol -analytic 1.4297e+1 2.5214e-2 2.1756e+3 -1.149e+1 3.3943e+1 # -Range: 0-300 Pr+3 + H2O = PrO+ + 2 H+ -llnl_gamma 4 log_k -17.29 - -delta_H 117.642 kJ/mol # Calculated enthalpy of reaction PrO+ -# Enthalpy of formation: -209 kcal/mol + -delta_H 117.642 kJ/mol # Calculated enthalpy of reaction PrO+ +# Enthalpy of formation: -209 kcal/mol -analytic 1.7927e+2 2.9467e-2 -1.3815e+4 -6.4259e+1 -2.1562e+2 # -Range: 0-300 2 H2O + Pr+3 = PrO2- + 4 H+ -llnl_gamma 4 log_k -37.5852 - -delta_H 301.39 kJ/mol # Calculated enthalpy of reaction PrO2- -# Enthalpy of formation: -233.4 kcal/mol + -delta_H 301.39 kJ/mol # Calculated enthalpy of reaction PrO2- +# Enthalpy of formation: -233.4 kcal/mol -analytic -4.448e+1 -1.6327e-2 -7.9031e+3 1.9348e+1 -8.544e+5 # -Range: 0-300 2 H2O + Pr+3 = PrO2H + 3 H+ -llnl_gamma 3 log_k -26.5901 - -delta_H 231.517 kJ/mol # Calculated enthalpy of reaction PrO2H -# Enthalpy of formation: -250.1 kcal/mol + -delta_H 231.517 kJ/mol # Calculated enthalpy of reaction PrO2H +# Enthalpy of formation: -250.1 kcal/mol -analytic 3.393e+2 4.4894e-2 -2.3769e+4 -1.2106e+2 -3.7099e+2 # -Range: 0-300 Pr+3 + H2O = PrOH+2 + H+ -llnl_gamma 4.5 log_k -8.274 - -delta_H 81.2407 kJ/mol # Calculated enthalpy of reaction PrOH+2 -# Enthalpy of formation: -217.7 kcal/mol + -delta_H 81.2407 kJ/mol # Calculated enthalpy of reaction PrOH+2 +# Enthalpy of formation: -217.7 kcal/mol -analytic 5.6599e+1 1.1073e-2 -5.9197e+3 -1.9525e+1 -9.2388e+1 # -Range: 0-300 Pr+3 + HPO4-2 = PrPO4 + H+ -llnl_gamma 3 log_k -0.7218 - -delta_H 0 # Not possible to calculate enthalpy of reaction PrPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PrPO4 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Pr+3 = PrSO4+ -llnl_gamma 4 log_k -3.687 - -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction PrSO4+ -# Enthalpy of formation: -381.5 kcal/mol + -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction PrSO4+ +# Enthalpy of formation: -381.5 kcal/mol -analytic 2.9156e+2 8.4671e-2 -1.0638e+4 -1.1509e+2 -1.6608e+2 # -Range: 0-300 2 HPO4-2 + Pu+4 = Pu(HPO4)2 -llnl_gamma 3 log_k 23.8483 - -delta_H 25.9279 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)2 -# Enthalpy of formation: -3094.13 kJ/mol + -delta_H 25.9279 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)2 +# Enthalpy of formation: -3094.13 kJ/mol -analytic 9.2387e+2 3.2577e-1 -2.0881e+4 -3.7466e+2 -3.5492e+2 # -Range: 0-200 3 HPO4-2 + Pu+4 = Pu(HPO4)3-2 -llnl_gamma 4 log_k 33.4599 - -delta_H -6.49412 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)3-2 -# Enthalpy of formation: -4418.63 kJ/mol + -delta_H -6.49412 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)3-2 +# Enthalpy of formation: -4418.63 kJ/mol -analytic 6.4515e+2 2.3011e-1 -1.2752e+4 -2.5761e+2 -1.9917e+2 # -Range: 0-300 4 HPO4-2 + Pu+4 = Pu(HPO4)4-4 -llnl_gamma 4 log_k 43.2467 - -delta_H -77.4832 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)4-4 -# Enthalpy of formation: -5781.7 kJ/mol + -delta_H -77.4832 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)4-4 +# Enthalpy of formation: -5781.7 kJ/mol -analytic 8.5301e+2 3.073e-1 -1.3644e+4 -3.4573e+2 -2.1316e+2 # -Range: 0-300 2 H2O + Pu+4 = Pu(OH)2+2 + 2 H+ -llnl_gamma 4.5 log_k -2.3235 - -delta_H 74.3477 kJ/mol # Calculated enthalpy of reaction Pu(OH)2+2 -# Enthalpy of formation: -1033.22 kJ/mol + -delta_H 74.3477 kJ/mol # Calculated enthalpy of reaction Pu(OH)2+2 +# Enthalpy of formation: -1033.22 kJ/mol -analytic 7.5979e+1 6.8394e-3 -6.371e+3 -2.3833e+1 -9.9435e+1 # -Range: 0-300 3 H2O + Pu+4 = Pu(OH)3+ + 3 H+ -llnl_gamma 4 log_k -5.281 - -delta_H 96.578 kJ/mol # Calculated enthalpy of reaction Pu(OH)3+ -# Enthalpy of formation: -1296.83 kJ/mol + -delta_H 96.578 kJ/mol # Calculated enthalpy of reaction Pu(OH)3+ +# Enthalpy of formation: -1296.83 kJ/mol -analytic 1.0874e+2 1.4199e-2 -8.4954e+3 -3.6278e+1 -1.3259e+2 # -Range: 0-300 4 H2O + Pu+4 = Pu(OH)4 + 4 H+ -llnl_gamma 3 log_k -9.5174 - -delta_H 109.113 kJ/mol # Calculated enthalpy of reaction Pu(OH)4 -# Enthalpy of formation: -1570.13 kJ/mol + -delta_H 109.113 kJ/mol # Calculated enthalpy of reaction Pu(OH)4 +# Enthalpy of formation: -1570.13 kJ/mol -analytic 2.7913e+2 1.0252e-1 -1.1289e+4 -1.1369e+2 -1.9181e+2 # -Range: 0-200 2 SO4-2 + Pu+4 = Pu(SO4)2 -llnl_gamma 3 log_k 10.2456 - -delta_H 41.0122 kJ/mol # Calculated enthalpy of reaction Pu(SO4)2 -# Enthalpy of formation: -2314.08 kJ/mol + -delta_H 41.0122 kJ/mol # Calculated enthalpy of reaction Pu(SO4)2 +# Enthalpy of formation: -2314.08 kJ/mol -analytic 5.3705e+2 1.9308e-1 -1.3213e+4 -2.1824e+2 -2.2457e+2 # -Range: 0-200 2 SO4-2 + Pu+3 = Pu(SO4)2- -llnl_gamma 4 log_k 6.32 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pu(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pu(SO4)2- +# Enthalpy of formation: -0 kcal/mol Pu+4 + F- = PuF+3 -llnl_gamma 5 log_k 8.46 - -delta_H 0 # Not possible to calculate enthalpy of reaction PuF+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PuF+3 +# Enthalpy of formation: -0 kcal/mol 2 F- + Pu+4 = PuF2+2 -llnl_gamma 4.5 log_k 15.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction PuF2+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PuF2+2 +# Enthalpy of formation: -0 kcal/mol 3 F- + Pu+4 = PuF3+ -llnl_gamma 4 log_k 5.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction PuF3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PuF3+ +# Enthalpy of formation: -0 kcal/mol 4 F- + Pu+4 = PuF4 -llnl_gamma 3 log_k 4.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction PuF4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PuF4 +# Enthalpy of formation: -0 kcal/mol Pu+3 + HPO4-2 + H+ = PuH2PO4+2 -llnl_gamma 4.5 log_k 9.6817 - -delta_H 28.597 kJ/mol # Calculated enthalpy of reaction PuH2PO4+2 -# Enthalpy of formation: -1855.04 kJ/mol + -delta_H 28.597 kJ/mol # Calculated enthalpy of reaction PuH2PO4+2 +# Enthalpy of formation: -1855.04 kJ/mol -analytic 2.1595e+2 6.4502e-2 -6.4723e+3 -8.2341e+1 -1.0106e+2 # -Range: 0-300 Pu+4 + HPO4-2 = PuHPO4+2 -llnl_gamma 4.5 log_k 13.0103 - -delta_H 40.306 kJ/mol # Calculated enthalpy of reaction PuHPO4+2 -# Enthalpy of formation: -1787.67 kJ/mol + -delta_H 40.306 kJ/mol # Calculated enthalpy of reaction PuHPO4+2 +# Enthalpy of formation: -1787.67 kJ/mol -analytic 2.2662e+2 7.1073e-2 -6.9134e+3 -8.5504e+1 -1.0794e+2 # -Range: 0-300 2 HCO3- + PuO2+2 = PuO2(CO3)2-2 + 2 H+ -llnl_gamma 4 log_k -5.7428 - -delta_H 52.3345 kJ/mol # Calculated enthalpy of reaction PuO2(CO3)2-2 -# Enthalpy of formation: -2149.11 kJ/mol + -delta_H 52.3345 kJ/mol # Calculated enthalpy of reaction PuO2(CO3)2-2 +# Enthalpy of formation: -2149.11 kJ/mol -analytic 2.6589e+2 7.6132e-2 -9.7187e+3 -1.0577e+2 -1.5173e+2 # -Range: 0-300 PuO2+2 + Cl- = PuO2Cl+ -llnl_gamma 4 log_k -0.2084 - -delta_H 11.6127 kJ/mol # Calculated enthalpy of reaction PuO2Cl+ -# Enthalpy of formation: -977.045 kJ/mol + -delta_H 11.6127 kJ/mol # Calculated enthalpy of reaction PuO2Cl+ +# Enthalpy of formation: -977.045 kJ/mol -analytic 9.8385e+1 3.8617e-2 -2.521e+3 -4.1075e+1 -3.9367e+1 # -Range: 0-300 PuO2+2 + F- = PuO2F+ -llnl_gamma 4 log_k 5.6674 - -delta_H -5.2094 kJ/mol # Calculated enthalpy of reaction PuO2F+ -# Enthalpy of formation: -1162.13 kJ/mol + -delta_H -5.2094 kJ/mol # Calculated enthalpy of reaction PuO2F+ +# Enthalpy of formation: -1162.13 kJ/mol -analytic 1.1412e+2 4.1224e-2 -2.0503e+3 -4.6009e+1 -3.2027e+1 # -Range: 0-300 2 F- + PuO2+2 = PuO2F2 -llnl_gamma 3 log_k 10.9669 - -delta_H -15.4738 kJ/mol # Calculated enthalpy of reaction PuO2F2 -# Enthalpy of formation: -1507.75 kJ/mol + -delta_H -15.4738 kJ/mol # Calculated enthalpy of reaction PuO2F2 +# Enthalpy of formation: -1507.75 kJ/mol -analytic 2.5502e+2 9.1597e-2 -4.4557e+3 -1.0362e+2 -7.5752e+1 # -Range: 0-200 3 F- + PuO2+2 = PuO2F3- -llnl_gamma 4 log_k 15.916 - -delta_H -29.4032 kJ/mol # Calculated enthalpy of reaction PuO2F3- -# Enthalpy of formation: -1857.02 kJ/mol + -delta_H -29.4032 kJ/mol # Calculated enthalpy of reaction PuO2F3- +# Enthalpy of formation: -1857.02 kJ/mol -analytic 3.6102e+2 8.6364e-2 -8.7129e+3 -1.3805e+2 -1.3606e+2 # -Range: 0-300 4 F- + PuO2+2 = PuO2F4-2 -llnl_gamma 4 log_k 18.7628 - -delta_H -39.9786 kJ/mol # Calculated enthalpy of reaction PuO2F4-2 -# Enthalpy of formation: -2202.95 kJ/mol + -delta_H -39.9786 kJ/mol # Calculated enthalpy of reaction PuO2F4-2 +# Enthalpy of formation: -2202.95 kJ/mol -analytic 4.6913e+2 1.3649e-1 -9.8336e+3 -1.851e+2 -1.5358e+2 # -Range: 0-300 PuO2+2 + HPO4-2 + H+ = PuO2H2PO4+ -llnl_gamma 4 log_k 11.2059 - -delta_H -6.63904 kJ/mol # Calculated enthalpy of reaction PuO2H2PO4+ -# Enthalpy of formation: -2120.3 kJ/mol + -delta_H -6.63904 kJ/mol # Calculated enthalpy of reaction PuO2H2PO4+ +# Enthalpy of formation: -2120.3 kJ/mol -analytic 2.1053e+2 6.8671e-2 -4.339e+3 -8.293e+1 -6.7768e+1 # -Range: 0-300 PuO2+ + H2O = PuO2OH + H+ -llnl_gamma 3 log_k -9.6674 - -delta_H 69.1763 kJ/mol # Calculated enthalpy of reaction PuO2OH -# Enthalpy of formation: -1130.85 kJ/mol + -delta_H 69.1763 kJ/mol # Calculated enthalpy of reaction PuO2OH +# Enthalpy of formation: -1130.85 kJ/mol -analytic 7.108e+1 2.6141e-2 -5.0337e+3 -2.8956e+1 -8.5504e+1 # -Range: 0-200 PuO2+2 + H2O = PuO2OH+ + H+ -llnl_gamma 4 log_k -5.6379 - -delta_H 45.2823 kJ/mol # Calculated enthalpy of reaction PuO2OH+ -# Enthalpy of formation: -1062.13 kJ/mol + -delta_H 45.2823 kJ/mol # Calculated enthalpy of reaction PuO2OH+ +# Enthalpy of formation: -1062.13 kJ/mol -analytic -3.9012e+0 1.1645e-3 -1.1299e+3 1.3419e+0 -1.4364e+5 # -Range: 0-300 SO4-2 + PuO2+2 = PuO2SO4 -llnl_gamma 3 log_k 3.2658 - -delta_H 20.0746 kJ/mol # Calculated enthalpy of reaction PuO2SO4 -# Enthalpy of formation: -1711.11 kJ/mol + -delta_H 20.0746 kJ/mol # Calculated enthalpy of reaction PuO2SO4 +# Enthalpy of formation: -1711.11 kJ/mol -analytic 2.0363e+2 7.3903e-2 -5.194e+3 -8.2833e+1 -8.8273e+1 # -Range: 0-200 Pu+3 + H2O = PuOH+2 + H+ -llnl_gamma 4.5 log_k -7.968 - -delta_H 53.5143 kJ/mol # Calculated enthalpy of reaction PuOH+2 -# Enthalpy of formation: -823.876 kJ/mol + -delta_H 53.5143 kJ/mol # Calculated enthalpy of reaction PuOH+2 +# Enthalpy of formation: -823.876 kJ/mol -analytic 3.0065e+0 3.0278e-3 -1.9675e+3 -1.61e+0 -1.1524e+5 # -Range: 0-300 Pu+4 + H2O = PuOH+3 + H+ -llnl_gamma 5 log_k -0.5048 - -delta_H 48.1823 kJ/mol # Calculated enthalpy of reaction PuOH+3 -# Enthalpy of formation: -773.549 kJ/mol + -delta_H 48.1823 kJ/mol # Calculated enthalpy of reaction PuOH+3 +# Enthalpy of formation: -773.549 kJ/mol -analytic 4.1056e+1 1.1119e-3 -3.9252e+3 -1.1609e+1 -6.126e+1 # -Range: 0-300 SO4-2 + Pu+3 = PuSO4+ -llnl_gamma 4 log_k 3.4935 - -delta_H 14.6006 kJ/mol # Calculated enthalpy of reaction PuSO4+ -# Enthalpy of formation: -1486.55 kJ/mol + -delta_H 14.6006 kJ/mol # Calculated enthalpy of reaction PuSO4+ +# Enthalpy of formation: -1486.55 kJ/mol -analytic 1.9194e+2 7.7154e-2 -4.2751e+3 -7.9646e+1 -6.6765e+1 # -Range: 0-300 SO4-2 + Pu+4 = PuSO4+2 -llnl_gamma 4.5 log_k 5.771 - -delta_H 12.3336 kJ/mol # Calculated enthalpy of reaction PuSO4+2 -# Enthalpy of formation: -1433.16 kJ/mol + -delta_H 12.3336 kJ/mol # Calculated enthalpy of reaction PuSO4+2 +# Enthalpy of formation: -1433.16 kJ/mol -analytic 1.9418e+2 7.5477e-2 -4.2767e+3 -7.9425e+1 -6.6792e+1 # -Range: 0-300 2 HAcetate + Ra+2 = Ra(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -7.9018 - -delta_H 21.0874 kJ/mol # Calculated enthalpy of reaction Ra(Acetate)2 -# Enthalpy of formation: -353.26 kcal/mol + -delta_H 21.0874 kJ/mol # Calculated enthalpy of reaction Ra(Acetate)2 +# Enthalpy of formation: -353.26 kcal/mol -analytic 2.2767e+1 3.1254e-3 -6.4558e+3 -7.2253e+0 7.0689e+5 # -Range: 0-300 Ra+2 + HAcetate = RaAcetate+ + H+ -llnl_gamma 4 log_k -3.709 - -delta_H 11.7989 kJ/mol # Calculated enthalpy of reaction RaAcetate+ -# Enthalpy of formation: -239.38 kcal/mol + -delta_H 11.7989 kJ/mol # Calculated enthalpy of reaction RaAcetate+ +# Enthalpy of formation: -239.38 kcal/mol -analytic -1.8268e+1 2.9956e-3 1.9313e+1 5.2767e+0 4.9771e+4 # -Range: 0-300 2 HAcetate + Rb+ = Rb(Acetate)2- + 2 H+ -llnl_gamma 4 log_k -9.7636 - -delta_H -1.12968 kJ/mol # Calculated enthalpy of reaction Rb(Acetate)2- -# Enthalpy of formation: -292.49 kcal/mol + -delta_H -1.12968 kJ/mol # Calculated enthalpy of reaction Rb(Acetate)2- +# Enthalpy of formation: -292.49 kcal/mol -analytic -1.9198e+2 -4.2101e-2 5.5792e+3 7.1152e+1 8.7114e+1 # -Range: 0-300 Rb+ + Br- = RbBr -llnl_gamma 3 log_k -1.2168 - -delta_H 13.9327 kJ/mol # Calculated enthalpy of reaction RbBr -# Enthalpy of formation: -85.73 kcal/mol + -delta_H 13.9327 kJ/mol # Calculated enthalpy of reaction RbBr +# Enthalpy of formation: -85.73 kcal/mol -analytic 1.2054e+2 3.3825e-2 -3.95e+3 -4.792e+1 -6.1671e+1 # -Range: 0-300 Rb+ + HAcetate = RbAcetate + H+ -llnl_gamma 3 log_k -4.7279 - -delta_H 4.89528 kJ/mol # Calculated enthalpy of reaction RbAcetate -# Enthalpy of formation: -174.95 kcal/mol + -delta_H 4.89528 kJ/mol # Calculated enthalpy of reaction RbAcetate +# Enthalpy of formation: -174.95 kcal/mol -analytic 1.5661e+1 -2.423e-3 -2.528e+3 -5.4433e+0 2.0344e+5 # -Range: 0-300 Rb+ + Cl- = RbCl -llnl_gamma 3 log_k -0.9595 - -delta_H 13.1922 kJ/mol # Calculated enthalpy of reaction RbCl -# Enthalpy of formation: -96.8 kcal/mol + -delta_H 13.1922 kJ/mol # Calculated enthalpy of reaction RbCl +# Enthalpy of formation: -96.8 kcal/mol -analytic 1.2689e+2 3.5557e-2 -4.0822e+3 -5.0412e+1 -6.3736e+1 # -Range: 0-300 Rb+ + F- = RbF -llnl_gamma 3 log_k 0.9602 - -delta_H 1.92464 kJ/mol # Calculated enthalpy of reaction RbF -# Enthalpy of formation: -139.71 kcal/mol + -delta_H 1.92464 kJ/mol # Calculated enthalpy of reaction RbF +# Enthalpy of formation: -139.71 kcal/mol -analytic 1.3893e+2 3.8188e-2 -3.8677e+3 -5.5109e+1 -6.0393e+1 # -Range: 0-300 Rb+ + I- = RbI -llnl_gamma 3 log_k -0.8136 - -delta_H 7.1128 kJ/mol # Calculated enthalpy of reaction RbI -# Enthalpy of formation: -71.92 kcal/mol + -delta_H 7.1128 kJ/mol # Calculated enthalpy of reaction RbI +# Enthalpy of formation: -71.92 kcal/mol -analytic 1.1486e+2 3.3121e-2 -3.4217e+3 -4.6096e+1 -5.3426e+1 # -Range: 0-300 2 Cl- + Ru+3 = Ru(Cl)2+ -llnl_gamma 4 log_k 3.7527 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(Cl)2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(Cl)2+ +# Enthalpy of formation: -0 kcal/mol 3 Cl- + Ru+3 = Ru(Cl)3 -llnl_gamma 3 log_k 4.2976 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(Cl)3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(Cl)3 +# Enthalpy of formation: -0 kcal/mol 2 H2O + Ru+3 = Ru(OH)2+ + 2 H+ -llnl_gamma 4 log_k -3.5148 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2+ +# Enthalpy of formation: -0 kcal/mol Ru(OH)2+2 + Cl- = Ru(OH)2Cl+ -llnl_gamma 4 log_k 1.3858 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl+ +# Enthalpy of formation: -0 kcal/mol 2 Cl- + Ru(OH)2+2 = Ru(OH)2Cl2 -llnl_gamma 3 log_k 1.8081 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl2 +# Enthalpy of formation: -0 kcal/mol 3 Cl- + Ru(OH)2+2 = Ru(OH)2Cl3- -llnl_gamma 4 log_k 1.6172 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl3- +# Enthalpy of formation: -0 kcal/mol 4 Cl- + Ru(OH)2+2 = Ru(OH)2Cl4-2 -llnl_gamma 4 log_k 2.7052 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl4-2 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Ru(OH)2+2 = Ru(OH)2SO4 -llnl_gamma 3 log_k 1.7941 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2SO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2SO4 +# Enthalpy of formation: -0 kcal/mol #3.0000 H2O + 1.0000 Ru++ + 0.5000 O2 = Ru(OH)4 +2.0000 H+ # Ru(OH)2++ +1.0000 H2O +0.5000 O2 = 4.0000 H+ + 1.0000 RuO4-- log_k -25.2470 @@ -7367,99 +7367,99 @@ SO4-2 + Ru(OH)2+2 = Ru(OH)2SO4 2 H2O + Ru(OH)2+2 = Ru(OH)4 + 2 H+ -llnl_gamma 3 # log_k +18.0322 - log_k -7.0538 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)4 -# Enthalpy of formation: -0 kcal/mol + log_k -7.0538 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)4 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Ru+3 = Ru(SO4)2- -llnl_gamma 4 log_k 3.0627 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(SO4)2- +# Enthalpy of formation: -0 kcal/mol 4 Ru(OH)2+2 + 4 H2O = Ru4(OH)12+4 + 4 H+ -llnl_gamma 5.5 log_k 7.196 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru4(OH)12+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru4(OH)12+4 +# Enthalpy of formation: -0 kcal/mol Ru+2 + Cl- = RuCl+ -llnl_gamma 4 log_k -0.4887 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl+ +# Enthalpy of formation: -0 kcal/mol Ru+3 + Cl- = RuCl+2 -llnl_gamma 4.5 log_k 2.1742 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl+2 +# Enthalpy of formation: -0 kcal/mol 4 Cl- + Ru+3 = RuCl4- -llnl_gamma 4 log_k 4.1418 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl4- +# Enthalpy of formation: -0 kcal/mol 5 Cl- + Ru+3 = RuCl5-2 -llnl_gamma 4 log_k 3.8457 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl5-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl5-2 +# Enthalpy of formation: -0 kcal/mol 6 Cl- + Ru+3 = RuCl6-3 -llnl_gamma 4 log_k 3.4446 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl6-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl6-3 +# Enthalpy of formation: -0 kcal/mol Ru+3 + H2O = RuOH+2 + H+ -llnl_gamma 4.5 log_k -2.2392 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuOH+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuOH+2 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Ru+2 = RuSO4 -llnl_gamma 3 log_k 2.3547 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuSO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuSO4 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Ru+3 = RuSO4+ -llnl_gamma 4 log_k 1.9518 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuSO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuSO4+ +# Enthalpy of formation: -0 kcal/mol HS- = S-2 + H+ -llnl_gamma 5 log_k -12.9351 - -delta_H 49.0364 kJ/mol # Calculated enthalpy of reaction S-2 -# Enthalpy of formation: 32.928 kJ/mol + -delta_H 49.0364 kJ/mol # Calculated enthalpy of reaction S-2 +# Enthalpy of formation: 32.928 kJ/mol -analytic 9.7756e+1 3.2913e-2 -5.0784e+3 -4.1812e+1 -7.9273e+1 # -Range: 0-300 2 H+ + 2 SO3-2 = S2O5-2 + H2O -llnl_gamma 4 log_k 9.5934 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O5-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O5-2 +# Enthalpy of formation: -0 kcal/mol -analytic 0.12262E+3 0.62883E-1 -0.18005E+4 -0.50798E+2 -0.28132E+2 # -Range: 0-300 2 H+ + SO3-2 = SO2 + H2O -llnl_gamma 3 log_k 9.0656 - -delta_H 26.7316 kJ/mol # Calculated enthalpy of reaction SO2 -# Enthalpy of formation: -77.194 kcal/mol + -delta_H 26.7316 kJ/mol # Calculated enthalpy of reaction SO2 +# Enthalpy of formation: -77.194 kcal/mol -analytic 9.4048e+1 6.2127e-2 -1.1072e+3 -4.031e+1 -1.7305e+1 # -Range: 0-300 Sb(OH)3 + H+ = Sb(OH)2+ + H2O -llnl_gamma 4 log_k 1.49 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)2+ +# Enthalpy of formation: -0 kcal/mol -analytic -4.9192e+0 -1.6439e-4 1.4777e+3 6.0724e-1 2.3059e+1 # -Range: 0-300 @@ -7467,8 +7467,8 @@ Sb(OH)3 + H+ = Sb(OH)2+ + H2O Sb(OH)3 + H+ + F- = Sb(OH)2F + H2O -llnl_gamma 3 log_k 7.17 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)2F -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)2F +# Enthalpy of formation: -0 kcal/mol -analytic -1.6961e+2 5.7364e-2 2.7207e+4 3.7969e+1 -2.2834e+6 # -Range: 0-300 @@ -7476,8 +7476,8 @@ Sb(OH)3 + H+ + F- = Sb(OH)2F + H2O Sb(OH)3 + H2O = Sb(OH)4- + H+ -llnl_gamma 4 log_k -11.92 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)4- +# Enthalpy of formation: -0 kcal/mol -analytic 4.9839e+1 -6.7112e-3 -4.8976e+3 -1.7138e+1 -8.3725e+4 # -Range: 0-300 @@ -7485,8 +7485,8 @@ Sb(OH)3 + H2O = Sb(OH)4- + H+ 4 HS- + 2 Sb(OH)3 + 2 H+ = Sb2S4-2 + 6 H2O -llnl_gamma 4 log_k 39.11 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb2S4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb2S4-2 +# Enthalpy of formation: -0 kcal/mol -analytic 1.7631e+2 8.3686e-2 9.7091e+3 -7.8605e+1 1.5145e+2 # -Range: 0-300 @@ -7494,295 +7494,295 @@ Sb(OH)3 + H2O = Sb(OH)4- + H+ 4 Cl- + 3 H+ + Sb(OH)3 = SbCl4- + 3 H2O -llnl_gamma 4 log_k 3.072 - -delta_H 0 # Not possible to calculate enthalpy of reaction SbCl4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SbCl4- +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Sc+3 = Sc(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -3.7237 - -delta_H -43.1789 kJ/mol # Calculated enthalpy of reaction Sc(Acetate)2+ -# Enthalpy of formation: -389.32 kcal/mol + -delta_H -43.1789 kJ/mol # Calculated enthalpy of reaction Sc(Acetate)2+ +# Enthalpy of formation: -389.32 kcal/mol -analytic -4.1862e+1 -3.9443e-5 2.1444e+2 1.2616e+1 5.5442e+5 # -Range: 0-300 3 HAcetate + Sc+3 = Sc(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -6.6777 - -delta_H -70.0402 kJ/mol # Calculated enthalpy of reaction Sc(Acetate)3 -# Enthalpy of formation: -511.84 kcal/mol + -delta_H -70.0402 kJ/mol # Calculated enthalpy of reaction Sc(Acetate)3 +# Enthalpy of formation: -511.84 kcal/mol -analytic -5.2525e+1 1.6181e-3 7.5022e+2 1.3988e+1 7.354e+5 # -Range: 0-300 Sc+3 + HAcetate = ScAcetate+2 + H+ -llnl_gamma 4.5 log_k -1.4294 - -delta_H -21.7568 kJ/mol # Calculated enthalpy of reaction ScAcetate+2 -# Enthalpy of formation: -268.1 kcal/mol + -delta_H -21.7568 kJ/mol # Calculated enthalpy of reaction ScAcetate+2 +# Enthalpy of formation: -268.1 kcal/mol -analytic -2.34e+1 1.3144e-4 1.1125e+2 7.3527e+0 3.0025e+5 # -Range: 0-300 6 F- + 4 H+ + SiO2 = SiF6-2 + 2 H2O -llnl_gamma 4 log_k 26.2749 - -delta_H -70.9565 kJ/mol # Calculated enthalpy of reaction SiF6-2 -# Enthalpy of formation: -571 kcal/mol + -delta_H -70.9565 kJ/mol # Calculated enthalpy of reaction SiF6-2 +# Enthalpy of formation: -571 kcal/mol -analytic 2.3209e+2 1.0685e-1 5.8428e+2 -9.6798e+1 9.0486e+0 # -Range: 0-300 2 HAcetate + Sm+3 = Sm(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -4.7132 - -delta_H -25.5224 kJ/mol # Calculated enthalpy of reaction Sm(Acetate)2+ -# Enthalpy of formation: -403.5 kcal/mol + -delta_H -25.5224 kJ/mol # Calculated enthalpy of reaction Sm(Acetate)2+ +# Enthalpy of formation: -403.5 kcal/mol -analytic -1.4192e+1 2.1732e-3 -1.0267e+3 2.9516e+0 4.4389e+5 # -Range: 0-300 3 HAcetate + Sm+3 = Sm(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -7.8798 - -delta_H -43.5554 kJ/mol # Calculated enthalpy of reaction Sm(Acetate)3 -# Enthalpy of formation: -523.91 kcal/mol + -delta_H -43.5554 kJ/mol # Calculated enthalpy of reaction Sm(Acetate)3 +# Enthalpy of formation: -523.91 kcal/mol -analytic -2.0765e+1 1.1047e-3 -5.1181e+2 3.4797e+0 5.0618e+5 # -Range: 0-300 2 HCO3- + Sm+3 = Sm(CO3)2- + 2 H+ -llnl_gamma 4 log_k -7.8576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Sm+3 = Sm(HPO4)2- -llnl_gamma 4 log_k 9.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(HPO4)2- +# Enthalpy of formation: -0 kcal/mol # Redundant with SmO2- #4.0000 H2O + 1.0000 Sm+++ = Sm(OH)4- +4.0000 H+ # -llnl_gamma 4.0 # log_k -36.8803 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)4- -## Enthalpy of formation: -0 kcal/mol +# -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)4- +## Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Sm+3 = Sm(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -4.2437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Sm+3 = Sm(SO4)2- -llnl_gamma 4 log_k 5.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(SO4)2- +# Enthalpy of formation: -0 kcal/mol Sm+3 + HAcetate = SmAcetate+2 + H+ -llnl_gamma 4.5 log_k -1.9205 - -delta_H -13.598 kJ/mol # Calculated enthalpy of reaction SmAcetate+2 -# Enthalpy of formation: -284.55 kcal/mol + -delta_H -13.598 kJ/mol # Calculated enthalpy of reaction SmAcetate+2 +# Enthalpy of formation: -284.55 kcal/mol -analytic -1.1734e+1 1.0889e-3 -5.1061e+2 3.3317e+0 2.6395e+5 # -Range: 0-300 Sm+3 + HCO3- = SmCO3+ + H+ -llnl_gamma 4 log_k -2.479 - -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction SmCO3+ -# Enthalpy of formation: -308.8 kcal/mol + -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction SmCO3+ +# Enthalpy of formation: -308.8 kcal/mol -analytic 2.3486e+2 5.3703e-2 -7.0193e+3 -9.2863e+1 -1.096e+2 # -Range: 0-300 Sm+3 + Cl- = SmCl+2 -llnl_gamma 4.5 log_k 0.3086 - -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction SmCl+2 -# Enthalpy of formation: -201.7 kcal/mol + -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction SmCl+2 +# Enthalpy of formation: -201.7 kcal/mol -analytic 9.4972e+1 3.9428e-2 -2.4198e+3 -3.9718e+1 -3.7787e+1 # -Range: 0-300 2 Cl- + Sm+3 = SmCl2+ -llnl_gamma 4 log_k -0.0425 - -delta_H 19.9409 kJ/mol # Calculated enthalpy of reaction SmCl2+ -# Enthalpy of formation: -240.3 kcal/mol + -delta_H 19.9409 kJ/mol # Calculated enthalpy of reaction SmCl2+ +# Enthalpy of formation: -240.3 kcal/mol -analytic 2.5872e+2 8.4154e-2 -7.2061e+3 -1.0493e+2 -1.1252e+2 # -Range: 0-300 3 Cl- + Sm+3 = SmCl3 -llnl_gamma 3 log_k -0.3936 - -delta_H 13.803 kJ/mol # Calculated enthalpy of reaction SmCl3 -# Enthalpy of formation: -281.7 kcal/mol + -delta_H 13.803 kJ/mol # Calculated enthalpy of reaction SmCl3 +# Enthalpy of formation: -281.7 kcal/mol -analytic 4.9535e+2 1.352e-1 -1.4325e+4 -1.972e+2 -2.2367e+2 # -Range: 0-300 4 Cl- + Sm+3 = SmCl4- -llnl_gamma 4 log_k -0.818 - -delta_H -5.30531 kJ/mol # Calculated enthalpy of reaction SmCl4- -# Enthalpy of formation: -326.2 kcal/mol + -delta_H -5.30531 kJ/mol # Calculated enthalpy of reaction SmCl4- +# Enthalpy of formation: -326.2 kcal/mol -analytic 6.0562e+2 1.4212e-1 -1.7982e+4 -2.3782e+2 -2.8077e+2 # -Range: 0-300 Sm+3 + F- = SmF+2 -llnl_gamma 4.5 log_k 4.3687 - -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction SmF+2 -# Enthalpy of formation: -239.9 kcal/mol + -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction SmF+2 +# Enthalpy of formation: -239.9 kcal/mol -analytic 1.1514e+2 4.3117e-2 -3.2853e+3 -4.5499e+1 -5.1297e+1 # -Range: 0-300 2 F- + Sm+3 = SmF2+ -llnl_gamma 4 log_k 7.6379 - -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction SmF2+ -# Enthalpy of formation: -322.2 kcal/mol + -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction SmF2+ +# Enthalpy of formation: -322.2 kcal/mol -analytic 2.803e+2 8.8143e-2 -7.2857e+3 -1.1092e+2 -1.1377e+2 # -Range: 0-300 3 F- + Sm+3 = SmF3 -llnl_gamma 3 log_k 10.0275 - -delta_H -8.5772 kJ/mol # Calculated enthalpy of reaction SmF3 -# Enthalpy of formation: -407.7 kcal/mol + -delta_H -8.5772 kJ/mol # Calculated enthalpy of reaction SmF3 +# Enthalpy of formation: -407.7 kcal/mol -analytic 5.2425e+2 1.4191e-1 -1.3728e+4 -2.0628e+2 -2.1436e+2 # -Range: 0-300 4 F- + Sm+3 = SmF4- -llnl_gamma 4 log_k 11.9773 - -delta_H -49.7896 kJ/mol # Calculated enthalpy of reaction SmF4- -# Enthalpy of formation: -497.7 kcal/mol + -delta_H -49.7896 kJ/mol # Calculated enthalpy of reaction SmF4- +# Enthalpy of formation: -497.7 kcal/mol -analytic 6.2228e+2 1.4659e-1 -1.5887e+4 -2.4275e+2 -2.4809e+2 # -Range: 0-300 Sm+3 + HPO4-2 + H+ = SmH2PO4+2 -llnl_gamma 4.5 log_k 9.4484 - -delta_H -15.8364 kJ/mol # Calculated enthalpy of reaction SmH2PO4+2 -# Enthalpy of formation: -477.8 kcal/mol + -delta_H -15.8364 kJ/mol # Calculated enthalpy of reaction SmH2PO4+2 +# Enthalpy of formation: -477.8 kcal/mol -analytic 1.2451e+2 6.4959e-2 -3.9576e+2 -5.3772e+1 -6.2124e+0 # -Range: 0-300 Sm+3 + HCO3- = SmHCO3+2 -llnl_gamma 4.5 log_k 1.7724 - -delta_H 9.19643 kJ/mol # Calculated enthalpy of reaction SmHCO3+2 -# Enthalpy of formation: -327.9 kcal/mol + -delta_H 9.19643 kJ/mol # Calculated enthalpy of reaction SmHCO3+2 +# Enthalpy of formation: -327.9 kcal/mol -analytic 5.552e+1 3.3265e-2 -7.3142e+2 -2.4727e+1 -1.143e+1 # -Range: 0-300 Sm+3 + HPO4-2 = SmHPO4+ -llnl_gamma 4 log_k 5.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction SmHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SmHPO4+ +# Enthalpy of formation: -0 kcal/mol Sm+3 + NO3- = SmNO3+2 -llnl_gamma 4.5 log_k 0.8012 - -delta_H -29.1667 kJ/mol # Calculated enthalpy of reaction SmNO3+2 -# Enthalpy of formation: -221.6 kcal/mol + -delta_H -29.1667 kJ/mol # Calculated enthalpy of reaction SmNO3+2 +# Enthalpy of formation: -221.6 kcal/mol -analytic 3.3782e+1 2.7125e-2 1.5091e+3 -1.8632e+1 2.3537e+1 # -Range: 0-300 Sm+3 + H2O = SmO+ + 2 H+ -llnl_gamma 4 log_k -16.4837 - -delta_H 113.039 kJ/mol # Calculated enthalpy of reaction SmO+ -# Enthalpy of formation: -206.5 kcal/mol + -delta_H 113.039 kJ/mol # Calculated enthalpy of reaction SmO+ +# Enthalpy of formation: -206.5 kcal/mol -analytic 1.8554e+2 3.0198e-2 -1.3791e+4 -6.6588e+1 -2.1526e+2 # -Range: 0-300 2 H2O + Sm+3 = SmO2- + 4 H+ -llnl_gamma 4 log_k -35.0197 - -delta_H 285.909 kJ/mol # Calculated enthalpy of reaction SmO2- -# Enthalpy of formation: -233.5 kcal/mol + -delta_H 285.909 kJ/mol # Calculated enthalpy of reaction SmO2- +# Enthalpy of formation: -233.5 kcal/mol -analytic 1.3508e+1 -8.3384e-3 -1.0325e+4 -1.5506e+0 -6.7392e+5 # -Range: 0-300 2 H2O + Sm+3 = SmO2H + 3 H+ -llnl_gamma 3 log_k -25.9304 - -delta_H 226.497 kJ/mol # Calculated enthalpy of reaction SmO2H -# Enthalpy of formation: -247.7 kcal/mol + -delta_H 226.497 kJ/mol # Calculated enthalpy of reaction SmO2H +# Enthalpy of formation: -247.7 kcal/mol -analytic 3.6882e+2 5.3761e-2 -2.4317e+4 -1.3305e+2 -3.7956e+2 # -Range: 0-300 Sm+3 + H2O = SmOH+2 + H+ -llnl_gamma 4.5 log_k -7.9808 - -delta_H 79.1487 kJ/mol # Calculated enthalpy of reaction SmOH+2 -# Enthalpy of formation: -214.6 kcal/mol + -delta_H 79.1487 kJ/mol # Calculated enthalpy of reaction SmOH+2 +# Enthalpy of formation: -214.6 kcal/mol -analytic 6.3793e+1 1.1977e-2 -6.0852e+3 -2.2198e+1 -9.4972e+1 # -Range: 0-300 Sm+3 + HPO4-2 = SmPO4 + H+ -llnl_gamma 3 log_k -0.2218 - -delta_H 0 # Not possible to calculate enthalpy of reaction SmPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SmPO4 +# Enthalpy of formation: -0 kcal/mol Sm+3 + SO4-2 = SmSO4+ -llnl_gamma 4 log_k 3.643 - -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction SmSO4+ -# Enthalpy of formation: -377.8 kcal/mol + -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction SmSO4+ +# Enthalpy of formation: -377.8 kcal/mol -analytic 3.0597e+2 8.6258e-2 -9.0231e+3 -1.2032e+2 -1.4089e+2 # -Range: 0-300 2 H2O + Sn+2 = Sn(OH)2 + 2 H+ -llnl_gamma 3 log_k -7.9102 - -delta_H 42.0534 kJ/mol # Calculated enthalpy of reaction Sn(OH)2 -# Enthalpy of formation: -128.683 kcal/mol + -delta_H 42.0534 kJ/mol # Calculated enthalpy of reaction Sn(OH)2 +# Enthalpy of formation: -128.683 kcal/mol -analytic -3.7979e+1 -1.0893e-2 -1.2048e+3 1.51e+1 -2.0445e+1 # -Range: 0-200 2 H2O + Sn+4 = Sn(OH)2+2 + 2 H+ -llnl_gamma 4.5 log_k -0.1902 - -delta_H -2.02087 kJ/mol # Calculated enthalpy of reaction Sn(OH)2+2 -# Enthalpy of formation: -129.888 kcal/mol + -delta_H -2.02087 kJ/mol # Calculated enthalpy of reaction Sn(OH)2+2 +# Enthalpy of formation: -129.888 kcal/mol -analytic -2.1675e+1 5.9697e-3 3.3953e+3 4.8158e+0 -3.2042e+5 # -Range: 0-300 3 H2O + Sn+4 = Sn(OH)3+ + 3 H+ -llnl_gamma 4 log_k 0.5148 - -delta_H -7.59396 kJ/mol # Calculated enthalpy of reaction Sn(OH)3+ -# Enthalpy of formation: -199.537 kcal/mol + -delta_H -7.59396 kJ/mol # Calculated enthalpy of reaction Sn(OH)3+ +# Enthalpy of formation: -199.537 kcal/mol -analytic -3.3294e+1 8.858e-3 5.3803e+3 7.4994e+0 -4.8389e+5 # -Range: 0-300 3 H2O + Sn+2 = Sn(OH)3- + 3 H+ -llnl_gamma 4 log_k -17.4052 - -delta_H 94.7007 kJ/mol # Calculated enthalpy of reaction Sn(OH)3- -# Enthalpy of formation: -184.417 kcal/mol + -delta_H 94.7007 kJ/mol # Calculated enthalpy of reaction Sn(OH)3- +# Enthalpy of formation: -184.417 kcal/mol -analytic 1.5614e+2 1.9943e-2 -1.07e+4 -5.8031e+1 -1.6701e+2 # -Range: 0-300 4 H2O + Sn+4 = Sn(OH)4 + 4 H+ -llnl_gamma 3 log_k 0.8497 - -delta_H -11.0583 kJ/mol # Calculated enthalpy of reaction Sn(OH)4 -# Enthalpy of formation: -268.682 kcal/mol + -delta_H -11.0583 kJ/mol # Calculated enthalpy of reaction Sn(OH)4 +# Enthalpy of formation: -268.682 kcal/mol -analytic -7.9563e+1 -2.2641e-2 2.6682e+3 3.1614e+1 4.5337e+1 # -Range: 0-200 2 SO4-2 + Sn+4 = Sn(SO4)2 -llnl_gamma 3 log_k -0.8072 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sn(SO4)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sn(SO4)2 +# Enthalpy of formation: -0 kcal/mol Sn+2 + Cl- = SnCl+ -llnl_gamma 4 log_k 1.05 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl+ +# Enthalpy of formation: -0 kcal/mol -analytic 3.0558e+2 8.2458e-2 -8.9329e+3 -1.2088e+2 -1.3948e+2 # -Range: 0-300 @@ -7790,8 +7790,8 @@ Sn+2 + Cl- = SnCl+ 2 Cl- + Sn+2 = SnCl2 -llnl_gamma 3 log_k 1.71 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl2 +# Enthalpy of formation: -0 kcal/mol -analytic 3.66e+2 1.0753e-1 -1.0006e+4 -1.466e+2 -1.5624e+2 # -Range: 0-300 @@ -7799,8 +7799,8 @@ Sn+2 + Cl- = SnCl+ 3 Cl- + Sn+2 = SnCl3- -llnl_gamma 4 log_k 1.69 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl3- +# Enthalpy of formation: -0 kcal/mol -analytic 3.6019e+2 1.0602e-1 -1.0337e+4 -1.4363e+2 -1.6141e+2 # -Range: 0-300 @@ -7808,8 +7808,8 @@ Sn+2 + Cl- = SnCl+ Sn+2 + F- = SnF+ -llnl_gamma 4 log_k 4.08 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnF+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SnF+ +# Enthalpy of formation: -0 kcal/mol -analytic 3.002e+2 7.5485e-2 -8.4231e+3 -1.1734e+2 -1.3152e+2 # -Range: 0-300 @@ -7817,8 +7817,8 @@ Sn+2 + F- = SnF+ 2 F- + Sn+2 = SnF2 -llnl_gamma 3 log_k 6.68 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnF2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SnF2 +# Enthalpy of formation: -0 kcal/mol -analytic 4.1241e+2 1.0988e-1 -1.1151e+4 -1.6207e+2 -1.7413e+2 # -Range: 0-300 @@ -7826,8 +7826,8 @@ Sn+2 + F- = SnF+ 3 F- + Sn+2 = SnF3- -llnl_gamma 4 log_k 9.46 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnF3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SnF3- +# Enthalpy of formation: -0 kcal/mol -analytic 4.1793e+2 1.0898e-1 -1.1402e+4 -1.6273e+2 -1.7803e+2 # -Range: 0-300 @@ -7835,1892 +7835,1892 @@ Sn+2 + F- = SnF+ Sn+2 + H2O = SnOH+ + H+ -llnl_gamma 4 log_k -3.9851 - -delta_H 21.2045 kJ/mol # Calculated enthalpy of reaction SnOH+ -# Enthalpy of formation: -65.349 kcal/mol + -delta_H 21.2045 kJ/mol # Calculated enthalpy of reaction SnOH+ +# Enthalpy of formation: -65.349 kcal/mol -analytic 7.7253e+1 1.9149e-2 -3.3745e+3 -3.056e+1 -5.2679e+1 # -Range: 0-300 Sn+4 + H2O = SnOH+3 + H+ -llnl_gamma 5 log_k 0.6049 - -delta_H -5.00406 kJ/mol # Calculated enthalpy of reaction SnOH+3 -# Enthalpy of formation: -62.284 kcal/mol + -delta_H -5.00406 kJ/mol # Calculated enthalpy of reaction SnOH+3 +# Enthalpy of formation: -62.284 kcal/mol -analytic -1.1548e+1 2.8878e-3 1.9476e+3 2.6622e+0 -1.6274e+5 # -Range: 0-300 Sn+4 + SO4-2 = SnSO4+2 -llnl_gamma 4.5 log_k -3.1094 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnSO4+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SnSO4+2 +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Sr+2 = Sr(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -7.8212 - -delta_H 0.54392 kJ/mol # Calculated enthalpy of reaction Sr(Acetate)2 -# Enthalpy of formation: -363.74 kcal/mol + -delta_H 0.54392 kJ/mol # Calculated enthalpy of reaction Sr(Acetate)2 +# Enthalpy of formation: -363.74 kcal/mol -analytic 1.2965e+1 4.7082e-3 -5.2538e+3 -5.2337e+0 7.4721e+5 # -Range: 0-300 Sr+2 + HAcetate = SrAcetate+ + H+ -llnl_gamma 4 log_k -3.6724 - -delta_H 2.3012 kJ/mol # Calculated enthalpy of reaction SrAcetate+ -# Enthalpy of formation: -247.22 kcal/mol + -delta_H 2.3012 kJ/mol # Calculated enthalpy of reaction SrAcetate+ +# Enthalpy of formation: -247.22 kcal/mol -analytic -1.4301e+1 1.2481e-3 -7.569e+2 4.276e+0 1.98e+5 # -Range: 0-300 Sr+2 + HCO3- = SrCO3 + H+ -llnl_gamma 3 log_k -7.4635 - -delta_H 33.2544 kJ/mol # Calculated enthalpy of reaction SrCO3 -# Enthalpy of formation: -288.62 kcal/mol + -delta_H 33.2544 kJ/mol # Calculated enthalpy of reaction SrCO3 +# Enthalpy of formation: -288.62 kcal/mol -analytic 2.2303e+2 5.2582e-2 -8.4861e+3 -8.7975e+1 -1.3248e+2 # -Range: 0-300 Sr+2 + Cl- = SrCl+ -llnl_gamma 4 log_k -0.2485 - -delta_H 7.58559 kJ/mol # Calculated enthalpy of reaction SrCl+ -# Enthalpy of formation: -169.79 kcal/mol + -delta_H 7.58559 kJ/mol # Calculated enthalpy of reaction SrCl+ +# Enthalpy of formation: -169.79 kcal/mol -analytic 9.4568e+1 3.9042e-2 -2.1458e+3 -4.0105e+1 -3.3511e+1 # -Range: 0-300 Sr+2 + F- = SrF+ -llnl_gamma 4 log_k 0.1393 - -delta_H 4.8116 kJ/mol # Calculated enthalpy of reaction SrF+ -# Enthalpy of formation: -210.67 kcal/mol + -delta_H 4.8116 kJ/mol # Calculated enthalpy of reaction SrF+ +# Enthalpy of formation: -210.67 kcal/mol -analytic 9.0295e+1 3.7609e-2 -1.9012e+3 -3.8379e+1 -2.9693e+1 # -Range: 0-300 Sr+2 + HPO4-2 + H+ = SrH2PO4+ -llnl_gamma 4 log_k 0.73 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrH2PO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SrH2PO4+ +# Enthalpy of formation: -0 kcal/mol Sr+2 + HPO4-2 = SrHPO4 -llnl_gamma 3 log_k 2.06 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrHPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SrHPO4 +# Enthalpy of formation: -0 kcal/mol Sr+2 + NO3- = SrNO3+ -llnl_gamma 4 log_k 0.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrNO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SrNO3+ +# Enthalpy of formation: -0 kcal/mol Sr+2 + H2O = SrOH+ + H+ -llnl_gamma 4 log_k -13.29 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrOH+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SrOH+ +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Sr+2 = SrP2O7-2 + H2O -llnl_gamma 4 log_k 1.6537 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrP2O7-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SrP2O7-2 +# Enthalpy of formation: -0 kcal/mol Sr+2 + SO4-2 = SrSO4 -llnl_gamma 3 log_k 2.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrSO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SrSO4 +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Tb+3 = Tb(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -4.9625 - -delta_H -27.9491 kJ/mol # Calculated enthalpy of reaction Tb(Acetate)2+ -# Enthalpy of formation: -405.78 kcal/mol + -delta_H -27.9491 kJ/mol # Calculated enthalpy of reaction Tb(Acetate)2+ +# Enthalpy of formation: -405.78 kcal/mol -analytic -2.391e+1 1.3433e-3 -8.08e+2 6.3895e+0 4.8619e+5 # -Range: 0-300 3 HAcetate + Tb+3 = Tb(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -8.3489 - -delta_H -47.1537 kJ/mol # Calculated enthalpy of reaction Tb(Acetate)3 -# Enthalpy of formation: -526.47 kcal/mol + -delta_H -47.1537 kJ/mol # Calculated enthalpy of reaction Tb(Acetate)3 +# Enthalpy of formation: -526.47 kcal/mol -analytic -1.0762e+1 4.2361e-3 -1.562e+3 -3.9317e-1 6.5745e+5 # -Range: 0-300 2 HCO3- + Tb+3 = Tb(CO3)2- + 2 H+ -llnl_gamma 4 log_k -7.5576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Tb+3 = Tb(HPO4)2- -llnl_gamma 4 log_k 9.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(HPO4)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Tb+3 = Tb(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -3.6437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Tb+3 = Tb(SO4)2- -llnl_gamma 4 log_k 5 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(SO4)2- +# Enthalpy of formation: -0 kcal/mol Tb+3 + HAcetate = TbAcetate+2 + H+ -llnl_gamma 4.5 log_k -2.1037 - -delta_H -14.2256 kJ/mol # Calculated enthalpy of reaction TbAcetate+2 -# Enthalpy of formation: -286.4 kcal/mol + -delta_H -14.2256 kJ/mol # Calculated enthalpy of reaction TbAcetate+2 +# Enthalpy of formation: -286.4 kcal/mol -analytic -1.6817e+1 6.429e-4 -3.4442e+2 5.0994e+0 2.7304e+5 # -Range: 0-300 Tb+3 + HCO3- = TbCO3+ + H+ -llnl_gamma 4 log_k -2.4057 - -delta_H 89.5292 kJ/mol # Calculated enthalpy of reaction TbCO3+ -# Enthalpy of formation: -310.4 kcal/mol + -delta_H 89.5292 kJ/mol # Calculated enthalpy of reaction TbCO3+ +# Enthalpy of formation: -310.4 kcal/mol -analytic 2.2347e+2 5.4185e-2 -6.4127e+3 -8.9112e+1 -1.0013e+2 # -Range: 0-300 Tb+3 + Cl- = TbCl+2 -llnl_gamma 4.5 log_k 0.2353 - -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction TbCl+2 -# Enthalpy of formation: -203.5 kcal/mol + -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction TbCl+2 +# Enthalpy of formation: -203.5 kcal/mol -analytic 7.1095e+1 3.7367e-2 -1.4676e+3 -3.114e+1 -2.2921e+1 # -Range: 0-300 2 Cl- + Tb+3 = TbCl2+ -llnl_gamma 4 log_k -0.0425 - -delta_H 18.2673 kJ/mol # Calculated enthalpy of reaction TbCl2+ -# Enthalpy of formation: -242.4 kcal/mol + -delta_H 18.2673 kJ/mol # Calculated enthalpy of reaction TbCl2+ +# Enthalpy of formation: -242.4 kcal/mol -analytic 2.0699e+2 7.9609e-2 -5.0958e+3 -8.6337e+1 -7.9576e+1 # -Range: 0-300 3 Cl- + Tb+3 = TbCl3 -llnl_gamma 3 log_k -0.4669 - -delta_H 10.0374 kJ/mol # Calculated enthalpy of reaction TbCl3 -# Enthalpy of formation: -284.3 kcal/mol + -delta_H 10.0374 kJ/mol # Calculated enthalpy of reaction TbCl3 +# Enthalpy of formation: -284.3 kcal/mol -analytic 4.0764e+2 1.2809e-1 -1.0704e+4 -1.6583e+2 -1.6715e+2 # -Range: 0-300 4 Cl- + Tb+3 = TbCl4- -llnl_gamma 4 log_k -0.8913 - -delta_H -11.5813 kJ/mol # Calculated enthalpy of reaction TbCl4- -# Enthalpy of formation: -329.4 kcal/mol + -delta_H -11.5813 kJ/mol # Calculated enthalpy of reaction TbCl4- +# Enthalpy of formation: -329.4 kcal/mol -analytic 4.6247e+2 1.2926e-1 -1.2117e+4 -1.8639e+2 -1.8921e+2 # -Range: 0-300 Tb+3 + F- = TbF+2 -llnl_gamma 4.5 log_k 4.6619 - -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction TbF+2 -# Enthalpy of formation: -241.6 kcal/mol + -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction TbF+2 +# Enthalpy of formation: -241.6 kcal/mol -analytic 9.2579e+1 4.1327e-2 -2.3647e+3 -3.7293e+1 -3.6927e+1 # -Range: 0-300 2 F- + Tb+3 = TbF2+ -llnl_gamma 4 log_k 8.151 - -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction TbF2+ -# Enthalpy of formation: -324.3 kcal/mol + -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction TbF2+ +# Enthalpy of formation: -324.3 kcal/mol -analytic 2.31e+2 8.4094e-2 -5.2548e+3 -9.3051e+1 -8.2065e+1 # -Range: 0-300 3 F- + Tb+3 = TbF3 -llnl_gamma 3 log_k 10.6872 - -delta_H -11.9244 kJ/mol # Calculated enthalpy of reaction TbF3 -# Enthalpy of formation: -410.2 kcal/mol + -delta_H -11.9244 kJ/mol # Calculated enthalpy of reaction TbF3 +# Enthalpy of formation: -410.2 kcal/mol -analytic 4.373e+2 1.3479e-1 -1.0128e+4 -1.7489e+2 -1.5817e+2 # -Range: 0-300 4 F- + Tb+3 = TbF4- -llnl_gamma 4 log_k 12.7836 - -delta_H -56.0656 kJ/mol # Calculated enthalpy of reaction TbF4- -# Enthalpy of formation: -500.9 kcal/mol + -delta_H -56.0656 kJ/mol # Calculated enthalpy of reaction TbF4- +# Enthalpy of formation: -500.9 kcal/mol -analytic 4.8546e+2 1.3511e-1 -1.0189e+4 -1.9347e+2 -1.5913e+2 # -Range: 0-300 Tb+3 + HPO4-2 + H+ = TbH2PO4+2 -llnl_gamma 4.5 log_k 9.3751 - -delta_H -17.51 kJ/mol # Calculated enthalpy of reaction TbH2PO4+2 -# Enthalpy of formation: -479.9 kcal/mol + -delta_H -17.51 kJ/mol # Calculated enthalpy of reaction TbH2PO4+2 +# Enthalpy of formation: -479.9 kcal/mol -analytic 1.0042e+2 6.2886e-2 6.0975e+2 -4.5178e+1 9.4847e+0 # -Range: 0-300 Tb+3 + HCO3- = TbHCO3+2 -llnl_gamma 4.5 log_k 1.6991 - -delta_H -14.6524 kJ/mol # Calculated enthalpy of reaction TbHCO3+2 -# Enthalpy of formation: -335.3 kcal/mol + -delta_H -14.6524 kJ/mol # Calculated enthalpy of reaction TbHCO3+2 +# Enthalpy of formation: -335.3 kcal/mol -analytic 1.7376e+1 2.8365e-2 1.6982e+3 -1.2044e+1 2.6494e+1 # -Range: 0-300 Tb+3 + HPO4-2 = TbHPO4+ -llnl_gamma 4 log_k 5.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction TbHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TbHPO4+ +# Enthalpy of formation: -0 kcal/mol Tb+3 + NO3- = TbNO3+2 -llnl_gamma 4.5 log_k 0.508 - -delta_H -31.2587 kJ/mol # Calculated enthalpy of reaction TbNO3+2 -# Enthalpy of formation: -223.8 kcal/mol + -delta_H -31.2587 kJ/mol # Calculated enthalpy of reaction TbNO3+2 +# Enthalpy of formation: -223.8 kcal/mol -analytic 8.7852e+0 2.4868e-2 2.5553e+3 -9.7944e+0 3.9871e+1 # -Range: 0-300 Tb+3 + H2O = TbO+ + 2 H+ -llnl_gamma 4 log_k -16.1904 - -delta_H 109.692 kJ/mol # Calculated enthalpy of reaction TbO+ -# Enthalpy of formation: -209 kcal/mol + -delta_H 109.692 kJ/mol # Calculated enthalpy of reaction TbO+ +# Enthalpy of formation: -209 kcal/mol -analytic 1.7975e+2 2.9563e-2 -1.3407e+4 -6.4573e+1 -2.0926e+2 # -Range: 0-300 2 H2O + Tb+3 = TbO2- + 4 H+ -llnl_gamma 4 log_k -34.2134 - -delta_H 278.797 kJ/mol # Calculated enthalpy of reaction TbO2- -# Enthalpy of formation: -236.9 kcal/mol + -delta_H 278.797 kJ/mol # Calculated enthalpy of reaction TbO2- +# Enthalpy of formation: -236.9 kcal/mol -analytic 1.6924e+2 1.1804e-2 -1.9821e+4 -5.6781e+1 -3.0933e+2 # -Range: 0-300 2 H2O + Tb+3 = TbO2H + 3 H+ -llnl_gamma 3 log_k -25.0508 - -delta_H 219.802 kJ/mol # Calculated enthalpy of reaction TbO2H -# Enthalpy of formation: -251 kcal/mol + -delta_H 219.802 kJ/mol # Calculated enthalpy of reaction TbO2H +# Enthalpy of formation: -251 kcal/mol -analytic 3.2761e+2 4.5225e-2 -2.2652e+4 -1.1727e+2 -3.5356e+2 # -Range: 0-300 Tb+3 + H2O = TbOH+2 + H+ -llnl_gamma 4.5 log_k -7.8342 - -delta_H 77.4751 kJ/mol # Calculated enthalpy of reaction TbOH+2 -# Enthalpy of formation: -216.7 kcal/mol + -delta_H 77.4751 kJ/mol # Calculated enthalpy of reaction TbOH+2 +# Enthalpy of formation: -216.7 kcal/mol -analytic 5.9574e+1 1.1625e-2 -5.8143e+3 -2.0759e+1 -9.0744e+1 # -Range: 0-300 Tb+3 + HPO4-2 = TbPO4 + H+ -llnl_gamma 3 log_k 0.0782 - -delta_H 0 # Not possible to calculate enthalpy of reaction TbPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TbPO4 +# Enthalpy of formation: -0 kcal/mol Tb+3 + SO4-2 = TbSO4+ -llnl_gamma 4 log_k 3.643 - -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction TbSO4+ -# Enthalpy of formation: -379.6 kcal/mol + -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction TbSO4+ +# Enthalpy of formation: -379.6 kcal/mol -analytic 2.9633e+2 8.5155e-2 -8.6346e+3 -1.1682e+2 -1.3482e+2 # -Range: 0-300 2 H2O + TcO+2 = TcO(OH)2 + 2 H+ -llnl_gamma 3 log_k -3.3221 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO(OH)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO(OH)2 +# Enthalpy of formation: -0 kcal/mol TcO+2 + H2O = TcOOH+ + H+ -llnl_gamma 4 log_k -1.1355 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcOOH+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TcOOH+ +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + 2 H+ + Th+4 = Th(H2PO4)2+2 -llnl_gamma 4.5 log_k 23.207 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th(H2PO4)2+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Th(H2PO4)2+2 +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Th+4 = Th(HPO4)2 -llnl_gamma 3 log_k 22.6939 - -delta_H -13.644 kJ/mol # Calculated enthalpy of reaction Th(HPO4)2 -# Enthalpy of formation: -804.691 kcal/mol + -delta_H -13.644 kJ/mol # Calculated enthalpy of reaction Th(HPO4)2 +# Enthalpy of formation: -804.691 kcal/mol -analytic 6.5208e+2 2.3099e-1 -1.299e+4 -2.6457e+2 -2.2082e+2 # -Range: 0-200 3 HPO4-2 + Th+4 = Th(HPO4)3-2 -llnl_gamma 4 log_k 31.1894 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th(HPO4)3-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Th(HPO4)3-2 +# Enthalpy of formation: -0 kcal/mol 2 H2O + Th+4 = Th(OH)2+2 + 2 H+ -llnl_gamma 4.5 log_k -7.1068 - -delta_H 58.668 kJ/mol # Calculated enthalpy of reaction Th(OH)2+2 -# Enthalpy of formation: -306.412 kcal/mol + -delta_H 58.668 kJ/mol # Calculated enthalpy of reaction Th(OH)2+2 +# Enthalpy of formation: -306.412 kcal/mol -analytic -1.1274e+1 3.4195e-3 -3.7553e+2 3.1299e+0 -2.9696e+5 # -Range: 0-300 3 H2O + Th+4 = Th(OH)3+ + 3 H+ -llnl_gamma 4 log_k -11.8623 - -delta_H 86.1318 kJ/mol # Calculated enthalpy of reaction Th(OH)3+ -# Enthalpy of formation: -368.165 kcal/mol + -delta_H 86.1318 kJ/mol # Calculated enthalpy of reaction Th(OH)3+ +# Enthalpy of formation: -368.165 kcal/mol 4 H2O + Th+4 = Th(OH)4 + 4 H+ -llnl_gamma 3 log_k -16.0315 - -delta_H 104.01 kJ/mol # Calculated enthalpy of reaction Th(OH)4 -# Enthalpy of formation: -432.209 kcal/mol + -delta_H 104.01 kJ/mol # Calculated enthalpy of reaction Th(OH)4 +# Enthalpy of formation: -432.209 kcal/mol -analytic 2.9534e+1 1.555e-2 -5.668e+3 -1.2598e+1 -9.6262e+1 # -Range: 0-200 2 SO4-2 + Th+4 = Th(SO4)2 -llnl_gamma 3 log_k 9.617 - -delta_H 32.2377 kJ/mol # Calculated enthalpy of reaction Th(SO4)2 -# Enthalpy of formation: -610.895 kcal/mol + -delta_H 32.2377 kJ/mol # Calculated enthalpy of reaction Th(SO4)2 +# Enthalpy of formation: -610.895 kcal/mol -analytic 4.6425e+2 1.6769e-1 -1.1195e+4 -1.8875e+2 -1.9027e+2 # -Range: 0-200 3 SO4-2 + Th+4 = Th(SO4)3-2 -llnl_gamma 4 log_k 10.4014 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th(SO4)3-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Th(SO4)3-2 +# Enthalpy of formation: -0 kcal/mol 4 SO4-2 + Th+4 = Th(SO4)4-4 -llnl_gamma 4 log_k 8.4003 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th(SO4)4-4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Th(SO4)4-4 +# Enthalpy of formation: -0 kcal/mol 2 Th+4 + 2 H2O = Th2(OH)2+6 + 2 H+ -llnl_gamma 6 log_k -6.4618 - -delta_H 63.7181 kJ/mol # Calculated enthalpy of reaction Th2(OH)2+6 -# Enthalpy of formation: -489.005 kcal/mol + -delta_H 63.7181 kJ/mol # Calculated enthalpy of reaction Th2(OH)2+6 +# Enthalpy of formation: -489.005 kcal/mol -analytic 6.8838e+1 -4.1348e-3 -6.4415e+3 -2.12e+1 -1.0053e+2 # -Range: 0-300 8 H2O + 4 Th+4 = Th4(OH)8+8 + 8 H+ -llnl_gamma 6 log_k -21.7568 - -delta_H 245.245 kJ/mol # Calculated enthalpy of reaction Th4(OH)8+8 -# Enthalpy of formation: -1223.12 kcal/mol + -delta_H 245.245 kJ/mol # Calculated enthalpy of reaction Th4(OH)8+8 +# Enthalpy of formation: -1223.12 kcal/mol -analytic 2.7826e+2 -2.3504e-3 -2.441e+4 -8.7873e+1 -3.8097e+2 # -Range: 0-300 15 H2O + 6 Th+4 = Th6(OH)15+9 + 15 H+ -llnl_gamma 6 log_k -37.7027 - -delta_H 458.248 kJ/mol # Calculated enthalpy of reaction Th6(OH)15+9 -# Enthalpy of formation: -2018.03 kcal/mol + -delta_H 458.248 kJ/mol # Calculated enthalpy of reaction Th6(OH)15+9 +# Enthalpy of formation: -2018.03 kcal/mol -analytic 5.2516e+2 3.3015e-3 -4.5237e+4 -1.6654e+2 -7.0603e+2 # -Range: 0-300 Th+4 + Cl- = ThCl+3 -llnl_gamma 5 log_k 0.9536 - -delta_H 0.06276 kJ/mol # Calculated enthalpy of reaction ThCl+3 -# Enthalpy of formation: -223.718 kcal/mol + -delta_H 0.06276 kJ/mol # Calculated enthalpy of reaction ThCl+3 +# Enthalpy of formation: -223.718 kcal/mol -analytic 9.743e+1 3.9398e-2 -1.8653e+3 -4.1202e+1 -2.9135e+1 # -Range: 0-300 2 Cl- + Th+4 = ThCl2+2 -llnl_gamma 4.5 log_k 0.6758 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl2+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl2+2 +# Enthalpy of formation: -0 kcal/mol 3 Cl- + Th+4 = ThCl3+ -llnl_gamma 4 log_k 1.4975 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl3+ +# Enthalpy of formation: -0 kcal/mol 4 Cl- + Th+4 = ThCl4 -llnl_gamma 3 log_k 1.0731 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl4 +# Enthalpy of formation: -0 kcal/mol Th+4 + F- = ThF+3 -llnl_gamma 5 log_k 7.8725 - -delta_H -4.87436 kJ/mol # Calculated enthalpy of reaction ThF+3 -# Enthalpy of formation: -265.115 kcal/mol + -delta_H -4.87436 kJ/mol # Calculated enthalpy of reaction ThF+3 +# Enthalpy of formation: -265.115 kcal/mol -analytic 1.1679e+2 3.9201e-2 -2.2118e+3 -4.5736e+1 -3.4548e+1 # -Range: 0-300 2 F- + Th+4 = ThF2+2 -llnl_gamma 4.5 log_k 14.0884 - -delta_H -7.77806 kJ/mol # Calculated enthalpy of reaction ThF2+2 -# Enthalpy of formation: -345.959 kcal/mol + -delta_H -7.77806 kJ/mol # Calculated enthalpy of reaction ThF2+2 +# Enthalpy of formation: -345.959 kcal/mol -analytic 2.32e+2 7.9567e-2 -4.4418e+3 -9.1617e+1 -6.9379e+1 # -Range: 0-300 3 F- + Th+4 = ThF3+ -llnl_gamma 4 log_k 18.7357 - -delta_H -11.7068 kJ/mol # Calculated enthalpy of reaction ThF3+ -# Enthalpy of formation: -427.048 kcal/mol + -delta_H -11.7068 kJ/mol # Calculated enthalpy of reaction ThF3+ +# Enthalpy of formation: -427.048 kcal/mol -analytic 3.4511e+2 1.2149e-1 -6.5065e+3 -1.377e+2 -1.0163e+2 # -Range: 0-300 4 F- + Th+4 = ThF4 -llnl_gamma 3 log_k 22.1515 - -delta_H -14.8448 kJ/mol # Calculated enthalpy of reaction ThF4 -# Enthalpy of formation: -507.948 kcal/mol + -delta_H -14.8448 kJ/mol # Calculated enthalpy of reaction ThF4 +# Enthalpy of formation: -507.948 kcal/mol -analytic 6.1206e+2 2.1878e-1 -1.1938e+4 -2.4857e+2 -2.0294e+2 # -Range: 0-200 Th+4 + HPO4-2 + H+ = ThH2PO4+3 -llnl_gamma 5 log_k 11.7061 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThH2PO4+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ThH2PO4+3 +# Enthalpy of formation: -0 kcal/mol 2 H+ + Th+4 + HPO4-2 = ThH3PO4+4 -llnl_gamma 5.5 log_k 11.1197 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThH3PO4+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ThH3PO4+4 +# Enthalpy of formation: -0 kcal/mol Th+4 + HPO4-2 = ThHPO4+2 -llnl_gamma 4.5 log_k 10.6799 - -delta_H 0.1046 kJ/mol # Calculated enthalpy of reaction ThHPO4+2 -# Enthalpy of formation: -492.59 kcal/mol + -delta_H 0.1046 kJ/mol # Calculated enthalpy of reaction ThHPO4+2 +# Enthalpy of formation: -492.59 kcal/mol Th+4 + H2O = ThOH+3 + H+ -llnl_gamma 5 log_k -3.8871 - -delta_H 25.0275 kJ/mol # Calculated enthalpy of reaction ThOH+3 -# Enthalpy of formation: -1029.83 kJ/mol + -delta_H 25.0275 kJ/mol # Calculated enthalpy of reaction ThOH+3 +# Enthalpy of formation: -1029.83 kJ/mol -analytic 1.0495e+1 5.1532e-3 -8.6396e+2 -4.842e+0 -9.2609e+4 # -Range: 0-300 Th+4 + SO4-2 = ThSO4+2 -llnl_gamma 4.5 log_k 5.3143 - -delta_H 16.3511 kJ/mol # Calculated enthalpy of reaction ThSO4+2 -# Enthalpy of formation: -397.292 kcal/mol + -delta_H 16.3511 kJ/mol # Calculated enthalpy of reaction ThSO4+2 +# Enthalpy of formation: -397.292 kcal/mol -analytic 1.9443e+2 7.5245e-2 -4.501e+3 -7.9379e+1 -7.0291e+1 # -Range: 0-300 2 HAcetate + Tl+ = Tl(Acetate)2- + 2 H+ -llnl_gamma 4 log_k -10.0129 - -delta_H 1.2552 kJ/mol # Calculated enthalpy of reaction Tl(Acetate)2- -# Enthalpy of formation: -230.62 kcal/mol + -delta_H 1.2552 kJ/mol # Calculated enthalpy of reaction Tl(Acetate)2- +# Enthalpy of formation: -230.62 kcal/mol -analytic -1.8123e+2 -4.0616e-2 5.0741e+3 6.7216e+1 7.9229e+1 # -Range: 0-300 Tl+ + HAcetate = TlAcetate + H+ -llnl_gamma 3 log_k -4.8672 - -delta_H 6.15048 kJ/mol # Calculated enthalpy of reaction TlAcetate -# Enthalpy of formation: -113.35 kcal/mol + -delta_H 6.15048 kJ/mol # Calculated enthalpy of reaction TlAcetate +# Enthalpy of formation: -113.35 kcal/mol -analytic 9.2977e+0 -3.4368e-3 -2.1748e+3 -3.1454e+0 1.7273e+5 # -Range: 0-300 2 HAcetate + Tm+3 = Tm(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -4.9844 - -delta_H -32.5934 kJ/mol # Calculated enthalpy of reaction Tm(Acetate)2+ -# Enthalpy of formation: -408.49 kcal/mol + -delta_H -32.5934 kJ/mol # Calculated enthalpy of reaction Tm(Acetate)2+ +# Enthalpy of formation: -408.49 kcal/mol -analytic -2.8983e+1 2.0256e-3 -1.1525e+3 8.2163e+0 6.182e+5 # -Range: 0-300 3 HAcetate + Tm+3 = Tm(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -8.3783 - -delta_H -54.8104 kJ/mol # Calculated enthalpy of reaction Tm(Acetate)3 -# Enthalpy of formation: -529.9 kcal/mol + -delta_H -54.8104 kJ/mol # Calculated enthalpy of reaction Tm(Acetate)3 +# Enthalpy of formation: -529.9 kcal/mol -analytic -2.89e+1 4.9633e-3 -1.6574e+3 6.0186e+0 8.6624e+5 # -Range: 0-300 2 HCO3- + Tm+3 = Tm(CO3)2- + 2 H+ -llnl_gamma 4 log_k -7.1576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Tm+3 = Tm(HPO4)2- -llnl_gamma 4 log_k 10.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(HPO4)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Tm+3 = Tm(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -3.0437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Tm+3 = Tm(SO4)2- -llnl_gamma 4 log_k 5.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(SO4)2- +# Enthalpy of formation: -0 kcal/mol Tm+3 + HAcetate = TmAcetate+2 + H+ -llnl_gamma 4.5 log_k -2.1184 - -delta_H -16.3176 kJ/mol # Calculated enthalpy of reaction TmAcetate+2 -# Enthalpy of formation: -288.5 kcal/mol + -delta_H -16.3176 kJ/mol # Calculated enthalpy of reaction TmAcetate+2 +# Enthalpy of formation: -288.5 kcal/mol -analytic -1.6068e+1 1.2043e-3 -6.2777e+2 4.8318e+0 3.3363e+5 # -Range: 0-300 Tm+3 + HCO3- = TmCO3+ + H+ -llnl_gamma 4 log_k -2.1125 - -delta_H 86.6004 kJ/mol # Calculated enthalpy of reaction TmCO3+ -# Enthalpy of formation: -312.7 kcal/mol + -delta_H 86.6004 kJ/mol # Calculated enthalpy of reaction TmCO3+ +# Enthalpy of formation: -312.7 kcal/mol -analytic 2.3889e+2 5.4733e-2 -6.9382e+3 -9.4581e+1 -1.0833e+2 # -Range: 0-300 Tm+3 + Cl- = TmCl+2 -llnl_gamma 4.5 log_k 0.2353 - -delta_H 13.1085 kJ/mol # Calculated enthalpy of reaction TmCl+2 -# Enthalpy of formation: -205.3 kcal/mol + -delta_H 13.1085 kJ/mol # Calculated enthalpy of reaction TmCl+2 +# Enthalpy of formation: -205.3 kcal/mol -analytic 7.4795e+1 3.7655e-2 -1.5701e+3 -3.2531e+1 -2.4523e+1 # -Range: 0-300 2 Cl- + Tm+3 = TmCl2+ -llnl_gamma 4 log_k -0.0425 - -delta_H 15.7569 kJ/mol # Calculated enthalpy of reaction TmCl2+ -# Enthalpy of formation: -244.6 kcal/mol + -delta_H 15.7569 kJ/mol # Calculated enthalpy of reaction TmCl2+ +# Enthalpy of formation: -244.6 kcal/mol -analytic 2.0352e+2 7.9173e-2 -4.8574e+3 -8.5202e+1 -7.5855e+1 # -Range: 0-300 3 Cl- + Tm+3 = TmCl3 -llnl_gamma 3 log_k -0.4669 - -delta_H 5.43502 kJ/mol # Calculated enthalpy of reaction TmCl3 -# Enthalpy of formation: -287 kcal/mol + -delta_H 5.43502 kJ/mol # Calculated enthalpy of reaction TmCl3 +# Enthalpy of formation: -287 kcal/mol -analytic 3.9793e+2 1.2777e-1 -1.007e+4 -1.6272e+2 -1.5725e+2 # -Range: 0-300 4 Cl- + Tm+3 = TmCl4- -llnl_gamma 4 log_k -0.8913 - -delta_H -20.3677 kJ/mol # Calculated enthalpy of reaction TmCl4- -# Enthalpy of formation: -333.1 kcal/mol + -delta_H -20.3677 kJ/mol # Calculated enthalpy of reaction TmCl4- +# Enthalpy of formation: -333.1 kcal/mol -analytic 4.3574e+2 1.2655e-1 -1.0713e+4 -1.7716e+2 -1.673e+2 # -Range: 0-300 Tm+3 + F- = TmF+2 -llnl_gamma 4.5 log_k 4.8085 - -delta_H 23.6396 kJ/mol # Calculated enthalpy of reaction TmF+2 -# Enthalpy of formation: -243 kcal/mol + -delta_H 23.6396 kJ/mol # Calculated enthalpy of reaction TmF+2 +# Enthalpy of formation: -243 kcal/mol -analytic 9.7686e+1 4.189e-2 -2.5909e+3 -3.9059e+1 -4.0457e+1 # -Range: 0-300 2 F- + Tm+3 = TmF2+ -llnl_gamma 4 log_k 8.3709 - -delta_H 12.552 kJ/mol # Calculated enthalpy of reaction TmF2+ -# Enthalpy of formation: -325.8 kcal/mol + -delta_H 12.552 kJ/mol # Calculated enthalpy of reaction TmF2+ +# Enthalpy of formation: -325.8 kcal/mol -analytic 2.2986e+2 8.4119e-2 -5.2144e+3 -9.2558e+1 -8.1433e+1 # -Range: 0-300 3 F- + Tm+3 = TmF3 -llnl_gamma 3 log_k 10.9804 - -delta_H -12.7612 kJ/mol # Calculated enthalpy of reaction TmF3 -# Enthalpy of formation: -412 kcal/mol + -delta_H -12.7612 kJ/mol # Calculated enthalpy of reaction TmF3 +# Enthalpy of formation: -412 kcal/mol -analytic 4.2855e+2 1.3445e-1 -9.7045e+3 -1.7177e+2 -1.5156e+2 # -Range: 0-300 4 F- + Tm+3 = TmF4- -llnl_gamma 4 log_k 13.1501 - -delta_H -60.668 kJ/mol # Calculated enthalpy of reaction TmF4- -# Enthalpy of formation: -503.6 kcal/mol + -delta_H -60.668 kJ/mol # Calculated enthalpy of reaction TmF4- +# Enthalpy of formation: -503.6 kcal/mol -analytic 4.6559e+2 1.3386e-1 -9.179e+3 -1.865e+2 -1.4337e+2 # -Range: 0-300 Tm+3 + HPO4-2 + H+ = TmH2PO4+2 -llnl_gamma 4.5 log_k 9.4484 - -delta_H -20.4388 kJ/mol # Calculated enthalpy of reaction TmH2PO4+2 -# Enthalpy of formation: -482.2 kcal/mol + -delta_H -20.4388 kJ/mol # Calculated enthalpy of reaction TmH2PO4+2 +# Enthalpy of formation: -482.2 kcal/mol -analytic 1.036e+2 6.3085e-2 6.0731e+2 -4.6456e+1 9.4456e+0 # -Range: 0-300 Tm+3 + HCO3- = TmHCO3+2 -llnl_gamma 4.5 log_k 1.7724 - -delta_H 5.01243 kJ/mol # Calculated enthalpy of reaction TmHCO3+2 -# Enthalpy of formation: -332.2 kcal/mol + -delta_H 5.01243 kJ/mol # Calculated enthalpy of reaction TmHCO3+2 +# Enthalpy of formation: -332.2 kcal/mol -analytic 3.3102e+1 3.101e-2 2.988e+2 -1.6791e+1 4.6524e+0 # -Range: 0-300 Tm+3 + HPO4-2 = TmHPO4+ -llnl_gamma 4 log_k 5.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction TmHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TmHPO4+ +# Enthalpy of formation: -0 kcal/mol Tm+3 + NO3- = TmNO3+2 -llnl_gamma 4.5 log_k 0.2148 - -delta_H -33.7691 kJ/mol # Calculated enthalpy of reaction TmNO3+2 -# Enthalpy of formation: -226 kcal/mol + -delta_H -33.7691 kJ/mol # Calculated enthalpy of reaction TmNO3+2 +# Enthalpy of formation: -226 kcal/mol -analytic 1.1085e+1 2.4898e-2 2.5664e+3 -1.0861e+1 4.0043e+1 # -Range: 0-300 Tm+3 + H2O = TmO+ + 2 H+ -llnl_gamma 4 log_k -15.8972 - -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction TmO+ -# Enthalpy of formation: -211.6 kcal/mol + -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction TmO+ +# Enthalpy of formation: -211.6 kcal/mol -analytic 1.7572e+2 2.8756e-2 -1.3096e+4 -6.315e+1 -2.0441e+2 # -Range: 0-300 2 H2O + Tm+3 = TmO2- + 4 H+ -llnl_gamma 4 log_k -32.6741 - -delta_H 266.663 kJ/mol # Calculated enthalpy of reaction TmO2- -# Enthalpy of formation: -241.4 kcal/mol + -delta_H 266.663 kJ/mol # Calculated enthalpy of reaction TmO2- +# Enthalpy of formation: -241.4 kcal/mol -analytic 3.3118e+1 -5.2802e-3 -1.1318e+4 -8.4764e+0 -4.6998e+5 # -Range: 0-300 2 H2O + Tm+3 = TmO2H + 3 H+ -llnl_gamma 3 log_k -24.1712 - -delta_H 211.853 kJ/mol # Calculated enthalpy of reaction TmO2H -# Enthalpy of formation: -254.5 kcal/mol + -delta_H 211.853 kJ/mol # Calculated enthalpy of reaction TmO2H +# Enthalpy of formation: -254.5 kcal/mol -analytic 3.1648e+2 4.4527e-2 -2.1821e+4 -1.1345e+2 -3.4059e+2 # -Range: 0-300 Tm+3 + H2O = TmOH+2 + H+ -llnl_gamma 4.5 log_k -7.6876 - -delta_H 74.5463 kJ/mol # Calculated enthalpy of reaction TmOH+2 -# Enthalpy of formation: -219 kcal/mol + -delta_H 74.5463 kJ/mol # Calculated enthalpy of reaction TmOH+2 +# Enthalpy of formation: -219 kcal/mol -analytic 5.7572e+1 1.1162e-2 -5.6381e+3 -2.0074e+1 -8.7994e+1 # -Range: 0-300 Tm+3 + HPO4-2 = TmPO4 + H+ -llnl_gamma 3 log_k 0.4782 - -delta_H 0 # Not possible to calculate enthalpy of reaction TmPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TmPO4 +# Enthalpy of formation: -0 kcal/mol Tm+3 + SO4-2 = TmSO4+ -llnl_gamma 4 log_k 3.5697 - -delta_H 19.9995 kJ/mol # Calculated enthalpy of reaction TmSO4+ -# Enthalpy of formation: -381.12 kcal/mol + -delta_H 19.9995 kJ/mol # Calculated enthalpy of reaction TmSO4+ +# Enthalpy of formation: -381.12 kcal/mol -analytic 3.0441e+2 8.607e-2 -8.9592e+3 -1.1979e+2 -1.3989e+2 # -Range: 0-300 4 HCO3- + U+4 = U(CO3)4-4 + 4 H+ -llnl_gamma 4 log_k -6.2534 - -delta_H 0 # Not possible to calculate enthalpy of reaction U(CO3)4-4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction U(CO3)4-4 +# Enthalpy of formation: -0 kcal/mol 5 HCO3- + U+4 = U(CO3)5-6 + 5 H+ -llnl_gamma 4 log_k -17.7169 - -delta_H 53.5172 kJ/mol # Calculated enthalpy of reaction U(CO3)5-6 -# Enthalpy of formation: -3987.35 kJ/mol + -delta_H 53.5172 kJ/mol # Calculated enthalpy of reaction U(CO3)5-6 +# Enthalpy of formation: -3987.35 kJ/mol -analytic 6.302e+2 1.9391e-1 -1.9238e+4 -2.5912e+2 -3.0038e+2 # -Range: 0-300 2 NO3- + U+4 = U(NO3)2+2 -llnl_gamma 4.5 log_k 2.261 - -delta_H 0 # Not possible to calculate enthalpy of reaction U(NO3)2+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction U(NO3)2+2 +# Enthalpy of formation: -0 kcal/mol 4 H2O + U+4 = U(OH)4 + 4 H+ -llnl_gamma 3 log_k -4.57 - -delta_H 78.7553 kJ/mol # Calculated enthalpy of reaction U(OH)4 -# Enthalpy of formation: -1655.8 kJ/mol + -delta_H 78.7553 kJ/mol # Calculated enthalpy of reaction U(OH)4 +# Enthalpy of formation: -1655.8 kJ/mol -analytic 2.6685e+2 9.8204e-2 -9.4428e+3 -1.0871e+2 -1.6045e+2 # -Range: 0-200 2 Thiocyanate- + U+4 = U(Thiocyanate)2+2 -llnl_gamma 4.5 log_k 4.26 - -delta_H 0 # Not possible to calculate enthalpy of reaction U(Thiocyanate)2+2 -# Enthalpy of formation: -456.4 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction U(Thiocyanate)2+2 +# Enthalpy of formation: -456.4 kJ/mol -analytic 6.2193e+0 2.7673e-2 2.4326e+3 -7.4158e+0 3.7957e+1 # -Range: 0-300 2 SO4-2 + U+4 = U(SO4)2 -llnl_gamma 3 log_k 10.3507 - -delta_H 33.2232 kJ/mol # Calculated enthalpy of reaction U(SO4)2 -# Enthalpy of formation: -2377.18 kJ/mol + -delta_H 33.2232 kJ/mol # Calculated enthalpy of reaction U(SO4)2 +# Enthalpy of formation: -2377.18 kJ/mol -analytic 4.9476e+2 1.7832e-1 -1.1901e+4 -2.0111e+2 -2.0227e+2 # -Range: 0-200 U+4 + Br- = UBr+3 -llnl_gamma 5 log_k 1.424 - -delta_H 0 # Not possible to calculate enthalpy of reaction UBr+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UBr+3 +# Enthalpy of formation: -0 kcal/mol U+4 + Cl- = UCl+3 -llnl_gamma 5 log_k 1.7073 - -delta_H -18.9993 kJ/mol # Calculated enthalpy of reaction UCl+3 -# Enthalpy of formation: -777.279 kJ/mol + -delta_H -18.9993 kJ/mol # Calculated enthalpy of reaction UCl+3 +# Enthalpy of formation: -777.279 kJ/mol -analytic 9.4418e+1 4.1718e-2 -7.0675e+2 -4.1532e+1 -1.1056e+1 # -Range: 0-300 U+4 + F- = UF+3 -llnl_gamma 5 log_k 9.2403 - -delta_H -5.6024 kJ/mol # Calculated enthalpy of reaction UF+3 -# Enthalpy of formation: -932.15 kJ/mol + -delta_H -5.6024 kJ/mol # Calculated enthalpy of reaction UF+3 +# Enthalpy of formation: -932.15 kJ/mol -analytic 1.1828e+2 3.8097e-2 -2.2531e+3 -4.5594e+1 -3.5193e+1 # -Range: 0-300 2 F- + U+4 = UF2+2 -llnl_gamma 4.5 log_k 16.1505 - -delta_H -3.5048 kJ/mol # Calculated enthalpy of reaction UF2+2 -# Enthalpy of formation: -1265.4 kJ/mol + -delta_H -3.5048 kJ/mol # Calculated enthalpy of reaction UF2+2 +# Enthalpy of formation: -1265.4 kJ/mol -analytic 2.3537e+2 7.7064e-2 -4.8455e+3 -9.1296e+1 -7.5679e+1 # -Range: 0-300 3 F- + U+4 = UF3+ -llnl_gamma 4 log_k 21.4806 - -delta_H 0.4938 kJ/mol # Calculated enthalpy of reaction UF3+ -# Enthalpy of formation: -1596.75 kJ/mol + -delta_H 0.4938 kJ/mol # Calculated enthalpy of reaction UF3+ +# Enthalpy of formation: -1596.75 kJ/mol -analytic 3.5097e+2 1.1714e-1 -7.4569e+3 -1.3714e+2 -1.1646e+2 # -Range: 0-300 4 F- + U+4 = UF4 -llnl_gamma 3 log_k 25.4408 - -delta_H -4.2146 kJ/mol # Calculated enthalpy of reaction UF4 -# Enthalpy of formation: -1936.81 kJ/mol + -delta_H -4.2146 kJ/mol # Calculated enthalpy of reaction UF4 +# Enthalpy of formation: -1936.81 kJ/mol -analytic 7.8549e+2 2.7922e-1 -1.6213e+4 -3.1881e+2 -2.7559e+2 # -Range: 0-200 5 F- + U+4 = UF5- -llnl_gamma 4 log_k 26.811 - -delta_H 0 # Not possible to calculate enthalpy of reaction UF5- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UF5- +# Enthalpy of formation: -0 kcal/mol 6 F- + U+4 = UF6-2 -llnl_gamma 4 log_k 28.8412 - -delta_H 0 # Not possible to calculate enthalpy of reaction UF6-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UF6-2 +# Enthalpy of formation: -0 kcal/mol U+4 + I- = UI+3 -llnl_gamma 5 log_k 1.2151 - -delta_H 0 # Not possible to calculate enthalpy of reaction UI+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UI+3 +# Enthalpy of formation: -0 kcal/mol U+4 + NO3- = UNO3+3 -llnl_gamma 5 log_k 1.4506 - -delta_H 0 # Not possible to calculate enthalpy of reaction UNO3+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UNO3+3 +# Enthalpy of formation: -0 kcal/mol 2 HCO3- + UO2+2 = UO2(CO3)2-2 + 2 H+ -llnl_gamma 4 log_k -3.7467 - -delta_H 47.9065 kJ/mol # Calculated enthalpy of reaction UO2(CO3)2-2 -# Enthalpy of formation: -2350.96 kJ/mol + -delta_H 47.9065 kJ/mol # Calculated enthalpy of reaction UO2(CO3)2-2 +# Enthalpy of formation: -2350.96 kJ/mol -analytic 2.6569e+2 8.1552e-2 -9.0918e+3 -1.0638e+2 -1.4195e+2 # -Range: 0-300 3 HCO3- + UO2+ = UO2(CO3)3-5 + 3 H+ -llnl_gamma 4 log_k -23.6241 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(CO3)3-5 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(CO3)3-5 +# Enthalpy of formation: -0 kcal/mol 3 HCO3- + UO2+2 = UO2(CO3)3-4 + 3 H+ -llnl_gamma 4 log_k -9.4302 - -delta_H 4.9107 kJ/mol # Calculated enthalpy of reaction UO2(CO3)3-4 -# Enthalpy of formation: -3083.89 kJ/mol + -delta_H 4.9107 kJ/mol # Calculated enthalpy of reaction UO2(CO3)3-4 +# Enthalpy of formation: -3083.89 kJ/mol -analytic 3.7918e+2 1.1789e-1 -1.0233e+4 -1.5738e+2 -1.5978e+2 # -Range: 0-300 3 H+ + 2 HPO4-2 + UO2+2 = UO2(H2PO4)(H3PO4)+ -llnl_gamma 4 log_k 22.7537 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(H2PO4)(H3PO4)+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(H2PO4)(H3PO4)+ +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + 2 H+ + UO2+2 = UO2(H2PO4)2 -llnl_gamma 3 log_k 21.7437 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(H2PO4)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(H2PO4)2 +# Enthalpy of formation: -0 kcal/mol 2 IO3- + UO2+2 = UO2(IO3)2 -llnl_gamma 3 log_k 2.9969 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(IO3)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(IO3)2 +# Enthalpy of formation: -0 kcal/mol 2 N3- + UO2+2 = UO2(N3)2 -llnl_gamma 3 log_k 4.3301 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)2 +# Enthalpy of formation: -0 kcal/mol 3 N3- + UO2+2 = UO2(N3)3- -llnl_gamma 4 log_k 5.7401 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)3- +# Enthalpy of formation: -0 kcal/mol 4 N3- + UO2+2 = UO2(N3)4-2 -llnl_gamma 4 log_k 4.92 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)4-2 +# Enthalpy of formation: -0 kcal/mol 2 H2O + UO2+2 = UO2(OH)2 + 2 H+ -llnl_gamma 3 log_k -10.3146 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)2 +# Enthalpy of formation: -0 kcal/mol 3 H2O + UO2+2 = UO2(OH)3- + 3 H+ -llnl_gamma 4 log_k -19.2218 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)3- +# Enthalpy of formation: -0 kcal/mol 4 H2O + UO2+2 = UO2(OH)4-2 + 4 H+ -llnl_gamma 4 log_k -33.0291 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)4-2 +# Enthalpy of formation: -0 kcal/mol 2 Thiocyanate- + UO2+2 = UO2(Thiocyanate)2 -llnl_gamma 3 log_k 1.2401 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(Thiocyanate)2 -# Enthalpy of formation: -857.3 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(Thiocyanate)2 +# Enthalpy of formation: -857.3 kJ/mol -analytic 9.4216e+1 3.284e-2 -2.4849e+3 -3.8162e+1 -4.2231e+1 # -Range: 0-200 3 Thiocyanate- + UO2+2 = UO2(Thiocyanate)3- -llnl_gamma 4 log_k 2.1001 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(Thiocyanate)3- -# Enthalpy of formation: -783.8 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(Thiocyanate)3- +# Enthalpy of formation: -783.8 kJ/mol -analytic 1.6622e+1 2.2714e-2 4.9707e+2 -9.2785e+0 7.7512e+0 # -Range: 0-300 2 SO3-2 + UO2+2 = UO2(SO3)2-2 -llnl_gamma 4 log_k 7.9101 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(SO3)2-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(SO3)2-2 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + UO2+2 = UO2(SO4)2-2 -llnl_gamma 4 log_k 3.9806 - -delta_H 35.6242 kJ/mol # Calculated enthalpy of reaction UO2(SO4)2-2 -# Enthalpy of formation: -2802.58 kJ/mol + -delta_H 35.6242 kJ/mol # Calculated enthalpy of reaction UO2(SO4)2-2 +# Enthalpy of formation: -2802.58 kJ/mol -analytic 3.9907e+2 1.3536e-1 -1.0813e+4 -1.613e+2 -1.6884e+2 # -Range: 0-300 UO2+2 + Br- = UO2Br+ -llnl_gamma 4 log_k 0.184 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2Br+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2Br+ +# Enthalpy of formation: -0 kcal/mol UO2+2 + BrO3- = UO2BrO3+ -llnl_gamma 4 log_k 0.551 - -delta_H 0.46952 kJ/mol # Calculated enthalpy of reaction UO2BrO3+ -# Enthalpy of formation: -1085.6 kJ/mol + -delta_H 0.46952 kJ/mol # Calculated enthalpy of reaction UO2BrO3+ +# Enthalpy of formation: -1085.6 kJ/mol -analytic 8.2618e+1 2.6921e-2 -2.0144e+3 -3.3673e+1 -3.1457e+1 # -Range: 0-300 UO2+2 + HCO3- = UO2CO3 + H+ -llnl_gamma 3 log_k -0.6634 - -delta_H 19.7032 kJ/mol # Calculated enthalpy of reaction UO2CO3 -# Enthalpy of formation: -1689.23 kJ/mol + -delta_H 19.7032 kJ/mol # Calculated enthalpy of reaction UO2CO3 +# Enthalpy of formation: -1689.23 kJ/mol -analytic 7.3898e+1 2.8127e-2 -2.4347e+3 -3.0217e+1 -4.1371e+1 # -Range: 0-200 UO2+2 + Cl- = UO2Cl+ -llnl_gamma 4 log_k 0.1572 - -delta_H 8.00167 kJ/mol # Calculated enthalpy of reaction UO2Cl+ -# Enthalpy of formation: -1178.08 kJ/mol + -delta_H 8.00167 kJ/mol # Calculated enthalpy of reaction UO2Cl+ +# Enthalpy of formation: -1178.08 kJ/mol -analytic 9.8139e+1 3.8869e-2 -2.3178e+3 -4.1133e+1 -3.6196e+1 # -Range: 0-300 2 Cl- + UO2+2 = UO2Cl2 -llnl_gamma 3 log_k -1.1253 - -delta_H 15.0013 kJ/mol # Calculated enthalpy of reaction UO2Cl2 -# Enthalpy of formation: -1338.16 kJ/mol + -delta_H 15.0013 kJ/mol # Calculated enthalpy of reaction UO2Cl2 +# Enthalpy of formation: -1338.16 kJ/mol -analytic 3.4087e+1 1.384e-2 -1.3664e+3 -1.4043e+1 -2.3216e+1 # -Range: 0-200 UO2+2 + ClO3- = UO2ClO3+ -llnl_gamma 4 log_k 0.4919 - -delta_H -3.9266 kJ/mol # Calculated enthalpy of reaction UO2ClO3+ -# Enthalpy of formation: -1126.9 kJ/mol + -delta_H -3.9266 kJ/mol # Calculated enthalpy of reaction UO2ClO3+ +# Enthalpy of formation: -1126.9 kJ/mol -analytic 9.6263e+1 2.8926e-2 -2.3068e+3 -3.9057e+1 -3.6025e+1 # -Range: 0-300 UO2+2 + F- = UO2F+ -llnl_gamma 4 log_k 5.0502 - -delta_H 1.6976 kJ/mol # Calculated enthalpy of reaction UO2F+ -# Enthalpy of formation: -1352.65 kJ/mol + -delta_H 1.6976 kJ/mol # Calculated enthalpy of reaction UO2F+ +# Enthalpy of formation: -1352.65 kJ/mol -analytic 1.1476e+2 4.0682e-2 -2.4467e+3 -4.5914e+1 -3.8212e+1 # -Range: 0-300 2 F- + UO2+2 = UO2F2 -llnl_gamma 3 log_k 8.5403 - -delta_H 2.0962 kJ/mol # Calculated enthalpy of reaction UO2F2 -# Enthalpy of formation: -1687.6 kJ/mol + -delta_H 2.0962 kJ/mol # Calculated enthalpy of reaction UO2F2 +# Enthalpy of formation: -1687.6 kJ/mol -analytic 2.7673e+2 9.919e-2 -5.8371e+3 -1.1242e+2 -9.9219e+1 # -Range: 0-200 3 F- + UO2+2 = UO2F3- -llnl_gamma 4 log_k 10.7806 - -delta_H 2.3428 kJ/mol # Calculated enthalpy of reaction UO2F3- -# Enthalpy of formation: -2022.7 kJ/mol + -delta_H 2.3428 kJ/mol # Calculated enthalpy of reaction UO2F3- +# Enthalpy of formation: -2022.7 kJ/mol -analytic 3.3383e+2 9.216e-2 -8.7975e+3 -1.2972e+2 -1.3738e+2 # -Range: 0-300 4 F- + UO2+2 = UO2F4-2 -llnl_gamma 4 log_k 11.5407 - -delta_H 0.2814 kJ/mol # Calculated enthalpy of reaction UO2F4-2 -# Enthalpy of formation: -2360.11 kJ/mol + -delta_H 0.2814 kJ/mol # Calculated enthalpy of reaction UO2F4-2 +# Enthalpy of formation: -2360.11 kJ/mol -analytic 4.4324e+2 1.3808e-1 -1.0705e+4 -1.7657e+2 -1.6718e+2 # -Range: 0-300 UO2+2 + HPO4-2 + H+ = UO2H2PO4+ -llnl_gamma 4 log_k 11.6719 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2H2PO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2H2PO4+ +# Enthalpy of formation: -0 kcal/mol 2 H+ + UO2+2 + HPO4-2 = UO2H3PO4+2 -llnl_gamma 4.5 log_k 11.3119 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2H3PO4+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2H3PO4+2 +# Enthalpy of formation: -0 kcal/mol UO2+2 + HPO4-2 = UO2HPO4 -llnl_gamma 3 log_k 8.4398 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2HPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2HPO4 +# Enthalpy of formation: -0 kcal/mol UO2+2 + IO3- = UO2IO3+ -llnl_gamma 4 log_k 1.7036 - -delta_H 11.4336 kJ/mol # Calculated enthalpy of reaction UO2IO3+ -# Enthalpy of formation: -1228.9 kJ/mol + -delta_H 11.4336 kJ/mol # Calculated enthalpy of reaction UO2IO3+ +# Enthalpy of formation: -1228.9 kJ/mol -analytic 1.0428e+2 2.962e-2 -3.2441e+3 -4.0618e+1 -5.0651e+1 # -Range: 0-300 UO2+2 + N3- = UO2N3+ -llnl_gamma 4 log_k 2.5799 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2N3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2N3+ +# Enthalpy of formation: -0 kcal/mol UO2+2 + NO3- = UO2NO3+ -llnl_gamma 4 log_k 0.2805 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2NO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2NO3+ +# Enthalpy of formation: -0 kcal/mol UO2+2 + H2O = UO2OH+ + H+ -llnl_gamma 4 log_k -5.2073 - -delta_H 43.1813 kJ/mol # Calculated enthalpy of reaction UO2OH+ -# Enthalpy of formation: -1261.66 kJ/mol + -delta_H 43.1813 kJ/mol # Calculated enthalpy of reaction UO2OH+ +# Enthalpy of formation: -1261.66 kJ/mol -analytic 3.4387e+1 6.0811e-3 -3.3068e+3 -1.2252e+1 -5.1609e+1 # -Range: 0-300 UO2+2 + HPO4-2 = UO2PO4- + H+ -llnl_gamma 4 log_k 2.0798 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2PO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2PO4- +# Enthalpy of formation: -0 kcal/mol #2.0000 SO3-- + 2.0000 H+ + 1.0000 UO2++ = UO2S2O3 +1.0000 H2O +1.0000 O2 #S2O3-- + O2 + H2O = 2.0000 H+ + 2.0000 SO3-- log_k 40.2906 S2O3-2 + UO2+2 = UO2S2O3 -llnl_gamma 3 # log_k -38.0666 - log_k 2.224 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2S2O3 -# Enthalpy of formation: -0 kcal/mol + log_k 2.224 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2S2O3 +# Enthalpy of formation: -0 kcal/mol UO2+2 + Thiocyanate- = UO2Thiocyanate+ -llnl_gamma 4 log_k 1.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2Thiocyanate+ -# Enthalpy of formation: -939.38 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2Thiocyanate+ +# Enthalpy of formation: -939.38 kJ/mol -analytic 4.7033e+0 1.2562e-2 4.9095e+2 -3.5097e+0 7.6593e+0 # -Range: 0-300 UO2+2 + SO3-2 = UO2SO3 -llnl_gamma 3 log_k 6.7532 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2SO3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2SO3 +# Enthalpy of formation: -0 kcal/mol UO2+2 + SO4-2 = UO2SO4 -llnl_gamma 3 log_k 3.0703 - -delta_H 19.7626 kJ/mol # Calculated enthalpy of reaction UO2SO4 -# Enthalpy of formation: -1908.84 kJ/mol + -delta_H 19.7626 kJ/mol # Calculated enthalpy of reaction UO2SO4 +# Enthalpy of formation: -1908.84 kJ/mol -analytic 1.9514e+2 7.0951e-2 -4.9949e+3 -7.9394e+1 -8.4888e+1 # -Range: 0-200 U+4 + H2O = UOH+3 + H+ -llnl_gamma 5 log_k -0.5472 - -delta_H 46.9183 kJ/mol # Calculated enthalpy of reaction UOH+3 -# Enthalpy of formation: -830.12 kJ/mol + -delta_H 46.9183 kJ/mol # Calculated enthalpy of reaction UOH+3 +# Enthalpy of formation: -830.12 kJ/mol -analytic 4.0793e+1 1.3563e-3 -3.8441e+3 -1.1659e+1 -5.9996e+1 # -Range: 0-300 U+4 + Thiocyanate- = UThiocyanate+3 -llnl_gamma 5 log_k 2.97 - -delta_H 0 # Not possible to calculate enthalpy of reaction UThiocyanate+3 -# Enthalpy of formation: -541.8 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UThiocyanate+3 +# Enthalpy of formation: -541.8 kJ/mol -analytic 4.0286e-1 1.5909e-2 2.3026e+3 -3.9973e+0 3.5929e+1 # -Range: 0-300 U+4 + SO4-2 = USO4+2 -llnl_gamma 4.5 log_k 6.5003 - -delta_H 8.2616 kJ/mol # Calculated enthalpy of reaction USO4+2 -# Enthalpy of formation: -1492.54 kJ/mol + -delta_H 8.2616 kJ/mol # Calculated enthalpy of reaction USO4+2 +# Enthalpy of formation: -1492.54 kJ/mol -analytic 1.9418e+2 7.5458e-2 -4.0646e+3 -7.9416e+1 -6.3482e+1 # -Range: 0-300 2 H2O + V+3 = V(OH)2+ + 2 H+ -llnl_gamma 4 log_k -5.9193 - -delta_H 0 # Not possible to calculate enthalpy of reaction V(OH)2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction V(OH)2+ +# Enthalpy of formation: -0 kcal/mol 2 V+3 + 2 H2O = V2(OH)2+4 + 2 H+ -llnl_gamma 5.5 log_k -3.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction V2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction V2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol 2 H2O + VO2+ = VO(OH)3 + H+ -llnl_gamma 3 log_k -3.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO(OH)3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VO(OH)3 +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + VO2+ = VO2(HPO4)2-3 -llnl_gamma 4 log_k 8.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2(HPO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2(HPO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 H2O + VO2+ = VO2(OH)2- + 2 H+ -llnl_gamma 4 log_k -7.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2(OH)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2(OH)2- +# Enthalpy of formation: -0 kcal/mol VO2+ + F- = VO2F -llnl_gamma 3 log_k 3.35 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2F -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2F +# Enthalpy of formation: -0 kcal/mol 2 F- + VO2+ = VO2F2- -llnl_gamma 4 log_k 5.81 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2F2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2F2- +# Enthalpy of formation: -0 kcal/mol VO2+ + HPO4-2 + H+ = VO2H2PO4 -llnl_gamma 3 log_k 1.68 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2H2PO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2H2PO4 +# Enthalpy of formation: -0 kcal/mol VO2+ + HPO4-2 = VO2HPO4- -llnl_gamma 4 log_k 5.83 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2HPO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2HPO4- +# Enthalpy of formation: -0 kcal/mol VO2+ + SO4-2 = VO2SO4- -llnl_gamma 4 log_k 1.58 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2SO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2SO4- +# Enthalpy of formation: -0 kcal/mol VO4-3 + H+ = VO3OH-2 -llnl_gamma 4 log_k 14.26 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO3OH-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VO3OH-2 +# Enthalpy of formation: -0 kcal/mol VO+2 + F- = VOF+ -llnl_gamma 4 log_k 4 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOF+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VOF+ +# Enthalpy of formation: -0 kcal/mol 2 F- + VO+2 = VOF2 -llnl_gamma 3 log_k 6.78 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOF2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VOF2 +# Enthalpy of formation: -0 kcal/mol V+3 + H2O = VOH+2 + H+ -llnl_gamma 4.5 log_k -2.26 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOH+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VOH+2 +# Enthalpy of formation: -0 kcal/mol VO+2 + H2O = VOOH+ + H+ -llnl_gamma 4 log_k -5.67 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOOH+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VOOH+ +# Enthalpy of formation: -0 kcal/mol VO+2 + SO4-2 = VOSO4 -llnl_gamma 3 log_k 2.48 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOSO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VOSO4 +# Enthalpy of formation: -0 kcal/mol V+3 + SO4-2 = VSO4+ -llnl_gamma 4 log_k 3.33 - -delta_H 0 # Not possible to calculate enthalpy of reaction VSO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VSO4+ +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Y+3 = Y(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -4.9844 - -delta_H -34.8109 kJ/mol # Calculated enthalpy of reaction Y(Acetate)2+ -# Enthalpy of formation: -411.42 kcal/mol + -delta_H -34.8109 kJ/mol # Calculated enthalpy of reaction Y(Acetate)2+ +# Enthalpy of formation: -411.42 kcal/mol -analytic -3.3011e+1 6.1979e-4 -7.7468e+2 9.638e+0 5.8814e+5 # -Range: 0-300 3 HAcetate + Y+3 = Y(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -8.3783 - -delta_H -58.4505 kJ/mol # Calculated enthalpy of reaction Y(Acetate)3 -# Enthalpy of formation: -533.17 kcal/mol + -delta_H -58.4505 kJ/mol # Calculated enthalpy of reaction Y(Acetate)3 +# Enthalpy of formation: -533.17 kcal/mol -analytic -3.0086e+1 4.0213e-3 -1.1444e+3 6.1794e+0 8.0827e+5 # -Range: 0-300 2 HCO3- + Y+3 = Y(CO3)2- + 2 H+ -llnl_gamma 4 log_k -7.3576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Y+3 = Y(HPO4)2- -llnl_gamma 4 log_k 9.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(HPO4)2- +# Enthalpy of formation: -0 kcal/mol 2 H2O + Y+3 = Y(OH)2+ + 2 H+ -llnl_gamma 4 log_k -16.3902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)2+ +# Enthalpy of formation: -0 kcal/mol 3 H2O + Y+3 = Y(OH)3 + 3 H+ -llnl_gamma 3 log_k -25.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)3 +# Enthalpy of formation: -0 kcal/mol 4 H2O + Y+3 = Y(OH)4- + 4 H+ -llnl_gamma 4 log_k -36.4803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)4- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Y+3 = Y(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -3.2437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Y+3 = Y(SO4)2- -llnl_gamma 4 log_k 4.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(SO4)2- +# Enthalpy of formation: -0 kcal/mol 2 Y+3 + 2 H2O = Y2(OH)2+4 + 2 H+ -llnl_gamma 5.5 log_k -14.1902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Y2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol Y+3 + HAcetate = YAcetate+2 + H+ -llnl_gamma 4.5 log_k -2.1184 - -delta_H -17.2799 kJ/mol # Calculated enthalpy of reaction YAcetate+2 -# Enthalpy of formation: -291.13 kcal/mol + -delta_H -17.2799 kJ/mol # Calculated enthalpy of reaction YAcetate+2 +# Enthalpy of formation: -291.13 kcal/mol -analytic -1.208e+1 1.2015e-3 -8.4186e+2 3.4522e+0 3.4647e+5 # -Range: 0-300 Y+3 + HCO3- = YCO3+ + H+ -llnl_gamma 4 log_k -2.2788 - -delta_H 0 # Not possible to calculate enthalpy of reaction YCO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YCO3+ +# Enthalpy of formation: -0 kcal/mol Y+3 + Cl- = YCl+2 -llnl_gamma 4.5 log_k 0.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction YCl+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YCl+2 +# Enthalpy of formation: -0 kcal/mol Y+3 + F- = YF+2 -llnl_gamma 4.5 log_k 4.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction YF+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YF+2 +# Enthalpy of formation: -0 kcal/mol 2 F- + Y+3 = YF2+ -llnl_gamma 4 log_k 7.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction YF2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YF2+ +# Enthalpy of formation: -0 kcal/mol 3 F- + Y+3 = YF3 -llnl_gamma 3 log_k 11.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction YF3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YF3 +# Enthalpy of formation: -0 kcal/mol Y+3 + HPO4-2 + H+ = YH2PO4+2 -llnl_gamma 4.5 log_k 9.6054 - -delta_H 0 # Not possible to calculate enthalpy of reaction YH2PO4+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YH2PO4+2 +# Enthalpy of formation: -0 kcal/mol Y+3 + HCO3- = YHCO3+2 -llnl_gamma 4.5 log_k 2.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction YHCO3+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YHCO3+2 +# Enthalpy of formation: -0 kcal/mol Y+3 + HPO4-2 = YHPO4+ -llnl_gamma 4 log_k 5.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction YHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YHPO4+ +# Enthalpy of formation: -0 kcal/mol Y+3 + NO3- = YNO3+2 -llnl_gamma 4.5 log_k 0.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction YNO3+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YNO3+2 +# Enthalpy of formation: -0 kcal/mol Y+3 + H2O = YOH+2 + H+ -llnl_gamma 4.5 log_k -7.6951 - -delta_H 0 # Not possible to calculate enthalpy of reaction YOH+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YOH+2 +# Enthalpy of formation: -0 kcal/mol Y+3 + HPO4-2 = YPO4 + H+ -llnl_gamma 3 log_k 0.2782 - -delta_H 0 # Not possible to calculate enthalpy of reaction YPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YPO4 +# Enthalpy of formation: -0 kcal/mol Y+3 + SO4-2 = YSO4+ -llnl_gamma 4 log_k 3.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction YSO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YSO4+ +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Yb+3 = Yb(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -5.131 - -delta_H -30.334 kJ/mol # Calculated enthalpy of reaction Yb(Acetate)2+ -# Enthalpy of formation: -399.75 kcal/mol + -delta_H -30.334 kJ/mol # Calculated enthalpy of reaction Yb(Acetate)2+ +# Enthalpy of formation: -399.75 kcal/mol -analytic -3.4286e+1 9.4069e-4 -6.512e+2 1.0071e+1 5.4773e+5 # -Range: 0-300 3 HAcetate + Yb+3 = Yb(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -8.5688 - -delta_H -51.4214 kJ/mol # Calculated enthalpy of reaction Yb(Acetate)3 -# Enthalpy of formation: -520.89 kcal/mol + -delta_H -51.4214 kJ/mol # Calculated enthalpy of reaction Yb(Acetate)3 +# Enthalpy of formation: -520.89 kcal/mol -analytic -6.2211e+1 -6.1589e-4 5.9577e+2 1.7954e+1 6.6116e+5 # -Range: 0-300 2 HCO3- + Yb+3 = Yb(CO3)2- + 2 H+ -llnl_gamma 4 log_k -7.0576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Yb+3 = Yb(HPO4)2- -llnl_gamma 4 log_k 10.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(HPO4)2- +# Enthalpy of formation: -0 kcal/mol # Redundant with YbO2- #4.0000 H2O + 1.0000 Yb+++ = Yb(OH)4- +4.0000 H+ # -llnl_gamma 4.0 # log_k -32.6803 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)4- -## Enthalpy of formation: -0 kcal/mol +# -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)4- +## Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Yb+3 = Yb(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -2.7437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Yb+3 = Yb(SO4)2- -llnl_gamma 4 log_k 5.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(SO4)2- +# Enthalpy of formation: -0 kcal/mol Yb+3 + HAcetate = YbAcetate+2 + H+ -llnl_gamma 4.5 log_k -2.199 - -delta_H -15.2298 kJ/mol # Calculated enthalpy of reaction YbAcetate+2 -# Enthalpy of formation: -280.04 kcal/mol + -delta_H -15.2298 kJ/mol # Calculated enthalpy of reaction YbAcetate+2 +# Enthalpy of formation: -280.04 kcal/mol -analytic -8.5003e+0 2.2459e-3 -9.6434e+2 2.063e+0 3.355e+5 # -Range: 0-300 Yb+3 + HCO3- = YbCO3+ + H+ -llnl_gamma 4 log_k -2.0392 - -delta_H 82.8348 kJ/mol # Calculated enthalpy of reaction YbCO3+ -# Enthalpy of formation: -305.4 kcal/mol + -delta_H 82.8348 kJ/mol # Calculated enthalpy of reaction YbCO3+ +# Enthalpy of formation: -305.4 kcal/mol -analytic 2.3533e+2 5.4436e-2 -6.7871e+3 -9.328e+1 -1.0598e+2 # -Range: 0-300 Yb+3 + Cl- = YbCl+2 -llnl_gamma 4.5 log_k 0.162 - -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction YbCl+2 -# Enthalpy of formation: -196.9 kcal/mol + -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction YbCl+2 +# Enthalpy of formation: -196.9 kcal/mol -analytic 8.0452e+1 3.8343e-2 -1.8176e+3 -3.4594e+1 -2.8386e+1 # -Range: 0-300 2 Cl- + Yb+3 = YbCl2+ -llnl_gamma 4 log_k -0.2624 - -delta_H 17.4305 kJ/mol # Calculated enthalpy of reaction YbCl2+ -# Enthalpy of formation: -236 kcal/mol + -delta_H 17.4305 kJ/mol # Calculated enthalpy of reaction YbCl2+ +# Enthalpy of formation: -236 kcal/mol -analytic 2.1708e+2 8.055e-2 -5.4744e+3 -9.0101e+1 -8.5487e+1 # -Range: 0-300 3 Cl- + Yb+3 = YbCl3 -llnl_gamma 3 log_k -0.7601 - -delta_H 8.36382 kJ/mol # Calculated enthalpy of reaction YbCl3 -# Enthalpy of formation: -278.1 kcal/mol + -delta_H 8.36382 kJ/mol # Calculated enthalpy of reaction YbCl3 +# Enthalpy of formation: -278.1 kcal/mol -analytic 4.0887e+2 1.2992e-1 -1.0578e+4 -1.6684e+2 -1.6518e+2 # -Range: 0-300 4 Cl- + Yb+3 = YbCl4- -llnl_gamma 4 log_k -1.1845 - -delta_H -15.7653 kJ/mol # Calculated enthalpy of reaction YbCl4- -# Enthalpy of formation: -323.8 kcal/mol + -delta_H -15.7653 kJ/mol # Calculated enthalpy of reaction YbCl4- +# Enthalpy of formation: -323.8 kcal/mol -analytic 4.756e+2 1.3032e-1 -1.2452e+4 -1.9149e+2 -1.9444e+2 # -Range: 0-300 Yb+3 + F- = YbF+2 -llnl_gamma 4.5 log_k 4.8085 - -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction YbF+2 -# Enthalpy of formation: -234.9 kcal/mol + -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction YbF+2 +# Enthalpy of formation: -234.9 kcal/mol -analytic 1.0291e+2 4.2493e-2 -2.7637e+3 -4.1008e+1 -4.3156e+1 # -Range: 0-300 2 F- + Yb+3 = YbF2+ -llnl_gamma 4 log_k 8.3709 - -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction YbF2+ -# Enthalpy of formation: -317.7 kcal/mol + -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction YbF2+ +# Enthalpy of formation: -317.7 kcal/mol -analytic 2.4281e+2 8.5385e-2 -5.69e+3 -9.7299e+1 -8.8859e+1 # -Range: 0-300 3 F- + Yb+3 = YbF3 -llnl_gamma 3 log_k 11.0537 - -delta_H -13.1796 kJ/mol # Calculated enthalpy of reaction YbF3 -# Enthalpy of formation: -403.9 kcal/mol + -delta_H -13.1796 kJ/mol # Calculated enthalpy of reaction YbF3 +# Enthalpy of formation: -403.9 kcal/mol -analytic 4.5227e+2 1.3659e-1 -1.0595e+4 -1.8038e+2 -1.6546e+2 # -Range: 0-300 4 F- + Yb+3 = YbF4- -llnl_gamma 4 log_k 13.2234 - -delta_H -60.2496 kJ/mol # Calculated enthalpy of reaction YbF4- -# Enthalpy of formation: -495.3 kcal/mol + -delta_H -60.2496 kJ/mol # Calculated enthalpy of reaction YbF4- +# Enthalpy of formation: -495.3 kcal/mol -analytic 5.0369e+2 1.3726e-1 -1.0671e+4 -2.0026e+2 -1.6666e+2 # -Range: 0-300 Yb+3 + HPO4-2 + H+ = YbH2PO4+2 -llnl_gamma 4.5 log_k 9.5217 - -delta_H -20.0204 kJ/mol # Calculated enthalpy of reaction YbH2PO4+2 -# Enthalpy of formation: -473.9 kcal/mol + -delta_H -20.0204 kJ/mol # Calculated enthalpy of reaction YbH2PO4+2 +# Enthalpy of formation: -473.9 kcal/mol -analytic 1.0919e+2 6.3749e-2 3.8909e+2 -4.8469e+1 6.0389e+0 # -Range: 0-300 Yb+3 + HCO3- = YbHCO3+2 -llnl_gamma 4.5 log_k 1.8398 - -delta_H 5.43083 kJ/mol # Calculated enthalpy of reaction YbHCO3+2 -# Enthalpy of formation: -323.9 kcal/mol + -delta_H 5.43083 kJ/mol # Calculated enthalpy of reaction YbHCO3+2 +# Enthalpy of formation: -323.9 kcal/mol -analytic 3.9175e+1 3.1796e-2 6.9728e+1 -1.9002e+1 1.0762e+0 # -Range: 0-300 Yb+3 + HPO4-2 = YbHPO4+ -llnl_gamma 4 log_k 6 - -delta_H 0 # Not possible to calculate enthalpy of reaction YbHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YbHPO4+ +# Enthalpy of formation: -0 kcal/mol Yb+3 + NO3- = YbNO3+2 -llnl_gamma 4.5 log_k 0.2148 - -delta_H -32.9323 kJ/mol # Calculated enthalpy of reaction YbNO3+2 -# Enthalpy of formation: -217.6 kcal/mol + -delta_H -32.9323 kJ/mol # Calculated enthalpy of reaction YbNO3+2 +# Enthalpy of formation: -217.6 kcal/mol -analytic 1.7237e+1 2.5684e-2 2.2806e+3 -1.3055e+1 3.5581e+1 # -Range: 0-300 Yb+3 + H2O = YbO+ + 2 H+ -llnl_gamma 4 log_k -15.7506 - -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction YbO+ -# Enthalpy of formation: -203.4 kcal/mol + -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction YbO+ +# Enthalpy of formation: -203.4 kcal/mol -analytic 1.7675e+2 2.9078e-2 -1.3106e+4 -6.3534e+1 -2.0456e+2 # -Range: 0-300 2 H2O + Yb+3 = YbO2- + 4 H+ -llnl_gamma 4 log_k -32.6741 - -delta_H 267.918 kJ/mol # Calculated enthalpy of reaction YbO2- -# Enthalpy of formation: -232.9 kcal/mol + -delta_H 267.918 kJ/mol # Calculated enthalpy of reaction YbO2- +# Enthalpy of formation: -232.9 kcal/mol -analytic 1.5529e+2 1.0053e-2 -1.8749e+4 -5.1764e+1 -2.926e+2 # -Range: 0-300 2 H2O + Yb+3 = YbO2H + 3 H+ -llnl_gamma 3 log_k -23.878 - -delta_H 211.016 kJ/mol # Calculated enthalpy of reaction YbO2H -# Enthalpy of formation: -246.5 kcal/mol + -delta_H 211.016 kJ/mol # Calculated enthalpy of reaction YbO2H +# Enthalpy of formation: -246.5 kcal/mol -analytic 3.2148e+2 4.4821e-2 -2.1971e+4 -1.1519e+2 -3.4293e+2 # -Range: 0-300 Yb+3 + H2O = YbOH+2 + H+ -llnl_gamma 4.5 log_k -7.6143 - -delta_H 74.9647 kJ/mol # Calculated enthalpy of reaction YbOH+2 -# Enthalpy of formation: -210.7 kcal/mol + -delta_H 74.9647 kJ/mol # Calculated enthalpy of reaction YbOH+2 +# Enthalpy of formation: -210.7 kcal/mol -analytic 5.8142e+1 1.1402e-2 -5.6488e+3 -2.0289e+1 -8.816e+1 # -Range: 0-300 Yb+3 + HPO4-2 = YbPO4 + H+ -llnl_gamma 3 log_k 0.5782 - -delta_H 0 # Not possible to calculate enthalpy of reaction YbPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YbPO4 +# Enthalpy of formation: -0 kcal/mol Yb+3 + SO4-2 = YbSO4+ -llnl_gamma 4 log_k 3.5697 - -delta_H 1424.65 kJ/mol # Calculated enthalpy of reaction YbSO4+ -# Enthalpy of formation: -37.2 kcal/mol + -delta_H 1424.65 kJ/mol # Calculated enthalpy of reaction YbSO4+ +# Enthalpy of formation: -37.2 kcal/mol -analytic 3.0675e+2 8.6527e-2 -9.0298e+3 -1.2069e+2 -1.4099e+2 # -Range: 0-300 2 HAcetate + Zn+2 = Zn(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -6.062 - -delta_H -11.0458 kJ/mol # Calculated enthalpy of reaction Zn(Acetate)2 -# Enthalpy of formation: -271.5 kcal/mol + -delta_H -11.0458 kJ/mol # Calculated enthalpy of reaction Zn(Acetate)2 +# Enthalpy of formation: -271.5 kcal/mol -analytic -2.2038e+1 2.6133e-3 -2.7652e+3 6.8501e+0 6.7086e+5 # -Range: 0-300 3 HAcetate + Zn+2 = Zn(Acetate)3- + 3 H+ -llnl_gamma 4 log_k -10.0715 - -delta_H 25.355 kJ/mol # Calculated enthalpy of reaction Zn(Acetate)3- -# Enthalpy of formation: -378.9 kcal/mol + -delta_H 25.355 kJ/mol # Calculated enthalpy of reaction Zn(Acetate)3- +# Enthalpy of formation: -378.9 kcal/mol -analytic 3.5104e+1 -6.1568e-3 -1.3379e+4 -8.7697e+0 2.067e+6 # -Range: 0-300 4 Cyanide- + Zn+2 = Zn(Cyanide)4-2 -llnl_gamma 4 log_k 16.704 - -delta_H -107.305 kJ/mol # Calculated enthalpy of reaction Zn(Cyanide)4-2 -# Enthalpy of formation: 341.806 kJ/mol + -delta_H -107.305 kJ/mol # Calculated enthalpy of reaction Zn(Cyanide)4-2 +# Enthalpy of formation: 341.806 kJ/mol -analytic 3.6586e+2 1.2655e-1 -2.9546e+3 -1.5232e+2 -4.6213e+1 # -Range: 0-300 2 N3- + Zn+2 = Zn(N3)2 -llnl_gamma 3 log_k 1.1954 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(N3)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(N3)2 +# Enthalpy of formation: -0 kcal/mol Zn+2 + NH3 = Zn(NH3)+2 -llnl_gamma 4.5 log_k 2.0527 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)+2 +# Enthalpy of formation: -0 kcal/mol 2 NH3 + Zn+2 = Zn(NH3)2+2 -llnl_gamma 4.5 log_k 4.259 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)2+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)2+2 +# Enthalpy of formation: -0 kcal/mol 3 NH3 + Zn+2 = Zn(NH3)3+2 -llnl_gamma 4.5 log_k 6.4653 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)3+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)3+2 +# Enthalpy of formation: -0 kcal/mol 4 NH3 + Zn+2 = Zn(NH3)4+2 -llnl_gamma 4.5 log_k 8.3738 - -delta_H -54.9027 kJ/mol # Calculated enthalpy of reaction Zn(NH3)4+2 -# Enthalpy of formation: -533.636 kJ/mol + -delta_H -54.9027 kJ/mol # Calculated enthalpy of reaction Zn(NH3)4+2 +# Enthalpy of formation: -533.636 kJ/mol -analytic 1.5851e+2 -6.3376e-3 -4.6783e+3 -5.356e+1 -7.3047e+1 # -Range: 0-300 2 H2O + Zn+2 = Zn(OH)2 + 2 H+ -llnl_gamma 3 log_k -17.3282 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)2 +# Enthalpy of formation: -0 kcal/mol 3 H2O + Zn+2 = Zn(OH)3- + 3 H+ -llnl_gamma 4 log_k -28.8369 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)3- +# Enthalpy of formation: -0 kcal/mol 4 H2O + Zn+2 = Zn(OH)4-2 + 4 H+ -llnl_gamma 4 log_k -41.6052 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)4-2 +# Enthalpy of formation: -0 kcal/mol Zn+2 + H2O + Cl- = Zn(OH)Cl + H+ -llnl_gamma 3 log_k -7.5417 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)Cl -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)Cl +# Enthalpy of formation: -0 kcal/mol 2 Thiocyanate- + Zn+2 = Zn(Thiocyanate)2 -llnl_gamma 3 log_k 0.88 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(Thiocyanate)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(Thiocyanate)2 +# Enthalpy of formation: -0 kcal/mol 4 Thiocyanate- + Zn+2 = Zn(Thiocyanate)4-2 -llnl_gamma 4 log_k 1.2479 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(Thiocyanate)4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(Thiocyanate)4-2 +# Enthalpy of formation: -0 kcal/mol Zn+2 + Br- = ZnBr+ -llnl_gamma 4 log_k -0.6365 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr+ +# Enthalpy of formation: -0 kcal/mol 2 Br- + Zn+2 = ZnBr2 -llnl_gamma 3 log_k -1.0492 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr2 +# Enthalpy of formation: -0 kcal/mol 3 Br- + Zn+2 = ZnBr3- -llnl_gamma 4 log_k -1.8474 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr3- +# Enthalpy of formation: -0 kcal/mol Zn+2 + HAcetate = ZnAcetate+ + H+ -llnl_gamma 4 log_k -3.1519 - -delta_H -9.87424 kJ/mol # Calculated enthalpy of reaction ZnAcetate+ -# Enthalpy of formation: -155.12 kcal/mol + -delta_H -9.87424 kJ/mol # Calculated enthalpy of reaction ZnAcetate+ +# Enthalpy of formation: -155.12 kcal/mol -analytic -7.9367e+0 2.8564e-3 -1.4514e+3 2.501e+0 2.3343e+5 # -Range: 0-300 Zn+2 + HCO3- = ZnCO3 + H+ -llnl_gamma 3 log_k -6.4288 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnCO3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnCO3 +# Enthalpy of formation: -0 kcal/mol Zn+2 + Cl- = ZnCl+ -llnl_gamma 4 log_k 0.1986 - -delta_H 43.317 kJ/mol # Calculated enthalpy of reaction ZnCl+ -# Enthalpy of formation: -66.24 kcal/mol + -delta_H 43.317 kJ/mol # Calculated enthalpy of reaction ZnCl+ +# Enthalpy of formation: -66.24 kcal/mol -analytic 1.1235e+2 4.4461e-2 -4.1662e+3 -4.5023e+1 -6.5042e+1 # -Range: 0-300 2 Cl- + Zn+2 = ZnCl2 -llnl_gamma 3 log_k 0.2507 - -delta_H 31.1541 kJ/mol # Calculated enthalpy of reaction ZnCl2 -# Enthalpy of formation: -109.08 kcal/mol + -delta_H 31.1541 kJ/mol # Calculated enthalpy of reaction ZnCl2 +# Enthalpy of formation: -109.08 kcal/mol -analytic 1.7824e+2 7.5733e-2 -4.6251e+3 -7.477e+1 -7.2224e+1 # -Range: 0-300 3 Cl- + Zn+2 = ZnCl3- -llnl_gamma 4 log_k -0.0198 - -delta_H 22.5894 kJ/mol # Calculated enthalpy of reaction ZnCl3- -# Enthalpy of formation: -151.06 kcal/mol + -delta_H 22.5894 kJ/mol # Calculated enthalpy of reaction ZnCl3- +# Enthalpy of formation: -151.06 kcal/mol -analytic 1.3889e+2 7.4712e-2 -2.1527e+3 -6.22e+1 -3.3633e+1 # -Range: 0-300 4 Cl- + Zn+2 = ZnCl4-2 -llnl_gamma 4 log_k 0.8605 - -delta_H 4.98733 kJ/mol # Calculated enthalpy of reaction ZnCl4-2 -# Enthalpy of formation: -195.2 kcal/mol + -delta_H 4.98733 kJ/mol # Calculated enthalpy of reaction ZnCl4-2 +# Enthalpy of formation: -195.2 kcal/mol -analytic 8.4294e+1 7.0021e-2 3.915e+2 -4.2664e+1 6.0834e+0 # -Range: 0-300 Zn+2 + ClO4- = ZnClO4+ -llnl_gamma 4 log_k 1.2768 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnClO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnClO4+ +# Enthalpy of formation: -0 kcal/mol Zn+2 + F- = ZnF+ -llnl_gamma 4 log_k 1.15 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnF+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnF+ +# Enthalpy of formation: -0 kcal/mol Zn+2 + HPO4-2 + H+ = ZnH2PO4+ -llnl_gamma 4 log_k 0.43 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnH2PO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnH2PO4+ +# Enthalpy of formation: -0 kcal/mol Zn+2 + HCO3- = ZnHCO3+ -llnl_gamma 4 log_k 1.42 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnHCO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnHCO3+ +# Enthalpy of formation: -0 kcal/mol -analytic 5.1115e+2 1.2911e-1 -1.5292e+4 -2.0083e+2 -2.2721e+2 # -Range: 25-300 Zn+2 + HPO4-2 = ZnHPO4 -llnl_gamma 3 log_k 3.26 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnHPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnHPO4 +# Enthalpy of formation: -0 kcal/mol Zn+2 + I- = ZnI+ -llnl_gamma 4 log_k -3.0134 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI+ +# Enthalpy of formation: -0 kcal/mol 2 I- + Zn+2 = ZnI2 -llnl_gamma 3 log_k -1.8437 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI2 +# Enthalpy of formation: -0 kcal/mol 3 I- + Zn+2 = ZnI3- -llnl_gamma 4 log_k -2.0054 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI3- +# Enthalpy of formation: -0 kcal/mol 4 I- + Zn+2 = ZnI4-2 -llnl_gamma 4 log_k -2.6052 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI4-2 +# Enthalpy of formation: -0 kcal/mol Zn+2 + N3- = ZnN3+ -llnl_gamma 4 log_k 0.442 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnN3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnN3+ +# Enthalpy of formation: -0 kcal/mol Zn+2 + H2O = ZnOH+ + H+ -llnl_gamma 4 log_k -8.96 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnOH+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnOH+ +# Enthalpy of formation: -0 kcal/mol -analytic -7.86e-1 -2.9499e-4 -2.8673e+3 6.1892e-1 -4.2576e+1 # -Range: 25-300 Zn+2 + HPO4-2 = ZnPO4- + H+ -llnl_gamma 4 log_k -4.3018 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnPO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnPO4- +# Enthalpy of formation: -0 kcal/mol Zn+2 + SO4-2 = ZnSO4 -llnl_gamma 3 log_k 2.3062 - -delta_H 15.277 kJ/mol # Calculated enthalpy of reaction ZnSO4 -# Enthalpy of formation: -1047.71 kJ/mol + -delta_H 15.277 kJ/mol # Calculated enthalpy of reaction ZnSO4 +# Enthalpy of formation: -1047.71 kJ/mol -analytic 1.364e+2 5.1256e-2 -3.4422e+3 -5.5695e+1 -5.8501e+1 # -Range: 0-200 Zn+2 + SeO4-2 = ZnSeO4 -llnl_gamma 3 log_k 2.19 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnSeO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnSeO4 +# Enthalpy of formation: -0 kcal/mol 3 H2O + Zr+4 = Zr(OH)3+ + 3 H+ -llnl_gamma 4 log_k -0.6693 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)3+ +# Enthalpy of formation: -0 kcal/mol 4 H2O + Zr+4 = Zr(OH)4 + 4 H+ -llnl_gamma 3 log_k -1.4666 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)4 +# Enthalpy of formation: -0 kcal/mol 5 H2O + Zr+4 = Zr(OH)5- + 5 H+ -llnl_gamma 4 log_k -15.9754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)5- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)5- +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Zr+4 = Zr(SO4)2 -llnl_gamma 3 log_k 6.2965 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(SO4)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(SO4)2 +# Enthalpy of formation: -0 kcal/mol 3 SO4-2 + Zr+4 = Zr(SO4)3-2 -llnl_gamma 4 log_k 7.3007 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(SO4)3-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(SO4)3-2 +# Enthalpy of formation: -0 kcal/mol 4 H2O + 3 Zr+4 = Zr3(OH)4+8 + 4 H+ -llnl_gamma 6 log_k -0.5803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr3(OH)4+8 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr3(OH)4+8 +# Enthalpy of formation: -0 kcal/mol 8 H2O + 4 Zr+4 = Zr4(OH)8+8 + 8 H+ -llnl_gamma 6 log_k -5.9606 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr4(OH)8+8 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr4(OH)8+8 +# Enthalpy of formation: -0 kcal/mol Zr+4 + F- = ZrF+3 -llnl_gamma 5 log_k 8.5835 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF+3 +# Enthalpy of formation: -0 kcal/mol 2 F- + Zr+4 = ZrF2+2 -llnl_gamma 4.5 log_k 15.7377 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF2+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF2+2 +# Enthalpy of formation: -0 kcal/mol 3 F- + Zr+4 = ZrF3+ -llnl_gamma 4 log_k 21.2792 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF3+ +# Enthalpy of formation: -0 kcal/mol 4 F- + Zr+4 = ZrF4 -llnl_gamma 3 log_k 25.9411 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4 +# Enthalpy of formation: -0 kcal/mol 5 F- + Zr+4 = ZrF5- -llnl_gamma 4 log_k 30.3098 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF5- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF5- +# Enthalpy of formation: -0 kcal/mol 6 F- + Zr+4 = ZrF6-2 -llnl_gamma 4 log_k 34.0188 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF6-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF6-2 +# Enthalpy of formation: -0 kcal/mol Zr+4 + H2O = ZrOH+3 + H+ -llnl_gamma 5 log_k 0.0457 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrOH+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrOH+3 +# Enthalpy of formation: -0 kcal/mol Zr+4 + SO4-2 = ZrSO4+2 -llnl_gamma 4.5 log_k 3.6064 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrSO4+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrSO4+2 +# Enthalpy of formation: -0 kcal/mol 2 H+ + O_phthalate-2 = H2O_phthalate -llnl_gamma 3 log_k 8.358 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2O_phthalate -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction H2O_phthalate +# Enthalpy of formation: -0 kcal/mol PHASES @@ -9728,412 +9728,412 @@ PHASES (UO2)2As2O7 (UO2)2As2O7 + 2 H+ + H2O = 2 H2AsO4- + 2 UO2+2 log_k 7.7066 - -delta_H -145.281 kJ/mol # Calculated enthalpy of reaction (UO2)2As2O7 -# Enthalpy of formation: -3426 kJ/mol + -delta_H -145.281 kJ/mol # Calculated enthalpy of reaction (UO2)2As2O7 +# Enthalpy of formation: -3426 kJ/mol -analytic -1.6147e+2 -6.3487e-2 1.0052e+4 6.2384e+1 1.5691e+2 # -Range: 0-300 (UO2)2Cl3 (UO2)2Cl3 = UO2+ + UO2+2 + 3 Cl- log_k 12.7339 - -delta_H -140.866 kJ/mol # Calculated enthalpy of reaction (UO2)2Cl3 -# Enthalpy of formation: -2404.5 kJ/mol + -delta_H -140.866 kJ/mol # Calculated enthalpy of reaction (UO2)2Cl3 +# Enthalpy of formation: -2404.5 kJ/mol -analytic -2.3895e+2 -9.2925e-2 1.1722e+4 9.6999e+1 1.8298e+2 # -Range: 0-300 (UO2)2P2O7 (UO2)2P2O7 + H2O = 2 HPO4-2 + 2 UO2+2 log_k -14.6827 - -delta_H -103.726 kJ/mol # Calculated enthalpy of reaction (UO2)2P2O7 -# Enthalpy of formation: -4232.6 kJ/mol + -delta_H -103.726 kJ/mol # Calculated enthalpy of reaction (UO2)2P2O7 +# Enthalpy of formation: -4232.6 kJ/mol -analytic -3.4581e+2 -1.3987e-1 1.0703e+4 1.3613e+2 1.6712e+2 # -Range: 0-300 (UO2)3(AsO4)2 (UO2)3(AsO4)2 + 4 H+ = 2 H2AsO4- + 3 UO2+2 log_k 9.3177 - -delta_H -186.72 kJ/mol # Calculated enthalpy of reaction (UO2)3(AsO4)2 -# Enthalpy of formation: -4689.4 kJ/mol + -delta_H -186.72 kJ/mol # Calculated enthalpy of reaction (UO2)3(AsO4)2 +# Enthalpy of formation: -4689.4 kJ/mol -analytic -1.9693e+2 -7.3236e-2 1.2936e+4 7.4631e+1 2.0192e+2 # -Range: 0-300 (UO2)3(PO4)2 (UO2)3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 UO2+2 log_k -14.0241 - -delta_H -149.864 kJ/mol # Calculated enthalpy of reaction (UO2)3(PO4)2 -# Enthalpy of formation: -5491.3 kJ/mol + -delta_H -149.864 kJ/mol # Calculated enthalpy of reaction (UO2)3(PO4)2 +# Enthalpy of formation: -5491.3 kJ/mol -analytic -3.6664e+2 -1.4347e-1 1.3486e+4 1.4148e+2 2.1054e+2 # -Range: 0-300 (UO2)3(PO4)2:4H2O (UO2)3(PO4)2:4H2O + 2 H+ = 2 HPO4-2 + 3 UO2+2 + 4 H2O log_k -27.0349 - -delta_H -45.4132 kJ/mol # Calculated enthalpy of reaction (UO2)3(PO4)2:4H2O -# Enthalpy of formation: -6739.1 kJ/mol + -delta_H -45.4132 kJ/mol # Calculated enthalpy of reaction (UO2)3(PO4)2:4H2O +# Enthalpy of formation: -6739.1 kJ/mol -analytic -1.5721e+2 -4.1375e-2 5.2046e+3 5.0531e+1 8.8434e+1 # -Range: 0-200 (VO)3(PO4)2 (VO)3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 VO+2 log_k 48.7864 - -delta_H 0 # Not possible to calculate enthalpy of reaction (VO)3(PO4)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction (VO)3(PO4)2 +# Enthalpy of formation: 0 kcal/mol Acanthite Ag2S + H+ = HS- + 2 Ag+ log_k -36.0346 - -delta_H 226.982 kJ/mol # Calculated enthalpy of reaction Acanthite -# Enthalpy of formation: -7.55 kcal/mol + -delta_H 226.982 kJ/mol # Calculated enthalpy of reaction Acanthite +# Enthalpy of formation: -7.55 kcal/mol -analytic -1.6067e+2 -4.7139e-2 -7.4522e+3 6.614e+1 -1.1624e+2 # -Range: 0-300 Afwillite Ca3Si2O4(OH)6 + 6 H+ = 2 SiO2 + 3 Ca+2 + 6 H2O log_k 60.0452 - -delta_H -316.059 kJ/mol # Calculated enthalpy of reaction Afwillite -# Enthalpy of formation: -1143.31 kcal/mol + -delta_H -316.059 kJ/mol # Calculated enthalpy of reaction Afwillite +# Enthalpy of formation: -1143.31 kcal/mol -analytic 1.8353e+1 1.9014e-3 1.8478e+4 -6.6311e+0 -4.0227e+5 # -Range: 0-300 Ag Ag + H+ + 0.25 O2 = 0.5 H2O + Ag+ log_k 7.9937 - -delta_H -34.1352 kJ/mol # Calculated enthalpy of reaction Ag -# Enthalpy of formation: 0 kcal/mol + -delta_H -34.1352 kJ/mol # Calculated enthalpy of reaction Ag +# Enthalpy of formation: 0 kcal/mol -analytic -1.4144e+1 -3.8466e-3 2.2642e+3 6.3388e+0 3.5334e+1 # -Range: 0-300 Ag3PO4 Ag3PO4 + H+ = HPO4-2 + 3 Ag+ log_k -5.2282 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ag3PO4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ag3PO4 +# Enthalpy of formation: 0 kcal/mol Ahlfeldite NiSeO3:2H2O = Ni+2 + SeO3-2 + 2 H2O log_k -4.4894 - -delta_H -25.7902 kJ/mol # Calculated enthalpy of reaction Ahlfeldite -# Enthalpy of formation: -265.07 kcal/mol + -delta_H -25.7902 kJ/mol # Calculated enthalpy of reaction Ahlfeldite +# Enthalpy of formation: -265.07 kcal/mol -analytic -2.621e+1 -1.6952e-2 1.0405e+3 9.4054e+0 1.7678e+1 # -Range: 0-200 Akermanite Ca2MgSi2O7 + 6 H+ = Mg+2 + 2 Ca+2 + 2 SiO2 + 3 H2O log_k 45.319 - -delta_H -288.575 kJ/mol # Calculated enthalpy of reaction Akermanite -# Enthalpy of formation: -926.497 kcal/mol + -delta_H -288.575 kJ/mol # Calculated enthalpy of reaction Akermanite +# Enthalpy of formation: -926.497 kcal/mol -analytic -4.8295e+1 -8.5613e-3 2.088e+4 1.3798e+1 -7.1975e+5 # -Range: 0-300 Al Al + 3 H+ + 0.75 O2 = Al+3 + 1.5 H2O log_k 149.9292 - -delta_H -958.059 kJ/mol # Calculated enthalpy of reaction Al -# Enthalpy of formation: 0 kJ/mol + -delta_H -958.059 kJ/mol # Calculated enthalpy of reaction Al +# Enthalpy of formation: 0 kJ/mol -analytic -1.8752e+2 -4.6187e-2 5.7127e+4 6.627e+1 -3.8952e+5 # -Range: 0-300 Al2(SO4)3 Al2(SO4)3 = 2 Al+3 + 3 SO4-2 log_k 19.0535 - -delta_H -364.566 kJ/mol # Calculated enthalpy of reaction Al2(SO4)3 -# Enthalpy of formation: -3441.04 kJ/mol + -delta_H -364.566 kJ/mol # Calculated enthalpy of reaction Al2(SO4)3 +# Enthalpy of formation: -3441.04 kJ/mol -analytic -6.1001e+2 -2.4268e-1 2.9194e+4 2.4383e+2 4.5573e+2 # -Range: 0-300 Al2(SO4)3:6H2O Al2(SO4)3:6H2O = 2 Al+3 + 3 SO4-2 + 6 H2O log_k 1.6849 - -delta_H -208.575 kJ/mol # Calculated enthalpy of reaction Al2(SO4)3:6H2O -# Enthalpy of formation: -5312.06 kJ/mol + -delta_H -208.575 kJ/mol # Calculated enthalpy of reaction Al2(SO4)3:6H2O +# Enthalpy of formation: -5312.06 kJ/mol -analytic -7.1642e+2 -2.4552e-1 2.6064e+4 2.8441e+2 4.0691e+2 # -Range: 0-300 AlF3 AlF3 = Al+3 + 3 F- log_k -17.2089 - -delta_H -34.0441 kJ/mol # Calculated enthalpy of reaction AlF3 -# Enthalpy of formation: -1510.4 kJ/mol + -delta_H -34.0441 kJ/mol # Calculated enthalpy of reaction AlF3 +# Enthalpy of formation: -1510.4 kJ/mol -analytic -3.9865e+2 -1.3388e-1 1.0211e+4 1.5642e+2 1.5945e+2 # -Range: 0-300 Alabandite MnS + H+ = HS- + Mn+2 log_k -0.3944 - -delta_H -23.3216 kJ/mol # Calculated enthalpy of reaction Alabandite -# Enthalpy of formation: -51 kcal/mol + -delta_H -23.3216 kJ/mol # Calculated enthalpy of reaction Alabandite +# Enthalpy of formation: -51 kcal/mol -analytic -1.5515e+2 -4.882e-2 4.9049e+3 6.1765e+1 7.6583e+1 # -Range: 0-300 Alamosite PbSiO3 + 2 H+ = H2O + Pb+2 + SiO2 log_k 5.6733 - -delta_H -16.5164 kJ/mol # Calculated enthalpy of reaction Alamosite -# Enthalpy of formation: -1146.1 kJ/mol + -delta_H -16.5164 kJ/mol # Calculated enthalpy of reaction Alamosite +# Enthalpy of formation: -1146.1 kJ/mol -analytic 2.9941e+2 6.7871e-2 -8.1706e+3 -1.1582e+2 -1.3885e+2 # -Range: 0-200 Albite NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 log_k 2.7645 - -delta_H -51.8523 kJ/mol # Calculated enthalpy of reaction Albite -# Enthalpy of formation: -939.68 kcal/mol + -delta_H -51.8523 kJ/mol # Calculated enthalpy of reaction Albite +# Enthalpy of formation: -939.68 kcal/mol -analytic -1.1694e+1 1.4429e-2 1.3784e+4 -7.2866e+0 -1.6136e+6 # -Range: 0-300 Albite_high NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 log_k 4.0832 - -delta_H -62.8562 kJ/mol # Calculated enthalpy of reaction Albite_high -# Enthalpy of formation: -937.05 kcal/mol + -delta_H -62.8562 kJ/mol # Calculated enthalpy of reaction Albite_high +# Enthalpy of formation: -937.05 kcal/mol -analytic -1.8957e+1 1.3726e-2 1.4801e+4 -4.9732e+0 -1.6442e+6 # -Range: 0-300 Albite_low NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 log_k 2.7645 - -delta_H -51.8523 kJ/mol # Calculated enthalpy of reaction Albite_low -# Enthalpy of formation: -939.68 kcal/mol + -delta_H -51.8523 kJ/mol # Calculated enthalpy of reaction Albite_low +# Enthalpy of formation: -939.68 kcal/mol -analytic -1.286e+1 1.4481e-2 1.3913e+4 -6.9417e+0 -1.6256e+6 # -Range: 0-300 Alstonite BaCa(CO3)2 + 2 H+ = Ba+2 + Ca+2 + 2 HCO3- log_k 2.5843 - -delta_H 0 # Not possible to calculate enthalpy of reaction Alstonite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Alstonite +# Enthalpy of formation: 0 kcal/mol Alum-K KAl(SO4)2:12H2O = Al+3 + K+ + 2 SO4-2 + 12 H2O log_k -4.8818 - -delta_H 14.4139 kJ/mol # Calculated enthalpy of reaction Alum-K -# Enthalpy of formation: -1447 kcal/mol + -delta_H 14.4139 kJ/mol # Calculated enthalpy of reaction Alum-K +# Enthalpy of formation: -1447 kcal/mol -analytic -8.8025e+2 -2.5706e-1 2.2399e+4 3.5434e+2 3.4978e+2 # -Range: 0-300 Alunite KAl3(OH)6(SO4)2 + 6 H+ = K+ + 2 SO4-2 + 3 Al+3 + 6 H2O log_k -0.3479 - -delta_H -231.856 kJ/mol # Calculated enthalpy of reaction Alunite -# Enthalpy of formation: -1235.6 kcal/mol + -delta_H -231.856 kJ/mol # Calculated enthalpy of reaction Alunite +# Enthalpy of formation: -1235.6 kcal/mol -analytic -6.8581e+2 -2.2455e-1 2.6886e+4 2.6758e+2 4.1973e+2 # -Range: 0-300 Am Am + 3 H+ + 0.75 O2 = Am+3 + 1.5 H2O log_k 169.39 - -delta_H -1036.36 kJ/mol # Calculated enthalpy of reaction Am -# Enthalpy of formation: 0 kJ/mol + -delta_H -1036.36 kJ/mol # Calculated enthalpy of reaction Am +# Enthalpy of formation: 0 kJ/mol -analytic -6.7924e+0 -8.9873e-3 5.3327e+4 0e+0 0e+0 # -Range: 0-300 Am(OH)3 Am(OH)3 + 3 H+ = Am+3 + 3 H2O log_k 15.2218 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3 +# Enthalpy of formation: 0 kcal/mol Am(OH)3(am) Am(OH)3 + 3 H+ = Am+3 + 3 H2O log_k 17.0217 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3(am) +# Enthalpy of formation: 0 kcal/mol Am2(CO3)3 Am2(CO3)3 + 3 H+ = 2 Am+3 + 3 HCO3- log_k -2.3699 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am2(CO3)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Am2(CO3)3 +# Enthalpy of formation: 0 kcal/mol Am2C3 Am2C3 + 4.5 O2 + 3 H+ = 2 Am+3 + 3 HCO3- log_k 503.9594 - -delta_H -3097.6 kJ/mol # Calculated enthalpy of reaction Am2C3 -# Enthalpy of formation: -151 kJ/mol + -delta_H -3097.6 kJ/mol # Calculated enthalpy of reaction Am2C3 +# Enthalpy of formation: -151 kJ/mol -analytic 3.3907e+2 -4.2636e-3 1.4463e+5 -1.2891e+2 2.4559e+3 # -Range: 0-200 Am2O3 Am2O3 + 6 H+ = 2 Am+3 + 3 H2O log_k 51.7905 - -delta_H -400.515 kJ/mol # Calculated enthalpy of reaction Am2O3 -# Enthalpy of formation: -1690.4 kJ/mol + -delta_H -400.515 kJ/mol # Calculated enthalpy of reaction Am2O3 +# Enthalpy of formation: -1690.4 kJ/mol -analytic -9.2044e+1 -1.8883e-2 2.3028e+4 2.9192e+1 3.5935e+2 # -Range: 0-300 AmBr3 AmBr3 = Am+3 + 3 Br- log_k 21.7826 - -delta_H -171.21 kJ/mol # Calculated enthalpy of reaction AmBr3 -# Enthalpy of formation: -810 kJ/mol + -delta_H -171.21 kJ/mol # Calculated enthalpy of reaction AmBr3 +# Enthalpy of formation: -810 kJ/mol -analytic 1.0121e+1 -3.0622e-2 6.1964e+3 0e+0 0e+0 # -Range: 0-200 AmCl3 AmCl3 = Am+3 + 3 Cl- log_k 14.3513 - -delta_H -140.139 kJ/mol # Calculated enthalpy of reaction AmCl3 -# Enthalpy of formation: -977.8 kJ/mol + -delta_H -140.139 kJ/mol # Calculated enthalpy of reaction AmCl3 +# Enthalpy of formation: -977.8 kJ/mol -analytic -1.5e+1 -3.6701e-2 5.2281e+3 9.1942e+0 8.8785e+1 # -Range: 0-200 AmF3 AmF3 = Am+3 + 3 F- log_k -13.119 - -delta_H -34.7428 kJ/mol # Calculated enthalpy of reaction AmF3 -# Enthalpy of formation: -1588 kJ/mol + -delta_H -34.7428 kJ/mol # Calculated enthalpy of reaction AmF3 +# Enthalpy of formation: -1588 kJ/mol -analytic -4.0514e+1 -3.7312e-2 4.1626e+2 1.4999e+1 7.0827e+0 # -Range: 0-200 AmF4 AmF4 = Am+4 + 4 F- log_k -25.1354 - -delta_H -37.3904 kJ/mol # Calculated enthalpy of reaction AmF4 -# Enthalpy of formation: -1710 kJ/mol + -delta_H -37.3904 kJ/mol # Calculated enthalpy of reaction AmF4 +# Enthalpy of formation: -1710 kJ/mol -analytic -4.9592e+1 -4.521e-2 -9.7251e+1 1.5457e+1 -1.6348e+0 # -Range: 0-200 AmH2 AmH2 + 2 H+ + O2 = Am+2 + 2 H2O log_k 128.4208 - -delta_H -738.376 kJ/mol # Calculated enthalpy of reaction AmH2 -# Enthalpy of formation: -175.8 kJ/mol + -delta_H -738.376 kJ/mol # Calculated enthalpy of reaction AmH2 +# Enthalpy of formation: -175.8 kJ/mol -analytic 3.1175e+1 -1.4062e-2 3.6259e+4 -8.16e+0 5.6578e+2 # -Range: 0-300 AmI3 AmI3 = Am+3 + 3 I- log_k 24.7301 - -delta_H -175.407 kJ/mol # Calculated enthalpy of reaction AmI3 -# Enthalpy of formation: -612 kJ/mol + -delta_H -175.407 kJ/mol # Calculated enthalpy of reaction AmI3 +# Enthalpy of formation: -612 kJ/mol -analytic -1.3886e+1 -3.6651e-2 7.2094e+3 1.0247e+1 1.2243e+2 # -Range: 0-200 AmO2 AmO2 + 4 H+ = Am+4 + 2 H2O log_k -9.4203 - -delta_H -45.4767 kJ/mol # Calculated enthalpy of reaction AmO2 -# Enthalpy of formation: -932.2 kJ/mol + -delta_H -45.4767 kJ/mol # Calculated enthalpy of reaction AmO2 +# Enthalpy of formation: -932.2 kJ/mol -analytic -7.4658e+1 -1.1661e-2 4.2059e+3 2.207e+1 6.565e+1 # -Range: 0-300 AmOBr AmOBr + 2 H+ = Am+3 + Br- + H2O log_k 13.7637 - -delta_H -131.042 kJ/mol # Calculated enthalpy of reaction AmOBr -# Enthalpy of formation: -893 kJ/mol + -delta_H -131.042 kJ/mol # Calculated enthalpy of reaction AmOBr +# Enthalpy of formation: -893 kJ/mol -analytic -4.4394e+1 -1.7071e-2 7.3438e+3 1.5605e+1 1.2472e+2 # -Range: 0-200 AmOCl AmOCl + 2 H+ = Am+3 + Cl- + H2O log_k 11.3229 - -delta_H -119.818 kJ/mol # Calculated enthalpy of reaction AmOCl -# Enthalpy of formation: -949.8 kJ/mol + -delta_H -119.818 kJ/mol # Calculated enthalpy of reaction AmOCl +# Enthalpy of formation: -949.8 kJ/mol -analytic -1.2101e+2 -4.1027e-2 8.6801e+3 4.6651e+1 1.3548e+2 # -Range: 0-300 AmOHCO3 AmOHCO3 + 2 H+ = Am+3 + H2O + HCO3- log_k 3.1519 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmOHCO3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AmOHCO3 +# Enthalpy of formation: 0 kcal/mol AmPO4(am) AmPO4 + H+ = Am+3 + HPO4-2 log_k -12.4682 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmPO4(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AmPO4(am) +# Enthalpy of formation: 0 kcal/mol Amesite-14A Mg4Al4Si2O10(OH)8 + 20 H+ = 2 SiO2 + 4 Al+3 + 4 Mg+2 + 14 H2O log_k 75.4571 - -delta_H -797.098 kJ/mol # Calculated enthalpy of reaction Amesite-14A -# Enthalpy of formation: -2145.67 kcal/mol + -delta_H -797.098 kJ/mol # Calculated enthalpy of reaction Amesite-14A +# Enthalpy of formation: -2145.67 kcal/mol -analytic -5.4326e+2 -1.4144e-1 5.415e+4 1.9361e+2 8.4512e+2 # -Range: 0-300 Analcime Na.96Al.96Si2.04O6:H2O + 3.84 H+ = 0.96 Al+3 + 0.96 Na+ + 2.04 SiO2 + 2.92 H2O log_k 6.1396 - -delta_H -75.844 kJ/mol # Calculated enthalpy of reaction Analcime -# Enthalpy of formation: -3296.86 kJ/mol + -delta_H -75.844 kJ/mol # Calculated enthalpy of reaction Analcime +# Enthalpy of formation: -3296.86 kJ/mol -analytic -6.8694e+0 6.6052e-3 9.826e+3 -4.854e+0 -8.878e+5 # -Range: 0-300 Analcime-dehy Na.96Al.96Si2.04O6 + 3.84 H+ = 0.96 Al+3 + 0.96 Na+ + 1.92 H2O + 2.04 SiO2 log_k 12.5023 - -delta_H -116.641 kJ/mol # Calculated enthalpy of reaction Analcime-dehy -# Enthalpy of formation: -2970.23 kJ/mol + -delta_H -116.641 kJ/mol # Calculated enthalpy of reaction Analcime-dehy +# Enthalpy of formation: -2970.23 kJ/mol -analytic -7.1134e+0 5.6181e-3 1.2185e+4 -5.0295e+0 -9.389e+5 # -Range: 0-300 Anatase TiO2 + 2 H2O = Ti(OH)4 log_k -8.5586 - -delta_H 0 # Not possible to calculate enthalpy of reaction Anatase -# Enthalpy of formation: -939.942 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Anatase +# Enthalpy of formation: -939.942 kJ/mol Andalusite Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O log_k 15.9445 - -delta_H -235.233 kJ/mol # Calculated enthalpy of reaction Andalusite -# Enthalpy of formation: -615.866 kcal/mol + -delta_H -235.233 kJ/mol # Calculated enthalpy of reaction Andalusite +# Enthalpy of formation: -615.866 kcal/mol -analytic -7.1115e+1 -3.2234e-2 1.2308e+4 2.2357e+1 1.9208e+2 # -Range: 0-300 Andradite Ca3Fe2(SiO4)3 + 12 H+ = 2 Fe+3 + 3 Ca+2 + 3 SiO2 + 6 H2O log_k 33.3352 - -delta_H -301.173 kJ/mol # Calculated enthalpy of reaction Andradite -# Enthalpy of formation: -1380.35 kcal/mol + -delta_H -301.173 kJ/mol # Calculated enthalpy of reaction Andradite +# Enthalpy of formation: -1380.35 kcal/mol -analytic 1.3884e+1 -2.3886e-2 1.5314e+4 -8.1606e+0 -4.2193e+5 # -Range: 0-300 Anglesite PbSO4 = Pb+2 + SO4-2 log_k -7.8527 - -delta_H 11.255 kJ/mol # Calculated enthalpy of reaction Anglesite -# Enthalpy of formation: -219.87 kcal/mol + -delta_H 11.255 kJ/mol # Calculated enthalpy of reaction Anglesite +# Enthalpy of formation: -219.87 kcal/mol -analytic -1.8583e+2 -7.3849e-2 2.8528e+3 7.6936e+1 4.457e+1 # -Range: 0-300 Anhydrite CaSO4 = Ca+2 + SO4-2 log_k -4.3064 - -delta_H -18.577 kJ/mol # Calculated enthalpy of reaction Anhydrite -# Enthalpy of formation: -342.76 kcal/mol + -delta_H -18.577 kJ/mol # Calculated enthalpy of reaction Anhydrite +# Enthalpy of formation: -342.76 kcal/mol -analytic -2.0986e+2 -7.8823e-2 5.0969e+3 8.5642e+1 7.9594e+1 # -Range: 0-300 Annite KFe3AlSi3O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Fe+2 + 3 SiO2 + 6 H2O log_k 29.4693 - -delta_H -259.964 kJ/mol # Calculated enthalpy of reaction Annite -# Enthalpy of formation: -1232.19 kcal/mol + -delta_H -259.964 kJ/mol # Calculated enthalpy of reaction Annite +# Enthalpy of formation: -1232.19 kcal/mol -analytic -4.0186e+1 -1.4238e-2 1.8929e+4 7.9859e+0 -8.4343e+5 # -Range: 0-300 Anorthite CaAl2(SiO4)2 + 8 H+ = Ca+2 + 2 Al+3 + 2 SiO2 + 4 H2O log_k 26.578 - -delta_H -303.039 kJ/mol # Calculated enthalpy of reaction Anorthite -# Enthalpy of formation: -1007.55 kcal/mol + -delta_H -303.039 kJ/mol # Calculated enthalpy of reaction Anorthite +# Enthalpy of formation: -1007.55 kcal/mol -analytic 3.9717e-1 -1.8751e-2 1.4897e+4 -6.3078e+0 -2.3885e+5 # -Range: 0-300 Antarcticite CaCl2:6H2O = Ca+2 + 2 Cl- + 6 H2O log_k 4.0933 - -delta_H 0 # Not possible to calculate enthalpy of reaction Antarcticite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Antarcticite +# Enthalpy of formation: 0 kcal/mol Anthophyllite Mg7Si8O22(OH)2 + 14 H+ = 7 Mg+2 + 8 H2O + 8 SiO2 log_k 66.7965 - -delta_H -483.486 kJ/mol # Calculated enthalpy of reaction Anthophyllite -# Enthalpy of formation: -2888.75 kcal/mol + -delta_H -483.486 kJ/mol # Calculated enthalpy of reaction Anthophyllite +# Enthalpy of formation: -2888.75 kcal/mol -analytic -1.2865e+2 1.9705e-2 5.4853e+4 1.9444e+1 -3.808e+6 # -Range: 0-300 @@ -10141,1184 +10141,1184 @@ Antigorite # Mg48Si24O85(OH)62 +96.0000 H+ = + 34.0000 SiO2 + 48.0000 Mg++ + 79.0000 H2O Mg48Si34O85(OH)62 + 96 H+ = 34 SiO2 + 48 Mg+2 + 79 H2O log_k 477.1943 - -delta_H -3364.43 kJ/mol # Calculated enthalpy of reaction Antigorite -# Enthalpy of formation: -17070.9 kcal/mol + -delta_H -3364.43 kJ/mol # Calculated enthalpy of reaction Antigorite +# Enthalpy of formation: -17070.9 kcal/mol -analytic -8.163e+2 -6.778e-2 2.5998e+5 2.2029e+2 -9.3275e+6 # -Range: 0-300 Antlerite Cu3(SO4)(OH)4 + 4 H+ = SO4-2 + 3 Cu+2 + 4 H2O log_k 8.7302 - -delta_H 0 # Not possible to calculate enthalpy of reaction Antlerite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Antlerite +# Enthalpy of formation: 0 kcal/mol Aphthitalite NaK3(SO4)2 = Na+ + 2 SO4-2 + 3 K+ log_k -3.8878 - -delta_H 0 # Not possible to calculate enthalpy of reaction Aphthitalite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Aphthitalite +# Enthalpy of formation: 0 kcal/mol Aragonite CaCO3 + H+ = Ca+2 + HCO3- log_k 1.9931 - -delta_H -25.8027 kJ/mol # Calculated enthalpy of reaction Aragonite -# Enthalpy of formation: -288.531 kcal/mol + -delta_H -25.8027 kJ/mol # Calculated enthalpy of reaction Aragonite +# Enthalpy of formation: -288.531 kcal/mol -analytic -1.4934e+2 -4.8043e-2 4.9089e+3 6.0284e+1 7.6644e+1 # -Range: 0-300 Arcanite K2SO4 = SO4-2 + 2 K+ log_k -1.8008 - -delta_H 23.836 kJ/mol # Calculated enthalpy of reaction Arcanite -# Enthalpy of formation: -1437.78 kJ/mol + -delta_H 23.836 kJ/mol # Calculated enthalpy of reaction Arcanite +# Enthalpy of formation: -1437.78 kJ/mol -analytic -1.6428e+2 -6.7762e-2 1.9879e+3 7.1116e+1 3.1067e+1 # -Range: 0-300 Arsenolite As2O3 + 3 H2O = 2 H+ + 2 H2AsO3- log_k -19.8365 - -delta_H 84.5449 kJ/mol # Calculated enthalpy of reaction Arsenolite -# Enthalpy of formation: -656.619 kJ/mol + -delta_H 84.5449 kJ/mol # Calculated enthalpy of reaction Arsenolite +# Enthalpy of formation: -656.619 kJ/mol -analytic 5.1917e+0 -1.9397e-2 -6.0894e+3 4.7458e-1 -1.0341e+2 # -Range: 0-200 Arsenopyrite FeAsS + 1.5 H2O + 0.5 H+ = 0.5 AsH3 + 0.5 H2AsO3- + Fe+2 + HS- log_k -14.4453 - -delta_H 28.0187 kJ/mol # Calculated enthalpy of reaction Arsenopyrite -# Enthalpy of formation: -42.079 kJ/mol + -delta_H 28.0187 kJ/mol # Calculated enthalpy of reaction Arsenopyrite +# Enthalpy of formation: -42.079 kJ/mol Artinite Mg2CO3(OH)2:3H2O + 3 H+ = HCO3- + 2 Mg+2 + 5 H2O log_k 19.656 - -delta_H -130.432 kJ/mol # Calculated enthalpy of reaction Artinite -# Enthalpy of formation: -698.043 kcal/mol + -delta_H -130.432 kJ/mol # Calculated enthalpy of reaction Artinite +# Enthalpy of formation: -698.043 kcal/mol -analytic -2.8614e+2 -6.7344e-2 1.523e+4 1.1104e+2 2.3773e+2 # -Range: 0-300 As As + 1.5 H2O + 0.75 O2 = H+ + H2AsO3- log_k 42.7079 - -delta_H -276.937 kJ/mol # Calculated enthalpy of reaction As -# Enthalpy of formation: 0 kJ/mol + -delta_H -276.937 kJ/mol # Calculated enthalpy of reaction As +# Enthalpy of formation: 0 kJ/mol -analytic -3.47e+1 -3.1772e-2 1.3788e+4 1.6411e+1 2.1517e+2 # -Range: 0-300 As2O5 As2O5 + 3 H2O = 2 H+ + 2 H2AsO4- log_k 2.1601 - -delta_H -36.7345 kJ/mol # Calculated enthalpy of reaction As2O5 -# Enthalpy of formation: -924.87 kJ/mol + -delta_H -36.7345 kJ/mol # Calculated enthalpy of reaction As2O5 +# Enthalpy of formation: -924.87 kJ/mol -analytic -1.4215e+2 -6.3459e-2 4.1222e+3 6.0369e+1 6.4365e+1 # -Range: 0-300 As4O6(cubi) As4O6 + 6 H2O = 4 H+ + 4 H2AsO3- log_k -39.7636 - -delta_H 169.792 kJ/mol # Calculated enthalpy of reaction As4O6(cubi) -# Enthalpy of formation: -1313.94 kJ/mol + -delta_H 169.792 kJ/mol # Calculated enthalpy of reaction As4O6(cubi) +# Enthalpy of formation: -1313.94 kJ/mol -analytic -2.63e+2 -1.1822e-1 -4.9004e+3 1.1108e+2 -7.6389e+1 # -Range: 0-300 As4O6(mono) As4O6 + 6 H2O = 4 H+ + 4 H2AsO3- log_k -40.0375 - -delta_H 165.452 kJ/mol # Calculated enthalpy of reaction As4O6(mono) -# Enthalpy of formation: -1309.6 kJ/mol + -delta_H 165.452 kJ/mol # Calculated enthalpy of reaction As4O6(mono) +# Enthalpy of formation: -1309.6 kJ/mol -analytic 9.2518e+0 -3.8823e-2 -1.1985e+4 9.9966e-1 -2.0352e+2 # -Range: 0-200 Atacamite Cu4Cl2(OH)6 + 6 H+ = 2 Cl- + 4 Cu+2 + 6 H2O log_k 14.2836 - -delta_H -132.001 kJ/mol # Calculated enthalpy of reaction Atacamite -# Enthalpy of formation: -1654.43 kJ/mol + -delta_H -132.001 kJ/mol # Calculated enthalpy of reaction Atacamite +# Enthalpy of formation: -1654.43 kJ/mol -analytic -2.6623e+2 -4.8121e-2 1.5315e+4 9.8395e+1 2.6016e+2 # -Range: 0-200 Au Au + H+ + 0.25 O2 = 0.5 H2O + Au+ log_k -7.0864 - -delta_H 59.189 kJ/mol # Calculated enthalpy of reaction Au -# Enthalpy of formation: 0 kcal/mol + -delta_H 59.189 kJ/mol # Calculated enthalpy of reaction Au +# Enthalpy of formation: 0 kcal/mol -analytic -7.661e-1 -2.852e-3 -3.0861e+3 1.9705e+0 -4.8156e+1 # -Range: 0-300 Autunite-H H2(UO2)2(PO4)2 = 2 HPO4-2 + 2 UO2+2 log_k -25.3372 - -delta_H -31.8599 kJ/mol # Calculated enthalpy of reaction Autunite-H -# Enthalpy of formation: -4590.3 kJ/mol + -delta_H -31.8599 kJ/mol # Calculated enthalpy of reaction Autunite-H +# Enthalpy of formation: -4590.3 kJ/mol -analytic -3.2179e+1 -3.8038e-2 -6.8629e+2 8.2724e+0 -1.1644e+1 # -Range: 0-200 Azurite Cu3(CO3)2(OH)2 + 4 H+ = 2 H2O + 2 HCO3- + 3 Cu+2 log_k 9.1607 - -delta_H -122.298 kJ/mol # Calculated enthalpy of reaction Azurite -# Enthalpy of formation: -390.1 kcal/mol + -delta_H -122.298 kJ/mol # Calculated enthalpy of reaction Azurite +# Enthalpy of formation: -390.1 kcal/mol -analytic -4.4042e+2 -1.1934e-1 1.8053e+4 1.7158e+2 2.8182e+2 # -Range: 0-300 B B + 1.5 H2O + 0.75 O2 = B(OH)3 log_k 109.5654 - -delta_H -636.677 kJ/mol # Calculated enthalpy of reaction B -# Enthalpy of formation: 0 kJ/mol + -delta_H -636.677 kJ/mol # Calculated enthalpy of reaction B +# Enthalpy of formation: 0 kJ/mol -analytic 8.0471e+1 1.2577e-3 2.9653e+4 -2.8593e+1 4.6268e+2 # -Range: 0-300 B2O3 B2O3 + 3 H2O = 2 B(OH)3 log_k 5.5464 - -delta_H -18.0548 kJ/mol # Calculated enthalpy of reaction B2O3 -# Enthalpy of formation: -1273.5 kJ/mol + -delta_H -18.0548 kJ/mol # Calculated enthalpy of reaction B2O3 +# Enthalpy of formation: -1273.5 kJ/mol -analytic 9.0905e+1 5.5365e-3 -2.6629e+3 -3.1553e+1 -4.1578e+1 # -Range: 0-300 Ba Ba + 2 H+ + 0.5 O2 = Ba+2 + H2O log_k 141.2465 - -delta_H -817.416 kJ/mol # Calculated enthalpy of reaction Ba -# Enthalpy of formation: 0 kJ/mol + -delta_H -817.416 kJ/mol # Calculated enthalpy of reaction Ba +# Enthalpy of formation: 0 kJ/mol -analytic -2.5033e+1 -1.3917e-2 4.2849e+4 1.0786e+1 6.6863e+2 # -Range: 0-300 Ba(OH)2:8H2O Ba(OH)2:8H2O + 2 H+ = Ba+2 + 10 H2O log_k 24.4911 - -delta_H -55.4363 kJ/mol # Calculated enthalpy of reaction Ba(OH)2:8H2O -# Enthalpy of formation: -3340.59 kJ/mol + -delta_H -55.4363 kJ/mol # Calculated enthalpy of reaction Ba(OH)2:8H2O +# Enthalpy of formation: -3340.59 kJ/mol -analytic -2.3888e+2 -1.5791e-3 1.4097e+4 8.7518e+1 2.3947e+2 # -Range: 0-200 Ba2Si3O8 Ba2Si3O8 + 4 H+ = 2 Ba+2 + 2 H2O + 3 SiO2 log_k 23.3284 - -delta_H -95.3325 kJ/mol # Calculated enthalpy of reaction Ba2Si3O8 -# Enthalpy of formation: -4184.73 kJ/mol + -delta_H -95.3325 kJ/mol # Calculated enthalpy of reaction Ba2Si3O8 +# Enthalpy of formation: -4184.73 kJ/mol -analytic -8.7226e+1 9.3125e-3 2.3147e+4 2.2012e+1 -2.1714e+6 # -Range: 0-300 Ba2SiO4 Ba2SiO4 + 4 H+ = SiO2 + 2 Ba+2 + 2 H2O log_k 44.593 - -delta_H -237.206 kJ/mol # Calculated enthalpy of reaction Ba2SiO4 -# Enthalpy of formation: -2287.46 kJ/mol + -delta_H -237.206 kJ/mol # Calculated enthalpy of reaction Ba2SiO4 +# Enthalpy of formation: -2287.46 kJ/mol -analytic -7.035e+0 -5.1744e-3 1.4786e+4 3.1091e+0 -3.6972e+5 # -Range: 0-300 Ba2U2O7 Ba2U2O7 + 6 H+ = 2 Ba+2 + 2 UO2+ + 3 H2O log_k 36.4635 - -delta_H -243.057 kJ/mol # Calculated enthalpy of reaction Ba2U2O7 -# Enthalpy of formation: -3740 kJ/mol + -delta_H -243.057 kJ/mol # Calculated enthalpy of reaction Ba2U2O7 +# Enthalpy of formation: -3740 kJ/mol -analytic -9.2562e+1 5.3866e-3 1.6852e+4 2.8647e+1 2.8621e+2 # -Range: 0-200 Ba3UO6 Ba3UO6 + 8 H+ = UO2+2 + 3 Ba+2 + 4 H2O log_k 94.3709 - -delta_H -564.885 kJ/mol # Calculated enthalpy of reaction Ba3UO6 -# Enthalpy of formation: -3210.4 kJ/mol + -delta_H -564.885 kJ/mol # Calculated enthalpy of reaction Ba3UO6 +# Enthalpy of formation: -3210.4 kJ/mol -analytic -1.3001e+2 -1.7395e-2 3.3977e+4 4.6715e+1 5.7703e+2 # -Range: 0-200 BaBr2 BaBr2 = Ba+2 + 2 Br- log_k 5.6226 - -delta_H -23.3887 kJ/mol # Calculated enthalpy of reaction BaBr2 -# Enthalpy of formation: -757.262 kJ/mol + -delta_H -23.3887 kJ/mol # Calculated enthalpy of reaction BaBr2 +# Enthalpy of formation: -757.262 kJ/mol -analytic -1.7689e+2 -7.1918e-2 4.7187e+3 7.601e+1 7.3683e+1 # -Range: 0-300 BaBr2:2H2O BaBr2:2H2O = Ba+2 + 2 Br- + 2 H2O log_k 2.2523 - -delta_H 13.7736 kJ/mol # Calculated enthalpy of reaction BaBr2:2H2O -# Enthalpy of formation: -1366.1 kJ/mol + -delta_H 13.7736 kJ/mol # Calculated enthalpy of reaction BaBr2:2H2O +# Enthalpy of formation: -1366.1 kJ/mol -analytic -1.5506e+1 -1.6281e-2 -8.5727e+2 1.0296e+1 -1.4552e+1 # -Range: 0-200 BaCl2 BaCl2 = Ba+2 + 2 Cl- log_k 2.2707 - -delta_H -13.1563 kJ/mol # Calculated enthalpy of reaction BaCl2 -# Enthalpy of formation: -858.647 kJ/mol + -delta_H -13.1563 kJ/mol # Calculated enthalpy of reaction BaCl2 +# Enthalpy of formation: -858.647 kJ/mol -analytic -2.0393e+2 -7.8925e-2 4.8846e+3 8.6204e+1 7.628e+1 # -Range: 0-300 BaCl2:2H2O BaCl2:2H2O = Ba+2 + 2 Cl- + 2 H2O log_k 0.2459 - -delta_H 16.558 kJ/mol # Calculated enthalpy of reaction BaCl2:2H2O -# Enthalpy of formation: -1460.04 kJ/mol + -delta_H 16.558 kJ/mol # Calculated enthalpy of reaction BaCl2:2H2O +# Enthalpy of formation: -1460.04 kJ/mol -analytic -2.035e+2 -7.3577e-2 3.7914e+3 8.6051e+1 5.9221e+1 # -Range: 0-300 BaCl2:H2O BaCl2:H2O = Ba+2 + H2O + 2 Cl- log_k 0.8606 - -delta_H 2.89433 kJ/mol # Calculated enthalpy of reaction BaCl2:H2O -# Enthalpy of formation: -1160.54 kJ/mol + -delta_H 2.89433 kJ/mol # Calculated enthalpy of reaction BaCl2:H2O +# Enthalpy of formation: -1160.54 kJ/mol -analytic -1.9572e+2 -7.3938e-2 4.0553e+3 8.2842e+1 6.3336e+1 # -Range: 0-300 BaCrO4 BaCrO4 = Ba+2 + CrO4-2 log_k -9.9322 - -delta_H 25.9115 kJ/mol # Calculated enthalpy of reaction BaCrO4 -# Enthalpy of formation: -345.293 kcal/mol + -delta_H 25.9115 kJ/mol # Calculated enthalpy of reaction BaCrO4 +# Enthalpy of formation: -345.293 kcal/mol -analytic 2.3142e+1 -1.6617e-2 -3.6883e+3 -6.3687e+0 -6.264e+1 # -Range: 0-200 BaHPO4 BaHPO4 = Ba+2 + HPO4-2 log_k -7.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaHPO4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction BaHPO4 +# Enthalpy of formation: 0 kcal/mol BaI2 BaI2 = Ba+2 + 2 I- log_k 11.0759 - -delta_H -46.0408 kJ/mol # Calculated enthalpy of reaction BaI2 -# Enthalpy of formation: -605.408 kJ/mol + -delta_H -46.0408 kJ/mol # Calculated enthalpy of reaction BaI2 +# Enthalpy of formation: -605.408 kJ/mol -analytic -1.7511e+2 -7.2206e-2 5.8696e+3 7.5974e+1 9.1641e+1 # -Range: 0-300 BaMnO4 BaMnO4 = Ba+2 + MnO4-2 log_k -10.09 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaMnO4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction BaMnO4 +# Enthalpy of formation: 0 kcal/mol BaO BaO + 2 H+ = Ba+2 + H2O log_k 47.8036 - -delta_H -270.184 kJ/mol # Calculated enthalpy of reaction BaO -# Enthalpy of formation: -553.298 kJ/mol + -delta_H -270.184 kJ/mol # Calculated enthalpy of reaction BaO +# Enthalpy of formation: -553.298 kJ/mol -analytic -7.3273e+1 -1.7149e-2 1.6811e+4 2.856e+1 -7.751e+4 # -Range: 0-300 BaS BaS + H+ = Ba+2 + HS- log_k 16.2606 - -delta_H -92.9004 kJ/mol # Calculated enthalpy of reaction BaS -# Enthalpy of formation: -460.852 kJ/mol + -delta_H -92.9004 kJ/mol # Calculated enthalpy of reaction BaS +# Enthalpy of formation: -460.852 kJ/mol -analytic -1.1819e+2 -4.342e-2 7.4296e+3 4.9489e+1 1.1597e+2 # -Range: 0-300 BaSeO3 BaSeO3 = Ba+2 + SeO3-2 log_k -6.5615 - -delta_H -5.5658 kJ/mol # Calculated enthalpy of reaction BaSeO3 -# Enthalpy of formation: -1041.27 kJ/mol + -delta_H -5.5658 kJ/mol # Calculated enthalpy of reaction BaSeO3 +# Enthalpy of formation: -1041.27 kJ/mol -analytic 2.9742e+1 -1.7073e-2 -2.4532e+3 -9.2936e+0 -4.1669e+1 # -Range: 0-200 BaSeO4 BaSeO4 = Ba+2 + SeO4-2 log_k -7.4468 - -delta_H 8.9782 kJ/mol # Calculated enthalpy of reaction BaSeO4 -# Enthalpy of formation: -1145.77 kJ/mol + -delta_H 8.9782 kJ/mol # Calculated enthalpy of reaction BaSeO4 +# Enthalpy of formation: -1145.77 kJ/mol -analytic 2.4274e+1 -1.6289e-2 -2.852e+3 -6.9949e+0 -4.8439e+1 # -Range: 0-200 BaSiF6 BaSiF6 + 2 H2O = Ba+2 + SiO2 + 4 H+ + 6 F- log_k -32.1771 - -delta_H 95.2555 kJ/mol # Calculated enthalpy of reaction BaSiF6 -# Enthalpy of formation: -2951.01 kJ/mol + -delta_H 95.2555 kJ/mol # Calculated enthalpy of reaction BaSiF6 +# Enthalpy of formation: -2951.01 kJ/mol -analytic -6.4766e+0 -3.841e-2 0e+0 0e+0 -1.2701e+6 # -Range: 0-200 BaU2O7 BaU2O7 + 6 H+ = Ba+2 + 2 UO2+2 + 3 H2O log_k 21.9576 - -delta_H -195.959 kJ/mol # Calculated enthalpy of reaction BaU2O7 -# Enthalpy of formation: -3237.2 kJ/mol + -delta_H -195.959 kJ/mol # Calculated enthalpy of reaction BaU2O7 +# Enthalpy of formation: -3237.2 kJ/mol -analytic -1.2254e+2 -1.0941e-2 1.4452e+4 4.0125e+1 2.4546e+2 # -Range: 0-200 BaUO4 BaUO4 + 4 H+ = Ba+2 + UO2+2 + 2 H2O log_k 18.2007 - -delta_H -134.521 kJ/mol # Calculated enthalpy of reaction BaUO4 -# Enthalpy of formation: -1993.8 kJ/mol + -delta_H -134.521 kJ/mol # Calculated enthalpy of reaction BaUO4 +# Enthalpy of formation: -1993.8 kJ/mol -analytic -6.7113e+1 -1.634e-2 8.7592e+3 2.4571e+1 1.367e+2 # -Range: 0-300 BaZrO3 BaZrO3 + 4 H+ = Ba+2 + H2O + Zr(OH)2+2 log_k -94.4716 - -delta_H 505.159 kJ/mol # Calculated enthalpy of reaction BaZrO3 -# Enthalpy of formation: -578.27 kcal/mol + -delta_H 505.159 kJ/mol # Calculated enthalpy of reaction BaZrO3 +# Enthalpy of formation: -578.27 kcal/mol -analytic -5.3606e+1 -1.0096e-2 -2.4894e+4 1.8446e+1 -4.2271e+2 # -Range: 0-200 Baddeleyite ZrO2 + 2 H+ = Zr(OH)2+2 log_k -7.9405 - -delta_H 9.72007 kJ/mol # Calculated enthalpy of reaction Baddeleyite -# Enthalpy of formation: -1100.56 kJ/mol + -delta_H 9.72007 kJ/mol # Calculated enthalpy of reaction Baddeleyite +# Enthalpy of formation: -1100.56 kJ/mol -analytic -2.5188e-1 -4.6374e-3 -1.0635e+3 -1.1055e+0 -1.6595e+1 # -Range: 0-300 Barite BaSO4 = Ba+2 + SO4-2 log_k -9.9711 - -delta_H 25.9408 kJ/mol # Calculated enthalpy of reaction Barite -# Enthalpy of formation: -352.1 kcal/mol + -delta_H 25.9408 kJ/mol # Calculated enthalpy of reaction Barite +# Enthalpy of formation: -352.1 kcal/mol -analytic -1.8747e+2 -7.5521e-2 2.079e+3 7.7998e+1 3.2497e+1 # -Range: 0-300 Barytocalcite BaCa(CO3)2 + 2 H+ = Ba+2 + Ca+2 + 2 HCO3- log_k 2.742 - -delta_H 0 # Not possible to calculate enthalpy of reaction Barytocalcite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Barytocalcite +# Enthalpy of formation: 0 kcal/mol Bassanite CaSO4:0.5H2O = 0.5 H2O + Ca+2 + SO4-2 log_k -3.6615 - -delta_H -18.711 kJ/mol # Calculated enthalpy of reaction Bassanite -# Enthalpy of formation: -1576.89 kJ/mol + -delta_H -18.711 kJ/mol # Calculated enthalpy of reaction Bassanite +# Enthalpy of formation: -1576.89 kJ/mol -analytic -2.201e+2 -8.023e-2 5.5092e+3 8.9651e+1 8.6031e+1 # -Range: 0-300 Bassetite Fe(UO2)2(PO4)2 + 2 H+ = Fe+2 + 2 HPO4-2 + 2 UO2+2 log_k -17.724 - -delta_H -114.841 kJ/mol # Calculated enthalpy of reaction Bassetite -# Enthalpy of formation: -1099.33 kcal/mol + -delta_H -114.841 kJ/mol # Calculated enthalpy of reaction Bassetite +# Enthalpy of formation: -1099.33 kcal/mol -analytic -5.7788e+1 -4.54e-2 4.0119e+3 1.6216e+1 6.8147e+1 # -Range: 0-200 Be Be + 2 H+ + 0.5 O2 = Be+2 + H2O log_k 104.2077 - -delta_H -662.608 kJ/mol # Calculated enthalpy of reaction Be -# Enthalpy of formation: 0 kJ/mol + -delta_H -662.608 kJ/mol # Calculated enthalpy of reaction Be +# Enthalpy of formation: 0 kJ/mol -analytic -9.396e+1 -2.4749e-2 3.6714e+4 3.3295e+1 5.7291e+2 # -Range: 0-300 Be13U Be13U + 30 H+ + 7.5 O2 = U+4 + 13 Be+2 + 15 H2O log_k 1504.535 - -delta_H -9601.04 kJ/mol # Calculated enthalpy of reaction Be13U -# Enthalpy of formation: -163.6 kJ/mol + -delta_H -9601.04 kJ/mol # Calculated enthalpy of reaction Be13U +# Enthalpy of formation: -163.6 kJ/mol -analytic -1.2388e+3 -3.2848e-1 5.2816e+5 4.3222e+2 8.2419e+3 # -Range: 0-300 Beidellite-Ca Ca.165Al2.33Si3.67O10(OH)2 + 7.32 H+ = 0.165 Ca+2 + 2.33 Al+3 + 3.67 SiO2 + 4.66 H2O log_k 5.5914 - -delta_H -162.403 kJ/mol # Calculated enthalpy of reaction Beidellite-Ca -# Enthalpy of formation: -1370.66 kcal/mol + -delta_H -162.403 kJ/mol # Calculated enthalpy of reaction Beidellite-Ca +# Enthalpy of formation: -1370.66 kcal/mol -analytic 2.3887e+1 4.4178e-3 1.5296e+4 -2.2343e+1 -1.4025e+6 # -Range: 0-300 Beidellite-Cs Cs.33Si3.67Al2.33O10(OH)2 + 7.32 H+ = 0.33 Cs+ + 2.33 Al+3 + 3.67 SiO2 + 4.66 H2O log_k 5.1541 - -delta_H -149.851 kJ/mol # Calculated enthalpy of reaction Beidellite-Cs -# Enthalpy of formation: -1372.59 kcal/mol + -delta_H -149.851 kJ/mol # Calculated enthalpy of reaction Beidellite-Cs +# Enthalpy of formation: -1372.59 kcal/mol -analytic 2.1244e+1 2.1705e-3 1.4504e+4 -2.025e+1 -1.3712e+6 # -Range: 0-300 Beidellite-H H.33Al2.33Si3.67O10(OH)2 + 6.99 H+ = 2.33 Al+3 + 3.67 SiO2 + 4.66 H2O log_k 4.6335 - -delta_H -154.65 kJ/mol # Calculated enthalpy of reaction Beidellite-H -# Enthalpy of formation: -1351.1 kcal/mol + -delta_H -154.65 kJ/mol # Calculated enthalpy of reaction Beidellite-H +# Enthalpy of formation: -1351.1 kcal/mol -analytic 5.407e+0 3.4064e-3 1.6284e+4 -1.6028e+1 -1.5014e+6 # -Range: 0-300 Beidellite-K K.33Al2.33Si3.67O10(OH)2 + 7.32 H+ = 0.33 K+ + 2.33 Al+3 + 3.67 SiO2 + 4.66 H2O log_k 5.3088 - -delta_H -150.834 kJ/mol # Calculated enthalpy of reaction Beidellite-K -# Enthalpy of formation: -1371.9 kcal/mol + -delta_H -150.834 kJ/mol # Calculated enthalpy of reaction Beidellite-K +# Enthalpy of formation: -1371.9 kcal/mol -analytic 1.0792e+1 3.4419e-3 1.576e+4 -1.7333e+1 -1.4779e+6 # -Range: 0-300 Beidellite-Mg Mg.165Al2.33Si3.67O10(OH)2 + 7.32 H+ = 0.165 Mg+2 + 2.33 Al+3 + 3.67 SiO2 + 4.66 H2O log_k 5.5537 - -delta_H -165.455 kJ/mol # Calculated enthalpy of reaction Beidellite-Mg -# Enthalpy of formation: -1366.89 kcal/mol + -delta_H -165.455 kJ/mol # Calculated enthalpy of reaction Beidellite-Mg +# Enthalpy of formation: -1366.89 kcal/mol -analytic 1.3375e+1 3.042e-3 1.5947e+4 -1.8728e+1 -1.4242e+6 # -Range: 0-300 Beidellite-Na Na.33Al2.33Si3.67O10(OH)2 + 7.32 H+ = 0.33 Na+ + 2.33 Al+3 + 3.67 SiO2 + 4.66 H2O log_k 5.6473 - -delta_H -155.846 kJ/mol # Calculated enthalpy of reaction Beidellite-Na -# Enthalpy of formation: -1369.76 kcal/mol + -delta_H -155.846 kJ/mol # Calculated enthalpy of reaction Beidellite-Na +# Enthalpy of formation: -1369.76 kcal/mol -analytic 1.1504e+1 3.9871e-3 1.5818e+4 -1.7762e+1 -1.4485e+6 # -Range: 0-300 Berlinite AlPO4 + H+ = Al+3 + HPO4-2 log_k -7.2087 - -delta_H -96.6313 kJ/mol # Calculated enthalpy of reaction Berlinite -# Enthalpy of formation: -1733.85 kJ/mol + -delta_H -96.6313 kJ/mol # Calculated enthalpy of reaction Berlinite +# Enthalpy of formation: -1733.85 kJ/mol -analytic -2.8134e+2 -9.9933e-2 1.0308e+4 1.0883e+2 1.6094e+2 # -Range: 0-300 Berndtite SnS2 = S2-2 + Sn+2 log_k -34.5393 - -delta_H 0 # Not possible to calculate enthalpy of reaction Berndtite -# Enthalpy of formation: -36.7 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Berndtite +# Enthalpy of formation: -36.7 kcal/mol -analytic -2.0311e+2 -7.6462e-2 -4.9879e+3 8.4082e+1 -7.7772e+1 # -Range: 0-300 Bieberite CoSO4:7H2O = Co+2 + SO4-2 + 7 H2O log_k -2.5051 - -delta_H 11.3885 kJ/mol # Calculated enthalpy of reaction Bieberite -# Enthalpy of formation: -2980.02 kJ/mol + -delta_H 11.3885 kJ/mol # Calculated enthalpy of reaction Bieberite +# Enthalpy of formation: -2980.02 kJ/mol -analytic -2.6405e+2 -7.2497e-2 6.6673e+3 1.0538e+2 1.0411e+2 # -Range: 0-300 Birnessite Mn8O14:5H2O + 4 H+ = 3 MnO4-2 + 5 Mn+2 + 7 H2O log_k -85.5463 - -delta_H 0 # Not possible to calculate enthalpy of reaction Birnessite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Birnessite +# Enthalpy of formation: 0 kcal/mol Bischofite MgCl2:6H2O = Mg+2 + 2 Cl- + 6 H2O log_k 4.3923 - -delta_H 0 # Not possible to calculate enthalpy of reaction Bischofite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Bischofite +# Enthalpy of formation: 0 kcal/mol Bixbyite Mn2O3 + 6 H+ = 2 Mn+3 + 3 H2O log_k -0.9655 - -delta_H -190.545 kJ/mol # Calculated enthalpy of reaction Bixbyite -# Enthalpy of formation: -958.971 kJ/mol + -delta_H -190.545 kJ/mol # Calculated enthalpy of reaction Bixbyite +# Enthalpy of formation: -958.971 kJ/mol -analytic -1.16e+2 -2.8056e-3 1.3418e+4 2.8639e+1 2.0941e+2 # -Range: 0-300 Bloedite Na2Mg(SO4)2:4H2O = Mg+2 + 2 Na+ + 2 SO4-2 + 4 H2O log_k -2.4777 - -delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite +# Enthalpy of formation: 0 kcal/mol Boehmite AlO2H + 3 H+ = Al+3 + 2 H2O log_k 7.5642 - -delta_H -113.282 kJ/mol # Calculated enthalpy of reaction Boehmite -# Enthalpy of formation: -238.24 kcal/mol + -delta_H -113.282 kJ/mol # Calculated enthalpy of reaction Boehmite +# Enthalpy of formation: -238.24 kcal/mol -analytic -1.2196e+2 -3.1138e-2 8.8643e+3 4.4075e+1 1.3835e+2 # -Range: 0-300 Boltwoodite K(H3O)(UO2)SiO4 + 3 H+ = K+ + SiO2 + UO2+2 + 3 H2O log_k 14.8857 - -delta_H 0 # Not possible to calculate enthalpy of reaction Boltwoodite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Boltwoodite +# Enthalpy of formation: 0 kcal/mol Boltwoodite-Na Na.7K.3(H3O)(UO2)SiO4:H2O + 3 H+ = 0.3 K+ + 0.7 Na+ + SiO2 + UO2+2 + 4 H2O log_k 14.5834 - -delta_H 0 # Not possible to calculate enthalpy of reaction Boltwoodite-Na -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Boltwoodite-Na +# Enthalpy of formation: 0 kcal/mol Borax Na2(B4O5(OH)4):8H2O + 2 H+ = 2 Na+ + 4 B(OH)3 + 5 H2O log_k 12.0395 - -delta_H 80.5145 kJ/mol # Calculated enthalpy of reaction Borax -# Enthalpy of formation: -6288.44 kJ/mol + -delta_H 80.5145 kJ/mol # Calculated enthalpy of reaction Borax +# Enthalpy of formation: -6288.44 kJ/mol -analytic 7.8374e+1 1.9328e-2 -5.3279e+3 -2.1914e+1 -8.316e+1 # -Range: 0-300 Boric_acid B(OH)3 = B(OH)3 log_k -0.1583 - -delta_H 20.2651 kJ/mol # Calculated enthalpy of reaction Boric_acid -# Enthalpy of formation: -1094.8 kJ/mol + -delta_H 20.2651 kJ/mol # Calculated enthalpy of reaction Boric_acid +# Enthalpy of formation: -1094.8 kJ/mol -analytic 3.9122e+1 6.4058e-3 -2.2525e+3 -1.3592e+1 -3.516e+1 # -Range: 0-300 Bornite Cu5FeS4 + 4 H+ = Cu+2 + Fe+2 + 4 Cu+ + 4 HS- log_k -102.4369 - -delta_H 530.113 kJ/mol # Calculated enthalpy of reaction Bornite -# Enthalpy of formation: -79.922 kcal/mol + -delta_H 530.113 kJ/mol # Calculated enthalpy of reaction Bornite +# Enthalpy of formation: -79.922 kcal/mol -analytic -7.0495e+2 -2.0082e-1 -9.1376e+3 2.8004e+2 -1.4238e+2 # -Range: 0-300 Brezinaite Cr3S4 + 4 H+ = Cr+2 + 2 Cr+3 + 4 HS- log_k 2.7883 - -delta_H -216.731 kJ/mol # Calculated enthalpy of reaction Brezinaite -# Enthalpy of formation: -111.9 kcal/mol + -delta_H -216.731 kJ/mol # Calculated enthalpy of reaction Brezinaite +# Enthalpy of formation: -111.9 kcal/mol -analytic -7.0528e+1 -3.6568e-2 1.0598e+4 1.9665e+1 1.8e+2 # -Range: 0-200 Brochantite Cu4(SO4)(OH)6 + 6 H+ = SO4-2 + 4 Cu+2 + 6 H2O log_k 15.4363 - -delta_H -163.158 kJ/mol # Calculated enthalpy of reaction Brochantite -# Enthalpy of formation: -2198.72 kJ/mol + -delta_H -163.158 kJ/mol # Calculated enthalpy of reaction Brochantite +# Enthalpy of formation: -2198.72 kJ/mol -analytic -2.3609e+2 -3.9046e-2 1.597e+4 8.4701e+1 2.7127e+2 # -Range: 0-200 Bromellite BeO + 2 H+ = Be+2 + H2O log_k 1.1309 - -delta_H -59.2743 kJ/mol # Calculated enthalpy of reaction Bromellite -# Enthalpy of formation: -609.4 kJ/mol + -delta_H -59.2743 kJ/mol # Calculated enthalpy of reaction Bromellite +# Enthalpy of formation: -609.4 kJ/mol -analytic 1.479e+2 -4.6004e-1 -3.2577e+4 4.0273e+1 -5.0837e+2 # -Range: 0-300 Brucite Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O log_k 16.298 - -delta_H -111.34 kJ/mol # Calculated enthalpy of reaction Brucite -# Enthalpy of formation: -221.39 kcal/mol + -delta_H -111.34 kJ/mol # Calculated enthalpy of reaction Brucite +# Enthalpy of formation: -221.39 kcal/mol -analytic -1.028e+2 -1.9759e-2 9.018e+3 3.8282e+1 1.4075e+2 # -Range: 0-300 Brushite CaHPO4:2H2O = Ca+2 + HPO4-2 + 2 H2O log_k 6.55 - -delta_H 0 # Not possible to calculate enthalpy of reaction Brushite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Brushite +# Enthalpy of formation: 0 kcal/mol Bunsenite NiO + 2 H+ = H2O + Ni+2 log_k 12.4719 - -delta_H -100.069 kJ/mol # Calculated enthalpy of reaction Bunsenite -# Enthalpy of formation: -57.3 kcal/mol + -delta_H -100.069 kJ/mol # Calculated enthalpy of reaction Bunsenite +# Enthalpy of formation: -57.3 kcal/mol -analytic -8.1664e+1 -1.9796e-2 7.4064e+3 3.0385e+1 1.1559e+2 # -Range: 0-300 Burkeite Na6CO3(SO4)2 + H+ = HCO3- + 2 SO4-2 + 6 Na+ log_k 9.4866 - -delta_H 0 # Not possible to calculate enthalpy of reaction Burkeite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Burkeite +# Enthalpy of formation: 0 kcal/mol C C + H2O + O2 = H+ + HCO3- log_k 64.1735 - -delta_H -391.961 kJ/mol # Calculated enthalpy of reaction C -# Enthalpy of formation: 0 kcal/mol + -delta_H -391.961 kJ/mol # Calculated enthalpy of reaction C +# Enthalpy of formation: 0 kcal/mol -analytic -3.5556e+1 -3.3691e-2 1.9774e+4 1.7548e+1 3.0856e+2 # -Range: 0-300 Ca Ca + 2 H+ + 0.5 O2 = Ca+2 + H2O log_k 139.8465 - -delta_H -822.855 kJ/mol # Calculated enthalpy of reaction Ca -# Enthalpy of formation: 0 kJ/mol + -delta_H -822.855 kJ/mol # Calculated enthalpy of reaction Ca +# Enthalpy of formation: 0 kJ/mol -analytic -1.1328e+2 -2.6554e-2 4.7638e+4 4.1989e+1 -2.3545e+5 # -Range: 0-300 Ca-Al_Pyroxene CaAl2SiO6 + 8 H+ = Ca+2 + SiO2 + 2 Al+3 + 4 H2O log_k 35.9759 - -delta_H -361.548 kJ/mol # Calculated enthalpy of reaction Ca-Al_Pyroxene -# Enthalpy of formation: -783.793 kcal/mol + -delta_H -361.548 kJ/mol # Calculated enthalpy of reaction Ca-Al_Pyroxene +# Enthalpy of formation: -783.793 kcal/mol -analytic -1.4664e+2 -5.0409e-2 2.1045e+4 5.1318e+1 3.2843e+2 # -Range: 0-300 Ca2Al2O5:8H2O Ca2Al2O5:8H2O + 10 H+ = 2 Al+3 + 2 Ca+2 + 13 H2O log_k 59.5687 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2Al2O5:8H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2Al2O5:8H2O +# Enthalpy of formation: 0 kcal/mol Ca2Cl2(OH)2:H2O Ca2Cl2(OH)2:H2O + 2 H+ = 2 Ca+2 + 2 Cl- + 3 H2O log_k 26.2901 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2Cl2(OH)2:H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2Cl2(OH)2:H2O +# Enthalpy of formation: 0 kcal/mol Ca2V2O7 Ca2V2O7 + H2O = 2 Ca+2 + 2 H+ + 2 VO4-3 log_k -39.7129 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2V2O7 -# Enthalpy of formation: -3083.46 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2V2O7 +# Enthalpy of formation: -3083.46 kJ/mol Ca3(AsO4)2 Ca3(AsO4)2 + 4 H+ = 2 H2AsO4- + 3 Ca+2 log_k 17.816 - -delta_H -149.956 kJ/mol # Calculated enthalpy of reaction Ca3(AsO4)2 -# Enthalpy of formation: -3298.41 kJ/mol + -delta_H -149.956 kJ/mol # Calculated enthalpy of reaction Ca3(AsO4)2 +# Enthalpy of formation: -3298.41 kJ/mol -analytic -1.4011e+2 -4.2945e-2 1.0981e+4 5.4107e+1 1.8652e+2 # -Range: 0-200 Ca3Al2O6 Ca3Al2O6 + 12 H+ = 2 Al+3 + 3 Ca+2 + 6 H2O log_k 113.046 - -delta_H -833.336 kJ/mol # Calculated enthalpy of reaction Ca3Al2O6 -# Enthalpy of formation: -857.492 kcal/mol + -delta_H -833.336 kJ/mol # Calculated enthalpy of reaction Ca3Al2O6 +# Enthalpy of formation: -857.492 kcal/mol -analytic -2.7163e+2 -5.2897e-2 5.0815e+4 9.2946e+1 8.63e+2 # -Range: 0-200 Ca3V2O8 Ca3V2O8 = 2 VO4-3 + 3 Ca+2 log_k -18.3234 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca3V2O8 -# Enthalpy of formation: -3778.1 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca3V2O8 +# Enthalpy of formation: -3778.1 kJ/mol Ca4Al2Fe2O10 Ca4Al2Fe2O10 + 20 H+ = 2 Al+3 + 2 Fe+3 + 4 Ca+2 + 10 H2O log_k 140.505 - -delta_H -1139.86 kJ/mol # Calculated enthalpy of reaction Ca4Al2Fe2O10 -# Enthalpy of formation: -1211 kcal/mol + -delta_H -1139.86 kJ/mol # Calculated enthalpy of reaction Ca4Al2Fe2O10 +# Enthalpy of formation: -1211 kcal/mol -analytic -4.1808e+2 -8.2787e-2 7.0288e+4 1.4043e+2 1.1937e+3 # -Range: 0-200 Ca4Al2O7:13H2O Ca4Al2O7:13H2O + 14 H+ = 2 Al+3 + 4 Ca+2 + 20 H2O log_k 107.2537 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Al2O7:13H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Al2O7:13H2O +# Enthalpy of formation: 0 kcal/mol Ca4Al2O7:19H2O Ca4Al2O7:19H2O + 14 H+ = 2 Al+3 + 4 Ca+2 + 26 H2O log_k 103.6812 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Al2O7:19H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Al2O7:19H2O +# Enthalpy of formation: 0 kcal/mol Ca4Cl2(OH)6:13H2O Ca4Cl2(OH)6:13H2O + 6 H+ = 2 Cl- + 4 Ca+2 + 19 H2O log_k 68.3283 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Cl2(OH)6:13H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Cl2(OH)6:13H2O +# Enthalpy of formation: 0 kcal/mol CaAl2O4 CaAl2O4 + 8 H+ = Ca+2 + 2 Al+3 + 4 H2O log_k 46.9541 - -delta_H -436.952 kJ/mol # Calculated enthalpy of reaction CaAl2O4 -# Enthalpy of formation: -555.996 kcal/mol + -delta_H -436.952 kJ/mol # Calculated enthalpy of reaction CaAl2O4 +# Enthalpy of formation: -555.996 kcal/mol -analytic -3.0378e+2 -7.9356e-2 3.0096e+4 1.1049e+2 4.6971e+2 # -Range: 0-300 CaAl2O4:10H2O CaAl2O4:10H2O + 8 H+ = Ca+2 + 2 Al+3 + 14 H2O log_k 37.9946 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaAl2O4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CaAl2O4:10H2O +# Enthalpy of formation: 0 kcal/mol CaAl4O7 CaAl4O7 + 14 H+ = Ca+2 + 4 Al+3 + 7 H2O log_k 68.6138 - -delta_H -718.464 kJ/mol # Calculated enthalpy of reaction CaAl4O7 -# Enthalpy of formation: -951.026 kcal/mol + -delta_H -718.464 kJ/mol # Calculated enthalpy of reaction CaAl4O7 +# Enthalpy of formation: -951.026 kcal/mol -analytic -3.1044e+2 -6.7078e-2 4.4566e+4 1.0085e+2 7.5689e+2 # -Range: 0-200 CaSO4:0.5H2O(beta) CaSO4:0.5H2O = 0.5 H2O + Ca+2 + SO4-2 log_k -3.4934 - -delta_H -20.804 kJ/mol # Calculated enthalpy of reaction CaSO4:0.5H2O(beta) -# Enthalpy of formation: -1574.8 kJ/mol + -delta_H -20.804 kJ/mol # Calculated enthalpy of reaction CaSO4:0.5H2O(beta) +# Enthalpy of formation: -1574.8 kJ/mol -analytic -2.3054e+2 -8.2832e-2 5.9132e+3 9.3705e+1 9.2338e+1 # -Range: 0-300 CaSeO3:2H2O CaSeO3:2H2O = Ca+2 + SeO3-2 + 2 H2O log_k -4.6213 - -delta_H -14.1963 kJ/mol # Calculated enthalpy of reaction CaSeO3:2H2O -# Enthalpy of formation: -384.741 kcal/mol + -delta_H -14.1963 kJ/mol # Calculated enthalpy of reaction CaSeO3:2H2O +# Enthalpy of formation: -384.741 kcal/mol -analytic -4.1771e+1 -2.0735e-2 9.787e+2 1.618e+1 1.6634e+1 # -Range: 0-200 CaSeO4 CaSeO4 = Ca+2 + SeO4-2 log_k -3.09 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaSeO4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CaSeO4 +# Enthalpy of formation: 0 kcal/mol CaUO4 CaUO4 + 4 H+ = Ca+2 + UO2+2 + 2 H2O log_k 15.942 - -delta_H -131.46 kJ/mol # Calculated enthalpy of reaction CaUO4 -# Enthalpy of formation: -2002.3 kJ/mol + -delta_H -131.46 kJ/mol # Calculated enthalpy of reaction CaUO4 +# Enthalpy of formation: -2002.3 kJ/mol -analytic -8.7902e+1 -1.981e-2 9.2354e+3 3.1832e+1 1.4414e+2 # -Range: 0-300 CaV2O6 CaV2O6 + 2 H2O = Ca+2 + 2 VO4-3 + 4 H+ log_k -51.3617 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaV2O6 -# Enthalpy of formation: -2329.34 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CaV2O6 +# Enthalpy of formation: -2329.34 kJ/mol CaZrO3 CaZrO3 + 4 H+ = Ca+2 + H2O + Zr(OH)2+2 log_k -148.5015 - -delta_H 801.282 kJ/mol # Calculated enthalpy of reaction CaZrO3 -# Enthalpy of formation: -650.345 kcal/mol + -delta_H 801.282 kJ/mol # Calculated enthalpy of reaction CaZrO3 +# Enthalpy of formation: -650.345 kcal/mol -analytic -7.7908e+1 -1.4388e-2 -3.9635e+4 2.6932e+1 -6.7303e+2 # -Range: 0-200 Cadmoselite CdSe = Cd+2 + Se-2 log_k -33.8428 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cadmoselite -# Enthalpy of formation: -34.6 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cadmoselite +# Enthalpy of formation: -34.6 kcal/mol -analytic -5.3432e+1 -1.3973e-2 -5.8989e+3 1.7591e+1 -9.2031e+1 # -Range: 0-300 Calcite CaCO3 + H+ = Ca+2 + HCO3- log_k 1.8487 - -delta_H -25.7149 kJ/mol # Calculated enthalpy of reaction Calcite -# Enthalpy of formation: -288.552 kcal/mol + -delta_H -25.7149 kJ/mol # Calculated enthalpy of reaction Calcite +# Enthalpy of formation: -288.552 kcal/mol -analytic -1.4978e+2 -4.837e-2 4.8974e+3 6.0458e+1 7.6464e+1 # -Range: 0-300 Calomel Hg2Cl2 = Hg2+2 + 2 Cl- log_k -17.8241 - -delta_H 98.0267 kJ/mol # Calculated enthalpy of reaction Calomel -# Enthalpy of formation: -265.37 kJ/mol + -delta_H 98.0267 kJ/mol # Calculated enthalpy of reaction Calomel +# Enthalpy of formation: -265.37 kJ/mol -analytic -4.8868e+1 -2.554e-2 -2.8439e+3 1.9475e+1 -4.8277e+1 # -Range: 0-200 Carnallite KMgCl3:6H2O = K+ + Mg+2 + 3 Cl- + 6 H2O log_k 4.2721 - -delta_H 0 # Not possible to calculate enthalpy of reaction Carnallite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Carnallite +# Enthalpy of formation: 0 kcal/mol Carnotite K2(UO2)2(VO4)2 = 2 K+ + 2 UO2+2 + 2 VO4-3 log_k -56.3811 - -delta_H 0 # Not possible to calculate enthalpy of reaction Carnotite -# Enthalpy of formation: -1173.9 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Carnotite +# Enthalpy of formation: -1173.9 kJ/mol Cassiterite SnO2 + 2 H+ = 0.5 O2 + H2O + Sn+2 log_k -46.1203 - -delta_H 280.048 kJ/mol # Calculated enthalpy of reaction Cassiterite -# Enthalpy of formation: -138.8 kcal/mol + -delta_H 280.048 kJ/mol # Calculated enthalpy of reaction Cassiterite +# Enthalpy of formation: -138.8 kcal/mol -analytic -8.9264e+1 -1.5743e-2 -1.1497e+4 3.4917e+1 -1.7937e+2 # -Range: 0-300 Cattierite CoS2 = Co+2 + S2-2 log_k -29.9067 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cattierite -# Enthalpy of formation: -36.589 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cattierite +# Enthalpy of formation: -36.589 kcal/mol -analytic -2.197e+2 -7.8585e-2 -1.9592e+3 8.8809e+1 -3.0507e+1 # -Range: 0-300 Cd Cd + 2 H+ + 0.5 O2 = Cd+2 + H2O log_k 56.6062 - -delta_H -355.669 kJ/mol # Calculated enthalpy of reaction Cd -# Enthalpy of formation: 0 kJ/mol + -delta_H -355.669 kJ/mol # Calculated enthalpy of reaction Cd +# Enthalpy of formation: 0 kJ/mol -analytic -7.2027e+1 -2.025e-2 2.0474e+4 2.6814e+1 -3.2348e+4 # -Range: 0-300 Cd(BO2)2 Cd(BO2)2 + 2 H+ + 2 H2O = Cd+2 + 2 B(OH)3 log_k 9.8299 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(BO2)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(BO2)2 +# Enthalpy of formation: 0 kcal/mol Cd(IO3)2 Cd(IO3)2 = Cd+2 + 2 IO3- log_k -7.5848 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(IO3)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(IO3)2 +# Enthalpy of formation: 0 kcal/mol Cd(OH)2 Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O log_k 13.7382 - -delta_H -87.0244 kJ/mol # Calculated enthalpy of reaction Cd(OH)2 -# Enthalpy of formation: -560.55 kJ/mol + -delta_H -87.0244 kJ/mol # Calculated enthalpy of reaction Cd(OH)2 +# Enthalpy of formation: -560.55 kJ/mol -analytic -7.7001e+1 -6.9251e-3 7.4684e+3 2.738e+1 1.2685e+2 # -Range: 0-200 Cd(OH)Cl Cd(OH)Cl + H+ = Cd+2 + Cl- + H2O log_k 3.5435 - -delta_H -30.3888 kJ/mol # Calculated enthalpy of reaction Cd(OH)Cl -# Enthalpy of formation: -498.427 kJ/mol + -delta_H -30.3888 kJ/mol # Calculated enthalpy of reaction Cd(OH)Cl +# Enthalpy of formation: -498.427 kJ/mol -analytic -4.5477e+1 -1.5809e-2 2.5333e+3 1.8279e+1 4.3035e+1 # -Range: 0-200 Cd3(AsO4)2 Cd3(AsO4)2 + 4 H+ = 2 H2AsO4- + 3 Cd+2 log_k 4.0625 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(AsO4)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(AsO4)2 +# Enthalpy of formation: 0 kcal/mol Cd3(PO4)2 Cd3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 Cd+2 log_k -7.8943 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(PO4)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(PO4)2 +# Enthalpy of formation: 0 kcal/mol Cd3(SO4)(OH)4 Cd3(SO4)(OH)4 + 4 H+ = SO4-2 + 3 Cd+2 + 4 H2O log_k 22.5735 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(SO4)(OH)4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(SO4)(OH)4 +# Enthalpy of formation: 0 kcal/mol Cd3(SO4)2(OH)2 Cd3(SO4)2(OH)2 + 2 H+ = 2 H2O + 2 SO4-2 + 3 Cd+2 log_k 6.718 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(SO4)2(OH)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(SO4)2(OH)2 +# Enthalpy of formation: 0 kcal/mol CdBr2 CdBr2 = Cd+2 + 2 Br- log_k -1.847 - -delta_H -2.67548 kJ/mol # Calculated enthalpy of reaction CdBr2 -# Enthalpy of formation: -316.229 kJ/mol + -delta_H -2.67548 kJ/mol # Calculated enthalpy of reaction CdBr2 +# Enthalpy of formation: -316.229 kJ/mol -analytic 1.3056e+0 -2.0628e-2 -1.3318e+3 3.0126e+0 -2.2616e+1 # -Range: 0-200 CdBr2:4H2O CdBr2:4H2O = Cd+2 + 2 Br- + 4 H2O log_k -2.3378 - -delta_H 30.2812 kJ/mol # Calculated enthalpy of reaction CdBr2:4H2O -# Enthalpy of formation: -1492.54 kJ/mol + -delta_H 30.2812 kJ/mol # Calculated enthalpy of reaction CdBr2:4H2O +# Enthalpy of formation: -1492.54 kJ/mol -analytic -1.0038e+2 -2.1045e-2 1.6896e+3 3.9864e+1 2.8726e+1 # -Range: 0-200 CdCl2 CdCl2 = Cd+2 + 2 Cl- log_k -0.6474 - -delta_H -18.5391 kJ/mol # Calculated enthalpy of reaction CdCl2 -# Enthalpy of formation: -391.518 kJ/mol + -delta_H -18.5391 kJ/mol # Calculated enthalpy of reaction CdCl2 +# Enthalpy of formation: -391.518 kJ/mol -analytic -1.523e+1 -2.4574e-2 -8.1017e+1 8.9599e+0 -1.3702e+0 # -Range: 0-200 CdCl2(NH3)2 CdCl2(NH3)2 = Cd+2 + 2 Cl- + 2 NH3 log_k -8.7864 - -delta_H 63.534 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)2 -# Enthalpy of formation: -636.265 kJ/mol + -delta_H 63.534 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)2 +# Enthalpy of formation: -636.265 kJ/mol -analytic -5.5283e+1 -2.1791e-2 -2.115e+3 2.4279e+1 -3.5896e+1 # -Range: 0-200 CdCl2(NH3)4 CdCl2(NH3)4 = Cd+2 + 2 Cl- + 4 NH3 log_k -6.8044 - -delta_H 81.7931 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)4 -# Enthalpy of formation: -817.198 kJ/mol + -delta_H 81.7931 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)4 +# Enthalpy of formation: -817.198 kJ/mol -analytic -9.5682e+1 -1.8853e-2 -8.3875e+2 3.9322e+1 -1.421e+1 # -Range: 0-200 CdCl2(NH3)6 CdCl2(NH3)6 = Cd+2 + 2 Cl- + 6 NH3 log_k -4.7524 - -delta_H 97.2971 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)6 -# Enthalpy of formation: -995.376 kJ/mol + -delta_H 97.2971 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)6 +# Enthalpy of formation: -995.376 kJ/mol -analytic -1.3662e+2 -1.5941e-2 5.8572e+2 5.4415e+1 9.9937e+0 # -Range: 0-200 CdCl2:H2O CdCl2:H2O = Cd+2 + H2O + 2 Cl- log_k -1.6747 - -delta_H -7.44943 kJ/mol # Calculated enthalpy of reaction CdCl2:H2O -# Enthalpy of formation: -688.446 kJ/mol + -delta_H -7.44943 kJ/mol # Calculated enthalpy of reaction CdCl2:H2O +# Enthalpy of formation: -688.446 kJ/mol -analytic -4.1097e+1 -2.4685e-2 5.2687e+2 1.8188e+1 8.9615e+0 # -Range: 0-200 CdCr2O4 CdCr2O4 + 8 H+ = Cd+2 + 2 Cr+3 + 4 H2O log_k 14.9969 - -delta_H -255.676 kJ/mol # Calculated enthalpy of reaction CdCr2O4 -# Enthalpy of formation: -344.3 kcal/mol + -delta_H -255.676 kJ/mol # Calculated enthalpy of reaction CdCr2O4 +# Enthalpy of formation: -344.3 kcal/mol -analytic -1.7446e+2 -9.1086e-3 1.9223e+4 5.1605e+1 3.265e+2 # -Range: 0-200 CdF2 CdF2 = Cd+2 + 2 F- log_k -1.1464 - -delta_H -46.064 kJ/mol # Calculated enthalpy of reaction CdF2 -# Enthalpy of formation: -700.529 kJ/mol + -delta_H -46.064 kJ/mol # Calculated enthalpy of reaction CdF2 +# Enthalpy of formation: -700.529 kJ/mol -analytic -3.0654e+1 -2.479e-2 1.7893e+3 1.2482e+1 3.0395e+1 # -Range: 0-200 CdI2 CdI2 = Cd+2 + 2 I- log_k -3.4825 - -delta_H 13.7164 kJ/mol # Calculated enthalpy of reaction CdI2 -# Enthalpy of formation: -203.419 kJ/mol + -delta_H 13.7164 kJ/mol # Calculated enthalpy of reaction CdI2 +# Enthalpy of formation: -203.419 kJ/mol -analytic -1.5446e+1 -2.4758e-2 -1.6422e+3 1.0041e+1 -2.7882e+1 # -Range: 0-200 CdS CdS + H+ = Cd+2 + HS- log_k -15.9095 - -delta_H 70.1448 kJ/mol # Calculated enthalpy of reaction CdS -# Enthalpy of formation: -162.151 kJ/mol + -delta_H 70.1448 kJ/mol # Calculated enthalpy of reaction CdS +# Enthalpy of formation: -162.151 kJ/mol -analytic -2.9492e+1 -1.5181e-2 -3.4695e+3 1.2019e+1 -5.8907e+1 # -Range: 0-200 CdSO4 CdSO4 = Cd+2 + SO4-2 log_k -0.1061 - -delta_H -52.1304 kJ/mol # Calculated enthalpy of reaction CdSO4 -# Enthalpy of formation: -933.369 kJ/mol + -delta_H -52.1304 kJ/mol # Calculated enthalpy of reaction CdSO4 +# Enthalpy of formation: -933.369 kJ/mol -analytic 7.7104e+0 -1.7161e-2 8.7067e+2 -2.2763e+0 1.4783e+1 # -Range: 0-200 CdSO4:2.667H2O CdSO4:2.667H2O = Cd+2 + SO4-2 + 2.667 H2O log_k -1.8015 - -delta_H -18.5302 kJ/mol # Calculated enthalpy of reaction CdSO4:2.667H2O -# Enthalpy of formation: -1729.3 kJ/mol + -delta_H -18.5302 kJ/mol # Calculated enthalpy of reaction CdSO4:2.667H2O +# Enthalpy of formation: -1729.3 kJ/mol -analytic -5.0331e+1 -1.4983e-2 2.0271e+3 1.8665e+1 3.444e+1 # -Range: 0-200 CdSO4:H2O CdSO4:H2O = Cd+2 + H2O + SO4-2 log_k -1.6529 - -delta_H -31.6537 kJ/mol # Calculated enthalpy of reaction CdSO4:H2O -# Enthalpy of formation: -1239.68 kJ/mol + -delta_H -31.6537 kJ/mol # Calculated enthalpy of reaction CdSO4:H2O +# Enthalpy of formation: -1239.68 kJ/mol -analytic -1.7142e+1 -1.7295e-2 9.9184e+2 6.9943e+0 1.6849e+1 # -Range: 0-200 CdSeO3 CdSeO3 = Cd+2 + SeO3-2 log_k -8.8086 - -delta_H -9.92156 kJ/mol # Calculated enthalpy of reaction CdSeO3 -# Enthalpy of formation: -575.169 kJ/mol + -delta_H -9.92156 kJ/mol # Calculated enthalpy of reaction CdSeO3 +# Enthalpy of formation: -575.169 kJ/mol -analytic 7.1762e+0 -1.8892e-2 -1.468e+3 -2.1984e+0 -2.4932e+1 # -Range: 0-200 CdSeO4 CdSeO4 = Cd+2 + SeO4-2 log_k -2.2132 - -delta_H -41.9836 kJ/mol # Calculated enthalpy of reaction CdSeO4 -# Enthalpy of formation: -633.063 kJ/mol + -delta_H -41.9836 kJ/mol # Calculated enthalpy of reaction CdSeO4 +# Enthalpy of formation: -633.063 kJ/mol -analytic -4.9901e+0 -1.9755e-2 7.3162e+2 2.5063e+0 1.2426e+1 # -Range: 0-200 CdSiO3 CdSiO3 + 2 H+ = Cd+2 + H2O + SiO2 log_k 7.5136 - -delta_H -50.3427 kJ/mol # Calculated enthalpy of reaction CdSiO3 -# Enthalpy of formation: -1189.09 kJ/mol + -delta_H -50.3427 kJ/mol # Calculated enthalpy of reaction CdSiO3 +# Enthalpy of formation: -1189.09 kJ/mol -analytic 2.6419e+2 6.2488e-2 -5.3518e+3 -1.0401e+2 -9.0973e+1 # -Range: 0-200 Ce Ce + 3 H+ + 0.75 O2 = Ce+3 + 1.5 H2O log_k 182.9563 - -delta_H -1120.06 kJ/mol # Calculated enthalpy of reaction Ce -# Enthalpy of formation: 0 kJ/mol + -delta_H -1120.06 kJ/mol # Calculated enthalpy of reaction Ce +# Enthalpy of formation: 0 kJ/mol -analytic -5.1017e+1 -2.6149e-2 5.8511e+4 1.8382e+1 9.1302e+2 # -Range: 0-300 Ce(OH)3 Ce(OH)3 + 3 H+ = Ce+3 + 3 H2O log_k 19.8852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)3 +# Enthalpy of formation: 0 kcal/mol Ce(OH)3(am) Ce(OH)3 + 3 H+ = Ce+3 + 3 H2O log_k 21.1852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)3(am) +# Enthalpy of formation: 0 kcal/mol Ce2(CO3)3:8H2O Ce2(CO3)3:8H2O + 3 H+ = 2 Ce+3 + 3 HCO3- + 8 H2O log_k -4.1136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2(CO3)3:8H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2(CO3)3:8H2O +# Enthalpy of formation: 0 kcal/mol Ce2O3 Ce2O3 + 6 H+ = 2 Ce+3 + 3 H2O log_k 62.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2O3 +# Enthalpy of formation: 0 kcal/mol Ce3(PO4)4 Ce3(PO4)4 + 4 H+ = 3 Ce+4 + 4 HPO4-2 log_k -40.8127 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce3(PO4)4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce3(PO4)4 +# Enthalpy of formation: 0 kcal/mol CeF3:.5H2O CeF3:.5H2O = 0.5 H2O + Ce+3 + 3 F- log_k -18.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction CeF3:.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CeF3:.5H2O +# Enthalpy of formation: 0 kcal/mol CeO2 CeO2 + 4 H+ = Ce+4 + 2 H2O log_k -8.16 - -delta_H 0 # Not possible to calculate enthalpy of reaction CeO2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CeO2 +# Enthalpy of formation: 0 kcal/mol CePO4:10H2O CePO4:10H2O + H+ = Ce+3 + HPO4-2 + 10 H2O log_k -12.2782 - -delta_H 0 # Not possible to calculate enthalpy of reaction CePO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CePO4:10H2O +# Enthalpy of formation: 0 kcal/mol Celadonite KMgAlSi4O10(OH)2 + 6 H+ = Al+3 + K+ + Mg+2 + 4 H2O + 4 SiO2 log_k 7.4575 - -delta_H -74.3957 kJ/mol # Calculated enthalpy of reaction Celadonite -# Enthalpy of formation: -1394.9 kcal/mol + -delta_H -74.3957 kJ/mol # Calculated enthalpy of reaction Celadonite +# Enthalpy of formation: -1394.9 kcal/mol -analytic -3.3097e+1 1.7989e-2 1.8919e+4 -2.1219e+0 -2.0588e+6 # -Range: 0-300 Celestite SrSO4 = SO4-2 + Sr+2 log_k -5.6771 - -delta_H -7.40568 kJ/mol # Calculated enthalpy of reaction Celestite -# Enthalpy of formation: -347.3 kcal/mol + -delta_H -7.40568 kJ/mol # Calculated enthalpy of reaction Celestite +# Enthalpy of formation: -347.3 kcal/mol -analytic -1.9063e+2 -7.4552e-2 3.905e+3 7.8416e+1 6.0991e+1 # -Range: 0-300 Cerussite PbCO3 + H+ = HCO3- + Pb+2 log_k -3.2091 - -delta_H 13.8992 kJ/mol # Calculated enthalpy of reaction Cerussite -# Enthalpy of formation: -168 kcal/mol + -delta_H 13.8992 kJ/mol # Calculated enthalpy of reaction Cerussite +# Enthalpy of formation: -168 kcal/mol -analytic -1.2887e+2 -4.4372e-2 2.2336e+3 5.3091e+1 3.4891e+1 # -Range: 0-300 Chalcanthite CuSO4:5H2O = Cu+2 + SO4-2 + 5 H2O log_k -2.6215 - -delta_H 6.57556 kJ/mol # Calculated enthalpy of reaction Chalcanthite -# Enthalpy of formation: -2279.68 kJ/mol + -delta_H 6.57556 kJ/mol # Calculated enthalpy of reaction Chalcanthite +# Enthalpy of formation: -2279.68 kJ/mol -analytic -1.1262e+2 -1.5544e-2 3.6176e+3 4.142e+1 6.1471e+1 # -Range: 0-200 Chalcedony SiO2 = SiO2 log_k -3.7281 - -delta_H 31.4093 kJ/mol # Calculated enthalpy of reaction Chalcedony -# Enthalpy of formation: -217.282 kcal/mol + -delta_H 31.4093 kJ/mol # Calculated enthalpy of reaction Chalcedony +# Enthalpy of formation: -217.282 kcal/mol -analytic -9.0068e+0 9.3241e-3 4.0535e+3 -1.083e+0 -7.5077e+5 # -Range: 0-300 Chalcocite Cu2S + H+ = HS- + 2 Cu+ log_k -34.7342 - -delta_H 206.748 kJ/mol # Calculated enthalpy of reaction Chalcocite -# Enthalpy of formation: -19 kcal/mol + -delta_H 206.748 kJ/mol # Calculated enthalpy of reaction Chalcocite +# Enthalpy of formation: -19 kcal/mol -analytic -1.3703e+2 -4.0727e-2 -7.1694e+3 5.5963e+1 -1.1183e+2 # -Range: 0-300 Chalcocyanite CuSO4 = Cu+2 + SO4-2 log_k 2.9239 - -delta_H -72.5128 kJ/mol # Calculated enthalpy of reaction Chalcocyanite -# Enthalpy of formation: -771.4 kJ/mol + -delta_H -72.5128 kJ/mol # Calculated enthalpy of reaction Chalcocyanite +# Enthalpy of formation: -771.4 kJ/mol -analytic 5.8173e+0 -1.6933e-2 2.0097e+3 -1.8583e+0 3.4126e+1 # -Range: 0-200 Chalcopyrite CuFeS2 + 2 H+ = Cu+2 + Fe+2 + 2 HS- log_k -32.5638 - -delta_H 127.206 kJ/mol # Calculated enthalpy of reaction Chalcopyrite -# Enthalpy of formation: -44.453 kcal/mol + -delta_H 127.206 kJ/mol # Calculated enthalpy of reaction Chalcopyrite +# Enthalpy of formation: -44.453 kcal/mol -analytic -3.1575e+2 -9.8947e-2 8.34e+2 1.2522e+2 1.3106e+1 # -Range: 0-300 Chamosite-7A Fe2Al2SiO5(OH)4 + 10 H+ = SiO2 + 2 Al+3 + 2 Fe+2 + 7 H2O log_k 32.8416 - -delta_H -364.213 kJ/mol # Calculated enthalpy of reaction Chamosite-7A -# Enthalpy of formation: -902.407 kcal/mol + -delta_H -364.213 kJ/mol # Calculated enthalpy of reaction Chamosite-7A +# Enthalpy of formation: -902.407 kcal/mol -analytic -2.5581e+2 -7.089e-2 2.4619e+4 9.1789e+1 3.8424e+2 # -Range: 0-300 Chlorargyrite AgCl = Ag+ + Cl- log_k -9.7453 - -delta_H 65.739 kJ/mol # Calculated enthalpy of reaction Chlorargyrite -# Enthalpy of formation: -30.37 kcal/mol + -delta_H 65.739 kJ/mol # Calculated enthalpy of reaction Chlorargyrite +# Enthalpy of formation: -30.37 kcal/mol -analytic -9.6834e+1 -3.4624e-2 -1.182e+3 4.0962e+1 -1.8415e+1 # -Range: 0-300 Chloromagnesite MgCl2 = Mg+2 + 2 Cl- log_k 21.8604 - -delta_H -158.802 kJ/mol # Calculated enthalpy of reaction Chloromagnesite -# Enthalpy of formation: -641.317 kJ/mol + -delta_H -158.802 kJ/mol # Calculated enthalpy of reaction Chloromagnesite +# Enthalpy of formation: -641.317 kJ/mol -analytic -2.364e+2 -8.2017e-2 1.348e+4 9.5963e+1 2.1042e+2 # -Range: 0-300 Chromite FeCr2O4 + 8 H+ = Fe+2 + 2 Cr+3 + 4 H2O log_k 15.1685 - -delta_H -267.755 kJ/mol # Calculated enthalpy of reaction Chromite -# Enthalpy of formation: -1444.83 kJ/mol + -delta_H -267.755 kJ/mol # Calculated enthalpy of reaction Chromite +# Enthalpy of formation: -1444.83 kJ/mol -analytic -1.906e+2 -2.5695e-2 1.9465e+4 5.9865e+1 3.0379e+2 # -Range: 0-300 Chrysocolla CuSiH4O5 + 2 H+ = Cu+2 + SiO2 + 3 H2O log_k 6.2142 - -delta_H 0 # Not possible to calculate enthalpy of reaction Chrysocolla -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Chrysocolla +# Enthalpy of formation: 0 kcal/mol Chrysotile Mg3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Mg+2 + 5 H2O log_k 31.1254 - -delta_H -218.041 kJ/mol # Calculated enthalpy of reaction Chrysotile -# Enthalpy of formation: -1043.12 kcal/mol + -delta_H -218.041 kJ/mol # Calculated enthalpy of reaction Chrysotile +# Enthalpy of formation: -1043.12 kcal/mol -analytic -9.2462e+1 -1.1359e-2 1.8312e+4 2.9289e+1 -6.2342e+5 # -Range: 0-300 Cinnabar HgS + H+ = HS- + Hg+2 log_k -38.9666 - -delta_H 207.401 kJ/mol # Calculated enthalpy of reaction Cinnabar -# Enthalpy of formation: -12.75 kcal/mol + -delta_H 207.401 kJ/mol # Calculated enthalpy of reaction Cinnabar +# Enthalpy of formation: -12.75 kcal/mol -analytic -1.5413e+2 -4.6846e-2 -6.9806e+3 6.1639e+1 -1.0888e+2 # -Range: 0-300 Claudetite As2O3 + 3 H2O = 2 H+ + 2 H2AsO3- log_k -19.7647 - -delta_H 82.3699 kJ/mol # Calculated enthalpy of reaction Claudetite -# Enthalpy of formation: -654.444 kJ/mol + -delta_H 82.3699 kJ/mol # Calculated enthalpy of reaction Claudetite +# Enthalpy of formation: -654.444 kJ/mol -analytic -1.4164e+2 -6.3704e-2 -2.1679e+3 5.9856e+1 -3.3787e+1 # -Range: 0-300 Clausthalite PbSe = Pb+2 + Se-2 log_k -36.2531 - -delta_H 0 # Not possible to calculate enthalpy of reaction Clausthalite -# Enthalpy of formation: -102.9 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Clausthalite +# Enthalpy of formation: -102.9 kJ/mol -analytic -2.6473e+1 -1.0666e-2 -8.554e+3 8.9226e+0 -1.3347e+2 # -Range: 0-300 Clinochalcomenite CuSeO3:2H2O = Cu+2 + SeO3-2 + 2 H2O log_k -6.7873 - -delta_H -31.6645 kJ/mol # Calculated enthalpy of reaction Clinochalcomenite -# Enthalpy of formation: -235.066 kcal/mol + -delta_H -31.6645 kJ/mol # Calculated enthalpy of reaction Clinochalcomenite +# Enthalpy of formation: -235.066 kcal/mol -analytic -4.6465e+1 -1.8071e-2 2.0307e+3 1.5455e+1 3.4499e+1 # -Range: 0-200 Clinochlore-14A Mg5Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Mg+2 + 12 H2O log_k 67.2391 - -delta_H -612.379 kJ/mol # Calculated enthalpy of reaction Clinochlore-14A -# Enthalpy of formation: -2116.96 kcal/mol + -delta_H -612.379 kJ/mol # Calculated enthalpy of reaction Clinochlore-14A +# Enthalpy of formation: -2116.96 kcal/mol -analytic -2.0441e+2 -6.2268e-2 3.5388e+4 6.9239e+1 5.5225e+2 # -Range: 0-300 Clinochlore-7A Mg5Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Mg+2 + 12 H2O log_k 70.6124 - -delta_H -628.14 kJ/mol # Calculated enthalpy of reaction Clinochlore-7A -# Enthalpy of formation: -2113.2 kcal/mol + -delta_H -628.14 kJ/mol # Calculated enthalpy of reaction Clinochlore-7A +# Enthalpy of formation: -2113.2 kcal/mol -analytic -2.1644e+2 -6.4187e-2 3.6548e+4 7.4123e+1 5.7037e+2 # -Range: 0-300 @@ -11326,54 +11326,54 @@ Clinoptilolite # Na.954K.543Ca.761Mg.124Sr.036Ba.062Mn.002Al3.45F +13.8680 H+ = + 0.0020 Mn++ + 0.0170 Fe+++ + 0.0360 Sr++ + 0.0620 Ba++ + 0.1240 Mg++ + 0.5430 K+ + 0.7610 Ca++ + 0.9540 Na+ + 3.4500 Al+++ + 14.5330 SiO2 17.8560 H2O Na.954K.543Ca.761Mg.124Sr.036Ba.062Mn.002Al3.45Fe.017Si14.533O46.922H21.844 + 13.868 H+ = 0.002 Mn+2 + 0.017 Fe+3 + 0.036 Sr+2 + 0.062 Ba+2 + 0.124 Mg+2 + 0.543 K+ + 0.761 Ca+2 + 0.954 Na+ + 3.45 Al+3 + 14.533 SiO2 + 17.856 H2O log_k -9.7861 - -delta_H -20.8784 kJ/mol # Calculated enthalpy of reaction Clinoptilolite -# Enthalpy of formation: -20587.8 kJ/mol + -delta_H -20.8784 kJ/mol # Calculated enthalpy of reaction Clinoptilolite +# Enthalpy of formation: -20587.8 kJ/mol -analytic -1.3213e+0 6.496e-2 5.063e+4 -4.612e+1 -7.4699e+6 # -Range: 0-300 Clinoptilolite-Ca Ca1.7335Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 1.7335 Ca+2 + 3.45 Al+3 + 14.533 SiO2 + 17.856 H2O log_k -7.0095 - -delta_H -74.6745 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Ca -# Enthalpy of formation: -4919.84 kcal/mol + -delta_H -74.6745 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Ca +# Enthalpy of formation: -4919.84 kcal/mol -analytic -4.482e+1 5.3696e-2 5.4878e+4 -3.1459e+1 -7.5491e+6 # -Range: 0-300 Clinoptilolite-Cs Cs3.467Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 Cs+ + 14.533 SiO2 + 17.856 H2O log_k -13.0578 - -delta_H 96.9005 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Cs -# Enthalpy of formation: -4949.65 kcal/mol + -delta_H 96.9005 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Cs +# Enthalpy of formation: -4949.65 kcal/mol -analytic -8.4746e+0 7.1997e-2 4.9675e+4 -4.1406e+1 -8.0632e+6 # -Range: 0-300 Clinoptilolite-K K3.467Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 K+ + 14.533 SiO2 + 17.856 H2O log_k -10.9485 - -delta_H 67.4862 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-K -# Enthalpy of formation: -4937.77 kcal/mol + -delta_H 67.4862 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-K +# Enthalpy of formation: -4937.77 kcal/mol -analytic 1.1697e+1 6.948e-2 4.7718e+4 -4.7442e+1 -7.6907e+6 # -Range: 0-300 Clinoptilolite-NH4 (NH4)3.467Al3.45Fe.017Si14.533O36:10.922H2O + 10.401 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 NH3 + 14.533 SiO2 + 17.856 H2O log_k -42.4791 - -delta_H 0 # Not possible to calculate enthalpy of reaction Clinoptilolite-NH4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Clinoptilolite-NH4 +# Enthalpy of formation: 0 kcal/mol Clinoptilolite-Na Na3.467Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 Na+ + 14.533 SiO2 + 17.856 H2O log_k -7.1363 - -delta_H 2.32824 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Na -# Enthalpy of formation: -4912.36 kcal/mol + -delta_H 2.32824 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Na +# Enthalpy of formation: -4912.36 kcal/mol -analytic -3.4572e+1 6.8377e-2 5.1962e+4 -3.3426e+1 -7.5586e+6 # -Range: 0-300 Clinoptilolite-Sr Sr1.7335Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 1.7335 Sr+2 + 3.45 Al+3 + 14.533 SiO2 + 17.856 H2O log_k -7.1491 - -delta_H -66.2129 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Sr -# Enthalpy of formation: -4925.1 kcal/mol + -delta_H -66.2129 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Sr +# Enthalpy of formation: -4925.1 kcal/mol -analytic 3.2274e+1 6.705e-2 5.088e+4 -5.9597e+1 -7.3876e+6 # -Range: 0-300 @@ -11381,54 +11381,54 @@ Clinoptilolite-dehy # Sr.036Mg.124Ca.761Mn.002Ba.062K.543Na.954Al3.45F +13.8680 H+ = + 0.0020 Mn++ + 0.0170 Fe+++ + 0.0360 Sr++ + 0.0620 Ba++ + 0.1240 Mg++ + 0.5430 K+ + 0.7610 Ca++ + 0.9540 Na+ + 3.4500 Al+++ + 6.9340 H2O 14.5330 SiO2 Sr.036Mg.124Ca.761Mn.002Ba.062K.543Na.954Al3.45Fe.017Si14.533O36 + 13.868 H+ = 0.002 Mn+2 + 0.017 Fe+3 + 0.036 Sr+2 + 0.062 Ba+2 + 0.124 Mg+2 + 0.543 K+ + 0.761 Ca+2 + 0.954 Na+ + 3.45 Al+3 + 6.934 H2O + 14.533 SiO2 log_k 25.849 - -delta_H -276.592 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy -# Enthalpy of formation: -17210.2 kJ/mol + -delta_H -276.592 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy +# Enthalpy of formation: -17210.2 kJ/mol -analytic -2.0505e+2 6.0155e-2 8.2682e+4 1.5333e+1 -9.1369e+6 # -Range: 0-300 Clinoptilolite-dehy-Ca Ca1.7335Al3.45Fe.017Si14.533O36 + 13.868 H+ = 0.017 Fe+3 + 1.7335 Ca+2 + 3.45 Al+3 + 6.934 H2O + 14.533 SiO2 log_k 28.6255 - -delta_H -329.278 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Ca -# Enthalpy of formation: -4112.83 kcal/mol + -delta_H -329.278 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Ca +# Enthalpy of formation: -4112.83 kcal/mol -analytic -1.2948e+2 6.5698e-2 8.0229e+4 -1.2812e+1 -8.832e+6 # -Range: 0-300 Clinoptilolite-dehy-Cs Cs3.467Al3.45Fe.017Si14.533O36 + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 Cs+ + 6.934 H2O + 14.533 SiO2 log_k 22.5771 - -delta_H -164.837 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Cs -# Enthalpy of formation: -4140.93 kcal/mol + -delta_H -164.837 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Cs +# Enthalpy of formation: -4140.93 kcal/mol -analytic -1.2852e+2 7.9047e-2 7.7262e+4 -1.0422e+1 -9.4504e+6 # -Range: 0-300 Clinoptilolite-dehy-K K3.467Al3.45Fe.017Si14.533O36 + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 K+ + 6.934 H2O + 14.533 SiO2 log_k 24.6865 - -delta_H -191.289 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-K -# Enthalpy of formation: -4129.76 kcal/mol + -delta_H -191.289 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-K +# Enthalpy of formation: -4129.76 kcal/mol -analytic -1.2241e+2 7.4761e-2 7.6067e+4 -1.1315e+1 -9.1389e+6 # -Range: 0-300 Clinoptilolite-dehy-NH4 (NH4)3.467Al3.45Fe.017Si14.533O36 + 10.401 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 NH3 + 6.934 H2O + 14.533 SiO2 log_k -6.8441 - -delta_H 0 # Not possible to calculate enthalpy of reaction Clinoptilolite-dehy-NH4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Clinoptilolite-dehy-NH4 +# Enthalpy of formation: 0 kcal/mol Clinoptilolite-dehy-Na Na3.467Al3.45Fe.017Si14.533O36 + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 Na+ + 6.934 H2O + 14.533 SiO2 log_k 28.4987 - -delta_H -253.798 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Na -# Enthalpy of formation: -4104.98 kcal/mol + -delta_H -253.798 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Na +# Enthalpy of formation: -4104.98 kcal/mol -analytic -1.4386e+2 7.6846e-2 7.8723e+4 -5.9741e+0 -8.9159e+6 # -Range: 0-300 Clinoptilolite-dehy-Sr Sr1.7335Al3.45Fe.017Si14.533O36 + 13.868 H+ = 0.017 Fe+3 + 1.7335 Sr+2 + 3.45 Al+3 + 6.934 H2O + 14.533 SiO2 log_k 28.4859 - -delta_H -321.553 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Sr -# Enthalpy of formation: -4117.92 kcal/mol + -delta_H -321.553 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Sr +# Enthalpy of formation: -4117.92 kcal/mol -analytic -1.841e+2 6.0457e-2 8.3626e+4 6.4304e+0 -9.0962e+6 # -Range: 0-300 @@ -11436,8 +11436,8 @@ Clinoptilolite-hy-Ca # Ca1.7335Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Ca++ + 3.4500 Al+++ + 14.5330 SiO2 + 18.5790 H2O Ca1.7335Al3.45Fe.017Si14.533O36:11.645H2O + 13.868 H+ = 0.017 Fe+3 + 1.7335 Ca+2 + 3.45 Al+3 + 14.533 SiO2 + 18.579 H2O log_k -7.0108 - -delta_H -65.4496 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Ca -# Enthalpy of formation: -4971.44 kcal/mol + -delta_H -65.4496 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Ca +# Enthalpy of formation: -4971.44 kcal/mol -analytic 8.6833e+1 7.152e-2 4.6854e+4 -7.8023e+1 -7.09e+6 # -Range: 0-300 @@ -11445,8 +11445,8 @@ Clinoptilolite-hy-Cs # Cs3.467Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Cs+ + 13.1640 H2O + 14.5330 SiO2 Cs3.467Al3.45Fe.017Si14.533O36:6.23H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 Cs+ + 13.164 H2O + 14.533 SiO2 log_k -13.0621 - -delta_H 44.6397 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Cs -# Enthalpy of formation: -4616.61 kcal/mol + -delta_H 44.6397 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Cs +# Enthalpy of formation: -4616.61 kcal/mol -analytic -2.3362e+1 7.4922e-2 5.4544e+4 -4.1092e+1 -8.3387e+6 # -Range: 0-300 @@ -11454,8 +11454,8 @@ Clinoptilolite-hy-K # K3.467Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 K+ + 14.4330 H2O + 14.5330 SiO2 K3.467Al3.45Fe.017Si14.533O36:7.499H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 K+ + 14.433 H2O + 14.533 SiO2 log_k -10.9523 - -delta_H 29.5879 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-K -# Enthalpy of formation: -4694.86 kcal/mol + -delta_H 29.5879 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-K +# Enthalpy of formation: -4694.86 kcal/mol -analytic 1.6223e+1 7.3919e-2 5.0447e+4 -5.279e+1 -7.8484e+6 # -Range: 0-300 @@ -11463,8 +11463,8 @@ Clinoptilolite-hy-Na # Na3.467Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Na+ + 14.5330 SiO2 + 17.8110 H2O Na3.467Al3.45Fe.017Si14.533O36:10.877H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 Na+ + 14.533 SiO2 + 17.811 H2O log_k -7.1384 - -delta_H 1.88166 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Na -# Enthalpy of formation: -4909.18 kcal/mol + -delta_H 1.88166 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Na +# Enthalpy of formation: -4909.18 kcal/mol -analytic -8.4189e+0 7.2018e-2 5.0501e+4 -4.2851e+1 -7.4714e+6 # -Range: 0-300 @@ -11472,1248 +11472,1248 @@ Clinoptilolite-hy-Sr # Sr1.7335Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Sr++ + 3.4500 Al+++ + 14.5330 SiO2 + 20.8270 H2O Sr1.7335Al3.45Fe.017Si14.533O36:13.893H2O + 13.868 H+ = 0.017 Fe+3 + 1.7335 Sr+2 + 3.45 Al+3 + 14.533 SiO2 + 20.827 H2O log_k -7.1498 - -delta_H -31.6858 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Sr -# Enthalpy of formation: -5136.33 kcal/mol + -delta_H -31.6858 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Sr +# Enthalpy of formation: -5136.33 kcal/mol -analytic 1.0742e-1 5.9065e-2 4.9985e+4 -4.4648e+1 -7.3382e+6 # -Range: 0-300 Clinozoisite Ca2Al3Si3O12(OH) + 13 H+ = 2 Ca+2 + 3 Al+3 + 3 SiO2 + 7 H2O log_k 43.2569 - -delta_H -457.755 kJ/mol # Calculated enthalpy of reaction Clinozoisite -# Enthalpy of formation: -1643.78 kcal/mol + -delta_H -457.755 kJ/mol # Calculated enthalpy of reaction Clinozoisite +# Enthalpy of formation: -1643.78 kcal/mol -analytic -2.869e+1 -3.7056e-2 2.277e+4 3.788e+0 -2.5834e+5 # -Range: 0-300 Co Co + 2 H+ + 0.5 O2 = Co+2 + H2O log_k 52.5307 - -delta_H -337.929 kJ/mol # Calculated enthalpy of reaction Co -# Enthalpy of formation: 0 kJ/mol + -delta_H -337.929 kJ/mol # Calculated enthalpy of reaction Co +# Enthalpy of formation: 0 kJ/mol -analytic -6.2703e+1 -2.0172e-2 1.8888e+4 2.3391e+1 2.9474e+2 # -Range: 0-300 Co(NO3)2 Co(NO3)2 = Co+2 + 2 NO3- log_k 8 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(NO3)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(NO3)2 +# Enthalpy of formation: 0 kcal/mol Co(OH)2 Co(OH)2 + 2 H+ = Co+2 + 2 H2O log_k 12.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)2 +# Enthalpy of formation: 0 kcal/mol Co2SiO4 Co2SiO4 + 4 H+ = SiO2 + 2 Co+2 + 2 H2O log_k 6.6808 - -delta_H -88.6924 kJ/mol # Calculated enthalpy of reaction Co2SiO4 -# Enthalpy of formation: -353.011 kcal/mol + -delta_H -88.6924 kJ/mol # Calculated enthalpy of reaction Co2SiO4 +# Enthalpy of formation: -353.011 kcal/mol -analytic -3.9978e+0 -3.7985e-3 5.1554e+3 -1.5033e+0 -1.61e+5 # -Range: 0-300 Co3(AsO4)2 Co3(AsO4)2 + 4 H+ = 2 H2AsO4- + 3 Co+2 log_k 8.5318 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co3(AsO4)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Co3(AsO4)2 +# Enthalpy of formation: 0 kcal/mol Co3(PO4)2 Co3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 Co+2 log_k -10.0123 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co3(PO4)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Co3(PO4)2 +# Enthalpy of formation: 0 kcal/mol CoCl2 CoCl2 = Co+2 + 2 Cl- log_k 8.2641 - -delta_H -79.5949 kJ/mol # Calculated enthalpy of reaction CoCl2 -# Enthalpy of formation: -312.722 kJ/mol + -delta_H -79.5949 kJ/mol # Calculated enthalpy of reaction CoCl2 +# Enthalpy of formation: -312.722 kJ/mol -analytic -2.2386e+2 -8.0936e-2 8.8631e+3 9.1528e+1 1.3837e+2 # -Range: 0-300 CoCl2:2H2O CoCl2:2H2O = Co+2 + 2 Cl- + 2 H2O log_k 4.6661 - -delta_H -40.7876 kJ/mol # Calculated enthalpy of reaction CoCl2:2H2O -# Enthalpy of formation: -923.206 kJ/mol + -delta_H -40.7876 kJ/mol # Calculated enthalpy of reaction CoCl2:2H2O +# Enthalpy of formation: -923.206 kJ/mol -analytic -5.6411e+1 -2.339e-2 3.0519e+3 2.3361e+1 5.1845e+1 # -Range: 0-200 CoCl2:6H2O CoCl2:6H2O = Co+2 + 2 Cl- + 6 H2O log_k 2.6033 - -delta_H 8.32709 kJ/mol # Calculated enthalpy of reaction CoCl2:6H2O -# Enthalpy of formation: -2115.67 kJ/mol + -delta_H 8.32709 kJ/mol # Calculated enthalpy of reaction CoCl2:6H2O +# Enthalpy of formation: -2115.67 kJ/mol -analytic -1.5066e+2 -2.2132e-2 5.0591e+3 5.7743e+1 8.5962e+1 # -Range: 0-200 CoF2 CoF2 = Co+2 + 2 F- log_k -5.1343 - -delta_H -36.6708 kJ/mol # Calculated enthalpy of reaction CoF2 -# Enthalpy of formation: -692.182 kJ/mol + -delta_H -36.6708 kJ/mol # Calculated enthalpy of reaction CoF2 +# Enthalpy of formation: -692.182 kJ/mol -analytic -2.5667e+2 -8.4071e-2 7.6256e+3 1.0143e+2 1.1907e+2 # -Range: 0-300 CoF3 CoF3 = Co+3 + 3 F- log_k -4.9558 - -delta_H -103.136 kJ/mol # Calculated enthalpy of reaction CoF3 -# Enthalpy of formation: -193.8 kcal/mol + -delta_H -103.136 kJ/mol # Calculated enthalpy of reaction CoF3 +# Enthalpy of formation: -193.8 kcal/mol -analytic -3.7854e+2 -1.2911e-1 1.3215e+4 1.4859e+2 2.0632e+2 # -Range: 0-300 CoFe2O4 CoFe2O4 + 8 H+ = Co+2 + 2 Fe+3 + 4 H2O log_k 0.8729 - -delta_H -160.674 kJ/mol # Calculated enthalpy of reaction CoFe2O4 -# Enthalpy of formation: -272.466 kcal/mol + -delta_H -160.674 kJ/mol # Calculated enthalpy of reaction CoFe2O4 +# Enthalpy of formation: -272.466 kcal/mol -analytic -3.0149e+2 -7.9159e-2 1.5683e+4 1.1046e+2 2.448e+2 # -Range: 0-300 CoHPO4 CoHPO4 = Co+2 + HPO4-2 log_k -6.7223 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoHPO4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CoHPO4 +# Enthalpy of formation: 0 kcal/mol CoO CoO + 2 H+ = Co+2 + H2O log_k 13.5553 - -delta_H -106.05 kJ/mol # Calculated enthalpy of reaction CoO -# Enthalpy of formation: -237.946 kJ/mol + -delta_H -106.05 kJ/mol # Calculated enthalpy of reaction CoO +# Enthalpy of formation: -237.946 kJ/mol -analytic -8.4424e+1 -1.9457e-2 7.8616e+3 3.1281e+1 1.227e+2 # -Range: 0-300 CoS CoS + H+ = Co+2 + HS- log_k -7.374 - -delta_H 10.1755 kJ/mol # Calculated enthalpy of reaction CoS -# Enthalpy of formation: -20.182 kcal/mol + -delta_H 10.1755 kJ/mol # Calculated enthalpy of reaction CoS +# Enthalpy of formation: -20.182 kcal/mol -analytic -1.5128e+2 -4.8484e-2 2.9553e+3 5.9983e+1 4.6158e+1 # -Range: 0-300 CoSO4 CoSO4 = Co+2 + SO4-2 log_k 2.8996 - -delta_H -79.7952 kJ/mol # Calculated enthalpy of reaction CoSO4 -# Enthalpy of formation: -887.964 kJ/mol + -delta_H -79.7952 kJ/mol # Calculated enthalpy of reaction CoSO4 +# Enthalpy of formation: -887.964 kJ/mol -analytic -1.9907e+2 -7.789e-2 7.7193e+3 8.0525e+1 1.2051e+2 # -Range: 0-300 CoSO4.3Co(OH)2 CoSO4(Co(OH)2)3 + 6 H+ = SO4-2 + 4 Co+2 + 6 H2O log_k 33.2193 - -delta_H -379.41 kJ/mol # Calculated enthalpy of reaction CoSO4.3Co(OH)2 -# Enthalpy of formation: -2477.85 kJ/mol + -delta_H -379.41 kJ/mol # Calculated enthalpy of reaction CoSO4.3Co(OH)2 +# Enthalpy of formation: -2477.85 kJ/mol -analytic -2.283e+2 -4.0197e-2 2.5937e+4 7.5367e+1 4.4053e+2 # -Range: 0-200 CoSO4:6H2O CoSO4:6H2O = Co+2 + SO4-2 + 6 H2O log_k -2.3512 - -delta_H 1.08483 kJ/mol # Calculated enthalpy of reaction CoSO4:6H2O -# Enthalpy of formation: -2683.87 kJ/mol + -delta_H 1.08483 kJ/mol # Calculated enthalpy of reaction CoSO4:6H2O +# Enthalpy of formation: -2683.87 kJ/mol -analytic -2.5469e+2 -7.3092e-2 6.6767e+3 1.0172e+2 1.0426e+2 # -Range: 0-300 CoSO4:H2O CoSO4:H2O = Co+2 + H2O + SO4-2 log_k -1.2111 - -delta_H -52.6556 kJ/mol # Calculated enthalpy of reaction CoSO4:H2O -# Enthalpy of formation: -287.032 kcal/mol + -delta_H -52.6556 kJ/mol # Calculated enthalpy of reaction CoSO4:H2O +# Enthalpy of formation: -287.032 kcal/mol -analytic -1.057e+1 -1.6196e-2 1.718e+3 3.4e+0 2.9178e+1 # -Range: 0-200 CoSeO3 CoSeO3 = Co+2 + SeO3-2 log_k -7.08 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoSeO3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CoSeO3 +# Enthalpy of formation: 0 kcal/mol CoWO4 CoWO4 = Co+2 + WO4-2 log_k -12.2779 - -delta_H 13.6231 kJ/mol # Calculated enthalpy of reaction CoWO4 -# Enthalpy of formation: -274.256 kcal/mol + -delta_H 13.6231 kJ/mol # Calculated enthalpy of reaction CoWO4 +# Enthalpy of formation: -274.256 kcal/mol -analytic -3.7731e+1 -2.4719e-2 -1.0347e+3 1.4663e+1 -1.7558e+1 # -Range: 0-200 Coesite SiO2 = SiO2 log_k -3.1893 - -delta_H 28.6144 kJ/mol # Calculated enthalpy of reaction Coesite -# Enthalpy of formation: -216.614 kcal/mol + -delta_H 28.6144 kJ/mol # Calculated enthalpy of reaction Coesite +# Enthalpy of formation: -216.614 kcal/mol -analytic -9.7312e+0 9.1773e-3 4.2143e+3 -7.8065e-1 -7.4905e+5 # -Range: 0-300 Coffinite USiO4 + 4 H+ = SiO2 + U+4 + 2 H2O log_k -8.053 - -delta_H -49.2493 kJ/mol # Calculated enthalpy of reaction Coffinite -# Enthalpy of formation: -1991.33 kJ/mol + -delta_H -49.2493 kJ/mol # Calculated enthalpy of reaction Coffinite +# Enthalpy of formation: -1991.33 kJ/mol -analytic 2.3126e+2 6.2389e-2 -4.6189e+3 -9.7976e+1 -7.8517e+1 # -Range: 0-200 Colemanite Ca2B6O11:5H2O + 4 H+ + 2 H2O = 2 Ca+2 + 6 B(OH)3 log_k 21.5148 - -delta_H 0 # Not possible to calculate enthalpy of reaction Colemanite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Colemanite +# Enthalpy of formation: 0 kcal/mol Cordierite_anhyd Mg2Al4Si5O18 + 16 H+ = 2 Mg+2 + 4 Al+3 + 5 SiO2 + 8 H2O log_k 52.3035 - -delta_H -626.219 kJ/mol # Calculated enthalpy of reaction Cordierite_anhyd -# Enthalpy of formation: -2183.2 kcal/mol + -delta_H -626.219 kJ/mol # Calculated enthalpy of reaction Cordierite_anhyd +# Enthalpy of formation: -2183.2 kcal/mol -analytic 2.6562e+0 -2.3801e-2 3.5192e+4 -1.9911e+1 -1.0894e+6 # -Range: 0-300 Cordierite_hydr Mg2Al4Si5O18:H2O + 16 H+ = 2 Mg+2 + 4 Al+3 + 5 SiO2 + 9 H2O log_k 49.8235 - -delta_H -608.814 kJ/mol # Calculated enthalpy of reaction Cordierite_hydr -# Enthalpy of formation: -2255.68 kcal/mol + -delta_H -608.814 kJ/mol # Calculated enthalpy of reaction Cordierite_hydr +# Enthalpy of formation: -2255.68 kcal/mol -analytic -1.2985e+2 -4.1335e-2 4.1566e+4 2.7892e+1 -1.4819e+6 # -Range: 0-300 Corkite PbFe3(PO4)(SO4)(OH)6 + 7 H+ = HPO4-2 + Pb+2 + SO4-2 + 3 Fe+3 + 6 H2O log_k -9.7951 - -delta_H 0 # Not possible to calculate enthalpy of reaction Corkite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Corkite +# Enthalpy of formation: 0 kcal/mol Corundum Al2O3 + 6 H+ = 2 Al+3 + 3 H2O log_k 18.3121 - -delta_H -258.626 kJ/mol # Calculated enthalpy of reaction Corundum -# Enthalpy of formation: -400.5 kcal/mol + -delta_H -258.626 kJ/mol # Calculated enthalpy of reaction Corundum +# Enthalpy of formation: -400.5 kcal/mol -analytic -1.4278e+2 -7.8519e-2 1.3776e+4 5.5881e+1 2.1501e+2 # -Range: 0-300 Cotunnite PbCl2 = Pb+2 + 2 Cl- log_k -4.8406 - -delta_H 26.1441 kJ/mol # Calculated enthalpy of reaction Cotunnite -# Enthalpy of formation: -359.383 kJ/mol + -delta_H 26.1441 kJ/mol # Calculated enthalpy of reaction Cotunnite +# Enthalpy of formation: -359.383 kJ/mol -analytic 1.9624e+1 -1.9161e-2 -3.4686e+3 -2.8806e+0 -5.8909e+1 # -Range: 0-200 Covellite CuS + H+ = Cu+2 + HS- log_k -22.831 - -delta_H 101.88 kJ/mol # Calculated enthalpy of reaction Covellite -# Enthalpy of formation: -12.5 kcal/mol + -delta_H 101.88 kJ/mol # Calculated enthalpy of reaction Covellite +# Enthalpy of formation: -12.5 kcal/mol -analytic -1.6068e+2 -4.904e-2 -1.4234e+3 6.3536e+1 -2.2164e+1 # -Range: 0-300 Cr Cr + 3 H+ + 0.75 O2 = Cr+3 + 1.5 H2O log_k 98.6784 - -delta_H -658.145 kJ/mol # Calculated enthalpy of reaction Cr -# Enthalpy of formation: 0 kJ/mol + -delta_H -658.145 kJ/mol # Calculated enthalpy of reaction Cr +# Enthalpy of formation: 0 kJ/mol -analytic -2.2488e+1 -5.5886e-3 3.4288e+4 3.1585e+0 5.3503e+2 # -Range: 0-300 CrCl3 CrCl3 = Cr+3 + 3 Cl- log_k 17.9728 - -delta_H -183.227 kJ/mol # Calculated enthalpy of reaction CrCl3 -# Enthalpy of formation: -556.5 kJ/mol + -delta_H -183.227 kJ/mol # Calculated enthalpy of reaction CrCl3 +# Enthalpy of formation: -556.5 kJ/mol -analytic -2.6348e+2 -9.5339e-2 1.4785e+4 1.0517e+2 2.3079e+2 # -Range: 0-300 CrF3 CrF3 = Cr+3 + 3 F- log_k -8.5713 - -delta_H -85.5293 kJ/mol # Calculated enthalpy of reaction CrF3 -# Enthalpy of formation: -277.008 kcal/mol + -delta_H -85.5293 kJ/mol # Calculated enthalpy of reaction CrF3 +# Enthalpy of formation: -277.008 kcal/mol -analytic -3.2175e+2 -1.0279e-1 1.1394e+4 1.2348e+2 1.7789e+2 # -Range: 0-300 CrF4 CrF4 + 2 H2O = 0.5 Cr+2 + 0.5 CrO4-2 + 4 F- + 4 H+ log_k -12.3132 - -delta_H -35.2125 kJ/mol # Calculated enthalpy of reaction CrF4 -# Enthalpy of formation: -298 kcal/mol + -delta_H -35.2125 kJ/mol # Calculated enthalpy of reaction CrF4 +# Enthalpy of formation: -298 kcal/mol -analytic 4.3136e+1 -4.3783e-2 -3.6809e+3 -1.2153e+1 -6.2521e+1 # -Range: 0-200 CrI3 CrI3 = Cr+3 + 3 I- log_k 25.6112 - -delta_H -204.179 kJ/mol # Calculated enthalpy of reaction CrI3 -# Enthalpy of formation: -49 kcal/mol + -delta_H -204.179 kJ/mol # Calculated enthalpy of reaction CrI3 +# Enthalpy of formation: -49 kcal/mol -analytic 4.9232e+0 -2.5164e-2 8.4026e+3 0e+0 0e+0 # -Range: 0-200 CrO2 CrO2 = 0.5 Cr+2 + 0.5 CrO4-2 log_k -19.1332 - -delta_H 85.9812 kJ/mol # Calculated enthalpy of reaction CrO2 -# Enthalpy of formation: -143 kcal/mol + -delta_H 85.9812 kJ/mol # Calculated enthalpy of reaction CrO2 +# Enthalpy of formation: -143 kcal/mol -analytic 2.7763e+0 -7.7698e-3 -5.2893e+3 -7.497e-1 -8.9821e+1 # -Range: 0-200 CrO3 CrO3 + H2O = CrO4-2 + 2 H+ log_k -3.5221 - -delta_H -5.78647 kJ/mol # Calculated enthalpy of reaction CrO3 -# Enthalpy of formation: -140.9 kcal/mol + -delta_H -5.78647 kJ/mol # Calculated enthalpy of reaction CrO3 +# Enthalpy of formation: -140.9 kcal/mol -analytic -1.3262e+2 -6.1411e-2 2.2083e+3 5.6564e+1 3.4497e+1 # -Range: 0-300 CrS CrS + H+ = Cr+2 + HS- log_k -0.6304 - -delta_H -26.15 kJ/mol # Calculated enthalpy of reaction CrS -# Enthalpy of formation: -31.9 kcal/mol + -delta_H -26.15 kJ/mol # Calculated enthalpy of reaction CrS +# Enthalpy of formation: -31.9 kcal/mol -analytic -1.1134e+2 -3.5954e-2 3.8744e+3 4.3815e+1 6.049e+1 # -Range: 0-300 Cristobalite(alpha) SiO2 = SiO2 log_k -3.4488 - -delta_H 29.2043 kJ/mol # Calculated enthalpy of reaction Cristobalite(alpha) -# Enthalpy of formation: -216.755 kcal/mol + -delta_H 29.2043 kJ/mol # Calculated enthalpy of reaction Cristobalite(alpha) +# Enthalpy of formation: -216.755 kcal/mol -analytic -1.1936e+1 9.052e-3 4.3701e+3 -1.1464e-1 -7.6568e+5 # -Range: 0-300 Cristobalite(beta) SiO2 = SiO2 log_k -3.0053 - -delta_H 24.6856 kJ/mol # Calculated enthalpy of reaction Cristobalite(beta) -# Enthalpy of formation: -215.675 kcal/mol + -delta_H 24.6856 kJ/mol # Calculated enthalpy of reaction Cristobalite(beta) +# Enthalpy of formation: -215.675 kcal/mol -analytic -4.7414e+0 9.7567e-3 3.8831e+3 -2.583e+0 -6.9636e+5 # -Range: 0-300 Crocoite PbCrO4 = CrO4-2 + Pb+2 log_k -12.7177 - -delta_H 48.6181 kJ/mol # Calculated enthalpy of reaction Crocoite -# Enthalpy of formation: -222 kcal/mol + -delta_H 48.6181 kJ/mol # Calculated enthalpy of reaction Crocoite +# Enthalpy of formation: -222 kcal/mol -analytic 3.0842e+1 -1.443e-2 -5.0292e+3 -9.0525e+0 -8.5414e+1 # -Range: 0-200 Cronstedtite-7A Fe2Fe2SiO5(OH)4 + 10 H+ = SiO2 + 2 Fe+2 + 2 Fe+3 + 7 H2O log_k 16.2603 - -delta_H -244.266 kJ/mol # Calculated enthalpy of reaction Cronstedtite-7A -# Enthalpy of formation: -697.413 kcal/mol + -delta_H -244.266 kJ/mol # Calculated enthalpy of reaction Cronstedtite-7A +# Enthalpy of formation: -697.413 kcal/mol -analytic -2.3783e+2 -7.1026e-2 1.7752e+4 8.7147e+1 2.7707e+2 # -Range: 0-300 Cs Cs + H+ + 0.25 O2 = 0.5 H2O + Cs+ log_k 72.5987 - -delta_H -397.913 kJ/mol # Calculated enthalpy of reaction Cs -# Enthalpy of formation: 0 kJ/mol + -delta_H -397.913 kJ/mol # Calculated enthalpy of reaction Cs +# Enthalpy of formation: 0 kJ/mol -analytic -1.2875e+1 -7.3845e-3 2.1019e+4 6.9347e+0 3.2799e+2 # -Range: 0-300 Cs2NaAmCl6 Cs2NaAmCl6 = Am+3 + Na+ + 2 Cs+ + 6 Cl- log_k 11.7089 - -delta_H -59.7323 kJ/mol # Calculated enthalpy of reaction Cs2NaAmCl6 -# Enthalpy of formation: -2315.8 kJ/mol + -delta_H -59.7323 kJ/mol # Calculated enthalpy of reaction Cs2NaAmCl6 +# Enthalpy of formation: -2315.8 kJ/mol -analytic 5.1683e+1 -5.034e-2 -2.3205e+3 -6.9536e+0 -3.9422e+1 # -Range: 0-200 Cs2U2O7 Cs2U2O7 + 6 H+ = 2 Cs+ + 2 UO2+2 + 3 H2O log_k 31.0263 - -delta_H -191.57 kJ/mol # Calculated enthalpy of reaction Cs2U2O7 -# Enthalpy of formation: -3220 kJ/mol + -delta_H -191.57 kJ/mol # Calculated enthalpy of reaction Cs2U2O7 +# Enthalpy of formation: -3220 kJ/mol -analytic -5.1436e+1 -7.4096e-3 1.2524e+4 1.7827e+1 -1.2899e+5 # -Range: 0-300 Cs2U4O12 Cs2U4O12 + 8 H+ = 2 Cs+ + 2 UO2+ + 2 UO2+2 + 4 H2O log_k 18.946 - -delta_H -175.862 kJ/mol # Calculated enthalpy of reaction Cs2U4O12 -# Enthalpy of formation: -5571.8 kJ/mol + -delta_H -175.862 kJ/mol # Calculated enthalpy of reaction Cs2U4O12 +# Enthalpy of formation: -5571.8 kJ/mol -analytic -3.3411e+1 3.6196e-3 1.0508e+4 6.5823e+0 -2.3403e+4 # -Range: 0-300 Cs2UO4 Cs2UO4 + 4 H+ = UO2+2 + 2 Cs+ + 2 H2O log_k 35.893 - -delta_H -178.731 kJ/mol # Calculated enthalpy of reaction Cs2UO4 -# Enthalpy of formation: -1928 kJ/mol + -delta_H -178.731 kJ/mol # Calculated enthalpy of reaction Cs2UO4 +# Enthalpy of formation: -1928 kJ/mol -analytic -3.095e+1 -3.565e-3 1.069e+4 1.2949e+1 1.6682e+2 # -Range: 0-300 Cu Cu + 2 H+ + 0.5 O2 = Cu+2 + H2O log_k 31.5118 - -delta_H -214.083 kJ/mol # Calculated enthalpy of reaction Cu -# Enthalpy of formation: 0 kcal/mol + -delta_H -214.083 kJ/mol # Calculated enthalpy of reaction Cu +# Enthalpy of formation: 0 kcal/mol -analytic -7.0719e+1 -2.03e-2 1.2802e+4 2.6401e+1 1.9979e+2 # -Range: 0-300 Cu3(PO4)2 Cu3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 Cu+2 log_k -12.2247 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cu3(PO4)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cu3(PO4)2 +# Enthalpy of formation: 0 kcal/mol Cu3(PO4)2:3H2O Cu3(PO4)2:3H2O + 2 H+ = 2 HPO4-2 + 3 Cu+2 + 3 H2O log_k -10.4763 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cu3(PO4)2:3H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cu3(PO4)2:3H2O +# Enthalpy of formation: 0 kcal/mol CuCl2 CuCl2 = Cu+2 + 2 Cl- log_k 3.7308 - -delta_H -48.5965 kJ/mol # Calculated enthalpy of reaction CuCl2 -# Enthalpy of formation: -219.874 kJ/mol + -delta_H -48.5965 kJ/mol # Calculated enthalpy of reaction CuCl2 +# Enthalpy of formation: -219.874 kJ/mol -analytic -1.7803e+1 -2.4432e-2 1.5729e+3 9.5104e+0 2.6716e+1 # -Range: 0-200 CuCr2O4 CuCr2O4 + 8 H+ = Cu+2 + 2 Cr+3 + 4 H2O log_k 16.2174 - -delta_H -268.768 kJ/mol # Calculated enthalpy of reaction CuCr2O4 -# Enthalpy of formation: -307.331 kcal/mol + -delta_H -268.768 kJ/mol # Calculated enthalpy of reaction CuCr2O4 +# Enthalpy of formation: -307.331 kcal/mol -analytic -1.8199e+2 -1.0254e-2 2.0123e+4 5.4062e+1 3.4178e+2 # -Range: 0-200 CuF CuF = Cu+ + F- log_k 7.08 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuF -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuF +# Enthalpy of formation: 0 kcal/mol CuF2 CuF2 = Cu+2 + 2 F- log_k -0.62 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuF2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuF2 +# Enthalpy of formation: 0 kcal/mol CuF2:2H2O CuF2:2H2O = Cu+2 + 2 F- + 2 H2O log_k -4.55 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuF2:2H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuF2:2H2O +# Enthalpy of formation: 0 kcal/mol CuSeO3 CuSeO3 = Cu+2 + SeO3-2 log_k -7.6767 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuSeO3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuSeO3 +# Enthalpy of formation: 0 kcal/mol Cuprite Cu2O + 2 H+ = H2O + 2 Cu+ log_k -1.9031 - -delta_H 28.355 kJ/mol # Calculated enthalpy of reaction Cuprite -# Enthalpy of formation: -40.83 kcal/mol + -delta_H 28.355 kJ/mol # Calculated enthalpy of reaction Cuprite +# Enthalpy of formation: -40.83 kcal/mol -analytic -8.624e+1 -1.1445e-2 1.7851e+3 3.3041e+1 2.788e+1 # -Range: 0-300 Daphnite-14A Fe5AlAlSi3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Fe+2 + 12 H2O log_k 52.2821 - -delta_H -517.561 kJ/mol # Calculated enthalpy of reaction Daphnite-14A -# Enthalpy of formation: -1693.04 kcal/mol + -delta_H -517.561 kJ/mol # Calculated enthalpy of reaction Daphnite-14A +# Enthalpy of formation: -1693.04 kcal/mol -analytic -1.5261e+2 -6.1392e-2 2.8283e+4 5.1788e+1 4.4137e+2 # -Range: 0-300 Daphnite-7A Fe5AlAlSi3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Fe+2 + 12 H2O log_k 55.6554 - -delta_H -532.326 kJ/mol # Calculated enthalpy of reaction Daphnite-7A -# Enthalpy of formation: -1689.51 kcal/mol + -delta_H -532.326 kJ/mol # Calculated enthalpy of reaction Daphnite-7A +# Enthalpy of formation: -1689.51 kcal/mol -analytic -1.643e+2 -6.316e-2 2.9499e+4 5.6442e+1 4.6035e+2 # -Range: 0-300 Dawsonite NaAlCO3(OH)2 + 3 H+ = Al+3 + HCO3- + Na+ + 2 H2O log_k 4.3464 - -delta_H -76.3549 kJ/mol # Calculated enthalpy of reaction Dawsonite -# Enthalpy of formation: -1963.96 kJ/mol + -delta_H -76.3549 kJ/mol # Calculated enthalpy of reaction Dawsonite +# Enthalpy of formation: -1963.96 kJ/mol -analytic -1.1393e+2 -2.3487e-2 7.1758e+3 4.09e+1 1.2189e+2 # -Range: 0-200 Delafossite CuFeO2 + 4 H+ = Cu+ + Fe+3 + 2 H2O log_k -6.4172 - -delta_H -18.6104 kJ/mol # Calculated enthalpy of reaction Delafossite -# Enthalpy of formation: -126.904 kcal/mol + -delta_H -18.6104 kJ/mol # Calculated enthalpy of reaction Delafossite +# Enthalpy of formation: -126.904 kcal/mol -analytic -1.5275e+2 -3.5478e-2 5.1404e+3 5.6437e+1 8.0255e+1 # -Range: 0-300 Diaspore AlHO2 + 3 H+ = Al+3 + 2 H2O log_k 7.1603 - -delta_H -110.42 kJ/mol # Calculated enthalpy of reaction Diaspore -# Enthalpy of formation: -238.924 kcal/mol + -delta_H -110.42 kJ/mol # Calculated enthalpy of reaction Diaspore +# Enthalpy of formation: -238.924 kcal/mol -analytic -1.2618e+2 -3.1671e-2 8.8737e+3 4.5669e+1 1.385e+2 # -Range: 0-300 Dicalcium_silicate Ca2SiO4 + 4 H+ = SiO2 + 2 Ca+2 + 2 H2O log_k 37.1725 - -delta_H -217.642 kJ/mol # Calculated enthalpy of reaction Dicalcium_silicate -# Enthalpy of formation: -2317.9 kJ/mol + -delta_H -217.642 kJ/mol # Calculated enthalpy of reaction Dicalcium_silicate +# Enthalpy of formation: -2317.9 kJ/mol -analytic -5.9723e+1 -1.3682e-2 1.5461e+4 2.1547e+1 -3.7732e+5 # -Range: 0-300 Diopside CaMgSi2O6 + 4 H+ = Ca+2 + Mg+2 + 2 H2O + 2 SiO2 log_k 20.9643 - -delta_H -133.775 kJ/mol # Calculated enthalpy of reaction Diopside -# Enthalpy of formation: -765.378 kcal/mol + -delta_H -133.775 kJ/mol # Calculated enthalpy of reaction Diopside +# Enthalpy of formation: -765.378 kcal/mol -analytic 7.124e+1 1.5514e-2 8.1437e+3 -3.0672e+1 -5.688e+5 # -Range: 0-300 Dioptase CuSiO2(OH)2 + 2 H+ = Cu+2 + SiO2 + 2 H2O log_k 6.0773 - -delta_H -25.2205 kJ/mol # Calculated enthalpy of reaction Dioptase -# Enthalpy of formation: -1358.47 kJ/mol + -delta_H -25.2205 kJ/mol # Calculated enthalpy of reaction Dioptase +# Enthalpy of formation: -1358.47 kJ/mol -analytic 2.3913e+2 6.2669e-2 -5.403e+3 -9.442e+1 -9.1834e+1 # -Range: 0-200 Dolomite CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- log_k 2.5135 - -delta_H -59.9651 kJ/mol # Calculated enthalpy of reaction Dolomite -# Enthalpy of formation: -556.631 kcal/mol + -delta_H -59.9651 kJ/mol # Calculated enthalpy of reaction Dolomite +# Enthalpy of formation: -556.631 kcal/mol -analytic -3.1782e+2 -9.8179e-2 1.0845e+4 1.2657e+2 1.6932e+2 # -Range: 0-300 Dolomite-dis CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- log_k 4.0579 - -delta_H -72.2117 kJ/mol # Calculated enthalpy of reaction Dolomite-dis -# Enthalpy of formation: -553.704 kcal/mol + -delta_H -72.2117 kJ/mol # Calculated enthalpy of reaction Dolomite-dis +# Enthalpy of formation: -553.704 kcal/mol -analytic -3.1706e+2 -9.7886e-2 1.1442e+4 1.2604e+2 1.7864e+2 # -Range: 0-300 Dolomite-ord CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- log_k 2.5135 - -delta_H -59.9651 kJ/mol # Calculated enthalpy of reaction Dolomite-ord -# Enthalpy of formation: -556.631 kcal/mol + -delta_H -59.9651 kJ/mol # Calculated enthalpy of reaction Dolomite-ord +# Enthalpy of formation: -556.631 kcal/mol -analytic -3.1654e+2 -9.7902e-2 1.0805e+4 1.2607e+2 1.687e+2 # -Range: 0-300 Downeyite SeO2 + H2O = SeO3-2 + 2 H+ log_k -6.7503 - -delta_H 1.74473 kJ/mol # Calculated enthalpy of reaction Downeyite -# Enthalpy of formation: -53.8 kcal/mol + -delta_H 1.74473 kJ/mol # Calculated enthalpy of reaction Downeyite +# Enthalpy of formation: -53.8 kcal/mol -analytic -1.2868e+2 -6.1183e-2 1.5802e+3 5.449e+1 2.4696e+1 # -Range: 0-300 Dy Dy + 3 H+ + 0.75 O2 = Dy+3 + 1.5 H2O log_k 180.8306 - -delta_H -1116.29 kJ/mol # Calculated enthalpy of reaction Dy -# Enthalpy of formation: 0 kJ/mol + -delta_H -1116.29 kJ/mol # Calculated enthalpy of reaction Dy +# Enthalpy of formation: 0 kJ/mol -analytic -6.8317e+1 -2.8321e-2 5.8927e+4 2.4211e+1 9.1953e+2 # -Range: 0-300 Dy(OH)3 Dy(OH)3 + 3 H+ = Dy+3 + 3 H2O log_k 15.8852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)3 +# Enthalpy of formation: 0 kcal/mol Dy(OH)3(am) Dy(OH)3 + 3 H+ = Dy+3 + 3 H2O log_k 17.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)3(am) +# Enthalpy of formation: 0 kcal/mol Dy2(CO3)3 Dy2(CO3)3 + 3 H+ = 2 Dy+3 + 3 HCO3- log_k -3.0136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy2(CO3)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy2(CO3)3 +# Enthalpy of formation: 0 kcal/mol Dy2O3 Dy2O3 + 6 H+ = 2 Dy+3 + 3 H2O log_k 47 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy2O3 +# Enthalpy of formation: 0 kcal/mol DyF3:.5H2O DyF3:.5H2O = 0.5 H2O + Dy+3 + 3 F- log_k -16.5 - -delta_H 0 # Not possible to calculate enthalpy of reaction DyF3:.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction DyF3:.5H2O +# Enthalpy of formation: 0 kcal/mol DyPO4:10H2O DyPO4:10H2O + H+ = Dy+3 + HPO4-2 + 10 H2O log_k -11.9782 - -delta_H 0 # Not possible to calculate enthalpy of reaction DyPO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction DyPO4:10H2O +# Enthalpy of formation: 0 kcal/mol Enstatite MgSiO3 + 2 H+ = H2O + Mg+2 + SiO2 log_k 11.3269 - -delta_H -82.7302 kJ/mol # Calculated enthalpy of reaction Enstatite -# Enthalpy of formation: -369.686 kcal/mol + -delta_H -82.7302 kJ/mol # Calculated enthalpy of reaction Enstatite +# Enthalpy of formation: -369.686 kcal/mol -analytic -4.9278e+1 -3.2832e-3 9.5205e+3 1.4437e+1 -5.4324e+5 # -Range: 0-300 Epidote Ca2FeAl2Si3O12OH + 13 H+ = Fe+3 + 2 Al+3 + 2 Ca+2 + 3 SiO2 + 7 H2O log_k 32.9296 - -delta_H -386.451 kJ/mol # Calculated enthalpy of reaction Epidote -# Enthalpy of formation: -1543.99 kcal/mol + -delta_H -386.451 kJ/mol # Calculated enthalpy of reaction Epidote +# Enthalpy of formation: -1543.99 kcal/mol -analytic -2.6187e+1 -3.6436e-2 1.9351e+4 3.3671e+0 -3.0319e+5 # -Range: 0-300 Epidote-ord FeCa2Al2(OH)(SiO4)3 + 13 H+ = Fe+3 + 2 Al+3 + 2 Ca+2 + 3 SiO2 + 7 H2O log_k 32.9296 - -delta_H -386.351 kJ/mol # Calculated enthalpy of reaction Epidote-ord -# Enthalpy of formation: -1544.02 kcal/mol + -delta_H -386.351 kJ/mol # Calculated enthalpy of reaction Epidote-ord +# Enthalpy of formation: -1544.02 kcal/mol -analytic 1.9379e+1 -3.287e-2 1.5692e+4 -1.1901e+1 2.4485e+2 # -Range: 0-300 Epsomite MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O log_k -1.9623 - -delta_H 0 # Not possible to calculate enthalpy of reaction Epsomite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Epsomite +# Enthalpy of formation: 0 kcal/mol Er Er + 3 H+ + 0.75 O2 = Er+3 + 1.5 H2O log_k 181.7102 - -delta_H -1124.66 kJ/mol # Calculated enthalpy of reaction Er -# Enthalpy of formation: 0 kJ/mol + -delta_H -1124.66 kJ/mol # Calculated enthalpy of reaction Er +# Enthalpy of formation: 0 kJ/mol -analytic -1.4459e+2 -3.8221e-2 6.4073e+4 5.1047e+1 -3.1503e+5 # -Range: 0-300 Er(OH)3 Er(OH)3 + 3 H+ = Er+3 + 3 H2O log_k 14.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)3 +# Enthalpy of formation: 0 kcal/mol Er(OH)3(am) Er(OH)3 + 3 H+ = Er+3 + 3 H2O log_k 18.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)3(am) +# Enthalpy of formation: 0 kcal/mol Er2(CO3)3 Er2(CO3)3 + 3 H+ = 2 Er+3 + 3 HCO3- log_k -2.6136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er2(CO3)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Er2(CO3)3 +# Enthalpy of formation: 0 kcal/mol Er2O3 Er2O3 + 6 H+ = 2 Er+3 + 3 H2O log_k 42.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Er2O3 +# Enthalpy of formation: 0 kcal/mol ErF3:.5H2O ErF3:.5H2O = 0.5 H2O + Er+3 + 3 F- log_k -16.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction ErF3:.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ErF3:.5H2O +# Enthalpy of formation: 0 kcal/mol ErPO4:10H2O ErPO4:10H2O + H+ = Er+3 + HPO4-2 + 10 H2O log_k -11.8782 - -delta_H 0 # Not possible to calculate enthalpy of reaction ErPO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ErPO4:10H2O +# Enthalpy of formation: 0 kcal/mol Erythrite Co3(AsO4)2:8H2O + 4 H+ = 2 H2AsO4- + 3 Co+2 + 8 H2O log_k 6.393 - -delta_H 0 # Not possible to calculate enthalpy of reaction Erythrite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Erythrite +# Enthalpy of formation: 0 kcal/mol Eskolaite Cr2O3 + 2 H2O + 1.5 O2 = 2 CrO4-2 + 4 H+ log_k -9.1306 - -delta_H -32.6877 kJ/mol # Calculated enthalpy of reaction Eskolaite -# Enthalpy of formation: -1139.74 kJ/mol + -delta_H -32.6877 kJ/mol # Calculated enthalpy of reaction Eskolaite +# Enthalpy of formation: -1139.74 kJ/mol -analytic -2.0411e+2 -1.2809e-1 2.2197e+3 9.1186e+1 3.4697e+1 # -Range: 0-300 Ettringite Ca6Al2(SO4)3(OH)12:26H2O + 12 H+ = 2 Al+3 + 3 SO4-2 + 6 Ca+2 + 38 H2O log_k 62.5362 - -delta_H -382.451 kJ/mol # Calculated enthalpy of reaction Ettringite -# Enthalpy of formation: -4193 kcal/mol + -delta_H -382.451 kJ/mol # Calculated enthalpy of reaction Ettringite +# Enthalpy of formation: -4193 kcal/mol -analytic -1.0576e+3 -1.1585e-1 5.958e+4 3.8585e+2 1.0121e+3 # -Range: 0-200 Eu Eu + 3 H+ + 0.75 O2 = Eu+3 + 1.5 H2O log_k 165.1443 - -delta_H -1025.08 kJ/mol # Calculated enthalpy of reaction Eu -# Enthalpy of formation: 0 kJ/mol + -delta_H -1025.08 kJ/mol # Calculated enthalpy of reaction Eu +# Enthalpy of formation: 0 kJ/mol -analytic -6.5749e+1 -2.8921e-2 5.4018e+4 2.3561e+1 8.4292e+2 # -Range: 0-300 Eu(IO3)3:2H2O Eu(IO3)3:2H2O = Eu+3 + 2 H2O + 3 IO3- log_k -11.6999 - -delta_H 20.8847 kJ/mol # Calculated enthalpy of reaction Eu(IO3)3:2H2O -# Enthalpy of formation: -1861.99 kJ/mol + -delta_H 20.8847 kJ/mol # Calculated enthalpy of reaction Eu(IO3)3:2H2O +# Enthalpy of formation: -1861.99 kJ/mol -analytic -3.4616e+1 -1.9914e-2 -1.1966e+3 1.3276e+1 -2.0308e+1 # -Range: 0-200 Eu(NO3)3:6H2O Eu(NO3)3:6H2O = Eu+3 + 3 NO3- + 6 H2O log_k 1.3082 - -delta_H 15.2254 kJ/mol # Calculated enthalpy of reaction Eu(NO3)3:6H2O -# Enthalpy of formation: -2956.11 kJ/mol + -delta_H 15.2254 kJ/mol # Calculated enthalpy of reaction Eu(NO3)3:6H2O +# Enthalpy of formation: -2956.11 kJ/mol -analytic -1.3205e+2 -2.0427e-2 3.9623e+3 5.0976e+1 6.7332e+1 # -Range: 0-200 Eu(OH)2.5Cl.5 Eu(OH)2.5Cl.5 + 2.5 H+ = 0.5 Cl- + Eu+3 + 2.5 H2O log_k 12.5546 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2.5Cl.5 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2.5Cl.5 +# Enthalpy of formation: 0 kcal/mol Eu(OH)2Cl Eu(OH)2Cl + 2 H+ = Cl- + Eu+3 + 2 H2O log_k 8.7974 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2Cl -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2Cl +# Enthalpy of formation: 0 kcal/mol Eu(OH)3 Eu(OH)3 + 3 H+ = Eu+3 + 3 H2O log_k 15.3482 - -delta_H -126.897 kJ/mol # Calculated enthalpy of reaction Eu(OH)3 -# Enthalpy of formation: -1336.04 kJ/mol + -delta_H -126.897 kJ/mol # Calculated enthalpy of reaction Eu(OH)3 +# Enthalpy of formation: -1336.04 kJ/mol -analytic -6.3077e+1 -6.1421e-3 8.7323e+3 2.0595e+1 1.4831e+2 # -Range: 0-200 Eu2(CO3)3:3H2O Eu2(CO3)3:3H2O + 3 H+ = 2 Eu+3 + 3 H2O + 3 HCO3- log_k -5.8707 - -delta_H -137.512 kJ/mol # Calculated enthalpy of reaction Eu2(CO3)3:3H2O -# Enthalpy of formation: -4000.65 kJ/mol + -delta_H -137.512 kJ/mol # Calculated enthalpy of reaction Eu2(CO3)3:3H2O +# Enthalpy of formation: -4000.65 kJ/mol -analytic -1.4134e+2 -4.024e-2 9.5883e+3 4.6591e+1 1.6287e+2 # -Range: 0-200 Eu2(SO4)3:8H2O Eu2(SO4)3:8H2O = 2 Eu+3 + 3 SO4-2 + 8 H2O log_k -10.8524 - -delta_H -86.59 kJ/mol # Calculated enthalpy of reaction Eu2(SO4)3:8H2O -# Enthalpy of formation: -6139.77 kJ/mol + -delta_H -86.59 kJ/mol # Calculated enthalpy of reaction Eu2(SO4)3:8H2O +# Enthalpy of formation: -6139.77 kJ/mol -analytic -5.6582e+1 -3.8846e-2 3.3821e+3 1.8561e+1 5.7452e+1 # -Range: 0-200 Eu2O3(cubic) Eu2O3 + 6 H+ = 2 Eu+3 + 3 H2O log_k 51.7818 - -delta_H -406.403 kJ/mol # Calculated enthalpy of reaction Eu2O3(cubic) -# Enthalpy of formation: -1661.96 kJ/mol + -delta_H -406.403 kJ/mol # Calculated enthalpy of reaction Eu2O3(cubic) +# Enthalpy of formation: -1661.96 kJ/mol -analytic -5.3469e+1 -1.2554e-2 2.1925e+4 1.4324e+1 3.7233e+2 # -Range: 0-200 Eu2O3(monoclinic) Eu2O3 + 6 H+ = 2 Eu+3 + 3 H2O log_k 53.3936 - -delta_H -417.481 kJ/mol # Calculated enthalpy of reaction Eu2O3(monoclinic) -# Enthalpy of formation: -1650.88 kJ/mol + -delta_H -417.481 kJ/mol # Calculated enthalpy of reaction Eu2O3(monoclinic) +# Enthalpy of formation: -1650.88 kJ/mol -analytic -5.4022e+1 -1.2627e-2 2.2508e+4 1.4416e+1 3.8224e+2 # -Range: 0-200 Eu3O4 Eu3O4 + 8 H+ = Eu+2 + 2 Eu+3 + 4 H2O log_k 87.0369 - -delta_H -611.249 kJ/mol # Calculated enthalpy of reaction Eu3O4 -# Enthalpy of formation: -2270.56 kJ/mol + -delta_H -611.249 kJ/mol # Calculated enthalpy of reaction Eu3O4 +# Enthalpy of formation: -2270.56 kJ/mol -analytic -1.1829e+2 -2.0354e-2 3.4981e+4 3.8007e+1 5.9407e+2 # -Range: 0-200 EuBr3 EuBr3 = Eu+3 + 3 Br- log_k 29.8934 - -delta_H -217.166 kJ/mol # Calculated enthalpy of reaction EuBr3 -# Enthalpy of formation: -752.769 kJ/mol + -delta_H -217.166 kJ/mol # Calculated enthalpy of reaction EuBr3 +# Enthalpy of formation: -752.769 kJ/mol -analytic 6.0207e+1 -2.5234e-2 6.6823e+3 -1.8276e+1 1.1345e+2 # -Range: 0-200 EuCl2 EuCl2 = Eu+2 + 2 Cl- log_k 5.923 - -delta_H -39.2617 kJ/mol # Calculated enthalpy of reaction EuCl2 -# Enthalpy of formation: -822.5 kJ/mol + -delta_H -39.2617 kJ/mol # Calculated enthalpy of reaction EuCl2 +# Enthalpy of formation: -822.5 kJ/mol -analytic -2.5741e+1 -2.4956e-2 1.5713e+3 1.367e+1 2.6691e+1 # -Range: 0-200 EuCl3 EuCl3 = Eu+3 + 3 Cl- log_k 19.7149 - -delta_H -170.861 kJ/mol # Calculated enthalpy of reaction EuCl3 -# Enthalpy of formation: -935.803 kJ/mol + -delta_H -170.861 kJ/mol # Calculated enthalpy of reaction EuCl3 +# Enthalpy of formation: -935.803 kJ/mol -analytic 3.2865e+1 -3.1877e-2 4.9792e+3 -8.2294e+0 8.4542e+1 # -Range: 0-200 EuCl3:6H2O EuCl3:6H2O = Eu+3 + 3 Cl- + 6 H2O log_k 4.909 - -delta_H -40.0288 kJ/mol # Calculated enthalpy of reaction EuCl3:6H2O -# Enthalpy of formation: -2781.66 kJ/mol + -delta_H -40.0288 kJ/mol # Calculated enthalpy of reaction EuCl3:6H2O +# Enthalpy of formation: -2781.66 kJ/mol -analytic -1.0987e+2 -2.9851e-2 4.9991e+3 4.3198e+1 8.493e+1 # -Range: 0-200 EuF3:0.5H2O EuF3:0.5H2O = 0.5 H2O + Eu+3 + 3 F- log_k -16.4847 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuF3:0.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction EuF3:0.5H2O +# Enthalpy of formation: 0 kcal/mol EuO EuO + 2 H+ = Eu+2 + H2O log_k 37.48 - -delta_H -221.196 kJ/mol # Calculated enthalpy of reaction EuO -# Enthalpy of formation: -592.245 kJ/mol + -delta_H -221.196 kJ/mol # Calculated enthalpy of reaction EuO +# Enthalpy of formation: -592.245 kJ/mol -analytic -8.9517e+1 -1.7523e-2 1.4385e+4 3.3933e+1 2.2449e+2 # -Range: 0-300 EuOCl EuOCl + 2 H+ = Cl- + Eu+3 + H2O log_k 15.6683 - -delta_H -147.173 kJ/mol # Calculated enthalpy of reaction EuOCl -# Enthalpy of formation: -911.17 kJ/mol + -delta_H -147.173 kJ/mol # Calculated enthalpy of reaction EuOCl +# Enthalpy of formation: -911.17 kJ/mol -analytic -7.7446e+0 -1.496e-2 6.6242e+3 2.2813e+0 1.1249e+2 # -Range: 0-200 EuOHCO3 EuOHCO3 + 2 H+ = Eu+3 + H2O + HCO3- log_k 2.5239 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuOHCO3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction EuOHCO3 +# Enthalpy of formation: 0 kcal/mol EuPO4:10H2O EuPO4:10H2O + H+ = Eu+3 + HPO4-2 + 10 H2O log_k -12.0782 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuPO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction EuPO4:10H2O +# Enthalpy of formation: 0 kcal/mol EuS EuS + H+ = Eu+2 + HS- log_k 14.9068 - -delta_H -96.4088 kJ/mol # Calculated enthalpy of reaction EuS -# Enthalpy of formation: -447.302 kJ/mol + -delta_H -96.4088 kJ/mol # Calculated enthalpy of reaction EuS +# Enthalpy of formation: -447.302 kJ/mol -analytic -4.1026e+1 -1.5582e-2 5.7842e+3 1.6639e+1 9.8238e+1 # -Range: 0-200 EuSO4 EuSO4 = Eu+2 + SO4-2 log_k -8.8449 - -delta_H 33.873 kJ/mol # Calculated enthalpy of reaction EuSO4 -# Enthalpy of formation: -1471.08 kJ/mol + -delta_H 33.873 kJ/mol # Calculated enthalpy of reaction EuSO4 +# Enthalpy of formation: -1471.08 kJ/mol -analytic 3.0262e-1 -1.7571e-2 -3.0392e+3 2.5356e+0 -5.161e+1 # -Range: 0-200 Eucryptite LiAlSiO4 + 4 H+ = Al+3 + Li+ + SiO2 + 2 H2O log_k 13.6106 - -delta_H -141.818 kJ/mol # Calculated enthalpy of reaction Eucryptite -# Enthalpy of formation: -2124.41 kJ/mol + -delta_H -141.818 kJ/mol # Calculated enthalpy of reaction Eucryptite +# Enthalpy of formation: -2124.41 kJ/mol -analytic -2.2213e+0 -8.2498e-3 6.4838e+3 -1.4183e+0 1.0117e+2 # -Range: 0-300 Fayalite Fe2SiO4 + 4 H+ = SiO2 + 2 Fe+2 + 2 H2O log_k 19.1113 - -delta_H -152.256 kJ/mol # Calculated enthalpy of reaction Fayalite -# Enthalpy of formation: -354.119 kcal/mol + -delta_H -152.256 kJ/mol # Calculated enthalpy of reaction Fayalite +# Enthalpy of formation: -354.119 kcal/mol -analytic 1.3853e+1 -3.5501e-3 7.1496e+3 -6.871e+0 -6.331e+4 # -Range: 0-300 Fe Fe + 2 H+ + 0.5 O2 = Fe+2 + H2O log_k 59.0325 - -delta_H -372.029 kJ/mol # Calculated enthalpy of reaction Fe -# Enthalpy of formation: 0 kcal/mol + -delta_H -372.029 kJ/mol # Calculated enthalpy of reaction Fe +# Enthalpy of formation: 0 kcal/mol -analytic -6.2882e+1 -2.0379e-2 2.069e+4 2.3673e+1 3.2287e+2 # -Range: 0-300 Fe(OH)2 Fe(OH)2 + 2 H+ = Fe+2 + 2 H2O log_k 13.9045 - -delta_H -95.4089 kJ/mol # Calculated enthalpy of reaction Fe(OH)2 -# Enthalpy of formation: -568.525 kJ/mol + -delta_H -95.4089 kJ/mol # Calculated enthalpy of reaction Fe(OH)2 +# Enthalpy of formation: -568.525 kJ/mol -analytic -8.6666e+1 -1.844e-2 7.5723e+3 3.2597e+1 1.1818e+2 # -Range: 0-300 Fe(OH)3 Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O log_k 5.6556 - -delta_H -84.0824 kJ/mol # Calculated enthalpy of reaction Fe(OH)3 -# Enthalpy of formation: -823.013 kJ/mol + -delta_H -84.0824 kJ/mol # Calculated enthalpy of reaction Fe(OH)3 +# Enthalpy of formation: -823.013 kJ/mol -analytic -1.3316e+2 -3.1284e-2 7.9753e+3 4.9052e+1 1.2449e+2 # -Range: 0-300 Fe2(SO4)3 Fe2(SO4)3 = 2 Fe+3 + 3 SO4-2 log_k 3.2058 - -delta_H -250.806 kJ/mol # Calculated enthalpy of reaction Fe2(SO4)3 -# Enthalpy of formation: -2577.16 kJ/mol + -delta_H -250.806 kJ/mol # Calculated enthalpy of reaction Fe2(SO4)3 +# Enthalpy of formation: -2577.16 kJ/mol -analytic -5.8649e+2 -2.3718e-1 2.2736e+4 2.3601e+2 3.5495e+2 # -Range: 0-300 FeF2 FeF2 = Fe+2 + 2 F- log_k -2.3817 - -delta_H -51.6924 kJ/mol # Calculated enthalpy of reaction FeF2 -# Enthalpy of formation: -711.26 kJ/mol + -delta_H -51.6924 kJ/mol # Calculated enthalpy of reaction FeF2 +# Enthalpy of formation: -711.26 kJ/mol -analytic -2.5687e+2 -8.4091e-2 8.4262e+3 1.0154e+2 1.3156e+2 # -Range: 0-300 FeF3 FeF3 = Fe+3 + 3 F- log_k -19.2388 - -delta_H -13.8072 kJ/mol # Calculated enthalpy of reaction FeF3 -# Enthalpy of formation: -249 kcal/mol + -delta_H -13.8072 kJ/mol # Calculated enthalpy of reaction FeF3 +# Enthalpy of formation: -249 kcal/mol -analytic -1.6215e+1 -3.745e-2 -1.8926e+3 5.8485e+0 -3.2134e+1 # -Range: 0-200 FeO FeO + 2 H+ = Fe+2 + H2O log_k 13.5318 - -delta_H -106.052 kJ/mol # Calculated enthalpy of reaction FeO -# Enthalpy of formation: -65.02 kcal/mol + -delta_H -106.052 kJ/mol # Calculated enthalpy of reaction FeO +# Enthalpy of formation: -65.02 kcal/mol -analytic -7.875e+1 -1.8268e-2 7.6852e+3 2.9074e+1 1.1994e+2 # -Range: 0-300 FeSO4 FeSO4 = Fe+2 + SO4-2 log_k 2.6565 - -delta_H -73.0878 kJ/mol # Calculated enthalpy of reaction FeSO4 -# Enthalpy of formation: -928.771 kJ/mol + -delta_H -73.0878 kJ/mol # Calculated enthalpy of reaction FeSO4 +# Enthalpy of formation: -928.771 kJ/mol -analytic -2.0794e+2 -7.6891e-2 7.8705e+3 8.3685e+1 1.2287e+2 # -Range: 0-300 FeV2O4 FeV2O4 + 8 H+ = Fe+2 + 2 V+3 + 4 H2O log_k 280.5528 - -delta_H -1733.42 kJ/mol # Calculated enthalpy of reaction FeV2O4 -# Enthalpy of formation: -5.8 kcal/mol + -delta_H -1733.42 kJ/mol # Calculated enthalpy of reaction FeV2O4 +# Enthalpy of formation: -5.8 kcal/mol -analytic -1.6736e+2 -1.9398e-2 9.5736e+4 5.3582e+1 1.6258e+3 # -Range: 0-200 Ferrite-Ca CaFe2O4 + 8 H+ = Ca+2 + 2 Fe+3 + 4 H2O log_k 21.5217 - -delta_H -264.738 kJ/mol # Calculated enthalpy of reaction Ferrite-Ca -# Enthalpy of formation: -363.494 kcal/mol + -delta_H -264.738 kJ/mol # Calculated enthalpy of reaction Ferrite-Ca +# Enthalpy of formation: -363.494 kcal/mol -analytic -2.8472e+2 -7.587e-2 2.0688e+4 1.0485e+2 3.2289e+2 # -Range: 0-300 Ferrite-Cu CuFe2O4 + 8 H+ = Cu+2 + 2 Fe+3 + 4 H2O log_k 10.316 - -delta_H -211.647 kJ/mol # Calculated enthalpy of reaction Ferrite-Cu -# Enthalpy of formation: -965.178 kJ/mol + -delta_H -211.647 kJ/mol # Calculated enthalpy of reaction Ferrite-Cu +# Enthalpy of formation: -965.178 kJ/mol -analytic -3.1271e+2 -7.9976e-2 1.8818e+4 1.1466e+2 2.9374e+2 # -Range: 0-300 Ferrite-Dicalcium Ca2Fe2O5 + 10 H+ = 2 Ca+2 + 2 Fe+3 + 5 H2O log_k 56.8331 - -delta_H -475.261 kJ/mol # Calculated enthalpy of reaction Ferrite-Dicalcium -# Enthalpy of formation: -2139.26 kJ/mol + -delta_H -475.261 kJ/mol # Calculated enthalpy of reaction Ferrite-Dicalcium +# Enthalpy of formation: -2139.26 kJ/mol -analytic -3.6277e+2 -9.5015e-2 3.3898e+4 1.3506e+2 5.2906e+2 # -Range: 0-300 Ferrite-Mg MgFe2O4 + 8 H+ = Mg+2 + 2 Fe+3 + 4 H2O log_k 21.0551 - -delta_H -280.056 kJ/mol # Calculated enthalpy of reaction Ferrite-Mg -# Enthalpy of formation: -1428.42 kJ/mol + -delta_H -280.056 kJ/mol # Calculated enthalpy of reaction Ferrite-Mg +# Enthalpy of formation: -1428.42 kJ/mol -analytic -2.8297e+2 -7.482e-2 2.1333e+4 1.0295e+2 3.3296e+2 # -Range: 0-300 Ferrite-Zn ZnFe2O4 + 8 H+ = Zn+2 + 2 Fe+3 + 4 H2O log_k 11.7342 - -delta_H -226.609 kJ/mol # Calculated enthalpy of reaction Ferrite-Zn -# Enthalpy of formation: -1169.29 kJ/mol + -delta_H -226.609 kJ/mol # Calculated enthalpy of reaction Ferrite-Zn +# Enthalpy of formation: -1169.29 kJ/mol -analytic -2.9809e+2 -7.7263e-2 1.9067e+4 1.0866e+2 2.9761e+2 # -Range: 0-300 Ferroselite FeSe2 + 0.5 H2O = 0.25 O2 + Fe+3 + H+ + 2 Se-2 log_k -80.7998 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ferroselite -# Enthalpy of formation: -25 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ferroselite +# Enthalpy of formation: -25 kcal/mol -analytic -7.2971e+1 -2.4992e-2 -1.6246e+4 2.186e+1 -2.5348e+2 # -Range: 0-300 Ferrosilite FeSiO3 + 2 H+ = Fe+2 + H2O + SiO2 log_k 7.4471 - -delta_H -60.6011 kJ/mol # Calculated enthalpy of reaction Ferrosilite -# Enthalpy of formation: -285.658 kcal/mol + -delta_H -60.6011 kJ/mol # Calculated enthalpy of reaction Ferrosilite +# Enthalpy of formation: -285.658 kcal/mol -analytic 9.0041e+0 3.7917e-3 5.1625e+3 -6.3009e+0 -3.9565e+5 # -Range: 0-300 Fluorapatite Ca5(PO4)3F + 3 H+ = F- + 3 HPO4-2 + 5 Ca+2 log_k -24.994 - -delta_H -90.8915 kJ/mol # Calculated enthalpy of reaction Fluorapatite -# Enthalpy of formation: -6836.12 kJ/mol + -delta_H -90.8915 kJ/mol # Calculated enthalpy of reaction Fluorapatite +# Enthalpy of formation: -6836.12 kJ/mol -analytic -9.3648e+2 -3.2688e-1 2.4398e+4 3.7461e+2 3.8098e+2 # -Range: 0-300 Fluorite CaF2 = Ca+2 + 2 F- log_k -10.037 - -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction Fluorite -# Enthalpy of formation: -293 kcal/mol + -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction Fluorite +# Enthalpy of formation: -293 kcal/mol -analytic -2.5036e+2 -8.4183e-2 4.9525e+3 1.0054e+2 7.7353e+1 # -Range: 0-300 Forsterite Mg2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Mg+2 log_k 27.8626 - -delta_H -205.614 kJ/mol # Calculated enthalpy of reaction Forsterite -# Enthalpy of formation: -520 kcal/mol + -delta_H -205.614 kJ/mol # Calculated enthalpy of reaction Forsterite +# Enthalpy of formation: -520 kcal/mol -analytic -7.6195e+1 -1.4013e-2 1.4763e+4 2.509e+1 -3.0379e+5 # -Range: 0-300 Foshagite Ca4Si3O9(OH)2:0.5H2O + 8 H+ = 3 SiO2 + 4 Ca+2 + 5.5 H2O log_k 65.921 - -delta_H -359.839 kJ/mol # Calculated enthalpy of reaction Foshagite -# Enthalpy of formation: -1438.27 kcal/mol + -delta_H -359.839 kJ/mol # Calculated enthalpy of reaction Foshagite +# Enthalpy of formation: -1438.27 kcal/mol -analytic 2.9983e+1 5.5272e-3 2.3427e+4 -1.3879e+1 -8.9461e+5 # -Range: 0-300 Frankdicksonite BaF2 = Ba+2 + 2 F- log_k -5.76 - -delta_H 0 # Not possible to calculate enthalpy of reaction Frankdicksonite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Frankdicksonite +# Enthalpy of formation: 0 kcal/mol Freboldite CoSe = Co+2 + Se-2 log_k -24.3358 - -delta_H 0 # Not possible to calculate enthalpy of reaction Freboldite -# Enthalpy of formation: -15.295 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Freboldite +# Enthalpy of formation: -15.295 kcal/mol -analytic -1.3763e+1 -1.6924e-3 -3.6938e+3 9.3574e-1 -6.2723e+1 # -Range: 0-200 Ga Ga + 3 H+ + 0.75 O2 = Ga+3 + 1.5 H2O log_k 92.3567 - -delta_H -631.368 kJ/mol # Calculated enthalpy of reaction Ga -# Enthalpy of formation: 0 kJ/mol + -delta_H -631.368 kJ/mol # Calculated enthalpy of reaction Ga +# Enthalpy of formation: 0 kJ/mol -analytic -1.3027e+2 -3.9539e-2 3.6027e+4 4.628e+1 -8.5461e+4 # -Range: 0-300 Galena PbS + H+ = HS- + Pb+2 log_k -14.8544 - -delta_H 83.1361 kJ/mol # Calculated enthalpy of reaction Galena -# Enthalpy of formation: -23.5 kcal/mol + -delta_H 83.1361 kJ/mol # Calculated enthalpy of reaction Galena +# Enthalpy of formation: -23.5 kcal/mol -analytic -1.2124e+2 -4.3477e-2 -1.6463e+3 5.0454e+1 -2.5654e+1 # -Range: 0-300 Gaylussite CaNa2(CO3)2:5H2O + 2 H+ = Ca+2 + 2 HCO3- + 2 Na+ + 5 H2O log_k 11.1641 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gaylussite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Gaylussite +# Enthalpy of formation: 0 kcal/mol Gd Gd + 3 H+ + 0.75 O2 = Gd+3 + 1.5 H2O log_k 180.7573 - -delta_H -1106.67 kJ/mol # Calculated enthalpy of reaction Gd -# Enthalpy of formation: 0 kJ/mol + -delta_H -1106.67 kJ/mol # Calculated enthalpy of reaction Gd +# Enthalpy of formation: 0 kJ/mol -analytic -3.3949e+2 -6.5698e-2 7.4278e+4 1.2189e+2 -9.7055e+5 # -Range: 0-300 Gd(OH)3 Gd(OH)3 + 3 H+ = Gd+3 + 3 H2O log_k 15.5852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)3 +# Enthalpy of formation: 0 kcal/mol Gd(OH)3(am) Gd(OH)3 + 3 H+ = Gd+3 + 3 H2O log_k 17.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)3(am) +# Enthalpy of formation: 0 kcal/mol Gd2(CO3)3 Gd2(CO3)3 + 3 H+ = 2 Gd+3 + 3 HCO3- log_k -3.7136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd2(CO3)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd2(CO3)3 +# Enthalpy of formation: 0 kcal/mol Gd2O3 Gd2O3 + 6 H+ = 2 Gd+3 + 3 H2O log_k 53.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd2O3 +# Enthalpy of formation: 0 kcal/mol GdF3:.5H2O GdF3:.5H2O = 0.5 H2O + Gd+3 + 3 F- log_k -16.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction GdF3:.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction GdF3:.5H2O +# Enthalpy of formation: 0 kcal/mol GdPO4:10H2O GdPO4:10H2O + H+ = Gd+3 + HPO4-2 + 10 H2O log_k -11.9782 - -delta_H 0 # Not possible to calculate enthalpy of reaction GdPO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction GdPO4:10H2O +# Enthalpy of formation: 0 kcal/mol Gehlenite Ca2Al2SiO7 + 10 H+ = SiO2 + 2 Al+3 + 2 Ca+2 + 5 H2O log_k 56.2997 - -delta_H -489.934 kJ/mol # Calculated enthalpy of reaction Gehlenite -# Enthalpy of formation: -951.225 kcal/mol + -delta_H -489.934 kJ/mol # Calculated enthalpy of reaction Gehlenite +# Enthalpy of formation: -951.225 kcal/mol -analytic -2.1784e+2 -6.72e-2 2.9779e+4 7.8488e+1 4.6473e+2 # -Range: 0-300 Gibbsite Al(OH)3 + 3 H+ = Al+3 + 3 H2O log_k 7.756 - -delta_H -102.788 kJ/mol # Calculated enthalpy of reaction Gibbsite -# Enthalpy of formation: -309.065 kcal/mol + -delta_H -102.788 kJ/mol # Calculated enthalpy of reaction Gibbsite +# Enthalpy of formation: -309.065 kcal/mol -analytic -1.1403e+2 -3.6453e-2 7.7236e+3 4.3134e+1 1.2055e+2 # -Range: 0-300 Gismondine Ca2Al4Si4O16:9H2O + 16 H+ = 2 Ca+2 + 4 Al+3 + 4 SiO2 + 17 H2O log_k 41.717 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gismondine -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Gismondine +# Enthalpy of formation: 0 kcal/mol Glauberite Na2Ca(SO4)2 = Ca+2 + 2 Na+ + 2 SO4-2 log_k -5.469 - -delta_H 0 # Not possible to calculate enthalpy of reaction Glauberite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Glauberite +# Enthalpy of formation: 0 kcal/mol Goethite FeOOH + 3 H+ = Fe+3 + 2 H2O log_k 0.5345 - -delta_H -61.9291 kJ/mol # Calculated enthalpy of reaction Goethite -# Enthalpy of formation: -559.328 kJ/mol + -delta_H -61.9291 kJ/mol # Calculated enthalpy of reaction Goethite +# Enthalpy of formation: -559.328 kJ/mol -analytic -6.0331e+1 -1.0847e-2 4.7759e+3 1.9429e+1 8.1122e+1 # -Range: 0-200 Greenalite Fe3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Fe+2 + 5 H2O log_k 22.6701 - -delta_H -165.297 kJ/mol # Calculated enthalpy of reaction Greenalite -# Enthalpy of formation: -787.778 kcal/mol + -delta_H -165.297 kJ/mol # Calculated enthalpy of reaction Greenalite +# Enthalpy of formation: -787.778 kcal/mol -analytic -1.4187e+1 -3.8377e-3 1.171e+4 1.6442e+0 -4.829e+5 # -Range: 0-300 Grossular Ca3Al2(SiO4)3 + 12 H+ = 2 Al+3 + 3 Ca+2 + 3 SiO2 + 6 H2O log_k 51.9228 - -delta_H -432.006 kJ/mol # Calculated enthalpy of reaction Grossular -# Enthalpy of formation: -1582.74 kcal/mol + -delta_H -432.006 kJ/mol # Calculated enthalpy of reaction Grossular +# Enthalpy of formation: -1582.74 kcal/mol -analytic 2.9389e+1 -2.2478e-2 2.0323e+4 -1.4624e+1 -2.5674e+5 # -Range: 0-300 Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O log_k -4.4823 - -delta_H -1.66746 kJ/mol # Calculated enthalpy of reaction Gypsum -# Enthalpy of formation: -2022.69 kJ/mol + -delta_H -1.66746 kJ/mol # Calculated enthalpy of reaction Gypsum +# Enthalpy of formation: -2022.69 kJ/mol -analytic -2.4417e+2 -8.3329e-2 5.5958e+3 9.9301e+1 8.7389e+1 # -Range: 0-300 Gyrolite Ca2Si3O7(OH)2:1.5H2O + 4 H+ = 2 Ca+2 + 3 SiO2 + 4.5 H2O log_k 22.9099 - -delta_H -82.862 kJ/mol # Calculated enthalpy of reaction Gyrolite -# Enthalpy of formation: -1176.55 kcal/mol + -delta_H -82.862 kJ/mol # Calculated enthalpy of reaction Gyrolite +# Enthalpy of formation: -1176.55 kcal/mol -analytic -2.4416e+1 1.4646e-2 1.6181e+4 2.3723e+0 -1.5369e+6 # -Range: 0-300 HTcO4 HTcO4 = H+ + TcO4- log_k 5.9566 - -delta_H -12.324 kJ/mol # Calculated enthalpy of reaction HTcO4 -# Enthalpy of formation: -703.945 kJ/mol + -delta_H -12.324 kJ/mol # Calculated enthalpy of reaction HTcO4 +# Enthalpy of formation: -703.945 kJ/mol -analytic 3.0005e+1 7.6416e-3 -5.3546e+1 -1.0568e+1 -9.1953e-1 # -Range: 0-200 Haiweeite Ca(UO2)2(Si2O5)3:5H2O + 6 H+ = Ca+2 + 2 UO2+2 + 6 SiO2 + 8 H2O log_k -7.0413 - -delta_H 0 # Not possible to calculate enthalpy of reaction Haiweeite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Haiweeite +# Enthalpy of formation: 0 kcal/mol Halite NaCl = Cl- + Na+ log_k 1.5855 - -delta_H 3.7405 kJ/mol # Calculated enthalpy of reaction Halite -# Enthalpy of formation: -98.26 kcal/mol + -delta_H 3.7405 kJ/mol # Calculated enthalpy of reaction Halite +# Enthalpy of formation: -98.26 kcal/mol -analytic -1.0163e+2 -3.4761e-2 2.2796e+3 4.2802e+1 3.5602e+1 # -Range: 0-300 Hatrurite Ca3SiO5 + 6 H+ = SiO2 + 3 Ca+2 + 3 H2O log_k 73.4056 - -delta_H -434.684 kJ/mol # Calculated enthalpy of reaction Hatrurite -# Enthalpy of formation: -700.234 kcal/mol + -delta_H -434.684 kJ/mol # Calculated enthalpy of reaction Hatrurite +# Enthalpy of formation: -700.234 kcal/mol -analytic -4.5448e+1 -1.9998e-2 2.38e+4 1.8494e+1 -7.3385e+4 # -Range: 0-300 Hausmannite Mn3O4 + 8 H+ = Mn+2 + 2 Mn+3 + 4 H2O log_k 10.1598 - -delta_H -268.121 kJ/mol # Calculated enthalpy of reaction Hausmannite -# Enthalpy of formation: -1387.83 kJ/mol + -delta_H -268.121 kJ/mol # Calculated enthalpy of reaction Hausmannite +# Enthalpy of formation: -1387.83 kJ/mol -analytic -2.06e+2 -2.2214e-2 2.016e+4 6.27e+1 3.1464e+2 # -Range: 0-300 Heazlewoodite Ni3S2 + 4 H+ + 0.5 O2 = H2O + 2 HS- + 3 Ni+2 log_k 28.2477 - -delta_H -270.897 kJ/mol # Calculated enthalpy of reaction Heazlewoodite -# Enthalpy of formation: -203.012 kJ/mol + -delta_H -270.897 kJ/mol # Calculated enthalpy of reaction Heazlewoodite +# Enthalpy of formation: -203.012 kJ/mol -analytic -3.5439e+2 -1.174e-1 2.1811e+4 1.3919e+2 3.4044e+2 # -Range: 0-300 Hedenbergite CaFe(SiO3)2 + 4 H+ = Ca+2 + Fe+2 + 2 H2O + 2 SiO2 log_k 19.606 - -delta_H -124.507 kJ/mol # Calculated enthalpy of reaction Hedenbergite -# Enthalpy of formation: -678.276 kcal/mol + -delta_H -124.507 kJ/mol # Calculated enthalpy of reaction Hedenbergite +# Enthalpy of formation: -678.276 kcal/mol -analytic -1.9473e+1 1.5288e-3 1.291e+4 2.1729e+0 -9.0058e+5 # -Range: 0-300 Hematite Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O log_k 0.1086 - -delta_H -129.415 kJ/mol # Calculated enthalpy of reaction Hematite -# Enthalpy of formation: -197.72 kcal/mol + -delta_H -129.415 kJ/mol # Calculated enthalpy of reaction Hematite +# Enthalpy of formation: -197.72 kcal/mol -analytic -2.2015e+2 -6.029e-2 1.1812e+4 8.0253e+1 1.8438e+2 # -Range: 0-300 Hercynite FeAl2O4 + 8 H+ = Fe+2 + 2 Al+3 + 4 H2O log_k 28.8484 - -delta_H -345.961 kJ/mol # Calculated enthalpy of reaction Hercynite -# Enthalpy of formation: -1966.45 kJ/mol + -delta_H -345.961 kJ/mol # Calculated enthalpy of reaction Hercynite +# Enthalpy of formation: -1966.45 kJ/mol -analytic -3.1848e+2 -7.9501e-2 2.5892e+4 1.1483e+2 4.0412e+2 # -Range: 0-300 Herzenbergite SnS + H+ = HS- + Sn+2 log_k -15.5786 - -delta_H 81.6466 kJ/mol # Calculated enthalpy of reaction Herzenbergite -# Enthalpy of formation: -25.464 kcal/mol + -delta_H 81.6466 kJ/mol # Calculated enthalpy of reaction Herzenbergite +# Enthalpy of formation: -25.464 kcal/mol -analytic -1.3576e+2 -4.6594e-2 -1.1572e+3 5.574e+1 -1.8018e+1 # -Range: 0-300 @@ -12721,2915 +12721,2915 @@ Heulandite # Ba.065Sr.175Ca.585K.132Na.383Al2.165Si6.835O18:6 +8.6600 H+ = + 0.0650 Ba++ + 0.1320 K+ + 0.1750 Sr++ + 0.3830 Na+ + 0.5850 Ca++ + 2.1650 Al+++ + 6.8350 SiO2 + 10.3300 H2O Ba.065Sr.175Ca.585K.132Na.383Al2.165Si6.835O18:6H2O + 8.66 H+ = 0.065 Ba+2 + 0.132 K+ + 0.175 Sr+2 + 0.383 Na+ + 0.585 Ca+2 + 2.165 Al+3 + 6.835 SiO2 + 10.33 H2O log_k 3.3506 - -delta_H -97.2942 kJ/mol # Calculated enthalpy of reaction Heulandite -# Enthalpy of formation: -10594.5 kJ/mol + -delta_H -97.2942 kJ/mol # Calculated enthalpy of reaction Heulandite +# Enthalpy of formation: -10594.5 kJ/mol -analytic -1.8364e+1 2.7879e-2 2.8426e+4 -1.7427e+1 -3.4723e+6 # -Range: 0-300 Hexahydrite MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O log_k -1.7268 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hexahydrite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Hexahydrite +# Enthalpy of formation: 0 kcal/mol Hf(s) Hf + 4 H+ + O2 = Hf+4 + 2 H2O log_k 189.9795 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf -# Enthalpy of formation: -0.003 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf +# Enthalpy of formation: -0.003 kJ/mol HfB2 HfB2 + 2.75 H+ + 2.25 H2O = 0.75 B(OH)3 + Hf+4 + 1.25 BH4- log_k 55.7691 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfB2 -# Enthalpy of formation: -78.6 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfB2 +# Enthalpy of formation: -78.6 kJ/mol HfBr2 HfBr2 + 2 H+ + 0.5 O2 = H2O + Hf+4 + 2 Br- log_k 114.9446 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfBr2 -# Enthalpy of formation: -98 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfBr2 +# Enthalpy of formation: -98 kJ/mol HfBr4 HfBr4 = Hf+4 + 4 Br- log_k 48.2921 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfBr4 -# Enthalpy of formation: -183.1 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfBr4 +# Enthalpy of formation: -183.1 kJ/mol HfC HfC + 3 H+ + 2 O2 = H2O + HCO3- + Hf+4 log_k 215.0827 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfC -# Enthalpy of formation: -54 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfC +# Enthalpy of formation: -54 kJ/mol HfCl2 HfCl2 + 2 H+ + 0.5 O2 = H2O + Hf+4 + 2 Cl- log_k 109.1624 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfCl2 -# Enthalpy of formation: -125 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfCl2 +# Enthalpy of formation: -125 kJ/mol HfCl4 HfCl4 = Hf+4 + 4 Cl- log_k 38.0919 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfCl4 -# Enthalpy of formation: -236.7 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfCl4 +# Enthalpy of formation: -236.7 kJ/mol HfF2 HfF2 + 2 H+ + 0.5 O2 = H2O + Hf+4 + 2 F- log_k 81.7647 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfF2 -# Enthalpy of formation: -235 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfF2 +# Enthalpy of formation: -235 kJ/mol HfF4 HfF4 = Hf+4 + 4 F- log_k -19.2307 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfF4 -# Enthalpy of formation: -461.4 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfF4 +# Enthalpy of formation: -461.4 kJ/mol HfI2 HfI2 + 2 H+ + 0.5 O2 = H2O + Hf+4 + 2 I- log_k 117.4971 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfI2 -# Enthalpy of formation: -65 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfI2 +# Enthalpy of formation: -65 kJ/mol HfI4 HfI4 = Hf+4 + 4 I- log_k 54.1798 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfI4 -# Enthalpy of formation: -118 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfI4 +# Enthalpy of formation: -118 kJ/mol HfN HfN + 4 H+ + 0.25 O2 = 0.5 H2O + Hf+4 + NH3 log_k 69.4646 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfN -# Enthalpy of formation: -89.3 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfN +# Enthalpy of formation: -89.3 kJ/mol HfO2 HfO2 + 4 H+ = Hf+4 + 2 H2O log_k 1.1829 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfO2 -# Enthalpy of formation: -267.1 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfO2 +# Enthalpy of formation: -267.1 kJ/mol HfS2 HfS2 + 2 H+ = Hf+4 + 2 HS- log_k -1.5845 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfS2 -# Enthalpy of formation: -140 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfS2 +# Enthalpy of formation: -140 kJ/mol HfS3 HfS3 + H+ = HS- + Hf+4 + S2-2 log_k -18.9936 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfS3 -# Enthalpy of formation: -149 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfS3 +# Enthalpy of formation: -149 kJ/mol Hg2SO4 Hg2SO4 = Hg2+2 + SO4-2 log_k -6.117 - -delta_H 0.30448 kJ/mol # Calculated enthalpy of reaction Hg2SO4 -# Enthalpy of formation: -743.09 kJ/mol + -delta_H 0.30448 kJ/mol # Calculated enthalpy of reaction Hg2SO4 +# Enthalpy of formation: -743.09 kJ/mol -analytic -3.2342e+1 -1.9881e-2 1.6292e+3 1.0781e+1 2.7677e+1 # -Range: 0-200 Hg2SeO3 Hg2SeO3 = Hg2+2 + SeO3-2 log_k -14.2132 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hg2SeO3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Hg2SeO3 +# Enthalpy of formation: 0 kcal/mol HgSeO3 HgSeO3 = Hg+2 + SeO3-2 log_k -13.8957 - -delta_H 0 # Not possible to calculate enthalpy of reaction HgSeO3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HgSeO3 +# Enthalpy of formation: 0 kcal/mol Hillebrandite Ca2SiO3(OH)2:0.17H2O + 4 H+ = SiO2 + 2 Ca+2 + 3.17 H2O log_k 36.819 - -delta_H -203.074 kJ/mol # Calculated enthalpy of reaction Hillebrandite -# Enthalpy of formation: -637.404 kcal/mol + -delta_H -203.074 kJ/mol # Calculated enthalpy of reaction Hillebrandite +# Enthalpy of formation: -637.404 kcal/mol -analytic -1.936e+1 -7.5176e-3 1.1947e+4 8.0558e+0 -1.4504e+5 # -Range: 0-300 Hinsdalite Al3PPbSO8(OH)6 + 7 H+ = HPO4-2 + Pb+2 + SO4-2 + 3 Al+3 + 6 H2O log_k 9.8218 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hinsdalite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Hinsdalite +# Enthalpy of formation: 0 kcal/mol Ho Ho + 3 H+ + 0.75 O2 = Ho+3 + 1.5 H2O log_k 182.8097 - -delta_H -1126.75 kJ/mol # Calculated enthalpy of reaction Ho -# Enthalpy of formation: 0 kJ/mol + -delta_H -1126.75 kJ/mol # Calculated enthalpy of reaction Ho +# Enthalpy of formation: 0 kJ/mol -analytic -6.5903e+1 -2.819e-2 5.937e+4 2.3421e+1 9.2643e+2 # -Range: 0-300 Ho(OH)3 Ho(OH)3 + 3 H+ = Ho+3 + 3 H2O log_k 15.3852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(OH)3 +# Enthalpy of formation: 0 kcal/mol Ho(OH)3(am) Ho(OH)3 + 3 H+ = Ho+3 + 3 H2O log_k 17.7852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(OH)3(am) +# Enthalpy of formation: 0 kcal/mol Ho2(CO3)3 Ho2(CO3)3 + 3 H+ = 2 Ho+3 + 3 HCO3- log_k -2.8136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho2(CO3)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho2(CO3)3 +# Enthalpy of formation: 0 kcal/mol Ho2O3 Ho2O3 + 6 H+ = 2 Ho+3 + 3 H2O log_k 47.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho2O3 +# Enthalpy of formation: 0 kcal/mol HoF3:.5H2O HoF3:.5H2O = 0.5 H2O + Ho+3 + 3 F- log_k -16.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction HoF3:.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HoF3:.5H2O +# Enthalpy of formation: 0 kcal/mol HoPO4:10H2O HoPO4:10H2O + H+ = HPO4-2 + Ho+3 + 10 H2O log_k -11.8782 - -delta_H 0 # Not possible to calculate enthalpy of reaction HoPO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HoPO4:10H2O +# Enthalpy of formation: 0 kcal/mol Hopeite Zn3(PO4)2:4H2O + 2 H+ = 2 HPO4-2 + 3 Zn+2 + 4 H2O log_k -10.6563 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hopeite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Hopeite +# Enthalpy of formation: 0 kcal/mol Huntite CaMg3(CO3)4 + 4 H+ = Ca+2 + 3 Mg+2 + 4 HCO3- log_k 10.301 - -delta_H -171.096 kJ/mol # Calculated enthalpy of reaction Huntite -# Enthalpy of formation: -1082.6 kcal/mol + -delta_H -171.096 kJ/mol # Calculated enthalpy of reaction Huntite +# Enthalpy of formation: -1082.6 kcal/mol -analytic -6.5e+2 -1.9671e-1 2.4815e+4 2.5688e+2 3.874e+2 # -Range: 0-300 Hydroboracite MgCaB6O11:6H2O + 4 H+ + H2O = Ca+2 + Mg+2 + 6 B(OH)3 log_k 20.3631 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hydroboracite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Hydroboracite +# Enthalpy of formation: 0 kcal/mol Hydrocerussite Pb3(CO3)2(OH)2 + 4 H+ = 2 H2O + 2 HCO3- + 3 Pb+2 log_k 1.8477 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hydrocerussite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Hydrocerussite +# Enthalpy of formation: 0 kcal/mol Hydromagnesite Mg5(CO3)4(OH)2:4H2O + 6 H+ = 4 HCO3- + 5 Mg+2 + 6 H2O log_k 30.8539 - -delta_H -289.696 kJ/mol # Calculated enthalpy of reaction Hydromagnesite -# Enthalpy of formation: -1557.09 kcal/mol + -delta_H -289.696 kJ/mol # Calculated enthalpy of reaction Hydromagnesite +# Enthalpy of formation: -1557.09 kcal/mol -analytic -7.9288e+2 -2.1448e-1 3.6749e+4 3.0888e+2 5.7367e+2 # -Range: 0-300 Hydrophilite CaCl2 = Ca+2 + 2 Cl- log_k 11.7916 - -delta_H -81.4545 kJ/mol # Calculated enthalpy of reaction Hydrophilite -# Enthalpy of formation: -795.788 kJ/mol + -delta_H -81.4545 kJ/mol # Calculated enthalpy of reaction Hydrophilite +# Enthalpy of formation: -795.788 kJ/mol -analytic -2.2278e+2 -8.1414e-2 9.0298e+3 9.2349e+1 1.4097e+2 # -Range: 0-300 Hydroxylapatite Ca5(OH)(PO4)3 + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 log_k -3.0746 - -delta_H -191.982 kJ/mol # Calculated enthalpy of reaction Hydroxylapatite -# Enthalpy of formation: -6685.52 kJ/mol + -delta_H -191.982 kJ/mol # Calculated enthalpy of reaction Hydroxylapatite +# Enthalpy of formation: -6685.52 kJ/mol -analytic -8.5221e+2 -2.943e-1 2.8125e+4 3.4044e+2 4.3911e+2 # -Range: 0-300 Hydrozincite Zn5(OH)6(CO3)2 + 8 H+ = 2 HCO3- + 5 Zn+2 + 6 H2O log_k 30.3076 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hydrozincite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Hydrozincite +# Enthalpy of formation: 0 kcal/mol I2 I2 + H2O = 0.5 O2 + 2 H+ + 2 I- log_k -24.8084 - -delta_H 165.967 kJ/mol # Calculated enthalpy of reaction I2 -# Enthalpy of formation: 0 kJ/mol + -delta_H 165.967 kJ/mol # Calculated enthalpy of reaction I2 +# Enthalpy of formation: 0 kJ/mol -analytic -1.7135e+2 -6.281e-2 -4.7225e+3 7.3181e+1 -7.364e+1 # -Range: 0-300 Ice H2O = H2O log_k 0.1387 - -delta_H 6.74879 kJ/mol # Calculated enthalpy of reaction Ice -# Enthalpy of formation: -69.93 kcal/mol + -delta_H 6.74879 kJ/mol # Calculated enthalpy of reaction Ice +# Enthalpy of formation: -69.93 kcal/mol -analytic -2.326e+1 4.7948e-4 7.7351e+2 8.3499e+0 1.3143e+1 # -Range: 0-200 Illite K0.6Mg0.25Al1.8Al0.5Si3.5O10(OH)2 + 8 H+ = 0.25 Mg+2 + 0.6 K+ + 2.3 Al+3 + 3.5 SiO2 + 5 H2O log_k 9.026 - -delta_H -171.764 kJ/mol # Calculated enthalpy of reaction Illite -# Enthalpy of formation: -1394.71 kcal/mol + -delta_H -171.764 kJ/mol # Calculated enthalpy of reaction Illite +# Enthalpy of formation: -1394.71 kcal/mol -analytic 2.6069e+1 -1.2553e-3 1.367e+4 -2.0232e+1 -1.1204e+6 # -Range: 0-300 Ilmenite FeTiO3 + 2 H+ + H2O = Fe+2 + Ti(OH)4 log_k 0.9046 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ilmenite -# Enthalpy of formation: -1236.65 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ilmenite +# Enthalpy of formation: -1236.65 kJ/mol In In + 3 H+ + 0.75 O2 = In+3 + 1.5 H2O log_k 81.6548 - -delta_H -524.257 kJ/mol # Calculated enthalpy of reaction In -# Enthalpy of formation: 0 kJ/mol + -delta_H -524.257 kJ/mol # Calculated enthalpy of reaction In +# Enthalpy of formation: 0 kJ/mol -analytic -1.1773e+2 -3.7657e-2 3.1802e+4 4.2438e+1 -9.6348e+4 # -Range: 0-300 Jadeite NaAl(SiO3)2 + 4 H+ = Al+3 + Na+ + 2 H2O + 2 SiO2 log_k 8.3888 - -delta_H -84.4415 kJ/mol # Calculated enthalpy of reaction Jadeite -# Enthalpy of formation: -722.116 kcal/mol + -delta_H -84.4415 kJ/mol # Calculated enthalpy of reaction Jadeite +# Enthalpy of formation: -722.116 kcal/mol -analytic 1.5934e+0 5.0757e-3 9.5602e+3 -7.0164e+0 -8.4454e+5 # -Range: 0-300 Jarosite KFe3(SO4)2(OH)6 + 6 H+ = K+ + 2 SO4-2 + 3 Fe+3 + 6 H2O log_k -9.3706 - -delta_H -191.343 kJ/mol # Calculated enthalpy of reaction Jarosite -# Enthalpy of formation: -894.79 kcal/mol + -delta_H -191.343 kJ/mol # Calculated enthalpy of reaction Jarosite +# Enthalpy of formation: -894.79 kcal/mol -analytic -1.0813e+2 -5.0381e-2 9.6893e+3 3.2832e+1 1.6457e+2 # -Range: 0-200 Jarosite-Na NaFe3(SO4)2(OH)6 + 6 H+ = Na+ + 2 SO4-2 + 3 Fe+3 + 6 H2O log_k -5.4482 - -delta_H 0 # Not possible to calculate enthalpy of reaction Jarosite-Na -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Jarosite-Na +# Enthalpy of formation: 0 kcal/mol K K + H+ + 0.25 O2 = 0.5 H2O + K+ log_k 70.9861 - -delta_H -392.055 kJ/mol # Calculated enthalpy of reaction K -# Enthalpy of formation: 0 kJ/mol + -delta_H -392.055 kJ/mol # Calculated enthalpy of reaction K +# Enthalpy of formation: 0 kJ/mol -analytic -3.1102e+1 -1.0003e-2 2.1338e+4 1.3534e+1 3.3296e+2 # -Range: 0-300 K-Feldspar KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 log_k -0.2753 - -delta_H -23.9408 kJ/mol # Calculated enthalpy of reaction K-Feldspar -# Enthalpy of formation: -949.188 kcal/mol + -delta_H -23.9408 kJ/mol # Calculated enthalpy of reaction K-Feldspar +# Enthalpy of formation: -949.188 kcal/mol -analytic -1.0684e+0 1.3111e-2 1.1671e+4 -9.9129e+0 -1.5855e+6 # -Range: 0-300 K2CO3:1.5H2O K2CO3:1.5H2O + H+ = HCO3- + 1.5 H2O + 2 K+ log_k 13.3785 - -delta_H 0 # Not possible to calculate enthalpy of reaction K2CO3:1.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction K2CO3:1.5H2O +# Enthalpy of formation: 0 kcal/mol K2O K2O + 2 H+ = H2O + 2 K+ log_k 84.0405 - -delta_H -427.006 kJ/mol # Calculated enthalpy of reaction K2O -# Enthalpy of formation: -86.8 kcal/mol + -delta_H -427.006 kJ/mol # Calculated enthalpy of reaction K2O +# Enthalpy of formation: -86.8 kcal/mol -analytic -1.8283e+1 -5.2255e-3 2.3184e+4 1.0553e+1 3.6177e+2 # -Range: 0-300 K2Se K2Se = Se-2 + 2 K+ log_k 11.2925 - -delta_H 0 # Not possible to calculate enthalpy of reaction K2Se -# Enthalpy of formation: -92 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction K2Se +# Enthalpy of formation: -92 kcal/mol -analytic 1.8182e+1 7.8828e-3 2.6345e+3 -7.3075e+0 4.4732e+1 # -Range: 0-200 K2UO4 K2UO4 + 4 H+ = UO2+2 + 2 H2O + 2 K+ log_k 33.8714 - -delta_H -174.316 kJ/mol # Calculated enthalpy of reaction K2UO4 -# Enthalpy of formation: -1920.7 kJ/mol + -delta_H -174.316 kJ/mol # Calculated enthalpy of reaction K2UO4 +# Enthalpy of formation: -1920.7 kJ/mol -analytic -7.0905e+1 -2.568e-3 1.2244e+4 2.6056e+1 2.0794e+2 # -Range: 0-200 K3H(SO4)2 K3H(SO4)2 = H+ + 2 SO4-2 + 3 K+ log_k -3.6233 - -delta_H 0 # Not possible to calculate enthalpy of reaction K3H(SO4)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction K3H(SO4)2 +# Enthalpy of formation: 0 kcal/mol K8H4(CO3)6:3H2O K8H4(CO3)6:3H2O + 2 H+ = 3 H2O + 6 HCO3- + 8 K+ log_k 27.7099 - -delta_H 0 # Not possible to calculate enthalpy of reaction K8H4(CO3)6:3H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction K8H4(CO3)6:3H2O +# Enthalpy of formation: 0 kcal/mol KAl(SO4)2 KAl(SO4)2 = Al+3 + K+ + 2 SO4-2 log_k 3.3647 - -delta_H -139.485 kJ/mol # Calculated enthalpy of reaction KAl(SO4)2 -# Enthalpy of formation: -2470.29 kJ/mol + -delta_H -139.485 kJ/mol # Calculated enthalpy of reaction KAl(SO4)2 +# Enthalpy of formation: -2470.29 kJ/mol -analytic -4.2785e+2 -1.6303e-1 1.5311e+4 1.7312e+2 2.3904e+2 # -Range: 0-300 KBr KBr = Br- + K+ log_k 1.0691 - -delta_H 20.125 kJ/mol # Calculated enthalpy of reaction KBr -# Enthalpy of formation: -393.798 kJ/mol + -delta_H 20.125 kJ/mol # Calculated enthalpy of reaction KBr +# Enthalpy of formation: -393.798 kJ/mol -analytic -7.3164e+1 -3.124e-2 4.814e+2 3.3104e+1 7.5336e+0 # -Range: 0-300 KMgCl3 KMgCl3 = K+ + Mg+2 + 3 Cl- log_k 21.2618 - -delta_H -132.768 kJ/mol # Calculated enthalpy of reaction KMgCl3 -# Enthalpy of formation: -1086.6 kJ/mol + -delta_H -132.768 kJ/mol # Calculated enthalpy of reaction KMgCl3 +# Enthalpy of formation: -1086.6 kJ/mol -analytic -8.4641e+0 -3.2688e-2 5.1496e+3 8.9652e+0 8.745e+1 # -Range: 0-200 KMgCl3:2H2O KMgCl3:2H2O = K+ + Mg+2 + 2 H2O + 3 Cl- log_k 13.9755 - -delta_H -76.8449 kJ/mol # Calculated enthalpy of reaction KMgCl3:2H2O -# Enthalpy of formation: -1714.2 kJ/mol + -delta_H -76.8449 kJ/mol # Calculated enthalpy of reaction KMgCl3:2H2O +# Enthalpy of formation: -1714.2 kJ/mol -analytic -5.9982e+1 -3.3015e-2 4.6174e+3 2.7602e+1 7.8431e+1 # -Range: 0-200 KNaCO3:6H2O KNaCO3:6H2O + H+ = HCO3- + K+ + Na+ + 6 H2O log_k 10.2593 - -delta_H 0 # Not possible to calculate enthalpy of reaction KNaCO3:6H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction KNaCO3:6H2O +# Enthalpy of formation: 0 kcal/mol KTcO4 KTcO4 = K+ + TcO4- log_k -2.2667 - -delta_H 53.2363 kJ/mol # Calculated enthalpy of reaction KTcO4 -# Enthalpy of formation: -1021.67 kJ/mol + -delta_H 53.2363 kJ/mol # Calculated enthalpy of reaction KTcO4 +# Enthalpy of formation: -1021.67 kJ/mol -analytic 1.8058e+1 -8.4795e-4 -2.3985e+3 -4.1788e+0 -1.5029e+5 # -Range: 0-300 KUO2AsO4 KUO2AsO4 + 2 H+ = H2AsO4- + K+ + UO2+2 log_k -4.1741 - -delta_H 0 # Not possible to calculate enthalpy of reaction KUO2AsO4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction KUO2AsO4 +# Enthalpy of formation: 0 kcal/mol Kainite KMgClSO4:3H2O = Cl- + K+ + Mg+2 + SO4-2 + 3 H2O log_k -0.3114 - -delta_H 0 # Not possible to calculate enthalpy of reaction Kainite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Kainite +# Enthalpy of formation: 0 kcal/mol Kalicinite KHCO3 = HCO3- + K+ log_k 0.2837 - -delta_H 0 # Not possible to calculate enthalpy of reaction Kalicinite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Kalicinite +# Enthalpy of formation: 0 kcal/mol Kalsilite KAlSiO4 + 4 H+ = Al+3 + K+ + SiO2 + 2 H2O log_k 10.8987 - -delta_H -108.583 kJ/mol # Calculated enthalpy of reaction Kalsilite -# Enthalpy of formation: -509.408 kcal/mol + -delta_H -108.583 kJ/mol # Calculated enthalpy of reaction Kalsilite +# Enthalpy of formation: -509.408 kcal/mol -analytic -6.7595e+0 -7.4301e-3 6.538e+3 1.8999e-1 -2.288e+5 # -Range: 0-300 Kaolinite Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 SiO2 + 5 H2O log_k 6.8101 - -delta_H -151.779 kJ/mol # Calculated enthalpy of reaction Kaolinite -# Enthalpy of formation: -982.221 kcal/mol + -delta_H -151.779 kJ/mol # Calculated enthalpy of reaction Kaolinite +# Enthalpy of formation: -982.221 kcal/mol -analytic 1.6835e+1 -7.8939e-3 7.7636e+3 -1.219e+1 -3.2354e+5 # -Range: 0-300 Karelianite V2O3 + 6 H+ = 2 V+3 + 3 H2O log_k 9.9424 - -delta_H -160.615 kJ/mol # Calculated enthalpy of reaction Karelianite -# Enthalpy of formation: -1218.98 kJ/mol + -delta_H -160.615 kJ/mol # Calculated enthalpy of reaction Karelianite +# Enthalpy of formation: -1218.98 kJ/mol -analytic -2.7961e+1 -7.1499e-3 6.7749e+3 5.8146e+0 2.6039e+5 # -Range: 0-300 Kasolite Pb(UO2)SiO4:H2O + 4 H+ = Pb+2 + SiO2 + UO2+2 + 3 H2O log_k 7.2524 - -delta_H 0 # Not possible to calculate enthalpy of reaction Kasolite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Kasolite +# Enthalpy of formation: 0 kcal/mol Katoite Ca3Al2H12O12 + 12 H+ = 2 Al+3 + 3 Ca+2 + 12 H2O log_k 78.9437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Katoite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Katoite +# Enthalpy of formation: 0 kcal/mol Kieserite MgSO4:H2O = H2O + Mg+2 + SO4-2 log_k -0.267 - -delta_H 0 # Not possible to calculate enthalpy of reaction Kieserite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Kieserite +# Enthalpy of formation: 0 kcal/mol Klockmannite CuSe = Cu+2 + Se-2 log_k -41.6172 - -delta_H 0 # Not possible to calculate enthalpy of reaction Klockmannite -# Enthalpy of formation: -10 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Klockmannite +# Enthalpy of formation: -10 kcal/mol -analytic -2.3021e+1 -2.1458e-3 -8.5938e+3 4.39e+0 -1.4593e+2 # -Range: 0-200 Krutaite CuSe2 + H2O = 0.5 O2 + Cu+2 + 2 H+ + 2 Se-2 log_k -107.6901 - -delta_H 0 # Not possible to calculate enthalpy of reaction Krutaite -# Enthalpy of formation: -11.5 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Krutaite +# Enthalpy of formation: -11.5 kcal/mol -analytic -3.7735e+1 -8.7548e-4 -2.6352e+4 7.5528e+0 -4.4749e+2 # -Range: 0-200 Kyanite Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O log_k 15.674 - -delta_H -230.919 kJ/mol # Calculated enthalpy of reaction Kyanite -# Enthalpy of formation: -616.897 kcal/mol + -delta_H -230.919 kJ/mol # Calculated enthalpy of reaction Kyanite +# Enthalpy of formation: -616.897 kcal/mol -analytic -7.3335e+1 -3.2853e-2 1.2166e+4 2.3412e+1 1.8986e+2 # -Range: 0-300 La La + 3 H+ + 0.75 O2 = La+3 + 1.5 H2O log_k 184.7155 - -delta_H -1129.26 kJ/mol # Calculated enthalpy of reaction La -# Enthalpy of formation: 0 kJ/mol + -delta_H -1129.26 kJ/mol # Calculated enthalpy of reaction La +# Enthalpy of formation: 0 kJ/mol -analytic -5.9508e+1 -2.7578e-2 5.9327e+4 2.1589e+1 9.2577e+2 # -Range: 0-300 La(OH)3 La(OH)3 + 3 H+ = La+3 + 3 H2O log_k 20.2852 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction La(OH)3 +# Enthalpy of formation: 0 kcal/mol La(OH)3(am) La(OH)3 + 3 H+ = La+3 + 3 H2O log_k 23.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction La(OH)3(am) +# Enthalpy of formation: 0 kcal/mol La2(CO3)3:8H2O La2(CO3)3:8H2O + 3 H+ = 2 La+3 + 3 HCO3- + 8 H2O log_k -4.3136 - -delta_H 0 # Not possible to calculate enthalpy of reaction La2(CO3)3:8H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction La2(CO3)3:8H2O +# Enthalpy of formation: 0 kcal/mol La2O3 La2O3 + 6 H+ = 2 La+3 + 3 H2O log_k 66.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction La2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction La2O3 +# Enthalpy of formation: 0 kcal/mol LaCl3 LaCl3 = La+3 + 3 Cl- log_k 14.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaCl3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction LaCl3 +# Enthalpy of formation: 0 kcal/mol LaCl3:7H2O LaCl3:7H2O = La+3 + 3 Cl- + 7 H2O log_k 4.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaCl3:7H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction LaCl3:7H2O +# Enthalpy of formation: 0 kcal/mol LaF3:.5H2O LaF3:.5H2O = 0.5 H2O + La+3 + 3 F- log_k -18.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaF3:.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction LaF3:.5H2O +# Enthalpy of formation: 0 kcal/mol LaPO4:10H2O LaPO4:10H2O + H+ = HPO4-2 + La+3 + 10 H2O log_k -12.3782 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaPO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction LaPO4:10H2O +# Enthalpy of formation: 0 kcal/mol Lammerite Cu3(AsO4)2 + 4 H+ = 2 H2AsO4- + 3 Cu+2 log_k 1.5542 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lammerite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Lammerite +# Enthalpy of formation: 0 kcal/mol Lanarkite Pb2(SO4)O + 2 H+ = H2O + SO4-2 + 2 Pb+2 log_k -0.4692 - -delta_H -22.014 kJ/mol # Calculated enthalpy of reaction Lanarkite -# Enthalpy of formation: -1171.59 kJ/mol + -delta_H -22.014 kJ/mol # Calculated enthalpy of reaction Lanarkite +# Enthalpy of formation: -1171.59 kJ/mol -analytic 5.1071e+0 -1.6655e-2 0e+0 0e+0 -5.566e+4 # -Range: 0-200 Lansfordite MgCO3:5H2O + H+ = HCO3- + Mg+2 + 5 H2O log_k 4.8409 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lansfordite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Lansfordite +# Enthalpy of formation: 0 kcal/mol Larnite Ca2SiO4 + 4 H+ = SiO2 + 2 Ca+2 + 2 H2O log_k 38.4665 - -delta_H -227.061 kJ/mol # Calculated enthalpy of reaction Larnite -# Enthalpy of formation: -551.74 kcal/mol + -delta_H -227.061 kJ/mol # Calculated enthalpy of reaction Larnite +# Enthalpy of formation: -551.74 kcal/mol -analytic 2.69e+1 -2.1833e-3 1.09e+4 -9.5257e+0 -7.2537e+4 # -Range: 0-300 Laumontite CaAl2Si4O12:4H2O + 8 H+ = Ca+2 + 2 Al+3 + 4 SiO2 + 8 H2O log_k 13.6667 - -delta_H -184.657 kJ/mol # Calculated enthalpy of reaction Laumontite -# Enthalpy of formation: -1728.66 kcal/mol + -delta_H -184.657 kJ/mol # Calculated enthalpy of reaction Laumontite +# Enthalpy of formation: -1728.66 kcal/mol -analytic 1.1904e+0 8.1763e-3 1.9005e+4 -1.4561e+1 -1.5851e+6 # -Range: 0-300 Laurite RuS2 = Ru+2 + S2-2 log_k -73.2649 - -delta_H 0 # Not possible to calculate enthalpy of reaction Laurite -# Enthalpy of formation: -199.586 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Laurite +# Enthalpy of formation: -199.586 kJ/mol Lawrencite FeCl2 = Fe+2 + 2 Cl- log_k 9.0945 - -delta_H -84.7665 kJ/mol # Calculated enthalpy of reaction Lawrencite -# Enthalpy of formation: -341.65 kJ/mol + -delta_H -84.7665 kJ/mol # Calculated enthalpy of reaction Lawrencite +# Enthalpy of formation: -341.65 kJ/mol -analytic -2.2798e+2 -8.1819e-2 9.262e+3 9.3097e+1 1.4459e+2 # -Range: 0-300 Lawsonite CaAl2Si2O7(OH)2:H2O + 8 H+ = Ca+2 + 2 Al+3 + 2 SiO2 + 6 H2O log_k 22.2132 - -delta_H -244.806 kJ/mol # Calculated enthalpy of reaction Lawsonite -# Enthalpy of formation: -1158.1 kcal/mol + -delta_H -244.806 kJ/mol # Calculated enthalpy of reaction Lawsonite +# Enthalpy of formation: -1158.1 kcal/mol -analytic 1.3995e+1 -1.7668e-2 1.0119e+4 -8.31e+0 1.5789e+2 # -Range: 0-300 Leonite K2Mg(SO4)2:4H2O = Mg+2 + 2 K+ + 2 SO4-2 + 4 H2O log_k -4.1123 - -delta_H 0 # Not possible to calculate enthalpy of reaction Leonite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Leonite +# Enthalpy of formation: 0 kcal/mol Li Li + H+ + 0.25 O2 = 0.5 H2O + Li+ log_k 72.7622 - -delta_H -418.339 kJ/mol # Calculated enthalpy of reaction Li -# Enthalpy of formation: 0 kJ/mol + -delta_H -418.339 kJ/mol # Calculated enthalpy of reaction Li +# Enthalpy of formation: 0 kJ/mol -analytic -1.0227e+2 -1.8118e-2 2.6262e+4 3.8056e+1 -1.6166e+5 # -Range: 0-300 Li2Se Li2Se + 1.5 O2 = SeO3-2 + 2 Li+ log_k 102.8341 - -delta_H -646.236 kJ/mol # Calculated enthalpy of reaction Li2Se -# Enthalpy of formation: -96 kcal/mol + -delta_H -646.236 kJ/mol # Calculated enthalpy of reaction Li2Se +# Enthalpy of formation: -96 kcal/mol -analytic 1.1933e+2 -6.9663e-3 2.7509e+4 -4.3124e+1 4.671e+2 # -Range: 0-200 Li2UO4 Li2UO4 + 4 H+ = UO2+2 + 2 H2O + 2 Li+ log_k 27.8421 - -delta_H -179.384 kJ/mol # Calculated enthalpy of reaction Li2UO4 -# Enthalpy of formation: -1968.2 kJ/mol + -delta_H -179.384 kJ/mol # Calculated enthalpy of reaction Li2UO4 +# Enthalpy of formation: -1968.2 kJ/mol -analytic -1.447e+2 -1.2024e-2 1.4899e+4 5.0984e+1 2.5306e+2 # -Range: 0-200 LiUO2AsO4 LiUO2AsO4 + 2 H+ = H2AsO4- + Li+ + UO2+2 log_k -0.7862 - -delta_H 0 # Not possible to calculate enthalpy of reaction LiUO2AsO4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction LiUO2AsO4 +# Enthalpy of formation: 0 kcal/mol Lime CaO + 2 H+ = Ca+2 + H2O log_k 32.5761 - -delta_H -193.832 kJ/mol # Calculated enthalpy of reaction Lime -# Enthalpy of formation: -151.79 kcal/mol + -delta_H -193.832 kJ/mol # Calculated enthalpy of reaction Lime +# Enthalpy of formation: -151.79 kcal/mol -analytic -7.2686e+1 -1.7654e-2 1.2199e+4 2.8128e+1 1.9037e+2 # -Range: 0-300 Linnaeite Co3S4 + 4 H+ = Co+2 + 2 Co+3 + 4 HS- log_k -106.9017 - -delta_H 420.534 kJ/mol # Calculated enthalpy of reaction Linnaeite -# Enthalpy of formation: -85.81 kcal/mol + -delta_H 420.534 kJ/mol # Calculated enthalpy of reaction Linnaeite +# Enthalpy of formation: -85.81 kcal/mol -analytic -6.0034e+2 -2.0179e-1 -9.2145e+3 2.3618e+2 -1.4361e+2 # -Range: 0-300 Litharge PbO + 2 H+ = H2O + Pb+2 log_k 12.6388 - -delta_H -65.9118 kJ/mol # Calculated enthalpy of reaction Litharge -# Enthalpy of formation: -219.006 kJ/mol + -delta_H -65.9118 kJ/mol # Calculated enthalpy of reaction Litharge +# Enthalpy of formation: -219.006 kJ/mol -analytic -1.8683e+1 -2.0211e-3 4.1876e+3 7.2239e+0 7.1118e+1 # -Range: 0-200 Lopezite K2Cr2O7 + H2O = 2 CrO4-2 + 2 H+ + 2 K+ log_k -17.4366 - -delta_H 81.9227 kJ/mol # Calculated enthalpy of reaction Lopezite -# Enthalpy of formation: -493.003 kcal/mol + -delta_H 81.9227 kJ/mol # Calculated enthalpy of reaction Lopezite +# Enthalpy of formation: -493.003 kcal/mol -analytic 7.8359e+1 -2.2908e-2 -9.3812e+3 -2.3245e+1 -1.5933e+2 # -Range: 0-200 Lu Lu + 3 H+ + 0.75 O2 = Lu+3 + 1.5 H2O log_k 181.3437 - -delta_H -1122.15 kJ/mol # Calculated enthalpy of reaction Lu -# Enthalpy of formation: 0 kJ/mol + -delta_H -1122.15 kJ/mol # Calculated enthalpy of reaction Lu +# Enthalpy of formation: 0 kJ/mol -analytic -6.895e+1 -2.8643e-2 5.9209e+4 2.4332e+1 9.2392e+2 # -Range: 0-300 Lu(OH)3 Lu(OH)3 + 3 H+ = Lu+3 + 3 H2O log_k 14.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(OH)3 +# Enthalpy of formation: 0 kcal/mol Lu(OH)3(am) Lu(OH)3 + 3 H+ = Lu+3 + 3 H2O log_k 18.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(OH)3(am) +# Enthalpy of formation: 0 kcal/mol Lu2(CO3)3 Lu2(CO3)3 + 3 H+ = 2 Lu+3 + 3 HCO3- log_k -2.0136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu2(CO3)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu2(CO3)3 +# Enthalpy of formation: 0 kcal/mol Lu2O3 Lu2O3 + 6 H+ = 2 Lu+3 + 3 H2O log_k 45 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu2O3 +# Enthalpy of formation: 0 kcal/mol LuF3:.5H2O LuF3:.5H2O = 0.5 H2O + Lu+3 + 3 F- log_k -15.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction LuF3:.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction LuF3:.5H2O +# Enthalpy of formation: 0 kcal/mol LuPO4:10H2O LuPO4:10H2O + H+ = HPO4-2 + Lu+3 + 10 H2O log_k -11.6782 - -delta_H 0 # Not possible to calculate enthalpy of reaction LuPO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction LuPO4:10H2O +# Enthalpy of formation: 0 kcal/mol Magnesiochromite MgCr2O4 + 8 H+ = Mg+2 + 2 Cr+3 + 4 H2O log_k 21.6927 - -delta_H -302.689 kJ/mol # Calculated enthalpy of reaction Magnesiochromite -# Enthalpy of formation: -1783.6 kJ/mol + -delta_H -302.689 kJ/mol # Calculated enthalpy of reaction Magnesiochromite +# Enthalpy of formation: -1783.6 kJ/mol -analytic -1.7376e+2 -8.7429e-3 2.16e+4 5.0762e+1 3.6685e+2 # -Range: 0-200 Magnesite MgCO3 + H+ = HCO3- + Mg+2 log_k 2.2936 - -delta_H -44.4968 kJ/mol # Calculated enthalpy of reaction Magnesite -# Enthalpy of formation: -265.63 kcal/mol + -delta_H -44.4968 kJ/mol # Calculated enthalpy of reaction Magnesite +# Enthalpy of formation: -265.63 kcal/mol -analytic -1.6665e+2 -4.9469e-2 6.4344e+3 6.5506e+1 1.0045e+2 # -Range: 0-300 Magnetite Fe3O4 + 8 H+ = Fe+2 + 2 Fe+3 + 4 H2O log_k 10.4724 - -delta_H -216.597 kJ/mol # Calculated enthalpy of reaction Magnetite -# Enthalpy of formation: -267.25 kcal/mol + -delta_H -216.597 kJ/mol # Calculated enthalpy of reaction Magnetite +# Enthalpy of formation: -267.25 kcal/mol -analytic -3.051e+2 -7.9919e-2 1.8709e+4 1.1178e+2 2.9203e+2 # -Range: 0-300 Malachite Cu2CO3(OH)2 + 3 H+ = HCO3- + 2 Cu+2 + 2 H2O log_k 5.9399 - -delta_H -76.2827 kJ/mol # Calculated enthalpy of reaction Malachite -# Enthalpy of formation: -251.9 kcal/mol + -delta_H -76.2827 kJ/mol # Calculated enthalpy of reaction Malachite +# Enthalpy of formation: -251.9 kcal/mol -analytic -2.7189e+2 -6.9454e-2 1.1451e+4 1.0511e+2 1.7877e+2 # -Range: 0-300 Manganite MnO(OH) + 3 H+ = Mn+3 + 2 H2O log_k -0.1646 - -delta_H 0 # Not possible to calculate enthalpy of reaction Manganite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Manganite +# Enthalpy of formation: 0 kcal/mol Manganosite MnO + 2 H+ = H2O + Mn+2 log_k 17.924 - -delta_H -121.215 kJ/mol # Calculated enthalpy of reaction Manganosite -# Enthalpy of formation: -92.07 kcal/mol + -delta_H -121.215 kJ/mol # Calculated enthalpy of reaction Manganosite +# Enthalpy of formation: -92.07 kcal/mol -analytic -8.4114e+1 -1.849e-2 8.7792e+3 3.1561e+1 1.3702e+2 # -Range: 0-300 Margarite CaAl4Si2O10(OH)2 + 14 H+ = Ca+2 + 2 SiO2 + 4 Al+3 + 8 H2O log_k 41.0658 - -delta_H -522.192 kJ/mol # Calculated enthalpy of reaction Margarite -# Enthalpy of formation: -1485.8 kcal/mol + -delta_H -522.192 kJ/mol # Calculated enthalpy of reaction Margarite +# Enthalpy of formation: -1485.8 kcal/mol -analytic -2.3138e+2 -8.2788e-2 3.0154e+4 7.9148e+1 4.706e+2 # -Range: 0-300 Massicot PbO + 2 H+ = H2O + Pb+2 log_k 12.821 - -delta_H -67.6078 kJ/mol # Calculated enthalpy of reaction Massicot -# Enthalpy of formation: -217.31 kJ/mol + -delta_H -67.6078 kJ/mol # Calculated enthalpy of reaction Massicot +# Enthalpy of formation: -217.31 kJ/mol -analytic -1.8738e+1 -2.0125e-3 4.2739e+3 7.2018e+0 7.2584e+1 # -Range: 0-200 Matlockite PbFCl = Cl- + F- + Pb+2 log_k -9.43 - -delta_H 0 # Not possible to calculate enthalpy of reaction Matlockite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Matlockite +# Enthalpy of formation: 0 kcal/mol Maximum_Microcline KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 log_k -0.2753 - -delta_H -23.9408 kJ/mol # Calculated enthalpy of reaction Maximum_Microcline -# Enthalpy of formation: -949.188 kcal/mol + -delta_H -23.9408 kJ/mol # Calculated enthalpy of reaction Maximum_Microcline +# Enthalpy of formation: -949.188 kcal/mol -analytic -9.4387e+0 1.3561e-2 1.2656e+4 -7.4925e+0 -1.6795e+6 # -Range: 0-300 Mayenite Ca12Al14O33 + 66 H+ = 12 Ca+2 + 14 Al+3 + 33 H2O log_k 494.2199 - -delta_H -4056.77 kJ/mol # Calculated enthalpy of reaction Mayenite -# Enthalpy of formation: -4644 kcal/mol + -delta_H -4056.77 kJ/mol # Calculated enthalpy of reaction Mayenite +# Enthalpy of formation: -4644 kcal/mol -analytic -1.4778e+3 -2.9898e-1 2.4918e+5 4.9518e+2 4.2319e+3 # -Range: 0-200 Melanterite FeSO4:7H2O = Fe+2 + SO4-2 + 7 H2O log_k -2.349 - -delta_H 11.7509 kJ/mol # Calculated enthalpy of reaction Melanterite -# Enthalpy of formation: -3014.48 kJ/mol + -delta_H 11.7509 kJ/mol # Calculated enthalpy of reaction Melanterite +# Enthalpy of formation: -3014.48 kJ/mol -analytic -2.623e+2 -7.2469e-2 6.5854e+3 1.0484e+2 1.0284e+2 # -Range: 0-300 Mercallite KHSO4 = H+ + K+ + SO4-2 log_k -1.4389 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mercallite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Mercallite +# Enthalpy of formation: 0 kcal/mol Merwinite MgCa3(SiO4)2 + 8 H+ = Mg+2 + 2 SiO2 + 3 Ca+2 + 4 H2O log_k 68.514 - -delta_H -430.069 kJ/mol # Calculated enthalpy of reaction Merwinite -# Enthalpy of formation: -1090.8 kcal/mol + -delta_H -430.069 kJ/mol # Calculated enthalpy of reaction Merwinite +# Enthalpy of formation: -1090.8 kcal/mol -analytic -2.2524e+2 -4.2525e-2 3.5619e+4 7.9984e+1 -9.8259e+5 # -Range: 0-300 Mesolite Na.676Ca.657Al1.99Si3.01O10:2.647H2O + 7.96 H+ = 0.657 Ca+2 + 0.676 Na+ + 1.99 Al+3 + 3.01 SiO2 + 6.627 H2O log_k 13.6191 - -delta_H -179.744 kJ/mol # Calculated enthalpy of reaction Mesolite -# Enthalpy of formation: -5947.05 kJ/mol + -delta_H -179.744 kJ/mol # Calculated enthalpy of reaction Mesolite +# Enthalpy of formation: -5947.05 kJ/mol -analytic 7.1993e+0 5.9356e-3 1.4717e+4 -1.3627e+1 -9.8863e+5 # -Range: 0-300 Metacinnabar HgS + H+ = HS- + Hg+2 log_k -38.5979 - -delta_H 203.426 kJ/mol # Calculated enthalpy of reaction Metacinnabar -# Enthalpy of formation: -11.8 kcal/mol + -delta_H 203.426 kJ/mol # Calculated enthalpy of reaction Metacinnabar +# Enthalpy of formation: -11.8 kcal/mol -analytic -1.5399e+2 -4.674e-2 -6.7875e+3 6.1456e+1 -1.0587e+2 # -Range: 0-300 Mg Mg + 2 H+ + 0.5 O2 = H2O + Mg+2 log_k 122.5365 - -delta_H -745.731 kJ/mol # Calculated enthalpy of reaction Mg -# Enthalpy of formation: 0 kJ/mol + -delta_H -745.731 kJ/mol # Calculated enthalpy of reaction Mg +# Enthalpy of formation: 0 kJ/mol -analytic -6.5988e+1 -1.9356e-2 4.0318e+4 2.3862e+1 6.2914e+2 # -Range: 0-300 Mg1.25SO4(OH)0.5:0.5H2O Mg1.25SO4(OH)0.5:0.5H2O + 0.5 H+ = H2O + SO4-2 + 1.25 Mg+2 log_k 5.26 - -delta_H -97.1054 kJ/mol # Calculated enthalpy of reaction Mg1.25SO4(OH)0.5:0.5H2O -# Enthalpy of formation: -401.717 kcal/mol + -delta_H -97.1054 kJ/mol # Calculated enthalpy of reaction Mg1.25SO4(OH)0.5:0.5H2O +# Enthalpy of formation: -401.717 kcal/mol -analytic -2.6791e+2 -8.7078e-2 1.109e+4 1.0583e+2 1.7312e+2 # -Range: 0-300 Mg1.5SO4(OH) Mg1.5SO4(OH) + H+ = H2O + SO4-2 + 1.5 Mg+2 log_k 9.2551 - -delta_H -125.832 kJ/mol # Calculated enthalpy of reaction Mg1.5SO4(OH) -# Enthalpy of formation: -422.693 kcal/mol + -delta_H -125.832 kJ/mol # Calculated enthalpy of reaction Mg1.5SO4(OH) +# Enthalpy of formation: -422.693 kcal/mol -analytic -2.8698e+2 -9.197e-2 1.3088e+4 1.1304e+2 2.0432e+2 # -Range: 0-300 Mg2V2O7 Mg2V2O7 + H2O = 2 H+ + 2 Mg+2 + 2 VO4-3 log_k -30.9025 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mg2V2O7 -# Enthalpy of formation: -2836.23 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Mg2V2O7 +# Enthalpy of formation: -2836.23 kJ/mol MgBr2 MgBr2 = Mg+2 + 2 Br- log_k 28.5302 - -delta_H -190.15 kJ/mol # Calculated enthalpy of reaction MgBr2 -# Enthalpy of formation: -124 kcal/mol + -delta_H -190.15 kJ/mol # Calculated enthalpy of reaction MgBr2 +# Enthalpy of formation: -124 kcal/mol -analytic -2.1245e+2 -7.6168e-2 1.4466e+4 8.694e+1 2.2579e+2 # -Range: 0-300 MgBr2:6H2O MgBr2:6H2O = Mg+2 + 2 Br- + 6 H2O log_k 5.1656 - -delta_H -14.2682 kJ/mol # Calculated enthalpy of reaction MgBr2:6H2O -# Enthalpy of formation: -2409.73 kJ/mol + -delta_H -14.2682 kJ/mol # Calculated enthalpy of reaction MgBr2:6H2O +# Enthalpy of formation: -2409.73 kJ/mol -analytic -1.3559e+2 -1.6479e-2 5.8571e+3 5.0924e+1 9.9508e+1 # -Range: 0-200 MgCl2:2H2O MgCl2:2H2O = Mg+2 + 2 Cl- + 2 H2O log_k 12.7763 - -delta_H -92.0895 kJ/mol # Calculated enthalpy of reaction MgCl2:2H2O -# Enthalpy of formation: -1279.71 kJ/mol + -delta_H -92.0895 kJ/mol # Calculated enthalpy of reaction MgCl2:2H2O +# Enthalpy of formation: -1279.71 kJ/mol -analytic -2.5409e+2 -8.1413e-2 1.0941e+4 1.0281e+2 1.708e+2 # -Range: 0-300 MgCl2:4H2O MgCl2:4H2O = Mg+2 + 2 Cl- + 4 H2O log_k 7.3581 - -delta_H -44.4602 kJ/mol # Calculated enthalpy of reaction MgCl2:4H2O -# Enthalpy of formation: -1899.01 kJ/mol + -delta_H -44.4602 kJ/mol # Calculated enthalpy of reaction MgCl2:4H2O +# Enthalpy of formation: -1899.01 kJ/mol -analytic -2.7604e+2 -8.1648e-2 9.5501e+3 1.114e+2 1.491e+2 # -Range: 0-300 MgCl2:H2O MgCl2:H2O = H2O + Mg+2 + 2 Cl- log_k 16.1187 - -delta_H -119.326 kJ/mol # Calculated enthalpy of reaction MgCl2:H2O -# Enthalpy of formation: -966.631 kJ/mol + -delta_H -119.326 kJ/mol # Calculated enthalpy of reaction MgCl2:H2O +# Enthalpy of formation: -966.631 kJ/mol -analytic -2.4414e+2 -8.131e-2 1.1862e+4 9.8878e+1 1.8516e+2 # -Range: 0-300 MgOHCl MgOHCl + H+ = Cl- + H2O + Mg+2 log_k 15.9138 - -delta_H -118.897 kJ/mol # Calculated enthalpy of reaction MgOHCl -# Enthalpy of formation: -191.2 kcal/mol + -delta_H -118.897 kJ/mol # Calculated enthalpy of reaction MgOHCl +# Enthalpy of formation: -191.2 kcal/mol -analytic -1.6614e+2 -4.9715e-2 1.0311e+4 6.5578e+1 1.6093e+2 # -Range: 0-300 MgSO4 MgSO4 = Mg+2 + SO4-2 log_k 4.8781 - -delta_H -90.6421 kJ/mol # Calculated enthalpy of reaction MgSO4 -# Enthalpy of formation: -1284.92 kJ/mol + -delta_H -90.6421 kJ/mol # Calculated enthalpy of reaction MgSO4 +# Enthalpy of formation: -1284.92 kJ/mol -analytic -2.2439e+2 -7.9688e-2 9.3058e+3 8.9622e+1 1.4527e+2 # -Range: 0-300 MgSeO3 MgSeO3 = Mg+2 + SeO3-2 log_k 1.7191 - -delta_H -74.9647 kJ/mol # Calculated enthalpy of reaction MgSeO3 -# Enthalpy of formation: -215.15 kcal/mol + -delta_H -74.9647 kJ/mol # Calculated enthalpy of reaction MgSeO3 +# Enthalpy of formation: -215.15 kcal/mol -analytic -2.2593e+2 -8.1045e-2 8.4609e+3 9.0278e+1 1.3209e+2 # -Range: 0-300 MgSeO3:6H2O MgSeO3:6H2O = Mg+2 + SeO3-2 + 6 H2O log_k -3.4222 - -delta_H 11.7236 kJ/mol # Calculated enthalpy of reaction MgSeO3:6H2O -# Enthalpy of formation: -645.771 kcal/mol + -delta_H 11.7236 kJ/mol # Calculated enthalpy of reaction MgSeO3:6H2O +# Enthalpy of formation: -645.771 kcal/mol -analytic -1.2807e+2 -1.5418e-2 4.0565e+3 4.6728e+1 6.8929e+1 # -Range: 0-200 MgUO4 MgUO4 + 4 H+ = Mg+2 + UO2+2 + 2 H2O log_k 23.0023 - -delta_H -199.336 kJ/mol # Calculated enthalpy of reaction MgUO4 -# Enthalpy of formation: -1857.3 kJ/mol + -delta_H -199.336 kJ/mol # Calculated enthalpy of reaction MgUO4 +# Enthalpy of formation: -1857.3 kJ/mol -analytic -9.9954e+1 -2.0142e-2 1.3078e+4 3.4386e+1 2.041e+2 # -Range: 0-300 MgV2O6 MgV2O6 + 2 H2O = Mg+2 + 2 VO4-3 + 4 H+ log_k -45.8458 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgV2O6 -# Enthalpy of formation: -2201.88 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MgV2O6 +# Enthalpy of formation: -2201.88 kJ/mol Millerite NiS + H+ = HS- + Ni+2 log_k -8.0345 - -delta_H 12.089 kJ/mol # Calculated enthalpy of reaction Millerite -# Enthalpy of formation: -82.171 kJ/mol + -delta_H 12.089 kJ/mol # Calculated enthalpy of reaction Millerite +# Enthalpy of formation: -82.171 kJ/mol -analytic -1.4848e+2 -4.8834e-2 2.6981e+3 5.8976e+1 4.2145e+1 # -Range: 0-300 Minium Pb3O4 + 8 H+ = Pb+4 + 2 Pb+2 + 4 H2O log_k 16.2585 - -delta_H 0 # Not possible to calculate enthalpy of reaction Minium -# Enthalpy of formation: -718.493 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Minium +# Enthalpy of formation: -718.493 kJ/mol Minnesotaite Fe3Si4O10(OH)2 + 6 H+ = 3 Fe+2 + 4 H2O + 4 SiO2 log_k 13.9805 - -delta_H -105.211 kJ/mol # Calculated enthalpy of reaction Minnesotaite -# Enthalpy of formation: -1153.37 kcal/mol + -delta_H -105.211 kJ/mol # Calculated enthalpy of reaction Minnesotaite +# Enthalpy of formation: -1153.37 kcal/mol -analytic -1.8812e+1 1.7261e-2 1.9804e+4 -6.441e+0 -2.0433e+6 # -Range: 0-300 Mirabilite Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O log_k -1.1398 - -delta_H 79.4128 kJ/mol # Calculated enthalpy of reaction Mirabilite -# Enthalpy of formation: -4328 kJ/mol + -delta_H 79.4128 kJ/mol # Calculated enthalpy of reaction Mirabilite +# Enthalpy of formation: -4328 kJ/mol -analytic -2.1877e+2 -3.6692e-3 5.9214e+3 8.0361e+1 1.0063e+2 # -Range: 0-200 Misenite K8H6(SO4)7 = 6 H+ + 7 SO4-2 + 8 K+ log_k -11.0757 - -delta_H 0 # Not possible to calculate enthalpy of reaction Misenite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Misenite +# Enthalpy of formation: 0 kcal/mol Mn Mn + 2 H+ + 0.5 O2 = H2O + Mn+2 log_k 82.9505 - -delta_H -500.369 kJ/mol # Calculated enthalpy of reaction Mn -# Enthalpy of formation: 0 kJ/mol + -delta_H -500.369 kJ/mol # Calculated enthalpy of reaction Mn +# Enthalpy of formation: 0 kJ/mol -analytic -6.5558e+1 -2.0429e-2 2.7571e+4 2.5098e+1 4.3024e+2 # -Range: 0-300 Mn(OH)2(am) Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O log_k 15.3102 - -delta_H -97.1779 kJ/mol # Calculated enthalpy of reaction Mn(OH)2(am) -# Enthalpy of formation: -695.096 kJ/mol + -delta_H -97.1779 kJ/mol # Calculated enthalpy of reaction Mn(OH)2(am) +# Enthalpy of formation: -695.096 kJ/mol -analytic -7.8518e+1 -7.5357e-3 8.0198e+3 2.7955e+1 1.3621e+2 # -Range: 0-200 Mn(OH)3 Mn(OH)3 + 3 H+ = Mn+3 + 3 H2O log_k 6.3412 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)3 +# Enthalpy of formation: 0 kcal/mol Mn3(PO4)2 Mn3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 Mn+2 log_k 0.8167 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn3(PO4)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn3(PO4)2 +# Enthalpy of formation: 0 kcal/mol MnCl2:2H2O MnCl2:2H2O = Mn+2 + 2 Cl- + 2 H2O log_k 4.0067 - -delta_H -34.4222 kJ/mol # Calculated enthalpy of reaction MnCl2:2H2O -# Enthalpy of formation: -1092.01 kJ/mol + -delta_H -34.4222 kJ/mol # Calculated enthalpy of reaction MnCl2:2H2O +# Enthalpy of formation: -1092.01 kJ/mol -analytic -6.2823e+1 -2.3959e-2 2.9931e+3 2.5834e+1 5.085e+1 # -Range: 0-200 MnCl2:4H2O MnCl2:4H2O = Mn+2 + 2 Cl- + 4 H2O log_k 2.7563 - -delta_H -10.7019 kJ/mol # Calculated enthalpy of reaction MnCl2:4H2O -# Enthalpy of formation: -1687.41 kJ/mol + -delta_H -10.7019 kJ/mol # Calculated enthalpy of reaction MnCl2:4H2O +# Enthalpy of formation: -1687.41 kJ/mol -analytic -1.1049e+2 -2.3376e-2 4.0458e+3 4.3097e+1 6.8742e+1 # -Range: 0-200 MnCl2:H2O MnCl2:H2O = H2O + Mn+2 + 2 Cl- log_k 5.5517 - -delta_H -50.8019 kJ/mol # Calculated enthalpy of reaction MnCl2:H2O -# Enthalpy of formation: -789.793 kJ/mol + -delta_H -50.8019 kJ/mol # Calculated enthalpy of reaction MnCl2:H2O +# Enthalpy of formation: -789.793 kJ/mol -analytic -4.5051e+1 -2.5923e-2 2.8739e+3 1.9674e+1 4.8818e+1 # -Range: 0-200 MnHPO4 MnHPO4 = HPO4-2 + Mn+2 log_k -12.947 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnHPO4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnHPO4 +# Enthalpy of formation: 0 kcal/mol MnO2(gamma) MnO2 = 0.5 Mn+2 + 0.5 MnO4-2 log_k -16.1261 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnO2(gamma) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnO2(gamma) +# Enthalpy of formation: 0 kcal/mol MnSO4 MnSO4 = Mn+2 + SO4-2 log_k 2.6561 - -delta_H -64.8718 kJ/mol # Calculated enthalpy of reaction MnSO4 -# Enthalpy of formation: -1065.33 kJ/mol + -delta_H -64.8718 kJ/mol # Calculated enthalpy of reaction MnSO4 +# Enthalpy of formation: -1065.33 kJ/mol -analytic -2.3088e+2 -8.2694e-2 8.1653e+3 9.3256e+1 1.2748e+2 # -Range: 0-300 MnSe MnSe = Mn+2 + Se-2 log_k -10.6848 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnSe -# Enthalpy of formation: -37 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnSe +# Enthalpy of formation: -37 kcal/mol -analytic -5.996e+1 -1.5963e-2 1.2813e+3 2.0095e+1 2.001e+1 # -Range: 0-300 MnSeO3 MnSeO3 = Mn+2 + SeO3-2 log_k -7.27 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnSeO3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnSeO3 +# Enthalpy of formation: 0 kcal/mol MnSeO3:2H2O MnSeO3:2H2O = Mn+2 + SeO3-2 + 2 H2O log_k -6.3219 - -delta_H 14.0792 kJ/mol # Calculated enthalpy of reaction MnSeO3:2H2O -# Enthalpy of formation: -314.423 kcal/mol + -delta_H 14.0792 kJ/mol # Calculated enthalpy of reaction MnSeO3:2H2O +# Enthalpy of formation: -314.423 kcal/mol -analytic -4.3625e+1 -2.0426e-2 -2.5368e+2 1.7876e+1 -4.2927e+0 # -Range: 0-200 MnV2O6 MnV2O6 + 2 H2O = Mn+2 + 2 VO4-3 + 4 H+ log_k -52.0751 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnV2O6 -# Enthalpy of formation: -447.9 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnV2O6 +# Enthalpy of formation: -447.9 kcal/mol Mo Mo + 1.5 O2 + H2O = MoO4-2 + 2 H+ log_k 109.323 - -delta_H -693.845 kJ/mol # Calculated enthalpy of reaction Mo -# Enthalpy of formation: 0 kJ/mol + -delta_H -693.845 kJ/mol # Calculated enthalpy of reaction Mo +# Enthalpy of formation: 0 kJ/mol -analytic -2.0021e+2 -8.3006e-2 4.1629e+4 8.0219e+1 -3.457e+5 # -Range: 0-300 MoSe2 MoSe2 + 3 H2O + 0.5 O2 = MoO4-2 + 2 Se-2 + 6 H+ log_k -55.1079 - -delta_H 0 # Not possible to calculate enthalpy of reaction MoSe2 -# Enthalpy of formation: -47 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MoSe2 +# Enthalpy of formation: -47 kcal/mol -analytic 1.3882e+2 -1.859e-3 -1.7231e+4 -5.4797e+1 -2.9265e+2 # -Range: 0-200 Modderite CoAs + 3 H+ = AsH3 + Co+3 log_k -49.5512 - -delta_H 189.016 kJ/mol # Calculated enthalpy of reaction Modderite -# Enthalpy of formation: -12.208 kcal/mol + -delta_H 189.016 kJ/mol # Calculated enthalpy of reaction Modderite +# Enthalpy of formation: -12.208 kcal/mol Molysite FeCl3 = Fe+3 + 3 Cl- log_k 13.5517 - -delta_H -151.579 kJ/mol # Calculated enthalpy of reaction Molysite -# Enthalpy of formation: -399.24 kJ/mol + -delta_H -151.579 kJ/mol # Calculated enthalpy of reaction Molysite +# Enthalpy of formation: -399.24 kJ/mol -analytic -3.181e+2 -1.2357e-1 1.386e+4 1.301e+2 2.1637e+2 # -Range: 0-300 Monohydrocalcite CaCO3:H2O + H+ = Ca+2 + H2O + HCO3- log_k 2.6824 - -delta_H -20.5648 kJ/mol # Calculated enthalpy of reaction Monohydrocalcite -# Enthalpy of formation: -1498.29 kJ/mol + -delta_H -20.5648 kJ/mol # Calculated enthalpy of reaction Monohydrocalcite +# Enthalpy of formation: -1498.29 kJ/mol -analytic -7.2614e+1 -1.7217e-2 3.185e+3 2.8185e+1 5.4111e+1 # -Range: 0-200 Monteponite CdO + 2 H+ = Cd+2 + H2O log_k 15.0972 - -delta_H -103.386 kJ/mol # Calculated enthalpy of reaction Monteponite -# Enthalpy of formation: -258.35 kJ/mol + -delta_H -103.386 kJ/mol # Calculated enthalpy of reaction Monteponite +# Enthalpy of formation: -258.35 kJ/mol -analytic -5.0057e+1 -6.3629e-3 7.0898e+3 1.7486e+1 1.2041e+2 # -Range: 0-200 Monticellite CaMgSiO4 + 4 H+ = Ca+2 + Mg+2 + SiO2 + 2 H2O log_k 29.5852 - -delta_H -195.711 kJ/mol # Calculated enthalpy of reaction Monticellite -# Enthalpy of formation: -540.8 kcal/mol + -delta_H -195.711 kJ/mol # Calculated enthalpy of reaction Monticellite +# Enthalpy of formation: -540.8 kcal/mol -analytic 1.573e+1 -3.5567e-3 9.0789e+3 -6.3007e+0 1.4166e+2 # -Range: 0-300 Montmor-Ca Ca.165Mg.33Al1.67Si4O10(OH)2 + 6 H+ = 0.165 Ca+2 + 0.33 Mg+2 + 1.67 Al+3 + 4 H2O + 4 SiO2 log_k 2.4952 - -delta_H -100.154 kJ/mol # Calculated enthalpy of reaction Montmor-Ca -# Enthalpy of formation: -1361.5 kcal/mol + -delta_H -100.154 kJ/mol # Calculated enthalpy of reaction Montmor-Ca +# Enthalpy of formation: -1361.5 kcal/mol -analytic 6.0725e+0 1.0644e-2 1.6024e+4 -1.6334e+1 -1.7982e+6 # -Range: 0-300 Montmor-Cs Cs.33Mg.33Al1.67Si4O10(OH)2 + 6 H+ = 0.33 Cs+ + 0.33 Mg+2 + 1.67 Al+3 + 4 H2O + 4 SiO2 log_k 1.9913 - -delta_H -87.2259 kJ/mol # Calculated enthalpy of reaction Montmor-Cs -# Enthalpy of formation: -1363.52 kcal/mol + -delta_H -87.2259 kJ/mol # Calculated enthalpy of reaction Montmor-Cs +# Enthalpy of formation: -1363.52 kcal/mol -analytic 9.9136e+0 1.2496e-2 1.565e+4 -1.7601e+1 -1.8434e+6 # -Range: 0-300 Montmor-K K.33Mg.33Al1.67Si4O10(OH)2 + 6 H+ = 0.33 K+ + 0.33 Mg+2 + 1.67 Al+3 + 4 H2O + 4 SiO2 log_k 2.1423 - -delta_H -88.184 kJ/mol # Calculated enthalpy of reaction Montmor-K -# Enthalpy of formation: -1362.83 kcal/mol + -delta_H -88.184 kJ/mol # Calculated enthalpy of reaction Montmor-K +# Enthalpy of formation: -1362.83 kcal/mol -analytic 8.4757e+0 1.1219e-2 1.5654e+4 -1.6833e+1 -1.8386e+6 # -Range: 0-300 Montmor-Mg Mg.495Al1.67Si4O10(OH)2 + 6 H+ = 0.495 Mg+2 + 1.67 Al+3 + 4 H2O + 4 SiO2 log_k 2.3879 - -delta_H -102.608 kJ/mol # Calculated enthalpy of reaction Montmor-Mg -# Enthalpy of formation: -1357.87 kcal/mol + -delta_H -102.608 kJ/mol # Calculated enthalpy of reaction Montmor-Mg +# Enthalpy of formation: -1357.87 kcal/mol -analytic -6.8505e+0 9.071e-3 1.6817e+4 -1.1887e+1 -1.8323e+6 # -Range: 0-300 Montmor-Na Na.33Mg.33Al1.67Si4O10(OH)2 + 6 H+ = 0.33 Mg+2 + 0.33 Na+ + 1.67 Al+3 + 4 H2O + 4 SiO2 log_k 2.4844 - -delta_H -93.2165 kJ/mol # Calculated enthalpy of reaction Montmor-Na -# Enthalpy of formation: -1360.69 kcal/mol + -delta_H -93.2165 kJ/mol # Calculated enthalpy of reaction Montmor-Na +# Enthalpy of formation: -1360.69 kcal/mol -analytic 1.9601e+0 1.1342e-2 1.6051e+4 -1.4718e+1 -1.816e+6 # -Range: 0-300 Montroydite HgO + 2 H+ = H2O + Hg+2 log_k 2.4486 - -delta_H -24.885 kJ/mol # Calculated enthalpy of reaction Montroydite -# Enthalpy of formation: -90.79 kJ/mol + -delta_H -24.885 kJ/mol # Calculated enthalpy of reaction Montroydite +# Enthalpy of formation: -90.79 kJ/mol -analytic -8.7302e+1 -1.7618e-2 4.0086e+3 3.2957e+1 6.2576e+1 # -Range: 0-300 Mordenite Ca.2895Na.361Al.94Si5.06O12:3.468H2O + 3.76 H+ = 0.2895 Ca+2 + 0.361 Na+ + 0.94 Al+3 + 5.06 SiO2 + 5.348 H2O log_k -5.1969 - -delta_H 16.7517 kJ/mol # Calculated enthalpy of reaction Mordenite -# Enthalpy of formation: -6736.64 kJ/mol + -delta_H 16.7517 kJ/mol # Calculated enthalpy of reaction Mordenite +# Enthalpy of formation: -6736.64 kJ/mol -analytic -5.4675e+1 3.2513e-2 2.3412e+4 -1.0419e+0 -3.2292e+6 # -Range: 0-300 Mordenite-dehy Ca.2895Na.361Al.94Si5.06O12 + 3.76 H+ = 0.2895 Ca+2 + 0.361 Na+ + 0.94 Al+3 + 1.88 H2O + 5.06 SiO2 log_k 9.9318 - -delta_H -86.159 kJ/mol # Calculated enthalpy of reaction Mordenite-dehy -# Enthalpy of formation: -5642.44 kJ/mol + -delta_H -86.159 kJ/mol # Calculated enthalpy of reaction Mordenite-dehy +# Enthalpy of formation: -5642.44 kJ/mol -analytic -5.0841e+1 2.5405e-2 2.7621e+4 -1.6331e+0 -3.1618e+6 # -Range: 0-300 Morenosite NiSO4:7H2O = Ni+2 + SO4-2 + 7 H2O log_k -2.014 - -delta_H 12.0185 kJ/mol # Calculated enthalpy of reaction Morenosite -# Enthalpy of formation: -2976.46 kJ/mol + -delta_H 12.0185 kJ/mol # Calculated enthalpy of reaction Morenosite +# Enthalpy of formation: -2976.46 kJ/mol -analytic -2.6654e+2 -7.2132e-2 6.7983e+3 1.0636e+2 1.0616e+2 # -Range: 0-300 Muscovite KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 SiO2 + 6 H2O log_k 13.5858 - -delta_H -243.224 kJ/mol # Calculated enthalpy of reaction Muscovite -# Enthalpy of formation: -1427.41 kcal/mol + -delta_H -243.224 kJ/mol # Calculated enthalpy of reaction Muscovite +# Enthalpy of formation: -1427.41 kcal/mol -analytic 3.3085e+1 -1.2425e-2 1.2477e+4 -2.0865e+1 -5.4692e+5 # -Range: 0-300 NH4HSe NH4HSe = NH3 + Se-2 + 2 H+ log_k -22.0531 - -delta_H 0 # Not possible to calculate enthalpy of reaction NH4HSe -# Enthalpy of formation: -133.041 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NH4HSe +# Enthalpy of formation: -133.041 kJ/mol -analytic -8.8685e+0 6.7342e-3 -5.3028e+3 1.0468e+0 -9.0046e+1 # -Range: 0-200 Na Na + H+ + 0.25 O2 = 0.5 H2O + Na+ log_k 67.3804 - -delta_H -380.185 kJ/mol # Calculated enthalpy of reaction Na -# Enthalpy of formation: 0 kJ/mol + -delta_H -380.185 kJ/mol # Calculated enthalpy of reaction Na +# Enthalpy of formation: 0 kJ/mol -analytic -4.0458e+1 -8.7899e-3 2.1223e+4 1.5927e+1 -1.2715e+4 # -Range: 0-300 Na2CO3 Na2CO3 + H+ = HCO3- + 2 Na+ log_k 11.1822 - -delta_H -39.8526 kJ/mol # Calculated enthalpy of reaction Na2CO3 -# Enthalpy of formation: -1130.68 kJ/mol + -delta_H -39.8526 kJ/mol # Calculated enthalpy of reaction Na2CO3 +# Enthalpy of formation: -1130.68 kJ/mol -analytic -1.5495e+2 -4.3374e-2 6.4821e+3 6.3571e+1 1.0119e+2 # -Range: 0-300 Na2CO3:7H2O Na2CO3:7H2O + H+ = HCO3- + 2 Na+ + 7 H2O log_k 9.9459 - -delta_H 27.7881 kJ/mol # Calculated enthalpy of reaction Na2CO3:7H2O -# Enthalpy of formation: -3199.19 kJ/mol + -delta_H 27.7881 kJ/mol # Calculated enthalpy of reaction Na2CO3:7H2O +# Enthalpy of formation: -3199.19 kJ/mol -analytic -2.0593e+2 -3.4509e-3 8.1601e+3 7.6594e+1 1.3864e+2 # -Range: 0-200 Na2Cr2O7 Na2Cr2O7 + H2O = 2 CrO4-2 + 2 H+ + 2 Na+ log_k -10.1597 - -delta_H 21.9702 kJ/mol # Calculated enthalpy of reaction Na2Cr2O7 -# Enthalpy of formation: -473 kcal/mol + -delta_H 21.9702 kJ/mol # Calculated enthalpy of reaction Na2Cr2O7 +# Enthalpy of formation: -473 kcal/mol -analytic 4.4885e+1 -2.4919e-2 -5.0321e+3 -1.243e+1 -8.5468e+1 # -Range: 0-200 Na2CrO4 Na2CrO4 = CrO4-2 + 2 Na+ log_k 2.9103 - -delta_H -19.5225 kJ/mol # Calculated enthalpy of reaction Na2CrO4 -# Enthalpy of formation: -320.8 kcal/mol + -delta_H -19.5225 kJ/mol # Calculated enthalpy of reaction Na2CrO4 +# Enthalpy of formation: -320.8 kcal/mol -analytic 5.4985e+0 -9.9008e-3 1.051e+2 0e+0 0e+0 # -Range: 0-200 Na2O Na2O + 2 H+ = H2O + 2 Na+ log_k 67.4269 - -delta_H -351.636 kJ/mol # Calculated enthalpy of reaction Na2O -# Enthalpy of formation: -99.14 kcal/mol + -delta_H -351.636 kJ/mol # Calculated enthalpy of reaction Na2O +# Enthalpy of formation: -99.14 kcal/mol -analytic -6.3585e+1 -8.4695e-3 2.0923e+4 2.5601e+1 3.2651e+2 # -Range: 0-300 Na2Se Na2Se = Se-2 + 2 Na+ log_k 11.8352 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na2Se -# Enthalpy of formation: -81.9 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Na2Se +# Enthalpy of formation: -81.9 kcal/mol -analytic -6.007e+0 8.2821e-3 4.5816e+3 0e+0 0e+0 # -Range: 0-200 Na2Se2 Na2Se2 + H2O = 0.5 O2 + 2 H+ + 2 Na+ + 2 Se-2 log_k -61.3466 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na2Se2 -# Enthalpy of formation: -92.8 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Na2Se2 +# Enthalpy of formation: -92.8 kcal/mol -analytic -2.7836e+1 7.7035e-3 -1.504e+4 5.9131e+0 -2.5539e+2 # -Range: 0-200 Na2SiO3 Na2SiO3 + 2 H+ = H2O + SiO2 + 2 Na+ log_k 22.2418 - -delta_H -82.7093 kJ/mol # Calculated enthalpy of reaction Na2SiO3 -# Enthalpy of formation: -373.19 kcal/mol + -delta_H -82.7093 kJ/mol # Calculated enthalpy of reaction Na2SiO3 +# Enthalpy of formation: -373.19 kcal/mol -analytic -3.4928e+1 5.6905e-3 1.0284e+4 1.1197e+1 -6.0134e+5 # -Range: 0-300 Na2U2O7 Na2U2O7 + 6 H+ = 2 Na+ + 2 UO2+2 + 3 H2O log_k 22.5917 - -delta_H -172.314 kJ/mol # Calculated enthalpy of reaction Na2U2O7 -# Enthalpy of formation: -3203.8 kJ/mol + -delta_H -172.314 kJ/mol # Calculated enthalpy of reaction Na2U2O7 +# Enthalpy of formation: -3203.8 kJ/mol -analytic -8.664e+1 -1.0903e-2 1.1841e+4 2.9406e+1 1.8479e+2 # -Range: 0-300 Na2UO4(alpha) Na2UO4 + 4 H+ = UO2+2 + 2 H2O + 2 Na+ log_k 30.0231 - -delta_H -173.576 kJ/mol # Calculated enthalpy of reaction Na2UO4(alpha) -# Enthalpy of formation: -1897.7 kJ/mol + -delta_H -173.576 kJ/mol # Calculated enthalpy of reaction Na2UO4(alpha) +# Enthalpy of formation: -1897.7 kJ/mol -analytic -7.9767e+1 -1.0253e-2 1.1963e+4 2.9386e+1 1.8669e+2 # -Range: 0-300 Na3H(SO4)2 Na3H(SO4)2 = H+ + 2 SO4-2 + 3 Na+ log_k -0.8906 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na3H(SO4)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Na3H(SO4)2 +# Enthalpy of formation: 0 kcal/mol Na3UO4 Na3UO4 + 4 H+ = UO2+ + 2 H2O + 3 Na+ log_k 56.2574 - -delta_H -293.703 kJ/mol # Calculated enthalpy of reaction Na3UO4 -# Enthalpy of formation: -2024 kJ/mol + -delta_H -293.703 kJ/mol # Calculated enthalpy of reaction Na3UO4 +# Enthalpy of formation: -2024 kJ/mol -analytic -9.6724e+1 -6.2485e-3 1.9469e+4 3.618e+1 3.0382e+2 # -Range: 0-300 Na4Ca(SO4)3:2H2O Na4Ca(SO4)3:2H2O = Ca+2 + 2 H2O + 3 SO4-2 + 4 Na+ log_k -5.8938 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na4Ca(SO4)3:2H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Na4Ca(SO4)3:2H2O +# Enthalpy of formation: 0 kcal/mol Na4SiO4 Na4SiO4 + 4 H+ = SiO2 + 2 H2O + 4 Na+ log_k 70.6449 - -delta_H -327.779 kJ/mol # Calculated enthalpy of reaction Na4SiO4 -# Enthalpy of formation: -497.8 kcal/mol + -delta_H -327.779 kJ/mol # Calculated enthalpy of reaction Na4SiO4 +# Enthalpy of formation: -497.8 kcal/mol -analytic -1.1969e+2 -6.5032e-3 2.6469e+4 4.4626e+1 -6.2007e+5 # -Range: 0-300 Na4UO2(CO3)3 Na4UO2(CO3)3 + 3 H+ = UO2+2 + 3 HCO3- + 4 Na+ log_k 4.0395 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na4UO2(CO3)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Na4UO2(CO3)3 +# Enthalpy of formation: 0 kcal/mol Na6Si2O7 Na6Si2O7 + 6 H+ = 2 SiO2 + 3 H2O + 6 Na+ log_k 101.6199 - -delta_H -471.951 kJ/mol # Calculated enthalpy of reaction Na6Si2O7 -# Enthalpy of formation: -856.3 kcal/mol + -delta_H -471.951 kJ/mol # Calculated enthalpy of reaction Na6Si2O7 +# Enthalpy of formation: -856.3 kcal/mol -analytic -1.059e+2 4.5576e-3 3.683e+4 3.803e+1 -1.0276e+6 # -Range: 0-300 NaBr NaBr = Br- + Na+ log_k 2.9739 - -delta_H -0.741032 kJ/mol # Calculated enthalpy of reaction NaBr -# Enthalpy of formation: -361.062 kJ/mol + -delta_H -0.741032 kJ/mol # Calculated enthalpy of reaction NaBr +# Enthalpy of formation: -361.062 kJ/mol -analytic -9.3227e+1 -3.278e-2 2.291e+3 3.9713e+1 3.5777e+1 # -Range: 0-300 NaBr:2H2O NaBr:2H2O = Br- + Na+ + 2 H2O log_k 2.104 - -delta_H 18.4883 kJ/mol # Calculated enthalpy of reaction NaBr:2H2O -# Enthalpy of formation: -951.968 kJ/mol + -delta_H 18.4883 kJ/mol # Calculated enthalpy of reaction NaBr:2H2O +# Enthalpy of formation: -951.968 kJ/mol -analytic -4.1855e+1 -4.617e-3 8.3883e+2 1.7182e+1 1.4259e+1 # -Range: 0-200 NaFeO2 NaFeO2 + 4 H+ = Fe+3 + Na+ + 2 H2O log_k 19.8899 - -delta_H -163.339 kJ/mol # Calculated enthalpy of reaction NaFeO2 -# Enthalpy of formation: -698.218 kJ/mol + -delta_H -163.339 kJ/mol # Calculated enthalpy of reaction NaFeO2 +# Enthalpy of formation: -698.218 kJ/mol -analytic -7.0047e+1 -9.6226e-3 1.0647e+4 2.3071e+1 1.8082e+2 # -Range: 0-200 NaNpO2CO3:3.5H2O NaNpO2CO3:3.5H2O + H+ = HCO3- + Na+ + NpO2+ + 3.5 H2O log_k -1.2342 - -delta_H 27.0979 kJ/mol # Calculated enthalpy of reaction NaNpO2CO3:3.5H2O -# Enthalpy of formation: -2935.76 kJ/mol + -delta_H 27.0979 kJ/mol # Calculated enthalpy of reaction NaNpO2CO3:3.5H2O +# Enthalpy of formation: -2935.76 kJ/mol -analytic -1.4813e+2 -2.7355e-2 3.6537e+3 5.7701e+1 5.7055e+1 # -Range: 0-300 NaTcO4 NaTcO4 = Na+ + TcO4- log_k 1.5208 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaTcO4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NaTcO4 +# Enthalpy of formation: 0 kcal/mol NaUO3 NaUO3 + 2 H+ = H2O + Na+ + UO2+ log_k 8.3371 - -delta_H -56.365 kJ/mol # Calculated enthalpy of reaction NaUO3 -# Enthalpy of formation: -1494.9 kJ/mol + -delta_H -56.365 kJ/mol # Calculated enthalpy of reaction NaUO3 +# Enthalpy of formation: -1494.9 kJ/mol -analytic -3.6363e+1 7.0505e-4 4.5359e+3 1.1828e+1 7.079e+1 # -Range: 0-300 Nahcolite NaHCO3 = HCO3- + Na+ log_k -0.1118 - -delta_H 17.0247 kJ/mol # Calculated enthalpy of reaction Nahcolite -# Enthalpy of formation: -226.4 kcal/mol + -delta_H 17.0247 kJ/mol # Calculated enthalpy of reaction Nahcolite +# Enthalpy of formation: -226.4 kcal/mol -analytic -2.2282e+2 -5.9693e-2 5.4887e+3 8.9744e+1 8.5712e+1 # -Range: 0-300 Nantokite CuCl = Cl- + Cu+ log_k -6.7623 - -delta_H 41.9296 kJ/mol # Calculated enthalpy of reaction Nantokite -# Enthalpy of formation: -137.329 kJ/mol + -delta_H 41.9296 kJ/mol # Calculated enthalpy of reaction Nantokite +# Enthalpy of formation: -137.329 kJ/mol -analytic -2.2442e+1 -1.1201e-2 -1.8709e+3 1.0221e+1 -3.1763e+1 # -Range: 0-200 Natrolite Na2Al2Si3O10:2H2O + 8 H+ = 2 Al+3 + 2 Na+ + 3 SiO2 + 6 H2O log_k 18.5204 - -delta_H -186.971 kJ/mol # Calculated enthalpy of reaction Natrolite -# Enthalpy of formation: -5718.56 kJ/mol + -delta_H -186.971 kJ/mol # Calculated enthalpy of reaction Natrolite +# Enthalpy of formation: -5718.56 kJ/mol -analytic -2.7712e+1 -2.7963e-3 1.6075e+4 1.5332e+0 -9.5765e+5 # -Range: 0-300 Natron Na2CO3:10H2O + H+ = HCO3- + 2 Na+ + 10 H2O log_k 9.6102 - -delta_H 50.4781 kJ/mol # Calculated enthalpy of reaction Natron -# Enthalpy of formation: -4079.39 kJ/mol + -delta_H 50.4781 kJ/mol # Calculated enthalpy of reaction Natron +# Enthalpy of formation: -4079.39 kJ/mol -analytic -1.9981e+2 -2.9247e-2 5.2937e+3 8.0973e+1 8.2662e+1 # -Range: 0-300 Natrosilite Na2Si2O5 + 2 H+ = H2O + 2 Na+ + 2 SiO2 log_k 18.1337 - -delta_H -51.7686 kJ/mol # Calculated enthalpy of reaction Natrosilite -# Enthalpy of formation: -590.36 kcal/mol + -delta_H -51.7686 kJ/mol # Calculated enthalpy of reaction Natrosilite +# Enthalpy of formation: -590.36 kcal/mol -analytic -2.7628e+1 1.6865e-2 1.3302e+4 4.2356e+0 -1.2828e+6 # -Range: 0-300 Naumannite Ag2Se = Se-2 + 2 Ag+ log_k -57.4427 - -delta_H 0 # Not possible to calculate enthalpy of reaction Naumannite -# Enthalpy of formation: -37.441 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Naumannite +# Enthalpy of formation: -37.441 kJ/mol -analytic -5.3844e+1 -1.0965e-2 -1.4739e+4 1.9842e+1 -2.2998e+2 # -Range: 0-300 Nd Nd + 3 H+ + 0.75 O2 = Nd+3 + 1.5 H2O log_k 182.2233 - -delta_H -1116.29 kJ/mol # Calculated enthalpy of reaction Nd -# Enthalpy of formation: 0 kJ/mol + -delta_H -1116.29 kJ/mol # Calculated enthalpy of reaction Nd +# Enthalpy of formation: 0 kJ/mol -analytic -2.739e+2 -5.6545e-2 7.1502e+4 9.7969e+1 -8.2482e+5 # -Range: 0-300 Nd(OH)3 Nd(OH)3 + 3 H+ = Nd+3 + 3 H2O log_k 18.0852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3 +# Enthalpy of formation: 0 kcal/mol Nd(OH)3(am) Nd(OH)3 + 3 H+ = Nd+3 + 3 H2O log_k 20.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3(am) +# Enthalpy of formation: 0 kcal/mol Nd(OH)3(c) Nd(OH)3 + 3 H+ = Nd+3 + 3 H2O log_k 15.7852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3(c) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3(c) +# Enthalpy of formation: 0 kcal/mol Nd2(CO3)3 Nd2(CO3)3 + 3 H+ = 2 Nd+3 + 3 HCO3- log_k -3.6636 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2(CO3)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2(CO3)3 +# Enthalpy of formation: 0 kcal/mol Nd2O3 Nd2O3 + 6 H+ = 2 Nd+3 + 3 H2O log_k 58.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2O3 +# Enthalpy of formation: 0 kcal/mol NdF3:.5H2O NdF3:.5H2O = 0.5 H2O + Nd+3 + 3 F- log_k -18.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdF3:.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NdF3:.5H2O +# Enthalpy of formation: 0 kcal/mol NdOHCO3 NdOHCO3 + 2 H+ = H2O + HCO3- + Nd+3 log_k 2.8239 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdOHCO3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NdOHCO3 +# Enthalpy of formation: 0 kcal/mol NdPO4:10H2O NdPO4:10H2O + H+ = HPO4-2 + Nd+3 + 10 H2O log_k -12.1782 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdPO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NdPO4:10H2O +# Enthalpy of formation: 0 kcal/mol Nepheline NaAlSiO4 + 4 H+ = Al+3 + Na+ + SiO2 + 2 H2O log_k 13.8006 - -delta_H -135.068 kJ/mol # Calculated enthalpy of reaction Nepheline -# Enthalpy of formation: -500.241 kcal/mol + -delta_H -135.068 kJ/mol # Calculated enthalpy of reaction Nepheline +# Enthalpy of formation: -500.241 kcal/mol -analytic -2.4856e+1 -8.8171e-3 8.5653e+3 6.0904e+0 -2.2786e+5 # -Range: 0-300 Nesquehonite MgCO3:3H2O + H+ = HCO3- + Mg+2 + 3 H2O log_k 4.9955 - -delta_H -36.1498 kJ/mol # Calculated enthalpy of reaction Nesquehonite -# Enthalpy of formation: -472.576 kcal/mol + -delta_H -36.1498 kJ/mol # Calculated enthalpy of reaction Nesquehonite +# Enthalpy of formation: -472.576 kcal/mol -analytic 1.3771e+2 -6.0397e-2 -3.5049e+4 -1.8831e+1 4.4213e+6 # -Range: 0-300 Ni Ni + 2 H+ + 0.5 O2 = H2O + Ni+2 log_k 50.9914 - -delta_H -333.745 kJ/mol # Calculated enthalpy of reaction Ni -# Enthalpy of formation: 0 kcal/mol + -delta_H -333.745 kJ/mol # Calculated enthalpy of reaction Ni +# Enthalpy of formation: 0 kcal/mol -analytic -5.8308e+1 -2.0133e-2 1.8444e+4 2.159e+1 2.8781e+2 # -Range: 0-300 Ni(OH)2 Ni(OH)2 + 2 H+ = Ni+2 + 2 H2O log_k 12.7485 - -delta_H -95.6523 kJ/mol # Calculated enthalpy of reaction Ni(OH)2 -# Enthalpy of formation: -529.998 kJ/mol + -delta_H -95.6523 kJ/mol # Calculated enthalpy of reaction Ni(OH)2 +# Enthalpy of formation: -529.998 kJ/mol -analytic -6.5279e+1 -5.9499e-3 7.3471e+3 2.229e+1 1.2479e+2 # -Range: 0-200 Ni2P2O7 Ni2P2O7 + H2O = 2 HPO4-2 + 2 Ni+2 log_k -8.8991 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni2P2O7 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni2P2O7 +# Enthalpy of formation: 0 kcal/mol Ni2SiO4 Ni2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Ni+2 log_k 14.3416 - -delta_H -127.629 kJ/mol # Calculated enthalpy of reaction Ni2SiO4 -# Enthalpy of formation: -341.705 kcal/mol + -delta_H -127.629 kJ/mol # Calculated enthalpy of reaction Ni2SiO4 +# Enthalpy of formation: -341.705 kcal/mol -analytic -4.0414e+1 -1.1194e-2 9.6515e+3 1.2026e+1 -3.6336e+5 # -Range: 0-300 Ni3(PO4)2 Ni3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 Ni+2 log_k -6.6414 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni3(PO4)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni3(PO4)2 +# Enthalpy of formation: 0 kcal/mol NiCO3 NiCO3 + H+ = HCO3- + Ni+2 log_k 3.5118 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiCO3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NiCO3 +# Enthalpy of formation: 0 kcal/mol NiCl2 NiCl2 = Ni+2 + 2 Cl- log_k 8.6113 - -delta_H -82.7969 kJ/mol # Calculated enthalpy of reaction NiCl2 -# Enthalpy of formation: -305.336 kJ/mol + -delta_H -82.7969 kJ/mol # Calculated enthalpy of reaction NiCl2 +# Enthalpy of formation: -305.336 kJ/mol -analytic -1.2416e+0 -2.3139e-2 2.6529e+3 3.1696e+0 4.5052e+1 # -Range: 0-200 NiCl2:2H2O NiCl2:2H2O = Ni+2 + 2 Cl- + 2 H2O log_k 3.9327 - -delta_H -37.6746 kJ/mol # Calculated enthalpy of reaction NiCl2:2H2O -# Enthalpy of formation: -922.135 kJ/mol + -delta_H -37.6746 kJ/mol # Calculated enthalpy of reaction NiCl2:2H2O +# Enthalpy of formation: -922.135 kJ/mol -analytic -4.8814e+1 -2.2602e-2 2.5951e+3 2.0518e+1 4.4086e+1 # -Range: 0-200 NiCl2:4H2O NiCl2:4H2O = Ni+2 + 2 Cl- + 4 H2O log_k 3.8561 - -delta_H -15.4373 kJ/mol # Calculated enthalpy of reaction NiCl2:4H2O -# Enthalpy of formation: -1516.05 kJ/mol + -delta_H -15.4373 kJ/mol # Calculated enthalpy of reaction NiCl2:4H2O +# Enthalpy of formation: -1516.05 kJ/mol -analytic -1.0545e+2 -2.4691e-2 3.9978e+3 4.1727e+1 6.7926e+1 # -Range: 0-200 NiF2 NiF2 = Ni+2 + 2 F- log_k 0.8772 - -delta_H -73.1438 kJ/mol # Calculated enthalpy of reaction NiF2 -# Enthalpy of formation: -651.525 kJ/mol + -delta_H -73.1438 kJ/mol # Calculated enthalpy of reaction NiF2 +# Enthalpy of formation: -651.525 kJ/mol -analytic -2.5291e+2 -8.4179e-2 9.3429e+3 1.0002e+2 1.4586e+2 # -Range: 0-300 NiF2:4H2O NiF2:4H2O = Ni+2 + 2 F- + 4 H2O log_k -4.0588 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiF2:4H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NiF2:4H2O +# Enthalpy of formation: 0 kcal/mol NiSO4 NiSO4 = Ni+2 + SO4-2 log_k 5.3197 - -delta_H -90.5092 kJ/mol # Calculated enthalpy of reaction NiSO4 -# Enthalpy of formation: -873.066 kJ/mol + -delta_H -90.5092 kJ/mol # Calculated enthalpy of reaction NiSO4 +# Enthalpy of formation: -873.066 kJ/mol -analytic -1.8878e+2 -7.6403e-2 7.9412e+3 7.6866e+1 1.2397e+2 # -Range: 0-300 NiSO4:6H2O(alpha) NiSO4:6H2O = Ni+2 + SO4-2 + 6 H2O log_k -2.0072 - -delta_H 4.37983 kJ/mol # Calculated enthalpy of reaction NiSO4:6H2O(alpha) -# Enthalpy of formation: -2682.99 kJ/mol + -delta_H 4.37983 kJ/mol # Calculated enthalpy of reaction NiSO4:6H2O(alpha) +# Enthalpy of formation: -2682.99 kJ/mol -analytic -1.1937e+2 -1.3785e-2 4.1543e+3 4.3454e+1 7.0587e+1 # -Range: 0-200 Nickelbischofite NiCl2:6H2O = Ni+2 + 2 Cl- + 6 H2O log_k 3.1681 - -delta_H 0.064088 kJ/mol # Calculated enthalpy of reaction Nickelbischofite -# Enthalpy of formation: -2103.23 kJ/mol + -delta_H 0.064088 kJ/mol # Calculated enthalpy of reaction Nickelbischofite +# Enthalpy of formation: -2103.23 kJ/mol -analytic -1.434e+2 -2.1257e-2 5.1858e+3 5.4759e+1 8.8112e+1 # -Range: 0-200 Ningyoite CaUP2O8:2H2O + 2 H+ = Ca+2 + U+4 + 2 H2O + 2 HPO4-2 log_k -29.7931 - -delta_H -36.4769 kJ/mol # Calculated enthalpy of reaction Ningyoite -# Enthalpy of formation: -1016.65 kcal/mol + -delta_H -36.4769 kJ/mol # Calculated enthalpy of reaction Ningyoite +# Enthalpy of formation: -1016.65 kcal/mol -analytic -1.0274e+2 -4.9041e-2 1.7779e+3 3.2973e+1 3.0227e+1 # -Range: 0-200 Niter KNO3 = K+ + NO3- log_k -0.2061 - -delta_H 35.4794 kJ/mol # Calculated enthalpy of reaction Niter -# Enthalpy of formation: -494.46 kJ/mol + -delta_H 35.4794 kJ/mol # Calculated enthalpy of reaction Niter +# Enthalpy of formation: -494.46 kJ/mol -analytic -6.5607e+1 -2.8165e-2 -4.0131e+2 3.0361e+1 -6.2425e+0 # -Range: 0-300 Nitrobarite Ba(NO3)2 = Ba+2 + 2 NO3- log_k -2.4523 - -delta_H 40.8161 kJ/mol # Calculated enthalpy of reaction Nitrobarite -# Enthalpy of formation: -992.082 kJ/mol + -delta_H 40.8161 kJ/mol # Calculated enthalpy of reaction Nitrobarite +# Enthalpy of formation: -992.082 kJ/mol -analytic -1.6179e+2 -6.5831e-2 1.2142e+3 7.0664e+1 1.8995e+1 # -Range: 0-300 Nontronite-Ca Ca.165Fe2Al.33Si3.67H2O12 + 7.32 H+ = 0.165 Ca+2 + 0.33 Al+3 + 2 Fe+3 + 3.67 SiO2 + 4.66 H2O log_k -11.5822 - -delta_H -38.138 kJ/mol # Calculated enthalpy of reaction Nontronite-Ca -# Enthalpy of formation: -1166.7 kcal/mol + -delta_H -38.138 kJ/mol # Calculated enthalpy of reaction Nontronite-Ca +# Enthalpy of formation: -1166.7 kcal/mol -analytic 1.6291e+1 4.3557e-3 1.0221e+4 -1.869e+1 -1.5427e+6 # -Range: 0-300 Nontronite-Cs Cs.33Si4Fe1.67Mg.33H2O12 + 6 H+ = 0.33 Cs+ + 0.33 Mg+2 + 1.67 Fe+3 + 4 H2O + 4 SiO2 log_k 5.7975 - -delta_H -86.6996 kJ/mol # Calculated enthalpy of reaction Nontronite-Cs -# Enthalpy of formation: -1168.54 kcal/mol + -delta_H -86.6996 kJ/mol # Calculated enthalpy of reaction Nontronite-Cs +# Enthalpy of formation: -1168.54 kcal/mol -analytic -1.1646e+1 1.0033e-2 1.7668e+4 -9.0129e+0 -2.0143e+6 # -Range: 0-300 Nontronite-H H.33Fe2Al.33Si3.67H2O12 + 6.99 H+ = 0.33 Al+3 + 2 Fe+3 + 3.67 SiO2 + 4.66 H2O log_k -12.5401 - -delta_H -30.452 kJ/mol # Calculated enthalpy of reaction Nontronite-H -# Enthalpy of formation: -1147.12 kcal/mol + -delta_H -30.452 kJ/mol # Calculated enthalpy of reaction Nontronite-H +# Enthalpy of formation: -1147.12 kcal/mol -analytic 9.7794e+1 1.4055e-2 4.744e+3 -4.7272e+1 -1.2103e+6 # -Range: 0-300 Nontronite-K K.33Fe2Al.33Si3.67H2O12 + 7.32 H+ = 0.33 Al+3 + 0.33 K+ + 2 Fe+3 + 3.67 SiO2 + 4.66 H2O log_k -11.8648 - -delta_H -26.5822 kJ/mol # Calculated enthalpy of reaction Nontronite-K -# Enthalpy of formation: -1167.93 kcal/mol + -delta_H -26.5822 kJ/mol # Calculated enthalpy of reaction Nontronite-K +# Enthalpy of formation: -1167.93 kcal/mol -analytic 1.363e+1 4.7708e-3 1.0073e+4 -1.7407e+1 -1.5803e+6 # -Range: 0-300 Nontronite-Mg Mg.165Fe2Al.33Si3.67H2O12 + 7.32 H+ = 0.165 Mg+2 + 0.33 Al+3 + 2 Fe+3 + 3.67 SiO2 + 4.66 H2O log_k -11.62 - -delta_H -41.1779 kJ/mol # Calculated enthalpy of reaction Nontronite-Mg -# Enthalpy of formation: -1162.93 kcal/mol + -delta_H -41.1779 kJ/mol # Calculated enthalpy of reaction Nontronite-Mg +# Enthalpy of formation: -1162.93 kcal/mol -analytic 5.5961e+1 1.0139e-2 8.0777e+3 -3.3164e+1 -1.4031e+6 # -Range: 0-300 Nontronite-Na Na.33Fe2Al.33Si3.67H2O12 + 7.32 H+ = 0.33 Al+3 + 0.33 Na+ + 2 Fe+3 + 3.67 SiO2 + 4.66 H2O log_k -11.5263 - -delta_H -31.5687 kJ/mol # Calculated enthalpy of reaction Nontronite-Na -# Enthalpy of formation: -1165.8 kcal/mol + -delta_H -31.5687 kJ/mol # Calculated enthalpy of reaction Nontronite-Na +# Enthalpy of formation: -1165.8 kcal/mol -analytic 6.7915e+1 1.2851e-2 7.1218e+3 -3.7112e+1 -1.3758e+6 # -Range: 0-300 Np Np + 4 H+ + O2 = Np+4 + 2 H2O log_k 174.1077 - -delta_H -1115.54 kJ/mol # Calculated enthalpy of reaction Np -# Enthalpy of formation: 0 kJ/mol + -delta_H -1115.54 kJ/mol # Calculated enthalpy of reaction Np +# Enthalpy of formation: 0 kJ/mol -analytic -3.2136e+1 -1.434e-2 5.7853e+4 6.6512e+0 9.0275e+2 # -Range: 0-300 Np(HPO4)2 Np(HPO4)2 = Np+4 + 2 HPO4-2 log_k -30.9786 - -delta_H -18.6219 kJ/mol # Calculated enthalpy of reaction Np(HPO4)2 -# Enthalpy of formation: -3121.54 kJ/mol + -delta_H -18.6219 kJ/mol # Calculated enthalpy of reaction Np(HPO4)2 +# Enthalpy of formation: -3121.54 kJ/mol -analytic -3.6627e+2 -1.3955e-1 7.137e+3 1.4261e+2 1.1147e+2 # -Range: 0-300 Np(OH)4 Np(OH)4 + 4 H+ = Np+4 + 4 H2O log_k 0.8103 - -delta_H -78.4963 kJ/mol # Calculated enthalpy of reaction Np(OH)4 -# Enthalpy of formation: -1620.86 kJ/mol + -delta_H -78.4963 kJ/mol # Calculated enthalpy of reaction Np(OH)4 +# Enthalpy of formation: -1620.86 kJ/mol -analytic -9.5122e+1 -1.0532e-2 7.1132e+3 3.0398e+1 1.1102e+2 # -Range: 0-300 Np2O5 Np2O5 + 2 H+ = H2O + 2 NpO2+ log_k 9.5 - -delta_H -94.4576 kJ/mol # Calculated enthalpy of reaction Np2O5 -# Enthalpy of formation: -513.232 kcal/mol + -delta_H -94.4576 kJ/mol # Calculated enthalpy of reaction Np2O5 +# Enthalpy of formation: -513.232 kcal/mol -analytic 5.9974e+3 1.4553e+0 -1.7396e+5 -2.3595e+3 -2.9689e+3 # -Range: 25-150 NpO2 NpO2 + 4 H+ = Np+4 + 2 H2O log_k -7.8026 - -delta_H -53.6087 kJ/mol # Calculated enthalpy of reaction NpO2 -# Enthalpy of formation: -1074.07 kJ/mol + -delta_H -53.6087 kJ/mol # Calculated enthalpy of reaction NpO2 +# Enthalpy of formation: -1074.07 kJ/mol -analytic -7.0053e+1 -1.1017e-2 4.4742e+3 2.0421e+1 6.9836e+1 # -Range: 0-300 NpO2(OH)2 NpO2(OH)2 + 2 H+ = NpO2+2 + 2 H2O log_k 5.9851 - -delta_H -54.9977 kJ/mol # Calculated enthalpy of reaction NpO2(OH)2 -# Enthalpy of formation: -1377.16 kJ/mol + -delta_H -54.9977 kJ/mol # Calculated enthalpy of reaction NpO2(OH)2 +# Enthalpy of formation: -1377.16 kJ/mol -analytic -2.7351e+1 -1.5987e-3 3.8301e+3 8.4735e+0 5.9773e+1 # -Range: 0-300 NpO2OH(am) NpO2OH + H+ = H2O + NpO2+ log_k 4.2364 - -delta_H -39.6673 kJ/mol # Calculated enthalpy of reaction NpO2OH(am) -# Enthalpy of formation: -1224.16 kJ/mol + -delta_H -39.6673 kJ/mol # Calculated enthalpy of reaction NpO2OH(am) +# Enthalpy of formation: -1224.16 kJ/mol -analytic -3.8824e+0 6.7122e-3 2.539e+3 -9.704e-1 3.9619e+1 # -Range: 0-300 Okenite CaSi2O4(OH)2:H2O + 2 H+ = Ca+2 + 2 SiO2 + 3 H2O log_k 10.3816 - -delta_H -19.4974 kJ/mol # Calculated enthalpy of reaction Okenite -# Enthalpy of formation: -749.641 kcal/mol + -delta_H -19.4974 kJ/mol # Calculated enthalpy of reaction Okenite +# Enthalpy of formation: -749.641 kcal/mol -analytic -7.7353e+1 1.5091e-2 1.3023e+4 2.1337e+1 -1.1831e+6 # -Range: 0-300 Orpiment As2S3 + 6 H2O = 2 H2AsO3- + 3 HS- + 5 H+ log_k -79.4159 - -delta_H 406.539 kJ/mol # Calculated enthalpy of reaction Orpiment -# Enthalpy of formation: -169.423 kJ/mol + -delta_H 406.539 kJ/mol # Calculated enthalpy of reaction Orpiment +# Enthalpy of formation: -169.423 kJ/mol -analytic -3.3964e+2 -1.4977e-1 -1.5711e+4 1.4448e+2 -2.4505e+2 # -Range: 0-300 Otavite CdCO3 + H+ = Cd+2 + HCO3- log_k -1.7712 - -delta_H 0 # Not possible to calculate enthalpy of reaction Otavite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Otavite +# Enthalpy of formation: 0 kcal/mol Ottemannite Sn2S3 + 3 H+ = Sn+2 + Sn+4 + 3 HS- log_k -46.2679 - -delta_H 236.727 kJ/mol # Calculated enthalpy of reaction Ottemannite -# Enthalpy of formation: -63 kcal/mol + -delta_H 236.727 kJ/mol # Calculated enthalpy of reaction Ottemannite +# Enthalpy of formation: -63 kcal/mol -analytic -6.2863e+1 -5.9171e-2 -1.3469e+4 3.2092e+1 -2.287e+2 # -Range: 0-200 Oxychloride-Mg Mg2Cl(OH)3:4H2O + 3 H+ = Cl- + 2 Mg+2 + 7 H2O log_k 25.8319 - -delta_H 0 # Not possible to calculate enthalpy of reaction Oxychloride-Mg -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Oxychloride-Mg +# Enthalpy of formation: 0 kcal/mol P P + 1.5 H2O + 1.25 O2 = HPO4-2 + 2 H+ log_k 132.1032 - -delta_H -848.157 kJ/mol # Calculated enthalpy of reaction P -# Enthalpy of formation: 0 kJ/mol + -delta_H -848.157 kJ/mol # Calculated enthalpy of reaction P +# Enthalpy of formation: 0 kJ/mol -analytic -9.2727e+1 -6.8342e-2 4.3465e+4 4.0156e+1 6.7826e+2 # -Range: 0-300 Paragonite NaAl3Si3O10(OH)2 + 10 H+ = Na+ + 3 Al+3 + 3 SiO2 + 6 H2O log_k 17.522 - -delta_H -275.056 kJ/mol # Calculated enthalpy of reaction Paragonite -# Enthalpy of formation: -1416.96 kcal/mol + -delta_H -275.056 kJ/mol # Calculated enthalpy of reaction Paragonite +# Enthalpy of formation: -1416.96 kcal/mol -analytic 3.5507e+1 -1.072e-2 1.3519e+4 -2.2283e+1 -4.5657e+5 # -Range: 0-300 Paralaurionite PbClOH + H+ = Cl- + H2O + Pb+2 log_k 0.2035 - -delta_H 8.41948 kJ/mol # Calculated enthalpy of reaction Paralaurionite -# Enthalpy of formation: -460.417 kJ/mol + -delta_H 8.41948 kJ/mol # Calculated enthalpy of reaction Paralaurionite +# Enthalpy of formation: -460.417 kJ/mol -analytic -1.1245e+1 -1.052e-2 -5.3551e+2 6.6175e+0 -9.0896e+0 # -Range: 0-200 Pargasite NaCa2Al3Mg4Si6O22(OH)2 + 22 H+ = Na+ + 2 Ca+2 + 3 Al+3 + 4 Mg+2 + 6 SiO2 + 12 H2O log_k 101.9939 - -delta_H -880.205 kJ/mol # Calculated enthalpy of reaction Pargasite -# Enthalpy of formation: -3016.62 kcal/mol + -delta_H -880.205 kJ/mol # Calculated enthalpy of reaction Pargasite +# Enthalpy of formation: -3016.62 kcal/mol -analytic -6.7889e+1 -3.7817e-2 5.0493e+4 9.2705e+0 -1.0163e+6 # -Range: 0-300 Parsonsite Pb2UO2(PO4)2:2H2O + 2 H+ = UO2+2 + 2 H2O + 2 HPO4-2 + 2 Pb+2 log_k -27.7911 - -delta_H 0 # Not possible to calculate enthalpy of reaction Parsonsite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Parsonsite +# Enthalpy of formation: 0 kcal/mol Pb Pb + 2 H+ + 0.5 O2 = H2O + Pb+2 log_k 47.1871 - -delta_H -278.851 kJ/mol # Calculated enthalpy of reaction Pb -# Enthalpy of formation: 0 kJ/mol + -delta_H -278.851 kJ/mol # Calculated enthalpy of reaction Pb +# Enthalpy of formation: 0 kJ/mol -analytic -3.1784e+1 -1.4816e-2 1.4984e+4 1.3383e+1 2.3381e+2 # -Range: 0-300 Pb(H2PO4)2 Pb(H2PO4)2 = Pb+2 + 2 H+ + 2 HPO4-2 log_k -9.84 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(H2PO4)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(H2PO4)2 +# Enthalpy of formation: 0 kcal/mol Pb(IO3)2 Pb(IO3)2 = Pb+2 + 2 IO3- log_k -12.5173 - -delta_H 53.7783 kJ/mol # Calculated enthalpy of reaction Pb(IO3)2 -# Enthalpy of formation: -495.525 kJ/mol + -delta_H 53.7783 kJ/mol # Calculated enthalpy of reaction Pb(IO3)2 +# Enthalpy of formation: -495.525 kJ/mol -analytic -5.3573e+0 -1.4164e-2 -3.6236e+3 3.7209e+0 -6.1532e+1 # -Range: 0-200 Pb(N3)2(mono) Pb(N3)2 = Pb+2 + 2 N3- log_k -8.3583 - -delta_H 72.9495 kJ/mol # Calculated enthalpy of reaction Pb(N3)2(mono) -# Enthalpy of formation: 478.251 kJ/mol + -delta_H 72.9495 kJ/mol # Calculated enthalpy of reaction Pb(N3)2(mono) +# Enthalpy of formation: 478.251 kJ/mol -analytic 6.0051e+1 -1.1168e-2 -7.0041e+3 -1.6812e+1 -1.1896e+2 # -Range: 0-200 Pb(N3)2(orth) Pb(N3)2 = Pb+2 + 2 N3- log_k -8.7963 - -delta_H 75.0615 kJ/mol # Calculated enthalpy of reaction Pb(N3)2(orth) -# Enthalpy of formation: 476.139 kJ/mol + -delta_H 75.0615 kJ/mol # Calculated enthalpy of reaction Pb(N3)2(orth) +# Enthalpy of formation: 476.139 kJ/mol -analytic 5.9779e+1 -1.1215e-2 -7.1081e+3 -1.6732e+1 -1.2073e+2 # -Range: 0-200 Pb(Thiocyanate)2 Pb(Thiocyanate)2 = Pb+2 + 2 Thiocyanate- log_k -0.091 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(Thiocyanate)2 -# Enthalpy of formation: 151.212 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(Thiocyanate)2 +# Enthalpy of formation: 151.212 kJ/mol -analytic 7.4247e+0 -1.6226e-2 0e+0 0e+0 -2.3938e+5 # -Range: 0-200 Pb2Cl2CO3 Pb2Cl2CO3 + H+ = HCO3- + 2 Cl- + 2 Pb+2 log_k -9.618 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2Cl2CO3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2Cl2CO3 +# Enthalpy of formation: 0 kcal/mol Pb2Cl5NH4 Pb2Cl5NH4 = H+ + NH3 + 2 Pb+2 + 5 Cl- log_k -19.61 - -delta_H 119.617 kJ/mol # Calculated enthalpy of reaction Pb2Cl5NH4 -# Enthalpy of formation: -1034.51 kJ/mol + -delta_H 119.617 kJ/mol # Calculated enthalpy of reaction Pb2Cl5NH4 +# Enthalpy of formation: -1034.51 kJ/mol -analytic 1.3149e+1 -4.8598e-2 -9.8473e+3 5.9552e+0 -1.6723e+2 # -Range: 0-200 Pb2O(N3)2 Pb2O(N3)2 + 2 H+ = H2O + 2 N3- + 2 Pb+2 log_k -13.7066 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2O(N3)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2O(N3)2 +# Enthalpy of formation: 0 kcal/mol Pb2SiO4 Pb2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Pb+2 log_k 18.037 - -delta_H -83.9883 kJ/mol # Calculated enthalpy of reaction Pb2SiO4 -# Enthalpy of formation: -1363.55 kJ/mol + -delta_H -83.9883 kJ/mol # Calculated enthalpy of reaction Pb2SiO4 +# Enthalpy of formation: -1363.55 kJ/mol -analytic 2.7287e+2 6.3875e-2 -3.7001e+3 -1.0568e+2 -6.2927e+1 # -Range: 0-200 Pb3(PO4)2 Pb3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 Pb+2 log_k -19.9744 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb3(PO4)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb3(PO4)2 +# Enthalpy of formation: 0 kcal/mol Pb3SO6 Pb3SO6 + 4 H+ = SO4-2 + 2 H2O + 3 Pb+2 log_k 10.5981 - -delta_H -79.3438 kJ/mol # Calculated enthalpy of reaction Pb3SO6 -# Enthalpy of formation: -1399.17 kJ/mol + -delta_H -79.3438 kJ/mol # Calculated enthalpy of reaction Pb3SO6 +# Enthalpy of formation: -1399.17 kJ/mol -analytic -5.3308e+0 -1.8639e-2 3.0245e+3 4.576e+0 5.1362e+1 # -Range: 0-200 Pb4Cl2(OH)6 Pb4Cl2(OH)6 + 6 H+ = 2 Cl- + 4 Pb+2 + 6 H2O log_k 17.2793 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4Cl2(OH)6 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4Cl2(OH)6 +# Enthalpy of formation: 0 kcal/mol Pb4O(PO4)2 Pb4O(PO4)2 + 4 H+ = H2O + 2 HPO4-2 + 4 Pb+2 log_k -12.5727 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4O(PO4)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4O(PO4)2 +# Enthalpy of formation: 0 kcal/mol Pb4SO7 Pb4SO7 + 6 H+ = SO4-2 + 3 H2O + 4 Pb+2 log_k 21.7354 - -delta_H -136.566 kJ/mol # Calculated enthalpy of reaction Pb4SO7 -# Enthalpy of formation: -1626.87 kJ/mol + -delta_H -136.566 kJ/mol # Calculated enthalpy of reaction Pb4SO7 +# Enthalpy of formation: -1626.87 kJ/mol -analytic -2.6884e+1 -2.1429e-2 6.839e+3 1.2951e+1 1.1614e+2 # -Range: 0-200 PbBr2 PbBr2 = Pb+2 + 2 Br- log_k -5.2413 - -delta_H 36.3838 kJ/mol # Calculated enthalpy of reaction PbBr2 -# Enthalpy of formation: -278.47 kJ/mol + -delta_H 36.3838 kJ/mol # Calculated enthalpy of reaction PbBr2 +# Enthalpy of formation: -278.47 kJ/mol -analytic 3.0977e+1 -1.6567e-2 -4.2879e+3 -6.8329e+0 -7.2825e+1 # -Range: 0-200 PbBrF PbBrF = Br- + F- + Pb+2 log_k -8.0418 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBrF -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBrF +# Enthalpy of formation: 0 kcal/mol PbCO3.PbO PbCO3PbO + 3 H+ = H2O + HCO3- + 2 Pb+2 log_k 9.6711 - -delta_H -55.4286 kJ/mol # Calculated enthalpy of reaction PbCO3.PbO -# Enthalpy of formation: -918.502 kJ/mol + -delta_H -55.4286 kJ/mol # Calculated enthalpy of reaction PbCO3.PbO +# Enthalpy of formation: -918.502 kJ/mol -analytic -4.216e+1 -1.4124e-2 3.8661e+3 1.7404e+1 6.5667e+1 # -Range: 0-200 PbF2 PbF2 = Pb+2 + 2 F- log_k -5.2047 - -delta_H -5.83772 kJ/mol # Calculated enthalpy of reaction PbF2 -# Enthalpy of formation: -663.937 kJ/mol + -delta_H -5.83772 kJ/mol # Calculated enthalpy of reaction PbF2 +# Enthalpy of formation: -663.937 kJ/mol -analytic -2.2712e+2 -7.9552e-2 5.2198e+3 9.2173e+1 8.1516e+1 # -Range: 0-300 PbFCl PbFCl = Cl- + F- + Pb+2 log_k -8.982 - -delta_H 33.1852 kJ/mol # Calculated enthalpy of reaction PbFCl -# Enthalpy of formation: -534.692 kJ/mol + -delta_H 33.1852 kJ/mol # Calculated enthalpy of reaction PbFCl +# Enthalpy of formation: -534.692 kJ/mol -analytic 6.1688e+0 -2.0732e-2 -3.4666e+3 1.0697e+0 -5.8869e+1 # -Range: 0-200 PbHPO4 PbHPO4 = HPO4-2 + Pb+2 log_k -15.7275 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbHPO4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbHPO4 +# Enthalpy of formation: 0 kcal/mol PbI2 PbI2 = Pb+2 + 2 I- log_k -8.0418 - -delta_H 62.5717 kJ/mol # Calculated enthalpy of reaction PbI2 -# Enthalpy of formation: -175.456 kJ/mol + -delta_H 62.5717 kJ/mol # Calculated enthalpy of reaction PbI2 +# Enthalpy of formation: -175.456 kJ/mol -analytic 1.5277e+1 -2.0582e-2 -5.1256e+3 0e+0 0e+0 # -Range: 0-200 PbSO4(NH3)2 PbSO4(NH3)2 = Pb+2 + SO4-2 + 2 NH3 log_k -2.0213 - -delta_H 28.284 kJ/mol # Calculated enthalpy of reaction PbSO4(NH3)2 -# Enthalpy of formation: -1099.64 kJ/mol + -delta_H 28.284 kJ/mol # Calculated enthalpy of reaction PbSO4(NH3)2 +# Enthalpy of formation: -1099.64 kJ/mol -analytic 3.5718e-1 -1.0192e-2 -2.0095e+3 2.9853e+0 -3.4124e+1 # -Range: 0-200 PbSO4(NH3)4 PbSO4(NH3)4 = Pb+2 + SO4-2 + 4 NH3 log_k 1.5024 - -delta_H 31.155 kJ/mol # Calculated enthalpy of reaction PbSO4(NH3)4 -# Enthalpy of formation: -1265.18 kJ/mol + -delta_H 31.155 kJ/mol # Calculated enthalpy of reaction PbSO4(NH3)4 +# Enthalpy of formation: -1265.18 kJ/mol -analytic -4.108e+1 -7.2307e-3 6.6637e+1 1.7984e+1 1.146e+0 # -Range: 0-200 PbSeO4 PbSeO4 = Pb+2 + SeO4-2 log_k -6.9372 - -delta_H 10.8967 kJ/mol # Calculated enthalpy of reaction PbSeO4 -# Enthalpy of formation: -609.125 kJ/mol + -delta_H 10.8967 kJ/mol # Calculated enthalpy of reaction PbSeO4 +# Enthalpy of formation: -609.125 kJ/mol -analytic 3.1292e+1 -1.4192e-2 -3.098e+3 -9.5448e+0 -5.2618e+1 # -Range: 0-200 Pd Pd + 2 H+ + 0.5 O2 = H2O + Pd+2 log_k 12.0688 - -delta_H -103.709 kJ/mol # Calculated enthalpy of reaction Pd -# Enthalpy of formation: 0 kcal/mol + -delta_H -103.709 kJ/mol # Calculated enthalpy of reaction Pd +# Enthalpy of formation: 0 kcal/mol -analytic -6.253e+1 -1.9774e-2 6.7013e+3 2.3441e+1 1.0459e+2 # -Range: 0-300 PdO PdO + 2 H+ = H2O + Pd+2 log_k 0.0643 - -delta_H -24.422 kJ/mol # Calculated enthalpy of reaction PdO -# Enthalpy of formation: -20.4 kcal/mol + -delta_H -24.422 kJ/mol # Calculated enthalpy of reaction PdO +# Enthalpy of formation: -20.4 kcal/mol -analytic -8.8921e+1 -1.9031e-2 3.8537e+3 3.3028e+1 6.0159e+1 # -Range: 0-300 Penroseite NiSe2 + H2O = 0.5 O2 + Ni+2 + 2 H+ + 2 Se-2 log_k -98.8004 - -delta_H 0 # Not possible to calculate enthalpy of reaction Penroseite -# Enthalpy of formation: -26 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Penroseite +# Enthalpy of formation: -26 kcal/mol -analytic -4.7339e+1 -1.2035e-2 -2.3589e+4 1.2624e+1 -3.6808e+2 # -Range: 0-300 Pentahydrite MgSO4:5H2O = Mg+2 + SO4-2 + 5 H2O log_k -1.3872 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pentahydrite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pentahydrite +# Enthalpy of formation: 0 kcal/mol Periclase MgO + 2 H+ = H2O + Mg+2 log_k 21.3354 - -delta_H -150.139 kJ/mol # Calculated enthalpy of reaction Periclase -# Enthalpy of formation: -143.8 kcal/mol + -delta_H -150.139 kJ/mol # Calculated enthalpy of reaction Periclase +# Enthalpy of formation: -143.8 kcal/mol -analytic -8.8465e+1 -1.839e-2 1.0414e+4 3.2469e+1 1.6253e+2 # -Range: 0-300 Petalite LiAlSi4O10 + 4 H+ = Al+3 + Li+ + 2 H2O + 4 SiO2 log_k -3.8153 - -delta_H -13.1739 kJ/mol # Calculated enthalpy of reaction Petalite -# Enthalpy of formation: -4886.15 kJ/mol + -delta_H -13.1739 kJ/mol # Calculated enthalpy of reaction Petalite +# Enthalpy of formation: -4886.15 kJ/mol -analytic -6.6355e+0 2.4316e-2 1.5949e+4 -1.3341e+1 -2.2265e+6 # -Range: 0-300 Phlogopite KAlMg3Si3O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Mg+2 + 3 SiO2 + 6 H2O log_k 37.44 - -delta_H -310.503 kJ/mol # Calculated enthalpy of reaction Phlogopite -# Enthalpy of formation: -1488.07 kcal/mol + -delta_H -310.503 kJ/mol # Calculated enthalpy of reaction Phlogopite +# Enthalpy of formation: -1488.07 kcal/mol -analytic -8.773e+1 -1.7253e-2 2.3748e+4 2.4465e+1 -8.9045e+5 # -Range: 0-300 Phosgenite Pb2(CO3)Cl2 + H+ = HCO3- + 2 Cl- + 2 Pb+2 log_k -9.6355 - -delta_H 49.0844 kJ/mol # Calculated enthalpy of reaction Phosgenite -# Enthalpy of formation: -1071.34 kJ/mol + -delta_H 49.0844 kJ/mol # Calculated enthalpy of reaction Phosgenite +# Enthalpy of formation: -1071.34 kJ/mol -analytic 3.4909e+0 -2.9365e-2 -4.6327e+3 4.5068e+0 -7.8671e+1 # -Range: 0-200 Picromerite K2Mg(SO4)2:6H2O = Mg+2 + 2 K+ + 2 SO4-2 + 6 H2O log_k -4.4396 - -delta_H 0 # Not possible to calculate enthalpy of reaction Picromerite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Picromerite +# Enthalpy of formation: 0 kcal/mol Pirssonite Na2Ca(CO3)2:2H2O + 2 H+ = Ca+2 + 2 H2O + 2 HCO3- + 2 Na+ log_k 11.323 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pirssonite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pirssonite +# Enthalpy of formation: 0 kcal/mol Plattnerite PbO2 + 4 H+ = Pb+4 + 2 H2O log_k -7.9661 - -delta_H 0 # Not possible to calculate enthalpy of reaction Plattnerite -# Enthalpy of formation: -277.363 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Plattnerite +# Enthalpy of formation: -277.363 kJ/mol Plumbogummite PbAl3(PO4)2(OH)5:H2O + 7 H+ = Pb+2 + 2 HPO4-2 + 3 Al+3 + 6 H2O log_k -8.1463 - -delta_H 0 # Not possible to calculate enthalpy of reaction Plumbogummite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Plumbogummite +# Enthalpy of formation: 0 kcal/mol Pm Pm + 3 H+ + 0.75 O2 = Pm+3 + 1.5 H2O log_k 180.6737 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm +# Enthalpy of formation: 0 kcal/mol Pm(OH)3 Pm(OH)3 + 3 H+ = Pm+3 + 3 H2O log_k 17.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3 +# Enthalpy of formation: 0 kcal/mol Pm(OH)3(am) Pm(OH)3 + 3 H+ = Pm+3 + 3 H2O log_k 18.2852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3(am) +# Enthalpy of formation: 0 kcal/mol Pm2(CO3)3 Pm2(CO3)3 + 3 H+ = 2 Pm+3 + 3 HCO3- log_k -3.5636 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm2(CO3)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm2(CO3)3 +# Enthalpy of formation: 0 kcal/mol Pm2O3 Pm2O3 + 6 H+ = 2 Pm+3 + 3 H2O log_k 48.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm2O3 +# Enthalpy of formation: 0 kcal/mol PmF3:.5H2O PmF3:.5H2O = 0.5 H2O + Pm+3 + 3 F- log_k -18.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmF3:.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PmF3:.5H2O +# Enthalpy of formation: 0 kcal/mol PmPO4:10H2O PmPO4:10H2O + H+ = HPO4-2 + Pm+3 + 10 H2O log_k -12.1782 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmPO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PmPO4:10H2O +# Enthalpy of formation: 0 kcal/mol Polydymite Ni3S4 + 2 H+ = S2-2 + 2 HS- + 3 Ni+2 log_k -48.9062 - -delta_H 0 # Not possible to calculate enthalpy of reaction Polydymite -# Enthalpy of formation: -78.014 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Polydymite +# Enthalpy of formation: -78.014 kcal/mol -analytic -1.803e+1 -4.6945e-2 -1.1557e+4 8.8339e+0 -1.9625e+2 # -Range: 0-200 Polyhalite K2MgCa2(SO4)4:2H2O = Mg+2 + 2 Ca+2 + 2 H2O + 2 K+ + 4 SO4-2 log_k -14.3124 - -delta_H 0 # Not possible to calculate enthalpy of reaction Polyhalite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Polyhalite +# Enthalpy of formation: 0 kcal/mol Portlandite Ca(OH)2 + 2 H+ = Ca+2 + 2 H2O log_k 22.5552 - -delta_H -128.686 kJ/mol # Calculated enthalpy of reaction Portlandite -# Enthalpy of formation: -986.074 kJ/mol + -delta_H -128.686 kJ/mol # Calculated enthalpy of reaction Portlandite +# Enthalpy of formation: -986.074 kJ/mol -analytic -8.3848e+1 -1.8373e-2 9.3154e+3 3.2584e+1 1.4538e+2 # -Range: 0-300 Pr Pr + 3 H+ + 0.75 O2 = Pr+3 + 1.5 H2O log_k 183.6893 - -delta_H -1125.92 kJ/mol # Calculated enthalpy of reaction Pr -# Enthalpy of formation: 0 kJ/mol + -delta_H -1125.92 kJ/mol # Calculated enthalpy of reaction Pr +# Enthalpy of formation: 0 kJ/mol -analytic -4.1136e+2 -7.5853e-2 7.9974e+4 1.4718e+2 -1.3148e+6 # -Range: 0-300 Pr(OH)3 Pr(OH)3 + 3 H+ = Pr+3 + 3 H2O log_k 19.5852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(OH)3 +# Enthalpy of formation: 0 kcal/mol Pr(OH)3(am) Pr(OH)3 + 3 H+ = Pr+3 + 3 H2O log_k 21.0852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(OH)3(am) +# Enthalpy of formation: 0 kcal/mol Pr2(CO3)3 Pr2(CO3)3 + 3 H+ = 2 Pr+3 + 3 HCO3- log_k -3.8136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr2(CO3)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr2(CO3)3 +# Enthalpy of formation: 0 kcal/mol Pr2O3 Pr2O3 + 6 H+ = 2 Pr+3 + 3 H2O log_k 61.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr2O3 +# Enthalpy of formation: 0 kcal/mol PrF3:.5H2O PrF3:.5H2O = 0.5 H2O + Pr+3 + 3 F- log_k -18.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction PrF3:.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PrF3:.5H2O +# Enthalpy of formation: 0 kcal/mol PrPO4:10H2O PrPO4:10H2O + H+ = HPO4-2 + Pr+3 + 10 H2O log_k -12.2782 - -delta_H 0 # Not possible to calculate enthalpy of reaction PrPO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PrPO4:10H2O +# Enthalpy of formation: 0 kcal/mol Prehnite Ca2Al2Si3O10(OH)2 + 10 H+ = 2 Al+3 + 2 Ca+2 + 3 SiO2 + 6 H2O log_k 32.9305 - -delta_H -311.875 kJ/mol # Calculated enthalpy of reaction Prehnite -# Enthalpy of formation: -1481.65 kcal/mol + -delta_H -311.875 kJ/mol # Calculated enthalpy of reaction Prehnite +# Enthalpy of formation: -1481.65 kcal/mol -analytic -3.5763e+1 -2.1396e-2 2.0167e+4 6.3554e+0 -7.4967e+5 # -Range: 0-300 Przhevalskite Pb(UO2)2(PO4)2 + 2 H+ = Pb+2 + 2 HPO4-2 + 2 UO2+2 log_k -20.0403 - -delta_H -71.1058 kJ/mol # Calculated enthalpy of reaction Przhevalskite -# Enthalpy of formation: -1087.51 kcal/mol + -delta_H -71.1058 kJ/mol # Calculated enthalpy of reaction Przhevalskite +# Enthalpy of formation: -1087.51 kcal/mol -analytic -2.9817e+1 -4.0756e-2 1.0077e+3 7.4885e+0 1.7122e+1 # -Range: 0-200 Pseudowollastonite CaSiO3 + 2 H+ = Ca+2 + H2O + SiO2 log_k 13.9997 - -delta_H -79.4625 kJ/mol # Calculated enthalpy of reaction Pseudowollastonite -# Enthalpy of formation: -388.9 kcal/mol + -delta_H -79.4625 kJ/mol # Calculated enthalpy of reaction Pseudowollastonite +# Enthalpy of formation: -388.9 kcal/mol -analytic 2.6691e+1 6.3323e-3 5.5723e+3 -1.1822e+1 -3.6038e+5 # -Range: 0-300 Pu Pu + 4 H+ + O2 = Pu+4 + 2 H2O log_k 170.3761 - -delta_H -1095.44 kJ/mol # Calculated enthalpy of reaction Pu -# Enthalpy of formation: 0 kJ/mol + -delta_H -1095.44 kJ/mol # Calculated enthalpy of reaction Pu +# Enthalpy of formation: 0 kJ/mol -analytic -1.9321e+2 -3.4314e-2 6.6737e+4 6.3552e+1 -6.4737e+5 # -Range: 0-300 Pu(HPO4)2 Pu(HPO4)2 = Pu+4 + 2 HPO4-2 log_k -27.7025 - -delta_H -33.4449 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)2 -# Enthalpy of formation: -3086.61 kJ/mol + -delta_H -33.4449 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)2 +# Enthalpy of formation: -3086.61 kJ/mol -analytic -3.6565e+2 -1.3961e-1 7.9105e+3 1.4265e+2 1.2354e+2 # -Range: 0-300 Pu(OH)3 Pu(OH)3 + 3 H+ = Pu+3 + 3 H2O log_k 22.4499 - -delta_H -148.067 kJ/mol # Calculated enthalpy of reaction Pu(OH)3 -# Enthalpy of formation: -1301 kJ/mol + -delta_H -148.067 kJ/mol # Calculated enthalpy of reaction Pu(OH)3 +# Enthalpy of formation: -1301 kJ/mol -analytic -6.1342e+1 -8.6952e-3 9.7733e+3 2.1664e+1 1.5252e+2 # -Range: 0-300 Pu(OH)4 Pu(OH)4 + 4 H+ = Pu+4 + 4 H2O log_k 0.7578 - -delta_H -68.6543 kJ/mol # Calculated enthalpy of reaction Pu(OH)4 -# Enthalpy of formation: -1610.59 kJ/mol + -delta_H -68.6543 kJ/mol # Calculated enthalpy of reaction Pu(OH)4 +# Enthalpy of formation: -1610.59 kJ/mol -analytic -9.3473e+1 -1.0579e-2 6.5974e+3 3.0415e+1 1.0297e+2 # -Range: 0-300 Pu2O3 Pu2O3 + 6 H+ = 2 Pu+3 + 3 H2O log_k 48.1332 - -delta_H -360.26 kJ/mol # Calculated enthalpy of reaction Pu2O3 -# Enthalpy of formation: -1680.36 kJ/mol + -delta_H -360.26 kJ/mol # Calculated enthalpy of reaction Pu2O3 +# Enthalpy of formation: -1680.36 kJ/mol -analytic -8.7831e+1 -1.9784e-2 2.0832e+4 2.9096e+1 3.2509e+2 # -Range: 0-300 PuF3 PuF3 = Pu+3 + 3 F- log_k -10.1872 - -delta_H -46.2608 kJ/mol # Calculated enthalpy of reaction PuF3 -# Enthalpy of formation: -1551.33 kJ/mol + -delta_H -46.2608 kJ/mol # Calculated enthalpy of reaction PuF3 +# Enthalpy of formation: -1551.33 kJ/mol -analytic -3.1104e+2 -1.0854e-1 8.7435e+3 1.2279e+2 1.3653e+2 # -Range: 0-300 PuF4 PuF4 = Pu+4 + 4 F- log_k -13.2091 - -delta_H -100.039 kJ/mol # Calculated enthalpy of reaction PuF4 -# Enthalpy of formation: -1777.24 kJ/mol + -delta_H -100.039 kJ/mol # Calculated enthalpy of reaction PuF4 +# Enthalpy of formation: -1777.24 kJ/mol -analytic -4.3072e+2 -1.45e-1 1.4076e+4 1.6709e+2 2.1977e+2 # -Range: 0-300 PuO2 PuO2 + 4 H+ = Pu+4 + 2 H2O log_k -7.3646 - -delta_H -51.8827 kJ/mol # Calculated enthalpy of reaction PuO2 -# Enthalpy of formation: -1055.69 kJ/mol + -delta_H -51.8827 kJ/mol # Calculated enthalpy of reaction PuO2 +# Enthalpy of formation: -1055.69 kJ/mol -analytic -7.1933e+1 -1.1841e-2 4.4494e+3 2.1491e+1 6.945e+1 # -Range: 0-300 PuO2(OH)2 PuO2(OH)2 + 2 H+ = PuO2+2 + 2 H2O log_k 3.5499 - -delta_H -35.7307 kJ/mol # Calculated enthalpy of reaction PuO2(OH)2 -# Enthalpy of formation: -1357.52 kJ/mol + -delta_H -35.7307 kJ/mol # Calculated enthalpy of reaction PuO2(OH)2 +# Enthalpy of formation: -1357.52 kJ/mol -analytic -2.6536e+1 -1.6542e-3 2.8262e+3 8.5277e+0 4.4108e+1 # -Range: 0-300 PuO2HPO4 PuO2HPO4 = HPO4-2 + PuO2+2 log_k -12.6074 - -delta_H -10.108 kJ/mol # Calculated enthalpy of reaction PuO2HPO4 -# Enthalpy of formation: -2103.55 kJ/mol + -delta_H -10.108 kJ/mol # Calculated enthalpy of reaction PuO2HPO4 +# Enthalpy of formation: -2103.55 kJ/mol -analytic -1.6296e+2 -6.6166e-2 3.0557e+3 6.4577e+1 4.7729e+1 # -Range: 0-300 PuO2OH(am) PuO2OH + H+ = H2O + PuO2+ log_k 5.4628 - -delta_H -42.4933 kJ/mol # Calculated enthalpy of reaction PuO2OH(am) -# Enthalpy of formation: -1157.53 kJ/mol + -delta_H -42.4933 kJ/mol # Calculated enthalpy of reaction PuO2OH(am) +# Enthalpy of formation: -1157.53 kJ/mol -analytic -3.1316e+0 6.7573e-3 2.6884e+3 -9.8622e-1 4.1951e+1 # -Range: 0-300 Pyrite FeS2 + H2O = 0.25 H+ + 0.25 SO4-2 + Fe+2 + 1.75 HS- log_k -24.6534 - -delta_H 109.535 kJ/mol # Calculated enthalpy of reaction Pyrite -# Enthalpy of formation: -41 kcal/mol + -delta_H 109.535 kJ/mol # Calculated enthalpy of reaction Pyrite +# Enthalpy of formation: -41 kcal/mol -analytic -2.4195e+2 -8.7948e-2 -6.2911e+2 9.9248e+1 -9.7454e+0 # -Range: 0-300 Pyrolusite MnO2 = 0.5 Mn+2 + 0.5 MnO4-2 log_k -17.6439 - -delta_H 83.3804 kJ/mol # Calculated enthalpy of reaction Pyrolusite -# Enthalpy of formation: -520.031 kJ/mol + -delta_H 83.3804 kJ/mol # Calculated enthalpy of reaction Pyrolusite +# Enthalpy of formation: -520.031 kJ/mol -analytic -1.1541e+2 -4.1665e-2 -1.896e+3 4.7094e+1 -2.9551e+1 # -Range: 0-300 Pyromorphite Pb5(PO4)3Cl + 3 H+ = Cl- + 3 HPO4-2 + 5 Pb+2 log_k -47.8954 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite +# Enthalpy of formation: 0 kcal/mol Pyromorphite-OH Pb5(OH)(PO4)3 + 4 H+ = H2O + 3 HPO4-2 + 5 Pb+2 log_k -26.2653 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite-OH -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite-OH +# Enthalpy of formation: 0 kcal/mol Pyrophyllite Al2Si4O10(OH)2 + 6 H+ = 2 Al+3 + 4 H2O + 4 SiO2 log_k 0.4397 - -delta_H -102.161 kJ/mol # Calculated enthalpy of reaction Pyrophyllite -# Enthalpy of formation: -1345.31 kcal/mol + -delta_H -102.161 kJ/mol # Calculated enthalpy of reaction Pyrophyllite +# Enthalpy of formation: -1345.31 kcal/mol -analytic 1.1066e+1 1.2707e-2 1.6417e+4 -1.9596e+1 -1.8791e+6 # -Range: 0-300 Pyrrhotite FeS + H+ = Fe+2 + HS- log_k -3.7193 - -delta_H -7.9496 kJ/mol # Calculated enthalpy of reaction Pyrrhotite -# Enthalpy of formation: -24 kcal/mol + -delta_H -7.9496 kJ/mol # Calculated enthalpy of reaction Pyrrhotite +# Enthalpy of formation: -24 kcal/mol -analytic -1.5785e+2 -5.2258e-2 3.9711e+3 6.3195e+1 6.2012e+1 # -Range: 0-300 Quartz SiO2 = SiO2 log_k -3.9993 - -delta_H 32.949 kJ/mol # Calculated enthalpy of reaction Quartz -# Enthalpy of formation: -217.65 kcal/mol + -delta_H 32.949 kJ/mol # Calculated enthalpy of reaction Quartz +# Enthalpy of formation: -217.65 kcal/mol -analytic 7.7698e-2 1.0612e-2 3.4651e+3 -4.3551e+0 -7.2138e+5 # -Range: 0-300 Ra Ra + 2 H+ + 0.5 O2 = H2O + Ra+2 log_k 141.3711 - -delta_H -807.374 kJ/mol # Calculated enthalpy of reaction Ra -# Enthalpy of formation: 0 kJ/mol + -delta_H -807.374 kJ/mol # Calculated enthalpy of reaction Ra +# Enthalpy of formation: 0 kJ/mol -analytic 4.9867e+1 5.9412e-3 4.0293e+4 -1.8356e+1 6.8421e+2 # -Range: 0-200 Ra(NO3)2 Ra(NO3)2 = Ra+2 + 2 NO3- log_k -2.2419 - -delta_H 50.4817 kJ/mol # Calculated enthalpy of reaction Ra(NO3)2 -# Enthalpy of formation: -991.706 kJ/mol + -delta_H 50.4817 kJ/mol # Calculated enthalpy of reaction Ra(NO3)2 +# Enthalpy of formation: -991.706 kJ/mol -analytic 2.2001e+1 -9.5263e-3 -3.9389e+3 -3.3143e+0 -6.6896e+1 # -Range: 0-200 RaCl2:2H2O RaCl2:2H2O = Ra+2 + 2 Cl- + 2 H2O log_k -0.7647 - -delta_H 32.6266 kJ/mol # Calculated enthalpy of reaction RaCl2:2H2O -# Enthalpy of formation: -1466.07 kJ/mol + -delta_H 32.6266 kJ/mol # Calculated enthalpy of reaction RaCl2:2H2O +# Enthalpy of formation: -1466.07 kJ/mol -analytic -2.5033e+1 -1.8918e-2 -1.5713e+3 1.4213e+1 -2.6673e+1 # -Range: 0-200 RaSO4 RaSO4 = Ra+2 + SO4-2 log_k -10.4499 - -delta_H 40.309 kJ/mol # Calculated enthalpy of reaction RaSO4 -# Enthalpy of formation: -1477.51 kJ/mol + -delta_H 40.309 kJ/mol # Calculated enthalpy of reaction RaSO4 +# Enthalpy of formation: -1477.51 kJ/mol -analytic 4.8025e+1 -1.1376e-2 -5.1347e+3 -1.5306e+1 -8.7211e+1 # -Range: 0-200 Rankinite Ca3Si2O7 + 6 H+ = 2 SiO2 + 3 Ca+2 + 3 H2O log_k 51.9078 - -delta_H -302.089 kJ/mol # Calculated enthalpy of reaction Rankinite -# Enthalpy of formation: -941.7 kcal/mol + -delta_H -302.089 kJ/mol # Calculated enthalpy of reaction Rankinite +# Enthalpy of formation: -941.7 kcal/mol -analytic -9.6393e+1 -1.6592e-2 2.4832e+4 3.2541e+1 -9.463e+5 # -Range: 0-300 Rb Rb + H+ + 0.25 O2 = 0.5 H2O + Rb+ log_k 71.1987 - -delta_H -391.009 kJ/mol # Calculated enthalpy of reaction Rb -# Enthalpy of formation: 0 kJ/mol + -delta_H -391.009 kJ/mol # Calculated enthalpy of reaction Rb +# Enthalpy of formation: 0 kJ/mol -analytic -2.1179e+1 -8.7978e-3 2.0934e+4 1.0011e+1 3.2667e+2 # -Range: 0-300 Rb2UO4 Rb2UO4 + 4 H+ = UO2+2 + 2 H2O + 2 Rb+ log_k 34.0089 - -delta_H -170.224 kJ/mol # Calculated enthalpy of reaction Rb2UO4 -# Enthalpy of formation: -1922.7 kJ/mol + -delta_H -170.224 kJ/mol # Calculated enthalpy of reaction Rb2UO4 +# Enthalpy of formation: -1922.7 kJ/mol -analytic -3.8205e+1 3.1862e-3 1.0973e+4 1.3925e+1 1.8636e+2 # -Range: 0-200 Re Re + 1.75 O2 + 0.5 H2O = H+ + ReO4- log_k 105.9749 - -delta_H -623.276 kJ/mol # Calculated enthalpy of reaction Re -# Enthalpy of formation: 0 kJ/mol + -delta_H -623.276 kJ/mol # Calculated enthalpy of reaction Re +# Enthalpy of formation: 0 kJ/mol -analytic 1.4535e+1 -2.9877e-2 2.991e+4 0e+0 0e+0 # -Range: 0-300 Realgar AsS + 2 H2O = 0.5 S2O4-2 + AsH3 + H+ log_k -60.2768 - -delta_H 0 # Not possible to calculate enthalpy of reaction Realgar -# Enthalpy of formation: -71.406 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Realgar +# Enthalpy of formation: -71.406 kJ/mol Rhodochrosite MnCO3 + H+ = HCO3- + Mn+2 log_k -0.1928 - -delta_H -21.3426 kJ/mol # Calculated enthalpy of reaction Rhodochrosite -# Enthalpy of formation: -212.521 kcal/mol + -delta_H -21.3426 kJ/mol # Calculated enthalpy of reaction Rhodochrosite +# Enthalpy of formation: -212.521 kcal/mol -analytic -1.6195e+2 -4.9344e-2 5.0937e+3 6.4402e+1 7.9531e+1 # -Range: 0-300 Rhodonite MnSiO3 + 2 H+ = H2O + Mn+2 + SiO2 log_k 9.7301 - -delta_H -64.7121 kJ/mol # Calculated enthalpy of reaction Rhodonite -# Enthalpy of formation: -1319.42 kJ/mol + -delta_H -64.7121 kJ/mol # Calculated enthalpy of reaction Rhodonite +# Enthalpy of formation: -1319.42 kJ/mol -analytic 2.0585e+1 4.9941e-3 4.5816e+3 -9.8212e+0 -3.0658e+5 # -Range: 0-300 Ripidolite-14A Mg3Fe2Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 2 Fe+2 + 3 Mg+2 + 3 SiO2 + 12 H2O log_k 60.9638 - -delta_H -572.472 kJ/mol # Calculated enthalpy of reaction Ripidolite-14A -# Enthalpy of formation: -1947.87 kcal/mol + -delta_H -572.472 kJ/mol # Calculated enthalpy of reaction Ripidolite-14A +# Enthalpy of formation: -1947.87 kcal/mol -analytic -1.8376e+2 -6.1934e-2 3.2458e+4 6.229e+1 5.0653e+2 # -Range: 0-300 Ripidolite-7A Mg3Fe2Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 2 Fe+2 + 3 Mg+2 + 3 SiO2 + 12 H2O log_k 64.3371 - -delta_H -586.325 kJ/mol # Calculated enthalpy of reaction Ripidolite-7A -# Enthalpy of formation: -1944.56 kcal/mol + -delta_H -586.325 kJ/mol # Calculated enthalpy of reaction Ripidolite-7A +# Enthalpy of formation: -1944.56 kcal/mol -analytic -1.9557e+2 -6.3779e-2 3.3634e+4 6.7057e+1 5.2489e+2 # -Range: 0-300 Romarchite SnO + 2 H+ = H2O + Sn+2 log_k 1.3625 - -delta_H -8.69017 kJ/mol # Calculated enthalpy of reaction Romarchite -# Enthalpy of formation: -68.34 kcal/mol + -delta_H -8.69017 kJ/mol # Calculated enthalpy of reaction Romarchite +# Enthalpy of formation: -68.34 kcal/mol -analytic -6.3187e+1 -1.5821e-2 2.2786e+3 2.49e+1 3.5574e+1 # -Range: 0-300 Ru Ru + 2 H+ + 0.5 O2 = H2O + Ru+2 log_k 16.6701 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru -# Enthalpy of formation: 0 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru +# Enthalpy of formation: 0 kJ/mol Ru(OH)3:H2O(am) Ru(OH)3:H2O + 3 H+ = Ru+3 + 4 H2O log_k 1.6338 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)3:H2O(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)3:H2O(am) +# Enthalpy of formation: 0 kcal/mol RuBr3 RuBr3 = Ru+3 + 3 Br- log_k 3.1479 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuBr3 -# Enthalpy of formation: -147.76 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuBr3 +# Enthalpy of formation: -147.76 kJ/mol RuCl3 RuCl3 = Ru+3 + 3 Cl- log_k 10.8215 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl3 -# Enthalpy of formation: -221.291 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl3 +# Enthalpy of formation: -221.291 kJ/mol RuI3 RuI3 = Ru+3 + 3 I- log_k -12.4614 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuI3 -# Enthalpy of formation: -58.425 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuI3 +# Enthalpy of formation: -58.425 kJ/mol RuO2 RuO2 + 2 H+ = Ru(OH)2+2 log_k -5.4835 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuO2 -# Enthalpy of formation: -307.233 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuO2 +# Enthalpy of formation: -307.233 kJ/mol RuO2:2H2O(am) RuO2:2H2O + 2 H+ = Ru(OH)2+2 + 2 H2O log_k 0.9045 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuO2:2H2O(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuO2:2H2O(am) +# Enthalpy of formation: 0 kcal/mol RuO4 RuO4 = RuO4 log_k -0.9636 - -delta_H 6.305 kJ/mol # Calculated enthalpy of reaction RuO4 -# Enthalpy of formation: -244.447 kJ/mol + -delta_H 6.305 kJ/mol # Calculated enthalpy of reaction RuO4 +# Enthalpy of formation: -244.447 kJ/mol RuSe2 RuSe2 + 2 H2O = Ru(OH)2+2 + 2 H+ + 2 Se-2 log_k -113.7236 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuSe2 -# Enthalpy of formation: -146.274 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuSe2 +# Enthalpy of formation: -146.274 kJ/mol Rutherfordine UO2CO3 + H+ = HCO3- + UO2+2 log_k -4.1064 - -delta_H -19.4032 kJ/mol # Calculated enthalpy of reaction Rutherfordine -# Enthalpy of formation: -1689.53 kJ/mol + -delta_H -19.4032 kJ/mol # Calculated enthalpy of reaction Rutherfordine +# Enthalpy of formation: -1689.53 kJ/mol -analytic -8.8224e+1 -3.1434e-2 2.6675e+3 3.4161e+1 4.165e+1 # -Range: 0-300 Rutile TiO2 + 2 H2O = Ti(OH)4 log_k -9.6452 - -delta_H 0 # Not possible to calculate enthalpy of reaction Rutile -# Enthalpy of formation: -226.107 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Rutile +# Enthalpy of formation: -226.107 kcal/mol S S + H2O = 0.5 O2 + H+ + HS- log_k -45.098 - -delta_H 263.663 kJ/mol # Calculated enthalpy of reaction S -# Enthalpy of formation: 0 kJ/mol + -delta_H 263.663 kJ/mol # Calculated enthalpy of reaction S +# Enthalpy of formation: 0 kJ/mol -analytic -8.8928e+1 -2.8454e-2 -1.1516e+4 3.6747e+1 -1.7966e+2 # -Range: 0-300 Safflorite CoAs2 + 2 H2O + H+ + 0.5 O2 = AsH3 + Co+2 + H2AsO3- log_k -3.6419 - -delta_H -52.7226 kJ/mol # Calculated enthalpy of reaction Safflorite -# Enthalpy of formation: -23.087 kcal/mol + -delta_H -52.7226 kJ/mol # Calculated enthalpy of reaction Safflorite +# Enthalpy of formation: -23.087 kcal/mol Saleeite Mg(UO2)2(PO4)2 + 2 H+ = Mg+2 + 2 HPO4-2 + 2 UO2+2 log_k -19.4575 - -delta_H -110.816 kJ/mol # Calculated enthalpy of reaction Saleeite -# Enthalpy of formation: -1189.61 kcal/mol + -delta_H -110.816 kJ/mol # Calculated enthalpy of reaction Saleeite +# Enthalpy of formation: -1189.61 kcal/mol -analytic -6.0028e+1 -4.4391e-2 3.9168e+3 1.6428e+1 6.6533e+1 # -Range: 0-200 Sanbornite BaSi2O5 + 2 H+ = Ba+2 + H2O + 2 SiO2 log_k 9.4753 - -delta_H -31.0845 kJ/mol # Calculated enthalpy of reaction Sanbornite -# Enthalpy of formation: -2547.8 kJ/mol + -delta_H -31.0845 kJ/mol # Calculated enthalpy of reaction Sanbornite +# Enthalpy of formation: -2547.8 kJ/mol -analytic -2.5381e+1 1.2999e-2 1.233e+4 2.1053e+0 -1.3913e+6 # -Range: 0-300 Sanidine_high KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 log_k 0.9239 - -delta_H -35.0284 kJ/mol # Calculated enthalpy of reaction Sanidine_high -# Enthalpy of formation: -946.538 kcal/mol + -delta_H -35.0284 kJ/mol # Calculated enthalpy of reaction Sanidine_high +# Enthalpy of formation: -946.538 kcal/mol -analytic -3.4889e+0 1.4495e-2 1.2856e+4 -9.8978e+0 -1.6572e+6 # -Range: 0-300 Saponite-Ca Ca.165Mg3Al.33Si3.67O10(OH)2 + 7.32 H+ = 0.165 Ca+2 + 0.33 Al+3 + 3 Mg+2 + 3.67 SiO2 + 4.66 H2O log_k 26.29 - -delta_H -207.971 kJ/mol # Calculated enthalpy of reaction Saponite-Ca -# Enthalpy of formation: -1436.51 kcal/mol + -delta_H -207.971 kJ/mol # Calculated enthalpy of reaction Saponite-Ca +# Enthalpy of formation: -1436.51 kcal/mol -analytic -4.6904e+1 6.2555e-3 2.2572e+4 5.3198e+0 -1.5725e+6 # -Range: 0-300 Saponite-Cs Cs.33Si3.67Al.33Mg3O10(OH)2 + 7.32 H+ = 0.33 Al+3 + 0.33 Cs+ + 3 Mg+2 + 3.67 SiO2 + 4.66 H2O log_k 25.8528 - -delta_H -195.407 kJ/mol # Calculated enthalpy of reaction Saponite-Cs -# Enthalpy of formation: -1438.44 kcal/mol + -delta_H -195.407 kJ/mol # Calculated enthalpy of reaction Saponite-Cs +# Enthalpy of formation: -1438.44 kcal/mol -analytic -7.7732e+1 -3.6418e-5 2.3346e+4 1.7578e+1 -1.6319e+6 # -Range: 0-300 Saponite-H H.33Mg3Al.33Si3.67O10(OH)2 + 6.99 H+ = 0.33 Al+3 + 3 Mg+2 + 3.67 SiO2 + 4.66 H2O log_k 25.3321 - -delta_H -200.235 kJ/mol # Calculated enthalpy of reaction Saponite-H -# Enthalpy of formation: -1416.94 kcal/mol + -delta_H -200.235 kJ/mol # Calculated enthalpy of reaction Saponite-H +# Enthalpy of formation: -1416.94 kcal/mol -analytic -3.9828e+1 8.9566e-3 2.2165e+4 2.3941e+0 -1.5933e+6 # -Range: 0-300 Saponite-K K.33Mg3Al.33Si3.67O10(OH)2 + 7.32 H+ = 0.33 Al+3 + 0.33 K+ + 3 Mg+2 + 3.67 SiO2 + 4.66 H2O log_k 26.0075 - -delta_H -196.402 kJ/mol # Calculated enthalpy of reaction Saponite-K -# Enthalpy of formation: -1437.74 kcal/mol + -delta_H -196.402 kJ/mol # Calculated enthalpy of reaction Saponite-K +# Enthalpy of formation: -1437.74 kcal/mol -analytic 3.2113e+1 1.8392e-2 1.7918e+4 -2.2874e+1 -1.3542e+6 # -Range: 0-300 Saponite-Mg Mg3.165Al.33Si3.67O10(OH)2 + 7.32 H+ = 0.33 Al+3 + 3.165 Mg+2 + 3.67 SiO2 + 4.66 H2O log_k 26.2523 - -delta_H -210.822 kJ/mol # Calculated enthalpy of reaction Saponite-Mg -# Enthalpy of formation: -1432.79 kcal/mol + -delta_H -210.822 kJ/mol # Calculated enthalpy of reaction Saponite-Mg +# Enthalpy of formation: -1432.79 kcal/mol -analytic 9.8888e+0 1.432e-2 1.9418e+4 -1.5259e+1 -1.3716e+6 # -Range: 0-300 Saponite-Na Na.33Mg3Al.33Si3.67O10(OH)2 + 7.32 H+ = 0.33 Al+3 + 0.33 Na+ + 3 Mg+2 + 3.67 SiO2 + 4.66 H2O log_k 26.3459 - -delta_H -201.401 kJ/mol # Calculated enthalpy of reaction Saponite-Na -# Enthalpy of formation: -1435.61 kcal/mol + -delta_H -201.401 kJ/mol # Calculated enthalpy of reaction Saponite-Na +# Enthalpy of formation: -1435.61 kcal/mol -analytic -6.7611e+1 4.7327e-3 2.3586e+4 1.2868e+1 -1.6493e+6 # -Range: 0-300 Sb Sb + 1.5 H2O + 0.75 O2 = Sb(OH)3 log_k 52.7918 - -delta_H -335.931 kJ/mol # Calculated enthalpy of reaction Sb -# Enthalpy of formation: 0 kJ/mol + -delta_H -335.931 kJ/mol # Calculated enthalpy of reaction Sb +# Enthalpy of formation: 0 kJ/mol Sb(OH)3 Sb(OH)3 = Sb(OH)3 log_k -7.0953 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)3 +# Enthalpy of formation: 0 kcal/mol Sb2O3 Sb2O3 + 3 H2O = 2 Sb(OH)3 log_k -8.96 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb2O3 +# Enthalpy of formation: 0 kcal/mol -analytic 2.3982e+0 -7.6326e-5 -3.3787e+3 0e+0 0e+0 # -Range: 0-300 Sb2O4 Sb2O4 + 3 H2O = 0.5 O2 + 2 Sb(OH)3 log_k -39.6139 - -delta_H 211.121 kJ/mol # Calculated enthalpy of reaction Sb2O4 -# Enthalpy of formation: -907.251 kJ/mol + -delta_H 211.121 kJ/mol # Calculated enthalpy of reaction Sb2O4 +# Enthalpy of formation: -907.251 kJ/mol Sb2O5 Sb2O5 + 3 H2O = O2 + 2 Sb(OH)3 log_k -46.932 - -delta_H 269.763 kJ/mol # Calculated enthalpy of reaction Sb2O5 -# Enthalpy of formation: -971.96 kJ/mol + -delta_H 269.763 kJ/mol # Calculated enthalpy of reaction Sb2O5 +# Enthalpy of formation: -971.96 kJ/mol Sb4O6(cubic) Sb4O6 + 6 H2O = 4 Sb(OH)3 log_k -19.6896 - -delta_H 59.898 kJ/mol # Calculated enthalpy of reaction Sb4O6(cubic) -# Enthalpy of formation: -1440.02 kJ/mol + -delta_H 59.898 kJ/mol # Calculated enthalpy of reaction Sb4O6(cubic) +# Enthalpy of formation: -1440.02 kJ/mol Sb4O6(orthorhombic) Sb4O6 + 6 H2O = 4 Sb(OH)3 log_k -17.0442 - -delta_H 37.314 kJ/mol # Calculated enthalpy of reaction Sb4O6(orthorhombic) -# Enthalpy of formation: -1417.44 kJ/mol + -delta_H 37.314 kJ/mol # Calculated enthalpy of reaction Sb4O6(orthorhombic) +# Enthalpy of formation: -1417.44 kJ/mol SbBr3 SbBr3 + 3 H2O = Sb(OH)3 + 3 Br- + 3 H+ log_k 1.0554 - -delta_H -21.5871 kJ/mol # Calculated enthalpy of reaction SbBr3 -# Enthalpy of formation: -259.197 kJ/mol + -delta_H -21.5871 kJ/mol # Calculated enthalpy of reaction SbBr3 +# Enthalpy of formation: -259.197 kJ/mol SbCl3 SbCl3 + 3 H2O = Sb(OH)3 + 3 Cl- + 3 H+ log_k 0.5878 - -delta_H -35.393 kJ/mol # Calculated enthalpy of reaction SbCl3 -# Enthalpy of formation: -382.12 kJ/mol + -delta_H -35.393 kJ/mol # Calculated enthalpy of reaction SbCl3 +# Enthalpy of formation: -382.12 kJ/mol Sc Sc + 3 H+ + 0.75 O2 = Sc+3 + 1.5 H2O log_k 167.27 - -delta_H -1033.87 kJ/mol # Calculated enthalpy of reaction Sc -# Enthalpy of formation: 0 kJ/mol + -delta_H -1033.87 kJ/mol # Calculated enthalpy of reaction Sc +# Enthalpy of formation: 0 kJ/mol -analytic -6.6922e+1 -2.915e-2 5.4559e+4 2.4189e+1 8.5137e+2 # -Range: 0-300 Scacchite MnCl2 = Mn+2 + 2 Cl- log_k 8.7785 - -delta_H -73.4546 kJ/mol # Calculated enthalpy of reaction Scacchite -# Enthalpy of formation: -481.302 kJ/mol + -delta_H -73.4546 kJ/mol # Calculated enthalpy of reaction Scacchite +# Enthalpy of formation: -481.302 kJ/mol -analytic -2.3476e+2 -8.2437e-2 9.0088e+3 9.6128e+1 1.4064e+2 # -Range: 0-300 Schoepite UO3:2H2O + 2 H+ = UO2+2 + 3 H2O log_k 4.8333 - -delta_H -50.415 kJ/mol # Calculated enthalpy of reaction Schoepite -# Enthalpy of formation: -1826.1 kJ/mol + -delta_H -50.415 kJ/mol # Calculated enthalpy of reaction Schoepite +# Enthalpy of formation: -1826.1 kJ/mol -analytic 1.3645e+1 1.0884e-2 2.5412e+3 -8.3167e+0 3.9649e+1 # -Range: 0-300 Schoepite-dehy(.393) UO3:.393H2O + 2 H+ = UO2+2 + 1.393 H2O log_k 6.7243 - -delta_H -69.2728 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.393) -# Enthalpy of formation: -1347.9 kJ/mol + -delta_H -69.2728 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.393) +# Enthalpy of formation: -1347.9 kJ/mol -analytic -5.6487e+1 -3.0358e-3 5.7044e+3 1.8179e+1 9.6887e+1 # -Range: 0-200 Schoepite-dehy(.648) UO3:.648H2O + 2 H+ = UO2+2 + 1.648 H2O log_k 6.2063 - -delta_H -65.4616 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.648) -# Enthalpy of formation: -1424.6 kJ/mol + -delta_H -65.4616 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.648) +# Enthalpy of formation: -1424.6 kJ/mol -analytic -6.301e+1 -3.0276e-3 5.8033e+3 2.0471e+1 9.8569e+1 # -Range: 0-200 Schoepite-dehy(.85) UO3:.85H2O + 2 H+ = UO2+2 + 1.85 H2O log_k 5.097 - -delta_H -56.4009 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.85) -# Enthalpy of formation: -1491.4 kJ/mol + -delta_H -56.4009 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.85) +# Enthalpy of formation: -1491.4 kJ/mol -analytic -6.7912e+1 -3.042e-3 5.569e+3 2.2323e+1 9.4593e+1 # -Range: 0-200 Schoepite-dehy(.9) UO3:.9H2O + 2 H+ = UO2+2 + 1.9 H2O log_k 5.0167 - -delta_H -55.7928 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.9) -# Enthalpy of formation: -1506.3 kJ/mol + -delta_H -55.7928 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.9) +# Enthalpy of formation: -1506.3 kJ/mol -analytic -1.5998e+1 -2.0144e-3 3.291e+3 4.2751e+0 5.1358e+1 # -Range: 0-300 Schoepite-dehy(1.0) UO3:H2O + 2 H+ = UO2+2 + 2 H2O log_k 5.1031 - -delta_H -57.4767 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(1.0) -# Enthalpy of formation: -1533.2 kJ/mol + -delta_H -57.4767 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(1.0) +# Enthalpy of formation: -1533.2 kJ/mol -analytic -7.208e+1 -3.0503e-3 5.8024e+3 2.3695e+1 9.8557e+1 # -Range: 0-200 Scolecite CaAl2Si3O10:3H2O + 8 H+ = Ca+2 + 2 Al+3 + 3 SiO2 + 7 H2O log_k 15.8767 - -delta_H -204.93 kJ/mol # Calculated enthalpy of reaction Scolecite -# Enthalpy of formation: -6048.92 kJ/mol + -delta_H -204.93 kJ/mol # Calculated enthalpy of reaction Scolecite +# Enthalpy of formation: -6048.92 kJ/mol -analytic 5.0656e+1 -3.1485e-3 1.0574e+4 -2.5663e+1 -5.2769e+5 # -Range: 0-300 Se Se + H2O + O2 = SeO3-2 + 2 H+ log_k 26.1436 - -delta_H -211.221 kJ/mol # Calculated enthalpy of reaction Se -# Enthalpy of formation: 0 kJ/mol + -delta_H -211.221 kJ/mol # Calculated enthalpy of reaction Se +# Enthalpy of formation: 0 kJ/mol -analytic -9.5144e+1 -6.5681e-2 1.0736e+4 4.2358e+1 1.6755e+2 # -Range: 0-300 Se2O5 Se2O5 + 2 H2O = SeO3-2 + SeO4-2 + 4 H+ log_k 9.5047 - -delta_H -123.286 kJ/mol # Calculated enthalpy of reaction Se2O5 -# Enthalpy of formation: -98.8 kcal/mol + -delta_H -123.286 kJ/mol # Calculated enthalpy of reaction Se2O5 +# Enthalpy of formation: -98.8 kcal/mol -analytic 1.1013e+2 -2.4491e-2 -5.6147e+2 -3.696e+1 -9.5719e+0 # -Range: 0-200 SeCl4 SeCl4 + 3 H2O = SeO3-2 + 4 Cl- + 6 H+ log_k 14.4361 - -delta_H -131.298 kJ/mol # Calculated enthalpy of reaction SeCl4 -# Enthalpy of formation: -45.1 kcal/mol + -delta_H -131.298 kJ/mol # Calculated enthalpy of reaction SeCl4 +# Enthalpy of formation: -45.1 kcal/mol -analytic -4.0215e+2 -1.8323e-1 1.3074e+4 1.7267e+2 2.0413e+2 # -Range: 0-300 SeO3 SeO3 + H2O = SeO4-2 + 2 H+ log_k 19.2015 - -delta_H -143.022 kJ/mol # Calculated enthalpy of reaction SeO3 -# Enthalpy of formation: -40.7 kcal/mol + -delta_H -143.022 kJ/mol # Calculated enthalpy of reaction SeO3 +# Enthalpy of formation: -40.7 kcal/mol -analytic -1.4199e+2 -6.4398e-2 9.5505e+3 5.9941e+1 1.4907e+2 # -Range: 0-300 Sellaite MgF2 = Mg+2 + 2 F- log_k -9.3843 - -delta_H -12.4547 kJ/mol # Calculated enthalpy of reaction Sellaite -# Enthalpy of formation: -1124.2 kJ/mol + -delta_H -12.4547 kJ/mol # Calculated enthalpy of reaction Sellaite +# Enthalpy of formation: -1124.2 kJ/mol -analytic -2.6901e+2 -8.5487e-2 6.8237e+3 1.0595e+2 1.0656e+2 # -Range: 0-300 Sepiolite Mg4Si6O15(OH)2:6H2O + 8 H+ = 4 Mg+2 + 6 SiO2 + 11 H2O log_k 30.4439 - -delta_H -157.339 kJ/mol # Calculated enthalpy of reaction Sepiolite -# Enthalpy of formation: -2418 kcal/mol + -delta_H -157.339 kJ/mol # Calculated enthalpy of reaction Sepiolite +# Enthalpy of formation: -2418 kcal/mol -analytic 1.869e+1 4.7544e-2 2.6765e+4 -2.5301e+1 -2.6498e+6 # -Range: 0-300 Shcherbinaite V2O5 + 2 H+ = H2O + 2 VO2+ log_k -1.452 - -delta_H -34.7917 kJ/mol # Calculated enthalpy of reaction Shcherbinaite -# Enthalpy of formation: -1550.6 kJ/mol + -delta_H -34.7917 kJ/mol # Calculated enthalpy of reaction Shcherbinaite +# Enthalpy of formation: -1550.6 kJ/mol -analytic -1.4791e+2 -2.2464e-2 6.6865e+3 5.2832e+1 1.0438e+2 # -Range: 0-300 Si Si + O2 = SiO2 log_k 148.9059 - -delta_H -865.565 kJ/mol # Calculated enthalpy of reaction Si -# Enthalpy of formation: 0 kJ/mol + -delta_H -865.565 kJ/mol # Calculated enthalpy of reaction Si +# Enthalpy of formation: 0 kJ/mol -analytic -5.7245e+2 -7.6302e-2 8.3516e+4 2.0045e+2 -2.8494e+6 # -Range: 0-300 SiO2(am) SiO2 = SiO2 log_k -2.7136 - -delta_H 20.0539 kJ/mol # Calculated enthalpy of reaction SiO2(am) -# Enthalpy of formation: -214.568 kcal/mol + -delta_H 20.0539 kJ/mol # Calculated enthalpy of reaction SiO2(am) +# Enthalpy of formation: -214.568 kcal/mol -analytic 1.2109e+0 7.0767e-3 2.3634e+3 -3.4449e+0 -4.8591e+5 # -Range: 0-300 Siderite FeCO3 + H+ = Fe+2 + HCO3- log_k -0.192 - -delta_H -32.5306 kJ/mol # Calculated enthalpy of reaction Siderite -# Enthalpy of formation: -179.173 kcal/mol + -delta_H -32.5306 kJ/mol # Calculated enthalpy of reaction Siderite +# Enthalpy of formation: -179.173 kcal/mol -analytic -1.599e+2 -4.9361e-2 5.4947e+3 6.3032e+1 8.5787e+1 # -Range: 0-300 Sillimanite Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O log_k 16.308 - -delta_H -238.442 kJ/mol # Calculated enthalpy of reaction Sillimanite -# Enthalpy of formation: -615.099 kcal/mol + -delta_H -238.442 kJ/mol # Calculated enthalpy of reaction Sillimanite +# Enthalpy of formation: -615.099 kcal/mol -analytic -7.161e+1 -3.2196e-2 1.2493e+4 2.2449e+1 1.9496e+2 # -Range: 0-300 Sklodowskite Mg(H3O)2(UO2)2(SiO4)2:4H2O + 6 H+ = Mg+2 + 2 SiO2 + 2 UO2+2 + 10 H2O log_k 13.7915 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sklodowskite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sklodowskite +# Enthalpy of formation: 0 kcal/mol Sm Sm + 2 H+ + 0.5 O2 = H2O + Sm+2 log_k 133.1614 - -delta_H -783.944 kJ/mol # Calculated enthalpy of reaction Sm -# Enthalpy of formation: 0 kJ/mol + -delta_H -783.944 kJ/mol # Calculated enthalpy of reaction Sm +# Enthalpy of formation: 0 kJ/mol -analytic -7.1599e+1 -2.0083e-2 4.2693e+4 2.7291e+1 6.6621e+2 # -Range: 0-300 Sm(OH)3 Sm(OH)3 + 3 H+ = Sm+3 + 3 H2O log_k 16.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)3 +# Enthalpy of formation: 0 kcal/mol Sm(OH)3(am) Sm(OH)3 + 3 H+ = Sm+3 + 3 H2O log_k 18.5852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)3(am) +# Enthalpy of formation: 0 kcal/mol Sm2(CO3)3 Sm2(CO3)3 + 3 H+ = 2 Sm+3 + 3 HCO3- log_k -3.5136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2(CO3)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2(CO3)3 +# Enthalpy of formation: 0 kcal/mol Sm2(SO4)3 Sm2(SO4)3 = 2 Sm+3 + 3 SO4-2 log_k -9.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2(SO4)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2(SO4)3 +# Enthalpy of formation: 0 kcal/mol Sm2O3 Sm2O3 + 6 H+ = 2 Sm+3 + 3 H2O log_k 42.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2O3 +# Enthalpy of formation: 0 kcal/mol SmF3:.5H2O SmF3:.5H2O = 0.5 H2O + Sm+3 + 3 F- log_k -17.5 - -delta_H 0 # Not possible to calculate enthalpy of reaction SmF3:.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SmF3:.5H2O +# Enthalpy of formation: 0 kcal/mol SmPO4:10H2O SmPO4:10H2O + H+ = HPO4-2 + Sm+3 + 10 H2O log_k -12.1782 - -delta_H 0 # Not possible to calculate enthalpy of reaction SmPO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SmPO4:10H2O +# Enthalpy of formation: 0 kcal/mol Smectite-high-Fe-Mg # Ca.025Na.1K.2Fe++.5Fe+++.2Mg1.15Al1.25Si3.5H2O12 +8.0000 H+ = + 0.0250 Ca++ + 0.1000 Na+ + 0.2000 Fe+++ + 0.2000 K+ + 0.5000 Fe++ + 1.1500 Mg++ + 1.2500 Al+++ + 3.5000 SiO2 + 5.0000 H2O Ca.025Na.1K.2Fe.5Fe.2Mg1.15Al1.25Si3.5H2O12 + 8 H+ = 0.025 Ca+2 + 0.1 Na+ + 0.2 Fe+3 + 0.2 K+ + 0.5 Fe+2 + 1.15 Mg+2 + 1.25 Al+3 + 3.5 SiO2 + 5 H2O log_k 17.42 - -delta_H -199.841 kJ/mol # Calculated enthalpy of reaction Smectite-high-Fe-Mg -# Enthalpy of formation: -1351.39 kcal/mol + -delta_H -199.841 kJ/mol # Calculated enthalpy of reaction Smectite-high-Fe-Mg +# Enthalpy of formation: -1351.39 kcal/mol -analytic -9.6102e+0 1.2551e-3 1.8157e+4 -7.9862e+0 -1.3005e+6 # -Range: 0-300 @@ -15637,1456 +15637,1456 @@ Smectite-low-Fe-Mg # Ca.02Na.15K.2Fe++.29Fe+++.16Mg.9Al1.25Si3.75H2O1 +7.0000 H+ = + 0.0200 Ca++ + 0.1500 Na+ + 0.1600 Fe+++ + 0.2000 K+ + 0.2900 Fe++ + 0.9000 Mg++ + 1.2500 Al+++ + 3.7500 SiO2 + 4.5000 H2O Ca.02Na.15K.2Fe.29Fe.16Mg.9Al1.25Si3.75H2O12 + 7 H+ = 0.02 Ca+2 + 0.15 Na+ + 0.16 Fe+3 + 0.2 K+ + 0.29 Fe+2 + 0.9 Mg+2 + 1.25 Al+3 + 3.75 SiO2 + 4.5 H2O log_k 11.0405 - -delta_H -144.774 kJ/mol # Calculated enthalpy of reaction Smectite-low-Fe-Mg -# Enthalpy of formation: -1352.12 kcal/mol + -delta_H -144.774 kJ/mol # Calculated enthalpy of reaction Smectite-low-Fe-Mg +# Enthalpy of formation: -1352.12 kcal/mol -analytic -1.7003e+1 6.9848e-3 1.8359e+4 -6.8896e+0 -1.6637e+6 # -Range: 0-300 Smithsonite ZnCO3 + H+ = HCO3- + Zn+2 log_k 0.4633 - -delta_H -30.5348 kJ/mol # Calculated enthalpy of reaction Smithsonite -# Enthalpy of formation: -194.26 kcal/mol + -delta_H -30.5348 kJ/mol # Calculated enthalpy of reaction Smithsonite +# Enthalpy of formation: -194.26 kcal/mol -analytic -1.6452e+2 -5.0231e-2 5.5925e+3 6.5139e+1 8.7314e+1 # -Range: 0-300 Sn Sn + 2 H+ + 0.5 O2 = H2O + Sn+2 log_k 47.8615 - -delta_H -288.558 kJ/mol # Calculated enthalpy of reaction Sn -# Enthalpy of formation: 0 kcal/mol + -delta_H -288.558 kJ/mol # Calculated enthalpy of reaction Sn +# Enthalpy of formation: 0 kcal/mol -analytic -1.3075e+2 -3.3807e-2 1.9548e+4 5.0382e+1 -1.3868e+5 # -Range: 0-300 Sn(OH)2 Sn(OH)2 + 2 H+ = Sn+2 + 2 H2O log_k 1.84 - -delta_H -19.6891 kJ/mol # Calculated enthalpy of reaction Sn(OH)2 -# Enthalpy of formation: -560.774 kJ/mol + -delta_H -19.6891 kJ/mol # Calculated enthalpy of reaction Sn(OH)2 +# Enthalpy of formation: -560.774 kJ/mol -analytic -6.1677e+1 -5.3258e-3 3.3656e+3 2.1748e+1 5.7174e+1 # -Range: 0-200 Sn(SO4)2 Sn(SO4)2 = Sn+4 + 2 SO4-2 log_k 16.0365 - -delta_H -159.707 kJ/mol # Calculated enthalpy of reaction Sn(SO4)2 -# Enthalpy of formation: -389.4 kcal/mol + -delta_H -159.707 kJ/mol # Calculated enthalpy of reaction Sn(SO4)2 +# Enthalpy of formation: -389.4 kcal/mol -analytic 1.7787e+1 -5.1758e-2 3.7671e+3 4.1861e-1 6.3965e+1 # -Range: 0-200 Sn3S4 Sn3S4 + 4 H+ = Sn+4 + 2 Sn+2 + 4 HS- log_k -61.979 - -delta_H 318.524 kJ/mol # Calculated enthalpy of reaction Sn3S4 -# Enthalpy of formation: -88.5 kcal/mol + -delta_H 318.524 kJ/mol # Calculated enthalpy of reaction Sn3S4 +# Enthalpy of formation: -88.5 kcal/mol -analytic -8.1325e+1 -7.4589e-2 -1.7953e+4 4.1138e+1 -3.0484e+2 # -Range: 0-200 SnBr2 SnBr2 = Sn+2 + 2 Br- log_k -1.4369 - -delta_H 8.24248 kJ/mol # Calculated enthalpy of reaction SnBr2 -# Enthalpy of formation: -62.15 kcal/mol + -delta_H 8.24248 kJ/mol # Calculated enthalpy of reaction SnBr2 +# Enthalpy of formation: -62.15 kcal/mol -analytic 2.5384e+1 -1.735e-2 -2.6653e+3 -5.14e+0 -4.5269e+1 # -Range: 0-200 SnBr4 SnBr4 = Sn+4 + 4 Br- log_k 11.1272 - -delta_H -78.3763 kJ/mol # Calculated enthalpy of reaction SnBr4 -# Enthalpy of formation: -377.391 kJ/mol + -delta_H -78.3763 kJ/mol # Calculated enthalpy of reaction SnBr4 +# Enthalpy of formation: -377.391 kJ/mol -analytic 1.3516e+1 -5.5193e-2 -8.1888e+1 5.7935e+0 -1.394e+0 # -Range: 0-200 SnCl2 SnCl2 = Sn+2 + 2 Cl- log_k 0.3225 - -delta_H -11.9913 kJ/mol # Calculated enthalpy of reaction SnCl2 -# Enthalpy of formation: -79.1 kcal/mol + -delta_H -11.9913 kJ/mol # Calculated enthalpy of reaction SnCl2 +# Enthalpy of formation: -79.1 kcal/mol -analytic 7.9717e+0 -2.1475e-2 -1.1676e+3 1.0749e+0 -1.9829e+1 # -Range: 0-200 SnSO4 SnSO4 = SO4-2 + Sn+2 log_k -23.9293 - -delta_H 96.232 kJ/mol # Calculated enthalpy of reaction SnSO4 -# Enthalpy of formation: -242.5 kcal/mol + -delta_H 96.232 kJ/mol # Calculated enthalpy of reaction SnSO4 +# Enthalpy of formation: -242.5 kcal/mol -analytic 3.0046e+1 -1.4238e-2 -7.5915e+3 -9.8122e+0 -1.2892e+2 # -Range: 0-200 SnSe SnSe = Se-2 + Sn+2 log_k -32.9506 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnSe -# Enthalpy of formation: -21.2 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SnSe +# Enthalpy of formation: -21.2 kcal/mol -analytic 4.2342e+0 9.5462e-4 -8.0009e+3 -4.2997e+0 -1.3587e+2 # -Range: 0-200 SnSe2 SnSe2 = Sn+4 + 2 Se-2 log_k -66.657 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnSe2 -# Enthalpy of formation: -29.8 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SnSe2 +# Enthalpy of formation: -29.8 kcal/mol -analytic -3.6819e+1 -2.0966e-2 -1.5197e+4 1.107e+1 -2.5806e+2 # -Range: 0-200 Soddyite (UO2)2SiO4:2H2O + 4 H+ = SiO2 + 2 UO2+2 + 4 H2O log_k 0.392 - -delta_H 0 # Not possible to calculate enthalpy of reaction Soddyite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Soddyite +# Enthalpy of formation: 0 kcal/mol Sphaerocobaltite CoCO3 + H+ = Co+2 + HCO3- log_k -0.2331 - -delta_H -30.7064 kJ/mol # Calculated enthalpy of reaction Sphaerocobaltite -# Enthalpy of formation: -171.459 kcal/mol + -delta_H -30.7064 kJ/mol # Calculated enthalpy of reaction Sphaerocobaltite +# Enthalpy of formation: -171.459 kcal/mol -analytic -1.5709e+2 -4.8957e-2 5.3158e+3 6.2075e+1 8.2995e+1 # -Range: 0-300 Sphalerite ZnS + H+ = HS- + Zn+2 log_k -11.44 - -delta_H 35.5222 kJ/mol # Calculated enthalpy of reaction Sphalerite -# Enthalpy of formation: -49 kcal/mol + -delta_H 35.5222 kJ/mol # Calculated enthalpy of reaction Sphalerite +# Enthalpy of formation: -49 kcal/mol -analytic -1.5497e+2 -4.8953e-2 1.785e+3 6.1472e+1 2.7899e+1 # -Range: 0-300 Spinel Al2MgO4 + 8 H+ = Mg+2 + 2 Al+3 + 4 H2O log_k 37.6295 - -delta_H -398.108 kJ/mol # Calculated enthalpy of reaction Spinel -# Enthalpy of formation: -546.847 kcal/mol + -delta_H -398.108 kJ/mol # Calculated enthalpy of reaction Spinel +# Enthalpy of formation: -546.847 kcal/mol -analytic -3.3895e+2 -8.3595e-2 2.9251e+4 1.226e+2 4.5654e+2 # -Range: 0-300 Spinel-Co Co3O4 + 8 H+ = Co+2 + 2 Co+3 + 4 H2O log_k -6.4852 - -delta_H -126.415 kJ/mol # Calculated enthalpy of reaction Spinel-Co -# Enthalpy of formation: -891 kJ/mol + -delta_H -126.415 kJ/mol # Calculated enthalpy of reaction Spinel-Co +# Enthalpy of formation: -891 kJ/mol -analytic -3.2239e+2 -8.0782e-2 1.4635e+4 1.1755e+2 2.2846e+2 # -Range: 0-300 Spodumene LiAlSi2O6 + 4 H+ = Al+3 + Li+ + 2 H2O + 2 SiO2 log_k 6.9972 - -delta_H -89.1817 kJ/mol # Calculated enthalpy of reaction Spodumene -# Enthalpy of formation: -3054.75 kJ/mol + -delta_H -89.1817 kJ/mol # Calculated enthalpy of reaction Spodumene +# Enthalpy of formation: -3054.75 kJ/mol -analytic -9.8111e+0 2.1191e-3 9.692e+3 -3.0484e+0 -7.8822e+5 # -Range: 0-300 Sr Sr + 2 H+ + 0.5 O2 = H2O + Sr+2 log_k 141.7816 - -delta_H -830.679 kJ/mol # Calculated enthalpy of reaction Sr -# Enthalpy of formation: 0 kJ/mol + -delta_H -830.679 kJ/mol # Calculated enthalpy of reaction Sr +# Enthalpy of formation: 0 kJ/mol -analytic -1.6271e+2 -3.1212e-2 5.152e+4 5.9178e+1 -4.839e+5 # -Range: 0-300 Sr(NO3)2 Sr(NO3)2 = Sr+2 + 2 NO3- log_k 1.1493 - -delta_H 13.7818 kJ/mol # Calculated enthalpy of reaction Sr(NO3)2 -# Enthalpy of formation: -978.311 kJ/mol + -delta_H 13.7818 kJ/mol # Calculated enthalpy of reaction Sr(NO3)2 +# Enthalpy of formation: -978.311 kJ/mol -analytic 2.8914e+0 -1.2487e-2 -1.4872e+3 2.8124e+0 -2.5256e+1 # -Range: 0-200 Sr(NO3)2:4H2O Sr(NO3)2:4H2O = Sr+2 + 2 NO3- + 4 H2O log_k 0.6976 - -delta_H 47.9045 kJ/mol # Calculated enthalpy of reaction Sr(NO3)2:4H2O -# Enthalpy of formation: -2155.79 kJ/mol + -delta_H 47.9045 kJ/mol # Calculated enthalpy of reaction Sr(NO3)2:4H2O +# Enthalpy of formation: -2155.79 kJ/mol -analytic -8.4518e+1 -9.1155e-3 1.0856e+3 3.4061e+1 1.8464e+1 # -Range: 0-200 Sr(OH)2 Sr(OH)2 + 2 H+ = Sr+2 + 2 H2O log_k 27.5229 - -delta_H -153.692 kJ/mol # Calculated enthalpy of reaction Sr(OH)2 -# Enthalpy of formation: -968.892 kJ/mol + -delta_H -153.692 kJ/mol # Calculated enthalpy of reaction Sr(OH)2 +# Enthalpy of formation: -968.892 kJ/mol -analytic -5.1871e+1 -2.9123e-3 1.0175e+4 1.8643e+1 1.728e+2 # -Range: 0-200 Sr2SiO4 Sr2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Sr+2 log_k 42.8076 - -delta_H -244.583 kJ/mol # Calculated enthalpy of reaction Sr2SiO4 -# Enthalpy of formation: -2306.61 kJ/mol + -delta_H -244.583 kJ/mol # Calculated enthalpy of reaction Sr2SiO4 +# Enthalpy of formation: -2306.61 kJ/mol -analytic 3.0319e+1 2.0204e-3 1.2729e+4 -1.1584e+1 -1.948e+5 # -Range: 0-300 Sr3(AsO4)2 Sr3(AsO4)2 + 4 H+ = 2 H2AsO4- + 3 Sr+2 log_k 20.6256 - -delta_H -152.354 kJ/mol # Calculated enthalpy of reaction Sr3(AsO4)2 -# Enthalpy of formation: -3319.49 kJ/mol + -delta_H -152.354 kJ/mol # Calculated enthalpy of reaction Sr3(AsO4)2 +# Enthalpy of formation: -3319.49 kJ/mol -analytic -8.4749e+1 -2.9367e-2 9.5849e+3 3.3126e+1 1.6279e+2 # -Range: 0-200 SrBr2 SrBr2 = Sr+2 + 2 Br- log_k 13.1128 - -delta_H -75.106 kJ/mol # Calculated enthalpy of reaction SrBr2 -# Enthalpy of formation: -718.808 kJ/mol + -delta_H -75.106 kJ/mol # Calculated enthalpy of reaction SrBr2 +# Enthalpy of formation: -718.808 kJ/mol -analytic -1.8512e+2 -7.2423e-2 7.6861e+3 7.8401e+1 1.1999e+2 # -Range: 0-300 SrBr2:6H2O SrBr2:6H2O = Sr+2 + 2 Br- + 6 H2O log_k 3.6678 - -delta_H 23.367 kJ/mol # Calculated enthalpy of reaction SrBr2:6H2O -# Enthalpy of formation: -2532.31 kJ/mol + -delta_H 23.367 kJ/mol # Calculated enthalpy of reaction SrBr2:6H2O +# Enthalpy of formation: -2532.31 kJ/mol -analytic -2.247e+2 -6.792e-2 4.9432e+3 9.3758e+1 7.72e+1 # -Range: 0-300 SrBr2:H2O SrBr2:H2O = H2O + Sr+2 + 2 Br- log_k 9.6057 - -delta_H -47.5853 kJ/mol # Calculated enthalpy of reaction SrBr2:H2O -# Enthalpy of formation: -1032.17 kJ/mol + -delta_H -47.5853 kJ/mol # Calculated enthalpy of reaction SrBr2:H2O +# Enthalpy of formation: -1032.17 kJ/mol -analytic -1.9103e+2 -7.1402e-2 6.6358e+3 8.0673e+1 1.036e+2 # -Range: 0-300 SrCl2 SrCl2 = Sr+2 + 2 Cl- log_k 7.9389 - -delta_H -55.0906 kJ/mol # Calculated enthalpy of reaction SrCl2 -# Enthalpy of formation: -829.976 kJ/mol + -delta_H -55.0906 kJ/mol # Calculated enthalpy of reaction SrCl2 +# Enthalpy of formation: -829.976 kJ/mol -analytic -2.0097e+2 -7.6193e-2 7.0396e+3 8.405e+1 1.0991e+2 # -Range: 0-300 SrCl2:2H2O SrCl2:2H2O = Sr+2 + 2 Cl- + 2 H2O log_k 3.3248 - -delta_H -17.7313 kJ/mol # Calculated enthalpy of reaction SrCl2:2H2O -# Enthalpy of formation: -1439.01 kJ/mol + -delta_H -17.7313 kJ/mol # Calculated enthalpy of reaction SrCl2:2H2O +# Enthalpy of formation: -1439.01 kJ/mol -analytic -2.1551e+2 -7.4349e-2 5.94e+3 8.933e+1 9.2752e+1 # -Range: 0-300 SrCl2:6H2O SrCl2:6H2O = Sr+2 + 2 Cl- + 6 H2O log_k 1.5038 - -delta_H 24.6964 kJ/mol # Calculated enthalpy of reaction SrCl2:6H2O -# Enthalpy of formation: -2624.79 kJ/mol + -delta_H 24.6964 kJ/mol # Calculated enthalpy of reaction SrCl2:6H2O +# Enthalpy of formation: -2624.79 kJ/mol -analytic -1.3225e+2 -1.826e-2 3.7077e+3 5.1224e+1 6.3008e+1 # -Range: 0-200 SrCl2:H2O SrCl2:H2O = H2O + Sr+2 + 2 Cl- log_k 4.7822 - -delta_H -33.223 kJ/mol # Calculated enthalpy of reaction SrCl2:H2O -# Enthalpy of formation: -1137.68 kJ/mol + -delta_H -33.223 kJ/mol # Calculated enthalpy of reaction SrCl2:H2O +# Enthalpy of formation: -1137.68 kJ/mol -analytic -2.1825e+2 -7.7851e-2 6.5957e+3 9.0555e+1 1.0298e+2 # -Range: 0-300 SrCrO4 SrCrO4 = CrO4-2 + Sr+2 log_k -3.8849 - -delta_H -1.73636 kJ/mol # Calculated enthalpy of reaction SrCrO4 -# Enthalpy of formation: -341.855 kcal/mol + -delta_H -1.73636 kJ/mol # Calculated enthalpy of reaction SrCrO4 +# Enthalpy of formation: -341.855 kcal/mol -analytic 2.3424e+1 -1.5589e-2 -2.1393e+3 -6.2628e+0 -3.6337e+1 # -Range: 0-200 SrF2 SrF2 = Sr+2 + 2 F- log_k -8.54 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrF2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SrF2 +# Enthalpy of formation: 0 kcal/mol SrHPO4 SrHPO4 = HPO4-2 + Sr+2 log_k -6.2416 - -delta_H -19.7942 kJ/mol # Calculated enthalpy of reaction SrHPO4 -# Enthalpy of formation: -1823.19 kJ/mol + -delta_H -19.7942 kJ/mol # Calculated enthalpy of reaction SrHPO4 +# Enthalpy of formation: -1823.19 kJ/mol -analytic 5.4057e+0 -1.8533e-2 -8.2021e+2 -1.3667e+0 -1.393e+1 # -Range: 0-200 SrI2 SrI2 = Sr+2 + 2 I- log_k 19.2678 - -delta_H -103.218 kJ/mol # Calculated enthalpy of reaction SrI2 -# Enthalpy of formation: -561.494 kJ/mol + -delta_H -103.218 kJ/mol # Calculated enthalpy of reaction SrI2 +# Enthalpy of formation: -561.494 kJ/mol -analytic -1.8168e+2 -7.2083e-2 9.0759e+3 7.7577e+1 1.4167e+2 # -Range: 0-300 SrO SrO + 2 H+ = H2O + Sr+2 log_k 41.8916 - -delta_H -243.875 kJ/mol # Calculated enthalpy of reaction SrO -# Enthalpy of formation: -592.871 kJ/mol + -delta_H -243.875 kJ/mol # Calculated enthalpy of reaction SrO +# Enthalpy of formation: -592.871 kJ/mol -analytic -5.8463e+1 -1.424e-2 1.4417e+4 2.2725e+1 2.2499e+2 # -Range: 0-300 SrS SrS + H+ = HS- + Sr+2 log_k 14.7284 - -delta_H -93.3857 kJ/mol # Calculated enthalpy of reaction SrS -# Enthalpy of formation: -473.63 kJ/mol + -delta_H -93.3857 kJ/mol # Calculated enthalpy of reaction SrS +# Enthalpy of formation: -473.63 kJ/mol -analytic -1.3048e+2 -4.4837e-2 7.8429e+3 5.3442e+1 1.2242e+2 # -Range: 0-300 SrSeO4 SrSeO4 = SeO4-2 + Sr+2 log_k -4.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrSeO4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SrSeO4 +# Enthalpy of formation: 0 kcal/mol SrSiO3 SrSiO3 + 2 H+ = H2O + SiO2 + Sr+2 log_k 14.8438 - -delta_H -79.6112 kJ/mol # Calculated enthalpy of reaction SrSiO3 -# Enthalpy of formation: -1634.83 kJ/mol + -delta_H -79.6112 kJ/mol # Calculated enthalpy of reaction SrSiO3 +# Enthalpy of formation: -1634.83 kJ/mol -analytic 2.2592e+1 6.0821e-3 5.9982e+3 -1.0213e+1 -3.9529e+5 # -Range: 0-300 SrUO4(alpha) SrUO4 + 4 H+ = Sr+2 + UO2+2 + 2 H2O log_k 19.165 - -delta_H -151.984 kJ/mol # Calculated enthalpy of reaction SrUO4(alpha) -# Enthalpy of formation: -1989.6 kJ/mol + -delta_H -151.984 kJ/mol # Calculated enthalpy of reaction SrUO4(alpha) +# Enthalpy of formation: -1989.6 kJ/mol -analytic -7.4169e+1 -1.6686e-2 9.8721e+3 2.6345e+1 1.5407e+2 # -Range: 0-300 SrZrO3 SrZrO3 + 4 H+ = H2O + Sr+2 + Zr(OH)2+2 log_k -131.4664 - -delta_H 706.983 kJ/mol # Calculated enthalpy of reaction SrZrO3 -# Enthalpy of formation: -629.677 kcal/mol + -delta_H 706.983 kJ/mol # Calculated enthalpy of reaction SrZrO3 +# Enthalpy of formation: -629.677 kcal/mol -analytic -5.8512e+1 -9.5738e-3 -3.5254e+4 1.9459e+1 -5.9865e+2 # -Range: 0-200 Starkeyite MgSO4:4H2O = Mg+2 + SO4-2 + 4 H2O log_k -0.9999 - -delta_H 0 # Not possible to calculate enthalpy of reaction Starkeyite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Starkeyite +# Enthalpy of formation: 0 kcal/mol Stibnite Sb2S3 + 6 H2O = 2 Sb(OH)3 + 3 H+ + 3 HS- log_k -53.11 - -delta_H 0 # Not possible to calculate enthalpy of reaction Stibnite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Stibnite +# Enthalpy of formation: 0 kcal/mol -analytic 2.5223e+1 -5.9186e-2 -2.086e+4 3.6892e+0 -3.2551e+2 # -Range: 0-300 Stilbite Ca1.019Na.136K.006Al2.18Si6.82O18:7.33H2O + 8.72 H+ = 0.006 K+ + 0.136 Na+ + 1.019 Ca+2 + 2.18 Al+3 + 6.82 SiO2 + 11.69 H2O log_k 1.0545 - -delta_H -83.0019 kJ/mol # Calculated enthalpy of reaction Stilbite -# Enthalpy of formation: -11005.7 kJ/mol + -delta_H -83.0019 kJ/mol # Calculated enthalpy of reaction Stilbite +# Enthalpy of formation: -11005.7 kJ/mol -analytic -2.4483e+1 3.0987e-2 2.8013e+4 -1.5802e+1 -3.4491e+6 # -Range: 0-300 Stilleite ZnSe = Se-2 + Zn+2 log_k -23.9693 - -delta_H 0 # Not possible to calculate enthalpy of reaction Stilleite -# Enthalpy of formation: -37.97 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Stilleite +# Enthalpy of formation: -37.97 kcal/mol -analytic -6.1948e+1 -1.7004e-2 -2.4498e+3 2.0712e+1 -3.8209e+1 # -Range: 0-300 Strengite FePO4:2H2O + H+ = Fe+3 + HPO4-2 + 2 H2O log_k -11.3429 - -delta_H -37.107 kJ/mol # Calculated enthalpy of reaction Strengite -# Enthalpy of formation: -1876.23 kJ/mol + -delta_H -37.107 kJ/mol # Calculated enthalpy of reaction Strengite +# Enthalpy of formation: -1876.23 kJ/mol -analytic -2.7752e+2 -9.4014e-2 7.6862e+3 1.0846e+2 1.2002e+2 # -Range: 0-300 Strontianite SrCO3 + H+ = HCO3- + Sr+2 log_k -0.3137 - -delta_H -8.23411 kJ/mol # Calculated enthalpy of reaction Strontianite -# Enthalpy of formation: -294.6 kcal/mol + -delta_H -8.23411 kJ/mol # Calculated enthalpy of reaction Strontianite +# Enthalpy of formation: -294.6 kcal/mol -analytic -1.3577e+2 -4.4884e-2 3.5729e+3 5.5296e+1 5.5791e+1 # -Range: 0-300 Sylvite KCl = Cl- + K+ log_k 0.8459 - -delta_H 17.4347 kJ/mol # Calculated enthalpy of reaction Sylvite -# Enthalpy of formation: -104.37 kcal/mol + -delta_H 17.4347 kJ/mol # Calculated enthalpy of reaction Sylvite +# Enthalpy of formation: -104.37 kcal/mol -analytic -8.1204e+1 -3.3074e-2 8.2819e+2 3.6014e+1 1.2947e+1 # -Range: 0-300 Syngenite K2Ca(SO4)2:H2O = Ca+2 + H2O + 2 K+ + 2 SO4-2 log_k -7.6001 - -delta_H 0 # Not possible to calculate enthalpy of reaction Syngenite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Syngenite +# Enthalpy of formation: 0 kcal/mol Tachyhydrite Mg2CaCl6:12H2O = Ca+2 + 2 Mg+2 + 6 Cl- + 12 H2O log_k 17.1439 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tachyhydrite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tachyhydrite +# Enthalpy of formation: 0 kcal/mol Talc Mg3Si4O10(OH)2 + 6 H+ = 3 Mg+2 + 4 H2O + 4 SiO2 log_k 21.1383 - -delta_H -148.737 kJ/mol # Calculated enthalpy of reaction Talc -# Enthalpy of formation: -1410.92 kcal/mol + -delta_H -148.737 kJ/mol # Calculated enthalpy of reaction Talc +# Enthalpy of formation: -1410.92 kcal/mol -analytic 1.1164e+1 2.4724e-2 1.981e+4 -1.7568e+1 -1.8241e+6 # -Range: 0-300 Tarapacaite K2CrO4 = CrO4-2 + 2 K+ log_k -0.4037 - -delta_H 17.8238 kJ/mol # Calculated enthalpy of reaction Tarapacaite -# Enthalpy of formation: -335.4 kcal/mol + -delta_H 17.8238 kJ/mol # Calculated enthalpy of reaction Tarapacaite +# Enthalpy of formation: -335.4 kcal/mol -analytic 2.7953e+1 -1.0863e-2 -2.7589e+3 -6.4154e+0 -4.6859e+1 # -Range: 0-200 Tb Tb + 3 H+ + 0.75 O2 = Tb+3 + 1.5 H2O log_k 181.417 - -delta_H -1117.97 kJ/mol # Calculated enthalpy of reaction Tb -# Enthalpy of formation: 0 kJ/mol + -delta_H -1117.97 kJ/mol # Calculated enthalpy of reaction Tb +# Enthalpy of formation: 0 kJ/mol -analytic -5.2354e+1 -2.692e-2 5.8391e+4 1.8555e+1 9.1115e+2 # -Range: 0-300 Tb(OH)3 Tb(OH)3 + 3 H+ = Tb+3 + 3 H2O log_k 15.6852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(OH)3 +# Enthalpy of formation: 0 kcal/mol Tb(OH)3(am) Tb(OH)3 + 3 H+ = Tb+3 + 3 H2O log_k 18.7852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(OH)3(am) +# Enthalpy of formation: 0 kcal/mol Tb2(CO3)3 Tb2(CO3)3 + 3 H+ = 2 Tb+3 + 3 HCO3- log_k -3.2136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb2(CO3)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb2(CO3)3 +# Enthalpy of formation: 0 kcal/mol Tb2O3 Tb2O3 + 6 H+ = 2 Tb+3 + 3 H2O log_k 47.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb2O3 +# Enthalpy of formation: 0 kcal/mol TbF3:.5H2O TbF3:.5H2O = 0.5 H2O + Tb+3 + 3 F- log_k -16.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction TbF3:.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TbF3:.5H2O +# Enthalpy of formation: 0 kcal/mol TbPO4:10H2O TbPO4:10H2O + H+ = HPO4-2 + Tb+3 + 10 H2O log_k -11.9782 - -delta_H 0 # Not possible to calculate enthalpy of reaction TbPO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TbPO4:10H2O +# Enthalpy of formation: 0 kcal/mol Tc Tc + 1.75 O2 + 0.5 H2O = H+ + TcO4- log_k 93.5811 - -delta_H -552.116 kJ/mol # Calculated enthalpy of reaction Tc -# Enthalpy of formation: 0 kJ/mol + -delta_H -552.116 kJ/mol # Calculated enthalpy of reaction Tc +# Enthalpy of formation: 0 kJ/mol -analytic 2.267e+1 -1.205e-2 3.0174e+4 -8.4053e+0 -5.2577e+5 # -Range: 0-300 Tc(OH)2 Tc(OH)2 + 3 H+ + 0.25 O2 = Tc+3 + 2.5 H2O log_k 5.2714 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc(OH)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc(OH)2 +# Enthalpy of formation: 0 kcal/mol Tc(OH)3 Tc(OH)3 + 3 H+ = Tc+3 + 3 H2O log_k -9.2425 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc(OH)3 +# Enthalpy of formation: 0 kcal/mol Tc2O7 Tc2O7 + H2O = 2 H+ + 2 TcO4- log_k 13.1077 - -delta_H -26.5357 kJ/mol # Calculated enthalpy of reaction Tc2O7 -# Enthalpy of formation: -1120.16 kJ/mol + -delta_H -26.5357 kJ/mol # Calculated enthalpy of reaction Tc2O7 +# Enthalpy of formation: -1120.16 kJ/mol -analytic 8.7535e+1 1.5366e-2 -1.1919e+3 -3.0317e+1 -2.0271e+1 # -Range: 0-200 Tc2S7 Tc2S7 + 8 H2O = 2 TcO4- + 7 HS- + 9 H+ log_k -230.241 - -delta_H 1356.41 kJ/mol # Calculated enthalpy of reaction Tc2S7 -# Enthalpy of formation: -615 kJ/mol + -delta_H 1356.41 kJ/mol # Calculated enthalpy of reaction Tc2S7 +# Enthalpy of formation: -615 kJ/mol -analytic 2.456e+2 -4.3355e-2 -8.4192e+4 -7.2967e+1 -1.4298e+3 # -Range: 0-200 Tc3O4 Tc3O4 + 9 H+ + 0.25 O2 = 3 Tc+3 + 4.5 H2O log_k -19.2271 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc3O4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc3O4 +# Enthalpy of formation: 0 kcal/mol Tc4O7 Tc4O7 + 10 H+ = 2 Tc+3 + 2 TcO+2 + 5 H2O log_k -26.0149 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc4O7 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc4O7 +# Enthalpy of formation: 0 kcal/mol TcO2:2H2O(am) TcO2:2H2O + 2 H+ = TcO+2 + 3 H2O log_k -4.2319 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO2:2H2O(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO2:2H2O(am) +# Enthalpy of formation: 0 kcal/mol TcO3 TcO3 + H2O = TcO4-2 + 2 H+ log_k -23.1483 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO3 -# Enthalpy of formation: -540 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO3 +# Enthalpy of formation: -540 kJ/mol TcOH TcOH + 3 H+ + 0.5 O2 = Tc+3 + 2 H2O log_k 24.9009 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcOH -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TcOH +# Enthalpy of formation: 0 kcal/mol TcS2 TcS2 + H2O = TcO+2 + 2 HS- log_k -65.9742 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcS2 -# Enthalpy of formation: -224 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TcS2 +# Enthalpy of formation: -224 kJ/mol TcS3 TcS3 + 4 H2O = TcO4-2 + 3 HS- + 5 H+ log_k -119.5008 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcS3 -# Enthalpy of formation: -276 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TcS3 +# Enthalpy of formation: -276 kJ/mol Tenorite CuO + 2 H+ = Cu+2 + H2O log_k 7.656 - -delta_H -64.5047 kJ/mol # Calculated enthalpy of reaction Tenorite -# Enthalpy of formation: -37.2 kcal/mol + -delta_H -64.5047 kJ/mol # Calculated enthalpy of reaction Tenorite +# Enthalpy of formation: -37.2 kcal/mol -analytic -8.9899e+1 -1.8886e-2 6.0346e+3 3.3517e+1 9.4191e+1 # -Range: 0-300 Tephroite Mn2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Mn+2 log_k 23.0781 - -delta_H -160.1 kJ/mol # Calculated enthalpy of reaction Tephroite -# Enthalpy of formation: -1730.47 kJ/mol + -delta_H -160.1 kJ/mol # Calculated enthalpy of reaction Tephroite +# Enthalpy of formation: -1730.47 kJ/mol -analytic -3.244e+1 -1.1023e-2 8.891e+3 1.1691e+1 1.3875e+2 # -Range: 0-300 Th Th + 4 H+ + O2 = Th+4 + 2 H2O log_k 209.6028 - -delta_H -1328.56 kJ/mol # Calculated enthalpy of reaction Th -# Enthalpy of formation: 0 kJ/mol + -delta_H -1328.56 kJ/mol # Calculated enthalpy of reaction Th +# Enthalpy of formation: 0 kJ/mol -analytic -2.8256e+1 -1.1963e-2 6.887e+4 4.2068e+0 1.0747e+3 # -Range: 0-300 Th(NO3)4:5H2O Th(NO3)4:5H2O = Th+4 + 4 NO3- + 5 H2O log_k 1.7789 - -delta_H -18.1066 kJ/mol # Calculated enthalpy of reaction Th(NO3)4:5H2O -# Enthalpy of formation: -3007.35 kJ/mol + -delta_H -18.1066 kJ/mol # Calculated enthalpy of reaction Th(NO3)4:5H2O +# Enthalpy of formation: -3007.35 kJ/mol -analytic -1.248e+2 -2.0405e-2 5.1601e+3 4.6613e+1 8.7669e+1 # -Range: 0-200 Th(OH)4 Th(OH)4 + 4 H+ = Th+4 + 4 H2O log_k 9.6543 - -delta_H -140.336 kJ/mol # Calculated enthalpy of reaction Th(OH)4 -# Enthalpy of formation: -423.527 kcal/mol + -delta_H -140.336 kJ/mol # Calculated enthalpy of reaction Th(OH)4 +# Enthalpy of formation: -423.527 kcal/mol -analytic -1.4031e+2 -9.2493e-3 1.2345e+4 4.499e+1 2.0968e+2 # -Range: 0-200 Th(SO4)2 Th(SO4)2 = Th+4 + 2 SO4-2 log_k -20.3006 - -delta_H -46.1064 kJ/mol # Calculated enthalpy of reaction Th(SO4)2 -# Enthalpy of formation: -2542.12 kJ/mol + -delta_H -46.1064 kJ/mol # Calculated enthalpy of reaction Th(SO4)2 +# Enthalpy of formation: -2542.12 kJ/mol -analytic -8.4525e+0 -3.5442e-2 0e+0 0e+0 -1.154e+5 # -Range: 0-200 Th2S3 Th2S3 + 5 H+ + 0.5 O2 = H2O + 2 Th+4 + 3 HS- log_k 95.229 - -delta_H -783.243 kJ/mol # Calculated enthalpy of reaction Th2S3 -# Enthalpy of formation: -1082.89 kJ/mol + -delta_H -783.243 kJ/mol # Calculated enthalpy of reaction Th2S3 +# Enthalpy of formation: -1082.89 kJ/mol -analytic -3.2969e+2 -1.109e-1 4.6877e+4 1.2152e+2 7.3157e+2 # -Range: 0-300 Th2Se3 Th2Se3 + 2 H+ + 0.5 O2 = H2O + 2 Th+4 + 3 Se-2 log_k 59.1655 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th2Se3 -# Enthalpy of formation: -224 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Th2Se3 +# Enthalpy of formation: -224 kcal/mol -analytic -1.0083e+1 6.024e-3 3.4039e+4 -1.8884e+1 5.7804e+2 # -Range: 0-200 Th7S12 Th7S12 + 16 H+ + O2 = 2 H2O + 7 Th+4 + 12 HS- log_k 204.074 - -delta_H -1999.4 kJ/mol # Calculated enthalpy of reaction Th7S12 -# Enthalpy of formation: -4136.58 kJ/mol + -delta_H -1999.4 kJ/mol # Calculated enthalpy of reaction Th7S12 +# Enthalpy of formation: -4136.58 kJ/mol -analytic -2.1309e+2 -1.4149e-1 9.855e+4 5.2042e+1 1.6736e+3 # -Range: 0-200 ThBr4 ThBr4 = Th+4 + 4 Br- log_k 34.0803 - -delta_H -290.23 kJ/mol # Calculated enthalpy of reaction ThBr4 -# Enthalpy of formation: -964.803 kJ/mol + -delta_H -290.23 kJ/mol # Calculated enthalpy of reaction ThBr4 +# Enthalpy of formation: -964.803 kJ/mol -analytic 2.9902e+1 -3.3109e-2 1.0988e+4 -9.2209e+0 1.8657e+2 # -Range: 0-200 ThCl4 ThCl4 = Th+4 + 4 Cl- log_k 23.8491 - -delta_H -251.094 kJ/mol # Calculated enthalpy of reaction ThCl4 -# Enthalpy of formation: -283.519 kcal/mol + -delta_H -251.094 kJ/mol # Calculated enthalpy of reaction ThCl4 +# Enthalpy of formation: -283.519 kcal/mol -analytic -5.934e+0 -4.164e-2 9.8623e+3 3.6804e+0 1.6748e+2 # -Range: 0-200 ThF4 ThF4 = Th+4 + 4 F- log_k -29.9946 - -delta_H -12.6733 kJ/mol # Calculated enthalpy of reaction ThF4 -# Enthalpy of formation: -501.371 kcal/mol + -delta_H -12.6733 kJ/mol # Calculated enthalpy of reaction ThF4 +# Enthalpy of formation: -501.371 kcal/mol -analytic -4.2622e+2 -1.4222e-1 9.4201e+3 1.6446e+2 1.4712e+2 # -Range: 0-300 ThF4:2.5H2O ThF4:2.5H2O = Th+4 + 2.5 H2O + 4 F- log_k -31.8568 - -delta_H 22.6696 kJ/mol # Calculated enthalpy of reaction ThF4:2.5H2O -# Enthalpy of formation: -2847.68 kJ/mol + -delta_H 22.6696 kJ/mol # Calculated enthalpy of reaction ThF4:2.5H2O +# Enthalpy of formation: -2847.68 kJ/mol -analytic -1.1284e+2 -4.5422e-2 -2.5781e+2 3.8547e+1 -4.3396e+0 # -Range: 0-200 ThI4 ThI4 = Th+4 + 4 I- log_k 45.1997 - -delta_H -332.818 kJ/mol # Calculated enthalpy of reaction ThI4 -# Enthalpy of formation: -663.811 kJ/mol + -delta_H -332.818 kJ/mol # Calculated enthalpy of reaction ThI4 +# Enthalpy of formation: -663.811 kJ/mol -analytic 1.4224e+0 -4.0379e-2 1.4193e+4 3.3137e+0 2.4102e+2 # -Range: 0-200 ThS ThS + 3 H+ + 0.5 O2 = H2O + HS- + Th+4 log_k 96.0395 - -delta_H -669.906 kJ/mol # Calculated enthalpy of reaction ThS -# Enthalpy of formation: -394.993 kJ/mol + -delta_H -669.906 kJ/mol # Calculated enthalpy of reaction ThS +# Enthalpy of formation: -394.993 kJ/mol -analytic -1.3919e+1 -1.2372e-2 3.3883e+4 0e+0 0e+0 # -Range: 0-200 ThS2 ThS2 + 2 H+ = Th+4 + 2 HS- log_k 10.7872 - -delta_H -175.369 kJ/mol # Calculated enthalpy of reaction ThS2 -# Enthalpy of formation: -625.867 kJ/mol + -delta_H -175.369 kJ/mol # Calculated enthalpy of reaction ThS2 +# Enthalpy of formation: -625.867 kJ/mol -analytic -3.7691e+1 -2.3714e-2 8.4673e+3 1.097e+1 1.438e+2 # -Range: 0-200 Thenardite Na2SO4 = SO4-2 + 2 Na+ log_k -0.3091 - -delta_H -2.33394 kJ/mol # Calculated enthalpy of reaction Thenardite -# Enthalpy of formation: -1387.87 kJ/mol + -delta_H -2.33394 kJ/mol # Calculated enthalpy of reaction Thenardite +# Enthalpy of formation: -1387.87 kJ/mol -analytic -2.1202e+2 -7.1613e-2 5.1083e+3 8.7244e+1 7.9773e+1 # -Range: 0-300 Thermonatrite Na2CO3:H2O + H+ = H2O + HCO3- + 2 Na+ log_k 10.9623 - -delta_H -27.5869 kJ/mol # Calculated enthalpy of reaction Thermonatrite -# Enthalpy of formation: -1428.78 kJ/mol + -delta_H -27.5869 kJ/mol # Calculated enthalpy of reaction Thermonatrite +# Enthalpy of formation: -1428.78 kJ/mol -analytic -1.403e+2 -3.5263e-2 5.784e+3 5.7528e+1 9.0295e+1 # -Range: 0-300 Thorianite ThO2 + 4 H+ = Th+4 + 2 H2O log_k 1.8624 - -delta_H -114.296 kJ/mol # Calculated enthalpy of reaction Thorianite -# Enthalpy of formation: -1226.4 kJ/mol + -delta_H -114.296 kJ/mol # Calculated enthalpy of reaction Thorianite +# Enthalpy of formation: -1226.4 kJ/mol -analytic -1.4249e+1 -2.4645e-3 4.311e+3 -1.6605e-2 2.1598e+5 # -Range: 0-300 Ti Ti + 2 H2O + O2 = Ti(OH)4 log_k 149.2978 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti -# Enthalpy of formation: 0 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti +# Enthalpy of formation: 0 kJ/mol Ti2O3 Ti2O3 + 4 H2O + 0.5 O2 = 2 Ti(OH)4 log_k 42.9866 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti2O3 -# Enthalpy of formation: -1520.78 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti2O3 +# Enthalpy of formation: -1520.78 kJ/mol Ti3O5 Ti3O5 + 6 H2O + 0.5 O2 = 3 Ti(OH)4 log_k 34.6557 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti3O5 -# Enthalpy of formation: -2459.24 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti3O5 +# Enthalpy of formation: -2459.24 kJ/mol TiB2 TiB2 + 5 H2O + 2.5 O2 = Ti(OH)4 + 2 B(OH)3 log_k 312.4194 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiB2 -# Enthalpy of formation: -323.883 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TiB2 +# Enthalpy of formation: -323.883 kJ/mol TiBr3 TiBr3 + 3.5 H2O + 0.25 O2 = Ti(OH)4 + 3 Br- + 3 H+ log_k 47.719 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr3 -# Enthalpy of formation: -548.378 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr3 +# Enthalpy of formation: -548.378 kJ/mol TiBr4 TiBr4 + 4 H2O = Ti(OH)4 + 4 Br- + 4 H+ log_k 32.9379 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr4 -# Enthalpy of formation: -616.822 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr4 +# Enthalpy of formation: -616.822 kJ/mol TiC TiC + 3 H2O + 2 O2 = H+ + HCO3- + Ti(OH)4 log_k 181.8139 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiC -# Enthalpy of formation: -184.346 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TiC +# Enthalpy of formation: -184.346 kJ/mol TiCl2 TiCl2 + 3 H2O + 0.5 O2 = Ti(OH)4 + 2 Cl- + 2 H+ log_k 70.9386 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl2 -# Enthalpy of formation: -514.012 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl2 +# Enthalpy of formation: -514.012 kJ/mol TiCl3 TiCl3 + 3.5 H2O + 0.25 O2 = Ti(OH)4 + 3 Cl- + 3 H+ log_k 39.3099 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl3 -# Enthalpy of formation: -720.775 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl3 +# Enthalpy of formation: -720.775 kJ/mol TiF4(am) TiF4 + 4 H2O = Ti(OH)4 + 4 F- + 4 H+ log_k -12.4409 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiF4(am) -# Enthalpy of formation: -1649.44 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TiF4(am) +# Enthalpy of formation: -1649.44 kJ/mol TiI4 TiI4 + 4 H2O = Ti(OH)4 + 4 H+ + 4 I- log_k 34.5968 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiI4 -# Enthalpy of formation: -375.555 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TiI4 +# Enthalpy of formation: -375.555 kJ/mol TiN TiN + 3.5 H2O + 0.25 O2 = NH3 + Ti(OH)4 log_k 35.2344 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiN -# Enthalpy of formation: -338.304 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TiN +# Enthalpy of formation: -338.304 kJ/mol TiO(alpha) TiO + 2 H2O + 0.5 O2 = Ti(OH)4 log_k 61.1282 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiO(alpha) -# Enthalpy of formation: -519.835 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TiO(alpha) +# Enthalpy of formation: -519.835 kJ/mol Tiemannite HgSe = Hg+2 + Se-2 log_k -58.2188 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tiemannite -# Enthalpy of formation: -10.4 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tiemannite +# Enthalpy of formation: -10.4 kcal/mol -analytic -5.7618e+1 -1.3891e-2 -1.3223e+4 1.9351e+1 -2.0632e+2 # -Range: 0-300 Titanite CaTiSiO5 + 2 H+ + H2O = Ca+2 + SiO2 + Ti(OH)4 log_k 719.5839 - -delta_H 0 # Not possible to calculate enthalpy of reaction Titanite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Titanite +# Enthalpy of formation: 0 kcal/mol Tl Tl + H+ + 0.25 O2 = 0.5 H2O + Tl+ log_k 27.1743 - -delta_H -134.53 kJ/mol # Calculated enthalpy of reaction Tl -# Enthalpy of formation: 0 kJ/mol + -delta_H -134.53 kJ/mol # Calculated enthalpy of reaction Tl +# Enthalpy of formation: 0 kJ/mol -analytic -3.7066e+1 -7.8341e-3 9.4594e+3 1.4896e+1 -1.7904e+5 # -Range: 0-300 Tm Tm + 3 H+ + 0.75 O2 = Tm+3 + 1.5 H2O log_k 181.7102 - -delta_H -1124.66 kJ/mol # Calculated enthalpy of reaction Tm -# Enthalpy of formation: 0 kJ/mol + -delta_H -1124.66 kJ/mol # Calculated enthalpy of reaction Tm +# Enthalpy of formation: 0 kJ/mol -analytic -6.744e+1 -2.8476e-2 5.9332e+4 2.3715e+1 -5.9611e+3 # -Range: 0-300 Tm(OH)3 Tm(OH)3 + 3 H+ = Tm+3 + 3 H2O log_k 14.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(OH)3 +# Enthalpy of formation: 0 kcal/mol Tm(OH)3(am) Tm(OH)3 + 3 H+ = Tm+3 + 3 H2O log_k 17.2852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(OH)3(am) +# Enthalpy of formation: 0 kcal/mol Tm2(CO3)3 Tm2(CO3)3 + 3 H+ = 2 Tm+3 + 3 HCO3- log_k -2.4136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm2(CO3)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm2(CO3)3 +# Enthalpy of formation: 0 kcal/mol Tm2O3 Tm2O3 + 6 H+ = 2 Tm+3 + 3 H2O log_k 44.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm2O3 +# Enthalpy of formation: 0 kcal/mol TmF3:.5H2O TmF3:.5H2O = 0.5 H2O + Tm+3 + 3 F- log_k -16.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction TmF3:.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TmF3:.5H2O +# Enthalpy of formation: 0 kcal/mol TmPO4:10H2O TmPO4:10H2O + H+ = HPO4-2 + Tm+3 + 10 H2O log_k -11.8782 - -delta_H 0 # Not possible to calculate enthalpy of reaction TmPO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TmPO4:10H2O +# Enthalpy of formation: 0 kcal/mol Tobermorite-11A Ca5Si6H11O22.5 + 10 H+ = 5 Ca+2 + 6 SiO2 + 10.5 H2O log_k 65.6121 - -delta_H -286.861 kJ/mol # Calculated enthalpy of reaction Tobermorite-11A -# Enthalpy of formation: -2556.42 kcal/mol + -delta_H -286.861 kJ/mol # Calculated enthalpy of reaction Tobermorite-11A +# Enthalpy of formation: -2556.42 kcal/mol -analytic 7.9123e+1 3.915e-2 2.9429e+4 -3.9191e+1 -2.4122e+6 # -Range: 0-300 Tobermorite-14A Ca5Si6H21O27.5 + 10 H+ = 5 Ca+2 + 6 SiO2 + 15.5 H2O log_k 63.8445 - -delta_H -230.959 kJ/mol # Calculated enthalpy of reaction Tobermorite-14A -# Enthalpy of formation: -2911.36 kcal/mol + -delta_H -230.959 kJ/mol # Calculated enthalpy of reaction Tobermorite-14A +# Enthalpy of formation: -2911.36 kcal/mol -analytic -2.0789e+2 5.2472e-3 3.9698e+4 6.7797e+1 -2.7532e+6 # -Range: 0-300 Tobermorite-9A Ca5Si6H6O20 + 10 H+ = 5 Ca+2 + 6 SiO2 + 8 H2O log_k 69.0798 - -delta_H -329.557 kJ/mol # Calculated enthalpy of reaction Tobermorite-9A -# Enthalpy of formation: -2375.42 kcal/mol + -delta_H -329.557 kJ/mol # Calculated enthalpy of reaction Tobermorite-9A +# Enthalpy of formation: -2375.42 kcal/mol -analytic -6.3384e+1 1.1722e-2 3.8954e+4 1.2268e+1 -2.8681e+6 # -Range: 0-300 Todorokite Mn7O12:3H2O + 16 H+ = MnO4-2 + 6 Mn+3 + 11 H2O log_k -45.8241 - -delta_H 0 # Not possible to calculate enthalpy of reaction Todorokite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Todorokite +# Enthalpy of formation: 0 kcal/mol Torbernite Cu(UO2)2(PO4)2 + 2 H+ = Cu+2 + 2 HPO4-2 + 2 UO2+2 log_k -20.3225 - -delta_H -97.4022 kJ/mol # Calculated enthalpy of reaction Torbernite -# Enthalpy of formation: -1065.74 kcal/mol + -delta_H -97.4022 kJ/mol # Calculated enthalpy of reaction Torbernite +# Enthalpy of formation: -1065.74 kcal/mol -analytic -6.7128e+1 -4.5878e-2 3.5071e+3 1.9682e+1 5.9579e+1 # -Range: 0-200 Tremolite Ca2Mg5Si8O22(OH)2 + 14 H+ = 2 Ca+2 + 5 Mg+2 + 8 H2O + 8 SiO2 log_k 61.2367 - -delta_H -406.404 kJ/mol # Calculated enthalpy of reaction Tremolite -# Enthalpy of formation: -2944.04 kcal/mol + -delta_H -406.404 kJ/mol # Calculated enthalpy of reaction Tremolite +# Enthalpy of formation: -2944.04 kcal/mol -analytic 8.5291e+1 4.6337e-2 3.9465e+4 -5.4414e+1 -3.1913e+6 # -Range: 0-300 Trevorite NiFe2O4 + 8 H+ = Ni+2 + 2 Fe+3 + 4 H2O log_k 9.7876 - -delta_H -215.338 kJ/mol # Calculated enthalpy of reaction Trevorite -# Enthalpy of formation: -1081.15 kJ/mol + -delta_H -215.338 kJ/mol # Calculated enthalpy of reaction Trevorite +# Enthalpy of formation: -1081.15 kJ/mol -analytic -1.4322e+2 -2.9429e-2 1.4518e+4 4.5698e+1 2.4658e+2 # -Range: 0-200 Tridymite SiO2 = SiO2 log_k -3.8278 - -delta_H 31.3664 kJ/mol # Calculated enthalpy of reaction Tridymite -# Enthalpy of formation: -909.065 kJ/mol + -delta_H 31.3664 kJ/mol # Calculated enthalpy of reaction Tridymite +# Enthalpy of formation: -909.065 kJ/mol -analytic 3.1594e+2 6.9315e-2 -1.1358e+4 -1.2219e+2 -1.9299e+2 # -Range: 0-200 Troilite FeS + H+ = Fe+2 + HS- log_k -3.8184 - -delta_H -7.3296 kJ/mol # Calculated enthalpy of reaction Troilite -# Enthalpy of formation: -101.036 kJ/mol + -delta_H -7.3296 kJ/mol # Calculated enthalpy of reaction Troilite +# Enthalpy of formation: -101.036 kJ/mol -analytic -1.6146e+2 -5.317e-2 4.0461e+3 6.462e+1 6.3183e+1 # -Range: 0-300 Trona-K K2NaH(CO3)2:2H2O + H+ = Na+ + 2 H2O + 2 HCO3- + 2 K+ log_k 11.5891 - -delta_H 0 # Not possible to calculate enthalpy of reaction Trona-K -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Trona-K +# Enthalpy of formation: 0 kcal/mol Tsumebite Pb2Cu(PO4)(OH)3:3H2O + 4 H+ = Cu+2 + HPO4-2 + 2 Pb+2 + 6 H2O log_k 2.5318 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tsumebite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tsumebite +# Enthalpy of formation: 0 kcal/mol Tyuyamunite Ca(UO2)2(VO4)2 = Ca+2 + 2 UO2+2 + 2 VO4-3 log_k -53.3757 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tyuyamunite -# Enthalpy of formation: -1164.52 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tyuyamunite +# Enthalpy of formation: -1164.52 kcal/mol U U + 2 H+ + 1.5 O2 = H2O + UO2+2 log_k 212.78 - -delta_H -1286.64 kJ/mol # Calculated enthalpy of reaction U -# Enthalpy of formation: 0 kJ/mol + -delta_H -1286.64 kJ/mol # Calculated enthalpy of reaction U +# Enthalpy of formation: 0 kJ/mol -analytic -2.4912e+2 -4.7104e-2 8.1115e+4 8.7008e+1 -1.0158e+6 # -Range: 0-300 U(CO3)2 U(CO3)2 + 2 H+ = U+4 + 2 HCO3- log_k 7.5227 - -delta_H -170.691 kJ/mol # Calculated enthalpy of reaction U(CO3)2 -# Enthalpy of formation: -1800.38 kJ/mol + -delta_H -170.691 kJ/mol # Calculated enthalpy of reaction U(CO3)2 +# Enthalpy of formation: -1800.38 kJ/mol -analytic -8.5952e+1 -2.5086e-2 1.0177e+4 2.7002e+1 1.7285e+2 # -Range: 0-200 U(HPO4)2:4H2O U(HPO4)2:4H2O = U+4 + 2 HPO4-2 + 4 H2O log_k -32.865 - -delta_H 16.1008 kJ/mol # Calculated enthalpy of reaction U(HPO4)2:4H2O -# Enthalpy of formation: -4334.82 kJ/mol + -delta_H 16.1008 kJ/mol # Calculated enthalpy of reaction U(HPO4)2:4H2O +# Enthalpy of formation: -4334.82 kJ/mol -analytic -3.8694e+2 -1.3874e-1 6.4882e+3 1.5099e+2 1.0136e+2 # -Range: 0-300 U(OH)2SO4 U(OH)2SO4 + 2 H+ = SO4-2 + U+4 + 2 H2O log_k -3.0731 - -delta_H 0 # Not possible to calculate enthalpy of reaction U(OH)2SO4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction U(OH)2SO4 +# Enthalpy of formation: 0 kcal/mol U(SO3)2 U(SO3)2 = U+4 + 2 SO3-2 log_k -36.7499 - -delta_H 20.7008 kJ/mol # Calculated enthalpy of reaction U(SO3)2 -# Enthalpy of formation: -1883 kJ/mol + -delta_H 20.7008 kJ/mol # Calculated enthalpy of reaction U(SO3)2 +# Enthalpy of formation: -1883 kJ/mol -analytic 5.8113e+1 -2.9981e-2 -7.0503e+3 -2.5175e+1 -1.1974e+2 # -Range: 0-200 U(SO4)2 U(SO4)2 = U+4 + 2 SO4-2 log_k -11.5178 - -delta_H -100.803 kJ/mol # Calculated enthalpy of reaction U(SO4)2 -# Enthalpy of formation: -2309.6 kJ/mol + -delta_H -100.803 kJ/mol # Calculated enthalpy of reaction U(SO4)2 +# Enthalpy of formation: -2309.6 kJ/mol -analytic 3.2215e+1 -2.8662e-2 7.1066e+2 -1.519e+1 1.2057e+1 # -Range: 0-200 U(SO4)2:4H2O U(SO4)2:4H2O = U+4 + 2 SO4-2 + 4 H2O log_k -11.5287 - -delta_H -70.5565 kJ/mol # Calculated enthalpy of reaction U(SO4)2:4H2O -# Enthalpy of formation: -3483.2 kJ/mol + -delta_H -70.5565 kJ/mol # Calculated enthalpy of reaction U(SO4)2:4H2O +# Enthalpy of formation: -3483.2 kJ/mol -analytic -6.9548e+1 -2.9094e-2 3.8763e+3 2.1692e+1 6.5849e+1 # -Range: 0-200 U(SO4)2:8H2O U(SO4)2:8H2O = U+4 + 2 SO4-2 + 8 H2O log_k -12.5558 - -delta_H -34.5098 kJ/mol # Calculated enthalpy of reaction U(SO4)2:8H2O -# Enthalpy of formation: -4662.6 kJ/mol + -delta_H -34.5098 kJ/mol # Calculated enthalpy of reaction U(SO4)2:8H2O +# Enthalpy of formation: -4662.6 kJ/mol -analytic -1.7141e+2 -2.9548e-2 6.7423e+3 5.8614e+1 1.1455e+2 # -Range: 0-200 U2C3 U2C3 + 4.5 O2 + 3 H+ = 2 U+3 + 3 HCO3- log_k 455.3078 - -delta_H -2810.1 kJ/mol # Calculated enthalpy of reaction U2C3 -# Enthalpy of formation: -183.3 kJ/mol + -delta_H -2810.1 kJ/mol # Calculated enthalpy of reaction U2C3 +# Enthalpy of formation: -183.3 kJ/mol -analytic -3.834e+2 -1.5374e-1 1.5922e+5 1.4643e+2 -1.0584e+6 # -Range: 0-300 U2F9 U2F9 + 2 H2O = U+4 + UO2+ + 4 H+ + 9 F- log_k -45.5022 - -delta_H -46.8557 kJ/mol # Calculated enthalpy of reaction U2F9 -# Enthalpy of formation: -4015.92 kJ/mol + -delta_H -46.8557 kJ/mol # Calculated enthalpy of reaction U2F9 +# Enthalpy of formation: -4015.92 kJ/mol -analytic -8.8191e+2 -3.0477e-1 2.0493e+4 3.469e+2 3.2003e+2 # -Range: 0-300 U2O2Cl5 U2O2Cl5 = U+4 + UO2+ + 5 Cl- log_k 19.2752 - -delta_H -254.325 kJ/mol # Calculated enthalpy of reaction U2O2Cl5 -# Enthalpy of formation: -2197.4 kJ/mol + -delta_H -254.325 kJ/mol # Calculated enthalpy of reaction U2O2Cl5 +# Enthalpy of formation: -2197.4 kJ/mol -analytic -4.3945e+2 -1.6239e-1 2.1694e+4 1.7551e+2 3.3865e+2 # -Range: 0-300 U2O3F6 U2O3F6 + H2O = 2 H+ + 2 UO2+2 + 6 F- log_k -2.5066 - -delta_H -185.047 kJ/mol # Calculated enthalpy of reaction U2O3F6 -# Enthalpy of formation: -3579.2 kJ/mol + -delta_H -185.047 kJ/mol # Calculated enthalpy of reaction U2O3F6 +# Enthalpy of formation: -3579.2 kJ/mol -analytic -3.2332e+1 -5.9519e-2 5.7857e+3 1.1372e+1 9.826e+1 # -Range: 0-200 U2S3 U2S3 + 3 H+ = 2 U+3 + 3 HS- log_k 6.5279 - -delta_H -147.525 kJ/mol # Calculated enthalpy of reaction U2S3 -# Enthalpy of formation: -879 kJ/mol + -delta_H -147.525 kJ/mol # Calculated enthalpy of reaction U2S3 +# Enthalpy of formation: -879 kJ/mol -analytic -3.0494e+2 -1.0983e-1 1.3647e+4 1.2059e+2 2.1304e+2 # -Range: 0-300 U2Se3 U2Se3 + 4.5 O2 = 2 U+3 + 3 SeO3-2 log_k 248.0372 - -delta_H -1740.18 kJ/mol # Calculated enthalpy of reaction U2Se3 -# Enthalpy of formation: -711 kJ/mol + -delta_H -1740.18 kJ/mol # Calculated enthalpy of reaction U2Se3 +# Enthalpy of formation: -711 kJ/mol -analytic 4.9999e+2 -1.6488e-2 6.4991e+4 -1.8795e+2 1.1035e+3 # -Range: 0-200 U3As4 U3As4 + 5.25 O2 + 5 H+ + 1.5 H2O = 3 U+3 + 4 H2AsO3- log_k 487.6802 - -delta_H -3114.02 kJ/mol # Calculated enthalpy of reaction U3As4 -# Enthalpy of formation: -720 kJ/mol + -delta_H -3114.02 kJ/mol # Calculated enthalpy of reaction U3As4 +# Enthalpy of formation: -720 kJ/mol -analytic -9.0215e+2 -2.5804e-1 1.9974e+5 3.3331e+2 -2.4911e+6 # -Range: 0-300 U3O5F8 U3O5F8 + H2O = 2 H+ + 3 UO2+2 + 8 F- log_k -2.7436 - -delta_H -260.992 kJ/mol # Calculated enthalpy of reaction U3O5F8 -# Enthalpy of formation: -5192.95 kJ/mol + -delta_H -260.992 kJ/mol # Calculated enthalpy of reaction U3O5F8 +# Enthalpy of formation: -5192.95 kJ/mol -analytic -7.7653e+2 -2.7294e-1 2.918e+4 3.0599e+2 4.5556e+2 # -Range: 0-300 U3P4 U3P4 + 7.25 O2 + 1.5 H2O + H+ = 3 U+3 + 4 HPO4-2 log_k 827.5586 - -delta_H -5275.9 kJ/mol # Calculated enthalpy of reaction U3P4 -# Enthalpy of formation: -843 kJ/mol + -delta_H -5275.9 kJ/mol # Calculated enthalpy of reaction U3P4 +# Enthalpy of formation: -843 kJ/mol -analytic -2.7243e+3 -6.2927e-1 4.013e+5 1.0021e+3 -7.672e+6 # -Range: 0-300 U3S5 U3S5 + 5 H+ = U+4 + 2 U+3 + 5 HS- log_k -0.368 - -delta_H -218.942 kJ/mol # Calculated enthalpy of reaction U3S5 -# Enthalpy of formation: -1431 kJ/mol + -delta_H -218.942 kJ/mol # Calculated enthalpy of reaction U3S5 +# Enthalpy of formation: -1431 kJ/mol -analytic -1.1011e+2 -6.7959e-2 1.0369e+4 3.8481e+1 1.7611e+2 # -Range: 0-200 U3Sb4 U3Sb4 + 9 H+ + 5.25 O2 + 1.5 H2O = 3 U+3 + 4 Sb(OH)3 log_k 575.0349 - -delta_H -3618.1 kJ/mol # Calculated enthalpy of reaction U3Sb4 -# Enthalpy of formation: -451.9 kJ/mol + -delta_H -3618.1 kJ/mol # Calculated enthalpy of reaction U3Sb4 +# Enthalpy of formation: -451.9 kJ/mol U3Se4 U3Se4 + 6.25 O2 + H+ = 0.5 H2O + 3 U+3 + 4 SeO3-2 log_k 375.2823 - -delta_H -2588.16 kJ/mol # Calculated enthalpy of reaction U3Se4 -# Enthalpy of formation: -983 kJ/mol + -delta_H -2588.16 kJ/mol # Calculated enthalpy of reaction U3Se4 +# Enthalpy of formation: -983 kJ/mol -analytic 6.7219e+2 -2.2708e-2 1.0025e+5 -2.5317e+2 1.7021e+3 # -Range: 0-200 U3Se5 U3Se5 + 7.25 O2 + 0.5 H2O = H+ + 3 U+3 + 5 SeO3-2 log_k 376.5747 - -delta_H -2652.38 kJ/mol # Calculated enthalpy of reaction U3Se5 -# Enthalpy of formation: -1130 kJ/mol + -delta_H -2652.38 kJ/mol # Calculated enthalpy of reaction U3Se5 +# Enthalpy of formation: -1130 kJ/mol -analytic 8.3306e+2 -2.6526e-2 9.5737e+4 -3.1109e+2 1.6255e+3 # -Range: 0-200 U4F17 U4F17 + 2 H2O = UO2+ + 3 U+4 + 4 H+ + 17 F- log_k -104.7657 - -delta_H -78.2955 kJ/mol # Calculated enthalpy of reaction U4F17 -# Enthalpy of formation: -7849.66 kJ/mol + -delta_H -78.2955 kJ/mol # Calculated enthalpy of reaction U4F17 +# Enthalpy of formation: -7849.66 kJ/mol -analytic -1.7466e+3 -5.9186e-1 4.0017e+4 6.8046e+2 6.2494e+2 # -Range: 0-300 U5O12Cl U5O12Cl + 4 H+ = Cl- + 2 H2O + 5 UO2+ log_k -18.7797 - -delta_H -9.99133 kJ/mol # Calculated enthalpy of reaction U5O12Cl -# Enthalpy of formation: -5854.4 kJ/mol + -delta_H -9.99133 kJ/mol # Calculated enthalpy of reaction U5O12Cl +# Enthalpy of formation: -5854.4 kJ/mol -analytic -7.3802e+1 2.918e-2 4.6804e+3 1.2371e+1 7.9503e+1 # -Range: 0-200 UAs UAs + 2 H+ + 1.5 O2 = H2AsO3- + U+3 log_k 149.0053 - -delta_H -951.394 kJ/mol # Calculated enthalpy of reaction UAs -# Enthalpy of formation: -234.3 kJ/mol + -delta_H -951.394 kJ/mol # Calculated enthalpy of reaction UAs +# Enthalpy of formation: -234.3 kJ/mol -analytic -5.0217e+1 -4.2992e-2 4.848e+4 1.9964e+1 7.565e+2 # -Range: 0-300 UAs2 UAs2 + 2.25 O2 + 1.5 H2O + H+ = U+3 + 2 H2AsO3- log_k 189.1058 - -delta_H -1210.63 kJ/mol # Calculated enthalpy of reaction UAs2 -# Enthalpy of formation: -252 kJ/mol + -delta_H -1210.63 kJ/mol # Calculated enthalpy of reaction UAs2 +# Enthalpy of formation: -252 kJ/mol -analytic -8.7361e+1 -7.5252e-2 6.1445e+4 3.7485e+1 9.5881e+2 # -Range: 0-300 UBr2Cl UBr2Cl = Cl- + U+3 + 2 Br- log_k 17.7796 - -delta_H -148.586 kJ/mol # Calculated enthalpy of reaction UBr2Cl -# Enthalpy of formation: -750.6 kJ/mol + -delta_H -148.586 kJ/mol # Calculated enthalpy of reaction UBr2Cl +# Enthalpy of formation: -750.6 kJ/mol -analytic 3.0364e+0 -3.2187e-2 5.2314e+3 2.7418e+0 8.8836e+1 # -Range: 0-200 UBr2Cl2 UBr2Cl2 = U+4 + 2 Br- + 2 Cl- log_k 26.2185 - -delta_H -260.466 kJ/mol # Calculated enthalpy of reaction UBr2Cl2 -# Enthalpy of formation: -907.9 kJ/mol + -delta_H -260.466 kJ/mol # Calculated enthalpy of reaction UBr2Cl2 +# Enthalpy of formation: -907.9 kJ/mol -analytic 3.8089e+0 -3.8781e-2 1.0125e+4 0e+0 0e+0 # -Range: 0-200 UBr3 UBr3 = U+3 + 3 Br- log_k 20.2249 - -delta_H -154.91 kJ/mol # Calculated enthalpy of reaction UBr3 -# Enthalpy of formation: -698.7 kJ/mol + -delta_H -154.91 kJ/mol # Calculated enthalpy of reaction UBr3 +# Enthalpy of formation: -698.7 kJ/mol -analytic -2.4366e+2 -9.8651e-2 1.2538e+4 1.0151e+2 1.9572e+2 # -Range: 0-300 UBr3Cl UBr3Cl = Cl- + U+4 + 3 Br- log_k 29.1178 - -delta_H -270.49 kJ/mol # Calculated enthalpy of reaction UBr3Cl -# Enthalpy of formation: -852.3 kJ/mol + -delta_H -270.49 kJ/mol # Calculated enthalpy of reaction UBr3Cl +# Enthalpy of formation: -852.3 kJ/mol -analytic 1.1204e+1 -3.7109e-2 1.0473e+4 -2.4905e+0 1.7784e+2 # -Range: 0-200 UBr4 UBr4 = U+4 + 4 Br- log_k 31.2904 - -delta_H -275.113 kJ/mol # Calculated enthalpy of reaction UBr4 -# Enthalpy of formation: -802.1 kJ/mol + -delta_H -275.113 kJ/mol # Calculated enthalpy of reaction UBr4 +# Enthalpy of formation: -802.1 kJ/mol -analytic -3.38e+2 -1.294e-1 2.0674e+4 1.3678e+2 3.227e+2 # -Range: 0-300 UBr5 UBr5 + 2 H2O = UO2+ + 4 H+ + 5 Br- log_k 41.6312 - -delta_H -250.567 kJ/mol # Calculated enthalpy of reaction UBr5 -# Enthalpy of formation: -810.4 kJ/mol + -delta_H -250.567 kJ/mol # Calculated enthalpy of reaction UBr5 +# Enthalpy of formation: -810.4 kJ/mol -analytic -3.2773e+2 -1.4356e-1 1.8709e+4 1.4117e+2 2.9204e+2 # -Range: 0-300 UBrCl2 UBrCl2 = Br- + U+3 + 2 Cl- log_k 14.5048 - -delta_H -132.663 kJ/mol # Calculated enthalpy of reaction UBrCl2 -# Enthalpy of formation: -812.1 kJ/mol + -delta_H -132.663 kJ/mol # Calculated enthalpy of reaction UBrCl2 +# Enthalpy of formation: -812.1 kJ/mol -analytic -5.3713e+0 -3.4256e-2 4.6251e+3 5.8875e+0 7.8542e+1 # -Range: 0-200 UBrCl3 UBrCl3 = Br- + U+4 + 3 Cl- log_k 23.5258 - -delta_H -246.642 kJ/mol # Calculated enthalpy of reaction UBrCl3 -# Enthalpy of formation: -967.3 kJ/mol + -delta_H -246.642 kJ/mol # Calculated enthalpy of reaction UBrCl3 +# Enthalpy of formation: -967.3 kJ/mol -analytic -5.6867e+0 -4.1166e-2 9.6664e+3 3.6579e+0 1.6415e+2 # -Range: 0-200 UC UC + 2 H+ + 1.75 O2 = 0.5 H2O + HCO3- + U+3 log_k 194.8241 - -delta_H -1202.82 kJ/mol # Calculated enthalpy of reaction UC -# Enthalpy of formation: -97.9 kJ/mol + -delta_H -1202.82 kJ/mol # Calculated enthalpy of reaction UC +# Enthalpy of formation: -97.9 kJ/mol -analytic -4.6329e+1 -4.46e-2 6.1417e+4 1.9566e+1 9.5836e+2 # -Range: 0-300 UC1.94(alpha) UC1.94 + 2.69 O2 + 1.06 H+ + 0.44 H2O = U+3 + 1.94 HCO3- log_k 257.1619 - -delta_H -1583.84 kJ/mol # Calculated enthalpy of reaction UC1.94(alpha) -# Enthalpy of formation: -85.324 kJ/mol + -delta_H -1583.84 kJ/mol # Calculated enthalpy of reaction UC1.94(alpha) +# Enthalpy of formation: -85.324 kJ/mol -analytic -5.8194e+2 -1.461e-1 1.0917e+5 2.1638e+2 -1.6852e+6 # -Range: 0-300 UCl2F2 UCl2F2 = U+4 + 2 Cl- + 2 F- log_k -3.5085 - -delta_H -130.055 kJ/mol # Calculated enthalpy of reaction UCl2F2 -# Enthalpy of formation: -1466 kJ/mol + -delta_H -130.055 kJ/mol # Calculated enthalpy of reaction UCl2F2 +# Enthalpy of formation: -1466 kJ/mol -analytic -3.9662e+2 -1.3879e-1 1.471e+4 1.5562e+2 2.2965e+2 # -Range: 0-300 UCl2I2 UCl2I2 = U+4 + 2 Cl- + 2 I- log_k 30.2962 - -delta_H -270.364 kJ/mol # Calculated enthalpy of reaction UCl2I2 -# Enthalpy of formation: -768.8 kJ/mol + -delta_H -270.364 kJ/mol # Calculated enthalpy of reaction UCl2I2 +# Enthalpy of formation: -768.8 kJ/mol -analytic -1.2922e+1 -4.3178e-2 1.1219e+4 7.4562e+0 1.9052e+2 # -Range: 0-200 UCl3 UCl3 = U+3 + 3 Cl- log_k 13.0062 - -delta_H -126.639 kJ/mol # Calculated enthalpy of reaction UCl3 -# Enthalpy of formation: -863.7 kJ/mol + -delta_H -126.639 kJ/mol # Calculated enthalpy of reaction UCl3 +# Enthalpy of formation: -863.7 kJ/mol -analytic -2.6388e+2 -1.0241e-1 1.1629e+4 1.0846e+2 1.8155e+2 # -Range: 0-300 UCl3F UCl3F = F- + U+4 + 3 Cl- log_k 10.32 - -delta_H -184.787 kJ/mol # Calculated enthalpy of reaction UCl3F -# Enthalpy of formation: -1243 kJ/mol + -delta_H -184.787 kJ/mol # Calculated enthalpy of reaction UCl3F +# Enthalpy of formation: -1243 kJ/mol -analytic -3.7971e+2 -1.3681e-1 1.7127e+4 1.5086e+2 2.6736e+2 # -Range: 0-300 UCl3I UCl3I = I- + U+4 + 3 Cl- log_k 25.5388 - -delta_H -251.041 kJ/mol # Calculated enthalpy of reaction UCl3I -# Enthalpy of formation: -898.3 kJ/mol + -delta_H -251.041 kJ/mol # Calculated enthalpy of reaction UCl3I +# Enthalpy of formation: -898.3 kJ/mol -analytic -1.3362e+1 -4.3214e-2 1.0167e+4 7.1426e+0 1.7265e+2 # -Range: 0-200 UCl4 UCl4 = U+4 + 4 Cl- log_k 21.9769 - -delta_H -240.719 kJ/mol # Calculated enthalpy of reaction UCl4 -# Enthalpy of formation: -1018.8 kJ/mol + -delta_H -240.719 kJ/mol # Calculated enthalpy of reaction UCl4 +# Enthalpy of formation: -1018.8 kJ/mol -analytic -3.6881e+2 -1.3618e-1 1.9685e+4 1.4763e+2 3.0727e+2 # -Range: 0-300 UCl5 UCl5 + 2 H2O = UO2+ + 4 H+ + 5 Cl- log_k 37.3147 - -delta_H -249.849 kJ/mol # Calculated enthalpy of reaction UCl5 -# Enthalpy of formation: -1039 kJ/mol + -delta_H -249.849 kJ/mol # Calculated enthalpy of reaction UCl5 +# Enthalpy of formation: -1039 kJ/mol -analytic -3.6392e+2 -1.5133e-1 1.9617e+4 1.5376e+2 3.0622e+2 # -Range: 0-300 UCl6 UCl6 + 2 H2O = UO2+2 + 4 H+ + 6 Cl- log_k 57.5888 - -delta_H -383.301 kJ/mol # Calculated enthalpy of reaction UCl6 -# Enthalpy of formation: -1066.5 kJ/mol + -delta_H -383.301 kJ/mol # Calculated enthalpy of reaction UCl6 +# Enthalpy of formation: -1066.5 kJ/mol -analytic -4.5589e+2 -1.9203e-1 2.8029e+4 1.9262e+2 4.375e+2 # -Range: 0-300 UClF3 UClF3 = Cl- + U+4 + 3 F- log_k -17.5122 - -delta_H -74.3225 kJ/mol # Calculated enthalpy of reaction UClF3 -# Enthalpy of formation: -1690 kJ/mol + -delta_H -74.3225 kJ/mol # Calculated enthalpy of reaction UClF3 +# Enthalpy of formation: -1690 kJ/mol -analytic -4.1346e+2 -1.4077e-1 1.2237e+4 1.6036e+2 1.9107e+2 # -Range: 0-300 UClI3 UClI3 = Cl- + U+4 + 3 I- log_k 35.2367 - -delta_H -285.187 kJ/mol # Calculated enthalpy of reaction UClI3 -# Enthalpy of formation: -643.8 kJ/mol + -delta_H -285.187 kJ/mol # Calculated enthalpy of reaction UClI3 +# Enthalpy of formation: -643.8 kJ/mol -analytic -1.1799e+1 -4.3208e-2 1.2045e+4 7.8829e+0 2.0455e+2 # -Range: 0-200 UF3 UF3 = U+3 + 3 F- log_k -19.4125 - -delta_H 6.2572 kJ/mol # Calculated enthalpy of reaction UF3 -# Enthalpy of formation: -1501.4 kJ/mol + -delta_H 6.2572 kJ/mol # Calculated enthalpy of reaction UF3 +# Enthalpy of formation: -1501.4 kJ/mol -analytic -3.153e+2 -1.0945e-1 6.1335e+3 1.2443e+2 9.5799e+1 # -Range: 0-300 UF4 UF4 = U+4 + 4 F- log_k -29.2004 - -delta_H -18.3904 kJ/mol # Calculated enthalpy of reaction UF4 -# Enthalpy of formation: -1914.2 kJ/mol + -delta_H -18.3904 kJ/mol # Calculated enthalpy of reaction UF4 +# Enthalpy of formation: -1914.2 kJ/mol -analytic -4.2411e+2 -1.4147e-1 9.6621e+3 1.6352e+2 1.5089e+2 # -Range: 0-300 UF4:2.5H2O UF4:2.5H2O = U+4 + 2.5 H2O + 4 F- log_k -33.3685 - -delta_H 24.2888 kJ/mol # Calculated enthalpy of reaction UF4:2.5H2O -# Enthalpy of formation: -2671.47 kJ/mol + -delta_H 24.2888 kJ/mol # Calculated enthalpy of reaction UF4:2.5H2O +# Enthalpy of formation: -2671.47 kJ/mol -analytic -4.4218e+2 -1.4305e-1 8.2922e+3 1.7118e+2 1.2952e+2 # -Range: 0-300 UF5(alpha) UF5 + 2 H2O = UO2+ + 4 H+ + 5 F- log_k -12.8376 - -delta_H -54.8883 kJ/mol # Calculated enthalpy of reaction UF5(alpha) -# Enthalpy of formation: -2075.3 kJ/mol + -delta_H -54.8883 kJ/mol # Calculated enthalpy of reaction UF5(alpha) +# Enthalpy of formation: -2075.3 kJ/mol -analytic -4.5126e+2 -1.6121e-1 1.1997e+4 1.803e+2 1.8733e+2 # -Range: 0-300 UF5(beta) UF5 + 2 H2O = UO2+ + 4 H+ + 5 F- log_k -13.1718 - -delta_H -46.9883 kJ/mol # Calculated enthalpy of reaction UF5(beta) -# Enthalpy of formation: -2083.2 kJ/mol + -delta_H -46.9883 kJ/mol # Calculated enthalpy of reaction UF5(beta) +# Enthalpy of formation: -2083.2 kJ/mol -analytic -4.502e+2 -1.6121e-1 1.1584e+4 1.803e+2 1.8089e+2 # -Range: 0-300 UF6 UF6 + 2 H2O = UO2+2 + 4 H+ + 6 F- log_k 17.4292 - -delta_H -261.709 kJ/mol # Calculated enthalpy of reaction UF6 -# Enthalpy of formation: -2197.7 kJ/mol + -delta_H -261.709 kJ/mol # Calculated enthalpy of reaction UF6 +# Enthalpy of formation: -2197.7 kJ/mol -analytic -5.8427e+2 -2.1223e-1 2.5296e+4 2.344e+2 3.9489e+2 # -Range: 0-300 UH3(beta) UH3 + 3 H+ + 1.5 O2 = U+3 + 3 H2O log_k 199.7683 - -delta_H -1201.43 kJ/mol # Calculated enthalpy of reaction UH3(beta) -# Enthalpy of formation: -126.98 kJ/mol + -delta_H -1201.43 kJ/mol # Calculated enthalpy of reaction UH3(beta) +# Enthalpy of formation: -126.98 kJ/mol -analytic 5.287e+1 4.2151e-3 6.0167e+4 -2.2701e+1 1.0217e+3 # -Range: 0-200 UI3 UI3 = U+3 + 3 I- log_k 29.0157 - -delta_H -192.407 kJ/mol # Calculated enthalpy of reaction UI3 -# Enthalpy of formation: -467.4 kJ/mol + -delta_H -192.407 kJ/mol # Calculated enthalpy of reaction UI3 +# Enthalpy of formation: -467.4 kJ/mol -analytic -2.4505e+2 -9.9867e-2 1.4579e+4 1.0301e+2 2.2757e+2 # -Range: 0-300 UI4 UI4 = U+4 + 4 I- log_k 39.3102 - -delta_H -300.01 kJ/mol # Calculated enthalpy of reaction UI4 -# Enthalpy of formation: -518.8 kJ/mol + -delta_H -300.01 kJ/mol # Calculated enthalpy of reaction UI4 +# Enthalpy of formation: -518.8 kJ/mol -analytic -3.4618e+2 -1.3227e-1 2.232e+4 1.4145e+2 3.4839e+2 # -Range: 0-300 UN UN + 3 H+ = NH3 + U+3 log_k 41.713 - -delta_H -280.437 kJ/mol # Calculated enthalpy of reaction UN -# Enthalpy of formation: -290 kJ/mol + -delta_H -280.437 kJ/mol # Calculated enthalpy of reaction UN +# Enthalpy of formation: -290 kJ/mol -analytic -1.6393e+2 -1.1679e-3 2.8845e+3 6.5637e+1 3.0122e+6 # -Range: 0-300 UN1.59(alpha) UN1.59 + 1.885 H2O + H+ + 0.0575 O2 = UO2+ + 1.59 NH3 log_k 38.393 - -delta_H -235.75 kJ/mol # Calculated enthalpy of reaction UN1.59(alpha) -# Enthalpy of formation: -379.2 kJ/mol + -delta_H -235.75 kJ/mol # Calculated enthalpy of reaction UN1.59(alpha) +# Enthalpy of formation: -379.2 kJ/mol -analytic 1.8304e+1 1.1109e-2 1.2064e+4 -9.5741e+0 2.0485e+2 # -Range: 0-200 UN1.73(alpha) UN1.73 + 2.095 H2O + H+ = 0.0475 O2 + UO2+ + 1.73 NH3 log_k 27.2932 - -delta_H -169.085 kJ/mol # Calculated enthalpy of reaction UN1.73(alpha) -# Enthalpy of formation: -398.5 kJ/mol + -delta_H -169.085 kJ/mol # Calculated enthalpy of reaction UN1.73(alpha) +# Enthalpy of formation: -398.5 kJ/mol -analytic 1.0012e+1 1.0398e-2 8.9348e+3 -6.3817e+0 1.5172e+2 # -Range: 0-200 UO2(AsO3)2 UO2(AsO3)2 + 2 H2O = UO2+2 + 2 H2AsO4- log_k 6.9377 - -delta_H -109.843 kJ/mol # Calculated enthalpy of reaction UO2(AsO3)2 -# Enthalpy of formation: -2156.6 kJ/mol + -delta_H -109.843 kJ/mol # Calculated enthalpy of reaction UO2(AsO3)2 +# Enthalpy of formation: -2156.6 kJ/mol -analytic -1.605e+2 -6.6472e-2 8.2129e+3 6.4533e+1 1.282e+2 # -Range: 0-300 UO2(IO3)2 UO2(IO3)2 = UO2+2 + 2 IO3- log_k -7.2871 - -delta_H -0.3862 kJ/mol # Calculated enthalpy of reaction UO2(IO3)2 -# Enthalpy of formation: -1461.28 kJ/mol + -delta_H -0.3862 kJ/mol # Calculated enthalpy of reaction UO2(IO3)2 +# Enthalpy of formation: -1461.28 kJ/mol -analytic -2.7047e+1 -1.4267e-2 -1.5055e+1 9.7226e+0 -2.464e-1 # -Range: 0-200 UO2(NO3)2 UO2(NO3)2 = UO2+2 + 2 NO3- log_k 11.9598 - -delta_H -81.6219 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2 -# Enthalpy of formation: -1351 kJ/mol + -delta_H -81.6219 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2 +# Enthalpy of formation: -1351 kJ/mol -analytic -1.2216e+1 -1.1261e-2 3.9895e+3 5.7166e+0 6.7751e+1 # -Range: 0-200 UO2(NO3)2:2H2O UO2(NO3)2:2H2O = UO2+2 + 2 H2O + 2 NO3- log_k 4.9446 - -delta_H -25.5995 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:2H2O -# Enthalpy of formation: -1978.7 kJ/mol + -delta_H -25.5995 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:2H2O +# Enthalpy of formation: -1978.7 kJ/mol -analytic -1.3989e+2 -5.213e-2 4.3758e+3 5.8868e+1 6.8322e+1 # -Range: 0-300 UO2(NO3)2:3H2O UO2(NO3)2:3H2O = UO2+2 + 2 NO3- + 3 H2O log_k 3.7161 - -delta_H -9.73686 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:3H2O -# Enthalpy of formation: -2280.4 kJ/mol + -delta_H -9.73686 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:3H2O +# Enthalpy of formation: -2280.4 kJ/mol -analytic -1.5037e+2 -5.2234e-2 4.0783e+3 6.3024e+1 6.3682e+1 # -Range: 0-300 UO2(NO3)2:6H2O UO2(NO3)2:6H2O = UO2+2 + 2 NO3- + 6 H2O log_k 2.3189 - -delta_H 19.8482 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:6H2O -# Enthalpy of formation: -3167.5 kJ/mol + -delta_H 19.8482 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:6H2O +# Enthalpy of formation: -3167.5 kJ/mol -analytic -1.4019e+2 -4.3682e-2 2.7842e+3 5.907e+1 4.3486e+1 # -Range: 0-300 UO2(NO3)2:H2O UO2(NO3)2:H2O = H2O + UO2+2 + 2 NO3- log_k 8.5103 - -delta_H -54.4602 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:H2O -# Enthalpy of formation: -1664 kJ/mol + -delta_H -54.4602 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:H2O +# Enthalpy of formation: -1664 kJ/mol -analytic -3.7575e+1 -1.1342e-2 3.7548e+3 1.4899e+1 6.3776e+1 # -Range: 0-200 UO2(OH)2(beta) UO2(OH)2 + 2 H+ = UO2+2 + 2 H2O log_k 4.9457 - -delta_H -56.8767 kJ/mol # Calculated enthalpy of reaction UO2(OH)2(beta) -# Enthalpy of formation: -1533.8 kJ/mol + -delta_H -56.8767 kJ/mol # Calculated enthalpy of reaction UO2(OH)2(beta) +# Enthalpy of formation: -1533.8 kJ/mol -analytic -1.7478e+1 -1.6806e-3 3.4226e+3 4.626e+0 5.3412e+1 # -Range: 0-300 UO2(PO3)2 UO2(PO3)2 + 2 H2O = UO2+2 + 2 H+ + 2 HPO4-2 log_k -16.2805 - -delta_H -58.4873 kJ/mol # Calculated enthalpy of reaction UO2(PO3)2 -# Enthalpy of formation: -2973 kJ/mol + -delta_H -58.4873 kJ/mol # Calculated enthalpy of reaction UO2(PO3)2 +# Enthalpy of formation: -2973 kJ/mol -analytic -3.2995e+2 -1.3747e-1 8.0652e+3 1.3237e+2 1.2595e+2 # -Range: 0-300 UO2(am) UO2 + 4 H+ = U+4 + 2 H2O log_k 0.1091 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(am) +# Enthalpy of formation: 0 kcal/mol UO2.25 UO2.25 + 2.5 H+ = 0.5 U+4 + 0.5 UO2+ + 1.25 H2O log_k -4.8193 - -delta_H -37.1614 kJ/mol # Calculated enthalpy of reaction UO2.25 -# Enthalpy of formation: -1128.3 kJ/mol + -delta_H -37.1614 kJ/mol # Calculated enthalpy of reaction UO2.25 +# Enthalpy of formation: -1128.3 kJ/mol -analytic -1.9073e+2 -4.1793e-2 7.3391e+3 7.0213e+1 1.1457e+2 # -Range: 0-300 UO2.25(beta) UO2.25 + 2.5 H+ = 0.5 U+4 + 0.5 UO2+ + 1.25 H2O log_k -4.7593 - -delta_H -38.0614 kJ/mol # Calculated enthalpy of reaction UO2.25(beta) -# Enthalpy of formation: -1127.4 kJ/mol + -delta_H -38.0614 kJ/mol # Calculated enthalpy of reaction UO2.25(beta) +# Enthalpy of formation: -1127.4 kJ/mol -analytic -3.6654e+1 -2.4013e-3 2.9632e+3 9.1625e+0 4.6249e+1 # -Range: 0-300 @@ -17094,8 +17094,8 @@ UO2.3333(beta) # UO2.3333 +8.0000 H+ = + 0.3333 O2 + 2.0000 U++++ + 4.0000 H2O (UO2.3333)2 + 8 H+ = 0.3333 O2 + 2 U+4 + 4 H2O log_k -27.7177 - -delta_H -1187.8 kJ/mol # Calculated enthalpy of reaction UO2.3333(beta) -# Enthalpy of formation: -1142 kJ/mol + -delta_H -1187.8 kJ/mol # Calculated enthalpy of reaction UO2.3333(beta) +# Enthalpy of formation: -1142 kJ/mol -analytic -7.479e+0 -6.8382e-4 -2.7277e+3 -7.2107e+0 6.1873e+5 # -Range: 0-300 @@ -17103,1055 +17103,1055 @@ UO2.6667 # UO2.6667 +8.0000 H+ = + 0.6667 O2 + 2.0000 U++++ + 4.0000 H2O (UO2.6667)2 + 8 H+ = 0.6667 O2 + 2 U+4 + 4 H2O log_k -43.6051 - -delta_H -1142.24 kJ/mol # Calculated enthalpy of reaction UO2.6667 -# Enthalpy of formation: -1191.6 kJ/mol + -delta_H -1142.24 kJ/mol # Calculated enthalpy of reaction UO2.6667 +# Enthalpy of formation: -1191.6 kJ/mol -analytic 1.2095e+2 2.0118e-2 -1.4968e+4 -5.3552e+1 1.0813e+6 # -Range: 0-300 UO2Br2 UO2Br2 = UO2+2 + 2 Br- log_k 16.5103 - -delta_H -124.607 kJ/mol # Calculated enthalpy of reaction UO2Br2 -# Enthalpy of formation: -1137.4 kJ/mol + -delta_H -124.607 kJ/mol # Calculated enthalpy of reaction UO2Br2 +# Enthalpy of formation: -1137.4 kJ/mol -analytic -1.4876e+2 -6.2715e-2 9.02e+3 6.2108e+1 1.4079e+2 # -Range: 0-300 UO2Br2:3H2O UO2Br2:3H2O = UO2+2 + 2 Br- + 3 H2O log_k 9.4113 - -delta_H -61.5217 kJ/mol # Calculated enthalpy of reaction UO2Br2:3H2O -# Enthalpy of formation: -2058 kJ/mol + -delta_H -61.5217 kJ/mol # Calculated enthalpy of reaction UO2Br2:3H2O +# Enthalpy of formation: -2058 kJ/mol -analytic -6.8507e+1 -1.6834e-2 5.1409e+3 2.6546e+1 8.7324e+1 # -Range: 0-200 UO2Br2:H2O UO2Br2:H2O = H2O + UO2+2 + 2 Br- log_k 12.1233 - -delta_H -91.945 kJ/mol # Calculated enthalpy of reaction UO2Br2:H2O -# Enthalpy of formation: -1455.9 kJ/mol + -delta_H -91.945 kJ/mol # Calculated enthalpy of reaction UO2Br2:H2O +# Enthalpy of formation: -1455.9 kJ/mol -analytic -1.7519e+1 -1.6603e-2 4.3544e+3 8.0748e+0 7.395e+1 # -Range: 0-200 UO2BrOH:2H2O UO2BrOH:2H2O + H+ = Br- + UO2+2 + 3 H2O log_k 4.2026 - -delta_H -39.8183 kJ/mol # Calculated enthalpy of reaction UO2BrOH:2H2O -# Enthalpy of formation: -1958.2 kJ/mol + -delta_H -39.8183 kJ/mol # Calculated enthalpy of reaction UO2BrOH:2H2O +# Enthalpy of formation: -1958.2 kJ/mol -analytic -8.3411e+1 -1.0024e-2 5.0411e+3 2.9781e+1 8.5633e+1 # -Range: 0-200 UO2CO3 UO2CO3 + H+ = HCO3- + UO2+2 log_k -4.1267 - -delta_H -19.2872 kJ/mol # Calculated enthalpy of reaction UO2CO3 -# Enthalpy of formation: -1689.65 kJ/mol + -delta_H -19.2872 kJ/mol # Calculated enthalpy of reaction UO2CO3 +# Enthalpy of formation: -1689.65 kJ/mol -analytic -4.4869e+1 -1.1541e-2 1.9475e+3 1.5215e+1 3.3086e+1 # -Range: 0-200 UO2Cl UO2Cl = Cl- + UO2+ log_k -0.5154 - -delta_H -21.1067 kJ/mol # Calculated enthalpy of reaction UO2Cl -# Enthalpy of formation: -1171.1 kJ/mol + -delta_H -21.1067 kJ/mol # Calculated enthalpy of reaction UO2Cl +# Enthalpy of formation: -1171.1 kJ/mol -analytic -7.3291e+1 -2.594e-2 2.5753e+3 2.9038e+1 4.0207e+1 # -Range: 0-300 UO2Cl2 UO2Cl2 = UO2+2 + 2 Cl- log_k 12.1394 - -delta_H -109.559 kJ/mol # Calculated enthalpy of reaction UO2Cl2 -# Enthalpy of formation: -1243.6 kJ/mol + -delta_H -109.559 kJ/mol # Calculated enthalpy of reaction UO2Cl2 +# Enthalpy of formation: -1243.6 kJ/mol -analytic -1.6569e+2 -6.6249e-2 8.692e+3 6.8055e+1 1.3568e+2 # -Range: 0-300 UO2Cl2:3H2O UO2Cl2:3H2O = UO2+2 + 2 Cl- + 3 H2O log_k 5.6163 - -delta_H -45.8743 kJ/mol # Calculated enthalpy of reaction UO2Cl2:3H2O -# Enthalpy of formation: -2164.8 kJ/mol + -delta_H -45.8743 kJ/mol # Calculated enthalpy of reaction UO2Cl2:3H2O +# Enthalpy of formation: -2164.8 kJ/mol -analytic -8.4932e+1 -2.0867e-2 4.7594e+3 3.2654e+1 8.085e+1 # -Range: 0-200 UO2Cl2:H2O UO2Cl2:H2O = H2O + UO2+2 + 2 Cl- log_k 8.288 - -delta_H -79.1977 kJ/mol # Calculated enthalpy of reaction UO2Cl2:H2O -# Enthalpy of formation: -1559.8 kJ/mol + -delta_H -79.1977 kJ/mol # Calculated enthalpy of reaction UO2Cl2:H2O +# Enthalpy of formation: -1559.8 kJ/mol -analytic -3.4458e+1 -2.063e-2 4.1231e+3 1.417e+1 7.0029e+1 # -Range: 0-200 UO2ClOH:2H2O UO2ClOH:2H2O + H+ = Cl- + UO2+2 + 3 H2O log_k 2.3064 - -delta_H -33.1947 kJ/mol # Calculated enthalpy of reaction UO2ClOH:2H2O -# Enthalpy of formation: -2010.4 kJ/mol + -delta_H -33.1947 kJ/mol # Calculated enthalpy of reaction UO2ClOH:2H2O +# Enthalpy of formation: -2010.4 kJ/mol -analytic -9.1834e+1 -1.2041e-2 4.9131e+3 3.2835e+1 8.3462e+1 # -Range: 0-200 UO2F2 UO2F2 = UO2+2 + 2 F- log_k -7.2302 - -delta_H -36.1952 kJ/mol # Calculated enthalpy of reaction UO2F2 -# Enthalpy of formation: -1653.5 kJ/mol + -delta_H -36.1952 kJ/mol # Calculated enthalpy of reaction UO2F2 +# Enthalpy of formation: -1653.5 kJ/mol -analytic -2.0303e+2 -7.1028e-2 5.9356e+3 7.9627e+1 9.2679e+1 # -Range: 0-300 UO2F2:3H2O UO2F2:3H2O = UO2+2 + 2 F- + 3 H2O log_k -7.3692 - -delta_H -12.8202 kJ/mol # Calculated enthalpy of reaction UO2F2:3H2O -# Enthalpy of formation: -2534.39 kJ/mol + -delta_H -12.8202 kJ/mol # Calculated enthalpy of reaction UO2F2:3H2O +# Enthalpy of formation: -2534.39 kJ/mol -analytic -1.0286e+2 -2.1223e-2 3.4855e+3 3.642e+1 5.9224e+1 # -Range: 0-200 UO2FOH UO2FOH + H+ = F- + H2O + UO2+2 log_k -1.8426 - -delta_H -41.7099 kJ/mol # Calculated enthalpy of reaction UO2FOH -# Enthalpy of formation: -1598.48 kJ/mol + -delta_H -41.7099 kJ/mol # Calculated enthalpy of reaction UO2FOH +# Enthalpy of formation: -1598.48 kJ/mol -analytic -4.9229e+1 -1.1984e-2 3.2086e+3 1.6244e+1 5.4503e+1 # -Range: 0-200 UO2FOH:2H2O UO2FOH:2H2O + H+ = F- + UO2+2 + 3 H2O log_k -2.6606 - -delta_H -21.8536 kJ/mol # Calculated enthalpy of reaction UO2FOH:2H2O -# Enthalpy of formation: -2190.01 kJ/mol + -delta_H -21.8536 kJ/mol # Calculated enthalpy of reaction UO2FOH:2H2O +# Enthalpy of formation: -2190.01 kJ/mol -analytic -1.0011e+2 -1.2203e-2 4.5446e+3 3.469e+1 7.7208e+1 # -Range: 0-200 UO2FOH:H2O UO2FOH:H2O + H+ = F- + UO2+2 + 2 H2O log_k -2.2838 - -delta_H -31.5243 kJ/mol # Calculated enthalpy of reaction UO2FOH:H2O -# Enthalpy of formation: -1894.5 kJ/mol + -delta_H -31.5243 kJ/mol # Calculated enthalpy of reaction UO2FOH:H2O +# Enthalpy of formation: -1894.5 kJ/mol -analytic -7.4628e+1 -1.2086e-2 3.8625e+3 2.5456e+1 6.5615e+1 # -Range: 0-200 UO2HPO4 UO2HPO4 = HPO4-2 + UO2+2 log_k -12.6782 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2HPO4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2HPO4 +# Enthalpy of formation: 0 kcal/mol UO2HPO4:4H2O UO2HPO4:4H2O = HPO4-2 + UO2+2 + 4 H2O log_k -13.0231 - -delta_H 15.5327 kJ/mol # Calculated enthalpy of reaction UO2HPO4:4H2O -# Enthalpy of formation: -3469.97 kJ/mol + -delta_H 15.5327 kJ/mol # Calculated enthalpy of reaction UO2HPO4:4H2O +# Enthalpy of formation: -3469.97 kJ/mol -analytic -1.1784e+2 -1.9418e-2 2.7547e+3 4.0963e+1 4.6818e+1 # -Range: 0-200 UO2SO3 UO2SO3 = SO3-2 + UO2+2 log_k -15.9812 - -delta_H 6.4504 kJ/mol # Calculated enthalpy of reaction UO2SO3 -# Enthalpy of formation: -1661 kJ/mol + -delta_H 6.4504 kJ/mol # Calculated enthalpy of reaction UO2SO3 +# Enthalpy of formation: -1661 kJ/mol -analytic 2.5751e+1 -1.3871e-2 -3.0305e+3 -1.109e+1 -5.147e+1 # -Range: 0-200 UO2SO4 UO2SO4 = SO4-2 + UO2+2 log_k 1.9681 - -delta_H -83.4616 kJ/mol # Calculated enthalpy of reaction UO2SO4 -# Enthalpy of formation: -1845.14 kJ/mol + -delta_H -83.4616 kJ/mol # Calculated enthalpy of reaction UO2SO4 +# Enthalpy of formation: -1845.14 kJ/mol -analytic -1.5677e+2 -6.531e-2 6.7411e+3 6.2867e+1 1.0523e+2 # -Range: 0-300 UO2SO4:2.5H2O UO2SO4:2.5H2O = SO4-2 + UO2+2 + 2.5 H2O log_k -1.4912 - -delta_H -36.1984 kJ/mol # Calculated enthalpy of reaction UO2SO4:2.5H2O -# Enthalpy of formation: -2607 kJ/mol + -delta_H -36.1984 kJ/mol # Calculated enthalpy of reaction UO2SO4:2.5H2O +# Enthalpy of formation: -2607 kJ/mol -analytic -4.8908e+1 -1.3445e-2 2.8658e+3 1.6894e+1 4.8683e+1 # -Range: 0-200 UO2SO4:3.5H2O UO2SO4:3.5H2O = SO4-2 + UO2+2 + 3.5 H2O log_k -1.4805 - -delta_H -27.4367 kJ/mol # Calculated enthalpy of reaction UO2SO4:3.5H2O -# Enthalpy of formation: -2901.6 kJ/mol + -delta_H -27.4367 kJ/mol # Calculated enthalpy of reaction UO2SO4:3.5H2O +# Enthalpy of formation: -2901.6 kJ/mol -analytic -7.418e+1 -1.3565e-2 3.5963e+3 2.6136e+1 6.1096e+1 # -Range: 0-200 UO2SO4:3H2O UO2SO4:3H2O = SO4-2 + UO2+2 + 3 H2O log_k -1.4028 - -delta_H -34.6176 kJ/mol # Calculated enthalpy of reaction UO2SO4:3H2O -# Enthalpy of formation: -2751.5 kJ/mol + -delta_H -34.6176 kJ/mol # Calculated enthalpy of reaction UO2SO4:3H2O +# Enthalpy of formation: -2751.5 kJ/mol -analytic -5.0134e+1 -1.0321e-2 3.0505e+3 1.6799e+1 5.1818e+1 # -Range: 0-200 UO2SO4:H2O UO2SO4:H2O = H2O + SO4-2 + UO2+2 log_k -6.0233 - -delta_H -39.1783 kJ/mol # Calculated enthalpy of reaction UO2SO4:H2O -# Enthalpy of formation: -519.9 kcal/mol + -delta_H -39.1783 kJ/mol # Calculated enthalpy of reaction UO2SO4:H2O +# Enthalpy of formation: -519.9 kcal/mol -analytic -1.8879e+2 -6.9827e-2 5.5636e+3 7.4717e+1 8.687e+1 # -Range: 0-300 UO3(alpha) UO3 + 2 H+ = H2O + UO2+2 log_k 8.6391 - -delta_H -87.3383 kJ/mol # Calculated enthalpy of reaction UO3(alpha) -# Enthalpy of formation: -1217.5 kJ/mol + -delta_H -87.3383 kJ/mol # Calculated enthalpy of reaction UO3(alpha) +# Enthalpy of formation: -1217.5 kJ/mol -analytic -1.4099e+1 -1.9063e-3 4.7742e+3 2.9478e+0 7.4501e+1 # -Range: 0-300 UO3(beta) UO3 + 2 H+ = H2O + UO2+2 log_k 8.3095 - -delta_H -84.5383 kJ/mol # Calculated enthalpy of reaction UO3(beta) -# Enthalpy of formation: -1220.3 kJ/mol + -delta_H -84.5383 kJ/mol # Calculated enthalpy of reaction UO3(beta) +# Enthalpy of formation: -1220.3 kJ/mol -analytic -1.2298e+1 -1.78e-3 4.5621e+3 2.3593e+0 7.1191e+1 # -Range: 0-300 UO3(gamma) UO3 + 2 H+ = H2O + UO2+2 log_k 7.7073 - -delta_H -81.0383 kJ/mol # Calculated enthalpy of reaction UO3(gamma) -# Enthalpy of formation: -1223.8 kJ/mol + -delta_H -81.0383 kJ/mol # Calculated enthalpy of reaction UO3(gamma) +# Enthalpy of formation: -1223.8 kJ/mol -analytic -1.1573e+1 -2.356e-3 4.3124e+3 2.2305e+0 6.7294e+1 # -Range: 0-300 UO3:.9H2O(alpha) UO3:.9H2O + 2 H+ = UO2+2 + 1.9 H2O log_k 5.0167 - -delta_H -55.7928 kJ/mol # Calculated enthalpy of reaction UO3:.9H2O(alpha) -# Enthalpy of formation: -1506.3 kJ/mol + -delta_H -55.7928 kJ/mol # Calculated enthalpy of reaction UO3:.9H2O(alpha) +# Enthalpy of formation: -1506.3 kJ/mol -analytic -6.9286e+1 -3.0624e-3 5.5984e+3 2.2809e+1 9.5092e+1 # -Range: 0-200 UO3:2H2O UO3:2H2O + 2 H+ = UO2+2 + 3 H2O log_k 4.8333 - -delta_H -50.415 kJ/mol # Calculated enthalpy of reaction UO3:2H2O -# Enthalpy of formation: -1826.1 kJ/mol + -delta_H -50.415 kJ/mol # Calculated enthalpy of reaction UO3:2H2O +# Enthalpy of formation: -1826.1 kJ/mol -analytic -5.953e+1 -9.8107e-3 4.4975e+3 2.1098e+1 7.0196e+1 # -Range: 0-300 UOBr2 UOBr2 + 2 H+ = H2O + U+4 + 2 Br- log_k 7.9722 - -delta_H -146.445 kJ/mol # Calculated enthalpy of reaction UOBr2 -# Enthalpy of formation: -973.6 kJ/mol + -delta_H -146.445 kJ/mol # Calculated enthalpy of reaction UOBr2 +# Enthalpy of formation: -973.6 kJ/mol -analytic -2.0747e+2 -7.05e-2 1.1746e+4 7.9629e+1 1.8334e+2 # -Range: 0-300 UOBr3 UOBr3 + H2O = UO2+ + 2 H+ + 3 Br- log_k 23.5651 - -delta_H -149.799 kJ/mol # Calculated enthalpy of reaction UOBr3 -# Enthalpy of formation: -954 kJ/mol + -delta_H -149.799 kJ/mol # Calculated enthalpy of reaction UOBr3 +# Enthalpy of formation: -954 kJ/mol -analytic -2.0001e+2 -8.4632e-2 1.1381e+4 8.5102e+1 1.7765e+2 # -Range: 0-300 UOCl UOCl + 2 H+ = Cl- + H2O + U+3 log_k 10.3872 - -delta_H -108.118 kJ/mol # Calculated enthalpy of reaction UOCl -# Enthalpy of formation: -833.9 kJ/mol + -delta_H -108.118 kJ/mol # Calculated enthalpy of reaction UOCl +# Enthalpy of formation: -833.9 kJ/mol -analytic -1.1989e+2 -4.0791e-2 8.0834e+3 4.66e+1 1.2617e+2 # -Range: 0-300 UOCl2 UOCl2 + 2 H+ = H2O + U+4 + 2 Cl- log_k 5.4559 - -delta_H -141.898 kJ/mol # Calculated enthalpy of reaction UOCl2 -# Enthalpy of formation: -1069.3 kJ/mol + -delta_H -141.898 kJ/mol # Calculated enthalpy of reaction UOCl2 +# Enthalpy of formation: -1069.3 kJ/mol -analytic -2.2096e+2 -7.3329e-2 1.1858e+4 8.425e+1 1.8509e+2 # -Range: 0-300 UOCl3 UOCl3 + H2O = UO2+ + 2 H+ + 3 Cl- log_k 12.637 - -delta_H -100.528 kJ/mol # Calculated enthalpy of reaction UOCl3 -# Enthalpy of formation: -1140 kJ/mol + -delta_H -100.528 kJ/mol # Calculated enthalpy of reaction UOCl3 +# Enthalpy of formation: -1140 kJ/mol -analytic -2.1934e+2 -8.8639e-2 9.3198e+3 9.1775e+1 1.4549e+2 # -Range: 0-300 UOF2 UOF2 + 2 H+ = H2O + U+4 + 2 F- log_k -18.1473 - -delta_H -43.1335 kJ/mol # Calculated enthalpy of reaction UOF2 -# Enthalpy of formation: -1504.6 kJ/mol + -delta_H -43.1335 kJ/mol # Calculated enthalpy of reaction UOF2 +# Enthalpy of formation: -1504.6 kJ/mol -analytic -6.9471e+1 -2.6188e-2 2.5576e+3 2.0428e+1 4.3454e+1 # -Range: 0-200 UOF2:H2O UOF2:H2O + 2 H+ = U+4 + 2 F- + 2 H2O log_k -18.7019 - -delta_H -31.5719 kJ/mol # Calculated enthalpy of reaction UOF2:H2O -# Enthalpy of formation: -1802 kJ/mol + -delta_H -31.5719 kJ/mol # Calculated enthalpy of reaction UOF2:H2O +# Enthalpy of formation: -1802 kJ/mol -analytic -9.501e+1 -2.6355e-2 3.1474e+3 2.9746e+1 5.348e+1 # -Range: 0-200 UOF4 UOF4 + H2O = UO2+2 + 2 H+ + 4 F- log_k 4.5737 - -delta_H -149.952 kJ/mol # Calculated enthalpy of reaction UOF4 -# Enthalpy of formation: -1924.6 kJ/mol + -delta_H -149.952 kJ/mol # Calculated enthalpy of reaction UOF4 +# Enthalpy of formation: -1924.6 kJ/mol -analytic -5.9731e+0 -3.8581e-2 4.6903e+3 2.5464e+0 7.9649e+1 # -Range: 0-200 UOFOH UOFOH + 3 H+ = F- + U+4 + 2 H2O log_k -8.9274 - -delta_H -71.5243 kJ/mol # Calculated enthalpy of reaction UOFOH -# Enthalpy of formation: -1426.7 kJ/mol + -delta_H -71.5243 kJ/mol # Calculated enthalpy of reaction UOFOH +# Enthalpy of formation: -1426.7 kJ/mol -analytic -9.2412e+1 -1.7293e-2 5.815e+3 2.794e+1 9.8779e+1 # -Range: 0-200 UOFOH:.5H2O UOFOH:.5H2O + H+ + 0.5 O2 = F- + UO2+2 + 1.5 H2O log_k 24.5669 - -delta_H -200.938 kJ/mol # Calculated enthalpy of reaction UOFOH:.5H2O -# Enthalpy of formation: -1576.1 kJ/mol + -delta_H -200.938 kJ/mol # Calculated enthalpy of reaction UOFOH:.5H2O +# Enthalpy of formation: -1576.1 kJ/mol -analytic -1.1024e+1 -7.718e-3 1.0019e+4 1.7305e+0 1.7014e+2 # -Range: 0-200 UP UP + 2 O2 + H+ = HPO4-2 + U+3 log_k 233.4928 - -delta_H -1487.11 kJ/mol # Calculated enthalpy of reaction UP -# Enthalpy of formation: -269.8 kJ/mol + -delta_H -1487.11 kJ/mol # Calculated enthalpy of reaction UP +# Enthalpy of formation: -269.8 kJ/mol -analytic -2.1649e+2 -9.0873e-2 8.3804e+4 8.1649e+1 -5.4044e+5 # -Range: 0-300 UP2 UP2 + 3.25 O2 + 1.5 H2O = H+ + U+3 + 2 HPO4-2 log_k 360.5796 - -delta_H -2301.07 kJ/mol # Calculated enthalpy of reaction UP2 -# Enthalpy of formation: -304 kJ/mol + -delta_H -2301.07 kJ/mol # Calculated enthalpy of reaction UP2 +# Enthalpy of formation: -304 kJ/mol -analytic -2.4721e+2 -1.5005e-1 1.2243e+5 9.9521e+1 -3.9706e+5 # -Range: 0-300 UP2O7 UP2O7 + H2O = U+4 + 2 HPO4-2 log_k -32.9922 - -delta_H -37.5256 kJ/mol # Calculated enthalpy of reaction UP2O7 -# Enthalpy of formation: -2852 kJ/mol + -delta_H -37.5256 kJ/mol # Calculated enthalpy of reaction UP2O7 +# Enthalpy of formation: -2852 kJ/mol -analytic -3.591e+2 -1.3819e-1 7.6509e+3 1.3804e+2 1.1949e+2 # -Range: 0-300 UP2O7:20H2O UP2O7:20H2O = U+4 + 2 HPO4-2 + 19 H2O log_k -28.63 - -delta_H 0 # Not possible to calculate enthalpy of reaction UP2O7:20H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UP2O7:20H2O +# Enthalpy of formation: 0 kcal/mol UPO5 UPO5 + H2O = H+ + HPO4-2 + UO2+ log_k -19.5754 - -delta_H 32.6294 kJ/mol # Calculated enthalpy of reaction UPO5 -# Enthalpy of formation: -2064 kJ/mol + -delta_H 32.6294 kJ/mol # Calculated enthalpy of reaction UPO5 +# Enthalpy of formation: -2064 kJ/mol -analytic -1.5316e+2 -6.0911e-2 7.3255e+2 6.0317e+1 1.1476e+1 # -Range: 0-300 US US + 2 H+ + 0.25 O2 = 0.5 H2O + HS- + U+3 log_k 46.6547 - -delta_H -322.894 kJ/mol # Calculated enthalpy of reaction US -# Enthalpy of formation: -322.2 kJ/mol + -delta_H -322.894 kJ/mol # Calculated enthalpy of reaction US +# Enthalpy of formation: -322.2 kJ/mol -analytic -1.0845e+2 -4.0538e-2 1.8749e+4 4.2147e+1 2.9259e+2 # -Range: 0-300 US1.9 US1.9 + 1.9 H+ = 0.2 U+3 + 0.8 U+4 + 1.9 HS- log_k -2.2816 - -delta_H -91.486 kJ/mol # Calculated enthalpy of reaction US1.9 -# Enthalpy of formation: -509.9 kJ/mol + -delta_H -91.486 kJ/mol # Calculated enthalpy of reaction US1.9 +# Enthalpy of formation: -509.9 kJ/mol -analytic -2.0534e+2 -6.839e-2 8.8888e+3 7.8243e+1 1.3876e+2 # -Range: 0-300 US2 US2 + 2 H+ = U+4 + 2 HS- log_k -2.3324 - -delta_H -103.017 kJ/mol # Calculated enthalpy of reaction US2 -# Enthalpy of formation: -520.4 kJ/mol + -delta_H -103.017 kJ/mol # Calculated enthalpy of reaction US2 +# Enthalpy of formation: -520.4 kJ/mol -analytic -2.1819e+2 -7.1522e-2 9.7782e+3 8.2586e+1 1.5264e+2 # -Range: 0-300 US3 US3 + 2 H2O = H+ + UO2+2 + 3 HS- log_k -16.637 - -delta_H 43.9515 kJ/mol # Calculated enthalpy of reaction US3 -# Enthalpy of formation: -539.6 kJ/mol + -delta_H 43.9515 kJ/mol # Calculated enthalpy of reaction US3 +# Enthalpy of formation: -539.6 kJ/mol -analytic -2.3635e+2 -9.5877e-2 1.917e+3 9.7726e+1 2.9982e+1 # -Range: 0-300 USb USb + 3 H+ + 1.5 O2 = Sb(OH)3 + U+3 log_k 176.0723 - -delta_H -1106.19 kJ/mol # Calculated enthalpy of reaction USb -# Enthalpy of formation: -138.5 kJ/mol + -delta_H -1106.19 kJ/mol # Calculated enthalpy of reaction USb +# Enthalpy of formation: -138.5 kJ/mol USb2 USb2 + 3 H+ + 2.25 O2 + 1.5 H2O = U+3 + 2 Sb(OH)3 log_k 223.1358 - -delta_H -1407.02 kJ/mol # Calculated enthalpy of reaction USb2 -# Enthalpy of formation: -173.6 kJ/mol + -delta_H -1407.02 kJ/mol # Calculated enthalpy of reaction USb2 +# Enthalpy of formation: -173.6 kJ/mol Uranium-selenide 1 USe + 1.75 O2 + H+ = 0.5 H2O + SeO3-2 + U+3 log_k 125.6086 - -delta_H -844.278 kJ/mol # Calculated enthalpy of reaction Uranium-selenide -# Enthalpy of formation: -275.7 kJ/mol + -delta_H -844.278 kJ/mol # Calculated enthalpy of reaction Uranium-selenide +# Enthalpy of formation: -275.7 kJ/mol -analytic -1.0853e+2 -7.6251e-2 4.323e+4 4.5189e+1 6.746e+2 # -Range: 0-300 USe2(alpha) USe2 + 2.75 O2 + 0.5 H2O = H+ + U+3 + 2 SeO3-2 log_k 125.4445 - -delta_H -904.199 kJ/mol # Calculated enthalpy of reaction USe2(alpha) -# Enthalpy of formation: -427 kJ/mol + -delta_H -904.199 kJ/mol # Calculated enthalpy of reaction USe2(alpha) +# Enthalpy of formation: -427 kJ/mol -analytic -2.0454e+2 -1.4191e-1 4.6114e+4 8.7906e+1 7.1963e+2 # -Range: 0-300 USe2(beta) USe2 + 2.75 O2 + 0.5 H2O = H+ + U+3 + 2 SeO3-2 log_k 125.2868 - -delta_H -904.199 kJ/mol # Calculated enthalpy of reaction USe2(beta) -# Enthalpy of formation: -427 kJ/mol + -delta_H -904.199 kJ/mol # Calculated enthalpy of reaction USe2(beta) +# Enthalpy of formation: -427 kJ/mol -analytic -2.0334e+2 -1.4147e-1 4.6082e+4 8.7349e+1 7.1913e+2 # -Range: 0-300 USe3 USe3 + 3.75 O2 + 1.5 H2O = U+3 + 3 H+ + 3 SeO3-2 log_k 147.2214 - -delta_H -1090.42 kJ/mol # Calculated enthalpy of reaction USe3 -# Enthalpy of formation: -452 kJ/mol + -delta_H -1090.42 kJ/mol # Calculated enthalpy of reaction USe3 +# Enthalpy of formation: -452 kJ/mol -analytic 4.9201e+2 -1.372e-2 3.2168e+4 -1.8131e+2 5.4609e+2 # -Range: 0-200 Umangite Cu3Se2 = Cu+2 + 2 Cu+ + 2 Se-2 log_k -93.8412 - -delta_H 0 # Not possible to calculate enthalpy of reaction Umangite -# Enthalpy of formation: -25 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Umangite +# Enthalpy of formation: -25 kcal/mol -analytic -7.2308e+1 -2.2566e-3 -2.0738e+4 1.9677e+1 -3.5214e+2 # -Range: 0-200 Uraninite UO2 + 4 H+ = U+4 + 2 H2O log_k -4.8372 - -delta_H -77.8767 kJ/mol # Calculated enthalpy of reaction Uraninite -# Enthalpy of formation: -1085 kJ/mol + -delta_H -77.8767 kJ/mol # Calculated enthalpy of reaction Uraninite +# Enthalpy of formation: -1085 kJ/mol -analytic -7.5776e+1 -1.0558e-2 5.9677e+3 2.1853e+1 9.3142e+1 # -Range: 0-300 Uranocircite Ba(UO2)2(PO4)2 + 2 H+ = Ba+2 + 2 HPO4-2 + 2 UO2+2 log_k -19.8057 - -delta_H -72.3317 kJ/mol # Calculated enthalpy of reaction Uranocircite -# Enthalpy of formation: -1215.94 kcal/mol + -delta_H -72.3317 kJ/mol # Calculated enthalpy of reaction Uranocircite +# Enthalpy of formation: -1215.94 kcal/mol -analytic -3.6843e+1 -4.3076e-2 1.2427e+3 1.0384e+1 2.1115e+1 # -Range: 0-200 Uranophane Ca(UO2)2(SiO3)2(OH)2 + 6 H+ = Ca+2 + 2 SiO2 + 2 UO2+2 + 4 H2O log_k 17.285 - -delta_H 0 # Not possible to calculate enthalpy of reaction Uranophane -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Uranophane +# Enthalpy of formation: 0 kcal/mol V V + 3 H+ + 0.75 O2 = V+3 + 1.5 H2O log_k 106.9435 - -delta_H -680.697 kJ/mol # Calculated enthalpy of reaction V -# Enthalpy of formation: 0 kJ/mol + -delta_H -680.697 kJ/mol # Calculated enthalpy of reaction V +# Enthalpy of formation: 0 kJ/mol -analytic -1.0508e+2 -2.1334e-2 4.0364e+4 3.5012e+1 -3.229e+5 # -Range: 0-300 V2O4 V2O4 + 4 H+ = 2 H2O + 2 VO+2 log_k 8.5719 - -delta_H -117.564 kJ/mol # Calculated enthalpy of reaction V2O4 -# Enthalpy of formation: -1427.31 kJ/mol + -delta_H -117.564 kJ/mol # Calculated enthalpy of reaction V2O4 +# Enthalpy of formation: -1427.31 kJ/mol -analytic -1.4429e+2 -3.7423e-2 9.7046e+3 5.3125e+1 1.5147e+2 # -Range: 0-300 V3O5 V3O5 + 8 H+ = VO+2 + 2 V+3 + 4 H2O log_k 13.4312 - -delta_H -218.857 kJ/mol # Calculated enthalpy of reaction V3O5 -# Enthalpy of formation: -1933.17 kJ/mol + -delta_H -218.857 kJ/mol # Calculated enthalpy of reaction V3O5 +# Enthalpy of formation: -1933.17 kJ/mol -analytic -1.7652e+2 -2.1959e-2 1.6814e+4 5.6618e+1 2.8559e+2 # -Range: 0-200 V4O7 V4O7 + 10 H+ = 2 V+3 + 2 VO+2 + 5 H2O log_k 18.7946 - -delta_H -284.907 kJ/mol # Calculated enthalpy of reaction V4O7 -# Enthalpy of formation: -2639.56 kJ/mol + -delta_H -284.907 kJ/mol # Calculated enthalpy of reaction V4O7 +# Enthalpy of formation: -2639.56 kJ/mol -analytic -2.2602e+2 -3.0261e-2 2.1667e+4 7.3214e+1 3.68e+2 # -Range: 0-200 Vaesite NiS2 + H2O = 0.25 H+ + 0.25 SO4-2 + Ni+2 + 1.75 HS- log_k -26.7622 - -delta_H 110.443 kJ/mol # Calculated enthalpy of reaction Vaesite -# Enthalpy of formation: -32.067 kcal/mol + -delta_H 110.443 kJ/mol # Calculated enthalpy of reaction Vaesite +# Enthalpy of formation: -32.067 kcal/mol -analytic 1.6172e+1 -2.2673e-2 -8.2514e+3 -3.4392e+0 -1.4013e+2 # -Range: 0-200 Vivianite Fe3(PO4)2:8H2O + 2 H+ = 2 HPO4-2 + 3 Fe+2 + 8 H2O log_k -4.7237 - -delta_H 0 # Not possible to calculate enthalpy of reaction Vivianite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Vivianite +# Enthalpy of formation: 0 kcal/mol W W + 1.5 O2 + H2O = WO4-2 + 2 H+ log_k 123.4334 - -delta_H -771.668 kJ/mol # Calculated enthalpy of reaction W -# Enthalpy of formation: 0 kJ/mol + -delta_H -771.668 kJ/mol # Calculated enthalpy of reaction W +# Enthalpy of formation: 0 kJ/mol -analytic -1.0433e+2 -6.947e-2 4.0134e+4 4.5993e+1 6.2629e+2 # -Range: 0-300 Wairakite CaAl2Si4O10(OH)4 + 8 H+ = Ca+2 + 2 Al+3 + 4 SiO2 + 6 H2O log_k 18.0762 - -delta_H -237.781 kJ/mol # Calculated enthalpy of reaction Wairakite -# Enthalpy of formation: -1579.33 kcal/mol + -delta_H -237.781 kJ/mol # Calculated enthalpy of reaction Wairakite +# Enthalpy of formation: -1579.33 kcal/mol -analytic -1.7914e+1 3.2944e-3 2.2782e+4 -9.0981e+0 -1.6934e+6 # -Range: 0-300 Weeksite K2(UO2)2(Si2O5)3:4H2O + 6 H+ = 2 K+ + 2 UO2+2 + 6 SiO2 + 7 H2O log_k 15.375 - -delta_H 0 # Not possible to calculate enthalpy of reaction Weeksite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Weeksite +# Enthalpy of formation: 0 kcal/mol Whitlockite Ca3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 Ca+2 log_k -4.2249 - -delta_H -116.645 kJ/mol # Calculated enthalpy of reaction Whitlockite -# Enthalpy of formation: -4096.77 kJ/mol + -delta_H -116.645 kJ/mol # Calculated enthalpy of reaction Whitlockite +# Enthalpy of formation: -4096.77 kJ/mol -analytic -5.3543e+2 -1.8842e-1 1.7176e+4 2.1406e+2 2.6817e+2 # -Range: 0-300 Wilkmanite Ni3Se4 + H2O = 0.5 O2 + 2 H+ + 3 Ni+2 + 4 Se-2 log_k -152.8793 - -delta_H 0 # Not possible to calculate enthalpy of reaction Wilkmanite -# Enthalpy of formation: -60.285 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Wilkmanite +# Enthalpy of formation: -60.285 kcal/mol -analytic -1.9769e+2 -4.9968e-2 -2.8208e+4 6.2863e+1 -1.1322e+5 # -Range: 0-300 Witherite BaCO3 + H+ = Ba+2 + HCO3- log_k -2.9965 - -delta_H 17.1628 kJ/mol # Calculated enthalpy of reaction Witherite -# Enthalpy of formation: -297.5 kcal/mol + -delta_H 17.1628 kJ/mol # Calculated enthalpy of reaction Witherite +# Enthalpy of formation: -297.5 kcal/mol -analytic -1.2585e+2 -4.4315e-2 2.0227e+3 5.2239e+1 3.16e+1 # -Range: 0-300 Wollastonite CaSiO3 + 2 H+ = Ca+2 + H2O + SiO2 log_k 13.7605 - -delta_H -76.5756 kJ/mol # Calculated enthalpy of reaction Wollastonite -# Enthalpy of formation: -389.59 kcal/mol + -delta_H -76.5756 kJ/mol # Calculated enthalpy of reaction Wollastonite +# Enthalpy of formation: -389.59 kcal/mol -analytic 3.0931e+1 6.7466e-3 5.1749e+3 -1.3209e+1 -3.4579e+5 # -Range: 0-300 Wurtzite ZnS + H+ = HS- + Zn+2 log_k -9.1406 - -delta_H 22.3426 kJ/mol # Calculated enthalpy of reaction Wurtzite -# Enthalpy of formation: -45.85 kcal/mol + -delta_H 22.3426 kJ/mol # Calculated enthalpy of reaction Wurtzite +# Enthalpy of formation: -45.85 kcal/mol -analytic -1.5446e+2 -4.8874e-2 2.4551e+3 6.1278e+1 3.8355e+1 # -Range: 0-300 Wustite Fe.947O + 2 H+ = 0.106 Fe+3 + 0.841 Fe+2 + H2O log_k 12.4113 - -delta_H -102.417 kJ/mol # Calculated enthalpy of reaction Wustite -# Enthalpy of formation: -266.265 kJ/mol + -delta_H -102.417 kJ/mol # Calculated enthalpy of reaction Wustite +# Enthalpy of formation: -266.265 kJ/mol -analytic -7.6919e+1 -1.8433e-2 7.3823e+3 2.8312e+1 1.1522e+2 # -Range: 0-300 Xonotlite Ca6Si6O17(OH)2 + 12 H+ = 6 Ca+2 + 6 SiO2 + 7 H2O log_k 91.8267 - -delta_H -495.457 kJ/mol # Calculated enthalpy of reaction Xonotlite -# Enthalpy of formation: -2397.25 kcal/mol + -delta_H -495.457 kJ/mol # Calculated enthalpy of reaction Xonotlite +# Enthalpy of formation: -2397.25 kcal/mol -analytic 1.608e+3 3.7309e-1 -2.2548e+4 -6.2716e+2 -3.8346e+2 # -Range: 0-200 Y Y + 3 H+ + 0.75 O2 = Y+3 + 1.5 H2O log_k 184.5689 - -delta_H -1134.7 kJ/mol # Calculated enthalpy of reaction Y -# Enthalpy of formation: 0 kJ/mol + -delta_H -1134.7 kJ/mol # Calculated enthalpy of reaction Y +# Enthalpy of formation: 0 kJ/mol -analytic -6.2641e+1 -2.8062e-2 5.9667e+4 2.2394e+1 9.3107e+2 # -Range: 0-300 Yb Yb + 2 H+ + 0.5 O2 = H2O + Yb+2 log_k 137.193 - -delta_H -810.303 kJ/mol # Calculated enthalpy of reaction Yb -# Enthalpy of formation: 0 kJ/mol + -delta_H -810.303 kJ/mol # Calculated enthalpy of reaction Yb +# Enthalpy of formation: 0 kJ/mol -analytic -7.4712e+1 -2.0993e-2 4.4129e+4 2.8341e+1 6.8862e+2 # -Range: 0-300 Yb(OH)3 Yb(OH)3 + 3 H+ = Yb+3 + 3 H2O log_k 14.6852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)3 +# Enthalpy of formation: 0 kcal/mol Yb(OH)3(am) Yb(OH)3 + 3 H+ = Yb+3 + 3 H2O log_k 18.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)3(am) +# Enthalpy of formation: 0 kcal/mol Yb2(CO3)3 Yb2(CO3)3 + 3 H+ = 2 Yb+3 + 3 HCO3- log_k -2.3136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb2(CO3)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb2(CO3)3 +# Enthalpy of formation: 0 kcal/mol Yb2O3 Yb2O3 + 6 H+ = 2 Yb+3 + 3 H2O log_k 47.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb2O3 +# Enthalpy of formation: 0 kcal/mol YbF3:.5H2O YbF3:.5H2O = 0.5 H2O + Yb+3 + 3 F- log_k -16 - -delta_H 0 # Not possible to calculate enthalpy of reaction YbF3:.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YbF3:.5H2O +# Enthalpy of formation: 0 kcal/mol YbPO4:10H2O YbPO4:10H2O + H+ = HPO4-2 + Yb+3 + 10 H2O log_k -11.7782 - -delta_H 0 # Not possible to calculate enthalpy of reaction YbPO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YbPO4:10H2O +# Enthalpy of formation: 0 kcal/mol Zincite ZnO + 2 H+ = H2O + Zn+2 log_k 11.2087 - -delta_H -88.7638 kJ/mol # Calculated enthalpy of reaction Zincite -# Enthalpy of formation: -350.46 kJ/mol + -delta_H -88.7638 kJ/mol # Calculated enthalpy of reaction Zincite +# Enthalpy of formation: -350.46 kJ/mol -analytic -8.6681e+1 -1.9324e-2 7.1034e+3 3.2256e+1 1.1087e+2 # -Range: 0-300 Zircon ZrSiO4 + 2 H+ = SiO2 + Zr(OH)2+2 log_k -15.4193 - -delta_H 64.8635 kJ/mol # Calculated enthalpy of reaction Zircon -# Enthalpy of formation: -2033.4 kJ/mol + -delta_H 64.8635 kJ/mol # Calculated enthalpy of reaction Zircon +# Enthalpy of formation: -2033.4 kJ/mol -analytic 9.2639e+0 6.5416e-3 5.0759e+2 -8.4547e+0 -6.6155e+5 # -Range: 0-300 Zn Zn + 2 H+ + 0.5 O2 = H2O + Zn+2 log_k 68.8035 - -delta_H -433.157 kJ/mol # Calculated enthalpy of reaction Zn -# Enthalpy of formation: 0 kJ/mol + -delta_H -433.157 kJ/mol # Calculated enthalpy of reaction Zn +# Enthalpy of formation: 0 kJ/mol -analytic -6.4131e+1 -2.0009e-2 2.3921e+4 2.3702e+1 3.7329e+2 # -Range: 0-300 Zn(BO2)2 Zn(BO2)2 + 2 H+ + 2 H2O = Zn+2 + 2 B(OH)3 log_k 8.313 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(BO2)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(BO2)2 +# Enthalpy of formation: 0 kcal/mol Zn(ClO4)2:6H2O Zn(ClO4)2:6H2O = Zn+2 + 2 ClO4- + 6 H2O log_k 5.6474 - -delta_H 6.31871 kJ/mol # Calculated enthalpy of reaction Zn(ClO4)2:6H2O -# Enthalpy of formation: -2133.39 kJ/mol + -delta_H 6.31871 kJ/mol # Calculated enthalpy of reaction Zn(ClO4)2:6H2O +# Enthalpy of formation: -2133.39 kJ/mol -analytic -1.8191e+2 -9.1383e-3 7.4822e+3 6.6751e+1 1.2712e+2 # -Range: 0-200 Zn(IO3)2 Zn(IO3)2 = Zn+2 + 2 IO3- log_k -5.3193 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(IO3)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(IO3)2 +# Enthalpy of formation: 0 kcal/mol Zn(NO3)2:6H2O Zn(NO3)2:6H2O = Zn+2 + 2 NO3- + 6 H2O log_k 3.4102 - -delta_H 24.7577 kJ/mol # Calculated enthalpy of reaction Zn(NO3)2:6H2O -# Enthalpy of formation: -2306.8 kJ/mol + -delta_H 24.7577 kJ/mol # Calculated enthalpy of reaction Zn(NO3)2:6H2O +# Enthalpy of formation: -2306.8 kJ/mol -analytic -1.7152e+2 -1.6875e-2 5.6291e+3 6.5094e+1 9.5649e+1 # -Range: 0-200 Zn(OH)2(beta) Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O log_k 11.9341 - -delta_H -83.2111 kJ/mol # Calculated enthalpy of reaction Zn(OH)2(beta) -# Enthalpy of formation: -641.851 kJ/mol + -delta_H -83.2111 kJ/mol # Calculated enthalpy of reaction Zn(OH)2(beta) +# Enthalpy of formation: -641.851 kJ/mol -analytic -7.781e+1 -7.8548e-3 7.1994e+3 2.7455e+1 1.2228e+2 # -Range: 0-200 Zn(OH)2(epsilon) Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O log_k 11.6625 - -delta_H -81.7811 kJ/mol # Calculated enthalpy of reaction Zn(OH)2(epsilon) -# Enthalpy of formation: -643.281 kJ/mol + -delta_H -81.7811 kJ/mol # Calculated enthalpy of reaction Zn(OH)2(epsilon) +# Enthalpy of formation: -643.281 kJ/mol -analytic -7.7938e+1 -7.8767e-3 7.1282e+3 2.7496e+1 1.2107e+2 # -Range: 0-200 Zn(OH)2(gamma) Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O log_k 11.8832 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)2(gamma) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)2(gamma) +# Enthalpy of formation: 0 kcal/mol Zn2(OH)3Cl Zn2(OH)3Cl + 3 H+ = Cl- + 2 Zn+2 + 3 H2O log_k 15.2921 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2(OH)3Cl -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2(OH)3Cl +# Enthalpy of formation: 0 kcal/mol Zn2SO4(OH)2 Zn2SO4(OH)2 + 2 H+ = SO4-2 + 2 H2O + 2 Zn+2 log_k 7.5816 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2SO4(OH)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2SO4(OH)2 +# Enthalpy of formation: 0 kcal/mol Zn2SiO4 Zn2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Zn+2 log_k 13.8695 - -delta_H -119.399 kJ/mol # Calculated enthalpy of reaction Zn2SiO4 -# Enthalpy of formation: -1636.75 kJ/mol + -delta_H -119.399 kJ/mol # Calculated enthalpy of reaction Zn2SiO4 +# Enthalpy of formation: -1636.75 kJ/mol -analytic 2.097e+2 5.3663e-2 -1.2724e+2 -8.5445e+1 -2.2336e+0 # -Range: 0-200 Zn2TiO4 Zn2TiO4 + 4 H+ = Ti(OH)4 + 2 Zn+2 log_k 12.3273 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2TiO4 -# Enthalpy of formation: -1647.85 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2TiO4 +# Enthalpy of formation: -1647.85 kJ/mol Zn3(AsO4)2 Zn3(AsO4)2 + 4 H+ = 2 H2AsO4- + 3 Zn+2 log_k 9.3122 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn3(AsO4)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn3(AsO4)2 +# Enthalpy of formation: 0 kcal/mol Zn3O(SO4)2 Zn3O(SO4)2 + 2 H+ = H2O + 2 SO4-2 + 3 Zn+2 log_k 19.1188 - -delta_H -258.253 kJ/mol # Calculated enthalpy of reaction Zn3O(SO4)2 -# Enthalpy of formation: -2306.95 kJ/mol + -delta_H -258.253 kJ/mol # Calculated enthalpy of reaction Zn3O(SO4)2 +# Enthalpy of formation: -2306.95 kJ/mol -analytic -3.9661e+1 -4.386e-2 1.1301e+4 1.3709e+1 1.9193e+2 # -Range: 0-200 Zn5(NO3)2(OH)8 Zn5(NO3)2(OH)8 + 8 H+ = 2 NO3- + 5 Zn+2 + 8 H2O log_k 42.6674 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn5(NO3)2(OH)8 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn5(NO3)2(OH)8 +# Enthalpy of formation: 0 kcal/mol ZnBr2 ZnBr2 = Zn+2 + 2 Br- log_k 7.5787 - -delta_H -67.7622 kJ/mol # Calculated enthalpy of reaction ZnBr2 -# Enthalpy of formation: -328.63 kJ/mol + -delta_H -67.7622 kJ/mol # Calculated enthalpy of reaction ZnBr2 +# Enthalpy of formation: -328.63 kJ/mol -analytic 6.5789e-2 -2.1477e-2 1.984e+3 2.9302e+0 3.3691e+1 # -Range: 0-200 ZnBr2:2H2O ZnBr2:2H2O = Zn+2 + 2 Br- + 2 H2O log_k 5.2999 - -delta_H -30.9268 kJ/mol # Calculated enthalpy of reaction ZnBr2:2H2O -# Enthalpy of formation: -937.142 kJ/mol + -delta_H -30.9268 kJ/mol # Calculated enthalpy of reaction ZnBr2:2H2O +# Enthalpy of formation: -937.142 kJ/mol -analytic -4.926e+1 -2.1682e-2 2.4325e+3 2.136e+1 4.1324e+1 # -Range: 0-200 ZnCO3:H2O ZnCO3:H2O + H+ = H2O + HCO3- + Zn+2 log_k 0.1398 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnCO3:H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnCO3:H2O +# Enthalpy of formation: 0 kcal/mol ZnCl2 ZnCl2 = Zn+2 + 2 Cl- log_k 7.088 - -delta_H -72.4548 kJ/mol # Calculated enthalpy of reaction ZnCl2 -# Enthalpy of formation: -415.09 kJ/mol + -delta_H -72.4548 kJ/mol # Calculated enthalpy of reaction ZnCl2 +# Enthalpy of formation: -415.09 kJ/mol -analytic -1.6157e+1 -2.5405e-2 2.6505e+3 8.8584e+0 4.5015e+1 # -Range: 0-200 ZnCl2(NH3)2 ZnCl2(NH3)2 = Zn+2 + 2 Cl- + 2 NH3 log_k -6.9956 - -delta_H 27.2083 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)2 -# Enthalpy of formation: -677.427 kJ/mol + -delta_H 27.2083 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)2 +# Enthalpy of formation: -677.427 kJ/mol -analytic -5.9409e+1 -2.2698e-2 -2.9178e+2 2.4308e+1 -4.9341e+0 # -Range: 0-200 ZnCl2(NH3)4 ZnCl2(NH3)4 = Zn+2 + 2 Cl- + 4 NH3 log_k -6.6955 - -delta_H 56.2004 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)4 -# Enthalpy of formation: -869.093 kJ/mol + -delta_H 56.2004 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)4 +# Enthalpy of formation: -869.093 kJ/mol -analytic -9.9769e+1 -1.9793e-2 4.2916e+2 3.9412e+1 7.3223e+0 # -Range: 0-200 ZnCl2(NH3)6 ZnCl2(NH3)6 = Zn+2 + 2 Cl- + 6 NH3 log_k -4.7311 - -delta_H 77.4225 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)6 -# Enthalpy of formation: -1052.99 kJ/mol + -delta_H 77.4225 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)6 +# Enthalpy of formation: -1052.99 kJ/mol -analytic -1.3984e+2 -1.6896e-2 1.5559e+3 5.4524e+1 2.647e+1 # -Range: 0-200 ZnCr2O4 ZnCr2O4 + 8 H+ = Zn+2 + 2 Cr+3 + 4 H2O log_k 7.9161 - -delta_H -221.953 kJ/mol # Calculated enthalpy of reaction ZnCr2O4 -# Enthalpy of formation: -370.88 kcal/mol + -delta_H -221.953 kJ/mol # Calculated enthalpy of reaction ZnCr2O4 +# Enthalpy of formation: -370.88 kcal/mol -analytic -1.7603e+2 -1.0217e-2 1.7414e+4 5.1966e+1 2.9577e+2 # -Range: 0-200 ZnF2 ZnF2 = Zn+2 + 2 F- log_k -0.4418 - -delta_H -59.8746 kJ/mol # Calculated enthalpy of reaction ZnF2 -# Enthalpy of formation: -764.206 kJ/mol + -delta_H -59.8746 kJ/mol # Calculated enthalpy of reaction ZnF2 +# Enthalpy of formation: -764.206 kJ/mol -analytic -2.6085e+2 -8.4594e-2 9.024e+3 1.0318e+2 1.4089e+2 # -Range: 0-300 ZnI2 ZnI2 = Zn+2 + 2 I- log_k 7.3885 - -delta_H -59.2332 kJ/mol # Calculated enthalpy of reaction ZnI2 -# Enthalpy of formation: -207.957 kJ/mol + -delta_H -59.2332 kJ/mol # Calculated enthalpy of reaction ZnI2 +# Enthalpy of formation: -207.957 kJ/mol -analytic -1.6472e+1 -2.5573e-2 2.0796e+3 9.9013e+0 3.532e+1 # -Range: 0-200 ZnSO4 ZnSO4 = SO4-2 + Zn+2 log_k 3.5452 - -delta_H -80.132 kJ/mol # Calculated enthalpy of reaction ZnSO4 -# Enthalpy of formation: -982.855 kJ/mol + -delta_H -80.132 kJ/mol # Calculated enthalpy of reaction ZnSO4 +# Enthalpy of formation: -982.855 kJ/mol -analytic 6.9905e+0 -1.8046e-2 2.2566e+3 -2.2819e+0 3.8318e+1 # -Range: 0-200 ZnSO4:6H2O ZnSO4:6H2O = SO4-2 + Zn+2 + 6 H2O log_k -1.6846 - -delta_H -0.412008 kJ/mol # Calculated enthalpy of reaction ZnSO4:6H2O -# Enthalpy of formation: -2777.61 kJ/mol + -delta_H -0.412008 kJ/mol # Calculated enthalpy of reaction ZnSO4:6H2O +# Enthalpy of formation: -2777.61 kJ/mol -analytic -1.4506e+2 -1.8736e-2 5.2179e+3 5.3121e+1 8.8657e+1 # -Range: 0-200 ZnSO4:7H2O ZnSO4:7H2O = SO4-2 + Zn+2 + 7 H2O log_k -1.8683 - -delta_H 14.0417 kJ/mol # Calculated enthalpy of reaction ZnSO4:7H2O -# Enthalpy of formation: -3077.9 kJ/mol + -delta_H 14.0417 kJ/mol # Calculated enthalpy of reaction ZnSO4:7H2O +# Enthalpy of formation: -3077.9 kJ/mol -analytic -1.6943e+2 -1.8833e-2 5.6484e+3 6.2326e+1 9.5975e+1 # -Range: 0-200 ZnSO4:H2O ZnSO4:H2O = H2O + SO4-2 + Zn+2 log_k -0.5383 - -delta_H -44.2824 kJ/mol # Calculated enthalpy of reaction ZnSO4:H2O -# Enthalpy of formation: -1304.54 kJ/mol + -delta_H -44.2824 kJ/mol # Calculated enthalpy of reaction ZnSO4:H2O +# Enthalpy of formation: -1304.54 kJ/mol -analytic -1.7908e+1 -1.8228e-2 1.5811e+3 7.0677e+0 2.6856e+1 # -Range: 0-200 ZnSeO3:H2O ZnSeO3:H2O = H2O + SeO3-2 + Zn+2 log_k -6.7408 - -delta_H -17.9056 kJ/mol # Calculated enthalpy of reaction ZnSeO3:H2O -# Enthalpy of formation: -930.511 kJ/mol + -delta_H -17.9056 kJ/mol # Calculated enthalpy of reaction ZnSeO3:H2O +# Enthalpy of formation: -930.511 kJ/mol -analytic -1.8569e+1 -1.9929e-2 6.4377e+1 7.0892e+0 1.0996e+0 # -Range: 0-200 Zoisite Ca2Al3(SiO4)3OH + 13 H+ = 2 Ca+2 + 3 Al+3 + 3 SiO2 + 7 H2O log_k 43.3017 - -delta_H -458.131 kJ/mol # Calculated enthalpy of reaction Zoisite -# Enthalpy of formation: -1643.69 kcal/mol + -delta_H -458.131 kJ/mol # Calculated enthalpy of reaction Zoisite +# Enthalpy of formation: -1643.69 kcal/mol -analytic 2.5321e+0 -3.5886e-2 1.9902e+4 -6.2443e+0 3.1055e+2 # -Range: 0-300 Zr Zr + 2 H+ + O2 = Zr(OH)2+2 log_k 177.6471 - -delta_H -1078.71 kJ/mol # Calculated enthalpy of reaction Zr -# Enthalpy of formation: 0 kJ/mol + -delta_H -1078.71 kJ/mol # Calculated enthalpy of reaction Zr +# Enthalpy of formation: 0 kJ/mol -analytic -2.836e+1 -1.5214e-2 5.8045e+4 7.8012e+0 -3.0657e+5 # -Range: 0-300 ZrB2 ZrB2 + 3 H+ + 2 H2O + 0.5 O2 = B(OH)3 + BH4- + Zr+4 log_k 103.4666 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrB2 -# Enthalpy of formation: -326.628 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrB2 +# Enthalpy of formation: -326.628 kJ/mol ZrC ZrC + 3 H+ + 2 O2 = H2O + HCO3- + Zr+4 log_k 207.0906 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrC -# Enthalpy of formation: -203.008 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrC +# Enthalpy of formation: -203.008 kJ/mol ZrCl ZrCl + 3 H+ + 0.75 O2 = Cl- + Zr+4 + 1.5 H2O log_k 130.945 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl -# Enthalpy of formation: -303.211 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl +# Enthalpy of formation: -303.211 kJ/mol ZrCl2 ZrCl2 + 2 H+ + 0.5 O2 = H2O + Zr+4 + 2 Cl- log_k 96.3205 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl2 -# Enthalpy of formation: -531.021 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl2 +# Enthalpy of formation: -531.021 kJ/mol ZrCl3 ZrCl3 + H+ + 0.25 O2 = 0.5 H2O + Zr+4 + 3 Cl- log_k 62.4492 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl3 -# Enthalpy of formation: -754.997 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl3 +# Enthalpy of formation: -754.997 kJ/mol ZrCl4 ZrCl4 = Zr+4 + 4 Cl- log_k 27.9824 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl4 -# Enthalpy of formation: -980.762 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl4 +# Enthalpy of formation: -980.762 kJ/mol ZrF4(beta) ZrF4 = Zr+4 + 4 F- log_k -27.7564 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4(beta) -# Enthalpy of formation: -1911.26 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4(beta) +# Enthalpy of formation: -1911.26 kJ/mol ZrH2 ZrH2 + 4 H+ + 1.5 O2 = Zr+4 + 3 H2O log_k 198.3224 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrH2 -# Enthalpy of formation: -168.946 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrH2 +# Enthalpy of formation: -168.946 kJ/mol ZrN ZrN + 4 H+ + 0.25 O2 = 0.5 H2O + NH3 + Zr+4 log_k 59.1271 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrN -# Enthalpy of formation: -365 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrN +# Enthalpy of formation: -365 kJ/mol O-phthalic_acid H2O_phthalate = O_phthalate-2 + 2 H+ log_k -9.7755 - -delta_H 0 # Not possible to calculate enthalpy of reaction O-phthalic_acid -# Enthalpy of formation: -186.88 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction O-phthalic_acid +# Enthalpy of formation: -186.88 kJ/mol -analytic 7.345e+1 1.9477e-2 -3.6511e+3 -3.1035e+1 -6.2027e+1 # -Range: 0-200 Br2(l) Br2 + H2O = 0.5 O2 + 2 Br- + 2 H+ log_k -6.5419 - -delta_H 36.7648 kJ/mol # Calculated enthalpy of reaction Br2(l) -# Enthalpy of formation: 0 kJ/mol + -delta_H 36.7648 kJ/mol # Calculated enthalpy of reaction Br2(l) +# Enthalpy of formation: 0 kJ/mol -analytic -1.5875e+2 -5.8039e-2 1.5583e+3 6.6381e+1 2.4362e+1 # -Range: 0-300 Hg(l) Hg + 2 H+ + 0.5 O2 = H2O + Hg+2 log_k 14.1505 - -delta_H -109.608 kJ/mol # Calculated enthalpy of reaction Hg(l) -# Enthalpy of formation: 0 kcal/mol + -delta_H -109.608 kJ/mol # Calculated enthalpy of reaction Hg(l) +# Enthalpy of formation: 0 kcal/mol -analytic -6.6462e+1 -1.8504e-2 7.3141e+3 2.4888e+1 1.1415e+2 # -Range: 0-300 Ag(g) Ag + H+ + 0.25 O2 = 0.5 H2O + Ag+ log_k 51.0924 - -delta_H -319.035 kJ/mol # Calculated enthalpy of reaction Ag(g) -# Enthalpy of formation: 284.9 kJ/mol + -delta_H -319.035 kJ/mol # Calculated enthalpy of reaction Ag(g) +# Enthalpy of formation: 284.9 kJ/mol -analytic -5.8006e+0 1.7178e-3 1.6809e+4 0e+0 0e+0 # -Range: 0-200 Al(g) Al + 3 H+ + 0.75 O2 = Al+3 + 1.5 H2O log_k 200.6258 - -delta_H -1288.06 kJ/mol # Calculated enthalpy of reaction Al(g) -# Enthalpy of formation: 330 kJ/mol + -delta_H -1288.06 kJ/mol # Calculated enthalpy of reaction Al(g) +# Enthalpy of formation: 330 kJ/mol -analytic 9.6402e+0 -6.9301e-3 6.527e+4 -1.0461e+1 1.1084e+3 # -Range: 0-200 Am(g) Am + 3 H+ + 0.75 O2 = Am+3 + 1.5 H2O log_k 211.7865 - -delta_H -1320.16 kJ/mol # Calculated enthalpy of reaction Am(g) -# Enthalpy of formation: 283.8 kJ/mol + -delta_H -1320.16 kJ/mol # Calculated enthalpy of reaction Am(g) +# Enthalpy of formation: 283.8 kJ/mol -analytic -1.4236e+1 -8.756e-3 6.8166e+4 0e+0 0e+0 # -Range: 0-300 AmF3(g) AmF3 = Am+3 + 3 F- log_k 49.8631 - -delta_H -455.843 kJ/mol # Calculated enthalpy of reaction AmF3(g) -# Enthalpy of formation: -1166.9 kJ/mol + -delta_H -455.843 kJ/mol # Calculated enthalpy of reaction AmF3(g) +# Enthalpy of formation: -1166.9 kJ/mol -analytic -4.7209e+1 -3.644e-2 2.2278e+4 1.3418e+1 3.7833e+2 # -Range: 0-200 Ar(g) Ar = Ar log_k -2.8587 - -delta_H -12.0081 kJ/mol # Calculated enthalpy of reaction Ar(g) -# Enthalpy of formation: 0 kcal/mol + -delta_H -12.0081 kJ/mol # Calculated enthalpy of reaction Ar(g) +# Enthalpy of formation: 0 kcal/mol -analytic -7.4387e+0 7.8991e-3 0e+0 0e+0 1.983e+5 # -Range: 0-300 B(g) B + 1.5 H2O + 0.75 O2 = B(OH)3 log_k 200.843 - -delta_H -1201.68 kJ/mol # Calculated enthalpy of reaction B(g) -# Enthalpy of formation: 565 kJ/mol + -delta_H -1201.68 kJ/mol # Calculated enthalpy of reaction B(g) +# Enthalpy of formation: 565 kJ/mol -analytic 1.0834e+2 1.0606e-2 5.815e+4 -4.272e+1 9.8743e+2 # -Range: 0-200 BF3(g) BF3 + 3 H2O = B(OH)3 + 3 F- + 3 H+ log_k -2.9664 - -delta_H -87.0627 kJ/mol # Calculated enthalpy of reaction BF3(g) -# Enthalpy of formation: -1136 kJ/mol + -delta_H -87.0627 kJ/mol # Calculated enthalpy of reaction BF3(g) +# Enthalpy of formation: -1136 kJ/mol -analytic 5.2848e+1 -2.4617e-2 -1.8159e+2 -1.935e+1 -3.1018e+0 # -Range: 0-200 Be(g) Be + 2 H+ + 0.5 O2 = Be+2 + H2O log_k 361.9343 - -delta_H 0 # Not possible to calculate enthalpy of reaction Be(g) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Be(g) +# Enthalpy of formation: 0 kcal/mol Br2(g) Br2 + H2O = 0.5 O2 + 2 Br- + 2 H+ log_k -5.9979 - -delta_H 5.85481 kJ/mol # Calculated enthalpy of reaction Br2(g) -# Enthalpy of formation: 30.91 kJ/mol + -delta_H 5.85481 kJ/mol # Calculated enthalpy of reaction Br2(g) +# Enthalpy of formation: 30.91 kJ/mol -analytic -3.2403e+0 -1.7609e-2 -1.4941e+3 3.03e+0 -2.537e+1 # -Range: 0-200 C(g) C + H2O + O2 = H+ + HCO3- log_k 181.7723 - -delta_H -1108.64 kJ/mol # Calculated enthalpy of reaction C(g) -# Enthalpy of formation: 716.68 kJ/mol + -delta_H -1108.64 kJ/mol # Calculated enthalpy of reaction C(g) +# Enthalpy of formation: 716.68 kJ/mol -analytic 1.0485e+2 1.7907e-3 5.2768e+4 -4.0661e+1 8.9605e+2 # -Range: 0-200 Ethylene(g) Ethylene = Ethylene log_k -2.3236 - -delta_H -16.4431 kJ/mol # Calculated enthalpy of reaction Ethylene(g) -# Enthalpy of formation: 12.5 kcal/mol + -delta_H -16.4431 kJ/mol # Calculated enthalpy of reaction Ethylene(g) +# Enthalpy of formation: 12.5 kcal/mol -analytic -7.5368e+0 8.4676e-3 0e+0 0e+0 2.3971e+5 # -Range: 0-300 CH4(g) CH4 = CH4 log_k -2.8502 - -delta_H -13.0959 kJ/mol # Calculated enthalpy of reaction CH4(g) -# Enthalpy of formation: -17.88 kcal/mol + -delta_H -13.0959 kJ/mol # Calculated enthalpy of reaction CH4(g) +# Enthalpy of formation: -17.88 kcal/mol -analytic -2.4027e+1 4.7146e-3 3.7227e+2 6.4264e+0 2.3362e+5 # -Range: 0-300 @@ -18160,66 +18160,66 @@ CO(g) # log_k 38.6934 # -analytic -6.1217e+001 -3.1388e-002 1.5283e+004 2.3433e+001 2.3850e+002 # -Range: 0-300 - CO = CO - log_k -3.0068 - -delta_H -10.4349 kJ/mol # Calculated enthalpy of reaction CO(g) -# Enthalpy of formation: -26.416 kcal/mol - -analytic -8.0849e+0 9.2114e-3 0e+0 0e+0 2.0813e+5 + CO = CO + log_k -3.0068 + -delta_H -10.4349 kJ/mol # Calculated enthalpy of reaction CO(g) +# Enthalpy of formation: -26.416 kcal/mol + -analytic -8.0849e+0 9.2114e-3 0e+0 0e+0 2.0813e+5 # -Range: 0-300 CO2(g) CO2 + H2O = H+ + HCO3- log_k -7.8136 - -delta_H -10.5855 kJ/mol # Calculated enthalpy of reaction CO2(g) -# Enthalpy of formation: -94.051 kcal/mol + -delta_H -10.5855 kJ/mol # Calculated enthalpy of reaction CO2(g) +# Enthalpy of formation: -94.051 kcal/mol -analytic -8.5938e+1 -3.0431e-2 2.0702e+3 3.2427e+1 3.2328e+1 # -Range: 0-300 Ca(g) Ca + 2 H+ + 0.5 O2 = Ca+2 + H2O log_k 165.0778 - -delta_H -1000.65 kJ/mol # Calculated enthalpy of reaction Ca(g) -# Enthalpy of formation: 177.8 kJ/mol + -delta_H -1000.65 kJ/mol # Calculated enthalpy of reaction Ca(g) +# Enthalpy of formation: 177.8 kJ/mol -analytic -7.3029e+0 -4.8208e-3 5.1822e+4 0e+0 0e+0 # -Range: 0-200 Cd(g) Cd + 2 H+ + 0.5 O2 = Cd+2 + H2O log_k 70.1363 - -delta_H -467.469 kJ/mol # Calculated enthalpy of reaction Cd(g) -# Enthalpy of formation: 111.8 kJ/mol + -delta_H -467.469 kJ/mol # Calculated enthalpy of reaction Cd(g) +# Enthalpy of formation: 111.8 kJ/mol -analytic -9.8665e+0 -3.0921e-3 2.4126e+4 0e+0 0e+0 # -Range: 0-200 Cl2(g) Cl2 + H2O = 0.5 O2 + 2 Cl- + 2 H+ log_k 3.0004 - -delta_H -54.3878 kJ/mol # Calculated enthalpy of reaction Cl2(g) -# Enthalpy of formation: 0 kJ/mol + -delta_H -54.3878 kJ/mol # Calculated enthalpy of reaction Cl2(g) +# Enthalpy of formation: 0 kJ/mol -analytic -1.9456e+1 -2.1491e-2 2.0652e+3 8.8629e+0 3.5076e+1 # -Range: 0-200 Cs(g) Cs + H+ + 0.25 O2 = 0.5 H2O + Cs+ log_k 81.2805 - -delta_H -474.413 kJ/mol # Calculated enthalpy of reaction Cs(g) -# Enthalpy of formation: 76.5 kJ/mol + -delta_H -474.413 kJ/mol # Calculated enthalpy of reaction Cs(g) +# Enthalpy of formation: 76.5 kJ/mol -analytic 4.1676e+1 9.1952e-3 2.3401e+4 -1.6824e+1 3.9736e+2 # -Range: 0-200 Cu(g) Cu + 2 H+ + 0.5 O2 = Cu+2 + H2O log_k 83.6618 - -delta_H -551.483 kJ/mol # Calculated enthalpy of reaction Cu(g) -# Enthalpy of formation: 337.4 kJ/mol + -delta_H -551.483 kJ/mol # Calculated enthalpy of reaction Cu(g) +# Enthalpy of formation: 337.4 kJ/mol -analytic -1.1249e+1 -2.7585e-3 2.8541e+4 0e+0 0e+0 # -Range: 0-200 F2(g) F2 + H2O = 0.5 O2 + 2 F- + 2 H+ log_k 55.7197 - -delta_H -390.924 kJ/mol # Calculated enthalpy of reaction F2(g) -# Enthalpy of formation: 0 kJ/mol + -delta_H -390.924 kJ/mol # Calculated enthalpy of reaction F2(g) +# Enthalpy of formation: 0 kJ/mol -analytic -3.2664e+1 -2.1035e-2 1.9974e+4 1.1174e+1 3.392e+2 # -Range: 0-200 @@ -18228,120 +18228,120 @@ H2(g) # log_k 43.0016 # -analytic -1.1609e+001 -3.7580e-003 1.5068e+004 2.4198e+000 -7.0997e+004 # -Range: 0-300 - H2 = H2 - log_k -3.105 - -delta_H -4.184 kJ/mol # Calculated enthalpy of reaction H2(g) -# Enthalpy of formation: 0 kcal/mol - -analytic -9.3114e+0 4.6473e-3 -4.9335e+1 1.4341e+0 1.2815e+5 -# -Range: 0-300 + H2 = H2 + log_k -3.105 + -delta_H -4.184 kJ/mol # Calculated enthalpy of reaction H2(g) +# Enthalpy of formation: 0 kcal/mol + -analytic -9.3114e+0 4.6473e-3 -4.9335e+1 1.4341e+0 1.2815e+5 +# -Range: 0-300 H2O(g) H2O = H2O log_k 1.5854 - -delta_H -43.4383 kJ/mol # Calculated enthalpy of reaction H2O(g) -# Enthalpy of formation: -57.935 kcal/mol + -delta_H -43.4383 kJ/mol # Calculated enthalpy of reaction H2O(g) +# Enthalpy of formation: -57.935 kcal/mol -analytic -1.4782e+1 1.0752e-3 2.7519e+3 2.7548e+0 4.2945e+1 # -Range: 0-300 H2S(g) H2S = H+ + HS- log_k -7.9759 - -delta_H 4.5229 kJ/mol # Calculated enthalpy of reaction H2S(g) -# Enthalpy of formation: -4.931 kcal/mol + -delta_H 4.5229 kJ/mol # Calculated enthalpy of reaction H2S(g) +# Enthalpy of formation: -4.931 kcal/mol -analytic -9.7354e+1 -3.1576e-2 1.8285e+3 3.744e+1 2.856e+1 # -Range: 0-300 HBr(g) HBr = Br- + H+ log_k 8.8815 - -delta_H -85.2134 kJ/mol # Calculated enthalpy of reaction HBr(g) -# Enthalpy of formation: -36.29 kJ/mol + -delta_H -85.2134 kJ/mol # Calculated enthalpy of reaction HBr(g) +# Enthalpy of formation: -36.29 kJ/mol -analytic 8.1303e+0 -6.6641e-3 3.3951e+3 -3.4973e+0 5.7651e+1 # -Range: 0-200 HCl(g) HCl = Cl- + H+ log_k 6.3055 - -delta_H -74.7697 kJ/mol # Calculated enthalpy of reaction HCl(g) -# Enthalpy of formation: -92.31 kJ/mol + -delta_H -74.7697 kJ/mol # Calculated enthalpy of reaction HCl(g) +# Enthalpy of formation: -92.31 kJ/mol -analytic -2.8144e-1 -8.6776e-3 3.0668e+3 -4.5105e-1 5.2078e+1 # -Range: 0-200 HF(g) HF = F- + H+ log_k 1.1126 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(g) -# Enthalpy of formation: 619.234 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(g) +# Enthalpy of formation: 619.234 kJ/mol -analytic -8.5783e+0 -8.844e-3 2.6279e+3 1.418e+0 4.4628e+1 # -Range: 0-200 HI(g) HI = H+ + I- log_k 9.3944 - -delta_H -83.4024 kJ/mol # Calculated enthalpy of reaction HI(g) -# Enthalpy of formation: 26.5 kJ/mol + -delta_H -83.4024 kJ/mol # Calculated enthalpy of reaction HI(g) +# Enthalpy of formation: 26.5 kJ/mol -analytic 5.825e-3 -8.7146e-3 3.5728e+3 0e+0 0e+0 # -Range: 0-200 He(g) He = He log_k -3.4143 - -delta_H -0.6276 kJ/mol # Calculated enthalpy of reaction He(g) -# Enthalpy of formation: 0 kcal/mol + -delta_H -0.6276 kJ/mol # Calculated enthalpy of reaction He(g) +# Enthalpy of formation: 0 kcal/mol -analytic -1.3402e+1 4.6358e-3 1.8295e+2 2.807e+0 9.3373e+4 # -Range: 0-300 Hf(g) Hf + 4 H+ + O2 = Hf+4 + 2 H2O log_k 290.9782 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(g) -# Enthalpy of formation: 0 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(g) +# Enthalpy of formation: 0 kJ/mol Hg(g) Hg + 2 H+ + 0.5 O2 = H2O + Hg+2 log_k 19.729 - -delta_H -170.988 kJ/mol # Calculated enthalpy of reaction Hg(g) -# Enthalpy of formation: 61.38 kJ/mol + -delta_H -170.988 kJ/mol # Calculated enthalpy of reaction Hg(g) +# Enthalpy of formation: 61.38 kJ/mol -analytic -1.6232e+1 -3.2863e-3 8.9831e+3 2.7505e+0 1.5255e+2 # -Range: 0-200 I2(g) I2 + H2O = 0.5 O2 + 2 H+ + 2 I- log_k -21.4231 - -delta_H 103.547 kJ/mol # Calculated enthalpy of reaction I2(g) -# Enthalpy of formation: 62.42 kJ/mol + -delta_H 103.547 kJ/mol # Calculated enthalpy of reaction I2(g) +# Enthalpy of formation: 62.42 kJ/mol -analytic -2.0271e+1 -2.189e-2 -6.0267e+3 1.0339e+1 -1.0233e+2 # -Range: 0-200 K(g) K + H+ + 0.25 O2 = 0.5 H2O + K+ log_k 81.5815 - -delta_H -481.055 kJ/mol # Calculated enthalpy of reaction K(g) -# Enthalpy of formation: 89 kJ/mol + -delta_H -481.055 kJ/mol # Calculated enthalpy of reaction K(g) +# Enthalpy of formation: 89 kJ/mol -analytic 1.0278e+1 3.07e-3 2.4729e+4 -5.0763e+0 4.1994e+2 # -Range: 0-200 Kr(g) Kr = Kr log_k -2.6051 - -delta_H -15.2716 kJ/mol # Calculated enthalpy of reaction Kr(g) -# Enthalpy of formation: 0 kcal/mol + -delta_H -15.2716 kJ/mol # Calculated enthalpy of reaction Kr(g) +# Enthalpy of formation: 0 kcal/mol -analytic -2.1251e+1 4.8308e-3 4.2971e+2 5.3591e+0 2.2304e+5 # -Range: 0-300 Li(g) Li + H+ + 0.25 O2 = 0.5 H2O + Li+ log_k 94.9423 - -delta_H -577.639 kJ/mol # Calculated enthalpy of reaction Li(g) -# Enthalpy of formation: 159.3 kJ/mol + -delta_H -577.639 kJ/mol # Calculated enthalpy of reaction Li(g) +# Enthalpy of formation: 159.3 kJ/mol -analytic -2.5692e+1 -1.4385e-3 3.0936e+4 6.9899e+0 5.2535e+2 # -Range: 0-200 Mg(g) Mg + 2 H+ + 0.5 O2 = H2O + Mg+2 log_k 142.2494 - -delta_H -892.831 kJ/mol # Calculated enthalpy of reaction Mg(g) -# Enthalpy of formation: 147.1 kJ/mol + -delta_H -892.831 kJ/mol # Calculated enthalpy of reaction Mg(g) +# Enthalpy of formation: 147.1 kJ/mol -analytic -1.347e+0 -7.7402e-4 4.5992e+4 -4.2207e+0 7.8101e+2 # -Range: 0-200 @@ -18350,453 +18350,453 @@ N2(g) # log_k -119.6473 # -analytic 2.4168e+001 1.6489e-002 -3.6869e+004 -1.1181e+001 2.3178e+005 # -Range: 0-300 - N2 = N2 - log_k -3.1864 - -delta_H -10.4391 kJ/mol # Calculated enthalpy of reaction N2(g) -# Enthalpy of formation: 0 kcal/mol + N2 = N2 + log_k -3.1864 + -delta_H -10.4391 kJ/mol # Calculated enthalpy of reaction N2(g) +# Enthalpy of formation: 0 kcal/mol -analytic -7.6452e+0 7.9606e-3 0e+0 0e+0 1.8604e+5 # -Range: 0-300 NH3(g) NH3 = NH3 log_k 1.7966 - -delta_H -35.2251 kJ/mol # Calculated enthalpy of reaction NH3(g) -# Enthalpy of formation: -11.021 kcal/mol + -delta_H -35.2251 kJ/mol # Calculated enthalpy of reaction NH3(g) +# Enthalpy of formation: -11.021 kcal/mol -analytic -1.8758e+1 3.367e-4 2.5113e+3 4.8619e+0 3.9192e+1 # -Range: 0-300 NO(g) NO + 0.5 H2O + 0.25 O2 = H+ + NO2- log_k 0.7554 - -delta_H -48.8884 kJ/mol # Calculated enthalpy of reaction NO(g) -# Enthalpy of formation: 90.241 kJ/mol + -delta_H -48.8884 kJ/mol # Calculated enthalpy of reaction NO(g) +# Enthalpy of formation: 90.241 kJ/mol -analytic 8.2147e+0 -1.2708e-1 -6.0593e+3 2.0504e+1 -9.4551e+1 # -Range: 0-300 NO2(g) NO2 + 0.5 H2O + 0.25 O2 = H+ + NO3- log_k 8.3673 - -delta_H -94.0124 kJ/mol # Calculated enthalpy of reaction NO2(g) -# Enthalpy of formation: 33.154 kJ/mol + -delta_H -94.0124 kJ/mol # Calculated enthalpy of reaction NO2(g) +# Enthalpy of formation: 33.154 kJ/mol -analytic 9.4389e+1 -2.7511e-1 -1.6783e+4 2.1127e+1 -2.6191e+2 # -Range: 0-300 Na(g) Na + H+ + 0.25 O2 = 0.5 H2O + Na+ log_k 80.864 - -delta_H -487.685 kJ/mol # Calculated enthalpy of reaction Na(g) -# Enthalpy of formation: 107.5 kJ/mol + -delta_H -487.685 kJ/mol # Calculated enthalpy of reaction Na(g) +# Enthalpy of formation: 107.5 kJ/mol -analytic -6.0156e+0 2.4712e-3 2.5682e+4 0e+0 0e+0 # -Range: 0-200 Ne(g) Ne = Ne log_k -3.3462 - -delta_H -3.64008 kJ/mol # Calculated enthalpy of reaction Ne(g) -# Enthalpy of formation: 0 kcal/mol + -delta_H -3.64008 kJ/mol # Calculated enthalpy of reaction Ne(g) +# Enthalpy of formation: 0 kcal/mol -analytic -6.5169e+0 6.3991e-3 0e+0 0e+0 1.1271e+5 # -Range: 0-300 O2(g) O2 = O2 log_k -2.8983 - -delta_H -12.1336 kJ/mol # Calculated enthalpy of reaction O2(g) -# Enthalpy of formation: 0 kcal/mol + -delta_H -12.1336 kJ/mol # Calculated enthalpy of reaction O2(g) +# Enthalpy of formation: 0 kcal/mol -analytic -7.5001e+0 7.8981e-3 0e+0 0e+0 2.0027e+5 # -Range: 0-300 Pb(g) Pb + 2 H+ + 0.5 O2 = H2O + Pb+2 log_k 75.609 - -delta_H -474.051 kJ/mol # Calculated enthalpy of reaction Pb(g) -# Enthalpy of formation: 195.2 kJ/mol + -delta_H -474.051 kJ/mol # Calculated enthalpy of reaction Pb(g) +# Enthalpy of formation: 195.2 kJ/mol -analytic 2.5752e+1 2.1307e-3 2.3397e+4 -1.1825e+1 3.973e+2 # -Range: 0-200 Rb(g) Rb + H+ + 0.25 O2 = 0.5 H2O + Rb+ log_k 80.4976 - -delta_H -471.909 kJ/mol # Calculated enthalpy of reaction Rb(g) -# Enthalpy of formation: 80.9 kJ/mol + -delta_H -471.909 kJ/mol # Calculated enthalpy of reaction Rb(g) +# Enthalpy of formation: 80.9 kJ/mol -analytic 2.6839e+1 5.9775e-3 2.372e+4 -1.1189e+1 4.0279e+2 # -Range: 0-200 Rn(g) Rn = Rn log_k -2.0451 - -delta_H -20.92 kJ/mol # Calculated enthalpy of reaction Rn(g) -# Enthalpy of formation: 0 kcal/mol + -delta_H -20.92 kJ/mol # Calculated enthalpy of reaction Rn(g) +# Enthalpy of formation: 0 kcal/mol -analytic -3.0258e+1 4.9893e-3 1.4118e+2 8.8798e+0 3.8095e+5 # -Range: 0-300 RuCl3(g) RuCl3 = Ru+3 + 3 Cl- log_k 41.5503 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl3(g) -# Enthalpy of formation: 16.84 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl3(g) +# Enthalpy of formation: 16.84 kJ/mol RuO3(g) RuO3 + H2O = RuO4-2 + 2 H+ log_k 2.3859 - -delta_H -100.369 kJ/mol # Calculated enthalpy of reaction RuO3(g) -# Enthalpy of formation: -70.868 kJ/mol + -delta_H -100.369 kJ/mol # Calculated enthalpy of reaction RuO3(g) +# Enthalpy of formation: -70.868 kJ/mol -analytic 1.1106e+2 1.7191e-2 6.8526e+2 -4.6922e+1 1.1598e+1 # -Range: 0-200 S2(g) S2 + 2 H2O = 0.5 SO4-2 + 1.5 HS- + 2.5 H+ log_k -7.1449 - -delta_H -35.656 kJ/mol # Calculated enthalpy of reaction S2(g) -# Enthalpy of formation: 30.681 kcal/mol + -delta_H -35.656 kJ/mol # Calculated enthalpy of reaction S2(g) +# Enthalpy of formation: 30.681 kcal/mol -analytic -1.8815e+2 -7.7069e-2 4.8816e+3 7.5802e+1 7.6228e+1 # -Range: 0-300 SO2(g) - SO2 = SO2 - log_k 0.17 - -delta_H 0 # Not possible to calculate enthalpy of reaction SO2(g) -# Enthalpy of formation: 0 kcal/mol - -analytic -2.0205e+1 2.8861e-3 1.4862e+3 5.2958e+0 1.2721e+5 + SO2 = SO2 + log_k 0.17 + -delta_H 0 # Not possible to calculate enthalpy of reaction SO2(g) +# Enthalpy of formation: 0 kcal/mol + -analytic -2.0205e+1 2.8861e-3 1.4862e+3 5.2958e+0 1.2721e+5 # -Range: 0-300 Si(g) Si + O2 = SiO2 log_k 219.9509 - -delta_H -1315.57 kJ/mol # Calculated enthalpy of reaction Si(g) -# Enthalpy of formation: 450 kJ/mol + -delta_H -1315.57 kJ/mol # Calculated enthalpy of reaction Si(g) +# Enthalpy of formation: 450 kJ/mol -analytic 4.1998e+2 8.0113e-2 5.4468e+4 -1.6433e+2 9.248e+2 # -Range: 0-200 SiF4(g) SiF4 + 2 H2O = SiO2 + 4 F- + 4 H+ log_k -15.1931 - -delta_H -32.4123 kJ/mol # Calculated enthalpy of reaction SiF4(g) -# Enthalpy of formation: -1615 kJ/mol + -delta_H -32.4123 kJ/mol # Calculated enthalpy of reaction SiF4(g) +# Enthalpy of formation: -1615 kJ/mol -analytic 3.4941e+2 3.3668e-2 -1.278e+4 -1.341e+2 -2.1714e+2 # -Range: 0-200 Sn(g) Sn + 2 H+ + 0.5 O2 = H2O + Sn+2 log_k 94.5019 - -delta_H -589.758 kJ/mol # Calculated enthalpy of reaction Sn(g) -# Enthalpy of formation: 301.2 kJ/mol + -delta_H -589.758 kJ/mol # Calculated enthalpy of reaction Sn(g) +# Enthalpy of formation: 301.2 kJ/mol -analytic 1.4875e+1 -5.6877e-5 2.9728e+4 -8.1131e+0 5.0482e+2 # -Range: 0-200 Tc2O7(g) Tc2O7 + H2O = 2 H+ + 2 TcO4- log_k 21.3593 - -delta_H -158.131 kJ/mol # Calculated enthalpy of reaction Tc2O7(g) -# Enthalpy of formation: -988.569 kJ/mol + -delta_H -158.131 kJ/mol # Calculated enthalpy of reaction Tc2O7(g) +# Enthalpy of formation: -988.569 kJ/mol -analytic 7.414e+1 1.5668e-2 5.636e+3 -3.086e+1 9.5682e+1 # -Range: 0-200 Th(g) Th + 4 H+ + O2 = Th+4 + 2 H2O log_k 307.8413 - -delta_H -1930.56 kJ/mol # Calculated enthalpy of reaction Th(g) -# Enthalpy of formation: 602 kJ/mol + -delta_H -1930.56 kJ/mol # Calculated enthalpy of reaction Th(g) +# Enthalpy of formation: 602 kJ/mol -analytic 1.8496e+1 2.7318e-3 9.8807e+4 -1.7332e+1 1.6779e+3 # -Range: 0-200 Ti(g) Ti + 2 H2O + O2 = Ti(OH)4 log_k 224.351 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti(g) -# Enthalpy of formation: 473 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti(g) +# Enthalpy of formation: 473 kJ/mol TiBr4(g) TiBr4 + 4 H2O = Ti(OH)4 + 4 Br- + 4 H+ log_k 36.6695 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr4(g) -# Enthalpy of formation: -549.339 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr4(g) +# Enthalpy of formation: -549.339 kJ/mol TiCl4(g) TiCl4 + 4 H2O = Ti(OH)4 + 4 Cl- + 4 H+ log_k 28.0518 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl4(g) -# Enthalpy of formation: -763.2 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl4(g) +# Enthalpy of formation: -763.2 kJ/mol TiO(g) TiO + 2 H2O + 0.5 O2 = Ti(OH)4 log_k 145.5711 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiO(g) -# Enthalpy of formation: 17.144 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TiO(g) +# Enthalpy of formation: 17.144 kJ/mol U(g) U + 2 H+ + 1.5 O2 = H2O + UO2+2 log_k 298.3441 - -delta_H -1819.64 kJ/mol # Calculated enthalpy of reaction U(g) -# Enthalpy of formation: 533 kJ/mol + -delta_H -1819.64 kJ/mol # Calculated enthalpy of reaction U(g) +# Enthalpy of formation: 533 kJ/mol -analytic 3.7536e+1 -6.3804e-3 9.2048e+4 -1.8614e+1 1.4363e+3 # -Range: 0-300 U2Cl10(g) U2Cl10 + 4 H2O = 2 UO2+ + 8 H+ + 10 Cl- log_k 82.7621 - -delta_H -609.798 kJ/mol # Calculated enthalpy of reaction U2Cl10(g) -# Enthalpy of formation: -1967.9 kJ/mol + -delta_H -609.798 kJ/mol # Calculated enthalpy of reaction U2Cl10(g) +# Enthalpy of formation: -1967.9 kJ/mol -analytic -7.5513e+2 -3.007e-1 4.5824e+4 3.1267e+2 7.1526e+2 # -Range: 0-300 U2Cl8(g) U2Cl8 = 2 U+4 + 8 Cl- log_k 82.4059 - -delta_H -769.437 kJ/mol # Calculated enthalpy of reaction U2Cl8(g) -# Enthalpy of formation: -1749.6 kJ/mol + -delta_H -769.437 kJ/mol # Calculated enthalpy of reaction U2Cl8(g) +# Enthalpy of formation: -1749.6 kJ/mol -analytic -7.4441e+2 -2.6943e-1 5.4358e+4 2.9287e+2 8.4843e+2 # -Range: 0-300 U2F10(g) U2F10 + 4 H2O = 2 UO2+ + 8 H+ + 10 F- log_k -12.2888 - -delta_H -239.377 kJ/mol # Calculated enthalpy of reaction U2F10(g) -# Enthalpy of formation: -4021 kJ/mol + -delta_H -239.377 kJ/mol # Calculated enthalpy of reaction U2F10(g) +# Enthalpy of formation: -4021 kJ/mol -analytic -9.1542e+2 -3.204e-1 3.1047e+4 3.6143e+2 4.8473e+2 # -Range: 0-300 UBr(g) UBr + O2 = Br- + UO2+ log_k 224.8412 - -delta_H -1381.5 kJ/mol # Calculated enthalpy of reaction UBr(g) -# Enthalpy of formation: 247 kJ/mol + -delta_H -1381.5 kJ/mol # Calculated enthalpy of reaction UBr(g) +# Enthalpy of formation: 247 kJ/mol -analytic -3.1193e+2 -6.3059e-2 8.7633e+4 1.1032e+2 -1.0104e+6 # -Range: 0-300 UBr2(g) UBr2 + O2 = UO2+2 + 2 Br- log_k 192.6278 - -delta_H -1218.87 kJ/mol # Calculated enthalpy of reaction UBr2(g) -# Enthalpy of formation: -31 kJ/mol + -delta_H -1218.87 kJ/mol # Calculated enthalpy of reaction UBr2(g) +# Enthalpy of formation: -31 kJ/mol -analytic -1.2277e+2 -6.4613e-2 6.4196e+4 4.8209e+1 1.0018e+3 # -Range: 0-300 UBr3(g) UBr3 = U+3 + 3 Br- log_k 67.8918 - -delta_H -489.61 kJ/mol # Calculated enthalpy of reaction UBr3(g) -# Enthalpy of formation: -364 kJ/mol + -delta_H -489.61 kJ/mol # Calculated enthalpy of reaction UBr3(g) +# Enthalpy of formation: -364 kJ/mol -analytic -2.5784e+2 -9.7583e-2 3.0225e+4 1.024e+2 4.7171e+2 # -Range: 0-300 UBr4(g) UBr4 = U+4 + 4 Br- log_k 54.2926 - -delta_H -467.113 kJ/mol # Calculated enthalpy of reaction UBr4(g) -# Enthalpy of formation: -610.1 kJ/mol + -delta_H -467.113 kJ/mol # Calculated enthalpy of reaction UBr4(g) +# Enthalpy of formation: -610.1 kJ/mol -analytic -3.5205e+2 -1.2867e-1 3.0898e+4 1.3781e+2 4.8223e+2 # -Range: 0-300 UBr5(g) UBr5 + 2 H2O = UO2+ + 4 H+ + 5 Br- log_k 61.4272 - -delta_H -423.222 kJ/mol # Calculated enthalpy of reaction UBr5(g) -# Enthalpy of formation: -637.745 kJ/mol + -delta_H -423.222 kJ/mol # Calculated enthalpy of reaction UBr5(g) +# Enthalpy of formation: -637.745 kJ/mol -analytic -3.4693e+2 -1.4298e-1 2.8151e+4 1.4406e+2 4.3938e+2 # -Range: 0-300 UCl(g) UCl + O2 = Cl- + UO2+ log_k 221.7887 - -delta_H -1368.27 kJ/mol # Calculated enthalpy of reaction UCl(g) -# Enthalpy of formation: 188.2 kJ/mol + -delta_H -1368.27 kJ/mol # Calculated enthalpy of reaction UCl(g) +# Enthalpy of formation: 188.2 kJ/mol -analytic -4.1941e+1 -2.7879e-2 7.08e+4 1.3954e+1 1.1048e+3 # -Range: 0-300 UCl2(g) UCl2 + O2 = UO2+2 + 2 Cl- log_k 183.7912 - -delta_H -1178.03 kJ/mol # Calculated enthalpy of reaction UCl2(g) -# Enthalpy of formation: -163 kJ/mol + -delta_H -1178.03 kJ/mol # Calculated enthalpy of reaction UCl2(g) +# Enthalpy of formation: -163 kJ/mol -analytic -1.3677e+2 -6.7829e-2 6.2413e+4 5.31e+1 9.7394e+2 # -Range: 0-300 UCl3(g) UCl3 = U+3 + 3 Cl- log_k 58.6335 - -delta_H -453.239 kJ/mol # Calculated enthalpy of reaction UCl3(g) -# Enthalpy of formation: -537.1 kJ/mol + -delta_H -453.239 kJ/mol # Calculated enthalpy of reaction UCl3(g) +# Enthalpy of formation: -537.1 kJ/mol -analytic -2.7942e+2 -1.0243e-1 2.8859e+4 1.0982e+2 4.504e+2 # -Range: 0-300 UCl4(g) UCl4 = U+4 + 4 Cl- log_k 46.3988 - -delta_H -441.419 kJ/mol # Calculated enthalpy of reaction UCl4(g) -# Enthalpy of formation: -818.1 kJ/mol + -delta_H -441.419 kJ/mol # Calculated enthalpy of reaction UCl4(g) +# Enthalpy of formation: -818.1 kJ/mol -analytic -3.7971e+2 -1.3504e-1 3.0243e+4 1.4746e+2 4.7202e+2 # -Range: 0-300 UCl5(g) UCl5 + 2 H2O = UO2+ + 4 H+ + 5 Cl- log_k 54.5311 - -delta_H -406.349 kJ/mol # Calculated enthalpy of reaction UCl5(g) -# Enthalpy of formation: -882.5 kJ/mol + -delta_H -406.349 kJ/mol # Calculated enthalpy of reaction UCl5(g) +# Enthalpy of formation: -882.5 kJ/mol -analytic -3.8234e+2 -1.5109e-1 2.817e+4 1.5654e+2 4.3968e+2 # -Range: 0-300 UCl6(g) UCl6 + 2 H2O = UO2+2 + 4 H+ + 6 Cl- log_k 63.4791 - -delta_H -462.301 kJ/mol # Calculated enthalpy of reaction UCl6(g) -# Enthalpy of formation: -987.5 kJ/mol + -delta_H -462.301 kJ/mol # Calculated enthalpy of reaction UCl6(g) +# Enthalpy of formation: -987.5 kJ/mol -analytic -4.7128e+2 -1.9133e-1 3.2528e+4 1.9503e+2 5.0771e+2 # -Range: 0-300 UF(g) UF + O2 = F- + UO2+ log_k 206.2684 - -delta_H -1296.34 kJ/mol # Calculated enthalpy of reaction UF(g) -# Enthalpy of formation: -52 kJ/mol + -delta_H -1296.34 kJ/mol # Calculated enthalpy of reaction UF(g) +# Enthalpy of formation: -52 kJ/mol -analytic -6.1248e+1 -3.036e-2 6.7619e+4 2.0095e+1 1.0551e+3 # -Range: 0-300 UF2(g) UF2 + O2 = UO2+2 + 2 F- log_k 172.3563 - -delta_H -1147.56 kJ/mol # Calculated enthalpy of reaction UF2(g) -# Enthalpy of formation: -530 kJ/mol + -delta_H -1147.56 kJ/mol # Calculated enthalpy of reaction UF2(g) +# Enthalpy of formation: -530 kJ/mol -analytic -4.3462e+2 -1.0881e-1 7.6778e+4 1.5835e+2 -8.8536e+5 # -Range: 0-300 UF3(g) UF3 = U+3 + 3 F- log_k 47.2334 - -delta_H -440.943 kJ/mol # Calculated enthalpy of reaction UF3(g) -# Enthalpy of formation: -1054.2 kJ/mol + -delta_H -440.943 kJ/mol # Calculated enthalpy of reaction UF3(g) +# Enthalpy of formation: -1054.2 kJ/mol -analytic -3.3058e+2 -1.0866e-1 2.9694e+4 1.2551e+2 4.6344e+2 # -Range: 0-300 UF4(g) UF4 = U+4 + 4 F- log_k 14.598 - -delta_H -331.39 kJ/mol # Calculated enthalpy of reaction UF4(g) -# Enthalpy of formation: -1601.2 kJ/mol + -delta_H -331.39 kJ/mol # Calculated enthalpy of reaction UF4(g) +# Enthalpy of formation: -1601.2 kJ/mol -analytic -4.4692e+2 -1.4314e-1 2.6427e+4 1.6791e+2 4.125e+2 # -Range: 0-300 UF5(g) UF5 + 2 H2O = UO2+ + 4 H+ + 5 F- log_k 6.3801 - -delta_H -220.188 kJ/mol # Calculated enthalpy of reaction UF5(g) -# Enthalpy of formation: -1910 kJ/mol + -delta_H -220.188 kJ/mol # Calculated enthalpy of reaction UF5(g) +# Enthalpy of formation: -1910 kJ/mol -analytic -4.6981e+2 -1.6177e-1 2.0986e+4 1.8345e+2 3.276e+2 # -Range: 0-300 UF6(g) UF6 + 2 H2O = UO2+2 + 4 H+ + 6 F- log_k 18.2536 - -delta_H -310.809 kJ/mol # Calculated enthalpy of reaction UF6(g) -# Enthalpy of formation: -2148.6 kJ/mol + -delta_H -310.809 kJ/mol # Calculated enthalpy of reaction UF6(g) +# Enthalpy of formation: -2148.6 kJ/mol -analytic -5.7661e+2 -2.0409e-1 2.768e+4 2.2743e+2 4.3209e+2 # -Range: 0-300 UI(g) UI + O2 = I- + UO2+ log_k 230.8161 - -delta_H -1410.9 kJ/mol # Calculated enthalpy of reaction UI(g) -# Enthalpy of formation: 341 kJ/mol + -delta_H -1410.9 kJ/mol # Calculated enthalpy of reaction UI(g) +# Enthalpy of formation: 341 kJ/mol -analytic -3.5819e+1 -2.6631e-2 7.2899e+4 1.2133e+1 1.1375e+3 # -Range: 0-300 UI2(g) UI2 + O2 = UO2+2 + 2 I- log_k 194.5395 - -delta_H -1220.67 kJ/mol # Calculated enthalpy of reaction UI2(g) -# Enthalpy of formation: 100 kJ/mol + -delta_H -1220.67 kJ/mol # Calculated enthalpy of reaction UI2(g) +# Enthalpy of formation: 100 kJ/mol -analytic -3.3543e+2 -9.5116e-2 7.6218e+4 1.2543e+2 -6.8683e+5 # -Range: 0-300 UI3(g) UI3 = U+3 + 3 I- log_k 75.6033 - -delta_H -519.807 kJ/mol # Calculated enthalpy of reaction UI3(g) -# Enthalpy of formation: -140 kJ/mol + -delta_H -519.807 kJ/mol # Calculated enthalpy of reaction UI3(g) +# Enthalpy of formation: -140 kJ/mol -analytic -2.6095e+2 -9.8782e-2 3.1972e+4 1.0456e+2 4.9897e+2 # -Range: 0-300 UI4(g) UI4 = U+4 + 4 I- log_k 64.3272 - -delta_H -510.01 kJ/mol # Calculated enthalpy of reaction UI4(g) -# Enthalpy of formation: -308.8 kJ/mol + -delta_H -510.01 kJ/mol # Calculated enthalpy of reaction UI4(g) +# Enthalpy of formation: -308.8 kJ/mol -analytic -3.5645e+2 -1.3022e-1 3.3347e+4 1.4051e+2 5.2046e+2 # -Range: 0-300 UO(g) UO + 2 H+ + O2 = H2O + UO2+2 log_k 211.6585 - -delta_H -1323.2 kJ/mol # Calculated enthalpy of reaction UO(g) -# Enthalpy of formation: 30.5 kJ/mol + -delta_H -1323.2 kJ/mol # Calculated enthalpy of reaction UO(g) +# Enthalpy of formation: 30.5 kJ/mol -analytic -1.8007e+2 -3.1985e-2 7.8469e+4 5.8892e+1 -6.8071e+5 # -Range: 0-300 UO2(g) UO2 + 2 H+ + 0.5 O2 = H2O + UO2+2 log_k 125.6027 - -delta_H -820.972 kJ/mol # Calculated enthalpy of reaction UO2(g) -# Enthalpy of formation: -477.8 kJ/mol + -delta_H -820.972 kJ/mol # Calculated enthalpy of reaction UO2(g) +# Enthalpy of formation: -477.8 kJ/mol -analytic -5.2789e+0 -3.5754e-3 4.2074e+4 -3.7117e+0 6.5653e+2 # -Range: 0-300 UO2Cl2(g) UO2Cl2 = UO2+2 + 2 Cl- log_k 47.963 - -delta_H -381.559 kJ/mol # Calculated enthalpy of reaction UO2Cl2(g) -# Enthalpy of formation: -971.6 kJ/mol + -delta_H -381.559 kJ/mol # Calculated enthalpy of reaction UO2Cl2(g) +# Enthalpy of formation: -971.6 kJ/mol -analytic -1.8035e+2 -6.5574e-2 2.3064e+4 6.8894e+1 3.5994e+2 # -Range: 0-300 UO2F2(g) UO2F2 = UO2+2 + 2 F- log_k 34.6675 - -delta_H -337.195 kJ/mol # Calculated enthalpy of reaction UO2F2(g) -# Enthalpy of formation: -1352.5 kJ/mol + -delta_H -337.195 kJ/mol # Calculated enthalpy of reaction UO2F2(g) +# Enthalpy of formation: -1352.5 kJ/mol -analytic -2.1498e+2 -6.9882e-2 2.1774e+4 7.978e+1 3.3983e+2 # -Range: 0-300 UO3(g) UO3 + 2 H+ = H2O + UO2+2 log_k 70.948 - -delta_H -505.638 kJ/mol # Calculated enthalpy of reaction UO3(g) -# Enthalpy of formation: -799.2 kJ/mol + -delta_H -505.638 kJ/mol # Calculated enthalpy of reaction UO3(g) +# Enthalpy of formation: -799.2 kJ/mol -analytic -3.282e+1 -2.6807e-3 2.6914e+4 5.7767e+0 4.1997e+2 # -Range: 0-300 UOF4(g) UOF4 + H2O = UO2+2 + 2 H+ + 4 F- log_k 24.2848 - -delta_H -312.552 kJ/mol # Calculated enthalpy of reaction UOF4(g) -# Enthalpy of formation: -1762 kJ/mol + -delta_H -312.552 kJ/mol # Calculated enthalpy of reaction UOF4(g) +# Enthalpy of formation: -1762 kJ/mol -analytic -3.9592e+2 -1.3699e-1 2.4127e+4 1.5359e+2 3.766e+2 # -Range: 0-300 Xe(g) Xe = Xe log_k -2.364 - -delta_H -18.8698 kJ/mol # Calculated enthalpy of reaction Xe(g) -# Enthalpy of formation: 0 kcal/mol + -delta_H -18.8698 kJ/mol # Calculated enthalpy of reaction Xe(g) +# Enthalpy of formation: 0 kcal/mol -analytic -2.0636e+1 5.1389e-3 2.049e+2 5.1913e+0 2.8556e+5 # -Range: 0-300 Zn(g) Zn + 2 H+ + 0.5 O2 = H2O + Zn+2 log_k 85.414 - -delta_H -563.557 kJ/mol # Calculated enthalpy of reaction Zn(g) -# Enthalpy of formation: 130.4 kJ/mol + -delta_H -563.557 kJ/mol # Calculated enthalpy of reaction Zn(g) +# Enthalpy of formation: 130.4 kJ/mol -analytic -1.0898e+1 -3.9871e-3 2.9068e+4 0e+0 0e+0 # -Range: 0-200 Zr(g) Zr + 4 H+ + O2 = Zr+4 + 2 H2O log_k 277.1324 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(g) -# Enthalpy of formation: 608.948 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(g) +# Enthalpy of formation: 608.948 kJ/mol ZrF4(g) ZrF4 = Zr+4 + 4 F- log_k 142.9515 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4(g) -# Enthalpy of formation: -858.24 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4(g) +# Enthalpy of formation: -858.24 kJ/mol EXCHANGE_MASTER_SPECIES X X- diff --git a/minteq.dat b/minteq.dat index 2a356840..34ce6726 100644 --- a/minteq.dat +++ b/minteq.dat @@ -7,125 +7,125 @@ SOLUTION_MASTER_SPECIES ####################################################### # essential definitions ####################################################### -Alkalinity CO3-2 2 61.0173 61.0173 -E e- 1 0 0 -H H+ -1 1.008 1.008 -H(0) H2 0 1.008 -H(1) H+ -1 1.008 -O H2O 0 16 16 -O(-2) H2O 0 16 16 -O(0) O2 0 16 16 +Alkalinity CO3-2 2 61.0173 61.0173 +E e- 1 0 0 +H H+ -1 1.008 1.008 +H(0) H2 0 1.008 +H(1) H+ -1 1.008 +O H2O 0 16 16 +O(-2) H2O 0 16 16 +O(0) O2 0 16 16 ####################################################### -Ag Ag+ 0 107.868 107.868 -Al Al+3 0 26.9815 26.9815 -As H3AsO4 -1 74.9216 74.9216 -As(+3) H3AsO3 0 74.9216 -As(+5) H3AsO4 -1 74.9216 -B H3BO3 0 10.81 10.81 -Ba Ba+2 0 137.34 137.34 -Be Be+2 0 9.0122 9.0122 -Br Br- 0 79.904 79.904 -C CO3-2 2 61.0173 12.0111 -C(+4) CO3-2 2 61.0173 -#C(-4) CH4 0.0 16.042 -Cyanide Cyanide- 0 26.018 26.018 -Cyanate Cyanate- 0 42.017 42.017 -#DOM DOM-2.8 0 0 0 -#ClIG2 ClIG2 0 0 0 -Ca Ca+2 0 40.08 40.08 -Cd Cd+2 0 112.399 112.399 -Cl Cl- 0 35.453 35.453 -Cr CrO4-2 1 51.996 51.996 -Cr(2) Cr+2 0 51.996 -Cr(3) Cr(OH)2+ 1 51.996 -Cr(6) CrO4-2 1 51.996 -Cu Cu+2 0 63.546 63.546 -Cu(1) Cu+ 0 63.546 -Cu(2) Cu+2 0 63.546 -F F- 0 18.9984 18.9984 -Fe Fe+3 0 55.847 55.847 -Fe(+2) Fe+2 0 55.847 -Fe(+3) Fe+3 -2 55.847 -Hg Hg(OH)2 0 200.59 200.59 -Hg(2) Hg(OH)2 0 200.59 -Hg(1) Hg2+2 0 200.59 -Hg(0) Hg 0 200.59 -I I- 0 126.904 126.904 -K K+ 0 39.102 39.102 -Li Li+ 0 6.939 6.939 -Mg Mg+2 0 24.312 24.312 -Mn Mn+3 0 54.938 54.938 -Mn(2) Mn+2 0 54.938 -Mn(3) Mn+3 0 54.938 -Mn(6) MnO4-2 0 54.938 -Mn(7) MnO4- 0 54.938 -N NO3- 0 14.0067 14.0067 -N(-3) NH4+ 0 14.0067 -#N(0) N2 0.0 14.0067 -N(+3) NO2- 0 14.0067 -N(+5) NO3- 0 14.0067 -Na Na+ 0 22.9898 22.9898 -Ni Ni+2 0 58.71 58.71 -P PO4-3 2 30.9738 30.9738 -Pb Pb+2 0 207.19 207.19 -Rb Rb+ 0 85.4699 85.4699 -S SO4-2 0 96.0616 32.064 -S(-2) HS- 1 32.064 -S(6) SO4-2 0 96.0616 -Sb Sb(OH)6- 0 Sb 121.75 -Sb(3) Sb(OH)3 0 Sb -Sb(5) Sb(OH)6- 0 Sb -Se SeO4-2 0 78.96 78.96 -Se(-2) HSe- 0 78.96 -Se(4) SeO3-2 0 78.96 -Se(6) SeO4-2 0 78.96 -Si H4SiO4 0 96.1155 28.0843 -Sr Sr+2 0 87.62 87.62 -Tl Tl(OH)3 0 204.37 204.37 -Tl(1) Tl+ 0 204.37 -Tl(3) Tl(OH)3 0 204.37 -U UO2+2 0 238.029 238.029 -U(3) U+3 0 238.029 -U(4) U+4 0 238.029 -U(5) UO2+ 0 238.029 -U(6) UO2+2 0 238.029 -V VO2+ -2 50.94 50.94 -V(2) V+2 0 50.94 -V(3) V+3 -3 50.94 -V(4) VO+2 0 50.94 -V(5) VO2+ -2 50.94 -Zn Zn+2 0 65.37 65.37 -Benzoate Benzoate- 0 121.12 121.12 -Para_acetate Para_acetate- 1 134.14 134.14 -Isophthalate Isophthalate-2 1 164.12 164.12 -Diethylamine Diethylamine 0 73 73 -Nbutylamine Nbutylamine 1 73 73 -Methylamine Methylamine 1 31.018 31.018 -Dimethylamine Dimethylamine 1 45.028 45.028 -Tributylphosphate Tributylphosphate 0 265.97 265.97 -Hexylamine Hexylamine 1 101 101 -Ethylenediamine Ethylenediamine 2 60.12 60.12 -Npropylamine Npropylamine 1 59.04 59.04 -Isopropylamine Isopropylamine 1 59.04 59.04 -Trimethylamine Trimethylamine 1 59.04 59.04 -Citrate Citrate-3 2 189.06 189.06 -Nta Nta-3 1 188.06 188.06 -Edta Edta-4 2 276 276 -Propanoate Propanoate- 1 73.032 73.032 -Butanoate Butanoate- 0 87.043 87.043 -Isobutyrate Isobutyrate- 1 87.043 87.043 -Two_methylpyridine Two_methylpyridine 1 94 94 -Three_methylpyridine Three_methylpyridine 1 94 94 -Four_methylpyridine Four_methylpyridine 1 94 94 -Formate Formate- 0 45.02 45.02 -Isovalerate Isovalerate- 1 101.13 101.13 -Valerate Valerate- 1 101.13 101.13 -Acetate Acetate- 1 59.05 59.05 -Tartrate Tartrate-2 0 148.09 148.09 -Glycine Glycine- 1 74.07 74.07 -Salicylate Salicylate-2 1 136.12 136.12 -Glutamate Glutamate-2 1 145.13 145.13 -Phthalate Phthalate-2 1 164.13 164.13 +Ag Ag+ 0 107.868 107.868 +Al Al+3 0 26.9815 26.9815 +As H3AsO4 -1 74.9216 74.9216 +As(+3) H3AsO3 0 74.9216 +As(+5) H3AsO4 -1 74.9216 +B H3BO3 0 10.81 10.81 +Ba Ba+2 0 137.34 137.34 +Be Be+2 0 9.0122 9.0122 +Br Br- 0 79.904 79.904 +C CO3-2 2 61.0173 12.0111 +C(+4) CO3-2 2 61.0173 +#C(-4) CH4 0.0 16.042 +Cyanide Cyanide- 0 26.018 26.018 +Cyanate Cyanate- 0 42.017 42.017 +#DOM DOM-2.8 0 0 0 +#ClIG2 ClIG2 0 0 0 +Ca Ca+2 0 40.08 40.08 +Cd Cd+2 0 112.399 112.399 +Cl Cl- 0 35.453 35.453 +Cr CrO4-2 1 51.996 51.996 +Cr(2) Cr+2 0 51.996 +Cr(3) Cr(OH)2+ 1 51.996 +Cr(6) CrO4-2 1 51.996 +Cu Cu+2 0 63.546 63.546 +Cu(1) Cu+ 0 63.546 +Cu(2) Cu+2 0 63.546 +F F- 0 18.9984 18.9984 +Fe Fe+3 0 55.847 55.847 +Fe(+2) Fe+2 0 55.847 +Fe(+3) Fe+3 -2 55.847 +Hg Hg(OH)2 0 200.59 200.59 +Hg(2) Hg(OH)2 0 200.59 +Hg(1) Hg2+2 0 200.59 +Hg(0) Hg 0 200.59 +I I- 0 126.904 126.904 +K K+ 0 39.102 39.102 +Li Li+ 0 6.939 6.939 +Mg Mg+2 0 24.312 24.312 +Mn Mn+3 0 54.938 54.938 +Mn(2) Mn+2 0 54.938 +Mn(3) Mn+3 0 54.938 +Mn(6) MnO4-2 0 54.938 +Mn(7) MnO4- 0 54.938 +N NO3- 0 14.0067 14.0067 +N(-3) NH4+ 0 14.0067 +#N(0) N2 0.0 14.0067 +N(+3) NO2- 0 14.0067 +N(+5) NO3- 0 14.0067 +Na Na+ 0 22.9898 22.9898 +Ni Ni+2 0 58.71 58.71 +P PO4-3 2 30.9738 30.9738 +Pb Pb+2 0 207.19 207.19 +Rb Rb+ 0 85.4699 85.4699 +S SO4-2 0 96.0616 32.064 +S(-2) HS- 1 32.064 +S(6) SO4-2 0 96.0616 +Sb Sb(OH)6- 0 Sb 121.75 +Sb(3) Sb(OH)3 0 Sb +Sb(5) Sb(OH)6- 0 Sb +Se SeO4-2 0 78.96 78.96 +Se(-2) HSe- 0 78.96 +Se(4) SeO3-2 0 78.96 +Se(6) SeO4-2 0 78.96 +Si H4SiO4 0 96.1155 28.0843 +Sr Sr+2 0 87.62 87.62 +Tl Tl(OH)3 0 204.37 204.37 +Tl(1) Tl+ 0 204.37 +Tl(3) Tl(OH)3 0 204.37 +U UO2+2 0 238.029 238.029 +U(3) U+3 0 238.029 +U(4) U+4 0 238.029 +U(5) UO2+ 0 238.029 +U(6) UO2+2 0 238.029 +V VO2+ -2 50.94 50.94 +V(2) V+2 0 50.94 +V(3) V+3 -3 50.94 +V(4) VO+2 0 50.94 +V(5) VO2+ -2 50.94 +Zn Zn+2 0 65.37 65.37 +Benzoate Benzoate- 0 121.12 121.12 +Para_acetate Para_acetate- 1 134.14 134.14 +Isophthalate Isophthalate-2 1 164.12 164.12 +Diethylamine Diethylamine 0 73 73 +Nbutylamine Nbutylamine 1 73 73 +Methylamine Methylamine 1 31.018 31.018 +Dimethylamine Dimethylamine 1 45.028 45.028 +Tributylphosphate Tributylphosphate 0 265.97 265.97 +Hexylamine Hexylamine 1 101 101 +Ethylenediamine Ethylenediamine 2 60.12 60.12 +Npropylamine Npropylamine 1 59.04 59.04 +Isopropylamine Isopropylamine 1 59.04 59.04 +Trimethylamine Trimethylamine 1 59.04 59.04 +Citrate Citrate-3 2 189.06 189.06 +Nta Nta-3 1 188.06 188.06 +Edta Edta-4 2 276 276 +Propanoate Propanoate- 1 73.032 73.032 +Butanoate Butanoate- 0 87.043 87.043 +Isobutyrate Isobutyrate- 1 87.043 87.043 +Two_methylpyridine Two_methylpyridine 1 94 94 +Three_methylpyridine Three_methylpyridine 1 94 94 +Four_methylpyridine Four_methylpyridine 1 94 94 +Formate Formate- 0 45.02 45.02 +Isovalerate Isovalerate- 1 101.13 101.13 +Valerate Valerate- 1 101.13 101.13 +Acetate Acetate- 1 59.05 59.05 +Tartrate Tartrate-2 0 148.09 148.09 +Glycine Glycine- 1 74.07 74.07 +Salicylate Salicylate-2 1 136.12 136.12 +Glutamate Glutamate-2 1 145.13 145.13 +Phthalate Phthalate-2 1 164.13 164.13 SOLUTION_SPECIES ####################################################### # essential definitions @@ -3691,12 +3691,12 @@ Greigite delta_h -0 kcal Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O -# # Log K gives too small a solubility < 10 mmol/L -# # D. Parkhurst 7/13/09, Replacing log K with minteq version 4 log K +# # Log K gives too small a solubility < 10 mmol/L +# # D. Parkhurst 7/13/09, Replacing log K with minteq version 4 log K # log_k -4.848 # delta_h 0.261 kcal - log_k -4.61 - delta_h 1 kJ + log_k -4.61 + delta_h 1 kJ Halite NaCl = Na+ + Cl- diff --git a/minteq.v4.dat b/minteq.v4.dat index 3e81fd8f..cae290fa 100644 --- a/minteq.v4.dat +++ b/minteq.v4.dat @@ -4,453 +4,453 @@ # $Id: minteq.v4.dat 11091 2016-04-21 15:20:05Z dlpark $ SOLUTION_MASTER_SPECIES -Alkalinity CO3-2 2 HCO3 61.0173 -E e- 1 0 0 -O H2O 0 O 16 -O(-2) H2O 0 O -O(0) O2 0 O -Ag Ag+ 0 Ag 107.868 -Al Al+3 0 Al 26.9815 -As H3AsO4 -1 As 74.9216 -As(3) H3AsO3 0 As -As(5) H3AsO4 -1 As -B H3BO3 0 B 10.81 -Ba Ba+2 0 Ba 137.33 -Be Be+2 0 Be 9.0122 -Br Br- 0 Br 79.904 -C CO3-2 2 CO3 12.0111 -C(4) CO3-2 2 CO3 12.0111 -Cyanide Cyanide- 1 Cyanide 26.0177 -Dom_a Dom_a 0 C 12.0111 -Dom_b Dom_b 0 C 12.0111 -Dom_c Dom_c 0 C 12.0111 -Ca Ca+2 0 Ca 40.078 -Cd Cd+2 0 Cd 112.41 -Cl Cl- 0 Cl 35.453 -Co Co+3 -1 Co 58.9332 -Co(2) Co+2 0 Co -Co(3) Co+3 -1 Co -Cr CrO4-2 1 Cr 51.996 -Cr(2) Cr+2 0 Cr -Cr(3) Cr(OH)2+ 0 Cr -Cr(6) CrO4-2 1 Cr -Cu Cu+2 0 Cu 63.546 -Cu(1) Cu+ 0 Cu -Cu(2) Cu+2 0 Cu -F F- 0 F 18.9984 -Fe Fe+3 -2 Fe 55.847 -Fe(2) Fe+2 0 Fe -Fe(3) Fe+3 -2 Fe -H H+ -1 H 1.0079 -H(0) H2 0 H -H(1) H+ -1 H -Hg Hg(OH)2 0 Hg 200.59 -Hg(0) Hg 0 Hg -Hg(1) Hg2+2 0 Hg -Hg(2) Hg(OH)2 0 Hg -I I- 0 I 126.904 -K K+ 0 K 39.0983 -Li Li+ 0 Li 6.941 -Mg Mg+2 0 Mg 24.305 -Mn Mn+3 0 Mn 54.938 -Mn(2) Mn+2 0 Mn -Mn(3) Mn+3 0 Mn -Mn(6) MnO4-2 0 Mn -Mn(7) MnO4- 0 Mn -Mo MoO4-2 0 Mo 95.94 -N NO3- 0 N 14.0067 -N(-3) NH4+ 0 N -N(3) NO2- 0 N -N(5) NO3- 0 N -Na Na+ 0 Na 22.9898 -Ni Ni+2 0 Ni 58.69 -P PO4-3 2 P 30.9738 -Pb Pb+2 0 Pb 207.2 -S SO4-2 0 SO4 32.066 -S(-2) HS- 1 S -#S(0) S 0.0 S -S(6) SO4-2 0 SO4 -Sb Sb(OH)6- 0 Sb 121.75 -Sb(3) Sb(OH)3 0 Sb -Sb(5) Sb(OH)6- 0 Sb -Se SeO4-2 0 Se 78.96 -Se(-2) HSe- 0 Se -Se(4) HSeO3- 0 Se -Se(6) SeO4-2 0 Se -Si H4SiO4 0 SiO2 28.0843 -Sn Sn(OH)6-2 0 Sn 118.71 -Sn(2) Sn(OH)2 0 Sn -Sn(4) Sn(OH)6-2 0 Sn -Sr Sr+2 0 Sr 87.62 -Tl Tl(OH)3 0 Tl 204.383 -Tl(1) Tl+ 0 Tl -Tl(3) Tl(OH)3 0 Tl -U UO2+2 0 U 238.029 -U(3) U+3 0 U -U(4) U+4 -4 U -U(5) UO2+ 0 U -U(6) UO2+2 0 U -V VO2+ -2 V 50.94 -V(2) V+2 0 V -V(3) V+3 -3 V -V(4) VO+2 0 V -V(5) VO2+ -2 V -Zn Zn+2 0 Zn 65.39 -Benzoate Benzoate- 0 121.116 121.116 -Phenylacetate Phenylacetate- 0 135.142 135.142 -Isophthalate Isophthalate-2 0 164.117 164.117 -Diethylamine Diethylamine 1 73.138 73.138 -Butylamine Butylamine 1 73.138 73.138 -Methylamine Methylamine 1 31.057 31.057 -Dimethylamine Dimethylamine 1 45.084 45.084 -Hexylamine Hexylamine 1 101.192 101.192 -Ethylenediamine Ethylenediamine 2 60.099 60.099 -Propylamine Propylamine 1 59.111 59.111 -Isopropylamine Isopropylamine 1 59.111 59.111 -Trimethylamine Trimethylamine 1 59.111 59.111 -Citrate Citrate-3 2 189.102 189.102 -Nta Nta-3 1 188.117 188.117 -Edta Edta-4 2 288.214 288.214 -Propionate Propionate- 1 73.072 73.072 -Butyrate Butyrate- 1 87.098 87.098 -Isobutyrate Isobutyrate- 1 87.098 87.098 -Two_picoline Two_picoline 1 93.128 93.128 -Three_picoline Three_picoline 1 93.128 93.128 -Four_picoline Four_picoline 1 93.128 93.128 -Formate Formate- 0 45.018 45.018 -Isovalerate Isovalerate- 1 101.125 101.125 -Valerate Valerate- 1 101.125 101.125 -Acetate Acetate- 1 59.045 59.045 -Tartarate Tartarate-2 0 148.072 148.072 -Glycine Glycine- 1 74.059 74.059 -Salicylate Salicylate-2 1 136.107 136.107 -Glutamate Glutamate-2 1 145.115 145.115 -Phthalate Phthalate-2 1 164.117 164.117 +Alkalinity CO3-2 2 HCO3 61.0173 +E e- 1 0 0 +O H2O 0 O 16 +O(-2) H2O 0 O +O(0) O2 0 O +Ag Ag+ 0 Ag 107.868 +Al Al+3 0 Al 26.9815 +As H3AsO4 -1 As 74.9216 +As(3) H3AsO3 0 As +As(5) H3AsO4 -1 As +B H3BO3 0 B 10.81 +Ba Ba+2 0 Ba 137.33 +Be Be+2 0 Be 9.0122 +Br Br- 0 Br 79.904 +C CO3-2 2 CO3 12.0111 +C(4) CO3-2 2 CO3 12.0111 +Cyanide Cyanide- 1 Cyanide 26.0177 +Dom_a Dom_a 0 C 12.0111 +Dom_b Dom_b 0 C 12.0111 +Dom_c Dom_c 0 C 12.0111 +Ca Ca+2 0 Ca 40.078 +Cd Cd+2 0 Cd 112.41 +Cl Cl- 0 Cl 35.453 +Co Co+3 -1 Co 58.9332 +Co(2) Co+2 0 Co +Co(3) Co+3 -1 Co +Cr CrO4-2 1 Cr 51.996 +Cr(2) Cr+2 0 Cr +Cr(3) Cr(OH)2+ 0 Cr +Cr(6) CrO4-2 1 Cr +Cu Cu+2 0 Cu 63.546 +Cu(1) Cu+ 0 Cu +Cu(2) Cu+2 0 Cu +F F- 0 F 18.9984 +Fe Fe+3 -2 Fe 55.847 +Fe(2) Fe+2 0 Fe +Fe(3) Fe+3 -2 Fe +H H+ -1 H 1.0079 +H(0) H2 0 H +H(1) H+ -1 H +Hg Hg(OH)2 0 Hg 200.59 +Hg(0) Hg 0 Hg +Hg(1) Hg2+2 0 Hg +Hg(2) Hg(OH)2 0 Hg +I I- 0 I 126.904 +K K+ 0 K 39.0983 +Li Li+ 0 Li 6.941 +Mg Mg+2 0 Mg 24.305 +Mn Mn+3 0 Mn 54.938 +Mn(2) Mn+2 0 Mn +Mn(3) Mn+3 0 Mn +Mn(6) MnO4-2 0 Mn +Mn(7) MnO4- 0 Mn +Mo MoO4-2 0 Mo 95.94 +N NO3- 0 N 14.0067 +N(-3) NH4+ 0 N +N(3) NO2- 0 N +N(5) NO3- 0 N +Na Na+ 0 Na 22.9898 +Ni Ni+2 0 Ni 58.69 +P PO4-3 2 P 30.9738 +Pb Pb+2 0 Pb 207.2 +S SO4-2 0 SO4 32.066 +S(-2) HS- 1 S +#S(0) S 0.0 S +S(6) SO4-2 0 SO4 +Sb Sb(OH)6- 0 Sb 121.75 +Sb(3) Sb(OH)3 0 Sb +Sb(5) Sb(OH)6- 0 Sb +Se SeO4-2 0 Se 78.96 +Se(-2) HSe- 0 Se +Se(4) HSeO3- 0 Se +Se(6) SeO4-2 0 Se +Si H4SiO4 0 SiO2 28.0843 +Sn Sn(OH)6-2 0 Sn 118.71 +Sn(2) Sn(OH)2 0 Sn +Sn(4) Sn(OH)6-2 0 Sn +Sr Sr+2 0 Sr 87.62 +Tl Tl(OH)3 0 Tl 204.383 +Tl(1) Tl+ 0 Tl +Tl(3) Tl(OH)3 0 Tl +U UO2+2 0 U 238.029 +U(3) U+3 0 U +U(4) U+4 -4 U +U(5) UO2+ 0 U +U(6) UO2+2 0 U +V VO2+ -2 V 50.94 +V(2) V+2 0 V +V(3) V+3 -3 V +V(4) VO+2 0 V +V(5) VO2+ -2 V +Zn Zn+2 0 Zn 65.39 +Benzoate Benzoate- 0 121.116 121.116 +Phenylacetate Phenylacetate- 0 135.142 135.142 +Isophthalate Isophthalate-2 0 164.117 164.117 +Diethylamine Diethylamine 1 73.138 73.138 +Butylamine Butylamine 1 73.138 73.138 +Methylamine Methylamine 1 31.057 31.057 +Dimethylamine Dimethylamine 1 45.084 45.084 +Hexylamine Hexylamine 1 101.192 101.192 +Ethylenediamine Ethylenediamine 2 60.099 60.099 +Propylamine Propylamine 1 59.111 59.111 +Isopropylamine Isopropylamine 1 59.111 59.111 +Trimethylamine Trimethylamine 1 59.111 59.111 +Citrate Citrate-3 2 189.102 189.102 +Nta Nta-3 1 188.117 188.117 +Edta Edta-4 2 288.214 288.214 +Propionate Propionate- 1 73.072 73.072 +Butyrate Butyrate- 1 87.098 87.098 +Isobutyrate Isobutyrate- 1 87.098 87.098 +Two_picoline Two_picoline 1 93.128 93.128 +Three_picoline Three_picoline 1 93.128 93.128 +Four_picoline Four_picoline 1 93.128 93.128 +Formate Formate- 0 45.018 45.018 +Isovalerate Isovalerate- 1 101.125 101.125 +Valerate Valerate- 1 101.125 101.125 +Acetate Acetate- 1 59.045 59.045 +Tartarate Tartarate-2 0 148.072 148.072 +Glycine Glycine- 1 74.059 74.059 +Salicylate Salicylate-2 1 136.107 136.107 +Glutamate Glutamate-2 1 145.115 145.115 +Phthalate Phthalate-2 1 164.117 164.117 SOLUTION_SPECIES e- = e- - log_k 0 + log_k 0 H2O = H2O - log_k 0 + log_k 0 Ag+ = Ag+ - log_k 0 + log_k 0 Al+3 = Al+3 - log_k 0 + log_k 0 H3AsO4 = H3AsO4 - log_k 0 + log_k 0 H3BO3 = H3BO3 - log_k 0 + log_k 0 Ba+2 = Ba+2 - log_k 0 + log_k 0 Be+2 = Be+2 - log_k 0 + log_k 0 Br- = Br- - log_k 0 + log_k 0 CO3-2 = CO3-2 - log_k 0 + log_k 0 Cyanide- = Cyanide- - log_k 0 + log_k 0 Dom_a = Dom_a - log_k 0 + log_k 0 Dom_b = Dom_b - log_k 0 + log_k 0 Dom_c = Dom_c - log_k 0 + log_k 0 Ca+2 = Ca+2 - log_k 0 + log_k 0 Cd+2 = Cd+2 - log_k 0 + log_k 0 Cl- = Cl- - log_k 0 + log_k 0 Co+3 = Co+3 - log_k 0 + log_k 0 CrO4-2 = CrO4-2 - log_k 0 + log_k 0 Cu+2 = Cu+2 - log_k 0 + log_k 0 F- = F- - log_k 0 + log_k 0 Fe+3 = Fe+3 - log_k 0 + log_k 0 H+ = H+ - log_k 0 + log_k 0 Hg(OH)2 = Hg(OH)2 - log_k 0 + log_k 0 I- = I- - log_k 0 + log_k 0 K+ = K+ - log_k 0 + log_k 0 Li+ = Li+ - log_k 0 + log_k 0 Mg+2 = Mg+2 - log_k 0 + log_k 0 Mn+3 = Mn+3 - log_k 0 + log_k 0 MoO4-2 = MoO4-2 - log_k 0 + log_k 0 NO3- = NO3- - log_k 0 + log_k 0 Na+ = Na+ - log_k 0 + log_k 0 Ni+2 = Ni+2 - log_k 0 + log_k 0 PO4-3 = PO4-3 - log_k 0 + log_k 0 Pb+2 = Pb+2 - log_k 0 + log_k 0 SO4-2 = SO4-2 - log_k 0 + log_k 0 Sb(OH)6- = Sb(OH)6- - log_k 0 + log_k 0 SeO4-2 = SeO4-2 - log_k 0 + log_k 0 H4SiO4 = H4SiO4 - log_k 0 + log_k 0 Sn(OH)6-2 = Sn(OH)6-2 - log_k 0 + log_k 0 Sr+2 = Sr+2 - log_k 0 + log_k 0 Tl(OH)3 = Tl(OH)3 - log_k 0 + log_k 0 UO2+2 = UO2+2 - log_k 0 + log_k 0 VO2+ = VO2+ - log_k 0 + log_k 0 Benzoate- = Benzoate- - log_k 0 + log_k 0 Phenylacetate- = Phenylacetate- - log_k 0 + log_k 0 Isophthalate-2 = Isophthalate-2 - log_k 0 + log_k 0 Zn+2 = Zn+2 - log_k 0 + log_k 0 Diethylamine = Diethylamine - log_k 0 + log_k 0 Butylamine = Butylamine - log_k 0 + log_k 0 Methylamine = Methylamine - log_k 0 + log_k 0 Dimethylamine = Dimethylamine - log_k 0 + log_k 0 Hexylamine = Hexylamine - log_k 0 + log_k 0 Ethylenediamine = Ethylenediamine - log_k 0 + log_k 0 Propylamine = Propylamine - log_k 0 + log_k 0 Isopropylamine = Isopropylamine - log_k 0 + log_k 0 Trimethylamine = Trimethylamine - log_k 0 + log_k 0 Citrate-3 = Citrate-3 - log_k 0 + log_k 0 Nta-3 = Nta-3 - log_k 0 + log_k 0 Edta-4 = Edta-4 - log_k 0 + log_k 0 Propionate- = Propionate- - log_k 0 + log_k 0 Butyrate- = Butyrate- - log_k 0 + log_k 0 Isobutyrate- = Isobutyrate- - log_k 0 + log_k 0 Two_picoline = Two_picoline - log_k 0 + log_k 0 Three_picoline = Three_picoline - log_k 0 + log_k 0 Four_picoline = Four_picoline - log_k 0 + log_k 0 Formate- = Formate- - log_k 0 + log_k 0 Isovalerate- = Isovalerate- - log_k 0 + log_k 0 Valerate- = Valerate- - log_k 0 + log_k 0 Acetate- = Acetate- - log_k 0 + log_k 0 Tartarate-2 = Tartarate-2 - log_k 0 + log_k 0 Glycine- = Glycine- - log_k 0 + log_k 0 Salicylate-2 = Salicylate-2 - log_k 0 + log_k 0 Glutamate-2 = Glutamate-2 - log_k 0 + log_k 0 Phthalate-2 = Phthalate-2 - log_k 0 + log_k 0 SOLUTION_SPECIES Fe+3 + e- = Fe+2 - log_k 13.032 - delta_h -42.7 kJ - -gamma 0 0 - # Id: 2802810 - # log K source: Bard85 - # Delta H source: Bard85 - #T and ionic strength: + log_k 13.032 + delta_h -42.7 kJ + -gamma 0 0 + # Id: 2802810 + # log K source: Bard85 + # Delta H source: Bard85 + #T and ionic strength: H3AsO4 + 2 e- + 2 H+ = H3AsO3 + H2O - log_k 18.898 - delta_h -125.6 kJ - -gamma 0 0 - # Id: 600610 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 18.898 + delta_h -125.6 kJ + -gamma 0 0 + # Id: 600610 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: Sb(OH)6- + 2 e- + 3 H+ = Sb(OH)3 + 3 H2O - log_k 24.31 - delta_h 0 kJ - -gamma 0 0 - # Id: 7407410 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 24.31 + delta_h 0 kJ + -gamma 0 0 + # Id: 7407410 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: UO2+2 + 3 e- + 4 H+ = U+3 + 2 H2O - log_k 0.42 - delta_h -42 kJ - -gamma 0 0 - # Id: 8908930 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 0.42 + delta_h -42 kJ + -gamma 0 0 + # Id: 8908930 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: UO2+2 + 2 e- + 4 H+ = U+4 + 2 H2O - log_k 9.216 - delta_h -144.1 kJ - -gamma 0 0 - # Id: 8918930 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 9.216 + delta_h -144.1 kJ + -gamma 0 0 + # Id: 8918930 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: UO2+2 + e- = UO2+ - log_k 2.785 - delta_h -13.8 kJ - -gamma 0 0 - # Id: 8928930 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 2.785 + delta_h -13.8 kJ + -gamma 0 0 + # Id: 8928930 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: e- + Mn+3 = Mn+2 - log_k 25.35 - delta_h -107.8 kJ - -gamma 0 0 - # Id: 4704710 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 25.35 + delta_h -107.8 kJ + -gamma 0 0 + # Id: 4704710 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: Co+3 + e- = Co+2 - log_k 32.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2002010 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 32.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2002010 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: Cu+2 + e- = Cu+ - log_k 2.69 - delta_h 6.9 kJ - -gamma 0 0 - # Id: 2302310 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 2.69 + delta_h 6.9 kJ + -gamma 0 0 + # Id: 2302310 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: V+3 + e- = V+2 - log_k -4.31 - delta_h 0 kJ - -gamma 0 0 - # Id: 9009010 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -4.31 + delta_h 0 kJ + -gamma 0 0 + # Id: 9009010 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: VO+2 + e- + 2 H+ = V+3 + H2O - log_k 5.696 - delta_h 0 kJ - -gamma 0 0 - # Id: 9019020 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 5.696 + delta_h 0 kJ + -gamma 0 0 + # Id: 9019020 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: VO2+ + e- + 2 H+ = VO+2 + H2O - log_k 16.903 - delta_h -122.7 kJ - -gamma 0 0 - # Id: 9029030 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 16.903 + delta_h -122.7 kJ + -gamma 0 0 + # Id: 9029030 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O - log_k 33.66 - delta_h -60.14 kJ - -gamma 0 0 - # Id: 7307320 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 33.66 + delta_h -60.14 kJ + -gamma 0 0 + # Id: 7307320 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Sn(OH)6-2 + 2 e- + 4 H+ = Sn(OH)2 + 4 H2O - log_k 19.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 7907910 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 19.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 7907910 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: Tl(OH)3 + 2 e- + 3 H+ = Tl+ + 3 H2O - log_k 45.55 - delta_h 0 kJ - -gamma 0 0 - # Id: 8708710 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 45.55 + delta_h 0 kJ + -gamma 0 0 + # Id: 8708710 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: HSeO3- + 6 e- + 6 H+ = HSe- + 3 H2O - log_k 44.86 - delta_h 0 kJ - -gamma 0 0 - # Id: 7607610 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 44.86 + delta_h 0 kJ + -gamma 0 0 + # Id: 7607610 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: SeO4-2 + 2 e- + 3 H+ = HSeO3- + H2O - log_k 36.308 - delta_h -201.2 kJ - -gamma 0 0 - # Id: 7617620 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 36.308 + delta_h -201.2 kJ + -gamma 0 0 + # Id: 7617620 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.5 Hg2+2 + e- = Hg - log_k 6.5667 - delta_h -45.735 kJ - -gamma 0 0 - # Id: 3600000 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k 6.5667 + delta_h -45.735 kJ + -gamma 0 0 + # Id: 3600000 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: 2 Hg(OH)2 + 4 H+ + 2 e- = Hg2+2 + 4 H2O - log_k 43.185 - delta_h -63.59 kJ - -gamma 0 0 - # Id: 3603610 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 43.185 + delta_h -63.59 kJ + -gamma 0 0 + # Id: 3603610 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: Cr(OH)2+ + 2 H+ + e- = Cr+2 + 2 H2O - log_k 2.947 - delta_h 6.36 kJ - -gamma 0 0 - # Id: 2102110 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 2.947 + delta_h 6.36 kJ + -gamma 0 0 + # Id: 2102110 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: CrO4-2 + 6 H+ + 3 e- = Cr(OH)2+ + 2 H2O - log_k 67.376 - delta_h -103 kJ - -gamma 0 0 - # Id: 2112120 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 67.376 + delta_h -103 kJ + -gamma 0 0 + # Id: 2112120 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: 2 H2O = O2 + 4 H+ + 4 e- -# Adjusted for equation to aqueous species - log_k -85.9951 +# Adjusted for equation to aqueous species + log_k -85.9951 -analytic 38.0229 7.99407E-3 -2.7655e+4 -1.4506e+1 199838.45 2 H+ + 2 e- = H2 @@ -468,12205 +468,12205 @@ NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O -gamma 2.5 0 Mn+2 + 4 H2O = MnO4- + 8 H+ + 5 e- - log_k -127.794 - delta_h 822.67 kJ - -gamma 3 0 - # Id: 4700020 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k -127.794 + delta_h 822.67 kJ + -gamma 3 0 + # Id: 4700020 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Mn+2 + 4 H2O = MnO4-2 + 8 H+ + 4 e- - log_k -118.422 - delta_h 711.07 kJ - -gamma 5 0 - # Id: 4700021 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k -118.422 + delta_h 711.07 kJ + -gamma 5 0 + # Id: 4700021 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: HS- = S-2 + H+ - log_k -17.3 - delta_h 49.4 kJ - -gamma 5 0 - # Id: 3307301 - # log K source: LMa1987 - # Delta H source: NIST2.1.1 - #T and ionic strength: 0.00 25.0 + log_k -17.3 + delta_h 49.4 kJ + -gamma 5 0 + # Id: 3307301 + # log K source: LMa1987 + # Delta H source: NIST2.1.1 + #T and ionic strength: 0.00 25.0 HSe- = Se-2 + H+ - log_k -15 - delta_h 48.116 kJ - -gamma 0 0 - # Id: 3307601 - # log K source: SCD3.02 (1968 DKa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -15 + delta_h 48.116 kJ + -gamma 0 0 + # Id: 3307601 + # log K source: SCD3.02 (1968 DKa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Tl(OH)3 + 3 H+ = Tl+3 + 3 H2O - log_k 3.291 - delta_h 0 kJ - -gamma 0 0 - # Id: 8713300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 3.291 + delta_h 0 kJ + -gamma 0 0 + # Id: 8713300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 0.5 Hg2+2 + e- = Hg - log_k 6.5667 - delta_h -45.735 kJ - -gamma 0 0 - # Id: 3600000 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k 6.5667 + delta_h -45.735 kJ + -gamma 0 0 + # Id: 3600000 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Hg(OH)2 + 2 H+ = Hg+2 + 2 H2O - log_k 6.194 - delta_h -39.72 kJ - -gamma 0 0 - # Id: 3613300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 6.194 + delta_h -39.72 kJ + -gamma 0 0 + # Id: 3613300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cr(OH)2+ + 2 H+ = Cr+3 + 2 H2O - log_k 9.5688 - delta_h -129.62 kJ - -gamma 0 0 - # Id: 2113300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.10 20.0 + log_k 9.5688 + delta_h -129.62 kJ + -gamma 0 0 + # Id: 2113300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.10 20.0 H2O = OH- + H+ - log_k -13.997 - delta_h 55.81 kJ - -gamma 3.5 0 - # Id: 3300020 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -13.997 + delta_h 55.81 kJ + -gamma 3.5 0 + # Id: 3300020 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Sn(OH)2 + 2 H+ = Sn+2 + 2 H2O - log_k 7.094 - delta_h 0 kJ - -gamma 0 0 - # Id: 7903301 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 7.094 + delta_h 0 kJ + -gamma 0 0 + # Id: 7903301 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Sn(OH)2 + H+ = SnOH+ + H2O - log_k 3.697 - delta_h 0 kJ - -gamma 0 0 - # Id: 7903302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 3.697 + delta_h 0 kJ + -gamma 0 0 + # Id: 7903302 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Sn(OH)2 + H2O = Sn(OH)3- + H+ - log_k -9.497 - delta_h 0 kJ - -gamma 0 0 - # Id: 7903303 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -9.497 + delta_h 0 kJ + -gamma 0 0 + # Id: 7903303 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 2 Sn(OH)2 + 2 H+ = Sn2(OH)2+2 + 2 H2O - log_k 9.394 - delta_h 0 kJ - -gamma 0 0 - # Id: 7903304 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 9.394 + delta_h 0 kJ + -gamma 0 0 + # Id: 7903304 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 3 Sn(OH)2 + 2 H+ = Sn3(OH)4+2 + 2 H2O - log_k 14.394 - delta_h 0 kJ - -gamma 0 0 - # Id: 7903305 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 14.394 + delta_h 0 kJ + -gamma 0 0 + # Id: 7903305 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Sn(OH)2 = HSnO2- + H+ - log_k -8.9347 - delta_h 0 kJ - -gamma 0 0 - # Id: 7903306 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -8.9347 + delta_h 0 kJ + -gamma 0 0 + # Id: 7903306 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: Sn(OH)6-2 + 6 H+ = Sn+4 + 6 H2O - log_k 21.2194 - delta_h 0 kJ - -gamma 0 0 - # Id: 7913301 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 21.2194 + delta_h 0 kJ + -gamma 0 0 + # Id: 7913301 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: Sn(OH)6-2 = SnO3-2 + 3 H2O - log_k -2.2099 - delta_h 0 kJ - -gamma 0 0 - # Id: 7913302 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -2.2099 + delta_h 0 kJ + -gamma 0 0 + # Id: 7913302 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: Pb+2 + H2O = PbOH+ + H+ - log_k -7.597 - delta_h 0 kJ - -gamma 0 0 - # Id: 6003300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -7.597 + delta_h 0 kJ + -gamma 0 0 + # Id: 6003300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ - log_k -17.094 - delta_h 0 kJ - -gamma 0 0 - # Id: 6003301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -17.094 + delta_h 0 kJ + -gamma 0 0 + # Id: 6003301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ - log_k -28.091 - delta_h 0 kJ - -gamma 0 0 - # Id: 6003302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -28.091 + delta_h 0 kJ + -gamma 0 0 + # Id: 6003302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 2 Pb+2 + H2O = Pb2OH+3 + H+ - log_k -6.397 - delta_h 0 kJ - -gamma 0 0 - # Id: 6003303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -6.397 + delta_h 0 kJ + -gamma 0 0 + # Id: 6003303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 3 Pb+2 + 4 H2O = Pb3(OH)4+2 + 4 H+ - log_k -23.888 - delta_h 115.24 kJ - -gamma 0 0 - # Id: 6003304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -23.888 + delta_h 115.24 kJ + -gamma 0 0 + # Id: 6003304 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ - log_k -39.699 - delta_h 0 kJ - -gamma 0 0 - # Id: 6003305 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -39.699 + delta_h 0 kJ + -gamma 0 0 + # Id: 6003305 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: 4 Pb+2 + 4 H2O = Pb4(OH)4+4 + 4 H+ - log_k -19.988 - delta_h 88.24 kJ - -gamma 0 0 - # Id: 6003306 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -19.988 + delta_h 88.24 kJ + -gamma 0 0 + # Id: 6003306 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 H3BO3 + F- = BF(OH)3- - log_k -0.399 - delta_h 7.7404 kJ - -gamma 2.5 0 - # Id: 902700 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -0.399 + delta_h 7.7404 kJ + -gamma 2.5 0 + # Id: 902700 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O - log_k 7.63 - delta_h 6.8408 kJ - -gamma 2.5 0 - # Id: 902701 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 7.63 + delta_h 6.8408 kJ + -gamma 2.5 0 + # Id: 902701 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: H3BO3 + 3 F- + 2 H+ = BF3OH- + 2 H2O - log_k 13.22 - delta_h -20.4897 kJ - -gamma 2.5 0 - # Id: 902702 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k 13.22 + delta_h -20.4897 kJ + -gamma 2.5 0 + # Id: 902702 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Al+3 + H2O = AlOH+2 + H+ - log_k -4.997 - delta_h 47.81 kJ - -gamma 5.4 0 - # Id: 303300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -4.997 + delta_h 47.81 kJ + -gamma 5.4 0 + # Id: 303300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Al+3 + 2 H2O = Al(OH)2+ + 2 H+ - log_k -10.094 - delta_h 0 kJ - -gamma 5.4 0 - # Id: 303301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -10.094 + delta_h 0 kJ + -gamma 5.4 0 + # Id: 303301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Al+3 + 3 H2O = Al(OH)3 + 3 H+ - log_k -16.791 - delta_h 0 kJ - -gamma 0 0 - # Id: 303303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -16.791 + delta_h 0 kJ + -gamma 0 0 + # Id: 303303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Al+3 + 4 H2O = Al(OH)4- + 4 H+ - log_k -22.688 - delta_h 173.24 kJ - -gamma 4.5 0 - # Id: 303302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -22.688 + delta_h 173.24 kJ + -gamma 4.5 0 + # Id: 303302 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Tl+ + H2O = TlOH + H+ - log_k -13.207 - delta_h 56.81 kJ - -gamma 0 0 - # Id: 8703300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -13.207 + delta_h 56.81 kJ + -gamma 0 0 + # Id: 8703300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Tl(OH)3 + 2 H+ = TlOH+2 + 2 H2O - log_k 2.694 - delta_h 0 kJ - -gamma 0 0 - # Id: 8713301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.694 + delta_h 0 kJ + -gamma 0 0 + # Id: 8713301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Tl(OH)3 + H+ = Tl(OH)2+ + H2O - log_k 1.897 - delta_h 0 kJ - -gamma 0 0 - # Id: 8713302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 1.897 + delta_h 0 kJ + -gamma 0 0 + # Id: 8713302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Tl(OH)3 + H2O = Tl(OH)4- + H+ - log_k -11.697 - delta_h 0 kJ - -gamma 0 0 - # Id: 8713303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -11.697 + delta_h 0 kJ + -gamma 0 0 + # Id: 8713303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Zn+2 + H2O = ZnOH+ + H+ - log_k -8.997 - delta_h 55.81 kJ - -gamma 0 0 - # Id: 9503300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -8.997 + delta_h 55.81 kJ + -gamma 0 0 + # Id: 9503300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ - log_k -17.794 - delta_h 0 kJ - -gamma 0 0 - # Id: 9503301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -17.794 + delta_h 0 kJ + -gamma 0 0 + # Id: 9503301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ - log_k -28.091 - delta_h 0 kJ - -gamma 0 0 - # Id: 9503302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -28.091 + delta_h 0 kJ + -gamma 0 0 + # Id: 9503302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ - log_k -40.488 - delta_h 0 kJ - -gamma 0 0 - # Id: 9503303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -40.488 + delta_h 0 kJ + -gamma 0 0 + # Id: 9503303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cd+2 + H2O = CdOH+ + H+ - log_k -10.097 - delta_h 54.81 kJ - -gamma 0 0 - # Id: 1603300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -10.097 + delta_h 54.81 kJ + -gamma 0 0 + # Id: 1603300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ - log_k -20.294 - delta_h 0 kJ - -gamma 0 0 - # Id: 1603301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -20.294 + delta_h 0 kJ + -gamma 0 0 + # Id: 1603301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ - log_k -32.505 - delta_h 0 kJ - -gamma 0 0 - # Id: 1603302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 3.00 25.0 + log_k -32.505 + delta_h 0 kJ + -gamma 0 0 + # Id: 1603302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 3.00 25.0 Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ - log_k -47.288 - delta_h 0 kJ - -gamma 0 0 - # Id: 1603303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -47.288 + delta_h 0 kJ + -gamma 0 0 + # Id: 1603303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 2 Cd+2 + H2O = Cd2OH+3 + H+ - log_k -9.397 - delta_h 45.81 kJ - -gamma 0 0 - # Id: 1603304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -9.397 + delta_h 45.81 kJ + -gamma 0 0 + # Id: 1603304 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + H+ = HgOH+ + H2O - log_k 2.797 - delta_h -18.91 kJ - -gamma 0 0 - # Id: 3613302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.797 + delta_h -18.91 kJ + -gamma 0 0 + # Id: 3613302 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + H2O = Hg(OH)3- + H+ - log_k -14.897 - delta_h 0 kJ - -gamma 0 0 - # Id: 3613303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -14.897 + delta_h 0 kJ + -gamma 0 0 + # Id: 3613303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cu+2 + H2O = CuOH+ + H+ - log_k -7.497 - delta_h 35.81 kJ - -gamma 4 0 - # Id: 2313300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -7.497 + delta_h 35.81 kJ + -gamma 4 0 + # Id: 2313300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ - log_k -16.194 - delta_h 0 kJ - -gamma 0 0 - # Id: 2313301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -16.194 + delta_h 0 kJ + -gamma 0 0 + # Id: 2313301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ - log_k -26.879 - delta_h 0 kJ - -gamma 0 0 - # Id: 2313302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k -26.879 + delta_h 0 kJ + -gamma 0 0 + # Id: 2313302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ - log_k -39.98 - delta_h 0 kJ - -gamma 0 0 - # Id: 2313303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k -39.98 + delta_h 0 kJ + -gamma 0 0 + # Id: 2313303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 2 Cu+2 + 2 H2O = Cu2(OH)2+2 + 2 H+ - log_k -10.594 - delta_h 76.62 kJ - -gamma 0 0 - # Id: 2313304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -10.594 + delta_h 76.62 kJ + -gamma 0 0 + # Id: 2313304 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ag+ + H2O = AgOH + H+ - log_k -11.997 - delta_h 0 kJ - -gamma 0 0 - # Id: 203300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -11.997 + delta_h 0 kJ + -gamma 0 0 + # Id: 203300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Ag+ + 2 H2O = Ag(OH)2- + 2 H+ - log_k -24.004 - delta_h 0 kJ - -gamma 0 0 - # Id: 203301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -24.004 + delta_h 0 kJ + -gamma 0 0 + # Id: 203301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Ni+2 + H2O = NiOH+ + H+ - log_k -9.897 - delta_h 51.81 kJ - -gamma 0 0 - # Id: 5403300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -9.897 + delta_h 51.81 kJ + -gamma 0 0 + # Id: 5403300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ni+2 + 2 H2O = Ni(OH)2 + 2 H+ - log_k -18.994 - delta_h 0 kJ - -gamma 0 0 - # Id: 5403301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -18.994 + delta_h 0 kJ + -gamma 0 0 + # Id: 5403301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Ni+2 + 3 H2O = Ni(OH)3- + 3 H+ - log_k -29.991 - delta_h 0 kJ - -gamma 0 0 - # Id: 5403302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -29.991 + delta_h 0 kJ + -gamma 0 0 + # Id: 5403302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Co+2 + H2O = CoOH+ + H+ - log_k -9.697 - delta_h 0 kJ - -gamma 0 0 - # Id: 2003300 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -9.697 + delta_h 0 kJ + -gamma 0 0 + # Id: 2003300 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Co+2 + 2 H2O = Co(OH)2 + 2 H+ - log_k -18.794 - delta_h 0 kJ - -gamma 0 0 - # Id: 2003301 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -18.794 + delta_h 0 kJ + -gamma 0 0 + # Id: 2003301 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Co+2 + 3 H2O = Co(OH)3- + 3 H+ - log_k -31.491 - delta_h 0 kJ - -gamma 0 0 - # Id: 2003302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -31.491 + delta_h 0 kJ + -gamma 0 0 + # Id: 2003302 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Co+2 + 4 H2O = Co(OH)4-2 + 4 H+ - log_k -46.288 - delta_h 0 kJ - -gamma 0 0 - # Id: 2003303 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -46.288 + delta_h 0 kJ + -gamma 0 0 + # Id: 2003303 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 2 Co+2 + H2O = Co2OH+3 + H+ - log_k -10.997 - delta_h 0 kJ - -gamma 0 0 - # Id: 2003304 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -10.997 + delta_h 0 kJ + -gamma 0 0 + # Id: 2003304 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 4 Co+2 + 4 H2O = Co4(OH)4+4 + 4 H+ - log_k -30.488 - delta_h 0 kJ - -gamma 0 0 - # Id: 2003306 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -30.488 + delta_h 0 kJ + -gamma 0 0 + # Id: 2003306 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Co+2 + 2 H2O = CoOOH- + 3 H+ - log_k -32.0915 - delta_h 260.454 kJ - -gamma 0 0 - # Id: 2003305 - # log K source: NIST2.1.1 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -32.0915 + delta_h 260.454 kJ + -gamma 0 0 + # Id: 2003305 + # log K source: NIST2.1.1 + # Delta H source: MTQ3.11 + #T and ionic strength: Co+3 + H2O = CoOH+2 + H+ - log_k -1.291 - delta_h 0 kJ - -gamma 0 0 - # Id: 2013300 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 3.00 25.0 + log_k -1.291 + delta_h 0 kJ + -gamma 0 0 + # Id: 2013300 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 3.00 25.0 Fe+2 + H2O = FeOH+ + H+ - log_k -9.397 - delta_h 55.81 kJ - -gamma 5 0 - # Id: 2803300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -9.397 + delta_h 55.81 kJ + -gamma 5 0 + # Id: 2803300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Fe+2 + 2 H2O = Fe(OH)2 + 2 H+ - log_k -20.494 - delta_h 119.62 kJ - -gamma 0 0 - # Id: 2803302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -20.494 + delta_h 119.62 kJ + -gamma 0 0 + # Id: 2803302 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Fe+2 + 3 H2O = Fe(OH)3- + 3 H+ - log_k -28.991 - delta_h 126.43 kJ - -gamma 5 0 - # Id: 2803301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -28.991 + delta_h 126.43 kJ + -gamma 5 0 + # Id: 2803301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Fe+3 + H2O = FeOH+2 + H+ - log_k -2.187 - delta_h 41.81 kJ - -gamma 5 0 - # Id: 2813300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -2.187 + delta_h 41.81 kJ + -gamma 5 0 + # Id: 2813300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ - log_k -4.594 - delta_h 0 kJ - -gamma 5.4 0 - # Id: 2813301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -4.594 + delta_h 0 kJ + -gamma 5.4 0 + # Id: 2813301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ - log_k -12.56 - delta_h 103.8 kJ - -gamma 0 0 - # Id: 2813302 - # log K source: Nord90 - # Delta H source: Nord90 - #T and ionic strength: 0.00 25.0 + log_k -12.56 + delta_h 103.8 kJ + -gamma 0 0 + # Id: 2813302 + # log K source: Nord90 + # Delta H source: Nord90 + #T and ionic strength: 0.00 25.0 Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ - log_k -21.588 - delta_h 0 kJ - -gamma 5.4 0 - # Id: 2813303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -21.588 + delta_h 0 kJ + -gamma 5.4 0 + # Id: 2813303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ - log_k -2.854 - delta_h 57.62 kJ - -gamma 0 0 - # Id: 2813304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -2.854 + delta_h 57.62 kJ + -gamma 0 0 + # Id: 2813304 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ - log_k -6.288 - delta_h 65.24 kJ - -gamma 0 0 - # Id: 2813305 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -6.288 + delta_h 65.24 kJ + -gamma 0 0 + # Id: 2813305 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Mn+2 + H2O = MnOH+ + H+ - log_k -10.597 - delta_h 55.81 kJ - -gamma 5 0 - # Id: 4703300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -10.597 + delta_h 55.81 kJ + -gamma 5 0 + # Id: 4703300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Mn+2 + 3 H2O = Mn(OH)3- + 3 H+ - log_k -34.8 - delta_h 0 kJ - -gamma 5 0 - # Id: 4703301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -34.8 + delta_h 0 kJ + -gamma 5 0 + # Id: 4703301 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Mn+2 + 4 H2O = Mn(OH)4-2 + 4 H+ - log_k -48.288 - delta_h 0 kJ - -gamma 5 0 - # Id: 4703302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -48.288 + delta_h 0 kJ + -gamma 5 0 + # Id: 4703302 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Mn+2 + 4 H2O = MnO4- + 8 H+ + 5 e- - log_k -127.794 - delta_h 822.67 kJ - -gamma 3 0 - # Id: 4700020 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k -127.794 + delta_h 822.67 kJ + -gamma 3 0 + # Id: 4700020 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Mn+2 + 4 H2O = MnO4-2 + 8 H+ + 4 e- - log_k -118.422 - delta_h 711.07 kJ - -gamma 5 0 - # Id: 4700021 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k -118.422 + delta_h 711.07 kJ + -gamma 5 0 + # Id: 4700021 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Cr(OH)2+ + H+ = Cr(OH)+2 + H2O - log_k 5.9118 - delta_h -77.91 kJ - -gamma 0 0 - # Id: 2113301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 5.9118 + delta_h -77.91 kJ + -gamma 0 0 + # Id: 2113301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cr(OH)2+ + H2O = Cr(OH)3 + H+ - log_k -8.4222 - delta_h 0 kJ - -gamma 0 0 - # Id: 2113302 - # log K source: SCD3.02 (1983 RCa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -8.4222 + delta_h 0 kJ + -gamma 0 0 + # Id: 2113302 + # log K source: SCD3.02 (1983 RCa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cr(OH)2+ + 2 H2O = Cr(OH)4- + 2 H+ - log_k -17.8192 - delta_h 0 kJ - -gamma 0 0 - # Id: 2113303 - # log K source: SCD3.02 (1983 RCa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -17.8192 + delta_h 0 kJ + -gamma 0 0 + # Id: 2113303 + # log K source: SCD3.02 (1983 RCa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cr(OH)2+ = CrO2- + 2 H+ - log_k -17.7456 - delta_h 0 kJ - -gamma 0 0 - # Id: 2113304 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -17.7456 + delta_h 0 kJ + -gamma 0 0 + # Id: 2113304 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: V+2 + H2O = VOH+ + H+ - log_k -6.487 - delta_h 59.81 kJ - -gamma 0 0 - # Id: 9003300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -6.487 + delta_h 59.81 kJ + -gamma 0 0 + # Id: 9003300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 V+3 + H2O = VOH+2 + H+ - log_k -2.297 - delta_h 43.81 kJ - -gamma 0 0 - # Id: 9013300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -2.297 + delta_h 43.81 kJ + -gamma 0 0 + # Id: 9013300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 V+3 + 2 H2O = V(OH)2+ + 2 H+ - log_k -6.274 - delta_h 0 kJ - -gamma 0 0 - # Id: 9013301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 + log_k -6.274 + delta_h 0 kJ + -gamma 0 0 + # Id: 9013301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 V+3 + 3 H2O = V(OH)3 + 3 H+ - log_k -3.0843 - delta_h 0 kJ - -gamma 0 0 - # Id: 9013302 - # log K source: SCD3.02 (1978 TKa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 20.0 + log_k -3.0843 + delta_h 0 kJ + -gamma 0 0 + # Id: 9013302 + # log K source: SCD3.02 (1978 TKa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 20.0 2 V+3 + 2 H2O = V2(OH)2+4 + 2 H+ - log_k -3.794 - delta_h 0 kJ - -gamma 0 0 - # Id: 9013304 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -3.794 + delta_h 0 kJ + -gamma 0 0 + # Id: 9013304 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 2 V+3 + 3 H2O = V2(OH)3+3 + 3 H+ - log_k -10.1191 - delta_h 0 kJ - -gamma 0 0 - # Id: 9013303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 3.00 25.0 + log_k -10.1191 + delta_h 0 kJ + -gamma 0 0 + # Id: 9013303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 3.00 25.0 VO+2 + 2 H2O = V(OH)3+ + H+ - log_k -5.697 - delta_h 0 kJ - -gamma 0 0 - # Id: 9023300 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -5.697 + delta_h 0 kJ + -gamma 0 0 + # Id: 9023300 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 2 VO+2 + 2 H2O = H2V2O4+2 + 2 H+ - log_k -6.694 - delta_h 53.62 kJ - -gamma 0 0 - # Id: 9023301 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -6.694 + delta_h 53.62 kJ + -gamma 0 0 + # Id: 9023301 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 U+4 + H2O = UOH+3 + H+ - log_k -0.597 - delta_h 47.81 kJ - -gamma 0 0 - # Id: 8913300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -0.597 + delta_h 47.81 kJ + -gamma 0 0 + # Id: 8913300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 U+4 + 2 H2O = U(OH)2+2 + 2 H+ - log_k -2.27 - delta_h 74.1823 kJ - -gamma 0 0 - # Id: 8913301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -2.27 + delta_h 74.1823 kJ + -gamma 0 0 + # Id: 8913301 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: U+4 + 3 H2O = U(OH)3+ + 3 H+ - log_k -4.935 - delta_h 94.7467 kJ - -gamma 0 0 - # Id: 8913302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -4.935 + delta_h 94.7467 kJ + -gamma 0 0 + # Id: 8913302 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: U+4 + 4 H2O = U(OH)4 + 4 H+ - log_k -8.498 - delta_h 103.596 kJ - -gamma 0 0 - # Id: 8913303 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -8.498 + delta_h 103.596 kJ + -gamma 0 0 + # Id: 8913303 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: U+4 + 5 H2O = U(OH)5- + 5 H+ - log_k -13.12 - delta_h 115.374 kJ - -gamma 0 0 - # Id: 8913304 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -13.12 + delta_h 115.374 kJ + -gamma 0 0 + # Id: 8913304 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: 6 U+4 + 15 H2O = U6(OH)15+9 + 15 H+ - log_k -17.155 - delta_h 0 kJ - -gamma 0 0 - # Id: 8913305 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -17.155 + delta_h 0 kJ + -gamma 0 0 + # Id: 8913305 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 UO2+2 + H2O = UO2OH+ + H+ - log_k -5.897 - delta_h 47.81 kJ - -gamma 0 0 - # Id: 8933300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -5.897 + delta_h 47.81 kJ + -gamma 0 0 + # Id: 8933300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 2 UO2+2 + 2 H2O = (UO2)2(OH)2+2 + 2 H+ - log_k -5.574 - delta_h 41.82 kJ - -gamma 0 0 - # Id: 8933301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -5.574 + delta_h 41.82 kJ + -gamma 0 0 + # Id: 8933301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 3 UO2+2 + 5 H2O = (UO2)3(OH)5+ + 5 H+ - log_k -15.585 - delta_h 108.05 kJ - -gamma 0 0 - # Id: 8933302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -15.585 + delta_h 108.05 kJ + -gamma 0 0 + # Id: 8933302 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Be+2 + H2O = BeOH+ + H+ - log_k -5.397 - delta_h 0 kJ - -gamma 6.5 0 - # Id: 1103301 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -5.397 + delta_h 0 kJ + -gamma 6.5 0 + # Id: 1103301 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Be+2 + 2 H2O = Be(OH)2 + 2 H+ - log_k -13.594 - delta_h 0 kJ - -gamma 6.5 0 - # Id: 1103302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -13.594 + delta_h 0 kJ + -gamma 6.5 0 + # Id: 1103302 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Be+2 + 3 H2O = Be(OH)3- + 3 H+ - log_k -23.191 - delta_h 0 kJ - -gamma 6.5 0 - # Id: 1103303 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -23.191 + delta_h 0 kJ + -gamma 6.5 0 + # Id: 1103303 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Be+2 + 4 H2O = Be(OH)4-2 + 4 H+ - log_k -37.388 - delta_h 0 kJ - -gamma 6.5 0 - # Id: 1103304 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -37.388 + delta_h 0 kJ + -gamma 6.5 0 + # Id: 1103304 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 2 Be+2 + H2O = Be2OH+3 + H+ - log_k -3.177 - delta_h 0 kJ - -gamma 6.5 0 - # Id: 1103305 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 + log_k -3.177 + delta_h 0 kJ + -gamma 6.5 0 + # Id: 1103305 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 3 Be+2 + 3 H2O = Be3(OH)3+3 + 3 H+ - log_k -8.8076 - delta_h 0 kJ - -gamma 6.5 0 - # Id: 1103306 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 + log_k -8.8076 + delta_h 0 kJ + -gamma 6.5 0 + # Id: 1103306 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 Mg+2 + H2O = MgOH+ + H+ - log_k -11.397 - delta_h 67.81 kJ - -gamma 6.5 0 - # Id: 4603300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -11.397 + delta_h 67.81 kJ + -gamma 6.5 0 + # Id: 4603300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ca+2 + H2O = CaOH+ + H+ - log_k -12.697 - delta_h 64.11 kJ - -gamma 6 0 - # Id: 1503300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -12.697 + delta_h 64.11 kJ + -gamma 6 0 + # Id: 1503300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Sr+2 + H2O = SrOH+ + H+ - log_k -13.177 - delta_h 60.81 kJ - -gamma 5 0 - # Id: 8003300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -13.177 + delta_h 60.81 kJ + -gamma 5 0 + # Id: 8003300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ba+2 + H2O = BaOH+ + H+ - log_k -13.357 - delta_h 60.81 kJ - -gamma 5 0 - # Id: 1003300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -13.357 + delta_h 60.81 kJ + -gamma 5 0 + # Id: 1003300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 H+ + F- = HF - log_k 3.17 - delta_h 13.3 kJ - -gamma 0 0 - # Id: 3302700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 3.17 + delta_h 13.3 kJ + -gamma 0 0 + # Id: 3302700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 H+ + 2 F- = HF2- - log_k 3.75 - delta_h 17.4 kJ - -gamma 3.5 0 - # Id: 3302701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 3.75 + delta_h 17.4 kJ + -gamma 3.5 0 + # Id: 3302701 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 2 F- + 2 H+ = H2F2 - log_k 6.768 - delta_h 0 kJ - -gamma 0 0 - # Id: 3302702 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 6.768 + delta_h 0 kJ + -gamma 0 0 + # Id: 3302702 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Sb(OH)3 + F- + H+ = SbOF + 2 H2O - log_k 6.1864 - delta_h 0 kJ - -gamma 0 0 - # Id: 7402700 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: + log_k 6.1864 + delta_h 0 kJ + -gamma 0 0 + # Id: 7402700 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: Sb(OH)3 + F- + H+ = Sb(OH)2F + H2O - log_k 6.1937 - delta_h 0 kJ - -gamma 0 0 - # Id: 7402702 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: + log_k 6.1937 + delta_h 0 kJ + -gamma 0 0 + # Id: 7402702 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O - log_k 30.18 - delta_h -68 kJ - -gamma 5 0 - # Id: 7702700 - # log K source: Nord90 - # Delta H source: Nord90 - #T and ionic strength: 0.00 25.0 + log_k 30.18 + delta_h -68 kJ + -gamma 5 0 + # Id: 7702700 + # log K source: Nord90 + # Delta H source: Nord90 + #T and ionic strength: 0.00 25.0 Sn(OH)2 + 2 H+ + F- = SnF+ + 2 H2O - log_k 11.582 - delta_h 0 kJ - -gamma 0 0 - # Id: 7902701 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 11.582 + delta_h 0 kJ + -gamma 0 0 + # Id: 7902701 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Sn(OH)2 + 2 H+ + 2 F- = SnF2 + 2 H2O - log_k 14.386 - delta_h 0 kJ - -gamma 0 0 - # Id: 7902702 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 14.386 + delta_h 0 kJ + -gamma 0 0 + # Id: 7902702 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Sn(OH)2 + 2 H+ + 3 F- = SnF3- + 2 H2O - log_k 17.206 - delta_h 0 kJ - -gamma 0 0 - # Id: 7902703 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 17.206 + delta_h 0 kJ + -gamma 0 0 + # Id: 7902703 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Sn(OH)6-2 + 6 H+ + 6 F- = SnF6-2 + 6 H2O - log_k 33.5844 - delta_h 0 kJ - -gamma 0 0 - # Id: 7912701 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 33.5844 + delta_h 0 kJ + -gamma 0 0 + # Id: 7912701 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: Pb+2 + F- = PbF+ - log_k 1.848 - delta_h 0 kJ - -gamma 0 0 - # Id: 6002700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 1.848 + delta_h 0 kJ + -gamma 0 0 + # Id: 6002700 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Pb+2 + 2 F- = PbF2 - log_k 3.142 - delta_h 0 kJ - -gamma 0 0 - # Id: 6002701 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 3.142 + delta_h 0 kJ + -gamma 0 0 + # Id: 6002701 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Pb+2 + 3 F- = PbF3- - log_k 3.42 - delta_h 0 kJ - -gamma 0 0 - # Id: 6002702 - # log K source: SCD3.02 (1956 TKa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 3.42 + delta_h 0 kJ + -gamma 0 0 + # Id: 6002702 + # log K source: SCD3.02 (1956 TKa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Pb+2 + 4 F- = PbF4-2 - log_k 3.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 6002703 - # log K source: SCD3.02 (1956 TKa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 3.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 6002703 + # log K source: SCD3.02 (1956 TKa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O - log_k 19.912 - delta_h -18.67 kJ - -gamma 2.5 0 - # Id: 902703 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 - #T and ionic strength: 1.00 25.0 + log_k 19.912 + delta_h -18.67 kJ + -gamma 2.5 0 + # Id: 902703 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 + #T and ionic strength: 1.00 25.0 Al+3 + F- = AlF+2 - log_k 7 - delta_h 4.6 kJ - -gamma 5.4 0 - # Id: 302700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 7 + delta_h 4.6 kJ + -gamma 5.4 0 + # Id: 302700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Al+3 + 2 F- = AlF2+ - log_k 12.6 - delta_h 8.3 kJ - -gamma 5.4 0 - # Id: 302701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 12.6 + delta_h 8.3 kJ + -gamma 5.4 0 + # Id: 302701 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Al+3 + 3 F- = AlF3 - log_k 16.7 - delta_h 8.7 kJ - -gamma 0 0 - # Id: 302702 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 16.7 + delta_h 8.7 kJ + -gamma 0 0 + # Id: 302702 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Al+3 + 4 F- = AlF4- - log_k 19.4 - delta_h 8.7 kJ - -gamma 4.5 0 - # Id: 302703 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 19.4 + delta_h 8.7 kJ + -gamma 4.5 0 + # Id: 302703 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Tl+ + F- = TlF - log_k 0.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 8702700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 0.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 8702700 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Zn+2 + F- = ZnF+ - log_k 1.3 - delta_h 11 kJ - -gamma 0 0 - # Id: 9502700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.3 + delta_h 11 kJ + -gamma 0 0 + # Id: 9502700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cd+2 + F- = CdF+ - log_k 1.2 - delta_h 5 kJ - -gamma 0 0 - # Id: 1602700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.2 + delta_h 5 kJ + -gamma 0 0 + # Id: 1602700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cd+2 + 2 F- = CdF2 - log_k 1.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 1602701 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 1.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 1602701 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Hg(OH)2 + 2 H+ + F- = HgF+ + 2 H2O - log_k 7.763 - delta_h -35.72 kJ - -gamma 0 0 - # Id: 3612701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.50 25.0 + log_k 7.763 + delta_h -35.72 kJ + -gamma 0 0 + # Id: 3612701 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.50 25.0 Cu+2 + F- = CuF+ - log_k 1.8 - delta_h 13 kJ - -gamma 0 0 - # Id: 2312700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.8 + delta_h 13 kJ + -gamma 0 0 + # Id: 2312700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ag+ + F- = AgF - log_k 0.4 - delta_h 12 kJ - -gamma 0 0 - # Id: 202700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 0.4 + delta_h 12 kJ + -gamma 0 0 + # Id: 202700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ni+2 + F- = NiF+ - log_k 1.4 - delta_h 7.1 kJ - -gamma 0 0 - # Id: 5402700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.4 + delta_h 7.1 kJ + -gamma 0 0 + # Id: 5402700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Co+2 + F- = CoF+ - log_k 1.5 - delta_h 9.2 kJ - -gamma 0 0 - # Id: 2002700 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 1.5 + delta_h 9.2 kJ + -gamma 0 0 + # Id: 2002700 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Fe+3 + F- = FeF+2 - log_k 6.04 - delta_h 10 kJ - -gamma 5 0 - # Id: 2812700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 6.04 + delta_h 10 kJ + -gamma 5 0 + # Id: 2812700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Fe+3 + 2 F- = FeF2+ - log_k 10.4675 - delta_h 17 kJ - -gamma 5 0 - # Id: 2812701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.50 25.0 + log_k 10.4675 + delta_h 17 kJ + -gamma 5 0 + # Id: 2812701 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.50 25.0 Fe+3 + 3 F- = FeF3 - log_k 13.617 - delta_h 29 kJ - -gamma 0 0 - # Id: 2812702 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.50 25.0 + log_k 13.617 + delta_h 29 kJ + -gamma 0 0 + # Id: 2812702 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.50 25.0 Mn+2 + F- = MnF+ - log_k 1.6 - delta_h 11 kJ - -gamma 5 0 - # Id: 4702700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.6 + delta_h 11 kJ + -gamma 5 0 + # Id: 4702700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cr(OH)2+ + 2 H+ + F- = CrF+2 + 2 H2O - log_k 14.7688 - delta_h -70.2452 kJ - -gamma 0 0 - # Id: 2112700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 14.7688 + delta_h -70.2452 kJ + -gamma 0 0 + # Id: 2112700 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 VO+2 + F- = VOF+ - log_k 3.778 - delta_h 7.9 kJ - -gamma 0 0 - # Id: 9022700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 + log_k 3.778 + delta_h 7.9 kJ + -gamma 0 0 + # Id: 9022700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 VO+2 + 2 F- = VOF2 - log_k 6.352 - delta_h 14 kJ - -gamma 0 0 - # Id: 9022701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 + log_k 6.352 + delta_h 14 kJ + -gamma 0 0 + # Id: 9022701 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 VO+2 + 3 F- = VOF3- - log_k 7.902 - delta_h 20 kJ - -gamma 0 0 - # Id: 9022702 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 + log_k 7.902 + delta_h 20 kJ + -gamma 0 0 + # Id: 9022702 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 VO+2 + 4 F- = VOF4-2 - log_k 8.508 - delta_h 26 kJ - -gamma 0 0 - # Id: 9022703 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 + log_k 8.508 + delta_h 26 kJ + -gamma 0 0 + # Id: 9022703 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 VO2+ + F- = VO2F - log_k 3.244 - delta_h 0 kJ - -gamma 0 0 - # Id: 9032700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 3.244 + delta_h 0 kJ + -gamma 0 0 + # Id: 9032700 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 VO2+ + 2 F- = VO2F2- - log_k 5.804 - delta_h 0 kJ - -gamma 0 0 - # Id: 9032701 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 + log_k 5.804 + delta_h 0 kJ + -gamma 0 0 + # Id: 9032701 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 VO2+ + 3 F- = VO2F3-2 - log_k 6.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 9032702 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 + log_k 6.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 9032702 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 VO2+ + 4 F- = VO2F4-3 - log_k 6.592 - delta_h 0 kJ - -gamma 0 0 - # Id: 9032703 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 + log_k 6.592 + delta_h 0 kJ + -gamma 0 0 + # Id: 9032703 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 U+4 + F- = UF+3 - log_k 9.3 - delta_h 21.1292 kJ - -gamma 0 0 - # Id: 8912700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 9.3 + delta_h 21.1292 kJ + -gamma 0 0 + # Id: 8912700 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 U+4 + 2 F- = UF2+2 - log_k 16.4 - delta_h 30.1248 kJ - -gamma 0 0 - # Id: 8912701 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 16.4 + delta_h 30.1248 kJ + -gamma 0 0 + # Id: 8912701 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 U+4 + 3 F- = UF3+ - log_k 21.6 - delta_h 29.9156 kJ - -gamma 0 0 - # Id: 8912702 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 21.6 + delta_h 29.9156 kJ + -gamma 0 0 + # Id: 8912702 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 U+4 + 4 F- = UF4 - log_k 23.64 - delta_h 19.2464 kJ - -gamma 0 0 - # Id: 8912703 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 23.64 + delta_h 19.2464 kJ + -gamma 0 0 + # Id: 8912703 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: U+4 + 5 F- = UF5- - log_k 25.238 - delta_h 20.2924 kJ - -gamma 0 0 - # Id: 8912704 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 25.238 + delta_h 20.2924 kJ + -gamma 0 0 + # Id: 8912704 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: U+4 + 6 F- = UF6-2 - log_k 27.718 - delta_h 13.8072 kJ - -gamma 0 0 - # Id: 8912705 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 27.718 + delta_h 13.8072 kJ + -gamma 0 0 + # Id: 8912705 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: UO2+2 + F- = UO2F+ - log_k 5.14 - delta_h 1 kJ - -gamma 0 0 - # Id: 8932700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 5.14 + delta_h 1 kJ + -gamma 0 0 + # Id: 8932700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 UO2+2 + 2 F- = UO2F2 - log_k 8.6 - delta_h 2 kJ - -gamma 0 0 - # Id: 8932701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 8.6 + delta_h 2 kJ + -gamma 0 0 + # Id: 8932701 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 UO2+2 + 3 F- = UO2F3- - log_k 11 - delta_h 2 kJ - -gamma 0 0 - # Id: 8932702 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 11 + delta_h 2 kJ + -gamma 0 0 + # Id: 8932702 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 UO2+2 + 4 F- = UO2F4-2 - log_k 11.9 - delta_h 0.4 kJ - -gamma 0 0 - # Id: 8932703 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 11.9 + delta_h 0.4 kJ + -gamma 0 0 + # Id: 8932703 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Be+2 + F- = BeF+ - log_k 5.249 - delta_h 0 kJ - -gamma 0 0 - # Id: 1102701 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 + log_k 5.249 + delta_h 0 kJ + -gamma 0 0 + # Id: 1102701 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 Be+2 + 2 F- = BeF2 - log_k 9.1285 - delta_h -4 kJ - -gamma 0 0 - # Id: 1102702 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 + log_k 9.1285 + delta_h -4 kJ + -gamma 0 0 + # Id: 1102702 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 Be+2 + 3 F- = BeF3- - log_k 11.9085 - delta_h -8 kJ - -gamma 0 0 - # Id: 1102703 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 + log_k 11.9085 + delta_h -8 kJ + -gamma 0 0 + # Id: 1102703 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 Mg+2 + F- = MgF+ - log_k 2.05 - delta_h 13 kJ - -gamma 4.5 0 - # Id: 4602700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.05 + delta_h 13 kJ + -gamma 4.5 0 + # Id: 4602700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ca+2 + F- = CaF+ - log_k 1.038 - delta_h 14 kJ - -gamma 5 0 - # Id: 1502700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 + log_k 1.038 + delta_h 14 kJ + -gamma 5 0 + # Id: 1502700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 Sr+2 + F- = SrF+ - log_k 0.548 - delta_h 16 kJ - -gamma 0 0 - # Id: 8002701 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 1.00 25.0 + log_k 0.548 + delta_h 16 kJ + -gamma 0 0 + # Id: 8002701 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 1.00 25.0 Na+ + F- = NaF - log_k -0.2 - delta_h 12 kJ - -gamma 0 0 - # Id: 5002700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -0.2 + delta_h 12 kJ + -gamma 0 0 + # Id: 5002700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Sn(OH)2 + 2 H+ + Cl- = SnCl+ + 2 H2O - log_k 8.734 - delta_h 0 kJ - -gamma 0 0 - # Id: 7901801 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 8.734 + delta_h 0 kJ + -gamma 0 0 + # Id: 7901801 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Sn(OH)2 + 2 H+ + 2 Cl- = SnCl2 + 2 H2O - log_k 9.524 - delta_h 0 kJ - -gamma 0 0 - # Id: 7901802 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 9.524 + delta_h 0 kJ + -gamma 0 0 + # Id: 7901802 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Sn(OH)2 + 2 H+ + 3 Cl- = SnCl3- + 2 H2O - log_k 8.3505 - delta_h 0 kJ - -gamma 0 0 - # Id: 7901803 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 2.00 25.0 + log_k 8.3505 + delta_h 0 kJ + -gamma 0 0 + # Id: 7901803 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 2.00 25.0 Pb+2 + Cl- = PbCl+ - log_k 1.55 - delta_h 8.7 kJ - -gamma 0 0 - # Id: 6001800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.55 + delta_h 8.7 kJ + -gamma 0 0 + # Id: 6001800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Pb+2 + 2 Cl- = PbCl2 - log_k 2.2 - delta_h 12 kJ - -gamma 0 0 - # Id: 6001801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.2 + delta_h 12 kJ + -gamma 0 0 + # Id: 6001801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Pb+2 + 3 Cl- = PbCl3- - log_k 1.8 - delta_h 4 kJ - -gamma 0 0 - # Id: 6001802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.8 + delta_h 4 kJ + -gamma 0 0 + # Id: 6001802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Pb+2 + 4 Cl- = PbCl4-2 - log_k 1.46 - delta_h 14.7695 kJ - -gamma 0 0 - # Id: 6001803 - # log K source: SCD3.02 (1984 SEa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 1.46 + delta_h 14.7695 kJ + -gamma 0 0 + # Id: 6001803 + # log K source: SCD3.02 (1984 SEa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Tl+ + Cl- = TlCl - log_k 0.51 - delta_h -6.2 kJ - -gamma 0 0 - # Id: 8701800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 0.51 + delta_h -6.2 kJ + -gamma 0 0 + # Id: 8701800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Tl+ + 2 Cl- = TlCl2- - log_k 0.28 - delta_h 0 kJ - -gamma 0 0 - # Id: 8701801 - # log K source: SCD3.02 (1992 RAb) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 0.28 + delta_h 0 kJ + -gamma 0 0 + # Id: 8701801 + # log K source: SCD3.02 (1992 RAb) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Tl(OH)3 + 3 H+ + Cl- = TlCl+2 + 3 H2O - log_k 11.011 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 11.011 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Tl(OH)3 + 3 H+ + 2 Cl- = TlCl2+ + 3 H2O - log_k 16.771 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 16.771 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Tl(OH)3 + 3 H+ + 3 Cl- = TlCl3 + 3 H2O - log_k 19.791 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 19.791 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Tl(OH)3 + 3 H+ + 4 Cl- = TlCl4- + 3 H2O - log_k 21.591 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711803 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 21.591 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711803 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Tl(OH)3 + Cl- + 2 H+ = TlOHCl+ + 2 H2O - log_k 10.629 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711804 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 10.629 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711804 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Zn+2 + Cl- = ZnCl+ - log_k 0.4 - delta_h 5.4 kJ - -gamma 4 0 - # Id: 9501800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 0.4 + delta_h 5.4 kJ + -gamma 4 0 + # Id: 9501800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Zn+2 + 2 Cl- = ZnCl2 - log_k 0.6 - delta_h 37 kJ - -gamma 0 0 - # Id: 9501801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 0.6 + delta_h 37 kJ + -gamma 0 0 + # Id: 9501801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Zn+2 + 3 Cl- = ZnCl3- - log_k 0.5 - delta_h 39.999 kJ - -gamma 4 0 - # Id: 9501802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 0.5 + delta_h 39.999 kJ + -gamma 4 0 + # Id: 9501802 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Zn+2 + 4 Cl- = ZnCl4-2 - log_k 0.199 - delta_h 45.8566 kJ - -gamma 5 0 - # Id: 9501803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 0.199 + delta_h 45.8566 kJ + -gamma 5 0 + # Id: 9501803 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Zn+2 + H2O + Cl- = ZnOHCl + H+ - log_k -7.48 - delta_h 0 kJ - -gamma 0 0 - # Id: 9501804 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -7.48 + delta_h 0 kJ + -gamma 0 0 + # Id: 9501804 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cd+2 + Cl- = CdCl+ - log_k 1.98 - delta_h 1 kJ - -gamma 0 0 - # Id: 1601800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.98 + delta_h 1 kJ + -gamma 0 0 + # Id: 1601800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cd+2 + 2 Cl- = CdCl2 - log_k 2.6 - delta_h 3 kJ - -gamma 0 0 - # Id: 1601801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.6 + delta_h 3 kJ + -gamma 0 0 + # Id: 1601801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cd+2 + 3 Cl- = CdCl3- - log_k 2.4 - delta_h 10 kJ - -gamma 0 0 - # Id: 1601802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.4 + delta_h 10 kJ + -gamma 0 0 + # Id: 1601802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cd+2 + H2O + Cl- = CdOHCl + H+ - log_k -7.404 - delta_h 18.2213 kJ - -gamma 0 0 - # Id: 1601803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -7.404 + delta_h 18.2213 kJ + -gamma 0 0 + # Id: 1601803 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Hg(OH)2 + 2 H+ + Cl- = HgCl+ + 2 H2O - log_k 13.494 - delta_h -62.72 kJ - -gamma 0 0 - # Id: 3611800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 13.494 + delta_h -62.72 kJ + -gamma 0 0 + # Id: 3611800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2 H+ + 2 Cl- = HgCl2 + 2 H2O - log_k 20.194 - delta_h -92.42 kJ - -gamma 0 0 - # Id: 3611801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 20.194 + delta_h -92.42 kJ + -gamma 0 0 + # Id: 3611801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2 H+ + 3 Cl- = HgCl3- + 2 H2O - log_k 21.194 - delta_h -94.02 kJ - -gamma 0 0 - # Id: 3611802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 21.194 + delta_h -94.02 kJ + -gamma 0 0 + # Id: 3611802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2 H+ + 4 Cl- = HgCl4-2 + 2 H2O - log_k 21.794 - delta_h -100.72 kJ - -gamma 0 0 - # Id: 3611803 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 21.794 + delta_h -100.72 kJ + -gamma 0 0 + # Id: 3611803 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + Cl- + I- + 2 H+ = HgClI + 2 H2O - log_k 25.532 - delta_h -135.3 kJ - -gamma 0 0 - # Id: 3611804 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k 25.532 + delta_h -135.3 kJ + -gamma 0 0 + # Id: 3611804 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Hg(OH)2 + H+ + Cl- = HgClOH + H2O - log_k 10.444 - delta_h -42.72 kJ - -gamma 0 0 - # Id: 3611805 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 + log_k 10.444 + delta_h -42.72 kJ + -gamma 0 0 + # Id: 3611805 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 Cu+2 + Cl- = CuCl+ - log_k 0.2 - delta_h 8.3 kJ - -gamma 4 0 - # Id: 2311800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 0.2 + delta_h 8.3 kJ + -gamma 4 0 + # Id: 2311800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cu+2 + 2 Cl- = CuCl2 - log_k -0.26 - delta_h 44.183 kJ - -gamma 0 0 - # Id: 2311801 - # log K source: SCD3.02 (1989 IPa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -0.26 + delta_h 44.183 kJ + -gamma 0 0 + # Id: 2311801 + # log K source: SCD3.02 (1989 IPa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cu+2 + 3 Cl- = CuCl3- - log_k -2.29 - delta_h 57.279 kJ - -gamma 4 0 - # Id: 2311802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -2.29 + delta_h 57.279 kJ + -gamma 4 0 + # Id: 2311802 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cu+2 + 4 Cl- = CuCl4-2 - log_k -4.59 - delta_h 32.5515 kJ - -gamma 5 0 - # Id: 2311803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -4.59 + delta_h 32.5515 kJ + -gamma 5 0 + # Id: 2311803 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cu+ + 2 Cl- = CuCl2- - log_k 5.42 - delta_h -1.7573 kJ - -gamma 4 0 - # Id: 2301800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 5.42 + delta_h -1.7573 kJ + -gamma 4 0 + # Id: 2301800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cu+ + 3 Cl- = CuCl3-2 - log_k 4.75 - delta_h 1.0878 kJ - -gamma 5 0 - # Id: 2301801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 4.75 + delta_h 1.0878 kJ + -gamma 5 0 + # Id: 2301801 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cu+ + Cl- = CuCl - log_k 3.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 2301802 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 3.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 2301802 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Ag+ + Cl- = AgCl - log_k 3.31 - delta_h -12 kJ - -gamma 0 0 - # Id: 201800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 3.31 + delta_h -12 kJ + -gamma 0 0 + # Id: 201800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ag+ + 2 Cl- = AgCl2- - log_k 5.25 - delta_h -16 kJ - -gamma 0 0 - # Id: 201801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 5.25 + delta_h -16 kJ + -gamma 0 0 + # Id: 201801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ag+ + 3 Cl- = AgCl3-2 - log_k 5.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 201802 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 5.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 201802 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Ag+ + 4 Cl- = AgCl4-3 - log_k 5.51 - delta_h 0 kJ - -gamma 0 0 - # Id: 201803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 5.51 + delta_h 0 kJ + -gamma 0 0 + # Id: 201803 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Ni+2 + Cl- = NiCl+ - log_k 0.408 - delta_h 2 kJ - -gamma 0 0 - # Id: 5401800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 + log_k 0.408 + delta_h 2 kJ + -gamma 0 0 + # Id: 5401800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 Ni+2 + 2 Cl- = NiCl2 - log_k -1.89 - delta_h 0 kJ - -gamma 0 0 - # Id: 5401801 - # log K source: SCD3.02 (1989 IPa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -1.89 + delta_h 0 kJ + -gamma 0 0 + # Id: 5401801 + # log K source: SCD3.02 (1989 IPa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Co+2 + Cl- = CoCl+ - log_k 0.539 - delta_h 2 kJ - -gamma 0 0 - # Id: 2001800 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 + log_k 0.539 + delta_h 2 kJ + -gamma 0 0 + # Id: 2001800 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 Co+3 + Cl- = CoCl+2 - log_k 2.3085 - delta_h 16 kJ - -gamma 0 0 - # Id: 2011800 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 + log_k 2.3085 + delta_h 16 kJ + -gamma 0 0 + # Id: 2011800 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 Fe+3 + Cl- = FeCl+2 - log_k 1.48 - delta_h 23 kJ - -gamma 5 0 - # Id: 2811800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.48 + delta_h 23 kJ + -gamma 5 0 + # Id: 2811800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Fe+3 + 2 Cl- = FeCl2+ - log_k 2.13 - delta_h 0 kJ - -gamma 5 0 - # Id: 2811801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 2.13 + delta_h 0 kJ + -gamma 5 0 + # Id: 2811801 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Fe+3 + 3 Cl- = FeCl3 - log_k 1.13 - delta_h 0 kJ - -gamma 0 0 - # Id: 2811802 - # log K source: Nord90 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 1.13 + delta_h 0 kJ + -gamma 0 0 + # Id: 2811802 + # log K source: Nord90 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Mn+2 + Cl- = MnCl+ - log_k 0.1 - delta_h 0 kJ - -gamma 5 0 - # Id: 4701800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 20.0 + log_k 0.1 + delta_h 0 kJ + -gamma 5 0 + # Id: 4701800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 20.0 Mn+2 + 2 Cl- = MnCl2 - log_k 0.25 - delta_h 0 kJ - -gamma 0 0 - # Id: 4701801 - # log K source: Nord90 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 0.25 + delta_h 0 kJ + -gamma 0 0 + # Id: 4701801 + # log K source: Nord90 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Mn+2 + 3 Cl- = MnCl3- - log_k -0.31 - delta_h 0 kJ - -gamma 5 0 - # Id: 4701802 - # log K source: Nord90 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -0.31 + delta_h 0 kJ + -gamma 5 0 + # Id: 4701802 + # log K source: Nord90 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cr(OH)2+ + 2 H+ + Cl- = CrCl+2 + 2 H2O - log_k 9.6808 - delta_h -103.62 kJ - -gamma 0 0 - # Id: 2111800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 + log_k 9.6808 + delta_h -103.62 kJ + -gamma 0 0 + # Id: 2111800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 Cr(OH)2+ + 2 Cl- + 2 H+ = CrCl2+ + 2 H2O - log_k 8.658 - delta_h -39.2208 kJ - -gamma 0 0 - # Id: 2111801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 8.658 + delta_h -39.2208 kJ + -gamma 0 0 + # Id: 2111801 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cr(OH)2+ + 2 Cl- + H+ = CrOHCl2 + H2O - log_k 2.9627 - delta_h 0 kJ - -gamma 0 0 - # Id: 2111802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 2.9627 + delta_h 0 kJ + -gamma 0 0 + # Id: 2111802 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: VO+2 + Cl- = VOCl+ - log_k 0.448 - delta_h 0 kJ - -gamma 0 0 - # Id: 9021800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 + log_k 0.448 + delta_h 0 kJ + -gamma 0 0 + # Id: 9021800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 U+4 + Cl- = UCl+3 - log_k 1.7 - delta_h -20 kJ - -gamma 0 0 - # Id: 8911800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.7 + delta_h -20 kJ + -gamma 0 0 + # Id: 8911800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 UO2+2 + Cl- = UO2Cl+ - log_k 0.21 - delta_h 16 kJ - -gamma 0 0 - # Id: 8931800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 0.21 + delta_h 16 kJ + -gamma 0 0 + # Id: 8931800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Be+2 + Cl- = BeCl+ - log_k 0.2009 - delta_h 0 kJ - -gamma 5 0 - # Id: 1101801 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.70 20.0 + log_k 0.2009 + delta_h 0 kJ + -gamma 5 0 + # Id: 1101801 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.70 20.0 Sn(OH)2 + 2 H+ + Br- = SnBr+ + 2 H2O - log_k 8.254 - delta_h 0 kJ - -gamma 0 0 - # Id: 7901301 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 8.254 + delta_h 0 kJ + -gamma 0 0 + # Id: 7901301 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Sn(OH)2 + 2 H+ + 2 Br- = SnBr2 + 2 H2O - log_k 8.794 - delta_h 0 kJ - -gamma 0 0 - # Id: 7901302 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 8.794 + delta_h 0 kJ + -gamma 0 0 + # Id: 7901302 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Sn(OH)2 + 2 H+ + 3 Br- = SnBr3- + 2 H2O - log_k 7.48 - delta_h 0 kJ - -gamma 0 0 - # Id: 7901303 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 3.00 25.0 + log_k 7.48 + delta_h 0 kJ + -gamma 0 0 + # Id: 7901303 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 3.00 25.0 Pb+2 + Br- = PbBr+ - log_k 1.7 - delta_h 8 kJ - -gamma 0 0 - # Id: 6001300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.7 + delta_h 8 kJ + -gamma 0 0 + # Id: 6001300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Pb+2 + 2 Br- = PbBr2 - log_k 2.6 - delta_h -4 kJ - -gamma 0 0 - # Id: 6001301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.6 + delta_h -4 kJ + -gamma 0 0 + # Id: 6001301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Tl+ + Br- = TlBr - log_k 0.91 - delta_h -12 kJ - -gamma 0 0 - # Id: 8701300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 0.91 + delta_h -12 kJ + -gamma 0 0 + # Id: 8701300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Tl+ + 2 Br- = TlBr2- - log_k -0.384 - delta_h 12.36 kJ - -gamma 0 0 - # Id: 8701301 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 - #T and ionic strength: 4.00 25.0 + log_k -0.384 + delta_h 12.36 kJ + -gamma 0 0 + # Id: 8701301 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 + #T and ionic strength: 4.00 25.0 Tl+ + Br- + Cl- = TlBrCl- - log_k 0.8165 - delta_h 0 kJ - -gamma 0 0 - # Id: 8701302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 0.8165 + delta_h 0 kJ + -gamma 0 0 + # Id: 8701302 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Tl+ + I- + Br- = TlIBr- - log_k 2.185 - delta_h 0 kJ - -gamma 0 0 - # Id: 8703802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 2.185 + delta_h 0 kJ + -gamma 0 0 + # Id: 8703802 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Tl(OH)3 + 3 H+ + Br- = TlBr+2 + 3 H2O - log_k 12.803 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 12.803 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Tl(OH)3 + 3 H+ + 2 Br- = TlBr2+ + 3 H2O - log_k 20.711 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 20.711 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Tl(OH)3 + 3 Br- + 3 H+ = TlBr3 + 3 H2O - log_k 27.0244 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 27.0244 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711302 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Tl(OH)3 + 4 Br- + 3 H+ = TlBr4- + 3 H2O - log_k 31.1533 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711303 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 31.1533 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711303 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Zn+2 + Br- = ZnBr+ - log_k -0.07 - delta_h 1 kJ - -gamma 0 0 - # Id: 9501300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -0.07 + delta_h 1 kJ + -gamma 0 0 + # Id: 9501300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Zn+2 + 2 Br- = ZnBr2 - log_k -0.98 - delta_h 0 kJ - -gamma 0 0 - # Id: 9501301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -0.98 + delta_h 0 kJ + -gamma 0 0 + # Id: 9501301 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cd+2 + Br- = CdBr+ - log_k 2.15 - delta_h -3 kJ - -gamma 0 0 - # Id: 1601300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.15 + delta_h -3 kJ + -gamma 0 0 + # Id: 1601300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cd+2 + 2 Br- = CdBr2 - log_k 3 - delta_h -3 kJ - -gamma 0 0 - # Id: 1601301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 3 + delta_h -3 kJ + -gamma 0 0 + # Id: 1601301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2 H+ + Br- = HgBr+ + 2 H2O - log_k 15.803 - delta_h -81.92 kJ - -gamma 0 0 - # Id: 3611301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.50 25.0 + log_k 15.803 + delta_h -81.92 kJ + -gamma 0 0 + # Id: 3611301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.50 25.0 Hg(OH)2 + 2 H+ + 2 Br- = HgBr2 + 2 H2O - log_k 24.2725 - delta_h -127.12 kJ - -gamma 0 0 - # Id: 3611302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.50 25.0 + log_k 24.2725 + delta_h -127.12 kJ + -gamma 0 0 + # Id: 3611302 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.50 25.0 Hg(OH)2 + 2 H+ + 3 Br- = HgBr3- + 2 H2O - log_k 26.7025 - delta_h -138.82 kJ - -gamma 0 0 - # Id: 3611303 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.50 25.0 + log_k 26.7025 + delta_h -138.82 kJ + -gamma 0 0 + # Id: 3611303 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.50 25.0 Hg(OH)2 + 2 H+ + 4 Br- = HgBr4-2 + 2 H2O - log_k 27.933 - delta_h -153.72 kJ - -gamma 0 0 - # Id: 3611304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.50 25.0 + log_k 27.933 + delta_h -153.72 kJ + -gamma 0 0 + # Id: 3611304 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.50 25.0 Hg(OH)2 + Br- + Cl- + 2 H+ = HgBrCl + 2 H2O - log_k 22.1811 - delta_h -113.77 kJ - -gamma 0 0 - # Id: 3611305 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k 22.1811 + delta_h -113.77 kJ + -gamma 0 0 + # Id: 3611305 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Hg(OH)2 + Br- + I- + 2 H+ = HgBrI + 2 H2O - log_k 27.3133 - delta_h -151.27 kJ - -gamma 0 0 - # Id: 3611306 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k 27.3133 + delta_h -151.27 kJ + -gamma 0 0 + # Id: 3611306 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Hg(OH)2 + Br- + 3 I- + 2 H+ = HgBrI3-2 + 2 H2O - log_k 34.2135 - delta_h 0 kJ - -gamma 0 0 - # Id: 3611307 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 34.2135 + delta_h 0 kJ + -gamma 0 0 + # Id: 3611307 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Hg(OH)2 + 2 Br- + 2 I- + 2 H+ = HgBr2I2-2 + 2 H2O - log_k 32.3994 - delta_h 0 kJ - -gamma 0 0 - # Id: 3611308 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 32.3994 + delta_h 0 kJ + -gamma 0 0 + # Id: 3611308 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Hg(OH)2 + 3 Br- + I- + 2 H+ = HgBr3I-2 + 2 H2O - log_k 30.1528 - delta_h 0 kJ - -gamma 0 0 - # Id: 3611309 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 30.1528 + delta_h 0 kJ + -gamma 0 0 + # Id: 3611309 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Hg(OH)2 + H+ + Br- = HgBrOH + H2O - log_k 12.433 - delta_h 0 kJ - -gamma 0 0 - # Id: 3613301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k 12.433 + delta_h 0 kJ + -gamma 0 0 + # Id: 3613301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Ag+ + Br- = AgBr - log_k 4.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 201300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 4.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 201300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Ag+ + 2 Br- = AgBr2- - log_k 7.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 201301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 7.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 201301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Ag+ + 3 Br- = AgBr3-2 - log_k 8.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 201302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 8.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 201302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Ni+2 + Br- = NiBr+ - log_k 0.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 5401300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 0.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 5401300 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cr(OH)2+ + Br- + 2 H+ = CrBr+2 + 2 H2O - log_k 7.5519 - delta_h -46.9068 kJ - -gamma 0 0 - # Id: 2111300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 7.5519 + delta_h -46.9068 kJ + -gamma 0 0 + # Id: 2111300 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Be+2 + Br- = BeBr+ - log_k 0.1009 - delta_h 0 kJ - -gamma 5 0 - # Id: 1101301 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.70 20.0 + log_k 0.1009 + delta_h 0 kJ + -gamma 5 0 + # Id: 1101301 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.70 20.0 Pb+2 + I- = PbI+ - log_k 2 - delta_h 0 kJ - -gamma 0 0 - # Id: 6003800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 2 + delta_h 0 kJ + -gamma 0 0 + # Id: 6003800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Pb+2 + 2 I- = PbI2 - log_k 3.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 6003801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 3.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 6003801 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Tl+ + I- = TlI - log_k 1.4279 - delta_h 0 kJ - -gamma 0 0 - # Id: 8703800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 1.4279 + delta_h 0 kJ + -gamma 0 0 + # Id: 8703800 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Tl+ + 2 I- = TlI2- - log_k 1.8588 - delta_h 0 kJ - -gamma 0 0 - # Id: 8703801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 1.8588 + delta_h 0 kJ + -gamma 0 0 + # Id: 8703801 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Tl(OH)3 + 4 I- + 3 H+ = TlI4- + 3 H2O - log_k 34.7596 - delta_h 0 kJ - -gamma 0 0 - # Id: 8713800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 34.7596 + delta_h 0 kJ + -gamma 0 0 + # Id: 8713800 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Zn+2 + I- = ZnI+ - log_k -2.0427 - delta_h -4 kJ - -gamma 0 0 - # Id: 9503800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 3.00 25.0 + log_k -2.0427 + delta_h -4 kJ + -gamma 0 0 + # Id: 9503800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 3.00 25.0 Zn+2 + 2 I- = ZnI2 - log_k -1.69 - delta_h 0 kJ - -gamma 0 0 - # Id: 9503801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -1.69 + delta_h 0 kJ + -gamma 0 0 + # Id: 9503801 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cd+2 + I- = CdI+ - log_k 2.28 - delta_h -9.6 kJ - -gamma 0 0 - # Id: 1603800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.28 + delta_h -9.6 kJ + -gamma 0 0 + # Id: 1603800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cd+2 + 2 I- = CdI2 - log_k 3.92 - delta_h -12 kJ - -gamma 0 0 - # Id: 1603801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 3.92 + delta_h -12 kJ + -gamma 0 0 + # Id: 1603801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2 H+ + I- = HgI+ + 2 H2O - log_k 19.603 - delta_h -111.22 kJ - -gamma 0 0 - # Id: 3613801 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 + log_k 19.603 + delta_h -111.22 kJ + -gamma 0 0 + # Id: 3613801 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 Hg(OH)2 + 2 H+ + 2 I- = HgI2 + 2 H2O - log_k 30.8225 - delta_h -182.72 kJ - -gamma 0 0 - # Id: 3613802 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 + log_k 30.8225 + delta_h -182.72 kJ + -gamma 0 0 + # Id: 3613802 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 Hg(OH)2 + 2 H+ + 3 I- = HgI3- + 2 H2O - log_k 34.6025 - delta_h -194.22 kJ - -gamma 0 0 - # Id: 3613803 - # log K source: NIST46.4 - # Delta H source: NIST2.1.1 - #T and ionic strength: 0.50 25.0 + log_k 34.6025 + delta_h -194.22 kJ + -gamma 0 0 + # Id: 3613803 + # log K source: NIST46.4 + # Delta H source: NIST2.1.1 + #T and ionic strength: 0.50 25.0 Hg(OH)2 + 2 H+ + 4 I- = HgI4-2 + 2 H2O - log_k 36.533 - delta_h -220.72 kJ - -gamma 0 0 - # Id: 3613804 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 + log_k 36.533 + delta_h -220.72 kJ + -gamma 0 0 + # Id: 3613804 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 Ag+ + I- = AgI - log_k 6.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 203800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 18.0 + log_k 6.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 203800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 18.0 Ag+ + 2 I- = AgI2- - log_k 11.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 203801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 18.0 + log_k 11.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 203801 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 18.0 Ag+ + 3 I- = AgI3-2 - log_k 12.6 - delta_h -122 kJ - -gamma 0 0 - # Id: 203802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 12.6 + delta_h -122 kJ + -gamma 0 0 + # Id: 203802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ag+ + 4 I- = AgI4-3 - log_k 14.229 - delta_h 0 kJ - -gamma 0 0 - # Id: 203803 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 2.00 25.0 + log_k 14.229 + delta_h 0 kJ + -gamma 0 0 + # Id: 203803 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 2.00 25.0 Cr(OH)2+ + I- + 2 H+ = CrI+2 + 2 H2O - log_k 4.8289 - delta_h 0 kJ - -gamma 0 0 - # Id: 2113800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 4.8289 + delta_h 0 kJ + -gamma 0 0 + # Id: 2113800 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: H+ + HS- = H2S - log_k 7.02 - delta_h -22 kJ - -gamma 0 0 - # Id: 3307300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 7.02 + delta_h -22 kJ + -gamma 0 0 + # Id: 3307300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Pb+2 + 2 HS- = Pb(HS)2 - log_k 15.27 - delta_h 0 kJ - -gamma 0 0 - # Id: 6007300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 15.27 + delta_h 0 kJ + -gamma 0 0 + # Id: 6007300 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Pb+2 + 3 HS- = Pb(HS)3- - log_k 16.57 - delta_h 0 kJ - -gamma 0 0 - # Id: 6007301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 16.57 + delta_h 0 kJ + -gamma 0 0 + # Id: 6007301 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Tl+ + HS- = TlHS - log_k 2.474 - delta_h 0 kJ - -gamma 0 0 - # Id: 8707300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 2.474 + delta_h 0 kJ + -gamma 0 0 + # Id: 8707300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 2 Tl+ + HS- = Tl2HS+ - log_k 5.974 - delta_h 0 kJ - -gamma 0 0 - # Id: 8707301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 5.974 + delta_h 0 kJ + -gamma 0 0 + # Id: 8707301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 2 Tl+ + 3 HS- + H2O = Tl2OH(HS)3-2 + H+ - log_k 1.0044 - delta_h 0 kJ - -gamma 0 0 - # Id: 8707302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 1.0044 + delta_h 0 kJ + -gamma 0 0 + # Id: 8707302 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: 2 Tl+ + 2 HS- + 2 H2O = Tl2(OH)2(HS)2-2 + 2 H+ - log_k -11.0681 - delta_h 0 kJ - -gamma 0 0 - # Id: 8707303 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -11.0681 + delta_h 0 kJ + -gamma 0 0 + # Id: 8707303 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Zn+2 + 2 HS- = Zn(HS)2 - log_k 12.82 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507300 - # log K source: DHa1993 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 12.82 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507300 + # log K source: DHa1993 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Zn+2 + 3 HS- = Zn(HS)3- - log_k 16.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 16.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507301 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Zn+2 + 3 HS- = ZnS(HS)2-2 + H+ - log_k 6.12 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507302 - # log K source: DHa1993 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 6.12 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507302 + # log K source: DHa1993 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Zn+2 + 2 HS- + 2 HS- = Zn(HS)4-2 - log_k 14.64 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507303 - # log K source: DHa1993 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 14.64 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507303 + # log K source: DHa1993 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Zn+2 + 2 HS- = ZnS(HS)- + H+ - log_k 6.81 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507304 - # log K source: DHa1993 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 6.81 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507304 + # log K source: DHa1993 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cd+2 + HS- = CdHS+ - log_k 8.008 - delta_h 0 kJ - -gamma 0 0 - # Id: 1607300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 8.008 + delta_h 0 kJ + -gamma 0 0 + # Id: 1607300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Cd+2 + 2 HS- = Cd(HS)2 - log_k 15.212 - delta_h 0 kJ - -gamma 0 0 - # Id: 1607301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 15.212 + delta_h 0 kJ + -gamma 0 0 + # Id: 1607301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Cd+2 + 3 HS- = Cd(HS)3- - log_k 17.112 - delta_h 0 kJ - -gamma 0 0 - # Id: 1607302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 17.112 + delta_h 0 kJ + -gamma 0 0 + # Id: 1607302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Cd+2 + 4 HS- = Cd(HS)4-2 - log_k 19.308 - delta_h 0 kJ - -gamma 0 0 - # Id: 1607303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 19.308 + delta_h 0 kJ + -gamma 0 0 + # Id: 1607303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Hg(OH)2 + 2 HS- = HgS2-2 + 2 H2O - log_k 29.414 - delta_h 0 kJ - -gamma 0 0 - # Id: 3617300 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 + log_k 29.414 + delta_h 0 kJ + -gamma 0 0 + # Id: 3617300 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 Hg(OH)2 + 2 H+ + 2 HS- = Hg(HS)2 + 2 H2O - log_k 44.516 - delta_h 0 kJ - -gamma 0 0 - # Id: 3617301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 + log_k 44.516 + delta_h 0 kJ + -gamma 0 0 + # Id: 3617301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 Hg(OH)2 + H+ + 2 HS- = HgHS2- + 2 H2O - log_k 38.122 - delta_h 0 kJ - -gamma 0 0 - # Id: 3617302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 + log_k 38.122 + delta_h 0 kJ + -gamma 0 0 + # Id: 3617302 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 Cu+2 + 3 HS- = Cu(HS)3- - log_k 25.899 - delta_h 0 kJ - -gamma 0 0 - # Id: 2317300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 25.899 + delta_h 0 kJ + -gamma 0 0 + # Id: 2317300 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Ag+ + HS- = AgHS - log_k 13.8145 - delta_h 0 kJ - -gamma 0 0 - # Id: 207300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 20.0 + log_k 13.8145 + delta_h 0 kJ + -gamma 0 0 + # Id: 207300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 20.0 Ag+ + 2 HS- = Ag(HS)2- - log_k 17.9145 - delta_h 0 kJ - -gamma 0 0 - # Id: 207301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 20.0 + log_k 17.9145 + delta_h 0 kJ + -gamma 0 0 + # Id: 207301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 20.0 Fe+2 + 2 HS- = Fe(HS)2 - log_k 8.95 - delta_h 0 kJ - -gamma 0 0 - # Id: 2807300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 8.95 + delta_h 0 kJ + -gamma 0 0 + # Id: 2807300 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Fe+2 + 3 HS- = Fe(HS)3- - log_k 10.987 - delta_h 0 kJ - -gamma 0 0 - # Id: 2807301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 10.987 + delta_h 0 kJ + -gamma 0 0 + # Id: 2807301 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: HS- = S2-2 + H+ - log_k -11.7828 - delta_h 46.4 kJ - -gamma 0 0 - -no_check - # Id: 7317300 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k -11.7828 + delta_h 46.4 kJ + -gamma 0 0 + -no_check + # Id: 7317300 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: HS- = S3-2 + H+ - log_k -10.7667 - delta_h 42.2 kJ - -gamma 0 0 - -no_check - # Id: 7317301 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k -10.7667 + delta_h 42.2 kJ + -gamma 0 0 + -no_check + # Id: 7317301 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: HS- = S4-2 + H+ - log_k -9.9608 - delta_h 39.3 kJ - -gamma 0 0 - -no_check - # Id: 7317302 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k -9.9608 + delta_h 39.3 kJ + -gamma 0 0 + -no_check + # Id: 7317302 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: HS- = S5-2 + H+ - log_k -9.3651 - delta_h 37.6 kJ - -gamma 0 0 - -no_check - # Id: 7317303 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k -9.3651 + delta_h 37.6 kJ + -gamma 0 0 + -no_check + # Id: 7317303 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: HS- = S6-2 + H+ - log_k -9.881 - delta_h 0 kJ - -gamma 0 0 - -no_check - # Id: 7317304 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -9.881 + delta_h 0 kJ + -gamma 0 0 + -no_check + # Id: 7317304 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: 2 Sb(OH)3 + 4 HS- + 2 H+ = Sb2S4-2 + 6 H2O - log_k 49.3886 - delta_h -321.78 kJ - -gamma 0 0 - # Id: 7407300 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k 49.3886 + delta_h -321.78 kJ + -gamma 0 0 + # Id: 7407300 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Cu+ + 2 HS- = Cu(S4)2-3 + 2 H+ - log_k 3.39 - delta_h 0 kJ - -gamma 23 0 - -no_check - # Id: 2307300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 3.39 + delta_h 0 kJ + -gamma 23 0 + -no_check + # Id: 2307300 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cu+ + 2 HS- = CuS4S5-3 + 2 H+ - log_k 2.66 - delta_h 0 kJ - -gamma 25 0 - -no_check - # Id: 2307301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 2.66 + delta_h 0 kJ + -gamma 25 0 + -no_check + # Id: 2307301 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Ag+ + 2 HS- = Ag(S4)2-3 + 2 H+ - log_k 0.991 - delta_h 0 kJ - -gamma 22 0 - -no_check - # Id: 207302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 0.991 + delta_h 0 kJ + -gamma 22 0 + -no_check + # Id: 207302 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Ag+ + 2 HS- = AgS4S5-3 + 2 H+ - log_k 0.68 - delta_h 0 kJ - -gamma 24 0 - -no_check - # Id: 207303 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 0.68 + delta_h 0 kJ + -gamma 24 0 + -no_check + # Id: 207303 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Ag+ + 2 HS- = Ag(HS)S4-2 + H+ - log_k 10.431 - delta_h 0 kJ - -gamma 15 0 - -no_check - # Id: 207304 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 10.431 + delta_h 0 kJ + -gamma 15 0 + -no_check + # Id: 207304 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: H+ + SO4-2 = HSO4- - log_k 1.99 - delta_h 22 kJ - -gamma 4.5 0 - # Id: 3307320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.99 + delta_h 22 kJ + -gamma 4.5 0 + # Id: 3307320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 NH4+ + SO4-2 = NH4SO4- - log_k 1.03 - delta_h 0 kJ - -gamma 5 0 - # Id: 4907320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 1.03 + delta_h 0 kJ + -gamma 5 0 + # Id: 4907320 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Pb+2 + SO4-2 = PbSO4 - log_k 2.69 - delta_h 0 kJ - -gamma 0 0 - # Id: 6007320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 2.69 + delta_h 0 kJ + -gamma 0 0 + # Id: 6007320 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Pb+2 + 2 SO4-2 = Pb(SO4)2-2 - log_k 3.47 - delta_h 0 kJ - -gamma 0 0 - # Id: 6007321 - # log K source: SCD3.02 (1960 RKa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 3.47 + delta_h 0 kJ + -gamma 0 0 + # Id: 6007321 + # log K source: SCD3.02 (1960 RKa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Al+3 + SO4-2 = AlSO4+ - log_k 3.89 - delta_h 28 kJ - -gamma 4.5 0 - # Id: 307320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 3.89 + delta_h 28 kJ + -gamma 4.5 0 + # Id: 307320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Al+3 + 2 SO4-2 = Al(SO4)2- - log_k 4.92 - delta_h 11.9 kJ - -gamma 4.5 0 - # Id: 307321 - # log K source: Nord90 - # Delta H source: Nord90 - #T and ionic strength: 0.00 25.0 + log_k 4.92 + delta_h 11.9 kJ + -gamma 4.5 0 + # Id: 307321 + # log K source: Nord90 + # Delta H source: Nord90 + #T and ionic strength: 0.00 25.0 Tl+ + SO4-2 = TlSO4- - log_k 1.37 - delta_h -0.8 kJ - -gamma 0 0 - # Id: 8707320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.37 + delta_h -0.8 kJ + -gamma 0 0 + # Id: 8707320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Zn+2 + SO4-2 = ZnSO4 - log_k 2.34 - delta_h 6.2 kJ - -gamma 0 0 - # Id: 9507320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.34 + delta_h 6.2 kJ + -gamma 0 0 + # Id: 9507320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Zn+2 + 2 SO4-2 = Zn(SO4)2-2 - log_k 3.28 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507321 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 3.28 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507321 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cd+2 + SO4-2 = CdSO4 - log_k 2.37 - delta_h 8.7 kJ - -gamma 0 0 - # Id: 1607320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.37 + delta_h 8.7 kJ + -gamma 0 0 + # Id: 1607320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cd+2 + 2 SO4-2 = Cd(SO4)2-2 - log_k 3.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 1607321 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 3.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 1607321 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Hg(OH)2 + 2 H+ + SO4-2 = HgSO4 + 2 H2O - log_k 8.612 - delta_h 0 kJ - -gamma 0 0 - # Id: 3617320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k 8.612 + delta_h 0 kJ + -gamma 0 0 + # Id: 3617320 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Cu+2 + SO4-2 = CuSO4 - log_k 2.36 - delta_h 8.7 kJ - -gamma 0 0 - # Id: 2317320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.36 + delta_h 8.7 kJ + -gamma 0 0 + # Id: 2317320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ag+ + SO4-2 = AgSO4- - log_k 1.3 - delta_h 6.2 kJ - -gamma 0 0 - # Id: 207320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.3 + delta_h 6.2 kJ + -gamma 0 0 + # Id: 207320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ni+2 + SO4-2 = NiSO4 - log_k 2.3 - delta_h 5.8 kJ - -gamma 0 0 - # Id: 5407320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.3 + delta_h 5.8 kJ + -gamma 0 0 + # Id: 5407320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ni+2 + 2 SO4-2 = Ni(SO4)2-2 - log_k 0.82 - delta_h 0 kJ - -gamma 0 0 - # Id: 5407321 - # log K source: SCD3.02 (1978 BLa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 0.82 + delta_h 0 kJ + -gamma 0 0 + # Id: 5407321 + # log K source: SCD3.02 (1978 BLa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Co+2 + SO4-2 = CoSO4 - log_k 2.3 - delta_h 6.2 kJ - -gamma 0 0 - # Id: 2007320 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.3 + delta_h 6.2 kJ + -gamma 0 0 + # Id: 2007320 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Fe+2 + SO4-2 = FeSO4 - log_k 2.39 - delta_h 8 kJ - -gamma 0 0 - # Id: 2807320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.39 + delta_h 8 kJ + -gamma 0 0 + # Id: 2807320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Fe+3 + SO4-2 = FeSO4+ - log_k 4.05 - delta_h 25 kJ - -gamma 5 0 - # Id: 2817320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 4.05 + delta_h 25 kJ + -gamma 5 0 + # Id: 2817320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Fe+3 + 2 SO4-2 = Fe(SO4)2- - log_k 5.38 - delta_h 19.2 kJ - -gamma 0 0 - # Id: 2817321 - # log K source: Nord90 - # Delta H source: Nord90 - #T and ionic strength: 0.00 25.0 + log_k 5.38 + delta_h 19.2 kJ + -gamma 0 0 + # Id: 2817321 + # log K source: Nord90 + # Delta H source: Nord90 + #T and ionic strength: 0.00 25.0 Mn+2 + SO4-2 = MnSO4 - log_k 2.25 - delta_h 8.7 kJ - -gamma 0 0 - # Id: 4707320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.25 + delta_h 8.7 kJ + -gamma 0 0 + # Id: 4707320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cr(OH)2+ + 2 H+ + SO4-2 = CrSO4+ + 2 H2O - log_k 12.9371 - delta_h -98.62 kJ - -gamma 0 0 - # Id: 2117320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 50.0 + log_k 12.9371 + delta_h -98.62 kJ + -gamma 0 0 + # Id: 2117320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 50.0 Cr(OH)2+ + H+ + SO4-2 = CrOHSO4 + H2O - log_k 8.2871 - delta_h 0 kJ - -gamma 0 0 - # Id: 2117321 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 + log_k 8.2871 + delta_h 0 kJ + -gamma 0 0 + # Id: 2117321 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 2 Cr(OH)2+ + SO4-2 + 2 H+ = Cr2(OH)2SO4+2 + 2 H2O - log_k 16.155 - delta_h 0 kJ - -gamma 0 0 - # Id: 2117323 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 16.155 + delta_h 0 kJ + -gamma 0 0 + # Id: 2117323 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: 2 Cr(OH)2+ + 2 SO4-2 + 2 H+ = Cr2(OH)2(SO4)2 + 2 H2O - log_k 17.9288 - delta_h 0 kJ - -gamma 0 0 - # Id: 2117324 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 17.9288 + delta_h 0 kJ + -gamma 0 0 + # Id: 2117324 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: U+4 + SO4-2 = USO4+2 - log_k 6.6 - delta_h 8 kJ - -gamma 0 0 - # Id: 8917320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 6.6 + delta_h 8 kJ + -gamma 0 0 + # Id: 8917320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 U+4 + 2 SO4-2 = U(SO4)2 - log_k 10.5 - delta_h 33 kJ - -gamma 0 0 - # Id: 8917321 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 10.5 + delta_h 33 kJ + -gamma 0 0 + # Id: 8917321 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 UO2+2 + SO4-2 = UO2SO4 - log_k 3.18 - delta_h 20 kJ - -gamma 0 0 - # Id: 8937320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 3.18 + delta_h 20 kJ + -gamma 0 0 + # Id: 8937320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 UO2+2 + 2 SO4-2 = UO2(SO4)2-2 - log_k 4.3 - delta_h 38 kJ - -gamma 0 0 - # Id: 8937321 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 4.3 + delta_h 38 kJ + -gamma 0 0 + # Id: 8937321 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 V+3 + SO4-2 = VSO4+ - log_k 2.674 - delta_h 0 kJ - -gamma 0 0 - # Id: 9017320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 2.674 + delta_h 0 kJ + -gamma 0 0 + # Id: 9017320 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 VO+2 + SO4-2 = VOSO4 - log_k 2.44 - delta_h 17 kJ - -gamma 0 0 - # Id: 9027320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.44 + delta_h 17 kJ + -gamma 0 0 + # Id: 9027320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 VO2+ + SO4-2 = VO2SO4- - log_k 1.378 - delta_h 0 kJ - -gamma 0 0 - # Id: 9037320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 + log_k 1.378 + delta_h 0 kJ + -gamma 0 0 + # Id: 9037320 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 Be+2 + SO4-2 = BeSO4 - log_k 2.19 - delta_h 29 kJ - -gamma 0 0 - # Id: 1107321 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.19 + delta_h 29 kJ + -gamma 0 0 + # Id: 1107321 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Be+2 + 2 SO4-2 = Be(SO4)2-2 - log_k 2.596 - delta_h 0 kJ - -gamma 0 0 - # Id: 1107322 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 2.596 + delta_h 0 kJ + -gamma 0 0 + # Id: 1107322 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Mg+2 + SO4-2 = MgSO4 - log_k 2.26 - delta_h 5.8 kJ - -gamma 0 0 - # Id: 4607320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.26 + delta_h 5.8 kJ + -gamma 0 0 + # Id: 4607320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ca+2 + SO4-2 = CaSO4 - log_k 2.36 - delta_h 7.1 kJ - -gamma 0 0 - # Id: 1507320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.36 + delta_h 7.1 kJ + -gamma 0 0 + # Id: 1507320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Sr+2 + SO4-2 = SrSO4 - log_k 2.3 - delta_h 8 kJ - -gamma 0 0 - # Id: 8007321 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.3 + delta_h 8 kJ + -gamma 0 0 + # Id: 8007321 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Li+ + SO4-2 = LiSO4- - log_k 0.64 - delta_h 0 kJ - -gamma 5 0 - # Id: 4407320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 0.64 + delta_h 0 kJ + -gamma 5 0 + # Id: 4407320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Na+ + SO4-2 = NaSO4- - log_k 0.73 - delta_h 1 kJ - -gamma 5.4 0 - # Id: 5007320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 0.73 + delta_h 1 kJ + -gamma 5.4 0 + # Id: 5007320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 K+ + SO4-2 = KSO4- - log_k 0.85 - delta_h 4.1 kJ - -gamma 5.4 0 - # Id: 4107320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 0.85 + delta_h 4.1 kJ + -gamma 5.4 0 + # Id: 4107320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 HSe- + H+ = H2Se - log_k 3.89 - delta_h 3.3 kJ - -gamma 0 0 - # Id: 3307600 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 - #T and ionic strength: 0.00 25.0 + log_k 3.89 + delta_h 3.3 kJ + -gamma 0 0 + # Id: 3307600 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 + #T and ionic strength: 0.00 25.0 2 Ag+ + HSe- = Ag2Se + H+ - log_k 34.911 - delta_h 0 kJ - -gamma 0 0 - # Id: 207600 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 34.911 + delta_h 0 kJ + -gamma 0 0 + # Id: 207600 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Ag+ + H2O + 2 HSe- = AgOH(Se)2-4 + 3 H+ - log_k -20.509 - delta_h 0 kJ - -gamma 0 0 - # Id: 207601 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k -20.509 + delta_h 0 kJ + -gamma 0 0 + # Id: 207601 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Mn+2 + HSe- = MnSe + H+ - log_k -5.385 - delta_h 0 kJ - -gamma 0 0 - # Id: 4707600 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k -5.385 + delta_h 0 kJ + -gamma 0 0 + # Id: 4707600 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 HSeO3- = SeO3-2 + H+ - log_k -8.4 - delta_h 5.02 kJ - -gamma 0 0 - # Id: 3307611 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -8.4 + delta_h 5.02 kJ + -gamma 0 0 + # Id: 3307611 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 HSeO3- + H+ = H2SeO3 - log_k 2.63 - delta_h 6.2 kJ - -gamma 0 0 - # Id: 3307610 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.63 + delta_h 6.2 kJ + -gamma 0 0 + # Id: 3307610 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cd+2 + 2 HSeO3- = Cd(SeO3)2-2 + 2 H+ - log_k -10.884 - delta_h 0 kJ - -gamma 0 0 - # Id: 1607610 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k -10.884 + delta_h 0 kJ + -gamma 0 0 + # Id: 1607610 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Ag+ + HSeO3- = AgSeO3- + H+ - log_k -5.592 - delta_h 0 kJ - -gamma 0 0 - # Id: 207610 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k -5.592 + delta_h 0 kJ + -gamma 0 0 + # Id: 207610 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Ag+ + 2 HSeO3- = Ag(SeO3)2-3 + 2 H+ - log_k -13.04 - delta_h 0 kJ - -gamma 0 0 - # Id: 207611 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k -13.04 + delta_h 0 kJ + -gamma 0 0 + # Id: 207611 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Fe+3 + HSeO3- = FeHSeO3+2 - log_k 3.422 - delta_h 25 kJ - -gamma 0 0 - # Id: 2817610 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 + log_k 3.422 + delta_h 25 kJ + -gamma 0 0 + # Id: 2817610 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 SeO4-2 + H+ = HSeO4- - log_k 1.7 - delta_h 23 kJ - -gamma 0 0 - # Id: 3307620 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 1.7 + delta_h 23 kJ + -gamma 0 0 + # Id: 3307620 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Zn+2 + SeO4-2 = ZnSeO4 - log_k 2.19 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507620 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 2.19 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507620 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Zn+2 + 2 SeO4-2 = Zn(SeO4)2-2 - log_k 2.196 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507621 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 2.196 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507621 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Cd+2 + SeO4-2 = CdSeO4 - log_k 2.27 - delta_h 0 kJ - -gamma 0 0 - # Id: 1607620 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 2.27 + delta_h 0 kJ + -gamma 0 0 + # Id: 1607620 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Ni+2 + SeO4-2 = NiSeO4 - log_k 2.67 - delta_h 14 kJ - -gamma 0 0 - # Id: 5407620 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.67 + delta_h 14 kJ + -gamma 0 0 + # Id: 5407620 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Co+2 + SeO4-2 = CoSeO4 - log_k 2.7 - delta_h 12 kJ - -gamma 0 0 - # Id: 2007621 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.7 + delta_h 12 kJ + -gamma 0 0 + # Id: 2007621 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Mn+2 + SeO4-2 = MnSeO4 - log_k 2.43 - delta_h 14 kJ - -gamma 0 0 - # Id: 4707620 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.43 + delta_h 14 kJ + -gamma 0 0 + # Id: 4707620 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 NH4+ = NH3 + H+ - log_k -9.244 - delta_h 52 kJ - -gamma 0 0 - # Id: 3304900 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -9.244 + delta_h 52 kJ + -gamma 0 0 + # Id: 3304900 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ag+ + NH4+ = AgNH3+ + H+ - log_k -5.934 - delta_h -72 kJ - -gamma 0 0 - # Id: 204901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -5.934 + delta_h -72 kJ + -gamma 0 0 + # Id: 204901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ag+ + 2 NH4+ = Ag(NH3)2+ + 2 H+ - log_k -11.268 - delta_h -160 kJ - -gamma 0 0 - # Id: 204902 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -11.268 + delta_h -160 kJ + -gamma 0 0 + # Id: 204902 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + H+ + NH4+ = HgNH3+2 + 2 H2O - log_k 5.75 - delta_h 0 kJ - -gamma 0 0 - # Id: 3614900 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 2.00 22.0 + log_k 5.75 + delta_h 0 kJ + -gamma 0 0 + # Id: 3614900 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 2.00 22.0 Hg(OH)2 + 2 NH4+ = Hg(NH3)2+2 + 2 H2O - log_k 5.506 - delta_h -246.72 kJ - -gamma 0 0 - # Id: 3614901 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 + log_k 5.506 + delta_h -246.72 kJ + -gamma 0 0 + # Id: 3614901 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 Hg(OH)2 + 3 NH4+ = Hg(NH3)3+2 + 2 H2O + H+ - log_k -3.138 - delta_h -312.72 kJ - -gamma 0 0 - # Id: 3614902 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 2.00 25.0 + log_k -3.138 + delta_h -312.72 kJ + -gamma 0 0 + # Id: 3614902 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 2.00 25.0 Hg(OH)2 + 4 NH4+ = Hg(NH3)4+2 + 2 H2O + 2 H+ - log_k -11.482 - delta_h -379.72 kJ - -gamma 0 0 - # Id: 3614903 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.10 25.0 + log_k -11.482 + delta_h -379.72 kJ + -gamma 0 0 + # Id: 3614903 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.10 25.0 Cu+2 + NH4+ = CuNH3+2 + H+ - log_k -5.234 - delta_h -72 kJ - -gamma 0 0 - # Id: 2314901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -5.234 + delta_h -72 kJ + -gamma 0 0 + # Id: 2314901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ni+2 + NH4+ = NiNH3+2 + H+ - log_k -6.514 - delta_h -67 kJ - -gamma 0 0 - # Id: 5404901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k -6.514 + delta_h -67 kJ + -gamma 0 0 + # Id: 5404901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Ni+2 + 2 NH4+ = Ni(NH3)2+2 + 2 H+ - log_k -13.598 - delta_h -111.6 kJ - -gamma 0 0 - # Id: 5404902 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k -13.598 + delta_h -111.6 kJ + -gamma 0 0 + # Id: 5404902 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Co+2 + NH4+ = Co(NH3)+2 + H+ - log_k -7.164 - delta_h -65 kJ - -gamma 0 0 - # Id: 2004900 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k -7.164 + delta_h -65 kJ + -gamma 0 0 + # Id: 2004900 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Co+2 + 2 NH4+ = Co(NH3)2+2 + 2 H+ - log_k -14.778 - delta_h 0 kJ - -gamma 0 0 - # Id: 2004901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 2.00 25.0 + log_k -14.778 + delta_h 0 kJ + -gamma 0 0 + # Id: 2004901 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 2.00 25.0 Co+2 + 3 NH4+ = Co(NH3)3+2 + 3 H+ - log_k -22.922 - delta_h 0 kJ - -gamma 0 0 - # Id: 2004902 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 2.00 25.0 + log_k -22.922 + delta_h 0 kJ + -gamma 0 0 + # Id: 2004902 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 2.00 25.0 Co+2 + 4 NH4+ = Co(NH3)4+2 + 4 H+ - log_k -31.446 - delta_h 0 kJ - -gamma 0 0 - # Id: 2004903 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 2.00 30.0 + log_k -31.446 + delta_h 0 kJ + -gamma 0 0 + # Id: 2004903 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 2.00 30.0 Co+2 + 5 NH4+ = Co(NH3)5+2 + 5 H+ - log_k -40.47 - delta_h 0 kJ - -gamma 0 0 - # Id: 2004904 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 2.00 30.0 + log_k -40.47 + delta_h 0 kJ + -gamma 0 0 + # Id: 2004904 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 2.00 30.0 Co+3 + 6 NH4+ + H2O = Co(NH3)6OH+2 + 7 H+ - log_k -43.7148 - delta_h 0 kJ - -gamma 0 0 - # Id: 2014901 - # log K source: NIST2.1.1 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -43.7148 + delta_h 0 kJ + -gamma 0 0 + # Id: 2014901 + # log K source: NIST2.1.1 + # Delta H source: MTQ3.11 + #T and ionic strength: Co+3 + 5 NH4+ + Cl- = Co(NH3)5Cl+2 + 5 H+ - log_k -17.9584 - delta_h 113.38 kJ - -gamma 0 0 - # Id: 2014902 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k -17.9584 + delta_h 113.38 kJ + -gamma 0 0 + # Id: 2014902 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Co+3 + 6 NH4+ + Cl- = Co(NH3)6Cl+2 + 6 H+ - log_k -33.9179 - delta_h 104.34 kJ - -gamma 0 0 - # Id: 2014903 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k -33.9179 + delta_h 104.34 kJ + -gamma 0 0 + # Id: 2014903 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Co+3 + 6 NH4+ + Br- = Co(NH3)6Br+2 + 6 H+ - log_k -33.8884 - delta_h 110.57 kJ - -gamma 0 0 - # Id: 2014904 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k -33.8884 + delta_h 110.57 kJ + -gamma 0 0 + # Id: 2014904 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Co+3 + 6 NH4+ + I- = Co(NH3)6I+2 + 6 H+ - log_k -33.4808 - delta_h 115.44 kJ - -gamma 0 0 - # Id: 2014905 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k -33.4808 + delta_h 115.44 kJ + -gamma 0 0 + # Id: 2014905 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Co+3 + 6 NH4+ + SO4-2 = Co(NH3)6SO4+ + 6 H+ - log_k -28.9926 - delta_h 124.5 kJ - -gamma 0 0 - # Id: 2014906 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k -28.9926 + delta_h 124.5 kJ + -gamma 0 0 + # Id: 2014906 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Cr(OH)2+ + 6 NH4+ = Cr(NH3)6+3 + 2 H2O + 4 H+ - log_k -32.8952 - delta_h 0 kJ - -gamma 0 0 - # Id: 2114900 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 4.50 25.0 + log_k -32.8952 + delta_h 0 kJ + -gamma 0 0 + # Id: 2114900 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 4.50 25.0 Cr(OH)2+ + 5 NH4+ = Cr(NH3)5OH+2 + 4 H+ + H2O - log_k -30.2759 - delta_h 0 kJ - -gamma 0 0 - # Id: 2114901 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -30.2759 + delta_h 0 kJ + -gamma 0 0 + # Id: 2114901 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cr(OH)2+ + 6 NH4+ + Cl- = Cr(NH3)6Cl+2 + 2 H2O + 4 H+ - log_k -31.7932 - delta_h 0 kJ - -gamma 0 0 - # Id: 2114904 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -31.7932 + delta_h 0 kJ + -gamma 0 0 + # Id: 2114904 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cr(OH)2+ + 6 NH4+ + Br- = Cr(NH3)6Br+2 + 4 H+ + 2 H2O - log_k -31.887 - delta_h 0 kJ - -gamma 0 0 - # Id: 2114905 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -31.887 + delta_h 0 kJ + -gamma 0 0 + # Id: 2114905 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cr(OH)2+ + 6 NH4+ + I- = Cr(NH3)6I+2 + 4 H+ + 2 H2O - log_k -32.008 - delta_h 0 kJ - -gamma 0 0 - # Id: 2114906 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -32.008 + delta_h 0 kJ + -gamma 0 0 + # Id: 2114906 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: #Cr(OH)2+ + 4NH4+ = cis+ + 4H+ -# log_k -29.8574 -# delta_h 0 kJ -# -gamma 0 0 -# # Id: 4902113 -# # log K source: MTQ3.11 -# # Delta H source: MTQ3.11 -# #T and ionic strength: +# log_k -29.8574 +# delta_h 0 kJ +# -gamma 0 0 +# # Id: 4902113 +# # log K source: MTQ3.11 +# # Delta H source: MTQ3.11 +# #T and ionic strength: #Cr(OH)2+ + 4NH4+ = trans+ + 4H+ -# log_k -30.5537 -# delta_h 0 kJ -# -gamma 0 0 -# # Id: 4902114 -# # log K source: MTQ3.11 -# # Delta H source: MTQ3.11 -# #T and ionic strength: +# log_k -30.5537 +# delta_h 0 kJ +# -gamma 0 0 +# # Id: 4902114 +# # log K source: MTQ3.11 +# # Delta H source: MTQ3.11 +# #T and ionic strength: Ca+2 + NH4+ = CaNH3+2 + H+ - log_k -9.144 - delta_h 0 kJ - -gamma 0 0 - # Id: 1504901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k -9.144 + delta_h 0 kJ + -gamma 0 0 + # Id: 1504901 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Ca+2 + 2 NH4+ = Ca(NH3)2+2 + 2 H+ - log_k -18.788 - delta_h 0 kJ - -gamma 0 0 - # Id: 1504902 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k -18.788 + delta_h 0 kJ + -gamma 0 0 + # Id: 1504902 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Sr+2 + NH4+ = SrNH3+2 + H+ - log_k -9.344 - delta_h 0 kJ - -gamma 0 0 - # Id: 8004901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k -9.344 + delta_h 0 kJ + -gamma 0 0 + # Id: 8004901 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Ba+2 + NH4+ = BaNH3+2 + H+ - log_k -9.444 - delta_h 0 kJ - -gamma 0 0 - # Id: 1004901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k -9.444 + delta_h 0 kJ + -gamma 0 0 + # Id: 1004901 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Tl+ + NO2- = TlNO2 - log_k 0.83 - delta_h 0 kJ - -gamma 0 0 - # Id: 8704910 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 0.83 + delta_h 0 kJ + -gamma 0 0 + # Id: 8704910 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Ag+ + NO2- = AgNO2 - log_k 2.32 - delta_h -29 kJ - -gamma 0 0 - # Id: 204911 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.32 + delta_h -29 kJ + -gamma 0 0 + # Id: 204911 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ag+ + 2 NO2- = Ag(NO2)2- - log_k 2.51 - delta_h -46 kJ - -gamma 0 0 - # Id: 204910 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.51 + delta_h -46 kJ + -gamma 0 0 + # Id: 204910 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cu+2 + NO2- = CuNO2+ - log_k 2.02 - delta_h 0 kJ - -gamma 0 0 - # Id: 2314911 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 2.02 + delta_h 0 kJ + -gamma 0 0 + # Id: 2314911 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cu+2 + 2 NO2- = Cu(NO2)2 - log_k 3.03 - delta_h 0 kJ - -gamma 0 0 - # Id: 2314912 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 3.03 + delta_h 0 kJ + -gamma 0 0 + # Id: 2314912 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Co+2 + NO2- = CoNO2+ - log_k 0.848 - delta_h 0 kJ - -gamma 0 0 - # Id: 2004911 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 0.848 + delta_h 0 kJ + -gamma 0 0 + # Id: 2004911 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Sn(OH)2 + 2 H+ + NO3- = SnNO3+ + 2 H2O - log_k 7.942 - delta_h 0 kJ - -gamma 0 0 - # Id: 7904921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 7.942 + delta_h 0 kJ + -gamma 0 0 + # Id: 7904921 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Pb+2 + NO3- = PbNO3+ - log_k 1.17 - delta_h 2 kJ - -gamma 0 0 - # Id: 6004920 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.17 + delta_h 2 kJ + -gamma 0 0 + # Id: 6004920 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Pb+2 + 2 NO3- = Pb(NO3)2 - log_k 1.4 - delta_h -6.6 kJ - -gamma 0 0 - # Id: 6004921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 1.4 + delta_h -6.6 kJ + -gamma 0 0 + # Id: 6004921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Tl+ + NO3- = TlNO3 - log_k 0.33 - delta_h -2 kJ - -gamma 0 0 - # Id: 8704920 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 0.33 + delta_h -2 kJ + -gamma 0 0 + # Id: 8704920 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Tl(OH)3 + NO3- + 3 H+ = TlNO3+2 + 3 H2O - log_k 7.0073 - delta_h 0 kJ - -gamma 0 0 - # Id: 8714920 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 7.0073 + delta_h 0 kJ + -gamma 0 0 + # Id: 8714920 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cd+2 + NO3- = CdNO3+ - log_k 0.5 - delta_h -21 kJ - -gamma 0 0 - # Id: 1604920 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 0.5 + delta_h -21 kJ + -gamma 0 0 + # Id: 1604920 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cd+2 + 2 NO3- = Cd(NO3)2 - log_k 0.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 1604921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 0.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 1604921 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2 H+ + NO3- = HgNO3+ + 2 H2O - log_k 5.7613 - delta_h 0 kJ - -gamma 0 0 - # Id: 3614920 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 3.00 25.0 + log_k 5.7613 + delta_h 0 kJ + -gamma 0 0 + # Id: 3614920 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 3.00 25.0 Hg(OH)2 + 2 H+ + 2 NO3- = Hg(NO3)2 + 2 H2O - log_k 5.38 - delta_h 0 kJ - -gamma 0 0 - # Id: 3614921 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 3.00 25.0 + log_k 5.38 + delta_h 0 kJ + -gamma 0 0 + # Id: 3614921 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 3.00 25.0 Cu+2 + NO3- = CuNO3+ - log_k 0.5 - delta_h -4.1 kJ - -gamma 0 0 - # Id: 2314921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 0.5 + delta_h -4.1 kJ + -gamma 0 0 + # Id: 2314921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Cu+2 + 2 NO3- = Cu(NO3)2 - log_k -0.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2314922 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -0.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2314922 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Zn+2 + NO3- = ZnNO3+ - log_k 0.4 - delta_h -4.6 kJ - -gamma 0 0 - # Id: 9504921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 0.4 + delta_h -4.6 kJ + -gamma 0 0 + # Id: 9504921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Zn+2 + 2 NO3- = Zn(NO3)2 - log_k -0.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 9504922 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -0.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 9504922 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Ag+ + NO3- = AgNO3 - log_k -0.1 - delta_h 22.6 kJ - -gamma 0 0 - # Id: 204920 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -0.1 + delta_h 22.6 kJ + -gamma 0 0 + # Id: 204920 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ni+2 + NO3- = NiNO3+ - log_k 0.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 5404921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 0.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 5404921 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Co+2 + NO3- = CoNO3+ - log_k 0.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2004921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 0.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2004921 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Co+2 + 2 NO3- = Co(NO3)2 - log_k 0.5085 - delta_h 0 kJ - -gamma 0 0 - # Id: 2004922 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k 0.5085 + delta_h 0 kJ + -gamma 0 0 + # Id: 2004922 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Fe+3 + NO3- = FeNO3+2 - log_k 1 - delta_h -37 kJ - -gamma 0 0 - # Id: 2814921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 1 + delta_h -37 kJ + -gamma 0 0 + # Id: 2814921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Mn+2 + NO3- = MnNO3+ - log_k 0.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 4704921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 0.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 4704921 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Mn+2 + 2 NO3- = Mn(NO3)2 - log_k 0.6 - delta_h -1.6569 kJ - -gamma 0 0 - # Id: 4704920 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 0.6 + delta_h -1.6569 kJ + -gamma 0 0 + # Id: 4704920 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cr(OH)2+ + NO3- + 2 H+ = CrNO3+2 + 2 H2O - log_k 8.2094 - delta_h -65.4378 kJ - -gamma 0 0 - # Id: 2114920 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 8.2094 + delta_h -65.4378 kJ + -gamma 0 0 + # Id: 2114920 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: UO2+2 + NO3- = UO2NO3+ - log_k 0.3 - delta_h -12 kJ - -gamma 0 0 - # Id: 8934921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 0.3 + delta_h -12 kJ + -gamma 0 0 + # Id: 8934921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 VO2+ + NO3- = VO2NO3 - log_k -0.296 - delta_h 0 kJ - -gamma 0 0 - # Id: 9034920 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 + log_k -0.296 + delta_h 0 kJ + -gamma 0 0 + # Id: 9034920 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 Ca+2 + NO3- = CaNO3+ - log_k 0.5 - delta_h -5.4 kJ - -gamma 0 0 - # Id: 1504921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 0.5 + delta_h -5.4 kJ + -gamma 0 0 + # Id: 1504921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Sr+2 + NO3- = SrNO3+ - log_k 0.6 - delta_h -10 kJ - -gamma 0 0 - # Id: 8004921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 0.6 + delta_h -10 kJ + -gamma 0 0 + # Id: 8004921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ba+2 + NO3- = BaNO3+ - log_k 0.7 - delta_h -13 kJ - -gamma 0 0 - # Id: 1004921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 0.7 + delta_h -13 kJ + -gamma 0 0 + # Id: 1004921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 H+ + Cyanide- = HCyanide - log_k 9.21 - delta_h -43.63 kJ - -gamma 0 0 - # Id: 3301431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 9.21 + delta_h -43.63 kJ + -gamma 0 0 + # Id: 3301431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Cd+2 + Cyanide- = CdCyanide+ - log_k 6.01 - delta_h -30 kJ - -gamma 0 0 - # Id: 1601431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 6.01 + delta_h -30 kJ + -gamma 0 0 + # Id: 1601431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Cd+2 + 2 Cyanide- = Cd(Cyanide)2 - log_k 11.12 - delta_h -54.3 kJ - -gamma 0 0 - # Id: 1601432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 11.12 + delta_h -54.3 kJ + -gamma 0 0 + # Id: 1601432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Cd+2 + 3 Cyanide- = Cd(Cyanide)3- - log_k 15.65 - delta_h -90.3 kJ - -gamma 0 0 - # Id: 1601433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 15.65 + delta_h -90.3 kJ + -gamma 0 0 + # Id: 1601433 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Cd+2 + 4 Cyanide- = Cd(Cyanide)4-2 - log_k 17.92 - delta_h -112 kJ - -gamma 0 0 - # Id: 1601434 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 17.92 + delta_h -112 kJ + -gamma 0 0 + # Id: 1601434 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2 H+ + Cyanide- = HgCyanide+ + 2 H2O - log_k 23.194 - delta_h -136.72 kJ - -gamma 0 0 - # Id: 3611431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 23.194 + delta_h -136.72 kJ + -gamma 0 0 + # Id: 3611431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2 H+ + 2 Cyanide- = Hg(Cyanide)2 + 2 H2O - log_k 38.944 - delta_h 154.28 kJ - -gamma 0 0 - # Id: 3611432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 38.944 + delta_h 154.28 kJ + -gamma 0 0 + # Id: 3611432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2 H+ + 3 Cyanide- = Hg(Cyanide)3- + 2 H2O - log_k 42.504 - delta_h -262.72 kJ - -gamma 0 0 - # Id: 3611433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 42.504 + delta_h -262.72 kJ + -gamma 0 0 + # Id: 3611433 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2 H+ + 4 Cyanide- = Hg(Cyanide)4-2 + 2 H2O - log_k 45.164 - delta_h -288.72 kJ - -gamma 0 0 - # Id: 3611434 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 45.164 + delta_h -288.72 kJ + -gamma 0 0 + # Id: 3611434 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Cu+ + 2 Cyanide- = Cu(Cyanide)2- - log_k 21.9145 - delta_h -121 kJ - -gamma 0 0 - # Id: 2301432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 21.9145 + delta_h -121 kJ + -gamma 0 0 + # Id: 2301432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Cu+ + 3 Cyanide- = Cu(Cyanide)3-2 - log_k 27.2145 - delta_h -167.4 kJ - -gamma 0 0 - # Id: 2301433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 27.2145 + delta_h -167.4 kJ + -gamma 0 0 + # Id: 2301433 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Cu+ + 4 Cyanide- = Cu(Cyanide)4-3 - log_k 28.7145 - delta_h -214.2 kJ - -gamma 0 0 - # Id: 2301431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 28.7145 + delta_h -214.2 kJ + -gamma 0 0 + # Id: 2301431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ag+ + 2 Cyanide- = Ag(Cyanide)2- - log_k 20.48 - delta_h -137 kJ - -gamma 0 0 - # Id: 201432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 20.48 + delta_h -137 kJ + -gamma 0 0 + # Id: 201432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ag+ + 3 Cyanide- = Ag(Cyanide)3-2 - log_k 21.7 - delta_h -140 kJ - -gamma 0 0 - # Id: 201433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 21.7 + delta_h -140 kJ + -gamma 0 0 + # Id: 201433 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ag+ + H2O + Cyanide- = Ag(Cyanide)OH- + H+ - log_k -0.777 - delta_h 0 kJ - -gamma 0 0 - # Id: 201431 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -0.777 + delta_h 0 kJ + -gamma 0 0 + # Id: 201431 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Ni+2 + 4 Cyanide- = Ni(Cyanide)4-2 - log_k 30.2 - delta_h -180 kJ - -gamma 0 0 - # Id: 5401431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 30.2 + delta_h -180 kJ + -gamma 0 0 + # Id: 5401431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ni+2 + 4 Cyanide- + H+ = NiH(Cyanide)4- - log_k 36.0289 - delta_h 0 kJ - -gamma 0 0 - # Id: 5401432 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 + log_k 36.0289 + delta_h 0 kJ + -gamma 0 0 + # Id: 5401432 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 Ni+2 + 4 Cyanide- + 2 H+ = NiH2Cyanide4 - log_k 40.7434 - delta_h 0 kJ - -gamma 0 0 - # Id: 5401433 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 + log_k 40.7434 + delta_h 0 kJ + -gamma 0 0 + # Id: 5401433 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 Ni+2 + 4 Cyanide- + 3 H+ = NiH3(Cyanide)4+ - log_k 43.3434 - delta_h 0 kJ - -gamma 0 0 - # Id: 5401434 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 + log_k 43.3434 + delta_h 0 kJ + -gamma 0 0 + # Id: 5401434 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 Co+2 + 3 Cyanide- = Co(Cyanide)3- - log_k 14.312 - delta_h 0 kJ - -gamma 0 0 - # Id: 2001431 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 14.312 + delta_h 0 kJ + -gamma 0 0 + # Id: 2001431 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Co+2 + 5 Cyanide- = Co(Cyanide)5-3 - log_k 23 - delta_h -257 kJ - -gamma 0 0 - # Id: 2001432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 1.00 25.0 + log_k 23 + delta_h -257 kJ + -gamma 0 0 + # Id: 2001432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 1.00 25.0 Fe+2 + 6 Cyanide- = Fe(Cyanide)6-4 - log_k 35.4 - delta_h -358 kJ - -gamma 0 0 - # Id: 2801431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 35.4 + delta_h -358 kJ + -gamma 0 0 + # Id: 2801431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 H+ + Fe+2 + 6 Cyanide- = HFe(Cyanide)6-3 - log_k 39.71 - delta_h -356 kJ - -gamma 0 0 - # Id: 2801432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 39.71 + delta_h -356 kJ + -gamma 0 0 + # Id: 2801432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 2 H+ + Fe+2 + 6 Cyanide- = H2Fe(Cyanide)6-2 - log_k 42.11 - delta_h -352 kJ - -gamma 0 0 - # Id: 2801433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 42.11 + delta_h -352 kJ + -gamma 0 0 + # Id: 2801433 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Fe+3 + 6 Cyanide- = Fe(Cyanide)6-3 - log_k 43.6 - delta_h -293 kJ - -gamma 0 0 - # Id: 2811431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 43.6 + delta_h -293 kJ + -gamma 0 0 + # Id: 2811431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 2 Fe+3 + 6 Cyanide- = Fe2(Cyanide)6 - log_k 47.6355 - delta_h -218 kJ - -gamma 0 0 - # Id: 2811432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 + log_k 47.6355 + delta_h -218 kJ + -gamma 0 0 + # Id: 2811432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 Sn(OH)2 + Fe+3 + 6 Cyanide- + 2 H+ = SnFe(Cyanide)6- + 2 H2O - log_k 53.54 - delta_h 0 kJ - -gamma 0 0 - # Id: 7901431 - # log K source: Ba1987 - # Delta H source: - #T and ionic strength: 0.00 25.0 + log_k 53.54 + delta_h 0 kJ + -gamma 0 0 + # Id: 7901431 + # log K source: Ba1987 + # Delta H source: + #T and ionic strength: 0.00 25.0 NH4+ + Fe+2 + 6 Cyanide- = NH4Fe(Cyanide)6-3 - log_k 37.7 - delta_h -354 kJ - -gamma 0 0 - # Id: 4901431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 37.7 + delta_h -354 kJ + -gamma 0 0 + # Id: 4901431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Tl+ + Fe+2 + 6 Cyanide- = TlFe(Cyanide)6-3 - log_k 38.4 - delta_h -365.5 kJ - -gamma 0 0 - # Id: 8701432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 38.4 + delta_h -365.5 kJ + -gamma 0 0 + # Id: 8701432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Mg+2 + Fe+3 + 6 Cyanide- = MgFe(Cyanide)6- - log_k 46.39 - delta_h -290 kJ - -gamma 0 0 - # Id: 4601431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 46.39 + delta_h -290 kJ + -gamma 0 0 + # Id: 4601431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Mg+2 + Fe+2 + 6 Cyanide- = MgFe(Cyanide)6-2 - log_k 39.21 - delta_h -346 kJ - -gamma 0 0 - # Id: 4601432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 39.21 + delta_h -346 kJ + -gamma 0 0 + # Id: 4601432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ca+2 + Fe+3 + 6 Cyanide- = CaFe(Cyanide)6- - log_k 46.43 - delta_h -291 kJ - -gamma 0 0 - # Id: 1501431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 46.43 + delta_h -291 kJ + -gamma 0 0 + # Id: 1501431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ca+2 + Fe+2 + 6 Cyanide- = CaFe(Cyanide)6-2 - log_k 39.1 - delta_h -347 kJ - -gamma 0 0 - # Id: 1501432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 39.1 + delta_h -347 kJ + -gamma 0 0 + # Id: 1501432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 2 Ca+2 + Fe+2 + 6 Cyanide- = Ca2Fe(Cyanide)6 - log_k 40.6 - delta_h -350.201 kJ - -gamma 0 0 - # Id: 1501433 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 40.6 + delta_h -350.201 kJ + -gamma 0 0 + # Id: 1501433 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Sr+2 + Fe+3 + 6 Cyanide- = SrFe(Cyanide)6- - log_k 46.45 - delta_h -292 kJ - -gamma 0 0 - # Id: 8001431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 46.45 + delta_h -292 kJ + -gamma 0 0 + # Id: 8001431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Sr+2 + Fe+2 + 6 Cyanide- = SrFe(Cyanide)6-2 - log_k 39.1 - delta_h -350 kJ - -gamma 0 0 - # Id: 8001432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 39.1 + delta_h -350 kJ + -gamma 0 0 + # Id: 8001432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ba+2 + Fe+2 + 6 Cyanide- = BaFe(Cyanide)6-2 - log_k 39.19 - delta_h -342 kJ - -gamma 0 0 - # Id: 1001430 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 39.19 + delta_h -342 kJ + -gamma 0 0 + # Id: 1001430 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ba+2 + Fe+3 + 6 Cyanide- = BaFe(Cyanide)6- - log_k 46.48 - delta_h -292 kJ - -gamma 0 0 - # Id: 1001431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 46.48 + delta_h -292 kJ + -gamma 0 0 + # Id: 1001431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Na+ + Fe+2 + 6 Cyanide- = NaFe(Cyanide)6-3 - log_k 37.6 - delta_h -354 kJ - -gamma 0 0 - # Id: 5001431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 37.6 + delta_h -354 kJ + -gamma 0 0 + # Id: 5001431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 K+ + Fe+2 + 6 Cyanide- = KFe(Cyanide)6-3 - log_k 37.75 - delta_h -353.9 kJ - -gamma 0 0 - # Id: 4101433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 37.75 + delta_h -353.9 kJ + -gamma 0 0 + # Id: 4101433 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 K+ + Fe+3 + 6 Cyanide- = KFe(Cyanide)6-2 - log_k 45.04 - delta_h -291 kJ - -gamma 0 0 - # Id: 4101430 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 45.04 + delta_h -291 kJ + -gamma 0 0 + # Id: 4101430 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 H+ + PO4-3 = HPO4-2 - log_k 12.375 - delta_h -15 kJ - -gamma 5 0 - # Id: 3305800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 12.375 + delta_h -15 kJ + -gamma 5 0 + # Id: 3305800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 2 H+ + PO4-3 = H2PO4- - log_k 19.573 - delta_h -18 kJ - -gamma 5.4 0 - # Id: 3305801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 19.573 + delta_h -18 kJ + -gamma 5.4 0 + # Id: 3305801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 3 H+ + PO4-3 = H3PO4 - log_k 21.721 - delta_h -10.1 kJ - -gamma 0 0 - # Id: 3305802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 21.721 + delta_h -10.1 kJ + -gamma 0 0 + # Id: 3305802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Co+2 + H+ + PO4-3 = CoHPO4 - log_k 15.4128 - delta_h 0 kJ - -gamma 0 0 - # Id: 2005800 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 + log_k 15.4128 + delta_h 0 kJ + -gamma 0 0 + # Id: 2005800 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 Fe+2 + 2 H+ + PO4-3 = FeH2PO4+ - log_k 22.273 - delta_h 0 kJ - -gamma 5.4 0 - # Id: 2805800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 22.273 + delta_h 0 kJ + -gamma 5.4 0 + # Id: 2805800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Fe+2 + H+ + PO4-3 = FeHPO4 - log_k 15.975 - delta_h 0 kJ - -gamma 0 0 - # Id: 2805801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 15.975 + delta_h 0 kJ + -gamma 0 0 + # Id: 2805801 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Fe+3 + 2 H+ + PO4-3 = FeH2PO4+2 - log_k 23.8515 - delta_h 0 kJ - -gamma 5.4 0 - # Id: 2815801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k 23.8515 + delta_h 0 kJ + -gamma 5.4 0 + # Id: 2815801 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Fe+3 + H+ + PO4-3 = FeHPO4+ - log_k 22.292 - delta_h -30.5432 kJ - -gamma 5.4 0 - # Id: 2815800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k 22.292 + delta_h -30.5432 kJ + -gamma 5.4 0 + # Id: 2815800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Cr(OH)2+ + 4 H+ + PO4-3 = CrH2PO4+2 + 2 H2O - log_k 31.9068 - delta_h 0 kJ - -gamma 0 0 - # Id: 2115800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 31.9068 + delta_h 0 kJ + -gamma 0 0 + # Id: 2115800 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: U+4 + PO4-3 + H+ = UHPO4+2 - log_k 24.443 - delta_h 31.38 kJ - -gamma 0 0 - # Id: 8915800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 24.443 + delta_h 31.38 kJ + -gamma 0 0 + # Id: 8915800 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: U+4 + 2 PO4-3 + 2 H+ = U(HPO4)2 - log_k 46.833 - delta_h 7.1128 kJ - -gamma 0 0 - # Id: 8915801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 46.833 + delta_h 7.1128 kJ + -gamma 0 0 + # Id: 8915801 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: U+4 + 3 PO4-3 + 3 H+ = U(HPO4)3-2 - log_k 67.564 - delta_h -32.6352 kJ - -gamma 0 0 - # Id: 8915802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 67.564 + delta_h -32.6352 kJ + -gamma 0 0 + # Id: 8915802 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: U+4 + 4 PO4-3 + 4 H+ = U(HPO4)4-4 - log_k 88.483 - delta_h -110.876 kJ - -gamma 0 0 - # Id: 8915803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 88.483 + delta_h -110.876 kJ + -gamma 0 0 + # Id: 8915803 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: UO2+2 + H+ + PO4-3 = UO2HPO4 - log_k 19.655 - delta_h -8.7864 kJ - -gamma 0 0 - # Id: 8935800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 19.655 + delta_h -8.7864 kJ + -gamma 0 0 + # Id: 8935800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 UO2+2 + 2 PO4-3 + 2 H+ = UO2(HPO4)2-2 - log_k 42.988 - delta_h -47.6934 kJ - -gamma 0 0 - # Id: 8935801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 42.988 + delta_h -47.6934 kJ + -gamma 0 0 + # Id: 8935801 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: UO2+2 + 2 H+ + PO4-3 = UO2H2PO4+ - log_k 22.833 - delta_h -15.4808 kJ - -gamma 0 0 - # Id: 8935802 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 22.833 + delta_h -15.4808 kJ + -gamma 0 0 + # Id: 8935802 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 UO2+2 + 2 PO4-3 + 4 H+ = UO2(H2PO4)2 - log_k 44.7 - delta_h -69.036 kJ - -gamma 0 0 - # Id: 8935803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 44.7 + delta_h -69.036 kJ + -gamma 0 0 + # Id: 8935803 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: UO2+2 + 3 PO4-3 + 6 H+ = UO2(H2PO4)3- - log_k 66.245 - delta_h -119.662 kJ - -gamma 0 0 - # Id: 8935804 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 66.245 + delta_h -119.662 kJ + -gamma 0 0 + # Id: 8935804 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: UO2+2 + PO4-3 = UO2PO4- - log_k 13.25 - delta_h 0 kJ - -gamma 0 0 - # Id: 8935805 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 13.25 + delta_h 0 kJ + -gamma 0 0 + # Id: 8935805 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Mg+2 + PO4-3 = MgPO4- - log_k 4.654 - delta_h 12.9704 kJ - -gamma 5.4 0 - # Id: 4605800 - # log K source: SCD3.02 (1993 GMa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.20 25.0 + log_k 4.654 + delta_h 12.9704 kJ + -gamma 5.4 0 + # Id: 4605800 + # log K source: SCD3.02 (1993 GMa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.20 25.0 Mg+2 + 2 H+ + PO4-3 = MgH2PO4+ - log_k 21.2561 - delta_h -4.6861 kJ - -gamma 5.4 0 - # Id: 4605801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 37.0 + log_k 21.2561 + delta_h -4.6861 kJ + -gamma 5.4 0 + # Id: 4605801 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 37.0 Mg+2 + H+ + PO4-3 = MgHPO4 - log_k 15.175 - delta_h -3 kJ - -gamma 0 0 - # Id: 4605802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 15.175 + delta_h -3 kJ + -gamma 0 0 + # Id: 4605802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ca+2 + H+ + PO4-3 = CaHPO4 - log_k 15.035 - delta_h -3 kJ - -gamma 0 0 - # Id: 1505800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 15.035 + delta_h -3 kJ + -gamma 0 0 + # Id: 1505800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ca+2 + PO4-3 = CaPO4- - log_k 6.46 - delta_h 12.9704 kJ - -gamma 5.4 0 - # Id: 1505801 - # log K source: SCD3.02 (1993 GMa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 6.46 + delta_h 12.9704 kJ + -gamma 5.4 0 + # Id: 1505801 + # log K source: SCD3.02 (1993 GMa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Ca+2 + 2 H+ + PO4-3 = CaH2PO4+ - log_k 20.923 - delta_h -6 kJ - -gamma 5.4 0 - # Id: 1505802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 20.923 + delta_h -6 kJ + -gamma 5.4 0 + # Id: 1505802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Sr+2 + H+ + PO4-3 = SrHPO4 - log_k 14.8728 - delta_h 0 kJ - -gamma 0 0 - # Id: 8005800 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 + log_k 14.8728 + delta_h 0 kJ + -gamma 0 0 + # Id: 8005800 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 Sr+2 + 2 H+ + PO4-3 = SrH2PO4+ - log_k 20.4019 - delta_h 0 kJ - -gamma 0 0 - # Id: 8005801 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 20.0 + log_k 20.4019 + delta_h 0 kJ + -gamma 0 0 + # Id: 8005801 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 20.0 Na+ + H+ + PO4-3 = NaHPO4- - log_k 13.445 - delta_h 0 kJ - -gamma 5.4 0 - # Id: 5005800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 13.445 + delta_h 0 kJ + -gamma 5.4 0 + # Id: 5005800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 K+ + H+ + PO4-3 = KHPO4- - log_k 13.255 - delta_h 0 kJ - -gamma 5.4 0 - # Id: 4105800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 13.255 + delta_h 0 kJ + -gamma 5.4 0 + # Id: 4105800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 H3AsO3 = AsO3-3 + 3 H+ - log_k -34.744 - delta_h 84.726 kJ - -gamma 0 0 - # Id: 3300602 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -34.744 + delta_h 84.726 kJ + -gamma 0 0 + # Id: 3300602 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: H3AsO3 = HAsO3-2 + 2 H+ - log_k -21.33 - delta_h 59.4086 kJ - -gamma 0 0 - # Id: 3300601 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -21.33 + delta_h 59.4086 kJ + -gamma 0 0 + # Id: 3300601 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: H3AsO3 = H2AsO3- + H+ - log_k -9.29 - delta_h 27.41 kJ - -gamma 0 0 - # Id: 3300600 - # log K source: NIST46.4 - # Delta H source: NIST2.1.1 - #T and ionic strength: 0.00 25.0 + log_k -9.29 + delta_h 27.41 kJ + -gamma 0 0 + # Id: 3300600 + # log K source: NIST46.4 + # Delta H source: NIST2.1.1 + #T and ionic strength: 0.00 25.0 H3AsO3 + H+ = H4AsO3+ - log_k -0.305 - delta_h 0 kJ - -gamma 0 0 - # Id: 3300603 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -0.305 + delta_h 0 kJ + -gamma 0 0 + # Id: 3300603 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: H3AsO4 = AsO4-3 + 3 H+ - log_k -20.7 - delta_h 12.9 kJ - -gamma 0 0 - # Id: 3300613 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -20.7 + delta_h 12.9 kJ + -gamma 0 0 + # Id: 3300613 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 H3AsO4 = HAsO4-2 + 2 H+ - log_k -9.2 - delta_h -4.1 kJ - -gamma 0 0 - # Id: 3300612 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -9.2 + delta_h -4.1 kJ + -gamma 0 0 + # Id: 3300612 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 H3AsO4 = H2AsO4- + H+ - log_k -2.24 - delta_h -7.1 kJ - -gamma 0 0 - # Id: 3300611 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -2.24 + delta_h -7.1 kJ + -gamma 0 0 + # Id: 3300611 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Sb(OH)3 + H2O = Sb(OH)4- + H+ - log_k -12.0429 - delta_h 69.8519 kJ - -gamma 0 0 - # Id: 7400020 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: + log_k -12.0429 + delta_h 69.8519 kJ + -gamma 0 0 + # Id: 7400020 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: Sb(OH)3 + H+ = Sb(OH)2+ + H2O - log_k 1.3853 - delta_h 0 kJ - -gamma 0 0 - # Id: 7403302 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: + log_k 1.3853 + delta_h 0 kJ + -gamma 0 0 + # Id: 7403302 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: Sb(OH)3 = HSbO2 + H2O - log_k -0.0105 - delta_h -0.13 kJ - -gamma 0 0 - # Id: 7400021 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k -0.0105 + delta_h -0.13 kJ + -gamma 0 0 + # Id: 7400021 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Sb(OH)3 = SbO2- + H2O + H+ - log_k -11.8011 - delta_h 70.1866 kJ - -gamma 0 0 - # Id: 7403301 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: + log_k -11.8011 + delta_h 70.1866 kJ + -gamma 0 0 + # Id: 7403301 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: Sb(OH)3 + H+ = SbO+ + 2 H2O - log_k 0.9228 - delta_h 8.2425 kJ - -gamma 0 0 - # Id: 7403300 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: + log_k 0.9228 + delta_h 8.2425 kJ + -gamma 0 0 + # Id: 7403300 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: Sb(OH)6- = SbO3- + 3 H2O - log_k 2.9319 - delta_h 0 kJ - -gamma 0 0 - # Id: 7410021 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: + log_k 2.9319 + delta_h 0 kJ + -gamma 0 0 + # Id: 7410021 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: Sb(OH)6- + 2 H+ = SbO2+ + 4 H2O - log_k 2.3895 - delta_h 0 kJ - -gamma 0 0 - # Id: 7413300 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: + log_k 2.3895 + delta_h 0 kJ + -gamma 0 0 + # Id: 7413300 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: H+ + CO3-2 = HCO3- - log_k 10.329 - delta_h -14.6 kJ - -gamma 5.4 0 - # Id: 3301400 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 10.329 + delta_h -14.6 kJ + -gamma 5.4 0 + # Id: 3301400 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 2 H+ + CO3-2 = H2CO3 - log_k 16.681 - delta_h -23.76 kJ - -gamma 0 0 - # Id: 3301401 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 16.681 + delta_h -23.76 kJ + -gamma 0 0 + # Id: 3301401 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Pb+2 + 2 CO3-2 = Pb(CO3)2-2 - log_k 9.938 - delta_h 0 kJ - -gamma 0 0 - # Id: 6001400 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k 9.938 + delta_h 0 kJ + -gamma 0 0 + # Id: 6001400 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Pb+2 + CO3-2 = PbCO3 - log_k 6.478 - delta_h 0 kJ - -gamma 0 0 - # Id: 6001401 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k 6.478 + delta_h 0 kJ + -gamma 0 0 + # Id: 6001401 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Pb+2 + CO3-2 + H+ = PbHCO3+ - log_k 13.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 6001402 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 13.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 6001402 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Zn+2 + CO3-2 = ZnCO3 - log_k 4.76 - delta_h 0 kJ - -gamma 0 0 - # Id: 9501401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 4.76 + delta_h 0 kJ + -gamma 0 0 + # Id: 9501401 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Zn+2 + H+ + CO3-2 = ZnHCO3+ - log_k 11.829 - delta_h 0 kJ - -gamma 0 0 - # Id: 9501400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 11.829 + delta_h 0 kJ + -gamma 0 0 + # Id: 9501400 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2 H+ + CO3-2 = HgCO3 + 2 H2O - log_k 18.272 - delta_h 0 kJ - -gamma 0 0 - # Id: 3611401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k 18.272 + delta_h 0 kJ + -gamma 0 0 + # Id: 3611401 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Hg(OH)2 + 2 H+ + 2 CO3-2 = Hg(CO3)2-2 + 2 H2O - log_k 21.772 - delta_h 0 kJ - -gamma 0 0 - # Id: 3611402 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k 21.772 + delta_h 0 kJ + -gamma 0 0 + # Id: 3611402 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Hg(OH)2 + 3 H+ + CO3-2 = HgHCO3+ + 2 H2O - log_k 22.542 - delta_h 0 kJ - -gamma 0 0 - # Id: 3611403 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k 22.542 + delta_h 0 kJ + -gamma 0 0 + # Id: 3611403 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Cd+2 + CO3-2 = CdCO3 - log_k 4.3578 - delta_h 0 kJ - -gamma 0 0 - # Id: 1601401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 + log_k 4.3578 + delta_h 0 kJ + -gamma 0 0 + # Id: 1601401 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 Cd+2 + H+ + CO3-2 = CdHCO3+ - log_k 10.6863 - delta_h 0 kJ - -gamma 0 0 - # Id: 1601400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 3.00 25.0 + log_k 10.6863 + delta_h 0 kJ + -gamma 0 0 + # Id: 1601400 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 3.00 25.0 Cd+2 + 2 CO3-2 = Cd(CO3)2-2 - log_k 7.2278 - delta_h 0 kJ - -gamma 0 0 - # Id: 1601403 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 20.0 + log_k 7.2278 + delta_h 0 kJ + -gamma 0 0 + # Id: 1601403 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 20.0 Cu+2 + CO3-2 = CuCO3 - log_k 6.77 - delta_h 0 kJ - -gamma 0 0 - # Id: 2311400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 6.77 + delta_h 0 kJ + -gamma 0 0 + # Id: 2311400 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cu+2 + H+ + CO3-2 = CuHCO3+ - log_k 12.129 - delta_h 0 kJ - -gamma 0 0 - # Id: 2311402 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 12.129 + delta_h 0 kJ + -gamma 0 0 + # Id: 2311402 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cu+2 + 2 CO3-2 = Cu(CO3)2-2 - log_k 10.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2311401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 10.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2311401 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Ni+2 + CO3-2 = NiCO3 - log_k 4.5718 - delta_h 0 kJ - -gamma 0 0 - # Id: 5401401 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.70 25.0 + log_k 4.5718 + delta_h 0 kJ + -gamma 0 0 + # Id: 5401401 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.70 25.0 Ni+2 + H+ + CO3-2 = NiHCO3+ - log_k 12.4199 - delta_h 0 kJ - -gamma 0 0 - # Id: 5401400 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.70 25.0 + log_k 12.4199 + delta_h 0 kJ + -gamma 0 0 + # Id: 5401400 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.70 25.0 Co+2 + CO3-2 = CoCO3 - log_k 4.228 - delta_h 0 kJ - -gamma 0 0 - # Id: 2001400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k 4.228 + delta_h 0 kJ + -gamma 0 0 + # Id: 2001400 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Co+2 + H+ + CO3-2 = CoHCO3+ - log_k 12.2199 - delta_h 0 kJ - -gamma 0 0 - # Id: 2001401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.70 25.0 + log_k 12.2199 + delta_h 0 kJ + -gamma 0 0 + # Id: 2001401 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.70 25.0 Fe+2 + H+ + CO3-2 = FeHCO3+ - log_k 11.429 - delta_h 0 kJ - -gamma 6 0 - # Id: 2801400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 11.429 + delta_h 0 kJ + -gamma 6 0 + # Id: 2801400 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Mn+2 + H+ + CO3-2 = MnHCO3+ - log_k 11.629 - delta_h -10.6 kJ - -gamma 5 0 - # Id: 4701400 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 11.629 + delta_h -10.6 kJ + -gamma 5 0 + # Id: 4701400 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 UO2+2 + CO3-2 = UO2CO3 - log_k 9.6 - delta_h 4 kJ - -gamma 0 0 - # Id: 8931400 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 9.6 + delta_h 4 kJ + -gamma 0 0 + # Id: 8931400 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 UO2+2 + 2 CO3-2 = UO2(CO3)2-2 - log_k 16.9 - delta_h 16 kJ - -gamma 0 0 - # Id: 8931401 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 16.9 + delta_h 16 kJ + -gamma 0 0 + # Id: 8931401 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 UO2+2 + 3 CO3-2 = UO2(CO3)3-4 - log_k 21.6 - delta_h -40 kJ - -gamma 0 0 - # Id: 8931402 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 21.6 + delta_h -40 kJ + -gamma 0 0 + # Id: 8931402 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Be+2 + CO3-2 = BeCO3 - log_k 6.2546 - delta_h 0 kJ - -gamma 0 0 - # Id: 1101401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 3.00 25.0 + log_k 6.2546 + delta_h 0 kJ + -gamma 0 0 + # Id: 1101401 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 3.00 25.0 Mg+2 + CO3-2 = MgCO3 - log_k 2.92 - delta_h 12 kJ - -gamma 0 0 - # Id: 4601400 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.92 + delta_h 12 kJ + -gamma 0 0 + # Id: 4601400 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Mg+2 + H+ + CO3-2 = MgHCO3+ - log_k 11.339 - delta_h -10.6 kJ - -gamma 4 0 - # Id: 4601401 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 11.339 + delta_h -10.6 kJ + -gamma 4 0 + # Id: 4601401 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ca+2 + H+ + CO3-2 = CaHCO3+ - log_k 11.599 - delta_h 5.4 kJ - -gamma 6 0 - # Id: 1501400 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 11.599 + delta_h 5.4 kJ + -gamma 6 0 + # Id: 1501400 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 CO3-2 + Ca+2 = CaCO3 - log_k 3.2 - delta_h 16 kJ - -gamma 0 0 - # Id: 1501401 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 3.2 + delta_h 16 kJ + -gamma 0 0 + # Id: 1501401 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Sr+2 + CO3-2 = SrCO3 - log_k 2.81 - delta_h 20 kJ - -gamma 0 0 - # Id: 8001401 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.81 + delta_h 20 kJ + -gamma 0 0 + # Id: 8001401 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Sr+2 + H+ + CO3-2 = SrHCO3+ - log_k 11.539 - delta_h 10.4 kJ - -gamma 6 0 - # Id: 8001400 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 11.539 + delta_h 10.4 kJ + -gamma 6 0 + # Id: 8001400 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ba+2 + CO3-2 = BaCO3 - log_k 2.71 - delta_h 16 kJ - -gamma 0 0 - # Id: 1001401 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.71 + delta_h 16 kJ + -gamma 0 0 + # Id: 1001401 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ba+2 + H+ + CO3-2 = BaHCO3+ - log_k 11.309 - delta_h 10.4 kJ - -gamma 6 0 - # Id: 1001400 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 11.309 + delta_h 10.4 kJ + -gamma 6 0 + # Id: 1001400 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Na+ + CO3-2 = NaCO3- - log_k 1.27 - delta_h -20.35 kJ - -gamma 5.4 0 - # Id: 5001400 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 - #T and ionic strength: 0.00 25.0 + log_k 1.27 + delta_h -20.35 kJ + -gamma 5.4 0 + # Id: 5001400 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 + #T and ionic strength: 0.00 25.0 Na+ + H+ + CO3-2 = NaHCO3 - log_k 10.079 - delta_h -28.3301 kJ - -gamma 0 0 - # Id: 5001401 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 - #T and ionic strength: 0.00 25.0 + log_k 10.079 + delta_h -28.3301 kJ + -gamma 0 0 + # Id: 5001401 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 + #T and ionic strength: 0.00 25.0 H4SiO4 = H2SiO4-2 + 2 H+ - log_k -23.04 - delta_h 61 kJ - -gamma 5.4 0 - # Id: 3307701 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -23.04 + delta_h 61 kJ + -gamma 5.4 0 + # Id: 3307701 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 H4SiO4 = H3SiO4- + H+ - log_k -9.84 - delta_h 20 kJ - -gamma 4 0 - # Id: 3307700 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -9.84 + delta_h 20 kJ + -gamma 4 0 + # Id: 3307700 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 UO2+2 + H4SiO4 = UO2H3SiO4+ + H+ - log_k -1.9111 - delta_h 0 kJ - -gamma 0 0 - # Id: 8937700 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 + log_k -1.9111 + delta_h 0 kJ + -gamma 0 0 + # Id: 8937700 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 H3BO3 = H2BO3- + H+ - log_k -9.236 - delta_h 13 kJ - -gamma 2.5 0 - # Id: 3300900 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -9.236 + delta_h 13 kJ + -gamma 2.5 0 + # Id: 3300900 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 2 H3BO3 = H5(BO3)2- + H+ - log_k -9.306 - delta_h 8.4 kJ - -gamma 2.5 0 - # Id: 3300901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -9.306 + delta_h 8.4 kJ + -gamma 2.5 0 + # Id: 3300901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 3 H3BO3 = H8(BO3)3- + H+ - log_k -7.306 - delta_h 29.4 kJ - -gamma 2.5 0 - # Id: 3300902 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -7.306 + delta_h 29.4 kJ + -gamma 2.5 0 + # Id: 3300902 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ag+ + H3BO3 = AgH2BO3 + H+ - log_k -8.036 - delta_h 0 kJ - -gamma 2.5 0 - # Id: 200901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -8.036 + delta_h 0 kJ + -gamma 2.5 0 + # Id: 200901 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Mg+2 + H3BO3 = MgH2BO3+ + H+ - log_k -7.696 - delta_h 13 kJ - -gamma 2.5 0 - # Id: 4600901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -7.696 + delta_h 13 kJ + -gamma 2.5 0 + # Id: 4600901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ca+2 + H3BO3 = CaH2BO3+ + H+ - log_k -7.476 - delta_h 17 kJ - -gamma 2.5 0 - # Id: 1500901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -7.476 + delta_h 17 kJ + -gamma 2.5 0 + # Id: 1500901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Sr+2 + H3BO3 = SrH2BO3+ + H+ - log_k -7.686 - delta_h 17 kJ - -gamma 2.5 0 - # Id: 8000901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -7.686 + delta_h 17 kJ + -gamma 2.5 0 + # Id: 8000901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ba+2 + H3BO3 = BaH2BO3+ + H+ - log_k -7.746 - delta_h 17 kJ - -gamma 2.5 0 - # Id: 1000901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -7.746 + delta_h 17 kJ + -gamma 2.5 0 + # Id: 1000901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Na+ + H3BO3 = NaH2BO3 + H+ - log_k -9.036 - delta_h 0 kJ - -gamma 2.5 0 - # Id: 5000901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -9.036 + delta_h 0 kJ + -gamma 2.5 0 + # Id: 5000901 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 CrO4-2 + H+ = HCrO4- - log_k 6.51 - delta_h 2 kJ - -gamma 0 0 - # Id: 2123300 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 6.51 + delta_h 2 kJ + -gamma 0 0 + # Id: 2123300 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 CrO4-2 + 2 H+ = H2CrO4 - log_k 6.4188 - delta_h 39 kJ - -gamma 0 0 - # Id: 2123301 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 20.0 + log_k 6.4188 + delta_h 39 kJ + -gamma 0 0 + # Id: 2123301 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 20.0 2 CrO4-2 + 2 H+ = Cr2O7-2 + H2O - log_k 14.56 - delta_h -15 kJ - -gamma 0 0 - # Id: 2123302 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 14.56 + delta_h -15 kJ + -gamma 0 0 + # Id: 2123302 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 CrO4-2 + Cl- + 2 H+ = CrO3Cl- + H2O - log_k 7.3086 - delta_h 0 kJ - -gamma 0 0 - # Id: 2121800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 7.3086 + delta_h 0 kJ + -gamma 0 0 + # Id: 2121800 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: CrO4-2 + SO4-2 + 2 H+ = CrO3SO4-2 + H2O - log_k 8.9937 - delta_h 0 kJ - -gamma 0 0 - # Id: 2127320 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 8.9937 + delta_h 0 kJ + -gamma 0 0 + # Id: 2127320 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: CrO4-2 + 4 H+ + PO4-3 = CrO3H2PO4- + H2O - log_k 29.3634 - delta_h 0 kJ - -gamma 0 0 - # Id: 2125800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 29.3634 + delta_h 0 kJ + -gamma 0 0 + # Id: 2125800 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: CrO4-2 + 3 H+ + PO4-3 = CrO3HPO4-2 + H2O - log_k 26.6806 - delta_h 0 kJ - -gamma 0 0 - # Id: 2125801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 26.6806 + delta_h 0 kJ + -gamma 0 0 + # Id: 2125801 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: CrO4-2 + Na+ = NaCrO4- - log_k 0.6963 - delta_h 0 kJ - -gamma 0 0 - # Id: 5002120 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 0.6963 + delta_h 0 kJ + -gamma 0 0 + # Id: 5002120 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: K+ + CrO4-2 = KCrO4- - log_k 0.57 - delta_h 0 kJ - -gamma 0 0 - # Id: 4102120 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 18.0 + log_k 0.57 + delta_h 0 kJ + -gamma 0 0 + # Id: 4102120 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 18.0 MoO4-2 + H+ = HMoO4- - log_k 4.2988 - delta_h 20 kJ - -gamma 0 0 - # Id: 3304801 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 20.0 + log_k 4.2988 + delta_h 20 kJ + -gamma 0 0 + # Id: 3304801 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 20.0 MoO4-2 + 2 H+ = H2MoO4 - log_k 8.1636 - delta_h -26 kJ - -gamma 0 0 - # Id: 3304802 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 20.0 + log_k 8.1636 + delta_h -26 kJ + -gamma 0 0 + # Id: 3304802 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 20.0 7 MoO4-2 + 8 H+ = Mo7O24-6 + 4 H2O - log_k 52.99 - delta_h -228 kJ - -gamma 0 0 - # Id: 3304803 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 52.99 + delta_h -228 kJ + -gamma 0 0 + # Id: 3304803 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 7 MoO4-2 + 9 H+ = HMo7O24-5 + 4 H2O - log_k 59.3768 - delta_h -218 kJ - -gamma 0 0 - # Id: 3304804 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 59.3768 + delta_h -218 kJ + -gamma 0 0 + # Id: 3304804 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 7 MoO4-2 + 10 H+ = H2Mo7O24-4 + 4 H2O - log_k 64.159 - delta_h -215 kJ - -gamma 0 0 - # Id: 3304805 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 64.159 + delta_h -215 kJ + -gamma 0 0 + # Id: 3304805 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 7 MoO4-2 + 11 H+ = H3Mo7O24-3 + 4 H2O - log_k 67.405 - delta_h -217 kJ - -gamma 0 0 - # Id: 3304806 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 1.00 25.0 + log_k 67.405 + delta_h -217 kJ + -gamma 0 0 + # Id: 3304806 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 1.00 25.0 6 MoO4-2 + Al+3 + 6 H+ = AlMo6O21-3 + 3 H2O - log_k 54.9925 - delta_h 0 kJ - -gamma 0 0 - # Id: 304801 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k 54.9925 + delta_h 0 kJ + -gamma 0 0 + # Id: 304801 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 MoO4-2 + 2 Ag+ = Ag2MoO4 - log_k -0.4219 - delta_h -1.18 kJ - -gamma 0 0 - # Id: 204801 - # log K source: Bard85 - # Delta H source: Bard85 - #T and ionic strength: + log_k -0.4219 + delta_h -1.18 kJ + -gamma 0 0 + # Id: 204801 + # log K source: Bard85 + # Delta H source: Bard85 + #T and ionic strength: VO2+ + 2 H2O = VO4-3 + 4 H+ - log_k -30.2 - delta_h -25 kJ - -gamma 0 0 - # Id: 9033303 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -30.2 + delta_h -25 kJ + -gamma 0 0 + # Id: 9033303 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 VO2+ + 2 H2O = HVO4-2 + 3 H+ - log_k -15.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 9033302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -15.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 9033302 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 VO2+ + 2 H2O = H2VO4- + 2 H+ - log_k -7.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 9033301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -7.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 9033301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 VO2+ + 2 H2O = H3VO4 + H+ - log_k -3.3 - delta_h 44.4759 kJ - -gamma 0 0 - # Id: 9033300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -3.3 + delta_h 44.4759 kJ + -gamma 0 0 + # Id: 9033300 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: 2 VO2+ + 3 H2O = V2O7-4 + 6 H+ - log_k -31.24 - delta_h -28 kJ - -gamma 0 0 - # Id: 9030020 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -31.24 + delta_h -28 kJ + -gamma 0 0 + # Id: 9030020 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 2 VO2+ + 3 H2O = HV2O7-3 + 5 H+ - log_k -20.67 - delta_h 0 kJ - -gamma 0 0 - # Id: 9030021 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -20.67 + delta_h 0 kJ + -gamma 0 0 + # Id: 9030021 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 2 VO2+ + 3 H2O = H3V2O7- + 3 H+ - log_k -3.79 - delta_h 0 kJ - -gamma 0 0 - # Id: 9030022 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -3.79 + delta_h 0 kJ + -gamma 0 0 + # Id: 9030022 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: 3 VO2+ + 3 H2O = V3O9-3 + 6 H+ - log_k -15.88 - delta_h 0 kJ - -gamma 0 0 - # Id: 9030023 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -15.88 + delta_h 0 kJ + -gamma 0 0 + # Id: 9030023 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: 4 VO2+ + 4 H2O = V4O12-4 + 8 H+ - log_k -20.56 - delta_h -87 kJ - -gamma 0 0 - # Id: 9030024 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -20.56 + delta_h -87 kJ + -gamma 0 0 + # Id: 9030024 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 10 VO2+ + 8 H2O = V10O28-6 + 16 H+ - log_k -24.0943 - delta_h 0 kJ - -gamma 0 0 - # Id: 9030025 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 20.0 + log_k -24.0943 + delta_h 0 kJ + -gamma 0 0 + # Id: 9030025 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 20.0 10 VO2+ + 8 H2O = HV10O28-5 + 15 H+ - log_k -15.9076 - delta_h 90.0397 kJ - -gamma 0 0 - # Id: 9030026 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 20.0 + log_k -15.9076 + delta_h 90.0397 kJ + -gamma 0 0 + # Id: 9030026 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 20.0 10 VO2+ + 8 H2O = H2V10O28-4 + 14 H+ - log_k -10.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 9030027 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -10.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 9030027 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Benzoate- + H+ = H(Benzoate) - log_k 4.202 - delta_h -0.4602 kJ - -gamma 0 0 - # Id: 3309171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.202 + delta_h -0.4602 kJ + -gamma 0 0 + # Id: 3309171 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Benzoate- + Pb+2 = Pb(Benzoate)+ - log_k 2.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009171 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Benzoate- + Al+3 = Al(Benzoate)+2 - log_k 2.05 - delta_h 0 kJ - -gamma 0 0 - # Id: 309171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.05 + delta_h 0 kJ + -gamma 0 0 + # Id: 309171 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Benzoate- + Al+3 + H2O = AlOH(Benzoate)+ + H+ - log_k -0.56 - delta_h 0 kJ - -gamma 0 0 - # Id: 309172 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k -0.56 + delta_h 0 kJ + -gamma 0 0 + # Id: 309172 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Benzoate- + Zn+2 = Zn(Benzoate)+ - log_k 1.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509171 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 1.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509171 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Benzoate- + Cd+2 = Cd(Benzoate)+ - log_k 1.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609171 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 2 Benzoate- + Cd+2 = Cd(Benzoate)2 - log_k 1.82 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609172 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 1.82 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609172 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Benzoate- + Cu+2 = Cu(Benzoate)+ - log_k 2.19 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.19 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319171 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Benzoate- + Ag+ = Ag(Benzoate) - log_k 0.91 - delta_h 0 kJ - -gamma 0 0 - # Id: 209171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 0.91 + delta_h 0 kJ + -gamma 0 0 + # Id: 209171 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Benzoate- + Ni+2 = Ni(Benzoate)+ - log_k 1.86 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409171 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 1.86 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409171 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Co+2 + Benzoate- = Co(Benzoate)+ - log_k 1.0537 - delta_h 12 kJ - -gamma 0 0 - # Id: 2009171 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 30.0 + log_k 1.0537 + delta_h 12 kJ + -gamma 0 0 + # Id: 2009171 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 30.0 Benzoate- + Mn+2 = Mn(Benzoate)+ - log_k 2.06 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.06 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709171 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Benzoate- + Mg+2 = Mg(Benzoate)+ - log_k 1.26 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609171 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 1.26 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609171 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Benzoate- + Ca+2 = Ca(Benzoate)+ - log_k 1.55 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509171 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 1.55 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509171 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Phenylacetate- + H+ = H(Phenylacetate) - log_k 4.31 - delta_h 2.1757 kJ - -gamma 0 0 - # Id: 3309181 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.31 + delta_h 2.1757 kJ + -gamma 0 0 + # Id: 3309181 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Phenylacetate- + Zn+2 = Zn(Phenylacetate)+ - log_k 1.57 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509181 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.57 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509181 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Phenylacetate- + Cu+2 = Cu(Phenylacetate)+ - log_k 1.97 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319181 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.97 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319181 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Phenylacetate- = Co(Phenylacetate)+ - log_k 0.591 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009181 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 2.00 25.0 + log_k 0.591 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009181 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 2.00 25.0 Co+2 + 2 Phenylacetate- = Co(Phenylacetate)2 - log_k 0.4765 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009182 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 2.00 25.0 + log_k 0.4765 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009182 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 2.00 25.0 Isophthalate-2 + H+ = H(Isophthalate)- - log_k 4.5 - delta_h 1.6736 kJ - -gamma 0 0 - # Id: 3309201 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.5 + delta_h 1.6736 kJ + -gamma 0 0 + # Id: 3309201 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Isophthalate-2 + 2 H+ = H2(Isophthalate) - log_k 8 - delta_h 1.6736 kJ - -gamma 0 0 - # Id: 3309202 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8 + delta_h 1.6736 kJ + -gamma 0 0 + # Id: 3309202 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Isophthalate-2 + Pb+2 = Pb(Isophthalate) - log_k 2.99 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009201 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.99 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009201 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 2 Isophthalate-2 + Pb+2 = Pb(Isophthalate)2-2 - log_k 4.18 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009202 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.18 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009202 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Isophthalate-2 + Pb+2 + H+ = PbH(Isophthalate)+ - log_k 6.69 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009203 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.69 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009203 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Isophthalate-2 + Cd+2 = Cd(Isophthalate) - log_k 2.15 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609201 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.15 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609201 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 2 Isophthalate-2 + Cd+2 = Cd(Isophthalate)2-2 - log_k 2.99 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609202 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.99 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609202 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Isophthalate-2 + Cd+2 + H+ = CdH(Isophthalate)+ - log_k 5.73 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609203 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.73 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609203 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Isophthalate-2 + Ca+2 = Ca(Isophthalate) - log_k 2 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509200 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509200 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Isophthalate-2 + Ba+2 = Ba(Isophthalate) - log_k 1.55 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009201 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.55 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009201 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Diethylamine = H(Diethylamine)+ - log_k 10.933 - delta_h -53.1368 kJ - -gamma 0 0 - # Id: 3309551 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.933 + delta_h -53.1368 kJ + -gamma 0 0 + # Id: 3309551 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Diethylamine = Zn(Diethylamine)+2 - log_k 2.74 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509551 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 2.74 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509551 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + 2 Diethylamine = Zn(Diethylamine)2+2 - log_k 5.27 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509552 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 5.27 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509552 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + 3 Diethylamine = Zn(Diethylamine)3+2 - log_k 7.71 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509553 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 7.71 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509553 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + 4 Diethylamine = Zn(Diethylamine)4+2 - log_k 9.84 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509554 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 9.84 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509554 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + Diethylamine = Cd(Diethylamine)+2 - log_k 2.73 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609551 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 2.73 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609551 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + 2 Diethylamine = Cd(Diethylamine)2+2 - log_k 4.86 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609552 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 4.86 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609552 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + 3 Diethylamine = Cd(Diethylamine)3+2 - log_k 6.37 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609553 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 6.37 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609553 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + 4 Diethylamine = Cd(Diethylamine)4+2 - log_k 7.32 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609554 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 7.32 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609554 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ag+ + Diethylamine = Ag(Diethylamine)+ - log_k 2.98 - delta_h 0 kJ - -gamma 0 0 - # Id: 209551 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.98 + delta_h 0 kJ + -gamma 0 0 + # Id: 209551 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Diethylamine = Ag(Diethylamine)2+ - log_k 6.38 - delta_h -44.7688 kJ - -gamma 0 0 - # Id: 209552 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.38 + delta_h -44.7688 kJ + -gamma 0 0 + # Id: 209552 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Diethylamine = Ni(Diethylamine)+2 - log_k 2.78 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409551 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 2.78 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409551 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ni+2 + 2 Diethylamine = Ni(Diethylamine)2+2 - log_k 4.97 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409552 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 4.97 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409552 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ni+2 + 3 Diethylamine = Ni(Diethylamine)3+2 - log_k 6.72 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409553 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 6.72 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409553 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ni+2 + 4 Diethylamine = Ni(Diethylamine)4+2 - log_k 7.93 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409554 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 7.93 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409554 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ni+2 + 5 Diethylamine = Ni(Diethylamine)5+2 - log_k 8.87 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409555 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 8.87 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409555 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Butylamine = H(Butylamine)+ - log_k 10.64 - delta_h -58.2831 kJ - -gamma 0 0 - # Id: 3309561 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.64 + delta_h -58.2831 kJ + -gamma 0 0 + # Id: 3309561 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + Butylamine + 2 H+ = Hg(Butylamine)+2 + 2 H2O - log_k 14.84 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619561 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 14.84 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619561 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + 2 Butylamine + 2 H+ = Hg(Butylamine)2+2 + 2 H2O - log_k 24.24 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619562 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 24.24 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619562 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + 3 Butylamine + 2 H+ = Hg(Butylamine)3+2 + 2 H2O - log_k 25.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619563 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 25.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619563 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + 4 Butylamine + 2 H+ = Hg(Butylamine)4+2 + 2 H2O - log_k 26.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619564 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 26.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619564 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Butylamine = Ag(Butylamine)+ - log_k 3.42 - delta_h -16.736 kJ - -gamma 0 0 - # Id: 209561 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.42 + delta_h -16.736 kJ + -gamma 0 0 + # Id: 209561 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Butylamine = Ag(Butylamine)2+ - log_k 7.47 - delta_h -52.7184 kJ - -gamma 0 0 - # Id: 209562 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.47 + delta_h -52.7184 kJ + -gamma 0 0 + # Id: 209562 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Methylamine = H(Methylamine)+ - log_k 10.64 - delta_h -55.2288 kJ - -gamma 0 0 - # Id: 3309581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.64 + delta_h -55.2288 kJ + -gamma 0 0 + # Id: 3309581 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Methylamine = Cd(Methylamine)+2 - log_k 2.75 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.75 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609581 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + 2 Methylamine = Cd(Methylamine)2+2 - log_k 4.81 - delta_h -29.288 kJ - -gamma 0 0 - # Id: 1609582 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.81 + delta_h -29.288 kJ + -gamma 0 0 + # Id: 1609582 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + 3 Methylamine = Cd(Methylamine)3+2 - log_k 5.94 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609583 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.94 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609583 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + 4 Methylamine = Cd(Methylamine)4+2 - log_k 6.55 - delta_h -58.576 kJ - -gamma 0 0 - # Id: 1609584 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.55 + delta_h -58.576 kJ + -gamma 0 0 + # Id: 1609584 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + Methylamine + 2 H+ = Hg(Methylamine)+2 + 2 H2O - log_k 14.76 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 14.76 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619581 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + 2 Methylamine + 2 H+ = Hg(Methylamine)2+2 + 2 H2O - log_k 23.96 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619582 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 23.96 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619582 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + 3 Methylamine + 2 H+ = Hg(Methylamine)3+2 + 2 H2O - log_k 24.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619583 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 24.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619583 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + 4 Methylamine + 2 H+ = Hg(Methylamine)4+2 + 2 H2O - log_k 24.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619584 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 24.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619584 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Methylamine = Cu(Methylamine)+2 - log_k 4.11 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.11 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319581 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 2 Methylamine = Cu(Methylamine)2+2 - log_k 7.51 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319582 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.51 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319582 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 3 Methylamine = Cu(Methylamine)3+2 - log_k 10.21 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319583 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.21 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319583 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 4 Methylamine = Cu(Methylamine)4+2 - log_k 12.08 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319584 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 12.08 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319584 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Methylamine = Ag(Methylamine)+ - log_k 3.07 - delta_h -12.552 kJ - -gamma 0 0 - # Id: 209581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.07 + delta_h -12.552 kJ + -gamma 0 0 + # Id: 209581 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Methylamine = Ag(Methylamine)2+ - log_k 6.89 - delta_h -48.9528 kJ - -gamma 0 0 - # Id: 209582 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.89 + delta_h -48.9528 kJ + -gamma 0 0 + # Id: 209582 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Methylamine = Ni(Methylamine)+2 - log_k 2.23 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.23 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409581 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Dimethylamine = H(Dimethylamine)+ - log_k 10.774 - delta_h -50.208 kJ - -gamma 0 0 - # Id: 3309591 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.774 + delta_h -50.208 kJ + -gamma 0 0 + # Id: 3309591 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Dimethylamine = Ag(Dimethylamine)2+ - log_k 5.37 - delta_h -40.5848 kJ - -gamma 0 0 - # Id: 209591 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.37 + delta_h -40.5848 kJ + -gamma 0 0 + # Id: 209591 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Dimethylamine = Ni(Dimethylamine)+2 - log_k 1.47 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409591 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.47 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409591 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Hexylamine = H(Hexylamine)+ - log_k 10.63 - delta_h -58.576 kJ - -gamma 0 0 - # Id: 3309611 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.63 + delta_h -58.576 kJ + -gamma 0 0 + # Id: 3309611 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Hexylamine = Ag(Hexylamine)+ - log_k 3.54 - delta_h -25.104 kJ - -gamma 0 0 - # Id: 209611 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.54 + delta_h -25.104 kJ + -gamma 0 0 + # Id: 209611 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Hexylamine = Ag(Hexylamine)2+ - log_k 7.55 - delta_h -53.1368 kJ - -gamma 0 0 - # Id: 209612 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.55 + delta_h -53.1368 kJ + -gamma 0 0 + # Id: 209612 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Ethylenediamine = H(Ethylenediamine)+ - log_k 9.928 - delta_h -49.7896 kJ - -gamma 0 0 - # Id: 3309631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.928 + delta_h -49.7896 kJ + -gamma 0 0 + # Id: 3309631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 2 H+ + Ethylenediamine = H2(Ethylenediamine)+2 - log_k 16.776 - delta_h -95.3952 kJ - -gamma 0 0 - # Id: 3309632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 16.776 + delta_h -95.3952 kJ + -gamma 0 0 + # Id: 3309632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Ethylenediamine = Pb(Ethylenediamine)+2 - log_k 5.04 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.04 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + 2 Ethylenediamine = Pb(Ethylenediamine)2+2 - log_k 8.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Ethylenediamine = Zn(Ethylenediamine)+2 - log_k 5.66 - delta_h -29.288 kJ - -gamma 0 0 - # Id: 9509631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.66 + delta_h -29.288 kJ + -gamma 0 0 + # Id: 9509631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + 2 Ethylenediamine = Zn(Ethylenediamine)2+2 - log_k 10.6 - delta_h -48.116 kJ - -gamma 0 0 - # Id: 9509632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.6 + delta_h -48.116 kJ + -gamma 0 0 + # Id: 9509632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + 3 Ethylenediamine = Zn(Ethylenediamine)3+2 - log_k 13.9 - delta_h -71.5464 kJ - -gamma 0 0 - # Id: 9509633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 13.9 + delta_h -71.5464 kJ + -gamma 0 0 + # Id: 9509633 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Ethylenediamine = Cd(Ethylenediamine)+2 - log_k 5.41 - delta_h -28.4512 kJ - -gamma 0 0 - # Id: 1609631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.41 + delta_h -28.4512 kJ + -gamma 0 0 + # Id: 1609631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + 2 Ethylenediamine = Cd(Ethylenediamine)2+2 - log_k 9.9 - delta_h -55.6472 kJ - -gamma 0 0 - # Id: 1609632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.9 + delta_h -55.6472 kJ + -gamma 0 0 + # Id: 1609632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + 3 Ethylenediamine = Cd(Ethylenediamine)3+2 - log_k 11.6 - delta_h -82.4248 kJ - -gamma 0 0 - # Id: 1609633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 11.6 + delta_h -82.4248 kJ + -gamma 0 0 + # Id: 1609633 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + Ethylenediamine + 2 H+ = Hg(Ethylenediamine)+2 + 2 H2O - log_k 20.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 20.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + 2 Ethylenediamine + 2 H+ = Hg(Ethylenediamine)2+2 + 2 H2O - log_k 29.3 - delta_h -173.218 kJ - -gamma 0 0 - # Id: 3619632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 29.3 + delta_h -173.218 kJ + -gamma 0 0 + # Id: 3619632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + 2 Ethylenediamine + 3 H+ = HgH(Ethylenediamine)2+3 + 2 H2O - log_k 34.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 34.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619633 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + 2 Ethylenediamine = Cu(Ethylenediamine)2+ - log_k 11.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 11.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Ethylenediamine = Cu(Ethylenediamine)+2 - log_k 10.5 - delta_h -52.7184 kJ - -gamma 0 0 - # Id: 2319631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.5 + delta_h -52.7184 kJ + -gamma 0 0 + # Id: 2319631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 2 Ethylenediamine = Cu(Ethylenediamine)2+2 - log_k 19.6 - delta_h -105.437 kJ - -gamma 0 0 - # Id: 2319632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 19.6 + delta_h -105.437 kJ + -gamma 0 0 + # Id: 2319632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Ethylenediamine = Ag(Ethylenediamine)+ - log_k 4.6 - delta_h -48.9528 kJ - -gamma 0 0 - # Id: 209631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.6 + delta_h -48.9528 kJ + -gamma 0 0 + # Id: 209631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Ethylenediamine = Ag(Ethylenediamine)2+ - log_k 7.5 - delta_h -52.3 kJ - -gamma 0 0 - # Id: 209632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.5 + delta_h -52.3 kJ + -gamma 0 0 + # Id: 209632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Ethylenediamine + H+ = AgH(Ethylenediamine)+2 - log_k 11.99 - delta_h -75.312 kJ - -gamma 0 0 - # Id: 209633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 11.99 + delta_h -75.312 kJ + -gamma 0 0 + # Id: 209633 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 2 Ag+ + Ethylenediamine = Ag2(Ethylenediamine)+2 - log_k 6.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 209634 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 209634 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 2 Ag+ + 2 Ethylenediamine = Ag2(Ethylenediamine)2+2 - log_k 12.7 - delta_h -97.0688 kJ - -gamma 0 0 - # Id: 209635 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 12.7 + delta_h -97.0688 kJ + -gamma 0 0 + # Id: 209635 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Ethylenediamine + 2 H+ = Ag(HEthylenediamine)2+3 - log_k 24 - delta_h -150.206 kJ - -gamma 0 0 - # Id: 209636 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 24 + delta_h -150.206 kJ + -gamma 0 0 + # Id: 209636 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Ethylenediamine + H+ = AgH(Ethylenediamine)2+2 - log_k 8.4 - delta_h -47.6976 kJ - -gamma 0 0 - # Id: 209637 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.4 + delta_h -47.6976 kJ + -gamma 0 0 + # Id: 209637 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Ethylenediamine = Ni(Ethylenediamine)+2 - log_k 7.32 - delta_h -37.656 kJ - -gamma 0 0 - # Id: 5409631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.32 + delta_h -37.656 kJ + -gamma 0 0 + # Id: 5409631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 2 Ethylenediamine = Ni(Ethylenediamine)2+2 - log_k 13.5 - delta_h -76.5672 kJ - -gamma 0 0 - # Id: 5409632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 13.5 + delta_h -76.5672 kJ + -gamma 0 0 + # Id: 5409632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 3 Ethylenediamine = Ni(Ethylenediamine)3+2 - log_k 17.6 - delta_h -117.152 kJ - -gamma 0 0 - # Id: 5409633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 17.6 + delta_h -117.152 kJ + -gamma 0 0 + # Id: 5409633 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Ethylenediamine = Co(Ethylenediamine)+2 - log_k 5.5 - delta_h -28 kJ - -gamma 0 0 - # Id: 2009631 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 5.5 + delta_h -28 kJ + -gamma 0 0 + # Id: 2009631 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Co+2 + 2 Ethylenediamine = Co(Ethylenediamine)2+2 - log_k 10.1 - delta_h -58.5 kJ - -gamma 0 0 - # Id: 2009632 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 10.1 + delta_h -58.5 kJ + -gamma 0 0 + # Id: 2009632 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Co+2 + 3 Ethylenediamine = Co(Ethylenediamine)3+2 - log_k 13.2 - delta_h -92.8 kJ - -gamma 0 0 - # Id: 2009633 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 13.2 + delta_h -92.8 kJ + -gamma 0 0 + # Id: 2009633 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Co+3 + 2 Ethylenediamine = Co(Ethylenediamine)2+3 - log_k 34.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 2019631 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 25.0 + log_k 34.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 2019631 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 25.0 Co+3 + 3 Ethylenediamine = Co(Ethylenediamine)3+3 - log_k 48.69 - delta_h 0 kJ - -gamma 0 0 - # Id: 2019632 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.50 30.0 + log_k 48.69 + delta_h 0 kJ + -gamma 0 0 + # Id: 2019632 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.50 30.0 Fe+2 + Ethylenediamine = Fe(Ethylenediamine)+2 - log_k 4.26 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.26 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + 2 Ethylenediamine = Fe(Ethylenediamine)2+2 - log_k 7.73 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.73 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + 3 Ethylenediamine = Fe(Ethylenediamine)3+2 - log_k 10.17 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.17 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809633 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Ethylenediamine = Mn(Ethylenediamine)+2 - log_k 2.74 - delta_h -11.7152 kJ - -gamma 0 0 - # Id: 4709631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.74 + delta_h -11.7152 kJ + -gamma 0 0 + # Id: 4709631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + 2 Ethylenediamine = Mn(Ethylenediamine)2+2 - log_k 4.8 - delta_h -25.104 kJ - -gamma 0 0 - # Id: 4709632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.8 + delta_h -25.104 kJ + -gamma 0 0 + # Id: 4709632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cr(OH)2+ + 2 Ethylenediamine + 2 H+ = Cr(Ethylenediamine)2+3 + 2 H2O - log_k 22.57 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 22.57 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cr(OH)2+ + 3 Ethylenediamine + 2 H+ = Cr(Ethylenediamine)3+3 + 2 H2O - log_k 29 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 29 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Ethylenediamine = Mg(Ethylenediamine)+2 - log_k 0.37 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 0.37 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Ethylenediamine = Ca(Ethylenediamine)+2 - log_k 0.11 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 0.11 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Propylamine = H(Propylamine)+ - log_k 10.566 - delta_h -57.53 kJ - -gamma 0 0 - # Id: 3309641 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.566 + delta_h -57.53 kJ + -gamma 0 0 + # Id: 3309641 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Propylamine = Zn(Propylamine)+2 - log_k 2.42 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509641 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 2.42 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509641 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + 2 Propylamine = Zn(Propylamine)2+2 - log_k 4.85 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509642 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 4.85 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509642 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + 3 Propylamine = Zn(Propylamine)3+2 - log_k 7.38 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509643 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 7.38 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509643 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + 4 Propylamine = Zn(Propylamine)4+2 - log_k 9.49 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509644 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 9.49 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509644 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + Propylamine = Cd(Propylamine)+2 - log_k 2.62 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609641 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 2.62 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609641 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + 2 Propylamine = Cd(Propylamine)2+2 - log_k 4.64 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609642 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 4.64 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609642 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + 3 Propylamine = Cd(Propylamine)3+2 - log_k 6.03 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609643 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 6.03 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609643 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ag+ + Propylamine = Ag(Propylamine)+ - log_k 3.45 - delta_h -12.552 kJ - -gamma 0 0 - # Id: 209641 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.45 + delta_h -12.552 kJ + -gamma 0 0 + # Id: 209641 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Propylamine = Ag(Propylamine)2+ - log_k 7.44 - delta_h -53.1368 kJ - -gamma 0 0 - # Id: 209642 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.44 + delta_h -53.1368 kJ + -gamma 0 0 + # Id: 209642 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Propylamine = Ni(Propylamine)+2 - log_k 2.81 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409641 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 2.81 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409641 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ni+2 + 2 Propylamine = Ni(Propylamine)2+2 - log_k 5.02 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409642 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 5.02 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409642 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ni+2 + 3 Propylamine = Ni(Propylamine)3+2 - log_k 6.79 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409643 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 6.79 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409643 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ni+2 + 4 Propylamine = Ni(Propylamine)4+2 - log_k 8.31 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409644 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 8.31 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409644 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Isopropylamine = H(Isopropylamine)+ - log_k 10.67 - delta_h -58.3668 kJ - -gamma 0 0 - # Id: 3309651 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.67 + delta_h -58.3668 kJ + -gamma 0 0 + # Id: 3309651 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Isopropylamine = Zn(Isopropylamine)+2 - log_k 2.37 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509651 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 2.37 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509651 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + 2 Isopropylamine = Zn(Isopropylamine)2+2 - log_k 4.67 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509652 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 4.67 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509652 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + 3 Isopropylamine = Zn(Isopropylamine)3+2 - log_k 7.14 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509653 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 7.14 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509653 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + 4 Isopropylamine = Zn(Isopropylamine)4+2 - log_k 9.44 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509654 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 9.44 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509654 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + Isopropylamine = Cd(Isopropylamine)+2 - log_k 2.55 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609651 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 2.55 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609651 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + 2 Isopropylamine = Cd(Isopropylamine)2+2 - log_k 4.57 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609652 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 4.57 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609652 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + 3 Isopropylamine = Cd(Isopropylamine)3+2 - log_k 6.07 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609653 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 6.07 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609653 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + 4 Isopropylamine = Cd(Isopropylamine)4+2 - log_k 6.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609654 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 6.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609654 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Hg(OH)2 + Isopropylamine + 2 H+ = Hg(Isopropylamine)+2 + 2 H2O - log_k 14.85 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619651 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 14.85 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619651 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + 2 Isopropylamine + 2 H+ = Hg(Isopropylamine)2+2 + 2 H2O - log_k 24.37 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619652 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 24.37 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619652 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Isopropylamine = Ag(Isopropylamine)+ - log_k 3.67 - delta_h -23.8488 kJ - -gamma 0 0 - # Id: 209651 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.67 + delta_h -23.8488 kJ + -gamma 0 0 + # Id: 209651 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Isopropylamine = Ag(Isopropylamine)2+ - log_k 7.77 - delta_h -59.8312 kJ - -gamma 0 0 - # Id: 209652 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.77 + delta_h -59.8312 kJ + -gamma 0 0 + # Id: 209652 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Isopropylamine = Ni(Isopropylamine)+2 - log_k 2.71 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409651 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 2.71 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409651 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ni+2 + 2 Isopropylamine = Ni(Isopropylamine)2+2 - log_k 4.86 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409652 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 4.86 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409652 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ni+2 + 3 Isopropylamine = Ni(Isopropylamine)3+2 - log_k 6.57 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409653 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 6.57 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409653 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ni+2 + 4 Isopropylamine = Ni(Isopropylamine)4+2 - log_k 7.83 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409654 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 7.83 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409654 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ni+2 + 5 Isopropylamine = Ni(Isopropylamine)5+2 - log_k 8.43 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409655 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 8.43 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409655 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Trimethylamine = H(Trimethylamine)+ - log_k 9.8 - delta_h -36.8192 kJ - -gamma 0 0 - # Id: 3309661 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.8 + delta_h -36.8192 kJ + -gamma 0 0 + # Id: 3309661 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Trimethylamine = Ag(Trimethylamine)+ - log_k 1.701 - delta_h 0 kJ - -gamma 0 0 - # Id: 209661 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 1.701 + delta_h 0 kJ + -gamma 0 0 + # Id: 209661 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Citrate-3 = H(Citrate)-2 - log_k 6.396 - delta_h 3.3472 kJ - -gamma 0 0 - # Id: 3309671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.396 + delta_h 3.3472 kJ + -gamma 0 0 + # Id: 3309671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 2 H+ + Citrate-3 = H2(Citrate)- - log_k 11.157 - delta_h 1.297 kJ - -gamma 0 0 - # Id: 3309672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 11.157 + delta_h 1.297 kJ + -gamma 0 0 + # Id: 3309672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 3 H+ + Citrate-3 = H3(Citrate) - log_k 14.285 - delta_h -2.7614 kJ - -gamma 0 0 - # Id: 3309673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 14.285 + delta_h -2.7614 kJ + -gamma 0 0 + # Id: 3309673 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Citrate-3 = Pb(Citrate)- - log_k 7.27 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009671 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 7.27 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009671 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Pb+2 + 2 Citrate-3 = Pb(Citrate)2-4 - log_k 6.53 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.53 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Citrate-3 = Al(Citrate) - log_k 9.97 - delta_h 0 kJ - -gamma 0 0 - # Id: 309671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.97 + delta_h 0 kJ + -gamma 0 0 + # Id: 309671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + 2 Citrate-3 = Al(Citrate)2-3 - log_k 14.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 309672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 14.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 309672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Citrate-3 + H+ = AlH(Citrate)+ - log_k 12.85 - delta_h 0 kJ - -gamma 0 0 - # Id: 309673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 12.85 + delta_h 0 kJ + -gamma 0 0 + # Id: 309673 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Tl+ + Citrate-3 = Tl(Citrate)-2 - log_k 1.48 - delta_h 0 kJ - -gamma 0 0 - # Id: 8709671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.48 + delta_h 0 kJ + -gamma 0 0 + # Id: 8709671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Citrate-3 = Zn(Citrate)- - log_k 6.21 - delta_h 8.368 kJ - -gamma 0 0 - # Id: 9509671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.21 + delta_h 8.368 kJ + -gamma 0 0 + # Id: 9509671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + 2 Citrate-3 = Zn(Citrate)2-4 - log_k 7.4 - delta_h 25.104 kJ - -gamma 0 0 - # Id: 9509672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.4 + delta_h 25.104 kJ + -gamma 0 0 + # Id: 9509672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Citrate-3 + H+ = ZnH(Citrate) - log_k 10.2 - delta_h 3.3472 kJ - -gamma 0 0 - # Id: 9509673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.2 + delta_h 3.3472 kJ + -gamma 0 0 + # Id: 9509673 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Citrate-3 + 2 H+ = ZnH2(Citrate)+ - log_k 12.84 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509674 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 12.84 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509674 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + Citrate-3 = Cd(Citrate)- - log_k 4.98 - delta_h 8.368 kJ - -gamma 0 0 - # Id: 1609671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.98 + delta_h 8.368 kJ + -gamma 0 0 + # Id: 1609671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Citrate-3 + H+ = CdH(Citrate) - log_k 9.44 - delta_h 3.3472 kJ - -gamma 0 0 - # Id: 1609672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.44 + delta_h 3.3472 kJ + -gamma 0 0 + # Id: 1609672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Citrate-3 + 2 H+ = CdH2(Citrate)+ - log_k 12.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 12.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609673 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + 2 Citrate-3 = Cd(Citrate)2-4 - log_k 5.9 - delta_h 20.92 kJ - -gamma 0 0 - # Id: 1609674 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.9 + delta_h 20.92 kJ + -gamma 0 0 + # Id: 1609674 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + Citrate-3 + 2 H+ = Hg(Citrate)- + 2 H2O - log_k 18.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 18.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Citrate-3 = Cu(Citrate)- - log_k 7.57 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319671 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 7.57 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319671 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cu+2 + 2 Citrate-3 = Cu(Citrate)2-4 - log_k 8.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319672 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 8.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319672 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cu+2 + Citrate-3 + H+ = CuH(Citrate) - log_k 10.87 - delta_h 11.7152 kJ - -gamma 0 0 - # Id: 2319673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.87 + delta_h 11.7152 kJ + -gamma 0 0 + # Id: 2319673 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Citrate-3 + 2 H+ = CuH2(Citrate)+ - log_k 13.23 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319674 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 13.23 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319674 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: 2 Cu+2 + 2 Citrate-3 = Cu2(Citrate)2-2 - log_k 16.9 - delta_h 41.84 kJ - -gamma 0 0 - # Id: 2319675 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 16.9 + delta_h 41.84 kJ + -gamma 0 0 + # Id: 2319675 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Citrate-3 = Ni(Citrate)- - log_k 6.59 - delta_h 16.736 kJ - -gamma 0 0 - # Id: 5409671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.59 + delta_h 16.736 kJ + -gamma 0 0 + # Id: 5409671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Citrate-3 + H+ = NiH(Citrate) - log_k 10.5 - delta_h 15.8992 kJ - -gamma 0 0 - # Id: 5409672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.5 + delta_h 15.8992 kJ + -gamma 0 0 + # Id: 5409672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Citrate-3 + 2 H+ = NiH2(Citrate)+ - log_k 13.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 13.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409673 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 2 Citrate-3 = Ni(Citrate)2-4 - log_k 8.77 - delta_h 12.552 kJ - -gamma 0 0 - # Id: 5409674 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.77 + delta_h 12.552 kJ + -gamma 0 0 + # Id: 5409674 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 2 Citrate-3 + H+ = NiH(Citrate)2-3 - log_k 14.9 - delta_h 32.6352 kJ - -gamma 0 0 - # Id: 5409675 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 14.9 + delta_h 32.6352 kJ + -gamma 0 0 + # Id: 5409675 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Citrate-3 = Co(Citrate)- - log_k 6.1867 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009671 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 6.1867 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009671 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Co+2 + H+ + Citrate-3 = CoHCitrate - log_k 10.4438 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009672 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 10.4438 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009672 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Co+2 + 2 H+ + Citrate-3 = CoH2Citrate+ - log_k 12.7859 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009673 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 + log_k 12.7859 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009673 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 Fe+2 + Citrate-3 = Fe(Citrate)- - log_k 6.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + Citrate-3 + H+ = FeH(Citrate) - log_k 10.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Citrate-3 = Fe(Citrate) - log_k 13.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 13.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Citrate-3 + H+ = FeH(Citrate)+ - log_k 14.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 14.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Citrate-3 = Mn(Citrate)- - log_k 4.28 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709671 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 4.28 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709671 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Mn+2 + Citrate-3 + H+ = MnH(Citrate) - log_k 9.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Be+2 + Citrate-3 = Be(Citrate)- - log_k 5.534 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109671 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 25.0 + log_k 5.534 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109671 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 25.0 Be+2 + H+ + Citrate-3 = BeH(Citrate) - log_k 9.442 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109672 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 25.0 + log_k 9.442 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109672 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 25.0 Ca+2 + Citrate-3 = Ca(Citrate)- - log_k 4.87 - delta_h -8.368 kJ - -gamma 0 0 - # Id: 1509671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.87 + delta_h -8.368 kJ + -gamma 0 0 + # Id: 1509671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Citrate-3 + H+ = CaH(Citrate) - log_k 9.26 - delta_h -0.8368 kJ - -gamma 0 0 - # Id: 1509672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.26 + delta_h -0.8368 kJ + -gamma 0 0 + # Id: 1509672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Citrate-3 + 2 H+ = CaH2(Citrate)+ - log_k 12.257 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509673 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 12.257 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509673 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Mg+2 + Citrate-3 = Mg(Citrate)- - log_k 4.89 - delta_h 8.368 kJ - -gamma 0 0 - # Id: 4609671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.89 + delta_h 8.368 kJ + -gamma 0 0 + # Id: 4609671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Citrate-3 + H+ = MgH(Citrate) - log_k 8.91 - delta_h 3.3472 kJ - -gamma 0 0 - # Id: 4609672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.91 + delta_h 3.3472 kJ + -gamma 0 0 + # Id: 4609672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Citrate-3 + 2 H+ = MgH2(Citrate)+ - log_k 12.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609673 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 12.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609673 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Sr+2 + Citrate-3 = Sr(Citrate)- - log_k 4.3367 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009671 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 4.3367 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009671 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Sr+2 + H+ + Citrate-3 = SrH(Citrate) - log_k 8.9738 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009672 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 8.9738 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009672 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Sr+2 + 2 H+ + Citrate-3 = SrH2(Citrate)+ - log_k 12.4859 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009673 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 12.4859 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009673 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Ba+2 + Citrate-3 = Ba(Citrate)- - log_k 4.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ba+2 + Citrate-3 + H+ = BaH(Citrate) - log_k 8.74 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.74 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ba+2 + Citrate-3 + 2 H+ = BaH2(Citrate)+ - log_k 12.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 12.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009673 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Na+ + Citrate-3 = Na(Citrate)-2 - log_k 1.03 - delta_h -2.8033 kJ - -gamma 0 0 - # Id: 5009671 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 1.03 + delta_h -2.8033 kJ + -gamma 0 0 + # Id: 5009671 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: 2 Na+ + Citrate-3 = Na2(Citrate)- - log_k 1.5 - delta_h -5.1045 kJ - -gamma 0 0 - # Id: 5009672 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 1.5 + delta_h -5.1045 kJ + -gamma 0 0 + # Id: 5009672 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Na+ + Citrate-3 + H+ = NaH(Citrate)- - log_k 6.45 - delta_h -3.5982 kJ - -gamma 0 0 - # Id: 5009673 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 6.45 + delta_h -3.5982 kJ + -gamma 0 0 + # Id: 5009673 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: K+ + Citrate-3 = K(Citrate)-2 - log_k 1.1 - delta_h 5.4392 kJ - -gamma 0 0 - # Id: 4109671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.1 + delta_h 5.4392 kJ + -gamma 0 0 + # Id: 4109671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Nta-3 = H(Nta)-2 - log_k 10.278 - delta_h -18.828 kJ - -gamma 0 0 - # Id: 3309681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.278 + delta_h -18.828 kJ + -gamma 0 0 + # Id: 3309681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 2 H+ + Nta-3 = H2(Nta)- - log_k 13.22 - delta_h -17.9912 kJ - -gamma 0 0 - # Id: 3309682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 13.22 + delta_h -17.9912 kJ + -gamma 0 0 + # Id: 3309682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 3 H+ + Nta-3 = H3(Nta) - log_k 15.22 - delta_h -16.3176 kJ - -gamma 0 0 - # Id: 3309683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 15.22 + delta_h -16.3176 kJ + -gamma 0 0 + # Id: 3309683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 4 H+ + Nta-3 = H4(Nta)+ - log_k 16.22 - delta_h -16.3176 kJ - -gamma 0 0 - # Id: 3309684 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 16.22 + delta_h -16.3176 kJ + -gamma 0 0 + # Id: 3309684 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Nta-3 = Pb(Nta)- - log_k 12.7 - delta_h -15.8992 kJ - -gamma 0 0 - # Id: 6009681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 12.7 + delta_h -15.8992 kJ + -gamma 0 0 + # Id: 6009681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Nta-3 + H+ = PbH(Nta) - log_k 15.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 15.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Nta-3 = Al(Nta) - log_k 13.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 309681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 13.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 309681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Nta-3 + H+ = AlH(Nta)+ - log_k 15.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 309682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 15.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 309682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Nta-3 + H2O = AlOH(Nta)- + H+ - log_k 8 - delta_h 0 kJ - -gamma 0 0 - # Id: 309683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8 + delta_h 0 kJ + -gamma 0 0 + # Id: 309683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Tl+ + Nta-3 = Tl(Nta)-2 - log_k 5.39 - delta_h 0 kJ - -gamma 0 0 - # Id: 8709681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.39 + delta_h 0 kJ + -gamma 0 0 + # Id: 8709681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Nta-3 = Zn(Nta)- - log_k 11.95 - delta_h -3.7656 kJ - -gamma 0 0 - # Id: 9509681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 11.95 + delta_h -3.7656 kJ + -gamma 0 0 + # Id: 9509681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + 2 Nta-3 = Zn(Nta)2-4 - log_k 14.88 - delta_h -15.0624 kJ - -gamma 0 0 - # Id: 9509682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 14.88 + delta_h -15.0624 kJ + -gamma 0 0 + # Id: 9509682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Nta-3 + H2O = ZnOH(Nta)-2 + H+ - log_k 1.46 - delta_h 46.4424 kJ - -gamma 0 0 - # Id: 9509683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.46 + delta_h 46.4424 kJ + -gamma 0 0 + # Id: 9509683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Nta-3 = Cd(Nta)- - log_k 11.07 - delta_h -16.736 kJ - -gamma 0 0 - # Id: 1609681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 11.07 + delta_h -16.736 kJ + -gamma 0 0 + # Id: 1609681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + 2 Nta-3 = Cd(Nta)2-4 - log_k 15.03 - delta_h -38.0744 kJ - -gamma 0 0 - # Id: 1609682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 15.03 + delta_h -38.0744 kJ + -gamma 0 0 + # Id: 1609682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Nta-3 + H2O = CdOH(Nta)-2 + H+ - log_k -0.61 - delta_h 29.288 kJ - -gamma 0 0 - # Id: 1609683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k -0.61 + delta_h 29.288 kJ + -gamma 0 0 + # Id: 1609683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + Nta-3 + 2 H+ = Hg(Nta)- + 2 H2O - log_k 21.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 21.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Nta-3 = Cu(Nta)- - log_k 14.4 - delta_h -7.9496 kJ - -gamma 0 0 - # Id: 2319681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 14.4 + delta_h -7.9496 kJ + -gamma 0 0 + # Id: 2319681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 2 Nta-3 = Cu(Nta)2-4 - log_k 18.1 - delta_h -37.2376 kJ - -gamma 0 0 - # Id: 2319682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 18.1 + delta_h -37.2376 kJ + -gamma 0 0 + # Id: 2319682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Nta-3 + H+ = CuH(Nta) - log_k 16.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 16.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Nta-3 + H2O = CuOH(Nta)-2 + H+ - log_k 4.8 - delta_h 25.5224 kJ - -gamma 0 0 - # Id: 2319684 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.8 + delta_h 25.5224 kJ + -gamma 0 0 + # Id: 2319684 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Nta-3 = Ag(Nta)-2 - log_k 6 - delta_h -26.3592 kJ - -gamma 0 0 - # Id: 209681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6 + delta_h -26.3592 kJ + -gamma 0 0 + # Id: 209681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Nta-3 = Ni(Nta)- - log_k 12.79 - delta_h -10.0416 kJ - -gamma 0 0 - # Id: 5409681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 12.79 + delta_h -10.0416 kJ + -gamma 0 0 + # Id: 5409681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 2 Nta-3 = Ni(Nta)2-4 - log_k 16.96 - delta_h -32.6352 kJ - -gamma 0 0 - # Id: 5409682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 16.96 + delta_h -32.6352 kJ + -gamma 0 0 + # Id: 5409682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Nta-3 + H2O = NiOH(Nta)-2 + H+ - log_k 1.5 - delta_h 15.0624 kJ - -gamma 0 0 - # Id: 5409683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.5 + delta_h 15.0624 kJ + -gamma 0 0 + # Id: 5409683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Nta-3 = Co(Nta)- - log_k 11.6667 - delta_h -0.4 kJ - -gamma 0 0 - # Id: 2009681 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 11.6667 + delta_h -0.4 kJ + -gamma 0 0 + # Id: 2009681 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Co+2 + 2 Nta-3 = Co(Nta)2-4 - log_k 14.9734 - delta_h -20 kJ - -gamma 0 0 - # Id: 2009682 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 14.9734 + delta_h -20 kJ + -gamma 0 0 + # Id: 2009682 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Co+2 + Nta-3 + H2O = CoOH(Nta)-2 + H+ - log_k 0.4378 - delta_h 45.6 kJ - -gamma 0 0 - # Id: 2009683 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 0.4378 + delta_h 45.6 kJ + -gamma 0 0 + # Id: 2009683 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Fe+2 + Nta-3 = Fe(Nta)- - log_k 10.19 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.19 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + 2 Nta-3 = Fe(Nta)2-4 - log_k 12.62 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 12.62 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + Nta-3 + H+ = FeH(Nta) - log_k 12.29 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 12.29 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + Nta-3 + H2O = FeOH(Nta)-2 + H+ - log_k -1.06 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809684 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k -1.06 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809684 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Nta-3 = Fe(Nta) - log_k 17.8 - delta_h 13.3888 kJ - -gamma 0 0 - # Id: 2819681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 17.8 + delta_h 13.3888 kJ + -gamma 0 0 + # Id: 2819681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + 2 Nta-3 = Fe(Nta)2-3 - log_k 25.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 25.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Nta-3 + H2O = FeOH(Nta)- + H+ - log_k 13.23 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 13.23 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Nta-3 = Mn(Nta)- - log_k 8.573 - delta_h 5.8576 kJ - -gamma 0 0 - # Id: 4709681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.573 + delta_h 5.8576 kJ + -gamma 0 0 + # Id: 4709681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + 2 Nta-3 = Mn(Nta)2-4 - log_k 11.58 - delta_h -17.1544 kJ - -gamma 0 0 - # Id: 4709682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 11.58 + delta_h -17.1544 kJ + -gamma 0 0 + # Id: 4709682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cr(OH)2+ + Nta-3 + 2 H+ = Cr(Nta) + 2 H2O - log_k 21.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119681 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 21.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119681 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cr(OH)2+ + 2 Nta-3 + 2 H+ = Cr(Nta)2-3 + 2 H2O - log_k 29.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119682 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 29.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119682 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: MoO4-2 + 2 H+ + Nta-3 = MoO3(Nta)-3 + H2O - log_k 19.5434 - delta_h -69 kJ - -gamma 0 0 - # Id: 4809681 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 19.5434 + delta_h -69 kJ + -gamma 0 0 + # Id: 4809681 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 MoO4-2 + 3 H+ + Nta-3 = MoO3H(Nta)-2 + H2O - log_k 23.3954 - delta_h -71 kJ - -gamma 0 0 - # Id: 4809682 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 1.00 25.0 + log_k 23.3954 + delta_h -71 kJ + -gamma 0 0 + # Id: 4809682 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 1.00 25.0 MoO4-2 + 4 H+ + Nta-3 = MoO3H2(Nta)- + H2O - log_k 25.3534 - delta_h -71 kJ - -gamma 0 0 - # Id: 4809683 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 1.00 25.0 + log_k 25.3534 + delta_h -71 kJ + -gamma 0 0 + # Id: 4809683 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 1.00 25.0 Be+2 + Nta-3 = Be(Nta)- - log_k 9.0767 - delta_h 25 kJ - -gamma 0 0 - # Id: 1109681 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 9.0767 + delta_h 25 kJ + -gamma 0 0 + # Id: 1109681 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Mg+2 + Nta-3 = Mg(Nta)- - log_k 6.5 - delta_h 17.9912 kJ - -gamma 0 0 - # Id: 4609681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.5 + delta_h 17.9912 kJ + -gamma 0 0 + # Id: 4609681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Nta-3 = Ca(Nta)- - log_k 7.608 - delta_h -5.6902 kJ - -gamma 0 0 - # Id: 1509681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.608 + delta_h -5.6902 kJ + -gamma 0 0 + # Id: 1509681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + 2 Nta-3 = Ca(Nta)2-4 - log_k 8.81 - delta_h -32.6352 kJ - -gamma 0 0 - # Id: 1509682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.81 + delta_h -32.6352 kJ + -gamma 0 0 + # Id: 1509682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Sr+2 + Nta-3 = Sr(Nta)- - log_k 6.2767 - delta_h -2.2 kJ - -gamma 0 0 - # Id: 8009681 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 6.2767 + delta_h -2.2 kJ + -gamma 0 0 + # Id: 8009681 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Ba+2 + Nta-3 = Ba(Nta)- - log_k 5.875 - delta_h -6.025 kJ - -gamma 0 0 - # Id: 1009681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.875 + delta_h -6.025 kJ + -gamma 0 0 + # Id: 1009681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Edta-4 = H(Edta)-3 - log_k 10.948 - delta_h -23.4304 kJ - -gamma 0 0 - # Id: 3309691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.948 + delta_h -23.4304 kJ + -gamma 0 0 + # Id: 3309691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 2 H+ + Edta-4 = H2(Edta)-2 - log_k 17.221 - delta_h -41.0032 kJ - -gamma 0 0 - # Id: 3309692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 17.221 + delta_h -41.0032 kJ + -gamma 0 0 + # Id: 3309692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 3 H+ + Edta-4 = H3(Edta)- - log_k 20.34 - delta_h -35.564 kJ - -gamma 0 0 - # Id: 3309693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 20.34 + delta_h -35.564 kJ + -gamma 0 0 + # Id: 3309693 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 4 H+ + Edta-4 = H4(Edta) - log_k 22.5 - delta_h -34.3088 kJ - -gamma 0 0 - # Id: 3309694 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 22.5 + delta_h -34.3088 kJ + -gamma 0 0 + # Id: 3309694 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 5 H+ + Edta-4 = H5(Edta)+ - log_k 24 - delta_h -32.2168 kJ - -gamma 0 0 - # Id: 3309695 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 24 + delta_h -32.2168 kJ + -gamma 0 0 + # Id: 3309695 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Sn(OH)2 + 2 H+ + Edta-4 = Sn(Edta)-2 + 2 H2O - log_k 27.026 - delta_h 0 kJ - -gamma 0 0 - # Id: 7909691 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 20.0 + log_k 27.026 + delta_h 0 kJ + -gamma 0 0 + # Id: 7909691 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 20.0 Sn(OH)2 + 3 H+ + Edta-4 = SnH(Edta)- + 2 H2O - log_k 29.934 - delta_h 0 kJ - -gamma 0 0 - # Id: 7909692 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 20.0 + log_k 29.934 + delta_h 0 kJ + -gamma 0 0 + # Id: 7909692 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 20.0 Sn(OH)2 + 4 H+ + Edta-4 = SnH2(Edta) + 2 H2O - log_k 31.638 - delta_h 0 kJ - -gamma 0 0 - # Id: 7909693 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 20.0 + log_k 31.638 + delta_h 0 kJ + -gamma 0 0 + # Id: 7909693 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 20.0 Pb+2 + Edta-4 = Pb(Edta)-2 - log_k 19.8 - delta_h -54.8104 kJ - -gamma 0 0 - # Id: 6009691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 19.8 + delta_h -54.8104 kJ + -gamma 0 0 + # Id: 6009691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Edta-4 + H+ = PbH(Edta)- - log_k 23 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 23 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Edta-4 + 2 H+ = PbH2(Edta) - log_k 24.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 24.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009693 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Edta-4 = Al(Edta)- - log_k 19.1 - delta_h 52.7184 kJ - -gamma 0 0 - # Id: 309690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 19.1 + delta_h 52.7184 kJ + -gamma 0 0 + # Id: 309690 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Edta-4 + H+ = AlH(Edta) - log_k 21.8 - delta_h 36.4008 kJ - -gamma 0 0 - # Id: 309691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 21.8 + delta_h 36.4008 kJ + -gamma 0 0 + # Id: 309691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Edta-4 + H2O = AlOH(Edta)-2 + H+ - log_k 12.8 - delta_h 73.6384 kJ - -gamma 0 0 - # Id: 309692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 12.8 + delta_h 73.6384 kJ + -gamma 0 0 + # Id: 309692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Tl+ + Edta-4 = Tl(Edta)-3 - log_k 7.27 - delta_h -43.5136 kJ - -gamma 0 0 - # Id: 8709691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.27 + delta_h -43.5136 kJ + -gamma 0 0 + # Id: 8709691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Tl+ + Edta-4 + H+ = TlH(Edta)-2 - log_k 13.68 - delta_h 0 kJ - -gamma 0 0 - # Id: 8709692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 13.68 + delta_h 0 kJ + -gamma 0 0 + # Id: 8709692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Edta-4 = Zn(Edta)-2 - log_k 18 - delta_h -19.2464 kJ - -gamma 0 0 - # Id: 9509691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 18 + delta_h -19.2464 kJ + -gamma 0 0 + # Id: 9509691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Edta-4 + H+ = ZnH(Edta)- - log_k 21.4 - delta_h -28.4512 kJ - -gamma 0 0 - # Id: 9509692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 21.4 + delta_h -28.4512 kJ + -gamma 0 0 + # Id: 9509692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Edta-4 + H2O = ZnOH(Edta)-3 + H+ - log_k 5.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509693 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Edta-4 = Cd(Edta)-2 - log_k 18.2 - delta_h -38.0744 kJ - -gamma 0 0 - # Id: 1609691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 18.2 + delta_h -38.0744 kJ + -gamma 0 0 + # Id: 1609691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Edta-4 + H+ = CdH(Edta)- - log_k 21.5 - delta_h -39.748 kJ - -gamma 0 0 - # Id: 1609692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 21.5 + delta_h -39.748 kJ + -gamma 0 0 + # Id: 1609692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + Edta-4 + 2 H+ = Hg(Edta)-2 + 2 H2O - log_k 29.3 - delta_h -125.102 kJ - -gamma 0 0 - # Id: 3619691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 29.3 + delta_h -125.102 kJ + -gamma 0 0 + # Id: 3619691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + Edta-4 + 3 H+ = HgH(Edta)- + 2 H2O - log_k 32.9 - delta_h -128.449 kJ - -gamma 0 0 - # Id: 3619692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 32.9 + delta_h -128.449 kJ + -gamma 0 0 + # Id: 3619692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Edta-4 = Cu(Edta)-2 - log_k 20.5 - delta_h -34.7272 kJ - -gamma 0 0 - # Id: 2319691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 20.5 + delta_h -34.7272 kJ + -gamma 0 0 + # Id: 2319691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Edta-4 + H+ = CuH(Edta)- - log_k 24 - delta_h -43.0952 kJ - -gamma 0 0 - # Id: 2319692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 24 + delta_h -43.0952 kJ + -gamma 0 0 + # Id: 2319692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Edta-4 + 2 H+ = CuH2(Edta) - log_k 26.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 26.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319693 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Edta-4 + H2O = CuOH(Edta)-3 + H+ - log_k 8.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319694 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319694 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Edta-4 = Ag(Edta)-3 - log_k 8.08 - delta_h -31.38 kJ - -gamma 0 0 - # Id: 209691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.08 + delta_h -31.38 kJ + -gamma 0 0 + # Id: 209691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Edta-4 + H+ = AgH(Edta)-2 - log_k 15.21 - delta_h 0 kJ - -gamma 0 0 - # Id: 209693 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 15.21 + delta_h 0 kJ + -gamma 0 0 + # Id: 209693 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ni+2 + Edta-4 = Ni(Edta)-2 - log_k 20.1 - delta_h -30.9616 kJ - -gamma 0 0 - # Id: 5409691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 20.1 + delta_h -30.9616 kJ + -gamma 0 0 + # Id: 5409691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Edta-4 + H+ = NiH(Edta)- - log_k 23.6 - delta_h -38.4928 kJ - -gamma 0 0 - # Id: 5409692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 23.6 + delta_h -38.4928 kJ + -gamma 0 0 + # Id: 5409692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Edta-4 + H2O = NiOH(Edta)-3 + H+ - log_k 7.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409693 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Edta-4 = Co(Edta)-2 - log_k 18.1657 - delta_h -15 kJ - -gamma 0 0 - # Id: 2009691 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 18.1657 + delta_h -15 kJ + -gamma 0 0 + # Id: 2009691 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Co+2 + Edta-4 + H+ = CoH(Edta)- - log_k 21.5946 - delta_h -22.9 kJ - -gamma 0 0 - # Id: 2009692 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 21.5946 + delta_h -22.9 kJ + -gamma 0 0 + # Id: 2009692 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Co+2 + Edta-4 + 2 H+ = CoH2(Edta) - log_k 23.4986 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009693 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 25.0 + log_k 23.4986 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009693 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 25.0 Co+3 + Edta-4 = Co(Edta)- - log_k 43.9735 - delta_h 0 kJ - -gamma 0 0 - # Id: 2019691 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 43.9735 + delta_h 0 kJ + -gamma 0 0 + # Id: 2019691 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Co+3 + Edta-4 + H+ = CoH(Edta) - log_k 47.168 - delta_h 0 kJ - -gamma 0 0 - # Id: 2019692 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 + log_k 47.168 + delta_h 0 kJ + -gamma 0 0 + # Id: 2019692 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 Fe+2 + Edta-4 = Fe(Edta)-2 - log_k 16 - delta_h -16.736 kJ - -gamma 0 0 - # Id: 2809690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 16 + delta_h -16.736 kJ + -gamma 0 0 + # Id: 2809690 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + Edta-4 + H+ = FeH(Edta)- - log_k 19.06 - delta_h -27.6144 kJ - -gamma 0 0 - # Id: 2809691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 19.06 + delta_h -27.6144 kJ + -gamma 0 0 + # Id: 2809691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + Edta-4 + H2O = FeOH(Edta)-3 + H+ - log_k 6.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809692 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 6.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809692 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Fe+2 + Edta-4 + 2 H2O = Fe(OH)2(Edta)-4 + 2 H+ - log_k -4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809693 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k -4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809693 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Fe+3 + Edta-4 = Fe(Edta)- - log_k 27.7 - delta_h -11.2968 kJ - -gamma 0 0 - # Id: 2819690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 27.7 + delta_h -11.2968 kJ + -gamma 0 0 + # Id: 2819690 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Edta-4 + H+ = FeH(Edta) - log_k 29.2 - delta_h -11.7152 kJ - -gamma 0 0 - # Id: 2819691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 29.2 + delta_h -11.7152 kJ + -gamma 0 0 + # Id: 2819691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Edta-4 + H2O = FeOH(Edta)-2 + H+ - log_k 19.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 19.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Edta-4 + 2 H2O = Fe(OH)2(Edta)-3 + 2 H+ - log_k 9.85 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819693 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 9.85 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819693 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Mn+2 + Edta-4 = Mn(Edta)-2 - log_k 15.6 - delta_h -19.2464 kJ - -gamma 0 0 - # Id: 4709691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 15.6 + delta_h -19.2464 kJ + -gamma 0 0 + # Id: 4709691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Edta-4 + H+ = MnH(Edta)- - log_k 19.1 - delta_h -24.2672 kJ - -gamma 0 0 - # Id: 4709692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 19.1 + delta_h -24.2672 kJ + -gamma 0 0 + # Id: 4709692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cr+2 + Edta-4 = Cr(Edta)-2 - log_k 15.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2109691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 15.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2109691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cr+2 + Edta-4 + H+ = CrH(Edta)- - log_k 19.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 2109692 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 19.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 2109692 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cr(OH)2+ + Edta-4 + 2 H+ = Cr(Edta)- + 2 H2O - log_k 35.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 35.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cr(OH)2+ + Edta-4 + 3 H+ = CrH(Edta) + 2 H2O - log_k 37.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 37.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cr(OH)2+ + Edta-4 + H+ = CrOH(Edta)-2 + H2O - log_k 27.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 27.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119693 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Be+2 + Edta-4 = Be(Edta)-2 - log_k 11.4157 - delta_h 41 kJ - -gamma 0 0 - # Id: 1109691 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 11.4157 + delta_h 41 kJ + -gamma 0 0 + # Id: 1109691 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Mg+2 + Edta-4 = Mg(Edta)-2 - log_k 10.57 - delta_h 13.8072 kJ - -gamma 0 0 - # Id: 4609690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.57 + delta_h 13.8072 kJ + -gamma 0 0 + # Id: 4609690 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Edta-4 + H+ = MgH(Edta)- - log_k 14.97 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 14.97 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Edta-4 = Ca(Edta)-2 - log_k 12.42 - delta_h -25.5224 kJ - -gamma 0 0 - # Id: 1509690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 12.42 + delta_h -25.5224 kJ + -gamma 0 0 + # Id: 1509690 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Edta-4 + H+ = CaH(Edta)- - log_k 15.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 15.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Sr+2 + Edta-4 = Sr(Edta)-2 - log_k 10.4357 - delta_h -17 kJ - -gamma 0 0 - # Id: 8009691 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 10.4357 + delta_h -17 kJ + -gamma 0 0 + # Id: 8009691 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Sr+2 + Edta-4 + H+ = SrH(Edta)- - log_k 14.7946 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009692 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 + log_k 14.7946 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009692 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 Ba+2 + Edta-4 = Ba(Edta)-2 - log_k 7.72 - delta_h -20.5016 kJ - -gamma 0 0 - # Id: 1009691 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 7.72 + delta_h -20.5016 kJ + -gamma 0 0 + # Id: 1009691 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Na+ + Edta-4 = Na(Edta)-3 - log_k 2.7 - delta_h -5.8576 kJ - -gamma 0 0 - # Id: 5009690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.7 + delta_h -5.8576 kJ + -gamma 0 0 + # Id: 5009690 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: K+ + Edta-4 = K(Edta)-3 - log_k 1.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 4109690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 4109690 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Propionate- = H(Propionate) - log_k 4.874 - delta_h 0.66 kJ - -gamma 0 0 - # Id: 3309711 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 4.874 + delta_h 0.66 kJ + -gamma 0 0 + # Id: 3309711 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Pb+2 + Propionate- = Pb(Propionate)+ - log_k 2.64 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009711 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.00 35.0 + log_k 2.64 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009711 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.00 35.0 Pb+2 + 2 Propionate- = Pb(Propionate)2 - log_k 3.1765 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009712 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 2.00 25.0 + log_k 3.1765 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009712 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 2.00 25.0 Zn+2 + Propionate- = Zn(Propionate)+ - log_k 1.4389 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 1.4389 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509711 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Zn+2 + 2 Propionate- = Zn(Propionate)2 - log_k 1.842 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509712 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 25.0 + log_k 1.842 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509712 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 25.0 Cd+2 + Propionate- = Cd(Propionate)+ - log_k 1.598 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 25.0 + log_k 1.598 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609711 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 25.0 Cd+2 + 2 Propionate- = Cd(Propionate)2 - log_k 2.472 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609712 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 25.0 + log_k 2.472 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609712 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 25.0 Hg(OH)2 + 2 H+ + Propionate- = Hg(Propionate)+ + 2 H2O - log_k 10.594 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 10.594 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619711 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Cu+2 + Propionate- = Cu(Propionate)+ - log_k 2.22 - delta_h 4.1 kJ - -gamma 0 0 - # Id: 2319711 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.22 + delta_h 4.1 kJ + -gamma 0 0 + # Id: 2319711 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Cu+2 + 2 Propionate- = Cu(Propionate)2 - log_k 3.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319712 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 3.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319712 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Ni+2 + Propionate- = Ni(Propionate)+ - log_k 0.908 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409711 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 1.00 25.0 + log_k 0.908 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409711 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 1.00 25.0 Co+2 + Propionate- = Co(Propionate)+ - log_k 0.671 - delta_h 4.6 kJ - -gamma 0 0 - # Id: 2009711 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 2.00 25.0 + log_k 0.671 + delta_h 4.6 kJ + -gamma 0 0 + # Id: 2009711 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 2.00 25.0 Co+2 + 2 Propionate- = Co(Propionate)2 - log_k 0.5565 - delta_h 16 kJ - -gamma 0 0 - # Id: 2009712 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 2.00 25.0 + log_k 0.5565 + delta_h 16 kJ + -gamma 0 0 + # Id: 2009712 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 2.00 25.0 Fe+3 + Propionate- = Fe(Propionate)+2 - log_k 4.012 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 20.0 + log_k 4.012 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819711 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 20.0 Cr(OH)2+ + 2 H+ + Propionate- = Cr(Propionate)+2 + 2 H2O - log_k 15.0773 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119711 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.50 25.0 + log_k 15.0773 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119711 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.50 25.0 Cr(OH)2+ + 2 H+ + 2 Propionate- = Cr(Propionate)2+ + 2 H2O - log_k 17.9563 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119712 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.50 25.0 + log_k 17.9563 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119712 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.50 25.0 Cr(OH)2+ + 2 H+ + 3 Propionate- = Cr(Propionate)3 + 2 H2O - log_k 20.8858 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119713 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.50 25.0 + log_k 20.8858 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119713 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.50 25.0 Mg+2 + Propionate- = Mg(Propionate)+ - log_k 0.9689 - delta_h 4.2677 kJ - -gamma 0 0 - # Id: 4609710 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.10 25.0 + log_k 0.9689 + delta_h 4.2677 kJ + -gamma 0 0 + # Id: 4609710 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.10 25.0 Ca+2 + Propionate- = Ca(Propionate)+ - log_k 0.9289 - delta_h 3.3472 kJ - -gamma 0 0 - # Id: 1509710 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.10 25.0 + log_k 0.9289 + delta_h 3.3472 kJ + -gamma 0 0 + # Id: 1509710 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.10 25.0 Sr+2 + Propionate- = Sr(Propionate)+ - log_k 0.8589 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 0.8589 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009711 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Ba+2 + Propionate- = Ba(Propionate)+ - log_k 0.7689 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009711 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.10 25.0 + log_k 0.7689 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009711 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.10 25.0 Ba+2 + 2 Propionate- = Ba(Propionate)2 - log_k 0.9834 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009712 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.10 25.0 + log_k 0.9834 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009712 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.10 25.0 H+ + Butyrate- = H(Butyrate) - log_k 4.819 - delta_h 2.8 kJ - -gamma 0 0 - # Id: 3309721 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 4.819 + delta_h 2.8 kJ + -gamma 0 0 + # Id: 3309721 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Pb+2 + Butyrate- = Pb(Butyrate)+ - log_k 2.101 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009721 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 2.00 25.0 + log_k 2.101 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009721 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 2.00 25.0 Zn+2 + Butyrate- = Zn(Butyrate)+ - log_k 1.4289 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 1.4289 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509721 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Hg(OH)2 + 2 H+ + Butyrate- = Hg(Butyrate)+ + 2 H2O - log_k 10.3529 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 10.3529 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619721 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Cu+2 + Butyrate- = Cu(Butyrate)+ - log_k 2.14 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 2.14 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319721 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Ni+2 + Butyrate- = Ni(Butyrate)+ - log_k 0.691 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409721 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 2.00 25.0 + log_k 0.691 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409721 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 2.00 25.0 Co+2 + Butyrate- = Co(Butyrate)+ - log_k 0.591 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 2.00 25.0 + log_k 0.591 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009721 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 2.00 25.0 Co+2 + 2 Butyrate- = Co(Butyrate)2 - log_k 0.7765 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009722 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 2.00 25.0 + log_k 0.7765 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009722 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 2.00 25.0 Mg+2 + Butyrate- = Mg(Butyrate)+ - log_k 0.9589 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609720 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.10 25.0 + log_k 0.9589 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609720 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.10 25.0 Ca+2 + Butyrate- = Ca(Butyrate)+ - log_k 0.9389 - delta_h 3.3472 kJ - -gamma 0 0 - # Id: 1509720 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.10 25.0 + log_k 0.9389 + delta_h 3.3472 kJ + -gamma 0 0 + # Id: 1509720 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.10 25.0 Sr+2 + Butyrate- = Sr(Butyrate)+ - log_k 0.7889 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 0.7889 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009721 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Ba+2 + Butyrate- = Ba(Butyrate)+ - log_k 0.7389 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009721 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.10 25.0 + log_k 0.7389 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009721 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.10 25.0 Ba+2 + 2 Butyrate- = Ba(Butyrate)2 - log_k 0.88 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009722 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 0.88 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009722 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Isobutyrate- = H(Isobutyrate) - log_k 4.849 - delta_h 3.2217 kJ - -gamma 0 0 - # Id: 3309731 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.849 + delta_h 3.2217 kJ + -gamma 0 0 + # Id: 3309731 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Isobutyrate- = Zn(Isobutyrate)+ - log_k 1.44 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509731 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.44 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509731 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Isobutyrate- = Cu(Isobutyrate)+ - log_k 2.17 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319731 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.17 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319731 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 2 Isobutyrate- = Cu(Isobutyrate)2 - log_k 3.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319732 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319732 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Isobutyrate- = Fe(Isobutyrate)+2 - log_k 4.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819731 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819731 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Isobutyrate- = Ca(Isobutyrate)+ - log_k 0.51 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509731 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 0.51 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509731 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Two_picoline = H(Two_picoline)+ - log_k 5.95 - delta_h -25.5224 kJ - -gamma 0 0 - # Id: 3309801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.95 + delta_h -25.5224 kJ + -gamma 0 0 + # Id: 3309801 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Two_picoline = Cu(Two_picoline)+2 - log_k 1.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319801 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 2 Two_picoline = Cu(Two_picoline)2+2 - log_k 2.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319802 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319802 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + Two_picoline = Cu(Two_picoline)+ - log_k 5.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309801 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + 2 Two_picoline = Cu(Two_picoline)2+ - log_k 7.65 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309802 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.65 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309802 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + 3 Two_picoline = Cu(Two_picoline)3+ - log_k 8.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309803 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309803 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Two_picoline = Ag(Two_picoline)+ - log_k 2.32 - delta_h -24.2672 kJ - -gamma 0 0 - # Id: 209801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.32 + delta_h -24.2672 kJ + -gamma 0 0 + # Id: 209801 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Two_picoline = Ag(Two_picoline)2+ - log_k 4.68 - delta_h -42.6768 kJ - -gamma 0 0 - # Id: 209802 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.68 + delta_h -42.6768 kJ + -gamma 0 0 + # Id: 209802 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Two_picoline = Ni(Two_picoline)+2 - log_k 0.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 0.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409801 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Three_picoline = H(Three_picoline)+ - log_k 5.7 - delta_h -23.8488 kJ - -gamma 0 0 - # Id: 3309811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.7 + delta_h -23.8488 kJ + -gamma 0 0 + # Id: 3309811 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Three_picoline = Zn(Three_picoline)+2 - log_k 1 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509811 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + 2 Three_picoline = Zn(Three_picoline)2+2 - log_k 2.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509812 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + 3 Three_picoline = Zn(Three_picoline)3+2 - log_k 2.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509813 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + 4 Three_picoline = Zn(Three_picoline)4+2 - log_k 3.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509814 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Three_picoline = Cd(Three_picoline)+2 - log_k 1.42 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609811 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 1.42 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609811 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + 2 Three_picoline = Cd(Three_picoline)2+2 - log_k 2.27 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609812 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 2.27 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609812 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + 3 Three_picoline = Cd(Three_picoline)3+2 - log_k 3.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609813 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + 4 Three_picoline = Cd(Three_picoline)4+2 - log_k 4 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609814 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + Three_picoline = Cu(Three_picoline)+ - log_k 5.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309811 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + 2 Three_picoline = Cu(Three_picoline)2+ - log_k 7.78 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.78 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309812 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + 3 Three_picoline = Cu(Three_picoline)3+ - log_k 8.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309813 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + 4 Three_picoline = Cu(Three_picoline)4+ - log_k 9 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309814 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Three_picoline = Cu(Three_picoline)+2 - log_k 2.77 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.77 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319811 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 2 Three_picoline = Cu(Three_picoline)2+2 - log_k 4.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319812 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 3 Three_picoline = Cu(Three_picoline)3+2 - log_k 6.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319813 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 4 Three_picoline = Cu(Three_picoline)4+2 - log_k 7.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319814 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Three_picoline = Ag(Three_picoline)+ - log_k 2.2 - delta_h -21.7568 kJ - -gamma 0 0 - # Id: 209811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.2 + delta_h -21.7568 kJ + -gamma 0 0 + # Id: 209811 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Three_picoline = Ag(Three_picoline)2+ - log_k 4.46 - delta_h -49.7896 kJ - -gamma 0 0 - # Id: 209812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.46 + delta_h -49.7896 kJ + -gamma 0 0 + # Id: 209812 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Three_picoline = Ni(Three_picoline)+2 - log_k 1.87 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.87 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409811 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 2 Three_picoline = Ni(Three_picoline)2+2 - log_k 3.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409812 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 3 Three_picoline = Ni(Three_picoline)3+2 - log_k 4.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409813 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 4 Three_picoline = Ni(Three_picoline)4+2 - log_k 4.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409814 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Three_picoline = Co(Three_picoline)+2 - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009811 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009811 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 Co+2 + 2 Three_picoline = Co(Three_picoline)2+2 - log_k 2.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009812 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 + log_k 2.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009812 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 Co+2 + 3 Three_picoline = Co(Three_picoline)3+2 - log_k 2.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009813 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 + log_k 2.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009813 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 H+ + Four_picoline = H(Four_picoline)+ - log_k 6.03 - delta_h -25.3132 kJ - -gamma 0 0 - # Id: 3309821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.03 + delta_h -25.3132 kJ + -gamma 0 0 + # Id: 3309821 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Four_picoline = Zn(Four_picoline)+2 - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509821 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + 2 Four_picoline = Zn(Four_picoline)2+2 - log_k 2.11 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.11 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509822 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + 3 Four_picoline = Zn(Four_picoline)3+2 - log_k 2.85 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509823 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.85 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509823 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Four_picoline = Cd(Four_picoline)+2 - log_k 1.59 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609821 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 1.59 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609821 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + 2 Four_picoline = Cd(Four_picoline)2+2 - log_k 2.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609822 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 2.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609822 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + 3 Four_picoline = Cd(Four_picoline)3+2 - log_k 3.18 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609823 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 3.18 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609823 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + 4 Four_picoline = Cd(Four_picoline)4+2 - log_k 4 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609824 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609824 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + Four_picoline = Cu(Four_picoline)+ - log_k 5.65 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.65 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309821 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + 2 Four_picoline = Cu(Four_picoline)2+ - log_k 8.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309822 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + 3 Four_picoline = Cu(Four_picoline)3+ - log_k 8.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309823 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309823 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + 4 Four_picoline = Cu(Four_picoline)4+ - log_k 9.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309824 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309824 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Four_picoline = Cu(Four_picoline)+2 - log_k 2.88 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.88 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319821 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 2 Four_picoline = Cu(Four_picoline)2+2 - log_k 5.16 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.16 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319822 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 3 Four_picoline = Cu(Four_picoline)3+2 - log_k 6.77 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319823 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.77 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319823 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 4 Four_picoline = Cu(Four_picoline)4+2 - log_k 8.08 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319824 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.08 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319824 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 5 Four_picoline = Cu(Four_picoline)5+2 - log_k 8.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319825 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319825 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Four_picoline = Ag(Four_picoline)+ - log_k 2.03 - delta_h -25.5224 kJ - -gamma 0 0 - # Id: 209821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.03 + delta_h -25.5224 kJ + -gamma 0 0 + # Id: 209821 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Four_picoline = Ag(Four_picoline)2+ - log_k 4.39 - delta_h -53.5552 kJ - -gamma 0 0 - # Id: 209822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.39 + delta_h -53.5552 kJ + -gamma 0 0 + # Id: 209822 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Four_picoline = Ni(Four_picoline)+2 - log_k 2.11 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.11 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409821 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 2 Four_picoline = Ni(Four_picoline)2+2 - log_k 3.59 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.59 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409822 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 3 Four_picoline = Ni(Four_picoline)3+2 - log_k 4.34 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409823 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.34 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409823 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 4 Four_picoline = Ni(Four_picoline)4+2 - log_k 4.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409824 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409824 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Four_picoline = Co(Four_picoline)+2 - log_k 1.56 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009821 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 + log_k 1.56 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009821 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 Co+2 + 2 Four_picoline = Co(Four_picoline)2+2 - log_k 2.51 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009822 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 + log_k 2.51 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009822 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 Co+2 + 3 Four_picoline = Co(Four_picoline)3+2 - log_k 2.94 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009823 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 + log_k 2.94 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009823 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 Co+2 + 4 Four_picoline = Co(Four_picoline)4+2 - log_k 3.17 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009824 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 + log_k 3.17 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009824 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 H+ + Formate- = H(Formate) - log_k 3.745 - delta_h 0.1674 kJ - -gamma 0 0 - # Id: 3309831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.745 + delta_h 0.1674 kJ + -gamma 0 0 + # Id: 3309831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Formate- = Pb(Formate)+ - log_k 2.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009831 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 2.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009831 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + Formate- = Zn(Formate)+ - log_k 1.44 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.44 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Formate- = Cd(Formate)+ - log_k 1.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609831 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 1.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609831 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Hg(OH)2 + Formate- + 2 H+ = Hg(Formate)+ + 2 H2O - log_k 9.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Formate- = Cu(Formate)+ - log_k 2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Formate- = Ni(Formate)+ - log_k 1.22 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409831 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 1.22 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409831 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Co+2 + Formate- = Co(Formate)+ - log_k 1.209 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009831 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 30.0 + log_k 1.209 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009831 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 30.0 Co+2 + 2 Formate- = Co(Formate)2 - log_k 1.1365 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009832 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 2.00 25.0 + log_k 1.1365 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009832 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 2.00 25.0 Cr+2 + Formate- = Cr(Formate)+ - log_k 1.07 - delta_h 0 kJ - -gamma 0 0 - # Id: 2109831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.07 + delta_h 0 kJ + -gamma 0 0 + # Id: 2109831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Formate- = Mg(Formate)+ - log_k 1.43 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.43 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Formate- = Ca(Formate)+ - log_k 1.43 - delta_h 4.184 kJ - -gamma 0 0 - # Id: 1509831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.43 + delta_h 4.184 kJ + -gamma 0 0 + # Id: 1509831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Sr+2 + Formate- = Sr(Formate)+ - log_k 1.39 - delta_h 4 kJ - -gamma 0 0 - # Id: 8009831 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 1.39 + delta_h 4 kJ + -gamma 0 0 + # Id: 8009831 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ba+2 + Formate- = Ba(Formate)+ - log_k 1.38 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.38 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Isovalerate- = H(Isovalerate) - log_k 4.781 - delta_h 4.5606 kJ - -gamma 0 0 - # Id: 3309841 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.781 + delta_h 4.5606 kJ + -gamma 0 0 + # Id: 3309841 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Isovalerate- = Zn(Isovalerate)+ - log_k 1.39 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509841 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.39 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509841 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Isovalerate- = Cu(Isovalerate)+ - log_k 2.08 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319841 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.08 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319841 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Isovalerate- = Ca(Isovalerate)+ - log_k 0.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509841 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 0.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509841 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Valerate- = H(Valerate) - log_k 4.843 - delta_h 2.887 kJ - -gamma 0 0 - # Id: 3309851 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.843 + delta_h 2.887 kJ + -gamma 0 0 + # Id: 3309851 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Valerate- = Cu(Valerate)+ - log_k 2.12 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319851 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.12 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319851 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Valerate- = Ca(Valerate)+ - log_k 0.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509851 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 0.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509851 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ba+2 + Valerate- = Ba(Valerate)+ - log_k -0.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009851 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k -0.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009851 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Acetate- = H(Acetate) - log_k 4.757 - delta_h 0.41 kJ - -gamma 0 0 - # Id: 3309921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 4.757 + delta_h 0.41 kJ + -gamma 0 0 + # Id: 3309921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Sn(OH)2 + 2 H+ + Acetate- = Sn(Acetate)+ + 2 H2O - log_k 10.0213 - delta_h 0 kJ - -gamma 0 0 - # Id: 7909921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 3.00 25.0 + log_k 10.0213 + delta_h 0 kJ + -gamma 0 0 + # Id: 7909921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 3.00 25.0 Sn(OH)2 + 2 H+ + 2 Acetate- = Sn(Acetate)2 + 2 H2O - log_k 12.32 - delta_h 0 kJ - -gamma 0 0 - # Id: 7909922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 3.00 25.0 + log_k 12.32 + delta_h 0 kJ + -gamma 0 0 + # Id: 7909922 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 3.00 25.0 Sn(OH)2 + 2 H+ + 3 Acetate- = Sn(Acetate)3- + 2 H2O - log_k 13.55 - delta_h 0 kJ - -gamma 0 0 - # Id: 7909923 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 3.00 25.0 + log_k 13.55 + delta_h 0 kJ + -gamma 0 0 + # Id: 7909923 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 3.00 25.0 Pb+2 + Acetate- = Pb(Acetate)+ - log_k 2.68 - delta_h -0.4 kJ - -gamma 0 0 - # Id: 6009921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.68 + delta_h -0.4 kJ + -gamma 0 0 + # Id: 6009921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Pb+2 + 2 Acetate- = Pb(Acetate)2 - log_k 4.08 - delta_h -0.8 kJ - -gamma 0 0 - # Id: 6009922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 4.08 + delta_h -0.8 kJ + -gamma 0 0 + # Id: 6009922 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Tl+ + Acetate- = Tl(Acetate) - log_k -0.11 - delta_h 0 kJ - -gamma 0 0 - # Id: 8709921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k -0.11 + delta_h 0 kJ + -gamma 0 0 + # Id: 8709921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Zn+2 + Acetate- = Zn(Acetate)+ - log_k 1.58 - delta_h 8.3 kJ - -gamma 0 0 - # Id: 9509921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 1.58 + delta_h 8.3 kJ + -gamma 0 0 + # Id: 9509921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Zn+2 + 2 Acetate- = Zn(Acetate)2 - log_k 2.6434 - delta_h 22 kJ - -gamma 0 0 - # Id: 9509922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 2.6434 + delta_h 22 kJ + -gamma 0 0 + # Id: 9509922 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Cd+2 + Acetate- = Cd(Acetate)+ - log_k 1.93 - delta_h 9.6 kJ - -gamma 0 0 - # Id: 1609921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 1.93 + delta_h 9.6 kJ + -gamma 0 0 + # Id: 1609921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Cd+2 + 2 Acetate- = Cd(Acetate)2 - log_k 2.86 - delta_h 15 kJ - -gamma 0 0 - # Id: 1609922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.86 + delta_h 15 kJ + -gamma 0 0 + # Id: 1609922 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2 H+ + Acetate- = Hg(Acetate)+ + 2 H2O - log_k 10.494 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 10.494 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619920 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2 H+ + 2 Acetate- = Hg(Acetate)2 + 2 H2O - log_k 13.83 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619921 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 3.00 25.0 + log_k 13.83 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619921 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 3.00 25.0 Cu+2 + Acetate- = Cu(Acetate)+ - log_k 2.21 - delta_h 7.1 kJ - -gamma 0 0 - # Id: 2319921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.21 + delta_h 7.1 kJ + -gamma 0 0 + # Id: 2319921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Cu+2 + 2 Acetate- = Cu(Acetate)2 - log_k 3.4 - delta_h 12 kJ - -gamma 0 0 - # Id: 2319922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 3.4 + delta_h 12 kJ + -gamma 0 0 + # Id: 2319922 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Cu+2 + 3 Acetate- = Cu(Acetate)3- - log_k 3.9434 - delta_h 6.2 kJ - -gamma 0 0 - # Id: 2319923 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 3.9434 + delta_h 6.2 kJ + -gamma 0 0 + # Id: 2319923 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Ag+ + Acetate- = Ag(Acetate) - log_k 0.73 - delta_h 3 kJ - -gamma 0 0 - # Id: 209921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 0.73 + delta_h 3 kJ + -gamma 0 0 + # Id: 209921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ag+ + 2 Acetate- = Ag(Acetate)2- - log_k 0.64 - delta_h 3 kJ - -gamma 0 0 - # Id: 209922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 0.64 + delta_h 3 kJ + -gamma 0 0 + # Id: 209922 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ni+2 + Acetate- = Ni(Acetate)+ - log_k 1.37 - delta_h 8.7 kJ - -gamma 0 0 - # Id: 5409921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 1.37 + delta_h 8.7 kJ + -gamma 0 0 + # Id: 5409921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ni+2 + 2 Acetate- = Ni(Acetate)2 - log_k 2.1 - delta_h 10 kJ - -gamma 0 0 - # Id: 5409922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.1 + delta_h 10 kJ + -gamma 0 0 + # Id: 5409922 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Co+2 + Acetate- = Co(Acetate)+ - log_k 1.38 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 1.38 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Co+2 + 2 Acetate- = Co(Acetate)2 - log_k 0.7565 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 2.00 25.0 + log_k 0.7565 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009922 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 2.00 25.0 Fe+2 + Acetate- = Fe(Acetate)+ - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809920 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Fe+3 + Acetate- = Fe(Acetate)+2 - log_k 4.0234 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 + log_k 4.0234 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819920 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 Fe+3 + 2 Acetate- = Fe(Acetate)2+ - log_k 7.5723 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 + log_k 7.5723 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 Fe+3 + 3 Acetate- = Fe(Acetate)3 - log_k 9.5867 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 + log_k 9.5867 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819922 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 Mn+2 + Acetate- = Mn(Acetate)+ - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709920 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Cr+2 + Acetate- = Cr(Acetate)+ - log_k 1.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 2109921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 1.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 2109921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Cr+2 + 2 Acetate- = Cr(Acetate)2 - log_k 2.92 - delta_h 0 kJ - -gamma 0 0 - # Id: 2109922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 2.92 + delta_h 0 kJ + -gamma 0 0 + # Id: 2109922 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Cr(OH)2+ + 2 H+ + Acetate- = Cr(Acetate)+2 + 2 H2O - log_k 15.0073 - delta_h -125.62 kJ - -gamma 0 0 - # Id: 2119921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 + log_k 15.0073 + delta_h -125.62 kJ + -gamma 0 0 + # Id: 2119921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 Cr(OH)2+ + 2 H+ + 2 Acetate- = Cr(Acetate)2+ + 2 H2O - log_k 17.9963 - delta_h -117.62 kJ - -gamma 0 0 - # Id: 2119922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 + log_k 17.9963 + delta_h -117.62 kJ + -gamma 0 0 + # Id: 2119922 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 Cr(OH)2+ + 2 H+ + 3 Acetate- = Cr(Acetate)3 + 2 H2O - log_k 20.7858 - delta_h -96.62 kJ - -gamma 0 0 - # Id: 2119923 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 + log_k 20.7858 + delta_h -96.62 kJ + -gamma 0 0 + # Id: 2119923 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 Be+2 + Acetate- = Be(Acetate)+ - log_k 2.0489 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 2.0489 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Be+2 + 2 Acetate- = Be(Acetate)2 - log_k 3.0034 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 3.0034 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109922 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Mg+2 + Acetate- = Mg(Acetate)+ - log_k 1.27 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 1.27 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609920 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Ca+2 + Acetate- = Ca(Acetate)+ - log_k 1.18 - delta_h 4 kJ - -gamma 0 0 - # Id: 1509920 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 1.18 + delta_h 4 kJ + -gamma 0 0 + # Id: 1509920 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Sr+2 + Acetate- = Sr(Acetate)+ - log_k 1.14 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 1.14 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Ba+2 + Acetate- = Ba(Acetate)+ - log_k 1.07 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 1.07 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Na+ + Acetate- = Na(Acetate) - log_k -0.18 - delta_h 12 kJ - -gamma 0 0 - # Id: 5009920 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -0.18 + delta_h 12 kJ + -gamma 0 0 + # Id: 5009920 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 K+ + Acetate- = K(Acetate) - log_k -0.1955 - delta_h 4.184 kJ - -gamma 0 0 - # Id: 4109921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k -0.1955 + delta_h 4.184 kJ + -gamma 0 0 + # Id: 4109921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 H+ + Tartarate-2 = H(Tartarate)- - log_k 4.366 - delta_h -0.7531 kJ - -gamma 0 0 - # Id: 3309931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.366 + delta_h -0.7531 kJ + -gamma 0 0 + # Id: 3309931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 2 H+ + Tartarate-2 = H2(Tartarate) - log_k 7.402 - delta_h -3.6819 kJ - -gamma 0 0 - # Id: 3309932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.402 + delta_h -3.6819 kJ + -gamma 0 0 + # Id: 3309932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Sn(OH)2 + 2 H+ + Tartarate-2 = Sn(Tartarate) + 2 H2O - log_k 13.1518 - delta_h 0 kJ - -gamma 0 0 - # Id: 7909931 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 + log_k 13.1518 + delta_h 0 kJ + -gamma 0 0 + # Id: 7909931 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 Pb+2 + Tartarate-2 = Pb(Tartarate) - log_k 3.98 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.98 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + 2 Tartarate-2 = Al(Tartarate)2- - log_k 9.37 - delta_h 0 kJ - -gamma 0 0 - # Id: 309931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.37 + delta_h 0 kJ + -gamma 0 0 + # Id: 309931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Tl+ + Tartarate-2 = Tl(Tartarate)- - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 8709931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 8709931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Tl+ + Tartarate-2 + H+ = TlH(Tartarate) - log_k 4.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 8709932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 8709932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Tartarate-2 = Zn(Tartarate) - log_k 3.43 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.43 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + 2 Tartarate-2 = Zn(Tartarate)2-2 - log_k 5.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Tartarate-2 + H+ = ZnH(Tartarate)+ - log_k 5.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509933 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509933 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Tartarate-2 = Cd(Tartarate) - log_k 2.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + 2 Tartarate-2 = Cd(Tartarate)2-2 - log_k 4.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + Tartarate-2 + 2 H+ = Hg(Tartarate) + 2 H2O - log_k 14 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 14 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Tartarate-2 = Cu(Tartarate) - log_k 3.97 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.97 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Tartarate-2 + H+ = CuH(Tartarate)+ - log_k 6.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Tartarate-2 = Ni(Tartarate) - log_k 3.46 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.46 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Tartarate-2 + H+ = NiH(Tartarate)+ - log_k 5.89 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.89 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Tartarate-2 = Co(Tartarate) - log_k 3.05 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009931 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 3.05 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009931 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Co+2 + 2 Tartarate-2 = Co(Tartarate)2-2 - log_k 4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009932 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009932 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Co+2 + H+ + Tartarate-2 = CoH(Tartarate)+ - log_k 5.754 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009933 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 20.0 + log_k 5.754 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009933 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 20.0 Fe+2 + Tartarate-2 = Fe(Tartarate) - log_k 3.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Tartarate-2 = Fe(Tartarate)+ - log_k 7.78 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.78 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Tartarate-2 = Mn(Tartarate) - log_k 3.38 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.38 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Tartarate-2 + H+ = MnH(Tartarate)+ - log_k 6 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Tartarate-2 = Mg(Tartarate) - log_k 2.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Tartarate-2 + H+ = MgH(Tartarate)+ - log_k 5.75 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.75 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Be+2 + Tartarate-2 = Be(Tartarate) - log_k 2.768 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109931 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 + log_k 2.768 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109931 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 Be+2 + 2 Tartarate-2 = Be(Tartarate)2-2 - log_k 4.008 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109932 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 + log_k 4.008 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109932 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 Ca+2 + Tartarate-2 = Ca(Tartarate) - log_k 2.8 - delta_h -8.368 kJ - -gamma 0 0 - # Id: 1509931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.8 + delta_h -8.368 kJ + -gamma 0 0 + # Id: 1509931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Tartarate-2 + H+ = CaH(Tartarate)+ - log_k 5.86 - delta_h -9.1211 kJ - -gamma 0 0 - # Id: 1509932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.86 + delta_h -9.1211 kJ + -gamma 0 0 + # Id: 1509932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Sr+2 + Tartarate-2 = Sr(Tartarate) - log_k 2.55 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009931 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 20.0 + log_k 2.55 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009931 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 20.0 Sr+2 + H+ + Tartarate-2 = SrH(Tartarate)+ - log_k 5.8949 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009932 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 5.8949 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009932 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Ba+2 + Tartarate-2 = Ba(Tartarate) - log_k 2.54 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.54 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ba+2 + Tartarate-2 + H+ = BaH(Tartarate)+ - log_k 5.77 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.77 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Na+ + Tartarate-2 = Na(Tartarate)- - log_k 0.9 - delta_h -0.8368 kJ - -gamma 0 0 - # Id: 5009931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 0.9 + delta_h -0.8368 kJ + -gamma 0 0 + # Id: 5009931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Na+ + Tartarate-2 + H+ = NaH(Tartarate) - log_k 4.58 - delta_h -2.8451 kJ - -gamma 0 0 - # Id: 5009932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.58 + delta_h -2.8451 kJ + -gamma 0 0 + # Id: 5009932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: K+ + Tartarate-2 = K(Tartarate)- - log_k 0.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 4109931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 0.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 4109931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Glycine- = H(Glycine) - log_k 9.778 - delta_h -44.3504 kJ - -gamma 0 0 - # Id: 3309941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.778 + delta_h -44.3504 kJ + -gamma 0 0 + # Id: 3309941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 2 H+ + Glycine- = H2(Glycine)+ - log_k 12.128 - delta_h -48.4507 kJ - -gamma 0 0 - # Id: 3309942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 12.128 + delta_h -48.4507 kJ + -gamma 0 0 + # Id: 3309942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Glycine- = Pb(Glycine)+ - log_k 5.47 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.47 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + 2 Glycine- = Pb(Glycine)2 - log_k 8.86 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009942 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 8.86 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009942 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Tl+ + Glycine- = Tl(Glycine) - log_k 1.72 - delta_h 0 kJ - -gamma 0 0 - # Id: 8709941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.72 + delta_h 0 kJ + -gamma 0 0 + # Id: 8709941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Glycine- = Zn(Glycine)+ - log_k 5.38 - delta_h -11.7152 kJ - -gamma 0 0 - # Id: 9509941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.38 + delta_h -11.7152 kJ + -gamma 0 0 + # Id: 9509941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + 2 Glycine- = Zn(Glycine)2 - log_k 9.81 - delta_h -24.2672 kJ - -gamma 0 0 - # Id: 9509942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.81 + delta_h -24.2672 kJ + -gamma 0 0 + # Id: 9509942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + 3 Glycine- = Zn(Glycine)3- - log_k 12.3 - delta_h -39.748 kJ - -gamma 0 0 - # Id: 9509943 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 12.3 + delta_h -39.748 kJ + -gamma 0 0 + # Id: 9509943 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Glycine- = Cd(Glycine)+ - log_k 4.69 - delta_h -8.7864 kJ - -gamma 0 0 - # Id: 1609941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.69 + delta_h -8.7864 kJ + -gamma 0 0 + # Id: 1609941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + 2 Glycine- = Cd(Glycine)2 - log_k 8.4 - delta_h -22.5936 kJ - -gamma 0 0 - # Id: 1609942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.4 + delta_h -22.5936 kJ + -gamma 0 0 + # Id: 1609942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + 3 Glycine- = Cd(Glycine)3- - log_k 10.7 - delta_h -35.9824 kJ - -gamma 0 0 - # Id: 1609943 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.7 + delta_h -35.9824 kJ + -gamma 0 0 + # Id: 1609943 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + Glycine- + 2 H+ = Hg(Glycine)+ + 2 H2O - log_k 17 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619941 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 17 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619941 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Hg(OH)2 + 2 Glycine- + 2 H+ = Hg(Glycine)2 + 2 H2O - log_k 25.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619942 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 25.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619942 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cu+ + 2 Glycine- = Cu(Glycine)2- - log_k 10.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Glycine- = Cu(Glycine)+ - log_k 8.57 - delta_h -25.104 kJ - -gamma 0 0 - # Id: 2319941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.57 + delta_h -25.104 kJ + -gamma 0 0 + # Id: 2319941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 2 Glycine- = Cu(Glycine)2 - log_k 15.7 - delta_h -54.8104 kJ - -gamma 0 0 - # Id: 2319942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 15.7 + delta_h -54.8104 kJ + -gamma 0 0 + # Id: 2319942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Glycine- = Ag(Glycine) - log_k 3.51 - delta_h -19.2464 kJ - -gamma 0 0 - # Id: 209941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.51 + delta_h -19.2464 kJ + -gamma 0 0 + # Id: 209941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Glycine- = Ag(Glycine)2- - log_k 6.89 - delta_h -48.116 kJ - -gamma 0 0 - # Id: 209942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.89 + delta_h -48.116 kJ + -gamma 0 0 + # Id: 209942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Glycine- = Ni(Glycine)+ - log_k 6.15 - delta_h -18.828 kJ - -gamma 0 0 - # Id: 5409941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.15 + delta_h -18.828 kJ + -gamma 0 0 + # Id: 5409941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 2 Glycine- = Ni(Glycine)2 - log_k 11.12 - delta_h -38.0744 kJ - -gamma 0 0 - # Id: 5409942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 11.12 + delta_h -38.0744 kJ + -gamma 0 0 + # Id: 5409942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 3 Glycine- = Ni(Glycine)3- - log_k 14.63 - delta_h -62.3416 kJ - -gamma 0 0 - # Id: 5409943 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 14.63 + delta_h -62.3416 kJ + -gamma 0 0 + # Id: 5409943 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Co+2 + Glycine- = Co(Glycine)+ - log_k 5.07 - delta_h -12 kJ - -gamma 0 0 - # Id: 2009941 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 5.07 + delta_h -12 kJ + -gamma 0 0 + # Id: 2009941 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Co+2 + 2 Glycine- = Co(Glycine)2 - log_k 9.07 - delta_h -26 kJ - -gamma 0 0 - # Id: 2009942 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 9.07 + delta_h -26 kJ + -gamma 0 0 + # Id: 2009942 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Co+2 + 3 Glycine- = Co(Glycine)3- - log_k 11.6 - delta_h -41 kJ - -gamma 0 0 - # Id: 2009943 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 11.6 + delta_h -41 kJ + -gamma 0 0 + # Id: 2009943 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Co+2 + Glycine- + H2O = CoOH(Glycine) + H+ - log_k -5.02 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009944 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k -5.02 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009944 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Fe+2 + Glycine- = Fe(Glycine)+ - log_k 4.31 - delta_h -15.0624 kJ - -gamma 0 0 - # Id: 2809941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.31 + delta_h -15.0624 kJ + -gamma 0 0 + # Id: 2809941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + 2 Glycine- = Fe(Glycine)2 - log_k 8.29 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.29 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Glycine- = Fe(Glycine)+2 - log_k 9.38 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.38 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Glycine- + H+ = FeH(Glycine)+3 - log_k 11.55 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 11.55 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Glycine- = Mn(Glycine)+ - log_k 3.19 - delta_h -1.2552 kJ - -gamma 0 0 - # Id: 4709941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.19 + delta_h -1.2552 kJ + -gamma 0 0 + # Id: 4709941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + 2 Glycine- = Mn(Glycine)2 - log_k 5.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cr(OH)2+ + Glycine- + 2 H+ = Cr(Glycine)+2 + 2 H2O - log_k 18.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119941 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 18.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119941 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cr(OH)2+ + 2 Glycine- + 2 H+ = Cr(Glycine)2+ + 2 H2O - log_k 25.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119942 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 25.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119942 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cr(OH)2+ + 3 Glycine- + 2 H+ = Cr(Glycine)3 + 2 H2O - log_k 31.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119943 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 31.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119943 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Mg+2 + Glycine- = Mg(Glycine)+ - log_k 2.08 - delta_h 4.184 kJ - -gamma 0 0 - # Id: 4609941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.08 + delta_h 4.184 kJ + -gamma 0 0 + # Id: 4609941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Glycine- = Ca(Glycine)+ - log_k 1.39 - delta_h -4.184 kJ - -gamma 0 0 - # Id: 1509941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.39 + delta_h -4.184 kJ + -gamma 0 0 + # Id: 1509941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Glycine- + H+ = CaH(Glycine)+2 - log_k 10.1 - delta_h -35.9824 kJ - -gamma 0 0 - # Id: 1509942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.1 + delta_h -35.9824 kJ + -gamma 0 0 + # Id: 1509942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Sr+2 + Glycine- = Sr(Glycine)+ - log_k 0.91 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009941 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 0.91 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009941 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Ba+2 + Glycine- = Ba(Glycine)+ - log_k 0.77 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 0.77 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Salicylate-2 = H(Salicylate)- - log_k 13.7 - delta_h -35.7732 kJ - -gamma 0 0 - # Id: 3309951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 13.7 + delta_h -35.7732 kJ + -gamma 0 0 + # Id: 3309951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 2 H+ + Salicylate-2 = H2(Salicylate) - log_k 16.8 - delta_h -38.7857 kJ - -gamma 0 0 - # Id: 3309952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 16.8 + delta_h -38.7857 kJ + -gamma 0 0 + # Id: 3309952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Salicylate-2 = Zn(Salicylate) - log_k 7.71 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509951 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 7.71 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509951 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + Salicylate-2 + H+ = ZnH(Salicylate)+ - log_k 15.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 15.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Salicylate-2 = Cd(Salicylate) - log_k 6.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Salicylate-2 + H+ = CdH(Salicylate)+ - log_k 16 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 16 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Salicylate-2 = Cu(Salicylate) - log_k 11.3 - delta_h -17.9912 kJ - -gamma 0 0 - # Id: 2319951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 11.3 + delta_h -17.9912 kJ + -gamma 0 0 + # Id: 2319951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 2 Salicylate-2 = Cu(Salicylate)2-2 - log_k 19.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 19.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Salicylate-2 + H+ = CuH(Salicylate)+ - log_k 14.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319953 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 14.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319953 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Salicylate-2 = Ni(Salicylate) - log_k 8.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 2 Salicylate-2 = Ni(Salicylate)2-2 - log_k 12.64 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409952 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 12.64 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409952 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Co+2 + Salicylate-2 = Co(Salicylate) - log_k 7.4289 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009951 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 + log_k 7.4289 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009951 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 Co+2 + 2 Salicylate-2 = Co(Salicylate)2-2 - log_k 11.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009952 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 + log_k 11.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009952 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 Fe+2 + Salicylate-2 = Fe(Salicylate) - log_k 7.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + 2 Salicylate-2 = Fe(Salicylate)2-2 - log_k 11.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 11.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Salicylate-2 = Fe(Salicylate)+ - log_k 17.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 17.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + 2 Salicylate-2 = Fe(Salicylate)2- - log_k 29.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 29.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Salicylate-2 = Mn(Salicylate) - log_k 6.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + 2 Salicylate-2 = Mn(Salicylate)2-2 - log_k 10.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Be+2 + Salicylate-2 = Be(Salicylate) - log_k 13.3889 - delta_h -31.7732 kJ - -gamma 0 0 - # Id: 1109951 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 13.3889 + delta_h -31.7732 kJ + -gamma 0 0 + # Id: 1109951 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Be+2 + 2 Salicylate-2 = Be(Salicylate)2-2 - log_k 23.25 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109952 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 23.25 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109952 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Mg+2 + Salicylate-2 = Mg(Salicylate) - log_k 5.76 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.76 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Salicylate-2 + H+ = MgH(Salicylate)+ - log_k 15.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609952 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 15.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609952 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ca+2 + Salicylate-2 = Ca(Salicylate) - log_k 4.05 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.05 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Salicylate-2 + H+ = CaH(Salicylate)+ - log_k 14.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 14.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ba+2 + Salicylate-2 + H+ = BaH(Salicylate)+ - log_k 13.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009951 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 13.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009951 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Glutamate-2 = H(Glutamate)- - log_k 9.96 - delta_h -41.0032 kJ - -gamma 0 0 - # Id: 3309961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.96 + delta_h -41.0032 kJ + -gamma 0 0 + # Id: 3309961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 2 H+ + Glutamate-2 = H2(Glutamate) - log_k 14.26 - delta_h -43.5136 kJ - -gamma 0 0 - # Id: 3309962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 14.26 + delta_h -43.5136 kJ + -gamma 0 0 + # Id: 3309962 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 3 H+ + Glutamate-2 = H3(Glutamate)+ - log_k 16.42 - delta_h -46.8608 kJ - -gamma 0 0 - # Id: 3309963 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 16.42 + delta_h -46.8608 kJ + -gamma 0 0 + # Id: 3309963 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Glutamate-2 = Pb(Glutamate) - log_k 6.43 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 6.43 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009961 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Pb+2 + 2 Glutamate-2 = Pb(Glutamate)2-2 - log_k 8.61 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 8.61 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009962 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Pb+2 + Glutamate-2 + H+ = PbH(Glutamate)+ - log_k 14.08 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009963 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 14.08 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009963 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Al+3 + Glutamate-2 + H+ = AlH(Glutamate)+2 - log_k 13.07 - delta_h 0 kJ - -gamma 0 0 - # Id: 309961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 13.07 + delta_h 0 kJ + -gamma 0 0 + # Id: 309961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Glutamate-2 = Zn(Glutamate) - log_k 6.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 6.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509961 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + 2 Glutamate-2 = Zn(Glutamate)2-2 - log_k 9.13 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 9.13 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509962 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + 3 Glutamate-2 = Zn(Glutamate)3-4 - log_k 9.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509963 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 9.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509963 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + Glutamate-2 = Cd(Glutamate) - log_k 4.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + 2 Glutamate-2 = Cd(Glutamate)2-2 - log_k 7.59 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.59 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609962 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + Glutamate-2 + 2 H+ = Hg(Glutamate) + 2 H2O - log_k 19.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 19.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619961 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Hg(OH)2 + 2 Glutamate-2 + 2 H+ = Hg(Glutamate)2-2 + 2 H2O - log_k 26.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 26.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619962 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cu+2 + Glutamate-2 = Cu(Glutamate) - log_k 9.17 - delta_h -20.92 kJ - -gamma 0 0 - # Id: 2319961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.17 + delta_h -20.92 kJ + -gamma 0 0 + # Id: 2319961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 2 Glutamate-2 = Cu(Glutamate)2-2 - log_k 15.78 - delta_h -48.116 kJ - -gamma 0 0 - # Id: 2319962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 15.78 + delta_h -48.116 kJ + -gamma 0 0 + # Id: 2319962 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Glutamate-2 + H+ = CuH(Glutamate)+ - log_k 13.3 - delta_h -28.0328 kJ - -gamma 0 0 - # Id: 2319963 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 13.3 + delta_h -28.0328 kJ + -gamma 0 0 + # Id: 2319963 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Glutamate-2 = Ag(Glutamate)- - log_k 4.22 - delta_h 0 kJ - -gamma 0 0 - # Id: 209961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.22 + delta_h 0 kJ + -gamma 0 0 + # Id: 209961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Glutamate-2 = Ag(Glutamate)2-3 - log_k 7.36 - delta_h 0 kJ - -gamma 0 0 - # Id: 209962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 7.36 + delta_h 0 kJ + -gamma 0 0 + # Id: 209962 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: 2 Ag+ + Glutamate-2 = Ag2(Glutamate) - log_k 3.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 209963 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 209963 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Glutamate-2 = Ni(Glutamate) - log_k 6.47 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.47 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 2 Glutamate-2 = Ni(Glutamate)2-2 - log_k 10.7 - delta_h -30.9616 kJ - -gamma 0 0 - # Id: 5409962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.7 + delta_h -30.9616 kJ + -gamma 0 0 + # Id: 5409962 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Glutamate-2 = Co(Glutamate) - log_k 5.4178 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009961 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 5.4178 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009961 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Co+2 + 2 Glutamate-2 = Co(Glutamate)2-2 - log_k 8.7178 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009962 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 8.7178 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009962 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Mn+2 + Glutamate-2 = Mn(Glutamate) - log_k 4.95 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 4.95 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709961 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Mn+2 + 2 Glutamate-2 = Mn(Glutamate)2-2 - log_k 8.48 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 8.48 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709962 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cr(OH)2+ + Glutamate-2 + 2 H+ = Cr(Glutamate)+ + 2 H2O - log_k 22.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 22.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119961 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cr(OH)2+ + 2 Glutamate-2 + 2 H+ = Cr(Glutamate)2- + 2 H2O - log_k 30.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 30.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119962 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cr(OH)2+ + Glutamate-2 + 3 H+ = CrH(Glutamate)+2 + 2 H2O - log_k 25.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119963 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 25.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119963 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Mg+2 + Glutamate-2 = Mg(Glutamate) - log_k 2.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Glutamate-2 = Ca(Glutamate) - log_k 2.06 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.06 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Glutamate-2 + H+ = CaH(Glutamate)+ - log_k 11.13 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 11.13 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509962 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Sr+2 + Glutamate-2 = Sr(Glutamate) - log_k 2.2278 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009961 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 2.2278 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009961 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Ba+2 + Glutamate-2 = Ba(Glutamate) - log_k 2.14 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.14 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Phthalate-2 = H(Phthalate)- - log_k 5.408 - delta_h 2.1757 kJ - -gamma 0 0 - # Id: 3309971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.408 + delta_h 2.1757 kJ + -gamma 0 0 + # Id: 3309971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 2 H+ + Phthalate-2 = H2(Phthalate) - log_k 8.358 - delta_h 4.8534 kJ - -gamma 0 0 - # Id: 3309972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.358 + delta_h 4.8534 kJ + -gamma 0 0 + # Id: 3309972 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Phthalate-2 = Pb(Phthalate) - log_k 4.26 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009971 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 4.26 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009971 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Pb+2 + 2 Phthalate-2 = Pb(Phthalate)2-2 - log_k 4.83 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.83 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009972 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Phthalate-2 + H+ = PbH(Phthalate)+ - log_k 6.98 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009973 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.98 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009973 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Phthalate-2 = Al(Phthalate)+ - log_k 4.56 - delta_h 0 kJ - -gamma 0 0 - # Id: 309971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.56 + delta_h 0 kJ + -gamma 0 0 + # Id: 309971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + 2 Phthalate-2 = Al(Phthalate)2- - log_k 7.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 309972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 309972 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Phthalate-2 = Zn(Phthalate) - log_k 2.91 - delta_h 13.3888 kJ - -gamma 0 0 - # Id: 9509971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.91 + delta_h 13.3888 kJ + -gamma 0 0 + # Id: 9509971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + 2 Phthalate-2 = Zn(Phthalate)2-2 - log_k 4.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509972 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Phthalate-2 = Cd(Phthalate) - log_k 3.43 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.43 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Phthalate-2 + H+ = CdH(Phthalate)+ - log_k 6.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609973 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609973 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + 2 Phthalate-2 = Cd(Phthalate)2-2 - log_k 3.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609972 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Phthalate-2 = Cu(Phthalate) - log_k 4.02 - delta_h 8.368 kJ - -gamma 0 0 - # Id: 2319971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.02 + delta_h 8.368 kJ + -gamma 0 0 + # Id: 2319971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Phthalate-2 + H+ = CuH(Phthalate)+ - log_k 7.1 - delta_h 3.8493 kJ - -gamma 0 0 - # Id: 2319970 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.1 + delta_h 3.8493 kJ + -gamma 0 0 + # Id: 2319970 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 2 Phthalate-2 = Cu(Phthalate)2-2 - log_k 5.3 - delta_h 15.8992 kJ - -gamma 0 0 - # Id: 2319972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.3 + delta_h 15.8992 kJ + -gamma 0 0 + # Id: 2319972 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Phthalate-2 = Ni(Phthalate) - log_k 2.95 - delta_h 7.5312 kJ - -gamma 0 0 - # Id: 5409971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.95 + delta_h 7.5312 kJ + -gamma 0 0 + # Id: 5409971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Phthalate-2 + H+ = NiH(Phthalate)+ - log_k 6.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409972 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Phthalate-2 = Co(Phthalate) - log_k 2.83 - delta_h 7.9 kJ - -gamma 0 0 - # Id: 2009971 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.83 + delta_h 7.9 kJ + -gamma 0 0 + # Id: 2009971 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Co+2 + H+ + Phthalate-2 = CoH(Phthalate)+ - log_k 7.227 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009972 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 + log_k 7.227 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009972 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 Mn+2 + Phthalate-2 = Mn(Phthalate) - log_k 2.74 - delta_h 10.0416 kJ - -gamma 0 0 - # Id: 4709971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.74 + delta_h 10.0416 kJ + -gamma 0 0 + # Id: 4709971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cr(OH)2+ + Phthalate-2 + 2 H+ = Cr(Phthalate)+ + 2 H2O - log_k 16.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119971 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 16.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119971 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cr(OH)2+ + 2 Phthalate-2 + 2 H+ = Cr(Phthalate)2- + 2 H2O - log_k 21.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119972 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 21.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119972 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cr(OH)2+ + 3 Phthalate-2 + 2 H+ = Cr(Phthalate)3-3 + 2 H2O - log_k 23.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119973 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 23.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119973 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Be+2 + Phthalate-2 = Be(Phthalate) - log_k 4.8278 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109971 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 4.8278 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109971 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Be+2 + 2 Phthalate-2 = Be(Phthalate)2-2 - log_k 6.5478 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109972 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 6.5478 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109972 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Mg+2 + Phthalate-2 = Mg(Phthalate) - log_k 2.49 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609971 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 2.49 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609971 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ca+2 + Phthalate-2 = Ca(Phthalate) - log_k 2.45 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509970 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.45 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509970 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Phthalate-2 + H+ = CaH(Phthalate)+ - log_k 6.43 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.43 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ba+2 + Phthalate-2 = Ba(Phthalate) - log_k 2.33 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.33 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Na+ + Phthalate-2 = Na(Phthalate)- - log_k 0.8 - delta_h 4.184 kJ - -gamma 0 0 - # Id: 5009970 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 0.8 + delta_h 4.184 kJ + -gamma 0 0 + # Id: 5009970 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: K+ + Phthalate-2 = K(Phthalate)- - log_k 0.7 - delta_h 3.7656 kJ - -gamma 0 0 - # Id: 4109971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 0.7 + delta_h 3.7656 kJ + -gamma 0 0 + # Id: 4109971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: PHASES Sulfur - S + H+ + 2 e- = HS- - log_k -2.1449 - delta_h -16.3 kJ + S + H+ + 2 e- = HS- + log_k -2.1449 + delta_h -16.3 kJ Semetal(hex - Se + H+ + 2 e- = HSe- - log_k -7.7084 - delta_h 15.9 kJ + Se + H+ + 2 e- = HSe- + log_k -7.7084 + delta_h 15.9 kJ Semetal(am) - Se + H+ + 2 e- = HSe- - log_k -7.1099 - delta_h 10.8784 kJ + Se + H+ + 2 e- = HSe- + log_k -7.1099 + delta_h 10.8784 kJ Sbmetal - Sb + 3 H2O = Sb(OH)3 + 3 H+ + 3 e- - log_k -11.6889 - delta_h 83.89 kJ + Sb + 3 H2O = Sb(OH)3 + 3 H+ + 3 e- + log_k -11.6889 + delta_h 83.89 kJ Snmetal(wht) - Sn + 2 H2O = Sn(OH)2 + 2 H+ + 2 e- - log_k -2.3266 - delta_h -0 kJ + Sn + 2 H2O = Sn(OH)2 + 2 H+ + 2 e- + log_k -2.3266 + delta_h -0 kJ Pbmetal - Pb = Pb+2 + 2 e- - log_k 4.2462 - delta_h 0.92 kJ + Pb = Pb+2 + 2 e- + log_k 4.2462 + delta_h 0.92 kJ Tlmetal - Tl = Tl+ + e- - log_k 5.6762 - delta_h 5.36 kJ + Tl = Tl+ + e- + log_k 5.6762 + delta_h 5.36 kJ Znmetal - Zn = Zn+2 + 2 e- - log_k 25.7886 - delta_h -153.39 kJ + Zn = Zn+2 + 2 e- + log_k 25.7886 + delta_h -153.39 kJ Cdmetal(alpha) - Cd = Cd+2 + 2 e- - log_k 13.5147 - delta_h -75.33 kJ + Cd = Cd+2 + 2 e- + log_k 13.5147 + delta_h -75.33 kJ Cdmetal(gamma) - Cd = Cd+2 + 2 e- - log_k 13.618 - delta_h -75.92 kJ + Cd = Cd+2 + 2 e- + log_k 13.618 + delta_h -75.92 kJ Hgmetal(l) - Hg = 0.5 Hg2+2 + e- - log_k -13.4517 - delta_h 83.435 kJ + Hg = 0.5 Hg2+2 + e- + log_k -13.4517 + delta_h 83.435 kJ Cumetal - Cu = Cu+ + e- - log_k -8.756 - delta_h 71.67 kJ + Cu = Cu+ + e- + log_k -8.756 + delta_h 71.67 kJ Agmetal - Ag = Ag+ + e- - log_k -13.5065 - delta_h 105.79 kJ + Ag = Ag+ + e- + log_k -13.5065 + delta_h 105.79 kJ Crmetal - Cr = Cr+2 + 2 e- - log_k 30.4831 - delta_h -172 kJ + Cr = Cr+2 + 2 e- + log_k 30.4831 + delta_h -172 kJ Vmetal - V = V+3 + 3 e- - log_k 44.0253 - delta_h -259 kJ + V = V+3 + 3 e- + log_k 44.0253 + delta_h -259 kJ Stibnite - Sb2S3 + 6 H2O = 2 Sb(OH)3 + 3 H+ + 3 HS- - log_k -50.46 - delta_h 293.78 kJ + Sb2S3 + 6 H2O = 2 Sb(OH)3 + 3 H+ + 3 HS- + log_k -50.46 + delta_h 293.78 kJ Orpiment - As2S3 + 6 H2O = 2 H3AsO3 + 3 HS- + 3 H+ - log_k -61.0663 - delta_h 350.68 kJ + As2S3 + 6 H2O = 2 H3AsO3 + 3 HS- + 3 H+ + log_k -61.0663 + delta_h 350.68 kJ Realgar - AsS + 3 H2O = H3AsO3 + HS- + 2 H+ + e- - log_k -19.747 - delta_h 127.8 kJ + AsS + 3 H2O = H3AsO3 + HS- + 2 H+ + e- + log_k -19.747 + delta_h 127.8 kJ SnS - SnS + 2 H2O = Sn(OH)2 + H+ + HS- - log_k -19.114 - delta_h -0 kJ + SnS + 2 H2O = Sn(OH)2 + H+ + HS- + log_k -19.114 + delta_h -0 kJ SnS2 - SnS2 + 6 H2O = Sn(OH)6-2 + 4 H+ + 2 HS- - log_k -57.4538 - delta_h -0 kJ + SnS2 + 6 H2O = Sn(OH)6-2 + 4 H+ + 2 HS- + log_k -57.4538 + delta_h -0 kJ Galena - PbS + H+ = Pb+2 + HS- - log_k -13.97 - delta_h 80 kJ + PbS + H+ = Pb+2 + HS- + log_k -13.97 + delta_h 80 kJ Tl2S - Tl2S + H+ = 2 Tl+ + HS- - log_k -7.19 - delta_h 91.52 kJ + Tl2S + H+ = 2 Tl+ + HS- + log_k -7.19 + delta_h 91.52 kJ ZnS(am) - ZnS + H+ = Zn+2 + HS- - log_k -9.052 - delta_h 15.3553 kJ + ZnS + H+ = Zn+2 + HS- + log_k -9.052 + delta_h 15.3553 kJ Sphalerite - ZnS + H+ = Zn+2 + HS- - log_k -11.45 - delta_h 30 kJ + ZnS + H+ = Zn+2 + HS- + log_k -11.45 + delta_h 30 kJ Wurtzite - ZnS + H+ = Zn+2 + HS- - log_k -8.95 - delta_h 21.171 kJ + ZnS + H+ = Zn+2 + HS- + log_k -8.95 + delta_h 21.171 kJ Greenockite - CdS + H+ = Cd+2 + HS- - log_k -14.36 - delta_h 55 kJ + CdS + H+ = Cd+2 + HS- + log_k -14.36 + delta_h 55 kJ Hg2S - Hg2S + H+ = Hg2+2 + HS- - log_k -11.6765 - delta_h 69.7473 kJ + Hg2S + H+ = Hg2+2 + HS- + log_k -11.6765 + delta_h 69.7473 kJ Cinnabar - HgS + 2 H2O = Hg(OH)2 + H+ + HS- - log_k -45.694 - delta_h 253.76 kJ + HgS + 2 H2O = Hg(OH)2 + H+ + HS- + log_k -45.694 + delta_h 253.76 kJ Metacinnabar - HgS + 2 H2O = Hg(OH)2 + H+ + HS- - log_k -45.094 - delta_h 253.72 kJ + HgS + 2 H2O = Hg(OH)2 + H+ + HS- + log_k -45.094 + delta_h 253.72 kJ Chalcocite - Cu2S + H+ = 2 Cu+ + HS- - log_k -34.92 - delta_h 168 kJ + Cu2S + H+ = 2 Cu+ + HS- + log_k -34.92 + delta_h 168 kJ Djurleite - Cu0.066Cu1.868S + H+ = 0.066 Cu+2 + 1.868 Cu+ + HS- - log_k -33.92 - delta_h 200.334 kJ + Cu0.066Cu1.868S + H+ = 0.066 Cu+2 + 1.868 Cu+ + HS- + log_k -33.92 + delta_h 200.334 kJ Anilite - Cu0.25Cu1.5S + H+ = 0.25 Cu+2 + 1.5 Cu+ + HS- - log_k -31.878 - delta_h 182.15 kJ + Cu0.25Cu1.5S + H+ = 0.25 Cu+2 + 1.5 Cu+ + HS- + log_k -31.878 + delta_h 182.15 kJ BlaubleiII - Cu0.6Cu0.8S + H+ = 0.6 Cu+2 + 0.8 Cu+ + HS- - log_k -27.279 - delta_h -0 kJ + Cu0.6Cu0.8S + H+ = 0.6 Cu+2 + 0.8 Cu+ + HS- + log_k -27.279 + delta_h -0 kJ BlaubleiI - Cu0.9Cu0.2S + H+ = 0.9 Cu+2 + 0.2 Cu+ + HS- - log_k -24.162 - delta_h -0 kJ + Cu0.9Cu0.2S + H+ = 0.9 Cu+2 + 0.2 Cu+ + HS- + log_k -24.162 + delta_h -0 kJ Covellite - CuS + H+ = Cu+2 + HS- - log_k -22.3 - delta_h 97 kJ + CuS + H+ = Cu+2 + HS- + log_k -22.3 + delta_h 97 kJ Chalcopyrite - CuFeS2 + 2 H+ = Cu+2 + Fe+2 + 2 HS- - log_k -35.27 - delta_h 148.448 kJ + CuFeS2 + 2 H+ = Cu+2 + Fe+2 + 2 HS- + log_k -35.27 + delta_h 148.448 kJ Acanthite - Ag2S + H+ = 2 Ag+ + HS- - log_k -36.22 - delta_h 227 kJ + Ag2S + H+ = 2 Ag+ + HS- + log_k -36.22 + delta_h 227 kJ NiS(alpha) - NiS + H+ = Ni+2 + HS- - log_k -5.6 - delta_h -0 kJ + NiS + H+ = Ni+2 + HS- + log_k -5.6 + delta_h -0 kJ NiS(beta) - NiS + H+ = Ni+2 + HS- - log_k -11.1 - delta_h -0 kJ + NiS + H+ = Ni+2 + HS- + log_k -11.1 + delta_h -0 kJ NiS(gamma) - NiS + H+ = Ni+2 + HS- - log_k -12.8 - delta_h -0 kJ + NiS + H+ = Ni+2 + HS- + log_k -12.8 + delta_h -0 kJ CoS(alpha) - CoS + H+ = Co+2 + HS- - log_k -7.44 - delta_h -0 kJ + CoS + H+ = Co+2 + HS- + log_k -7.44 + delta_h -0 kJ CoS(beta) - CoS + H+ = Co+2 + HS- - log_k -11.07 - delta_h -0 kJ + CoS + H+ = Co+2 + HS- + log_k -11.07 + delta_h -0 kJ FeS(ppt) - FeS + H+ = Fe+2 + HS- - log_k -2.95 - delta_h -11 kJ + FeS + H+ = Fe+2 + HS- + log_k -2.95 + delta_h -11 kJ Greigite - Fe3S4 + 4 H+ = 2 Fe+3 + Fe+2 + 4 HS- - log_k -45.035 - delta_h -0 kJ + Fe3S4 + 4 H+ = 2 Fe+3 + Fe+2 + 4 HS- + log_k -45.035 + delta_h -0 kJ Mackinawite - FeS + H+ = Fe+2 + HS- - log_k -3.6 - delta_h -0 kJ + FeS + H+ = Fe+2 + HS- + log_k -3.6 + delta_h -0 kJ Pyrite - FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- - log_k -18.5082 - delta_h 49.844 kJ + FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- + log_k -18.5082 + delta_h 49.844 kJ MnS(grn) - MnS + H+ = Mn+2 + HS- - log_k 0.17 - delta_h -32 kJ + MnS + H+ = Mn+2 + HS- + log_k 0.17 + delta_h -32 kJ MnS(pnk) - MnS + H+ = Mn+2 + HS- - log_k 3.34 - delta_h -0 kJ + MnS + H+ = Mn+2 + HS- + log_k 3.34 + delta_h -0 kJ MoS2 - MoS2 + 4 H2O = MoO4-2 + 6 H+ + 2 HS- + 2 e- - log_k -70.2596 - delta_h 389.02 kJ + MoS2 + 4 H2O = MoO4-2 + 6 H+ + 2 HS- + 2 e- + log_k -70.2596 + delta_h 389.02 kJ BeS - BeS + H+ = Be+2 + HS- - log_k 19.38 - delta_h -0 kJ + BeS + H+ = Be+2 + HS- + log_k 19.38 + delta_h -0 kJ BaS - BaS + H+ = Ba+2 + HS- - log_k 16.18 - delta_h -0 kJ + BaS + H+ = Ba+2 + HS- + log_k 16.18 + delta_h -0 kJ Hg2(Cyanide)2 - Hg2(Cyanide)2 = Hg2+2 + 2 Cyanide- - log_k -39.3 - delta_h -0 kJ + Hg2(Cyanide)2 = Hg2+2 + 2 Cyanide- + log_k -39.3 + delta_h -0 kJ CuCyanide - CuCyanide = Cu+ + Cyanide- - log_k -19.5 - delta_h -19 kJ + CuCyanide = Cu+ + Cyanide- + log_k -19.5 + delta_h -19 kJ AgCyanide - AgCyanide = Ag+ + Cyanide- - log_k -15.74 - delta_h 110.395 kJ + AgCyanide = Ag+ + Cyanide- + log_k -15.74 + delta_h 110.395 kJ Ag2(Cyanide)2 - Ag2(Cyanide)2 = 2 Ag+ + 2 Cyanide- - log_k -11.3289 - delta_h -0 kJ + Ag2(Cyanide)2 = 2 Ag+ + 2 Cyanide- + log_k -11.3289 + delta_h -0 kJ NaCyanide(cubic) - NaCyanide = Cyanide- + Na+ - log_k 1.6012 - delta_h 0.969 kJ + NaCyanide = Cyanide- + Na+ + log_k 1.6012 + delta_h 0.969 kJ KCyanide(cubic) - KCyanide = Cyanide- + K+ - log_k 1.4188 - delta_h 11.93 kJ + KCyanide = Cyanide- + K+ + log_k 1.4188 + delta_h 11.93 kJ Pb2Fe(Cyanide)6 - Pb2Fe(Cyanide)6 = 2 Pb+2 + Fe+2 + 6 Cyanide- - log_k -53.42 - delta_h -0 kJ + Pb2Fe(Cyanide)6 = 2 Pb+2 + Fe+2 + 6 Cyanide- + log_k -53.42 + delta_h -0 kJ Zn2Fe(Cyanide)6 - Zn2Fe(Cyanide)6 = 2 Zn+2 + Fe+2 + 6 Cyanide- - log_k -51.08 - delta_h -0 kJ + Zn2Fe(Cyanide)6 = 2 Zn+2 + Fe+2 + 6 Cyanide- + log_k -51.08 + delta_h -0 kJ Cd2Fe(Cyanide)6 - Cd2Fe(Cyanide)6 = 2 Cd+2 + Fe+2 + 6 Cyanide- - log_k -52.78 - delta_h -0 kJ + Cd2Fe(Cyanide)6 = 2 Cd+2 + Fe+2 + 6 Cyanide- + log_k -52.78 + delta_h -0 kJ Ag4Fe(Cyanide)6 - Ag4Fe(Cyanide)6 = 4 Ag+ + Fe+2 + 6 Cyanide- - log_k -79.47 - delta_h -0 kJ + Ag4Fe(Cyanide)6 = 4 Ag+ + Fe+2 + 6 Cyanide- + log_k -79.47 + delta_h -0 kJ Ag3Fe(Cyanide)6 - Ag3Fe(Cyanide)6 = 3 Ag+ + Fe+3 + 6 Cyanide- - log_k -72.7867 - delta_h -0 kJ + Ag3Fe(Cyanide)6 = 3 Ag+ + Fe+3 + 6 Cyanide- + log_k -72.7867 + delta_h -0 kJ Mn3(Fe(Cyanide)6)2 - Mn3(Fe(Cyanide)6)2 = 3 Mn+2 + 2 Fe+3 + 12 Cyanide- - log_k -105.4 - delta_h -0 kJ + Mn3(Fe(Cyanide)6)2 = 3 Mn+2 + 2 Fe+3 + 12 Cyanide- + log_k -105.4 + delta_h -0 kJ Sb2Se3 - Sb2Se3 + 6 H2O = 2 Sb(OH)3 + 3 HSe- + 3 H+ - log_k -67.7571 - delta_h 343.046 kJ + Sb2Se3 + 6 H2O = 2 Sb(OH)3 + 3 HSe- + 3 H+ + log_k -67.7571 + delta_h 343.046 kJ SnSe - SnSe + 2 H2O = Sn(OH)2 + H+ + HSe- - log_k -30.494 - delta_h -0 kJ + SnSe + 2 H2O = Sn(OH)2 + H+ + HSe- + log_k -30.494 + delta_h -0 kJ SnSe2 - SnSe2 + 6 H2O = Sn(OH)6-2 + 4 H+ + 2 HSe- - log_k -65.1189 - delta_h -0 kJ + SnSe2 + 6 H2O = Sn(OH)6-2 + 4 H+ + 2 HSe- + log_k -65.1189 + delta_h -0 kJ Clausthalite - PbSe + H+ = Pb+2 + HSe- - log_k -27.1 - delta_h 119.72 kJ + PbSe + H+ = Pb+2 + HSe- + log_k -27.1 + delta_h 119.72 kJ Tl2Se - Tl2Se + H+ = 2 Tl+ + HSe- - log_k -18.1 - delta_h 85.62 kJ + Tl2Se + H+ = 2 Tl+ + HSe- + log_k -18.1 + delta_h 85.62 kJ ZnSe - ZnSe + H+ = Zn+2 + HSe- - log_k -14.4 - delta_h 25.51 kJ + ZnSe + H+ = Zn+2 + HSe- + log_k -14.4 + delta_h 25.51 kJ CdSe - CdSe + H+ = Cd+2 + HSe- - log_k -20.2 - delta_h 75.9814 kJ + CdSe + H+ = Cd+2 + HSe- + log_k -20.2 + delta_h 75.9814 kJ HgSe - HgSe + 2 H2O = Hg(OH)2 + H+ + HSe- - log_k -55.694 - delta_h -0 kJ + HgSe + 2 H2O = Hg(OH)2 + H+ + HSe- + log_k -55.694 + delta_h -0 kJ Cu2Se(alpha) - Cu2Se + H+ = 2 Cu+ + HSe- - log_k -45.8 - delta_h 214.263 kJ + Cu2Se + H+ = 2 Cu+ + HSe- + log_k -45.8 + delta_h 214.263 kJ Cu3Se2 - Cu3Se2 + 2 H+ = 2 HSe- + 2 Cu+ + Cu+2 - log_k -63.4911 - delta_h 340.327 kJ + Cu3Se2 + 2 H+ = 2 HSe- + 2 Cu+ + Cu+2 + log_k -63.4911 + delta_h 340.327 kJ CuSe - CuSe + H+ = Cu+2 + HSe- - log_k -33.1 - delta_h 121.127 kJ + CuSe + H+ = Cu+2 + HSe- + log_k -33.1 + delta_h 121.127 kJ CuSe2 - CuSe2 + 2 H+ + 2 e- = 2 HSe- + Cu+2 - log_k -33.3655 - delta_h 140.582 kJ + CuSe2 + 2 H+ + 2 e- = 2 HSe- + Cu+2 + log_k -33.3655 + delta_h 140.582 kJ Ag2Se - Ag2Se + H+ = 2 Ag+ + HSe- - log_k -48.7 - delta_h 265.48 kJ + Ag2Se + H+ = 2 Ag+ + HSe- + log_k -48.7 + delta_h 265.48 kJ NiSe - NiSe + H+ = Ni+2 + HSe- - log_k -17.7 - delta_h -0 kJ + NiSe + H+ = Ni+2 + HSe- + log_k -17.7 + delta_h -0 kJ CoSe - CoSe + H+ = Co+2 + HSe- - log_k -16.2 - delta_h -0 kJ + CoSe + H+ = Co+2 + HSe- + log_k -16.2 + delta_h -0 kJ FeSe - FeSe + H+ = Fe+2 + HSe- - log_k -11 - delta_h 2.092 kJ + FeSe + H+ = Fe+2 + HSe- + log_k -11 + delta_h 2.092 kJ Ferroselite - FeSe2 + 2 H+ + 2 e- = 2 HSe- + Fe+2 - log_k -18.5959 - delta_h 47.2792 kJ + FeSe2 + 2 H+ + 2 e- = 2 HSe- + Fe+2 + log_k -18.5959 + delta_h 47.2792 kJ MnSe - MnSe + H+ = Mn+2 + HSe- - log_k 3.5 - delta_h -98.15 kJ + MnSe + H+ = Mn+2 + HSe- + log_k 3.5 + delta_h -98.15 kJ AlSb - AlSb + 3 H2O = Sb(OH)3 + 6 e- + Al+3 + 3 H+ - log_k 65.6241 - delta_h -0 kJ + AlSb + 3 H2O = Sb(OH)3 + 6 e- + Al+3 + 3 H+ + log_k 65.6241 + delta_h -0 kJ ZnSb - ZnSb + 3 H2O = Sb(OH)3 + 5 e- + Zn+2 + 3 H+ - log_k 11.0138 - delta_h -54.8773 kJ + ZnSb + 3 H2O = Sb(OH)3 + 5 e- + Zn+2 + 3 H+ + log_k 11.0138 + delta_h -54.8773 kJ CdSb - CdSb + 3 H2O = Sb(OH)3 + 5 e- + 3 H+ + Cd+2 - log_k -0.3501 - delta_h 22.36 kJ + CdSb + 3 H2O = Sb(OH)3 + 5 e- + 3 H+ + Cd+2 + log_k -0.3501 + delta_h 22.36 kJ Cu2Sb:3H2O - Cu2Sb:3H2O = Sb(OH)3 + 6 e- + 3 H+ + Cu+ + Cu+2 - log_k -34.8827 - delta_h 233.237 kJ + Cu2Sb:3H2O = Sb(OH)3 + 6 e- + 3 H+ + Cu+ + Cu+2 + log_k -34.8827 + delta_h 233.237 kJ Cu3Sb - Cu3Sb + 3 H2O = Sb(OH)3 + 6 e- + 3 H+ + 3 Cu+ - log_k -42.5937 - delta_h 308.131 kJ + Cu3Sb + 3 H2O = Sb(OH)3 + 6 e- + 3 H+ + 3 Cu+ + log_k -42.5937 + delta_h 308.131 kJ #Ag4Sb -# Ag4Sb + 3H2O = Sb(OH)3 + 6e- + 3Ag+ + 3H+ -# log_k -56.1818 -# delta_h -0 kJ +# Ag4Sb + 3H2O = Sb(OH)3 + 6e- + 3Ag+ + 3H+ +# log_k -56.1818 +# delta_h -0 kJ Breithauptite - NiSb + 3 H2O = Sb(OH)3 + 5 e- + 3 H+ + Ni+2 - log_k -18.5225 - delta_h 96.0019 kJ + NiSb + 3 H2O = Sb(OH)3 + 5 e- + 3 H+ + Ni+2 + log_k -18.5225 + delta_h 96.0019 kJ MnSb - MnSb + 3 H2O = Mn+3 + Sb(OH)3 + 6 e- + 3 H+ - log_k -2.9099 - delta_h 21.1083 kJ + MnSb + 3 H2O = Mn+3 + Sb(OH)3 + 6 e- + 3 H+ + log_k -2.9099 + delta_h 21.1083 kJ Mn2Sb - Mn2Sb + 3 H2O = 2 Mn+2 + Sb(OH)3 + 7 e- + 3 H+ - log_k 61.0796 - delta_h -0 kJ + Mn2Sb + 3 H2O = 2 Mn+2 + Sb(OH)3 + 7 e- + 3 H+ + log_k 61.0796 + delta_h -0 kJ USb2 - USb2 + 8 H2O = UO2+2 + 2 Sb(OH)3 + 12 e- + 10 H+ - log_k 29.5771 - delta_h -103.56 kJ + USb2 + 8 H2O = UO2+2 + 2 Sb(OH)3 + 12 e- + 10 H+ + log_k 29.5771 + delta_h -103.56 kJ U3Sb4 - U3Sb4 + 12 H2O = 3 U+4 + 4 Sb(OH)3 + 24 e- + 12 H+ - log_k 152.383 - delta_h -986.04 kJ + U3Sb4 + 12 H2O = 3 U+4 + 4 Sb(OH)3 + 24 e- + 12 H+ + log_k 152.383 + delta_h -986.04 kJ Mg2Sb3 - Mg2Sb3 + 9 H2O = 2 Mg+2 + 3 Sb(OH)3 + 9 H+ + 13 e- - log_k 74.6838 - delta_h -0 kJ + Mg2Sb3 + 9 H2O = 2 Mg+2 + 3 Sb(OH)3 + 9 H+ + 13 e- + log_k 74.6838 + delta_h -0 kJ Ca3Sb2 - Ca3Sb2 + 6 H2O = 3 Ca+2 + 2 Sb(OH)3 + 6 H+ + 12 e- - log_k 142.974 - delta_h -732.744 kJ + Ca3Sb2 + 6 H2O = 3 Ca+2 + 2 Sb(OH)3 + 6 H+ + 12 e- + log_k 142.974 + delta_h -732.744 kJ NaSb - NaSb + 3 H2O = Na+ + Sb(OH)3 + 3 H+ + 4 e- - log_k 23.1658 - delta_h -93.45 kJ + NaSb + 3 H2O = Na+ + Sb(OH)3 + 3 H+ + 4 e- + log_k 23.1658 + delta_h -93.45 kJ Na3Sb - Na3Sb + 3 H2O = 3 Na+ + Sb(OH)3 + 3 H+ + 6 e- - log_k 94.4517 - delta_h -432.13 kJ + Na3Sb + 3 H2O = 3 Na+ + Sb(OH)3 + 3 H+ + 6 e- + log_k 94.4517 + delta_h -432.13 kJ SeO2 - SeO2 + H2O = HSeO3- + H+ - log_k 0.1246 - delta_h 1.4016 kJ + SeO2 + H2O = HSeO3- + H+ + log_k 0.1246 + delta_h 1.4016 kJ SeO3 - SeO3 + H2O = SeO4-2 + 2 H+ - log_k 21.044 - delta_h -146.377 kJ + SeO3 + H2O = SeO4-2 + 2 H+ + log_k 21.044 + delta_h -146.377 kJ Sb2O5 - Sb2O5 + 7 H2O = 2 Sb(OH)6- + 2 H+ - log_k -9.6674 - delta_h -0 kJ + Sb2O5 + 7 H2O = 2 Sb(OH)6- + 2 H+ + log_k -9.6674 + delta_h -0 kJ SbO2 - SbO2 + 4 H2O = Sb(OH)6- + e- + 2 H+ - log_k -27.8241 - delta_h -0 kJ + SbO2 + 4 H2O = Sb(OH)6- + e- + 2 H+ + log_k -27.8241 + delta_h -0 kJ Sb2O4 - Sb2O4 + 2 H2O + 2 H+ + 2 e- = 2 Sb(OH)3 - log_k 3.4021 - delta_h -68.04 kJ + Sb2O4 + 2 H2O + 2 H+ + 2 e- = 2 Sb(OH)3 + log_k 3.4021 + delta_h -68.04 kJ Sb4O6(cubic) - Sb4O6 + 6 H2O = 4 Sb(OH)3 - log_k -18.2612 - delta_h 61.1801 kJ + Sb4O6 + 6 H2O = 4 Sb(OH)3 + log_k -18.2612 + delta_h 61.1801 kJ Sb4O6(orth) - Sb4O6 + 6 H2O = 4 Sb(OH)3 - log_k -17.9012 - delta_h 37.6801 kJ + Sb4O6 + 6 H2O = 4 Sb(OH)3 + log_k -17.9012 + delta_h 37.6801 kJ Sb(OH)3 - Sb(OH)3 = Sb(OH)3 - log_k -7.1099 - delta_h 30.1248 kJ + Sb(OH)3 = Sb(OH)3 + log_k -7.1099 + delta_h 30.1248 kJ Senarmontite - Sb2O3 + 3 H2O = 2 Sb(OH)3 - log_k -12.3654 - delta_h 30.6478 kJ + Sb2O3 + 3 H2O = 2 Sb(OH)3 + log_k -12.3654 + delta_h 30.6478 kJ Valentinite - Sb2O3 + 3 H2O = 2 Sb(OH)3 - log_k -8.4806 - delta_h 19.0163 kJ + Sb2O3 + 3 H2O = 2 Sb(OH)3 + log_k -8.4806 + delta_h 19.0163 kJ Chalcedony - SiO2 + 2 H2O = H4SiO4 - log_k -3.55 - delta_h 19.7 kJ + SiO2 + 2 H2O = H4SiO4 + log_k -3.55 + delta_h 19.7 kJ Cristobalite - SiO2 + 2 H2O = H4SiO4 - log_k -3.35 - delta_h 20.006 kJ + SiO2 + 2 H2O = H4SiO4 + log_k -3.35 + delta_h 20.006 kJ Quartz - SiO2 + 2 H2O = H4SiO4 - log_k -4 - delta_h 22.36 kJ + SiO2 + 2 H2O = H4SiO4 + log_k -4 + delta_h 22.36 kJ SiO2(am-gel) - SiO2 + 2 H2O = H4SiO4 - log_k -2.71 - delta_h 14 kJ + SiO2 + 2 H2O = H4SiO4 + log_k -2.71 + delta_h 14 kJ SiO2(am-ppt) - SiO2 + 2 H2O = H4SiO4 - log_k -2.74 - delta_h 15.15 kJ + SiO2 + 2 H2O = H4SiO4 + log_k -2.74 + delta_h 15.15 kJ SnO - SnO + H2O = Sn(OH)2 - log_k -4.9141 - delta_h -0 kJ + SnO + H2O = Sn(OH)2 + log_k -4.9141 + delta_h -0 kJ SnO2 - SnO2 + 4 H2O = Sn(OH)6-2 + 2 H+ - log_k -28.9749 - delta_h -0 kJ + SnO2 + 4 H2O = Sn(OH)6-2 + 2 H+ + log_k -28.9749 + delta_h -0 kJ Sn(OH)2 - Sn(OH)2 = Sn(OH)2 - log_k -5.4309 - delta_h -0 kJ + Sn(OH)2 = Sn(OH)2 + log_k -5.4309 + delta_h -0 kJ Sn(OH)4 - Sn(OH)4 + 2 H2O = Sn(OH)6-2 + 2 H+ - log_k -22.2808 - delta_h -0 kJ + Sn(OH)4 + 2 H2O = Sn(OH)6-2 + 2 H+ + log_k -22.2808 + delta_h -0 kJ H2Sn(OH)6 - H2Sn(OH)6 = Sn(OH)6-2 + 2 H+ - log_k -23.5281 - delta_h -0 kJ + H2Sn(OH)6 = Sn(OH)6-2 + 2 H+ + log_k -23.5281 + delta_h -0 kJ Massicot - PbO + 2 H+ = Pb+2 + H2O - log_k 12.894 - delta_h -66.848 kJ + PbO + 2 H+ = Pb+2 + H2O + log_k 12.894 + delta_h -66.848 kJ Litharge - PbO + 2 H+ = Pb+2 + H2O - log_k 12.694 - delta_h -65.501 kJ + PbO + 2 H+ = Pb+2 + H2O + log_k 12.694 + delta_h -65.501 kJ PbO:0.3H2O - PbO:0.33H2O + 2 H+ = Pb+2 + 1.33 H2O - log_k 12.98 - delta_h -0 kJ + PbO:0.33H2O + 2 H+ = Pb+2 + 1.33 H2O + log_k 12.98 + delta_h -0 kJ Plattnerite - PbO2 + 4 H+ + 2 e- = Pb+2 + 2 H2O - log_k 49.6001 - delta_h -296.27 kJ + PbO2 + 4 H+ + 2 e- = Pb+2 + 2 H2O + log_k 49.6001 + delta_h -296.27 kJ Pb(OH)2 - Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O - log_k 8.15 - delta_h -58.5342 kJ + Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O + log_k 8.15 + delta_h -58.5342 kJ Pb2O(OH)2 - Pb2O(OH)2 + 4 H+ = 2 Pb+2 + 3 H2O - log_k 26.188 - delta_h -0 kJ + Pb2O(OH)2 + 4 H+ = 2 Pb+2 + 3 H2O + log_k 26.188 + delta_h -0 kJ Al(OH)3(am) - Al(OH)3 + 3 H+ = Al+3 + 3 H2O - log_k 10.8 - delta_h -111 kJ + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 10.8 + delta_h -111 kJ Boehmite - AlOOH + 3 H+ = Al+3 + 2 H2O - log_k 8.578 - delta_h -117.696 kJ + AlOOH + 3 H+ = Al+3 + 2 H2O + log_k 8.578 + delta_h -117.696 kJ Diaspore - AlOOH + 3 H+ = Al+3 + 2 H2O - log_k 6.873 - delta_h -103.052 kJ + AlOOH + 3 H+ = Al+3 + 2 H2O + log_k 6.873 + delta_h -103.052 kJ Gibbsite - Al(OH)3 + 3 H+ = Al+3 + 3 H2O - log_k 8.291 - delta_h -95.3952 kJ + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 8.291 + delta_h -95.3952 kJ Tl2O - Tl2O + 2 H+ = 2 Tl+ + H2O - log_k 27.0915 - delta_h -96.41 kJ + Tl2O + 2 H+ = 2 Tl+ + H2O + log_k 27.0915 + delta_h -96.41 kJ TlOH - TlOH + H+ = Tl+ + H2O - log_k 12.9186 - delta_h -41.57 kJ + TlOH + H+ = Tl+ + H2O + log_k 12.9186 + delta_h -41.57 kJ Avicennite - Tl2O3 + 3 H2O = 2 Tl(OH)3 - log_k -13 - delta_h -0 kJ + Tl2O3 + 3 H2O = 2 Tl(OH)3 + log_k -13 + delta_h -0 kJ Tl(OH)3 - Tl(OH)3 = Tl(OH)3 - log_k -5.441 - delta_h -0 kJ + Tl(OH)3 = Tl(OH)3 + log_k -5.441 + delta_h -0 kJ Zn(OH)2(am) - Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O - log_k 12.474 - delta_h -80.62 kJ + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 12.474 + delta_h -80.62 kJ Zn(OH)2 - Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O - log_k 12.2 - delta_h -0 kJ + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 12.2 + delta_h -0 kJ Zn(OH)2(beta) - Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O - log_k 11.754 - delta_h -83.14 kJ + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.754 + delta_h -83.14 kJ Zn(OH)2(gamma) - Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O - log_k 11.734 - delta_h -0 kJ + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.734 + delta_h -0 kJ Zn(OH)2(epsilon) - Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O - log_k 11.534 - delta_h -81.8 kJ + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.534 + delta_h -81.8 kJ ZnO(active) - ZnO + 2 H+ = Zn+2 + H2O - log_k 11.1884 - delta_h -88.76 kJ + ZnO + 2 H+ = Zn+2 + H2O + log_k 11.1884 + delta_h -88.76 kJ Zincite - ZnO + 2 H+ = Zn+2 + H2O - log_k 11.334 - delta_h -89.62 kJ + ZnO + 2 H+ = Zn+2 + H2O + log_k 11.334 + delta_h -89.62 kJ Cd(OH)2(am) - Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O - log_k 13.73 - delta_h -86.9017 kJ + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + log_k 13.73 + delta_h -86.9017 kJ Cd(OH)2 - Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O - log_k 13.644 - delta_h -94.62 kJ + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + log_k 13.644 + delta_h -94.62 kJ Monteponite - CdO + 2 H+ = Cd+2 + H2O - log_k 15.1034 - delta_h -103.4 kJ + CdO + 2 H+ = Cd+2 + H2O + log_k 15.1034 + delta_h -103.4 kJ Hg2(OH)2 - Hg2(OH)2 + 2 H+ = Hg2+2 + 2 H2O - log_k 5.2603 - delta_h -0 kJ + Hg2(OH)2 + 2 H+ = Hg2+2 + 2 H2O + log_k 5.2603 + delta_h -0 kJ Montroydite - HgO + H2O = Hg(OH)2 - log_k -3.64 - delta_h -38.9 kJ + HgO + H2O = Hg(OH)2 + log_k -3.64 + delta_h -38.9 kJ Hg(OH)2 - Hg(OH)2 = Hg(OH)2 - log_k -3.4963 - delta_h -0 kJ + Hg(OH)2 = Hg(OH)2 + log_k -3.4963 + delta_h -0 kJ Cuprite - Cu2O + 2 H+ = 2 Cu+ + H2O - log_k -1.406 - delta_h -124.02 kJ + Cu2O + 2 H+ = 2 Cu+ + H2O + log_k -1.406 + delta_h -124.02 kJ Cu(OH)2 - Cu(OH)2 + 2 H+ = Cu+2 + 2 H2O - log_k 8.674 - delta_h -56.42 kJ + Cu(OH)2 + 2 H+ = Cu+2 + 2 H2O + log_k 8.674 + delta_h -56.42 kJ Tenorite - CuO + 2 H+ = Cu+2 + H2O - log_k 7.644 - delta_h -64.867 kJ + CuO + 2 H+ = Cu+2 + H2O + log_k 7.644 + delta_h -64.867 kJ Ag2O - Ag2O + 2 H+ = 2 Ag+ + H2O - log_k 12.574 - delta_h -45.62 kJ + Ag2O + 2 H+ = 2 Ag+ + H2O + log_k 12.574 + delta_h -45.62 kJ Ni(OH)2 - Ni(OH)2 + 2 H+ = Ni+2 + 2 H2O - log_k 12.794 - delta_h -95.96 kJ + Ni(OH)2 + 2 H+ = Ni+2 + 2 H2O + log_k 12.794 + delta_h -95.96 kJ Bunsenite - NiO + 2 H+ = Ni+2 + H2O - log_k 12.4456 - delta_h -100.13 kJ + NiO + 2 H+ = Ni+2 + H2O + log_k 12.4456 + delta_h -100.13 kJ CoO - CoO + 2 H+ = Co+2 + H2O - log_k 13.5864 - delta_h -106.295 kJ + CoO + 2 H+ = Co+2 + H2O + log_k 13.5864 + delta_h -106.295 kJ Co(OH)2 - Co(OH)2 + 2 H+ = Co+2 + 2 H2O - log_k 13.094 - delta_h -0 kJ + Co(OH)2 + 2 H+ = Co+2 + 2 H2O + log_k 13.094 + delta_h -0 kJ Co(OH)3 - Co(OH)3 + 3 H+ = Co+3 + 3 H2O - log_k -2.309 - delta_h -92.43 kJ + Co(OH)3 + 3 H+ = Co+3 + 3 H2O + log_k -2.309 + delta_h -92.43 kJ #Wustite-0.11 -# WUSTITE-0.11 + 2H+ = 0.947Fe+2 + H2O -# log_k 11.6879 -# delta_h -103.938 kJ +# WUSTITE-0.11 + 2H+ = 0.947Fe+2 + H2O +# log_k 11.6879 +# delta_h -103.938 kJ Fe(OH)2 - Fe(OH)2 + 2 H+ = Fe+2 + 2 H2O - log_k 13.564 - delta_h -0 kJ + Fe(OH)2 + 2 H+ = Fe+2 + 2 H2O + log_k 13.564 + delta_h -0 kJ Ferrihydrite - Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O - log_k 3.191 - delta_h -73.374 kJ + Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O + log_k 3.191 + delta_h -73.374 kJ Fe3(OH)8 - Fe3(OH)8 + 8 H+ = 2 Fe+3 + Fe+2 + 8 H2O - log_k 20.222 - delta_h -0 kJ + Fe3(OH)8 + 8 H+ = 2 Fe+3 + Fe+2 + 8 H2O + log_k 20.222 + delta_h -0 kJ Goethite - FeOOH + 3 H+ = Fe+3 + 2 H2O - log_k 0.491 - delta_h -60.5843 kJ + FeOOH + 3 H+ = Fe+3 + 2 H2O + log_k 0.491 + delta_h -60.5843 kJ Pyrolusite - MnO2 + 4 H+ + 2 e- = Mn+2 + 2 H2O - log_k 41.38 - delta_h -272 kJ + MnO2 + 4 H+ + 2 e- = Mn+2 + 2 H2O + log_k 41.38 + delta_h -272 kJ Birnessite - MnO2 + 4 H+ + e- = Mn+3 + 2 H2O - log_k 18.091 - delta_h -0 kJ + MnO2 + 4 H+ + e- = Mn+3 + 2 H2O + log_k 18.091 + delta_h -0 kJ Nsutite - MnO2 + 4 H+ + e- = Mn+3 + 2 H2O - log_k 17.504 - delta_h -0 kJ + MnO2 + 4 H+ + e- = Mn+3 + 2 H2O + log_k 17.504 + delta_h -0 kJ Pyrochroite - Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O - log_k 15.194 - delta_h -97.0099 kJ + Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O + log_k 15.194 + delta_h -97.0099 kJ Manganite - MnOOH + 3 H+ + e- = Mn+2 + 2 H2O - log_k 25.34 - delta_h -0 kJ + MnOOH + 3 H+ + e- = Mn+2 + 2 H2O + log_k 25.34 + delta_h -0 kJ Cr(OH)2 - Cr(OH)2 + 2 H+ = Cr+2 + 2 H2O - log_k 10.8189 - delta_h -35.6058 kJ + Cr(OH)2 + 2 H+ = Cr+2 + 2 H2O + log_k 10.8189 + delta_h -35.6058 kJ Cr(OH)3(am) - Cr(OH)3 + H+ = Cr(OH)2+ + H2O - log_k -0.75 - delta_h -0 kJ + Cr(OH)3 + H+ = Cr(OH)2+ + H2O + log_k -0.75 + delta_h -0 kJ Cr(OH)3 - Cr(OH)3 + H+ = Cr(OH)2+ + H2O - log_k 1.3355 - delta_h -29.7692 kJ + Cr(OH)3 + H+ = Cr(OH)2+ + H2O + log_k 1.3355 + delta_h -29.7692 kJ CrO3 - CrO3 + H2O = CrO4-2 + 2 H+ - log_k -3.2105 - delta_h -5.2091 kJ + CrO3 + H2O = CrO4-2 + 2 H+ + log_k -3.2105 + delta_h -5.2091 kJ MoO3 - MoO3 + H2O = MoO4-2 + 2 H+ - log_k -8 - delta_h -0 kJ + MoO3 + H2O = MoO4-2 + 2 H+ + log_k -8 + delta_h -0 kJ VO - VO + 2 H+ = V+3 + H2O + e- - log_k 14.7563 - delta_h -113.041 kJ + VO + 2 H+ = V+3 + H2O + e- + log_k 14.7563 + delta_h -113.041 kJ V(OH)3 - V(OH)3 + 3 H+ = V+3 + 3 H2O - log_k 7.591 - delta_h -0 kJ + V(OH)3 + 3 H+ = V+3 + 3 H2O + log_k 7.591 + delta_h -0 kJ VO(OH)2 - VO(OH)2 + 2 H+ = VO+2 + 2 H2O - log_k 5.1506 - delta_h -0 kJ + VO(OH)2 + 2 H+ = VO+2 + 2 H2O + log_k 5.1506 + delta_h -0 kJ Uraninite - UO2 + 4 H+ = U+4 + 2 H2O - log_k -4.6693 - delta_h -77.86 kJ + UO2 + 4 H+ = U+4 + 2 H2O + log_k -4.6693 + delta_h -77.86 kJ UO2(am) - UO2 + 4 H+ = U+4 + 2 H2O - log_k 0.934 - delta_h -109.746 kJ + UO2 + 4 H+ = U+4 + 2 H2O + log_k 0.934 + delta_h -109.746 kJ UO3 - UO3 + 2 H+ = UO2+2 + H2O - log_k 7.7 - delta_h -81.0299 kJ + UO3 + 2 H+ = UO2+2 + H2O + log_k 7.7 + delta_h -81.0299 kJ Gummite - UO3 + 2 H+ = UO2+2 + H2O - log_k 7.6718 - delta_h -81.0299 kJ + UO3 + 2 H+ = UO2+2 + H2O + log_k 7.6718 + delta_h -81.0299 kJ UO2(OH)2(beta) - UO2(OH)2 + 2 H+ = UO2+2 + 2 H2O - log_k 5.6116 - delta_h -56.7599 kJ + UO2(OH)2 + 2 H+ = UO2+2 + 2 H2O + log_k 5.6116 + delta_h -56.7599 kJ Schoepite - UO2(OH)2:H2O + 2 H+ = UO2+2 + 3 H2O - log_k 5.994 - delta_h -49.79 kJ + UO2(OH)2:H2O + 2 H+ = UO2+2 + 3 H2O + log_k 5.994 + delta_h -49.79 kJ Be(OH)2(am) - Be(OH)2 + 2 H+ = Be+2 + 2 H2O - log_k 7.194 - delta_h -0 kJ + Be(OH)2 + 2 H+ = Be+2 + 2 H2O + log_k 7.194 + delta_h -0 kJ Be(OH)2(alpha) - Be(OH)2 + 2 H+ = Be+2 + 2 H2O - log_k 6.894 - delta_h -0 kJ + Be(OH)2 + 2 H+ = Be+2 + 2 H2O + log_k 6.894 + delta_h -0 kJ Be(OH)2(beta) - Be(OH)2 + 2 H+ = Be+2 + 2 H2O - log_k 6.494 - delta_h -0 kJ + Be(OH)2 + 2 H+ = Be+2 + 2 H2O + log_k 6.494 + delta_h -0 kJ Brucite - Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O - log_k 16.844 - delta_h -113.996 kJ + Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O + log_k 16.844 + delta_h -113.996 kJ Periclase - MgO + 2 H+ = Mg+2 + H2O - log_k 21.5841 - delta_h -151.23 kJ + MgO + 2 H+ = Mg+2 + H2O + log_k 21.5841 + delta_h -151.23 kJ Mg(OH)2(active) - Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O - log_k 18.794 - delta_h -0 kJ + Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O + log_k 18.794 + delta_h -0 kJ Lime - CaO + 2 H+ = Ca+2 + H2O - log_k 32.6993 - delta_h -193.91 kJ + CaO + 2 H+ = Ca+2 + H2O + log_k 32.6993 + delta_h -193.91 kJ Portlandite - Ca(OH)2 + 2 H+ = Ca+2 + 2 H2O - log_k 22.804 - delta_h -128.62 kJ + Ca(OH)2 + 2 H+ = Ca+2 + 2 H2O + log_k 22.804 + delta_h -128.62 kJ Ba(OH)2:8H2O - Ba(OH)2:8H2O + 2 H+ = Ba+2 + 10 H2O - log_k 24.394 - delta_h -54.32 kJ + Ba(OH)2:8H2O + 2 H+ = Ba+2 + 10 H2O + log_k 24.394 + delta_h -54.32 kJ Cu(SbO3)2 - Cu(SbO3)2 + 6 H+ + 4 e- = 2 Sb(OH)3 + Cu+2 - log_k 45.2105 - delta_h -0 kJ + Cu(SbO3)2 + 6 H+ + 4 e- = 2 Sb(OH)3 + Cu+2 + log_k 45.2105 + delta_h -0 kJ Arsenolite - As4O6 + 6 H2O = 4 H3AsO3 - log_k -2.76 - delta_h 59.9567 kJ + As4O6 + 6 H2O = 4 H3AsO3 + log_k -2.76 + delta_h 59.9567 kJ Claudetite - As4O6 + 6 H2O = 4 H3AsO3 - log_k -3.065 - delta_h 55.6054 kJ + As4O6 + 6 H2O = 4 H3AsO3 + log_k -3.065 + delta_h 55.6054 kJ As2O5 - As2O5 + 3 H2O = 2 H3AsO4 - log_k 6.7061 - delta_h -22.64 kJ + As2O5 + 3 H2O = 2 H3AsO4 + log_k 6.7061 + delta_h -22.64 kJ Pb2O3 - Pb2O3 + 6 H+ + 2 e- = 2 Pb+2 + 3 H2O - log_k 61.04 - delta_h -0 kJ + Pb2O3 + 6 H+ + 2 e- = 2 Pb+2 + 3 H2O + log_k 61.04 + delta_h -0 kJ Minium - Pb3O4 + 8 H+ + 2 e- = 3 Pb+2 + 4 H2O - log_k 73.5219 - delta_h -421.874 kJ + Pb3O4 + 8 H+ + 2 e- = 3 Pb+2 + 4 H2O + log_k 73.5219 + delta_h -421.874 kJ Al2O3 - Al2O3 + 6 H+ = 2 Al+3 + 3 H2O - log_k 19.6524 - delta_h -258.59 kJ + Al2O3 + 6 H+ = 2 Al+3 + 3 H2O + log_k 19.6524 + delta_h -258.59 kJ Co3O4 - Co3O4 + 8 H+ = Co+2 + 2 Co+3 + 4 H2O - log_k -10.4956 - delta_h -107.5 kJ + Co3O4 + 8 H+ = Co+2 + 2 Co+3 + 4 H2O + log_k -10.4956 + delta_h -107.5 kJ CoFe2O4 - CoFe2O4 + 8 H+ = Co+2 + 2 Fe+3 + 4 H2O - log_k -3.5281 - delta_h -158.82 kJ + CoFe2O4 + 8 H+ = Co+2 + 2 Fe+3 + 4 H2O + log_k -3.5281 + delta_h -158.82 kJ Magnetite - Fe3O4 + 8 H+ = 2 Fe+3 + Fe+2 + 4 H2O - log_k 3.4028 - delta_h -208.526 kJ + Fe3O4 + 8 H+ = 2 Fe+3 + Fe+2 + 4 H2O + log_k 3.4028 + delta_h -208.526 kJ Hercynite - FeAl2O4 + 8 H+ = Fe+2 + 2 Al+3 + 4 H2O - log_k 22.893 - delta_h -313.92 kJ + FeAl2O4 + 8 H+ = Fe+2 + 2 Al+3 + 4 H2O + log_k 22.893 + delta_h -313.92 kJ Hematite - Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O - log_k -1.418 - delta_h -128.987 kJ + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k -1.418 + delta_h -128.987 kJ Maghemite - Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O - log_k 6.386 - delta_h -0 kJ + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k 6.386 + delta_h -0 kJ Lepidocrocite - FeOOH + 3 H+ = Fe+3 + 2 H2O - log_k 1.371 - delta_h -0 kJ + FeOOH + 3 H+ = Fe+3 + 2 H2O + log_k 1.371 + delta_h -0 kJ Hausmannite - Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O - log_k 61.03 - delta_h -421 kJ + Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O + log_k 61.03 + delta_h -421 kJ Bixbyite - Mn2O3 + 6 H+ = 2 Mn+3 + 3 H2O - log_k -0.6445 - delta_h -124.49 kJ + Mn2O3 + 6 H+ = 2 Mn+3 + 3 H2O + log_k -0.6445 + delta_h -124.49 kJ Cr2O3 - Cr2O3 + H2O + 2 H+ = 2 Cr(OH)2+ - log_k -2.3576 - delta_h -50.731 kJ + Cr2O3 + H2O + 2 H+ = 2 Cr(OH)2+ + log_k -2.3576 + delta_h -50.731 kJ #V2O3 -# V2O3 + 3H+ = V+3 + 1.5H2O -# log_k 4.9 -# delta_h -82.5085 kJ +# V2O3 + 3H+ = V+3 + 1.5H2O +# log_k 4.9 +# delta_h -82.5085 kJ V3O5 - V3O5 + 4 H+ = 3 VO+2 + 2 H2O + 2 e- - log_k 1.8361 - delta_h -98.46 kJ + V3O5 + 4 H+ = 3 VO+2 + 2 H2O + 2 e- + log_k 1.8361 + delta_h -98.46 kJ #V2O4 -# V2O4 + 2H+ = VO+2 + H2O -# log_k 4.27 -# delta_h -58.8689 kJ +# V2O4 + 2H+ = VO+2 + H2O +# log_k 4.27 +# delta_h -58.8689 kJ V4O7 - V4O7 + 6 H+ = 4 VO+2 + 3 H2O + 2 e- - log_k 7.1865 - delta_h -163.89 kJ + V4O7 + 6 H+ = 4 VO+2 + 3 H2O + 2 e- + log_k 7.1865 + delta_h -163.89 kJ V6O13 - V6O13 + 2 H+ = 6 VO2+ + H2O + 4 e- - log_k -60.86 - delta_h 271.5 kJ + V6O13 + 2 H+ = 6 VO2+ + H2O + 4 e- + log_k -60.86 + delta_h 271.5 kJ V2O5 - V2O5 + 2 H+ = 2 VO2+ + H2O - log_k -1.36 - delta_h 34 kJ + V2O5 + 2 H+ = 2 VO2+ + H2O + log_k -1.36 + delta_h 34 kJ U4O9 - U4O9 + 18 H+ + 2 e- = 4 U+4 + 9 H2O - log_k -3.0198 - delta_h -426.87 kJ + U4O9 + 18 H+ + 2 e- = 4 U+4 + 9 H2O + log_k -3.0198 + delta_h -426.87 kJ U3O8 - U3O8 + 16 H+ + 4 e- = 3 U+4 + 8 H2O - log_k 21.0834 - delta_h -485.44 kJ + U3O8 + 16 H+ + 4 e- = 3 U+4 + 8 H2O + log_k 21.0834 + delta_h -485.44 kJ Spinel - MgAl2O4 + 8 H+ = Mg+2 + 2 Al+3 + 4 H2O - log_k 36.8476 - delta_h -388.012 kJ + MgAl2O4 + 8 H+ = Mg+2 + 2 Al+3 + 4 H2O + log_k 36.8476 + delta_h -388.012 kJ Magnesioferrite - Fe2MgO4 + 8 H+ = Mg+2 + 2 Fe+3 + 4 H2O - log_k 16.8597 - delta_h -278.92 kJ + Fe2MgO4 + 8 H+ = Mg+2 + 2 Fe+3 + 4 H2O + log_k 16.8597 + delta_h -278.92 kJ Natron - Na2CO3:10H2O = 2 Na+ + CO3-2 + 10 H2O - log_k -1.311 - delta_h 65.8771 kJ + Na2CO3:10H2O = 2 Na+ + CO3-2 + 10 H2O + log_k -1.311 + delta_h 65.8771 kJ Cuprousferrite - CuFeO2 + 4 H+ = Cu+ + Fe+3 + 2 H2O - log_k -8.9171 - delta_h -15.89 kJ + CuFeO2 + 4 H+ = Cu+ + Fe+3 + 2 H2O + log_k -8.9171 + delta_h -15.89 kJ Cupricferrite - CuFe2O4 + 8 H+ = Cu+2 + 2 Fe+3 + 4 H2O - log_k 5.9882 - delta_h -210.21 kJ + CuFe2O4 + 8 H+ = Cu+2 + 2 Fe+3 + 4 H2O + log_k 5.9882 + delta_h -210.21 kJ FeCr2O4 - FeCr2O4 + 4 H+ = 2 Cr(OH)2+ + Fe+2 - log_k 7.2003 - delta_h -140.4 kJ + FeCr2O4 + 4 H+ = 2 Cr(OH)2+ + Fe+2 + log_k 7.2003 + delta_h -140.4 kJ MgCr2O4 - MgCr2O4 + 4 H+ = 2 Cr(OH)2+ + Mg+2 - log_k 16.2007 - delta_h -179.4 kJ + MgCr2O4 + 4 H+ = 2 Cr(OH)2+ + Mg+2 + log_k 16.2007 + delta_h -179.4 kJ SbF3 - SbF3 + 3 H2O = Sb(OH)3 + 3 H+ + 3 F- - log_k -10.2251 - delta_h -6.7279 kJ + SbF3 + 3 H2O = Sb(OH)3 + 3 H+ + 3 F- + log_k -10.2251 + delta_h -6.7279 kJ PbF2 - PbF2 = Pb+2 + 2 F- - log_k -7.44 - delta_h 20 kJ + PbF2 = Pb+2 + 2 F- + log_k -7.44 + delta_h 20 kJ ZnF2 - ZnF2 = Zn+2 + 2 F- - log_k -0.5343 - delta_h -59.69 kJ + ZnF2 = Zn+2 + 2 F- + log_k -0.5343 + delta_h -59.69 kJ CdF2 - CdF2 = Cd+2 + 2 F- - log_k -1.2124 - delta_h -46.22 kJ + CdF2 = Cd+2 + 2 F- + log_k -1.2124 + delta_h -46.22 kJ Hg2F2 - Hg2F2 = Hg2+2 + 2 F- - log_k -10.3623 - delta_h -18.486 kJ + Hg2F2 = Hg2+2 + 2 F- + log_k -10.3623 + delta_h -18.486 kJ CuF - CuF = Cu+ + F- - log_k -4.9056 - delta_h 16.648 kJ + CuF = Cu+ + F- + log_k -4.9056 + delta_h 16.648 kJ CuF2 - CuF2 = Cu+2 + 2 F- - log_k 1.115 - delta_h -66.901 kJ + CuF2 = Cu+2 + 2 F- + log_k 1.115 + delta_h -66.901 kJ CuF2:2H2O - CuF2:2H2O = Cu+2 + 2 F- + 2 H2O - log_k -4.55 - delta_h -15.2716 kJ + CuF2:2H2O = Cu+2 + 2 F- + 2 H2O + log_k -4.55 + delta_h -15.2716 kJ AgF:4H2O - AgF:4H2O = Ag+ + F- + 4 H2O - log_k 1.0491 - delta_h 15.4202 kJ + AgF:4H2O = Ag+ + F- + 4 H2O + log_k 1.0491 + delta_h 15.4202 kJ CoF2 - CoF2 = Co+2 + 2 F- - log_k -1.5969 - delta_h -57.368 kJ + CoF2 = Co+2 + 2 F- + log_k -1.5969 + delta_h -57.368 kJ CoF3 - CoF3 = Co+3 + 3 F- - log_k -1.4581 - delta_h -123.692 kJ + CoF3 = Co+3 + 3 F- + log_k -1.4581 + delta_h -123.692 kJ CrF3 - CrF3 + 2 H2O = Cr(OH)2+ + 3 F- + 2 H+ - log_k -11.3367 - delta_h -23.3901 kJ + CrF3 + 2 H2O = Cr(OH)2+ + 3 F- + 2 H+ + log_k -11.3367 + delta_h -23.3901 kJ VF4 - VF4 + H2O = VO+2 + 4 F- + 2 H+ - log_k 14.93 - delta_h -199.117 kJ + VF4 + H2O = VO+2 + 4 F- + 2 H+ + log_k 14.93 + delta_h -199.117 kJ UF4 - UF4 = U+4 + 4 F- - log_k -29.5371 - delta_h -79.0776 kJ + UF4 = U+4 + 4 F- + log_k -29.5371 + delta_h -79.0776 kJ UF4:2.5H2O - UF4:2.5H2O = U+4 + 4 F- + 2.5 H2O - log_k -32.7179 - delta_h 24.325 kJ + UF4:2.5H2O = U+4 + 4 F- + 2.5 H2O + log_k -32.7179 + delta_h 24.325 kJ MgF2 - MgF2 = Mg+2 + 2 F- - log_k -8.13 - delta_h -8 kJ + MgF2 = Mg+2 + 2 F- + log_k -8.13 + delta_h -8 kJ Fluorite - CaF2 = Ca+2 + 2 F- - log_k -10.5 - delta_h 8 kJ + CaF2 = Ca+2 + 2 F- + log_k -10.5 + delta_h 8 kJ SrF2 - SrF2 = Sr+2 + 2 F- - log_k -8.58 - delta_h 4 kJ + SrF2 = Sr+2 + 2 F- + log_k -8.58 + delta_h 4 kJ BaF2 - BaF2 = Ba+2 + 2 F- - log_k -5.82 - delta_h 4 kJ + BaF2 = Ba+2 + 2 F- + log_k -5.82 + delta_h 4 kJ Cryolite - Na3AlF6 = 3 Na+ + Al+3 + 6 F- - log_k -33.84 - delta_h 38 kJ + Na3AlF6 = 3 Na+ + Al+3 + 6 F- + log_k -33.84 + delta_h 38 kJ SbCl3 - SbCl3 + 3 H2O = Sb(OH)3 + 3 Cl- + 3 H+ - log_k 0.5719 - delta_h -35.18 kJ + SbCl3 + 3 H2O = Sb(OH)3 + 3 Cl- + 3 H+ + log_k 0.5719 + delta_h -35.18 kJ SnCl2 - SnCl2 + 2 H2O = Sn(OH)2 + 2 H+ + 2 Cl- - log_k -9.2752 - delta_h -0 kJ + SnCl2 + 2 H2O = Sn(OH)2 + 2 H+ + 2 Cl- + log_k -9.2752 + delta_h -0 kJ Cotunnite - PbCl2 = Pb+2 + 2 Cl- - log_k -4.78 - delta_h 26.166 kJ + PbCl2 = Pb+2 + 2 Cl- + log_k -4.78 + delta_h 26.166 kJ Matlockite - PbClF = Pb+2 + Cl- + F- - log_k -8.9733 - delta_h 33.19 kJ + PbClF = Pb+2 + Cl- + F- + log_k -8.9733 + delta_h 33.19 kJ Phosgenite - PbCl2:PbCO3 = 2 Pb+2 + 2 Cl- + CO3-2 - log_k -19.81 - delta_h -0 kJ + PbCl2:PbCO3 = 2 Pb+2 + 2 Cl- + CO3-2 + log_k -19.81 + delta_h -0 kJ Laurionite - PbOHCl + H+ = Pb+2 + Cl- + H2O - log_k 0.623 - delta_h -0 kJ + PbOHCl + H+ = Pb+2 + Cl- + H2O + log_k 0.623 + delta_h -0 kJ Pb2(OH)3Cl - Pb2(OH)3Cl + 3 H+ = 2 Pb+2 + 3 H2O + Cl- - log_k 8.793 - delta_h -0 kJ + Pb2(OH)3Cl + 3 H+ = 2 Pb+2 + 3 H2O + Cl- + log_k 8.793 + delta_h -0 kJ TlCl - TlCl = Tl+ + Cl- - log_k -3.74 - delta_h 41 kJ + TlCl = Tl+ + Cl- + log_k -3.74 + delta_h 41 kJ ZnCl2 - ZnCl2 = Zn+2 + 2 Cl- - log_k 7.05 - delta_h -72.5 kJ + ZnCl2 = Zn+2 + 2 Cl- + log_k 7.05 + delta_h -72.5 kJ Zn2(OH)3Cl - Zn2(OH)3Cl + 3 H+ = 2 Zn+2 + 3 H2O + Cl- - log_k 15.191 - delta_h -0 kJ + Zn2(OH)3Cl + 3 H+ = 2 Zn+2 + 3 H2O + Cl- + log_k 15.191 + delta_h -0 kJ Zn5(OH)8Cl2 - Zn5(OH)8Cl2 + 8 H+ = 5 Zn+2 + 8 H2O + 2 Cl- - log_k 38.5 - delta_h -0 kJ + Zn5(OH)8Cl2 + 8 H+ = 5 Zn+2 + 8 H2O + 2 Cl- + log_k 38.5 + delta_h -0 kJ CdCl2 - CdCl2 = Cd+2 + 2 Cl- - log_k -0.6588 - delta_h -18.58 kJ + CdCl2 = Cd+2 + 2 Cl- + log_k -0.6588 + delta_h -18.58 kJ CdCl2:1H2O - CdCl2:H2O = Cd+2 + 2 Cl- + H2O - log_k -1.6932 - delta_h -7.47 kJ + CdCl2:H2O = Cd+2 + 2 Cl- + H2O + log_k -1.6932 + delta_h -7.47 kJ CdCl2:2.5H2O - CdCl2:2.5H2O = Cd+2 + 2 Cl- + 2.5 H2O - log_k -1.913 - delta_h 7.2849 kJ + CdCl2:2.5H2O = Cd+2 + 2 Cl- + 2.5 H2O + log_k -1.913 + delta_h 7.2849 kJ CdOHCl - CdOHCl + H+ = Cd+2 + H2O + Cl- - log_k 3.5373 - delta_h -30.93 kJ + CdOHCl + H+ = Cd+2 + H2O + Cl- + log_k 3.5373 + delta_h -30.93 kJ Calomel - Hg2Cl2 = Hg2+2 + 2 Cl- - log_k -17.91 - delta_h 92 kJ + Hg2Cl2 = Hg2+2 + 2 Cl- + log_k -17.91 + delta_h 92 kJ HgCl2 - HgCl2 + 2 H2O = Hg(OH)2 + 2 Cl- + 2 H+ - log_k -21.2621 - delta_h 107.82 kJ + HgCl2 + 2 H2O = Hg(OH)2 + 2 Cl- + 2 H+ + log_k -21.2621 + delta_h 107.82 kJ Nantokite - CuCl = Cu+ + Cl- - log_k -6.73 - delta_h 42.662 kJ + CuCl = Cu+ + Cl- + log_k -6.73 + delta_h 42.662 kJ Melanothallite - CuCl2 = Cu+2 + 2 Cl- - log_k 6.2572 - delta_h -63.407 kJ + CuCl2 = Cu+2 + 2 Cl- + log_k 6.2572 + delta_h -63.407 kJ Atacamite - Cu2(OH)3Cl + 3 H+ = 2 Cu+2 + 3 H2O + Cl- - log_k 7.391 - delta_h -93.43 kJ + Cu2(OH)3Cl + 3 H+ = 2 Cu+2 + 3 H2O + Cl- + log_k 7.391 + delta_h -93.43 kJ Cerargyrite - AgCl = Ag+ + Cl- - log_k -9.75 - delta_h 65.2 kJ + AgCl = Ag+ + Cl- + log_k -9.75 + delta_h 65.2 kJ CoCl2 - CoCl2 = Co+2 + 2 Cl- - log_k 8.2672 - delta_h -79.815 kJ + CoCl2 = Co+2 + 2 Cl- + log_k 8.2672 + delta_h -79.815 kJ CoCl2:6H2O - CoCl2:6H2O = Co+2 + 2 Cl- + 6 H2O - log_k 2.5365 - delta_h 8.0598 kJ + CoCl2:6H2O = Co+2 + 2 Cl- + 6 H2O + log_k 2.5365 + delta_h 8.0598 kJ (Co(NH3)6)Cl3 - (Co(NH3)6)Cl3 + 6 H+ = Co+3 + 6 NH4+ + 3 Cl- - log_k 20.0317 - delta_h -33.1 kJ + (Co(NH3)6)Cl3 + 6 H+ = Co+3 + 6 NH4+ + 3 Cl- + log_k 20.0317 + delta_h -33.1 kJ (Co(NH3)5OH2)Cl3 - (Co(NH3)5OH2)Cl3 + 5 H+ = Co+3 + 5 NH4+ + 3 Cl- + H2O - log_k 11.7351 - delta_h -25.37 kJ + (Co(NH3)5OH2)Cl3 + 5 H+ = Co+3 + 5 NH4+ + 3 Cl- + H2O + log_k 11.7351 + delta_h -25.37 kJ (Co(NH3)5Cl)Cl2 - (Co(NH3)5Cl)Cl2 + 5 H+ = Co+3 + 5 NH4+ + 3 Cl- - log_k 4.5102 - delta_h -10.74 kJ + (Co(NH3)5Cl)Cl2 + 5 H+ = Co+3 + 5 NH4+ + 3 Cl- + log_k 4.5102 + delta_h -10.74 kJ Fe(OH)2.7Cl.3 - Fe(OH)2.7Cl.3 + 2.7 H+ = Fe+3 + 2.7 H2O + 0.3 Cl- - log_k -3.04 - delta_h -0 kJ + Fe(OH)2.7Cl.3 + 2.7 H+ = Fe+3 + 2.7 H2O + 0.3 Cl- + log_k -3.04 + delta_h -0 kJ MnCl2:4H2O - MnCl2:4H2O = Mn+2 + 2 Cl- + 4 H2O - log_k 2.7151 - delta_h -10.83 kJ + MnCl2:4H2O = Mn+2 + 2 Cl- + 4 H2O + log_k 2.7151 + delta_h -10.83 kJ CrCl2 - CrCl2 = Cr+2 + 2 Cl- - log_k 14.0917 - delta_h -110.76 kJ + CrCl2 = Cr+2 + 2 Cl- + log_k 14.0917 + delta_h -110.76 kJ CrCl3 - CrCl3 + 2 H2O = Cr(OH)2+ + 3 Cl- + 2 H+ - log_k 15.1145 - delta_h -121.08 kJ + CrCl3 + 2 H2O = Cr(OH)2+ + 3 Cl- + 2 H+ + log_k 15.1145 + delta_h -121.08 kJ VCl2 - VCl2 = V+3 + 2 Cl- + e- - log_k 18.8744 - delta_h -141.16 kJ + VCl2 = V+3 + 2 Cl- + e- + log_k 18.8744 + delta_h -141.16 kJ VCl3 - VCl3 = V+3 + 3 Cl- - log_k 23.4326 - delta_h -179.54 kJ + VCl3 = V+3 + 3 Cl- + log_k 23.4326 + delta_h -179.54 kJ VOCl - VOCl + 2 H+ = V+3 + Cl- + H2O - log_k 11.1524 - delta_h -104.91 kJ + VOCl + 2 H+ = V+3 + Cl- + H2O + log_k 11.1524 + delta_h -104.91 kJ VOCl2 - VOCl2 = VO+2 + 2 Cl- - log_k 12.7603 - delta_h -117.76 kJ + VOCl2 = VO+2 + 2 Cl- + log_k 12.7603 + delta_h -117.76 kJ VO2Cl - VO2Cl = VO2+ + Cl- - log_k 2.8413 - delta_h -40.28 kJ + VO2Cl = VO2+ + Cl- + log_k 2.8413 + delta_h -40.28 kJ Halite - NaCl = Na+ + Cl- - log_k 1.6025 - delta_h 3.7 kJ + NaCl = Na+ + Cl- + log_k 1.6025 + delta_h 3.7 kJ SbBr3 - SbBr3 + 3 H2O = Sb(OH)3 + 3 Br- + 3 H+ - log_k 0.9689 - delta_h -20.94 kJ + SbBr3 + 3 H2O = Sb(OH)3 + 3 Br- + 3 H+ + log_k 0.9689 + delta_h -20.94 kJ SnBr2 - SnBr2 + 2 H2O = Sn(OH)2 + 2 H+ + 2 Br- - log_k -9.5443 - delta_h -0 kJ + SnBr2 + 2 H2O = Sn(OH)2 + 2 H+ + 2 Br- + log_k -9.5443 + delta_h -0 kJ SnBr4 - SnBr4 + 6 H2O = Sn(OH)6-2 + 6 H+ + 4 Br- - log_k -28.8468 - delta_h -0 kJ + SnBr4 + 6 H2O = Sn(OH)6-2 + 6 H+ + 4 Br- + log_k -28.8468 + delta_h -0 kJ PbBr2 - PbBr2 = Pb+2 + 2 Br- - log_k -5.3 - delta_h 35.499 kJ + PbBr2 = Pb+2 + 2 Br- + log_k -5.3 + delta_h 35.499 kJ PbBrF - PbBrF = Pb+2 + Br- + F- - log_k -8.49 - delta_h -0 kJ + PbBrF = Pb+2 + Br- + F- + log_k -8.49 + delta_h -0 kJ TlBr - TlBr = Tl+ + Br- - log_k -5.44 - delta_h 54 kJ + TlBr = Tl+ + Br- + log_k -5.44 + delta_h 54 kJ ZnBr2:2H2O - ZnBr2:2H2O = Zn+2 + 2 Br- + 2 H2O - log_k 5.2005 - delta_h -30.67 kJ + ZnBr2:2H2O = Zn+2 + 2 Br- + 2 H2O + log_k 5.2005 + delta_h -30.67 kJ CdBr2:4H2O - CdBr2:4H2O = Cd+2 + 2 Br- + 4 H2O - log_k -2.425 - delta_h 30.5001 kJ + CdBr2:4H2O = Cd+2 + 2 Br- + 4 H2O + log_k -2.425 + delta_h 30.5001 kJ Hg2Br2 - Hg2Br2 = Hg2+2 + 2 Br- - log_k -22.25 - delta_h 133 kJ + Hg2Br2 = Hg2+2 + 2 Br- + log_k -22.25 + delta_h 133 kJ HgBr2 - HgBr2 + 2 H2O = Hg(OH)2 + 2 Br- + 2 H+ - log_k -25.2734 - delta_h 138.492 kJ + HgBr2 + 2 H2O = Hg(OH)2 + 2 Br- + 2 H+ + log_k -25.2734 + delta_h 138.492 kJ CuBr - CuBr = Cu+ + Br- - log_k -8.3 - delta_h 54.86 kJ + CuBr = Cu+ + Br- + log_k -8.3 + delta_h 54.86 kJ Cu2(OH)3Br - Cu2(OH)3Br + 3 H+ = 2 Cu+2 + 3 H2O + Br- - log_k 7.9085 - delta_h -93.43 kJ + Cu2(OH)3Br + 3 H+ = 2 Cu+2 + 3 H2O + Br- + log_k 7.9085 + delta_h -93.43 kJ Bromyrite - AgBr = Ag+ + Br- - log_k -12.3 - delta_h 84.5 kJ + AgBr = Ag+ + Br- + log_k -12.3 + delta_h 84.5 kJ (Co(NH3)6)Br3 - (Co(NH3)6)Br3 + 6 H+ = Co+3 + 6 NH4+ + 3 Br- - log_k 18.3142 - delta_h -21.1899 kJ + (Co(NH3)6)Br3 + 6 H+ = Co+3 + 6 NH4+ + 3 Br- + log_k 18.3142 + delta_h -21.1899 kJ (Co(NH3)5Cl)Br2 - (Co(NH3)5Cl)Br2 + 5 H+ = Co+3 + 5 NH4+ + Cl- + 2 Br- - log_k 5.0295 - delta_h -6.4 kJ + (Co(NH3)5Cl)Br2 + 5 H+ = Co+3 + 5 NH4+ + Cl- + 2 Br- + log_k 5.0295 + delta_h -6.4 kJ CrBr3 - CrBr3 + 2 H2O = Cr(OH)2+ + 3 Br- + 2 H+ - log_k 19.9086 - delta_h -141.323 kJ + CrBr3 + 2 H2O = Cr(OH)2+ + 3 Br- + 2 H+ + log_k 19.9086 + delta_h -141.323 kJ AsI3 - AsI3 + 3 H2O = H3AsO3 + 3 I- + 3 H+ - log_k 4.2307 - delta_h 3.15 kJ + AsI3 + 3 H2O = H3AsO3 + 3 I- + 3 H+ + log_k 4.2307 + delta_h 3.15 kJ SbI3 - SbI3 + 3 H2O = Sb(OH)3 + 3 H+ + 3 I- - log_k -0.538 - delta_h 13.5896 kJ + SbI3 + 3 H2O = Sb(OH)3 + 3 H+ + 3 I- + log_k -0.538 + delta_h 13.5896 kJ PbI2 - PbI2 = Pb+2 + 2 I- - log_k -8.1 - delta_h 62 kJ + PbI2 = Pb+2 + 2 I- + log_k -8.1 + delta_h 62 kJ TlI - TlI = Tl+ + I- - log_k -7.23 - delta_h 75 kJ + TlI = Tl+ + I- + log_k -7.23 + delta_h 75 kJ ZnI2 - ZnI2 = Zn+2 + 2 I- - log_k 7.3055 - delta_h -58.92 kJ + ZnI2 = Zn+2 + 2 I- + log_k 7.3055 + delta_h -58.92 kJ CdI2 - CdI2 = Cd+2 + 2 I- - log_k -3.5389 - delta_h 13.82 kJ + CdI2 = Cd+2 + 2 I- + log_k -3.5389 + delta_h 13.82 kJ Hg2I2 - Hg2I2 = Hg2+2 + 2 I- - log_k -28.34 - delta_h 163 kJ + Hg2I2 = Hg2+2 + 2 I- + log_k -28.34 + delta_h 163 kJ Coccinite - HgI2 + 2 H2O = Hg(OH)2 + 2 H+ + 2 I- - log_k -34.9525 - delta_h 210.72 kJ + HgI2 + 2 H2O = Hg(OH)2 + 2 H+ + 2 I- + log_k -34.9525 + delta_h 210.72 kJ HgI2:2NH3 - HgI2:2NH3 + 2 H2O = Hg(OH)2 + 2 I- + 2 NH4+ - log_k -16.2293 - delta_h 132.18 kJ + HgI2:2NH3 + 2 H2O = Hg(OH)2 + 2 I- + 2 NH4+ + log_k -16.2293 + delta_h 132.18 kJ HgI2:6NH3 - HgI2:6NH3 + 2 H2O + 4 H+ = Hg(OH)2 + 2 I- + 6 NH4+ - log_k 33.7335 - delta_h -90.3599 kJ + HgI2:6NH3 + 2 H2O + 4 H+ = Hg(OH)2 + 2 I- + 6 NH4+ + log_k 33.7335 + delta_h -90.3599 kJ CuI - CuI = Cu+ + I- - log_k -12 - delta_h 82.69 kJ + CuI = Cu+ + I- + log_k -12 + delta_h 82.69 kJ Iodyrite - AgI = Ag+ + I- - log_k -16.08 - delta_h 110 kJ + AgI = Ag+ + I- + log_k -16.08 + delta_h 110 kJ (Co(NH3)6)I3 - (Co(NH3)6)I3 + 6 H+ = Co+3 + 6 NH4+ + 3 I- - log_k 16.5831 - delta_h -9.6999 kJ + (Co(NH3)6)I3 + 6 H+ = Co+3 + 6 NH4+ + 3 I- + log_k 16.5831 + delta_h -9.6999 kJ (Co(NH3)5Cl)I2 - (Co(NH3)5Cl)I2 + 5 H+ = Co+3 + 5 NH4+ + Cl- + 2 I- - log_k 5.5981 - delta_h 0.66 kJ + (Co(NH3)5Cl)I2 + 5 H+ = Co+3 + 5 NH4+ + Cl- + 2 I- + log_k 5.5981 + delta_h 0.66 kJ CrI3 - CrI3 + 2 H2O = Cr(OH)2+ + 3 I- + 2 H+ - log_k 20.4767 - delta_h -134.419 kJ + CrI3 + 2 H2O = Cr(OH)2+ + 3 I- + 2 H+ + log_k 20.4767 + delta_h -134.419 kJ Cerussite - PbCO3 = Pb+2 + CO3-2 - log_k -13.13 - delta_h 24.79 kJ + PbCO3 = Pb+2 + CO3-2 + log_k -13.13 + delta_h 24.79 kJ Pb2OCO3 - Pb2OCO3 + 2 H+ = 2 Pb+2 + H2O + CO3-2 - log_k -0.5578 - delta_h -40.8199 kJ + Pb2OCO3 + 2 H+ = 2 Pb+2 + H2O + CO3-2 + log_k -0.5578 + delta_h -40.8199 kJ Pb3O2CO3 - Pb3O2CO3 + 4 H+ = 3 Pb+2 + CO3-2 + 2 H2O - log_k 11.02 - delta_h -110.583 kJ + Pb3O2CO3 + 4 H+ = 3 Pb+2 + CO3-2 + 2 H2O + log_k 11.02 + delta_h -110.583 kJ Hydrocerussite - Pb3(OH)2(CO3)2 + 2 H+ = 3 Pb+2 + 2 H2O + 2 CO3-2 - log_k -18.7705 - delta_h -0 kJ + Pb3(OH)2(CO3)2 + 2 H+ = 3 Pb+2 + 2 H2O + 2 CO3-2 + log_k -18.7705 + delta_h -0 kJ Pb10(OH)6O(CO3)6 - Pb10(OH)6O(CO3)6 + 8 H+ = 10 Pb+2 + 6 CO3-2 + 7 H2O - log_k -8.76 - delta_h -0 kJ + Pb10(OH)6O(CO3)6 + 8 H+ = 10 Pb+2 + 6 CO3-2 + 7 H2O + log_k -8.76 + delta_h -0 kJ Tl2CO3 - Tl2CO3 = 2 Tl+ + CO3-2 - log_k -3.8367 - delta_h 35.49 kJ + Tl2CO3 = 2 Tl+ + CO3-2 + log_k -3.8367 + delta_h 35.49 kJ Smithsonite - ZnCO3 = Zn+2 + CO3-2 - log_k -10 - delta_h -15.84 kJ + ZnCO3 = Zn+2 + CO3-2 + log_k -10 + delta_h -15.84 kJ ZnCO3:1H2O - ZnCO3:H2O = Zn+2 + CO3-2 + H2O - log_k -10.26 - delta_h -0 kJ + ZnCO3:H2O = Zn+2 + CO3-2 + H2O + log_k -10.26 + delta_h -0 kJ Otavite - CdCO3 = Cd+2 + CO3-2 - log_k -12 - delta_h -0.55 kJ + CdCO3 = Cd+2 + CO3-2 + log_k -12 + delta_h -0.55 kJ Hg2CO3 - Hg2CO3 = Hg2+2 + CO3-2 - log_k -16.05 - delta_h 45.14 kJ + Hg2CO3 = Hg2+2 + CO3-2 + log_k -16.05 + delta_h 45.14 kJ Hg3O2CO3 - Hg3O2CO3 + 4 H2O = 3 Hg(OH)2 + 2 H+ + CO3-2 - log_k -29.682 - delta_h -0 kJ + Hg3O2CO3 + 4 H2O = 3 Hg(OH)2 + 2 H+ + CO3-2 + log_k -29.682 + delta_h -0 kJ CuCO3 - CuCO3 = Cu+2 + CO3-2 - log_k -11.5 - delta_h -0 kJ + CuCO3 = Cu+2 + CO3-2 + log_k -11.5 + delta_h -0 kJ Malachite - Cu2(OH)2CO3 + 2 H+ = 2 Cu+2 + 2 H2O + CO3-2 - log_k -5.306 - delta_h 76.38 kJ + Cu2(OH)2CO3 + 2 H+ = 2 Cu+2 + 2 H2O + CO3-2 + log_k -5.306 + delta_h 76.38 kJ Azurite - Cu3(OH)2(CO3)2 + 2 H+ = 3 Cu+2 + 2 H2O + 2 CO3-2 - log_k -16.906 - delta_h -95.22 kJ + Cu3(OH)2(CO3)2 + 2 H+ = 3 Cu+2 + 2 H2O + 2 CO3-2 + log_k -16.906 + delta_h -95.22 kJ Ag2CO3 - Ag2CO3 = 2 Ag+ + CO3-2 - log_k -11.09 - delta_h 42.15 kJ + Ag2CO3 = 2 Ag+ + CO3-2 + log_k -11.09 + delta_h 42.15 kJ NiCO3 - NiCO3 = Ni+2 + CO3-2 - log_k -6.87 - delta_h -41.589 kJ + NiCO3 = Ni+2 + CO3-2 + log_k -6.87 + delta_h -41.589 kJ CoCO3 - CoCO3 = Co+2 + CO3-2 - log_k -9.98 - delta_h -12.7612 kJ + CoCO3 = Co+2 + CO3-2 + log_k -9.98 + delta_h -12.7612 kJ Siderite - FeCO3 = Fe+2 + CO3-2 - log_k -10.24 - delta_h -16 kJ + FeCO3 = Fe+2 + CO3-2 + log_k -10.24 + delta_h -16 kJ Rhodochrosite - MnCO3 = Mn+2 + CO3-2 - log_k -10.58 - delta_h -1.88 kJ + MnCO3 = Mn+2 + CO3-2 + log_k -10.58 + delta_h -1.88 kJ Rutherfordine - UO2CO3 = UO2+2 + CO3-2 - log_k -14.5 - delta_h -3.03 kJ + UO2CO3 = UO2+2 + CO3-2 + log_k -14.5 + delta_h -3.03 kJ Artinite - MgCO3:Mg(OH)2:3H2O + 2 H+ = 2 Mg+2 + CO3-2 + 5 H2O - log_k 9.6 - delta_h -120.257 kJ + MgCO3:Mg(OH)2:3H2O + 2 H+ = 2 Mg+2 + CO3-2 + 5 H2O + log_k 9.6 + delta_h -120.257 kJ Hydromagnesite - Mg5(CO3)4(OH)2:4H2O + 2 H+ = 5 Mg+2 + 4 CO3-2 + 6 H2O - log_k -8.766 - delta_h -218.447 kJ + Mg5(CO3)4(OH)2:4H2O + 2 H+ = 5 Mg+2 + 4 CO3-2 + 6 H2O + log_k -8.766 + delta_h -218.447 kJ Magnesite - MgCO3 = Mg+2 + CO3-2 - log_k -7.46 - delta_h 20 kJ + MgCO3 = Mg+2 + CO3-2 + log_k -7.46 + delta_h 20 kJ Nesquehonite - MgCO3:3H2O = Mg+2 + CO3-2 + 3 H2O - log_k -4.67 - delta_h -24.2212 kJ + MgCO3:3H2O = Mg+2 + CO3-2 + 3 H2O + log_k -4.67 + delta_h -24.2212 kJ Aragonite - CaCO3 = Ca+2 + CO3-2 - log_k -8.3 - delta_h -12 kJ + CaCO3 = Ca+2 + CO3-2 + log_k -8.3 + delta_h -12 kJ Calcite - CaCO3 = Ca+2 + CO3-2 - log_k -8.48 - delta_h -8 kJ + CaCO3 = Ca+2 + CO3-2 + log_k -8.48 + delta_h -8 kJ Dolomite(ordered) - CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 - log_k -17.09 - delta_h -39.5 kJ + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + log_k -17.09 + delta_h -39.5 kJ Dolomite(disordered) - CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 - log_k -16.54 - delta_h -46.4 kJ + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + log_k -16.54 + delta_h -46.4 kJ Huntite - CaMg3(CO3)4 = 3 Mg+2 + Ca+2 + 4 CO3-2 - log_k -29.968 - delta_h -107.78 kJ + CaMg3(CO3)4 = 3 Mg+2 + Ca+2 + 4 CO3-2 + log_k -29.968 + delta_h -107.78 kJ Strontianite - SrCO3 = Sr+2 + CO3-2 - log_k -9.27 - delta_h -0 kJ + SrCO3 = Sr+2 + CO3-2 + log_k -9.27 + delta_h -0 kJ Witherite - BaCO3 = Ba+2 + CO3-2 - log_k -8.57 - delta_h 4 kJ + BaCO3 = Ba+2 + CO3-2 + log_k -8.57 + delta_h 4 kJ Thermonatrite - Na2CO3:H2O = 2 Na+ + CO3-2 + H2O - log_k 0.637 - delta_h -10.4799 kJ + Na2CO3:H2O = 2 Na+ + CO3-2 + H2O + log_k 0.637 + delta_h -10.4799 kJ TlNO3 - TlNO3 = Tl+ + NO3- - log_k -1.6127 - delta_h 42.44 kJ + TlNO3 = Tl+ + NO3- + log_k -1.6127 + delta_h 42.44 kJ Zn(NO3)2:6H2O - Zn(NO3)2:6H2O = Zn+2 + 2 NO3- + 6 H2O - log_k 3.3153 - delta_h 24.5698 kJ + Zn(NO3)2:6H2O = Zn+2 + 2 NO3- + 6 H2O + log_k 3.3153 + delta_h 24.5698 kJ Cu2(OH)3NO3 - Cu2(OH)3NO3 + 3 H+ = 2 Cu+2 + 3 H2O + NO3- - log_k 9.251 - delta_h -72.5924 kJ + Cu2(OH)3NO3 + 3 H+ = 2 Cu+2 + 3 H2O + NO3- + log_k 9.251 + delta_h -72.5924 kJ (Co(NH3)6)(NO3)3 - (Co(NH3)6)(NO3)3 + 6 H+ = Co+3 + 6 NH4+ + 3 NO3- - log_k 17.9343 - delta_h 1.59 kJ + (Co(NH3)6)(NO3)3 + 6 H+ = Co+3 + 6 NH4+ + 3 NO3- + log_k 17.9343 + delta_h 1.59 kJ (Co(NH3)5Cl)(NO3)2 - (Co(NH3)5Cl)(NO3)2 + 5 H+ = Co+3 + 5 NH4+ + Cl- + 2 NO3- - log_k 6.2887 - delta_h 6.4199 kJ + (Co(NH3)5Cl)(NO3)2 + 5 H+ = Co+3 + 5 NH4+ + Cl- + 2 NO3- + log_k 6.2887 + delta_h 6.4199 kJ UO2(NO3)2 - UO2(NO3)2 = UO2+2 + 2 NO3- - log_k 12.1476 - delta_h -83.3999 kJ + UO2(NO3)2 = UO2+2 + 2 NO3- + log_k 12.1476 + delta_h -83.3999 kJ UO2(NO3)2:2H2O - UO2(NO3)2:2H2O = UO2+2 + 2 NO3- + 2 H2O - log_k 4.851 - delta_h -25.355 kJ + UO2(NO3)2:2H2O = UO2+2 + 2 NO3- + 2 H2O + log_k 4.851 + delta_h -25.355 kJ UO2(NO3)2:3H2O - UO2(NO3)2:3H2O = UO2+2 + 2 NO3- + 3 H2O - log_k 3.39 - delta_h -9.1599 kJ + UO2(NO3)2:3H2O = UO2+2 + 2 NO3- + 3 H2O + log_k 3.39 + delta_h -9.1599 kJ UO2(NO3)2:6H2O - UO2(NO3)2:6H2O = UO2+2 + 2 NO3- + 6 H2O - log_k 2.0464 - delta_h 20.8201 kJ + UO2(NO3)2:6H2O = UO2+2 + 2 NO3- + 6 H2O + log_k 2.0464 + delta_h 20.8201 kJ Pb(BO2)2 - Pb(BO2)2 + 2 H2O + 2 H+ = Pb+2 + 2 H3BO3 - log_k 6.5192 - delta_h -15.6119 kJ + Pb(BO2)2 + 2 H2O + 2 H+ = Pb+2 + 2 H3BO3 + log_k 6.5192 + delta_h -15.6119 kJ Zn(BO2)2 - Zn(BO2)2 + 2 H2O + 2 H+ = Zn+2 + 2 H3BO3 - log_k 8.29 - delta_h -0 kJ + Zn(BO2)2 + 2 H2O + 2 H+ = Zn+2 + 2 H3BO3 + log_k 8.29 + delta_h -0 kJ Cd(BO2)2 - Cd(BO2)2 + 2 H2O + 2 H+ = Cd+2 + 2 H3BO3 - log_k 9.84 - delta_h -0 kJ + Cd(BO2)2 + 2 H2O + 2 H+ = Cd+2 + 2 H3BO3 + log_k 9.84 + delta_h -0 kJ Co(BO2)2 - Co(BO2)2 + 2 H2O + 2 H+ = Co+2 + 2 H3BO3 - log_k 27.0703 - delta_h -0 kJ + Co(BO2)2 + 2 H2O + 2 H+ = Co+2 + 2 H3BO3 + log_k 27.0703 + delta_h -0 kJ SnSO4 - SnSO4 + 2 H2O = Sn(OH)2 + 2 H+ + SO4-2 - log_k -56.9747 - delta_h -0 kJ + SnSO4 + 2 H2O = Sn(OH)2 + 2 H+ + SO4-2 + log_k -56.9747 + delta_h -0 kJ Sn(SO4)2 - Sn(SO4)2 + 6 H2O = Sn(OH)6-2 + 6 H+ + 2 SO4-2 - log_k -15.2123 - delta_h -0 kJ + Sn(SO4)2 + 6 H2O = Sn(OH)6-2 + 6 H+ + 2 SO4-2 + log_k -15.2123 + delta_h -0 kJ Larnakite - PbO:PbSO4 + 2 H+ = 2 Pb+2 + SO4-2 + H2O - log_k -0.4344 - delta_h -21.83 kJ + PbO:PbSO4 + 2 H+ = 2 Pb+2 + SO4-2 + H2O + log_k -0.4344 + delta_h -21.83 kJ Pb3O2SO4 - Pb3O2SO4 + 4 H+ = 3 Pb+2 + SO4-2 + 2 H2O - log_k 10.6864 - delta_h -79.14 kJ + Pb3O2SO4 + 4 H+ = 3 Pb+2 + SO4-2 + 2 H2O + log_k 10.6864 + delta_h -79.14 kJ Pb4O3SO4 - Pb4O3SO4 + 6 H+ = 4 Pb+2 + SO4-2 + 3 H2O - log_k 21.8772 - delta_h -136.45 kJ + Pb4O3SO4 + 6 H+ = 4 Pb+2 + SO4-2 + 3 H2O + log_k 21.8772 + delta_h -136.45 kJ Anglesite - PbSO4 = Pb+2 + SO4-2 - log_k -7.79 - delta_h 12 kJ + PbSO4 = Pb+2 + SO4-2 + log_k -7.79 + delta_h 12 kJ Pb4(OH)6SO4 - Pb4(OH)6SO4 + 6 H+ = 4 Pb+2 + SO4-2 + 6 H2O - log_k 21.1 - delta_h -0 kJ + Pb4(OH)6SO4 + 6 H+ = 4 Pb+2 + SO4-2 + 6 H2O + log_k 21.1 + delta_h -0 kJ AlOHSO4 - AlOHSO4 + H+ = Al+3 + SO4-2 + H2O - log_k -3.23 - delta_h -0 kJ + AlOHSO4 + H+ = Al+3 + SO4-2 + H2O + log_k -3.23 + delta_h -0 kJ Al4(OH)10SO4 - Al4(OH)10SO4 + 10 H+ = 4 Al+3 + SO4-2 + 10 H2O - log_k 22.7 - delta_h -0 kJ + Al4(OH)10SO4 + 10 H+ = 4 Al+3 + SO4-2 + 10 H2O + log_k 22.7 + delta_h -0 kJ Tl2SO4 - Tl2SO4 = 2 Tl+ + SO4-2 - log_k -3.7868 - delta_h 33.1799 kJ + Tl2SO4 = 2 Tl+ + SO4-2 + log_k -3.7868 + delta_h 33.1799 kJ Zn2(OH)2SO4 - Zn2(OH)2SO4 + 2 H+ = 2 Zn+2 + 2 H2O + SO4-2 - log_k 7.5 - delta_h -0 kJ + Zn2(OH)2SO4 + 2 H+ = 2 Zn+2 + 2 H2O + SO4-2 + log_k 7.5 + delta_h -0 kJ Zn4(OH)6SO4 - Zn4(OH)6SO4 + 6 H+ = 4 Zn+2 + 6 H2O + SO4-2 - log_k 28.4 - delta_h -0 kJ + Zn4(OH)6SO4 + 6 H+ = 4 Zn+2 + 6 H2O + SO4-2 + log_k 28.4 + delta_h -0 kJ Zn3O(SO4)2 - Zn3O(SO4)2 + 2 H+ = 3 Zn+2 + 2 SO4-2 + H2O - log_k 18.9135 - delta_h -258.08 kJ + Zn3O(SO4)2 + 2 H+ = 3 Zn+2 + 2 SO4-2 + H2O + log_k 18.9135 + delta_h -258.08 kJ Zincosite - ZnSO4 = Zn+2 + SO4-2 - log_k 3.9297 - delta_h -82.586 kJ + ZnSO4 = Zn+2 + SO4-2 + log_k 3.9297 + delta_h -82.586 kJ ZnSO4:1H2O - ZnSO4:H2O = Zn+2 + SO4-2 + H2O - log_k -0.638 - delta_h -44.0699 kJ + ZnSO4:H2O = Zn+2 + SO4-2 + H2O + log_k -0.638 + delta_h -44.0699 kJ Bianchite - ZnSO4:6H2O = Zn+2 + SO4-2 + 6 H2O - log_k -1.765 - delta_h -0.6694 kJ + ZnSO4:6H2O = Zn+2 + SO4-2 + 6 H2O + log_k -1.765 + delta_h -0.6694 kJ Goslarite - ZnSO4:7H2O = Zn+2 + SO4-2 + 7 H2O - log_k -2.0112 - delta_h 14.21 kJ + ZnSO4:7H2O = Zn+2 + SO4-2 + 7 H2O + log_k -2.0112 + delta_h 14.21 kJ Cd3(OH)4SO4 - Cd3(OH)4SO4 + 4 H+ = 3 Cd+2 + 4 H2O + SO4-2 - log_k 22.56 - delta_h -0 kJ + Cd3(OH)4SO4 + 4 H+ = 3 Cd+2 + 4 H2O + SO4-2 + log_k 22.56 + delta_h -0 kJ Cd3(OH)2(SO4)2 - Cd3(OH)2(SO4)2 + 2 H+ = 3 Cd+2 + 2 H2O + 2 SO4-2 - log_k 6.71 - delta_h -0 kJ + Cd3(OH)2(SO4)2 + 2 H+ = 3 Cd+2 + 2 H2O + 2 SO4-2 + log_k 6.71 + delta_h -0 kJ Cd4(OH)6SO4 - Cd4(OH)6SO4 + 6 H+ = 4 Cd+2 + 6 H2O + SO4-2 - log_k 28.4 - delta_h -0 kJ + Cd4(OH)6SO4 + 6 H+ = 4 Cd+2 + 6 H2O + SO4-2 + log_k 28.4 + delta_h -0 kJ CdSO4 - CdSO4 = Cd+2 + SO4-2 - log_k -0.1722 - delta_h -51.98 kJ + CdSO4 = Cd+2 + SO4-2 + log_k -0.1722 + delta_h -51.98 kJ CdSO4:1H2O - CdSO4:H2O = Cd+2 + SO4-2 + H2O - log_k -1.7261 - delta_h -31.5399 kJ + CdSO4:H2O = Cd+2 + SO4-2 + H2O + log_k -1.7261 + delta_h -31.5399 kJ CdSO4:2.67H2O - CdSO4:2.67H2O = Cd+2 + SO4-2 + 2.67 H2O - log_k -1.873 - delta_h -17.9912 kJ + CdSO4:2.67H2O = Cd+2 + SO4-2 + 2.67 H2O + log_k -1.873 + delta_h -17.9912 kJ Hg2SO4 - Hg2SO4 = Hg2+2 + SO4-2 - log_k -6.13 - delta_h 5.4 kJ + Hg2SO4 = Hg2+2 + SO4-2 + log_k -6.13 + delta_h 5.4 kJ HgSO4 - HgSO4 + 2 H2O = Hg(OH)2 + SO4-2 + 2 H+ - log_k -9.4189 - delta_h 14.6858 kJ + HgSO4 + 2 H2O = Hg(OH)2 + SO4-2 + 2 H+ + log_k -9.4189 + delta_h 14.6858 kJ Cu2SO4 - Cu2SO4 = 2 Cu+ + SO4-2 - log_k -1.95 - delta_h -19.079 kJ + Cu2SO4 = 2 Cu+ + SO4-2 + log_k -1.95 + delta_h -19.079 kJ Antlerite - Cu3(OH)4SO4 + 4 H+ = 3 Cu+2 + 4 H2O + SO4-2 - log_k 8.788 - delta_h -0 kJ + Cu3(OH)4SO4 + 4 H+ = 3 Cu+2 + 4 H2O + SO4-2 + log_k 8.788 + delta_h -0 kJ Brochantite - Cu4(OH)6SO4 + 6 H+ = 4 Cu+2 + 6 H2O + SO4-2 - log_k 15.222 - delta_h -202.86 kJ + Cu4(OH)6SO4 + 6 H+ = 4 Cu+2 + 6 H2O + SO4-2 + log_k 15.222 + delta_h -202.86 kJ Langite - Cu4(OH)6SO4:H2O + 6 H+ = 4 Cu+2 + 7 H2O + SO4-2 - log_k 17.4886 - delta_h -165.55 kJ + Cu4(OH)6SO4:H2O + 6 H+ = 4 Cu+2 + 7 H2O + SO4-2 + log_k 17.4886 + delta_h -165.55 kJ CuOCuSO4 - CuOCuSO4 + 2 H+ = 2 Cu+2 + H2O + SO4-2 - log_k 10.3032 - delta_h -137.777 kJ + CuOCuSO4 + 2 H+ = 2 Cu+2 + H2O + SO4-2 + log_k 10.3032 + delta_h -137.777 kJ CuSO4 - CuSO4 = Cu+2 + SO4-2 - log_k 2.9395 - delta_h -73.04 kJ + CuSO4 = Cu+2 + SO4-2 + log_k 2.9395 + delta_h -73.04 kJ Chalcanthite - CuSO4:5H2O = Cu+2 + SO4-2 + 5 H2O - log_k -2.64 - delta_h 6.025 kJ + CuSO4:5H2O = Cu+2 + SO4-2 + 5 H2O + log_k -2.64 + delta_h 6.025 kJ Ag2SO4 - Ag2SO4 = 2 Ag+ + SO4-2 - log_k -4.82 - delta_h 17 kJ + Ag2SO4 = 2 Ag+ + SO4-2 + log_k -4.82 + delta_h 17 kJ Ni4(OH)6SO4 - Ni4(OH)6SO4 + 6 H+ = 4 Ni+2 + SO4-2 + 6 H2O - log_k 32 - delta_h -0 kJ + Ni4(OH)6SO4 + 6 H+ = 4 Ni+2 + SO4-2 + 6 H2O + log_k 32 + delta_h -0 kJ Retgersite - NiSO4:6H2O = Ni+2 + SO4-2 + 6 H2O - log_k -2.04 - delta_h 4.6024 kJ + NiSO4:6H2O = Ni+2 + SO4-2 + 6 H2O + log_k -2.04 + delta_h 4.6024 kJ Morenosite - NiSO4:7H2O = Ni+2 + SO4-2 + 7 H2O - log_k -2.1449 - delta_h 12.1802 kJ + NiSO4:7H2O = Ni+2 + SO4-2 + 7 H2O + log_k -2.1449 + delta_h 12.1802 kJ CoSO4 - CoSO4 = Co+2 + SO4-2 - log_k 2.8024 - delta_h -79.277 kJ + CoSO4 = Co+2 + SO4-2 + log_k 2.8024 + delta_h -79.277 kJ CoSO4:6H2O - CoSO4:6H2O = Co+2 + SO4-2 + 6 H2O - log_k -2.4726 - delta_h 1.0801 kJ + CoSO4:6H2O = Co+2 + SO4-2 + 6 H2O + log_k -2.4726 + delta_h 1.0801 kJ Melanterite - FeSO4:7H2O = Fe+2 + SO4-2 + 7 H2O - log_k -2.209 - delta_h 20.5 kJ + FeSO4:7H2O = Fe+2 + SO4-2 + 7 H2O + log_k -2.209 + delta_h 20.5 kJ Fe2(SO4)3 - Fe2(SO4)3 = 2 Fe+3 + 3 SO4-2 - log_k -3.7343 - delta_h -242.028 kJ + Fe2(SO4)3 = 2 Fe+3 + 3 SO4-2 + log_k -3.7343 + delta_h -242.028 kJ H-Jarosite - (H3O)Fe3(SO4)2(OH)6 + 5 H+ = 3 Fe+3 + 2 SO4-2 + 7 H2O - log_k -12.1 - delta_h -230.748 kJ + (H3O)Fe3(SO4)2(OH)6 + 5 H+ = 3 Fe+3 + 2 SO4-2 + 7 H2O + log_k -12.1 + delta_h -230.748 kJ Na-Jarosite - NaFe3(SO4)2(OH)6 + 6 H+ = Na+ + 3 Fe+3 + 2 SO4-2 + 6 H2O - log_k -11.2 - delta_h -151.377 kJ + NaFe3(SO4)2(OH)6 + 6 H+ = Na+ + 3 Fe+3 + 2 SO4-2 + 6 H2O + log_k -11.2 + delta_h -151.377 kJ K-Jarosite - KFe3(SO4)2(OH)6 + 6 H+ = K+ + 3 Fe+3 + 2 SO4-2 + 6 H2O - log_k -14.8 - delta_h -130.875 kJ + KFe3(SO4)2(OH)6 + 6 H+ = K+ + 3 Fe+3 + 2 SO4-2 + 6 H2O + log_k -14.8 + delta_h -130.875 kJ MnSO4 - MnSO4 = Mn+2 + SO4-2 - log_k 2.5831 - delta_h -64.8401 kJ + MnSO4 = Mn+2 + SO4-2 + log_k 2.5831 + delta_h -64.8401 kJ Mn2(SO4)3 - Mn2(SO4)3 = 2 Mn+3 + 3 SO4-2 - log_k -5.711 - delta_h -163.427 kJ + Mn2(SO4)3 = 2 Mn+3 + 3 SO4-2 + log_k -5.711 + delta_h -163.427 kJ VOSO4 - VOSO4 = VO+2 + SO4-2 - log_k 3.6097 - delta_h -86.7401 kJ + VOSO4 = VO+2 + SO4-2 + log_k 3.6097 + delta_h -86.7401 kJ Epsomite - MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O - log_k -2.1265 - delta_h 11.5601 kJ + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -2.1265 + delta_h 11.5601 kJ Anhydrite - CaSO4 = Ca+2 + SO4-2 - log_k -4.36 - delta_h -7.2 kJ + CaSO4 = Ca+2 + SO4-2 + log_k -4.36 + delta_h -7.2 kJ Gypsum - CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O - log_k -4.61 - delta_h 1 kJ + CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O + log_k -4.61 + delta_h 1 kJ Celestite - SrSO4 = Sr+2 + SO4-2 - log_k -6.62 - delta_h 2 kJ + SrSO4 = Sr+2 + SO4-2 + log_k -6.62 + delta_h 2 kJ Barite - BaSO4 = Ba+2 + SO4-2 - log_k -9.98 - delta_h 23 kJ + BaSO4 = Ba+2 + SO4-2 + log_k -9.98 + delta_h 23 kJ Mirabilite - Na2SO4:10H2O = 2 Na+ + SO4-2 + 10 H2O - log_k -1.114 - delta_h 79.4416 kJ + Na2SO4:10H2O = 2 Na+ + SO4-2 + 10 H2O + log_k -1.114 + delta_h 79.4416 kJ Thenardite - Na2SO4 = 2 Na+ + SO4-2 - log_k 0.3217 - delta_h -9.121 kJ + Na2SO4 = 2 Na+ + SO4-2 + log_k 0.3217 + delta_h -9.121 kJ K-Alum - KAl(SO4)2:12H2O = K+ + Al+3 + 2 SO4-2 + 12 H2O - log_k -5.17 - delta_h 30.2085 kJ + KAl(SO4)2:12H2O = K+ + Al+3 + 2 SO4-2 + 12 H2O + log_k -5.17 + delta_h 30.2085 kJ Alunite - KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O - log_k -1.4 - delta_h -210 kJ + KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O + log_k -1.4 + delta_h -210 kJ (NH4)2CrO4 - (NH4)2CrO4 = CrO4-2 + 2 NH4+ - log_k 0.4046 - delta_h 9.163 kJ + (NH4)2CrO4 = CrO4-2 + 2 NH4+ + log_k 0.4046 + delta_h 9.163 kJ PbCrO4 - PbCrO4 = Pb+2 + CrO4-2 - log_k -12.6 - delta_h 44.18 kJ + PbCrO4 = Pb+2 + CrO4-2 + log_k -12.6 + delta_h 44.18 kJ Tl2CrO4 - Tl2CrO4 = 2 Tl+ + CrO4-2 - log_k -12.01 - delta_h 74.27 kJ + Tl2CrO4 = 2 Tl+ + CrO4-2 + log_k -12.01 + delta_h 74.27 kJ Hg2CrO4 - Hg2CrO4 = Hg2+2 + CrO4-2 - log_k -8.7 - delta_h -0 kJ + Hg2CrO4 = Hg2+2 + CrO4-2 + log_k -8.7 + delta_h -0 kJ CuCrO4 - CuCrO4 = Cu+2 + CrO4-2 - log_k -5.44 - delta_h -0 kJ + CuCrO4 = Cu+2 + CrO4-2 + log_k -5.44 + delta_h -0 kJ Ag2CrO4 - Ag2CrO4 = 2 Ag+ + CrO4-2 - log_k -11.59 - delta_h 62 kJ + Ag2CrO4 = 2 Ag+ + CrO4-2 + log_k -11.59 + delta_h 62 kJ MgCrO4 - MgCrO4 = CrO4-2 + Mg+2 - log_k 5.3801 - delta_h -88.9518 kJ + MgCrO4 = CrO4-2 + Mg+2 + log_k 5.3801 + delta_h -88.9518 kJ CaCrO4 - CaCrO4 = Ca+2 + CrO4-2 - log_k -2.2657 - delta_h -26.945 kJ + CaCrO4 = Ca+2 + CrO4-2 + log_k -2.2657 + delta_h -26.945 kJ SrCrO4 - SrCrO4 = Sr+2 + CrO4-2 - log_k -4.65 - delta_h -10.1253 kJ + SrCrO4 = Sr+2 + CrO4-2 + log_k -4.65 + delta_h -10.1253 kJ BaCrO4 - BaCrO4 = Ba+2 + CrO4-2 - log_k -9.67 - delta_h 33 kJ + BaCrO4 = Ba+2 + CrO4-2 + log_k -9.67 + delta_h 33 kJ Li2CrO4 - Li2CrO4 = CrO4-2 + 2 Li+ - log_k 4.8568 - delta_h -45.2792 kJ + Li2CrO4 = CrO4-2 + 2 Li+ + log_k 4.8568 + delta_h -45.2792 kJ Na2CrO4 - Na2CrO4 = CrO4-2 + 2 Na+ - log_k 2.9302 - delta_h -19.6301 kJ + Na2CrO4 = CrO4-2 + 2 Na+ + log_k 2.9302 + delta_h -19.6301 kJ Na2Cr2O7 - Na2Cr2O7 + H2O = 2 CrO4-2 + 2 Na+ + 2 H+ - log_k -9.8953 - delta_h 22.1961 kJ + Na2Cr2O7 + H2O = 2 CrO4-2 + 2 Na+ + 2 H+ + log_k -9.8953 + delta_h 22.1961 kJ K2CrO4 - K2CrO4 = CrO4-2 + 2 K+ - log_k -0.5134 - delta_h 18.2699 kJ + K2CrO4 = CrO4-2 + 2 K+ + log_k -0.5134 + delta_h 18.2699 kJ K2Cr2O7 - K2Cr2O7 + H2O = 2 CrO4-2 + 2 K+ + 2 H+ - log_k -17.2424 - delta_h 80.7499 kJ + K2Cr2O7 + H2O = 2 CrO4-2 + 2 K+ + 2 H+ + log_k -17.2424 + delta_h 80.7499 kJ Hg2SeO3 - Hg2SeO3 + H+ = Hg2+2 + HSeO3- - log_k -4.657 - delta_h -0 kJ + Hg2SeO3 + H+ = Hg2+2 + HSeO3- + log_k -4.657 + delta_h -0 kJ HgSeO3 - HgSeO3 + 2 H2O = Hg(OH)2 + H+ + HSeO3- - log_k -12.43 - delta_h -0 kJ + HgSeO3 + 2 H2O = Hg(OH)2 + H+ + HSeO3- + log_k -12.43 + delta_h -0 kJ Ag2SeO3 - Ag2SeO3 + H+ = 2 Ag+ + HSeO3- - log_k -7.15 - delta_h 39.68 kJ + Ag2SeO3 + H+ = 2 Ag+ + HSeO3- + log_k -7.15 + delta_h 39.68 kJ CuSeO3:2H2O - CuSeO3:2H2O + H+ = Cu+2 + HSeO3- + 2 H2O - log_k 0.5116 - delta_h -36.861 kJ + CuSeO3:2H2O + H+ = Cu+2 + HSeO3- + 2 H2O + log_k 0.5116 + delta_h -36.861 kJ NiSeO3:2H2O - NiSeO3:2H2O + H+ = HSeO3- + Ni+2 + 2 H2O - log_k 2.8147 - delta_h -31.0034 kJ + NiSeO3:2H2O + H+ = HSeO3- + Ni+2 + 2 H2O + log_k 2.8147 + delta_h -31.0034 kJ CoSeO3 - CoSeO3 + H+ = Co+2 + HSeO3- - log_k 1.32 - delta_h -0 kJ + CoSeO3 + H+ = Co+2 + HSeO3- + log_k 1.32 + delta_h -0 kJ Fe2(SeO3)3:2H2O - Fe2(SeO3)3:2H2O + 3 H+ = 3 HSeO3- + 2 Fe+3 + 2 H2O - log_k -20.6262 - delta_h -0 kJ + Fe2(SeO3)3:2H2O + 3 H+ = 3 HSeO3- + 2 Fe+3 + 2 H2O + log_k -20.6262 + delta_h -0 kJ Fe2(OH)4SeO3 - Fe2(OH)4SeO3 + 5 H+ = HSeO3- + 2 Fe+3 + 4 H2O - log_k 1.5539 - delta_h -0 kJ + Fe2(OH)4SeO3 + 5 H+ = HSeO3- + 2 Fe+3 + 4 H2O + log_k 1.5539 + delta_h -0 kJ MnSeO3 - MnSeO3 + H+ = Mn+2 + HSeO3- - log_k 1.13 - delta_h -0 kJ + MnSeO3 + H+ = Mn+2 + HSeO3- + log_k 1.13 + delta_h -0 kJ MnSeO3:2H2O - MnSeO3:2H2O + H+ = HSeO3- + Mn+2 + 2 H2O - log_k 0.9822 - delta_h 8.4935 kJ + MnSeO3:2H2O + H+ = HSeO3- + Mn+2 + 2 H2O + log_k 0.9822 + delta_h 8.4935 kJ MgSeO3:6H2O - MgSeO3:6H2O + H+ = Mg+2 + HSeO3- + 6 H2O - log_k 3.0554 - delta_h 5.23 kJ + MgSeO3:6H2O + H+ = Mg+2 + HSeO3- + 6 H2O + log_k 3.0554 + delta_h 5.23 kJ CaSeO3:2H2O - CaSeO3:2H2O + H+ = HSeO3- + Ca+2 + 2 H2O - log_k 2.8139 - delta_h -19.4556 kJ + CaSeO3:2H2O + H+ = HSeO3- + Ca+2 + 2 H2O + log_k 2.8139 + delta_h -19.4556 kJ SrSeO3 - SrSeO3 + H+ = Sr+2 + HSeO3- - log_k 2.3 - delta_h -0 kJ + SrSeO3 + H+ = Sr+2 + HSeO3- + log_k 2.3 + delta_h -0 kJ BaSeO3 - BaSeO3 + H+ = Ba+2 + HSeO3- - log_k 1.83 - delta_h 11.98 kJ + BaSeO3 + H+ = Ba+2 + HSeO3- + log_k 1.83 + delta_h 11.98 kJ Na2SeO3:5H2O - Na2SeO3:5H2O + H+ = 2 Na+ + HSeO3- + 5 H2O - log_k 10.3 - delta_h -0 kJ + Na2SeO3:5H2O + H+ = 2 Na+ + HSeO3- + 5 H2O + log_k 10.3 + delta_h -0 kJ PbSeO4 - PbSeO4 = Pb+2 + SeO4-2 - log_k -6.84 - delta_h 15 kJ + PbSeO4 = Pb+2 + SeO4-2 + log_k -6.84 + delta_h 15 kJ Tl2SeO4 - Tl2SeO4 = 2 Tl+ + SeO4-2 - log_k -4.1 - delta_h 43 kJ + Tl2SeO4 = 2 Tl+ + SeO4-2 + log_k -4.1 + delta_h 43 kJ ZnSeO4:6H2O - ZnSeO4:6H2O = Zn+2 + SeO4-2 + 6 H2O - log_k -1.52 - delta_h -0 kJ + ZnSeO4:6H2O = Zn+2 + SeO4-2 + 6 H2O + log_k -1.52 + delta_h -0 kJ CdSeO4:2H2O - CdSeO4:2H2O = Cd+2 + SeO4-2 + 2 H2O - log_k -1.85 - delta_h -0 kJ + CdSeO4:2H2O = Cd+2 + SeO4-2 + 2 H2O + log_k -1.85 + delta_h -0 kJ Ag2SeO4 - Ag2SeO4 = 2 Ag+ + SeO4-2 - log_k -8.91 - delta_h -43.5 kJ + Ag2SeO4 = 2 Ag+ + SeO4-2 + log_k -8.91 + delta_h -43.5 kJ CuSeO4:5H2O - CuSeO4:5H2O = Cu+2 + SeO4-2 + 5 H2O - log_k -2.44 - delta_h -0 kJ + CuSeO4:5H2O = Cu+2 + SeO4-2 + 5 H2O + log_k -2.44 + delta_h -0 kJ NiSeO4:6H2O - NiSeO4:6H2O = Ni+2 + SeO4-2 + 6 H2O - log_k -1.52 - delta_h -0 kJ + NiSeO4:6H2O = Ni+2 + SeO4-2 + 6 H2O + log_k -1.52 + delta_h -0 kJ CoSeO4:6H2O - CoSeO4:6H2O = Co+2 + SeO4-2 + 6 H2O - log_k -1.53 - delta_h -0 kJ + CoSeO4:6H2O = Co+2 + SeO4-2 + 6 H2O + log_k -1.53 + delta_h -0 kJ MnSeO4:5H2O - MnSeO4:5H2O = Mn+2 + SeO4-2 + 5 H2O - log_k -2.05 - delta_h -0 kJ + MnSeO4:5H2O = Mn+2 + SeO4-2 + 5 H2O + log_k -2.05 + delta_h -0 kJ UO2SeO4:4H2O - UO2SeO4:4H2O = UO2+2 + SeO4-2 + 4 H2O - log_k -2.25 - delta_h -0 kJ + UO2SeO4:4H2O = UO2+2 + SeO4-2 + 4 H2O + log_k -2.25 + delta_h -0 kJ MgSeO4:6H2O - MgSeO4:6H2O = Mg+2 + SeO4-2 + 6 H2O - log_k -1.2 - delta_h -0 kJ + MgSeO4:6H2O = Mg+2 + SeO4-2 + 6 H2O + log_k -1.2 + delta_h -0 kJ CaSeO4:2H2O - CaSeO4:2H2O = Ca+2 + SeO4-2 + 2 H2O - log_k -3.02 - delta_h -8.3 kJ + CaSeO4:2H2O = Ca+2 + SeO4-2 + 2 H2O + log_k -3.02 + delta_h -8.3 kJ SrSeO4 - SrSeO4 = Sr+2 + SeO4-2 - log_k -4.4 - delta_h 0.4 kJ + SrSeO4 = Sr+2 + SeO4-2 + log_k -4.4 + delta_h 0.4 kJ BaSeO4 - BaSeO4 = Ba+2 + SeO4-2 - log_k -7.46 - delta_h 22 kJ + BaSeO4 = Ba+2 + SeO4-2 + log_k -7.46 + delta_h 22 kJ BeSeO4:4H2O - BeSeO4:4H2O = Be+2 + SeO4-2 + 4 H2O - log_k -2.94 - delta_h -0 kJ + BeSeO4:4H2O = Be+2 + SeO4-2 + 4 H2O + log_k -2.94 + delta_h -0 kJ Na2SeO4 - Na2SeO4 = 2 Na+ + SeO4-2 - log_k 1.28 - delta_h -0 kJ + Na2SeO4 = 2 Na+ + SeO4-2 + log_k 1.28 + delta_h -0 kJ K2SeO4 - K2SeO4 = 2 K+ + SeO4-2 - log_k -0.73 - delta_h -0 kJ + K2SeO4 = 2 K+ + SeO4-2 + log_k -0.73 + delta_h -0 kJ (NH4)2SeO4 - (NH4)2SeO4 = 2 NH4+ + SeO4-2 - log_k 0.45 - delta_h -0 kJ + (NH4)2SeO4 = 2 NH4+ + SeO4-2 + log_k 0.45 + delta_h -0 kJ H2MoO4 - H2MoO4 = MoO4-2 + 2 H+ - log_k -12.8765 - delta_h 49 kJ + H2MoO4 = MoO4-2 + 2 H+ + log_k -12.8765 + delta_h 49 kJ PbMoO4 - PbMoO4 = Pb+2 + MoO4-2 - log_k -15.62 - delta_h 53.93 kJ + PbMoO4 = Pb+2 + MoO4-2 + log_k -15.62 + delta_h 53.93 kJ Al2(MoO4)3 - Al2(MoO4)3 = 3 MoO4-2 + 2 Al+3 - log_k 2.3675 - delta_h -260.8 kJ + Al2(MoO4)3 = 3 MoO4-2 + 2 Al+3 + log_k 2.3675 + delta_h -260.8 kJ Tl2MoO4 - Tl2MoO4 = MoO4-2 + 2 Tl+ - log_k -7.9887 - delta_h -0 kJ + Tl2MoO4 = MoO4-2 + 2 Tl+ + log_k -7.9887 + delta_h -0 kJ ZnMoO4 - ZnMoO4 = MoO4-2 + Zn+2 - log_k -10.1254 - delta_h -10.6901 kJ + ZnMoO4 = MoO4-2 + Zn+2 + log_k -10.1254 + delta_h -10.6901 kJ CdMoO4 - CdMoO4 = MoO4-2 + Cd+2 - log_k -14.1497 - delta_h 19.48 kJ + CdMoO4 = MoO4-2 + Cd+2 + log_k -14.1497 + delta_h 19.48 kJ CuMoO4 - CuMoO4 = MoO4-2 + Cu+2 - log_k -13.0762 - delta_h 12.2 kJ + CuMoO4 = MoO4-2 + Cu+2 + log_k -13.0762 + delta_h 12.2 kJ Ag2MoO4 - Ag2MoO4 = 2 Ag+ + MoO4-2 - log_k -11.55 - delta_h 52.7 kJ + Ag2MoO4 = 2 Ag+ + MoO4-2 + log_k -11.55 + delta_h 52.7 kJ NiMoO4 - NiMoO4 = MoO4-2 + Ni+2 - log_k -11.1421 - delta_h 1.3 kJ + NiMoO4 = MoO4-2 + Ni+2 + log_k -11.1421 + delta_h 1.3 kJ CoMoO4 - CoMoO4 = MoO4-2 + Co+2 - log_k -7.7609 - delta_h -23.3999 kJ + CoMoO4 = MoO4-2 + Co+2 + log_k -7.7609 + delta_h -23.3999 kJ FeMoO4 - FeMoO4 = MoO4-2 + Fe+2 - log_k -10.091 - delta_h -11.1 kJ + FeMoO4 = MoO4-2 + Fe+2 + log_k -10.091 + delta_h -11.1 kJ BeMoO4 - BeMoO4 = MoO4-2 + Be+2 - log_k -1.7817 - delta_h -56.4 kJ + BeMoO4 = MoO4-2 + Be+2 + log_k -1.7817 + delta_h -56.4 kJ MgMoO4 - MgMoO4 = Mg+2 + MoO4-2 - log_k -1.85 - delta_h -0 kJ + MgMoO4 = Mg+2 + MoO4-2 + log_k -1.85 + delta_h -0 kJ CaMoO4 - CaMoO4 = Ca+2 + MoO4-2 - log_k -7.95 - delta_h -2 kJ + CaMoO4 = Ca+2 + MoO4-2 + log_k -7.95 + delta_h -2 kJ BaMoO4 - BaMoO4 = MoO4-2 + Ba+2 - log_k -6.9603 - delta_h 10.96 kJ + BaMoO4 = MoO4-2 + Ba+2 + log_k -6.9603 + delta_h 10.96 kJ Li2MoO4 - Li2MoO4 = MoO4-2 + 2 Li+ - log_k 2.4416 - delta_h -33.9399 kJ + Li2MoO4 = MoO4-2 + 2 Li+ + log_k 2.4416 + delta_h -33.9399 kJ Na2MoO4 - Na2MoO4 = MoO4-2 + 2 Na+ - log_k 1.4901 - delta_h -9.98 kJ + Na2MoO4 = MoO4-2 + 2 Na+ + log_k 1.4901 + delta_h -9.98 kJ Na2MoO4:2H2O - Na2MoO4:2H2O = MoO4-2 + 2 Na+ + 2 H2O - log_k 1.224 - delta_h -0 kJ + Na2MoO4:2H2O = MoO4-2 + 2 Na+ + 2 H2O + log_k 1.224 + delta_h -0 kJ Na2Mo2O7 - Na2Mo2O7 + H2O = 2 MoO4-2 + 2 Na+ + 2 H+ - log_k -16.5966 - delta_h 56.2502 kJ + Na2Mo2O7 + H2O = 2 MoO4-2 + 2 Na+ + 2 H+ + log_k -16.5966 + delta_h 56.2502 kJ K2MoO4 - K2MoO4 = MoO4-2 + 2 K+ - log_k 3.2619 - delta_h -3.38 kJ + K2MoO4 = MoO4-2 + 2 K+ + log_k 3.2619 + delta_h -3.38 kJ PbHPO4 - PbHPO4 = Pb+2 + H+ + PO4-3 - log_k -23.805 - delta_h -0 kJ + PbHPO4 = Pb+2 + H+ + PO4-3 + log_k -23.805 + delta_h -0 kJ Pb3(PO4)2 - Pb3(PO4)2 = 3 Pb+2 + 2 PO4-3 - log_k -43.53 - delta_h -0 kJ + Pb3(PO4)2 = 3 Pb+2 + 2 PO4-3 + log_k -43.53 + delta_h -0 kJ Pyromorphite - Pb5(PO4)3Cl = 5 Pb+2 + 3 PO4-3 + Cl- - log_k -84.43 - delta_h -0 kJ + Pb5(PO4)3Cl = 5 Pb+2 + 3 PO4-3 + Cl- + log_k -84.43 + delta_h -0 kJ Hydroxylpyromorphite - Pb5(PO4)3OH + H+ = 5 Pb+2 + 3 PO4-3 + H2O - log_k -62.79 - delta_h -0 kJ + Pb5(PO4)3OH + H+ = 5 Pb+2 + 3 PO4-3 + H2O + log_k -62.79 + delta_h -0 kJ Plumbgummite - PbAl3(PO4)2(OH)5:H2O + 5 H+ = Pb+2 + 3 Al+3 + 2 PO4-3 + 6 H2O - log_k -32.79 - delta_h -0 kJ + PbAl3(PO4)2(OH)5:H2O + 5 H+ = Pb+2 + 3 Al+3 + 2 PO4-3 + 6 H2O + log_k -32.79 + delta_h -0 kJ Hinsdalite - PbAl3PO4SO4(OH)6 + 6 H+ = Pb+2 + 3 Al+3 + PO4-3 + SO4-2 + 6 H2O - log_k -2.5 - delta_h -0 kJ + PbAl3PO4SO4(OH)6 + 6 H+ = Pb+2 + 3 Al+3 + PO4-3 + SO4-2 + 6 H2O + log_k -2.5 + delta_h -0 kJ Tsumebite - Pb2CuPO4(OH)3:3H2O + 3 H+ = 2 Pb+2 + Cu+2 + PO4-3 + 6 H2O - log_k -9.79 - delta_h -0 kJ + Pb2CuPO4(OH)3:3H2O + 3 H+ = 2 Pb+2 + Cu+2 + PO4-3 + 6 H2O + log_k -9.79 + delta_h -0 kJ Zn3(PO4)2:4H2O - Zn3(PO4)2:4H2O = 3 Zn+2 + 2 PO4-3 + 4 H2O - log_k -35.42 - delta_h -0 kJ + Zn3(PO4)2:4H2O = 3 Zn+2 + 2 PO4-3 + 4 H2O + log_k -35.42 + delta_h -0 kJ Cd3(PO4)2 - Cd3(PO4)2 = 3 Cd+2 + 2 PO4-3 - log_k -32.6 - delta_h -0 kJ + Cd3(PO4)2 = 3 Cd+2 + 2 PO4-3 + log_k -32.6 + delta_h -0 kJ Hg2HPO4 - Hg2HPO4 = Hg2+2 + H+ + PO4-3 - log_k -24.775 - delta_h -0 kJ + Hg2HPO4 = Hg2+2 + H+ + PO4-3 + log_k -24.775 + delta_h -0 kJ Cu3(PO4)2 - Cu3(PO4)2 = 3 Cu+2 + 2 PO4-3 - log_k -36.85 - delta_h -0 kJ + Cu3(PO4)2 = 3 Cu+2 + 2 PO4-3 + log_k -36.85 + delta_h -0 kJ Cu3(PO4)2:3H2O - Cu3(PO4)2:3H2O = 3 Cu+2 + 2 PO4-3 + 3 H2O - log_k -35.12 - delta_h -0 kJ + Cu3(PO4)2:3H2O = 3 Cu+2 + 2 PO4-3 + 3 H2O + log_k -35.12 + delta_h -0 kJ Ag3PO4 - Ag3PO4 = 3 Ag+ + PO4-3 - log_k -17.59 - delta_h -0 kJ + Ag3PO4 = 3 Ag+ + PO4-3 + log_k -17.59 + delta_h -0 kJ Ni3(PO4)2 - Ni3(PO4)2 = 3 Ni+2 + 2 PO4-3 - log_k -31.3 - delta_h -0 kJ + Ni3(PO4)2 = 3 Ni+2 + 2 PO4-3 + log_k -31.3 + delta_h -0 kJ CoHPO4 - CoHPO4 = Co+2 + PO4-3 + H+ - log_k -19.0607 - delta_h -0 kJ + CoHPO4 = Co+2 + PO4-3 + H+ + log_k -19.0607 + delta_h -0 kJ Co3(PO4)2 - Co3(PO4)2 = 3 Co+2 + 2 PO4-3 - log_k -34.6877 - delta_h -0 kJ + Co3(PO4)2 = 3 Co+2 + 2 PO4-3 + log_k -34.6877 + delta_h -0 kJ Vivianite - Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O - log_k -36 - delta_h -0 kJ + Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O + log_k -36 + delta_h -0 kJ Strengite - FePO4:2H2O = Fe+3 + PO4-3 + 2 H2O - log_k -26.4 - delta_h -9.3601 kJ + FePO4:2H2O = Fe+3 + PO4-3 + 2 H2O + log_k -26.4 + delta_h -9.3601 kJ Mn3(PO4)2 - Mn3(PO4)2 = 3 Mn+2 + 2 PO4-3 - log_k -23.827 - delta_h 8.8701 kJ + Mn3(PO4)2 = 3 Mn+2 + 2 PO4-3 + log_k -23.827 + delta_h 8.8701 kJ MnHPO4 - MnHPO4 = Mn+2 + PO4-3 + H+ - log_k -25.4 - delta_h -0 kJ + MnHPO4 = Mn+2 + PO4-3 + H+ + log_k -25.4 + delta_h -0 kJ (VO)3(PO4)2 - (VO)3(PO4)2 = 3 VO+2 + 2 PO4-3 - log_k -25.1 - delta_h -0 kJ + (VO)3(PO4)2 = 3 VO+2 + 2 PO4-3 + log_k -25.1 + delta_h -0 kJ Mg3(PO4)2 - Mg3(PO4)2 = 3 Mg+2 + 2 PO4-3 - log_k -23.28 - delta_h -0 kJ + Mg3(PO4)2 = 3 Mg+2 + 2 PO4-3 + log_k -23.28 + delta_h -0 kJ MgHPO4:3H2O - MgHPO4:3H2O = Mg+2 + H+ + PO4-3 + 3 H2O - log_k -18.175 - delta_h -0 kJ + MgHPO4:3H2O = Mg+2 + H+ + PO4-3 + 3 H2O + log_k -18.175 + delta_h -0 kJ FCO3Apatite - Ca9.316Na0.36Mg0.144(PO4)4.8(CO3)1.2F2.48 = 9.316 Ca+2 + 0.36 Na+ + 0.144 Mg+2 + 4.8 PO4-3 + 1.2 CO3-2 + 2.48 F- - log_k -114.4 - delta_h 164.808 kJ + Ca9.316Na0.36Mg0.144(PO4)4.8(CO3)1.2F2.48 = 9.316 Ca+2 + 0.36 Na+ + 0.144 Mg+2 + 4.8 PO4-3 + 1.2 CO3-2 + 2.48 F- + log_k -114.4 + delta_h 164.808 kJ Hydroxylapatite - Ca5(PO4)3OH + H+ = 5 Ca+2 + 3 PO4-3 + H2O - log_k -44.333 - delta_h -0 kJ + Ca5(PO4)3OH + H+ = 5 Ca+2 + 3 PO4-3 + H2O + log_k -44.333 + delta_h -0 kJ CaHPO4:2H2O - CaHPO4:2H2O = Ca+2 + H+ + PO4-3 + 2 H2O - log_k -18.995 - delta_h 23 kJ + CaHPO4:2H2O = Ca+2 + H+ + PO4-3 + 2 H2O + log_k -18.995 + delta_h 23 kJ CaHPO4 - CaHPO4 = Ca+2 + H+ + PO4-3 - log_k -19.275 - delta_h 31 kJ + CaHPO4 = Ca+2 + H+ + PO4-3 + log_k -19.275 + delta_h 31 kJ Ca3(PO4)2(beta) - Ca3(PO4)2 = 3 Ca+2 + 2 PO4-3 - log_k -28.92 - delta_h 54 kJ + Ca3(PO4)2 = 3 Ca+2 + 2 PO4-3 + log_k -28.92 + delta_h 54 kJ Ca4H(PO4)3:3H2O - Ca4H(PO4)3:3H2O = 4 Ca+2 + H+ + 3 PO4-3 + 3 H2O - log_k -47.08 - delta_h -0 kJ + Ca4H(PO4)3:3H2O = 4 Ca+2 + H+ + 3 PO4-3 + 3 H2O + log_k -47.08 + delta_h -0 kJ SrHPO4 - SrHPO4 = Sr+2 + H+ + PO4-3 - log_k -19.295 - delta_h -0 kJ + SrHPO4 = Sr+2 + H+ + PO4-3 + log_k -19.295 + delta_h -0 kJ BaHPO4 - BaHPO4 = Ba+2 + H+ + PO4-3 - log_k -19.775 - delta_h -0 kJ + BaHPO4 = Ba+2 + H+ + PO4-3 + log_k -19.775 + delta_h -0 kJ U(HPO4)2:4H2O - U(HPO4)2:4H2O = U+4 + 2 PO4-3 + 2 H+ + 4 H2O - log_k -51.584 - delta_h 16.0666 kJ + U(HPO4)2:4H2O = U+4 + 2 PO4-3 + 2 H+ + 4 H2O + log_k -51.584 + delta_h 16.0666 kJ (UO2)3(PO4)2 - (UO2)3(PO4)2 = 3 UO2+2 + 2 PO4-3 - log_k -49.4 - delta_h 397.062 kJ + (UO2)3(PO4)2 = 3 UO2+2 + 2 PO4-3 + log_k -49.4 + delta_h 397.062 kJ UO2HPO4 - UO2HPO4 = UO2+2 + H+ + PO4-3 - log_k -24.225 - delta_h -0 kJ + UO2HPO4 = UO2+2 + H+ + PO4-3 + log_k -24.225 + delta_h -0 kJ Uramphite - (NH4)2(UO2)2(PO4)2 = 2 UO2+2 + 2 NH4+ + 2 PO4-3 - log_k -51.749 - delta_h 40.5848 kJ + (NH4)2(UO2)2(PO4)2 = 2 UO2+2 + 2 NH4+ + 2 PO4-3 + log_k -51.749 + delta_h 40.5848 kJ Przhevalskite - Pb(UO2)2(PO4)2 = 2 UO2+2 + Pb+2 + 2 PO4-3 - log_k -44.365 - delta_h -46.024 kJ + Pb(UO2)2(PO4)2 = 2 UO2+2 + Pb+2 + 2 PO4-3 + log_k -44.365 + delta_h -46.024 kJ Torbernite - Cu(UO2)2(PO4)2 = 2 UO2+2 + Cu+2 + 2 PO4-3 - log_k -45.279 - delta_h -66.5256 kJ + Cu(UO2)2(PO4)2 = 2 UO2+2 + Cu+2 + 2 PO4-3 + log_k -45.279 + delta_h -66.5256 kJ Bassetite - Fe(UO2)2(PO4)2 = 2 UO2+2 + Fe+2 + 2 PO4-3 - log_k -44.485 - delta_h -83.2616 kJ + Fe(UO2)2(PO4)2 = 2 UO2+2 + Fe+2 + 2 PO4-3 + log_k -44.485 + delta_h -83.2616 kJ Saleeite - Mg(UO2)2(PO4)2 = 2 UO2+2 + Mg+2 + 2 PO4-3 - log_k -43.646 - delta_h -84.4331 kJ + Mg(UO2)2(PO4)2 = 2 UO2+2 + Mg+2 + 2 PO4-3 + log_k -43.646 + delta_h -84.4331 kJ Ningyoite - CaU(PO4)2:2H2O = U+4 + Ca+2 + 2 PO4-3 + 2 H2O - log_k -53.906 - delta_h -9.4977 kJ + CaU(PO4)2:2H2O = U+4 + Ca+2 + 2 PO4-3 + 2 H2O + log_k -53.906 + delta_h -9.4977 kJ H-Autunite - H2(UO2)2(PO4)2 = 2 UO2+2 + 2 H+ + 2 PO4-3 - log_k -47.931 - delta_h -15.0624 kJ + H2(UO2)2(PO4)2 = 2 UO2+2 + 2 H+ + 2 PO4-3 + log_k -47.931 + delta_h -15.0624 kJ Autunite - Ca(UO2)2(PO4)2 = 2 UO2+2 + Ca+2 + 2 PO4-3 - log_k -43.927 - delta_h -59.9986 kJ + Ca(UO2)2(PO4)2 = 2 UO2+2 + Ca+2 + 2 PO4-3 + log_k -43.927 + delta_h -59.9986 kJ Sr-Autunite - Sr(UO2)2(PO4)2 = 2 UO2+2 + Sr+2 + 2 PO4-3 - log_k -44.457 - delta_h -54.6012 kJ + Sr(UO2)2(PO4)2 = 2 UO2+2 + Sr+2 + 2 PO4-3 + log_k -44.457 + delta_h -54.6012 kJ Na-Autunite - Na2(UO2)2(PO4)2 = 2 UO2+2 + 2 Na+ + 2 PO4-3 - log_k -47.409 - delta_h -1.9246 kJ + Na2(UO2)2(PO4)2 = 2 UO2+2 + 2 Na+ + 2 PO4-3 + log_k -47.409 + delta_h -1.9246 kJ K-Autunite - K2(UO2)2(PO4)2 = 2 UO2+2 + 2 K+ + 2 PO4-3 - log_k -48.244 - delta_h 24.5182 kJ + K2(UO2)2(PO4)2 = 2 UO2+2 + 2 K+ + 2 PO4-3 + log_k -48.244 + delta_h 24.5182 kJ Uranocircite - Ba(UO2)2(PO4)2 = 2 UO2+2 + Ba+2 + 2 PO4-3 - log_k -44.631 - delta_h -42.2584 kJ + Ba(UO2)2(PO4)2 = 2 UO2+2 + Ba+2 + 2 PO4-3 + log_k -44.631 + delta_h -42.2584 kJ Pb3(AsO4)2 - Pb3(AsO4)2 + 6 H+ = 3 Pb+2 + 2 H3AsO4 - log_k 5.8 - delta_h -0 kJ + Pb3(AsO4)2 + 6 H+ = 3 Pb+2 + 2 H3AsO4 + log_k 5.8 + delta_h -0 kJ AlAsO4:2H2O - AlAsO4:2H2O + 3 H+ = Al+3 + H3AsO4 + 2 H2O - log_k 4.8 - delta_h -0 kJ + AlAsO4:2H2O + 3 H+ = Al+3 + H3AsO4 + 2 H2O + log_k 4.8 + delta_h -0 kJ Zn3(AsO4)2:2.5H2O - Zn3(AsO4)2:2.5H2O + 6 H+ = 3 Zn+2 + 2 H3AsO4 + 2.5 H2O - log_k 13.65 - delta_h -0 kJ + Zn3(AsO4)2:2.5H2O + 6 H+ = 3 Zn+2 + 2 H3AsO4 + 2.5 H2O + log_k 13.65 + delta_h -0 kJ Cu3(AsO4)2:2H2O - Cu3(AsO4)2:2H2O + 6 H+ = 3 Cu+2 + 2 H3AsO4 + 2 H2O - log_k 6.1 - delta_h -0 kJ + Cu3(AsO4)2:2H2O + 6 H+ = 3 Cu+2 + 2 H3AsO4 + 2 H2O + log_k 6.1 + delta_h -0 kJ Ag3AsO3 - Ag3AsO3 + 3 H+ = 3 Ag+ + H3AsO3 - log_k 2.1573 - delta_h -0 kJ + Ag3AsO3 + 3 H+ = 3 Ag+ + H3AsO3 + log_k 2.1573 + delta_h -0 kJ Ag3AsO4 - Ag3AsO4 + 3 H+ = 3 Ag+ + H3AsO4 - log_k -2.7867 - delta_h -0 kJ + Ag3AsO4 + 3 H+ = 3 Ag+ + H3AsO4 + log_k -2.7867 + delta_h -0 kJ Ni3(AsO4)2:8H2O - Ni3(AsO4)2:8H2O + 6 H+ = 3 Ni+2 + 2 H3AsO4 + 8 H2O - log_k 15.7 - delta_h -0 kJ + Ni3(AsO4)2:8H2O + 6 H+ = 3 Ni+2 + 2 H3AsO4 + 8 H2O + log_k 15.7 + delta_h -0 kJ Co3(AsO4)2 - Co3(AsO4)2 + 6 H+ = 3 Co+2 + 2 H3AsO4 - log_k 13.0341 - delta_h -0 kJ + Co3(AsO4)2 + 6 H+ = 3 Co+2 + 2 H3AsO4 + log_k 13.0341 + delta_h -0 kJ FeAsO4:2H2O - FeAsO4:2H2O + 3 H+ = Fe+3 + H3AsO4 + 2 H2O - log_k 0.4 - delta_h -0 kJ + FeAsO4:2H2O + 3 H+ = Fe+3 + H3AsO4 + 2 H2O + log_k 0.4 + delta_h -0 kJ Mn3(AsO4)2:8H2O - Mn3(AsO4)2:8H2O + 6 H+ = 3 Mn+2 + 2 H3AsO4 + 8 H2O - log_k 12.5 - delta_h -0 kJ + Mn3(AsO4)2:8H2O + 6 H+ = 3 Mn+2 + 2 H3AsO4 + 8 H2O + log_k 12.5 + delta_h -0 kJ Ca3(AsO4)2:4H2O - Ca3(AsO4)2:4H2O + 6 H+ = 3 Ca+2 + 2 H3AsO4 + 4 H2O - log_k 22.3 - delta_h -0 kJ + Ca3(AsO4)2:4H2O + 6 H+ = 3 Ca+2 + 2 H3AsO4 + 4 H2O + log_k 22.3 + delta_h -0 kJ Ba3(AsO4)2 - Ba3(AsO4)2 + 6 H+ = 3 Ba+2 + 2 H3AsO4 - log_k -8.91 - delta_h 11.0458 kJ + Ba3(AsO4)2 + 6 H+ = 3 Ba+2 + 2 H3AsO4 + log_k -8.91 + delta_h 11.0458 kJ #NH4VO3 -# NH4VO3 + 2H+ = 2VO2+ + H2O -# log_k 3.8 -# delta_h 30 kJ +# NH4VO3 + 2H+ = 2VO2+ + H2O +# log_k 3.8 +# delta_h 30 kJ Pb3(VO4)2 - Pb3(VO4)2 + 8 H+ = 3 Pb+2 + 2 VO2+ + 4 H2O - log_k 6.14 - delta_h -72.6342 kJ + Pb3(VO4)2 + 8 H+ = 3 Pb+2 + 2 VO2+ + 4 H2O + log_k 6.14 + delta_h -72.6342 kJ Pb2V2O7 - Pb2V2O7 + 6 H+ = 2 Pb+2 + 2 VO2+ + 3 H2O - log_k -1.9 - delta_h -26.945 kJ + Pb2V2O7 + 6 H+ = 2 Pb+2 + 2 VO2+ + 3 H2O + log_k -1.9 + delta_h -26.945 kJ AgVO3 - AgVO3 + 2 H+ = Ag+ + VO2+ + H2O - log_k 0.77 - delta_h -0 kJ + AgVO3 + 2 H+ = Ag+ + VO2+ + H2O + log_k 0.77 + delta_h -0 kJ Ag2HVO4 - Ag2HVO4 + 3 H+ = 2 Ag+ + VO2+ + 2 H2O - log_k 1.48 - delta_h -0 kJ + Ag2HVO4 + 3 H+ = 2 Ag+ + VO2+ + 2 H2O + log_k 1.48 + delta_h -0 kJ Ag3H2VO5 - Ag3H2VO5 + 4 H+ = 3 Ag+ + VO2+ + 3 H2O - log_k 5.18 - delta_h -0 kJ + Ag3H2VO5 + 4 H+ = 3 Ag+ + VO2+ + 3 H2O + log_k 5.18 + delta_h -0 kJ Fe(VO3)2 - Fe(VO3)2 + 4 H+ = Fe+2 + 2 VO2+ + 2 H2O - log_k -3.72 - delta_h -61.6722 kJ + Fe(VO3)2 + 4 H+ = Fe+2 + 2 VO2+ + 2 H2O + log_k -3.72 + delta_h -61.6722 kJ Mn(VO3)2 - Mn(VO3)2 + 4 H+ = Mn+2 + 2 VO2+ + 2 H2O - log_k 4.9 - delta_h -92.4664 kJ + Mn(VO3)2 + 4 H+ = Mn+2 + 2 VO2+ + 2 H2O + log_k 4.9 + delta_h -92.4664 kJ Mg(VO3)2 - Mg(VO3)2 + 4 H+ = Mg+2 + 2 VO2+ + 2 H2O - log_k 11.28 - delta_h -136.649 kJ + Mg(VO3)2 + 4 H+ = Mg+2 + 2 VO2+ + 2 H2O + log_k 11.28 + delta_h -136.649 kJ Mg2V2O7 - Mg2V2O7 + 6 H+ = 2 Mg+2 + 2 VO2+ + 3 H2O - log_k 26.36 - delta_h -255.224 kJ + Mg2V2O7 + 6 H+ = 2 Mg+2 + 2 VO2+ + 3 H2O + log_k 26.36 + delta_h -255.224 kJ Carnotite - KUO2VO4 + 4 H+ = K+ + UO2+2 + VO2+ + 2 H2O - log_k 0.23 - delta_h -36.4008 kJ + KUO2VO4 + 4 H+ = K+ + UO2+2 + VO2+ + 2 H2O + log_k 0.23 + delta_h -36.4008 kJ Tyuyamunite - Ca(UO2)2(VO4)2 + 8 H+ = Ca+2 + 2 UO2+2 + 2 VO2+ + 4 H2O - log_k 4.08 - delta_h -153.134 kJ + Ca(UO2)2(VO4)2 + 8 H+ = Ca+2 + 2 UO2+2 + 2 VO2+ + 4 H2O + log_k 4.08 + delta_h -153.134 kJ Ca(VO3)2 - Ca(VO3)2 + 4 H+ = Ca+2 + 2 VO2+ + 2 H2O - log_k 5.66 - delta_h -84.7678 kJ + Ca(VO3)2 + 4 H+ = Ca+2 + 2 VO2+ + 2 H2O + log_k 5.66 + delta_h -84.7678 kJ Ca3(VO4)2 - Ca3(VO4)2 + 8 H+ = 3 Ca+2 + 2 VO2+ + 4 H2O - log_k 38.96 - delta_h -293.466 kJ + Ca3(VO4)2 + 8 H+ = 3 Ca+2 + 2 VO2+ + 4 H2O + log_k 38.96 + delta_h -293.466 kJ Ca2V2O7 - Ca2V2O7 + 6 H+ = 2 Ca+2 + 2 VO2+ + 3 H2O - log_k 17.5 - delta_h -159.494 kJ + Ca2V2O7 + 6 H+ = 2 Ca+2 + 2 VO2+ + 3 H2O + log_k 17.5 + delta_h -159.494 kJ Ca3(VO4)2:4H2O - Ca3(VO4)2:4H2O + 8 H+ = 3 Ca+2 + 2 VO2+ + 8 H2O - log_k 39.86 - delta_h -0 kJ + Ca3(VO4)2:4H2O + 8 H+ = 3 Ca+2 + 2 VO2+ + 8 H2O + log_k 39.86 + delta_h -0 kJ Ca2V2O7:2H2O - Ca2V2O7:2H2O + 6 H+ = 2 Ca+2 + 2 VO2+ + 5 H2O - log_k 21.552 - delta_h -0 kJ + Ca2V2O7:2H2O + 6 H+ = 2 Ca+2 + 2 VO2+ + 5 H2O + log_k 21.552 + delta_h -0 kJ Ba3(VO4)2:4H2O - Ba3(VO4)2:4H2O + 8 H+ = 3 Ba+2 + 2 VO2+ + 8 H2O - log_k 32.94 - delta_h -0 kJ + Ba3(VO4)2:4H2O + 8 H+ = 3 Ba+2 + 2 VO2+ + 8 H2O + log_k 32.94 + delta_h -0 kJ Ba2V2O7:2H2O - Ba2V2O7:2H2O + 6 H+ = 2 Ba+2 + 2 VO2+ + 5 H2O - log_k 15.872 - delta_h -0 kJ + Ba2V2O7:2H2O + 6 H+ = 2 Ba+2 + 2 VO2+ + 5 H2O + log_k 15.872 + delta_h -0 kJ NaVO3 - NaVO3 + 2 H+ = Na+ + VO2+ + H2O - log_k 3.8582 - delta_h -30.1799 kJ + NaVO3 + 2 H+ = Na+ + VO2+ + H2O + log_k 3.8582 + delta_h -30.1799 kJ Na3VO4 - Na3VO4 + 4 H+ = 3 Na+ + VO2+ + 2 H2O - log_k 36.6812 - delta_h -184.61 kJ + Na3VO4 + 4 H+ = 3 Na+ + VO2+ + 2 H2O + log_k 36.6812 + delta_h -184.61 kJ Na4V2O7 - Na4V2O7 + 6 H+ = 4 Na+ + 2 VO2+ + 3 H2O - log_k 37.4 - delta_h -201.083 kJ + Na4V2O7 + 6 H+ = 4 Na+ + 2 VO2+ + 3 H2O + log_k 37.4 + delta_h -201.083 kJ Halloysite - Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 H4SiO4 + H2O - log_k 9.5749 - delta_h -181.43 kJ + Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 H4SiO4 + H2O + log_k 9.5749 + delta_h -181.43 kJ Kaolinite - Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 H4SiO4 + H2O - log_k 7.435 - delta_h -148 kJ + Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 H4SiO4 + H2O + log_k 7.435 + delta_h -148 kJ Greenalite - Fe3Si2O5(OH)4 + 6 H+ = 3 Fe+2 + 2 H4SiO4 + H2O - log_k 20.81 - delta_h -0 kJ + Fe3Si2O5(OH)4 + 6 H+ = 3 Fe+2 + 2 H4SiO4 + H2O + log_k 20.81 + delta_h -0 kJ Chrysotile - Mg3Si2O5(OH)4 + 6 H+ = 3 Mg+2 + 2 H4SiO4 + H2O - log_k 32.2 - delta_h -196 kJ + Mg3Si2O5(OH)4 + 6 H+ = 3 Mg+2 + 2 H4SiO4 + H2O + log_k 32.2 + delta_h -196 kJ Sepiolite - Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 - log_k 15.76 - delta_h -114.089 kJ + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 + log_k 15.76 + delta_h -114.089 kJ Sepiolite(A) - Mg2Si3O7.5OH:3H2O + 0.5 H2O + 4 H+ = 2 Mg+2 + 3 H4SiO4 - log_k 18.78 - delta_h -0 kJ + Mg2Si3O7.5OH:3H2O + 0.5 H2O + 4 H+ = 2 Mg+2 + 3 H4SiO4 + log_k 18.78 + delta_h -0 kJ PHASES O2(g) - O2 + 4 H+ + 4 e- = 2 H2O - log_k 83.0894 - delta_h -571.66 kJ + O2 + 4 H+ + 4 e- = 2 H2O + log_k 83.0894 + delta_h -571.66 kJ CH4(g) - CH4 + 3 H2O = CO3-2 + 8 e- + 10 H+ - log_k -41.0452 - delta_h 257.133 kJ + CH4 + 3 H2O = CO3-2 + 8 e- + 10 H+ + log_k -41.0452 + delta_h 257.133 kJ CO2(g) - CO2 + H2O = 2 H+ + CO3-2 - log_k -18.147 - delta_h 4.06 kJ + CO2 + H2O = 2 H+ + CO3-2 + log_k -18.147 + delta_h 4.06 kJ H2S(g) - H2S = H+ + HS- - log_k -8.01 - delta_h -0 kJ + H2S = H+ + HS- + log_k -8.01 + delta_h -0 kJ H2Se(g) - H2Se = HSe- + H+ - log_k -4.96 - delta_h -15.3 kJ + H2Se = HSe- + H+ + log_k -4.96 + delta_h -15.3 kJ Hg(g) - Hg = 0.5 Hg2+2 + e- - log_k -7.8733 - delta_h 22.055 kJ + Hg = 0.5 Hg2+2 + e- + log_k -7.8733 + delta_h 22.055 kJ Hg2(g) - Hg2 = Hg2+2 + 2 e- - log_k -14.9554 - delta_h 58.07 kJ + Hg2 = Hg2+2 + 2 e- + log_k -14.9554 + delta_h 58.07 kJ Hg(CH3)2(g) - Hg(CH3)2 + 8 H2O = Hg(OH)2 + 2 CO3-2 + 16 e- + 20 H+ - log_k -73.7066 - delta_h 481.99 kJ + Hg(CH3)2 + 8 H2O = Hg(OH)2 + 2 CO3-2 + 16 e- + 20 H+ + log_k -73.7066 + delta_h 481.99 kJ HgF(g) - HgF = 0.5 Hg2+2 + F- - log_k 32.6756 - delta_h -254.844 kJ + HgF = 0.5 Hg2+2 + F- + log_k 32.6756 + delta_h -254.844 kJ HgF2(g) - HgF2 + 2 H2O = Hg(OH)2 + 2 F- + 2 H+ - log_k 12.5652 - delta_h -165.186 kJ + HgF2 + 2 H2O = Hg(OH)2 + 2 F- + 2 H+ + log_k 12.5652 + delta_h -165.186 kJ HgCl(g) - HgCl = 0.5 Hg2+2 + Cl- - log_k 19.4966 - delta_h -162.095 kJ + HgCl = 0.5 Hg2+2 + Cl- + log_k 19.4966 + delta_h -162.095 kJ HgBr(g) - HgBr = 0.5 Hg2+2 + Br- - log_k 16.7566 - delta_h -142.157 kJ + HgBr = 0.5 Hg2+2 + Br- + log_k 16.7566 + delta_h -142.157 kJ HgBr2(g) - HgBr2 + 2 H2O = Hg(OH)2 + 2 Br- + 2 H+ - log_k -18.3881 - delta_h 54.494 kJ + HgBr2 + 2 H2O = Hg(OH)2 + 2 Br- + 2 H+ + log_k -18.3881 + delta_h 54.494 kJ HgI(g) - HgI = 0.5 Hg2+2 + I- - log_k 11.3322 - delta_h -106.815 kJ + HgI = 0.5 Hg2+2 + I- + log_k 11.3322 + delta_h -106.815 kJ HgI2(g) - HgI2 + 2 H2O = Hg(OH)2 + 2 I- + 2 H+ - log_k -27.2259 - delta_h 114.429 kJ + HgI2 + 2 H2O = Hg(OH)2 + 2 I- + 2 H+ + log_k -27.2259 + delta_h 114.429 kJ SURFACE_MASTER_SPECIES Hfo_s Hfo_sOH Hfo_w Hfo_wOH @@ -12676,537 +12676,537 @@ Hfo_wOH = Hfo_wOH Hfo_sOH = Hfo_sOH log_k 0 Hfo_sOH + H+ = Hfo_sOH2+ - log_k 7.29 - delta_h 0 kJ - # Id: 8113302 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 7.29 + delta_h 0 kJ + # Id: 8113302 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH = Hfo_sO- + H+ - log_k -8.93 - delta_h 0 kJ - # Id: 8113301 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -8.93 + delta_h 0 kJ + # Id: 8113301 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + H+ = Hfo_wOH2+ - log_k 7.29 - delta_h 0 kJ - # Id: 8123302 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 7.29 + delta_h 0 kJ + # Id: 8123302 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH = Hfo_wO- + H+ - log_k -8.93 - delta_h 0 kJ - # Id: 8123301 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -8.93 + delta_h 0 kJ + # Id: 8123301 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Ba+2 = Hfo_sOHBa+2 - log_k 5.46 - delta_h 0 kJ - # Id: 8111000 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 5.46 + delta_h 0 kJ + # Id: 8111000 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - log_k -7.2 - delta_h 0 kJ - # Id: 8121000 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -7.2 + delta_h 0 kJ + # Id: 8121000 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - log_k 4.97 - delta_h 0 kJ - # Id: 8111500 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 4.97 + delta_h 0 kJ + # Id: 8111500 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ - log_k -5.85 - delta_h 0 kJ - # Id: 8121500 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -5.85 + delta_h 0 kJ + # Id: 8121500 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ - log_k -4.6 - delta_h 0 kJ - # Id: 8124600 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -4.6 + delta_h 0 kJ + # Id: 8124600 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Ag+ = Hfo_sOAg + H+ - log_k -1.72 - delta_h 0 kJ - # Id: 8110200 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -1.72 + delta_h 0 kJ + # Id: 8110200 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Ag+ = Hfo_wOAg + H+ - log_k -5.3 - delta_h 0 kJ - # Id: 8120200 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -5.3 + delta_h 0 kJ + # Id: 8120200 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Ni+2 = Hfo_sONi+ + H+ - log_k 0.37 - delta_h 0 kJ - # Id: 8115400 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 0.37 + delta_h 0 kJ + # Id: 8115400 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Ni+2 = Hfo_wONi+ + H+ - log_k -2.5 - delta_h 0 kJ - # Id: 8125400 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -2.5 + delta_h 0 kJ + # Id: 8125400 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ - log_k 0.47 - delta_h 0 kJ - # Id: 8111600 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 0.47 + delta_h 0 kJ + # Id: 8111600 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ - log_k -2.9 - delta_h 0 kJ - # Id: 8121600 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -2.9 + delta_h 0 kJ + # Id: 8121600 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Co+2 = Hfo_sOCo+ + H+ - log_k -0.46 - delta_h 0 kJ - # Id: 8112000 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -0.46 + delta_h 0 kJ + # Id: 8112000 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Co+2 = Hfo_wOCo+ + H+ - log_k -3.01 - delta_h 0 kJ - # Id: 8122000 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -3.01 + delta_h 0 kJ + # Id: 8122000 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ - log_k 0.99 - delta_h 0 kJ - # Id: 8119500 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 0.99 + delta_h 0 kJ + # Id: 8119500 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ - log_k -1.99 - delta_h 0 kJ - # Id: 8129500 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -1.99 + delta_h 0 kJ + # Id: 8129500 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ - log_k 2.89 - delta_h 0 kJ - # Id: 8112310 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 2.89 + delta_h 0 kJ + # Id: 8112310 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ - log_k 0.6 - delta_h 0 kJ - # Id: 8123100 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 0.6 + delta_h 0 kJ + # Id: 8123100 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ - log_k 4.65 - delta_h 0 kJ - # Id: 8116000 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 4.65 + delta_h 0 kJ + # Id: 8116000 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ - log_k 0.3 - delta_h 0 kJ - # Id: 8126000 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 0.3 + delta_h 0 kJ + # Id: 8126000 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Be+2 = Hfo_sOBe+ + H+ - log_k 5.7 - delta_h 0 kJ - # Id: 8111100 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 5.7 + delta_h 0 kJ + # Id: 8111100 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Be+2 = Hfo_wOBe+ + H+ - log_k 3.3 - delta_h 0 kJ - # Id: 8121100 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 3.3 + delta_h 0 kJ + # Id: 8121100 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Hg(OH)2 + H+ = Hfo_sOHg+ + 2 H2O - log_k 13.95 - delta_h 0 kJ - # Id: 8113610 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 13.95 + delta_h 0 kJ + # Id: 8113610 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Hg(OH)2 + H+ = Hfo_wOHg+ + 2 H2O - log_k 12.64 - delta_h 0 kJ - # Id: 8123610 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 12.64 + delta_h 0 kJ + # Id: 8123610 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Sn(OH)2 + H+ = Hfo_sOSn+ + 2 H2O - log_k 15.1 - delta_h 0 kJ - # Id: 8117900 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 15.1 + delta_h 0 kJ + # Id: 8117900 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Sn(OH)2 + H+ = Hfo_wOSn+ + 2 H2O - log_k 13 - delta_h 0 kJ - # Id: 8127900 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 13 + delta_h 0 kJ + # Id: 8127900 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Cr(OH)2+ = Hfo_sOCrOH+ + H2O - log_k 11.63 - delta_h 0 kJ - # Id: 8112110 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 11.63 + delta_h 0 kJ + # Id: 8112110 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + H3AsO3 = Hfo_sH2AsO3 + H2O - log_k 5.41 - delta_h 0 kJ - # Id: 8110600 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 5.41 + delta_h 0 kJ + # Id: 8110600 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + H3AsO3 = Hfo_wH2AsO3 + H2O - log_k 5.41 - delta_h 0 kJ - # Id: 8120600 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 5.41 + delta_h 0 kJ + # Id: 8120600 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + H3BO3 = Hfo_sH2BO3 + H2O - log_k 0.62 - delta_h 0 kJ - # Id: 8110900 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 0.62 + delta_h 0 kJ + # Id: 8110900 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O - log_k 0.62 - delta_h 0 kJ - # Id: 8120900 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 0.62 + delta_h 0 kJ + # Id: 8120900 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + PO4-3 + 3 H+ = Hfo_sH2PO4 + H2O - log_k 31.29 - delta_h 0 kJ - # Id: 8115800 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 31.29 + delta_h 0 kJ + # Id: 8115800 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O - log_k 31.29 - delta_h 0 kJ - # Id: 8125800 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 31.29 + delta_h 0 kJ + # Id: 8125800 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + PO4-3 + 2 H+ = Hfo_sHPO4- + H2O - log_k 25.39 - delta_h 0 kJ - # Id: 8115801 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 25.39 + delta_h 0 kJ + # Id: 8115801 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O - log_k 25.39 - delta_h 0 kJ - # Id: 8125801 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 25.39 + delta_h 0 kJ + # Id: 8125801 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + PO4-3 + H+ = Hfo_sPO4-2 + H2O - log_k 17.72 - delta_h 0 kJ - # Id: 8115802 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 17.72 + delta_h 0 kJ + # Id: 8115802 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O - log_k 17.72 - delta_h 0 kJ - # Id: 8125802 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 17.72 + delta_h 0 kJ + # Id: 8125802 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + H3AsO4 = Hfo_sH2AsO4 + H2O - log_k 8.61 - delta_h 0 kJ - # Id: 8110610 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 8.61 + delta_h 0 kJ + # Id: 8110610 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + H3AsO4 = Hfo_wH2AsO4 + H2O - log_k 8.61 - delta_h 0 kJ - # Id: 8120610 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 8.61 + delta_h 0 kJ + # Id: 8120610 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + H3AsO4 = Hfo_sHAsO4- + H2O + H+ - log_k 2.81 - delta_h 0 kJ - # Id: 8110611 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 2.81 + delta_h 0 kJ + # Id: 8110611 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + H3AsO4 = Hfo_wHAsO4- + H2O + H+ - log_k 2.81 - delta_h 0 kJ - # Id: 8120611 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 2.81 + delta_h 0 kJ + # Id: 8120611 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + H3AsO4 = Hfo_sOHAsO4-3 + 3 H+ - log_k -10.12 - delta_h 0 kJ - # Id: 8110613 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -10.12 + delta_h 0 kJ + # Id: 8110613 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + H3AsO4 = Hfo_wOHAsO4-3 + 3 H+ - log_k -10.12 - delta_h 0 kJ - # Id: 8120613 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -10.12 + delta_h 0 kJ + # Id: 8120613 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + VO2+ + 2 H2O = Hfo_sOHVO4-3 + 4 H+ - log_k -16.63 - delta_h 0 kJ - # Id: 8119031 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -16.63 + delta_h 0 kJ + # Id: 8119031 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + VO2+ + 2 H2O = Hfo_wOHVO4-3 + 4 H+ - log_k -16.63 - delta_h 0 kJ - # Id: 8129031 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -16.63 + delta_h 0 kJ + # Id: 8129031 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + SO4-2 + H+ = Hfo_sSO4- + H2O - log_k 7.78 - delta_h 0 kJ - # Id: 8117320 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 7.78 + delta_h 0 kJ + # Id: 8117320 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O - log_k 7.78 - delta_h 0 kJ - # Id: 8127320 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 7.78 + delta_h 0 kJ + # Id: 8127320 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + SO4-2 = Hfo_sOHSO4-2 - log_k 0.79 - delta_h 0 kJ - # Id: 8117321 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 0.79 + delta_h 0 kJ + # Id: 8117321 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - log_k 0.79 - delta_h 0 kJ - # Id: 8127321 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 0.79 + delta_h 0 kJ + # Id: 8127321 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + HSeO3- = Hfo_sSeO3- + H2O - log_k 4.29 - delta_h 0 kJ - # Id: 8117610 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 4.29 + delta_h 0 kJ + # Id: 8117610 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + HSeO3- = Hfo_wSeO3- + H2O - log_k 4.29 - delta_h 0 kJ - # Id: 8127610 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 4.29 + delta_h 0 kJ + # Id: 8127610 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + HSeO3- = Hfo_sOHSeO3-2 + H+ - log_k -3.23 - delta_h 0 kJ - # Id: 8117611 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -3.23 + delta_h 0 kJ + # Id: 8117611 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + HSeO3- = Hfo_wOHSeO3-2 + H+ - log_k -3.23 - delta_h 0 kJ - # Id: 8127611 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -3.23 + delta_h 0 kJ + # Id: 8127611 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + SeO4-2 + H+ = Hfo_sSeO4- + H2O - log_k 7.73 - delta_h 0 kJ - # Id: 8117620 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 7.73 + delta_h 0 kJ + # Id: 8117620 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + SeO4-2 + H+ = Hfo_wSeO4- + H2O - log_k 7.73 - delta_h 0 kJ - # Id: 8127620 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 7.73 + delta_h 0 kJ + # Id: 8127620 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + SeO4-2 = Hfo_sOHSeO4-2 - log_k 0.8 - delta_h 0 kJ - # Id: 8117621 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 0.8 + delta_h 0 kJ + # Id: 8117621 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + SeO4-2 = Hfo_wOHSeO4-2 - log_k 0.8 - delta_h 0 kJ - # Id: 8127621 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 0.8 + delta_h 0 kJ + # Id: 8127621 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + CrO4-2 + H+ = Hfo_sCrO4- + H2O - log_k 10.85 - delta_h 0 kJ - # Id: 8112120 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 10.85 + delta_h 0 kJ + # Id: 8112120 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + CrO4-2 + H+ = Hfo_wCrO4- + H2O - log_k 10.85 - delta_h 0 kJ - # Id: 8122120 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 10.85 + delta_h 0 kJ + # Id: 8122120 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + CrO4-2 = Hfo_sOHCrO4-2 - log_k 3.9 - delta_h 0 kJ - # Id: 8112121 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 3.9 + delta_h 0 kJ + # Id: 8112121 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + CrO4-2 = Hfo_wOHCrO4-2 - log_k 3.9 - delta_h 0 kJ - # Id: 8122121 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 3.9 + delta_h 0 kJ + # Id: 8122121 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + MoO4-2 + H+ = Hfo_sMoO4- + H2O - log_k 9.5 - delta_h 0 kJ - # Id: 8114800 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 9.5 + delta_h 0 kJ + # Id: 8114800 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + MoO4-2 + H+ = Hfo_wMoO4- + H2O - log_k 9.5 - delta_h 0 kJ - # Id: 8124800 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 9.5 + delta_h 0 kJ + # Id: 8124800 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + MoO4-2 = Hfo_sOHMoO4-2 - log_k 2.4 - delta_h 0 kJ - # Id: 8114801 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 2.4 + delta_h 0 kJ + # Id: 8114801 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + MoO4-2 = Hfo_wOHMoO4-2 - log_k 2.4 - delta_h 0 kJ - # Id: 8124801 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 2.4 + delta_h 0 kJ + # Id: 8124801 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Sb(OH)6- + H+ = Hfo_sSbO(OH)4 + 2 H2O - log_k 8.4 - delta_h 0 kJ - # Id: 8117410 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 8.4 + delta_h 0 kJ + # Id: 8117410 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Sb(OH)6- + H+ = Hfo_wSbO(OH)4 + 2 H2O - log_k 8.4 - delta_h 0 kJ - # Id: 8127410 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 8.4 + delta_h 0 kJ + # Id: 8127410 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Sb(OH)6- = Hfo_sOHSbO(OH)4- + H2O - log_k 1.3 - delta_h 0 kJ - # Id: 8117411 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 1.3 + delta_h 0 kJ + # Id: 8117411 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Sb(OH)6- = Hfo_wOHSbO(OH)4- + H2O - log_k 1.3 - delta_h 0 kJ - # Id: 8127411 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 1.3 + delta_h 0 kJ + # Id: 8127411 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Cyanide- + H+ = Hfo_sCyanide + H2O - log_k 13 - delta_h 0 kJ - # Id: 8111430 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 13 + delta_h 0 kJ + # Id: 8111430 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Cyanide- + H+ = Hfo_wCyanide + H2O - log_k 13 - delta_h 0 kJ - # Id: 8121430 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 13 + delta_h 0 kJ + # Id: 8121430 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Cyanide- = Hfo_sOHCyanide- - log_k 5.7 - delta_h 0 kJ - # Id: 8111431 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 5.7 + delta_h 0 kJ + # Id: 8111431 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Cyanide- = Hfo_wOHCyanide- - log_k 5.7 - delta_h 0 kJ - # Id: 8121431 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 5.7 + delta_h 0 kJ + # Id: 8121431 + # log K source: + # Delta H source: + #T and ionic strength: END diff --git a/phreeqc.dat b/phreeqc.dat index d89cef0d..f2b7697b 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -80,7 +80,7 @@ H+ = H+ # If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. e- = e- H2O = H2O - -dw 2.299e-9 -254 + -dw 2.299e-9 -249 # Holz et al., Phys. Chem. Chem. Phys., 2000, 2, 4740. # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence Li+ = Li+ -gamma 6 0 # The apparent volume parameters are defined in ref. 1 & 2 @@ -111,9 +111,9 @@ Ca+2 = Ca+2 -dw 0.792e-9 34 5.411 0 1.046 Sr+2 = Sr+2 -gamma 5.26 0.121 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97 - -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 - -dw 0.794e-9 149 0.805 1.961 1e-9 0.7876 + -Vm -5.6e-2 -10.15 9.90 -2.36 0.807 5.26 2.72 -82.7 -1.37e-2 0.956 + -viscosity 0.493 -0.255 2.3e-3 4.2e-3 -3.8e-3 1.762 + -dw 0.794e-9 18 0.681 2.069 0.965 0.271 Ba+2 = Ba+2 -gamma 5 0 -gamma 4 0.153 # Barite solubility @@ -159,7 +159,7 @@ NO3- = NO3- # AmmH+ = AmmH+ # -gamma 2.5 0 # -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 -# -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 +# -viscosity 6.94e-2 -0.141 2.04e-2 9.4e-3 3.73e-2 0.898 # -dw 1.98e-9 203 1.47 2.644 6.81e-2 H3BO3 = H3BO3 -Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt @@ -174,7 +174,7 @@ F- = F- -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 -dw 1.46e-9 -36 4.352 Br- = Br- - -gamma 3 0 + -gamma 3 0.045 -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 -viscosity -6.98e-2 -0.141 1.78e-2 0.159 7.76e-3 6.25e-2 0.859 -dw 2.09e-9 208 3.5 0 0.5737 @@ -308,7 +308,7 @@ NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O -delta_h -187.055 kcal -gamma 2.5 0 -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 - -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -viscosity 6.94e-2 -0.141 2.04e-2 9.4e-3 3.73e-2 0.898 -dw 1.98e-9 203 1.47 2.644 6.81e-2 #AmmH+ = Amm + H+ NH4+ = NH3 + H+ @@ -316,14 +316,14 @@ NH4+ = NH3 + H+ -delta_h 12.48 kcal -analytic 0.6322 -0.001225 -2835.76 -Vm 6.69 2.8 3.58 -2.88 1.43 - -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -viscosity 0 -2.24e-2 0.101 8.66e-3 2.86e-2 -0.143 -0.769 -dw 2.28e-9 #AmmH+ + SO4-2 = AmmHSO4- NH4+ + SO4-2 = NH4SO4- - -gamma 2.08 -0.0416 - -log_k 1.211; -delta_h 8.56 kJ + -gamma 2.10 -0.0419 + -log_k 1.212; -delta_h 8.61 kJ -Vm -8.78 0 -36.09 0 -8.60 0 87.62 0 -0.3123 0.1172 - -viscosity 0 0.116 -8.6e-3 0.159 -9.3e-3 0.522 0.627 + -viscosity 0 0.121 -8e-3 0.177 -8e-3 0.512 0.629 -dw 0.9e-9 100 2.1 2 0 H3BO3 = H2BO3- + H+ -log_k -9.24 @@ -376,7 +376,7 @@ Ca+2 + CO3-2 + H+ = CaHCO3+ -log_k 10.91; -delta_h 4.38 kcal -analytic -6.009 3.377e-2 2044 -gamma 6 0 - -Vm 30.19 .01 5.75 -2.78 .308 5.4 + -Vm 3.19 .01 5.75 -2.78 .308 5.4 -dw 5.06e-10 Ca+2 + SO4-2 = CaSO4 -log_k 2.25 @@ -1948,7 +1948,7 @@ END # a0 is the ion-size parameter in the extended Debye-Hckel equation: # f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), # a0 = -gamma x for cations, = 0 for anions. -# For details, consult ref. 1. +# For details, consult ref. 1 and subroutine calc_vm(tc, pa) in prep.cpp. # ============================================================================================= # The viscosity is calculated with a (modified) Jones-Dole equation: # viscos / viscos_0 = 1 + A * Sum(0.5 z_i m_i) + fan * Sum(B_i m_i + D_i m_i n_i) @@ -1957,7 +1957,7 @@ END # # b0 b1 b2 d1 d2 d3 tan # z_i is absolute charge number, m_i is molality of i # B_i = b0 + b1 exp(-b2 * tc) -# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions +# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions and neutral species # D_i = d1 * exp(-d2 tc) # n_i = (I^d3 * (1 + fI) + ((z_i^2 + z_i) / 2 m_i)^d3) / (2 + fI), fI is an ionic strength term. # For details, consult ref. 4. diff --git a/phreeqc_rates.dat b/phreeqc_rates.dat index 2721908d..d902f40b 100644 --- a/phreeqc_rates.dat +++ b/phreeqc_rates.dat @@ -107,9 +107,9 @@ Ca+2 = Ca+2 -dw 0.792e-9 34 5.411 0 1.046 Sr+2 = Sr+2 -gamma 5.26 0.121 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97 - -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 - -dw 0.794e-9 149 0.805 1.961 1e-9 0.7876 + -Vm -5.6e-2 -10.15 9.90 -2.36 0.807 5.26 2.72 -82.7 -1.37e-2 0.956 + -viscosity 0.493 -0.255 2.3e-3 4.2e-3 -3.8e-3 1.762 + -dw 0.794e-9 18 0.681 2.069 0.965 0.271 Ba+2 = Ba+2 -gamma 5 0 -gamma 4 0.153 # Barite solubility @@ -153,9 +153,9 @@ NO3- = NO3- -viscosity 8.37e-2 -0.458 1.54e-2 0.34 1.79e-2 5.02e-2 0.7381 -dw 1.9e-9 104 1.11 # AmmH+ = AmmH+ - # -gamma 2.50 + # -gamma 2.5 0 # -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 - # -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + # -viscosity 6.94e-2 -0.141 2.04e-2 9.4e-3 3.73e-2 0.898 # -dw 1.98e-9 203 1.47 2.644 6.81e-2 H3BO3 = H3BO3 -Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt @@ -304,7 +304,7 @@ NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O -delta_h -187.055 kcal -gamma 2.5 0 -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 - -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -viscosity 6.94e-2 -0.141 2.04e-2 9.4e-3 3.73e-2 0.898 -dw 1.98e-9 203 1.47 2.644 6.81e-2 #AmmH+ = Amm + H+ NH4+ = NH3 + H+ @@ -312,14 +312,14 @@ NH4+ = NH3 + H+ -delta_h 12.48 kcal -analytic 0.6322 -0.001225 -2835.76 -Vm 6.69 2.8 3.58 -2.88 1.43 - -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -viscosity 0 -2.24e-2 0.101 8.66e-3 2.86e-2 -0.143 -0.769 -dw 2.28e-9 #AmmH+ + SO4-2 = AmmHSO4- NH4+ + SO4-2 = NH4SO4- -gamma 2.08 -0.0416 -log_k 1.211; -delta_h 8.56 kJ -Vm -8.78 0 -36.09 0 -8.60 0 87.62 0 -0.3123 0.1172 - -viscosity 0 0.116 -8.6e-3 0.159 -9.3e-3 0.522 0.627 + -viscosity 0 0.121 -8e-3 0.177 -8e-3 0.512 0.629 -dw 0.9e-9 100 2.1 2 0 H3BO3 = H2BO3- + H+ -log_k -9.24 @@ -3134,7 +3134,7 @@ Wollastonite -6.97 700 56 0.4 0 0 # a0 is the ion-size parameter in the extended Debye-Hckel equation: # f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), # a0 = -gamma x for cations, = 0 for anions. -# For details, consult ref. 1. +# For details, consult ref. 1 and subroutine calc_vm(tc, pa) in prep.cpp. # ============================================================================================= # The viscosity is calculated with a (modified) Jones-Dole equation: # viscos / viscos_0 = 1 + A * Sum(0.5 z_i m_i) + fan * Sum(B_i m_i + D_i m_i n_i) diff --git a/pitzer.dat b/pitzer.dat index d18b8023..5f052ad0 100644 --- a/pitzer.dat +++ b/pitzer.dat @@ -69,13 +69,13 @@ Mg+2 = Mg+2 -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 -dw 0.705e-9 -4 5.569 0 1.047 Ca+2 = Ca+2 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.6 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.6 -57.1 -6.12e-3 1 -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.3 # ref. 4, CaCl2 < 6 M -dw 0.792e-9 34 5.411 0 1.046 Sr+2 = Sr+2 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97 - -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 - -dw 0.794e-9 149 0.805 1.961 1e-9 0.7876 + -Vm -5.6e-2 -10.15 9.90 -2.36 0.807 5.26 2.72 -82.7 -1.37e-2 0.956 + -viscosity 0.493 -0.255 2.3e-3 4.2e-3 -3.8e-3 1.762 + -dw 0.794e-9 18 0.681 2.069 0.965 0.271 Ba+2 = Ba+2 -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 @@ -213,11 +213,11 @@ Anthophyllite log_k 66.8 -delta_H -483 kJ/mol Vm 269 -Antigorite - Mg48Si34O85(OH)62 + 96 H+ = 34 H4SiO4 + 48 Mg+2 + 11 H2O # llnl.dat - log_k 477.19 - -delta_H -3364 kJ/mol - Vm 1745 +# Antigorite + # Mg48Si34O85(OH)62 + 96 H+ = 34 H4SiO4 + 48 Mg+2 + 11 H2O # llnl.dat + # log_k 477.19 # seawater is impossibly supersaturated + # -delta_H -3364 kJ/mol + # Vm 1745 Aragonite CaCO3 = CO3-2 + Ca+2 log_k -8.336 @@ -1026,7 +1026,7 @@ END # # b0 b1 b2 d1 d2 d3 tan # z_i is absolute charge number, m_i is molality of i # B_i = b0 + b1 exp(-b2 * tc) -# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions +# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions and neutral species # D_i = d1 * exp(-d2 tc) # n_i = (I^d3 * (1 + fI) + ((z_i^2 + z_i) / 2 m_i)^d3) / (2 + fI), fI is an ionic strength term. # For details, consult ref. 5. diff --git a/sit.dat b/sit.dat index 91e80e4c..c6344511 100644 --- a/sit.dat +++ b/sit.dat @@ -6,153 +6,153 @@ SOLUTION_SPECIES # Name : ThermoChimie project # Database date: 22/08/2023 0:00:00 # Generated by XCheck Tool v5.2.0 -# Comment: tidied with lsp.exe from https://phreeplot.org/lsp/lsp.html +# Comment: tidied with lsp.exe from https://phreeplot.org/lsp/lsp.html # Redox states modified by David Parkhurst May 18, 2024 # GFW of S(6) and Si modified by David Parkhurst May 18, 2024 SOLUTION_MASTER_SPECIES -#element species alk gfw_formula element_gfw -E e- 1 0 0 -# DLP: Set Alkalinity to 1 to account for non-master species with e- in equations -Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.0436 -Adipate Adipate-2 1 Adipate 144.0700 -Acetate Acetate- 1 Acetate 59.0100 -Ag Ag+ -2 Ag 107.8682 -Al Al+3 0 Al 26.9815 -Am Am+3 0 Am 243.0000 -Am(+3) Am+3 0 Am 243.0000 -Am(+2) Am+2 0 Am 243.0000 -Am(+4) Am+4 0 Am 243.0000 -Am(+5) AmO2+ 0 Am 243.0000 -Am(+6) AmO2+2 0 Am 243.0000 -As AsO4-3 2 As 74.9216 -As(+5) AsO4-3 2 As 74.9216 -As(+3) H3(AsO3) 0 As 74.9216 -B B(OH)4- 1 B 10.8110 -Ba Ba+2 0 Ba 137.3270 -Be Be+2 0 Be 9.0122 -Br Br- 0 Br 79.9040 -C CO3-2 2 C 12.0110 +#element species alk gfw_formula element_gfw +E e- 1 0 0 +# DLP: Set Alkalinity to 1 to account for non-master species with e- in equations +Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.0436 +Adipate Adipate-2 1 Adipate 144.0700 +Acetate Acetate- 1 Acetate 59.0100 +Ag Ag+ -2 Ag 107.8682 +Al Al+3 0 Al 26.9815 +Am Am+3 0 Am 243.0000 +Am(+3) Am+3 0 Am 243.0000 +Am(+2) Am+2 0 Am 243.0000 +Am(+4) Am+4 0 Am 243.0000 +Am(+5) AmO2+ 0 Am 243.0000 +Am(+6) AmO2+2 0 Am 243.0000 +As AsO4-3 2 As 74.9216 +As(+5) AsO4-3 2 As 74.9216 +As(+3) H3(AsO3) 0 As 74.9216 +B B(OH)4- 1 B 10.8110 +Ba Ba+2 0 Ba 137.3270 +Be Be+2 0 Be 9.0122 +Br Br- 0 Br 79.9040 +C CO3-2 2 C 12.0110 C(2) CO 0 C # DLP -C(+4) CO3-2 2 C 12.0110 -C(-4) CH4 0 C 12.0110 -Ca Ca+2 0 Ca 40.0780 -Cd Cd+2 -1 Cd 112.4110 -Cit Cit-3 1 Cit 189.1013 -Cl Cl- 0 Cl 35.4527 +C(+4) CO3-2 2 C 12.0110 +C(-4) CH4 0 C 12.0110 +Ca Ca+2 0 Ca 40.0780 +Cd Cd+2 -1 Cd 112.4110 +Cit Cit-3 1 Cit 189.1013 +Cl Cl- 0 Cl 35.4527 Cl(-1) Cl- 0 Cl # DLP Cl(0) Cl2 0 Cl # DLP Cl(7) ClO4- 0 Cl # DLP -Cm Cm+3 0 Cm 247.0000 -Co Co+2 0 Co 58.9332 -Cr CrO4-2 1 Cr 51.9961 -Cr(+6) CrO4-2 1 Cr 51.9961 -Cr(+2) Cr+2 -1 Cr 51.9961 -Cr(+3) Cr+3 2 Cr 51.9961 -Cs Cs+ 0 Cs 132.9054 -Cu Cu+2 0 Cu 63.5460 -Cu(+2) Cu+2 0 Cu 63.5460 -Cu(+1) Cu+ -2 Cu 63.5460 -Edta Edta-4 2 Edta 288.2134 -Eu Eu+3 0 Eu 151.9650 -Eu(+3) Eu+3 0 Eu 151.9650 -Eu(+2) Eu+2 0 Eu 151.9650 -F F- 0 F 18.9984 -Fe Fe+2 0 Fe 55.8470 -Fe(+2) Fe+2 0 Fe 55.8470 -Fe(+3) Fe+3 -2 Fe 55.8470 -Glu HGlu- 0 Glu 194.1380 -H H+ -1 H 1.0079 -H(+1) H+ -1 H 1.0079 -H(0) H2 0 H 1.0079 -Hf Hf+4 -4 Hf 178.4900 -Hg Hg+2 -2 Hg 200.5900 -Hg(+2) Hg+2 -2 Hg 200.5900 -Hg(+1) Hg2+2 0 Hg 200.5900 -Ho Ho+3 0 Ho 164.9303 -I I- 0 I 126.9045 -I(-1) I- 0 I 126.9045 -I(1) IO- 0 I # DLP -I(+5) IO3- 0 I 126.9045 +Cm Cm+3 0 Cm 247.0000 +Co Co+2 0 Co 58.9332 +Cr CrO4-2 1 Cr 51.9961 +Cr(+6) CrO4-2 1 Cr 51.9961 +Cr(+2) Cr+2 -1 Cr 51.9961 +Cr(+3) Cr+3 2 Cr 51.9961 +Cs Cs+ 0 Cs 132.9054 +Cu Cu+2 0 Cu 63.5460 +Cu(+2) Cu+2 0 Cu 63.5460 +Cu(+1) Cu+ -2 Cu 63.5460 +Edta Edta-4 2 Edta 288.2134 +Eu Eu+3 0 Eu 151.9650 +Eu(+3) Eu+3 0 Eu 151.9650 +Eu(+2) Eu+2 0 Eu 151.9650 +F F- 0 F 18.9984 +Fe Fe+2 0 Fe 55.8470 +Fe(+2) Fe+2 0 Fe 55.8470 +Fe(+3) Fe+3 -2 Fe 55.8470 +Glu HGlu- 0 Glu 194.1380 +H H+ -1 H 1.0079 +H(+1) H+ -1 H 1.0079 +H(0) H2 0 H 1.0079 +Hf Hf+4 -4 Hf 178.4900 +Hg Hg+2 -2 Hg 200.5900 +Hg(+2) Hg+2 -2 Hg 200.5900 +Hg(+1) Hg2+2 0 Hg 200.5900 +Ho Ho+3 0 Ho 164.9303 +I I- 0 I 126.9045 +I(-1) I- 0 I 126.9045 +I(1) IO- 0 I # DLP +I(+5) IO3- 0 I 126.9045 I(7) IO4- 0 I # DLP -Isa HIsa- 0 Isa 178.1421 -K K+ 0 K 39.0983 -Li Li+ 0 Li 6.9410 -Malonate Malonate-2 1 Malonate 102.0464 -Mg Mg+2 0 Mg 24.3050 -Mn Mn+2 0 Mn 54.9380 +Isa HIsa- 0 Isa 178.1421 +K K+ 0 K 39.0983 +Li Li+ 0 Li 6.9410 +Malonate Malonate-2 1 Malonate 102.0464 +Mg Mg+2 0 Mg 24.3050 +Mn Mn+2 0 Mn 54.9380 Mn(+2) Mn+2 0 Mn # DLP Mn(+3) Mn+3 0 Mn # DLP Mn(+5) MnO4-3 0 Mn # DLP Mn(+6) MnO4-2 0 Mn # DLP -Mn(+7) MnO4- 0 Mn # DLP -Mo MoO4-2 0 Mo 95.9400 +Mn(+7) MnO4- 0 Mn # DLP +Mo MoO4-2 0 Mo 95.9400 Mo(6) MoO4-2 0 Mo # DLP -Mo(3) Mo+3 0 Mo # DLP -N NO3- 0 N 14.0067 -N(+5) NO3- 0 N 14.0067 -N(-3) NH3 1 N 14.0067 -Na Na+ 0 Na 22.9898 -Nb Nb(OH)6- 1 Nb 92.9064 -Ni Ni+2 0 Ni 58.6900 -Np NpO2+2 0 Np 237.0480 -Np(+6) NpO2+2 0 Np 237.0480 -Np(+3) Np+3 0 Np 237.0480 -Np(+4) Np+4 -3 Np 237.0480 -Np(+5) NpO2+ 0 Np 237.0480 -Nta Nta-3 1 Nta 188.1165 -O H2O 0 O 15.9994 -O(-2) H2O 0 O 15.9994 -O(0) O2 0 O 15.9994 -Ox Ox-2 0 Ox 88.0196 -P H2(PO4)- 0 P 30.9738 -Pa Pa+4 -3 Pa 231.0359 -Pa(+4) Pa+4 -3 Pa 231.0359 -Pa(+5) PaO2+ 0 Pa 231.0359 -Pb Pb+2 -1 Pb 207.2000 -Pd Pd+2 -4 Pd 106.4200 -Phthalat Phthalat-2 2 Phthalat 164.0840 -Pu PuO2+2 0 Pu 244.0000 -Pu(+6) PuO2+2 0 Pu 244.0000 -Pu(+3) Pu+3 0 Pu 244.0000 -Pu(+4) Pu+4 -3 Pu 244.0000 -Pu(+5) PuO2+ -1 Pu 244.0000 -Pyrophos Pyrophos-4 2 Pyrophos 173.9500 -Ra Ra+2 0 Ra 226.0250 -Rb Rb+ 0 Rb 85.4678 -S SO4-2 0 S 32.0660 -S(+6) SO4-2 0 SO4 32.0660 # DLP -S(-2) HS- 1 S 32.0660 -S(+2) S2O3-2 0 S 32.0660 -S(+3) S2O4-2 0 S 32.0660 -S(+4) SO3-2 1 S 32.0660 +Mo(3) Mo+3 0 Mo # DLP +N NO3- 0 N 14.0067 +N(+5) NO3- 0 N 14.0067 +N(-3) NH3 1 N 14.0067 +Na Na+ 0 Na 22.9898 +Nb Nb(OH)6- 1 Nb 92.9064 +Ni Ni+2 0 Ni 58.6900 +Np NpO2+2 0 Np 237.0480 +Np(+6) NpO2+2 0 Np 237.0480 +Np(+3) Np+3 0 Np 237.0480 +Np(+4) Np+4 -3 Np 237.0480 +Np(+5) NpO2+ 0 Np 237.0480 +Nta Nta-3 1 Nta 188.1165 +O H2O 0 O 15.9994 +O(-2) H2O 0 O 15.9994 +O(0) O2 0 O 15.9994 +Ox Ox-2 0 Ox 88.0196 +P H2(PO4)- 0 P 30.9738 +Pa Pa+4 -3 Pa 231.0359 +Pa(+4) Pa+4 -3 Pa 231.0359 +Pa(+5) PaO2+ 0 Pa 231.0359 +Pb Pb+2 -1 Pb 207.2000 +Pd Pd+2 -4 Pd 106.4200 +Phthalat Phthalat-2 2 Phthalat 164.0840 +Pu PuO2+2 0 Pu 244.0000 +Pu(+6) PuO2+2 0 Pu 244.0000 +Pu(+3) Pu+3 0 Pu 244.0000 +Pu(+4) Pu+4 -3 Pu 244.0000 +Pu(+5) PuO2+ -1 Pu 244.0000 +Pyrophos Pyrophos-4 2 Pyrophos 173.9500 +Ra Ra+2 0 Ra 226.0250 +Rb Rb+ 0 Rb 85.4678 +S SO4-2 0 S 32.0660 +S(+6) SO4-2 0 SO4 32.0660 # DLP +S(-2) HS- 1 S 32.0660 +S(+2) S2O3-2 0 S 32.0660 +S(+3) S2O4-2 0 S 32.0660 +S(+4) SO3-2 1 S 32.0660 S(8) HSO5- 0 S # DLP -Sb Sb(OH)3 0 Sb 121.7600 -Sb(+3) Sb(OH)3 0 Sb 121.7600 -Sb(+5) Sb(OH)5 -6 Sb 121.7600 -Se SeO4-2 0 Se 78.9600 -Se(+6) SeO4-2 0 Se 78.9600 -Se(-2) HSe- -1 Se 78.9600 -Se(+4) SeO3-2 1 Se 78.9600 +Sb Sb(OH)3 0 Sb 121.7600 +Sb(+3) Sb(OH)3 0 Sb 121.7600 +Sb(+5) Sb(OH)5 -6 Sb 121.7600 +Se SeO4-2 0 Se 78.9600 +Se(+6) SeO4-2 0 Se 78.9600 +Se(-2) HSe- -1 Se 78.9600 +Se(+4) SeO3-2 1 Se 78.9600 Si H4(SiO4) 0 SiO2 28.0855 # DLP -Sm Sm+3 0 Sm 150.3600 -Sn Sn+2 -2 Sn 118.7100 -Sn(+2) Sn+2 -2 Sn 118.7100 -Sn(+4) Sn+4 -4 Sn 118.7100 -Sr Sr+2 0 Sr 87.6200 -Succinat Succinat-2 1 Succinat 116.0700 -Suberate Suberate-2 1 Suberate 172.1804 -Tc TcO(OH)2 0 Tc 98.0000 -Tc(+4) TcO(OH)2 0 Tc 98.0000 -Tc(+7) TcO4- 0 Tc 98.0000 -Tc(+6) TcO4-2 0 Tc 98.0000 -Th Th+4 0 Th 232.0381 -U UO2+2 0 U 238.0289 -U(+6) UO2+2 0 U 238.0289 -U(+3) U+3 0 U 238.0289 -U(+4) U+4 -3 U 238.0289 -U(+5) UO2+ 0 U 238.0289 -Zn Zn+2 0 Zn 65.3900 -Zr Zr+4 -4 Zr 91.2200 +Sm Sm+3 0 Sm 150.3600 +Sn Sn+2 -2 Sn 118.7100 +Sn(+2) Sn+2 -2 Sn 118.7100 +Sn(+4) Sn+4 -4 Sn 118.7100 +Sr Sr+2 0 Sr 87.6200 +Succinat Succinat-2 1 Succinat 116.0700 +Suberate Suberate-2 1 Suberate 172.1804 +Tc TcO(OH)2 0 Tc 98.0000 +Tc(+4) TcO(OH)2 0 Tc 98.0000 +Tc(+7) TcO4- 0 Tc 98.0000 +Tc(+6) TcO4-2 0 Tc 98.0000 +Th Th+4 0 Th 232.0381 +U UO2+2 0 U 238.0289 +U(+6) UO2+2 0 U 238.0289 +U(+3) U+3 0 U 238.0289 +U(+4) U+4 -3 U 238.0289 +U(+5) UO2+ 0 U 238.0289 +Zn Zn+2 0 Zn 65.3900 +Zr Zr+4 -4 Zr 91.2200 SIT -epsilon @@ -4547,12 +4547,12 @@ H+ + S2O4-2 = HS2O4- delta_h 118.877 #kJ/mol # Enthalpy of formation: -51.463 kJ/mol 92JOH/OEL -analytic 26.56356E-1 00E+0 -62.09378E+2 00E+0 00E+0 - + - 2 e- + 2 Cl- + I- = ICl2- # DLP: This species will be in the I(-1) and Cl(-1) mole balances log_k -26.8 #96FAL/REA -analytic -26.8E+0 00E+0 00E+0 00E+0 00E+0 - + - 2 H+ - 2 e- + I- + H2O = IO- log_k -44 #96FAL/REA -analytic -44E+0 00E+0 00E+0 00E+0 00E+0 @@ -14345,4 +14345,3 @@ SO2 = 2 H+ + SO3-2 - H2O delta_h -48.42 #kJ/mol # Enthalpy of formation: -296.810 kJ/mol 89COX/WAG -analytic -17.42282E+0 00E+0 25.29153E+2 00E+0 00E+0 - diff --git a/wateq4f.dat b/wateq4f.dat index 3e69cd86..ef4fc54e 100644 --- a/wateq4f.dat +++ b/wateq4f.dat @@ -7,72 +7,72 @@ SOLUTION_MASTER_SPECIES -Ag Ag+ 0 107.868 107.868 -Al Al+3 0 26.9815 26.9815 -Alkalinity CO3-2 1 50.05 50.05 -As H3AsO4 -1 74.9216 74.9216 -As(+3) H3AsO3 0 74.9216 74.9216 -As(+5) H3AsO4 -1 74.9216 -B H3BO3 0 10.81 10.81 -Ba Ba+2 0 137.34 137.34 -Br Br- 0 79.904 79.904 -C CO3-2 2 61.0173 12.0111 -C(+4) CO3-2 2 61.0173 -C(-4) CH4 0 16.042 -Ca Ca+2 0 40.08 40.08 -Cd Cd+2 0 112.4 112.4 -Cl Cl- 0 35.453 35.453 -Cs Cs+ 0 132.905 132.905 -Cu Cu+2 0 63.546 63.546 -Cu(+1) Cu+1 0 63.546 -Cu(+2) Cu+2 0 63.546 -E e- 1 0 0 -F F- 0 18.9984 18.9984 -Fe Fe+2 0 55.847 55.847 -Fe(+2) Fe+2 0 55.847 -Fe(+3) Fe+3 -2 55.847 -Fulvate Fulvate-2 0 650 650 -H H+ -1 1.008 1.008 -H(0) H2 0 1.008 -H(1) H+ -1 1.008 -Humate Humate-2 0 2000 2000 -I I- 0 126.9044 126.9044 -K K+ 0 39.102 39.102 -Li Li+ 0 6.939 6.939 -Mg Mg+2 0 24.312 24.312 -Mn Mn+2 0 54.938 54.938 -Mn(2) Mn+2 0 54.938 -Mn(3) Mn+3 0 54.938 -Mn(6) MnO4-2 0 54.938 -Mn(7) MnO4- 0 54.938 -N NO3- 0 14.0067 14.0067 -N(-3) NH4+ 0 14.0067 -N(0) N2 0 14.0067 -N(+3) NO2- 0 14.0067 -N(+5) NO3- 0 14.0067 -Na Na+ 0 22.9898 22.9898 -Ni Ni+2 0 58.71 58.71 -O H2O 0 16 16 -O(-2) H2O 0 18.016 -O(0) O2 0 16 -P PO4-3 2 30.9738 30.9738 -Pb Pb+2 0 207.19 207.19 -Rb Rb+ 0 85.47 85.47 -S SO4-2 0 96.0616 32.064 -S(-2) H2S 0 32.064 -S(6) SO4-2 0 96.0616 -Se SeO4-2 0 78.96 78.96 -Se(-2) HSe- 0 78.96 -Se(4) SeO3-2 0 78.96 -Se(6) SeO4-2 0 78.96 -Si H4SiO4 0 60.0843 28.0843 -Sr Sr+2 0 87.62 87.62 -Zn Zn+2 0 65.37 65.37 -U UO2+2 0 238.029 238.029 -U(3) U+3 0 238.029 238.029 -U(4) U+4 0 238.029 238.029 -U(5) UO2+ 0 238.029 238.029 -U(6) UO2+2 0 238.029 238.029 +Ag Ag+ 0 107.868 107.868 +Al Al+3 0 26.9815 26.9815 +Alkalinity CO3-2 1 50.05 50.05 +As H3AsO4 -1 74.9216 74.9216 +As(+3) H3AsO3 0 74.9216 74.9216 +As(+5) H3AsO4 -1 74.9216 +B H3BO3 0 10.81 10.81 +Ba Ba+2 0 137.34 137.34 +Br Br- 0 79.904 79.904 +C CO3-2 2 61.0173 12.0111 +C(+4) CO3-2 2 61.0173 +C(-4) CH4 0 16.042 +Ca Ca+2 0 40.08 40.08 +Cd Cd+2 0 112.4 112.4 +Cl Cl- 0 35.453 35.453 +Cs Cs+ 0 132.905 132.905 +Cu Cu+2 0 63.546 63.546 +Cu(+1) Cu+1 0 63.546 +Cu(+2) Cu+2 0 63.546 +E e- 1 0 0 +F F- 0 18.9984 18.9984 +Fe Fe+2 0 55.847 55.847 +Fe(+2) Fe+2 0 55.847 +Fe(+3) Fe+3 -2 55.847 +Fulvate Fulvate-2 0 650 650 +H H+ -1 1.008 1.008 +H(0) H2 0 1.008 +H(1) H+ -1 1.008 +Humate Humate-2 0 2000 2000 +I I- 0 126.9044 126.9044 +K K+ 0 39.102 39.102 +Li Li+ 0 6.939 6.939 +Mg Mg+2 0 24.312 24.312 +Mn Mn+2 0 54.938 54.938 +Mn(2) Mn+2 0 54.938 +Mn(3) Mn+3 0 54.938 +Mn(6) MnO4-2 0 54.938 +Mn(7) MnO4- 0 54.938 +N NO3- 0 14.0067 14.0067 +N(-3) NH4+ 0 14.0067 +N(0) N2 0 14.0067 +N(+3) NO2- 0 14.0067 +N(+5) NO3- 0 14.0067 +Na Na+ 0 22.9898 22.9898 +Ni Ni+2 0 58.71 58.71 +O H2O 0 16 16 +O(-2) H2O 0 18.016 +O(0) O2 0 16 +P PO4-3 2 30.9738 30.9738 +Pb Pb+2 0 207.19 207.19 +Rb Rb+ 0 85.47 85.47 +S SO4-2 0 96.0616 32.064 +S(-2) H2S 0 32.064 +S(6) SO4-2 0 96.0616 +Se SeO4-2 0 78.96 78.96 +Se(-2) HSe- 0 78.96 +Se(4) SeO3-2 0 78.96 +Se(6) SeO4-2 0 78.96 +Si H4SiO4 0 60.0843 28.0843 +Sr Sr+2 0 87.62 87.62 +Zn Zn+2 0 65.37 65.37 +U UO2+2 0 238.029 238.029 +U(3) U+3 0 238.029 238.029 +U(4) U+4 0 238.029 238.029 +U(5) UO2+ 0 238.029 238.029 +U(6) UO2+2 0 238.029 238.029 SOLUTION_SPECIES @@ -1345,53 +1345,53 @@ SOLUTION_SPECIES Fe+2 + 3 HS- = Fe(HS)3- log_k 10.987 -#H2AsO3- 478 - H3AsO3 = H2AsO3- + H+ - log_k -9.15 - delta_h 27.54 kJ +#H2AsO3- 478 + H3AsO3 = H2AsO3- + H+ + log_k -9.15 + delta_h 27.54 kJ -#HAsO3-2 479 - H3AsO3 = HAsO3-2 + 2 H+ - log_k -23.85 - delta_h 59.41 kJ +#HAsO3-2 479 + H3AsO3 = HAsO3-2 + 2 H+ + log_k -23.85 + delta_h 59.41 kJ -#AsO3-3 480 - H3AsO3 = AsO3-3 + 3 H+ - log_k -39.55 - delta_h 84.73 kJ +#AsO3-3 480 + H3AsO3 = AsO3-3 + 3 H+ + log_k -39.55 + delta_h 84.73 kJ #H4AsO3+ 481 H3AsO3 + H+ = H4AsO3+ log_k -0.305 -#H2AsO4- 482 - H3AsO4 = H2AsO4- + H+ - log_k -2.3 - delta_h -7.066 kJ +#H2AsO4- 482 + H3AsO4 = H2AsO4- + H+ + log_k -2.3 + delta_h -7.066 kJ -#HAsO4-2 483 - H3AsO4 = HAsO4-2 + 2 H+ - log_k -9.46 - delta_h -3.846 kJ +#HAsO4-2 483 + H3AsO4 = HAsO4-2 + 2 H+ + log_k -9.46 + delta_h -3.846 kJ -#AsO43- 484 - H3AsO4 = AsO4-3 + 3 H+ - log_k -21.11 - delta_h 14.354 kJ +#AsO43- 484 + H3AsO4 = AsO4-3 + 3 H+ + log_k -21.11 + delta_h 14.354 kJ #As3 secondary master species 487 - H3AsO4 + H2 = H3AsO3 + H2O - log_k 22.5 - delta_h -117.480344 kJ + H3AsO4 + H2 = H3AsO3 + H2O + log_k 22.5 + delta_h -117.480344 kJ -#As3S4(HS)-2 631 - 3 H3AsO3 + 6 HS- + 5 H+ = As3S4(HS)2- + 9 H2O - log_k 72.314 +#As3S4(HS)-2 631 + 3 H3AsO3 + 6 HS- + 5 H+ = As3S4(HS)2- + 9 H2O + log_k 72.314 -gamma 5 0 -#AsS(OH)(HS)- 637 - H3AsO3 + 2 HS- + H+ = AsS(OH)(HS)- + 2 H2O - log_k 18.038 +#AsS(OH)(HS)- 637 + H3AsO3 + 2 HS- + H+ = AsS(OH)(HS)- + 2 H2O + log_k 18.038 -gamma 5 0 # @@ -3136,8 +3136,8 @@ Basaluminite 472 As_native 557 As + 3 H2O = H3AsO3 + 3 H+ + 3 e- - log_k -12.532 - delta_h 115.131 kJ + log_k -12.532 + delta_h 115.131 kJ As2O5(cr) 488 As2O5 + 3 H2O = 2 H3AsO4 @@ -3180,17 +3180,17 @@ Arsenolite 497 # As4O6 + 6H2O = 4H3AsO3 # log_k -2.801 # delta_h 14.330 kcal - As2O3 + 3 H2O = 2 H3AsO3 - log_k -1.38 - delta_h 30.041 kJ + As2O3 + 3 H2O = 2 H3AsO3 + log_k -1.38 + delta_h 30.041 kJ Claudetite 498 # As4O6 + 6H2O = 4H3AsO3 # log_k -3.065 # delta_h 13.290 kcal - As2O3 + 3 H2O = 2 H3AsO3 - log_k -1.34 - delta_h 28.443 kJ + As2O3 + 3 H2O = 2 H3AsO3 + log_k -1.34 + delta_h 28.443 kJ AsI3 499 AsI3 + 3 H2O = H3AsO3 + 3 I- + 3 H+ @@ -3201,20 +3201,20 @@ Orpiment 500 As2S3 + 6 H2O = 2 H3AsO3 + 3 HS- + 3 H+ # log_k -60.971 # delta_h 82.890 kcal - log_k -46.3 - delta_h 263.1 kJ + log_k -46.3 + delta_h 263.1 kJ As2S3(am) 132 As2S3 + 6 H2O = 2 H3AsO3 + 3 HS- + 3 H+ - log_k -44.9 - delta_h 244.2 kJ + log_k -44.9 + delta_h 244.2 kJ Realgar 501 AsS + 3 H2O = H3AsO3 + HS- + 2 H+ + e- # log_k -19.747 # delta_h 30.545 kcal - log_k -19.944 - delta_h 129.2625 kJ + log_k -19.944 + delta_h 129.2625 kJ BlaubleiI 533 Cu0.9Cu0.2S + H+ = 0.9 Cu+2 + 0.2 Cu+ + HS- @@ -3432,7 +3432,7 @@ O2(g) O2 = O2 # log_k -2.960 # delta_h -1.844 kcal - # log K from llnl.dat Aug 23, 2005 + # log K from llnl.dat Aug 23, 2005 log_k -2.8983 -analytic -7.5001e+0 7.8981e-3 0e+0 0e+0 2.0027e+5 @@ -3727,9 +3727,9 @@ SURFACE_SPECIES # # Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research, 33, 3413-3422. # - Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O; log_K 4.28 - Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O; log_K -3.22 - Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2 H+ + H2O; log_K -11.69 + Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O; log_K 4.28 + Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O; log_K -3.22 + Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2 H+ + H2O; log_K -11.69 RATES ########### @@ -3738,12 +3738,12 @@ RATES # ####### # Example of quartz kinetic rates block: -# KINETICS -# Quartz -# -m0 158.8 # 90 % Qu -# -parms 0.146 1.5 -# -step 3.1536e8 in 10 -# -tol 1e-12 +# KINETICS +# Quartz +# -m0 158.8 # 90 % Qu +# -parms 0.146 1.5 +# -step 3.1536e8 in 10 +# -tol 1e-12 Quartz -start @@ -3756,7 +3756,7 @@ Quartz 10 dif_temp = 1/TK - 1/298 20 pk_w = 13.7 + 4700.4 * dif_temp 40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) -# Integrate... +# Integrate... 50 SAVE moles * TIME -end @@ -4033,4 +4033,3 @@ Pyrolusite 200 SAVE moles * SOLN_VOL -end END - From 394240f20af07dabe460ea1f6ce11016f7427362 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Tue, 11 Mar 2025 17:12:09 -0600 Subject: [PATCH 296/384] Tony changes to basicsubs, updated viscosity for Sr, NH4, and tidied databases. --- RELEASE.TXT | 32 ++++++++++++++++++++++++++++++++ 1 file changed, 32 insertions(+) diff --git a/RELEASE.TXT b/RELEASE.TXT index e3bbd003..cec40ef3 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,4 +1,36 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + ----------------- + March 11, 2025 + ----------------- + PHREEQC: Adjustments to Sr+2 and NH4+ viscosity, + molar volume, and diffusion coefficient parameters + in Amm.dat and phreeqc.dat. Tidied databases for + readability: + Amm.dat, + database.zip, + iso.dat, + llnl.dat, + minteq.dat, + minteq.v4.dat, + phreeqc.dat, + phreeqc_rates.dat, and + pitzer.dat, + sit.dat, + Tipping_Hurley.dat, + wateq4f.dat. + + ----------------- + March 10, 2025 + ----------------- + PHREEQC: Version at hydrochemistry.eu has additional + print of viscosity contribution of species. + + ----------------- + March 10, 2025 + ----------------- + PHREEQC: Bug_fix for t_sc("") in basicsubs. + +Version 3.8.7: February 25, 2025 ----------------- February 20, 2025 ----------------- From dd98e151672348f240062be7fe72242e86226696 Mon Sep 17 00:00:00 2001 From: David Parkhurst Date: Wed, 12 Mar 2025 02:58:54 -0600 Subject: [PATCH 297/384] Tony's changes Mar 12 plus my corrections. --- Amm.dat | 6 +++--- phreeqc.dat | 2 +- phreeqc_rates.dat | 14 +++++++------- 3 files changed, 11 insertions(+), 11 deletions(-) diff --git a/Amm.dat b/Amm.dat index efdcd529..58d6c0d9 100644 --- a/Amm.dat +++ b/Amm.dat @@ -199,7 +199,7 @@ Mtg = Mtg # CH4 -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 -dw 1.85e-9 Ntg = Ntg # N2 - -Vm 7 # Pray et al., 1952, IEC 44 1146 + -Vm 7 # Pray et al., 1952, IEC 44, 1146 -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 H2Sg = H2Sg # H2S -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 @@ -304,7 +304,7 @@ NO3- + 2 H+ + 2 e- = NO2- + H2O # -delta_h -187.055 kcal # -gamma 2.5 0 # -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 -# -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 +# -viscosity 6.94e-2 -0.141 2.04e-2 9.4e-3 3.73e-2 0.898 # -dw 1.98e-9 203 1.47 2.644 6.81e-2 AmmH+ = Amm + H+ #NH4+ = NH3 + H+ @@ -1953,7 +1953,7 @@ END # # b0 b1 b2 d1 d2 d3 tan # z_i is absolute charge number, m_i is molality of i # B_i = b0 + b1 exp(-b2 * tc) -# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions +# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions and neutral species # D_i = d1 * exp(-d2 tc) # n_i = (I^d3 * (1 + fI) + ((z_i^2 + z_i) / 2 m_i)^d3) / (2 + fI), fI is an ionic strength term. # For details, consult ref. 4. diff --git a/phreeqc.dat b/phreeqc.dat index f2b7697b..51d44013 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -203,7 +203,7 @@ Mtg = Mtg # CH4 -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 -dw 1.85e-9 Ntg = Ntg # N2 - -Vm 7 # Pray et al., 1952, IEC 44 1146 + -Vm 7 # Pray et al., 1952, IEC 44, 1146 -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 H2Sg = H2Sg # H2S -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 diff --git a/phreeqc_rates.dat b/phreeqc_rates.dat index d902f40b..47cd6072 100644 --- a/phreeqc_rates.dat +++ b/phreeqc_rates.dat @@ -76,7 +76,7 @@ H+ = H+ # If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. e- = e- H2O = H2O - -dw 2.299e-9 -254 + -dw 2.299e-9 -249 # Holz et al., Phys. Chem. Chem. Phys., 2000, 2, 4740. # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence Li+ = Li+ -gamma 6 0 # The apparent volume parameters are defined in ref. 1 & 2 @@ -170,7 +170,7 @@ F- = F- -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 -dw 1.46e-9 -36 4.352 Br- = Br- - -gamma 3 0 + -gamma 3 0.045 -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 -viscosity -6.98e-2 -0.141 1.78e-2 0.159 7.76e-3 6.25e-2 0.859 -dw 2.09e-9 208 3.5 0 0.5737 @@ -316,8 +316,8 @@ NH4+ = NH3 + H+ -dw 2.28e-9 #AmmH+ + SO4-2 = AmmHSO4- NH4+ + SO4-2 = NH4SO4- - -gamma 2.08 -0.0416 - -log_k 1.211; -delta_h 8.56 kJ + -gamma 2.10 -0.0419 + -log_k 1.212; -delta_h 8.61 kJ -Vm -8.78 0 -36.09 0 -8.60 0 87.62 0 -0.3123 0.1172 -viscosity 0 0.121 -8e-3 0.177 -8e-3 0.512 0.629 -dw 0.9e-9 100 2.1 2 0 @@ -372,7 +372,7 @@ Ca+2 + CO3-2 + H+ = CaHCO3+ -log_k 10.91; -delta_h 4.38 kcal -analytic -6.009 3.377e-2 2044 -gamma 6 0 - -Vm 30.19 .01 5.75 -2.78 .308 5.4 + -Vm 3.19 .01 5.75 -2.78 .308 5.4 -dw 5.06e-10 Ca+2 + SO4-2 = CaSO4 -log_k 2.25 @@ -672,7 +672,7 @@ H4SiO4 = H3SiO4- + H+ -delta_h 6.12 kcal -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669 -gamma 4 0 - -Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt H2O in a1 + -Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt + H2O in a1 H4SiO4 = H2SiO4-2 + 2 H+ -log_k -23 -delta_h 17.6 kcal @@ -3143,7 +3143,7 @@ Wollastonite -6.97 700 56 0.4 0 0 # # b0 b1 b2 d1 d2 d3 tan # z_i is absolute charge number, m_i is molality of i # B_i = b0 + b1 exp(-b2 * tc) -# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions +# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions and neutral species # D_i = d1 * exp(-d2 tc) # n_i = (I^d3 * (1 + fI) + ((z_i^2 + z_i) / 2 m_i)^d3) / (2 + fI), fI is an ionic strength term. # For details, consult ref. 4. From 1dbd65fc74fc452b40d37030c51cff2f9bccf894 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Fri, 14 Mar 2025 10:02:13 -0600 Subject: [PATCH 298/384] Updated output for recent database changes --- ex1.out | 8 +-- ex10.out | 14 ++--- ex14.out | 32 +++++------ ex16.out | 8 +-- ex18.out | 12 ++--- ex21.out | 8 +-- ex3.out | 24 ++++----- ex4.out | 24 ++++----- ex5.out | 24 ++++----- ex7.out | 158 +++++++++++++++++++++++++++---------------------------- ex7.sel | 2 +- 11 files changed, 157 insertions(+), 157 deletions(-) diff --git a/ex1.out b/ex1.out index a6dea035..a3d54813 100644 --- a/ex1.out +++ b/ex1.out @@ -160,7 +160,7 @@ C(4) 2.238e-03 MgCO3 9.523e-05 1.111e-04 -4.021 -3.954 0.067 -17.09 CO3-2 3.888e-05 8.103e-06 -4.410 -5.091 -0.681 -0.52 CaCO3 2.908e-05 3.393e-05 -4.536 -4.469 0.067 -14.60 - CaHCO3+ 1.446e-05 1.001e-05 -4.840 -5.000 -0.160 122.92 + CaHCO3+ 1.446e-05 1.001e-05 -4.840 -5.000 -0.160 9.96 CO2 1.299e-05 1.438e-05 -4.886 -4.842 0.044 34.43 KHCO3 2.969e-06 3.013e-06 -5.527 -5.521 0.006 41.03 UO2(CO3)3-4 1.259e-08 1.169e-10 -7.900 -9.932 -2.032 (0) @@ -175,7 +175,7 @@ Ca 1.066e-02 Ca+2 9.964e-03 2.493e-03 -2.002 -2.603 -0.602 -16.70 CaSO4 6.537e-04 7.628e-04 -3.185 -3.118 0.067 7.50 CaCO3 2.908e-05 3.393e-05 -4.536 -4.469 0.067 -14.60 - CaHCO3+ 1.446e-05 1.001e-05 -4.840 -5.000 -0.160 122.92 + CaHCO3+ 1.446e-05 1.001e-05 -4.840 -5.000 -0.160 9.96 CaOH+ 9.020e-08 6.732e-08 -7.045 -7.172 -0.127 (0) CaHSO4+ 4.048e-11 3.021e-11 -10.393 -10.520 -0.127 (0) Cl 5.657e-01 @@ -241,7 +241,7 @@ Mn(3) 5.345e-26 N(-3) 1.724e-06 NH4+ 1.601e-06 9.008e-07 -5.796 -6.045 -0.250 18.48 NH3 7.301e-08 8.519e-08 -7.137 -7.070 0.067 24.42 - NH4SO4- 4.978e-08 2.520e-08 -7.303 -7.599 -0.296 26.92 + NH4SO4- 4.981e-08 2.526e-08 -7.303 -7.598 -0.295 26.92 N(5) 4.847e-06 NO3- 4.847e-06 2.847e-06 -5.314 -5.546 -0.231 30.29 Mn(NO3)2 1.349e-20 1.574e-20 -19.870 -19.803 0.067 41.04 @@ -258,7 +258,7 @@ S(6) 2.926e-02 CaSO4 6.537e-04 7.628e-04 -3.185 -3.118 0.067 7.50 KSO4- 1.873e-04 1.696e-04 -3.728 -3.770 -0.043 11.34 Mg(SO4)2-2 1.296e-04 3.671e-05 -3.887 -4.435 -0.548 32.91 - NH4SO4- 4.978e-08 2.520e-08 -7.303 -7.599 -0.296 26.92 + NH4SO4- 4.981e-08 2.526e-08 -7.303 -7.598 -0.295 26.92 HSO4- 1.351e-09 1.008e-09 -8.869 -8.996 -0.127 40.96 MnSO4 1.279e-10 1.493e-10 -9.893 -9.826 0.067 22.54 CaHSO4+ 4.048e-11 3.021e-11 -10.393 -10.520 -0.127 (0) diff --git a/ex10.out b/ex10.out index 0734f3a0..024315a5 100644 --- a/ex10.out +++ b/ex10.out @@ -123,7 +123,7 @@ Initial solution 1. pe = 4.000 Specific Conductance (µS/cm, 25°C) = 701 Density (g/cm³) = 0.99755 - Volume (L) = 1.00310 + Volume (L) = 1.00309 Viscosity (mPa s) = 0.89463 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.134e-02 @@ -151,13 +151,13 @@ C(4) 7.864e-03 HCO3- 7.466e-03 6.720e-03 -2.127 -2.173 -0.046 24.65 CO2 1.643e-04 1.645e-04 -3.784 -3.784 0.001 34.43 CaCO3 1.191e-04 1.194e-04 -3.924 -3.923 0.001 -14.60 - CaHCO3+ 7.058e-05 6.365e-05 -4.151 -4.196 -0.045 122.69 + CaHCO3+ 7.058e-05 6.365e-05 -4.151 -4.196 -0.045 9.73 CO3-2 4.409e-05 2.895e-05 -4.356 -4.538 -0.183 -3.64 (CO2)2 4.956e-10 4.969e-10 -9.305 -9.304 0.001 68.87 Ca 3.932e-03 Ca+2 3.742e-03 2.455e-03 -2.427 -2.610 -0.183 -17.91 CaCO3 1.191e-04 1.194e-04 -3.924 -3.923 0.001 -14.60 - CaHCO3+ 7.058e-05 6.365e-05 -4.151 -4.196 -0.045 122.69 + CaHCO3+ 7.058e-05 6.365e-05 -4.151 -4.196 -0.045 9.73 CaOH+ 4.173e-08 3.742e-08 -7.380 -7.427 -0.047 (0) H(0) 1.674e-27 H2 8.369e-28 8.391e-28 -27.077 -27.076 0.001 28.61 @@ -208,8 +208,8 @@ CO2(g) -0.01 -1.48 -1.47 1.000e+01 9.961e+00 -3.875e-02 pH = 6.058 Charge balance pe = 11.902 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 1684 - Density (g/cm³) = 0.99860 - Volume (L) = 1.00434 + Density (g/cm³) = 0.99865 + Volume (L) = 1.00430 Viscosity (mPa s) = 0.92188 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.900e-02 @@ -236,13 +236,13 @@ C(-4) 0.000e+00 C(4) 5.262e-02 CO2 3.273e-02 3.287e-02 -1.485 -1.483 0.002 34.43 HCO3- 1.946e-02 1.669e-02 -1.711 -1.778 -0.067 24.73 - CaHCO3+ 3.858e-04 3.321e-04 -3.414 -3.479 -0.065 122.73 + CaHCO3+ 3.858e-04 3.321e-04 -3.414 -3.479 -0.065 9.76 (CO2)2 1.970e-05 1.984e-05 -4.705 -4.703 0.003 68.87 CaCO3 7.698e-06 7.750e-06 -5.114 -5.111 0.003 -14.60 CO3-2 1.652e-06 8.940e-07 -5.782 -6.049 -0.267 -3.39 Ca 9.930e-03 Ca+2 9.536e-03 5.160e-03 -2.021 -2.287 -0.267 -17.74 - CaHCO3+ 3.858e-04 3.321e-04 -3.414 -3.479 -0.065 122.73 + CaHCO3+ 3.858e-04 3.321e-04 -3.414 -3.479 -0.065 9.76 CaCO3 7.698e-06 7.750e-06 -5.114 -5.111 0.003 -14.60 CaOH+ 1.148e-09 9.773e-10 -8.940 -9.010 -0.070 (0) H(0) 1.692e-39 diff --git a/ex14.out b/ex14.out index 7880b9ae..2331707f 100644 --- a/ex14.out +++ b/ex14.out @@ -89,9 +89,9 @@ Initial solution 1. Brine pH = 5.713 pe = 14.962 Equilibrium with O2(g) - Specific Conductance (µS/cm, 25°C) = 242995 - Density (g/cm³) = 1.21629 - Volume (L) = 1.13700 + Specific Conductance (µS/cm, 25°C) = 243037 + Density (g/cm³) = 1.21639 + Volume (L) = 1.13690 Viscosity (mPa s) = 1.95446 Activity of water = 0.785 Ionic strength (mol/kgw) = 7.270e+00 @@ -122,7 +122,7 @@ C(-4) 0.000e+00 CH4 0.000e+00 0.000e+00 -144.496 -143.769 0.727 35.46 C(4) 3.960e-03 MgHCO3+ 2.344e-03 1.167e-03 -2.630 -2.933 -0.303 6.01 - CaHCO3+ 8.690e-04 5.263e-04 -3.061 -3.279 -0.218 123.05 + CaHCO3+ 8.690e-04 5.263e-04 -3.061 -3.279 -0.218 10.08 CO2 3.518e-04 1.062e-03 -3.454 -2.974 0.480 34.43 HCO3- 3.309e-04 1.914e-04 -3.480 -3.718 -0.238 37.32 NaHCO3 6.284e-05 1.787e-03 -4.202 -2.748 1.454 31.73 @@ -132,7 +132,7 @@ C(4) 3.960e-03 (CO2)2 3.882e-09 2.070e-08 -8.411 -7.684 0.727 68.87 Ca 4.655e-01 Ca+2 4.643e-01 7.129e-01 -0.333 -0.147 0.186 -13.79 - CaHCO3+ 8.690e-04 5.263e-04 -3.061 -3.279 -0.218 123.05 + CaHCO3+ 8.690e-04 5.263e-04 -3.061 -3.279 -0.218 10.08 CaSO4 3.227e-04 1.721e-03 -3.491 -2.764 0.727 7.50 CaCO3 1.041e-06 5.551e-06 -5.983 -5.256 0.727 -14.60 CaOH+ 8.717e-09 4.794e-08 -8.060 -7.319 0.740 (0) @@ -249,9 +249,9 @@ Dolomite 0.00 -17.08 -17.08 1.600e+00 1.597e+00 -3.272e-03 pH = 5.720 Charge balance pe = 14.955 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 242932 - Density (g/cm³) = 1.21626 - Volume (L) = 1.13699 + Specific Conductance (µS/cm, 25°C) = 242973 + Density (g/cm³) = 1.21636 + Volume (L) = 1.13689 Viscosity (mPa s) = 1.95495 Activity of water = 0.785 Ionic strength (mol/kgw) = 7.270e+00 @@ -282,7 +282,7 @@ C(-4) 0.000e+00 CH4 0.000e+00 0.000e+00 -144.506 -143.780 0.727 35.46 C(4) 3.968e-03 MgHCO3+ 2.375e-03 1.183e-03 -2.624 -2.927 -0.303 6.01 - CaHCO3+ 8.569e-04 5.189e-04 -3.067 -3.285 -0.218 123.05 + CaHCO3+ 8.569e-04 5.189e-04 -3.067 -3.285 -0.218 10.08 CO2 3.437e-04 1.038e-03 -3.464 -2.984 0.480 34.43 HCO3- 3.286e-04 1.901e-04 -3.483 -3.721 -0.238 37.32 NaHCO3 6.240e-05 1.775e-03 -4.205 -2.751 1.454 31.73 @@ -292,7 +292,7 @@ C(4) 3.968e-03 (CO2)2 3.706e-09 1.976e-08 -8.431 -7.704 0.727 68.87 Ca 4.622e-01 Ca+2 4.611e-01 7.079e-01 -0.336 -0.150 0.186 -13.79 - CaHCO3+ 8.569e-04 5.189e-04 -3.067 -3.285 -0.218 123.05 + CaHCO3+ 8.569e-04 5.189e-04 -3.067 -3.285 -0.218 10.08 CaSO4 3.205e-04 1.709e-03 -3.494 -2.767 0.727 7.50 CaCO3 1.043e-06 5.563e-06 -5.982 -5.255 0.727 -14.60 CaOH+ 8.798e-09 4.838e-08 -8.056 -7.315 0.740 (0) @@ -492,7 +492,7 @@ C(-4) 0.000e+00 C(4) 1.096e-05 CO2 1.076e-05 1.076e-05 -4.968 -4.968 0.000 34.43 HCO3- 1.975e-07 1.906e-07 -6.704 -6.720 -0.016 24.58 - CaHCO3+ 1.228e-10 1.185e-10 -9.911 -9.926 -0.015 122.64 + CaHCO3+ 1.228e-10 1.185e-10 -9.911 -9.926 -0.015 9.67 MgHCO3+ 6.872e-11 6.627e-11 -10.163 -10.179 -0.016 5.48 NaHCO3 1.957e-11 1.958e-11 -10.708 -10.708 0.000 31.73 (CO2)2 2.126e-12 2.127e-12 -11.672 -11.672 0.000 68.87 @@ -503,7 +503,7 @@ Ca 1.916e-04 Ca+2 1.860e-04 1.612e-04 -3.731 -3.793 -0.062 -18.14 CaSO4 5.634e-06 5.635e-06 -5.249 -5.249 0.000 7.50 CaHSO4+ 9.648e-10 9.304e-10 -9.016 -9.031 -0.016 (0) - CaHCO3+ 1.228e-10 1.185e-10 -9.911 -9.926 -0.015 122.64 + CaHCO3+ 1.228e-10 1.185e-10 -9.911 -9.926 -0.015 9.67 CaOH+ 1.104e-12 1.065e-12 -11.957 -11.973 -0.016 (0) CaCO3 9.632e-14 9.634e-14 -13.016 -13.016 0.000 -14.60 Cl 1.337e-04 @@ -627,7 +627,7 @@ C(4) 7.051e-03 HCO3- 5.875e-03 5.326e-03 -2.231 -2.274 -0.043 24.65 CO2 1.074e-03 1.076e-03 -2.969 -2.968 0.001 34.43 MgHCO3+ 6.178e-05 5.578e-05 -4.209 -4.254 -0.044 5.53 - CaHCO3+ 2.695e-05 2.447e-05 -4.569 -4.611 -0.042 122.69 + CaHCO3+ 2.695e-05 2.447e-05 -4.569 -4.611 -0.042 9.72 CaCO3 5.551e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 CO3-2 4.119e-06 2.780e-06 -5.385 -5.556 -0.171 -3.67 MgCO3 2.369e-06 2.375e-06 -5.625 -5.624 0.001 -17.09 @@ -635,7 +635,7 @@ C(4) 7.051e-03 (CO2)2 2.120e-08 2.125e-08 -7.674 -7.673 0.001 68.87 Ca 1.824e-03 Ca+2 1.766e-03 1.191e-03 -2.753 -2.924 -0.171 -17.93 - CaHCO3+ 2.695e-05 2.447e-05 -4.569 -4.611 -0.042 122.69 + CaHCO3+ 2.695e-05 2.447e-05 -4.569 -4.611 -0.042 9.72 CaSO4 2.566e-05 2.572e-05 -4.591 -4.590 0.001 7.50 CaCO3 5.551e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 CaOH+ 2.435e-09 2.200e-09 -8.613 -8.658 -0.044 (0) @@ -1031,7 +1031,7 @@ C(4) 7.050e-03 HCO3- 5.873e-03 5.324e-03 -2.231 -2.274 -0.043 24.65 CO2 1.075e-03 1.077e-03 -2.969 -2.968 0.001 34.43 MgHCO3+ 6.263e-05 5.655e-05 -4.203 -4.248 -0.044 5.53 - CaHCO3+ 2.664e-05 2.418e-05 -4.574 -4.616 -0.042 122.69 + CaHCO3+ 2.664e-05 2.418e-05 -4.574 -4.616 -0.042 9.72 CaCO3 5.481e-06 5.493e-06 -5.261 -5.260 0.001 -14.60 CO3-2 4.113e-06 2.776e-06 -5.386 -5.557 -0.171 -3.67 MgCO3 2.400e-06 2.405e-06 -5.620 -5.619 0.001 -17.09 @@ -1039,7 +1039,7 @@ C(4) 7.050e-03 (CO2)2 2.123e-08 2.128e-08 -7.673 -7.672 0.001 68.87 Ca 1.803e-03 Ca+2 1.746e-03 1.178e-03 -2.758 -2.929 -0.171 -17.93 - CaHCO3+ 2.664e-05 2.418e-05 -4.574 -4.616 -0.042 122.69 + CaHCO3+ 2.664e-05 2.418e-05 -4.574 -4.616 -0.042 9.72 CaSO4 2.536e-05 2.542e-05 -4.596 -4.595 0.001 7.50 CaCO3 5.481e-06 5.493e-06 -5.261 -5.260 0.001 -14.60 CaOH+ 2.405e-09 2.173e-09 -8.619 -8.663 -0.044 (0) diff --git a/ex16.out b/ex16.out index be43be0f..eceb8f1a 100644 --- a/ex16.out +++ b/ex16.out @@ -108,7 +108,7 @@ C(4) 7.828e-04 CO2 4.542e-04 4.543e-04 -3.343 -3.343 0.000 34.43 HCO3- 3.283e-04 3.202e-04 -3.484 -3.495 -0.011 24.57 MgHCO3+ 1.003e-07 9.784e-08 -6.999 -7.009 -0.011 5.47 - CaHCO3+ 8.916e-08 8.698e-08 -7.050 -7.061 -0.011 122.63 + CaHCO3+ 8.916e-08 8.698e-08 -7.050 -7.061 -0.011 9.66 NaHCO3 3.643e-08 3.643e-08 -7.439 -7.438 0.000 31.73 CO3-2 2.629e-08 2.380e-08 -7.580 -7.623 -0.043 -3.97 KHCO3 3.904e-09 3.904e-09 -8.408 -8.408 0.000 41.03 @@ -118,7 +118,7 @@ C(4) 7.828e-04 Ca 7.800e-05 Ca+2 7.780e-05 7.042e-05 -4.109 -4.152 -0.043 -18.17 CaSO4 1.111e-07 1.111e-07 -6.954 -6.954 0.000 7.50 - CaHCO3+ 8.916e-08 8.698e-08 -7.050 -7.061 -0.011 122.63 + CaHCO3+ 8.916e-08 8.698e-08 -7.050 -7.061 -0.011 9.66 CaCO3 2.815e-09 2.815e-09 -8.550 -8.550 0.000 -14.60 CaOH+ 1.899e-11 1.852e-11 -10.721 -10.732 -0.011 (0) CaHSO4+ 4.725e-13 4.608e-13 -12.326 -12.337 -0.011 (0) @@ -236,7 +236,7 @@ Initial solution 2. C(4) 1.200e-03 HCO3- 8.924e-04 8.574e-04 -3.049 -3.067 -0.017 24.58 CO2 3.055e-04 3.055e-04 -3.515 -3.515 0.000 34.43 - CaHCO3+ 7.574e-07 7.279e-07 -6.121 -6.138 -0.017 122.64 + CaHCO3+ 7.574e-07 7.279e-07 -6.121 -6.138 -0.017 9.67 MgHCO3+ 6.241e-07 5.992e-07 -6.205 -6.222 -0.018 5.48 CO3-2 2.978e-07 2.537e-07 -6.526 -6.596 -0.070 -3.92 NaHCO3 1.855e-07 1.856e-07 -6.732 -6.731 0.000 31.73 @@ -247,7 +247,7 @@ C(4) 1.200e-03 Ca 2.600e-04 Ca+2 2.584e-04 2.201e-04 -3.588 -3.657 -0.070 -18.13 CaSO4 7.926e-07 7.928e-07 -6.101 -6.101 0.000 7.50 - CaHCO3+ 7.574e-07 7.279e-07 -6.121 -6.138 -0.017 122.64 + CaHCO3+ 7.574e-07 7.279e-07 -6.121 -6.138 -0.017 9.67 CaCO3 9.377e-08 9.380e-08 -7.028 -7.028 0.000 -14.60 CaOH+ 2.400e-10 2.305e-10 -9.620 -9.637 -0.018 (0) CaHSO4+ 8.602e-13 8.260e-13 -12.065 -12.083 -0.018 (0) diff --git a/ex18.out b/ex18.out index a049fc33..5237ebd3 100644 --- a/ex18.out +++ b/ex18.out @@ -147,7 +147,7 @@ C(4) 4.300e-03 HCO3- 3.951e-03 3.642e-03 -2.403 -2.439 -0.035 22.89 CO2 2.987e-04 2.990e-04 -3.525 -3.524 0.000 33.66 MgHCO3+ 3.108e-05 2.857e-05 -4.508 -4.544 -0.037 4.93 - CaHCO3+ 6.407e-06 5.913e-06 -5.193 -5.228 -0.035 121.93 + CaHCO3+ 6.407e-06 5.913e-06 -5.193 -5.228 -0.035 8.96 CO3-2 5.802e-06 4.190e-06 -5.236 -5.378 -0.141 -6.10 CaCO3 4.848e-06 4.855e-06 -5.314 -5.314 0.001 -14.66 MgCO3 2.214e-06 2.217e-06 -5.655 -5.654 0.001 -17.07 @@ -159,7 +159,7 @@ C(4) 4.300e-03 Ca 1.200e-03 Ca+2 1.176e-03 8.486e-04 -2.930 -3.071 -0.142 -18.31 CaSO4 1.298e-05 1.300e-05 -4.887 -4.886 0.001 6.78 - CaHCO3+ 6.407e-06 5.913e-06 -5.193 -5.228 -0.035 121.93 + CaHCO3+ 6.407e-06 5.913e-06 -5.193 -5.228 -0.035 8.96 CaCO3 4.848e-06 4.855e-06 -5.314 -5.314 0.001 -14.66 CaOH+ 5.433e-09 4.996e-09 -8.265 -8.301 -0.036 (0) CaHSO4+ 2.170e-12 1.995e-12 -11.664 -11.700 -0.036 (0) @@ -257,8 +257,8 @@ Initial solution 2. Mysse pH = 6.610 pe = 0.000 Specific Conductance (µS/cm, 63°C) = 10503 - Density (g/cm³) = 0.98520 - Volume (L) = 1.01942 + Density (g/cm³) = 0.98523 + Volume (L) = 1.01939 Viscosity (mPa s) = 0.45647 Activity of water = 0.999 Ionic strength (mol/kgw) = 7.101e-02 @@ -289,7 +289,7 @@ Initial solution 2. Mysse C(4) 6.870e-03 HCO3- 4.575e-03 3.644e-03 -2.340 -2.438 -0.099 25.86 CO2 1.746e-03 1.765e-03 -2.758 -2.753 0.005 36.36 - CaHCO3+ 2.772e-04 2.226e-04 -3.557 -3.653 -0.095 123.62 + CaHCO3+ 2.772e-04 2.226e-04 -3.557 -3.653 -0.095 10.66 NaHCO3 1.844e-04 1.905e-04 -3.734 -3.720 0.014 31.20 MgHCO3+ 6.093e-05 4.753e-05 -4.215 -4.323 -0.108 6.10 CaCO3 1.656e-05 1.683e-05 -4.781 -4.774 0.007 -14.51 @@ -302,7 +302,7 @@ C(4) 6.870e-03 Ca 1.128e-02 Ca+2 7.821e-03 3.163e-03 -2.107 -2.500 -0.393 -17.58 CaSO4 3.165e-03 3.217e-03 -2.500 -2.492 0.007 8.42 - CaHCO3+ 2.772e-04 2.226e-04 -3.557 -3.653 -0.095 123.62 + CaHCO3+ 2.772e-04 2.226e-04 -3.557 -3.653 -0.095 10.66 CaCO3 1.656e-05 1.683e-05 -4.781 -4.774 0.007 -14.51 CaHSO4+ 1.307e-08 1.029e-08 -7.884 -7.988 -0.104 (0) CaOH+ 2.712e-09 2.135e-09 -8.567 -8.671 -0.104 (0) diff --git a/ex21.out b/ex21.out index 26fac9cb..61315161 100644 --- a/ex21.out +++ b/ex21.out @@ -438,7 +438,7 @@ WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. pe = 13.120 Equilibrium with O2(g) Specific Conductance (µS/cm, 23°C) = 29069 Density (g/cm³) = 1.01168 - Volume (L) = 0.20147 + Volume (L) = 0.20146 Viscosity (mPa s) = 0.96932 Activity of water = 0.990 Ionic strength (mol/kgw) = 3.633e-01 @@ -465,7 +465,7 @@ C(4) 4.811e-04 NaHCO3 3.292e-05 3.892e-05 -4.483 -4.410 0.073 31.75 MgHCO3+ 2.266e-05 1.528e-05 -4.645 -4.816 -0.171 5.70 CO2 1.541e-05 1.628e-05 -4.812 -4.788 0.024 34.33 - CaHCO3+ 9.133e-06 6.615e-06 -5.039 -5.179 -0.140 122.80 + CaHCO3+ 9.133e-06 6.615e-06 -5.039 -5.179 -0.140 9.83 CaCO3 4.998e-06 5.434e-06 -5.301 -5.265 0.036 -14.61 MgCO3 2.008e-06 2.184e-06 -5.697 -5.661 0.036 -17.09 CO3-2 1.949e-06 4.981e-07 -5.710 -6.303 -0.593 -1.75 @@ -476,7 +476,7 @@ C(4) 4.811e-04 Ca 2.580e-02 Ca+2 2.429e-02 6.749e-03 -1.615 -2.171 -0.556 -17.03 CaSO4 1.496e-03 1.626e-03 -2.825 -2.789 0.036 7.42 - CaHCO3+ 9.133e-06 6.615e-06 -5.039 -5.179 -0.140 122.80 + CaHCO3+ 9.133e-06 6.615e-06 -5.039 -5.179 -0.140 9.83 CaCO3 4.998e-06 5.434e-06 -5.301 -5.265 0.036 -14.61 CaOH+ 6.034e-08 4.414e-08 -7.219 -7.355 -0.136 (0) CaHSO4+ 3.568e-10 2.610e-10 -9.448 -9.583 -0.136 (0) @@ -515,7 +515,7 @@ S(6) 1.410e-02 HSO4- 4.398e-09 3.217e-09 -8.357 -8.493 -0.136 40.64 CaHSO4+ 3.568e-10 2.610e-10 -9.448 -9.583 -0.136 (0) Sr 5.050e-04 - Sr+2 4.726e-04 1.312e-04 -3.325 -3.882 -0.557 -16.74 + Sr+2 4.726e-04 1.312e-04 -3.325 -3.882 -0.557 -16.75 SrSO4 3.160e-05 3.436e-05 -4.500 -4.464 0.036 24.16 SrHCO3+ 7.330e-07 5.211e-07 -6.135 -6.283 -0.148 (0) SrCO3 3.617e-08 3.932e-08 -7.442 -7.405 0.036 -14.14 diff --git a/ex3.out b/ex3.out index ff959210..ef1a7797 100644 --- a/ex3.out +++ b/ex3.out @@ -148,13 +148,13 @@ C(-4) 1.394e-25 C(4) 3.576e-03 HCO3- 3.212e-03 2.987e-03 -2.493 -2.525 -0.032 24.62 CO2 3.400e-04 3.403e-04 -3.469 -3.468 0.000 34.43 - CaHCO3+ 1.483e-05 1.380e-05 -4.829 -4.860 -0.031 122.67 + CaHCO3+ 1.483e-05 1.380e-05 -4.829 -4.860 -0.031 9.70 CaCO3 5.557e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 CO3-2 3.697e-06 2.765e-06 -5.432 -5.558 -0.126 -3.79 (CO2)2 2.123e-09 2.125e-09 -8.673 -8.673 0.000 68.87 Ca 1.623e-03 Ca+2 1.602e-03 1.198e-03 -2.795 -2.922 -0.126 -18.02 - CaHCO3+ 1.483e-05 1.380e-05 -4.829 -4.860 -0.031 122.67 + CaHCO3+ 1.483e-05 1.380e-05 -4.829 -4.860 -0.031 9.70 CaCO3 5.557e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 CaOH+ 4.227e-09 3.923e-09 -8.374 -8.406 -0.032 (0) H(0) 5.084e-15 @@ -261,7 +261,7 @@ C(4) 2.238e-03 MgCO3 9.524e-05 1.111e-04 -4.021 -3.954 0.067 -17.09 CO3-2 3.889e-05 8.104e-06 -4.410 -5.091 -0.681 -0.52 CaCO3 2.908e-05 3.393e-05 -4.536 -4.469 0.067 -14.60 - CaHCO3+ 1.446e-05 1.001e-05 -4.840 -5.000 -0.160 122.92 + CaHCO3+ 1.446e-05 1.001e-05 -4.840 -5.000 -0.160 9.96 CO2 1.299e-05 1.438e-05 -4.886 -4.842 0.044 34.43 KHCO3 2.970e-06 3.013e-06 -5.527 -5.521 0.006 41.03 (CO2)2 3.254e-12 3.798e-12 -11.488 -11.420 0.067 68.87 @@ -269,7 +269,7 @@ Ca 1.066e-02 Ca+2 9.964e-03 2.493e-03 -2.002 -2.603 -0.602 -16.70 CaSO4 6.537e-04 7.628e-04 -3.185 -3.118 0.067 7.50 CaCO3 2.908e-05 3.393e-05 -4.536 -4.469 0.067 -14.60 - CaHCO3+ 1.446e-05 1.001e-05 -4.840 -5.000 -0.160 122.92 + CaHCO3+ 1.446e-05 1.001e-05 -4.840 -5.000 -0.160 9.96 CaOH+ 9.020e-08 6.732e-08 -7.045 -7.172 -0.127 (0) CaHSO4+ 4.048e-11 3.021e-11 -10.393 -10.520 -0.127 (0) Cl 5.657e-01 @@ -391,7 +391,7 @@ Mixture 1. pH = 7.327 Charge balance pe = 10.559 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 18310 - Density (g/cm³) = 1.00526 + Density (g/cm³) = 1.00527 Volume (L) = 1.00578 Viscosity (mPa s) = 0.91375 Activity of water = 0.994 @@ -421,7 +421,7 @@ C(4) 3.175e-03 CO2 2.010e-04 2.074e-04 -3.697 -3.683 0.014 34.43 NaHCO3 1.640e-04 1.804e-04 -3.785 -3.744 0.041 31.73 MgHCO3+ 1.611e-04 1.153e-04 -3.793 -3.938 -0.145 5.72 - CaHCO3+ 1.284e-05 9.686e-06 -4.892 -5.014 -0.122 122.85 + CaHCO3+ 1.284e-05 9.686e-06 -4.892 -5.014 -0.122 9.88 MgCO3 8.919e-06 9.354e-06 -5.050 -5.029 0.021 -17.09 CO3-2 6.313e-06 1.935e-06 -5.200 -5.713 -0.514 -2.19 CaCO3 4.001e-06 4.196e-06 -5.398 -5.377 0.021 -14.60 @@ -430,7 +430,7 @@ C(4) 3.175e-03 Ca 4.334e-03 Ca+2 4.054e-03 1.291e-03 -2.392 -2.889 -0.497 -17.20 CaSO4 2.639e-04 2.767e-04 -3.579 -3.558 0.021 7.50 - CaHCO3+ 1.284e-05 9.686e-06 -4.892 -5.014 -0.122 122.85 + CaHCO3+ 1.284e-05 9.686e-06 -4.892 -5.014 -0.122 9.88 CaCO3 4.001e-06 4.196e-06 -5.398 -5.377 0.021 -14.60 CaOH+ 6.063e-09 4.517e-09 -8.217 -8.345 -0.128 (0) CaHSO4+ 1.151e-10 8.576e-11 -9.939 -10.067 -0.128 (0) @@ -566,7 +566,7 @@ Dolomite 0.00 -17.08 -17.08 1.000e+01 1.001e+01 7.786e-03 pe = 10.928 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 18478 Density (g/cm³) = 1.00533 - Volume (L) = 1.00583 + Volume (L) = 1.00582 Viscosity (mPa s) = 0.91253 Activity of water = 0.994 Ionic strength (mol/kgw) = 2.071e-01 @@ -595,7 +595,7 @@ C(4) 3.016e-03 CO2 3.502e-04 3.614e-04 -3.456 -3.442 0.014 34.43 NaHCO3 1.500e-04 1.650e-04 -3.824 -3.782 0.041 31.73 MgHCO3+ 7.783e-05 5.571e-05 -4.109 -4.254 -0.145 5.72 - CaHCO3+ 3.239e-05 2.444e-05 -4.490 -4.612 -0.122 122.85 + CaHCO3+ 3.239e-05 2.444e-05 -4.490 -4.612 -0.122 9.88 CaCO3 5.304e-06 5.563e-06 -5.275 -5.255 0.021 -14.60 CO3-2 3.038e-06 9.308e-07 -5.517 -6.031 -0.514 -2.19 MgCO3 2.264e-06 2.375e-06 -5.645 -5.624 0.021 -17.09 @@ -604,7 +604,7 @@ C(4) 3.016e-03 Ca 1.196e-02 Ca+2 1.118e-02 3.558e-03 -1.952 -2.449 -0.497 -17.20 CaSO4 7.475e-04 7.840e-04 -3.126 -3.106 0.021 7.50 - CaHCO3+ 3.239e-05 2.444e-05 -4.490 -4.612 -0.122 122.85 + CaHCO3+ 3.239e-05 2.444e-05 -4.490 -4.612 -0.122 9.88 CaCO3 5.304e-06 5.563e-06 -5.275 -5.255 0.021 -14.60 CaOH+ 8.781e-09 6.542e-09 -8.056 -8.184 -0.128 (0) CaHSO4+ 6.206e-10 4.624e-10 -9.207 -9.335 -0.128 (0) @@ -767,7 +767,7 @@ C(4) 3.221e-03 NaHCO3 1.684e-04 1.852e-04 -3.774 -3.732 0.041 31.73 MgHCO3+ 1.653e-04 1.183e-04 -3.782 -3.927 -0.145 5.72 CO2 1.615e-04 1.666e-04 -3.792 -3.778 0.014 34.43 - CaHCO3+ 1.332e-05 1.005e-05 -4.876 -4.998 -0.122 122.85 + CaHCO3+ 1.332e-05 1.005e-05 -4.876 -4.998 -0.122 9.88 MgCO3 1.170e-05 1.227e-05 -4.932 -4.911 0.021 -17.09 CO3-2 8.287e-06 2.540e-06 -5.082 -5.595 -0.514 -2.19 CaCO3 5.304e-06 5.563e-06 -5.275 -5.255 0.021 -14.60 @@ -776,7 +776,7 @@ C(4) 3.221e-03 Ca 4.380e-03 Ca+2 4.095e-03 1.304e-03 -2.388 -2.885 -0.497 -17.20 CaSO4 2.664e-04 2.794e-04 -3.574 -3.554 0.021 7.50 - CaHCO3+ 1.332e-05 1.005e-05 -4.876 -4.998 -0.122 122.85 + CaHCO3+ 1.332e-05 1.005e-05 -4.876 -4.998 -0.122 9.88 CaCO3 5.304e-06 5.563e-06 -5.275 -5.255 0.021 -14.60 CaOH+ 7.828e-09 5.832e-09 -8.106 -8.234 -0.128 (0) CaHSO4+ 9.093e-11 6.775e-11 -10.041 -10.169 -0.128 (0) diff --git a/ex4.out b/ex4.out index 274885d9..d9683df9 100644 --- a/ex4.out +++ b/ex4.out @@ -103,7 +103,7 @@ Initial solution 1. Precipitation from Central Oklahoma C(4) 1.091e-05 CO2 1.076e-05 1.076e-05 -4.968 -4.968 0.000 34.43 HCO3- 1.530e-07 1.513e-07 -6.815 -6.820 -0.005 24.56 - CaHCO3+ 5.402e-12 5.344e-12 -11.267 -11.272 -0.005 122.62 + CaHCO3+ 5.402e-12 5.344e-12 -11.267 -11.272 -0.005 9.65 MgHCO3+ 3.022e-12 2.989e-12 -11.520 -11.524 -0.005 5.46 (CO2)2 2.125e-12 2.125e-12 -11.673 -11.673 0.000 68.87 NaHCO3 7.995e-13 7.995e-13 -12.097 -12.097 0.000 31.73 @@ -114,7 +114,7 @@ C(4) 1.091e-05 Ca 9.581e-06 Ca+2 9.560e-06 9.153e-06 -5.020 -5.038 -0.019 -18.22 CaSO4 2.098e-08 2.098e-08 -7.678 -7.678 0.000 7.50 - CaHCO3+ 5.402e-12 5.344e-12 -11.267 -11.272 -0.005 122.62 + CaHCO3+ 5.402e-12 5.344e-12 -11.267 -11.272 -0.005 9.65 CaHSO4+ 4.408e-12 4.361e-12 -11.356 -11.360 -0.005 (0) CaOH+ 4.856e-14 4.804e-14 -13.314 -13.318 -0.005 (0) CaCO3 3.451e-15 3.451e-15 -14.462 -14.462 0.000 -14.60 @@ -136,7 +136,7 @@ Mg 1.769e-06 MgCO3 3.616e-16 3.616e-16 -15.442 -15.442 0.000 -17.09 N(-3) 1.485e-05 NH4+ 1.485e-05 1.468e-05 -4.828 -4.833 -0.005 17.87 - NH4SO4- 3.111e-09 3.077e-09 -8.507 -8.512 -0.005 -14.54 + NH4SO4- 3.118e-09 3.084e-09 -8.506 -8.511 -0.005 -14.54 NH3 2.646e-10 2.646e-10 -9.577 -9.577 0.000 24.42 N(5) 1.692e-05 NO3- 1.692e-05 1.674e-05 -4.772 -4.776 -0.005 29.47 @@ -151,7 +151,7 @@ S(6) 1.353e-05 HSO4- 4.006e-08 3.963e-08 -7.397 -7.402 -0.005 40.26 CaSO4 2.098e-08 2.098e-08 -7.678 -7.678 0.000 7.50 MgSO4 5.696e-09 5.697e-09 -8.244 -8.244 0.000 -7.92 - NH4SO4- 3.111e-09 3.077e-09 -8.507 -8.512 -0.005 -14.54 + NH4SO4- 3.118e-09 3.084e-09 -8.506 -8.511 -0.005 -14.54 NaSO4- 1.286e-09 1.273e-09 -8.891 -8.895 -0.005 -24.48 KSO4- 1.805e-10 1.786e-10 -9.744 -9.748 -0.005 14.12 CaHSO4+ 4.408e-12 4.361e-12 -11.356 -11.360 -0.005 (0) @@ -253,7 +253,7 @@ C(4) 2.182e-04 CO2 2.180e-04 2.181e-04 -3.661 -3.661 0.000 34.43 HCO3- 1.425e-07 1.365e-07 -6.846 -6.865 -0.019 24.59 (CO2)2 8.728e-10 8.731e-10 -9.059 -9.059 0.000 68.87 - CaHCO3+ 8.591e-11 8.233e-11 -10.066 -10.084 -0.019 122.64 + CaHCO3+ 8.591e-11 8.233e-11 -10.066 -10.084 -0.019 9.68 MgHCO3+ 4.754e-11 4.551e-11 -10.323 -10.342 -0.019 5.48 NaHCO3 1.390e-11 1.391e-11 -10.857 -10.857 0.000 31.73 KHCO3 1.071e-12 1.071e-12 -11.970 -11.970 0.000 41.03 @@ -264,7 +264,7 @@ Ca 1.916e-04 Ca+2 1.857e-04 1.564e-04 -3.731 -3.806 -0.075 -18.12 CaSO4 5.792e-06 5.795e-06 -5.237 -5.237 0.000 7.50 CaHSO4+ 2.828e-08 2.707e-08 -7.549 -7.568 -0.019 (0) - CaHCO3+ 8.591e-11 8.233e-11 -10.066 -10.084 -0.019 122.64 + CaHCO3+ 8.591e-11 8.233e-11 -10.066 -10.084 -0.019 9.68 CaOH+ 3.814e-14 3.651e-14 -13.419 -13.438 -0.019 (0) CaCO3 2.365e-15 2.366e-15 -14.626 -14.626 0.000 -14.60 Cl 1.331e-04 @@ -285,7 +285,7 @@ Mg 3.536e-05 MgCO3 2.448e-16 2.449e-16 -15.611 -15.611 0.000 -17.09 N(-3) 0.000e+00 NH4+ 0.000e+00 0.000e+00 -48.437 -48.457 -0.019 17.90 - NH4SO4- 0.000e+00 0.000e+00 -50.907 -50.927 -0.019 -5.79 + NH4SO4- 0.000e+00 0.000e+00 -50.906 -50.926 -0.019 -5.79 NH3 0.000e+00 0.000e+00 -54.553 -54.553 0.000 24.42 N(0) 4.751e-04 N2 2.375e-04 2.376e-04 -3.624 -3.624 0.000 29.29 @@ -313,7 +313,7 @@ S(6) 2.706e-04 KSO4- 5.808e-08 5.568e-08 -7.236 -7.254 -0.018 14.15 CaHSO4+ 2.828e-08 2.707e-08 -7.549 -7.568 -0.019 (0) Mg(SO4)2-2 1.263e-09 1.067e-09 -8.899 -8.972 -0.073 -2.63 - NH4SO4- 0.000e+00 0.000e+00 -50.907 -50.927 -0.019 -5.79 + NH4SO4- 0.000e+00 0.000e+00 -50.906 -50.926 -0.019 -5.79 ------------------------------Saturation indices------------------------------- @@ -423,7 +423,7 @@ C(4) 2.182e-04 CO2 2.180e-04 2.181e-04 -3.661 -3.661 0.000 34.43 HCO3- 1.425e-07 1.365e-07 -6.846 -6.865 -0.019 24.59 (CO2)2 8.728e-10 8.731e-10 -9.059 -9.059 0.000 68.87 - CaHCO3+ 8.591e-11 8.233e-11 -10.066 -10.084 -0.019 122.64 + CaHCO3+ 8.591e-11 8.233e-11 -10.066 -10.084 -0.019 9.68 MgHCO3+ 4.754e-11 4.551e-11 -10.323 -10.342 -0.019 5.48 NaHCO3 1.390e-11 1.391e-11 -10.857 -10.857 0.000 31.73 KHCO3 1.071e-12 1.071e-12 -11.970 -11.970 0.000 41.03 @@ -434,7 +434,7 @@ Ca 1.916e-04 Ca+2 1.857e-04 1.564e-04 -3.731 -3.806 -0.075 -18.12 CaSO4 5.792e-06 5.795e-06 -5.237 -5.237 0.000 7.50 CaHSO4+ 2.828e-08 2.707e-08 -7.549 -7.568 -0.019 (0) - CaHCO3+ 8.591e-11 8.233e-11 -10.066 -10.084 -0.019 122.64 + CaHCO3+ 8.591e-11 8.233e-11 -10.066 -10.084 -0.019 9.68 CaOH+ 3.814e-14 3.651e-14 -13.419 -13.438 -0.019 (0) CaCO3 2.365e-15 2.366e-15 -14.626 -14.626 0.000 -14.60 Cl 1.331e-04 @@ -455,7 +455,7 @@ Mg 3.536e-05 MgCO3 2.448e-16 2.449e-16 -15.611 -15.611 0.000 -17.09 N(-3) 0.000e+00 NH4+ 0.000e+00 0.000e+00 -48.437 -48.457 -0.019 17.90 - NH4SO4- 0.000e+00 0.000e+00 -50.907 -50.927 -0.019 -5.79 + NH4SO4- 0.000e+00 0.000e+00 -50.906 -50.926 -0.019 -5.79 NH3 0.000e+00 0.000e+00 -54.553 -54.553 0.000 24.42 N(0) 4.751e-04 N2 2.375e-04 2.376e-04 -3.624 -3.624 0.000 29.29 @@ -483,7 +483,7 @@ S(6) 2.706e-04 KSO4- 5.808e-08 5.568e-08 -7.236 -7.254 -0.018 14.15 CaHSO4+ 2.828e-08 2.707e-08 -7.549 -7.568 -0.019 (0) Mg(SO4)2-2 1.263e-09 1.067e-09 -8.899 -8.972 -0.073 -2.63 - NH4SO4- 0.000e+00 0.000e+00 -50.907 -50.927 -0.019 -5.79 + NH4SO4- 0.000e+00 0.000e+00 -50.906 -50.926 -0.019 -5.79 ------------------------------Saturation indices------------------------------- diff --git a/ex5.out b/ex5.out index c19862ef..1bdef19e 100644 --- a/ex5.out +++ b/ex5.out @@ -194,14 +194,14 @@ C(4) 9.756e-04 CO2 1.076e-05 1.076e-05 -4.968 -4.968 0.000 34.43 CO3-2 9.583e-06 8.099e-06 -5.019 -5.092 -0.073 -3.91 CaCO3 5.561e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 - CaHCO3+ 1.495e-06 1.434e-06 -5.825 -5.843 -0.018 122.64 + CaHCO3+ 1.495e-06 1.434e-06 -5.825 -5.843 -0.018 9.67 FeCO3 2.597e-09 2.598e-09 -8.585 -8.585 0.000 (0) FeHCO3+ 1.269e-09 1.216e-09 -8.897 -8.915 -0.019 (0) (CO2)2 2.125e-12 2.125e-12 -11.673 -11.673 0.000 68.87 Ca 4.910e-04 Ca+2 4.840e-04 4.089e-04 -3.315 -3.388 -0.073 -18.12 CaCO3 5.561e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 - CaHCO3+ 1.495e-06 1.434e-06 -5.825 -5.843 -0.018 122.64 + CaHCO3+ 1.495e-06 1.434e-06 -5.825 -5.843 -0.018 9.67 CaOH+ 1.345e-08 1.289e-08 -7.871 -7.890 -0.019 (0) CaSO4 3.487e-09 3.488e-09 -8.458 -8.457 0.000 7.50 CaHSO4+ 1.260e-16 1.207e-16 -15.900 -15.918 -0.019 (0) @@ -355,7 +355,7 @@ C(4) 7.789e-04 CO2 1.075e-05 1.076e-05 -4.968 -4.968 0.000 34.43 CO3-2 6.329e-06 4.905e-06 -5.199 -5.309 -0.111 -3.82 CaCO3 5.559e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 - CaHCO3+ 1.962e-06 1.842e-06 -5.707 -5.735 -0.027 122.66 + CaHCO3+ 1.962e-06 1.842e-06 -5.707 -5.735 -0.027 9.69 NaHCO3 2.864e-07 2.869e-07 -6.543 -6.542 0.001 31.73 FeCO3 7.348e-10 7.354e-10 -9.134 -9.133 0.000 (0) FeHCO3+ 4.720e-10 4.422e-10 -9.326 -9.354 -0.028 (0) @@ -364,7 +364,7 @@ Ca 9.242e-04 Ca+2 8.716e-04 6.752e-04 -3.060 -3.171 -0.111 -18.05 CaSO4 4.502e-05 4.506e-05 -4.347 -4.346 0.000 7.50 CaCO3 5.559e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 - CaHCO3+ 1.962e-06 1.842e-06 -5.707 -5.735 -0.027 122.66 + CaHCO3+ 1.962e-06 1.842e-06 -5.707 -5.735 -0.027 9.69 CaOH+ 1.768e-08 1.656e-08 -7.753 -7.781 -0.028 (0) CaHSO4+ 2.139e-12 2.003e-12 -11.670 -11.698 -0.028 (0) Cl 5.000e-04 @@ -535,7 +535,7 @@ C(4) 5.312e-04 HCO3- 5.077e-04 4.556e-04 -3.294 -3.341 -0.047 24.66 CO2 1.074e-05 1.076e-05 -4.969 -4.968 0.001 34.43 CaCO3 5.548e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 - CaHCO3+ 3.182e-06 2.861e-06 -5.497 -5.543 -0.046 122.70 + CaHCO3+ 3.182e-06 2.861e-06 -5.497 -5.543 -0.046 9.73 CO3-2 3.139e-06 2.034e-06 -5.503 -5.692 -0.188 -3.63 NaHCO3 8.629e-07 8.678e-07 -6.064 -6.062 0.002 31.73 FeHCO3+ 5.724e-10 5.115e-10 -9.242 -9.291 -0.049 (0) @@ -545,7 +545,7 @@ Ca 2.932e-03 Ca+2 2.514e-03 1.628e-03 -2.600 -2.788 -0.189 -17.90 CaSO4 4.092e-04 4.104e-04 -3.388 -3.387 0.001 7.50 CaCO3 5.548e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 - CaHCO3+ 3.182e-06 2.861e-06 -5.497 -5.543 -0.046 122.70 + CaHCO3+ 3.182e-06 2.861e-06 -5.497 -5.543 -0.046 9.73 CaOH+ 2.878e-08 2.572e-08 -7.541 -7.590 -0.049 (0) CaHSO4+ 3.171e-11 2.833e-11 -10.499 -10.548 -0.049 (0) Cl 2.500e-03 @@ -716,7 +716,7 @@ C(4) 4.402e-04 HCO3- 4.163e-04 3.623e-04 -3.381 -3.441 -0.060 24.70 CO2 1.072e-05 1.076e-05 -4.970 -4.968 0.001 34.43 CaCO3 5.535e-06 5.563e-06 -5.257 -5.255 0.002 -14.60 - CaHCO3+ 4.119e-06 3.596e-06 -5.385 -5.444 -0.059 122.72 + CaHCO3+ 4.119e-06 3.596e-06 -5.385 -5.444 -0.059 9.75 CO3-2 2.242e-06 1.287e-06 -5.649 -5.890 -0.241 -3.47 NaHCO3 1.305e-06 1.319e-06 -5.884 -5.880 0.004 31.73 FeHCO3+ 6.547e-10 5.664e-10 -9.184 -9.247 -0.063 (0) @@ -726,7 +726,7 @@ Ca 5.553e-03 Ca+2 4.485e-03 2.573e-03 -2.348 -2.590 -0.241 -17.79 CaSO4 1.058e-03 1.064e-03 -2.975 -2.973 0.002 7.50 CaCO3 5.535e-06 5.563e-06 -5.257 -5.255 0.002 -14.60 - CaHCO3+ 4.119e-06 3.596e-06 -5.385 -5.444 -0.059 122.72 + CaHCO3+ 4.119e-06 3.596e-06 -5.385 -5.444 -0.059 9.75 CaOH+ 3.737e-08 3.233e-08 -7.427 -7.490 -0.063 (0) CaHSO4+ 1.067e-10 9.230e-11 -9.972 -10.035 -0.063 (0) Cl 5.000e-03 @@ -896,7 +896,7 @@ C(-4) 1.646e-14 C(4) 3.341e-04 HCO3- 3.078e-04 2.519e-04 -3.512 -3.599 -0.087 24.82 CO2 1.066e-05 1.076e-05 -4.972 -4.968 0.004 34.43 - CaHCO3+ 6.277e-06 5.170e-06 -5.202 -5.286 -0.084 122.77 + CaHCO3+ 6.277e-06 5.170e-06 -5.202 -5.286 -0.084 9.80 CaCO3 5.487e-06 5.563e-06 -5.261 -5.255 0.006 -14.60 NaHCO3 2.424e-06 2.492e-06 -5.615 -5.603 0.012 31.73 CO3-2 1.388e-06 6.223e-07 -5.858 -6.206 -0.348 -3.08 @@ -906,7 +906,7 @@ C(4) 3.341e-04 Ca 1.617e-02 Ca+2 1.182e-02 5.322e-03 -1.927 -2.274 -0.347 -17.57 CaSO4 4.337e-03 4.397e-03 -2.363 -2.357 0.006 7.50 - CaHCO3+ 6.277e-06 5.170e-06 -5.202 -5.286 -0.084 122.77 + CaHCO3+ 6.277e-06 5.170e-06 -5.202 -5.286 -0.084 9.80 CaCO3 5.487e-06 5.563e-06 -5.261 -5.255 0.006 -14.60 CaOH+ 5.734e-08 4.648e-08 -7.242 -7.333 -0.091 (0) CaHSO4+ 6.768e-10 5.486e-10 -9.170 -9.261 -0.091 (0) @@ -1077,7 +1077,7 @@ C(-4) 1.539e-14 C(4) 3.317e-04 HCO3- 3.038e-04 2.448e-04 -3.517 -3.611 -0.094 24.86 CO2 1.064e-05 1.076e-05 -4.973 -4.968 0.005 34.43 - CaHCO3+ 6.550e-06 5.318e-06 -5.184 -5.274 -0.090 122.78 + CaHCO3+ 6.550e-06 5.318e-06 -5.184 -5.274 -0.090 9.81 CaCO3 5.469e-06 5.563e-06 -5.262 -5.255 0.007 -14.60 NaHCO3 3.843e-06 3.977e-06 -5.415 -5.400 0.015 31.73 CO3-2 1.394e-06 5.880e-07 -5.856 -6.231 -0.375 -2.97 @@ -1087,7 +1087,7 @@ C(4) 3.317e-04 Ca 1.786e-02 Ca+2 1.327e-02 5.632e-03 -1.877 -2.249 -0.372 -17.52 CaSO4 4.585e-03 4.664e-03 -2.339 -2.331 0.007 7.50 - CaHCO3+ 6.550e-06 5.318e-06 -5.184 -5.274 -0.090 122.78 + CaHCO3+ 6.550e-06 5.318e-06 -5.184 -5.274 -0.090 9.81 CaCO3 5.469e-06 5.563e-06 -5.262 -5.255 0.007 -14.60 CaOH+ 5.990e-08 4.781e-08 -7.223 -7.320 -0.098 (0) CaHSO4+ 7.500e-10 5.986e-10 -9.125 -9.223 -0.098 (0) diff --git a/ex7.out b/ex7.out index c2e715a7..710cbcc1 100644 --- a/ex7.out +++ b/ex7.out @@ -172,13 +172,13 @@ C(-4) 4.428e-25 C(4) 5.972e-03 HCO3- 4.857e-03 4.452e-03 -2.314 -2.351 -0.038 24.63 CO2 1.075e-03 1.076e-03 -2.969 -2.968 0.000 34.43 - CaHCO3+ 3.189e-05 2.927e-05 -4.496 -4.534 -0.037 122.68 + CaHCO3+ 3.189e-05 2.927e-05 -4.496 -4.534 -0.037 9.71 CaCO3 5.554e-06 5.563e-06 -5.255 -5.255 0.001 -14.60 CO3-2 2.752e-06 1.943e-06 -5.560 -5.711 -0.151 -3.73 (CO2)2 2.121e-08 2.125e-08 -7.673 -7.673 0.001 68.87 Ca 2.453e-03 Ca+2 2.415e-03 1.704e-03 -2.617 -2.768 -0.151 -17.97 - CaHCO3+ 3.189e-05 2.927e-05 -4.496 -4.534 -0.037 122.68 + CaHCO3+ 3.189e-05 2.927e-05 -4.496 -4.534 -0.037 9.71 CaCO3 5.554e-06 5.563e-06 -5.255 -5.255 0.001 -14.60 CaOH+ 2.879e-09 2.632e-09 -8.541 -8.580 -0.039 (0) H(0) 5.087e-15 @@ -296,8 +296,8 @@ Reaction 1. pH = 6.829 Charge balance pe = -3.721 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 459 - Density (g/cm³) = 0.99737 - Volume (L) = 1.00307 + Density (g/cm³) = 0.99738 + Volume (L) = 1.00306 Viscosity (mPa s) = 0.89504 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.354e-03 @@ -325,14 +325,14 @@ C(-4) 5.001e-04 C(4) 6.472e-03 HCO3- 4.931e-03 4.518e-03 -2.307 -2.345 -0.038 24.63 CO2 1.503e-03 1.504e-03 -2.823 -2.823 0.000 34.43 - CaHCO3+ 3.232e-05 2.966e-05 -4.490 -4.528 -0.037 122.68 - CaCO3 4.086e-06 4.093e-06 -5.389 -5.388 0.001 -14.60 + CaHCO3+ 3.234e-05 2.967e-05 -4.490 -4.528 -0.037 9.71 + CaCO3 4.086e-06 4.092e-06 -5.389 -5.388 0.001 -14.60 CO3-2 2.030e-06 1.431e-06 -5.692 -5.844 -0.152 -3.72 (CO2)2 4.147e-08 4.154e-08 -7.382 -7.382 0.001 68.87 Ca 2.453e-03 - Ca+2 2.417e-03 1.702e-03 -2.617 -2.769 -0.152 -17.97 - CaHCO3+ 3.232e-05 2.966e-05 -4.490 -4.528 -0.037 122.68 - CaCO3 4.086e-06 4.093e-06 -5.389 -5.388 0.001 -14.60 + Ca+2 2.416e-03 1.702e-03 -2.617 -2.769 -0.152 -17.97 + CaHCO3+ 3.234e-05 2.967e-05 -4.490 -4.528 -0.037 9.71 + CaCO3 4.086e-06 4.092e-06 -5.389 -5.388 0.001 -14.60 CaOH+ 2.088e-09 1.908e-09 -8.680 -8.720 -0.039 (0) H(0) 8.575e-10 H2 4.288e-10 4.295e-10 -9.368 -9.367 0.001 28.61 @@ -431,20 +431,20 @@ C(-4) 1.000e-03 C(4) 6.972e-03 HCO3- 5.003e-03 4.582e-03 -2.301 -2.339 -0.038 24.63 CO2 1.932e-03 1.934e-03 -2.714 -2.714 0.000 34.43 - CaHCO3+ 3.275e-05 3.004e-05 -4.485 -4.522 -0.038 122.68 + CaHCO3+ 3.277e-05 3.005e-05 -4.485 -4.522 -0.038 9.71 CaCO3 3.265e-06 3.271e-06 -5.486 -5.485 0.001 -14.60 CO3-2 1.627e-06 1.145e-06 -5.789 -5.941 -0.152 -3.72 (CO2)2 6.852e-08 6.864e-08 -7.164 -7.163 0.001 68.87 Ca 2.453e-03 Ca+2 2.417e-03 1.700e-03 -2.617 -2.770 -0.153 -17.97 - CaHCO3+ 3.275e-05 3.004e-05 -4.485 -4.522 -0.038 122.68 + CaHCO3+ 3.277e-05 3.005e-05 -4.485 -4.522 -0.038 9.71 CaCO3 3.265e-06 3.271e-06 -5.486 -5.485 0.001 -14.60 CaOH+ 1.646e-09 1.503e-09 -8.784 -8.823 -0.039 (0) H(0) 9.577e-10 H2 4.789e-10 4.797e-10 -9.320 -9.319 0.001 28.61 N(-3) 1.398e-04 NH4+ 1.394e-04 1.268e-04 -3.856 -3.897 -0.041 (0) - NH3 3.844e-07 3.850e-07 -6.415 -6.414 0.001 (0) + NH3 3.844e-07 3.850e-07 -6.415 -6.415 0.001 (0) N(0) 2.470e-07 N2 1.235e-07 1.237e-07 -6.908 -6.908 0.001 29.29 N(3) 0.000e+00 @@ -520,7 +520,7 @@ Reaction 1. Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 15 + Iterations = 16 Total H = 1.110191e+02 Total O = 5.552361e+01 @@ -537,13 +537,13 @@ C(-4) 1.500e-03 C(4) 7.472e-03 HCO3- 5.074e-03 4.646e-03 -2.295 -2.333 -0.038 24.63 CO2 2.361e-03 2.364e-03 -2.627 -2.626 0.000 34.43 - CaHCO3+ 3.317e-05 3.041e-05 -4.479 -4.517 -0.038 122.68 + CaHCO3+ 3.318e-05 3.042e-05 -4.479 -4.517 -0.038 9.71 CaCO3 2.742e-06 2.747e-06 -5.562 -5.561 0.001 -14.60 CO3-2 1.370e-06 9.631e-07 -5.863 -6.016 -0.153 -3.72 (CO2)2 1.024e-07 1.025e-07 -6.990 -6.989 0.001 68.87 Ca 2.453e-03 Ca+2 2.417e-03 1.698e-03 -2.617 -2.770 -0.153 -17.97 - CaHCO3+ 3.317e-05 3.041e-05 -4.479 -4.517 -0.038 122.68 + CaHCO3+ 3.318e-05 3.042e-05 -4.479 -4.517 -0.038 9.71 CaCO3 2.742e-06 2.747e-06 -5.562 -5.561 0.001 -14.60 CaOH+ 1.364e-09 1.245e-09 -8.865 -8.905 -0.039 (0) H(0) 1.008e-09 @@ -657,13 +657,13 @@ C(-4) 1.550e-03 C(4) 7.935e-03 HCO3- 5.144e-03 4.708e-03 -2.289 -2.327 -0.038 24.63 CO2 2.753e-03 2.757e-03 -2.560 -2.560 0.000 34.43 - CaHCO3+ 3.358e-05 3.077e-05 -4.474 -4.512 -0.038 122.68 + CaHCO3+ 3.359e-05 3.079e-05 -4.474 -4.512 -0.038 9.71 CaCO3 2.411e-06 2.415e-06 -5.618 -5.617 0.001 -14.60 CO3-2 1.208e-06 8.481e-07 -5.918 -6.072 -0.154 -3.72 (CO2)2 1.392e-07 1.395e-07 -6.856 -6.855 0.001 68.87 Ca 2.453e-03 Ca+2 2.417e-03 1.695e-03 -2.617 -2.771 -0.154 -17.96 - CaHCO3+ 3.358e-05 3.077e-05 -4.474 -4.512 -0.038 122.68 + CaHCO3+ 3.359e-05 3.079e-05 -4.474 -4.512 -0.038 9.71 CaCO3 2.411e-06 2.415e-06 -5.618 -5.617 0.001 -14.60 CaOH+ 1.184e-09 1.080e-09 -8.927 -8.966 -0.040 (0) H(0) 9.779e-10 @@ -749,7 +749,7 @@ N2(g) -3.02 9.612e-04 1.000 0.000e+00 2.567e-06 2.567e-06 pe = -3.320 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 477 Density (g/cm³) = 0.99741 - Volume (L) = 1.00320 + Volume (L) = 1.00319 Viscosity (mPa s) = 0.89735 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.837e-03 @@ -777,13 +777,13 @@ C(-4) 1.483e-03 C(4) 9.640e-03 HCO3- 5.419e-03 4.953e-03 -2.266 -2.305 -0.039 24.64 CO2 4.182e-03 4.187e-03 -2.379 -2.378 0.001 34.43 - CaHCO3+ 3.516e-05 3.219e-05 -4.454 -4.492 -0.038 122.68 + CaHCO3+ 3.518e-05 3.220e-05 -4.454 -4.492 -0.038 9.71 CaCO3 1.746e-06 1.749e-06 -5.758 -5.757 0.001 -14.60 CO3-2 8.851e-07 6.179e-07 -6.053 -6.209 -0.156 -3.71 (CO2)2 3.213e-07 3.218e-07 -6.493 -6.492 0.001 68.87 Ca 2.453e-03 Ca+2 2.416e-03 1.685e-03 -2.617 -2.773 -0.156 -17.96 - CaHCO3+ 3.516e-05 3.219e-05 -4.454 -4.492 -0.038 122.68 + CaHCO3+ 3.518e-05 3.220e-05 -4.454 -4.492 -0.038 9.71 CaCO3 1.746e-06 1.749e-06 -5.758 -5.757 0.001 -14.60 CaOH+ 8.161e-10 7.438e-10 -9.088 -9.129 -0.040 (0) H(0) 8.711e-10 @@ -880,7 +880,7 @@ N2(g) -2.58 2.636e-03 1.000 0.000e+00 2.006e-05 2.006e-05 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 22 + Iterations = 23 Total H = 1.110207e+02 Total O = 5.553344e+01 @@ -897,13 +897,13 @@ C(-4) 1.372e-03 C(4) 1.249e-02 CO2 6.509e-03 6.517e-03 -2.187 -2.186 0.001 34.43 HCO3- 5.940e-03 5.416e-03 -2.226 -2.266 -0.040 24.64 - CaHCO3+ 3.812e-05 3.480e-05 -4.419 -4.458 -0.040 122.68 + CaHCO3+ 3.813e-05 3.482e-05 -4.419 -4.458 -0.040 9.72 CaCO3 1.327e-06 1.329e-06 -5.877 -5.876 0.001 -14.60 (CO2)2 7.781e-07 7.796e-07 -6.109 -6.108 0.001 68.87 - CO3-2 6.869e-07 4.747e-07 -6.163 -6.324 -0.160 -3.70 + CO3-2 6.868e-07 4.747e-07 -6.163 -6.324 -0.160 -3.70 Ca 2.453e-03 Ca+2 2.414e-03 1.667e-03 -2.617 -2.778 -0.161 -17.95 - CaHCO3+ 3.812e-05 3.480e-05 -4.419 -4.458 -0.040 122.68 + CaHCO3+ 3.813e-05 3.482e-05 -4.419 -4.458 -0.040 9.72 CaCO3 1.327e-06 1.329e-06 -5.877 -5.876 0.001 -14.60 CaOH+ 5.685e-10 5.168e-10 -9.245 -9.287 -0.041 (0) H(0) 7.648e-10 @@ -989,7 +989,7 @@ N2(g) -2.13 7.467e-03 1.000 0.000e+00 1.430e-04 1.430e-04 pe = -3.000 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 530 Density (g/cm³) = 0.99754 - Volume (L) = 1.00338 + Volume (L) = 1.00337 Viscosity (mPa s) = 0.90075 Activity of water = 1.000 Ionic strength (mol/kgw) = 9.214e-03 @@ -1009,7 +1009,7 @@ N2(g) -2.13 7.467e-03 1.000 0.000e+00 1.430e-04 1.430e-04 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.537e-07 6.903e-07 -6.123 -6.161 -0.038 0.00 + H+ 7.537e-07 6.904e-07 -6.123 -6.161 -0.038 0.00 OH- 1.622e-08 1.466e-08 -7.790 -7.834 -0.044 -4.04 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.07 C(-4) 1.221e-03 @@ -1017,13 +1017,13 @@ C(-4) 1.221e-03 C(4) 1.643e-02 CO2 9.579e-03 9.592e-03 -2.019 -2.018 0.001 34.43 HCO3- 6.803e-03 6.178e-03 -2.167 -2.209 -0.042 24.64 - CaHCO3+ 4.289e-05 3.901e-05 -4.368 -4.409 -0.041 122.69 + CaHCO3+ 4.291e-05 3.902e-05 -4.367 -4.409 -0.041 9.72 (CO2)2 1.685e-06 1.689e-06 -5.773 -5.772 0.001 68.87 CaCO3 1.152e-06 1.155e-06 -5.938 -5.938 0.001 -14.60 CO3-2 6.171e-07 4.198e-07 -6.210 -6.377 -0.167 -3.68 Ca 2.453e-03 Ca+2 2.409e-03 1.638e-03 -2.618 -2.786 -0.168 -17.94 - CaHCO3+ 4.289e-05 3.901e-05 -4.368 -4.409 -0.041 122.69 + CaHCO3+ 4.291e-05 3.902e-05 -4.367 -4.409 -0.041 9.72 CaCO3 1.152e-06 1.155e-06 -5.938 -5.938 0.001 -14.60 CaOH+ 4.347e-10 3.935e-10 -9.362 -9.405 -0.043 (0) H(0) 6.743e-10 @@ -1093,7 +1093,7 @@ Component log P P phi Initial Final Delta CH4(g) -0.17 6.819e-01 0.998 0.000e+00 3.152e-02 3.152e-02 CO2(g) -0.43 3.697e-01 0.994 0.000e+00 1.709e-02 1.709e-02 H2O(g) -1.50 3.162e-02 0.993 0.000e+00 1.462e-03 1.462e-03 -N2(g) -1.77 1.683e-02 1.000 0.000e+00 7.780e-04 7.780e-04 +N2(g) -1.77 1.683e-02 1.000 0.000e+00 7.779e-04 7.779e-04 -----------------------------Solution composition------------------------------ @@ -1137,14 +1137,14 @@ C(-4) 1.071e-03 C(4) 2.029e-02 CO2 1.248e-02 1.250e-02 -1.904 -1.903 0.001 34.43 HCO3- 7.756e-03 7.015e-03 -2.110 -2.154 -0.044 24.65 - CaHCO3+ 4.799e-05 4.348e-05 -4.319 -4.362 -0.043 122.69 + CaHCO3+ 4.801e-05 4.350e-05 -4.319 -4.362 -0.043 9.72 (CO2)2 2.862e-06 2.869e-06 -5.543 -5.542 0.001 68.87 - CaCO3 1.119e-06 1.121e-06 -5.951 -5.950 0.001 -14.60 + CaCO3 1.118e-06 1.121e-06 -5.951 -5.950 0.001 -14.60 CO3-2 6.204e-07 4.152e-07 -6.207 -6.382 -0.174 -3.66 Ca 2.453e-03 Ca+2 2.404e-03 1.608e-03 -2.619 -2.794 -0.175 -17.92 - CaHCO3+ 4.799e-05 4.348e-05 -4.319 -4.362 -0.043 122.69 - CaCO3 1.119e-06 1.121e-06 -5.951 -5.950 0.001 -14.60 + CaHCO3+ 4.801e-05 4.350e-05 -4.319 -4.362 -0.043 9.72 + CaCO3 1.118e-06 1.121e-06 -5.951 -5.950 0.001 -14.60 CaOH+ 3.734e-10 3.365e-10 -9.428 -9.473 -0.045 (0) H(0) 6.106e-10 H2 3.053e-10 3.060e-10 -9.515 -9.514 0.001 28.61 @@ -1228,7 +1228,7 @@ N2(g) -1.60 2.537e-02 1.001 0.000e+00 2.608e-03 2.608e-03 pH = 6.071 Charge balance pe = -2.876 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 588 - Density (g/cm³) = 0.99767 + Density (g/cm³) = 0.99768 Volume (L) = 1.00356 Viscosity (mPa s) = 0.90362 Activity of water = 0.999 @@ -1257,13 +1257,13 @@ C(-4) 9.699e-04 C(4) 2.277e-02 CO2 1.436e-02 1.439e-02 -1.843 -1.842 0.001 34.43 HCO3- 8.350e-03 7.534e-03 -2.078 -2.123 -0.045 24.65 - CaHCO3+ 5.109e-05 4.618e-05 -4.292 -4.336 -0.044 122.69 + CaHCO3+ 5.112e-05 4.620e-05 -4.291 -4.335 -0.044 9.72 (CO2)2 3.789e-06 3.799e-06 -5.421 -5.420 0.001 68.87 CaCO3 1.109e-06 1.112e-06 -5.955 -5.954 0.001 -14.60 CO3-2 6.280e-07 4.162e-07 -6.202 -6.381 -0.179 -3.65 Ca 2.453e-03 Ca+2 2.401e-03 1.590e-03 -2.620 -2.799 -0.179 -17.92 - CaHCO3+ 5.109e-05 4.618e-05 -4.292 -4.336 -0.044 122.69 + CaHCO3+ 5.112e-05 4.620e-05 -4.291 -4.335 -0.044 9.72 CaCO3 1.109e-06 1.112e-06 -5.955 -5.954 0.001 -14.60 CaOH+ 3.456e-10 3.106e-10 -9.461 -9.508 -0.046 (0) H(0) 5.750e-10 @@ -1349,7 +1349,7 @@ N2(g) -1.51 3.068e-02 1.001 0.000e+00 6.827e-03 6.827e-03 pe = -2.853 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 600 Density (g/cm³) = 0.99770 - Volume (L) = 1.00365 + Volume (L) = 1.00364 Viscosity (mPa s) = 0.90420 Activity of water = 0.999 Ionic strength (mol/kgw) = 1.105e-02 @@ -1360,7 +1360,7 @@ N2(g) -1.51 3.068e-02 1.001 0.000e+00 6.827e-03 6.827e-03 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 20 + Iterations = 21 Total H = 1.110340e+02 Total O = 5.556019e+01 @@ -1377,15 +1377,15 @@ C(-4) 9.119e-04 C(4) 2.415e-02 CO2 1.543e-02 1.546e-02 -1.812 -1.811 0.001 34.43 HCO3- 8.653e-03 7.798e-03 -2.063 -2.108 -0.045 24.65 - CaHCO3+ 5.266e-05 4.754e-05 -4.279 -4.323 -0.044 122.69 + CaHCO3+ 5.268e-05 4.756e-05 -4.278 -4.323 -0.044 9.72 (CO2)2 4.373e-06 4.384e-06 -5.359 -5.358 0.001 68.87 CaCO3 1.100e-06 1.103e-06 -5.959 -5.958 0.001 -14.60 CO3-2 6.294e-07 4.151e-07 -6.201 -6.382 -0.181 -3.65 Ca 2.453e-03 Ca+2 2.399e-03 1.581e-03 -2.620 -2.801 -0.181 -17.91 - CaHCO3+ 5.266e-05 4.754e-05 -4.279 -4.323 -0.044 122.69 + CaHCO3+ 5.268e-05 4.756e-05 -4.278 -4.323 -0.044 9.72 CaCO3 1.100e-06 1.103e-06 -5.959 -5.958 0.001 -14.60 - CaOH+ 3.315e-10 2.977e-10 -9.479 -9.526 -0.047 (0) + CaOH+ 3.315e-10 2.976e-10 -9.479 -9.526 -0.047 (0) H(0) 5.562e-10 H2 2.781e-10 2.788e-10 -9.556 -9.555 0.001 28.61 N(-3) 3.805e-03 @@ -1468,7 +1468,7 @@ N2(g) -1.48 3.341e-02 1.001 0.000e+00 1.550e-02 1.550e-02 pH = 6.047 Charge balance pe = -2.841 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 605 - Density (g/cm³) = 0.99771 + Density (g/cm³) = 0.99772 Volume (L) = 1.00376 Viscosity (mPa s) = 0.90448 Activity of water = 0.999 @@ -1497,13 +1497,13 @@ C(-4) 8.824e-04 C(4) 2.483e-02 CO2 1.597e-02 1.600e-02 -1.797 -1.796 0.001 34.43 HCO3- 8.795e-03 7.921e-03 -2.056 -2.101 -0.045 24.65 - CaHCO3+ 5.338e-05 4.816e-05 -4.273 -4.317 -0.045 122.69 + CaHCO3+ 5.340e-05 4.818e-05 -4.272 -4.317 -0.045 9.72 (CO2)2 4.685e-06 4.697e-06 -5.329 -5.328 0.001 68.87 CaCO3 1.093e-06 1.096e-06 -5.961 -5.960 0.001 -14.60 CO3-2 6.288e-07 4.138e-07 -6.201 -6.383 -0.182 -3.64 Ca 2.453e-03 Ca+2 2.398e-03 1.577e-03 -2.620 -2.802 -0.182 -17.91 - CaHCO3+ 5.338e-05 4.816e-05 -4.273 -4.317 -0.045 122.69 + CaHCO3+ 5.340e-05 4.818e-05 -4.272 -4.317 -0.045 9.72 CaCO3 1.093e-06 1.096e-06 -5.961 -5.960 0.001 -14.60 CaOH+ 3.247e-10 2.913e-10 -9.489 -9.536 -0.047 (0) H(0) 5.469e-10 @@ -1589,7 +1589,7 @@ N2(g) -1.46 3.477e-02 1.001 0.000e+00 3.297e-02 3.297e-02 pe = -2.835 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 607 Density (g/cm³) = 0.99772 - Volume (L) = 1.00397 + Volume (L) = 1.00396 Viscosity (mPa s) = 0.90461 Activity of water = 0.999 Ionic strength (mol/kgw) = 1.126e-02 @@ -1617,13 +1617,13 @@ C(-4) 8.676e-04 C(4) 2.517e-02 CO2 1.624e-02 1.627e-02 -1.789 -1.789 0.001 34.43 HCO3- 8.862e-03 7.979e-03 -2.052 -2.098 -0.046 24.65 - CaHCO3+ 5.371e-05 4.845e-05 -4.270 -4.315 -0.045 122.69 + CaHCO3+ 5.373e-05 4.847e-05 -4.270 -4.315 -0.045 9.73 (CO2)2 4.845e-06 4.858e-06 -5.315 -5.314 0.001 68.87 CaCO3 1.090e-06 1.092e-06 -5.963 -5.962 0.001 -14.60 CO3-2 6.281e-07 4.129e-07 -6.202 -6.384 -0.182 -3.64 Ca 2.452e-03 Ca+2 2.397e-03 1.575e-03 -2.620 -2.803 -0.183 -17.91 - CaHCO3+ 5.371e-05 4.845e-05 -4.270 -4.315 -0.045 122.69 + CaHCO3+ 5.373e-05 4.847e-05 -4.270 -4.315 -0.045 9.73 CaCO3 1.090e-06 1.092e-06 -5.963 -5.962 0.001 -14.60 CaOH+ 3.213e-10 2.882e-10 -9.493 -9.540 -0.047 (0) H(0) 5.423e-10 @@ -1803,13 +1803,13 @@ C(-4) 8.710e-07 C(4) 5.991e-03 HCO3- 4.861e-03 4.455e-03 -2.313 -2.351 -0.038 24.63 CO2 1.090e-03 1.091e-03 -2.963 -2.962 0.000 34.43 - CaHCO3+ 3.191e-05 2.929e-05 -4.496 -4.533 -0.037 122.68 + CaHCO3+ 3.191e-05 2.929e-05 -4.496 -4.533 -0.037 9.71 CaCO3 5.482e-06 5.491e-06 -5.261 -5.260 0.001 -14.61 CO3-2 2.717e-06 1.918e-06 -5.566 -5.717 -0.151 -3.73 (CO2)2 2.182e-08 2.186e-08 -7.661 -7.660 0.001 68.87 Ca 2.453e-03 Ca+2 2.416e-03 1.704e-03 -2.617 -2.769 -0.152 -17.98 - CaHCO3+ 3.191e-05 2.929e-05 -4.496 -4.533 -0.037 122.68 + CaHCO3+ 3.191e-05 2.929e-05 -4.496 -4.533 -0.037 9.71 CaCO3 5.482e-06 5.491e-06 -5.261 -5.260 0.001 -14.61 CaOH+ 2.840e-09 2.596e-09 -8.547 -8.586 -0.039 (0) H(0) 1.898e-10 @@ -1923,13 +1923,13 @@ C(-4) 1.742e-06 C(4) 6.010e-03 HCO3- 4.864e-03 4.458e-03 -2.313 -2.351 -0.038 24.63 CO2 1.106e-03 1.108e-03 -2.956 -2.956 0.000 34.43 - CaHCO3+ 3.193e-05 2.930e-05 -4.496 -4.533 -0.037 122.68 + CaHCO3+ 3.193e-05 2.930e-05 -4.496 -4.533 -0.037 9.71 CaCO3 5.407e-06 5.416e-06 -5.267 -5.266 0.001 -14.61 CO3-2 2.680e-06 1.892e-06 -5.572 -5.723 -0.151 -3.73 (CO2)2 2.248e-08 2.252e-08 -7.648 -7.647 0.001 68.87 Ca 2.453e-03 Ca+2 2.416e-03 1.704e-03 -2.617 -2.769 -0.152 -17.98 - CaHCO3+ 3.193e-05 2.930e-05 -4.496 -4.533 -0.037 122.68 + CaHCO3+ 3.193e-05 2.930e-05 -4.496 -4.533 -0.037 9.71 CaCO3 5.407e-06 5.416e-06 -5.267 -5.266 0.001 -14.61 CaOH+ 2.799e-09 2.559e-09 -8.553 -8.592 -0.039 (0) H(0) 2.249e-10 @@ -2043,13 +2043,13 @@ C(-4) 2.613e-06 C(4) 6.029e-03 HCO3- 4.866e-03 4.460e-03 -2.313 -2.351 -0.038 24.63 CO2 1.123e-03 1.124e-03 -2.950 -2.949 0.000 34.43 - CaHCO3+ 3.194e-05 2.932e-05 -4.496 -4.533 -0.037 122.68 + CaHCO3+ 3.194e-05 2.932e-05 -4.496 -4.533 -0.037 9.71 CaCO3 5.334e-06 5.343e-06 -5.273 -5.272 0.001 -14.61 CO3-2 2.644e-06 1.867e-06 -5.578 -5.729 -0.151 -3.73 (CO2)2 2.315e-08 2.319e-08 -7.635 -7.635 0.001 68.87 Ca 2.453e-03 Ca+2 2.416e-03 1.704e-03 -2.617 -2.769 -0.152 -17.98 - CaHCO3+ 3.194e-05 2.932e-05 -4.496 -4.533 -0.037 122.68 + CaHCO3+ 3.194e-05 2.932e-05 -4.496 -4.533 -0.037 9.71 CaCO3 5.334e-06 5.343e-06 -5.273 -5.272 0.001 -14.61 CaOH+ 2.760e-09 2.523e-09 -8.559 -8.598 -0.039 (0) H(0) 2.480e-10 @@ -2135,7 +2135,7 @@ N2(g) -3.85 1.418e-04 1.000 0.000e+00 1.345e-04 1.345e-04 pe = -3.581 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 457 Density (g/cm³) = 0.99733 - Volume (L) = 1.00309 + Volume (L) = 1.00308 Viscosity (mPa s) = 0.89463 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.293e-03 @@ -2163,13 +2163,13 @@ C(-4) 3.485e-06 C(4) 6.048e-03 HCO3- 4.869e-03 4.463e-03 -2.313 -2.350 -0.038 24.63 CO2 1.139e-03 1.140e-03 -2.943 -2.943 0.000 34.43 - CaHCO3+ 3.196e-05 2.933e-05 -4.495 -4.533 -0.037 122.68 + CaHCO3+ 3.196e-05 2.933e-05 -4.495 -4.533 -0.037 9.71 CaCO3 5.263e-06 5.272e-06 -5.279 -5.278 0.001 -14.61 CO3-2 2.609e-06 1.842e-06 -5.583 -5.735 -0.151 -3.73 (CO2)2 2.383e-08 2.387e-08 -7.623 -7.622 0.001 68.87 Ca 2.453e-03 Ca+2 2.416e-03 1.704e-03 -2.617 -2.769 -0.152 -17.98 - CaHCO3+ 3.196e-05 2.933e-05 -4.495 -4.533 -0.037 122.68 + CaHCO3+ 3.196e-05 2.933e-05 -4.495 -4.533 -0.037 9.71 CaCO3 5.263e-06 5.272e-06 -5.279 -5.278 0.001 -14.61 CaOH+ 2.722e-09 2.488e-09 -8.565 -8.604 -0.039 (0) H(0) 2.656e-10 @@ -2283,13 +2283,13 @@ C(-4) 6.970e-06 C(4) 6.123e-03 HCO3- 4.879e-03 4.472e-03 -2.312 -2.349 -0.038 24.63 CO2 1.204e-03 1.206e-03 -2.919 -2.919 0.000 34.43 - CaHCO3+ 3.202e-05 2.939e-05 -4.495 -4.532 -0.037 122.68 + CaHCO3+ 3.202e-05 2.939e-05 -4.495 -4.532 -0.037 9.71 CaCO3 4.998e-06 5.006e-06 -5.301 -5.300 0.001 -14.61 CO3-2 2.479e-06 1.749e-06 -5.606 -5.757 -0.151 -3.73 (CO2)2 2.664e-08 2.668e-08 -7.574 -7.574 0.001 68.87 Ca 2.453e-03 Ca+2 2.416e-03 1.704e-03 -2.617 -2.769 -0.152 -17.98 - CaHCO3+ 3.202e-05 2.939e-05 -4.495 -4.532 -0.037 122.68 + CaHCO3+ 3.202e-05 2.939e-05 -4.495 -4.532 -0.037 9.71 CaCO3 4.998e-06 5.006e-06 -5.301 -5.300 0.001 -14.61 CaOH+ 2.580e-09 2.358e-09 -8.588 -8.627 -0.039 (0) H(0) 3.114e-10 @@ -2374,7 +2374,7 @@ N2(g) -3.24 5.690e-04 1.000 0.000e+00 5.396e-04 5.396e-04 pH = 6.878 Charge balance pe = -3.582 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 458 - Density (g/cm³) = 0.99733 + Density (g/cm³) = 0.99734 Volume (L) = 1.00310 Viscosity (mPa s) = 0.89486 Activity of water = 1.000 @@ -2403,13 +2403,13 @@ C(-4) 1.394e-05 C(4) 6.274e-03 HCO3- 4.900e-03 4.490e-03 -2.310 -2.348 -0.038 24.63 CO2 1.335e-03 1.336e-03 -2.875 -2.874 0.000 34.43 - CaHCO3+ 3.215e-05 2.950e-05 -4.493 -4.530 -0.037 122.68 + CaHCO3+ 3.215e-05 2.950e-05 -4.493 -4.530 -0.037 9.71 CaCO3 4.545e-06 4.553e-06 -5.342 -5.342 0.001 -14.61 CO3-2 2.256e-06 1.591e-06 -5.647 -5.798 -0.152 -3.73 (CO2)2 3.273e-08 3.278e-08 -7.485 -7.484 0.001 68.87 Ca 2.453e-03 Ca+2 2.416e-03 1.703e-03 -2.617 -2.769 -0.152 -17.98 - CaHCO3+ 3.215e-05 2.950e-05 -4.493 -4.530 -0.037 122.68 + CaHCO3+ 3.215e-05 2.950e-05 -4.493 -4.530 -0.037 9.71 CaCO3 4.545e-06 4.553e-06 -5.342 -5.342 0.001 -14.61 CaOH+ 2.337e-09 2.135e-09 -8.631 -8.671 -0.039 (0) H(0) 3.610e-10 @@ -2495,7 +2495,7 @@ N2(g) -2.94 1.137e-03 1.000 0.000e+00 1.079e-03 1.079e-03 pe = -3.536 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 460 Density (g/cm³) = 0.99734 - Volume (L) = 1.00313 + Volume (L) = 1.00312 Viscosity (mPa s) = 0.89515 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.365e-03 @@ -2523,13 +2523,13 @@ C(-4) 2.788e-05 C(4) 6.577e-03 HCO3- 4.943e-03 4.529e-03 -2.306 -2.344 -0.038 24.63 CO2 1.596e-03 1.598e-03 -2.797 -2.797 0.000 34.43 - CaHCO3+ 3.241e-05 2.973e-05 -4.489 -4.527 -0.037 122.68 + CaHCO3+ 3.241e-05 2.973e-05 -4.489 -4.527 -0.037 9.71 CaCO3 3.864e-06 3.871e-06 -5.413 -5.412 0.001 -14.61 CO3-2 1.921e-06 1.354e-06 -5.716 -5.868 -0.152 -3.73 (CO2)2 4.677e-08 4.685e-08 -7.330 -7.329 0.001 68.87 Ca 2.453e-03 Ca+2 2.417e-03 1.702e-03 -2.617 -2.769 -0.152 -17.98 - CaHCO3+ 3.241e-05 2.973e-05 -4.489 -4.527 -0.037 122.68 + CaHCO3+ 3.241e-05 2.973e-05 -4.489 -4.527 -0.037 9.71 CaCO3 3.864e-06 3.871e-06 -5.413 -5.412 0.001 -14.61 CaOH+ 1.970e-09 1.800e-09 -8.706 -8.745 -0.039 (0) H(0) 4.105e-10 @@ -2643,13 +2643,13 @@ C(-4) 5.573e-05 C(4) 7.193e-03 HCO3- 5.037e-03 4.613e-03 -2.298 -2.336 -0.038 24.63 CO2 2.117e-03 2.120e-03 -2.674 -2.674 0.000 34.43 - CaHCO3+ 3.297e-05 3.023e-05 -4.482 -4.520 -0.038 122.68 + CaHCO3+ 3.297e-05 3.023e-05 -4.482 -4.520 -0.038 9.71 CaCO3 3.016e-06 3.022e-06 -5.521 -5.520 0.001 -14.61 CO3-2 1.505e-06 1.059e-06 -5.822 -5.975 -0.153 -3.73 (CO2)2 8.234e-08 8.248e-08 -7.084 -7.084 0.001 68.87 Ca 2.453e-03 Ca+2 2.417e-03 1.699e-03 -2.617 -2.770 -0.153 -17.97 - CaHCO3+ 3.297e-05 3.023e-05 -4.482 -4.520 -0.038 122.68 + CaHCO3+ 3.297e-05 3.023e-05 -4.482 -4.520 -0.038 9.71 CaCO3 3.016e-06 3.022e-06 -5.521 -5.520 0.001 -14.61 CaOH+ 1.511e-09 1.380e-09 -8.821 -8.860 -0.039 (0) H(0) 4.548e-10 @@ -2734,7 +2734,7 @@ N2(g) -2.36 4.407e-03 1.000 0.000e+00 4.181e-03 4.181e-03 pH = 6.540 Charge balance pe = -3.309 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 471 - Density (g/cm³) = 0.99737 + Density (g/cm³) = 0.99738 Volume (L) = 1.00326 Viscosity (mPa s) = 0.89657 Activity of water = 1.000 @@ -2763,13 +2763,13 @@ C(-4) 1.088e-04 C(4) 8.394e-03 HCO3- 5.246e-03 4.799e-03 -2.280 -2.319 -0.039 24.63 CO2 3.110e-03 3.114e-03 -2.507 -2.507 0.001 34.43 - CaHCO3+ 3.418e-05 3.131e-05 -4.466 -4.504 -0.038 122.68 + CaHCO3+ 3.418e-05 3.131e-05 -4.466 -4.504 -0.038 9.71 CaCO3 2.212e-06 2.216e-06 -5.655 -5.654 0.001 -14.60 CO3-2 1.114e-06 7.800e-07 -5.953 -6.108 -0.155 -3.72 (CO2)2 1.777e-07 1.780e-07 -6.750 -6.750 0.001 68.87 Ca 2.453e-03 Ca+2 2.416e-03 1.691e-03 -2.617 -2.772 -0.155 -17.97 - CaHCO3+ 3.418e-05 3.131e-05 -4.466 -4.504 -0.038 122.68 + CaHCO3+ 3.418e-05 3.131e-05 -4.466 -4.504 -0.038 9.71 CaCO3 2.212e-06 2.216e-06 -5.655 -5.654 0.001 -14.60 CaOH+ 1.066e-09 9.727e-10 -8.972 -9.012 -0.040 (0) H(0) 4.883e-10 @@ -2854,8 +2854,8 @@ N2(g) -2.06 8.751e-03 1.000 0.000e+00 8.306e-03 8.306e-03 pH = 6.360 Charge balance pe = -3.139 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 490 - Density (g/cm³) = 0.99742 - Volume (L) = 1.00345 + Density (g/cm³) = 0.99743 + Volume (L) = 1.00344 Viscosity (mPa s) = 0.89810 Activity of water = 1.000 Ionic strength (mol/kgw) = 8.155e-03 @@ -2883,13 +2883,13 @@ C(-4) 2.173e-04 C(4) 1.092e-02 HCO3- 5.738e-03 5.237e-03 -2.241 -2.281 -0.040 24.64 CO2 5.139e-03 5.146e-03 -2.289 -2.289 0.001 34.43 - CaHCO3+ 3.699e-05 3.381e-05 -4.432 -4.471 -0.039 122.68 + CaHCO3+ 3.699e-05 3.381e-05 -4.432 -4.471 -0.039 9.71 CaCO3 1.577e-06 1.580e-06 -5.802 -5.801 0.001 -14.60 CO3-2 8.103e-07 5.622e-07 -6.091 -6.250 -0.159 -3.71 (CO2)2 4.851e-07 4.860e-07 -6.314 -6.313 0.001 68.87 Ca 2.452e-03 Ca+2 2.414e-03 1.673e-03 -2.617 -2.776 -0.159 -17.96 - CaHCO3+ 3.699e-05 3.381e-05 -4.432 -4.471 -0.039 122.68 + CaHCO3+ 3.699e-05 3.381e-05 -4.432 -4.471 -0.039 9.71 CaCO3 1.577e-06 1.580e-06 -5.802 -5.801 0.001 -14.60 CaOH+ 6.985e-10 6.355e-10 -9.156 -9.197 -0.041 (0) H(0) 5.119e-10 @@ -3003,13 +3003,13 @@ C(-4) 4.337e-04 C(4) 1.604e-02 CO2 9.180e-03 9.193e-03 -2.037 -2.037 0.001 34.43 HCO3- 6.813e-03 6.187e-03 -2.167 -2.209 -0.042 24.64 - CaHCO3+ 4.294e-05 3.905e-05 -4.367 -4.408 -0.041 122.69 + CaHCO3+ 4.294e-05 3.905e-05 -4.367 -4.408 -0.041 9.72 (CO2)2 1.548e-06 1.551e-06 -5.810 -5.809 0.001 68.87 CaCO3 1.205e-06 1.207e-06 -5.919 -5.918 0.001 -14.60 CO3-2 6.457e-07 4.392e-07 -6.190 -6.357 -0.167 -3.69 Ca 2.452e-03 Ca+2 2.408e-03 1.636e-03 -2.618 -2.786 -0.168 -17.94 - CaHCO3+ 4.294e-05 3.905e-05 -4.367 -4.408 -0.041 122.69 + CaHCO3+ 4.294e-05 3.905e-05 -4.367 -4.408 -0.041 9.72 CaCO3 1.205e-06 1.207e-06 -5.919 -5.918 0.001 -14.60 CaOH+ 4.540e-10 4.109e-10 -9.343 -9.386 -0.043 (0) H(0) 5.262e-10 @@ -3094,8 +3094,8 @@ N2(g) -1.46 3.459e-02 1.001 0.000e+00 3.292e-02 3.292e-02 pH = 6.022 Charge balance pe = -2.811 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 611 - Density (g/cm³) = 0.99773 - Volume (L) = 1.00454 + Density (g/cm³) = 0.99774 + Volume (L) = 1.00453 Viscosity (mPa s) = 0.90495 Activity of water = 0.999 Ionic strength (mol/kgw) = 1.135e-02 @@ -3123,13 +3123,13 @@ C(-4) 8.641e-04 C(4) 2.622e-02 CO2 1.720e-02 1.723e-02 -1.764 -1.764 0.001 34.43 HCO3- 8.951e-03 8.057e-03 -2.048 -2.094 -0.046 24.66 - CaHCO3+ 5.413e-05 4.881e-05 -4.267 -4.311 -0.045 122.69 + CaHCO3+ 5.416e-05 4.884e-05 -4.266 -4.311 -0.045 9.73 (CO2)2 5.435e-06 5.450e-06 -5.265 -5.264 0.001 68.87 CaCO3 1.047e-06 1.049e-06 -5.980 -5.979 0.001 -14.60 CO3-2 6.054e-07 3.974e-07 -6.218 -6.401 -0.183 -3.64 Ca 2.451e-03 Ca+2 2.396e-03 1.572e-03 -2.621 -2.804 -0.183 -17.91 - CaHCO3+ 5.413e-05 4.881e-05 -4.267 -4.311 -0.045 122.69 + CaHCO3+ 5.416e-05 4.884e-05 -4.266 -4.311 -0.045 9.73 CaCO3 1.047e-06 1.049e-06 -5.980 -5.979 0.001 -14.60 CaOH+ 3.058e-10 2.742e-10 -9.515 -9.562 -0.047 (0) H(0) 5.340e-10 diff --git a/ex7.sel b/ex7.sel index ce9b0612..f83f48d4 100644 --- a/ex7.sel +++ b/ex7.sel @@ -15,7 +15,7 @@ 2 react 1.0000e+00 -0.3204 -0.2586 -1.4585 -7.4178 1.1000e+00 1.0429e+00 2.3104e+01 4.5606e-01 5.2388e-01 3.2968e-02 0.0000e+00 3 i_gas -99 -1.5001 -21.5512 -999.9990 -999.9990 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 3 react 1.0000e-03 -1.4939 -3.2574 -4.4529 -9.5994 6.4111e-02 6.0800e-02 2.3190e+01 3.0424e-02 5.2421e-04 3.3415e-05 0.0000e+00 - 3 react 2.0000e-03 -1.4874 -2.9563 -4.1504 -9.3376 6.5180e-02 6.1814e-02 2.3190e+01 3.0880e-02 1.0486e-03 6.7058e-05 0.0000e+00 + 3 react 2.0000e-03 -1.4874 -2.9563 -4.1504 -9.3376 6.5179e-02 6.1814e-02 2.3190e+01 3.0880e-02 1.0486e-03 6.7058e-05 0.0000e+00 3 react 3.0000e-03 -1.4811 -2.7802 -3.9735 -9.1856 6.6249e-02 6.2828e-02 2.3190e+01 3.1336e-02 1.5730e-03 1.0076e-04 0.0000e+00 3 react 4.0000e-03 -1.4748 -2.6552 -3.8481 -9.0783 6.7318e-02 6.3843e-02 2.3190e+01 3.1792e-02 2.0975e-03 1.3450e-04 0.0000e+00 3 react 8.0000e-03 -1.4506 -2.3542 -3.5462 -8.8236 7.1596e-02 6.7900e-02 2.3190e+01 3.3615e-02 4.1953e-03 2.6955e-04 0.0000e+00 From 7ec217d47bfff56057000e1ac954d46b31417083 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Fri, 14 Mar 2025 18:22:27 +0000 Subject: [PATCH 299/384] Squashed 'phreeqcpp/' changes from a4886d6..b24dedb b24dedb Added missing newlines(\n) to distribution of species section 35afe0d Tony changes to basicsubs, updated viscosity for Sr, NH4, and tidied databases. git-subtree-dir: phreeqcpp git-subtree-split: b24dedb82589e656af7af947f3c475b49ba36fc4 --- basicsubs.cpp | 19 ++++--- class_main.cpp | 68 +++------------------- print.cpp | 151 +++++++++++++++++++++++++++++++++++++------------ 3 files changed, 133 insertions(+), 105 deletions(-) diff --git a/basicsubs.cpp b/basicsubs.cpp index adac2736..1f3b83e8 100644 --- a/basicsubs.cpp +++ b/basicsubs.cpp @@ -262,8 +262,9 @@ calc_SC(void) { class species *s_ptr; int i; - LDBLE ka, l_z, Dw, ff, sqrt_mu, a, a2, a3, av, v_Cl = 1; + LDBLE ka, l_z, Dw, ff, sqrt_mu, a, a2, a3, av, v_Cl = 1, Dw_SC; SC = 0; + Dw_SC = 1e4 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298.15e3); // for recalculating Dw to ll0 sqrt_mu = sqrt(mu_x); bool Falk = false; s_ptr = s_search("H+"); @@ -347,9 +348,9 @@ calc_SC(void) if (correct_Dw) s_x[i]->dw_corr = Dw; s_x[i]->dw_t_SC = s_x[i]->moles / mass_water_aq_x * l_z * l_z * Dw; + s_x[i]->dw_t_SC *= 1e3 * Dw_SC; SC += s_x[i]->dw_t_SC; } - SC *= 1e7 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298150.0); return (SC); } else @@ -364,7 +365,7 @@ calc_SC(void) Dw dw_t a a2 visc a3 = (0) or >5 -dw 1.03e-9 -14 4.03 0.8341 1.679 # Li+, ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5 */ - LDBLE q, sqrt_q, B1, B2, m_plus, m_min, eq_plus, eq_min, eq_dw_plus, eq_dw_min, z_plus, z_min, t1, Dw_SC; + LDBLE q, sqrt_q, B1, B2, m_plus, m_min, eq_plus, eq_min, eq_dw_plus, eq_dw_min, z_plus, z_min, t1; m_plus = m_min = eq_plus = eq_min = eq_dw_plus = eq_dw_min = z_plus = z_min = 0; SC = 0; @@ -432,7 +433,7 @@ calc_SC(void) mu_min = 3 * m_min * (z_min - 1) + m_min; mu_plus = 3 * m_plus * (z_plus - 1) + m_plus; - Dw_SC = 1e4 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298.15e3); // for recalculating Dw to ll0 + //Dw_SC = 1e4 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298.15e3); // for recalculating Dw to ll0 t1 = calc_solution_volume(); ll_SC = 0.5e3 * (eq_plus + eq_min) / t1 * mass_water_aq_x / t1; // recalculates ll to SC in uS/cm, with mu in mol/kgw @@ -466,7 +467,8 @@ calc_SC(void) if (correct_Dw) s_x[i]->dw_corr = Dw; s_x[i]->dw_t_SC = s_x[i]->moles / mass_water_aq_x * l_z * l_z * Dw; - SC += s_x[i]->dw_t_SC * 1e3 * Dw_SC; + s_x[i]->dw_t_SC *= 1e3 * Dw_SC; + SC += s_x[i]->dw_t_SC; } else { @@ -520,11 +522,11 @@ calc_SC(void) a = (lz > 0 ? mu_plus / (eq_plus * a2) : mu_min / (eq_min * a2)); t1 *= s_x[i]->moles * l_z * l_z / a; t1 *= ll_SC; - s_x[i]->dw_t_SC = t1 / (1e3 * Dw_SC); + s_x[i]->dw_t_SC = t1; SC += t1; } } - return SC; + return SC; } } @@ -1270,8 +1272,7 @@ calc_t_sc(const char* name) calc_SC(); if (!SC) return (0); - LDBLE t = s_ptr->dw_t_SC * 1e7 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298150.0); - return (t / SC); + return s_ptr->dw_t_SC / SC; } return (0); } diff --git a/class_main.cpp b/class_main.cpp index 79e6475f..abd19625 100644 --- a/class_main.cpp +++ b/class_main.cpp @@ -224,6 +224,7 @@ main_method(int argc, char *argv[]) } #ifdef NPP #ifdef DOS + SetConsoleOutputCP(CP_UTF8); write_banner(); #endif #else @@ -295,64 +296,6 @@ main_method(int argc, char *argv[]) return 0; } #endif //TEST_COPY -#ifdef NPP -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -write_banner(void) -/* ---------------------------------------------------------------------- */ -{ -#ifdef TESTING - return OK; -#endif -#ifndef NO_UTF8_ENCODING - char buffer[80]; - int len, indent; - screen_msg( - " ÛßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßÛ\n"); - screen_msg( - " º º\n"); - - /* version */ -#ifdef NPP - len = sprintf(buffer, "* PHREEQC-%s *", "3.8.0"); -#else - len = sprintf(buffer, "* PHREEQC-%s *", "@VERSION@"); -#endif - indent = (49 - len) / 2; - screen_msg(sformatf("%14cº%*c%s%*cº\n", ' ', indent, ' ', buffer, - 49 - indent - len, ' ')); - - screen_msg( - " º º\n"); - screen_msg( - " º A hydrogeochemical transport model º\n"); - screen_msg( - " º º\n"); - screen_msg( - " º by º\n"); - screen_msg( - " º D.L. Parkhurst and C.A.J. Appelo º\n"); - screen_msg( - " º º\n"); - - - /* date */ -#ifdef NPP - len = sprintf(buffer, "%s", "August 27, 2024, with bug-fixes and new items"); -#else - len = sprintf(buffer, "%s", "@VER_DATE@"); -#endif - indent = (49 - len) / 2; - screen_msg(sformatf("%14cº%*c%s%*cº\n", ' ', indent, ' ', buffer, - 49 - indent - len, ' ')); - - screen_msg( - " ÛÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÛ\n\n"); - -#endif - return 0; -} -#else /* ---------------------------------------------------------------------- */ int Phreeqc:: write_banner(void) @@ -370,7 +313,11 @@ write_banner(void) " ║ ║\n"); /* version */ +#ifdef NPP + len = snprintf(buffer, sizeof(buffer), "* PHREEQC-%s *", "3.8.7"); +#else len = snprintf(buffer, sizeof(buffer), "* PHREEQC-%s *", "@VERSION@"); +#endif indent = (44 - len) / 2; screen_msg(sformatf("%14c║%*c%s%*c║\n", ' ', indent, ' ', buffer, 44 - indent - len, ' ')); @@ -390,7 +337,11 @@ write_banner(void) /* date */ +#ifdef NPP + len = snprintf(buffer, sizeof(buffer), "%s", "February 25, 2025"); +#else len = snprintf(buffer, sizeof(buffer), "%s", "@VER_DATE@"); +#endif indent = (44 - len) / 2; screen_msg(sformatf("%14c║%*c%s%*c║\n", ' ', indent, ' ', buffer, 44 - indent - len, ' ')); @@ -400,7 +351,6 @@ write_banner(void) #endif return 0; } -#endif /* ---------------------------------------------------------------------- */ int Phreeqc:: diff --git a/print.cpp b/print.cpp index 4aa70fb6..35fd1998 100644 --- a/print.cpp +++ b/print.cpp @@ -1469,35 +1469,70 @@ print_species(void) if (pr.species == FALSE || pr.all == FALSE) return (OK); min = -1000; - print_centered("Distribution of species"); -/* - * Heading for species - */ +#ifdef NPP + print_centered("Distribution and properties of species"); if (pitzer_model == TRUE) { if (ICON == TRUE) { - output_msg(sformatf("%60s%10s\n", "MacInnes", "MacInnes")); - output_msg(sformatf("%40s%10s%10s%10s%10s\n", - "MacInnes", "Log", "Log", "Log", "mole V")); + output_msg(sformatf("%40s%10s\n", "MacInnes", "MacInnes")); + output_msg(sformatf(" %-13s%11s%13s%9s%10s%10s%8s\n", + "Species", "Molality", "Activity", "Gamma", "mole V", "f_VISC¹", "t_SC²")); } else { - output_msg(sformatf("%60s%10s\n", "Unscaled", "Unscaled")); - output_msg(sformatf("%40s%10s%10s%10s%10s\n", - "Unscaled", "Log", "Log", "Log", "mole V")); + output_msg(sformatf("%40s%10s\n", "Unscaled", "Unscaled")); + output_msg(sformatf(" %-13s%11s%13s%9s%10s%10s%8s\n", + "Species", "Molality", "Activity", "Gamma", "mole V", "f_VISC¹", "t_SC²")); } } else { - output_msg(sformatf("%50s%10s%10s%10s\n", "Log", "Log", "Log", "mole V")); + if (SC) + { + output_msg(sformatf(" %-13s%11s%13s%9s%10s%10s%8s\n", + "Species", "Molality", "Activity", "Gamma", "mole V", "f_VISC¹", "t_SC²")); + output_msg(sformatf("%27s%-14s%-9s%11s%-9s%-9s\n\n", + "mol/kgw", " -", " -", "cm³/mol", " %", " %")); + } + else + { + output_msg(sformatf("%50s%10s%10s%10s\n", "Log", "Log", "Log", "mole V")); + output_msg(sformatf(" %-13s%12s%12s%10s%10s%10s%10s\n\n", + "Species", "Molality", "Activity", "Molality", "Activity", "Gamma", "cm³/mol")); + } } -#ifdef NO_UTF8_ENCODING - output_msg(sformatf(" %-13s%12s%12s%10s%10s%10s%10s\n\n", "Species", - "Molality", "Activity", "Molality", "Activity", "Gamma", "cm3/mol")); #else - output_msg(sformatf(" %-13s%12s%12s%10s%10s%10s%11s\n\n", "Species", - "Molality", "Activity", "Molality", "Activity", "Gamma", "cm³/mol")); + print_centered("Distribution of species"); +/* + * Heading for species + */ + if (pitzer_model == TRUE) + { + if (ICON == TRUE) + { + output_msg(sformatf("%60s%10s\n", "MacInnes", "MacInnes")); + output_msg(sformatf("%40s%10s%10s%10s%10s\n", + "MacInnes", "Log", "Log", "Log", "mole V")); + } + else + { + output_msg(sformatf("%60s%10s\n", "Unscaled", "Unscaled")); + output_msg(sformatf("%40s%10s%10s%10s%10s\n", + "Unscaled", "Log", "Log", "Log", "mole V")); + } + } + else + { + output_msg(sformatf("%50s%10s%10s%10s\n", "Log", "Log", "Log", "mole V")); + } +#ifdef NO_UTF8_ENCODING + output_msg(sformatf(" %-13s%12s%12s%10s%10s%10s%10s\n\n", "Species", + "Molality", "Activity", "Molality", "Activity", "Gamma", "cm3/mol")); +#else + output_msg(sformatf(" %-13s%12s%12s%10s%10s%10s%11s\n\n", "Species", + "Molality", "Activity", "Molality", "Activity", "Gamma", "cm³/mol")); +#endif #endif /* * Print list of species @@ -1506,9 +1541,9 @@ print_species(void) name = s_hplus->secondary->elt->name; for (i = 0; i < (int)species_list.size(); i++) { -/* - * Get name of master species - */ + /* + * Get name of master species + */ if (species_list[i].s->type == EX) continue; if (species_list[i].s->type == SURF) @@ -1523,14 +1558,14 @@ print_species(void) master_ptr = species_list[i].master_s->primary; name1 = species_list[i].master_s->primary->elt->name; } -/* - * Check if new master species, print total molality - */ + /* + * Check if new master species, print total molality + */ if (name1 != name) { name = name1; output_msg(sformatf("%-11s%12.3e\n", name, - (double) (master_ptr->total / mass_water_aq_x))); + (double)(master_ptr->total / mass_water_aq_x))); min = censor * master_ptr->total / mass_water_aq_x; if (min > 0) { @@ -1541,9 +1576,9 @@ print_species(void) min = -1000.; } } -/* - * Print species data - */ + /* + * Print species data + */ if (species_list[i].s->lm > min) { if (species_list[i].s == s_h2o) @@ -1554,25 +1589,67 @@ print_species(void) { lm = species_list[i].s->lm; } +#ifdef NPP + if (SC) + { + output_msg(sformatf( + " %-13s%12.3e%13.3e%9.3f", + species_list[i].s->name, + (double)((species_list[i].s->moles) / mass_water_aq_x), + (double)under(species_list[i].s->lm + species_list[i].s->lg), + (double)pow(10, species_list[i].s->lg))); + if (species_list[i].s->logk[vm_tc] || species_list[i].s == s_hplus) + output_msg(sformatf("%10.2f", (double)species_list[i].s->logk[vm_tc])); + else + output_msg(sformatf(" (0) ")); + if (species_list[i].s->dw_t_visc || !strcmp(species_list[i].s->name, "Cl-")) + output_msg(sformatf("%9.2f", (double)100 * species_list[i].s->dw_t_visc)); + else + output_msg(sformatf(" (0) ")); + if (species_list[i].s->dw_t_SC) + output_msg(sformatf("%9.2f\n", (double)100 * species_list[i].s->dw_t_SC / SC)); + else + output_msg(sformatf(" (0)\n")); + } + else + { + output_msg(sformatf( + " %-13s%12.3e%12.3e%10.3f%10.3f%10.3f", + species_list[i].s->name, + (double)((species_list[i].s->moles) / mass_water_aq_x), + (double)under(species_list[i].s->lm + species_list[i].s->lg), (double)lm, + (double)(species_list[i].s->lm + species_list[i].s->lg), + (double)species_list[i].s->lg)); + if (species_list[i].s->logk[vm_tc] || species_list[i].s == s_hplus) + output_msg(sformatf("%10.2f", (double)species_list[i].s->logk[vm_tc])); + else + output_msg(sformatf(" (0) ")); + output_msg(sformatf("\n")); + } +#else output_msg(sformatf( - " %-13s%12.3e%12.3e%10.3f%10.3f%10.3f", - species_list[i].s->name, - (double) ((species_list[i].s->moles) / - mass_water_aq_x), - (double) under(species_list[i].s->lm + - species_list[i].s->lg), (double) lm, - (double) (species_list[i].s->lm + - species_list[i].s->lg), - (double) species_list[i].s->lg)); + " %-13s%12.3e%12.3e%10.3f%10.3f%10.3f", + species_list[i].s->name, + (double)((species_list[i].s->moles) / mass_water_aq_x), + (double)under(species_list[i].s->lm + species_list[i].s->lg), (double)lm, + (double)(species_list[i].s->lm + species_list[i].s->lg), + (double)species_list[i].s->lg)); //if (species_list[i].s->logk[vm_tc] || !strcmp(species_list[i].s->name, "H+")) if (species_list[i].s->logk[vm_tc] || species_list[i].s == s_hplus) - output_msg(sformatf("%10.2f\n", - (double) species_list[i].s->logk[vm_tc])); + output_msg(sformatf("%10.2f\n", (double)species_list[i].s->logk[vm_tc])); else output_msg(sformatf(" (0) \n")); +#endif } } output_msg(sformatf("\n")); +#ifdef NPP + if (SC) + { + output_msg(sformatf(" ¹: Contribution to the relative viscosity change ((viscos / viscos_0 - 1) x 100).\n")); + output_msg(sformatf(" ²: Contribution to the specific conductance (Transport Number x 100).\n\n")); + } +#endif return (OK); } /* ---------------------------------------------------------------------- */ From dcf01e46e9e2cf6bc39c943042343aa3a066659c Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Fri, 14 Mar 2025 18:23:12 +0000 Subject: [PATCH 300/384] Squashed 'phreeqc3-doc/' changes from 71e7c5a0..394240f2 394240f2 Tony changes to basicsubs, updated viscosity for Sr, NH4, and tidied databases. git-subtree-dir: phreeqc3-doc git-subtree-split: 394240f20af07dabe460ea1f6ce11016f7427362 --- RELEASE.TXT | 32 ++++++++++++++++++++++++++++++++ 1 file changed, 32 insertions(+) diff --git a/RELEASE.TXT b/RELEASE.TXT index e3bbd003..cec40ef3 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,4 +1,36 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + ----------------- + March 11, 2025 + ----------------- + PHREEQC: Adjustments to Sr+2 and NH4+ viscosity, + molar volume, and diffusion coefficient parameters + in Amm.dat and phreeqc.dat. Tidied databases for + readability: + Amm.dat, + database.zip, + iso.dat, + llnl.dat, + minteq.dat, + minteq.v4.dat, + phreeqc.dat, + phreeqc_rates.dat, and + pitzer.dat, + sit.dat, + Tipping_Hurley.dat, + wateq4f.dat. + + ----------------- + March 10, 2025 + ----------------- + PHREEQC: Version at hydrochemistry.eu has additional + print of viscosity contribution of species. + + ----------------- + March 10, 2025 + ----------------- + PHREEQC: Bug_fix for t_sc("") in basicsubs. + +Version 3.8.7: February 25, 2025 ----------------- February 20, 2025 ----------------- From febfa05e38044719e80b19c6a74a6070fce3c1e7 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Fri, 14 Mar 2025 18:23:15 +0000 Subject: [PATCH 301/384] Squashed 'src/' changes from 0eb2b934..b15a6bde b15a6bde Merge commit '7ec217d47bfff56057000e1ac954d46b31417083' 7ec217d4 Squashed 'phreeqcpp/' changes from a4886d6..b24dedb git-subtree-dir: src git-subtree-split: b15a6bded75060c7f1b9456de3892e307f5c6674 --- phreeqcpp/basicsubs.cpp | 19 ++--- phreeqcpp/class_main.cpp | 68 +++--------------- phreeqcpp/print.cpp | 151 +++++++++++++++++++++++++++++---------- 3 files changed, 133 insertions(+), 105 deletions(-) diff --git a/phreeqcpp/basicsubs.cpp b/phreeqcpp/basicsubs.cpp index adac2736..1f3b83e8 100644 --- a/phreeqcpp/basicsubs.cpp +++ b/phreeqcpp/basicsubs.cpp @@ -262,8 +262,9 @@ calc_SC(void) { class species *s_ptr; int i; - LDBLE ka, l_z, Dw, ff, sqrt_mu, a, a2, a3, av, v_Cl = 1; + LDBLE ka, l_z, Dw, ff, sqrt_mu, a, a2, a3, av, v_Cl = 1, Dw_SC; SC = 0; + Dw_SC = 1e4 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298.15e3); // for recalculating Dw to ll0 sqrt_mu = sqrt(mu_x); bool Falk = false; s_ptr = s_search("H+"); @@ -347,9 +348,9 @@ calc_SC(void) if (correct_Dw) s_x[i]->dw_corr = Dw; s_x[i]->dw_t_SC = s_x[i]->moles / mass_water_aq_x * l_z * l_z * Dw; + s_x[i]->dw_t_SC *= 1e3 * Dw_SC; SC += s_x[i]->dw_t_SC; } - SC *= 1e7 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298150.0); return (SC); } else @@ -364,7 +365,7 @@ calc_SC(void) Dw dw_t a a2 visc a3 = (0) or >5 -dw 1.03e-9 -14 4.03 0.8341 1.679 # Li+, ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5 */ - LDBLE q, sqrt_q, B1, B2, m_plus, m_min, eq_plus, eq_min, eq_dw_plus, eq_dw_min, z_plus, z_min, t1, Dw_SC; + LDBLE q, sqrt_q, B1, B2, m_plus, m_min, eq_plus, eq_min, eq_dw_plus, eq_dw_min, z_plus, z_min, t1; m_plus = m_min = eq_plus = eq_min = eq_dw_plus = eq_dw_min = z_plus = z_min = 0; SC = 0; @@ -432,7 +433,7 @@ calc_SC(void) mu_min = 3 * m_min * (z_min - 1) + m_min; mu_plus = 3 * m_plus * (z_plus - 1) + m_plus; - Dw_SC = 1e4 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298.15e3); // for recalculating Dw to ll0 + //Dw_SC = 1e4 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298.15e3); // for recalculating Dw to ll0 t1 = calc_solution_volume(); ll_SC = 0.5e3 * (eq_plus + eq_min) / t1 * mass_water_aq_x / t1; // recalculates ll to SC in uS/cm, with mu in mol/kgw @@ -466,7 +467,8 @@ calc_SC(void) if (correct_Dw) s_x[i]->dw_corr = Dw; s_x[i]->dw_t_SC = s_x[i]->moles / mass_water_aq_x * l_z * l_z * Dw; - SC += s_x[i]->dw_t_SC * 1e3 * Dw_SC; + s_x[i]->dw_t_SC *= 1e3 * Dw_SC; + SC += s_x[i]->dw_t_SC; } else { @@ -520,11 +522,11 @@ calc_SC(void) a = (lz > 0 ? mu_plus / (eq_plus * a2) : mu_min / (eq_min * a2)); t1 *= s_x[i]->moles * l_z * l_z / a; t1 *= ll_SC; - s_x[i]->dw_t_SC = t1 / (1e3 * Dw_SC); + s_x[i]->dw_t_SC = t1; SC += t1; } } - return SC; + return SC; } } @@ -1270,8 +1272,7 @@ calc_t_sc(const char* name) calc_SC(); if (!SC) return (0); - LDBLE t = s_ptr->dw_t_SC * 1e7 * F_C_MOL * F_C_MOL / (R_KJ_DEG_MOL * 298150.0); - return (t / SC); + return s_ptr->dw_t_SC / SC; } return (0); } diff --git a/phreeqcpp/class_main.cpp b/phreeqcpp/class_main.cpp index 79e6475f..abd19625 100644 --- a/phreeqcpp/class_main.cpp +++ b/phreeqcpp/class_main.cpp @@ -224,6 +224,7 @@ main_method(int argc, char *argv[]) } #ifdef NPP #ifdef DOS + SetConsoleOutputCP(CP_UTF8); write_banner(); #endif #else @@ -295,64 +296,6 @@ main_method(int argc, char *argv[]) return 0; } #endif //TEST_COPY -#ifdef NPP -/* ---------------------------------------------------------------------- */ -int Phreeqc:: -write_banner(void) -/* ---------------------------------------------------------------------- */ -{ -#ifdef TESTING - return OK; -#endif -#ifndef NO_UTF8_ENCODING - char buffer[80]; - int len, indent; - screen_msg( - " ÛßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßßÛ\n"); - screen_msg( - " º º\n"); - - /* version */ -#ifdef NPP - len = sprintf(buffer, "* PHREEQC-%s *", "3.8.0"); -#else - len = sprintf(buffer, "* PHREEQC-%s *", "@VERSION@"); -#endif - indent = (49 - len) / 2; - screen_msg(sformatf("%14cº%*c%s%*cº\n", ' ', indent, ' ', buffer, - 49 - indent - len, ' ')); - - screen_msg( - " º º\n"); - screen_msg( - " º A hydrogeochemical transport model º\n"); - screen_msg( - " º º\n"); - screen_msg( - " º by º\n"); - screen_msg( - " º D.L. Parkhurst and C.A.J. Appelo º\n"); - screen_msg( - " º º\n"); - - - /* date */ -#ifdef NPP - len = sprintf(buffer, "%s", "August 27, 2024, with bug-fixes and new items"); -#else - len = sprintf(buffer, "%s", "@VER_DATE@"); -#endif - indent = (49 - len) / 2; - screen_msg(sformatf("%14cº%*c%s%*cº\n", ' ', indent, ' ', buffer, - 49 - indent - len, ' ')); - - screen_msg( - " ÛÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÛ\n\n"); - -#endif - return 0; -} -#else /* ---------------------------------------------------------------------- */ int Phreeqc:: write_banner(void) @@ -370,7 +313,11 @@ write_banner(void) " ║ ║\n"); /* version */ +#ifdef NPP + len = snprintf(buffer, sizeof(buffer), "* PHREEQC-%s *", "3.8.7"); +#else len = snprintf(buffer, sizeof(buffer), "* PHREEQC-%s *", "@VERSION@"); +#endif indent = (44 - len) / 2; screen_msg(sformatf("%14c║%*c%s%*c║\n", ' ', indent, ' ', buffer, 44 - indent - len, ' ')); @@ -390,7 +337,11 @@ write_banner(void) /* date */ +#ifdef NPP + len = snprintf(buffer, sizeof(buffer), "%s", "February 25, 2025"); +#else len = snprintf(buffer, sizeof(buffer), "%s", "@VER_DATE@"); +#endif indent = (44 - len) / 2; screen_msg(sformatf("%14c║%*c%s%*c║\n", ' ', indent, ' ', buffer, 44 - indent - len, ' ')); @@ -400,7 +351,6 @@ write_banner(void) #endif return 0; } -#endif /* ---------------------------------------------------------------------- */ int Phreeqc:: diff --git a/phreeqcpp/print.cpp b/phreeqcpp/print.cpp index 4aa70fb6..35fd1998 100644 --- a/phreeqcpp/print.cpp +++ b/phreeqcpp/print.cpp @@ -1469,35 +1469,70 @@ print_species(void) if (pr.species == FALSE || pr.all == FALSE) return (OK); min = -1000; - print_centered("Distribution of species"); -/* - * Heading for species - */ +#ifdef NPP + print_centered("Distribution and properties of species"); if (pitzer_model == TRUE) { if (ICON == TRUE) { - output_msg(sformatf("%60s%10s\n", "MacInnes", "MacInnes")); - output_msg(sformatf("%40s%10s%10s%10s%10s\n", - "MacInnes", "Log", "Log", "Log", "mole V")); + output_msg(sformatf("%40s%10s\n", "MacInnes", "MacInnes")); + output_msg(sformatf(" %-13s%11s%13s%9s%10s%10s%8s\n", + "Species", "Molality", "Activity", "Gamma", "mole V", "f_VISC¹", "t_SC²")); } else { - output_msg(sformatf("%60s%10s\n", "Unscaled", "Unscaled")); - output_msg(sformatf("%40s%10s%10s%10s%10s\n", - "Unscaled", "Log", "Log", "Log", "mole V")); + output_msg(sformatf("%40s%10s\n", "Unscaled", "Unscaled")); + output_msg(sformatf(" %-13s%11s%13s%9s%10s%10s%8s\n", + "Species", "Molality", "Activity", "Gamma", "mole V", "f_VISC¹", "t_SC²")); } } else { - output_msg(sformatf("%50s%10s%10s%10s\n", "Log", "Log", "Log", "mole V")); + if (SC) + { + output_msg(sformatf(" %-13s%11s%13s%9s%10s%10s%8s\n", + "Species", "Molality", "Activity", "Gamma", "mole V", "f_VISC¹", "t_SC²")); + output_msg(sformatf("%27s%-14s%-9s%11s%-9s%-9s\n\n", + "mol/kgw", " -", " -", "cm³/mol", " %", " %")); + } + else + { + output_msg(sformatf("%50s%10s%10s%10s\n", "Log", "Log", "Log", "mole V")); + output_msg(sformatf(" %-13s%12s%12s%10s%10s%10s%10s\n\n", + "Species", "Molality", "Activity", "Molality", "Activity", "Gamma", "cm³/mol")); + } } -#ifdef NO_UTF8_ENCODING - output_msg(sformatf(" %-13s%12s%12s%10s%10s%10s%10s\n\n", "Species", - "Molality", "Activity", "Molality", "Activity", "Gamma", "cm3/mol")); #else - output_msg(sformatf(" %-13s%12s%12s%10s%10s%10s%11s\n\n", "Species", - "Molality", "Activity", "Molality", "Activity", "Gamma", "cm³/mol")); + print_centered("Distribution of species"); +/* + * Heading for species + */ + if (pitzer_model == TRUE) + { + if (ICON == TRUE) + { + output_msg(sformatf("%60s%10s\n", "MacInnes", "MacInnes")); + output_msg(sformatf("%40s%10s%10s%10s%10s\n", + "MacInnes", "Log", "Log", "Log", "mole V")); + } + else + { + output_msg(sformatf("%60s%10s\n", "Unscaled", "Unscaled")); + output_msg(sformatf("%40s%10s%10s%10s%10s\n", + "Unscaled", "Log", "Log", "Log", "mole V")); + } + } + else + { + output_msg(sformatf("%50s%10s%10s%10s\n", "Log", "Log", "Log", "mole V")); + } +#ifdef NO_UTF8_ENCODING + output_msg(sformatf(" %-13s%12s%12s%10s%10s%10s%10s\n\n", "Species", + "Molality", "Activity", "Molality", "Activity", "Gamma", "cm3/mol")); +#else + output_msg(sformatf(" %-13s%12s%12s%10s%10s%10s%11s\n\n", "Species", + "Molality", "Activity", "Molality", "Activity", "Gamma", "cm³/mol")); +#endif #endif /* * Print list of species @@ -1506,9 +1541,9 @@ print_species(void) name = s_hplus->secondary->elt->name; for (i = 0; i < (int)species_list.size(); i++) { -/* - * Get name of master species - */ + /* + * Get name of master species + */ if (species_list[i].s->type == EX) continue; if (species_list[i].s->type == SURF) @@ -1523,14 +1558,14 @@ print_species(void) master_ptr = species_list[i].master_s->primary; name1 = species_list[i].master_s->primary->elt->name; } -/* - * Check if new master species, print total molality - */ + /* + * Check if new master species, print total molality + */ if (name1 != name) { name = name1; output_msg(sformatf("%-11s%12.3e\n", name, - (double) (master_ptr->total / mass_water_aq_x))); + (double)(master_ptr->total / mass_water_aq_x))); min = censor * master_ptr->total / mass_water_aq_x; if (min > 0) { @@ -1541,9 +1576,9 @@ print_species(void) min = -1000.; } } -/* - * Print species data - */ + /* + * Print species data + */ if (species_list[i].s->lm > min) { if (species_list[i].s == s_h2o) @@ -1554,25 +1589,67 @@ print_species(void) { lm = species_list[i].s->lm; } +#ifdef NPP + if (SC) + { + output_msg(sformatf( + " %-13s%12.3e%13.3e%9.3f", + species_list[i].s->name, + (double)((species_list[i].s->moles) / mass_water_aq_x), + (double)under(species_list[i].s->lm + species_list[i].s->lg), + (double)pow(10, species_list[i].s->lg))); + if (species_list[i].s->logk[vm_tc] || species_list[i].s == s_hplus) + output_msg(sformatf("%10.2f", (double)species_list[i].s->logk[vm_tc])); + else + output_msg(sformatf(" (0) ")); + if (species_list[i].s->dw_t_visc || !strcmp(species_list[i].s->name, "Cl-")) + output_msg(sformatf("%9.2f", (double)100 * species_list[i].s->dw_t_visc)); + else + output_msg(sformatf(" (0) ")); + if (species_list[i].s->dw_t_SC) + output_msg(sformatf("%9.2f\n", (double)100 * species_list[i].s->dw_t_SC / SC)); + else + output_msg(sformatf(" (0)\n")); + } + else + { + output_msg(sformatf( + " %-13s%12.3e%12.3e%10.3f%10.3f%10.3f", + species_list[i].s->name, + (double)((species_list[i].s->moles) / mass_water_aq_x), + (double)under(species_list[i].s->lm + species_list[i].s->lg), (double)lm, + (double)(species_list[i].s->lm + species_list[i].s->lg), + (double)species_list[i].s->lg)); + if (species_list[i].s->logk[vm_tc] || species_list[i].s == s_hplus) + output_msg(sformatf("%10.2f", (double)species_list[i].s->logk[vm_tc])); + else + output_msg(sformatf(" (0) ")); + output_msg(sformatf("\n")); + } +#else output_msg(sformatf( - " %-13s%12.3e%12.3e%10.3f%10.3f%10.3f", - species_list[i].s->name, - (double) ((species_list[i].s->moles) / - mass_water_aq_x), - (double) under(species_list[i].s->lm + - species_list[i].s->lg), (double) lm, - (double) (species_list[i].s->lm + - species_list[i].s->lg), - (double) species_list[i].s->lg)); + " %-13s%12.3e%12.3e%10.3f%10.3f%10.3f", + species_list[i].s->name, + (double)((species_list[i].s->moles) / mass_water_aq_x), + (double)under(species_list[i].s->lm + species_list[i].s->lg), (double)lm, + (double)(species_list[i].s->lm + species_list[i].s->lg), + (double)species_list[i].s->lg)); //if (species_list[i].s->logk[vm_tc] || !strcmp(species_list[i].s->name, "H+")) if (species_list[i].s->logk[vm_tc] || species_list[i].s == s_hplus) - output_msg(sformatf("%10.2f\n", - (double) species_list[i].s->logk[vm_tc])); + output_msg(sformatf("%10.2f\n", (double)species_list[i].s->logk[vm_tc])); else output_msg(sformatf(" (0) \n")); +#endif } } output_msg(sformatf("\n")); +#ifdef NPP + if (SC) + { + output_msg(sformatf(" ¹: Contribution to the relative viscosity change ((viscos / viscos_0 - 1) x 100).\n")); + output_msg(sformatf(" ²: Contribution to the specific conductance (Transport Number x 100).\n\n")); + } +#endif return (OK); } /* ---------------------------------------------------------------------- */ From a3aa597dd53a2001e4879dbbc09e9f3658a3c1c8 Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Fri, 14 Mar 2025 18:23:18 +0000 Subject: [PATCH 302/384] Squashed 'database/' changes from ec0212de..dd98e151 dd98e151 Tony's changes Mar 12 plus my corrections. c61c35ec Tony changes to basicsubs, updated viscosity for Sr, NH4, and tidied databases. git-subtree-dir: database git-subtree-split: dd98e151672348f240062be7fe72242e86226696 --- Amm.dat | 30 +- Tipping_Hurley.dat | 132 +- iso.dat | 78 +- llnl.dat | 11074 ++++++++++----------- minteq.dat | 244 +- minteq.v4.dat | 22380 +++++++++++++++++++++---------------------- phreeqc.dat | 30 +- phreeqc_rates.dat | 32 +- pitzer.dat | 20 +- sit.dat | 269 +- wateq4f.dat | 249 +- 11 files changed, 17268 insertions(+), 17270 deletions(-) diff --git a/Amm.dat b/Amm.dat index c095a395..58d6c0d9 100644 --- a/Amm.dat +++ b/Amm.dat @@ -76,7 +76,7 @@ H+ = H+ # If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. e- = e- H2O = H2O - -dw 2.299e-9 -254 + -dw 2.299e-9 -249 # Holz et al., Phys. Chem. Chem. Phys., 2000, 2, 4740. # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence Li+ = Li+ -gamma 6 0 # The apparent volume parameters are defined in ref. 1 & 2 @@ -107,9 +107,9 @@ Ca+2 = Ca+2 -dw 0.792e-9 34 5.411 0 1.046 Sr+2 = Sr+2 -gamma 5.26 0.121 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97 - -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 - -dw 0.794e-9 149 0.805 1.961 1e-9 0.7876 + -Vm -5.6e-2 -10.15 9.90 -2.36 0.807 5.26 2.72 -82.7 -1.37e-2 0.956 + -viscosity 0.493 -0.255 2.3e-3 4.2e-3 -3.8e-3 1.762 + -dw 0.794e-9 18 0.681 2.069 0.965 0.271 Ba+2 = Ba+2 -gamma 5 0 -gamma 4 0.153 # Barite solubility @@ -155,7 +155,7 @@ NO3- = NO3- AmmH+ = AmmH+ -gamma 2.5 0 -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 - -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -viscosity 6.94e-2 -0.141 2.04e-2 9.4e-3 3.73e-2 0.898 -dw 1.98e-9 203 1.47 2.644 6.81e-2 H3BO3 = H3BO3 -Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt @@ -170,7 +170,7 @@ F- = F- -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 -dw 1.46e-9 -36 4.352 Br- = Br- - -gamma 3 0 + -gamma 3 0.045 -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 -viscosity -6.98e-2 -0.141 1.78e-2 0.159 7.76e-3 6.25e-2 0.859 -dw 2.09e-9 208 3.5 0 0.5737 @@ -199,7 +199,7 @@ Mtg = Mtg # CH4 -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 -dw 1.85e-9 Ntg = Ntg # N2 - -Vm 7 # Pray et al., 1952, IEC 44 1146 + -Vm 7 # Pray et al., 1952, IEC 44, 1146 -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 H2Sg = H2Sg # H2S -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 @@ -304,7 +304,7 @@ NO3- + 2 H+ + 2 e- = NO2- + H2O # -delta_h -187.055 kcal # -gamma 2.5 0 # -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 -# -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 +# -viscosity 6.94e-2 -0.141 2.04e-2 9.4e-3 3.73e-2 0.898 # -dw 1.98e-9 203 1.47 2.644 6.81e-2 AmmH+ = Amm + H+ #NH4+ = NH3 + H+ @@ -312,14 +312,14 @@ AmmH+ = Amm + H+ -delta_h 12.48 kcal -analytic 0.6322 -0.001225 -2835.76 -Vm 6.69 2.8 3.58 -2.88 1.43 - -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -viscosity 0 -2.24e-2 0.101 8.66e-3 2.86e-2 -0.143 -0.769 -dw 2.28e-9 AmmH+ + SO4-2 = AmmHSO4- #NH4+ + SO4-2 = NH4SO4- - -gamma 2.08 -0.0416 - -log_k 1.211; -delta_h 8.56 kJ + -gamma 2.10 -0.0419 + -log_k 1.212; -delta_h 8.61 kJ -Vm -8.78 0 -36.09 0 -8.60 0 87.62 0 -0.3123 0.1172 - -viscosity 0 0.116 -8.6e-3 0.159 -9.3e-3 0.522 0.627 + -viscosity 0 0.121 -8e-3 0.177 -8e-3 0.512 0.629 -dw 0.9e-9 100 2.1 2 0 H3BO3 = H2BO3- + H+ -log_k -9.24 @@ -372,7 +372,7 @@ Ca+2 + CO3-2 + H+ = CaHCO3+ -log_k 10.91; -delta_h 4.38 kcal -analytic -6.009 3.377e-2 2044 -gamma 6 0 - -Vm 30.19 .01 5.75 -2.78 .308 5.4 + -Vm 3.19 .01 5.75 -2.78 .308 5.4 -dw 5.06e-10 Ca+2 + SO4-2 = CaSO4 -log_k 2.25 @@ -1944,7 +1944,7 @@ END # a0 is the ion-size parameter in the extended Debye-Hckel equation: # f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), # a0 = -gamma x for cations, = 0 for anions. -# For details, consult ref. 1. +# For details, consult ref. 1 and subroutine calc_vm(tc, pa) in prep.cpp. # ============================================================================================= # The viscosity is calculated with a (modified) Jones-Dole equation: # viscos / viscos_0 = 1 + A * Sum(0.5 z_i m_i) + fan * Sum(B_i m_i + D_i m_i n_i) @@ -1953,7 +1953,7 @@ END # # b0 b1 b2 d1 d2 d3 tan # z_i is absolute charge number, m_i is molality of i # B_i = b0 + b1 exp(-b2 * tc) -# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions +# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions and neutral species # D_i = d1 * exp(-d2 tc) # n_i = (I^d3 * (1 + fI) + ((z_i^2 + z_i) / 2 m_i)^d3) / (2 + fI), fI is an ionic strength term. # For details, consult ref. 4. diff --git a/Tipping_Hurley.dat b/Tipping_Hurley.dat index ea61af2b..80d2f3cb 100644 --- a/Tipping_Hurley.dat +++ b/Tipping_Hurley.dat @@ -6,72 +6,72 @@ SOLUTION_MASTER_SPECIES -Ag Ag+ 0 107.868 107.868 -Al Al+3 0 26.9815 26.9815 -Alkalinity CO3-2 1 50.05 50.05 -As H3AsO4 -1 74.9216 74.9216 -As(+3) H3AsO3 0 74.9216 74.9216 -As(+5) H3AsO4 -1 74.9216 -B H3BO3 0 10.81 10.81 -Ba Ba+2 0 137.34 137.34 -Br Br- 0 79.904 79.904 -C CO3-2 2 61.0173 12.0111 -C(+4) CO3-2 2 61.0173 -C(-4) CH4 0 16.042 -Ca Ca+2 0 40.08 40.08 -Cd Cd+2 0 112.4 112.4 -Cl Cl- 0 35.453 35.453 -Cs Cs+ 0 132.905 132.905 -Cu Cu+2 0 63.546 63.546 -Cu(+1) Cu+1 0 63.546 -Cu(+2) Cu+2 0 63.546 -E e- 1 0 0 -F F- 0 18.9984 18.9984 -Fe Fe+2 0 55.847 55.847 -Fe(+2) Fe+2 0 55.847 -Fe(+3) Fe+3 -2 55.847 -Fulvate Fulvate-2 0 650 650 -H H+ -1 1.008 1.008 -H(0) H2 0 1.008 -H(1) H+ -1 1.008 -Humate Humate-2 0 2000 2000 -I I- 0 126.9044 126.9044 -K K+ 0 39.102 39.102 -Li Li+ 0 6.939 6.939 -Mg Mg+2 0 24.312 24.312 -Mn Mn+2 0 54.938 54.938 -Mn(2) Mn+2 0 54.938 -Mn(3) Mn+3 0 54.938 -Mn(6) MnO4-2 0 54.938 -Mn(7) MnO4- 0 54.938 -N NO3- 0 14.0067 14.0067 -N(-3) NH4+ 0 14.0067 -N(0) N2 0 14.0067 -N(+3) NO2- 0 14.0067 -N(+5) NO3- 0 14.0067 -Na Na+ 0 22.9898 22.9898 -Ni Ni+2 0 58.71 58.71 -O H2O 0 16 16 -O(-2) H2O 0 18.016 -O(0) O2 0 16 -P PO4-3 2 30.9738 30.9738 -Pb Pb+2 0 207.19 207.19 -Rb Rb+ 0 85.47 85.47 -S SO4-2 0 96.0616 32.064 -S(-2) H2S 0 32.064 -S(6) SO4-2 0 96.0616 -Se SeO4-2 0 78.96 78.96 -Se(-2) HSe- 0 78.96 -Se(4) SeO3-2 0 78.96 -Se(6) SeO4-2 0 78.96 -Si H4SiO4 0 60.0843 28.0843 -Sr Sr+2 0 87.62 87.62 -Zn Zn+2 0 65.37 65.37 -U UO2+2 0 238.029 238.029 -U(3) U+3 0 238.029 238.029 -U(4) U+4 0 238.029 238.029 -U(5) UO2+ 0 238.029 238.029 -U(6) UO2+2 0 238.029 238.029 +Ag Ag+ 0.0 107.868 107.868 +Al Al+3 0.0 26.9815 26.9815 +Alkalinity CO3-2 1.0 50.05 50.05 +As H3AsO4 -1.0 74.9216 74.9216 +As(+3) H3AsO3 0.0 74.9216 74.9216 +As(+5) H3AsO4 -1.0 74.9216 +B H3BO3 0.0 10.81 10.81 +Ba Ba+2 0.0 137.34 137.34 +Br Br- 0.0 79.904 79.904 +C CO3-2 2.0 61.0173 12.0111 +C(+4) CO3-2 2.0 61.0173 +C(-4) CH4 0.0 16.042 +Ca Ca+2 0.0 40.08 40.08 +Cd Cd+2 0.0 112.4 112.4 +Cl Cl- 0.0 35.453 35.453 +Cs Cs+ 0.0 132.905 132.905 +Cu Cu+2 0.0 63.546 63.546 +Cu(+1) Cu+1 0.0 63.546 +Cu(+2) Cu+2 0.0 63.546 +E e- 0.0 0.0 0.0 +F F- 0.0 18.9984 18.9984 +Fe Fe+2 0.0 55.847 55.847 +Fe(+2) Fe+2 0.0 55.847 +Fe(+3) Fe+3 -2.0 55.847 +Fulvate Fulvate-2 0.0 650. 650. +H H+ -1. 1.008 1.008 +H(0) H2 0.0 1.008 +H(1) H+ -1. 1.008 +Humate Humate-2 0.0 2000. 2000. +I I- 0.0 126.9044 126.9044 +K K+ 0.0 39.102 39.102 +Li Li+ 0.0 6.939 6.939 +Mg Mg+2 0.0 24.312 24.312 +Mn Mn+2 0.0 54.938 54.938 +Mn(2) Mn+2 0.0 54.938 +Mn(3) Mn+3 0.0 54.938 +Mn(6) MnO4-2 0.0 54.938 +Mn(7) MnO4- 0.0 54.938 +N NO3- 0.0 14.0067 14.0067 +N(-3) NH4+ 0.0 14.0067 +N(0) N2 0.0 14.0067 +N(+3) NO2- 0.0 14.0067 +N(+5) NO3- 0.0 14.0067 +Na Na+ 0.0 22.9898 22.9898 +Ni Ni+2 0.0 58.71 58.71 +O H2O 0.0 16.00 16.00 +O(-2) H2O 0.0 18.016 +O(0) O2 0.0 16.00 +P PO4-3 2.0 30.9738 30.9738 +Pb Pb+2 0.0 207.19 207.19 +Rb Rb+ 0.0 85.47 85.47 +S SO4-2 0.0 96.0616 32.064 +S(-2) H2S 0.0 32.064 +S(6) SO4-2 0.0 96.0616 +Se SeO4-2 0.0 78.96 78.96 +Se(-2) HSe- 0.0 78.96 +Se(4) SeO3-2 0.0 78.96 +Se(6) SeO4-2 0.0 78.96 +Si H4SiO4 0.0 60.0843 28.0843 +Sr Sr+2 0.0 87.62 87.62 +Zn Zn+2 0.0 65.37 65.37 +U UO2+2 0.0 238.0290 238.0290 +U(3) U+3 0.0 238.0290 238.0290 +U(4) U+4 0.0 238.0290 238.0290 +U(5) UO2+ 0.0 238.0290 238.0290 +U(6) UO2+2 0.0 238.0290 238.0290 SOLUTION_SPECIES diff --git a/iso.dat b/iso.dat index c922df33..8ab59d2f 100644 --- a/iso.dat +++ b/iso.dat @@ -3,38 +3,38 @@ # c:\3rdParty\lsp\lsp.exe -f2 -k="asis" -ts "iso.dat" SOLUTION_MASTER_SPECIES -E e- 1 0 0 -H H3O+ -1 H 1.008 -H(0) H2 0 H -H(1) H3O+ -1 H -O H2O 0 O 16 -O(0) O2 0 O -O(-2) H2O 0 O -Ca Ca+2 0 Ca 40.08 -Mg Mg+2 0 Mg 24.312 -Na Na+ 0 Na 22.9898 -K K+ 0 K 39.102 -Fe Fe+2 0 Fe 55.847 -Fe(+2) Fe+2 0 Fe -Fe(+3) Fe+3 -2 Fe -Al Al+3 0 Al 26.9815 -Si H4SiO4 0 SiO2 28.0843 -Cl Cl- 0 Cl 35.453 -C CO2 0 HCO3 12.0111 -C(4) CO2 0 HCO3 -C(-4) CH4 0 CH4 -S SO4-2 0 S 31.972 -S(6) SO4-2 0 SO4 -S(-2) HS- 1 S -N NO3- 0 N 14.0067 -N(+5) NO3- 0 N -N(+3) NO2- 0 N -N(0) N2 0 N -N(-3) NH4+ 0 N -P PO4-3 2 P 30.9738 -F F- 0 F 18.9984 -Br Br- 0 Br 79.904 -Alkalinity CO2 0 50.05 50.05 +E e- 1 0 0 +H H3O+ -1 H 1.008 +H(0) H2 0 H +H(1) H3O+ -1 H +O H2O 0 O 16 +O(0) O2 0 O +O(-2) H2O 0 O +Ca Ca+2 0 Ca 40.08 +Mg Mg+2 0 Mg 24.312 +Na Na+ 0 Na 22.9898 +K K+ 0 K 39.102 +Fe Fe+2 0 Fe 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2 Fe +Al Al+3 0 Al 26.9815 +Si H4SiO4 0 SiO2 28.0843 +Cl Cl- 0 Cl 35.453 +C CO2 0 HCO3 12.0111 +C(4) CO2 0 HCO3 +C(-4) CH4 0 CH4 +S SO4-2 0 S 31.972 +S(6) SO4-2 0 SO4 +S(-2) HS- 1 S +N NO3- 0 N 14.0067 +N(+5) NO3- 0 N +N(+3) NO2- 0 N +N(0) N2 0 N +N(-3) NH4+ 0 N +P PO4-3 2 P 30.9738 +F F- 0 F 18.9984 +Br Br- 0 Br 79.904 +Alkalinity CO2 0 50.05 50.05 SOLUTION_SPECIES H3O+ = H3O+ @@ -639,11 +639,11 @@ CO2(g) O2(g) O2 = O2 -# log_k -2.960 -# delta_h -1.844 kcal - # log K from llnl.dat Dec 8, 2010 - log_k -2.8983 - -analytic -7.5001e+0 7.8981e-3 0e+0 0e+0 2.0027e+5 +# log_k -2.960 +# delta_h -1.844 kcal + # log K from llnl.dat Dec 8, 2010 + log_k -2.8983 + -analytic -7.5001e+0 7.8981e-3 0e+0 0e+0 2.0027e+5 H2(g) H2 = H2 @@ -1122,8 +1122,8 @@ ISOTOPE_ALPHAS # N2(aq) Alpha_15N_N2(aq)/NO3- Log_alpha_15N_N2(aq)/NO3- # NH3(aq) - Alpha_D_NH3(aq)/H2O(l) Log_alpha_D_NH3(aq)/H2O(l) - Alpha_T_NH3(aq)/H2O(l) Log_alpha_T_NH3(aq)/H2O(l) + Alpha_D_NH3(aq)/H2O(l) Log_alpha_D_NH3(aq)/H2O(l) + Alpha_T_NH3(aq)/H2O(l) Log_alpha_T_NH3(aq)/H2O(l) Alpha_15N_NH3(aq)/NO3- Log_alpha_15N_NH3(aq)/NO3- # NH4+ Alpha_D_NH4+/H2O(l) Log_alpha_D_NH4+/H2O(l) diff --git a/llnl.dat b/llnl.dat index 64b2c231..37725f06 100644 --- a/llnl.dat +++ b/llnl.dat @@ -44,684 +44,684 @@ NAMED_EXPRESSIONS # formation of O2 from H2O # 2H2O = O2 + 4H+ + 4e- # - Log_K_O2 - log_k -85.9951 - -delta_H 559.543 kJ/mol # Calculated enthalpy of reaction O2 -# Enthalpy of formation: -2.9 kcal/mol - -analytic 38.0229 7.99407E-3 -2.7655e+4 -1.4506e+1 199838.45 -# Range: 0-300 + Log_K_O2 + log_k -85.9951 + -delta_H 559.543 kJ/mol # Calculated enthalpy of reaction O2 +# Enthalpy of formation: -2.9 kcal/mol + -analytic 38.0229 7.99407E-3 -2.7655e+4 -1.4506e+1 199838.45 +# Range: 0-300 SOLUTION_MASTER_SPECIES -#element species alk gfw_formula element_gfw +#element species alk gfw_formula element_gfw -Acetate HAcetate 0 Acetate 59 -Ag Ag+ 0 Ag 107.8682 -Ag(1) Ag+ 0 Ag -Ag(2) Ag+2 0 Ag -Al Al+3 0 Al 26.9815 -Alkalinity HCO3- 1 Ca0.5(CO3)0.5 50.05 -Am Am+3 0 Am 243 -Am(+2) Am+2 0 Am -Am(+3) Am+3 0 Am -Am(+4) Am+4 0 Am -Am(+5) AmO2+ 0 Am -Am(+6) AmO2+2 0 Am -Ar Ar 0 Ar 39.948 -As H2AsO4- 0 As 74.9216 -As(-3) AsH3 0 As -As(+3) H2AsO3- 0 As -As(+5) H2AsO4- 0 As -Au Au+ 0 Au 196.9665 -Au(+1) Au+ 0 Au -Au(+3) Au+3 0 Au -#B H3BO3 0.0 B 10.811 -B B(OH)3 0 B 10.811 -B(3) B(OH)3 0 B -B(-5) BH4- 0 B -Ba Ba+2 0 Ba 137.327 -Be Be+2 0 Be 9.0122 -Br Br- 0 Br 79.904 -Br(-03) Br3- 0 Br -Br(-1) Br- 0 Br -Br(0) Br2 0 Br -Br(1) BrO- 0 Br -Br(5) BrO3- 0 Br -Br(7) BrO4- 0 Br -C(-4) CH4 0 CH4 -C(-3) C2H6 0 C2H6 -C(-2) C2H4 0 C2H4 -C HCO3- 1 HCO3 12.011 -C(+2) CO 0 C -C(+4) HCO3- 1 HCO3 -Ca Ca+2 0 Ca 40.078 -Cyanide Cyanide- 1 CN 26 -Cd Cd+2 0 Cd 112.411 -Ce Ce+3 0 Ce 140.115 -Ce(+2) Ce+2 0 Ce -Ce(+3) Ce+3 0 Ce -Ce(+4) Ce+4 0 Ce -Cl Cl- 0 Cl 35.4527 -Cl(-1) Cl- 0 Cl -Cl(1) ClO- 0 Cl -Cl(3) ClO2- 0 Cl -Cl(5) ClO3- 0 Cl -Cl(7) ClO4- 0 Cl -Co Co+2 0 Co 58.9332 -Co(+2) Co+2 0 Co -Co(+3) Co+3 0 Co -Cr CrO4-2 0 CrO4-2 51.9961 -Cr(+2) Cr+2 0 Cr -Cr(+3) Cr+3 0 Cr -Cr(+5) CrO4-3 0 Cr -Cr(+6) CrO4-2 0 Cr -Cs Cs+ 0 Cs 132.9054 -Cu Cu+2 0 Cu 63.546 -Cu(+1) Cu+1 0 Cu -Cu(+2) Cu+2 0 Cu -Dy Dy+3 0 Dy 162.5 -Dy(+2) Dy+2 0 Dy -Dy(+3) Dy+3 0 Dy -E e- 1 0 0 -Er Er+3 0 Er 167.26 -Er(+2) Er+2 0 Er -Er(+3) Er+3 0 Er -Ethylene Ethylene 0 Ethylene 28.0536 -Eu Eu+3 0 Eu 151.965 -Eu(+2) Eu+2 0 Eu -Eu(+3) Eu+3 0 Eu -F F- 0 F 18.9984 -Fe Fe+2 0 Fe 55.847 -Fe(+2) Fe+2 0 Fe -Fe(+3) Fe+3 -2 Fe -Ga Ga+3 0 Ga 69.723 -Gd Gd+3 0 Gd 157.25 -Gd(+2) Gd+2 0 Gd -Gd(+3) Gd+3 0 Gd -H H+ -1 H 1.0079 -H(0) H2 0 H -H(+1) H+ -1 0 -He He 0 He 4.0026 -He(0) He 0 He -Hf Hf+4 0 Hf 178.49 -Hg Hg+2 0 Hg 200.59 -Hg(+1) Hg2+2 0 Hg -Hg(+2) Hg+2 0 Hg -Ho Ho+3 0 Ho 164.9303 -Ho(+2) Ho+2 0 Ho -Ho(+3) Ho+3 0 Ho -I I- 0 I 126.9045 -I(-03) I3- 0 I -I(-1) I- 0 I -I(+1) IO- 0 I -I(+5) IO3- 0 I -I(+7) IO4- 0 I -In In+3 0 In 114.82 -K K+ 0 K 39.0983 -Kr Kr 0 Kr 83.8 -Kr(0) Kr 0 Kr -La La+3 0 La 138.9055 -La(2) La+2 0 La -La(3) La+3 0 La -Li Li+ 0 Li 6.941 -Lu Lu+3 0 Lu 174.967 -Mg Mg+2 0 Mg 24.305 -Mn Mn+2 0 Mn 54.938 -Mn(+2) Mn+2 0 Mn -Mn(+3) Mn+3 0 Mn -Mn(+6) MnO4-2 0 Mn -Mn(+7) MnO4- 0 Mn -Mo MoO4-2 0 Mo 95.94 -N NH3 1 N 14.0067 -N(-3) NH3 1 N -N(-03) N3- 0 N -N(0) N2 0 N -N(+3) NO2- 0 N -N(+5) NO3- 0 N -Na Na+ 0 Na 22.9898 -Nd Nd+3 0 Nd 144.24 -Nd(+2) Nd+2 0 Nd -Nd(+3) Nd+3 0 Nd -Ne Ne 0 Ne 20.1797 -#Ne(0) Ne 0.0 Ne -Ni Ni+2 0 Ni 58.69 -Np Np+4 0 Np 237.048 -Np(+3) Np+3 0 Np -Np(+4) Np+4 0 Np -Np(+5) NpO2+ 0 Np -Np(+6) NpO2+2 0 Np -O H2O 0 O 15.994 -O(-2) H2O 0 0 -O(0) O2 0 O -O_phthalate O_phthalate-2 0 1 1 -P HPO4-2 2 P 30.9738 -P(-3) PH4+ 0 P -P(5) HPO4-2 2 P -Pb Pb+2 0 Pb 207.2 -Pb(+2) Pb+2 0 Pb -Pb(+4) Pb+4 0 Pb -Pd Pd+2 0 Pd 106.42 -Pm Pm+3 0 Pm 147 -Pm(+2) Pm+2 0 Pm -Pm(+3) Pm+3 0 Pm -Pr Pr+3 0 Pr 140.9076 -Pr(+2) Pr+2 0 Pr -Pr(+3) Pr+3 0 Pr -Pu Pu+4 0 Pu 244 -Pu(+3) Pu+3 0 Pu -Pu(+4) Pu+4 0 Pu -Pu(+5) PuO2+ 0 Pu -Pu(+6) PuO2+2 0 Pu -Ra Ra+2 0 Ra 226.025 -Rb Rb+ 0 Rb 85.4678 -Re ReO4- 0 Re 186.207 -Rn Rn 0 Rn 222 -Ru RuO4-2 0 Ru 101.07 -Ru(+2) Ru+2 0 Ru -Ru(+3) Ru+3 0 Ru -Ru(+4) Ru(OH)2+2 0 Ru -Ru(+6) RuO4-2 0 Ru -Ru(+7) RuO4- 0 Ru -Ru(+8) RuO4 0 Ru -S SO4-2 0 SO4 32.066 -S(-2) HS- 1 S -S(+2) S2O3-2 0 S -S(+3) S2O4-2 0 S -S(+4) SO3-2 0 S -S(+5) S2O5-2 0 S -S(+6) SO4-2 0 SO4 -S(+7) S2O8-2 0 S -S(+8) HSO5- 0 S -Sb Sb(OH)3 0 Sb 121.75 -Sc Sc+3 0 Sc 44.9559 -Se SeO3-2 0 Se 78.96 -Se(-2) HSe- 0 Se -Se(+4) SeO3-2 0 Se -Se(+6) SeO4-2 0 Se -Si SiO2 0 SiO2 28.0855 -Sm Sm+3 0 Sm 150.36 -Sm(+2) Sm+2 0 Sm -Sm(+3) Sm+3 0 Sm -Sn Sn+2 0 Sn 118.71 -Sn(+2) Sn+2 0 Sn -Sn(+4) Sn+4 0 Sn -Sr Sr+2 0 Sr 87.62 -Tb Tb+3 0 Tb 158.9253 -Tb(+2) Tb+2 0 Tb -Tb(+3) Tb+3 0 Tb -Tc TcO4- 0 Tc 98 -Tc(+3) Tc+3 0 Tc -Tc(+4) TcO+2 0 Tc -Tc(+5) TcO4-3 0 Tc -Tc(+6) TcO4-2 0 Tc -Tc(+7) TcO4- 0 Tc -Thiocyanate Thiocyanate- 0 SCN 58 -Th Th+4 0 Th 232.0381 -Ti Ti(OH)4 0 Ti 47.88 -Tl Tl+ 0 Tl 204.3833 -Tl(+1) Tl+ 0 Tl -Tl(+3) Tl+3 0 Tl -Tm Tm+3 0 Tm 168.9342 -Tm(+2) Tm+2 0 Tm -Tm(+3) Tm+3 0 Tm -U UO2+2 0 U 238.0289 -U(+3) U+3 0 U -U(+4) U+4 0 U -U(+5) UO2+ 0 U -U(+6) UO2+2 0 U -V VO+2 0 V 50.9415 -V(+3) V+3 0 V -V(+4) VO+2 0 V -V(+5) VO2+ 0 V -W WO4-2 0 W 183.85 -Xe Xe 0 Xe 131.29 -Xe(0) Xe 0 Xe -Y Y+3 0 Y 88.9059 -Yb Yb+3 0 Yb 173.04 -Yb(+2) Yb+2 0 Yb -Yb(+3) Yb+3 0 Yb -Zn Zn+2 0 Zn 65.39 -Zr Zr(OH)2+2 0 Zr 91.224 +Acetate HAcetate 0 Acetate 59 +Ag Ag+ 0 Ag 107.8682 +Ag(1) Ag+ 0 Ag +Ag(2) Ag+2 0 Ag +Al Al+3 0 Al 26.9815 +Alkalinity HCO3- 1 Ca0.5(CO3)0.5 50.05 +Am Am+3 0 Am 243 +Am(+2) Am+2 0 Am +Am(+3) Am+3 0 Am +Am(+4) Am+4 0 Am +Am(+5) AmO2+ 0 Am +Am(+6) AmO2+2 0 Am +Ar Ar 0 Ar 39.948 +As H2AsO4- 0 As 74.9216 +As(-3) AsH3 0 As +As(+3) H2AsO3- 0 As +As(+5) H2AsO4- 0 As +Au Au+ 0 Au 196.9665 +Au(+1) Au+ 0 Au +Au(+3) Au+3 0 Au +#B H3BO3 0.0 B 10.811 +B B(OH)3 0 B 10.811 +B(3) B(OH)3 0 B +B(-5) BH4- 0 B +Ba Ba+2 0 Ba 137.327 +Be Be+2 0 Be 9.0122 +Br Br- 0 Br 79.904 +Br(-03) Br3- 0 Br +Br(-1) Br- 0 Br +Br(0) Br2 0 Br +Br(1) BrO- 0 Br +Br(5) BrO3- 0 Br +Br(7) BrO4- 0 Br +C(-4) CH4 0 CH4 +C(-3) C2H6 0 C2H6 +C(-2) C2H4 0 C2H4 +C HCO3- 1 HCO3 12.011 +C(+2) CO 0 C +C(+4) HCO3- 1 HCO3 +Ca Ca+2 0 Ca 40.078 +Cyanide Cyanide- 1 CN 26 +Cd Cd+2 0 Cd 112.411 +Ce Ce+3 0 Ce 140.115 +Ce(+2) Ce+2 0 Ce +Ce(+3) Ce+3 0 Ce +Ce(+4) Ce+4 0 Ce +Cl Cl- 0 Cl 35.4527 +Cl(-1) Cl- 0 Cl +Cl(1) ClO- 0 Cl +Cl(3) ClO2- 0 Cl +Cl(5) ClO3- 0 Cl +Cl(7) ClO4- 0 Cl +Co Co+2 0 Co 58.9332 +Co(+2) Co+2 0 Co +Co(+3) Co+3 0 Co +Cr CrO4-2 0 CrO4-2 51.9961 +Cr(+2) Cr+2 0 Cr +Cr(+3) Cr+3 0 Cr +Cr(+5) CrO4-3 0 Cr +Cr(+6) CrO4-2 0 Cr +Cs Cs+ 0 Cs 132.9054 +Cu Cu+2 0 Cu 63.546 +Cu(+1) Cu+1 0 Cu +Cu(+2) Cu+2 0 Cu +Dy Dy+3 0 Dy 162.5 +Dy(+2) Dy+2 0 Dy +Dy(+3) Dy+3 0 Dy +E e- 1 0 0 +Er Er+3 0 Er 167.26 +Er(+2) Er+2 0 Er +Er(+3) Er+3 0 Er +Ethylene Ethylene 0 Ethylene 28.0536 +Eu Eu+3 0 Eu 151.965 +Eu(+2) Eu+2 0 Eu +Eu(+3) Eu+3 0 Eu +F F- 0 F 18.9984 +Fe Fe+2 0 Fe 55.847 +Fe(+2) Fe+2 0 Fe +Fe(+3) Fe+3 -2 Fe +Ga Ga+3 0 Ga 69.723 +Gd Gd+3 0 Gd 157.25 +Gd(+2) Gd+2 0 Gd +Gd(+3) Gd+3 0 Gd +H H+ -1 H 1.0079 +H(0) H2 0 H +H(+1) H+ -1 0 +He He 0 He 4.0026 +He(0) He 0 He +Hf Hf+4 0 Hf 178.49 +Hg Hg+2 0 Hg 200.59 +Hg(+1) Hg2+2 0 Hg +Hg(+2) Hg+2 0 Hg +Ho Ho+3 0 Ho 164.9303 +Ho(+2) Ho+2 0 Ho +Ho(+3) Ho+3 0 Ho +I I- 0 I 126.9045 +I(-03) I3- 0 I +I(-1) I- 0 I +I(+1) IO- 0 I +I(+5) IO3- 0 I +I(+7) IO4- 0 I +In In+3 0 In 114.82 +K K+ 0 K 39.0983 +Kr Kr 0 Kr 83.8 +Kr(0) Kr 0 Kr +La La+3 0 La 138.9055 +La(2) La+2 0 La +La(3) La+3 0 La +Li Li+ 0 Li 6.941 +Lu Lu+3 0 Lu 174.967 +Mg Mg+2 0 Mg 24.305 +Mn Mn+2 0 Mn 54.938 +Mn(+2) Mn+2 0 Mn +Mn(+3) Mn+3 0 Mn +Mn(+6) MnO4-2 0 Mn +Mn(+7) MnO4- 0 Mn +Mo MoO4-2 0 Mo 95.94 +N NH3 1 N 14.0067 +N(-3) NH3 1 N +N(-03) N3- 0 N +N(0) N2 0 N +N(+3) NO2- 0 N +N(+5) NO3- 0 N +Na Na+ 0 Na 22.9898 +Nd Nd+3 0 Nd 144.24 +Nd(+2) Nd+2 0 Nd +Nd(+3) Nd+3 0 Nd +Ne Ne 0 Ne 20.1797 +#Ne(0) Ne 0.0 Ne +Ni Ni+2 0 Ni 58.69 +Np Np+4 0 Np 237.048 +Np(+3) Np+3 0 Np +Np(+4) Np+4 0 Np +Np(+5) NpO2+ 0 Np +Np(+6) NpO2+2 0 Np +O H2O 0 O 15.994 +O(-2) H2O 0 0 +O(0) O2 0 O +O_phthalate O_phthalate-2 0 1 1 +P HPO4-2 2 P 30.9738 +P(-3) PH4+ 0 P +P(5) HPO4-2 2 P +Pb Pb+2 0 Pb 207.2 +Pb(+2) Pb+2 0 Pb +Pb(+4) Pb+4 0 Pb +Pd Pd+2 0 Pd 106.42 +Pm Pm+3 0 Pm 147 +Pm(+2) Pm+2 0 Pm +Pm(+3) Pm+3 0 Pm +Pr Pr+3 0 Pr 140.9076 +Pr(+2) Pr+2 0 Pr +Pr(+3) Pr+3 0 Pr +Pu Pu+4 0 Pu 244 +Pu(+3) Pu+3 0 Pu +Pu(+4) Pu+4 0 Pu +Pu(+5) PuO2+ 0 Pu +Pu(+6) PuO2+2 0 Pu +Ra Ra+2 0 Ra 226.025 +Rb Rb+ 0 Rb 85.4678 +Re ReO4- 0 Re 186.207 +Rn Rn 0 Rn 222 +Ru RuO4-2 0 Ru 101.07 +Ru(+2) Ru+2 0 Ru +Ru(+3) Ru+3 0 Ru +Ru(+4) Ru(OH)2+2 0 Ru +Ru(+6) RuO4-2 0 Ru +Ru(+7) RuO4- 0 Ru +Ru(+8) RuO4 0 Ru +S SO4-2 0 SO4 32.066 +S(-2) HS- 1 S +S(+2) S2O3-2 0 S +S(+3) S2O4-2 0 S +S(+4) SO3-2 0 S +S(+5) S2O5-2 0 S +S(+6) SO4-2 0 SO4 +S(+7) S2O8-2 0 S +S(+8) HSO5- 0 S +Sb Sb(OH)3 0 Sb 121.75 +Sc Sc+3 0 Sc 44.9559 +Se SeO3-2 0 Se 78.96 +Se(-2) HSe- 0 Se +Se(+4) SeO3-2 0 Se +Se(+6) SeO4-2 0 Se +Si SiO2 0 SiO2 28.0855 +Sm Sm+3 0 Sm 150.36 +Sm(+2) Sm+2 0 Sm +Sm(+3) Sm+3 0 Sm +Sn Sn+2 0 Sn 118.71 +Sn(+2) Sn+2 0 Sn +Sn(+4) Sn+4 0 Sn +Sr Sr+2 0 Sr 87.62 +Tb Tb+3 0 Tb 158.9253 +Tb(+2) Tb+2 0 Tb +Tb(+3) Tb+3 0 Tb +Tc TcO4- 0 Tc 98 +Tc(+3) Tc+3 0 Tc +Tc(+4) TcO+2 0 Tc +Tc(+5) TcO4-3 0 Tc +Tc(+6) TcO4-2 0 Tc +Tc(+7) TcO4- 0 Tc +Thiocyanate Thiocyanate- 0 SCN 58 +Th Th+4 0 Th 232.0381 +Ti Ti(OH)4 0 Ti 47.88 +Tl Tl+ 0 Tl 204.3833 +Tl(+1) Tl+ 0 Tl +Tl(+3) Tl+3 0 Tl +Tm Tm+3 0 Tm 168.9342 +Tm(+2) Tm+2 0 Tm +Tm(+3) Tm+3 0 Tm +U UO2+2 0 U 238.0289 +U(+3) U+3 0 U +U(+4) U+4 0 U +U(+5) UO2+ 0 U +U(+6) UO2+2 0 U +V VO+2 0 V 50.9415 +V(+3) V+3 0 V +V(+4) VO+2 0 V +V(+5) VO2+ 0 V +W WO4-2 0 W 183.85 +Xe Xe 0 Xe 131.29 +Xe(0) Xe 0 Xe +Y Y+3 0 Y 88.9059 +Yb Yb+3 0 Yb 173.04 +Yb(+2) Yb+2 0 Yb +Yb(+3) Yb+3 0 Yb +Zn Zn+2 0 Zn 65.39 +Zr Zr(OH)2+2 0 Zr 91.224 SOLUTION_SPECIES HAcetate = HAcetate - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction HAcetate -# Enthalpy of formation: -116.1 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction HAcetate +# Enthalpy of formation: -116.1 kcal/mol Ag+ = Ag+ - -llnl_gamma 2.5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ag+ -# Enthalpy of formation: 25.275 kcal/mol + -llnl_gamma 2.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ag+ +# Enthalpy of formation: 25.275 kcal/mol Al+3 = Al+3 - -llnl_gamma 9 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Al+3 -# Enthalpy of formation: -128.681 kcal/mol + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Al+3 +# Enthalpy of formation: -128.681 kcal/mol Am+3 = Am+3 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Am+3 -# Enthalpy of formation: -616.7 kJ/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Am+3 +# Enthalpy of formation: -616.7 kJ/mol Ar = Ar - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ar -# Enthalpy of formation: -2.87 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ar +# Enthalpy of formation: -2.87 kcal/mol Au+ = Au+ - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Au+ -# Enthalpy of formation: 47.58 kcal/mol + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Au+ +# Enthalpy of formation: 47.58 kcal/mol B(OH)3 = B(OH)3 - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction B(OH)3 -# Enthalpy of formation: -256.82 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction B(OH)3 +# Enthalpy of formation: -256.82 kcal/mol Ba+2 = Ba+2 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ba+2 -# Enthalpy of formation: -128.5 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ba+2 +# Enthalpy of formation: -128.5 kcal/mol Be+2 = Be+2 - -llnl_gamma 8 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Be+2 -# Enthalpy of formation: -91.5 kcal/mol + -llnl_gamma 8 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Be+2 +# Enthalpy of formation: -91.5 kcal/mol Br- = Br- - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Br- -# Enthalpy of formation: -29.04 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Br- +# Enthalpy of formation: -29.04 kcal/mol Ca+2 = Ca+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ca+2 -# Enthalpy of formation: -129.8 kcal/mol + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ca+2 +# Enthalpy of formation: -129.8 kcal/mol Cd+2 = Cd+2 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cd+2 -# Enthalpy of formation: -18.14 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cd+2 +# Enthalpy of formation: -18.14 kcal/mol Ce+3 = Ce+3 - -llnl_gamma 9 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ce+3 -# Enthalpy of formation: -167.4 kcal/mol + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ce+3 +# Enthalpy of formation: -167.4 kcal/mol Cl- = Cl- - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cl- -# Enthalpy of formation: -39.933 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cl- +# Enthalpy of formation: -39.933 kcal/mol Co+2 = Co+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Co+2 -# Enthalpy of formation: -13.9 kcal/mol + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Co+2 +# Enthalpy of formation: -13.9 kcal/mol CrO4-2 = CrO4-2 - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction CrO4-2 -# Enthalpy of formation: -210.6 kcal/mol + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction CrO4-2 +# Enthalpy of formation: -210.6 kcal/mol Cs+ = Cs+ - -llnl_gamma 2.5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cs+ -# Enthalpy of formation: -61.67 kcal/mol + -llnl_gamma 2.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cs+ +# Enthalpy of formation: -61.67 kcal/mol Cu+2 = Cu+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cu+2 -# Enthalpy of formation: 15.7 kcal/mol + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Cu+2 +# Enthalpy of formation: 15.7 kcal/mol Dy+3 = Dy+3 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Dy+3 -# Enthalpy of formation: -166.5 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Dy+3 +# Enthalpy of formation: -166.5 kcal/mol e- = e- - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction e- -# Enthalpy of formation: -0 kJ/mol + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction e- +# Enthalpy of formation: -0 kJ/mol Er+3 = Er+3 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Er+3 -# Enthalpy of formation: -168.5 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Er+3 +# Enthalpy of formation: -168.5 kcal/mol Ethylene = Ethylene - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ethylene -# Enthalpy of formation: 8.57 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ethylene +# Enthalpy of formation: 8.57 kcal/mol Eu+3 = Eu+3 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Eu+3 -# Enthalpy of formation: -144.7 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Eu+3 +# Enthalpy of formation: -144.7 kcal/mol F- = F- - -llnl_gamma 3.5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction F- -# Enthalpy of formation: -80.15 kcal/mol + -llnl_gamma 3.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction F- +# Enthalpy of formation: -80.15 kcal/mol Fe+2 = Fe+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Fe+2 -# Enthalpy of formation: -22.05 kcal/mol + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Fe+2 +# Enthalpy of formation: -22.05 kcal/mol Ga+3 = Ga+3 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ga+3 -# Enthalpy of formation: -50.6 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ga+3 +# Enthalpy of formation: -50.6 kcal/mol Gd+3 = Gd+3 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Gd+3 -# Enthalpy of formation: -164.2 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Gd+3 +# Enthalpy of formation: -164.2 kcal/mol H+ = H+ - -llnl_gamma 9 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction H+ -# Enthalpy of formation: -0 kJ/mol + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction H+ +# Enthalpy of formation: -0 kJ/mol He = He - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction He -# Enthalpy of formation: -0.15 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction He +# Enthalpy of formation: -0.15 kcal/mol H2AsO4- = H2AsO4- - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction H2AsO4- -# Enthalpy of formation: -217.39 kcal/mol + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction H2AsO4- +# Enthalpy of formation: -217.39 kcal/mol HCO3- = HCO3- - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction HCO3- -# Enthalpy of formation: -164.898 kcal/mol + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction HCO3- +# Enthalpy of formation: -164.898 kcal/mol HPO4-2 = HPO4-2 - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction HPO4-2 -# Enthalpy of formation: -308.815 kcal/mol + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction HPO4-2 +# Enthalpy of formation: -308.815 kcal/mol Hf+4 = Hf+4 - log_k 0 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf+4 -# Enthalpy of formation: -0 kcal/mol + log_k 0 + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf+4 +# Enthalpy of formation: -0 kcal/mol Hg+2 = Hg+2 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Hg+2 -# Enthalpy of formation: 40.67 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Hg+2 +# Enthalpy of formation: 40.67 kcal/mol Ho+3 = Ho+3 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ho+3 -# Enthalpy of formation: -169 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ho+3 +# Enthalpy of formation: -169 kcal/mol I- = I- - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction I- -# Enthalpy of formation: -13.6 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction I- +# Enthalpy of formation: -13.6 kcal/mol In+3 = In+3 - -llnl_gamma 9 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction In+3 -# Enthalpy of formation: -25 kcal/mol + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction In+3 +# Enthalpy of formation: -25 kcal/mol K+ = K+ - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction K+ -# Enthalpy of formation: -60.27 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction K+ +# Enthalpy of formation: -60.27 kcal/mol Kr = Kr - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Kr -# Enthalpy of formation: -3.65 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Kr +# Enthalpy of formation: -3.65 kcal/mol La+3 = La+3 - -llnl_gamma 9 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction La+3 -# Enthalpy of formation: -169.6 kcal/mol + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction La+3 +# Enthalpy of formation: -169.6 kcal/mol Li+ = Li+ - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Li+ -# Enthalpy of formation: -66.552 kcal/mol + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Li+ +# Enthalpy of formation: -66.552 kcal/mol Lu+3 = Lu+3 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Lu+3 -# Enthalpy of formation: -167.9 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Lu+3 +# Enthalpy of formation: -167.9 kcal/mol Mg+2 = Mg+2 - -llnl_gamma 8 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Mg+2 -# Enthalpy of formation: -111.367 kcal/mol + -llnl_gamma 8 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Mg+2 +# Enthalpy of formation: -111.367 kcal/mol Mn+2 = Mn+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Mn+2 -# Enthalpy of formation: -52.724 kcal/mol + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Mn+2 +# Enthalpy of formation: -52.724 kcal/mol MoO4-2 = MoO4-2 - -llnl_gamma 4.5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction MoO4-2 -# Enthalpy of formation: -238.5 kcal/mol + -llnl_gamma 4.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction MoO4-2 +# Enthalpy of formation: -238.5 kcal/mol NH3 = NH3 - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction NH3 -# Enthalpy of formation: -19.44 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction NH3 +# Enthalpy of formation: -19.44 kcal/mol Na+ = Na+ - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Na+ -# Enthalpy of formation: -57.433 kcal/mol + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Na+ +# Enthalpy of formation: -57.433 kcal/mol Nd+3 = Nd+3 - -llnl_gamma 9 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Nd+3 -# Enthalpy of formation: -166.5 kcal/mol + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Nd+3 +# Enthalpy of formation: -166.5 kcal/mol Ne = Ne - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ne -# Enthalpy of formation: -0.87 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ne +# Enthalpy of formation: -0.87 kcal/mol Ni+2 = Ni+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ni+2 -# Enthalpy of formation: -12.9 kcal/mol + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ni+2 +# Enthalpy of formation: -12.9 kcal/mol Np+4 = Np+4 - -llnl_gamma 5.5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Np+4 -# Enthalpy of formation: -556.001 kJ/mol + -llnl_gamma 5.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Np+4 +# Enthalpy of formation: -556.001 kJ/mol H2O = H2O - -llnl_gamma 3 + -llnl_gamma 3 log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction H2O -# Enthalpy of formation: -68.317 kcal/mol + -delta_H 0 kJ/mol # Calculated enthalpy of reaction H2O +# Enthalpy of formation: -68.317 kcal/mol O_phthalate-2 = O_phthalate-2 - -llnl_gamma 4 - log_k 0 - -delta_H 0 # Not possible to calculate enthalpy of reaction O_phthalate-2 -# Enthalpy of formation: -0 kcal/mol + -llnl_gamma 4 + log_k 0 + -delta_H 0 # Not possible to calculate enthalpy of reaction O_phthalate-2 +# Enthalpy of formation: -0 kcal/mol Pb+2 = Pb+2 - -llnl_gamma 4.5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pb+2 -# Enthalpy of formation: 0.22 kcal/mol + -llnl_gamma 4.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pb+2 +# Enthalpy of formation: 0.22 kcal/mol Pd+2 = Pd+2 - -llnl_gamma 4.5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pd+2 -# Enthalpy of formation: 42.08 kcal/mol + -llnl_gamma 4.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pd+2 +# Enthalpy of formation: 42.08 kcal/mol Pm+3 = Pm+3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pm+3 -# Enthalpy of formation: -688 kJ/mol + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pm+3 +# Enthalpy of formation: -688 kJ/mol Pr+3 = Pr+3 - -llnl_gamma 9 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pr+3 -# Enthalpy of formation: -168.8 kcal/mol + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pr+3 +# Enthalpy of formation: -168.8 kcal/mol Pu+4 = Pu+4 - -llnl_gamma 5.5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pu+4 -# Enthalpy of formation: -535.893 kJ/mol + -llnl_gamma 5.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Pu+4 +# Enthalpy of formation: -535.893 kJ/mol Ra+2 = Ra+2 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ra+2 -# Enthalpy of formation: -126.1 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Ra+2 +# Enthalpy of formation: -126.1 kcal/mol Rb+ = Rb+ - -llnl_gamma 2.5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Rb+ -# Enthalpy of formation: -60.02 kcal/mol + -llnl_gamma 2.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Rb+ +# Enthalpy of formation: -60.02 kcal/mol ReO4- = ReO4- - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction ReO4- -# Enthalpy of formation: -188.2 kcal/mol + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction ReO4- +# Enthalpy of formation: -188.2 kcal/mol Rn = Rn - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Rn -# Enthalpy of formation: -5 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Rn +# Enthalpy of formation: -5 kcal/mol RuO4-2 = RuO4-2 - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction RuO4-2 -# Enthalpy of formation: -457.075 kJ/mol + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction RuO4-2 +# Enthalpy of formation: -457.075 kJ/mol SO4-2 = SO4-2 - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction SO4-2 -# Enthalpy of formation: -217.4 kcal/mol + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction SO4-2 +# Enthalpy of formation: -217.4 kcal/mol Sb(OH)3 = Sb(OH)3 - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sb(OH)3 -# Enthalpy of formation: -773.789 kJ/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sb(OH)3 +# Enthalpy of formation: -773.789 kJ/mol Sc+3 = Sc+3 - -llnl_gamma 9 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sc+3 -# Enthalpy of formation: -146.8 kcal/mol + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sc+3 +# Enthalpy of formation: -146.8 kcal/mol SeO3-2 = SeO3-2 - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction SeO3-2 -# Enthalpy of formation: -121.7 kcal/mol + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction SeO3-2 +# Enthalpy of formation: -121.7 kcal/mol SiO2 = SiO2 - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction SiO2 -# Enthalpy of formation: -209.775 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction SiO2 +# Enthalpy of formation: -209.775 kcal/mol Sm+3 = Sm+3 - -llnl_gamma 9 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sm+3 -# Enthalpy of formation: -165.2 kcal/mol + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sm+3 +# Enthalpy of formation: -165.2 kcal/mol Sn+2 = Sn+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sn+2 -# Enthalpy of formation: -2.1 kcal/mol + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sn+2 +# Enthalpy of formation: -2.1 kcal/mol Sr+2 = Sr+2 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sr+2 -# Enthalpy of formation: -131.67 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Sr+2 +# Enthalpy of formation: -131.67 kcal/mol Tb+3 = Tb+3 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tb+3 -# Enthalpy of formation: -166.9 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tb+3 +# Enthalpy of formation: -166.9 kcal/mol TcO4- = TcO4- - -llnl_gamma 4 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction TcO4- -# Enthalpy of formation: -716.269 kJ/mol + -llnl_gamma 4 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction TcO4- +# Enthalpy of formation: -716.269 kJ/mol Th+4 = Th+4 - -llnl_gamma 11 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Th+4 -# Enthalpy of formation: -183.8 kcal/mol + -llnl_gamma 11 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Th+4 +# Enthalpy of formation: -183.8 kcal/mol Ti(OH)4 = Ti(OH)4 - -llnl_gamma 3 - log_k 0 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti(OH)4 -# Enthalpy of formation: -0 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti(OH)4 +# Enthalpy of formation: -0 kcal/mol Tl+ = Tl+ - -llnl_gamma 2.5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tl+ -# Enthalpy of formation: 1.28 kcal/mol + -llnl_gamma 2.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tl+ +# Enthalpy of formation: 1.28 kcal/mol Tm+3 = Tm+3 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tm+3 -# Enthalpy of formation: -168.5 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Tm+3 +# Enthalpy of formation: -168.5 kcal/mol UO2+2 = UO2+2 - -llnl_gamma 4.5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction UO2+2 -# Enthalpy of formation: -1019 kJ/mol + -llnl_gamma 4.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction UO2+2 +# Enthalpy of formation: -1019 kJ/mol VO+2 = VO+2 - -llnl_gamma 4.5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction VO+2 -# Enthalpy of formation: -116.3 kcal/mol + -llnl_gamma 4.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction VO+2 +# Enthalpy of formation: -116.3 kcal/mol WO4-2 = WO4-2 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction WO4-2 -# Enthalpy of formation: -257.1 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction WO4-2 +# Enthalpy of formation: -257.1 kcal/mol Xe = Xe - -llnl_gamma 3 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Xe -# Enthalpy of formation: -4.51 kcal/mol + -llnl_gamma 3 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Xe +# Enthalpy of formation: -4.51 kcal/mol Y+3 = Y+3 - -llnl_gamma 9 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Y+3 -# Enthalpy of formation: -170.9 kcal/mol + -llnl_gamma 9 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Y+3 +# Enthalpy of formation: -170.9 kcal/mol Yb+3 = Yb+3 - -llnl_gamma 5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Yb+3 -# Enthalpy of formation: -160.3 kcal/mol + -llnl_gamma 5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Yb+3 +# Enthalpy of formation: -160.3 kcal/mol Zn+2 = Zn+2 - -llnl_gamma 6 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Zn+2 -# Enthalpy of formation: -36.66 kcal/mol + -llnl_gamma 6 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Zn+2 +# Enthalpy of formation: -36.66 kcal/mol Zr(OH)2+2 = Zr(OH)2+2 - -llnl_gamma 4.5 - log_k 0 - -delta_H 0 kJ/mol # Calculated enthalpy of reaction Zr(OH)2+2 -# Enthalpy of formation: -260.717 kcal/mol + -llnl_gamma 4.5 + log_k 0 + -delta_H 0 kJ/mol # Calculated enthalpy of reaction Zr(OH)2+2 +# Enthalpy of formation: -260.717 kcal/mol 2 H2O = O2 + 4 H+ + 4 e- - -CO2_llnl_gamma - log_k -85.9951 - -delta_H 559.543 kJ/mol # Calculated enthalpy of reaction O2 -# Enthalpy of formation: -2.9 kcal/mol + -CO2_llnl_gamma + log_k -85.9951 + -delta_H 559.543 kJ/mol # Calculated enthalpy of reaction O2 +# Enthalpy of formation: -2.9 kcal/mol -analytic 38.0229 7.99407E-3 -2.7655e+4 -1.4506e+1 199838.45 -# Range: 0-300 +# Range: 0-300 SO4-2 + H+ = HS- + 2 O2 -llnl_gamma 3.5 log_k -138.3169 - -delta_H 869.226 kJ/mol # Calculated enthalpy of reaction HS- -# Enthalpy of formation: -3.85 kcal/mol + -delta_H 869.226 kJ/mol # Calculated enthalpy of reaction HS- +# Enthalpy of formation: -3.85 kcal/mol -analytic 2.6251e+1 3.9525e-2 -4.5443e+4 -1.1107e+1 3.1843e+5 # -Range: 0-300 @@ -729,511 +729,511 @@ Zr(OH)2+2 = Zr(OH)2+2 #2 HS- = S2-- +2 H+ + 2e- -llnl_gamma 4 log_k 33.2673 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction S2-2 +# Enthalpy of formation: -0 kcal/mol -analytic 0.2173E+2 -0.12307E-2 0.10098E+5 -0.88813E+1 0.15757E+3 - -mass_balance S(-2)2 + -mass_balance S(-2)2 # -Range: 0-300 -# -add_logk Log_K_O2 0.5 +# -add_logk Log_K_O2 0.5 2 H+ + 2 SO3-2 = S2O3-2 + O2 + H2O -llnl_gamma 4 log_k -40.2906 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O3-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O3-2 +# Enthalpy of formation: -0 kcal/mol -analytic 0.77679E+2 0.65761E-1 -0.15438E+5 -0.34651E+2 -0.24092E+3 # -Range: 0-300 H+ + Ag+ + 0.25 O2 = Ag+2 + 0.5 H2O -llnl_gamma 4.5 log_k -12.1244 - -delta_H 22.9764 kJ/mol # Calculated enthalpy of reaction Ag+2 -# Enthalpy of formation: 64.2 kcal/mol + -delta_H 22.9764 kJ/mol # Calculated enthalpy of reaction Ag+2 +# Enthalpy of formation: 64.2 kcal/mol -analytic -4.7312e+1 -1.5239e-2 -4.1954e+2 1.6622e+1 -6.5328e+0 # -Range: 0-300 Am+3 + 0.5 H2O = Am+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -60.3792 - -delta_H 401.953 kJ/mol # Calculated enthalpy of reaction Am+2 -# Enthalpy of formation: -354.633 kJ/mol + -delta_H 401.953 kJ/mol # Calculated enthalpy of reaction Am+2 +# Enthalpy of formation: -354.633 kJ/mol -analytic 1.4922e+1 3.5993e-3 -2.0987e+4 -2.4146e+0 -3.2749e+2 # -Range: 0-300 H+ + Am+3 + 0.25 O2 = Am+4 + 0.5 H2O -llnl_gamma 5.5 log_k -22.7073 - -delta_H 70.8142 kJ/mol # Calculated enthalpy of reaction Am+4 -# Enthalpy of formation: -406 kJ/mol + -delta_H 70.8142 kJ/mol # Calculated enthalpy of reaction Am+4 +# Enthalpy of formation: -406 kJ/mol -analytic -1.746e+1 -2.2336e-3 -3.5139e+3 2.9102e+0 -5.4826e+1 # -Range: 0-300 H2O + Am+3 + 0.5 O2 = AmO2+ + 2 H+ -llnl_gamma 4 log_k -15.384 - -delta_H 104.345 kJ/mol # Calculated enthalpy of reaction AmO2+ -# Enthalpy of formation: -804.26 kJ/mol + -delta_H 104.345 kJ/mol # Calculated enthalpy of reaction AmO2+ +# Enthalpy of formation: -804.26 kJ/mol -analytic 1.411e+1 6.9728e-3 -4.2098e+3 -6.0936e+0 -2.1192e+5 # -Range: 0-300 Am+3 + 0.75 O2 + 0.5 H2O = AmO2+2 + H+ -llnl_gamma 4.5 log_k -20.862 - -delta_H 117.959 kJ/mol # Calculated enthalpy of reaction AmO2+2 -# Enthalpy of formation: -650.76 kJ/mol + -delta_H 117.959 kJ/mol # Calculated enthalpy of reaction AmO2+2 +# Enthalpy of formation: -650.76 kJ/mol -analytic 5.7163e+1 4.0278e-3 -8.4633e+3 -2.055e+1 -1.3208e+2 # -Range: 0-300 H2AsO4- + H+ = AsH3 + 2 O2 -llnl_gamma 3 log_k -155.1907 - -delta_H 931.183 kJ/mol # Calculated enthalpy of reaction AsH3 -# Enthalpy of formation: 10.968 kcal/mol + -delta_H 931.183 kJ/mol # Calculated enthalpy of reaction AsH3 +# Enthalpy of formation: 10.968 kcal/mol -analytic 2.831e+2 9.6961e-2 -5.483e+4 -1.1449e+2 -9.3119e+2 # -Range: 0-200 2 H+ + Au+ + 0.5 O2 = Au+3 + H2O -llnl_gamma 5 log_k -4.3506 - -delta_H -73.2911 kJ/mol # Calculated enthalpy of reaction Au+3 -# Enthalpy of formation: 96.93 kcal/mol + -delta_H -73.2911 kJ/mol # Calculated enthalpy of reaction Au+3 +# Enthalpy of formation: 96.93 kcal/mol -analytic -6.8661e+1 -2.6838e-2 4.4549e+3 2.3178e+1 6.9534e+1 # -Range: 0-300 H2O + B(OH)3 = BH4- + 2 O2 + H+ -llnl_gamma 4 log_k -237.1028 - -delta_H 1384.24 kJ/mol # Calculated enthalpy of reaction BH4- -# Enthalpy of formation: 48.131 kJ/mol + -delta_H 1384.24 kJ/mol # Calculated enthalpy of reaction BH4- +# Enthalpy of formation: 48.131 kJ/mol -analytic -7.493e+1 -7.2794e-3 -6.9168e+4 2.9105e+1 -1.0793e+3 # -Range: 0-300 3 Br- + 2 H+ + 0.5 O2 = Br3- + H2O -llnl_gamma 4 log_k 7.0696 - -delta_H -45.6767 kJ/mol # Calculated enthalpy of reaction Br3- -# Enthalpy of formation: -31.17 kcal/mol + -delta_H -45.6767 kJ/mol # Calculated enthalpy of reaction Br3- +# Enthalpy of formation: -31.17 kcal/mol -analytic 1.4899e+2 6.4017e-2 -3.3831e+2 -6.4596e+1 -5.3232e+0 # -Range: 0-300 Br- + 0.5 O2 = BrO- -llnl_gamma 4 log_k -10.9167 - -delta_H 33.4302 kJ/mol # Calculated enthalpy of reaction BrO- -# Enthalpy of formation: -22.5 kcal/mol + -delta_H 33.4302 kJ/mol # Calculated enthalpy of reaction BrO- +# Enthalpy of formation: -22.5 kcal/mol -analytic 5.4335e+1 1.9509e-3 -4.286e+3 -2.0799e+1 -6.6896e+1 # -Range: 0-300 1.5 O2 + Br- = BrO3- -llnl_gamma 3.5 log_k -17.1443 - -delta_H 72.6342 kJ/mol # Calculated enthalpy of reaction BrO3- -# Enthalpy of formation: -16.03 kcal/mol + -delta_H 72.6342 kJ/mol # Calculated enthalpy of reaction BrO3- +# Enthalpy of formation: -16.03 kcal/mol -analytic 3.7156e+1 -4.7855e-3 -4.6208e+3 -1.4136e+1 -2.1385e+5 # -Range: 0-300 2 O2 + Br- = BrO4- -llnl_gamma 4 log_k -33.104 - -delta_H 158.741 kJ/mol # Calculated enthalpy of reaction BrO4- -# Enthalpy of formation: 3.1 kcal/mol + -delta_H 158.741 kJ/mol # Calculated enthalpy of reaction BrO4- +# Enthalpy of formation: 3.1 kcal/mol -analytic 8.1393e+1 -2.3409e-3 -1.229e+4 -2.9336e+1 -1.918e+2 # -Range: 0-300 # 1.0000 NH3 + 1.0000 HCO3- = CN- +2.0000 H2O +0.5000 O2 # -llnl_gamma 3.0 # log_k -56.0505 -# -delta_H 344.151 kJ/mol # Calculated enthalpy of reaction CN- -# # Enthalpy of formation: 36 kcal/mol +# -delta_H 344.151 kJ/mol # Calculated enthalpy of reaction CN- +# # Enthalpy of formation: 36 kcal/mol # -analytic -1.1174e+001 3.8167e-003 -1.7063e+004 4.5349e+000 -2.6625e+002 # # -Range: 0-300 Cyanide- = Cyanide- - log_k 0 + log_k 0 H+ + HCO3- + H2O = CH4 + 2 O2 -llnl_gamma 3 log_k -144.1412 - -delta_H 863.599 kJ/mol # Calculated enthalpy of reaction CH4 -# Enthalpy of formation: -21.01 kcal/mol - -analytic -0.41698E+2 0.36584E-1 -0.40675E+5 0.93479E+1 -0.63468E+3 + -delta_H 863.599 kJ/mol # Calculated enthalpy of reaction CH4 +# Enthalpy of formation: -21.01 kcal/mol + -analytic -0.41698E+2 0.36584E-1 -0.40675E+5 0.93479E+1 -0.63468E+3 # -Range: 0-300 2 H+ + 2 HCO3- + H2O = C2H6 + 3.5 O2 -llnl_gamma 3 log_k -228.6072 - -delta_H 0 # Not possible to calculate enthalpy of reaction C2H6 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction C2H6 +# Enthalpy of formation: -0 kcal/mol -analytic -0.10777E+2 0.72105E-1 -0.67489E+5 -0.13915E+2 -0.10531E+4 # -Range: 0-300 2 H+ + 2 HCO3- = C2H4 + 3 O2 -llnl_gamma 3 log_k -254.5034 - -delta_H 1446.6 kJ/mol # Calculated enthalpy of reaction C2H4 -# Enthalpy of formation: 24.65 kcal/mol + -delta_H 1446.6 kJ/mol # Calculated enthalpy of reaction C2H4 +# Enthalpy of formation: 24.65 kcal/mol -analytic -0.30329E+2 0.71187E-1 -0.7314E+5 0E+0 0E+0 # -Range: 0-300 HCO3- + H+ = CO + H2O + 0.5 O2 -llnl_gamma 3 log_k -41.7002 - -delta_H 277.069 kJ/mol # Calculated enthalpy of reaction CO -# Enthalpy of formation: -28.91 kcal/mol + -delta_H 277.069 kJ/mol # Calculated enthalpy of reaction CO +# Enthalpy of formation: -28.91 kcal/mol -analytic 1.0028e+2 4.6877e-2 -1.8062e+4 -4.0263e+1 3.8031e+5 # -Range: 0-300 Ce+3 + 0.5 H2O = Ce+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -83.6754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce+2 +# Enthalpy of formation: -0 kcal/mol H+ + Ce+3 + 0.25 O2 = Ce+4 + 0.5 H2O -llnl_gamma 5.5 log_k -7.9154 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce+4 +# Enthalpy of formation: -0 kcal/mol Cl- + 0.5 O2 = ClO- -llnl_gamma 4 log_k -15.1014 - -delta_H 66.0361 kJ/mol # Calculated enthalpy of reaction ClO- -# Enthalpy of formation: -25.6 kcal/mol + -delta_H 66.0361 kJ/mol # Calculated enthalpy of reaction ClO- +# Enthalpy of formation: -25.6 kcal/mol -analytic 6.1314e+1 3.4812e-3 -6.0952e+3 -2.3043e+1 -9.5128e+1 # -Range: 0-300 O2 + Cl- = ClO2- -llnl_gamma 4 log_k -23.108 - -delta_H 112.688 kJ/mol # Calculated enthalpy of reaction ClO2- -# Enthalpy of formation: -15.9 kcal/mol + -delta_H 112.688 kJ/mol # Calculated enthalpy of reaction ClO2- +# Enthalpy of formation: -15.9 kcal/mol -analytic 3.3638e+0 -6.1675e-3 -4.9726e+3 -2.0467e+0 -2.5769e+5 # -Range: 0-300 1.5 O2 + Cl- = ClO3- -llnl_gamma 3.5 log_k -17.2608 - -delta_H 81.3077 kJ/mol # Calculated enthalpy of reaction ClO3- -# Enthalpy of formation: -24.85 kcal/mol + -delta_H 81.3077 kJ/mol # Calculated enthalpy of reaction ClO3- +# Enthalpy of formation: -24.85 kcal/mol -analytic 2.8852e+1 -4.8281e-3 -4.6779e+3 -1.0772e+1 -2.0783e+5 # -Range: 0-300 2 O2 + Cl- = ClO4- -llnl_gamma 3.5 log_k -15.7091 - -delta_H 62.0194 kJ/mol # Calculated enthalpy of reaction ClO4- -# Enthalpy of formation: -30.91 kcal/mol + -delta_H 62.0194 kJ/mol # Calculated enthalpy of reaction ClO4- +# Enthalpy of formation: -30.91 kcal/mol -analytic 7.028e+1 -6.8927e-5 -5.569e+3 -2.6446e+1 -1.6596e+5 # -Range: 0-300 H+ + Co+2 + 0.25 O2 = Co+3 + 0.5 H2O -llnl_gamma 5 log_k -11.4845 - -delta_H 10.3198 kJ/mol # Calculated enthalpy of reaction Co+3 -# Enthalpy of formation: 22 kcal/mol + -delta_H 10.3198 kJ/mol # Calculated enthalpy of reaction Co+3 +# Enthalpy of formation: 22 kcal/mol -analytic -2.2827e+1 -1.2222e-2 -7.2117e+2 7.0306e+0 -1.1247e+1 # -Range: 0-300 4 H+ + CrO4-2 = Cr+2 + 2 H2O + O2 -llnl_gamma 4.5 log_k -21.6373 - -delta_H 153.829 kJ/mol # Calculated enthalpy of reaction Cr+2 -# Enthalpy of formation: -34.3 kcal/mol + -delta_H 153.829 kJ/mol # Calculated enthalpy of reaction Cr+2 +# Enthalpy of formation: -34.3 kcal/mol -analytic 6.9003e+1 6.2884e-2 -6.9847e+3 -3.472e+1 -1.0901e+2 # -Range: 0-300 5 H+ + CrO4-2 = Cr+3 + 2.5 H2O + 0.75 O2 -llnl_gamma 9 log_k 8.3842 - -delta_H -81.0336 kJ/mol # Calculated enthalpy of reaction Cr+3 -# Enthalpy of formation: -57 kcal/mol + -delta_H -81.0336 kJ/mol # Calculated enthalpy of reaction Cr+3 +# Enthalpy of formation: -57 kcal/mol -analytic 5.1963e+1 6.0932e-2 5.4256e+3 -3.229e+1 8.4645e+1 # -Range: 0-300 0.5 H2O + CrO4-2 = CrO4-3 + H+ + 0.25 O2 -llnl_gamma 4 log_k -19.7709 - -delta_H 0 # Not possible to calculate enthalpy of reaction CrO4-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CrO4-3 +# Enthalpy of formation: -0 kcal/mol Cu+2 + 0.5 H2O = Cu+ + H+ + 0.25 O2 -llnl_gamma 4 log_k -18.7704 - -delta_H 145.877 kJ/mol # Calculated enthalpy of reaction Cu+ -# Enthalpy of formation: 17.132 kcal/mol + -delta_H 145.877 kJ/mol # Calculated enthalpy of reaction Cu+ +# Enthalpy of formation: 17.132 kcal/mol -analytic 3.7909e+1 1.3731e-2 -8.1506e+3 -1.3508e+1 -1.2719e+2 # -Range: 0-300 Dy+3 + 0.5 H2O = Dy+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -61.0754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy+2 +# Enthalpy of formation: -0 kcal/mol Er+3 + 0.5 H2O = Er+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -70.1754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Er+2 +# Enthalpy of formation: -0 kcal/mol Eu+3 + 0.5 H2O = Eu+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -27.5115 - -delta_H 217.708 kJ/mol # Calculated enthalpy of reaction Eu+2 -# Enthalpy of formation: -126.1 kcal/mol + -delta_H 217.708 kJ/mol # Calculated enthalpy of reaction Eu+2 +# Enthalpy of formation: -126.1 kcal/mol -analytic 3.03e+1 1.4126e-2 -1.2319e+4 -9.0585e+0 1.5289e+5 # -Range: 0-300 H+ + Fe+2 + 0.25 O2 = Fe+3 + 0.5 H2O -llnl_gamma 9 log_k 8.4899 - -delta_H -97.209 kJ/mol # Calculated enthalpy of reaction Fe+3 -# Enthalpy of formation: -11.85 kcal/mol + -delta_H -97.209 kJ/mol # Calculated enthalpy of reaction Fe+3 +# Enthalpy of formation: -11.85 kcal/mol -analytic -1.7808e+1 -1.1753e-2 4.7609e+3 5.5866e+0 7.4295e+1 # -Range: 0-300 Gd+3 + 0.5 H2O = Gd+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -84.6754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd+2 +# Enthalpy of formation: -0 kcal/mol H2O = H2 + 0.5 O2 - -CO2_llnl_gamma + -CO2_llnl_gamma log_k -46.1066 - -delta_H 275.588 kJ/mol # Calculated enthalpy of reaction H2 -# Enthalpy of formation: -1 kcal/mol + -delta_H 275.588 kJ/mol # Calculated enthalpy of reaction H2 +# Enthalpy of formation: -1 kcal/mol -analytic 6.6835e+1 1.7172e-2 -1.8849e+4 -2.4092e+1 4.2501e+5 # -Range: 0-300 H2AsO4- = H2AsO3- + 0.5 O2 -llnl_gamma 4 log_k -30.5349 - -delta_H 188.698 kJ/mol # Calculated enthalpy of reaction H2AsO3- -# Enthalpy of formation: -170.84 kcal/mol + -delta_H 188.698 kJ/mol # Calculated enthalpy of reaction H2AsO3- +# Enthalpy of formation: -170.84 kcal/mol -analytic 7.4245e+1 1.4885e-2 -1.4218e+4 -2.6403e+1 3.3822e+5 # -Range: 0-300 SO4-2 + H+ + 0.5 O2 = HSO5- -llnl_gamma 4 log_k -17.2865 - -delta_H 140.038 kJ/mol # Calculated enthalpy of reaction HSO5- -# Enthalpy of formation: -185.38 kcal/mol + -delta_H 140.038 kJ/mol # Calculated enthalpy of reaction HSO5- +# Enthalpy of formation: -185.38 kcal/mol -analytic 5.9944e+1 3.0904e-2 -7.7494e+3 -2.442e+1 -1.2094e+2 # -Range: 0-300 SeO3-2 + H+ = HSe- + 1.5 O2 -llnl_gamma 4 log_k -76.8418 - -delta_H 506.892 kJ/mol # Calculated enthalpy of reaction HSe- -# Enthalpy of formation: 3.8 kcal/mol + -delta_H 506.892 kJ/mol # Calculated enthalpy of reaction HSe- +# Enthalpy of formation: 3.8 kcal/mol -analytic 4.7105e+1 4.3116e-2 -2.6949e+4 -1.9895e+1 2.5305e+5 # -Range: 0-300 2 Hg+2 + H2O = Hg2+2 + 2 H+ + 0.5 O2 -llnl_gamma 4 log_k -12.208 - -delta_H 106.261 kJ/mol # Calculated enthalpy of reaction Hg2+2 -# Enthalpy of formation: 39.87 kcal/mol + -delta_H 106.261 kJ/mol # Calculated enthalpy of reaction Hg2+2 +# Enthalpy of formation: 39.87 kcal/mol -analytic 5.501e+1 1.905e-2 -4.7967e+3 -2.2952e+1 -7.4864e+1 # -Range: 0-300 Ho+3 + 0.5 H2O = Ho+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -67.3754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho+2 +# Enthalpy of formation: -0 kcal/mol 3 I- + 2 H+ + 0.5 O2 = I3- + H2O -llnl_gamma 4 log_k 24.7278 - -delta_H -160.528 kJ/mol # Calculated enthalpy of reaction I3- -# Enthalpy of formation: -12.3 kcal/mol + -delta_H -160.528 kJ/mol # Calculated enthalpy of reaction I3- +# Enthalpy of formation: -12.3 kcal/mol -analytic 1.4788e+2 6.6206e-2 5.7407e+3 -6.5517e+1 8.9535e+1 # -Range: 0-300 I- + 0.5 O2 = IO- -llnl_gamma 4 log_k -0.9038 - -delta_H -44.5596 kJ/mol # Calculated enthalpy of reaction IO- -# Enthalpy of formation: -25.7 kcal/mol + -delta_H -44.5596 kJ/mol # Calculated enthalpy of reaction IO- +# Enthalpy of formation: -25.7 kcal/mol -analytic 2.7568e+0 -5.5671e-3 3.2484e+3 -3.9065e+0 -2.88e+5 # -Range: 0-300 1.5 O2 + I- = IO3- -llnl_gamma 4 log_k 17.6809 - -delta_H -146.231 kJ/mol # Calculated enthalpy of reaction IO3- -# Enthalpy of formation: -52.9 kcal/mol + -delta_H -146.231 kJ/mol # Calculated enthalpy of reaction IO3- +# Enthalpy of formation: -52.9 kcal/mol -analytic -2.2971e+1 -1.3478e-2 9.5977e+3 6.601e+0 -3.4371e+5 # -Range: 0-300 2 O2 + I- = IO4- -llnl_gamma 3.5 log_k 6.9621 - -delta_H -70.2912 kJ/mol # Calculated enthalpy of reaction IO4- -# Enthalpy of formation: -36.2 kcal/mol + -delta_H -70.2912 kJ/mol # Calculated enthalpy of reaction IO4- +# Enthalpy of formation: -36.2 kcal/mol -analytic 2.1232e+1 -7.8107e-3 3.5803e+3 -8.5272e+0 -2.5422e+5 # -Range: 0-300 La+3 + 0.5 H2O = La+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -72.4754 - -delta_H 0 # Not possible to calculate enthalpy of reaction La+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction La+2 +# Enthalpy of formation: -0 kcal/mol Mn+2 + H+ + 0.25 O2 = Mn+3 + 0.5 H2O -llnl_gamma 5 log_k -4.0811 - -delta_H -65.2892 kJ/mol # Calculated enthalpy of reaction Mn+3 -# Enthalpy of formation: -34.895 kcal/mol + -delta_H -65.2892 kJ/mol # Calculated enthalpy of reaction Mn+3 +# Enthalpy of formation: -34.895 kcal/mol -analytic 3.8873e+1 1.7458e-2 2.0757e+3 -2.2274e+1 3.2378e+1 # -Range: 0-300 2 H2O + O2 + Mn+2 = MnO4-2 + 4 H+ -llnl_gamma 4 log_k -32.4146 - -delta_H 151.703 kJ/mol # Calculated enthalpy of reaction MnO4-2 -# Enthalpy of formation: -156 kcal/mol + -delta_H 151.703 kJ/mol # Calculated enthalpy of reaction MnO4-2 +# Enthalpy of formation: -156 kcal/mol -analytic -1.0407e+1 -4.6464e-2 -1.0515e+4 1.0943e+1 -1.6408e+2 # -Range: 0-300 2 NH3 + 1.5 O2 = N2 + 3 H2O -llnl_gamma 3 log_k 116.4609 - -delta_H -687.08 kJ/mol # Calculated enthalpy of reaction N2 -# Enthalpy of formation: -2.495 kcal/mol + -delta_H -687.08 kJ/mol # Calculated enthalpy of reaction N2 +# Enthalpy of formation: -2.495 kcal/mol -analytic -8.2621e+1 -1.4671e-2 4.0068e+4 2.909e+1 -2.5924e+5 # -Range: 0-300 3 NH3 + 2 O2 = N3- + 4 H2O + H+ -llnl_gamma 4 log_k 96.968 - -delta_H -599.935 kJ/mol # Calculated enthalpy of reaction N3- -# Enthalpy of formation: 275.14 kJ/mol + -delta_H -599.935 kJ/mol # Calculated enthalpy of reaction N3- +# Enthalpy of formation: 275.14 kJ/mol -analytic -9.108e+1 -4.0817e-2 3.635e+4 3.4484e+1 -6.2678e+5 # -Range: 0-300 1.5 O2 + NH3 = NO2- + H+ + H2O -llnl_gamma 3 log_k 46.8653 - -delta_H -290.901 kJ/mol # Calculated enthalpy of reaction NO2- -# Enthalpy of formation: -25 kcal/mol + -delta_H -290.901 kJ/mol # Calculated enthalpy of reaction NO2- +# Enthalpy of formation: -25 kcal/mol -analytic -1.7011e+1 -3.3459e-2 1.3999e+4 1.1078e+1 -4.8255e+4 # -Range: 0-300 2 O2 + NH3 = NO3- + H+ + H2O -llnl_gamma 3 log_k 62.1001 - -delta_H -387.045 kJ/mol # Calculated enthalpy of reaction NO3- -# Enthalpy of formation: -49.429 kcal/mol + -delta_H -387.045 kJ/mol # Calculated enthalpy of reaction NO3- +# Enthalpy of formation: -49.429 kcal/mol -analytic -3.9468e+1 -3.9697e-2 2.0614e+4 1.8872e+1 -2.1917e+5 # -Range: 0-300 Nd+3 + 0.5 H2O = Nd+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -64.3754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd+2 +# Enthalpy of formation: -0 kcal/mol Np+4 + 0.5 H2O = Np+3 + H+ + 0.25 O2 -llnl_gamma 5 log_k -19.0131 - -delta_H 168.787 kJ/mol # Calculated enthalpy of reaction Np+3 -# Enthalpy of formation: -527.1 kJ/mol + -delta_H 168.787 kJ/mol # Calculated enthalpy of reaction Np+3 +# Enthalpy of formation: -527.1 kJ/mol -analytic 1.6615e+1 2.4645e-3 -8.9343e+3 -2.5829e+0 -1.3942e+2 # -Range: 0-300 1.5 H2O + Np+4 + 0.25 O2 = NpO2+ + 3 H+ -llnl_gamma 4 log_k 10.5928 - -delta_H 9.80089 kJ/mol # Calculated enthalpy of reaction NpO2+ -# Enthalpy of formation: -977.991 kJ/mol + -delta_H 9.80089 kJ/mol # Calculated enthalpy of reaction NpO2+ +# Enthalpy of formation: -977.991 kJ/mol -analytic 1.2566e+1 7.5467e-3 1.6921e+3 -2.7125e+0 -2.8381e+5 # -Range: 0-300 Np+4 + H2O + 0.5 O2 = NpO2+2 + 2 H+ -llnl_gamma 4.5 log_k 11.2107 - -delta_H -12.5719 kJ/mol # Calculated enthalpy of reaction NpO2+2 -# Enthalpy of formation: -860.478 kJ/mol + -delta_H -12.5719 kJ/mol # Calculated enthalpy of reaction NpO2+2 +# Enthalpy of formation: -860.478 kJ/mol -analytic 2.551e+1 1.1973e-3 1.2753e+3 -6.7082e+0 -2.0792e+5 # -Range: 0-300 2 H+ + Pb+2 + 0.5 O2 = Pb+4 + H2O -llnl_gamma 5.5 log_k -14.1802 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb+4 +# Enthalpy of formation: -0 kcal/mol Pm+3 + 0.5 H2O = Pm+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -65.2754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm+2 +# Enthalpy of formation: -0 kcal/mol Pr+3 + 0.5 H2O = Pr+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -79.9754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr+2 +# Enthalpy of formation: -0 kcal/mol Pu+4 + 0.5 H2O = Pu+3 + H+ + 0.25 O2 -llnl_gamma 5 log_k -4.5071 - -delta_H 84.2268 kJ/mol # Calculated enthalpy of reaction Pu+3 -# Enthalpy of formation: -591.552 kJ/mol + -delta_H 84.2268 kJ/mol # Calculated enthalpy of reaction Pu+3 +# Enthalpy of formation: -591.552 kJ/mol -analytic 2.0655e+1 3.2688e-3 -4.7434e+3 -4.1907e+0 1.2944e+4 # -Range: 0-300 1.5 H2O + Pu+4 + 0.25 O2 = PuO2+ + 3 H+ -llnl_gamma 4 log_k 2.9369 - -delta_H 53.5009 kJ/mol # Calculated enthalpy of reaction PuO2+ -# Enthalpy of formation: -914.183 kJ/mol + -delta_H 53.5009 kJ/mol # Calculated enthalpy of reaction PuO2+ +# Enthalpy of formation: -914.183 kJ/mol -analytic -2.0464e+1 2.8265e-3 1.2131e+3 9.2156e+0 -3.84e+5 # -Range: 0-300 Pu+4 + H2O + 0.5 O2 = PuO2+2 + 2 H+ -llnl_gamma 4.5 log_k 8.1273 - -delta_H 6.22013 kJ/mol # Calculated enthalpy of reaction PuO2+2 -# Enthalpy of formation: -821.578 kJ/mol + -delta_H 6.22013 kJ/mol # Calculated enthalpy of reaction PuO2+2 +# Enthalpy of formation: -821.578 kJ/mol -analytic 3.5219e+1 2.5202e-3 -2.476e+2 -1.012e+1 -1.7569e+5 # -Range: 0-300 4 H+ + RuO4-2 = Ru(OH)2+2 + H2O + 0.5 O2 -llnl_gamma 4.5 log_k 25.247 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2+2 +# Enthalpy of formation: -0 kcal/mol 4 H+ + RuO4-2 = Ru+2 + 2 H2O + O2 -llnl_gamma 4.5 log_k 0.161 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru+2 +# Enthalpy of formation: -0 kcal/mol 5 H+ + RuO4-2 = Ru+3 + 2.5 H2O + 0.75 O2 -llnl_gamma 5 log_k 17.6149 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru+3 +# Enthalpy of formation: -0 kcal/mol 2 H+ + RuO4-2 + 0.5 O2 = RuO4 + H2O -llnl_gamma 3 log_k 16.2672 - -delta_H -60.8385 kJ/mol # Calculated enthalpy of reaction RuO4 -# Enthalpy of formation: -238.142 kJ/mol + -delta_H -60.8385 kJ/mol # Calculated enthalpy of reaction RuO4 +# Enthalpy of formation: -238.142 kJ/mol -analytic 1.9964e+2 6.8286e-2 -1.202e+3 -8.0706e+1 -2.0481e+1 # -Range: 0-200 RuO4-2 + H+ + 0.25 O2 = RuO4- + 0.5 H2O -llnl_gamma 4 log_k 11.6024 - -delta_H -16.1998 kJ/mol # Calculated enthalpy of reaction RuO4- -# Enthalpy of formation: -333.389 kJ/mol + -delta_H -16.1998 kJ/mol # Calculated enthalpy of reaction RuO4- +# Enthalpy of formation: -333.389 kJ/mol -analytic -1.9653e+0 8.8623e-3 1.8588e+3 1.8998e+0 2.9005e+1 # -Range: 0-300 @@ -1241,11 +1241,11 @@ Cyanide- = Cyanide- -llnl_gamma 5 # log_k -25.2075 log_k -25.2076 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O4-2 +# Enthalpy of formation: -0 kcal/mol # -analytic -0.15158E+05 -0.31356E+01 0.47072E+06 0.58544E+04 0.73497E+04 - -analytic -2.3172e2 2.0393e-3 -7.1011e0 8.3239e1 9.4155e-1 -# changed 3/23/04, corrected to supcrt temperature dependence, GMA + -analytic -2.3172e2 2.0393e-3 -7.1011e0 8.3239e1 9.4155e-1 +# changed 3/23/04, corrected to supcrt temperature dependence, GMA # -Range: 0-300 # 2.0000 SO3-- + .500 O2 + 2.0000 H+ = S2O6-- + H2O @@ -1253,18 +1253,18 @@ Cyanide- = Cyanide- 2 SO3-2 = S2O6-2 + 2 e- -llnl_gamma 4 log_k 41.8289 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O6-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O6-2 +# Enthalpy of formation: -0 kcal/mol -analytic 0.14458E+3 0.61449E-1 0.71877E+4 -0.58657E+2 0.11211E+3 # -Range: 0-300 - -add_logk Log_K_O2 0.5 + -add_logk Log_K_O2 0.5 2 SO3-2 + 1.5 O2 + 2 H+ = S2O8-2 + H2O -llnl_gamma 4 log_k 70.7489 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O8-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O8-2 +# Enthalpy of formation: -0 kcal/mol -analytic 0.18394E+3 0.60414E-1 0.13864E+5 -0.71804E+2 0.21628E+3 # -Range: 0-300 @@ -1273,3053 +1273,3053 @@ O2 + H+ + 3 HS- = S3-2 + 2 H2O #3HS- = S3-- + 3H+ + 4e- -llnl_gamma 4 log_k 79.3915 - -delta_H 0 # Not possible to calculate enthalpy of reaction S3-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction S3-2 +# Enthalpy of formation: -0 kcal/mol -analytic -0.51626E+2 0.70208E-2 0.31797E+5 0.11927E+2 -0.64249E+6 - -mass_balance S(-2)3 + -mass_balance S(-2)3 # -Range: 0-300 -# -add_logk Log_K_O2 1.0 +# -add_logk Log_K_O2 1.0 # 3.0000 SO3-- + 4.0000 H+ = S3O6-- + .500 O2 + 2.0000 H2O # .5 O2 + 2H+ + 2e- = H2O 3 SO3-2 + 6 H+ + 2 e- = S3O6-2 + 3 H2O -llnl_gamma 4 log_k -6.2316 - -delta_H 0 # Not possible to calculate enthalpy of reaction S3O6-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction S3O6-2 +# Enthalpy of formation: -0 kcal/mol -analytic 0.23664E+3 0.12702E+0 -0.1011E+5 -0.99715E+2 -0.15783E+3 # -Range: 0-300 - -add_logk Log_K_O2 -0.5 + -add_logk Log_K_O2 -0.5 1.5 O2 + 2 H+ + 4 HS- = S4-2 + 3 H2O #4 HS- = S4-- + 4H+ + 6e- -llnl_gamma 4 log_k 125.2958 - -delta_H 0 # Not possible to calculate enthalpy of reaction S4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction S4-2 +# Enthalpy of formation: -0 kcal/mol -analytic 0.20875E+3 0.58133E-1 0.33278E+5 -0.85833E+2 0.51921E+3 - -mass_balance S(-2)4 + -mass_balance S(-2)4 # -Range: 0-300 -# -add_logk Log_K_O2 1.5 +# -add_logk Log_K_O2 1.5 # 4.0000 SO3-- + 6.0000 H+ = S4O6-- + 1.500 O2 + 3.0000 H2O 4 SO3-2 + 12 H+ + 6 e- = S4O6-2 + 6 H2O -llnl_gamma 4 log_k -38.3859 - -delta_H 0 # Not possible to calculate enthalpy of reaction S4O6-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction S4O6-2 +# Enthalpy of formation: -0 kcal/mol -analytic 0.32239E+3 0.19555E+0 -0.23617E+5 -0.13729E+3 -0.36862E+3 # -Range: 0-300 - -add_logk Log_K_O2 -1.5 + -add_logk Log_K_O2 -1.5 2 O2 + 3 H+ + 5 HS- = S5-2 + 4 H2O #5 HS- = S5-- + 5H+ + 8e- -llnl_gamma 4 log_k 170.9802 - -delta_H 0 # Not possible to calculate enthalpy of reaction S5-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction S5-2 +# Enthalpy of formation: -0 kcal/mol -analytic 0.30329E+3 0.88033E-1 0.44739E+5 -0.12471E+3 0.69803E+3 - -mass_balance S(-2)5 + -mass_balance S(-2)5 # -Range: 0-300 -# -add_logk Log_K_O2 2 +# -add_logk Log_K_O2 2 # 5.0000 SO3-- + 8.0000 H+ = S5O6-- + 2.5000 O2 + 4.0000 H2O # 2.5O2 + 10 H+ + 10e- = 5H2O 5 SO3-2 + 18 H+ + 10 e- = S5O6-2 + 9 H2O -llnl_gamma 4 log_k -99.4206 - -delta_H 0 # Not possible to calculate enthalpy of reaction S5O6-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction S5O6-2 +# Enthalpy of formation: -0 kcal/mol -analytic 0.42074E+3 0.25833E+0 -0.43878E+5 -0.18178E+3 -0.6848E+3 # -Range: 0-300 - -add_logk Log_K_O2 -2.5 + -add_logk Log_K_O2 -2.5 # 1.0000 H+ + HCO3- + HS- + NH3 = SCN- + 3.0000 H2O # -llnl_gamma 3.5 # log_k 3.0070 -# -delta_H 0 # Not possible to calculate enthalpy of reaction SCN- -## Enthalpy of formation: -0 kcal/mol +# -delta_H 0 # Not possible to calculate enthalpy of reaction SCN- +## Enthalpy of formation: -0 kcal/mol # -analytic 0.16539E+03 0.49623E-01 -0.44624E+04 -0.65544E+02 -0.69680E+02 ## -Range: 0-300 Thiocyanate- = Thiocyanate- - log_k 0 + log_k 0 SO4-2 = SO3-2 + 0.5 O2 -llnl_gamma 4.5 log_k -46.6244 - -delta_H 267.985 kJ/mol # Calculated enthalpy of reaction SO3-2 -# Enthalpy of formation: -151.9 kcal/mol + -delta_H 267.985 kJ/mol # Calculated enthalpy of reaction SO3-2 +# Enthalpy of formation: -151.9 kcal/mol -analytic -1.3771e+1 6.5102e-4 -1.333e+4 4.7164e+0 -2.08e+2 # -Range: 0-300 HSe- = Se-2 + H+ -llnl_gamma 4 log_k -14.9534 - -delta_H 0 # Not possible to calculate enthalpy of reaction Se-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Se-2 +# Enthalpy of formation: -0 kcal/mol -analytic 1.0244e+2 3.1346e-2 -5.419e+3 -4.3871e+1 -8.4589e+1 # -Range: 0-300 SeO3-2 + 0.5 O2 = SeO4-2 -llnl_gamma 4 log_k 13.9836 - -delta_H -83.8892 kJ/mol # Calculated enthalpy of reaction SeO4-2 -# Enthalpy of formation: -143.2 kcal/mol + -delta_H -83.8892 kJ/mol # Calculated enthalpy of reaction SeO4-2 +# Enthalpy of formation: -143.2 kcal/mol -analytic -7.2314e+1 -1.3657e-2 8.6969e+3 2.6182e+1 -3.1897e+5 # -Range: 0-300 Sm+3 + 0.5 H2O = Sm+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -47.9624 - -delta_H 326.911 kJ/mol # Calculated enthalpy of reaction Sm+2 -# Enthalpy of formation: -120.5 kcal/mol + -delta_H 326.911 kJ/mol # Calculated enthalpy of reaction Sm+2 +# Enthalpy of formation: -120.5 kcal/mol -analytic -1.0217e+1 7.7548e-3 -1.6285e+4 5.4711e+0 9.1931e+4 # -Range: 0-300 2 H+ + Sn+2 + 0.5 O2 = Sn+4 + H2O -llnl_gamma 11 log_k 37.702 - -delta_H -240.739 kJ/mol # Calculated enthalpy of reaction Sn+4 -# Enthalpy of formation: 7.229 kcal/mol + -delta_H -240.739 kJ/mol # Calculated enthalpy of reaction Sn+4 +# Enthalpy of formation: 7.229 kcal/mol -analytic 3.2053e+1 -9.2307e-3 1.0378e+4 -1.0666e+1 1.6193e+2 # -Range: 0-300 Tb+3 + 0.5 H2O = Tb+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -78.7754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb+2 +# Enthalpy of formation: -0 kcal/mol 4 H+ + TcO4- = Tc+3 + 2 H2O + O2 -llnl_gamma 5 log_k -47.614 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc+3 +# Enthalpy of formation: -0 kcal/mol 3 H+ + TcO4- = TcO+2 + 1.5 H2O + 0.75 O2 -llnl_gamma 4.5 log_k -31.5059 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO+2 +# Enthalpy of formation: -0 kcal/mol TcO4- + 0.5 H2O = TcO4-2 + H+ + 0.25 O2 -llnl_gamma 4 log_k -31.8197 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO4-2 +# Enthalpy of formation: -0 kcal/mol TcO4- + H2O = TcO4-3 + 2 H+ + 0.5 O2 -llnl_gamma 4 log_k -63.2889 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO4-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO4-3 +# Enthalpy of formation: -0 kcal/mol 2 H+ + Tl+ + 0.5 O2 = Tl+3 + H2O -llnl_gamma 5 log_k -0.2751 - -delta_H -88.479 kJ/mol # Calculated enthalpy of reaction Tl+3 -# Enthalpy of formation: 47 kcal/mol + -delta_H -88.479 kJ/mol # Calculated enthalpy of reaction Tl+3 +# Enthalpy of formation: 47 kcal/mol -analytic -6.7978e+1 -2.643e-2 5.3106e+3 2.334e+1 8.2887e+1 # -Range: 0-300 Tm+3 + 0.5 H2O = Tm+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -58.3754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm+2 +# Enthalpy of formation: -0 kcal/mol UO2+2 + H+ = U+3 + 0.75 O2 + 0.5 H2O -llnl_gamma 5 log_k -64.8028 - -delta_H 377.881 kJ/mol # Calculated enthalpy of reaction U+3 -# Enthalpy of formation: -489.1 kJ/mol + -delta_H 377.881 kJ/mol # Calculated enthalpy of reaction U+3 +# Enthalpy of formation: -489.1 kJ/mol -analytic 2.5133e+1 6.4088e-3 -2.2542e+4 -8.1423e+0 3.4793e+5 # -Range: 0-300 2 H+ + UO2+2 = U+4 + H2O + 0.5 O2 -llnl_gamma 5.5 log_k -33.9491 - -delta_H 135.895 kJ/mol # Calculated enthalpy of reaction U+4 -# Enthalpy of formation: -591.2 kJ/mol + -delta_H 135.895 kJ/mol # Calculated enthalpy of reaction U+4 +# Enthalpy of formation: -591.2 kJ/mol -analytic 4.4837e+1 1.0129e-2 -1.1787e+4 -1.9194e+1 4.6436e+5 # -Range: 0-300 UO2+2 + 0.5 H2O = UO2+ + H+ + 0.25 O2 -llnl_gamma 4 log_k -20.0169 - -delta_H 133.759 kJ/mol # Calculated enthalpy of reaction UO2+ -# Enthalpy of formation: -1025.13 kJ/mol + -delta_H 133.759 kJ/mol # Calculated enthalpy of reaction UO2+ +# Enthalpy of formation: -1025.13 kJ/mol -analytic 8.048e+0 9.5845e-3 -6.5994e+3 -3.5515e+0 -1.0298e+2 # -Range: 0-300 VO+2 + H+ = V+3 + 0.5 H2O + 0.25 O2 -llnl_gamma 5 log_k -15.7191 - -delta_H 79.6069 kJ/mol # Calculated enthalpy of reaction V+3 -# Enthalpy of formation: -62.39 kcal/mol + -delta_H 79.6069 kJ/mol # Calculated enthalpy of reaction V+3 +# Enthalpy of formation: -62.39 kcal/mol -analytic 1.6167e+1 1.1963e-2 -4.2112e+3 -8.6126e+0 -6.5717e+1 # -Range: 0-300 VO+2 + 0.5 H2O + 0.25 O2 = VO2+ + H+ -llnl_gamma 4 log_k 4.5774 - -delta_H -17.2234 kJ/mol # Calculated enthalpy of reaction VO2+ -# Enthalpy of formation: -155.3 kcal/mol + -delta_H -17.2234 kJ/mol # Calculated enthalpy of reaction VO2+ +# Enthalpy of formation: -155.3 kcal/mol -analytic 1.9732e+0 5.3936e-3 1.224e+3 -1.2539e+0 1.9098e+1 # -Range: 0-300 VO2+ + 2 H2O = VO4-3 + 4 H+ -llnl_gamma 4 log_k -28.4475 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO4-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VO4-3 +# Enthalpy of formation: -0 kcal/mol Yb+3 + 0.5 H2O = Yb+2 + H+ + 0.25 O2 -llnl_gamma 4.5 log_k -39.4595 - -delta_H 280.05 kJ/mol # Calculated enthalpy of reaction Yb+2 -# Enthalpy of formation: -126.8 kcal/mol + -delta_H 280.05 kJ/mol # Calculated enthalpy of reaction Yb+2 +# Enthalpy of formation: -126.8 kcal/mol -analytic 1.0773e+0 9.5995e-3 -1.3833e+4 1.0723e+0 3.1365e+4 # -Range: 0-300 2 H+ + Zr(OH)2+2 = Zr+4 + 2 H2O -llnl_gamma 11 log_k 0.2385 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr+4 +# Enthalpy of formation: -0 kcal/mol 4 HS- + 4 H+ + 2 Sb(OH)3 + 2 NH3 = (NH4)2Sb2S4 + 6 H2O -llnl_gamma 3 log_k 67.649 - -delta_H -424.665 kJ/mol # Calculated enthalpy of reaction (NH4)2Sb2S4 -# Enthalpy of formation: -484.321 kJ/mol + -delta_H -424.665 kJ/mol # Calculated enthalpy of reaction (NH4)2Sb2S4 +# Enthalpy of formation: -484.321 kJ/mol -analytic -3.9259e+2 -1.1727e-1 3.2073e+4 1.5667e+2 5.4478e+2 # -Range: 0-200 2 NpO2+2 + 2 H2O = (NpO2)2(OH)2+2 + 2 H+ -llnl_gamma 4.5 log_k -6.4 - -delta_H 45.4397 kJ/mol # Calculated enthalpy of reaction (NpO2)2(OH)2+2 -# Enthalpy of formation: -537.092 kcal/mol + -delta_H 45.4397 kJ/mol # Calculated enthalpy of reaction (NpO2)2(OH)2+2 +# Enthalpy of formation: -537.092 kcal/mol -analytic -4.7462e+1 -3.1413e-2 -2.1954e+3 2.3355e+1 -3.7424e+1 # -Range: 25-150 5 H2O + 3 NpO2+2 = (NpO2)3(OH)5+ + 5 H+ -llnl_gamma 4 log_k -17.5 - -delta_H 112.322 kJ/mol # Calculated enthalpy of reaction (NpO2)3(OH)5+ -# Enthalpy of formation: -931.717 kcal/mol + -delta_H 112.322 kJ/mol # Calculated enthalpy of reaction (NpO2)3(OH)5+ +# Enthalpy of formation: -931.717 kcal/mol -analytic 5.4053e+2 9.1693e-2 -2.4404e+4 -2.0349e+2 -4.1639e+2 # -Range: 25-150 2 PuO2+2 + 2 H2O = (PuO2)2(OH)2+2 + 2 H+ -llnl_gamma 4.5 log_k -8.2626 - -delta_H 57.8597 kJ/mol # Calculated enthalpy of reaction (PuO2)2(OH)2+2 -# Enthalpy of formation: -2156.97 kJ/mol + -delta_H 57.8597 kJ/mol # Calculated enthalpy of reaction (PuO2)2(OH)2+2 +# Enthalpy of formation: -2156.97 kJ/mol -analytic 6.5448e+1 -1.6194e-3 -5.9542e+3 -2.1522e+1 -9.2929e+1 # -Range: 0-300 5 H2O + 3 PuO2+2 = (PuO2)3(OH)5+ + 5 H+ -llnl_gamma 4 log_k -21.655 - -delta_H 139.617 kJ/mol # Calculated enthalpy of reaction (PuO2)3(OH)5+ -# Enthalpy of formation: -3754.31 kJ/mol + -delta_H 139.617 kJ/mol # Calculated enthalpy of reaction (PuO2)3(OH)5+ +# Enthalpy of formation: -3754.31 kJ/mol -analytic 1.6151e+2 5.8182e-3 -1.4002e+4 -5.5745e+1 -2.1854e+2 # -Range: 0-300 4 H2O + 2 TcO+2 = (TcO(OH)2)2 + 4 H+ -llnl_gamma 3 log_k -0.1271 - -delta_H 0 # Not possible to calculate enthalpy of reaction (TcO(OH)2)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction (TcO(OH)2)2 +# Enthalpy of formation: -0 kcal/mol 12 H2O + 11 UO2+2 + 6 HCO3- = (UO2)11(CO3)6(OH)12-2 + 18 H+ -llnl_gamma 4 log_k -25.7347 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)11(CO3)6(OH)12-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)11(CO3)6(OH)12-2 +# Enthalpy of formation: -0 kcal/mol 2 UO2+2 + 2 H2O = (UO2)2(OH)2+2 + 2 H+ -llnl_gamma 4.5 log_k -5.6346 - -delta_H 37.6127 kJ/mol # Calculated enthalpy of reaction (UO2)2(OH)2+2 -# Enthalpy of formation: -2572.06 kJ/mol + -delta_H 37.6127 kJ/mol # Calculated enthalpy of reaction (UO2)2(OH)2+2 +# Enthalpy of formation: -2572.06 kJ/mol -analytic 6.4509e+1 -7.6875e-4 -4.8433e+3 -2.1689e+1 -7.5593e+1 # -Range: 0-300 3 H2O + 2 UO2+2 + HCO3- = (UO2)2CO3(OH)3- + 4 H+ -llnl_gamma 4 log_k -11.2229 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)2CO3(OH)3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)2CO3(OH)3- +# Enthalpy of formation: -0 kcal/mol 2 UO2+2 + H2O = (UO2)2OH+3 + H+ -llnl_gamma 5 log_k -2.7072 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)2OH+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)2OH+3 +# Enthalpy of formation: -0 kcal/mol 6 HCO3- + 3 UO2+2 = (UO2)3(CO3)6-6 + 6 H+ -llnl_gamma 4 log_k -8.0601 - -delta_H 25.5204 kJ/mol # Calculated enthalpy of reaction (UO2)3(CO3)6-6 -# Enthalpy of formation: -7171.08 kJ/mol + -delta_H 25.5204 kJ/mol # Calculated enthalpy of reaction (UO2)3(CO3)6-6 +# Enthalpy of formation: -7171.08 kJ/mol -analytic 7.4044e+2 2.7299e-1 -1.7614e+4 -3.1149e+2 -2.7507e+2 # -Range: 0-300 4 H2O + 3 UO2+2 = (UO2)3(OH)4+2 + 4 H+ -llnl_gamma 4.5 log_k -11.929 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)4+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)4+2 +# Enthalpy of formation: -0 kcal/mol 5 H2O + 3 UO2+2 = (UO2)3(OH)5+ + 5 H+ -llnl_gamma 4 log_k -15.5862 - -delta_H 97.1056 kJ/mol # Calculated enthalpy of reaction (UO2)3(OH)5+ -# Enthalpy of formation: -4389.09 kJ/mol + -delta_H 97.1056 kJ/mol # Calculated enthalpy of reaction (UO2)3(OH)5+ +# Enthalpy of formation: -4389.09 kJ/mol -analytic 1.6004e+2 7.0827e-3 -1.17e+4 -5.5973e+1 -1.8261e+2 # -Range: 0-300 4 H2O + 3 UO2+2 + HCO3- = (UO2)3(OH)5CO2+ + 4 H+ -llnl_gamma 4 log_k -9.6194 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)5CO2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)5CO2+ +# Enthalpy of formation: -0 kcal/mol 7 H2O + 3 UO2+2 = (UO2)3(OH)7- + 7 H+ -llnl_gamma 4 log_k -31.0508 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)7- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3(OH)7- +# Enthalpy of formation: -0 kcal/mol 3 UO2+2 + 3 H2O + HCO3- = (UO2)3O(OH)2(HCO3)+ + 4 H+ -llnl_gamma 4 log_k -9.7129 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3O(OH)2(HCO3)+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)3O(OH)2(HCO3)+ +# Enthalpy of formation: -0 kcal/mol 7 H2O + 4 UO2+2 = (UO2)4(OH)7+ + 7 H+ -llnl_gamma 4 log_k -21.9508 - -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)4(OH)7+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction (UO2)4(OH)7+ +# Enthalpy of formation: -0 kcal/mol 2 VO+2 + 2 H2O = (VO)2(OH)2+2 + 2 H+ -llnl_gamma 4.5 log_k -6.67 - -delta_H 0 # Not possible to calculate enthalpy of reaction (VO)2(OH)2+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction (VO)2(OH)2+2 +# Enthalpy of formation: -0 kcal/mol HAcetate = Acetate- + H+ -llnl_gamma 4.5 log_k -4.7572 - -delta_H 0 # Not possible to calculate enthalpy of reaction Acetate- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Acetate- +# Enthalpy of formation: -0 kcal/mol -analytic -0.96597E+2 -0.34535E-1 0.19753E+4 0.38593E+2 0.3085E+2 # Range: 0-300 2 HAcetate + Ag+ = Ag(Acetate)2- + 2 H+ -llnl_gamma 4 log_k -8.8716 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ag(Acetate)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ag(Acetate)2- +# Enthalpy of formation: -0 kcal/mol -analytic -2.8207e+2 -5.3713e-2 9.5343e+3 1.0396e+2 1.4886e+2 # -Range: 0-300 2 HCO3- + Ag+ = Ag(CO3)2-3 + 2 H+ -llnl_gamma 4 log_k -18.5062 - -delta_H 1.34306 kJ/mol # Calculated enthalpy of reaction Ag(CO3)2-3 -# Enthalpy of formation: -304.2 kcal/mol + -delta_H 1.34306 kJ/mol # Calculated enthalpy of reaction Ag(CO3)2-3 +# Enthalpy of formation: -304.2 kcal/mol -analytic -1.6671e+2 -4.5571e-2 3.719e+3 6.0341e+1 5.808e+1 # -Range: 0-300 Ag+ + HAcetate = AgAcetate + H+ -llnl_gamma 3 log_k -4.0264 - -delta_H -3.4518 kJ/mol # Calculated enthalpy of reaction AgAcetate -# Enthalpy of formation: -91.65 kcal/mol + -delta_H -3.4518 kJ/mol # Calculated enthalpy of reaction AgAcetate +# Enthalpy of formation: -91.65 kcal/mol -analytic 6.9069e+0 -1.9415e-3 -1.9953e+3 -2.6175e+0 2.5092e+5 # -Range: 0-300 HCO3- + Ag+ = AgCO3- + H+ -llnl_gamma 4 log_k -7.6416 - -delta_H -8.27177 kJ/mol # Calculated enthalpy of reaction AgCO3- -# Enthalpy of formation: -141.6 kcal/mol + -delta_H -8.27177 kJ/mol # Calculated enthalpy of reaction AgCO3- +# Enthalpy of formation: -141.6 kcal/mol -analytic 6.5598e+0 -1.6477e-4 -4.7079e+2 -5.0807e+0 -7.3484e+0 # -Range: 0-300 Cl- + Ag+ = AgCl -llnl_gamma 3 log_k 3.2971 - -delta_H -15.1126 kJ/mol # Calculated enthalpy of reaction AgCl -# Enthalpy of formation: -18.27 kcal/mol + -delta_H -15.1126 kJ/mol # Calculated enthalpy of reaction AgCl +# Enthalpy of formation: -18.27 kcal/mol -analytic 1.0904e+2 3.5492e-2 -1.8455e+3 -4.4502e+1 -2.883e+1 # -Range: 0-300 2 Cl- + Ag+ = AgCl2- -llnl_gamma 4 log_k 5.2989 - -delta_H -27.3592 kJ/mol # Calculated enthalpy of reaction AgCl2- -# Enthalpy of formation: -61.13 kcal/mol + -delta_H -27.3592 kJ/mol # Calculated enthalpy of reaction AgCl2- +# Enthalpy of formation: -61.13 kcal/mol -analytic 9.2164e+1 4.0261e-2 -1.6597e+2 -3.9721e+1 -2.6171e+0 # -Range: 0-300 3 Cl- + Ag+ = AgCl3-2 -llnl_gamma 4 log_k 5.131 - -delta_H -47.7645 kJ/mol # Calculated enthalpy of reaction AgCl3-2 -# Enthalpy of formation: -105.94 kcal/mol + -delta_H -47.7645 kJ/mol # Calculated enthalpy of reaction AgCl3-2 +# Enthalpy of formation: -105.94 kcal/mol -analytic 4.3732e+0 2.9568e-2 3.9818e+3 -8.6428e+0 6.2131e+1 # -Range: 0-300 4 Cl- + Ag+ = AgCl4-3 -llnl_gamma 4 log_k 3.805 - -delta_H -32.4804 kJ/mol # Calculated enthalpy of reaction AgCl4-3 -# Enthalpy of formation: -142.22 kcal/mol + -delta_H -32.4804 kJ/mol # Calculated enthalpy of reaction AgCl4-3 +# Enthalpy of formation: -142.22 kcal/mol -analytic -1.6176e+1 2.9523e-2 0e+0 0e+0 9.9602e+5 # -Range: 0-300 F- + Ag+ = AgF -llnl_gamma 3 log_k -0.1668 - -delta_H -9.298 kJ/mol # Calculated enthalpy of reaction AgF -# Enthalpy of formation: -238.895 kJ/mol + -delta_H -9.298 kJ/mol # Calculated enthalpy of reaction AgF +# Enthalpy of formation: -238.895 kJ/mol -analytic -6.6024e+1 -2.235e-2 1.9514e+3 2.6663e+1 3.316e+1 # -Range: 0-200 NO3- + Ag+ = AgNO3 -llnl_gamma 3 log_k -0.1979 - -delta_H 4.45178 kJ/mol # Calculated enthalpy of reaction AgNO3 -# Enthalpy of formation: -23.09 kcal/mol + -delta_H 4.45178 kJ/mol # Calculated enthalpy of reaction AgNO3 +# Enthalpy of formation: -23.09 kcal/mol -analytic 7.3866e+1 2.605e-2 -1.5923e+3 -3.0904e+1 -2.4868e+1 # -Range: 0-300 2 HAcetate + Al+3 = Al(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -5.595 - -delta_H -46.8566 kJ/mol # Calculated enthalpy of reaction Al(Acetate)2+ -# Enthalpy of formation: -372.08 kcal/mol + -delta_H -46.8566 kJ/mol # Calculated enthalpy of reaction Al(Acetate)2+ +# Enthalpy of formation: -372.08 kcal/mol -analytic -4.2528e+1 2.1431e-3 3.1658e+2 1.1585e+1 5.8604e+5 # -Range: 0-300 2 H2O + Al+3 = Al(OH)2+ + 2 H+ -llnl_gamma 4 log_k -10.5945 - -delta_H 98.2822 kJ/mol # Calculated enthalpy of reaction Al(OH)2+ -# Enthalpy of formation: -241.825 kcal/mol + -delta_H 98.2822 kJ/mol # Calculated enthalpy of reaction Al(OH)2+ +# Enthalpy of formation: -241.825 kcal/mol -analytic 4.4036e+1 2.0168e-2 -5.5455e+3 -1.6987e+1 -8.6545e+1 # -Range: 0-300 2 SO4-2 + Al+3 = Al(SO4)2- -llnl_gamma 4 log_k 4.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction Al(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Al(SO4)2- +# Enthalpy of formation: -0 kcal/mol 28 H2O + 13 Al+3 = Al13O4(OH)24+7 + 32 H+ -llnl_gamma 6 log_k -98.73 - -delta_H 0 # Not possible to calculate enthalpy of reaction Al13O4(OH)24+7 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Al13O4(OH)24+7 +# Enthalpy of formation: -0 kcal/mol 2 H2O + 2 Al+3 = Al2(OH)2+4 + 2 H+ -llnl_gamma 5.5 log_k -7.6902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Al2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Al2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol 4 H2O + 3 Al+3 = Al3(OH)4+5 + 4 H+ -llnl_gamma 6 log_k -13.8803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Al3(OH)4+5 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Al3(OH)4+5 +# Enthalpy of formation: -0 kcal/mol Al+3 + HAcetate = AlAcetate+2 + H+ -llnl_gamma 4.5 log_k -2.6923 - -delta_H -18.1962 kJ/mol # Calculated enthalpy of reaction AlAcetate+2 -# Enthalpy of formation: -249.13 kcal/mol + -delta_H -18.1962 kJ/mol # Calculated enthalpy of reaction AlAcetate+2 +# Enthalpy of formation: -249.13 kcal/mol -analytic -1.9847e+1 2.0058e-3 -2.3653e+2 5.5454e+0 3.2362e+5 # -Range: 0-300 F- + Al+3 = AlF+2 -llnl_gamma 4.5 log_k 7 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlF+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AlF+2 +# Enthalpy of formation: -0 kcal/mol 2 F- + Al+3 = AlF2+ -llnl_gamma 4 log_k 12.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlF2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AlF2+ +# Enthalpy of formation: -0 kcal/mol 3 F- + Al+3 = AlF3 -llnl_gamma 3 log_k 16.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlF3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AlF3 +# Enthalpy of formation: -0 kcal/mol 4 F- + Al+3 = AlF4- -llnl_gamma 4 log_k 19.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlF4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AlF4- +# Enthalpy of formation: -0 kcal/mol HPO4-2 + H+ + Al+3 = AlH2PO4+2 -llnl_gamma 4.5 log_k 3.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlH2PO4+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AlH2PO4+2 +# Enthalpy of formation: -0 kcal/mol HPO4-2 + Al+3 = AlHPO4+ -llnl_gamma 4 log_k 7.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AlHPO4+ +# Enthalpy of formation: -0 kcal/mol 2 H2O + Al+3 = AlO2- + 4 H+ -llnl_gamma 4 log_k -22.8833 - -delta_H 180.899 kJ/mol # Calculated enthalpy of reaction AlO2- -# Enthalpy of formation: -222.079 kcal/mol + -delta_H 180.899 kJ/mol # Calculated enthalpy of reaction AlO2- +# Enthalpy of formation: -222.079 kcal/mol -analytic 1.0803e+1 -3.4379e-3 -9.7391e+3 0e+0 0e+0 # -Range: 0-300 H2O + Al+3 = AlOH+2 + H+ -llnl_gamma 4.5 log_k -4.9571 - -delta_H 49.798 kJ/mol # Calculated enthalpy of reaction AlOH+2 -# Enthalpy of formation: -185.096 kcal/mol + -delta_H 49.798 kJ/mol # Calculated enthalpy of reaction AlOH+2 +# Enthalpy of formation: -185.096 kcal/mol -analytic -2.6224e-1 8.8816e-3 -1.8686e+3 -4.3195e-1 -2.9158e+1 # -Range: 0-300 SO4-2 + Al+3 = AlSO4+ -llnl_gamma 4 log_k 3.01 - -delta_H 0 # Not possible to calculate enthalpy of reaction AlSO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AlSO4+ +# Enthalpy of formation: -0 kcal/mol 2 HCO3- + Am+3 = Am(CO3)2- + 2 H+ -llnl_gamma 4 log_k -8.3868 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)2- +# Enthalpy of formation: -0 kcal/mol 3 HCO3- + Am+3 = Am(CO3)3-3 + 3 H+ -llnl_gamma 4 log_k -15.8302 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)3-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)3-3 +# Enthalpy of formation: -0 kcal/mol 5 HCO3- + Am+4 = Am(CO3)5-6 + 5 H+ -llnl_gamma 4 log_k -12.409 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)5-6 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(CO3)5-6 +# Enthalpy of formation: -0 kcal/mol 2 H2O + Am+3 = Am(OH)2+ + 2 H+ -llnl_gamma 4 log_k -14.1145 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)2+ +# Enthalpy of formation: -0 kcal/mol 3 H2O + Am+3 = Am(OH)3 + 3 H+ -llnl_gamma 3 log_k -25.7218 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Am+3 = Am(SO4)2- -llnl_gamma 4 log_k 5.2407 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(SO4)2- +# Enthalpy of formation: -0 kcal/mol HCO3- + Am+3 = AmCO3+ + H+ -llnl_gamma 4 log_k -2.5434 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmCO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AmCO3+ +# Enthalpy of formation: -0 kcal/mol Cl- + Am+3 = AmCl+2 -llnl_gamma 4.5 log_k 1.0374 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmCl+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AmCl+2 +# Enthalpy of formation: -0 kcal/mol F- + Am+3 = AmF+2 -llnl_gamma 4.5 log_k 3.3601 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmF+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AmF+2 +# Enthalpy of formation: -0 kcal/mol 2 F- + Am+3 = AmF2+ -llnl_gamma 4 log_k 5.7204 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmF2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AmF2+ +# Enthalpy of formation: -0 kcal/mol HPO4-2 + H+ + Am+3 = AmH2PO4+2 -llnl_gamma 4.5 log_k 11.4119 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmH2PO4+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AmH2PO4+2 +# Enthalpy of formation: -0 kcal/mol N3- + Am+3 = AmN3+2 -llnl_gamma 4.5 log_k 1.6699 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmN3+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AmN3+2 +# Enthalpy of formation: -0 kcal/mol NO3- + Am+3 = AmNO3+2 -llnl_gamma 4.5 log_k 1.3104 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmNO3+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AmNO3+2 +# Enthalpy of formation: -0 kcal/mol H2O + Am+3 = AmOH+2 + H+ -llnl_gamma 4.5 log_k -6.4072 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmOH+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AmOH+2 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Am+3 = AmSO4+ -llnl_gamma 4 log_k 3.7703 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmSO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AmSO4+ +# Enthalpy of formation: -0 kcal/mol H2AsO3- + H+ = As(OH)3 -llnl_gamma 3 log_k 9.2048 - -delta_H -27.4054 kJ/mol # Calculated enthalpy of reaction As(OH)3 -# Enthalpy of formation: -742.2 kJ/mol + -delta_H -27.4054 kJ/mol # Calculated enthalpy of reaction As(OH)3 +# Enthalpy of formation: -742.2 kJ/mol -analytic 1.302e+2 4.7513e-2 -1.1999e+3 -5.2993e+1 -2.0422e+1 # -Range: 0-200 H2AsO3- = AsO2- + H2O -llnl_gamma 4 log_k 0.0111 - -delta_H 0 # Not possible to calculate enthalpy of reaction AsO2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AsO2- +# Enthalpy of formation: -0 kcal/mol -analytic -2.1509e+1 -1.768e-2 -1.9261e+1 1.0841e+1 -2.9404e-1 # -Range: 0-300 H2AsO3- = AsO2OH-2 + H+ -llnl_gamma 4 log_k -11.0171 - -delta_H 25.514 kJ/mol # Calculated enthalpy of reaction AsO2OH-2 -# Enthalpy of formation: -164.742 kcal/mol + -delta_H 25.514 kJ/mol # Calculated enthalpy of reaction AsO2OH-2 +# Enthalpy of formation: -164.742 kcal/mol -analytic 1.4309e+2 1.862e-2 -6.8596e+3 -5.5222e+1 -1.0708e+2 # -Range: 0-300 H2AsO4- + F- = AsO3F-2 + H2O -llnl_gamma 4 log_k 40.2451 - -delta_H 0 # Not possible to calculate enthalpy of reaction AsO3F-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AsO3F-2 +# Enthalpy of formation: -0 kcal/mol H2AsO4- = AsO4-3 + 2 H+ -llnl_gamma 4 log_k -18.3604 - -delta_H 21.4198 kJ/mol # Calculated enthalpy of reaction AsO4-3 -# Enthalpy of formation: -888.14 kJ/mol + -delta_H 21.4198 kJ/mol # Calculated enthalpy of reaction AsO4-3 +# Enthalpy of formation: -888.14 kJ/mol -analytic -2.4979e+1 -1.2761e-2 2.8369e+3 3.4878e+0 -6.8736e+5 # -Range: 0-300 2 HAcetate + Au+ = Au(Acetate)2- + 2 H+ -llnl_gamma 4 log_k -9.0013 - -delta_H -8.91192 kJ/mol # Calculated enthalpy of reaction Au(Acetate)2- -# Enthalpy of formation: -186.75 kcal/mol + -delta_H -8.91192 kJ/mol # Calculated enthalpy of reaction Au(Acetate)2- +# Enthalpy of formation: -186.75 kcal/mol -analytic -2.2338e+2 -4.6312e-2 7.0942e+3 8.2606e+1 1.1076e+2 # -Range: 0-300 Au+ + HAcetate = AuAcetate + H+ -llnl_gamma 3 log_k -4.3174 - -delta_H 0.87864 kJ/mol # Calculated enthalpy of reaction AuAcetate -# Enthalpy of formation: -68.31 kcal/mol + -delta_H 0.87864 kJ/mol # Calculated enthalpy of reaction AuAcetate +# Enthalpy of formation: -68.31 kcal/mol -analytic -1.1812e+0 -4.112e-3 -1.4752e+3 4.5665e-1 1.7019e+5 # -Range: 0-300 2 B(OH)3 = B2O(OH)5- + H+ -llnl_gamma 4 log_k -18.6851 - -delta_H 0 # Not possible to calculate enthalpy of reaction B2O(OH)5- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction B2O(OH)5- +# Enthalpy of formation: -0 kcal/mol 2 F- + H+ + B(OH)3 = BF2(OH)2- + H2O -llnl_gamma 4 log_k 6.6174 - -delta_H 0 # Not possible to calculate enthalpy of reaction BF2(OH)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction BF2(OH)2- +# Enthalpy of formation: -0 kcal/mol 3 F- + 2 H+ + B(OH)3 = BF3OH- + 2 H2O -llnl_gamma 4 log_k 13.1908 - -delta_H -178.577 kJ/mol # Calculated enthalpy of reaction BF3OH- -# Enthalpy of formation: -403.317 kcal/mol + -delta_H -178.577 kJ/mol # Calculated enthalpy of reaction BF3OH- +# Enthalpy of formation: -403.317 kcal/mol -analytic 3.3411e+2 -3.7303e-2 -8.6507e+3 -1.1345e+2 -1.3508e+2 # -Range: 0-300 4 F- + 3 H+ + B(OH)3 = BF4- + 3 H2O -llnl_gamma 4 log_k 18.0049 - -delta_H -16.4473 kJ/mol # Calculated enthalpy of reaction BF4- -# Enthalpy of formation: -376.4 kcal/mol + -delta_H -16.4473 kJ/mol # Calculated enthalpy of reaction BF4- +# Enthalpy of formation: -376.4 kcal/mol -analytic 2.5491e+2 1.0443e-1 -3.3332e+3 -1.0378e+2 -5.2087e+1 # -Range: 0-300 B(OH)3 = BO2- + H+ + H2O -llnl_gamma 4 log_k -9.2449 - -delta_H 16.3302 kJ/mol # Calculated enthalpy of reaction BO2- -# Enthalpy of formation: -184.6 kcal/mol + -delta_H 16.3302 kJ/mol # Calculated enthalpy of reaction BO2- +# Enthalpy of formation: -184.6 kcal/mol -analytic -1.05e+2 -3.3447e-2 1.4706e+3 4.0724e+1 2.2978e+1 # -Range: 0-300 2 HAcetate + Ba+2 = Ba(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -8.0118 - -delta_H 11.255 kJ/mol # Calculated enthalpy of reaction Ba(Acetate)2 -# Enthalpy of formation: -358.01 kcal/mol + -delta_H 11.255 kJ/mol # Calculated enthalpy of reaction Ba(Acetate)2 +# Enthalpy of formation: -358.01 kcal/mol -analytic -1.4566e+1 3.1394e-4 -3.9564e+3 5.1906e+0 6.1407e+5 # -Range: 0-300 O_phthalate-2 + Ba+2 = Ba(O_phthalate) -llnl_gamma 3 log_k 2.33 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ba(O_phthalate) -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ba(O_phthalate) +# Enthalpy of formation: -0 kcal/mol H2O + Ba+2 + B(OH)3 = BaB(OH)4+ + H+ -llnl_gamma 4 log_k -7.8012 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaB(OH)4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction BaB(OH)4+ +# Enthalpy of formation: -0 kcal/mol Ba+2 + HAcetate = BaAcetate+ + H+ -llnl_gamma 4 log_k -3.7677 - -delta_H 7.322 kJ/mol # Calculated enthalpy of reaction BaAcetate+ -# Enthalpy of formation: -242.85 kcal/mol + -delta_H 7.322 kJ/mol # Calculated enthalpy of reaction BaAcetate+ +# Enthalpy of formation: -242.85 kcal/mol -analytic -1.5623e+1 2.9282e-3 -3.9534e+2 4.3959e+0 1.2829e+5 # -Range: 0-300 HCO3- + Ba+2 = BaCO3 + H+ -llnl_gamma 3 log_k -7.6834 - -delta_H 31.5808 kJ/mol # Calculated enthalpy of reaction BaCO3 -# Enthalpy of formation: -285.85 kcal/mol + -delta_H 31.5808 kJ/mol # Calculated enthalpy of reaction BaCO3 +# Enthalpy of formation: -285.85 kcal/mol -analytic 2.1878e+2 5.2368e-2 -8.2472e+3 -8.6644e+1 -1.2875e+2 # -Range: 0-300 Cl- + Ba+2 = BaCl+ -llnl_gamma 4 log_k -0.4977 - -delta_H 11.142 kJ/mol # Calculated enthalpy of reaction BaCl+ -# Enthalpy of formation: -165.77 kcal/mol + -delta_H 11.142 kJ/mol # Calculated enthalpy of reaction BaCl+ +# Enthalpy of formation: -165.77 kcal/mol -analytic 1.1016e+2 4.2325e-2 -2.8039e+3 -4.601e+1 -4.3785e+1 # -Range: 0-300 F- + Ba+2 = BaF+ -llnl_gamma 4 log_k -0.1833 - -delta_H 8.95376 kJ/mol # Calculated enthalpy of reaction BaF+ -# Enthalpy of formation: -206.51 kcal/mol + -delta_H 8.95376 kJ/mol # Calculated enthalpy of reaction BaF+ +# Enthalpy of formation: -206.51 kcal/mol -analytic 1.0349e+2 4.0336e-2 -2.5195e+3 -4.3334e+1 -3.9346e+1 # -Range: 0-300 NO3- + Ba+2 = BaNO3+ -llnl_gamma 4 log_k 0.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaNO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction BaNO3+ +# Enthalpy of formation: -0 kcal/mol H2O + Ba+2 = BaOH+ + H+ -llnl_gamma 4 log_k -13.47 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaOH+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction BaOH+ +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Be+2 = Be(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -6.8023 - -delta_H -52.4255 kJ/mol # Calculated enthalpy of reaction Be(Acetate)2 -# Enthalpy of formation: -336.23 kcal/mol + -delta_H -52.4255 kJ/mol # Calculated enthalpy of reaction Be(Acetate)2 +# Enthalpy of formation: -336.23 kcal/mol -analytic -3.5242e+1 5.1285e-3 -4.8914e+2 8.2862e+0 7.1774e+5 # -Range: 0-300 Be+2 + HAcetate = BeAcetate+ + H+ -llnl_gamma 4 log_k -3.1079 - -delta_H -22.761 kJ/mol # Calculated enthalpy of reaction BeAcetate+ -# Enthalpy of formation: -213.04 kcal/mol + -delta_H -22.761 kJ/mol # Calculated enthalpy of reaction BeAcetate+ +# Enthalpy of formation: -213.04 kcal/mol -analytic -1.9418e+1 5.2172e-4 -8.5071e+1 5.2755e+0 3.0215e+5 # -Range: 0-300 2 H2O + Be+2 = BeO2-2 + 4 H+ -llnl_gamma 4 log_k -32.161 - -delta_H 163.737 kJ/mol # Calculated enthalpy of reaction BeO2-2 -# Enthalpy of formation: -189 kcal/mol + -delta_H 163.737 kJ/mol # Calculated enthalpy of reaction BeO2-2 +# Enthalpy of formation: -189 kcal/mol -analytic 7.086e+0 -3.8474e-2 -1.14e+4 4.2138e+0 -1.7789e+2 # -Range: 0-300 2 H+ + 2 Br- + 0.5 O2 = Br2 + H2O -llnl_gamma 3 log_k 5.6834 - -delta_H 0 # Not possible to calculate enthalpy of reaction Br2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Br2 +# Enthalpy of formation: -0 kcal/mol HCO3- + H+ = CO2 + H2O -CO2_llnl_gamma log_k 6.3447 - -delta_H -9.7027 kJ/mol # Calculated enthalpy of reaction CO2 -# Enthalpy of formation: -98.9 kcal/mol + -delta_H -9.7027 kJ/mol # Calculated enthalpy of reaction CO2 +# Enthalpy of formation: -98.9 kcal/mol -analytic -1.0534e+1 2.1746e-2 2.5216e+3 7.9125e-1 3.9351e+1 # -Range: 0-300 HCO3- = CO3-2 + H+ -llnl_gamma 4.5 log_k -10.3288 - -delta_H 14.6984 kJ/mol # Calculated enthalpy of reaction CO3-2 -# Enthalpy of formation: -161.385 kcal/mol + -delta_H 14.6984 kJ/mol # Calculated enthalpy of reaction CO3-2 +# Enthalpy of formation: -161.385 kcal/mol -analytic -6.9958e+1 -3.3526e-2 -7.0846e+1 2.8224e+1 -1.0849e+0 # -Range: 0-300 2 HAcetate + Ca+2 = Ca(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -7.3814 - -delta_H -2.7196 kJ/mol # Calculated enthalpy of reaction Ca(Acetate)2 -# Enthalpy of formation: -362.65 kcal/mol + -delta_H -2.7196 kJ/mol # Calculated enthalpy of reaction Ca(Acetate)2 +# Enthalpy of formation: -362.65 kcal/mol -analytic -1.032e+1 4.0012e-3 -3.6281e+3 2.4421e+0 7.0175e+5 # -Range: 0-300 O_phthalate-2 + Ca+2 = Ca(O_phthalate) -llnl_gamma 3 log_k 2.42 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca(O_phthalate) -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca(O_phthalate) +# Enthalpy of formation: -0 kcal/mol H2O + Ca+2 + B(OH)3 = CaB(OH)4+ + H+ -llnl_gamma 4 log_k -7.4222 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaB(OH)4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CaB(OH)4+ +# Enthalpy of formation: -0 kcal/mol Ca+2 + HAcetate = CaAcetate+ + H+ -llnl_gamma 4 log_k -3.8263 - -delta_H 1.17152 kJ/mol # Calculated enthalpy of reaction CaAcetate+ -# Enthalpy of formation: -245.62 kcal/mol + -delta_H 1.17152 kJ/mol # Calculated enthalpy of reaction CaAcetate+ +# Enthalpy of formation: -245.62 kcal/mol -analytic -8.8826e+0 3.1672e-3 -1.0764e+3 2.0526e+0 2.3599e+5 # -Range: 0-300 HCO3- + Ca+2 = CaCO3 + H+ -llnl_gamma 3 log_k -7.0017 - -delta_H 30.5767 kJ/mol # Calculated enthalpy of reaction CaCO3 -# Enthalpy of formation: -287.39 kcal/mol + -delta_H 30.5767 kJ/mol # Calculated enthalpy of reaction CaCO3 +# Enthalpy of formation: -287.39 kcal/mol -analytic 2.3045e+2 5.535e-2 -8.5056e+3 -9.1096e+1 -1.3279e+2 # -Range: 0-300 Cl- + Ca+2 = CaCl+ -llnl_gamma 4 log_k -0.6956 - -delta_H 2.02087 kJ/mol # Calculated enthalpy of reaction CaCl+ -# Enthalpy of formation: -169.25 kcal/mol + -delta_H 2.02087 kJ/mol # Calculated enthalpy of reaction CaCl+ +# Enthalpy of formation: -169.25 kcal/mol -analytic 8.1498e+1 3.8387e-2 -1.3763e+3 -3.5968e+1 -2.1501e+1 # -Range: 0-300 2 Cl- + Ca+2 = CaCl2 -llnl_gamma 3 log_k -0.6436 - -delta_H -5.8325 kJ/mol # Calculated enthalpy of reaction CaCl2 -# Enthalpy of formation: -211.06 kcal/mol + -delta_H -5.8325 kJ/mol # Calculated enthalpy of reaction CaCl2 +# Enthalpy of formation: -211.06 kcal/mol -analytic 1.8178e+2 7.691e-2 -3.1088e+3 -7.876e+1 -4.8563e+1 # -Range: 0-300 F- + Ca+2 = CaF+ -llnl_gamma 4 log_k 0.6817 - -delta_H 5.6484 kJ/mol # Calculated enthalpy of reaction CaF+ -# Enthalpy of formation: -208.6 kcal/mol + -delta_H 5.6484 kJ/mol # Calculated enthalpy of reaction CaF+ +# Enthalpy of formation: -208.6 kcal/mol -analytic 7.8058e+1 3.8276e-2 -1.3289e+3 -3.4071e+1 -2.0759e+1 # -Range: 0-300 HPO4-2 + H+ + Ca+2 = CaH2PO4+ -llnl_gamma 4 log_k 1.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaH2PO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CaH2PO4+ +# Enthalpy of formation: -0 kcal/mol HCO3- + Ca+2 = CaHCO3+ -llnl_gamma 4 log_k 1.0467 - -delta_H 1.45603 kJ/mol # Calculated enthalpy of reaction CaHCO3+ -# Enthalpy of formation: -294.35 kcal/mol + -delta_H 1.45603 kJ/mol # Calculated enthalpy of reaction CaHCO3+ +# Enthalpy of formation: -294.35 kcal/mol -analytic 5.5985e+1 3.4639e-2 -3.6972e+2 -2.5864e+1 -5.7859e+0 # -Range: 0-300 HPO4-2 + Ca+2 = CaHPO4 -llnl_gamma 3 log_k 2.74 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaHPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CaHPO4 +# Enthalpy of formation: -0 kcal/mol NO3- + Ca+2 = CaNO3+ -llnl_gamma 4 log_k 0.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaNO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CaNO3+ +# Enthalpy of formation: -0 kcal/mol H2O + Ca+2 = CaOH+ + H+ -llnl_gamma 4 log_k -12.85 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaOH+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CaOH+ +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Ca+2 = CaP2O7-2 + H2O -llnl_gamma 4 log_k 3.0537 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaP2O7-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CaP2O7-2 +# Enthalpy of formation: -0 kcal/mol HPO4-2 + Ca+2 = CaPO4- + H+ -llnl_gamma 4 log_k -5.8618 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaPO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CaPO4- +# Enthalpy of formation: -0 kcal/mol SO4-2 + Ca+2 = CaSO4 -llnl_gamma 3 log_k 2.1111 - -delta_H 5.4392 kJ/mol # Calculated enthalpy of reaction CaSO4 -# Enthalpy of formation: -345.9 kcal/mol + -delta_H 5.4392 kJ/mol # Calculated enthalpy of reaction CaSO4 +# Enthalpy of formation: -345.9 kcal/mol -analytic 2.8618e+2 8.4084e-2 -7.688e+3 -1.1449e+2 -1.2005e+2 # -Range: 0-300 2 HAcetate + Cd+2 = Cd(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -6.3625 - -delta_H -17.4891 kJ/mol # Calculated enthalpy of reaction Cd(Acetate)2 -# Enthalpy of formation: -254.52 kcal/mol + -delta_H -17.4891 kJ/mol # Calculated enthalpy of reaction Cd(Acetate)2 +# Enthalpy of formation: -254.52 kcal/mol -analytic -1.9344e+1 2.5894e-3 -3.2847e+3 5.8489e+0 7.8041e+5 # -Range: 0-300 3 HAcetate + Cd+2 = Cd(Acetate)3- + 3 H+ -llnl_gamma 4 log_k -10.8558 - -delta_H -40.0409 kJ/mol # Calculated enthalpy of reaction Cd(Acetate)3- -# Enthalpy of formation: -376.01 kcal/mol + -delta_H -40.0409 kJ/mol # Calculated enthalpy of reaction Cd(Acetate)3- +# Enthalpy of formation: -376.01 kcal/mol -analytic 4.829e+1 -3.4317e-3 -1.5122e+4 -1.3203e+1 2.2479e+6 # -Range: 0-300 4 HAcetate + Cd+2 = Cd(Acetate)4-2 + 4 H+ -llnl_gamma 4 log_k -16.9163 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Acetate)4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Acetate)4-2 +# Enthalpy of formation: -0 kcal/mol 2 Cyanide- + Cd+2 = Cd(Cyanide)2 -llnl_gamma 3 log_k 10.3551 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)2 - # Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)2 + # Enthalpy of formation: -0 kcal/mol 3 Cyanide- + Cd+2 = Cd(Cyanide)3- -llnl_gamma 4 log_k 14.8191 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)3- - # Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)3- + # Enthalpy of formation: -0 kcal/mol 4 Cyanide- + Cd+2 = Cd(Cyanide)4-2 -llnl_gamma 4 log_k 18.267 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)4-2 - # Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Cyanide)4-2 + # Enthalpy of formation: -0 kcal/mol 2 HCO3- + Cd+2 = Cd(CO3)2-2 + 2 H+ -llnl_gamma 4 log_k -14.2576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(CO3)2-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(CO3)2-2 +# Enthalpy of formation: -0 kcal/mol 2 N3- + Cd+2 = Cd(N3)2 -llnl_gamma 0 log_k 2.4606 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)2 +# Enthalpy of formation: -0 kcal/mol 3 N3- + Cd+2 = Cd(N3)3- -llnl_gamma 4 log_k 3.1263 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)3- +# Enthalpy of formation: -0 kcal/mol 4 N3- + Cd+2 = Cd(N3)4-2 -llnl_gamma 4 log_k 3.4942 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(N3)4-2 +# Enthalpy of formation: -0 kcal/mol NH3 + Cd+2 = Cd(NH3)+2 -llnl_gamma 4.5 log_k 2.5295 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(NH3)+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(NH3)+2 +# Enthalpy of formation: -0 kcal/mol 2 NH3 + Cd+2 = Cd(NH3)2+2 -llnl_gamma 4.5 log_k 4.876 - -delta_H -27.6533 kJ/mol # Calculated enthalpy of reaction Cd(NH3)2+2 -# Enthalpy of formation: -266.225 kJ/mol + -delta_H -27.6533 kJ/mol # Calculated enthalpy of reaction Cd(NH3)2+2 +# Enthalpy of formation: -266.225 kJ/mol -analytic 1.0738e+2 1.6071e-3 -3.2536e+3 -3.7202e+1 -5.0801e+1 # -Range: 0-300 4 NH3 + Cd+2 = Cd(NH3)4+2 -llnl_gamma 4.5 log_k 7.2914 - -delta_H -49.0684 kJ/mol # Calculated enthalpy of reaction Cd(NH3)4+2 -# Enthalpy of formation: -450.314 kJ/mol + -delta_H -49.0684 kJ/mol # Calculated enthalpy of reaction Cd(NH3)4+2 +# Enthalpy of formation: -450.314 kJ/mol -analytic 1.567e+2 -9.4949e-3 -5.0986e+3 -5.2316e+1 -7.9603e+1 # -Range: 0-300 2 H2O + Cd+2 = Cd(OH)2 + 2 H+ -llnl_gamma 3 log_k -20.3402 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)2 +# Enthalpy of formation: -0 kcal/mol 3 H2O + Cd+2 = Cd(OH)3- + 3 H+ -llnl_gamma 4 log_k -33.2852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)3- +# Enthalpy of formation: -0 kcal/mol 4 H2O + Cd+2 = Cd(OH)4-2 + 4 H+ -llnl_gamma 4 log_k -47.3303 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)4-2 +# Enthalpy of formation: -0 kcal/mol H2O + Cl- + Cd+2 = Cd(OH)Cl + H+ -llnl_gamma 3 log_k -7.4328 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)Cl -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(OH)Cl +# Enthalpy of formation: -0 kcal/mol 2 Thiocyanate- + Cd+2 = Cd(Thiocyanate)2 -llnl_gamma 3 log_k 1.8649 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Thiocyanate)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Thiocyanate)2 +# Enthalpy of formation: -0 kcal/mol 3 Thiocyanate- + Cd+2 = Cd(Thiocyanate)3- -llnl_gamma 4 log_k 1.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Thiocyanate)3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(Thiocyanate)3- +# Enthalpy of formation: -0 kcal/mol 2 Cd+2 + H2O = Cd2OH+3 + H+ -llnl_gamma 5 log_k -9.3851 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd2OH+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd2OH+3 +# Enthalpy of formation: -0 kcal/mol 4 H2O + 4 Cd+2 = Cd4(OH)4+4 + 4 H+ -llnl_gamma 5.5 log_k -362.1263 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd4(OH)4+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd4(OH)4+4 +# Enthalpy of formation: -0 kcal/mol Cd+2 + Br- = CdBr+ -llnl_gamma 4 log_k 2.1424 - -delta_H -3.35588 kJ/mol # Calculated enthalpy of reaction CdBr+ -# Enthalpy of formation: -200.757 kJ/mol + -delta_H -3.35588 kJ/mol # Calculated enthalpy of reaction CdBr+ +# Enthalpy of formation: -200.757 kJ/mol -analytic 1.4922e+2 5.0059e-2 -3.3035e+3 -6.0984e+1 -5.1593e+1 # -Range: 0-300 2 Br- + Cd+2 = CdBr2 -llnl_gamma 3 log_k 2.8614 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdBr2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CdBr2 +# Enthalpy of formation: -0 kcal/mol 3 Br- + Cd+2 = CdBr3- -llnl_gamma 4 log_k 3.0968 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdBr3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CdBr3- +# Enthalpy of formation: -0 kcal/mol Cd+2 + HAcetate = CdAcetate+ + H+ -llnl_gamma 4 log_k -2.8294 - -delta_H -7.02912 kJ/mol # Calculated enthalpy of reaction CdAcetate+ -# Enthalpy of formation: -135.92 kcal/mol + -delta_H -7.02912 kJ/mol # Calculated enthalpy of reaction CdAcetate+ +# Enthalpy of formation: -135.92 kcal/mol -analytic -8.8425e+0 1.7178e-3 -1.1758e+3 2.4435e+0 3.0321e+5 # -Range: 0-300 Cd+2 + Cyanide- = CdCyanide+ -llnl_gamma 4 log_k 5.3129 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdCyanide+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CdCyanide+ +# Enthalpy of formation: -0 kcal/mol HCO3- + Cd+2 = CdCO3 + H+ -llnl_gamma 3 log_k -7.3288 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdCO3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CdCO3 +# Enthalpy of formation: -0 kcal/mol Cl- + Cd+2 = CdCl+ -llnl_gamma 4 log_k 2.7059 - -delta_H 2.33843 kJ/mol # Calculated enthalpy of reaction CdCl+ -# Enthalpy of formation: -240.639 kJ/mol + -delta_H 2.33843 kJ/mol # Calculated enthalpy of reaction CdCl+ +# Enthalpy of formation: -240.639 kJ/mol 2 Cl- + Cd+2 = CdCl2 -llnl_gamma 3 log_k 3.3384 - -delta_H 5.1261 kJ/mol # Calculated enthalpy of reaction CdCl2 -# Enthalpy of formation: -404.931 kJ/mol + -delta_H 5.1261 kJ/mol # Calculated enthalpy of reaction CdCl2 +# Enthalpy of formation: -404.931 kJ/mol -analytic 1.4052e+2 4.9221e-2 -3.2625e+3 -5.6946e+1 -5.5451e+1 # -Range: 0-200 3 Cl- + Cd+2 = CdCl3- -llnl_gamma 4 log_k 2.7112 - -delta_H 15.9388 kJ/mol # Calculated enthalpy of reaction CdCl3- -# Enthalpy of formation: -561.198 kJ/mol + -delta_H 15.9388 kJ/mol # Calculated enthalpy of reaction CdCl3- +# Enthalpy of formation: -561.198 kJ/mol -analytic 3.5108e+2 1.0219e-1 -9.9103e+3 -1.3965e+2 -1.5474e+2 # -Range: 0-300 HCO3- + Cd+2 = CdHCO3+ -llnl_gamma 4 log_k 1.5 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdHCO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CdHCO3+ +# Enthalpy of formation: -0 kcal/mol I- + Cd+2 = CdI+ -llnl_gamma 4 log_k 2.071 - -delta_H -9.02584 kJ/mol # Calculated enthalpy of reaction CdI+ -# Enthalpy of formation: -141.826 kJ/mol + -delta_H -9.02584 kJ/mol # Calculated enthalpy of reaction CdI+ +# Enthalpy of formation: -141.826 kJ/mol -analytic 1.5019e+2 5.032e-2 -3.081e+3 -6.1738e+1 -4.812e+1 # -Range: 0-300 2 I- + Cd+2 = CdI2 -llnl_gamma 3 log_k 3.4685 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdI2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CdI2 +# Enthalpy of formation: -0 kcal/mol 3 I- + Cd+2 = CdI3- -llnl_gamma 4 log_k 4.5506 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdI3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CdI3- +# Enthalpy of formation: -0 kcal/mol 4 I- + Cd+2 = CdI4-2 -llnl_gamma 4 log_k 5.3524 - -delta_H -38.8566 kJ/mol # Calculated enthalpy of reaction CdI4-2 -# Enthalpy of formation: -342.364 kJ/mol + -delta_H -38.8566 kJ/mol # Calculated enthalpy of reaction CdI4-2 +# Enthalpy of formation: -342.364 kJ/mol -analytic 4.3154e+2 1.4257e-1 -8.4464e+3 -1.7795e+2 -1.3193e+2 # -Range: 0-300 N3- + Cd+2 = CdN3+ -llnl_gamma 4 log_k 1.497 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdN3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CdN3+ +# Enthalpy of formation: -0 kcal/mol NO2- + Cd+2 = CdNO2+ -llnl_gamma 4 log_k 2.37 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdNO2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CdNO2+ +# Enthalpy of formation: -0 kcal/mol H2O + Cd+2 = CdOH+ + H+ -llnl_gamma 4 log_k -10.0751 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdOH+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CdOH+ +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Cd+2 = CdP2O7-2 + H2O -llnl_gamma 4 log_k 4.8094 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdP2O7-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CdP2O7-2 +# Enthalpy of formation: -0 kcal/mol Thiocyanate- + Cd+2 = CdThiocyanate+ -llnl_gamma 4 log_k 1.3218 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdThiocyanate+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CdThiocyanate+ +# Enthalpy of formation: -0 kcal/mol SO4-2 + Cd+2 = CdSO4 -llnl_gamma 3 log_k 0.0028 - -delta_H 0.20436 kJ/mol # Calculated enthalpy of reaction CdSO4 -# Enthalpy of formation: -985.295 kJ/mol + -delta_H 0.20436 kJ/mol # Calculated enthalpy of reaction CdSO4 +# Enthalpy of formation: -985.295 kJ/mol -analytic -8.9926e+0 -1.9109e-3 2.7454e+2 3.4949e+0 4.6651e+0 # -Range: 0-200 SeO4-2 + Cd+2 = CdSeO4 -llnl_gamma 3 log_k 2.27 - -delta_H 0 # Not possible to calculate enthalpy of reaction CdSeO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CdSeO4 +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Ce+3 = Ce(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -4.8159 - -delta_H -22.9702 kJ/mol # Calculated enthalpy of reaction Ce(Acetate)2+ -# Enthalpy of formation: -405.09 kcal/mol + -delta_H -22.9702 kJ/mol # Calculated enthalpy of reaction Ce(Acetate)2+ +# Enthalpy of formation: -405.09 kcal/mol -analytic -3.4653e+1 2.0716e-4 -6.34e+2 1.0678e+1 4.8922e+5 # -Range: 0-300 3 HAcetate + Ce+3 = Ce(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -8.151 - -delta_H -38.7438 kJ/mol # Calculated enthalpy of reaction Ce(Acetate)3 -# Enthalpy of formation: -524.96 kcal/mol + -delta_H -38.7438 kJ/mol # Calculated enthalpy of reaction Ce(Acetate)3 +# Enthalpy of formation: -524.96 kcal/mol -analytic -2.3361e+1 2.3896e-3 -1.8035e+3 5.0888e+0 7.1021e+5 # -Range: 0-300 2 HCO3- + Ce+3 = Ce(CO3)2- + 2 H+ -llnl_gamma 4 log_k -8.1576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Ce+3 = Ce(HPO4)2- -llnl_gamma 4 log_k 8.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(HPO4)2- +# Enthalpy of formation: -0 kcal/mol 2 H2O + Ce+4 = Ce(OH)2+2 + 2 H+ -llnl_gamma 4.5 log_k 2.0098 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)2+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)2+2 +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Ce+3 = Ce(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -6.1437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 H2O + 2 Ce+4 = Ce2(OH)2+6 + 2 H+ -llnl_gamma 6 log_k 3.0098 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2(OH)2+6 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2(OH)2+6 +# Enthalpy of formation: -0 kcal/mol 5 H2O + 3 Ce+3 = Ce3(OH)5+4 + 5 H+ -llnl_gamma 5.5 log_k -33.4754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce3(OH)5+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce3(OH)5+4 +# Enthalpy of formation: -0 kcal/mol Ce+3 + Br- = CeBr+2 -llnl_gamma 4.5 log_k 0.3797 - -delta_H 3.0585 kJ/mol # Calculated enthalpy of reaction CeBr+2 -# Enthalpy of formation: -195.709 kcal/mol + -delta_H 3.0585 kJ/mol # Calculated enthalpy of reaction CeBr+2 +# Enthalpy of formation: -195.709 kcal/mol -analytic 7.579e+1 3.604e-2 -1.2647e+3 -3.3094e+1 -1.9757e+1 # -Range: 0-300 Ce+3 + HAcetate = CeAcetate+2 + H+ -llnl_gamma 4.5 log_k -2.0304 - -delta_H -12.0918 kJ/mol # Calculated enthalpy of reaction CeAcetate+2 -# Enthalpy of formation: -286.39 kcal/mol + -delta_H -12.0918 kJ/mol # Calculated enthalpy of reaction CeAcetate+2 +# Enthalpy of formation: -286.39 kcal/mol -analytic -1.608e+1 6.6239e-4 -6.0721e+2 5.0845e+0 2.9512e+5 # -Range: 0-300 HCO3- + Ce+3 = CeCO3+ + H+ -llnl_gamma 4 log_k -2.9284 - -delta_H 93.345 kJ/mol # Calculated enthalpy of reaction CeCO3+ -# Enthalpy of formation: -309.988 kcal/mol + -delta_H 93.345 kJ/mol # Calculated enthalpy of reaction CeCO3+ +# Enthalpy of formation: -309.988 kcal/mol -analytic 2.3292e+2 5.3153e-2 -7.118e+3 -9.2061e+1 -1.1114e+2 # -Range: 0-300 Cl- + Ce+3 = CeCl+2 -llnl_gamma 4.5 log_k 0.3086 - -delta_H 14.7821 kJ/mol # Calculated enthalpy of reaction CeCl+2 -# Enthalpy of formation: -203.8 kcal/mol + -delta_H 14.7821 kJ/mol # Calculated enthalpy of reaction CeCl+2 +# Enthalpy of formation: -203.8 kcal/mol -analytic 8.3534e+1 3.8166e-2 -2.0058e+3 -3.5504e+1 -3.1324e+1 # -Range: 0-300 2 Cl- + Ce+3 = CeCl2+ -llnl_gamma 4 log_k 0.0308 - -delta_H 20.7777 kJ/mol # Calculated enthalpy of reaction CeCl2+ -# Enthalpy of formation: -242.3 kcal/mol + -delta_H 20.7777 kJ/mol # Calculated enthalpy of reaction CeCl2+ +# Enthalpy of formation: -242.3 kcal/mol -analytic 2.3011e+2 8.1428e-2 -6.1292e+3 -9.4468e+1 -9.5708e+1 # -Range: 0-300 3 Cl- + Ce+3 = CeCl3 -llnl_gamma 3 log_k -0.3936 - -delta_H 15.4766 kJ/mol # Calculated enthalpy of reaction CeCl3 -# Enthalpy of formation: -283.5 kcal/mol + -delta_H 15.4766 kJ/mol # Calculated enthalpy of reaction CeCl3 +# Enthalpy of formation: -283.5 kcal/mol -analytic 4.4073e+2 1.2994e-1 -1.2308e+4 -1.7722e+2 -1.9218e+2 # -Range: 0-300 4 Cl- + Ce+3 = CeCl4- -llnl_gamma 4 log_k -0.7447 - -delta_H -1.95811 kJ/mol # Calculated enthalpy of reaction CeCl4- -# Enthalpy of formation: -327.6 kcal/mol + -delta_H -1.95811 kJ/mol # Calculated enthalpy of reaction CeCl4- +# Enthalpy of formation: -327.6 kcal/mol -analytic 5.223e+2 1.349e-1 -1.4859e+4 -2.0747e+2 -2.3201e+2 # -Range: 0-300 ClO4- + Ce+3 = CeClO4+2 -llnl_gamma 4.5 log_k 1.9102 - -delta_H -49.0197 kJ/mol # Calculated enthalpy of reaction CeClO4+2 -# Enthalpy of formation: -210.026 kcal/mol + -delta_H -49.0197 kJ/mol # Calculated enthalpy of reaction CeClO4+2 +# Enthalpy of formation: -210.026 kcal/mol -analytic -1.3609e+1 1.8115e-2 3.9869e+3 -1.3033e+0 6.2215e+1 # -Range: 0-300 F- + Ce+3 = CeF+2 -llnl_gamma 4.5 log_k 4.2221 - -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction CeF+2 -# Enthalpy of formation: -242 kcal/mol + -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction CeF+2 +# Enthalpy of formation: -242 kcal/mol -analytic 1.0303e+2 4.173e-2 -2.8424e+3 -4.1094e+1 -4.4383e+1 # -Range: 0-300 2 F- + Ce+3 = CeF2+ -llnl_gamma 4 log_k 7.2714 - -delta_H 15.0624 kJ/mol # Calculated enthalpy of reaction CeF2+ -# Enthalpy of formation: -324.1 kcal/mol + -delta_H 15.0624 kJ/mol # Calculated enthalpy of reaction CeF2+ +# Enthalpy of formation: -324.1 kcal/mol -analytic 2.5063e+2 8.5224e-2 -6.2219e+3 -1.0017e+2 -9.716e+1 # -Range: 0-300 3 F- + Ce+3 = CeF3 -llnl_gamma 3 log_k 9.5144 - -delta_H -6.0668 kJ/mol # Calculated enthalpy of reaction CeF3 -# Enthalpy of formation: -409.3 kcal/mol + -delta_H -6.0668 kJ/mol # Calculated enthalpy of reaction CeF3 +# Enthalpy of formation: -409.3 kcal/mol -analytic 4.6919e+2 1.3664e-1 -1.1745e+4 -1.8629e+2 -1.834e+2 # -Range: 0-300 4 F- + Ce+3 = CeF4- -llnl_gamma 4 log_k 11.3909 - -delta_H -45.6056 kJ/mol # Calculated enthalpy of reaction CeF4- -# Enthalpy of formation: -498.9 kcal/mol + -delta_H -45.6056 kJ/mol # Calculated enthalpy of reaction CeF4- +# Enthalpy of formation: -498.9 kcal/mol -analytic 5.3522e+2 1.3856e-1 -1.2722e+4 -2.1112e+2 -1.9868e+2 # -Range: 0-300 HPO4-2 + H+ + Ce+3 = CeH2PO4+2 -llnl_gamma 4.5 log_k 9.6684 - -delta_H -16.2548 kJ/mol # Calculated enthalpy of reaction CeH2PO4+2 -# Enthalpy of formation: -480.1 kcal/mol + -delta_H -16.2548 kJ/mol # Calculated enthalpy of reaction CeH2PO4+2 +# Enthalpy of formation: -480.1 kcal/mol -analytic 1.1338e+2 6.3771e-2 5.2908e+1 -4.9649e+1 7.9189e-1 # -Range: 0-300 HCO3- + Ce+3 = CeHCO3+2 -llnl_gamma 4.5 log_k 1.919 - -delta_H 8.77803 kJ/mol # Calculated enthalpy of reaction CeHCO3+2 -# Enthalpy of formation: -330.2 kcal/mol + -delta_H 8.77803 kJ/mol # Calculated enthalpy of reaction CeHCO3+2 +# Enthalpy of formation: -330.2 kcal/mol -analytic 4.4441e+1 3.2077e-2 -3.0714e+2 -2.0622e+1 -4.806e+0 # -Range: 0-300 HPO4-2 + Ce+3 = CeHPO4+ -llnl_gamma 4 log_k 5.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction CeHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CeHPO4+ +# Enthalpy of formation: -0 kcal/mol IO3- + Ce+3 = CeIO3+2 -llnl_gamma 4.5 log_k 1.9 - -delta_H -21.1627 kJ/mol # Calculated enthalpy of reaction CeIO3+2 -# Enthalpy of formation: -225.358 kcal/mol + -delta_H -21.1627 kJ/mol # Calculated enthalpy of reaction CeIO3+2 +# Enthalpy of formation: -225.358 kcal/mol -analytic 3.3756e+1 2.8528e-2 1.2847e+3 -1.8042e+1 2.0036e+1 # -Range: 0-300 NO3- + Ce+3 = CeNO3+2 -llnl_gamma 4.5 log_k 1.3143 - -delta_H -26.6563 kJ/mol # Calculated enthalpy of reaction CeNO3+2 -# Enthalpy of formation: -223.2 kcal/mol + -delta_H -26.6563 kJ/mol # Calculated enthalpy of reaction CeNO3+2 +# Enthalpy of formation: -223.2 kcal/mol -analytic 2.2772e+1 2.5931e-2 1.995e+3 -1.449e+1 3.1124e+1 # -Range: 0-300 H2O + Ce+3 = CeO+ + 2 H+ -llnl_gamma 4 log_k -16.4103 - -delta_H 112.202 kJ/mol # Calculated enthalpy of reaction CeO+ -# Enthalpy of formation: -208.9 kcal/mol + -delta_H 112.202 kJ/mol # Calculated enthalpy of reaction CeO+ +# Enthalpy of formation: -208.9 kcal/mol -analytic 1.9881e+2 3.1302e-2 -1.4331e+4 -7.1323e+1 -2.2368e+2 # -Range: 0-300 2 H2O + Ce+3 = CeO2- + 4 H+ -llnl_gamma 4 log_k -38.758 - -delta_H 308.503 kJ/mol # Calculated enthalpy of reaction CeO2- -# Enthalpy of formation: -230.3 kcal/mol + -delta_H 308.503 kJ/mol # Calculated enthalpy of reaction CeO2- +# Enthalpy of formation: -230.3 kcal/mol -analytic 1.0059e+2 3.4824e-3 -1.5873e+4 -3.3056e+1 -4.7656e+5 # -Range: 0-300 2 H2O + Ce+3 = CeO2H + 3 H+ -llnl_gamma 3 log_k -26.1503 - -delta_H 228.17 kJ/mol # Calculated enthalpy of reaction CeO2H -# Enthalpy of formation: -249.5 kcal/mol + -delta_H 228.17 kJ/mol # Calculated enthalpy of reaction CeO2H +# Enthalpy of formation: -249.5 kcal/mol -analytic 3.565e+2 4.6708e-2 -2.432e+4 -1.2731e+2 -3.7959e+2 # -Range: 0-300 H2O + Ce+3 = CeOH+2 + H+ -llnl_gamma 4.5 log_k -8.4206 - -delta_H 73.2911 kJ/mol # Calculated enthalpy of reaction CeOH+2 -# Enthalpy of formation: -218.2 kcal/mol + -delta_H 73.2911 kJ/mol # Calculated enthalpy of reaction CeOH+2 +# Enthalpy of formation: -218.2 kcal/mol -analytic 7.5809e+1 1.2863e-2 -6.7244e+3 -2.6473e+1 -1.0495e+2 # -Range: 0-300 H2O + Ce+4 = CeOH+3 + H+ -llnl_gamma 5 log_k 3.2049 - -delta_H 0 # Not possible to calculate enthalpy of reaction CeOH+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CeOH+3 +# Enthalpy of formation: -0 kcal/mol HPO4-2 + Ce+3 = CePO4 + H+ -llnl_gamma 3 log_k -0.9718 - -delta_H 0 # Not possible to calculate enthalpy of reaction CePO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CePO4 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Ce+3 = CeSO4+ -llnl_gamma 4 log_k -3.687 - -delta_H 19.2464 kJ/mol # Calculated enthalpy of reaction CeSO4+ -# Enthalpy of formation: -380.2 kcal/mol + -delta_H 19.2464 kJ/mol # Calculated enthalpy of reaction CeSO4+ +# Enthalpy of formation: -380.2 kcal/mol -analytic 3.0156e+2 8.5149e-2 -1.1025e+4 -1.1866e+2 -1.7213e+2 # -Range: 0-300 2 HAcetate + Co+2 = Co(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -7.1468 - -delta_H -22.4262 kJ/mol # Calculated enthalpy of reaction Co(Acetate)2 -# Enthalpy of formation: -251.46 kcal/mol + -delta_H -22.4262 kJ/mol # Calculated enthalpy of reaction Co(Acetate)2 +# Enthalpy of formation: -251.46 kcal/mol -analytic -2.0661e+1 2.9014e-3 -2.2146e+3 5.1702e+0 6.4968e+5 # -Range: 0-300 3 HAcetate + Co+2 = Co(Acetate)3- + 3 H+ -llnl_gamma 4 log_k -11.281 - -delta_H -48.2415 kJ/mol # Calculated enthalpy of reaction Co(Acetate)3- -# Enthalpy of formation: -373.73 kcal/mol + -delta_H -48.2415 kJ/mol # Calculated enthalpy of reaction Co(Acetate)3- +# Enthalpy of formation: -373.73 kcal/mol -analytic 6.3384e+1 -4.0669e-3 -1.4715e+4 -1.9518e+1 2.1524e+6 # -Range: 0-300 2 HS- + Co+2 = Co(HS)2 -llnl_gamma 3 log_k 9.0306 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(HS)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(HS)2 +# Enthalpy of formation: -0 kcal/mol 2 H2O + Co+2 = Co(OH)2 + 2 H+ -llnl_gamma 3 log_k -18.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)2 +# Enthalpy of formation: -0 kcal/mol 4 H2O + Co+2 = Co(OH)4-2 + 4 H+ -llnl_gamma 4 log_k -45.7803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)4-2 +# Enthalpy of formation: -0 kcal/mol H2O + 2 Co+2 = Co2OH+3 + H+ -llnl_gamma 5 log_k -11.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co2OH+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Co2OH+3 +# Enthalpy of formation: -0 kcal/mol 4 H2O + 4 Co+2 = Co4(OH)4+4 + 4 H+ -llnl_gamma 5.5 log_k -30.3803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co4(OH)4+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Co4(OH)4+4 +# Enthalpy of formation: -0 kcal/mol 2 Br- + Co+2 = CoBr2 -llnl_gamma 3 log_k -0.0358 - -delta_H -0.56568 kJ/mol # Calculated enthalpy of reaction CoBr2 -# Enthalpy of formation: -301.73 kJ/mol + -delta_H -0.56568 kJ/mol # Calculated enthalpy of reaction CoBr2 +# Enthalpy of formation: -301.73 kJ/mol -analytic 5.8731e+0 8.0908e-4 -1.8986e+2 -2.2295e+0 -3.2261e+0 # -Range: 0-200 Co+2 + HAcetate = CoAcetate+ + H+ -llnl_gamma 4 log_k -3.2985 - -delta_H -8.70272 kJ/mol # Calculated enthalpy of reaction CoAcetate+ -# Enthalpy of formation: -132.08 kcal/mol + -delta_H -8.70272 kJ/mol # Calculated enthalpy of reaction CoAcetate+ +# Enthalpy of formation: -132.08 kcal/mol -analytic -5.4858e+0 1.9147e-3 -1.1292e+3 9.0555e-1 2.8223e+5 # -Range: 0-300 Co+2 + Cl- = CoCl+ -llnl_gamma 4 log_k 0.1547 - -delta_H 1.71962 kJ/mol # Calculated enthalpy of reaction CoCl+ -# Enthalpy of formation: -53.422 kcal/mol + -delta_H 1.71962 kJ/mol # Calculated enthalpy of reaction CoCl+ +# Enthalpy of formation: -53.422 kcal/mol -analytic 1.5234e+2 5.6958e-2 -3.3258e+3 -6.3849e+1 -5.1942e+1 # -Range: 0-300 HS- + Co+2 = CoHS+ -llnl_gamma 4 log_k 5.9813 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoHS+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CoHS+ +# Enthalpy of formation: -0 kcal/mol 2 I- + Co+2 = CoI2 -llnl_gamma 3 log_k -0.0944 - -delta_H 3.1774 kJ/mol # Calculated enthalpy of reaction CoI2 -# Enthalpy of formation: -168.785 kJ/mol + -delta_H 3.1774 kJ/mol # Calculated enthalpy of reaction CoI2 +# Enthalpy of formation: -168.785 kJ/mol -analytic 3.6029e+1 1.0128e-2 -1.1219e+3 -1.4301e+1 -1.9064e+1 # -Range: 0-200 NO3- + Co+2 = CoNO3+ -llnl_gamma 4 log_k 0.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoNO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CoNO3+ +# Enthalpy of formation: -0 kcal/mol Co+2 + S2O3-2 = CoS2O3 -llnl_gamma 3 log_k 0.8063 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoS2O3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CoS2O3 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Co+2 = CoSO4 -llnl_gamma 3 log_k 0.0436 - -delta_H 0.3842 kJ/mol # Calculated enthalpy of reaction CoSO4 -# Enthalpy of formation: -967.375 kJ/mol + -delta_H 0.3842 kJ/mol # Calculated enthalpy of reaction CoSO4 +# Enthalpy of formation: -967.375 kJ/mol -analytic 2.4606e+0 1.0086e-3 -6.145e+1 -1.0148e+0 -1.0444e+0 # -Range: 0-200 SeO4-2 + Co+2 = CoSeO4 -llnl_gamma 3 log_k 2.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoSeO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CoSeO4 +# Enthalpy of formation: -0 kcal/mol 2 H2O + Cr+3 = Cr(OH)2+ + 2 H+ -llnl_gamma 4 log_k -9.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)2+ +# Enthalpy of formation: -0 kcal/mol 3 H2O + Cr+3 = Cr(OH)3 + 3 H+ -llnl_gamma 3 log_k -18 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)3 +# Enthalpy of formation: -0 kcal/mol 4 H2O + Cr+3 = Cr(OH)4- + 4 H+ -llnl_gamma 4 log_k -27.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr(OH)4- +# Enthalpy of formation: -0 kcal/mol 2 H2O + 2 Cr+3 = Cr2(OH)2+4 + 2 H+ -llnl_gamma 5.5 log_k -5.06 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol 2 H+ + 2 CrO4-2 = Cr2O7-2 + H2O -llnl_gamma 4 log_k 14.5192 - -delta_H -13.8783 kJ/mol # Calculated enthalpy of reaction Cr2O7-2 -# Enthalpy of formation: -356.2 kcal/mol + -delta_H -13.8783 kJ/mol # Calculated enthalpy of reaction Cr2O7-2 +# Enthalpy of formation: -356.2 kcal/mol -analytic 1.3749e+2 6.5773e-2 -7.9472e+2 -5.6525e+1 -1.2441e+1 # -Range: 0-300 4 H2O + 3 Cr+3 = Cr3(OH)4+5 + 4 H+ -llnl_gamma 6 log_k -8.15 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cr3(OH)4+5 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cr3(OH)4+5 +# Enthalpy of formation: -0 kcal/mol Cr+3 + Br- = CrBr+2 -llnl_gamma 4.5 log_k -2.7813 - -delta_H 33.564 kJ/mol # Calculated enthalpy of reaction CrBr+2 -# Enthalpy of formation: -78.018 kcal/mol + -delta_H 33.564 kJ/mol # Calculated enthalpy of reaction CrBr+2 +# Enthalpy of formation: -78.018 kcal/mol -analytic 9.4384e+1 3.4704e-2 -3.675e+3 -3.8461e+1 -5.7373e+1 # -Range: 0-300 Cr+3 + Cl- = CrCl+2 -llnl_gamma 4.5 log_k -0.149 - -delta_H 0 # Not possible to calculate enthalpy of reaction CrCl+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CrCl+2 +# Enthalpy of formation: -0 kcal/mol 2 Cl- + Cr+3 = CrCl2+ -llnl_gamma 4 log_k 0.1596 - -delta_H 41.2919 kJ/mol # Calculated enthalpy of reaction CrCl2+ -# Enthalpy of formation: -126.997 kcal/mol + -delta_H 41.2919 kJ/mol # Calculated enthalpy of reaction CrCl2+ +# Enthalpy of formation: -126.997 kcal/mol -analytic 2.0114e+2 7.3878e-2 -6.2218e+3 -8.1677e+1 -9.7144e+1 # -Range: 0-300 Cl- + 2 H+ + CrO4-2 = CrO3Cl- + H2O -llnl_gamma 4 log_k 7.527 - -delta_H 0 # Not possible to calculate enthalpy of reaction CrO3Cl- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CrO3Cl- +# Enthalpy of formation: -0 kcal/mol -analytic 2.7423e+2 1.0013e-1 -6.0072e+3 -1.1168e+2 -9.3817e+1 # -Range: 0-300 H2O + Cr+3 = CrOH+2 + H+ -llnl_gamma 4.5 log_k -4 - -delta_H 0 # Not possible to calculate enthalpy of reaction CrOH+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CrOH+2 +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Cs+ = Cs(Acetate)2- + 2 H+ -llnl_gamma 4 log_k -9.771 - -delta_H 1.2552 kJ/mol # Calculated enthalpy of reaction Cs(Acetate)2- -# Enthalpy of formation: -293.57 kcal/mol + -delta_H 1.2552 kJ/mol # Calculated enthalpy of reaction Cs(Acetate)2- +# Enthalpy of formation: -293.57 kcal/mol -analytic -1.6956e+2 -4.0378e-2 4.5773e+3 6.3241e+1 7.1475e+1 # -Range: 0-300 Cs+ + Br- = CsBr -llnl_gamma 3 log_k -0.2712 - -delta_H 10.9621 kJ/mol # Calculated enthalpy of reaction CsBr -# Enthalpy of formation: -88.09 kcal/mol + -delta_H 10.9621 kJ/mol # Calculated enthalpy of reaction CsBr +# Enthalpy of formation: -88.09 kcal/mol -analytic 1.2064e+2 3.2e-2 -3.877e+3 -4.7458e+1 -6.0533e+1 # -Range: 0-300 Cs+ + HAcetate = CsAcetate + H+ -llnl_gamma 3 log_k -4.7352 - -delta_H 6.0668 kJ/mol # Calculated enthalpy of reaction CsAcetate -# Enthalpy of formation: -176.32 kcal/mol + -delta_H 6.0668 kJ/mol # Calculated enthalpy of reaction CsAcetate +# Enthalpy of formation: -176.32 kcal/mol -analytic 2.428e+1 -2.8642e-3 -3.1339e+3 -8.1616e+0 2.2684e+5 # -Range: 0-300 Cs+ + Cl- = CsCl -llnl_gamma 3 log_k -0.1385 - -delta_H 2.73215 kJ/mol # Calculated enthalpy of reaction CsCl -# Enthalpy of formation: -100.95 kcal/mol + -delta_H 2.73215 kJ/mol # Calculated enthalpy of reaction CsCl +# Enthalpy of formation: -100.95 kcal/mol -analytic 1.2472e+2 3.373e-2 -3.913e+3 -4.9212e+1 -6.1096e+1 # -Range: 0-300 I- + Cs+ = CsI -llnl_gamma 3 log_k 0.2639 - -delta_H -6.56888 kJ/mol # Calculated enthalpy of reaction CsI -# Enthalpy of formation: -76.84 kcal/mol + -delta_H -6.56888 kJ/mol # Calculated enthalpy of reaction CsI +# Enthalpy of formation: -76.84 kcal/mol -analytic 1.1555e+2 3.1419e-2 -3.3496e+3 -4.5828e+1 -5.2302e+1 # -Range: 0-300 2 HAcetate + Cu+2 = Cu(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -5.8824 - -delta_H -25.899 kJ/mol # Calculated enthalpy of reaction Cu(Acetate)2 -# Enthalpy of formation: -222.69 kcal/mol + -delta_H -25.899 kJ/mol # Calculated enthalpy of reaction Cu(Acetate)2 +# Enthalpy of formation: -222.69 kcal/mol -analytic -2.6689e+1 1.8048e-3 -1.8244e+3 7.7008e+0 6.5408e+5 # -Range: 0-300 2 HAcetate + Cu+ = Cu(Acetate)2- + 2 H+ -llnl_gamma 4 log_k -9.2139 - -delta_H -19.5476 kJ/mol # Calculated enthalpy of reaction Cu(Acetate)2- -# Enthalpy of formation: -219.74 kcal/mol + -delta_H -19.5476 kJ/mol # Calculated enthalpy of reaction Cu(Acetate)2- +# Enthalpy of formation: -219.74 kcal/mol -analytic -3.2712e+2 -5.9087e-2 1.1386e+4 1.2017e+2 1.7777e+2 # -Range: 0-300 3 HAcetate + Cu+2 = Cu(Acetate)3- + 3 H+ -llnl_gamma 4 log_k -9.3788 - -delta_H -53.2205 kJ/mol # Calculated enthalpy of reaction Cu(Acetate)3- -# Enthalpy of formation: -345.32 kcal/mol + -delta_H -53.2205 kJ/mol # Calculated enthalpy of reaction Cu(Acetate)3- +# Enthalpy of formation: -345.32 kcal/mol -analytic 3.9475e+1 -6.2867e-3 -1.3233e+4 -1.0643e+1 2.1121e+6 # -Range: 0-300 2 HCO3- + Cu+2 = Cu(CO3)2-2 + 2 H+ -llnl_gamma 4 log_k -10.4757 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cu(CO3)2-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cu(CO3)2-2 +# Enthalpy of formation: -0 kcal/mol 2 NH3 + Cu+2 = Cu(NH3)2+2 -llnl_gamma 4.5 log_k 7.4512 - -delta_H -45.1269 kJ/mol # Calculated enthalpy of reaction Cu(NH3)2+2 -# Enthalpy of formation: -142.112 kJ/mol + -delta_H -45.1269 kJ/mol # Calculated enthalpy of reaction Cu(NH3)2+2 +# Enthalpy of formation: -142.112 kJ/mol -analytic 1.1526e+2 4.8192e-3 -2.5139e+3 -4.0733e+1 -3.9261e+1 # -Range: 0-300 3 NH3 + Cu+2 = Cu(NH3)3+2 -llnl_gamma 4.5 log_k 10.2719 - -delta_H -67.2779 kJ/mol # Calculated enthalpy of reaction Cu(NH3)3+2 -# Enthalpy of formation: -245.6 kJ/mol + -delta_H -67.2779 kJ/mol # Calculated enthalpy of reaction Cu(NH3)3+2 +# Enthalpy of formation: -245.6 kJ/mol -analytic 1.3945e+2 -3.8236e-4 -2.8137e+3 -4.8336e+1 -4.3946e+1 # -Range: 0-300 2 NO2- + Cu+2 = Cu(NO2)2 -llnl_gamma 3 log_k 3.03 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cu(NO2)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cu(NO2)2 +# Enthalpy of formation: -0 kcal/mol Cu+ + HAcetate = CuAcetate + H+ -llnl_gamma 3 log_k -4.4274 - -delta_H -4.19237 kJ/mol # Calculated enthalpy of reaction CuAcetate -# Enthalpy of formation: -99.97 kcal/mol + -delta_H -4.19237 kJ/mol # Calculated enthalpy of reaction CuAcetate +# Enthalpy of formation: -99.97 kcal/mol -analytic 6.3784e+0 -4.5464e-4 -1.9995e+3 -2.8359e+0 2.7224e+5 # -Range: 0-300 Cu+2 + HAcetate = CuAcetate+ + H+ -llnl_gamma 4 log_k -2.5252 - -delta_H -11.3805 kJ/mol # Calculated enthalpy of reaction CuAcetate+ -# Enthalpy of formation: -103.12 kcal/mol + -delta_H -11.3805 kJ/mol # Calculated enthalpy of reaction CuAcetate+ +# Enthalpy of formation: -103.12 kcal/mol -analytic -1.493e+1 5.1278e-4 -3.4874e+2 4.3605e+0 2.3504e+5 # -Range: 0-300 2 H2O + HCO3- + Cu+2 = CuCO3(OH)2-2 + 3 H+ -llnl_gamma 4 log_k -23.444 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCO3(OH)2-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCO3(OH)2-2 +# Enthalpy of formation: -0 kcal/mol HCO3- + Cu+2 = CuCO3 + H+ -llnl_gamma 3 log_k -3.3735 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCO3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCO3 +# Enthalpy of formation: -0 kcal/mol Cu+2 + Cl- = CuCl+ -llnl_gamma 4 log_k 0.437 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl+ +# Enthalpy of formation: -0 kcal/mol 2 Cl- + Cu+2 = CuCl2 -llnl_gamma 3 log_k 0.1585 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl2 +# Enthalpy of formation: -0 kcal/mol 2 Cl- + Cu+ = CuCl2- -llnl_gamma 4 log_k 4.8212 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl2- +# Enthalpy of formation: -0 kcal/mol 3 Cl- + Cu+ = CuCl3-2 -llnl_gamma 4 log_k 5.6289 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl3-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl3-2 +# Enthalpy of formation: -0 kcal/mol 4 Cl- + Cu+2 = CuCl4-2 -llnl_gamma 4 log_k -4.5681 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuCl4-2 +# Enthalpy of formation: -0 kcal/mol F- + Cu+2 = CuF+ -llnl_gamma 4 log_k 1.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuF+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuF+ +# Enthalpy of formation: -0 kcal/mol HPO4-2 + H+ + Cu+2 = CuH2PO4+ -llnl_gamma 4 log_k 8.9654 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuH2PO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuH2PO4+ +# Enthalpy of formation: -0 kcal/mol HPO4-2 + Cu+2 = CuHPO4 -llnl_gamma 3 log_k 4.06 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuHPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuHPO4 +# Enthalpy of formation: -0 kcal/mol NH3 + Cu+2 = CuNH3+2 -llnl_gamma 4.5 log_k 4.04 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuNH3+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuNH3+2 +# Enthalpy of formation: -0 kcal/mol NO2- + Cu+2 = CuNO2+ -llnl_gamma 4 log_k 2.02 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuNO2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuNO2+ +# Enthalpy of formation: -0 kcal/mol 2 H2O + Cu+2 = CuO2-2 + 4 H+ -llnl_gamma 4 log_k -39.4497 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuO2-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuO2-2 +# Enthalpy of formation: -0 kcal/mol H2O + Cu+2 = CuOH+ + H+ -llnl_gamma 4 log_k -7.2875 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuOH+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuOH+ +# Enthalpy of formation: -0 kcal/mol HPO4-2 + Cu+2 = CuPO4- + H+ -llnl_gamma 4 log_k -2.4718 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuPO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuPO4- +# Enthalpy of formation: -0 kcal/mol SO4-2 + Cu+2 = CuSO4 -llnl_gamma 0 log_k 2.36 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuSO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuSO4 +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Dy+3 = Dy(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -4.9625 - -delta_H -29.3298 kJ/mol # Calculated enthalpy of reaction Dy(Acetate)2+ -# Enthalpy of formation: -405.71 kcal/mol + -delta_H -29.3298 kJ/mol # Calculated enthalpy of reaction Dy(Acetate)2+ +# Enthalpy of formation: -405.71 kcal/mol -analytic -2.7249e+1 2.7507e-3 -1.75e+3 7.9356e+0 6.8668e+5 # -Range: 0-300 3 HAcetate + Dy+3 = Dy(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -8.3489 - -delta_H -49.4549 kJ/mol # Calculated enthalpy of reaction Dy(Acetate)3 -# Enthalpy of formation: -526.62 kcal/mol + -delta_H -49.4549 kJ/mol # Calculated enthalpy of reaction Dy(Acetate)3 +# Enthalpy of formation: -526.62 kcal/mol -analytic -2.4199e+1 6.2065e-3 -2.8937e+3 5.0176e+0 1.0069e+6 # -Range: 0-300 2 HCO3- + Dy+3 = Dy(CO3)2- + 2 H+ -llnl_gamma 4 log_k -7.4576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Dy+3 = Dy(HPO4)2- -llnl_gamma 4 log_k 9.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(HPO4)2- +# Enthalpy of formation: -0 kcal/mol # Redundant with DyO2- #4.0000 H2O + 1.0000 Dy+++ = Dy(OH)4- +4.0000 H+ # -llnl_gamma 4.0 # log_k -33.4803 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)4- -# Enthalpy of formation: -0 kcal/mol +# -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)4- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Dy+3 = Dy(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -3.4437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Dy+3 = Dy(SO4)2- -llnl_gamma 4 log_k 5 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(SO4)2- +# Enthalpy of formation: -0 kcal/mol Dy+3 + HAcetate = DyAcetate+2 + H+ -llnl_gamma 4.5 log_k -2.1037 - -delta_H -14.8532 kJ/mol # Calculated enthalpy of reaction DyAcetate+2 -# Enthalpy of formation: -286.15 kcal/mol + -delta_H -14.8532 kJ/mol # Calculated enthalpy of reaction DyAcetate+2 +# Enthalpy of formation: -286.15 kcal/mol -analytic -1.3635e+1 1.7329e-3 -9.4636e+2 4.09e+0 3.6282e+5 # -Range: 0-300 HCO3- + Dy+3 = DyCO3+ + H+ -llnl_gamma 4 log_k -2.3324 - -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction DyCO3+ -# Enthalpy of formation: -310.1 kcal/mol + -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction DyCO3+ +# Enthalpy of formation: -310.1 kcal/mol -analytic 2.3742e+2 5.4342e-2 -6.9953e+3 -9.3949e+1 -1.0922e+2 # -Range: 0-300 Dy+3 + Cl- = DyCl+2 -llnl_gamma 4.5 log_k 0.2353 - -delta_H 13.5269 kJ/mol # Calculated enthalpy of reaction DyCl+2 -# Enthalpy of formation: -203.2 kcal/mol + -delta_H 13.5269 kJ/mol # Calculated enthalpy of reaction DyCl+2 +# Enthalpy of formation: -203.2 kcal/mol -analytic 6.9134e+1 3.7129e-2 -1.3839e+3 -3.0432e+1 -2.1615e+1 # -Range: 0-300 2 Cl- + Dy+3 = DyCl2+ -llnl_gamma 4 log_k -0.0425 - -delta_H 17.4305 kJ/mol # Calculated enthalpy of reaction DyCl2+ -# Enthalpy of formation: -242.2 kcal/mol + -delta_H 17.4305 kJ/mol # Calculated enthalpy of reaction DyCl2+ +# Enthalpy of formation: -242.2 kcal/mol -analytic 1.8868e+2 7.7901e-2 -4.3528e+3 -7.9735e+1 -6.7978e+1 # -Range: 0-300 3 Cl- + Dy+3 = DyCl3 -llnl_gamma 3 log_k -0.4669 - -delta_H 8.78222 kJ/mol # Calculated enthalpy of reaction DyCl3 -# Enthalpy of formation: -284.2 kcal/mol + -delta_H 8.78222 kJ/mol # Calculated enthalpy of reaction DyCl3 +# Enthalpy of formation: -284.2 kcal/mol -analytic 3.6761e+2 1.2471e-1 -9.0651e+3 -1.5147e+2 -1.4156e+2 # -Range: 0-300 4 Cl- + Dy+3 = DyCl4- -llnl_gamma 4 log_k -0.8913 - -delta_H -14.0917 kJ/mol # Calculated enthalpy of reaction DyCl4- -# Enthalpy of formation: -329.6 kcal/mol + -delta_H -14.0917 kJ/mol # Calculated enthalpy of reaction DyCl4- +# Enthalpy of formation: -329.6 kcal/mol -analytic 3.9134e+2 1.2288e-1 -9.2351e+3 -1.6078e+2 -1.4422e+2 # -Range: 0-300 F- + Dy+3 = DyF+2 -llnl_gamma 4.5 log_k 4.6619 - -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction DyF+2 -# Enthalpy of formation: -241.1 kcal/mol + -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction DyF+2 +# Enthalpy of formation: -241.1 kcal/mol -analytic 9.112e+1 4.1193e-2 -2.3302e+3 -3.6734e+1 -3.6388e+1 # -Range: 0-300 2 F- + Dy+3 = DyF2+ -llnl_gamma 4 log_k 8.151 - -delta_H 12.552 kJ/mol # Calculated enthalpy of reaction DyF2+ -# Enthalpy of formation: -323.8 kcal/mol + -delta_H 12.552 kJ/mol # Calculated enthalpy of reaction DyF2+ +# Enthalpy of formation: -323.8 kcal/mol -analytic 2.1325e+2 8.2483e-2 -4.5864e+3 -8.6587e+1 -7.1629e+1 # -Range: 0-300 3 F- + Dy+3 = DyF3 -llnl_gamma 3 log_k 10.7605 - -delta_H -11.9244 kJ/mol # Calculated enthalpy of reaction DyF3 -# Enthalpy of formation: -409.8 kcal/mol + -delta_H -11.9244 kJ/mol # Calculated enthalpy of reaction DyF3 +# Enthalpy of formation: -409.8 kcal/mol -analytic 3.9766e+2 1.3143e-1 -8.5607e+3 -1.6056e+2 -1.337e+2 # -Range: 0-300 4 F- + Dy+3 = DyF4- -llnl_gamma 4 log_k 12.8569 - -delta_H -57.3208 kJ/mol # Calculated enthalpy of reaction DyF4- -# Enthalpy of formation: -500.8 kcal/mol + -delta_H -57.3208 kJ/mol # Calculated enthalpy of reaction DyF4- +# Enthalpy of formation: -500.8 kcal/mol -analytic 4.1672e+2 1.2922e-1 -7.4445e+3 -1.6867e+2 -1.1629e+2 # -Range: 0-300 HPO4-2 + H+ + Dy+3 = DyH2PO4+2 -llnl_gamma 4.5 log_k 9.3751 - -delta_H -18.3468 kJ/mol # Calculated enthalpy of reaction DyH2PO4+2 -# Enthalpy of formation: -479.7 kcal/mol + -delta_H -18.3468 kJ/mol # Calculated enthalpy of reaction DyH2PO4+2 +# Enthalpy of formation: -479.7 kcal/mol -analytic 9.8183e+1 6.2578e-2 7.1784e+2 -4.4383e+1 1.1172e+1 # -Range: 0-300 HCO3- + Dy+3 = DyHCO3+2 -llnl_gamma 4.5 log_k 1.6991 - -delta_H 7.10443 kJ/mol # Calculated enthalpy of reaction DyHCO3+2 -# Enthalpy of formation: -329.7 kcal/mol + -delta_H 7.10443 kJ/mol # Calculated enthalpy of reaction DyHCO3+2 +# Enthalpy of formation: -329.7 kcal/mol -analytic 2.8465e+1 3.0703e-2 3.9229e+2 -1.5036e+1 6.1127e+0 # -Range: 0-300 HPO4-2 + Dy+3 = DyHPO4+ -llnl_gamma 4 log_k 5.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction DyHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction DyHPO4+ +# Enthalpy of formation: -0 kcal/mol NO3- + Dy+3 = DyNO3+2 -llnl_gamma 4.5 log_k 0.1415 - -delta_H -30.4219 kJ/mol # Calculated enthalpy of reaction DyNO3+2 -# Enthalpy of formation: -223.2 kcal/mol + -delta_H -30.4219 kJ/mol # Calculated enthalpy of reaction DyNO3+2 +# Enthalpy of formation: -223.2 kcal/mol -analytic 6.4353e+0 2.4556e-2 2.5866e+3 -8.9975e+0 4.0359e+1 # -Range: 0-300 H2O + Dy+3 = DyO+ + 2 H+ -llnl_gamma 4 log_k -16.1171 - -delta_H 108.018 kJ/mol # Calculated enthalpy of reaction DyO+ -# Enthalpy of formation: -209 kcal/mol + -delta_H 108.018 kJ/mol # Calculated enthalpy of reaction DyO+ +# Enthalpy of formation: -209 kcal/mol -analytic 1.9069e+2 3.0358e-2 -1.3796e+4 -6.8532e+1 -2.1532e+2 # -Range: 0-300 2 H2O + Dy+3 = DyO2- + 4 H+ -llnl_gamma 4 log_k -33.4804 - -delta_H 273.776 kJ/mol # Calculated enthalpy of reaction DyO2- -# Enthalpy of formation: -237.7 kcal/mol + -delta_H 273.776 kJ/mol # Calculated enthalpy of reaction DyO2- +# Enthalpy of formation: -237.7 kcal/mol -analytic 7.7395e+1 4.4204e-4 -1.357e+4 -2.4546e+1 -4.232e+5 # -Range: 0-300 2 H2O + Dy+3 = DyO2H + 3 H+ -llnl_gamma 3 log_k -24.8309 - -delta_H 217.71 kJ/mol # Calculated enthalpy of reaction DyO2H -# Enthalpy of formation: -251.1 kcal/mol + -delta_H 217.71 kJ/mol # Calculated enthalpy of reaction DyO2H +# Enthalpy of formation: -251.1 kcal/mol -analytic 3.3576e+2 4.6004e-2 -2.2868e+4 -1.2027e+2 -3.5693e+2 # -Range: 0-300 H2O + Dy+3 = DyOH+2 + H+ -llnl_gamma 4.5 log_k -7.8342 - -delta_H 76.6383 kJ/mol # Calculated enthalpy of reaction DyOH+2 -# Enthalpy of formation: -216.5 kcal/mol + -delta_H 76.6383 kJ/mol # Calculated enthalpy of reaction DyOH+2 +# Enthalpy of formation: -216.5 kcal/mol -analytic 7.0856e+1 1.2473e-2 -6.2419e+3 -2.4841e+1 -9.742e+1 # -Range: 0-300 HPO4-2 + Dy+3 = DyPO4 + H+ -llnl_gamma 3 log_k 0.1782 - -delta_H 0 # Not possible to calculate enthalpy of reaction DyPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction DyPO4 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Dy+3 = DySO4+ -llnl_gamma 4 log_k 3.643 - -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction DySO4+ -# Enthalpy of formation: -379 kcal/mol + -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction DySO4+ +# Enthalpy of formation: -379 kcal/mol -analytic 3.0672e+2 8.6459e-2 -9.0386e+3 -1.2063e+2 -1.4113e+2 # -Range: 0-300 2 HAcetate + Er+3 = Er(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -4.9844 - -delta_H -32.8026 kJ/mol # Calculated enthalpy of reaction Er(Acetate)2+ -# Enthalpy of formation: -408.54 kcal/mol + -delta_H -32.8026 kJ/mol # Calculated enthalpy of reaction Er(Acetate)2+ +# Enthalpy of formation: -408.54 kcal/mol -analytic -3.1458e+1 1.4715e-3 -1.0556e+3 9.1586e+0 6.1669e+5 # -Range: 0-300 3 HAcetate + Er+3 = Er(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -8.3783 - -delta_H -55.187 kJ/mol # Calculated enthalpy of reaction Er(Acetate)3 -# Enthalpy of formation: -529.99 kcal/mol + -delta_H -55.187 kJ/mol # Calculated enthalpy of reaction Er(Acetate)3 +# Enthalpy of formation: -529.99 kcal/mol -analytic -2.1575e+1 5.974e-3 -2.0489e+3 3.3624e+0 8.8933e+5 # -Range: 0-300 2 HCO3- + Er+3 = Er(CO3)2- + 2 H+ -llnl_gamma 4 log_k -7.2576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Er+3 = Er(HPO4)2- -llnl_gamma 4 log_k 10 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(HPO4)2- +# Enthalpy of formation: -0 kcal/mol # Redundant with ErO2- #4.0000 H2O + 1.0000 Er+++ = Er(OH)4- +4.0000 H+ # -llnl_gamma 4.0 # log_k -32.5803 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)4- -# Enthalpy of formation: -0 kcal/mol +# -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)4- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Er+3 = Er(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -3.2437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Er+3 = Er(SO4)2- -llnl_gamma 4 log_k 5 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(SO4)2- +# Enthalpy of formation: -0 kcal/mol Er+3 + HAcetate = ErAcetate+2 + H+ -llnl_gamma 4.5 log_k -2.1184 - -delta_H -16.4013 kJ/mol # Calculated enthalpy of reaction ErAcetate+2 -# Enthalpy of formation: -288.52 kcal/mol + -delta_H -16.4013 kJ/mol # Calculated enthalpy of reaction ErAcetate+2 +# Enthalpy of formation: -288.52 kcal/mol -analytic -1.2519e+1 1.5558e-3 -8.5344e+2 3.5918e+0 3.4888e+5 # -Range: 0-300 HCO3- + Er+3 = ErCO3+ + H+ -llnl_gamma 4 log_k -2.1858 - -delta_H 87.0188 kJ/mol # Calculated enthalpy of reaction ErCO3+ -# Enthalpy of formation: -312.6 kcal/mol + -delta_H 87.0188 kJ/mol # Calculated enthalpy of reaction ErCO3+ +# Enthalpy of formation: -312.6 kcal/mol -analytic 2.3838e+2 5.4549e-2 -6.9433e+3 -9.4373e+1 -1.0841e+2 # -Range: 0-300 Er+3 + Cl- = ErCl+2 -llnl_gamma 4.5 log_k 0.3086 - -delta_H 12.6901 kJ/mol # Calculated enthalpy of reaction ErCl+2 -# Enthalpy of formation: -205.4 kcal/mol + -delta_H 12.6901 kJ/mol # Calculated enthalpy of reaction ErCl+2 +# Enthalpy of formation: -205.4 kcal/mol -analytic 7.4113e+1 3.7462e-2 -1.53e+3 -3.2257e+1 -2.3896e+1 # -Range: 0-300 2 Cl- + Er+3 = ErCl2+ -llnl_gamma 4 log_k -0.0425 - -delta_H 15.3385 kJ/mol # Calculated enthalpy of reaction ErCl2+ -# Enthalpy of formation: -244.7 kcal/mol + -delta_H 15.3385 kJ/mol # Calculated enthalpy of reaction ErCl2+ +# Enthalpy of formation: -244.7 kcal/mol -analytic 2.0259e+2 7.8907e-2 -4.8271e+3 -8.4835e+1 -7.5382e+1 # -Range: 0-300 3 Cl- + Er+3 = ErCl3 -llnl_gamma 3 log_k -0.4669 - -delta_H 5.01662 kJ/mol # Calculated enthalpy of reaction ErCl3 -# Enthalpy of formation: -287.1 kcal/mol + -delta_H 5.01662 kJ/mol # Calculated enthalpy of reaction ErCl3 +# Enthalpy of formation: -287.1 kcal/mol -analytic 3.9721e+2 1.2757e-1 -1.0045e+4 -1.6244e+2 -1.5686e+2 # -Range: 0-300 4 Cl- + Er+3 = ErCl4- -llnl_gamma 4 log_k -0.8913 - -delta_H -20.7861 kJ/mol # Calculated enthalpy of reaction ErCl4- -# Enthalpy of formation: -333.2 kcal/mol + -delta_H -20.7861 kJ/mol # Calculated enthalpy of reaction ErCl4- +# Enthalpy of formation: -333.2 kcal/mol -analytic 4.3471e+2 1.2627e-1 -1.0669e+4 -1.7677e+2 -1.666e+2 # -Range: 0-300 F- + Er+3 = ErF+2 -llnl_gamma 4.5 log_k 4.7352 - -delta_H 24.058 kJ/mol # Calculated enthalpy of reaction ErF+2 -# Enthalpy of formation: -242.9 kcal/mol + -delta_H 24.058 kJ/mol # Calculated enthalpy of reaction ErF+2 +# Enthalpy of formation: -242.9 kcal/mol -analytic 9.7079e+1 4.1707e-2 -2.6028e+3 -3.8805e+1 -4.0643e+1 # -Range: 0-300 2 F- + Er+3 = ErF2+ -llnl_gamma 4 log_k 8.2976 - -delta_H 12.9704 kJ/mol # Calculated enthalpy of reaction ErF2+ -# Enthalpy of formation: -325.7 kcal/mol + -delta_H 12.9704 kJ/mol # Calculated enthalpy of reaction ErF2+ +# Enthalpy of formation: -325.7 kcal/mol -analytic 2.2892e+2 8.3842e-2 -5.2174e+3 -9.2172e+1 -8.1481e+1 # -Range: 0-300 3 F- + Er+3 = ErF3 -llnl_gamma 3 log_k 10.9071 - -delta_H -12.3428 kJ/mol # Calculated enthalpy of reaction ErF3 -# Enthalpy of formation: -411.9 kcal/mol + -delta_H -12.3428 kJ/mol # Calculated enthalpy of reaction ErF3 +# Enthalpy of formation: -411.9 kcal/mol -analytic 4.2782e+2 1.3425e-1 -9.7064e+3 -1.7148e+2 -1.5158e+2 # -Range: 0-300 4 F- + Er+3 = ErF4- -llnl_gamma 4 log_k 13.0768 - -delta_H -60.2496 kJ/mol # Calculated enthalpy of reaction ErF4- -# Enthalpy of formation: -503.5 kcal/mol + -delta_H -60.2496 kJ/mol # Calculated enthalpy of reaction ErF4- +# Enthalpy of formation: -503.5 kcal/mol -analytic 4.6524e+2 1.3372e-1 -9.1895e+3 -1.8636e+2 -1.4353e+2 # -Range: 0-300 HPO4-2 + H+ + Er+3 = ErH2PO4+2 -llnl_gamma 4.5 log_k 9.4484 - -delta_H -20.4388 kJ/mol # Calculated enthalpy of reaction ErH2PO4+2 -# Enthalpy of formation: -482.2 kcal/mol + -delta_H -20.4388 kJ/mol # Calculated enthalpy of reaction ErH2PO4+2 +# Enthalpy of formation: -482.2 kcal/mol -analytic 1.0254e+2 6.2786e-2 6.359e+2 -4.6029e+1 9.892e+0 # -Range: 0-300 HCO3- + Er+3 = ErHCO3+2 -llnl_gamma 4.5 log_k 1.7724 - -delta_H 5.01243 kJ/mol # Calculated enthalpy of reaction ErHCO3+2 -# Enthalpy of formation: -332.2 kcal/mol + -delta_H 5.01243 kJ/mol # Calculated enthalpy of reaction ErHCO3+2 +# Enthalpy of formation: -332.2 kcal/mol -analytic 3.245e+1 3.0822e-2 3.1601e+2 -1.6528e+1 4.9212e+0 # -Range: 0-300 HPO4-2 + Er+3 = ErHPO4+ -llnl_gamma 4 log_k 5.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction ErHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ErHPO4+ +# Enthalpy of formation: -0 kcal/mol NO3- + Er+3 = ErNO3+2 -llnl_gamma 4.5 log_k 0.1415 - -delta_H -33.7691 kJ/mol # Calculated enthalpy of reaction ErNO3+2 -# Enthalpy of formation: -226 kcal/mol + -delta_H -33.7691 kJ/mol # Calculated enthalpy of reaction ErNO3+2 +# Enthalpy of formation: -226 kcal/mol -analytic 1.0381e+1 2.471e-2 2.5752e+3 -1.0596e+1 4.0181e+1 # -Range: 0-300 H2O + Er+3 = ErO+ + 2 H+ -llnl_gamma 4 log_k -15.9705 - -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction ErO+ -# Enthalpy of formation: -211.6 kcal/mol + -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction ErO+ +# Enthalpy of formation: -211.6 kcal/mol -analytic 1.7556e+2 2.8655e-2 -1.3134e+4 -6.305e+1 -2.0499e+2 # -Range: 0-300 2 H2O + Er+3 = ErO2- + 4 H+ -llnl_gamma 4 log_k -32.6008 - -delta_H 266.245 kJ/mol # Calculated enthalpy of reaction ErO2- -# Enthalpy of formation: -241.5 kcal/mol + -delta_H 266.245 kJ/mol # Calculated enthalpy of reaction ErO2- +# Enthalpy of formation: -241.5 kcal/mol -analytic 1.4987e+2 9.1241e-3 -1.8521e+4 -4.974e+1 -2.8905e+2 # -Range: 0-300 2 H2O + Er+3 = ErO2H + 3 H+ -llnl_gamma 3 log_k -24.3178 - -delta_H 212.689 kJ/mol # Calculated enthalpy of reaction ErO2H -# Enthalpy of formation: -254.3 kcal/mol + -delta_H 212.689 kJ/mol # Calculated enthalpy of reaction ErO2H +# Enthalpy of formation: -254.3 kcal/mol -analytic 3.1493e+2 4.4381e-2 -2.1821e+4 -1.1287e+2 -3.4059e+2 # -Range: 0-300 H2O + Er+3 = ErOH+2 + H+ -llnl_gamma 4.5 log_k -7.7609 - -delta_H 74.5463 kJ/mol # Calculated enthalpy of reaction ErOH+2 -# Enthalpy of formation: -219 kcal/mol + -delta_H 74.5463 kJ/mol # Calculated enthalpy of reaction ErOH+2 +# Enthalpy of formation: -219 kcal/mol -analytic 5.7142e+1 1.0986e-2 -5.6684e+3 -1.9867e+1 -8.8467e+1 # -Range: 0-300 HPO4-2 + Er+3 = ErPO4 + H+ -llnl_gamma 3 log_k 0.3782 - -delta_H 0 # Not possible to calculate enthalpy of reaction ErPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ErPO4 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Er+3 = ErSO4+ -llnl_gamma 4 log_k 3.5697 - -delta_H 20.3008 kJ/mol # Calculated enthalpy of reaction ErSO4+ -# Enthalpy of formation: -381.048 kcal/mol + -delta_H 20.3008 kJ/mol # Calculated enthalpy of reaction ErSO4+ +# Enthalpy of formation: -381.048 kcal/mol -analytic 3.0363e+2 8.5667e-2 -8.9667e+3 -1.1942e+2 -1.4001e+2 # -Range: 0-300 2 HAcetate + Eu+3 = Eu(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -4.6912 - -delta_H -28.3257 kJ/mol # Calculated enthalpy of reaction Eu(Acetate)2+ -# Enthalpy of formation: -383.67 kcal/mol + -delta_H -28.3257 kJ/mol # Calculated enthalpy of reaction Eu(Acetate)2+ +# Enthalpy of formation: -383.67 kcal/mol -analytic -2.7589e+1 1.5772e-3 -1.1008e+3 7.9899e+0 5.6652e+5 # -Range: 0-300 3 HAcetate + Eu+3 = Eu(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -7.9824 - -delta_H -47.3629 kJ/mol # Calculated enthalpy of reaction Eu(Acetate)3 -# Enthalpy of formation: -504.32 kcal/mol + -delta_H -47.3629 kJ/mol # Calculated enthalpy of reaction Eu(Acetate)3 +# Enthalpy of formation: -504.32 kcal/mol -analytic -3.747e+1 1.9276e-3 -1.0318e+3 9.7078e+0 7.4558e+5 # -Range: 0-300 2 HCO3- + Eu+3 = Eu(CO3)2- + 2 H+ -llnl_gamma 4 log_k -8.3993 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(CO3)2- +# Enthalpy of formation: -0 kcal/mol 3 HCO3- + Eu+3 = Eu(CO3)3-3 + 3 H+ -llnl_gamma 4 log_k -16.8155 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(CO3)3-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(CO3)3-3 +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Eu+3 = Eu(HPO4)2- -llnl_gamma 4 log_k 9.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(HPO4)2- +# Enthalpy of formation: -0 kcal/mol # Redundant with EuO+ #2.0000 H2O + 1.0000 Eu+++ = Eu(OH)2+ +2.0000 H+ # -llnl_gamma 4.0 # log_k -14.8609 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2+ -## Enthalpy of formation: -0 kcal/mol +# -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2+ +## Enthalpy of formation: -0 kcal/mol 2 H2O + HCO3- + Eu+3 = Eu(OH)2CO3- + 3 H+ -llnl_gamma 4 log_k -17.8462 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2CO3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2CO3- +# Enthalpy of formation: -0 kcal/mol # Redundant with EuO2H #3.0000 H2O + 1.0000 Eu+++ = Eu(OH)3 +3.0000 H+ # -llnl_gamma 3.0 # log_k -24.1253 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)3 -## Enthalpy of formation: -0 kcal/mol +# -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)3 +## Enthalpy of formation: -0 kcal/mol # Redundant with EuO2- #4.0000 H2O + 1.0000 Eu+++ = Eu(OH)4- +4.0000 H+ # -llnl_gamma 4.0 # log_k -36.5958 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)4- -## Enthalpy of formation: -0 kcal/mol +# -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)4- +## Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Eu+3 = Eu(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -3.9837 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Eu+3 = Eu(SO4)2- -llnl_gamma 4 log_k 5.4693 - -delta_H 25.627 kJ/mol # Calculated enthalpy of reaction Eu(SO4)2- -# Enthalpy of formation: -2399 kJ/mol + -delta_H 25.627 kJ/mol # Calculated enthalpy of reaction Eu(SO4)2- +# Enthalpy of formation: -2399 kJ/mol -analytic 4.5178e+2 1.2285e-1 -1.34e+4 -1.7697e+2 -2.0922e+2 # -Range: 0-300 2 H2O + 2 Eu+3 = Eu2(OH)2+4 + 2 H+ -llnl_gamma 5.5 log_k -6.9182 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol Eu+3 + Br- = EuBr+2 -llnl_gamma 4.5 log_k 0.5572 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuBr+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction EuBr+2 +# Enthalpy of formation: -0 kcal/mol 2 Br- + Eu+3 = EuBr2+ -llnl_gamma 4 log_k 0.2145 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuBr2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction EuBr2+ +# Enthalpy of formation: -0 kcal/mol Eu+3 + BrO3- = EuBrO3+2 -llnl_gamma 4.5 log_k 4.5823 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuBrO3+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction EuBrO3+2 +# Enthalpy of formation: -0 kcal/mol Eu+3 + HAcetate = EuAcetate+2 + H+ -llnl_gamma 4.5 log_k -1.9571 - -delta_H -14.5603 kJ/mol # Calculated enthalpy of reaction EuAcetate+2 -# Enthalpy of formation: -264.28 kcal/mol + -delta_H -14.5603 kJ/mol # Calculated enthalpy of reaction EuAcetate+2 +# Enthalpy of formation: -264.28 kcal/mol -analytic -1.509e+1 1.0352e-3 -6.4435e+2 4.6225e+0 3.1649e+5 # -Range: 0-300 HCO3- + Eu+3 = EuCO3+ + H+ -llnl_gamma 4 log_k -2.4057 - -delta_H 90.7844 kJ/mol # Calculated enthalpy of reaction EuCO3+ -# Enthalpy of formation: -287.9 kcal/mol + -delta_H 90.7844 kJ/mol # Calculated enthalpy of reaction EuCO3+ +# Enthalpy of formation: -287.9 kcal/mol -analytic 2.3548e+2 5.3819e-2 -6.9908e+3 -9.3137e+1 -1.0915e+2 # -Range: 0-300 Eu+2 + Cl- = EuCl+ -llnl_gamma 4 log_k 0.3819 - -delta_H 8.50607 kJ/mol # Calculated enthalpy of reaction EuCl+ -# Enthalpy of formation: -164 kcal/mol + -delta_H 8.50607 kJ/mol # Calculated enthalpy of reaction EuCl+ +# Enthalpy of formation: -164 kcal/mol -analytic 6.8695e+1 3.7619e-2 -1.0809e+3 -3.0665e+1 -1.6887e+1 # -Range: 0-300 Eu+3 + Cl- = EuCl+2 -llnl_gamma 4.5 log_k 0.3086 - -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction EuCl+2 -# Enthalpy of formation: -181.3 kcal/mol + -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction EuCl+2 +# Enthalpy of formation: -181.3 kcal/mol -analytic 7.9275e+1 3.7878e-2 -1.7895e+3 -3.4041e+1 -2.7947e+1 # -Range: 0-300 2 Cl- + Eu+2 = EuCl2 -llnl_gamma 3 log_k 1.2769 - -delta_H 5.71534 kJ/mol # Calculated enthalpy of reaction EuCl2 -# Enthalpy of formation: -204.6 kcal/mol + -delta_H 5.71534 kJ/mol # Calculated enthalpy of reaction EuCl2 +# Enthalpy of formation: -204.6 kcal/mol -analytic 1.0474e+2 6.7132e-2 -7.0448e+2 -4.8928e+1 -1.1024e+1 # -Range: 0-300 2 Cl- + Eu+3 = EuCl2+ -llnl_gamma 4 log_k -0.0425 - -delta_H 18.6857 kJ/mol # Calculated enthalpy of reaction EuCl2+ -# Enthalpy of formation: -220.1 kcal/mol + -delta_H 18.6857 kJ/mol # Calculated enthalpy of reaction EuCl2+ +# Enthalpy of formation: -220.1 kcal/mol -analytic 2.1758e+2 8.0336e-2 -5.5499e+3 -9.0087e+1 -8.6665e+1 # -Range: 0-300 3 Cl- + Eu+3 = EuCl3 -llnl_gamma 3 log_k -0.4669 - -delta_H 11.2926 kJ/mol # Calculated enthalpy of reaction EuCl3 -# Enthalpy of formation: -261.8 kcal/mol + -delta_H 11.2926 kJ/mol # Calculated enthalpy of reaction EuCl3 +# Enthalpy of formation: -261.8 kcal/mol -analytic 4.2075e+2 1.289e-1 -1.1288e+4 -1.7043e+2 -1.7627e+2 # -Range: 0-300 3 Cl- + Eu+2 = EuCl3- -llnl_gamma 4 log_k 2.0253 - -delta_H -3.76978 kJ/mol # Calculated enthalpy of reaction EuCl3- -# Enthalpy of formation: -246.8 kcal/mol + -delta_H -3.76978 kJ/mol # Calculated enthalpy of reaction EuCl3- +# Enthalpy of formation: -246.8 kcal/mol -analytic 1.1546e+1 6.4683e-2 3.7299e+3 -1.6672e+1 5.8196e+1 # -Range: 0-300 4 Cl- + Eu+3 = EuCl4- -llnl_gamma 4 log_k -0.8913 - -delta_H -9.90771 kJ/mol # Calculated enthalpy of reaction EuCl4- -# Enthalpy of formation: -306.8 kcal/mol + -delta_H -9.90771 kJ/mol # Calculated enthalpy of reaction EuCl4- +# Enthalpy of formation: -306.8 kcal/mol -analytic 4.8122e+2 1.3081e-1 -1.295e+4 -1.9302e+2 -2.0222e+2 # -Range: 0-300 4 Cl- + Eu+2 = EuCl4-2 -llnl_gamma 4 log_k 2.847 - -delta_H -19.9493 kJ/mol # Calculated enthalpy of reaction EuCl4-2 -# Enthalpy of formation: -290.6 kcal/mol + -delta_H -19.9493 kJ/mol # Calculated enthalpy of reaction EuCl4-2 +# Enthalpy of formation: -290.6 kcal/mol -analytic -1.2842e+2 5.0789e-2 9.8815e+3 3.3565e+1 1.5423e+2 # -Range: 0-300 F- + Eu+2 = EuF+ -llnl_gamma 4 log_k -1.3487 - -delta_H 16.9452 kJ/mol # Calculated enthalpy of reaction EuF+ -# Enthalpy of formation: -202.2 kcal/mol + -delta_H 16.9452 kJ/mol # Calculated enthalpy of reaction EuF+ +# Enthalpy of formation: -202.2 kcal/mol -analytic 6.2412e+1 3.5839e-2 -1.366e+3 -2.8223e+1 -2.1333e+1 # -Range: 0-300 F- + Eu+3 = EuF+2 -llnl_gamma 4.5 log_k 4.442 - -delta_H 23.6396 kJ/mol # Calculated enthalpy of reaction EuF+2 -# Enthalpy of formation: -219.2 kcal/mol + -delta_H 23.6396 kJ/mol # Calculated enthalpy of reaction EuF+2 +# Enthalpy of formation: -219.2 kcal/mol -analytic 1.0063e+2 4.1834e-2 -2.7355e+3 -4.0195e+1 -4.2714e+1 # -Range: 0-300 2 F- + Eu+2 = EuF2 -llnl_gamma 3 log_k -2.0378 - -delta_H 17.5728 kJ/mol # Calculated enthalpy of reaction EuF2 -# Enthalpy of formation: -282.2 kcal/mol + -delta_H 17.5728 kJ/mol # Calculated enthalpy of reaction EuF2 +# Enthalpy of formation: -282.2 kcal/mol -analytic 1.2065e+2 7.1705e-2 -1.7998e+3 -5.576e+1 -2.8121e+1 # -Range: 0-300 2 F- + Eu+3 = EuF2+ -llnl_gamma 4 log_k 7.7112 - -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction EuF2+ -# Enthalpy of formation: -301.7 kcal/mol + -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction EuF2+ +# Enthalpy of formation: -301.7 kcal/mol -analytic 2.4099e+2 8.4714e-2 -5.7702e+3 -9.664e+1 -9.0109e+1 # -Range: 0-300 3 F- + Eu+3 = EuF3 -llnl_gamma 3 log_k 10.1741 - -delta_H -8.9956 kJ/mol # Calculated enthalpy of reaction EuF3 -# Enthalpy of formation: -387.3 kcal/mol + -delta_H -8.9956 kJ/mol # Calculated enthalpy of reaction EuF3 +# Enthalpy of formation: -387.3 kcal/mol -analytic 4.5022e+2 1.356e-1 -1.0801e+4 -1.7951e+2 -1.6867e+2 # -Range: 0-300 3 F- + Eu+2 = EuF3- -llnl_gamma 4 log_k -2.5069 - -delta_H 3.5564 kJ/mol # Calculated enthalpy of reaction EuF3- -# Enthalpy of formation: -365.7 kcal/mol + -delta_H 3.5564 kJ/mol # Calculated enthalpy of reaction EuF3- +# Enthalpy of formation: -365.7 kcal/mol -analytic -2.8441e+1 5.5972e-2 4.4573e+3 -2.2782e+0 6.9558e+1 # -Range: 0-300 4 F- + Eu+3 = EuF4- -llnl_gamma 4 log_k 12.1239 - -delta_H -52.3 kJ/mol # Calculated enthalpy of reaction EuF4- -# Enthalpy of formation: -477.8 kcal/mol + -delta_H -52.3 kJ/mol # Calculated enthalpy of reaction EuF4- +# Enthalpy of formation: -477.8 kcal/mol -analytic 5.0246e+2 1.3629e-1 -1.1092e+4 -1.9952e+2 -1.7323e+2 # -Range: 0-300 4 F- + Eu+2 = EuF4-2 -llnl_gamma 4 log_k -2.8294 - -delta_H -37.656 kJ/mol # Calculated enthalpy of reaction EuF4-2 -# Enthalpy of formation: -455.7 kcal/mol + -delta_H -37.656 kJ/mol # Calculated enthalpy of reaction EuF4-2 +# Enthalpy of formation: -455.7 kcal/mol -analytic -1.873e+2 3.9237e-2 1.2303e+4 5.3179e+1 1.9204e+2 # -Range: 0-300 HPO4-2 + H+ + Eu+3 = EuH2PO4+2 -llnl_gamma 4.5 log_k 9.4484 - -delta_H -17.0916 kJ/mol # Calculated enthalpy of reaction EuH2PO4+2 -# Enthalpy of formation: -457.6 kcal/mol + -delta_H -17.0916 kJ/mol # Calculated enthalpy of reaction EuH2PO4+2 +# Enthalpy of formation: -457.6 kcal/mol -analytic 1.0873e+2 6.3416e-2 2.7202e+2 -4.8113e+1 4.2122e+0 # -Range: 0-300 HCO3- + Eu+3 = EuHCO3+2 -llnl_gamma 4.5 log_k 1.6258 - -delta_H 8.77803 kJ/mol # Calculated enthalpy of reaction EuHCO3+2 -# Enthalpy of formation: -307.5 kcal/mol + -delta_H 8.77803 kJ/mol # Calculated enthalpy of reaction EuHCO3+2 +# Enthalpy of formation: -307.5 kcal/mol -analytic 3.9266e+1 3.1608e-2 -9.8731e+1 -1.8875e+1 -1.5524e+0 # -Range: 0-300 HPO4-2 + Eu+3 = EuHPO4+ -llnl_gamma 4 log_k 5.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction EuHPO4+ +# Enthalpy of formation: -0 kcal/mol IO3- + Eu+3 = EuIO3+2 -llnl_gamma 4.5 log_k 2.156 - -delta_H 11.8314 kJ/mol # Calculated enthalpy of reaction EuIO3+2 -# Enthalpy of formation: -814.927 kJ/mol + -delta_H 11.8314 kJ/mol # Calculated enthalpy of reaction EuIO3+2 +# Enthalpy of formation: -814.927 kJ/mol -analytic 1.497e+2 4.7369e-2 -4.1559e+3 -5.9687e+1 -6.4893e+1 # -Range: 0-300 NO3- + Eu+3 = EuNO3+2 -llnl_gamma 4.5 log_k 0.8745 - -delta_H -32.0955 kJ/mol # Calculated enthalpy of reaction EuNO3+2 -# Enthalpy of formation: -201.8 kcal/mol + -delta_H -32.0955 kJ/mol # Calculated enthalpy of reaction EuNO3+2 +# Enthalpy of formation: -201.8 kcal/mol -analytic 1.7398e+1 2.5467e-2 2.2683e+3 -1.281e+1 3.5389e+1 # -Range: 0-300 H2O + Eu+3 = EuO+ + 2 H+ -llnl_gamma 4 log_k -16.337 - -delta_H 110.947 kJ/mol # Calculated enthalpy of reaction EuO+ -# Enthalpy of formation: -186.5 kcal/mol + -delta_H 110.947 kJ/mol # Calculated enthalpy of reaction EuO+ +# Enthalpy of formation: -186.5 kcal/mol -analytic 1.8876e+2 3.0194e-2 -1.3836e+4 -6.777e+1 -2.1595e+2 # -Range: 0-300 2 H2O + Eu+3 = EuO2- + 4 H+ -llnl_gamma 4 log_k -34.5066 - -delta_H 281.307 kJ/mol # Calculated enthalpy of reaction EuO2- -# Enthalpy of formation: -214.1 kcal/mol + -delta_H 281.307 kJ/mol # Calculated enthalpy of reaction EuO2- +# Enthalpy of formation: -214.1 kcal/mol -analytic 7.5244e+1 3.7089e-4 -1.3587e+4 -2.3859e+1 -4.6713e+5 # -Range: 0-300 2 H2O + Eu+3 = EuO2H + 3 H+ -llnl_gamma 3 log_k -25.4173 - -delta_H 222.313 kJ/mol # Calculated enthalpy of reaction EuO2H -# Enthalpy of formation: -228.2 kcal/mol + -delta_H 222.313 kJ/mol # Calculated enthalpy of reaction EuO2H +# Enthalpy of formation: -228.2 kcal/mol -analytic 3.6754e+2 5.3868e-2 -2.4034e+4 -1.3272e+2 -3.7514e+2 # -Range: 0-300 2 HCO3- + H2O + Eu+3 = EuOH(CO3)2-2 + 3 H+ -llnl_gamma 4 log_k -15.176 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuOH(CO3)2-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction EuOH(CO3)2-2 +# Enthalpy of formation: -0 kcal/mol H2O + Eu+3 = EuOH+2 + H+ -llnl_gamma 4.5 log_k -7.9075 - -delta_H 78.0065 kJ/mol # Calculated enthalpy of reaction EuOH+2 -# Enthalpy of formation: -194.373 kcal/mol + -delta_H 78.0065 kJ/mol # Calculated enthalpy of reaction EuOH+2 +# Enthalpy of formation: -194.373 kcal/mol -analytic 6.7691e+1 1.2066e-2 -6.1871e+3 -2.3617e+1 -9.6563e+1 # -Range: 0-300 HCO3- + H2O + Eu+3 = EuOHCO3 + 2 H+ -llnl_gamma 3 log_k -8.4941 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuOHCO3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction EuOHCO3 +# Enthalpy of formation: -0 kcal/mol HPO4-2 + Eu+3 = EuPO4 + H+ -llnl_gamma 3 log_k -0.1218 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction EuPO4 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Eu+3 = EuSO4+ -llnl_gamma 4 log_k 3.643 - -delta_H 62.3416 kJ/mol # Calculated enthalpy of reaction EuSO4+ -# Enthalpy of formation: -347.2 kcal/mol + -delta_H 62.3416 kJ/mol # Calculated enthalpy of reaction EuSO4+ +# Enthalpy of formation: -347.2 kcal/mol -analytic 3.0587e+2 8.6208e-2 -9.0387e+3 -1.2026e+2 -1.4113e+2 # -Range: 0-300 2 HAcetate + Fe+2 = Fe(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -7.0295 - -delta_H -20.2924 kJ/mol # Calculated enthalpy of reaction Fe(Acetate)2 -# Enthalpy of formation: -259.1 kcal/mol + -delta_H -20.2924 kJ/mol # Calculated enthalpy of reaction Fe(Acetate)2 +# Enthalpy of formation: -259.1 kcal/mol -analytic -2.9862e+1 1.3901e-3 -1.6908e+3 8.6283e+0 6.0125e+5 # -Range: 0-300 2 H2O + Fe+2 = Fe(OH)2 + 2 H+ -llnl_gamma 3 log_k -20.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)2 +# Enthalpy of formation: -0 kcal/mol 2 H2O + Fe+3 = Fe(OH)2+ + 2 H+ -llnl_gamma 4 log_k -5.67 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)2+ +# Enthalpy of formation: -0 kcal/mol 3 H2O + Fe+3 = Fe(OH)3 + 3 H+ -llnl_gamma 3 log_k -12 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)3 +# Enthalpy of formation: -0 kcal/mol 3 H2O + Fe+2 = Fe(OH)3- + 3 H+ -llnl_gamma 4 log_k -31 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)3- +# Enthalpy of formation: -0 kcal/mol 4 H2O + Fe+3 = Fe(OH)4- + 4 H+ -llnl_gamma 4 log_k -21.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)4- +# Enthalpy of formation: -0 kcal/mol 4 H2O + Fe+2 = Fe(OH)4-2 + 4 H+ -llnl_gamma 4 log_k -46 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(OH)4-2 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Fe+3 = Fe(SO4)2- -llnl_gamma 4 log_k 3.2137 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe(SO4)2- +# Enthalpy of formation: -0 kcal/mol 2 H2O + 2 Fe+3 = Fe2(OH)2+4 + 2 H+ -llnl_gamma 5.5 log_k -2.95 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol 4 H2O + 3 Fe+3 = Fe3(OH)4+5 + 4 H+ -llnl_gamma 6 log_k -6.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction Fe3(OH)4+5 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Fe3(OH)4+5 +# Enthalpy of formation: -0 kcal/mol Fe+2 + HAcetate = FeAcetate+ + H+ -llnl_gamma 4 log_k -3.4671 - -delta_H -3.80744 kJ/mol # Calculated enthalpy of reaction FeAcetate+ -# Enthalpy of formation: -139.06 kcal/mol + -delta_H -3.80744 kJ/mol # Calculated enthalpy of reaction FeAcetate+ +# Enthalpy of formation: -139.06 kcal/mol -analytic -1.3781e+1 9.6253e-4 -7.531e+2 4.0135e+0 2.3416e+5 # -Range: 0-300 HCO3- + Fe+2 = FeCO3 + H+ -llnl_gamma 3 log_k -5.5988 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeCO3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeCO3 +# Enthalpy of formation: -0 kcal/mol HCO3- + Fe+3 = FeCO3+ + H+ -llnl_gamma 4 log_k -0.6088 - -delta_H -50.208 kJ/mol # Calculated enthalpy of reaction FeCO3+ -# Enthalpy of formation: -188.748 kcal/mol + -delta_H -50.208 kJ/mol # Calculated enthalpy of reaction FeCO3+ +# Enthalpy of formation: -188.748 kcal/mol -analytic 1.71e+2 8.0413e-2 -4.3217e+2 -7.8449e+1 -6.7948e+0 # -Range: 0-300 Fe+2 + Cl- = FeCl+ -llnl_gamma 4 log_k -0.1605 - -delta_H 3.02503 kJ/mol # Calculated enthalpy of reaction FeCl+ -# Enthalpy of formation: -61.26 kcal/mol + -delta_H 3.02503 kJ/mol # Calculated enthalpy of reaction FeCl+ +# Enthalpy of formation: -61.26 kcal/mol -analytic 8.2435e+1 3.7755e-2 -1.4765e+3 -3.5918e+1 -2.3064e+1 # -Range: 0-300 Fe+3 + Cl- = FeCl+2 -llnl_gamma 4.5 log_k -0.8108 - -delta_H 36.6421 kJ/mol # Calculated enthalpy of reaction FeCl+2 -# Enthalpy of formation: -180.018 kJ/mol + -delta_H 36.6421 kJ/mol # Calculated enthalpy of reaction FeCl+2 +# Enthalpy of formation: -180.018 kJ/mol -analytic 1.6186e+2 5.9436e-2 -5.1913e+3 -6.5852e+1 -8.1053e+1 # -Range: 0-300 2 Cl- + Fe+2 = FeCl2 -llnl_gamma 3 log_k -2.4541 - -delta_H 6.46846 kJ/mol # Calculated enthalpy of reaction FeCl2 -# Enthalpy of formation: -100.37 kcal/mol + -delta_H 6.46846 kJ/mol # Calculated enthalpy of reaction FeCl2 +# Enthalpy of formation: -100.37 kcal/mol -analytic 1.9171e+2 7.807e-2 -4.1048e+3 -8.2292e+1 -6.4108e+1 # -Range: 0-300 2 Cl- + Fe+3 = FeCl2+ -llnl_gamma 4 log_k 2.13 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl2+ +# Enthalpy of formation: -0 kcal/mol 4 Cl- + Fe+3 = FeCl4- -llnl_gamma 4 log_k -0.79 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl4- +# Enthalpy of formation: -0 kcal/mol 4 Cl- + Fe+2 = FeCl4-2 -llnl_gamma 4 log_k -1.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeCl4-2 +# Enthalpy of formation: -0 kcal/mol -analytic -2.4108e+2 -6.0086e-3 9.7979e+3 8.4084e+1 1.5296e+2 # -Range: 0-300 Fe+2 + F- = FeF+ -llnl_gamma 4 log_k 1.36 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeF+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeF+ +# Enthalpy of formation: -0 kcal/mol Fe+3 + F- = FeF+2 -llnl_gamma 4.5 log_k 4.1365 - -delta_H 14.327 kJ/mol # Calculated enthalpy of reaction FeF+2 -# Enthalpy of formation: -370.601 kJ/mol + -delta_H 14.327 kJ/mol # Calculated enthalpy of reaction FeF+2 +# Enthalpy of formation: -370.601 kJ/mol -analytic 1.7546e+2 6.3754e-2 -4.3166e+3 -7.1052e+1 -6.7408e+1 # -Range: 0-300 2 F- + Fe+3 = FeF2+ -llnl_gamma 4 log_k 8.3498 - -delta_H 23.9776 kJ/mol # Calculated enthalpy of reaction FeF2+ -# Enthalpy of formation: -696.298 kJ/mol + -delta_H 23.9776 kJ/mol # Calculated enthalpy of reaction FeF2+ +# Enthalpy of formation: -696.298 kJ/mol -analytic 2.908e+2 1.0393e-1 -7.2118e+3 -1.1688e+2 -1.1262e+2 # -Range: 0-300 HPO4-2 + H+ + Fe+2 = FeH2PO4+ -llnl_gamma 4 log_k 2.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeH2PO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeH2PO4+ +# Enthalpy of formation: -0 kcal/mol HPO4-2 + H+ + Fe+3 = FeH2PO4+2 -llnl_gamma 4.5 log_k 4.17 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeH2PO4+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeH2PO4+2 +# Enthalpy of formation: -0 kcal/mol HCO3- + Fe+2 = FeHCO3+ -llnl_gamma 4 log_k 2.72 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeHCO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeHCO3+ +# Enthalpy of formation: -0 kcal/mol HPO4-2 + Fe+2 = FeHPO4 -llnl_gamma 3 log_k 3.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeHPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeHPO4 +# Enthalpy of formation: -0 kcal/mol HPO4-2 + Fe+3 = FeHPO4+ -llnl_gamma 4 log_k 10.18 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeHPO4+ +# Enthalpy of formation: -0 kcal/mol NO2- + Fe+3 = FeNO2+2 -llnl_gamma 4.5 log_k 3.15 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeNO2+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeNO2+2 +# Enthalpy of formation: -0 kcal/mol NO3- + Fe+3 = FeNO3+2 -llnl_gamma 4.5 log_k 1 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeNO3+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeNO3+2 +# Enthalpy of formation: -0 kcal/mol H2O + Fe+2 = FeOH+ + H+ -llnl_gamma 4 log_k -9.5 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeOH+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeOH+ +# Enthalpy of formation: -0 kcal/mol H2O + Fe+3 = FeOH+2 + H+ -llnl_gamma 4.5 log_k -2.19 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeOH+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeOH+2 +# Enthalpy of formation: -0 kcal/mol HPO4-2 + Fe+2 = FePO4- + H+ -llnl_gamma 4 log_k -4.3918 - -delta_H 0 # Not possible to calculate enthalpy of reaction FePO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FePO4- +# Enthalpy of formation: -0 kcal/mol SO4-2 + Fe+2 = FeSO4 -llnl_gamma 3 log_k 2.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction FeSO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction FeSO4 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Fe+3 = FeSO4+ -llnl_gamma 4 log_k 1.9276 - -delta_H 27.181 kJ/mol # Calculated enthalpy of reaction FeSO4+ -# Enthalpy of formation: -932.001 kJ/mol + -delta_H 27.181 kJ/mol # Calculated enthalpy of reaction FeSO4+ +# Enthalpy of formation: -932.001 kJ/mol -analytic 2.5178e+2 1.008e-1 -6.0977e+3 -1.0483e+2 -9.5223e+1 # -Range: 0-300 2 HAcetate + Gd+3 = Gd(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -4.9625 - -delta_H -22.3426 kJ/mol # Calculated enthalpy of reaction Gd(Acetate)2+ -# Enthalpy of formation: -401.74 kcal/mol + -delta_H -22.3426 kJ/mol # Calculated enthalpy of reaction Gd(Acetate)2+ +# Enthalpy of formation: -401.74 kcal/mol -analytic -4.3124e+1 1.2995e-4 -4.3494e+2 1.3677e+1 5.1224e+5 # -Range: 0-300 3 HAcetate + Gd+3 = Gd(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -8.3489 - -delta_H -37.9907 kJ/mol # Calculated enthalpy of reaction Gd(Acetate)3 -# Enthalpy of formation: -521.58 kcal/mol + -delta_H -37.9907 kJ/mol # Calculated enthalpy of reaction Gd(Acetate)3 +# Enthalpy of formation: -521.58 kcal/mol -analytic -8.8296e+1 -5.0939e-3 1.2268e+3 2.8513e+1 6.0745e+5 # -Range: 0-300 2 HCO3- + Gd+3 = Gd(CO3)2- + 2 H+ -llnl_gamma 4 log_k -7.5576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Gd+3 = Gd(HPO4)2- -llnl_gamma 4 log_k 9.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(HPO4)2- +# Enthalpy of formation: -0 kcal/mol # Redundant with GdO2- #4.0000 H2O + 1.0000 Gd+++ = Gd(OH)4- +4.0000 H+ # -llnl_gamma 4.0 # log_k -33.8803 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)4- -## Enthalpy of formation: -0 kcal/mol +# -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)4- +## Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Gd+3 = Gd(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -3.9437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Gd+3 = Gd(SO4)2- -llnl_gamma 4 log_k 5.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(SO4)2- +# Enthalpy of formation: -0 kcal/mol Gd+3 + HAcetate = GdAcetate+2 + H+ -llnl_gamma 4.5 log_k -2.1037 - -delta_H -11.7152 kJ/mol # Calculated enthalpy of reaction GdAcetate+2 -# Enthalpy of formation: -283.1 kcal/mol + -delta_H -11.7152 kJ/mol # Calculated enthalpy of reaction GdAcetate+2 +# Enthalpy of formation: -283.1 kcal/mol -analytic -1.4118e+1 1.666e-3 -7.5206e+2 4.2614e+0 3.1187e+5 # -Range: 0-300 HCO3- + Gd+3 = GdCO3+ + H+ -llnl_gamma 4 log_k -2.479 - -delta_H 89.9476 kJ/mol # Calculated enthalpy of reaction GdCO3+ -# Enthalpy of formation: -307.6 kcal/mol + -delta_H 89.9476 kJ/mol # Calculated enthalpy of reaction GdCO3+ +# Enthalpy of formation: -307.6 kcal/mol -analytic 2.3628e+2 5.41e-2 -7.0746e+3 -9.3413e+1 -1.1046e+2 # -Range: 0-300 Gd+3 + Cl- = GdCl+2 -llnl_gamma 4.5 log_k 0.3086 - -delta_H 14.7821 kJ/mol # Calculated enthalpy of reaction GdCl+2 -# Enthalpy of formation: -200.6 kcal/mol + -delta_H 14.7821 kJ/mol # Calculated enthalpy of reaction GdCl+2 +# Enthalpy of formation: -200.6 kcal/mol -analytic 8.075e+1 3.8524e-2 -1.8591e+3 -3.4621e+1 -2.9034e+1 # -Range: 0-300 2 Cl- + Gd+3 = GdCl2+ -llnl_gamma 4 log_k -0.0425 - -delta_H 21.1961 kJ/mol # Calculated enthalpy of reaction GdCl2+ -# Enthalpy of formation: -239 kcal/mol + -delta_H 21.1961 kJ/mol # Calculated enthalpy of reaction GdCl2+ +# Enthalpy of formation: -239 kcal/mol -analytic 2.1754e+2 8.0996e-2 -5.6121e+3 -9.0067e+1 -8.7635e+1 # -Range: 0-300 3 Cl- + Gd+3 = GdCl3 -llnl_gamma 3 log_k -0.4669 - -delta_H 15.895 kJ/mol # Calculated enthalpy of reaction GdCl3 -# Enthalpy of formation: -280.2 kcal/mol + -delta_H 15.895 kJ/mol # Calculated enthalpy of reaction GdCl3 +# Enthalpy of formation: -280.2 kcal/mol -analytic 4.1398e+2 1.2829e-1 -1.123e+4 -1.677e+2 -1.7535e+2 # -Range: 0-300 4 Cl- + Gd+3 = GdCl4- -llnl_gamma 4 log_k -0.8913 - -delta_H -1.53971 kJ/mol # Calculated enthalpy of reaction GdCl4- -# Enthalpy of formation: -324.3 kcal/mol + -delta_H -1.53971 kJ/mol # Calculated enthalpy of reaction GdCl4- +# Enthalpy of formation: -324.3 kcal/mol -analytic 4.7684e+2 1.3157e-1 -1.3068e+4 -1.9118e+2 -2.0405e+2 # -Range: 0-300 Gd+3 + F- = GdF+2 -llnl_gamma 4.5 log_k 4.5886 - -delta_H 21.1292 kJ/mol # Calculated enthalpy of reaction GdF+2 -# Enthalpy of formation: -239.3 kcal/mol + -delta_H 21.1292 kJ/mol # Calculated enthalpy of reaction GdF+2 +# Enthalpy of formation: -239.3 kcal/mol -analytic 1.006e+2 4.2181e-2 -2.6024e+3 -4.0347e+1 -4.0637e+1 # -Range: 0-300 2 F- + Gd+3 = GdF2+ -llnl_gamma 4 log_k 7.9311 - -delta_H 11.2968 kJ/mol # Calculated enthalpy of reaction GdF2+ -# Enthalpy of formation: -321.8 kcal/mol + -delta_H 11.2968 kJ/mol # Calculated enthalpy of reaction GdF2+ +# Enthalpy of formation: -321.8 kcal/mol -analytic 2.3793e+2 8.4732e-2 -5.495e+3 -9.5689e+1 -8.5815e+1 # -Range: 0-300 3 F- + Gd+3 = GdF3 -llnl_gamma 3 log_k 10.4673 - -delta_H -11.506 kJ/mol # Calculated enthalpy of reaction GdF3 -# Enthalpy of formation: -407.4 kcal/mol + -delta_H -11.506 kJ/mol # Calculated enthalpy of reaction GdF3 +# Enthalpy of formation: -407.4 kcal/mol -analytic 4.4257e+2 1.35e-1 -1.0377e+4 -1.768e+2 -1.6205e+2 # -Range: 0-300 4 F- + Gd+3 = GdF4- -llnl_gamma 4 log_k 12.4904 - -delta_H -52.3 kJ/mol # Calculated enthalpy of reaction GdF4- -# Enthalpy of formation: -497.3 kcal/mol + -delta_H -52.3 kJ/mol # Calculated enthalpy of reaction GdF4- +# Enthalpy of formation: -497.3 kcal/mol -analytic 4.9026e+2 1.3534e-1 -1.0586e+4 -1.9501e+2 -1.6533e+2 # -Range: 0-300 HPO4-2 + H+ + Gd+3 = GdH2PO4+2 -llnl_gamma 4.5 log_k 9.4484 - -delta_H -14.9996 kJ/mol # Calculated enthalpy of reaction GdH2PO4+2 -# Enthalpy of formation: -476.6 kcal/mol + -delta_H -14.9996 kJ/mol # Calculated enthalpy of reaction GdH2PO4+2 +# Enthalpy of formation: -476.6 kcal/mol -analytic 1.1058e+2 6.4124e-2 1.3451e+2 -4.8758e+1 2.066e+0 # -Range: 0-300 HCO3- + Gd+3 = GdHCO3+2 -llnl_gamma 4.5 log_k 1.6991 - -delta_H 10.0332 kJ/mol # Calculated enthalpy of reaction GdHCO3+2 -# Enthalpy of formation: -326.7 kcal/mol + -delta_H 10.0332 kJ/mol # Calculated enthalpy of reaction GdHCO3+2 +# Enthalpy of formation: -326.7 kcal/mol -analytic 4.1973e+1 3.2521e-2 -2.3475e+2 -1.9864e+1 -3.6757e+0 # -Range: 0-300 HPO4-2 + Gd+3 = GdHPO4+ -llnl_gamma 4 log_k -185.109 - -delta_H 0 # Not possible to calculate enthalpy of reaction GdHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction GdHPO4+ +# Enthalpy of formation: -0 kcal/mol NO3- + Gd+3 = GdNO3+2 -llnl_gamma 4.5 log_k 0.4347 - -delta_H -25.8195 kJ/mol # Calculated enthalpy of reaction GdNO3+2 -# Enthalpy of formation: -219.8 kcal/mol + -delta_H -25.8195 kJ/mol # Calculated enthalpy of reaction GdNO3+2 +# Enthalpy of formation: -219.8 kcal/mol -analytic 2.0253e+1 2.6372e-2 1.8785e+3 -1.3723e+1 2.9306e+1 # -Range: 0-300 H2O + Gd+3 = GdO+ + 2 H+ -llnl_gamma 4 log_k -16.337 - -delta_H 113.039 kJ/mol # Calculated enthalpy of reaction GdO+ -# Enthalpy of formation: -205.5 kcal/mol + -delta_H 113.039 kJ/mol # Calculated enthalpy of reaction GdO+ +# Enthalpy of formation: -205.5 kcal/mol -analytic 2.0599e+2 3.2521e-2 -1.4547e+4 -7.4048e+1 -2.2705e+2 # -Range: 0-300 2 H2O + Gd+3 = GdO2- + 4 H+ -llnl_gamma 4 log_k -34.4333 - -delta_H 283.817 kJ/mol # Calculated enthalpy of reaction GdO2- -# Enthalpy of formation: -233 kcal/mol + -delta_H 283.817 kJ/mol # Calculated enthalpy of reaction GdO2- +# Enthalpy of formation: -233 kcal/mol -analytic 1.2067e+2 6.6276e-3 -1.5531e+4 -4.0448e+1 -4.3587e+5 # -Range: 0-300 2 H2O + Gd+3 = GdO2H + 3 H+ -llnl_gamma 3 log_k -25.2707 - -delta_H 224.405 kJ/mol # Calculated enthalpy of reaction GdO2H -# Enthalpy of formation: -247.2 kcal/mol + -delta_H 224.405 kJ/mol # Calculated enthalpy of reaction GdO2H +# Enthalpy of formation: -247.2 kcal/mol -analytic 3.6324e+2 4.7938e-2 -2.4275e+4 -1.2988e+2 -3.7889e+2 # -Range: 0-300 H2O + Gd+3 = GdOH+2 + H+ -llnl_gamma 4.5 log_k -7.9075 - -delta_H 79.9855 kJ/mol # Calculated enthalpy of reaction GdOH+2 -# Enthalpy of formation: -213.4 kcal/mol + -delta_H 79.9855 kJ/mol # Calculated enthalpy of reaction GdOH+2 +# Enthalpy of formation: -213.4 kcal/mol -analytic 8.3265e+1 1.4153e-2 -6.8229e+3 -2.9301e+1 -1.0649e+2 # -Range: 0-300 HPO4-2 + Gd+3 = GdPO4 + H+ -llnl_gamma 3 log_k -0.1218 - -delta_H 0 # Not possible to calculate enthalpy of reaction GdPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction GdPO4 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Gd+3 = GdSO4+ -llnl_gamma 4 log_k -3.687 - -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction GdSO4+ -# Enthalpy of formation: -376.8 kcal/mol + -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction GdSO4+ +# Enthalpy of formation: -376.8 kcal/mol -analytic 3.0783e+2 8.6798e-2 -1.1246e+4 -1.2109e+2 -1.7557e+2 # -Range: 0-300 O_phthalate-2 + H+ = H(O_phthalate)- -llnl_gamma 4 log_k 5.408 - -delta_H 0 # Not possible to calculate enthalpy of reaction H(O_phthalate)- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction H(O_phthalate)- +# Enthalpy of formation: -0 kcal/mol 2 H+ + CrO4-2 = H2CrO4 -llnl_gamma 3 log_k 5.175 - -delta_H 42.8274 kJ/mol # Calculated enthalpy of reaction H2CrO4 -# Enthalpy of formation: -200.364 kcal/mol + -delta_H 42.8274 kJ/mol # Calculated enthalpy of reaction H2CrO4 +# Enthalpy of formation: -200.364 kcal/mol -analytic 4.2958e+2 1.4939e-1 -1.1474e+4 -1.7396e+2 -1.9499e+2 # -Range: 0-200 2 H+ + 2 F- = H2F2 -llnl_gamma 3 log_k 6.768 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2F2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction H2F2 +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + 2 H+ = H2P2O7-2 + H2O -llnl_gamma 4 log_k 12.0709 - -delta_H 19.7192 kJ/mol # Calculated enthalpy of reaction H2P2O7-2 -# Enthalpy of formation: -544.6 kcal/mol + -delta_H 19.7192 kJ/mol # Calculated enthalpy of reaction H2P2O7-2 +# Enthalpy of formation: -544.6 kcal/mol -analytic 1.4825e+2 6.7021e-2 -2.8329e+3 -5.9251e+1 -4.4248e+1 # -Range: 0-300 3 H+ + HPO4-2 + F- = H2PO3F + H2O -llnl_gamma 3 log_k 12.1047 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2PO3F -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction H2PO3F +# Enthalpy of formation: -0 kcal/mol HPO4-2 + H+ = H2PO4- -llnl_gamma 4 log_k 7.2054 - -delta_H -4.20492 kJ/mol # Calculated enthalpy of reaction H2PO4- -# Enthalpy of formation: -309.82 kcal/mol + -delta_H -4.20492 kJ/mol # Calculated enthalpy of reaction H2PO4- +# Enthalpy of formation: -309.82 kcal/mol -analytic 8.2149e+1 3.4077e-2 -1.0431e+3 -3.297e+1 -1.6301e+1 # -Range: 0-300 @@ -4335,3030 +4335,3030 @@ HPO4-2 + H+ = H2PO4- HS- + H+ = H2S -llnl_gamma 3 log_k 6.9877 - -delta_H -21.5518 kJ/mol # Calculated enthalpy of reaction H2S -# Enthalpy of formation: -9.001 kcal/mol + -delta_H -21.5518 kJ/mol # Calculated enthalpy of reaction H2S +# Enthalpy of formation: -9.001 kcal/mol -analytic 3.9283e+1 2.8727e-2 1.3477e+3 -1.8331e+1 2.1018e+1 # -Range: 0-300 2 H+ + SO3-2 = H2SO3 -llnl_gamma 3 log_k 9.2132 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2SO3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction H2SO3 +# Enthalpy of formation: -0 kcal/mol 2 H+ + SO4-2 = H2SO4 -llnl_gamma 3 log_k -1.0209 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2SO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction H2SO4 +# Enthalpy of formation: -0 kcal/mol 2 H+ + Se-2 = H2Se -llnl_gamma 3 log_k 18.7606 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2Se -# Enthalpy of formation: 19.412 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction H2Se +# Enthalpy of formation: 19.412 kJ/mol -analytic 3.6902e+2 1.2855e-1 -5.59e+3 -1.4946e+2 -9.5054e+1 # -Range: 0-200 2 H+ + SeO3-2 = H2SeO3 -llnl_gamma 3 log_k 9.8589 - -delta_H 1.7238 kJ/mol # Calculated enthalpy of reaction H2SeO3 -# Enthalpy of formation: -507.469 kJ/mol + -delta_H 1.7238 kJ/mol # Calculated enthalpy of reaction H2SeO3 +# Enthalpy of formation: -507.469 kJ/mol -analytic 2.785e+2 1.046e-1 -5.4934e+3 -1.1371e+2 -9.3383e+1 # -Range: 0-200 2 H2O + SiO2 = H2SiO4-2 + 2 H+ -llnl_gamma 4 log_k -22.96 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2SiO4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction H2SiO4-2 +# Enthalpy of formation: -0 kcal/mol 2 H+ + TcO4-2 = H2TcO4 -llnl_gamma 3 log_k 9.0049 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2TcO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction H2TcO4 +# Enthalpy of formation: -0 kcal/mol 2 H2O + VO2+ = H2VO4- + 2 H+ -llnl_gamma 4 log_k -7.0922 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2VO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction H2VO4- +# Enthalpy of formation: -0 kcal/mol -analytic 1.7105e+1 -1.7503e-2 -4.2671e+3 -1.891e+0 -6.6589e+1 # -Range: 0-300 H2AsO4- + H+ = H3AsO4 -llnl_gamma 3 log_k 2.2492 - -delta_H 7.17876 kJ/mol # Calculated enthalpy of reaction H3AsO4 -# Enthalpy of formation: -902.381 kJ/mol + -delta_H 7.17876 kJ/mol # Calculated enthalpy of reaction H3AsO4 +# Enthalpy of formation: -902.381 kJ/mol -analytic 1.4043e+2 4.6288e-2 -3.5868e+3 -5.656e+1 -6.0957e+1 # -Range: 0-200 3 H+ + 2 HPO4-2 = H3P2O7- + H2O -llnl_gamma 4 log_k 14.4165 - -delta_H 21.8112 kJ/mol # Calculated enthalpy of reaction H3P2O7- -# Enthalpy of formation: -544.1 kcal/mol + -delta_H 21.8112 kJ/mol # Calculated enthalpy of reaction H3P2O7- +# Enthalpy of formation: -544.1 kcal/mol -analytic 2.3157e+2 1.0161e-1 -4.3723e+3 -9.405e+1 -6.8295e+1 # -Range: 0-300 2 H+ + HPO4-2 = H3PO4 -llnl_gamma 3 log_k 9.3751 - -delta_H 3.74468 kJ/mol # Calculated enthalpy of reaction H3PO4 -# Enthalpy of formation: -307.92 kcal/mol + -delta_H 3.74468 kJ/mol # Calculated enthalpy of reaction H3PO4 +# Enthalpy of formation: -307.92 kcal/mol -analytic 1.838e+2 6.732e-2 -3.7792e+3 -7.3463e+1 -5.9025e+1 # -Range: 0-300 8 H2O + 4 SiO2 = H4(H2SiO4)4-4 + 4 H+ -llnl_gamma 4 log_k -35.94 - -delta_H 0 # Not possible to calculate enthalpy of reaction H4(H2SiO4)4-4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction H4(H2SiO4)4-4 +# Enthalpy of formation: -0 kcal/mol 4 H+ + 2 HPO4-2 = H4P2O7 + H2O -llnl_gamma 3 log_k 15.9263 - -delta_H 29.7226 kJ/mol # Calculated enthalpy of reaction H4P2O7 -# Enthalpy of formation: -2268.6 kJ/mol + -delta_H 29.7226 kJ/mol # Calculated enthalpy of reaction H4P2O7 +# Enthalpy of formation: -2268.6 kJ/mol -analytic 6.9026e+2 2.4309e-1 -1.6165e+4 -2.7989e+2 -2.7475e+2 # -Range: 0-200 8 H2O + 4 SiO2 = H6(H2SiO4)4-2 + 2 H+ -llnl_gamma 4 log_k -13.64 - -delta_H 0 # Not possible to calculate enthalpy of reaction H6(H2SiO4)4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction H6(H2SiO4)4-2 +# Enthalpy of formation: -0 kcal/mol 2 H2O + Al+3 = HAlO2 + 3 H+ -llnl_gamma 3 log_k -16.4329 - -delta_H 144.704 kJ/mol # Calculated enthalpy of reaction HAlO2 -# Enthalpy of formation: -230.73 kcal/mol + -delta_H 144.704 kJ/mol # Calculated enthalpy of reaction HAlO2 +# Enthalpy of formation: -230.73 kcal/mol -analytic 4.2012e+1 1.998e-2 -7.7847e+3 -1.547e+1 -1.2149e+2 # -Range: 0-300 H2AsO3- + H+ = HAsO2 + H2O -llnl_gamma 3 log_k 9.2792 - -delta_H 0 # Not possible to calculate enthalpy of reaction HAsO2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HAsO2 +# Enthalpy of formation: -0 kcal/mol -analytic 3.129e+2 9.3052e-2 -6.5052e+3 -1.251e+2 -1.1058e+2 # -Range: 0-200 H2AsO4- + H+ + F- = HAsO3F- + H2O -llnl_gamma 4 log_k 46.1158 - -delta_H 0 # Not possible to calculate enthalpy of reaction HAsO3F- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HAsO3F- +# Enthalpy of formation: -0 kcal/mol H2AsO4- = HAsO4-2 + H+ -llnl_gamma 4 log_k -6.7583 - -delta_H 3.22168 kJ/mol # Calculated enthalpy of reaction HAsO4-2 -# Enthalpy of formation: -216.62 kcal/mol + -delta_H 3.22168 kJ/mol # Calculated enthalpy of reaction HAsO4-2 +# Enthalpy of formation: -216.62 kcal/mol -analytic -8.4546e+1 -3.463e-2 1.1829e+3 3.3997e+1 1.8483e+1 # -Range: 0-300 3 H+ + 2 HS- + H2AsO3- = HAsS2 + 3 H2O -llnl_gamma 3 log_k 30.4803 - -delta_H 0 # Not possible to calculate enthalpy of reaction HAsS2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HAsS2 +# Enthalpy of formation: -0 kcal/mol H+ + BrO- = HBrO -llnl_gamma 3 log_k 8.3889 - -delta_H 0 # Not possible to calculate enthalpy of reaction HBrO -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HBrO +# Enthalpy of formation: -0 kcal/mol H+ + Cyanide- = HCyanide -llnl_gamma 3 log_k 9.2359 - -delta_H -43.5136 kJ/mol # Calculated enthalpy of reaction HCyanide -# Enthalpy of formation: 25.6 kcal/mol + -delta_H -43.5136 kJ/mol # Calculated enthalpy of reaction HCyanide +# Enthalpy of formation: 25.6 kcal/mol -analytic 1.0536e+1 2.3105e-2 3.3038e+3 -7.7786e+0 5.155e+1 # -Range: 0-300 H+ + Cl- = HCl -llnl_gamma 3 log_k -0.67 - -delta_H 0 # Not possible to calculate enthalpy of reaction HCl -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HCl +# Enthalpy of formation: -0 kcal/mol -analytic 4.1893e+2 1.1103e-1 -1.1784e+4 -1.6697e+2 -1.84e+2 # -Range: 0-300 H+ + ClO- = HClO -llnl_gamma 3 log_k 7.5692 - -delta_H 0 # Not possible to calculate enthalpy of reaction HClO -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HClO +# Enthalpy of formation: -0 kcal/mol H+ + ClO2- = HClO2 -llnl_gamma 3 log_k 3.1698 - -delta_H 0 # Not possible to calculate enthalpy of reaction HClO2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HClO2 +# Enthalpy of formation: -0 kcal/mol 2 H2O + Co+2 = HCoO2- + 3 H+ -llnl_gamma 4 log_k -21.243 - -delta_H 0 # Not possible to calculate enthalpy of reaction HCoO2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HCoO2- +# Enthalpy of formation: -0 kcal/mol H+ + CrO4-2 = HCrO4- -llnl_gamma 4 log_k 6.4944 - -delta_H 2.9288 kJ/mol # Calculated enthalpy of reaction HCrO4- -# Enthalpy of formation: -209.9 kcal/mol + -delta_H 2.9288 kJ/mol # Calculated enthalpy of reaction HCrO4- +# Enthalpy of formation: -209.9 kcal/mol -analytic 4.4944e+1 3.274e-2 1.84e+2 -1.9722e+1 2.8578e+0 # -Range: 0-300 H+ + F- = HF -llnl_gamma 3 log_k 3.1681 - -delta_H 13.87 kJ/mol # Calculated enthalpy of reaction HF -# Enthalpy of formation: -76.835 kcal/mol + -delta_H 13.87 kJ/mol # Calculated enthalpy of reaction HF +# Enthalpy of formation: -76.835 kcal/mol -analytic 8.6626e+1 3.2861e-2 -2.3026e+3 -3.4559e+1 -3.5956e+1 # -Range: 0-300 2 F- + H+ = HF2- -llnl_gamma 4 log_k 2.5509 - -delta_H 20.7526 kJ/mol # Calculated enthalpy of reaction HF2- -# Enthalpy of formation: -155.34 kcal/mol + -delta_H 20.7526 kJ/mol # Calculated enthalpy of reaction HF2- +# Enthalpy of formation: -155.34 kcal/mol -analytic 1.4359e+2 4.0866e-2 -4.6776e+3 -5.5574e+1 -7.3032e+1 # -Range: 0-300 IO3- + H+ = HIO3 -llnl_gamma 3 log_k 0.4915 - -delta_H 0 # Not possible to calculate enthalpy of reaction HIO3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HIO3 +# Enthalpy of formation: -0 kcal/mol N3- + H+ = HN3 -llnl_gamma 3 log_k 4.7001 - -delta_H -15 kJ/mol # Calculated enthalpy of reaction HN3 -# Enthalpy of formation: 260.14 kJ/mol + -delta_H -15 kJ/mol # Calculated enthalpy of reaction HN3 +# Enthalpy of formation: 260.14 kJ/mol -analytic 6.9976e+1 2.4359e-2 -7.1947e+2 -2.8339e+1 -1.2242e+1 # -Range: 0-200 NO2- + H+ = HNO2 -llnl_gamma 3 log_k 3.2206 - -delta_H -14.782 kJ/mol # Calculated enthalpy of reaction HNO2 -# Enthalpy of formation: -119.382 kJ/mol + -delta_H -14.782 kJ/mol # Calculated enthalpy of reaction HNO2 +# Enthalpy of formation: -119.382 kJ/mol -analytic 1.9653e+0 -1.1603e-4 0e+0 0e+0 1.1569e+5 # -Range: 0-200 NO3- + H+ = HNO3 -llnl_gamma 3 log_k -1.3025 - -delta_H 16.8155 kJ/mol # Calculated enthalpy of reaction HNO3 -# Enthalpy of formation: -45.41 kcal/mol + -delta_H 16.8155 kJ/mol # Calculated enthalpy of reaction HNO3 +# Enthalpy of formation: -45.41 kcal/mol -analytic 9.9744e+1 3.4866e-2 -3.0975e+3 -4.083e+1 -4.8363e+1 # -Range: 0-300 2 HPO4-2 + H+ = HP2O7-3 + H2O -llnl_gamma 4 log_k 5.4498 - -delta_H 23.3326 kJ/mol # Calculated enthalpy of reaction HP2O7-3 -# Enthalpy of formation: -2274.99 kJ/mol + -delta_H 23.3326 kJ/mol # Calculated enthalpy of reaction HP2O7-3 +# Enthalpy of formation: -2274.99 kJ/mol -analytic 3.9159e+2 1.5438e-1 -8.7071e+3 -1.6283e+2 -1.3598e+2 # -Range: 0-300 2 H+ + HPO4-2 + F- = HPO3F- + H2O -llnl_gamma 4 log_k 11.2988 - -delta_H 0 # Not possible to calculate enthalpy of reaction HPO3F- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HPO3F- +# Enthalpy of formation: -0 kcal/mol RuO4 + H2O = HRuO5- + H+ -llnl_gamma 4 log_k -11.5244 - -delta_H 0 # Not possible to calculate enthalpy of reaction HRuO5- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HRuO5- +# Enthalpy of formation: -0 kcal/mol H+ + S2O3-2 = HS2O3- -llnl_gamma 4 log_k 1.0139 - -delta_H 0 # Not possible to calculate enthalpy of reaction HS2O3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HS2O3- +# Enthalpy of formation: -0 kcal/mol SO3-2 + H+ = HSO3- -llnl_gamma 4 log_k 7.2054 - -delta_H 9.33032 kJ/mol # Calculated enthalpy of reaction HSO3- -# Enthalpy of formation: -149.67 kcal/mol + -delta_H 9.33032 kJ/mol # Calculated enthalpy of reaction HSO3- +# Enthalpy of formation: -149.67 kcal/mol -analytic 5.5899e+1 3.3623e-2 -5.012e+2 -2.304e+1 -7.8373e+0 # -Range: 0-300 SO4-2 + H+ = HSO4- -llnl_gamma 4 log_k 1.9791 - -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction HSO4- -# Enthalpy of formation: -212.5 kcal/mol + -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction HSO4- +# Enthalpy of formation: -212.5 kcal/mol -analytic 4.9619e+1 3.0368e-2 -1.1558e+3 -2.1335e+1 -1.8051e+1 # -Range: 0-300 4 HS- + 3 H+ + 2 Sb(OH)3 = HSb2S4- + 6 H2O -llnl_gamma 4 log_k 50.61 - -delta_H 0 # Not possible to calculate enthalpy of reaction HSb2S4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HSb2S4- +# Enthalpy of formation: -0 kcal/mol -analytic 1.754e+2 8.2177e-2 1.0786e+4 -7.4874e+1 1.6826e+2 # -Range: 0-300 SeO3-2 + H+ = HSeO3- -llnl_gamma 4 log_k 7.2861 - -delta_H -5.35552 kJ/mol # Calculated enthalpy of reaction HSeO3- -# Enthalpy of formation: -122.98 kcal/mol + -delta_H -5.35552 kJ/mol # Calculated enthalpy of reaction HSeO3- +# Enthalpy of formation: -122.98 kcal/mol -analytic 5.0427e+1 3.225e-2 2.9603e+2 -2.1711e+1 4.6044e+0 # -Range: 0-300 SeO4-2 + H+ = HSeO4- -llnl_gamma 4 log_k 1.9058 - -delta_H 17.5728 kJ/mol # Calculated enthalpy of reaction HSeO4- -# Enthalpy of formation: -139 kcal/mol + -delta_H 17.5728 kJ/mol # Calculated enthalpy of reaction HSeO4- +# Enthalpy of formation: -139 kcal/mol -analytic 1.416e+2 3.9801e-2 -4.5392e+3 -5.5088e+1 -7.0872e+1 # -Range: 0-300 SiO2 + H2O = HSiO3- + H+ -llnl_gamma 4 log_k -9.9525 - -delta_H 25.991 kJ/mol # Calculated enthalpy of reaction HSiO3- -# Enthalpy of formation: -271.88 kcal/mol + -delta_H 25.991 kJ/mol # Calculated enthalpy of reaction HSiO3- +# Enthalpy of formation: -271.88 kcal/mol -analytic 6.4211e+1 -2.4872e-2 -1.2707e+4 -1.4681e+1 1.0853e+6 # -Range: 0-300 TcO4-2 + H+ = HTcO4- -llnl_gamma 4 log_k 8.7071 - -delta_H 0 # Not possible to calculate enthalpy of reaction HTcO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HTcO4- +# Enthalpy of formation: -0 kcal/mol 2 H2O + VO2+ = HVO4-2 + 3 H+ -llnl_gamma 4 log_k -15.1553 - -delta_H 0 # Not possible to calculate enthalpy of reaction HVO4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HVO4-2 +# Enthalpy of formation: -0 kcal/mol -analytic -7.066e+1 -5.2457e-2 -3.538e+3 3.3534e+1 -5.5186e+1 # -Range: 0-300 5 H2O + Hf+4 = Hf(OH)5- + 5 H+ -llnl_gamma 4 log_k -17.1754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(OH)5- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(OH)5- +# Enthalpy of formation: -0 kcal/mol Hf+4 + H2O = HfOH+3 + H+ -llnl_gamma 5 log_k -0.2951 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfOH+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfOH+3 +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Hg+2 = Hg(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -2.6242 - -delta_H -30.334 kJ/mol # Calculated enthalpy of reaction Hg(Acetate)2 -# Enthalpy of formation: -198.78 kcal/mol + -delta_H -30.334 kJ/mol # Calculated enthalpy of reaction Hg(Acetate)2 +# Enthalpy of formation: -198.78 kcal/mol -analytic -2.1959e+1 2.7774e-3 -3.25e+3 7.7351e+0 9.1508e+5 # -Range: 0-300 3 HAcetate + Hg+2 = Hg(Acetate)3- + 3 H+ -llnl_gamma 4 log_k -4.3247 - -delta_H -59.7057 kJ/mol # Calculated enthalpy of reaction Hg(Acetate)3- -# Enthalpy of formation: -321.9 kcal/mol + -delta_H -59.7057 kJ/mol # Calculated enthalpy of reaction Hg(Acetate)3- +# Enthalpy of formation: -321.9 kcal/mol -analytic 2.1656e+1 -2.0392e-3 -1.2866e+4 -3.2932e+0 2.3073e+6 # -Range: 0-300 Hg+2 + HAcetate = HgAcetate+ + H+ -llnl_gamma 4 log_k -0.4691 - -delta_H -16.5686 kJ/mol # Calculated enthalpy of reaction HgAcetate+ -# Enthalpy of formation: -79.39 kcal/mol + -delta_H -16.5686 kJ/mol # Calculated enthalpy of reaction HgAcetate+ +# Enthalpy of formation: -79.39 kcal/mol -analytic -1.6355e+1 1.9446e-3 -2.6676e+2 5.1978e+0 2.9805e+5 # -Range: 0-300 2 HAcetate + Ho+3 = Ho(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -4.9844 - -delta_H -28.1583 kJ/mol # Calculated enthalpy of reaction Ho(Acetate)2+ -# Enthalpy of formation: -407.93 kcal/mol + -delta_H -28.1583 kJ/mol # Calculated enthalpy of reaction Ho(Acetate)2+ +# Enthalpy of formation: -407.93 kcal/mol -analytic -2.7925e+1 2.5599e-3 -1.4779e+3 8.0785e+0 6.3736e+5 # -Range: 0-300 3 HAcetate + Ho+3 = Ho(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -8.3783 - -delta_H -47.5721 kJ/mol # Calculated enthalpy of reaction Ho(Acetate)3 -# Enthalpy of formation: -528.67 kcal/mol + -delta_H -47.5721 kJ/mol # Calculated enthalpy of reaction Ho(Acetate)3 +# Enthalpy of formation: -528.67 kcal/mol -analytic -6.5547e+1 -1.1963e-4 -1.8887e+2 1.9796e+1 7.9041e+5 # -Range: 0-300 2 HCO3- + Ho+3 = Ho(CO3)2- + 2 H+ -llnl_gamma 4 log_k -7.3576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Ho+3 = Ho(HPO4)2- -llnl_gamma 4 log_k 9.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(HPO4)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Ho+3 = Ho(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -3.3437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Ho+3 = Ho(SO4)2- -llnl_gamma 4 log_k 4.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(SO4)2- +# Enthalpy of formation: -0 kcal/mol Ho+3 + HAcetate = HoAcetate+2 + H+ -llnl_gamma 4.5 log_k -2.1184 - -delta_H -14.3093 kJ/mol # Calculated enthalpy of reaction HoAcetate+2 -# Enthalpy of formation: -288.52 kcal/mol + -delta_H -14.3093 kJ/mol # Calculated enthalpy of reaction HoAcetate+2 +# Enthalpy of formation: -288.52 kcal/mol -analytic -1.8265e+1 1.0753e-3 -6.0695e+2 5.7211e+0 3.3055e+5 # -Range: 0-300 Ho+3 + HCO3- = HoCO3+ + H+ -llnl_gamma 4 log_k -2.2591 - -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction HoCO3+ -# Enthalpy of formation: -312.6 kcal/mol + -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction HoCO3+ +# Enthalpy of formation: -312.6 kcal/mol -analytic 2.3773e+2 5.4448e-2 -6.9916e+3 -9.4063e+1 -1.0917e+2 # -Range: 0-300 Ho+3 + Cl- = HoCl+2 -llnl_gamma 4.5 log_k 0.2353 - -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction HoCl+2 -# Enthalpy of formation: -205.6 kcal/mol + -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction HoCl+2 +# Enthalpy of formation: -205.6 kcal/mol -analytic 7.3746e+1 3.7733e-2 -1.5627e+3 -3.2126e+1 -2.4407e+1 # -Range: 0-300 2 Cl- + Ho+3 = HoCl2+ -llnl_gamma 4 log_k -0.0425 - -delta_H 17.8489 kJ/mol # Calculated enthalpy of reaction HoCl2+ -# Enthalpy of formation: -244.6 kcal/mol + -delta_H 17.8489 kJ/mol # Calculated enthalpy of reaction HoCl2+ +# Enthalpy of formation: -244.6 kcal/mol -analytic 1.9928e+2 7.9025e-2 -4.7775e+3 -8.3582e+1 -7.4607e+1 # -Range: 0-300 3 Cl- + Ho+3 = HoCl3 -llnl_gamma 3 log_k -0.4669 - -delta_H 10.0374 kJ/mol # Calculated enthalpy of reaction HoCl3 -# Enthalpy of formation: -286.4 kcal/mol + -delta_H 10.0374 kJ/mol # Calculated enthalpy of reaction HoCl3 +# Enthalpy of formation: -286.4 kcal/mol -analytic 3.8608e+2 1.2638e-1 -9.8339e+3 -1.5809e+2 -1.5356e+2 # -Range: 0-300 4 Cl- + Ho+3 = HoCl4- -llnl_gamma 4 log_k -0.8913 - -delta_H -12.4181 kJ/mol # Calculated enthalpy of reaction HoCl4- -# Enthalpy of formation: -331.7 kcal/mol + -delta_H -12.4181 kJ/mol # Calculated enthalpy of reaction HoCl4- +# Enthalpy of formation: -331.7 kcal/mol -analytic 4.2179e+2 1.2576e-1 -1.0495e+4 -1.7172e+2 -1.6388e+2 # -Range: 0-300 Ho+3 + F- = HoF+2 -llnl_gamma 4.5 log_k 4.7352 - -delta_H 22.3844 kJ/mol # Calculated enthalpy of reaction HoF+2 -# Enthalpy of formation: -243.8 kcal/mol + -delta_H 22.3844 kJ/mol # Calculated enthalpy of reaction HoF+2 +# Enthalpy of formation: -243.8 kcal/mol -analytic 9.5294e+1 4.1702e-2 -2.446e+3 -3.8296e+1 -3.8195e+1 # -Range: 0-300 2 F- + Ho+3 = HoF2+ -llnl_gamma 4 log_k 8.2976 - -delta_H 11.7152 kJ/mol # Calculated enthalpy of reaction HoF2+ -# Enthalpy of formation: -326.5 kcal/mol + -delta_H 11.7152 kJ/mol # Calculated enthalpy of reaction HoF2+ +# Enthalpy of formation: -326.5 kcal/mol -analytic 2.233e+2 8.3497e-2 -4.9105e+3 -9.0272e+1 -7.669e+1 # -Range: 0-300 3 F- + Ho+3 = HoF3 -llnl_gamma 3 log_k 10.9071 - -delta_H -12.7612 kJ/mol # Calculated enthalpy of reaction HoF3 -# Enthalpy of formation: -412.5 kcal/mol + -delta_H -12.7612 kJ/mol # Calculated enthalpy of reaction HoF3 +# Enthalpy of formation: -412.5 kcal/mol -analytic 4.1587e+2 1.3308e-1 -9.2193e+3 -1.6717e+2 -1.4398e+2 # -Range: 0-300 4 F- + Ho+3 = HoF4- -llnl_gamma 4 log_k 13.0035 - -delta_H -57.7392 kJ/mol # Calculated enthalpy of reaction HoF4- -# Enthalpy of formation: -503.4 kcal/mol + -delta_H -57.7392 kJ/mol # Calculated enthalpy of reaction HoF4- +# Enthalpy of formation: -503.4 kcal/mol -analytic 4.4575e+2 1.3182e-1 -8.5485e+3 -1.7916e+2 -1.3352e+2 # -Range: 0-300 Ho+3 + HPO4-2 + H+ = HoH2PO4+2 -llnl_gamma 4.5 log_k 9.4484 - -delta_H -17.9284 kJ/mol # Calculated enthalpy of reaction HoH2PO4+2 -# Enthalpy of formation: -482.1 kcal/mol + -delta_H -17.9284 kJ/mol # Calculated enthalpy of reaction HoH2PO4+2 +# Enthalpy of formation: -482.1 kcal/mol -analytic 1.0273e+2 6.3161e-2 5.516e+2 -4.6035e+1 8.5766e+0 # -Range: 0-300 Ho+3 + HCO3- = HoHCO3+2 -llnl_gamma 4.5 log_k 1.6991 - -delta_H 7.52283 kJ/mol # Calculated enthalpy of reaction HoHCO3+2 -# Enthalpy of formation: -332.1 kcal/mol + -delta_H 7.52283 kJ/mol # Calculated enthalpy of reaction HoHCO3+2 +# Enthalpy of formation: -332.1 kcal/mol -analytic 3.342e+1 3.1394e-2 1.9804e+2 -1.6859e+1 3.0801e+0 # -Range: 0-300 Ho+3 + HPO4-2 = HoHPO4+ -llnl_gamma 4 log_k 5.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction HoHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HoHPO4+ +# Enthalpy of formation: -0 kcal/mol NO3- + Ho+3 = HoNO3+2 -llnl_gamma 4.5 log_k 0.2148 - -delta_H -30.0035 kJ/mol # Calculated enthalpy of reaction HoNO3+2 -# Enthalpy of formation: -225.6 kcal/mol + -delta_H -30.0035 kJ/mol # Calculated enthalpy of reaction HoNO3+2 +# Enthalpy of formation: -225.6 kcal/mol -analytic 1.1069e+1 2.5142e-2 2.3943e+3 -1.065e+1 3.7358e+1 # -Range: 0-300 Ho+3 + H2O = HoO+ + 2 H+ -llnl_gamma 4 log_k -16.0438 - -delta_H 108.437 kJ/mol # Calculated enthalpy of reaction HoO+ -# Enthalpy of formation: -211.4 kcal/mol + -delta_H 108.437 kJ/mol # Calculated enthalpy of reaction HoO+ +# Enthalpy of formation: -211.4 kcal/mol -analytic 1.9152e+2 3.0627e-2 -1.3817e+4 -6.8846e+1 -2.1565e+2 # -Range: 0-300 2 H2O + Ho+3 = HoO2- + 4 H+ -llnl_gamma 4 log_k -33.4804 - -delta_H 274.613 kJ/mol # Calculated enthalpy of reaction HoO2- -# Enthalpy of formation: -240 kcal/mol + -delta_H 274.613 kJ/mol # Calculated enthalpy of reaction HoO2- +# Enthalpy of formation: -240 kcal/mol -analytic 1.7987e+2 1.2731e-2 -2.0007e+4 -6.0642e+1 -3.1224e+2 # -Range: 0-300 2 H2O + Ho+3 = HoO2H + 3 H+ -llnl_gamma 3 log_k -24.5377 - -delta_H 216.873 kJ/mol # Calculated enthalpy of reaction HoO2H -# Enthalpy of formation: -253.8 kcal/mol + -delta_H 216.873 kJ/mol # Calculated enthalpy of reaction HoO2H +# Enthalpy of formation: -253.8 kcal/mol -analytic 3.3877e+2 4.6282e-2 -2.2925e+4 -1.2133e+2 -3.5782e+2 # -Range: 0-300 Ho+3 + H2O = HoOH+2 + H+ -llnl_gamma 4.5 log_k -7.7609 - -delta_H 76.6383 kJ/mol # Calculated enthalpy of reaction HoOH+2 -# Enthalpy of formation: -219 kcal/mol + -delta_H 76.6383 kJ/mol # Calculated enthalpy of reaction HoOH+2 +# Enthalpy of formation: -219 kcal/mol -analytic 7.1326e+1 1.2657e-2 -6.2461e+3 -2.5018e+1 -9.7485e+1 # -Range: 0-300 Ho+3 + HPO4-2 = HoPO4 + H+ -llnl_gamma 3 log_k 0.2782 - -delta_H 0 # Not possible to calculate enthalpy of reaction HoPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HoPO4 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Ho+3 = HoSO4+ -llnl_gamma 4 log_k 3.5697 - -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction HoSO4+ -# Enthalpy of formation: -381.5 kcal/mol + -delta_H 20.5016 kJ/mol # Calculated enthalpy of reaction HoSO4+ +# Enthalpy of formation: -381.5 kcal/mol -analytic 3.0709e+2 8.6579e-2 -9.0693e+3 -1.2078e+2 -1.4161e+2 # -Range: 0-300 2 HAcetate + K+ = K(Acetate)2- + 2 H+ -llnl_gamma 4 log_k -10.2914 - -delta_H -1.79912 kJ/mol # Calculated enthalpy of reaction K(Acetate)2- -# Enthalpy of formation: -292.9 kcal/mol + -delta_H -1.79912 kJ/mol # Calculated enthalpy of reaction K(Acetate)2- +# Enthalpy of formation: -292.9 kcal/mol -analytic -2.3036e+2 -4.6369e-2 7.0305e+3 8.4997e+1 1.0977e+2 # -Range: 0-300 K+ + Br- = KBr -llnl_gamma 3 log_k -1.7372 - -delta_H 12.5102 kJ/mol # Calculated enthalpy of reaction KBr -# Enthalpy of formation: -86.32 kcal/mol + -delta_H 12.5102 kJ/mol # Calculated enthalpy of reaction KBr +# Enthalpy of formation: -86.32 kcal/mol -analytic 1.132e+2 3.4227e-2 -3.6401e+3 -4.5633e+1 -5.6833e+1 # -Range: 0-300 K+ + HAcetate = KAcetate + H+ -llnl_gamma 3 log_k -5.0211 - -delta_H 4.8116 kJ/mol # Calculated enthalpy of reaction KAcetate -# Enthalpy of formation: -175.22 kcal/mol + -delta_H 4.8116 kJ/mol # Calculated enthalpy of reaction KAcetate +# Enthalpy of formation: -175.22 kcal/mol -analytic -2.6676e-1 -3.2675e-3 -1.7143e+3 -7.1907e-3 1.7726e+5 # -Range: 0-300 K+ + Cl- = KCl -llnl_gamma 3 log_k -1.4946 - -delta_H 14.1963 kJ/mol # Calculated enthalpy of reaction KCl -# Enthalpy of formation: -96.81 kcal/mol + -delta_H 14.1963 kJ/mol # Calculated enthalpy of reaction KCl +# Enthalpy of formation: -96.81 kcal/mol -analytic 1.365e+2 3.8405e-2 -4.4014e+3 -5.4421e+1 -6.8721e+1 # -Range: 0-300 K+ + HPO4-2 = KHPO4- -llnl_gamma 4 log_k 0.78 - -delta_H 0 # Not possible to calculate enthalpy of reaction KHPO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction KHPO4- +# Enthalpy of formation: -0 kcal/mol SO4-2 + K+ + H+ = KHSO4 -llnl_gamma 3 log_k 0.8136 - -delta_H 29.8319 kJ/mol # Calculated enthalpy of reaction KHSO4 -# Enthalpy of formation: -270.54 kcal/mol + -delta_H 29.8319 kJ/mol # Calculated enthalpy of reaction KHSO4 +# Enthalpy of formation: -270.54 kcal/mol -analytic 1.262e+2 5.7349e-2 -3.367e+3 -5.3003e+1 -5.2576e+1 # -Range: 0-300 K+ + I- = KI -llnl_gamma 3 log_k -1.598 - -delta_H 9.16296 kJ/mol # Calculated enthalpy of reaction KI -# Enthalpy of formation: -71.68 kcal/mol + -delta_H 9.16296 kJ/mol # Calculated enthalpy of reaction KI +# Enthalpy of formation: -71.68 kcal/mol -analytic 1.0816e+2 3.3683e-2 -3.2143e+3 -4.4054e+1 -5.0187e+1 # -Range: 0-300 K+ + H2O = KOH + H+ -llnl_gamma 3 log_k -14.46 - -delta_H 0 # Not possible to calculate enthalpy of reaction KOH -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction KOH +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + K+ = KP2O7-3 + H2O -llnl_gamma 4 log_k -1.4286 - -delta_H 34.1393 kJ/mol # Calculated enthalpy of reaction KP2O7-3 -# Enthalpy of formation: -2516.36 kJ/mol + -delta_H 34.1393 kJ/mol # Calculated enthalpy of reaction KP2O7-3 +# Enthalpy of formation: -2516.36 kJ/mol -analytic 4.193e+2 1.4676e-1 -1.1169e+4 -1.7255e+2 -1.7441e+2 # -Range: 0-300 SO4-2 + K+ = KSO4- -llnl_gamma 4 log_k 0.8796 - -delta_H 2.88696 kJ/mol # Calculated enthalpy of reaction KSO4- -# Enthalpy of formation: -276.98 kcal/mol + -delta_H 2.88696 kJ/mol # Calculated enthalpy of reaction KSO4- +# Enthalpy of formation: -276.98 kcal/mol -analytic 9.9073e+1 3.7817e-2 -2.1628e+3 -4.1297e+1 -3.3779e+1 # -Range: 0-300 2 HAcetate + La+3 = La(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -5.3949 - -delta_H -23.1375 kJ/mol # Calculated enthalpy of reaction La(Acetate)2+ -# Enthalpy of formation: -407.33 kcal/mol + -delta_H -23.1375 kJ/mol # Calculated enthalpy of reaction La(Acetate)2+ +# Enthalpy of formation: -407.33 kcal/mol -analytic -1.2805e+1 2.8482e-3 -2.2521e+3 2.9108e+0 6.1659e+5 # -Range: 0-300 3 HAcetate + La+3 = La(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -8.5982 - -delta_H -41.9237 kJ/mol # Calculated enthalpy of reaction La(Acetate)3 -# Enthalpy of formation: -527.92 kcal/mol + -delta_H -41.9237 kJ/mol # Calculated enthalpy of reaction La(Acetate)3 +# Enthalpy of formation: -527.92 kcal/mol -analytic -3.3456e+1 1.2371e-3 -1.5978e+3 8.6343e+0 7.5717e+5 # -Range: 0-300 2 HCO3- + La+3 = La(CO3)2- + 2 H+ -llnl_gamma 4 log_k -8.8576 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction La(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + La+3 = La(HPO4)2- -llnl_gamma 4 log_k 8.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction La(HPO4)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + La+3 = La(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -7.0437 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction La(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + La+3 = La(SO4)2- -llnl_gamma 4 log_k 5.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction La(SO4)2- +# Enthalpy of formation: -0 kcal/mol 2 La+3 + 2 H2O = La2(OH)2+4 + 2 H+ -llnl_gamma 5.5 log_k -22.9902 - -delta_H 0 # Not possible to calculate enthalpy of reaction La2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction La2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol 9 H2O + 5 La+3 = La5(OH)9+6 + 9 H+ -llnl_gamma 6 log_k -71.1557 - -delta_H 0 # Not possible to calculate enthalpy of reaction La5(OH)9+6 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction La5(OH)9+6 +# Enthalpy of formation: -0 kcal/mol La+3 + HAcetate = LaAcetate+2 + H+ -llnl_gamma 4.5 log_k -2.2063 - -delta_H -12.5938 kJ/mol # Calculated enthalpy of reaction LaAcetate+2 -# Enthalpy of formation: -288.71 kcal/mol + -delta_H -12.5938 kJ/mol # Calculated enthalpy of reaction LaAcetate+2 +# Enthalpy of formation: -288.71 kcal/mol -analytic -1.0803e+1 8.5239e-4 -1.1143e+3 3.3273e+0 3.4305e+5 # -Range: 0-300 La+3 + HCO3- = LaCO3+ + H+ -llnl_gamma 4 log_k -3.212 - -delta_H 89.5292 kJ/mol # Calculated enthalpy of reaction LaCO3+ -# Enthalpy of formation: -313.1 kcal/mol + -delta_H 89.5292 kJ/mol # Calculated enthalpy of reaction LaCO3+ +# Enthalpy of formation: -313.1 kcal/mol -analytic 2.3046e+2 5.2419e-2 -7.1063e+3 -9.1109e+1 -1.1095e+2 # -Range: 0-300 La+3 + Cl- = LaCl+2 -llnl_gamma 4.5 log_k 0.3086 - -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction LaCl+2 -# Enthalpy of formation: -206.1 kcal/mol + -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction LaCl+2 +# Enthalpy of formation: -206.1 kcal/mol -analytic 7.5802e+1 3.6641e-2 -1.7234e+3 -3.2578e+1 -2.6914e+1 # -Range: 0-300 2 Cl- + La+3 = LaCl2+ -llnl_gamma 4 log_k -0.0425 - -delta_H 19.1041 kJ/mol # Calculated enthalpy of reaction LaCl2+ -# Enthalpy of formation: -244.9 kcal/mol + -delta_H 19.1041 kJ/mol # Calculated enthalpy of reaction LaCl2+ +# Enthalpy of formation: -244.9 kcal/mol -analytic 2.1632e+2 7.9274e-2 -5.5883e+3 -8.94e+1 -8.7264e+1 # -Range: 0-300 3 Cl- + La+3 = LaCl3 -llnl_gamma 3 log_k -0.3936 - -delta_H 12.5478 kJ/mol # Calculated enthalpy of reaction LaCl3 -# Enthalpy of formation: -286.4 kcal/mol + -delta_H 12.5478 kJ/mol # Calculated enthalpy of reaction LaCl3 +# Enthalpy of formation: -286.4 kcal/mol -analytic 4.221e+2 1.2792e-1 -1.1444e+4 -1.7062e+2 -1.7869e+2 # -Range: 0-300 4 Cl- + La+3 = LaCl4- -llnl_gamma 4 log_k -0.818 - -delta_H -7.81571 kJ/mol # Calculated enthalpy of reaction LaCl4- -# Enthalpy of formation: -331.2 kcal/mol + -delta_H -7.81571 kJ/mol # Calculated enthalpy of reaction LaCl4- +# Enthalpy of formation: -331.2 kcal/mol -analytic 4.8802e+2 1.3053e-1 -1.3344e+4 -1.9518e+2 -2.0836e+2 # -Range: 0-300 La+3 + F- = LaF+2 -llnl_gamma 4.5 log_k 3.8556 - -delta_H 26.5684 kJ/mol # Calculated enthalpy of reaction LaF+2 -# Enthalpy of formation: -243.4 kcal/mol + -delta_H 26.5684 kJ/mol # Calculated enthalpy of reaction LaF+2 +# Enthalpy of formation: -243.4 kcal/mol -analytic 9.6765e+1 4.0513e-2 -2.8042e+3 -3.8617e+1 -4.3785e+1 # -Range: 0-300 2 F- + La+3 = LaF2+ -llnl_gamma 4 log_k 6.685 - -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction LaF2+ -# Enthalpy of formation: -325.2 kcal/mol + -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction LaF2+ +# Enthalpy of formation: -325.2 kcal/mol -analytic 2.3923e+2 8.3559e-2 -6.0536e+3 -9.5821e+1 -9.4531e+1 # -Range: 0-300 3 F- + La+3 = LaF3 -llnl_gamma 3 log_k 8.7081 - -delta_H -0.6276 kJ/mol # Calculated enthalpy of reaction LaF3 -# Enthalpy of formation: -410.2 kcal/mol + -delta_H -0.6276 kJ/mol # Calculated enthalpy of reaction LaF3 +# Enthalpy of formation: -410.2 kcal/mol -analytic 4.5123e+2 1.346e-1 -1.1334e+4 -1.7967e+2 -1.7699e+2 # -Range: 0-300 4 F- + La+3 = LaF4- -llnl_gamma 4 log_k 10.3647 - -delta_H -41.4216 kJ/mol # Calculated enthalpy of reaction LaF4- -# Enthalpy of formation: -500.1 kcal/mol + -delta_H -41.4216 kJ/mol # Calculated enthalpy of reaction LaF4- +# Enthalpy of formation: -500.1 kcal/mol -analytic 5.0747e+2 1.3563e-1 -1.1903e+4 -2.0108e+2 -1.8588e+2 # -Range: 0-300 La+3 + HPO4-2 + H+ = LaH2PO4+2 -llnl_gamma 4.5 log_k 9.7417 - -delta_H -18.3468 kJ/mol # Calculated enthalpy of reaction LaH2PO4+2 -# Enthalpy of formation: -482.8 kcal/mol + -delta_H -18.3468 kJ/mol # Calculated enthalpy of reaction LaH2PO4+2 +# Enthalpy of formation: -482.8 kcal/mol -analytic 1.053e+2 6.2177e-2 4.0686e+2 -4.6642e+1 6.3174e+0 # -Range: 0-300 La+3 + HCO3- = LaHCO3+2 -llnl_gamma 4.5 log_k 1.9923 - -delta_H 6.68603 kJ/mol # Calculated enthalpy of reaction LaHCO3+2 -# Enthalpy of formation: -332.9 kcal/mol + -delta_H 6.68603 kJ/mol # Calculated enthalpy of reaction LaHCO3+2 +# Enthalpy of formation: -332.9 kcal/mol -analytic 3.6032e+1 3.0405e-2 5.1281e+1 -1.7478e+1 7.8933e-1 # -Range: 0-300 La+3 + HPO4-2 = LaHPO4+ -llnl_gamma 4 log_k 5.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction LaHPO4+ +# Enthalpy of formation: -0 kcal/mol NO3- + La+3 = LaNO3+2 -llnl_gamma 4.5 log_k 0.5813 - -delta_H -29.1667 kJ/mol # Calculated enthalpy of reaction LaNO3+2 -# Enthalpy of formation: -226 kcal/mol + -delta_H -29.1667 kJ/mol # Calculated enthalpy of reaction LaNO3+2 +# Enthalpy of formation: -226 kcal/mol -analytic 1.4136e+1 2.4247e-2 2.1998e+3 -1.1371e+1 3.4322e+1 # -Range: 0-300 La+3 + H2O = LaO+ + 2 H+ -llnl_gamma 4 log_k -18.1696 - -delta_H 121.407 kJ/mol # Calculated enthalpy of reaction LaO+ -# Enthalpy of formation: -208.9 kcal/mol + -delta_H 121.407 kJ/mol # Calculated enthalpy of reaction LaO+ +# Enthalpy of formation: -208.9 kcal/mol -analytic 1.8691e+2 2.9275e-2 -1.4385e+4 -6.6906e+1 -2.2452e+2 # -Range: 0-300 2 H2O + La+3 = LaO2- + 4 H+ -llnl_gamma 4 log_k -40.8105 - -delta_H 318.126 kJ/mol # Calculated enthalpy of reaction LaO2- -# Enthalpy of formation: -230.2 kcal/mol + -delta_H 318.126 kJ/mol # Calculated enthalpy of reaction LaO2- +# Enthalpy of formation: -230.2 kcal/mol -analytic 1.8374e+2 1.2355e-2 -2.2472e+4 -6.1779e+1 -3.507e+2 # -Range: 0-300 2 H2O + La+3 = LaO2H + 3 H+ -llnl_gamma 3 log_k -27.9095 - -delta_H 237.375 kJ/mol # Calculated enthalpy of reaction LaO2H -# Enthalpy of formation: -249.5 kcal/mol + -delta_H 237.375 kJ/mol # Calculated enthalpy of reaction LaO2H +# Enthalpy of formation: -249.5 kcal/mol -analytic 3.3862e+2 4.4808e-2 -2.4083e+4 -1.2088e+2 -3.7589e+2 # -Range: 0-300 La+3 + H2O = LaOH+2 + H+ -llnl_gamma 4.5 log_k -8.6405 - -delta_H 82.4959 kJ/mol # Calculated enthalpy of reaction LaOH+2 -# Enthalpy of formation: -218.2 kcal/mol + -delta_H 82.4959 kJ/mol # Calculated enthalpy of reaction LaOH+2 +# Enthalpy of formation: -218.2 kcal/mol -analytic 6.5529e+1 1.1104e-2 -6.392e+3 -2.2646e+1 -9.976e+1 # -Range: 0-300 La+3 + HPO4-2 = LaPO4 + H+ -llnl_gamma 3 log_k -1.3618 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction LaPO4 +# Enthalpy of formation: -0 kcal/mol SO4-2 + La+3 = LaSO4+ -llnl_gamma 4 log_k 3.643 - -delta_H 18.4096 kJ/mol # Calculated enthalpy of reaction LaSO4+ -# Enthalpy of formation: -382.6 kcal/mol + -delta_H 18.4096 kJ/mol # Calculated enthalpy of reaction LaSO4+ +# Enthalpy of formation: -382.6 kcal/mol -analytic 3.0657e+2 8.4093e-2 -9.1074e+3 -1.2019e+2 -1.422e+2 # -Range: 0-300 2 HAcetate + Li+ = Li(Acetate)2- + 2 H+ -llnl_gamma 4 log_k -9.2674 - -delta_H -24.7609 kJ/mol # Calculated enthalpy of reaction Li(Acetate)2- -# Enthalpy of formation: -304.67 kcal/mol + -delta_H -24.7609 kJ/mol # Calculated enthalpy of reaction Li(Acetate)2- +# Enthalpy of formation: -304.67 kcal/mol -analytic -3.3702e+2 -6.0849e-2 1.1952e+4 1.2359e+2 1.8659e+2 # -Range: 0-300 Li+ + HAcetate = LiAcetate + H+ -llnl_gamma 3 log_k -4.4589 - -delta_H -6.64419 kJ/mol # Calculated enthalpy of reaction LiAcetate -# Enthalpy of formation: -184.24 kcal/mol + -delta_H -6.64419 kJ/mol # Calculated enthalpy of reaction LiAcetate +# Enthalpy of formation: -184.24 kcal/mol -analytic -3.8391e+0 -7.3938e-4 -1.0829e+3 3.4134e-1 2.1318e+5 # -Range: 0-300 Li+ + Cl- = LiCl -llnl_gamma 3 log_k -1.5115 - -delta_H 3.36812 kJ/mol # Calculated enthalpy of reaction LiCl -# Enthalpy of formation: -105.68 kcal/mol + -delta_H 3.36812 kJ/mol # Calculated enthalpy of reaction LiCl +# Enthalpy of formation: -105.68 kcal/mol -analytic 1.2484e+2 4.1941e-2 -3.2439e+3 -5.1708e+1 -5.0655e+1 # -Range: 0-300 Li+ + H2O = LiOH + H+ -llnl_gamma 3 log_k -13.64 - -delta_H 0 # Not possible to calculate enthalpy of reaction LiOH -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction LiOH +# Enthalpy of formation: -0 kcal/mol SO4-2 + Li+ = LiSO4- -llnl_gamma 4 log_k 0.77 - -delta_H 0 # Not possible to calculate enthalpy of reaction LiSO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction LiSO4- +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Lu+3 = Lu(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -4.9625 - -delta_H -38.5346 kJ/mol # Calculated enthalpy of reaction Lu(Acetate)2+ -# Enthalpy of formation: -409.31 kcal/mol + -delta_H -38.5346 kJ/mol # Calculated enthalpy of reaction Lu(Acetate)2+ +# Enthalpy of formation: -409.31 kcal/mol -analytic -2.7341e+1 2.5097e-3 -1.4157e+3 7.5026e+0 6.9682e+5 # -Range: 0-300 3 HAcetate + Lu+3 = Lu(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -8.3489 - -delta_H -64.5173 kJ/mol # Calculated enthalpy of reaction Lu(Acetate)3 -# Enthalpy of formation: -531.62 kcal/mol + -delta_H -64.5173 kJ/mol # Calculated enthalpy of reaction Lu(Acetate)3 +# Enthalpy of formation: -531.62 kcal/mol -analytic -5.0225e+1 3.3508e-3 -6.2901e+2 1.3262e+1 9.0737e+5 # -Range: 0-300 2 HCO3- + Lu+3 = Lu(CO3)2- + 2 H+ -llnl_gamma 4 log_k -6.8576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Lu+3 = Lu(HPO4)2- -llnl_gamma 4 log_k 10.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(HPO4)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Lu+3 = Lu(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -2.7437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Lu+3 = Lu(SO4)2- -llnl_gamma 4 log_k 5.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(SO4)2- +# Enthalpy of formation: -0 kcal/mol Lu+3 + HAcetate = LuAcetate+2 + H+ -llnl_gamma 4.5 log_k -2.1037 - -delta_H -18.9703 kJ/mol # Calculated enthalpy of reaction LuAcetate+2 -# Enthalpy of formation: -288.534 kcal/mol + -delta_H -18.9703 kJ/mol # Calculated enthalpy of reaction LuAcetate+2 +# Enthalpy of formation: -288.534 kcal/mol -analytic -6.5982e+0 2.4512e-3 -1.2666e+3 1.4226e+0 4.0045e+5 # -Range: 0-300 Lu+3 + HCO3- = LuCO3+ + H+ -llnl_gamma 4 log_k -2.0392 - -delta_H 78.2324 kJ/mol # Calculated enthalpy of reaction LuCO3+ -# Enthalpy of formation: -314.1 kcal/mol + -delta_H 78.2324 kJ/mol # Calculated enthalpy of reaction LuCO3+ +# Enthalpy of formation: -314.1 kcal/mol -analytic 2.384e+2 5.4774e-2 -6.8317e+3 -9.45e+1 -1.0667e+2 # -Range: 0-300 Lu+3 + Cl- = LuCl+2 -llnl_gamma 4.5 log_k -0.0579 - -delta_H 13.5269 kJ/mol # Calculated enthalpy of reaction LuCl+2 -# Enthalpy of formation: -204.6 kcal/mol + -delta_H 13.5269 kJ/mol # Calculated enthalpy of reaction LuCl+2 +# Enthalpy of formation: -204.6 kcal/mol -analytic 6.6161e+1 3.6521e-2 -1.2938e+3 -2.9397e+1 -2.0209e+1 # -Range: 0-300 2 Cl- + Lu+3 = LuCl2+ -llnl_gamma 4 log_k -0.6289 - -delta_H 15.7569 kJ/mol # Calculated enthalpy of reaction LuCl2+ -# Enthalpy of formation: -244 kcal/mol + -delta_H 15.7569 kJ/mol # Calculated enthalpy of reaction LuCl2+ +# Enthalpy of formation: -244 kcal/mol -analytic 1.8608e+2 7.7283e-2 -4.2349e+3 -7.9007e+1 -6.6137e+1 # -Range: 0-300 3 Cl- + Lu+3 = LuCl3 -llnl_gamma 3 log_k -1.1999 - -delta_H 3.56895 kJ/mol # Calculated enthalpy of reaction LuCl3 -# Enthalpy of formation: -286.846 kcal/mol + -delta_H 3.56895 kJ/mol # Calculated enthalpy of reaction LuCl3 +# Enthalpy of formation: -286.846 kcal/mol -analytic 3.706e+2 1.2564e-1 -8.9374e+3 -1.5325e+2 -1.3957e+2 # -Range: 0-300 4 Cl- + Lu+3 = LuCl4- -llnl_gamma 4 log_k -1.771 - -delta_H -25.8069 kJ/mol # Calculated enthalpy of reaction LuCl4- -# Enthalpy of formation: -333.8 kcal/mol + -delta_H -25.8069 kJ/mol # Calculated enthalpy of reaction LuCl4- +# Enthalpy of formation: -333.8 kcal/mol -analytic 3.8876e+2 1.22e-1 -8.6965e+3 -1.6071e+2 -1.3582e+2 # -Range: 0-300 Lu+3 + F- = LuF+2 -llnl_gamma 4.5 log_k 4.8085 - -delta_H 25.7316 kJ/mol # Calculated enthalpy of reaction LuF+2 -# Enthalpy of formation: -241.9 kcal/mol + -delta_H 25.7316 kJ/mol # Calculated enthalpy of reaction LuF+2 +# Enthalpy of formation: -241.9 kcal/mol -analytic 9.0303e+1 4.0963e-2 -2.414e+3 -3.6203e+1 -3.7694e+1 # -Range: 0-300 2 F- + Lu+3 = LuF2+ -llnl_gamma 4 log_k 8.4442 - -delta_H 14.2256 kJ/mol # Calculated enthalpy of reaction LuF2+ -# Enthalpy of formation: -324.8 kcal/mol + -delta_H 14.2256 kJ/mol # Calculated enthalpy of reaction LuF2+ +# Enthalpy of formation: -324.8 kcal/mol -analytic 2.144e+2 8.2559e-2 -4.7009e+3 -8.679e+1 -7.3417e+1 # -Range: 0-300 3 F- + Lu+3 = LuF3 -llnl_gamma 3 log_k 11.0999 - -delta_H -12.3428 kJ/mol # Calculated enthalpy of reaction LuF3 -# Enthalpy of formation: -411.3 kcal/mol + -delta_H -12.3428 kJ/mol # Calculated enthalpy of reaction LuF3 +# Enthalpy of formation: -411.3 kcal/mol -analytic 4.0247e+2 1.3233e-1 -8.6775e+3 -1.6232e+2 -1.3552e+2 # -Range: 0-300 4 F- + Lu+3 = LuF4- -llnl_gamma 4 log_k 13.2967 - -delta_H -64.0152 kJ/mol # Calculated enthalpy of reaction LuF4- -# Enthalpy of formation: -503.8 kcal/mol + -delta_H -64.0152 kJ/mol # Calculated enthalpy of reaction LuF4- +# Enthalpy of formation: -503.8 kcal/mol -analytic 4.2541e+2 1.307e-1 -7.4276e+3 -1.722e+2 -1.1603e+2 # -Range: 0-300 Lu+3 + HPO4-2 + H+ = LuH2PO4+2 -llnl_gamma 4.5 log_k 9.595 - -delta_H -23.786 kJ/mol # Calculated enthalpy of reaction LuH2PO4+2 -# Enthalpy of formation: -482.4 kcal/mol + -delta_H -23.786 kJ/mol # Calculated enthalpy of reaction LuH2PO4+2 +# Enthalpy of formation: -482.4 kcal/mol -analytic 9.4223e+1 6.1797e-2 1.1102e+3 -4.3131e+1 1.7296e+1 # -Range: 0-300 Lu+3 + HCO3- = LuHCO3+2 -llnl_gamma 4.5 log_k 1.919 - -delta_H 1.66523 kJ/mol # Calculated enthalpy of reaction LuHCO3+2 -# Enthalpy of formation: -332.4 kcal/mol + -delta_H 1.66523 kJ/mol # Calculated enthalpy of reaction LuHCO3+2 +# Enthalpy of formation: -332.4 kcal/mol -analytic 2.3187e+1 2.9604e-2 8.1268e+2 -1.3252e+1 1.2674e+1 # -Range: 0-300 Lu+3 + HPO4-2 = LuHPO4+ -llnl_gamma 4 log_k 6 - -delta_H 0 # Not possible to calculate enthalpy of reaction LuHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction LuHPO4+ +# Enthalpy of formation: -0 kcal/mol NO3- + Lu+3 = LuNO3+2 -llnl_gamma 4.5 log_k 0.5813 - -delta_H -41.7187 kJ/mol # Calculated enthalpy of reaction LuNO3+2 -# Enthalpy of formation: -227.3 kcal/mol + -delta_H -41.7187 kJ/mol # Calculated enthalpy of reaction LuNO3+2 +# Enthalpy of formation: -227.3 kcal/mol -analytic 1.7412e+0 2.3703e-2 3.2605e+3 -7.7334e+0 5.0876e+1 # -Range: 0-300 Lu+3 + H2O = LuO+ + 2 H+ -llnl_gamma 4 log_k -15.3108 - -delta_H 99.6503 kJ/mol # Calculated enthalpy of reaction LuO+ -# Enthalpy of formation: -212.4 kcal/mol + -delta_H 99.6503 kJ/mol # Calculated enthalpy of reaction LuO+ +# Enthalpy of formation: -212.4 kcal/mol -analytic 1.5946e+2 2.6603e-2 -1.2215e+4 -5.7276e+1 -1.9065e+2 # -Range: 0-300 2 H2O + Lu+3 = LuO2- + 4 H+ -llnl_gamma 4 log_k -31.9411 - -delta_H 258.713 kJ/mol # Calculated enthalpy of reaction LuO2- -# Enthalpy of formation: -242.7 kcal/mol + -delta_H 258.713 kJ/mol # Calculated enthalpy of reaction LuO2- +# Enthalpy of formation: -242.7 kcal/mol -analytic 1.1522e+2 5.0221e-3 -1.6847e+4 -3.7244e+1 -2.6292e+2 # -Range: 0-300 2 H2O + Lu+3 = LuO2H + 3 H+ -llnl_gamma 3 log_k -23.878 - -delta_H 206.832 kJ/mol # Calculated enthalpy of reaction LuO2H -# Enthalpy of formation: -255.1 kcal/mol + -delta_H 206.832 kJ/mol # Calculated enthalpy of reaction LuO2H +# Enthalpy of formation: -255.1 kcal/mol -analytic 2.8768e+2 4.2338e-2 -2.0443e+4 -1.033e+2 -3.1907e+2 # -Range: 0-300 Lu+3 + H2O = LuOH+2 + H+ -llnl_gamma 4.5 log_k -7.6143 - -delta_H 72.0359 kJ/mol # Calculated enthalpy of reaction LuOH+2 -# Enthalpy of formation: -219 kcal/mol + -delta_H 72.0359 kJ/mol # Calculated enthalpy of reaction LuOH+2 +# Enthalpy of formation: -219 kcal/mol -analytic 4.2937e+1 9.2421e-3 -4.9953e+3 -1.4769e+1 -7.796e+1 # -Range: 0-300 Lu+3 + HPO4-2 = LuPO4 + H+ -llnl_gamma 3 log_k 0.6782 - -delta_H 0 # Not possible to calculate enthalpy of reaction LuPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction LuPO4 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Lu+3 = LuSO4+ -llnl_gamma 4 log_k 3.5697 - -delta_H 19.5393 kJ/mol # Calculated enthalpy of reaction LuSO4+ -# Enthalpy of formation: -380.63 kcal/mol + -delta_H 19.5393 kJ/mol # Calculated enthalpy of reaction LuSO4+ +# Enthalpy of formation: -380.63 kcal/mol -analytic 3.0108e+2 8.5238e-2 -8.8411e+3 -1.185e+2 -1.3805e+2 # -Range: 0-300 2 HAcetate + Mg+2 = Mg(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -7.473 - -delta_H -23.8195 kJ/mol # Calculated enthalpy of reaction Mg(Acetate)2 -# Enthalpy of formation: -349.26 kcal/mol + -delta_H -23.8195 kJ/mol # Calculated enthalpy of reaction Mg(Acetate)2 +# Enthalpy of formation: -349.26 kcal/mol -analytic -4.3954e+1 -3.1842e-4 -1.2033e+3 1.3556e+1 6.3058e+5 # -Range: 0-300 4 Mg+2 + 4 H2O = Mg4(OH)4+4 + 4 H+ -llnl_gamma 5.5 log_k -39.75 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mg4(OH)4+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Mg4(OH)4+4 +# Enthalpy of formation: -0 kcal/mol Mg+2 + H2O + B(OH)3 = MgB(OH)4+ + H+ -llnl_gamma 4 log_k -7.3467 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgB(OH)4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MgB(OH)4+ +# Enthalpy of formation: -0 kcal/mol Mg+2 + HAcetate = MgAcetate+ + H+ -llnl_gamma 4 log_k -3.4781 - -delta_H -8.42239 kJ/mol # Calculated enthalpy of reaction MgAcetate+ -# Enthalpy of formation: -229.48 kcal/mol + -delta_H -8.42239 kJ/mol # Calculated enthalpy of reaction MgAcetate+ +# Enthalpy of formation: -229.48 kcal/mol -analytic -2.3548e+1 -1.6071e-3 -4.2228e+2 7.7009e+0 2.5981e+5 # -Range: 0-300 Mg+2 + HCO3- = MgCO3 + H+ -llnl_gamma 3 log_k -7.3499 - -delta_H 23.8279 kJ/mol # Calculated enthalpy of reaction MgCO3 -# Enthalpy of formation: -270.57 kcal/mol + -delta_H 23.8279 kJ/mol # Calculated enthalpy of reaction MgCO3 +# Enthalpy of formation: -270.57 kcal/mol -analytic 2.3465e+2 5.5538e-2 -8.3947e+3 -9.3104e+1 -1.3106e+2 # -Range: 0-300 Mg+2 + Cl- = MgCl+ -llnl_gamma 4 log_k -0.1349 - -delta_H -0.58576 kJ/mol # Calculated enthalpy of reaction MgCl+ -# Enthalpy of formation: -151.44 kcal/mol + -delta_H -0.58576 kJ/mol # Calculated enthalpy of reaction MgCl+ +# Enthalpy of formation: -151.44 kcal/mol -analytic 4.3363e+1 3.2858e-2 1.1878e+2 -2.1688e+1 1.8403e+0 # -Range: 0-300 Mg+2 + F- = MgF+ -llnl_gamma 4 log_k 1.3524 - -delta_H 2.37233 kJ/mol # Calculated enthalpy of reaction MgF+ -# Enthalpy of formation: -190.95 kcal/mol + -delta_H 2.37233 kJ/mol # Calculated enthalpy of reaction MgF+ +# Enthalpy of formation: -190.95 kcal/mol -analytic 6.4311e+1 3.5184e-2 -7.3241e+2 -2.8678e+1 -1.1448e+1 # -Range: 0-300 Mg+2 + HPO4-2 + H+ = MgH2PO4+ -llnl_gamma 4 log_k 1.66 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgH2PO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MgH2PO4+ +# Enthalpy of formation: -0 kcal/mol Mg+2 + HCO3- = MgHCO3+ -llnl_gamma 4 log_k 1.0357 - -delta_H 2.15476 kJ/mol # Calculated enthalpy of reaction MgHCO3+ -# Enthalpy of formation: -275.75 kcal/mol + -delta_H 2.15476 kJ/mol # Calculated enthalpy of reaction MgHCO3+ +# Enthalpy of formation: -275.75 kcal/mol -analytic 3.8459e+1 3.0076e-2 9.8068e+1 -1.8869e+1 1.5187e+0 # -Range: 0-300 Mg+2 + HPO4-2 = MgHPO4 -llnl_gamma 3 log_k 2.91 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgHPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MgHPO4 +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Mg+2 = MgP2O7-2 + H2O -llnl_gamma 4 log_k 3.4727 - -delta_H 38.5451 kJ/mol # Calculated enthalpy of reaction MgP2O7-2 -# Enthalpy of formation: -2725.74 kJ/mol + -delta_H 38.5451 kJ/mol # Calculated enthalpy of reaction MgP2O7-2 +# Enthalpy of formation: -2725.74 kJ/mol -analytic 4.8038e+2 1.253e-1 -1.5175e+4 -1.8724e+2 -2.3693e+2 # -Range: 0-300 Mg+2 + HPO4-2 = MgPO4- + H+ -llnl_gamma 4 log_k -5.7328 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgPO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MgPO4- +# Enthalpy of formation: -0 kcal/mol SO4-2 + Mg+2 = MgSO4 -llnl_gamma 3 log_k 2.4117 - -delta_H 19.6051 kJ/mol # Calculated enthalpy of reaction MgSO4 -# Enthalpy of formation: -1355.96 kJ/mol + -delta_H 19.6051 kJ/mol # Calculated enthalpy of reaction MgSO4 +# Enthalpy of formation: -1355.96 kJ/mol -analytic 1.7994e+2 6.4715e-2 -4.7314e+3 -7.3123e+1 -8.0408e+1 # -Range: 0-200 2 HAcetate + Mn+2 = Mn(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -7.4547 - -delta_H -11.4893 kJ/mol # Calculated enthalpy of reaction Mn(Acetate)2 -# Enthalpy of formation: -287.67 kcal/mol + -delta_H -11.4893 kJ/mol # Calculated enthalpy of reaction Mn(Acetate)2 +# Enthalpy of formation: -287.67 kcal/mol -analytic -9.0558e-1 5.9656e-3 -4.3531e+3 -1.1063e+0 8.0323e+5 # -Range: 0-300 3 HAcetate + Mn+2 = Mn(Acetate)3- + 3 H+ -llnl_gamma 4 log_k -11.8747 - -delta_H -30.3591 kJ/mol # Calculated enthalpy of reaction Mn(Acetate)3- -# Enthalpy of formation: -408.28 kcal/mol + -delta_H -30.3591 kJ/mol # Calculated enthalpy of reaction Mn(Acetate)3- +# Enthalpy of formation: -408.28 kcal/mol -analytic -3.8531e+0 -9.914e-3 -1.2065e+4 5.1424e+0 2.0175e+6 # -Range: 0-300 2 NO3- + Mn+2 = Mn(NO3)2 -llnl_gamma 3 log_k 0.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(NO3)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(NO3)2 +# Enthalpy of formation: -0 kcal/mol 2 H2O + Mn+2 = Mn(OH)2 + 2 H+ -llnl_gamma 3 log_k -22.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)2 +# Enthalpy of formation: -0 kcal/mol 3 H2O + Mn+2 = Mn(OH)3- + 3 H+ -llnl_gamma 4 log_k -34.2278 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)3- +# Enthalpy of formation: -0 kcal/mol 4 H2O + Mn+2 = Mn(OH)4-2 + 4 H+ -llnl_gamma 4 log_k -48.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)4-2 +# Enthalpy of formation: -0 kcal/mol 3 H2O + 2 Mn+2 = Mn2(OH)3+ + 3 H+ -llnl_gamma 4 log_k -23.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn2(OH)3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn2(OH)3+ +# Enthalpy of formation: -0 kcal/mol 2 Mn+2 + H2O = Mn2OH+3 + H+ -llnl_gamma 5 log_k -10.56 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn2OH+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn2OH+3 +# Enthalpy of formation: -0 kcal/mol Mn+2 + HAcetate = MnAcetate+ + H+ -llnl_gamma 4 log_k -3.5404 - -delta_H -3.07942 kJ/mol # Calculated enthalpy of reaction MnAcetate+ -# Enthalpy of formation: -169.56 kcal/mol + -delta_H -3.07942 kJ/mol # Calculated enthalpy of reaction MnAcetate+ +# Enthalpy of formation: -169.56 kcal/mol -analytic -1.4061e+1 1.8149e-3 -8.6438e+2 4.0354e+0 2.5831e+5 # -Range: 0-300 Mn+2 + HCO3- = MnCO3 + H+ -llnl_gamma 3 log_k -5.8088 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnCO3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnCO3 +# Enthalpy of formation: -0 kcal/mol Mn+2 + Cl- = MnCl+ -llnl_gamma 4 log_k 0.3013 - -delta_H 18.3134 kJ/mol # Calculated enthalpy of reaction MnCl+ -# Enthalpy of formation: -88.28 kcal/mol + -delta_H 18.3134 kJ/mol # Calculated enthalpy of reaction MnCl+ +# Enthalpy of formation: -88.28 kcal/mol -analytic 8.7072e+1 4.0361e-2 -2.1786e+3 -3.6966e+1 -3.4022e+1 # -Range: 0-300 3 Cl- + Mn+2 = MnCl3- -llnl_gamma 4 log_k -0.3324 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnCl3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnCl3- +# Enthalpy of formation: -0 kcal/mol Mn+2 + F- = MnF+ -llnl_gamma 4 log_k 1.43 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnF+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnF+ +# Enthalpy of formation: -0 kcal/mol Mn+2 + HPO4-2 + H+ = MnH2PO4+ -llnl_gamma 4 log_k 8.5554 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnH2PO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnH2PO4+ +# Enthalpy of formation: -0 kcal/mol Mn+2 + HCO3- = MnHCO3+ -llnl_gamma 4 log_k 0.8816 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnHCO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnHCO3+ +# Enthalpy of formation: -0 kcal/mol Mn+2 + HPO4-2 = MnHPO4 -llnl_gamma 3 log_k 3.58 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnHPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnHPO4 +# Enthalpy of formation: -0 kcal/mol NO3- + Mn+2 = MnNO3+ -llnl_gamma 4 log_k 0.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnNO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnNO3+ +# Enthalpy of formation: -0 kcal/mol 1.5 H2O + 1.25 O2 + Mn+2 = MnO4- + 3 H+ -llnl_gamma 3.5 log_k -20.2963 - -delta_H 123.112 kJ/mol # Calculated enthalpy of reaction MnO4- -# Enthalpy of formation: -129.4 kcal/mol + -delta_H 123.112 kJ/mol # Calculated enthalpy of reaction MnO4- +# Enthalpy of formation: -129.4 kcal/mol -analytic 1.8544e+1 -1.7618e-2 -6.7332e+3 -3.3193e+0 -2.4924e+5 # -Range: 0-300 Mn+2 + H2O = MnOH+ + H+ -llnl_gamma 4 log_k -10.59 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnOH+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnOH+ +# Enthalpy of formation: -0 kcal/mol Mn+2 + HPO4-2 = MnPO4- + H+ -llnl_gamma 4 log_k -5.1318 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnPO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnPO4- +# Enthalpy of formation: -0 kcal/mol SO4-2 + Mn+2 = MnSO4 -llnl_gamma 3 log_k 2.3529 - -delta_H 14.1168 kJ/mol # Calculated enthalpy of reaction MnSO4 -# Enthalpy of formation: -266.75 kcal/mol + -delta_H 14.1168 kJ/mol # Calculated enthalpy of reaction MnSO4 +# Enthalpy of formation: -266.75 kcal/mol -analytic 2.9448e+2 8.5294e-2 -8.1366e+3 -1.1729e+2 -1.2705e+2 # -Range: 0-300 SeO4-2 + Mn+2 = MnSeO4 -llnl_gamma 3 log_k 2.43 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnSeO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnSeO4 +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + NH3 = NH4(Acetate)2- + H+ -llnl_gamma 4 log_k -0.1928 - -delta_H -56.735 kJ/mol # Calculated enthalpy of reaction NH4(Acetate)2- -# Enthalpy of formation: -265.2 kcal/mol + -delta_H -56.735 kJ/mol # Calculated enthalpy of reaction NH4(Acetate)2- +# Enthalpy of formation: -265.2 kcal/mol -analytic 3.7137e+1 -1.2242e-2 -8.4764e+3 -8.4308e+0 1.3883e+6 # -Range: 0-300 NH3 + H+ = NH4+ -llnl_gamma 2.5 log_k 9.241 - -delta_H -51.9234 kJ/mol # Calculated enthalpy of reaction NH4+ -# Enthalpy of formation: -31.85 kcal/mol + -delta_H -51.9234 kJ/mol # Calculated enthalpy of reaction NH4+ +# Enthalpy of formation: -31.85 kcal/mol -analytic -1.4527e+1 -5.0518e-3 3.0447e+3 6.0865e+0 4.7515e+1 # -Range: 0-300 NH3 + HAcetate = NH4Acetate -llnl_gamma 3 log_k 4.6964 - -delta_H -48.911 kJ/mol # Calculated enthalpy of reaction NH4Acetate -# Enthalpy of formation: -147.23 kcal/mol + -delta_H -48.911 kJ/mol # Calculated enthalpy of reaction NH4Acetate +# Enthalpy of formation: -147.23 kcal/mol -analytic 1.4104e+1 -4.3664e-3 -1.0746e+3 -3.6999e+0 4.1428e+5 # -Range: 0-300 SO4-2 + NH3 + H+ = NH4SO4- -llnl_gamma 4 log_k 0.94 - -delta_H 0 # Not possible to calculate enthalpy of reaction NH4SO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NH4SO4- +# Enthalpy of formation: -0 kcal/mol Sb(OH)3 + NH3 = NH4SbO2 + H2O -llnl_gamma 3 log_k -2.5797 - -delta_H 0 # Not possible to calculate enthalpy of reaction NH4SbO2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NH4SbO2 +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Na+ = Na(Acetate)2- + 2 H+ -llnl_gamma 4 log_k -9.9989 - -delta_H -11.5771 kJ/mol # Calculated enthalpy of reaction Na(Acetate)2- -# Enthalpy of formation: -292.4 kcal/mol + -delta_H -11.5771 kJ/mol # Calculated enthalpy of reaction Na(Acetate)2- +# Enthalpy of formation: -292.4 kcal/mol -analytic -2.9232e+2 -5.5708e-2 9.6601e+3 1.0772e+2 1.5082e+2 # -Range: 0-300 O_phthalate-2 + Na+ = Na(O_phthalate)- -llnl_gamma 4 log_k 0.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na(O_phthalate)- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Na(O_phthalate)- +# Enthalpy of formation: -0 kcal/mol 2 Na+ + 2 HPO4-2 = Na2P2O7-2 + H2O -llnl_gamma 4 log_k 0.4437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na2P2O7-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Na2P2O7-2 +# Enthalpy of formation: -0 kcal/mol 2 H2O + Na+ + Al+3 = NaAlO2 + 4 H+ -llnl_gamma 3 log_k -23.6266 - -delta_H 190.326 kJ/mol # Calculated enthalpy of reaction NaAlO2 -# Enthalpy of formation: -277.259 kcal/mol + -delta_H 190.326 kJ/mol # Calculated enthalpy of reaction NaAlO2 +# Enthalpy of formation: -277.259 kcal/mol -analytic 1.2288e+2 3.4921e-2 -1.2808e+4 -4.6046e+1 -1.999e+2 # -Range: 0-300 Na+ + H2O + B(OH)3 = NaB(OH)4 + H+ -llnl_gamma 3 log_k -8.974 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaB(OH)4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NaB(OH)4 +# Enthalpy of formation: -0 kcal/mol Na+ + Br- = NaBr -llnl_gamma 3 log_k -1.3568 - -delta_H 6.87431 kJ/mol # Calculated enthalpy of reaction NaBr -# Enthalpy of formation: -84.83 kcal/mol + -delta_H 6.87431 kJ/mol # Calculated enthalpy of reaction NaBr +# Enthalpy of formation: -84.83 kcal/mol -analytic 1.1871e+2 3.7271e-2 -3.4061e+3 -4.8386e+1 -5.3184e+1 # -Range: 0-300 Na+ + HAcetate = NaAcetate + H+ -llnl_gamma 3 log_k -4.8606 - -delta_H -0.029288 kJ/mol # Calculated enthalpy of reaction NaAcetate -# Enthalpy of formation: -173.54 kcal/mol + -delta_H -0.029288 kJ/mol # Calculated enthalpy of reaction NaAcetate +# Enthalpy of formation: -173.54 kcal/mol -analytic 6.4833e+0 -1.8739e-3 -2.0902e+3 -2.6121e+0 2.399e+5 # -Range: 0-300 Na+ + HCO3- = NaCO3- + H+ -llnl_gamma 4 log_k -9.8144 - -delta_H -5.6521 kJ/mol # Calculated enthalpy of reaction NaCO3- -# Enthalpy of formation: -935.885 kJ/mol + -delta_H -5.6521 kJ/mol # Calculated enthalpy of reaction NaCO3- +# Enthalpy of formation: -935.885 kJ/mol -analytic 1.6939e+2 5.3122e-4 -7.6768e+3 -6.2078e+1 -1.1984e+2 # -Range: 0-300 Na+ + Cl- = NaCl -llnl_gamma 3 log_k -0.777 - -delta_H 5.21326 kJ/mol # Calculated enthalpy of reaction NaCl -# Enthalpy of formation: -96.12 kcal/mol + -delta_H 5.21326 kJ/mol # Calculated enthalpy of reaction NaCl +# Enthalpy of formation: -96.12 kcal/mol -analytic 1.1398e+2 3.6386e-2 -3.0847e+3 -4.6571e+1 -4.8167e+1 # -Range: 0-300 Na+ + F- = NaF -llnl_gamma 3 log_k -0.9976 - -delta_H 7.20903 kJ/mol # Calculated enthalpy of reaction NaF -# Enthalpy of formation: -135.86 kcal/mol + -delta_H 7.20903 kJ/mol # Calculated enthalpy of reaction NaF +# Enthalpy of formation: -135.86 kcal/mol -analytic 1.2507e+2 3.8619e-2 -3.5436e+3 -5.0787e+1 -5.5332e+1 # -Range: 0-300 Na+ + HCO3- = NaHCO3 -llnl_gamma 3 log_k 0.1541 - -delta_H -13.7741 kJ/mol # Calculated enthalpy of reaction NaHCO3 -# Enthalpy of formation: -944.007 kJ/mol + -delta_H -13.7741 kJ/mol # Calculated enthalpy of reaction NaHCO3 +# Enthalpy of formation: -944.007 kJ/mol -analytic -9.0668e+1 -2.9866e-2 2.7947e+3 3.6515e+1 4.7489e+1 # -Range: 0-200 2 HPO4-2 + Na+ + H+ = NaHP2O7-2 + H2O -llnl_gamma 4 log_k 6.8498 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaHP2O7-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NaHP2O7-2 +# Enthalpy of formation: -0 kcal/mol Na+ + HPO4-2 = NaHPO4- -llnl_gamma 4 log_k 0.92 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaHPO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NaHPO4- +# Enthalpy of formation: -0 kcal/mol SiO2 + Na+ + H2O = NaHSiO3 + H+ -llnl_gamma 3 log_k -8.304 - -delta_H 11.6524 kJ/mol # Calculated enthalpy of reaction NaHSiO3 -# Enthalpy of formation: -332.74 kcal/mol + -delta_H 11.6524 kJ/mol # Calculated enthalpy of reaction NaHSiO3 +# Enthalpy of formation: -332.74 kcal/mol -analytic 3.6045e+1 -9.0411e-3 -6.6605e+3 -1.0447e+1 5.8415e+5 # -Range: 0-300 Na+ + I- = NaI -llnl_gamma 3 log_k -1.54 - -delta_H 7.33455 kJ/mol # Calculated enthalpy of reaction NaI -# Enthalpy of formation: -69.28 kcal/mol + -delta_H 7.33455 kJ/mol # Calculated enthalpy of reaction NaI +# Enthalpy of formation: -69.28 kcal/mol -analytic 9.8742e+1 3.2917e-2 -2.7576e+3 -4.0748e+1 -4.3058e+1 # -Range: 0-300 Na+ + H2O = NaOH + H+ -llnl_gamma 3 log_k -14.7948 - -delta_H 53.6514 kJ/mol # Calculated enthalpy of reaction NaOH -# Enthalpy of formation: -112.927 kcal/mol + -delta_H 53.6514 kJ/mol # Calculated enthalpy of reaction NaOH +# Enthalpy of formation: -112.927 kcal/mol -analytic 8.7326e+1 2.3555e-2 -5.477e+3 -3.6678e+1 -8.5489e+1 # -Range: 0-300 2 HPO4-2 + Na+ = NaP2O7-3 + H2O -llnl_gamma 4 log_k -1.4563 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaP2O7-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NaP2O7-3 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Na+ = NaSO4- -llnl_gamma 4 log_k 0.82 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaSO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NaSO4- +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Nd+3 = Nd(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -4.9771 - -delta_H -22.6354 kJ/mol # Calculated enthalpy of reaction Nd(Acetate)2+ -# Enthalpy of formation: -404.11 kcal/mol + -delta_H -22.6354 kJ/mol # Calculated enthalpy of reaction Nd(Acetate)2+ +# Enthalpy of formation: -404.11 kcal/mol -analytic -2.2128e+1 1.0975e-3 -7.1543e+2 5.8799e+0 4.1748e+5 # -Range: 0-300 3 HAcetate + Nd+3 = Nd(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -8.2976 - -delta_H -38.8694 kJ/mol # Calculated enthalpy of reaction Nd(Acetate)3 -# Enthalpy of formation: -524.09 kcal/mol + -delta_H -38.8694 kJ/mol # Calculated enthalpy of reaction Nd(Acetate)3 +# Enthalpy of formation: -524.09 kcal/mol -analytic -4.5726e+1 -2.6143e-3 5.9389e+2 1.2679e+1 4.332e+5 # -Range: 0-300 2 HCO3- + Nd+3 = Nd(CO3)2- + 2 H+ -llnl_gamma 4 log_k -8.0576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Nd+3 = Nd(HPO4)2- -llnl_gamma 4 log_k 9.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(HPO4)2- +# Enthalpy of formation: -0 kcal/mol # Redundant with NdO2- #4.0000 H2O + 1.0000 Nd+++ = Nd(OH)4- +4.0000 H+ # -llnl_gamma 4.0 # log_k -37.0803 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)4- -## Enthalpy of formation: -0 kcal/mol +# -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)4- +## Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Nd+3 = Nd(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -5.1437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Nd+3 = Nd(SO4)2- -llnl_gamma 4 log_k -255.7478 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(SO4)2- +# Enthalpy of formation: -0 kcal/mol 2 Nd+3 + 2 H2O = Nd2(OH)2+4 + 2 H+ -llnl_gamma 5.5 log_k -13.8902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol Nd+3 + HAcetate = NdAcetate+2 + H+ -llnl_gamma 4.5 log_k -2.0891 - -delta_H -12.0081 kJ/mol # Calculated enthalpy of reaction NdAcetate+2 -# Enthalpy of formation: -285.47 kcal/mol + -delta_H -12.0081 kJ/mol # Calculated enthalpy of reaction NdAcetate+2 +# Enthalpy of formation: -285.47 kcal/mol -analytic -1.6006e+1 4.1948e-4 -3.6469e+2 4.928e+0 2.5187e+5 # -Range: 0-300 Nd+3 + HCO3- = NdCO3+ + H+ -llnl_gamma 4 log_k -2.6256 - -delta_H 91.6212 kJ/mol # Calculated enthalpy of reaction NdCO3+ -# Enthalpy of formation: -309.5 kcal/mol + -delta_H 91.6212 kJ/mol # Calculated enthalpy of reaction NdCO3+ +# Enthalpy of formation: -309.5 kcal/mol -analytic 2.3399e+2 5.3454e-2 -7.0513e+3 -9.25e+1 -1.101e+2 # -Range: 0-300 Nd+3 + Cl- = NdCl+2 -llnl_gamma 4.5 log_k 0.3086 - -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction NdCl+2 -# Enthalpy of formation: -203 kcal/mol + -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction NdCl+2 +# Enthalpy of formation: -203 kcal/mol -analytic 9.4587e+1 3.9331e-2 -2.42e+3 -3.955e+1 -3.779e+1 # -Range: 0-300 2 Cl- + Nd+3 = NdCl2+ -llnl_gamma 4 log_k 0.0308 - -delta_H 20.3593 kJ/mol # Calculated enthalpy of reaction NdCl2+ -# Enthalpy of formation: -241.5 kcal/mol + -delta_H 20.3593 kJ/mol # Calculated enthalpy of reaction NdCl2+ +# Enthalpy of formation: -241.5 kcal/mol -analytic 2.584e+2 8.4118e-2 -7.2056e+3 -1.0477e+2 -1.1251e+2 # -Range: 0-300 3 Cl- + Nd+3 = NdCl3 -llnl_gamma 3 log_k -0.3203 - -delta_H 15.0582 kJ/mol # Calculated enthalpy of reaction NdCl3 -# Enthalpy of formation: -282.7 kcal/mol + -delta_H 15.0582 kJ/mol # Calculated enthalpy of reaction NdCl3 +# Enthalpy of formation: -282.7 kcal/mol -analytic 4.9362e+2 1.3485e-1 -1.4309e+4 -1.9645e+2 -2.2343e+2 # -Range: 0-300 4 Cl- + Nd+3 = NdCl4- -llnl_gamma 4 log_k -0.7447 - -delta_H -3.21331 kJ/mol # Calculated enthalpy of reaction NdCl4- -# Enthalpy of formation: -327 kcal/mol + -delta_H -3.21331 kJ/mol # Calculated enthalpy of reaction NdCl4- +# Enthalpy of formation: -327 kcal/mol -analytic 6.0548e+2 1.4227e-1 -1.8055e+4 -2.3765e+2 -2.8191e+2 # -Range: 0-300 Nd+3 + F- = NdF+2 -llnl_gamma 4.5 log_k 4.3687 - -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction NdF+2 -# Enthalpy of formation: -241.2 kcal/mol + -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction NdF+2 +# Enthalpy of formation: -241.2 kcal/mol -analytic 1.1461e+2 4.3014e-2 -3.2461e+3 -4.5326e+1 -5.0687e+1 # -Range: 0-300 2 F- + Nd+3 = NdF2+ -llnl_gamma 4 log_k 7.5646 - -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction NdF2+ -# Enthalpy of formation: -323.5 kcal/mol + -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction NdF2+ +# Enthalpy of formation: -323.5 kcal/mol -analytic 2.7901e+2 8.791e-2 -7.2424e+3 -1.1046e+2 -1.1309e+2 # -Range: 0-300 3 F- + Nd+3 = NdF3 -llnl_gamma 3 log_k 9.8809 - -delta_H -8.1588 kJ/mol # Calculated enthalpy of reaction NdF3 -# Enthalpy of formation: -408.9 kcal/mol + -delta_H -8.1588 kJ/mol # Calculated enthalpy of reaction NdF3 +# Enthalpy of formation: -408.9 kcal/mol -analytic 5.222e+2 1.4154e-1 -1.3697e+4 -2.0551e+2 -2.1388e+2 # -Range: 0-300 4 F- + Nd+3 = NdF4- -llnl_gamma 4 log_k 11.8307 - -delta_H -48.5344 kJ/mol # Calculated enthalpy of reaction NdF4- -# Enthalpy of formation: -498.7 kcal/mol + -delta_H -48.5344 kJ/mol # Calculated enthalpy of reaction NdF4- +# Enthalpy of formation: -498.7 kcal/mol -analytic 6.1972e+2 1.462e-1 -1.5869e+4 -2.4175e+2 -2.478e+2 # -Range: 0-300 Nd+3 + HPO4-2 + H+ = NdH2PO4+2 -llnl_gamma 4.5 log_k 9.5152 - -delta_H -15.736 kJ/mol # Calculated enthalpy of reaction NdH2PO4+2 -# Enthalpy of formation: -479.076 kcal/mol + -delta_H -15.736 kJ/mol # Calculated enthalpy of reaction NdH2PO4+2 +# Enthalpy of formation: -479.076 kcal/mol -analytic 1.245e+2 6.4953e-2 -4.0524e+2 -5.3728e+1 -6.3603e+0 # -Range: 0-300 Nd+3 + HCO3- = NdHCO3+2 -llnl_gamma 4.5 log_k 1.8457 - -delta_H 9.19643 kJ/mol # Calculated enthalpy of reaction NdHCO3+2 -# Enthalpy of formation: -329.2 kcal/mol + -delta_H 9.19643 kJ/mol # Calculated enthalpy of reaction NdHCO3+2 +# Enthalpy of formation: -329.2 kcal/mol -analytic 5.553e+1 3.3254e-2 -7.3859e+2 -2.469e+1 -1.1542e+1 # -Range: 0-300 Nd+3 + HPO4-2 = NdHPO4+ -llnl_gamma 4 log_k 5.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NdHPO4+ +# Enthalpy of formation: -0 kcal/mol Nd+3 + NO3- = NdNO3+2 -llnl_gamma 4.5 log_k 0.7902 - -delta_H -27.8529 kJ/mol # Calculated enthalpy of reaction NdNO3+2 -# Enthalpy of formation: -222.586 kcal/mol + -delta_H -27.8529 kJ/mol # Calculated enthalpy of reaction NdNO3+2 +# Enthalpy of formation: -222.586 kcal/mol -analytic 3.385e+1 2.7112e-2 1.4404e+3 -1.857e+1 2.2466e+1 # -Range: 0-300 Nd+3 + H2O = NdO+ + 2 H+ -llnl_gamma 4 log_k -17.0701 - -delta_H 116.386 kJ/mol # Calculated enthalpy of reaction NdO+ -# Enthalpy of formation: -207 kcal/mol + -delta_H 116.386 kJ/mol # Calculated enthalpy of reaction NdO+ +# Enthalpy of formation: -207 kcal/mol -analytic 1.8961e+2 3.0563e-2 -1.4153e+4 -6.8024e+1 -2.2089e+2 # -Range: 0-300 2 H2O + Nd+3 = NdO2- + 4 H+ -llnl_gamma 4 log_k -37.0721 - -delta_H 298.88 kJ/mol # Calculated enthalpy of reaction NdO2- -# Enthalpy of formation: -231.7 kcal/mol + -delta_H 298.88 kJ/mol # Calculated enthalpy of reaction NdO2- +# Enthalpy of formation: -231.7 kcal/mol -analytic 1.9606e+2 1.4784e-2 -2.1838e+4 -6.6399e+1 -3.4082e+2 # -Range: 0-300 2 H2O + Nd+3 = NdO2H + 3 H+ -llnl_gamma 3 log_k -26.3702 - -delta_H 230.681 kJ/mol # Calculated enthalpy of reaction NdO2H -# Enthalpy of formation: -248 kcal/mol + -delta_H 230.681 kJ/mol # Calculated enthalpy of reaction NdO2H +# Enthalpy of formation: -248 kcal/mol -analytic 3.4617e+2 4.5955e-2 -2.396e+4 -1.2361e+2 -3.7398e+2 # -Range: 0-300 Nd+3 + H2O = NdOH+2 + H+ -llnl_gamma 4.5 log_k -8.1274 - -delta_H 80.8223 kJ/mol # Calculated enthalpy of reaction NdOH+2 -# Enthalpy of formation: -215.5 kcal/mol + -delta_H 80.8223 kJ/mol # Calculated enthalpy of reaction NdOH+2 +# Enthalpy of formation: -215.5 kcal/mol -analytic 6.6963e+1 1.2182e-2 -6.2797e+3 -2.33e+1 -9.8008e+1 # -Range: 0-300 Nd+3 + HPO4-2 = NdPO4 + H+ -llnl_gamma 3 log_k -0.5218 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NdPO4 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Nd+3 = NdSO4+ -llnl_gamma 4 log_k 3.643 - -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction NdSO4+ -# Enthalpy of formation: -379.1 kcal/mol + -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction NdSO4+ +# Enthalpy of formation: -379.1 kcal/mol -analytic 3.0267e+2 8.5362e-2 -8.9211e+3 -1.1902e+2 -1.3929e+2 # -Range: 0-300 2 HAcetate + Ni+2 = Ni(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -7.1908 - -delta_H -25.8571 kJ/mol # Calculated enthalpy of reaction Ni(Acetate)2 -# Enthalpy of formation: -251.28 kcal/mol + -delta_H -25.8571 kJ/mol # Calculated enthalpy of reaction Ni(Acetate)2 +# Enthalpy of formation: -251.28 kcal/mol -analytic -2.966e+1 1.0643e-3 -1.006e+3 7.9358e+0 5.2562e+5 # -Range: 0-300 3 HAcetate + Ni+2 = Ni(Acetate)3- + 3 H+ -llnl_gamma 4 log_k -11.3543 - -delta_H -53.6807 kJ/mol # Calculated enthalpy of reaction Ni(Acetate)3- -# Enthalpy of formation: -374.03 kcal/mol + -delta_H -53.6807 kJ/mol # Calculated enthalpy of reaction Ni(Acetate)3- +# Enthalpy of formation: -374.03 kcal/mol -analytic 5.085e+1 -8.2435e-3 -1.3049e+4 -1.541e+1 1.9704e+6 # -Range: 0-300 2 NH3 + Ni+2 = Ni(NH3)2+2 -llnl_gamma 4.5 log_k 5.0598 - -delta_H -29.7505 kJ/mol # Calculated enthalpy of reaction Ni(NH3)2+2 -# Enthalpy of formation: -246.398 kJ/mol + -delta_H -29.7505 kJ/mol # Calculated enthalpy of reaction Ni(NH3)2+2 +# Enthalpy of formation: -246.398 kJ/mol -analytic 1.0002e+2 5.2896e-3 -2.5967e+3 -3.5485e+1 -4.0548e+1 # -Range: 0-300 6 NH3 + Ni+2 = Ni(NH3)6+2 -llnl_gamma 4.5 log_k 8.7344 - -delta_H -88.0436 kJ/mol # Calculated enthalpy of reaction Ni(NH3)6+2 -# Enthalpy of formation: -630.039 kJ/mol + -delta_H -88.0436 kJ/mol # Calculated enthalpy of reaction Ni(NH3)6+2 +# Enthalpy of formation: -630.039 kJ/mol -analytic 1.9406e+2 -1.3467e-2 -5.2321e+3 -6.6168e+1 -8.1699e+1 # -Range: 0-300 2 NO3- + Ni+2 = Ni(NO3)2 -llnl_gamma 3 log_k 0.1899 - -delta_H -1.54153 kJ/mol # Calculated enthalpy of reaction Ni(NO3)2 -# Enthalpy of formation: -469.137 kJ/mol + -delta_H -1.54153 kJ/mol # Calculated enthalpy of reaction Ni(NO3)2 +# Enthalpy of formation: -469.137 kJ/mol -analytic -4.2544e+1 -1.0101e-2 1.3496e+3 1.6663e+1 2.2933e+1 # -Range: 0-200 2 H2O + Ni+2 = Ni(OH)2 + 2 H+ -llnl_gamma 3 log_k -19.9902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni(OH)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni(OH)2 +# Enthalpy of formation: -0 kcal/mol 3 H2O + Ni+2 = Ni(OH)3- + 3 H+ -llnl_gamma 4 log_k -30.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni(OH)3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni(OH)3- +# Enthalpy of formation: -0 kcal/mol 2 Ni+2 + H2O = Ni2OH+3 + H+ -llnl_gamma 5 log_k -10.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni2OH+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni2OH+3 +# Enthalpy of formation: -0 kcal/mol 4 Ni+2 + 4 H2O = Ni4(OH)4+4 + 4 H+ -llnl_gamma 5.5 log_k -27.6803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni4(OH)4+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni4(OH)4+4 +# Enthalpy of formation: -0 kcal/mol Ni+2 + Br- = NiBr+ -llnl_gamma 4 log_k -0.37 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiBr+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NiBr+ +# Enthalpy of formation: -0 kcal/mol Ni+2 + HAcetate = NiAcetate+ + H+ -llnl_gamma 4 log_k -3.3278 - -delta_H -10.2508 kJ/mol # Calculated enthalpy of reaction NiAcetate+ -# Enthalpy of formation: -131.45 kcal/mol + -delta_H -10.2508 kJ/mol # Calculated enthalpy of reaction NiAcetate+ +# Enthalpy of formation: -131.45 kcal/mol -analytic -3.311e+0 1.6895e-3 -1.0556e+3 2.7168e-2 2.635e+5 # -Range: 0-300 Ni+2 + Cl- = NiCl+ -llnl_gamma 4 log_k -0.9962 - -delta_H 5.99567 kJ/mol # Calculated enthalpy of reaction NiCl+ -# Enthalpy of formation: -51.4 kcal/mol + -delta_H 5.99567 kJ/mol # Calculated enthalpy of reaction NiCl+ +# Enthalpy of formation: -51.4 kcal/mol -analytic 9.537e+1 3.8521e-2 -2.1746e+3 -4.0629e+1 -3.3961e+1 # -Range: 0-300 2 HPO4-2 + Ni+2 + H+ = NiHP2O7- + H2O -llnl_gamma 4 log_k 9.268 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiHP2O7- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NiHP2O7- +# Enthalpy of formation: -0 kcal/mol Ni+2 + NO3- = NiNO3+ -llnl_gamma 4 log_k 0.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiNO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NiNO3+ +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Ni+2 = NiP2O7-2 + H2O -llnl_gamma 4 log_k 3.1012 - -delta_H 9.68819 kJ/mol # Calculated enthalpy of reaction NiP2O7-2 -# Enthalpy of formation: -2342.61 kJ/mol + -delta_H 9.68819 kJ/mol # Calculated enthalpy of reaction NiP2O7-2 +# Enthalpy of formation: -2342.61 kJ/mol -analytic 4.6809e+2 1.0985e-1 -1.431e+4 -1.8173e+2 -2.2344e+2 # -Range: 0-300 SO4-2 + Ni+2 = NiSO4 -llnl_gamma 3 log_k 2.1257 - -delta_H 2.36814 kJ/mol # Calculated enthalpy of reaction NiSO4 -# Enthalpy of formation: -229.734 kcal/mol + -delta_H 2.36814 kJ/mol # Calculated enthalpy of reaction NiSO4 +# Enthalpy of formation: -229.734 kcal/mol -analytic 6.1187e+1 2.4211e-2 -1.218e+3 -2.513e+1 -2.0705e+1 # -Range: 0-200 SeO4-2 + Ni+2 = NiSeO4 -llnl_gamma 3 log_k 2.67 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiSeO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NiSeO4 +# Enthalpy of formation: -0 kcal/mol 5 HCO3- + Np+4 = Np(CO3)5-6 + 5 H+ -llnl_gamma 4 log_k -13.344 - -delta_H 92.7067 kJ/mol # Calculated enthalpy of reaction Np(CO3)5-6 -# Enthalpy of formation: -935.22 kcal/mol + -delta_H 92.7067 kJ/mol # Calculated enthalpy of reaction Np(CO3)5-6 +# Enthalpy of formation: -935.22 kcal/mol -analytic 6.3005e+2 2.3388e-1 -1.8328e+4 -2.6334e+2 -2.8618e+2 # -Range: 0-300 2 HPO4-2 + 2 H+ + Np+3 = Np(H2PO4)2+ -llnl_gamma 4 log_k 3.7 - -delta_H -1.55258 kJ/mol # Calculated enthalpy of reaction Np(H2PO4)2+ -# Enthalpy of formation: -743.981 kcal/mol + -delta_H -1.55258 kJ/mol # Calculated enthalpy of reaction Np(H2PO4)2+ +# Enthalpy of formation: -743.981 kcal/mol -analytic 7.8161e+2 2.8446e-1 -1.233e+4 -3.3194e+2 -2.1056e+2 # -Range: 25-150 3 HPO4-2 + 3 H+ + Np+3 = Np(H2PO4)3 -llnl_gamma 3 log_k 5.6 - -delta_H -21.8575 kJ/mol # Calculated enthalpy of reaction Np(H2PO4)3 -# Enthalpy of formation: -1057.65 kcal/mol + -delta_H -21.8575 kJ/mol # Calculated enthalpy of reaction Np(H2PO4)3 +# Enthalpy of formation: -1057.65 kcal/mol -analytic 1.515e+3 4.4939e-1 -3.2766e+4 -6.1975e+2 -5.5934e+2 # -Range: 25-150 2 HPO4-2 + Np+4 = Np(HPO4)2 -llnl_gamma 3 log_k 23.7 - -delta_H -35.24 kJ/mol # Calculated enthalpy of reaction Np(HPO4)2 -# Enthalpy of formation: -758.94 kcal/mol + -delta_H -35.24 kJ/mol # Calculated enthalpy of reaction Np(HPO4)2 +# Enthalpy of formation: -758.94 kcal/mol -analytic 4.7722e+2 2.1099e-1 -4.7296e+3 -2.0229e+2 -8.0831e+1 # -Range: 25-150 3 HPO4-2 + Np+4 = Np(HPO4)3-2 -llnl_gamma 4 log_k 33.4 - -delta_H -44.9093 kJ/mol # Calculated enthalpy of reaction Np(HPO4)3-2 -# Enthalpy of formation: -1070.07 kcal/mol + -delta_H -44.9093 kJ/mol # Calculated enthalpy of reaction Np(HPO4)3-2 +# Enthalpy of formation: -1070.07 kcal/mol -analytic -1.5951e+3 -3.6579e-1 5.1343e+4 6.3262e+2 8.7619e+2 # -Range: 25-150 4 HPO4-2 + Np+4 = Np(HPO4)4-4 -llnl_gamma 4 log_k 43.2 - -delta_H -67.0803 kJ/mol # Calculated enthalpy of reaction Np(HPO4)4-4 -# Enthalpy of formation: -1384.18 kcal/mol + -delta_H -67.0803 kJ/mol # Calculated enthalpy of reaction Np(HPO4)4-4 +# Enthalpy of formation: -1384.18 kcal/mol -analytic 5.8359e+3 1.5194e+0 -1.6349e+5 -2.3025e+3 -2.7903e+3 # -Range: 25-150 5 HPO4-2 + Np+4 = Np(HPO4)5-6 -llnl_gamma 4 log_k 52 - -delta_H -83.5401 kJ/mol # Calculated enthalpy of reaction Np(HPO4)5-6 -# Enthalpy of formation: -1696.93 kcal/mol + -delta_H -83.5401 kJ/mol # Calculated enthalpy of reaction Np(HPO4)5-6 +# Enthalpy of formation: -1696.93 kcal/mol -analytic -1.8082e+3 -2.0018e-1 7.5155e+4 6.74e+2 1.2824e+3 # -Range: 25-150 2 H2O + Np+4 = Np(OH)2+2 + 2 H+ -llnl_gamma 4.5 log_k -2.8 - -delta_H 77.0669 kJ/mol # Calculated enthalpy of reaction Np(OH)2+2 -# Enthalpy of formation: -251.102 kcal/mol + -delta_H 77.0669 kJ/mol # Calculated enthalpy of reaction Np(OH)2+2 +# Enthalpy of formation: -251.102 kcal/mol -analytic 2.9299e+3 6.5812e-1 -9.5085e+4 -1.1356e+3 -1.6227e+3 # -Range: 25-150 3 H2O + Np+4 = Np(OH)3+ + 3 H+ -llnl_gamma 4 log_k -5.8 - -delta_H 99.5392 kJ/mol # Calculated enthalpy of reaction Np(OH)3+ -# Enthalpy of formation: -314.048 kcal/mol + -delta_H 99.5392 kJ/mol # Calculated enthalpy of reaction Np(OH)3+ +# Enthalpy of formation: -314.048 kcal/mol -analytic -4.7723e+3 -1.181e+0 1.3545e+5 1.885e+3 2.3117e+3 # -Range: 25-150 4 H2O + Np+4 = Np(OH)4 + 4 H+ -llnl_gamma 3 log_k -9.6 - -delta_H 109.585 kJ/mol # Calculated enthalpy of reaction Np(OH)4 -# Enthalpy of formation: -379.964 kcal/mol + -delta_H 109.585 kJ/mol # Calculated enthalpy of reaction Np(OH)4 +# Enthalpy of formation: -379.964 kcal/mol -analytic -5.5904e+3 -1.3639e+0 1.6112e+5 2.2013e+3 2.7498e+3 # -Range: 25-150 2 SO4-2 + Np+4 = Np(SO4)2 -llnl_gamma 3 log_k 9.9 - -delta_H 40.005 kJ/mol # Calculated enthalpy of reaction Np(SO4)2 -# Enthalpy of formation: -558.126 kcal/mol + -delta_H 40.005 kJ/mol # Calculated enthalpy of reaction Np(SO4)2 +# Enthalpy of formation: -558.126 kcal/mol -analytic -9.0765e+2 -1.8494e-1 2.7951e+4 3.5521e+2 4.7702e+2 # -Range: 25-150 Np+4 + Cl- = NpCl+3 -llnl_gamma 5 log_k 0.2 - -delta_H 20.3737 kJ/mol # Calculated enthalpy of reaction NpCl+3 -# Enthalpy of formation: -167.951 kcal/mol + -delta_H 20.3737 kJ/mol # Calculated enthalpy of reaction NpCl+3 +# Enthalpy of formation: -167.951 kcal/mol -analytic 8.3169e+2 2.6267e-1 -2.1618e+4 -3.3838e+2 -3.6898e+2 # -Range: 25-150 2 Cl- + Np+4 = NpCl2+2 -llnl_gamma 4.5 log_k -0.1 - -delta_H 94.5853 kJ/mol # Calculated enthalpy of reaction NpCl2+2 -# Enthalpy of formation: -190.147 kcal/mol + -delta_H 94.5853 kJ/mol # Calculated enthalpy of reaction NpCl2+2 +# Enthalpy of formation: -190.147 kcal/mol -analytic -1.5751e+3 -3.8759e-1 4.2054e+4 6.2619e+2 7.1777e+2 # -Range: 25-150 Np+4 + F- = NpF+3 -llnl_gamma 5 log_k 8.7 - -delta_H -3.43746 kJ/mol # Calculated enthalpy of reaction NpF+3 -# Enthalpy of formation: -213.859 kcal/mol + -delta_H -3.43746 kJ/mol # Calculated enthalpy of reaction NpF+3 +# Enthalpy of formation: -213.859 kcal/mol -analytic 2.7613e+0 1.3498e-3 -1.6411e+3 2.9074e+0 3.4192e+5 # -Range: 25-150 2 F- + Np+4 = NpF2+2 -llnl_gamma 4.5 log_k 15.4 - -delta_H 6.03094 kJ/mol # Calculated enthalpy of reaction NpF2+2 -# Enthalpy of formation: -291.746 kcal/mol + -delta_H 6.03094 kJ/mol # Calculated enthalpy of reaction NpF2+2 +# Enthalpy of formation: -291.746 kcal/mol -analytic -2.6793e+2 -4.2056e-2 9.7952e+3 1.0629e+2 1.6715e+2 # -Range: 25-150 Np+3 + HPO4-2 + H+ = NpH2PO4+2 -llnl_gamma 4.5 log_k 2.4 - -delta_H 6.0874 kJ/mol # Calculated enthalpy of reaction NpH2PO4+2 -# Enthalpy of formation: -433.34 kcal/mol + -delta_H 6.0874 kJ/mol # Calculated enthalpy of reaction NpH2PO4+2 +# Enthalpy of formation: -433.34 kcal/mol -analytic 6.0731e+3 1.4733e+0 -1.7919e+5 -2.388e+3 -3.0582e+3 # -Range: 25-150 Np+4 + HPO4-2 = NpHPO4+2 -llnl_gamma 4.5 log_k 12.9 - -delta_H 7.54554 kJ/mol # Calculated enthalpy of reaction NpHPO4+2 -# Enthalpy of formation: -439.899 kcal/mol + -delta_H 7.54554 kJ/mol # Calculated enthalpy of reaction NpHPO4+2 +# Enthalpy of formation: -439.899 kcal/mol -analytic -7.2792e+3 -1.7476e+0 2.177e+5 2.8624e+3 3.7154e+3 # -Range: 25-150 2 HCO3- + NpO2+2 = NpO2(CO3)2-2 + 2 H+ -llnl_gamma 4 log_k -6.6576 - -delta_H 57.2588 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)2-2 -# Enthalpy of formation: -521.77 kcal/mol + -delta_H 57.2588 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)2-2 +# Enthalpy of formation: -521.77 kcal/mol -analytic 2.6597e+2 7.585e-2 -9.9987e+3 -1.0576e+2 -1.561e+2 # -Range: 0-300 2 HCO3- + NpO2+ = NpO2(CO3)2-3 + 2 H+ -llnl_gamma 4 log_k -13.6576 - -delta_H 58.1553 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)2-3 -# Enthalpy of formation: -549.642 kcal/mol + -delta_H 58.1553 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)2-3 +# Enthalpy of formation: -549.642 kcal/mol -analytic 2.6012e+2 7.3174e-2 -1.025e+4 -1.0556e+2 -1.6002e+2 # -Range: 0-300 3 HCO3- + NpO2+ = NpO2(CO3)3-5 + 3 H+ -llnl_gamma 4 log_k -22.4864 - -delta_H 70.176 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)3-5 -# Enthalpy of formation: -711.667 kcal/mol + -delta_H 70.176 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)3-5 +# Enthalpy of formation: -711.667 kcal/mol -analytic 3.7433e+2 1.2938e-1 -1.2791e+4 -1.5861e+2 -1.997e+2 # -Range: 0-300 3 HCO3- + NpO2+2 = NpO2(CO3)3-4 + 3 H+ -llnl_gamma 4 log_k -10.5864 - -delta_H 3.14711 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)3-4 -# Enthalpy of formation: -699.601 kcal/mol + -delta_H 3.14711 kJ/mol # Calculated enthalpy of reaction NpO2(CO3)3-4 +# Enthalpy of formation: -699.601 kcal/mol -analytic 3.7956e+2 1.1163e-1 -1.0607e+4 -1.5674e+2 -1.6562e+2 # -Range: 0-300 NpO2+ + HCO3- = NpO2CO3- + H+ -llnl_gamma 4 log_k -5.7288 - -delta_H 69.1634 kJ/mol # Calculated enthalpy of reaction NpO2CO3- -# Enthalpy of formation: -382.113 kcal/mol + -delta_H 69.1634 kJ/mol # Calculated enthalpy of reaction NpO2CO3- +# Enthalpy of formation: -382.113 kcal/mol -analytic 1.4634e+2 2.6576e-2 -8.2036e+3 -5.3534e+1 -1.2805e+2 # -Range: 0-300 NpO2+ + Cl- = NpO2Cl -llnl_gamma 3 log_k -0.4 - -delta_H 15.4492 kJ/mol # Calculated enthalpy of reaction NpO2Cl -# Enthalpy of formation: -269.986 kcal/mol + -delta_H 15.4492 kJ/mol # Calculated enthalpy of reaction NpO2Cl +# Enthalpy of formation: -269.986 kcal/mol -analytic 4.5109e+2 9.0437e-2 -1.5453e+4 -1.7241e+2 -2.6371e+2 # -Range: 25-150 NpO2+2 + Cl- = NpO2Cl+ -llnl_gamma 4 log_k -0.2 - -delta_H 11.6239 kJ/mol # Calculated enthalpy of reaction NpO2Cl+ -# Enthalpy of formation: -242.814 kcal/mol + -delta_H 11.6239 kJ/mol # Calculated enthalpy of reaction NpO2Cl+ +# Enthalpy of formation: -242.814 kcal/mol -analytic -1.2276e+3 -2.5435e-1 3.8507e+4 4.7447e+2 6.5715e+2 # -Range: 25-150 NpO2+ + F- = NpO2F -llnl_gamma 3 log_k 1 - -delta_H 34.2521 kJ/mol # Calculated enthalpy of reaction NpO2F -# Enthalpy of formation: -305.709 kcal/mol + -delta_H 34.2521 kJ/mol # Calculated enthalpy of reaction NpO2F +# Enthalpy of formation: -305.709 kcal/mol -analytic -1.9364e+2 -4.4083e-2 4.5602e+3 7.7791e+1 7.784e+1 # -Range: 25-150 NpO2+2 + F- = NpO2F+ -llnl_gamma 4 log_k 4.6 - -delta_H 0.883568 kJ/mol # Calculated enthalpy of reaction NpO2F+ -# Enthalpy of formation: -285.598 kcal/mol + -delta_H 0.883568 kJ/mol # Calculated enthalpy of reaction NpO2F+ +# Enthalpy of formation: -285.598 kcal/mol -analytic 9.632e+2 2.4799e-1 -2.7614e+4 -3.7985e+2 -4.7128e+2 # -Range: 25-150 2 F- + NpO2+2 = NpO2F2 -llnl_gamma 3 log_k 7.8 - -delta_H 2.60319 kJ/mol # Calculated enthalpy of reaction NpO2F2 -# Enthalpy of formation: -365.337 kcal/mol + -delta_H 2.60319 kJ/mol # Calculated enthalpy of reaction NpO2F2 +# Enthalpy of formation: -365.337 kcal/mol -analytic 1.9648e+2 6.4083e-2 -4.5601e+3 -7.779e+1 -7.784e+1 # -Range: 25-150 NpO2+ + HPO4-2 + H+ = NpO2H2PO4 -llnl_gamma 3 log_k 0.6 - -delta_H 18.717 kJ/mol # Calculated enthalpy of reaction NpO2H2PO4 -# Enthalpy of formation: -538.087 kcal/mol + -delta_H 18.717 kJ/mol # Calculated enthalpy of reaction NpO2H2PO4 +# Enthalpy of formation: -538.087 kcal/mol -analytic 1.089e+3 2.7738e-1 -3.0654e+4 -4.3171e+2 -5.2317e+2 # -Range: 25-150 NpO2+2 + HPO4-2 + H+ = NpO2H2PO4+ -llnl_gamma 4 log_k 2.3 - -delta_H 9.31014 kJ/mol # Calculated enthalpy of reaction NpO2H2PO4+ -# Enthalpy of formation: -512.249 kcal/mol + -delta_H 9.31014 kJ/mol # Calculated enthalpy of reaction NpO2H2PO4+ +# Enthalpy of formation: -512.249 kcal/mol -analytic -5.6996e+3 -1.4008e+0 1.6898e+5 2.2441e+3 2.8838e+3 # -Range: 25-150 NpO2+2 + HPO4-2 = NpO2HPO4 -llnl_gamma 3 log_k 8.2 - -delta_H -6.47609 kJ/mol # Calculated enthalpy of reaction NpO2HPO4 -# Enthalpy of formation: -516.022 kcal/mol + -delta_H -6.47609 kJ/mol # Calculated enthalpy of reaction NpO2HPO4 +# Enthalpy of formation: -516.022 kcal/mol -analytic 4.8515e+3 1.2189e+0 -1.4069e+5 -1.9135e+3 -2.4011e+3 # -Range: 25-150 NpO2+ + HPO4-2 = NpO2HPO4- -llnl_gamma 4 log_k 3.5 - -delta_H 49.8668 kJ/mol # Calculated enthalpy of reaction NpO2HPO4- -# Enthalpy of formation: -530.642 kcal/mol + -delta_H 49.8668 kJ/mol # Calculated enthalpy of reaction NpO2HPO4- +# Enthalpy of formation: -530.642 kcal/mol -analytic -4.1705e+3 -9.9302e-1 1.2287e+5 1.6399e+3 2.0969e+3 # -Range: 25-150 NpO2+ + H2O = NpO2OH + H+ -llnl_gamma 3 log_k -8.9 - -delta_H 43.6285 kJ/mol # Calculated enthalpy of reaction NpO2OH -# Enthalpy of formation: -291.635 kcal/mol + -delta_H 43.6285 kJ/mol # Calculated enthalpy of reaction NpO2OH +# Enthalpy of formation: -291.635 kcal/mol -analytic -4.571e+2 -1.2286e-1 1.064e+4 1.8151e+2 1.8163e+2 # -Range: 25-150 NpO2+2 + H2O = NpO2OH+ + H+ -llnl_gamma 4 log_k -5.2 - -delta_H 43.3805 kJ/mol # Calculated enthalpy of reaction NpO2OH+ -# Enthalpy of formation: -263.608 kcal/mol + -delta_H 43.3805 kJ/mol # Calculated enthalpy of reaction NpO2OH+ +# Enthalpy of formation: -263.608 kcal/mol -analytic 1.7485e+2 4.0017e-2 -7.5154e+3 -6.7399e+1 -1.2823e+2 # -Range: 25-150 SO4-2 + NpO2+2 = NpO2SO4 -llnl_gamma 3 log_k 3.3 - -delta_H 19.8789 kJ/mol # Calculated enthalpy of reaction NpO2SO4 -# Enthalpy of formation: -418.308 kcal/mol + -delta_H 19.8789 kJ/mol # Calculated enthalpy of reaction NpO2SO4 +# Enthalpy of formation: -418.308 kcal/mol -analytic -1.5624e+2 7.3296e-3 6.7555e+3 5.4435e+1 1.1527e+2 # -Range: 25-150 SO4-2 + NpO2+ = NpO2SO4- -llnl_gamma 4 log_k 0.4 - -delta_H 19.1395 kJ/mol # Calculated enthalpy of reaction NpO2SO4- -# Enthalpy of formation: -446.571 kcal/mol + -delta_H 19.1395 kJ/mol # Calculated enthalpy of reaction NpO2SO4- +# Enthalpy of formation: -446.571 kcal/mol -analytic -3.1804e+2 -9.3472e-2 7.6002e+3 1.2965e+2 1.2973e+2 # -Range: 25-150 Np+3 + H2O = NpOH+2 + H+ -llnl_gamma 4.5 log_k -7 - -delta_H 50.1031 kJ/mol # Calculated enthalpy of reaction NpOH+2 -# Enthalpy of formation: -182.322 kcal/mol + -delta_H 50.1031 kJ/mol # Calculated enthalpy of reaction NpOH+2 +# Enthalpy of formation: -182.322 kcal/mol -analytic 1.4062e+2 3.2671e-2 -6.7555e+3 -5.4435e+1 -1.1526e+2 # -Range: 25-150 Np+4 + H2O = NpOH+3 + H+ -llnl_gamma 5 log_k -1 - -delta_H 51.0089 kJ/mol # Calculated enthalpy of reaction NpOH+3 -# Enthalpy of formation: -189.013 kcal/mol + -delta_H 51.0089 kJ/mol # Calculated enthalpy of reaction NpOH+3 +# Enthalpy of formation: -189.013 kcal/mol -analytic -1.8373e+2 -5.2443e-2 2.7025e+3 7.6503e+1 4.6154e+1 # -Range: 25-150 SO4-2 + Np+4 = NpSO4+2 -llnl_gamma 4.5 log_k 5.5 - -delta_H 20.7377 kJ/mol # Calculated enthalpy of reaction NpSO4+2 -# Enthalpy of formation: -345.331 kcal/mol + -delta_H 20.7377 kJ/mol # Calculated enthalpy of reaction NpSO4+2 +# Enthalpy of formation: -345.331 kcal/mol -analytic 3.9477e+2 1.1981e-1 -1.0978e+4 -1.5687e+2 -1.8736e+2 # -Range: 25-150 H2O = OH- + H+ -llnl_gamma 3.5 log_k -13.9951 - -delta_H 55.8146 kJ/mol # Calculated enthalpy of reaction OH- -# Enthalpy of formation: -54.977 kcal/mol + -delta_H 55.8146 kJ/mol # Calculated enthalpy of reaction OH- +# Enthalpy of formation: -54.977 kcal/mol -analytic -6.7506e+1 -3.0619e-2 -1.9901e+3 2.8004e+1 -3.1033e+1 # -Range: 0-300 2 HPO4-2 = P2O7-4 + H2O -llnl_gamma 4 log_k -3.7463 - -delta_H 27.2256 kJ/mol # Calculated enthalpy of reaction P2O7-4 -# Enthalpy of formation: -2271.1 kJ/mol + -delta_H 27.2256 kJ/mol # Calculated enthalpy of reaction P2O7-4 +# Enthalpy of formation: -2271.1 kJ/mol -analytic 4.0885e+2 1.3243e-1 -1.1373e+4 -1.6727e+2 -1.7758e+2 # -Range: 0-300 3 H+ + HPO4-2 = PH4+ + 2 O2 -llnl_gamma 4 log_k -212.7409 - -delta_H 0 # Not possible to calculate enthalpy of reaction PH4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PH4+ +# Enthalpy of formation: -0 kcal/mol HPO4-2 + H+ + F- = PO3F-2 + H2O -llnl_gamma 4 log_k 7.1993 - -delta_H 0 # Not possible to calculate enthalpy of reaction PO3F-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PO3F-2 +# Enthalpy of formation: -0 kcal/mol HPO4-2 = PO4-3 + H+ -llnl_gamma 4 log_k -12.3218 - -delta_H 14.7068 kJ/mol # Calculated enthalpy of reaction PO4-3 -# Enthalpy of formation: -305.3 kcal/mol + -delta_H 14.7068 kJ/mol # Calculated enthalpy of reaction PO4-3 +# Enthalpy of formation: -305.3 kcal/mol -analytic -7.617e+1 -3.3574e-2 1.3405e+2 2.9658e+1 2.114e+0 # -Range: 0-300 2 BrO3- + Pb+2 = Pb(BrO3)2 -llnl_gamma 3 log_k 5.1939 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(BrO3)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(BrO3)2 +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Pb+2 = Pb(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -6.1133 - -delta_H 10.5437 kJ/mol # Calculated enthalpy of reaction Pb(Acetate)2 -# Enthalpy of formation: -229.46 kcal/mol + -delta_H 10.5437 kJ/mol # Calculated enthalpy of reaction Pb(Acetate)2 +# Enthalpy of formation: -229.46 kcal/mol -analytic -1.7315e+1 -1.0618e-3 -3.6365e+3 6.9263e+0 5.8659e+5 # -Range: 0-300 3 HAcetate + Pb+2 = Pb(Acetate)3- + 3 H+ -llnl_gamma 4 log_k -8.972 - -delta_H -2.84512 kJ/mol # Calculated enthalpy of reaction Pb(Acetate)3- -# Enthalpy of formation: -348.76 kcal/mol + -delta_H -2.84512 kJ/mol # Calculated enthalpy of reaction Pb(Acetate)3- +# Enthalpy of formation: -348.76 kcal/mol -analytic 1.2417e+1 -3.1481e-3 -9.4152e+3 -1.6846e+0 1.3623e+6 # -Range: 0-300 2 HCO3- + Pb+2 = Pb(CO3)2-2 + 2 H+ -llnl_gamma 4 log_k -11.2576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(CO3)2-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(CO3)2-2 +# Enthalpy of formation: -0 kcal/mol 2 ClO3- + Pb+2 = Pb(ClO3)2 -llnl_gamma 3 log_k -0.5133 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(ClO3)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(ClO3)2 +# Enthalpy of formation: -0 kcal/mol 2 H2O + Pb+2 = Pb(OH)2 + 2 H+ -llnl_gamma 3 log_k -17.0902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)2 +# Enthalpy of formation: -0 kcal/mol 3 H2O + Pb+2 = Pb(OH)3- + 3 H+ -llnl_gamma 4 log_k -28.0852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(OH)3- +# Enthalpy of formation: -0 kcal/mol 2 Thiocyanate- + Pb+2 = Pb(Thiocyanate)2 -llnl_gamma 3 log_k 1.2455 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(Thiocyanate)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(Thiocyanate)2 +# Enthalpy of formation: -0 kcal/mol 2 Pb+2 + H2O = Pb2OH+3 + H+ -llnl_gamma 5 log_k -6.3951 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2OH+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2OH+3 +# Enthalpy of formation: -0 kcal/mol 4 H2O + 3 Pb+2 = Pb3(OH)4+2 + 4 H+ -llnl_gamma 4.5 log_k -23.8803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb3(OH)4+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb3(OH)4+2 +# Enthalpy of formation: -0 kcal/mol 4 Pb+2 + 4 H2O = Pb4(OH)4+4 + 4 H+ -llnl_gamma 5.5 log_k -20.8803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4(OH)4+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4(OH)4+4 +# Enthalpy of formation: -0 kcal/mol 8 H2O + 6 Pb+2 = Pb6(OH)8+4 + 8 H+ -llnl_gamma 5.5 log_k -43.5606 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb6(OH)8+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb6(OH)8+4 +# Enthalpy of formation: -0 kcal/mol Pb+2 + Br- = PbBr+ -llnl_gamma 4 log_k 1.1831 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr+ +# Enthalpy of formation: -0 kcal/mol 2 Br- + Pb+2 = PbBr2 -llnl_gamma 3 log_k 1.5062 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr2 +# Enthalpy of formation: -0 kcal/mol 3 Br- + Pb+2 = PbBr3- -llnl_gamma 4 log_k 1.2336 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBr3- +# Enthalpy of formation: -0 kcal/mol Pb+2 + BrO3- = PbBrO3+ -llnl_gamma 4 log_k 1.9373 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBrO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBrO3+ +# Enthalpy of formation: -0 kcal/mol Pb+2 + HAcetate = PbAcetate+ + H+ -llnl_gamma 4 log_k -2.3603 - -delta_H -2.33147e-15 kJ/mol # Calculated enthalpy of reaction PbAcetate+ -# Enthalpy of formation: -115.88 kcal/mol + -delta_H -2.33147e-15 kJ/mol # Calculated enthalpy of reaction PbAcetate+ +# Enthalpy of formation: -115.88 kcal/mol -analytic -2.6822e+1 1.0992e-3 7.3688e+2 8.4407e+0 7.0266e+4 # -Range: 0-300 Pb+2 + HCO3- = PbCO3 + H+ -llnl_gamma 3 log_k -3.7488 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbCO3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbCO3 +# Enthalpy of formation: -0 kcal/mol Pb+2 + Cl- = PbCl+ -llnl_gamma 4 log_k 1.4374 - -delta_H 4.53127 kJ/mol # Calculated enthalpy of reaction PbCl+ -# Enthalpy of formation: -38.63 kcal/mol + -delta_H 4.53127 kJ/mol # Calculated enthalpy of reaction PbCl+ +# Enthalpy of formation: -38.63 kcal/mol -analytic 1.1948e+2 4.3527e-2 -2.7666e+3 -4.919e+1 -4.3206e+1 # -Range: 0-300 2 Cl- + Pb+2 = PbCl2 -llnl_gamma 3 log_k 2.0026 - -delta_H 8.14206 kJ/mol # Calculated enthalpy of reaction PbCl2 -# Enthalpy of formation: -77.7 kcal/mol + -delta_H 8.14206 kJ/mol # Calculated enthalpy of reaction PbCl2 +# Enthalpy of formation: -77.7 kcal/mol -analytic 2.2537e+2 7.7574e-2 -5.5112e+3 -9.2131e+1 -8.6064e+1 # -Range: 0-300 3 Cl- + Pb+2 = PbCl3- -llnl_gamma 4 log_k 1.6881 - -delta_H 7.86174 kJ/mol # Calculated enthalpy of reaction PbCl3- -# Enthalpy of formation: -117.7 kcal/mol + -delta_H 7.86174 kJ/mol # Calculated enthalpy of reaction PbCl3- +# Enthalpy of formation: -117.7 kcal/mol -analytic 2.5254e+2 8.9159e-2 -6.0116e+3 -1.0395e+2 -9.388e+1 # -Range: 0-300 4 Cl- + Pb+2 = PbCl4-2 -llnl_gamma 4 log_k 1.4909 - -delta_H -7.18811 kJ/mol # Calculated enthalpy of reaction PbCl4-2 -# Enthalpy of formation: -161.23 kcal/mol + -delta_H -7.18811 kJ/mol # Calculated enthalpy of reaction PbCl4-2 +# Enthalpy of formation: -161.23 kcal/mol -analytic 1.4048e+2 7.6332e-2 -1.1507e+3 -6.3786e+1 -1.7997e+1 # -Range: 0-300 Pb+2 + ClO3- = PbClO3+ -llnl_gamma 4 log_k -0.2208 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbClO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbClO3+ +# Enthalpy of formation: -0 kcal/mol Pb+2 + F- = PbF+ -llnl_gamma 4 log_k 0.8284 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbF+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbF+ +# Enthalpy of formation: -0 kcal/mol 2 F- + Pb+2 = PbF2 -llnl_gamma 3 log_k 1.6132 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbF2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbF2 +# Enthalpy of formation: -0 kcal/mol Pb+2 + HPO4-2 + H+ = PbH2PO4+ -llnl_gamma 4 log_k 1.5 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbH2PO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbH2PO4+ +# Enthalpy of formation: -0 kcal/mol Pb+2 + HPO4-2 = PbHPO4 -llnl_gamma 3 log_k 3.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbHPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbHPO4 +# Enthalpy of formation: -0 kcal/mol Pb+2 + I- = PbI+ -llnl_gamma 4 log_k 1.9597 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbI+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbI+ +# Enthalpy of formation: -0 kcal/mol 2 I- + Pb+2 = PbI2 -llnl_gamma 3 log_k 2.7615 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbI2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbI2 +# Enthalpy of formation: -0 kcal/mol 3 I- + Pb+2 = PbI3- -llnl_gamma 4 log_k 3.3355 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbI3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbI3- +# Enthalpy of formation: -0 kcal/mol 4 I- + Pb+2 = PbI4-2 -llnl_gamma 4 log_k 4.0672 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbI4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbI4-2 +# Enthalpy of formation: -0 kcal/mol Pb+2 + NO3- = PbNO3+ -llnl_gamma 4 log_k 1.2271 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbNO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbNO3+ +# Enthalpy of formation: -0 kcal/mol Pb+2 + H2O = PbOH+ + H+ -llnl_gamma 4 log_k -7.6951 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbOH+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbOH+ +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Pb+2 = PbP2O7-2 + H2O -llnl_gamma 4 log_k 7.4136 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbP2O7-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbP2O7-2 +# Enthalpy of formation: -0 kcal/mol Thiocyanate- + Pb+2 = PbThiocyanate+ -llnl_gamma 4 log_k 0.9827 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbThiocyanate+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbThiocyanate+ +# Enthalpy of formation: -0 kcal/mol Pd+2 + Cl- = PdCl+ -llnl_gamma 4 log_k 6.0993 - -delta_H -31.995 kJ/mol # Calculated enthalpy of reaction PdCl+ -# Enthalpy of formation: -5.5 kcal/mol + -delta_H -31.995 kJ/mol # Calculated enthalpy of reaction PdCl+ +# Enthalpy of formation: -5.5 kcal/mol -analytic 7.2852e+1 3.6886e-2 7.3102e+2 -3.2402e+1 1.1385e+1 # -Range: 0-300 2 Cl- + Pd+2 = PdCl2 -llnl_gamma 3 log_k 10.7327 - -delta_H -66.1658 kJ/mol # Calculated enthalpy of reaction PdCl2 -# Enthalpy of formation: -53.6 kcal/mol + -delta_H -66.1658 kJ/mol # Calculated enthalpy of reaction PdCl2 +# Enthalpy of formation: -53.6 kcal/mol -analytic 1.6849e+2 7.9321e-2 8.2874e+2 -7.4416e+1 1.2882e+1 # -Range: 0-300 3 Cl- + Pd+2 = PdCl3- -llnl_gamma 4 log_k 13.0937 - -delta_H -101.592 kJ/mol # Calculated enthalpy of reaction PdCl3- -# Enthalpy of formation: -102 kcal/mol + -delta_H -101.592 kJ/mol # Calculated enthalpy of reaction PdCl3- +# Enthalpy of formation: -102 kcal/mol -analytic 4.5978e+1 6.2999e-2 6.9333e+3 -3.0257e+1 1.0817e+2 # -Range: 0-300 4 Cl- + Pd+2 = PdCl4-2 -llnl_gamma 4 log_k 15.1615 - -delta_H -152.08 kJ/mol # Calculated enthalpy of reaction PdCl4-2 -# Enthalpy of formation: -154 kcal/mol + -delta_H -152.08 kJ/mol # Calculated enthalpy of reaction PdCl4-2 +# Enthalpy of formation: -154 kcal/mol -analytic -3.2209e+1 5.3432e-2 1.218e+4 -3.7814e+0 1.9006e+2 # -Range: 0-300 Pd+2 + H2O = PdO + 2 H+ -llnl_gamma 3 log_k -2.19 - -delta_H 6.43081 kJ/mol # Calculated enthalpy of reaction PdO -# Enthalpy of formation: -24.7 kcal/mol + -delta_H 6.43081 kJ/mol # Calculated enthalpy of reaction PdO +# Enthalpy of formation: -24.7 kcal/mol -analytic 1.3587e+2 2.9292e-2 -4.6645e+3 -5.2997e+1 -7.2825e+1 # -Range: 0-300 Pd+2 + H2O = PdOH+ + H+ -llnl_gamma 4 log_k -1.0905 - -delta_H -3.19239 kJ/mol # Calculated enthalpy of reaction PdOH+ -# Enthalpy of formation: -27 kcal/mol + -delta_H -3.19239 kJ/mol # Calculated enthalpy of reaction PdOH+ +# Enthalpy of formation: -27 kcal/mol -analytic 1.4291e+1 5.8382e-3 -1.9881e+2 -6.6475e+0 -3.1065e+0 # -Range: 0-300 2 HCO3- + Pm+3 = Pm(CO3)2- + 2 H+ -llnl_gamma 4 log_k -7.9576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Pm+3 = Pm(HPO4)2- -llnl_gamma 4 log_k 9.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(HPO4)2- +# Enthalpy of formation: -0 kcal/mol 2 H2O + Pm+3 = Pm(OH)2+ + 2 H+ -llnl_gamma 4 log_k -16.7902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)2+ +# Enthalpy of formation: -0 kcal/mol 3 H2O + Pm+3 = Pm(OH)3 + 3 H+ -llnl_gamma 3 log_k -26.1852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3 +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Pm+3 = Pm(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -4.6837 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Pm+3 = Pm(SO4)2- -llnl_gamma 4 log_k 5.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(SO4)2- +# Enthalpy of formation: -0 kcal/mol Pm+3 + HCO3- = PmCO3+ + H+ -llnl_gamma 4 log_k -2.6288 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmCO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PmCO3+ +# Enthalpy of formation: -0 kcal/mol Pm+3 + Cl- = PmCl+2 -llnl_gamma 4.5 log_k 0.34 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmCl+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PmCl+2 +# Enthalpy of formation: -0 kcal/mol Pm+3 + F- = PmF+2 -llnl_gamma 4.5 log_k 3.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmF+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PmF+2 +# Enthalpy of formation: -0 kcal/mol Pm+3 + HPO4-2 + H+ = PmH2PO4+2 -llnl_gamma 4.5 log_k 9.6054 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmH2PO4+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PmH2PO4+2 +# Enthalpy of formation: -0 kcal/mol Pm+3 + HCO3- = PmHCO3+2 -llnl_gamma 4.5 log_k 2.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmHCO3+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PmHCO3+2 +# Enthalpy of formation: -0 kcal/mol Pm+3 + HPO4-2 = PmHPO4+ -llnl_gamma 4 log_k 5.5 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PmHPO4+ +# Enthalpy of formation: -0 kcal/mol Pm+3 + NO3- = PmNO3+2 -llnl_gamma 4.5 log_k 1.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmNO3+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PmNO3+2 +# Enthalpy of formation: -0 kcal/mol Pm+3 + H2O = PmOH+2 + H+ -llnl_gamma 4.5 log_k -7.9951 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmOH+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PmOH+2 +# Enthalpy of formation: -0 kcal/mol Pm+3 + HPO4-2 = PmPO4 + H+ -llnl_gamma 3 log_k -0.3718 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PmPO4 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Pm+3 = PmSO4+ -llnl_gamma 4 log_k 3.5 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmSO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PmSO4+ +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Pr+3 = Pr(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -4.8525 - -delta_H -23.8906 kJ/mol # Calculated enthalpy of reaction Pr(Acetate)2+ -# Enthalpy of formation: -406.71 kcal/mol + -delta_H -23.8906 kJ/mol # Calculated enthalpy of reaction Pr(Acetate)2+ +# Enthalpy of formation: -406.71 kcal/mol -analytic -1.6464e+1 6.2989e-4 -4.4771e+2 3.6947e+0 3.3816e+5 # -Range: 0-300 3 HAcetate + Pr+3 = Pr(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -8.2023 - -delta_H -40.3756 kJ/mol # Calculated enthalpy of reaction Pr(Acetate)3 -# Enthalpy of formation: -526.75 kcal/mol + -delta_H -40.3756 kJ/mol # Calculated enthalpy of reaction Pr(Acetate)3 +# Enthalpy of formation: -526.75 kcal/mol -analytic -1.2007e+1 4.9332e-4 0e+0 0e+0 3.2789e+5 # -Range: 0-300 2 HCO3- + Pr+3 = Pr(CO3)2- + 2 H+ -llnl_gamma 4 log_k -8.1076 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Pr+3 = Pr(HPO4)2- -llnl_gamma 4 log_k 8.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(HPO4)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Pr+3 = Pr(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -5.5637 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Pr+3 = Pr(SO4)2- -llnl_gamma 4 log_k 4.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(SO4)2- +# Enthalpy of formation: -0 kcal/mol Pr+3 + HAcetate = PrAcetate+2 + H+ -llnl_gamma 4.5 log_k -2.0451 - -delta_H -12.4683 kJ/mol # Calculated enthalpy of reaction PrAcetate+2 -# Enthalpy of formation: -287.88 kcal/mol + -delta_H -12.4683 kJ/mol # Calculated enthalpy of reaction PrAcetate+2 +# Enthalpy of formation: -287.88 kcal/mol -analytic -8.5624e+0 9.3878e-4 -5.7551e+2 2.2087e+0 2.4126e+5 # -Range: 0-300 Pr+3 + HCO3- = PrCO3+ + H+ -llnl_gamma 4 log_k -2.7722 - -delta_H 92.458 kJ/mol # Calculated enthalpy of reaction PrCO3+ -# Enthalpy of formation: -311.6 kcal/mol + -delta_H 92.458 kJ/mol # Calculated enthalpy of reaction PrCO3+ +# Enthalpy of formation: -311.6 kcal/mol -analytic 2.2079e+2 5.2156e-2 -6.5821e+3 -8.7701e+1 -1.0277e+2 # -Range: 0-300 Pr+3 + Cl- = PrCl+2 -llnl_gamma 4.5 log_k 0.3086 - -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction PrCl+2 -# Enthalpy of formation: -205.3 kcal/mol + -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction PrCl+2 +# Enthalpy of formation: -205.3 kcal/mol -analytic 7.5152e+1 3.7446e-2 -1.6661e+3 -3.249e+1 -2.602e+1 # -Range: 0-300 2 Cl- + Pr+3 = PrCl2+ -llnl_gamma 4 log_k 0.0308 - -delta_H 20.3593 kJ/mol # Calculated enthalpy of reaction PrCl2+ -# Enthalpy of formation: -243.8 kcal/mol + -delta_H 20.3593 kJ/mol # Calculated enthalpy of reaction PrCl2+ +# Enthalpy of formation: -243.8 kcal/mol -analytic 2.2848e+2 8.125e-2 -6.0401e+3 -9.3909e+1 -9.4318e+1 # -Range: 0-300 3 Cl- + Pr+3 = PrCl3 -llnl_gamma 3 log_k -0.3203 - -delta_H 14.2214 kJ/mol # Calculated enthalpy of reaction PrCl3 -# Enthalpy of formation: -285.2 kcal/mol + -delta_H 14.2214 kJ/mol # Calculated enthalpy of reaction PrCl3 +# Enthalpy of formation: -285.2 kcal/mol -analytic 4.5016e+2 1.3095e-1 -1.2588e+4 -1.8075e+2 -1.9656e+2 # -Range: 0-300 4 Cl- + Pr+3 = PrCl4- -llnl_gamma 4 log_k -0.7447 - -delta_H -4.05011 kJ/mol # Calculated enthalpy of reaction PrCl4- -# Enthalpy of formation: -329.5 kcal/mol + -delta_H -4.05011 kJ/mol # Calculated enthalpy of reaction PrCl4- +# Enthalpy of formation: -329.5 kcal/mol -analytic 5.4245e+2 1.3647e-1 -1.5564e+4 -2.1485e+2 -2.4302e+2 # -Range: 0-300 Pr+3 + F- = PrF+2 -llnl_gamma 4.5 log_k 4.2221 - -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction PrF+2 -# Enthalpy of formation: -243.4 kcal/mol + -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction PrF+2 +# Enthalpy of formation: -243.4 kcal/mol -analytic 9.5146e+1 4.1115e-2 -2.5463e+3 -3.8236e+1 -3.976e+1 # -Range: 0-300 2 F- + Pr+3 = PrF2+ -llnl_gamma 4 log_k 7.3447 - -delta_H 14.644 kJ/mol # Calculated enthalpy of reaction PrF2+ -# Enthalpy of formation: -325.6 kcal/mol + -delta_H 14.644 kJ/mol # Calculated enthalpy of reaction PrF2+ +# Enthalpy of formation: -325.6 kcal/mol -analytic 2.4997e+2 8.5251e-2 -6.1908e+3 -9.9912e+1 -9.6675e+1 # -Range: 0-300 3 F- + Pr+3 = PrF3 -llnl_gamma 3 log_k 9.661 - -delta_H -6.4852 kJ/mol # Calculated enthalpy of reaction PrF3 -# Enthalpy of formation: -410.8 kcal/mol + -delta_H -6.4852 kJ/mol # Calculated enthalpy of reaction PrF3 +# Enthalpy of formation: -410.8 kcal/mol -analytic 4.7885e+2 1.3764e-1 -1.208e+4 -1.898e+2 -1.8864e+2 # -Range: 0-300 4 F- + Pr+3 = PrF4- -llnl_gamma 4 log_k 11.5375 - -delta_H -47.2792 kJ/mol # Calculated enthalpy of reaction PrF4- -# Enthalpy of formation: -500.7 kcal/mol + -delta_H -47.2792 kJ/mol # Calculated enthalpy of reaction PrF4- +# Enthalpy of formation: -500.7 kcal/mol -analytic 5.5774e+2 1.4067e-1 -1.3523e+4 -2.1933e+2 -2.1118e+2 # -Range: 0-300 Pr+3 + HPO4-2 + H+ = PrH2PO4+2 -llnl_gamma 4.5 log_k 9.595 - -delta_H -16.2548 kJ/mol # Calculated enthalpy of reaction PrH2PO4+2 -# Enthalpy of formation: -481.5 kcal/mol + -delta_H -16.2548 kJ/mol # Calculated enthalpy of reaction PrH2PO4+2 +# Enthalpy of formation: -481.5 kcal/mol -analytic 1.0501e+2 6.3059e-2 3.8161e+2 -4.6656e+1 5.9234e+0 # -Range: 0-300 Pr+3 + HCO3- = PrHCO3+2 -llnl_gamma 4.5 log_k 1.919 - -delta_H -12.9788 kJ/mol # Calculated enthalpy of reaction PrHCO3+2 -# Enthalpy of formation: -336.8 kcal/mol + -delta_H -12.9788 kJ/mol # Calculated enthalpy of reaction PrHCO3+2 +# Enthalpy of formation: -336.8 kcal/mol -analytic 2.201e+1 2.8541e-2 1.4574e+3 -1.3522e+1 2.2734e+1 # -Range: 0-300 Pr+3 + HPO4-2 = PrHPO4+ -llnl_gamma 4 log_k 5.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction PrHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PrHPO4+ +# Enthalpy of formation: -0 kcal/mol Pr+3 + NO3- = PrNO3+2 -llnl_gamma 4.5 log_k 0.6546 - -delta_H -27.9115 kJ/mol # Calculated enthalpy of reaction PrNO3+2 -# Enthalpy of formation: -224.9 kcal/mol + -delta_H -27.9115 kJ/mol # Calculated enthalpy of reaction PrNO3+2 +# Enthalpy of formation: -224.9 kcal/mol -analytic 1.4297e+1 2.5214e-2 2.1756e+3 -1.149e+1 3.3943e+1 # -Range: 0-300 Pr+3 + H2O = PrO+ + 2 H+ -llnl_gamma 4 log_k -17.29 - -delta_H 117.642 kJ/mol # Calculated enthalpy of reaction PrO+ -# Enthalpy of formation: -209 kcal/mol + -delta_H 117.642 kJ/mol # Calculated enthalpy of reaction PrO+ +# Enthalpy of formation: -209 kcal/mol -analytic 1.7927e+2 2.9467e-2 -1.3815e+4 -6.4259e+1 -2.1562e+2 # -Range: 0-300 2 H2O + Pr+3 = PrO2- + 4 H+ -llnl_gamma 4 log_k -37.5852 - -delta_H 301.39 kJ/mol # Calculated enthalpy of reaction PrO2- -# Enthalpy of formation: -233.4 kcal/mol + -delta_H 301.39 kJ/mol # Calculated enthalpy of reaction PrO2- +# Enthalpy of formation: -233.4 kcal/mol -analytic -4.448e+1 -1.6327e-2 -7.9031e+3 1.9348e+1 -8.544e+5 # -Range: 0-300 2 H2O + Pr+3 = PrO2H + 3 H+ -llnl_gamma 3 log_k -26.5901 - -delta_H 231.517 kJ/mol # Calculated enthalpy of reaction PrO2H -# Enthalpy of formation: -250.1 kcal/mol + -delta_H 231.517 kJ/mol # Calculated enthalpy of reaction PrO2H +# Enthalpy of formation: -250.1 kcal/mol -analytic 3.393e+2 4.4894e-2 -2.3769e+4 -1.2106e+2 -3.7099e+2 # -Range: 0-300 Pr+3 + H2O = PrOH+2 + H+ -llnl_gamma 4.5 log_k -8.274 - -delta_H 81.2407 kJ/mol # Calculated enthalpy of reaction PrOH+2 -# Enthalpy of formation: -217.7 kcal/mol + -delta_H 81.2407 kJ/mol # Calculated enthalpy of reaction PrOH+2 +# Enthalpy of formation: -217.7 kcal/mol -analytic 5.6599e+1 1.1073e-2 -5.9197e+3 -1.9525e+1 -9.2388e+1 # -Range: 0-300 Pr+3 + HPO4-2 = PrPO4 + H+ -llnl_gamma 3 log_k -0.7218 - -delta_H 0 # Not possible to calculate enthalpy of reaction PrPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PrPO4 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Pr+3 = PrSO4+ -llnl_gamma 4 log_k -3.687 - -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction PrSO4+ -# Enthalpy of formation: -381.5 kcal/mol + -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction PrSO4+ +# Enthalpy of formation: -381.5 kcal/mol -analytic 2.9156e+2 8.4671e-2 -1.0638e+4 -1.1509e+2 -1.6608e+2 # -Range: 0-300 2 HPO4-2 + Pu+4 = Pu(HPO4)2 -llnl_gamma 3 log_k 23.8483 - -delta_H 25.9279 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)2 -# Enthalpy of formation: -3094.13 kJ/mol + -delta_H 25.9279 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)2 +# Enthalpy of formation: -3094.13 kJ/mol -analytic 9.2387e+2 3.2577e-1 -2.0881e+4 -3.7466e+2 -3.5492e+2 # -Range: 0-200 3 HPO4-2 + Pu+4 = Pu(HPO4)3-2 -llnl_gamma 4 log_k 33.4599 - -delta_H -6.49412 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)3-2 -# Enthalpy of formation: -4418.63 kJ/mol + -delta_H -6.49412 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)3-2 +# Enthalpy of formation: -4418.63 kJ/mol -analytic 6.4515e+2 2.3011e-1 -1.2752e+4 -2.5761e+2 -1.9917e+2 # -Range: 0-300 4 HPO4-2 + Pu+4 = Pu(HPO4)4-4 -llnl_gamma 4 log_k 43.2467 - -delta_H -77.4832 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)4-4 -# Enthalpy of formation: -5781.7 kJ/mol + -delta_H -77.4832 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)4-4 +# Enthalpy of formation: -5781.7 kJ/mol -analytic 8.5301e+2 3.073e-1 -1.3644e+4 -3.4573e+2 -2.1316e+2 # -Range: 0-300 2 H2O + Pu+4 = Pu(OH)2+2 + 2 H+ -llnl_gamma 4.5 log_k -2.3235 - -delta_H 74.3477 kJ/mol # Calculated enthalpy of reaction Pu(OH)2+2 -# Enthalpy of formation: -1033.22 kJ/mol + -delta_H 74.3477 kJ/mol # Calculated enthalpy of reaction Pu(OH)2+2 +# Enthalpy of formation: -1033.22 kJ/mol -analytic 7.5979e+1 6.8394e-3 -6.371e+3 -2.3833e+1 -9.9435e+1 # -Range: 0-300 3 H2O + Pu+4 = Pu(OH)3+ + 3 H+ -llnl_gamma 4 log_k -5.281 - -delta_H 96.578 kJ/mol # Calculated enthalpy of reaction Pu(OH)3+ -# Enthalpy of formation: -1296.83 kJ/mol + -delta_H 96.578 kJ/mol # Calculated enthalpy of reaction Pu(OH)3+ +# Enthalpy of formation: -1296.83 kJ/mol -analytic 1.0874e+2 1.4199e-2 -8.4954e+3 -3.6278e+1 -1.3259e+2 # -Range: 0-300 4 H2O + Pu+4 = Pu(OH)4 + 4 H+ -llnl_gamma 3 log_k -9.5174 - -delta_H 109.113 kJ/mol # Calculated enthalpy of reaction Pu(OH)4 -# Enthalpy of formation: -1570.13 kJ/mol + -delta_H 109.113 kJ/mol # Calculated enthalpy of reaction Pu(OH)4 +# Enthalpy of formation: -1570.13 kJ/mol -analytic 2.7913e+2 1.0252e-1 -1.1289e+4 -1.1369e+2 -1.9181e+2 # -Range: 0-200 2 SO4-2 + Pu+4 = Pu(SO4)2 -llnl_gamma 3 log_k 10.2456 - -delta_H 41.0122 kJ/mol # Calculated enthalpy of reaction Pu(SO4)2 -# Enthalpy of formation: -2314.08 kJ/mol + -delta_H 41.0122 kJ/mol # Calculated enthalpy of reaction Pu(SO4)2 +# Enthalpy of formation: -2314.08 kJ/mol -analytic 5.3705e+2 1.9308e-1 -1.3213e+4 -2.1824e+2 -2.2457e+2 # -Range: 0-200 2 SO4-2 + Pu+3 = Pu(SO4)2- -llnl_gamma 4 log_k 6.32 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pu(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pu(SO4)2- +# Enthalpy of formation: -0 kcal/mol Pu+4 + F- = PuF+3 -llnl_gamma 5 log_k 8.46 - -delta_H 0 # Not possible to calculate enthalpy of reaction PuF+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PuF+3 +# Enthalpy of formation: -0 kcal/mol 2 F- + Pu+4 = PuF2+2 -llnl_gamma 4.5 log_k 15.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction PuF2+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PuF2+2 +# Enthalpy of formation: -0 kcal/mol 3 F- + Pu+4 = PuF3+ -llnl_gamma 4 log_k 5.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction PuF3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PuF3+ +# Enthalpy of formation: -0 kcal/mol 4 F- + Pu+4 = PuF4 -llnl_gamma 3 log_k 4.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction PuF4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PuF4 +# Enthalpy of formation: -0 kcal/mol Pu+3 + HPO4-2 + H+ = PuH2PO4+2 -llnl_gamma 4.5 log_k 9.6817 - -delta_H 28.597 kJ/mol # Calculated enthalpy of reaction PuH2PO4+2 -# Enthalpy of formation: -1855.04 kJ/mol + -delta_H 28.597 kJ/mol # Calculated enthalpy of reaction PuH2PO4+2 +# Enthalpy of formation: -1855.04 kJ/mol -analytic 2.1595e+2 6.4502e-2 -6.4723e+3 -8.2341e+1 -1.0106e+2 # -Range: 0-300 Pu+4 + HPO4-2 = PuHPO4+2 -llnl_gamma 4.5 log_k 13.0103 - -delta_H 40.306 kJ/mol # Calculated enthalpy of reaction PuHPO4+2 -# Enthalpy of formation: -1787.67 kJ/mol + -delta_H 40.306 kJ/mol # Calculated enthalpy of reaction PuHPO4+2 +# Enthalpy of formation: -1787.67 kJ/mol -analytic 2.2662e+2 7.1073e-2 -6.9134e+3 -8.5504e+1 -1.0794e+2 # -Range: 0-300 2 HCO3- + PuO2+2 = PuO2(CO3)2-2 + 2 H+ -llnl_gamma 4 log_k -5.7428 - -delta_H 52.3345 kJ/mol # Calculated enthalpy of reaction PuO2(CO3)2-2 -# Enthalpy of formation: -2149.11 kJ/mol + -delta_H 52.3345 kJ/mol # Calculated enthalpy of reaction PuO2(CO3)2-2 +# Enthalpy of formation: -2149.11 kJ/mol -analytic 2.6589e+2 7.6132e-2 -9.7187e+3 -1.0577e+2 -1.5173e+2 # -Range: 0-300 PuO2+2 + Cl- = PuO2Cl+ -llnl_gamma 4 log_k -0.2084 - -delta_H 11.6127 kJ/mol # Calculated enthalpy of reaction PuO2Cl+ -# Enthalpy of formation: -977.045 kJ/mol + -delta_H 11.6127 kJ/mol # Calculated enthalpy of reaction PuO2Cl+ +# Enthalpy of formation: -977.045 kJ/mol -analytic 9.8385e+1 3.8617e-2 -2.521e+3 -4.1075e+1 -3.9367e+1 # -Range: 0-300 PuO2+2 + F- = PuO2F+ -llnl_gamma 4 log_k 5.6674 - -delta_H -5.2094 kJ/mol # Calculated enthalpy of reaction PuO2F+ -# Enthalpy of formation: -1162.13 kJ/mol + -delta_H -5.2094 kJ/mol # Calculated enthalpy of reaction PuO2F+ +# Enthalpy of formation: -1162.13 kJ/mol -analytic 1.1412e+2 4.1224e-2 -2.0503e+3 -4.6009e+1 -3.2027e+1 # -Range: 0-300 2 F- + PuO2+2 = PuO2F2 -llnl_gamma 3 log_k 10.9669 - -delta_H -15.4738 kJ/mol # Calculated enthalpy of reaction PuO2F2 -# Enthalpy of formation: -1507.75 kJ/mol + -delta_H -15.4738 kJ/mol # Calculated enthalpy of reaction PuO2F2 +# Enthalpy of formation: -1507.75 kJ/mol -analytic 2.5502e+2 9.1597e-2 -4.4557e+3 -1.0362e+2 -7.5752e+1 # -Range: 0-200 3 F- + PuO2+2 = PuO2F3- -llnl_gamma 4 log_k 15.916 - -delta_H -29.4032 kJ/mol # Calculated enthalpy of reaction PuO2F3- -# Enthalpy of formation: -1857.02 kJ/mol + -delta_H -29.4032 kJ/mol # Calculated enthalpy of reaction PuO2F3- +# Enthalpy of formation: -1857.02 kJ/mol -analytic 3.6102e+2 8.6364e-2 -8.7129e+3 -1.3805e+2 -1.3606e+2 # -Range: 0-300 4 F- + PuO2+2 = PuO2F4-2 -llnl_gamma 4 log_k 18.7628 - -delta_H -39.9786 kJ/mol # Calculated enthalpy of reaction PuO2F4-2 -# Enthalpy of formation: -2202.95 kJ/mol + -delta_H -39.9786 kJ/mol # Calculated enthalpy of reaction PuO2F4-2 +# Enthalpy of formation: -2202.95 kJ/mol -analytic 4.6913e+2 1.3649e-1 -9.8336e+3 -1.851e+2 -1.5358e+2 # -Range: 0-300 PuO2+2 + HPO4-2 + H+ = PuO2H2PO4+ -llnl_gamma 4 log_k 11.2059 - -delta_H -6.63904 kJ/mol # Calculated enthalpy of reaction PuO2H2PO4+ -# Enthalpy of formation: -2120.3 kJ/mol + -delta_H -6.63904 kJ/mol # Calculated enthalpy of reaction PuO2H2PO4+ +# Enthalpy of formation: -2120.3 kJ/mol -analytic 2.1053e+2 6.8671e-2 -4.339e+3 -8.293e+1 -6.7768e+1 # -Range: 0-300 PuO2+ + H2O = PuO2OH + H+ -llnl_gamma 3 log_k -9.6674 - -delta_H 69.1763 kJ/mol # Calculated enthalpy of reaction PuO2OH -# Enthalpy of formation: -1130.85 kJ/mol + -delta_H 69.1763 kJ/mol # Calculated enthalpy of reaction PuO2OH +# Enthalpy of formation: -1130.85 kJ/mol -analytic 7.108e+1 2.6141e-2 -5.0337e+3 -2.8956e+1 -8.5504e+1 # -Range: 0-200 PuO2+2 + H2O = PuO2OH+ + H+ -llnl_gamma 4 log_k -5.6379 - -delta_H 45.2823 kJ/mol # Calculated enthalpy of reaction PuO2OH+ -# Enthalpy of formation: -1062.13 kJ/mol + -delta_H 45.2823 kJ/mol # Calculated enthalpy of reaction PuO2OH+ +# Enthalpy of formation: -1062.13 kJ/mol -analytic -3.9012e+0 1.1645e-3 -1.1299e+3 1.3419e+0 -1.4364e+5 # -Range: 0-300 SO4-2 + PuO2+2 = PuO2SO4 -llnl_gamma 3 log_k 3.2658 - -delta_H 20.0746 kJ/mol # Calculated enthalpy of reaction PuO2SO4 -# Enthalpy of formation: -1711.11 kJ/mol + -delta_H 20.0746 kJ/mol # Calculated enthalpy of reaction PuO2SO4 +# Enthalpy of formation: -1711.11 kJ/mol -analytic 2.0363e+2 7.3903e-2 -5.194e+3 -8.2833e+1 -8.8273e+1 # -Range: 0-200 Pu+3 + H2O = PuOH+2 + H+ -llnl_gamma 4.5 log_k -7.968 - -delta_H 53.5143 kJ/mol # Calculated enthalpy of reaction PuOH+2 -# Enthalpy of formation: -823.876 kJ/mol + -delta_H 53.5143 kJ/mol # Calculated enthalpy of reaction PuOH+2 +# Enthalpy of formation: -823.876 kJ/mol -analytic 3.0065e+0 3.0278e-3 -1.9675e+3 -1.61e+0 -1.1524e+5 # -Range: 0-300 Pu+4 + H2O = PuOH+3 + H+ -llnl_gamma 5 log_k -0.5048 - -delta_H 48.1823 kJ/mol # Calculated enthalpy of reaction PuOH+3 -# Enthalpy of formation: -773.549 kJ/mol + -delta_H 48.1823 kJ/mol # Calculated enthalpy of reaction PuOH+3 +# Enthalpy of formation: -773.549 kJ/mol -analytic 4.1056e+1 1.1119e-3 -3.9252e+3 -1.1609e+1 -6.126e+1 # -Range: 0-300 SO4-2 + Pu+3 = PuSO4+ -llnl_gamma 4 log_k 3.4935 - -delta_H 14.6006 kJ/mol # Calculated enthalpy of reaction PuSO4+ -# Enthalpy of formation: -1486.55 kJ/mol + -delta_H 14.6006 kJ/mol # Calculated enthalpy of reaction PuSO4+ +# Enthalpy of formation: -1486.55 kJ/mol -analytic 1.9194e+2 7.7154e-2 -4.2751e+3 -7.9646e+1 -6.6765e+1 # -Range: 0-300 SO4-2 + Pu+4 = PuSO4+2 -llnl_gamma 4.5 log_k 5.771 - -delta_H 12.3336 kJ/mol # Calculated enthalpy of reaction PuSO4+2 -# Enthalpy of formation: -1433.16 kJ/mol + -delta_H 12.3336 kJ/mol # Calculated enthalpy of reaction PuSO4+2 +# Enthalpy of formation: -1433.16 kJ/mol -analytic 1.9418e+2 7.5477e-2 -4.2767e+3 -7.9425e+1 -6.6792e+1 # -Range: 0-300 2 HAcetate + Ra+2 = Ra(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -7.9018 - -delta_H 21.0874 kJ/mol # Calculated enthalpy of reaction Ra(Acetate)2 -# Enthalpy of formation: -353.26 kcal/mol + -delta_H 21.0874 kJ/mol # Calculated enthalpy of reaction Ra(Acetate)2 +# Enthalpy of formation: -353.26 kcal/mol -analytic 2.2767e+1 3.1254e-3 -6.4558e+3 -7.2253e+0 7.0689e+5 # -Range: 0-300 Ra+2 + HAcetate = RaAcetate+ + H+ -llnl_gamma 4 log_k -3.709 - -delta_H 11.7989 kJ/mol # Calculated enthalpy of reaction RaAcetate+ -# Enthalpy of formation: -239.38 kcal/mol + -delta_H 11.7989 kJ/mol # Calculated enthalpy of reaction RaAcetate+ +# Enthalpy of formation: -239.38 kcal/mol -analytic -1.8268e+1 2.9956e-3 1.9313e+1 5.2767e+0 4.9771e+4 # -Range: 0-300 2 HAcetate + Rb+ = Rb(Acetate)2- + 2 H+ -llnl_gamma 4 log_k -9.7636 - -delta_H -1.12968 kJ/mol # Calculated enthalpy of reaction Rb(Acetate)2- -# Enthalpy of formation: -292.49 kcal/mol + -delta_H -1.12968 kJ/mol # Calculated enthalpy of reaction Rb(Acetate)2- +# Enthalpy of formation: -292.49 kcal/mol -analytic -1.9198e+2 -4.2101e-2 5.5792e+3 7.1152e+1 8.7114e+1 # -Range: 0-300 Rb+ + Br- = RbBr -llnl_gamma 3 log_k -1.2168 - -delta_H 13.9327 kJ/mol # Calculated enthalpy of reaction RbBr -# Enthalpy of formation: -85.73 kcal/mol + -delta_H 13.9327 kJ/mol # Calculated enthalpy of reaction RbBr +# Enthalpy of formation: -85.73 kcal/mol -analytic 1.2054e+2 3.3825e-2 -3.95e+3 -4.792e+1 -6.1671e+1 # -Range: 0-300 Rb+ + HAcetate = RbAcetate + H+ -llnl_gamma 3 log_k -4.7279 - -delta_H 4.89528 kJ/mol # Calculated enthalpy of reaction RbAcetate -# Enthalpy of formation: -174.95 kcal/mol + -delta_H 4.89528 kJ/mol # Calculated enthalpy of reaction RbAcetate +# Enthalpy of formation: -174.95 kcal/mol -analytic 1.5661e+1 -2.423e-3 -2.528e+3 -5.4433e+0 2.0344e+5 # -Range: 0-300 Rb+ + Cl- = RbCl -llnl_gamma 3 log_k -0.9595 - -delta_H 13.1922 kJ/mol # Calculated enthalpy of reaction RbCl -# Enthalpy of formation: -96.8 kcal/mol + -delta_H 13.1922 kJ/mol # Calculated enthalpy of reaction RbCl +# Enthalpy of formation: -96.8 kcal/mol -analytic 1.2689e+2 3.5557e-2 -4.0822e+3 -5.0412e+1 -6.3736e+1 # -Range: 0-300 Rb+ + F- = RbF -llnl_gamma 3 log_k 0.9602 - -delta_H 1.92464 kJ/mol # Calculated enthalpy of reaction RbF -# Enthalpy of formation: -139.71 kcal/mol + -delta_H 1.92464 kJ/mol # Calculated enthalpy of reaction RbF +# Enthalpy of formation: -139.71 kcal/mol -analytic 1.3893e+2 3.8188e-2 -3.8677e+3 -5.5109e+1 -6.0393e+1 # -Range: 0-300 Rb+ + I- = RbI -llnl_gamma 3 log_k -0.8136 - -delta_H 7.1128 kJ/mol # Calculated enthalpy of reaction RbI -# Enthalpy of formation: -71.92 kcal/mol + -delta_H 7.1128 kJ/mol # Calculated enthalpy of reaction RbI +# Enthalpy of formation: -71.92 kcal/mol -analytic 1.1486e+2 3.3121e-2 -3.4217e+3 -4.6096e+1 -5.3426e+1 # -Range: 0-300 2 Cl- + Ru+3 = Ru(Cl)2+ -llnl_gamma 4 log_k 3.7527 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(Cl)2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(Cl)2+ +# Enthalpy of formation: -0 kcal/mol 3 Cl- + Ru+3 = Ru(Cl)3 -llnl_gamma 3 log_k 4.2976 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(Cl)3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(Cl)3 +# Enthalpy of formation: -0 kcal/mol 2 H2O + Ru+3 = Ru(OH)2+ + 2 H+ -llnl_gamma 4 log_k -3.5148 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2+ +# Enthalpy of formation: -0 kcal/mol Ru(OH)2+2 + Cl- = Ru(OH)2Cl+ -llnl_gamma 4 log_k 1.3858 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl+ +# Enthalpy of formation: -0 kcal/mol 2 Cl- + Ru(OH)2+2 = Ru(OH)2Cl2 -llnl_gamma 3 log_k 1.8081 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl2 +# Enthalpy of formation: -0 kcal/mol 3 Cl- + Ru(OH)2+2 = Ru(OH)2Cl3- -llnl_gamma 4 log_k 1.6172 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl3- +# Enthalpy of formation: -0 kcal/mol 4 Cl- + Ru(OH)2+2 = Ru(OH)2Cl4-2 -llnl_gamma 4 log_k 2.7052 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2Cl4-2 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Ru(OH)2+2 = Ru(OH)2SO4 -llnl_gamma 3 log_k 1.7941 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2SO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)2SO4 +# Enthalpy of formation: -0 kcal/mol #3.0000 H2O + 1.0000 Ru++ + 0.5000 O2 = Ru(OH)4 +2.0000 H+ # Ru(OH)2++ +1.0000 H2O +0.5000 O2 = 4.0000 H+ + 1.0000 RuO4-- log_k -25.2470 @@ -7367,99 +7367,99 @@ SO4-2 + Ru(OH)2+2 = Ru(OH)2SO4 2 H2O + Ru(OH)2+2 = Ru(OH)4 + 2 H+ -llnl_gamma 3 # log_k +18.0322 - log_k -7.0538 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)4 -# Enthalpy of formation: -0 kcal/mol + log_k -7.0538 + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)4 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Ru+3 = Ru(SO4)2- -llnl_gamma 4 log_k 3.0627 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(SO4)2- +# Enthalpy of formation: -0 kcal/mol 4 Ru(OH)2+2 + 4 H2O = Ru4(OH)12+4 + 4 H+ -llnl_gamma 5.5 log_k 7.196 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru4(OH)12+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru4(OH)12+4 +# Enthalpy of formation: -0 kcal/mol Ru+2 + Cl- = RuCl+ -llnl_gamma 4 log_k -0.4887 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl+ +# Enthalpy of formation: -0 kcal/mol Ru+3 + Cl- = RuCl+2 -llnl_gamma 4.5 log_k 2.1742 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl+2 +# Enthalpy of formation: -0 kcal/mol 4 Cl- + Ru+3 = RuCl4- -llnl_gamma 4 log_k 4.1418 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl4- +# Enthalpy of formation: -0 kcal/mol 5 Cl- + Ru+3 = RuCl5-2 -llnl_gamma 4 log_k 3.8457 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl5-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl5-2 +# Enthalpy of formation: -0 kcal/mol 6 Cl- + Ru+3 = RuCl6-3 -llnl_gamma 4 log_k 3.4446 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl6-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl6-3 +# Enthalpy of formation: -0 kcal/mol Ru+3 + H2O = RuOH+2 + H+ -llnl_gamma 4.5 log_k -2.2392 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuOH+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuOH+2 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Ru+2 = RuSO4 -llnl_gamma 3 log_k 2.3547 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuSO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuSO4 +# Enthalpy of formation: -0 kcal/mol SO4-2 + Ru+3 = RuSO4+ -llnl_gamma 4 log_k 1.9518 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuSO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuSO4+ +# Enthalpy of formation: -0 kcal/mol HS- = S-2 + H+ -llnl_gamma 5 log_k -12.9351 - -delta_H 49.0364 kJ/mol # Calculated enthalpy of reaction S-2 -# Enthalpy of formation: 32.928 kJ/mol + -delta_H 49.0364 kJ/mol # Calculated enthalpy of reaction S-2 +# Enthalpy of formation: 32.928 kJ/mol -analytic 9.7756e+1 3.2913e-2 -5.0784e+3 -4.1812e+1 -7.9273e+1 # -Range: 0-300 2 H+ + 2 SO3-2 = S2O5-2 + H2O -llnl_gamma 4 log_k 9.5934 - -delta_H 0 # Not possible to calculate enthalpy of reaction S2O5-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction S2O5-2 +# Enthalpy of formation: -0 kcal/mol -analytic 0.12262E+3 0.62883E-1 -0.18005E+4 -0.50798E+2 -0.28132E+2 # -Range: 0-300 2 H+ + SO3-2 = SO2 + H2O -llnl_gamma 3 log_k 9.0656 - -delta_H 26.7316 kJ/mol # Calculated enthalpy of reaction SO2 -# Enthalpy of formation: -77.194 kcal/mol + -delta_H 26.7316 kJ/mol # Calculated enthalpy of reaction SO2 +# Enthalpy of formation: -77.194 kcal/mol -analytic 9.4048e+1 6.2127e-2 -1.1072e+3 -4.031e+1 -1.7305e+1 # -Range: 0-300 Sb(OH)3 + H+ = Sb(OH)2+ + H2O -llnl_gamma 4 log_k 1.49 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)2+ +# Enthalpy of formation: -0 kcal/mol -analytic -4.9192e+0 -1.6439e-4 1.4777e+3 6.0724e-1 2.3059e+1 # -Range: 0-300 @@ -7467,8 +7467,8 @@ Sb(OH)3 + H+ = Sb(OH)2+ + H2O Sb(OH)3 + H+ + F- = Sb(OH)2F + H2O -llnl_gamma 3 log_k 7.17 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)2F -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)2F +# Enthalpy of formation: -0 kcal/mol -analytic -1.6961e+2 5.7364e-2 2.7207e+4 3.7969e+1 -2.2834e+6 # -Range: 0-300 @@ -7476,8 +7476,8 @@ Sb(OH)3 + H+ + F- = Sb(OH)2F + H2O Sb(OH)3 + H2O = Sb(OH)4- + H+ -llnl_gamma 4 log_k -11.92 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)4- +# Enthalpy of formation: -0 kcal/mol -analytic 4.9839e+1 -6.7112e-3 -4.8976e+3 -1.7138e+1 -8.3725e+4 # -Range: 0-300 @@ -7485,8 +7485,8 @@ Sb(OH)3 + H2O = Sb(OH)4- + H+ 4 HS- + 2 Sb(OH)3 + 2 H+ = Sb2S4-2 + 6 H2O -llnl_gamma 4 log_k 39.11 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb2S4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb2S4-2 +# Enthalpy of formation: -0 kcal/mol -analytic 1.7631e+2 8.3686e-2 9.7091e+3 -7.8605e+1 1.5145e+2 # -Range: 0-300 @@ -7494,295 +7494,295 @@ Sb(OH)3 + H2O = Sb(OH)4- + H+ 4 Cl- + 3 H+ + Sb(OH)3 = SbCl4- + 3 H2O -llnl_gamma 4 log_k 3.072 - -delta_H 0 # Not possible to calculate enthalpy of reaction SbCl4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SbCl4- +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Sc+3 = Sc(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -3.7237 - -delta_H -43.1789 kJ/mol # Calculated enthalpy of reaction Sc(Acetate)2+ -# Enthalpy of formation: -389.32 kcal/mol + -delta_H -43.1789 kJ/mol # Calculated enthalpy of reaction Sc(Acetate)2+ +# Enthalpy of formation: -389.32 kcal/mol -analytic -4.1862e+1 -3.9443e-5 2.1444e+2 1.2616e+1 5.5442e+5 # -Range: 0-300 3 HAcetate + Sc+3 = Sc(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -6.6777 - -delta_H -70.0402 kJ/mol # Calculated enthalpy of reaction Sc(Acetate)3 -# Enthalpy of formation: -511.84 kcal/mol + -delta_H -70.0402 kJ/mol # Calculated enthalpy of reaction Sc(Acetate)3 +# Enthalpy of formation: -511.84 kcal/mol -analytic -5.2525e+1 1.6181e-3 7.5022e+2 1.3988e+1 7.354e+5 # -Range: 0-300 Sc+3 + HAcetate = ScAcetate+2 + H+ -llnl_gamma 4.5 log_k -1.4294 - -delta_H -21.7568 kJ/mol # Calculated enthalpy of reaction ScAcetate+2 -# Enthalpy of formation: -268.1 kcal/mol + -delta_H -21.7568 kJ/mol # Calculated enthalpy of reaction ScAcetate+2 +# Enthalpy of formation: -268.1 kcal/mol -analytic -2.34e+1 1.3144e-4 1.1125e+2 7.3527e+0 3.0025e+5 # -Range: 0-300 6 F- + 4 H+ + SiO2 = SiF6-2 + 2 H2O -llnl_gamma 4 log_k 26.2749 - -delta_H -70.9565 kJ/mol # Calculated enthalpy of reaction SiF6-2 -# Enthalpy of formation: -571 kcal/mol + -delta_H -70.9565 kJ/mol # Calculated enthalpy of reaction SiF6-2 +# Enthalpy of formation: -571 kcal/mol -analytic 2.3209e+2 1.0685e-1 5.8428e+2 -9.6798e+1 9.0486e+0 # -Range: 0-300 2 HAcetate + Sm+3 = Sm(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -4.7132 - -delta_H -25.5224 kJ/mol # Calculated enthalpy of reaction Sm(Acetate)2+ -# Enthalpy of formation: -403.5 kcal/mol + -delta_H -25.5224 kJ/mol # Calculated enthalpy of reaction Sm(Acetate)2+ +# Enthalpy of formation: -403.5 kcal/mol -analytic -1.4192e+1 2.1732e-3 -1.0267e+3 2.9516e+0 4.4389e+5 # -Range: 0-300 3 HAcetate + Sm+3 = Sm(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -7.8798 - -delta_H -43.5554 kJ/mol # Calculated enthalpy of reaction Sm(Acetate)3 -# Enthalpy of formation: -523.91 kcal/mol + -delta_H -43.5554 kJ/mol # Calculated enthalpy of reaction Sm(Acetate)3 +# Enthalpy of formation: -523.91 kcal/mol -analytic -2.0765e+1 1.1047e-3 -5.1181e+2 3.4797e+0 5.0618e+5 # -Range: 0-300 2 HCO3- + Sm+3 = Sm(CO3)2- + 2 H+ -llnl_gamma 4 log_k -7.8576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Sm+3 = Sm(HPO4)2- -llnl_gamma 4 log_k 9.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(HPO4)2- +# Enthalpy of formation: -0 kcal/mol # Redundant with SmO2- #4.0000 H2O + 1.0000 Sm+++ = Sm(OH)4- +4.0000 H+ # -llnl_gamma 4.0 # log_k -36.8803 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)4- -## Enthalpy of formation: -0 kcal/mol +# -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)4- +## Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Sm+3 = Sm(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -4.2437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Sm+3 = Sm(SO4)2- -llnl_gamma 4 log_k 5.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(SO4)2- +# Enthalpy of formation: -0 kcal/mol Sm+3 + HAcetate = SmAcetate+2 + H+ -llnl_gamma 4.5 log_k -1.9205 - -delta_H -13.598 kJ/mol # Calculated enthalpy of reaction SmAcetate+2 -# Enthalpy of formation: -284.55 kcal/mol + -delta_H -13.598 kJ/mol # Calculated enthalpy of reaction SmAcetate+2 +# Enthalpy of formation: -284.55 kcal/mol -analytic -1.1734e+1 1.0889e-3 -5.1061e+2 3.3317e+0 2.6395e+5 # -Range: 0-300 Sm+3 + HCO3- = SmCO3+ + H+ -llnl_gamma 4 log_k -2.479 - -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction SmCO3+ -# Enthalpy of formation: -308.8 kcal/mol + -delta_H 89.1108 kJ/mol # Calculated enthalpy of reaction SmCO3+ +# Enthalpy of formation: -308.8 kcal/mol -analytic 2.3486e+2 5.3703e-2 -7.0193e+3 -9.2863e+1 -1.096e+2 # -Range: 0-300 Sm+3 + Cl- = SmCl+2 -llnl_gamma 4.5 log_k 0.3086 - -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction SmCl+2 -# Enthalpy of formation: -201.7 kcal/mol + -delta_H 14.3637 kJ/mol # Calculated enthalpy of reaction SmCl+2 +# Enthalpy of formation: -201.7 kcal/mol -analytic 9.4972e+1 3.9428e-2 -2.4198e+3 -3.9718e+1 -3.7787e+1 # -Range: 0-300 2 Cl- + Sm+3 = SmCl2+ -llnl_gamma 4 log_k -0.0425 - -delta_H 19.9409 kJ/mol # Calculated enthalpy of reaction SmCl2+ -# Enthalpy of formation: -240.3 kcal/mol + -delta_H 19.9409 kJ/mol # Calculated enthalpy of reaction SmCl2+ +# Enthalpy of formation: -240.3 kcal/mol -analytic 2.5872e+2 8.4154e-2 -7.2061e+3 -1.0493e+2 -1.1252e+2 # -Range: 0-300 3 Cl- + Sm+3 = SmCl3 -llnl_gamma 3 log_k -0.3936 - -delta_H 13.803 kJ/mol # Calculated enthalpy of reaction SmCl3 -# Enthalpy of formation: -281.7 kcal/mol + -delta_H 13.803 kJ/mol # Calculated enthalpy of reaction SmCl3 +# Enthalpy of formation: -281.7 kcal/mol -analytic 4.9535e+2 1.352e-1 -1.4325e+4 -1.972e+2 -2.2367e+2 # -Range: 0-300 4 Cl- + Sm+3 = SmCl4- -llnl_gamma 4 log_k -0.818 - -delta_H -5.30531 kJ/mol # Calculated enthalpy of reaction SmCl4- -# Enthalpy of formation: -326.2 kcal/mol + -delta_H -5.30531 kJ/mol # Calculated enthalpy of reaction SmCl4- +# Enthalpy of formation: -326.2 kcal/mol -analytic 6.0562e+2 1.4212e-1 -1.7982e+4 -2.3782e+2 -2.8077e+2 # -Range: 0-300 Sm+3 + F- = SmF+2 -llnl_gamma 4.5 log_k 4.3687 - -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction SmF+2 -# Enthalpy of formation: -239.9 kcal/mol + -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction SmF+2 +# Enthalpy of formation: -239.9 kcal/mol -analytic 1.1514e+2 4.3117e-2 -3.2853e+3 -4.5499e+1 -5.1297e+1 # -Range: 0-300 2 F- + Sm+3 = SmF2+ -llnl_gamma 4 log_k 7.6379 - -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction SmF2+ -# Enthalpy of formation: -322.2 kcal/mol + -delta_H 13.8072 kJ/mol # Calculated enthalpy of reaction SmF2+ +# Enthalpy of formation: -322.2 kcal/mol -analytic 2.803e+2 8.8143e-2 -7.2857e+3 -1.1092e+2 -1.1377e+2 # -Range: 0-300 3 F- + Sm+3 = SmF3 -llnl_gamma 3 log_k 10.0275 - -delta_H -8.5772 kJ/mol # Calculated enthalpy of reaction SmF3 -# Enthalpy of formation: -407.7 kcal/mol + -delta_H -8.5772 kJ/mol # Calculated enthalpy of reaction SmF3 +# Enthalpy of formation: -407.7 kcal/mol -analytic 5.2425e+2 1.4191e-1 -1.3728e+4 -2.0628e+2 -2.1436e+2 # -Range: 0-300 4 F- + Sm+3 = SmF4- -llnl_gamma 4 log_k 11.9773 - -delta_H -49.7896 kJ/mol # Calculated enthalpy of reaction SmF4- -# Enthalpy of formation: -497.7 kcal/mol + -delta_H -49.7896 kJ/mol # Calculated enthalpy of reaction SmF4- +# Enthalpy of formation: -497.7 kcal/mol -analytic 6.2228e+2 1.4659e-1 -1.5887e+4 -2.4275e+2 -2.4809e+2 # -Range: 0-300 Sm+3 + HPO4-2 + H+ = SmH2PO4+2 -llnl_gamma 4.5 log_k 9.4484 - -delta_H -15.8364 kJ/mol # Calculated enthalpy of reaction SmH2PO4+2 -# Enthalpy of formation: -477.8 kcal/mol + -delta_H -15.8364 kJ/mol # Calculated enthalpy of reaction SmH2PO4+2 +# Enthalpy of formation: -477.8 kcal/mol -analytic 1.2451e+2 6.4959e-2 -3.9576e+2 -5.3772e+1 -6.2124e+0 # -Range: 0-300 Sm+3 + HCO3- = SmHCO3+2 -llnl_gamma 4.5 log_k 1.7724 - -delta_H 9.19643 kJ/mol # Calculated enthalpy of reaction SmHCO3+2 -# Enthalpy of formation: -327.9 kcal/mol + -delta_H 9.19643 kJ/mol # Calculated enthalpy of reaction SmHCO3+2 +# Enthalpy of formation: -327.9 kcal/mol -analytic 5.552e+1 3.3265e-2 -7.3142e+2 -2.4727e+1 -1.143e+1 # -Range: 0-300 Sm+3 + HPO4-2 = SmHPO4+ -llnl_gamma 4 log_k 5.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction SmHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SmHPO4+ +# Enthalpy of formation: -0 kcal/mol Sm+3 + NO3- = SmNO3+2 -llnl_gamma 4.5 log_k 0.8012 - -delta_H -29.1667 kJ/mol # Calculated enthalpy of reaction SmNO3+2 -# Enthalpy of formation: -221.6 kcal/mol + -delta_H -29.1667 kJ/mol # Calculated enthalpy of reaction SmNO3+2 +# Enthalpy of formation: -221.6 kcal/mol -analytic 3.3782e+1 2.7125e-2 1.5091e+3 -1.8632e+1 2.3537e+1 # -Range: 0-300 Sm+3 + H2O = SmO+ + 2 H+ -llnl_gamma 4 log_k -16.4837 - -delta_H 113.039 kJ/mol # Calculated enthalpy of reaction SmO+ -# Enthalpy of formation: -206.5 kcal/mol + -delta_H 113.039 kJ/mol # Calculated enthalpy of reaction SmO+ +# Enthalpy of formation: -206.5 kcal/mol -analytic 1.8554e+2 3.0198e-2 -1.3791e+4 -6.6588e+1 -2.1526e+2 # -Range: 0-300 2 H2O + Sm+3 = SmO2- + 4 H+ -llnl_gamma 4 log_k -35.0197 - -delta_H 285.909 kJ/mol # Calculated enthalpy of reaction SmO2- -# Enthalpy of formation: -233.5 kcal/mol + -delta_H 285.909 kJ/mol # Calculated enthalpy of reaction SmO2- +# Enthalpy of formation: -233.5 kcal/mol -analytic 1.3508e+1 -8.3384e-3 -1.0325e+4 -1.5506e+0 -6.7392e+5 # -Range: 0-300 2 H2O + Sm+3 = SmO2H + 3 H+ -llnl_gamma 3 log_k -25.9304 - -delta_H 226.497 kJ/mol # Calculated enthalpy of reaction SmO2H -# Enthalpy of formation: -247.7 kcal/mol + -delta_H 226.497 kJ/mol # Calculated enthalpy of reaction SmO2H +# Enthalpy of formation: -247.7 kcal/mol -analytic 3.6882e+2 5.3761e-2 -2.4317e+4 -1.3305e+2 -3.7956e+2 # -Range: 0-300 Sm+3 + H2O = SmOH+2 + H+ -llnl_gamma 4.5 log_k -7.9808 - -delta_H 79.1487 kJ/mol # Calculated enthalpy of reaction SmOH+2 -# Enthalpy of formation: -214.6 kcal/mol + -delta_H 79.1487 kJ/mol # Calculated enthalpy of reaction SmOH+2 +# Enthalpy of formation: -214.6 kcal/mol -analytic 6.3793e+1 1.1977e-2 -6.0852e+3 -2.2198e+1 -9.4972e+1 # -Range: 0-300 Sm+3 + HPO4-2 = SmPO4 + H+ -llnl_gamma 3 log_k -0.2218 - -delta_H 0 # Not possible to calculate enthalpy of reaction SmPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SmPO4 +# Enthalpy of formation: -0 kcal/mol Sm+3 + SO4-2 = SmSO4+ -llnl_gamma 4 log_k 3.643 - -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction SmSO4+ -# Enthalpy of formation: -377.8 kcal/mol + -delta_H 20.0832 kJ/mol # Calculated enthalpy of reaction SmSO4+ +# Enthalpy of formation: -377.8 kcal/mol -analytic 3.0597e+2 8.6258e-2 -9.0231e+3 -1.2032e+2 -1.4089e+2 # -Range: 0-300 2 H2O + Sn+2 = Sn(OH)2 + 2 H+ -llnl_gamma 3 log_k -7.9102 - -delta_H 42.0534 kJ/mol # Calculated enthalpy of reaction Sn(OH)2 -# Enthalpy of formation: -128.683 kcal/mol + -delta_H 42.0534 kJ/mol # Calculated enthalpy of reaction Sn(OH)2 +# Enthalpy of formation: -128.683 kcal/mol -analytic -3.7979e+1 -1.0893e-2 -1.2048e+3 1.51e+1 -2.0445e+1 # -Range: 0-200 2 H2O + Sn+4 = Sn(OH)2+2 + 2 H+ -llnl_gamma 4.5 log_k -0.1902 - -delta_H -2.02087 kJ/mol # Calculated enthalpy of reaction Sn(OH)2+2 -# Enthalpy of formation: -129.888 kcal/mol + -delta_H -2.02087 kJ/mol # Calculated enthalpy of reaction Sn(OH)2+2 +# Enthalpy of formation: -129.888 kcal/mol -analytic -2.1675e+1 5.9697e-3 3.3953e+3 4.8158e+0 -3.2042e+5 # -Range: 0-300 3 H2O + Sn+4 = Sn(OH)3+ + 3 H+ -llnl_gamma 4 log_k 0.5148 - -delta_H -7.59396 kJ/mol # Calculated enthalpy of reaction Sn(OH)3+ -# Enthalpy of formation: -199.537 kcal/mol + -delta_H -7.59396 kJ/mol # Calculated enthalpy of reaction Sn(OH)3+ +# Enthalpy of formation: -199.537 kcal/mol -analytic -3.3294e+1 8.858e-3 5.3803e+3 7.4994e+0 -4.8389e+5 # -Range: 0-300 3 H2O + Sn+2 = Sn(OH)3- + 3 H+ -llnl_gamma 4 log_k -17.4052 - -delta_H 94.7007 kJ/mol # Calculated enthalpy of reaction Sn(OH)3- -# Enthalpy of formation: -184.417 kcal/mol + -delta_H 94.7007 kJ/mol # Calculated enthalpy of reaction Sn(OH)3- +# Enthalpy of formation: -184.417 kcal/mol -analytic 1.5614e+2 1.9943e-2 -1.07e+4 -5.8031e+1 -1.6701e+2 # -Range: 0-300 4 H2O + Sn+4 = Sn(OH)4 + 4 H+ -llnl_gamma 3 log_k 0.8497 - -delta_H -11.0583 kJ/mol # Calculated enthalpy of reaction Sn(OH)4 -# Enthalpy of formation: -268.682 kcal/mol + -delta_H -11.0583 kJ/mol # Calculated enthalpy of reaction Sn(OH)4 +# Enthalpy of formation: -268.682 kcal/mol -analytic -7.9563e+1 -2.2641e-2 2.6682e+3 3.1614e+1 4.5337e+1 # -Range: 0-200 2 SO4-2 + Sn+4 = Sn(SO4)2 -llnl_gamma 3 log_k -0.8072 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sn(SO4)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sn(SO4)2 +# Enthalpy of formation: -0 kcal/mol Sn+2 + Cl- = SnCl+ -llnl_gamma 4 log_k 1.05 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl+ +# Enthalpy of formation: -0 kcal/mol -analytic 3.0558e+2 8.2458e-2 -8.9329e+3 -1.2088e+2 -1.3948e+2 # -Range: 0-300 @@ -7790,8 +7790,8 @@ Sn+2 + Cl- = SnCl+ 2 Cl- + Sn+2 = SnCl2 -llnl_gamma 3 log_k 1.71 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl2 +# Enthalpy of formation: -0 kcal/mol -analytic 3.66e+2 1.0753e-1 -1.0006e+4 -1.466e+2 -1.5624e+2 # -Range: 0-300 @@ -7799,8 +7799,8 @@ Sn+2 + Cl- = SnCl+ 3 Cl- + Sn+2 = SnCl3- -llnl_gamma 4 log_k 1.69 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SnCl3- +# Enthalpy of formation: -0 kcal/mol -analytic 3.6019e+2 1.0602e-1 -1.0337e+4 -1.4363e+2 -1.6141e+2 # -Range: 0-300 @@ -7808,8 +7808,8 @@ Sn+2 + Cl- = SnCl+ Sn+2 + F- = SnF+ -llnl_gamma 4 log_k 4.08 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnF+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SnF+ +# Enthalpy of formation: -0 kcal/mol -analytic 3.002e+2 7.5485e-2 -8.4231e+3 -1.1734e+2 -1.3152e+2 # -Range: 0-300 @@ -7817,8 +7817,8 @@ Sn+2 + F- = SnF+ 2 F- + Sn+2 = SnF2 -llnl_gamma 3 log_k 6.68 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnF2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SnF2 +# Enthalpy of formation: -0 kcal/mol -analytic 4.1241e+2 1.0988e-1 -1.1151e+4 -1.6207e+2 -1.7413e+2 # -Range: 0-300 @@ -7826,8 +7826,8 @@ Sn+2 + F- = SnF+ 3 F- + Sn+2 = SnF3- -llnl_gamma 4 log_k 9.46 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnF3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SnF3- +# Enthalpy of formation: -0 kcal/mol -analytic 4.1793e+2 1.0898e-1 -1.1402e+4 -1.6273e+2 -1.7803e+2 # -Range: 0-300 @@ -7835,1892 +7835,1892 @@ Sn+2 + F- = SnF+ Sn+2 + H2O = SnOH+ + H+ -llnl_gamma 4 log_k -3.9851 - -delta_H 21.2045 kJ/mol # Calculated enthalpy of reaction SnOH+ -# Enthalpy of formation: -65.349 kcal/mol + -delta_H 21.2045 kJ/mol # Calculated enthalpy of reaction SnOH+ +# Enthalpy of formation: -65.349 kcal/mol -analytic 7.7253e+1 1.9149e-2 -3.3745e+3 -3.056e+1 -5.2679e+1 # -Range: 0-300 Sn+4 + H2O = SnOH+3 + H+ -llnl_gamma 5 log_k 0.6049 - -delta_H -5.00406 kJ/mol # Calculated enthalpy of reaction SnOH+3 -# Enthalpy of formation: -62.284 kcal/mol + -delta_H -5.00406 kJ/mol # Calculated enthalpy of reaction SnOH+3 +# Enthalpy of formation: -62.284 kcal/mol -analytic -1.1548e+1 2.8878e-3 1.9476e+3 2.6622e+0 -1.6274e+5 # -Range: 0-300 Sn+4 + SO4-2 = SnSO4+2 -llnl_gamma 4.5 log_k -3.1094 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnSO4+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SnSO4+2 +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Sr+2 = Sr(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -7.8212 - -delta_H 0.54392 kJ/mol # Calculated enthalpy of reaction Sr(Acetate)2 -# Enthalpy of formation: -363.74 kcal/mol + -delta_H 0.54392 kJ/mol # Calculated enthalpy of reaction Sr(Acetate)2 +# Enthalpy of formation: -363.74 kcal/mol -analytic 1.2965e+1 4.7082e-3 -5.2538e+3 -5.2337e+0 7.4721e+5 # -Range: 0-300 Sr+2 + HAcetate = SrAcetate+ + H+ -llnl_gamma 4 log_k -3.6724 - -delta_H 2.3012 kJ/mol # Calculated enthalpy of reaction SrAcetate+ -# Enthalpy of formation: -247.22 kcal/mol + -delta_H 2.3012 kJ/mol # Calculated enthalpy of reaction SrAcetate+ +# Enthalpy of formation: -247.22 kcal/mol -analytic -1.4301e+1 1.2481e-3 -7.569e+2 4.276e+0 1.98e+5 # -Range: 0-300 Sr+2 + HCO3- = SrCO3 + H+ -llnl_gamma 3 log_k -7.4635 - -delta_H 33.2544 kJ/mol # Calculated enthalpy of reaction SrCO3 -# Enthalpy of formation: -288.62 kcal/mol + -delta_H 33.2544 kJ/mol # Calculated enthalpy of reaction SrCO3 +# Enthalpy of formation: -288.62 kcal/mol -analytic 2.2303e+2 5.2582e-2 -8.4861e+3 -8.7975e+1 -1.3248e+2 # -Range: 0-300 Sr+2 + Cl- = SrCl+ -llnl_gamma 4 log_k -0.2485 - -delta_H 7.58559 kJ/mol # Calculated enthalpy of reaction SrCl+ -# Enthalpy of formation: -169.79 kcal/mol + -delta_H 7.58559 kJ/mol # Calculated enthalpy of reaction SrCl+ +# Enthalpy of formation: -169.79 kcal/mol -analytic 9.4568e+1 3.9042e-2 -2.1458e+3 -4.0105e+1 -3.3511e+1 # -Range: 0-300 Sr+2 + F- = SrF+ -llnl_gamma 4 log_k 0.1393 - -delta_H 4.8116 kJ/mol # Calculated enthalpy of reaction SrF+ -# Enthalpy of formation: -210.67 kcal/mol + -delta_H 4.8116 kJ/mol # Calculated enthalpy of reaction SrF+ +# Enthalpy of formation: -210.67 kcal/mol -analytic 9.0295e+1 3.7609e-2 -1.9012e+3 -3.8379e+1 -2.9693e+1 # -Range: 0-300 Sr+2 + HPO4-2 + H+ = SrH2PO4+ -llnl_gamma 4 log_k 0.73 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrH2PO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SrH2PO4+ +# Enthalpy of formation: -0 kcal/mol Sr+2 + HPO4-2 = SrHPO4 -llnl_gamma 3 log_k 2.06 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrHPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SrHPO4 +# Enthalpy of formation: -0 kcal/mol Sr+2 + NO3- = SrNO3+ -llnl_gamma 4 log_k 0.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrNO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SrNO3+ +# Enthalpy of formation: -0 kcal/mol Sr+2 + H2O = SrOH+ + H+ -llnl_gamma 4 log_k -13.29 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrOH+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SrOH+ +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Sr+2 = SrP2O7-2 + H2O -llnl_gamma 4 log_k 1.6537 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrP2O7-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SrP2O7-2 +# Enthalpy of formation: -0 kcal/mol Sr+2 + SO4-2 = SrSO4 -llnl_gamma 3 log_k 2.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrSO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SrSO4 +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Tb+3 = Tb(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -4.9625 - -delta_H -27.9491 kJ/mol # Calculated enthalpy of reaction Tb(Acetate)2+ -# Enthalpy of formation: -405.78 kcal/mol + -delta_H -27.9491 kJ/mol # Calculated enthalpy of reaction Tb(Acetate)2+ +# Enthalpy of formation: -405.78 kcal/mol -analytic -2.391e+1 1.3433e-3 -8.08e+2 6.3895e+0 4.8619e+5 # -Range: 0-300 3 HAcetate + Tb+3 = Tb(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -8.3489 - -delta_H -47.1537 kJ/mol # Calculated enthalpy of reaction Tb(Acetate)3 -# Enthalpy of formation: -526.47 kcal/mol + -delta_H -47.1537 kJ/mol # Calculated enthalpy of reaction Tb(Acetate)3 +# Enthalpy of formation: -526.47 kcal/mol -analytic -1.0762e+1 4.2361e-3 -1.562e+3 -3.9317e-1 6.5745e+5 # -Range: 0-300 2 HCO3- + Tb+3 = Tb(CO3)2- + 2 H+ -llnl_gamma 4 log_k -7.5576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Tb+3 = Tb(HPO4)2- -llnl_gamma 4 log_k 9.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(HPO4)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Tb+3 = Tb(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -3.6437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Tb+3 = Tb(SO4)2- -llnl_gamma 4 log_k 5 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(SO4)2- +# Enthalpy of formation: -0 kcal/mol Tb+3 + HAcetate = TbAcetate+2 + H+ -llnl_gamma 4.5 log_k -2.1037 - -delta_H -14.2256 kJ/mol # Calculated enthalpy of reaction TbAcetate+2 -# Enthalpy of formation: -286.4 kcal/mol + -delta_H -14.2256 kJ/mol # Calculated enthalpy of reaction TbAcetate+2 +# Enthalpy of formation: -286.4 kcal/mol -analytic -1.6817e+1 6.429e-4 -3.4442e+2 5.0994e+0 2.7304e+5 # -Range: 0-300 Tb+3 + HCO3- = TbCO3+ + H+ -llnl_gamma 4 log_k -2.4057 - -delta_H 89.5292 kJ/mol # Calculated enthalpy of reaction TbCO3+ -# Enthalpy of formation: -310.4 kcal/mol + -delta_H 89.5292 kJ/mol # Calculated enthalpy of reaction TbCO3+ +# Enthalpy of formation: -310.4 kcal/mol -analytic 2.2347e+2 5.4185e-2 -6.4127e+3 -8.9112e+1 -1.0013e+2 # -Range: 0-300 Tb+3 + Cl- = TbCl+2 -llnl_gamma 4.5 log_k 0.2353 - -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction TbCl+2 -# Enthalpy of formation: -203.5 kcal/mol + -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction TbCl+2 +# Enthalpy of formation: -203.5 kcal/mol -analytic 7.1095e+1 3.7367e-2 -1.4676e+3 -3.114e+1 -2.2921e+1 # -Range: 0-300 2 Cl- + Tb+3 = TbCl2+ -llnl_gamma 4 log_k -0.0425 - -delta_H 18.2673 kJ/mol # Calculated enthalpy of reaction TbCl2+ -# Enthalpy of formation: -242.4 kcal/mol + -delta_H 18.2673 kJ/mol # Calculated enthalpy of reaction TbCl2+ +# Enthalpy of formation: -242.4 kcal/mol -analytic 2.0699e+2 7.9609e-2 -5.0958e+3 -8.6337e+1 -7.9576e+1 # -Range: 0-300 3 Cl- + Tb+3 = TbCl3 -llnl_gamma 3 log_k -0.4669 - -delta_H 10.0374 kJ/mol # Calculated enthalpy of reaction TbCl3 -# Enthalpy of formation: -284.3 kcal/mol + -delta_H 10.0374 kJ/mol # Calculated enthalpy of reaction TbCl3 +# Enthalpy of formation: -284.3 kcal/mol -analytic 4.0764e+2 1.2809e-1 -1.0704e+4 -1.6583e+2 -1.6715e+2 # -Range: 0-300 4 Cl- + Tb+3 = TbCl4- -llnl_gamma 4 log_k -0.8913 - -delta_H -11.5813 kJ/mol # Calculated enthalpy of reaction TbCl4- -# Enthalpy of formation: -329.4 kcal/mol + -delta_H -11.5813 kJ/mol # Calculated enthalpy of reaction TbCl4- +# Enthalpy of formation: -329.4 kcal/mol -analytic 4.6247e+2 1.2926e-1 -1.2117e+4 -1.8639e+2 -1.8921e+2 # -Range: 0-300 Tb+3 + F- = TbF+2 -llnl_gamma 4.5 log_k 4.6619 - -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction TbF+2 -# Enthalpy of formation: -241.6 kcal/mol + -delta_H 22.8028 kJ/mol # Calculated enthalpy of reaction TbF+2 +# Enthalpy of formation: -241.6 kcal/mol -analytic 9.2579e+1 4.1327e-2 -2.3647e+3 -3.7293e+1 -3.6927e+1 # -Range: 0-300 2 F- + Tb+3 = TbF2+ -llnl_gamma 4 log_k 8.151 - -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction TbF2+ -# Enthalpy of formation: -324.3 kcal/mol + -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction TbF2+ +# Enthalpy of formation: -324.3 kcal/mol -analytic 2.31e+2 8.4094e-2 -5.2548e+3 -9.3051e+1 -8.2065e+1 # -Range: 0-300 3 F- + Tb+3 = TbF3 -llnl_gamma 3 log_k 10.6872 - -delta_H -11.9244 kJ/mol # Calculated enthalpy of reaction TbF3 -# Enthalpy of formation: -410.2 kcal/mol + -delta_H -11.9244 kJ/mol # Calculated enthalpy of reaction TbF3 +# Enthalpy of formation: -410.2 kcal/mol -analytic 4.373e+2 1.3479e-1 -1.0128e+4 -1.7489e+2 -1.5817e+2 # -Range: 0-300 4 F- + Tb+3 = TbF4- -llnl_gamma 4 log_k 12.7836 - -delta_H -56.0656 kJ/mol # Calculated enthalpy of reaction TbF4- -# Enthalpy of formation: -500.9 kcal/mol + -delta_H -56.0656 kJ/mol # Calculated enthalpy of reaction TbF4- +# Enthalpy of formation: -500.9 kcal/mol -analytic 4.8546e+2 1.3511e-1 -1.0189e+4 -1.9347e+2 -1.5913e+2 # -Range: 0-300 Tb+3 + HPO4-2 + H+ = TbH2PO4+2 -llnl_gamma 4.5 log_k 9.3751 - -delta_H -17.51 kJ/mol # Calculated enthalpy of reaction TbH2PO4+2 -# Enthalpy of formation: -479.9 kcal/mol + -delta_H -17.51 kJ/mol # Calculated enthalpy of reaction TbH2PO4+2 +# Enthalpy of formation: -479.9 kcal/mol -analytic 1.0042e+2 6.2886e-2 6.0975e+2 -4.5178e+1 9.4847e+0 # -Range: 0-300 Tb+3 + HCO3- = TbHCO3+2 -llnl_gamma 4.5 log_k 1.6991 - -delta_H -14.6524 kJ/mol # Calculated enthalpy of reaction TbHCO3+2 -# Enthalpy of formation: -335.3 kcal/mol + -delta_H -14.6524 kJ/mol # Calculated enthalpy of reaction TbHCO3+2 +# Enthalpy of formation: -335.3 kcal/mol -analytic 1.7376e+1 2.8365e-2 1.6982e+3 -1.2044e+1 2.6494e+1 # -Range: 0-300 Tb+3 + HPO4-2 = TbHPO4+ -llnl_gamma 4 log_k 5.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction TbHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TbHPO4+ +# Enthalpy of formation: -0 kcal/mol Tb+3 + NO3- = TbNO3+2 -llnl_gamma 4.5 log_k 0.508 - -delta_H -31.2587 kJ/mol # Calculated enthalpy of reaction TbNO3+2 -# Enthalpy of formation: -223.8 kcal/mol + -delta_H -31.2587 kJ/mol # Calculated enthalpy of reaction TbNO3+2 +# Enthalpy of formation: -223.8 kcal/mol -analytic 8.7852e+0 2.4868e-2 2.5553e+3 -9.7944e+0 3.9871e+1 # -Range: 0-300 Tb+3 + H2O = TbO+ + 2 H+ -llnl_gamma 4 log_k -16.1904 - -delta_H 109.692 kJ/mol # Calculated enthalpy of reaction TbO+ -# Enthalpy of formation: -209 kcal/mol + -delta_H 109.692 kJ/mol # Calculated enthalpy of reaction TbO+ +# Enthalpy of formation: -209 kcal/mol -analytic 1.7975e+2 2.9563e-2 -1.3407e+4 -6.4573e+1 -2.0926e+2 # -Range: 0-300 2 H2O + Tb+3 = TbO2- + 4 H+ -llnl_gamma 4 log_k -34.2134 - -delta_H 278.797 kJ/mol # Calculated enthalpy of reaction TbO2- -# Enthalpy of formation: -236.9 kcal/mol + -delta_H 278.797 kJ/mol # Calculated enthalpy of reaction TbO2- +# Enthalpy of formation: -236.9 kcal/mol -analytic 1.6924e+2 1.1804e-2 -1.9821e+4 -5.6781e+1 -3.0933e+2 # -Range: 0-300 2 H2O + Tb+3 = TbO2H + 3 H+ -llnl_gamma 3 log_k -25.0508 - -delta_H 219.802 kJ/mol # Calculated enthalpy of reaction TbO2H -# Enthalpy of formation: -251 kcal/mol + -delta_H 219.802 kJ/mol # Calculated enthalpy of reaction TbO2H +# Enthalpy of formation: -251 kcal/mol -analytic 3.2761e+2 4.5225e-2 -2.2652e+4 -1.1727e+2 -3.5356e+2 # -Range: 0-300 Tb+3 + H2O = TbOH+2 + H+ -llnl_gamma 4.5 log_k -7.8342 - -delta_H 77.4751 kJ/mol # Calculated enthalpy of reaction TbOH+2 -# Enthalpy of formation: -216.7 kcal/mol + -delta_H 77.4751 kJ/mol # Calculated enthalpy of reaction TbOH+2 +# Enthalpy of formation: -216.7 kcal/mol -analytic 5.9574e+1 1.1625e-2 -5.8143e+3 -2.0759e+1 -9.0744e+1 # -Range: 0-300 Tb+3 + HPO4-2 = TbPO4 + H+ -llnl_gamma 3 log_k 0.0782 - -delta_H 0 # Not possible to calculate enthalpy of reaction TbPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TbPO4 +# Enthalpy of formation: -0 kcal/mol Tb+3 + SO4-2 = TbSO4+ -llnl_gamma 4 log_k 3.643 - -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction TbSO4+ -# Enthalpy of formation: -379.6 kcal/mol + -delta_H 19.6648 kJ/mol # Calculated enthalpy of reaction TbSO4+ +# Enthalpy of formation: -379.6 kcal/mol -analytic 2.9633e+2 8.5155e-2 -8.6346e+3 -1.1682e+2 -1.3482e+2 # -Range: 0-300 2 H2O + TcO+2 = TcO(OH)2 + 2 H+ -llnl_gamma 3 log_k -3.3221 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO(OH)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO(OH)2 +# Enthalpy of formation: -0 kcal/mol TcO+2 + H2O = TcOOH+ + H+ -llnl_gamma 4 log_k -1.1355 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcOOH+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TcOOH+ +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + 2 H+ + Th+4 = Th(H2PO4)2+2 -llnl_gamma 4.5 log_k 23.207 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th(H2PO4)2+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Th(H2PO4)2+2 +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Th+4 = Th(HPO4)2 -llnl_gamma 3 log_k 22.6939 - -delta_H -13.644 kJ/mol # Calculated enthalpy of reaction Th(HPO4)2 -# Enthalpy of formation: -804.691 kcal/mol + -delta_H -13.644 kJ/mol # Calculated enthalpy of reaction Th(HPO4)2 +# Enthalpy of formation: -804.691 kcal/mol -analytic 6.5208e+2 2.3099e-1 -1.299e+4 -2.6457e+2 -2.2082e+2 # -Range: 0-200 3 HPO4-2 + Th+4 = Th(HPO4)3-2 -llnl_gamma 4 log_k 31.1894 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th(HPO4)3-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Th(HPO4)3-2 +# Enthalpy of formation: -0 kcal/mol 2 H2O + Th+4 = Th(OH)2+2 + 2 H+ -llnl_gamma 4.5 log_k -7.1068 - -delta_H 58.668 kJ/mol # Calculated enthalpy of reaction Th(OH)2+2 -# Enthalpy of formation: -306.412 kcal/mol + -delta_H 58.668 kJ/mol # Calculated enthalpy of reaction Th(OH)2+2 +# Enthalpy of formation: -306.412 kcal/mol -analytic -1.1274e+1 3.4195e-3 -3.7553e+2 3.1299e+0 -2.9696e+5 # -Range: 0-300 3 H2O + Th+4 = Th(OH)3+ + 3 H+ -llnl_gamma 4 log_k -11.8623 - -delta_H 86.1318 kJ/mol # Calculated enthalpy of reaction Th(OH)3+ -# Enthalpy of formation: -368.165 kcal/mol + -delta_H 86.1318 kJ/mol # Calculated enthalpy of reaction Th(OH)3+ +# Enthalpy of formation: -368.165 kcal/mol 4 H2O + Th+4 = Th(OH)4 + 4 H+ -llnl_gamma 3 log_k -16.0315 - -delta_H 104.01 kJ/mol # Calculated enthalpy of reaction Th(OH)4 -# Enthalpy of formation: -432.209 kcal/mol + -delta_H 104.01 kJ/mol # Calculated enthalpy of reaction Th(OH)4 +# Enthalpy of formation: -432.209 kcal/mol -analytic 2.9534e+1 1.555e-2 -5.668e+3 -1.2598e+1 -9.6262e+1 # -Range: 0-200 2 SO4-2 + Th+4 = Th(SO4)2 -llnl_gamma 3 log_k 9.617 - -delta_H 32.2377 kJ/mol # Calculated enthalpy of reaction Th(SO4)2 -# Enthalpy of formation: -610.895 kcal/mol + -delta_H 32.2377 kJ/mol # Calculated enthalpy of reaction Th(SO4)2 +# Enthalpy of formation: -610.895 kcal/mol -analytic 4.6425e+2 1.6769e-1 -1.1195e+4 -1.8875e+2 -1.9027e+2 # -Range: 0-200 3 SO4-2 + Th+4 = Th(SO4)3-2 -llnl_gamma 4 log_k 10.4014 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th(SO4)3-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Th(SO4)3-2 +# Enthalpy of formation: -0 kcal/mol 4 SO4-2 + Th+4 = Th(SO4)4-4 -llnl_gamma 4 log_k 8.4003 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th(SO4)4-4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Th(SO4)4-4 +# Enthalpy of formation: -0 kcal/mol 2 Th+4 + 2 H2O = Th2(OH)2+6 + 2 H+ -llnl_gamma 6 log_k -6.4618 - -delta_H 63.7181 kJ/mol # Calculated enthalpy of reaction Th2(OH)2+6 -# Enthalpy of formation: -489.005 kcal/mol + -delta_H 63.7181 kJ/mol # Calculated enthalpy of reaction Th2(OH)2+6 +# Enthalpy of formation: -489.005 kcal/mol -analytic 6.8838e+1 -4.1348e-3 -6.4415e+3 -2.12e+1 -1.0053e+2 # -Range: 0-300 8 H2O + 4 Th+4 = Th4(OH)8+8 + 8 H+ -llnl_gamma 6 log_k -21.7568 - -delta_H 245.245 kJ/mol # Calculated enthalpy of reaction Th4(OH)8+8 -# Enthalpy of formation: -1223.12 kcal/mol + -delta_H 245.245 kJ/mol # Calculated enthalpy of reaction Th4(OH)8+8 +# Enthalpy of formation: -1223.12 kcal/mol -analytic 2.7826e+2 -2.3504e-3 -2.441e+4 -8.7873e+1 -3.8097e+2 # -Range: 0-300 15 H2O + 6 Th+4 = Th6(OH)15+9 + 15 H+ -llnl_gamma 6 log_k -37.7027 - -delta_H 458.248 kJ/mol # Calculated enthalpy of reaction Th6(OH)15+9 -# Enthalpy of formation: -2018.03 kcal/mol + -delta_H 458.248 kJ/mol # Calculated enthalpy of reaction Th6(OH)15+9 +# Enthalpy of formation: -2018.03 kcal/mol -analytic 5.2516e+2 3.3015e-3 -4.5237e+4 -1.6654e+2 -7.0603e+2 # -Range: 0-300 Th+4 + Cl- = ThCl+3 -llnl_gamma 5 log_k 0.9536 - -delta_H 0.06276 kJ/mol # Calculated enthalpy of reaction ThCl+3 -# Enthalpy of formation: -223.718 kcal/mol + -delta_H 0.06276 kJ/mol # Calculated enthalpy of reaction ThCl+3 +# Enthalpy of formation: -223.718 kcal/mol -analytic 9.743e+1 3.9398e-2 -1.8653e+3 -4.1202e+1 -2.9135e+1 # -Range: 0-300 2 Cl- + Th+4 = ThCl2+2 -llnl_gamma 4.5 log_k 0.6758 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl2+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl2+2 +# Enthalpy of formation: -0 kcal/mol 3 Cl- + Th+4 = ThCl3+ -llnl_gamma 4 log_k 1.4975 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl3+ +# Enthalpy of formation: -0 kcal/mol 4 Cl- + Th+4 = ThCl4 -llnl_gamma 3 log_k 1.0731 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ThCl4 +# Enthalpy of formation: -0 kcal/mol Th+4 + F- = ThF+3 -llnl_gamma 5 log_k 7.8725 - -delta_H -4.87436 kJ/mol # Calculated enthalpy of reaction ThF+3 -# Enthalpy of formation: -265.115 kcal/mol + -delta_H -4.87436 kJ/mol # Calculated enthalpy of reaction ThF+3 +# Enthalpy of formation: -265.115 kcal/mol -analytic 1.1679e+2 3.9201e-2 -2.2118e+3 -4.5736e+1 -3.4548e+1 # -Range: 0-300 2 F- + Th+4 = ThF2+2 -llnl_gamma 4.5 log_k 14.0884 - -delta_H -7.77806 kJ/mol # Calculated enthalpy of reaction ThF2+2 -# Enthalpy of formation: -345.959 kcal/mol + -delta_H -7.77806 kJ/mol # Calculated enthalpy of reaction ThF2+2 +# Enthalpy of formation: -345.959 kcal/mol -analytic 2.32e+2 7.9567e-2 -4.4418e+3 -9.1617e+1 -6.9379e+1 # -Range: 0-300 3 F- + Th+4 = ThF3+ -llnl_gamma 4 log_k 18.7357 - -delta_H -11.7068 kJ/mol # Calculated enthalpy of reaction ThF3+ -# Enthalpy of formation: -427.048 kcal/mol + -delta_H -11.7068 kJ/mol # Calculated enthalpy of reaction ThF3+ +# Enthalpy of formation: -427.048 kcal/mol -analytic 3.4511e+2 1.2149e-1 -6.5065e+3 -1.377e+2 -1.0163e+2 # -Range: 0-300 4 F- + Th+4 = ThF4 -llnl_gamma 3 log_k 22.1515 - -delta_H -14.8448 kJ/mol # Calculated enthalpy of reaction ThF4 -# Enthalpy of formation: -507.948 kcal/mol + -delta_H -14.8448 kJ/mol # Calculated enthalpy of reaction ThF4 +# Enthalpy of formation: -507.948 kcal/mol -analytic 6.1206e+2 2.1878e-1 -1.1938e+4 -2.4857e+2 -2.0294e+2 # -Range: 0-200 Th+4 + HPO4-2 + H+ = ThH2PO4+3 -llnl_gamma 5 log_k 11.7061 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThH2PO4+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ThH2PO4+3 +# Enthalpy of formation: -0 kcal/mol 2 H+ + Th+4 + HPO4-2 = ThH3PO4+4 -llnl_gamma 5.5 log_k 11.1197 - -delta_H 0 # Not possible to calculate enthalpy of reaction ThH3PO4+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ThH3PO4+4 +# Enthalpy of formation: -0 kcal/mol Th+4 + HPO4-2 = ThHPO4+2 -llnl_gamma 4.5 log_k 10.6799 - -delta_H 0.1046 kJ/mol # Calculated enthalpy of reaction ThHPO4+2 -# Enthalpy of formation: -492.59 kcal/mol + -delta_H 0.1046 kJ/mol # Calculated enthalpy of reaction ThHPO4+2 +# Enthalpy of formation: -492.59 kcal/mol Th+4 + H2O = ThOH+3 + H+ -llnl_gamma 5 log_k -3.8871 - -delta_H 25.0275 kJ/mol # Calculated enthalpy of reaction ThOH+3 -# Enthalpy of formation: -1029.83 kJ/mol + -delta_H 25.0275 kJ/mol # Calculated enthalpy of reaction ThOH+3 +# Enthalpy of formation: -1029.83 kJ/mol -analytic 1.0495e+1 5.1532e-3 -8.6396e+2 -4.842e+0 -9.2609e+4 # -Range: 0-300 Th+4 + SO4-2 = ThSO4+2 -llnl_gamma 4.5 log_k 5.3143 - -delta_H 16.3511 kJ/mol # Calculated enthalpy of reaction ThSO4+2 -# Enthalpy of formation: -397.292 kcal/mol + -delta_H 16.3511 kJ/mol # Calculated enthalpy of reaction ThSO4+2 +# Enthalpy of formation: -397.292 kcal/mol -analytic 1.9443e+2 7.5245e-2 -4.501e+3 -7.9379e+1 -7.0291e+1 # -Range: 0-300 2 HAcetate + Tl+ = Tl(Acetate)2- + 2 H+ -llnl_gamma 4 log_k -10.0129 - -delta_H 1.2552 kJ/mol # Calculated enthalpy of reaction Tl(Acetate)2- -# Enthalpy of formation: -230.62 kcal/mol + -delta_H 1.2552 kJ/mol # Calculated enthalpy of reaction Tl(Acetate)2- +# Enthalpy of formation: -230.62 kcal/mol -analytic -1.8123e+2 -4.0616e-2 5.0741e+3 6.7216e+1 7.9229e+1 # -Range: 0-300 Tl+ + HAcetate = TlAcetate + H+ -llnl_gamma 3 log_k -4.8672 - -delta_H 6.15048 kJ/mol # Calculated enthalpy of reaction TlAcetate -# Enthalpy of formation: -113.35 kcal/mol + -delta_H 6.15048 kJ/mol # Calculated enthalpy of reaction TlAcetate +# Enthalpy of formation: -113.35 kcal/mol -analytic 9.2977e+0 -3.4368e-3 -2.1748e+3 -3.1454e+0 1.7273e+5 # -Range: 0-300 2 HAcetate + Tm+3 = Tm(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -4.9844 - -delta_H -32.5934 kJ/mol # Calculated enthalpy of reaction Tm(Acetate)2+ -# Enthalpy of formation: -408.49 kcal/mol + -delta_H -32.5934 kJ/mol # Calculated enthalpy of reaction Tm(Acetate)2+ +# Enthalpy of formation: -408.49 kcal/mol -analytic -2.8983e+1 2.0256e-3 -1.1525e+3 8.2163e+0 6.182e+5 # -Range: 0-300 3 HAcetate + Tm+3 = Tm(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -8.3783 - -delta_H -54.8104 kJ/mol # Calculated enthalpy of reaction Tm(Acetate)3 -# Enthalpy of formation: -529.9 kcal/mol + -delta_H -54.8104 kJ/mol # Calculated enthalpy of reaction Tm(Acetate)3 +# Enthalpy of formation: -529.9 kcal/mol -analytic -2.89e+1 4.9633e-3 -1.6574e+3 6.0186e+0 8.6624e+5 # -Range: 0-300 2 HCO3- + Tm+3 = Tm(CO3)2- + 2 H+ -llnl_gamma 4 log_k -7.1576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Tm+3 = Tm(HPO4)2- -llnl_gamma 4 log_k 10.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(HPO4)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Tm+3 = Tm(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -3.0437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Tm+3 = Tm(SO4)2- -llnl_gamma 4 log_k 5.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(SO4)2- +# Enthalpy of formation: -0 kcal/mol Tm+3 + HAcetate = TmAcetate+2 + H+ -llnl_gamma 4.5 log_k -2.1184 - -delta_H -16.3176 kJ/mol # Calculated enthalpy of reaction TmAcetate+2 -# Enthalpy of formation: -288.5 kcal/mol + -delta_H -16.3176 kJ/mol # Calculated enthalpy of reaction TmAcetate+2 +# Enthalpy of formation: -288.5 kcal/mol -analytic -1.6068e+1 1.2043e-3 -6.2777e+2 4.8318e+0 3.3363e+5 # -Range: 0-300 Tm+3 + HCO3- = TmCO3+ + H+ -llnl_gamma 4 log_k -2.1125 - -delta_H 86.6004 kJ/mol # Calculated enthalpy of reaction TmCO3+ -# Enthalpy of formation: -312.7 kcal/mol + -delta_H 86.6004 kJ/mol # Calculated enthalpy of reaction TmCO3+ +# Enthalpy of formation: -312.7 kcal/mol -analytic 2.3889e+2 5.4733e-2 -6.9382e+3 -9.4581e+1 -1.0833e+2 # -Range: 0-300 Tm+3 + Cl- = TmCl+2 -llnl_gamma 4.5 log_k 0.2353 - -delta_H 13.1085 kJ/mol # Calculated enthalpy of reaction TmCl+2 -# Enthalpy of formation: -205.3 kcal/mol + -delta_H 13.1085 kJ/mol # Calculated enthalpy of reaction TmCl+2 +# Enthalpy of formation: -205.3 kcal/mol -analytic 7.4795e+1 3.7655e-2 -1.5701e+3 -3.2531e+1 -2.4523e+1 # -Range: 0-300 2 Cl- + Tm+3 = TmCl2+ -llnl_gamma 4 log_k -0.0425 - -delta_H 15.7569 kJ/mol # Calculated enthalpy of reaction TmCl2+ -# Enthalpy of formation: -244.6 kcal/mol + -delta_H 15.7569 kJ/mol # Calculated enthalpy of reaction TmCl2+ +# Enthalpy of formation: -244.6 kcal/mol -analytic 2.0352e+2 7.9173e-2 -4.8574e+3 -8.5202e+1 -7.5855e+1 # -Range: 0-300 3 Cl- + Tm+3 = TmCl3 -llnl_gamma 3 log_k -0.4669 - -delta_H 5.43502 kJ/mol # Calculated enthalpy of reaction TmCl3 -# Enthalpy of formation: -287 kcal/mol + -delta_H 5.43502 kJ/mol # Calculated enthalpy of reaction TmCl3 +# Enthalpy of formation: -287 kcal/mol -analytic 3.9793e+2 1.2777e-1 -1.007e+4 -1.6272e+2 -1.5725e+2 # -Range: 0-300 4 Cl- + Tm+3 = TmCl4- -llnl_gamma 4 log_k -0.8913 - -delta_H -20.3677 kJ/mol # Calculated enthalpy of reaction TmCl4- -# Enthalpy of formation: -333.1 kcal/mol + -delta_H -20.3677 kJ/mol # Calculated enthalpy of reaction TmCl4- +# Enthalpy of formation: -333.1 kcal/mol -analytic 4.3574e+2 1.2655e-1 -1.0713e+4 -1.7716e+2 -1.673e+2 # -Range: 0-300 Tm+3 + F- = TmF+2 -llnl_gamma 4.5 log_k 4.8085 - -delta_H 23.6396 kJ/mol # Calculated enthalpy of reaction TmF+2 -# Enthalpy of formation: -243 kcal/mol + -delta_H 23.6396 kJ/mol # Calculated enthalpy of reaction TmF+2 +# Enthalpy of formation: -243 kcal/mol -analytic 9.7686e+1 4.189e-2 -2.5909e+3 -3.9059e+1 -4.0457e+1 # -Range: 0-300 2 F- + Tm+3 = TmF2+ -llnl_gamma 4 log_k 8.3709 - -delta_H 12.552 kJ/mol # Calculated enthalpy of reaction TmF2+ -# Enthalpy of formation: -325.8 kcal/mol + -delta_H 12.552 kJ/mol # Calculated enthalpy of reaction TmF2+ +# Enthalpy of formation: -325.8 kcal/mol -analytic 2.2986e+2 8.4119e-2 -5.2144e+3 -9.2558e+1 -8.1433e+1 # -Range: 0-300 3 F- + Tm+3 = TmF3 -llnl_gamma 3 log_k 10.9804 - -delta_H -12.7612 kJ/mol # Calculated enthalpy of reaction TmF3 -# Enthalpy of formation: -412 kcal/mol + -delta_H -12.7612 kJ/mol # Calculated enthalpy of reaction TmF3 +# Enthalpy of formation: -412 kcal/mol -analytic 4.2855e+2 1.3445e-1 -9.7045e+3 -1.7177e+2 -1.5156e+2 # -Range: 0-300 4 F- + Tm+3 = TmF4- -llnl_gamma 4 log_k 13.1501 - -delta_H -60.668 kJ/mol # Calculated enthalpy of reaction TmF4- -# Enthalpy of formation: -503.6 kcal/mol + -delta_H -60.668 kJ/mol # Calculated enthalpy of reaction TmF4- +# Enthalpy of formation: -503.6 kcal/mol -analytic 4.6559e+2 1.3386e-1 -9.179e+3 -1.865e+2 -1.4337e+2 # -Range: 0-300 Tm+3 + HPO4-2 + H+ = TmH2PO4+2 -llnl_gamma 4.5 log_k 9.4484 - -delta_H -20.4388 kJ/mol # Calculated enthalpy of reaction TmH2PO4+2 -# Enthalpy of formation: -482.2 kcal/mol + -delta_H -20.4388 kJ/mol # Calculated enthalpy of reaction TmH2PO4+2 +# Enthalpy of formation: -482.2 kcal/mol -analytic 1.036e+2 6.3085e-2 6.0731e+2 -4.6456e+1 9.4456e+0 # -Range: 0-300 Tm+3 + HCO3- = TmHCO3+2 -llnl_gamma 4.5 log_k 1.7724 - -delta_H 5.01243 kJ/mol # Calculated enthalpy of reaction TmHCO3+2 -# Enthalpy of formation: -332.2 kcal/mol + -delta_H 5.01243 kJ/mol # Calculated enthalpy of reaction TmHCO3+2 +# Enthalpy of formation: -332.2 kcal/mol -analytic 3.3102e+1 3.101e-2 2.988e+2 -1.6791e+1 4.6524e+0 # -Range: 0-300 Tm+3 + HPO4-2 = TmHPO4+ -llnl_gamma 4 log_k 5.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction TmHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TmHPO4+ +# Enthalpy of formation: -0 kcal/mol Tm+3 + NO3- = TmNO3+2 -llnl_gamma 4.5 log_k 0.2148 - -delta_H -33.7691 kJ/mol # Calculated enthalpy of reaction TmNO3+2 -# Enthalpy of formation: -226 kcal/mol + -delta_H -33.7691 kJ/mol # Calculated enthalpy of reaction TmNO3+2 +# Enthalpy of formation: -226 kcal/mol -analytic 1.1085e+1 2.4898e-2 2.5664e+3 -1.0861e+1 4.0043e+1 # -Range: 0-300 Tm+3 + H2O = TmO+ + 2 H+ -llnl_gamma 4 log_k -15.8972 - -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction TmO+ -# Enthalpy of formation: -211.6 kcal/mol + -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction TmO+ +# Enthalpy of formation: -211.6 kcal/mol -analytic 1.7572e+2 2.8756e-2 -1.3096e+4 -6.315e+1 -2.0441e+2 # -Range: 0-300 2 H2O + Tm+3 = TmO2- + 4 H+ -llnl_gamma 4 log_k -32.6741 - -delta_H 266.663 kJ/mol # Calculated enthalpy of reaction TmO2- -# Enthalpy of formation: -241.4 kcal/mol + -delta_H 266.663 kJ/mol # Calculated enthalpy of reaction TmO2- +# Enthalpy of formation: -241.4 kcal/mol -analytic 3.3118e+1 -5.2802e-3 -1.1318e+4 -8.4764e+0 -4.6998e+5 # -Range: 0-300 2 H2O + Tm+3 = TmO2H + 3 H+ -llnl_gamma 3 log_k -24.1712 - -delta_H 211.853 kJ/mol # Calculated enthalpy of reaction TmO2H -# Enthalpy of formation: -254.5 kcal/mol + -delta_H 211.853 kJ/mol # Calculated enthalpy of reaction TmO2H +# Enthalpy of formation: -254.5 kcal/mol -analytic 3.1648e+2 4.4527e-2 -2.1821e+4 -1.1345e+2 -3.4059e+2 # -Range: 0-300 Tm+3 + H2O = TmOH+2 + H+ -llnl_gamma 4.5 log_k -7.6876 - -delta_H 74.5463 kJ/mol # Calculated enthalpy of reaction TmOH+2 -# Enthalpy of formation: -219 kcal/mol + -delta_H 74.5463 kJ/mol # Calculated enthalpy of reaction TmOH+2 +# Enthalpy of formation: -219 kcal/mol -analytic 5.7572e+1 1.1162e-2 -5.6381e+3 -2.0074e+1 -8.7994e+1 # -Range: 0-300 Tm+3 + HPO4-2 = TmPO4 + H+ -llnl_gamma 3 log_k 0.4782 - -delta_H 0 # Not possible to calculate enthalpy of reaction TmPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TmPO4 +# Enthalpy of formation: -0 kcal/mol Tm+3 + SO4-2 = TmSO4+ -llnl_gamma 4 log_k 3.5697 - -delta_H 19.9995 kJ/mol # Calculated enthalpy of reaction TmSO4+ -# Enthalpy of formation: -381.12 kcal/mol + -delta_H 19.9995 kJ/mol # Calculated enthalpy of reaction TmSO4+ +# Enthalpy of formation: -381.12 kcal/mol -analytic 3.0441e+2 8.607e-2 -8.9592e+3 -1.1979e+2 -1.3989e+2 # -Range: 0-300 4 HCO3- + U+4 = U(CO3)4-4 + 4 H+ -llnl_gamma 4 log_k -6.2534 - -delta_H 0 # Not possible to calculate enthalpy of reaction U(CO3)4-4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction U(CO3)4-4 +# Enthalpy of formation: -0 kcal/mol 5 HCO3- + U+4 = U(CO3)5-6 + 5 H+ -llnl_gamma 4 log_k -17.7169 - -delta_H 53.5172 kJ/mol # Calculated enthalpy of reaction U(CO3)5-6 -# Enthalpy of formation: -3987.35 kJ/mol + -delta_H 53.5172 kJ/mol # Calculated enthalpy of reaction U(CO3)5-6 +# Enthalpy of formation: -3987.35 kJ/mol -analytic 6.302e+2 1.9391e-1 -1.9238e+4 -2.5912e+2 -3.0038e+2 # -Range: 0-300 2 NO3- + U+4 = U(NO3)2+2 -llnl_gamma 4.5 log_k 2.261 - -delta_H 0 # Not possible to calculate enthalpy of reaction U(NO3)2+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction U(NO3)2+2 +# Enthalpy of formation: -0 kcal/mol 4 H2O + U+4 = U(OH)4 + 4 H+ -llnl_gamma 3 log_k -4.57 - -delta_H 78.7553 kJ/mol # Calculated enthalpy of reaction U(OH)4 -# Enthalpy of formation: -1655.8 kJ/mol + -delta_H 78.7553 kJ/mol # Calculated enthalpy of reaction U(OH)4 +# Enthalpy of formation: -1655.8 kJ/mol -analytic 2.6685e+2 9.8204e-2 -9.4428e+3 -1.0871e+2 -1.6045e+2 # -Range: 0-200 2 Thiocyanate- + U+4 = U(Thiocyanate)2+2 -llnl_gamma 4.5 log_k 4.26 - -delta_H 0 # Not possible to calculate enthalpy of reaction U(Thiocyanate)2+2 -# Enthalpy of formation: -456.4 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction U(Thiocyanate)2+2 +# Enthalpy of formation: -456.4 kJ/mol -analytic 6.2193e+0 2.7673e-2 2.4326e+3 -7.4158e+0 3.7957e+1 # -Range: 0-300 2 SO4-2 + U+4 = U(SO4)2 -llnl_gamma 3 log_k 10.3507 - -delta_H 33.2232 kJ/mol # Calculated enthalpy of reaction U(SO4)2 -# Enthalpy of formation: -2377.18 kJ/mol + -delta_H 33.2232 kJ/mol # Calculated enthalpy of reaction U(SO4)2 +# Enthalpy of formation: -2377.18 kJ/mol -analytic 4.9476e+2 1.7832e-1 -1.1901e+4 -2.0111e+2 -2.0227e+2 # -Range: 0-200 U+4 + Br- = UBr+3 -llnl_gamma 5 log_k 1.424 - -delta_H 0 # Not possible to calculate enthalpy of reaction UBr+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UBr+3 +# Enthalpy of formation: -0 kcal/mol U+4 + Cl- = UCl+3 -llnl_gamma 5 log_k 1.7073 - -delta_H -18.9993 kJ/mol # Calculated enthalpy of reaction UCl+3 -# Enthalpy of formation: -777.279 kJ/mol + -delta_H -18.9993 kJ/mol # Calculated enthalpy of reaction UCl+3 +# Enthalpy of formation: -777.279 kJ/mol -analytic 9.4418e+1 4.1718e-2 -7.0675e+2 -4.1532e+1 -1.1056e+1 # -Range: 0-300 U+4 + F- = UF+3 -llnl_gamma 5 log_k 9.2403 - -delta_H -5.6024 kJ/mol # Calculated enthalpy of reaction UF+3 -# Enthalpy of formation: -932.15 kJ/mol + -delta_H -5.6024 kJ/mol # Calculated enthalpy of reaction UF+3 +# Enthalpy of formation: -932.15 kJ/mol -analytic 1.1828e+2 3.8097e-2 -2.2531e+3 -4.5594e+1 -3.5193e+1 # -Range: 0-300 2 F- + U+4 = UF2+2 -llnl_gamma 4.5 log_k 16.1505 - -delta_H -3.5048 kJ/mol # Calculated enthalpy of reaction UF2+2 -# Enthalpy of formation: -1265.4 kJ/mol + -delta_H -3.5048 kJ/mol # Calculated enthalpy of reaction UF2+2 +# Enthalpy of formation: -1265.4 kJ/mol -analytic 2.3537e+2 7.7064e-2 -4.8455e+3 -9.1296e+1 -7.5679e+1 # -Range: 0-300 3 F- + U+4 = UF3+ -llnl_gamma 4 log_k 21.4806 - -delta_H 0.4938 kJ/mol # Calculated enthalpy of reaction UF3+ -# Enthalpy of formation: -1596.75 kJ/mol + -delta_H 0.4938 kJ/mol # Calculated enthalpy of reaction UF3+ +# Enthalpy of formation: -1596.75 kJ/mol -analytic 3.5097e+2 1.1714e-1 -7.4569e+3 -1.3714e+2 -1.1646e+2 # -Range: 0-300 4 F- + U+4 = UF4 -llnl_gamma 3 log_k 25.4408 - -delta_H -4.2146 kJ/mol # Calculated enthalpy of reaction UF4 -# Enthalpy of formation: -1936.81 kJ/mol + -delta_H -4.2146 kJ/mol # Calculated enthalpy of reaction UF4 +# Enthalpy of formation: -1936.81 kJ/mol -analytic 7.8549e+2 2.7922e-1 -1.6213e+4 -3.1881e+2 -2.7559e+2 # -Range: 0-200 5 F- + U+4 = UF5- -llnl_gamma 4 log_k 26.811 - -delta_H 0 # Not possible to calculate enthalpy of reaction UF5- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UF5- +# Enthalpy of formation: -0 kcal/mol 6 F- + U+4 = UF6-2 -llnl_gamma 4 log_k 28.8412 - -delta_H 0 # Not possible to calculate enthalpy of reaction UF6-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UF6-2 +# Enthalpy of formation: -0 kcal/mol U+4 + I- = UI+3 -llnl_gamma 5 log_k 1.2151 - -delta_H 0 # Not possible to calculate enthalpy of reaction UI+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UI+3 +# Enthalpy of formation: -0 kcal/mol U+4 + NO3- = UNO3+3 -llnl_gamma 5 log_k 1.4506 - -delta_H 0 # Not possible to calculate enthalpy of reaction UNO3+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UNO3+3 +# Enthalpy of formation: -0 kcal/mol 2 HCO3- + UO2+2 = UO2(CO3)2-2 + 2 H+ -llnl_gamma 4 log_k -3.7467 - -delta_H 47.9065 kJ/mol # Calculated enthalpy of reaction UO2(CO3)2-2 -# Enthalpy of formation: -2350.96 kJ/mol + -delta_H 47.9065 kJ/mol # Calculated enthalpy of reaction UO2(CO3)2-2 +# Enthalpy of formation: -2350.96 kJ/mol -analytic 2.6569e+2 8.1552e-2 -9.0918e+3 -1.0638e+2 -1.4195e+2 # -Range: 0-300 3 HCO3- + UO2+ = UO2(CO3)3-5 + 3 H+ -llnl_gamma 4 log_k -23.6241 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(CO3)3-5 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(CO3)3-5 +# Enthalpy of formation: -0 kcal/mol 3 HCO3- + UO2+2 = UO2(CO3)3-4 + 3 H+ -llnl_gamma 4 log_k -9.4302 - -delta_H 4.9107 kJ/mol # Calculated enthalpy of reaction UO2(CO3)3-4 -# Enthalpy of formation: -3083.89 kJ/mol + -delta_H 4.9107 kJ/mol # Calculated enthalpy of reaction UO2(CO3)3-4 +# Enthalpy of formation: -3083.89 kJ/mol -analytic 3.7918e+2 1.1789e-1 -1.0233e+4 -1.5738e+2 -1.5978e+2 # -Range: 0-300 3 H+ + 2 HPO4-2 + UO2+2 = UO2(H2PO4)(H3PO4)+ -llnl_gamma 4 log_k 22.7537 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(H2PO4)(H3PO4)+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(H2PO4)(H3PO4)+ +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + 2 H+ + UO2+2 = UO2(H2PO4)2 -llnl_gamma 3 log_k 21.7437 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(H2PO4)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(H2PO4)2 +# Enthalpy of formation: -0 kcal/mol 2 IO3- + UO2+2 = UO2(IO3)2 -llnl_gamma 3 log_k 2.9969 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(IO3)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(IO3)2 +# Enthalpy of formation: -0 kcal/mol 2 N3- + UO2+2 = UO2(N3)2 -llnl_gamma 3 log_k 4.3301 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)2 +# Enthalpy of formation: -0 kcal/mol 3 N3- + UO2+2 = UO2(N3)3- -llnl_gamma 4 log_k 5.7401 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)3- +# Enthalpy of formation: -0 kcal/mol 4 N3- + UO2+2 = UO2(N3)4-2 -llnl_gamma 4 log_k 4.92 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(N3)4-2 +# Enthalpy of formation: -0 kcal/mol 2 H2O + UO2+2 = UO2(OH)2 + 2 H+ -llnl_gamma 3 log_k -10.3146 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)2 +# Enthalpy of formation: -0 kcal/mol 3 H2O + UO2+2 = UO2(OH)3- + 3 H+ -llnl_gamma 4 log_k -19.2218 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)3- +# Enthalpy of formation: -0 kcal/mol 4 H2O + UO2+2 = UO2(OH)4-2 + 4 H+ -llnl_gamma 4 log_k -33.0291 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(OH)4-2 +# Enthalpy of formation: -0 kcal/mol 2 Thiocyanate- + UO2+2 = UO2(Thiocyanate)2 -llnl_gamma 3 log_k 1.2401 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(Thiocyanate)2 -# Enthalpy of formation: -857.3 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(Thiocyanate)2 +# Enthalpy of formation: -857.3 kJ/mol -analytic 9.4216e+1 3.284e-2 -2.4849e+3 -3.8162e+1 -4.2231e+1 # -Range: 0-200 3 Thiocyanate- + UO2+2 = UO2(Thiocyanate)3- -llnl_gamma 4 log_k 2.1001 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(Thiocyanate)3- -# Enthalpy of formation: -783.8 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(Thiocyanate)3- +# Enthalpy of formation: -783.8 kJ/mol -analytic 1.6622e+1 2.2714e-2 4.9707e+2 -9.2785e+0 7.7512e+0 # -Range: 0-300 2 SO3-2 + UO2+2 = UO2(SO3)2-2 -llnl_gamma 4 log_k 7.9101 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(SO3)2-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(SO3)2-2 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + UO2+2 = UO2(SO4)2-2 -llnl_gamma 4 log_k 3.9806 - -delta_H 35.6242 kJ/mol # Calculated enthalpy of reaction UO2(SO4)2-2 -# Enthalpy of formation: -2802.58 kJ/mol + -delta_H 35.6242 kJ/mol # Calculated enthalpy of reaction UO2(SO4)2-2 +# Enthalpy of formation: -2802.58 kJ/mol -analytic 3.9907e+2 1.3536e-1 -1.0813e+4 -1.613e+2 -1.6884e+2 # -Range: 0-300 UO2+2 + Br- = UO2Br+ -llnl_gamma 4 log_k 0.184 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2Br+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2Br+ +# Enthalpy of formation: -0 kcal/mol UO2+2 + BrO3- = UO2BrO3+ -llnl_gamma 4 log_k 0.551 - -delta_H 0.46952 kJ/mol # Calculated enthalpy of reaction UO2BrO3+ -# Enthalpy of formation: -1085.6 kJ/mol + -delta_H 0.46952 kJ/mol # Calculated enthalpy of reaction UO2BrO3+ +# Enthalpy of formation: -1085.6 kJ/mol -analytic 8.2618e+1 2.6921e-2 -2.0144e+3 -3.3673e+1 -3.1457e+1 # -Range: 0-300 UO2+2 + HCO3- = UO2CO3 + H+ -llnl_gamma 3 log_k -0.6634 - -delta_H 19.7032 kJ/mol # Calculated enthalpy of reaction UO2CO3 -# Enthalpy of formation: -1689.23 kJ/mol + -delta_H 19.7032 kJ/mol # Calculated enthalpy of reaction UO2CO3 +# Enthalpy of formation: -1689.23 kJ/mol -analytic 7.3898e+1 2.8127e-2 -2.4347e+3 -3.0217e+1 -4.1371e+1 # -Range: 0-200 UO2+2 + Cl- = UO2Cl+ -llnl_gamma 4 log_k 0.1572 - -delta_H 8.00167 kJ/mol # Calculated enthalpy of reaction UO2Cl+ -# Enthalpy of formation: -1178.08 kJ/mol + -delta_H 8.00167 kJ/mol # Calculated enthalpy of reaction UO2Cl+ +# Enthalpy of formation: -1178.08 kJ/mol -analytic 9.8139e+1 3.8869e-2 -2.3178e+3 -4.1133e+1 -3.6196e+1 # -Range: 0-300 2 Cl- + UO2+2 = UO2Cl2 -llnl_gamma 3 log_k -1.1253 - -delta_H 15.0013 kJ/mol # Calculated enthalpy of reaction UO2Cl2 -# Enthalpy of formation: -1338.16 kJ/mol + -delta_H 15.0013 kJ/mol # Calculated enthalpy of reaction UO2Cl2 +# Enthalpy of formation: -1338.16 kJ/mol -analytic 3.4087e+1 1.384e-2 -1.3664e+3 -1.4043e+1 -2.3216e+1 # -Range: 0-200 UO2+2 + ClO3- = UO2ClO3+ -llnl_gamma 4 log_k 0.4919 - -delta_H -3.9266 kJ/mol # Calculated enthalpy of reaction UO2ClO3+ -# Enthalpy of formation: -1126.9 kJ/mol + -delta_H -3.9266 kJ/mol # Calculated enthalpy of reaction UO2ClO3+ +# Enthalpy of formation: -1126.9 kJ/mol -analytic 9.6263e+1 2.8926e-2 -2.3068e+3 -3.9057e+1 -3.6025e+1 # -Range: 0-300 UO2+2 + F- = UO2F+ -llnl_gamma 4 log_k 5.0502 - -delta_H 1.6976 kJ/mol # Calculated enthalpy of reaction UO2F+ -# Enthalpy of formation: -1352.65 kJ/mol + -delta_H 1.6976 kJ/mol # Calculated enthalpy of reaction UO2F+ +# Enthalpy of formation: -1352.65 kJ/mol -analytic 1.1476e+2 4.0682e-2 -2.4467e+3 -4.5914e+1 -3.8212e+1 # -Range: 0-300 2 F- + UO2+2 = UO2F2 -llnl_gamma 3 log_k 8.5403 - -delta_H 2.0962 kJ/mol # Calculated enthalpy of reaction UO2F2 -# Enthalpy of formation: -1687.6 kJ/mol + -delta_H 2.0962 kJ/mol # Calculated enthalpy of reaction UO2F2 +# Enthalpy of formation: -1687.6 kJ/mol -analytic 2.7673e+2 9.919e-2 -5.8371e+3 -1.1242e+2 -9.9219e+1 # -Range: 0-200 3 F- + UO2+2 = UO2F3- -llnl_gamma 4 log_k 10.7806 - -delta_H 2.3428 kJ/mol # Calculated enthalpy of reaction UO2F3- -# Enthalpy of formation: -2022.7 kJ/mol + -delta_H 2.3428 kJ/mol # Calculated enthalpy of reaction UO2F3- +# Enthalpy of formation: -2022.7 kJ/mol -analytic 3.3383e+2 9.216e-2 -8.7975e+3 -1.2972e+2 -1.3738e+2 # -Range: 0-300 4 F- + UO2+2 = UO2F4-2 -llnl_gamma 4 log_k 11.5407 - -delta_H 0.2814 kJ/mol # Calculated enthalpy of reaction UO2F4-2 -# Enthalpy of formation: -2360.11 kJ/mol + -delta_H 0.2814 kJ/mol # Calculated enthalpy of reaction UO2F4-2 +# Enthalpy of formation: -2360.11 kJ/mol -analytic 4.4324e+2 1.3808e-1 -1.0705e+4 -1.7657e+2 -1.6718e+2 # -Range: 0-300 UO2+2 + HPO4-2 + H+ = UO2H2PO4+ -llnl_gamma 4 log_k 11.6719 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2H2PO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2H2PO4+ +# Enthalpy of formation: -0 kcal/mol 2 H+ + UO2+2 + HPO4-2 = UO2H3PO4+2 -llnl_gamma 4.5 log_k 11.3119 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2H3PO4+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2H3PO4+2 +# Enthalpy of formation: -0 kcal/mol UO2+2 + HPO4-2 = UO2HPO4 -llnl_gamma 3 log_k 8.4398 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2HPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2HPO4 +# Enthalpy of formation: -0 kcal/mol UO2+2 + IO3- = UO2IO3+ -llnl_gamma 4 log_k 1.7036 - -delta_H 11.4336 kJ/mol # Calculated enthalpy of reaction UO2IO3+ -# Enthalpy of formation: -1228.9 kJ/mol + -delta_H 11.4336 kJ/mol # Calculated enthalpy of reaction UO2IO3+ +# Enthalpy of formation: -1228.9 kJ/mol -analytic 1.0428e+2 2.962e-2 -3.2441e+3 -4.0618e+1 -5.0651e+1 # -Range: 0-300 UO2+2 + N3- = UO2N3+ -llnl_gamma 4 log_k 2.5799 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2N3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2N3+ +# Enthalpy of formation: -0 kcal/mol UO2+2 + NO3- = UO2NO3+ -llnl_gamma 4 log_k 0.2805 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2NO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2NO3+ +# Enthalpy of formation: -0 kcal/mol UO2+2 + H2O = UO2OH+ + H+ -llnl_gamma 4 log_k -5.2073 - -delta_H 43.1813 kJ/mol # Calculated enthalpy of reaction UO2OH+ -# Enthalpy of formation: -1261.66 kJ/mol + -delta_H 43.1813 kJ/mol # Calculated enthalpy of reaction UO2OH+ +# Enthalpy of formation: -1261.66 kJ/mol -analytic 3.4387e+1 6.0811e-3 -3.3068e+3 -1.2252e+1 -5.1609e+1 # -Range: 0-300 UO2+2 + HPO4-2 = UO2PO4- + H+ -llnl_gamma 4 log_k 2.0798 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2PO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2PO4- +# Enthalpy of formation: -0 kcal/mol #2.0000 SO3-- + 2.0000 H+ + 1.0000 UO2++ = UO2S2O3 +1.0000 H2O +1.0000 O2 #S2O3-- + O2 + H2O = 2.0000 H+ + 2.0000 SO3-- log_k 40.2906 S2O3-2 + UO2+2 = UO2S2O3 -llnl_gamma 3 # log_k -38.0666 - log_k 2.224 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2S2O3 -# Enthalpy of formation: -0 kcal/mol + log_k 2.224 + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2S2O3 +# Enthalpy of formation: -0 kcal/mol UO2+2 + Thiocyanate- = UO2Thiocyanate+ -llnl_gamma 4 log_k 1.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2Thiocyanate+ -# Enthalpy of formation: -939.38 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2Thiocyanate+ +# Enthalpy of formation: -939.38 kJ/mol -analytic 4.7033e+0 1.2562e-2 4.9095e+2 -3.5097e+0 7.6593e+0 # -Range: 0-300 UO2+2 + SO3-2 = UO2SO3 -llnl_gamma 3 log_k 6.7532 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2SO3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2SO3 +# Enthalpy of formation: -0 kcal/mol UO2+2 + SO4-2 = UO2SO4 -llnl_gamma 3 log_k 3.0703 - -delta_H 19.7626 kJ/mol # Calculated enthalpy of reaction UO2SO4 -# Enthalpy of formation: -1908.84 kJ/mol + -delta_H 19.7626 kJ/mol # Calculated enthalpy of reaction UO2SO4 +# Enthalpy of formation: -1908.84 kJ/mol -analytic 1.9514e+2 7.0951e-2 -4.9949e+3 -7.9394e+1 -8.4888e+1 # -Range: 0-200 U+4 + H2O = UOH+3 + H+ -llnl_gamma 5 log_k -0.5472 - -delta_H 46.9183 kJ/mol # Calculated enthalpy of reaction UOH+3 -# Enthalpy of formation: -830.12 kJ/mol + -delta_H 46.9183 kJ/mol # Calculated enthalpy of reaction UOH+3 +# Enthalpy of formation: -830.12 kJ/mol -analytic 4.0793e+1 1.3563e-3 -3.8441e+3 -1.1659e+1 -5.9996e+1 # -Range: 0-300 U+4 + Thiocyanate- = UThiocyanate+3 -llnl_gamma 5 log_k 2.97 - -delta_H 0 # Not possible to calculate enthalpy of reaction UThiocyanate+3 -# Enthalpy of formation: -541.8 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UThiocyanate+3 +# Enthalpy of formation: -541.8 kJ/mol -analytic 4.0286e-1 1.5909e-2 2.3026e+3 -3.9973e+0 3.5929e+1 # -Range: 0-300 U+4 + SO4-2 = USO4+2 -llnl_gamma 4.5 log_k 6.5003 - -delta_H 8.2616 kJ/mol # Calculated enthalpy of reaction USO4+2 -# Enthalpy of formation: -1492.54 kJ/mol + -delta_H 8.2616 kJ/mol # Calculated enthalpy of reaction USO4+2 +# Enthalpy of formation: -1492.54 kJ/mol -analytic 1.9418e+2 7.5458e-2 -4.0646e+3 -7.9416e+1 -6.3482e+1 # -Range: 0-300 2 H2O + V+3 = V(OH)2+ + 2 H+ -llnl_gamma 4 log_k -5.9193 - -delta_H 0 # Not possible to calculate enthalpy of reaction V(OH)2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction V(OH)2+ +# Enthalpy of formation: -0 kcal/mol 2 V+3 + 2 H2O = V2(OH)2+4 + 2 H+ -llnl_gamma 5.5 log_k -3.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction V2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction V2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol 2 H2O + VO2+ = VO(OH)3 + H+ -llnl_gamma 3 log_k -3.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO(OH)3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VO(OH)3 +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + VO2+ = VO2(HPO4)2-3 -llnl_gamma 4 log_k 8.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2(HPO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2(HPO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 H2O + VO2+ = VO2(OH)2- + 2 H+ -llnl_gamma 4 log_k -7.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2(OH)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2(OH)2- +# Enthalpy of formation: -0 kcal/mol VO2+ + F- = VO2F -llnl_gamma 3 log_k 3.35 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2F -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2F +# Enthalpy of formation: -0 kcal/mol 2 F- + VO2+ = VO2F2- -llnl_gamma 4 log_k 5.81 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2F2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2F2- +# Enthalpy of formation: -0 kcal/mol VO2+ + HPO4-2 + H+ = VO2H2PO4 -llnl_gamma 3 log_k 1.68 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2H2PO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2H2PO4 +# Enthalpy of formation: -0 kcal/mol VO2+ + HPO4-2 = VO2HPO4- -llnl_gamma 4 log_k 5.83 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2HPO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2HPO4- +# Enthalpy of formation: -0 kcal/mol VO2+ + SO4-2 = VO2SO4- -llnl_gamma 4 log_k 1.58 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO2SO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VO2SO4- +# Enthalpy of formation: -0 kcal/mol VO4-3 + H+ = VO3OH-2 -llnl_gamma 4 log_k 14.26 - -delta_H 0 # Not possible to calculate enthalpy of reaction VO3OH-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VO3OH-2 +# Enthalpy of formation: -0 kcal/mol VO+2 + F- = VOF+ -llnl_gamma 4 log_k 4 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOF+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VOF+ +# Enthalpy of formation: -0 kcal/mol 2 F- + VO+2 = VOF2 -llnl_gamma 3 log_k 6.78 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOF2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VOF2 +# Enthalpy of formation: -0 kcal/mol V+3 + H2O = VOH+2 + H+ -llnl_gamma 4.5 log_k -2.26 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOH+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VOH+2 +# Enthalpy of formation: -0 kcal/mol VO+2 + H2O = VOOH+ + H+ -llnl_gamma 4 log_k -5.67 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOOH+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VOOH+ +# Enthalpy of formation: -0 kcal/mol VO+2 + SO4-2 = VOSO4 -llnl_gamma 3 log_k 2.48 - -delta_H 0 # Not possible to calculate enthalpy of reaction VOSO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VOSO4 +# Enthalpy of formation: -0 kcal/mol V+3 + SO4-2 = VSO4+ -llnl_gamma 4 log_k 3.33 - -delta_H 0 # Not possible to calculate enthalpy of reaction VSO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction VSO4+ +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Y+3 = Y(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -4.9844 - -delta_H -34.8109 kJ/mol # Calculated enthalpy of reaction Y(Acetate)2+ -# Enthalpy of formation: -411.42 kcal/mol + -delta_H -34.8109 kJ/mol # Calculated enthalpy of reaction Y(Acetate)2+ +# Enthalpy of formation: -411.42 kcal/mol -analytic -3.3011e+1 6.1979e-4 -7.7468e+2 9.638e+0 5.8814e+5 # -Range: 0-300 3 HAcetate + Y+3 = Y(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -8.3783 - -delta_H -58.4505 kJ/mol # Calculated enthalpy of reaction Y(Acetate)3 -# Enthalpy of formation: -533.17 kcal/mol + -delta_H -58.4505 kJ/mol # Calculated enthalpy of reaction Y(Acetate)3 +# Enthalpy of formation: -533.17 kcal/mol -analytic -3.0086e+1 4.0213e-3 -1.1444e+3 6.1794e+0 8.0827e+5 # -Range: 0-300 2 HCO3- + Y+3 = Y(CO3)2- + 2 H+ -llnl_gamma 4 log_k -7.3576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Y+3 = Y(HPO4)2- -llnl_gamma 4 log_k 9.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(HPO4)2- +# Enthalpy of formation: -0 kcal/mol 2 H2O + Y+3 = Y(OH)2+ + 2 H+ -llnl_gamma 4 log_k -16.3902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)2+ +# Enthalpy of formation: -0 kcal/mol 3 H2O + Y+3 = Y(OH)3 + 3 H+ -llnl_gamma 3 log_k -25.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)3 +# Enthalpy of formation: -0 kcal/mol 4 H2O + Y+3 = Y(OH)4- + 4 H+ -llnl_gamma 4 log_k -36.4803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(OH)4- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Y+3 = Y(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -3.2437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Y+3 = Y(SO4)2- -llnl_gamma 4 log_k 4.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Y(SO4)2- +# Enthalpy of formation: -0 kcal/mol 2 Y+3 + 2 H2O = Y2(OH)2+4 + 2 H+ -llnl_gamma 5.5 log_k -14.1902 - -delta_H 0 # Not possible to calculate enthalpy of reaction Y2(OH)2+4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Y2(OH)2+4 +# Enthalpy of formation: -0 kcal/mol Y+3 + HAcetate = YAcetate+2 + H+ -llnl_gamma 4.5 log_k -2.1184 - -delta_H -17.2799 kJ/mol # Calculated enthalpy of reaction YAcetate+2 -# Enthalpy of formation: -291.13 kcal/mol + -delta_H -17.2799 kJ/mol # Calculated enthalpy of reaction YAcetate+2 +# Enthalpy of formation: -291.13 kcal/mol -analytic -1.208e+1 1.2015e-3 -8.4186e+2 3.4522e+0 3.4647e+5 # -Range: 0-300 Y+3 + HCO3- = YCO3+ + H+ -llnl_gamma 4 log_k -2.2788 - -delta_H 0 # Not possible to calculate enthalpy of reaction YCO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YCO3+ +# Enthalpy of formation: -0 kcal/mol Y+3 + Cl- = YCl+2 -llnl_gamma 4.5 log_k 0.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction YCl+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YCl+2 +# Enthalpy of formation: -0 kcal/mol Y+3 + F- = YF+2 -llnl_gamma 4.5 log_k 4.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction YF+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YF+2 +# Enthalpy of formation: -0 kcal/mol 2 F- + Y+3 = YF2+ -llnl_gamma 4 log_k 7.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction YF2+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YF2+ +# Enthalpy of formation: -0 kcal/mol 3 F- + Y+3 = YF3 -llnl_gamma 3 log_k 11.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction YF3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YF3 +# Enthalpy of formation: -0 kcal/mol Y+3 + HPO4-2 + H+ = YH2PO4+2 -llnl_gamma 4.5 log_k 9.6054 - -delta_H 0 # Not possible to calculate enthalpy of reaction YH2PO4+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YH2PO4+2 +# Enthalpy of formation: -0 kcal/mol Y+3 + HCO3- = YHCO3+2 -llnl_gamma 4.5 log_k 2.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction YHCO3+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YHCO3+2 +# Enthalpy of formation: -0 kcal/mol Y+3 + HPO4-2 = YHPO4+ -llnl_gamma 4 log_k 5.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction YHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YHPO4+ +# Enthalpy of formation: -0 kcal/mol Y+3 + NO3- = YNO3+2 -llnl_gamma 4.5 log_k 0.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction YNO3+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YNO3+2 +# Enthalpy of formation: -0 kcal/mol Y+3 + H2O = YOH+2 + H+ -llnl_gamma 4.5 log_k -7.6951 - -delta_H 0 # Not possible to calculate enthalpy of reaction YOH+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YOH+2 +# Enthalpy of formation: -0 kcal/mol Y+3 + HPO4-2 = YPO4 + H+ -llnl_gamma 3 log_k 0.2782 - -delta_H 0 # Not possible to calculate enthalpy of reaction YPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YPO4 +# Enthalpy of formation: -0 kcal/mol Y+3 + SO4-2 = YSO4+ -llnl_gamma 4 log_k 3.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction YSO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YSO4+ +# Enthalpy of formation: -0 kcal/mol 2 HAcetate + Yb+3 = Yb(Acetate)2+ + 2 H+ -llnl_gamma 4 log_k -5.131 - -delta_H -30.334 kJ/mol # Calculated enthalpy of reaction Yb(Acetate)2+ -# Enthalpy of formation: -399.75 kcal/mol + -delta_H -30.334 kJ/mol # Calculated enthalpy of reaction Yb(Acetate)2+ +# Enthalpy of formation: -399.75 kcal/mol -analytic -3.4286e+1 9.4069e-4 -6.512e+2 1.0071e+1 5.4773e+5 # -Range: 0-300 3 HAcetate + Yb+3 = Yb(Acetate)3 + 3 H+ -llnl_gamma 3 log_k -8.5688 - -delta_H -51.4214 kJ/mol # Calculated enthalpy of reaction Yb(Acetate)3 -# Enthalpy of formation: -520.89 kcal/mol + -delta_H -51.4214 kJ/mol # Calculated enthalpy of reaction Yb(Acetate)3 +# Enthalpy of formation: -520.89 kcal/mol -analytic -6.2211e+1 -6.1589e-4 5.9577e+2 1.7954e+1 6.6116e+5 # -Range: 0-300 2 HCO3- + Yb+3 = Yb(CO3)2- + 2 H+ -llnl_gamma 4 log_k -7.0576 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(CO3)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(CO3)2- +# Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Yb+3 = Yb(HPO4)2- -llnl_gamma 4 log_k 10.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(HPO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(HPO4)2- +# Enthalpy of formation: -0 kcal/mol # Redundant with YbO2- #4.0000 H2O + 1.0000 Yb+++ = Yb(OH)4- +4.0000 H+ # -llnl_gamma 4.0 # log_k -32.6803 -# -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)4- -## Enthalpy of formation: -0 kcal/mol +# -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)4- +## Enthalpy of formation: -0 kcal/mol 2 HPO4-2 + Yb+3 = Yb(PO4)2-3 + 2 H+ -llnl_gamma 4 log_k -2.7437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(PO4)2-3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(PO4)2-3 +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Yb+3 = Yb(SO4)2- -llnl_gamma 4 log_k 5.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(SO4)2- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(SO4)2- +# Enthalpy of formation: -0 kcal/mol Yb+3 + HAcetate = YbAcetate+2 + H+ -llnl_gamma 4.5 log_k -2.199 - -delta_H -15.2298 kJ/mol # Calculated enthalpy of reaction YbAcetate+2 -# Enthalpy of formation: -280.04 kcal/mol + -delta_H -15.2298 kJ/mol # Calculated enthalpy of reaction YbAcetate+2 +# Enthalpy of formation: -280.04 kcal/mol -analytic -8.5003e+0 2.2459e-3 -9.6434e+2 2.063e+0 3.355e+5 # -Range: 0-300 Yb+3 + HCO3- = YbCO3+ + H+ -llnl_gamma 4 log_k -2.0392 - -delta_H 82.8348 kJ/mol # Calculated enthalpy of reaction YbCO3+ -# Enthalpy of formation: -305.4 kcal/mol + -delta_H 82.8348 kJ/mol # Calculated enthalpy of reaction YbCO3+ +# Enthalpy of formation: -305.4 kcal/mol -analytic 2.3533e+2 5.4436e-2 -6.7871e+3 -9.328e+1 -1.0598e+2 # -Range: 0-300 Yb+3 + Cl- = YbCl+2 -llnl_gamma 4.5 log_k 0.162 - -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction YbCl+2 -# Enthalpy of formation: -196.9 kcal/mol + -delta_H 13.9453 kJ/mol # Calculated enthalpy of reaction YbCl+2 +# Enthalpy of formation: -196.9 kcal/mol -analytic 8.0452e+1 3.8343e-2 -1.8176e+3 -3.4594e+1 -2.8386e+1 # -Range: 0-300 2 Cl- + Yb+3 = YbCl2+ -llnl_gamma 4 log_k -0.2624 - -delta_H 17.4305 kJ/mol # Calculated enthalpy of reaction YbCl2+ -# Enthalpy of formation: -236 kcal/mol + -delta_H 17.4305 kJ/mol # Calculated enthalpy of reaction YbCl2+ +# Enthalpy of formation: -236 kcal/mol -analytic 2.1708e+2 8.055e-2 -5.4744e+3 -9.0101e+1 -8.5487e+1 # -Range: 0-300 3 Cl- + Yb+3 = YbCl3 -llnl_gamma 3 log_k -0.7601 - -delta_H 8.36382 kJ/mol # Calculated enthalpy of reaction YbCl3 -# Enthalpy of formation: -278.1 kcal/mol + -delta_H 8.36382 kJ/mol # Calculated enthalpy of reaction YbCl3 +# Enthalpy of formation: -278.1 kcal/mol -analytic 4.0887e+2 1.2992e-1 -1.0578e+4 -1.6684e+2 -1.6518e+2 # -Range: 0-300 4 Cl- + Yb+3 = YbCl4- -llnl_gamma 4 log_k -1.1845 - -delta_H -15.7653 kJ/mol # Calculated enthalpy of reaction YbCl4- -# Enthalpy of formation: -323.8 kcal/mol + -delta_H -15.7653 kJ/mol # Calculated enthalpy of reaction YbCl4- +# Enthalpy of formation: -323.8 kcal/mol -analytic 4.756e+2 1.3032e-1 -1.2452e+4 -1.9149e+2 -1.9444e+2 # -Range: 0-300 Yb+3 + F- = YbF+2 -llnl_gamma 4.5 log_k 4.8085 - -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction YbF+2 -# Enthalpy of formation: -234.9 kcal/mol + -delta_H 23.2212 kJ/mol # Calculated enthalpy of reaction YbF+2 +# Enthalpy of formation: -234.9 kcal/mol -analytic 1.0291e+2 4.2493e-2 -2.7637e+3 -4.1008e+1 -4.3156e+1 # -Range: 0-300 2 F- + Yb+3 = YbF2+ -llnl_gamma 4 log_k 8.3709 - -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction YbF2+ -# Enthalpy of formation: -317.7 kcal/mol + -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction YbF2+ +# Enthalpy of formation: -317.7 kcal/mol -analytic 2.4281e+2 8.5385e-2 -5.69e+3 -9.7299e+1 -8.8859e+1 # -Range: 0-300 3 F- + Yb+3 = YbF3 -llnl_gamma 3 log_k 11.0537 - -delta_H -13.1796 kJ/mol # Calculated enthalpy of reaction YbF3 -# Enthalpy of formation: -403.9 kcal/mol + -delta_H -13.1796 kJ/mol # Calculated enthalpy of reaction YbF3 +# Enthalpy of formation: -403.9 kcal/mol -analytic 4.5227e+2 1.3659e-1 -1.0595e+4 -1.8038e+2 -1.6546e+2 # -Range: 0-300 4 F- + Yb+3 = YbF4- -llnl_gamma 4 log_k 13.2234 - -delta_H -60.2496 kJ/mol # Calculated enthalpy of reaction YbF4- -# Enthalpy of formation: -495.3 kcal/mol + -delta_H -60.2496 kJ/mol # Calculated enthalpy of reaction YbF4- +# Enthalpy of formation: -495.3 kcal/mol -analytic 5.0369e+2 1.3726e-1 -1.0671e+4 -2.0026e+2 -1.6666e+2 # -Range: 0-300 Yb+3 + HPO4-2 + H+ = YbH2PO4+2 -llnl_gamma 4.5 log_k 9.5217 - -delta_H -20.0204 kJ/mol # Calculated enthalpy of reaction YbH2PO4+2 -# Enthalpy of formation: -473.9 kcal/mol + -delta_H -20.0204 kJ/mol # Calculated enthalpy of reaction YbH2PO4+2 +# Enthalpy of formation: -473.9 kcal/mol -analytic 1.0919e+2 6.3749e-2 3.8909e+2 -4.8469e+1 6.0389e+0 # -Range: 0-300 Yb+3 + HCO3- = YbHCO3+2 -llnl_gamma 4.5 log_k 1.8398 - -delta_H 5.43083 kJ/mol # Calculated enthalpy of reaction YbHCO3+2 -# Enthalpy of formation: -323.9 kcal/mol + -delta_H 5.43083 kJ/mol # Calculated enthalpy of reaction YbHCO3+2 +# Enthalpy of formation: -323.9 kcal/mol -analytic 3.9175e+1 3.1796e-2 6.9728e+1 -1.9002e+1 1.0762e+0 # -Range: 0-300 Yb+3 + HPO4-2 = YbHPO4+ -llnl_gamma 4 log_k 6 - -delta_H 0 # Not possible to calculate enthalpy of reaction YbHPO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YbHPO4+ +# Enthalpy of formation: -0 kcal/mol Yb+3 + NO3- = YbNO3+2 -llnl_gamma 4.5 log_k 0.2148 - -delta_H -32.9323 kJ/mol # Calculated enthalpy of reaction YbNO3+2 -# Enthalpy of formation: -217.6 kcal/mol + -delta_H -32.9323 kJ/mol # Calculated enthalpy of reaction YbNO3+2 +# Enthalpy of formation: -217.6 kcal/mol -analytic 1.7237e+1 2.5684e-2 2.2806e+3 -1.3055e+1 3.5581e+1 # -Range: 0-300 Yb+3 + H2O = YbO+ + 2 H+ -llnl_gamma 4 log_k -15.7506 - -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction YbO+ -# Enthalpy of formation: -203.4 kcal/mol + -delta_H 105.508 kJ/mol # Calculated enthalpy of reaction YbO+ +# Enthalpy of formation: -203.4 kcal/mol -analytic 1.7675e+2 2.9078e-2 -1.3106e+4 -6.3534e+1 -2.0456e+2 # -Range: 0-300 2 H2O + Yb+3 = YbO2- + 4 H+ -llnl_gamma 4 log_k -32.6741 - -delta_H 267.918 kJ/mol # Calculated enthalpy of reaction YbO2- -# Enthalpy of formation: -232.9 kcal/mol + -delta_H 267.918 kJ/mol # Calculated enthalpy of reaction YbO2- +# Enthalpy of formation: -232.9 kcal/mol -analytic 1.5529e+2 1.0053e-2 -1.8749e+4 -5.1764e+1 -2.926e+2 # -Range: 0-300 2 H2O + Yb+3 = YbO2H + 3 H+ -llnl_gamma 3 log_k -23.878 - -delta_H 211.016 kJ/mol # Calculated enthalpy of reaction YbO2H -# Enthalpy of formation: -246.5 kcal/mol + -delta_H 211.016 kJ/mol # Calculated enthalpy of reaction YbO2H +# Enthalpy of formation: -246.5 kcal/mol -analytic 3.2148e+2 4.4821e-2 -2.1971e+4 -1.1519e+2 -3.4293e+2 # -Range: 0-300 Yb+3 + H2O = YbOH+2 + H+ -llnl_gamma 4.5 log_k -7.6143 - -delta_H 74.9647 kJ/mol # Calculated enthalpy of reaction YbOH+2 -# Enthalpy of formation: -210.7 kcal/mol + -delta_H 74.9647 kJ/mol # Calculated enthalpy of reaction YbOH+2 +# Enthalpy of formation: -210.7 kcal/mol -analytic 5.8142e+1 1.1402e-2 -5.6488e+3 -2.0289e+1 -8.816e+1 # -Range: 0-300 Yb+3 + HPO4-2 = YbPO4 + H+ -llnl_gamma 3 log_k 0.5782 - -delta_H 0 # Not possible to calculate enthalpy of reaction YbPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YbPO4 +# Enthalpy of formation: -0 kcal/mol Yb+3 + SO4-2 = YbSO4+ -llnl_gamma 4 log_k 3.5697 - -delta_H 1424.65 kJ/mol # Calculated enthalpy of reaction YbSO4+ -# Enthalpy of formation: -37.2 kcal/mol + -delta_H 1424.65 kJ/mol # Calculated enthalpy of reaction YbSO4+ +# Enthalpy of formation: -37.2 kcal/mol -analytic 3.0675e+2 8.6527e-2 -9.0298e+3 -1.2069e+2 -1.4099e+2 # -Range: 0-300 2 HAcetate + Zn+2 = Zn(Acetate)2 + 2 H+ -llnl_gamma 3 log_k -6.062 - -delta_H -11.0458 kJ/mol # Calculated enthalpy of reaction Zn(Acetate)2 -# Enthalpy of formation: -271.5 kcal/mol + -delta_H -11.0458 kJ/mol # Calculated enthalpy of reaction Zn(Acetate)2 +# Enthalpy of formation: -271.5 kcal/mol -analytic -2.2038e+1 2.6133e-3 -2.7652e+3 6.8501e+0 6.7086e+5 # -Range: 0-300 3 HAcetate + Zn+2 = Zn(Acetate)3- + 3 H+ -llnl_gamma 4 log_k -10.0715 - -delta_H 25.355 kJ/mol # Calculated enthalpy of reaction Zn(Acetate)3- -# Enthalpy of formation: -378.9 kcal/mol + -delta_H 25.355 kJ/mol # Calculated enthalpy of reaction Zn(Acetate)3- +# Enthalpy of formation: -378.9 kcal/mol -analytic 3.5104e+1 -6.1568e-3 -1.3379e+4 -8.7697e+0 2.067e+6 # -Range: 0-300 4 Cyanide- + Zn+2 = Zn(Cyanide)4-2 -llnl_gamma 4 log_k 16.704 - -delta_H -107.305 kJ/mol # Calculated enthalpy of reaction Zn(Cyanide)4-2 -# Enthalpy of formation: 341.806 kJ/mol + -delta_H -107.305 kJ/mol # Calculated enthalpy of reaction Zn(Cyanide)4-2 +# Enthalpy of formation: 341.806 kJ/mol -analytic 3.6586e+2 1.2655e-1 -2.9546e+3 -1.5232e+2 -4.6213e+1 # -Range: 0-300 2 N3- + Zn+2 = Zn(N3)2 -llnl_gamma 3 log_k 1.1954 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(N3)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(N3)2 +# Enthalpy of formation: -0 kcal/mol Zn+2 + NH3 = Zn(NH3)+2 -llnl_gamma 4.5 log_k 2.0527 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)+2 +# Enthalpy of formation: -0 kcal/mol 2 NH3 + Zn+2 = Zn(NH3)2+2 -llnl_gamma 4.5 log_k 4.259 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)2+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)2+2 +# Enthalpy of formation: -0 kcal/mol 3 NH3 + Zn+2 = Zn(NH3)3+2 -llnl_gamma 4.5 log_k 6.4653 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)3+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(NH3)3+2 +# Enthalpy of formation: -0 kcal/mol 4 NH3 + Zn+2 = Zn(NH3)4+2 -llnl_gamma 4.5 log_k 8.3738 - -delta_H -54.9027 kJ/mol # Calculated enthalpy of reaction Zn(NH3)4+2 -# Enthalpy of formation: -533.636 kJ/mol + -delta_H -54.9027 kJ/mol # Calculated enthalpy of reaction Zn(NH3)4+2 +# Enthalpy of formation: -533.636 kJ/mol -analytic 1.5851e+2 -6.3376e-3 -4.6783e+3 -5.356e+1 -7.3047e+1 # -Range: 0-300 2 H2O + Zn+2 = Zn(OH)2 + 2 H+ -llnl_gamma 3 log_k -17.3282 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)2 +# Enthalpy of formation: -0 kcal/mol 3 H2O + Zn+2 = Zn(OH)3- + 3 H+ -llnl_gamma 4 log_k -28.8369 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)3- +# Enthalpy of formation: -0 kcal/mol 4 H2O + Zn+2 = Zn(OH)4-2 + 4 H+ -llnl_gamma 4 log_k -41.6052 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)4-2 +# Enthalpy of formation: -0 kcal/mol Zn+2 + H2O + Cl- = Zn(OH)Cl + H+ -llnl_gamma 3 log_k -7.5417 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)Cl -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)Cl +# Enthalpy of formation: -0 kcal/mol 2 Thiocyanate- + Zn+2 = Zn(Thiocyanate)2 -llnl_gamma 3 log_k 0.88 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(Thiocyanate)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(Thiocyanate)2 +# Enthalpy of formation: -0 kcal/mol 4 Thiocyanate- + Zn+2 = Zn(Thiocyanate)4-2 -llnl_gamma 4 log_k 1.2479 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(Thiocyanate)4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(Thiocyanate)4-2 +# Enthalpy of formation: -0 kcal/mol Zn+2 + Br- = ZnBr+ -llnl_gamma 4 log_k -0.6365 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr+ +# Enthalpy of formation: -0 kcal/mol 2 Br- + Zn+2 = ZnBr2 -llnl_gamma 3 log_k -1.0492 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr2 +# Enthalpy of formation: -0 kcal/mol 3 Br- + Zn+2 = ZnBr3- -llnl_gamma 4 log_k -1.8474 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnBr3- +# Enthalpy of formation: -0 kcal/mol Zn+2 + HAcetate = ZnAcetate+ + H+ -llnl_gamma 4 log_k -3.1519 - -delta_H -9.87424 kJ/mol # Calculated enthalpy of reaction ZnAcetate+ -# Enthalpy of formation: -155.12 kcal/mol + -delta_H -9.87424 kJ/mol # Calculated enthalpy of reaction ZnAcetate+ +# Enthalpy of formation: -155.12 kcal/mol -analytic -7.9367e+0 2.8564e-3 -1.4514e+3 2.501e+0 2.3343e+5 # -Range: 0-300 Zn+2 + HCO3- = ZnCO3 + H+ -llnl_gamma 3 log_k -6.4288 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnCO3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnCO3 +# Enthalpy of formation: -0 kcal/mol Zn+2 + Cl- = ZnCl+ -llnl_gamma 4 log_k 0.1986 - -delta_H 43.317 kJ/mol # Calculated enthalpy of reaction ZnCl+ -# Enthalpy of formation: -66.24 kcal/mol + -delta_H 43.317 kJ/mol # Calculated enthalpy of reaction ZnCl+ +# Enthalpy of formation: -66.24 kcal/mol -analytic 1.1235e+2 4.4461e-2 -4.1662e+3 -4.5023e+1 -6.5042e+1 # -Range: 0-300 2 Cl- + Zn+2 = ZnCl2 -llnl_gamma 3 log_k 0.2507 - -delta_H 31.1541 kJ/mol # Calculated enthalpy of reaction ZnCl2 -# Enthalpy of formation: -109.08 kcal/mol + -delta_H 31.1541 kJ/mol # Calculated enthalpy of reaction ZnCl2 +# Enthalpy of formation: -109.08 kcal/mol -analytic 1.7824e+2 7.5733e-2 -4.6251e+3 -7.477e+1 -7.2224e+1 # -Range: 0-300 3 Cl- + Zn+2 = ZnCl3- -llnl_gamma 4 log_k -0.0198 - -delta_H 22.5894 kJ/mol # Calculated enthalpy of reaction ZnCl3- -# Enthalpy of formation: -151.06 kcal/mol + -delta_H 22.5894 kJ/mol # Calculated enthalpy of reaction ZnCl3- +# Enthalpy of formation: -151.06 kcal/mol -analytic 1.3889e+2 7.4712e-2 -2.1527e+3 -6.22e+1 -3.3633e+1 # -Range: 0-300 4 Cl- + Zn+2 = ZnCl4-2 -llnl_gamma 4 log_k 0.8605 - -delta_H 4.98733 kJ/mol # Calculated enthalpy of reaction ZnCl4-2 -# Enthalpy of formation: -195.2 kcal/mol + -delta_H 4.98733 kJ/mol # Calculated enthalpy of reaction ZnCl4-2 +# Enthalpy of formation: -195.2 kcal/mol -analytic 8.4294e+1 7.0021e-2 3.915e+2 -4.2664e+1 6.0834e+0 # -Range: 0-300 Zn+2 + ClO4- = ZnClO4+ -llnl_gamma 4 log_k 1.2768 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnClO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnClO4+ +# Enthalpy of formation: -0 kcal/mol Zn+2 + F- = ZnF+ -llnl_gamma 4 log_k 1.15 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnF+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnF+ +# Enthalpy of formation: -0 kcal/mol Zn+2 + HPO4-2 + H+ = ZnH2PO4+ -llnl_gamma 4 log_k 0.43 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnH2PO4+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnH2PO4+ +# Enthalpy of formation: -0 kcal/mol Zn+2 + HCO3- = ZnHCO3+ -llnl_gamma 4 log_k 1.42 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnHCO3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnHCO3+ +# Enthalpy of formation: -0 kcal/mol -analytic 5.1115e+2 1.2911e-1 -1.5292e+4 -2.0083e+2 -2.2721e+2 # -Range: 25-300 Zn+2 + HPO4-2 = ZnHPO4 -llnl_gamma 3 log_k 3.26 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnHPO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnHPO4 +# Enthalpy of formation: -0 kcal/mol Zn+2 + I- = ZnI+ -llnl_gamma 4 log_k -3.0134 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI+ +# Enthalpy of formation: -0 kcal/mol 2 I- + Zn+2 = ZnI2 -llnl_gamma 3 log_k -1.8437 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI2 +# Enthalpy of formation: -0 kcal/mol 3 I- + Zn+2 = ZnI3- -llnl_gamma 4 log_k -2.0054 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI3- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI3- +# Enthalpy of formation: -0 kcal/mol 4 I- + Zn+2 = ZnI4-2 -llnl_gamma 4 log_k -2.6052 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI4-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnI4-2 +# Enthalpy of formation: -0 kcal/mol Zn+2 + N3- = ZnN3+ -llnl_gamma 4 log_k 0.442 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnN3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnN3+ +# Enthalpy of formation: -0 kcal/mol Zn+2 + H2O = ZnOH+ + H+ -llnl_gamma 4 log_k -8.96 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnOH+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnOH+ +# Enthalpy of formation: -0 kcal/mol -analytic -7.86e-1 -2.9499e-4 -2.8673e+3 6.1892e-1 -4.2576e+1 # -Range: 25-300 Zn+2 + HPO4-2 = ZnPO4- + H+ -llnl_gamma 4 log_k -4.3018 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnPO4- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnPO4- +# Enthalpy of formation: -0 kcal/mol Zn+2 + SO4-2 = ZnSO4 -llnl_gamma 3 log_k 2.3062 - -delta_H 15.277 kJ/mol # Calculated enthalpy of reaction ZnSO4 -# Enthalpy of formation: -1047.71 kJ/mol + -delta_H 15.277 kJ/mol # Calculated enthalpy of reaction ZnSO4 +# Enthalpy of formation: -1047.71 kJ/mol -analytic 1.364e+2 5.1256e-2 -3.4422e+3 -5.5695e+1 -5.8501e+1 # -Range: 0-200 Zn+2 + SeO4-2 = ZnSeO4 -llnl_gamma 3 log_k 2.19 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnSeO4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnSeO4 +# Enthalpy of formation: -0 kcal/mol 3 H2O + Zr+4 = Zr(OH)3+ + 3 H+ -llnl_gamma 4 log_k -0.6693 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)3+ +# Enthalpy of formation: -0 kcal/mol 4 H2O + Zr+4 = Zr(OH)4 + 4 H+ -llnl_gamma 3 log_k -1.4666 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)4 +# Enthalpy of formation: -0 kcal/mol 5 H2O + Zr+4 = Zr(OH)5- + 5 H+ -llnl_gamma 4 log_k -15.9754 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)5- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(OH)5- +# Enthalpy of formation: -0 kcal/mol 2 SO4-2 + Zr+4 = Zr(SO4)2 -llnl_gamma 3 log_k 6.2965 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(SO4)2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(SO4)2 +# Enthalpy of formation: -0 kcal/mol 3 SO4-2 + Zr+4 = Zr(SO4)3-2 -llnl_gamma 4 log_k 7.3007 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(SO4)3-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(SO4)3-2 +# Enthalpy of formation: -0 kcal/mol 4 H2O + 3 Zr+4 = Zr3(OH)4+8 + 4 H+ -llnl_gamma 6 log_k -0.5803 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr3(OH)4+8 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr3(OH)4+8 +# Enthalpy of formation: -0 kcal/mol 8 H2O + 4 Zr+4 = Zr4(OH)8+8 + 8 H+ -llnl_gamma 6 log_k -5.9606 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr4(OH)8+8 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr4(OH)8+8 +# Enthalpy of formation: -0 kcal/mol Zr+4 + F- = ZrF+3 -llnl_gamma 5 log_k 8.5835 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF+3 +# Enthalpy of formation: -0 kcal/mol 2 F- + Zr+4 = ZrF2+2 -llnl_gamma 4.5 log_k 15.7377 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF2+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF2+2 +# Enthalpy of formation: -0 kcal/mol 3 F- + Zr+4 = ZrF3+ -llnl_gamma 4 log_k 21.2792 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF3+ -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF3+ +# Enthalpy of formation: -0 kcal/mol 4 F- + Zr+4 = ZrF4 -llnl_gamma 3 log_k 25.9411 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4 +# Enthalpy of formation: -0 kcal/mol 5 F- + Zr+4 = ZrF5- -llnl_gamma 4 log_k 30.3098 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF5- -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF5- +# Enthalpy of formation: -0 kcal/mol 6 F- + Zr+4 = ZrF6-2 -llnl_gamma 4 log_k 34.0188 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF6-2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF6-2 +# Enthalpy of formation: -0 kcal/mol Zr+4 + H2O = ZrOH+3 + H+ -llnl_gamma 5 log_k 0.0457 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrOH+3 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrOH+3 +# Enthalpy of formation: -0 kcal/mol Zr+4 + SO4-2 = ZrSO4+2 -llnl_gamma 4.5 log_k 3.6064 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrSO4+2 -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrSO4+2 +# Enthalpy of formation: -0 kcal/mol 2 H+ + O_phthalate-2 = H2O_phthalate -llnl_gamma 3 log_k 8.358 - -delta_H 0 # Not possible to calculate enthalpy of reaction H2O_phthalate -# Enthalpy of formation: -0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction H2O_phthalate +# Enthalpy of formation: -0 kcal/mol PHASES @@ -9728,412 +9728,412 @@ PHASES (UO2)2As2O7 (UO2)2As2O7 + 2 H+ + H2O = 2 H2AsO4- + 2 UO2+2 log_k 7.7066 - -delta_H -145.281 kJ/mol # Calculated enthalpy of reaction (UO2)2As2O7 -# Enthalpy of formation: -3426 kJ/mol + -delta_H -145.281 kJ/mol # Calculated enthalpy of reaction (UO2)2As2O7 +# Enthalpy of formation: -3426 kJ/mol -analytic -1.6147e+2 -6.3487e-2 1.0052e+4 6.2384e+1 1.5691e+2 # -Range: 0-300 (UO2)2Cl3 (UO2)2Cl3 = UO2+ + UO2+2 + 3 Cl- log_k 12.7339 - -delta_H -140.866 kJ/mol # Calculated enthalpy of reaction (UO2)2Cl3 -# Enthalpy of formation: -2404.5 kJ/mol + -delta_H -140.866 kJ/mol # Calculated enthalpy of reaction (UO2)2Cl3 +# Enthalpy of formation: -2404.5 kJ/mol -analytic -2.3895e+2 -9.2925e-2 1.1722e+4 9.6999e+1 1.8298e+2 # -Range: 0-300 (UO2)2P2O7 (UO2)2P2O7 + H2O = 2 HPO4-2 + 2 UO2+2 log_k -14.6827 - -delta_H -103.726 kJ/mol # Calculated enthalpy of reaction (UO2)2P2O7 -# Enthalpy of formation: -4232.6 kJ/mol + -delta_H -103.726 kJ/mol # Calculated enthalpy of reaction (UO2)2P2O7 +# Enthalpy of formation: -4232.6 kJ/mol -analytic -3.4581e+2 -1.3987e-1 1.0703e+4 1.3613e+2 1.6712e+2 # -Range: 0-300 (UO2)3(AsO4)2 (UO2)3(AsO4)2 + 4 H+ = 2 H2AsO4- + 3 UO2+2 log_k 9.3177 - -delta_H -186.72 kJ/mol # Calculated enthalpy of reaction (UO2)3(AsO4)2 -# Enthalpy of formation: -4689.4 kJ/mol + -delta_H -186.72 kJ/mol # Calculated enthalpy of reaction (UO2)3(AsO4)2 +# Enthalpy of formation: -4689.4 kJ/mol -analytic -1.9693e+2 -7.3236e-2 1.2936e+4 7.4631e+1 2.0192e+2 # -Range: 0-300 (UO2)3(PO4)2 (UO2)3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 UO2+2 log_k -14.0241 - -delta_H -149.864 kJ/mol # Calculated enthalpy of reaction (UO2)3(PO4)2 -# Enthalpy of formation: -5491.3 kJ/mol + -delta_H -149.864 kJ/mol # Calculated enthalpy of reaction (UO2)3(PO4)2 +# Enthalpy of formation: -5491.3 kJ/mol -analytic -3.6664e+2 -1.4347e-1 1.3486e+4 1.4148e+2 2.1054e+2 # -Range: 0-300 (UO2)3(PO4)2:4H2O (UO2)3(PO4)2:4H2O + 2 H+ = 2 HPO4-2 + 3 UO2+2 + 4 H2O log_k -27.0349 - -delta_H -45.4132 kJ/mol # Calculated enthalpy of reaction (UO2)3(PO4)2:4H2O -# Enthalpy of formation: -6739.1 kJ/mol + -delta_H -45.4132 kJ/mol # Calculated enthalpy of reaction (UO2)3(PO4)2:4H2O +# Enthalpy of formation: -6739.1 kJ/mol -analytic -1.5721e+2 -4.1375e-2 5.2046e+3 5.0531e+1 8.8434e+1 # -Range: 0-200 (VO)3(PO4)2 (VO)3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 VO+2 log_k 48.7864 - -delta_H 0 # Not possible to calculate enthalpy of reaction (VO)3(PO4)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction (VO)3(PO4)2 +# Enthalpy of formation: 0 kcal/mol Acanthite Ag2S + H+ = HS- + 2 Ag+ log_k -36.0346 - -delta_H 226.982 kJ/mol # Calculated enthalpy of reaction Acanthite -# Enthalpy of formation: -7.55 kcal/mol + -delta_H 226.982 kJ/mol # Calculated enthalpy of reaction Acanthite +# Enthalpy of formation: -7.55 kcal/mol -analytic -1.6067e+2 -4.7139e-2 -7.4522e+3 6.614e+1 -1.1624e+2 # -Range: 0-300 Afwillite Ca3Si2O4(OH)6 + 6 H+ = 2 SiO2 + 3 Ca+2 + 6 H2O log_k 60.0452 - -delta_H -316.059 kJ/mol # Calculated enthalpy of reaction Afwillite -# Enthalpy of formation: -1143.31 kcal/mol + -delta_H -316.059 kJ/mol # Calculated enthalpy of reaction Afwillite +# Enthalpy of formation: -1143.31 kcal/mol -analytic 1.8353e+1 1.9014e-3 1.8478e+4 -6.6311e+0 -4.0227e+5 # -Range: 0-300 Ag Ag + H+ + 0.25 O2 = 0.5 H2O + Ag+ log_k 7.9937 - -delta_H -34.1352 kJ/mol # Calculated enthalpy of reaction Ag -# Enthalpy of formation: 0 kcal/mol + -delta_H -34.1352 kJ/mol # Calculated enthalpy of reaction Ag +# Enthalpy of formation: 0 kcal/mol -analytic -1.4144e+1 -3.8466e-3 2.2642e+3 6.3388e+0 3.5334e+1 # -Range: 0-300 Ag3PO4 Ag3PO4 + H+ = HPO4-2 + 3 Ag+ log_k -5.2282 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ag3PO4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ag3PO4 +# Enthalpy of formation: 0 kcal/mol Ahlfeldite NiSeO3:2H2O = Ni+2 + SeO3-2 + 2 H2O log_k -4.4894 - -delta_H -25.7902 kJ/mol # Calculated enthalpy of reaction Ahlfeldite -# Enthalpy of formation: -265.07 kcal/mol + -delta_H -25.7902 kJ/mol # Calculated enthalpy of reaction Ahlfeldite +# Enthalpy of formation: -265.07 kcal/mol -analytic -2.621e+1 -1.6952e-2 1.0405e+3 9.4054e+0 1.7678e+1 # -Range: 0-200 Akermanite Ca2MgSi2O7 + 6 H+ = Mg+2 + 2 Ca+2 + 2 SiO2 + 3 H2O log_k 45.319 - -delta_H -288.575 kJ/mol # Calculated enthalpy of reaction Akermanite -# Enthalpy of formation: -926.497 kcal/mol + -delta_H -288.575 kJ/mol # Calculated enthalpy of reaction Akermanite +# Enthalpy of formation: -926.497 kcal/mol -analytic -4.8295e+1 -8.5613e-3 2.088e+4 1.3798e+1 -7.1975e+5 # -Range: 0-300 Al Al + 3 H+ + 0.75 O2 = Al+3 + 1.5 H2O log_k 149.9292 - -delta_H -958.059 kJ/mol # Calculated enthalpy of reaction Al -# Enthalpy of formation: 0 kJ/mol + -delta_H -958.059 kJ/mol # Calculated enthalpy of reaction Al +# Enthalpy of formation: 0 kJ/mol -analytic -1.8752e+2 -4.6187e-2 5.7127e+4 6.627e+1 -3.8952e+5 # -Range: 0-300 Al2(SO4)3 Al2(SO4)3 = 2 Al+3 + 3 SO4-2 log_k 19.0535 - -delta_H -364.566 kJ/mol # Calculated enthalpy of reaction Al2(SO4)3 -# Enthalpy of formation: -3441.04 kJ/mol + -delta_H -364.566 kJ/mol # Calculated enthalpy of reaction Al2(SO4)3 +# Enthalpy of formation: -3441.04 kJ/mol -analytic -6.1001e+2 -2.4268e-1 2.9194e+4 2.4383e+2 4.5573e+2 # -Range: 0-300 Al2(SO4)3:6H2O Al2(SO4)3:6H2O = 2 Al+3 + 3 SO4-2 + 6 H2O log_k 1.6849 - -delta_H -208.575 kJ/mol # Calculated enthalpy of reaction Al2(SO4)3:6H2O -# Enthalpy of formation: -5312.06 kJ/mol + -delta_H -208.575 kJ/mol # Calculated enthalpy of reaction Al2(SO4)3:6H2O +# Enthalpy of formation: -5312.06 kJ/mol -analytic -7.1642e+2 -2.4552e-1 2.6064e+4 2.8441e+2 4.0691e+2 # -Range: 0-300 AlF3 AlF3 = Al+3 + 3 F- log_k -17.2089 - -delta_H -34.0441 kJ/mol # Calculated enthalpy of reaction AlF3 -# Enthalpy of formation: -1510.4 kJ/mol + -delta_H -34.0441 kJ/mol # Calculated enthalpy of reaction AlF3 +# Enthalpy of formation: -1510.4 kJ/mol -analytic -3.9865e+2 -1.3388e-1 1.0211e+4 1.5642e+2 1.5945e+2 # -Range: 0-300 Alabandite MnS + H+ = HS- + Mn+2 log_k -0.3944 - -delta_H -23.3216 kJ/mol # Calculated enthalpy of reaction Alabandite -# Enthalpy of formation: -51 kcal/mol + -delta_H -23.3216 kJ/mol # Calculated enthalpy of reaction Alabandite +# Enthalpy of formation: -51 kcal/mol -analytic -1.5515e+2 -4.882e-2 4.9049e+3 6.1765e+1 7.6583e+1 # -Range: 0-300 Alamosite PbSiO3 + 2 H+ = H2O + Pb+2 + SiO2 log_k 5.6733 - -delta_H -16.5164 kJ/mol # Calculated enthalpy of reaction Alamosite -# Enthalpy of formation: -1146.1 kJ/mol + -delta_H -16.5164 kJ/mol # Calculated enthalpy of reaction Alamosite +# Enthalpy of formation: -1146.1 kJ/mol -analytic 2.9941e+2 6.7871e-2 -8.1706e+3 -1.1582e+2 -1.3885e+2 # -Range: 0-200 Albite NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 log_k 2.7645 - -delta_H -51.8523 kJ/mol # Calculated enthalpy of reaction Albite -# Enthalpy of formation: -939.68 kcal/mol + -delta_H -51.8523 kJ/mol # Calculated enthalpy of reaction Albite +# Enthalpy of formation: -939.68 kcal/mol -analytic -1.1694e+1 1.4429e-2 1.3784e+4 -7.2866e+0 -1.6136e+6 # -Range: 0-300 Albite_high NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 log_k 4.0832 - -delta_H -62.8562 kJ/mol # Calculated enthalpy of reaction Albite_high -# Enthalpy of formation: -937.05 kcal/mol + -delta_H -62.8562 kJ/mol # Calculated enthalpy of reaction Albite_high +# Enthalpy of formation: -937.05 kcal/mol -analytic -1.8957e+1 1.3726e-2 1.4801e+4 -4.9732e+0 -1.6442e+6 # -Range: 0-300 Albite_low NaAlSi3O8 + 4 H+ = Al+3 + Na+ + 2 H2O + 3 SiO2 log_k 2.7645 - -delta_H -51.8523 kJ/mol # Calculated enthalpy of reaction Albite_low -# Enthalpy of formation: -939.68 kcal/mol + -delta_H -51.8523 kJ/mol # Calculated enthalpy of reaction Albite_low +# Enthalpy of formation: -939.68 kcal/mol -analytic -1.286e+1 1.4481e-2 1.3913e+4 -6.9417e+0 -1.6256e+6 # -Range: 0-300 Alstonite BaCa(CO3)2 + 2 H+ = Ba+2 + Ca+2 + 2 HCO3- log_k 2.5843 - -delta_H 0 # Not possible to calculate enthalpy of reaction Alstonite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Alstonite +# Enthalpy of formation: 0 kcal/mol Alum-K KAl(SO4)2:12H2O = Al+3 + K+ + 2 SO4-2 + 12 H2O log_k -4.8818 - -delta_H 14.4139 kJ/mol # Calculated enthalpy of reaction Alum-K -# Enthalpy of formation: -1447 kcal/mol + -delta_H 14.4139 kJ/mol # Calculated enthalpy of reaction Alum-K +# Enthalpy of formation: -1447 kcal/mol -analytic -8.8025e+2 -2.5706e-1 2.2399e+4 3.5434e+2 3.4978e+2 # -Range: 0-300 Alunite KAl3(OH)6(SO4)2 + 6 H+ = K+ + 2 SO4-2 + 3 Al+3 + 6 H2O log_k -0.3479 - -delta_H -231.856 kJ/mol # Calculated enthalpy of reaction Alunite -# Enthalpy of formation: -1235.6 kcal/mol + -delta_H -231.856 kJ/mol # Calculated enthalpy of reaction Alunite +# Enthalpy of formation: -1235.6 kcal/mol -analytic -6.8581e+2 -2.2455e-1 2.6886e+4 2.6758e+2 4.1973e+2 # -Range: 0-300 Am Am + 3 H+ + 0.75 O2 = Am+3 + 1.5 H2O log_k 169.39 - -delta_H -1036.36 kJ/mol # Calculated enthalpy of reaction Am -# Enthalpy of formation: 0 kJ/mol + -delta_H -1036.36 kJ/mol # Calculated enthalpy of reaction Am +# Enthalpy of formation: 0 kJ/mol -analytic -6.7924e+0 -8.9873e-3 5.3327e+4 0e+0 0e+0 # -Range: 0-300 Am(OH)3 Am(OH)3 + 3 H+ = Am+3 + 3 H2O log_k 15.2218 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3 +# Enthalpy of formation: 0 kcal/mol Am(OH)3(am) Am(OH)3 + 3 H+ = Am+3 + 3 H2O log_k 17.0217 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Am(OH)3(am) +# Enthalpy of formation: 0 kcal/mol Am2(CO3)3 Am2(CO3)3 + 3 H+ = 2 Am+3 + 3 HCO3- log_k -2.3699 - -delta_H 0 # Not possible to calculate enthalpy of reaction Am2(CO3)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Am2(CO3)3 +# Enthalpy of formation: 0 kcal/mol Am2C3 Am2C3 + 4.5 O2 + 3 H+ = 2 Am+3 + 3 HCO3- log_k 503.9594 - -delta_H -3097.6 kJ/mol # Calculated enthalpy of reaction Am2C3 -# Enthalpy of formation: -151 kJ/mol + -delta_H -3097.6 kJ/mol # Calculated enthalpy of reaction Am2C3 +# Enthalpy of formation: -151 kJ/mol -analytic 3.3907e+2 -4.2636e-3 1.4463e+5 -1.2891e+2 2.4559e+3 # -Range: 0-200 Am2O3 Am2O3 + 6 H+ = 2 Am+3 + 3 H2O log_k 51.7905 - -delta_H -400.515 kJ/mol # Calculated enthalpy of reaction Am2O3 -# Enthalpy of formation: -1690.4 kJ/mol + -delta_H -400.515 kJ/mol # Calculated enthalpy of reaction Am2O3 +# Enthalpy of formation: -1690.4 kJ/mol -analytic -9.2044e+1 -1.8883e-2 2.3028e+4 2.9192e+1 3.5935e+2 # -Range: 0-300 AmBr3 AmBr3 = Am+3 + 3 Br- log_k 21.7826 - -delta_H -171.21 kJ/mol # Calculated enthalpy of reaction AmBr3 -# Enthalpy of formation: -810 kJ/mol + -delta_H -171.21 kJ/mol # Calculated enthalpy of reaction AmBr3 +# Enthalpy of formation: -810 kJ/mol -analytic 1.0121e+1 -3.0622e-2 6.1964e+3 0e+0 0e+0 # -Range: 0-200 AmCl3 AmCl3 = Am+3 + 3 Cl- log_k 14.3513 - -delta_H -140.139 kJ/mol # Calculated enthalpy of reaction AmCl3 -# Enthalpy of formation: -977.8 kJ/mol + -delta_H -140.139 kJ/mol # Calculated enthalpy of reaction AmCl3 +# Enthalpy of formation: -977.8 kJ/mol -analytic -1.5e+1 -3.6701e-2 5.2281e+3 9.1942e+0 8.8785e+1 # -Range: 0-200 AmF3 AmF3 = Am+3 + 3 F- log_k -13.119 - -delta_H -34.7428 kJ/mol # Calculated enthalpy of reaction AmF3 -# Enthalpy of formation: -1588 kJ/mol + -delta_H -34.7428 kJ/mol # Calculated enthalpy of reaction AmF3 +# Enthalpy of formation: -1588 kJ/mol -analytic -4.0514e+1 -3.7312e-2 4.1626e+2 1.4999e+1 7.0827e+0 # -Range: 0-200 AmF4 AmF4 = Am+4 + 4 F- log_k -25.1354 - -delta_H -37.3904 kJ/mol # Calculated enthalpy of reaction AmF4 -# Enthalpy of formation: -1710 kJ/mol + -delta_H -37.3904 kJ/mol # Calculated enthalpy of reaction AmF4 +# Enthalpy of formation: -1710 kJ/mol -analytic -4.9592e+1 -4.521e-2 -9.7251e+1 1.5457e+1 -1.6348e+0 # -Range: 0-200 AmH2 AmH2 + 2 H+ + O2 = Am+2 + 2 H2O log_k 128.4208 - -delta_H -738.376 kJ/mol # Calculated enthalpy of reaction AmH2 -# Enthalpy of formation: -175.8 kJ/mol + -delta_H -738.376 kJ/mol # Calculated enthalpy of reaction AmH2 +# Enthalpy of formation: -175.8 kJ/mol -analytic 3.1175e+1 -1.4062e-2 3.6259e+4 -8.16e+0 5.6578e+2 # -Range: 0-300 AmI3 AmI3 = Am+3 + 3 I- log_k 24.7301 - -delta_H -175.407 kJ/mol # Calculated enthalpy of reaction AmI3 -# Enthalpy of formation: -612 kJ/mol + -delta_H -175.407 kJ/mol # Calculated enthalpy of reaction AmI3 +# Enthalpy of formation: -612 kJ/mol -analytic -1.3886e+1 -3.6651e-2 7.2094e+3 1.0247e+1 1.2243e+2 # -Range: 0-200 AmO2 AmO2 + 4 H+ = Am+4 + 2 H2O log_k -9.4203 - -delta_H -45.4767 kJ/mol # Calculated enthalpy of reaction AmO2 -# Enthalpy of formation: -932.2 kJ/mol + -delta_H -45.4767 kJ/mol # Calculated enthalpy of reaction AmO2 +# Enthalpy of formation: -932.2 kJ/mol -analytic -7.4658e+1 -1.1661e-2 4.2059e+3 2.207e+1 6.565e+1 # -Range: 0-300 AmOBr AmOBr + 2 H+ = Am+3 + Br- + H2O log_k 13.7637 - -delta_H -131.042 kJ/mol # Calculated enthalpy of reaction AmOBr -# Enthalpy of formation: -893 kJ/mol + -delta_H -131.042 kJ/mol # Calculated enthalpy of reaction AmOBr +# Enthalpy of formation: -893 kJ/mol -analytic -4.4394e+1 -1.7071e-2 7.3438e+3 1.5605e+1 1.2472e+2 # -Range: 0-200 AmOCl AmOCl + 2 H+ = Am+3 + Cl- + H2O log_k 11.3229 - -delta_H -119.818 kJ/mol # Calculated enthalpy of reaction AmOCl -# Enthalpy of formation: -949.8 kJ/mol + -delta_H -119.818 kJ/mol # Calculated enthalpy of reaction AmOCl +# Enthalpy of formation: -949.8 kJ/mol -analytic -1.2101e+2 -4.1027e-2 8.6801e+3 4.6651e+1 1.3548e+2 # -Range: 0-300 AmOHCO3 AmOHCO3 + 2 H+ = Am+3 + H2O + HCO3- log_k 3.1519 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmOHCO3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AmOHCO3 +# Enthalpy of formation: 0 kcal/mol AmPO4(am) AmPO4 + H+ = Am+3 + HPO4-2 log_k -12.4682 - -delta_H 0 # Not possible to calculate enthalpy of reaction AmPO4(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction AmPO4(am) +# Enthalpy of formation: 0 kcal/mol Amesite-14A Mg4Al4Si2O10(OH)8 + 20 H+ = 2 SiO2 + 4 Al+3 + 4 Mg+2 + 14 H2O log_k 75.4571 - -delta_H -797.098 kJ/mol # Calculated enthalpy of reaction Amesite-14A -# Enthalpy of formation: -2145.67 kcal/mol + -delta_H -797.098 kJ/mol # Calculated enthalpy of reaction Amesite-14A +# Enthalpy of formation: -2145.67 kcal/mol -analytic -5.4326e+2 -1.4144e-1 5.415e+4 1.9361e+2 8.4512e+2 # -Range: 0-300 Analcime Na.96Al.96Si2.04O6:H2O + 3.84 H+ = 0.96 Al+3 + 0.96 Na+ + 2.04 SiO2 + 2.92 H2O log_k 6.1396 - -delta_H -75.844 kJ/mol # Calculated enthalpy of reaction Analcime -# Enthalpy of formation: -3296.86 kJ/mol + -delta_H -75.844 kJ/mol # Calculated enthalpy of reaction Analcime +# Enthalpy of formation: -3296.86 kJ/mol -analytic -6.8694e+0 6.6052e-3 9.826e+3 -4.854e+0 -8.878e+5 # -Range: 0-300 Analcime-dehy Na.96Al.96Si2.04O6 + 3.84 H+ = 0.96 Al+3 + 0.96 Na+ + 1.92 H2O + 2.04 SiO2 log_k 12.5023 - -delta_H -116.641 kJ/mol # Calculated enthalpy of reaction Analcime-dehy -# Enthalpy of formation: -2970.23 kJ/mol + -delta_H -116.641 kJ/mol # Calculated enthalpy of reaction Analcime-dehy +# Enthalpy of formation: -2970.23 kJ/mol -analytic -7.1134e+0 5.6181e-3 1.2185e+4 -5.0295e+0 -9.389e+5 # -Range: 0-300 Anatase TiO2 + 2 H2O = Ti(OH)4 log_k -8.5586 - -delta_H 0 # Not possible to calculate enthalpy of reaction Anatase -# Enthalpy of formation: -939.942 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Anatase +# Enthalpy of formation: -939.942 kJ/mol Andalusite Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O log_k 15.9445 - -delta_H -235.233 kJ/mol # Calculated enthalpy of reaction Andalusite -# Enthalpy of formation: -615.866 kcal/mol + -delta_H -235.233 kJ/mol # Calculated enthalpy of reaction Andalusite +# Enthalpy of formation: -615.866 kcal/mol -analytic -7.1115e+1 -3.2234e-2 1.2308e+4 2.2357e+1 1.9208e+2 # -Range: 0-300 Andradite Ca3Fe2(SiO4)3 + 12 H+ = 2 Fe+3 + 3 Ca+2 + 3 SiO2 + 6 H2O log_k 33.3352 - -delta_H -301.173 kJ/mol # Calculated enthalpy of reaction Andradite -# Enthalpy of formation: -1380.35 kcal/mol + -delta_H -301.173 kJ/mol # Calculated enthalpy of reaction Andradite +# Enthalpy of formation: -1380.35 kcal/mol -analytic 1.3884e+1 -2.3886e-2 1.5314e+4 -8.1606e+0 -4.2193e+5 # -Range: 0-300 Anglesite PbSO4 = Pb+2 + SO4-2 log_k -7.8527 - -delta_H 11.255 kJ/mol # Calculated enthalpy of reaction Anglesite -# Enthalpy of formation: -219.87 kcal/mol + -delta_H 11.255 kJ/mol # Calculated enthalpy of reaction Anglesite +# Enthalpy of formation: -219.87 kcal/mol -analytic -1.8583e+2 -7.3849e-2 2.8528e+3 7.6936e+1 4.457e+1 # -Range: 0-300 Anhydrite CaSO4 = Ca+2 + SO4-2 log_k -4.3064 - -delta_H -18.577 kJ/mol # Calculated enthalpy of reaction Anhydrite -# Enthalpy of formation: -342.76 kcal/mol + -delta_H -18.577 kJ/mol # Calculated enthalpy of reaction Anhydrite +# Enthalpy of formation: -342.76 kcal/mol -analytic -2.0986e+2 -7.8823e-2 5.0969e+3 8.5642e+1 7.9594e+1 # -Range: 0-300 Annite KFe3AlSi3O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Fe+2 + 3 SiO2 + 6 H2O log_k 29.4693 - -delta_H -259.964 kJ/mol # Calculated enthalpy of reaction Annite -# Enthalpy of formation: -1232.19 kcal/mol + -delta_H -259.964 kJ/mol # Calculated enthalpy of reaction Annite +# Enthalpy of formation: -1232.19 kcal/mol -analytic -4.0186e+1 -1.4238e-2 1.8929e+4 7.9859e+0 -8.4343e+5 # -Range: 0-300 Anorthite CaAl2(SiO4)2 + 8 H+ = Ca+2 + 2 Al+3 + 2 SiO2 + 4 H2O log_k 26.578 - -delta_H -303.039 kJ/mol # Calculated enthalpy of reaction Anorthite -# Enthalpy of formation: -1007.55 kcal/mol + -delta_H -303.039 kJ/mol # Calculated enthalpy of reaction Anorthite +# Enthalpy of formation: -1007.55 kcal/mol -analytic 3.9717e-1 -1.8751e-2 1.4897e+4 -6.3078e+0 -2.3885e+5 # -Range: 0-300 Antarcticite CaCl2:6H2O = Ca+2 + 2 Cl- + 6 H2O log_k 4.0933 - -delta_H 0 # Not possible to calculate enthalpy of reaction Antarcticite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Antarcticite +# Enthalpy of formation: 0 kcal/mol Anthophyllite Mg7Si8O22(OH)2 + 14 H+ = 7 Mg+2 + 8 H2O + 8 SiO2 log_k 66.7965 - -delta_H -483.486 kJ/mol # Calculated enthalpy of reaction Anthophyllite -# Enthalpy of formation: -2888.75 kcal/mol + -delta_H -483.486 kJ/mol # Calculated enthalpy of reaction Anthophyllite +# Enthalpy of formation: -2888.75 kcal/mol -analytic -1.2865e+2 1.9705e-2 5.4853e+4 1.9444e+1 -3.808e+6 # -Range: 0-300 @@ -10141,1184 +10141,1184 @@ Antigorite # Mg48Si24O85(OH)62 +96.0000 H+ = + 34.0000 SiO2 + 48.0000 Mg++ + 79.0000 H2O Mg48Si34O85(OH)62 + 96 H+ = 34 SiO2 + 48 Mg+2 + 79 H2O log_k 477.1943 - -delta_H -3364.43 kJ/mol # Calculated enthalpy of reaction Antigorite -# Enthalpy of formation: -17070.9 kcal/mol + -delta_H -3364.43 kJ/mol # Calculated enthalpy of reaction Antigorite +# Enthalpy of formation: -17070.9 kcal/mol -analytic -8.163e+2 -6.778e-2 2.5998e+5 2.2029e+2 -9.3275e+6 # -Range: 0-300 Antlerite Cu3(SO4)(OH)4 + 4 H+ = SO4-2 + 3 Cu+2 + 4 H2O log_k 8.7302 - -delta_H 0 # Not possible to calculate enthalpy of reaction Antlerite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Antlerite +# Enthalpy of formation: 0 kcal/mol Aphthitalite NaK3(SO4)2 = Na+ + 2 SO4-2 + 3 K+ log_k -3.8878 - -delta_H 0 # Not possible to calculate enthalpy of reaction Aphthitalite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Aphthitalite +# Enthalpy of formation: 0 kcal/mol Aragonite CaCO3 + H+ = Ca+2 + HCO3- log_k 1.9931 - -delta_H -25.8027 kJ/mol # Calculated enthalpy of reaction Aragonite -# Enthalpy of formation: -288.531 kcal/mol + -delta_H -25.8027 kJ/mol # Calculated enthalpy of reaction Aragonite +# Enthalpy of formation: -288.531 kcal/mol -analytic -1.4934e+2 -4.8043e-2 4.9089e+3 6.0284e+1 7.6644e+1 # -Range: 0-300 Arcanite K2SO4 = SO4-2 + 2 K+ log_k -1.8008 - -delta_H 23.836 kJ/mol # Calculated enthalpy of reaction Arcanite -# Enthalpy of formation: -1437.78 kJ/mol + -delta_H 23.836 kJ/mol # Calculated enthalpy of reaction Arcanite +# Enthalpy of formation: -1437.78 kJ/mol -analytic -1.6428e+2 -6.7762e-2 1.9879e+3 7.1116e+1 3.1067e+1 # -Range: 0-300 Arsenolite As2O3 + 3 H2O = 2 H+ + 2 H2AsO3- log_k -19.8365 - -delta_H 84.5449 kJ/mol # Calculated enthalpy of reaction Arsenolite -# Enthalpy of formation: -656.619 kJ/mol + -delta_H 84.5449 kJ/mol # Calculated enthalpy of reaction Arsenolite +# Enthalpy of formation: -656.619 kJ/mol -analytic 5.1917e+0 -1.9397e-2 -6.0894e+3 4.7458e-1 -1.0341e+2 # -Range: 0-200 Arsenopyrite FeAsS + 1.5 H2O + 0.5 H+ = 0.5 AsH3 + 0.5 H2AsO3- + Fe+2 + HS- log_k -14.4453 - -delta_H 28.0187 kJ/mol # Calculated enthalpy of reaction Arsenopyrite -# Enthalpy of formation: -42.079 kJ/mol + -delta_H 28.0187 kJ/mol # Calculated enthalpy of reaction Arsenopyrite +# Enthalpy of formation: -42.079 kJ/mol Artinite Mg2CO3(OH)2:3H2O + 3 H+ = HCO3- + 2 Mg+2 + 5 H2O log_k 19.656 - -delta_H -130.432 kJ/mol # Calculated enthalpy of reaction Artinite -# Enthalpy of formation: -698.043 kcal/mol + -delta_H -130.432 kJ/mol # Calculated enthalpy of reaction Artinite +# Enthalpy of formation: -698.043 kcal/mol -analytic -2.8614e+2 -6.7344e-2 1.523e+4 1.1104e+2 2.3773e+2 # -Range: 0-300 As As + 1.5 H2O + 0.75 O2 = H+ + H2AsO3- log_k 42.7079 - -delta_H -276.937 kJ/mol # Calculated enthalpy of reaction As -# Enthalpy of formation: 0 kJ/mol + -delta_H -276.937 kJ/mol # Calculated enthalpy of reaction As +# Enthalpy of formation: 0 kJ/mol -analytic -3.47e+1 -3.1772e-2 1.3788e+4 1.6411e+1 2.1517e+2 # -Range: 0-300 As2O5 As2O5 + 3 H2O = 2 H+ + 2 H2AsO4- log_k 2.1601 - -delta_H -36.7345 kJ/mol # Calculated enthalpy of reaction As2O5 -# Enthalpy of formation: -924.87 kJ/mol + -delta_H -36.7345 kJ/mol # Calculated enthalpy of reaction As2O5 +# Enthalpy of formation: -924.87 kJ/mol -analytic -1.4215e+2 -6.3459e-2 4.1222e+3 6.0369e+1 6.4365e+1 # -Range: 0-300 As4O6(cubi) As4O6 + 6 H2O = 4 H+ + 4 H2AsO3- log_k -39.7636 - -delta_H 169.792 kJ/mol # Calculated enthalpy of reaction As4O6(cubi) -# Enthalpy of formation: -1313.94 kJ/mol + -delta_H 169.792 kJ/mol # Calculated enthalpy of reaction As4O6(cubi) +# Enthalpy of formation: -1313.94 kJ/mol -analytic -2.63e+2 -1.1822e-1 -4.9004e+3 1.1108e+2 -7.6389e+1 # -Range: 0-300 As4O6(mono) As4O6 + 6 H2O = 4 H+ + 4 H2AsO3- log_k -40.0375 - -delta_H 165.452 kJ/mol # Calculated enthalpy of reaction As4O6(mono) -# Enthalpy of formation: -1309.6 kJ/mol + -delta_H 165.452 kJ/mol # Calculated enthalpy of reaction As4O6(mono) +# Enthalpy of formation: -1309.6 kJ/mol -analytic 9.2518e+0 -3.8823e-2 -1.1985e+4 9.9966e-1 -2.0352e+2 # -Range: 0-200 Atacamite Cu4Cl2(OH)6 + 6 H+ = 2 Cl- + 4 Cu+2 + 6 H2O log_k 14.2836 - -delta_H -132.001 kJ/mol # Calculated enthalpy of reaction Atacamite -# Enthalpy of formation: -1654.43 kJ/mol + -delta_H -132.001 kJ/mol # Calculated enthalpy of reaction Atacamite +# Enthalpy of formation: -1654.43 kJ/mol -analytic -2.6623e+2 -4.8121e-2 1.5315e+4 9.8395e+1 2.6016e+2 # -Range: 0-200 Au Au + H+ + 0.25 O2 = 0.5 H2O + Au+ log_k -7.0864 - -delta_H 59.189 kJ/mol # Calculated enthalpy of reaction Au -# Enthalpy of formation: 0 kcal/mol + -delta_H 59.189 kJ/mol # Calculated enthalpy of reaction Au +# Enthalpy of formation: 0 kcal/mol -analytic -7.661e-1 -2.852e-3 -3.0861e+3 1.9705e+0 -4.8156e+1 # -Range: 0-300 Autunite-H H2(UO2)2(PO4)2 = 2 HPO4-2 + 2 UO2+2 log_k -25.3372 - -delta_H -31.8599 kJ/mol # Calculated enthalpy of reaction Autunite-H -# Enthalpy of formation: -4590.3 kJ/mol + -delta_H -31.8599 kJ/mol # Calculated enthalpy of reaction Autunite-H +# Enthalpy of formation: -4590.3 kJ/mol -analytic -3.2179e+1 -3.8038e-2 -6.8629e+2 8.2724e+0 -1.1644e+1 # -Range: 0-200 Azurite Cu3(CO3)2(OH)2 + 4 H+ = 2 H2O + 2 HCO3- + 3 Cu+2 log_k 9.1607 - -delta_H -122.298 kJ/mol # Calculated enthalpy of reaction Azurite -# Enthalpy of formation: -390.1 kcal/mol + -delta_H -122.298 kJ/mol # Calculated enthalpy of reaction Azurite +# Enthalpy of formation: -390.1 kcal/mol -analytic -4.4042e+2 -1.1934e-1 1.8053e+4 1.7158e+2 2.8182e+2 # -Range: 0-300 B B + 1.5 H2O + 0.75 O2 = B(OH)3 log_k 109.5654 - -delta_H -636.677 kJ/mol # Calculated enthalpy of reaction B -# Enthalpy of formation: 0 kJ/mol + -delta_H -636.677 kJ/mol # Calculated enthalpy of reaction B +# Enthalpy of formation: 0 kJ/mol -analytic 8.0471e+1 1.2577e-3 2.9653e+4 -2.8593e+1 4.6268e+2 # -Range: 0-300 B2O3 B2O3 + 3 H2O = 2 B(OH)3 log_k 5.5464 - -delta_H -18.0548 kJ/mol # Calculated enthalpy of reaction B2O3 -# Enthalpy of formation: -1273.5 kJ/mol + -delta_H -18.0548 kJ/mol # Calculated enthalpy of reaction B2O3 +# Enthalpy of formation: -1273.5 kJ/mol -analytic 9.0905e+1 5.5365e-3 -2.6629e+3 -3.1553e+1 -4.1578e+1 # -Range: 0-300 Ba Ba + 2 H+ + 0.5 O2 = Ba+2 + H2O log_k 141.2465 - -delta_H -817.416 kJ/mol # Calculated enthalpy of reaction Ba -# Enthalpy of formation: 0 kJ/mol + -delta_H -817.416 kJ/mol # Calculated enthalpy of reaction Ba +# Enthalpy of formation: 0 kJ/mol -analytic -2.5033e+1 -1.3917e-2 4.2849e+4 1.0786e+1 6.6863e+2 # -Range: 0-300 Ba(OH)2:8H2O Ba(OH)2:8H2O + 2 H+ = Ba+2 + 10 H2O log_k 24.4911 - -delta_H -55.4363 kJ/mol # Calculated enthalpy of reaction Ba(OH)2:8H2O -# Enthalpy of formation: -3340.59 kJ/mol + -delta_H -55.4363 kJ/mol # Calculated enthalpy of reaction Ba(OH)2:8H2O +# Enthalpy of formation: -3340.59 kJ/mol -analytic -2.3888e+2 -1.5791e-3 1.4097e+4 8.7518e+1 2.3947e+2 # -Range: 0-200 Ba2Si3O8 Ba2Si3O8 + 4 H+ = 2 Ba+2 + 2 H2O + 3 SiO2 log_k 23.3284 - -delta_H -95.3325 kJ/mol # Calculated enthalpy of reaction Ba2Si3O8 -# Enthalpy of formation: -4184.73 kJ/mol + -delta_H -95.3325 kJ/mol # Calculated enthalpy of reaction Ba2Si3O8 +# Enthalpy of formation: -4184.73 kJ/mol -analytic -8.7226e+1 9.3125e-3 2.3147e+4 2.2012e+1 -2.1714e+6 # -Range: 0-300 Ba2SiO4 Ba2SiO4 + 4 H+ = SiO2 + 2 Ba+2 + 2 H2O log_k 44.593 - -delta_H -237.206 kJ/mol # Calculated enthalpy of reaction Ba2SiO4 -# Enthalpy of formation: -2287.46 kJ/mol + -delta_H -237.206 kJ/mol # Calculated enthalpy of reaction Ba2SiO4 +# Enthalpy of formation: -2287.46 kJ/mol -analytic -7.035e+0 -5.1744e-3 1.4786e+4 3.1091e+0 -3.6972e+5 # -Range: 0-300 Ba2U2O7 Ba2U2O7 + 6 H+ = 2 Ba+2 + 2 UO2+ + 3 H2O log_k 36.4635 - -delta_H -243.057 kJ/mol # Calculated enthalpy of reaction Ba2U2O7 -# Enthalpy of formation: -3740 kJ/mol + -delta_H -243.057 kJ/mol # Calculated enthalpy of reaction Ba2U2O7 +# Enthalpy of formation: -3740 kJ/mol -analytic -9.2562e+1 5.3866e-3 1.6852e+4 2.8647e+1 2.8621e+2 # -Range: 0-200 Ba3UO6 Ba3UO6 + 8 H+ = UO2+2 + 3 Ba+2 + 4 H2O log_k 94.3709 - -delta_H -564.885 kJ/mol # Calculated enthalpy of reaction Ba3UO6 -# Enthalpy of formation: -3210.4 kJ/mol + -delta_H -564.885 kJ/mol # Calculated enthalpy of reaction Ba3UO6 +# Enthalpy of formation: -3210.4 kJ/mol -analytic -1.3001e+2 -1.7395e-2 3.3977e+4 4.6715e+1 5.7703e+2 # -Range: 0-200 BaBr2 BaBr2 = Ba+2 + 2 Br- log_k 5.6226 - -delta_H -23.3887 kJ/mol # Calculated enthalpy of reaction BaBr2 -# Enthalpy of formation: -757.262 kJ/mol + -delta_H -23.3887 kJ/mol # Calculated enthalpy of reaction BaBr2 +# Enthalpy of formation: -757.262 kJ/mol -analytic -1.7689e+2 -7.1918e-2 4.7187e+3 7.601e+1 7.3683e+1 # -Range: 0-300 BaBr2:2H2O BaBr2:2H2O = Ba+2 + 2 Br- + 2 H2O log_k 2.2523 - -delta_H 13.7736 kJ/mol # Calculated enthalpy of reaction BaBr2:2H2O -# Enthalpy of formation: -1366.1 kJ/mol + -delta_H 13.7736 kJ/mol # Calculated enthalpy of reaction BaBr2:2H2O +# Enthalpy of formation: -1366.1 kJ/mol -analytic -1.5506e+1 -1.6281e-2 -8.5727e+2 1.0296e+1 -1.4552e+1 # -Range: 0-200 BaCl2 BaCl2 = Ba+2 + 2 Cl- log_k 2.2707 - -delta_H -13.1563 kJ/mol # Calculated enthalpy of reaction BaCl2 -# Enthalpy of formation: -858.647 kJ/mol + -delta_H -13.1563 kJ/mol # Calculated enthalpy of reaction BaCl2 +# Enthalpy of formation: -858.647 kJ/mol -analytic -2.0393e+2 -7.8925e-2 4.8846e+3 8.6204e+1 7.628e+1 # -Range: 0-300 BaCl2:2H2O BaCl2:2H2O = Ba+2 + 2 Cl- + 2 H2O log_k 0.2459 - -delta_H 16.558 kJ/mol # Calculated enthalpy of reaction BaCl2:2H2O -# Enthalpy of formation: -1460.04 kJ/mol + -delta_H 16.558 kJ/mol # Calculated enthalpy of reaction BaCl2:2H2O +# Enthalpy of formation: -1460.04 kJ/mol -analytic -2.035e+2 -7.3577e-2 3.7914e+3 8.6051e+1 5.9221e+1 # -Range: 0-300 BaCl2:H2O BaCl2:H2O = Ba+2 + H2O + 2 Cl- log_k 0.8606 - -delta_H 2.89433 kJ/mol # Calculated enthalpy of reaction BaCl2:H2O -# Enthalpy of formation: -1160.54 kJ/mol + -delta_H 2.89433 kJ/mol # Calculated enthalpy of reaction BaCl2:H2O +# Enthalpy of formation: -1160.54 kJ/mol -analytic -1.9572e+2 -7.3938e-2 4.0553e+3 8.2842e+1 6.3336e+1 # -Range: 0-300 BaCrO4 BaCrO4 = Ba+2 + CrO4-2 log_k -9.9322 - -delta_H 25.9115 kJ/mol # Calculated enthalpy of reaction BaCrO4 -# Enthalpy of formation: -345.293 kcal/mol + -delta_H 25.9115 kJ/mol # Calculated enthalpy of reaction BaCrO4 +# Enthalpy of formation: -345.293 kcal/mol -analytic 2.3142e+1 -1.6617e-2 -3.6883e+3 -6.3687e+0 -6.264e+1 # -Range: 0-200 BaHPO4 BaHPO4 = Ba+2 + HPO4-2 log_k -7.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaHPO4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction BaHPO4 +# Enthalpy of formation: 0 kcal/mol BaI2 BaI2 = Ba+2 + 2 I- log_k 11.0759 - -delta_H -46.0408 kJ/mol # Calculated enthalpy of reaction BaI2 -# Enthalpy of formation: -605.408 kJ/mol + -delta_H -46.0408 kJ/mol # Calculated enthalpy of reaction BaI2 +# Enthalpy of formation: -605.408 kJ/mol -analytic -1.7511e+2 -7.2206e-2 5.8696e+3 7.5974e+1 9.1641e+1 # -Range: 0-300 BaMnO4 BaMnO4 = Ba+2 + MnO4-2 log_k -10.09 - -delta_H 0 # Not possible to calculate enthalpy of reaction BaMnO4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction BaMnO4 +# Enthalpy of formation: 0 kcal/mol BaO BaO + 2 H+ = Ba+2 + H2O log_k 47.8036 - -delta_H -270.184 kJ/mol # Calculated enthalpy of reaction BaO -# Enthalpy of formation: -553.298 kJ/mol + -delta_H -270.184 kJ/mol # Calculated enthalpy of reaction BaO +# Enthalpy of formation: -553.298 kJ/mol -analytic -7.3273e+1 -1.7149e-2 1.6811e+4 2.856e+1 -7.751e+4 # -Range: 0-300 BaS BaS + H+ = Ba+2 + HS- log_k 16.2606 - -delta_H -92.9004 kJ/mol # Calculated enthalpy of reaction BaS -# Enthalpy of formation: -460.852 kJ/mol + -delta_H -92.9004 kJ/mol # Calculated enthalpy of reaction BaS +# Enthalpy of formation: -460.852 kJ/mol -analytic -1.1819e+2 -4.342e-2 7.4296e+3 4.9489e+1 1.1597e+2 # -Range: 0-300 BaSeO3 BaSeO3 = Ba+2 + SeO3-2 log_k -6.5615 - -delta_H -5.5658 kJ/mol # Calculated enthalpy of reaction BaSeO3 -# Enthalpy of formation: -1041.27 kJ/mol + -delta_H -5.5658 kJ/mol # Calculated enthalpy of reaction BaSeO3 +# Enthalpy of formation: -1041.27 kJ/mol -analytic 2.9742e+1 -1.7073e-2 -2.4532e+3 -9.2936e+0 -4.1669e+1 # -Range: 0-200 BaSeO4 BaSeO4 = Ba+2 + SeO4-2 log_k -7.4468 - -delta_H 8.9782 kJ/mol # Calculated enthalpy of reaction BaSeO4 -# Enthalpy of formation: -1145.77 kJ/mol + -delta_H 8.9782 kJ/mol # Calculated enthalpy of reaction BaSeO4 +# Enthalpy of formation: -1145.77 kJ/mol -analytic 2.4274e+1 -1.6289e-2 -2.852e+3 -6.9949e+0 -4.8439e+1 # -Range: 0-200 BaSiF6 BaSiF6 + 2 H2O = Ba+2 + SiO2 + 4 H+ + 6 F- log_k -32.1771 - -delta_H 95.2555 kJ/mol # Calculated enthalpy of reaction BaSiF6 -# Enthalpy of formation: -2951.01 kJ/mol + -delta_H 95.2555 kJ/mol # Calculated enthalpy of reaction BaSiF6 +# Enthalpy of formation: -2951.01 kJ/mol -analytic -6.4766e+0 -3.841e-2 0e+0 0e+0 -1.2701e+6 # -Range: 0-200 BaU2O7 BaU2O7 + 6 H+ = Ba+2 + 2 UO2+2 + 3 H2O log_k 21.9576 - -delta_H -195.959 kJ/mol # Calculated enthalpy of reaction BaU2O7 -# Enthalpy of formation: -3237.2 kJ/mol + -delta_H -195.959 kJ/mol # Calculated enthalpy of reaction BaU2O7 +# Enthalpy of formation: -3237.2 kJ/mol -analytic -1.2254e+2 -1.0941e-2 1.4452e+4 4.0125e+1 2.4546e+2 # -Range: 0-200 BaUO4 BaUO4 + 4 H+ = Ba+2 + UO2+2 + 2 H2O log_k 18.2007 - -delta_H -134.521 kJ/mol # Calculated enthalpy of reaction BaUO4 -# Enthalpy of formation: -1993.8 kJ/mol + -delta_H -134.521 kJ/mol # Calculated enthalpy of reaction BaUO4 +# Enthalpy of formation: -1993.8 kJ/mol -analytic -6.7113e+1 -1.634e-2 8.7592e+3 2.4571e+1 1.367e+2 # -Range: 0-300 BaZrO3 BaZrO3 + 4 H+ = Ba+2 + H2O + Zr(OH)2+2 log_k -94.4716 - -delta_H 505.159 kJ/mol # Calculated enthalpy of reaction BaZrO3 -# Enthalpy of formation: -578.27 kcal/mol + -delta_H 505.159 kJ/mol # Calculated enthalpy of reaction BaZrO3 +# Enthalpy of formation: -578.27 kcal/mol -analytic -5.3606e+1 -1.0096e-2 -2.4894e+4 1.8446e+1 -4.2271e+2 # -Range: 0-200 Baddeleyite ZrO2 + 2 H+ = Zr(OH)2+2 log_k -7.9405 - -delta_H 9.72007 kJ/mol # Calculated enthalpy of reaction Baddeleyite -# Enthalpy of formation: -1100.56 kJ/mol + -delta_H 9.72007 kJ/mol # Calculated enthalpy of reaction Baddeleyite +# Enthalpy of formation: -1100.56 kJ/mol -analytic -2.5188e-1 -4.6374e-3 -1.0635e+3 -1.1055e+0 -1.6595e+1 # -Range: 0-300 Barite BaSO4 = Ba+2 + SO4-2 log_k -9.9711 - -delta_H 25.9408 kJ/mol # Calculated enthalpy of reaction Barite -# Enthalpy of formation: -352.1 kcal/mol + -delta_H 25.9408 kJ/mol # Calculated enthalpy of reaction Barite +# Enthalpy of formation: -352.1 kcal/mol -analytic -1.8747e+2 -7.5521e-2 2.079e+3 7.7998e+1 3.2497e+1 # -Range: 0-300 Barytocalcite BaCa(CO3)2 + 2 H+ = Ba+2 + Ca+2 + 2 HCO3- log_k 2.742 - -delta_H 0 # Not possible to calculate enthalpy of reaction Barytocalcite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Barytocalcite +# Enthalpy of formation: 0 kcal/mol Bassanite CaSO4:0.5H2O = 0.5 H2O + Ca+2 + SO4-2 log_k -3.6615 - -delta_H -18.711 kJ/mol # Calculated enthalpy of reaction Bassanite -# Enthalpy of formation: -1576.89 kJ/mol + -delta_H -18.711 kJ/mol # Calculated enthalpy of reaction Bassanite +# Enthalpy of formation: -1576.89 kJ/mol -analytic -2.201e+2 -8.023e-2 5.5092e+3 8.9651e+1 8.6031e+1 # -Range: 0-300 Bassetite Fe(UO2)2(PO4)2 + 2 H+ = Fe+2 + 2 HPO4-2 + 2 UO2+2 log_k -17.724 - -delta_H -114.841 kJ/mol # Calculated enthalpy of reaction Bassetite -# Enthalpy of formation: -1099.33 kcal/mol + -delta_H -114.841 kJ/mol # Calculated enthalpy of reaction Bassetite +# Enthalpy of formation: -1099.33 kcal/mol -analytic -5.7788e+1 -4.54e-2 4.0119e+3 1.6216e+1 6.8147e+1 # -Range: 0-200 Be Be + 2 H+ + 0.5 O2 = Be+2 + H2O log_k 104.2077 - -delta_H -662.608 kJ/mol # Calculated enthalpy of reaction Be -# Enthalpy of formation: 0 kJ/mol + -delta_H -662.608 kJ/mol # Calculated enthalpy of reaction Be +# Enthalpy of formation: 0 kJ/mol -analytic -9.396e+1 -2.4749e-2 3.6714e+4 3.3295e+1 5.7291e+2 # -Range: 0-300 Be13U Be13U + 30 H+ + 7.5 O2 = U+4 + 13 Be+2 + 15 H2O log_k 1504.535 - -delta_H -9601.04 kJ/mol # Calculated enthalpy of reaction Be13U -# Enthalpy of formation: -163.6 kJ/mol + -delta_H -9601.04 kJ/mol # Calculated enthalpy of reaction Be13U +# Enthalpy of formation: -163.6 kJ/mol -analytic -1.2388e+3 -3.2848e-1 5.2816e+5 4.3222e+2 8.2419e+3 # -Range: 0-300 Beidellite-Ca Ca.165Al2.33Si3.67O10(OH)2 + 7.32 H+ = 0.165 Ca+2 + 2.33 Al+3 + 3.67 SiO2 + 4.66 H2O log_k 5.5914 - -delta_H -162.403 kJ/mol # Calculated enthalpy of reaction Beidellite-Ca -# Enthalpy of formation: -1370.66 kcal/mol + -delta_H -162.403 kJ/mol # Calculated enthalpy of reaction Beidellite-Ca +# Enthalpy of formation: -1370.66 kcal/mol -analytic 2.3887e+1 4.4178e-3 1.5296e+4 -2.2343e+1 -1.4025e+6 # -Range: 0-300 Beidellite-Cs Cs.33Si3.67Al2.33O10(OH)2 + 7.32 H+ = 0.33 Cs+ + 2.33 Al+3 + 3.67 SiO2 + 4.66 H2O log_k 5.1541 - -delta_H -149.851 kJ/mol # Calculated enthalpy of reaction Beidellite-Cs -# Enthalpy of formation: -1372.59 kcal/mol + -delta_H -149.851 kJ/mol # Calculated enthalpy of reaction Beidellite-Cs +# Enthalpy of formation: -1372.59 kcal/mol -analytic 2.1244e+1 2.1705e-3 1.4504e+4 -2.025e+1 -1.3712e+6 # -Range: 0-300 Beidellite-H H.33Al2.33Si3.67O10(OH)2 + 6.99 H+ = 2.33 Al+3 + 3.67 SiO2 + 4.66 H2O log_k 4.6335 - -delta_H -154.65 kJ/mol # Calculated enthalpy of reaction Beidellite-H -# Enthalpy of formation: -1351.1 kcal/mol + -delta_H -154.65 kJ/mol # Calculated enthalpy of reaction Beidellite-H +# Enthalpy of formation: -1351.1 kcal/mol -analytic 5.407e+0 3.4064e-3 1.6284e+4 -1.6028e+1 -1.5014e+6 # -Range: 0-300 Beidellite-K K.33Al2.33Si3.67O10(OH)2 + 7.32 H+ = 0.33 K+ + 2.33 Al+3 + 3.67 SiO2 + 4.66 H2O log_k 5.3088 - -delta_H -150.834 kJ/mol # Calculated enthalpy of reaction Beidellite-K -# Enthalpy of formation: -1371.9 kcal/mol + -delta_H -150.834 kJ/mol # Calculated enthalpy of reaction Beidellite-K +# Enthalpy of formation: -1371.9 kcal/mol -analytic 1.0792e+1 3.4419e-3 1.576e+4 -1.7333e+1 -1.4779e+6 # -Range: 0-300 Beidellite-Mg Mg.165Al2.33Si3.67O10(OH)2 + 7.32 H+ = 0.165 Mg+2 + 2.33 Al+3 + 3.67 SiO2 + 4.66 H2O log_k 5.5537 - -delta_H -165.455 kJ/mol # Calculated enthalpy of reaction Beidellite-Mg -# Enthalpy of formation: -1366.89 kcal/mol + -delta_H -165.455 kJ/mol # Calculated enthalpy of reaction Beidellite-Mg +# Enthalpy of formation: -1366.89 kcal/mol -analytic 1.3375e+1 3.042e-3 1.5947e+4 -1.8728e+1 -1.4242e+6 # -Range: 0-300 Beidellite-Na Na.33Al2.33Si3.67O10(OH)2 + 7.32 H+ = 0.33 Na+ + 2.33 Al+3 + 3.67 SiO2 + 4.66 H2O log_k 5.6473 - -delta_H -155.846 kJ/mol # Calculated enthalpy of reaction Beidellite-Na -# Enthalpy of formation: -1369.76 kcal/mol + -delta_H -155.846 kJ/mol # Calculated enthalpy of reaction Beidellite-Na +# Enthalpy of formation: -1369.76 kcal/mol -analytic 1.1504e+1 3.9871e-3 1.5818e+4 -1.7762e+1 -1.4485e+6 # -Range: 0-300 Berlinite AlPO4 + H+ = Al+3 + HPO4-2 log_k -7.2087 - -delta_H -96.6313 kJ/mol # Calculated enthalpy of reaction Berlinite -# Enthalpy of formation: -1733.85 kJ/mol + -delta_H -96.6313 kJ/mol # Calculated enthalpy of reaction Berlinite +# Enthalpy of formation: -1733.85 kJ/mol -analytic -2.8134e+2 -9.9933e-2 1.0308e+4 1.0883e+2 1.6094e+2 # -Range: 0-300 Berndtite SnS2 = S2-2 + Sn+2 log_k -34.5393 - -delta_H 0 # Not possible to calculate enthalpy of reaction Berndtite -# Enthalpy of formation: -36.7 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Berndtite +# Enthalpy of formation: -36.7 kcal/mol -analytic -2.0311e+2 -7.6462e-2 -4.9879e+3 8.4082e+1 -7.7772e+1 # -Range: 0-300 Bieberite CoSO4:7H2O = Co+2 + SO4-2 + 7 H2O log_k -2.5051 - -delta_H 11.3885 kJ/mol # Calculated enthalpy of reaction Bieberite -# Enthalpy of formation: -2980.02 kJ/mol + -delta_H 11.3885 kJ/mol # Calculated enthalpy of reaction Bieberite +# Enthalpy of formation: -2980.02 kJ/mol -analytic -2.6405e+2 -7.2497e-2 6.6673e+3 1.0538e+2 1.0411e+2 # -Range: 0-300 Birnessite Mn8O14:5H2O + 4 H+ = 3 MnO4-2 + 5 Mn+2 + 7 H2O log_k -85.5463 - -delta_H 0 # Not possible to calculate enthalpy of reaction Birnessite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Birnessite +# Enthalpy of formation: 0 kcal/mol Bischofite MgCl2:6H2O = Mg+2 + 2 Cl- + 6 H2O log_k 4.3923 - -delta_H 0 # Not possible to calculate enthalpy of reaction Bischofite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Bischofite +# Enthalpy of formation: 0 kcal/mol Bixbyite Mn2O3 + 6 H+ = 2 Mn+3 + 3 H2O log_k -0.9655 - -delta_H -190.545 kJ/mol # Calculated enthalpy of reaction Bixbyite -# Enthalpy of formation: -958.971 kJ/mol + -delta_H -190.545 kJ/mol # Calculated enthalpy of reaction Bixbyite +# Enthalpy of formation: -958.971 kJ/mol -analytic -1.16e+2 -2.8056e-3 1.3418e+4 2.8639e+1 2.0941e+2 # -Range: 0-300 Bloedite Na2Mg(SO4)2:4H2O = Mg+2 + 2 Na+ + 2 SO4-2 + 4 H2O log_k -2.4777 - -delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Bloedite +# Enthalpy of formation: 0 kcal/mol Boehmite AlO2H + 3 H+ = Al+3 + 2 H2O log_k 7.5642 - -delta_H -113.282 kJ/mol # Calculated enthalpy of reaction Boehmite -# Enthalpy of formation: -238.24 kcal/mol + -delta_H -113.282 kJ/mol # Calculated enthalpy of reaction Boehmite +# Enthalpy of formation: -238.24 kcal/mol -analytic -1.2196e+2 -3.1138e-2 8.8643e+3 4.4075e+1 1.3835e+2 # -Range: 0-300 Boltwoodite K(H3O)(UO2)SiO4 + 3 H+ = K+ + SiO2 + UO2+2 + 3 H2O log_k 14.8857 - -delta_H 0 # Not possible to calculate enthalpy of reaction Boltwoodite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Boltwoodite +# Enthalpy of formation: 0 kcal/mol Boltwoodite-Na Na.7K.3(H3O)(UO2)SiO4:H2O + 3 H+ = 0.3 K+ + 0.7 Na+ + SiO2 + UO2+2 + 4 H2O log_k 14.5834 - -delta_H 0 # Not possible to calculate enthalpy of reaction Boltwoodite-Na -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Boltwoodite-Na +# Enthalpy of formation: 0 kcal/mol Borax Na2(B4O5(OH)4):8H2O + 2 H+ = 2 Na+ + 4 B(OH)3 + 5 H2O log_k 12.0395 - -delta_H 80.5145 kJ/mol # Calculated enthalpy of reaction Borax -# Enthalpy of formation: -6288.44 kJ/mol + -delta_H 80.5145 kJ/mol # Calculated enthalpy of reaction Borax +# Enthalpy of formation: -6288.44 kJ/mol -analytic 7.8374e+1 1.9328e-2 -5.3279e+3 -2.1914e+1 -8.316e+1 # -Range: 0-300 Boric_acid B(OH)3 = B(OH)3 log_k -0.1583 - -delta_H 20.2651 kJ/mol # Calculated enthalpy of reaction Boric_acid -# Enthalpy of formation: -1094.8 kJ/mol + -delta_H 20.2651 kJ/mol # Calculated enthalpy of reaction Boric_acid +# Enthalpy of formation: -1094.8 kJ/mol -analytic 3.9122e+1 6.4058e-3 -2.2525e+3 -1.3592e+1 -3.516e+1 # -Range: 0-300 Bornite Cu5FeS4 + 4 H+ = Cu+2 + Fe+2 + 4 Cu+ + 4 HS- log_k -102.4369 - -delta_H 530.113 kJ/mol # Calculated enthalpy of reaction Bornite -# Enthalpy of formation: -79.922 kcal/mol + -delta_H 530.113 kJ/mol # Calculated enthalpy of reaction Bornite +# Enthalpy of formation: -79.922 kcal/mol -analytic -7.0495e+2 -2.0082e-1 -9.1376e+3 2.8004e+2 -1.4238e+2 # -Range: 0-300 Brezinaite Cr3S4 + 4 H+ = Cr+2 + 2 Cr+3 + 4 HS- log_k 2.7883 - -delta_H -216.731 kJ/mol # Calculated enthalpy of reaction Brezinaite -# Enthalpy of formation: -111.9 kcal/mol + -delta_H -216.731 kJ/mol # Calculated enthalpy of reaction Brezinaite +# Enthalpy of formation: -111.9 kcal/mol -analytic -7.0528e+1 -3.6568e-2 1.0598e+4 1.9665e+1 1.8e+2 # -Range: 0-200 Brochantite Cu4(SO4)(OH)6 + 6 H+ = SO4-2 + 4 Cu+2 + 6 H2O log_k 15.4363 - -delta_H -163.158 kJ/mol # Calculated enthalpy of reaction Brochantite -# Enthalpy of formation: -2198.72 kJ/mol + -delta_H -163.158 kJ/mol # Calculated enthalpy of reaction Brochantite +# Enthalpy of formation: -2198.72 kJ/mol -analytic -2.3609e+2 -3.9046e-2 1.597e+4 8.4701e+1 2.7127e+2 # -Range: 0-200 Bromellite BeO + 2 H+ = Be+2 + H2O log_k 1.1309 - -delta_H -59.2743 kJ/mol # Calculated enthalpy of reaction Bromellite -# Enthalpy of formation: -609.4 kJ/mol + -delta_H -59.2743 kJ/mol # Calculated enthalpy of reaction Bromellite +# Enthalpy of formation: -609.4 kJ/mol -analytic 1.479e+2 -4.6004e-1 -3.2577e+4 4.0273e+1 -5.0837e+2 # -Range: 0-300 Brucite Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O log_k 16.298 - -delta_H -111.34 kJ/mol # Calculated enthalpy of reaction Brucite -# Enthalpy of formation: -221.39 kcal/mol + -delta_H -111.34 kJ/mol # Calculated enthalpy of reaction Brucite +# Enthalpy of formation: -221.39 kcal/mol -analytic -1.028e+2 -1.9759e-2 9.018e+3 3.8282e+1 1.4075e+2 # -Range: 0-300 Brushite CaHPO4:2H2O = Ca+2 + HPO4-2 + 2 H2O log_k 6.55 - -delta_H 0 # Not possible to calculate enthalpy of reaction Brushite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Brushite +# Enthalpy of formation: 0 kcal/mol Bunsenite NiO + 2 H+ = H2O + Ni+2 log_k 12.4719 - -delta_H -100.069 kJ/mol # Calculated enthalpy of reaction Bunsenite -# Enthalpy of formation: -57.3 kcal/mol + -delta_H -100.069 kJ/mol # Calculated enthalpy of reaction Bunsenite +# Enthalpy of formation: -57.3 kcal/mol -analytic -8.1664e+1 -1.9796e-2 7.4064e+3 3.0385e+1 1.1559e+2 # -Range: 0-300 Burkeite Na6CO3(SO4)2 + H+ = HCO3- + 2 SO4-2 + 6 Na+ log_k 9.4866 - -delta_H 0 # Not possible to calculate enthalpy of reaction Burkeite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Burkeite +# Enthalpy of formation: 0 kcal/mol C C + H2O + O2 = H+ + HCO3- log_k 64.1735 - -delta_H -391.961 kJ/mol # Calculated enthalpy of reaction C -# Enthalpy of formation: 0 kcal/mol + -delta_H -391.961 kJ/mol # Calculated enthalpy of reaction C +# Enthalpy of formation: 0 kcal/mol -analytic -3.5556e+1 -3.3691e-2 1.9774e+4 1.7548e+1 3.0856e+2 # -Range: 0-300 Ca Ca + 2 H+ + 0.5 O2 = Ca+2 + H2O log_k 139.8465 - -delta_H -822.855 kJ/mol # Calculated enthalpy of reaction Ca -# Enthalpy of formation: 0 kJ/mol + -delta_H -822.855 kJ/mol # Calculated enthalpy of reaction Ca +# Enthalpy of formation: 0 kJ/mol -analytic -1.1328e+2 -2.6554e-2 4.7638e+4 4.1989e+1 -2.3545e+5 # -Range: 0-300 Ca-Al_Pyroxene CaAl2SiO6 + 8 H+ = Ca+2 + SiO2 + 2 Al+3 + 4 H2O log_k 35.9759 - -delta_H -361.548 kJ/mol # Calculated enthalpy of reaction Ca-Al_Pyroxene -# Enthalpy of formation: -783.793 kcal/mol + -delta_H -361.548 kJ/mol # Calculated enthalpy of reaction Ca-Al_Pyroxene +# Enthalpy of formation: -783.793 kcal/mol -analytic -1.4664e+2 -5.0409e-2 2.1045e+4 5.1318e+1 3.2843e+2 # -Range: 0-300 Ca2Al2O5:8H2O Ca2Al2O5:8H2O + 10 H+ = 2 Al+3 + 2 Ca+2 + 13 H2O log_k 59.5687 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2Al2O5:8H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2Al2O5:8H2O +# Enthalpy of formation: 0 kcal/mol Ca2Cl2(OH)2:H2O Ca2Cl2(OH)2:H2O + 2 H+ = 2 Ca+2 + 2 Cl- + 3 H2O log_k 26.2901 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2Cl2(OH)2:H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2Cl2(OH)2:H2O +# Enthalpy of formation: 0 kcal/mol Ca2V2O7 Ca2V2O7 + H2O = 2 Ca+2 + 2 H+ + 2 VO4-3 log_k -39.7129 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2V2O7 -# Enthalpy of formation: -3083.46 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca2V2O7 +# Enthalpy of formation: -3083.46 kJ/mol Ca3(AsO4)2 Ca3(AsO4)2 + 4 H+ = 2 H2AsO4- + 3 Ca+2 log_k 17.816 - -delta_H -149.956 kJ/mol # Calculated enthalpy of reaction Ca3(AsO4)2 -# Enthalpy of formation: -3298.41 kJ/mol + -delta_H -149.956 kJ/mol # Calculated enthalpy of reaction Ca3(AsO4)2 +# Enthalpy of formation: -3298.41 kJ/mol -analytic -1.4011e+2 -4.2945e-2 1.0981e+4 5.4107e+1 1.8652e+2 # -Range: 0-200 Ca3Al2O6 Ca3Al2O6 + 12 H+ = 2 Al+3 + 3 Ca+2 + 6 H2O log_k 113.046 - -delta_H -833.336 kJ/mol # Calculated enthalpy of reaction Ca3Al2O6 -# Enthalpy of formation: -857.492 kcal/mol + -delta_H -833.336 kJ/mol # Calculated enthalpy of reaction Ca3Al2O6 +# Enthalpy of formation: -857.492 kcal/mol -analytic -2.7163e+2 -5.2897e-2 5.0815e+4 9.2946e+1 8.63e+2 # -Range: 0-200 Ca3V2O8 Ca3V2O8 = 2 VO4-3 + 3 Ca+2 log_k -18.3234 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca3V2O8 -# Enthalpy of formation: -3778.1 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca3V2O8 +# Enthalpy of formation: -3778.1 kJ/mol Ca4Al2Fe2O10 Ca4Al2Fe2O10 + 20 H+ = 2 Al+3 + 2 Fe+3 + 4 Ca+2 + 10 H2O log_k 140.505 - -delta_H -1139.86 kJ/mol # Calculated enthalpy of reaction Ca4Al2Fe2O10 -# Enthalpy of formation: -1211 kcal/mol + -delta_H -1139.86 kJ/mol # Calculated enthalpy of reaction Ca4Al2Fe2O10 +# Enthalpy of formation: -1211 kcal/mol -analytic -4.1808e+2 -8.2787e-2 7.0288e+4 1.4043e+2 1.1937e+3 # -Range: 0-200 Ca4Al2O7:13H2O Ca4Al2O7:13H2O + 14 H+ = 2 Al+3 + 4 Ca+2 + 20 H2O log_k 107.2537 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Al2O7:13H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Al2O7:13H2O +# Enthalpy of formation: 0 kcal/mol Ca4Al2O7:19H2O Ca4Al2O7:19H2O + 14 H+ = 2 Al+3 + 4 Ca+2 + 26 H2O log_k 103.6812 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Al2O7:19H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Al2O7:19H2O +# Enthalpy of formation: 0 kcal/mol Ca4Cl2(OH)6:13H2O Ca4Cl2(OH)6:13H2O + 6 H+ = 2 Cl- + 4 Ca+2 + 19 H2O log_k 68.3283 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Cl2(OH)6:13H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ca4Cl2(OH)6:13H2O +# Enthalpy of formation: 0 kcal/mol CaAl2O4 CaAl2O4 + 8 H+ = Ca+2 + 2 Al+3 + 4 H2O log_k 46.9541 - -delta_H -436.952 kJ/mol # Calculated enthalpy of reaction CaAl2O4 -# Enthalpy of formation: -555.996 kcal/mol + -delta_H -436.952 kJ/mol # Calculated enthalpy of reaction CaAl2O4 +# Enthalpy of formation: -555.996 kcal/mol -analytic -3.0378e+2 -7.9356e-2 3.0096e+4 1.1049e+2 4.6971e+2 # -Range: 0-300 CaAl2O4:10H2O CaAl2O4:10H2O + 8 H+ = Ca+2 + 2 Al+3 + 14 H2O log_k 37.9946 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaAl2O4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CaAl2O4:10H2O +# Enthalpy of formation: 0 kcal/mol CaAl4O7 CaAl4O7 + 14 H+ = Ca+2 + 4 Al+3 + 7 H2O log_k 68.6138 - -delta_H -718.464 kJ/mol # Calculated enthalpy of reaction CaAl4O7 -# Enthalpy of formation: -951.026 kcal/mol + -delta_H -718.464 kJ/mol # Calculated enthalpy of reaction CaAl4O7 +# Enthalpy of formation: -951.026 kcal/mol -analytic -3.1044e+2 -6.7078e-2 4.4566e+4 1.0085e+2 7.5689e+2 # -Range: 0-200 CaSO4:0.5H2O(beta) CaSO4:0.5H2O = 0.5 H2O + Ca+2 + SO4-2 log_k -3.4934 - -delta_H -20.804 kJ/mol # Calculated enthalpy of reaction CaSO4:0.5H2O(beta) -# Enthalpy of formation: -1574.8 kJ/mol + -delta_H -20.804 kJ/mol # Calculated enthalpy of reaction CaSO4:0.5H2O(beta) +# Enthalpy of formation: -1574.8 kJ/mol -analytic -2.3054e+2 -8.2832e-2 5.9132e+3 9.3705e+1 9.2338e+1 # -Range: 0-300 CaSeO3:2H2O CaSeO3:2H2O = Ca+2 + SeO3-2 + 2 H2O log_k -4.6213 - -delta_H -14.1963 kJ/mol # Calculated enthalpy of reaction CaSeO3:2H2O -# Enthalpy of formation: -384.741 kcal/mol + -delta_H -14.1963 kJ/mol # Calculated enthalpy of reaction CaSeO3:2H2O +# Enthalpy of formation: -384.741 kcal/mol -analytic -4.1771e+1 -2.0735e-2 9.787e+2 1.618e+1 1.6634e+1 # -Range: 0-200 CaSeO4 CaSeO4 = Ca+2 + SeO4-2 log_k -3.09 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaSeO4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CaSeO4 +# Enthalpy of formation: 0 kcal/mol CaUO4 CaUO4 + 4 H+ = Ca+2 + UO2+2 + 2 H2O log_k 15.942 - -delta_H -131.46 kJ/mol # Calculated enthalpy of reaction CaUO4 -# Enthalpy of formation: -2002.3 kJ/mol + -delta_H -131.46 kJ/mol # Calculated enthalpy of reaction CaUO4 +# Enthalpy of formation: -2002.3 kJ/mol -analytic -8.7902e+1 -1.981e-2 9.2354e+3 3.1832e+1 1.4414e+2 # -Range: 0-300 CaV2O6 CaV2O6 + 2 H2O = Ca+2 + 2 VO4-3 + 4 H+ log_k -51.3617 - -delta_H 0 # Not possible to calculate enthalpy of reaction CaV2O6 -# Enthalpy of formation: -2329.34 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CaV2O6 +# Enthalpy of formation: -2329.34 kJ/mol CaZrO3 CaZrO3 + 4 H+ = Ca+2 + H2O + Zr(OH)2+2 log_k -148.5015 - -delta_H 801.282 kJ/mol # Calculated enthalpy of reaction CaZrO3 -# Enthalpy of formation: -650.345 kcal/mol + -delta_H 801.282 kJ/mol # Calculated enthalpy of reaction CaZrO3 +# Enthalpy of formation: -650.345 kcal/mol -analytic -7.7908e+1 -1.4388e-2 -3.9635e+4 2.6932e+1 -6.7303e+2 # -Range: 0-200 Cadmoselite CdSe = Cd+2 + Se-2 log_k -33.8428 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cadmoselite -# Enthalpy of formation: -34.6 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cadmoselite +# Enthalpy of formation: -34.6 kcal/mol -analytic -5.3432e+1 -1.3973e-2 -5.8989e+3 1.7591e+1 -9.2031e+1 # -Range: 0-300 Calcite CaCO3 + H+ = Ca+2 + HCO3- log_k 1.8487 - -delta_H -25.7149 kJ/mol # Calculated enthalpy of reaction Calcite -# Enthalpy of formation: -288.552 kcal/mol + -delta_H -25.7149 kJ/mol # Calculated enthalpy of reaction Calcite +# Enthalpy of formation: -288.552 kcal/mol -analytic -1.4978e+2 -4.837e-2 4.8974e+3 6.0458e+1 7.6464e+1 # -Range: 0-300 Calomel Hg2Cl2 = Hg2+2 + 2 Cl- log_k -17.8241 - -delta_H 98.0267 kJ/mol # Calculated enthalpy of reaction Calomel -# Enthalpy of formation: -265.37 kJ/mol + -delta_H 98.0267 kJ/mol # Calculated enthalpy of reaction Calomel +# Enthalpy of formation: -265.37 kJ/mol -analytic -4.8868e+1 -2.554e-2 -2.8439e+3 1.9475e+1 -4.8277e+1 # -Range: 0-200 Carnallite KMgCl3:6H2O = K+ + Mg+2 + 3 Cl- + 6 H2O log_k 4.2721 - -delta_H 0 # Not possible to calculate enthalpy of reaction Carnallite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Carnallite +# Enthalpy of formation: 0 kcal/mol Carnotite K2(UO2)2(VO4)2 = 2 K+ + 2 UO2+2 + 2 VO4-3 log_k -56.3811 - -delta_H 0 # Not possible to calculate enthalpy of reaction Carnotite -# Enthalpy of formation: -1173.9 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Carnotite +# Enthalpy of formation: -1173.9 kJ/mol Cassiterite SnO2 + 2 H+ = 0.5 O2 + H2O + Sn+2 log_k -46.1203 - -delta_H 280.048 kJ/mol # Calculated enthalpy of reaction Cassiterite -# Enthalpy of formation: -138.8 kcal/mol + -delta_H 280.048 kJ/mol # Calculated enthalpy of reaction Cassiterite +# Enthalpy of formation: -138.8 kcal/mol -analytic -8.9264e+1 -1.5743e-2 -1.1497e+4 3.4917e+1 -1.7937e+2 # -Range: 0-300 Cattierite CoS2 = Co+2 + S2-2 log_k -29.9067 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cattierite -# Enthalpy of formation: -36.589 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cattierite +# Enthalpy of formation: -36.589 kcal/mol -analytic -2.197e+2 -7.8585e-2 -1.9592e+3 8.8809e+1 -3.0507e+1 # -Range: 0-300 Cd Cd + 2 H+ + 0.5 O2 = Cd+2 + H2O log_k 56.6062 - -delta_H -355.669 kJ/mol # Calculated enthalpy of reaction Cd -# Enthalpy of formation: 0 kJ/mol + -delta_H -355.669 kJ/mol # Calculated enthalpy of reaction Cd +# Enthalpy of formation: 0 kJ/mol -analytic -7.2027e+1 -2.025e-2 2.0474e+4 2.6814e+1 -3.2348e+4 # -Range: 0-300 Cd(BO2)2 Cd(BO2)2 + 2 H+ + 2 H2O = Cd+2 + 2 B(OH)3 log_k 9.8299 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(BO2)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(BO2)2 +# Enthalpy of formation: 0 kcal/mol Cd(IO3)2 Cd(IO3)2 = Cd+2 + 2 IO3- log_k -7.5848 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(IO3)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd(IO3)2 +# Enthalpy of formation: 0 kcal/mol Cd(OH)2 Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O log_k 13.7382 - -delta_H -87.0244 kJ/mol # Calculated enthalpy of reaction Cd(OH)2 -# Enthalpy of formation: -560.55 kJ/mol + -delta_H -87.0244 kJ/mol # Calculated enthalpy of reaction Cd(OH)2 +# Enthalpy of formation: -560.55 kJ/mol -analytic -7.7001e+1 -6.9251e-3 7.4684e+3 2.738e+1 1.2685e+2 # -Range: 0-200 Cd(OH)Cl Cd(OH)Cl + H+ = Cd+2 + Cl- + H2O log_k 3.5435 - -delta_H -30.3888 kJ/mol # Calculated enthalpy of reaction Cd(OH)Cl -# Enthalpy of formation: -498.427 kJ/mol + -delta_H -30.3888 kJ/mol # Calculated enthalpy of reaction Cd(OH)Cl +# Enthalpy of formation: -498.427 kJ/mol -analytic -4.5477e+1 -1.5809e-2 2.5333e+3 1.8279e+1 4.3035e+1 # -Range: 0-200 Cd3(AsO4)2 Cd3(AsO4)2 + 4 H+ = 2 H2AsO4- + 3 Cd+2 log_k 4.0625 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(AsO4)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(AsO4)2 +# Enthalpy of formation: 0 kcal/mol Cd3(PO4)2 Cd3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 Cd+2 log_k -7.8943 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(PO4)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(PO4)2 +# Enthalpy of formation: 0 kcal/mol Cd3(SO4)(OH)4 Cd3(SO4)(OH)4 + 4 H+ = SO4-2 + 3 Cd+2 + 4 H2O log_k 22.5735 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(SO4)(OH)4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(SO4)(OH)4 +# Enthalpy of formation: 0 kcal/mol Cd3(SO4)2(OH)2 Cd3(SO4)2(OH)2 + 2 H+ = 2 H2O + 2 SO4-2 + 3 Cd+2 log_k 6.718 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(SO4)2(OH)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cd3(SO4)2(OH)2 +# Enthalpy of formation: 0 kcal/mol CdBr2 CdBr2 = Cd+2 + 2 Br- log_k -1.847 - -delta_H -2.67548 kJ/mol # Calculated enthalpy of reaction CdBr2 -# Enthalpy of formation: -316.229 kJ/mol + -delta_H -2.67548 kJ/mol # Calculated enthalpy of reaction CdBr2 +# Enthalpy of formation: -316.229 kJ/mol -analytic 1.3056e+0 -2.0628e-2 -1.3318e+3 3.0126e+0 -2.2616e+1 # -Range: 0-200 CdBr2:4H2O CdBr2:4H2O = Cd+2 + 2 Br- + 4 H2O log_k -2.3378 - -delta_H 30.2812 kJ/mol # Calculated enthalpy of reaction CdBr2:4H2O -# Enthalpy of formation: -1492.54 kJ/mol + -delta_H 30.2812 kJ/mol # Calculated enthalpy of reaction CdBr2:4H2O +# Enthalpy of formation: -1492.54 kJ/mol -analytic -1.0038e+2 -2.1045e-2 1.6896e+3 3.9864e+1 2.8726e+1 # -Range: 0-200 CdCl2 CdCl2 = Cd+2 + 2 Cl- log_k -0.6474 - -delta_H -18.5391 kJ/mol # Calculated enthalpy of reaction CdCl2 -# Enthalpy of formation: -391.518 kJ/mol + -delta_H -18.5391 kJ/mol # Calculated enthalpy of reaction CdCl2 +# Enthalpy of formation: -391.518 kJ/mol -analytic -1.523e+1 -2.4574e-2 -8.1017e+1 8.9599e+0 -1.3702e+0 # -Range: 0-200 CdCl2(NH3)2 CdCl2(NH3)2 = Cd+2 + 2 Cl- + 2 NH3 log_k -8.7864 - -delta_H 63.534 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)2 -# Enthalpy of formation: -636.265 kJ/mol + -delta_H 63.534 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)2 +# Enthalpy of formation: -636.265 kJ/mol -analytic -5.5283e+1 -2.1791e-2 -2.115e+3 2.4279e+1 -3.5896e+1 # -Range: 0-200 CdCl2(NH3)4 CdCl2(NH3)4 = Cd+2 + 2 Cl- + 4 NH3 log_k -6.8044 - -delta_H 81.7931 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)4 -# Enthalpy of formation: -817.198 kJ/mol + -delta_H 81.7931 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)4 +# Enthalpy of formation: -817.198 kJ/mol -analytic -9.5682e+1 -1.8853e-2 -8.3875e+2 3.9322e+1 -1.421e+1 # -Range: 0-200 CdCl2(NH3)6 CdCl2(NH3)6 = Cd+2 + 2 Cl- + 6 NH3 log_k -4.7524 - -delta_H 97.2971 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)6 -# Enthalpy of formation: -995.376 kJ/mol + -delta_H 97.2971 kJ/mol # Calculated enthalpy of reaction CdCl2(NH3)6 +# Enthalpy of formation: -995.376 kJ/mol -analytic -1.3662e+2 -1.5941e-2 5.8572e+2 5.4415e+1 9.9937e+0 # -Range: 0-200 CdCl2:H2O CdCl2:H2O = Cd+2 + H2O + 2 Cl- log_k -1.6747 - -delta_H -7.44943 kJ/mol # Calculated enthalpy of reaction CdCl2:H2O -# Enthalpy of formation: -688.446 kJ/mol + -delta_H -7.44943 kJ/mol # Calculated enthalpy of reaction CdCl2:H2O +# Enthalpy of formation: -688.446 kJ/mol -analytic -4.1097e+1 -2.4685e-2 5.2687e+2 1.8188e+1 8.9615e+0 # -Range: 0-200 CdCr2O4 CdCr2O4 + 8 H+ = Cd+2 + 2 Cr+3 + 4 H2O log_k 14.9969 - -delta_H -255.676 kJ/mol # Calculated enthalpy of reaction CdCr2O4 -# Enthalpy of formation: -344.3 kcal/mol + -delta_H -255.676 kJ/mol # Calculated enthalpy of reaction CdCr2O4 +# Enthalpy of formation: -344.3 kcal/mol -analytic -1.7446e+2 -9.1086e-3 1.9223e+4 5.1605e+1 3.265e+2 # -Range: 0-200 CdF2 CdF2 = Cd+2 + 2 F- log_k -1.1464 - -delta_H -46.064 kJ/mol # Calculated enthalpy of reaction CdF2 -# Enthalpy of formation: -700.529 kJ/mol + -delta_H -46.064 kJ/mol # Calculated enthalpy of reaction CdF2 +# Enthalpy of formation: -700.529 kJ/mol -analytic -3.0654e+1 -2.479e-2 1.7893e+3 1.2482e+1 3.0395e+1 # -Range: 0-200 CdI2 CdI2 = Cd+2 + 2 I- log_k -3.4825 - -delta_H 13.7164 kJ/mol # Calculated enthalpy of reaction CdI2 -# Enthalpy of formation: -203.419 kJ/mol + -delta_H 13.7164 kJ/mol # Calculated enthalpy of reaction CdI2 +# Enthalpy of formation: -203.419 kJ/mol -analytic -1.5446e+1 -2.4758e-2 -1.6422e+3 1.0041e+1 -2.7882e+1 # -Range: 0-200 CdS CdS + H+ = Cd+2 + HS- log_k -15.9095 - -delta_H 70.1448 kJ/mol # Calculated enthalpy of reaction CdS -# Enthalpy of formation: -162.151 kJ/mol + -delta_H 70.1448 kJ/mol # Calculated enthalpy of reaction CdS +# Enthalpy of formation: -162.151 kJ/mol -analytic -2.9492e+1 -1.5181e-2 -3.4695e+3 1.2019e+1 -5.8907e+1 # -Range: 0-200 CdSO4 CdSO4 = Cd+2 + SO4-2 log_k -0.1061 - -delta_H -52.1304 kJ/mol # Calculated enthalpy of reaction CdSO4 -# Enthalpy of formation: -933.369 kJ/mol + -delta_H -52.1304 kJ/mol # Calculated enthalpy of reaction CdSO4 +# Enthalpy of formation: -933.369 kJ/mol -analytic 7.7104e+0 -1.7161e-2 8.7067e+2 -2.2763e+0 1.4783e+1 # -Range: 0-200 CdSO4:2.667H2O CdSO4:2.667H2O = Cd+2 + SO4-2 + 2.667 H2O log_k -1.8015 - -delta_H -18.5302 kJ/mol # Calculated enthalpy of reaction CdSO4:2.667H2O -# Enthalpy of formation: -1729.3 kJ/mol + -delta_H -18.5302 kJ/mol # Calculated enthalpy of reaction CdSO4:2.667H2O +# Enthalpy of formation: -1729.3 kJ/mol -analytic -5.0331e+1 -1.4983e-2 2.0271e+3 1.8665e+1 3.444e+1 # -Range: 0-200 CdSO4:H2O CdSO4:H2O = Cd+2 + H2O + SO4-2 log_k -1.6529 - -delta_H -31.6537 kJ/mol # Calculated enthalpy of reaction CdSO4:H2O -# Enthalpy of formation: -1239.68 kJ/mol + -delta_H -31.6537 kJ/mol # Calculated enthalpy of reaction CdSO4:H2O +# Enthalpy of formation: -1239.68 kJ/mol -analytic -1.7142e+1 -1.7295e-2 9.9184e+2 6.9943e+0 1.6849e+1 # -Range: 0-200 CdSeO3 CdSeO3 = Cd+2 + SeO3-2 log_k -8.8086 - -delta_H -9.92156 kJ/mol # Calculated enthalpy of reaction CdSeO3 -# Enthalpy of formation: -575.169 kJ/mol + -delta_H -9.92156 kJ/mol # Calculated enthalpy of reaction CdSeO3 +# Enthalpy of formation: -575.169 kJ/mol -analytic 7.1762e+0 -1.8892e-2 -1.468e+3 -2.1984e+0 -2.4932e+1 # -Range: 0-200 CdSeO4 CdSeO4 = Cd+2 + SeO4-2 log_k -2.2132 - -delta_H -41.9836 kJ/mol # Calculated enthalpy of reaction CdSeO4 -# Enthalpy of formation: -633.063 kJ/mol + -delta_H -41.9836 kJ/mol # Calculated enthalpy of reaction CdSeO4 +# Enthalpy of formation: -633.063 kJ/mol -analytic -4.9901e+0 -1.9755e-2 7.3162e+2 2.5063e+0 1.2426e+1 # -Range: 0-200 CdSiO3 CdSiO3 + 2 H+ = Cd+2 + H2O + SiO2 log_k 7.5136 - -delta_H -50.3427 kJ/mol # Calculated enthalpy of reaction CdSiO3 -# Enthalpy of formation: -1189.09 kJ/mol + -delta_H -50.3427 kJ/mol # Calculated enthalpy of reaction CdSiO3 +# Enthalpy of formation: -1189.09 kJ/mol -analytic 2.6419e+2 6.2488e-2 -5.3518e+3 -1.0401e+2 -9.0973e+1 # -Range: 0-200 Ce Ce + 3 H+ + 0.75 O2 = Ce+3 + 1.5 H2O log_k 182.9563 - -delta_H -1120.06 kJ/mol # Calculated enthalpy of reaction Ce -# Enthalpy of formation: 0 kJ/mol + -delta_H -1120.06 kJ/mol # Calculated enthalpy of reaction Ce +# Enthalpy of formation: 0 kJ/mol -analytic -5.1017e+1 -2.6149e-2 5.8511e+4 1.8382e+1 9.1302e+2 # -Range: 0-300 Ce(OH)3 Ce(OH)3 + 3 H+ = Ce+3 + 3 H2O log_k 19.8852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)3 +# Enthalpy of formation: 0 kcal/mol Ce(OH)3(am) Ce(OH)3 + 3 H+ = Ce+3 + 3 H2O log_k 21.1852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce(OH)3(am) +# Enthalpy of formation: 0 kcal/mol Ce2(CO3)3:8H2O Ce2(CO3)3:8H2O + 3 H+ = 2 Ce+3 + 3 HCO3- + 8 H2O log_k -4.1136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2(CO3)3:8H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2(CO3)3:8H2O +# Enthalpy of formation: 0 kcal/mol Ce2O3 Ce2O3 + 6 H+ = 2 Ce+3 + 3 H2O log_k 62.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce2O3 +# Enthalpy of formation: 0 kcal/mol Ce3(PO4)4 Ce3(PO4)4 + 4 H+ = 3 Ce+4 + 4 HPO4-2 log_k -40.8127 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ce3(PO4)4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ce3(PO4)4 +# Enthalpy of formation: 0 kcal/mol CeF3:.5H2O CeF3:.5H2O = 0.5 H2O + Ce+3 + 3 F- log_k -18.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction CeF3:.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CeF3:.5H2O +# Enthalpy of formation: 0 kcal/mol CeO2 CeO2 + 4 H+ = Ce+4 + 2 H2O log_k -8.16 - -delta_H 0 # Not possible to calculate enthalpy of reaction CeO2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CeO2 +# Enthalpy of formation: 0 kcal/mol CePO4:10H2O CePO4:10H2O + H+ = Ce+3 + HPO4-2 + 10 H2O log_k -12.2782 - -delta_H 0 # Not possible to calculate enthalpy of reaction CePO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CePO4:10H2O +# Enthalpy of formation: 0 kcal/mol Celadonite KMgAlSi4O10(OH)2 + 6 H+ = Al+3 + K+ + Mg+2 + 4 H2O + 4 SiO2 log_k 7.4575 - -delta_H -74.3957 kJ/mol # Calculated enthalpy of reaction Celadonite -# Enthalpy of formation: -1394.9 kcal/mol + -delta_H -74.3957 kJ/mol # Calculated enthalpy of reaction Celadonite +# Enthalpy of formation: -1394.9 kcal/mol -analytic -3.3097e+1 1.7989e-2 1.8919e+4 -2.1219e+0 -2.0588e+6 # -Range: 0-300 Celestite SrSO4 = SO4-2 + Sr+2 log_k -5.6771 - -delta_H -7.40568 kJ/mol # Calculated enthalpy of reaction Celestite -# Enthalpy of formation: -347.3 kcal/mol + -delta_H -7.40568 kJ/mol # Calculated enthalpy of reaction Celestite +# Enthalpy of formation: -347.3 kcal/mol -analytic -1.9063e+2 -7.4552e-2 3.905e+3 7.8416e+1 6.0991e+1 # -Range: 0-300 Cerussite PbCO3 + H+ = HCO3- + Pb+2 log_k -3.2091 - -delta_H 13.8992 kJ/mol # Calculated enthalpy of reaction Cerussite -# Enthalpy of formation: -168 kcal/mol + -delta_H 13.8992 kJ/mol # Calculated enthalpy of reaction Cerussite +# Enthalpy of formation: -168 kcal/mol -analytic -1.2887e+2 -4.4372e-2 2.2336e+3 5.3091e+1 3.4891e+1 # -Range: 0-300 Chalcanthite CuSO4:5H2O = Cu+2 + SO4-2 + 5 H2O log_k -2.6215 - -delta_H 6.57556 kJ/mol # Calculated enthalpy of reaction Chalcanthite -# Enthalpy of formation: -2279.68 kJ/mol + -delta_H 6.57556 kJ/mol # Calculated enthalpy of reaction Chalcanthite +# Enthalpy of formation: -2279.68 kJ/mol -analytic -1.1262e+2 -1.5544e-2 3.6176e+3 4.142e+1 6.1471e+1 # -Range: 0-200 Chalcedony SiO2 = SiO2 log_k -3.7281 - -delta_H 31.4093 kJ/mol # Calculated enthalpy of reaction Chalcedony -# Enthalpy of formation: -217.282 kcal/mol + -delta_H 31.4093 kJ/mol # Calculated enthalpy of reaction Chalcedony +# Enthalpy of formation: -217.282 kcal/mol -analytic -9.0068e+0 9.3241e-3 4.0535e+3 -1.083e+0 -7.5077e+5 # -Range: 0-300 Chalcocite Cu2S + H+ = HS- + 2 Cu+ log_k -34.7342 - -delta_H 206.748 kJ/mol # Calculated enthalpy of reaction Chalcocite -# Enthalpy of formation: -19 kcal/mol + -delta_H 206.748 kJ/mol # Calculated enthalpy of reaction Chalcocite +# Enthalpy of formation: -19 kcal/mol -analytic -1.3703e+2 -4.0727e-2 -7.1694e+3 5.5963e+1 -1.1183e+2 # -Range: 0-300 Chalcocyanite CuSO4 = Cu+2 + SO4-2 log_k 2.9239 - -delta_H -72.5128 kJ/mol # Calculated enthalpy of reaction Chalcocyanite -# Enthalpy of formation: -771.4 kJ/mol + -delta_H -72.5128 kJ/mol # Calculated enthalpy of reaction Chalcocyanite +# Enthalpy of formation: -771.4 kJ/mol -analytic 5.8173e+0 -1.6933e-2 2.0097e+3 -1.8583e+0 3.4126e+1 # -Range: 0-200 Chalcopyrite CuFeS2 + 2 H+ = Cu+2 + Fe+2 + 2 HS- log_k -32.5638 - -delta_H 127.206 kJ/mol # Calculated enthalpy of reaction Chalcopyrite -# Enthalpy of formation: -44.453 kcal/mol + -delta_H 127.206 kJ/mol # Calculated enthalpy of reaction Chalcopyrite +# Enthalpy of formation: -44.453 kcal/mol -analytic -3.1575e+2 -9.8947e-2 8.34e+2 1.2522e+2 1.3106e+1 # -Range: 0-300 Chamosite-7A Fe2Al2SiO5(OH)4 + 10 H+ = SiO2 + 2 Al+3 + 2 Fe+2 + 7 H2O log_k 32.8416 - -delta_H -364.213 kJ/mol # Calculated enthalpy of reaction Chamosite-7A -# Enthalpy of formation: -902.407 kcal/mol + -delta_H -364.213 kJ/mol # Calculated enthalpy of reaction Chamosite-7A +# Enthalpy of formation: -902.407 kcal/mol -analytic -2.5581e+2 -7.089e-2 2.4619e+4 9.1789e+1 3.8424e+2 # -Range: 0-300 Chlorargyrite AgCl = Ag+ + Cl- log_k -9.7453 - -delta_H 65.739 kJ/mol # Calculated enthalpy of reaction Chlorargyrite -# Enthalpy of formation: -30.37 kcal/mol + -delta_H 65.739 kJ/mol # Calculated enthalpy of reaction Chlorargyrite +# Enthalpy of formation: -30.37 kcal/mol -analytic -9.6834e+1 -3.4624e-2 -1.182e+3 4.0962e+1 -1.8415e+1 # -Range: 0-300 Chloromagnesite MgCl2 = Mg+2 + 2 Cl- log_k 21.8604 - -delta_H -158.802 kJ/mol # Calculated enthalpy of reaction Chloromagnesite -# Enthalpy of formation: -641.317 kJ/mol + -delta_H -158.802 kJ/mol # Calculated enthalpy of reaction Chloromagnesite +# Enthalpy of formation: -641.317 kJ/mol -analytic -2.364e+2 -8.2017e-2 1.348e+4 9.5963e+1 2.1042e+2 # -Range: 0-300 Chromite FeCr2O4 + 8 H+ = Fe+2 + 2 Cr+3 + 4 H2O log_k 15.1685 - -delta_H -267.755 kJ/mol # Calculated enthalpy of reaction Chromite -# Enthalpy of formation: -1444.83 kJ/mol + -delta_H -267.755 kJ/mol # Calculated enthalpy of reaction Chromite +# Enthalpy of formation: -1444.83 kJ/mol -analytic -1.906e+2 -2.5695e-2 1.9465e+4 5.9865e+1 3.0379e+2 # -Range: 0-300 Chrysocolla CuSiH4O5 + 2 H+ = Cu+2 + SiO2 + 3 H2O log_k 6.2142 - -delta_H 0 # Not possible to calculate enthalpy of reaction Chrysocolla -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Chrysocolla +# Enthalpy of formation: 0 kcal/mol Chrysotile Mg3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Mg+2 + 5 H2O log_k 31.1254 - -delta_H -218.041 kJ/mol # Calculated enthalpy of reaction Chrysotile -# Enthalpy of formation: -1043.12 kcal/mol + -delta_H -218.041 kJ/mol # Calculated enthalpy of reaction Chrysotile +# Enthalpy of formation: -1043.12 kcal/mol -analytic -9.2462e+1 -1.1359e-2 1.8312e+4 2.9289e+1 -6.2342e+5 # -Range: 0-300 Cinnabar HgS + H+ = HS- + Hg+2 log_k -38.9666 - -delta_H 207.401 kJ/mol # Calculated enthalpy of reaction Cinnabar -# Enthalpy of formation: -12.75 kcal/mol + -delta_H 207.401 kJ/mol # Calculated enthalpy of reaction Cinnabar +# Enthalpy of formation: -12.75 kcal/mol -analytic -1.5413e+2 -4.6846e-2 -6.9806e+3 6.1639e+1 -1.0888e+2 # -Range: 0-300 Claudetite As2O3 + 3 H2O = 2 H+ + 2 H2AsO3- log_k -19.7647 - -delta_H 82.3699 kJ/mol # Calculated enthalpy of reaction Claudetite -# Enthalpy of formation: -654.444 kJ/mol + -delta_H 82.3699 kJ/mol # Calculated enthalpy of reaction Claudetite +# Enthalpy of formation: -654.444 kJ/mol -analytic -1.4164e+2 -6.3704e-2 -2.1679e+3 5.9856e+1 -3.3787e+1 # -Range: 0-300 Clausthalite PbSe = Pb+2 + Se-2 log_k -36.2531 - -delta_H 0 # Not possible to calculate enthalpy of reaction Clausthalite -# Enthalpy of formation: -102.9 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Clausthalite +# Enthalpy of formation: -102.9 kJ/mol -analytic -2.6473e+1 -1.0666e-2 -8.554e+3 8.9226e+0 -1.3347e+2 # -Range: 0-300 Clinochalcomenite CuSeO3:2H2O = Cu+2 + SeO3-2 + 2 H2O log_k -6.7873 - -delta_H -31.6645 kJ/mol # Calculated enthalpy of reaction Clinochalcomenite -# Enthalpy of formation: -235.066 kcal/mol + -delta_H -31.6645 kJ/mol # Calculated enthalpy of reaction Clinochalcomenite +# Enthalpy of formation: -235.066 kcal/mol -analytic -4.6465e+1 -1.8071e-2 2.0307e+3 1.5455e+1 3.4499e+1 # -Range: 0-200 Clinochlore-14A Mg5Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Mg+2 + 12 H2O log_k 67.2391 - -delta_H -612.379 kJ/mol # Calculated enthalpy of reaction Clinochlore-14A -# Enthalpy of formation: -2116.96 kcal/mol + -delta_H -612.379 kJ/mol # Calculated enthalpy of reaction Clinochlore-14A +# Enthalpy of formation: -2116.96 kcal/mol -analytic -2.0441e+2 -6.2268e-2 3.5388e+4 6.9239e+1 5.5225e+2 # -Range: 0-300 Clinochlore-7A Mg5Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Mg+2 + 12 H2O log_k 70.6124 - -delta_H -628.14 kJ/mol # Calculated enthalpy of reaction Clinochlore-7A -# Enthalpy of formation: -2113.2 kcal/mol + -delta_H -628.14 kJ/mol # Calculated enthalpy of reaction Clinochlore-7A +# Enthalpy of formation: -2113.2 kcal/mol -analytic -2.1644e+2 -6.4187e-2 3.6548e+4 7.4123e+1 5.7037e+2 # -Range: 0-300 @@ -11326,54 +11326,54 @@ Clinoptilolite # Na.954K.543Ca.761Mg.124Sr.036Ba.062Mn.002Al3.45F +13.8680 H+ = + 0.0020 Mn++ + 0.0170 Fe+++ + 0.0360 Sr++ + 0.0620 Ba++ + 0.1240 Mg++ + 0.5430 K+ + 0.7610 Ca++ + 0.9540 Na+ + 3.4500 Al+++ + 14.5330 SiO2 17.8560 H2O Na.954K.543Ca.761Mg.124Sr.036Ba.062Mn.002Al3.45Fe.017Si14.533O46.922H21.844 + 13.868 H+ = 0.002 Mn+2 + 0.017 Fe+3 + 0.036 Sr+2 + 0.062 Ba+2 + 0.124 Mg+2 + 0.543 K+ + 0.761 Ca+2 + 0.954 Na+ + 3.45 Al+3 + 14.533 SiO2 + 17.856 H2O log_k -9.7861 - -delta_H -20.8784 kJ/mol # Calculated enthalpy of reaction Clinoptilolite -# Enthalpy of formation: -20587.8 kJ/mol + -delta_H -20.8784 kJ/mol # Calculated enthalpy of reaction Clinoptilolite +# Enthalpy of formation: -20587.8 kJ/mol -analytic -1.3213e+0 6.496e-2 5.063e+4 -4.612e+1 -7.4699e+6 # -Range: 0-300 Clinoptilolite-Ca Ca1.7335Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 1.7335 Ca+2 + 3.45 Al+3 + 14.533 SiO2 + 17.856 H2O log_k -7.0095 - -delta_H -74.6745 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Ca -# Enthalpy of formation: -4919.84 kcal/mol + -delta_H -74.6745 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Ca +# Enthalpy of formation: -4919.84 kcal/mol -analytic -4.482e+1 5.3696e-2 5.4878e+4 -3.1459e+1 -7.5491e+6 # -Range: 0-300 Clinoptilolite-Cs Cs3.467Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 Cs+ + 14.533 SiO2 + 17.856 H2O log_k -13.0578 - -delta_H 96.9005 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Cs -# Enthalpy of formation: -4949.65 kcal/mol + -delta_H 96.9005 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Cs +# Enthalpy of formation: -4949.65 kcal/mol -analytic -8.4746e+0 7.1997e-2 4.9675e+4 -4.1406e+1 -8.0632e+6 # -Range: 0-300 Clinoptilolite-K K3.467Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 K+ + 14.533 SiO2 + 17.856 H2O log_k -10.9485 - -delta_H 67.4862 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-K -# Enthalpy of formation: -4937.77 kcal/mol + -delta_H 67.4862 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-K +# Enthalpy of formation: -4937.77 kcal/mol -analytic 1.1697e+1 6.948e-2 4.7718e+4 -4.7442e+1 -7.6907e+6 # -Range: 0-300 Clinoptilolite-NH4 (NH4)3.467Al3.45Fe.017Si14.533O36:10.922H2O + 10.401 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 NH3 + 14.533 SiO2 + 17.856 H2O log_k -42.4791 - -delta_H 0 # Not possible to calculate enthalpy of reaction Clinoptilolite-NH4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Clinoptilolite-NH4 +# Enthalpy of formation: 0 kcal/mol Clinoptilolite-Na Na3.467Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 Na+ + 14.533 SiO2 + 17.856 H2O log_k -7.1363 - -delta_H 2.32824 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Na -# Enthalpy of formation: -4912.36 kcal/mol + -delta_H 2.32824 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Na +# Enthalpy of formation: -4912.36 kcal/mol -analytic -3.4572e+1 6.8377e-2 5.1962e+4 -3.3426e+1 -7.5586e+6 # -Range: 0-300 Clinoptilolite-Sr Sr1.7335Al3.45Fe.017Si14.533O36:10.922H2O + 13.868 H+ = 0.017 Fe+3 + 1.7335 Sr+2 + 3.45 Al+3 + 14.533 SiO2 + 17.856 H2O log_k -7.1491 - -delta_H -66.2129 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Sr -# Enthalpy of formation: -4925.1 kcal/mol + -delta_H -66.2129 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-Sr +# Enthalpy of formation: -4925.1 kcal/mol -analytic 3.2274e+1 6.705e-2 5.088e+4 -5.9597e+1 -7.3876e+6 # -Range: 0-300 @@ -11381,54 +11381,54 @@ Clinoptilolite-dehy # Sr.036Mg.124Ca.761Mn.002Ba.062K.543Na.954Al3.45F +13.8680 H+ = + 0.0020 Mn++ + 0.0170 Fe+++ + 0.0360 Sr++ + 0.0620 Ba++ + 0.1240 Mg++ + 0.5430 K+ + 0.7610 Ca++ + 0.9540 Na+ + 3.4500 Al+++ + 6.9340 H2O 14.5330 SiO2 Sr.036Mg.124Ca.761Mn.002Ba.062K.543Na.954Al3.45Fe.017Si14.533O36 + 13.868 H+ = 0.002 Mn+2 + 0.017 Fe+3 + 0.036 Sr+2 + 0.062 Ba+2 + 0.124 Mg+2 + 0.543 K+ + 0.761 Ca+2 + 0.954 Na+ + 3.45 Al+3 + 6.934 H2O + 14.533 SiO2 log_k 25.849 - -delta_H -276.592 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy -# Enthalpy of formation: -17210.2 kJ/mol + -delta_H -276.592 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy +# Enthalpy of formation: -17210.2 kJ/mol -analytic -2.0505e+2 6.0155e-2 8.2682e+4 1.5333e+1 -9.1369e+6 # -Range: 0-300 Clinoptilolite-dehy-Ca Ca1.7335Al3.45Fe.017Si14.533O36 + 13.868 H+ = 0.017 Fe+3 + 1.7335 Ca+2 + 3.45 Al+3 + 6.934 H2O + 14.533 SiO2 log_k 28.6255 - -delta_H -329.278 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Ca -# Enthalpy of formation: -4112.83 kcal/mol + -delta_H -329.278 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Ca +# Enthalpy of formation: -4112.83 kcal/mol -analytic -1.2948e+2 6.5698e-2 8.0229e+4 -1.2812e+1 -8.832e+6 # -Range: 0-300 Clinoptilolite-dehy-Cs Cs3.467Al3.45Fe.017Si14.533O36 + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 Cs+ + 6.934 H2O + 14.533 SiO2 log_k 22.5771 - -delta_H -164.837 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Cs -# Enthalpy of formation: -4140.93 kcal/mol + -delta_H -164.837 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Cs +# Enthalpy of formation: -4140.93 kcal/mol -analytic -1.2852e+2 7.9047e-2 7.7262e+4 -1.0422e+1 -9.4504e+6 # -Range: 0-300 Clinoptilolite-dehy-K K3.467Al3.45Fe.017Si14.533O36 + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 K+ + 6.934 H2O + 14.533 SiO2 log_k 24.6865 - -delta_H -191.289 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-K -# Enthalpy of formation: -4129.76 kcal/mol + -delta_H -191.289 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-K +# Enthalpy of formation: -4129.76 kcal/mol -analytic -1.2241e+2 7.4761e-2 7.6067e+4 -1.1315e+1 -9.1389e+6 # -Range: 0-300 Clinoptilolite-dehy-NH4 (NH4)3.467Al3.45Fe.017Si14.533O36 + 10.401 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 NH3 + 6.934 H2O + 14.533 SiO2 log_k -6.8441 - -delta_H 0 # Not possible to calculate enthalpy of reaction Clinoptilolite-dehy-NH4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Clinoptilolite-dehy-NH4 +# Enthalpy of formation: 0 kcal/mol Clinoptilolite-dehy-Na Na3.467Al3.45Fe.017Si14.533O36 + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 Na+ + 6.934 H2O + 14.533 SiO2 log_k 28.4987 - -delta_H -253.798 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Na -# Enthalpy of formation: -4104.98 kcal/mol + -delta_H -253.798 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Na +# Enthalpy of formation: -4104.98 kcal/mol -analytic -1.4386e+2 7.6846e-2 7.8723e+4 -5.9741e+0 -8.9159e+6 # -Range: 0-300 Clinoptilolite-dehy-Sr Sr1.7335Al3.45Fe.017Si14.533O36 + 13.868 H+ = 0.017 Fe+3 + 1.7335 Sr+2 + 3.45 Al+3 + 6.934 H2O + 14.533 SiO2 log_k 28.4859 - -delta_H -321.553 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Sr -# Enthalpy of formation: -4117.92 kcal/mol + -delta_H -321.553 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-dehy-Sr +# Enthalpy of formation: -4117.92 kcal/mol -analytic -1.841e+2 6.0457e-2 8.3626e+4 6.4304e+0 -9.0962e+6 # -Range: 0-300 @@ -11436,8 +11436,8 @@ Clinoptilolite-hy-Ca # Ca1.7335Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Ca++ + 3.4500 Al+++ + 14.5330 SiO2 + 18.5790 H2O Ca1.7335Al3.45Fe.017Si14.533O36:11.645H2O + 13.868 H+ = 0.017 Fe+3 + 1.7335 Ca+2 + 3.45 Al+3 + 14.533 SiO2 + 18.579 H2O log_k -7.0108 - -delta_H -65.4496 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Ca -# Enthalpy of formation: -4971.44 kcal/mol + -delta_H -65.4496 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Ca +# Enthalpy of formation: -4971.44 kcal/mol -analytic 8.6833e+1 7.152e-2 4.6854e+4 -7.8023e+1 -7.09e+6 # -Range: 0-300 @@ -11445,8 +11445,8 @@ Clinoptilolite-hy-Cs # Cs3.467Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Cs+ + 13.1640 H2O + 14.5330 SiO2 Cs3.467Al3.45Fe.017Si14.533O36:6.23H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 Cs+ + 13.164 H2O + 14.533 SiO2 log_k -13.0621 - -delta_H 44.6397 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Cs -# Enthalpy of formation: -4616.61 kcal/mol + -delta_H 44.6397 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Cs +# Enthalpy of formation: -4616.61 kcal/mol -analytic -2.3362e+1 7.4922e-2 5.4544e+4 -4.1092e+1 -8.3387e+6 # -Range: 0-300 @@ -11454,8 +11454,8 @@ Clinoptilolite-hy-K # K3.467Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 K+ + 14.4330 H2O + 14.5330 SiO2 K3.467Al3.45Fe.017Si14.533O36:7.499H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 K+ + 14.433 H2O + 14.533 SiO2 log_k -10.9523 - -delta_H 29.5879 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-K -# Enthalpy of formation: -4694.86 kcal/mol + -delta_H 29.5879 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-K +# Enthalpy of formation: -4694.86 kcal/mol -analytic 1.6223e+1 7.3919e-2 5.0447e+4 -5.279e+1 -7.8484e+6 # -Range: 0-300 @@ -11463,8 +11463,8 @@ Clinoptilolite-hy-Na # Na3.467Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 3.4500 Al+++ + 3.4670 Na+ + 14.5330 SiO2 + 17.8110 H2O Na3.467Al3.45Fe.017Si14.533O36:10.877H2O + 13.868 H+ = 0.017 Fe+3 + 3.45 Al+3 + 3.467 Na+ + 14.533 SiO2 + 17.811 H2O log_k -7.1384 - -delta_H 1.88166 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Na -# Enthalpy of formation: -4909.18 kcal/mol + -delta_H 1.88166 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Na +# Enthalpy of formation: -4909.18 kcal/mol -analytic -8.4189e+0 7.2018e-2 5.0501e+4 -4.2851e+1 -7.4714e+6 # -Range: 0-300 @@ -11472,1248 +11472,1248 @@ Clinoptilolite-hy-Sr # Sr1.7335Al3.45Fe.017Si14.533036 +13.8680 H+ = + 0.0170 Fe+++ + 1.7335 Sr++ + 3.4500 Al+++ + 14.5330 SiO2 + 20.8270 H2O Sr1.7335Al3.45Fe.017Si14.533O36:13.893H2O + 13.868 H+ = 0.017 Fe+3 + 1.7335 Sr+2 + 3.45 Al+3 + 14.533 SiO2 + 20.827 H2O log_k -7.1498 - -delta_H -31.6858 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Sr -# Enthalpy of formation: -5136.33 kcal/mol + -delta_H -31.6858 kJ/mol # Calculated enthalpy of reaction Clinoptilolite-hy-Sr +# Enthalpy of formation: -5136.33 kcal/mol -analytic 1.0742e-1 5.9065e-2 4.9985e+4 -4.4648e+1 -7.3382e+6 # -Range: 0-300 Clinozoisite Ca2Al3Si3O12(OH) + 13 H+ = 2 Ca+2 + 3 Al+3 + 3 SiO2 + 7 H2O log_k 43.2569 - -delta_H -457.755 kJ/mol # Calculated enthalpy of reaction Clinozoisite -# Enthalpy of formation: -1643.78 kcal/mol + -delta_H -457.755 kJ/mol # Calculated enthalpy of reaction Clinozoisite +# Enthalpy of formation: -1643.78 kcal/mol -analytic -2.869e+1 -3.7056e-2 2.277e+4 3.788e+0 -2.5834e+5 # -Range: 0-300 Co Co + 2 H+ + 0.5 O2 = Co+2 + H2O log_k 52.5307 - -delta_H -337.929 kJ/mol # Calculated enthalpy of reaction Co -# Enthalpy of formation: 0 kJ/mol + -delta_H -337.929 kJ/mol # Calculated enthalpy of reaction Co +# Enthalpy of formation: 0 kJ/mol -analytic -6.2703e+1 -2.0172e-2 1.8888e+4 2.3391e+1 2.9474e+2 # -Range: 0-300 Co(NO3)2 Co(NO3)2 = Co+2 + 2 NO3- log_k 8 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(NO3)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(NO3)2 +# Enthalpy of formation: 0 kcal/mol Co(OH)2 Co(OH)2 + 2 H+ = Co+2 + 2 H2O log_k 12.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Co(OH)2 +# Enthalpy of formation: 0 kcal/mol Co2SiO4 Co2SiO4 + 4 H+ = SiO2 + 2 Co+2 + 2 H2O log_k 6.6808 - -delta_H -88.6924 kJ/mol # Calculated enthalpy of reaction Co2SiO4 -# Enthalpy of formation: -353.011 kcal/mol + -delta_H -88.6924 kJ/mol # Calculated enthalpy of reaction Co2SiO4 +# Enthalpy of formation: -353.011 kcal/mol -analytic -3.9978e+0 -3.7985e-3 5.1554e+3 -1.5033e+0 -1.61e+5 # -Range: 0-300 Co3(AsO4)2 Co3(AsO4)2 + 4 H+ = 2 H2AsO4- + 3 Co+2 log_k 8.5318 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co3(AsO4)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Co3(AsO4)2 +# Enthalpy of formation: 0 kcal/mol Co3(PO4)2 Co3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 Co+2 log_k -10.0123 - -delta_H 0 # Not possible to calculate enthalpy of reaction Co3(PO4)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Co3(PO4)2 +# Enthalpy of formation: 0 kcal/mol CoCl2 CoCl2 = Co+2 + 2 Cl- log_k 8.2641 - -delta_H -79.5949 kJ/mol # Calculated enthalpy of reaction CoCl2 -# Enthalpy of formation: -312.722 kJ/mol + -delta_H -79.5949 kJ/mol # Calculated enthalpy of reaction CoCl2 +# Enthalpy of formation: -312.722 kJ/mol -analytic -2.2386e+2 -8.0936e-2 8.8631e+3 9.1528e+1 1.3837e+2 # -Range: 0-300 CoCl2:2H2O CoCl2:2H2O = Co+2 + 2 Cl- + 2 H2O log_k 4.6661 - -delta_H -40.7876 kJ/mol # Calculated enthalpy of reaction CoCl2:2H2O -# Enthalpy of formation: -923.206 kJ/mol + -delta_H -40.7876 kJ/mol # Calculated enthalpy of reaction CoCl2:2H2O +# Enthalpy of formation: -923.206 kJ/mol -analytic -5.6411e+1 -2.339e-2 3.0519e+3 2.3361e+1 5.1845e+1 # -Range: 0-200 CoCl2:6H2O CoCl2:6H2O = Co+2 + 2 Cl- + 6 H2O log_k 2.6033 - -delta_H 8.32709 kJ/mol # Calculated enthalpy of reaction CoCl2:6H2O -# Enthalpy of formation: -2115.67 kJ/mol + -delta_H 8.32709 kJ/mol # Calculated enthalpy of reaction CoCl2:6H2O +# Enthalpy of formation: -2115.67 kJ/mol -analytic -1.5066e+2 -2.2132e-2 5.0591e+3 5.7743e+1 8.5962e+1 # -Range: 0-200 CoF2 CoF2 = Co+2 + 2 F- log_k -5.1343 - -delta_H -36.6708 kJ/mol # Calculated enthalpy of reaction CoF2 -# Enthalpy of formation: -692.182 kJ/mol + -delta_H -36.6708 kJ/mol # Calculated enthalpy of reaction CoF2 +# Enthalpy of formation: -692.182 kJ/mol -analytic -2.5667e+2 -8.4071e-2 7.6256e+3 1.0143e+2 1.1907e+2 # -Range: 0-300 CoF3 CoF3 = Co+3 + 3 F- log_k -4.9558 - -delta_H -103.136 kJ/mol # Calculated enthalpy of reaction CoF3 -# Enthalpy of formation: -193.8 kcal/mol + -delta_H -103.136 kJ/mol # Calculated enthalpy of reaction CoF3 +# Enthalpy of formation: -193.8 kcal/mol -analytic -3.7854e+2 -1.2911e-1 1.3215e+4 1.4859e+2 2.0632e+2 # -Range: 0-300 CoFe2O4 CoFe2O4 + 8 H+ = Co+2 + 2 Fe+3 + 4 H2O log_k 0.8729 - -delta_H -160.674 kJ/mol # Calculated enthalpy of reaction CoFe2O4 -# Enthalpy of formation: -272.466 kcal/mol + -delta_H -160.674 kJ/mol # Calculated enthalpy of reaction CoFe2O4 +# Enthalpy of formation: -272.466 kcal/mol -analytic -3.0149e+2 -7.9159e-2 1.5683e+4 1.1046e+2 2.448e+2 # -Range: 0-300 CoHPO4 CoHPO4 = Co+2 + HPO4-2 log_k -6.7223 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoHPO4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CoHPO4 +# Enthalpy of formation: 0 kcal/mol CoO CoO + 2 H+ = Co+2 + H2O log_k 13.5553 - -delta_H -106.05 kJ/mol # Calculated enthalpy of reaction CoO -# Enthalpy of formation: -237.946 kJ/mol + -delta_H -106.05 kJ/mol # Calculated enthalpy of reaction CoO +# Enthalpy of formation: -237.946 kJ/mol -analytic -8.4424e+1 -1.9457e-2 7.8616e+3 3.1281e+1 1.227e+2 # -Range: 0-300 CoS CoS + H+ = Co+2 + HS- log_k -7.374 - -delta_H 10.1755 kJ/mol # Calculated enthalpy of reaction CoS -# Enthalpy of formation: -20.182 kcal/mol + -delta_H 10.1755 kJ/mol # Calculated enthalpy of reaction CoS +# Enthalpy of formation: -20.182 kcal/mol -analytic -1.5128e+2 -4.8484e-2 2.9553e+3 5.9983e+1 4.6158e+1 # -Range: 0-300 CoSO4 CoSO4 = Co+2 + SO4-2 log_k 2.8996 - -delta_H -79.7952 kJ/mol # Calculated enthalpy of reaction CoSO4 -# Enthalpy of formation: -887.964 kJ/mol + -delta_H -79.7952 kJ/mol # Calculated enthalpy of reaction CoSO4 +# Enthalpy of formation: -887.964 kJ/mol -analytic -1.9907e+2 -7.789e-2 7.7193e+3 8.0525e+1 1.2051e+2 # -Range: 0-300 CoSO4.3Co(OH)2 CoSO4(Co(OH)2)3 + 6 H+ = SO4-2 + 4 Co+2 + 6 H2O log_k 33.2193 - -delta_H -379.41 kJ/mol # Calculated enthalpy of reaction CoSO4.3Co(OH)2 -# Enthalpy of formation: -2477.85 kJ/mol + -delta_H -379.41 kJ/mol # Calculated enthalpy of reaction CoSO4.3Co(OH)2 +# Enthalpy of formation: -2477.85 kJ/mol -analytic -2.283e+2 -4.0197e-2 2.5937e+4 7.5367e+1 4.4053e+2 # -Range: 0-200 CoSO4:6H2O CoSO4:6H2O = Co+2 + SO4-2 + 6 H2O log_k -2.3512 - -delta_H 1.08483 kJ/mol # Calculated enthalpy of reaction CoSO4:6H2O -# Enthalpy of formation: -2683.87 kJ/mol + -delta_H 1.08483 kJ/mol # Calculated enthalpy of reaction CoSO4:6H2O +# Enthalpy of formation: -2683.87 kJ/mol -analytic -2.5469e+2 -7.3092e-2 6.6767e+3 1.0172e+2 1.0426e+2 # -Range: 0-300 CoSO4:H2O CoSO4:H2O = Co+2 + H2O + SO4-2 log_k -1.2111 - -delta_H -52.6556 kJ/mol # Calculated enthalpy of reaction CoSO4:H2O -# Enthalpy of formation: -287.032 kcal/mol + -delta_H -52.6556 kJ/mol # Calculated enthalpy of reaction CoSO4:H2O +# Enthalpy of formation: -287.032 kcal/mol -analytic -1.057e+1 -1.6196e-2 1.718e+3 3.4e+0 2.9178e+1 # -Range: 0-200 CoSeO3 CoSeO3 = Co+2 + SeO3-2 log_k -7.08 - -delta_H 0 # Not possible to calculate enthalpy of reaction CoSeO3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CoSeO3 +# Enthalpy of formation: 0 kcal/mol CoWO4 CoWO4 = Co+2 + WO4-2 log_k -12.2779 - -delta_H 13.6231 kJ/mol # Calculated enthalpy of reaction CoWO4 -# Enthalpy of formation: -274.256 kcal/mol + -delta_H 13.6231 kJ/mol # Calculated enthalpy of reaction CoWO4 +# Enthalpy of formation: -274.256 kcal/mol -analytic -3.7731e+1 -2.4719e-2 -1.0347e+3 1.4663e+1 -1.7558e+1 # -Range: 0-200 Coesite SiO2 = SiO2 log_k -3.1893 - -delta_H 28.6144 kJ/mol # Calculated enthalpy of reaction Coesite -# Enthalpy of formation: -216.614 kcal/mol + -delta_H 28.6144 kJ/mol # Calculated enthalpy of reaction Coesite +# Enthalpy of formation: -216.614 kcal/mol -analytic -9.7312e+0 9.1773e-3 4.2143e+3 -7.8065e-1 -7.4905e+5 # -Range: 0-300 Coffinite USiO4 + 4 H+ = SiO2 + U+4 + 2 H2O log_k -8.053 - -delta_H -49.2493 kJ/mol # Calculated enthalpy of reaction Coffinite -# Enthalpy of formation: -1991.33 kJ/mol + -delta_H -49.2493 kJ/mol # Calculated enthalpy of reaction Coffinite +# Enthalpy of formation: -1991.33 kJ/mol -analytic 2.3126e+2 6.2389e-2 -4.6189e+3 -9.7976e+1 -7.8517e+1 # -Range: 0-200 Colemanite Ca2B6O11:5H2O + 4 H+ + 2 H2O = 2 Ca+2 + 6 B(OH)3 log_k 21.5148 - -delta_H 0 # Not possible to calculate enthalpy of reaction Colemanite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Colemanite +# Enthalpy of formation: 0 kcal/mol Cordierite_anhyd Mg2Al4Si5O18 + 16 H+ = 2 Mg+2 + 4 Al+3 + 5 SiO2 + 8 H2O log_k 52.3035 - -delta_H -626.219 kJ/mol # Calculated enthalpy of reaction Cordierite_anhyd -# Enthalpy of formation: -2183.2 kcal/mol + -delta_H -626.219 kJ/mol # Calculated enthalpy of reaction Cordierite_anhyd +# Enthalpy of formation: -2183.2 kcal/mol -analytic 2.6562e+0 -2.3801e-2 3.5192e+4 -1.9911e+1 -1.0894e+6 # -Range: 0-300 Cordierite_hydr Mg2Al4Si5O18:H2O + 16 H+ = 2 Mg+2 + 4 Al+3 + 5 SiO2 + 9 H2O log_k 49.8235 - -delta_H -608.814 kJ/mol # Calculated enthalpy of reaction Cordierite_hydr -# Enthalpy of formation: -2255.68 kcal/mol + -delta_H -608.814 kJ/mol # Calculated enthalpy of reaction Cordierite_hydr +# Enthalpy of formation: -2255.68 kcal/mol -analytic -1.2985e+2 -4.1335e-2 4.1566e+4 2.7892e+1 -1.4819e+6 # -Range: 0-300 Corkite PbFe3(PO4)(SO4)(OH)6 + 7 H+ = HPO4-2 + Pb+2 + SO4-2 + 3 Fe+3 + 6 H2O log_k -9.7951 - -delta_H 0 # Not possible to calculate enthalpy of reaction Corkite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Corkite +# Enthalpy of formation: 0 kcal/mol Corundum Al2O3 + 6 H+ = 2 Al+3 + 3 H2O log_k 18.3121 - -delta_H -258.626 kJ/mol # Calculated enthalpy of reaction Corundum -# Enthalpy of formation: -400.5 kcal/mol + -delta_H -258.626 kJ/mol # Calculated enthalpy of reaction Corundum +# Enthalpy of formation: -400.5 kcal/mol -analytic -1.4278e+2 -7.8519e-2 1.3776e+4 5.5881e+1 2.1501e+2 # -Range: 0-300 Cotunnite PbCl2 = Pb+2 + 2 Cl- log_k -4.8406 - -delta_H 26.1441 kJ/mol # Calculated enthalpy of reaction Cotunnite -# Enthalpy of formation: -359.383 kJ/mol + -delta_H 26.1441 kJ/mol # Calculated enthalpy of reaction Cotunnite +# Enthalpy of formation: -359.383 kJ/mol -analytic 1.9624e+1 -1.9161e-2 -3.4686e+3 -2.8806e+0 -5.8909e+1 # -Range: 0-200 Covellite CuS + H+ = Cu+2 + HS- log_k -22.831 - -delta_H 101.88 kJ/mol # Calculated enthalpy of reaction Covellite -# Enthalpy of formation: -12.5 kcal/mol + -delta_H 101.88 kJ/mol # Calculated enthalpy of reaction Covellite +# Enthalpy of formation: -12.5 kcal/mol -analytic -1.6068e+2 -4.904e-2 -1.4234e+3 6.3536e+1 -2.2164e+1 # -Range: 0-300 Cr Cr + 3 H+ + 0.75 O2 = Cr+3 + 1.5 H2O log_k 98.6784 - -delta_H -658.145 kJ/mol # Calculated enthalpy of reaction Cr -# Enthalpy of formation: 0 kJ/mol + -delta_H -658.145 kJ/mol # Calculated enthalpy of reaction Cr +# Enthalpy of formation: 0 kJ/mol -analytic -2.2488e+1 -5.5886e-3 3.4288e+4 3.1585e+0 5.3503e+2 # -Range: 0-300 CrCl3 CrCl3 = Cr+3 + 3 Cl- log_k 17.9728 - -delta_H -183.227 kJ/mol # Calculated enthalpy of reaction CrCl3 -# Enthalpy of formation: -556.5 kJ/mol + -delta_H -183.227 kJ/mol # Calculated enthalpy of reaction CrCl3 +# Enthalpy of formation: -556.5 kJ/mol -analytic -2.6348e+2 -9.5339e-2 1.4785e+4 1.0517e+2 2.3079e+2 # -Range: 0-300 CrF3 CrF3 = Cr+3 + 3 F- log_k -8.5713 - -delta_H -85.5293 kJ/mol # Calculated enthalpy of reaction CrF3 -# Enthalpy of formation: -277.008 kcal/mol + -delta_H -85.5293 kJ/mol # Calculated enthalpy of reaction CrF3 +# Enthalpy of formation: -277.008 kcal/mol -analytic -3.2175e+2 -1.0279e-1 1.1394e+4 1.2348e+2 1.7789e+2 # -Range: 0-300 CrF4 CrF4 + 2 H2O = 0.5 Cr+2 + 0.5 CrO4-2 + 4 F- + 4 H+ log_k -12.3132 - -delta_H -35.2125 kJ/mol # Calculated enthalpy of reaction CrF4 -# Enthalpy of formation: -298 kcal/mol + -delta_H -35.2125 kJ/mol # Calculated enthalpy of reaction CrF4 +# Enthalpy of formation: -298 kcal/mol -analytic 4.3136e+1 -4.3783e-2 -3.6809e+3 -1.2153e+1 -6.2521e+1 # -Range: 0-200 CrI3 CrI3 = Cr+3 + 3 I- log_k 25.6112 - -delta_H -204.179 kJ/mol # Calculated enthalpy of reaction CrI3 -# Enthalpy of formation: -49 kcal/mol + -delta_H -204.179 kJ/mol # Calculated enthalpy of reaction CrI3 +# Enthalpy of formation: -49 kcal/mol -analytic 4.9232e+0 -2.5164e-2 8.4026e+3 0e+0 0e+0 # -Range: 0-200 CrO2 CrO2 = 0.5 Cr+2 + 0.5 CrO4-2 log_k -19.1332 - -delta_H 85.9812 kJ/mol # Calculated enthalpy of reaction CrO2 -# Enthalpy of formation: -143 kcal/mol + -delta_H 85.9812 kJ/mol # Calculated enthalpy of reaction CrO2 +# Enthalpy of formation: -143 kcal/mol -analytic 2.7763e+0 -7.7698e-3 -5.2893e+3 -7.497e-1 -8.9821e+1 # -Range: 0-200 CrO3 CrO3 + H2O = CrO4-2 + 2 H+ log_k -3.5221 - -delta_H -5.78647 kJ/mol # Calculated enthalpy of reaction CrO3 -# Enthalpy of formation: -140.9 kcal/mol + -delta_H -5.78647 kJ/mol # Calculated enthalpy of reaction CrO3 +# Enthalpy of formation: -140.9 kcal/mol -analytic -1.3262e+2 -6.1411e-2 2.2083e+3 5.6564e+1 3.4497e+1 # -Range: 0-300 CrS CrS + H+ = Cr+2 + HS- log_k -0.6304 - -delta_H -26.15 kJ/mol # Calculated enthalpy of reaction CrS -# Enthalpy of formation: -31.9 kcal/mol + -delta_H -26.15 kJ/mol # Calculated enthalpy of reaction CrS +# Enthalpy of formation: -31.9 kcal/mol -analytic -1.1134e+2 -3.5954e-2 3.8744e+3 4.3815e+1 6.049e+1 # -Range: 0-300 Cristobalite(alpha) SiO2 = SiO2 log_k -3.4488 - -delta_H 29.2043 kJ/mol # Calculated enthalpy of reaction Cristobalite(alpha) -# Enthalpy of formation: -216.755 kcal/mol + -delta_H 29.2043 kJ/mol # Calculated enthalpy of reaction Cristobalite(alpha) +# Enthalpy of formation: -216.755 kcal/mol -analytic -1.1936e+1 9.052e-3 4.3701e+3 -1.1464e-1 -7.6568e+5 # -Range: 0-300 Cristobalite(beta) SiO2 = SiO2 log_k -3.0053 - -delta_H 24.6856 kJ/mol # Calculated enthalpy of reaction Cristobalite(beta) -# Enthalpy of formation: -215.675 kcal/mol + -delta_H 24.6856 kJ/mol # Calculated enthalpy of reaction Cristobalite(beta) +# Enthalpy of formation: -215.675 kcal/mol -analytic -4.7414e+0 9.7567e-3 3.8831e+3 -2.583e+0 -6.9636e+5 # -Range: 0-300 Crocoite PbCrO4 = CrO4-2 + Pb+2 log_k -12.7177 - -delta_H 48.6181 kJ/mol # Calculated enthalpy of reaction Crocoite -# Enthalpy of formation: -222 kcal/mol + -delta_H 48.6181 kJ/mol # Calculated enthalpy of reaction Crocoite +# Enthalpy of formation: -222 kcal/mol -analytic 3.0842e+1 -1.443e-2 -5.0292e+3 -9.0525e+0 -8.5414e+1 # -Range: 0-200 Cronstedtite-7A Fe2Fe2SiO5(OH)4 + 10 H+ = SiO2 + 2 Fe+2 + 2 Fe+3 + 7 H2O log_k 16.2603 - -delta_H -244.266 kJ/mol # Calculated enthalpy of reaction Cronstedtite-7A -# Enthalpy of formation: -697.413 kcal/mol + -delta_H -244.266 kJ/mol # Calculated enthalpy of reaction Cronstedtite-7A +# Enthalpy of formation: -697.413 kcal/mol -analytic -2.3783e+2 -7.1026e-2 1.7752e+4 8.7147e+1 2.7707e+2 # -Range: 0-300 Cs Cs + H+ + 0.25 O2 = 0.5 H2O + Cs+ log_k 72.5987 - -delta_H -397.913 kJ/mol # Calculated enthalpy of reaction Cs -# Enthalpy of formation: 0 kJ/mol + -delta_H -397.913 kJ/mol # Calculated enthalpy of reaction Cs +# Enthalpy of formation: 0 kJ/mol -analytic -1.2875e+1 -7.3845e-3 2.1019e+4 6.9347e+0 3.2799e+2 # -Range: 0-300 Cs2NaAmCl6 Cs2NaAmCl6 = Am+3 + Na+ + 2 Cs+ + 6 Cl- log_k 11.7089 - -delta_H -59.7323 kJ/mol # Calculated enthalpy of reaction Cs2NaAmCl6 -# Enthalpy of formation: -2315.8 kJ/mol + -delta_H -59.7323 kJ/mol # Calculated enthalpy of reaction Cs2NaAmCl6 +# Enthalpy of formation: -2315.8 kJ/mol -analytic 5.1683e+1 -5.034e-2 -2.3205e+3 -6.9536e+0 -3.9422e+1 # -Range: 0-200 Cs2U2O7 Cs2U2O7 + 6 H+ = 2 Cs+ + 2 UO2+2 + 3 H2O log_k 31.0263 - -delta_H -191.57 kJ/mol # Calculated enthalpy of reaction Cs2U2O7 -# Enthalpy of formation: -3220 kJ/mol + -delta_H -191.57 kJ/mol # Calculated enthalpy of reaction Cs2U2O7 +# Enthalpy of formation: -3220 kJ/mol -analytic -5.1436e+1 -7.4096e-3 1.2524e+4 1.7827e+1 -1.2899e+5 # -Range: 0-300 Cs2U4O12 Cs2U4O12 + 8 H+ = 2 Cs+ + 2 UO2+ + 2 UO2+2 + 4 H2O log_k 18.946 - -delta_H -175.862 kJ/mol # Calculated enthalpy of reaction Cs2U4O12 -# Enthalpy of formation: -5571.8 kJ/mol + -delta_H -175.862 kJ/mol # Calculated enthalpy of reaction Cs2U4O12 +# Enthalpy of formation: -5571.8 kJ/mol -analytic -3.3411e+1 3.6196e-3 1.0508e+4 6.5823e+0 -2.3403e+4 # -Range: 0-300 Cs2UO4 Cs2UO4 + 4 H+ = UO2+2 + 2 Cs+ + 2 H2O log_k 35.893 - -delta_H -178.731 kJ/mol # Calculated enthalpy of reaction Cs2UO4 -# Enthalpy of formation: -1928 kJ/mol + -delta_H -178.731 kJ/mol # Calculated enthalpy of reaction Cs2UO4 +# Enthalpy of formation: -1928 kJ/mol -analytic -3.095e+1 -3.565e-3 1.069e+4 1.2949e+1 1.6682e+2 # -Range: 0-300 Cu Cu + 2 H+ + 0.5 O2 = Cu+2 + H2O log_k 31.5118 - -delta_H -214.083 kJ/mol # Calculated enthalpy of reaction Cu -# Enthalpy of formation: 0 kcal/mol + -delta_H -214.083 kJ/mol # Calculated enthalpy of reaction Cu +# Enthalpy of formation: 0 kcal/mol -analytic -7.0719e+1 -2.03e-2 1.2802e+4 2.6401e+1 1.9979e+2 # -Range: 0-300 Cu3(PO4)2 Cu3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 Cu+2 log_k -12.2247 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cu3(PO4)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cu3(PO4)2 +# Enthalpy of formation: 0 kcal/mol Cu3(PO4)2:3H2O Cu3(PO4)2:3H2O + 2 H+ = 2 HPO4-2 + 3 Cu+2 + 3 H2O log_k -10.4763 - -delta_H 0 # Not possible to calculate enthalpy of reaction Cu3(PO4)2:3H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Cu3(PO4)2:3H2O +# Enthalpy of formation: 0 kcal/mol CuCl2 CuCl2 = Cu+2 + 2 Cl- log_k 3.7308 - -delta_H -48.5965 kJ/mol # Calculated enthalpy of reaction CuCl2 -# Enthalpy of formation: -219.874 kJ/mol + -delta_H -48.5965 kJ/mol # Calculated enthalpy of reaction CuCl2 +# Enthalpy of formation: -219.874 kJ/mol -analytic -1.7803e+1 -2.4432e-2 1.5729e+3 9.5104e+0 2.6716e+1 # -Range: 0-200 CuCr2O4 CuCr2O4 + 8 H+ = Cu+2 + 2 Cr+3 + 4 H2O log_k 16.2174 - -delta_H -268.768 kJ/mol # Calculated enthalpy of reaction CuCr2O4 -# Enthalpy of formation: -307.331 kcal/mol + -delta_H -268.768 kJ/mol # Calculated enthalpy of reaction CuCr2O4 +# Enthalpy of formation: -307.331 kcal/mol -analytic -1.8199e+2 -1.0254e-2 2.0123e+4 5.4062e+1 3.4178e+2 # -Range: 0-200 CuF CuF = Cu+ + F- log_k 7.08 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuF -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuF +# Enthalpy of formation: 0 kcal/mol CuF2 CuF2 = Cu+2 + 2 F- log_k -0.62 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuF2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuF2 +# Enthalpy of formation: 0 kcal/mol CuF2:2H2O CuF2:2H2O = Cu+2 + 2 F- + 2 H2O log_k -4.55 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuF2:2H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuF2:2H2O +# Enthalpy of formation: 0 kcal/mol CuSeO3 CuSeO3 = Cu+2 + SeO3-2 log_k -7.6767 - -delta_H 0 # Not possible to calculate enthalpy of reaction CuSeO3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction CuSeO3 +# Enthalpy of formation: 0 kcal/mol Cuprite Cu2O + 2 H+ = H2O + 2 Cu+ log_k -1.9031 - -delta_H 28.355 kJ/mol # Calculated enthalpy of reaction Cuprite -# Enthalpy of formation: -40.83 kcal/mol + -delta_H 28.355 kJ/mol # Calculated enthalpy of reaction Cuprite +# Enthalpy of formation: -40.83 kcal/mol -analytic -8.624e+1 -1.1445e-2 1.7851e+3 3.3041e+1 2.788e+1 # -Range: 0-300 Daphnite-14A Fe5AlAlSi3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Fe+2 + 12 H2O log_k 52.2821 - -delta_H -517.561 kJ/mol # Calculated enthalpy of reaction Daphnite-14A -# Enthalpy of formation: -1693.04 kcal/mol + -delta_H -517.561 kJ/mol # Calculated enthalpy of reaction Daphnite-14A +# Enthalpy of formation: -1693.04 kcal/mol -analytic -1.5261e+2 -6.1392e-2 2.8283e+4 5.1788e+1 4.4137e+2 # -Range: 0-300 Daphnite-7A Fe5AlAlSi3O10(OH)8 + 16 H+ = 2 Al+3 + 3 SiO2 + 5 Fe+2 + 12 H2O log_k 55.6554 - -delta_H -532.326 kJ/mol # Calculated enthalpy of reaction Daphnite-7A -# Enthalpy of formation: -1689.51 kcal/mol + -delta_H -532.326 kJ/mol # Calculated enthalpy of reaction Daphnite-7A +# Enthalpy of formation: -1689.51 kcal/mol -analytic -1.643e+2 -6.316e-2 2.9499e+4 5.6442e+1 4.6035e+2 # -Range: 0-300 Dawsonite NaAlCO3(OH)2 + 3 H+ = Al+3 + HCO3- + Na+ + 2 H2O log_k 4.3464 - -delta_H -76.3549 kJ/mol # Calculated enthalpy of reaction Dawsonite -# Enthalpy of formation: -1963.96 kJ/mol + -delta_H -76.3549 kJ/mol # Calculated enthalpy of reaction Dawsonite +# Enthalpy of formation: -1963.96 kJ/mol -analytic -1.1393e+2 -2.3487e-2 7.1758e+3 4.09e+1 1.2189e+2 # -Range: 0-200 Delafossite CuFeO2 + 4 H+ = Cu+ + Fe+3 + 2 H2O log_k -6.4172 - -delta_H -18.6104 kJ/mol # Calculated enthalpy of reaction Delafossite -# Enthalpy of formation: -126.904 kcal/mol + -delta_H -18.6104 kJ/mol # Calculated enthalpy of reaction Delafossite +# Enthalpy of formation: -126.904 kcal/mol -analytic -1.5275e+2 -3.5478e-2 5.1404e+3 5.6437e+1 8.0255e+1 # -Range: 0-300 Diaspore AlHO2 + 3 H+ = Al+3 + 2 H2O log_k 7.1603 - -delta_H -110.42 kJ/mol # Calculated enthalpy of reaction Diaspore -# Enthalpy of formation: -238.924 kcal/mol + -delta_H -110.42 kJ/mol # Calculated enthalpy of reaction Diaspore +# Enthalpy of formation: -238.924 kcal/mol -analytic -1.2618e+2 -3.1671e-2 8.8737e+3 4.5669e+1 1.385e+2 # -Range: 0-300 Dicalcium_silicate Ca2SiO4 + 4 H+ = SiO2 + 2 Ca+2 + 2 H2O log_k 37.1725 - -delta_H -217.642 kJ/mol # Calculated enthalpy of reaction Dicalcium_silicate -# Enthalpy of formation: -2317.9 kJ/mol + -delta_H -217.642 kJ/mol # Calculated enthalpy of reaction Dicalcium_silicate +# Enthalpy of formation: -2317.9 kJ/mol -analytic -5.9723e+1 -1.3682e-2 1.5461e+4 2.1547e+1 -3.7732e+5 # -Range: 0-300 Diopside CaMgSi2O6 + 4 H+ = Ca+2 + Mg+2 + 2 H2O + 2 SiO2 log_k 20.9643 - -delta_H -133.775 kJ/mol # Calculated enthalpy of reaction Diopside -# Enthalpy of formation: -765.378 kcal/mol + -delta_H -133.775 kJ/mol # Calculated enthalpy of reaction Diopside +# Enthalpy of formation: -765.378 kcal/mol -analytic 7.124e+1 1.5514e-2 8.1437e+3 -3.0672e+1 -5.688e+5 # -Range: 0-300 Dioptase CuSiO2(OH)2 + 2 H+ = Cu+2 + SiO2 + 2 H2O log_k 6.0773 - -delta_H -25.2205 kJ/mol # Calculated enthalpy of reaction Dioptase -# Enthalpy of formation: -1358.47 kJ/mol + -delta_H -25.2205 kJ/mol # Calculated enthalpy of reaction Dioptase +# Enthalpy of formation: -1358.47 kJ/mol -analytic 2.3913e+2 6.2669e-2 -5.403e+3 -9.442e+1 -9.1834e+1 # -Range: 0-200 Dolomite CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- log_k 2.5135 - -delta_H -59.9651 kJ/mol # Calculated enthalpy of reaction Dolomite -# Enthalpy of formation: -556.631 kcal/mol + -delta_H -59.9651 kJ/mol # Calculated enthalpy of reaction Dolomite +# Enthalpy of formation: -556.631 kcal/mol -analytic -3.1782e+2 -9.8179e-2 1.0845e+4 1.2657e+2 1.6932e+2 # -Range: 0-300 Dolomite-dis CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- log_k 4.0579 - -delta_H -72.2117 kJ/mol # Calculated enthalpy of reaction Dolomite-dis -# Enthalpy of formation: -553.704 kcal/mol + -delta_H -72.2117 kJ/mol # Calculated enthalpy of reaction Dolomite-dis +# Enthalpy of formation: -553.704 kcal/mol -analytic -3.1706e+2 -9.7886e-2 1.1442e+4 1.2604e+2 1.7864e+2 # -Range: 0-300 Dolomite-ord CaMg(CO3)2 + 2 H+ = Ca+2 + Mg+2 + 2 HCO3- log_k 2.5135 - -delta_H -59.9651 kJ/mol # Calculated enthalpy of reaction Dolomite-ord -# Enthalpy of formation: -556.631 kcal/mol + -delta_H -59.9651 kJ/mol # Calculated enthalpy of reaction Dolomite-ord +# Enthalpy of formation: -556.631 kcal/mol -analytic -3.1654e+2 -9.7902e-2 1.0805e+4 1.2607e+2 1.687e+2 # -Range: 0-300 Downeyite SeO2 + H2O = SeO3-2 + 2 H+ log_k -6.7503 - -delta_H 1.74473 kJ/mol # Calculated enthalpy of reaction Downeyite -# Enthalpy of formation: -53.8 kcal/mol + -delta_H 1.74473 kJ/mol # Calculated enthalpy of reaction Downeyite +# Enthalpy of formation: -53.8 kcal/mol -analytic -1.2868e+2 -6.1183e-2 1.5802e+3 5.449e+1 2.4696e+1 # -Range: 0-300 Dy Dy + 3 H+ + 0.75 O2 = Dy+3 + 1.5 H2O log_k 180.8306 - -delta_H -1116.29 kJ/mol # Calculated enthalpy of reaction Dy -# Enthalpy of formation: 0 kJ/mol + -delta_H -1116.29 kJ/mol # Calculated enthalpy of reaction Dy +# Enthalpy of formation: 0 kJ/mol -analytic -6.8317e+1 -2.8321e-2 5.8927e+4 2.4211e+1 9.1953e+2 # -Range: 0-300 Dy(OH)3 Dy(OH)3 + 3 H+ = Dy+3 + 3 H2O log_k 15.8852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)3 +# Enthalpy of formation: 0 kcal/mol Dy(OH)3(am) Dy(OH)3 + 3 H+ = Dy+3 + 3 H2O log_k 17.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy(OH)3(am) +# Enthalpy of formation: 0 kcal/mol Dy2(CO3)3 Dy2(CO3)3 + 3 H+ = 2 Dy+3 + 3 HCO3- log_k -3.0136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy2(CO3)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy2(CO3)3 +# Enthalpy of formation: 0 kcal/mol Dy2O3 Dy2O3 + 6 H+ = 2 Dy+3 + 3 H2O log_k 47 - -delta_H 0 # Not possible to calculate enthalpy of reaction Dy2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Dy2O3 +# Enthalpy of formation: 0 kcal/mol DyF3:.5H2O DyF3:.5H2O = 0.5 H2O + Dy+3 + 3 F- log_k -16.5 - -delta_H 0 # Not possible to calculate enthalpy of reaction DyF3:.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction DyF3:.5H2O +# Enthalpy of formation: 0 kcal/mol DyPO4:10H2O DyPO4:10H2O + H+ = Dy+3 + HPO4-2 + 10 H2O log_k -11.9782 - -delta_H 0 # Not possible to calculate enthalpy of reaction DyPO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction DyPO4:10H2O +# Enthalpy of formation: 0 kcal/mol Enstatite MgSiO3 + 2 H+ = H2O + Mg+2 + SiO2 log_k 11.3269 - -delta_H -82.7302 kJ/mol # Calculated enthalpy of reaction Enstatite -# Enthalpy of formation: -369.686 kcal/mol + -delta_H -82.7302 kJ/mol # Calculated enthalpy of reaction Enstatite +# Enthalpy of formation: -369.686 kcal/mol -analytic -4.9278e+1 -3.2832e-3 9.5205e+3 1.4437e+1 -5.4324e+5 # -Range: 0-300 Epidote Ca2FeAl2Si3O12OH + 13 H+ = Fe+3 + 2 Al+3 + 2 Ca+2 + 3 SiO2 + 7 H2O log_k 32.9296 - -delta_H -386.451 kJ/mol # Calculated enthalpy of reaction Epidote -# Enthalpy of formation: -1543.99 kcal/mol + -delta_H -386.451 kJ/mol # Calculated enthalpy of reaction Epidote +# Enthalpy of formation: -1543.99 kcal/mol -analytic -2.6187e+1 -3.6436e-2 1.9351e+4 3.3671e+0 -3.0319e+5 # -Range: 0-300 Epidote-ord FeCa2Al2(OH)(SiO4)3 + 13 H+ = Fe+3 + 2 Al+3 + 2 Ca+2 + 3 SiO2 + 7 H2O log_k 32.9296 - -delta_H -386.351 kJ/mol # Calculated enthalpy of reaction Epidote-ord -# Enthalpy of formation: -1544.02 kcal/mol + -delta_H -386.351 kJ/mol # Calculated enthalpy of reaction Epidote-ord +# Enthalpy of formation: -1544.02 kcal/mol -analytic 1.9379e+1 -3.287e-2 1.5692e+4 -1.1901e+1 2.4485e+2 # -Range: 0-300 Epsomite MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O log_k -1.9623 - -delta_H 0 # Not possible to calculate enthalpy of reaction Epsomite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Epsomite +# Enthalpy of formation: 0 kcal/mol Er Er + 3 H+ + 0.75 O2 = Er+3 + 1.5 H2O log_k 181.7102 - -delta_H -1124.66 kJ/mol # Calculated enthalpy of reaction Er -# Enthalpy of formation: 0 kJ/mol + -delta_H -1124.66 kJ/mol # Calculated enthalpy of reaction Er +# Enthalpy of formation: 0 kJ/mol -analytic -1.4459e+2 -3.8221e-2 6.4073e+4 5.1047e+1 -3.1503e+5 # -Range: 0-300 Er(OH)3 Er(OH)3 + 3 H+ = Er+3 + 3 H2O log_k 14.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)3 +# Enthalpy of formation: 0 kcal/mol Er(OH)3(am) Er(OH)3 + 3 H+ = Er+3 + 3 H2O log_k 18.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Er(OH)3(am) +# Enthalpy of formation: 0 kcal/mol Er2(CO3)3 Er2(CO3)3 + 3 H+ = 2 Er+3 + 3 HCO3- log_k -2.6136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er2(CO3)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Er2(CO3)3 +# Enthalpy of formation: 0 kcal/mol Er2O3 Er2O3 + 6 H+ = 2 Er+3 + 3 H2O log_k 42.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction Er2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Er2O3 +# Enthalpy of formation: 0 kcal/mol ErF3:.5H2O ErF3:.5H2O = 0.5 H2O + Er+3 + 3 F- log_k -16.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction ErF3:.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ErF3:.5H2O +# Enthalpy of formation: 0 kcal/mol ErPO4:10H2O ErPO4:10H2O + H+ = Er+3 + HPO4-2 + 10 H2O log_k -11.8782 - -delta_H 0 # Not possible to calculate enthalpy of reaction ErPO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ErPO4:10H2O +# Enthalpy of formation: 0 kcal/mol Erythrite Co3(AsO4)2:8H2O + 4 H+ = 2 H2AsO4- + 3 Co+2 + 8 H2O log_k 6.393 - -delta_H 0 # Not possible to calculate enthalpy of reaction Erythrite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Erythrite +# Enthalpy of formation: 0 kcal/mol Eskolaite Cr2O3 + 2 H2O + 1.5 O2 = 2 CrO4-2 + 4 H+ log_k -9.1306 - -delta_H -32.6877 kJ/mol # Calculated enthalpy of reaction Eskolaite -# Enthalpy of formation: -1139.74 kJ/mol + -delta_H -32.6877 kJ/mol # Calculated enthalpy of reaction Eskolaite +# Enthalpy of formation: -1139.74 kJ/mol -analytic -2.0411e+2 -1.2809e-1 2.2197e+3 9.1186e+1 3.4697e+1 # -Range: 0-300 Ettringite Ca6Al2(SO4)3(OH)12:26H2O + 12 H+ = 2 Al+3 + 3 SO4-2 + 6 Ca+2 + 38 H2O log_k 62.5362 - -delta_H -382.451 kJ/mol # Calculated enthalpy of reaction Ettringite -# Enthalpy of formation: -4193 kcal/mol + -delta_H -382.451 kJ/mol # Calculated enthalpy of reaction Ettringite +# Enthalpy of formation: -4193 kcal/mol -analytic -1.0576e+3 -1.1585e-1 5.958e+4 3.8585e+2 1.0121e+3 # -Range: 0-200 Eu Eu + 3 H+ + 0.75 O2 = Eu+3 + 1.5 H2O log_k 165.1443 - -delta_H -1025.08 kJ/mol # Calculated enthalpy of reaction Eu -# Enthalpy of formation: 0 kJ/mol + -delta_H -1025.08 kJ/mol # Calculated enthalpy of reaction Eu +# Enthalpy of formation: 0 kJ/mol -analytic -6.5749e+1 -2.8921e-2 5.4018e+4 2.3561e+1 8.4292e+2 # -Range: 0-300 Eu(IO3)3:2H2O Eu(IO3)3:2H2O = Eu+3 + 2 H2O + 3 IO3- log_k -11.6999 - -delta_H 20.8847 kJ/mol # Calculated enthalpy of reaction Eu(IO3)3:2H2O -# Enthalpy of formation: -1861.99 kJ/mol + -delta_H 20.8847 kJ/mol # Calculated enthalpy of reaction Eu(IO3)3:2H2O +# Enthalpy of formation: -1861.99 kJ/mol -analytic -3.4616e+1 -1.9914e-2 -1.1966e+3 1.3276e+1 -2.0308e+1 # -Range: 0-200 Eu(NO3)3:6H2O Eu(NO3)3:6H2O = Eu+3 + 3 NO3- + 6 H2O log_k 1.3082 - -delta_H 15.2254 kJ/mol # Calculated enthalpy of reaction Eu(NO3)3:6H2O -# Enthalpy of formation: -2956.11 kJ/mol + -delta_H 15.2254 kJ/mol # Calculated enthalpy of reaction Eu(NO3)3:6H2O +# Enthalpy of formation: -2956.11 kJ/mol -analytic -1.3205e+2 -2.0427e-2 3.9623e+3 5.0976e+1 6.7332e+1 # -Range: 0-200 Eu(OH)2.5Cl.5 Eu(OH)2.5Cl.5 + 2.5 H+ = 0.5 Cl- + Eu+3 + 2.5 H2O log_k 12.5546 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2.5Cl.5 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2.5Cl.5 +# Enthalpy of formation: 0 kcal/mol Eu(OH)2Cl Eu(OH)2Cl + 2 H+ = Cl- + Eu+3 + 2 H2O log_k 8.7974 - -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2Cl -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Eu(OH)2Cl +# Enthalpy of formation: 0 kcal/mol Eu(OH)3 Eu(OH)3 + 3 H+ = Eu+3 + 3 H2O log_k 15.3482 - -delta_H -126.897 kJ/mol # Calculated enthalpy of reaction Eu(OH)3 -# Enthalpy of formation: -1336.04 kJ/mol + -delta_H -126.897 kJ/mol # Calculated enthalpy of reaction Eu(OH)3 +# Enthalpy of formation: -1336.04 kJ/mol -analytic -6.3077e+1 -6.1421e-3 8.7323e+3 2.0595e+1 1.4831e+2 # -Range: 0-200 Eu2(CO3)3:3H2O Eu2(CO3)3:3H2O + 3 H+ = 2 Eu+3 + 3 H2O + 3 HCO3- log_k -5.8707 - -delta_H -137.512 kJ/mol # Calculated enthalpy of reaction Eu2(CO3)3:3H2O -# Enthalpy of formation: -4000.65 kJ/mol + -delta_H -137.512 kJ/mol # Calculated enthalpy of reaction Eu2(CO3)3:3H2O +# Enthalpy of formation: -4000.65 kJ/mol -analytic -1.4134e+2 -4.024e-2 9.5883e+3 4.6591e+1 1.6287e+2 # -Range: 0-200 Eu2(SO4)3:8H2O Eu2(SO4)3:8H2O = 2 Eu+3 + 3 SO4-2 + 8 H2O log_k -10.8524 - -delta_H -86.59 kJ/mol # Calculated enthalpy of reaction Eu2(SO4)3:8H2O -# Enthalpy of formation: -6139.77 kJ/mol + -delta_H -86.59 kJ/mol # Calculated enthalpy of reaction Eu2(SO4)3:8H2O +# Enthalpy of formation: -6139.77 kJ/mol -analytic -5.6582e+1 -3.8846e-2 3.3821e+3 1.8561e+1 5.7452e+1 # -Range: 0-200 Eu2O3(cubic) Eu2O3 + 6 H+ = 2 Eu+3 + 3 H2O log_k 51.7818 - -delta_H -406.403 kJ/mol # Calculated enthalpy of reaction Eu2O3(cubic) -# Enthalpy of formation: -1661.96 kJ/mol + -delta_H -406.403 kJ/mol # Calculated enthalpy of reaction Eu2O3(cubic) +# Enthalpy of formation: -1661.96 kJ/mol -analytic -5.3469e+1 -1.2554e-2 2.1925e+4 1.4324e+1 3.7233e+2 # -Range: 0-200 Eu2O3(monoclinic) Eu2O3 + 6 H+ = 2 Eu+3 + 3 H2O log_k 53.3936 - -delta_H -417.481 kJ/mol # Calculated enthalpy of reaction Eu2O3(monoclinic) -# Enthalpy of formation: -1650.88 kJ/mol + -delta_H -417.481 kJ/mol # Calculated enthalpy of reaction Eu2O3(monoclinic) +# Enthalpy of formation: -1650.88 kJ/mol -analytic -5.4022e+1 -1.2627e-2 2.2508e+4 1.4416e+1 3.8224e+2 # -Range: 0-200 Eu3O4 Eu3O4 + 8 H+ = Eu+2 + 2 Eu+3 + 4 H2O log_k 87.0369 - -delta_H -611.249 kJ/mol # Calculated enthalpy of reaction Eu3O4 -# Enthalpy of formation: -2270.56 kJ/mol + -delta_H -611.249 kJ/mol # Calculated enthalpy of reaction Eu3O4 +# Enthalpy of formation: -2270.56 kJ/mol -analytic -1.1829e+2 -2.0354e-2 3.4981e+4 3.8007e+1 5.9407e+2 # -Range: 0-200 EuBr3 EuBr3 = Eu+3 + 3 Br- log_k 29.8934 - -delta_H -217.166 kJ/mol # Calculated enthalpy of reaction EuBr3 -# Enthalpy of formation: -752.769 kJ/mol + -delta_H -217.166 kJ/mol # Calculated enthalpy of reaction EuBr3 +# Enthalpy of formation: -752.769 kJ/mol -analytic 6.0207e+1 -2.5234e-2 6.6823e+3 -1.8276e+1 1.1345e+2 # -Range: 0-200 EuCl2 EuCl2 = Eu+2 + 2 Cl- log_k 5.923 - -delta_H -39.2617 kJ/mol # Calculated enthalpy of reaction EuCl2 -# Enthalpy of formation: -822.5 kJ/mol + -delta_H -39.2617 kJ/mol # Calculated enthalpy of reaction EuCl2 +# Enthalpy of formation: -822.5 kJ/mol -analytic -2.5741e+1 -2.4956e-2 1.5713e+3 1.367e+1 2.6691e+1 # -Range: 0-200 EuCl3 EuCl3 = Eu+3 + 3 Cl- log_k 19.7149 - -delta_H -170.861 kJ/mol # Calculated enthalpy of reaction EuCl3 -# Enthalpy of formation: -935.803 kJ/mol + -delta_H -170.861 kJ/mol # Calculated enthalpy of reaction EuCl3 +# Enthalpy of formation: -935.803 kJ/mol -analytic 3.2865e+1 -3.1877e-2 4.9792e+3 -8.2294e+0 8.4542e+1 # -Range: 0-200 EuCl3:6H2O EuCl3:6H2O = Eu+3 + 3 Cl- + 6 H2O log_k 4.909 - -delta_H -40.0288 kJ/mol # Calculated enthalpy of reaction EuCl3:6H2O -# Enthalpy of formation: -2781.66 kJ/mol + -delta_H -40.0288 kJ/mol # Calculated enthalpy of reaction EuCl3:6H2O +# Enthalpy of formation: -2781.66 kJ/mol -analytic -1.0987e+2 -2.9851e-2 4.9991e+3 4.3198e+1 8.493e+1 # -Range: 0-200 EuF3:0.5H2O EuF3:0.5H2O = 0.5 H2O + Eu+3 + 3 F- log_k -16.4847 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuF3:0.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction EuF3:0.5H2O +# Enthalpy of formation: 0 kcal/mol EuO EuO + 2 H+ = Eu+2 + H2O log_k 37.48 - -delta_H -221.196 kJ/mol # Calculated enthalpy of reaction EuO -# Enthalpy of formation: -592.245 kJ/mol + -delta_H -221.196 kJ/mol # Calculated enthalpy of reaction EuO +# Enthalpy of formation: -592.245 kJ/mol -analytic -8.9517e+1 -1.7523e-2 1.4385e+4 3.3933e+1 2.2449e+2 # -Range: 0-300 EuOCl EuOCl + 2 H+ = Cl- + Eu+3 + H2O log_k 15.6683 - -delta_H -147.173 kJ/mol # Calculated enthalpy of reaction EuOCl -# Enthalpy of formation: -911.17 kJ/mol + -delta_H -147.173 kJ/mol # Calculated enthalpy of reaction EuOCl +# Enthalpy of formation: -911.17 kJ/mol -analytic -7.7446e+0 -1.496e-2 6.6242e+3 2.2813e+0 1.1249e+2 # -Range: 0-200 EuOHCO3 EuOHCO3 + 2 H+ = Eu+3 + H2O + HCO3- log_k 2.5239 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuOHCO3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction EuOHCO3 +# Enthalpy of formation: 0 kcal/mol EuPO4:10H2O EuPO4:10H2O + H+ = Eu+3 + HPO4-2 + 10 H2O log_k -12.0782 - -delta_H 0 # Not possible to calculate enthalpy of reaction EuPO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction EuPO4:10H2O +# Enthalpy of formation: 0 kcal/mol EuS EuS + H+ = Eu+2 + HS- log_k 14.9068 - -delta_H -96.4088 kJ/mol # Calculated enthalpy of reaction EuS -# Enthalpy of formation: -447.302 kJ/mol + -delta_H -96.4088 kJ/mol # Calculated enthalpy of reaction EuS +# Enthalpy of formation: -447.302 kJ/mol -analytic -4.1026e+1 -1.5582e-2 5.7842e+3 1.6639e+1 9.8238e+1 # -Range: 0-200 EuSO4 EuSO4 = Eu+2 + SO4-2 log_k -8.8449 - -delta_H 33.873 kJ/mol # Calculated enthalpy of reaction EuSO4 -# Enthalpy of formation: -1471.08 kJ/mol + -delta_H 33.873 kJ/mol # Calculated enthalpy of reaction EuSO4 +# Enthalpy of formation: -1471.08 kJ/mol -analytic 3.0262e-1 -1.7571e-2 -3.0392e+3 2.5356e+0 -5.161e+1 # -Range: 0-200 Eucryptite LiAlSiO4 + 4 H+ = Al+3 + Li+ + SiO2 + 2 H2O log_k 13.6106 - -delta_H -141.818 kJ/mol # Calculated enthalpy of reaction Eucryptite -# Enthalpy of formation: -2124.41 kJ/mol + -delta_H -141.818 kJ/mol # Calculated enthalpy of reaction Eucryptite +# Enthalpy of formation: -2124.41 kJ/mol -analytic -2.2213e+0 -8.2498e-3 6.4838e+3 -1.4183e+0 1.0117e+2 # -Range: 0-300 Fayalite Fe2SiO4 + 4 H+ = SiO2 + 2 Fe+2 + 2 H2O log_k 19.1113 - -delta_H -152.256 kJ/mol # Calculated enthalpy of reaction Fayalite -# Enthalpy of formation: -354.119 kcal/mol + -delta_H -152.256 kJ/mol # Calculated enthalpy of reaction Fayalite +# Enthalpy of formation: -354.119 kcal/mol -analytic 1.3853e+1 -3.5501e-3 7.1496e+3 -6.871e+0 -6.331e+4 # -Range: 0-300 Fe Fe + 2 H+ + 0.5 O2 = Fe+2 + H2O log_k 59.0325 - -delta_H -372.029 kJ/mol # Calculated enthalpy of reaction Fe -# Enthalpy of formation: 0 kcal/mol + -delta_H -372.029 kJ/mol # Calculated enthalpy of reaction Fe +# Enthalpy of formation: 0 kcal/mol -analytic -6.2882e+1 -2.0379e-2 2.069e+4 2.3673e+1 3.2287e+2 # -Range: 0-300 Fe(OH)2 Fe(OH)2 + 2 H+ = Fe+2 + 2 H2O log_k 13.9045 - -delta_H -95.4089 kJ/mol # Calculated enthalpy of reaction Fe(OH)2 -# Enthalpy of formation: -568.525 kJ/mol + -delta_H -95.4089 kJ/mol # Calculated enthalpy of reaction Fe(OH)2 +# Enthalpy of formation: -568.525 kJ/mol -analytic -8.6666e+1 -1.844e-2 7.5723e+3 3.2597e+1 1.1818e+2 # -Range: 0-300 Fe(OH)3 Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O log_k 5.6556 - -delta_H -84.0824 kJ/mol # Calculated enthalpy of reaction Fe(OH)3 -# Enthalpy of formation: -823.013 kJ/mol + -delta_H -84.0824 kJ/mol # Calculated enthalpy of reaction Fe(OH)3 +# Enthalpy of formation: -823.013 kJ/mol -analytic -1.3316e+2 -3.1284e-2 7.9753e+3 4.9052e+1 1.2449e+2 # -Range: 0-300 Fe2(SO4)3 Fe2(SO4)3 = 2 Fe+3 + 3 SO4-2 log_k 3.2058 - -delta_H -250.806 kJ/mol # Calculated enthalpy of reaction Fe2(SO4)3 -# Enthalpy of formation: -2577.16 kJ/mol + -delta_H -250.806 kJ/mol # Calculated enthalpy of reaction Fe2(SO4)3 +# Enthalpy of formation: -2577.16 kJ/mol -analytic -5.8649e+2 -2.3718e-1 2.2736e+4 2.3601e+2 3.5495e+2 # -Range: 0-300 FeF2 FeF2 = Fe+2 + 2 F- log_k -2.3817 - -delta_H -51.6924 kJ/mol # Calculated enthalpy of reaction FeF2 -# Enthalpy of formation: -711.26 kJ/mol + -delta_H -51.6924 kJ/mol # Calculated enthalpy of reaction FeF2 +# Enthalpy of formation: -711.26 kJ/mol -analytic -2.5687e+2 -8.4091e-2 8.4262e+3 1.0154e+2 1.3156e+2 # -Range: 0-300 FeF3 FeF3 = Fe+3 + 3 F- log_k -19.2388 - -delta_H -13.8072 kJ/mol # Calculated enthalpy of reaction FeF3 -# Enthalpy of formation: -249 kcal/mol + -delta_H -13.8072 kJ/mol # Calculated enthalpy of reaction FeF3 +# Enthalpy of formation: -249 kcal/mol -analytic -1.6215e+1 -3.745e-2 -1.8926e+3 5.8485e+0 -3.2134e+1 # -Range: 0-200 FeO FeO + 2 H+ = Fe+2 + H2O log_k 13.5318 - -delta_H -106.052 kJ/mol # Calculated enthalpy of reaction FeO -# Enthalpy of formation: -65.02 kcal/mol + -delta_H -106.052 kJ/mol # Calculated enthalpy of reaction FeO +# Enthalpy of formation: -65.02 kcal/mol -analytic -7.875e+1 -1.8268e-2 7.6852e+3 2.9074e+1 1.1994e+2 # -Range: 0-300 FeSO4 FeSO4 = Fe+2 + SO4-2 log_k 2.6565 - -delta_H -73.0878 kJ/mol # Calculated enthalpy of reaction FeSO4 -# Enthalpy of formation: -928.771 kJ/mol + -delta_H -73.0878 kJ/mol # Calculated enthalpy of reaction FeSO4 +# Enthalpy of formation: -928.771 kJ/mol -analytic -2.0794e+2 -7.6891e-2 7.8705e+3 8.3685e+1 1.2287e+2 # -Range: 0-300 FeV2O4 FeV2O4 + 8 H+ = Fe+2 + 2 V+3 + 4 H2O log_k 280.5528 - -delta_H -1733.42 kJ/mol # Calculated enthalpy of reaction FeV2O4 -# Enthalpy of formation: -5.8 kcal/mol + -delta_H -1733.42 kJ/mol # Calculated enthalpy of reaction FeV2O4 +# Enthalpy of formation: -5.8 kcal/mol -analytic -1.6736e+2 -1.9398e-2 9.5736e+4 5.3582e+1 1.6258e+3 # -Range: 0-200 Ferrite-Ca CaFe2O4 + 8 H+ = Ca+2 + 2 Fe+3 + 4 H2O log_k 21.5217 - -delta_H -264.738 kJ/mol # Calculated enthalpy of reaction Ferrite-Ca -# Enthalpy of formation: -363.494 kcal/mol + -delta_H -264.738 kJ/mol # Calculated enthalpy of reaction Ferrite-Ca +# Enthalpy of formation: -363.494 kcal/mol -analytic -2.8472e+2 -7.587e-2 2.0688e+4 1.0485e+2 3.2289e+2 # -Range: 0-300 Ferrite-Cu CuFe2O4 + 8 H+ = Cu+2 + 2 Fe+3 + 4 H2O log_k 10.316 - -delta_H -211.647 kJ/mol # Calculated enthalpy of reaction Ferrite-Cu -# Enthalpy of formation: -965.178 kJ/mol + -delta_H -211.647 kJ/mol # Calculated enthalpy of reaction Ferrite-Cu +# Enthalpy of formation: -965.178 kJ/mol -analytic -3.1271e+2 -7.9976e-2 1.8818e+4 1.1466e+2 2.9374e+2 # -Range: 0-300 Ferrite-Dicalcium Ca2Fe2O5 + 10 H+ = 2 Ca+2 + 2 Fe+3 + 5 H2O log_k 56.8331 - -delta_H -475.261 kJ/mol # Calculated enthalpy of reaction Ferrite-Dicalcium -# Enthalpy of formation: -2139.26 kJ/mol + -delta_H -475.261 kJ/mol # Calculated enthalpy of reaction Ferrite-Dicalcium +# Enthalpy of formation: -2139.26 kJ/mol -analytic -3.6277e+2 -9.5015e-2 3.3898e+4 1.3506e+2 5.2906e+2 # -Range: 0-300 Ferrite-Mg MgFe2O4 + 8 H+ = Mg+2 + 2 Fe+3 + 4 H2O log_k 21.0551 - -delta_H -280.056 kJ/mol # Calculated enthalpy of reaction Ferrite-Mg -# Enthalpy of formation: -1428.42 kJ/mol + -delta_H -280.056 kJ/mol # Calculated enthalpy of reaction Ferrite-Mg +# Enthalpy of formation: -1428.42 kJ/mol -analytic -2.8297e+2 -7.482e-2 2.1333e+4 1.0295e+2 3.3296e+2 # -Range: 0-300 Ferrite-Zn ZnFe2O4 + 8 H+ = Zn+2 + 2 Fe+3 + 4 H2O log_k 11.7342 - -delta_H -226.609 kJ/mol # Calculated enthalpy of reaction Ferrite-Zn -# Enthalpy of formation: -1169.29 kJ/mol + -delta_H -226.609 kJ/mol # Calculated enthalpy of reaction Ferrite-Zn +# Enthalpy of formation: -1169.29 kJ/mol -analytic -2.9809e+2 -7.7263e-2 1.9067e+4 1.0866e+2 2.9761e+2 # -Range: 0-300 Ferroselite FeSe2 + 0.5 H2O = 0.25 O2 + Fe+3 + H+ + 2 Se-2 log_k -80.7998 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ferroselite -# Enthalpy of formation: -25 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ferroselite +# Enthalpy of formation: -25 kcal/mol -analytic -7.2971e+1 -2.4992e-2 -1.6246e+4 2.186e+1 -2.5348e+2 # -Range: 0-300 Ferrosilite FeSiO3 + 2 H+ = Fe+2 + H2O + SiO2 log_k 7.4471 - -delta_H -60.6011 kJ/mol # Calculated enthalpy of reaction Ferrosilite -# Enthalpy of formation: -285.658 kcal/mol + -delta_H -60.6011 kJ/mol # Calculated enthalpy of reaction Ferrosilite +# Enthalpy of formation: -285.658 kcal/mol -analytic 9.0041e+0 3.7917e-3 5.1625e+3 -6.3009e+0 -3.9565e+5 # -Range: 0-300 Fluorapatite Ca5(PO4)3F + 3 H+ = F- + 3 HPO4-2 + 5 Ca+2 log_k -24.994 - -delta_H -90.8915 kJ/mol # Calculated enthalpy of reaction Fluorapatite -# Enthalpy of formation: -6836.12 kJ/mol + -delta_H -90.8915 kJ/mol # Calculated enthalpy of reaction Fluorapatite +# Enthalpy of formation: -6836.12 kJ/mol -analytic -9.3648e+2 -3.2688e-1 2.4398e+4 3.7461e+2 3.8098e+2 # -Range: 0-300 Fluorite CaF2 = Ca+2 + 2 F- log_k -10.037 - -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction Fluorite -# Enthalpy of formation: -293 kcal/mol + -delta_H 12.1336 kJ/mol # Calculated enthalpy of reaction Fluorite +# Enthalpy of formation: -293 kcal/mol -analytic -2.5036e+2 -8.4183e-2 4.9525e+3 1.0054e+2 7.7353e+1 # -Range: 0-300 Forsterite Mg2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Mg+2 log_k 27.8626 - -delta_H -205.614 kJ/mol # Calculated enthalpy of reaction Forsterite -# Enthalpy of formation: -520 kcal/mol + -delta_H -205.614 kJ/mol # Calculated enthalpy of reaction Forsterite +# Enthalpy of formation: -520 kcal/mol -analytic -7.6195e+1 -1.4013e-2 1.4763e+4 2.509e+1 -3.0379e+5 # -Range: 0-300 Foshagite Ca4Si3O9(OH)2:0.5H2O + 8 H+ = 3 SiO2 + 4 Ca+2 + 5.5 H2O log_k 65.921 - -delta_H -359.839 kJ/mol # Calculated enthalpy of reaction Foshagite -# Enthalpy of formation: -1438.27 kcal/mol + -delta_H -359.839 kJ/mol # Calculated enthalpy of reaction Foshagite +# Enthalpy of formation: -1438.27 kcal/mol -analytic 2.9983e+1 5.5272e-3 2.3427e+4 -1.3879e+1 -8.9461e+5 # -Range: 0-300 Frankdicksonite BaF2 = Ba+2 + 2 F- log_k -5.76 - -delta_H 0 # Not possible to calculate enthalpy of reaction Frankdicksonite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Frankdicksonite +# Enthalpy of formation: 0 kcal/mol Freboldite CoSe = Co+2 + Se-2 log_k -24.3358 - -delta_H 0 # Not possible to calculate enthalpy of reaction Freboldite -# Enthalpy of formation: -15.295 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Freboldite +# Enthalpy of formation: -15.295 kcal/mol -analytic -1.3763e+1 -1.6924e-3 -3.6938e+3 9.3574e-1 -6.2723e+1 # -Range: 0-200 Ga Ga + 3 H+ + 0.75 O2 = Ga+3 + 1.5 H2O log_k 92.3567 - -delta_H -631.368 kJ/mol # Calculated enthalpy of reaction Ga -# Enthalpy of formation: 0 kJ/mol + -delta_H -631.368 kJ/mol # Calculated enthalpy of reaction Ga +# Enthalpy of formation: 0 kJ/mol -analytic -1.3027e+2 -3.9539e-2 3.6027e+4 4.628e+1 -8.5461e+4 # -Range: 0-300 Galena PbS + H+ = HS- + Pb+2 log_k -14.8544 - -delta_H 83.1361 kJ/mol # Calculated enthalpy of reaction Galena -# Enthalpy of formation: -23.5 kcal/mol + -delta_H 83.1361 kJ/mol # Calculated enthalpy of reaction Galena +# Enthalpy of formation: -23.5 kcal/mol -analytic -1.2124e+2 -4.3477e-2 -1.6463e+3 5.0454e+1 -2.5654e+1 # -Range: 0-300 Gaylussite CaNa2(CO3)2:5H2O + 2 H+ = Ca+2 + 2 HCO3- + 2 Na+ + 5 H2O log_k 11.1641 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gaylussite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Gaylussite +# Enthalpy of formation: 0 kcal/mol Gd Gd + 3 H+ + 0.75 O2 = Gd+3 + 1.5 H2O log_k 180.7573 - -delta_H -1106.67 kJ/mol # Calculated enthalpy of reaction Gd -# Enthalpy of formation: 0 kJ/mol + -delta_H -1106.67 kJ/mol # Calculated enthalpy of reaction Gd +# Enthalpy of formation: 0 kJ/mol -analytic -3.3949e+2 -6.5698e-2 7.4278e+4 1.2189e+2 -9.7055e+5 # -Range: 0-300 Gd(OH)3 Gd(OH)3 + 3 H+ = Gd+3 + 3 H2O log_k 15.5852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)3 +# Enthalpy of formation: 0 kcal/mol Gd(OH)3(am) Gd(OH)3 + 3 H+ = Gd+3 + 3 H2O log_k 17.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd(OH)3(am) +# Enthalpy of formation: 0 kcal/mol Gd2(CO3)3 Gd2(CO3)3 + 3 H+ = 2 Gd+3 + 3 HCO3- log_k -3.7136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd2(CO3)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd2(CO3)3 +# Enthalpy of formation: 0 kcal/mol Gd2O3 Gd2O3 + 6 H+ = 2 Gd+3 + 3 H2O log_k 53.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gd2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Gd2O3 +# Enthalpy of formation: 0 kcal/mol GdF3:.5H2O GdF3:.5H2O = 0.5 H2O + Gd+3 + 3 F- log_k -16.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction GdF3:.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction GdF3:.5H2O +# Enthalpy of formation: 0 kcal/mol GdPO4:10H2O GdPO4:10H2O + H+ = Gd+3 + HPO4-2 + 10 H2O log_k -11.9782 - -delta_H 0 # Not possible to calculate enthalpy of reaction GdPO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction GdPO4:10H2O +# Enthalpy of formation: 0 kcal/mol Gehlenite Ca2Al2SiO7 + 10 H+ = SiO2 + 2 Al+3 + 2 Ca+2 + 5 H2O log_k 56.2997 - -delta_H -489.934 kJ/mol # Calculated enthalpy of reaction Gehlenite -# Enthalpy of formation: -951.225 kcal/mol + -delta_H -489.934 kJ/mol # Calculated enthalpy of reaction Gehlenite +# Enthalpy of formation: -951.225 kcal/mol -analytic -2.1784e+2 -6.72e-2 2.9779e+4 7.8488e+1 4.6473e+2 # -Range: 0-300 Gibbsite Al(OH)3 + 3 H+ = Al+3 + 3 H2O log_k 7.756 - -delta_H -102.788 kJ/mol # Calculated enthalpy of reaction Gibbsite -# Enthalpy of formation: -309.065 kcal/mol + -delta_H -102.788 kJ/mol # Calculated enthalpy of reaction Gibbsite +# Enthalpy of formation: -309.065 kcal/mol -analytic -1.1403e+2 -3.6453e-2 7.7236e+3 4.3134e+1 1.2055e+2 # -Range: 0-300 Gismondine Ca2Al4Si4O16:9H2O + 16 H+ = 2 Ca+2 + 4 Al+3 + 4 SiO2 + 17 H2O log_k 41.717 - -delta_H 0 # Not possible to calculate enthalpy of reaction Gismondine -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Gismondine +# Enthalpy of formation: 0 kcal/mol Glauberite Na2Ca(SO4)2 = Ca+2 + 2 Na+ + 2 SO4-2 log_k -5.469 - -delta_H 0 # Not possible to calculate enthalpy of reaction Glauberite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Glauberite +# Enthalpy of formation: 0 kcal/mol Goethite FeOOH + 3 H+ = Fe+3 + 2 H2O log_k 0.5345 - -delta_H -61.9291 kJ/mol # Calculated enthalpy of reaction Goethite -# Enthalpy of formation: -559.328 kJ/mol + -delta_H -61.9291 kJ/mol # Calculated enthalpy of reaction Goethite +# Enthalpy of formation: -559.328 kJ/mol -analytic -6.0331e+1 -1.0847e-2 4.7759e+3 1.9429e+1 8.1122e+1 # -Range: 0-200 Greenalite Fe3Si2O5(OH)4 + 6 H+ = 2 SiO2 + 3 Fe+2 + 5 H2O log_k 22.6701 - -delta_H -165.297 kJ/mol # Calculated enthalpy of reaction Greenalite -# Enthalpy of formation: -787.778 kcal/mol + -delta_H -165.297 kJ/mol # Calculated enthalpy of reaction Greenalite +# Enthalpy of formation: -787.778 kcal/mol -analytic -1.4187e+1 -3.8377e-3 1.171e+4 1.6442e+0 -4.829e+5 # -Range: 0-300 Grossular Ca3Al2(SiO4)3 + 12 H+ = 2 Al+3 + 3 Ca+2 + 3 SiO2 + 6 H2O log_k 51.9228 - -delta_H -432.006 kJ/mol # Calculated enthalpy of reaction Grossular -# Enthalpy of formation: -1582.74 kcal/mol + -delta_H -432.006 kJ/mol # Calculated enthalpy of reaction Grossular +# Enthalpy of formation: -1582.74 kcal/mol -analytic 2.9389e+1 -2.2478e-2 2.0323e+4 -1.4624e+1 -2.5674e+5 # -Range: 0-300 Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O log_k -4.4823 - -delta_H -1.66746 kJ/mol # Calculated enthalpy of reaction Gypsum -# Enthalpy of formation: -2022.69 kJ/mol + -delta_H -1.66746 kJ/mol # Calculated enthalpy of reaction Gypsum +# Enthalpy of formation: -2022.69 kJ/mol -analytic -2.4417e+2 -8.3329e-2 5.5958e+3 9.9301e+1 8.7389e+1 # -Range: 0-300 Gyrolite Ca2Si3O7(OH)2:1.5H2O + 4 H+ = 2 Ca+2 + 3 SiO2 + 4.5 H2O log_k 22.9099 - -delta_H -82.862 kJ/mol # Calculated enthalpy of reaction Gyrolite -# Enthalpy of formation: -1176.55 kcal/mol + -delta_H -82.862 kJ/mol # Calculated enthalpy of reaction Gyrolite +# Enthalpy of formation: -1176.55 kcal/mol -analytic -2.4416e+1 1.4646e-2 1.6181e+4 2.3723e+0 -1.5369e+6 # -Range: 0-300 HTcO4 HTcO4 = H+ + TcO4- log_k 5.9566 - -delta_H -12.324 kJ/mol # Calculated enthalpy of reaction HTcO4 -# Enthalpy of formation: -703.945 kJ/mol + -delta_H -12.324 kJ/mol # Calculated enthalpy of reaction HTcO4 +# Enthalpy of formation: -703.945 kJ/mol -analytic 3.0005e+1 7.6416e-3 -5.3546e+1 -1.0568e+1 -9.1953e-1 # -Range: 0-200 Haiweeite Ca(UO2)2(Si2O5)3:5H2O + 6 H+ = Ca+2 + 2 UO2+2 + 6 SiO2 + 8 H2O log_k -7.0413 - -delta_H 0 # Not possible to calculate enthalpy of reaction Haiweeite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Haiweeite +# Enthalpy of formation: 0 kcal/mol Halite NaCl = Cl- + Na+ log_k 1.5855 - -delta_H 3.7405 kJ/mol # Calculated enthalpy of reaction Halite -# Enthalpy of formation: -98.26 kcal/mol + -delta_H 3.7405 kJ/mol # Calculated enthalpy of reaction Halite +# Enthalpy of formation: -98.26 kcal/mol -analytic -1.0163e+2 -3.4761e-2 2.2796e+3 4.2802e+1 3.5602e+1 # -Range: 0-300 Hatrurite Ca3SiO5 + 6 H+ = SiO2 + 3 Ca+2 + 3 H2O log_k 73.4056 - -delta_H -434.684 kJ/mol # Calculated enthalpy of reaction Hatrurite -# Enthalpy of formation: -700.234 kcal/mol + -delta_H -434.684 kJ/mol # Calculated enthalpy of reaction Hatrurite +# Enthalpy of formation: -700.234 kcal/mol -analytic -4.5448e+1 -1.9998e-2 2.38e+4 1.8494e+1 -7.3385e+4 # -Range: 0-300 Hausmannite Mn3O4 + 8 H+ = Mn+2 + 2 Mn+3 + 4 H2O log_k 10.1598 - -delta_H -268.121 kJ/mol # Calculated enthalpy of reaction Hausmannite -# Enthalpy of formation: -1387.83 kJ/mol + -delta_H -268.121 kJ/mol # Calculated enthalpy of reaction Hausmannite +# Enthalpy of formation: -1387.83 kJ/mol -analytic -2.06e+2 -2.2214e-2 2.016e+4 6.27e+1 3.1464e+2 # -Range: 0-300 Heazlewoodite Ni3S2 + 4 H+ + 0.5 O2 = H2O + 2 HS- + 3 Ni+2 log_k 28.2477 - -delta_H -270.897 kJ/mol # Calculated enthalpy of reaction Heazlewoodite -# Enthalpy of formation: -203.012 kJ/mol + -delta_H -270.897 kJ/mol # Calculated enthalpy of reaction Heazlewoodite +# Enthalpy of formation: -203.012 kJ/mol -analytic -3.5439e+2 -1.174e-1 2.1811e+4 1.3919e+2 3.4044e+2 # -Range: 0-300 Hedenbergite CaFe(SiO3)2 + 4 H+ = Ca+2 + Fe+2 + 2 H2O + 2 SiO2 log_k 19.606 - -delta_H -124.507 kJ/mol # Calculated enthalpy of reaction Hedenbergite -# Enthalpy of formation: -678.276 kcal/mol + -delta_H -124.507 kJ/mol # Calculated enthalpy of reaction Hedenbergite +# Enthalpy of formation: -678.276 kcal/mol -analytic -1.9473e+1 1.5288e-3 1.291e+4 2.1729e+0 -9.0058e+5 # -Range: 0-300 Hematite Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O log_k 0.1086 - -delta_H -129.415 kJ/mol # Calculated enthalpy of reaction Hematite -# Enthalpy of formation: -197.72 kcal/mol + -delta_H -129.415 kJ/mol # Calculated enthalpy of reaction Hematite +# Enthalpy of formation: -197.72 kcal/mol -analytic -2.2015e+2 -6.029e-2 1.1812e+4 8.0253e+1 1.8438e+2 # -Range: 0-300 Hercynite FeAl2O4 + 8 H+ = Fe+2 + 2 Al+3 + 4 H2O log_k 28.8484 - -delta_H -345.961 kJ/mol # Calculated enthalpy of reaction Hercynite -# Enthalpy of formation: -1966.45 kJ/mol + -delta_H -345.961 kJ/mol # Calculated enthalpy of reaction Hercynite +# Enthalpy of formation: -1966.45 kJ/mol -analytic -3.1848e+2 -7.9501e-2 2.5892e+4 1.1483e+2 4.0412e+2 # -Range: 0-300 Herzenbergite SnS + H+ = HS- + Sn+2 log_k -15.5786 - -delta_H 81.6466 kJ/mol # Calculated enthalpy of reaction Herzenbergite -# Enthalpy of formation: -25.464 kcal/mol + -delta_H 81.6466 kJ/mol # Calculated enthalpy of reaction Herzenbergite +# Enthalpy of formation: -25.464 kcal/mol -analytic -1.3576e+2 -4.6594e-2 -1.1572e+3 5.574e+1 -1.8018e+1 # -Range: 0-300 @@ -12721,2915 +12721,2915 @@ Heulandite # Ba.065Sr.175Ca.585K.132Na.383Al2.165Si6.835O18:6 +8.6600 H+ = + 0.0650 Ba++ + 0.1320 K+ + 0.1750 Sr++ + 0.3830 Na+ + 0.5850 Ca++ + 2.1650 Al+++ + 6.8350 SiO2 + 10.3300 H2O Ba.065Sr.175Ca.585K.132Na.383Al2.165Si6.835O18:6H2O + 8.66 H+ = 0.065 Ba+2 + 0.132 K+ + 0.175 Sr+2 + 0.383 Na+ + 0.585 Ca+2 + 2.165 Al+3 + 6.835 SiO2 + 10.33 H2O log_k 3.3506 - -delta_H -97.2942 kJ/mol # Calculated enthalpy of reaction Heulandite -# Enthalpy of formation: -10594.5 kJ/mol + -delta_H -97.2942 kJ/mol # Calculated enthalpy of reaction Heulandite +# Enthalpy of formation: -10594.5 kJ/mol -analytic -1.8364e+1 2.7879e-2 2.8426e+4 -1.7427e+1 -3.4723e+6 # -Range: 0-300 Hexahydrite MgSO4:6H2O = Mg+2 + SO4-2 + 6 H2O log_k -1.7268 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hexahydrite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Hexahydrite +# Enthalpy of formation: 0 kcal/mol Hf(s) Hf + 4 H+ + O2 = Hf+4 + 2 H2O log_k 189.9795 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf -# Enthalpy of formation: -0.003 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf +# Enthalpy of formation: -0.003 kJ/mol HfB2 HfB2 + 2.75 H+ + 2.25 H2O = 0.75 B(OH)3 + Hf+4 + 1.25 BH4- log_k 55.7691 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfB2 -# Enthalpy of formation: -78.6 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfB2 +# Enthalpy of formation: -78.6 kJ/mol HfBr2 HfBr2 + 2 H+ + 0.5 O2 = H2O + Hf+4 + 2 Br- log_k 114.9446 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfBr2 -# Enthalpy of formation: -98 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfBr2 +# Enthalpy of formation: -98 kJ/mol HfBr4 HfBr4 = Hf+4 + 4 Br- log_k 48.2921 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfBr4 -# Enthalpy of formation: -183.1 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfBr4 +# Enthalpy of formation: -183.1 kJ/mol HfC HfC + 3 H+ + 2 O2 = H2O + HCO3- + Hf+4 log_k 215.0827 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfC -# Enthalpy of formation: -54 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfC +# Enthalpy of formation: -54 kJ/mol HfCl2 HfCl2 + 2 H+ + 0.5 O2 = H2O + Hf+4 + 2 Cl- log_k 109.1624 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfCl2 -# Enthalpy of formation: -125 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfCl2 +# Enthalpy of formation: -125 kJ/mol HfCl4 HfCl4 = Hf+4 + 4 Cl- log_k 38.0919 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfCl4 -# Enthalpy of formation: -236.7 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfCl4 +# Enthalpy of formation: -236.7 kJ/mol HfF2 HfF2 + 2 H+ + 0.5 O2 = H2O + Hf+4 + 2 F- log_k 81.7647 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfF2 -# Enthalpy of formation: -235 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfF2 +# Enthalpy of formation: -235 kJ/mol HfF4 HfF4 = Hf+4 + 4 F- log_k -19.2307 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfF4 -# Enthalpy of formation: -461.4 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfF4 +# Enthalpy of formation: -461.4 kJ/mol HfI2 HfI2 + 2 H+ + 0.5 O2 = H2O + Hf+4 + 2 I- log_k 117.4971 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfI2 -# Enthalpy of formation: -65 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfI2 +# Enthalpy of formation: -65 kJ/mol HfI4 HfI4 = Hf+4 + 4 I- log_k 54.1798 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfI4 -# Enthalpy of formation: -118 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfI4 +# Enthalpy of formation: -118 kJ/mol HfN HfN + 4 H+ + 0.25 O2 = 0.5 H2O + Hf+4 + NH3 log_k 69.4646 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfN -# Enthalpy of formation: -89.3 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfN +# Enthalpy of formation: -89.3 kJ/mol HfO2 HfO2 + 4 H+ = Hf+4 + 2 H2O log_k 1.1829 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfO2 -# Enthalpy of formation: -267.1 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfO2 +# Enthalpy of formation: -267.1 kJ/mol HfS2 HfS2 + 2 H+ = Hf+4 + 2 HS- log_k -1.5845 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfS2 -# Enthalpy of formation: -140 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfS2 +# Enthalpy of formation: -140 kJ/mol HfS3 HfS3 + H+ = HS- + Hf+4 + S2-2 log_k -18.9936 - -delta_H 0 # Not possible to calculate enthalpy of reaction HfS3 -# Enthalpy of formation: -149 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HfS3 +# Enthalpy of formation: -149 kJ/mol Hg2SO4 Hg2SO4 = Hg2+2 + SO4-2 log_k -6.117 - -delta_H 0.30448 kJ/mol # Calculated enthalpy of reaction Hg2SO4 -# Enthalpy of formation: -743.09 kJ/mol + -delta_H 0.30448 kJ/mol # Calculated enthalpy of reaction Hg2SO4 +# Enthalpy of formation: -743.09 kJ/mol -analytic -3.2342e+1 -1.9881e-2 1.6292e+3 1.0781e+1 2.7677e+1 # -Range: 0-200 Hg2SeO3 Hg2SeO3 = Hg2+2 + SeO3-2 log_k -14.2132 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hg2SeO3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Hg2SeO3 +# Enthalpy of formation: 0 kcal/mol HgSeO3 HgSeO3 = Hg+2 + SeO3-2 log_k -13.8957 - -delta_H 0 # Not possible to calculate enthalpy of reaction HgSeO3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HgSeO3 +# Enthalpy of formation: 0 kcal/mol Hillebrandite Ca2SiO3(OH)2:0.17H2O + 4 H+ = SiO2 + 2 Ca+2 + 3.17 H2O log_k 36.819 - -delta_H -203.074 kJ/mol # Calculated enthalpy of reaction Hillebrandite -# Enthalpy of formation: -637.404 kcal/mol + -delta_H -203.074 kJ/mol # Calculated enthalpy of reaction Hillebrandite +# Enthalpy of formation: -637.404 kcal/mol -analytic -1.936e+1 -7.5176e-3 1.1947e+4 8.0558e+0 -1.4504e+5 # -Range: 0-300 Hinsdalite Al3PPbSO8(OH)6 + 7 H+ = HPO4-2 + Pb+2 + SO4-2 + 3 Al+3 + 6 H2O log_k 9.8218 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hinsdalite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Hinsdalite +# Enthalpy of formation: 0 kcal/mol Ho Ho + 3 H+ + 0.75 O2 = Ho+3 + 1.5 H2O log_k 182.8097 - -delta_H -1126.75 kJ/mol # Calculated enthalpy of reaction Ho -# Enthalpy of formation: 0 kJ/mol + -delta_H -1126.75 kJ/mol # Calculated enthalpy of reaction Ho +# Enthalpy of formation: 0 kJ/mol -analytic -6.5903e+1 -2.819e-2 5.937e+4 2.3421e+1 9.2643e+2 # -Range: 0-300 Ho(OH)3 Ho(OH)3 + 3 H+ = Ho+3 + 3 H2O log_k 15.3852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(OH)3 +# Enthalpy of formation: 0 kcal/mol Ho(OH)3(am) Ho(OH)3 + 3 H+ = Ho+3 + 3 H2O log_k 17.7852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho(OH)3(am) +# Enthalpy of formation: 0 kcal/mol Ho2(CO3)3 Ho2(CO3)3 + 3 H+ = 2 Ho+3 + 3 HCO3- log_k -2.8136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho2(CO3)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho2(CO3)3 +# Enthalpy of formation: 0 kcal/mol Ho2O3 Ho2O3 + 6 H+ = 2 Ho+3 + 3 H2O log_k 47.3 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ho2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ho2O3 +# Enthalpy of formation: 0 kcal/mol HoF3:.5H2O HoF3:.5H2O = 0.5 H2O + Ho+3 + 3 F- log_k -16.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction HoF3:.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HoF3:.5H2O +# Enthalpy of formation: 0 kcal/mol HoPO4:10H2O HoPO4:10H2O + H+ = HPO4-2 + Ho+3 + 10 H2O log_k -11.8782 - -delta_H 0 # Not possible to calculate enthalpy of reaction HoPO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction HoPO4:10H2O +# Enthalpy of formation: 0 kcal/mol Hopeite Zn3(PO4)2:4H2O + 2 H+ = 2 HPO4-2 + 3 Zn+2 + 4 H2O log_k -10.6563 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hopeite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Hopeite +# Enthalpy of formation: 0 kcal/mol Huntite CaMg3(CO3)4 + 4 H+ = Ca+2 + 3 Mg+2 + 4 HCO3- log_k 10.301 - -delta_H -171.096 kJ/mol # Calculated enthalpy of reaction Huntite -# Enthalpy of formation: -1082.6 kcal/mol + -delta_H -171.096 kJ/mol # Calculated enthalpy of reaction Huntite +# Enthalpy of formation: -1082.6 kcal/mol -analytic -6.5e+2 -1.9671e-1 2.4815e+4 2.5688e+2 3.874e+2 # -Range: 0-300 Hydroboracite MgCaB6O11:6H2O + 4 H+ + H2O = Ca+2 + Mg+2 + 6 B(OH)3 log_k 20.3631 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hydroboracite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Hydroboracite +# Enthalpy of formation: 0 kcal/mol Hydrocerussite Pb3(CO3)2(OH)2 + 4 H+ = 2 H2O + 2 HCO3- + 3 Pb+2 log_k 1.8477 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hydrocerussite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Hydrocerussite +# Enthalpy of formation: 0 kcal/mol Hydromagnesite Mg5(CO3)4(OH)2:4H2O + 6 H+ = 4 HCO3- + 5 Mg+2 + 6 H2O log_k 30.8539 - -delta_H -289.696 kJ/mol # Calculated enthalpy of reaction Hydromagnesite -# Enthalpy of formation: -1557.09 kcal/mol + -delta_H -289.696 kJ/mol # Calculated enthalpy of reaction Hydromagnesite +# Enthalpy of formation: -1557.09 kcal/mol -analytic -7.9288e+2 -2.1448e-1 3.6749e+4 3.0888e+2 5.7367e+2 # -Range: 0-300 Hydrophilite CaCl2 = Ca+2 + 2 Cl- log_k 11.7916 - -delta_H -81.4545 kJ/mol # Calculated enthalpy of reaction Hydrophilite -# Enthalpy of formation: -795.788 kJ/mol + -delta_H -81.4545 kJ/mol # Calculated enthalpy of reaction Hydrophilite +# Enthalpy of formation: -795.788 kJ/mol -analytic -2.2278e+2 -8.1414e-2 9.0298e+3 9.2349e+1 1.4097e+2 # -Range: 0-300 Hydroxylapatite Ca5(OH)(PO4)3 + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 log_k -3.0746 - -delta_H -191.982 kJ/mol # Calculated enthalpy of reaction Hydroxylapatite -# Enthalpy of formation: -6685.52 kJ/mol + -delta_H -191.982 kJ/mol # Calculated enthalpy of reaction Hydroxylapatite +# Enthalpy of formation: -6685.52 kJ/mol -analytic -8.5221e+2 -2.943e-1 2.8125e+4 3.4044e+2 4.3911e+2 # -Range: 0-300 Hydrozincite Zn5(OH)6(CO3)2 + 8 H+ = 2 HCO3- + 5 Zn+2 + 6 H2O log_k 30.3076 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hydrozincite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Hydrozincite +# Enthalpy of formation: 0 kcal/mol I2 I2 + H2O = 0.5 O2 + 2 H+ + 2 I- log_k -24.8084 - -delta_H 165.967 kJ/mol # Calculated enthalpy of reaction I2 -# Enthalpy of formation: 0 kJ/mol + -delta_H 165.967 kJ/mol # Calculated enthalpy of reaction I2 +# Enthalpy of formation: 0 kJ/mol -analytic -1.7135e+2 -6.281e-2 -4.7225e+3 7.3181e+1 -7.364e+1 # -Range: 0-300 Ice H2O = H2O log_k 0.1387 - -delta_H 6.74879 kJ/mol # Calculated enthalpy of reaction Ice -# Enthalpy of formation: -69.93 kcal/mol + -delta_H 6.74879 kJ/mol # Calculated enthalpy of reaction Ice +# Enthalpy of formation: -69.93 kcal/mol -analytic -2.326e+1 4.7948e-4 7.7351e+2 8.3499e+0 1.3143e+1 # -Range: 0-200 Illite K0.6Mg0.25Al1.8Al0.5Si3.5O10(OH)2 + 8 H+ = 0.25 Mg+2 + 0.6 K+ + 2.3 Al+3 + 3.5 SiO2 + 5 H2O log_k 9.026 - -delta_H -171.764 kJ/mol # Calculated enthalpy of reaction Illite -# Enthalpy of formation: -1394.71 kcal/mol + -delta_H -171.764 kJ/mol # Calculated enthalpy of reaction Illite +# Enthalpy of formation: -1394.71 kcal/mol -analytic 2.6069e+1 -1.2553e-3 1.367e+4 -2.0232e+1 -1.1204e+6 # -Range: 0-300 Ilmenite FeTiO3 + 2 H+ + H2O = Fe+2 + Ti(OH)4 log_k 0.9046 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ilmenite -# Enthalpy of formation: -1236.65 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ilmenite +# Enthalpy of formation: -1236.65 kJ/mol In In + 3 H+ + 0.75 O2 = In+3 + 1.5 H2O log_k 81.6548 - -delta_H -524.257 kJ/mol # Calculated enthalpy of reaction In -# Enthalpy of formation: 0 kJ/mol + -delta_H -524.257 kJ/mol # Calculated enthalpy of reaction In +# Enthalpy of formation: 0 kJ/mol -analytic -1.1773e+2 -3.7657e-2 3.1802e+4 4.2438e+1 -9.6348e+4 # -Range: 0-300 Jadeite NaAl(SiO3)2 + 4 H+ = Al+3 + Na+ + 2 H2O + 2 SiO2 log_k 8.3888 - -delta_H -84.4415 kJ/mol # Calculated enthalpy of reaction Jadeite -# Enthalpy of formation: -722.116 kcal/mol + -delta_H -84.4415 kJ/mol # Calculated enthalpy of reaction Jadeite +# Enthalpy of formation: -722.116 kcal/mol -analytic 1.5934e+0 5.0757e-3 9.5602e+3 -7.0164e+0 -8.4454e+5 # -Range: 0-300 Jarosite KFe3(SO4)2(OH)6 + 6 H+ = K+ + 2 SO4-2 + 3 Fe+3 + 6 H2O log_k -9.3706 - -delta_H -191.343 kJ/mol # Calculated enthalpy of reaction Jarosite -# Enthalpy of formation: -894.79 kcal/mol + -delta_H -191.343 kJ/mol # Calculated enthalpy of reaction Jarosite +# Enthalpy of formation: -894.79 kcal/mol -analytic -1.0813e+2 -5.0381e-2 9.6893e+3 3.2832e+1 1.6457e+2 # -Range: 0-200 Jarosite-Na NaFe3(SO4)2(OH)6 + 6 H+ = Na+ + 2 SO4-2 + 3 Fe+3 + 6 H2O log_k -5.4482 - -delta_H 0 # Not possible to calculate enthalpy of reaction Jarosite-Na -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Jarosite-Na +# Enthalpy of formation: 0 kcal/mol K K + H+ + 0.25 O2 = 0.5 H2O + K+ log_k 70.9861 - -delta_H -392.055 kJ/mol # Calculated enthalpy of reaction K -# Enthalpy of formation: 0 kJ/mol + -delta_H -392.055 kJ/mol # Calculated enthalpy of reaction K +# Enthalpy of formation: 0 kJ/mol -analytic -3.1102e+1 -1.0003e-2 2.1338e+4 1.3534e+1 3.3296e+2 # -Range: 0-300 K-Feldspar KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 log_k -0.2753 - -delta_H -23.9408 kJ/mol # Calculated enthalpy of reaction K-Feldspar -# Enthalpy of formation: -949.188 kcal/mol + -delta_H -23.9408 kJ/mol # Calculated enthalpy of reaction K-Feldspar +# Enthalpy of formation: -949.188 kcal/mol -analytic -1.0684e+0 1.3111e-2 1.1671e+4 -9.9129e+0 -1.5855e+6 # -Range: 0-300 K2CO3:1.5H2O K2CO3:1.5H2O + H+ = HCO3- + 1.5 H2O + 2 K+ log_k 13.3785 - -delta_H 0 # Not possible to calculate enthalpy of reaction K2CO3:1.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction K2CO3:1.5H2O +# Enthalpy of formation: 0 kcal/mol K2O K2O + 2 H+ = H2O + 2 K+ log_k 84.0405 - -delta_H -427.006 kJ/mol # Calculated enthalpy of reaction K2O -# Enthalpy of formation: -86.8 kcal/mol + -delta_H -427.006 kJ/mol # Calculated enthalpy of reaction K2O +# Enthalpy of formation: -86.8 kcal/mol -analytic -1.8283e+1 -5.2255e-3 2.3184e+4 1.0553e+1 3.6177e+2 # -Range: 0-300 K2Se K2Se = Se-2 + 2 K+ log_k 11.2925 - -delta_H 0 # Not possible to calculate enthalpy of reaction K2Se -# Enthalpy of formation: -92 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction K2Se +# Enthalpy of formation: -92 kcal/mol -analytic 1.8182e+1 7.8828e-3 2.6345e+3 -7.3075e+0 4.4732e+1 # -Range: 0-200 K2UO4 K2UO4 + 4 H+ = UO2+2 + 2 H2O + 2 K+ log_k 33.8714 - -delta_H -174.316 kJ/mol # Calculated enthalpy of reaction K2UO4 -# Enthalpy of formation: -1920.7 kJ/mol + -delta_H -174.316 kJ/mol # Calculated enthalpy of reaction K2UO4 +# Enthalpy of formation: -1920.7 kJ/mol -analytic -7.0905e+1 -2.568e-3 1.2244e+4 2.6056e+1 2.0794e+2 # -Range: 0-200 K3H(SO4)2 K3H(SO4)2 = H+ + 2 SO4-2 + 3 K+ log_k -3.6233 - -delta_H 0 # Not possible to calculate enthalpy of reaction K3H(SO4)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction K3H(SO4)2 +# Enthalpy of formation: 0 kcal/mol K8H4(CO3)6:3H2O K8H4(CO3)6:3H2O + 2 H+ = 3 H2O + 6 HCO3- + 8 K+ log_k 27.7099 - -delta_H 0 # Not possible to calculate enthalpy of reaction K8H4(CO3)6:3H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction K8H4(CO3)6:3H2O +# Enthalpy of formation: 0 kcal/mol KAl(SO4)2 KAl(SO4)2 = Al+3 + K+ + 2 SO4-2 log_k 3.3647 - -delta_H -139.485 kJ/mol # Calculated enthalpy of reaction KAl(SO4)2 -# Enthalpy of formation: -2470.29 kJ/mol + -delta_H -139.485 kJ/mol # Calculated enthalpy of reaction KAl(SO4)2 +# Enthalpy of formation: -2470.29 kJ/mol -analytic -4.2785e+2 -1.6303e-1 1.5311e+4 1.7312e+2 2.3904e+2 # -Range: 0-300 KBr KBr = Br- + K+ log_k 1.0691 - -delta_H 20.125 kJ/mol # Calculated enthalpy of reaction KBr -# Enthalpy of formation: -393.798 kJ/mol + -delta_H 20.125 kJ/mol # Calculated enthalpy of reaction KBr +# Enthalpy of formation: -393.798 kJ/mol -analytic -7.3164e+1 -3.124e-2 4.814e+2 3.3104e+1 7.5336e+0 # -Range: 0-300 KMgCl3 KMgCl3 = K+ + Mg+2 + 3 Cl- log_k 21.2618 - -delta_H -132.768 kJ/mol # Calculated enthalpy of reaction KMgCl3 -# Enthalpy of formation: -1086.6 kJ/mol + -delta_H -132.768 kJ/mol # Calculated enthalpy of reaction KMgCl3 +# Enthalpy of formation: -1086.6 kJ/mol -analytic -8.4641e+0 -3.2688e-2 5.1496e+3 8.9652e+0 8.745e+1 # -Range: 0-200 KMgCl3:2H2O KMgCl3:2H2O = K+ + Mg+2 + 2 H2O + 3 Cl- log_k 13.9755 - -delta_H -76.8449 kJ/mol # Calculated enthalpy of reaction KMgCl3:2H2O -# Enthalpy of formation: -1714.2 kJ/mol + -delta_H -76.8449 kJ/mol # Calculated enthalpy of reaction KMgCl3:2H2O +# Enthalpy of formation: -1714.2 kJ/mol -analytic -5.9982e+1 -3.3015e-2 4.6174e+3 2.7602e+1 7.8431e+1 # -Range: 0-200 KNaCO3:6H2O KNaCO3:6H2O + H+ = HCO3- + K+ + Na+ + 6 H2O log_k 10.2593 - -delta_H 0 # Not possible to calculate enthalpy of reaction KNaCO3:6H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction KNaCO3:6H2O +# Enthalpy of formation: 0 kcal/mol KTcO4 KTcO4 = K+ + TcO4- log_k -2.2667 - -delta_H 53.2363 kJ/mol # Calculated enthalpy of reaction KTcO4 -# Enthalpy of formation: -1021.67 kJ/mol + -delta_H 53.2363 kJ/mol # Calculated enthalpy of reaction KTcO4 +# Enthalpy of formation: -1021.67 kJ/mol -analytic 1.8058e+1 -8.4795e-4 -2.3985e+3 -4.1788e+0 -1.5029e+5 # -Range: 0-300 KUO2AsO4 KUO2AsO4 + 2 H+ = H2AsO4- + K+ + UO2+2 log_k -4.1741 - -delta_H 0 # Not possible to calculate enthalpy of reaction KUO2AsO4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction KUO2AsO4 +# Enthalpy of formation: 0 kcal/mol Kainite KMgClSO4:3H2O = Cl- + K+ + Mg+2 + SO4-2 + 3 H2O log_k -0.3114 - -delta_H 0 # Not possible to calculate enthalpy of reaction Kainite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Kainite +# Enthalpy of formation: 0 kcal/mol Kalicinite KHCO3 = HCO3- + K+ log_k 0.2837 - -delta_H 0 # Not possible to calculate enthalpy of reaction Kalicinite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Kalicinite +# Enthalpy of formation: 0 kcal/mol Kalsilite KAlSiO4 + 4 H+ = Al+3 + K+ + SiO2 + 2 H2O log_k 10.8987 - -delta_H -108.583 kJ/mol # Calculated enthalpy of reaction Kalsilite -# Enthalpy of formation: -509.408 kcal/mol + -delta_H -108.583 kJ/mol # Calculated enthalpy of reaction Kalsilite +# Enthalpy of formation: -509.408 kcal/mol -analytic -6.7595e+0 -7.4301e-3 6.538e+3 1.8999e-1 -2.288e+5 # -Range: 0-300 Kaolinite Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 SiO2 + 5 H2O log_k 6.8101 - -delta_H -151.779 kJ/mol # Calculated enthalpy of reaction Kaolinite -# Enthalpy of formation: -982.221 kcal/mol + -delta_H -151.779 kJ/mol # Calculated enthalpy of reaction Kaolinite +# Enthalpy of formation: -982.221 kcal/mol -analytic 1.6835e+1 -7.8939e-3 7.7636e+3 -1.219e+1 -3.2354e+5 # -Range: 0-300 Karelianite V2O3 + 6 H+ = 2 V+3 + 3 H2O log_k 9.9424 - -delta_H -160.615 kJ/mol # Calculated enthalpy of reaction Karelianite -# Enthalpy of formation: -1218.98 kJ/mol + -delta_H -160.615 kJ/mol # Calculated enthalpy of reaction Karelianite +# Enthalpy of formation: -1218.98 kJ/mol -analytic -2.7961e+1 -7.1499e-3 6.7749e+3 5.8146e+0 2.6039e+5 # -Range: 0-300 Kasolite Pb(UO2)SiO4:H2O + 4 H+ = Pb+2 + SiO2 + UO2+2 + 3 H2O log_k 7.2524 - -delta_H 0 # Not possible to calculate enthalpy of reaction Kasolite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Kasolite +# Enthalpy of formation: 0 kcal/mol Katoite Ca3Al2H12O12 + 12 H+ = 2 Al+3 + 3 Ca+2 + 12 H2O log_k 78.9437 - -delta_H 0 # Not possible to calculate enthalpy of reaction Katoite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Katoite +# Enthalpy of formation: 0 kcal/mol Kieserite MgSO4:H2O = H2O + Mg+2 + SO4-2 log_k -0.267 - -delta_H 0 # Not possible to calculate enthalpy of reaction Kieserite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Kieserite +# Enthalpy of formation: 0 kcal/mol Klockmannite CuSe = Cu+2 + Se-2 log_k -41.6172 - -delta_H 0 # Not possible to calculate enthalpy of reaction Klockmannite -# Enthalpy of formation: -10 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Klockmannite +# Enthalpy of formation: -10 kcal/mol -analytic -2.3021e+1 -2.1458e-3 -8.5938e+3 4.39e+0 -1.4593e+2 # -Range: 0-200 Krutaite CuSe2 + H2O = 0.5 O2 + Cu+2 + 2 H+ + 2 Se-2 log_k -107.6901 - -delta_H 0 # Not possible to calculate enthalpy of reaction Krutaite -# Enthalpy of formation: -11.5 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Krutaite +# Enthalpy of formation: -11.5 kcal/mol -analytic -3.7735e+1 -8.7548e-4 -2.6352e+4 7.5528e+0 -4.4749e+2 # -Range: 0-200 Kyanite Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O log_k 15.674 - -delta_H -230.919 kJ/mol # Calculated enthalpy of reaction Kyanite -# Enthalpy of formation: -616.897 kcal/mol + -delta_H -230.919 kJ/mol # Calculated enthalpy of reaction Kyanite +# Enthalpy of formation: -616.897 kcal/mol -analytic -7.3335e+1 -3.2853e-2 1.2166e+4 2.3412e+1 1.8986e+2 # -Range: 0-300 La La + 3 H+ + 0.75 O2 = La+3 + 1.5 H2O log_k 184.7155 - -delta_H -1129.26 kJ/mol # Calculated enthalpy of reaction La -# Enthalpy of formation: 0 kJ/mol + -delta_H -1129.26 kJ/mol # Calculated enthalpy of reaction La +# Enthalpy of formation: 0 kJ/mol -analytic -5.9508e+1 -2.7578e-2 5.9327e+4 2.1589e+1 9.2577e+2 # -Range: 0-300 La(OH)3 La(OH)3 + 3 H+ = La+3 + 3 H2O log_k 20.2852 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction La(OH)3 +# Enthalpy of formation: 0 kcal/mol La(OH)3(am) La(OH)3 + 3 H+ = La+3 + 3 H2O log_k 23.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction La(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction La(OH)3(am) +# Enthalpy of formation: 0 kcal/mol La2(CO3)3:8H2O La2(CO3)3:8H2O + 3 H+ = 2 La+3 + 3 HCO3- + 8 H2O log_k -4.3136 - -delta_H 0 # Not possible to calculate enthalpy of reaction La2(CO3)3:8H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction La2(CO3)3:8H2O +# Enthalpy of formation: 0 kcal/mol La2O3 La2O3 + 6 H+ = 2 La+3 + 3 H2O log_k 66.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction La2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction La2O3 +# Enthalpy of formation: 0 kcal/mol LaCl3 LaCl3 = La+3 + 3 Cl- log_k 14.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaCl3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction LaCl3 +# Enthalpy of formation: 0 kcal/mol LaCl3:7H2O LaCl3:7H2O = La+3 + 3 Cl- + 7 H2O log_k 4.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaCl3:7H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction LaCl3:7H2O +# Enthalpy of formation: 0 kcal/mol LaF3:.5H2O LaF3:.5H2O = 0.5 H2O + La+3 + 3 F- log_k -18.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaF3:.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction LaF3:.5H2O +# Enthalpy of formation: 0 kcal/mol LaPO4:10H2O LaPO4:10H2O + H+ = HPO4-2 + La+3 + 10 H2O log_k -12.3782 - -delta_H 0 # Not possible to calculate enthalpy of reaction LaPO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction LaPO4:10H2O +# Enthalpy of formation: 0 kcal/mol Lammerite Cu3(AsO4)2 + 4 H+ = 2 H2AsO4- + 3 Cu+2 log_k 1.5542 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lammerite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Lammerite +# Enthalpy of formation: 0 kcal/mol Lanarkite Pb2(SO4)O + 2 H+ = H2O + SO4-2 + 2 Pb+2 log_k -0.4692 - -delta_H -22.014 kJ/mol # Calculated enthalpy of reaction Lanarkite -# Enthalpy of formation: -1171.59 kJ/mol + -delta_H -22.014 kJ/mol # Calculated enthalpy of reaction Lanarkite +# Enthalpy of formation: -1171.59 kJ/mol -analytic 5.1071e+0 -1.6655e-2 0e+0 0e+0 -5.566e+4 # -Range: 0-200 Lansfordite MgCO3:5H2O + H+ = HCO3- + Mg+2 + 5 H2O log_k 4.8409 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lansfordite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Lansfordite +# Enthalpy of formation: 0 kcal/mol Larnite Ca2SiO4 + 4 H+ = SiO2 + 2 Ca+2 + 2 H2O log_k 38.4665 - -delta_H -227.061 kJ/mol # Calculated enthalpy of reaction Larnite -# Enthalpy of formation: -551.74 kcal/mol + -delta_H -227.061 kJ/mol # Calculated enthalpy of reaction Larnite +# Enthalpy of formation: -551.74 kcal/mol -analytic 2.69e+1 -2.1833e-3 1.09e+4 -9.5257e+0 -7.2537e+4 # -Range: 0-300 Laumontite CaAl2Si4O12:4H2O + 8 H+ = Ca+2 + 2 Al+3 + 4 SiO2 + 8 H2O log_k 13.6667 - -delta_H -184.657 kJ/mol # Calculated enthalpy of reaction Laumontite -# Enthalpy of formation: -1728.66 kcal/mol + -delta_H -184.657 kJ/mol # Calculated enthalpy of reaction Laumontite +# Enthalpy of formation: -1728.66 kcal/mol -analytic 1.1904e+0 8.1763e-3 1.9005e+4 -1.4561e+1 -1.5851e+6 # -Range: 0-300 Laurite RuS2 = Ru+2 + S2-2 log_k -73.2649 - -delta_H 0 # Not possible to calculate enthalpy of reaction Laurite -# Enthalpy of formation: -199.586 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Laurite +# Enthalpy of formation: -199.586 kJ/mol Lawrencite FeCl2 = Fe+2 + 2 Cl- log_k 9.0945 - -delta_H -84.7665 kJ/mol # Calculated enthalpy of reaction Lawrencite -# Enthalpy of formation: -341.65 kJ/mol + -delta_H -84.7665 kJ/mol # Calculated enthalpy of reaction Lawrencite +# Enthalpy of formation: -341.65 kJ/mol -analytic -2.2798e+2 -8.1819e-2 9.262e+3 9.3097e+1 1.4459e+2 # -Range: 0-300 Lawsonite CaAl2Si2O7(OH)2:H2O + 8 H+ = Ca+2 + 2 Al+3 + 2 SiO2 + 6 H2O log_k 22.2132 - -delta_H -244.806 kJ/mol # Calculated enthalpy of reaction Lawsonite -# Enthalpy of formation: -1158.1 kcal/mol + -delta_H -244.806 kJ/mol # Calculated enthalpy of reaction Lawsonite +# Enthalpy of formation: -1158.1 kcal/mol -analytic 1.3995e+1 -1.7668e-2 1.0119e+4 -8.31e+0 1.5789e+2 # -Range: 0-300 Leonite K2Mg(SO4)2:4H2O = Mg+2 + 2 K+ + 2 SO4-2 + 4 H2O log_k -4.1123 - -delta_H 0 # Not possible to calculate enthalpy of reaction Leonite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Leonite +# Enthalpy of formation: 0 kcal/mol Li Li + H+ + 0.25 O2 = 0.5 H2O + Li+ log_k 72.7622 - -delta_H -418.339 kJ/mol # Calculated enthalpy of reaction Li -# Enthalpy of formation: 0 kJ/mol + -delta_H -418.339 kJ/mol # Calculated enthalpy of reaction Li +# Enthalpy of formation: 0 kJ/mol -analytic -1.0227e+2 -1.8118e-2 2.6262e+4 3.8056e+1 -1.6166e+5 # -Range: 0-300 Li2Se Li2Se + 1.5 O2 = SeO3-2 + 2 Li+ log_k 102.8341 - -delta_H -646.236 kJ/mol # Calculated enthalpy of reaction Li2Se -# Enthalpy of formation: -96 kcal/mol + -delta_H -646.236 kJ/mol # Calculated enthalpy of reaction Li2Se +# Enthalpy of formation: -96 kcal/mol -analytic 1.1933e+2 -6.9663e-3 2.7509e+4 -4.3124e+1 4.671e+2 # -Range: 0-200 Li2UO4 Li2UO4 + 4 H+ = UO2+2 + 2 H2O + 2 Li+ log_k 27.8421 - -delta_H -179.384 kJ/mol # Calculated enthalpy of reaction Li2UO4 -# Enthalpy of formation: -1968.2 kJ/mol + -delta_H -179.384 kJ/mol # Calculated enthalpy of reaction Li2UO4 +# Enthalpy of formation: -1968.2 kJ/mol -analytic -1.447e+2 -1.2024e-2 1.4899e+4 5.0984e+1 2.5306e+2 # -Range: 0-200 LiUO2AsO4 LiUO2AsO4 + 2 H+ = H2AsO4- + Li+ + UO2+2 log_k -0.7862 - -delta_H 0 # Not possible to calculate enthalpy of reaction LiUO2AsO4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction LiUO2AsO4 +# Enthalpy of formation: 0 kcal/mol Lime CaO + 2 H+ = Ca+2 + H2O log_k 32.5761 - -delta_H -193.832 kJ/mol # Calculated enthalpy of reaction Lime -# Enthalpy of formation: -151.79 kcal/mol + -delta_H -193.832 kJ/mol # Calculated enthalpy of reaction Lime +# Enthalpy of formation: -151.79 kcal/mol -analytic -7.2686e+1 -1.7654e-2 1.2199e+4 2.8128e+1 1.9037e+2 # -Range: 0-300 Linnaeite Co3S4 + 4 H+ = Co+2 + 2 Co+3 + 4 HS- log_k -106.9017 - -delta_H 420.534 kJ/mol # Calculated enthalpy of reaction Linnaeite -# Enthalpy of formation: -85.81 kcal/mol + -delta_H 420.534 kJ/mol # Calculated enthalpy of reaction Linnaeite +# Enthalpy of formation: -85.81 kcal/mol -analytic -6.0034e+2 -2.0179e-1 -9.2145e+3 2.3618e+2 -1.4361e+2 # -Range: 0-300 Litharge PbO + 2 H+ = H2O + Pb+2 log_k 12.6388 - -delta_H -65.9118 kJ/mol # Calculated enthalpy of reaction Litharge -# Enthalpy of formation: -219.006 kJ/mol + -delta_H -65.9118 kJ/mol # Calculated enthalpy of reaction Litharge +# Enthalpy of formation: -219.006 kJ/mol -analytic -1.8683e+1 -2.0211e-3 4.1876e+3 7.2239e+0 7.1118e+1 # -Range: 0-200 Lopezite K2Cr2O7 + H2O = 2 CrO4-2 + 2 H+ + 2 K+ log_k -17.4366 - -delta_H 81.9227 kJ/mol # Calculated enthalpy of reaction Lopezite -# Enthalpy of formation: -493.003 kcal/mol + -delta_H 81.9227 kJ/mol # Calculated enthalpy of reaction Lopezite +# Enthalpy of formation: -493.003 kcal/mol -analytic 7.8359e+1 -2.2908e-2 -9.3812e+3 -2.3245e+1 -1.5933e+2 # -Range: 0-200 Lu Lu + 3 H+ + 0.75 O2 = Lu+3 + 1.5 H2O log_k 181.3437 - -delta_H -1122.15 kJ/mol # Calculated enthalpy of reaction Lu -# Enthalpy of formation: 0 kJ/mol + -delta_H -1122.15 kJ/mol # Calculated enthalpy of reaction Lu +# Enthalpy of formation: 0 kJ/mol -analytic -6.895e+1 -2.8643e-2 5.9209e+4 2.4332e+1 9.2392e+2 # -Range: 0-300 Lu(OH)3 Lu(OH)3 + 3 H+ = Lu+3 + 3 H2O log_k 14.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(OH)3 +# Enthalpy of formation: 0 kcal/mol Lu(OH)3(am) Lu(OH)3 + 3 H+ = Lu+3 + 3 H2O log_k 18.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu(OH)3(am) +# Enthalpy of formation: 0 kcal/mol Lu2(CO3)3 Lu2(CO3)3 + 3 H+ = 2 Lu+3 + 3 HCO3- log_k -2.0136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu2(CO3)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu2(CO3)3 +# Enthalpy of formation: 0 kcal/mol Lu2O3 Lu2O3 + 6 H+ = 2 Lu+3 + 3 H2O log_k 45 - -delta_H 0 # Not possible to calculate enthalpy of reaction Lu2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Lu2O3 +# Enthalpy of formation: 0 kcal/mol LuF3:.5H2O LuF3:.5H2O = 0.5 H2O + Lu+3 + 3 F- log_k -15.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction LuF3:.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction LuF3:.5H2O +# Enthalpy of formation: 0 kcal/mol LuPO4:10H2O LuPO4:10H2O + H+ = HPO4-2 + Lu+3 + 10 H2O log_k -11.6782 - -delta_H 0 # Not possible to calculate enthalpy of reaction LuPO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction LuPO4:10H2O +# Enthalpy of formation: 0 kcal/mol Magnesiochromite MgCr2O4 + 8 H+ = Mg+2 + 2 Cr+3 + 4 H2O log_k 21.6927 - -delta_H -302.689 kJ/mol # Calculated enthalpy of reaction Magnesiochromite -# Enthalpy of formation: -1783.6 kJ/mol + -delta_H -302.689 kJ/mol # Calculated enthalpy of reaction Magnesiochromite +# Enthalpy of formation: -1783.6 kJ/mol -analytic -1.7376e+2 -8.7429e-3 2.16e+4 5.0762e+1 3.6685e+2 # -Range: 0-200 Magnesite MgCO3 + H+ = HCO3- + Mg+2 log_k 2.2936 - -delta_H -44.4968 kJ/mol # Calculated enthalpy of reaction Magnesite -# Enthalpy of formation: -265.63 kcal/mol + -delta_H -44.4968 kJ/mol # Calculated enthalpy of reaction Magnesite +# Enthalpy of formation: -265.63 kcal/mol -analytic -1.6665e+2 -4.9469e-2 6.4344e+3 6.5506e+1 1.0045e+2 # -Range: 0-300 Magnetite Fe3O4 + 8 H+ = Fe+2 + 2 Fe+3 + 4 H2O log_k 10.4724 - -delta_H -216.597 kJ/mol # Calculated enthalpy of reaction Magnetite -# Enthalpy of formation: -267.25 kcal/mol + -delta_H -216.597 kJ/mol # Calculated enthalpy of reaction Magnetite +# Enthalpy of formation: -267.25 kcal/mol -analytic -3.051e+2 -7.9919e-2 1.8709e+4 1.1178e+2 2.9203e+2 # -Range: 0-300 Malachite Cu2CO3(OH)2 + 3 H+ = HCO3- + 2 Cu+2 + 2 H2O log_k 5.9399 - -delta_H -76.2827 kJ/mol # Calculated enthalpy of reaction Malachite -# Enthalpy of formation: -251.9 kcal/mol + -delta_H -76.2827 kJ/mol # Calculated enthalpy of reaction Malachite +# Enthalpy of formation: -251.9 kcal/mol -analytic -2.7189e+2 -6.9454e-2 1.1451e+4 1.0511e+2 1.7877e+2 # -Range: 0-300 Manganite MnO(OH) + 3 H+ = Mn+3 + 2 H2O log_k -0.1646 - -delta_H 0 # Not possible to calculate enthalpy of reaction Manganite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Manganite +# Enthalpy of formation: 0 kcal/mol Manganosite MnO + 2 H+ = H2O + Mn+2 log_k 17.924 - -delta_H -121.215 kJ/mol # Calculated enthalpy of reaction Manganosite -# Enthalpy of formation: -92.07 kcal/mol + -delta_H -121.215 kJ/mol # Calculated enthalpy of reaction Manganosite +# Enthalpy of formation: -92.07 kcal/mol -analytic -8.4114e+1 -1.849e-2 8.7792e+3 3.1561e+1 1.3702e+2 # -Range: 0-300 Margarite CaAl4Si2O10(OH)2 + 14 H+ = Ca+2 + 2 SiO2 + 4 Al+3 + 8 H2O log_k 41.0658 - -delta_H -522.192 kJ/mol # Calculated enthalpy of reaction Margarite -# Enthalpy of formation: -1485.8 kcal/mol + -delta_H -522.192 kJ/mol # Calculated enthalpy of reaction Margarite +# Enthalpy of formation: -1485.8 kcal/mol -analytic -2.3138e+2 -8.2788e-2 3.0154e+4 7.9148e+1 4.706e+2 # -Range: 0-300 Massicot PbO + 2 H+ = H2O + Pb+2 log_k 12.821 - -delta_H -67.6078 kJ/mol # Calculated enthalpy of reaction Massicot -# Enthalpy of formation: -217.31 kJ/mol + -delta_H -67.6078 kJ/mol # Calculated enthalpy of reaction Massicot +# Enthalpy of formation: -217.31 kJ/mol -analytic -1.8738e+1 -2.0125e-3 4.2739e+3 7.2018e+0 7.2584e+1 # -Range: 0-200 Matlockite PbFCl = Cl- + F- + Pb+2 log_k -9.43 - -delta_H 0 # Not possible to calculate enthalpy of reaction Matlockite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Matlockite +# Enthalpy of formation: 0 kcal/mol Maximum_Microcline KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 log_k -0.2753 - -delta_H -23.9408 kJ/mol # Calculated enthalpy of reaction Maximum_Microcline -# Enthalpy of formation: -949.188 kcal/mol + -delta_H -23.9408 kJ/mol # Calculated enthalpy of reaction Maximum_Microcline +# Enthalpy of formation: -949.188 kcal/mol -analytic -9.4387e+0 1.3561e-2 1.2656e+4 -7.4925e+0 -1.6795e+6 # -Range: 0-300 Mayenite Ca12Al14O33 + 66 H+ = 12 Ca+2 + 14 Al+3 + 33 H2O log_k 494.2199 - -delta_H -4056.77 kJ/mol # Calculated enthalpy of reaction Mayenite -# Enthalpy of formation: -4644 kcal/mol + -delta_H -4056.77 kJ/mol # Calculated enthalpy of reaction Mayenite +# Enthalpy of formation: -4644 kcal/mol -analytic -1.4778e+3 -2.9898e-1 2.4918e+5 4.9518e+2 4.2319e+3 # -Range: 0-200 Melanterite FeSO4:7H2O = Fe+2 + SO4-2 + 7 H2O log_k -2.349 - -delta_H 11.7509 kJ/mol # Calculated enthalpy of reaction Melanterite -# Enthalpy of formation: -3014.48 kJ/mol + -delta_H 11.7509 kJ/mol # Calculated enthalpy of reaction Melanterite +# Enthalpy of formation: -3014.48 kJ/mol -analytic -2.623e+2 -7.2469e-2 6.5854e+3 1.0484e+2 1.0284e+2 # -Range: 0-300 Mercallite KHSO4 = H+ + K+ + SO4-2 log_k -1.4389 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mercallite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Mercallite +# Enthalpy of formation: 0 kcal/mol Merwinite MgCa3(SiO4)2 + 8 H+ = Mg+2 + 2 SiO2 + 3 Ca+2 + 4 H2O log_k 68.514 - -delta_H -430.069 kJ/mol # Calculated enthalpy of reaction Merwinite -# Enthalpy of formation: -1090.8 kcal/mol + -delta_H -430.069 kJ/mol # Calculated enthalpy of reaction Merwinite +# Enthalpy of formation: -1090.8 kcal/mol -analytic -2.2524e+2 -4.2525e-2 3.5619e+4 7.9984e+1 -9.8259e+5 # -Range: 0-300 Mesolite Na.676Ca.657Al1.99Si3.01O10:2.647H2O + 7.96 H+ = 0.657 Ca+2 + 0.676 Na+ + 1.99 Al+3 + 3.01 SiO2 + 6.627 H2O log_k 13.6191 - -delta_H -179.744 kJ/mol # Calculated enthalpy of reaction Mesolite -# Enthalpy of formation: -5947.05 kJ/mol + -delta_H -179.744 kJ/mol # Calculated enthalpy of reaction Mesolite +# Enthalpy of formation: -5947.05 kJ/mol -analytic 7.1993e+0 5.9356e-3 1.4717e+4 -1.3627e+1 -9.8863e+5 # -Range: 0-300 Metacinnabar HgS + H+ = HS- + Hg+2 log_k -38.5979 - -delta_H 203.426 kJ/mol # Calculated enthalpy of reaction Metacinnabar -# Enthalpy of formation: -11.8 kcal/mol + -delta_H 203.426 kJ/mol # Calculated enthalpy of reaction Metacinnabar +# Enthalpy of formation: -11.8 kcal/mol -analytic -1.5399e+2 -4.674e-2 -6.7875e+3 6.1456e+1 -1.0587e+2 # -Range: 0-300 Mg Mg + 2 H+ + 0.5 O2 = H2O + Mg+2 log_k 122.5365 - -delta_H -745.731 kJ/mol # Calculated enthalpy of reaction Mg -# Enthalpy of formation: 0 kJ/mol + -delta_H -745.731 kJ/mol # Calculated enthalpy of reaction Mg +# Enthalpy of formation: 0 kJ/mol -analytic -6.5988e+1 -1.9356e-2 4.0318e+4 2.3862e+1 6.2914e+2 # -Range: 0-300 Mg1.25SO4(OH)0.5:0.5H2O Mg1.25SO4(OH)0.5:0.5H2O + 0.5 H+ = H2O + SO4-2 + 1.25 Mg+2 log_k 5.26 - -delta_H -97.1054 kJ/mol # Calculated enthalpy of reaction Mg1.25SO4(OH)0.5:0.5H2O -# Enthalpy of formation: -401.717 kcal/mol + -delta_H -97.1054 kJ/mol # Calculated enthalpy of reaction Mg1.25SO4(OH)0.5:0.5H2O +# Enthalpy of formation: -401.717 kcal/mol -analytic -2.6791e+2 -8.7078e-2 1.109e+4 1.0583e+2 1.7312e+2 # -Range: 0-300 Mg1.5SO4(OH) Mg1.5SO4(OH) + H+ = H2O + SO4-2 + 1.5 Mg+2 log_k 9.2551 - -delta_H -125.832 kJ/mol # Calculated enthalpy of reaction Mg1.5SO4(OH) -# Enthalpy of formation: -422.693 kcal/mol + -delta_H -125.832 kJ/mol # Calculated enthalpy of reaction Mg1.5SO4(OH) +# Enthalpy of formation: -422.693 kcal/mol -analytic -2.8698e+2 -9.197e-2 1.3088e+4 1.1304e+2 2.0432e+2 # -Range: 0-300 Mg2V2O7 Mg2V2O7 + H2O = 2 H+ + 2 Mg+2 + 2 VO4-3 log_k -30.9025 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mg2V2O7 -# Enthalpy of formation: -2836.23 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Mg2V2O7 +# Enthalpy of formation: -2836.23 kJ/mol MgBr2 MgBr2 = Mg+2 + 2 Br- log_k 28.5302 - -delta_H -190.15 kJ/mol # Calculated enthalpy of reaction MgBr2 -# Enthalpy of formation: -124 kcal/mol + -delta_H -190.15 kJ/mol # Calculated enthalpy of reaction MgBr2 +# Enthalpy of formation: -124 kcal/mol -analytic -2.1245e+2 -7.6168e-2 1.4466e+4 8.694e+1 2.2579e+2 # -Range: 0-300 MgBr2:6H2O MgBr2:6H2O = Mg+2 + 2 Br- + 6 H2O log_k 5.1656 - -delta_H -14.2682 kJ/mol # Calculated enthalpy of reaction MgBr2:6H2O -# Enthalpy of formation: -2409.73 kJ/mol + -delta_H -14.2682 kJ/mol # Calculated enthalpy of reaction MgBr2:6H2O +# Enthalpy of formation: -2409.73 kJ/mol -analytic -1.3559e+2 -1.6479e-2 5.8571e+3 5.0924e+1 9.9508e+1 # -Range: 0-200 MgCl2:2H2O MgCl2:2H2O = Mg+2 + 2 Cl- + 2 H2O log_k 12.7763 - -delta_H -92.0895 kJ/mol # Calculated enthalpy of reaction MgCl2:2H2O -# Enthalpy of formation: -1279.71 kJ/mol + -delta_H -92.0895 kJ/mol # Calculated enthalpy of reaction MgCl2:2H2O +# Enthalpy of formation: -1279.71 kJ/mol -analytic -2.5409e+2 -8.1413e-2 1.0941e+4 1.0281e+2 1.708e+2 # -Range: 0-300 MgCl2:4H2O MgCl2:4H2O = Mg+2 + 2 Cl- + 4 H2O log_k 7.3581 - -delta_H -44.4602 kJ/mol # Calculated enthalpy of reaction MgCl2:4H2O -# Enthalpy of formation: -1899.01 kJ/mol + -delta_H -44.4602 kJ/mol # Calculated enthalpy of reaction MgCl2:4H2O +# Enthalpy of formation: -1899.01 kJ/mol -analytic -2.7604e+2 -8.1648e-2 9.5501e+3 1.114e+2 1.491e+2 # -Range: 0-300 MgCl2:H2O MgCl2:H2O = H2O + Mg+2 + 2 Cl- log_k 16.1187 - -delta_H -119.326 kJ/mol # Calculated enthalpy of reaction MgCl2:H2O -# Enthalpy of formation: -966.631 kJ/mol + -delta_H -119.326 kJ/mol # Calculated enthalpy of reaction MgCl2:H2O +# Enthalpy of formation: -966.631 kJ/mol -analytic -2.4414e+2 -8.131e-2 1.1862e+4 9.8878e+1 1.8516e+2 # -Range: 0-300 MgOHCl MgOHCl + H+ = Cl- + H2O + Mg+2 log_k 15.9138 - -delta_H -118.897 kJ/mol # Calculated enthalpy of reaction MgOHCl -# Enthalpy of formation: -191.2 kcal/mol + -delta_H -118.897 kJ/mol # Calculated enthalpy of reaction MgOHCl +# Enthalpy of formation: -191.2 kcal/mol -analytic -1.6614e+2 -4.9715e-2 1.0311e+4 6.5578e+1 1.6093e+2 # -Range: 0-300 MgSO4 MgSO4 = Mg+2 + SO4-2 log_k 4.8781 - -delta_H -90.6421 kJ/mol # Calculated enthalpy of reaction MgSO4 -# Enthalpy of formation: -1284.92 kJ/mol + -delta_H -90.6421 kJ/mol # Calculated enthalpy of reaction MgSO4 +# Enthalpy of formation: -1284.92 kJ/mol -analytic -2.2439e+2 -7.9688e-2 9.3058e+3 8.9622e+1 1.4527e+2 # -Range: 0-300 MgSeO3 MgSeO3 = Mg+2 + SeO3-2 log_k 1.7191 - -delta_H -74.9647 kJ/mol # Calculated enthalpy of reaction MgSeO3 -# Enthalpy of formation: -215.15 kcal/mol + -delta_H -74.9647 kJ/mol # Calculated enthalpy of reaction MgSeO3 +# Enthalpy of formation: -215.15 kcal/mol -analytic -2.2593e+2 -8.1045e-2 8.4609e+3 9.0278e+1 1.3209e+2 # -Range: 0-300 MgSeO3:6H2O MgSeO3:6H2O = Mg+2 + SeO3-2 + 6 H2O log_k -3.4222 - -delta_H 11.7236 kJ/mol # Calculated enthalpy of reaction MgSeO3:6H2O -# Enthalpy of formation: -645.771 kcal/mol + -delta_H 11.7236 kJ/mol # Calculated enthalpy of reaction MgSeO3:6H2O +# Enthalpy of formation: -645.771 kcal/mol -analytic -1.2807e+2 -1.5418e-2 4.0565e+3 4.6728e+1 6.8929e+1 # -Range: 0-200 MgUO4 MgUO4 + 4 H+ = Mg+2 + UO2+2 + 2 H2O log_k 23.0023 - -delta_H -199.336 kJ/mol # Calculated enthalpy of reaction MgUO4 -# Enthalpy of formation: -1857.3 kJ/mol + -delta_H -199.336 kJ/mol # Calculated enthalpy of reaction MgUO4 +# Enthalpy of formation: -1857.3 kJ/mol -analytic -9.9954e+1 -2.0142e-2 1.3078e+4 3.4386e+1 2.041e+2 # -Range: 0-300 MgV2O6 MgV2O6 + 2 H2O = Mg+2 + 2 VO4-3 + 4 H+ log_k -45.8458 - -delta_H 0 # Not possible to calculate enthalpy of reaction MgV2O6 -# Enthalpy of formation: -2201.88 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MgV2O6 +# Enthalpy of formation: -2201.88 kJ/mol Millerite NiS + H+ = HS- + Ni+2 log_k -8.0345 - -delta_H 12.089 kJ/mol # Calculated enthalpy of reaction Millerite -# Enthalpy of formation: -82.171 kJ/mol + -delta_H 12.089 kJ/mol # Calculated enthalpy of reaction Millerite +# Enthalpy of formation: -82.171 kJ/mol -analytic -1.4848e+2 -4.8834e-2 2.6981e+3 5.8976e+1 4.2145e+1 # -Range: 0-300 Minium Pb3O4 + 8 H+ = Pb+4 + 2 Pb+2 + 4 H2O log_k 16.2585 - -delta_H 0 # Not possible to calculate enthalpy of reaction Minium -# Enthalpy of formation: -718.493 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Minium +# Enthalpy of formation: -718.493 kJ/mol Minnesotaite Fe3Si4O10(OH)2 + 6 H+ = 3 Fe+2 + 4 H2O + 4 SiO2 log_k 13.9805 - -delta_H -105.211 kJ/mol # Calculated enthalpy of reaction Minnesotaite -# Enthalpy of formation: -1153.37 kcal/mol + -delta_H -105.211 kJ/mol # Calculated enthalpy of reaction Minnesotaite +# Enthalpy of formation: -1153.37 kcal/mol -analytic -1.8812e+1 1.7261e-2 1.9804e+4 -6.441e+0 -2.0433e+6 # -Range: 0-300 Mirabilite Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O log_k -1.1398 - -delta_H 79.4128 kJ/mol # Calculated enthalpy of reaction Mirabilite -# Enthalpy of formation: -4328 kJ/mol + -delta_H 79.4128 kJ/mol # Calculated enthalpy of reaction Mirabilite +# Enthalpy of formation: -4328 kJ/mol -analytic -2.1877e+2 -3.6692e-3 5.9214e+3 8.0361e+1 1.0063e+2 # -Range: 0-200 Misenite K8H6(SO4)7 = 6 H+ + 7 SO4-2 + 8 K+ log_k -11.0757 - -delta_H 0 # Not possible to calculate enthalpy of reaction Misenite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Misenite +# Enthalpy of formation: 0 kcal/mol Mn Mn + 2 H+ + 0.5 O2 = H2O + Mn+2 log_k 82.9505 - -delta_H -500.369 kJ/mol # Calculated enthalpy of reaction Mn -# Enthalpy of formation: 0 kJ/mol + -delta_H -500.369 kJ/mol # Calculated enthalpy of reaction Mn +# Enthalpy of formation: 0 kJ/mol -analytic -6.5558e+1 -2.0429e-2 2.7571e+4 2.5098e+1 4.3024e+2 # -Range: 0-300 Mn(OH)2(am) Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O log_k 15.3102 - -delta_H -97.1779 kJ/mol # Calculated enthalpy of reaction Mn(OH)2(am) -# Enthalpy of formation: -695.096 kJ/mol + -delta_H -97.1779 kJ/mol # Calculated enthalpy of reaction Mn(OH)2(am) +# Enthalpy of formation: -695.096 kJ/mol -analytic -7.8518e+1 -7.5357e-3 8.0198e+3 2.7955e+1 1.3621e+2 # -Range: 0-200 Mn(OH)3 Mn(OH)3 + 3 H+ = Mn+3 + 3 H2O log_k 6.3412 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn(OH)3 +# Enthalpy of formation: 0 kcal/mol Mn3(PO4)2 Mn3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 Mn+2 log_k 0.8167 - -delta_H 0 # Not possible to calculate enthalpy of reaction Mn3(PO4)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Mn3(PO4)2 +# Enthalpy of formation: 0 kcal/mol MnCl2:2H2O MnCl2:2H2O = Mn+2 + 2 Cl- + 2 H2O log_k 4.0067 - -delta_H -34.4222 kJ/mol # Calculated enthalpy of reaction MnCl2:2H2O -# Enthalpy of formation: -1092.01 kJ/mol + -delta_H -34.4222 kJ/mol # Calculated enthalpy of reaction MnCl2:2H2O +# Enthalpy of formation: -1092.01 kJ/mol -analytic -6.2823e+1 -2.3959e-2 2.9931e+3 2.5834e+1 5.085e+1 # -Range: 0-200 MnCl2:4H2O MnCl2:4H2O = Mn+2 + 2 Cl- + 4 H2O log_k 2.7563 - -delta_H -10.7019 kJ/mol # Calculated enthalpy of reaction MnCl2:4H2O -# Enthalpy of formation: -1687.41 kJ/mol + -delta_H -10.7019 kJ/mol # Calculated enthalpy of reaction MnCl2:4H2O +# Enthalpy of formation: -1687.41 kJ/mol -analytic -1.1049e+2 -2.3376e-2 4.0458e+3 4.3097e+1 6.8742e+1 # -Range: 0-200 MnCl2:H2O MnCl2:H2O = H2O + Mn+2 + 2 Cl- log_k 5.5517 - -delta_H -50.8019 kJ/mol # Calculated enthalpy of reaction MnCl2:H2O -# Enthalpy of formation: -789.793 kJ/mol + -delta_H -50.8019 kJ/mol # Calculated enthalpy of reaction MnCl2:H2O +# Enthalpy of formation: -789.793 kJ/mol -analytic -4.5051e+1 -2.5923e-2 2.8739e+3 1.9674e+1 4.8818e+1 # -Range: 0-200 MnHPO4 MnHPO4 = HPO4-2 + Mn+2 log_k -12.947 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnHPO4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnHPO4 +# Enthalpy of formation: 0 kcal/mol MnO2(gamma) MnO2 = 0.5 Mn+2 + 0.5 MnO4-2 log_k -16.1261 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnO2(gamma) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnO2(gamma) +# Enthalpy of formation: 0 kcal/mol MnSO4 MnSO4 = Mn+2 + SO4-2 log_k 2.6561 - -delta_H -64.8718 kJ/mol # Calculated enthalpy of reaction MnSO4 -# Enthalpy of formation: -1065.33 kJ/mol + -delta_H -64.8718 kJ/mol # Calculated enthalpy of reaction MnSO4 +# Enthalpy of formation: -1065.33 kJ/mol -analytic -2.3088e+2 -8.2694e-2 8.1653e+3 9.3256e+1 1.2748e+2 # -Range: 0-300 MnSe MnSe = Mn+2 + Se-2 log_k -10.6848 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnSe -# Enthalpy of formation: -37 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnSe +# Enthalpy of formation: -37 kcal/mol -analytic -5.996e+1 -1.5963e-2 1.2813e+3 2.0095e+1 2.001e+1 # -Range: 0-300 MnSeO3 MnSeO3 = Mn+2 + SeO3-2 log_k -7.27 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnSeO3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnSeO3 +# Enthalpy of formation: 0 kcal/mol MnSeO3:2H2O MnSeO3:2H2O = Mn+2 + SeO3-2 + 2 H2O log_k -6.3219 - -delta_H 14.0792 kJ/mol # Calculated enthalpy of reaction MnSeO3:2H2O -# Enthalpy of formation: -314.423 kcal/mol + -delta_H 14.0792 kJ/mol # Calculated enthalpy of reaction MnSeO3:2H2O +# Enthalpy of formation: -314.423 kcal/mol -analytic -4.3625e+1 -2.0426e-2 -2.5368e+2 1.7876e+1 -4.2927e+0 # -Range: 0-200 MnV2O6 MnV2O6 + 2 H2O = Mn+2 + 2 VO4-3 + 4 H+ log_k -52.0751 - -delta_H 0 # Not possible to calculate enthalpy of reaction MnV2O6 -# Enthalpy of formation: -447.9 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MnV2O6 +# Enthalpy of formation: -447.9 kcal/mol Mo Mo + 1.5 O2 + H2O = MoO4-2 + 2 H+ log_k 109.323 - -delta_H -693.845 kJ/mol # Calculated enthalpy of reaction Mo -# Enthalpy of formation: 0 kJ/mol + -delta_H -693.845 kJ/mol # Calculated enthalpy of reaction Mo +# Enthalpy of formation: 0 kJ/mol -analytic -2.0021e+2 -8.3006e-2 4.1629e+4 8.0219e+1 -3.457e+5 # -Range: 0-300 MoSe2 MoSe2 + 3 H2O + 0.5 O2 = MoO4-2 + 2 Se-2 + 6 H+ log_k -55.1079 - -delta_H 0 # Not possible to calculate enthalpy of reaction MoSe2 -# Enthalpy of formation: -47 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction MoSe2 +# Enthalpy of formation: -47 kcal/mol -analytic 1.3882e+2 -1.859e-3 -1.7231e+4 -5.4797e+1 -2.9265e+2 # -Range: 0-200 Modderite CoAs + 3 H+ = AsH3 + Co+3 log_k -49.5512 - -delta_H 189.016 kJ/mol # Calculated enthalpy of reaction Modderite -# Enthalpy of formation: -12.208 kcal/mol + -delta_H 189.016 kJ/mol # Calculated enthalpy of reaction Modderite +# Enthalpy of formation: -12.208 kcal/mol Molysite FeCl3 = Fe+3 + 3 Cl- log_k 13.5517 - -delta_H -151.579 kJ/mol # Calculated enthalpy of reaction Molysite -# Enthalpy of formation: -399.24 kJ/mol + -delta_H -151.579 kJ/mol # Calculated enthalpy of reaction Molysite +# Enthalpy of formation: -399.24 kJ/mol -analytic -3.181e+2 -1.2357e-1 1.386e+4 1.301e+2 2.1637e+2 # -Range: 0-300 Monohydrocalcite CaCO3:H2O + H+ = Ca+2 + H2O + HCO3- log_k 2.6824 - -delta_H -20.5648 kJ/mol # Calculated enthalpy of reaction Monohydrocalcite -# Enthalpy of formation: -1498.29 kJ/mol + -delta_H -20.5648 kJ/mol # Calculated enthalpy of reaction Monohydrocalcite +# Enthalpy of formation: -1498.29 kJ/mol -analytic -7.2614e+1 -1.7217e-2 3.185e+3 2.8185e+1 5.4111e+1 # -Range: 0-200 Monteponite CdO + 2 H+ = Cd+2 + H2O log_k 15.0972 - -delta_H -103.386 kJ/mol # Calculated enthalpy of reaction Monteponite -# Enthalpy of formation: -258.35 kJ/mol + -delta_H -103.386 kJ/mol # Calculated enthalpy of reaction Monteponite +# Enthalpy of formation: -258.35 kJ/mol -analytic -5.0057e+1 -6.3629e-3 7.0898e+3 1.7486e+1 1.2041e+2 # -Range: 0-200 Monticellite CaMgSiO4 + 4 H+ = Ca+2 + Mg+2 + SiO2 + 2 H2O log_k 29.5852 - -delta_H -195.711 kJ/mol # Calculated enthalpy of reaction Monticellite -# Enthalpy of formation: -540.8 kcal/mol + -delta_H -195.711 kJ/mol # Calculated enthalpy of reaction Monticellite +# Enthalpy of formation: -540.8 kcal/mol -analytic 1.573e+1 -3.5567e-3 9.0789e+3 -6.3007e+0 1.4166e+2 # -Range: 0-300 Montmor-Ca Ca.165Mg.33Al1.67Si4O10(OH)2 + 6 H+ = 0.165 Ca+2 + 0.33 Mg+2 + 1.67 Al+3 + 4 H2O + 4 SiO2 log_k 2.4952 - -delta_H -100.154 kJ/mol # Calculated enthalpy of reaction Montmor-Ca -# Enthalpy of formation: -1361.5 kcal/mol + -delta_H -100.154 kJ/mol # Calculated enthalpy of reaction Montmor-Ca +# Enthalpy of formation: -1361.5 kcal/mol -analytic 6.0725e+0 1.0644e-2 1.6024e+4 -1.6334e+1 -1.7982e+6 # -Range: 0-300 Montmor-Cs Cs.33Mg.33Al1.67Si4O10(OH)2 + 6 H+ = 0.33 Cs+ + 0.33 Mg+2 + 1.67 Al+3 + 4 H2O + 4 SiO2 log_k 1.9913 - -delta_H -87.2259 kJ/mol # Calculated enthalpy of reaction Montmor-Cs -# Enthalpy of formation: -1363.52 kcal/mol + -delta_H -87.2259 kJ/mol # Calculated enthalpy of reaction Montmor-Cs +# Enthalpy of formation: -1363.52 kcal/mol -analytic 9.9136e+0 1.2496e-2 1.565e+4 -1.7601e+1 -1.8434e+6 # -Range: 0-300 Montmor-K K.33Mg.33Al1.67Si4O10(OH)2 + 6 H+ = 0.33 K+ + 0.33 Mg+2 + 1.67 Al+3 + 4 H2O + 4 SiO2 log_k 2.1423 - -delta_H -88.184 kJ/mol # Calculated enthalpy of reaction Montmor-K -# Enthalpy of formation: -1362.83 kcal/mol + -delta_H -88.184 kJ/mol # Calculated enthalpy of reaction Montmor-K +# Enthalpy of formation: -1362.83 kcal/mol -analytic 8.4757e+0 1.1219e-2 1.5654e+4 -1.6833e+1 -1.8386e+6 # -Range: 0-300 Montmor-Mg Mg.495Al1.67Si4O10(OH)2 + 6 H+ = 0.495 Mg+2 + 1.67 Al+3 + 4 H2O + 4 SiO2 log_k 2.3879 - -delta_H -102.608 kJ/mol # Calculated enthalpy of reaction Montmor-Mg -# Enthalpy of formation: -1357.87 kcal/mol + -delta_H -102.608 kJ/mol # Calculated enthalpy of reaction Montmor-Mg +# Enthalpy of formation: -1357.87 kcal/mol -analytic -6.8505e+0 9.071e-3 1.6817e+4 -1.1887e+1 -1.8323e+6 # -Range: 0-300 Montmor-Na Na.33Mg.33Al1.67Si4O10(OH)2 + 6 H+ = 0.33 Mg+2 + 0.33 Na+ + 1.67 Al+3 + 4 H2O + 4 SiO2 log_k 2.4844 - -delta_H -93.2165 kJ/mol # Calculated enthalpy of reaction Montmor-Na -# Enthalpy of formation: -1360.69 kcal/mol + -delta_H -93.2165 kJ/mol # Calculated enthalpy of reaction Montmor-Na +# Enthalpy of formation: -1360.69 kcal/mol -analytic 1.9601e+0 1.1342e-2 1.6051e+4 -1.4718e+1 -1.816e+6 # -Range: 0-300 Montroydite HgO + 2 H+ = H2O + Hg+2 log_k 2.4486 - -delta_H -24.885 kJ/mol # Calculated enthalpy of reaction Montroydite -# Enthalpy of formation: -90.79 kJ/mol + -delta_H -24.885 kJ/mol # Calculated enthalpy of reaction Montroydite +# Enthalpy of formation: -90.79 kJ/mol -analytic -8.7302e+1 -1.7618e-2 4.0086e+3 3.2957e+1 6.2576e+1 # -Range: 0-300 Mordenite Ca.2895Na.361Al.94Si5.06O12:3.468H2O + 3.76 H+ = 0.2895 Ca+2 + 0.361 Na+ + 0.94 Al+3 + 5.06 SiO2 + 5.348 H2O log_k -5.1969 - -delta_H 16.7517 kJ/mol # Calculated enthalpy of reaction Mordenite -# Enthalpy of formation: -6736.64 kJ/mol + -delta_H 16.7517 kJ/mol # Calculated enthalpy of reaction Mordenite +# Enthalpy of formation: -6736.64 kJ/mol -analytic -5.4675e+1 3.2513e-2 2.3412e+4 -1.0419e+0 -3.2292e+6 # -Range: 0-300 Mordenite-dehy Ca.2895Na.361Al.94Si5.06O12 + 3.76 H+ = 0.2895 Ca+2 + 0.361 Na+ + 0.94 Al+3 + 1.88 H2O + 5.06 SiO2 log_k 9.9318 - -delta_H -86.159 kJ/mol # Calculated enthalpy of reaction Mordenite-dehy -# Enthalpy of formation: -5642.44 kJ/mol + -delta_H -86.159 kJ/mol # Calculated enthalpy of reaction Mordenite-dehy +# Enthalpy of formation: -5642.44 kJ/mol -analytic -5.0841e+1 2.5405e-2 2.7621e+4 -1.6331e+0 -3.1618e+6 # -Range: 0-300 Morenosite NiSO4:7H2O = Ni+2 + SO4-2 + 7 H2O log_k -2.014 - -delta_H 12.0185 kJ/mol # Calculated enthalpy of reaction Morenosite -# Enthalpy of formation: -2976.46 kJ/mol + -delta_H 12.0185 kJ/mol # Calculated enthalpy of reaction Morenosite +# Enthalpy of formation: -2976.46 kJ/mol -analytic -2.6654e+2 -7.2132e-2 6.7983e+3 1.0636e+2 1.0616e+2 # -Range: 0-300 Muscovite KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 SiO2 + 6 H2O log_k 13.5858 - -delta_H -243.224 kJ/mol # Calculated enthalpy of reaction Muscovite -# Enthalpy of formation: -1427.41 kcal/mol + -delta_H -243.224 kJ/mol # Calculated enthalpy of reaction Muscovite +# Enthalpy of formation: -1427.41 kcal/mol -analytic 3.3085e+1 -1.2425e-2 1.2477e+4 -2.0865e+1 -5.4692e+5 # -Range: 0-300 NH4HSe NH4HSe = NH3 + Se-2 + 2 H+ log_k -22.0531 - -delta_H 0 # Not possible to calculate enthalpy of reaction NH4HSe -# Enthalpy of formation: -133.041 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NH4HSe +# Enthalpy of formation: -133.041 kJ/mol -analytic -8.8685e+0 6.7342e-3 -5.3028e+3 1.0468e+0 -9.0046e+1 # -Range: 0-200 Na Na + H+ + 0.25 O2 = 0.5 H2O + Na+ log_k 67.3804 - -delta_H -380.185 kJ/mol # Calculated enthalpy of reaction Na -# Enthalpy of formation: 0 kJ/mol + -delta_H -380.185 kJ/mol # Calculated enthalpy of reaction Na +# Enthalpy of formation: 0 kJ/mol -analytic -4.0458e+1 -8.7899e-3 2.1223e+4 1.5927e+1 -1.2715e+4 # -Range: 0-300 Na2CO3 Na2CO3 + H+ = HCO3- + 2 Na+ log_k 11.1822 - -delta_H -39.8526 kJ/mol # Calculated enthalpy of reaction Na2CO3 -# Enthalpy of formation: -1130.68 kJ/mol + -delta_H -39.8526 kJ/mol # Calculated enthalpy of reaction Na2CO3 +# Enthalpy of formation: -1130.68 kJ/mol -analytic -1.5495e+2 -4.3374e-2 6.4821e+3 6.3571e+1 1.0119e+2 # -Range: 0-300 Na2CO3:7H2O Na2CO3:7H2O + H+ = HCO3- + 2 Na+ + 7 H2O log_k 9.9459 - -delta_H 27.7881 kJ/mol # Calculated enthalpy of reaction Na2CO3:7H2O -# Enthalpy of formation: -3199.19 kJ/mol + -delta_H 27.7881 kJ/mol # Calculated enthalpy of reaction Na2CO3:7H2O +# Enthalpy of formation: -3199.19 kJ/mol -analytic -2.0593e+2 -3.4509e-3 8.1601e+3 7.6594e+1 1.3864e+2 # -Range: 0-200 Na2Cr2O7 Na2Cr2O7 + H2O = 2 CrO4-2 + 2 H+ + 2 Na+ log_k -10.1597 - -delta_H 21.9702 kJ/mol # Calculated enthalpy of reaction Na2Cr2O7 -# Enthalpy of formation: -473 kcal/mol + -delta_H 21.9702 kJ/mol # Calculated enthalpy of reaction Na2Cr2O7 +# Enthalpy of formation: -473 kcal/mol -analytic 4.4885e+1 -2.4919e-2 -5.0321e+3 -1.243e+1 -8.5468e+1 # -Range: 0-200 Na2CrO4 Na2CrO4 = CrO4-2 + 2 Na+ log_k 2.9103 - -delta_H -19.5225 kJ/mol # Calculated enthalpy of reaction Na2CrO4 -# Enthalpy of formation: -320.8 kcal/mol + -delta_H -19.5225 kJ/mol # Calculated enthalpy of reaction Na2CrO4 +# Enthalpy of formation: -320.8 kcal/mol -analytic 5.4985e+0 -9.9008e-3 1.051e+2 0e+0 0e+0 # -Range: 0-200 Na2O Na2O + 2 H+ = H2O + 2 Na+ log_k 67.4269 - -delta_H -351.636 kJ/mol # Calculated enthalpy of reaction Na2O -# Enthalpy of formation: -99.14 kcal/mol + -delta_H -351.636 kJ/mol # Calculated enthalpy of reaction Na2O +# Enthalpy of formation: -99.14 kcal/mol -analytic -6.3585e+1 -8.4695e-3 2.0923e+4 2.5601e+1 3.2651e+2 # -Range: 0-300 Na2Se Na2Se = Se-2 + 2 Na+ log_k 11.8352 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na2Se -# Enthalpy of formation: -81.9 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Na2Se +# Enthalpy of formation: -81.9 kcal/mol -analytic -6.007e+0 8.2821e-3 4.5816e+3 0e+0 0e+0 # -Range: 0-200 Na2Se2 Na2Se2 + H2O = 0.5 O2 + 2 H+ + 2 Na+ + 2 Se-2 log_k -61.3466 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na2Se2 -# Enthalpy of formation: -92.8 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Na2Se2 +# Enthalpy of formation: -92.8 kcal/mol -analytic -2.7836e+1 7.7035e-3 -1.504e+4 5.9131e+0 -2.5539e+2 # -Range: 0-200 Na2SiO3 Na2SiO3 + 2 H+ = H2O + SiO2 + 2 Na+ log_k 22.2418 - -delta_H -82.7093 kJ/mol # Calculated enthalpy of reaction Na2SiO3 -# Enthalpy of formation: -373.19 kcal/mol + -delta_H -82.7093 kJ/mol # Calculated enthalpy of reaction Na2SiO3 +# Enthalpy of formation: -373.19 kcal/mol -analytic -3.4928e+1 5.6905e-3 1.0284e+4 1.1197e+1 -6.0134e+5 # -Range: 0-300 Na2U2O7 Na2U2O7 + 6 H+ = 2 Na+ + 2 UO2+2 + 3 H2O log_k 22.5917 - -delta_H -172.314 kJ/mol # Calculated enthalpy of reaction Na2U2O7 -# Enthalpy of formation: -3203.8 kJ/mol + -delta_H -172.314 kJ/mol # Calculated enthalpy of reaction Na2U2O7 +# Enthalpy of formation: -3203.8 kJ/mol -analytic -8.664e+1 -1.0903e-2 1.1841e+4 2.9406e+1 1.8479e+2 # -Range: 0-300 Na2UO4(alpha) Na2UO4 + 4 H+ = UO2+2 + 2 H2O + 2 Na+ log_k 30.0231 - -delta_H -173.576 kJ/mol # Calculated enthalpy of reaction Na2UO4(alpha) -# Enthalpy of formation: -1897.7 kJ/mol + -delta_H -173.576 kJ/mol # Calculated enthalpy of reaction Na2UO4(alpha) +# Enthalpy of formation: -1897.7 kJ/mol -analytic -7.9767e+1 -1.0253e-2 1.1963e+4 2.9386e+1 1.8669e+2 # -Range: 0-300 Na3H(SO4)2 Na3H(SO4)2 = H+ + 2 SO4-2 + 3 Na+ log_k -0.8906 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na3H(SO4)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Na3H(SO4)2 +# Enthalpy of formation: 0 kcal/mol Na3UO4 Na3UO4 + 4 H+ = UO2+ + 2 H2O + 3 Na+ log_k 56.2574 - -delta_H -293.703 kJ/mol # Calculated enthalpy of reaction Na3UO4 -# Enthalpy of formation: -2024 kJ/mol + -delta_H -293.703 kJ/mol # Calculated enthalpy of reaction Na3UO4 +# Enthalpy of formation: -2024 kJ/mol -analytic -9.6724e+1 -6.2485e-3 1.9469e+4 3.618e+1 3.0382e+2 # -Range: 0-300 Na4Ca(SO4)3:2H2O Na4Ca(SO4)3:2H2O = Ca+2 + 2 H2O + 3 SO4-2 + 4 Na+ log_k -5.8938 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na4Ca(SO4)3:2H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Na4Ca(SO4)3:2H2O +# Enthalpy of formation: 0 kcal/mol Na4SiO4 Na4SiO4 + 4 H+ = SiO2 + 2 H2O + 4 Na+ log_k 70.6449 - -delta_H -327.779 kJ/mol # Calculated enthalpy of reaction Na4SiO4 -# Enthalpy of formation: -497.8 kcal/mol + -delta_H -327.779 kJ/mol # Calculated enthalpy of reaction Na4SiO4 +# Enthalpy of formation: -497.8 kcal/mol -analytic -1.1969e+2 -6.5032e-3 2.6469e+4 4.4626e+1 -6.2007e+5 # -Range: 0-300 Na4UO2(CO3)3 Na4UO2(CO3)3 + 3 H+ = UO2+2 + 3 HCO3- + 4 Na+ log_k 4.0395 - -delta_H 0 # Not possible to calculate enthalpy of reaction Na4UO2(CO3)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Na4UO2(CO3)3 +# Enthalpy of formation: 0 kcal/mol Na6Si2O7 Na6Si2O7 + 6 H+ = 2 SiO2 + 3 H2O + 6 Na+ log_k 101.6199 - -delta_H -471.951 kJ/mol # Calculated enthalpy of reaction Na6Si2O7 -# Enthalpy of formation: -856.3 kcal/mol + -delta_H -471.951 kJ/mol # Calculated enthalpy of reaction Na6Si2O7 +# Enthalpy of formation: -856.3 kcal/mol -analytic -1.059e+2 4.5576e-3 3.683e+4 3.803e+1 -1.0276e+6 # -Range: 0-300 NaBr NaBr = Br- + Na+ log_k 2.9739 - -delta_H -0.741032 kJ/mol # Calculated enthalpy of reaction NaBr -# Enthalpy of formation: -361.062 kJ/mol + -delta_H -0.741032 kJ/mol # Calculated enthalpy of reaction NaBr +# Enthalpy of formation: -361.062 kJ/mol -analytic -9.3227e+1 -3.278e-2 2.291e+3 3.9713e+1 3.5777e+1 # -Range: 0-300 NaBr:2H2O NaBr:2H2O = Br- + Na+ + 2 H2O log_k 2.104 - -delta_H 18.4883 kJ/mol # Calculated enthalpy of reaction NaBr:2H2O -# Enthalpy of formation: -951.968 kJ/mol + -delta_H 18.4883 kJ/mol # Calculated enthalpy of reaction NaBr:2H2O +# Enthalpy of formation: -951.968 kJ/mol -analytic -4.1855e+1 -4.617e-3 8.3883e+2 1.7182e+1 1.4259e+1 # -Range: 0-200 NaFeO2 NaFeO2 + 4 H+ = Fe+3 + Na+ + 2 H2O log_k 19.8899 - -delta_H -163.339 kJ/mol # Calculated enthalpy of reaction NaFeO2 -# Enthalpy of formation: -698.218 kJ/mol + -delta_H -163.339 kJ/mol # Calculated enthalpy of reaction NaFeO2 +# Enthalpy of formation: -698.218 kJ/mol -analytic -7.0047e+1 -9.6226e-3 1.0647e+4 2.3071e+1 1.8082e+2 # -Range: 0-200 NaNpO2CO3:3.5H2O NaNpO2CO3:3.5H2O + H+ = HCO3- + Na+ + NpO2+ + 3.5 H2O log_k -1.2342 - -delta_H 27.0979 kJ/mol # Calculated enthalpy of reaction NaNpO2CO3:3.5H2O -# Enthalpy of formation: -2935.76 kJ/mol + -delta_H 27.0979 kJ/mol # Calculated enthalpy of reaction NaNpO2CO3:3.5H2O +# Enthalpy of formation: -2935.76 kJ/mol -analytic -1.4813e+2 -2.7355e-2 3.6537e+3 5.7701e+1 5.7055e+1 # -Range: 0-300 NaTcO4 NaTcO4 = Na+ + TcO4- log_k 1.5208 - -delta_H 0 # Not possible to calculate enthalpy of reaction NaTcO4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NaTcO4 +# Enthalpy of formation: 0 kcal/mol NaUO3 NaUO3 + 2 H+ = H2O + Na+ + UO2+ log_k 8.3371 - -delta_H -56.365 kJ/mol # Calculated enthalpy of reaction NaUO3 -# Enthalpy of formation: -1494.9 kJ/mol + -delta_H -56.365 kJ/mol # Calculated enthalpy of reaction NaUO3 +# Enthalpy of formation: -1494.9 kJ/mol -analytic -3.6363e+1 7.0505e-4 4.5359e+3 1.1828e+1 7.079e+1 # -Range: 0-300 Nahcolite NaHCO3 = HCO3- + Na+ log_k -0.1118 - -delta_H 17.0247 kJ/mol # Calculated enthalpy of reaction Nahcolite -# Enthalpy of formation: -226.4 kcal/mol + -delta_H 17.0247 kJ/mol # Calculated enthalpy of reaction Nahcolite +# Enthalpy of formation: -226.4 kcal/mol -analytic -2.2282e+2 -5.9693e-2 5.4887e+3 8.9744e+1 8.5712e+1 # -Range: 0-300 Nantokite CuCl = Cl- + Cu+ log_k -6.7623 - -delta_H 41.9296 kJ/mol # Calculated enthalpy of reaction Nantokite -# Enthalpy of formation: -137.329 kJ/mol + -delta_H 41.9296 kJ/mol # Calculated enthalpy of reaction Nantokite +# Enthalpy of formation: -137.329 kJ/mol -analytic -2.2442e+1 -1.1201e-2 -1.8709e+3 1.0221e+1 -3.1763e+1 # -Range: 0-200 Natrolite Na2Al2Si3O10:2H2O + 8 H+ = 2 Al+3 + 2 Na+ + 3 SiO2 + 6 H2O log_k 18.5204 - -delta_H -186.971 kJ/mol # Calculated enthalpy of reaction Natrolite -# Enthalpy of formation: -5718.56 kJ/mol + -delta_H -186.971 kJ/mol # Calculated enthalpy of reaction Natrolite +# Enthalpy of formation: -5718.56 kJ/mol -analytic -2.7712e+1 -2.7963e-3 1.6075e+4 1.5332e+0 -9.5765e+5 # -Range: 0-300 Natron Na2CO3:10H2O + H+ = HCO3- + 2 Na+ + 10 H2O log_k 9.6102 - -delta_H 50.4781 kJ/mol # Calculated enthalpy of reaction Natron -# Enthalpy of formation: -4079.39 kJ/mol + -delta_H 50.4781 kJ/mol # Calculated enthalpy of reaction Natron +# Enthalpy of formation: -4079.39 kJ/mol -analytic -1.9981e+2 -2.9247e-2 5.2937e+3 8.0973e+1 8.2662e+1 # -Range: 0-300 Natrosilite Na2Si2O5 + 2 H+ = H2O + 2 Na+ + 2 SiO2 log_k 18.1337 - -delta_H -51.7686 kJ/mol # Calculated enthalpy of reaction Natrosilite -# Enthalpy of formation: -590.36 kcal/mol + -delta_H -51.7686 kJ/mol # Calculated enthalpy of reaction Natrosilite +# Enthalpy of formation: -590.36 kcal/mol -analytic -2.7628e+1 1.6865e-2 1.3302e+4 4.2356e+0 -1.2828e+6 # -Range: 0-300 Naumannite Ag2Se = Se-2 + 2 Ag+ log_k -57.4427 - -delta_H 0 # Not possible to calculate enthalpy of reaction Naumannite -# Enthalpy of formation: -37.441 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Naumannite +# Enthalpy of formation: -37.441 kJ/mol -analytic -5.3844e+1 -1.0965e-2 -1.4739e+4 1.9842e+1 -2.2998e+2 # -Range: 0-300 Nd Nd + 3 H+ + 0.75 O2 = Nd+3 + 1.5 H2O log_k 182.2233 - -delta_H -1116.29 kJ/mol # Calculated enthalpy of reaction Nd -# Enthalpy of formation: 0 kJ/mol + -delta_H -1116.29 kJ/mol # Calculated enthalpy of reaction Nd +# Enthalpy of formation: 0 kJ/mol -analytic -2.739e+2 -5.6545e-2 7.1502e+4 9.7969e+1 -8.2482e+5 # -Range: 0-300 Nd(OH)3 Nd(OH)3 + 3 H+ = Nd+3 + 3 H2O log_k 18.0852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3 +# Enthalpy of formation: 0 kcal/mol Nd(OH)3(am) Nd(OH)3 + 3 H+ = Nd+3 + 3 H2O log_k 20.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3(am) +# Enthalpy of formation: 0 kcal/mol Nd(OH)3(c) Nd(OH)3 + 3 H+ = Nd+3 + 3 H2O log_k 15.7852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3(c) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd(OH)3(c) +# Enthalpy of formation: 0 kcal/mol Nd2(CO3)3 Nd2(CO3)3 + 3 H+ = 2 Nd+3 + 3 HCO3- log_k -3.6636 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2(CO3)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2(CO3)3 +# Enthalpy of formation: 0 kcal/mol Nd2O3 Nd2O3 + 6 H+ = 2 Nd+3 + 3 H2O log_k 58.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Nd2O3 +# Enthalpy of formation: 0 kcal/mol NdF3:.5H2O NdF3:.5H2O = 0.5 H2O + Nd+3 + 3 F- log_k -18.6 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdF3:.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NdF3:.5H2O +# Enthalpy of formation: 0 kcal/mol NdOHCO3 NdOHCO3 + 2 H+ = H2O + HCO3- + Nd+3 log_k 2.8239 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdOHCO3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NdOHCO3 +# Enthalpy of formation: 0 kcal/mol NdPO4:10H2O NdPO4:10H2O + H+ = HPO4-2 + Nd+3 + 10 H2O log_k -12.1782 - -delta_H 0 # Not possible to calculate enthalpy of reaction NdPO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NdPO4:10H2O +# Enthalpy of formation: 0 kcal/mol Nepheline NaAlSiO4 + 4 H+ = Al+3 + Na+ + SiO2 + 2 H2O log_k 13.8006 - -delta_H -135.068 kJ/mol # Calculated enthalpy of reaction Nepheline -# Enthalpy of formation: -500.241 kcal/mol + -delta_H -135.068 kJ/mol # Calculated enthalpy of reaction Nepheline +# Enthalpy of formation: -500.241 kcal/mol -analytic -2.4856e+1 -8.8171e-3 8.5653e+3 6.0904e+0 -2.2786e+5 # -Range: 0-300 Nesquehonite MgCO3:3H2O + H+ = HCO3- + Mg+2 + 3 H2O log_k 4.9955 - -delta_H -36.1498 kJ/mol # Calculated enthalpy of reaction Nesquehonite -# Enthalpy of formation: -472.576 kcal/mol + -delta_H -36.1498 kJ/mol # Calculated enthalpy of reaction Nesquehonite +# Enthalpy of formation: -472.576 kcal/mol -analytic 1.3771e+2 -6.0397e-2 -3.5049e+4 -1.8831e+1 4.4213e+6 # -Range: 0-300 Ni Ni + 2 H+ + 0.5 O2 = H2O + Ni+2 log_k 50.9914 - -delta_H -333.745 kJ/mol # Calculated enthalpy of reaction Ni -# Enthalpy of formation: 0 kcal/mol + -delta_H -333.745 kJ/mol # Calculated enthalpy of reaction Ni +# Enthalpy of formation: 0 kcal/mol -analytic -5.8308e+1 -2.0133e-2 1.8444e+4 2.159e+1 2.8781e+2 # -Range: 0-300 Ni(OH)2 Ni(OH)2 + 2 H+ = Ni+2 + 2 H2O log_k 12.7485 - -delta_H -95.6523 kJ/mol # Calculated enthalpy of reaction Ni(OH)2 -# Enthalpy of formation: -529.998 kJ/mol + -delta_H -95.6523 kJ/mol # Calculated enthalpy of reaction Ni(OH)2 +# Enthalpy of formation: -529.998 kJ/mol -analytic -6.5279e+1 -5.9499e-3 7.3471e+3 2.229e+1 1.2479e+2 # -Range: 0-200 Ni2P2O7 Ni2P2O7 + H2O = 2 HPO4-2 + 2 Ni+2 log_k -8.8991 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni2P2O7 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni2P2O7 +# Enthalpy of formation: 0 kcal/mol Ni2SiO4 Ni2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Ni+2 log_k 14.3416 - -delta_H -127.629 kJ/mol # Calculated enthalpy of reaction Ni2SiO4 -# Enthalpy of formation: -341.705 kcal/mol + -delta_H -127.629 kJ/mol # Calculated enthalpy of reaction Ni2SiO4 +# Enthalpy of formation: -341.705 kcal/mol -analytic -4.0414e+1 -1.1194e-2 9.6515e+3 1.2026e+1 -3.6336e+5 # -Range: 0-300 Ni3(PO4)2 Ni3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 Ni+2 log_k -6.6414 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ni3(PO4)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ni3(PO4)2 +# Enthalpy of formation: 0 kcal/mol NiCO3 NiCO3 + H+ = HCO3- + Ni+2 log_k 3.5118 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiCO3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NiCO3 +# Enthalpy of formation: 0 kcal/mol NiCl2 NiCl2 = Ni+2 + 2 Cl- log_k 8.6113 - -delta_H -82.7969 kJ/mol # Calculated enthalpy of reaction NiCl2 -# Enthalpy of formation: -305.336 kJ/mol + -delta_H -82.7969 kJ/mol # Calculated enthalpy of reaction NiCl2 +# Enthalpy of formation: -305.336 kJ/mol -analytic -1.2416e+0 -2.3139e-2 2.6529e+3 3.1696e+0 4.5052e+1 # -Range: 0-200 NiCl2:2H2O NiCl2:2H2O = Ni+2 + 2 Cl- + 2 H2O log_k 3.9327 - -delta_H -37.6746 kJ/mol # Calculated enthalpy of reaction NiCl2:2H2O -# Enthalpy of formation: -922.135 kJ/mol + -delta_H -37.6746 kJ/mol # Calculated enthalpy of reaction NiCl2:2H2O +# Enthalpy of formation: -922.135 kJ/mol -analytic -4.8814e+1 -2.2602e-2 2.5951e+3 2.0518e+1 4.4086e+1 # -Range: 0-200 NiCl2:4H2O NiCl2:4H2O = Ni+2 + 2 Cl- + 4 H2O log_k 3.8561 - -delta_H -15.4373 kJ/mol # Calculated enthalpy of reaction NiCl2:4H2O -# Enthalpy of formation: -1516.05 kJ/mol + -delta_H -15.4373 kJ/mol # Calculated enthalpy of reaction NiCl2:4H2O +# Enthalpy of formation: -1516.05 kJ/mol -analytic -1.0545e+2 -2.4691e-2 3.9978e+3 4.1727e+1 6.7926e+1 # -Range: 0-200 NiF2 NiF2 = Ni+2 + 2 F- log_k 0.8772 - -delta_H -73.1438 kJ/mol # Calculated enthalpy of reaction NiF2 -# Enthalpy of formation: -651.525 kJ/mol + -delta_H -73.1438 kJ/mol # Calculated enthalpy of reaction NiF2 +# Enthalpy of formation: -651.525 kJ/mol -analytic -2.5291e+2 -8.4179e-2 9.3429e+3 1.0002e+2 1.4586e+2 # -Range: 0-300 NiF2:4H2O NiF2:4H2O = Ni+2 + 2 F- + 4 H2O log_k -4.0588 - -delta_H 0 # Not possible to calculate enthalpy of reaction NiF2:4H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction NiF2:4H2O +# Enthalpy of formation: 0 kcal/mol NiSO4 NiSO4 = Ni+2 + SO4-2 log_k 5.3197 - -delta_H -90.5092 kJ/mol # Calculated enthalpy of reaction NiSO4 -# Enthalpy of formation: -873.066 kJ/mol + -delta_H -90.5092 kJ/mol # Calculated enthalpy of reaction NiSO4 +# Enthalpy of formation: -873.066 kJ/mol -analytic -1.8878e+2 -7.6403e-2 7.9412e+3 7.6866e+1 1.2397e+2 # -Range: 0-300 NiSO4:6H2O(alpha) NiSO4:6H2O = Ni+2 + SO4-2 + 6 H2O log_k -2.0072 - -delta_H 4.37983 kJ/mol # Calculated enthalpy of reaction NiSO4:6H2O(alpha) -# Enthalpy of formation: -2682.99 kJ/mol + -delta_H 4.37983 kJ/mol # Calculated enthalpy of reaction NiSO4:6H2O(alpha) +# Enthalpy of formation: -2682.99 kJ/mol -analytic -1.1937e+2 -1.3785e-2 4.1543e+3 4.3454e+1 7.0587e+1 # -Range: 0-200 Nickelbischofite NiCl2:6H2O = Ni+2 + 2 Cl- + 6 H2O log_k 3.1681 - -delta_H 0.064088 kJ/mol # Calculated enthalpy of reaction Nickelbischofite -# Enthalpy of formation: -2103.23 kJ/mol + -delta_H 0.064088 kJ/mol # Calculated enthalpy of reaction Nickelbischofite +# Enthalpy of formation: -2103.23 kJ/mol -analytic -1.434e+2 -2.1257e-2 5.1858e+3 5.4759e+1 8.8112e+1 # -Range: 0-200 Ningyoite CaUP2O8:2H2O + 2 H+ = Ca+2 + U+4 + 2 H2O + 2 HPO4-2 log_k -29.7931 - -delta_H -36.4769 kJ/mol # Calculated enthalpy of reaction Ningyoite -# Enthalpy of formation: -1016.65 kcal/mol + -delta_H -36.4769 kJ/mol # Calculated enthalpy of reaction Ningyoite +# Enthalpy of formation: -1016.65 kcal/mol -analytic -1.0274e+2 -4.9041e-2 1.7779e+3 3.2973e+1 3.0227e+1 # -Range: 0-200 Niter KNO3 = K+ + NO3- log_k -0.2061 - -delta_H 35.4794 kJ/mol # Calculated enthalpy of reaction Niter -# Enthalpy of formation: -494.46 kJ/mol + -delta_H 35.4794 kJ/mol # Calculated enthalpy of reaction Niter +# Enthalpy of formation: -494.46 kJ/mol -analytic -6.5607e+1 -2.8165e-2 -4.0131e+2 3.0361e+1 -6.2425e+0 # -Range: 0-300 Nitrobarite Ba(NO3)2 = Ba+2 + 2 NO3- log_k -2.4523 - -delta_H 40.8161 kJ/mol # Calculated enthalpy of reaction Nitrobarite -# Enthalpy of formation: -992.082 kJ/mol + -delta_H 40.8161 kJ/mol # Calculated enthalpy of reaction Nitrobarite +# Enthalpy of formation: -992.082 kJ/mol -analytic -1.6179e+2 -6.5831e-2 1.2142e+3 7.0664e+1 1.8995e+1 # -Range: 0-300 Nontronite-Ca Ca.165Fe2Al.33Si3.67H2O12 + 7.32 H+ = 0.165 Ca+2 + 0.33 Al+3 + 2 Fe+3 + 3.67 SiO2 + 4.66 H2O log_k -11.5822 - -delta_H -38.138 kJ/mol # Calculated enthalpy of reaction Nontronite-Ca -# Enthalpy of formation: -1166.7 kcal/mol + -delta_H -38.138 kJ/mol # Calculated enthalpy of reaction Nontronite-Ca +# Enthalpy of formation: -1166.7 kcal/mol -analytic 1.6291e+1 4.3557e-3 1.0221e+4 -1.869e+1 -1.5427e+6 # -Range: 0-300 Nontronite-Cs Cs.33Si4Fe1.67Mg.33H2O12 + 6 H+ = 0.33 Cs+ + 0.33 Mg+2 + 1.67 Fe+3 + 4 H2O + 4 SiO2 log_k 5.7975 - -delta_H -86.6996 kJ/mol # Calculated enthalpy of reaction Nontronite-Cs -# Enthalpy of formation: -1168.54 kcal/mol + -delta_H -86.6996 kJ/mol # Calculated enthalpy of reaction Nontronite-Cs +# Enthalpy of formation: -1168.54 kcal/mol -analytic -1.1646e+1 1.0033e-2 1.7668e+4 -9.0129e+0 -2.0143e+6 # -Range: 0-300 Nontronite-H H.33Fe2Al.33Si3.67H2O12 + 6.99 H+ = 0.33 Al+3 + 2 Fe+3 + 3.67 SiO2 + 4.66 H2O log_k -12.5401 - -delta_H -30.452 kJ/mol # Calculated enthalpy of reaction Nontronite-H -# Enthalpy of formation: -1147.12 kcal/mol + -delta_H -30.452 kJ/mol # Calculated enthalpy of reaction Nontronite-H +# Enthalpy of formation: -1147.12 kcal/mol -analytic 9.7794e+1 1.4055e-2 4.744e+3 -4.7272e+1 -1.2103e+6 # -Range: 0-300 Nontronite-K K.33Fe2Al.33Si3.67H2O12 + 7.32 H+ = 0.33 Al+3 + 0.33 K+ + 2 Fe+3 + 3.67 SiO2 + 4.66 H2O log_k -11.8648 - -delta_H -26.5822 kJ/mol # Calculated enthalpy of reaction Nontronite-K -# Enthalpy of formation: -1167.93 kcal/mol + -delta_H -26.5822 kJ/mol # Calculated enthalpy of reaction Nontronite-K +# Enthalpy of formation: -1167.93 kcal/mol -analytic 1.363e+1 4.7708e-3 1.0073e+4 -1.7407e+1 -1.5803e+6 # -Range: 0-300 Nontronite-Mg Mg.165Fe2Al.33Si3.67H2O12 + 7.32 H+ = 0.165 Mg+2 + 0.33 Al+3 + 2 Fe+3 + 3.67 SiO2 + 4.66 H2O log_k -11.62 - -delta_H -41.1779 kJ/mol # Calculated enthalpy of reaction Nontronite-Mg -# Enthalpy of formation: -1162.93 kcal/mol + -delta_H -41.1779 kJ/mol # Calculated enthalpy of reaction Nontronite-Mg +# Enthalpy of formation: -1162.93 kcal/mol -analytic 5.5961e+1 1.0139e-2 8.0777e+3 -3.3164e+1 -1.4031e+6 # -Range: 0-300 Nontronite-Na Na.33Fe2Al.33Si3.67H2O12 + 7.32 H+ = 0.33 Al+3 + 0.33 Na+ + 2 Fe+3 + 3.67 SiO2 + 4.66 H2O log_k -11.5263 - -delta_H -31.5687 kJ/mol # Calculated enthalpy of reaction Nontronite-Na -# Enthalpy of formation: -1165.8 kcal/mol + -delta_H -31.5687 kJ/mol # Calculated enthalpy of reaction Nontronite-Na +# Enthalpy of formation: -1165.8 kcal/mol -analytic 6.7915e+1 1.2851e-2 7.1218e+3 -3.7112e+1 -1.3758e+6 # -Range: 0-300 Np Np + 4 H+ + O2 = Np+4 + 2 H2O log_k 174.1077 - -delta_H -1115.54 kJ/mol # Calculated enthalpy of reaction Np -# Enthalpy of formation: 0 kJ/mol + -delta_H -1115.54 kJ/mol # Calculated enthalpy of reaction Np +# Enthalpy of formation: 0 kJ/mol -analytic -3.2136e+1 -1.434e-2 5.7853e+4 6.6512e+0 9.0275e+2 # -Range: 0-300 Np(HPO4)2 Np(HPO4)2 = Np+4 + 2 HPO4-2 log_k -30.9786 - -delta_H -18.6219 kJ/mol # Calculated enthalpy of reaction Np(HPO4)2 -# Enthalpy of formation: -3121.54 kJ/mol + -delta_H -18.6219 kJ/mol # Calculated enthalpy of reaction Np(HPO4)2 +# Enthalpy of formation: -3121.54 kJ/mol -analytic -3.6627e+2 -1.3955e-1 7.137e+3 1.4261e+2 1.1147e+2 # -Range: 0-300 Np(OH)4 Np(OH)4 + 4 H+ = Np+4 + 4 H2O log_k 0.8103 - -delta_H -78.4963 kJ/mol # Calculated enthalpy of reaction Np(OH)4 -# Enthalpy of formation: -1620.86 kJ/mol + -delta_H -78.4963 kJ/mol # Calculated enthalpy of reaction Np(OH)4 +# Enthalpy of formation: -1620.86 kJ/mol -analytic -9.5122e+1 -1.0532e-2 7.1132e+3 3.0398e+1 1.1102e+2 # -Range: 0-300 Np2O5 Np2O5 + 2 H+ = H2O + 2 NpO2+ log_k 9.5 - -delta_H -94.4576 kJ/mol # Calculated enthalpy of reaction Np2O5 -# Enthalpy of formation: -513.232 kcal/mol + -delta_H -94.4576 kJ/mol # Calculated enthalpy of reaction Np2O5 +# Enthalpy of formation: -513.232 kcal/mol -analytic 5.9974e+3 1.4553e+0 -1.7396e+5 -2.3595e+3 -2.9689e+3 # -Range: 25-150 NpO2 NpO2 + 4 H+ = Np+4 + 2 H2O log_k -7.8026 - -delta_H -53.6087 kJ/mol # Calculated enthalpy of reaction NpO2 -# Enthalpy of formation: -1074.07 kJ/mol + -delta_H -53.6087 kJ/mol # Calculated enthalpy of reaction NpO2 +# Enthalpy of formation: -1074.07 kJ/mol -analytic -7.0053e+1 -1.1017e-2 4.4742e+3 2.0421e+1 6.9836e+1 # -Range: 0-300 NpO2(OH)2 NpO2(OH)2 + 2 H+ = NpO2+2 + 2 H2O log_k 5.9851 - -delta_H -54.9977 kJ/mol # Calculated enthalpy of reaction NpO2(OH)2 -# Enthalpy of formation: -1377.16 kJ/mol + -delta_H -54.9977 kJ/mol # Calculated enthalpy of reaction NpO2(OH)2 +# Enthalpy of formation: -1377.16 kJ/mol -analytic -2.7351e+1 -1.5987e-3 3.8301e+3 8.4735e+0 5.9773e+1 # -Range: 0-300 NpO2OH(am) NpO2OH + H+ = H2O + NpO2+ log_k 4.2364 - -delta_H -39.6673 kJ/mol # Calculated enthalpy of reaction NpO2OH(am) -# Enthalpy of formation: -1224.16 kJ/mol + -delta_H -39.6673 kJ/mol # Calculated enthalpy of reaction NpO2OH(am) +# Enthalpy of formation: -1224.16 kJ/mol -analytic -3.8824e+0 6.7122e-3 2.539e+3 -9.704e-1 3.9619e+1 # -Range: 0-300 Okenite CaSi2O4(OH)2:H2O + 2 H+ = Ca+2 + 2 SiO2 + 3 H2O log_k 10.3816 - -delta_H -19.4974 kJ/mol # Calculated enthalpy of reaction Okenite -# Enthalpy of formation: -749.641 kcal/mol + -delta_H -19.4974 kJ/mol # Calculated enthalpy of reaction Okenite +# Enthalpy of formation: -749.641 kcal/mol -analytic -7.7353e+1 1.5091e-2 1.3023e+4 2.1337e+1 -1.1831e+6 # -Range: 0-300 Orpiment As2S3 + 6 H2O = 2 H2AsO3- + 3 HS- + 5 H+ log_k -79.4159 - -delta_H 406.539 kJ/mol # Calculated enthalpy of reaction Orpiment -# Enthalpy of formation: -169.423 kJ/mol + -delta_H 406.539 kJ/mol # Calculated enthalpy of reaction Orpiment +# Enthalpy of formation: -169.423 kJ/mol -analytic -3.3964e+2 -1.4977e-1 -1.5711e+4 1.4448e+2 -2.4505e+2 # -Range: 0-300 Otavite CdCO3 + H+ = Cd+2 + HCO3- log_k -1.7712 - -delta_H 0 # Not possible to calculate enthalpy of reaction Otavite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Otavite +# Enthalpy of formation: 0 kcal/mol Ottemannite Sn2S3 + 3 H+ = Sn+2 + Sn+4 + 3 HS- log_k -46.2679 - -delta_H 236.727 kJ/mol # Calculated enthalpy of reaction Ottemannite -# Enthalpy of formation: -63 kcal/mol + -delta_H 236.727 kJ/mol # Calculated enthalpy of reaction Ottemannite +# Enthalpy of formation: -63 kcal/mol -analytic -6.2863e+1 -5.9171e-2 -1.3469e+4 3.2092e+1 -2.287e+2 # -Range: 0-200 Oxychloride-Mg Mg2Cl(OH)3:4H2O + 3 H+ = Cl- + 2 Mg+2 + 7 H2O log_k 25.8319 - -delta_H 0 # Not possible to calculate enthalpy of reaction Oxychloride-Mg -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Oxychloride-Mg +# Enthalpy of formation: 0 kcal/mol P P + 1.5 H2O + 1.25 O2 = HPO4-2 + 2 H+ log_k 132.1032 - -delta_H -848.157 kJ/mol # Calculated enthalpy of reaction P -# Enthalpy of formation: 0 kJ/mol + -delta_H -848.157 kJ/mol # Calculated enthalpy of reaction P +# Enthalpy of formation: 0 kJ/mol -analytic -9.2727e+1 -6.8342e-2 4.3465e+4 4.0156e+1 6.7826e+2 # -Range: 0-300 Paragonite NaAl3Si3O10(OH)2 + 10 H+ = Na+ + 3 Al+3 + 3 SiO2 + 6 H2O log_k 17.522 - -delta_H -275.056 kJ/mol # Calculated enthalpy of reaction Paragonite -# Enthalpy of formation: -1416.96 kcal/mol + -delta_H -275.056 kJ/mol # Calculated enthalpy of reaction Paragonite +# Enthalpy of formation: -1416.96 kcal/mol -analytic 3.5507e+1 -1.072e-2 1.3519e+4 -2.2283e+1 -4.5657e+5 # -Range: 0-300 Paralaurionite PbClOH + H+ = Cl- + H2O + Pb+2 log_k 0.2035 - -delta_H 8.41948 kJ/mol # Calculated enthalpy of reaction Paralaurionite -# Enthalpy of formation: -460.417 kJ/mol + -delta_H 8.41948 kJ/mol # Calculated enthalpy of reaction Paralaurionite +# Enthalpy of formation: -460.417 kJ/mol -analytic -1.1245e+1 -1.052e-2 -5.3551e+2 6.6175e+0 -9.0896e+0 # -Range: 0-200 Pargasite NaCa2Al3Mg4Si6O22(OH)2 + 22 H+ = Na+ + 2 Ca+2 + 3 Al+3 + 4 Mg+2 + 6 SiO2 + 12 H2O log_k 101.9939 - -delta_H -880.205 kJ/mol # Calculated enthalpy of reaction Pargasite -# Enthalpy of formation: -3016.62 kcal/mol + -delta_H -880.205 kJ/mol # Calculated enthalpy of reaction Pargasite +# Enthalpy of formation: -3016.62 kcal/mol -analytic -6.7889e+1 -3.7817e-2 5.0493e+4 9.2705e+0 -1.0163e+6 # -Range: 0-300 Parsonsite Pb2UO2(PO4)2:2H2O + 2 H+ = UO2+2 + 2 H2O + 2 HPO4-2 + 2 Pb+2 log_k -27.7911 - -delta_H 0 # Not possible to calculate enthalpy of reaction Parsonsite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Parsonsite +# Enthalpy of formation: 0 kcal/mol Pb Pb + 2 H+ + 0.5 O2 = H2O + Pb+2 log_k 47.1871 - -delta_H -278.851 kJ/mol # Calculated enthalpy of reaction Pb -# Enthalpy of formation: 0 kJ/mol + -delta_H -278.851 kJ/mol # Calculated enthalpy of reaction Pb +# Enthalpy of formation: 0 kJ/mol -analytic -3.1784e+1 -1.4816e-2 1.4984e+4 1.3383e+1 2.3381e+2 # -Range: 0-300 Pb(H2PO4)2 Pb(H2PO4)2 = Pb+2 + 2 H+ + 2 HPO4-2 log_k -9.84 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(H2PO4)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(H2PO4)2 +# Enthalpy of formation: 0 kcal/mol Pb(IO3)2 Pb(IO3)2 = Pb+2 + 2 IO3- log_k -12.5173 - -delta_H 53.7783 kJ/mol # Calculated enthalpy of reaction Pb(IO3)2 -# Enthalpy of formation: -495.525 kJ/mol + -delta_H 53.7783 kJ/mol # Calculated enthalpy of reaction Pb(IO3)2 +# Enthalpy of formation: -495.525 kJ/mol -analytic -5.3573e+0 -1.4164e-2 -3.6236e+3 3.7209e+0 -6.1532e+1 # -Range: 0-200 Pb(N3)2(mono) Pb(N3)2 = Pb+2 + 2 N3- log_k -8.3583 - -delta_H 72.9495 kJ/mol # Calculated enthalpy of reaction Pb(N3)2(mono) -# Enthalpy of formation: 478.251 kJ/mol + -delta_H 72.9495 kJ/mol # Calculated enthalpy of reaction Pb(N3)2(mono) +# Enthalpy of formation: 478.251 kJ/mol -analytic 6.0051e+1 -1.1168e-2 -7.0041e+3 -1.6812e+1 -1.1896e+2 # -Range: 0-200 Pb(N3)2(orth) Pb(N3)2 = Pb+2 + 2 N3- log_k -8.7963 - -delta_H 75.0615 kJ/mol # Calculated enthalpy of reaction Pb(N3)2(orth) -# Enthalpy of formation: 476.139 kJ/mol + -delta_H 75.0615 kJ/mol # Calculated enthalpy of reaction Pb(N3)2(orth) +# Enthalpy of formation: 476.139 kJ/mol -analytic 5.9779e+1 -1.1215e-2 -7.1081e+3 -1.6732e+1 -1.2073e+2 # -Range: 0-200 Pb(Thiocyanate)2 Pb(Thiocyanate)2 = Pb+2 + 2 Thiocyanate- log_k -0.091 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(Thiocyanate)2 -# Enthalpy of formation: 151.212 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb(Thiocyanate)2 +# Enthalpy of formation: 151.212 kJ/mol -analytic 7.4247e+0 -1.6226e-2 0e+0 0e+0 -2.3938e+5 # -Range: 0-200 Pb2Cl2CO3 Pb2Cl2CO3 + H+ = HCO3- + 2 Cl- + 2 Pb+2 log_k -9.618 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2Cl2CO3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2Cl2CO3 +# Enthalpy of formation: 0 kcal/mol Pb2Cl5NH4 Pb2Cl5NH4 = H+ + NH3 + 2 Pb+2 + 5 Cl- log_k -19.61 - -delta_H 119.617 kJ/mol # Calculated enthalpy of reaction Pb2Cl5NH4 -# Enthalpy of formation: -1034.51 kJ/mol + -delta_H 119.617 kJ/mol # Calculated enthalpy of reaction Pb2Cl5NH4 +# Enthalpy of formation: -1034.51 kJ/mol -analytic 1.3149e+1 -4.8598e-2 -9.8473e+3 5.9552e+0 -1.6723e+2 # -Range: 0-200 Pb2O(N3)2 Pb2O(N3)2 + 2 H+ = H2O + 2 N3- + 2 Pb+2 log_k -13.7066 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2O(N3)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb2O(N3)2 +# Enthalpy of formation: 0 kcal/mol Pb2SiO4 Pb2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Pb+2 log_k 18.037 - -delta_H -83.9883 kJ/mol # Calculated enthalpy of reaction Pb2SiO4 -# Enthalpy of formation: -1363.55 kJ/mol + -delta_H -83.9883 kJ/mol # Calculated enthalpy of reaction Pb2SiO4 +# Enthalpy of formation: -1363.55 kJ/mol -analytic 2.7287e+2 6.3875e-2 -3.7001e+3 -1.0568e+2 -6.2927e+1 # -Range: 0-200 Pb3(PO4)2 Pb3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 Pb+2 log_k -19.9744 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb3(PO4)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb3(PO4)2 +# Enthalpy of formation: 0 kcal/mol Pb3SO6 Pb3SO6 + 4 H+ = SO4-2 + 2 H2O + 3 Pb+2 log_k 10.5981 - -delta_H -79.3438 kJ/mol # Calculated enthalpy of reaction Pb3SO6 -# Enthalpy of formation: -1399.17 kJ/mol + -delta_H -79.3438 kJ/mol # Calculated enthalpy of reaction Pb3SO6 +# Enthalpy of formation: -1399.17 kJ/mol -analytic -5.3308e+0 -1.8639e-2 3.0245e+3 4.576e+0 5.1362e+1 # -Range: 0-200 Pb4Cl2(OH)6 Pb4Cl2(OH)6 + 6 H+ = 2 Cl- + 4 Pb+2 + 6 H2O log_k 17.2793 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4Cl2(OH)6 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4Cl2(OH)6 +# Enthalpy of formation: 0 kcal/mol Pb4O(PO4)2 Pb4O(PO4)2 + 4 H+ = H2O + 2 HPO4-2 + 4 Pb+2 log_k -12.5727 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4O(PO4)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pb4O(PO4)2 +# Enthalpy of formation: 0 kcal/mol Pb4SO7 Pb4SO7 + 6 H+ = SO4-2 + 3 H2O + 4 Pb+2 log_k 21.7354 - -delta_H -136.566 kJ/mol # Calculated enthalpy of reaction Pb4SO7 -# Enthalpy of formation: -1626.87 kJ/mol + -delta_H -136.566 kJ/mol # Calculated enthalpy of reaction Pb4SO7 +# Enthalpy of formation: -1626.87 kJ/mol -analytic -2.6884e+1 -2.1429e-2 6.839e+3 1.2951e+1 1.1614e+2 # -Range: 0-200 PbBr2 PbBr2 = Pb+2 + 2 Br- log_k -5.2413 - -delta_H 36.3838 kJ/mol # Calculated enthalpy of reaction PbBr2 -# Enthalpy of formation: -278.47 kJ/mol + -delta_H 36.3838 kJ/mol # Calculated enthalpy of reaction PbBr2 +# Enthalpy of formation: -278.47 kJ/mol -analytic 3.0977e+1 -1.6567e-2 -4.2879e+3 -6.8329e+0 -7.2825e+1 # -Range: 0-200 PbBrF PbBrF = Br- + F- + Pb+2 log_k -8.0418 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbBrF -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbBrF +# Enthalpy of formation: 0 kcal/mol PbCO3.PbO PbCO3PbO + 3 H+ = H2O + HCO3- + 2 Pb+2 log_k 9.6711 - -delta_H -55.4286 kJ/mol # Calculated enthalpy of reaction PbCO3.PbO -# Enthalpy of formation: -918.502 kJ/mol + -delta_H -55.4286 kJ/mol # Calculated enthalpy of reaction PbCO3.PbO +# Enthalpy of formation: -918.502 kJ/mol -analytic -4.216e+1 -1.4124e-2 3.8661e+3 1.7404e+1 6.5667e+1 # -Range: 0-200 PbF2 PbF2 = Pb+2 + 2 F- log_k -5.2047 - -delta_H -5.83772 kJ/mol # Calculated enthalpy of reaction PbF2 -# Enthalpy of formation: -663.937 kJ/mol + -delta_H -5.83772 kJ/mol # Calculated enthalpy of reaction PbF2 +# Enthalpy of formation: -663.937 kJ/mol -analytic -2.2712e+2 -7.9552e-2 5.2198e+3 9.2173e+1 8.1516e+1 # -Range: 0-300 PbFCl PbFCl = Cl- + F- + Pb+2 log_k -8.982 - -delta_H 33.1852 kJ/mol # Calculated enthalpy of reaction PbFCl -# Enthalpy of formation: -534.692 kJ/mol + -delta_H 33.1852 kJ/mol # Calculated enthalpy of reaction PbFCl +# Enthalpy of formation: -534.692 kJ/mol -analytic 6.1688e+0 -2.0732e-2 -3.4666e+3 1.0697e+0 -5.8869e+1 # -Range: 0-200 PbHPO4 PbHPO4 = HPO4-2 + Pb+2 log_k -15.7275 - -delta_H 0 # Not possible to calculate enthalpy of reaction PbHPO4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PbHPO4 +# Enthalpy of formation: 0 kcal/mol PbI2 PbI2 = Pb+2 + 2 I- log_k -8.0418 - -delta_H 62.5717 kJ/mol # Calculated enthalpy of reaction PbI2 -# Enthalpy of formation: -175.456 kJ/mol + -delta_H 62.5717 kJ/mol # Calculated enthalpy of reaction PbI2 +# Enthalpy of formation: -175.456 kJ/mol -analytic 1.5277e+1 -2.0582e-2 -5.1256e+3 0e+0 0e+0 # -Range: 0-200 PbSO4(NH3)2 PbSO4(NH3)2 = Pb+2 + SO4-2 + 2 NH3 log_k -2.0213 - -delta_H 28.284 kJ/mol # Calculated enthalpy of reaction PbSO4(NH3)2 -# Enthalpy of formation: -1099.64 kJ/mol + -delta_H 28.284 kJ/mol # Calculated enthalpy of reaction PbSO4(NH3)2 +# Enthalpy of formation: -1099.64 kJ/mol -analytic 3.5718e-1 -1.0192e-2 -2.0095e+3 2.9853e+0 -3.4124e+1 # -Range: 0-200 PbSO4(NH3)4 PbSO4(NH3)4 = Pb+2 + SO4-2 + 4 NH3 log_k 1.5024 - -delta_H 31.155 kJ/mol # Calculated enthalpy of reaction PbSO4(NH3)4 -# Enthalpy of formation: -1265.18 kJ/mol + -delta_H 31.155 kJ/mol # Calculated enthalpy of reaction PbSO4(NH3)4 +# Enthalpy of formation: -1265.18 kJ/mol -analytic -4.108e+1 -7.2307e-3 6.6637e+1 1.7984e+1 1.146e+0 # -Range: 0-200 PbSeO4 PbSeO4 = Pb+2 + SeO4-2 log_k -6.9372 - -delta_H 10.8967 kJ/mol # Calculated enthalpy of reaction PbSeO4 -# Enthalpy of formation: -609.125 kJ/mol + -delta_H 10.8967 kJ/mol # Calculated enthalpy of reaction PbSeO4 +# Enthalpy of formation: -609.125 kJ/mol -analytic 3.1292e+1 -1.4192e-2 -3.098e+3 -9.5448e+0 -5.2618e+1 # -Range: 0-200 Pd Pd + 2 H+ + 0.5 O2 = H2O + Pd+2 log_k 12.0688 - -delta_H -103.709 kJ/mol # Calculated enthalpy of reaction Pd -# Enthalpy of formation: 0 kcal/mol + -delta_H -103.709 kJ/mol # Calculated enthalpy of reaction Pd +# Enthalpy of formation: 0 kcal/mol -analytic -6.253e+1 -1.9774e-2 6.7013e+3 2.3441e+1 1.0459e+2 # -Range: 0-300 PdO PdO + 2 H+ = H2O + Pd+2 log_k 0.0643 - -delta_H -24.422 kJ/mol # Calculated enthalpy of reaction PdO -# Enthalpy of formation: -20.4 kcal/mol + -delta_H -24.422 kJ/mol # Calculated enthalpy of reaction PdO +# Enthalpy of formation: -20.4 kcal/mol -analytic -8.8921e+1 -1.9031e-2 3.8537e+3 3.3028e+1 6.0159e+1 # -Range: 0-300 Penroseite NiSe2 + H2O = 0.5 O2 + Ni+2 + 2 H+ + 2 Se-2 log_k -98.8004 - -delta_H 0 # Not possible to calculate enthalpy of reaction Penroseite -# Enthalpy of formation: -26 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Penroseite +# Enthalpy of formation: -26 kcal/mol -analytic -4.7339e+1 -1.2035e-2 -2.3589e+4 1.2624e+1 -3.6808e+2 # -Range: 0-300 Pentahydrite MgSO4:5H2O = Mg+2 + SO4-2 + 5 H2O log_k -1.3872 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pentahydrite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pentahydrite +# Enthalpy of formation: 0 kcal/mol Periclase MgO + 2 H+ = H2O + Mg+2 log_k 21.3354 - -delta_H -150.139 kJ/mol # Calculated enthalpy of reaction Periclase -# Enthalpy of formation: -143.8 kcal/mol + -delta_H -150.139 kJ/mol # Calculated enthalpy of reaction Periclase +# Enthalpy of formation: -143.8 kcal/mol -analytic -8.8465e+1 -1.839e-2 1.0414e+4 3.2469e+1 1.6253e+2 # -Range: 0-300 Petalite LiAlSi4O10 + 4 H+ = Al+3 + Li+ + 2 H2O + 4 SiO2 log_k -3.8153 - -delta_H -13.1739 kJ/mol # Calculated enthalpy of reaction Petalite -# Enthalpy of formation: -4886.15 kJ/mol + -delta_H -13.1739 kJ/mol # Calculated enthalpy of reaction Petalite +# Enthalpy of formation: -4886.15 kJ/mol -analytic -6.6355e+0 2.4316e-2 1.5949e+4 -1.3341e+1 -2.2265e+6 # -Range: 0-300 Phlogopite KAlMg3Si3O10(OH)2 + 10 H+ = Al+3 + K+ + 3 Mg+2 + 3 SiO2 + 6 H2O log_k 37.44 - -delta_H -310.503 kJ/mol # Calculated enthalpy of reaction Phlogopite -# Enthalpy of formation: -1488.07 kcal/mol + -delta_H -310.503 kJ/mol # Calculated enthalpy of reaction Phlogopite +# Enthalpy of formation: -1488.07 kcal/mol -analytic -8.773e+1 -1.7253e-2 2.3748e+4 2.4465e+1 -8.9045e+5 # -Range: 0-300 Phosgenite Pb2(CO3)Cl2 + H+ = HCO3- + 2 Cl- + 2 Pb+2 log_k -9.6355 - -delta_H 49.0844 kJ/mol # Calculated enthalpy of reaction Phosgenite -# Enthalpy of formation: -1071.34 kJ/mol + -delta_H 49.0844 kJ/mol # Calculated enthalpy of reaction Phosgenite +# Enthalpy of formation: -1071.34 kJ/mol -analytic 3.4909e+0 -2.9365e-2 -4.6327e+3 4.5068e+0 -7.8671e+1 # -Range: 0-200 Picromerite K2Mg(SO4)2:6H2O = Mg+2 + 2 K+ + 2 SO4-2 + 6 H2O log_k -4.4396 - -delta_H 0 # Not possible to calculate enthalpy of reaction Picromerite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Picromerite +# Enthalpy of formation: 0 kcal/mol Pirssonite Na2Ca(CO3)2:2H2O + 2 H+ = Ca+2 + 2 H2O + 2 HCO3- + 2 Na+ log_k 11.323 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pirssonite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pirssonite +# Enthalpy of formation: 0 kcal/mol Plattnerite PbO2 + 4 H+ = Pb+4 + 2 H2O log_k -7.9661 - -delta_H 0 # Not possible to calculate enthalpy of reaction Plattnerite -# Enthalpy of formation: -277.363 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Plattnerite +# Enthalpy of formation: -277.363 kJ/mol Plumbogummite PbAl3(PO4)2(OH)5:H2O + 7 H+ = Pb+2 + 2 HPO4-2 + 3 Al+3 + 6 H2O log_k -8.1463 - -delta_H 0 # Not possible to calculate enthalpy of reaction Plumbogummite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Plumbogummite +# Enthalpy of formation: 0 kcal/mol Pm Pm + 3 H+ + 0.75 O2 = Pm+3 + 1.5 H2O log_k 180.6737 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm +# Enthalpy of formation: 0 kcal/mol Pm(OH)3 Pm(OH)3 + 3 H+ = Pm+3 + 3 H2O log_k 17.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3 +# Enthalpy of formation: 0 kcal/mol Pm(OH)3(am) Pm(OH)3 + 3 H+ = Pm+3 + 3 H2O log_k 18.2852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm(OH)3(am) +# Enthalpy of formation: 0 kcal/mol Pm2(CO3)3 Pm2(CO3)3 + 3 H+ = 2 Pm+3 + 3 HCO3- log_k -3.5636 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm2(CO3)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm2(CO3)3 +# Enthalpy of formation: 0 kcal/mol Pm2O3 Pm2O3 + 6 H+ = 2 Pm+3 + 3 H2O log_k 48.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pm2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pm2O3 +# Enthalpy of formation: 0 kcal/mol PmF3:.5H2O PmF3:.5H2O = 0.5 H2O + Pm+3 + 3 F- log_k -18.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmF3:.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PmF3:.5H2O +# Enthalpy of formation: 0 kcal/mol PmPO4:10H2O PmPO4:10H2O + H+ = HPO4-2 + Pm+3 + 10 H2O log_k -12.1782 - -delta_H 0 # Not possible to calculate enthalpy of reaction PmPO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PmPO4:10H2O +# Enthalpy of formation: 0 kcal/mol Polydymite Ni3S4 + 2 H+ = S2-2 + 2 HS- + 3 Ni+2 log_k -48.9062 - -delta_H 0 # Not possible to calculate enthalpy of reaction Polydymite -# Enthalpy of formation: -78.014 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Polydymite +# Enthalpy of formation: -78.014 kcal/mol -analytic -1.803e+1 -4.6945e-2 -1.1557e+4 8.8339e+0 -1.9625e+2 # -Range: 0-200 Polyhalite K2MgCa2(SO4)4:2H2O = Mg+2 + 2 Ca+2 + 2 H2O + 2 K+ + 4 SO4-2 log_k -14.3124 - -delta_H 0 # Not possible to calculate enthalpy of reaction Polyhalite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Polyhalite +# Enthalpy of formation: 0 kcal/mol Portlandite Ca(OH)2 + 2 H+ = Ca+2 + 2 H2O log_k 22.5552 - -delta_H -128.686 kJ/mol # Calculated enthalpy of reaction Portlandite -# Enthalpy of formation: -986.074 kJ/mol + -delta_H -128.686 kJ/mol # Calculated enthalpy of reaction Portlandite +# Enthalpy of formation: -986.074 kJ/mol -analytic -8.3848e+1 -1.8373e-2 9.3154e+3 3.2584e+1 1.4538e+2 # -Range: 0-300 Pr Pr + 3 H+ + 0.75 O2 = Pr+3 + 1.5 H2O log_k 183.6893 - -delta_H -1125.92 kJ/mol # Calculated enthalpy of reaction Pr -# Enthalpy of formation: 0 kJ/mol + -delta_H -1125.92 kJ/mol # Calculated enthalpy of reaction Pr +# Enthalpy of formation: 0 kJ/mol -analytic -4.1136e+2 -7.5853e-2 7.9974e+4 1.4718e+2 -1.3148e+6 # -Range: 0-300 Pr(OH)3 Pr(OH)3 + 3 H+ = Pr+3 + 3 H2O log_k 19.5852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(OH)3 +# Enthalpy of formation: 0 kcal/mol Pr(OH)3(am) Pr(OH)3 + 3 H+ = Pr+3 + 3 H2O log_k 21.0852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr(OH)3(am) +# Enthalpy of formation: 0 kcal/mol Pr2(CO3)3 Pr2(CO3)3 + 3 H+ = 2 Pr+3 + 3 HCO3- log_k -3.8136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr2(CO3)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr2(CO3)3 +# Enthalpy of formation: 0 kcal/mol Pr2O3 Pr2O3 + 6 H+ = 2 Pr+3 + 3 H2O log_k 61.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pr2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pr2O3 +# Enthalpy of formation: 0 kcal/mol PrF3:.5H2O PrF3:.5H2O = 0.5 H2O + Pr+3 + 3 F- log_k -18.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction PrF3:.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PrF3:.5H2O +# Enthalpy of formation: 0 kcal/mol PrPO4:10H2O PrPO4:10H2O + H+ = HPO4-2 + Pr+3 + 10 H2O log_k -12.2782 - -delta_H 0 # Not possible to calculate enthalpy of reaction PrPO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction PrPO4:10H2O +# Enthalpy of formation: 0 kcal/mol Prehnite Ca2Al2Si3O10(OH)2 + 10 H+ = 2 Al+3 + 2 Ca+2 + 3 SiO2 + 6 H2O log_k 32.9305 - -delta_H -311.875 kJ/mol # Calculated enthalpy of reaction Prehnite -# Enthalpy of formation: -1481.65 kcal/mol + -delta_H -311.875 kJ/mol # Calculated enthalpy of reaction Prehnite +# Enthalpy of formation: -1481.65 kcal/mol -analytic -3.5763e+1 -2.1396e-2 2.0167e+4 6.3554e+0 -7.4967e+5 # -Range: 0-300 Przhevalskite Pb(UO2)2(PO4)2 + 2 H+ = Pb+2 + 2 HPO4-2 + 2 UO2+2 log_k -20.0403 - -delta_H -71.1058 kJ/mol # Calculated enthalpy of reaction Przhevalskite -# Enthalpy of formation: -1087.51 kcal/mol + -delta_H -71.1058 kJ/mol # Calculated enthalpy of reaction Przhevalskite +# Enthalpy of formation: -1087.51 kcal/mol -analytic -2.9817e+1 -4.0756e-2 1.0077e+3 7.4885e+0 1.7122e+1 # -Range: 0-200 Pseudowollastonite CaSiO3 + 2 H+ = Ca+2 + H2O + SiO2 log_k 13.9997 - -delta_H -79.4625 kJ/mol # Calculated enthalpy of reaction Pseudowollastonite -# Enthalpy of formation: -388.9 kcal/mol + -delta_H -79.4625 kJ/mol # Calculated enthalpy of reaction Pseudowollastonite +# Enthalpy of formation: -388.9 kcal/mol -analytic 2.6691e+1 6.3323e-3 5.5723e+3 -1.1822e+1 -3.6038e+5 # -Range: 0-300 Pu Pu + 4 H+ + O2 = Pu+4 + 2 H2O log_k 170.3761 - -delta_H -1095.44 kJ/mol # Calculated enthalpy of reaction Pu -# Enthalpy of formation: 0 kJ/mol + -delta_H -1095.44 kJ/mol # Calculated enthalpy of reaction Pu +# Enthalpy of formation: 0 kJ/mol -analytic -1.9321e+2 -3.4314e-2 6.6737e+4 6.3552e+1 -6.4737e+5 # -Range: 0-300 Pu(HPO4)2 Pu(HPO4)2 = Pu+4 + 2 HPO4-2 log_k -27.7025 - -delta_H -33.4449 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)2 -# Enthalpy of formation: -3086.61 kJ/mol + -delta_H -33.4449 kJ/mol # Calculated enthalpy of reaction Pu(HPO4)2 +# Enthalpy of formation: -3086.61 kJ/mol -analytic -3.6565e+2 -1.3961e-1 7.9105e+3 1.4265e+2 1.2354e+2 # -Range: 0-300 Pu(OH)3 Pu(OH)3 + 3 H+ = Pu+3 + 3 H2O log_k 22.4499 - -delta_H -148.067 kJ/mol # Calculated enthalpy of reaction Pu(OH)3 -# Enthalpy of formation: -1301 kJ/mol + -delta_H -148.067 kJ/mol # Calculated enthalpy of reaction Pu(OH)3 +# Enthalpy of formation: -1301 kJ/mol -analytic -6.1342e+1 -8.6952e-3 9.7733e+3 2.1664e+1 1.5252e+2 # -Range: 0-300 Pu(OH)4 Pu(OH)4 + 4 H+ = Pu+4 + 4 H2O log_k 0.7578 - -delta_H -68.6543 kJ/mol # Calculated enthalpy of reaction Pu(OH)4 -# Enthalpy of formation: -1610.59 kJ/mol + -delta_H -68.6543 kJ/mol # Calculated enthalpy of reaction Pu(OH)4 +# Enthalpy of formation: -1610.59 kJ/mol -analytic -9.3473e+1 -1.0579e-2 6.5974e+3 3.0415e+1 1.0297e+2 # -Range: 0-300 Pu2O3 Pu2O3 + 6 H+ = 2 Pu+3 + 3 H2O log_k 48.1332 - -delta_H -360.26 kJ/mol # Calculated enthalpy of reaction Pu2O3 -# Enthalpy of formation: -1680.36 kJ/mol + -delta_H -360.26 kJ/mol # Calculated enthalpy of reaction Pu2O3 +# Enthalpy of formation: -1680.36 kJ/mol -analytic -8.7831e+1 -1.9784e-2 2.0832e+4 2.9096e+1 3.2509e+2 # -Range: 0-300 PuF3 PuF3 = Pu+3 + 3 F- log_k -10.1872 - -delta_H -46.2608 kJ/mol # Calculated enthalpy of reaction PuF3 -# Enthalpy of formation: -1551.33 kJ/mol + -delta_H -46.2608 kJ/mol # Calculated enthalpy of reaction PuF3 +# Enthalpy of formation: -1551.33 kJ/mol -analytic -3.1104e+2 -1.0854e-1 8.7435e+3 1.2279e+2 1.3653e+2 # -Range: 0-300 PuF4 PuF4 = Pu+4 + 4 F- log_k -13.2091 - -delta_H -100.039 kJ/mol # Calculated enthalpy of reaction PuF4 -# Enthalpy of formation: -1777.24 kJ/mol + -delta_H -100.039 kJ/mol # Calculated enthalpy of reaction PuF4 +# Enthalpy of formation: -1777.24 kJ/mol -analytic -4.3072e+2 -1.45e-1 1.4076e+4 1.6709e+2 2.1977e+2 # -Range: 0-300 PuO2 PuO2 + 4 H+ = Pu+4 + 2 H2O log_k -7.3646 - -delta_H -51.8827 kJ/mol # Calculated enthalpy of reaction PuO2 -# Enthalpy of formation: -1055.69 kJ/mol + -delta_H -51.8827 kJ/mol # Calculated enthalpy of reaction PuO2 +# Enthalpy of formation: -1055.69 kJ/mol -analytic -7.1933e+1 -1.1841e-2 4.4494e+3 2.1491e+1 6.945e+1 # -Range: 0-300 PuO2(OH)2 PuO2(OH)2 + 2 H+ = PuO2+2 + 2 H2O log_k 3.5499 - -delta_H -35.7307 kJ/mol # Calculated enthalpy of reaction PuO2(OH)2 -# Enthalpy of formation: -1357.52 kJ/mol + -delta_H -35.7307 kJ/mol # Calculated enthalpy of reaction PuO2(OH)2 +# Enthalpy of formation: -1357.52 kJ/mol -analytic -2.6536e+1 -1.6542e-3 2.8262e+3 8.5277e+0 4.4108e+1 # -Range: 0-300 PuO2HPO4 PuO2HPO4 = HPO4-2 + PuO2+2 log_k -12.6074 - -delta_H -10.108 kJ/mol # Calculated enthalpy of reaction PuO2HPO4 -# Enthalpy of formation: -2103.55 kJ/mol + -delta_H -10.108 kJ/mol # Calculated enthalpy of reaction PuO2HPO4 +# Enthalpy of formation: -2103.55 kJ/mol -analytic -1.6296e+2 -6.6166e-2 3.0557e+3 6.4577e+1 4.7729e+1 # -Range: 0-300 PuO2OH(am) PuO2OH + H+ = H2O + PuO2+ log_k 5.4628 - -delta_H -42.4933 kJ/mol # Calculated enthalpy of reaction PuO2OH(am) -# Enthalpy of formation: -1157.53 kJ/mol + -delta_H -42.4933 kJ/mol # Calculated enthalpy of reaction PuO2OH(am) +# Enthalpy of formation: -1157.53 kJ/mol -analytic -3.1316e+0 6.7573e-3 2.6884e+3 -9.8622e-1 4.1951e+1 # -Range: 0-300 Pyrite FeS2 + H2O = 0.25 H+ + 0.25 SO4-2 + Fe+2 + 1.75 HS- log_k -24.6534 - -delta_H 109.535 kJ/mol # Calculated enthalpy of reaction Pyrite -# Enthalpy of formation: -41 kcal/mol + -delta_H 109.535 kJ/mol # Calculated enthalpy of reaction Pyrite +# Enthalpy of formation: -41 kcal/mol -analytic -2.4195e+2 -8.7948e-2 -6.2911e+2 9.9248e+1 -9.7454e+0 # -Range: 0-300 Pyrolusite MnO2 = 0.5 Mn+2 + 0.5 MnO4-2 log_k -17.6439 - -delta_H 83.3804 kJ/mol # Calculated enthalpy of reaction Pyrolusite -# Enthalpy of formation: -520.031 kJ/mol + -delta_H 83.3804 kJ/mol # Calculated enthalpy of reaction Pyrolusite +# Enthalpy of formation: -520.031 kJ/mol -analytic -1.1541e+2 -4.1665e-2 -1.896e+3 4.7094e+1 -2.9551e+1 # -Range: 0-300 Pyromorphite Pb5(PO4)3Cl + 3 H+ = Cl- + 3 HPO4-2 + 5 Pb+2 log_k -47.8954 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite +# Enthalpy of formation: 0 kcal/mol Pyromorphite-OH Pb5(OH)(PO4)3 + 4 H+ = H2O + 3 HPO4-2 + 5 Pb+2 log_k -26.2653 - -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite-OH -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Pyromorphite-OH +# Enthalpy of formation: 0 kcal/mol Pyrophyllite Al2Si4O10(OH)2 + 6 H+ = 2 Al+3 + 4 H2O + 4 SiO2 log_k 0.4397 - -delta_H -102.161 kJ/mol # Calculated enthalpy of reaction Pyrophyllite -# Enthalpy of formation: -1345.31 kcal/mol + -delta_H -102.161 kJ/mol # Calculated enthalpy of reaction Pyrophyllite +# Enthalpy of formation: -1345.31 kcal/mol -analytic 1.1066e+1 1.2707e-2 1.6417e+4 -1.9596e+1 -1.8791e+6 # -Range: 0-300 Pyrrhotite FeS + H+ = Fe+2 + HS- log_k -3.7193 - -delta_H -7.9496 kJ/mol # Calculated enthalpy of reaction Pyrrhotite -# Enthalpy of formation: -24 kcal/mol + -delta_H -7.9496 kJ/mol # Calculated enthalpy of reaction Pyrrhotite +# Enthalpy of formation: -24 kcal/mol -analytic -1.5785e+2 -5.2258e-2 3.9711e+3 6.3195e+1 6.2012e+1 # -Range: 0-300 Quartz SiO2 = SiO2 log_k -3.9993 - -delta_H 32.949 kJ/mol # Calculated enthalpy of reaction Quartz -# Enthalpy of formation: -217.65 kcal/mol + -delta_H 32.949 kJ/mol # Calculated enthalpy of reaction Quartz +# Enthalpy of formation: -217.65 kcal/mol -analytic 7.7698e-2 1.0612e-2 3.4651e+3 -4.3551e+0 -7.2138e+5 # -Range: 0-300 Ra Ra + 2 H+ + 0.5 O2 = H2O + Ra+2 log_k 141.3711 - -delta_H -807.374 kJ/mol # Calculated enthalpy of reaction Ra -# Enthalpy of formation: 0 kJ/mol + -delta_H -807.374 kJ/mol # Calculated enthalpy of reaction Ra +# Enthalpy of formation: 0 kJ/mol -analytic 4.9867e+1 5.9412e-3 4.0293e+4 -1.8356e+1 6.8421e+2 # -Range: 0-200 Ra(NO3)2 Ra(NO3)2 = Ra+2 + 2 NO3- log_k -2.2419 - -delta_H 50.4817 kJ/mol # Calculated enthalpy of reaction Ra(NO3)2 -# Enthalpy of formation: -991.706 kJ/mol + -delta_H 50.4817 kJ/mol # Calculated enthalpy of reaction Ra(NO3)2 +# Enthalpy of formation: -991.706 kJ/mol -analytic 2.2001e+1 -9.5263e-3 -3.9389e+3 -3.3143e+0 -6.6896e+1 # -Range: 0-200 RaCl2:2H2O RaCl2:2H2O = Ra+2 + 2 Cl- + 2 H2O log_k -0.7647 - -delta_H 32.6266 kJ/mol # Calculated enthalpy of reaction RaCl2:2H2O -# Enthalpy of formation: -1466.07 kJ/mol + -delta_H 32.6266 kJ/mol # Calculated enthalpy of reaction RaCl2:2H2O +# Enthalpy of formation: -1466.07 kJ/mol -analytic -2.5033e+1 -1.8918e-2 -1.5713e+3 1.4213e+1 -2.6673e+1 # -Range: 0-200 RaSO4 RaSO4 = Ra+2 + SO4-2 log_k -10.4499 - -delta_H 40.309 kJ/mol # Calculated enthalpy of reaction RaSO4 -# Enthalpy of formation: -1477.51 kJ/mol + -delta_H 40.309 kJ/mol # Calculated enthalpy of reaction RaSO4 +# Enthalpy of formation: -1477.51 kJ/mol -analytic 4.8025e+1 -1.1376e-2 -5.1347e+3 -1.5306e+1 -8.7211e+1 # -Range: 0-200 Rankinite Ca3Si2O7 + 6 H+ = 2 SiO2 + 3 Ca+2 + 3 H2O log_k 51.9078 - -delta_H -302.089 kJ/mol # Calculated enthalpy of reaction Rankinite -# Enthalpy of formation: -941.7 kcal/mol + -delta_H -302.089 kJ/mol # Calculated enthalpy of reaction Rankinite +# Enthalpy of formation: -941.7 kcal/mol -analytic -9.6393e+1 -1.6592e-2 2.4832e+4 3.2541e+1 -9.463e+5 # -Range: 0-300 Rb Rb + H+ + 0.25 O2 = 0.5 H2O + Rb+ log_k 71.1987 - -delta_H -391.009 kJ/mol # Calculated enthalpy of reaction Rb -# Enthalpy of formation: 0 kJ/mol + -delta_H -391.009 kJ/mol # Calculated enthalpy of reaction Rb +# Enthalpy of formation: 0 kJ/mol -analytic -2.1179e+1 -8.7978e-3 2.0934e+4 1.0011e+1 3.2667e+2 # -Range: 0-300 Rb2UO4 Rb2UO4 + 4 H+ = UO2+2 + 2 H2O + 2 Rb+ log_k 34.0089 - -delta_H -170.224 kJ/mol # Calculated enthalpy of reaction Rb2UO4 -# Enthalpy of formation: -1922.7 kJ/mol + -delta_H -170.224 kJ/mol # Calculated enthalpy of reaction Rb2UO4 +# Enthalpy of formation: -1922.7 kJ/mol -analytic -3.8205e+1 3.1862e-3 1.0973e+4 1.3925e+1 1.8636e+2 # -Range: 0-200 Re Re + 1.75 O2 + 0.5 H2O = H+ + ReO4- log_k 105.9749 - -delta_H -623.276 kJ/mol # Calculated enthalpy of reaction Re -# Enthalpy of formation: 0 kJ/mol + -delta_H -623.276 kJ/mol # Calculated enthalpy of reaction Re +# Enthalpy of formation: 0 kJ/mol -analytic 1.4535e+1 -2.9877e-2 2.991e+4 0e+0 0e+0 # -Range: 0-300 Realgar AsS + 2 H2O = 0.5 S2O4-2 + AsH3 + H+ log_k -60.2768 - -delta_H 0 # Not possible to calculate enthalpy of reaction Realgar -# Enthalpy of formation: -71.406 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Realgar +# Enthalpy of formation: -71.406 kJ/mol Rhodochrosite MnCO3 + H+ = HCO3- + Mn+2 log_k -0.1928 - -delta_H -21.3426 kJ/mol # Calculated enthalpy of reaction Rhodochrosite -# Enthalpy of formation: -212.521 kcal/mol + -delta_H -21.3426 kJ/mol # Calculated enthalpy of reaction Rhodochrosite +# Enthalpy of formation: -212.521 kcal/mol -analytic -1.6195e+2 -4.9344e-2 5.0937e+3 6.4402e+1 7.9531e+1 # -Range: 0-300 Rhodonite MnSiO3 + 2 H+ = H2O + Mn+2 + SiO2 log_k 9.7301 - -delta_H -64.7121 kJ/mol # Calculated enthalpy of reaction Rhodonite -# Enthalpy of formation: -1319.42 kJ/mol + -delta_H -64.7121 kJ/mol # Calculated enthalpy of reaction Rhodonite +# Enthalpy of formation: -1319.42 kJ/mol -analytic 2.0585e+1 4.9941e-3 4.5816e+3 -9.8212e+0 -3.0658e+5 # -Range: 0-300 Ripidolite-14A Mg3Fe2Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 2 Fe+2 + 3 Mg+2 + 3 SiO2 + 12 H2O log_k 60.9638 - -delta_H -572.472 kJ/mol # Calculated enthalpy of reaction Ripidolite-14A -# Enthalpy of formation: -1947.87 kcal/mol + -delta_H -572.472 kJ/mol # Calculated enthalpy of reaction Ripidolite-14A +# Enthalpy of formation: -1947.87 kcal/mol -analytic -1.8376e+2 -6.1934e-2 3.2458e+4 6.229e+1 5.0653e+2 # -Range: 0-300 Ripidolite-7A Mg3Fe2Al2Si3O10(OH)8 + 16 H+ = 2 Al+3 + 2 Fe+2 + 3 Mg+2 + 3 SiO2 + 12 H2O log_k 64.3371 - -delta_H -586.325 kJ/mol # Calculated enthalpy of reaction Ripidolite-7A -# Enthalpy of formation: -1944.56 kcal/mol + -delta_H -586.325 kJ/mol # Calculated enthalpy of reaction Ripidolite-7A +# Enthalpy of formation: -1944.56 kcal/mol -analytic -1.9557e+2 -6.3779e-2 3.3634e+4 6.7057e+1 5.2489e+2 # -Range: 0-300 Romarchite SnO + 2 H+ = H2O + Sn+2 log_k 1.3625 - -delta_H -8.69017 kJ/mol # Calculated enthalpy of reaction Romarchite -# Enthalpy of formation: -68.34 kcal/mol + -delta_H -8.69017 kJ/mol # Calculated enthalpy of reaction Romarchite +# Enthalpy of formation: -68.34 kcal/mol -analytic -6.3187e+1 -1.5821e-2 2.2786e+3 2.49e+1 3.5574e+1 # -Range: 0-300 Ru Ru + 2 H+ + 0.5 O2 = H2O + Ru+2 log_k 16.6701 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru -# Enthalpy of formation: 0 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru +# Enthalpy of formation: 0 kJ/mol Ru(OH)3:H2O(am) Ru(OH)3:H2O + 3 H+ = Ru+3 + 4 H2O log_k 1.6338 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)3:H2O(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ru(OH)3:H2O(am) +# Enthalpy of formation: 0 kcal/mol RuBr3 RuBr3 = Ru+3 + 3 Br- log_k 3.1479 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuBr3 -# Enthalpy of formation: -147.76 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuBr3 +# Enthalpy of formation: -147.76 kJ/mol RuCl3 RuCl3 = Ru+3 + 3 Cl- log_k 10.8215 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl3 -# Enthalpy of formation: -221.291 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl3 +# Enthalpy of formation: -221.291 kJ/mol RuI3 RuI3 = Ru+3 + 3 I- log_k -12.4614 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuI3 -# Enthalpy of formation: -58.425 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuI3 +# Enthalpy of formation: -58.425 kJ/mol RuO2 RuO2 + 2 H+ = Ru(OH)2+2 log_k -5.4835 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuO2 -# Enthalpy of formation: -307.233 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuO2 +# Enthalpy of formation: -307.233 kJ/mol RuO2:2H2O(am) RuO2:2H2O + 2 H+ = Ru(OH)2+2 + 2 H2O log_k 0.9045 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuO2:2H2O(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuO2:2H2O(am) +# Enthalpy of formation: 0 kcal/mol RuO4 RuO4 = RuO4 log_k -0.9636 - -delta_H 6.305 kJ/mol # Calculated enthalpy of reaction RuO4 -# Enthalpy of formation: -244.447 kJ/mol + -delta_H 6.305 kJ/mol # Calculated enthalpy of reaction RuO4 +# Enthalpy of formation: -244.447 kJ/mol RuSe2 RuSe2 + 2 H2O = Ru(OH)2+2 + 2 H+ + 2 Se-2 log_k -113.7236 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuSe2 -# Enthalpy of formation: -146.274 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuSe2 +# Enthalpy of formation: -146.274 kJ/mol Rutherfordine UO2CO3 + H+ = HCO3- + UO2+2 log_k -4.1064 - -delta_H -19.4032 kJ/mol # Calculated enthalpy of reaction Rutherfordine -# Enthalpy of formation: -1689.53 kJ/mol + -delta_H -19.4032 kJ/mol # Calculated enthalpy of reaction Rutherfordine +# Enthalpy of formation: -1689.53 kJ/mol -analytic -8.8224e+1 -3.1434e-2 2.6675e+3 3.4161e+1 4.165e+1 # -Range: 0-300 Rutile TiO2 + 2 H2O = Ti(OH)4 log_k -9.6452 - -delta_H 0 # Not possible to calculate enthalpy of reaction Rutile -# Enthalpy of formation: -226.107 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Rutile +# Enthalpy of formation: -226.107 kcal/mol S S + H2O = 0.5 O2 + H+ + HS- log_k -45.098 - -delta_H 263.663 kJ/mol # Calculated enthalpy of reaction S -# Enthalpy of formation: 0 kJ/mol + -delta_H 263.663 kJ/mol # Calculated enthalpy of reaction S +# Enthalpy of formation: 0 kJ/mol -analytic -8.8928e+1 -2.8454e-2 -1.1516e+4 3.6747e+1 -1.7966e+2 # -Range: 0-300 Safflorite CoAs2 + 2 H2O + H+ + 0.5 O2 = AsH3 + Co+2 + H2AsO3- log_k -3.6419 - -delta_H -52.7226 kJ/mol # Calculated enthalpy of reaction Safflorite -# Enthalpy of formation: -23.087 kcal/mol + -delta_H -52.7226 kJ/mol # Calculated enthalpy of reaction Safflorite +# Enthalpy of formation: -23.087 kcal/mol Saleeite Mg(UO2)2(PO4)2 + 2 H+ = Mg+2 + 2 HPO4-2 + 2 UO2+2 log_k -19.4575 - -delta_H -110.816 kJ/mol # Calculated enthalpy of reaction Saleeite -# Enthalpy of formation: -1189.61 kcal/mol + -delta_H -110.816 kJ/mol # Calculated enthalpy of reaction Saleeite +# Enthalpy of formation: -1189.61 kcal/mol -analytic -6.0028e+1 -4.4391e-2 3.9168e+3 1.6428e+1 6.6533e+1 # -Range: 0-200 Sanbornite BaSi2O5 + 2 H+ = Ba+2 + H2O + 2 SiO2 log_k 9.4753 - -delta_H -31.0845 kJ/mol # Calculated enthalpy of reaction Sanbornite -# Enthalpy of formation: -2547.8 kJ/mol + -delta_H -31.0845 kJ/mol # Calculated enthalpy of reaction Sanbornite +# Enthalpy of formation: -2547.8 kJ/mol -analytic -2.5381e+1 1.2999e-2 1.233e+4 2.1053e+0 -1.3913e+6 # -Range: 0-300 Sanidine_high KAlSi3O8 + 4 H+ = Al+3 + K+ + 2 H2O + 3 SiO2 log_k 0.9239 - -delta_H -35.0284 kJ/mol # Calculated enthalpy of reaction Sanidine_high -# Enthalpy of formation: -946.538 kcal/mol + -delta_H -35.0284 kJ/mol # Calculated enthalpy of reaction Sanidine_high +# Enthalpy of formation: -946.538 kcal/mol -analytic -3.4889e+0 1.4495e-2 1.2856e+4 -9.8978e+0 -1.6572e+6 # -Range: 0-300 Saponite-Ca Ca.165Mg3Al.33Si3.67O10(OH)2 + 7.32 H+ = 0.165 Ca+2 + 0.33 Al+3 + 3 Mg+2 + 3.67 SiO2 + 4.66 H2O log_k 26.29 - -delta_H -207.971 kJ/mol # Calculated enthalpy of reaction Saponite-Ca -# Enthalpy of formation: -1436.51 kcal/mol + -delta_H -207.971 kJ/mol # Calculated enthalpy of reaction Saponite-Ca +# Enthalpy of formation: -1436.51 kcal/mol -analytic -4.6904e+1 6.2555e-3 2.2572e+4 5.3198e+0 -1.5725e+6 # -Range: 0-300 Saponite-Cs Cs.33Si3.67Al.33Mg3O10(OH)2 + 7.32 H+ = 0.33 Al+3 + 0.33 Cs+ + 3 Mg+2 + 3.67 SiO2 + 4.66 H2O log_k 25.8528 - -delta_H -195.407 kJ/mol # Calculated enthalpy of reaction Saponite-Cs -# Enthalpy of formation: -1438.44 kcal/mol + -delta_H -195.407 kJ/mol # Calculated enthalpy of reaction Saponite-Cs +# Enthalpy of formation: -1438.44 kcal/mol -analytic -7.7732e+1 -3.6418e-5 2.3346e+4 1.7578e+1 -1.6319e+6 # -Range: 0-300 Saponite-H H.33Mg3Al.33Si3.67O10(OH)2 + 6.99 H+ = 0.33 Al+3 + 3 Mg+2 + 3.67 SiO2 + 4.66 H2O log_k 25.3321 - -delta_H -200.235 kJ/mol # Calculated enthalpy of reaction Saponite-H -# Enthalpy of formation: -1416.94 kcal/mol + -delta_H -200.235 kJ/mol # Calculated enthalpy of reaction Saponite-H +# Enthalpy of formation: -1416.94 kcal/mol -analytic -3.9828e+1 8.9566e-3 2.2165e+4 2.3941e+0 -1.5933e+6 # -Range: 0-300 Saponite-K K.33Mg3Al.33Si3.67O10(OH)2 + 7.32 H+ = 0.33 Al+3 + 0.33 K+ + 3 Mg+2 + 3.67 SiO2 + 4.66 H2O log_k 26.0075 - -delta_H -196.402 kJ/mol # Calculated enthalpy of reaction Saponite-K -# Enthalpy of formation: -1437.74 kcal/mol + -delta_H -196.402 kJ/mol # Calculated enthalpy of reaction Saponite-K +# Enthalpy of formation: -1437.74 kcal/mol -analytic 3.2113e+1 1.8392e-2 1.7918e+4 -2.2874e+1 -1.3542e+6 # -Range: 0-300 Saponite-Mg Mg3.165Al.33Si3.67O10(OH)2 + 7.32 H+ = 0.33 Al+3 + 3.165 Mg+2 + 3.67 SiO2 + 4.66 H2O log_k 26.2523 - -delta_H -210.822 kJ/mol # Calculated enthalpy of reaction Saponite-Mg -# Enthalpy of formation: -1432.79 kcal/mol + -delta_H -210.822 kJ/mol # Calculated enthalpy of reaction Saponite-Mg +# Enthalpy of formation: -1432.79 kcal/mol -analytic 9.8888e+0 1.432e-2 1.9418e+4 -1.5259e+1 -1.3716e+6 # -Range: 0-300 Saponite-Na Na.33Mg3Al.33Si3.67O10(OH)2 + 7.32 H+ = 0.33 Al+3 + 0.33 Na+ + 3 Mg+2 + 3.67 SiO2 + 4.66 H2O log_k 26.3459 - -delta_H -201.401 kJ/mol # Calculated enthalpy of reaction Saponite-Na -# Enthalpy of formation: -1435.61 kcal/mol + -delta_H -201.401 kJ/mol # Calculated enthalpy of reaction Saponite-Na +# Enthalpy of formation: -1435.61 kcal/mol -analytic -6.7611e+1 4.7327e-3 2.3586e+4 1.2868e+1 -1.6493e+6 # -Range: 0-300 Sb Sb + 1.5 H2O + 0.75 O2 = Sb(OH)3 log_k 52.7918 - -delta_H -335.931 kJ/mol # Calculated enthalpy of reaction Sb -# Enthalpy of formation: 0 kJ/mol + -delta_H -335.931 kJ/mol # Calculated enthalpy of reaction Sb +# Enthalpy of formation: 0 kJ/mol Sb(OH)3 Sb(OH)3 = Sb(OH)3 log_k -7.0953 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb(OH)3 +# Enthalpy of formation: 0 kcal/mol Sb2O3 Sb2O3 + 3 H2O = 2 Sb(OH)3 log_k -8.96 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sb2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sb2O3 +# Enthalpy of formation: 0 kcal/mol -analytic 2.3982e+0 -7.6326e-5 -3.3787e+3 0e+0 0e+0 # -Range: 0-300 Sb2O4 Sb2O4 + 3 H2O = 0.5 O2 + 2 Sb(OH)3 log_k -39.6139 - -delta_H 211.121 kJ/mol # Calculated enthalpy of reaction Sb2O4 -# Enthalpy of formation: -907.251 kJ/mol + -delta_H 211.121 kJ/mol # Calculated enthalpy of reaction Sb2O4 +# Enthalpy of formation: -907.251 kJ/mol Sb2O5 Sb2O5 + 3 H2O = O2 + 2 Sb(OH)3 log_k -46.932 - -delta_H 269.763 kJ/mol # Calculated enthalpy of reaction Sb2O5 -# Enthalpy of formation: -971.96 kJ/mol + -delta_H 269.763 kJ/mol # Calculated enthalpy of reaction Sb2O5 +# Enthalpy of formation: -971.96 kJ/mol Sb4O6(cubic) Sb4O6 + 6 H2O = 4 Sb(OH)3 log_k -19.6896 - -delta_H 59.898 kJ/mol # Calculated enthalpy of reaction Sb4O6(cubic) -# Enthalpy of formation: -1440.02 kJ/mol + -delta_H 59.898 kJ/mol # Calculated enthalpy of reaction Sb4O6(cubic) +# Enthalpy of formation: -1440.02 kJ/mol Sb4O6(orthorhombic) Sb4O6 + 6 H2O = 4 Sb(OH)3 log_k -17.0442 - -delta_H 37.314 kJ/mol # Calculated enthalpy of reaction Sb4O6(orthorhombic) -# Enthalpy of formation: -1417.44 kJ/mol + -delta_H 37.314 kJ/mol # Calculated enthalpy of reaction Sb4O6(orthorhombic) +# Enthalpy of formation: -1417.44 kJ/mol SbBr3 SbBr3 + 3 H2O = Sb(OH)3 + 3 Br- + 3 H+ log_k 1.0554 - -delta_H -21.5871 kJ/mol # Calculated enthalpy of reaction SbBr3 -# Enthalpy of formation: -259.197 kJ/mol + -delta_H -21.5871 kJ/mol # Calculated enthalpy of reaction SbBr3 +# Enthalpy of formation: -259.197 kJ/mol SbCl3 SbCl3 + 3 H2O = Sb(OH)3 + 3 Cl- + 3 H+ log_k 0.5878 - -delta_H -35.393 kJ/mol # Calculated enthalpy of reaction SbCl3 -# Enthalpy of formation: -382.12 kJ/mol + -delta_H -35.393 kJ/mol # Calculated enthalpy of reaction SbCl3 +# Enthalpy of formation: -382.12 kJ/mol Sc Sc + 3 H+ + 0.75 O2 = Sc+3 + 1.5 H2O log_k 167.27 - -delta_H -1033.87 kJ/mol # Calculated enthalpy of reaction Sc -# Enthalpy of formation: 0 kJ/mol + -delta_H -1033.87 kJ/mol # Calculated enthalpy of reaction Sc +# Enthalpy of formation: 0 kJ/mol -analytic -6.6922e+1 -2.915e-2 5.4559e+4 2.4189e+1 8.5137e+2 # -Range: 0-300 Scacchite MnCl2 = Mn+2 + 2 Cl- log_k 8.7785 - -delta_H -73.4546 kJ/mol # Calculated enthalpy of reaction Scacchite -# Enthalpy of formation: -481.302 kJ/mol + -delta_H -73.4546 kJ/mol # Calculated enthalpy of reaction Scacchite +# Enthalpy of formation: -481.302 kJ/mol -analytic -2.3476e+2 -8.2437e-2 9.0088e+3 9.6128e+1 1.4064e+2 # -Range: 0-300 Schoepite UO3:2H2O + 2 H+ = UO2+2 + 3 H2O log_k 4.8333 - -delta_H -50.415 kJ/mol # Calculated enthalpy of reaction Schoepite -# Enthalpy of formation: -1826.1 kJ/mol + -delta_H -50.415 kJ/mol # Calculated enthalpy of reaction Schoepite +# Enthalpy of formation: -1826.1 kJ/mol -analytic 1.3645e+1 1.0884e-2 2.5412e+3 -8.3167e+0 3.9649e+1 # -Range: 0-300 Schoepite-dehy(.393) UO3:.393H2O + 2 H+ = UO2+2 + 1.393 H2O log_k 6.7243 - -delta_H -69.2728 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.393) -# Enthalpy of formation: -1347.9 kJ/mol + -delta_H -69.2728 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.393) +# Enthalpy of formation: -1347.9 kJ/mol -analytic -5.6487e+1 -3.0358e-3 5.7044e+3 1.8179e+1 9.6887e+1 # -Range: 0-200 Schoepite-dehy(.648) UO3:.648H2O + 2 H+ = UO2+2 + 1.648 H2O log_k 6.2063 - -delta_H -65.4616 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.648) -# Enthalpy of formation: -1424.6 kJ/mol + -delta_H -65.4616 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.648) +# Enthalpy of formation: -1424.6 kJ/mol -analytic -6.301e+1 -3.0276e-3 5.8033e+3 2.0471e+1 9.8569e+1 # -Range: 0-200 Schoepite-dehy(.85) UO3:.85H2O + 2 H+ = UO2+2 + 1.85 H2O log_k 5.097 - -delta_H -56.4009 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.85) -# Enthalpy of formation: -1491.4 kJ/mol + -delta_H -56.4009 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.85) +# Enthalpy of formation: -1491.4 kJ/mol -analytic -6.7912e+1 -3.042e-3 5.569e+3 2.2323e+1 9.4593e+1 # -Range: 0-200 Schoepite-dehy(.9) UO3:.9H2O + 2 H+ = UO2+2 + 1.9 H2O log_k 5.0167 - -delta_H -55.7928 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.9) -# Enthalpy of formation: -1506.3 kJ/mol + -delta_H -55.7928 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(.9) +# Enthalpy of formation: -1506.3 kJ/mol -analytic -1.5998e+1 -2.0144e-3 3.291e+3 4.2751e+0 5.1358e+1 # -Range: 0-300 Schoepite-dehy(1.0) UO3:H2O + 2 H+ = UO2+2 + 2 H2O log_k 5.1031 - -delta_H -57.4767 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(1.0) -# Enthalpy of formation: -1533.2 kJ/mol + -delta_H -57.4767 kJ/mol # Calculated enthalpy of reaction Schoepite-dehy(1.0) +# Enthalpy of formation: -1533.2 kJ/mol -analytic -7.208e+1 -3.0503e-3 5.8024e+3 2.3695e+1 9.8557e+1 # -Range: 0-200 Scolecite CaAl2Si3O10:3H2O + 8 H+ = Ca+2 + 2 Al+3 + 3 SiO2 + 7 H2O log_k 15.8767 - -delta_H -204.93 kJ/mol # Calculated enthalpy of reaction Scolecite -# Enthalpy of formation: -6048.92 kJ/mol + -delta_H -204.93 kJ/mol # Calculated enthalpy of reaction Scolecite +# Enthalpy of formation: -6048.92 kJ/mol -analytic 5.0656e+1 -3.1485e-3 1.0574e+4 -2.5663e+1 -5.2769e+5 # -Range: 0-300 Se Se + H2O + O2 = SeO3-2 + 2 H+ log_k 26.1436 - -delta_H -211.221 kJ/mol # Calculated enthalpy of reaction Se -# Enthalpy of formation: 0 kJ/mol + -delta_H -211.221 kJ/mol # Calculated enthalpy of reaction Se +# Enthalpy of formation: 0 kJ/mol -analytic -9.5144e+1 -6.5681e-2 1.0736e+4 4.2358e+1 1.6755e+2 # -Range: 0-300 Se2O5 Se2O5 + 2 H2O = SeO3-2 + SeO4-2 + 4 H+ log_k 9.5047 - -delta_H -123.286 kJ/mol # Calculated enthalpy of reaction Se2O5 -# Enthalpy of formation: -98.8 kcal/mol + -delta_H -123.286 kJ/mol # Calculated enthalpy of reaction Se2O5 +# Enthalpy of formation: -98.8 kcal/mol -analytic 1.1013e+2 -2.4491e-2 -5.6147e+2 -3.696e+1 -9.5719e+0 # -Range: 0-200 SeCl4 SeCl4 + 3 H2O = SeO3-2 + 4 Cl- + 6 H+ log_k 14.4361 - -delta_H -131.298 kJ/mol # Calculated enthalpy of reaction SeCl4 -# Enthalpy of formation: -45.1 kcal/mol + -delta_H -131.298 kJ/mol # Calculated enthalpy of reaction SeCl4 +# Enthalpy of formation: -45.1 kcal/mol -analytic -4.0215e+2 -1.8323e-1 1.3074e+4 1.7267e+2 2.0413e+2 # -Range: 0-300 SeO3 SeO3 + H2O = SeO4-2 + 2 H+ log_k 19.2015 - -delta_H -143.022 kJ/mol # Calculated enthalpy of reaction SeO3 -# Enthalpy of formation: -40.7 kcal/mol + -delta_H -143.022 kJ/mol # Calculated enthalpy of reaction SeO3 +# Enthalpy of formation: -40.7 kcal/mol -analytic -1.4199e+2 -6.4398e-2 9.5505e+3 5.9941e+1 1.4907e+2 # -Range: 0-300 Sellaite MgF2 = Mg+2 + 2 F- log_k -9.3843 - -delta_H -12.4547 kJ/mol # Calculated enthalpy of reaction Sellaite -# Enthalpy of formation: -1124.2 kJ/mol + -delta_H -12.4547 kJ/mol # Calculated enthalpy of reaction Sellaite +# Enthalpy of formation: -1124.2 kJ/mol -analytic -2.6901e+2 -8.5487e-2 6.8237e+3 1.0595e+2 1.0656e+2 # -Range: 0-300 Sepiolite Mg4Si6O15(OH)2:6H2O + 8 H+ = 4 Mg+2 + 6 SiO2 + 11 H2O log_k 30.4439 - -delta_H -157.339 kJ/mol # Calculated enthalpy of reaction Sepiolite -# Enthalpy of formation: -2418 kcal/mol + -delta_H -157.339 kJ/mol # Calculated enthalpy of reaction Sepiolite +# Enthalpy of formation: -2418 kcal/mol -analytic 1.869e+1 4.7544e-2 2.6765e+4 -2.5301e+1 -2.6498e+6 # -Range: 0-300 Shcherbinaite V2O5 + 2 H+ = H2O + 2 VO2+ log_k -1.452 - -delta_H -34.7917 kJ/mol # Calculated enthalpy of reaction Shcherbinaite -# Enthalpy of formation: -1550.6 kJ/mol + -delta_H -34.7917 kJ/mol # Calculated enthalpy of reaction Shcherbinaite +# Enthalpy of formation: -1550.6 kJ/mol -analytic -1.4791e+2 -2.2464e-2 6.6865e+3 5.2832e+1 1.0438e+2 # -Range: 0-300 Si Si + O2 = SiO2 log_k 148.9059 - -delta_H -865.565 kJ/mol # Calculated enthalpy of reaction Si -# Enthalpy of formation: 0 kJ/mol + -delta_H -865.565 kJ/mol # Calculated enthalpy of reaction Si +# Enthalpy of formation: 0 kJ/mol -analytic -5.7245e+2 -7.6302e-2 8.3516e+4 2.0045e+2 -2.8494e+6 # -Range: 0-300 SiO2(am) SiO2 = SiO2 log_k -2.7136 - -delta_H 20.0539 kJ/mol # Calculated enthalpy of reaction SiO2(am) -# Enthalpy of formation: -214.568 kcal/mol + -delta_H 20.0539 kJ/mol # Calculated enthalpy of reaction SiO2(am) +# Enthalpy of formation: -214.568 kcal/mol -analytic 1.2109e+0 7.0767e-3 2.3634e+3 -3.4449e+0 -4.8591e+5 # -Range: 0-300 Siderite FeCO3 + H+ = Fe+2 + HCO3- log_k -0.192 - -delta_H -32.5306 kJ/mol # Calculated enthalpy of reaction Siderite -# Enthalpy of formation: -179.173 kcal/mol + -delta_H -32.5306 kJ/mol # Calculated enthalpy of reaction Siderite +# Enthalpy of formation: -179.173 kcal/mol -analytic -1.599e+2 -4.9361e-2 5.4947e+3 6.3032e+1 8.5787e+1 # -Range: 0-300 Sillimanite Al2SiO5 + 6 H+ = SiO2 + 2 Al+3 + 3 H2O log_k 16.308 - -delta_H -238.442 kJ/mol # Calculated enthalpy of reaction Sillimanite -# Enthalpy of formation: -615.099 kcal/mol + -delta_H -238.442 kJ/mol # Calculated enthalpy of reaction Sillimanite +# Enthalpy of formation: -615.099 kcal/mol -analytic -7.161e+1 -3.2196e-2 1.2493e+4 2.2449e+1 1.9496e+2 # -Range: 0-300 Sklodowskite Mg(H3O)2(UO2)2(SiO4)2:4H2O + 6 H+ = Mg+2 + 2 SiO2 + 2 UO2+2 + 10 H2O log_k 13.7915 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sklodowskite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sklodowskite +# Enthalpy of formation: 0 kcal/mol Sm Sm + 2 H+ + 0.5 O2 = H2O + Sm+2 log_k 133.1614 - -delta_H -783.944 kJ/mol # Calculated enthalpy of reaction Sm -# Enthalpy of formation: 0 kJ/mol + -delta_H -783.944 kJ/mol # Calculated enthalpy of reaction Sm +# Enthalpy of formation: 0 kJ/mol -analytic -7.1599e+1 -2.0083e-2 4.2693e+4 2.7291e+1 6.6621e+2 # -Range: 0-300 Sm(OH)3 Sm(OH)3 + 3 H+ = Sm+3 + 3 H2O log_k 16.4852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)3 +# Enthalpy of formation: 0 kcal/mol Sm(OH)3(am) Sm(OH)3 + 3 H+ = Sm+3 + 3 H2O log_k 18.5852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm(OH)3(am) +# Enthalpy of formation: 0 kcal/mol Sm2(CO3)3 Sm2(CO3)3 + 3 H+ = 2 Sm+3 + 3 HCO3- log_k -3.5136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2(CO3)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2(CO3)3 +# Enthalpy of formation: 0 kcal/mol Sm2(SO4)3 Sm2(SO4)3 = 2 Sm+3 + 3 SO4-2 log_k -9.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2(SO4)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2(SO4)3 +# Enthalpy of formation: 0 kcal/mol Sm2O3 Sm2O3 + 6 H+ = 2 Sm+3 + 3 H2O log_k 42.9 - -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Sm2O3 +# Enthalpy of formation: 0 kcal/mol SmF3:.5H2O SmF3:.5H2O = 0.5 H2O + Sm+3 + 3 F- log_k -17.5 - -delta_H 0 # Not possible to calculate enthalpy of reaction SmF3:.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SmF3:.5H2O +# Enthalpy of formation: 0 kcal/mol SmPO4:10H2O SmPO4:10H2O + H+ = HPO4-2 + Sm+3 + 10 H2O log_k -12.1782 - -delta_H 0 # Not possible to calculate enthalpy of reaction SmPO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SmPO4:10H2O +# Enthalpy of formation: 0 kcal/mol Smectite-high-Fe-Mg # Ca.025Na.1K.2Fe++.5Fe+++.2Mg1.15Al1.25Si3.5H2O12 +8.0000 H+ = + 0.0250 Ca++ + 0.1000 Na+ + 0.2000 Fe+++ + 0.2000 K+ + 0.5000 Fe++ + 1.1500 Mg++ + 1.2500 Al+++ + 3.5000 SiO2 + 5.0000 H2O Ca.025Na.1K.2Fe.5Fe.2Mg1.15Al1.25Si3.5H2O12 + 8 H+ = 0.025 Ca+2 + 0.1 Na+ + 0.2 Fe+3 + 0.2 K+ + 0.5 Fe+2 + 1.15 Mg+2 + 1.25 Al+3 + 3.5 SiO2 + 5 H2O log_k 17.42 - -delta_H -199.841 kJ/mol # Calculated enthalpy of reaction Smectite-high-Fe-Mg -# Enthalpy of formation: -1351.39 kcal/mol + -delta_H -199.841 kJ/mol # Calculated enthalpy of reaction Smectite-high-Fe-Mg +# Enthalpy of formation: -1351.39 kcal/mol -analytic -9.6102e+0 1.2551e-3 1.8157e+4 -7.9862e+0 -1.3005e+6 # -Range: 0-300 @@ -15637,1456 +15637,1456 @@ Smectite-low-Fe-Mg # Ca.02Na.15K.2Fe++.29Fe+++.16Mg.9Al1.25Si3.75H2O1 +7.0000 H+ = + 0.0200 Ca++ + 0.1500 Na+ + 0.1600 Fe+++ + 0.2000 K+ + 0.2900 Fe++ + 0.9000 Mg++ + 1.2500 Al+++ + 3.7500 SiO2 + 4.5000 H2O Ca.02Na.15K.2Fe.29Fe.16Mg.9Al1.25Si3.75H2O12 + 7 H+ = 0.02 Ca+2 + 0.15 Na+ + 0.16 Fe+3 + 0.2 K+ + 0.29 Fe+2 + 0.9 Mg+2 + 1.25 Al+3 + 3.75 SiO2 + 4.5 H2O log_k 11.0405 - -delta_H -144.774 kJ/mol # Calculated enthalpy of reaction Smectite-low-Fe-Mg -# Enthalpy of formation: -1352.12 kcal/mol + -delta_H -144.774 kJ/mol # Calculated enthalpy of reaction Smectite-low-Fe-Mg +# Enthalpy of formation: -1352.12 kcal/mol -analytic -1.7003e+1 6.9848e-3 1.8359e+4 -6.8896e+0 -1.6637e+6 # -Range: 0-300 Smithsonite ZnCO3 + H+ = HCO3- + Zn+2 log_k 0.4633 - -delta_H -30.5348 kJ/mol # Calculated enthalpy of reaction Smithsonite -# Enthalpy of formation: -194.26 kcal/mol + -delta_H -30.5348 kJ/mol # Calculated enthalpy of reaction Smithsonite +# Enthalpy of formation: -194.26 kcal/mol -analytic -1.6452e+2 -5.0231e-2 5.5925e+3 6.5139e+1 8.7314e+1 # -Range: 0-300 Sn Sn + 2 H+ + 0.5 O2 = H2O + Sn+2 log_k 47.8615 - -delta_H -288.558 kJ/mol # Calculated enthalpy of reaction Sn -# Enthalpy of formation: 0 kcal/mol + -delta_H -288.558 kJ/mol # Calculated enthalpy of reaction Sn +# Enthalpy of formation: 0 kcal/mol -analytic -1.3075e+2 -3.3807e-2 1.9548e+4 5.0382e+1 -1.3868e+5 # -Range: 0-300 Sn(OH)2 Sn(OH)2 + 2 H+ = Sn+2 + 2 H2O log_k 1.84 - -delta_H -19.6891 kJ/mol # Calculated enthalpy of reaction Sn(OH)2 -# Enthalpy of formation: -560.774 kJ/mol + -delta_H -19.6891 kJ/mol # Calculated enthalpy of reaction Sn(OH)2 +# Enthalpy of formation: -560.774 kJ/mol -analytic -6.1677e+1 -5.3258e-3 3.3656e+3 2.1748e+1 5.7174e+1 # -Range: 0-200 Sn(SO4)2 Sn(SO4)2 = Sn+4 + 2 SO4-2 log_k 16.0365 - -delta_H -159.707 kJ/mol # Calculated enthalpy of reaction Sn(SO4)2 -# Enthalpy of formation: -389.4 kcal/mol + -delta_H -159.707 kJ/mol # Calculated enthalpy of reaction Sn(SO4)2 +# Enthalpy of formation: -389.4 kcal/mol -analytic 1.7787e+1 -5.1758e-2 3.7671e+3 4.1861e-1 6.3965e+1 # -Range: 0-200 Sn3S4 Sn3S4 + 4 H+ = Sn+4 + 2 Sn+2 + 4 HS- log_k -61.979 - -delta_H 318.524 kJ/mol # Calculated enthalpy of reaction Sn3S4 -# Enthalpy of formation: -88.5 kcal/mol + -delta_H 318.524 kJ/mol # Calculated enthalpy of reaction Sn3S4 +# Enthalpy of formation: -88.5 kcal/mol -analytic -8.1325e+1 -7.4589e-2 -1.7953e+4 4.1138e+1 -3.0484e+2 # -Range: 0-200 SnBr2 SnBr2 = Sn+2 + 2 Br- log_k -1.4369 - -delta_H 8.24248 kJ/mol # Calculated enthalpy of reaction SnBr2 -# Enthalpy of formation: -62.15 kcal/mol + -delta_H 8.24248 kJ/mol # Calculated enthalpy of reaction SnBr2 +# Enthalpy of formation: -62.15 kcal/mol -analytic 2.5384e+1 -1.735e-2 -2.6653e+3 -5.14e+0 -4.5269e+1 # -Range: 0-200 SnBr4 SnBr4 = Sn+4 + 4 Br- log_k 11.1272 - -delta_H -78.3763 kJ/mol # Calculated enthalpy of reaction SnBr4 -# Enthalpy of formation: -377.391 kJ/mol + -delta_H -78.3763 kJ/mol # Calculated enthalpy of reaction SnBr4 +# Enthalpy of formation: -377.391 kJ/mol -analytic 1.3516e+1 -5.5193e-2 -8.1888e+1 5.7935e+0 -1.394e+0 # -Range: 0-200 SnCl2 SnCl2 = Sn+2 + 2 Cl- log_k 0.3225 - -delta_H -11.9913 kJ/mol # Calculated enthalpy of reaction SnCl2 -# Enthalpy of formation: -79.1 kcal/mol + -delta_H -11.9913 kJ/mol # Calculated enthalpy of reaction SnCl2 +# Enthalpy of formation: -79.1 kcal/mol -analytic 7.9717e+0 -2.1475e-2 -1.1676e+3 1.0749e+0 -1.9829e+1 # -Range: 0-200 SnSO4 SnSO4 = SO4-2 + Sn+2 log_k -23.9293 - -delta_H 96.232 kJ/mol # Calculated enthalpy of reaction SnSO4 -# Enthalpy of formation: -242.5 kcal/mol + -delta_H 96.232 kJ/mol # Calculated enthalpy of reaction SnSO4 +# Enthalpy of formation: -242.5 kcal/mol -analytic 3.0046e+1 -1.4238e-2 -7.5915e+3 -9.8122e+0 -1.2892e+2 # -Range: 0-200 SnSe SnSe = Se-2 + Sn+2 log_k -32.9506 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnSe -# Enthalpy of formation: -21.2 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SnSe +# Enthalpy of formation: -21.2 kcal/mol -analytic 4.2342e+0 9.5462e-4 -8.0009e+3 -4.2997e+0 -1.3587e+2 # -Range: 0-200 SnSe2 SnSe2 = Sn+4 + 2 Se-2 log_k -66.657 - -delta_H 0 # Not possible to calculate enthalpy of reaction SnSe2 -# Enthalpy of formation: -29.8 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SnSe2 +# Enthalpy of formation: -29.8 kcal/mol -analytic -3.6819e+1 -2.0966e-2 -1.5197e+4 1.107e+1 -2.5806e+2 # -Range: 0-200 Soddyite (UO2)2SiO4:2H2O + 4 H+ = SiO2 + 2 UO2+2 + 4 H2O log_k 0.392 - -delta_H 0 # Not possible to calculate enthalpy of reaction Soddyite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Soddyite +# Enthalpy of formation: 0 kcal/mol Sphaerocobaltite CoCO3 + H+ = Co+2 + HCO3- log_k -0.2331 - -delta_H -30.7064 kJ/mol # Calculated enthalpy of reaction Sphaerocobaltite -# Enthalpy of formation: -171.459 kcal/mol + -delta_H -30.7064 kJ/mol # Calculated enthalpy of reaction Sphaerocobaltite +# Enthalpy of formation: -171.459 kcal/mol -analytic -1.5709e+2 -4.8957e-2 5.3158e+3 6.2075e+1 8.2995e+1 # -Range: 0-300 Sphalerite ZnS + H+ = HS- + Zn+2 log_k -11.44 - -delta_H 35.5222 kJ/mol # Calculated enthalpy of reaction Sphalerite -# Enthalpy of formation: -49 kcal/mol + -delta_H 35.5222 kJ/mol # Calculated enthalpy of reaction Sphalerite +# Enthalpy of formation: -49 kcal/mol -analytic -1.5497e+2 -4.8953e-2 1.785e+3 6.1472e+1 2.7899e+1 # -Range: 0-300 Spinel Al2MgO4 + 8 H+ = Mg+2 + 2 Al+3 + 4 H2O log_k 37.6295 - -delta_H -398.108 kJ/mol # Calculated enthalpy of reaction Spinel -# Enthalpy of formation: -546.847 kcal/mol + -delta_H -398.108 kJ/mol # Calculated enthalpy of reaction Spinel +# Enthalpy of formation: -546.847 kcal/mol -analytic -3.3895e+2 -8.3595e-2 2.9251e+4 1.226e+2 4.5654e+2 # -Range: 0-300 Spinel-Co Co3O4 + 8 H+ = Co+2 + 2 Co+3 + 4 H2O log_k -6.4852 - -delta_H -126.415 kJ/mol # Calculated enthalpy of reaction Spinel-Co -# Enthalpy of formation: -891 kJ/mol + -delta_H -126.415 kJ/mol # Calculated enthalpy of reaction Spinel-Co +# Enthalpy of formation: -891 kJ/mol -analytic -3.2239e+2 -8.0782e-2 1.4635e+4 1.1755e+2 2.2846e+2 # -Range: 0-300 Spodumene LiAlSi2O6 + 4 H+ = Al+3 + Li+ + 2 H2O + 2 SiO2 log_k 6.9972 - -delta_H -89.1817 kJ/mol # Calculated enthalpy of reaction Spodumene -# Enthalpy of formation: -3054.75 kJ/mol + -delta_H -89.1817 kJ/mol # Calculated enthalpy of reaction Spodumene +# Enthalpy of formation: -3054.75 kJ/mol -analytic -9.8111e+0 2.1191e-3 9.692e+3 -3.0484e+0 -7.8822e+5 # -Range: 0-300 Sr Sr + 2 H+ + 0.5 O2 = H2O + Sr+2 log_k 141.7816 - -delta_H -830.679 kJ/mol # Calculated enthalpy of reaction Sr -# Enthalpy of formation: 0 kJ/mol + -delta_H -830.679 kJ/mol # Calculated enthalpy of reaction Sr +# Enthalpy of formation: 0 kJ/mol -analytic -1.6271e+2 -3.1212e-2 5.152e+4 5.9178e+1 -4.839e+5 # -Range: 0-300 Sr(NO3)2 Sr(NO3)2 = Sr+2 + 2 NO3- log_k 1.1493 - -delta_H 13.7818 kJ/mol # Calculated enthalpy of reaction Sr(NO3)2 -# Enthalpy of formation: -978.311 kJ/mol + -delta_H 13.7818 kJ/mol # Calculated enthalpy of reaction Sr(NO3)2 +# Enthalpy of formation: -978.311 kJ/mol -analytic 2.8914e+0 -1.2487e-2 -1.4872e+3 2.8124e+0 -2.5256e+1 # -Range: 0-200 Sr(NO3)2:4H2O Sr(NO3)2:4H2O = Sr+2 + 2 NO3- + 4 H2O log_k 0.6976 - -delta_H 47.9045 kJ/mol # Calculated enthalpy of reaction Sr(NO3)2:4H2O -# Enthalpy of formation: -2155.79 kJ/mol + -delta_H 47.9045 kJ/mol # Calculated enthalpy of reaction Sr(NO3)2:4H2O +# Enthalpy of formation: -2155.79 kJ/mol -analytic -8.4518e+1 -9.1155e-3 1.0856e+3 3.4061e+1 1.8464e+1 # -Range: 0-200 Sr(OH)2 Sr(OH)2 + 2 H+ = Sr+2 + 2 H2O log_k 27.5229 - -delta_H -153.692 kJ/mol # Calculated enthalpy of reaction Sr(OH)2 -# Enthalpy of formation: -968.892 kJ/mol + -delta_H -153.692 kJ/mol # Calculated enthalpy of reaction Sr(OH)2 +# Enthalpy of formation: -968.892 kJ/mol -analytic -5.1871e+1 -2.9123e-3 1.0175e+4 1.8643e+1 1.728e+2 # -Range: 0-200 Sr2SiO4 Sr2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Sr+2 log_k 42.8076 - -delta_H -244.583 kJ/mol # Calculated enthalpy of reaction Sr2SiO4 -# Enthalpy of formation: -2306.61 kJ/mol + -delta_H -244.583 kJ/mol # Calculated enthalpy of reaction Sr2SiO4 +# Enthalpy of formation: -2306.61 kJ/mol -analytic 3.0319e+1 2.0204e-3 1.2729e+4 -1.1584e+1 -1.948e+5 # -Range: 0-300 Sr3(AsO4)2 Sr3(AsO4)2 + 4 H+ = 2 H2AsO4- + 3 Sr+2 log_k 20.6256 - -delta_H -152.354 kJ/mol # Calculated enthalpy of reaction Sr3(AsO4)2 -# Enthalpy of formation: -3319.49 kJ/mol + -delta_H -152.354 kJ/mol # Calculated enthalpy of reaction Sr3(AsO4)2 +# Enthalpy of formation: -3319.49 kJ/mol -analytic -8.4749e+1 -2.9367e-2 9.5849e+3 3.3126e+1 1.6279e+2 # -Range: 0-200 SrBr2 SrBr2 = Sr+2 + 2 Br- log_k 13.1128 - -delta_H -75.106 kJ/mol # Calculated enthalpy of reaction SrBr2 -# Enthalpy of formation: -718.808 kJ/mol + -delta_H -75.106 kJ/mol # Calculated enthalpy of reaction SrBr2 +# Enthalpy of formation: -718.808 kJ/mol -analytic -1.8512e+2 -7.2423e-2 7.6861e+3 7.8401e+1 1.1999e+2 # -Range: 0-300 SrBr2:6H2O SrBr2:6H2O = Sr+2 + 2 Br- + 6 H2O log_k 3.6678 - -delta_H 23.367 kJ/mol # Calculated enthalpy of reaction SrBr2:6H2O -# Enthalpy of formation: -2532.31 kJ/mol + -delta_H 23.367 kJ/mol # Calculated enthalpy of reaction SrBr2:6H2O +# Enthalpy of formation: -2532.31 kJ/mol -analytic -2.247e+2 -6.792e-2 4.9432e+3 9.3758e+1 7.72e+1 # -Range: 0-300 SrBr2:H2O SrBr2:H2O = H2O + Sr+2 + 2 Br- log_k 9.6057 - -delta_H -47.5853 kJ/mol # Calculated enthalpy of reaction SrBr2:H2O -# Enthalpy of formation: -1032.17 kJ/mol + -delta_H -47.5853 kJ/mol # Calculated enthalpy of reaction SrBr2:H2O +# Enthalpy of formation: -1032.17 kJ/mol -analytic -1.9103e+2 -7.1402e-2 6.6358e+3 8.0673e+1 1.036e+2 # -Range: 0-300 SrCl2 SrCl2 = Sr+2 + 2 Cl- log_k 7.9389 - -delta_H -55.0906 kJ/mol # Calculated enthalpy of reaction SrCl2 -# Enthalpy of formation: -829.976 kJ/mol + -delta_H -55.0906 kJ/mol # Calculated enthalpy of reaction SrCl2 +# Enthalpy of formation: -829.976 kJ/mol -analytic -2.0097e+2 -7.6193e-2 7.0396e+3 8.405e+1 1.0991e+2 # -Range: 0-300 SrCl2:2H2O SrCl2:2H2O = Sr+2 + 2 Cl- + 2 H2O log_k 3.3248 - -delta_H -17.7313 kJ/mol # Calculated enthalpy of reaction SrCl2:2H2O -# Enthalpy of formation: -1439.01 kJ/mol + -delta_H -17.7313 kJ/mol # Calculated enthalpy of reaction SrCl2:2H2O +# Enthalpy of formation: -1439.01 kJ/mol -analytic -2.1551e+2 -7.4349e-2 5.94e+3 8.933e+1 9.2752e+1 # -Range: 0-300 SrCl2:6H2O SrCl2:6H2O = Sr+2 + 2 Cl- + 6 H2O log_k 1.5038 - -delta_H 24.6964 kJ/mol # Calculated enthalpy of reaction SrCl2:6H2O -# Enthalpy of formation: -2624.79 kJ/mol + -delta_H 24.6964 kJ/mol # Calculated enthalpy of reaction SrCl2:6H2O +# Enthalpy of formation: -2624.79 kJ/mol -analytic -1.3225e+2 -1.826e-2 3.7077e+3 5.1224e+1 6.3008e+1 # -Range: 0-200 SrCl2:H2O SrCl2:H2O = H2O + Sr+2 + 2 Cl- log_k 4.7822 - -delta_H -33.223 kJ/mol # Calculated enthalpy of reaction SrCl2:H2O -# Enthalpy of formation: -1137.68 kJ/mol + -delta_H -33.223 kJ/mol # Calculated enthalpy of reaction SrCl2:H2O +# Enthalpy of formation: -1137.68 kJ/mol -analytic -2.1825e+2 -7.7851e-2 6.5957e+3 9.0555e+1 1.0298e+2 # -Range: 0-300 SrCrO4 SrCrO4 = CrO4-2 + Sr+2 log_k -3.8849 - -delta_H -1.73636 kJ/mol # Calculated enthalpy of reaction SrCrO4 -# Enthalpy of formation: -341.855 kcal/mol + -delta_H -1.73636 kJ/mol # Calculated enthalpy of reaction SrCrO4 +# Enthalpy of formation: -341.855 kcal/mol -analytic 2.3424e+1 -1.5589e-2 -2.1393e+3 -6.2628e+0 -3.6337e+1 # -Range: 0-200 SrF2 SrF2 = Sr+2 + 2 F- log_k -8.54 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrF2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SrF2 +# Enthalpy of formation: 0 kcal/mol SrHPO4 SrHPO4 = HPO4-2 + Sr+2 log_k -6.2416 - -delta_H -19.7942 kJ/mol # Calculated enthalpy of reaction SrHPO4 -# Enthalpy of formation: -1823.19 kJ/mol + -delta_H -19.7942 kJ/mol # Calculated enthalpy of reaction SrHPO4 +# Enthalpy of formation: -1823.19 kJ/mol -analytic 5.4057e+0 -1.8533e-2 -8.2021e+2 -1.3667e+0 -1.393e+1 # -Range: 0-200 SrI2 SrI2 = Sr+2 + 2 I- log_k 19.2678 - -delta_H -103.218 kJ/mol # Calculated enthalpy of reaction SrI2 -# Enthalpy of formation: -561.494 kJ/mol + -delta_H -103.218 kJ/mol # Calculated enthalpy of reaction SrI2 +# Enthalpy of formation: -561.494 kJ/mol -analytic -1.8168e+2 -7.2083e-2 9.0759e+3 7.7577e+1 1.4167e+2 # -Range: 0-300 SrO SrO + 2 H+ = H2O + Sr+2 log_k 41.8916 - -delta_H -243.875 kJ/mol # Calculated enthalpy of reaction SrO -# Enthalpy of formation: -592.871 kJ/mol + -delta_H -243.875 kJ/mol # Calculated enthalpy of reaction SrO +# Enthalpy of formation: -592.871 kJ/mol -analytic -5.8463e+1 -1.424e-2 1.4417e+4 2.2725e+1 2.2499e+2 # -Range: 0-300 SrS SrS + H+ = HS- + Sr+2 log_k 14.7284 - -delta_H -93.3857 kJ/mol # Calculated enthalpy of reaction SrS -# Enthalpy of formation: -473.63 kJ/mol + -delta_H -93.3857 kJ/mol # Calculated enthalpy of reaction SrS +# Enthalpy of formation: -473.63 kJ/mol -analytic -1.3048e+2 -4.4837e-2 7.8429e+3 5.3442e+1 1.2242e+2 # -Range: 0-300 SrSeO4 SrSeO4 = SeO4-2 + Sr+2 log_k -4.4 - -delta_H 0 # Not possible to calculate enthalpy of reaction SrSeO4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction SrSeO4 +# Enthalpy of formation: 0 kcal/mol SrSiO3 SrSiO3 + 2 H+ = H2O + SiO2 + Sr+2 log_k 14.8438 - -delta_H -79.6112 kJ/mol # Calculated enthalpy of reaction SrSiO3 -# Enthalpy of formation: -1634.83 kJ/mol + -delta_H -79.6112 kJ/mol # Calculated enthalpy of reaction SrSiO3 +# Enthalpy of formation: -1634.83 kJ/mol -analytic 2.2592e+1 6.0821e-3 5.9982e+3 -1.0213e+1 -3.9529e+5 # -Range: 0-300 SrUO4(alpha) SrUO4 + 4 H+ = Sr+2 + UO2+2 + 2 H2O log_k 19.165 - -delta_H -151.984 kJ/mol # Calculated enthalpy of reaction SrUO4(alpha) -# Enthalpy of formation: -1989.6 kJ/mol + -delta_H -151.984 kJ/mol # Calculated enthalpy of reaction SrUO4(alpha) +# Enthalpy of formation: -1989.6 kJ/mol -analytic -7.4169e+1 -1.6686e-2 9.8721e+3 2.6345e+1 1.5407e+2 # -Range: 0-300 SrZrO3 SrZrO3 + 4 H+ = H2O + Sr+2 + Zr(OH)2+2 log_k -131.4664 - -delta_H 706.983 kJ/mol # Calculated enthalpy of reaction SrZrO3 -# Enthalpy of formation: -629.677 kcal/mol + -delta_H 706.983 kJ/mol # Calculated enthalpy of reaction SrZrO3 +# Enthalpy of formation: -629.677 kcal/mol -analytic -5.8512e+1 -9.5738e-3 -3.5254e+4 1.9459e+1 -5.9865e+2 # -Range: 0-200 Starkeyite MgSO4:4H2O = Mg+2 + SO4-2 + 4 H2O log_k -0.9999 - -delta_H 0 # Not possible to calculate enthalpy of reaction Starkeyite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Starkeyite +# Enthalpy of formation: 0 kcal/mol Stibnite Sb2S3 + 6 H2O = 2 Sb(OH)3 + 3 H+ + 3 HS- log_k -53.11 - -delta_H 0 # Not possible to calculate enthalpy of reaction Stibnite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Stibnite +# Enthalpy of formation: 0 kcal/mol -analytic 2.5223e+1 -5.9186e-2 -2.086e+4 3.6892e+0 -3.2551e+2 # -Range: 0-300 Stilbite Ca1.019Na.136K.006Al2.18Si6.82O18:7.33H2O + 8.72 H+ = 0.006 K+ + 0.136 Na+ + 1.019 Ca+2 + 2.18 Al+3 + 6.82 SiO2 + 11.69 H2O log_k 1.0545 - -delta_H -83.0019 kJ/mol # Calculated enthalpy of reaction Stilbite -# Enthalpy of formation: -11005.7 kJ/mol + -delta_H -83.0019 kJ/mol # Calculated enthalpy of reaction Stilbite +# Enthalpy of formation: -11005.7 kJ/mol -analytic -2.4483e+1 3.0987e-2 2.8013e+4 -1.5802e+1 -3.4491e+6 # -Range: 0-300 Stilleite ZnSe = Se-2 + Zn+2 log_k -23.9693 - -delta_H 0 # Not possible to calculate enthalpy of reaction Stilleite -# Enthalpy of formation: -37.97 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Stilleite +# Enthalpy of formation: -37.97 kcal/mol -analytic -6.1948e+1 -1.7004e-2 -2.4498e+3 2.0712e+1 -3.8209e+1 # -Range: 0-300 Strengite FePO4:2H2O + H+ = Fe+3 + HPO4-2 + 2 H2O log_k -11.3429 - -delta_H -37.107 kJ/mol # Calculated enthalpy of reaction Strengite -# Enthalpy of formation: -1876.23 kJ/mol + -delta_H -37.107 kJ/mol # Calculated enthalpy of reaction Strengite +# Enthalpy of formation: -1876.23 kJ/mol -analytic -2.7752e+2 -9.4014e-2 7.6862e+3 1.0846e+2 1.2002e+2 # -Range: 0-300 Strontianite SrCO3 + H+ = HCO3- + Sr+2 log_k -0.3137 - -delta_H -8.23411 kJ/mol # Calculated enthalpy of reaction Strontianite -# Enthalpy of formation: -294.6 kcal/mol + -delta_H -8.23411 kJ/mol # Calculated enthalpy of reaction Strontianite +# Enthalpy of formation: -294.6 kcal/mol -analytic -1.3577e+2 -4.4884e-2 3.5729e+3 5.5296e+1 5.5791e+1 # -Range: 0-300 Sylvite KCl = Cl- + K+ log_k 0.8459 - -delta_H 17.4347 kJ/mol # Calculated enthalpy of reaction Sylvite -# Enthalpy of formation: -104.37 kcal/mol + -delta_H 17.4347 kJ/mol # Calculated enthalpy of reaction Sylvite +# Enthalpy of formation: -104.37 kcal/mol -analytic -8.1204e+1 -3.3074e-2 8.2819e+2 3.6014e+1 1.2947e+1 # -Range: 0-300 Syngenite K2Ca(SO4)2:H2O = Ca+2 + H2O + 2 K+ + 2 SO4-2 log_k -7.6001 - -delta_H 0 # Not possible to calculate enthalpy of reaction Syngenite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Syngenite +# Enthalpy of formation: 0 kcal/mol Tachyhydrite Mg2CaCl6:12H2O = Ca+2 + 2 Mg+2 + 6 Cl- + 12 H2O log_k 17.1439 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tachyhydrite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tachyhydrite +# Enthalpy of formation: 0 kcal/mol Talc Mg3Si4O10(OH)2 + 6 H+ = 3 Mg+2 + 4 H2O + 4 SiO2 log_k 21.1383 - -delta_H -148.737 kJ/mol # Calculated enthalpy of reaction Talc -# Enthalpy of formation: -1410.92 kcal/mol + -delta_H -148.737 kJ/mol # Calculated enthalpy of reaction Talc +# Enthalpy of formation: -1410.92 kcal/mol -analytic 1.1164e+1 2.4724e-2 1.981e+4 -1.7568e+1 -1.8241e+6 # -Range: 0-300 Tarapacaite K2CrO4 = CrO4-2 + 2 K+ log_k -0.4037 - -delta_H 17.8238 kJ/mol # Calculated enthalpy of reaction Tarapacaite -# Enthalpy of formation: -335.4 kcal/mol + -delta_H 17.8238 kJ/mol # Calculated enthalpy of reaction Tarapacaite +# Enthalpy of formation: -335.4 kcal/mol -analytic 2.7953e+1 -1.0863e-2 -2.7589e+3 -6.4154e+0 -4.6859e+1 # -Range: 0-200 Tb Tb + 3 H+ + 0.75 O2 = Tb+3 + 1.5 H2O log_k 181.417 - -delta_H -1117.97 kJ/mol # Calculated enthalpy of reaction Tb -# Enthalpy of formation: 0 kJ/mol + -delta_H -1117.97 kJ/mol # Calculated enthalpy of reaction Tb +# Enthalpy of formation: 0 kJ/mol -analytic -5.2354e+1 -2.692e-2 5.8391e+4 1.8555e+1 9.1115e+2 # -Range: 0-300 Tb(OH)3 Tb(OH)3 + 3 H+ = Tb+3 + 3 H2O log_k 15.6852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(OH)3 +# Enthalpy of formation: 0 kcal/mol Tb(OH)3(am) Tb(OH)3 + 3 H+ = Tb+3 + 3 H2O log_k 18.7852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb(OH)3(am) +# Enthalpy of formation: 0 kcal/mol Tb2(CO3)3 Tb2(CO3)3 + 3 H+ = 2 Tb+3 + 3 HCO3- log_k -3.2136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb2(CO3)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb2(CO3)3 +# Enthalpy of formation: 0 kcal/mol Tb2O3 Tb2O3 + 6 H+ = 2 Tb+3 + 3 H2O log_k 47.1 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tb2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tb2O3 +# Enthalpy of formation: 0 kcal/mol TbF3:.5H2O TbF3:.5H2O = 0.5 H2O + Tb+3 + 3 F- log_k -16.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction TbF3:.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TbF3:.5H2O +# Enthalpy of formation: 0 kcal/mol TbPO4:10H2O TbPO4:10H2O + H+ = HPO4-2 + Tb+3 + 10 H2O log_k -11.9782 - -delta_H 0 # Not possible to calculate enthalpy of reaction TbPO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TbPO4:10H2O +# Enthalpy of formation: 0 kcal/mol Tc Tc + 1.75 O2 + 0.5 H2O = H+ + TcO4- log_k 93.5811 - -delta_H -552.116 kJ/mol # Calculated enthalpy of reaction Tc -# Enthalpy of formation: 0 kJ/mol + -delta_H -552.116 kJ/mol # Calculated enthalpy of reaction Tc +# Enthalpy of formation: 0 kJ/mol -analytic 2.267e+1 -1.205e-2 3.0174e+4 -8.4053e+0 -5.2577e+5 # -Range: 0-300 Tc(OH)2 Tc(OH)2 + 3 H+ + 0.25 O2 = Tc+3 + 2.5 H2O log_k 5.2714 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc(OH)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc(OH)2 +# Enthalpy of formation: 0 kcal/mol Tc(OH)3 Tc(OH)3 + 3 H+ = Tc+3 + 3 H2O log_k -9.2425 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc(OH)3 +# Enthalpy of formation: 0 kcal/mol Tc2O7 Tc2O7 + H2O = 2 H+ + 2 TcO4- log_k 13.1077 - -delta_H -26.5357 kJ/mol # Calculated enthalpy of reaction Tc2O7 -# Enthalpy of formation: -1120.16 kJ/mol + -delta_H -26.5357 kJ/mol # Calculated enthalpy of reaction Tc2O7 +# Enthalpy of formation: -1120.16 kJ/mol -analytic 8.7535e+1 1.5366e-2 -1.1919e+3 -3.0317e+1 -2.0271e+1 # -Range: 0-200 Tc2S7 Tc2S7 + 8 H2O = 2 TcO4- + 7 HS- + 9 H+ log_k -230.241 - -delta_H 1356.41 kJ/mol # Calculated enthalpy of reaction Tc2S7 -# Enthalpy of formation: -615 kJ/mol + -delta_H 1356.41 kJ/mol # Calculated enthalpy of reaction Tc2S7 +# Enthalpy of formation: -615 kJ/mol -analytic 2.456e+2 -4.3355e-2 -8.4192e+4 -7.2967e+1 -1.4298e+3 # -Range: 0-200 Tc3O4 Tc3O4 + 9 H+ + 0.25 O2 = 3 Tc+3 + 4.5 H2O log_k -19.2271 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc3O4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc3O4 +# Enthalpy of formation: 0 kcal/mol Tc4O7 Tc4O7 + 10 H+ = 2 Tc+3 + 2 TcO+2 + 5 H2O log_k -26.0149 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tc4O7 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tc4O7 +# Enthalpy of formation: 0 kcal/mol TcO2:2H2O(am) TcO2:2H2O + 2 H+ = TcO+2 + 3 H2O log_k -4.2319 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO2:2H2O(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO2:2H2O(am) +# Enthalpy of formation: 0 kcal/mol TcO3 TcO3 + H2O = TcO4-2 + 2 H+ log_k -23.1483 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcO3 -# Enthalpy of formation: -540 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TcO3 +# Enthalpy of formation: -540 kJ/mol TcOH TcOH + 3 H+ + 0.5 O2 = Tc+3 + 2 H2O log_k 24.9009 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcOH -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TcOH +# Enthalpy of formation: 0 kcal/mol TcS2 TcS2 + H2O = TcO+2 + 2 HS- log_k -65.9742 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcS2 -# Enthalpy of formation: -224 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TcS2 +# Enthalpy of formation: -224 kJ/mol TcS3 TcS3 + 4 H2O = TcO4-2 + 3 HS- + 5 H+ log_k -119.5008 - -delta_H 0 # Not possible to calculate enthalpy of reaction TcS3 -# Enthalpy of formation: -276 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TcS3 +# Enthalpy of formation: -276 kJ/mol Tenorite CuO + 2 H+ = Cu+2 + H2O log_k 7.656 - -delta_H -64.5047 kJ/mol # Calculated enthalpy of reaction Tenorite -# Enthalpy of formation: -37.2 kcal/mol + -delta_H -64.5047 kJ/mol # Calculated enthalpy of reaction Tenorite +# Enthalpy of formation: -37.2 kcal/mol -analytic -8.9899e+1 -1.8886e-2 6.0346e+3 3.3517e+1 9.4191e+1 # -Range: 0-300 Tephroite Mn2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Mn+2 log_k 23.0781 - -delta_H -160.1 kJ/mol # Calculated enthalpy of reaction Tephroite -# Enthalpy of formation: -1730.47 kJ/mol + -delta_H -160.1 kJ/mol # Calculated enthalpy of reaction Tephroite +# Enthalpy of formation: -1730.47 kJ/mol -analytic -3.244e+1 -1.1023e-2 8.891e+3 1.1691e+1 1.3875e+2 # -Range: 0-300 Th Th + 4 H+ + O2 = Th+4 + 2 H2O log_k 209.6028 - -delta_H -1328.56 kJ/mol # Calculated enthalpy of reaction Th -# Enthalpy of formation: 0 kJ/mol + -delta_H -1328.56 kJ/mol # Calculated enthalpy of reaction Th +# Enthalpy of formation: 0 kJ/mol -analytic -2.8256e+1 -1.1963e-2 6.887e+4 4.2068e+0 1.0747e+3 # -Range: 0-300 Th(NO3)4:5H2O Th(NO3)4:5H2O = Th+4 + 4 NO3- + 5 H2O log_k 1.7789 - -delta_H -18.1066 kJ/mol # Calculated enthalpy of reaction Th(NO3)4:5H2O -# Enthalpy of formation: -3007.35 kJ/mol + -delta_H -18.1066 kJ/mol # Calculated enthalpy of reaction Th(NO3)4:5H2O +# Enthalpy of formation: -3007.35 kJ/mol -analytic -1.248e+2 -2.0405e-2 5.1601e+3 4.6613e+1 8.7669e+1 # -Range: 0-200 Th(OH)4 Th(OH)4 + 4 H+ = Th+4 + 4 H2O log_k 9.6543 - -delta_H -140.336 kJ/mol # Calculated enthalpy of reaction Th(OH)4 -# Enthalpy of formation: -423.527 kcal/mol + -delta_H -140.336 kJ/mol # Calculated enthalpy of reaction Th(OH)4 +# Enthalpy of formation: -423.527 kcal/mol -analytic -1.4031e+2 -9.2493e-3 1.2345e+4 4.499e+1 2.0968e+2 # -Range: 0-200 Th(SO4)2 Th(SO4)2 = Th+4 + 2 SO4-2 log_k -20.3006 - -delta_H -46.1064 kJ/mol # Calculated enthalpy of reaction Th(SO4)2 -# Enthalpy of formation: -2542.12 kJ/mol + -delta_H -46.1064 kJ/mol # Calculated enthalpy of reaction Th(SO4)2 +# Enthalpy of formation: -2542.12 kJ/mol -analytic -8.4525e+0 -3.5442e-2 0e+0 0e+0 -1.154e+5 # -Range: 0-200 Th2S3 Th2S3 + 5 H+ + 0.5 O2 = H2O + 2 Th+4 + 3 HS- log_k 95.229 - -delta_H -783.243 kJ/mol # Calculated enthalpy of reaction Th2S3 -# Enthalpy of formation: -1082.89 kJ/mol + -delta_H -783.243 kJ/mol # Calculated enthalpy of reaction Th2S3 +# Enthalpy of formation: -1082.89 kJ/mol -analytic -3.2969e+2 -1.109e-1 4.6877e+4 1.2152e+2 7.3157e+2 # -Range: 0-300 Th2Se3 Th2Se3 + 2 H+ + 0.5 O2 = H2O + 2 Th+4 + 3 Se-2 log_k 59.1655 - -delta_H 0 # Not possible to calculate enthalpy of reaction Th2Se3 -# Enthalpy of formation: -224 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Th2Se3 +# Enthalpy of formation: -224 kcal/mol -analytic -1.0083e+1 6.024e-3 3.4039e+4 -1.8884e+1 5.7804e+2 # -Range: 0-200 Th7S12 Th7S12 + 16 H+ + O2 = 2 H2O + 7 Th+4 + 12 HS- log_k 204.074 - -delta_H -1999.4 kJ/mol # Calculated enthalpy of reaction Th7S12 -# Enthalpy of formation: -4136.58 kJ/mol + -delta_H -1999.4 kJ/mol # Calculated enthalpy of reaction Th7S12 +# Enthalpy of formation: -4136.58 kJ/mol -analytic -2.1309e+2 -1.4149e-1 9.855e+4 5.2042e+1 1.6736e+3 # -Range: 0-200 ThBr4 ThBr4 = Th+4 + 4 Br- log_k 34.0803 - -delta_H -290.23 kJ/mol # Calculated enthalpy of reaction ThBr4 -# Enthalpy of formation: -964.803 kJ/mol + -delta_H -290.23 kJ/mol # Calculated enthalpy of reaction ThBr4 +# Enthalpy of formation: -964.803 kJ/mol -analytic 2.9902e+1 -3.3109e-2 1.0988e+4 -9.2209e+0 1.8657e+2 # -Range: 0-200 ThCl4 ThCl4 = Th+4 + 4 Cl- log_k 23.8491 - -delta_H -251.094 kJ/mol # Calculated enthalpy of reaction ThCl4 -# Enthalpy of formation: -283.519 kcal/mol + -delta_H -251.094 kJ/mol # Calculated enthalpy of reaction ThCl4 +# Enthalpy of formation: -283.519 kcal/mol -analytic -5.934e+0 -4.164e-2 9.8623e+3 3.6804e+0 1.6748e+2 # -Range: 0-200 ThF4 ThF4 = Th+4 + 4 F- log_k -29.9946 - -delta_H -12.6733 kJ/mol # Calculated enthalpy of reaction ThF4 -# Enthalpy of formation: -501.371 kcal/mol + -delta_H -12.6733 kJ/mol # Calculated enthalpy of reaction ThF4 +# Enthalpy of formation: -501.371 kcal/mol -analytic -4.2622e+2 -1.4222e-1 9.4201e+3 1.6446e+2 1.4712e+2 # -Range: 0-300 ThF4:2.5H2O ThF4:2.5H2O = Th+4 + 2.5 H2O + 4 F- log_k -31.8568 - -delta_H 22.6696 kJ/mol # Calculated enthalpy of reaction ThF4:2.5H2O -# Enthalpy of formation: -2847.68 kJ/mol + -delta_H 22.6696 kJ/mol # Calculated enthalpy of reaction ThF4:2.5H2O +# Enthalpy of formation: -2847.68 kJ/mol -analytic -1.1284e+2 -4.5422e-2 -2.5781e+2 3.8547e+1 -4.3396e+0 # -Range: 0-200 ThI4 ThI4 = Th+4 + 4 I- log_k 45.1997 - -delta_H -332.818 kJ/mol # Calculated enthalpy of reaction ThI4 -# Enthalpy of formation: -663.811 kJ/mol + -delta_H -332.818 kJ/mol # Calculated enthalpy of reaction ThI4 +# Enthalpy of formation: -663.811 kJ/mol -analytic 1.4224e+0 -4.0379e-2 1.4193e+4 3.3137e+0 2.4102e+2 # -Range: 0-200 ThS ThS + 3 H+ + 0.5 O2 = H2O + HS- + Th+4 log_k 96.0395 - -delta_H -669.906 kJ/mol # Calculated enthalpy of reaction ThS -# Enthalpy of formation: -394.993 kJ/mol + -delta_H -669.906 kJ/mol # Calculated enthalpy of reaction ThS +# Enthalpy of formation: -394.993 kJ/mol -analytic -1.3919e+1 -1.2372e-2 3.3883e+4 0e+0 0e+0 # -Range: 0-200 ThS2 ThS2 + 2 H+ = Th+4 + 2 HS- log_k 10.7872 - -delta_H -175.369 kJ/mol # Calculated enthalpy of reaction ThS2 -# Enthalpy of formation: -625.867 kJ/mol + -delta_H -175.369 kJ/mol # Calculated enthalpy of reaction ThS2 +# Enthalpy of formation: -625.867 kJ/mol -analytic -3.7691e+1 -2.3714e-2 8.4673e+3 1.097e+1 1.438e+2 # -Range: 0-200 Thenardite Na2SO4 = SO4-2 + 2 Na+ log_k -0.3091 - -delta_H -2.33394 kJ/mol # Calculated enthalpy of reaction Thenardite -# Enthalpy of formation: -1387.87 kJ/mol + -delta_H -2.33394 kJ/mol # Calculated enthalpy of reaction Thenardite +# Enthalpy of formation: -1387.87 kJ/mol -analytic -2.1202e+2 -7.1613e-2 5.1083e+3 8.7244e+1 7.9773e+1 # -Range: 0-300 Thermonatrite Na2CO3:H2O + H+ = H2O + HCO3- + 2 Na+ log_k 10.9623 - -delta_H -27.5869 kJ/mol # Calculated enthalpy of reaction Thermonatrite -# Enthalpy of formation: -1428.78 kJ/mol + -delta_H -27.5869 kJ/mol # Calculated enthalpy of reaction Thermonatrite +# Enthalpy of formation: -1428.78 kJ/mol -analytic -1.403e+2 -3.5263e-2 5.784e+3 5.7528e+1 9.0295e+1 # -Range: 0-300 Thorianite ThO2 + 4 H+ = Th+4 + 2 H2O log_k 1.8624 - -delta_H -114.296 kJ/mol # Calculated enthalpy of reaction Thorianite -# Enthalpy of formation: -1226.4 kJ/mol + -delta_H -114.296 kJ/mol # Calculated enthalpy of reaction Thorianite +# Enthalpy of formation: -1226.4 kJ/mol -analytic -1.4249e+1 -2.4645e-3 4.311e+3 -1.6605e-2 2.1598e+5 # -Range: 0-300 Ti Ti + 2 H2O + O2 = Ti(OH)4 log_k 149.2978 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti -# Enthalpy of formation: 0 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti +# Enthalpy of formation: 0 kJ/mol Ti2O3 Ti2O3 + 4 H2O + 0.5 O2 = 2 Ti(OH)4 log_k 42.9866 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti2O3 -# Enthalpy of formation: -1520.78 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti2O3 +# Enthalpy of formation: -1520.78 kJ/mol Ti3O5 Ti3O5 + 6 H2O + 0.5 O2 = 3 Ti(OH)4 log_k 34.6557 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti3O5 -# Enthalpy of formation: -2459.24 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti3O5 +# Enthalpy of formation: -2459.24 kJ/mol TiB2 TiB2 + 5 H2O + 2.5 O2 = Ti(OH)4 + 2 B(OH)3 log_k 312.4194 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiB2 -# Enthalpy of formation: -323.883 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TiB2 +# Enthalpy of formation: -323.883 kJ/mol TiBr3 TiBr3 + 3.5 H2O + 0.25 O2 = Ti(OH)4 + 3 Br- + 3 H+ log_k 47.719 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr3 -# Enthalpy of formation: -548.378 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr3 +# Enthalpy of formation: -548.378 kJ/mol TiBr4 TiBr4 + 4 H2O = Ti(OH)4 + 4 Br- + 4 H+ log_k 32.9379 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr4 -# Enthalpy of formation: -616.822 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr4 +# Enthalpy of formation: -616.822 kJ/mol TiC TiC + 3 H2O + 2 O2 = H+ + HCO3- + Ti(OH)4 log_k 181.8139 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiC -# Enthalpy of formation: -184.346 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TiC +# Enthalpy of formation: -184.346 kJ/mol TiCl2 TiCl2 + 3 H2O + 0.5 O2 = Ti(OH)4 + 2 Cl- + 2 H+ log_k 70.9386 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl2 -# Enthalpy of formation: -514.012 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl2 +# Enthalpy of formation: -514.012 kJ/mol TiCl3 TiCl3 + 3.5 H2O + 0.25 O2 = Ti(OH)4 + 3 Cl- + 3 H+ log_k 39.3099 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl3 -# Enthalpy of formation: -720.775 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl3 +# Enthalpy of formation: -720.775 kJ/mol TiF4(am) TiF4 + 4 H2O = Ti(OH)4 + 4 F- + 4 H+ log_k -12.4409 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiF4(am) -# Enthalpy of formation: -1649.44 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TiF4(am) +# Enthalpy of formation: -1649.44 kJ/mol TiI4 TiI4 + 4 H2O = Ti(OH)4 + 4 H+ + 4 I- log_k 34.5968 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiI4 -# Enthalpy of formation: -375.555 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TiI4 +# Enthalpy of formation: -375.555 kJ/mol TiN TiN + 3.5 H2O + 0.25 O2 = NH3 + Ti(OH)4 log_k 35.2344 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiN -# Enthalpy of formation: -338.304 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TiN +# Enthalpy of formation: -338.304 kJ/mol TiO(alpha) TiO + 2 H2O + 0.5 O2 = Ti(OH)4 log_k 61.1282 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiO(alpha) -# Enthalpy of formation: -519.835 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TiO(alpha) +# Enthalpy of formation: -519.835 kJ/mol Tiemannite HgSe = Hg+2 + Se-2 log_k -58.2188 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tiemannite -# Enthalpy of formation: -10.4 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tiemannite +# Enthalpy of formation: -10.4 kcal/mol -analytic -5.7618e+1 -1.3891e-2 -1.3223e+4 1.9351e+1 -2.0632e+2 # -Range: 0-300 Titanite CaTiSiO5 + 2 H+ + H2O = Ca+2 + SiO2 + Ti(OH)4 log_k 719.5839 - -delta_H 0 # Not possible to calculate enthalpy of reaction Titanite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Titanite +# Enthalpy of formation: 0 kcal/mol Tl Tl + H+ + 0.25 O2 = 0.5 H2O + Tl+ log_k 27.1743 - -delta_H -134.53 kJ/mol # Calculated enthalpy of reaction Tl -# Enthalpy of formation: 0 kJ/mol + -delta_H -134.53 kJ/mol # Calculated enthalpy of reaction Tl +# Enthalpy of formation: 0 kJ/mol -analytic -3.7066e+1 -7.8341e-3 9.4594e+3 1.4896e+1 -1.7904e+5 # -Range: 0-300 Tm Tm + 3 H+ + 0.75 O2 = Tm+3 + 1.5 H2O log_k 181.7102 - -delta_H -1124.66 kJ/mol # Calculated enthalpy of reaction Tm -# Enthalpy of formation: 0 kJ/mol + -delta_H -1124.66 kJ/mol # Calculated enthalpy of reaction Tm +# Enthalpy of formation: 0 kJ/mol -analytic -6.744e+1 -2.8476e-2 5.9332e+4 2.3715e+1 -5.9611e+3 # -Range: 0-300 Tm(OH)3 Tm(OH)3 + 3 H+ = Tm+3 + 3 H2O log_k 14.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(OH)3 +# Enthalpy of formation: 0 kcal/mol Tm(OH)3(am) Tm(OH)3 + 3 H+ = Tm+3 + 3 H2O log_k 17.2852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm(OH)3(am) +# Enthalpy of formation: 0 kcal/mol Tm2(CO3)3 Tm2(CO3)3 + 3 H+ = 2 Tm+3 + 3 HCO3- log_k -2.4136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm2(CO3)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm2(CO3)3 +# Enthalpy of formation: 0 kcal/mol Tm2O3 Tm2O3 + 6 H+ = 2 Tm+3 + 3 H2O log_k 44.7 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tm2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tm2O3 +# Enthalpy of formation: 0 kcal/mol TmF3:.5H2O TmF3:.5H2O = 0.5 H2O + Tm+3 + 3 F- log_k -16.2 - -delta_H 0 # Not possible to calculate enthalpy of reaction TmF3:.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TmF3:.5H2O +# Enthalpy of formation: 0 kcal/mol TmPO4:10H2O TmPO4:10H2O + H+ = HPO4-2 + Tm+3 + 10 H2O log_k -11.8782 - -delta_H 0 # Not possible to calculate enthalpy of reaction TmPO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TmPO4:10H2O +# Enthalpy of formation: 0 kcal/mol Tobermorite-11A Ca5Si6H11O22.5 + 10 H+ = 5 Ca+2 + 6 SiO2 + 10.5 H2O log_k 65.6121 - -delta_H -286.861 kJ/mol # Calculated enthalpy of reaction Tobermorite-11A -# Enthalpy of formation: -2556.42 kcal/mol + -delta_H -286.861 kJ/mol # Calculated enthalpy of reaction Tobermorite-11A +# Enthalpy of formation: -2556.42 kcal/mol -analytic 7.9123e+1 3.915e-2 2.9429e+4 -3.9191e+1 -2.4122e+6 # -Range: 0-300 Tobermorite-14A Ca5Si6H21O27.5 + 10 H+ = 5 Ca+2 + 6 SiO2 + 15.5 H2O log_k 63.8445 - -delta_H -230.959 kJ/mol # Calculated enthalpy of reaction Tobermorite-14A -# Enthalpy of formation: -2911.36 kcal/mol + -delta_H -230.959 kJ/mol # Calculated enthalpy of reaction Tobermorite-14A +# Enthalpy of formation: -2911.36 kcal/mol -analytic -2.0789e+2 5.2472e-3 3.9698e+4 6.7797e+1 -2.7532e+6 # -Range: 0-300 Tobermorite-9A Ca5Si6H6O20 + 10 H+ = 5 Ca+2 + 6 SiO2 + 8 H2O log_k 69.0798 - -delta_H -329.557 kJ/mol # Calculated enthalpy of reaction Tobermorite-9A -# Enthalpy of formation: -2375.42 kcal/mol + -delta_H -329.557 kJ/mol # Calculated enthalpy of reaction Tobermorite-9A +# Enthalpy of formation: -2375.42 kcal/mol -analytic -6.3384e+1 1.1722e-2 3.8954e+4 1.2268e+1 -2.8681e+6 # -Range: 0-300 Todorokite Mn7O12:3H2O + 16 H+ = MnO4-2 + 6 Mn+3 + 11 H2O log_k -45.8241 - -delta_H 0 # Not possible to calculate enthalpy of reaction Todorokite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Todorokite +# Enthalpy of formation: 0 kcal/mol Torbernite Cu(UO2)2(PO4)2 + 2 H+ = Cu+2 + 2 HPO4-2 + 2 UO2+2 log_k -20.3225 - -delta_H -97.4022 kJ/mol # Calculated enthalpy of reaction Torbernite -# Enthalpy of formation: -1065.74 kcal/mol + -delta_H -97.4022 kJ/mol # Calculated enthalpy of reaction Torbernite +# Enthalpy of formation: -1065.74 kcal/mol -analytic -6.7128e+1 -4.5878e-2 3.5071e+3 1.9682e+1 5.9579e+1 # -Range: 0-200 Tremolite Ca2Mg5Si8O22(OH)2 + 14 H+ = 2 Ca+2 + 5 Mg+2 + 8 H2O + 8 SiO2 log_k 61.2367 - -delta_H -406.404 kJ/mol # Calculated enthalpy of reaction Tremolite -# Enthalpy of formation: -2944.04 kcal/mol + -delta_H -406.404 kJ/mol # Calculated enthalpy of reaction Tremolite +# Enthalpy of formation: -2944.04 kcal/mol -analytic 8.5291e+1 4.6337e-2 3.9465e+4 -5.4414e+1 -3.1913e+6 # -Range: 0-300 Trevorite NiFe2O4 + 8 H+ = Ni+2 + 2 Fe+3 + 4 H2O log_k 9.7876 - -delta_H -215.338 kJ/mol # Calculated enthalpy of reaction Trevorite -# Enthalpy of formation: -1081.15 kJ/mol + -delta_H -215.338 kJ/mol # Calculated enthalpy of reaction Trevorite +# Enthalpy of formation: -1081.15 kJ/mol -analytic -1.4322e+2 -2.9429e-2 1.4518e+4 4.5698e+1 2.4658e+2 # -Range: 0-200 Tridymite SiO2 = SiO2 log_k -3.8278 - -delta_H 31.3664 kJ/mol # Calculated enthalpy of reaction Tridymite -# Enthalpy of formation: -909.065 kJ/mol + -delta_H 31.3664 kJ/mol # Calculated enthalpy of reaction Tridymite +# Enthalpy of formation: -909.065 kJ/mol -analytic 3.1594e+2 6.9315e-2 -1.1358e+4 -1.2219e+2 -1.9299e+2 # -Range: 0-200 Troilite FeS + H+ = Fe+2 + HS- log_k -3.8184 - -delta_H -7.3296 kJ/mol # Calculated enthalpy of reaction Troilite -# Enthalpy of formation: -101.036 kJ/mol + -delta_H -7.3296 kJ/mol # Calculated enthalpy of reaction Troilite +# Enthalpy of formation: -101.036 kJ/mol -analytic -1.6146e+2 -5.317e-2 4.0461e+3 6.462e+1 6.3183e+1 # -Range: 0-300 Trona-K K2NaH(CO3)2:2H2O + H+ = Na+ + 2 H2O + 2 HCO3- + 2 K+ log_k 11.5891 - -delta_H 0 # Not possible to calculate enthalpy of reaction Trona-K -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Trona-K +# Enthalpy of formation: 0 kcal/mol Tsumebite Pb2Cu(PO4)(OH)3:3H2O + 4 H+ = Cu+2 + HPO4-2 + 2 Pb+2 + 6 H2O log_k 2.5318 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tsumebite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tsumebite +# Enthalpy of formation: 0 kcal/mol Tyuyamunite Ca(UO2)2(VO4)2 = Ca+2 + 2 UO2+2 + 2 VO4-3 log_k -53.3757 - -delta_H 0 # Not possible to calculate enthalpy of reaction Tyuyamunite -# Enthalpy of formation: -1164.52 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Tyuyamunite +# Enthalpy of formation: -1164.52 kcal/mol U U + 2 H+ + 1.5 O2 = H2O + UO2+2 log_k 212.78 - -delta_H -1286.64 kJ/mol # Calculated enthalpy of reaction U -# Enthalpy of formation: 0 kJ/mol + -delta_H -1286.64 kJ/mol # Calculated enthalpy of reaction U +# Enthalpy of formation: 0 kJ/mol -analytic -2.4912e+2 -4.7104e-2 8.1115e+4 8.7008e+1 -1.0158e+6 # -Range: 0-300 U(CO3)2 U(CO3)2 + 2 H+ = U+4 + 2 HCO3- log_k 7.5227 - -delta_H -170.691 kJ/mol # Calculated enthalpy of reaction U(CO3)2 -# Enthalpy of formation: -1800.38 kJ/mol + -delta_H -170.691 kJ/mol # Calculated enthalpy of reaction U(CO3)2 +# Enthalpy of formation: -1800.38 kJ/mol -analytic -8.5952e+1 -2.5086e-2 1.0177e+4 2.7002e+1 1.7285e+2 # -Range: 0-200 U(HPO4)2:4H2O U(HPO4)2:4H2O = U+4 + 2 HPO4-2 + 4 H2O log_k -32.865 - -delta_H 16.1008 kJ/mol # Calculated enthalpy of reaction U(HPO4)2:4H2O -# Enthalpy of formation: -4334.82 kJ/mol + -delta_H 16.1008 kJ/mol # Calculated enthalpy of reaction U(HPO4)2:4H2O +# Enthalpy of formation: -4334.82 kJ/mol -analytic -3.8694e+2 -1.3874e-1 6.4882e+3 1.5099e+2 1.0136e+2 # -Range: 0-300 U(OH)2SO4 U(OH)2SO4 + 2 H+ = SO4-2 + U+4 + 2 H2O log_k -3.0731 - -delta_H 0 # Not possible to calculate enthalpy of reaction U(OH)2SO4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction U(OH)2SO4 +# Enthalpy of formation: 0 kcal/mol U(SO3)2 U(SO3)2 = U+4 + 2 SO3-2 log_k -36.7499 - -delta_H 20.7008 kJ/mol # Calculated enthalpy of reaction U(SO3)2 -# Enthalpy of formation: -1883 kJ/mol + -delta_H 20.7008 kJ/mol # Calculated enthalpy of reaction U(SO3)2 +# Enthalpy of formation: -1883 kJ/mol -analytic 5.8113e+1 -2.9981e-2 -7.0503e+3 -2.5175e+1 -1.1974e+2 # -Range: 0-200 U(SO4)2 U(SO4)2 = U+4 + 2 SO4-2 log_k -11.5178 - -delta_H -100.803 kJ/mol # Calculated enthalpy of reaction U(SO4)2 -# Enthalpy of formation: -2309.6 kJ/mol + -delta_H -100.803 kJ/mol # Calculated enthalpy of reaction U(SO4)2 +# Enthalpy of formation: -2309.6 kJ/mol -analytic 3.2215e+1 -2.8662e-2 7.1066e+2 -1.519e+1 1.2057e+1 # -Range: 0-200 U(SO4)2:4H2O U(SO4)2:4H2O = U+4 + 2 SO4-2 + 4 H2O log_k -11.5287 - -delta_H -70.5565 kJ/mol # Calculated enthalpy of reaction U(SO4)2:4H2O -# Enthalpy of formation: -3483.2 kJ/mol + -delta_H -70.5565 kJ/mol # Calculated enthalpy of reaction U(SO4)2:4H2O +# Enthalpy of formation: -3483.2 kJ/mol -analytic -6.9548e+1 -2.9094e-2 3.8763e+3 2.1692e+1 6.5849e+1 # -Range: 0-200 U(SO4)2:8H2O U(SO4)2:8H2O = U+4 + 2 SO4-2 + 8 H2O log_k -12.5558 - -delta_H -34.5098 kJ/mol # Calculated enthalpy of reaction U(SO4)2:8H2O -# Enthalpy of formation: -4662.6 kJ/mol + -delta_H -34.5098 kJ/mol # Calculated enthalpy of reaction U(SO4)2:8H2O +# Enthalpy of formation: -4662.6 kJ/mol -analytic -1.7141e+2 -2.9548e-2 6.7423e+3 5.8614e+1 1.1455e+2 # -Range: 0-200 U2C3 U2C3 + 4.5 O2 + 3 H+ = 2 U+3 + 3 HCO3- log_k 455.3078 - -delta_H -2810.1 kJ/mol # Calculated enthalpy of reaction U2C3 -# Enthalpy of formation: -183.3 kJ/mol + -delta_H -2810.1 kJ/mol # Calculated enthalpy of reaction U2C3 +# Enthalpy of formation: -183.3 kJ/mol -analytic -3.834e+2 -1.5374e-1 1.5922e+5 1.4643e+2 -1.0584e+6 # -Range: 0-300 U2F9 U2F9 + 2 H2O = U+4 + UO2+ + 4 H+ + 9 F- log_k -45.5022 - -delta_H -46.8557 kJ/mol # Calculated enthalpy of reaction U2F9 -# Enthalpy of formation: -4015.92 kJ/mol + -delta_H -46.8557 kJ/mol # Calculated enthalpy of reaction U2F9 +# Enthalpy of formation: -4015.92 kJ/mol -analytic -8.8191e+2 -3.0477e-1 2.0493e+4 3.469e+2 3.2003e+2 # -Range: 0-300 U2O2Cl5 U2O2Cl5 = U+4 + UO2+ + 5 Cl- log_k 19.2752 - -delta_H -254.325 kJ/mol # Calculated enthalpy of reaction U2O2Cl5 -# Enthalpy of formation: -2197.4 kJ/mol + -delta_H -254.325 kJ/mol # Calculated enthalpy of reaction U2O2Cl5 +# Enthalpy of formation: -2197.4 kJ/mol -analytic -4.3945e+2 -1.6239e-1 2.1694e+4 1.7551e+2 3.3865e+2 # -Range: 0-300 U2O3F6 U2O3F6 + H2O = 2 H+ + 2 UO2+2 + 6 F- log_k -2.5066 - -delta_H -185.047 kJ/mol # Calculated enthalpy of reaction U2O3F6 -# Enthalpy of formation: -3579.2 kJ/mol + -delta_H -185.047 kJ/mol # Calculated enthalpy of reaction U2O3F6 +# Enthalpy of formation: -3579.2 kJ/mol -analytic -3.2332e+1 -5.9519e-2 5.7857e+3 1.1372e+1 9.826e+1 # -Range: 0-200 U2S3 U2S3 + 3 H+ = 2 U+3 + 3 HS- log_k 6.5279 - -delta_H -147.525 kJ/mol # Calculated enthalpy of reaction U2S3 -# Enthalpy of formation: -879 kJ/mol + -delta_H -147.525 kJ/mol # Calculated enthalpy of reaction U2S3 +# Enthalpy of formation: -879 kJ/mol -analytic -3.0494e+2 -1.0983e-1 1.3647e+4 1.2059e+2 2.1304e+2 # -Range: 0-300 U2Se3 U2Se3 + 4.5 O2 = 2 U+3 + 3 SeO3-2 log_k 248.0372 - -delta_H -1740.18 kJ/mol # Calculated enthalpy of reaction U2Se3 -# Enthalpy of formation: -711 kJ/mol + -delta_H -1740.18 kJ/mol # Calculated enthalpy of reaction U2Se3 +# Enthalpy of formation: -711 kJ/mol -analytic 4.9999e+2 -1.6488e-2 6.4991e+4 -1.8795e+2 1.1035e+3 # -Range: 0-200 U3As4 U3As4 + 5.25 O2 + 5 H+ + 1.5 H2O = 3 U+3 + 4 H2AsO3- log_k 487.6802 - -delta_H -3114.02 kJ/mol # Calculated enthalpy of reaction U3As4 -# Enthalpy of formation: -720 kJ/mol + -delta_H -3114.02 kJ/mol # Calculated enthalpy of reaction U3As4 +# Enthalpy of formation: -720 kJ/mol -analytic -9.0215e+2 -2.5804e-1 1.9974e+5 3.3331e+2 -2.4911e+6 # -Range: 0-300 U3O5F8 U3O5F8 + H2O = 2 H+ + 3 UO2+2 + 8 F- log_k -2.7436 - -delta_H -260.992 kJ/mol # Calculated enthalpy of reaction U3O5F8 -# Enthalpy of formation: -5192.95 kJ/mol + -delta_H -260.992 kJ/mol # Calculated enthalpy of reaction U3O5F8 +# Enthalpy of formation: -5192.95 kJ/mol -analytic -7.7653e+2 -2.7294e-1 2.918e+4 3.0599e+2 4.5556e+2 # -Range: 0-300 U3P4 U3P4 + 7.25 O2 + 1.5 H2O + H+ = 3 U+3 + 4 HPO4-2 log_k 827.5586 - -delta_H -5275.9 kJ/mol # Calculated enthalpy of reaction U3P4 -# Enthalpy of formation: -843 kJ/mol + -delta_H -5275.9 kJ/mol # Calculated enthalpy of reaction U3P4 +# Enthalpy of formation: -843 kJ/mol -analytic -2.7243e+3 -6.2927e-1 4.013e+5 1.0021e+3 -7.672e+6 # -Range: 0-300 U3S5 U3S5 + 5 H+ = U+4 + 2 U+3 + 5 HS- log_k -0.368 - -delta_H -218.942 kJ/mol # Calculated enthalpy of reaction U3S5 -# Enthalpy of formation: -1431 kJ/mol + -delta_H -218.942 kJ/mol # Calculated enthalpy of reaction U3S5 +# Enthalpy of formation: -1431 kJ/mol -analytic -1.1011e+2 -6.7959e-2 1.0369e+4 3.8481e+1 1.7611e+2 # -Range: 0-200 U3Sb4 U3Sb4 + 9 H+ + 5.25 O2 + 1.5 H2O = 3 U+3 + 4 Sb(OH)3 log_k 575.0349 - -delta_H -3618.1 kJ/mol # Calculated enthalpy of reaction U3Sb4 -# Enthalpy of formation: -451.9 kJ/mol + -delta_H -3618.1 kJ/mol # Calculated enthalpy of reaction U3Sb4 +# Enthalpy of formation: -451.9 kJ/mol U3Se4 U3Se4 + 6.25 O2 + H+ = 0.5 H2O + 3 U+3 + 4 SeO3-2 log_k 375.2823 - -delta_H -2588.16 kJ/mol # Calculated enthalpy of reaction U3Se4 -# Enthalpy of formation: -983 kJ/mol + -delta_H -2588.16 kJ/mol # Calculated enthalpy of reaction U3Se4 +# Enthalpy of formation: -983 kJ/mol -analytic 6.7219e+2 -2.2708e-2 1.0025e+5 -2.5317e+2 1.7021e+3 # -Range: 0-200 U3Se5 U3Se5 + 7.25 O2 + 0.5 H2O = H+ + 3 U+3 + 5 SeO3-2 log_k 376.5747 - -delta_H -2652.38 kJ/mol # Calculated enthalpy of reaction U3Se5 -# Enthalpy of formation: -1130 kJ/mol + -delta_H -2652.38 kJ/mol # Calculated enthalpy of reaction U3Se5 +# Enthalpy of formation: -1130 kJ/mol -analytic 8.3306e+2 -2.6526e-2 9.5737e+4 -3.1109e+2 1.6255e+3 # -Range: 0-200 U4F17 U4F17 + 2 H2O = UO2+ + 3 U+4 + 4 H+ + 17 F- log_k -104.7657 - -delta_H -78.2955 kJ/mol # Calculated enthalpy of reaction U4F17 -# Enthalpy of formation: -7849.66 kJ/mol + -delta_H -78.2955 kJ/mol # Calculated enthalpy of reaction U4F17 +# Enthalpy of formation: -7849.66 kJ/mol -analytic -1.7466e+3 -5.9186e-1 4.0017e+4 6.8046e+2 6.2494e+2 # -Range: 0-300 U5O12Cl U5O12Cl + 4 H+ = Cl- + 2 H2O + 5 UO2+ log_k -18.7797 - -delta_H -9.99133 kJ/mol # Calculated enthalpy of reaction U5O12Cl -# Enthalpy of formation: -5854.4 kJ/mol + -delta_H -9.99133 kJ/mol # Calculated enthalpy of reaction U5O12Cl +# Enthalpy of formation: -5854.4 kJ/mol -analytic -7.3802e+1 2.918e-2 4.6804e+3 1.2371e+1 7.9503e+1 # -Range: 0-200 UAs UAs + 2 H+ + 1.5 O2 = H2AsO3- + U+3 log_k 149.0053 - -delta_H -951.394 kJ/mol # Calculated enthalpy of reaction UAs -# Enthalpy of formation: -234.3 kJ/mol + -delta_H -951.394 kJ/mol # Calculated enthalpy of reaction UAs +# Enthalpy of formation: -234.3 kJ/mol -analytic -5.0217e+1 -4.2992e-2 4.848e+4 1.9964e+1 7.565e+2 # -Range: 0-300 UAs2 UAs2 + 2.25 O2 + 1.5 H2O + H+ = U+3 + 2 H2AsO3- log_k 189.1058 - -delta_H -1210.63 kJ/mol # Calculated enthalpy of reaction UAs2 -# Enthalpy of formation: -252 kJ/mol + -delta_H -1210.63 kJ/mol # Calculated enthalpy of reaction UAs2 +# Enthalpy of formation: -252 kJ/mol -analytic -8.7361e+1 -7.5252e-2 6.1445e+4 3.7485e+1 9.5881e+2 # -Range: 0-300 UBr2Cl UBr2Cl = Cl- + U+3 + 2 Br- log_k 17.7796 - -delta_H -148.586 kJ/mol # Calculated enthalpy of reaction UBr2Cl -# Enthalpy of formation: -750.6 kJ/mol + -delta_H -148.586 kJ/mol # Calculated enthalpy of reaction UBr2Cl +# Enthalpy of formation: -750.6 kJ/mol -analytic 3.0364e+0 -3.2187e-2 5.2314e+3 2.7418e+0 8.8836e+1 # -Range: 0-200 UBr2Cl2 UBr2Cl2 = U+4 + 2 Br- + 2 Cl- log_k 26.2185 - -delta_H -260.466 kJ/mol # Calculated enthalpy of reaction UBr2Cl2 -# Enthalpy of formation: -907.9 kJ/mol + -delta_H -260.466 kJ/mol # Calculated enthalpy of reaction UBr2Cl2 +# Enthalpy of formation: -907.9 kJ/mol -analytic 3.8089e+0 -3.8781e-2 1.0125e+4 0e+0 0e+0 # -Range: 0-200 UBr3 UBr3 = U+3 + 3 Br- log_k 20.2249 - -delta_H -154.91 kJ/mol # Calculated enthalpy of reaction UBr3 -# Enthalpy of formation: -698.7 kJ/mol + -delta_H -154.91 kJ/mol # Calculated enthalpy of reaction UBr3 +# Enthalpy of formation: -698.7 kJ/mol -analytic -2.4366e+2 -9.8651e-2 1.2538e+4 1.0151e+2 1.9572e+2 # -Range: 0-300 UBr3Cl UBr3Cl = Cl- + U+4 + 3 Br- log_k 29.1178 - -delta_H -270.49 kJ/mol # Calculated enthalpy of reaction UBr3Cl -# Enthalpy of formation: -852.3 kJ/mol + -delta_H -270.49 kJ/mol # Calculated enthalpy of reaction UBr3Cl +# Enthalpy of formation: -852.3 kJ/mol -analytic 1.1204e+1 -3.7109e-2 1.0473e+4 -2.4905e+0 1.7784e+2 # -Range: 0-200 UBr4 UBr4 = U+4 + 4 Br- log_k 31.2904 - -delta_H -275.113 kJ/mol # Calculated enthalpy of reaction UBr4 -# Enthalpy of formation: -802.1 kJ/mol + -delta_H -275.113 kJ/mol # Calculated enthalpy of reaction UBr4 +# Enthalpy of formation: -802.1 kJ/mol -analytic -3.38e+2 -1.294e-1 2.0674e+4 1.3678e+2 3.227e+2 # -Range: 0-300 UBr5 UBr5 + 2 H2O = UO2+ + 4 H+ + 5 Br- log_k 41.6312 - -delta_H -250.567 kJ/mol # Calculated enthalpy of reaction UBr5 -# Enthalpy of formation: -810.4 kJ/mol + -delta_H -250.567 kJ/mol # Calculated enthalpy of reaction UBr5 +# Enthalpy of formation: -810.4 kJ/mol -analytic -3.2773e+2 -1.4356e-1 1.8709e+4 1.4117e+2 2.9204e+2 # -Range: 0-300 UBrCl2 UBrCl2 = Br- + U+3 + 2 Cl- log_k 14.5048 - -delta_H -132.663 kJ/mol # Calculated enthalpy of reaction UBrCl2 -# Enthalpy of formation: -812.1 kJ/mol + -delta_H -132.663 kJ/mol # Calculated enthalpy of reaction UBrCl2 +# Enthalpy of formation: -812.1 kJ/mol -analytic -5.3713e+0 -3.4256e-2 4.6251e+3 5.8875e+0 7.8542e+1 # -Range: 0-200 UBrCl3 UBrCl3 = Br- + U+4 + 3 Cl- log_k 23.5258 - -delta_H -246.642 kJ/mol # Calculated enthalpy of reaction UBrCl3 -# Enthalpy of formation: -967.3 kJ/mol + -delta_H -246.642 kJ/mol # Calculated enthalpy of reaction UBrCl3 +# Enthalpy of formation: -967.3 kJ/mol -analytic -5.6867e+0 -4.1166e-2 9.6664e+3 3.6579e+0 1.6415e+2 # -Range: 0-200 UC UC + 2 H+ + 1.75 O2 = 0.5 H2O + HCO3- + U+3 log_k 194.8241 - -delta_H -1202.82 kJ/mol # Calculated enthalpy of reaction UC -# Enthalpy of formation: -97.9 kJ/mol + -delta_H -1202.82 kJ/mol # Calculated enthalpy of reaction UC +# Enthalpy of formation: -97.9 kJ/mol -analytic -4.6329e+1 -4.46e-2 6.1417e+4 1.9566e+1 9.5836e+2 # -Range: 0-300 UC1.94(alpha) UC1.94 + 2.69 O2 + 1.06 H+ + 0.44 H2O = U+3 + 1.94 HCO3- log_k 257.1619 - -delta_H -1583.84 kJ/mol # Calculated enthalpy of reaction UC1.94(alpha) -# Enthalpy of formation: -85.324 kJ/mol + -delta_H -1583.84 kJ/mol # Calculated enthalpy of reaction UC1.94(alpha) +# Enthalpy of formation: -85.324 kJ/mol -analytic -5.8194e+2 -1.461e-1 1.0917e+5 2.1638e+2 -1.6852e+6 # -Range: 0-300 UCl2F2 UCl2F2 = U+4 + 2 Cl- + 2 F- log_k -3.5085 - -delta_H -130.055 kJ/mol # Calculated enthalpy of reaction UCl2F2 -# Enthalpy of formation: -1466 kJ/mol + -delta_H -130.055 kJ/mol # Calculated enthalpy of reaction UCl2F2 +# Enthalpy of formation: -1466 kJ/mol -analytic -3.9662e+2 -1.3879e-1 1.471e+4 1.5562e+2 2.2965e+2 # -Range: 0-300 UCl2I2 UCl2I2 = U+4 + 2 Cl- + 2 I- log_k 30.2962 - -delta_H -270.364 kJ/mol # Calculated enthalpy of reaction UCl2I2 -# Enthalpy of formation: -768.8 kJ/mol + -delta_H -270.364 kJ/mol # Calculated enthalpy of reaction UCl2I2 +# Enthalpy of formation: -768.8 kJ/mol -analytic -1.2922e+1 -4.3178e-2 1.1219e+4 7.4562e+0 1.9052e+2 # -Range: 0-200 UCl3 UCl3 = U+3 + 3 Cl- log_k 13.0062 - -delta_H -126.639 kJ/mol # Calculated enthalpy of reaction UCl3 -# Enthalpy of formation: -863.7 kJ/mol + -delta_H -126.639 kJ/mol # Calculated enthalpy of reaction UCl3 +# Enthalpy of formation: -863.7 kJ/mol -analytic -2.6388e+2 -1.0241e-1 1.1629e+4 1.0846e+2 1.8155e+2 # -Range: 0-300 UCl3F UCl3F = F- + U+4 + 3 Cl- log_k 10.32 - -delta_H -184.787 kJ/mol # Calculated enthalpy of reaction UCl3F -# Enthalpy of formation: -1243 kJ/mol + -delta_H -184.787 kJ/mol # Calculated enthalpy of reaction UCl3F +# Enthalpy of formation: -1243 kJ/mol -analytic -3.7971e+2 -1.3681e-1 1.7127e+4 1.5086e+2 2.6736e+2 # -Range: 0-300 UCl3I UCl3I = I- + U+4 + 3 Cl- log_k 25.5388 - -delta_H -251.041 kJ/mol # Calculated enthalpy of reaction UCl3I -# Enthalpy of formation: -898.3 kJ/mol + -delta_H -251.041 kJ/mol # Calculated enthalpy of reaction UCl3I +# Enthalpy of formation: -898.3 kJ/mol -analytic -1.3362e+1 -4.3214e-2 1.0167e+4 7.1426e+0 1.7265e+2 # -Range: 0-200 UCl4 UCl4 = U+4 + 4 Cl- log_k 21.9769 - -delta_H -240.719 kJ/mol # Calculated enthalpy of reaction UCl4 -# Enthalpy of formation: -1018.8 kJ/mol + -delta_H -240.719 kJ/mol # Calculated enthalpy of reaction UCl4 +# Enthalpy of formation: -1018.8 kJ/mol -analytic -3.6881e+2 -1.3618e-1 1.9685e+4 1.4763e+2 3.0727e+2 # -Range: 0-300 UCl5 UCl5 + 2 H2O = UO2+ + 4 H+ + 5 Cl- log_k 37.3147 - -delta_H -249.849 kJ/mol # Calculated enthalpy of reaction UCl5 -# Enthalpy of formation: -1039 kJ/mol + -delta_H -249.849 kJ/mol # Calculated enthalpy of reaction UCl5 +# Enthalpy of formation: -1039 kJ/mol -analytic -3.6392e+2 -1.5133e-1 1.9617e+4 1.5376e+2 3.0622e+2 # -Range: 0-300 UCl6 UCl6 + 2 H2O = UO2+2 + 4 H+ + 6 Cl- log_k 57.5888 - -delta_H -383.301 kJ/mol # Calculated enthalpy of reaction UCl6 -# Enthalpy of formation: -1066.5 kJ/mol + -delta_H -383.301 kJ/mol # Calculated enthalpy of reaction UCl6 +# Enthalpy of formation: -1066.5 kJ/mol -analytic -4.5589e+2 -1.9203e-1 2.8029e+4 1.9262e+2 4.375e+2 # -Range: 0-300 UClF3 UClF3 = Cl- + U+4 + 3 F- log_k -17.5122 - -delta_H -74.3225 kJ/mol # Calculated enthalpy of reaction UClF3 -# Enthalpy of formation: -1690 kJ/mol + -delta_H -74.3225 kJ/mol # Calculated enthalpy of reaction UClF3 +# Enthalpy of formation: -1690 kJ/mol -analytic -4.1346e+2 -1.4077e-1 1.2237e+4 1.6036e+2 1.9107e+2 # -Range: 0-300 UClI3 UClI3 = Cl- + U+4 + 3 I- log_k 35.2367 - -delta_H -285.187 kJ/mol # Calculated enthalpy of reaction UClI3 -# Enthalpy of formation: -643.8 kJ/mol + -delta_H -285.187 kJ/mol # Calculated enthalpy of reaction UClI3 +# Enthalpy of formation: -643.8 kJ/mol -analytic -1.1799e+1 -4.3208e-2 1.2045e+4 7.8829e+0 2.0455e+2 # -Range: 0-200 UF3 UF3 = U+3 + 3 F- log_k -19.4125 - -delta_H 6.2572 kJ/mol # Calculated enthalpy of reaction UF3 -# Enthalpy of formation: -1501.4 kJ/mol + -delta_H 6.2572 kJ/mol # Calculated enthalpy of reaction UF3 +# Enthalpy of formation: -1501.4 kJ/mol -analytic -3.153e+2 -1.0945e-1 6.1335e+3 1.2443e+2 9.5799e+1 # -Range: 0-300 UF4 UF4 = U+4 + 4 F- log_k -29.2004 - -delta_H -18.3904 kJ/mol # Calculated enthalpy of reaction UF4 -# Enthalpy of formation: -1914.2 kJ/mol + -delta_H -18.3904 kJ/mol # Calculated enthalpy of reaction UF4 +# Enthalpy of formation: -1914.2 kJ/mol -analytic -4.2411e+2 -1.4147e-1 9.6621e+3 1.6352e+2 1.5089e+2 # -Range: 0-300 UF4:2.5H2O UF4:2.5H2O = U+4 + 2.5 H2O + 4 F- log_k -33.3685 - -delta_H 24.2888 kJ/mol # Calculated enthalpy of reaction UF4:2.5H2O -# Enthalpy of formation: -2671.47 kJ/mol + -delta_H 24.2888 kJ/mol # Calculated enthalpy of reaction UF4:2.5H2O +# Enthalpy of formation: -2671.47 kJ/mol -analytic -4.4218e+2 -1.4305e-1 8.2922e+3 1.7118e+2 1.2952e+2 # -Range: 0-300 UF5(alpha) UF5 + 2 H2O = UO2+ + 4 H+ + 5 F- log_k -12.8376 - -delta_H -54.8883 kJ/mol # Calculated enthalpy of reaction UF5(alpha) -# Enthalpy of formation: -2075.3 kJ/mol + -delta_H -54.8883 kJ/mol # Calculated enthalpy of reaction UF5(alpha) +# Enthalpy of formation: -2075.3 kJ/mol -analytic -4.5126e+2 -1.6121e-1 1.1997e+4 1.803e+2 1.8733e+2 # -Range: 0-300 UF5(beta) UF5 + 2 H2O = UO2+ + 4 H+ + 5 F- log_k -13.1718 - -delta_H -46.9883 kJ/mol # Calculated enthalpy of reaction UF5(beta) -# Enthalpy of formation: -2083.2 kJ/mol + -delta_H -46.9883 kJ/mol # Calculated enthalpy of reaction UF5(beta) +# Enthalpy of formation: -2083.2 kJ/mol -analytic -4.502e+2 -1.6121e-1 1.1584e+4 1.803e+2 1.8089e+2 # -Range: 0-300 UF6 UF6 + 2 H2O = UO2+2 + 4 H+ + 6 F- log_k 17.4292 - -delta_H -261.709 kJ/mol # Calculated enthalpy of reaction UF6 -# Enthalpy of formation: -2197.7 kJ/mol + -delta_H -261.709 kJ/mol # Calculated enthalpy of reaction UF6 +# Enthalpy of formation: -2197.7 kJ/mol -analytic -5.8427e+2 -2.1223e-1 2.5296e+4 2.344e+2 3.9489e+2 # -Range: 0-300 UH3(beta) UH3 + 3 H+ + 1.5 O2 = U+3 + 3 H2O log_k 199.7683 - -delta_H -1201.43 kJ/mol # Calculated enthalpy of reaction UH3(beta) -# Enthalpy of formation: -126.98 kJ/mol + -delta_H -1201.43 kJ/mol # Calculated enthalpy of reaction UH3(beta) +# Enthalpy of formation: -126.98 kJ/mol -analytic 5.287e+1 4.2151e-3 6.0167e+4 -2.2701e+1 1.0217e+3 # -Range: 0-200 UI3 UI3 = U+3 + 3 I- log_k 29.0157 - -delta_H -192.407 kJ/mol # Calculated enthalpy of reaction UI3 -# Enthalpy of formation: -467.4 kJ/mol + -delta_H -192.407 kJ/mol # Calculated enthalpy of reaction UI3 +# Enthalpy of formation: -467.4 kJ/mol -analytic -2.4505e+2 -9.9867e-2 1.4579e+4 1.0301e+2 2.2757e+2 # -Range: 0-300 UI4 UI4 = U+4 + 4 I- log_k 39.3102 - -delta_H -300.01 kJ/mol # Calculated enthalpy of reaction UI4 -# Enthalpy of formation: -518.8 kJ/mol + -delta_H -300.01 kJ/mol # Calculated enthalpy of reaction UI4 +# Enthalpy of formation: -518.8 kJ/mol -analytic -3.4618e+2 -1.3227e-1 2.232e+4 1.4145e+2 3.4839e+2 # -Range: 0-300 UN UN + 3 H+ = NH3 + U+3 log_k 41.713 - -delta_H -280.437 kJ/mol # Calculated enthalpy of reaction UN -# Enthalpy of formation: -290 kJ/mol + -delta_H -280.437 kJ/mol # Calculated enthalpy of reaction UN +# Enthalpy of formation: -290 kJ/mol -analytic -1.6393e+2 -1.1679e-3 2.8845e+3 6.5637e+1 3.0122e+6 # -Range: 0-300 UN1.59(alpha) UN1.59 + 1.885 H2O + H+ + 0.0575 O2 = UO2+ + 1.59 NH3 log_k 38.393 - -delta_H -235.75 kJ/mol # Calculated enthalpy of reaction UN1.59(alpha) -# Enthalpy of formation: -379.2 kJ/mol + -delta_H -235.75 kJ/mol # Calculated enthalpy of reaction UN1.59(alpha) +# Enthalpy of formation: -379.2 kJ/mol -analytic 1.8304e+1 1.1109e-2 1.2064e+4 -9.5741e+0 2.0485e+2 # -Range: 0-200 UN1.73(alpha) UN1.73 + 2.095 H2O + H+ = 0.0475 O2 + UO2+ + 1.73 NH3 log_k 27.2932 - -delta_H -169.085 kJ/mol # Calculated enthalpy of reaction UN1.73(alpha) -# Enthalpy of formation: -398.5 kJ/mol + -delta_H -169.085 kJ/mol # Calculated enthalpy of reaction UN1.73(alpha) +# Enthalpy of formation: -398.5 kJ/mol -analytic 1.0012e+1 1.0398e-2 8.9348e+3 -6.3817e+0 1.5172e+2 # -Range: 0-200 UO2(AsO3)2 UO2(AsO3)2 + 2 H2O = UO2+2 + 2 H2AsO4- log_k 6.9377 - -delta_H -109.843 kJ/mol # Calculated enthalpy of reaction UO2(AsO3)2 -# Enthalpy of formation: -2156.6 kJ/mol + -delta_H -109.843 kJ/mol # Calculated enthalpy of reaction UO2(AsO3)2 +# Enthalpy of formation: -2156.6 kJ/mol -analytic -1.605e+2 -6.6472e-2 8.2129e+3 6.4533e+1 1.282e+2 # -Range: 0-300 UO2(IO3)2 UO2(IO3)2 = UO2+2 + 2 IO3- log_k -7.2871 - -delta_H -0.3862 kJ/mol # Calculated enthalpy of reaction UO2(IO3)2 -# Enthalpy of formation: -1461.28 kJ/mol + -delta_H -0.3862 kJ/mol # Calculated enthalpy of reaction UO2(IO3)2 +# Enthalpy of formation: -1461.28 kJ/mol -analytic -2.7047e+1 -1.4267e-2 -1.5055e+1 9.7226e+0 -2.464e-1 # -Range: 0-200 UO2(NO3)2 UO2(NO3)2 = UO2+2 + 2 NO3- log_k 11.9598 - -delta_H -81.6219 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2 -# Enthalpy of formation: -1351 kJ/mol + -delta_H -81.6219 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2 +# Enthalpy of formation: -1351 kJ/mol -analytic -1.2216e+1 -1.1261e-2 3.9895e+3 5.7166e+0 6.7751e+1 # -Range: 0-200 UO2(NO3)2:2H2O UO2(NO3)2:2H2O = UO2+2 + 2 H2O + 2 NO3- log_k 4.9446 - -delta_H -25.5995 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:2H2O -# Enthalpy of formation: -1978.7 kJ/mol + -delta_H -25.5995 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:2H2O +# Enthalpy of formation: -1978.7 kJ/mol -analytic -1.3989e+2 -5.213e-2 4.3758e+3 5.8868e+1 6.8322e+1 # -Range: 0-300 UO2(NO3)2:3H2O UO2(NO3)2:3H2O = UO2+2 + 2 NO3- + 3 H2O log_k 3.7161 - -delta_H -9.73686 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:3H2O -# Enthalpy of formation: -2280.4 kJ/mol + -delta_H -9.73686 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:3H2O +# Enthalpy of formation: -2280.4 kJ/mol -analytic -1.5037e+2 -5.2234e-2 4.0783e+3 6.3024e+1 6.3682e+1 # -Range: 0-300 UO2(NO3)2:6H2O UO2(NO3)2:6H2O = UO2+2 + 2 NO3- + 6 H2O log_k 2.3189 - -delta_H 19.8482 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:6H2O -# Enthalpy of formation: -3167.5 kJ/mol + -delta_H 19.8482 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:6H2O +# Enthalpy of formation: -3167.5 kJ/mol -analytic -1.4019e+2 -4.3682e-2 2.7842e+3 5.907e+1 4.3486e+1 # -Range: 0-300 UO2(NO3)2:H2O UO2(NO3)2:H2O = H2O + UO2+2 + 2 NO3- log_k 8.5103 - -delta_H -54.4602 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:H2O -# Enthalpy of formation: -1664 kJ/mol + -delta_H -54.4602 kJ/mol # Calculated enthalpy of reaction UO2(NO3)2:H2O +# Enthalpy of formation: -1664 kJ/mol -analytic -3.7575e+1 -1.1342e-2 3.7548e+3 1.4899e+1 6.3776e+1 # -Range: 0-200 UO2(OH)2(beta) UO2(OH)2 + 2 H+ = UO2+2 + 2 H2O log_k 4.9457 - -delta_H -56.8767 kJ/mol # Calculated enthalpy of reaction UO2(OH)2(beta) -# Enthalpy of formation: -1533.8 kJ/mol + -delta_H -56.8767 kJ/mol # Calculated enthalpy of reaction UO2(OH)2(beta) +# Enthalpy of formation: -1533.8 kJ/mol -analytic -1.7478e+1 -1.6806e-3 3.4226e+3 4.626e+0 5.3412e+1 # -Range: 0-300 UO2(PO3)2 UO2(PO3)2 + 2 H2O = UO2+2 + 2 H+ + 2 HPO4-2 log_k -16.2805 - -delta_H -58.4873 kJ/mol # Calculated enthalpy of reaction UO2(PO3)2 -# Enthalpy of formation: -2973 kJ/mol + -delta_H -58.4873 kJ/mol # Calculated enthalpy of reaction UO2(PO3)2 +# Enthalpy of formation: -2973 kJ/mol -analytic -3.2995e+2 -1.3747e-1 8.0652e+3 1.3237e+2 1.2595e+2 # -Range: 0-300 UO2(am) UO2 + 4 H+ = U+4 + 2 H2O log_k 0.1091 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2(am) +# Enthalpy of formation: 0 kcal/mol UO2.25 UO2.25 + 2.5 H+ = 0.5 U+4 + 0.5 UO2+ + 1.25 H2O log_k -4.8193 - -delta_H -37.1614 kJ/mol # Calculated enthalpy of reaction UO2.25 -# Enthalpy of formation: -1128.3 kJ/mol + -delta_H -37.1614 kJ/mol # Calculated enthalpy of reaction UO2.25 +# Enthalpy of formation: -1128.3 kJ/mol -analytic -1.9073e+2 -4.1793e-2 7.3391e+3 7.0213e+1 1.1457e+2 # -Range: 0-300 UO2.25(beta) UO2.25 + 2.5 H+ = 0.5 U+4 + 0.5 UO2+ + 1.25 H2O log_k -4.7593 - -delta_H -38.0614 kJ/mol # Calculated enthalpy of reaction UO2.25(beta) -# Enthalpy of formation: -1127.4 kJ/mol + -delta_H -38.0614 kJ/mol # Calculated enthalpy of reaction UO2.25(beta) +# Enthalpy of formation: -1127.4 kJ/mol -analytic -3.6654e+1 -2.4013e-3 2.9632e+3 9.1625e+0 4.6249e+1 # -Range: 0-300 @@ -17094,8 +17094,8 @@ UO2.3333(beta) # UO2.3333 +8.0000 H+ = + 0.3333 O2 + 2.0000 U++++ + 4.0000 H2O (UO2.3333)2 + 8 H+ = 0.3333 O2 + 2 U+4 + 4 H2O log_k -27.7177 - -delta_H -1187.8 kJ/mol # Calculated enthalpy of reaction UO2.3333(beta) -# Enthalpy of formation: -1142 kJ/mol + -delta_H -1187.8 kJ/mol # Calculated enthalpy of reaction UO2.3333(beta) +# Enthalpy of formation: -1142 kJ/mol -analytic -7.479e+0 -6.8382e-4 -2.7277e+3 -7.2107e+0 6.1873e+5 # -Range: 0-300 @@ -17103,1055 +17103,1055 @@ UO2.6667 # UO2.6667 +8.0000 H+ = + 0.6667 O2 + 2.0000 U++++ + 4.0000 H2O (UO2.6667)2 + 8 H+ = 0.6667 O2 + 2 U+4 + 4 H2O log_k -43.6051 - -delta_H -1142.24 kJ/mol # Calculated enthalpy of reaction UO2.6667 -# Enthalpy of formation: -1191.6 kJ/mol + -delta_H -1142.24 kJ/mol # Calculated enthalpy of reaction UO2.6667 +# Enthalpy of formation: -1191.6 kJ/mol -analytic 1.2095e+2 2.0118e-2 -1.4968e+4 -5.3552e+1 1.0813e+6 # -Range: 0-300 UO2Br2 UO2Br2 = UO2+2 + 2 Br- log_k 16.5103 - -delta_H -124.607 kJ/mol # Calculated enthalpy of reaction UO2Br2 -# Enthalpy of formation: -1137.4 kJ/mol + -delta_H -124.607 kJ/mol # Calculated enthalpy of reaction UO2Br2 +# Enthalpy of formation: -1137.4 kJ/mol -analytic -1.4876e+2 -6.2715e-2 9.02e+3 6.2108e+1 1.4079e+2 # -Range: 0-300 UO2Br2:3H2O UO2Br2:3H2O = UO2+2 + 2 Br- + 3 H2O log_k 9.4113 - -delta_H -61.5217 kJ/mol # Calculated enthalpy of reaction UO2Br2:3H2O -# Enthalpy of formation: -2058 kJ/mol + -delta_H -61.5217 kJ/mol # Calculated enthalpy of reaction UO2Br2:3H2O +# Enthalpy of formation: -2058 kJ/mol -analytic -6.8507e+1 -1.6834e-2 5.1409e+3 2.6546e+1 8.7324e+1 # -Range: 0-200 UO2Br2:H2O UO2Br2:H2O = H2O + UO2+2 + 2 Br- log_k 12.1233 - -delta_H -91.945 kJ/mol # Calculated enthalpy of reaction UO2Br2:H2O -# Enthalpy of formation: -1455.9 kJ/mol + -delta_H -91.945 kJ/mol # Calculated enthalpy of reaction UO2Br2:H2O +# Enthalpy of formation: -1455.9 kJ/mol -analytic -1.7519e+1 -1.6603e-2 4.3544e+3 8.0748e+0 7.395e+1 # -Range: 0-200 UO2BrOH:2H2O UO2BrOH:2H2O + H+ = Br- + UO2+2 + 3 H2O log_k 4.2026 - -delta_H -39.8183 kJ/mol # Calculated enthalpy of reaction UO2BrOH:2H2O -# Enthalpy of formation: -1958.2 kJ/mol + -delta_H -39.8183 kJ/mol # Calculated enthalpy of reaction UO2BrOH:2H2O +# Enthalpy of formation: -1958.2 kJ/mol -analytic -8.3411e+1 -1.0024e-2 5.0411e+3 2.9781e+1 8.5633e+1 # -Range: 0-200 UO2CO3 UO2CO3 + H+ = HCO3- + UO2+2 log_k -4.1267 - -delta_H -19.2872 kJ/mol # Calculated enthalpy of reaction UO2CO3 -# Enthalpy of formation: -1689.65 kJ/mol + -delta_H -19.2872 kJ/mol # Calculated enthalpy of reaction UO2CO3 +# Enthalpy of formation: -1689.65 kJ/mol -analytic -4.4869e+1 -1.1541e-2 1.9475e+3 1.5215e+1 3.3086e+1 # -Range: 0-200 UO2Cl UO2Cl = Cl- + UO2+ log_k -0.5154 - -delta_H -21.1067 kJ/mol # Calculated enthalpy of reaction UO2Cl -# Enthalpy of formation: -1171.1 kJ/mol + -delta_H -21.1067 kJ/mol # Calculated enthalpy of reaction UO2Cl +# Enthalpy of formation: -1171.1 kJ/mol -analytic -7.3291e+1 -2.594e-2 2.5753e+3 2.9038e+1 4.0207e+1 # -Range: 0-300 UO2Cl2 UO2Cl2 = UO2+2 + 2 Cl- log_k 12.1394 - -delta_H -109.559 kJ/mol # Calculated enthalpy of reaction UO2Cl2 -# Enthalpy of formation: -1243.6 kJ/mol + -delta_H -109.559 kJ/mol # Calculated enthalpy of reaction UO2Cl2 +# Enthalpy of formation: -1243.6 kJ/mol -analytic -1.6569e+2 -6.6249e-2 8.692e+3 6.8055e+1 1.3568e+2 # -Range: 0-300 UO2Cl2:3H2O UO2Cl2:3H2O = UO2+2 + 2 Cl- + 3 H2O log_k 5.6163 - -delta_H -45.8743 kJ/mol # Calculated enthalpy of reaction UO2Cl2:3H2O -# Enthalpy of formation: -2164.8 kJ/mol + -delta_H -45.8743 kJ/mol # Calculated enthalpy of reaction UO2Cl2:3H2O +# Enthalpy of formation: -2164.8 kJ/mol -analytic -8.4932e+1 -2.0867e-2 4.7594e+3 3.2654e+1 8.085e+1 # -Range: 0-200 UO2Cl2:H2O UO2Cl2:H2O = H2O + UO2+2 + 2 Cl- log_k 8.288 - -delta_H -79.1977 kJ/mol # Calculated enthalpy of reaction UO2Cl2:H2O -# Enthalpy of formation: -1559.8 kJ/mol + -delta_H -79.1977 kJ/mol # Calculated enthalpy of reaction UO2Cl2:H2O +# Enthalpy of formation: -1559.8 kJ/mol -analytic -3.4458e+1 -2.063e-2 4.1231e+3 1.417e+1 7.0029e+1 # -Range: 0-200 UO2ClOH:2H2O UO2ClOH:2H2O + H+ = Cl- + UO2+2 + 3 H2O log_k 2.3064 - -delta_H -33.1947 kJ/mol # Calculated enthalpy of reaction UO2ClOH:2H2O -# Enthalpy of formation: -2010.4 kJ/mol + -delta_H -33.1947 kJ/mol # Calculated enthalpy of reaction UO2ClOH:2H2O +# Enthalpy of formation: -2010.4 kJ/mol -analytic -9.1834e+1 -1.2041e-2 4.9131e+3 3.2835e+1 8.3462e+1 # -Range: 0-200 UO2F2 UO2F2 = UO2+2 + 2 F- log_k -7.2302 - -delta_H -36.1952 kJ/mol # Calculated enthalpy of reaction UO2F2 -# Enthalpy of formation: -1653.5 kJ/mol + -delta_H -36.1952 kJ/mol # Calculated enthalpy of reaction UO2F2 +# Enthalpy of formation: -1653.5 kJ/mol -analytic -2.0303e+2 -7.1028e-2 5.9356e+3 7.9627e+1 9.2679e+1 # -Range: 0-300 UO2F2:3H2O UO2F2:3H2O = UO2+2 + 2 F- + 3 H2O log_k -7.3692 - -delta_H -12.8202 kJ/mol # Calculated enthalpy of reaction UO2F2:3H2O -# Enthalpy of formation: -2534.39 kJ/mol + -delta_H -12.8202 kJ/mol # Calculated enthalpy of reaction UO2F2:3H2O +# Enthalpy of formation: -2534.39 kJ/mol -analytic -1.0286e+2 -2.1223e-2 3.4855e+3 3.642e+1 5.9224e+1 # -Range: 0-200 UO2FOH UO2FOH + H+ = F- + H2O + UO2+2 log_k -1.8426 - -delta_H -41.7099 kJ/mol # Calculated enthalpy of reaction UO2FOH -# Enthalpy of formation: -1598.48 kJ/mol + -delta_H -41.7099 kJ/mol # Calculated enthalpy of reaction UO2FOH +# Enthalpy of formation: -1598.48 kJ/mol -analytic -4.9229e+1 -1.1984e-2 3.2086e+3 1.6244e+1 5.4503e+1 # -Range: 0-200 UO2FOH:2H2O UO2FOH:2H2O + H+ = F- + UO2+2 + 3 H2O log_k -2.6606 - -delta_H -21.8536 kJ/mol # Calculated enthalpy of reaction UO2FOH:2H2O -# Enthalpy of formation: -2190.01 kJ/mol + -delta_H -21.8536 kJ/mol # Calculated enthalpy of reaction UO2FOH:2H2O +# Enthalpy of formation: -2190.01 kJ/mol -analytic -1.0011e+2 -1.2203e-2 4.5446e+3 3.469e+1 7.7208e+1 # -Range: 0-200 UO2FOH:H2O UO2FOH:H2O + H+ = F- + UO2+2 + 2 H2O log_k -2.2838 - -delta_H -31.5243 kJ/mol # Calculated enthalpy of reaction UO2FOH:H2O -# Enthalpy of formation: -1894.5 kJ/mol + -delta_H -31.5243 kJ/mol # Calculated enthalpy of reaction UO2FOH:H2O +# Enthalpy of formation: -1894.5 kJ/mol -analytic -7.4628e+1 -1.2086e-2 3.8625e+3 2.5456e+1 6.5615e+1 # -Range: 0-200 UO2HPO4 UO2HPO4 = HPO4-2 + UO2+2 log_k -12.6782 - -delta_H 0 # Not possible to calculate enthalpy of reaction UO2HPO4 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UO2HPO4 +# Enthalpy of formation: 0 kcal/mol UO2HPO4:4H2O UO2HPO4:4H2O = HPO4-2 + UO2+2 + 4 H2O log_k -13.0231 - -delta_H 15.5327 kJ/mol # Calculated enthalpy of reaction UO2HPO4:4H2O -# Enthalpy of formation: -3469.97 kJ/mol + -delta_H 15.5327 kJ/mol # Calculated enthalpy of reaction UO2HPO4:4H2O +# Enthalpy of formation: -3469.97 kJ/mol -analytic -1.1784e+2 -1.9418e-2 2.7547e+3 4.0963e+1 4.6818e+1 # -Range: 0-200 UO2SO3 UO2SO3 = SO3-2 + UO2+2 log_k -15.9812 - -delta_H 6.4504 kJ/mol # Calculated enthalpy of reaction UO2SO3 -# Enthalpy of formation: -1661 kJ/mol + -delta_H 6.4504 kJ/mol # Calculated enthalpy of reaction UO2SO3 +# Enthalpy of formation: -1661 kJ/mol -analytic 2.5751e+1 -1.3871e-2 -3.0305e+3 -1.109e+1 -5.147e+1 # -Range: 0-200 UO2SO4 UO2SO4 = SO4-2 + UO2+2 log_k 1.9681 - -delta_H -83.4616 kJ/mol # Calculated enthalpy of reaction UO2SO4 -# Enthalpy of formation: -1845.14 kJ/mol + -delta_H -83.4616 kJ/mol # Calculated enthalpy of reaction UO2SO4 +# Enthalpy of formation: -1845.14 kJ/mol -analytic -1.5677e+2 -6.531e-2 6.7411e+3 6.2867e+1 1.0523e+2 # -Range: 0-300 UO2SO4:2.5H2O UO2SO4:2.5H2O = SO4-2 + UO2+2 + 2.5 H2O log_k -1.4912 - -delta_H -36.1984 kJ/mol # Calculated enthalpy of reaction UO2SO4:2.5H2O -# Enthalpy of formation: -2607 kJ/mol + -delta_H -36.1984 kJ/mol # Calculated enthalpy of reaction UO2SO4:2.5H2O +# Enthalpy of formation: -2607 kJ/mol -analytic -4.8908e+1 -1.3445e-2 2.8658e+3 1.6894e+1 4.8683e+1 # -Range: 0-200 UO2SO4:3.5H2O UO2SO4:3.5H2O = SO4-2 + UO2+2 + 3.5 H2O log_k -1.4805 - -delta_H -27.4367 kJ/mol # Calculated enthalpy of reaction UO2SO4:3.5H2O -# Enthalpy of formation: -2901.6 kJ/mol + -delta_H -27.4367 kJ/mol # Calculated enthalpy of reaction UO2SO4:3.5H2O +# Enthalpy of formation: -2901.6 kJ/mol -analytic -7.418e+1 -1.3565e-2 3.5963e+3 2.6136e+1 6.1096e+1 # -Range: 0-200 UO2SO4:3H2O UO2SO4:3H2O = SO4-2 + UO2+2 + 3 H2O log_k -1.4028 - -delta_H -34.6176 kJ/mol # Calculated enthalpy of reaction UO2SO4:3H2O -# Enthalpy of formation: -2751.5 kJ/mol + -delta_H -34.6176 kJ/mol # Calculated enthalpy of reaction UO2SO4:3H2O +# Enthalpy of formation: -2751.5 kJ/mol -analytic -5.0134e+1 -1.0321e-2 3.0505e+3 1.6799e+1 5.1818e+1 # -Range: 0-200 UO2SO4:H2O UO2SO4:H2O = H2O + SO4-2 + UO2+2 log_k -6.0233 - -delta_H -39.1783 kJ/mol # Calculated enthalpy of reaction UO2SO4:H2O -# Enthalpy of formation: -519.9 kcal/mol + -delta_H -39.1783 kJ/mol # Calculated enthalpy of reaction UO2SO4:H2O +# Enthalpy of formation: -519.9 kcal/mol -analytic -1.8879e+2 -6.9827e-2 5.5636e+3 7.4717e+1 8.687e+1 # -Range: 0-300 UO3(alpha) UO3 + 2 H+ = H2O + UO2+2 log_k 8.6391 - -delta_H -87.3383 kJ/mol # Calculated enthalpy of reaction UO3(alpha) -# Enthalpy of formation: -1217.5 kJ/mol + -delta_H -87.3383 kJ/mol # Calculated enthalpy of reaction UO3(alpha) +# Enthalpy of formation: -1217.5 kJ/mol -analytic -1.4099e+1 -1.9063e-3 4.7742e+3 2.9478e+0 7.4501e+1 # -Range: 0-300 UO3(beta) UO3 + 2 H+ = H2O + UO2+2 log_k 8.3095 - -delta_H -84.5383 kJ/mol # Calculated enthalpy of reaction UO3(beta) -# Enthalpy of formation: -1220.3 kJ/mol + -delta_H -84.5383 kJ/mol # Calculated enthalpy of reaction UO3(beta) +# Enthalpy of formation: -1220.3 kJ/mol -analytic -1.2298e+1 -1.78e-3 4.5621e+3 2.3593e+0 7.1191e+1 # -Range: 0-300 UO3(gamma) UO3 + 2 H+ = H2O + UO2+2 log_k 7.7073 - -delta_H -81.0383 kJ/mol # Calculated enthalpy of reaction UO3(gamma) -# Enthalpy of formation: -1223.8 kJ/mol + -delta_H -81.0383 kJ/mol # Calculated enthalpy of reaction UO3(gamma) +# Enthalpy of formation: -1223.8 kJ/mol -analytic -1.1573e+1 -2.356e-3 4.3124e+3 2.2305e+0 6.7294e+1 # -Range: 0-300 UO3:.9H2O(alpha) UO3:.9H2O + 2 H+ = UO2+2 + 1.9 H2O log_k 5.0167 - -delta_H -55.7928 kJ/mol # Calculated enthalpy of reaction UO3:.9H2O(alpha) -# Enthalpy of formation: -1506.3 kJ/mol + -delta_H -55.7928 kJ/mol # Calculated enthalpy of reaction UO3:.9H2O(alpha) +# Enthalpy of formation: -1506.3 kJ/mol -analytic -6.9286e+1 -3.0624e-3 5.5984e+3 2.2809e+1 9.5092e+1 # -Range: 0-200 UO3:2H2O UO3:2H2O + 2 H+ = UO2+2 + 3 H2O log_k 4.8333 - -delta_H -50.415 kJ/mol # Calculated enthalpy of reaction UO3:2H2O -# Enthalpy of formation: -1826.1 kJ/mol + -delta_H -50.415 kJ/mol # Calculated enthalpy of reaction UO3:2H2O +# Enthalpy of formation: -1826.1 kJ/mol -analytic -5.953e+1 -9.8107e-3 4.4975e+3 2.1098e+1 7.0196e+1 # -Range: 0-300 UOBr2 UOBr2 + 2 H+ = H2O + U+4 + 2 Br- log_k 7.9722 - -delta_H -146.445 kJ/mol # Calculated enthalpy of reaction UOBr2 -# Enthalpy of formation: -973.6 kJ/mol + -delta_H -146.445 kJ/mol # Calculated enthalpy of reaction UOBr2 +# Enthalpy of formation: -973.6 kJ/mol -analytic -2.0747e+2 -7.05e-2 1.1746e+4 7.9629e+1 1.8334e+2 # -Range: 0-300 UOBr3 UOBr3 + H2O = UO2+ + 2 H+ + 3 Br- log_k 23.5651 - -delta_H -149.799 kJ/mol # Calculated enthalpy of reaction UOBr3 -# Enthalpy of formation: -954 kJ/mol + -delta_H -149.799 kJ/mol # Calculated enthalpy of reaction UOBr3 +# Enthalpy of formation: -954 kJ/mol -analytic -2.0001e+2 -8.4632e-2 1.1381e+4 8.5102e+1 1.7765e+2 # -Range: 0-300 UOCl UOCl + 2 H+ = Cl- + H2O + U+3 log_k 10.3872 - -delta_H -108.118 kJ/mol # Calculated enthalpy of reaction UOCl -# Enthalpy of formation: -833.9 kJ/mol + -delta_H -108.118 kJ/mol # Calculated enthalpy of reaction UOCl +# Enthalpy of formation: -833.9 kJ/mol -analytic -1.1989e+2 -4.0791e-2 8.0834e+3 4.66e+1 1.2617e+2 # -Range: 0-300 UOCl2 UOCl2 + 2 H+ = H2O + U+4 + 2 Cl- log_k 5.4559 - -delta_H -141.898 kJ/mol # Calculated enthalpy of reaction UOCl2 -# Enthalpy of formation: -1069.3 kJ/mol + -delta_H -141.898 kJ/mol # Calculated enthalpy of reaction UOCl2 +# Enthalpy of formation: -1069.3 kJ/mol -analytic -2.2096e+2 -7.3329e-2 1.1858e+4 8.425e+1 1.8509e+2 # -Range: 0-300 UOCl3 UOCl3 + H2O = UO2+ + 2 H+ + 3 Cl- log_k 12.637 - -delta_H -100.528 kJ/mol # Calculated enthalpy of reaction UOCl3 -# Enthalpy of formation: -1140 kJ/mol + -delta_H -100.528 kJ/mol # Calculated enthalpy of reaction UOCl3 +# Enthalpy of formation: -1140 kJ/mol -analytic -2.1934e+2 -8.8639e-2 9.3198e+3 9.1775e+1 1.4549e+2 # -Range: 0-300 UOF2 UOF2 + 2 H+ = H2O + U+4 + 2 F- log_k -18.1473 - -delta_H -43.1335 kJ/mol # Calculated enthalpy of reaction UOF2 -# Enthalpy of formation: -1504.6 kJ/mol + -delta_H -43.1335 kJ/mol # Calculated enthalpy of reaction UOF2 +# Enthalpy of formation: -1504.6 kJ/mol -analytic -6.9471e+1 -2.6188e-2 2.5576e+3 2.0428e+1 4.3454e+1 # -Range: 0-200 UOF2:H2O UOF2:H2O + 2 H+ = U+4 + 2 F- + 2 H2O log_k -18.7019 - -delta_H -31.5719 kJ/mol # Calculated enthalpy of reaction UOF2:H2O -# Enthalpy of formation: -1802 kJ/mol + -delta_H -31.5719 kJ/mol # Calculated enthalpy of reaction UOF2:H2O +# Enthalpy of formation: -1802 kJ/mol -analytic -9.501e+1 -2.6355e-2 3.1474e+3 2.9746e+1 5.348e+1 # -Range: 0-200 UOF4 UOF4 + H2O = UO2+2 + 2 H+ + 4 F- log_k 4.5737 - -delta_H -149.952 kJ/mol # Calculated enthalpy of reaction UOF4 -# Enthalpy of formation: -1924.6 kJ/mol + -delta_H -149.952 kJ/mol # Calculated enthalpy of reaction UOF4 +# Enthalpy of formation: -1924.6 kJ/mol -analytic -5.9731e+0 -3.8581e-2 4.6903e+3 2.5464e+0 7.9649e+1 # -Range: 0-200 UOFOH UOFOH + 3 H+ = F- + U+4 + 2 H2O log_k -8.9274 - -delta_H -71.5243 kJ/mol # Calculated enthalpy of reaction UOFOH -# Enthalpy of formation: -1426.7 kJ/mol + -delta_H -71.5243 kJ/mol # Calculated enthalpy of reaction UOFOH +# Enthalpy of formation: -1426.7 kJ/mol -analytic -9.2412e+1 -1.7293e-2 5.815e+3 2.794e+1 9.8779e+1 # -Range: 0-200 UOFOH:.5H2O UOFOH:.5H2O + H+ + 0.5 O2 = F- + UO2+2 + 1.5 H2O log_k 24.5669 - -delta_H -200.938 kJ/mol # Calculated enthalpy of reaction UOFOH:.5H2O -# Enthalpy of formation: -1576.1 kJ/mol + -delta_H -200.938 kJ/mol # Calculated enthalpy of reaction UOFOH:.5H2O +# Enthalpy of formation: -1576.1 kJ/mol -analytic -1.1024e+1 -7.718e-3 1.0019e+4 1.7305e+0 1.7014e+2 # -Range: 0-200 UP UP + 2 O2 + H+ = HPO4-2 + U+3 log_k 233.4928 - -delta_H -1487.11 kJ/mol # Calculated enthalpy of reaction UP -# Enthalpy of formation: -269.8 kJ/mol + -delta_H -1487.11 kJ/mol # Calculated enthalpy of reaction UP +# Enthalpy of formation: -269.8 kJ/mol -analytic -2.1649e+2 -9.0873e-2 8.3804e+4 8.1649e+1 -5.4044e+5 # -Range: 0-300 UP2 UP2 + 3.25 O2 + 1.5 H2O = H+ + U+3 + 2 HPO4-2 log_k 360.5796 - -delta_H -2301.07 kJ/mol # Calculated enthalpy of reaction UP2 -# Enthalpy of formation: -304 kJ/mol + -delta_H -2301.07 kJ/mol # Calculated enthalpy of reaction UP2 +# Enthalpy of formation: -304 kJ/mol -analytic -2.4721e+2 -1.5005e-1 1.2243e+5 9.9521e+1 -3.9706e+5 # -Range: 0-300 UP2O7 UP2O7 + H2O = U+4 + 2 HPO4-2 log_k -32.9922 - -delta_H -37.5256 kJ/mol # Calculated enthalpy of reaction UP2O7 -# Enthalpy of formation: -2852 kJ/mol + -delta_H -37.5256 kJ/mol # Calculated enthalpy of reaction UP2O7 +# Enthalpy of formation: -2852 kJ/mol -analytic -3.591e+2 -1.3819e-1 7.6509e+3 1.3804e+2 1.1949e+2 # -Range: 0-300 UP2O7:20H2O UP2O7:20H2O = U+4 + 2 HPO4-2 + 19 H2O log_k -28.63 - -delta_H 0 # Not possible to calculate enthalpy of reaction UP2O7:20H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction UP2O7:20H2O +# Enthalpy of formation: 0 kcal/mol UPO5 UPO5 + H2O = H+ + HPO4-2 + UO2+ log_k -19.5754 - -delta_H 32.6294 kJ/mol # Calculated enthalpy of reaction UPO5 -# Enthalpy of formation: -2064 kJ/mol + -delta_H 32.6294 kJ/mol # Calculated enthalpy of reaction UPO5 +# Enthalpy of formation: -2064 kJ/mol -analytic -1.5316e+2 -6.0911e-2 7.3255e+2 6.0317e+1 1.1476e+1 # -Range: 0-300 US US + 2 H+ + 0.25 O2 = 0.5 H2O + HS- + U+3 log_k 46.6547 - -delta_H -322.894 kJ/mol # Calculated enthalpy of reaction US -# Enthalpy of formation: -322.2 kJ/mol + -delta_H -322.894 kJ/mol # Calculated enthalpy of reaction US +# Enthalpy of formation: -322.2 kJ/mol -analytic -1.0845e+2 -4.0538e-2 1.8749e+4 4.2147e+1 2.9259e+2 # -Range: 0-300 US1.9 US1.9 + 1.9 H+ = 0.2 U+3 + 0.8 U+4 + 1.9 HS- log_k -2.2816 - -delta_H -91.486 kJ/mol # Calculated enthalpy of reaction US1.9 -# Enthalpy of formation: -509.9 kJ/mol + -delta_H -91.486 kJ/mol # Calculated enthalpy of reaction US1.9 +# Enthalpy of formation: -509.9 kJ/mol -analytic -2.0534e+2 -6.839e-2 8.8888e+3 7.8243e+1 1.3876e+2 # -Range: 0-300 US2 US2 + 2 H+ = U+4 + 2 HS- log_k -2.3324 - -delta_H -103.017 kJ/mol # Calculated enthalpy of reaction US2 -# Enthalpy of formation: -520.4 kJ/mol + -delta_H -103.017 kJ/mol # Calculated enthalpy of reaction US2 +# Enthalpy of formation: -520.4 kJ/mol -analytic -2.1819e+2 -7.1522e-2 9.7782e+3 8.2586e+1 1.5264e+2 # -Range: 0-300 US3 US3 + 2 H2O = H+ + UO2+2 + 3 HS- log_k -16.637 - -delta_H 43.9515 kJ/mol # Calculated enthalpy of reaction US3 -# Enthalpy of formation: -539.6 kJ/mol + -delta_H 43.9515 kJ/mol # Calculated enthalpy of reaction US3 +# Enthalpy of formation: -539.6 kJ/mol -analytic -2.3635e+2 -9.5877e-2 1.917e+3 9.7726e+1 2.9982e+1 # -Range: 0-300 USb USb + 3 H+ + 1.5 O2 = Sb(OH)3 + U+3 log_k 176.0723 - -delta_H -1106.19 kJ/mol # Calculated enthalpy of reaction USb -# Enthalpy of formation: -138.5 kJ/mol + -delta_H -1106.19 kJ/mol # Calculated enthalpy of reaction USb +# Enthalpy of formation: -138.5 kJ/mol USb2 USb2 + 3 H+ + 2.25 O2 + 1.5 H2O = U+3 + 2 Sb(OH)3 log_k 223.1358 - -delta_H -1407.02 kJ/mol # Calculated enthalpy of reaction USb2 -# Enthalpy of formation: -173.6 kJ/mol + -delta_H -1407.02 kJ/mol # Calculated enthalpy of reaction USb2 +# Enthalpy of formation: -173.6 kJ/mol Uranium-selenide 1 USe + 1.75 O2 + H+ = 0.5 H2O + SeO3-2 + U+3 log_k 125.6086 - -delta_H -844.278 kJ/mol # Calculated enthalpy of reaction Uranium-selenide -# Enthalpy of formation: -275.7 kJ/mol + -delta_H -844.278 kJ/mol # Calculated enthalpy of reaction Uranium-selenide +# Enthalpy of formation: -275.7 kJ/mol -analytic -1.0853e+2 -7.6251e-2 4.323e+4 4.5189e+1 6.746e+2 # -Range: 0-300 USe2(alpha) USe2 + 2.75 O2 + 0.5 H2O = H+ + U+3 + 2 SeO3-2 log_k 125.4445 - -delta_H -904.199 kJ/mol # Calculated enthalpy of reaction USe2(alpha) -# Enthalpy of formation: -427 kJ/mol + -delta_H -904.199 kJ/mol # Calculated enthalpy of reaction USe2(alpha) +# Enthalpy of formation: -427 kJ/mol -analytic -2.0454e+2 -1.4191e-1 4.6114e+4 8.7906e+1 7.1963e+2 # -Range: 0-300 USe2(beta) USe2 + 2.75 O2 + 0.5 H2O = H+ + U+3 + 2 SeO3-2 log_k 125.2868 - -delta_H -904.199 kJ/mol # Calculated enthalpy of reaction USe2(beta) -# Enthalpy of formation: -427 kJ/mol + -delta_H -904.199 kJ/mol # Calculated enthalpy of reaction USe2(beta) +# Enthalpy of formation: -427 kJ/mol -analytic -2.0334e+2 -1.4147e-1 4.6082e+4 8.7349e+1 7.1913e+2 # -Range: 0-300 USe3 USe3 + 3.75 O2 + 1.5 H2O = U+3 + 3 H+ + 3 SeO3-2 log_k 147.2214 - -delta_H -1090.42 kJ/mol # Calculated enthalpy of reaction USe3 -# Enthalpy of formation: -452 kJ/mol + -delta_H -1090.42 kJ/mol # Calculated enthalpy of reaction USe3 +# Enthalpy of formation: -452 kJ/mol -analytic 4.9201e+2 -1.372e-2 3.2168e+4 -1.8131e+2 5.4609e+2 # -Range: 0-200 Umangite Cu3Se2 = Cu+2 + 2 Cu+ + 2 Se-2 log_k -93.8412 - -delta_H 0 # Not possible to calculate enthalpy of reaction Umangite -# Enthalpy of formation: -25 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Umangite +# Enthalpy of formation: -25 kcal/mol -analytic -7.2308e+1 -2.2566e-3 -2.0738e+4 1.9677e+1 -3.5214e+2 # -Range: 0-200 Uraninite UO2 + 4 H+ = U+4 + 2 H2O log_k -4.8372 - -delta_H -77.8767 kJ/mol # Calculated enthalpy of reaction Uraninite -# Enthalpy of formation: -1085 kJ/mol + -delta_H -77.8767 kJ/mol # Calculated enthalpy of reaction Uraninite +# Enthalpy of formation: -1085 kJ/mol -analytic -7.5776e+1 -1.0558e-2 5.9677e+3 2.1853e+1 9.3142e+1 # -Range: 0-300 Uranocircite Ba(UO2)2(PO4)2 + 2 H+ = Ba+2 + 2 HPO4-2 + 2 UO2+2 log_k -19.8057 - -delta_H -72.3317 kJ/mol # Calculated enthalpy of reaction Uranocircite -# Enthalpy of formation: -1215.94 kcal/mol + -delta_H -72.3317 kJ/mol # Calculated enthalpy of reaction Uranocircite +# Enthalpy of formation: -1215.94 kcal/mol -analytic -3.6843e+1 -4.3076e-2 1.2427e+3 1.0384e+1 2.1115e+1 # -Range: 0-200 Uranophane Ca(UO2)2(SiO3)2(OH)2 + 6 H+ = Ca+2 + 2 SiO2 + 2 UO2+2 + 4 H2O log_k 17.285 - -delta_H 0 # Not possible to calculate enthalpy of reaction Uranophane -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Uranophane +# Enthalpy of formation: 0 kcal/mol V V + 3 H+ + 0.75 O2 = V+3 + 1.5 H2O log_k 106.9435 - -delta_H -680.697 kJ/mol # Calculated enthalpy of reaction V -# Enthalpy of formation: 0 kJ/mol + -delta_H -680.697 kJ/mol # Calculated enthalpy of reaction V +# Enthalpy of formation: 0 kJ/mol -analytic -1.0508e+2 -2.1334e-2 4.0364e+4 3.5012e+1 -3.229e+5 # -Range: 0-300 V2O4 V2O4 + 4 H+ = 2 H2O + 2 VO+2 log_k 8.5719 - -delta_H -117.564 kJ/mol # Calculated enthalpy of reaction V2O4 -# Enthalpy of formation: -1427.31 kJ/mol + -delta_H -117.564 kJ/mol # Calculated enthalpy of reaction V2O4 +# Enthalpy of formation: -1427.31 kJ/mol -analytic -1.4429e+2 -3.7423e-2 9.7046e+3 5.3125e+1 1.5147e+2 # -Range: 0-300 V3O5 V3O5 + 8 H+ = VO+2 + 2 V+3 + 4 H2O log_k 13.4312 - -delta_H -218.857 kJ/mol # Calculated enthalpy of reaction V3O5 -# Enthalpy of formation: -1933.17 kJ/mol + -delta_H -218.857 kJ/mol # Calculated enthalpy of reaction V3O5 +# Enthalpy of formation: -1933.17 kJ/mol -analytic -1.7652e+2 -2.1959e-2 1.6814e+4 5.6618e+1 2.8559e+2 # -Range: 0-200 V4O7 V4O7 + 10 H+ = 2 V+3 + 2 VO+2 + 5 H2O log_k 18.7946 - -delta_H -284.907 kJ/mol # Calculated enthalpy of reaction V4O7 -# Enthalpy of formation: -2639.56 kJ/mol + -delta_H -284.907 kJ/mol # Calculated enthalpy of reaction V4O7 +# Enthalpy of formation: -2639.56 kJ/mol -analytic -2.2602e+2 -3.0261e-2 2.1667e+4 7.3214e+1 3.68e+2 # -Range: 0-200 Vaesite NiS2 + H2O = 0.25 H+ + 0.25 SO4-2 + Ni+2 + 1.75 HS- log_k -26.7622 - -delta_H 110.443 kJ/mol # Calculated enthalpy of reaction Vaesite -# Enthalpy of formation: -32.067 kcal/mol + -delta_H 110.443 kJ/mol # Calculated enthalpy of reaction Vaesite +# Enthalpy of formation: -32.067 kcal/mol -analytic 1.6172e+1 -2.2673e-2 -8.2514e+3 -3.4392e+0 -1.4013e+2 # -Range: 0-200 Vivianite Fe3(PO4)2:8H2O + 2 H+ = 2 HPO4-2 + 3 Fe+2 + 8 H2O log_k -4.7237 - -delta_H 0 # Not possible to calculate enthalpy of reaction Vivianite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Vivianite +# Enthalpy of formation: 0 kcal/mol W W + 1.5 O2 + H2O = WO4-2 + 2 H+ log_k 123.4334 - -delta_H -771.668 kJ/mol # Calculated enthalpy of reaction W -# Enthalpy of formation: 0 kJ/mol + -delta_H -771.668 kJ/mol # Calculated enthalpy of reaction W +# Enthalpy of formation: 0 kJ/mol -analytic -1.0433e+2 -6.947e-2 4.0134e+4 4.5993e+1 6.2629e+2 # -Range: 0-300 Wairakite CaAl2Si4O10(OH)4 + 8 H+ = Ca+2 + 2 Al+3 + 4 SiO2 + 6 H2O log_k 18.0762 - -delta_H -237.781 kJ/mol # Calculated enthalpy of reaction Wairakite -# Enthalpy of formation: -1579.33 kcal/mol + -delta_H -237.781 kJ/mol # Calculated enthalpy of reaction Wairakite +# Enthalpy of formation: -1579.33 kcal/mol -analytic -1.7914e+1 3.2944e-3 2.2782e+4 -9.0981e+0 -1.6934e+6 # -Range: 0-300 Weeksite K2(UO2)2(Si2O5)3:4H2O + 6 H+ = 2 K+ + 2 UO2+2 + 6 SiO2 + 7 H2O log_k 15.375 - -delta_H 0 # Not possible to calculate enthalpy of reaction Weeksite -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Weeksite +# Enthalpy of formation: 0 kcal/mol Whitlockite Ca3(PO4)2 + 2 H+ = 2 HPO4-2 + 3 Ca+2 log_k -4.2249 - -delta_H -116.645 kJ/mol # Calculated enthalpy of reaction Whitlockite -# Enthalpy of formation: -4096.77 kJ/mol + -delta_H -116.645 kJ/mol # Calculated enthalpy of reaction Whitlockite +# Enthalpy of formation: -4096.77 kJ/mol -analytic -5.3543e+2 -1.8842e-1 1.7176e+4 2.1406e+2 2.6817e+2 # -Range: 0-300 Wilkmanite Ni3Se4 + H2O = 0.5 O2 + 2 H+ + 3 Ni+2 + 4 Se-2 log_k -152.8793 - -delta_H 0 # Not possible to calculate enthalpy of reaction Wilkmanite -# Enthalpy of formation: -60.285 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Wilkmanite +# Enthalpy of formation: -60.285 kcal/mol -analytic -1.9769e+2 -4.9968e-2 -2.8208e+4 6.2863e+1 -1.1322e+5 # -Range: 0-300 Witherite BaCO3 + H+ = Ba+2 + HCO3- log_k -2.9965 - -delta_H 17.1628 kJ/mol # Calculated enthalpy of reaction Witherite -# Enthalpy of formation: -297.5 kcal/mol + -delta_H 17.1628 kJ/mol # Calculated enthalpy of reaction Witherite +# Enthalpy of formation: -297.5 kcal/mol -analytic -1.2585e+2 -4.4315e-2 2.0227e+3 5.2239e+1 3.16e+1 # -Range: 0-300 Wollastonite CaSiO3 + 2 H+ = Ca+2 + H2O + SiO2 log_k 13.7605 - -delta_H -76.5756 kJ/mol # Calculated enthalpy of reaction Wollastonite -# Enthalpy of formation: -389.59 kcal/mol + -delta_H -76.5756 kJ/mol # Calculated enthalpy of reaction Wollastonite +# Enthalpy of formation: -389.59 kcal/mol -analytic 3.0931e+1 6.7466e-3 5.1749e+3 -1.3209e+1 -3.4579e+5 # -Range: 0-300 Wurtzite ZnS + H+ = HS- + Zn+2 log_k -9.1406 - -delta_H 22.3426 kJ/mol # Calculated enthalpy of reaction Wurtzite -# Enthalpy of formation: -45.85 kcal/mol + -delta_H 22.3426 kJ/mol # Calculated enthalpy of reaction Wurtzite +# Enthalpy of formation: -45.85 kcal/mol -analytic -1.5446e+2 -4.8874e-2 2.4551e+3 6.1278e+1 3.8355e+1 # -Range: 0-300 Wustite Fe.947O + 2 H+ = 0.106 Fe+3 + 0.841 Fe+2 + H2O log_k 12.4113 - -delta_H -102.417 kJ/mol # Calculated enthalpy of reaction Wustite -# Enthalpy of formation: -266.265 kJ/mol + -delta_H -102.417 kJ/mol # Calculated enthalpy of reaction Wustite +# Enthalpy of formation: -266.265 kJ/mol -analytic -7.6919e+1 -1.8433e-2 7.3823e+3 2.8312e+1 1.1522e+2 # -Range: 0-300 Xonotlite Ca6Si6O17(OH)2 + 12 H+ = 6 Ca+2 + 6 SiO2 + 7 H2O log_k 91.8267 - -delta_H -495.457 kJ/mol # Calculated enthalpy of reaction Xonotlite -# Enthalpy of formation: -2397.25 kcal/mol + -delta_H -495.457 kJ/mol # Calculated enthalpy of reaction Xonotlite +# Enthalpy of formation: -2397.25 kcal/mol -analytic 1.608e+3 3.7309e-1 -2.2548e+4 -6.2716e+2 -3.8346e+2 # -Range: 0-200 Y Y + 3 H+ + 0.75 O2 = Y+3 + 1.5 H2O log_k 184.5689 - -delta_H -1134.7 kJ/mol # Calculated enthalpy of reaction Y -# Enthalpy of formation: 0 kJ/mol + -delta_H -1134.7 kJ/mol # Calculated enthalpy of reaction Y +# Enthalpy of formation: 0 kJ/mol -analytic -6.2641e+1 -2.8062e-2 5.9667e+4 2.2394e+1 9.3107e+2 # -Range: 0-300 Yb Yb + 2 H+ + 0.5 O2 = H2O + Yb+2 log_k 137.193 - -delta_H -810.303 kJ/mol # Calculated enthalpy of reaction Yb -# Enthalpy of formation: 0 kJ/mol + -delta_H -810.303 kJ/mol # Calculated enthalpy of reaction Yb +# Enthalpy of formation: 0 kJ/mol -analytic -7.4712e+1 -2.0993e-2 4.4129e+4 2.8341e+1 6.8862e+2 # -Range: 0-300 Yb(OH)3 Yb(OH)3 + 3 H+ = Yb+3 + 3 H2O log_k 14.6852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)3 +# Enthalpy of formation: 0 kcal/mol Yb(OH)3(am) Yb(OH)3 + 3 H+ = Yb+3 + 3 H2O log_k 18.9852 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)3(am) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb(OH)3(am) +# Enthalpy of formation: 0 kcal/mol Yb2(CO3)3 Yb2(CO3)3 + 3 H+ = 2 Yb+3 + 3 HCO3- log_k -2.3136 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb2(CO3)3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb2(CO3)3 +# Enthalpy of formation: 0 kcal/mol Yb2O3 Yb2O3 + 6 H+ = 2 Yb+3 + 3 H2O log_k 47.8 - -delta_H 0 # Not possible to calculate enthalpy of reaction Yb2O3 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Yb2O3 +# Enthalpy of formation: 0 kcal/mol YbF3:.5H2O YbF3:.5H2O = 0.5 H2O + Yb+3 + 3 F- log_k -16 - -delta_H 0 # Not possible to calculate enthalpy of reaction YbF3:.5H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YbF3:.5H2O +# Enthalpy of formation: 0 kcal/mol YbPO4:10H2O YbPO4:10H2O + H+ = HPO4-2 + Yb+3 + 10 H2O log_k -11.7782 - -delta_H 0 # Not possible to calculate enthalpy of reaction YbPO4:10H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction YbPO4:10H2O +# Enthalpy of formation: 0 kcal/mol Zincite ZnO + 2 H+ = H2O + Zn+2 log_k 11.2087 - -delta_H -88.7638 kJ/mol # Calculated enthalpy of reaction Zincite -# Enthalpy of formation: -350.46 kJ/mol + -delta_H -88.7638 kJ/mol # Calculated enthalpy of reaction Zincite +# Enthalpy of formation: -350.46 kJ/mol -analytic -8.6681e+1 -1.9324e-2 7.1034e+3 3.2256e+1 1.1087e+2 # -Range: 0-300 Zircon ZrSiO4 + 2 H+ = SiO2 + Zr(OH)2+2 log_k -15.4193 - -delta_H 64.8635 kJ/mol # Calculated enthalpy of reaction Zircon -# Enthalpy of formation: -2033.4 kJ/mol + -delta_H 64.8635 kJ/mol # Calculated enthalpy of reaction Zircon +# Enthalpy of formation: -2033.4 kJ/mol -analytic 9.2639e+0 6.5416e-3 5.0759e+2 -8.4547e+0 -6.6155e+5 # -Range: 0-300 Zn Zn + 2 H+ + 0.5 O2 = H2O + Zn+2 log_k 68.8035 - -delta_H -433.157 kJ/mol # Calculated enthalpy of reaction Zn -# Enthalpy of formation: 0 kJ/mol + -delta_H -433.157 kJ/mol # Calculated enthalpy of reaction Zn +# Enthalpy of formation: 0 kJ/mol -analytic -6.4131e+1 -2.0009e-2 2.3921e+4 2.3702e+1 3.7329e+2 # -Range: 0-300 Zn(BO2)2 Zn(BO2)2 + 2 H+ + 2 H2O = Zn+2 + 2 B(OH)3 log_k 8.313 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(BO2)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(BO2)2 +# Enthalpy of formation: 0 kcal/mol Zn(ClO4)2:6H2O Zn(ClO4)2:6H2O = Zn+2 + 2 ClO4- + 6 H2O log_k 5.6474 - -delta_H 6.31871 kJ/mol # Calculated enthalpy of reaction Zn(ClO4)2:6H2O -# Enthalpy of formation: -2133.39 kJ/mol + -delta_H 6.31871 kJ/mol # Calculated enthalpy of reaction Zn(ClO4)2:6H2O +# Enthalpy of formation: -2133.39 kJ/mol -analytic -1.8191e+2 -9.1383e-3 7.4822e+3 6.6751e+1 1.2712e+2 # -Range: 0-200 Zn(IO3)2 Zn(IO3)2 = Zn+2 + 2 IO3- log_k -5.3193 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(IO3)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(IO3)2 +# Enthalpy of formation: 0 kcal/mol Zn(NO3)2:6H2O Zn(NO3)2:6H2O = Zn+2 + 2 NO3- + 6 H2O log_k 3.4102 - -delta_H 24.7577 kJ/mol # Calculated enthalpy of reaction Zn(NO3)2:6H2O -# Enthalpy of formation: -2306.8 kJ/mol + -delta_H 24.7577 kJ/mol # Calculated enthalpy of reaction Zn(NO3)2:6H2O +# Enthalpy of formation: -2306.8 kJ/mol -analytic -1.7152e+2 -1.6875e-2 5.6291e+3 6.5094e+1 9.5649e+1 # -Range: 0-200 Zn(OH)2(beta) Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O log_k 11.9341 - -delta_H -83.2111 kJ/mol # Calculated enthalpy of reaction Zn(OH)2(beta) -# Enthalpy of formation: -641.851 kJ/mol + -delta_H -83.2111 kJ/mol # Calculated enthalpy of reaction Zn(OH)2(beta) +# Enthalpy of formation: -641.851 kJ/mol -analytic -7.781e+1 -7.8548e-3 7.1994e+3 2.7455e+1 1.2228e+2 # -Range: 0-200 Zn(OH)2(epsilon) Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O log_k 11.6625 - -delta_H -81.7811 kJ/mol # Calculated enthalpy of reaction Zn(OH)2(epsilon) -# Enthalpy of formation: -643.281 kJ/mol + -delta_H -81.7811 kJ/mol # Calculated enthalpy of reaction Zn(OH)2(epsilon) +# Enthalpy of formation: -643.281 kJ/mol -analytic -7.7938e+1 -7.8767e-3 7.1282e+3 2.7496e+1 1.2107e+2 # -Range: 0-200 Zn(OH)2(gamma) Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O log_k 11.8832 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)2(gamma) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn(OH)2(gamma) +# Enthalpy of formation: 0 kcal/mol Zn2(OH)3Cl Zn2(OH)3Cl + 3 H+ = Cl- + 2 Zn+2 + 3 H2O log_k 15.2921 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2(OH)3Cl -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2(OH)3Cl +# Enthalpy of formation: 0 kcal/mol Zn2SO4(OH)2 Zn2SO4(OH)2 + 2 H+ = SO4-2 + 2 H2O + 2 Zn+2 log_k 7.5816 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2SO4(OH)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2SO4(OH)2 +# Enthalpy of formation: 0 kcal/mol Zn2SiO4 Zn2SiO4 + 4 H+ = SiO2 + 2 H2O + 2 Zn+2 log_k 13.8695 - -delta_H -119.399 kJ/mol # Calculated enthalpy of reaction Zn2SiO4 -# Enthalpy of formation: -1636.75 kJ/mol + -delta_H -119.399 kJ/mol # Calculated enthalpy of reaction Zn2SiO4 +# Enthalpy of formation: -1636.75 kJ/mol -analytic 2.097e+2 5.3663e-2 -1.2724e+2 -8.5445e+1 -2.2336e+0 # -Range: 0-200 Zn2TiO4 Zn2TiO4 + 4 H+ = Ti(OH)4 + 2 Zn+2 log_k 12.3273 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2TiO4 -# Enthalpy of formation: -1647.85 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn2TiO4 +# Enthalpy of formation: -1647.85 kJ/mol Zn3(AsO4)2 Zn3(AsO4)2 + 4 H+ = 2 H2AsO4- + 3 Zn+2 log_k 9.3122 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn3(AsO4)2 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn3(AsO4)2 +# Enthalpy of formation: 0 kcal/mol Zn3O(SO4)2 Zn3O(SO4)2 + 2 H+ = H2O + 2 SO4-2 + 3 Zn+2 log_k 19.1188 - -delta_H -258.253 kJ/mol # Calculated enthalpy of reaction Zn3O(SO4)2 -# Enthalpy of formation: -2306.95 kJ/mol + -delta_H -258.253 kJ/mol # Calculated enthalpy of reaction Zn3O(SO4)2 +# Enthalpy of formation: -2306.95 kJ/mol -analytic -3.9661e+1 -4.386e-2 1.1301e+4 1.3709e+1 1.9193e+2 # -Range: 0-200 Zn5(NO3)2(OH)8 Zn5(NO3)2(OH)8 + 8 H+ = 2 NO3- + 5 Zn+2 + 8 H2O log_k 42.6674 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zn5(NO3)2(OH)8 -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zn5(NO3)2(OH)8 +# Enthalpy of formation: 0 kcal/mol ZnBr2 ZnBr2 = Zn+2 + 2 Br- log_k 7.5787 - -delta_H -67.7622 kJ/mol # Calculated enthalpy of reaction ZnBr2 -# Enthalpy of formation: -328.63 kJ/mol + -delta_H -67.7622 kJ/mol # Calculated enthalpy of reaction ZnBr2 +# Enthalpy of formation: -328.63 kJ/mol -analytic 6.5789e-2 -2.1477e-2 1.984e+3 2.9302e+0 3.3691e+1 # -Range: 0-200 ZnBr2:2H2O ZnBr2:2H2O = Zn+2 + 2 Br- + 2 H2O log_k 5.2999 - -delta_H -30.9268 kJ/mol # Calculated enthalpy of reaction ZnBr2:2H2O -# Enthalpy of formation: -937.142 kJ/mol + -delta_H -30.9268 kJ/mol # Calculated enthalpy of reaction ZnBr2:2H2O +# Enthalpy of formation: -937.142 kJ/mol -analytic -4.926e+1 -2.1682e-2 2.4325e+3 2.136e+1 4.1324e+1 # -Range: 0-200 ZnCO3:H2O ZnCO3:H2O + H+ = H2O + HCO3- + Zn+2 log_k 0.1398 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZnCO3:H2O -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZnCO3:H2O +# Enthalpy of formation: 0 kcal/mol ZnCl2 ZnCl2 = Zn+2 + 2 Cl- log_k 7.088 - -delta_H -72.4548 kJ/mol # Calculated enthalpy of reaction ZnCl2 -# Enthalpy of formation: -415.09 kJ/mol + -delta_H -72.4548 kJ/mol # Calculated enthalpy of reaction ZnCl2 +# Enthalpy of formation: -415.09 kJ/mol -analytic -1.6157e+1 -2.5405e-2 2.6505e+3 8.8584e+0 4.5015e+1 # -Range: 0-200 ZnCl2(NH3)2 ZnCl2(NH3)2 = Zn+2 + 2 Cl- + 2 NH3 log_k -6.9956 - -delta_H 27.2083 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)2 -# Enthalpy of formation: -677.427 kJ/mol + -delta_H 27.2083 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)2 +# Enthalpy of formation: -677.427 kJ/mol -analytic -5.9409e+1 -2.2698e-2 -2.9178e+2 2.4308e+1 -4.9341e+0 # -Range: 0-200 ZnCl2(NH3)4 ZnCl2(NH3)4 = Zn+2 + 2 Cl- + 4 NH3 log_k -6.6955 - -delta_H 56.2004 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)4 -# Enthalpy of formation: -869.093 kJ/mol + -delta_H 56.2004 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)4 +# Enthalpy of formation: -869.093 kJ/mol -analytic -9.9769e+1 -1.9793e-2 4.2916e+2 3.9412e+1 7.3223e+0 # -Range: 0-200 ZnCl2(NH3)6 ZnCl2(NH3)6 = Zn+2 + 2 Cl- + 6 NH3 log_k -4.7311 - -delta_H 77.4225 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)6 -# Enthalpy of formation: -1052.99 kJ/mol + -delta_H 77.4225 kJ/mol # Calculated enthalpy of reaction ZnCl2(NH3)6 +# Enthalpy of formation: -1052.99 kJ/mol -analytic -1.3984e+2 -1.6896e-2 1.5559e+3 5.4524e+1 2.647e+1 # -Range: 0-200 ZnCr2O4 ZnCr2O4 + 8 H+ = Zn+2 + 2 Cr+3 + 4 H2O log_k 7.9161 - -delta_H -221.953 kJ/mol # Calculated enthalpy of reaction ZnCr2O4 -# Enthalpy of formation: -370.88 kcal/mol + -delta_H -221.953 kJ/mol # Calculated enthalpy of reaction ZnCr2O4 +# Enthalpy of formation: -370.88 kcal/mol -analytic -1.7603e+2 -1.0217e-2 1.7414e+4 5.1966e+1 2.9577e+2 # -Range: 0-200 ZnF2 ZnF2 = Zn+2 + 2 F- log_k -0.4418 - -delta_H -59.8746 kJ/mol # Calculated enthalpy of reaction ZnF2 -# Enthalpy of formation: -764.206 kJ/mol + -delta_H -59.8746 kJ/mol # Calculated enthalpy of reaction ZnF2 +# Enthalpy of formation: -764.206 kJ/mol -analytic -2.6085e+2 -8.4594e-2 9.024e+3 1.0318e+2 1.4089e+2 # -Range: 0-300 ZnI2 ZnI2 = Zn+2 + 2 I- log_k 7.3885 - -delta_H -59.2332 kJ/mol # Calculated enthalpy of reaction ZnI2 -# Enthalpy of formation: -207.957 kJ/mol + -delta_H -59.2332 kJ/mol # Calculated enthalpy of reaction ZnI2 +# Enthalpy of formation: -207.957 kJ/mol -analytic -1.6472e+1 -2.5573e-2 2.0796e+3 9.9013e+0 3.532e+1 # -Range: 0-200 ZnSO4 ZnSO4 = SO4-2 + Zn+2 log_k 3.5452 - -delta_H -80.132 kJ/mol # Calculated enthalpy of reaction ZnSO4 -# Enthalpy of formation: -982.855 kJ/mol + -delta_H -80.132 kJ/mol # Calculated enthalpy of reaction ZnSO4 +# Enthalpy of formation: -982.855 kJ/mol -analytic 6.9905e+0 -1.8046e-2 2.2566e+3 -2.2819e+0 3.8318e+1 # -Range: 0-200 ZnSO4:6H2O ZnSO4:6H2O = SO4-2 + Zn+2 + 6 H2O log_k -1.6846 - -delta_H -0.412008 kJ/mol # Calculated enthalpy of reaction ZnSO4:6H2O -# Enthalpy of formation: -2777.61 kJ/mol + -delta_H -0.412008 kJ/mol # Calculated enthalpy of reaction ZnSO4:6H2O +# Enthalpy of formation: -2777.61 kJ/mol -analytic -1.4506e+2 -1.8736e-2 5.2179e+3 5.3121e+1 8.8657e+1 # -Range: 0-200 ZnSO4:7H2O ZnSO4:7H2O = SO4-2 + Zn+2 + 7 H2O log_k -1.8683 - -delta_H 14.0417 kJ/mol # Calculated enthalpy of reaction ZnSO4:7H2O -# Enthalpy of formation: -3077.9 kJ/mol + -delta_H 14.0417 kJ/mol # Calculated enthalpy of reaction ZnSO4:7H2O +# Enthalpy of formation: -3077.9 kJ/mol -analytic -1.6943e+2 -1.8833e-2 5.6484e+3 6.2326e+1 9.5975e+1 # -Range: 0-200 ZnSO4:H2O ZnSO4:H2O = H2O + SO4-2 + Zn+2 log_k -0.5383 - -delta_H -44.2824 kJ/mol # Calculated enthalpy of reaction ZnSO4:H2O -# Enthalpy of formation: -1304.54 kJ/mol + -delta_H -44.2824 kJ/mol # Calculated enthalpy of reaction ZnSO4:H2O +# Enthalpy of formation: -1304.54 kJ/mol -analytic -1.7908e+1 -1.8228e-2 1.5811e+3 7.0677e+0 2.6856e+1 # -Range: 0-200 ZnSeO3:H2O ZnSeO3:H2O = H2O + SeO3-2 + Zn+2 log_k -6.7408 - -delta_H -17.9056 kJ/mol # Calculated enthalpy of reaction ZnSeO3:H2O -# Enthalpy of formation: -930.511 kJ/mol + -delta_H -17.9056 kJ/mol # Calculated enthalpy of reaction ZnSeO3:H2O +# Enthalpy of formation: -930.511 kJ/mol -analytic -1.8569e+1 -1.9929e-2 6.4377e+1 7.0892e+0 1.0996e+0 # -Range: 0-200 Zoisite Ca2Al3(SiO4)3OH + 13 H+ = 2 Ca+2 + 3 Al+3 + 3 SiO2 + 7 H2O log_k 43.3017 - -delta_H -458.131 kJ/mol # Calculated enthalpy of reaction Zoisite -# Enthalpy of formation: -1643.69 kcal/mol + -delta_H -458.131 kJ/mol # Calculated enthalpy of reaction Zoisite +# Enthalpy of formation: -1643.69 kcal/mol -analytic 2.5321e+0 -3.5886e-2 1.9902e+4 -6.2443e+0 3.1055e+2 # -Range: 0-300 Zr Zr + 2 H+ + O2 = Zr(OH)2+2 log_k 177.6471 - -delta_H -1078.71 kJ/mol # Calculated enthalpy of reaction Zr -# Enthalpy of formation: 0 kJ/mol + -delta_H -1078.71 kJ/mol # Calculated enthalpy of reaction Zr +# Enthalpy of formation: 0 kJ/mol -analytic -2.836e+1 -1.5214e-2 5.8045e+4 7.8012e+0 -3.0657e+5 # -Range: 0-300 ZrB2 ZrB2 + 3 H+ + 2 H2O + 0.5 O2 = B(OH)3 + BH4- + Zr+4 log_k 103.4666 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrB2 -# Enthalpy of formation: -326.628 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrB2 +# Enthalpy of formation: -326.628 kJ/mol ZrC ZrC + 3 H+ + 2 O2 = H2O + HCO3- + Zr+4 log_k 207.0906 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrC -# Enthalpy of formation: -203.008 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrC +# Enthalpy of formation: -203.008 kJ/mol ZrCl ZrCl + 3 H+ + 0.75 O2 = Cl- + Zr+4 + 1.5 H2O log_k 130.945 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl -# Enthalpy of formation: -303.211 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl +# Enthalpy of formation: -303.211 kJ/mol ZrCl2 ZrCl2 + 2 H+ + 0.5 O2 = H2O + Zr+4 + 2 Cl- log_k 96.3205 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl2 -# Enthalpy of formation: -531.021 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl2 +# Enthalpy of formation: -531.021 kJ/mol ZrCl3 ZrCl3 + H+ + 0.25 O2 = 0.5 H2O + Zr+4 + 3 Cl- log_k 62.4492 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl3 -# Enthalpy of formation: -754.997 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl3 +# Enthalpy of formation: -754.997 kJ/mol ZrCl4 ZrCl4 = Zr+4 + 4 Cl- log_k 27.9824 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl4 -# Enthalpy of formation: -980.762 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrCl4 +# Enthalpy of formation: -980.762 kJ/mol ZrF4(beta) ZrF4 = Zr+4 + 4 F- log_k -27.7564 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4(beta) -# Enthalpy of formation: -1911.26 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4(beta) +# Enthalpy of formation: -1911.26 kJ/mol ZrH2 ZrH2 + 4 H+ + 1.5 O2 = Zr+4 + 3 H2O log_k 198.3224 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrH2 -# Enthalpy of formation: -168.946 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrH2 +# Enthalpy of formation: -168.946 kJ/mol ZrN ZrN + 4 H+ + 0.25 O2 = 0.5 H2O + NH3 + Zr+4 log_k 59.1271 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrN -# Enthalpy of formation: -365 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrN +# Enthalpy of formation: -365 kJ/mol O-phthalic_acid H2O_phthalate = O_phthalate-2 + 2 H+ log_k -9.7755 - -delta_H 0 # Not possible to calculate enthalpy of reaction O-phthalic_acid -# Enthalpy of formation: -186.88 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction O-phthalic_acid +# Enthalpy of formation: -186.88 kJ/mol -analytic 7.345e+1 1.9477e-2 -3.6511e+3 -3.1035e+1 -6.2027e+1 # -Range: 0-200 Br2(l) Br2 + H2O = 0.5 O2 + 2 Br- + 2 H+ log_k -6.5419 - -delta_H 36.7648 kJ/mol # Calculated enthalpy of reaction Br2(l) -# Enthalpy of formation: 0 kJ/mol + -delta_H 36.7648 kJ/mol # Calculated enthalpy of reaction Br2(l) +# Enthalpy of formation: 0 kJ/mol -analytic -1.5875e+2 -5.8039e-2 1.5583e+3 6.6381e+1 2.4362e+1 # -Range: 0-300 Hg(l) Hg + 2 H+ + 0.5 O2 = H2O + Hg+2 log_k 14.1505 - -delta_H -109.608 kJ/mol # Calculated enthalpy of reaction Hg(l) -# Enthalpy of formation: 0 kcal/mol + -delta_H -109.608 kJ/mol # Calculated enthalpy of reaction Hg(l) +# Enthalpy of formation: 0 kcal/mol -analytic -6.6462e+1 -1.8504e-2 7.3141e+3 2.4888e+1 1.1415e+2 # -Range: 0-300 Ag(g) Ag + H+ + 0.25 O2 = 0.5 H2O + Ag+ log_k 51.0924 - -delta_H -319.035 kJ/mol # Calculated enthalpy of reaction Ag(g) -# Enthalpy of formation: 284.9 kJ/mol + -delta_H -319.035 kJ/mol # Calculated enthalpy of reaction Ag(g) +# Enthalpy of formation: 284.9 kJ/mol -analytic -5.8006e+0 1.7178e-3 1.6809e+4 0e+0 0e+0 # -Range: 0-200 Al(g) Al + 3 H+ + 0.75 O2 = Al+3 + 1.5 H2O log_k 200.6258 - -delta_H -1288.06 kJ/mol # Calculated enthalpy of reaction Al(g) -# Enthalpy of formation: 330 kJ/mol + -delta_H -1288.06 kJ/mol # Calculated enthalpy of reaction Al(g) +# Enthalpy of formation: 330 kJ/mol -analytic 9.6402e+0 -6.9301e-3 6.527e+4 -1.0461e+1 1.1084e+3 # -Range: 0-200 Am(g) Am + 3 H+ + 0.75 O2 = Am+3 + 1.5 H2O log_k 211.7865 - -delta_H -1320.16 kJ/mol # Calculated enthalpy of reaction Am(g) -# Enthalpy of formation: 283.8 kJ/mol + -delta_H -1320.16 kJ/mol # Calculated enthalpy of reaction Am(g) +# Enthalpy of formation: 283.8 kJ/mol -analytic -1.4236e+1 -8.756e-3 6.8166e+4 0e+0 0e+0 # -Range: 0-300 AmF3(g) AmF3 = Am+3 + 3 F- log_k 49.8631 - -delta_H -455.843 kJ/mol # Calculated enthalpy of reaction AmF3(g) -# Enthalpy of formation: -1166.9 kJ/mol + -delta_H -455.843 kJ/mol # Calculated enthalpy of reaction AmF3(g) +# Enthalpy of formation: -1166.9 kJ/mol -analytic -4.7209e+1 -3.644e-2 2.2278e+4 1.3418e+1 3.7833e+2 # -Range: 0-200 Ar(g) Ar = Ar log_k -2.8587 - -delta_H -12.0081 kJ/mol # Calculated enthalpy of reaction Ar(g) -# Enthalpy of formation: 0 kcal/mol + -delta_H -12.0081 kJ/mol # Calculated enthalpy of reaction Ar(g) +# Enthalpy of formation: 0 kcal/mol -analytic -7.4387e+0 7.8991e-3 0e+0 0e+0 1.983e+5 # -Range: 0-300 B(g) B + 1.5 H2O + 0.75 O2 = B(OH)3 log_k 200.843 - -delta_H -1201.68 kJ/mol # Calculated enthalpy of reaction B(g) -# Enthalpy of formation: 565 kJ/mol + -delta_H -1201.68 kJ/mol # Calculated enthalpy of reaction B(g) +# Enthalpy of formation: 565 kJ/mol -analytic 1.0834e+2 1.0606e-2 5.815e+4 -4.272e+1 9.8743e+2 # -Range: 0-200 BF3(g) BF3 + 3 H2O = B(OH)3 + 3 F- + 3 H+ log_k -2.9664 - -delta_H -87.0627 kJ/mol # Calculated enthalpy of reaction BF3(g) -# Enthalpy of formation: -1136 kJ/mol + -delta_H -87.0627 kJ/mol # Calculated enthalpy of reaction BF3(g) +# Enthalpy of formation: -1136 kJ/mol -analytic 5.2848e+1 -2.4617e-2 -1.8159e+2 -1.935e+1 -3.1018e+0 # -Range: 0-200 Be(g) Be + 2 H+ + 0.5 O2 = Be+2 + H2O log_k 361.9343 - -delta_H 0 # Not possible to calculate enthalpy of reaction Be(g) -# Enthalpy of formation: 0 kcal/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Be(g) +# Enthalpy of formation: 0 kcal/mol Br2(g) Br2 + H2O = 0.5 O2 + 2 Br- + 2 H+ log_k -5.9979 - -delta_H 5.85481 kJ/mol # Calculated enthalpy of reaction Br2(g) -# Enthalpy of formation: 30.91 kJ/mol + -delta_H 5.85481 kJ/mol # Calculated enthalpy of reaction Br2(g) +# Enthalpy of formation: 30.91 kJ/mol -analytic -3.2403e+0 -1.7609e-2 -1.4941e+3 3.03e+0 -2.537e+1 # -Range: 0-200 C(g) C + H2O + O2 = H+ + HCO3- log_k 181.7723 - -delta_H -1108.64 kJ/mol # Calculated enthalpy of reaction C(g) -# Enthalpy of formation: 716.68 kJ/mol + -delta_H -1108.64 kJ/mol # Calculated enthalpy of reaction C(g) +# Enthalpy of formation: 716.68 kJ/mol -analytic 1.0485e+2 1.7907e-3 5.2768e+4 -4.0661e+1 8.9605e+2 # -Range: 0-200 Ethylene(g) Ethylene = Ethylene log_k -2.3236 - -delta_H -16.4431 kJ/mol # Calculated enthalpy of reaction Ethylene(g) -# Enthalpy of formation: 12.5 kcal/mol + -delta_H -16.4431 kJ/mol # Calculated enthalpy of reaction Ethylene(g) +# Enthalpy of formation: 12.5 kcal/mol -analytic -7.5368e+0 8.4676e-3 0e+0 0e+0 2.3971e+5 # -Range: 0-300 CH4(g) CH4 = CH4 log_k -2.8502 - -delta_H -13.0959 kJ/mol # Calculated enthalpy of reaction CH4(g) -# Enthalpy of formation: -17.88 kcal/mol + -delta_H -13.0959 kJ/mol # Calculated enthalpy of reaction CH4(g) +# Enthalpy of formation: -17.88 kcal/mol -analytic -2.4027e+1 4.7146e-3 3.7227e+2 6.4264e+0 2.3362e+5 # -Range: 0-300 @@ -18160,66 +18160,66 @@ CO(g) # log_k 38.6934 # -analytic -6.1217e+001 -3.1388e-002 1.5283e+004 2.3433e+001 2.3850e+002 # -Range: 0-300 - CO = CO - log_k -3.0068 - -delta_H -10.4349 kJ/mol # Calculated enthalpy of reaction CO(g) -# Enthalpy of formation: -26.416 kcal/mol - -analytic -8.0849e+0 9.2114e-3 0e+0 0e+0 2.0813e+5 + CO = CO + log_k -3.0068 + -delta_H -10.4349 kJ/mol # Calculated enthalpy of reaction CO(g) +# Enthalpy of formation: -26.416 kcal/mol + -analytic -8.0849e+0 9.2114e-3 0e+0 0e+0 2.0813e+5 # -Range: 0-300 CO2(g) CO2 + H2O = H+ + HCO3- log_k -7.8136 - -delta_H -10.5855 kJ/mol # Calculated enthalpy of reaction CO2(g) -# Enthalpy of formation: -94.051 kcal/mol + -delta_H -10.5855 kJ/mol # Calculated enthalpy of reaction CO2(g) +# Enthalpy of formation: -94.051 kcal/mol -analytic -8.5938e+1 -3.0431e-2 2.0702e+3 3.2427e+1 3.2328e+1 # -Range: 0-300 Ca(g) Ca + 2 H+ + 0.5 O2 = Ca+2 + H2O log_k 165.0778 - -delta_H -1000.65 kJ/mol # Calculated enthalpy of reaction Ca(g) -# Enthalpy of formation: 177.8 kJ/mol + -delta_H -1000.65 kJ/mol # Calculated enthalpy of reaction Ca(g) +# Enthalpy of formation: 177.8 kJ/mol -analytic -7.3029e+0 -4.8208e-3 5.1822e+4 0e+0 0e+0 # -Range: 0-200 Cd(g) Cd + 2 H+ + 0.5 O2 = Cd+2 + H2O log_k 70.1363 - -delta_H -467.469 kJ/mol # Calculated enthalpy of reaction Cd(g) -# Enthalpy of formation: 111.8 kJ/mol + -delta_H -467.469 kJ/mol # Calculated enthalpy of reaction Cd(g) +# Enthalpy of formation: 111.8 kJ/mol -analytic -9.8665e+0 -3.0921e-3 2.4126e+4 0e+0 0e+0 # -Range: 0-200 Cl2(g) Cl2 + H2O = 0.5 O2 + 2 Cl- + 2 H+ log_k 3.0004 - -delta_H -54.3878 kJ/mol # Calculated enthalpy of reaction Cl2(g) -# Enthalpy of formation: 0 kJ/mol + -delta_H -54.3878 kJ/mol # Calculated enthalpy of reaction Cl2(g) +# Enthalpy of formation: 0 kJ/mol -analytic -1.9456e+1 -2.1491e-2 2.0652e+3 8.8629e+0 3.5076e+1 # -Range: 0-200 Cs(g) Cs + H+ + 0.25 O2 = 0.5 H2O + Cs+ log_k 81.2805 - -delta_H -474.413 kJ/mol # Calculated enthalpy of reaction Cs(g) -# Enthalpy of formation: 76.5 kJ/mol + -delta_H -474.413 kJ/mol # Calculated enthalpy of reaction Cs(g) +# Enthalpy of formation: 76.5 kJ/mol -analytic 4.1676e+1 9.1952e-3 2.3401e+4 -1.6824e+1 3.9736e+2 # -Range: 0-200 Cu(g) Cu + 2 H+ + 0.5 O2 = Cu+2 + H2O log_k 83.6618 - -delta_H -551.483 kJ/mol # Calculated enthalpy of reaction Cu(g) -# Enthalpy of formation: 337.4 kJ/mol + -delta_H -551.483 kJ/mol # Calculated enthalpy of reaction Cu(g) +# Enthalpy of formation: 337.4 kJ/mol -analytic -1.1249e+1 -2.7585e-3 2.8541e+4 0e+0 0e+0 # -Range: 0-200 F2(g) F2 + H2O = 0.5 O2 + 2 F- + 2 H+ log_k 55.7197 - -delta_H -390.924 kJ/mol # Calculated enthalpy of reaction F2(g) -# Enthalpy of formation: 0 kJ/mol + -delta_H -390.924 kJ/mol # Calculated enthalpy of reaction F2(g) +# Enthalpy of formation: 0 kJ/mol -analytic -3.2664e+1 -2.1035e-2 1.9974e+4 1.1174e+1 3.392e+2 # -Range: 0-200 @@ -18228,120 +18228,120 @@ H2(g) # log_k 43.0016 # -analytic -1.1609e+001 -3.7580e-003 1.5068e+004 2.4198e+000 -7.0997e+004 # -Range: 0-300 - H2 = H2 - log_k -3.105 - -delta_H -4.184 kJ/mol # Calculated enthalpy of reaction H2(g) -# Enthalpy of formation: 0 kcal/mol - -analytic -9.3114e+0 4.6473e-3 -4.9335e+1 1.4341e+0 1.2815e+5 -# -Range: 0-300 + H2 = H2 + log_k -3.105 + -delta_H -4.184 kJ/mol # Calculated enthalpy of reaction H2(g) +# Enthalpy of formation: 0 kcal/mol + -analytic -9.3114e+0 4.6473e-3 -4.9335e+1 1.4341e+0 1.2815e+5 +# -Range: 0-300 H2O(g) H2O = H2O log_k 1.5854 - -delta_H -43.4383 kJ/mol # Calculated enthalpy of reaction H2O(g) -# Enthalpy of formation: -57.935 kcal/mol + -delta_H -43.4383 kJ/mol # Calculated enthalpy of reaction H2O(g) +# Enthalpy of formation: -57.935 kcal/mol -analytic -1.4782e+1 1.0752e-3 2.7519e+3 2.7548e+0 4.2945e+1 # -Range: 0-300 H2S(g) H2S = H+ + HS- log_k -7.9759 - -delta_H 4.5229 kJ/mol # Calculated enthalpy of reaction H2S(g) -# Enthalpy of formation: -4.931 kcal/mol + -delta_H 4.5229 kJ/mol # Calculated enthalpy of reaction H2S(g) +# Enthalpy of formation: -4.931 kcal/mol -analytic -9.7354e+1 -3.1576e-2 1.8285e+3 3.744e+1 2.856e+1 # -Range: 0-300 HBr(g) HBr = Br- + H+ log_k 8.8815 - -delta_H -85.2134 kJ/mol # Calculated enthalpy of reaction HBr(g) -# Enthalpy of formation: -36.29 kJ/mol + -delta_H -85.2134 kJ/mol # Calculated enthalpy of reaction HBr(g) +# Enthalpy of formation: -36.29 kJ/mol -analytic 8.1303e+0 -6.6641e-3 3.3951e+3 -3.4973e+0 5.7651e+1 # -Range: 0-200 HCl(g) HCl = Cl- + H+ log_k 6.3055 - -delta_H -74.7697 kJ/mol # Calculated enthalpy of reaction HCl(g) -# Enthalpy of formation: -92.31 kJ/mol + -delta_H -74.7697 kJ/mol # Calculated enthalpy of reaction HCl(g) +# Enthalpy of formation: -92.31 kJ/mol -analytic -2.8144e-1 -8.6776e-3 3.0668e+3 -4.5105e-1 5.2078e+1 # -Range: 0-200 HF(g) HF = F- + H+ log_k 1.1126 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(g) -# Enthalpy of formation: 619.234 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(g) +# Enthalpy of formation: 619.234 kJ/mol -analytic -8.5783e+0 -8.844e-3 2.6279e+3 1.418e+0 4.4628e+1 # -Range: 0-200 HI(g) HI = H+ + I- log_k 9.3944 - -delta_H -83.4024 kJ/mol # Calculated enthalpy of reaction HI(g) -# Enthalpy of formation: 26.5 kJ/mol + -delta_H -83.4024 kJ/mol # Calculated enthalpy of reaction HI(g) +# Enthalpy of formation: 26.5 kJ/mol -analytic 5.825e-3 -8.7146e-3 3.5728e+3 0e+0 0e+0 # -Range: 0-200 He(g) He = He log_k -3.4143 - -delta_H -0.6276 kJ/mol # Calculated enthalpy of reaction He(g) -# Enthalpy of formation: 0 kcal/mol + -delta_H -0.6276 kJ/mol # Calculated enthalpy of reaction He(g) +# Enthalpy of formation: 0 kcal/mol -analytic -1.3402e+1 4.6358e-3 1.8295e+2 2.807e+0 9.3373e+4 # -Range: 0-300 Hf(g) Hf + 4 H+ + O2 = Hf+4 + 2 H2O log_k 290.9782 - -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(g) -# Enthalpy of formation: 0 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Hf(g) +# Enthalpy of formation: 0 kJ/mol Hg(g) Hg + 2 H+ + 0.5 O2 = H2O + Hg+2 log_k 19.729 - -delta_H -170.988 kJ/mol # Calculated enthalpy of reaction Hg(g) -# Enthalpy of formation: 61.38 kJ/mol + -delta_H -170.988 kJ/mol # Calculated enthalpy of reaction Hg(g) +# Enthalpy of formation: 61.38 kJ/mol -analytic -1.6232e+1 -3.2863e-3 8.9831e+3 2.7505e+0 1.5255e+2 # -Range: 0-200 I2(g) I2 + H2O = 0.5 O2 + 2 H+ + 2 I- log_k -21.4231 - -delta_H 103.547 kJ/mol # Calculated enthalpy of reaction I2(g) -# Enthalpy of formation: 62.42 kJ/mol + -delta_H 103.547 kJ/mol # Calculated enthalpy of reaction I2(g) +# Enthalpy of formation: 62.42 kJ/mol -analytic -2.0271e+1 -2.189e-2 -6.0267e+3 1.0339e+1 -1.0233e+2 # -Range: 0-200 K(g) K + H+ + 0.25 O2 = 0.5 H2O + K+ log_k 81.5815 - -delta_H -481.055 kJ/mol # Calculated enthalpy of reaction K(g) -# Enthalpy of formation: 89 kJ/mol + -delta_H -481.055 kJ/mol # Calculated enthalpy of reaction K(g) +# Enthalpy of formation: 89 kJ/mol -analytic 1.0278e+1 3.07e-3 2.4729e+4 -5.0763e+0 4.1994e+2 # -Range: 0-200 Kr(g) Kr = Kr log_k -2.6051 - -delta_H -15.2716 kJ/mol # Calculated enthalpy of reaction Kr(g) -# Enthalpy of formation: 0 kcal/mol + -delta_H -15.2716 kJ/mol # Calculated enthalpy of reaction Kr(g) +# Enthalpy of formation: 0 kcal/mol -analytic -2.1251e+1 4.8308e-3 4.2971e+2 5.3591e+0 2.2304e+5 # -Range: 0-300 Li(g) Li + H+ + 0.25 O2 = 0.5 H2O + Li+ log_k 94.9423 - -delta_H -577.639 kJ/mol # Calculated enthalpy of reaction Li(g) -# Enthalpy of formation: 159.3 kJ/mol + -delta_H -577.639 kJ/mol # Calculated enthalpy of reaction Li(g) +# Enthalpy of formation: 159.3 kJ/mol -analytic -2.5692e+1 -1.4385e-3 3.0936e+4 6.9899e+0 5.2535e+2 # -Range: 0-200 Mg(g) Mg + 2 H+ + 0.5 O2 = H2O + Mg+2 log_k 142.2494 - -delta_H -892.831 kJ/mol # Calculated enthalpy of reaction Mg(g) -# Enthalpy of formation: 147.1 kJ/mol + -delta_H -892.831 kJ/mol # Calculated enthalpy of reaction Mg(g) +# Enthalpy of formation: 147.1 kJ/mol -analytic -1.347e+0 -7.7402e-4 4.5992e+4 -4.2207e+0 7.8101e+2 # -Range: 0-200 @@ -18350,453 +18350,453 @@ N2(g) # log_k -119.6473 # -analytic 2.4168e+001 1.6489e-002 -3.6869e+004 -1.1181e+001 2.3178e+005 # -Range: 0-300 - N2 = N2 - log_k -3.1864 - -delta_H -10.4391 kJ/mol # Calculated enthalpy of reaction N2(g) -# Enthalpy of formation: 0 kcal/mol + N2 = N2 + log_k -3.1864 + -delta_H -10.4391 kJ/mol # Calculated enthalpy of reaction N2(g) +# Enthalpy of formation: 0 kcal/mol -analytic -7.6452e+0 7.9606e-3 0e+0 0e+0 1.8604e+5 # -Range: 0-300 NH3(g) NH3 = NH3 log_k 1.7966 - -delta_H -35.2251 kJ/mol # Calculated enthalpy of reaction NH3(g) -# Enthalpy of formation: -11.021 kcal/mol + -delta_H -35.2251 kJ/mol # Calculated enthalpy of reaction NH3(g) +# Enthalpy of formation: -11.021 kcal/mol -analytic -1.8758e+1 3.367e-4 2.5113e+3 4.8619e+0 3.9192e+1 # -Range: 0-300 NO(g) NO + 0.5 H2O + 0.25 O2 = H+ + NO2- log_k 0.7554 - -delta_H -48.8884 kJ/mol # Calculated enthalpy of reaction NO(g) -# Enthalpy of formation: 90.241 kJ/mol + -delta_H -48.8884 kJ/mol # Calculated enthalpy of reaction NO(g) +# Enthalpy of formation: 90.241 kJ/mol -analytic 8.2147e+0 -1.2708e-1 -6.0593e+3 2.0504e+1 -9.4551e+1 # -Range: 0-300 NO2(g) NO2 + 0.5 H2O + 0.25 O2 = H+ + NO3- log_k 8.3673 - -delta_H -94.0124 kJ/mol # Calculated enthalpy of reaction NO2(g) -# Enthalpy of formation: 33.154 kJ/mol + -delta_H -94.0124 kJ/mol # Calculated enthalpy of reaction NO2(g) +# Enthalpy of formation: 33.154 kJ/mol -analytic 9.4389e+1 -2.7511e-1 -1.6783e+4 2.1127e+1 -2.6191e+2 # -Range: 0-300 Na(g) Na + H+ + 0.25 O2 = 0.5 H2O + Na+ log_k 80.864 - -delta_H -487.685 kJ/mol # Calculated enthalpy of reaction Na(g) -# Enthalpy of formation: 107.5 kJ/mol + -delta_H -487.685 kJ/mol # Calculated enthalpy of reaction Na(g) +# Enthalpy of formation: 107.5 kJ/mol -analytic -6.0156e+0 2.4712e-3 2.5682e+4 0e+0 0e+0 # -Range: 0-200 Ne(g) Ne = Ne log_k -3.3462 - -delta_H -3.64008 kJ/mol # Calculated enthalpy of reaction Ne(g) -# Enthalpy of formation: 0 kcal/mol + -delta_H -3.64008 kJ/mol # Calculated enthalpy of reaction Ne(g) +# Enthalpy of formation: 0 kcal/mol -analytic -6.5169e+0 6.3991e-3 0e+0 0e+0 1.1271e+5 # -Range: 0-300 O2(g) O2 = O2 log_k -2.8983 - -delta_H -12.1336 kJ/mol # Calculated enthalpy of reaction O2(g) -# Enthalpy of formation: 0 kcal/mol + -delta_H -12.1336 kJ/mol # Calculated enthalpy of reaction O2(g) +# Enthalpy of formation: 0 kcal/mol -analytic -7.5001e+0 7.8981e-3 0e+0 0e+0 2.0027e+5 # -Range: 0-300 Pb(g) Pb + 2 H+ + 0.5 O2 = H2O + Pb+2 log_k 75.609 - -delta_H -474.051 kJ/mol # Calculated enthalpy of reaction Pb(g) -# Enthalpy of formation: 195.2 kJ/mol + -delta_H -474.051 kJ/mol # Calculated enthalpy of reaction Pb(g) +# Enthalpy of formation: 195.2 kJ/mol -analytic 2.5752e+1 2.1307e-3 2.3397e+4 -1.1825e+1 3.973e+2 # -Range: 0-200 Rb(g) Rb + H+ + 0.25 O2 = 0.5 H2O + Rb+ log_k 80.4976 - -delta_H -471.909 kJ/mol # Calculated enthalpy of reaction Rb(g) -# Enthalpy of formation: 80.9 kJ/mol + -delta_H -471.909 kJ/mol # Calculated enthalpy of reaction Rb(g) +# Enthalpy of formation: 80.9 kJ/mol -analytic 2.6839e+1 5.9775e-3 2.372e+4 -1.1189e+1 4.0279e+2 # -Range: 0-200 Rn(g) Rn = Rn log_k -2.0451 - -delta_H -20.92 kJ/mol # Calculated enthalpy of reaction Rn(g) -# Enthalpy of formation: 0 kcal/mol + -delta_H -20.92 kJ/mol # Calculated enthalpy of reaction Rn(g) +# Enthalpy of formation: 0 kcal/mol -analytic -3.0258e+1 4.9893e-3 1.4118e+2 8.8798e+0 3.8095e+5 # -Range: 0-300 RuCl3(g) RuCl3 = Ru+3 + 3 Cl- log_k 41.5503 - -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl3(g) -# Enthalpy of formation: 16.84 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction RuCl3(g) +# Enthalpy of formation: 16.84 kJ/mol RuO3(g) RuO3 + H2O = RuO4-2 + 2 H+ log_k 2.3859 - -delta_H -100.369 kJ/mol # Calculated enthalpy of reaction RuO3(g) -# Enthalpy of formation: -70.868 kJ/mol + -delta_H -100.369 kJ/mol # Calculated enthalpy of reaction RuO3(g) +# Enthalpy of formation: -70.868 kJ/mol -analytic 1.1106e+2 1.7191e-2 6.8526e+2 -4.6922e+1 1.1598e+1 # -Range: 0-200 S2(g) S2 + 2 H2O = 0.5 SO4-2 + 1.5 HS- + 2.5 H+ log_k -7.1449 - -delta_H -35.656 kJ/mol # Calculated enthalpy of reaction S2(g) -# Enthalpy of formation: 30.681 kcal/mol + -delta_H -35.656 kJ/mol # Calculated enthalpy of reaction S2(g) +# Enthalpy of formation: 30.681 kcal/mol -analytic -1.8815e+2 -7.7069e-2 4.8816e+3 7.5802e+1 7.6228e+1 # -Range: 0-300 SO2(g) - SO2 = SO2 - log_k 0.17 - -delta_H 0 # Not possible to calculate enthalpy of reaction SO2(g) -# Enthalpy of formation: 0 kcal/mol - -analytic -2.0205e+1 2.8861e-3 1.4862e+3 5.2958e+0 1.2721e+5 + SO2 = SO2 + log_k 0.17 + -delta_H 0 # Not possible to calculate enthalpy of reaction SO2(g) +# Enthalpy of formation: 0 kcal/mol + -analytic -2.0205e+1 2.8861e-3 1.4862e+3 5.2958e+0 1.2721e+5 # -Range: 0-300 Si(g) Si + O2 = SiO2 log_k 219.9509 - -delta_H -1315.57 kJ/mol # Calculated enthalpy of reaction Si(g) -# Enthalpy of formation: 450 kJ/mol + -delta_H -1315.57 kJ/mol # Calculated enthalpy of reaction Si(g) +# Enthalpy of formation: 450 kJ/mol -analytic 4.1998e+2 8.0113e-2 5.4468e+4 -1.6433e+2 9.248e+2 # -Range: 0-200 SiF4(g) SiF4 + 2 H2O = SiO2 + 4 F- + 4 H+ log_k -15.1931 - -delta_H -32.4123 kJ/mol # Calculated enthalpy of reaction SiF4(g) -# Enthalpy of formation: -1615 kJ/mol + -delta_H -32.4123 kJ/mol # Calculated enthalpy of reaction SiF4(g) +# Enthalpy of formation: -1615 kJ/mol -analytic 3.4941e+2 3.3668e-2 -1.278e+4 -1.341e+2 -2.1714e+2 # -Range: 0-200 Sn(g) Sn + 2 H+ + 0.5 O2 = H2O + Sn+2 log_k 94.5019 - -delta_H -589.758 kJ/mol # Calculated enthalpy of reaction Sn(g) -# Enthalpy of formation: 301.2 kJ/mol + -delta_H -589.758 kJ/mol # Calculated enthalpy of reaction Sn(g) +# Enthalpy of formation: 301.2 kJ/mol -analytic 1.4875e+1 -5.6877e-5 2.9728e+4 -8.1131e+0 5.0482e+2 # -Range: 0-200 Tc2O7(g) Tc2O7 + H2O = 2 H+ + 2 TcO4- log_k 21.3593 - -delta_H -158.131 kJ/mol # Calculated enthalpy of reaction Tc2O7(g) -# Enthalpy of formation: -988.569 kJ/mol + -delta_H -158.131 kJ/mol # Calculated enthalpy of reaction Tc2O7(g) +# Enthalpy of formation: -988.569 kJ/mol -analytic 7.414e+1 1.5668e-2 5.636e+3 -3.086e+1 9.5682e+1 # -Range: 0-200 Th(g) Th + 4 H+ + O2 = Th+4 + 2 H2O log_k 307.8413 - -delta_H -1930.56 kJ/mol # Calculated enthalpy of reaction Th(g) -# Enthalpy of formation: 602 kJ/mol + -delta_H -1930.56 kJ/mol # Calculated enthalpy of reaction Th(g) +# Enthalpy of formation: 602 kJ/mol -analytic 1.8496e+1 2.7318e-3 9.8807e+4 -1.7332e+1 1.6779e+3 # -Range: 0-200 Ti(g) Ti + 2 H2O + O2 = Ti(OH)4 log_k 224.351 - -delta_H 0 # Not possible to calculate enthalpy of reaction Ti(g) -# Enthalpy of formation: 473 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Ti(g) +# Enthalpy of formation: 473 kJ/mol TiBr4(g) TiBr4 + 4 H2O = Ti(OH)4 + 4 Br- + 4 H+ log_k 36.6695 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr4(g) -# Enthalpy of formation: -549.339 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TiBr4(g) +# Enthalpy of formation: -549.339 kJ/mol TiCl4(g) TiCl4 + 4 H2O = Ti(OH)4 + 4 Cl- + 4 H+ log_k 28.0518 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl4(g) -# Enthalpy of formation: -763.2 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TiCl4(g) +# Enthalpy of formation: -763.2 kJ/mol TiO(g) TiO + 2 H2O + 0.5 O2 = Ti(OH)4 log_k 145.5711 - -delta_H 0 # Not possible to calculate enthalpy of reaction TiO(g) -# Enthalpy of formation: 17.144 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction TiO(g) +# Enthalpy of formation: 17.144 kJ/mol U(g) U + 2 H+ + 1.5 O2 = H2O + UO2+2 log_k 298.3441 - -delta_H -1819.64 kJ/mol # Calculated enthalpy of reaction U(g) -# Enthalpy of formation: 533 kJ/mol + -delta_H -1819.64 kJ/mol # Calculated enthalpy of reaction U(g) +# Enthalpy of formation: 533 kJ/mol -analytic 3.7536e+1 -6.3804e-3 9.2048e+4 -1.8614e+1 1.4363e+3 # -Range: 0-300 U2Cl10(g) U2Cl10 + 4 H2O = 2 UO2+ + 8 H+ + 10 Cl- log_k 82.7621 - -delta_H -609.798 kJ/mol # Calculated enthalpy of reaction U2Cl10(g) -# Enthalpy of formation: -1967.9 kJ/mol + -delta_H -609.798 kJ/mol # Calculated enthalpy of reaction U2Cl10(g) +# Enthalpy of formation: -1967.9 kJ/mol -analytic -7.5513e+2 -3.007e-1 4.5824e+4 3.1267e+2 7.1526e+2 # -Range: 0-300 U2Cl8(g) U2Cl8 = 2 U+4 + 8 Cl- log_k 82.4059 - -delta_H -769.437 kJ/mol # Calculated enthalpy of reaction U2Cl8(g) -# Enthalpy of formation: -1749.6 kJ/mol + -delta_H -769.437 kJ/mol # Calculated enthalpy of reaction U2Cl8(g) +# Enthalpy of formation: -1749.6 kJ/mol -analytic -7.4441e+2 -2.6943e-1 5.4358e+4 2.9287e+2 8.4843e+2 # -Range: 0-300 U2F10(g) U2F10 + 4 H2O = 2 UO2+ + 8 H+ + 10 F- log_k -12.2888 - -delta_H -239.377 kJ/mol # Calculated enthalpy of reaction U2F10(g) -# Enthalpy of formation: -4021 kJ/mol + -delta_H -239.377 kJ/mol # Calculated enthalpy of reaction U2F10(g) +# Enthalpy of formation: -4021 kJ/mol -analytic -9.1542e+2 -3.204e-1 3.1047e+4 3.6143e+2 4.8473e+2 # -Range: 0-300 UBr(g) UBr + O2 = Br- + UO2+ log_k 224.8412 - -delta_H -1381.5 kJ/mol # Calculated enthalpy of reaction UBr(g) -# Enthalpy of formation: 247 kJ/mol + -delta_H -1381.5 kJ/mol # Calculated enthalpy of reaction UBr(g) +# Enthalpy of formation: 247 kJ/mol -analytic -3.1193e+2 -6.3059e-2 8.7633e+4 1.1032e+2 -1.0104e+6 # -Range: 0-300 UBr2(g) UBr2 + O2 = UO2+2 + 2 Br- log_k 192.6278 - -delta_H -1218.87 kJ/mol # Calculated enthalpy of reaction UBr2(g) -# Enthalpy of formation: -31 kJ/mol + -delta_H -1218.87 kJ/mol # Calculated enthalpy of reaction UBr2(g) +# Enthalpy of formation: -31 kJ/mol -analytic -1.2277e+2 -6.4613e-2 6.4196e+4 4.8209e+1 1.0018e+3 # -Range: 0-300 UBr3(g) UBr3 = U+3 + 3 Br- log_k 67.8918 - -delta_H -489.61 kJ/mol # Calculated enthalpy of reaction UBr3(g) -# Enthalpy of formation: -364 kJ/mol + -delta_H -489.61 kJ/mol # Calculated enthalpy of reaction UBr3(g) +# Enthalpy of formation: -364 kJ/mol -analytic -2.5784e+2 -9.7583e-2 3.0225e+4 1.024e+2 4.7171e+2 # -Range: 0-300 UBr4(g) UBr4 = U+4 + 4 Br- log_k 54.2926 - -delta_H -467.113 kJ/mol # Calculated enthalpy of reaction UBr4(g) -# Enthalpy of formation: -610.1 kJ/mol + -delta_H -467.113 kJ/mol # Calculated enthalpy of reaction UBr4(g) +# Enthalpy of formation: -610.1 kJ/mol -analytic -3.5205e+2 -1.2867e-1 3.0898e+4 1.3781e+2 4.8223e+2 # -Range: 0-300 UBr5(g) UBr5 + 2 H2O = UO2+ + 4 H+ + 5 Br- log_k 61.4272 - -delta_H -423.222 kJ/mol # Calculated enthalpy of reaction UBr5(g) -# Enthalpy of formation: -637.745 kJ/mol + -delta_H -423.222 kJ/mol # Calculated enthalpy of reaction UBr5(g) +# Enthalpy of formation: -637.745 kJ/mol -analytic -3.4693e+2 -1.4298e-1 2.8151e+4 1.4406e+2 4.3938e+2 # -Range: 0-300 UCl(g) UCl + O2 = Cl- + UO2+ log_k 221.7887 - -delta_H -1368.27 kJ/mol # Calculated enthalpy of reaction UCl(g) -# Enthalpy of formation: 188.2 kJ/mol + -delta_H -1368.27 kJ/mol # Calculated enthalpy of reaction UCl(g) +# Enthalpy of formation: 188.2 kJ/mol -analytic -4.1941e+1 -2.7879e-2 7.08e+4 1.3954e+1 1.1048e+3 # -Range: 0-300 UCl2(g) UCl2 + O2 = UO2+2 + 2 Cl- log_k 183.7912 - -delta_H -1178.03 kJ/mol # Calculated enthalpy of reaction UCl2(g) -# Enthalpy of formation: -163 kJ/mol + -delta_H -1178.03 kJ/mol # Calculated enthalpy of reaction UCl2(g) +# Enthalpy of formation: -163 kJ/mol -analytic -1.3677e+2 -6.7829e-2 6.2413e+4 5.31e+1 9.7394e+2 # -Range: 0-300 UCl3(g) UCl3 = U+3 + 3 Cl- log_k 58.6335 - -delta_H -453.239 kJ/mol # Calculated enthalpy of reaction UCl3(g) -# Enthalpy of formation: -537.1 kJ/mol + -delta_H -453.239 kJ/mol # Calculated enthalpy of reaction UCl3(g) +# Enthalpy of formation: -537.1 kJ/mol -analytic -2.7942e+2 -1.0243e-1 2.8859e+4 1.0982e+2 4.504e+2 # -Range: 0-300 UCl4(g) UCl4 = U+4 + 4 Cl- log_k 46.3988 - -delta_H -441.419 kJ/mol # Calculated enthalpy of reaction UCl4(g) -# Enthalpy of formation: -818.1 kJ/mol + -delta_H -441.419 kJ/mol # Calculated enthalpy of reaction UCl4(g) +# Enthalpy of formation: -818.1 kJ/mol -analytic -3.7971e+2 -1.3504e-1 3.0243e+4 1.4746e+2 4.7202e+2 # -Range: 0-300 UCl5(g) UCl5 + 2 H2O = UO2+ + 4 H+ + 5 Cl- log_k 54.5311 - -delta_H -406.349 kJ/mol # Calculated enthalpy of reaction UCl5(g) -# Enthalpy of formation: -882.5 kJ/mol + -delta_H -406.349 kJ/mol # Calculated enthalpy of reaction UCl5(g) +# Enthalpy of formation: -882.5 kJ/mol -analytic -3.8234e+2 -1.5109e-1 2.817e+4 1.5654e+2 4.3968e+2 # -Range: 0-300 UCl6(g) UCl6 + 2 H2O = UO2+2 + 4 H+ + 6 Cl- log_k 63.4791 - -delta_H -462.301 kJ/mol # Calculated enthalpy of reaction UCl6(g) -# Enthalpy of formation: -987.5 kJ/mol + -delta_H -462.301 kJ/mol # Calculated enthalpy of reaction UCl6(g) +# Enthalpy of formation: -987.5 kJ/mol -analytic -4.7128e+2 -1.9133e-1 3.2528e+4 1.9503e+2 5.0771e+2 # -Range: 0-300 UF(g) UF + O2 = F- + UO2+ log_k 206.2684 - -delta_H -1296.34 kJ/mol # Calculated enthalpy of reaction UF(g) -# Enthalpy of formation: -52 kJ/mol + -delta_H -1296.34 kJ/mol # Calculated enthalpy of reaction UF(g) +# Enthalpy of formation: -52 kJ/mol -analytic -6.1248e+1 -3.036e-2 6.7619e+4 2.0095e+1 1.0551e+3 # -Range: 0-300 UF2(g) UF2 + O2 = UO2+2 + 2 F- log_k 172.3563 - -delta_H -1147.56 kJ/mol # Calculated enthalpy of reaction UF2(g) -# Enthalpy of formation: -530 kJ/mol + -delta_H -1147.56 kJ/mol # Calculated enthalpy of reaction UF2(g) +# Enthalpy of formation: -530 kJ/mol -analytic -4.3462e+2 -1.0881e-1 7.6778e+4 1.5835e+2 -8.8536e+5 # -Range: 0-300 UF3(g) UF3 = U+3 + 3 F- log_k 47.2334 - -delta_H -440.943 kJ/mol # Calculated enthalpy of reaction UF3(g) -# Enthalpy of formation: -1054.2 kJ/mol + -delta_H -440.943 kJ/mol # Calculated enthalpy of reaction UF3(g) +# Enthalpy of formation: -1054.2 kJ/mol -analytic -3.3058e+2 -1.0866e-1 2.9694e+4 1.2551e+2 4.6344e+2 # -Range: 0-300 UF4(g) UF4 = U+4 + 4 F- log_k 14.598 - -delta_H -331.39 kJ/mol # Calculated enthalpy of reaction UF4(g) -# Enthalpy of formation: -1601.2 kJ/mol + -delta_H -331.39 kJ/mol # Calculated enthalpy of reaction UF4(g) +# Enthalpy of formation: -1601.2 kJ/mol -analytic -4.4692e+2 -1.4314e-1 2.6427e+4 1.6791e+2 4.125e+2 # -Range: 0-300 UF5(g) UF5 + 2 H2O = UO2+ + 4 H+ + 5 F- log_k 6.3801 - -delta_H -220.188 kJ/mol # Calculated enthalpy of reaction UF5(g) -# Enthalpy of formation: -1910 kJ/mol + -delta_H -220.188 kJ/mol # Calculated enthalpy of reaction UF5(g) +# Enthalpy of formation: -1910 kJ/mol -analytic -4.6981e+2 -1.6177e-1 2.0986e+4 1.8345e+2 3.276e+2 # -Range: 0-300 UF6(g) UF6 + 2 H2O = UO2+2 + 4 H+ + 6 F- log_k 18.2536 - -delta_H -310.809 kJ/mol # Calculated enthalpy of reaction UF6(g) -# Enthalpy of formation: -2148.6 kJ/mol + -delta_H -310.809 kJ/mol # Calculated enthalpy of reaction UF6(g) +# Enthalpy of formation: -2148.6 kJ/mol -analytic -5.7661e+2 -2.0409e-1 2.768e+4 2.2743e+2 4.3209e+2 # -Range: 0-300 UI(g) UI + O2 = I- + UO2+ log_k 230.8161 - -delta_H -1410.9 kJ/mol # Calculated enthalpy of reaction UI(g) -# Enthalpy of formation: 341 kJ/mol + -delta_H -1410.9 kJ/mol # Calculated enthalpy of reaction UI(g) +# Enthalpy of formation: 341 kJ/mol -analytic -3.5819e+1 -2.6631e-2 7.2899e+4 1.2133e+1 1.1375e+3 # -Range: 0-300 UI2(g) UI2 + O2 = UO2+2 + 2 I- log_k 194.5395 - -delta_H -1220.67 kJ/mol # Calculated enthalpy of reaction UI2(g) -# Enthalpy of formation: 100 kJ/mol + -delta_H -1220.67 kJ/mol # Calculated enthalpy of reaction UI2(g) +# Enthalpy of formation: 100 kJ/mol -analytic -3.3543e+2 -9.5116e-2 7.6218e+4 1.2543e+2 -6.8683e+5 # -Range: 0-300 UI3(g) UI3 = U+3 + 3 I- log_k 75.6033 - -delta_H -519.807 kJ/mol # Calculated enthalpy of reaction UI3(g) -# Enthalpy of formation: -140 kJ/mol + -delta_H -519.807 kJ/mol # Calculated enthalpy of reaction UI3(g) +# Enthalpy of formation: -140 kJ/mol -analytic -2.6095e+2 -9.8782e-2 3.1972e+4 1.0456e+2 4.9897e+2 # -Range: 0-300 UI4(g) UI4 = U+4 + 4 I- log_k 64.3272 - -delta_H -510.01 kJ/mol # Calculated enthalpy of reaction UI4(g) -# Enthalpy of formation: -308.8 kJ/mol + -delta_H -510.01 kJ/mol # Calculated enthalpy of reaction UI4(g) +# Enthalpy of formation: -308.8 kJ/mol -analytic -3.5645e+2 -1.3022e-1 3.3347e+4 1.4051e+2 5.2046e+2 # -Range: 0-300 UO(g) UO + 2 H+ + O2 = H2O + UO2+2 log_k 211.6585 - -delta_H -1323.2 kJ/mol # Calculated enthalpy of reaction UO(g) -# Enthalpy of formation: 30.5 kJ/mol + -delta_H -1323.2 kJ/mol # Calculated enthalpy of reaction UO(g) +# Enthalpy of formation: 30.5 kJ/mol -analytic -1.8007e+2 -3.1985e-2 7.8469e+4 5.8892e+1 -6.8071e+5 # -Range: 0-300 UO2(g) UO2 + 2 H+ + 0.5 O2 = H2O + UO2+2 log_k 125.6027 - -delta_H -820.972 kJ/mol # Calculated enthalpy of reaction UO2(g) -# Enthalpy of formation: -477.8 kJ/mol + -delta_H -820.972 kJ/mol # Calculated enthalpy of reaction UO2(g) +# Enthalpy of formation: -477.8 kJ/mol -analytic -5.2789e+0 -3.5754e-3 4.2074e+4 -3.7117e+0 6.5653e+2 # -Range: 0-300 UO2Cl2(g) UO2Cl2 = UO2+2 + 2 Cl- log_k 47.963 - -delta_H -381.559 kJ/mol # Calculated enthalpy of reaction UO2Cl2(g) -# Enthalpy of formation: -971.6 kJ/mol + -delta_H -381.559 kJ/mol # Calculated enthalpy of reaction UO2Cl2(g) +# Enthalpy of formation: -971.6 kJ/mol -analytic -1.8035e+2 -6.5574e-2 2.3064e+4 6.8894e+1 3.5994e+2 # -Range: 0-300 UO2F2(g) UO2F2 = UO2+2 + 2 F- log_k 34.6675 - -delta_H -337.195 kJ/mol # Calculated enthalpy of reaction UO2F2(g) -# Enthalpy of formation: -1352.5 kJ/mol + -delta_H -337.195 kJ/mol # Calculated enthalpy of reaction UO2F2(g) +# Enthalpy of formation: -1352.5 kJ/mol -analytic -2.1498e+2 -6.9882e-2 2.1774e+4 7.978e+1 3.3983e+2 # -Range: 0-300 UO3(g) UO3 + 2 H+ = H2O + UO2+2 log_k 70.948 - -delta_H -505.638 kJ/mol # Calculated enthalpy of reaction UO3(g) -# Enthalpy of formation: -799.2 kJ/mol + -delta_H -505.638 kJ/mol # Calculated enthalpy of reaction UO3(g) +# Enthalpy of formation: -799.2 kJ/mol -analytic -3.282e+1 -2.6807e-3 2.6914e+4 5.7767e+0 4.1997e+2 # -Range: 0-300 UOF4(g) UOF4 + H2O = UO2+2 + 2 H+ + 4 F- log_k 24.2848 - -delta_H -312.552 kJ/mol # Calculated enthalpy of reaction UOF4(g) -# Enthalpy of formation: -1762 kJ/mol + -delta_H -312.552 kJ/mol # Calculated enthalpy of reaction UOF4(g) +# Enthalpy of formation: -1762 kJ/mol -analytic -3.9592e+2 -1.3699e-1 2.4127e+4 1.5359e+2 3.766e+2 # -Range: 0-300 Xe(g) Xe = Xe log_k -2.364 - -delta_H -18.8698 kJ/mol # Calculated enthalpy of reaction Xe(g) -# Enthalpy of formation: 0 kcal/mol + -delta_H -18.8698 kJ/mol # Calculated enthalpy of reaction Xe(g) +# Enthalpy of formation: 0 kcal/mol -analytic -2.0636e+1 5.1389e-3 2.049e+2 5.1913e+0 2.8556e+5 # -Range: 0-300 Zn(g) Zn + 2 H+ + 0.5 O2 = H2O + Zn+2 log_k 85.414 - -delta_H -563.557 kJ/mol # Calculated enthalpy of reaction Zn(g) -# Enthalpy of formation: 130.4 kJ/mol + -delta_H -563.557 kJ/mol # Calculated enthalpy of reaction Zn(g) +# Enthalpy of formation: 130.4 kJ/mol -analytic -1.0898e+1 -3.9871e-3 2.9068e+4 0e+0 0e+0 # -Range: 0-200 Zr(g) Zr + 4 H+ + O2 = Zr+4 + 2 H2O log_k 277.1324 - -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(g) -# Enthalpy of formation: 608.948 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction Zr(g) +# Enthalpy of formation: 608.948 kJ/mol ZrF4(g) ZrF4 = Zr+4 + 4 F- log_k 142.9515 - -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4(g) -# Enthalpy of formation: -858.24 kJ/mol + -delta_H 0 # Not possible to calculate enthalpy of reaction ZrF4(g) +# Enthalpy of formation: -858.24 kJ/mol EXCHANGE_MASTER_SPECIES X X- diff --git a/minteq.dat b/minteq.dat index 2a356840..34ce6726 100644 --- a/minteq.dat +++ b/minteq.dat @@ -7,125 +7,125 @@ SOLUTION_MASTER_SPECIES ####################################################### # essential definitions ####################################################### -Alkalinity CO3-2 2 61.0173 61.0173 -E e- 1 0 0 -H H+ -1 1.008 1.008 -H(0) H2 0 1.008 -H(1) H+ -1 1.008 -O H2O 0 16 16 -O(-2) H2O 0 16 16 -O(0) O2 0 16 16 +Alkalinity CO3-2 2 61.0173 61.0173 +E e- 1 0 0 +H H+ -1 1.008 1.008 +H(0) H2 0 1.008 +H(1) H+ -1 1.008 +O H2O 0 16 16 +O(-2) H2O 0 16 16 +O(0) O2 0 16 16 ####################################################### -Ag Ag+ 0 107.868 107.868 -Al Al+3 0 26.9815 26.9815 -As H3AsO4 -1 74.9216 74.9216 -As(+3) H3AsO3 0 74.9216 -As(+5) H3AsO4 -1 74.9216 -B H3BO3 0 10.81 10.81 -Ba Ba+2 0 137.34 137.34 -Be Be+2 0 9.0122 9.0122 -Br Br- 0 79.904 79.904 -C CO3-2 2 61.0173 12.0111 -C(+4) CO3-2 2 61.0173 -#C(-4) CH4 0.0 16.042 -Cyanide Cyanide- 0 26.018 26.018 -Cyanate Cyanate- 0 42.017 42.017 -#DOM DOM-2.8 0 0 0 -#ClIG2 ClIG2 0 0 0 -Ca Ca+2 0 40.08 40.08 -Cd Cd+2 0 112.399 112.399 -Cl Cl- 0 35.453 35.453 -Cr CrO4-2 1 51.996 51.996 -Cr(2) Cr+2 0 51.996 -Cr(3) Cr(OH)2+ 1 51.996 -Cr(6) CrO4-2 1 51.996 -Cu Cu+2 0 63.546 63.546 -Cu(1) Cu+ 0 63.546 -Cu(2) Cu+2 0 63.546 -F F- 0 18.9984 18.9984 -Fe Fe+3 0 55.847 55.847 -Fe(+2) Fe+2 0 55.847 -Fe(+3) Fe+3 -2 55.847 -Hg Hg(OH)2 0 200.59 200.59 -Hg(2) Hg(OH)2 0 200.59 -Hg(1) Hg2+2 0 200.59 -Hg(0) Hg 0 200.59 -I I- 0 126.904 126.904 -K K+ 0 39.102 39.102 -Li Li+ 0 6.939 6.939 -Mg Mg+2 0 24.312 24.312 -Mn Mn+3 0 54.938 54.938 -Mn(2) Mn+2 0 54.938 -Mn(3) Mn+3 0 54.938 -Mn(6) MnO4-2 0 54.938 -Mn(7) MnO4- 0 54.938 -N NO3- 0 14.0067 14.0067 -N(-3) NH4+ 0 14.0067 -#N(0) N2 0.0 14.0067 -N(+3) NO2- 0 14.0067 -N(+5) NO3- 0 14.0067 -Na Na+ 0 22.9898 22.9898 -Ni Ni+2 0 58.71 58.71 -P PO4-3 2 30.9738 30.9738 -Pb Pb+2 0 207.19 207.19 -Rb Rb+ 0 85.4699 85.4699 -S SO4-2 0 96.0616 32.064 -S(-2) HS- 1 32.064 -S(6) SO4-2 0 96.0616 -Sb Sb(OH)6- 0 Sb 121.75 -Sb(3) Sb(OH)3 0 Sb -Sb(5) Sb(OH)6- 0 Sb -Se SeO4-2 0 78.96 78.96 -Se(-2) HSe- 0 78.96 -Se(4) SeO3-2 0 78.96 -Se(6) SeO4-2 0 78.96 -Si H4SiO4 0 96.1155 28.0843 -Sr Sr+2 0 87.62 87.62 -Tl Tl(OH)3 0 204.37 204.37 -Tl(1) Tl+ 0 204.37 -Tl(3) Tl(OH)3 0 204.37 -U UO2+2 0 238.029 238.029 -U(3) U+3 0 238.029 -U(4) U+4 0 238.029 -U(5) UO2+ 0 238.029 -U(6) UO2+2 0 238.029 -V VO2+ -2 50.94 50.94 -V(2) V+2 0 50.94 -V(3) V+3 -3 50.94 -V(4) VO+2 0 50.94 -V(5) VO2+ -2 50.94 -Zn Zn+2 0 65.37 65.37 -Benzoate Benzoate- 0 121.12 121.12 -Para_acetate Para_acetate- 1 134.14 134.14 -Isophthalate Isophthalate-2 1 164.12 164.12 -Diethylamine Diethylamine 0 73 73 -Nbutylamine Nbutylamine 1 73 73 -Methylamine Methylamine 1 31.018 31.018 -Dimethylamine Dimethylamine 1 45.028 45.028 -Tributylphosphate Tributylphosphate 0 265.97 265.97 -Hexylamine Hexylamine 1 101 101 -Ethylenediamine Ethylenediamine 2 60.12 60.12 -Npropylamine Npropylamine 1 59.04 59.04 -Isopropylamine Isopropylamine 1 59.04 59.04 -Trimethylamine Trimethylamine 1 59.04 59.04 -Citrate Citrate-3 2 189.06 189.06 -Nta Nta-3 1 188.06 188.06 -Edta Edta-4 2 276 276 -Propanoate Propanoate- 1 73.032 73.032 -Butanoate Butanoate- 0 87.043 87.043 -Isobutyrate Isobutyrate- 1 87.043 87.043 -Two_methylpyridine Two_methylpyridine 1 94 94 -Three_methylpyridine Three_methylpyridine 1 94 94 -Four_methylpyridine Four_methylpyridine 1 94 94 -Formate Formate- 0 45.02 45.02 -Isovalerate Isovalerate- 1 101.13 101.13 -Valerate Valerate- 1 101.13 101.13 -Acetate Acetate- 1 59.05 59.05 -Tartrate Tartrate-2 0 148.09 148.09 -Glycine Glycine- 1 74.07 74.07 -Salicylate Salicylate-2 1 136.12 136.12 -Glutamate Glutamate-2 1 145.13 145.13 -Phthalate Phthalate-2 1 164.13 164.13 +Ag Ag+ 0 107.868 107.868 +Al Al+3 0 26.9815 26.9815 +As H3AsO4 -1 74.9216 74.9216 +As(+3) H3AsO3 0 74.9216 +As(+5) H3AsO4 -1 74.9216 +B H3BO3 0 10.81 10.81 +Ba Ba+2 0 137.34 137.34 +Be Be+2 0 9.0122 9.0122 +Br Br- 0 79.904 79.904 +C CO3-2 2 61.0173 12.0111 +C(+4) CO3-2 2 61.0173 +#C(-4) CH4 0.0 16.042 +Cyanide Cyanide- 0 26.018 26.018 +Cyanate Cyanate- 0 42.017 42.017 +#DOM DOM-2.8 0 0 0 +#ClIG2 ClIG2 0 0 0 +Ca Ca+2 0 40.08 40.08 +Cd Cd+2 0 112.399 112.399 +Cl Cl- 0 35.453 35.453 +Cr CrO4-2 1 51.996 51.996 +Cr(2) Cr+2 0 51.996 +Cr(3) Cr(OH)2+ 1 51.996 +Cr(6) CrO4-2 1 51.996 +Cu Cu+2 0 63.546 63.546 +Cu(1) Cu+ 0 63.546 +Cu(2) Cu+2 0 63.546 +F F- 0 18.9984 18.9984 +Fe Fe+3 0 55.847 55.847 +Fe(+2) Fe+2 0 55.847 +Fe(+3) Fe+3 -2 55.847 +Hg Hg(OH)2 0 200.59 200.59 +Hg(2) Hg(OH)2 0 200.59 +Hg(1) Hg2+2 0 200.59 +Hg(0) Hg 0 200.59 +I I- 0 126.904 126.904 +K K+ 0 39.102 39.102 +Li Li+ 0 6.939 6.939 +Mg Mg+2 0 24.312 24.312 +Mn Mn+3 0 54.938 54.938 +Mn(2) Mn+2 0 54.938 +Mn(3) Mn+3 0 54.938 +Mn(6) MnO4-2 0 54.938 +Mn(7) MnO4- 0 54.938 +N NO3- 0 14.0067 14.0067 +N(-3) NH4+ 0 14.0067 +#N(0) N2 0.0 14.0067 +N(+3) NO2- 0 14.0067 +N(+5) NO3- 0 14.0067 +Na Na+ 0 22.9898 22.9898 +Ni Ni+2 0 58.71 58.71 +P PO4-3 2 30.9738 30.9738 +Pb Pb+2 0 207.19 207.19 +Rb Rb+ 0 85.4699 85.4699 +S SO4-2 0 96.0616 32.064 +S(-2) HS- 1 32.064 +S(6) SO4-2 0 96.0616 +Sb Sb(OH)6- 0 Sb 121.75 +Sb(3) Sb(OH)3 0 Sb +Sb(5) Sb(OH)6- 0 Sb +Se SeO4-2 0 78.96 78.96 +Se(-2) HSe- 0 78.96 +Se(4) SeO3-2 0 78.96 +Se(6) SeO4-2 0 78.96 +Si H4SiO4 0 96.1155 28.0843 +Sr Sr+2 0 87.62 87.62 +Tl Tl(OH)3 0 204.37 204.37 +Tl(1) Tl+ 0 204.37 +Tl(3) Tl(OH)3 0 204.37 +U UO2+2 0 238.029 238.029 +U(3) U+3 0 238.029 +U(4) U+4 0 238.029 +U(5) UO2+ 0 238.029 +U(6) UO2+2 0 238.029 +V VO2+ -2 50.94 50.94 +V(2) V+2 0 50.94 +V(3) V+3 -3 50.94 +V(4) VO+2 0 50.94 +V(5) VO2+ -2 50.94 +Zn Zn+2 0 65.37 65.37 +Benzoate Benzoate- 0 121.12 121.12 +Para_acetate Para_acetate- 1 134.14 134.14 +Isophthalate Isophthalate-2 1 164.12 164.12 +Diethylamine Diethylamine 0 73 73 +Nbutylamine Nbutylamine 1 73 73 +Methylamine Methylamine 1 31.018 31.018 +Dimethylamine Dimethylamine 1 45.028 45.028 +Tributylphosphate Tributylphosphate 0 265.97 265.97 +Hexylamine Hexylamine 1 101 101 +Ethylenediamine Ethylenediamine 2 60.12 60.12 +Npropylamine Npropylamine 1 59.04 59.04 +Isopropylamine Isopropylamine 1 59.04 59.04 +Trimethylamine Trimethylamine 1 59.04 59.04 +Citrate Citrate-3 2 189.06 189.06 +Nta Nta-3 1 188.06 188.06 +Edta Edta-4 2 276 276 +Propanoate Propanoate- 1 73.032 73.032 +Butanoate Butanoate- 0 87.043 87.043 +Isobutyrate Isobutyrate- 1 87.043 87.043 +Two_methylpyridine Two_methylpyridine 1 94 94 +Three_methylpyridine Three_methylpyridine 1 94 94 +Four_methylpyridine Four_methylpyridine 1 94 94 +Formate Formate- 0 45.02 45.02 +Isovalerate Isovalerate- 1 101.13 101.13 +Valerate Valerate- 1 101.13 101.13 +Acetate Acetate- 1 59.05 59.05 +Tartrate Tartrate-2 0 148.09 148.09 +Glycine Glycine- 1 74.07 74.07 +Salicylate Salicylate-2 1 136.12 136.12 +Glutamate Glutamate-2 1 145.13 145.13 +Phthalate Phthalate-2 1 164.13 164.13 SOLUTION_SPECIES ####################################################### # essential definitions @@ -3691,12 +3691,12 @@ Greigite delta_h -0 kcal Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O -# # Log K gives too small a solubility < 10 mmol/L -# # D. Parkhurst 7/13/09, Replacing log K with minteq version 4 log K +# # Log K gives too small a solubility < 10 mmol/L +# # D. Parkhurst 7/13/09, Replacing log K with minteq version 4 log K # log_k -4.848 # delta_h 0.261 kcal - log_k -4.61 - delta_h 1 kJ + log_k -4.61 + delta_h 1 kJ Halite NaCl = Na+ + Cl- diff --git a/minteq.v4.dat b/minteq.v4.dat index 3e81fd8f..cae290fa 100644 --- a/minteq.v4.dat +++ b/minteq.v4.dat @@ -4,453 +4,453 @@ # $Id: minteq.v4.dat 11091 2016-04-21 15:20:05Z dlpark $ SOLUTION_MASTER_SPECIES -Alkalinity CO3-2 2 HCO3 61.0173 -E e- 1 0 0 -O H2O 0 O 16 -O(-2) H2O 0 O -O(0) O2 0 O -Ag Ag+ 0 Ag 107.868 -Al Al+3 0 Al 26.9815 -As H3AsO4 -1 As 74.9216 -As(3) H3AsO3 0 As -As(5) H3AsO4 -1 As -B H3BO3 0 B 10.81 -Ba Ba+2 0 Ba 137.33 -Be Be+2 0 Be 9.0122 -Br Br- 0 Br 79.904 -C CO3-2 2 CO3 12.0111 -C(4) CO3-2 2 CO3 12.0111 -Cyanide Cyanide- 1 Cyanide 26.0177 -Dom_a Dom_a 0 C 12.0111 -Dom_b Dom_b 0 C 12.0111 -Dom_c Dom_c 0 C 12.0111 -Ca Ca+2 0 Ca 40.078 -Cd Cd+2 0 Cd 112.41 -Cl Cl- 0 Cl 35.453 -Co Co+3 -1 Co 58.9332 -Co(2) Co+2 0 Co -Co(3) Co+3 -1 Co -Cr CrO4-2 1 Cr 51.996 -Cr(2) Cr+2 0 Cr -Cr(3) Cr(OH)2+ 0 Cr -Cr(6) CrO4-2 1 Cr -Cu Cu+2 0 Cu 63.546 -Cu(1) Cu+ 0 Cu -Cu(2) Cu+2 0 Cu -F F- 0 F 18.9984 -Fe Fe+3 -2 Fe 55.847 -Fe(2) Fe+2 0 Fe -Fe(3) Fe+3 -2 Fe -H H+ -1 H 1.0079 -H(0) H2 0 H -H(1) H+ -1 H -Hg Hg(OH)2 0 Hg 200.59 -Hg(0) Hg 0 Hg -Hg(1) Hg2+2 0 Hg -Hg(2) Hg(OH)2 0 Hg -I I- 0 I 126.904 -K K+ 0 K 39.0983 -Li Li+ 0 Li 6.941 -Mg Mg+2 0 Mg 24.305 -Mn Mn+3 0 Mn 54.938 -Mn(2) Mn+2 0 Mn -Mn(3) Mn+3 0 Mn -Mn(6) MnO4-2 0 Mn -Mn(7) MnO4- 0 Mn -Mo MoO4-2 0 Mo 95.94 -N NO3- 0 N 14.0067 -N(-3) NH4+ 0 N -N(3) NO2- 0 N -N(5) NO3- 0 N -Na Na+ 0 Na 22.9898 -Ni Ni+2 0 Ni 58.69 -P PO4-3 2 P 30.9738 -Pb Pb+2 0 Pb 207.2 -S SO4-2 0 SO4 32.066 -S(-2) HS- 1 S -#S(0) S 0.0 S -S(6) SO4-2 0 SO4 -Sb Sb(OH)6- 0 Sb 121.75 -Sb(3) Sb(OH)3 0 Sb -Sb(5) Sb(OH)6- 0 Sb -Se SeO4-2 0 Se 78.96 -Se(-2) HSe- 0 Se -Se(4) HSeO3- 0 Se -Se(6) SeO4-2 0 Se -Si H4SiO4 0 SiO2 28.0843 -Sn Sn(OH)6-2 0 Sn 118.71 -Sn(2) Sn(OH)2 0 Sn -Sn(4) Sn(OH)6-2 0 Sn -Sr Sr+2 0 Sr 87.62 -Tl Tl(OH)3 0 Tl 204.383 -Tl(1) Tl+ 0 Tl -Tl(3) Tl(OH)3 0 Tl -U UO2+2 0 U 238.029 -U(3) U+3 0 U -U(4) U+4 -4 U -U(5) UO2+ 0 U -U(6) UO2+2 0 U -V VO2+ -2 V 50.94 -V(2) V+2 0 V -V(3) V+3 -3 V -V(4) VO+2 0 V -V(5) VO2+ -2 V -Zn Zn+2 0 Zn 65.39 -Benzoate Benzoate- 0 121.116 121.116 -Phenylacetate Phenylacetate- 0 135.142 135.142 -Isophthalate Isophthalate-2 0 164.117 164.117 -Diethylamine Diethylamine 1 73.138 73.138 -Butylamine Butylamine 1 73.138 73.138 -Methylamine Methylamine 1 31.057 31.057 -Dimethylamine Dimethylamine 1 45.084 45.084 -Hexylamine Hexylamine 1 101.192 101.192 -Ethylenediamine Ethylenediamine 2 60.099 60.099 -Propylamine Propylamine 1 59.111 59.111 -Isopropylamine Isopropylamine 1 59.111 59.111 -Trimethylamine Trimethylamine 1 59.111 59.111 -Citrate Citrate-3 2 189.102 189.102 -Nta Nta-3 1 188.117 188.117 -Edta Edta-4 2 288.214 288.214 -Propionate Propionate- 1 73.072 73.072 -Butyrate Butyrate- 1 87.098 87.098 -Isobutyrate Isobutyrate- 1 87.098 87.098 -Two_picoline Two_picoline 1 93.128 93.128 -Three_picoline Three_picoline 1 93.128 93.128 -Four_picoline Four_picoline 1 93.128 93.128 -Formate Formate- 0 45.018 45.018 -Isovalerate Isovalerate- 1 101.125 101.125 -Valerate Valerate- 1 101.125 101.125 -Acetate Acetate- 1 59.045 59.045 -Tartarate Tartarate-2 0 148.072 148.072 -Glycine Glycine- 1 74.059 74.059 -Salicylate Salicylate-2 1 136.107 136.107 -Glutamate Glutamate-2 1 145.115 145.115 -Phthalate Phthalate-2 1 164.117 164.117 +Alkalinity CO3-2 2 HCO3 61.0173 +E e- 1 0 0 +O H2O 0 O 16 +O(-2) H2O 0 O +O(0) O2 0 O +Ag Ag+ 0 Ag 107.868 +Al Al+3 0 Al 26.9815 +As H3AsO4 -1 As 74.9216 +As(3) H3AsO3 0 As +As(5) H3AsO4 -1 As +B H3BO3 0 B 10.81 +Ba Ba+2 0 Ba 137.33 +Be Be+2 0 Be 9.0122 +Br Br- 0 Br 79.904 +C CO3-2 2 CO3 12.0111 +C(4) CO3-2 2 CO3 12.0111 +Cyanide Cyanide- 1 Cyanide 26.0177 +Dom_a Dom_a 0 C 12.0111 +Dom_b Dom_b 0 C 12.0111 +Dom_c Dom_c 0 C 12.0111 +Ca Ca+2 0 Ca 40.078 +Cd Cd+2 0 Cd 112.41 +Cl Cl- 0 Cl 35.453 +Co Co+3 -1 Co 58.9332 +Co(2) Co+2 0 Co +Co(3) Co+3 -1 Co +Cr CrO4-2 1 Cr 51.996 +Cr(2) Cr+2 0 Cr +Cr(3) Cr(OH)2+ 0 Cr +Cr(6) CrO4-2 1 Cr +Cu Cu+2 0 Cu 63.546 +Cu(1) Cu+ 0 Cu +Cu(2) Cu+2 0 Cu +F F- 0 F 18.9984 +Fe Fe+3 -2 Fe 55.847 +Fe(2) Fe+2 0 Fe +Fe(3) Fe+3 -2 Fe +H H+ -1 H 1.0079 +H(0) H2 0 H +H(1) H+ -1 H +Hg Hg(OH)2 0 Hg 200.59 +Hg(0) Hg 0 Hg +Hg(1) Hg2+2 0 Hg +Hg(2) Hg(OH)2 0 Hg +I I- 0 I 126.904 +K K+ 0 K 39.0983 +Li Li+ 0 Li 6.941 +Mg Mg+2 0 Mg 24.305 +Mn Mn+3 0 Mn 54.938 +Mn(2) Mn+2 0 Mn +Mn(3) Mn+3 0 Mn +Mn(6) MnO4-2 0 Mn +Mn(7) MnO4- 0 Mn +Mo MoO4-2 0 Mo 95.94 +N NO3- 0 N 14.0067 +N(-3) NH4+ 0 N +N(3) NO2- 0 N +N(5) NO3- 0 N +Na Na+ 0 Na 22.9898 +Ni Ni+2 0 Ni 58.69 +P PO4-3 2 P 30.9738 +Pb Pb+2 0 Pb 207.2 +S SO4-2 0 SO4 32.066 +S(-2) HS- 1 S +#S(0) S 0.0 S +S(6) SO4-2 0 SO4 +Sb Sb(OH)6- 0 Sb 121.75 +Sb(3) Sb(OH)3 0 Sb +Sb(5) Sb(OH)6- 0 Sb +Se SeO4-2 0 Se 78.96 +Se(-2) HSe- 0 Se +Se(4) HSeO3- 0 Se +Se(6) SeO4-2 0 Se +Si H4SiO4 0 SiO2 28.0843 +Sn Sn(OH)6-2 0 Sn 118.71 +Sn(2) Sn(OH)2 0 Sn +Sn(4) Sn(OH)6-2 0 Sn +Sr Sr+2 0 Sr 87.62 +Tl Tl(OH)3 0 Tl 204.383 +Tl(1) Tl+ 0 Tl +Tl(3) Tl(OH)3 0 Tl +U UO2+2 0 U 238.029 +U(3) U+3 0 U +U(4) U+4 -4 U +U(5) UO2+ 0 U +U(6) UO2+2 0 U +V VO2+ -2 V 50.94 +V(2) V+2 0 V +V(3) V+3 -3 V +V(4) VO+2 0 V +V(5) VO2+ -2 V +Zn Zn+2 0 Zn 65.39 +Benzoate Benzoate- 0 121.116 121.116 +Phenylacetate Phenylacetate- 0 135.142 135.142 +Isophthalate Isophthalate-2 0 164.117 164.117 +Diethylamine Diethylamine 1 73.138 73.138 +Butylamine Butylamine 1 73.138 73.138 +Methylamine Methylamine 1 31.057 31.057 +Dimethylamine Dimethylamine 1 45.084 45.084 +Hexylamine Hexylamine 1 101.192 101.192 +Ethylenediamine Ethylenediamine 2 60.099 60.099 +Propylamine Propylamine 1 59.111 59.111 +Isopropylamine Isopropylamine 1 59.111 59.111 +Trimethylamine Trimethylamine 1 59.111 59.111 +Citrate Citrate-3 2 189.102 189.102 +Nta Nta-3 1 188.117 188.117 +Edta Edta-4 2 288.214 288.214 +Propionate Propionate- 1 73.072 73.072 +Butyrate Butyrate- 1 87.098 87.098 +Isobutyrate Isobutyrate- 1 87.098 87.098 +Two_picoline Two_picoline 1 93.128 93.128 +Three_picoline Three_picoline 1 93.128 93.128 +Four_picoline Four_picoline 1 93.128 93.128 +Formate Formate- 0 45.018 45.018 +Isovalerate Isovalerate- 1 101.125 101.125 +Valerate Valerate- 1 101.125 101.125 +Acetate Acetate- 1 59.045 59.045 +Tartarate Tartarate-2 0 148.072 148.072 +Glycine Glycine- 1 74.059 74.059 +Salicylate Salicylate-2 1 136.107 136.107 +Glutamate Glutamate-2 1 145.115 145.115 +Phthalate Phthalate-2 1 164.117 164.117 SOLUTION_SPECIES e- = e- - log_k 0 + log_k 0 H2O = H2O - log_k 0 + log_k 0 Ag+ = Ag+ - log_k 0 + log_k 0 Al+3 = Al+3 - log_k 0 + log_k 0 H3AsO4 = H3AsO4 - log_k 0 + log_k 0 H3BO3 = H3BO3 - log_k 0 + log_k 0 Ba+2 = Ba+2 - log_k 0 + log_k 0 Be+2 = Be+2 - log_k 0 + log_k 0 Br- = Br- - log_k 0 + log_k 0 CO3-2 = CO3-2 - log_k 0 + log_k 0 Cyanide- = Cyanide- - log_k 0 + log_k 0 Dom_a = Dom_a - log_k 0 + log_k 0 Dom_b = Dom_b - log_k 0 + log_k 0 Dom_c = Dom_c - log_k 0 + log_k 0 Ca+2 = Ca+2 - log_k 0 + log_k 0 Cd+2 = Cd+2 - log_k 0 + log_k 0 Cl- = Cl- - log_k 0 + log_k 0 Co+3 = Co+3 - log_k 0 + log_k 0 CrO4-2 = CrO4-2 - log_k 0 + log_k 0 Cu+2 = Cu+2 - log_k 0 + log_k 0 F- = F- - log_k 0 + log_k 0 Fe+3 = Fe+3 - log_k 0 + log_k 0 H+ = H+ - log_k 0 + log_k 0 Hg(OH)2 = Hg(OH)2 - log_k 0 + log_k 0 I- = I- - log_k 0 + log_k 0 K+ = K+ - log_k 0 + log_k 0 Li+ = Li+ - log_k 0 + log_k 0 Mg+2 = Mg+2 - log_k 0 + log_k 0 Mn+3 = Mn+3 - log_k 0 + log_k 0 MoO4-2 = MoO4-2 - log_k 0 + log_k 0 NO3- = NO3- - log_k 0 + log_k 0 Na+ = Na+ - log_k 0 + log_k 0 Ni+2 = Ni+2 - log_k 0 + log_k 0 PO4-3 = PO4-3 - log_k 0 + log_k 0 Pb+2 = Pb+2 - log_k 0 + log_k 0 SO4-2 = SO4-2 - log_k 0 + log_k 0 Sb(OH)6- = Sb(OH)6- - log_k 0 + log_k 0 SeO4-2 = SeO4-2 - log_k 0 + log_k 0 H4SiO4 = H4SiO4 - log_k 0 + log_k 0 Sn(OH)6-2 = Sn(OH)6-2 - log_k 0 + log_k 0 Sr+2 = Sr+2 - log_k 0 + log_k 0 Tl(OH)3 = Tl(OH)3 - log_k 0 + log_k 0 UO2+2 = UO2+2 - log_k 0 + log_k 0 VO2+ = VO2+ - log_k 0 + log_k 0 Benzoate- = Benzoate- - log_k 0 + log_k 0 Phenylacetate- = Phenylacetate- - log_k 0 + log_k 0 Isophthalate-2 = Isophthalate-2 - log_k 0 + log_k 0 Zn+2 = Zn+2 - log_k 0 + log_k 0 Diethylamine = Diethylamine - log_k 0 + log_k 0 Butylamine = Butylamine - log_k 0 + log_k 0 Methylamine = Methylamine - log_k 0 + log_k 0 Dimethylamine = Dimethylamine - log_k 0 + log_k 0 Hexylamine = Hexylamine - log_k 0 + log_k 0 Ethylenediamine = Ethylenediamine - log_k 0 + log_k 0 Propylamine = Propylamine - log_k 0 + log_k 0 Isopropylamine = Isopropylamine - log_k 0 + log_k 0 Trimethylamine = Trimethylamine - log_k 0 + log_k 0 Citrate-3 = Citrate-3 - log_k 0 + log_k 0 Nta-3 = Nta-3 - log_k 0 + log_k 0 Edta-4 = Edta-4 - log_k 0 + log_k 0 Propionate- = Propionate- - log_k 0 + log_k 0 Butyrate- = Butyrate- - log_k 0 + log_k 0 Isobutyrate- = Isobutyrate- - log_k 0 + log_k 0 Two_picoline = Two_picoline - log_k 0 + log_k 0 Three_picoline = Three_picoline - log_k 0 + log_k 0 Four_picoline = Four_picoline - log_k 0 + log_k 0 Formate- = Formate- - log_k 0 + log_k 0 Isovalerate- = Isovalerate- - log_k 0 + log_k 0 Valerate- = Valerate- - log_k 0 + log_k 0 Acetate- = Acetate- - log_k 0 + log_k 0 Tartarate-2 = Tartarate-2 - log_k 0 + log_k 0 Glycine- = Glycine- - log_k 0 + log_k 0 Salicylate-2 = Salicylate-2 - log_k 0 + log_k 0 Glutamate-2 = Glutamate-2 - log_k 0 + log_k 0 Phthalate-2 = Phthalate-2 - log_k 0 + log_k 0 SOLUTION_SPECIES Fe+3 + e- = Fe+2 - log_k 13.032 - delta_h -42.7 kJ - -gamma 0 0 - # Id: 2802810 - # log K source: Bard85 - # Delta H source: Bard85 - #T and ionic strength: + log_k 13.032 + delta_h -42.7 kJ + -gamma 0 0 + # Id: 2802810 + # log K source: Bard85 + # Delta H source: Bard85 + #T and ionic strength: H3AsO4 + 2 e- + 2 H+ = H3AsO3 + H2O - log_k 18.898 - delta_h -125.6 kJ - -gamma 0 0 - # Id: 600610 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 18.898 + delta_h -125.6 kJ + -gamma 0 0 + # Id: 600610 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: Sb(OH)6- + 2 e- + 3 H+ = Sb(OH)3 + 3 H2O - log_k 24.31 - delta_h 0 kJ - -gamma 0 0 - # Id: 7407410 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 24.31 + delta_h 0 kJ + -gamma 0 0 + # Id: 7407410 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: UO2+2 + 3 e- + 4 H+ = U+3 + 2 H2O - log_k 0.42 - delta_h -42 kJ - -gamma 0 0 - # Id: 8908930 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 0.42 + delta_h -42 kJ + -gamma 0 0 + # Id: 8908930 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: UO2+2 + 2 e- + 4 H+ = U+4 + 2 H2O - log_k 9.216 - delta_h -144.1 kJ - -gamma 0 0 - # Id: 8918930 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 9.216 + delta_h -144.1 kJ + -gamma 0 0 + # Id: 8918930 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: UO2+2 + e- = UO2+ - log_k 2.785 - delta_h -13.8 kJ - -gamma 0 0 - # Id: 8928930 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 2.785 + delta_h -13.8 kJ + -gamma 0 0 + # Id: 8928930 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: e- + Mn+3 = Mn+2 - log_k 25.35 - delta_h -107.8 kJ - -gamma 0 0 - # Id: 4704710 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 25.35 + delta_h -107.8 kJ + -gamma 0 0 + # Id: 4704710 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: Co+3 + e- = Co+2 - log_k 32.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2002010 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 32.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2002010 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: Cu+2 + e- = Cu+ - log_k 2.69 - delta_h 6.9 kJ - -gamma 0 0 - # Id: 2302310 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 2.69 + delta_h 6.9 kJ + -gamma 0 0 + # Id: 2302310 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: V+3 + e- = V+2 - log_k -4.31 - delta_h 0 kJ - -gamma 0 0 - # Id: 9009010 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -4.31 + delta_h 0 kJ + -gamma 0 0 + # Id: 9009010 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: VO+2 + e- + 2 H+ = V+3 + H2O - log_k 5.696 - delta_h 0 kJ - -gamma 0 0 - # Id: 9019020 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 5.696 + delta_h 0 kJ + -gamma 0 0 + # Id: 9019020 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: VO2+ + e- + 2 H+ = VO+2 + H2O - log_k 16.903 - delta_h -122.7 kJ - -gamma 0 0 - # Id: 9029030 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 16.903 + delta_h -122.7 kJ + -gamma 0 0 + # Id: 9029030 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O - log_k 33.66 - delta_h -60.14 kJ - -gamma 0 0 - # Id: 7307320 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 33.66 + delta_h -60.14 kJ + -gamma 0 0 + # Id: 7307320 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Sn(OH)6-2 + 2 e- + 4 H+ = Sn(OH)2 + 4 H2O - log_k 19.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 7907910 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 19.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 7907910 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: Tl(OH)3 + 2 e- + 3 H+ = Tl+ + 3 H2O - log_k 45.55 - delta_h 0 kJ - -gamma 0 0 - # Id: 8708710 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 45.55 + delta_h 0 kJ + -gamma 0 0 + # Id: 8708710 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: HSeO3- + 6 e- + 6 H+ = HSe- + 3 H2O - log_k 44.86 - delta_h 0 kJ - -gamma 0 0 - # Id: 7607610 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 44.86 + delta_h 0 kJ + -gamma 0 0 + # Id: 7607610 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: SeO4-2 + 2 e- + 3 H+ = HSeO3- + H2O - log_k 36.308 - delta_h -201.2 kJ - -gamma 0 0 - # Id: 7617620 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 36.308 + delta_h -201.2 kJ + -gamma 0 0 + # Id: 7617620 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.5 Hg2+2 + e- = Hg - log_k 6.5667 - delta_h -45.735 kJ - -gamma 0 0 - # Id: 3600000 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k 6.5667 + delta_h -45.735 kJ + -gamma 0 0 + # Id: 3600000 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: 2 Hg(OH)2 + 4 H+ + 2 e- = Hg2+2 + 4 H2O - log_k 43.185 - delta_h -63.59 kJ - -gamma 0 0 - # Id: 3603610 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 43.185 + delta_h -63.59 kJ + -gamma 0 0 + # Id: 3603610 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: Cr(OH)2+ + 2 H+ + e- = Cr+2 + 2 H2O - log_k 2.947 - delta_h 6.36 kJ - -gamma 0 0 - # Id: 2102110 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 2.947 + delta_h 6.36 kJ + -gamma 0 0 + # Id: 2102110 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: CrO4-2 + 6 H+ + 3 e- = Cr(OH)2+ + 2 H2O - log_k 67.376 - delta_h -103 kJ - -gamma 0 0 - # Id: 2112120 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 67.376 + delta_h -103 kJ + -gamma 0 0 + # Id: 2112120 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: 2 H2O = O2 + 4 H+ + 4 e- -# Adjusted for equation to aqueous species - log_k -85.9951 +# Adjusted for equation to aqueous species + log_k -85.9951 -analytic 38.0229 7.99407E-3 -2.7655e+4 -1.4506e+1 199838.45 2 H+ + 2 e- = H2 @@ -468,12205 +468,12205 @@ NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O -gamma 2.5 0 Mn+2 + 4 H2O = MnO4- + 8 H+ + 5 e- - log_k -127.794 - delta_h 822.67 kJ - -gamma 3 0 - # Id: 4700020 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k -127.794 + delta_h 822.67 kJ + -gamma 3 0 + # Id: 4700020 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Mn+2 + 4 H2O = MnO4-2 + 8 H+ + 4 e- - log_k -118.422 - delta_h 711.07 kJ - -gamma 5 0 - # Id: 4700021 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k -118.422 + delta_h 711.07 kJ + -gamma 5 0 + # Id: 4700021 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: HS- = S-2 + H+ - log_k -17.3 - delta_h 49.4 kJ - -gamma 5 0 - # Id: 3307301 - # log K source: LMa1987 - # Delta H source: NIST2.1.1 - #T and ionic strength: 0.00 25.0 + log_k -17.3 + delta_h 49.4 kJ + -gamma 5 0 + # Id: 3307301 + # log K source: LMa1987 + # Delta H source: NIST2.1.1 + #T and ionic strength: 0.00 25.0 HSe- = Se-2 + H+ - log_k -15 - delta_h 48.116 kJ - -gamma 0 0 - # Id: 3307601 - # log K source: SCD3.02 (1968 DKa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -15 + delta_h 48.116 kJ + -gamma 0 0 + # Id: 3307601 + # log K source: SCD3.02 (1968 DKa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Tl(OH)3 + 3 H+ = Tl+3 + 3 H2O - log_k 3.291 - delta_h 0 kJ - -gamma 0 0 - # Id: 8713300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 3.291 + delta_h 0 kJ + -gamma 0 0 + # Id: 8713300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 0.5 Hg2+2 + e- = Hg - log_k 6.5667 - delta_h -45.735 kJ - -gamma 0 0 - # Id: 3600000 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k 6.5667 + delta_h -45.735 kJ + -gamma 0 0 + # Id: 3600000 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Hg(OH)2 + 2 H+ = Hg+2 + 2 H2O - log_k 6.194 - delta_h -39.72 kJ - -gamma 0 0 - # Id: 3613300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 6.194 + delta_h -39.72 kJ + -gamma 0 0 + # Id: 3613300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cr(OH)2+ + 2 H+ = Cr+3 + 2 H2O - log_k 9.5688 - delta_h -129.62 kJ - -gamma 0 0 - # Id: 2113300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.10 20.0 + log_k 9.5688 + delta_h -129.62 kJ + -gamma 0 0 + # Id: 2113300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.10 20.0 H2O = OH- + H+ - log_k -13.997 - delta_h 55.81 kJ - -gamma 3.5 0 - # Id: 3300020 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -13.997 + delta_h 55.81 kJ + -gamma 3.5 0 + # Id: 3300020 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Sn(OH)2 + 2 H+ = Sn+2 + 2 H2O - log_k 7.094 - delta_h 0 kJ - -gamma 0 0 - # Id: 7903301 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 7.094 + delta_h 0 kJ + -gamma 0 0 + # Id: 7903301 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Sn(OH)2 + H+ = SnOH+ + H2O - log_k 3.697 - delta_h 0 kJ - -gamma 0 0 - # Id: 7903302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 3.697 + delta_h 0 kJ + -gamma 0 0 + # Id: 7903302 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Sn(OH)2 + H2O = Sn(OH)3- + H+ - log_k -9.497 - delta_h 0 kJ - -gamma 0 0 - # Id: 7903303 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -9.497 + delta_h 0 kJ + -gamma 0 0 + # Id: 7903303 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 2 Sn(OH)2 + 2 H+ = Sn2(OH)2+2 + 2 H2O - log_k 9.394 - delta_h 0 kJ - -gamma 0 0 - # Id: 7903304 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 9.394 + delta_h 0 kJ + -gamma 0 0 + # Id: 7903304 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 3 Sn(OH)2 + 2 H+ = Sn3(OH)4+2 + 2 H2O - log_k 14.394 - delta_h 0 kJ - -gamma 0 0 - # Id: 7903305 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 14.394 + delta_h 0 kJ + -gamma 0 0 + # Id: 7903305 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Sn(OH)2 = HSnO2- + H+ - log_k -8.9347 - delta_h 0 kJ - -gamma 0 0 - # Id: 7903306 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -8.9347 + delta_h 0 kJ + -gamma 0 0 + # Id: 7903306 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: Sn(OH)6-2 + 6 H+ = Sn+4 + 6 H2O - log_k 21.2194 - delta_h 0 kJ - -gamma 0 0 - # Id: 7913301 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 21.2194 + delta_h 0 kJ + -gamma 0 0 + # Id: 7913301 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: Sn(OH)6-2 = SnO3-2 + 3 H2O - log_k -2.2099 - delta_h 0 kJ - -gamma 0 0 - # Id: 7913302 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -2.2099 + delta_h 0 kJ + -gamma 0 0 + # Id: 7913302 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: Pb+2 + H2O = PbOH+ + H+ - log_k -7.597 - delta_h 0 kJ - -gamma 0 0 - # Id: 6003300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -7.597 + delta_h 0 kJ + -gamma 0 0 + # Id: 6003300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ - log_k -17.094 - delta_h 0 kJ - -gamma 0 0 - # Id: 6003301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -17.094 + delta_h 0 kJ + -gamma 0 0 + # Id: 6003301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ - log_k -28.091 - delta_h 0 kJ - -gamma 0 0 - # Id: 6003302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -28.091 + delta_h 0 kJ + -gamma 0 0 + # Id: 6003302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 2 Pb+2 + H2O = Pb2OH+3 + H+ - log_k -6.397 - delta_h 0 kJ - -gamma 0 0 - # Id: 6003303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -6.397 + delta_h 0 kJ + -gamma 0 0 + # Id: 6003303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 3 Pb+2 + 4 H2O = Pb3(OH)4+2 + 4 H+ - log_k -23.888 - delta_h 115.24 kJ - -gamma 0 0 - # Id: 6003304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -23.888 + delta_h 115.24 kJ + -gamma 0 0 + # Id: 6003304 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ - log_k -39.699 - delta_h 0 kJ - -gamma 0 0 - # Id: 6003305 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -39.699 + delta_h 0 kJ + -gamma 0 0 + # Id: 6003305 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: 4 Pb+2 + 4 H2O = Pb4(OH)4+4 + 4 H+ - log_k -19.988 - delta_h 88.24 kJ - -gamma 0 0 - # Id: 6003306 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -19.988 + delta_h 88.24 kJ + -gamma 0 0 + # Id: 6003306 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 H3BO3 + F- = BF(OH)3- - log_k -0.399 - delta_h 7.7404 kJ - -gamma 2.5 0 - # Id: 902700 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -0.399 + delta_h 7.7404 kJ + -gamma 2.5 0 + # Id: 902700 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O - log_k 7.63 - delta_h 6.8408 kJ - -gamma 2.5 0 - # Id: 902701 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 7.63 + delta_h 6.8408 kJ + -gamma 2.5 0 + # Id: 902701 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: H3BO3 + 3 F- + 2 H+ = BF3OH- + 2 H2O - log_k 13.22 - delta_h -20.4897 kJ - -gamma 2.5 0 - # Id: 902702 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k 13.22 + delta_h -20.4897 kJ + -gamma 2.5 0 + # Id: 902702 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Al+3 + H2O = AlOH+2 + H+ - log_k -4.997 - delta_h 47.81 kJ - -gamma 5.4 0 - # Id: 303300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -4.997 + delta_h 47.81 kJ + -gamma 5.4 0 + # Id: 303300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Al+3 + 2 H2O = Al(OH)2+ + 2 H+ - log_k -10.094 - delta_h 0 kJ - -gamma 5.4 0 - # Id: 303301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -10.094 + delta_h 0 kJ + -gamma 5.4 0 + # Id: 303301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Al+3 + 3 H2O = Al(OH)3 + 3 H+ - log_k -16.791 - delta_h 0 kJ - -gamma 0 0 - # Id: 303303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -16.791 + delta_h 0 kJ + -gamma 0 0 + # Id: 303303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Al+3 + 4 H2O = Al(OH)4- + 4 H+ - log_k -22.688 - delta_h 173.24 kJ - -gamma 4.5 0 - # Id: 303302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -22.688 + delta_h 173.24 kJ + -gamma 4.5 0 + # Id: 303302 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Tl+ + H2O = TlOH + H+ - log_k -13.207 - delta_h 56.81 kJ - -gamma 0 0 - # Id: 8703300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -13.207 + delta_h 56.81 kJ + -gamma 0 0 + # Id: 8703300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Tl(OH)3 + 2 H+ = TlOH+2 + 2 H2O - log_k 2.694 - delta_h 0 kJ - -gamma 0 0 - # Id: 8713301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.694 + delta_h 0 kJ + -gamma 0 0 + # Id: 8713301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Tl(OH)3 + H+ = Tl(OH)2+ + H2O - log_k 1.897 - delta_h 0 kJ - -gamma 0 0 - # Id: 8713302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 1.897 + delta_h 0 kJ + -gamma 0 0 + # Id: 8713302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Tl(OH)3 + H2O = Tl(OH)4- + H+ - log_k -11.697 - delta_h 0 kJ - -gamma 0 0 - # Id: 8713303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -11.697 + delta_h 0 kJ + -gamma 0 0 + # Id: 8713303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Zn+2 + H2O = ZnOH+ + H+ - log_k -8.997 - delta_h 55.81 kJ - -gamma 0 0 - # Id: 9503300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -8.997 + delta_h 55.81 kJ + -gamma 0 0 + # Id: 9503300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ - log_k -17.794 - delta_h 0 kJ - -gamma 0 0 - # Id: 9503301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -17.794 + delta_h 0 kJ + -gamma 0 0 + # Id: 9503301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ - log_k -28.091 - delta_h 0 kJ - -gamma 0 0 - # Id: 9503302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -28.091 + delta_h 0 kJ + -gamma 0 0 + # Id: 9503302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ - log_k -40.488 - delta_h 0 kJ - -gamma 0 0 - # Id: 9503303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -40.488 + delta_h 0 kJ + -gamma 0 0 + # Id: 9503303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cd+2 + H2O = CdOH+ + H+ - log_k -10.097 - delta_h 54.81 kJ - -gamma 0 0 - # Id: 1603300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -10.097 + delta_h 54.81 kJ + -gamma 0 0 + # Id: 1603300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ - log_k -20.294 - delta_h 0 kJ - -gamma 0 0 - # Id: 1603301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -20.294 + delta_h 0 kJ + -gamma 0 0 + # Id: 1603301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ - log_k -32.505 - delta_h 0 kJ - -gamma 0 0 - # Id: 1603302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 3.00 25.0 + log_k -32.505 + delta_h 0 kJ + -gamma 0 0 + # Id: 1603302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 3.00 25.0 Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ - log_k -47.288 - delta_h 0 kJ - -gamma 0 0 - # Id: 1603303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -47.288 + delta_h 0 kJ + -gamma 0 0 + # Id: 1603303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 2 Cd+2 + H2O = Cd2OH+3 + H+ - log_k -9.397 - delta_h 45.81 kJ - -gamma 0 0 - # Id: 1603304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -9.397 + delta_h 45.81 kJ + -gamma 0 0 + # Id: 1603304 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + H+ = HgOH+ + H2O - log_k 2.797 - delta_h -18.91 kJ - -gamma 0 0 - # Id: 3613302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.797 + delta_h -18.91 kJ + -gamma 0 0 + # Id: 3613302 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + H2O = Hg(OH)3- + H+ - log_k -14.897 - delta_h 0 kJ - -gamma 0 0 - # Id: 3613303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -14.897 + delta_h 0 kJ + -gamma 0 0 + # Id: 3613303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cu+2 + H2O = CuOH+ + H+ - log_k -7.497 - delta_h 35.81 kJ - -gamma 4 0 - # Id: 2313300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -7.497 + delta_h 35.81 kJ + -gamma 4 0 + # Id: 2313300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ - log_k -16.194 - delta_h 0 kJ - -gamma 0 0 - # Id: 2313301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -16.194 + delta_h 0 kJ + -gamma 0 0 + # Id: 2313301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ - log_k -26.879 - delta_h 0 kJ - -gamma 0 0 - # Id: 2313302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k -26.879 + delta_h 0 kJ + -gamma 0 0 + # Id: 2313302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ - log_k -39.98 - delta_h 0 kJ - -gamma 0 0 - # Id: 2313303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k -39.98 + delta_h 0 kJ + -gamma 0 0 + # Id: 2313303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 2 Cu+2 + 2 H2O = Cu2(OH)2+2 + 2 H+ - log_k -10.594 - delta_h 76.62 kJ - -gamma 0 0 - # Id: 2313304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -10.594 + delta_h 76.62 kJ + -gamma 0 0 + # Id: 2313304 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ag+ + H2O = AgOH + H+ - log_k -11.997 - delta_h 0 kJ - -gamma 0 0 - # Id: 203300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -11.997 + delta_h 0 kJ + -gamma 0 0 + # Id: 203300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Ag+ + 2 H2O = Ag(OH)2- + 2 H+ - log_k -24.004 - delta_h 0 kJ - -gamma 0 0 - # Id: 203301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -24.004 + delta_h 0 kJ + -gamma 0 0 + # Id: 203301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Ni+2 + H2O = NiOH+ + H+ - log_k -9.897 - delta_h 51.81 kJ - -gamma 0 0 - # Id: 5403300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -9.897 + delta_h 51.81 kJ + -gamma 0 0 + # Id: 5403300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ni+2 + 2 H2O = Ni(OH)2 + 2 H+ - log_k -18.994 - delta_h 0 kJ - -gamma 0 0 - # Id: 5403301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -18.994 + delta_h 0 kJ + -gamma 0 0 + # Id: 5403301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Ni+2 + 3 H2O = Ni(OH)3- + 3 H+ - log_k -29.991 - delta_h 0 kJ - -gamma 0 0 - # Id: 5403302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -29.991 + delta_h 0 kJ + -gamma 0 0 + # Id: 5403302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Co+2 + H2O = CoOH+ + H+ - log_k -9.697 - delta_h 0 kJ - -gamma 0 0 - # Id: 2003300 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -9.697 + delta_h 0 kJ + -gamma 0 0 + # Id: 2003300 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Co+2 + 2 H2O = Co(OH)2 + 2 H+ - log_k -18.794 - delta_h 0 kJ - -gamma 0 0 - # Id: 2003301 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -18.794 + delta_h 0 kJ + -gamma 0 0 + # Id: 2003301 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Co+2 + 3 H2O = Co(OH)3- + 3 H+ - log_k -31.491 - delta_h 0 kJ - -gamma 0 0 - # Id: 2003302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -31.491 + delta_h 0 kJ + -gamma 0 0 + # Id: 2003302 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Co+2 + 4 H2O = Co(OH)4-2 + 4 H+ - log_k -46.288 - delta_h 0 kJ - -gamma 0 0 - # Id: 2003303 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -46.288 + delta_h 0 kJ + -gamma 0 0 + # Id: 2003303 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 2 Co+2 + H2O = Co2OH+3 + H+ - log_k -10.997 - delta_h 0 kJ - -gamma 0 0 - # Id: 2003304 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -10.997 + delta_h 0 kJ + -gamma 0 0 + # Id: 2003304 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 4 Co+2 + 4 H2O = Co4(OH)4+4 + 4 H+ - log_k -30.488 - delta_h 0 kJ - -gamma 0 0 - # Id: 2003306 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -30.488 + delta_h 0 kJ + -gamma 0 0 + # Id: 2003306 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Co+2 + 2 H2O = CoOOH- + 3 H+ - log_k -32.0915 - delta_h 260.454 kJ - -gamma 0 0 - # Id: 2003305 - # log K source: NIST2.1.1 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -32.0915 + delta_h 260.454 kJ + -gamma 0 0 + # Id: 2003305 + # log K source: NIST2.1.1 + # Delta H source: MTQ3.11 + #T and ionic strength: Co+3 + H2O = CoOH+2 + H+ - log_k -1.291 - delta_h 0 kJ - -gamma 0 0 - # Id: 2013300 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 3.00 25.0 + log_k -1.291 + delta_h 0 kJ + -gamma 0 0 + # Id: 2013300 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 3.00 25.0 Fe+2 + H2O = FeOH+ + H+ - log_k -9.397 - delta_h 55.81 kJ - -gamma 5 0 - # Id: 2803300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -9.397 + delta_h 55.81 kJ + -gamma 5 0 + # Id: 2803300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Fe+2 + 2 H2O = Fe(OH)2 + 2 H+ - log_k -20.494 - delta_h 119.62 kJ - -gamma 0 0 - # Id: 2803302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -20.494 + delta_h 119.62 kJ + -gamma 0 0 + # Id: 2803302 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Fe+2 + 3 H2O = Fe(OH)3- + 3 H+ - log_k -28.991 - delta_h 126.43 kJ - -gamma 5 0 - # Id: 2803301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -28.991 + delta_h 126.43 kJ + -gamma 5 0 + # Id: 2803301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Fe+3 + H2O = FeOH+2 + H+ - log_k -2.187 - delta_h 41.81 kJ - -gamma 5 0 - # Id: 2813300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -2.187 + delta_h 41.81 kJ + -gamma 5 0 + # Id: 2813300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ - log_k -4.594 - delta_h 0 kJ - -gamma 5.4 0 - # Id: 2813301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -4.594 + delta_h 0 kJ + -gamma 5.4 0 + # Id: 2813301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ - log_k -12.56 - delta_h 103.8 kJ - -gamma 0 0 - # Id: 2813302 - # log K source: Nord90 - # Delta H source: Nord90 - #T and ionic strength: 0.00 25.0 + log_k -12.56 + delta_h 103.8 kJ + -gamma 0 0 + # Id: 2813302 + # log K source: Nord90 + # Delta H source: Nord90 + #T and ionic strength: 0.00 25.0 Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ - log_k -21.588 - delta_h 0 kJ - -gamma 5.4 0 - # Id: 2813303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -21.588 + delta_h 0 kJ + -gamma 5.4 0 + # Id: 2813303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ - log_k -2.854 - delta_h 57.62 kJ - -gamma 0 0 - # Id: 2813304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -2.854 + delta_h 57.62 kJ + -gamma 0 0 + # Id: 2813304 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ - log_k -6.288 - delta_h 65.24 kJ - -gamma 0 0 - # Id: 2813305 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -6.288 + delta_h 65.24 kJ + -gamma 0 0 + # Id: 2813305 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Mn+2 + H2O = MnOH+ + H+ - log_k -10.597 - delta_h 55.81 kJ - -gamma 5 0 - # Id: 4703300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -10.597 + delta_h 55.81 kJ + -gamma 5 0 + # Id: 4703300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Mn+2 + 3 H2O = Mn(OH)3- + 3 H+ - log_k -34.8 - delta_h 0 kJ - -gamma 5 0 - # Id: 4703301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -34.8 + delta_h 0 kJ + -gamma 5 0 + # Id: 4703301 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Mn+2 + 4 H2O = Mn(OH)4-2 + 4 H+ - log_k -48.288 - delta_h 0 kJ - -gamma 5 0 - # Id: 4703302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -48.288 + delta_h 0 kJ + -gamma 5 0 + # Id: 4703302 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Mn+2 + 4 H2O = MnO4- + 8 H+ + 5 e- - log_k -127.794 - delta_h 822.67 kJ - -gamma 3 0 - # Id: 4700020 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k -127.794 + delta_h 822.67 kJ + -gamma 3 0 + # Id: 4700020 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Mn+2 + 4 H2O = MnO4-2 + 8 H+ + 4 e- - log_k -118.422 - delta_h 711.07 kJ - -gamma 5 0 - # Id: 4700021 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k -118.422 + delta_h 711.07 kJ + -gamma 5 0 + # Id: 4700021 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Cr(OH)2+ + H+ = Cr(OH)+2 + H2O - log_k 5.9118 - delta_h -77.91 kJ - -gamma 0 0 - # Id: 2113301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 5.9118 + delta_h -77.91 kJ + -gamma 0 0 + # Id: 2113301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cr(OH)2+ + H2O = Cr(OH)3 + H+ - log_k -8.4222 - delta_h 0 kJ - -gamma 0 0 - # Id: 2113302 - # log K source: SCD3.02 (1983 RCa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -8.4222 + delta_h 0 kJ + -gamma 0 0 + # Id: 2113302 + # log K source: SCD3.02 (1983 RCa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cr(OH)2+ + 2 H2O = Cr(OH)4- + 2 H+ - log_k -17.8192 - delta_h 0 kJ - -gamma 0 0 - # Id: 2113303 - # log K source: SCD3.02 (1983 RCa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -17.8192 + delta_h 0 kJ + -gamma 0 0 + # Id: 2113303 + # log K source: SCD3.02 (1983 RCa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cr(OH)2+ = CrO2- + 2 H+ - log_k -17.7456 - delta_h 0 kJ - -gamma 0 0 - # Id: 2113304 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -17.7456 + delta_h 0 kJ + -gamma 0 0 + # Id: 2113304 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: V+2 + H2O = VOH+ + H+ - log_k -6.487 - delta_h 59.81 kJ - -gamma 0 0 - # Id: 9003300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -6.487 + delta_h 59.81 kJ + -gamma 0 0 + # Id: 9003300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 V+3 + H2O = VOH+2 + H+ - log_k -2.297 - delta_h 43.81 kJ - -gamma 0 0 - # Id: 9013300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -2.297 + delta_h 43.81 kJ + -gamma 0 0 + # Id: 9013300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 V+3 + 2 H2O = V(OH)2+ + 2 H+ - log_k -6.274 - delta_h 0 kJ - -gamma 0 0 - # Id: 9013301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 + log_k -6.274 + delta_h 0 kJ + -gamma 0 0 + # Id: 9013301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 V+3 + 3 H2O = V(OH)3 + 3 H+ - log_k -3.0843 - delta_h 0 kJ - -gamma 0 0 - # Id: 9013302 - # log K source: SCD3.02 (1978 TKa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 20.0 + log_k -3.0843 + delta_h 0 kJ + -gamma 0 0 + # Id: 9013302 + # log K source: SCD3.02 (1978 TKa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 20.0 2 V+3 + 2 H2O = V2(OH)2+4 + 2 H+ - log_k -3.794 - delta_h 0 kJ - -gamma 0 0 - # Id: 9013304 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -3.794 + delta_h 0 kJ + -gamma 0 0 + # Id: 9013304 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 2 V+3 + 3 H2O = V2(OH)3+3 + 3 H+ - log_k -10.1191 - delta_h 0 kJ - -gamma 0 0 - # Id: 9013303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 3.00 25.0 + log_k -10.1191 + delta_h 0 kJ + -gamma 0 0 + # Id: 9013303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 3.00 25.0 VO+2 + 2 H2O = V(OH)3+ + H+ - log_k -5.697 - delta_h 0 kJ - -gamma 0 0 - # Id: 9023300 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -5.697 + delta_h 0 kJ + -gamma 0 0 + # Id: 9023300 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 2 VO+2 + 2 H2O = H2V2O4+2 + 2 H+ - log_k -6.694 - delta_h 53.62 kJ - -gamma 0 0 - # Id: 9023301 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -6.694 + delta_h 53.62 kJ + -gamma 0 0 + # Id: 9023301 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 U+4 + H2O = UOH+3 + H+ - log_k -0.597 - delta_h 47.81 kJ - -gamma 0 0 - # Id: 8913300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -0.597 + delta_h 47.81 kJ + -gamma 0 0 + # Id: 8913300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 U+4 + 2 H2O = U(OH)2+2 + 2 H+ - log_k -2.27 - delta_h 74.1823 kJ - -gamma 0 0 - # Id: 8913301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -2.27 + delta_h 74.1823 kJ + -gamma 0 0 + # Id: 8913301 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: U+4 + 3 H2O = U(OH)3+ + 3 H+ - log_k -4.935 - delta_h 94.7467 kJ - -gamma 0 0 - # Id: 8913302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -4.935 + delta_h 94.7467 kJ + -gamma 0 0 + # Id: 8913302 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: U+4 + 4 H2O = U(OH)4 + 4 H+ - log_k -8.498 - delta_h 103.596 kJ - -gamma 0 0 - # Id: 8913303 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -8.498 + delta_h 103.596 kJ + -gamma 0 0 + # Id: 8913303 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: U+4 + 5 H2O = U(OH)5- + 5 H+ - log_k -13.12 - delta_h 115.374 kJ - -gamma 0 0 - # Id: 8913304 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -13.12 + delta_h 115.374 kJ + -gamma 0 0 + # Id: 8913304 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: 6 U+4 + 15 H2O = U6(OH)15+9 + 15 H+ - log_k -17.155 - delta_h 0 kJ - -gamma 0 0 - # Id: 8913305 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -17.155 + delta_h 0 kJ + -gamma 0 0 + # Id: 8913305 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 UO2+2 + H2O = UO2OH+ + H+ - log_k -5.897 - delta_h 47.81 kJ - -gamma 0 0 - # Id: 8933300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -5.897 + delta_h 47.81 kJ + -gamma 0 0 + # Id: 8933300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 2 UO2+2 + 2 H2O = (UO2)2(OH)2+2 + 2 H+ - log_k -5.574 - delta_h 41.82 kJ - -gamma 0 0 - # Id: 8933301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -5.574 + delta_h 41.82 kJ + -gamma 0 0 + # Id: 8933301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 3 UO2+2 + 5 H2O = (UO2)3(OH)5+ + 5 H+ - log_k -15.585 - delta_h 108.05 kJ - -gamma 0 0 - # Id: 8933302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -15.585 + delta_h 108.05 kJ + -gamma 0 0 + # Id: 8933302 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Be+2 + H2O = BeOH+ + H+ - log_k -5.397 - delta_h 0 kJ - -gamma 6.5 0 - # Id: 1103301 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -5.397 + delta_h 0 kJ + -gamma 6.5 0 + # Id: 1103301 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Be+2 + 2 H2O = Be(OH)2 + 2 H+ - log_k -13.594 - delta_h 0 kJ - -gamma 6.5 0 - # Id: 1103302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -13.594 + delta_h 0 kJ + -gamma 6.5 0 + # Id: 1103302 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Be+2 + 3 H2O = Be(OH)3- + 3 H+ - log_k -23.191 - delta_h 0 kJ - -gamma 6.5 0 - # Id: 1103303 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -23.191 + delta_h 0 kJ + -gamma 6.5 0 + # Id: 1103303 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Be+2 + 4 H2O = Be(OH)4-2 + 4 H+ - log_k -37.388 - delta_h 0 kJ - -gamma 6.5 0 - # Id: 1103304 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -37.388 + delta_h 0 kJ + -gamma 6.5 0 + # Id: 1103304 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 2 Be+2 + H2O = Be2OH+3 + H+ - log_k -3.177 - delta_h 0 kJ - -gamma 6.5 0 - # Id: 1103305 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 + log_k -3.177 + delta_h 0 kJ + -gamma 6.5 0 + # Id: 1103305 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 3 Be+2 + 3 H2O = Be3(OH)3+3 + 3 H+ - log_k -8.8076 - delta_h 0 kJ - -gamma 6.5 0 - # Id: 1103306 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 + log_k -8.8076 + delta_h 0 kJ + -gamma 6.5 0 + # Id: 1103306 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 Mg+2 + H2O = MgOH+ + H+ - log_k -11.397 - delta_h 67.81 kJ - -gamma 6.5 0 - # Id: 4603300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -11.397 + delta_h 67.81 kJ + -gamma 6.5 0 + # Id: 4603300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ca+2 + H2O = CaOH+ + H+ - log_k -12.697 - delta_h 64.11 kJ - -gamma 6 0 - # Id: 1503300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -12.697 + delta_h 64.11 kJ + -gamma 6 0 + # Id: 1503300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Sr+2 + H2O = SrOH+ + H+ - log_k -13.177 - delta_h 60.81 kJ - -gamma 5 0 - # Id: 8003300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -13.177 + delta_h 60.81 kJ + -gamma 5 0 + # Id: 8003300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ba+2 + H2O = BaOH+ + H+ - log_k -13.357 - delta_h 60.81 kJ - -gamma 5 0 - # Id: 1003300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -13.357 + delta_h 60.81 kJ + -gamma 5 0 + # Id: 1003300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 H+ + F- = HF - log_k 3.17 - delta_h 13.3 kJ - -gamma 0 0 - # Id: 3302700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 3.17 + delta_h 13.3 kJ + -gamma 0 0 + # Id: 3302700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 H+ + 2 F- = HF2- - log_k 3.75 - delta_h 17.4 kJ - -gamma 3.5 0 - # Id: 3302701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 3.75 + delta_h 17.4 kJ + -gamma 3.5 0 + # Id: 3302701 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 2 F- + 2 H+ = H2F2 - log_k 6.768 - delta_h 0 kJ - -gamma 0 0 - # Id: 3302702 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 6.768 + delta_h 0 kJ + -gamma 0 0 + # Id: 3302702 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Sb(OH)3 + F- + H+ = SbOF + 2 H2O - log_k 6.1864 - delta_h 0 kJ - -gamma 0 0 - # Id: 7402700 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: + log_k 6.1864 + delta_h 0 kJ + -gamma 0 0 + # Id: 7402700 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: Sb(OH)3 + F- + H+ = Sb(OH)2F + H2O - log_k 6.1937 - delta_h 0 kJ - -gamma 0 0 - # Id: 7402702 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: + log_k 6.1937 + delta_h 0 kJ + -gamma 0 0 + # Id: 7402702 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O - log_k 30.18 - delta_h -68 kJ - -gamma 5 0 - # Id: 7702700 - # log K source: Nord90 - # Delta H source: Nord90 - #T and ionic strength: 0.00 25.0 + log_k 30.18 + delta_h -68 kJ + -gamma 5 0 + # Id: 7702700 + # log K source: Nord90 + # Delta H source: Nord90 + #T and ionic strength: 0.00 25.0 Sn(OH)2 + 2 H+ + F- = SnF+ + 2 H2O - log_k 11.582 - delta_h 0 kJ - -gamma 0 0 - # Id: 7902701 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 11.582 + delta_h 0 kJ + -gamma 0 0 + # Id: 7902701 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Sn(OH)2 + 2 H+ + 2 F- = SnF2 + 2 H2O - log_k 14.386 - delta_h 0 kJ - -gamma 0 0 - # Id: 7902702 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 14.386 + delta_h 0 kJ + -gamma 0 0 + # Id: 7902702 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Sn(OH)2 + 2 H+ + 3 F- = SnF3- + 2 H2O - log_k 17.206 - delta_h 0 kJ - -gamma 0 0 - # Id: 7902703 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 17.206 + delta_h 0 kJ + -gamma 0 0 + # Id: 7902703 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Sn(OH)6-2 + 6 H+ + 6 F- = SnF6-2 + 6 H2O - log_k 33.5844 - delta_h 0 kJ - -gamma 0 0 - # Id: 7912701 - # log K source: Bard85 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 33.5844 + delta_h 0 kJ + -gamma 0 0 + # Id: 7912701 + # log K source: Bard85 + # Delta H source: MTQ3.11 + #T and ionic strength: Pb+2 + F- = PbF+ - log_k 1.848 - delta_h 0 kJ - -gamma 0 0 - # Id: 6002700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 1.848 + delta_h 0 kJ + -gamma 0 0 + # Id: 6002700 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Pb+2 + 2 F- = PbF2 - log_k 3.142 - delta_h 0 kJ - -gamma 0 0 - # Id: 6002701 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 3.142 + delta_h 0 kJ + -gamma 0 0 + # Id: 6002701 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Pb+2 + 3 F- = PbF3- - log_k 3.42 - delta_h 0 kJ - -gamma 0 0 - # Id: 6002702 - # log K source: SCD3.02 (1956 TKa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 3.42 + delta_h 0 kJ + -gamma 0 0 + # Id: 6002702 + # log K source: SCD3.02 (1956 TKa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Pb+2 + 4 F- = PbF4-2 - log_k 3.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 6002703 - # log K source: SCD3.02 (1956 TKa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 3.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 6002703 + # log K source: SCD3.02 (1956 TKa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O - log_k 19.912 - delta_h -18.67 kJ - -gamma 2.5 0 - # Id: 902703 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 - #T and ionic strength: 1.00 25.0 + log_k 19.912 + delta_h -18.67 kJ + -gamma 2.5 0 + # Id: 902703 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 + #T and ionic strength: 1.00 25.0 Al+3 + F- = AlF+2 - log_k 7 - delta_h 4.6 kJ - -gamma 5.4 0 - # Id: 302700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 7 + delta_h 4.6 kJ + -gamma 5.4 0 + # Id: 302700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Al+3 + 2 F- = AlF2+ - log_k 12.6 - delta_h 8.3 kJ - -gamma 5.4 0 - # Id: 302701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 12.6 + delta_h 8.3 kJ + -gamma 5.4 0 + # Id: 302701 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Al+3 + 3 F- = AlF3 - log_k 16.7 - delta_h 8.7 kJ - -gamma 0 0 - # Id: 302702 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 16.7 + delta_h 8.7 kJ + -gamma 0 0 + # Id: 302702 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Al+3 + 4 F- = AlF4- - log_k 19.4 - delta_h 8.7 kJ - -gamma 4.5 0 - # Id: 302703 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 19.4 + delta_h 8.7 kJ + -gamma 4.5 0 + # Id: 302703 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Tl+ + F- = TlF - log_k 0.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 8702700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 0.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 8702700 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Zn+2 + F- = ZnF+ - log_k 1.3 - delta_h 11 kJ - -gamma 0 0 - # Id: 9502700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.3 + delta_h 11 kJ + -gamma 0 0 + # Id: 9502700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cd+2 + F- = CdF+ - log_k 1.2 - delta_h 5 kJ - -gamma 0 0 - # Id: 1602700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.2 + delta_h 5 kJ + -gamma 0 0 + # Id: 1602700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cd+2 + 2 F- = CdF2 - log_k 1.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 1602701 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 1.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 1602701 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Hg(OH)2 + 2 H+ + F- = HgF+ + 2 H2O - log_k 7.763 - delta_h -35.72 kJ - -gamma 0 0 - # Id: 3612701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.50 25.0 + log_k 7.763 + delta_h -35.72 kJ + -gamma 0 0 + # Id: 3612701 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.50 25.0 Cu+2 + F- = CuF+ - log_k 1.8 - delta_h 13 kJ - -gamma 0 0 - # Id: 2312700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.8 + delta_h 13 kJ + -gamma 0 0 + # Id: 2312700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ag+ + F- = AgF - log_k 0.4 - delta_h 12 kJ - -gamma 0 0 - # Id: 202700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 0.4 + delta_h 12 kJ + -gamma 0 0 + # Id: 202700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ni+2 + F- = NiF+ - log_k 1.4 - delta_h 7.1 kJ - -gamma 0 0 - # Id: 5402700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.4 + delta_h 7.1 kJ + -gamma 0 0 + # Id: 5402700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Co+2 + F- = CoF+ - log_k 1.5 - delta_h 9.2 kJ - -gamma 0 0 - # Id: 2002700 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 1.5 + delta_h 9.2 kJ + -gamma 0 0 + # Id: 2002700 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Fe+3 + F- = FeF+2 - log_k 6.04 - delta_h 10 kJ - -gamma 5 0 - # Id: 2812700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 6.04 + delta_h 10 kJ + -gamma 5 0 + # Id: 2812700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Fe+3 + 2 F- = FeF2+ - log_k 10.4675 - delta_h 17 kJ - -gamma 5 0 - # Id: 2812701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.50 25.0 + log_k 10.4675 + delta_h 17 kJ + -gamma 5 0 + # Id: 2812701 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.50 25.0 Fe+3 + 3 F- = FeF3 - log_k 13.617 - delta_h 29 kJ - -gamma 0 0 - # Id: 2812702 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.50 25.0 + log_k 13.617 + delta_h 29 kJ + -gamma 0 0 + # Id: 2812702 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.50 25.0 Mn+2 + F- = MnF+ - log_k 1.6 - delta_h 11 kJ - -gamma 5 0 - # Id: 4702700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.6 + delta_h 11 kJ + -gamma 5 0 + # Id: 4702700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cr(OH)2+ + 2 H+ + F- = CrF+2 + 2 H2O - log_k 14.7688 - delta_h -70.2452 kJ - -gamma 0 0 - # Id: 2112700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 14.7688 + delta_h -70.2452 kJ + -gamma 0 0 + # Id: 2112700 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 VO+2 + F- = VOF+ - log_k 3.778 - delta_h 7.9 kJ - -gamma 0 0 - # Id: 9022700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 + log_k 3.778 + delta_h 7.9 kJ + -gamma 0 0 + # Id: 9022700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 VO+2 + 2 F- = VOF2 - log_k 6.352 - delta_h 14 kJ - -gamma 0 0 - # Id: 9022701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 + log_k 6.352 + delta_h 14 kJ + -gamma 0 0 + # Id: 9022701 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 VO+2 + 3 F- = VOF3- - log_k 7.902 - delta_h 20 kJ - -gamma 0 0 - # Id: 9022702 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 + log_k 7.902 + delta_h 20 kJ + -gamma 0 0 + # Id: 9022702 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 VO+2 + 4 F- = VOF4-2 - log_k 8.508 - delta_h 26 kJ - -gamma 0 0 - # Id: 9022703 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 + log_k 8.508 + delta_h 26 kJ + -gamma 0 0 + # Id: 9022703 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 VO2+ + F- = VO2F - log_k 3.244 - delta_h 0 kJ - -gamma 0 0 - # Id: 9032700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 3.244 + delta_h 0 kJ + -gamma 0 0 + # Id: 9032700 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 VO2+ + 2 F- = VO2F2- - log_k 5.804 - delta_h 0 kJ - -gamma 0 0 - # Id: 9032701 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 + log_k 5.804 + delta_h 0 kJ + -gamma 0 0 + # Id: 9032701 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 VO2+ + 3 F- = VO2F3-2 - log_k 6.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 9032702 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 + log_k 6.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 9032702 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 VO2+ + 4 F- = VO2F4-3 - log_k 6.592 - delta_h 0 kJ - -gamma 0 0 - # Id: 9032703 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 + log_k 6.592 + delta_h 0 kJ + -gamma 0 0 + # Id: 9032703 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 U+4 + F- = UF+3 - log_k 9.3 - delta_h 21.1292 kJ - -gamma 0 0 - # Id: 8912700 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 9.3 + delta_h 21.1292 kJ + -gamma 0 0 + # Id: 8912700 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 U+4 + 2 F- = UF2+2 - log_k 16.4 - delta_h 30.1248 kJ - -gamma 0 0 - # Id: 8912701 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 16.4 + delta_h 30.1248 kJ + -gamma 0 0 + # Id: 8912701 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 U+4 + 3 F- = UF3+ - log_k 21.6 - delta_h 29.9156 kJ - -gamma 0 0 - # Id: 8912702 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 21.6 + delta_h 29.9156 kJ + -gamma 0 0 + # Id: 8912702 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 U+4 + 4 F- = UF4 - log_k 23.64 - delta_h 19.2464 kJ - -gamma 0 0 - # Id: 8912703 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 23.64 + delta_h 19.2464 kJ + -gamma 0 0 + # Id: 8912703 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: U+4 + 5 F- = UF5- - log_k 25.238 - delta_h 20.2924 kJ - -gamma 0 0 - # Id: 8912704 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 25.238 + delta_h 20.2924 kJ + -gamma 0 0 + # Id: 8912704 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: U+4 + 6 F- = UF6-2 - log_k 27.718 - delta_h 13.8072 kJ - -gamma 0 0 - # Id: 8912705 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 27.718 + delta_h 13.8072 kJ + -gamma 0 0 + # Id: 8912705 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: UO2+2 + F- = UO2F+ - log_k 5.14 - delta_h 1 kJ - -gamma 0 0 - # Id: 8932700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 5.14 + delta_h 1 kJ + -gamma 0 0 + # Id: 8932700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 UO2+2 + 2 F- = UO2F2 - log_k 8.6 - delta_h 2 kJ - -gamma 0 0 - # Id: 8932701 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 8.6 + delta_h 2 kJ + -gamma 0 0 + # Id: 8932701 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 UO2+2 + 3 F- = UO2F3- - log_k 11 - delta_h 2 kJ - -gamma 0 0 - # Id: 8932702 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 11 + delta_h 2 kJ + -gamma 0 0 + # Id: 8932702 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 UO2+2 + 4 F- = UO2F4-2 - log_k 11.9 - delta_h 0.4 kJ - -gamma 0 0 - # Id: 8932703 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 11.9 + delta_h 0.4 kJ + -gamma 0 0 + # Id: 8932703 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Be+2 + F- = BeF+ - log_k 5.249 - delta_h 0 kJ - -gamma 0 0 - # Id: 1102701 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 + log_k 5.249 + delta_h 0 kJ + -gamma 0 0 + # Id: 1102701 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 Be+2 + 2 F- = BeF2 - log_k 9.1285 - delta_h -4 kJ - -gamma 0 0 - # Id: 1102702 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 + log_k 9.1285 + delta_h -4 kJ + -gamma 0 0 + # Id: 1102702 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 Be+2 + 3 F- = BeF3- - log_k 11.9085 - delta_h -8 kJ - -gamma 0 0 - # Id: 1102703 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 + log_k 11.9085 + delta_h -8 kJ + -gamma 0 0 + # Id: 1102703 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 Mg+2 + F- = MgF+ - log_k 2.05 - delta_h 13 kJ - -gamma 4.5 0 - # Id: 4602700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.05 + delta_h 13 kJ + -gamma 4.5 0 + # Id: 4602700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ca+2 + F- = CaF+ - log_k 1.038 - delta_h 14 kJ - -gamma 5 0 - # Id: 1502700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 + log_k 1.038 + delta_h 14 kJ + -gamma 5 0 + # Id: 1502700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 Sr+2 + F- = SrF+ - log_k 0.548 - delta_h 16 kJ - -gamma 0 0 - # Id: 8002701 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 1.00 25.0 + log_k 0.548 + delta_h 16 kJ + -gamma 0 0 + # Id: 8002701 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 1.00 25.0 Na+ + F- = NaF - log_k -0.2 - delta_h 12 kJ - -gamma 0 0 - # Id: 5002700 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -0.2 + delta_h 12 kJ + -gamma 0 0 + # Id: 5002700 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Sn(OH)2 + 2 H+ + Cl- = SnCl+ + 2 H2O - log_k 8.734 - delta_h 0 kJ - -gamma 0 0 - # Id: 7901801 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 8.734 + delta_h 0 kJ + -gamma 0 0 + # Id: 7901801 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Sn(OH)2 + 2 H+ + 2 Cl- = SnCl2 + 2 H2O - log_k 9.524 - delta_h 0 kJ - -gamma 0 0 - # Id: 7901802 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 9.524 + delta_h 0 kJ + -gamma 0 0 + # Id: 7901802 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Sn(OH)2 + 2 H+ + 3 Cl- = SnCl3- + 2 H2O - log_k 8.3505 - delta_h 0 kJ - -gamma 0 0 - # Id: 7901803 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 2.00 25.0 + log_k 8.3505 + delta_h 0 kJ + -gamma 0 0 + # Id: 7901803 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 2.00 25.0 Pb+2 + Cl- = PbCl+ - log_k 1.55 - delta_h 8.7 kJ - -gamma 0 0 - # Id: 6001800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.55 + delta_h 8.7 kJ + -gamma 0 0 + # Id: 6001800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Pb+2 + 2 Cl- = PbCl2 - log_k 2.2 - delta_h 12 kJ - -gamma 0 0 - # Id: 6001801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.2 + delta_h 12 kJ + -gamma 0 0 + # Id: 6001801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Pb+2 + 3 Cl- = PbCl3- - log_k 1.8 - delta_h 4 kJ - -gamma 0 0 - # Id: 6001802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.8 + delta_h 4 kJ + -gamma 0 0 + # Id: 6001802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Pb+2 + 4 Cl- = PbCl4-2 - log_k 1.46 - delta_h 14.7695 kJ - -gamma 0 0 - # Id: 6001803 - # log K source: SCD3.02 (1984 SEa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 1.46 + delta_h 14.7695 kJ + -gamma 0 0 + # Id: 6001803 + # log K source: SCD3.02 (1984 SEa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Tl+ + Cl- = TlCl - log_k 0.51 - delta_h -6.2 kJ - -gamma 0 0 - # Id: 8701800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 0.51 + delta_h -6.2 kJ + -gamma 0 0 + # Id: 8701800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Tl+ + 2 Cl- = TlCl2- - log_k 0.28 - delta_h 0 kJ - -gamma 0 0 - # Id: 8701801 - # log K source: SCD3.02 (1992 RAb) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 0.28 + delta_h 0 kJ + -gamma 0 0 + # Id: 8701801 + # log K source: SCD3.02 (1992 RAb) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Tl(OH)3 + 3 H+ + Cl- = TlCl+2 + 3 H2O - log_k 11.011 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 11.011 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Tl(OH)3 + 3 H+ + 2 Cl- = TlCl2+ + 3 H2O - log_k 16.771 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 16.771 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Tl(OH)3 + 3 H+ + 3 Cl- = TlCl3 + 3 H2O - log_k 19.791 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 19.791 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Tl(OH)3 + 3 H+ + 4 Cl- = TlCl4- + 3 H2O - log_k 21.591 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711803 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 21.591 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711803 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Tl(OH)3 + Cl- + 2 H+ = TlOHCl+ + 2 H2O - log_k 10.629 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711804 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 10.629 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711804 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Zn+2 + Cl- = ZnCl+ - log_k 0.4 - delta_h 5.4 kJ - -gamma 4 0 - # Id: 9501800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 0.4 + delta_h 5.4 kJ + -gamma 4 0 + # Id: 9501800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Zn+2 + 2 Cl- = ZnCl2 - log_k 0.6 - delta_h 37 kJ - -gamma 0 0 - # Id: 9501801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 0.6 + delta_h 37 kJ + -gamma 0 0 + # Id: 9501801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Zn+2 + 3 Cl- = ZnCl3- - log_k 0.5 - delta_h 39.999 kJ - -gamma 4 0 - # Id: 9501802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 0.5 + delta_h 39.999 kJ + -gamma 4 0 + # Id: 9501802 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Zn+2 + 4 Cl- = ZnCl4-2 - log_k 0.199 - delta_h 45.8566 kJ - -gamma 5 0 - # Id: 9501803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 0.199 + delta_h 45.8566 kJ + -gamma 5 0 + # Id: 9501803 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Zn+2 + H2O + Cl- = ZnOHCl + H+ - log_k -7.48 - delta_h 0 kJ - -gamma 0 0 - # Id: 9501804 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -7.48 + delta_h 0 kJ + -gamma 0 0 + # Id: 9501804 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cd+2 + Cl- = CdCl+ - log_k 1.98 - delta_h 1 kJ - -gamma 0 0 - # Id: 1601800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.98 + delta_h 1 kJ + -gamma 0 0 + # Id: 1601800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cd+2 + 2 Cl- = CdCl2 - log_k 2.6 - delta_h 3 kJ - -gamma 0 0 - # Id: 1601801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.6 + delta_h 3 kJ + -gamma 0 0 + # Id: 1601801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cd+2 + 3 Cl- = CdCl3- - log_k 2.4 - delta_h 10 kJ - -gamma 0 0 - # Id: 1601802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.4 + delta_h 10 kJ + -gamma 0 0 + # Id: 1601802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cd+2 + H2O + Cl- = CdOHCl + H+ - log_k -7.404 - delta_h 18.2213 kJ - -gamma 0 0 - # Id: 1601803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -7.404 + delta_h 18.2213 kJ + -gamma 0 0 + # Id: 1601803 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Hg(OH)2 + 2 H+ + Cl- = HgCl+ + 2 H2O - log_k 13.494 - delta_h -62.72 kJ - -gamma 0 0 - # Id: 3611800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 13.494 + delta_h -62.72 kJ + -gamma 0 0 + # Id: 3611800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2 H+ + 2 Cl- = HgCl2 + 2 H2O - log_k 20.194 - delta_h -92.42 kJ - -gamma 0 0 - # Id: 3611801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 20.194 + delta_h -92.42 kJ + -gamma 0 0 + # Id: 3611801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2 H+ + 3 Cl- = HgCl3- + 2 H2O - log_k 21.194 - delta_h -94.02 kJ - -gamma 0 0 - # Id: 3611802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 21.194 + delta_h -94.02 kJ + -gamma 0 0 + # Id: 3611802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2 H+ + 4 Cl- = HgCl4-2 + 2 H2O - log_k 21.794 - delta_h -100.72 kJ - -gamma 0 0 - # Id: 3611803 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 21.794 + delta_h -100.72 kJ + -gamma 0 0 + # Id: 3611803 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + Cl- + I- + 2 H+ = HgClI + 2 H2O - log_k 25.532 - delta_h -135.3 kJ - -gamma 0 0 - # Id: 3611804 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k 25.532 + delta_h -135.3 kJ + -gamma 0 0 + # Id: 3611804 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Hg(OH)2 + H+ + Cl- = HgClOH + H2O - log_k 10.444 - delta_h -42.72 kJ - -gamma 0 0 - # Id: 3611805 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 + log_k 10.444 + delta_h -42.72 kJ + -gamma 0 0 + # Id: 3611805 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 Cu+2 + Cl- = CuCl+ - log_k 0.2 - delta_h 8.3 kJ - -gamma 4 0 - # Id: 2311800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 0.2 + delta_h 8.3 kJ + -gamma 4 0 + # Id: 2311800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cu+2 + 2 Cl- = CuCl2 - log_k -0.26 - delta_h 44.183 kJ - -gamma 0 0 - # Id: 2311801 - # log K source: SCD3.02 (1989 IPa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -0.26 + delta_h 44.183 kJ + -gamma 0 0 + # Id: 2311801 + # log K source: SCD3.02 (1989 IPa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cu+2 + 3 Cl- = CuCl3- - log_k -2.29 - delta_h 57.279 kJ - -gamma 4 0 - # Id: 2311802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -2.29 + delta_h 57.279 kJ + -gamma 4 0 + # Id: 2311802 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cu+2 + 4 Cl- = CuCl4-2 - log_k -4.59 - delta_h 32.5515 kJ - -gamma 5 0 - # Id: 2311803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -4.59 + delta_h 32.5515 kJ + -gamma 5 0 + # Id: 2311803 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cu+ + 2 Cl- = CuCl2- - log_k 5.42 - delta_h -1.7573 kJ - -gamma 4 0 - # Id: 2301800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 5.42 + delta_h -1.7573 kJ + -gamma 4 0 + # Id: 2301800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cu+ + 3 Cl- = CuCl3-2 - log_k 4.75 - delta_h 1.0878 kJ - -gamma 5 0 - # Id: 2301801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 4.75 + delta_h 1.0878 kJ + -gamma 5 0 + # Id: 2301801 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cu+ + Cl- = CuCl - log_k 3.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 2301802 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 3.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 2301802 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Ag+ + Cl- = AgCl - log_k 3.31 - delta_h -12 kJ - -gamma 0 0 - # Id: 201800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 3.31 + delta_h -12 kJ + -gamma 0 0 + # Id: 201800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ag+ + 2 Cl- = AgCl2- - log_k 5.25 - delta_h -16 kJ - -gamma 0 0 - # Id: 201801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 5.25 + delta_h -16 kJ + -gamma 0 0 + # Id: 201801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ag+ + 3 Cl- = AgCl3-2 - log_k 5.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 201802 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 5.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 201802 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Ag+ + 4 Cl- = AgCl4-3 - log_k 5.51 - delta_h 0 kJ - -gamma 0 0 - # Id: 201803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 5.51 + delta_h 0 kJ + -gamma 0 0 + # Id: 201803 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Ni+2 + Cl- = NiCl+ - log_k 0.408 - delta_h 2 kJ - -gamma 0 0 - # Id: 5401800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 + log_k 0.408 + delta_h 2 kJ + -gamma 0 0 + # Id: 5401800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 Ni+2 + 2 Cl- = NiCl2 - log_k -1.89 - delta_h 0 kJ - -gamma 0 0 - # Id: 5401801 - # log K source: SCD3.02 (1989 IPa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -1.89 + delta_h 0 kJ + -gamma 0 0 + # Id: 5401801 + # log K source: SCD3.02 (1989 IPa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Co+2 + Cl- = CoCl+ - log_k 0.539 - delta_h 2 kJ - -gamma 0 0 - # Id: 2001800 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 + log_k 0.539 + delta_h 2 kJ + -gamma 0 0 + # Id: 2001800 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 Co+3 + Cl- = CoCl+2 - log_k 2.3085 - delta_h 16 kJ - -gamma 0 0 - # Id: 2011800 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 + log_k 2.3085 + delta_h 16 kJ + -gamma 0 0 + # Id: 2011800 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 Fe+3 + Cl- = FeCl+2 - log_k 1.48 - delta_h 23 kJ - -gamma 5 0 - # Id: 2811800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.48 + delta_h 23 kJ + -gamma 5 0 + # Id: 2811800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Fe+3 + 2 Cl- = FeCl2+ - log_k 2.13 - delta_h 0 kJ - -gamma 5 0 - # Id: 2811801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 2.13 + delta_h 0 kJ + -gamma 5 0 + # Id: 2811801 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Fe+3 + 3 Cl- = FeCl3 - log_k 1.13 - delta_h 0 kJ - -gamma 0 0 - # Id: 2811802 - # log K source: Nord90 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 1.13 + delta_h 0 kJ + -gamma 0 0 + # Id: 2811802 + # log K source: Nord90 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Mn+2 + Cl- = MnCl+ - log_k 0.1 - delta_h 0 kJ - -gamma 5 0 - # Id: 4701800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 20.0 + log_k 0.1 + delta_h 0 kJ + -gamma 5 0 + # Id: 4701800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 20.0 Mn+2 + 2 Cl- = MnCl2 - log_k 0.25 - delta_h 0 kJ - -gamma 0 0 - # Id: 4701801 - # log K source: Nord90 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 0.25 + delta_h 0 kJ + -gamma 0 0 + # Id: 4701801 + # log K source: Nord90 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Mn+2 + 3 Cl- = MnCl3- - log_k -0.31 - delta_h 0 kJ - -gamma 5 0 - # Id: 4701802 - # log K source: Nord90 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -0.31 + delta_h 0 kJ + -gamma 5 0 + # Id: 4701802 + # log K source: Nord90 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cr(OH)2+ + 2 H+ + Cl- = CrCl+2 + 2 H2O - log_k 9.6808 - delta_h -103.62 kJ - -gamma 0 0 - # Id: 2111800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 + log_k 9.6808 + delta_h -103.62 kJ + -gamma 0 0 + # Id: 2111800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 Cr(OH)2+ + 2 Cl- + 2 H+ = CrCl2+ + 2 H2O - log_k 8.658 - delta_h -39.2208 kJ - -gamma 0 0 - # Id: 2111801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 8.658 + delta_h -39.2208 kJ + -gamma 0 0 + # Id: 2111801 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cr(OH)2+ + 2 Cl- + H+ = CrOHCl2 + H2O - log_k 2.9627 - delta_h 0 kJ - -gamma 0 0 - # Id: 2111802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 2.9627 + delta_h 0 kJ + -gamma 0 0 + # Id: 2111802 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: VO+2 + Cl- = VOCl+ - log_k 0.448 - delta_h 0 kJ - -gamma 0 0 - # Id: 9021800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 + log_k 0.448 + delta_h 0 kJ + -gamma 0 0 + # Id: 9021800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 U+4 + Cl- = UCl+3 - log_k 1.7 - delta_h -20 kJ - -gamma 0 0 - # Id: 8911800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.7 + delta_h -20 kJ + -gamma 0 0 + # Id: 8911800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 UO2+2 + Cl- = UO2Cl+ - log_k 0.21 - delta_h 16 kJ - -gamma 0 0 - # Id: 8931800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 0.21 + delta_h 16 kJ + -gamma 0 0 + # Id: 8931800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Be+2 + Cl- = BeCl+ - log_k 0.2009 - delta_h 0 kJ - -gamma 5 0 - # Id: 1101801 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.70 20.0 + log_k 0.2009 + delta_h 0 kJ + -gamma 5 0 + # Id: 1101801 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.70 20.0 Sn(OH)2 + 2 H+ + Br- = SnBr+ + 2 H2O - log_k 8.254 - delta_h 0 kJ - -gamma 0 0 - # Id: 7901301 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 8.254 + delta_h 0 kJ + -gamma 0 0 + # Id: 7901301 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Sn(OH)2 + 2 H+ + 2 Br- = SnBr2 + 2 H2O - log_k 8.794 - delta_h 0 kJ - -gamma 0 0 - # Id: 7901302 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 8.794 + delta_h 0 kJ + -gamma 0 0 + # Id: 7901302 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Sn(OH)2 + 2 H+ + 3 Br- = SnBr3- + 2 H2O - log_k 7.48 - delta_h 0 kJ - -gamma 0 0 - # Id: 7901303 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 3.00 25.0 + log_k 7.48 + delta_h 0 kJ + -gamma 0 0 + # Id: 7901303 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 3.00 25.0 Pb+2 + Br- = PbBr+ - log_k 1.7 - delta_h 8 kJ - -gamma 0 0 - # Id: 6001300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.7 + delta_h 8 kJ + -gamma 0 0 + # Id: 6001300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Pb+2 + 2 Br- = PbBr2 - log_k 2.6 - delta_h -4 kJ - -gamma 0 0 - # Id: 6001301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.6 + delta_h -4 kJ + -gamma 0 0 + # Id: 6001301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Tl+ + Br- = TlBr - log_k 0.91 - delta_h -12 kJ - -gamma 0 0 - # Id: 8701300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 0.91 + delta_h -12 kJ + -gamma 0 0 + # Id: 8701300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Tl+ + 2 Br- = TlBr2- - log_k -0.384 - delta_h 12.36 kJ - -gamma 0 0 - # Id: 8701301 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 - #T and ionic strength: 4.00 25.0 + log_k -0.384 + delta_h 12.36 kJ + -gamma 0 0 + # Id: 8701301 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 + #T and ionic strength: 4.00 25.0 Tl+ + Br- + Cl- = TlBrCl- - log_k 0.8165 - delta_h 0 kJ - -gamma 0 0 - # Id: 8701302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 0.8165 + delta_h 0 kJ + -gamma 0 0 + # Id: 8701302 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Tl+ + I- + Br- = TlIBr- - log_k 2.185 - delta_h 0 kJ - -gamma 0 0 - # Id: 8703802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 2.185 + delta_h 0 kJ + -gamma 0 0 + # Id: 8703802 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Tl(OH)3 + 3 H+ + Br- = TlBr+2 + 3 H2O - log_k 12.803 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 12.803 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Tl(OH)3 + 3 H+ + 2 Br- = TlBr2+ + 3 H2O - log_k 20.711 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 20.711 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Tl(OH)3 + 3 Br- + 3 H+ = TlBr3 + 3 H2O - log_k 27.0244 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 27.0244 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711302 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Tl(OH)3 + 4 Br- + 3 H+ = TlBr4- + 3 H2O - log_k 31.1533 - delta_h 0 kJ - -gamma 0 0 - # Id: 8711303 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 31.1533 + delta_h 0 kJ + -gamma 0 0 + # Id: 8711303 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Zn+2 + Br- = ZnBr+ - log_k -0.07 - delta_h 1 kJ - -gamma 0 0 - # Id: 9501300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -0.07 + delta_h 1 kJ + -gamma 0 0 + # Id: 9501300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Zn+2 + 2 Br- = ZnBr2 - log_k -0.98 - delta_h 0 kJ - -gamma 0 0 - # Id: 9501301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -0.98 + delta_h 0 kJ + -gamma 0 0 + # Id: 9501301 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cd+2 + Br- = CdBr+ - log_k 2.15 - delta_h -3 kJ - -gamma 0 0 - # Id: 1601300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.15 + delta_h -3 kJ + -gamma 0 0 + # Id: 1601300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cd+2 + 2 Br- = CdBr2 - log_k 3 - delta_h -3 kJ - -gamma 0 0 - # Id: 1601301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 3 + delta_h -3 kJ + -gamma 0 0 + # Id: 1601301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2 H+ + Br- = HgBr+ + 2 H2O - log_k 15.803 - delta_h -81.92 kJ - -gamma 0 0 - # Id: 3611301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.50 25.0 + log_k 15.803 + delta_h -81.92 kJ + -gamma 0 0 + # Id: 3611301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.50 25.0 Hg(OH)2 + 2 H+ + 2 Br- = HgBr2 + 2 H2O - log_k 24.2725 - delta_h -127.12 kJ - -gamma 0 0 - # Id: 3611302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.50 25.0 + log_k 24.2725 + delta_h -127.12 kJ + -gamma 0 0 + # Id: 3611302 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.50 25.0 Hg(OH)2 + 2 H+ + 3 Br- = HgBr3- + 2 H2O - log_k 26.7025 - delta_h -138.82 kJ - -gamma 0 0 - # Id: 3611303 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.50 25.0 + log_k 26.7025 + delta_h -138.82 kJ + -gamma 0 0 + # Id: 3611303 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.50 25.0 Hg(OH)2 + 2 H+ + 4 Br- = HgBr4-2 + 2 H2O - log_k 27.933 - delta_h -153.72 kJ - -gamma 0 0 - # Id: 3611304 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.50 25.0 + log_k 27.933 + delta_h -153.72 kJ + -gamma 0 0 + # Id: 3611304 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.50 25.0 Hg(OH)2 + Br- + Cl- + 2 H+ = HgBrCl + 2 H2O - log_k 22.1811 - delta_h -113.77 kJ - -gamma 0 0 - # Id: 3611305 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k 22.1811 + delta_h -113.77 kJ + -gamma 0 0 + # Id: 3611305 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Hg(OH)2 + Br- + I- + 2 H+ = HgBrI + 2 H2O - log_k 27.3133 - delta_h -151.27 kJ - -gamma 0 0 - # Id: 3611306 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k 27.3133 + delta_h -151.27 kJ + -gamma 0 0 + # Id: 3611306 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Hg(OH)2 + Br- + 3 I- + 2 H+ = HgBrI3-2 + 2 H2O - log_k 34.2135 - delta_h 0 kJ - -gamma 0 0 - # Id: 3611307 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 34.2135 + delta_h 0 kJ + -gamma 0 0 + # Id: 3611307 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Hg(OH)2 + 2 Br- + 2 I- + 2 H+ = HgBr2I2-2 + 2 H2O - log_k 32.3994 - delta_h 0 kJ - -gamma 0 0 - # Id: 3611308 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 32.3994 + delta_h 0 kJ + -gamma 0 0 + # Id: 3611308 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Hg(OH)2 + 3 Br- + I- + 2 H+ = HgBr3I-2 + 2 H2O - log_k 30.1528 - delta_h 0 kJ - -gamma 0 0 - # Id: 3611309 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 30.1528 + delta_h 0 kJ + -gamma 0 0 + # Id: 3611309 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Hg(OH)2 + H+ + Br- = HgBrOH + H2O - log_k 12.433 - delta_h 0 kJ - -gamma 0 0 - # Id: 3613301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k 12.433 + delta_h 0 kJ + -gamma 0 0 + # Id: 3613301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Ag+ + Br- = AgBr - log_k 4.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 201300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 4.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 201300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Ag+ + 2 Br- = AgBr2- - log_k 7.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 201301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 7.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 201301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Ag+ + 3 Br- = AgBr3-2 - log_k 8.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 201302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 8.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 201302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Ni+2 + Br- = NiBr+ - log_k 0.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 5401300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 0.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 5401300 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cr(OH)2+ + Br- + 2 H+ = CrBr+2 + 2 H2O - log_k 7.5519 - delta_h -46.9068 kJ - -gamma 0 0 - # Id: 2111300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 7.5519 + delta_h -46.9068 kJ + -gamma 0 0 + # Id: 2111300 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Be+2 + Br- = BeBr+ - log_k 0.1009 - delta_h 0 kJ - -gamma 5 0 - # Id: 1101301 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.70 20.0 + log_k 0.1009 + delta_h 0 kJ + -gamma 5 0 + # Id: 1101301 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.70 20.0 Pb+2 + I- = PbI+ - log_k 2 - delta_h 0 kJ - -gamma 0 0 - # Id: 6003800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 2 + delta_h 0 kJ + -gamma 0 0 + # Id: 6003800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Pb+2 + 2 I- = PbI2 - log_k 3.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 6003801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 3.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 6003801 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Tl+ + I- = TlI - log_k 1.4279 - delta_h 0 kJ - -gamma 0 0 - # Id: 8703800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 1.4279 + delta_h 0 kJ + -gamma 0 0 + # Id: 8703800 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Tl+ + 2 I- = TlI2- - log_k 1.8588 - delta_h 0 kJ - -gamma 0 0 - # Id: 8703801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 1.8588 + delta_h 0 kJ + -gamma 0 0 + # Id: 8703801 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Tl(OH)3 + 4 I- + 3 H+ = TlI4- + 3 H2O - log_k 34.7596 - delta_h 0 kJ - -gamma 0 0 - # Id: 8713800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 34.7596 + delta_h 0 kJ + -gamma 0 0 + # Id: 8713800 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Zn+2 + I- = ZnI+ - log_k -2.0427 - delta_h -4 kJ - -gamma 0 0 - # Id: 9503800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 3.00 25.0 + log_k -2.0427 + delta_h -4 kJ + -gamma 0 0 + # Id: 9503800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 3.00 25.0 Zn+2 + 2 I- = ZnI2 - log_k -1.69 - delta_h 0 kJ - -gamma 0 0 - # Id: 9503801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -1.69 + delta_h 0 kJ + -gamma 0 0 + # Id: 9503801 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cd+2 + I- = CdI+ - log_k 2.28 - delta_h -9.6 kJ - -gamma 0 0 - # Id: 1603800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.28 + delta_h -9.6 kJ + -gamma 0 0 + # Id: 1603800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cd+2 + 2 I- = CdI2 - log_k 3.92 - delta_h -12 kJ - -gamma 0 0 - # Id: 1603801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 3.92 + delta_h -12 kJ + -gamma 0 0 + # Id: 1603801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2 H+ + I- = HgI+ + 2 H2O - log_k 19.603 - delta_h -111.22 kJ - -gamma 0 0 - # Id: 3613801 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 + log_k 19.603 + delta_h -111.22 kJ + -gamma 0 0 + # Id: 3613801 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 Hg(OH)2 + 2 H+ + 2 I- = HgI2 + 2 H2O - log_k 30.8225 - delta_h -182.72 kJ - -gamma 0 0 - # Id: 3613802 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 + log_k 30.8225 + delta_h -182.72 kJ + -gamma 0 0 + # Id: 3613802 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 Hg(OH)2 + 2 H+ + 3 I- = HgI3- + 2 H2O - log_k 34.6025 - delta_h -194.22 kJ - -gamma 0 0 - # Id: 3613803 - # log K source: NIST46.4 - # Delta H source: NIST2.1.1 - #T and ionic strength: 0.50 25.0 + log_k 34.6025 + delta_h -194.22 kJ + -gamma 0 0 + # Id: 3613803 + # log K source: NIST46.4 + # Delta H source: NIST2.1.1 + #T and ionic strength: 0.50 25.0 Hg(OH)2 + 2 H+ + 4 I- = HgI4-2 + 2 H2O - log_k 36.533 - delta_h -220.72 kJ - -gamma 0 0 - # Id: 3613804 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 + log_k 36.533 + delta_h -220.72 kJ + -gamma 0 0 + # Id: 3613804 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 Ag+ + I- = AgI - log_k 6.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 203800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 18.0 + log_k 6.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 203800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 18.0 Ag+ + 2 I- = AgI2- - log_k 11.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 203801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 18.0 + log_k 11.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 203801 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 18.0 Ag+ + 3 I- = AgI3-2 - log_k 12.6 - delta_h -122 kJ - -gamma 0 0 - # Id: 203802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 12.6 + delta_h -122 kJ + -gamma 0 0 + # Id: 203802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ag+ + 4 I- = AgI4-3 - log_k 14.229 - delta_h 0 kJ - -gamma 0 0 - # Id: 203803 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 2.00 25.0 + log_k 14.229 + delta_h 0 kJ + -gamma 0 0 + # Id: 203803 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 2.00 25.0 Cr(OH)2+ + I- + 2 H+ = CrI+2 + 2 H2O - log_k 4.8289 - delta_h 0 kJ - -gamma 0 0 - # Id: 2113800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 4.8289 + delta_h 0 kJ + -gamma 0 0 + # Id: 2113800 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: H+ + HS- = H2S - log_k 7.02 - delta_h -22 kJ - -gamma 0 0 - # Id: 3307300 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 7.02 + delta_h -22 kJ + -gamma 0 0 + # Id: 3307300 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Pb+2 + 2 HS- = Pb(HS)2 - log_k 15.27 - delta_h 0 kJ - -gamma 0 0 - # Id: 6007300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 15.27 + delta_h 0 kJ + -gamma 0 0 + # Id: 6007300 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Pb+2 + 3 HS- = Pb(HS)3- - log_k 16.57 - delta_h 0 kJ - -gamma 0 0 - # Id: 6007301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 16.57 + delta_h 0 kJ + -gamma 0 0 + # Id: 6007301 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Tl+ + HS- = TlHS - log_k 2.474 - delta_h 0 kJ - -gamma 0 0 - # Id: 8707300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 2.474 + delta_h 0 kJ + -gamma 0 0 + # Id: 8707300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 2 Tl+ + HS- = Tl2HS+ - log_k 5.974 - delta_h 0 kJ - -gamma 0 0 - # Id: 8707301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 5.974 + delta_h 0 kJ + -gamma 0 0 + # Id: 8707301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 2 Tl+ + 3 HS- + H2O = Tl2OH(HS)3-2 + H+ - log_k 1.0044 - delta_h 0 kJ - -gamma 0 0 - # Id: 8707302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 1.0044 + delta_h 0 kJ + -gamma 0 0 + # Id: 8707302 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: 2 Tl+ + 2 HS- + 2 H2O = Tl2(OH)2(HS)2-2 + 2 H+ - log_k -11.0681 - delta_h 0 kJ - -gamma 0 0 - # Id: 8707303 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -11.0681 + delta_h 0 kJ + -gamma 0 0 + # Id: 8707303 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Zn+2 + 2 HS- = Zn(HS)2 - log_k 12.82 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507300 - # log K source: DHa1993 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 12.82 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507300 + # log K source: DHa1993 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Zn+2 + 3 HS- = Zn(HS)3- - log_k 16.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 16.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507301 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Zn+2 + 3 HS- = ZnS(HS)2-2 + H+ - log_k 6.12 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507302 - # log K source: DHa1993 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 6.12 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507302 + # log K source: DHa1993 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Zn+2 + 2 HS- + 2 HS- = Zn(HS)4-2 - log_k 14.64 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507303 - # log K source: DHa1993 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 14.64 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507303 + # log K source: DHa1993 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Zn+2 + 2 HS- = ZnS(HS)- + H+ - log_k 6.81 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507304 - # log K source: DHa1993 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 6.81 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507304 + # log K source: DHa1993 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cd+2 + HS- = CdHS+ - log_k 8.008 - delta_h 0 kJ - -gamma 0 0 - # Id: 1607300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 8.008 + delta_h 0 kJ + -gamma 0 0 + # Id: 1607300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Cd+2 + 2 HS- = Cd(HS)2 - log_k 15.212 - delta_h 0 kJ - -gamma 0 0 - # Id: 1607301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 15.212 + delta_h 0 kJ + -gamma 0 0 + # Id: 1607301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Cd+2 + 3 HS- = Cd(HS)3- - log_k 17.112 - delta_h 0 kJ - -gamma 0 0 - # Id: 1607302 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 17.112 + delta_h 0 kJ + -gamma 0 0 + # Id: 1607302 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Cd+2 + 4 HS- = Cd(HS)4-2 - log_k 19.308 - delta_h 0 kJ - -gamma 0 0 - # Id: 1607303 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 19.308 + delta_h 0 kJ + -gamma 0 0 + # Id: 1607303 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Hg(OH)2 + 2 HS- = HgS2-2 + 2 H2O - log_k 29.414 - delta_h 0 kJ - -gamma 0 0 - # Id: 3617300 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 + log_k 29.414 + delta_h 0 kJ + -gamma 0 0 + # Id: 3617300 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 Hg(OH)2 + 2 H+ + 2 HS- = Hg(HS)2 + 2 H2O - log_k 44.516 - delta_h 0 kJ - -gamma 0 0 - # Id: 3617301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 + log_k 44.516 + delta_h 0 kJ + -gamma 0 0 + # Id: 3617301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 Hg(OH)2 + H+ + 2 HS- = HgHS2- + 2 H2O - log_k 38.122 - delta_h 0 kJ - -gamma 0 0 - # Id: 3617302 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 + log_k 38.122 + delta_h 0 kJ + -gamma 0 0 + # Id: 3617302 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 Cu+2 + 3 HS- = Cu(HS)3- - log_k 25.899 - delta_h 0 kJ - -gamma 0 0 - # Id: 2317300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 25.899 + delta_h 0 kJ + -gamma 0 0 + # Id: 2317300 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Ag+ + HS- = AgHS - log_k 13.8145 - delta_h 0 kJ - -gamma 0 0 - # Id: 207300 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 20.0 + log_k 13.8145 + delta_h 0 kJ + -gamma 0 0 + # Id: 207300 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 20.0 Ag+ + 2 HS- = Ag(HS)2- - log_k 17.9145 - delta_h 0 kJ - -gamma 0 0 - # Id: 207301 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 20.0 + log_k 17.9145 + delta_h 0 kJ + -gamma 0 0 + # Id: 207301 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 20.0 Fe+2 + 2 HS- = Fe(HS)2 - log_k 8.95 - delta_h 0 kJ - -gamma 0 0 - # Id: 2807300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 8.95 + delta_h 0 kJ + -gamma 0 0 + # Id: 2807300 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Fe+2 + 3 HS- = Fe(HS)3- - log_k 10.987 - delta_h 0 kJ - -gamma 0 0 - # Id: 2807301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 10.987 + delta_h 0 kJ + -gamma 0 0 + # Id: 2807301 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: HS- = S2-2 + H+ - log_k -11.7828 - delta_h 46.4 kJ - -gamma 0 0 - -no_check - # Id: 7317300 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k -11.7828 + delta_h 46.4 kJ + -gamma 0 0 + -no_check + # Id: 7317300 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: HS- = S3-2 + H+ - log_k -10.7667 - delta_h 42.2 kJ - -gamma 0 0 - -no_check - # Id: 7317301 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k -10.7667 + delta_h 42.2 kJ + -gamma 0 0 + -no_check + # Id: 7317301 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: HS- = S4-2 + H+ - log_k -9.9608 - delta_h 39.3 kJ - -gamma 0 0 - -no_check - # Id: 7317302 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k -9.9608 + delta_h 39.3 kJ + -gamma 0 0 + -no_check + # Id: 7317302 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: HS- = S5-2 + H+ - log_k -9.3651 - delta_h 37.6 kJ - -gamma 0 0 - -no_check - # Id: 7317303 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k -9.3651 + delta_h 37.6 kJ + -gamma 0 0 + -no_check + # Id: 7317303 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: HS- = S6-2 + H+ - log_k -9.881 - delta_h 0 kJ - -gamma 0 0 - -no_check - # Id: 7317304 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -9.881 + delta_h 0 kJ + -gamma 0 0 + -no_check + # Id: 7317304 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: 2 Sb(OH)3 + 4 HS- + 2 H+ = Sb2S4-2 + 6 H2O - log_k 49.3886 - delta_h -321.78 kJ - -gamma 0 0 - # Id: 7407300 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k 49.3886 + delta_h -321.78 kJ + -gamma 0 0 + # Id: 7407300 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Cu+ + 2 HS- = Cu(S4)2-3 + 2 H+ - log_k 3.39 - delta_h 0 kJ - -gamma 23 0 - -no_check - # Id: 2307300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 3.39 + delta_h 0 kJ + -gamma 23 0 + -no_check + # Id: 2307300 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cu+ + 2 HS- = CuS4S5-3 + 2 H+ - log_k 2.66 - delta_h 0 kJ - -gamma 25 0 - -no_check - # Id: 2307301 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 2.66 + delta_h 0 kJ + -gamma 25 0 + -no_check + # Id: 2307301 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Ag+ + 2 HS- = Ag(S4)2-3 + 2 H+ - log_k 0.991 - delta_h 0 kJ - -gamma 22 0 - -no_check - # Id: 207302 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 0.991 + delta_h 0 kJ + -gamma 22 0 + -no_check + # Id: 207302 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Ag+ + 2 HS- = AgS4S5-3 + 2 H+ - log_k 0.68 - delta_h 0 kJ - -gamma 24 0 - -no_check - # Id: 207303 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 0.68 + delta_h 0 kJ + -gamma 24 0 + -no_check + # Id: 207303 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Ag+ + 2 HS- = Ag(HS)S4-2 + H+ - log_k 10.431 - delta_h 0 kJ - -gamma 15 0 - -no_check - # Id: 207304 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 10.431 + delta_h 0 kJ + -gamma 15 0 + -no_check + # Id: 207304 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: H+ + SO4-2 = HSO4- - log_k 1.99 - delta_h 22 kJ - -gamma 4.5 0 - # Id: 3307320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.99 + delta_h 22 kJ + -gamma 4.5 0 + # Id: 3307320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 NH4+ + SO4-2 = NH4SO4- - log_k 1.03 - delta_h 0 kJ - -gamma 5 0 - # Id: 4907320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 1.03 + delta_h 0 kJ + -gamma 5 0 + # Id: 4907320 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Pb+2 + SO4-2 = PbSO4 - log_k 2.69 - delta_h 0 kJ - -gamma 0 0 - # Id: 6007320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 2.69 + delta_h 0 kJ + -gamma 0 0 + # Id: 6007320 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Pb+2 + 2 SO4-2 = Pb(SO4)2-2 - log_k 3.47 - delta_h 0 kJ - -gamma 0 0 - # Id: 6007321 - # log K source: SCD3.02 (1960 RKa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 3.47 + delta_h 0 kJ + -gamma 0 0 + # Id: 6007321 + # log K source: SCD3.02 (1960 RKa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Al+3 + SO4-2 = AlSO4+ - log_k 3.89 - delta_h 28 kJ - -gamma 4.5 0 - # Id: 307320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 3.89 + delta_h 28 kJ + -gamma 4.5 0 + # Id: 307320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Al+3 + 2 SO4-2 = Al(SO4)2- - log_k 4.92 - delta_h 11.9 kJ - -gamma 4.5 0 - # Id: 307321 - # log K source: Nord90 - # Delta H source: Nord90 - #T and ionic strength: 0.00 25.0 + log_k 4.92 + delta_h 11.9 kJ + -gamma 4.5 0 + # Id: 307321 + # log K source: Nord90 + # Delta H source: Nord90 + #T and ionic strength: 0.00 25.0 Tl+ + SO4-2 = TlSO4- - log_k 1.37 - delta_h -0.8 kJ - -gamma 0 0 - # Id: 8707320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.37 + delta_h -0.8 kJ + -gamma 0 0 + # Id: 8707320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Zn+2 + SO4-2 = ZnSO4 - log_k 2.34 - delta_h 6.2 kJ - -gamma 0 0 - # Id: 9507320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.34 + delta_h 6.2 kJ + -gamma 0 0 + # Id: 9507320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Zn+2 + 2 SO4-2 = Zn(SO4)2-2 - log_k 3.28 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507321 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 3.28 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507321 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cd+2 + SO4-2 = CdSO4 - log_k 2.37 - delta_h 8.7 kJ - -gamma 0 0 - # Id: 1607320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.37 + delta_h 8.7 kJ + -gamma 0 0 + # Id: 1607320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cd+2 + 2 SO4-2 = Cd(SO4)2-2 - log_k 3.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 1607321 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 3.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 1607321 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Hg(OH)2 + 2 H+ + SO4-2 = HgSO4 + 2 H2O - log_k 8.612 - delta_h 0 kJ - -gamma 0 0 - # Id: 3617320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k 8.612 + delta_h 0 kJ + -gamma 0 0 + # Id: 3617320 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Cu+2 + SO4-2 = CuSO4 - log_k 2.36 - delta_h 8.7 kJ - -gamma 0 0 - # Id: 2317320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.36 + delta_h 8.7 kJ + -gamma 0 0 + # Id: 2317320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ag+ + SO4-2 = AgSO4- - log_k 1.3 - delta_h 6.2 kJ - -gamma 0 0 - # Id: 207320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.3 + delta_h 6.2 kJ + -gamma 0 0 + # Id: 207320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ni+2 + SO4-2 = NiSO4 - log_k 2.3 - delta_h 5.8 kJ - -gamma 0 0 - # Id: 5407320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.3 + delta_h 5.8 kJ + -gamma 0 0 + # Id: 5407320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ni+2 + 2 SO4-2 = Ni(SO4)2-2 - log_k 0.82 - delta_h 0 kJ - -gamma 0 0 - # Id: 5407321 - # log K source: SCD3.02 (1978 BLa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 0.82 + delta_h 0 kJ + -gamma 0 0 + # Id: 5407321 + # log K source: SCD3.02 (1978 BLa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Co+2 + SO4-2 = CoSO4 - log_k 2.3 - delta_h 6.2 kJ - -gamma 0 0 - # Id: 2007320 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.3 + delta_h 6.2 kJ + -gamma 0 0 + # Id: 2007320 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Fe+2 + SO4-2 = FeSO4 - log_k 2.39 - delta_h 8 kJ - -gamma 0 0 - # Id: 2807320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.39 + delta_h 8 kJ + -gamma 0 0 + # Id: 2807320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Fe+3 + SO4-2 = FeSO4+ - log_k 4.05 - delta_h 25 kJ - -gamma 5 0 - # Id: 2817320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 4.05 + delta_h 25 kJ + -gamma 5 0 + # Id: 2817320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Fe+3 + 2 SO4-2 = Fe(SO4)2- - log_k 5.38 - delta_h 19.2 kJ - -gamma 0 0 - # Id: 2817321 - # log K source: Nord90 - # Delta H source: Nord90 - #T and ionic strength: 0.00 25.0 + log_k 5.38 + delta_h 19.2 kJ + -gamma 0 0 + # Id: 2817321 + # log K source: Nord90 + # Delta H source: Nord90 + #T and ionic strength: 0.00 25.0 Mn+2 + SO4-2 = MnSO4 - log_k 2.25 - delta_h 8.7 kJ - -gamma 0 0 - # Id: 4707320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.25 + delta_h 8.7 kJ + -gamma 0 0 + # Id: 4707320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cr(OH)2+ + 2 H+ + SO4-2 = CrSO4+ + 2 H2O - log_k 12.9371 - delta_h -98.62 kJ - -gamma 0 0 - # Id: 2117320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 50.0 + log_k 12.9371 + delta_h -98.62 kJ + -gamma 0 0 + # Id: 2117320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 50.0 Cr(OH)2+ + H+ + SO4-2 = CrOHSO4 + H2O - log_k 8.2871 - delta_h 0 kJ - -gamma 0 0 - # Id: 2117321 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 + log_k 8.2871 + delta_h 0 kJ + -gamma 0 0 + # Id: 2117321 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 2 Cr(OH)2+ + SO4-2 + 2 H+ = Cr2(OH)2SO4+2 + 2 H2O - log_k 16.155 - delta_h 0 kJ - -gamma 0 0 - # Id: 2117323 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 16.155 + delta_h 0 kJ + -gamma 0 0 + # Id: 2117323 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: 2 Cr(OH)2+ + 2 SO4-2 + 2 H+ = Cr2(OH)2(SO4)2 + 2 H2O - log_k 17.9288 - delta_h 0 kJ - -gamma 0 0 - # Id: 2117324 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 17.9288 + delta_h 0 kJ + -gamma 0 0 + # Id: 2117324 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: U+4 + SO4-2 = USO4+2 - log_k 6.6 - delta_h 8 kJ - -gamma 0 0 - # Id: 8917320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 6.6 + delta_h 8 kJ + -gamma 0 0 + # Id: 8917320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 U+4 + 2 SO4-2 = U(SO4)2 - log_k 10.5 - delta_h 33 kJ - -gamma 0 0 - # Id: 8917321 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 10.5 + delta_h 33 kJ + -gamma 0 0 + # Id: 8917321 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 UO2+2 + SO4-2 = UO2SO4 - log_k 3.18 - delta_h 20 kJ - -gamma 0 0 - # Id: 8937320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 3.18 + delta_h 20 kJ + -gamma 0 0 + # Id: 8937320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 UO2+2 + 2 SO4-2 = UO2(SO4)2-2 - log_k 4.3 - delta_h 38 kJ - -gamma 0 0 - # Id: 8937321 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 4.3 + delta_h 38 kJ + -gamma 0 0 + # Id: 8937321 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 V+3 + SO4-2 = VSO4+ - log_k 2.674 - delta_h 0 kJ - -gamma 0 0 - # Id: 9017320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 2.674 + delta_h 0 kJ + -gamma 0 0 + # Id: 9017320 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 VO+2 + SO4-2 = VOSO4 - log_k 2.44 - delta_h 17 kJ - -gamma 0 0 - # Id: 9027320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.44 + delta_h 17 kJ + -gamma 0 0 + # Id: 9027320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 VO2+ + SO4-2 = VO2SO4- - log_k 1.378 - delta_h 0 kJ - -gamma 0 0 - # Id: 9037320 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 + log_k 1.378 + delta_h 0 kJ + -gamma 0 0 + # Id: 9037320 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 Be+2 + SO4-2 = BeSO4 - log_k 2.19 - delta_h 29 kJ - -gamma 0 0 - # Id: 1107321 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.19 + delta_h 29 kJ + -gamma 0 0 + # Id: 1107321 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Be+2 + 2 SO4-2 = Be(SO4)2-2 - log_k 2.596 - delta_h 0 kJ - -gamma 0 0 - # Id: 1107322 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 2.596 + delta_h 0 kJ + -gamma 0 0 + # Id: 1107322 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Mg+2 + SO4-2 = MgSO4 - log_k 2.26 - delta_h 5.8 kJ - -gamma 0 0 - # Id: 4607320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.26 + delta_h 5.8 kJ + -gamma 0 0 + # Id: 4607320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ca+2 + SO4-2 = CaSO4 - log_k 2.36 - delta_h 7.1 kJ - -gamma 0 0 - # Id: 1507320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.36 + delta_h 7.1 kJ + -gamma 0 0 + # Id: 1507320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Sr+2 + SO4-2 = SrSO4 - log_k 2.3 - delta_h 8 kJ - -gamma 0 0 - # Id: 8007321 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.3 + delta_h 8 kJ + -gamma 0 0 + # Id: 8007321 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Li+ + SO4-2 = LiSO4- - log_k 0.64 - delta_h 0 kJ - -gamma 5 0 - # Id: 4407320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 0.64 + delta_h 0 kJ + -gamma 5 0 + # Id: 4407320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Na+ + SO4-2 = NaSO4- - log_k 0.73 - delta_h 1 kJ - -gamma 5.4 0 - # Id: 5007320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 0.73 + delta_h 1 kJ + -gamma 5.4 0 + # Id: 5007320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 K+ + SO4-2 = KSO4- - log_k 0.85 - delta_h 4.1 kJ - -gamma 5.4 0 - # Id: 4107320 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 0.85 + delta_h 4.1 kJ + -gamma 5.4 0 + # Id: 4107320 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 HSe- + H+ = H2Se - log_k 3.89 - delta_h 3.3 kJ - -gamma 0 0 - # Id: 3307600 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 - #T and ionic strength: 0.00 25.0 + log_k 3.89 + delta_h 3.3 kJ + -gamma 0 0 + # Id: 3307600 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 + #T and ionic strength: 0.00 25.0 2 Ag+ + HSe- = Ag2Se + H+ - log_k 34.911 - delta_h 0 kJ - -gamma 0 0 - # Id: 207600 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 34.911 + delta_h 0 kJ + -gamma 0 0 + # Id: 207600 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Ag+ + H2O + 2 HSe- = AgOH(Se)2-4 + 3 H+ - log_k -20.509 - delta_h 0 kJ - -gamma 0 0 - # Id: 207601 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k -20.509 + delta_h 0 kJ + -gamma 0 0 + # Id: 207601 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Mn+2 + HSe- = MnSe + H+ - log_k -5.385 - delta_h 0 kJ - -gamma 0 0 - # Id: 4707600 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k -5.385 + delta_h 0 kJ + -gamma 0 0 + # Id: 4707600 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 HSeO3- = SeO3-2 + H+ - log_k -8.4 - delta_h 5.02 kJ - -gamma 0 0 - # Id: 3307611 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -8.4 + delta_h 5.02 kJ + -gamma 0 0 + # Id: 3307611 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 HSeO3- + H+ = H2SeO3 - log_k 2.63 - delta_h 6.2 kJ - -gamma 0 0 - # Id: 3307610 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.63 + delta_h 6.2 kJ + -gamma 0 0 + # Id: 3307610 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cd+2 + 2 HSeO3- = Cd(SeO3)2-2 + 2 H+ - log_k -10.884 - delta_h 0 kJ - -gamma 0 0 - # Id: 1607610 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k -10.884 + delta_h 0 kJ + -gamma 0 0 + # Id: 1607610 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Ag+ + HSeO3- = AgSeO3- + H+ - log_k -5.592 - delta_h 0 kJ - -gamma 0 0 - # Id: 207610 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k -5.592 + delta_h 0 kJ + -gamma 0 0 + # Id: 207610 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Ag+ + 2 HSeO3- = Ag(SeO3)2-3 + 2 H+ - log_k -13.04 - delta_h 0 kJ - -gamma 0 0 - # Id: 207611 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k -13.04 + delta_h 0 kJ + -gamma 0 0 + # Id: 207611 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Fe+3 + HSeO3- = FeHSeO3+2 - log_k 3.422 - delta_h 25 kJ - -gamma 0 0 - # Id: 2817610 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 + log_k 3.422 + delta_h 25 kJ + -gamma 0 0 + # Id: 2817610 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 SeO4-2 + H+ = HSeO4- - log_k 1.7 - delta_h 23 kJ - -gamma 0 0 - # Id: 3307620 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 1.7 + delta_h 23 kJ + -gamma 0 0 + # Id: 3307620 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Zn+2 + SeO4-2 = ZnSeO4 - log_k 2.19 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507620 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 2.19 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507620 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Zn+2 + 2 SeO4-2 = Zn(SeO4)2-2 - log_k 2.196 - delta_h 0 kJ - -gamma 0 0 - # Id: 9507621 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 2.196 + delta_h 0 kJ + -gamma 0 0 + # Id: 9507621 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Cd+2 + SeO4-2 = CdSeO4 - log_k 2.27 - delta_h 0 kJ - -gamma 0 0 - # Id: 1607620 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 2.27 + delta_h 0 kJ + -gamma 0 0 + # Id: 1607620 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Ni+2 + SeO4-2 = NiSeO4 - log_k 2.67 - delta_h 14 kJ - -gamma 0 0 - # Id: 5407620 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.67 + delta_h 14 kJ + -gamma 0 0 + # Id: 5407620 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Co+2 + SeO4-2 = CoSeO4 - log_k 2.7 - delta_h 12 kJ - -gamma 0 0 - # Id: 2007621 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.7 + delta_h 12 kJ + -gamma 0 0 + # Id: 2007621 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Mn+2 + SeO4-2 = MnSeO4 - log_k 2.43 - delta_h 14 kJ - -gamma 0 0 - # Id: 4707620 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.43 + delta_h 14 kJ + -gamma 0 0 + # Id: 4707620 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 NH4+ = NH3 + H+ - log_k -9.244 - delta_h 52 kJ - -gamma 0 0 - # Id: 3304900 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -9.244 + delta_h 52 kJ + -gamma 0 0 + # Id: 3304900 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ag+ + NH4+ = AgNH3+ + H+ - log_k -5.934 - delta_h -72 kJ - -gamma 0 0 - # Id: 204901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -5.934 + delta_h -72 kJ + -gamma 0 0 + # Id: 204901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ag+ + 2 NH4+ = Ag(NH3)2+ + 2 H+ - log_k -11.268 - delta_h -160 kJ - -gamma 0 0 - # Id: 204902 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -11.268 + delta_h -160 kJ + -gamma 0 0 + # Id: 204902 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + H+ + NH4+ = HgNH3+2 + 2 H2O - log_k 5.75 - delta_h 0 kJ - -gamma 0 0 - # Id: 3614900 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 2.00 22.0 + log_k 5.75 + delta_h 0 kJ + -gamma 0 0 + # Id: 3614900 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 2.00 22.0 Hg(OH)2 + 2 NH4+ = Hg(NH3)2+2 + 2 H2O - log_k 5.506 - delta_h -246.72 kJ - -gamma 0 0 - # Id: 3614901 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 1.00 25.0 + log_k 5.506 + delta_h -246.72 kJ + -gamma 0 0 + # Id: 3614901 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 1.00 25.0 Hg(OH)2 + 3 NH4+ = Hg(NH3)3+2 + 2 H2O + H+ - log_k -3.138 - delta_h -312.72 kJ - -gamma 0 0 - # Id: 3614902 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 2.00 25.0 + log_k -3.138 + delta_h -312.72 kJ + -gamma 0 0 + # Id: 3614902 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 2.00 25.0 Hg(OH)2 + 4 NH4+ = Hg(NH3)4+2 + 2 H2O + 2 H+ - log_k -11.482 - delta_h -379.72 kJ - -gamma 0 0 - # Id: 3614903 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.10 25.0 + log_k -11.482 + delta_h -379.72 kJ + -gamma 0 0 + # Id: 3614903 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.10 25.0 Cu+2 + NH4+ = CuNH3+2 + H+ - log_k -5.234 - delta_h -72 kJ - -gamma 0 0 - # Id: 2314901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -5.234 + delta_h -72 kJ + -gamma 0 0 + # Id: 2314901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ni+2 + NH4+ = NiNH3+2 + H+ - log_k -6.514 - delta_h -67 kJ - -gamma 0 0 - # Id: 5404901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k -6.514 + delta_h -67 kJ + -gamma 0 0 + # Id: 5404901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Ni+2 + 2 NH4+ = Ni(NH3)2+2 + 2 H+ - log_k -13.598 - delta_h -111.6 kJ - -gamma 0 0 - # Id: 5404902 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k -13.598 + delta_h -111.6 kJ + -gamma 0 0 + # Id: 5404902 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Co+2 + NH4+ = Co(NH3)+2 + H+ - log_k -7.164 - delta_h -65 kJ - -gamma 0 0 - # Id: 2004900 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k -7.164 + delta_h -65 kJ + -gamma 0 0 + # Id: 2004900 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Co+2 + 2 NH4+ = Co(NH3)2+2 + 2 H+ - log_k -14.778 - delta_h 0 kJ - -gamma 0 0 - # Id: 2004901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 2.00 25.0 + log_k -14.778 + delta_h 0 kJ + -gamma 0 0 + # Id: 2004901 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 2.00 25.0 Co+2 + 3 NH4+ = Co(NH3)3+2 + 3 H+ - log_k -22.922 - delta_h 0 kJ - -gamma 0 0 - # Id: 2004902 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 2.00 25.0 + log_k -22.922 + delta_h 0 kJ + -gamma 0 0 + # Id: 2004902 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 2.00 25.0 Co+2 + 4 NH4+ = Co(NH3)4+2 + 4 H+ - log_k -31.446 - delta_h 0 kJ - -gamma 0 0 - # Id: 2004903 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 2.00 30.0 + log_k -31.446 + delta_h 0 kJ + -gamma 0 0 + # Id: 2004903 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 2.00 30.0 Co+2 + 5 NH4+ = Co(NH3)5+2 + 5 H+ - log_k -40.47 - delta_h 0 kJ - -gamma 0 0 - # Id: 2004904 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 2.00 30.0 + log_k -40.47 + delta_h 0 kJ + -gamma 0 0 + # Id: 2004904 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 2.00 30.0 Co+3 + 6 NH4+ + H2O = Co(NH3)6OH+2 + 7 H+ - log_k -43.7148 - delta_h 0 kJ - -gamma 0 0 - # Id: 2014901 - # log K source: NIST2.1.1 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -43.7148 + delta_h 0 kJ + -gamma 0 0 + # Id: 2014901 + # log K source: NIST2.1.1 + # Delta H source: MTQ3.11 + #T and ionic strength: Co+3 + 5 NH4+ + Cl- = Co(NH3)5Cl+2 + 5 H+ - log_k -17.9584 - delta_h 113.38 kJ - -gamma 0 0 - # Id: 2014902 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k -17.9584 + delta_h 113.38 kJ + -gamma 0 0 + # Id: 2014902 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Co+3 + 6 NH4+ + Cl- = Co(NH3)6Cl+2 + 6 H+ - log_k -33.9179 - delta_h 104.34 kJ - -gamma 0 0 - # Id: 2014903 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k -33.9179 + delta_h 104.34 kJ + -gamma 0 0 + # Id: 2014903 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Co+3 + 6 NH4+ + Br- = Co(NH3)6Br+2 + 6 H+ - log_k -33.8884 - delta_h 110.57 kJ - -gamma 0 0 - # Id: 2014904 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k -33.8884 + delta_h 110.57 kJ + -gamma 0 0 + # Id: 2014904 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Co+3 + 6 NH4+ + I- = Co(NH3)6I+2 + 6 H+ - log_k -33.4808 - delta_h 115.44 kJ - -gamma 0 0 - # Id: 2014905 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k -33.4808 + delta_h 115.44 kJ + -gamma 0 0 + # Id: 2014905 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Co+3 + 6 NH4+ + SO4-2 = Co(NH3)6SO4+ + 6 H+ - log_k -28.9926 - delta_h 124.5 kJ - -gamma 0 0 - # Id: 2014906 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k -28.9926 + delta_h 124.5 kJ + -gamma 0 0 + # Id: 2014906 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Cr(OH)2+ + 6 NH4+ = Cr(NH3)6+3 + 2 H2O + 4 H+ - log_k -32.8952 - delta_h 0 kJ - -gamma 0 0 - # Id: 2114900 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 4.50 25.0 + log_k -32.8952 + delta_h 0 kJ + -gamma 0 0 + # Id: 2114900 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 4.50 25.0 Cr(OH)2+ + 5 NH4+ = Cr(NH3)5OH+2 + 4 H+ + H2O - log_k -30.2759 - delta_h 0 kJ - -gamma 0 0 - # Id: 2114901 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -30.2759 + delta_h 0 kJ + -gamma 0 0 + # Id: 2114901 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cr(OH)2+ + 6 NH4+ + Cl- = Cr(NH3)6Cl+2 + 2 H2O + 4 H+ - log_k -31.7932 - delta_h 0 kJ - -gamma 0 0 - # Id: 2114904 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -31.7932 + delta_h 0 kJ + -gamma 0 0 + # Id: 2114904 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cr(OH)2+ + 6 NH4+ + Br- = Cr(NH3)6Br+2 + 4 H+ + 2 H2O - log_k -31.887 - delta_h 0 kJ - -gamma 0 0 - # Id: 2114905 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -31.887 + delta_h 0 kJ + -gamma 0 0 + # Id: 2114905 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cr(OH)2+ + 6 NH4+ + I- = Cr(NH3)6I+2 + 4 H+ + 2 H2O - log_k -32.008 - delta_h 0 kJ - -gamma 0 0 - # Id: 2114906 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -32.008 + delta_h 0 kJ + -gamma 0 0 + # Id: 2114906 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: #Cr(OH)2+ + 4NH4+ = cis+ + 4H+ -# log_k -29.8574 -# delta_h 0 kJ -# -gamma 0 0 -# # Id: 4902113 -# # log K source: MTQ3.11 -# # Delta H source: MTQ3.11 -# #T and ionic strength: +# log_k -29.8574 +# delta_h 0 kJ +# -gamma 0 0 +# # Id: 4902113 +# # log K source: MTQ3.11 +# # Delta H source: MTQ3.11 +# #T and ionic strength: #Cr(OH)2+ + 4NH4+ = trans+ + 4H+ -# log_k -30.5537 -# delta_h 0 kJ -# -gamma 0 0 -# # Id: 4902114 -# # log K source: MTQ3.11 -# # Delta H source: MTQ3.11 -# #T and ionic strength: +# log_k -30.5537 +# delta_h 0 kJ +# -gamma 0 0 +# # Id: 4902114 +# # log K source: MTQ3.11 +# # Delta H source: MTQ3.11 +# #T and ionic strength: Ca+2 + NH4+ = CaNH3+2 + H+ - log_k -9.144 - delta_h 0 kJ - -gamma 0 0 - # Id: 1504901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k -9.144 + delta_h 0 kJ + -gamma 0 0 + # Id: 1504901 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Ca+2 + 2 NH4+ = Ca(NH3)2+2 + 2 H+ - log_k -18.788 - delta_h 0 kJ - -gamma 0 0 - # Id: 1504902 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k -18.788 + delta_h 0 kJ + -gamma 0 0 + # Id: 1504902 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Sr+2 + NH4+ = SrNH3+2 + H+ - log_k -9.344 - delta_h 0 kJ - -gamma 0 0 - # Id: 8004901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k -9.344 + delta_h 0 kJ + -gamma 0 0 + # Id: 8004901 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Ba+2 + NH4+ = BaNH3+2 + H+ - log_k -9.444 - delta_h 0 kJ - -gamma 0 0 - # Id: 1004901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k -9.444 + delta_h 0 kJ + -gamma 0 0 + # Id: 1004901 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Tl+ + NO2- = TlNO2 - log_k 0.83 - delta_h 0 kJ - -gamma 0 0 - # Id: 8704910 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 0.83 + delta_h 0 kJ + -gamma 0 0 + # Id: 8704910 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Ag+ + NO2- = AgNO2 - log_k 2.32 - delta_h -29 kJ - -gamma 0 0 - # Id: 204911 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.32 + delta_h -29 kJ + -gamma 0 0 + # Id: 204911 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ag+ + 2 NO2- = Ag(NO2)2- - log_k 2.51 - delta_h -46 kJ - -gamma 0 0 - # Id: 204910 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.51 + delta_h -46 kJ + -gamma 0 0 + # Id: 204910 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cu+2 + NO2- = CuNO2+ - log_k 2.02 - delta_h 0 kJ - -gamma 0 0 - # Id: 2314911 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 2.02 + delta_h 0 kJ + -gamma 0 0 + # Id: 2314911 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cu+2 + 2 NO2- = Cu(NO2)2 - log_k 3.03 - delta_h 0 kJ - -gamma 0 0 - # Id: 2314912 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 3.03 + delta_h 0 kJ + -gamma 0 0 + # Id: 2314912 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Co+2 + NO2- = CoNO2+ - log_k 0.848 - delta_h 0 kJ - -gamma 0 0 - # Id: 2004911 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 0.848 + delta_h 0 kJ + -gamma 0 0 + # Id: 2004911 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Sn(OH)2 + 2 H+ + NO3- = SnNO3+ + 2 H2O - log_k 7.942 - delta_h 0 kJ - -gamma 0 0 - # Id: 7904921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 7.942 + delta_h 0 kJ + -gamma 0 0 + # Id: 7904921 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Pb+2 + NO3- = PbNO3+ - log_k 1.17 - delta_h 2 kJ - -gamma 0 0 - # Id: 6004920 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 1.17 + delta_h 2 kJ + -gamma 0 0 + # Id: 6004920 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Pb+2 + 2 NO3- = Pb(NO3)2 - log_k 1.4 - delta_h -6.6 kJ - -gamma 0 0 - # Id: 6004921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 1.4 + delta_h -6.6 kJ + -gamma 0 0 + # Id: 6004921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Tl+ + NO3- = TlNO3 - log_k 0.33 - delta_h -2 kJ - -gamma 0 0 - # Id: 8704920 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 0.33 + delta_h -2 kJ + -gamma 0 0 + # Id: 8704920 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Tl(OH)3 + NO3- + 3 H+ = TlNO3+2 + 3 H2O - log_k 7.0073 - delta_h 0 kJ - -gamma 0 0 - # Id: 8714920 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 7.0073 + delta_h 0 kJ + -gamma 0 0 + # Id: 8714920 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Cd+2 + NO3- = CdNO3+ - log_k 0.5 - delta_h -21 kJ - -gamma 0 0 - # Id: 1604920 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 0.5 + delta_h -21 kJ + -gamma 0 0 + # Id: 1604920 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Cd+2 + 2 NO3- = Cd(NO3)2 - log_k 0.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 1604921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 0.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 1604921 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2 H+ + NO3- = HgNO3+ + 2 H2O - log_k 5.7613 - delta_h 0 kJ - -gamma 0 0 - # Id: 3614920 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 3.00 25.0 + log_k 5.7613 + delta_h 0 kJ + -gamma 0 0 + # Id: 3614920 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 3.00 25.0 Hg(OH)2 + 2 H+ + 2 NO3- = Hg(NO3)2 + 2 H2O - log_k 5.38 - delta_h 0 kJ - -gamma 0 0 - # Id: 3614921 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 3.00 25.0 + log_k 5.38 + delta_h 0 kJ + -gamma 0 0 + # Id: 3614921 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 3.00 25.0 Cu+2 + NO3- = CuNO3+ - log_k 0.5 - delta_h -4.1 kJ - -gamma 0 0 - # Id: 2314921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 0.5 + delta_h -4.1 kJ + -gamma 0 0 + # Id: 2314921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Cu+2 + 2 NO3- = Cu(NO3)2 - log_k -0.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2314922 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -0.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2314922 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Zn+2 + NO3- = ZnNO3+ - log_k 0.4 - delta_h -4.6 kJ - -gamma 0 0 - # Id: 9504921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 0.4 + delta_h -4.6 kJ + -gamma 0 0 + # Id: 9504921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Zn+2 + 2 NO3- = Zn(NO3)2 - log_k -0.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 9504922 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -0.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 9504922 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Ag+ + NO3- = AgNO3 - log_k -0.1 - delta_h 22.6 kJ - -gamma 0 0 - # Id: 204920 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -0.1 + delta_h 22.6 kJ + -gamma 0 0 + # Id: 204920 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ni+2 + NO3- = NiNO3+ - log_k 0.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 5404921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 0.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 5404921 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Co+2 + NO3- = CoNO3+ - log_k 0.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2004921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 0.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2004921 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Co+2 + 2 NO3- = Co(NO3)2 - log_k 0.5085 - delta_h 0 kJ - -gamma 0 0 - # Id: 2004922 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k 0.5085 + delta_h 0 kJ + -gamma 0 0 + # Id: 2004922 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Fe+3 + NO3- = FeNO3+2 - log_k 1 - delta_h -37 kJ - -gamma 0 0 - # Id: 2814921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 1 + delta_h -37 kJ + -gamma 0 0 + # Id: 2814921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Mn+2 + NO3- = MnNO3+ - log_k 0.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 4704921 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 0.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 4704921 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Mn+2 + 2 NO3- = Mn(NO3)2 - log_k 0.6 - delta_h -1.6569 kJ - -gamma 0 0 - # Id: 4704920 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 0.6 + delta_h -1.6569 kJ + -gamma 0 0 + # Id: 4704920 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cr(OH)2+ + NO3- + 2 H+ = CrNO3+2 + 2 H2O - log_k 8.2094 - delta_h -65.4378 kJ - -gamma 0 0 - # Id: 2114920 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 8.2094 + delta_h -65.4378 kJ + -gamma 0 0 + # Id: 2114920 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: UO2+2 + NO3- = UO2NO3+ - log_k 0.3 - delta_h -12 kJ - -gamma 0 0 - # Id: 8934921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 0.3 + delta_h -12 kJ + -gamma 0 0 + # Id: 8934921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 VO2+ + NO3- = VO2NO3 - log_k -0.296 - delta_h 0 kJ - -gamma 0 0 - # Id: 9034920 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 20.0 + log_k -0.296 + delta_h 0 kJ + -gamma 0 0 + # Id: 9034920 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 20.0 Ca+2 + NO3- = CaNO3+ - log_k 0.5 - delta_h -5.4 kJ - -gamma 0 0 - # Id: 1504921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 0.5 + delta_h -5.4 kJ + -gamma 0 0 + # Id: 1504921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Sr+2 + NO3- = SrNO3+ - log_k 0.6 - delta_h -10 kJ - -gamma 0 0 - # Id: 8004921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 0.6 + delta_h -10 kJ + -gamma 0 0 + # Id: 8004921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ba+2 + NO3- = BaNO3+ - log_k 0.7 - delta_h -13 kJ - -gamma 0 0 - # Id: 1004921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 0.7 + delta_h -13 kJ + -gamma 0 0 + # Id: 1004921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 H+ + Cyanide- = HCyanide - log_k 9.21 - delta_h -43.63 kJ - -gamma 0 0 - # Id: 3301431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 9.21 + delta_h -43.63 kJ + -gamma 0 0 + # Id: 3301431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Cd+2 + Cyanide- = CdCyanide+ - log_k 6.01 - delta_h -30 kJ - -gamma 0 0 - # Id: 1601431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 6.01 + delta_h -30 kJ + -gamma 0 0 + # Id: 1601431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Cd+2 + 2 Cyanide- = Cd(Cyanide)2 - log_k 11.12 - delta_h -54.3 kJ - -gamma 0 0 - # Id: 1601432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 11.12 + delta_h -54.3 kJ + -gamma 0 0 + # Id: 1601432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Cd+2 + 3 Cyanide- = Cd(Cyanide)3- - log_k 15.65 - delta_h -90.3 kJ - -gamma 0 0 - # Id: 1601433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 15.65 + delta_h -90.3 kJ + -gamma 0 0 + # Id: 1601433 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Cd+2 + 4 Cyanide- = Cd(Cyanide)4-2 - log_k 17.92 - delta_h -112 kJ - -gamma 0 0 - # Id: 1601434 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 17.92 + delta_h -112 kJ + -gamma 0 0 + # Id: 1601434 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2 H+ + Cyanide- = HgCyanide+ + 2 H2O - log_k 23.194 - delta_h -136.72 kJ - -gamma 0 0 - # Id: 3611431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 23.194 + delta_h -136.72 kJ + -gamma 0 0 + # Id: 3611431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2 H+ + 2 Cyanide- = Hg(Cyanide)2 + 2 H2O - log_k 38.944 - delta_h 154.28 kJ - -gamma 0 0 - # Id: 3611432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 38.944 + delta_h 154.28 kJ + -gamma 0 0 + # Id: 3611432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2 H+ + 3 Cyanide- = Hg(Cyanide)3- + 2 H2O - log_k 42.504 - delta_h -262.72 kJ - -gamma 0 0 - # Id: 3611433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 42.504 + delta_h -262.72 kJ + -gamma 0 0 + # Id: 3611433 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2 H+ + 4 Cyanide- = Hg(Cyanide)4-2 + 2 H2O - log_k 45.164 - delta_h -288.72 kJ - -gamma 0 0 - # Id: 3611434 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 45.164 + delta_h -288.72 kJ + -gamma 0 0 + # Id: 3611434 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Cu+ + 2 Cyanide- = Cu(Cyanide)2- - log_k 21.9145 - delta_h -121 kJ - -gamma 0 0 - # Id: 2301432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 21.9145 + delta_h -121 kJ + -gamma 0 0 + # Id: 2301432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Cu+ + 3 Cyanide- = Cu(Cyanide)3-2 - log_k 27.2145 - delta_h -167.4 kJ - -gamma 0 0 - # Id: 2301433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 27.2145 + delta_h -167.4 kJ + -gamma 0 0 + # Id: 2301433 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Cu+ + 4 Cyanide- = Cu(Cyanide)4-3 - log_k 28.7145 - delta_h -214.2 kJ - -gamma 0 0 - # Id: 2301431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 28.7145 + delta_h -214.2 kJ + -gamma 0 0 + # Id: 2301431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ag+ + 2 Cyanide- = Ag(Cyanide)2- - log_k 20.48 - delta_h -137 kJ - -gamma 0 0 - # Id: 201432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 20.48 + delta_h -137 kJ + -gamma 0 0 + # Id: 201432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ag+ + 3 Cyanide- = Ag(Cyanide)3-2 - log_k 21.7 - delta_h -140 kJ - -gamma 0 0 - # Id: 201433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 21.7 + delta_h -140 kJ + -gamma 0 0 + # Id: 201433 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ag+ + H2O + Cyanide- = Ag(Cyanide)OH- + H+ - log_k -0.777 - delta_h 0 kJ - -gamma 0 0 - # Id: 201431 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -0.777 + delta_h 0 kJ + -gamma 0 0 + # Id: 201431 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Ni+2 + 4 Cyanide- = Ni(Cyanide)4-2 - log_k 30.2 - delta_h -180 kJ - -gamma 0 0 - # Id: 5401431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 30.2 + delta_h -180 kJ + -gamma 0 0 + # Id: 5401431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ni+2 + 4 Cyanide- + H+ = NiH(Cyanide)4- - log_k 36.0289 - delta_h 0 kJ - -gamma 0 0 - # Id: 5401432 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 + log_k 36.0289 + delta_h 0 kJ + -gamma 0 0 + # Id: 5401432 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 Ni+2 + 4 Cyanide- + 2 H+ = NiH2Cyanide4 - log_k 40.7434 - delta_h 0 kJ - -gamma 0 0 - # Id: 5401433 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 + log_k 40.7434 + delta_h 0 kJ + -gamma 0 0 + # Id: 5401433 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 Ni+2 + 4 Cyanide- + 3 H+ = NiH3(Cyanide)4+ - log_k 43.3434 - delta_h 0 kJ - -gamma 0 0 - # Id: 5401434 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 + log_k 43.3434 + delta_h 0 kJ + -gamma 0 0 + # Id: 5401434 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 Co+2 + 3 Cyanide- = Co(Cyanide)3- - log_k 14.312 - delta_h 0 kJ - -gamma 0 0 - # Id: 2001431 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 1.00 25.0 + log_k 14.312 + delta_h 0 kJ + -gamma 0 0 + # Id: 2001431 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 1.00 25.0 Co+2 + 5 Cyanide- = Co(Cyanide)5-3 - log_k 23 - delta_h -257 kJ - -gamma 0 0 - # Id: 2001432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 1.00 25.0 + log_k 23 + delta_h -257 kJ + -gamma 0 0 + # Id: 2001432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 1.00 25.0 Fe+2 + 6 Cyanide- = Fe(Cyanide)6-4 - log_k 35.4 - delta_h -358 kJ - -gamma 0 0 - # Id: 2801431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 35.4 + delta_h -358 kJ + -gamma 0 0 + # Id: 2801431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 H+ + Fe+2 + 6 Cyanide- = HFe(Cyanide)6-3 - log_k 39.71 - delta_h -356 kJ - -gamma 0 0 - # Id: 2801432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 39.71 + delta_h -356 kJ + -gamma 0 0 + # Id: 2801432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 2 H+ + Fe+2 + 6 Cyanide- = H2Fe(Cyanide)6-2 - log_k 42.11 - delta_h -352 kJ - -gamma 0 0 - # Id: 2801433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 42.11 + delta_h -352 kJ + -gamma 0 0 + # Id: 2801433 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Fe+3 + 6 Cyanide- = Fe(Cyanide)6-3 - log_k 43.6 - delta_h -293 kJ - -gamma 0 0 - # Id: 2811431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 43.6 + delta_h -293 kJ + -gamma 0 0 + # Id: 2811431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 2 Fe+3 + 6 Cyanide- = Fe2(Cyanide)6 - log_k 47.6355 - delta_h -218 kJ - -gamma 0 0 - # Id: 2811432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 + log_k 47.6355 + delta_h -218 kJ + -gamma 0 0 + # Id: 2811432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 Sn(OH)2 + Fe+3 + 6 Cyanide- + 2 H+ = SnFe(Cyanide)6- + 2 H2O - log_k 53.54 - delta_h 0 kJ - -gamma 0 0 - # Id: 7901431 - # log K source: Ba1987 - # Delta H source: - #T and ionic strength: 0.00 25.0 + log_k 53.54 + delta_h 0 kJ + -gamma 0 0 + # Id: 7901431 + # log K source: Ba1987 + # Delta H source: + #T and ionic strength: 0.00 25.0 NH4+ + Fe+2 + 6 Cyanide- = NH4Fe(Cyanide)6-3 - log_k 37.7 - delta_h -354 kJ - -gamma 0 0 - # Id: 4901431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 37.7 + delta_h -354 kJ + -gamma 0 0 + # Id: 4901431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Tl+ + Fe+2 + 6 Cyanide- = TlFe(Cyanide)6-3 - log_k 38.4 - delta_h -365.5 kJ - -gamma 0 0 - # Id: 8701432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 38.4 + delta_h -365.5 kJ + -gamma 0 0 + # Id: 8701432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Mg+2 + Fe+3 + 6 Cyanide- = MgFe(Cyanide)6- - log_k 46.39 - delta_h -290 kJ - -gamma 0 0 - # Id: 4601431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 46.39 + delta_h -290 kJ + -gamma 0 0 + # Id: 4601431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Mg+2 + Fe+2 + 6 Cyanide- = MgFe(Cyanide)6-2 - log_k 39.21 - delta_h -346 kJ - -gamma 0 0 - # Id: 4601432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 39.21 + delta_h -346 kJ + -gamma 0 0 + # Id: 4601432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ca+2 + Fe+3 + 6 Cyanide- = CaFe(Cyanide)6- - log_k 46.43 - delta_h -291 kJ - -gamma 0 0 - # Id: 1501431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 46.43 + delta_h -291 kJ + -gamma 0 0 + # Id: 1501431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ca+2 + Fe+2 + 6 Cyanide- = CaFe(Cyanide)6-2 - log_k 39.1 - delta_h -347 kJ - -gamma 0 0 - # Id: 1501432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 39.1 + delta_h -347 kJ + -gamma 0 0 + # Id: 1501432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 2 Ca+2 + Fe+2 + 6 Cyanide- = Ca2Fe(Cyanide)6 - log_k 40.6 - delta_h -350.201 kJ - -gamma 0 0 - # Id: 1501433 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 40.6 + delta_h -350.201 kJ + -gamma 0 0 + # Id: 1501433 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Sr+2 + Fe+3 + 6 Cyanide- = SrFe(Cyanide)6- - log_k 46.45 - delta_h -292 kJ - -gamma 0 0 - # Id: 8001431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 46.45 + delta_h -292 kJ + -gamma 0 0 + # Id: 8001431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Sr+2 + Fe+2 + 6 Cyanide- = SrFe(Cyanide)6-2 - log_k 39.1 - delta_h -350 kJ - -gamma 0 0 - # Id: 8001432 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 39.1 + delta_h -350 kJ + -gamma 0 0 + # Id: 8001432 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ba+2 + Fe+2 + 6 Cyanide- = BaFe(Cyanide)6-2 - log_k 39.19 - delta_h -342 kJ - -gamma 0 0 - # Id: 1001430 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 39.19 + delta_h -342 kJ + -gamma 0 0 + # Id: 1001430 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ba+2 + Fe+3 + 6 Cyanide- = BaFe(Cyanide)6- - log_k 46.48 - delta_h -292 kJ - -gamma 0 0 - # Id: 1001431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 46.48 + delta_h -292 kJ + -gamma 0 0 + # Id: 1001431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Na+ + Fe+2 + 6 Cyanide- = NaFe(Cyanide)6-3 - log_k 37.6 - delta_h -354 kJ - -gamma 0 0 - # Id: 5001431 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 37.6 + delta_h -354 kJ + -gamma 0 0 + # Id: 5001431 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 K+ + Fe+2 + 6 Cyanide- = KFe(Cyanide)6-3 - log_k 37.75 - delta_h -353.9 kJ - -gamma 0 0 - # Id: 4101433 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 37.75 + delta_h -353.9 kJ + -gamma 0 0 + # Id: 4101433 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 K+ + Fe+3 + 6 Cyanide- = KFe(Cyanide)6-2 - log_k 45.04 - delta_h -291 kJ - -gamma 0 0 - # Id: 4101430 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 45.04 + delta_h -291 kJ + -gamma 0 0 + # Id: 4101430 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 H+ + PO4-3 = HPO4-2 - log_k 12.375 - delta_h -15 kJ - -gamma 5 0 - # Id: 3305800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 12.375 + delta_h -15 kJ + -gamma 5 0 + # Id: 3305800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 2 H+ + PO4-3 = H2PO4- - log_k 19.573 - delta_h -18 kJ - -gamma 5.4 0 - # Id: 3305801 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 19.573 + delta_h -18 kJ + -gamma 5.4 0 + # Id: 3305801 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 3 H+ + PO4-3 = H3PO4 - log_k 21.721 - delta_h -10.1 kJ - -gamma 0 0 - # Id: 3305802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 21.721 + delta_h -10.1 kJ + -gamma 0 0 + # Id: 3305802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Co+2 + H+ + PO4-3 = CoHPO4 - log_k 15.4128 - delta_h 0 kJ - -gamma 0 0 - # Id: 2005800 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 + log_k 15.4128 + delta_h 0 kJ + -gamma 0 0 + # Id: 2005800 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 Fe+2 + 2 H+ + PO4-3 = FeH2PO4+ - log_k 22.273 - delta_h 0 kJ - -gamma 5.4 0 - # Id: 2805800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 22.273 + delta_h 0 kJ + -gamma 5.4 0 + # Id: 2805800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Fe+2 + H+ + PO4-3 = FeHPO4 - log_k 15.975 - delta_h 0 kJ - -gamma 0 0 - # Id: 2805801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 15.975 + delta_h 0 kJ + -gamma 0 0 + # Id: 2805801 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Fe+3 + 2 H+ + PO4-3 = FeH2PO4+2 - log_k 23.8515 - delta_h 0 kJ - -gamma 5.4 0 - # Id: 2815801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k 23.8515 + delta_h 0 kJ + -gamma 5.4 0 + # Id: 2815801 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Fe+3 + H+ + PO4-3 = FeHPO4+ - log_k 22.292 - delta_h -30.5432 kJ - -gamma 5.4 0 - # Id: 2815800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k 22.292 + delta_h -30.5432 kJ + -gamma 5.4 0 + # Id: 2815800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Cr(OH)2+ + 4 H+ + PO4-3 = CrH2PO4+2 + 2 H2O - log_k 31.9068 - delta_h 0 kJ - -gamma 0 0 - # Id: 2115800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 31.9068 + delta_h 0 kJ + -gamma 0 0 + # Id: 2115800 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: U+4 + PO4-3 + H+ = UHPO4+2 - log_k 24.443 - delta_h 31.38 kJ - -gamma 0 0 - # Id: 8915800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 24.443 + delta_h 31.38 kJ + -gamma 0 0 + # Id: 8915800 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: U+4 + 2 PO4-3 + 2 H+ = U(HPO4)2 - log_k 46.833 - delta_h 7.1128 kJ - -gamma 0 0 - # Id: 8915801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 46.833 + delta_h 7.1128 kJ + -gamma 0 0 + # Id: 8915801 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: U+4 + 3 PO4-3 + 3 H+ = U(HPO4)3-2 - log_k 67.564 - delta_h -32.6352 kJ - -gamma 0 0 - # Id: 8915802 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 67.564 + delta_h -32.6352 kJ + -gamma 0 0 + # Id: 8915802 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: U+4 + 4 PO4-3 + 4 H+ = U(HPO4)4-4 - log_k 88.483 - delta_h -110.876 kJ - -gamma 0 0 - # Id: 8915803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 88.483 + delta_h -110.876 kJ + -gamma 0 0 + # Id: 8915803 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: UO2+2 + H+ + PO4-3 = UO2HPO4 - log_k 19.655 - delta_h -8.7864 kJ - -gamma 0 0 - # Id: 8935800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 19.655 + delta_h -8.7864 kJ + -gamma 0 0 + # Id: 8935800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 UO2+2 + 2 PO4-3 + 2 H+ = UO2(HPO4)2-2 - log_k 42.988 - delta_h -47.6934 kJ - -gamma 0 0 - # Id: 8935801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 42.988 + delta_h -47.6934 kJ + -gamma 0 0 + # Id: 8935801 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: UO2+2 + 2 H+ + PO4-3 = UO2H2PO4+ - log_k 22.833 - delta_h -15.4808 kJ - -gamma 0 0 - # Id: 8935802 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 22.833 + delta_h -15.4808 kJ + -gamma 0 0 + # Id: 8935802 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 UO2+2 + 2 PO4-3 + 4 H+ = UO2(H2PO4)2 - log_k 44.7 - delta_h -69.036 kJ - -gamma 0 0 - # Id: 8935803 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 44.7 + delta_h -69.036 kJ + -gamma 0 0 + # Id: 8935803 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: UO2+2 + 3 PO4-3 + 6 H+ = UO2(H2PO4)3- - log_k 66.245 - delta_h -119.662 kJ - -gamma 0 0 - # Id: 8935804 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 66.245 + delta_h -119.662 kJ + -gamma 0 0 + # Id: 8935804 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: UO2+2 + PO4-3 = UO2PO4- - log_k 13.25 - delta_h 0 kJ - -gamma 0 0 - # Id: 8935805 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 13.25 + delta_h 0 kJ + -gamma 0 0 + # Id: 8935805 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Mg+2 + PO4-3 = MgPO4- - log_k 4.654 - delta_h 12.9704 kJ - -gamma 5.4 0 - # Id: 4605800 - # log K source: SCD3.02 (1993 GMa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.20 25.0 + log_k 4.654 + delta_h 12.9704 kJ + -gamma 5.4 0 + # Id: 4605800 + # log K source: SCD3.02 (1993 GMa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.20 25.0 Mg+2 + 2 H+ + PO4-3 = MgH2PO4+ - log_k 21.2561 - delta_h -4.6861 kJ - -gamma 5.4 0 - # Id: 4605801 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 37.0 + log_k 21.2561 + delta_h -4.6861 kJ + -gamma 5.4 0 + # Id: 4605801 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 37.0 Mg+2 + H+ + PO4-3 = MgHPO4 - log_k 15.175 - delta_h -3 kJ - -gamma 0 0 - # Id: 4605802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 15.175 + delta_h -3 kJ + -gamma 0 0 + # Id: 4605802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ca+2 + H+ + PO4-3 = CaHPO4 - log_k 15.035 - delta_h -3 kJ - -gamma 0 0 - # Id: 1505800 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 15.035 + delta_h -3 kJ + -gamma 0 0 + # Id: 1505800 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ca+2 + PO4-3 = CaPO4- - log_k 6.46 - delta_h 12.9704 kJ - -gamma 5.4 0 - # Id: 1505801 - # log K source: SCD3.02 (1993 GMa) - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 6.46 + delta_h 12.9704 kJ + -gamma 5.4 0 + # Id: 1505801 + # log K source: SCD3.02 (1993 GMa) + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Ca+2 + 2 H+ + PO4-3 = CaH2PO4+ - log_k 20.923 - delta_h -6 kJ - -gamma 5.4 0 - # Id: 1505802 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 20.923 + delta_h -6 kJ + -gamma 5.4 0 + # Id: 1505802 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Sr+2 + H+ + PO4-3 = SrHPO4 - log_k 14.8728 - delta_h 0 kJ - -gamma 0 0 - # Id: 8005800 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 + log_k 14.8728 + delta_h 0 kJ + -gamma 0 0 + # Id: 8005800 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 Sr+2 + 2 H+ + PO4-3 = SrH2PO4+ - log_k 20.4019 - delta_h 0 kJ - -gamma 0 0 - # Id: 8005801 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 20.0 + log_k 20.4019 + delta_h 0 kJ + -gamma 0 0 + # Id: 8005801 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 20.0 Na+ + H+ + PO4-3 = NaHPO4- - log_k 13.445 - delta_h 0 kJ - -gamma 5.4 0 - # Id: 5005800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 13.445 + delta_h 0 kJ + -gamma 5.4 0 + # Id: 5005800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 K+ + H+ + PO4-3 = KHPO4- - log_k 13.255 - delta_h 0 kJ - -gamma 5.4 0 - # Id: 4105800 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 13.255 + delta_h 0 kJ + -gamma 5.4 0 + # Id: 4105800 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 H3AsO3 = AsO3-3 + 3 H+ - log_k -34.744 - delta_h 84.726 kJ - -gamma 0 0 - # Id: 3300602 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -34.744 + delta_h 84.726 kJ + -gamma 0 0 + # Id: 3300602 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: H3AsO3 = HAsO3-2 + 2 H+ - log_k -21.33 - delta_h 59.4086 kJ - -gamma 0 0 - # Id: 3300601 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -21.33 + delta_h 59.4086 kJ + -gamma 0 0 + # Id: 3300601 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: H3AsO3 = H2AsO3- + H+ - log_k -9.29 - delta_h 27.41 kJ - -gamma 0 0 - # Id: 3300600 - # log K source: NIST46.4 - # Delta H source: NIST2.1.1 - #T and ionic strength: 0.00 25.0 + log_k -9.29 + delta_h 27.41 kJ + -gamma 0 0 + # Id: 3300600 + # log K source: NIST46.4 + # Delta H source: NIST2.1.1 + #T and ionic strength: 0.00 25.0 H3AsO3 + H+ = H4AsO3+ - log_k -0.305 - delta_h 0 kJ - -gamma 0 0 - # Id: 3300603 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -0.305 + delta_h 0 kJ + -gamma 0 0 + # Id: 3300603 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: H3AsO4 = AsO4-3 + 3 H+ - log_k -20.7 - delta_h 12.9 kJ - -gamma 0 0 - # Id: 3300613 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -20.7 + delta_h 12.9 kJ + -gamma 0 0 + # Id: 3300613 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 H3AsO4 = HAsO4-2 + 2 H+ - log_k -9.2 - delta_h -4.1 kJ - -gamma 0 0 - # Id: 3300612 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -9.2 + delta_h -4.1 kJ + -gamma 0 0 + # Id: 3300612 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 H3AsO4 = H2AsO4- + H+ - log_k -2.24 - delta_h -7.1 kJ - -gamma 0 0 - # Id: 3300611 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -2.24 + delta_h -7.1 kJ + -gamma 0 0 + # Id: 3300611 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Sb(OH)3 + H2O = Sb(OH)4- + H+ - log_k -12.0429 - delta_h 69.8519 kJ - -gamma 0 0 - # Id: 7400020 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: + log_k -12.0429 + delta_h 69.8519 kJ + -gamma 0 0 + # Id: 7400020 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: Sb(OH)3 + H+ = Sb(OH)2+ + H2O - log_k 1.3853 - delta_h 0 kJ - -gamma 0 0 - # Id: 7403302 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: + log_k 1.3853 + delta_h 0 kJ + -gamma 0 0 + # Id: 7403302 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: Sb(OH)3 = HSbO2 + H2O - log_k -0.0105 - delta_h -0.13 kJ - -gamma 0 0 - # Id: 7400021 - # log K source: NIST2.1.1 - # Delta H source: NIST2.1.1 - #T and ionic strength: + log_k -0.0105 + delta_h -0.13 kJ + -gamma 0 0 + # Id: 7400021 + # log K source: NIST2.1.1 + # Delta H source: NIST2.1.1 + #T and ionic strength: Sb(OH)3 = SbO2- + H2O + H+ - log_k -11.8011 - delta_h 70.1866 kJ - -gamma 0 0 - # Id: 7403301 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: + log_k -11.8011 + delta_h 70.1866 kJ + -gamma 0 0 + # Id: 7403301 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: Sb(OH)3 + H+ = SbO+ + 2 H2O - log_k 0.9228 - delta_h 8.2425 kJ - -gamma 0 0 - # Id: 7403300 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: + log_k 0.9228 + delta_h 8.2425 kJ + -gamma 0 0 + # Id: 7403300 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: Sb(OH)6- = SbO3- + 3 H2O - log_k 2.9319 - delta_h 0 kJ - -gamma 0 0 - # Id: 7410021 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: + log_k 2.9319 + delta_h 0 kJ + -gamma 0 0 + # Id: 7410021 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: Sb(OH)6- + 2 H+ = SbO2+ + 4 H2O - log_k 2.3895 - delta_h 0 kJ - -gamma 0 0 - # Id: 7413300 - # log K source: PNL89 - # Delta H source: PNL89 - #T and ionic strength: + log_k 2.3895 + delta_h 0 kJ + -gamma 0 0 + # Id: 7413300 + # log K source: PNL89 + # Delta H source: PNL89 + #T and ionic strength: H+ + CO3-2 = HCO3- - log_k 10.329 - delta_h -14.6 kJ - -gamma 5.4 0 - # Id: 3301400 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 10.329 + delta_h -14.6 kJ + -gamma 5.4 0 + # Id: 3301400 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 2 H+ + CO3-2 = H2CO3 - log_k 16.681 - delta_h -23.76 kJ - -gamma 0 0 - # Id: 3301401 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 16.681 + delta_h -23.76 kJ + -gamma 0 0 + # Id: 3301401 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Pb+2 + 2 CO3-2 = Pb(CO3)2-2 - log_k 9.938 - delta_h 0 kJ - -gamma 0 0 - # Id: 6001400 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k 9.938 + delta_h 0 kJ + -gamma 0 0 + # Id: 6001400 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Pb+2 + CO3-2 = PbCO3 - log_k 6.478 - delta_h 0 kJ - -gamma 0 0 - # Id: 6001401 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k 6.478 + delta_h 0 kJ + -gamma 0 0 + # Id: 6001401 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Pb+2 + CO3-2 + H+ = PbHCO3+ - log_k 13.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 6001402 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 13.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 6001402 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: Zn+2 + CO3-2 = ZnCO3 - log_k 4.76 - delta_h 0 kJ - -gamma 0 0 - # Id: 9501401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 4.76 + delta_h 0 kJ + -gamma 0 0 + # Id: 9501401 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Zn+2 + H+ + CO3-2 = ZnHCO3+ - log_k 11.829 - delta_h 0 kJ - -gamma 0 0 - # Id: 9501400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 11.829 + delta_h 0 kJ + -gamma 0 0 + # Id: 9501400 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2 H+ + CO3-2 = HgCO3 + 2 H2O - log_k 18.272 - delta_h 0 kJ - -gamma 0 0 - # Id: 3611401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k 18.272 + delta_h 0 kJ + -gamma 0 0 + # Id: 3611401 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Hg(OH)2 + 2 H+ + 2 CO3-2 = Hg(CO3)2-2 + 2 H2O - log_k 21.772 - delta_h 0 kJ - -gamma 0 0 - # Id: 3611402 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k 21.772 + delta_h 0 kJ + -gamma 0 0 + # Id: 3611402 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Hg(OH)2 + 3 H+ + CO3-2 = HgHCO3+ + 2 H2O - log_k 22.542 - delta_h 0 kJ - -gamma 0 0 - # Id: 3611403 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k 22.542 + delta_h 0 kJ + -gamma 0 0 + # Id: 3611403 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Cd+2 + CO3-2 = CdCO3 - log_k 4.3578 - delta_h 0 kJ - -gamma 0 0 - # Id: 1601401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 + log_k 4.3578 + delta_h 0 kJ + -gamma 0 0 + # Id: 1601401 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 Cd+2 + H+ + CO3-2 = CdHCO3+ - log_k 10.6863 - delta_h 0 kJ - -gamma 0 0 - # Id: 1601400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 3.00 25.0 + log_k 10.6863 + delta_h 0 kJ + -gamma 0 0 + # Id: 1601400 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 3.00 25.0 Cd+2 + 2 CO3-2 = Cd(CO3)2-2 - log_k 7.2278 - delta_h 0 kJ - -gamma 0 0 - # Id: 1601403 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 20.0 + log_k 7.2278 + delta_h 0 kJ + -gamma 0 0 + # Id: 1601403 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 20.0 Cu+2 + CO3-2 = CuCO3 - log_k 6.77 - delta_h 0 kJ - -gamma 0 0 - # Id: 2311400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 6.77 + delta_h 0 kJ + -gamma 0 0 + # Id: 2311400 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cu+2 + H+ + CO3-2 = CuHCO3+ - log_k 12.129 - delta_h 0 kJ - -gamma 0 0 - # Id: 2311402 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 12.129 + delta_h 0 kJ + -gamma 0 0 + # Id: 2311402 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Cu+2 + 2 CO3-2 = Cu(CO3)2-2 - log_k 10.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2311401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 10.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2311401 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Ni+2 + CO3-2 = NiCO3 - log_k 4.5718 - delta_h 0 kJ - -gamma 0 0 - # Id: 5401401 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.70 25.0 + log_k 4.5718 + delta_h 0 kJ + -gamma 0 0 + # Id: 5401401 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.70 25.0 Ni+2 + H+ + CO3-2 = NiHCO3+ - log_k 12.4199 - delta_h 0 kJ - -gamma 0 0 - # Id: 5401400 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.70 25.0 + log_k 12.4199 + delta_h 0 kJ + -gamma 0 0 + # Id: 5401400 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.70 25.0 Co+2 + CO3-2 = CoCO3 - log_k 4.228 - delta_h 0 kJ - -gamma 0 0 - # Id: 2001400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k 4.228 + delta_h 0 kJ + -gamma 0 0 + # Id: 2001400 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 Co+2 + H+ + CO3-2 = CoHCO3+ - log_k 12.2199 - delta_h 0 kJ - -gamma 0 0 - # Id: 2001401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.70 25.0 + log_k 12.2199 + delta_h 0 kJ + -gamma 0 0 + # Id: 2001401 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.70 25.0 Fe+2 + H+ + CO3-2 = FeHCO3+ - log_k 11.429 - delta_h 0 kJ - -gamma 6 0 - # Id: 2801400 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k 11.429 + delta_h 0 kJ + -gamma 6 0 + # Id: 2801400 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Mn+2 + H+ + CO3-2 = MnHCO3+ - log_k 11.629 - delta_h -10.6 kJ - -gamma 5 0 - # Id: 4701400 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 11.629 + delta_h -10.6 kJ + -gamma 5 0 + # Id: 4701400 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 UO2+2 + CO3-2 = UO2CO3 - log_k 9.6 - delta_h 4 kJ - -gamma 0 0 - # Id: 8931400 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 9.6 + delta_h 4 kJ + -gamma 0 0 + # Id: 8931400 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 UO2+2 + 2 CO3-2 = UO2(CO3)2-2 - log_k 16.9 - delta_h 16 kJ - -gamma 0 0 - # Id: 8931401 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 16.9 + delta_h 16 kJ + -gamma 0 0 + # Id: 8931401 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 UO2+2 + 3 CO3-2 = UO2(CO3)3-4 - log_k 21.6 - delta_h -40 kJ - -gamma 0 0 - # Id: 8931402 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 21.6 + delta_h -40 kJ + -gamma 0 0 + # Id: 8931402 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Be+2 + CO3-2 = BeCO3 - log_k 6.2546 - delta_h 0 kJ - -gamma 0 0 - # Id: 1101401 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 3.00 25.0 + log_k 6.2546 + delta_h 0 kJ + -gamma 0 0 + # Id: 1101401 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 3.00 25.0 Mg+2 + CO3-2 = MgCO3 - log_k 2.92 - delta_h 12 kJ - -gamma 0 0 - # Id: 4601400 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 2.92 + delta_h 12 kJ + -gamma 0 0 + # Id: 4601400 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Mg+2 + H+ + CO3-2 = MgHCO3+ - log_k 11.339 - delta_h -10.6 kJ - -gamma 4 0 - # Id: 4601401 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 11.339 + delta_h -10.6 kJ + -gamma 4 0 + # Id: 4601401 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Ca+2 + H+ + CO3-2 = CaHCO3+ - log_k 11.599 - delta_h 5.4 kJ - -gamma 6 0 - # Id: 1501400 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 11.599 + delta_h 5.4 kJ + -gamma 6 0 + # Id: 1501400 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 CO3-2 + Ca+2 = CaCO3 - log_k 3.2 - delta_h 16 kJ - -gamma 0 0 - # Id: 1501401 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k 3.2 + delta_h 16 kJ + -gamma 0 0 + # Id: 1501401 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 Sr+2 + CO3-2 = SrCO3 - log_k 2.81 - delta_h 20 kJ - -gamma 0 0 - # Id: 8001401 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.81 + delta_h 20 kJ + -gamma 0 0 + # Id: 8001401 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Sr+2 + H+ + CO3-2 = SrHCO3+ - log_k 11.539 - delta_h 10.4 kJ - -gamma 6 0 - # Id: 8001400 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 11.539 + delta_h 10.4 kJ + -gamma 6 0 + # Id: 8001400 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ba+2 + CO3-2 = BaCO3 - log_k 2.71 - delta_h 16 kJ - -gamma 0 0 - # Id: 1001401 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.71 + delta_h 16 kJ + -gamma 0 0 + # Id: 1001401 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ba+2 + H+ + CO3-2 = BaHCO3+ - log_k 11.309 - delta_h 10.4 kJ - -gamma 6 0 - # Id: 1001400 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 11.309 + delta_h 10.4 kJ + -gamma 6 0 + # Id: 1001400 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Na+ + CO3-2 = NaCO3- - log_k 1.27 - delta_h -20.35 kJ - -gamma 5.4 0 - # Id: 5001400 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 - #T and ionic strength: 0.00 25.0 + log_k 1.27 + delta_h -20.35 kJ + -gamma 5.4 0 + # Id: 5001400 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 + #T and ionic strength: 0.00 25.0 Na+ + H+ + CO3-2 = NaHCO3 - log_k 10.079 - delta_h -28.3301 kJ - -gamma 0 0 - # Id: 5001401 - # log K source: NIST46.3 - # Delta H source: NIST2.1.1 - #T and ionic strength: 0.00 25.0 + log_k 10.079 + delta_h -28.3301 kJ + -gamma 0 0 + # Id: 5001401 + # log K source: NIST46.3 + # Delta H source: NIST2.1.1 + #T and ionic strength: 0.00 25.0 H4SiO4 = H2SiO4-2 + 2 H+ - log_k -23.04 - delta_h 61 kJ - -gamma 5.4 0 - # Id: 3307701 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -23.04 + delta_h 61 kJ + -gamma 5.4 0 + # Id: 3307701 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 H4SiO4 = H3SiO4- + H+ - log_k -9.84 - delta_h 20 kJ - -gamma 4 0 - # Id: 3307700 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -9.84 + delta_h 20 kJ + -gamma 4 0 + # Id: 3307700 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 UO2+2 + H4SiO4 = UO2H3SiO4+ + H+ - log_k -1.9111 - delta_h 0 kJ - -gamma 0 0 - # Id: 8937700 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 25.0 + log_k -1.9111 + delta_h 0 kJ + -gamma 0 0 + # Id: 8937700 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 25.0 H3BO3 = H2BO3- + H+ - log_k -9.236 - delta_h 13 kJ - -gamma 2.5 0 - # Id: 3300900 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -9.236 + delta_h 13 kJ + -gamma 2.5 0 + # Id: 3300900 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 2 H3BO3 = H5(BO3)2- + H+ - log_k -9.306 - delta_h 8.4 kJ - -gamma 2.5 0 - # Id: 3300901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -9.306 + delta_h 8.4 kJ + -gamma 2.5 0 + # Id: 3300901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 3 H3BO3 = H8(BO3)3- + H+ - log_k -7.306 - delta_h 29.4 kJ - -gamma 2.5 0 - # Id: 3300902 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -7.306 + delta_h 29.4 kJ + -gamma 2.5 0 + # Id: 3300902 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ag+ + H3BO3 = AgH2BO3 + H+ - log_k -8.036 - delta_h 0 kJ - -gamma 2.5 0 - # Id: 200901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -8.036 + delta_h 0 kJ + -gamma 2.5 0 + # Id: 200901 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Mg+2 + H3BO3 = MgH2BO3+ + H+ - log_k -7.696 - delta_h 13 kJ - -gamma 2.5 0 - # Id: 4600901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -7.696 + delta_h 13 kJ + -gamma 2.5 0 + # Id: 4600901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ca+2 + H3BO3 = CaH2BO3+ + H+ - log_k -7.476 - delta_h 17 kJ - -gamma 2.5 0 - # Id: 1500901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -7.476 + delta_h 17 kJ + -gamma 2.5 0 + # Id: 1500901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Sr+2 + H3BO3 = SrH2BO3+ + H+ - log_k -7.686 - delta_h 17 kJ - -gamma 2.5 0 - # Id: 8000901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -7.686 + delta_h 17 kJ + -gamma 2.5 0 + # Id: 8000901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ba+2 + H3BO3 = BaH2BO3+ + H+ - log_k -7.746 - delta_h 17 kJ - -gamma 2.5 0 - # Id: 1000901 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -7.746 + delta_h 17 kJ + -gamma 2.5 0 + # Id: 1000901 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Na+ + H3BO3 = NaH2BO3 + H+ - log_k -9.036 - delta_h 0 kJ - -gamma 2.5 0 - # Id: 5000901 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -9.036 + delta_h 0 kJ + -gamma 2.5 0 + # Id: 5000901 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 CrO4-2 + H+ = HCrO4- - log_k 6.51 - delta_h 2 kJ - -gamma 0 0 - # Id: 2123300 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 6.51 + delta_h 2 kJ + -gamma 0 0 + # Id: 2123300 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 CrO4-2 + 2 H+ = H2CrO4 - log_k 6.4188 - delta_h 39 kJ - -gamma 0 0 - # Id: 2123301 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 20.0 + log_k 6.4188 + delta_h 39 kJ + -gamma 0 0 + # Id: 2123301 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 20.0 2 CrO4-2 + 2 H+ = Cr2O7-2 + H2O - log_k 14.56 - delta_h -15 kJ - -gamma 0 0 - # Id: 2123302 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 14.56 + delta_h -15 kJ + -gamma 0 0 + # Id: 2123302 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 CrO4-2 + Cl- + 2 H+ = CrO3Cl- + H2O - log_k 7.3086 - delta_h 0 kJ - -gamma 0 0 - # Id: 2121800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 7.3086 + delta_h 0 kJ + -gamma 0 0 + # Id: 2121800 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: CrO4-2 + SO4-2 + 2 H+ = CrO3SO4-2 + H2O - log_k 8.9937 - delta_h 0 kJ - -gamma 0 0 - # Id: 2127320 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 8.9937 + delta_h 0 kJ + -gamma 0 0 + # Id: 2127320 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: CrO4-2 + 4 H+ + PO4-3 = CrO3H2PO4- + H2O - log_k 29.3634 - delta_h 0 kJ - -gamma 0 0 - # Id: 2125800 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 29.3634 + delta_h 0 kJ + -gamma 0 0 + # Id: 2125800 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: CrO4-2 + 3 H+ + PO4-3 = CrO3HPO4-2 + H2O - log_k 26.6806 - delta_h 0 kJ - -gamma 0 0 - # Id: 2125801 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 26.6806 + delta_h 0 kJ + -gamma 0 0 + # Id: 2125801 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: CrO4-2 + Na+ = NaCrO4- - log_k 0.6963 - delta_h 0 kJ - -gamma 0 0 - # Id: 5002120 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k 0.6963 + delta_h 0 kJ + -gamma 0 0 + # Id: 5002120 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: K+ + CrO4-2 = KCrO4- - log_k 0.57 - delta_h 0 kJ - -gamma 0 0 - # Id: 4102120 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 18.0 + log_k 0.57 + delta_h 0 kJ + -gamma 0 0 + # Id: 4102120 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 18.0 MoO4-2 + H+ = HMoO4- - log_k 4.2988 - delta_h 20 kJ - -gamma 0 0 - # Id: 3304801 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 20.0 + log_k 4.2988 + delta_h 20 kJ + -gamma 0 0 + # Id: 3304801 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 20.0 MoO4-2 + 2 H+ = H2MoO4 - log_k 8.1636 - delta_h -26 kJ - -gamma 0 0 - # Id: 3304802 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 20.0 + log_k 8.1636 + delta_h -26 kJ + -gamma 0 0 + # Id: 3304802 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 20.0 7 MoO4-2 + 8 H+ = Mo7O24-6 + 4 H2O - log_k 52.99 - delta_h -228 kJ - -gamma 0 0 - # Id: 3304803 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 52.99 + delta_h -228 kJ + -gamma 0 0 + # Id: 3304803 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 7 MoO4-2 + 9 H+ = HMo7O24-5 + 4 H2O - log_k 59.3768 - delta_h -218 kJ - -gamma 0 0 - # Id: 3304804 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 59.3768 + delta_h -218 kJ + -gamma 0 0 + # Id: 3304804 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 7 MoO4-2 + 10 H+ = H2Mo7O24-4 + 4 H2O - log_k 64.159 - delta_h -215 kJ - -gamma 0 0 - # Id: 3304805 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 64.159 + delta_h -215 kJ + -gamma 0 0 + # Id: 3304805 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 7 MoO4-2 + 11 H+ = H3Mo7O24-3 + 4 H2O - log_k 67.405 - delta_h -217 kJ - -gamma 0 0 - # Id: 3304806 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 1.00 25.0 + log_k 67.405 + delta_h -217 kJ + -gamma 0 0 + # Id: 3304806 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 1.00 25.0 6 MoO4-2 + Al+3 + 6 H+ = AlMo6O21-3 + 3 H2O - log_k 54.9925 - delta_h 0 kJ - -gamma 0 0 - # Id: 304801 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.50 25.0 + log_k 54.9925 + delta_h 0 kJ + -gamma 0 0 + # Id: 304801 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.50 25.0 MoO4-2 + 2 Ag+ = Ag2MoO4 - log_k -0.4219 - delta_h -1.18 kJ - -gamma 0 0 - # Id: 204801 - # log K source: Bard85 - # Delta H source: Bard85 - #T and ionic strength: + log_k -0.4219 + delta_h -1.18 kJ + -gamma 0 0 + # Id: 204801 + # log K source: Bard85 + # Delta H source: Bard85 + #T and ionic strength: VO2+ + 2 H2O = VO4-3 + 4 H+ - log_k -30.2 - delta_h -25 kJ - -gamma 0 0 - # Id: 9033303 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -30.2 + delta_h -25 kJ + -gamma 0 0 + # Id: 9033303 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 VO2+ + 2 H2O = HVO4-2 + 3 H+ - log_k -15.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 9033302 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -15.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 9033302 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 VO2+ + 2 H2O = H2VO4- + 2 H+ - log_k -7.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 9033301 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -7.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 9033301 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 VO2+ + 2 H2O = H3VO4 + H+ - log_k -3.3 - delta_h 44.4759 kJ - -gamma 0 0 - # Id: 9033300 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -3.3 + delta_h 44.4759 kJ + -gamma 0 0 + # Id: 9033300 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: 2 VO2+ + 3 H2O = V2O7-4 + 6 H+ - log_k -31.24 - delta_h -28 kJ - -gamma 0 0 - # Id: 9030020 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -31.24 + delta_h -28 kJ + -gamma 0 0 + # Id: 9030020 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 2 VO2+ + 3 H2O = HV2O7-3 + 5 H+ - log_k -20.67 - delta_h 0 kJ - -gamma 0 0 - # Id: 9030021 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -20.67 + delta_h 0 kJ + -gamma 0 0 + # Id: 9030021 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 2 VO2+ + 3 H2O = H3V2O7- + 3 H+ - log_k -3.79 - delta_h 0 kJ - -gamma 0 0 - # Id: 9030022 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -3.79 + delta_h 0 kJ + -gamma 0 0 + # Id: 9030022 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: 3 VO2+ + 3 H2O = V3O9-3 + 6 H+ - log_k -15.88 - delta_h 0 kJ - -gamma 0 0 - # Id: 9030023 - # log K source: MTQ3.11 - # Delta H source: MTQ3.11 - #T and ionic strength: + log_k -15.88 + delta_h 0 kJ + -gamma 0 0 + # Id: 9030023 + # log K source: MTQ3.11 + # Delta H source: MTQ3.11 + #T and ionic strength: 4 VO2+ + 4 H2O = V4O12-4 + 8 H+ - log_k -20.56 - delta_h -87 kJ - -gamma 0 0 - # Id: 9030024 - # log K source: NIST46.3 - # Delta H source: NIST46.3 - #T and ionic strength: 0.00 25.0 + log_k -20.56 + delta_h -87 kJ + -gamma 0 0 + # Id: 9030024 + # log K source: NIST46.3 + # Delta H source: NIST46.3 + #T and ionic strength: 0.00 25.0 10 VO2+ + 8 H2O = V10O28-6 + 16 H+ - log_k -24.0943 - delta_h 0 kJ - -gamma 0 0 - # Id: 9030025 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 20.0 + log_k -24.0943 + delta_h 0 kJ + -gamma 0 0 + # Id: 9030025 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 20.0 10 VO2+ + 8 H2O = HV10O28-5 + 15 H+ - log_k -15.9076 - delta_h 90.0397 kJ - -gamma 0 0 - # Id: 9030026 - # log K source: NIST46.4 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.10 20.0 + log_k -15.9076 + delta_h 90.0397 kJ + -gamma 0 0 + # Id: 9030026 + # log K source: NIST46.4 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.10 20.0 10 VO2+ + 8 H2O = H2V10O28-4 + 14 H+ - log_k -10.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 9030027 - # log K source: NIST46.3 - # Delta H source: MTQ3.11 - #T and ionic strength: 0.00 25.0 + log_k -10.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 9030027 + # log K source: NIST46.3 + # Delta H source: MTQ3.11 + #T and ionic strength: 0.00 25.0 Benzoate- + H+ = H(Benzoate) - log_k 4.202 - delta_h -0.4602 kJ - -gamma 0 0 - # Id: 3309171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.202 + delta_h -0.4602 kJ + -gamma 0 0 + # Id: 3309171 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Benzoate- + Pb+2 = Pb(Benzoate)+ - log_k 2.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009171 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Benzoate- + Al+3 = Al(Benzoate)+2 - log_k 2.05 - delta_h 0 kJ - -gamma 0 0 - # Id: 309171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.05 + delta_h 0 kJ + -gamma 0 0 + # Id: 309171 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Benzoate- + Al+3 + H2O = AlOH(Benzoate)+ + H+ - log_k -0.56 - delta_h 0 kJ - -gamma 0 0 - # Id: 309172 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k -0.56 + delta_h 0 kJ + -gamma 0 0 + # Id: 309172 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Benzoate- + Zn+2 = Zn(Benzoate)+ - log_k 1.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509171 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 1.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509171 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Benzoate- + Cd+2 = Cd(Benzoate)+ - log_k 1.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609171 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 2 Benzoate- + Cd+2 = Cd(Benzoate)2 - log_k 1.82 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609172 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 1.82 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609172 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Benzoate- + Cu+2 = Cu(Benzoate)+ - log_k 2.19 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.19 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319171 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Benzoate- + Ag+ = Ag(Benzoate) - log_k 0.91 - delta_h 0 kJ - -gamma 0 0 - # Id: 209171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 0.91 + delta_h 0 kJ + -gamma 0 0 + # Id: 209171 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Benzoate- + Ni+2 = Ni(Benzoate)+ - log_k 1.86 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409171 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 1.86 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409171 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Co+2 + Benzoate- = Co(Benzoate)+ - log_k 1.0537 - delta_h 12 kJ - -gamma 0 0 - # Id: 2009171 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 30.0 + log_k 1.0537 + delta_h 12 kJ + -gamma 0 0 + # Id: 2009171 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 30.0 Benzoate- + Mn+2 = Mn(Benzoate)+ - log_k 2.06 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709171 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.06 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709171 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Benzoate- + Mg+2 = Mg(Benzoate)+ - log_k 1.26 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609171 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 1.26 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609171 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Benzoate- + Ca+2 = Ca(Benzoate)+ - log_k 1.55 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509171 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 1.55 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509171 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Phenylacetate- + H+ = H(Phenylacetate) - log_k 4.31 - delta_h 2.1757 kJ - -gamma 0 0 - # Id: 3309181 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.31 + delta_h 2.1757 kJ + -gamma 0 0 + # Id: 3309181 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Phenylacetate- + Zn+2 = Zn(Phenylacetate)+ - log_k 1.57 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509181 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.57 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509181 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Phenylacetate- + Cu+2 = Cu(Phenylacetate)+ - log_k 1.97 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319181 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.97 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319181 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Phenylacetate- = Co(Phenylacetate)+ - log_k 0.591 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009181 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 2.00 25.0 + log_k 0.591 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009181 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 2.00 25.0 Co+2 + 2 Phenylacetate- = Co(Phenylacetate)2 - log_k 0.4765 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009182 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 2.00 25.0 + log_k 0.4765 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009182 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 2.00 25.0 Isophthalate-2 + H+ = H(Isophthalate)- - log_k 4.5 - delta_h 1.6736 kJ - -gamma 0 0 - # Id: 3309201 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.5 + delta_h 1.6736 kJ + -gamma 0 0 + # Id: 3309201 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Isophthalate-2 + 2 H+ = H2(Isophthalate) - log_k 8 - delta_h 1.6736 kJ - -gamma 0 0 - # Id: 3309202 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8 + delta_h 1.6736 kJ + -gamma 0 0 + # Id: 3309202 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Isophthalate-2 + Pb+2 = Pb(Isophthalate) - log_k 2.99 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009201 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.99 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009201 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 2 Isophthalate-2 + Pb+2 = Pb(Isophthalate)2-2 - log_k 4.18 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009202 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.18 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009202 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Isophthalate-2 + Pb+2 + H+ = PbH(Isophthalate)+ - log_k 6.69 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009203 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.69 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009203 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Isophthalate-2 + Cd+2 = Cd(Isophthalate) - log_k 2.15 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609201 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.15 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609201 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 2 Isophthalate-2 + Cd+2 = Cd(Isophthalate)2-2 - log_k 2.99 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609202 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.99 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609202 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Isophthalate-2 + Cd+2 + H+ = CdH(Isophthalate)+ - log_k 5.73 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609203 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.73 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609203 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Isophthalate-2 + Ca+2 = Ca(Isophthalate) - log_k 2 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509200 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509200 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Isophthalate-2 + Ba+2 = Ba(Isophthalate) - log_k 1.55 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009201 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.55 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009201 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Diethylamine = H(Diethylamine)+ - log_k 10.933 - delta_h -53.1368 kJ - -gamma 0 0 - # Id: 3309551 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.933 + delta_h -53.1368 kJ + -gamma 0 0 + # Id: 3309551 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Diethylamine = Zn(Diethylamine)+2 - log_k 2.74 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509551 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 2.74 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509551 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + 2 Diethylamine = Zn(Diethylamine)2+2 - log_k 5.27 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509552 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 5.27 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509552 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + 3 Diethylamine = Zn(Diethylamine)3+2 - log_k 7.71 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509553 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 7.71 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509553 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + 4 Diethylamine = Zn(Diethylamine)4+2 - log_k 9.84 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509554 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 9.84 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509554 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + Diethylamine = Cd(Diethylamine)+2 - log_k 2.73 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609551 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 2.73 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609551 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + 2 Diethylamine = Cd(Diethylamine)2+2 - log_k 4.86 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609552 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 4.86 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609552 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + 3 Diethylamine = Cd(Diethylamine)3+2 - log_k 6.37 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609553 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 6.37 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609553 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + 4 Diethylamine = Cd(Diethylamine)4+2 - log_k 7.32 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609554 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 7.32 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609554 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ag+ + Diethylamine = Ag(Diethylamine)+ - log_k 2.98 - delta_h 0 kJ - -gamma 0 0 - # Id: 209551 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.98 + delta_h 0 kJ + -gamma 0 0 + # Id: 209551 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Diethylamine = Ag(Diethylamine)2+ - log_k 6.38 - delta_h -44.7688 kJ - -gamma 0 0 - # Id: 209552 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.38 + delta_h -44.7688 kJ + -gamma 0 0 + # Id: 209552 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Diethylamine = Ni(Diethylamine)+2 - log_k 2.78 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409551 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 2.78 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409551 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ni+2 + 2 Diethylamine = Ni(Diethylamine)2+2 - log_k 4.97 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409552 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 4.97 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409552 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ni+2 + 3 Diethylamine = Ni(Diethylamine)3+2 - log_k 6.72 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409553 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 6.72 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409553 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ni+2 + 4 Diethylamine = Ni(Diethylamine)4+2 - log_k 7.93 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409554 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 7.93 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409554 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ni+2 + 5 Diethylamine = Ni(Diethylamine)5+2 - log_k 8.87 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409555 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 8.87 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409555 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Butylamine = H(Butylamine)+ - log_k 10.64 - delta_h -58.2831 kJ - -gamma 0 0 - # Id: 3309561 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.64 + delta_h -58.2831 kJ + -gamma 0 0 + # Id: 3309561 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + Butylamine + 2 H+ = Hg(Butylamine)+2 + 2 H2O - log_k 14.84 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619561 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 14.84 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619561 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + 2 Butylamine + 2 H+ = Hg(Butylamine)2+2 + 2 H2O - log_k 24.24 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619562 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 24.24 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619562 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + 3 Butylamine + 2 H+ = Hg(Butylamine)3+2 + 2 H2O - log_k 25.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619563 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 25.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619563 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + 4 Butylamine + 2 H+ = Hg(Butylamine)4+2 + 2 H2O - log_k 26.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619564 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 26.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619564 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Butylamine = Ag(Butylamine)+ - log_k 3.42 - delta_h -16.736 kJ - -gamma 0 0 - # Id: 209561 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.42 + delta_h -16.736 kJ + -gamma 0 0 + # Id: 209561 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Butylamine = Ag(Butylamine)2+ - log_k 7.47 - delta_h -52.7184 kJ - -gamma 0 0 - # Id: 209562 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.47 + delta_h -52.7184 kJ + -gamma 0 0 + # Id: 209562 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Methylamine = H(Methylamine)+ - log_k 10.64 - delta_h -55.2288 kJ - -gamma 0 0 - # Id: 3309581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.64 + delta_h -55.2288 kJ + -gamma 0 0 + # Id: 3309581 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Methylamine = Cd(Methylamine)+2 - log_k 2.75 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.75 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609581 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + 2 Methylamine = Cd(Methylamine)2+2 - log_k 4.81 - delta_h -29.288 kJ - -gamma 0 0 - # Id: 1609582 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.81 + delta_h -29.288 kJ + -gamma 0 0 + # Id: 1609582 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + 3 Methylamine = Cd(Methylamine)3+2 - log_k 5.94 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609583 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.94 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609583 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + 4 Methylamine = Cd(Methylamine)4+2 - log_k 6.55 - delta_h -58.576 kJ - -gamma 0 0 - # Id: 1609584 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.55 + delta_h -58.576 kJ + -gamma 0 0 + # Id: 1609584 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + Methylamine + 2 H+ = Hg(Methylamine)+2 + 2 H2O - log_k 14.76 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 14.76 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619581 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + 2 Methylamine + 2 H+ = Hg(Methylamine)2+2 + 2 H2O - log_k 23.96 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619582 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 23.96 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619582 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + 3 Methylamine + 2 H+ = Hg(Methylamine)3+2 + 2 H2O - log_k 24.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619583 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 24.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619583 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + 4 Methylamine + 2 H+ = Hg(Methylamine)4+2 + 2 H2O - log_k 24.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619584 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 24.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619584 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Methylamine = Cu(Methylamine)+2 - log_k 4.11 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.11 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319581 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 2 Methylamine = Cu(Methylamine)2+2 - log_k 7.51 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319582 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.51 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319582 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 3 Methylamine = Cu(Methylamine)3+2 - log_k 10.21 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319583 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.21 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319583 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 4 Methylamine = Cu(Methylamine)4+2 - log_k 12.08 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319584 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 12.08 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319584 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Methylamine = Ag(Methylamine)+ - log_k 3.07 - delta_h -12.552 kJ - -gamma 0 0 - # Id: 209581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.07 + delta_h -12.552 kJ + -gamma 0 0 + # Id: 209581 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Methylamine = Ag(Methylamine)2+ - log_k 6.89 - delta_h -48.9528 kJ - -gamma 0 0 - # Id: 209582 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.89 + delta_h -48.9528 kJ + -gamma 0 0 + # Id: 209582 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Methylamine = Ni(Methylamine)+2 - log_k 2.23 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409581 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.23 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409581 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Dimethylamine = H(Dimethylamine)+ - log_k 10.774 - delta_h -50.208 kJ - -gamma 0 0 - # Id: 3309591 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.774 + delta_h -50.208 kJ + -gamma 0 0 + # Id: 3309591 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Dimethylamine = Ag(Dimethylamine)2+ - log_k 5.37 - delta_h -40.5848 kJ - -gamma 0 0 - # Id: 209591 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.37 + delta_h -40.5848 kJ + -gamma 0 0 + # Id: 209591 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Dimethylamine = Ni(Dimethylamine)+2 - log_k 1.47 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409591 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.47 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409591 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Hexylamine = H(Hexylamine)+ - log_k 10.63 - delta_h -58.576 kJ - -gamma 0 0 - # Id: 3309611 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.63 + delta_h -58.576 kJ + -gamma 0 0 + # Id: 3309611 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Hexylamine = Ag(Hexylamine)+ - log_k 3.54 - delta_h -25.104 kJ - -gamma 0 0 - # Id: 209611 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.54 + delta_h -25.104 kJ + -gamma 0 0 + # Id: 209611 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Hexylamine = Ag(Hexylamine)2+ - log_k 7.55 - delta_h -53.1368 kJ - -gamma 0 0 - # Id: 209612 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.55 + delta_h -53.1368 kJ + -gamma 0 0 + # Id: 209612 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Ethylenediamine = H(Ethylenediamine)+ - log_k 9.928 - delta_h -49.7896 kJ - -gamma 0 0 - # Id: 3309631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.928 + delta_h -49.7896 kJ + -gamma 0 0 + # Id: 3309631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 2 H+ + Ethylenediamine = H2(Ethylenediamine)+2 - log_k 16.776 - delta_h -95.3952 kJ - -gamma 0 0 - # Id: 3309632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 16.776 + delta_h -95.3952 kJ + -gamma 0 0 + # Id: 3309632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Ethylenediamine = Pb(Ethylenediamine)+2 - log_k 5.04 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.04 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + 2 Ethylenediamine = Pb(Ethylenediamine)2+2 - log_k 8.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Ethylenediamine = Zn(Ethylenediamine)+2 - log_k 5.66 - delta_h -29.288 kJ - -gamma 0 0 - # Id: 9509631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.66 + delta_h -29.288 kJ + -gamma 0 0 + # Id: 9509631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + 2 Ethylenediamine = Zn(Ethylenediamine)2+2 - log_k 10.6 - delta_h -48.116 kJ - -gamma 0 0 - # Id: 9509632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.6 + delta_h -48.116 kJ + -gamma 0 0 + # Id: 9509632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + 3 Ethylenediamine = Zn(Ethylenediamine)3+2 - log_k 13.9 - delta_h -71.5464 kJ - -gamma 0 0 - # Id: 9509633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 13.9 + delta_h -71.5464 kJ + -gamma 0 0 + # Id: 9509633 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Ethylenediamine = Cd(Ethylenediamine)+2 - log_k 5.41 - delta_h -28.4512 kJ - -gamma 0 0 - # Id: 1609631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.41 + delta_h -28.4512 kJ + -gamma 0 0 + # Id: 1609631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + 2 Ethylenediamine = Cd(Ethylenediamine)2+2 - log_k 9.9 - delta_h -55.6472 kJ - -gamma 0 0 - # Id: 1609632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.9 + delta_h -55.6472 kJ + -gamma 0 0 + # Id: 1609632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + 3 Ethylenediamine = Cd(Ethylenediamine)3+2 - log_k 11.6 - delta_h -82.4248 kJ - -gamma 0 0 - # Id: 1609633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 11.6 + delta_h -82.4248 kJ + -gamma 0 0 + # Id: 1609633 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + Ethylenediamine + 2 H+ = Hg(Ethylenediamine)+2 + 2 H2O - log_k 20.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 20.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + 2 Ethylenediamine + 2 H+ = Hg(Ethylenediamine)2+2 + 2 H2O - log_k 29.3 - delta_h -173.218 kJ - -gamma 0 0 - # Id: 3619632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 29.3 + delta_h -173.218 kJ + -gamma 0 0 + # Id: 3619632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + 2 Ethylenediamine + 3 H+ = HgH(Ethylenediamine)2+3 + 2 H2O - log_k 34.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 34.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619633 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + 2 Ethylenediamine = Cu(Ethylenediamine)2+ - log_k 11.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 11.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Ethylenediamine = Cu(Ethylenediamine)+2 - log_k 10.5 - delta_h -52.7184 kJ - -gamma 0 0 - # Id: 2319631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.5 + delta_h -52.7184 kJ + -gamma 0 0 + # Id: 2319631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 2 Ethylenediamine = Cu(Ethylenediamine)2+2 - log_k 19.6 - delta_h -105.437 kJ - -gamma 0 0 - # Id: 2319632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 19.6 + delta_h -105.437 kJ + -gamma 0 0 + # Id: 2319632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Ethylenediamine = Ag(Ethylenediamine)+ - log_k 4.6 - delta_h -48.9528 kJ - -gamma 0 0 - # Id: 209631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.6 + delta_h -48.9528 kJ + -gamma 0 0 + # Id: 209631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Ethylenediamine = Ag(Ethylenediamine)2+ - log_k 7.5 - delta_h -52.3 kJ - -gamma 0 0 - # Id: 209632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.5 + delta_h -52.3 kJ + -gamma 0 0 + # Id: 209632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Ethylenediamine + H+ = AgH(Ethylenediamine)+2 - log_k 11.99 - delta_h -75.312 kJ - -gamma 0 0 - # Id: 209633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 11.99 + delta_h -75.312 kJ + -gamma 0 0 + # Id: 209633 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 2 Ag+ + Ethylenediamine = Ag2(Ethylenediamine)+2 - log_k 6.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 209634 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 209634 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 2 Ag+ + 2 Ethylenediamine = Ag2(Ethylenediamine)2+2 - log_k 12.7 - delta_h -97.0688 kJ - -gamma 0 0 - # Id: 209635 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 12.7 + delta_h -97.0688 kJ + -gamma 0 0 + # Id: 209635 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Ethylenediamine + 2 H+ = Ag(HEthylenediamine)2+3 - log_k 24 - delta_h -150.206 kJ - -gamma 0 0 - # Id: 209636 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 24 + delta_h -150.206 kJ + -gamma 0 0 + # Id: 209636 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Ethylenediamine + H+ = AgH(Ethylenediamine)2+2 - log_k 8.4 - delta_h -47.6976 kJ - -gamma 0 0 - # Id: 209637 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.4 + delta_h -47.6976 kJ + -gamma 0 0 + # Id: 209637 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Ethylenediamine = Ni(Ethylenediamine)+2 - log_k 7.32 - delta_h -37.656 kJ - -gamma 0 0 - # Id: 5409631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.32 + delta_h -37.656 kJ + -gamma 0 0 + # Id: 5409631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 2 Ethylenediamine = Ni(Ethylenediamine)2+2 - log_k 13.5 - delta_h -76.5672 kJ - -gamma 0 0 - # Id: 5409632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 13.5 + delta_h -76.5672 kJ + -gamma 0 0 + # Id: 5409632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 3 Ethylenediamine = Ni(Ethylenediamine)3+2 - log_k 17.6 - delta_h -117.152 kJ - -gamma 0 0 - # Id: 5409633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 17.6 + delta_h -117.152 kJ + -gamma 0 0 + # Id: 5409633 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Ethylenediamine = Co(Ethylenediamine)+2 - log_k 5.5 - delta_h -28 kJ - -gamma 0 0 - # Id: 2009631 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 5.5 + delta_h -28 kJ + -gamma 0 0 + # Id: 2009631 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Co+2 + 2 Ethylenediamine = Co(Ethylenediamine)2+2 - log_k 10.1 - delta_h -58.5 kJ - -gamma 0 0 - # Id: 2009632 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 10.1 + delta_h -58.5 kJ + -gamma 0 0 + # Id: 2009632 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Co+2 + 3 Ethylenediamine = Co(Ethylenediamine)3+2 - log_k 13.2 - delta_h -92.8 kJ - -gamma 0 0 - # Id: 2009633 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 13.2 + delta_h -92.8 kJ + -gamma 0 0 + # Id: 2009633 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Co+3 + 2 Ethylenediamine = Co(Ethylenediamine)2+3 - log_k 34.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 2019631 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 25.0 + log_k 34.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 2019631 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 25.0 Co+3 + 3 Ethylenediamine = Co(Ethylenediamine)3+3 - log_k 48.69 - delta_h 0 kJ - -gamma 0 0 - # Id: 2019632 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.50 30.0 + log_k 48.69 + delta_h 0 kJ + -gamma 0 0 + # Id: 2019632 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.50 30.0 Fe+2 + Ethylenediamine = Fe(Ethylenediamine)+2 - log_k 4.26 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.26 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + 2 Ethylenediamine = Fe(Ethylenediamine)2+2 - log_k 7.73 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.73 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + 3 Ethylenediamine = Fe(Ethylenediamine)3+2 - log_k 10.17 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809633 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.17 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809633 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Ethylenediamine = Mn(Ethylenediamine)+2 - log_k 2.74 - delta_h -11.7152 kJ - -gamma 0 0 - # Id: 4709631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.74 + delta_h -11.7152 kJ + -gamma 0 0 + # Id: 4709631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + 2 Ethylenediamine = Mn(Ethylenediamine)2+2 - log_k 4.8 - delta_h -25.104 kJ - -gamma 0 0 - # Id: 4709632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.8 + delta_h -25.104 kJ + -gamma 0 0 + # Id: 4709632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cr(OH)2+ + 2 Ethylenediamine + 2 H+ = Cr(Ethylenediamine)2+3 + 2 H2O - log_k 22.57 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 22.57 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cr(OH)2+ + 3 Ethylenediamine + 2 H+ = Cr(Ethylenediamine)3+3 + 2 H2O - log_k 29 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119632 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 29 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119632 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Ethylenediamine = Mg(Ethylenediamine)+2 - log_k 0.37 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 0.37 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Ethylenediamine = Ca(Ethylenediamine)+2 - log_k 0.11 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509631 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 0.11 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509631 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Propylamine = H(Propylamine)+ - log_k 10.566 - delta_h -57.53 kJ - -gamma 0 0 - # Id: 3309641 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.566 + delta_h -57.53 kJ + -gamma 0 0 + # Id: 3309641 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Propylamine = Zn(Propylamine)+2 - log_k 2.42 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509641 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 2.42 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509641 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + 2 Propylamine = Zn(Propylamine)2+2 - log_k 4.85 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509642 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 4.85 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509642 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + 3 Propylamine = Zn(Propylamine)3+2 - log_k 7.38 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509643 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 7.38 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509643 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + 4 Propylamine = Zn(Propylamine)4+2 - log_k 9.49 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509644 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 9.49 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509644 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + Propylamine = Cd(Propylamine)+2 - log_k 2.62 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609641 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 2.62 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609641 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + 2 Propylamine = Cd(Propylamine)2+2 - log_k 4.64 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609642 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 4.64 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609642 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + 3 Propylamine = Cd(Propylamine)3+2 - log_k 6.03 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609643 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 6.03 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609643 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ag+ + Propylamine = Ag(Propylamine)+ - log_k 3.45 - delta_h -12.552 kJ - -gamma 0 0 - # Id: 209641 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.45 + delta_h -12.552 kJ + -gamma 0 0 + # Id: 209641 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Propylamine = Ag(Propylamine)2+ - log_k 7.44 - delta_h -53.1368 kJ - -gamma 0 0 - # Id: 209642 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.44 + delta_h -53.1368 kJ + -gamma 0 0 + # Id: 209642 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Propylamine = Ni(Propylamine)+2 - log_k 2.81 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409641 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 2.81 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409641 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ni+2 + 2 Propylamine = Ni(Propylamine)2+2 - log_k 5.02 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409642 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 5.02 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409642 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ni+2 + 3 Propylamine = Ni(Propylamine)3+2 - log_k 6.79 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409643 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 6.79 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409643 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ni+2 + 4 Propylamine = Ni(Propylamine)4+2 - log_k 8.31 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409644 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 8.31 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409644 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Isopropylamine = H(Isopropylamine)+ - log_k 10.67 - delta_h -58.3668 kJ - -gamma 0 0 - # Id: 3309651 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.67 + delta_h -58.3668 kJ + -gamma 0 0 + # Id: 3309651 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Isopropylamine = Zn(Isopropylamine)+2 - log_k 2.37 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509651 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 2.37 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509651 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + 2 Isopropylamine = Zn(Isopropylamine)2+2 - log_k 4.67 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509652 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 4.67 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509652 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + 3 Isopropylamine = Zn(Isopropylamine)3+2 - log_k 7.14 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509653 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 7.14 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509653 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + 4 Isopropylamine = Zn(Isopropylamine)4+2 - log_k 9.44 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509654 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 9.44 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509654 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + Isopropylamine = Cd(Isopropylamine)+2 - log_k 2.55 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609651 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 2.55 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609651 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + 2 Isopropylamine = Cd(Isopropylamine)2+2 - log_k 4.57 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609652 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 4.57 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609652 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + 3 Isopropylamine = Cd(Isopropylamine)3+2 - log_k 6.07 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609653 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 6.07 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609653 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + 4 Isopropylamine = Cd(Isopropylamine)4+2 - log_k 6.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609654 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 6.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609654 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Hg(OH)2 + Isopropylamine + 2 H+ = Hg(Isopropylamine)+2 + 2 H2O - log_k 14.85 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619651 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 14.85 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619651 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + 2 Isopropylamine + 2 H+ = Hg(Isopropylamine)2+2 + 2 H2O - log_k 24.37 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619652 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 24.37 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619652 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Isopropylamine = Ag(Isopropylamine)+ - log_k 3.67 - delta_h -23.8488 kJ - -gamma 0 0 - # Id: 209651 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.67 + delta_h -23.8488 kJ + -gamma 0 0 + # Id: 209651 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Isopropylamine = Ag(Isopropylamine)2+ - log_k 7.77 - delta_h -59.8312 kJ - -gamma 0 0 - # Id: 209652 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.77 + delta_h -59.8312 kJ + -gamma 0 0 + # Id: 209652 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Isopropylamine = Ni(Isopropylamine)+2 - log_k 2.71 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409651 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 2.71 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409651 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ni+2 + 2 Isopropylamine = Ni(Isopropylamine)2+2 - log_k 4.86 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409652 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 4.86 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409652 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ni+2 + 3 Isopropylamine = Ni(Isopropylamine)3+2 - log_k 6.57 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409653 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 6.57 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409653 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ni+2 + 4 Isopropylamine = Ni(Isopropylamine)4+2 - log_k 7.83 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409654 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 7.83 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409654 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ni+2 + 5 Isopropylamine = Ni(Isopropylamine)5+2 - log_k 8.43 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409655 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 8.43 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409655 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Trimethylamine = H(Trimethylamine)+ - log_k 9.8 - delta_h -36.8192 kJ - -gamma 0 0 - # Id: 3309661 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.8 + delta_h -36.8192 kJ + -gamma 0 0 + # Id: 3309661 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Trimethylamine = Ag(Trimethylamine)+ - log_k 1.701 - delta_h 0 kJ - -gamma 0 0 - # Id: 209661 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 1.701 + delta_h 0 kJ + -gamma 0 0 + # Id: 209661 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Citrate-3 = H(Citrate)-2 - log_k 6.396 - delta_h 3.3472 kJ - -gamma 0 0 - # Id: 3309671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.396 + delta_h 3.3472 kJ + -gamma 0 0 + # Id: 3309671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 2 H+ + Citrate-3 = H2(Citrate)- - log_k 11.157 - delta_h 1.297 kJ - -gamma 0 0 - # Id: 3309672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 11.157 + delta_h 1.297 kJ + -gamma 0 0 + # Id: 3309672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 3 H+ + Citrate-3 = H3(Citrate) - log_k 14.285 - delta_h -2.7614 kJ - -gamma 0 0 - # Id: 3309673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 14.285 + delta_h -2.7614 kJ + -gamma 0 0 + # Id: 3309673 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Citrate-3 = Pb(Citrate)- - log_k 7.27 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009671 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 7.27 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009671 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Pb+2 + 2 Citrate-3 = Pb(Citrate)2-4 - log_k 6.53 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.53 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Citrate-3 = Al(Citrate) - log_k 9.97 - delta_h 0 kJ - -gamma 0 0 - # Id: 309671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.97 + delta_h 0 kJ + -gamma 0 0 + # Id: 309671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + 2 Citrate-3 = Al(Citrate)2-3 - log_k 14.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 309672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 14.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 309672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Citrate-3 + H+ = AlH(Citrate)+ - log_k 12.85 - delta_h 0 kJ - -gamma 0 0 - # Id: 309673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 12.85 + delta_h 0 kJ + -gamma 0 0 + # Id: 309673 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Tl+ + Citrate-3 = Tl(Citrate)-2 - log_k 1.48 - delta_h 0 kJ - -gamma 0 0 - # Id: 8709671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.48 + delta_h 0 kJ + -gamma 0 0 + # Id: 8709671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Citrate-3 = Zn(Citrate)- - log_k 6.21 - delta_h 8.368 kJ - -gamma 0 0 - # Id: 9509671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.21 + delta_h 8.368 kJ + -gamma 0 0 + # Id: 9509671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + 2 Citrate-3 = Zn(Citrate)2-4 - log_k 7.4 - delta_h 25.104 kJ - -gamma 0 0 - # Id: 9509672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.4 + delta_h 25.104 kJ + -gamma 0 0 + # Id: 9509672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Citrate-3 + H+ = ZnH(Citrate) - log_k 10.2 - delta_h 3.3472 kJ - -gamma 0 0 - # Id: 9509673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.2 + delta_h 3.3472 kJ + -gamma 0 0 + # Id: 9509673 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Citrate-3 + 2 H+ = ZnH2(Citrate)+ - log_k 12.84 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509674 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 12.84 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509674 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + Citrate-3 = Cd(Citrate)- - log_k 4.98 - delta_h 8.368 kJ - -gamma 0 0 - # Id: 1609671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.98 + delta_h 8.368 kJ + -gamma 0 0 + # Id: 1609671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Citrate-3 + H+ = CdH(Citrate) - log_k 9.44 - delta_h 3.3472 kJ - -gamma 0 0 - # Id: 1609672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.44 + delta_h 3.3472 kJ + -gamma 0 0 + # Id: 1609672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Citrate-3 + 2 H+ = CdH2(Citrate)+ - log_k 12.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 12.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609673 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + 2 Citrate-3 = Cd(Citrate)2-4 - log_k 5.9 - delta_h 20.92 kJ - -gamma 0 0 - # Id: 1609674 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.9 + delta_h 20.92 kJ + -gamma 0 0 + # Id: 1609674 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + Citrate-3 + 2 H+ = Hg(Citrate)- + 2 H2O - log_k 18.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 18.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Citrate-3 = Cu(Citrate)- - log_k 7.57 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319671 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 7.57 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319671 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cu+2 + 2 Citrate-3 = Cu(Citrate)2-4 - log_k 8.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319672 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 8.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319672 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cu+2 + Citrate-3 + H+ = CuH(Citrate) - log_k 10.87 - delta_h 11.7152 kJ - -gamma 0 0 - # Id: 2319673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.87 + delta_h 11.7152 kJ + -gamma 0 0 + # Id: 2319673 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Citrate-3 + 2 H+ = CuH2(Citrate)+ - log_k 13.23 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319674 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 13.23 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319674 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: 2 Cu+2 + 2 Citrate-3 = Cu2(Citrate)2-2 - log_k 16.9 - delta_h 41.84 kJ - -gamma 0 0 - # Id: 2319675 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 16.9 + delta_h 41.84 kJ + -gamma 0 0 + # Id: 2319675 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Citrate-3 = Ni(Citrate)- - log_k 6.59 - delta_h 16.736 kJ - -gamma 0 0 - # Id: 5409671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.59 + delta_h 16.736 kJ + -gamma 0 0 + # Id: 5409671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Citrate-3 + H+ = NiH(Citrate) - log_k 10.5 - delta_h 15.8992 kJ - -gamma 0 0 - # Id: 5409672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.5 + delta_h 15.8992 kJ + -gamma 0 0 + # Id: 5409672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Citrate-3 + 2 H+ = NiH2(Citrate)+ - log_k 13.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 13.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409673 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 2 Citrate-3 = Ni(Citrate)2-4 - log_k 8.77 - delta_h 12.552 kJ - -gamma 0 0 - # Id: 5409674 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.77 + delta_h 12.552 kJ + -gamma 0 0 + # Id: 5409674 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 2 Citrate-3 + H+ = NiH(Citrate)2-3 - log_k 14.9 - delta_h 32.6352 kJ - -gamma 0 0 - # Id: 5409675 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 14.9 + delta_h 32.6352 kJ + -gamma 0 0 + # Id: 5409675 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Citrate-3 = Co(Citrate)- - log_k 6.1867 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009671 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 6.1867 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009671 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Co+2 + H+ + Citrate-3 = CoHCitrate - log_k 10.4438 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009672 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 10.4438 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009672 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Co+2 + 2 H+ + Citrate-3 = CoH2Citrate+ - log_k 12.7859 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009673 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 + log_k 12.7859 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009673 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 Fe+2 + Citrate-3 = Fe(Citrate)- - log_k 6.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + Citrate-3 + H+ = FeH(Citrate) - log_k 10.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Citrate-3 = Fe(Citrate) - log_k 13.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 13.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Citrate-3 + H+ = FeH(Citrate)+ - log_k 14.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 14.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Citrate-3 = Mn(Citrate)- - log_k 4.28 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709671 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 4.28 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709671 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Mn+2 + Citrate-3 + H+ = MnH(Citrate) - log_k 9.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Be+2 + Citrate-3 = Be(Citrate)- - log_k 5.534 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109671 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 25.0 + log_k 5.534 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109671 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 25.0 Be+2 + H+ + Citrate-3 = BeH(Citrate) - log_k 9.442 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109672 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 25.0 + log_k 9.442 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109672 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 25.0 Ca+2 + Citrate-3 = Ca(Citrate)- - log_k 4.87 - delta_h -8.368 kJ - -gamma 0 0 - # Id: 1509671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.87 + delta_h -8.368 kJ + -gamma 0 0 + # Id: 1509671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Citrate-3 + H+ = CaH(Citrate) - log_k 9.26 - delta_h -0.8368 kJ - -gamma 0 0 - # Id: 1509672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.26 + delta_h -0.8368 kJ + -gamma 0 0 + # Id: 1509672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Citrate-3 + 2 H+ = CaH2(Citrate)+ - log_k 12.257 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509673 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 12.257 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509673 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Mg+2 + Citrate-3 = Mg(Citrate)- - log_k 4.89 - delta_h 8.368 kJ - -gamma 0 0 - # Id: 4609671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.89 + delta_h 8.368 kJ + -gamma 0 0 + # Id: 4609671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Citrate-3 + H+ = MgH(Citrate) - log_k 8.91 - delta_h 3.3472 kJ - -gamma 0 0 - # Id: 4609672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.91 + delta_h 3.3472 kJ + -gamma 0 0 + # Id: 4609672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Citrate-3 + 2 H+ = MgH2(Citrate)+ - log_k 12.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609673 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 12.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609673 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Sr+2 + Citrate-3 = Sr(Citrate)- - log_k 4.3367 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009671 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 4.3367 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009671 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Sr+2 + H+ + Citrate-3 = SrH(Citrate) - log_k 8.9738 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009672 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 8.9738 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009672 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Sr+2 + 2 H+ + Citrate-3 = SrH2(Citrate)+ - log_k 12.4859 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009673 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 12.4859 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009673 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Ba+2 + Citrate-3 = Ba(Citrate)- - log_k 4.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ba+2 + Citrate-3 + H+ = BaH(Citrate) - log_k 8.74 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009672 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.74 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009672 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ba+2 + Citrate-3 + 2 H+ = BaH2(Citrate)+ - log_k 12.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009673 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 12.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009673 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Na+ + Citrate-3 = Na(Citrate)-2 - log_k 1.03 - delta_h -2.8033 kJ - -gamma 0 0 - # Id: 5009671 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 1.03 + delta_h -2.8033 kJ + -gamma 0 0 + # Id: 5009671 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: 2 Na+ + Citrate-3 = Na2(Citrate)- - log_k 1.5 - delta_h -5.1045 kJ - -gamma 0 0 - # Id: 5009672 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 1.5 + delta_h -5.1045 kJ + -gamma 0 0 + # Id: 5009672 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Na+ + Citrate-3 + H+ = NaH(Citrate)- - log_k 6.45 - delta_h -3.5982 kJ - -gamma 0 0 - # Id: 5009673 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 6.45 + delta_h -3.5982 kJ + -gamma 0 0 + # Id: 5009673 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: K+ + Citrate-3 = K(Citrate)-2 - log_k 1.1 - delta_h 5.4392 kJ - -gamma 0 0 - # Id: 4109671 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.1 + delta_h 5.4392 kJ + -gamma 0 0 + # Id: 4109671 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Nta-3 = H(Nta)-2 - log_k 10.278 - delta_h -18.828 kJ - -gamma 0 0 - # Id: 3309681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.278 + delta_h -18.828 kJ + -gamma 0 0 + # Id: 3309681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 2 H+ + Nta-3 = H2(Nta)- - log_k 13.22 - delta_h -17.9912 kJ - -gamma 0 0 - # Id: 3309682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 13.22 + delta_h -17.9912 kJ + -gamma 0 0 + # Id: 3309682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 3 H+ + Nta-3 = H3(Nta) - log_k 15.22 - delta_h -16.3176 kJ - -gamma 0 0 - # Id: 3309683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 15.22 + delta_h -16.3176 kJ + -gamma 0 0 + # Id: 3309683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 4 H+ + Nta-3 = H4(Nta)+ - log_k 16.22 - delta_h -16.3176 kJ - -gamma 0 0 - # Id: 3309684 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 16.22 + delta_h -16.3176 kJ + -gamma 0 0 + # Id: 3309684 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Nta-3 = Pb(Nta)- - log_k 12.7 - delta_h -15.8992 kJ - -gamma 0 0 - # Id: 6009681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 12.7 + delta_h -15.8992 kJ + -gamma 0 0 + # Id: 6009681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Nta-3 + H+ = PbH(Nta) - log_k 15.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 15.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Nta-3 = Al(Nta) - log_k 13.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 309681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 13.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 309681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Nta-3 + H+ = AlH(Nta)+ - log_k 15.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 309682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 15.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 309682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Nta-3 + H2O = AlOH(Nta)- + H+ - log_k 8 - delta_h 0 kJ - -gamma 0 0 - # Id: 309683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8 + delta_h 0 kJ + -gamma 0 0 + # Id: 309683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Tl+ + Nta-3 = Tl(Nta)-2 - log_k 5.39 - delta_h 0 kJ - -gamma 0 0 - # Id: 8709681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.39 + delta_h 0 kJ + -gamma 0 0 + # Id: 8709681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Nta-3 = Zn(Nta)- - log_k 11.95 - delta_h -3.7656 kJ - -gamma 0 0 - # Id: 9509681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 11.95 + delta_h -3.7656 kJ + -gamma 0 0 + # Id: 9509681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + 2 Nta-3 = Zn(Nta)2-4 - log_k 14.88 - delta_h -15.0624 kJ - -gamma 0 0 - # Id: 9509682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 14.88 + delta_h -15.0624 kJ + -gamma 0 0 + # Id: 9509682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Nta-3 + H2O = ZnOH(Nta)-2 + H+ - log_k 1.46 - delta_h 46.4424 kJ - -gamma 0 0 - # Id: 9509683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.46 + delta_h 46.4424 kJ + -gamma 0 0 + # Id: 9509683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Nta-3 = Cd(Nta)- - log_k 11.07 - delta_h -16.736 kJ - -gamma 0 0 - # Id: 1609681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 11.07 + delta_h -16.736 kJ + -gamma 0 0 + # Id: 1609681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + 2 Nta-3 = Cd(Nta)2-4 - log_k 15.03 - delta_h -38.0744 kJ - -gamma 0 0 - # Id: 1609682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 15.03 + delta_h -38.0744 kJ + -gamma 0 0 + # Id: 1609682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Nta-3 + H2O = CdOH(Nta)-2 + H+ - log_k -0.61 - delta_h 29.288 kJ - -gamma 0 0 - # Id: 1609683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k -0.61 + delta_h 29.288 kJ + -gamma 0 0 + # Id: 1609683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + Nta-3 + 2 H+ = Hg(Nta)- + 2 H2O - log_k 21.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 21.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Nta-3 = Cu(Nta)- - log_k 14.4 - delta_h -7.9496 kJ - -gamma 0 0 - # Id: 2319681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 14.4 + delta_h -7.9496 kJ + -gamma 0 0 + # Id: 2319681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 2 Nta-3 = Cu(Nta)2-4 - log_k 18.1 - delta_h -37.2376 kJ - -gamma 0 0 - # Id: 2319682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 18.1 + delta_h -37.2376 kJ + -gamma 0 0 + # Id: 2319682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Nta-3 + H+ = CuH(Nta) - log_k 16.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 16.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Nta-3 + H2O = CuOH(Nta)-2 + H+ - log_k 4.8 - delta_h 25.5224 kJ - -gamma 0 0 - # Id: 2319684 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.8 + delta_h 25.5224 kJ + -gamma 0 0 + # Id: 2319684 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Nta-3 = Ag(Nta)-2 - log_k 6 - delta_h -26.3592 kJ - -gamma 0 0 - # Id: 209681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6 + delta_h -26.3592 kJ + -gamma 0 0 + # Id: 209681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Nta-3 = Ni(Nta)- - log_k 12.79 - delta_h -10.0416 kJ - -gamma 0 0 - # Id: 5409681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 12.79 + delta_h -10.0416 kJ + -gamma 0 0 + # Id: 5409681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 2 Nta-3 = Ni(Nta)2-4 - log_k 16.96 - delta_h -32.6352 kJ - -gamma 0 0 - # Id: 5409682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 16.96 + delta_h -32.6352 kJ + -gamma 0 0 + # Id: 5409682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Nta-3 + H2O = NiOH(Nta)-2 + H+ - log_k 1.5 - delta_h 15.0624 kJ - -gamma 0 0 - # Id: 5409683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.5 + delta_h 15.0624 kJ + -gamma 0 0 + # Id: 5409683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Nta-3 = Co(Nta)- - log_k 11.6667 - delta_h -0.4 kJ - -gamma 0 0 - # Id: 2009681 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 11.6667 + delta_h -0.4 kJ + -gamma 0 0 + # Id: 2009681 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Co+2 + 2 Nta-3 = Co(Nta)2-4 - log_k 14.9734 - delta_h -20 kJ - -gamma 0 0 - # Id: 2009682 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 14.9734 + delta_h -20 kJ + -gamma 0 0 + # Id: 2009682 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Co+2 + Nta-3 + H2O = CoOH(Nta)-2 + H+ - log_k 0.4378 - delta_h 45.6 kJ - -gamma 0 0 - # Id: 2009683 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 0.4378 + delta_h 45.6 kJ + -gamma 0 0 + # Id: 2009683 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Fe+2 + Nta-3 = Fe(Nta)- - log_k 10.19 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.19 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + 2 Nta-3 = Fe(Nta)2-4 - log_k 12.62 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 12.62 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + Nta-3 + H+ = FeH(Nta) - log_k 12.29 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 12.29 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + Nta-3 + H2O = FeOH(Nta)-2 + H+ - log_k -1.06 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809684 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k -1.06 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809684 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Nta-3 = Fe(Nta) - log_k 17.8 - delta_h 13.3888 kJ - -gamma 0 0 - # Id: 2819681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 17.8 + delta_h 13.3888 kJ + -gamma 0 0 + # Id: 2819681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + 2 Nta-3 = Fe(Nta)2-3 - log_k 25.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 25.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Nta-3 + H2O = FeOH(Nta)- + H+ - log_k 13.23 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819683 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 13.23 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819683 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Nta-3 = Mn(Nta)- - log_k 8.573 - delta_h 5.8576 kJ - -gamma 0 0 - # Id: 4709681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.573 + delta_h 5.8576 kJ + -gamma 0 0 + # Id: 4709681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + 2 Nta-3 = Mn(Nta)2-4 - log_k 11.58 - delta_h -17.1544 kJ - -gamma 0 0 - # Id: 4709682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 11.58 + delta_h -17.1544 kJ + -gamma 0 0 + # Id: 4709682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cr(OH)2+ + Nta-3 + 2 H+ = Cr(Nta) + 2 H2O - log_k 21.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119681 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 21.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119681 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cr(OH)2+ + 2 Nta-3 + 2 H+ = Cr(Nta)2-3 + 2 H2O - log_k 29.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119682 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 29.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119682 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: MoO4-2 + 2 H+ + Nta-3 = MoO3(Nta)-3 + H2O - log_k 19.5434 - delta_h -69 kJ - -gamma 0 0 - # Id: 4809681 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 19.5434 + delta_h -69 kJ + -gamma 0 0 + # Id: 4809681 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 MoO4-2 + 3 H+ + Nta-3 = MoO3H(Nta)-2 + H2O - log_k 23.3954 - delta_h -71 kJ - -gamma 0 0 - # Id: 4809682 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 1.00 25.0 + log_k 23.3954 + delta_h -71 kJ + -gamma 0 0 + # Id: 4809682 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 1.00 25.0 MoO4-2 + 4 H+ + Nta-3 = MoO3H2(Nta)- + H2O - log_k 25.3534 - delta_h -71 kJ - -gamma 0 0 - # Id: 4809683 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 1.00 25.0 + log_k 25.3534 + delta_h -71 kJ + -gamma 0 0 + # Id: 4809683 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 1.00 25.0 Be+2 + Nta-3 = Be(Nta)- - log_k 9.0767 - delta_h 25 kJ - -gamma 0 0 - # Id: 1109681 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 9.0767 + delta_h 25 kJ + -gamma 0 0 + # Id: 1109681 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Mg+2 + Nta-3 = Mg(Nta)- - log_k 6.5 - delta_h 17.9912 kJ - -gamma 0 0 - # Id: 4609681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.5 + delta_h 17.9912 kJ + -gamma 0 0 + # Id: 4609681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Nta-3 = Ca(Nta)- - log_k 7.608 - delta_h -5.6902 kJ - -gamma 0 0 - # Id: 1509681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.608 + delta_h -5.6902 kJ + -gamma 0 0 + # Id: 1509681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + 2 Nta-3 = Ca(Nta)2-4 - log_k 8.81 - delta_h -32.6352 kJ - -gamma 0 0 - # Id: 1509682 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.81 + delta_h -32.6352 kJ + -gamma 0 0 + # Id: 1509682 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Sr+2 + Nta-3 = Sr(Nta)- - log_k 6.2767 - delta_h -2.2 kJ - -gamma 0 0 - # Id: 8009681 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 6.2767 + delta_h -2.2 kJ + -gamma 0 0 + # Id: 8009681 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Ba+2 + Nta-3 = Ba(Nta)- - log_k 5.875 - delta_h -6.025 kJ - -gamma 0 0 - # Id: 1009681 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.875 + delta_h -6.025 kJ + -gamma 0 0 + # Id: 1009681 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Edta-4 = H(Edta)-3 - log_k 10.948 - delta_h -23.4304 kJ - -gamma 0 0 - # Id: 3309691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.948 + delta_h -23.4304 kJ + -gamma 0 0 + # Id: 3309691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 2 H+ + Edta-4 = H2(Edta)-2 - log_k 17.221 - delta_h -41.0032 kJ - -gamma 0 0 - # Id: 3309692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 17.221 + delta_h -41.0032 kJ + -gamma 0 0 + # Id: 3309692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 3 H+ + Edta-4 = H3(Edta)- - log_k 20.34 - delta_h -35.564 kJ - -gamma 0 0 - # Id: 3309693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 20.34 + delta_h -35.564 kJ + -gamma 0 0 + # Id: 3309693 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 4 H+ + Edta-4 = H4(Edta) - log_k 22.5 - delta_h -34.3088 kJ - -gamma 0 0 - # Id: 3309694 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 22.5 + delta_h -34.3088 kJ + -gamma 0 0 + # Id: 3309694 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 5 H+ + Edta-4 = H5(Edta)+ - log_k 24 - delta_h -32.2168 kJ - -gamma 0 0 - # Id: 3309695 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 24 + delta_h -32.2168 kJ + -gamma 0 0 + # Id: 3309695 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Sn(OH)2 + 2 H+ + Edta-4 = Sn(Edta)-2 + 2 H2O - log_k 27.026 - delta_h 0 kJ - -gamma 0 0 - # Id: 7909691 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 20.0 + log_k 27.026 + delta_h 0 kJ + -gamma 0 0 + # Id: 7909691 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 20.0 Sn(OH)2 + 3 H+ + Edta-4 = SnH(Edta)- + 2 H2O - log_k 29.934 - delta_h 0 kJ - -gamma 0 0 - # Id: 7909692 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 20.0 + log_k 29.934 + delta_h 0 kJ + -gamma 0 0 + # Id: 7909692 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 20.0 Sn(OH)2 + 4 H+ + Edta-4 = SnH2(Edta) + 2 H2O - log_k 31.638 - delta_h 0 kJ - -gamma 0 0 - # Id: 7909693 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 20.0 + log_k 31.638 + delta_h 0 kJ + -gamma 0 0 + # Id: 7909693 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 20.0 Pb+2 + Edta-4 = Pb(Edta)-2 - log_k 19.8 - delta_h -54.8104 kJ - -gamma 0 0 - # Id: 6009691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 19.8 + delta_h -54.8104 kJ + -gamma 0 0 + # Id: 6009691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Edta-4 + H+ = PbH(Edta)- - log_k 23 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 23 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Edta-4 + 2 H+ = PbH2(Edta) - log_k 24.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 24.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009693 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Edta-4 = Al(Edta)- - log_k 19.1 - delta_h 52.7184 kJ - -gamma 0 0 - # Id: 309690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 19.1 + delta_h 52.7184 kJ + -gamma 0 0 + # Id: 309690 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Edta-4 + H+ = AlH(Edta) - log_k 21.8 - delta_h 36.4008 kJ - -gamma 0 0 - # Id: 309691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 21.8 + delta_h 36.4008 kJ + -gamma 0 0 + # Id: 309691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Edta-4 + H2O = AlOH(Edta)-2 + H+ - log_k 12.8 - delta_h 73.6384 kJ - -gamma 0 0 - # Id: 309692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 12.8 + delta_h 73.6384 kJ + -gamma 0 0 + # Id: 309692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Tl+ + Edta-4 = Tl(Edta)-3 - log_k 7.27 - delta_h -43.5136 kJ - -gamma 0 0 - # Id: 8709691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.27 + delta_h -43.5136 kJ + -gamma 0 0 + # Id: 8709691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Tl+ + Edta-4 + H+ = TlH(Edta)-2 - log_k 13.68 - delta_h 0 kJ - -gamma 0 0 - # Id: 8709692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 13.68 + delta_h 0 kJ + -gamma 0 0 + # Id: 8709692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Edta-4 = Zn(Edta)-2 - log_k 18 - delta_h -19.2464 kJ - -gamma 0 0 - # Id: 9509691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 18 + delta_h -19.2464 kJ + -gamma 0 0 + # Id: 9509691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Edta-4 + H+ = ZnH(Edta)- - log_k 21.4 - delta_h -28.4512 kJ - -gamma 0 0 - # Id: 9509692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 21.4 + delta_h -28.4512 kJ + -gamma 0 0 + # Id: 9509692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Edta-4 + H2O = ZnOH(Edta)-3 + H+ - log_k 5.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509693 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Edta-4 = Cd(Edta)-2 - log_k 18.2 - delta_h -38.0744 kJ - -gamma 0 0 - # Id: 1609691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 18.2 + delta_h -38.0744 kJ + -gamma 0 0 + # Id: 1609691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Edta-4 + H+ = CdH(Edta)- - log_k 21.5 - delta_h -39.748 kJ - -gamma 0 0 - # Id: 1609692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 21.5 + delta_h -39.748 kJ + -gamma 0 0 + # Id: 1609692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + Edta-4 + 2 H+ = Hg(Edta)-2 + 2 H2O - log_k 29.3 - delta_h -125.102 kJ - -gamma 0 0 - # Id: 3619691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 29.3 + delta_h -125.102 kJ + -gamma 0 0 + # Id: 3619691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + Edta-4 + 3 H+ = HgH(Edta)- + 2 H2O - log_k 32.9 - delta_h -128.449 kJ - -gamma 0 0 - # Id: 3619692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 32.9 + delta_h -128.449 kJ + -gamma 0 0 + # Id: 3619692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Edta-4 = Cu(Edta)-2 - log_k 20.5 - delta_h -34.7272 kJ - -gamma 0 0 - # Id: 2319691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 20.5 + delta_h -34.7272 kJ + -gamma 0 0 + # Id: 2319691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Edta-4 + H+ = CuH(Edta)- - log_k 24 - delta_h -43.0952 kJ - -gamma 0 0 - # Id: 2319692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 24 + delta_h -43.0952 kJ + -gamma 0 0 + # Id: 2319692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Edta-4 + 2 H+ = CuH2(Edta) - log_k 26.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 26.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319693 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Edta-4 + H2O = CuOH(Edta)-3 + H+ - log_k 8.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319694 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319694 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Edta-4 = Ag(Edta)-3 - log_k 8.08 - delta_h -31.38 kJ - -gamma 0 0 - # Id: 209691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.08 + delta_h -31.38 kJ + -gamma 0 0 + # Id: 209691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Edta-4 + H+ = AgH(Edta)-2 - log_k 15.21 - delta_h 0 kJ - -gamma 0 0 - # Id: 209693 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 15.21 + delta_h 0 kJ + -gamma 0 0 + # Id: 209693 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ni+2 + Edta-4 = Ni(Edta)-2 - log_k 20.1 - delta_h -30.9616 kJ - -gamma 0 0 - # Id: 5409691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 20.1 + delta_h -30.9616 kJ + -gamma 0 0 + # Id: 5409691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Edta-4 + H+ = NiH(Edta)- - log_k 23.6 - delta_h -38.4928 kJ - -gamma 0 0 - # Id: 5409692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 23.6 + delta_h -38.4928 kJ + -gamma 0 0 + # Id: 5409692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Edta-4 + H2O = NiOH(Edta)-3 + H+ - log_k 7.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409693 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Edta-4 = Co(Edta)-2 - log_k 18.1657 - delta_h -15 kJ - -gamma 0 0 - # Id: 2009691 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 18.1657 + delta_h -15 kJ + -gamma 0 0 + # Id: 2009691 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Co+2 + Edta-4 + H+ = CoH(Edta)- - log_k 21.5946 - delta_h -22.9 kJ - -gamma 0 0 - # Id: 2009692 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 21.5946 + delta_h -22.9 kJ + -gamma 0 0 + # Id: 2009692 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Co+2 + Edta-4 + 2 H+ = CoH2(Edta) - log_k 23.4986 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009693 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 25.0 + log_k 23.4986 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009693 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 25.0 Co+3 + Edta-4 = Co(Edta)- - log_k 43.9735 - delta_h 0 kJ - -gamma 0 0 - # Id: 2019691 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 43.9735 + delta_h 0 kJ + -gamma 0 0 + # Id: 2019691 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Co+3 + Edta-4 + H+ = CoH(Edta) - log_k 47.168 - delta_h 0 kJ - -gamma 0 0 - # Id: 2019692 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 + log_k 47.168 + delta_h 0 kJ + -gamma 0 0 + # Id: 2019692 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 Fe+2 + Edta-4 = Fe(Edta)-2 - log_k 16 - delta_h -16.736 kJ - -gamma 0 0 - # Id: 2809690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 16 + delta_h -16.736 kJ + -gamma 0 0 + # Id: 2809690 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + Edta-4 + H+ = FeH(Edta)- - log_k 19.06 - delta_h -27.6144 kJ - -gamma 0 0 - # Id: 2809691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 19.06 + delta_h -27.6144 kJ + -gamma 0 0 + # Id: 2809691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + Edta-4 + H2O = FeOH(Edta)-3 + H+ - log_k 6.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809692 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 6.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809692 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Fe+2 + Edta-4 + 2 H2O = Fe(OH)2(Edta)-4 + 2 H+ - log_k -4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809693 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k -4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809693 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Fe+3 + Edta-4 = Fe(Edta)- - log_k 27.7 - delta_h -11.2968 kJ - -gamma 0 0 - # Id: 2819690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 27.7 + delta_h -11.2968 kJ + -gamma 0 0 + # Id: 2819690 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Edta-4 + H+ = FeH(Edta) - log_k 29.2 - delta_h -11.7152 kJ - -gamma 0 0 - # Id: 2819691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 29.2 + delta_h -11.7152 kJ + -gamma 0 0 + # Id: 2819691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Edta-4 + H2O = FeOH(Edta)-2 + H+ - log_k 19.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 19.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Edta-4 + 2 H2O = Fe(OH)2(Edta)-3 + 2 H+ - log_k 9.85 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819693 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 9.85 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819693 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Mn+2 + Edta-4 = Mn(Edta)-2 - log_k 15.6 - delta_h -19.2464 kJ - -gamma 0 0 - # Id: 4709691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 15.6 + delta_h -19.2464 kJ + -gamma 0 0 + # Id: 4709691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Edta-4 + H+ = MnH(Edta)- - log_k 19.1 - delta_h -24.2672 kJ - -gamma 0 0 - # Id: 4709692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 19.1 + delta_h -24.2672 kJ + -gamma 0 0 + # Id: 4709692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cr+2 + Edta-4 = Cr(Edta)-2 - log_k 15.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2109691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 15.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2109691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cr+2 + Edta-4 + H+ = CrH(Edta)- - log_k 19.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 2109692 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 19.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 2109692 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cr(OH)2+ + Edta-4 + 2 H+ = Cr(Edta)- + 2 H2O - log_k 35.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 35.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cr(OH)2+ + Edta-4 + 3 H+ = CrH(Edta) + 2 H2O - log_k 37.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119692 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 37.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119692 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cr(OH)2+ + Edta-4 + H+ = CrOH(Edta)-2 + H2O - log_k 27.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119693 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 27.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119693 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Be+2 + Edta-4 = Be(Edta)-2 - log_k 11.4157 - delta_h 41 kJ - -gamma 0 0 - # Id: 1109691 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 11.4157 + delta_h 41 kJ + -gamma 0 0 + # Id: 1109691 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Mg+2 + Edta-4 = Mg(Edta)-2 - log_k 10.57 - delta_h 13.8072 kJ - -gamma 0 0 - # Id: 4609690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.57 + delta_h 13.8072 kJ + -gamma 0 0 + # Id: 4609690 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Edta-4 + H+ = MgH(Edta)- - log_k 14.97 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 14.97 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Edta-4 = Ca(Edta)-2 - log_k 12.42 - delta_h -25.5224 kJ - -gamma 0 0 - # Id: 1509690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 12.42 + delta_h -25.5224 kJ + -gamma 0 0 + # Id: 1509690 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Edta-4 + H+ = CaH(Edta)- - log_k 15.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509691 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 15.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509691 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Sr+2 + Edta-4 = Sr(Edta)-2 - log_k 10.4357 - delta_h -17 kJ - -gamma 0 0 - # Id: 8009691 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 10.4357 + delta_h -17 kJ + -gamma 0 0 + # Id: 8009691 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Sr+2 + Edta-4 + H+ = SrH(Edta)- - log_k 14.7946 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009692 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 + log_k 14.7946 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009692 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 Ba+2 + Edta-4 = Ba(Edta)-2 - log_k 7.72 - delta_h -20.5016 kJ - -gamma 0 0 - # Id: 1009691 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 7.72 + delta_h -20.5016 kJ + -gamma 0 0 + # Id: 1009691 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Na+ + Edta-4 = Na(Edta)-3 - log_k 2.7 - delta_h -5.8576 kJ - -gamma 0 0 - # Id: 5009690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.7 + delta_h -5.8576 kJ + -gamma 0 0 + # Id: 5009690 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: K+ + Edta-4 = K(Edta)-3 - log_k 1.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 4109690 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 4109690 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Propionate- = H(Propionate) - log_k 4.874 - delta_h 0.66 kJ - -gamma 0 0 - # Id: 3309711 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 4.874 + delta_h 0.66 kJ + -gamma 0 0 + # Id: 3309711 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Pb+2 + Propionate- = Pb(Propionate)+ - log_k 2.64 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009711 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.00 35.0 + log_k 2.64 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009711 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.00 35.0 Pb+2 + 2 Propionate- = Pb(Propionate)2 - log_k 3.1765 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009712 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 2.00 25.0 + log_k 3.1765 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009712 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 2.00 25.0 Zn+2 + Propionate- = Zn(Propionate)+ - log_k 1.4389 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 1.4389 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509711 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Zn+2 + 2 Propionate- = Zn(Propionate)2 - log_k 1.842 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509712 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 25.0 + log_k 1.842 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509712 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 25.0 Cd+2 + Propionate- = Cd(Propionate)+ - log_k 1.598 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 25.0 + log_k 1.598 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609711 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 25.0 Cd+2 + 2 Propionate- = Cd(Propionate)2 - log_k 2.472 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609712 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 25.0 + log_k 2.472 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609712 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 25.0 Hg(OH)2 + 2 H+ + Propionate- = Hg(Propionate)+ + 2 H2O - log_k 10.594 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 10.594 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619711 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Cu+2 + Propionate- = Cu(Propionate)+ - log_k 2.22 - delta_h 4.1 kJ - -gamma 0 0 - # Id: 2319711 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.22 + delta_h 4.1 kJ + -gamma 0 0 + # Id: 2319711 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Cu+2 + 2 Propionate- = Cu(Propionate)2 - log_k 3.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319712 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 3.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319712 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Ni+2 + Propionate- = Ni(Propionate)+ - log_k 0.908 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409711 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 1.00 25.0 + log_k 0.908 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409711 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 1.00 25.0 Co+2 + Propionate- = Co(Propionate)+ - log_k 0.671 - delta_h 4.6 kJ - -gamma 0 0 - # Id: 2009711 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 2.00 25.0 + log_k 0.671 + delta_h 4.6 kJ + -gamma 0 0 + # Id: 2009711 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 2.00 25.0 Co+2 + 2 Propionate- = Co(Propionate)2 - log_k 0.5565 - delta_h 16 kJ - -gamma 0 0 - # Id: 2009712 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 2.00 25.0 + log_k 0.5565 + delta_h 16 kJ + -gamma 0 0 + # Id: 2009712 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 2.00 25.0 Fe+3 + Propionate- = Fe(Propionate)+2 - log_k 4.012 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 20.0 + log_k 4.012 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819711 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 20.0 Cr(OH)2+ + 2 H+ + Propionate- = Cr(Propionate)+2 + 2 H2O - log_k 15.0773 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119711 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.50 25.0 + log_k 15.0773 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119711 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.50 25.0 Cr(OH)2+ + 2 H+ + 2 Propionate- = Cr(Propionate)2+ + 2 H2O - log_k 17.9563 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119712 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.50 25.0 + log_k 17.9563 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119712 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.50 25.0 Cr(OH)2+ + 2 H+ + 3 Propionate- = Cr(Propionate)3 + 2 H2O - log_k 20.8858 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119713 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.50 25.0 + log_k 20.8858 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119713 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.50 25.0 Mg+2 + Propionate- = Mg(Propionate)+ - log_k 0.9689 - delta_h 4.2677 kJ - -gamma 0 0 - # Id: 4609710 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.10 25.0 + log_k 0.9689 + delta_h 4.2677 kJ + -gamma 0 0 + # Id: 4609710 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.10 25.0 Ca+2 + Propionate- = Ca(Propionate)+ - log_k 0.9289 - delta_h 3.3472 kJ - -gamma 0 0 - # Id: 1509710 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.10 25.0 + log_k 0.9289 + delta_h 3.3472 kJ + -gamma 0 0 + # Id: 1509710 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.10 25.0 Sr+2 + Propionate- = Sr(Propionate)+ - log_k 0.8589 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009711 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 0.8589 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009711 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Ba+2 + Propionate- = Ba(Propionate)+ - log_k 0.7689 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009711 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.10 25.0 + log_k 0.7689 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009711 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.10 25.0 Ba+2 + 2 Propionate- = Ba(Propionate)2 - log_k 0.9834 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009712 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.10 25.0 + log_k 0.9834 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009712 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.10 25.0 H+ + Butyrate- = H(Butyrate) - log_k 4.819 - delta_h 2.8 kJ - -gamma 0 0 - # Id: 3309721 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 4.819 + delta_h 2.8 kJ + -gamma 0 0 + # Id: 3309721 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Pb+2 + Butyrate- = Pb(Butyrate)+ - log_k 2.101 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009721 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 2.00 25.0 + log_k 2.101 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009721 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 2.00 25.0 Zn+2 + Butyrate- = Zn(Butyrate)+ - log_k 1.4289 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 1.4289 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509721 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Hg(OH)2 + 2 H+ + Butyrate- = Hg(Butyrate)+ + 2 H2O - log_k 10.3529 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 10.3529 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619721 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Cu+2 + Butyrate- = Cu(Butyrate)+ - log_k 2.14 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 2.14 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319721 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Ni+2 + Butyrate- = Ni(Butyrate)+ - log_k 0.691 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409721 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 2.00 25.0 + log_k 0.691 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409721 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 2.00 25.0 Co+2 + Butyrate- = Co(Butyrate)+ - log_k 0.591 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 2.00 25.0 + log_k 0.591 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009721 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 2.00 25.0 Co+2 + 2 Butyrate- = Co(Butyrate)2 - log_k 0.7765 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009722 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 2.00 25.0 + log_k 0.7765 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009722 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 2.00 25.0 Mg+2 + Butyrate- = Mg(Butyrate)+ - log_k 0.9589 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609720 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.10 25.0 + log_k 0.9589 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609720 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.10 25.0 Ca+2 + Butyrate- = Ca(Butyrate)+ - log_k 0.9389 - delta_h 3.3472 kJ - -gamma 0 0 - # Id: 1509720 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.10 25.0 + log_k 0.9389 + delta_h 3.3472 kJ + -gamma 0 0 + # Id: 1509720 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.10 25.0 Sr+2 + Butyrate- = Sr(Butyrate)+ - log_k 0.7889 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009721 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 0.7889 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009721 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Ba+2 + Butyrate- = Ba(Butyrate)+ - log_k 0.7389 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009721 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 0.10 25.0 + log_k 0.7389 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009721 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 0.10 25.0 Ba+2 + 2 Butyrate- = Ba(Butyrate)2 - log_k 0.88 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009722 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 0.88 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009722 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Isobutyrate- = H(Isobutyrate) - log_k 4.849 - delta_h 3.2217 kJ - -gamma 0 0 - # Id: 3309731 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.849 + delta_h 3.2217 kJ + -gamma 0 0 + # Id: 3309731 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Isobutyrate- = Zn(Isobutyrate)+ - log_k 1.44 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509731 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.44 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509731 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Isobutyrate- = Cu(Isobutyrate)+ - log_k 2.17 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319731 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.17 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319731 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 2 Isobutyrate- = Cu(Isobutyrate)2 - log_k 3.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319732 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319732 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Isobutyrate- = Fe(Isobutyrate)+2 - log_k 4.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819731 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819731 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Isobutyrate- = Ca(Isobutyrate)+ - log_k 0.51 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509731 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 0.51 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509731 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Two_picoline = H(Two_picoline)+ - log_k 5.95 - delta_h -25.5224 kJ - -gamma 0 0 - # Id: 3309801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.95 + delta_h -25.5224 kJ + -gamma 0 0 + # Id: 3309801 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Two_picoline = Cu(Two_picoline)+2 - log_k 1.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319801 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 2 Two_picoline = Cu(Two_picoline)2+2 - log_k 2.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319802 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319802 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + Two_picoline = Cu(Two_picoline)+ - log_k 5.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309801 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + 2 Two_picoline = Cu(Two_picoline)2+ - log_k 7.65 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309802 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.65 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309802 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + 3 Two_picoline = Cu(Two_picoline)3+ - log_k 8.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309803 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309803 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Two_picoline = Ag(Two_picoline)+ - log_k 2.32 - delta_h -24.2672 kJ - -gamma 0 0 - # Id: 209801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.32 + delta_h -24.2672 kJ + -gamma 0 0 + # Id: 209801 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Two_picoline = Ag(Two_picoline)2+ - log_k 4.68 - delta_h -42.6768 kJ - -gamma 0 0 - # Id: 209802 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.68 + delta_h -42.6768 kJ + -gamma 0 0 + # Id: 209802 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Two_picoline = Ni(Two_picoline)+2 - log_k 0.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409801 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 0.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409801 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Three_picoline = H(Three_picoline)+ - log_k 5.7 - delta_h -23.8488 kJ - -gamma 0 0 - # Id: 3309811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.7 + delta_h -23.8488 kJ + -gamma 0 0 + # Id: 3309811 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Three_picoline = Zn(Three_picoline)+2 - log_k 1 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509811 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + 2 Three_picoline = Zn(Three_picoline)2+2 - log_k 2.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509812 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + 3 Three_picoline = Zn(Three_picoline)3+2 - log_k 2.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509813 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + 4 Three_picoline = Zn(Three_picoline)4+2 - log_k 3.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509814 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Three_picoline = Cd(Three_picoline)+2 - log_k 1.42 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609811 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 1.42 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609811 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + 2 Three_picoline = Cd(Three_picoline)2+2 - log_k 2.27 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609812 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 2.27 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609812 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + 3 Three_picoline = Cd(Three_picoline)3+2 - log_k 3.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609813 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + 4 Three_picoline = Cd(Three_picoline)4+2 - log_k 4 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609814 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + Three_picoline = Cu(Three_picoline)+ - log_k 5.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309811 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + 2 Three_picoline = Cu(Three_picoline)2+ - log_k 7.78 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.78 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309812 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + 3 Three_picoline = Cu(Three_picoline)3+ - log_k 8.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309813 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + 4 Three_picoline = Cu(Three_picoline)4+ - log_k 9 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309814 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Three_picoline = Cu(Three_picoline)+2 - log_k 2.77 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.77 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319811 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 2 Three_picoline = Cu(Three_picoline)2+2 - log_k 4.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319812 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 3 Three_picoline = Cu(Three_picoline)3+2 - log_k 6.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319813 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 4 Three_picoline = Cu(Three_picoline)4+2 - log_k 7.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319814 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Three_picoline = Ag(Three_picoline)+ - log_k 2.2 - delta_h -21.7568 kJ - -gamma 0 0 - # Id: 209811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.2 + delta_h -21.7568 kJ + -gamma 0 0 + # Id: 209811 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Three_picoline = Ag(Three_picoline)2+ - log_k 4.46 - delta_h -49.7896 kJ - -gamma 0 0 - # Id: 209812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.46 + delta_h -49.7896 kJ + -gamma 0 0 + # Id: 209812 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Three_picoline = Ni(Three_picoline)+2 - log_k 1.87 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409811 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.87 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409811 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 2 Three_picoline = Ni(Three_picoline)2+2 - log_k 3.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409812 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409812 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 3 Three_picoline = Ni(Three_picoline)3+2 - log_k 4.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409813 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409813 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 4 Three_picoline = Ni(Three_picoline)4+2 - log_k 4.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409814 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409814 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Three_picoline = Co(Three_picoline)+2 - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009811 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009811 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 Co+2 + 2 Three_picoline = Co(Three_picoline)2+2 - log_k 2.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009812 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 + log_k 2.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009812 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 Co+2 + 3 Three_picoline = Co(Three_picoline)3+2 - log_k 2.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009813 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 + log_k 2.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009813 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 H+ + Four_picoline = H(Four_picoline)+ - log_k 6.03 - delta_h -25.3132 kJ - -gamma 0 0 - # Id: 3309821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.03 + delta_h -25.3132 kJ + -gamma 0 0 + # Id: 3309821 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Four_picoline = Zn(Four_picoline)+2 - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509821 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + 2 Four_picoline = Zn(Four_picoline)2+2 - log_k 2.11 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.11 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509822 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + 3 Four_picoline = Zn(Four_picoline)3+2 - log_k 2.85 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509823 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.85 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509823 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Four_picoline = Cd(Four_picoline)+2 - log_k 1.59 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609821 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 1.59 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609821 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + 2 Four_picoline = Cd(Four_picoline)2+2 - log_k 2.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609822 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 2.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609822 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + 3 Four_picoline = Cd(Four_picoline)3+2 - log_k 3.18 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609823 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 3.18 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609823 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + 4 Four_picoline = Cd(Four_picoline)4+2 - log_k 4 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609824 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609824 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + Four_picoline = Cu(Four_picoline)+ - log_k 5.65 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.65 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309821 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + 2 Four_picoline = Cu(Four_picoline)2+ - log_k 8.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309822 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + 3 Four_picoline = Cu(Four_picoline)3+ - log_k 8.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309823 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309823 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+ + 4 Four_picoline = Cu(Four_picoline)4+ - log_k 9.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309824 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309824 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Four_picoline = Cu(Four_picoline)+2 - log_k 2.88 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.88 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319821 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 2 Four_picoline = Cu(Four_picoline)2+2 - log_k 5.16 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.16 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319822 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 3 Four_picoline = Cu(Four_picoline)3+2 - log_k 6.77 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319823 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.77 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319823 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 4 Four_picoline = Cu(Four_picoline)4+2 - log_k 8.08 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319824 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.08 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319824 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 5 Four_picoline = Cu(Four_picoline)5+2 - log_k 8.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319825 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319825 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Four_picoline = Ag(Four_picoline)+ - log_k 2.03 - delta_h -25.5224 kJ - -gamma 0 0 - # Id: 209821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.03 + delta_h -25.5224 kJ + -gamma 0 0 + # Id: 209821 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Four_picoline = Ag(Four_picoline)2+ - log_k 4.39 - delta_h -53.5552 kJ - -gamma 0 0 - # Id: 209822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.39 + delta_h -53.5552 kJ + -gamma 0 0 + # Id: 209822 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Four_picoline = Ni(Four_picoline)+2 - log_k 2.11 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409821 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.11 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409821 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 2 Four_picoline = Ni(Four_picoline)2+2 - log_k 3.59 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409822 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.59 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409822 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 3 Four_picoline = Ni(Four_picoline)3+2 - log_k 4.34 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409823 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.34 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409823 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 4 Four_picoline = Ni(Four_picoline)4+2 - log_k 4.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409824 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409824 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Four_picoline = Co(Four_picoline)+2 - log_k 1.56 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009821 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 + log_k 1.56 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009821 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 Co+2 + 2 Four_picoline = Co(Four_picoline)2+2 - log_k 2.51 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009822 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 + log_k 2.51 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009822 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 Co+2 + 3 Four_picoline = Co(Four_picoline)3+2 - log_k 2.94 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009823 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 + log_k 2.94 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009823 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 Co+2 + 4 Four_picoline = Co(Four_picoline)4+2 - log_k 3.17 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009824 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 + log_k 3.17 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009824 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 H+ + Formate- = H(Formate) - log_k 3.745 - delta_h 0.1674 kJ - -gamma 0 0 - # Id: 3309831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.745 + delta_h 0.1674 kJ + -gamma 0 0 + # Id: 3309831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Formate- = Pb(Formate)+ - log_k 2.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009831 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 2.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009831 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + Formate- = Zn(Formate)+ - log_k 1.44 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.44 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Formate- = Cd(Formate)+ - log_k 1.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609831 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 1.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609831 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Hg(OH)2 + Formate- + 2 H+ = Hg(Formate)+ + 2 H2O - log_k 9.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Formate- = Cu(Formate)+ - log_k 2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Formate- = Ni(Formate)+ - log_k 1.22 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409831 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 1.22 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409831 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Co+2 + Formate- = Co(Formate)+ - log_k 1.209 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009831 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 30.0 + log_k 1.209 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009831 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 30.0 Co+2 + 2 Formate- = Co(Formate)2 - log_k 1.1365 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009832 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 2.00 25.0 + log_k 1.1365 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009832 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 2.00 25.0 Cr+2 + Formate- = Cr(Formate)+ - log_k 1.07 - delta_h 0 kJ - -gamma 0 0 - # Id: 2109831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.07 + delta_h 0 kJ + -gamma 0 0 + # Id: 2109831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Formate- = Mg(Formate)+ - log_k 1.43 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.43 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Formate- = Ca(Formate)+ - log_k 1.43 - delta_h 4.184 kJ - -gamma 0 0 - # Id: 1509831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.43 + delta_h 4.184 kJ + -gamma 0 0 + # Id: 1509831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Sr+2 + Formate- = Sr(Formate)+ - log_k 1.39 - delta_h 4 kJ - -gamma 0 0 - # Id: 8009831 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 1.39 + delta_h 4 kJ + -gamma 0 0 + # Id: 8009831 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ba+2 + Formate- = Ba(Formate)+ - log_k 1.38 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009831 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.38 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009831 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Isovalerate- = H(Isovalerate) - log_k 4.781 - delta_h 4.5606 kJ - -gamma 0 0 - # Id: 3309841 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.781 + delta_h 4.5606 kJ + -gamma 0 0 + # Id: 3309841 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Isovalerate- = Zn(Isovalerate)+ - log_k 1.39 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509841 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.39 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509841 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Isovalerate- = Cu(Isovalerate)+ - log_k 2.08 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319841 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.08 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319841 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Isovalerate- = Ca(Isovalerate)+ - log_k 0.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509841 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 0.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509841 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Valerate- = H(Valerate) - log_k 4.843 - delta_h 2.887 kJ - -gamma 0 0 - # Id: 3309851 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.843 + delta_h 2.887 kJ + -gamma 0 0 + # Id: 3309851 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Valerate- = Cu(Valerate)+ - log_k 2.12 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319851 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.12 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319851 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Valerate- = Ca(Valerate)+ - log_k 0.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509851 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 0.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509851 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ba+2 + Valerate- = Ba(Valerate)+ - log_k -0.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009851 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k -0.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009851 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Acetate- = H(Acetate) - log_k 4.757 - delta_h 0.41 kJ - -gamma 0 0 - # Id: 3309921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 4.757 + delta_h 0.41 kJ + -gamma 0 0 + # Id: 3309921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Sn(OH)2 + 2 H+ + Acetate- = Sn(Acetate)+ + 2 H2O - log_k 10.0213 - delta_h 0 kJ - -gamma 0 0 - # Id: 7909921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 3.00 25.0 + log_k 10.0213 + delta_h 0 kJ + -gamma 0 0 + # Id: 7909921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 3.00 25.0 Sn(OH)2 + 2 H+ + 2 Acetate- = Sn(Acetate)2 + 2 H2O - log_k 12.32 - delta_h 0 kJ - -gamma 0 0 - # Id: 7909922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 3.00 25.0 + log_k 12.32 + delta_h 0 kJ + -gamma 0 0 + # Id: 7909922 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 3.00 25.0 Sn(OH)2 + 2 H+ + 3 Acetate- = Sn(Acetate)3- + 2 H2O - log_k 13.55 - delta_h 0 kJ - -gamma 0 0 - # Id: 7909923 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 3.00 25.0 + log_k 13.55 + delta_h 0 kJ + -gamma 0 0 + # Id: 7909923 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 3.00 25.0 Pb+2 + Acetate- = Pb(Acetate)+ - log_k 2.68 - delta_h -0.4 kJ - -gamma 0 0 - # Id: 6009921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.68 + delta_h -0.4 kJ + -gamma 0 0 + # Id: 6009921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Pb+2 + 2 Acetate- = Pb(Acetate)2 - log_k 4.08 - delta_h -0.8 kJ - -gamma 0 0 - # Id: 6009922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 4.08 + delta_h -0.8 kJ + -gamma 0 0 + # Id: 6009922 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Tl+ + Acetate- = Tl(Acetate) - log_k -0.11 - delta_h 0 kJ - -gamma 0 0 - # Id: 8709921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k -0.11 + delta_h 0 kJ + -gamma 0 0 + # Id: 8709921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Zn+2 + Acetate- = Zn(Acetate)+ - log_k 1.58 - delta_h 8.3 kJ - -gamma 0 0 - # Id: 9509921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 1.58 + delta_h 8.3 kJ + -gamma 0 0 + # Id: 9509921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Zn+2 + 2 Acetate- = Zn(Acetate)2 - log_k 2.6434 - delta_h 22 kJ - -gamma 0 0 - # Id: 9509922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 2.6434 + delta_h 22 kJ + -gamma 0 0 + # Id: 9509922 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Cd+2 + Acetate- = Cd(Acetate)+ - log_k 1.93 - delta_h 9.6 kJ - -gamma 0 0 - # Id: 1609921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 1.93 + delta_h 9.6 kJ + -gamma 0 0 + # Id: 1609921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Cd+2 + 2 Acetate- = Cd(Acetate)2 - log_k 2.86 - delta_h 15 kJ - -gamma 0 0 - # Id: 1609922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.86 + delta_h 15 kJ + -gamma 0 0 + # Id: 1609922 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2 H+ + Acetate- = Hg(Acetate)+ + 2 H2O - log_k 10.494 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 10.494 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619920 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2 H+ + 2 Acetate- = Hg(Acetate)2 + 2 H2O - log_k 13.83 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619921 - # log K source: NIST46.4 - # Delta H source: SCD2.62 - #T and ionic strength: 3.00 25.0 + log_k 13.83 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619921 + # log K source: NIST46.4 + # Delta H source: SCD2.62 + #T and ionic strength: 3.00 25.0 Cu+2 + Acetate- = Cu(Acetate)+ - log_k 2.21 - delta_h 7.1 kJ - -gamma 0 0 - # Id: 2319921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.21 + delta_h 7.1 kJ + -gamma 0 0 + # Id: 2319921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Cu+2 + 2 Acetate- = Cu(Acetate)2 - log_k 3.4 - delta_h 12 kJ - -gamma 0 0 - # Id: 2319922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 3.4 + delta_h 12 kJ + -gamma 0 0 + # Id: 2319922 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Cu+2 + 3 Acetate- = Cu(Acetate)3- - log_k 3.9434 - delta_h 6.2 kJ - -gamma 0 0 - # Id: 2319923 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 3.9434 + delta_h 6.2 kJ + -gamma 0 0 + # Id: 2319923 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Ag+ + Acetate- = Ag(Acetate) - log_k 0.73 - delta_h 3 kJ - -gamma 0 0 - # Id: 209921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 0.73 + delta_h 3 kJ + -gamma 0 0 + # Id: 209921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ag+ + 2 Acetate- = Ag(Acetate)2- - log_k 0.64 - delta_h 3 kJ - -gamma 0 0 - # Id: 209922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 0.64 + delta_h 3 kJ + -gamma 0 0 + # Id: 209922 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ni+2 + Acetate- = Ni(Acetate)+ - log_k 1.37 - delta_h 8.7 kJ - -gamma 0 0 - # Id: 5409921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 1.37 + delta_h 8.7 kJ + -gamma 0 0 + # Id: 5409921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Ni+2 + 2 Acetate- = Ni(Acetate)2 - log_k 2.1 - delta_h 10 kJ - -gamma 0 0 - # Id: 5409922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.1 + delta_h 10 kJ + -gamma 0 0 + # Id: 5409922 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Co+2 + Acetate- = Co(Acetate)+ - log_k 1.38 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 1.38 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Co+2 + 2 Acetate- = Co(Acetate)2 - log_k 0.7565 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 2.00 25.0 + log_k 0.7565 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009922 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 2.00 25.0 Fe+2 + Acetate- = Fe(Acetate)+ - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809920 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Fe+3 + Acetate- = Fe(Acetate)+2 - log_k 4.0234 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 + log_k 4.0234 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819920 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 Fe+3 + 2 Acetate- = Fe(Acetate)2+ - log_k 7.5723 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 + log_k 7.5723 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 Fe+3 + 3 Acetate- = Fe(Acetate)3 - log_k 9.5867 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 + log_k 9.5867 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819922 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 Mn+2 + Acetate- = Mn(Acetate)+ - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709920 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Cr+2 + Acetate- = Cr(Acetate)+ - log_k 1.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 2109921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 1.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 2109921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Cr+2 + 2 Acetate- = Cr(Acetate)2 - log_k 2.92 - delta_h 0 kJ - -gamma 0 0 - # Id: 2109922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 2.92 + delta_h 0 kJ + -gamma 0 0 + # Id: 2109922 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Cr(OH)2+ + 2 H+ + Acetate- = Cr(Acetate)+2 + 2 H2O - log_k 15.0073 - delta_h -125.62 kJ - -gamma 0 0 - # Id: 2119921 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 + log_k 15.0073 + delta_h -125.62 kJ + -gamma 0 0 + # Id: 2119921 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 Cr(OH)2+ + 2 H+ + 2 Acetate- = Cr(Acetate)2+ + 2 H2O - log_k 17.9963 - delta_h -117.62 kJ - -gamma 0 0 - # Id: 2119922 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 + log_k 17.9963 + delta_h -117.62 kJ + -gamma 0 0 + # Id: 2119922 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 Cr(OH)2+ + 2 H+ + 3 Acetate- = Cr(Acetate)3 + 2 H2O - log_k 20.7858 - delta_h -96.62 kJ - -gamma 0 0 - # Id: 2119923 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.50 25.0 + log_k 20.7858 + delta_h -96.62 kJ + -gamma 0 0 + # Id: 2119923 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.50 25.0 Be+2 + Acetate- = Be(Acetate)+ - log_k 2.0489 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 2.0489 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Be+2 + 2 Acetate- = Be(Acetate)2 - log_k 3.0034 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109922 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 3.0034 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109922 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Mg+2 + Acetate- = Mg(Acetate)+ - log_k 1.27 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609920 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 1.27 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609920 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Ca+2 + Acetate- = Ca(Acetate)+ - log_k 1.18 - delta_h 4 kJ - -gamma 0 0 - # Id: 1509920 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 1.18 + delta_h 4 kJ + -gamma 0 0 + # Id: 1509920 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Sr+2 + Acetate- = Sr(Acetate)+ - log_k 1.14 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 1.14 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Ba+2 + Acetate- = Ba(Acetate)+ - log_k 1.07 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 1.07 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Na+ + Acetate- = Na(Acetate) - log_k -0.18 - delta_h 12 kJ - -gamma 0 0 - # Id: 5009920 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k -0.18 + delta_h 12 kJ + -gamma 0 0 + # Id: 5009920 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 K+ + Acetate- = K(Acetate) - log_k -0.1955 - delta_h 4.184 kJ - -gamma 0 0 - # Id: 4109921 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k -0.1955 + delta_h 4.184 kJ + -gamma 0 0 + # Id: 4109921 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 H+ + Tartarate-2 = H(Tartarate)- - log_k 4.366 - delta_h -0.7531 kJ - -gamma 0 0 - # Id: 3309931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.366 + delta_h -0.7531 kJ + -gamma 0 0 + # Id: 3309931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 2 H+ + Tartarate-2 = H2(Tartarate) - log_k 7.402 - delta_h -3.6819 kJ - -gamma 0 0 - # Id: 3309932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.402 + delta_h -3.6819 kJ + -gamma 0 0 + # Id: 3309932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Sn(OH)2 + 2 H+ + Tartarate-2 = Sn(Tartarate) + 2 H2O - log_k 13.1518 - delta_h 0 kJ - -gamma 0 0 - # Id: 7909931 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 + log_k 13.1518 + delta_h 0 kJ + -gamma 0 0 + # Id: 7909931 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 Pb+2 + Tartarate-2 = Pb(Tartarate) - log_k 3.98 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.98 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + 2 Tartarate-2 = Al(Tartarate)2- - log_k 9.37 - delta_h 0 kJ - -gamma 0 0 - # Id: 309931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.37 + delta_h 0 kJ + -gamma 0 0 + # Id: 309931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Tl+ + Tartarate-2 = Tl(Tartarate)- - log_k 1.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 8709931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 8709931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Tl+ + Tartarate-2 + H+ = TlH(Tartarate) - log_k 4.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 8709932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 8709932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Tartarate-2 = Zn(Tartarate) - log_k 3.43 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.43 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + 2 Tartarate-2 = Zn(Tartarate)2-2 - log_k 5.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Tartarate-2 + H+ = ZnH(Tartarate)+ - log_k 5.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509933 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509933 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Tartarate-2 = Cd(Tartarate) - log_k 2.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + 2 Tartarate-2 = Cd(Tartarate)2-2 - log_k 4.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + Tartarate-2 + 2 H+ = Hg(Tartarate) + 2 H2O - log_k 14 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 14 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Tartarate-2 = Cu(Tartarate) - log_k 3.97 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.97 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Tartarate-2 + H+ = CuH(Tartarate)+ - log_k 6.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Tartarate-2 = Ni(Tartarate) - log_k 3.46 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.46 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Tartarate-2 + H+ = NiH(Tartarate)+ - log_k 5.89 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.89 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Tartarate-2 = Co(Tartarate) - log_k 3.05 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009931 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 3.05 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009931 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Co+2 + 2 Tartarate-2 = Co(Tartarate)2-2 - log_k 4 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009932 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 4 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009932 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Co+2 + H+ + Tartarate-2 = CoH(Tartarate)+ - log_k 5.754 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009933 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 1.00 20.0 + log_k 5.754 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009933 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 1.00 20.0 Fe+2 + Tartarate-2 = Fe(Tartarate) - log_k 3.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Tartarate-2 = Fe(Tartarate)+ - log_k 7.78 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.78 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Tartarate-2 = Mn(Tartarate) - log_k 3.38 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.38 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Tartarate-2 + H+ = MnH(Tartarate)+ - log_k 6 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Tartarate-2 = Mg(Tartarate) - log_k 2.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Tartarate-2 + H+ = MgH(Tartarate)+ - log_k 5.75 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.75 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Be+2 + Tartarate-2 = Be(Tartarate) - log_k 2.768 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109931 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 + log_k 2.768 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109931 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 Be+2 + 2 Tartarate-2 = Be(Tartarate)2-2 - log_k 4.008 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109932 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 + log_k 4.008 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109932 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 Ca+2 + Tartarate-2 = Ca(Tartarate) - log_k 2.8 - delta_h -8.368 kJ - -gamma 0 0 - # Id: 1509931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.8 + delta_h -8.368 kJ + -gamma 0 0 + # Id: 1509931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Tartarate-2 + H+ = CaH(Tartarate)+ - log_k 5.86 - delta_h -9.1211 kJ - -gamma 0 0 - # Id: 1509932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.86 + delta_h -9.1211 kJ + -gamma 0 0 + # Id: 1509932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Sr+2 + Tartarate-2 = Sr(Tartarate) - log_k 2.55 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009931 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 20.0 + log_k 2.55 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009931 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 20.0 Sr+2 + H+ + Tartarate-2 = SrH(Tartarate)+ - log_k 5.8949 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009932 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 5.8949 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009932 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Ba+2 + Tartarate-2 = Ba(Tartarate) - log_k 2.54 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.54 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ba+2 + Tartarate-2 + H+ = BaH(Tartarate)+ - log_k 5.77 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.77 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Na+ + Tartarate-2 = Na(Tartarate)- - log_k 0.9 - delta_h -0.8368 kJ - -gamma 0 0 - # Id: 5009931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 0.9 + delta_h -0.8368 kJ + -gamma 0 0 + # Id: 5009931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Na+ + Tartarate-2 + H+ = NaH(Tartarate) - log_k 4.58 - delta_h -2.8451 kJ - -gamma 0 0 - # Id: 5009932 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.58 + delta_h -2.8451 kJ + -gamma 0 0 + # Id: 5009932 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: K+ + Tartarate-2 = K(Tartarate)- - log_k 0.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 4109931 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 0.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 4109931 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Glycine- = H(Glycine) - log_k 9.778 - delta_h -44.3504 kJ - -gamma 0 0 - # Id: 3309941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.778 + delta_h -44.3504 kJ + -gamma 0 0 + # Id: 3309941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 2 H+ + Glycine- = H2(Glycine)+ - log_k 12.128 - delta_h -48.4507 kJ - -gamma 0 0 - # Id: 3309942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 12.128 + delta_h -48.4507 kJ + -gamma 0 0 + # Id: 3309942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Glycine- = Pb(Glycine)+ - log_k 5.47 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.47 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + 2 Glycine- = Pb(Glycine)2 - log_k 8.86 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009942 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 8.86 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009942 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Tl+ + Glycine- = Tl(Glycine) - log_k 1.72 - delta_h 0 kJ - -gamma 0 0 - # Id: 8709941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.72 + delta_h 0 kJ + -gamma 0 0 + # Id: 8709941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Glycine- = Zn(Glycine)+ - log_k 5.38 - delta_h -11.7152 kJ - -gamma 0 0 - # Id: 9509941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.38 + delta_h -11.7152 kJ + -gamma 0 0 + # Id: 9509941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + 2 Glycine- = Zn(Glycine)2 - log_k 9.81 - delta_h -24.2672 kJ - -gamma 0 0 - # Id: 9509942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.81 + delta_h -24.2672 kJ + -gamma 0 0 + # Id: 9509942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + 3 Glycine- = Zn(Glycine)3- - log_k 12.3 - delta_h -39.748 kJ - -gamma 0 0 - # Id: 9509943 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 12.3 + delta_h -39.748 kJ + -gamma 0 0 + # Id: 9509943 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Glycine- = Cd(Glycine)+ - log_k 4.69 - delta_h -8.7864 kJ - -gamma 0 0 - # Id: 1609941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.69 + delta_h -8.7864 kJ + -gamma 0 0 + # Id: 1609941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + 2 Glycine- = Cd(Glycine)2 - log_k 8.4 - delta_h -22.5936 kJ - -gamma 0 0 - # Id: 1609942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.4 + delta_h -22.5936 kJ + -gamma 0 0 + # Id: 1609942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + 3 Glycine- = Cd(Glycine)3- - log_k 10.7 - delta_h -35.9824 kJ - -gamma 0 0 - # Id: 1609943 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.7 + delta_h -35.9824 kJ + -gamma 0 0 + # Id: 1609943 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + Glycine- + 2 H+ = Hg(Glycine)+ + 2 H2O - log_k 17 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619941 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 17 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619941 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Hg(OH)2 + 2 Glycine- + 2 H+ = Hg(Glycine)2 + 2 H2O - log_k 25.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619942 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 25.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619942 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cu+ + 2 Glycine- = Cu(Glycine)2- - log_k 10.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2309941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2309941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Glycine- = Cu(Glycine)+ - log_k 8.57 - delta_h -25.104 kJ - -gamma 0 0 - # Id: 2319941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.57 + delta_h -25.104 kJ + -gamma 0 0 + # Id: 2319941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 2 Glycine- = Cu(Glycine)2 - log_k 15.7 - delta_h -54.8104 kJ - -gamma 0 0 - # Id: 2319942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 15.7 + delta_h -54.8104 kJ + -gamma 0 0 + # Id: 2319942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Glycine- = Ag(Glycine) - log_k 3.51 - delta_h -19.2464 kJ - -gamma 0 0 - # Id: 209941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.51 + delta_h -19.2464 kJ + -gamma 0 0 + # Id: 209941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Glycine- = Ag(Glycine)2- - log_k 6.89 - delta_h -48.116 kJ - -gamma 0 0 - # Id: 209942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.89 + delta_h -48.116 kJ + -gamma 0 0 + # Id: 209942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Glycine- = Ni(Glycine)+ - log_k 6.15 - delta_h -18.828 kJ - -gamma 0 0 - # Id: 5409941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.15 + delta_h -18.828 kJ + -gamma 0 0 + # Id: 5409941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 2 Glycine- = Ni(Glycine)2 - log_k 11.12 - delta_h -38.0744 kJ - -gamma 0 0 - # Id: 5409942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 11.12 + delta_h -38.0744 kJ + -gamma 0 0 + # Id: 5409942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 3 Glycine- = Ni(Glycine)3- - log_k 14.63 - delta_h -62.3416 kJ - -gamma 0 0 - # Id: 5409943 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 14.63 + delta_h -62.3416 kJ + -gamma 0 0 + # Id: 5409943 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Co+2 + Glycine- = Co(Glycine)+ - log_k 5.07 - delta_h -12 kJ - -gamma 0 0 - # Id: 2009941 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 5.07 + delta_h -12 kJ + -gamma 0 0 + # Id: 2009941 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Co+2 + 2 Glycine- = Co(Glycine)2 - log_k 9.07 - delta_h -26 kJ - -gamma 0 0 - # Id: 2009942 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 9.07 + delta_h -26 kJ + -gamma 0 0 + # Id: 2009942 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Co+2 + 3 Glycine- = Co(Glycine)3- - log_k 11.6 - delta_h -41 kJ - -gamma 0 0 - # Id: 2009943 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 11.6 + delta_h -41 kJ + -gamma 0 0 + # Id: 2009943 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Co+2 + Glycine- + H2O = CoOH(Glycine) + H+ - log_k -5.02 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009944 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k -5.02 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009944 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Fe+2 + Glycine- = Fe(Glycine)+ - log_k 4.31 - delta_h -15.0624 kJ - -gamma 0 0 - # Id: 2809941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.31 + delta_h -15.0624 kJ + -gamma 0 0 + # Id: 2809941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + 2 Glycine- = Fe(Glycine)2 - log_k 8.29 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.29 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Glycine- = Fe(Glycine)+2 - log_k 9.38 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.38 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Glycine- + H+ = FeH(Glycine)+3 - log_k 11.55 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 11.55 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Glycine- = Mn(Glycine)+ - log_k 3.19 - delta_h -1.2552 kJ - -gamma 0 0 - # Id: 4709941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.19 + delta_h -1.2552 kJ + -gamma 0 0 + # Id: 4709941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + 2 Glycine- = Mn(Glycine)2 - log_k 5.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cr(OH)2+ + Glycine- + 2 H+ = Cr(Glycine)+2 + 2 H2O - log_k 18.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119941 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 18.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119941 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cr(OH)2+ + 2 Glycine- + 2 H+ = Cr(Glycine)2+ + 2 H2O - log_k 25.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119942 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 25.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119942 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cr(OH)2+ + 3 Glycine- + 2 H+ = Cr(Glycine)3 + 2 H2O - log_k 31.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119943 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 31.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119943 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Mg+2 + Glycine- = Mg(Glycine)+ - log_k 2.08 - delta_h 4.184 kJ - -gamma 0 0 - # Id: 4609941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.08 + delta_h 4.184 kJ + -gamma 0 0 + # Id: 4609941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Glycine- = Ca(Glycine)+ - log_k 1.39 - delta_h -4.184 kJ - -gamma 0 0 - # Id: 1509941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 1.39 + delta_h -4.184 kJ + -gamma 0 0 + # Id: 1509941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Glycine- + H+ = CaH(Glycine)+2 - log_k 10.1 - delta_h -35.9824 kJ - -gamma 0 0 - # Id: 1509942 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.1 + delta_h -35.9824 kJ + -gamma 0 0 + # Id: 1509942 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Sr+2 + Glycine- = Sr(Glycine)+ - log_k 0.91 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009941 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.00 25.0 + log_k 0.91 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009941 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.00 25.0 Ba+2 + Glycine- = Ba(Glycine)+ - log_k 0.77 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009941 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 0.77 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009941 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Salicylate-2 = H(Salicylate)- - log_k 13.7 - delta_h -35.7732 kJ - -gamma 0 0 - # Id: 3309951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 13.7 + delta_h -35.7732 kJ + -gamma 0 0 + # Id: 3309951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 2 H+ + Salicylate-2 = H2(Salicylate) - log_k 16.8 - delta_h -38.7857 kJ - -gamma 0 0 - # Id: 3309952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 16.8 + delta_h -38.7857 kJ + -gamma 0 0 + # Id: 3309952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Salicylate-2 = Zn(Salicylate) - log_k 7.71 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509951 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 7.71 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509951 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + Salicylate-2 + H+ = ZnH(Salicylate)+ - log_k 15.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 15.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Salicylate-2 = Cd(Salicylate) - log_k 6.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Salicylate-2 + H+ = CdH(Salicylate)+ - log_k 16 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 16 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Salicylate-2 = Cu(Salicylate) - log_k 11.3 - delta_h -17.9912 kJ - -gamma 0 0 - # Id: 2319951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 11.3 + delta_h -17.9912 kJ + -gamma 0 0 + # Id: 2319951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 2 Salicylate-2 = Cu(Salicylate)2-2 - log_k 19.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 19.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Salicylate-2 + H+ = CuH(Salicylate)+ - log_k 14.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 2319953 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 14.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 2319953 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Salicylate-2 = Ni(Salicylate) - log_k 8.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 2 Salicylate-2 = Ni(Salicylate)2-2 - log_k 12.64 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409952 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 12.64 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409952 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Co+2 + Salicylate-2 = Co(Salicylate) - log_k 7.4289 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009951 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 + log_k 7.4289 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009951 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 Co+2 + 2 Salicylate-2 = Co(Salicylate)2-2 - log_k 11.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009952 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 20.0 + log_k 11.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009952 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 20.0 Fe+2 + Salicylate-2 = Fe(Salicylate) - log_k 7.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+2 + 2 Salicylate-2 = Fe(Salicylate)2-2 - log_k 11.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 2809952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 11.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 2809952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + Salicylate-2 = Fe(Salicylate)+ - log_k 17.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 17.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Fe+3 + 2 Salicylate-2 = Fe(Salicylate)2- - log_k 29.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2819952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 29.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2819952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + Salicylate-2 = Mn(Salicylate) - log_k 6.5 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.5 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mn+2 + 2 Salicylate-2 = Mn(Salicylate)2-2 - log_k 10.1 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.1 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Be+2 + Salicylate-2 = Be(Salicylate) - log_k 13.3889 - delta_h -31.7732 kJ - -gamma 0 0 - # Id: 1109951 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.10 25.0 + log_k 13.3889 + delta_h -31.7732 kJ + -gamma 0 0 + # Id: 1109951 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.10 25.0 Be+2 + 2 Salicylate-2 = Be(Salicylate)2-2 - log_k 23.25 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109952 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 23.25 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109952 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Mg+2 + Salicylate-2 = Mg(Salicylate) - log_k 5.76 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.76 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Mg+2 + Salicylate-2 + H+ = MgH(Salicylate)+ - log_k 15.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609952 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 15.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609952 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ca+2 + Salicylate-2 = Ca(Salicylate) - log_k 4.05 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509951 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.05 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509951 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Salicylate-2 + H+ = CaH(Salicylate)+ - log_k 14.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509952 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 14.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509952 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ba+2 + Salicylate-2 + H+ = BaH(Salicylate)+ - log_k 13.9 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009951 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 13.9 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009951 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: H+ + Glutamate-2 = H(Glutamate)- - log_k 9.96 - delta_h -41.0032 kJ - -gamma 0 0 - # Id: 3309961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.96 + delta_h -41.0032 kJ + -gamma 0 0 + # Id: 3309961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 2 H+ + Glutamate-2 = H2(Glutamate) - log_k 14.26 - delta_h -43.5136 kJ - -gamma 0 0 - # Id: 3309962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 14.26 + delta_h -43.5136 kJ + -gamma 0 0 + # Id: 3309962 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 3 H+ + Glutamate-2 = H3(Glutamate)+ - log_k 16.42 - delta_h -46.8608 kJ - -gamma 0 0 - # Id: 3309963 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 16.42 + delta_h -46.8608 kJ + -gamma 0 0 + # Id: 3309963 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Glutamate-2 = Pb(Glutamate) - log_k 6.43 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 6.43 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009961 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Pb+2 + 2 Glutamate-2 = Pb(Glutamate)2-2 - log_k 8.61 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 8.61 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009962 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Pb+2 + Glutamate-2 + H+ = PbH(Glutamate)+ - log_k 14.08 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009963 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 14.08 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009963 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Al+3 + Glutamate-2 + H+ = AlH(Glutamate)+2 - log_k 13.07 - delta_h 0 kJ - -gamma 0 0 - # Id: 309961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 13.07 + delta_h 0 kJ + -gamma 0 0 + # Id: 309961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Glutamate-2 = Zn(Glutamate) - log_k 6.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 6.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509961 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + 2 Glutamate-2 = Zn(Glutamate)2-2 - log_k 9.13 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 9.13 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509962 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Zn+2 + 3 Glutamate-2 = Zn(Glutamate)3-4 - log_k 9.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509963 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 9.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509963 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cd+2 + Glutamate-2 = Cd(Glutamate) - log_k 4.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + 2 Glutamate-2 = Cd(Glutamate)2-2 - log_k 7.59 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.59 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609962 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Hg(OH)2 + Glutamate-2 + 2 H+ = Hg(Glutamate) + 2 H2O - log_k 19.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 19.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619961 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Hg(OH)2 + 2 Glutamate-2 + 2 H+ = Hg(Glutamate)2-2 + 2 H2O - log_k 26.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 3619962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 26.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 3619962 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cu+2 + Glutamate-2 = Cu(Glutamate) - log_k 9.17 - delta_h -20.92 kJ - -gamma 0 0 - # Id: 2319961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 9.17 + delta_h -20.92 kJ + -gamma 0 0 + # Id: 2319961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 2 Glutamate-2 = Cu(Glutamate)2-2 - log_k 15.78 - delta_h -48.116 kJ - -gamma 0 0 - # Id: 2319962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 15.78 + delta_h -48.116 kJ + -gamma 0 0 + # Id: 2319962 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Glutamate-2 + H+ = CuH(Glutamate)+ - log_k 13.3 - delta_h -28.0328 kJ - -gamma 0 0 - # Id: 2319963 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 13.3 + delta_h -28.0328 kJ + -gamma 0 0 + # Id: 2319963 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + Glutamate-2 = Ag(Glutamate)- - log_k 4.22 - delta_h 0 kJ - -gamma 0 0 - # Id: 209961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.22 + delta_h 0 kJ + -gamma 0 0 + # Id: 209961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ag+ + 2 Glutamate-2 = Ag(Glutamate)2-3 - log_k 7.36 - delta_h 0 kJ - -gamma 0 0 - # Id: 209962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 7.36 + delta_h 0 kJ + -gamma 0 0 + # Id: 209962 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: 2 Ag+ + Glutamate-2 = Ag2(Glutamate) - log_k 3.4 - delta_h 0 kJ - -gamma 0 0 - # Id: 209963 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.4 + delta_h 0 kJ + -gamma 0 0 + # Id: 209963 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Glutamate-2 = Ni(Glutamate) - log_k 6.47 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.47 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + 2 Glutamate-2 = Ni(Glutamate)2-2 - log_k 10.7 - delta_h -30.9616 kJ - -gamma 0 0 - # Id: 5409962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 10.7 + delta_h -30.9616 kJ + -gamma 0 0 + # Id: 5409962 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Glutamate-2 = Co(Glutamate) - log_k 5.4178 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009961 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 5.4178 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009961 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Co+2 + 2 Glutamate-2 = Co(Glutamate)2-2 - log_k 8.7178 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009962 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 8.7178 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009962 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Mn+2 + Glutamate-2 = Mn(Glutamate) - log_k 4.95 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 4.95 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709961 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Mn+2 + 2 Glutamate-2 = Mn(Glutamate)2-2 - log_k 8.48 - delta_h 0 kJ - -gamma 0 0 - # Id: 4709962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 8.48 + delta_h 0 kJ + -gamma 0 0 + # Id: 4709962 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cr(OH)2+ + Glutamate-2 + 2 H+ = Cr(Glutamate)+ + 2 H2O - log_k 22.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119961 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 22.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119961 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cr(OH)2+ + 2 Glutamate-2 + 2 H+ = Cr(Glutamate)2- + 2 H2O - log_k 30.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119962 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 30.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119962 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cr(OH)2+ + Glutamate-2 + 3 H+ = CrH(Glutamate)+2 + 2 H2O - log_k 25.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119963 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 25.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119963 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Mg+2 + Glutamate-2 = Mg(Glutamate) - log_k 2.8 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.8 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Glutamate-2 = Ca(Glutamate) - log_k 2.06 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.06 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Glutamate-2 + H+ = CaH(Glutamate)+ - log_k 11.13 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509962 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 11.13 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509962 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Sr+2 + Glutamate-2 = Sr(Glutamate) - log_k 2.2278 - delta_h 0 kJ - -gamma 0 0 - # Id: 8009961 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 2.2278 + delta_h 0 kJ + -gamma 0 0 + # Id: 8009961 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Ba+2 + Glutamate-2 = Ba(Glutamate) - log_k 2.14 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009961 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.14 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009961 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: H+ + Phthalate-2 = H(Phthalate)- - log_k 5.408 - delta_h 2.1757 kJ - -gamma 0 0 - # Id: 3309971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.408 + delta_h 2.1757 kJ + -gamma 0 0 + # Id: 3309971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: 2 H+ + Phthalate-2 = H2(Phthalate) - log_k 8.358 - delta_h 4.8534 kJ - -gamma 0 0 - # Id: 3309972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 8.358 + delta_h 4.8534 kJ + -gamma 0 0 + # Id: 3309972 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Phthalate-2 = Pb(Phthalate) - log_k 4.26 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009971 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 4.26 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009971 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Pb+2 + 2 Phthalate-2 = Pb(Phthalate)2-2 - log_k 4.83 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.83 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009972 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Pb+2 + Phthalate-2 + H+ = PbH(Phthalate)+ - log_k 6.98 - delta_h 0 kJ - -gamma 0 0 - # Id: 6009973 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.98 + delta_h 0 kJ + -gamma 0 0 + # Id: 6009973 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + Phthalate-2 = Al(Phthalate)+ - log_k 4.56 - delta_h 0 kJ - -gamma 0 0 - # Id: 309971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.56 + delta_h 0 kJ + -gamma 0 0 + # Id: 309971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Al+3 + 2 Phthalate-2 = Al(Phthalate)2- - log_k 7.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 309972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 309972 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + Phthalate-2 = Zn(Phthalate) - log_k 2.91 - delta_h 13.3888 kJ - -gamma 0 0 - # Id: 9509971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.91 + delta_h 13.3888 kJ + -gamma 0 0 + # Id: 9509971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Zn+2 + 2 Phthalate-2 = Zn(Phthalate)2-2 - log_k 4.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 9509972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 9509972 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Phthalate-2 = Cd(Phthalate) - log_k 3.43 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.43 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + Phthalate-2 + H+ = CdH(Phthalate)+ - log_k 6.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609973 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609973 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cd+2 + 2 Phthalate-2 = Cd(Phthalate)2-2 - log_k 3.7 - delta_h 0 kJ - -gamma 0 0 - # Id: 1609972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 3.7 + delta_h 0 kJ + -gamma 0 0 + # Id: 1609972 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Phthalate-2 = Cu(Phthalate) - log_k 4.02 - delta_h 8.368 kJ - -gamma 0 0 - # Id: 2319971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 4.02 + delta_h 8.368 kJ + -gamma 0 0 + # Id: 2319971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + Phthalate-2 + H+ = CuH(Phthalate)+ - log_k 7.1 - delta_h 3.8493 kJ - -gamma 0 0 - # Id: 2319970 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 7.1 + delta_h 3.8493 kJ + -gamma 0 0 + # Id: 2319970 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cu+2 + 2 Phthalate-2 = Cu(Phthalate)2-2 - log_k 5.3 - delta_h 15.8992 kJ - -gamma 0 0 - # Id: 2319972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 5.3 + delta_h 15.8992 kJ + -gamma 0 0 + # Id: 2319972 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Phthalate-2 = Ni(Phthalate) - log_k 2.95 - delta_h 7.5312 kJ - -gamma 0 0 - # Id: 5409971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.95 + delta_h 7.5312 kJ + -gamma 0 0 + # Id: 5409971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ni+2 + Phthalate-2 + H+ = NiH(Phthalate)+ - log_k 6.6 - delta_h 0 kJ - -gamma 0 0 - # Id: 5409972 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.6 + delta_h 0 kJ + -gamma 0 0 + # Id: 5409972 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Co+2 + Phthalate-2 = Co(Phthalate) - log_k 2.83 - delta_h 7.9 kJ - -gamma 0 0 - # Id: 2009971 - # log K source: NIST46.4 - # Delta H source: NIST46.4 - #T and ionic strength: 0.00 25.0 + log_k 2.83 + delta_h 7.9 kJ + -gamma 0 0 + # Id: 2009971 + # log K source: NIST46.4 + # Delta H source: NIST46.4 + #T and ionic strength: 0.00 25.0 Co+2 + H+ + Phthalate-2 = CoH(Phthalate)+ - log_k 7.227 - delta_h 0 kJ - -gamma 0 0 - # Id: 2009972 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.50 25.0 + log_k 7.227 + delta_h 0 kJ + -gamma 0 0 + # Id: 2009972 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.50 25.0 Mn+2 + Phthalate-2 = Mn(Phthalate) - log_k 2.74 - delta_h 10.0416 kJ - -gamma 0 0 - # Id: 4709971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.74 + delta_h 10.0416 kJ + -gamma 0 0 + # Id: 4709971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Cr(OH)2+ + Phthalate-2 + 2 H+ = Cr(Phthalate)+ + 2 H2O - log_k 16.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119971 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 16.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119971 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cr(OH)2+ + 2 Phthalate-2 + 2 H+ = Cr(Phthalate)2- + 2 H2O - log_k 21.2 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119972 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 21.2 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119972 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Cr(OH)2+ + 3 Phthalate-2 + 2 H+ = Cr(Phthalate)3-3 + 2 H2O - log_k 23.3 - delta_h 0 kJ - -gamma 0 0 - # Id: 2119973 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 23.3 + delta_h 0 kJ + -gamma 0 0 + # Id: 2119973 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Be+2 + Phthalate-2 = Be(Phthalate) - log_k 4.8278 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109971 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 4.8278 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109971 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Be+2 + 2 Phthalate-2 = Be(Phthalate)2-2 - log_k 6.5478 - delta_h 0 kJ - -gamma 0 0 - # Id: 1109972 - # log K source: NIST46.4 - # Delta H source: NIST46.2 - #T and ionic strength: 0.10 25.0 + log_k 6.5478 + delta_h 0 kJ + -gamma 0 0 + # Id: 1109972 + # log K source: NIST46.4 + # Delta H source: NIST46.2 + #T and ionic strength: 0.10 25.0 Mg+2 + Phthalate-2 = Mg(Phthalate) - log_k 2.49 - delta_h 0 kJ - -gamma 0 0 - # Id: 4609971 - # log K source: SCD2.62 - # Delta H source: SCD2.62 - #T and ionic strength: + log_k 2.49 + delta_h 0 kJ + -gamma 0 0 + # Id: 4609971 + # log K source: SCD2.62 + # Delta H source: SCD2.62 + #T and ionic strength: Ca+2 + Phthalate-2 = Ca(Phthalate) - log_k 2.45 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509970 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.45 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509970 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ca+2 + Phthalate-2 + H+ = CaH(Phthalate)+ - log_k 6.43 - delta_h 0 kJ - -gamma 0 0 - # Id: 1509971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 6.43 + delta_h 0 kJ + -gamma 0 0 + # Id: 1509971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Ba+2 + Phthalate-2 = Ba(Phthalate) - log_k 2.33 - delta_h 0 kJ - -gamma 0 0 - # Id: 1009971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 2.33 + delta_h 0 kJ + -gamma 0 0 + # Id: 1009971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: Na+ + Phthalate-2 = Na(Phthalate)- - log_k 0.8 - delta_h 4.184 kJ - -gamma 0 0 - # Id: 5009970 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 0.8 + delta_h 4.184 kJ + -gamma 0 0 + # Id: 5009970 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: K+ + Phthalate-2 = K(Phthalate)- - log_k 0.7 - delta_h 3.7656 kJ - -gamma 0 0 - # Id: 4109971 - # log K source: NIST46.2 - # Delta H source: NIST46.2 - #T and ionic strength: + log_k 0.7 + delta_h 3.7656 kJ + -gamma 0 0 + # Id: 4109971 + # log K source: NIST46.2 + # Delta H source: NIST46.2 + #T and ionic strength: PHASES Sulfur - S + H+ + 2 e- = HS- - log_k -2.1449 - delta_h -16.3 kJ + S + H+ + 2 e- = HS- + log_k -2.1449 + delta_h -16.3 kJ Semetal(hex - Se + H+ + 2 e- = HSe- - log_k -7.7084 - delta_h 15.9 kJ + Se + H+ + 2 e- = HSe- + log_k -7.7084 + delta_h 15.9 kJ Semetal(am) - Se + H+ + 2 e- = HSe- - log_k -7.1099 - delta_h 10.8784 kJ + Se + H+ + 2 e- = HSe- + log_k -7.1099 + delta_h 10.8784 kJ Sbmetal - Sb + 3 H2O = Sb(OH)3 + 3 H+ + 3 e- - log_k -11.6889 - delta_h 83.89 kJ + Sb + 3 H2O = Sb(OH)3 + 3 H+ + 3 e- + log_k -11.6889 + delta_h 83.89 kJ Snmetal(wht) - Sn + 2 H2O = Sn(OH)2 + 2 H+ + 2 e- - log_k -2.3266 - delta_h -0 kJ + Sn + 2 H2O = Sn(OH)2 + 2 H+ + 2 e- + log_k -2.3266 + delta_h -0 kJ Pbmetal - Pb = Pb+2 + 2 e- - log_k 4.2462 - delta_h 0.92 kJ + Pb = Pb+2 + 2 e- + log_k 4.2462 + delta_h 0.92 kJ Tlmetal - Tl = Tl+ + e- - log_k 5.6762 - delta_h 5.36 kJ + Tl = Tl+ + e- + log_k 5.6762 + delta_h 5.36 kJ Znmetal - Zn = Zn+2 + 2 e- - log_k 25.7886 - delta_h -153.39 kJ + Zn = Zn+2 + 2 e- + log_k 25.7886 + delta_h -153.39 kJ Cdmetal(alpha) - Cd = Cd+2 + 2 e- - log_k 13.5147 - delta_h -75.33 kJ + Cd = Cd+2 + 2 e- + log_k 13.5147 + delta_h -75.33 kJ Cdmetal(gamma) - Cd = Cd+2 + 2 e- - log_k 13.618 - delta_h -75.92 kJ + Cd = Cd+2 + 2 e- + log_k 13.618 + delta_h -75.92 kJ Hgmetal(l) - Hg = 0.5 Hg2+2 + e- - log_k -13.4517 - delta_h 83.435 kJ + Hg = 0.5 Hg2+2 + e- + log_k -13.4517 + delta_h 83.435 kJ Cumetal - Cu = Cu+ + e- - log_k -8.756 - delta_h 71.67 kJ + Cu = Cu+ + e- + log_k -8.756 + delta_h 71.67 kJ Agmetal - Ag = Ag+ + e- - log_k -13.5065 - delta_h 105.79 kJ + Ag = Ag+ + e- + log_k -13.5065 + delta_h 105.79 kJ Crmetal - Cr = Cr+2 + 2 e- - log_k 30.4831 - delta_h -172 kJ + Cr = Cr+2 + 2 e- + log_k 30.4831 + delta_h -172 kJ Vmetal - V = V+3 + 3 e- - log_k 44.0253 - delta_h -259 kJ + V = V+3 + 3 e- + log_k 44.0253 + delta_h -259 kJ Stibnite - Sb2S3 + 6 H2O = 2 Sb(OH)3 + 3 H+ + 3 HS- - log_k -50.46 - delta_h 293.78 kJ + Sb2S3 + 6 H2O = 2 Sb(OH)3 + 3 H+ + 3 HS- + log_k -50.46 + delta_h 293.78 kJ Orpiment - As2S3 + 6 H2O = 2 H3AsO3 + 3 HS- + 3 H+ - log_k -61.0663 - delta_h 350.68 kJ + As2S3 + 6 H2O = 2 H3AsO3 + 3 HS- + 3 H+ + log_k -61.0663 + delta_h 350.68 kJ Realgar - AsS + 3 H2O = H3AsO3 + HS- + 2 H+ + e- - log_k -19.747 - delta_h 127.8 kJ + AsS + 3 H2O = H3AsO3 + HS- + 2 H+ + e- + log_k -19.747 + delta_h 127.8 kJ SnS - SnS + 2 H2O = Sn(OH)2 + H+ + HS- - log_k -19.114 - delta_h -0 kJ + SnS + 2 H2O = Sn(OH)2 + H+ + HS- + log_k -19.114 + delta_h -0 kJ SnS2 - SnS2 + 6 H2O = Sn(OH)6-2 + 4 H+ + 2 HS- - log_k -57.4538 - delta_h -0 kJ + SnS2 + 6 H2O = Sn(OH)6-2 + 4 H+ + 2 HS- + log_k -57.4538 + delta_h -0 kJ Galena - PbS + H+ = Pb+2 + HS- - log_k -13.97 - delta_h 80 kJ + PbS + H+ = Pb+2 + HS- + log_k -13.97 + delta_h 80 kJ Tl2S - Tl2S + H+ = 2 Tl+ + HS- - log_k -7.19 - delta_h 91.52 kJ + Tl2S + H+ = 2 Tl+ + HS- + log_k -7.19 + delta_h 91.52 kJ ZnS(am) - ZnS + H+ = Zn+2 + HS- - log_k -9.052 - delta_h 15.3553 kJ + ZnS + H+ = Zn+2 + HS- + log_k -9.052 + delta_h 15.3553 kJ Sphalerite - ZnS + H+ = Zn+2 + HS- - log_k -11.45 - delta_h 30 kJ + ZnS + H+ = Zn+2 + HS- + log_k -11.45 + delta_h 30 kJ Wurtzite - ZnS + H+ = Zn+2 + HS- - log_k -8.95 - delta_h 21.171 kJ + ZnS + H+ = Zn+2 + HS- + log_k -8.95 + delta_h 21.171 kJ Greenockite - CdS + H+ = Cd+2 + HS- - log_k -14.36 - delta_h 55 kJ + CdS + H+ = Cd+2 + HS- + log_k -14.36 + delta_h 55 kJ Hg2S - Hg2S + H+ = Hg2+2 + HS- - log_k -11.6765 - delta_h 69.7473 kJ + Hg2S + H+ = Hg2+2 + HS- + log_k -11.6765 + delta_h 69.7473 kJ Cinnabar - HgS + 2 H2O = Hg(OH)2 + H+ + HS- - log_k -45.694 - delta_h 253.76 kJ + HgS + 2 H2O = Hg(OH)2 + H+ + HS- + log_k -45.694 + delta_h 253.76 kJ Metacinnabar - HgS + 2 H2O = Hg(OH)2 + H+ + HS- - log_k -45.094 - delta_h 253.72 kJ + HgS + 2 H2O = Hg(OH)2 + H+ + HS- + log_k -45.094 + delta_h 253.72 kJ Chalcocite - Cu2S + H+ = 2 Cu+ + HS- - log_k -34.92 - delta_h 168 kJ + Cu2S + H+ = 2 Cu+ + HS- + log_k -34.92 + delta_h 168 kJ Djurleite - Cu0.066Cu1.868S + H+ = 0.066 Cu+2 + 1.868 Cu+ + HS- - log_k -33.92 - delta_h 200.334 kJ + Cu0.066Cu1.868S + H+ = 0.066 Cu+2 + 1.868 Cu+ + HS- + log_k -33.92 + delta_h 200.334 kJ Anilite - Cu0.25Cu1.5S + H+ = 0.25 Cu+2 + 1.5 Cu+ + HS- - log_k -31.878 - delta_h 182.15 kJ + Cu0.25Cu1.5S + H+ = 0.25 Cu+2 + 1.5 Cu+ + HS- + log_k -31.878 + delta_h 182.15 kJ BlaubleiII - Cu0.6Cu0.8S + H+ = 0.6 Cu+2 + 0.8 Cu+ + HS- - log_k -27.279 - delta_h -0 kJ + Cu0.6Cu0.8S + H+ = 0.6 Cu+2 + 0.8 Cu+ + HS- + log_k -27.279 + delta_h -0 kJ BlaubleiI - Cu0.9Cu0.2S + H+ = 0.9 Cu+2 + 0.2 Cu+ + HS- - log_k -24.162 - delta_h -0 kJ + Cu0.9Cu0.2S + H+ = 0.9 Cu+2 + 0.2 Cu+ + HS- + log_k -24.162 + delta_h -0 kJ Covellite - CuS + H+ = Cu+2 + HS- - log_k -22.3 - delta_h 97 kJ + CuS + H+ = Cu+2 + HS- + log_k -22.3 + delta_h 97 kJ Chalcopyrite - CuFeS2 + 2 H+ = Cu+2 + Fe+2 + 2 HS- - log_k -35.27 - delta_h 148.448 kJ + CuFeS2 + 2 H+ = Cu+2 + Fe+2 + 2 HS- + log_k -35.27 + delta_h 148.448 kJ Acanthite - Ag2S + H+ = 2 Ag+ + HS- - log_k -36.22 - delta_h 227 kJ + Ag2S + H+ = 2 Ag+ + HS- + log_k -36.22 + delta_h 227 kJ NiS(alpha) - NiS + H+ = Ni+2 + HS- - log_k -5.6 - delta_h -0 kJ + NiS + H+ = Ni+2 + HS- + log_k -5.6 + delta_h -0 kJ NiS(beta) - NiS + H+ = Ni+2 + HS- - log_k -11.1 - delta_h -0 kJ + NiS + H+ = Ni+2 + HS- + log_k -11.1 + delta_h -0 kJ NiS(gamma) - NiS + H+ = Ni+2 + HS- - log_k -12.8 - delta_h -0 kJ + NiS + H+ = Ni+2 + HS- + log_k -12.8 + delta_h -0 kJ CoS(alpha) - CoS + H+ = Co+2 + HS- - log_k -7.44 - delta_h -0 kJ + CoS + H+ = Co+2 + HS- + log_k -7.44 + delta_h -0 kJ CoS(beta) - CoS + H+ = Co+2 + HS- - log_k -11.07 - delta_h -0 kJ + CoS + H+ = Co+2 + HS- + log_k -11.07 + delta_h -0 kJ FeS(ppt) - FeS + H+ = Fe+2 + HS- - log_k -2.95 - delta_h -11 kJ + FeS + H+ = Fe+2 + HS- + log_k -2.95 + delta_h -11 kJ Greigite - Fe3S4 + 4 H+ = 2 Fe+3 + Fe+2 + 4 HS- - log_k -45.035 - delta_h -0 kJ + Fe3S4 + 4 H+ = 2 Fe+3 + Fe+2 + 4 HS- + log_k -45.035 + delta_h -0 kJ Mackinawite - FeS + H+ = Fe+2 + HS- - log_k -3.6 - delta_h -0 kJ + FeS + H+ = Fe+2 + HS- + log_k -3.6 + delta_h -0 kJ Pyrite - FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- - log_k -18.5082 - delta_h 49.844 kJ + FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- + log_k -18.5082 + delta_h 49.844 kJ MnS(grn) - MnS + H+ = Mn+2 + HS- - log_k 0.17 - delta_h -32 kJ + MnS + H+ = Mn+2 + HS- + log_k 0.17 + delta_h -32 kJ MnS(pnk) - MnS + H+ = Mn+2 + HS- - log_k 3.34 - delta_h -0 kJ + MnS + H+ = Mn+2 + HS- + log_k 3.34 + delta_h -0 kJ MoS2 - MoS2 + 4 H2O = MoO4-2 + 6 H+ + 2 HS- + 2 e- - log_k -70.2596 - delta_h 389.02 kJ + MoS2 + 4 H2O = MoO4-2 + 6 H+ + 2 HS- + 2 e- + log_k -70.2596 + delta_h 389.02 kJ BeS - BeS + H+ = Be+2 + HS- - log_k 19.38 - delta_h -0 kJ + BeS + H+ = Be+2 + HS- + log_k 19.38 + delta_h -0 kJ BaS - BaS + H+ = Ba+2 + HS- - log_k 16.18 - delta_h -0 kJ + BaS + H+ = Ba+2 + HS- + log_k 16.18 + delta_h -0 kJ Hg2(Cyanide)2 - Hg2(Cyanide)2 = Hg2+2 + 2 Cyanide- - log_k -39.3 - delta_h -0 kJ + Hg2(Cyanide)2 = Hg2+2 + 2 Cyanide- + log_k -39.3 + delta_h -0 kJ CuCyanide - CuCyanide = Cu+ + Cyanide- - log_k -19.5 - delta_h -19 kJ + CuCyanide = Cu+ + Cyanide- + log_k -19.5 + delta_h -19 kJ AgCyanide - AgCyanide = Ag+ + Cyanide- - log_k -15.74 - delta_h 110.395 kJ + AgCyanide = Ag+ + Cyanide- + log_k -15.74 + delta_h 110.395 kJ Ag2(Cyanide)2 - Ag2(Cyanide)2 = 2 Ag+ + 2 Cyanide- - log_k -11.3289 - delta_h -0 kJ + Ag2(Cyanide)2 = 2 Ag+ + 2 Cyanide- + log_k -11.3289 + delta_h -0 kJ NaCyanide(cubic) - NaCyanide = Cyanide- + Na+ - log_k 1.6012 - delta_h 0.969 kJ + NaCyanide = Cyanide- + Na+ + log_k 1.6012 + delta_h 0.969 kJ KCyanide(cubic) - KCyanide = Cyanide- + K+ - log_k 1.4188 - delta_h 11.93 kJ + KCyanide = Cyanide- + K+ + log_k 1.4188 + delta_h 11.93 kJ Pb2Fe(Cyanide)6 - Pb2Fe(Cyanide)6 = 2 Pb+2 + Fe+2 + 6 Cyanide- - log_k -53.42 - delta_h -0 kJ + Pb2Fe(Cyanide)6 = 2 Pb+2 + Fe+2 + 6 Cyanide- + log_k -53.42 + delta_h -0 kJ Zn2Fe(Cyanide)6 - Zn2Fe(Cyanide)6 = 2 Zn+2 + Fe+2 + 6 Cyanide- - log_k -51.08 - delta_h -0 kJ + Zn2Fe(Cyanide)6 = 2 Zn+2 + Fe+2 + 6 Cyanide- + log_k -51.08 + delta_h -0 kJ Cd2Fe(Cyanide)6 - Cd2Fe(Cyanide)6 = 2 Cd+2 + Fe+2 + 6 Cyanide- - log_k -52.78 - delta_h -0 kJ + Cd2Fe(Cyanide)6 = 2 Cd+2 + Fe+2 + 6 Cyanide- + log_k -52.78 + delta_h -0 kJ Ag4Fe(Cyanide)6 - Ag4Fe(Cyanide)6 = 4 Ag+ + Fe+2 + 6 Cyanide- - log_k -79.47 - delta_h -0 kJ + Ag4Fe(Cyanide)6 = 4 Ag+ + Fe+2 + 6 Cyanide- + log_k -79.47 + delta_h -0 kJ Ag3Fe(Cyanide)6 - Ag3Fe(Cyanide)6 = 3 Ag+ + Fe+3 + 6 Cyanide- - log_k -72.7867 - delta_h -0 kJ + Ag3Fe(Cyanide)6 = 3 Ag+ + Fe+3 + 6 Cyanide- + log_k -72.7867 + delta_h -0 kJ Mn3(Fe(Cyanide)6)2 - Mn3(Fe(Cyanide)6)2 = 3 Mn+2 + 2 Fe+3 + 12 Cyanide- - log_k -105.4 - delta_h -0 kJ + Mn3(Fe(Cyanide)6)2 = 3 Mn+2 + 2 Fe+3 + 12 Cyanide- + log_k -105.4 + delta_h -0 kJ Sb2Se3 - Sb2Se3 + 6 H2O = 2 Sb(OH)3 + 3 HSe- + 3 H+ - log_k -67.7571 - delta_h 343.046 kJ + Sb2Se3 + 6 H2O = 2 Sb(OH)3 + 3 HSe- + 3 H+ + log_k -67.7571 + delta_h 343.046 kJ SnSe - SnSe + 2 H2O = Sn(OH)2 + H+ + HSe- - log_k -30.494 - delta_h -0 kJ + SnSe + 2 H2O = Sn(OH)2 + H+ + HSe- + log_k -30.494 + delta_h -0 kJ SnSe2 - SnSe2 + 6 H2O = Sn(OH)6-2 + 4 H+ + 2 HSe- - log_k -65.1189 - delta_h -0 kJ + SnSe2 + 6 H2O = Sn(OH)6-2 + 4 H+ + 2 HSe- + log_k -65.1189 + delta_h -0 kJ Clausthalite - PbSe + H+ = Pb+2 + HSe- - log_k -27.1 - delta_h 119.72 kJ + PbSe + H+ = Pb+2 + HSe- + log_k -27.1 + delta_h 119.72 kJ Tl2Se - Tl2Se + H+ = 2 Tl+ + HSe- - log_k -18.1 - delta_h 85.62 kJ + Tl2Se + H+ = 2 Tl+ + HSe- + log_k -18.1 + delta_h 85.62 kJ ZnSe - ZnSe + H+ = Zn+2 + HSe- - log_k -14.4 - delta_h 25.51 kJ + ZnSe + H+ = Zn+2 + HSe- + log_k -14.4 + delta_h 25.51 kJ CdSe - CdSe + H+ = Cd+2 + HSe- - log_k -20.2 - delta_h 75.9814 kJ + CdSe + H+ = Cd+2 + HSe- + log_k -20.2 + delta_h 75.9814 kJ HgSe - HgSe + 2 H2O = Hg(OH)2 + H+ + HSe- - log_k -55.694 - delta_h -0 kJ + HgSe + 2 H2O = Hg(OH)2 + H+ + HSe- + log_k -55.694 + delta_h -0 kJ Cu2Se(alpha) - Cu2Se + H+ = 2 Cu+ + HSe- - log_k -45.8 - delta_h 214.263 kJ + Cu2Se + H+ = 2 Cu+ + HSe- + log_k -45.8 + delta_h 214.263 kJ Cu3Se2 - Cu3Se2 + 2 H+ = 2 HSe- + 2 Cu+ + Cu+2 - log_k -63.4911 - delta_h 340.327 kJ + Cu3Se2 + 2 H+ = 2 HSe- + 2 Cu+ + Cu+2 + log_k -63.4911 + delta_h 340.327 kJ CuSe - CuSe + H+ = Cu+2 + HSe- - log_k -33.1 - delta_h 121.127 kJ + CuSe + H+ = Cu+2 + HSe- + log_k -33.1 + delta_h 121.127 kJ CuSe2 - CuSe2 + 2 H+ + 2 e- = 2 HSe- + Cu+2 - log_k -33.3655 - delta_h 140.582 kJ + CuSe2 + 2 H+ + 2 e- = 2 HSe- + Cu+2 + log_k -33.3655 + delta_h 140.582 kJ Ag2Se - Ag2Se + H+ = 2 Ag+ + HSe- - log_k -48.7 - delta_h 265.48 kJ + Ag2Se + H+ = 2 Ag+ + HSe- + log_k -48.7 + delta_h 265.48 kJ NiSe - NiSe + H+ = Ni+2 + HSe- - log_k -17.7 - delta_h -0 kJ + NiSe + H+ = Ni+2 + HSe- + log_k -17.7 + delta_h -0 kJ CoSe - CoSe + H+ = Co+2 + HSe- - log_k -16.2 - delta_h -0 kJ + CoSe + H+ = Co+2 + HSe- + log_k -16.2 + delta_h -0 kJ FeSe - FeSe + H+ = Fe+2 + HSe- - log_k -11 - delta_h 2.092 kJ + FeSe + H+ = Fe+2 + HSe- + log_k -11 + delta_h 2.092 kJ Ferroselite - FeSe2 + 2 H+ + 2 e- = 2 HSe- + Fe+2 - log_k -18.5959 - delta_h 47.2792 kJ + FeSe2 + 2 H+ + 2 e- = 2 HSe- + Fe+2 + log_k -18.5959 + delta_h 47.2792 kJ MnSe - MnSe + H+ = Mn+2 + HSe- - log_k 3.5 - delta_h -98.15 kJ + MnSe + H+ = Mn+2 + HSe- + log_k 3.5 + delta_h -98.15 kJ AlSb - AlSb + 3 H2O = Sb(OH)3 + 6 e- + Al+3 + 3 H+ - log_k 65.6241 - delta_h -0 kJ + AlSb + 3 H2O = Sb(OH)3 + 6 e- + Al+3 + 3 H+ + log_k 65.6241 + delta_h -0 kJ ZnSb - ZnSb + 3 H2O = Sb(OH)3 + 5 e- + Zn+2 + 3 H+ - log_k 11.0138 - delta_h -54.8773 kJ + ZnSb + 3 H2O = Sb(OH)3 + 5 e- + Zn+2 + 3 H+ + log_k 11.0138 + delta_h -54.8773 kJ CdSb - CdSb + 3 H2O = Sb(OH)3 + 5 e- + 3 H+ + Cd+2 - log_k -0.3501 - delta_h 22.36 kJ + CdSb + 3 H2O = Sb(OH)3 + 5 e- + 3 H+ + Cd+2 + log_k -0.3501 + delta_h 22.36 kJ Cu2Sb:3H2O - Cu2Sb:3H2O = Sb(OH)3 + 6 e- + 3 H+ + Cu+ + Cu+2 - log_k -34.8827 - delta_h 233.237 kJ + Cu2Sb:3H2O = Sb(OH)3 + 6 e- + 3 H+ + Cu+ + Cu+2 + log_k -34.8827 + delta_h 233.237 kJ Cu3Sb - Cu3Sb + 3 H2O = Sb(OH)3 + 6 e- + 3 H+ + 3 Cu+ - log_k -42.5937 - delta_h 308.131 kJ + Cu3Sb + 3 H2O = Sb(OH)3 + 6 e- + 3 H+ + 3 Cu+ + log_k -42.5937 + delta_h 308.131 kJ #Ag4Sb -# Ag4Sb + 3H2O = Sb(OH)3 + 6e- + 3Ag+ + 3H+ -# log_k -56.1818 -# delta_h -0 kJ +# Ag4Sb + 3H2O = Sb(OH)3 + 6e- + 3Ag+ + 3H+ +# log_k -56.1818 +# delta_h -0 kJ Breithauptite - NiSb + 3 H2O = Sb(OH)3 + 5 e- + 3 H+ + Ni+2 - log_k -18.5225 - delta_h 96.0019 kJ + NiSb + 3 H2O = Sb(OH)3 + 5 e- + 3 H+ + Ni+2 + log_k -18.5225 + delta_h 96.0019 kJ MnSb - MnSb + 3 H2O = Mn+3 + Sb(OH)3 + 6 e- + 3 H+ - log_k -2.9099 - delta_h 21.1083 kJ + MnSb + 3 H2O = Mn+3 + Sb(OH)3 + 6 e- + 3 H+ + log_k -2.9099 + delta_h 21.1083 kJ Mn2Sb - Mn2Sb + 3 H2O = 2 Mn+2 + Sb(OH)3 + 7 e- + 3 H+ - log_k 61.0796 - delta_h -0 kJ + Mn2Sb + 3 H2O = 2 Mn+2 + Sb(OH)3 + 7 e- + 3 H+ + log_k 61.0796 + delta_h -0 kJ USb2 - USb2 + 8 H2O = UO2+2 + 2 Sb(OH)3 + 12 e- + 10 H+ - log_k 29.5771 - delta_h -103.56 kJ + USb2 + 8 H2O = UO2+2 + 2 Sb(OH)3 + 12 e- + 10 H+ + log_k 29.5771 + delta_h -103.56 kJ U3Sb4 - U3Sb4 + 12 H2O = 3 U+4 + 4 Sb(OH)3 + 24 e- + 12 H+ - log_k 152.383 - delta_h -986.04 kJ + U3Sb4 + 12 H2O = 3 U+4 + 4 Sb(OH)3 + 24 e- + 12 H+ + log_k 152.383 + delta_h -986.04 kJ Mg2Sb3 - Mg2Sb3 + 9 H2O = 2 Mg+2 + 3 Sb(OH)3 + 9 H+ + 13 e- - log_k 74.6838 - delta_h -0 kJ + Mg2Sb3 + 9 H2O = 2 Mg+2 + 3 Sb(OH)3 + 9 H+ + 13 e- + log_k 74.6838 + delta_h -0 kJ Ca3Sb2 - Ca3Sb2 + 6 H2O = 3 Ca+2 + 2 Sb(OH)3 + 6 H+ + 12 e- - log_k 142.974 - delta_h -732.744 kJ + Ca3Sb2 + 6 H2O = 3 Ca+2 + 2 Sb(OH)3 + 6 H+ + 12 e- + log_k 142.974 + delta_h -732.744 kJ NaSb - NaSb + 3 H2O = Na+ + Sb(OH)3 + 3 H+ + 4 e- - log_k 23.1658 - delta_h -93.45 kJ + NaSb + 3 H2O = Na+ + Sb(OH)3 + 3 H+ + 4 e- + log_k 23.1658 + delta_h -93.45 kJ Na3Sb - Na3Sb + 3 H2O = 3 Na+ + Sb(OH)3 + 3 H+ + 6 e- - log_k 94.4517 - delta_h -432.13 kJ + Na3Sb + 3 H2O = 3 Na+ + Sb(OH)3 + 3 H+ + 6 e- + log_k 94.4517 + delta_h -432.13 kJ SeO2 - SeO2 + H2O = HSeO3- + H+ - log_k 0.1246 - delta_h 1.4016 kJ + SeO2 + H2O = HSeO3- + H+ + log_k 0.1246 + delta_h 1.4016 kJ SeO3 - SeO3 + H2O = SeO4-2 + 2 H+ - log_k 21.044 - delta_h -146.377 kJ + SeO3 + H2O = SeO4-2 + 2 H+ + log_k 21.044 + delta_h -146.377 kJ Sb2O5 - Sb2O5 + 7 H2O = 2 Sb(OH)6- + 2 H+ - log_k -9.6674 - delta_h -0 kJ + Sb2O5 + 7 H2O = 2 Sb(OH)6- + 2 H+ + log_k -9.6674 + delta_h -0 kJ SbO2 - SbO2 + 4 H2O = Sb(OH)6- + e- + 2 H+ - log_k -27.8241 - delta_h -0 kJ + SbO2 + 4 H2O = Sb(OH)6- + e- + 2 H+ + log_k -27.8241 + delta_h -0 kJ Sb2O4 - Sb2O4 + 2 H2O + 2 H+ + 2 e- = 2 Sb(OH)3 - log_k 3.4021 - delta_h -68.04 kJ + Sb2O4 + 2 H2O + 2 H+ + 2 e- = 2 Sb(OH)3 + log_k 3.4021 + delta_h -68.04 kJ Sb4O6(cubic) - Sb4O6 + 6 H2O = 4 Sb(OH)3 - log_k -18.2612 - delta_h 61.1801 kJ + Sb4O6 + 6 H2O = 4 Sb(OH)3 + log_k -18.2612 + delta_h 61.1801 kJ Sb4O6(orth) - Sb4O6 + 6 H2O = 4 Sb(OH)3 - log_k -17.9012 - delta_h 37.6801 kJ + Sb4O6 + 6 H2O = 4 Sb(OH)3 + log_k -17.9012 + delta_h 37.6801 kJ Sb(OH)3 - Sb(OH)3 = Sb(OH)3 - log_k -7.1099 - delta_h 30.1248 kJ + Sb(OH)3 = Sb(OH)3 + log_k -7.1099 + delta_h 30.1248 kJ Senarmontite - Sb2O3 + 3 H2O = 2 Sb(OH)3 - log_k -12.3654 - delta_h 30.6478 kJ + Sb2O3 + 3 H2O = 2 Sb(OH)3 + log_k -12.3654 + delta_h 30.6478 kJ Valentinite - Sb2O3 + 3 H2O = 2 Sb(OH)3 - log_k -8.4806 - delta_h 19.0163 kJ + Sb2O3 + 3 H2O = 2 Sb(OH)3 + log_k -8.4806 + delta_h 19.0163 kJ Chalcedony - SiO2 + 2 H2O = H4SiO4 - log_k -3.55 - delta_h 19.7 kJ + SiO2 + 2 H2O = H4SiO4 + log_k -3.55 + delta_h 19.7 kJ Cristobalite - SiO2 + 2 H2O = H4SiO4 - log_k -3.35 - delta_h 20.006 kJ + SiO2 + 2 H2O = H4SiO4 + log_k -3.35 + delta_h 20.006 kJ Quartz - SiO2 + 2 H2O = H4SiO4 - log_k -4 - delta_h 22.36 kJ + SiO2 + 2 H2O = H4SiO4 + log_k -4 + delta_h 22.36 kJ SiO2(am-gel) - SiO2 + 2 H2O = H4SiO4 - log_k -2.71 - delta_h 14 kJ + SiO2 + 2 H2O = H4SiO4 + log_k -2.71 + delta_h 14 kJ SiO2(am-ppt) - SiO2 + 2 H2O = H4SiO4 - log_k -2.74 - delta_h 15.15 kJ + SiO2 + 2 H2O = H4SiO4 + log_k -2.74 + delta_h 15.15 kJ SnO - SnO + H2O = Sn(OH)2 - log_k -4.9141 - delta_h -0 kJ + SnO + H2O = Sn(OH)2 + log_k -4.9141 + delta_h -0 kJ SnO2 - SnO2 + 4 H2O = Sn(OH)6-2 + 2 H+ - log_k -28.9749 - delta_h -0 kJ + SnO2 + 4 H2O = Sn(OH)6-2 + 2 H+ + log_k -28.9749 + delta_h -0 kJ Sn(OH)2 - Sn(OH)2 = Sn(OH)2 - log_k -5.4309 - delta_h -0 kJ + Sn(OH)2 = Sn(OH)2 + log_k -5.4309 + delta_h -0 kJ Sn(OH)4 - Sn(OH)4 + 2 H2O = Sn(OH)6-2 + 2 H+ - log_k -22.2808 - delta_h -0 kJ + Sn(OH)4 + 2 H2O = Sn(OH)6-2 + 2 H+ + log_k -22.2808 + delta_h -0 kJ H2Sn(OH)6 - H2Sn(OH)6 = Sn(OH)6-2 + 2 H+ - log_k -23.5281 - delta_h -0 kJ + H2Sn(OH)6 = Sn(OH)6-2 + 2 H+ + log_k -23.5281 + delta_h -0 kJ Massicot - PbO + 2 H+ = Pb+2 + H2O - log_k 12.894 - delta_h -66.848 kJ + PbO + 2 H+ = Pb+2 + H2O + log_k 12.894 + delta_h -66.848 kJ Litharge - PbO + 2 H+ = Pb+2 + H2O - log_k 12.694 - delta_h -65.501 kJ + PbO + 2 H+ = Pb+2 + H2O + log_k 12.694 + delta_h -65.501 kJ PbO:0.3H2O - PbO:0.33H2O + 2 H+ = Pb+2 + 1.33 H2O - log_k 12.98 - delta_h -0 kJ + PbO:0.33H2O + 2 H+ = Pb+2 + 1.33 H2O + log_k 12.98 + delta_h -0 kJ Plattnerite - PbO2 + 4 H+ + 2 e- = Pb+2 + 2 H2O - log_k 49.6001 - delta_h -296.27 kJ + PbO2 + 4 H+ + 2 e- = Pb+2 + 2 H2O + log_k 49.6001 + delta_h -296.27 kJ Pb(OH)2 - Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O - log_k 8.15 - delta_h -58.5342 kJ + Pb(OH)2 + 2 H+ = Pb+2 + 2 H2O + log_k 8.15 + delta_h -58.5342 kJ Pb2O(OH)2 - Pb2O(OH)2 + 4 H+ = 2 Pb+2 + 3 H2O - log_k 26.188 - delta_h -0 kJ + Pb2O(OH)2 + 4 H+ = 2 Pb+2 + 3 H2O + log_k 26.188 + delta_h -0 kJ Al(OH)3(am) - Al(OH)3 + 3 H+ = Al+3 + 3 H2O - log_k 10.8 - delta_h -111 kJ + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 10.8 + delta_h -111 kJ Boehmite - AlOOH + 3 H+ = Al+3 + 2 H2O - log_k 8.578 - delta_h -117.696 kJ + AlOOH + 3 H+ = Al+3 + 2 H2O + log_k 8.578 + delta_h -117.696 kJ Diaspore - AlOOH + 3 H+ = Al+3 + 2 H2O - log_k 6.873 - delta_h -103.052 kJ + AlOOH + 3 H+ = Al+3 + 2 H2O + log_k 6.873 + delta_h -103.052 kJ Gibbsite - Al(OH)3 + 3 H+ = Al+3 + 3 H2O - log_k 8.291 - delta_h -95.3952 kJ + Al(OH)3 + 3 H+ = Al+3 + 3 H2O + log_k 8.291 + delta_h -95.3952 kJ Tl2O - Tl2O + 2 H+ = 2 Tl+ + H2O - log_k 27.0915 - delta_h -96.41 kJ + Tl2O + 2 H+ = 2 Tl+ + H2O + log_k 27.0915 + delta_h -96.41 kJ TlOH - TlOH + H+ = Tl+ + H2O - log_k 12.9186 - delta_h -41.57 kJ + TlOH + H+ = Tl+ + H2O + log_k 12.9186 + delta_h -41.57 kJ Avicennite - Tl2O3 + 3 H2O = 2 Tl(OH)3 - log_k -13 - delta_h -0 kJ + Tl2O3 + 3 H2O = 2 Tl(OH)3 + log_k -13 + delta_h -0 kJ Tl(OH)3 - Tl(OH)3 = Tl(OH)3 - log_k -5.441 - delta_h -0 kJ + Tl(OH)3 = Tl(OH)3 + log_k -5.441 + delta_h -0 kJ Zn(OH)2(am) - Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O - log_k 12.474 - delta_h -80.62 kJ + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 12.474 + delta_h -80.62 kJ Zn(OH)2 - Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O - log_k 12.2 - delta_h -0 kJ + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 12.2 + delta_h -0 kJ Zn(OH)2(beta) - Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O - log_k 11.754 - delta_h -83.14 kJ + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.754 + delta_h -83.14 kJ Zn(OH)2(gamma) - Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O - log_k 11.734 - delta_h -0 kJ + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.734 + delta_h -0 kJ Zn(OH)2(epsilon) - Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O - log_k 11.534 - delta_h -81.8 kJ + Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O + log_k 11.534 + delta_h -81.8 kJ ZnO(active) - ZnO + 2 H+ = Zn+2 + H2O - log_k 11.1884 - delta_h -88.76 kJ + ZnO + 2 H+ = Zn+2 + H2O + log_k 11.1884 + delta_h -88.76 kJ Zincite - ZnO + 2 H+ = Zn+2 + H2O - log_k 11.334 - delta_h -89.62 kJ + ZnO + 2 H+ = Zn+2 + H2O + log_k 11.334 + delta_h -89.62 kJ Cd(OH)2(am) - Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O - log_k 13.73 - delta_h -86.9017 kJ + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + log_k 13.73 + delta_h -86.9017 kJ Cd(OH)2 - Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O - log_k 13.644 - delta_h -94.62 kJ + Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O + log_k 13.644 + delta_h -94.62 kJ Monteponite - CdO + 2 H+ = Cd+2 + H2O - log_k 15.1034 - delta_h -103.4 kJ + CdO + 2 H+ = Cd+2 + H2O + log_k 15.1034 + delta_h -103.4 kJ Hg2(OH)2 - Hg2(OH)2 + 2 H+ = Hg2+2 + 2 H2O - log_k 5.2603 - delta_h -0 kJ + Hg2(OH)2 + 2 H+ = Hg2+2 + 2 H2O + log_k 5.2603 + delta_h -0 kJ Montroydite - HgO + H2O = Hg(OH)2 - log_k -3.64 - delta_h -38.9 kJ + HgO + H2O = Hg(OH)2 + log_k -3.64 + delta_h -38.9 kJ Hg(OH)2 - Hg(OH)2 = Hg(OH)2 - log_k -3.4963 - delta_h -0 kJ + Hg(OH)2 = Hg(OH)2 + log_k -3.4963 + delta_h -0 kJ Cuprite - Cu2O + 2 H+ = 2 Cu+ + H2O - log_k -1.406 - delta_h -124.02 kJ + Cu2O + 2 H+ = 2 Cu+ + H2O + log_k -1.406 + delta_h -124.02 kJ Cu(OH)2 - Cu(OH)2 + 2 H+ = Cu+2 + 2 H2O - log_k 8.674 - delta_h -56.42 kJ + Cu(OH)2 + 2 H+ = Cu+2 + 2 H2O + log_k 8.674 + delta_h -56.42 kJ Tenorite - CuO + 2 H+ = Cu+2 + H2O - log_k 7.644 - delta_h -64.867 kJ + CuO + 2 H+ = Cu+2 + H2O + log_k 7.644 + delta_h -64.867 kJ Ag2O - Ag2O + 2 H+ = 2 Ag+ + H2O - log_k 12.574 - delta_h -45.62 kJ + Ag2O + 2 H+ = 2 Ag+ + H2O + log_k 12.574 + delta_h -45.62 kJ Ni(OH)2 - Ni(OH)2 + 2 H+ = Ni+2 + 2 H2O - log_k 12.794 - delta_h -95.96 kJ + Ni(OH)2 + 2 H+ = Ni+2 + 2 H2O + log_k 12.794 + delta_h -95.96 kJ Bunsenite - NiO + 2 H+ = Ni+2 + H2O - log_k 12.4456 - delta_h -100.13 kJ + NiO + 2 H+ = Ni+2 + H2O + log_k 12.4456 + delta_h -100.13 kJ CoO - CoO + 2 H+ = Co+2 + H2O - log_k 13.5864 - delta_h -106.295 kJ + CoO + 2 H+ = Co+2 + H2O + log_k 13.5864 + delta_h -106.295 kJ Co(OH)2 - Co(OH)2 + 2 H+ = Co+2 + 2 H2O - log_k 13.094 - delta_h -0 kJ + Co(OH)2 + 2 H+ = Co+2 + 2 H2O + log_k 13.094 + delta_h -0 kJ Co(OH)3 - Co(OH)3 + 3 H+ = Co+3 + 3 H2O - log_k -2.309 - delta_h -92.43 kJ + Co(OH)3 + 3 H+ = Co+3 + 3 H2O + log_k -2.309 + delta_h -92.43 kJ #Wustite-0.11 -# WUSTITE-0.11 + 2H+ = 0.947Fe+2 + H2O -# log_k 11.6879 -# delta_h -103.938 kJ +# WUSTITE-0.11 + 2H+ = 0.947Fe+2 + H2O +# log_k 11.6879 +# delta_h -103.938 kJ Fe(OH)2 - Fe(OH)2 + 2 H+ = Fe+2 + 2 H2O - log_k 13.564 - delta_h -0 kJ + Fe(OH)2 + 2 H+ = Fe+2 + 2 H2O + log_k 13.564 + delta_h -0 kJ Ferrihydrite - Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O - log_k 3.191 - delta_h -73.374 kJ + Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O + log_k 3.191 + delta_h -73.374 kJ Fe3(OH)8 - Fe3(OH)8 + 8 H+ = 2 Fe+3 + Fe+2 + 8 H2O - log_k 20.222 - delta_h -0 kJ + Fe3(OH)8 + 8 H+ = 2 Fe+3 + Fe+2 + 8 H2O + log_k 20.222 + delta_h -0 kJ Goethite - FeOOH + 3 H+ = Fe+3 + 2 H2O - log_k 0.491 - delta_h -60.5843 kJ + FeOOH + 3 H+ = Fe+3 + 2 H2O + log_k 0.491 + delta_h -60.5843 kJ Pyrolusite - MnO2 + 4 H+ + 2 e- = Mn+2 + 2 H2O - log_k 41.38 - delta_h -272 kJ + MnO2 + 4 H+ + 2 e- = Mn+2 + 2 H2O + log_k 41.38 + delta_h -272 kJ Birnessite - MnO2 + 4 H+ + e- = Mn+3 + 2 H2O - log_k 18.091 - delta_h -0 kJ + MnO2 + 4 H+ + e- = Mn+3 + 2 H2O + log_k 18.091 + delta_h -0 kJ Nsutite - MnO2 + 4 H+ + e- = Mn+3 + 2 H2O - log_k 17.504 - delta_h -0 kJ + MnO2 + 4 H+ + e- = Mn+3 + 2 H2O + log_k 17.504 + delta_h -0 kJ Pyrochroite - Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O - log_k 15.194 - delta_h -97.0099 kJ + Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O + log_k 15.194 + delta_h -97.0099 kJ Manganite - MnOOH + 3 H+ + e- = Mn+2 + 2 H2O - log_k 25.34 - delta_h -0 kJ + MnOOH + 3 H+ + e- = Mn+2 + 2 H2O + log_k 25.34 + delta_h -0 kJ Cr(OH)2 - Cr(OH)2 + 2 H+ = Cr+2 + 2 H2O - log_k 10.8189 - delta_h -35.6058 kJ + Cr(OH)2 + 2 H+ = Cr+2 + 2 H2O + log_k 10.8189 + delta_h -35.6058 kJ Cr(OH)3(am) - Cr(OH)3 + H+ = Cr(OH)2+ + H2O - log_k -0.75 - delta_h -0 kJ + Cr(OH)3 + H+ = Cr(OH)2+ + H2O + log_k -0.75 + delta_h -0 kJ Cr(OH)3 - Cr(OH)3 + H+ = Cr(OH)2+ + H2O - log_k 1.3355 - delta_h -29.7692 kJ + Cr(OH)3 + H+ = Cr(OH)2+ + H2O + log_k 1.3355 + delta_h -29.7692 kJ CrO3 - CrO3 + H2O = CrO4-2 + 2 H+ - log_k -3.2105 - delta_h -5.2091 kJ + CrO3 + H2O = CrO4-2 + 2 H+ + log_k -3.2105 + delta_h -5.2091 kJ MoO3 - MoO3 + H2O = MoO4-2 + 2 H+ - log_k -8 - delta_h -0 kJ + MoO3 + H2O = MoO4-2 + 2 H+ + log_k -8 + delta_h -0 kJ VO - VO + 2 H+ = V+3 + H2O + e- - log_k 14.7563 - delta_h -113.041 kJ + VO + 2 H+ = V+3 + H2O + e- + log_k 14.7563 + delta_h -113.041 kJ V(OH)3 - V(OH)3 + 3 H+ = V+3 + 3 H2O - log_k 7.591 - delta_h -0 kJ + V(OH)3 + 3 H+ = V+3 + 3 H2O + log_k 7.591 + delta_h -0 kJ VO(OH)2 - VO(OH)2 + 2 H+ = VO+2 + 2 H2O - log_k 5.1506 - delta_h -0 kJ + VO(OH)2 + 2 H+ = VO+2 + 2 H2O + log_k 5.1506 + delta_h -0 kJ Uraninite - UO2 + 4 H+ = U+4 + 2 H2O - log_k -4.6693 - delta_h -77.86 kJ + UO2 + 4 H+ = U+4 + 2 H2O + log_k -4.6693 + delta_h -77.86 kJ UO2(am) - UO2 + 4 H+ = U+4 + 2 H2O - log_k 0.934 - delta_h -109.746 kJ + UO2 + 4 H+ = U+4 + 2 H2O + log_k 0.934 + delta_h -109.746 kJ UO3 - UO3 + 2 H+ = UO2+2 + H2O - log_k 7.7 - delta_h -81.0299 kJ + UO3 + 2 H+ = UO2+2 + H2O + log_k 7.7 + delta_h -81.0299 kJ Gummite - UO3 + 2 H+ = UO2+2 + H2O - log_k 7.6718 - delta_h -81.0299 kJ + UO3 + 2 H+ = UO2+2 + H2O + log_k 7.6718 + delta_h -81.0299 kJ UO2(OH)2(beta) - UO2(OH)2 + 2 H+ = UO2+2 + 2 H2O - log_k 5.6116 - delta_h -56.7599 kJ + UO2(OH)2 + 2 H+ = UO2+2 + 2 H2O + log_k 5.6116 + delta_h -56.7599 kJ Schoepite - UO2(OH)2:H2O + 2 H+ = UO2+2 + 3 H2O - log_k 5.994 - delta_h -49.79 kJ + UO2(OH)2:H2O + 2 H+ = UO2+2 + 3 H2O + log_k 5.994 + delta_h -49.79 kJ Be(OH)2(am) - Be(OH)2 + 2 H+ = Be+2 + 2 H2O - log_k 7.194 - delta_h -0 kJ + Be(OH)2 + 2 H+ = Be+2 + 2 H2O + log_k 7.194 + delta_h -0 kJ Be(OH)2(alpha) - Be(OH)2 + 2 H+ = Be+2 + 2 H2O - log_k 6.894 - delta_h -0 kJ + Be(OH)2 + 2 H+ = Be+2 + 2 H2O + log_k 6.894 + delta_h -0 kJ Be(OH)2(beta) - Be(OH)2 + 2 H+ = Be+2 + 2 H2O - log_k 6.494 - delta_h -0 kJ + Be(OH)2 + 2 H+ = Be+2 + 2 H2O + log_k 6.494 + delta_h -0 kJ Brucite - Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O - log_k 16.844 - delta_h -113.996 kJ + Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O + log_k 16.844 + delta_h -113.996 kJ Periclase - MgO + 2 H+ = Mg+2 + H2O - log_k 21.5841 - delta_h -151.23 kJ + MgO + 2 H+ = Mg+2 + H2O + log_k 21.5841 + delta_h -151.23 kJ Mg(OH)2(active) - Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O - log_k 18.794 - delta_h -0 kJ + Mg(OH)2 + 2 H+ = Mg+2 + 2 H2O + log_k 18.794 + delta_h -0 kJ Lime - CaO + 2 H+ = Ca+2 + H2O - log_k 32.6993 - delta_h -193.91 kJ + CaO + 2 H+ = Ca+2 + H2O + log_k 32.6993 + delta_h -193.91 kJ Portlandite - Ca(OH)2 + 2 H+ = Ca+2 + 2 H2O - log_k 22.804 - delta_h -128.62 kJ + Ca(OH)2 + 2 H+ = Ca+2 + 2 H2O + log_k 22.804 + delta_h -128.62 kJ Ba(OH)2:8H2O - Ba(OH)2:8H2O + 2 H+ = Ba+2 + 10 H2O - log_k 24.394 - delta_h -54.32 kJ + Ba(OH)2:8H2O + 2 H+ = Ba+2 + 10 H2O + log_k 24.394 + delta_h -54.32 kJ Cu(SbO3)2 - Cu(SbO3)2 + 6 H+ + 4 e- = 2 Sb(OH)3 + Cu+2 - log_k 45.2105 - delta_h -0 kJ + Cu(SbO3)2 + 6 H+ + 4 e- = 2 Sb(OH)3 + Cu+2 + log_k 45.2105 + delta_h -0 kJ Arsenolite - As4O6 + 6 H2O = 4 H3AsO3 - log_k -2.76 - delta_h 59.9567 kJ + As4O6 + 6 H2O = 4 H3AsO3 + log_k -2.76 + delta_h 59.9567 kJ Claudetite - As4O6 + 6 H2O = 4 H3AsO3 - log_k -3.065 - delta_h 55.6054 kJ + As4O6 + 6 H2O = 4 H3AsO3 + log_k -3.065 + delta_h 55.6054 kJ As2O5 - As2O5 + 3 H2O = 2 H3AsO4 - log_k 6.7061 - delta_h -22.64 kJ + As2O5 + 3 H2O = 2 H3AsO4 + log_k 6.7061 + delta_h -22.64 kJ Pb2O3 - Pb2O3 + 6 H+ + 2 e- = 2 Pb+2 + 3 H2O - log_k 61.04 - delta_h -0 kJ + Pb2O3 + 6 H+ + 2 e- = 2 Pb+2 + 3 H2O + log_k 61.04 + delta_h -0 kJ Minium - Pb3O4 + 8 H+ + 2 e- = 3 Pb+2 + 4 H2O - log_k 73.5219 - delta_h -421.874 kJ + Pb3O4 + 8 H+ + 2 e- = 3 Pb+2 + 4 H2O + log_k 73.5219 + delta_h -421.874 kJ Al2O3 - Al2O3 + 6 H+ = 2 Al+3 + 3 H2O - log_k 19.6524 - delta_h -258.59 kJ + Al2O3 + 6 H+ = 2 Al+3 + 3 H2O + log_k 19.6524 + delta_h -258.59 kJ Co3O4 - Co3O4 + 8 H+ = Co+2 + 2 Co+3 + 4 H2O - log_k -10.4956 - delta_h -107.5 kJ + Co3O4 + 8 H+ = Co+2 + 2 Co+3 + 4 H2O + log_k -10.4956 + delta_h -107.5 kJ CoFe2O4 - CoFe2O4 + 8 H+ = Co+2 + 2 Fe+3 + 4 H2O - log_k -3.5281 - delta_h -158.82 kJ + CoFe2O4 + 8 H+ = Co+2 + 2 Fe+3 + 4 H2O + log_k -3.5281 + delta_h -158.82 kJ Magnetite - Fe3O4 + 8 H+ = 2 Fe+3 + Fe+2 + 4 H2O - log_k 3.4028 - delta_h -208.526 kJ + Fe3O4 + 8 H+ = 2 Fe+3 + Fe+2 + 4 H2O + log_k 3.4028 + delta_h -208.526 kJ Hercynite - FeAl2O4 + 8 H+ = Fe+2 + 2 Al+3 + 4 H2O - log_k 22.893 - delta_h -313.92 kJ + FeAl2O4 + 8 H+ = Fe+2 + 2 Al+3 + 4 H2O + log_k 22.893 + delta_h -313.92 kJ Hematite - Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O - log_k -1.418 - delta_h -128.987 kJ + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k -1.418 + delta_h -128.987 kJ Maghemite - Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O - log_k 6.386 - delta_h -0 kJ + Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O + log_k 6.386 + delta_h -0 kJ Lepidocrocite - FeOOH + 3 H+ = Fe+3 + 2 H2O - log_k 1.371 - delta_h -0 kJ + FeOOH + 3 H+ = Fe+3 + 2 H2O + log_k 1.371 + delta_h -0 kJ Hausmannite - Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O - log_k 61.03 - delta_h -421 kJ + Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O + log_k 61.03 + delta_h -421 kJ Bixbyite - Mn2O3 + 6 H+ = 2 Mn+3 + 3 H2O - log_k -0.6445 - delta_h -124.49 kJ + Mn2O3 + 6 H+ = 2 Mn+3 + 3 H2O + log_k -0.6445 + delta_h -124.49 kJ Cr2O3 - Cr2O3 + H2O + 2 H+ = 2 Cr(OH)2+ - log_k -2.3576 - delta_h -50.731 kJ + Cr2O3 + H2O + 2 H+ = 2 Cr(OH)2+ + log_k -2.3576 + delta_h -50.731 kJ #V2O3 -# V2O3 + 3H+ = V+3 + 1.5H2O -# log_k 4.9 -# delta_h -82.5085 kJ +# V2O3 + 3H+ = V+3 + 1.5H2O +# log_k 4.9 +# delta_h -82.5085 kJ V3O5 - V3O5 + 4 H+ = 3 VO+2 + 2 H2O + 2 e- - log_k 1.8361 - delta_h -98.46 kJ + V3O5 + 4 H+ = 3 VO+2 + 2 H2O + 2 e- + log_k 1.8361 + delta_h -98.46 kJ #V2O4 -# V2O4 + 2H+ = VO+2 + H2O -# log_k 4.27 -# delta_h -58.8689 kJ +# V2O4 + 2H+ = VO+2 + H2O +# log_k 4.27 +# delta_h -58.8689 kJ V4O7 - V4O7 + 6 H+ = 4 VO+2 + 3 H2O + 2 e- - log_k 7.1865 - delta_h -163.89 kJ + V4O7 + 6 H+ = 4 VO+2 + 3 H2O + 2 e- + log_k 7.1865 + delta_h -163.89 kJ V6O13 - V6O13 + 2 H+ = 6 VO2+ + H2O + 4 e- - log_k -60.86 - delta_h 271.5 kJ + V6O13 + 2 H+ = 6 VO2+ + H2O + 4 e- + log_k -60.86 + delta_h 271.5 kJ V2O5 - V2O5 + 2 H+ = 2 VO2+ + H2O - log_k -1.36 - delta_h 34 kJ + V2O5 + 2 H+ = 2 VO2+ + H2O + log_k -1.36 + delta_h 34 kJ U4O9 - U4O9 + 18 H+ + 2 e- = 4 U+4 + 9 H2O - log_k -3.0198 - delta_h -426.87 kJ + U4O9 + 18 H+ + 2 e- = 4 U+4 + 9 H2O + log_k -3.0198 + delta_h -426.87 kJ U3O8 - U3O8 + 16 H+ + 4 e- = 3 U+4 + 8 H2O - log_k 21.0834 - delta_h -485.44 kJ + U3O8 + 16 H+ + 4 e- = 3 U+4 + 8 H2O + log_k 21.0834 + delta_h -485.44 kJ Spinel - MgAl2O4 + 8 H+ = Mg+2 + 2 Al+3 + 4 H2O - log_k 36.8476 - delta_h -388.012 kJ + MgAl2O4 + 8 H+ = Mg+2 + 2 Al+3 + 4 H2O + log_k 36.8476 + delta_h -388.012 kJ Magnesioferrite - Fe2MgO4 + 8 H+ = Mg+2 + 2 Fe+3 + 4 H2O - log_k 16.8597 - delta_h -278.92 kJ + Fe2MgO4 + 8 H+ = Mg+2 + 2 Fe+3 + 4 H2O + log_k 16.8597 + delta_h -278.92 kJ Natron - Na2CO3:10H2O = 2 Na+ + CO3-2 + 10 H2O - log_k -1.311 - delta_h 65.8771 kJ + Na2CO3:10H2O = 2 Na+ + CO3-2 + 10 H2O + log_k -1.311 + delta_h 65.8771 kJ Cuprousferrite - CuFeO2 + 4 H+ = Cu+ + Fe+3 + 2 H2O - log_k -8.9171 - delta_h -15.89 kJ + CuFeO2 + 4 H+ = Cu+ + Fe+3 + 2 H2O + log_k -8.9171 + delta_h -15.89 kJ Cupricferrite - CuFe2O4 + 8 H+ = Cu+2 + 2 Fe+3 + 4 H2O - log_k 5.9882 - delta_h -210.21 kJ + CuFe2O4 + 8 H+ = Cu+2 + 2 Fe+3 + 4 H2O + log_k 5.9882 + delta_h -210.21 kJ FeCr2O4 - FeCr2O4 + 4 H+ = 2 Cr(OH)2+ + Fe+2 - log_k 7.2003 - delta_h -140.4 kJ + FeCr2O4 + 4 H+ = 2 Cr(OH)2+ + Fe+2 + log_k 7.2003 + delta_h -140.4 kJ MgCr2O4 - MgCr2O4 + 4 H+ = 2 Cr(OH)2+ + Mg+2 - log_k 16.2007 - delta_h -179.4 kJ + MgCr2O4 + 4 H+ = 2 Cr(OH)2+ + Mg+2 + log_k 16.2007 + delta_h -179.4 kJ SbF3 - SbF3 + 3 H2O = Sb(OH)3 + 3 H+ + 3 F- - log_k -10.2251 - delta_h -6.7279 kJ + SbF3 + 3 H2O = Sb(OH)3 + 3 H+ + 3 F- + log_k -10.2251 + delta_h -6.7279 kJ PbF2 - PbF2 = Pb+2 + 2 F- - log_k -7.44 - delta_h 20 kJ + PbF2 = Pb+2 + 2 F- + log_k -7.44 + delta_h 20 kJ ZnF2 - ZnF2 = Zn+2 + 2 F- - log_k -0.5343 - delta_h -59.69 kJ + ZnF2 = Zn+2 + 2 F- + log_k -0.5343 + delta_h -59.69 kJ CdF2 - CdF2 = Cd+2 + 2 F- - log_k -1.2124 - delta_h -46.22 kJ + CdF2 = Cd+2 + 2 F- + log_k -1.2124 + delta_h -46.22 kJ Hg2F2 - Hg2F2 = Hg2+2 + 2 F- - log_k -10.3623 - delta_h -18.486 kJ + Hg2F2 = Hg2+2 + 2 F- + log_k -10.3623 + delta_h -18.486 kJ CuF - CuF = Cu+ + F- - log_k -4.9056 - delta_h 16.648 kJ + CuF = Cu+ + F- + log_k -4.9056 + delta_h 16.648 kJ CuF2 - CuF2 = Cu+2 + 2 F- - log_k 1.115 - delta_h -66.901 kJ + CuF2 = Cu+2 + 2 F- + log_k 1.115 + delta_h -66.901 kJ CuF2:2H2O - CuF2:2H2O = Cu+2 + 2 F- + 2 H2O - log_k -4.55 - delta_h -15.2716 kJ + CuF2:2H2O = Cu+2 + 2 F- + 2 H2O + log_k -4.55 + delta_h -15.2716 kJ AgF:4H2O - AgF:4H2O = Ag+ + F- + 4 H2O - log_k 1.0491 - delta_h 15.4202 kJ + AgF:4H2O = Ag+ + F- + 4 H2O + log_k 1.0491 + delta_h 15.4202 kJ CoF2 - CoF2 = Co+2 + 2 F- - log_k -1.5969 - delta_h -57.368 kJ + CoF2 = Co+2 + 2 F- + log_k -1.5969 + delta_h -57.368 kJ CoF3 - CoF3 = Co+3 + 3 F- - log_k -1.4581 - delta_h -123.692 kJ + CoF3 = Co+3 + 3 F- + log_k -1.4581 + delta_h -123.692 kJ CrF3 - CrF3 + 2 H2O = Cr(OH)2+ + 3 F- + 2 H+ - log_k -11.3367 - delta_h -23.3901 kJ + CrF3 + 2 H2O = Cr(OH)2+ + 3 F- + 2 H+ + log_k -11.3367 + delta_h -23.3901 kJ VF4 - VF4 + H2O = VO+2 + 4 F- + 2 H+ - log_k 14.93 - delta_h -199.117 kJ + VF4 + H2O = VO+2 + 4 F- + 2 H+ + log_k 14.93 + delta_h -199.117 kJ UF4 - UF4 = U+4 + 4 F- - log_k -29.5371 - delta_h -79.0776 kJ + UF4 = U+4 + 4 F- + log_k -29.5371 + delta_h -79.0776 kJ UF4:2.5H2O - UF4:2.5H2O = U+4 + 4 F- + 2.5 H2O - log_k -32.7179 - delta_h 24.325 kJ + UF4:2.5H2O = U+4 + 4 F- + 2.5 H2O + log_k -32.7179 + delta_h 24.325 kJ MgF2 - MgF2 = Mg+2 + 2 F- - log_k -8.13 - delta_h -8 kJ + MgF2 = Mg+2 + 2 F- + log_k -8.13 + delta_h -8 kJ Fluorite - CaF2 = Ca+2 + 2 F- - log_k -10.5 - delta_h 8 kJ + CaF2 = Ca+2 + 2 F- + log_k -10.5 + delta_h 8 kJ SrF2 - SrF2 = Sr+2 + 2 F- - log_k -8.58 - delta_h 4 kJ + SrF2 = Sr+2 + 2 F- + log_k -8.58 + delta_h 4 kJ BaF2 - BaF2 = Ba+2 + 2 F- - log_k -5.82 - delta_h 4 kJ + BaF2 = Ba+2 + 2 F- + log_k -5.82 + delta_h 4 kJ Cryolite - Na3AlF6 = 3 Na+ + Al+3 + 6 F- - log_k -33.84 - delta_h 38 kJ + Na3AlF6 = 3 Na+ + Al+3 + 6 F- + log_k -33.84 + delta_h 38 kJ SbCl3 - SbCl3 + 3 H2O = Sb(OH)3 + 3 Cl- + 3 H+ - log_k 0.5719 - delta_h -35.18 kJ + SbCl3 + 3 H2O = Sb(OH)3 + 3 Cl- + 3 H+ + log_k 0.5719 + delta_h -35.18 kJ SnCl2 - SnCl2 + 2 H2O = Sn(OH)2 + 2 H+ + 2 Cl- - log_k -9.2752 - delta_h -0 kJ + SnCl2 + 2 H2O = Sn(OH)2 + 2 H+ + 2 Cl- + log_k -9.2752 + delta_h -0 kJ Cotunnite - PbCl2 = Pb+2 + 2 Cl- - log_k -4.78 - delta_h 26.166 kJ + PbCl2 = Pb+2 + 2 Cl- + log_k -4.78 + delta_h 26.166 kJ Matlockite - PbClF = Pb+2 + Cl- + F- - log_k -8.9733 - delta_h 33.19 kJ + PbClF = Pb+2 + Cl- + F- + log_k -8.9733 + delta_h 33.19 kJ Phosgenite - PbCl2:PbCO3 = 2 Pb+2 + 2 Cl- + CO3-2 - log_k -19.81 - delta_h -0 kJ + PbCl2:PbCO3 = 2 Pb+2 + 2 Cl- + CO3-2 + log_k -19.81 + delta_h -0 kJ Laurionite - PbOHCl + H+ = Pb+2 + Cl- + H2O - log_k 0.623 - delta_h -0 kJ + PbOHCl + H+ = Pb+2 + Cl- + H2O + log_k 0.623 + delta_h -0 kJ Pb2(OH)3Cl - Pb2(OH)3Cl + 3 H+ = 2 Pb+2 + 3 H2O + Cl- - log_k 8.793 - delta_h -0 kJ + Pb2(OH)3Cl + 3 H+ = 2 Pb+2 + 3 H2O + Cl- + log_k 8.793 + delta_h -0 kJ TlCl - TlCl = Tl+ + Cl- - log_k -3.74 - delta_h 41 kJ + TlCl = Tl+ + Cl- + log_k -3.74 + delta_h 41 kJ ZnCl2 - ZnCl2 = Zn+2 + 2 Cl- - log_k 7.05 - delta_h -72.5 kJ + ZnCl2 = Zn+2 + 2 Cl- + log_k 7.05 + delta_h -72.5 kJ Zn2(OH)3Cl - Zn2(OH)3Cl + 3 H+ = 2 Zn+2 + 3 H2O + Cl- - log_k 15.191 - delta_h -0 kJ + Zn2(OH)3Cl + 3 H+ = 2 Zn+2 + 3 H2O + Cl- + log_k 15.191 + delta_h -0 kJ Zn5(OH)8Cl2 - Zn5(OH)8Cl2 + 8 H+ = 5 Zn+2 + 8 H2O + 2 Cl- - log_k 38.5 - delta_h -0 kJ + Zn5(OH)8Cl2 + 8 H+ = 5 Zn+2 + 8 H2O + 2 Cl- + log_k 38.5 + delta_h -0 kJ CdCl2 - CdCl2 = Cd+2 + 2 Cl- - log_k -0.6588 - delta_h -18.58 kJ + CdCl2 = Cd+2 + 2 Cl- + log_k -0.6588 + delta_h -18.58 kJ CdCl2:1H2O - CdCl2:H2O = Cd+2 + 2 Cl- + H2O - log_k -1.6932 - delta_h -7.47 kJ + CdCl2:H2O = Cd+2 + 2 Cl- + H2O + log_k -1.6932 + delta_h -7.47 kJ CdCl2:2.5H2O - CdCl2:2.5H2O = Cd+2 + 2 Cl- + 2.5 H2O - log_k -1.913 - delta_h 7.2849 kJ + CdCl2:2.5H2O = Cd+2 + 2 Cl- + 2.5 H2O + log_k -1.913 + delta_h 7.2849 kJ CdOHCl - CdOHCl + H+ = Cd+2 + H2O + Cl- - log_k 3.5373 - delta_h -30.93 kJ + CdOHCl + H+ = Cd+2 + H2O + Cl- + log_k 3.5373 + delta_h -30.93 kJ Calomel - Hg2Cl2 = Hg2+2 + 2 Cl- - log_k -17.91 - delta_h 92 kJ + Hg2Cl2 = Hg2+2 + 2 Cl- + log_k -17.91 + delta_h 92 kJ HgCl2 - HgCl2 + 2 H2O = Hg(OH)2 + 2 Cl- + 2 H+ - log_k -21.2621 - delta_h 107.82 kJ + HgCl2 + 2 H2O = Hg(OH)2 + 2 Cl- + 2 H+ + log_k -21.2621 + delta_h 107.82 kJ Nantokite - CuCl = Cu+ + Cl- - log_k -6.73 - delta_h 42.662 kJ + CuCl = Cu+ + Cl- + log_k -6.73 + delta_h 42.662 kJ Melanothallite - CuCl2 = Cu+2 + 2 Cl- - log_k 6.2572 - delta_h -63.407 kJ + CuCl2 = Cu+2 + 2 Cl- + log_k 6.2572 + delta_h -63.407 kJ Atacamite - Cu2(OH)3Cl + 3 H+ = 2 Cu+2 + 3 H2O + Cl- - log_k 7.391 - delta_h -93.43 kJ + Cu2(OH)3Cl + 3 H+ = 2 Cu+2 + 3 H2O + Cl- + log_k 7.391 + delta_h -93.43 kJ Cerargyrite - AgCl = Ag+ + Cl- - log_k -9.75 - delta_h 65.2 kJ + AgCl = Ag+ + Cl- + log_k -9.75 + delta_h 65.2 kJ CoCl2 - CoCl2 = Co+2 + 2 Cl- - log_k 8.2672 - delta_h -79.815 kJ + CoCl2 = Co+2 + 2 Cl- + log_k 8.2672 + delta_h -79.815 kJ CoCl2:6H2O - CoCl2:6H2O = Co+2 + 2 Cl- + 6 H2O - log_k 2.5365 - delta_h 8.0598 kJ + CoCl2:6H2O = Co+2 + 2 Cl- + 6 H2O + log_k 2.5365 + delta_h 8.0598 kJ (Co(NH3)6)Cl3 - (Co(NH3)6)Cl3 + 6 H+ = Co+3 + 6 NH4+ + 3 Cl- - log_k 20.0317 - delta_h -33.1 kJ + (Co(NH3)6)Cl3 + 6 H+ = Co+3 + 6 NH4+ + 3 Cl- + log_k 20.0317 + delta_h -33.1 kJ (Co(NH3)5OH2)Cl3 - (Co(NH3)5OH2)Cl3 + 5 H+ = Co+3 + 5 NH4+ + 3 Cl- + H2O - log_k 11.7351 - delta_h -25.37 kJ + (Co(NH3)5OH2)Cl3 + 5 H+ = Co+3 + 5 NH4+ + 3 Cl- + H2O + log_k 11.7351 + delta_h -25.37 kJ (Co(NH3)5Cl)Cl2 - (Co(NH3)5Cl)Cl2 + 5 H+ = Co+3 + 5 NH4+ + 3 Cl- - log_k 4.5102 - delta_h -10.74 kJ + (Co(NH3)5Cl)Cl2 + 5 H+ = Co+3 + 5 NH4+ + 3 Cl- + log_k 4.5102 + delta_h -10.74 kJ Fe(OH)2.7Cl.3 - Fe(OH)2.7Cl.3 + 2.7 H+ = Fe+3 + 2.7 H2O + 0.3 Cl- - log_k -3.04 - delta_h -0 kJ + Fe(OH)2.7Cl.3 + 2.7 H+ = Fe+3 + 2.7 H2O + 0.3 Cl- + log_k -3.04 + delta_h -0 kJ MnCl2:4H2O - MnCl2:4H2O = Mn+2 + 2 Cl- + 4 H2O - log_k 2.7151 - delta_h -10.83 kJ + MnCl2:4H2O = Mn+2 + 2 Cl- + 4 H2O + log_k 2.7151 + delta_h -10.83 kJ CrCl2 - CrCl2 = Cr+2 + 2 Cl- - log_k 14.0917 - delta_h -110.76 kJ + CrCl2 = Cr+2 + 2 Cl- + log_k 14.0917 + delta_h -110.76 kJ CrCl3 - CrCl3 + 2 H2O = Cr(OH)2+ + 3 Cl- + 2 H+ - log_k 15.1145 - delta_h -121.08 kJ + CrCl3 + 2 H2O = Cr(OH)2+ + 3 Cl- + 2 H+ + log_k 15.1145 + delta_h -121.08 kJ VCl2 - VCl2 = V+3 + 2 Cl- + e- - log_k 18.8744 - delta_h -141.16 kJ + VCl2 = V+3 + 2 Cl- + e- + log_k 18.8744 + delta_h -141.16 kJ VCl3 - VCl3 = V+3 + 3 Cl- - log_k 23.4326 - delta_h -179.54 kJ + VCl3 = V+3 + 3 Cl- + log_k 23.4326 + delta_h -179.54 kJ VOCl - VOCl + 2 H+ = V+3 + Cl- + H2O - log_k 11.1524 - delta_h -104.91 kJ + VOCl + 2 H+ = V+3 + Cl- + H2O + log_k 11.1524 + delta_h -104.91 kJ VOCl2 - VOCl2 = VO+2 + 2 Cl- - log_k 12.7603 - delta_h -117.76 kJ + VOCl2 = VO+2 + 2 Cl- + log_k 12.7603 + delta_h -117.76 kJ VO2Cl - VO2Cl = VO2+ + Cl- - log_k 2.8413 - delta_h -40.28 kJ + VO2Cl = VO2+ + Cl- + log_k 2.8413 + delta_h -40.28 kJ Halite - NaCl = Na+ + Cl- - log_k 1.6025 - delta_h 3.7 kJ + NaCl = Na+ + Cl- + log_k 1.6025 + delta_h 3.7 kJ SbBr3 - SbBr3 + 3 H2O = Sb(OH)3 + 3 Br- + 3 H+ - log_k 0.9689 - delta_h -20.94 kJ + SbBr3 + 3 H2O = Sb(OH)3 + 3 Br- + 3 H+ + log_k 0.9689 + delta_h -20.94 kJ SnBr2 - SnBr2 + 2 H2O = Sn(OH)2 + 2 H+ + 2 Br- - log_k -9.5443 - delta_h -0 kJ + SnBr2 + 2 H2O = Sn(OH)2 + 2 H+ + 2 Br- + log_k -9.5443 + delta_h -0 kJ SnBr4 - SnBr4 + 6 H2O = Sn(OH)6-2 + 6 H+ + 4 Br- - log_k -28.8468 - delta_h -0 kJ + SnBr4 + 6 H2O = Sn(OH)6-2 + 6 H+ + 4 Br- + log_k -28.8468 + delta_h -0 kJ PbBr2 - PbBr2 = Pb+2 + 2 Br- - log_k -5.3 - delta_h 35.499 kJ + PbBr2 = Pb+2 + 2 Br- + log_k -5.3 + delta_h 35.499 kJ PbBrF - PbBrF = Pb+2 + Br- + F- - log_k -8.49 - delta_h -0 kJ + PbBrF = Pb+2 + Br- + F- + log_k -8.49 + delta_h -0 kJ TlBr - TlBr = Tl+ + Br- - log_k -5.44 - delta_h 54 kJ + TlBr = Tl+ + Br- + log_k -5.44 + delta_h 54 kJ ZnBr2:2H2O - ZnBr2:2H2O = Zn+2 + 2 Br- + 2 H2O - log_k 5.2005 - delta_h -30.67 kJ + ZnBr2:2H2O = Zn+2 + 2 Br- + 2 H2O + log_k 5.2005 + delta_h -30.67 kJ CdBr2:4H2O - CdBr2:4H2O = Cd+2 + 2 Br- + 4 H2O - log_k -2.425 - delta_h 30.5001 kJ + CdBr2:4H2O = Cd+2 + 2 Br- + 4 H2O + log_k -2.425 + delta_h 30.5001 kJ Hg2Br2 - Hg2Br2 = Hg2+2 + 2 Br- - log_k -22.25 - delta_h 133 kJ + Hg2Br2 = Hg2+2 + 2 Br- + log_k -22.25 + delta_h 133 kJ HgBr2 - HgBr2 + 2 H2O = Hg(OH)2 + 2 Br- + 2 H+ - log_k -25.2734 - delta_h 138.492 kJ + HgBr2 + 2 H2O = Hg(OH)2 + 2 Br- + 2 H+ + log_k -25.2734 + delta_h 138.492 kJ CuBr - CuBr = Cu+ + Br- - log_k -8.3 - delta_h 54.86 kJ + CuBr = Cu+ + Br- + log_k -8.3 + delta_h 54.86 kJ Cu2(OH)3Br - Cu2(OH)3Br + 3 H+ = 2 Cu+2 + 3 H2O + Br- - log_k 7.9085 - delta_h -93.43 kJ + Cu2(OH)3Br + 3 H+ = 2 Cu+2 + 3 H2O + Br- + log_k 7.9085 + delta_h -93.43 kJ Bromyrite - AgBr = Ag+ + Br- - log_k -12.3 - delta_h 84.5 kJ + AgBr = Ag+ + Br- + log_k -12.3 + delta_h 84.5 kJ (Co(NH3)6)Br3 - (Co(NH3)6)Br3 + 6 H+ = Co+3 + 6 NH4+ + 3 Br- - log_k 18.3142 - delta_h -21.1899 kJ + (Co(NH3)6)Br3 + 6 H+ = Co+3 + 6 NH4+ + 3 Br- + log_k 18.3142 + delta_h -21.1899 kJ (Co(NH3)5Cl)Br2 - (Co(NH3)5Cl)Br2 + 5 H+ = Co+3 + 5 NH4+ + Cl- + 2 Br- - log_k 5.0295 - delta_h -6.4 kJ + (Co(NH3)5Cl)Br2 + 5 H+ = Co+3 + 5 NH4+ + Cl- + 2 Br- + log_k 5.0295 + delta_h -6.4 kJ CrBr3 - CrBr3 + 2 H2O = Cr(OH)2+ + 3 Br- + 2 H+ - log_k 19.9086 - delta_h -141.323 kJ + CrBr3 + 2 H2O = Cr(OH)2+ + 3 Br- + 2 H+ + log_k 19.9086 + delta_h -141.323 kJ AsI3 - AsI3 + 3 H2O = H3AsO3 + 3 I- + 3 H+ - log_k 4.2307 - delta_h 3.15 kJ + AsI3 + 3 H2O = H3AsO3 + 3 I- + 3 H+ + log_k 4.2307 + delta_h 3.15 kJ SbI3 - SbI3 + 3 H2O = Sb(OH)3 + 3 H+ + 3 I- - log_k -0.538 - delta_h 13.5896 kJ + SbI3 + 3 H2O = Sb(OH)3 + 3 H+ + 3 I- + log_k -0.538 + delta_h 13.5896 kJ PbI2 - PbI2 = Pb+2 + 2 I- - log_k -8.1 - delta_h 62 kJ + PbI2 = Pb+2 + 2 I- + log_k -8.1 + delta_h 62 kJ TlI - TlI = Tl+ + I- - log_k -7.23 - delta_h 75 kJ + TlI = Tl+ + I- + log_k -7.23 + delta_h 75 kJ ZnI2 - ZnI2 = Zn+2 + 2 I- - log_k 7.3055 - delta_h -58.92 kJ + ZnI2 = Zn+2 + 2 I- + log_k 7.3055 + delta_h -58.92 kJ CdI2 - CdI2 = Cd+2 + 2 I- - log_k -3.5389 - delta_h 13.82 kJ + CdI2 = Cd+2 + 2 I- + log_k -3.5389 + delta_h 13.82 kJ Hg2I2 - Hg2I2 = Hg2+2 + 2 I- - log_k -28.34 - delta_h 163 kJ + Hg2I2 = Hg2+2 + 2 I- + log_k -28.34 + delta_h 163 kJ Coccinite - HgI2 + 2 H2O = Hg(OH)2 + 2 H+ + 2 I- - log_k -34.9525 - delta_h 210.72 kJ + HgI2 + 2 H2O = Hg(OH)2 + 2 H+ + 2 I- + log_k -34.9525 + delta_h 210.72 kJ HgI2:2NH3 - HgI2:2NH3 + 2 H2O = Hg(OH)2 + 2 I- + 2 NH4+ - log_k -16.2293 - delta_h 132.18 kJ + HgI2:2NH3 + 2 H2O = Hg(OH)2 + 2 I- + 2 NH4+ + log_k -16.2293 + delta_h 132.18 kJ HgI2:6NH3 - HgI2:6NH3 + 2 H2O + 4 H+ = Hg(OH)2 + 2 I- + 6 NH4+ - log_k 33.7335 - delta_h -90.3599 kJ + HgI2:6NH3 + 2 H2O + 4 H+ = Hg(OH)2 + 2 I- + 6 NH4+ + log_k 33.7335 + delta_h -90.3599 kJ CuI - CuI = Cu+ + I- - log_k -12 - delta_h 82.69 kJ + CuI = Cu+ + I- + log_k -12 + delta_h 82.69 kJ Iodyrite - AgI = Ag+ + I- - log_k -16.08 - delta_h 110 kJ + AgI = Ag+ + I- + log_k -16.08 + delta_h 110 kJ (Co(NH3)6)I3 - (Co(NH3)6)I3 + 6 H+ = Co+3 + 6 NH4+ + 3 I- - log_k 16.5831 - delta_h -9.6999 kJ + (Co(NH3)6)I3 + 6 H+ = Co+3 + 6 NH4+ + 3 I- + log_k 16.5831 + delta_h -9.6999 kJ (Co(NH3)5Cl)I2 - (Co(NH3)5Cl)I2 + 5 H+ = Co+3 + 5 NH4+ + Cl- + 2 I- - log_k 5.5981 - delta_h 0.66 kJ + (Co(NH3)5Cl)I2 + 5 H+ = Co+3 + 5 NH4+ + Cl- + 2 I- + log_k 5.5981 + delta_h 0.66 kJ CrI3 - CrI3 + 2 H2O = Cr(OH)2+ + 3 I- + 2 H+ - log_k 20.4767 - delta_h -134.419 kJ + CrI3 + 2 H2O = Cr(OH)2+ + 3 I- + 2 H+ + log_k 20.4767 + delta_h -134.419 kJ Cerussite - PbCO3 = Pb+2 + CO3-2 - log_k -13.13 - delta_h 24.79 kJ + PbCO3 = Pb+2 + CO3-2 + log_k -13.13 + delta_h 24.79 kJ Pb2OCO3 - Pb2OCO3 + 2 H+ = 2 Pb+2 + H2O + CO3-2 - log_k -0.5578 - delta_h -40.8199 kJ + Pb2OCO3 + 2 H+ = 2 Pb+2 + H2O + CO3-2 + log_k -0.5578 + delta_h -40.8199 kJ Pb3O2CO3 - Pb3O2CO3 + 4 H+ = 3 Pb+2 + CO3-2 + 2 H2O - log_k 11.02 - delta_h -110.583 kJ + Pb3O2CO3 + 4 H+ = 3 Pb+2 + CO3-2 + 2 H2O + log_k 11.02 + delta_h -110.583 kJ Hydrocerussite - Pb3(OH)2(CO3)2 + 2 H+ = 3 Pb+2 + 2 H2O + 2 CO3-2 - log_k -18.7705 - delta_h -0 kJ + Pb3(OH)2(CO3)2 + 2 H+ = 3 Pb+2 + 2 H2O + 2 CO3-2 + log_k -18.7705 + delta_h -0 kJ Pb10(OH)6O(CO3)6 - Pb10(OH)6O(CO3)6 + 8 H+ = 10 Pb+2 + 6 CO3-2 + 7 H2O - log_k -8.76 - delta_h -0 kJ + Pb10(OH)6O(CO3)6 + 8 H+ = 10 Pb+2 + 6 CO3-2 + 7 H2O + log_k -8.76 + delta_h -0 kJ Tl2CO3 - Tl2CO3 = 2 Tl+ + CO3-2 - log_k -3.8367 - delta_h 35.49 kJ + Tl2CO3 = 2 Tl+ + CO3-2 + log_k -3.8367 + delta_h 35.49 kJ Smithsonite - ZnCO3 = Zn+2 + CO3-2 - log_k -10 - delta_h -15.84 kJ + ZnCO3 = Zn+2 + CO3-2 + log_k -10 + delta_h -15.84 kJ ZnCO3:1H2O - ZnCO3:H2O = Zn+2 + CO3-2 + H2O - log_k -10.26 - delta_h -0 kJ + ZnCO3:H2O = Zn+2 + CO3-2 + H2O + log_k -10.26 + delta_h -0 kJ Otavite - CdCO3 = Cd+2 + CO3-2 - log_k -12 - delta_h -0.55 kJ + CdCO3 = Cd+2 + CO3-2 + log_k -12 + delta_h -0.55 kJ Hg2CO3 - Hg2CO3 = Hg2+2 + CO3-2 - log_k -16.05 - delta_h 45.14 kJ + Hg2CO3 = Hg2+2 + CO3-2 + log_k -16.05 + delta_h 45.14 kJ Hg3O2CO3 - Hg3O2CO3 + 4 H2O = 3 Hg(OH)2 + 2 H+ + CO3-2 - log_k -29.682 - delta_h -0 kJ + Hg3O2CO3 + 4 H2O = 3 Hg(OH)2 + 2 H+ + CO3-2 + log_k -29.682 + delta_h -0 kJ CuCO3 - CuCO3 = Cu+2 + CO3-2 - log_k -11.5 - delta_h -0 kJ + CuCO3 = Cu+2 + CO3-2 + log_k -11.5 + delta_h -0 kJ Malachite - Cu2(OH)2CO3 + 2 H+ = 2 Cu+2 + 2 H2O + CO3-2 - log_k -5.306 - delta_h 76.38 kJ + Cu2(OH)2CO3 + 2 H+ = 2 Cu+2 + 2 H2O + CO3-2 + log_k -5.306 + delta_h 76.38 kJ Azurite - Cu3(OH)2(CO3)2 + 2 H+ = 3 Cu+2 + 2 H2O + 2 CO3-2 - log_k -16.906 - delta_h -95.22 kJ + Cu3(OH)2(CO3)2 + 2 H+ = 3 Cu+2 + 2 H2O + 2 CO3-2 + log_k -16.906 + delta_h -95.22 kJ Ag2CO3 - Ag2CO3 = 2 Ag+ + CO3-2 - log_k -11.09 - delta_h 42.15 kJ + Ag2CO3 = 2 Ag+ + CO3-2 + log_k -11.09 + delta_h 42.15 kJ NiCO3 - NiCO3 = Ni+2 + CO3-2 - log_k -6.87 - delta_h -41.589 kJ + NiCO3 = Ni+2 + CO3-2 + log_k -6.87 + delta_h -41.589 kJ CoCO3 - CoCO3 = Co+2 + CO3-2 - log_k -9.98 - delta_h -12.7612 kJ + CoCO3 = Co+2 + CO3-2 + log_k -9.98 + delta_h -12.7612 kJ Siderite - FeCO3 = Fe+2 + CO3-2 - log_k -10.24 - delta_h -16 kJ + FeCO3 = Fe+2 + CO3-2 + log_k -10.24 + delta_h -16 kJ Rhodochrosite - MnCO3 = Mn+2 + CO3-2 - log_k -10.58 - delta_h -1.88 kJ + MnCO3 = Mn+2 + CO3-2 + log_k -10.58 + delta_h -1.88 kJ Rutherfordine - UO2CO3 = UO2+2 + CO3-2 - log_k -14.5 - delta_h -3.03 kJ + UO2CO3 = UO2+2 + CO3-2 + log_k -14.5 + delta_h -3.03 kJ Artinite - MgCO3:Mg(OH)2:3H2O + 2 H+ = 2 Mg+2 + CO3-2 + 5 H2O - log_k 9.6 - delta_h -120.257 kJ + MgCO3:Mg(OH)2:3H2O + 2 H+ = 2 Mg+2 + CO3-2 + 5 H2O + log_k 9.6 + delta_h -120.257 kJ Hydromagnesite - Mg5(CO3)4(OH)2:4H2O + 2 H+ = 5 Mg+2 + 4 CO3-2 + 6 H2O - log_k -8.766 - delta_h -218.447 kJ + Mg5(CO3)4(OH)2:4H2O + 2 H+ = 5 Mg+2 + 4 CO3-2 + 6 H2O + log_k -8.766 + delta_h -218.447 kJ Magnesite - MgCO3 = Mg+2 + CO3-2 - log_k -7.46 - delta_h 20 kJ + MgCO3 = Mg+2 + CO3-2 + log_k -7.46 + delta_h 20 kJ Nesquehonite - MgCO3:3H2O = Mg+2 + CO3-2 + 3 H2O - log_k -4.67 - delta_h -24.2212 kJ + MgCO3:3H2O = Mg+2 + CO3-2 + 3 H2O + log_k -4.67 + delta_h -24.2212 kJ Aragonite - CaCO3 = Ca+2 + CO3-2 - log_k -8.3 - delta_h -12 kJ + CaCO3 = Ca+2 + CO3-2 + log_k -8.3 + delta_h -12 kJ Calcite - CaCO3 = Ca+2 + CO3-2 - log_k -8.48 - delta_h -8 kJ + CaCO3 = Ca+2 + CO3-2 + log_k -8.48 + delta_h -8 kJ Dolomite(ordered) - CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 - log_k -17.09 - delta_h -39.5 kJ + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + log_k -17.09 + delta_h -39.5 kJ Dolomite(disordered) - CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 - log_k -16.54 - delta_h -46.4 kJ + CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 + log_k -16.54 + delta_h -46.4 kJ Huntite - CaMg3(CO3)4 = 3 Mg+2 + Ca+2 + 4 CO3-2 - log_k -29.968 - delta_h -107.78 kJ + CaMg3(CO3)4 = 3 Mg+2 + Ca+2 + 4 CO3-2 + log_k -29.968 + delta_h -107.78 kJ Strontianite - SrCO3 = Sr+2 + CO3-2 - log_k -9.27 - delta_h -0 kJ + SrCO3 = Sr+2 + CO3-2 + log_k -9.27 + delta_h -0 kJ Witherite - BaCO3 = Ba+2 + CO3-2 - log_k -8.57 - delta_h 4 kJ + BaCO3 = Ba+2 + CO3-2 + log_k -8.57 + delta_h 4 kJ Thermonatrite - Na2CO3:H2O = 2 Na+ + CO3-2 + H2O - log_k 0.637 - delta_h -10.4799 kJ + Na2CO3:H2O = 2 Na+ + CO3-2 + H2O + log_k 0.637 + delta_h -10.4799 kJ TlNO3 - TlNO3 = Tl+ + NO3- - log_k -1.6127 - delta_h 42.44 kJ + TlNO3 = Tl+ + NO3- + log_k -1.6127 + delta_h 42.44 kJ Zn(NO3)2:6H2O - Zn(NO3)2:6H2O = Zn+2 + 2 NO3- + 6 H2O - log_k 3.3153 - delta_h 24.5698 kJ + Zn(NO3)2:6H2O = Zn+2 + 2 NO3- + 6 H2O + log_k 3.3153 + delta_h 24.5698 kJ Cu2(OH)3NO3 - Cu2(OH)3NO3 + 3 H+ = 2 Cu+2 + 3 H2O + NO3- - log_k 9.251 - delta_h -72.5924 kJ + Cu2(OH)3NO3 + 3 H+ = 2 Cu+2 + 3 H2O + NO3- + log_k 9.251 + delta_h -72.5924 kJ (Co(NH3)6)(NO3)3 - (Co(NH3)6)(NO3)3 + 6 H+ = Co+3 + 6 NH4+ + 3 NO3- - log_k 17.9343 - delta_h 1.59 kJ + (Co(NH3)6)(NO3)3 + 6 H+ = Co+3 + 6 NH4+ + 3 NO3- + log_k 17.9343 + delta_h 1.59 kJ (Co(NH3)5Cl)(NO3)2 - (Co(NH3)5Cl)(NO3)2 + 5 H+ = Co+3 + 5 NH4+ + Cl- + 2 NO3- - log_k 6.2887 - delta_h 6.4199 kJ + (Co(NH3)5Cl)(NO3)2 + 5 H+ = Co+3 + 5 NH4+ + Cl- + 2 NO3- + log_k 6.2887 + delta_h 6.4199 kJ UO2(NO3)2 - UO2(NO3)2 = UO2+2 + 2 NO3- - log_k 12.1476 - delta_h -83.3999 kJ + UO2(NO3)2 = UO2+2 + 2 NO3- + log_k 12.1476 + delta_h -83.3999 kJ UO2(NO3)2:2H2O - UO2(NO3)2:2H2O = UO2+2 + 2 NO3- + 2 H2O - log_k 4.851 - delta_h -25.355 kJ + UO2(NO3)2:2H2O = UO2+2 + 2 NO3- + 2 H2O + log_k 4.851 + delta_h -25.355 kJ UO2(NO3)2:3H2O - UO2(NO3)2:3H2O = UO2+2 + 2 NO3- + 3 H2O - log_k 3.39 - delta_h -9.1599 kJ + UO2(NO3)2:3H2O = UO2+2 + 2 NO3- + 3 H2O + log_k 3.39 + delta_h -9.1599 kJ UO2(NO3)2:6H2O - UO2(NO3)2:6H2O = UO2+2 + 2 NO3- + 6 H2O - log_k 2.0464 - delta_h 20.8201 kJ + UO2(NO3)2:6H2O = UO2+2 + 2 NO3- + 6 H2O + log_k 2.0464 + delta_h 20.8201 kJ Pb(BO2)2 - Pb(BO2)2 + 2 H2O + 2 H+ = Pb+2 + 2 H3BO3 - log_k 6.5192 - delta_h -15.6119 kJ + Pb(BO2)2 + 2 H2O + 2 H+ = Pb+2 + 2 H3BO3 + log_k 6.5192 + delta_h -15.6119 kJ Zn(BO2)2 - Zn(BO2)2 + 2 H2O + 2 H+ = Zn+2 + 2 H3BO3 - log_k 8.29 - delta_h -0 kJ + Zn(BO2)2 + 2 H2O + 2 H+ = Zn+2 + 2 H3BO3 + log_k 8.29 + delta_h -0 kJ Cd(BO2)2 - Cd(BO2)2 + 2 H2O + 2 H+ = Cd+2 + 2 H3BO3 - log_k 9.84 - delta_h -0 kJ + Cd(BO2)2 + 2 H2O + 2 H+ = Cd+2 + 2 H3BO3 + log_k 9.84 + delta_h -0 kJ Co(BO2)2 - Co(BO2)2 + 2 H2O + 2 H+ = Co+2 + 2 H3BO3 - log_k 27.0703 - delta_h -0 kJ + Co(BO2)2 + 2 H2O + 2 H+ = Co+2 + 2 H3BO3 + log_k 27.0703 + delta_h -0 kJ SnSO4 - SnSO4 + 2 H2O = Sn(OH)2 + 2 H+ + SO4-2 - log_k -56.9747 - delta_h -0 kJ + SnSO4 + 2 H2O = Sn(OH)2 + 2 H+ + SO4-2 + log_k -56.9747 + delta_h -0 kJ Sn(SO4)2 - Sn(SO4)2 + 6 H2O = Sn(OH)6-2 + 6 H+ + 2 SO4-2 - log_k -15.2123 - delta_h -0 kJ + Sn(SO4)2 + 6 H2O = Sn(OH)6-2 + 6 H+ + 2 SO4-2 + log_k -15.2123 + delta_h -0 kJ Larnakite - PbO:PbSO4 + 2 H+ = 2 Pb+2 + SO4-2 + H2O - log_k -0.4344 - delta_h -21.83 kJ + PbO:PbSO4 + 2 H+ = 2 Pb+2 + SO4-2 + H2O + log_k -0.4344 + delta_h -21.83 kJ Pb3O2SO4 - Pb3O2SO4 + 4 H+ = 3 Pb+2 + SO4-2 + 2 H2O - log_k 10.6864 - delta_h -79.14 kJ + Pb3O2SO4 + 4 H+ = 3 Pb+2 + SO4-2 + 2 H2O + log_k 10.6864 + delta_h -79.14 kJ Pb4O3SO4 - Pb4O3SO4 + 6 H+ = 4 Pb+2 + SO4-2 + 3 H2O - log_k 21.8772 - delta_h -136.45 kJ + Pb4O3SO4 + 6 H+ = 4 Pb+2 + SO4-2 + 3 H2O + log_k 21.8772 + delta_h -136.45 kJ Anglesite - PbSO4 = Pb+2 + SO4-2 - log_k -7.79 - delta_h 12 kJ + PbSO4 = Pb+2 + SO4-2 + log_k -7.79 + delta_h 12 kJ Pb4(OH)6SO4 - Pb4(OH)6SO4 + 6 H+ = 4 Pb+2 + SO4-2 + 6 H2O - log_k 21.1 - delta_h -0 kJ + Pb4(OH)6SO4 + 6 H+ = 4 Pb+2 + SO4-2 + 6 H2O + log_k 21.1 + delta_h -0 kJ AlOHSO4 - AlOHSO4 + H+ = Al+3 + SO4-2 + H2O - log_k -3.23 - delta_h -0 kJ + AlOHSO4 + H+ = Al+3 + SO4-2 + H2O + log_k -3.23 + delta_h -0 kJ Al4(OH)10SO4 - Al4(OH)10SO4 + 10 H+ = 4 Al+3 + SO4-2 + 10 H2O - log_k 22.7 - delta_h -0 kJ + Al4(OH)10SO4 + 10 H+ = 4 Al+3 + SO4-2 + 10 H2O + log_k 22.7 + delta_h -0 kJ Tl2SO4 - Tl2SO4 = 2 Tl+ + SO4-2 - log_k -3.7868 - delta_h 33.1799 kJ + Tl2SO4 = 2 Tl+ + SO4-2 + log_k -3.7868 + delta_h 33.1799 kJ Zn2(OH)2SO4 - Zn2(OH)2SO4 + 2 H+ = 2 Zn+2 + 2 H2O + SO4-2 - log_k 7.5 - delta_h -0 kJ + Zn2(OH)2SO4 + 2 H+ = 2 Zn+2 + 2 H2O + SO4-2 + log_k 7.5 + delta_h -0 kJ Zn4(OH)6SO4 - Zn4(OH)6SO4 + 6 H+ = 4 Zn+2 + 6 H2O + SO4-2 - log_k 28.4 - delta_h -0 kJ + Zn4(OH)6SO4 + 6 H+ = 4 Zn+2 + 6 H2O + SO4-2 + log_k 28.4 + delta_h -0 kJ Zn3O(SO4)2 - Zn3O(SO4)2 + 2 H+ = 3 Zn+2 + 2 SO4-2 + H2O - log_k 18.9135 - delta_h -258.08 kJ + Zn3O(SO4)2 + 2 H+ = 3 Zn+2 + 2 SO4-2 + H2O + log_k 18.9135 + delta_h -258.08 kJ Zincosite - ZnSO4 = Zn+2 + SO4-2 - log_k 3.9297 - delta_h -82.586 kJ + ZnSO4 = Zn+2 + SO4-2 + log_k 3.9297 + delta_h -82.586 kJ ZnSO4:1H2O - ZnSO4:H2O = Zn+2 + SO4-2 + H2O - log_k -0.638 - delta_h -44.0699 kJ + ZnSO4:H2O = Zn+2 + SO4-2 + H2O + log_k -0.638 + delta_h -44.0699 kJ Bianchite - ZnSO4:6H2O = Zn+2 + SO4-2 + 6 H2O - log_k -1.765 - delta_h -0.6694 kJ + ZnSO4:6H2O = Zn+2 + SO4-2 + 6 H2O + log_k -1.765 + delta_h -0.6694 kJ Goslarite - ZnSO4:7H2O = Zn+2 + SO4-2 + 7 H2O - log_k -2.0112 - delta_h 14.21 kJ + ZnSO4:7H2O = Zn+2 + SO4-2 + 7 H2O + log_k -2.0112 + delta_h 14.21 kJ Cd3(OH)4SO4 - Cd3(OH)4SO4 + 4 H+ = 3 Cd+2 + 4 H2O + SO4-2 - log_k 22.56 - delta_h -0 kJ + Cd3(OH)4SO4 + 4 H+ = 3 Cd+2 + 4 H2O + SO4-2 + log_k 22.56 + delta_h -0 kJ Cd3(OH)2(SO4)2 - Cd3(OH)2(SO4)2 + 2 H+ = 3 Cd+2 + 2 H2O + 2 SO4-2 - log_k 6.71 - delta_h -0 kJ + Cd3(OH)2(SO4)2 + 2 H+ = 3 Cd+2 + 2 H2O + 2 SO4-2 + log_k 6.71 + delta_h -0 kJ Cd4(OH)6SO4 - Cd4(OH)6SO4 + 6 H+ = 4 Cd+2 + 6 H2O + SO4-2 - log_k 28.4 - delta_h -0 kJ + Cd4(OH)6SO4 + 6 H+ = 4 Cd+2 + 6 H2O + SO4-2 + log_k 28.4 + delta_h -0 kJ CdSO4 - CdSO4 = Cd+2 + SO4-2 - log_k -0.1722 - delta_h -51.98 kJ + CdSO4 = Cd+2 + SO4-2 + log_k -0.1722 + delta_h -51.98 kJ CdSO4:1H2O - CdSO4:H2O = Cd+2 + SO4-2 + H2O - log_k -1.7261 - delta_h -31.5399 kJ + CdSO4:H2O = Cd+2 + SO4-2 + H2O + log_k -1.7261 + delta_h -31.5399 kJ CdSO4:2.67H2O - CdSO4:2.67H2O = Cd+2 + SO4-2 + 2.67 H2O - log_k -1.873 - delta_h -17.9912 kJ + CdSO4:2.67H2O = Cd+2 + SO4-2 + 2.67 H2O + log_k -1.873 + delta_h -17.9912 kJ Hg2SO4 - Hg2SO4 = Hg2+2 + SO4-2 - log_k -6.13 - delta_h 5.4 kJ + Hg2SO4 = Hg2+2 + SO4-2 + log_k -6.13 + delta_h 5.4 kJ HgSO4 - HgSO4 + 2 H2O = Hg(OH)2 + SO4-2 + 2 H+ - log_k -9.4189 - delta_h 14.6858 kJ + HgSO4 + 2 H2O = Hg(OH)2 + SO4-2 + 2 H+ + log_k -9.4189 + delta_h 14.6858 kJ Cu2SO4 - Cu2SO4 = 2 Cu+ + SO4-2 - log_k -1.95 - delta_h -19.079 kJ + Cu2SO4 = 2 Cu+ + SO4-2 + log_k -1.95 + delta_h -19.079 kJ Antlerite - Cu3(OH)4SO4 + 4 H+ = 3 Cu+2 + 4 H2O + SO4-2 - log_k 8.788 - delta_h -0 kJ + Cu3(OH)4SO4 + 4 H+ = 3 Cu+2 + 4 H2O + SO4-2 + log_k 8.788 + delta_h -0 kJ Brochantite - Cu4(OH)6SO4 + 6 H+ = 4 Cu+2 + 6 H2O + SO4-2 - log_k 15.222 - delta_h -202.86 kJ + Cu4(OH)6SO4 + 6 H+ = 4 Cu+2 + 6 H2O + SO4-2 + log_k 15.222 + delta_h -202.86 kJ Langite - Cu4(OH)6SO4:H2O + 6 H+ = 4 Cu+2 + 7 H2O + SO4-2 - log_k 17.4886 - delta_h -165.55 kJ + Cu4(OH)6SO4:H2O + 6 H+ = 4 Cu+2 + 7 H2O + SO4-2 + log_k 17.4886 + delta_h -165.55 kJ CuOCuSO4 - CuOCuSO4 + 2 H+ = 2 Cu+2 + H2O + SO4-2 - log_k 10.3032 - delta_h -137.777 kJ + CuOCuSO4 + 2 H+ = 2 Cu+2 + H2O + SO4-2 + log_k 10.3032 + delta_h -137.777 kJ CuSO4 - CuSO4 = Cu+2 + SO4-2 - log_k 2.9395 - delta_h -73.04 kJ + CuSO4 = Cu+2 + SO4-2 + log_k 2.9395 + delta_h -73.04 kJ Chalcanthite - CuSO4:5H2O = Cu+2 + SO4-2 + 5 H2O - log_k -2.64 - delta_h 6.025 kJ + CuSO4:5H2O = Cu+2 + SO4-2 + 5 H2O + log_k -2.64 + delta_h 6.025 kJ Ag2SO4 - Ag2SO4 = 2 Ag+ + SO4-2 - log_k -4.82 - delta_h 17 kJ + Ag2SO4 = 2 Ag+ + SO4-2 + log_k -4.82 + delta_h 17 kJ Ni4(OH)6SO4 - Ni4(OH)6SO4 + 6 H+ = 4 Ni+2 + SO4-2 + 6 H2O - log_k 32 - delta_h -0 kJ + Ni4(OH)6SO4 + 6 H+ = 4 Ni+2 + SO4-2 + 6 H2O + log_k 32 + delta_h -0 kJ Retgersite - NiSO4:6H2O = Ni+2 + SO4-2 + 6 H2O - log_k -2.04 - delta_h 4.6024 kJ + NiSO4:6H2O = Ni+2 + SO4-2 + 6 H2O + log_k -2.04 + delta_h 4.6024 kJ Morenosite - NiSO4:7H2O = Ni+2 + SO4-2 + 7 H2O - log_k -2.1449 - delta_h 12.1802 kJ + NiSO4:7H2O = Ni+2 + SO4-2 + 7 H2O + log_k -2.1449 + delta_h 12.1802 kJ CoSO4 - CoSO4 = Co+2 + SO4-2 - log_k 2.8024 - delta_h -79.277 kJ + CoSO4 = Co+2 + SO4-2 + log_k 2.8024 + delta_h -79.277 kJ CoSO4:6H2O - CoSO4:6H2O = Co+2 + SO4-2 + 6 H2O - log_k -2.4726 - delta_h 1.0801 kJ + CoSO4:6H2O = Co+2 + SO4-2 + 6 H2O + log_k -2.4726 + delta_h 1.0801 kJ Melanterite - FeSO4:7H2O = Fe+2 + SO4-2 + 7 H2O - log_k -2.209 - delta_h 20.5 kJ + FeSO4:7H2O = Fe+2 + SO4-2 + 7 H2O + log_k -2.209 + delta_h 20.5 kJ Fe2(SO4)3 - Fe2(SO4)3 = 2 Fe+3 + 3 SO4-2 - log_k -3.7343 - delta_h -242.028 kJ + Fe2(SO4)3 = 2 Fe+3 + 3 SO4-2 + log_k -3.7343 + delta_h -242.028 kJ H-Jarosite - (H3O)Fe3(SO4)2(OH)6 + 5 H+ = 3 Fe+3 + 2 SO4-2 + 7 H2O - log_k -12.1 - delta_h -230.748 kJ + (H3O)Fe3(SO4)2(OH)6 + 5 H+ = 3 Fe+3 + 2 SO4-2 + 7 H2O + log_k -12.1 + delta_h -230.748 kJ Na-Jarosite - NaFe3(SO4)2(OH)6 + 6 H+ = Na+ + 3 Fe+3 + 2 SO4-2 + 6 H2O - log_k -11.2 - delta_h -151.377 kJ + NaFe3(SO4)2(OH)6 + 6 H+ = Na+ + 3 Fe+3 + 2 SO4-2 + 6 H2O + log_k -11.2 + delta_h -151.377 kJ K-Jarosite - KFe3(SO4)2(OH)6 + 6 H+ = K+ + 3 Fe+3 + 2 SO4-2 + 6 H2O - log_k -14.8 - delta_h -130.875 kJ + KFe3(SO4)2(OH)6 + 6 H+ = K+ + 3 Fe+3 + 2 SO4-2 + 6 H2O + log_k -14.8 + delta_h -130.875 kJ MnSO4 - MnSO4 = Mn+2 + SO4-2 - log_k 2.5831 - delta_h -64.8401 kJ + MnSO4 = Mn+2 + SO4-2 + log_k 2.5831 + delta_h -64.8401 kJ Mn2(SO4)3 - Mn2(SO4)3 = 2 Mn+3 + 3 SO4-2 - log_k -5.711 - delta_h -163.427 kJ + Mn2(SO4)3 = 2 Mn+3 + 3 SO4-2 + log_k -5.711 + delta_h -163.427 kJ VOSO4 - VOSO4 = VO+2 + SO4-2 - log_k 3.6097 - delta_h -86.7401 kJ + VOSO4 = VO+2 + SO4-2 + log_k 3.6097 + delta_h -86.7401 kJ Epsomite - MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O - log_k -2.1265 - delta_h 11.5601 kJ + MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O + log_k -2.1265 + delta_h 11.5601 kJ Anhydrite - CaSO4 = Ca+2 + SO4-2 - log_k -4.36 - delta_h -7.2 kJ + CaSO4 = Ca+2 + SO4-2 + log_k -4.36 + delta_h -7.2 kJ Gypsum - CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O - log_k -4.61 - delta_h 1 kJ + CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O + log_k -4.61 + delta_h 1 kJ Celestite - SrSO4 = Sr+2 + SO4-2 - log_k -6.62 - delta_h 2 kJ + SrSO4 = Sr+2 + SO4-2 + log_k -6.62 + delta_h 2 kJ Barite - BaSO4 = Ba+2 + SO4-2 - log_k -9.98 - delta_h 23 kJ + BaSO4 = Ba+2 + SO4-2 + log_k -9.98 + delta_h 23 kJ Mirabilite - Na2SO4:10H2O = 2 Na+ + SO4-2 + 10 H2O - log_k -1.114 - delta_h 79.4416 kJ + Na2SO4:10H2O = 2 Na+ + SO4-2 + 10 H2O + log_k -1.114 + delta_h 79.4416 kJ Thenardite - Na2SO4 = 2 Na+ + SO4-2 - log_k 0.3217 - delta_h -9.121 kJ + Na2SO4 = 2 Na+ + SO4-2 + log_k 0.3217 + delta_h -9.121 kJ K-Alum - KAl(SO4)2:12H2O = K+ + Al+3 + 2 SO4-2 + 12 H2O - log_k -5.17 - delta_h 30.2085 kJ + KAl(SO4)2:12H2O = K+ + Al+3 + 2 SO4-2 + 12 H2O + log_k -5.17 + delta_h 30.2085 kJ Alunite - KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O - log_k -1.4 - delta_h -210 kJ + KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6 H2O + log_k -1.4 + delta_h -210 kJ (NH4)2CrO4 - (NH4)2CrO4 = CrO4-2 + 2 NH4+ - log_k 0.4046 - delta_h 9.163 kJ + (NH4)2CrO4 = CrO4-2 + 2 NH4+ + log_k 0.4046 + delta_h 9.163 kJ PbCrO4 - PbCrO4 = Pb+2 + CrO4-2 - log_k -12.6 - delta_h 44.18 kJ + PbCrO4 = Pb+2 + CrO4-2 + log_k -12.6 + delta_h 44.18 kJ Tl2CrO4 - Tl2CrO4 = 2 Tl+ + CrO4-2 - log_k -12.01 - delta_h 74.27 kJ + Tl2CrO4 = 2 Tl+ + CrO4-2 + log_k -12.01 + delta_h 74.27 kJ Hg2CrO4 - Hg2CrO4 = Hg2+2 + CrO4-2 - log_k -8.7 - delta_h -0 kJ + Hg2CrO4 = Hg2+2 + CrO4-2 + log_k -8.7 + delta_h -0 kJ CuCrO4 - CuCrO4 = Cu+2 + CrO4-2 - log_k -5.44 - delta_h -0 kJ + CuCrO4 = Cu+2 + CrO4-2 + log_k -5.44 + delta_h -0 kJ Ag2CrO4 - Ag2CrO4 = 2 Ag+ + CrO4-2 - log_k -11.59 - delta_h 62 kJ + Ag2CrO4 = 2 Ag+ + CrO4-2 + log_k -11.59 + delta_h 62 kJ MgCrO4 - MgCrO4 = CrO4-2 + Mg+2 - log_k 5.3801 - delta_h -88.9518 kJ + MgCrO4 = CrO4-2 + Mg+2 + log_k 5.3801 + delta_h -88.9518 kJ CaCrO4 - CaCrO4 = Ca+2 + CrO4-2 - log_k -2.2657 - delta_h -26.945 kJ + CaCrO4 = Ca+2 + CrO4-2 + log_k -2.2657 + delta_h -26.945 kJ SrCrO4 - SrCrO4 = Sr+2 + CrO4-2 - log_k -4.65 - delta_h -10.1253 kJ + SrCrO4 = Sr+2 + CrO4-2 + log_k -4.65 + delta_h -10.1253 kJ BaCrO4 - BaCrO4 = Ba+2 + CrO4-2 - log_k -9.67 - delta_h 33 kJ + BaCrO4 = Ba+2 + CrO4-2 + log_k -9.67 + delta_h 33 kJ Li2CrO4 - Li2CrO4 = CrO4-2 + 2 Li+ - log_k 4.8568 - delta_h -45.2792 kJ + Li2CrO4 = CrO4-2 + 2 Li+ + log_k 4.8568 + delta_h -45.2792 kJ Na2CrO4 - Na2CrO4 = CrO4-2 + 2 Na+ - log_k 2.9302 - delta_h -19.6301 kJ + Na2CrO4 = CrO4-2 + 2 Na+ + log_k 2.9302 + delta_h -19.6301 kJ Na2Cr2O7 - Na2Cr2O7 + H2O = 2 CrO4-2 + 2 Na+ + 2 H+ - log_k -9.8953 - delta_h 22.1961 kJ + Na2Cr2O7 + H2O = 2 CrO4-2 + 2 Na+ + 2 H+ + log_k -9.8953 + delta_h 22.1961 kJ K2CrO4 - K2CrO4 = CrO4-2 + 2 K+ - log_k -0.5134 - delta_h 18.2699 kJ + K2CrO4 = CrO4-2 + 2 K+ + log_k -0.5134 + delta_h 18.2699 kJ K2Cr2O7 - K2Cr2O7 + H2O = 2 CrO4-2 + 2 K+ + 2 H+ - log_k -17.2424 - delta_h 80.7499 kJ + K2Cr2O7 + H2O = 2 CrO4-2 + 2 K+ + 2 H+ + log_k -17.2424 + delta_h 80.7499 kJ Hg2SeO3 - Hg2SeO3 + H+ = Hg2+2 + HSeO3- - log_k -4.657 - delta_h -0 kJ + Hg2SeO3 + H+ = Hg2+2 + HSeO3- + log_k -4.657 + delta_h -0 kJ HgSeO3 - HgSeO3 + 2 H2O = Hg(OH)2 + H+ + HSeO3- - log_k -12.43 - delta_h -0 kJ + HgSeO3 + 2 H2O = Hg(OH)2 + H+ + HSeO3- + log_k -12.43 + delta_h -0 kJ Ag2SeO3 - Ag2SeO3 + H+ = 2 Ag+ + HSeO3- - log_k -7.15 - delta_h 39.68 kJ + Ag2SeO3 + H+ = 2 Ag+ + HSeO3- + log_k -7.15 + delta_h 39.68 kJ CuSeO3:2H2O - CuSeO3:2H2O + H+ = Cu+2 + HSeO3- + 2 H2O - log_k 0.5116 - delta_h -36.861 kJ + CuSeO3:2H2O + H+ = Cu+2 + HSeO3- + 2 H2O + log_k 0.5116 + delta_h -36.861 kJ NiSeO3:2H2O - NiSeO3:2H2O + H+ = HSeO3- + Ni+2 + 2 H2O - log_k 2.8147 - delta_h -31.0034 kJ + NiSeO3:2H2O + H+ = HSeO3- + Ni+2 + 2 H2O + log_k 2.8147 + delta_h -31.0034 kJ CoSeO3 - CoSeO3 + H+ = Co+2 + HSeO3- - log_k 1.32 - delta_h -0 kJ + CoSeO3 + H+ = Co+2 + HSeO3- + log_k 1.32 + delta_h -0 kJ Fe2(SeO3)3:2H2O - Fe2(SeO3)3:2H2O + 3 H+ = 3 HSeO3- + 2 Fe+3 + 2 H2O - log_k -20.6262 - delta_h -0 kJ + Fe2(SeO3)3:2H2O + 3 H+ = 3 HSeO3- + 2 Fe+3 + 2 H2O + log_k -20.6262 + delta_h -0 kJ Fe2(OH)4SeO3 - Fe2(OH)4SeO3 + 5 H+ = HSeO3- + 2 Fe+3 + 4 H2O - log_k 1.5539 - delta_h -0 kJ + Fe2(OH)4SeO3 + 5 H+ = HSeO3- + 2 Fe+3 + 4 H2O + log_k 1.5539 + delta_h -0 kJ MnSeO3 - MnSeO3 + H+ = Mn+2 + HSeO3- - log_k 1.13 - delta_h -0 kJ + MnSeO3 + H+ = Mn+2 + HSeO3- + log_k 1.13 + delta_h -0 kJ MnSeO3:2H2O - MnSeO3:2H2O + H+ = HSeO3- + Mn+2 + 2 H2O - log_k 0.9822 - delta_h 8.4935 kJ + MnSeO3:2H2O + H+ = HSeO3- + Mn+2 + 2 H2O + log_k 0.9822 + delta_h 8.4935 kJ MgSeO3:6H2O - MgSeO3:6H2O + H+ = Mg+2 + HSeO3- + 6 H2O - log_k 3.0554 - delta_h 5.23 kJ + MgSeO3:6H2O + H+ = Mg+2 + HSeO3- + 6 H2O + log_k 3.0554 + delta_h 5.23 kJ CaSeO3:2H2O - CaSeO3:2H2O + H+ = HSeO3- + Ca+2 + 2 H2O - log_k 2.8139 - delta_h -19.4556 kJ + CaSeO3:2H2O + H+ = HSeO3- + Ca+2 + 2 H2O + log_k 2.8139 + delta_h -19.4556 kJ SrSeO3 - SrSeO3 + H+ = Sr+2 + HSeO3- - log_k 2.3 - delta_h -0 kJ + SrSeO3 + H+ = Sr+2 + HSeO3- + log_k 2.3 + delta_h -0 kJ BaSeO3 - BaSeO3 + H+ = Ba+2 + HSeO3- - log_k 1.83 - delta_h 11.98 kJ + BaSeO3 + H+ = Ba+2 + HSeO3- + log_k 1.83 + delta_h 11.98 kJ Na2SeO3:5H2O - Na2SeO3:5H2O + H+ = 2 Na+ + HSeO3- + 5 H2O - log_k 10.3 - delta_h -0 kJ + Na2SeO3:5H2O + H+ = 2 Na+ + HSeO3- + 5 H2O + log_k 10.3 + delta_h -0 kJ PbSeO4 - PbSeO4 = Pb+2 + SeO4-2 - log_k -6.84 - delta_h 15 kJ + PbSeO4 = Pb+2 + SeO4-2 + log_k -6.84 + delta_h 15 kJ Tl2SeO4 - Tl2SeO4 = 2 Tl+ + SeO4-2 - log_k -4.1 - delta_h 43 kJ + Tl2SeO4 = 2 Tl+ + SeO4-2 + log_k -4.1 + delta_h 43 kJ ZnSeO4:6H2O - ZnSeO4:6H2O = Zn+2 + SeO4-2 + 6 H2O - log_k -1.52 - delta_h -0 kJ + ZnSeO4:6H2O = Zn+2 + SeO4-2 + 6 H2O + log_k -1.52 + delta_h -0 kJ CdSeO4:2H2O - CdSeO4:2H2O = Cd+2 + SeO4-2 + 2 H2O - log_k -1.85 - delta_h -0 kJ + CdSeO4:2H2O = Cd+2 + SeO4-2 + 2 H2O + log_k -1.85 + delta_h -0 kJ Ag2SeO4 - Ag2SeO4 = 2 Ag+ + SeO4-2 - log_k -8.91 - delta_h -43.5 kJ + Ag2SeO4 = 2 Ag+ + SeO4-2 + log_k -8.91 + delta_h -43.5 kJ CuSeO4:5H2O - CuSeO4:5H2O = Cu+2 + SeO4-2 + 5 H2O - log_k -2.44 - delta_h -0 kJ + CuSeO4:5H2O = Cu+2 + SeO4-2 + 5 H2O + log_k -2.44 + delta_h -0 kJ NiSeO4:6H2O - NiSeO4:6H2O = Ni+2 + SeO4-2 + 6 H2O - log_k -1.52 - delta_h -0 kJ + NiSeO4:6H2O = Ni+2 + SeO4-2 + 6 H2O + log_k -1.52 + delta_h -0 kJ CoSeO4:6H2O - CoSeO4:6H2O = Co+2 + SeO4-2 + 6 H2O - log_k -1.53 - delta_h -0 kJ + CoSeO4:6H2O = Co+2 + SeO4-2 + 6 H2O + log_k -1.53 + delta_h -0 kJ MnSeO4:5H2O - MnSeO4:5H2O = Mn+2 + SeO4-2 + 5 H2O - log_k -2.05 - delta_h -0 kJ + MnSeO4:5H2O = Mn+2 + SeO4-2 + 5 H2O + log_k -2.05 + delta_h -0 kJ UO2SeO4:4H2O - UO2SeO4:4H2O = UO2+2 + SeO4-2 + 4 H2O - log_k -2.25 - delta_h -0 kJ + UO2SeO4:4H2O = UO2+2 + SeO4-2 + 4 H2O + log_k -2.25 + delta_h -0 kJ MgSeO4:6H2O - MgSeO4:6H2O = Mg+2 + SeO4-2 + 6 H2O - log_k -1.2 - delta_h -0 kJ + MgSeO4:6H2O = Mg+2 + SeO4-2 + 6 H2O + log_k -1.2 + delta_h -0 kJ CaSeO4:2H2O - CaSeO4:2H2O = Ca+2 + SeO4-2 + 2 H2O - log_k -3.02 - delta_h -8.3 kJ + CaSeO4:2H2O = Ca+2 + SeO4-2 + 2 H2O + log_k -3.02 + delta_h -8.3 kJ SrSeO4 - SrSeO4 = Sr+2 + SeO4-2 - log_k -4.4 - delta_h 0.4 kJ + SrSeO4 = Sr+2 + SeO4-2 + log_k -4.4 + delta_h 0.4 kJ BaSeO4 - BaSeO4 = Ba+2 + SeO4-2 - log_k -7.46 - delta_h 22 kJ + BaSeO4 = Ba+2 + SeO4-2 + log_k -7.46 + delta_h 22 kJ BeSeO4:4H2O - BeSeO4:4H2O = Be+2 + SeO4-2 + 4 H2O - log_k -2.94 - delta_h -0 kJ + BeSeO4:4H2O = Be+2 + SeO4-2 + 4 H2O + log_k -2.94 + delta_h -0 kJ Na2SeO4 - Na2SeO4 = 2 Na+ + SeO4-2 - log_k 1.28 - delta_h -0 kJ + Na2SeO4 = 2 Na+ + SeO4-2 + log_k 1.28 + delta_h -0 kJ K2SeO4 - K2SeO4 = 2 K+ + SeO4-2 - log_k -0.73 - delta_h -0 kJ + K2SeO4 = 2 K+ + SeO4-2 + log_k -0.73 + delta_h -0 kJ (NH4)2SeO4 - (NH4)2SeO4 = 2 NH4+ + SeO4-2 - log_k 0.45 - delta_h -0 kJ + (NH4)2SeO4 = 2 NH4+ + SeO4-2 + log_k 0.45 + delta_h -0 kJ H2MoO4 - H2MoO4 = MoO4-2 + 2 H+ - log_k -12.8765 - delta_h 49 kJ + H2MoO4 = MoO4-2 + 2 H+ + log_k -12.8765 + delta_h 49 kJ PbMoO4 - PbMoO4 = Pb+2 + MoO4-2 - log_k -15.62 - delta_h 53.93 kJ + PbMoO4 = Pb+2 + MoO4-2 + log_k -15.62 + delta_h 53.93 kJ Al2(MoO4)3 - Al2(MoO4)3 = 3 MoO4-2 + 2 Al+3 - log_k 2.3675 - delta_h -260.8 kJ + Al2(MoO4)3 = 3 MoO4-2 + 2 Al+3 + log_k 2.3675 + delta_h -260.8 kJ Tl2MoO4 - Tl2MoO4 = MoO4-2 + 2 Tl+ - log_k -7.9887 - delta_h -0 kJ + Tl2MoO4 = MoO4-2 + 2 Tl+ + log_k -7.9887 + delta_h -0 kJ ZnMoO4 - ZnMoO4 = MoO4-2 + Zn+2 - log_k -10.1254 - delta_h -10.6901 kJ + ZnMoO4 = MoO4-2 + Zn+2 + log_k -10.1254 + delta_h -10.6901 kJ CdMoO4 - CdMoO4 = MoO4-2 + Cd+2 - log_k -14.1497 - delta_h 19.48 kJ + CdMoO4 = MoO4-2 + Cd+2 + log_k -14.1497 + delta_h 19.48 kJ CuMoO4 - CuMoO4 = MoO4-2 + Cu+2 - log_k -13.0762 - delta_h 12.2 kJ + CuMoO4 = MoO4-2 + Cu+2 + log_k -13.0762 + delta_h 12.2 kJ Ag2MoO4 - Ag2MoO4 = 2 Ag+ + MoO4-2 - log_k -11.55 - delta_h 52.7 kJ + Ag2MoO4 = 2 Ag+ + MoO4-2 + log_k -11.55 + delta_h 52.7 kJ NiMoO4 - NiMoO4 = MoO4-2 + Ni+2 - log_k -11.1421 - delta_h 1.3 kJ + NiMoO4 = MoO4-2 + Ni+2 + log_k -11.1421 + delta_h 1.3 kJ CoMoO4 - CoMoO4 = MoO4-2 + Co+2 - log_k -7.7609 - delta_h -23.3999 kJ + CoMoO4 = MoO4-2 + Co+2 + log_k -7.7609 + delta_h -23.3999 kJ FeMoO4 - FeMoO4 = MoO4-2 + Fe+2 - log_k -10.091 - delta_h -11.1 kJ + FeMoO4 = MoO4-2 + Fe+2 + log_k -10.091 + delta_h -11.1 kJ BeMoO4 - BeMoO4 = MoO4-2 + Be+2 - log_k -1.7817 - delta_h -56.4 kJ + BeMoO4 = MoO4-2 + Be+2 + log_k -1.7817 + delta_h -56.4 kJ MgMoO4 - MgMoO4 = Mg+2 + MoO4-2 - log_k -1.85 - delta_h -0 kJ + MgMoO4 = Mg+2 + MoO4-2 + log_k -1.85 + delta_h -0 kJ CaMoO4 - CaMoO4 = Ca+2 + MoO4-2 - log_k -7.95 - delta_h -2 kJ + CaMoO4 = Ca+2 + MoO4-2 + log_k -7.95 + delta_h -2 kJ BaMoO4 - BaMoO4 = MoO4-2 + Ba+2 - log_k -6.9603 - delta_h 10.96 kJ + BaMoO4 = MoO4-2 + Ba+2 + log_k -6.9603 + delta_h 10.96 kJ Li2MoO4 - Li2MoO4 = MoO4-2 + 2 Li+ - log_k 2.4416 - delta_h -33.9399 kJ + Li2MoO4 = MoO4-2 + 2 Li+ + log_k 2.4416 + delta_h -33.9399 kJ Na2MoO4 - Na2MoO4 = MoO4-2 + 2 Na+ - log_k 1.4901 - delta_h -9.98 kJ + Na2MoO4 = MoO4-2 + 2 Na+ + log_k 1.4901 + delta_h -9.98 kJ Na2MoO4:2H2O - Na2MoO4:2H2O = MoO4-2 + 2 Na+ + 2 H2O - log_k 1.224 - delta_h -0 kJ + Na2MoO4:2H2O = MoO4-2 + 2 Na+ + 2 H2O + log_k 1.224 + delta_h -0 kJ Na2Mo2O7 - Na2Mo2O7 + H2O = 2 MoO4-2 + 2 Na+ + 2 H+ - log_k -16.5966 - delta_h 56.2502 kJ + Na2Mo2O7 + H2O = 2 MoO4-2 + 2 Na+ + 2 H+ + log_k -16.5966 + delta_h 56.2502 kJ K2MoO4 - K2MoO4 = MoO4-2 + 2 K+ - log_k 3.2619 - delta_h -3.38 kJ + K2MoO4 = MoO4-2 + 2 K+ + log_k 3.2619 + delta_h -3.38 kJ PbHPO4 - PbHPO4 = Pb+2 + H+ + PO4-3 - log_k -23.805 - delta_h -0 kJ + PbHPO4 = Pb+2 + H+ + PO4-3 + log_k -23.805 + delta_h -0 kJ Pb3(PO4)2 - Pb3(PO4)2 = 3 Pb+2 + 2 PO4-3 - log_k -43.53 - delta_h -0 kJ + Pb3(PO4)2 = 3 Pb+2 + 2 PO4-3 + log_k -43.53 + delta_h -0 kJ Pyromorphite - Pb5(PO4)3Cl = 5 Pb+2 + 3 PO4-3 + Cl- - log_k -84.43 - delta_h -0 kJ + Pb5(PO4)3Cl = 5 Pb+2 + 3 PO4-3 + Cl- + log_k -84.43 + delta_h -0 kJ Hydroxylpyromorphite - Pb5(PO4)3OH + H+ = 5 Pb+2 + 3 PO4-3 + H2O - log_k -62.79 - delta_h -0 kJ + Pb5(PO4)3OH + H+ = 5 Pb+2 + 3 PO4-3 + H2O + log_k -62.79 + delta_h -0 kJ Plumbgummite - PbAl3(PO4)2(OH)5:H2O + 5 H+ = Pb+2 + 3 Al+3 + 2 PO4-3 + 6 H2O - log_k -32.79 - delta_h -0 kJ + PbAl3(PO4)2(OH)5:H2O + 5 H+ = Pb+2 + 3 Al+3 + 2 PO4-3 + 6 H2O + log_k -32.79 + delta_h -0 kJ Hinsdalite - PbAl3PO4SO4(OH)6 + 6 H+ = Pb+2 + 3 Al+3 + PO4-3 + SO4-2 + 6 H2O - log_k -2.5 - delta_h -0 kJ + PbAl3PO4SO4(OH)6 + 6 H+ = Pb+2 + 3 Al+3 + PO4-3 + SO4-2 + 6 H2O + log_k -2.5 + delta_h -0 kJ Tsumebite - Pb2CuPO4(OH)3:3H2O + 3 H+ = 2 Pb+2 + Cu+2 + PO4-3 + 6 H2O - log_k -9.79 - delta_h -0 kJ + Pb2CuPO4(OH)3:3H2O + 3 H+ = 2 Pb+2 + Cu+2 + PO4-3 + 6 H2O + log_k -9.79 + delta_h -0 kJ Zn3(PO4)2:4H2O - Zn3(PO4)2:4H2O = 3 Zn+2 + 2 PO4-3 + 4 H2O - log_k -35.42 - delta_h -0 kJ + Zn3(PO4)2:4H2O = 3 Zn+2 + 2 PO4-3 + 4 H2O + log_k -35.42 + delta_h -0 kJ Cd3(PO4)2 - Cd3(PO4)2 = 3 Cd+2 + 2 PO4-3 - log_k -32.6 - delta_h -0 kJ + Cd3(PO4)2 = 3 Cd+2 + 2 PO4-3 + log_k -32.6 + delta_h -0 kJ Hg2HPO4 - Hg2HPO4 = Hg2+2 + H+ + PO4-3 - log_k -24.775 - delta_h -0 kJ + Hg2HPO4 = Hg2+2 + H+ + PO4-3 + log_k -24.775 + delta_h -0 kJ Cu3(PO4)2 - Cu3(PO4)2 = 3 Cu+2 + 2 PO4-3 - log_k -36.85 - delta_h -0 kJ + Cu3(PO4)2 = 3 Cu+2 + 2 PO4-3 + log_k -36.85 + delta_h -0 kJ Cu3(PO4)2:3H2O - Cu3(PO4)2:3H2O = 3 Cu+2 + 2 PO4-3 + 3 H2O - log_k -35.12 - delta_h -0 kJ + Cu3(PO4)2:3H2O = 3 Cu+2 + 2 PO4-3 + 3 H2O + log_k -35.12 + delta_h -0 kJ Ag3PO4 - Ag3PO4 = 3 Ag+ + PO4-3 - log_k -17.59 - delta_h -0 kJ + Ag3PO4 = 3 Ag+ + PO4-3 + log_k -17.59 + delta_h -0 kJ Ni3(PO4)2 - Ni3(PO4)2 = 3 Ni+2 + 2 PO4-3 - log_k -31.3 - delta_h -0 kJ + Ni3(PO4)2 = 3 Ni+2 + 2 PO4-3 + log_k -31.3 + delta_h -0 kJ CoHPO4 - CoHPO4 = Co+2 + PO4-3 + H+ - log_k -19.0607 - delta_h -0 kJ + CoHPO4 = Co+2 + PO4-3 + H+ + log_k -19.0607 + delta_h -0 kJ Co3(PO4)2 - Co3(PO4)2 = 3 Co+2 + 2 PO4-3 - log_k -34.6877 - delta_h -0 kJ + Co3(PO4)2 = 3 Co+2 + 2 PO4-3 + log_k -34.6877 + delta_h -0 kJ Vivianite - Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O - log_k -36 - delta_h -0 kJ + Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O + log_k -36 + delta_h -0 kJ Strengite - FePO4:2H2O = Fe+3 + PO4-3 + 2 H2O - log_k -26.4 - delta_h -9.3601 kJ + FePO4:2H2O = Fe+3 + PO4-3 + 2 H2O + log_k -26.4 + delta_h -9.3601 kJ Mn3(PO4)2 - Mn3(PO4)2 = 3 Mn+2 + 2 PO4-3 - log_k -23.827 - delta_h 8.8701 kJ + Mn3(PO4)2 = 3 Mn+2 + 2 PO4-3 + log_k -23.827 + delta_h 8.8701 kJ MnHPO4 - MnHPO4 = Mn+2 + PO4-3 + H+ - log_k -25.4 - delta_h -0 kJ + MnHPO4 = Mn+2 + PO4-3 + H+ + log_k -25.4 + delta_h -0 kJ (VO)3(PO4)2 - (VO)3(PO4)2 = 3 VO+2 + 2 PO4-3 - log_k -25.1 - delta_h -0 kJ + (VO)3(PO4)2 = 3 VO+2 + 2 PO4-3 + log_k -25.1 + delta_h -0 kJ Mg3(PO4)2 - Mg3(PO4)2 = 3 Mg+2 + 2 PO4-3 - log_k -23.28 - delta_h -0 kJ + Mg3(PO4)2 = 3 Mg+2 + 2 PO4-3 + log_k -23.28 + delta_h -0 kJ MgHPO4:3H2O - MgHPO4:3H2O = Mg+2 + H+ + PO4-3 + 3 H2O - log_k -18.175 - delta_h -0 kJ + MgHPO4:3H2O = Mg+2 + H+ + PO4-3 + 3 H2O + log_k -18.175 + delta_h -0 kJ FCO3Apatite - Ca9.316Na0.36Mg0.144(PO4)4.8(CO3)1.2F2.48 = 9.316 Ca+2 + 0.36 Na+ + 0.144 Mg+2 + 4.8 PO4-3 + 1.2 CO3-2 + 2.48 F- - log_k -114.4 - delta_h 164.808 kJ + Ca9.316Na0.36Mg0.144(PO4)4.8(CO3)1.2F2.48 = 9.316 Ca+2 + 0.36 Na+ + 0.144 Mg+2 + 4.8 PO4-3 + 1.2 CO3-2 + 2.48 F- + log_k -114.4 + delta_h 164.808 kJ Hydroxylapatite - Ca5(PO4)3OH + H+ = 5 Ca+2 + 3 PO4-3 + H2O - log_k -44.333 - delta_h -0 kJ + Ca5(PO4)3OH + H+ = 5 Ca+2 + 3 PO4-3 + H2O + log_k -44.333 + delta_h -0 kJ CaHPO4:2H2O - CaHPO4:2H2O = Ca+2 + H+ + PO4-3 + 2 H2O - log_k -18.995 - delta_h 23 kJ + CaHPO4:2H2O = Ca+2 + H+ + PO4-3 + 2 H2O + log_k -18.995 + delta_h 23 kJ CaHPO4 - CaHPO4 = Ca+2 + H+ + PO4-3 - log_k -19.275 - delta_h 31 kJ + CaHPO4 = Ca+2 + H+ + PO4-3 + log_k -19.275 + delta_h 31 kJ Ca3(PO4)2(beta) - Ca3(PO4)2 = 3 Ca+2 + 2 PO4-3 - log_k -28.92 - delta_h 54 kJ + Ca3(PO4)2 = 3 Ca+2 + 2 PO4-3 + log_k -28.92 + delta_h 54 kJ Ca4H(PO4)3:3H2O - Ca4H(PO4)3:3H2O = 4 Ca+2 + H+ + 3 PO4-3 + 3 H2O - log_k -47.08 - delta_h -0 kJ + Ca4H(PO4)3:3H2O = 4 Ca+2 + H+ + 3 PO4-3 + 3 H2O + log_k -47.08 + delta_h -0 kJ SrHPO4 - SrHPO4 = Sr+2 + H+ + PO4-3 - log_k -19.295 - delta_h -0 kJ + SrHPO4 = Sr+2 + H+ + PO4-3 + log_k -19.295 + delta_h -0 kJ BaHPO4 - BaHPO4 = Ba+2 + H+ + PO4-3 - log_k -19.775 - delta_h -0 kJ + BaHPO4 = Ba+2 + H+ + PO4-3 + log_k -19.775 + delta_h -0 kJ U(HPO4)2:4H2O - U(HPO4)2:4H2O = U+4 + 2 PO4-3 + 2 H+ + 4 H2O - log_k -51.584 - delta_h 16.0666 kJ + U(HPO4)2:4H2O = U+4 + 2 PO4-3 + 2 H+ + 4 H2O + log_k -51.584 + delta_h 16.0666 kJ (UO2)3(PO4)2 - (UO2)3(PO4)2 = 3 UO2+2 + 2 PO4-3 - log_k -49.4 - delta_h 397.062 kJ + (UO2)3(PO4)2 = 3 UO2+2 + 2 PO4-3 + log_k -49.4 + delta_h 397.062 kJ UO2HPO4 - UO2HPO4 = UO2+2 + H+ + PO4-3 - log_k -24.225 - delta_h -0 kJ + UO2HPO4 = UO2+2 + H+ + PO4-3 + log_k -24.225 + delta_h -0 kJ Uramphite - (NH4)2(UO2)2(PO4)2 = 2 UO2+2 + 2 NH4+ + 2 PO4-3 - log_k -51.749 - delta_h 40.5848 kJ + (NH4)2(UO2)2(PO4)2 = 2 UO2+2 + 2 NH4+ + 2 PO4-3 + log_k -51.749 + delta_h 40.5848 kJ Przhevalskite - Pb(UO2)2(PO4)2 = 2 UO2+2 + Pb+2 + 2 PO4-3 - log_k -44.365 - delta_h -46.024 kJ + Pb(UO2)2(PO4)2 = 2 UO2+2 + Pb+2 + 2 PO4-3 + log_k -44.365 + delta_h -46.024 kJ Torbernite - Cu(UO2)2(PO4)2 = 2 UO2+2 + Cu+2 + 2 PO4-3 - log_k -45.279 - delta_h -66.5256 kJ + Cu(UO2)2(PO4)2 = 2 UO2+2 + Cu+2 + 2 PO4-3 + log_k -45.279 + delta_h -66.5256 kJ Bassetite - Fe(UO2)2(PO4)2 = 2 UO2+2 + Fe+2 + 2 PO4-3 - log_k -44.485 - delta_h -83.2616 kJ + Fe(UO2)2(PO4)2 = 2 UO2+2 + Fe+2 + 2 PO4-3 + log_k -44.485 + delta_h -83.2616 kJ Saleeite - Mg(UO2)2(PO4)2 = 2 UO2+2 + Mg+2 + 2 PO4-3 - log_k -43.646 - delta_h -84.4331 kJ + Mg(UO2)2(PO4)2 = 2 UO2+2 + Mg+2 + 2 PO4-3 + log_k -43.646 + delta_h -84.4331 kJ Ningyoite - CaU(PO4)2:2H2O = U+4 + Ca+2 + 2 PO4-3 + 2 H2O - log_k -53.906 - delta_h -9.4977 kJ + CaU(PO4)2:2H2O = U+4 + Ca+2 + 2 PO4-3 + 2 H2O + log_k -53.906 + delta_h -9.4977 kJ H-Autunite - H2(UO2)2(PO4)2 = 2 UO2+2 + 2 H+ + 2 PO4-3 - log_k -47.931 - delta_h -15.0624 kJ + H2(UO2)2(PO4)2 = 2 UO2+2 + 2 H+ + 2 PO4-3 + log_k -47.931 + delta_h -15.0624 kJ Autunite - Ca(UO2)2(PO4)2 = 2 UO2+2 + Ca+2 + 2 PO4-3 - log_k -43.927 - delta_h -59.9986 kJ + Ca(UO2)2(PO4)2 = 2 UO2+2 + Ca+2 + 2 PO4-3 + log_k -43.927 + delta_h -59.9986 kJ Sr-Autunite - Sr(UO2)2(PO4)2 = 2 UO2+2 + Sr+2 + 2 PO4-3 - log_k -44.457 - delta_h -54.6012 kJ + Sr(UO2)2(PO4)2 = 2 UO2+2 + Sr+2 + 2 PO4-3 + log_k -44.457 + delta_h -54.6012 kJ Na-Autunite - Na2(UO2)2(PO4)2 = 2 UO2+2 + 2 Na+ + 2 PO4-3 - log_k -47.409 - delta_h -1.9246 kJ + Na2(UO2)2(PO4)2 = 2 UO2+2 + 2 Na+ + 2 PO4-3 + log_k -47.409 + delta_h -1.9246 kJ K-Autunite - K2(UO2)2(PO4)2 = 2 UO2+2 + 2 K+ + 2 PO4-3 - log_k -48.244 - delta_h 24.5182 kJ + K2(UO2)2(PO4)2 = 2 UO2+2 + 2 K+ + 2 PO4-3 + log_k -48.244 + delta_h 24.5182 kJ Uranocircite - Ba(UO2)2(PO4)2 = 2 UO2+2 + Ba+2 + 2 PO4-3 - log_k -44.631 - delta_h -42.2584 kJ + Ba(UO2)2(PO4)2 = 2 UO2+2 + Ba+2 + 2 PO4-3 + log_k -44.631 + delta_h -42.2584 kJ Pb3(AsO4)2 - Pb3(AsO4)2 + 6 H+ = 3 Pb+2 + 2 H3AsO4 - log_k 5.8 - delta_h -0 kJ + Pb3(AsO4)2 + 6 H+ = 3 Pb+2 + 2 H3AsO4 + log_k 5.8 + delta_h -0 kJ AlAsO4:2H2O - AlAsO4:2H2O + 3 H+ = Al+3 + H3AsO4 + 2 H2O - log_k 4.8 - delta_h -0 kJ + AlAsO4:2H2O + 3 H+ = Al+3 + H3AsO4 + 2 H2O + log_k 4.8 + delta_h -0 kJ Zn3(AsO4)2:2.5H2O - Zn3(AsO4)2:2.5H2O + 6 H+ = 3 Zn+2 + 2 H3AsO4 + 2.5 H2O - log_k 13.65 - delta_h -0 kJ + Zn3(AsO4)2:2.5H2O + 6 H+ = 3 Zn+2 + 2 H3AsO4 + 2.5 H2O + log_k 13.65 + delta_h -0 kJ Cu3(AsO4)2:2H2O - Cu3(AsO4)2:2H2O + 6 H+ = 3 Cu+2 + 2 H3AsO4 + 2 H2O - log_k 6.1 - delta_h -0 kJ + Cu3(AsO4)2:2H2O + 6 H+ = 3 Cu+2 + 2 H3AsO4 + 2 H2O + log_k 6.1 + delta_h -0 kJ Ag3AsO3 - Ag3AsO3 + 3 H+ = 3 Ag+ + H3AsO3 - log_k 2.1573 - delta_h -0 kJ + Ag3AsO3 + 3 H+ = 3 Ag+ + H3AsO3 + log_k 2.1573 + delta_h -0 kJ Ag3AsO4 - Ag3AsO4 + 3 H+ = 3 Ag+ + H3AsO4 - log_k -2.7867 - delta_h -0 kJ + Ag3AsO4 + 3 H+ = 3 Ag+ + H3AsO4 + log_k -2.7867 + delta_h -0 kJ Ni3(AsO4)2:8H2O - Ni3(AsO4)2:8H2O + 6 H+ = 3 Ni+2 + 2 H3AsO4 + 8 H2O - log_k 15.7 - delta_h -0 kJ + Ni3(AsO4)2:8H2O + 6 H+ = 3 Ni+2 + 2 H3AsO4 + 8 H2O + log_k 15.7 + delta_h -0 kJ Co3(AsO4)2 - Co3(AsO4)2 + 6 H+ = 3 Co+2 + 2 H3AsO4 - log_k 13.0341 - delta_h -0 kJ + Co3(AsO4)2 + 6 H+ = 3 Co+2 + 2 H3AsO4 + log_k 13.0341 + delta_h -0 kJ FeAsO4:2H2O - FeAsO4:2H2O + 3 H+ = Fe+3 + H3AsO4 + 2 H2O - log_k 0.4 - delta_h -0 kJ + FeAsO4:2H2O + 3 H+ = Fe+3 + H3AsO4 + 2 H2O + log_k 0.4 + delta_h -0 kJ Mn3(AsO4)2:8H2O - Mn3(AsO4)2:8H2O + 6 H+ = 3 Mn+2 + 2 H3AsO4 + 8 H2O - log_k 12.5 - delta_h -0 kJ + Mn3(AsO4)2:8H2O + 6 H+ = 3 Mn+2 + 2 H3AsO4 + 8 H2O + log_k 12.5 + delta_h -0 kJ Ca3(AsO4)2:4H2O - Ca3(AsO4)2:4H2O + 6 H+ = 3 Ca+2 + 2 H3AsO4 + 4 H2O - log_k 22.3 - delta_h -0 kJ + Ca3(AsO4)2:4H2O + 6 H+ = 3 Ca+2 + 2 H3AsO4 + 4 H2O + log_k 22.3 + delta_h -0 kJ Ba3(AsO4)2 - Ba3(AsO4)2 + 6 H+ = 3 Ba+2 + 2 H3AsO4 - log_k -8.91 - delta_h 11.0458 kJ + Ba3(AsO4)2 + 6 H+ = 3 Ba+2 + 2 H3AsO4 + log_k -8.91 + delta_h 11.0458 kJ #NH4VO3 -# NH4VO3 + 2H+ = 2VO2+ + H2O -# log_k 3.8 -# delta_h 30 kJ +# NH4VO3 + 2H+ = 2VO2+ + H2O +# log_k 3.8 +# delta_h 30 kJ Pb3(VO4)2 - Pb3(VO4)2 + 8 H+ = 3 Pb+2 + 2 VO2+ + 4 H2O - log_k 6.14 - delta_h -72.6342 kJ + Pb3(VO4)2 + 8 H+ = 3 Pb+2 + 2 VO2+ + 4 H2O + log_k 6.14 + delta_h -72.6342 kJ Pb2V2O7 - Pb2V2O7 + 6 H+ = 2 Pb+2 + 2 VO2+ + 3 H2O - log_k -1.9 - delta_h -26.945 kJ + Pb2V2O7 + 6 H+ = 2 Pb+2 + 2 VO2+ + 3 H2O + log_k -1.9 + delta_h -26.945 kJ AgVO3 - AgVO3 + 2 H+ = Ag+ + VO2+ + H2O - log_k 0.77 - delta_h -0 kJ + AgVO3 + 2 H+ = Ag+ + VO2+ + H2O + log_k 0.77 + delta_h -0 kJ Ag2HVO4 - Ag2HVO4 + 3 H+ = 2 Ag+ + VO2+ + 2 H2O - log_k 1.48 - delta_h -0 kJ + Ag2HVO4 + 3 H+ = 2 Ag+ + VO2+ + 2 H2O + log_k 1.48 + delta_h -0 kJ Ag3H2VO5 - Ag3H2VO5 + 4 H+ = 3 Ag+ + VO2+ + 3 H2O - log_k 5.18 - delta_h -0 kJ + Ag3H2VO5 + 4 H+ = 3 Ag+ + VO2+ + 3 H2O + log_k 5.18 + delta_h -0 kJ Fe(VO3)2 - Fe(VO3)2 + 4 H+ = Fe+2 + 2 VO2+ + 2 H2O - log_k -3.72 - delta_h -61.6722 kJ + Fe(VO3)2 + 4 H+ = Fe+2 + 2 VO2+ + 2 H2O + log_k -3.72 + delta_h -61.6722 kJ Mn(VO3)2 - Mn(VO3)2 + 4 H+ = Mn+2 + 2 VO2+ + 2 H2O - log_k 4.9 - delta_h -92.4664 kJ + Mn(VO3)2 + 4 H+ = Mn+2 + 2 VO2+ + 2 H2O + log_k 4.9 + delta_h -92.4664 kJ Mg(VO3)2 - Mg(VO3)2 + 4 H+ = Mg+2 + 2 VO2+ + 2 H2O - log_k 11.28 - delta_h -136.649 kJ + Mg(VO3)2 + 4 H+ = Mg+2 + 2 VO2+ + 2 H2O + log_k 11.28 + delta_h -136.649 kJ Mg2V2O7 - Mg2V2O7 + 6 H+ = 2 Mg+2 + 2 VO2+ + 3 H2O - log_k 26.36 - delta_h -255.224 kJ + Mg2V2O7 + 6 H+ = 2 Mg+2 + 2 VO2+ + 3 H2O + log_k 26.36 + delta_h -255.224 kJ Carnotite - KUO2VO4 + 4 H+ = K+ + UO2+2 + VO2+ + 2 H2O - log_k 0.23 - delta_h -36.4008 kJ + KUO2VO4 + 4 H+ = K+ + UO2+2 + VO2+ + 2 H2O + log_k 0.23 + delta_h -36.4008 kJ Tyuyamunite - Ca(UO2)2(VO4)2 + 8 H+ = Ca+2 + 2 UO2+2 + 2 VO2+ + 4 H2O - log_k 4.08 - delta_h -153.134 kJ + Ca(UO2)2(VO4)2 + 8 H+ = Ca+2 + 2 UO2+2 + 2 VO2+ + 4 H2O + log_k 4.08 + delta_h -153.134 kJ Ca(VO3)2 - Ca(VO3)2 + 4 H+ = Ca+2 + 2 VO2+ + 2 H2O - log_k 5.66 - delta_h -84.7678 kJ + Ca(VO3)2 + 4 H+ = Ca+2 + 2 VO2+ + 2 H2O + log_k 5.66 + delta_h -84.7678 kJ Ca3(VO4)2 - Ca3(VO4)2 + 8 H+ = 3 Ca+2 + 2 VO2+ + 4 H2O - log_k 38.96 - delta_h -293.466 kJ + Ca3(VO4)2 + 8 H+ = 3 Ca+2 + 2 VO2+ + 4 H2O + log_k 38.96 + delta_h -293.466 kJ Ca2V2O7 - Ca2V2O7 + 6 H+ = 2 Ca+2 + 2 VO2+ + 3 H2O - log_k 17.5 - delta_h -159.494 kJ + Ca2V2O7 + 6 H+ = 2 Ca+2 + 2 VO2+ + 3 H2O + log_k 17.5 + delta_h -159.494 kJ Ca3(VO4)2:4H2O - Ca3(VO4)2:4H2O + 8 H+ = 3 Ca+2 + 2 VO2+ + 8 H2O - log_k 39.86 - delta_h -0 kJ + Ca3(VO4)2:4H2O + 8 H+ = 3 Ca+2 + 2 VO2+ + 8 H2O + log_k 39.86 + delta_h -0 kJ Ca2V2O7:2H2O - Ca2V2O7:2H2O + 6 H+ = 2 Ca+2 + 2 VO2+ + 5 H2O - log_k 21.552 - delta_h -0 kJ + Ca2V2O7:2H2O + 6 H+ = 2 Ca+2 + 2 VO2+ + 5 H2O + log_k 21.552 + delta_h -0 kJ Ba3(VO4)2:4H2O - Ba3(VO4)2:4H2O + 8 H+ = 3 Ba+2 + 2 VO2+ + 8 H2O - log_k 32.94 - delta_h -0 kJ + Ba3(VO4)2:4H2O + 8 H+ = 3 Ba+2 + 2 VO2+ + 8 H2O + log_k 32.94 + delta_h -0 kJ Ba2V2O7:2H2O - Ba2V2O7:2H2O + 6 H+ = 2 Ba+2 + 2 VO2+ + 5 H2O - log_k 15.872 - delta_h -0 kJ + Ba2V2O7:2H2O + 6 H+ = 2 Ba+2 + 2 VO2+ + 5 H2O + log_k 15.872 + delta_h -0 kJ NaVO3 - NaVO3 + 2 H+ = Na+ + VO2+ + H2O - log_k 3.8582 - delta_h -30.1799 kJ + NaVO3 + 2 H+ = Na+ + VO2+ + H2O + log_k 3.8582 + delta_h -30.1799 kJ Na3VO4 - Na3VO4 + 4 H+ = 3 Na+ + VO2+ + 2 H2O - log_k 36.6812 - delta_h -184.61 kJ + Na3VO4 + 4 H+ = 3 Na+ + VO2+ + 2 H2O + log_k 36.6812 + delta_h -184.61 kJ Na4V2O7 - Na4V2O7 + 6 H+ = 4 Na+ + 2 VO2+ + 3 H2O - log_k 37.4 - delta_h -201.083 kJ + Na4V2O7 + 6 H+ = 4 Na+ + 2 VO2+ + 3 H2O + log_k 37.4 + delta_h -201.083 kJ Halloysite - Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 H4SiO4 + H2O - log_k 9.5749 - delta_h -181.43 kJ + Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 H4SiO4 + H2O + log_k 9.5749 + delta_h -181.43 kJ Kaolinite - Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 H4SiO4 + H2O - log_k 7.435 - delta_h -148 kJ + Al2Si2O5(OH)4 + 6 H+ = 2 Al+3 + 2 H4SiO4 + H2O + log_k 7.435 + delta_h -148 kJ Greenalite - Fe3Si2O5(OH)4 + 6 H+ = 3 Fe+2 + 2 H4SiO4 + H2O - log_k 20.81 - delta_h -0 kJ + Fe3Si2O5(OH)4 + 6 H+ = 3 Fe+2 + 2 H4SiO4 + H2O + log_k 20.81 + delta_h -0 kJ Chrysotile - Mg3Si2O5(OH)4 + 6 H+ = 3 Mg+2 + 2 H4SiO4 + H2O - log_k 32.2 - delta_h -196 kJ + Mg3Si2O5(OH)4 + 6 H+ = 3 Mg+2 + 2 H4SiO4 + H2O + log_k 32.2 + delta_h -196 kJ Sepiolite - Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 - log_k 15.76 - delta_h -114.089 kJ + Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5 H2O = 2 Mg+2 + 3 H4SiO4 + log_k 15.76 + delta_h -114.089 kJ Sepiolite(A) - Mg2Si3O7.5OH:3H2O + 0.5 H2O + 4 H+ = 2 Mg+2 + 3 H4SiO4 - log_k 18.78 - delta_h -0 kJ + Mg2Si3O7.5OH:3H2O + 0.5 H2O + 4 H+ = 2 Mg+2 + 3 H4SiO4 + log_k 18.78 + delta_h -0 kJ PHASES O2(g) - O2 + 4 H+ + 4 e- = 2 H2O - log_k 83.0894 - delta_h -571.66 kJ + O2 + 4 H+ + 4 e- = 2 H2O + log_k 83.0894 + delta_h -571.66 kJ CH4(g) - CH4 + 3 H2O = CO3-2 + 8 e- + 10 H+ - log_k -41.0452 - delta_h 257.133 kJ + CH4 + 3 H2O = CO3-2 + 8 e- + 10 H+ + log_k -41.0452 + delta_h 257.133 kJ CO2(g) - CO2 + H2O = 2 H+ + CO3-2 - log_k -18.147 - delta_h 4.06 kJ + CO2 + H2O = 2 H+ + CO3-2 + log_k -18.147 + delta_h 4.06 kJ H2S(g) - H2S = H+ + HS- - log_k -8.01 - delta_h -0 kJ + H2S = H+ + HS- + log_k -8.01 + delta_h -0 kJ H2Se(g) - H2Se = HSe- + H+ - log_k -4.96 - delta_h -15.3 kJ + H2Se = HSe- + H+ + log_k -4.96 + delta_h -15.3 kJ Hg(g) - Hg = 0.5 Hg2+2 + e- - log_k -7.8733 - delta_h 22.055 kJ + Hg = 0.5 Hg2+2 + e- + log_k -7.8733 + delta_h 22.055 kJ Hg2(g) - Hg2 = Hg2+2 + 2 e- - log_k -14.9554 - delta_h 58.07 kJ + Hg2 = Hg2+2 + 2 e- + log_k -14.9554 + delta_h 58.07 kJ Hg(CH3)2(g) - Hg(CH3)2 + 8 H2O = Hg(OH)2 + 2 CO3-2 + 16 e- + 20 H+ - log_k -73.7066 - delta_h 481.99 kJ + Hg(CH3)2 + 8 H2O = Hg(OH)2 + 2 CO3-2 + 16 e- + 20 H+ + log_k -73.7066 + delta_h 481.99 kJ HgF(g) - HgF = 0.5 Hg2+2 + F- - log_k 32.6756 - delta_h -254.844 kJ + HgF = 0.5 Hg2+2 + F- + log_k 32.6756 + delta_h -254.844 kJ HgF2(g) - HgF2 + 2 H2O = Hg(OH)2 + 2 F- + 2 H+ - log_k 12.5652 - delta_h -165.186 kJ + HgF2 + 2 H2O = Hg(OH)2 + 2 F- + 2 H+ + log_k 12.5652 + delta_h -165.186 kJ HgCl(g) - HgCl = 0.5 Hg2+2 + Cl- - log_k 19.4966 - delta_h -162.095 kJ + HgCl = 0.5 Hg2+2 + Cl- + log_k 19.4966 + delta_h -162.095 kJ HgBr(g) - HgBr = 0.5 Hg2+2 + Br- - log_k 16.7566 - delta_h -142.157 kJ + HgBr = 0.5 Hg2+2 + Br- + log_k 16.7566 + delta_h -142.157 kJ HgBr2(g) - HgBr2 + 2 H2O = Hg(OH)2 + 2 Br- + 2 H+ - log_k -18.3881 - delta_h 54.494 kJ + HgBr2 + 2 H2O = Hg(OH)2 + 2 Br- + 2 H+ + log_k -18.3881 + delta_h 54.494 kJ HgI(g) - HgI = 0.5 Hg2+2 + I- - log_k 11.3322 - delta_h -106.815 kJ + HgI = 0.5 Hg2+2 + I- + log_k 11.3322 + delta_h -106.815 kJ HgI2(g) - HgI2 + 2 H2O = Hg(OH)2 + 2 I- + 2 H+ - log_k -27.2259 - delta_h 114.429 kJ + HgI2 + 2 H2O = Hg(OH)2 + 2 I- + 2 H+ + log_k -27.2259 + delta_h 114.429 kJ SURFACE_MASTER_SPECIES Hfo_s Hfo_sOH Hfo_w Hfo_wOH @@ -12676,537 +12676,537 @@ Hfo_wOH = Hfo_wOH Hfo_sOH = Hfo_sOH log_k 0 Hfo_sOH + H+ = Hfo_sOH2+ - log_k 7.29 - delta_h 0 kJ - # Id: 8113302 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 7.29 + delta_h 0 kJ + # Id: 8113302 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH = Hfo_sO- + H+ - log_k -8.93 - delta_h 0 kJ - # Id: 8113301 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -8.93 + delta_h 0 kJ + # Id: 8113301 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + H+ = Hfo_wOH2+ - log_k 7.29 - delta_h 0 kJ - # Id: 8123302 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 7.29 + delta_h 0 kJ + # Id: 8123302 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH = Hfo_wO- + H+ - log_k -8.93 - delta_h 0 kJ - # Id: 8123301 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -8.93 + delta_h 0 kJ + # Id: 8123301 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Ba+2 = Hfo_sOHBa+2 - log_k 5.46 - delta_h 0 kJ - # Id: 8111000 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 5.46 + delta_h 0 kJ + # Id: 8111000 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ - log_k -7.2 - delta_h 0 kJ - # Id: 8121000 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -7.2 + delta_h 0 kJ + # Id: 8121000 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Ca+2 = Hfo_sOHCa+2 - log_k 4.97 - delta_h 0 kJ - # Id: 8111500 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 4.97 + delta_h 0 kJ + # Id: 8111500 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ - log_k -5.85 - delta_h 0 kJ - # Id: 8121500 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -5.85 + delta_h 0 kJ + # Id: 8121500 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ - log_k -4.6 - delta_h 0 kJ - # Id: 8124600 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -4.6 + delta_h 0 kJ + # Id: 8124600 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Ag+ = Hfo_sOAg + H+ - log_k -1.72 - delta_h 0 kJ - # Id: 8110200 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -1.72 + delta_h 0 kJ + # Id: 8110200 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Ag+ = Hfo_wOAg + H+ - log_k -5.3 - delta_h 0 kJ - # Id: 8120200 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -5.3 + delta_h 0 kJ + # Id: 8120200 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Ni+2 = Hfo_sONi+ + H+ - log_k 0.37 - delta_h 0 kJ - # Id: 8115400 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 0.37 + delta_h 0 kJ + # Id: 8115400 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Ni+2 = Hfo_wONi+ + H+ - log_k -2.5 - delta_h 0 kJ - # Id: 8125400 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -2.5 + delta_h 0 kJ + # Id: 8125400 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ - log_k 0.47 - delta_h 0 kJ - # Id: 8111600 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 0.47 + delta_h 0 kJ + # Id: 8111600 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ - log_k -2.9 - delta_h 0 kJ - # Id: 8121600 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -2.9 + delta_h 0 kJ + # Id: 8121600 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Co+2 = Hfo_sOCo+ + H+ - log_k -0.46 - delta_h 0 kJ - # Id: 8112000 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -0.46 + delta_h 0 kJ + # Id: 8112000 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Co+2 = Hfo_wOCo+ + H+ - log_k -3.01 - delta_h 0 kJ - # Id: 8122000 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -3.01 + delta_h 0 kJ + # Id: 8122000 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ - log_k 0.99 - delta_h 0 kJ - # Id: 8119500 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 0.99 + delta_h 0 kJ + # Id: 8119500 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ - log_k -1.99 - delta_h 0 kJ - # Id: 8129500 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -1.99 + delta_h 0 kJ + # Id: 8129500 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ - log_k 2.89 - delta_h 0 kJ - # Id: 8112310 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 2.89 + delta_h 0 kJ + # Id: 8112310 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ - log_k 0.6 - delta_h 0 kJ - # Id: 8123100 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 0.6 + delta_h 0 kJ + # Id: 8123100 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ - log_k 4.65 - delta_h 0 kJ - # Id: 8116000 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 4.65 + delta_h 0 kJ + # Id: 8116000 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ - log_k 0.3 - delta_h 0 kJ - # Id: 8126000 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 0.3 + delta_h 0 kJ + # Id: 8126000 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Be+2 = Hfo_sOBe+ + H+ - log_k 5.7 - delta_h 0 kJ - # Id: 8111100 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 5.7 + delta_h 0 kJ + # Id: 8111100 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Be+2 = Hfo_wOBe+ + H+ - log_k 3.3 - delta_h 0 kJ - # Id: 8121100 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 3.3 + delta_h 0 kJ + # Id: 8121100 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Hg(OH)2 + H+ = Hfo_sOHg+ + 2 H2O - log_k 13.95 - delta_h 0 kJ - # Id: 8113610 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 13.95 + delta_h 0 kJ + # Id: 8113610 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Hg(OH)2 + H+ = Hfo_wOHg+ + 2 H2O - log_k 12.64 - delta_h 0 kJ - # Id: 8123610 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 12.64 + delta_h 0 kJ + # Id: 8123610 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Sn(OH)2 + H+ = Hfo_sOSn+ + 2 H2O - log_k 15.1 - delta_h 0 kJ - # Id: 8117900 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 15.1 + delta_h 0 kJ + # Id: 8117900 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Sn(OH)2 + H+ = Hfo_wOSn+ + 2 H2O - log_k 13 - delta_h 0 kJ - # Id: 8127900 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 13 + delta_h 0 kJ + # Id: 8127900 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Cr(OH)2+ = Hfo_sOCrOH+ + H2O - log_k 11.63 - delta_h 0 kJ - # Id: 8112110 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 11.63 + delta_h 0 kJ + # Id: 8112110 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + H3AsO3 = Hfo_sH2AsO3 + H2O - log_k 5.41 - delta_h 0 kJ - # Id: 8110600 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 5.41 + delta_h 0 kJ + # Id: 8110600 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + H3AsO3 = Hfo_wH2AsO3 + H2O - log_k 5.41 - delta_h 0 kJ - # Id: 8120600 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 5.41 + delta_h 0 kJ + # Id: 8120600 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + H3BO3 = Hfo_sH2BO3 + H2O - log_k 0.62 - delta_h 0 kJ - # Id: 8110900 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 0.62 + delta_h 0 kJ + # Id: 8110900 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O - log_k 0.62 - delta_h 0 kJ - # Id: 8120900 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 0.62 + delta_h 0 kJ + # Id: 8120900 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + PO4-3 + 3 H+ = Hfo_sH2PO4 + H2O - log_k 31.29 - delta_h 0 kJ - # Id: 8115800 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 31.29 + delta_h 0 kJ + # Id: 8115800 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + PO4-3 + 3 H+ = Hfo_wH2PO4 + H2O - log_k 31.29 - delta_h 0 kJ - # Id: 8125800 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 31.29 + delta_h 0 kJ + # Id: 8125800 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + PO4-3 + 2 H+ = Hfo_sHPO4- + H2O - log_k 25.39 - delta_h 0 kJ - # Id: 8115801 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 25.39 + delta_h 0 kJ + # Id: 8115801 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + PO4-3 + 2 H+ = Hfo_wHPO4- + H2O - log_k 25.39 - delta_h 0 kJ - # Id: 8125801 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 25.39 + delta_h 0 kJ + # Id: 8125801 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + PO4-3 + H+ = Hfo_sPO4-2 + H2O - log_k 17.72 - delta_h 0 kJ - # Id: 8115802 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 17.72 + delta_h 0 kJ + # Id: 8115802 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O - log_k 17.72 - delta_h 0 kJ - # Id: 8125802 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 17.72 + delta_h 0 kJ + # Id: 8125802 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + H3AsO4 = Hfo_sH2AsO4 + H2O - log_k 8.61 - delta_h 0 kJ - # Id: 8110610 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 8.61 + delta_h 0 kJ + # Id: 8110610 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + H3AsO4 = Hfo_wH2AsO4 + H2O - log_k 8.61 - delta_h 0 kJ - # Id: 8120610 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 8.61 + delta_h 0 kJ + # Id: 8120610 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + H3AsO4 = Hfo_sHAsO4- + H2O + H+ - log_k 2.81 - delta_h 0 kJ - # Id: 8110611 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 2.81 + delta_h 0 kJ + # Id: 8110611 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + H3AsO4 = Hfo_wHAsO4- + H2O + H+ - log_k 2.81 - delta_h 0 kJ - # Id: 8120611 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 2.81 + delta_h 0 kJ + # Id: 8120611 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + H3AsO4 = Hfo_sOHAsO4-3 + 3 H+ - log_k -10.12 - delta_h 0 kJ - # Id: 8110613 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -10.12 + delta_h 0 kJ + # Id: 8110613 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + H3AsO4 = Hfo_wOHAsO4-3 + 3 H+ - log_k -10.12 - delta_h 0 kJ - # Id: 8120613 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -10.12 + delta_h 0 kJ + # Id: 8120613 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + VO2+ + 2 H2O = Hfo_sOHVO4-3 + 4 H+ - log_k -16.63 - delta_h 0 kJ - # Id: 8119031 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -16.63 + delta_h 0 kJ + # Id: 8119031 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + VO2+ + 2 H2O = Hfo_wOHVO4-3 + 4 H+ - log_k -16.63 - delta_h 0 kJ - # Id: 8129031 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -16.63 + delta_h 0 kJ + # Id: 8129031 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + SO4-2 + H+ = Hfo_sSO4- + H2O - log_k 7.78 - delta_h 0 kJ - # Id: 8117320 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 7.78 + delta_h 0 kJ + # Id: 8117320 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O - log_k 7.78 - delta_h 0 kJ - # Id: 8127320 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 7.78 + delta_h 0 kJ + # Id: 8127320 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + SO4-2 = Hfo_sOHSO4-2 - log_k 0.79 - delta_h 0 kJ - # Id: 8117321 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 0.79 + delta_h 0 kJ + # Id: 8117321 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 - log_k 0.79 - delta_h 0 kJ - # Id: 8127321 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 0.79 + delta_h 0 kJ + # Id: 8127321 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + HSeO3- = Hfo_sSeO3- + H2O - log_k 4.29 - delta_h 0 kJ - # Id: 8117610 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 4.29 + delta_h 0 kJ + # Id: 8117610 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + HSeO3- = Hfo_wSeO3- + H2O - log_k 4.29 - delta_h 0 kJ - # Id: 8127610 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 4.29 + delta_h 0 kJ + # Id: 8127610 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + HSeO3- = Hfo_sOHSeO3-2 + H+ - log_k -3.23 - delta_h 0 kJ - # Id: 8117611 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -3.23 + delta_h 0 kJ + # Id: 8117611 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + HSeO3- = Hfo_wOHSeO3-2 + H+ - log_k -3.23 - delta_h 0 kJ - # Id: 8127611 - # log K source: - # Delta H source: - #T and ionic strength: + log_k -3.23 + delta_h 0 kJ + # Id: 8127611 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + SeO4-2 + H+ = Hfo_sSeO4- + H2O - log_k 7.73 - delta_h 0 kJ - # Id: 8117620 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 7.73 + delta_h 0 kJ + # Id: 8117620 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + SeO4-2 + H+ = Hfo_wSeO4- + H2O - log_k 7.73 - delta_h 0 kJ - # Id: 8127620 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 7.73 + delta_h 0 kJ + # Id: 8127620 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + SeO4-2 = Hfo_sOHSeO4-2 - log_k 0.8 - delta_h 0 kJ - # Id: 8117621 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 0.8 + delta_h 0 kJ + # Id: 8117621 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + SeO4-2 = Hfo_wOHSeO4-2 - log_k 0.8 - delta_h 0 kJ - # Id: 8127621 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 0.8 + delta_h 0 kJ + # Id: 8127621 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + CrO4-2 + H+ = Hfo_sCrO4- + H2O - log_k 10.85 - delta_h 0 kJ - # Id: 8112120 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 10.85 + delta_h 0 kJ + # Id: 8112120 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + CrO4-2 + H+ = Hfo_wCrO4- + H2O - log_k 10.85 - delta_h 0 kJ - # Id: 8122120 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 10.85 + delta_h 0 kJ + # Id: 8122120 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + CrO4-2 = Hfo_sOHCrO4-2 - log_k 3.9 - delta_h 0 kJ - # Id: 8112121 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 3.9 + delta_h 0 kJ + # Id: 8112121 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + CrO4-2 = Hfo_wOHCrO4-2 - log_k 3.9 - delta_h 0 kJ - # Id: 8122121 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 3.9 + delta_h 0 kJ + # Id: 8122121 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + MoO4-2 + H+ = Hfo_sMoO4- + H2O - log_k 9.5 - delta_h 0 kJ - # Id: 8114800 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 9.5 + delta_h 0 kJ + # Id: 8114800 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + MoO4-2 + H+ = Hfo_wMoO4- + H2O - log_k 9.5 - delta_h 0 kJ - # Id: 8124800 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 9.5 + delta_h 0 kJ + # Id: 8124800 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + MoO4-2 = Hfo_sOHMoO4-2 - log_k 2.4 - delta_h 0 kJ - # Id: 8114801 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 2.4 + delta_h 0 kJ + # Id: 8114801 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + MoO4-2 = Hfo_wOHMoO4-2 - log_k 2.4 - delta_h 0 kJ - # Id: 8124801 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 2.4 + delta_h 0 kJ + # Id: 8124801 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Sb(OH)6- + H+ = Hfo_sSbO(OH)4 + 2 H2O - log_k 8.4 - delta_h 0 kJ - # Id: 8117410 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 8.4 + delta_h 0 kJ + # Id: 8117410 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Sb(OH)6- + H+ = Hfo_wSbO(OH)4 + 2 H2O - log_k 8.4 - delta_h 0 kJ - # Id: 8127410 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 8.4 + delta_h 0 kJ + # Id: 8127410 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Sb(OH)6- = Hfo_sOHSbO(OH)4- + H2O - log_k 1.3 - delta_h 0 kJ - # Id: 8117411 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 1.3 + delta_h 0 kJ + # Id: 8117411 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Sb(OH)6- = Hfo_wOHSbO(OH)4- + H2O - log_k 1.3 - delta_h 0 kJ - # Id: 8127411 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 1.3 + delta_h 0 kJ + # Id: 8127411 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Cyanide- + H+ = Hfo_sCyanide + H2O - log_k 13 - delta_h 0 kJ - # Id: 8111430 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 13 + delta_h 0 kJ + # Id: 8111430 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Cyanide- + H+ = Hfo_wCyanide + H2O - log_k 13 - delta_h 0 kJ - # Id: 8121430 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 13 + delta_h 0 kJ + # Id: 8121430 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_sOH + Cyanide- = Hfo_sOHCyanide- - log_k 5.7 - delta_h 0 kJ - # Id: 8111431 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 5.7 + delta_h 0 kJ + # Id: 8111431 + # log K source: + # Delta H source: + #T and ionic strength: Hfo_wOH + Cyanide- = Hfo_wOHCyanide- - log_k 5.7 - delta_h 0 kJ - # Id: 8121431 - # log K source: - # Delta H source: - #T and ionic strength: + log_k 5.7 + delta_h 0 kJ + # Id: 8121431 + # log K source: + # Delta H source: + #T and ionic strength: END diff --git a/phreeqc.dat b/phreeqc.dat index d89cef0d..51d44013 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -80,7 +80,7 @@ H+ = H+ # If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. e- = e- H2O = H2O - -dw 2.299e-9 -254 + -dw 2.299e-9 -249 # Holz et al., Phys. Chem. Chem. Phys., 2000, 2, 4740. # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence Li+ = Li+ -gamma 6 0 # The apparent volume parameters are defined in ref. 1 & 2 @@ -111,9 +111,9 @@ Ca+2 = Ca+2 -dw 0.792e-9 34 5.411 0 1.046 Sr+2 = Sr+2 -gamma 5.26 0.121 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97 - -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 - -dw 0.794e-9 149 0.805 1.961 1e-9 0.7876 + -Vm -5.6e-2 -10.15 9.90 -2.36 0.807 5.26 2.72 -82.7 -1.37e-2 0.956 + -viscosity 0.493 -0.255 2.3e-3 4.2e-3 -3.8e-3 1.762 + -dw 0.794e-9 18 0.681 2.069 0.965 0.271 Ba+2 = Ba+2 -gamma 5 0 -gamma 4 0.153 # Barite solubility @@ -159,7 +159,7 @@ NO3- = NO3- # AmmH+ = AmmH+ # -gamma 2.5 0 # -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 -# -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 +# -viscosity 6.94e-2 -0.141 2.04e-2 9.4e-3 3.73e-2 0.898 # -dw 1.98e-9 203 1.47 2.644 6.81e-2 H3BO3 = H3BO3 -Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt @@ -174,7 +174,7 @@ F- = F- -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 -dw 1.46e-9 -36 4.352 Br- = Br- - -gamma 3 0 + -gamma 3 0.045 -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 -viscosity -6.98e-2 -0.141 1.78e-2 0.159 7.76e-3 6.25e-2 0.859 -dw 2.09e-9 208 3.5 0 0.5737 @@ -203,7 +203,7 @@ Mtg = Mtg # CH4 -Vm 9.01 -1.11 0 -1.85 -1.5 # Hnedkovsky et al., 1996, JCT 28, 125 -dw 1.85e-9 Ntg = Ntg # N2 - -Vm 7 # Pray et al., 1952, IEC 44 1146 + -Vm 7 # Pray et al., 1952, IEC 44, 1146 -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 H2Sg = H2Sg # H2S -Vm 1.39 28.3 0 -7.22 -0.59 # Hnedkovsky et al., 1996, JCT 28, 125 @@ -308,7 +308,7 @@ NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O -delta_h -187.055 kcal -gamma 2.5 0 -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 - -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -viscosity 6.94e-2 -0.141 2.04e-2 9.4e-3 3.73e-2 0.898 -dw 1.98e-9 203 1.47 2.644 6.81e-2 #AmmH+ = Amm + H+ NH4+ = NH3 + H+ @@ -316,14 +316,14 @@ NH4+ = NH3 + H+ -delta_h 12.48 kcal -analytic 0.6322 -0.001225 -2835.76 -Vm 6.69 2.8 3.58 -2.88 1.43 - -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -viscosity 0 -2.24e-2 0.101 8.66e-3 2.86e-2 -0.143 -0.769 -dw 2.28e-9 #AmmH+ + SO4-2 = AmmHSO4- NH4+ + SO4-2 = NH4SO4- - -gamma 2.08 -0.0416 - -log_k 1.211; -delta_h 8.56 kJ + -gamma 2.10 -0.0419 + -log_k 1.212; -delta_h 8.61 kJ -Vm -8.78 0 -36.09 0 -8.60 0 87.62 0 -0.3123 0.1172 - -viscosity 0 0.116 -8.6e-3 0.159 -9.3e-3 0.522 0.627 + -viscosity 0 0.121 -8e-3 0.177 -8e-3 0.512 0.629 -dw 0.9e-9 100 2.1 2 0 H3BO3 = H2BO3- + H+ -log_k -9.24 @@ -376,7 +376,7 @@ Ca+2 + CO3-2 + H+ = CaHCO3+ -log_k 10.91; -delta_h 4.38 kcal -analytic -6.009 3.377e-2 2044 -gamma 6 0 - -Vm 30.19 .01 5.75 -2.78 .308 5.4 + -Vm 3.19 .01 5.75 -2.78 .308 5.4 -dw 5.06e-10 Ca+2 + SO4-2 = CaSO4 -log_k 2.25 @@ -1948,7 +1948,7 @@ END # a0 is the ion-size parameter in the extended Debye-Hckel equation: # f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), # a0 = -gamma x for cations, = 0 for anions. -# For details, consult ref. 1. +# For details, consult ref. 1 and subroutine calc_vm(tc, pa) in prep.cpp. # ============================================================================================= # The viscosity is calculated with a (modified) Jones-Dole equation: # viscos / viscos_0 = 1 + A * Sum(0.5 z_i m_i) + fan * Sum(B_i m_i + D_i m_i n_i) @@ -1957,7 +1957,7 @@ END # # b0 b1 b2 d1 d2 d3 tan # z_i is absolute charge number, m_i is molality of i # B_i = b0 + b1 exp(-b2 * tc) -# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions +# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions and neutral species # D_i = d1 * exp(-d2 tc) # n_i = (I^d3 * (1 + fI) + ((z_i^2 + z_i) / 2 m_i)^d3) / (2 + fI), fI is an ionic strength term. # For details, consult ref. 4. diff --git a/phreeqc_rates.dat b/phreeqc_rates.dat index 2721908d..47cd6072 100644 --- a/phreeqc_rates.dat +++ b/phreeqc_rates.dat @@ -76,7 +76,7 @@ H+ = H+ # If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. e- = e- H2O = H2O - -dw 2.299e-9 -254 + -dw 2.299e-9 -249 # Holz et al., Phys. Chem. Chem. Phys., 2000, 2, 4740. # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence Li+ = Li+ -gamma 6 0 # The apparent volume parameters are defined in ref. 1 & 2 @@ -107,9 +107,9 @@ Ca+2 = Ca+2 -dw 0.792e-9 34 5.411 0 1.046 Sr+2 = Sr+2 -gamma 5.26 0.121 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97 - -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 - -dw 0.794e-9 149 0.805 1.961 1e-9 0.7876 + -Vm -5.6e-2 -10.15 9.90 -2.36 0.807 5.26 2.72 -82.7 -1.37e-2 0.956 + -viscosity 0.493 -0.255 2.3e-3 4.2e-3 -3.8e-3 1.762 + -dw 0.794e-9 18 0.681 2.069 0.965 0.271 Ba+2 = Ba+2 -gamma 5 0 -gamma 4 0.153 # Barite solubility @@ -153,9 +153,9 @@ NO3- = NO3- -viscosity 8.37e-2 -0.458 1.54e-2 0.34 1.79e-2 5.02e-2 0.7381 -dw 1.9e-9 104 1.11 # AmmH+ = AmmH+ - # -gamma 2.50 + # -gamma 2.5 0 # -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 - # -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + # -viscosity 6.94e-2 -0.141 2.04e-2 9.4e-3 3.73e-2 0.898 # -dw 1.98e-9 203 1.47 2.644 6.81e-2 H3BO3 = H3BO3 -Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt @@ -170,7 +170,7 @@ F- = F- -viscosity 0 2.85e-2 1.35e-2 6.11e-2 4.38e-3 1.384 0.586 -dw 1.46e-9 -36 4.352 Br- = Br- - -gamma 3 0 + -gamma 3 0.045 -Vm 6.72 2.85 4.21 -3.14 1.38 0 -9.56e-2 7.08 -1.56e-3 1 -viscosity -6.98e-2 -0.141 1.78e-2 0.159 7.76e-3 6.25e-2 0.859 -dw 2.09e-9 208 3.5 0 0.5737 @@ -304,7 +304,7 @@ NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O -delta_h -187.055 kcal -gamma 2.5 0 -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 - -viscosity 9.9e-2 -0.159 1.36e-2 6.51e-3 3.21e-2 0.972 + -viscosity 6.94e-2 -0.141 2.04e-2 9.4e-3 3.73e-2 0.898 -dw 1.98e-9 203 1.47 2.644 6.81e-2 #AmmH+ = Amm + H+ NH4+ = NH3 + H+ @@ -312,14 +312,14 @@ NH4+ = NH3 + H+ -delta_h 12.48 kcal -analytic 0.6322 -0.001225 -2835.76 -Vm 6.69 2.8 3.58 -2.88 1.43 - -viscosity 0.08 0 0 7.82e-3 -0.134 -0.986 + -viscosity 0 -2.24e-2 0.101 8.66e-3 2.86e-2 -0.143 -0.769 -dw 2.28e-9 #AmmH+ + SO4-2 = AmmHSO4- NH4+ + SO4-2 = NH4SO4- - -gamma 2.08 -0.0416 - -log_k 1.211; -delta_h 8.56 kJ + -gamma 2.10 -0.0419 + -log_k 1.212; -delta_h 8.61 kJ -Vm -8.78 0 -36.09 0 -8.60 0 87.62 0 -0.3123 0.1172 - -viscosity 0 0.116 -8.6e-3 0.159 -9.3e-3 0.522 0.627 + -viscosity 0 0.121 -8e-3 0.177 -8e-3 0.512 0.629 -dw 0.9e-9 100 2.1 2 0 H3BO3 = H2BO3- + H+ -log_k -9.24 @@ -372,7 +372,7 @@ Ca+2 + CO3-2 + H+ = CaHCO3+ -log_k 10.91; -delta_h 4.38 kcal -analytic -6.009 3.377e-2 2044 -gamma 6 0 - -Vm 30.19 .01 5.75 -2.78 .308 5.4 + -Vm 3.19 .01 5.75 -2.78 .308 5.4 -dw 5.06e-10 Ca+2 + SO4-2 = CaSO4 -log_k 2.25 @@ -672,7 +672,7 @@ H4SiO4 = H3SiO4- + H+ -delta_h 6.12 kcal -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669 -gamma 4 0 - -Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt H2O in a1 + -Vm 7.94 1.0881 5.3224 -2.824 1.4767 # supcrt + H2O in a1 H4SiO4 = H2SiO4-2 + 2 H+ -log_k -23 -delta_h 17.6 kcal @@ -3134,7 +3134,7 @@ Wollastonite -6.97 700 56 0.4 0 0 # a0 is the ion-size parameter in the extended Debye-Hckel equation: # f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), # a0 = -gamma x for cations, = 0 for anions. -# For details, consult ref. 1. +# For details, consult ref. 1 and subroutine calc_vm(tc, pa) in prep.cpp. # ============================================================================================= # The viscosity is calculated with a (modified) Jones-Dole equation: # viscos / viscos_0 = 1 + A * Sum(0.5 z_i m_i) + fan * Sum(B_i m_i + D_i m_i n_i) @@ -3143,7 +3143,7 @@ Wollastonite -6.97 700 56 0.4 0 0 # # b0 b1 b2 d1 d2 d3 tan # z_i is absolute charge number, m_i is molality of i # B_i = b0 + b1 exp(-b2 * tc) -# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions +# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions and neutral species # D_i = d1 * exp(-d2 tc) # n_i = (I^d3 * (1 + fI) + ((z_i^2 + z_i) / 2 m_i)^d3) / (2 + fI), fI is an ionic strength term. # For details, consult ref. 4. diff --git a/pitzer.dat b/pitzer.dat index d18b8023..5f052ad0 100644 --- a/pitzer.dat +++ b/pitzer.dat @@ -69,13 +69,13 @@ Mg+2 = Mg+2 -viscosity 0.426 0 0 1.66e-3 4.32e-3 2.461 -dw 0.705e-9 -4 5.569 0 1.047 Ca+2 = Ca+2 - -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.6 -57.1 -6.12e-3 1 # The apparent volume parameters are defined in ref. 1 & 2 + -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.6 -57.1 -6.12e-3 1 -viscosity 0.359 -0.158 4.2e-2 1.5e-3 8.04e-3 2.3 # ref. 4, CaCl2 < 6 M -dw 0.792e-9 34 5.411 0 1.046 Sr+2 = Sr+2 - -Vm -1.57e-2 -10.15 10.18 -2.36 0.86 5.26 0.859 -27 -4.1e-3 1.97 - -viscosity 0.472 -0.252 5.51e-3 3.67e-3 0 1.876 - -dw 0.794e-9 149 0.805 1.961 1e-9 0.7876 + -Vm -5.6e-2 -10.15 9.90 -2.36 0.807 5.26 2.72 -82.7 -1.37e-2 0.956 + -viscosity 0.493 -0.255 2.3e-3 4.2e-3 -3.8e-3 1.762 + -dw 0.794e-9 18 0.681 2.069 0.965 0.271 Ba+2 = Ba+2 -Vm 2.063 -10.06 1.9534 -2.36 0.4218 5 1.58 -12.03 -8.35e-3 1 -viscosity 0.338 -0.227 1.39e-2 3.07e-2 0 0.768 @@ -213,11 +213,11 @@ Anthophyllite log_k 66.8 -delta_H -483 kJ/mol Vm 269 -Antigorite - Mg48Si34O85(OH)62 + 96 H+ = 34 H4SiO4 + 48 Mg+2 + 11 H2O # llnl.dat - log_k 477.19 - -delta_H -3364 kJ/mol - Vm 1745 +# Antigorite + # Mg48Si34O85(OH)62 + 96 H+ = 34 H4SiO4 + 48 Mg+2 + 11 H2O # llnl.dat + # log_k 477.19 # seawater is impossibly supersaturated + # -delta_H -3364 kJ/mol + # Vm 1745 Aragonite CaCO3 = CO3-2 + Ca+2 log_k -8.336 @@ -1026,7 +1026,7 @@ END # # b0 b1 b2 d1 d2 d3 tan # z_i is absolute charge number, m_i is molality of i # B_i = b0 + b1 exp(-b2 * tc) -# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions +# fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions and neutral species # D_i = d1 * exp(-d2 tc) # n_i = (I^d3 * (1 + fI) + ((z_i^2 + z_i) / 2 m_i)^d3) / (2 + fI), fI is an ionic strength term. # For details, consult ref. 5. diff --git a/sit.dat b/sit.dat index 91e80e4c..c6344511 100644 --- a/sit.dat +++ b/sit.dat @@ -6,153 +6,153 @@ SOLUTION_SPECIES # Name : ThermoChimie project # Database date: 22/08/2023 0:00:00 # Generated by XCheck Tool v5.2.0 -# Comment: tidied with lsp.exe from https://phreeplot.org/lsp/lsp.html +# Comment: tidied with lsp.exe from https://phreeplot.org/lsp/lsp.html # Redox states modified by David Parkhurst May 18, 2024 # GFW of S(6) and Si modified by David Parkhurst May 18, 2024 SOLUTION_MASTER_SPECIES -#element species alk gfw_formula element_gfw -E e- 1 0 0 -# DLP: Set Alkalinity to 1 to account for non-master species with e- in equations -Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.0436 -Adipate Adipate-2 1 Adipate 144.0700 -Acetate Acetate- 1 Acetate 59.0100 -Ag Ag+ -2 Ag 107.8682 -Al Al+3 0 Al 26.9815 -Am Am+3 0 Am 243.0000 -Am(+3) Am+3 0 Am 243.0000 -Am(+2) Am+2 0 Am 243.0000 -Am(+4) Am+4 0 Am 243.0000 -Am(+5) AmO2+ 0 Am 243.0000 -Am(+6) AmO2+2 0 Am 243.0000 -As AsO4-3 2 As 74.9216 -As(+5) AsO4-3 2 As 74.9216 -As(+3) H3(AsO3) 0 As 74.9216 -B B(OH)4- 1 B 10.8110 -Ba Ba+2 0 Ba 137.3270 -Be Be+2 0 Be 9.0122 -Br Br- 0 Br 79.9040 -C CO3-2 2 C 12.0110 +#element species alk gfw_formula element_gfw +E e- 1 0 0 +# DLP: Set Alkalinity to 1 to account for non-master species with e- in equations +Alkalinity CO3-2 1 Ca0.5(CO3)0.5 50.0436 +Adipate Adipate-2 1 Adipate 144.0700 +Acetate Acetate- 1 Acetate 59.0100 +Ag Ag+ -2 Ag 107.8682 +Al Al+3 0 Al 26.9815 +Am Am+3 0 Am 243.0000 +Am(+3) Am+3 0 Am 243.0000 +Am(+2) Am+2 0 Am 243.0000 +Am(+4) Am+4 0 Am 243.0000 +Am(+5) AmO2+ 0 Am 243.0000 +Am(+6) AmO2+2 0 Am 243.0000 +As AsO4-3 2 As 74.9216 +As(+5) AsO4-3 2 As 74.9216 +As(+3) H3(AsO3) 0 As 74.9216 +B B(OH)4- 1 B 10.8110 +Ba Ba+2 0 Ba 137.3270 +Be Be+2 0 Be 9.0122 +Br Br- 0 Br 79.9040 +C CO3-2 2 C 12.0110 C(2) CO 0 C # DLP -C(+4) CO3-2 2 C 12.0110 -C(-4) CH4 0 C 12.0110 -Ca Ca+2 0 Ca 40.0780 -Cd Cd+2 -1 Cd 112.4110 -Cit Cit-3 1 Cit 189.1013 -Cl Cl- 0 Cl 35.4527 +C(+4) CO3-2 2 C 12.0110 +C(-4) CH4 0 C 12.0110 +Ca Ca+2 0 Ca 40.0780 +Cd Cd+2 -1 Cd 112.4110 +Cit Cit-3 1 Cit 189.1013 +Cl Cl- 0 Cl 35.4527 Cl(-1) Cl- 0 Cl # DLP Cl(0) Cl2 0 Cl # DLP Cl(7) ClO4- 0 Cl # DLP -Cm Cm+3 0 Cm 247.0000 -Co Co+2 0 Co 58.9332 -Cr CrO4-2 1 Cr 51.9961 -Cr(+6) CrO4-2 1 Cr 51.9961 -Cr(+2) Cr+2 -1 Cr 51.9961 -Cr(+3) Cr+3 2 Cr 51.9961 -Cs Cs+ 0 Cs 132.9054 -Cu Cu+2 0 Cu 63.5460 -Cu(+2) Cu+2 0 Cu 63.5460 -Cu(+1) Cu+ -2 Cu 63.5460 -Edta Edta-4 2 Edta 288.2134 -Eu Eu+3 0 Eu 151.9650 -Eu(+3) Eu+3 0 Eu 151.9650 -Eu(+2) Eu+2 0 Eu 151.9650 -F F- 0 F 18.9984 -Fe Fe+2 0 Fe 55.8470 -Fe(+2) Fe+2 0 Fe 55.8470 -Fe(+3) Fe+3 -2 Fe 55.8470 -Glu HGlu- 0 Glu 194.1380 -H H+ -1 H 1.0079 -H(+1) H+ -1 H 1.0079 -H(0) H2 0 H 1.0079 -Hf Hf+4 -4 Hf 178.4900 -Hg Hg+2 -2 Hg 200.5900 -Hg(+2) Hg+2 -2 Hg 200.5900 -Hg(+1) Hg2+2 0 Hg 200.5900 -Ho Ho+3 0 Ho 164.9303 -I I- 0 I 126.9045 -I(-1) I- 0 I 126.9045 -I(1) IO- 0 I # DLP -I(+5) IO3- 0 I 126.9045 +Cm Cm+3 0 Cm 247.0000 +Co Co+2 0 Co 58.9332 +Cr CrO4-2 1 Cr 51.9961 +Cr(+6) CrO4-2 1 Cr 51.9961 +Cr(+2) Cr+2 -1 Cr 51.9961 +Cr(+3) Cr+3 2 Cr 51.9961 +Cs Cs+ 0 Cs 132.9054 +Cu Cu+2 0 Cu 63.5460 +Cu(+2) Cu+2 0 Cu 63.5460 +Cu(+1) Cu+ -2 Cu 63.5460 +Edta Edta-4 2 Edta 288.2134 +Eu Eu+3 0 Eu 151.9650 +Eu(+3) Eu+3 0 Eu 151.9650 +Eu(+2) Eu+2 0 Eu 151.9650 +F F- 0 F 18.9984 +Fe Fe+2 0 Fe 55.8470 +Fe(+2) Fe+2 0 Fe 55.8470 +Fe(+3) Fe+3 -2 Fe 55.8470 +Glu HGlu- 0 Glu 194.1380 +H H+ -1 H 1.0079 +H(+1) H+ -1 H 1.0079 +H(0) H2 0 H 1.0079 +Hf Hf+4 -4 Hf 178.4900 +Hg Hg+2 -2 Hg 200.5900 +Hg(+2) Hg+2 -2 Hg 200.5900 +Hg(+1) Hg2+2 0 Hg 200.5900 +Ho Ho+3 0 Ho 164.9303 +I I- 0 I 126.9045 +I(-1) I- 0 I 126.9045 +I(1) IO- 0 I # DLP +I(+5) IO3- 0 I 126.9045 I(7) IO4- 0 I # DLP -Isa HIsa- 0 Isa 178.1421 -K K+ 0 K 39.0983 -Li Li+ 0 Li 6.9410 -Malonate Malonate-2 1 Malonate 102.0464 -Mg Mg+2 0 Mg 24.3050 -Mn Mn+2 0 Mn 54.9380 +Isa HIsa- 0 Isa 178.1421 +K K+ 0 K 39.0983 +Li Li+ 0 Li 6.9410 +Malonate Malonate-2 1 Malonate 102.0464 +Mg Mg+2 0 Mg 24.3050 +Mn Mn+2 0 Mn 54.9380 Mn(+2) Mn+2 0 Mn # DLP Mn(+3) Mn+3 0 Mn # DLP Mn(+5) MnO4-3 0 Mn # DLP Mn(+6) MnO4-2 0 Mn # DLP -Mn(+7) MnO4- 0 Mn # DLP -Mo MoO4-2 0 Mo 95.9400 +Mn(+7) MnO4- 0 Mn # DLP +Mo MoO4-2 0 Mo 95.9400 Mo(6) MoO4-2 0 Mo # DLP -Mo(3) Mo+3 0 Mo # DLP -N NO3- 0 N 14.0067 -N(+5) NO3- 0 N 14.0067 -N(-3) NH3 1 N 14.0067 -Na Na+ 0 Na 22.9898 -Nb Nb(OH)6- 1 Nb 92.9064 -Ni Ni+2 0 Ni 58.6900 -Np NpO2+2 0 Np 237.0480 -Np(+6) NpO2+2 0 Np 237.0480 -Np(+3) Np+3 0 Np 237.0480 -Np(+4) Np+4 -3 Np 237.0480 -Np(+5) NpO2+ 0 Np 237.0480 -Nta Nta-3 1 Nta 188.1165 -O H2O 0 O 15.9994 -O(-2) H2O 0 O 15.9994 -O(0) O2 0 O 15.9994 -Ox Ox-2 0 Ox 88.0196 -P H2(PO4)- 0 P 30.9738 -Pa Pa+4 -3 Pa 231.0359 -Pa(+4) Pa+4 -3 Pa 231.0359 -Pa(+5) PaO2+ 0 Pa 231.0359 -Pb Pb+2 -1 Pb 207.2000 -Pd Pd+2 -4 Pd 106.4200 -Phthalat Phthalat-2 2 Phthalat 164.0840 -Pu PuO2+2 0 Pu 244.0000 -Pu(+6) PuO2+2 0 Pu 244.0000 -Pu(+3) Pu+3 0 Pu 244.0000 -Pu(+4) Pu+4 -3 Pu 244.0000 -Pu(+5) PuO2+ -1 Pu 244.0000 -Pyrophos Pyrophos-4 2 Pyrophos 173.9500 -Ra Ra+2 0 Ra 226.0250 -Rb Rb+ 0 Rb 85.4678 -S SO4-2 0 S 32.0660 -S(+6) SO4-2 0 SO4 32.0660 # DLP -S(-2) HS- 1 S 32.0660 -S(+2) S2O3-2 0 S 32.0660 -S(+3) S2O4-2 0 S 32.0660 -S(+4) SO3-2 1 S 32.0660 +Mo(3) Mo+3 0 Mo # DLP +N NO3- 0 N 14.0067 +N(+5) NO3- 0 N 14.0067 +N(-3) NH3 1 N 14.0067 +Na Na+ 0 Na 22.9898 +Nb Nb(OH)6- 1 Nb 92.9064 +Ni Ni+2 0 Ni 58.6900 +Np NpO2+2 0 Np 237.0480 +Np(+6) NpO2+2 0 Np 237.0480 +Np(+3) Np+3 0 Np 237.0480 +Np(+4) Np+4 -3 Np 237.0480 +Np(+5) NpO2+ 0 Np 237.0480 +Nta Nta-3 1 Nta 188.1165 +O H2O 0 O 15.9994 +O(-2) H2O 0 O 15.9994 +O(0) O2 0 O 15.9994 +Ox Ox-2 0 Ox 88.0196 +P H2(PO4)- 0 P 30.9738 +Pa Pa+4 -3 Pa 231.0359 +Pa(+4) Pa+4 -3 Pa 231.0359 +Pa(+5) PaO2+ 0 Pa 231.0359 +Pb Pb+2 -1 Pb 207.2000 +Pd Pd+2 -4 Pd 106.4200 +Phthalat Phthalat-2 2 Phthalat 164.0840 +Pu PuO2+2 0 Pu 244.0000 +Pu(+6) PuO2+2 0 Pu 244.0000 +Pu(+3) Pu+3 0 Pu 244.0000 +Pu(+4) Pu+4 -3 Pu 244.0000 +Pu(+5) PuO2+ -1 Pu 244.0000 +Pyrophos Pyrophos-4 2 Pyrophos 173.9500 +Ra Ra+2 0 Ra 226.0250 +Rb Rb+ 0 Rb 85.4678 +S SO4-2 0 S 32.0660 +S(+6) SO4-2 0 SO4 32.0660 # DLP +S(-2) HS- 1 S 32.0660 +S(+2) S2O3-2 0 S 32.0660 +S(+3) S2O4-2 0 S 32.0660 +S(+4) SO3-2 1 S 32.0660 S(8) HSO5- 0 S # DLP -Sb Sb(OH)3 0 Sb 121.7600 -Sb(+3) Sb(OH)3 0 Sb 121.7600 -Sb(+5) Sb(OH)5 -6 Sb 121.7600 -Se SeO4-2 0 Se 78.9600 -Se(+6) SeO4-2 0 Se 78.9600 -Se(-2) HSe- -1 Se 78.9600 -Se(+4) SeO3-2 1 Se 78.9600 +Sb Sb(OH)3 0 Sb 121.7600 +Sb(+3) Sb(OH)3 0 Sb 121.7600 +Sb(+5) Sb(OH)5 -6 Sb 121.7600 +Se SeO4-2 0 Se 78.9600 +Se(+6) SeO4-2 0 Se 78.9600 +Se(-2) HSe- -1 Se 78.9600 +Se(+4) SeO3-2 1 Se 78.9600 Si H4(SiO4) 0 SiO2 28.0855 # DLP -Sm Sm+3 0 Sm 150.3600 -Sn Sn+2 -2 Sn 118.7100 -Sn(+2) Sn+2 -2 Sn 118.7100 -Sn(+4) Sn+4 -4 Sn 118.7100 -Sr Sr+2 0 Sr 87.6200 -Succinat Succinat-2 1 Succinat 116.0700 -Suberate Suberate-2 1 Suberate 172.1804 -Tc TcO(OH)2 0 Tc 98.0000 -Tc(+4) TcO(OH)2 0 Tc 98.0000 -Tc(+7) TcO4- 0 Tc 98.0000 -Tc(+6) TcO4-2 0 Tc 98.0000 -Th Th+4 0 Th 232.0381 -U UO2+2 0 U 238.0289 -U(+6) UO2+2 0 U 238.0289 -U(+3) U+3 0 U 238.0289 -U(+4) U+4 -3 U 238.0289 -U(+5) UO2+ 0 U 238.0289 -Zn Zn+2 0 Zn 65.3900 -Zr Zr+4 -4 Zr 91.2200 +Sm Sm+3 0 Sm 150.3600 +Sn Sn+2 -2 Sn 118.7100 +Sn(+2) Sn+2 -2 Sn 118.7100 +Sn(+4) Sn+4 -4 Sn 118.7100 +Sr Sr+2 0 Sr 87.6200 +Succinat Succinat-2 1 Succinat 116.0700 +Suberate Suberate-2 1 Suberate 172.1804 +Tc TcO(OH)2 0 Tc 98.0000 +Tc(+4) TcO(OH)2 0 Tc 98.0000 +Tc(+7) TcO4- 0 Tc 98.0000 +Tc(+6) TcO4-2 0 Tc 98.0000 +Th Th+4 0 Th 232.0381 +U UO2+2 0 U 238.0289 +U(+6) UO2+2 0 U 238.0289 +U(+3) U+3 0 U 238.0289 +U(+4) U+4 -3 U 238.0289 +U(+5) UO2+ 0 U 238.0289 +Zn Zn+2 0 Zn 65.3900 +Zr Zr+4 -4 Zr 91.2200 SIT -epsilon @@ -4547,12 +4547,12 @@ H+ + S2O4-2 = HS2O4- delta_h 118.877 #kJ/mol # Enthalpy of formation: -51.463 kJ/mol 92JOH/OEL -analytic 26.56356E-1 00E+0 -62.09378E+2 00E+0 00E+0 - + - 2 e- + 2 Cl- + I- = ICl2- # DLP: This species will be in the I(-1) and Cl(-1) mole balances log_k -26.8 #96FAL/REA -analytic -26.8E+0 00E+0 00E+0 00E+0 00E+0 - + - 2 H+ - 2 e- + I- + H2O = IO- log_k -44 #96FAL/REA -analytic -44E+0 00E+0 00E+0 00E+0 00E+0 @@ -14345,4 +14345,3 @@ SO2 = 2 H+ + SO3-2 - H2O delta_h -48.42 #kJ/mol # Enthalpy of formation: -296.810 kJ/mol 89COX/WAG -analytic -17.42282E+0 00E+0 25.29153E+2 00E+0 00E+0 - diff --git a/wateq4f.dat b/wateq4f.dat index 3e69cd86..ef4fc54e 100644 --- a/wateq4f.dat +++ b/wateq4f.dat @@ -7,72 +7,72 @@ SOLUTION_MASTER_SPECIES -Ag Ag+ 0 107.868 107.868 -Al Al+3 0 26.9815 26.9815 -Alkalinity CO3-2 1 50.05 50.05 -As H3AsO4 -1 74.9216 74.9216 -As(+3) H3AsO3 0 74.9216 74.9216 -As(+5) H3AsO4 -1 74.9216 -B H3BO3 0 10.81 10.81 -Ba Ba+2 0 137.34 137.34 -Br Br- 0 79.904 79.904 -C CO3-2 2 61.0173 12.0111 -C(+4) CO3-2 2 61.0173 -C(-4) CH4 0 16.042 -Ca Ca+2 0 40.08 40.08 -Cd Cd+2 0 112.4 112.4 -Cl Cl- 0 35.453 35.453 -Cs Cs+ 0 132.905 132.905 -Cu Cu+2 0 63.546 63.546 -Cu(+1) Cu+1 0 63.546 -Cu(+2) Cu+2 0 63.546 -E e- 1 0 0 -F F- 0 18.9984 18.9984 -Fe Fe+2 0 55.847 55.847 -Fe(+2) Fe+2 0 55.847 -Fe(+3) Fe+3 -2 55.847 -Fulvate Fulvate-2 0 650 650 -H H+ -1 1.008 1.008 -H(0) H2 0 1.008 -H(1) H+ -1 1.008 -Humate Humate-2 0 2000 2000 -I I- 0 126.9044 126.9044 -K K+ 0 39.102 39.102 -Li Li+ 0 6.939 6.939 -Mg Mg+2 0 24.312 24.312 -Mn Mn+2 0 54.938 54.938 -Mn(2) Mn+2 0 54.938 -Mn(3) Mn+3 0 54.938 -Mn(6) MnO4-2 0 54.938 -Mn(7) MnO4- 0 54.938 -N NO3- 0 14.0067 14.0067 -N(-3) NH4+ 0 14.0067 -N(0) N2 0 14.0067 -N(+3) NO2- 0 14.0067 -N(+5) NO3- 0 14.0067 -Na Na+ 0 22.9898 22.9898 -Ni Ni+2 0 58.71 58.71 -O H2O 0 16 16 -O(-2) H2O 0 18.016 -O(0) O2 0 16 -P PO4-3 2 30.9738 30.9738 -Pb Pb+2 0 207.19 207.19 -Rb Rb+ 0 85.47 85.47 -S SO4-2 0 96.0616 32.064 -S(-2) H2S 0 32.064 -S(6) SO4-2 0 96.0616 -Se SeO4-2 0 78.96 78.96 -Se(-2) HSe- 0 78.96 -Se(4) SeO3-2 0 78.96 -Se(6) SeO4-2 0 78.96 -Si H4SiO4 0 60.0843 28.0843 -Sr Sr+2 0 87.62 87.62 -Zn Zn+2 0 65.37 65.37 -U UO2+2 0 238.029 238.029 -U(3) U+3 0 238.029 238.029 -U(4) U+4 0 238.029 238.029 -U(5) UO2+ 0 238.029 238.029 -U(6) UO2+2 0 238.029 238.029 +Ag Ag+ 0 107.868 107.868 +Al Al+3 0 26.9815 26.9815 +Alkalinity CO3-2 1 50.05 50.05 +As H3AsO4 -1 74.9216 74.9216 +As(+3) H3AsO3 0 74.9216 74.9216 +As(+5) H3AsO4 -1 74.9216 +B H3BO3 0 10.81 10.81 +Ba Ba+2 0 137.34 137.34 +Br Br- 0 79.904 79.904 +C CO3-2 2 61.0173 12.0111 +C(+4) CO3-2 2 61.0173 +C(-4) CH4 0 16.042 +Ca Ca+2 0 40.08 40.08 +Cd Cd+2 0 112.4 112.4 +Cl Cl- 0 35.453 35.453 +Cs Cs+ 0 132.905 132.905 +Cu Cu+2 0 63.546 63.546 +Cu(+1) Cu+1 0 63.546 +Cu(+2) Cu+2 0 63.546 +E e- 1 0 0 +F F- 0 18.9984 18.9984 +Fe Fe+2 0 55.847 55.847 +Fe(+2) Fe+2 0 55.847 +Fe(+3) Fe+3 -2 55.847 +Fulvate Fulvate-2 0 650 650 +H H+ -1 1.008 1.008 +H(0) H2 0 1.008 +H(1) H+ -1 1.008 +Humate Humate-2 0 2000 2000 +I I- 0 126.9044 126.9044 +K K+ 0 39.102 39.102 +Li Li+ 0 6.939 6.939 +Mg Mg+2 0 24.312 24.312 +Mn Mn+2 0 54.938 54.938 +Mn(2) Mn+2 0 54.938 +Mn(3) Mn+3 0 54.938 +Mn(6) MnO4-2 0 54.938 +Mn(7) MnO4- 0 54.938 +N NO3- 0 14.0067 14.0067 +N(-3) NH4+ 0 14.0067 +N(0) N2 0 14.0067 +N(+3) NO2- 0 14.0067 +N(+5) NO3- 0 14.0067 +Na Na+ 0 22.9898 22.9898 +Ni Ni+2 0 58.71 58.71 +O H2O 0 16 16 +O(-2) H2O 0 18.016 +O(0) O2 0 16 +P PO4-3 2 30.9738 30.9738 +Pb Pb+2 0 207.19 207.19 +Rb Rb+ 0 85.47 85.47 +S SO4-2 0 96.0616 32.064 +S(-2) H2S 0 32.064 +S(6) SO4-2 0 96.0616 +Se SeO4-2 0 78.96 78.96 +Se(-2) HSe- 0 78.96 +Se(4) SeO3-2 0 78.96 +Se(6) SeO4-2 0 78.96 +Si H4SiO4 0 60.0843 28.0843 +Sr Sr+2 0 87.62 87.62 +Zn Zn+2 0 65.37 65.37 +U UO2+2 0 238.029 238.029 +U(3) U+3 0 238.029 238.029 +U(4) U+4 0 238.029 238.029 +U(5) UO2+ 0 238.029 238.029 +U(6) UO2+2 0 238.029 238.029 SOLUTION_SPECIES @@ -1345,53 +1345,53 @@ SOLUTION_SPECIES Fe+2 + 3 HS- = Fe(HS)3- log_k 10.987 -#H2AsO3- 478 - H3AsO3 = H2AsO3- + H+ - log_k -9.15 - delta_h 27.54 kJ +#H2AsO3- 478 + H3AsO3 = H2AsO3- + H+ + log_k -9.15 + delta_h 27.54 kJ -#HAsO3-2 479 - H3AsO3 = HAsO3-2 + 2 H+ - log_k -23.85 - delta_h 59.41 kJ +#HAsO3-2 479 + H3AsO3 = HAsO3-2 + 2 H+ + log_k -23.85 + delta_h 59.41 kJ -#AsO3-3 480 - H3AsO3 = AsO3-3 + 3 H+ - log_k -39.55 - delta_h 84.73 kJ +#AsO3-3 480 + H3AsO3 = AsO3-3 + 3 H+ + log_k -39.55 + delta_h 84.73 kJ #H4AsO3+ 481 H3AsO3 + H+ = H4AsO3+ log_k -0.305 -#H2AsO4- 482 - H3AsO4 = H2AsO4- + H+ - log_k -2.3 - delta_h -7.066 kJ +#H2AsO4- 482 + H3AsO4 = H2AsO4- + H+ + log_k -2.3 + delta_h -7.066 kJ -#HAsO4-2 483 - H3AsO4 = HAsO4-2 + 2 H+ - log_k -9.46 - delta_h -3.846 kJ +#HAsO4-2 483 + H3AsO4 = HAsO4-2 + 2 H+ + log_k -9.46 + delta_h -3.846 kJ -#AsO43- 484 - H3AsO4 = AsO4-3 + 3 H+ - log_k -21.11 - delta_h 14.354 kJ +#AsO43- 484 + H3AsO4 = AsO4-3 + 3 H+ + log_k -21.11 + delta_h 14.354 kJ #As3 secondary master species 487 - H3AsO4 + H2 = H3AsO3 + H2O - log_k 22.5 - delta_h -117.480344 kJ + H3AsO4 + H2 = H3AsO3 + H2O + log_k 22.5 + delta_h -117.480344 kJ -#As3S4(HS)-2 631 - 3 H3AsO3 + 6 HS- + 5 H+ = As3S4(HS)2- + 9 H2O - log_k 72.314 +#As3S4(HS)-2 631 + 3 H3AsO3 + 6 HS- + 5 H+ = As3S4(HS)2- + 9 H2O + log_k 72.314 -gamma 5 0 -#AsS(OH)(HS)- 637 - H3AsO3 + 2 HS- + H+ = AsS(OH)(HS)- + 2 H2O - log_k 18.038 +#AsS(OH)(HS)- 637 + H3AsO3 + 2 HS- + H+ = AsS(OH)(HS)- + 2 H2O + log_k 18.038 -gamma 5 0 # @@ -3136,8 +3136,8 @@ Basaluminite 472 As_native 557 As + 3 H2O = H3AsO3 + 3 H+ + 3 e- - log_k -12.532 - delta_h 115.131 kJ + log_k -12.532 + delta_h 115.131 kJ As2O5(cr) 488 As2O5 + 3 H2O = 2 H3AsO4 @@ -3180,17 +3180,17 @@ Arsenolite 497 # As4O6 + 6H2O = 4H3AsO3 # log_k -2.801 # delta_h 14.330 kcal - As2O3 + 3 H2O = 2 H3AsO3 - log_k -1.38 - delta_h 30.041 kJ + As2O3 + 3 H2O = 2 H3AsO3 + log_k -1.38 + delta_h 30.041 kJ Claudetite 498 # As4O6 + 6H2O = 4H3AsO3 # log_k -3.065 # delta_h 13.290 kcal - As2O3 + 3 H2O = 2 H3AsO3 - log_k -1.34 - delta_h 28.443 kJ + As2O3 + 3 H2O = 2 H3AsO3 + log_k -1.34 + delta_h 28.443 kJ AsI3 499 AsI3 + 3 H2O = H3AsO3 + 3 I- + 3 H+ @@ -3201,20 +3201,20 @@ Orpiment 500 As2S3 + 6 H2O = 2 H3AsO3 + 3 HS- + 3 H+ # log_k -60.971 # delta_h 82.890 kcal - log_k -46.3 - delta_h 263.1 kJ + log_k -46.3 + delta_h 263.1 kJ As2S3(am) 132 As2S3 + 6 H2O = 2 H3AsO3 + 3 HS- + 3 H+ - log_k -44.9 - delta_h 244.2 kJ + log_k -44.9 + delta_h 244.2 kJ Realgar 501 AsS + 3 H2O = H3AsO3 + HS- + 2 H+ + e- # log_k -19.747 # delta_h 30.545 kcal - log_k -19.944 - delta_h 129.2625 kJ + log_k -19.944 + delta_h 129.2625 kJ BlaubleiI 533 Cu0.9Cu0.2S + H+ = 0.9 Cu+2 + 0.2 Cu+ + HS- @@ -3432,7 +3432,7 @@ O2(g) O2 = O2 # log_k -2.960 # delta_h -1.844 kcal - # log K from llnl.dat Aug 23, 2005 + # log K from llnl.dat Aug 23, 2005 log_k -2.8983 -analytic -7.5001e+0 7.8981e-3 0e+0 0e+0 2.0027e+5 @@ -3727,9 +3727,9 @@ SURFACE_SPECIES # # Silicate: Swedlund, P.J. and Webster, J.G., 1999. Water Research, 33, 3413-3422. # - Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O; log_K 4.28 - Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O; log_K -3.22 - Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2 H+ + H2O; log_K -11.69 + Hfo_wOH + H4SiO4 = Hfo_wH3SiO4 + H2O; log_K 4.28 + Hfo_wOH + H4SiO4 = Hfo_wH2SiO4- + H+ + H2O; log_K -3.22 + Hfo_wOH + H4SiO4 = Hfo_wHSiO4-2 + 2 H+ + H2O; log_K -11.69 RATES ########### @@ -3738,12 +3738,12 @@ RATES # ####### # Example of quartz kinetic rates block: -# KINETICS -# Quartz -# -m0 158.8 # 90 % Qu -# -parms 0.146 1.5 -# -step 3.1536e8 in 10 -# -tol 1e-12 +# KINETICS +# Quartz +# -m0 158.8 # 90 % Qu +# -parms 0.146 1.5 +# -step 3.1536e8 in 10 +# -tol 1e-12 Quartz -start @@ -3756,7 +3756,7 @@ Quartz 10 dif_temp = 1/TK - 1/298 20 pk_w = 13.7 + 4700.4 * dif_temp 40 moles = PARM(1) * M0 * PARM(2) * (M/M0)^0.67 * 10^-pk_w * (1 - SR("Quartz")) -# Integrate... +# Integrate... 50 SAVE moles * TIME -end @@ -4033,4 +4033,3 @@ Pyrolusite 200 SAVE moles * SOLN_VOL -end END - From 402dc2ec9b50394af226ce431a39925c1030fd2e Mon Sep 17 00:00:00 2001 From: Darth Vader Date: Fri, 14 Mar 2025 18:23:20 +0000 Subject: [PATCH 303/384] Squashed 'phreeqc3-examples/' changes from 31517c71..1dbd65fc 1dbd65fc Updated output for recent database changes git-subtree-dir: phreeqc3-examples git-subtree-split: 1dbd65fc74fc452b40d37030c51cff2f9bccf894 --- ex1.out | 8 +-- ex10.out | 14 ++--- ex14.out | 32 +++++------ ex16.out | 8 +-- ex18.out | 12 ++--- ex21.out | 8 +-- ex3.out | 24 ++++----- ex4.out | 24 ++++----- ex5.out | 24 ++++----- ex7.out | 158 +++++++++++++++++++++++++++---------------------------- ex7.sel | 2 +- 11 files changed, 157 insertions(+), 157 deletions(-) diff --git a/ex1.out b/ex1.out index a6dea035..a3d54813 100644 --- a/ex1.out +++ b/ex1.out @@ -160,7 +160,7 @@ C(4) 2.238e-03 MgCO3 9.523e-05 1.111e-04 -4.021 -3.954 0.067 -17.09 CO3-2 3.888e-05 8.103e-06 -4.410 -5.091 -0.681 -0.52 CaCO3 2.908e-05 3.393e-05 -4.536 -4.469 0.067 -14.60 - CaHCO3+ 1.446e-05 1.001e-05 -4.840 -5.000 -0.160 122.92 + CaHCO3+ 1.446e-05 1.001e-05 -4.840 -5.000 -0.160 9.96 CO2 1.299e-05 1.438e-05 -4.886 -4.842 0.044 34.43 KHCO3 2.969e-06 3.013e-06 -5.527 -5.521 0.006 41.03 UO2(CO3)3-4 1.259e-08 1.169e-10 -7.900 -9.932 -2.032 (0) @@ -175,7 +175,7 @@ Ca 1.066e-02 Ca+2 9.964e-03 2.493e-03 -2.002 -2.603 -0.602 -16.70 CaSO4 6.537e-04 7.628e-04 -3.185 -3.118 0.067 7.50 CaCO3 2.908e-05 3.393e-05 -4.536 -4.469 0.067 -14.60 - CaHCO3+ 1.446e-05 1.001e-05 -4.840 -5.000 -0.160 122.92 + CaHCO3+ 1.446e-05 1.001e-05 -4.840 -5.000 -0.160 9.96 CaOH+ 9.020e-08 6.732e-08 -7.045 -7.172 -0.127 (0) CaHSO4+ 4.048e-11 3.021e-11 -10.393 -10.520 -0.127 (0) Cl 5.657e-01 @@ -241,7 +241,7 @@ Mn(3) 5.345e-26 N(-3) 1.724e-06 NH4+ 1.601e-06 9.008e-07 -5.796 -6.045 -0.250 18.48 NH3 7.301e-08 8.519e-08 -7.137 -7.070 0.067 24.42 - NH4SO4- 4.978e-08 2.520e-08 -7.303 -7.599 -0.296 26.92 + NH4SO4- 4.981e-08 2.526e-08 -7.303 -7.598 -0.295 26.92 N(5) 4.847e-06 NO3- 4.847e-06 2.847e-06 -5.314 -5.546 -0.231 30.29 Mn(NO3)2 1.349e-20 1.574e-20 -19.870 -19.803 0.067 41.04 @@ -258,7 +258,7 @@ S(6) 2.926e-02 CaSO4 6.537e-04 7.628e-04 -3.185 -3.118 0.067 7.50 KSO4- 1.873e-04 1.696e-04 -3.728 -3.770 -0.043 11.34 Mg(SO4)2-2 1.296e-04 3.671e-05 -3.887 -4.435 -0.548 32.91 - NH4SO4- 4.978e-08 2.520e-08 -7.303 -7.599 -0.296 26.92 + NH4SO4- 4.981e-08 2.526e-08 -7.303 -7.598 -0.295 26.92 HSO4- 1.351e-09 1.008e-09 -8.869 -8.996 -0.127 40.96 MnSO4 1.279e-10 1.493e-10 -9.893 -9.826 0.067 22.54 CaHSO4+ 4.048e-11 3.021e-11 -10.393 -10.520 -0.127 (0) diff --git a/ex10.out b/ex10.out index 0734f3a0..024315a5 100644 --- a/ex10.out +++ b/ex10.out @@ -123,7 +123,7 @@ Initial solution 1. pe = 4.000 Specific Conductance (µS/cm, 25°C) = 701 Density (g/cm³) = 0.99755 - Volume (L) = 1.00310 + Volume (L) = 1.00309 Viscosity (mPa s) = 0.89463 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.134e-02 @@ -151,13 +151,13 @@ C(4) 7.864e-03 HCO3- 7.466e-03 6.720e-03 -2.127 -2.173 -0.046 24.65 CO2 1.643e-04 1.645e-04 -3.784 -3.784 0.001 34.43 CaCO3 1.191e-04 1.194e-04 -3.924 -3.923 0.001 -14.60 - CaHCO3+ 7.058e-05 6.365e-05 -4.151 -4.196 -0.045 122.69 + CaHCO3+ 7.058e-05 6.365e-05 -4.151 -4.196 -0.045 9.73 CO3-2 4.409e-05 2.895e-05 -4.356 -4.538 -0.183 -3.64 (CO2)2 4.956e-10 4.969e-10 -9.305 -9.304 0.001 68.87 Ca 3.932e-03 Ca+2 3.742e-03 2.455e-03 -2.427 -2.610 -0.183 -17.91 CaCO3 1.191e-04 1.194e-04 -3.924 -3.923 0.001 -14.60 - CaHCO3+ 7.058e-05 6.365e-05 -4.151 -4.196 -0.045 122.69 + CaHCO3+ 7.058e-05 6.365e-05 -4.151 -4.196 -0.045 9.73 CaOH+ 4.173e-08 3.742e-08 -7.380 -7.427 -0.047 (0) H(0) 1.674e-27 H2 8.369e-28 8.391e-28 -27.077 -27.076 0.001 28.61 @@ -208,8 +208,8 @@ CO2(g) -0.01 -1.48 -1.47 1.000e+01 9.961e+00 -3.875e-02 pH = 6.058 Charge balance pe = 11.902 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 1684 - Density (g/cm³) = 0.99860 - Volume (L) = 1.00434 + Density (g/cm³) = 0.99865 + Volume (L) = 1.00430 Viscosity (mPa s) = 0.92188 Activity of water = 0.999 Ionic strength (mol/kgw) = 2.900e-02 @@ -236,13 +236,13 @@ C(-4) 0.000e+00 C(4) 5.262e-02 CO2 3.273e-02 3.287e-02 -1.485 -1.483 0.002 34.43 HCO3- 1.946e-02 1.669e-02 -1.711 -1.778 -0.067 24.73 - CaHCO3+ 3.858e-04 3.321e-04 -3.414 -3.479 -0.065 122.73 + CaHCO3+ 3.858e-04 3.321e-04 -3.414 -3.479 -0.065 9.76 (CO2)2 1.970e-05 1.984e-05 -4.705 -4.703 0.003 68.87 CaCO3 7.698e-06 7.750e-06 -5.114 -5.111 0.003 -14.60 CO3-2 1.652e-06 8.940e-07 -5.782 -6.049 -0.267 -3.39 Ca 9.930e-03 Ca+2 9.536e-03 5.160e-03 -2.021 -2.287 -0.267 -17.74 - CaHCO3+ 3.858e-04 3.321e-04 -3.414 -3.479 -0.065 122.73 + CaHCO3+ 3.858e-04 3.321e-04 -3.414 -3.479 -0.065 9.76 CaCO3 7.698e-06 7.750e-06 -5.114 -5.111 0.003 -14.60 CaOH+ 1.148e-09 9.773e-10 -8.940 -9.010 -0.070 (0) H(0) 1.692e-39 diff --git a/ex14.out b/ex14.out index 7880b9ae..2331707f 100644 --- a/ex14.out +++ b/ex14.out @@ -89,9 +89,9 @@ Initial solution 1. Brine pH = 5.713 pe = 14.962 Equilibrium with O2(g) - Specific Conductance (µS/cm, 25°C) = 242995 - Density (g/cm³) = 1.21629 - Volume (L) = 1.13700 + Specific Conductance (µS/cm, 25°C) = 243037 + Density (g/cm³) = 1.21639 + Volume (L) = 1.13690 Viscosity (mPa s) = 1.95446 Activity of water = 0.785 Ionic strength (mol/kgw) = 7.270e+00 @@ -122,7 +122,7 @@ C(-4) 0.000e+00 CH4 0.000e+00 0.000e+00 -144.496 -143.769 0.727 35.46 C(4) 3.960e-03 MgHCO3+ 2.344e-03 1.167e-03 -2.630 -2.933 -0.303 6.01 - CaHCO3+ 8.690e-04 5.263e-04 -3.061 -3.279 -0.218 123.05 + CaHCO3+ 8.690e-04 5.263e-04 -3.061 -3.279 -0.218 10.08 CO2 3.518e-04 1.062e-03 -3.454 -2.974 0.480 34.43 HCO3- 3.309e-04 1.914e-04 -3.480 -3.718 -0.238 37.32 NaHCO3 6.284e-05 1.787e-03 -4.202 -2.748 1.454 31.73 @@ -132,7 +132,7 @@ C(4) 3.960e-03 (CO2)2 3.882e-09 2.070e-08 -8.411 -7.684 0.727 68.87 Ca 4.655e-01 Ca+2 4.643e-01 7.129e-01 -0.333 -0.147 0.186 -13.79 - CaHCO3+ 8.690e-04 5.263e-04 -3.061 -3.279 -0.218 123.05 + CaHCO3+ 8.690e-04 5.263e-04 -3.061 -3.279 -0.218 10.08 CaSO4 3.227e-04 1.721e-03 -3.491 -2.764 0.727 7.50 CaCO3 1.041e-06 5.551e-06 -5.983 -5.256 0.727 -14.60 CaOH+ 8.717e-09 4.794e-08 -8.060 -7.319 0.740 (0) @@ -249,9 +249,9 @@ Dolomite 0.00 -17.08 -17.08 1.600e+00 1.597e+00 -3.272e-03 pH = 5.720 Charge balance pe = 14.955 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 242932 - Density (g/cm³) = 1.21626 - Volume (L) = 1.13699 + Specific Conductance (µS/cm, 25°C) = 242973 + Density (g/cm³) = 1.21636 + Volume (L) = 1.13689 Viscosity (mPa s) = 1.95495 Activity of water = 0.785 Ionic strength (mol/kgw) = 7.270e+00 @@ -282,7 +282,7 @@ C(-4) 0.000e+00 CH4 0.000e+00 0.000e+00 -144.506 -143.780 0.727 35.46 C(4) 3.968e-03 MgHCO3+ 2.375e-03 1.183e-03 -2.624 -2.927 -0.303 6.01 - CaHCO3+ 8.569e-04 5.189e-04 -3.067 -3.285 -0.218 123.05 + CaHCO3+ 8.569e-04 5.189e-04 -3.067 -3.285 -0.218 10.08 CO2 3.437e-04 1.038e-03 -3.464 -2.984 0.480 34.43 HCO3- 3.286e-04 1.901e-04 -3.483 -3.721 -0.238 37.32 NaHCO3 6.240e-05 1.775e-03 -4.205 -2.751 1.454 31.73 @@ -292,7 +292,7 @@ C(4) 3.968e-03 (CO2)2 3.706e-09 1.976e-08 -8.431 -7.704 0.727 68.87 Ca 4.622e-01 Ca+2 4.611e-01 7.079e-01 -0.336 -0.150 0.186 -13.79 - CaHCO3+ 8.569e-04 5.189e-04 -3.067 -3.285 -0.218 123.05 + CaHCO3+ 8.569e-04 5.189e-04 -3.067 -3.285 -0.218 10.08 CaSO4 3.205e-04 1.709e-03 -3.494 -2.767 0.727 7.50 CaCO3 1.043e-06 5.563e-06 -5.982 -5.255 0.727 -14.60 CaOH+ 8.798e-09 4.838e-08 -8.056 -7.315 0.740 (0) @@ -492,7 +492,7 @@ C(-4) 0.000e+00 C(4) 1.096e-05 CO2 1.076e-05 1.076e-05 -4.968 -4.968 0.000 34.43 HCO3- 1.975e-07 1.906e-07 -6.704 -6.720 -0.016 24.58 - CaHCO3+ 1.228e-10 1.185e-10 -9.911 -9.926 -0.015 122.64 + CaHCO3+ 1.228e-10 1.185e-10 -9.911 -9.926 -0.015 9.67 MgHCO3+ 6.872e-11 6.627e-11 -10.163 -10.179 -0.016 5.48 NaHCO3 1.957e-11 1.958e-11 -10.708 -10.708 0.000 31.73 (CO2)2 2.126e-12 2.127e-12 -11.672 -11.672 0.000 68.87 @@ -503,7 +503,7 @@ Ca 1.916e-04 Ca+2 1.860e-04 1.612e-04 -3.731 -3.793 -0.062 -18.14 CaSO4 5.634e-06 5.635e-06 -5.249 -5.249 0.000 7.50 CaHSO4+ 9.648e-10 9.304e-10 -9.016 -9.031 -0.016 (0) - CaHCO3+ 1.228e-10 1.185e-10 -9.911 -9.926 -0.015 122.64 + CaHCO3+ 1.228e-10 1.185e-10 -9.911 -9.926 -0.015 9.67 CaOH+ 1.104e-12 1.065e-12 -11.957 -11.973 -0.016 (0) CaCO3 9.632e-14 9.634e-14 -13.016 -13.016 0.000 -14.60 Cl 1.337e-04 @@ -627,7 +627,7 @@ C(4) 7.051e-03 HCO3- 5.875e-03 5.326e-03 -2.231 -2.274 -0.043 24.65 CO2 1.074e-03 1.076e-03 -2.969 -2.968 0.001 34.43 MgHCO3+ 6.178e-05 5.578e-05 -4.209 -4.254 -0.044 5.53 - CaHCO3+ 2.695e-05 2.447e-05 -4.569 -4.611 -0.042 122.69 + CaHCO3+ 2.695e-05 2.447e-05 -4.569 -4.611 -0.042 9.72 CaCO3 5.551e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 CO3-2 4.119e-06 2.780e-06 -5.385 -5.556 -0.171 -3.67 MgCO3 2.369e-06 2.375e-06 -5.625 -5.624 0.001 -17.09 @@ -635,7 +635,7 @@ C(4) 7.051e-03 (CO2)2 2.120e-08 2.125e-08 -7.674 -7.673 0.001 68.87 Ca 1.824e-03 Ca+2 1.766e-03 1.191e-03 -2.753 -2.924 -0.171 -17.93 - CaHCO3+ 2.695e-05 2.447e-05 -4.569 -4.611 -0.042 122.69 + CaHCO3+ 2.695e-05 2.447e-05 -4.569 -4.611 -0.042 9.72 CaSO4 2.566e-05 2.572e-05 -4.591 -4.590 0.001 7.50 CaCO3 5.551e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 CaOH+ 2.435e-09 2.200e-09 -8.613 -8.658 -0.044 (0) @@ -1031,7 +1031,7 @@ C(4) 7.050e-03 HCO3- 5.873e-03 5.324e-03 -2.231 -2.274 -0.043 24.65 CO2 1.075e-03 1.077e-03 -2.969 -2.968 0.001 34.43 MgHCO3+ 6.263e-05 5.655e-05 -4.203 -4.248 -0.044 5.53 - CaHCO3+ 2.664e-05 2.418e-05 -4.574 -4.616 -0.042 122.69 + CaHCO3+ 2.664e-05 2.418e-05 -4.574 -4.616 -0.042 9.72 CaCO3 5.481e-06 5.493e-06 -5.261 -5.260 0.001 -14.60 CO3-2 4.113e-06 2.776e-06 -5.386 -5.557 -0.171 -3.67 MgCO3 2.400e-06 2.405e-06 -5.620 -5.619 0.001 -17.09 @@ -1039,7 +1039,7 @@ C(4) 7.050e-03 (CO2)2 2.123e-08 2.128e-08 -7.673 -7.672 0.001 68.87 Ca 1.803e-03 Ca+2 1.746e-03 1.178e-03 -2.758 -2.929 -0.171 -17.93 - CaHCO3+ 2.664e-05 2.418e-05 -4.574 -4.616 -0.042 122.69 + CaHCO3+ 2.664e-05 2.418e-05 -4.574 -4.616 -0.042 9.72 CaSO4 2.536e-05 2.542e-05 -4.596 -4.595 0.001 7.50 CaCO3 5.481e-06 5.493e-06 -5.261 -5.260 0.001 -14.60 CaOH+ 2.405e-09 2.173e-09 -8.619 -8.663 -0.044 (0) diff --git a/ex16.out b/ex16.out index be43be0f..eceb8f1a 100644 --- a/ex16.out +++ b/ex16.out @@ -108,7 +108,7 @@ C(4) 7.828e-04 CO2 4.542e-04 4.543e-04 -3.343 -3.343 0.000 34.43 HCO3- 3.283e-04 3.202e-04 -3.484 -3.495 -0.011 24.57 MgHCO3+ 1.003e-07 9.784e-08 -6.999 -7.009 -0.011 5.47 - CaHCO3+ 8.916e-08 8.698e-08 -7.050 -7.061 -0.011 122.63 + CaHCO3+ 8.916e-08 8.698e-08 -7.050 -7.061 -0.011 9.66 NaHCO3 3.643e-08 3.643e-08 -7.439 -7.438 0.000 31.73 CO3-2 2.629e-08 2.380e-08 -7.580 -7.623 -0.043 -3.97 KHCO3 3.904e-09 3.904e-09 -8.408 -8.408 0.000 41.03 @@ -118,7 +118,7 @@ C(4) 7.828e-04 Ca 7.800e-05 Ca+2 7.780e-05 7.042e-05 -4.109 -4.152 -0.043 -18.17 CaSO4 1.111e-07 1.111e-07 -6.954 -6.954 0.000 7.50 - CaHCO3+ 8.916e-08 8.698e-08 -7.050 -7.061 -0.011 122.63 + CaHCO3+ 8.916e-08 8.698e-08 -7.050 -7.061 -0.011 9.66 CaCO3 2.815e-09 2.815e-09 -8.550 -8.550 0.000 -14.60 CaOH+ 1.899e-11 1.852e-11 -10.721 -10.732 -0.011 (0) CaHSO4+ 4.725e-13 4.608e-13 -12.326 -12.337 -0.011 (0) @@ -236,7 +236,7 @@ Initial solution 2. C(4) 1.200e-03 HCO3- 8.924e-04 8.574e-04 -3.049 -3.067 -0.017 24.58 CO2 3.055e-04 3.055e-04 -3.515 -3.515 0.000 34.43 - CaHCO3+ 7.574e-07 7.279e-07 -6.121 -6.138 -0.017 122.64 + CaHCO3+ 7.574e-07 7.279e-07 -6.121 -6.138 -0.017 9.67 MgHCO3+ 6.241e-07 5.992e-07 -6.205 -6.222 -0.018 5.48 CO3-2 2.978e-07 2.537e-07 -6.526 -6.596 -0.070 -3.92 NaHCO3 1.855e-07 1.856e-07 -6.732 -6.731 0.000 31.73 @@ -247,7 +247,7 @@ C(4) 1.200e-03 Ca 2.600e-04 Ca+2 2.584e-04 2.201e-04 -3.588 -3.657 -0.070 -18.13 CaSO4 7.926e-07 7.928e-07 -6.101 -6.101 0.000 7.50 - CaHCO3+ 7.574e-07 7.279e-07 -6.121 -6.138 -0.017 122.64 + CaHCO3+ 7.574e-07 7.279e-07 -6.121 -6.138 -0.017 9.67 CaCO3 9.377e-08 9.380e-08 -7.028 -7.028 0.000 -14.60 CaOH+ 2.400e-10 2.305e-10 -9.620 -9.637 -0.018 (0) CaHSO4+ 8.602e-13 8.260e-13 -12.065 -12.083 -0.018 (0) diff --git a/ex18.out b/ex18.out index a049fc33..5237ebd3 100644 --- a/ex18.out +++ b/ex18.out @@ -147,7 +147,7 @@ C(4) 4.300e-03 HCO3- 3.951e-03 3.642e-03 -2.403 -2.439 -0.035 22.89 CO2 2.987e-04 2.990e-04 -3.525 -3.524 0.000 33.66 MgHCO3+ 3.108e-05 2.857e-05 -4.508 -4.544 -0.037 4.93 - CaHCO3+ 6.407e-06 5.913e-06 -5.193 -5.228 -0.035 121.93 + CaHCO3+ 6.407e-06 5.913e-06 -5.193 -5.228 -0.035 8.96 CO3-2 5.802e-06 4.190e-06 -5.236 -5.378 -0.141 -6.10 CaCO3 4.848e-06 4.855e-06 -5.314 -5.314 0.001 -14.66 MgCO3 2.214e-06 2.217e-06 -5.655 -5.654 0.001 -17.07 @@ -159,7 +159,7 @@ C(4) 4.300e-03 Ca 1.200e-03 Ca+2 1.176e-03 8.486e-04 -2.930 -3.071 -0.142 -18.31 CaSO4 1.298e-05 1.300e-05 -4.887 -4.886 0.001 6.78 - CaHCO3+ 6.407e-06 5.913e-06 -5.193 -5.228 -0.035 121.93 + CaHCO3+ 6.407e-06 5.913e-06 -5.193 -5.228 -0.035 8.96 CaCO3 4.848e-06 4.855e-06 -5.314 -5.314 0.001 -14.66 CaOH+ 5.433e-09 4.996e-09 -8.265 -8.301 -0.036 (0) CaHSO4+ 2.170e-12 1.995e-12 -11.664 -11.700 -0.036 (0) @@ -257,8 +257,8 @@ Initial solution 2. Mysse pH = 6.610 pe = 0.000 Specific Conductance (µS/cm, 63°C) = 10503 - Density (g/cm³) = 0.98520 - Volume (L) = 1.01942 + Density (g/cm³) = 0.98523 + Volume (L) = 1.01939 Viscosity (mPa s) = 0.45647 Activity of water = 0.999 Ionic strength (mol/kgw) = 7.101e-02 @@ -289,7 +289,7 @@ Initial solution 2. Mysse C(4) 6.870e-03 HCO3- 4.575e-03 3.644e-03 -2.340 -2.438 -0.099 25.86 CO2 1.746e-03 1.765e-03 -2.758 -2.753 0.005 36.36 - CaHCO3+ 2.772e-04 2.226e-04 -3.557 -3.653 -0.095 123.62 + CaHCO3+ 2.772e-04 2.226e-04 -3.557 -3.653 -0.095 10.66 NaHCO3 1.844e-04 1.905e-04 -3.734 -3.720 0.014 31.20 MgHCO3+ 6.093e-05 4.753e-05 -4.215 -4.323 -0.108 6.10 CaCO3 1.656e-05 1.683e-05 -4.781 -4.774 0.007 -14.51 @@ -302,7 +302,7 @@ C(4) 6.870e-03 Ca 1.128e-02 Ca+2 7.821e-03 3.163e-03 -2.107 -2.500 -0.393 -17.58 CaSO4 3.165e-03 3.217e-03 -2.500 -2.492 0.007 8.42 - CaHCO3+ 2.772e-04 2.226e-04 -3.557 -3.653 -0.095 123.62 + CaHCO3+ 2.772e-04 2.226e-04 -3.557 -3.653 -0.095 10.66 CaCO3 1.656e-05 1.683e-05 -4.781 -4.774 0.007 -14.51 CaHSO4+ 1.307e-08 1.029e-08 -7.884 -7.988 -0.104 (0) CaOH+ 2.712e-09 2.135e-09 -8.567 -8.671 -0.104 (0) diff --git a/ex21.out b/ex21.out index 26fac9cb..61315161 100644 --- a/ex21.out +++ b/ex21.out @@ -438,7 +438,7 @@ WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. pe = 13.120 Equilibrium with O2(g) Specific Conductance (µS/cm, 23°C) = 29069 Density (g/cm³) = 1.01168 - Volume (L) = 0.20147 + Volume (L) = 0.20146 Viscosity (mPa s) = 0.96932 Activity of water = 0.990 Ionic strength (mol/kgw) = 3.633e-01 @@ -465,7 +465,7 @@ C(4) 4.811e-04 NaHCO3 3.292e-05 3.892e-05 -4.483 -4.410 0.073 31.75 MgHCO3+ 2.266e-05 1.528e-05 -4.645 -4.816 -0.171 5.70 CO2 1.541e-05 1.628e-05 -4.812 -4.788 0.024 34.33 - CaHCO3+ 9.133e-06 6.615e-06 -5.039 -5.179 -0.140 122.80 + CaHCO3+ 9.133e-06 6.615e-06 -5.039 -5.179 -0.140 9.83 CaCO3 4.998e-06 5.434e-06 -5.301 -5.265 0.036 -14.61 MgCO3 2.008e-06 2.184e-06 -5.697 -5.661 0.036 -17.09 CO3-2 1.949e-06 4.981e-07 -5.710 -6.303 -0.593 -1.75 @@ -476,7 +476,7 @@ C(4) 4.811e-04 Ca 2.580e-02 Ca+2 2.429e-02 6.749e-03 -1.615 -2.171 -0.556 -17.03 CaSO4 1.496e-03 1.626e-03 -2.825 -2.789 0.036 7.42 - CaHCO3+ 9.133e-06 6.615e-06 -5.039 -5.179 -0.140 122.80 + CaHCO3+ 9.133e-06 6.615e-06 -5.039 -5.179 -0.140 9.83 CaCO3 4.998e-06 5.434e-06 -5.301 -5.265 0.036 -14.61 CaOH+ 6.034e-08 4.414e-08 -7.219 -7.355 -0.136 (0) CaHSO4+ 3.568e-10 2.610e-10 -9.448 -9.583 -0.136 (0) @@ -515,7 +515,7 @@ S(6) 1.410e-02 HSO4- 4.398e-09 3.217e-09 -8.357 -8.493 -0.136 40.64 CaHSO4+ 3.568e-10 2.610e-10 -9.448 -9.583 -0.136 (0) Sr 5.050e-04 - Sr+2 4.726e-04 1.312e-04 -3.325 -3.882 -0.557 -16.74 + Sr+2 4.726e-04 1.312e-04 -3.325 -3.882 -0.557 -16.75 SrSO4 3.160e-05 3.436e-05 -4.500 -4.464 0.036 24.16 SrHCO3+ 7.330e-07 5.211e-07 -6.135 -6.283 -0.148 (0) SrCO3 3.617e-08 3.932e-08 -7.442 -7.405 0.036 -14.14 diff --git a/ex3.out b/ex3.out index ff959210..ef1a7797 100644 --- a/ex3.out +++ b/ex3.out @@ -148,13 +148,13 @@ C(-4) 1.394e-25 C(4) 3.576e-03 HCO3- 3.212e-03 2.987e-03 -2.493 -2.525 -0.032 24.62 CO2 3.400e-04 3.403e-04 -3.469 -3.468 0.000 34.43 - CaHCO3+ 1.483e-05 1.380e-05 -4.829 -4.860 -0.031 122.67 + CaHCO3+ 1.483e-05 1.380e-05 -4.829 -4.860 -0.031 9.70 CaCO3 5.557e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 CO3-2 3.697e-06 2.765e-06 -5.432 -5.558 -0.126 -3.79 (CO2)2 2.123e-09 2.125e-09 -8.673 -8.673 0.000 68.87 Ca 1.623e-03 Ca+2 1.602e-03 1.198e-03 -2.795 -2.922 -0.126 -18.02 - CaHCO3+ 1.483e-05 1.380e-05 -4.829 -4.860 -0.031 122.67 + CaHCO3+ 1.483e-05 1.380e-05 -4.829 -4.860 -0.031 9.70 CaCO3 5.557e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 CaOH+ 4.227e-09 3.923e-09 -8.374 -8.406 -0.032 (0) H(0) 5.084e-15 @@ -261,7 +261,7 @@ C(4) 2.238e-03 MgCO3 9.524e-05 1.111e-04 -4.021 -3.954 0.067 -17.09 CO3-2 3.889e-05 8.104e-06 -4.410 -5.091 -0.681 -0.52 CaCO3 2.908e-05 3.393e-05 -4.536 -4.469 0.067 -14.60 - CaHCO3+ 1.446e-05 1.001e-05 -4.840 -5.000 -0.160 122.92 + CaHCO3+ 1.446e-05 1.001e-05 -4.840 -5.000 -0.160 9.96 CO2 1.299e-05 1.438e-05 -4.886 -4.842 0.044 34.43 KHCO3 2.970e-06 3.013e-06 -5.527 -5.521 0.006 41.03 (CO2)2 3.254e-12 3.798e-12 -11.488 -11.420 0.067 68.87 @@ -269,7 +269,7 @@ Ca 1.066e-02 Ca+2 9.964e-03 2.493e-03 -2.002 -2.603 -0.602 -16.70 CaSO4 6.537e-04 7.628e-04 -3.185 -3.118 0.067 7.50 CaCO3 2.908e-05 3.393e-05 -4.536 -4.469 0.067 -14.60 - CaHCO3+ 1.446e-05 1.001e-05 -4.840 -5.000 -0.160 122.92 + CaHCO3+ 1.446e-05 1.001e-05 -4.840 -5.000 -0.160 9.96 CaOH+ 9.020e-08 6.732e-08 -7.045 -7.172 -0.127 (0) CaHSO4+ 4.048e-11 3.021e-11 -10.393 -10.520 -0.127 (0) Cl 5.657e-01 @@ -391,7 +391,7 @@ Mixture 1. pH = 7.327 Charge balance pe = 10.559 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 18310 - Density (g/cm³) = 1.00526 + Density (g/cm³) = 1.00527 Volume (L) = 1.00578 Viscosity (mPa s) = 0.91375 Activity of water = 0.994 @@ -421,7 +421,7 @@ C(4) 3.175e-03 CO2 2.010e-04 2.074e-04 -3.697 -3.683 0.014 34.43 NaHCO3 1.640e-04 1.804e-04 -3.785 -3.744 0.041 31.73 MgHCO3+ 1.611e-04 1.153e-04 -3.793 -3.938 -0.145 5.72 - CaHCO3+ 1.284e-05 9.686e-06 -4.892 -5.014 -0.122 122.85 + CaHCO3+ 1.284e-05 9.686e-06 -4.892 -5.014 -0.122 9.88 MgCO3 8.919e-06 9.354e-06 -5.050 -5.029 0.021 -17.09 CO3-2 6.313e-06 1.935e-06 -5.200 -5.713 -0.514 -2.19 CaCO3 4.001e-06 4.196e-06 -5.398 -5.377 0.021 -14.60 @@ -430,7 +430,7 @@ C(4) 3.175e-03 Ca 4.334e-03 Ca+2 4.054e-03 1.291e-03 -2.392 -2.889 -0.497 -17.20 CaSO4 2.639e-04 2.767e-04 -3.579 -3.558 0.021 7.50 - CaHCO3+ 1.284e-05 9.686e-06 -4.892 -5.014 -0.122 122.85 + CaHCO3+ 1.284e-05 9.686e-06 -4.892 -5.014 -0.122 9.88 CaCO3 4.001e-06 4.196e-06 -5.398 -5.377 0.021 -14.60 CaOH+ 6.063e-09 4.517e-09 -8.217 -8.345 -0.128 (0) CaHSO4+ 1.151e-10 8.576e-11 -9.939 -10.067 -0.128 (0) @@ -566,7 +566,7 @@ Dolomite 0.00 -17.08 -17.08 1.000e+01 1.001e+01 7.786e-03 pe = 10.928 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 18478 Density (g/cm³) = 1.00533 - Volume (L) = 1.00583 + Volume (L) = 1.00582 Viscosity (mPa s) = 0.91253 Activity of water = 0.994 Ionic strength (mol/kgw) = 2.071e-01 @@ -595,7 +595,7 @@ C(4) 3.016e-03 CO2 3.502e-04 3.614e-04 -3.456 -3.442 0.014 34.43 NaHCO3 1.500e-04 1.650e-04 -3.824 -3.782 0.041 31.73 MgHCO3+ 7.783e-05 5.571e-05 -4.109 -4.254 -0.145 5.72 - CaHCO3+ 3.239e-05 2.444e-05 -4.490 -4.612 -0.122 122.85 + CaHCO3+ 3.239e-05 2.444e-05 -4.490 -4.612 -0.122 9.88 CaCO3 5.304e-06 5.563e-06 -5.275 -5.255 0.021 -14.60 CO3-2 3.038e-06 9.308e-07 -5.517 -6.031 -0.514 -2.19 MgCO3 2.264e-06 2.375e-06 -5.645 -5.624 0.021 -17.09 @@ -604,7 +604,7 @@ C(4) 3.016e-03 Ca 1.196e-02 Ca+2 1.118e-02 3.558e-03 -1.952 -2.449 -0.497 -17.20 CaSO4 7.475e-04 7.840e-04 -3.126 -3.106 0.021 7.50 - CaHCO3+ 3.239e-05 2.444e-05 -4.490 -4.612 -0.122 122.85 + CaHCO3+ 3.239e-05 2.444e-05 -4.490 -4.612 -0.122 9.88 CaCO3 5.304e-06 5.563e-06 -5.275 -5.255 0.021 -14.60 CaOH+ 8.781e-09 6.542e-09 -8.056 -8.184 -0.128 (0) CaHSO4+ 6.206e-10 4.624e-10 -9.207 -9.335 -0.128 (0) @@ -767,7 +767,7 @@ C(4) 3.221e-03 NaHCO3 1.684e-04 1.852e-04 -3.774 -3.732 0.041 31.73 MgHCO3+ 1.653e-04 1.183e-04 -3.782 -3.927 -0.145 5.72 CO2 1.615e-04 1.666e-04 -3.792 -3.778 0.014 34.43 - CaHCO3+ 1.332e-05 1.005e-05 -4.876 -4.998 -0.122 122.85 + CaHCO3+ 1.332e-05 1.005e-05 -4.876 -4.998 -0.122 9.88 MgCO3 1.170e-05 1.227e-05 -4.932 -4.911 0.021 -17.09 CO3-2 8.287e-06 2.540e-06 -5.082 -5.595 -0.514 -2.19 CaCO3 5.304e-06 5.563e-06 -5.275 -5.255 0.021 -14.60 @@ -776,7 +776,7 @@ C(4) 3.221e-03 Ca 4.380e-03 Ca+2 4.095e-03 1.304e-03 -2.388 -2.885 -0.497 -17.20 CaSO4 2.664e-04 2.794e-04 -3.574 -3.554 0.021 7.50 - CaHCO3+ 1.332e-05 1.005e-05 -4.876 -4.998 -0.122 122.85 + CaHCO3+ 1.332e-05 1.005e-05 -4.876 -4.998 -0.122 9.88 CaCO3 5.304e-06 5.563e-06 -5.275 -5.255 0.021 -14.60 CaOH+ 7.828e-09 5.832e-09 -8.106 -8.234 -0.128 (0) CaHSO4+ 9.093e-11 6.775e-11 -10.041 -10.169 -0.128 (0) diff --git a/ex4.out b/ex4.out index 274885d9..d9683df9 100644 --- a/ex4.out +++ b/ex4.out @@ -103,7 +103,7 @@ Initial solution 1. Precipitation from Central Oklahoma C(4) 1.091e-05 CO2 1.076e-05 1.076e-05 -4.968 -4.968 0.000 34.43 HCO3- 1.530e-07 1.513e-07 -6.815 -6.820 -0.005 24.56 - CaHCO3+ 5.402e-12 5.344e-12 -11.267 -11.272 -0.005 122.62 + CaHCO3+ 5.402e-12 5.344e-12 -11.267 -11.272 -0.005 9.65 MgHCO3+ 3.022e-12 2.989e-12 -11.520 -11.524 -0.005 5.46 (CO2)2 2.125e-12 2.125e-12 -11.673 -11.673 0.000 68.87 NaHCO3 7.995e-13 7.995e-13 -12.097 -12.097 0.000 31.73 @@ -114,7 +114,7 @@ C(4) 1.091e-05 Ca 9.581e-06 Ca+2 9.560e-06 9.153e-06 -5.020 -5.038 -0.019 -18.22 CaSO4 2.098e-08 2.098e-08 -7.678 -7.678 0.000 7.50 - CaHCO3+ 5.402e-12 5.344e-12 -11.267 -11.272 -0.005 122.62 + CaHCO3+ 5.402e-12 5.344e-12 -11.267 -11.272 -0.005 9.65 CaHSO4+ 4.408e-12 4.361e-12 -11.356 -11.360 -0.005 (0) CaOH+ 4.856e-14 4.804e-14 -13.314 -13.318 -0.005 (0) CaCO3 3.451e-15 3.451e-15 -14.462 -14.462 0.000 -14.60 @@ -136,7 +136,7 @@ Mg 1.769e-06 MgCO3 3.616e-16 3.616e-16 -15.442 -15.442 0.000 -17.09 N(-3) 1.485e-05 NH4+ 1.485e-05 1.468e-05 -4.828 -4.833 -0.005 17.87 - NH4SO4- 3.111e-09 3.077e-09 -8.507 -8.512 -0.005 -14.54 + NH4SO4- 3.118e-09 3.084e-09 -8.506 -8.511 -0.005 -14.54 NH3 2.646e-10 2.646e-10 -9.577 -9.577 0.000 24.42 N(5) 1.692e-05 NO3- 1.692e-05 1.674e-05 -4.772 -4.776 -0.005 29.47 @@ -151,7 +151,7 @@ S(6) 1.353e-05 HSO4- 4.006e-08 3.963e-08 -7.397 -7.402 -0.005 40.26 CaSO4 2.098e-08 2.098e-08 -7.678 -7.678 0.000 7.50 MgSO4 5.696e-09 5.697e-09 -8.244 -8.244 0.000 -7.92 - NH4SO4- 3.111e-09 3.077e-09 -8.507 -8.512 -0.005 -14.54 + NH4SO4- 3.118e-09 3.084e-09 -8.506 -8.511 -0.005 -14.54 NaSO4- 1.286e-09 1.273e-09 -8.891 -8.895 -0.005 -24.48 KSO4- 1.805e-10 1.786e-10 -9.744 -9.748 -0.005 14.12 CaHSO4+ 4.408e-12 4.361e-12 -11.356 -11.360 -0.005 (0) @@ -253,7 +253,7 @@ C(4) 2.182e-04 CO2 2.180e-04 2.181e-04 -3.661 -3.661 0.000 34.43 HCO3- 1.425e-07 1.365e-07 -6.846 -6.865 -0.019 24.59 (CO2)2 8.728e-10 8.731e-10 -9.059 -9.059 0.000 68.87 - CaHCO3+ 8.591e-11 8.233e-11 -10.066 -10.084 -0.019 122.64 + CaHCO3+ 8.591e-11 8.233e-11 -10.066 -10.084 -0.019 9.68 MgHCO3+ 4.754e-11 4.551e-11 -10.323 -10.342 -0.019 5.48 NaHCO3 1.390e-11 1.391e-11 -10.857 -10.857 0.000 31.73 KHCO3 1.071e-12 1.071e-12 -11.970 -11.970 0.000 41.03 @@ -264,7 +264,7 @@ Ca 1.916e-04 Ca+2 1.857e-04 1.564e-04 -3.731 -3.806 -0.075 -18.12 CaSO4 5.792e-06 5.795e-06 -5.237 -5.237 0.000 7.50 CaHSO4+ 2.828e-08 2.707e-08 -7.549 -7.568 -0.019 (0) - CaHCO3+ 8.591e-11 8.233e-11 -10.066 -10.084 -0.019 122.64 + CaHCO3+ 8.591e-11 8.233e-11 -10.066 -10.084 -0.019 9.68 CaOH+ 3.814e-14 3.651e-14 -13.419 -13.438 -0.019 (0) CaCO3 2.365e-15 2.366e-15 -14.626 -14.626 0.000 -14.60 Cl 1.331e-04 @@ -285,7 +285,7 @@ Mg 3.536e-05 MgCO3 2.448e-16 2.449e-16 -15.611 -15.611 0.000 -17.09 N(-3) 0.000e+00 NH4+ 0.000e+00 0.000e+00 -48.437 -48.457 -0.019 17.90 - NH4SO4- 0.000e+00 0.000e+00 -50.907 -50.927 -0.019 -5.79 + NH4SO4- 0.000e+00 0.000e+00 -50.906 -50.926 -0.019 -5.79 NH3 0.000e+00 0.000e+00 -54.553 -54.553 0.000 24.42 N(0) 4.751e-04 N2 2.375e-04 2.376e-04 -3.624 -3.624 0.000 29.29 @@ -313,7 +313,7 @@ S(6) 2.706e-04 KSO4- 5.808e-08 5.568e-08 -7.236 -7.254 -0.018 14.15 CaHSO4+ 2.828e-08 2.707e-08 -7.549 -7.568 -0.019 (0) Mg(SO4)2-2 1.263e-09 1.067e-09 -8.899 -8.972 -0.073 -2.63 - NH4SO4- 0.000e+00 0.000e+00 -50.907 -50.927 -0.019 -5.79 + NH4SO4- 0.000e+00 0.000e+00 -50.906 -50.926 -0.019 -5.79 ------------------------------Saturation indices------------------------------- @@ -423,7 +423,7 @@ C(4) 2.182e-04 CO2 2.180e-04 2.181e-04 -3.661 -3.661 0.000 34.43 HCO3- 1.425e-07 1.365e-07 -6.846 -6.865 -0.019 24.59 (CO2)2 8.728e-10 8.731e-10 -9.059 -9.059 0.000 68.87 - CaHCO3+ 8.591e-11 8.233e-11 -10.066 -10.084 -0.019 122.64 + CaHCO3+ 8.591e-11 8.233e-11 -10.066 -10.084 -0.019 9.68 MgHCO3+ 4.754e-11 4.551e-11 -10.323 -10.342 -0.019 5.48 NaHCO3 1.390e-11 1.391e-11 -10.857 -10.857 0.000 31.73 KHCO3 1.071e-12 1.071e-12 -11.970 -11.970 0.000 41.03 @@ -434,7 +434,7 @@ Ca 1.916e-04 Ca+2 1.857e-04 1.564e-04 -3.731 -3.806 -0.075 -18.12 CaSO4 5.792e-06 5.795e-06 -5.237 -5.237 0.000 7.50 CaHSO4+ 2.828e-08 2.707e-08 -7.549 -7.568 -0.019 (0) - CaHCO3+ 8.591e-11 8.233e-11 -10.066 -10.084 -0.019 122.64 + CaHCO3+ 8.591e-11 8.233e-11 -10.066 -10.084 -0.019 9.68 CaOH+ 3.814e-14 3.651e-14 -13.419 -13.438 -0.019 (0) CaCO3 2.365e-15 2.366e-15 -14.626 -14.626 0.000 -14.60 Cl 1.331e-04 @@ -455,7 +455,7 @@ Mg 3.536e-05 MgCO3 2.448e-16 2.449e-16 -15.611 -15.611 0.000 -17.09 N(-3) 0.000e+00 NH4+ 0.000e+00 0.000e+00 -48.437 -48.457 -0.019 17.90 - NH4SO4- 0.000e+00 0.000e+00 -50.907 -50.927 -0.019 -5.79 + NH4SO4- 0.000e+00 0.000e+00 -50.906 -50.926 -0.019 -5.79 NH3 0.000e+00 0.000e+00 -54.553 -54.553 0.000 24.42 N(0) 4.751e-04 N2 2.375e-04 2.376e-04 -3.624 -3.624 0.000 29.29 @@ -483,7 +483,7 @@ S(6) 2.706e-04 KSO4- 5.808e-08 5.568e-08 -7.236 -7.254 -0.018 14.15 CaHSO4+ 2.828e-08 2.707e-08 -7.549 -7.568 -0.019 (0) Mg(SO4)2-2 1.263e-09 1.067e-09 -8.899 -8.972 -0.073 -2.63 - NH4SO4- 0.000e+00 0.000e+00 -50.907 -50.927 -0.019 -5.79 + NH4SO4- 0.000e+00 0.000e+00 -50.906 -50.926 -0.019 -5.79 ------------------------------Saturation indices------------------------------- diff --git a/ex5.out b/ex5.out index c19862ef..1bdef19e 100644 --- a/ex5.out +++ b/ex5.out @@ -194,14 +194,14 @@ C(4) 9.756e-04 CO2 1.076e-05 1.076e-05 -4.968 -4.968 0.000 34.43 CO3-2 9.583e-06 8.099e-06 -5.019 -5.092 -0.073 -3.91 CaCO3 5.561e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 - CaHCO3+ 1.495e-06 1.434e-06 -5.825 -5.843 -0.018 122.64 + CaHCO3+ 1.495e-06 1.434e-06 -5.825 -5.843 -0.018 9.67 FeCO3 2.597e-09 2.598e-09 -8.585 -8.585 0.000 (0) FeHCO3+ 1.269e-09 1.216e-09 -8.897 -8.915 -0.019 (0) (CO2)2 2.125e-12 2.125e-12 -11.673 -11.673 0.000 68.87 Ca 4.910e-04 Ca+2 4.840e-04 4.089e-04 -3.315 -3.388 -0.073 -18.12 CaCO3 5.561e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 - CaHCO3+ 1.495e-06 1.434e-06 -5.825 -5.843 -0.018 122.64 + CaHCO3+ 1.495e-06 1.434e-06 -5.825 -5.843 -0.018 9.67 CaOH+ 1.345e-08 1.289e-08 -7.871 -7.890 -0.019 (0) CaSO4 3.487e-09 3.488e-09 -8.458 -8.457 0.000 7.50 CaHSO4+ 1.260e-16 1.207e-16 -15.900 -15.918 -0.019 (0) @@ -355,7 +355,7 @@ C(4) 7.789e-04 CO2 1.075e-05 1.076e-05 -4.968 -4.968 0.000 34.43 CO3-2 6.329e-06 4.905e-06 -5.199 -5.309 -0.111 -3.82 CaCO3 5.559e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 - CaHCO3+ 1.962e-06 1.842e-06 -5.707 -5.735 -0.027 122.66 + CaHCO3+ 1.962e-06 1.842e-06 -5.707 -5.735 -0.027 9.69 NaHCO3 2.864e-07 2.869e-07 -6.543 -6.542 0.001 31.73 FeCO3 7.348e-10 7.354e-10 -9.134 -9.133 0.000 (0) FeHCO3+ 4.720e-10 4.422e-10 -9.326 -9.354 -0.028 (0) @@ -364,7 +364,7 @@ Ca 9.242e-04 Ca+2 8.716e-04 6.752e-04 -3.060 -3.171 -0.111 -18.05 CaSO4 4.502e-05 4.506e-05 -4.347 -4.346 0.000 7.50 CaCO3 5.559e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 - CaHCO3+ 1.962e-06 1.842e-06 -5.707 -5.735 -0.027 122.66 + CaHCO3+ 1.962e-06 1.842e-06 -5.707 -5.735 -0.027 9.69 CaOH+ 1.768e-08 1.656e-08 -7.753 -7.781 -0.028 (0) CaHSO4+ 2.139e-12 2.003e-12 -11.670 -11.698 -0.028 (0) Cl 5.000e-04 @@ -535,7 +535,7 @@ C(4) 5.312e-04 HCO3- 5.077e-04 4.556e-04 -3.294 -3.341 -0.047 24.66 CO2 1.074e-05 1.076e-05 -4.969 -4.968 0.001 34.43 CaCO3 5.548e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 - CaHCO3+ 3.182e-06 2.861e-06 -5.497 -5.543 -0.046 122.70 + CaHCO3+ 3.182e-06 2.861e-06 -5.497 -5.543 -0.046 9.73 CO3-2 3.139e-06 2.034e-06 -5.503 -5.692 -0.188 -3.63 NaHCO3 8.629e-07 8.678e-07 -6.064 -6.062 0.002 31.73 FeHCO3+ 5.724e-10 5.115e-10 -9.242 -9.291 -0.049 (0) @@ -545,7 +545,7 @@ Ca 2.932e-03 Ca+2 2.514e-03 1.628e-03 -2.600 -2.788 -0.189 -17.90 CaSO4 4.092e-04 4.104e-04 -3.388 -3.387 0.001 7.50 CaCO3 5.548e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 - CaHCO3+ 3.182e-06 2.861e-06 -5.497 -5.543 -0.046 122.70 + CaHCO3+ 3.182e-06 2.861e-06 -5.497 -5.543 -0.046 9.73 CaOH+ 2.878e-08 2.572e-08 -7.541 -7.590 -0.049 (0) CaHSO4+ 3.171e-11 2.833e-11 -10.499 -10.548 -0.049 (0) Cl 2.500e-03 @@ -716,7 +716,7 @@ C(4) 4.402e-04 HCO3- 4.163e-04 3.623e-04 -3.381 -3.441 -0.060 24.70 CO2 1.072e-05 1.076e-05 -4.970 -4.968 0.001 34.43 CaCO3 5.535e-06 5.563e-06 -5.257 -5.255 0.002 -14.60 - CaHCO3+ 4.119e-06 3.596e-06 -5.385 -5.444 -0.059 122.72 + CaHCO3+ 4.119e-06 3.596e-06 -5.385 -5.444 -0.059 9.75 CO3-2 2.242e-06 1.287e-06 -5.649 -5.890 -0.241 -3.47 NaHCO3 1.305e-06 1.319e-06 -5.884 -5.880 0.004 31.73 FeHCO3+ 6.547e-10 5.664e-10 -9.184 -9.247 -0.063 (0) @@ -726,7 +726,7 @@ Ca 5.553e-03 Ca+2 4.485e-03 2.573e-03 -2.348 -2.590 -0.241 -17.79 CaSO4 1.058e-03 1.064e-03 -2.975 -2.973 0.002 7.50 CaCO3 5.535e-06 5.563e-06 -5.257 -5.255 0.002 -14.60 - CaHCO3+ 4.119e-06 3.596e-06 -5.385 -5.444 -0.059 122.72 + CaHCO3+ 4.119e-06 3.596e-06 -5.385 -5.444 -0.059 9.75 CaOH+ 3.737e-08 3.233e-08 -7.427 -7.490 -0.063 (0) CaHSO4+ 1.067e-10 9.230e-11 -9.972 -10.035 -0.063 (0) Cl 5.000e-03 @@ -896,7 +896,7 @@ C(-4) 1.646e-14 C(4) 3.341e-04 HCO3- 3.078e-04 2.519e-04 -3.512 -3.599 -0.087 24.82 CO2 1.066e-05 1.076e-05 -4.972 -4.968 0.004 34.43 - CaHCO3+ 6.277e-06 5.170e-06 -5.202 -5.286 -0.084 122.77 + CaHCO3+ 6.277e-06 5.170e-06 -5.202 -5.286 -0.084 9.80 CaCO3 5.487e-06 5.563e-06 -5.261 -5.255 0.006 -14.60 NaHCO3 2.424e-06 2.492e-06 -5.615 -5.603 0.012 31.73 CO3-2 1.388e-06 6.223e-07 -5.858 -6.206 -0.348 -3.08 @@ -906,7 +906,7 @@ C(4) 3.341e-04 Ca 1.617e-02 Ca+2 1.182e-02 5.322e-03 -1.927 -2.274 -0.347 -17.57 CaSO4 4.337e-03 4.397e-03 -2.363 -2.357 0.006 7.50 - CaHCO3+ 6.277e-06 5.170e-06 -5.202 -5.286 -0.084 122.77 + CaHCO3+ 6.277e-06 5.170e-06 -5.202 -5.286 -0.084 9.80 CaCO3 5.487e-06 5.563e-06 -5.261 -5.255 0.006 -14.60 CaOH+ 5.734e-08 4.648e-08 -7.242 -7.333 -0.091 (0) CaHSO4+ 6.768e-10 5.486e-10 -9.170 -9.261 -0.091 (0) @@ -1077,7 +1077,7 @@ C(-4) 1.539e-14 C(4) 3.317e-04 HCO3- 3.038e-04 2.448e-04 -3.517 -3.611 -0.094 24.86 CO2 1.064e-05 1.076e-05 -4.973 -4.968 0.005 34.43 - CaHCO3+ 6.550e-06 5.318e-06 -5.184 -5.274 -0.090 122.78 + CaHCO3+ 6.550e-06 5.318e-06 -5.184 -5.274 -0.090 9.81 CaCO3 5.469e-06 5.563e-06 -5.262 -5.255 0.007 -14.60 NaHCO3 3.843e-06 3.977e-06 -5.415 -5.400 0.015 31.73 CO3-2 1.394e-06 5.880e-07 -5.856 -6.231 -0.375 -2.97 @@ -1087,7 +1087,7 @@ C(4) 3.317e-04 Ca 1.786e-02 Ca+2 1.327e-02 5.632e-03 -1.877 -2.249 -0.372 -17.52 CaSO4 4.585e-03 4.664e-03 -2.339 -2.331 0.007 7.50 - CaHCO3+ 6.550e-06 5.318e-06 -5.184 -5.274 -0.090 122.78 + CaHCO3+ 6.550e-06 5.318e-06 -5.184 -5.274 -0.090 9.81 CaCO3 5.469e-06 5.563e-06 -5.262 -5.255 0.007 -14.60 CaOH+ 5.990e-08 4.781e-08 -7.223 -7.320 -0.098 (0) CaHSO4+ 7.500e-10 5.986e-10 -9.125 -9.223 -0.098 (0) diff --git a/ex7.out b/ex7.out index c2e715a7..710cbcc1 100644 --- a/ex7.out +++ b/ex7.out @@ -172,13 +172,13 @@ C(-4) 4.428e-25 C(4) 5.972e-03 HCO3- 4.857e-03 4.452e-03 -2.314 -2.351 -0.038 24.63 CO2 1.075e-03 1.076e-03 -2.969 -2.968 0.000 34.43 - CaHCO3+ 3.189e-05 2.927e-05 -4.496 -4.534 -0.037 122.68 + CaHCO3+ 3.189e-05 2.927e-05 -4.496 -4.534 -0.037 9.71 CaCO3 5.554e-06 5.563e-06 -5.255 -5.255 0.001 -14.60 CO3-2 2.752e-06 1.943e-06 -5.560 -5.711 -0.151 -3.73 (CO2)2 2.121e-08 2.125e-08 -7.673 -7.673 0.001 68.87 Ca 2.453e-03 Ca+2 2.415e-03 1.704e-03 -2.617 -2.768 -0.151 -17.97 - CaHCO3+ 3.189e-05 2.927e-05 -4.496 -4.534 -0.037 122.68 + CaHCO3+ 3.189e-05 2.927e-05 -4.496 -4.534 -0.037 9.71 CaCO3 5.554e-06 5.563e-06 -5.255 -5.255 0.001 -14.60 CaOH+ 2.879e-09 2.632e-09 -8.541 -8.580 -0.039 (0) H(0) 5.087e-15 @@ -296,8 +296,8 @@ Reaction 1. pH = 6.829 Charge balance pe = -3.721 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 459 - Density (g/cm³) = 0.99737 - Volume (L) = 1.00307 + Density (g/cm³) = 0.99738 + Volume (L) = 1.00306 Viscosity (mPa s) = 0.89504 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.354e-03 @@ -325,14 +325,14 @@ C(-4) 5.001e-04 C(4) 6.472e-03 HCO3- 4.931e-03 4.518e-03 -2.307 -2.345 -0.038 24.63 CO2 1.503e-03 1.504e-03 -2.823 -2.823 0.000 34.43 - CaHCO3+ 3.232e-05 2.966e-05 -4.490 -4.528 -0.037 122.68 - CaCO3 4.086e-06 4.093e-06 -5.389 -5.388 0.001 -14.60 + CaHCO3+ 3.234e-05 2.967e-05 -4.490 -4.528 -0.037 9.71 + CaCO3 4.086e-06 4.092e-06 -5.389 -5.388 0.001 -14.60 CO3-2 2.030e-06 1.431e-06 -5.692 -5.844 -0.152 -3.72 (CO2)2 4.147e-08 4.154e-08 -7.382 -7.382 0.001 68.87 Ca 2.453e-03 - Ca+2 2.417e-03 1.702e-03 -2.617 -2.769 -0.152 -17.97 - CaHCO3+ 3.232e-05 2.966e-05 -4.490 -4.528 -0.037 122.68 - CaCO3 4.086e-06 4.093e-06 -5.389 -5.388 0.001 -14.60 + Ca+2 2.416e-03 1.702e-03 -2.617 -2.769 -0.152 -17.97 + CaHCO3+ 3.234e-05 2.967e-05 -4.490 -4.528 -0.037 9.71 + CaCO3 4.086e-06 4.092e-06 -5.389 -5.388 0.001 -14.60 CaOH+ 2.088e-09 1.908e-09 -8.680 -8.720 -0.039 (0) H(0) 8.575e-10 H2 4.288e-10 4.295e-10 -9.368 -9.367 0.001 28.61 @@ -431,20 +431,20 @@ C(-4) 1.000e-03 C(4) 6.972e-03 HCO3- 5.003e-03 4.582e-03 -2.301 -2.339 -0.038 24.63 CO2 1.932e-03 1.934e-03 -2.714 -2.714 0.000 34.43 - CaHCO3+ 3.275e-05 3.004e-05 -4.485 -4.522 -0.038 122.68 + CaHCO3+ 3.277e-05 3.005e-05 -4.485 -4.522 -0.038 9.71 CaCO3 3.265e-06 3.271e-06 -5.486 -5.485 0.001 -14.60 CO3-2 1.627e-06 1.145e-06 -5.789 -5.941 -0.152 -3.72 (CO2)2 6.852e-08 6.864e-08 -7.164 -7.163 0.001 68.87 Ca 2.453e-03 Ca+2 2.417e-03 1.700e-03 -2.617 -2.770 -0.153 -17.97 - CaHCO3+ 3.275e-05 3.004e-05 -4.485 -4.522 -0.038 122.68 + CaHCO3+ 3.277e-05 3.005e-05 -4.485 -4.522 -0.038 9.71 CaCO3 3.265e-06 3.271e-06 -5.486 -5.485 0.001 -14.60 CaOH+ 1.646e-09 1.503e-09 -8.784 -8.823 -0.039 (0) H(0) 9.577e-10 H2 4.789e-10 4.797e-10 -9.320 -9.319 0.001 28.61 N(-3) 1.398e-04 NH4+ 1.394e-04 1.268e-04 -3.856 -3.897 -0.041 (0) - NH3 3.844e-07 3.850e-07 -6.415 -6.414 0.001 (0) + NH3 3.844e-07 3.850e-07 -6.415 -6.415 0.001 (0) N(0) 2.470e-07 N2 1.235e-07 1.237e-07 -6.908 -6.908 0.001 29.29 N(3) 0.000e+00 @@ -520,7 +520,7 @@ Reaction 1. Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 15 + Iterations = 16 Total H = 1.110191e+02 Total O = 5.552361e+01 @@ -537,13 +537,13 @@ C(-4) 1.500e-03 C(4) 7.472e-03 HCO3- 5.074e-03 4.646e-03 -2.295 -2.333 -0.038 24.63 CO2 2.361e-03 2.364e-03 -2.627 -2.626 0.000 34.43 - CaHCO3+ 3.317e-05 3.041e-05 -4.479 -4.517 -0.038 122.68 + CaHCO3+ 3.318e-05 3.042e-05 -4.479 -4.517 -0.038 9.71 CaCO3 2.742e-06 2.747e-06 -5.562 -5.561 0.001 -14.60 CO3-2 1.370e-06 9.631e-07 -5.863 -6.016 -0.153 -3.72 (CO2)2 1.024e-07 1.025e-07 -6.990 -6.989 0.001 68.87 Ca 2.453e-03 Ca+2 2.417e-03 1.698e-03 -2.617 -2.770 -0.153 -17.97 - CaHCO3+ 3.317e-05 3.041e-05 -4.479 -4.517 -0.038 122.68 + CaHCO3+ 3.318e-05 3.042e-05 -4.479 -4.517 -0.038 9.71 CaCO3 2.742e-06 2.747e-06 -5.562 -5.561 0.001 -14.60 CaOH+ 1.364e-09 1.245e-09 -8.865 -8.905 -0.039 (0) H(0) 1.008e-09 @@ -657,13 +657,13 @@ C(-4) 1.550e-03 C(4) 7.935e-03 HCO3- 5.144e-03 4.708e-03 -2.289 -2.327 -0.038 24.63 CO2 2.753e-03 2.757e-03 -2.560 -2.560 0.000 34.43 - CaHCO3+ 3.358e-05 3.077e-05 -4.474 -4.512 -0.038 122.68 + CaHCO3+ 3.359e-05 3.079e-05 -4.474 -4.512 -0.038 9.71 CaCO3 2.411e-06 2.415e-06 -5.618 -5.617 0.001 -14.60 CO3-2 1.208e-06 8.481e-07 -5.918 -6.072 -0.154 -3.72 (CO2)2 1.392e-07 1.395e-07 -6.856 -6.855 0.001 68.87 Ca 2.453e-03 Ca+2 2.417e-03 1.695e-03 -2.617 -2.771 -0.154 -17.96 - CaHCO3+ 3.358e-05 3.077e-05 -4.474 -4.512 -0.038 122.68 + CaHCO3+ 3.359e-05 3.079e-05 -4.474 -4.512 -0.038 9.71 CaCO3 2.411e-06 2.415e-06 -5.618 -5.617 0.001 -14.60 CaOH+ 1.184e-09 1.080e-09 -8.927 -8.966 -0.040 (0) H(0) 9.779e-10 @@ -749,7 +749,7 @@ N2(g) -3.02 9.612e-04 1.000 0.000e+00 2.567e-06 2.567e-06 pe = -3.320 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 477 Density (g/cm³) = 0.99741 - Volume (L) = 1.00320 + Volume (L) = 1.00319 Viscosity (mPa s) = 0.89735 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.837e-03 @@ -777,13 +777,13 @@ C(-4) 1.483e-03 C(4) 9.640e-03 HCO3- 5.419e-03 4.953e-03 -2.266 -2.305 -0.039 24.64 CO2 4.182e-03 4.187e-03 -2.379 -2.378 0.001 34.43 - CaHCO3+ 3.516e-05 3.219e-05 -4.454 -4.492 -0.038 122.68 + CaHCO3+ 3.518e-05 3.220e-05 -4.454 -4.492 -0.038 9.71 CaCO3 1.746e-06 1.749e-06 -5.758 -5.757 0.001 -14.60 CO3-2 8.851e-07 6.179e-07 -6.053 -6.209 -0.156 -3.71 (CO2)2 3.213e-07 3.218e-07 -6.493 -6.492 0.001 68.87 Ca 2.453e-03 Ca+2 2.416e-03 1.685e-03 -2.617 -2.773 -0.156 -17.96 - CaHCO3+ 3.516e-05 3.219e-05 -4.454 -4.492 -0.038 122.68 + CaHCO3+ 3.518e-05 3.220e-05 -4.454 -4.492 -0.038 9.71 CaCO3 1.746e-06 1.749e-06 -5.758 -5.757 0.001 -14.60 CaOH+ 8.161e-10 7.438e-10 -9.088 -9.129 -0.040 (0) H(0) 8.711e-10 @@ -880,7 +880,7 @@ N2(g) -2.58 2.636e-03 1.000 0.000e+00 2.006e-05 2.006e-05 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 22 + Iterations = 23 Total H = 1.110207e+02 Total O = 5.553344e+01 @@ -897,13 +897,13 @@ C(-4) 1.372e-03 C(4) 1.249e-02 CO2 6.509e-03 6.517e-03 -2.187 -2.186 0.001 34.43 HCO3- 5.940e-03 5.416e-03 -2.226 -2.266 -0.040 24.64 - CaHCO3+ 3.812e-05 3.480e-05 -4.419 -4.458 -0.040 122.68 + CaHCO3+ 3.813e-05 3.482e-05 -4.419 -4.458 -0.040 9.72 CaCO3 1.327e-06 1.329e-06 -5.877 -5.876 0.001 -14.60 (CO2)2 7.781e-07 7.796e-07 -6.109 -6.108 0.001 68.87 - CO3-2 6.869e-07 4.747e-07 -6.163 -6.324 -0.160 -3.70 + CO3-2 6.868e-07 4.747e-07 -6.163 -6.324 -0.160 -3.70 Ca 2.453e-03 Ca+2 2.414e-03 1.667e-03 -2.617 -2.778 -0.161 -17.95 - CaHCO3+ 3.812e-05 3.480e-05 -4.419 -4.458 -0.040 122.68 + CaHCO3+ 3.813e-05 3.482e-05 -4.419 -4.458 -0.040 9.72 CaCO3 1.327e-06 1.329e-06 -5.877 -5.876 0.001 -14.60 CaOH+ 5.685e-10 5.168e-10 -9.245 -9.287 -0.041 (0) H(0) 7.648e-10 @@ -989,7 +989,7 @@ N2(g) -2.13 7.467e-03 1.000 0.000e+00 1.430e-04 1.430e-04 pe = -3.000 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 530 Density (g/cm³) = 0.99754 - Volume (L) = 1.00338 + Volume (L) = 1.00337 Viscosity (mPa s) = 0.90075 Activity of water = 1.000 Ionic strength (mol/kgw) = 9.214e-03 @@ -1009,7 +1009,7 @@ N2(g) -2.13 7.467e-03 1.000 0.000e+00 1.430e-04 1.430e-04 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.537e-07 6.903e-07 -6.123 -6.161 -0.038 0.00 + H+ 7.537e-07 6.904e-07 -6.123 -6.161 -0.038 0.00 OH- 1.622e-08 1.466e-08 -7.790 -7.834 -0.044 -4.04 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.07 C(-4) 1.221e-03 @@ -1017,13 +1017,13 @@ C(-4) 1.221e-03 C(4) 1.643e-02 CO2 9.579e-03 9.592e-03 -2.019 -2.018 0.001 34.43 HCO3- 6.803e-03 6.178e-03 -2.167 -2.209 -0.042 24.64 - CaHCO3+ 4.289e-05 3.901e-05 -4.368 -4.409 -0.041 122.69 + CaHCO3+ 4.291e-05 3.902e-05 -4.367 -4.409 -0.041 9.72 (CO2)2 1.685e-06 1.689e-06 -5.773 -5.772 0.001 68.87 CaCO3 1.152e-06 1.155e-06 -5.938 -5.938 0.001 -14.60 CO3-2 6.171e-07 4.198e-07 -6.210 -6.377 -0.167 -3.68 Ca 2.453e-03 Ca+2 2.409e-03 1.638e-03 -2.618 -2.786 -0.168 -17.94 - CaHCO3+ 4.289e-05 3.901e-05 -4.368 -4.409 -0.041 122.69 + CaHCO3+ 4.291e-05 3.902e-05 -4.367 -4.409 -0.041 9.72 CaCO3 1.152e-06 1.155e-06 -5.938 -5.938 0.001 -14.60 CaOH+ 4.347e-10 3.935e-10 -9.362 -9.405 -0.043 (0) H(0) 6.743e-10 @@ -1093,7 +1093,7 @@ Component log P P phi Initial Final Delta CH4(g) -0.17 6.819e-01 0.998 0.000e+00 3.152e-02 3.152e-02 CO2(g) -0.43 3.697e-01 0.994 0.000e+00 1.709e-02 1.709e-02 H2O(g) -1.50 3.162e-02 0.993 0.000e+00 1.462e-03 1.462e-03 -N2(g) -1.77 1.683e-02 1.000 0.000e+00 7.780e-04 7.780e-04 +N2(g) -1.77 1.683e-02 1.000 0.000e+00 7.779e-04 7.779e-04 -----------------------------Solution composition------------------------------ @@ -1137,14 +1137,14 @@ C(-4) 1.071e-03 C(4) 2.029e-02 CO2 1.248e-02 1.250e-02 -1.904 -1.903 0.001 34.43 HCO3- 7.756e-03 7.015e-03 -2.110 -2.154 -0.044 24.65 - CaHCO3+ 4.799e-05 4.348e-05 -4.319 -4.362 -0.043 122.69 + CaHCO3+ 4.801e-05 4.350e-05 -4.319 -4.362 -0.043 9.72 (CO2)2 2.862e-06 2.869e-06 -5.543 -5.542 0.001 68.87 - CaCO3 1.119e-06 1.121e-06 -5.951 -5.950 0.001 -14.60 + CaCO3 1.118e-06 1.121e-06 -5.951 -5.950 0.001 -14.60 CO3-2 6.204e-07 4.152e-07 -6.207 -6.382 -0.174 -3.66 Ca 2.453e-03 Ca+2 2.404e-03 1.608e-03 -2.619 -2.794 -0.175 -17.92 - CaHCO3+ 4.799e-05 4.348e-05 -4.319 -4.362 -0.043 122.69 - CaCO3 1.119e-06 1.121e-06 -5.951 -5.950 0.001 -14.60 + CaHCO3+ 4.801e-05 4.350e-05 -4.319 -4.362 -0.043 9.72 + CaCO3 1.118e-06 1.121e-06 -5.951 -5.950 0.001 -14.60 CaOH+ 3.734e-10 3.365e-10 -9.428 -9.473 -0.045 (0) H(0) 6.106e-10 H2 3.053e-10 3.060e-10 -9.515 -9.514 0.001 28.61 @@ -1228,7 +1228,7 @@ N2(g) -1.60 2.537e-02 1.001 0.000e+00 2.608e-03 2.608e-03 pH = 6.071 Charge balance pe = -2.876 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 588 - Density (g/cm³) = 0.99767 + Density (g/cm³) = 0.99768 Volume (L) = 1.00356 Viscosity (mPa s) = 0.90362 Activity of water = 0.999 @@ -1257,13 +1257,13 @@ C(-4) 9.699e-04 C(4) 2.277e-02 CO2 1.436e-02 1.439e-02 -1.843 -1.842 0.001 34.43 HCO3- 8.350e-03 7.534e-03 -2.078 -2.123 -0.045 24.65 - CaHCO3+ 5.109e-05 4.618e-05 -4.292 -4.336 -0.044 122.69 + CaHCO3+ 5.112e-05 4.620e-05 -4.291 -4.335 -0.044 9.72 (CO2)2 3.789e-06 3.799e-06 -5.421 -5.420 0.001 68.87 CaCO3 1.109e-06 1.112e-06 -5.955 -5.954 0.001 -14.60 CO3-2 6.280e-07 4.162e-07 -6.202 -6.381 -0.179 -3.65 Ca 2.453e-03 Ca+2 2.401e-03 1.590e-03 -2.620 -2.799 -0.179 -17.92 - CaHCO3+ 5.109e-05 4.618e-05 -4.292 -4.336 -0.044 122.69 + CaHCO3+ 5.112e-05 4.620e-05 -4.291 -4.335 -0.044 9.72 CaCO3 1.109e-06 1.112e-06 -5.955 -5.954 0.001 -14.60 CaOH+ 3.456e-10 3.106e-10 -9.461 -9.508 -0.046 (0) H(0) 5.750e-10 @@ -1349,7 +1349,7 @@ N2(g) -1.51 3.068e-02 1.001 0.000e+00 6.827e-03 6.827e-03 pe = -2.853 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 600 Density (g/cm³) = 0.99770 - Volume (L) = 1.00365 + Volume (L) = 1.00364 Viscosity (mPa s) = 0.90420 Activity of water = 0.999 Ionic strength (mol/kgw) = 1.105e-02 @@ -1360,7 +1360,7 @@ N2(g) -1.51 3.068e-02 1.001 0.000e+00 6.827e-03 6.827e-03 Pressure (atm) = 1.10 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 20 + Iterations = 21 Total H = 1.110340e+02 Total O = 5.556019e+01 @@ -1377,15 +1377,15 @@ C(-4) 9.119e-04 C(4) 2.415e-02 CO2 1.543e-02 1.546e-02 -1.812 -1.811 0.001 34.43 HCO3- 8.653e-03 7.798e-03 -2.063 -2.108 -0.045 24.65 - CaHCO3+ 5.266e-05 4.754e-05 -4.279 -4.323 -0.044 122.69 + CaHCO3+ 5.268e-05 4.756e-05 -4.278 -4.323 -0.044 9.72 (CO2)2 4.373e-06 4.384e-06 -5.359 -5.358 0.001 68.87 CaCO3 1.100e-06 1.103e-06 -5.959 -5.958 0.001 -14.60 CO3-2 6.294e-07 4.151e-07 -6.201 -6.382 -0.181 -3.65 Ca 2.453e-03 Ca+2 2.399e-03 1.581e-03 -2.620 -2.801 -0.181 -17.91 - CaHCO3+ 5.266e-05 4.754e-05 -4.279 -4.323 -0.044 122.69 + CaHCO3+ 5.268e-05 4.756e-05 -4.278 -4.323 -0.044 9.72 CaCO3 1.100e-06 1.103e-06 -5.959 -5.958 0.001 -14.60 - CaOH+ 3.315e-10 2.977e-10 -9.479 -9.526 -0.047 (0) + CaOH+ 3.315e-10 2.976e-10 -9.479 -9.526 -0.047 (0) H(0) 5.562e-10 H2 2.781e-10 2.788e-10 -9.556 -9.555 0.001 28.61 N(-3) 3.805e-03 @@ -1468,7 +1468,7 @@ N2(g) -1.48 3.341e-02 1.001 0.000e+00 1.550e-02 1.550e-02 pH = 6.047 Charge balance pe = -2.841 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 605 - Density (g/cm³) = 0.99771 + Density (g/cm³) = 0.99772 Volume (L) = 1.00376 Viscosity (mPa s) = 0.90448 Activity of water = 0.999 @@ -1497,13 +1497,13 @@ C(-4) 8.824e-04 C(4) 2.483e-02 CO2 1.597e-02 1.600e-02 -1.797 -1.796 0.001 34.43 HCO3- 8.795e-03 7.921e-03 -2.056 -2.101 -0.045 24.65 - CaHCO3+ 5.338e-05 4.816e-05 -4.273 -4.317 -0.045 122.69 + CaHCO3+ 5.340e-05 4.818e-05 -4.272 -4.317 -0.045 9.72 (CO2)2 4.685e-06 4.697e-06 -5.329 -5.328 0.001 68.87 CaCO3 1.093e-06 1.096e-06 -5.961 -5.960 0.001 -14.60 CO3-2 6.288e-07 4.138e-07 -6.201 -6.383 -0.182 -3.64 Ca 2.453e-03 Ca+2 2.398e-03 1.577e-03 -2.620 -2.802 -0.182 -17.91 - CaHCO3+ 5.338e-05 4.816e-05 -4.273 -4.317 -0.045 122.69 + CaHCO3+ 5.340e-05 4.818e-05 -4.272 -4.317 -0.045 9.72 CaCO3 1.093e-06 1.096e-06 -5.961 -5.960 0.001 -14.60 CaOH+ 3.247e-10 2.913e-10 -9.489 -9.536 -0.047 (0) H(0) 5.469e-10 @@ -1589,7 +1589,7 @@ N2(g) -1.46 3.477e-02 1.001 0.000e+00 3.297e-02 3.297e-02 pe = -2.835 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 607 Density (g/cm³) = 0.99772 - Volume (L) = 1.00397 + Volume (L) = 1.00396 Viscosity (mPa s) = 0.90461 Activity of water = 0.999 Ionic strength (mol/kgw) = 1.126e-02 @@ -1617,13 +1617,13 @@ C(-4) 8.676e-04 C(4) 2.517e-02 CO2 1.624e-02 1.627e-02 -1.789 -1.789 0.001 34.43 HCO3- 8.862e-03 7.979e-03 -2.052 -2.098 -0.046 24.65 - CaHCO3+ 5.371e-05 4.845e-05 -4.270 -4.315 -0.045 122.69 + CaHCO3+ 5.373e-05 4.847e-05 -4.270 -4.315 -0.045 9.73 (CO2)2 4.845e-06 4.858e-06 -5.315 -5.314 0.001 68.87 CaCO3 1.090e-06 1.092e-06 -5.963 -5.962 0.001 -14.60 CO3-2 6.281e-07 4.129e-07 -6.202 -6.384 -0.182 -3.64 Ca 2.452e-03 Ca+2 2.397e-03 1.575e-03 -2.620 -2.803 -0.183 -17.91 - CaHCO3+ 5.371e-05 4.845e-05 -4.270 -4.315 -0.045 122.69 + CaHCO3+ 5.373e-05 4.847e-05 -4.270 -4.315 -0.045 9.73 CaCO3 1.090e-06 1.092e-06 -5.963 -5.962 0.001 -14.60 CaOH+ 3.213e-10 2.882e-10 -9.493 -9.540 -0.047 (0) H(0) 5.423e-10 @@ -1803,13 +1803,13 @@ C(-4) 8.710e-07 C(4) 5.991e-03 HCO3- 4.861e-03 4.455e-03 -2.313 -2.351 -0.038 24.63 CO2 1.090e-03 1.091e-03 -2.963 -2.962 0.000 34.43 - CaHCO3+ 3.191e-05 2.929e-05 -4.496 -4.533 -0.037 122.68 + CaHCO3+ 3.191e-05 2.929e-05 -4.496 -4.533 -0.037 9.71 CaCO3 5.482e-06 5.491e-06 -5.261 -5.260 0.001 -14.61 CO3-2 2.717e-06 1.918e-06 -5.566 -5.717 -0.151 -3.73 (CO2)2 2.182e-08 2.186e-08 -7.661 -7.660 0.001 68.87 Ca 2.453e-03 Ca+2 2.416e-03 1.704e-03 -2.617 -2.769 -0.152 -17.98 - CaHCO3+ 3.191e-05 2.929e-05 -4.496 -4.533 -0.037 122.68 + CaHCO3+ 3.191e-05 2.929e-05 -4.496 -4.533 -0.037 9.71 CaCO3 5.482e-06 5.491e-06 -5.261 -5.260 0.001 -14.61 CaOH+ 2.840e-09 2.596e-09 -8.547 -8.586 -0.039 (0) H(0) 1.898e-10 @@ -1923,13 +1923,13 @@ C(-4) 1.742e-06 C(4) 6.010e-03 HCO3- 4.864e-03 4.458e-03 -2.313 -2.351 -0.038 24.63 CO2 1.106e-03 1.108e-03 -2.956 -2.956 0.000 34.43 - CaHCO3+ 3.193e-05 2.930e-05 -4.496 -4.533 -0.037 122.68 + CaHCO3+ 3.193e-05 2.930e-05 -4.496 -4.533 -0.037 9.71 CaCO3 5.407e-06 5.416e-06 -5.267 -5.266 0.001 -14.61 CO3-2 2.680e-06 1.892e-06 -5.572 -5.723 -0.151 -3.73 (CO2)2 2.248e-08 2.252e-08 -7.648 -7.647 0.001 68.87 Ca 2.453e-03 Ca+2 2.416e-03 1.704e-03 -2.617 -2.769 -0.152 -17.98 - CaHCO3+ 3.193e-05 2.930e-05 -4.496 -4.533 -0.037 122.68 + CaHCO3+ 3.193e-05 2.930e-05 -4.496 -4.533 -0.037 9.71 CaCO3 5.407e-06 5.416e-06 -5.267 -5.266 0.001 -14.61 CaOH+ 2.799e-09 2.559e-09 -8.553 -8.592 -0.039 (0) H(0) 2.249e-10 @@ -2043,13 +2043,13 @@ C(-4) 2.613e-06 C(4) 6.029e-03 HCO3- 4.866e-03 4.460e-03 -2.313 -2.351 -0.038 24.63 CO2 1.123e-03 1.124e-03 -2.950 -2.949 0.000 34.43 - CaHCO3+ 3.194e-05 2.932e-05 -4.496 -4.533 -0.037 122.68 + CaHCO3+ 3.194e-05 2.932e-05 -4.496 -4.533 -0.037 9.71 CaCO3 5.334e-06 5.343e-06 -5.273 -5.272 0.001 -14.61 CO3-2 2.644e-06 1.867e-06 -5.578 -5.729 -0.151 -3.73 (CO2)2 2.315e-08 2.319e-08 -7.635 -7.635 0.001 68.87 Ca 2.453e-03 Ca+2 2.416e-03 1.704e-03 -2.617 -2.769 -0.152 -17.98 - CaHCO3+ 3.194e-05 2.932e-05 -4.496 -4.533 -0.037 122.68 + CaHCO3+ 3.194e-05 2.932e-05 -4.496 -4.533 -0.037 9.71 CaCO3 5.334e-06 5.343e-06 -5.273 -5.272 0.001 -14.61 CaOH+ 2.760e-09 2.523e-09 -8.559 -8.598 -0.039 (0) H(0) 2.480e-10 @@ -2135,7 +2135,7 @@ N2(g) -3.85 1.418e-04 1.000 0.000e+00 1.345e-04 1.345e-04 pe = -3.581 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 457 Density (g/cm³) = 0.99733 - Volume (L) = 1.00309 + Volume (L) = 1.00308 Viscosity (mPa s) = 0.89463 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.293e-03 @@ -2163,13 +2163,13 @@ C(-4) 3.485e-06 C(4) 6.048e-03 HCO3- 4.869e-03 4.463e-03 -2.313 -2.350 -0.038 24.63 CO2 1.139e-03 1.140e-03 -2.943 -2.943 0.000 34.43 - CaHCO3+ 3.196e-05 2.933e-05 -4.495 -4.533 -0.037 122.68 + CaHCO3+ 3.196e-05 2.933e-05 -4.495 -4.533 -0.037 9.71 CaCO3 5.263e-06 5.272e-06 -5.279 -5.278 0.001 -14.61 CO3-2 2.609e-06 1.842e-06 -5.583 -5.735 -0.151 -3.73 (CO2)2 2.383e-08 2.387e-08 -7.623 -7.622 0.001 68.87 Ca 2.453e-03 Ca+2 2.416e-03 1.704e-03 -2.617 -2.769 -0.152 -17.98 - CaHCO3+ 3.196e-05 2.933e-05 -4.495 -4.533 -0.037 122.68 + CaHCO3+ 3.196e-05 2.933e-05 -4.495 -4.533 -0.037 9.71 CaCO3 5.263e-06 5.272e-06 -5.279 -5.278 0.001 -14.61 CaOH+ 2.722e-09 2.488e-09 -8.565 -8.604 -0.039 (0) H(0) 2.656e-10 @@ -2283,13 +2283,13 @@ C(-4) 6.970e-06 C(4) 6.123e-03 HCO3- 4.879e-03 4.472e-03 -2.312 -2.349 -0.038 24.63 CO2 1.204e-03 1.206e-03 -2.919 -2.919 0.000 34.43 - CaHCO3+ 3.202e-05 2.939e-05 -4.495 -4.532 -0.037 122.68 + CaHCO3+ 3.202e-05 2.939e-05 -4.495 -4.532 -0.037 9.71 CaCO3 4.998e-06 5.006e-06 -5.301 -5.300 0.001 -14.61 CO3-2 2.479e-06 1.749e-06 -5.606 -5.757 -0.151 -3.73 (CO2)2 2.664e-08 2.668e-08 -7.574 -7.574 0.001 68.87 Ca 2.453e-03 Ca+2 2.416e-03 1.704e-03 -2.617 -2.769 -0.152 -17.98 - CaHCO3+ 3.202e-05 2.939e-05 -4.495 -4.532 -0.037 122.68 + CaHCO3+ 3.202e-05 2.939e-05 -4.495 -4.532 -0.037 9.71 CaCO3 4.998e-06 5.006e-06 -5.301 -5.300 0.001 -14.61 CaOH+ 2.580e-09 2.358e-09 -8.588 -8.627 -0.039 (0) H(0) 3.114e-10 @@ -2374,7 +2374,7 @@ N2(g) -3.24 5.690e-04 1.000 0.000e+00 5.396e-04 5.396e-04 pH = 6.878 Charge balance pe = -3.582 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 458 - Density (g/cm³) = 0.99733 + Density (g/cm³) = 0.99734 Volume (L) = 1.00310 Viscosity (mPa s) = 0.89486 Activity of water = 1.000 @@ -2403,13 +2403,13 @@ C(-4) 1.394e-05 C(4) 6.274e-03 HCO3- 4.900e-03 4.490e-03 -2.310 -2.348 -0.038 24.63 CO2 1.335e-03 1.336e-03 -2.875 -2.874 0.000 34.43 - CaHCO3+ 3.215e-05 2.950e-05 -4.493 -4.530 -0.037 122.68 + CaHCO3+ 3.215e-05 2.950e-05 -4.493 -4.530 -0.037 9.71 CaCO3 4.545e-06 4.553e-06 -5.342 -5.342 0.001 -14.61 CO3-2 2.256e-06 1.591e-06 -5.647 -5.798 -0.152 -3.73 (CO2)2 3.273e-08 3.278e-08 -7.485 -7.484 0.001 68.87 Ca 2.453e-03 Ca+2 2.416e-03 1.703e-03 -2.617 -2.769 -0.152 -17.98 - CaHCO3+ 3.215e-05 2.950e-05 -4.493 -4.530 -0.037 122.68 + CaHCO3+ 3.215e-05 2.950e-05 -4.493 -4.530 -0.037 9.71 CaCO3 4.545e-06 4.553e-06 -5.342 -5.342 0.001 -14.61 CaOH+ 2.337e-09 2.135e-09 -8.631 -8.671 -0.039 (0) H(0) 3.610e-10 @@ -2495,7 +2495,7 @@ N2(g) -2.94 1.137e-03 1.000 0.000e+00 1.079e-03 1.079e-03 pe = -3.536 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 460 Density (g/cm³) = 0.99734 - Volume (L) = 1.00313 + Volume (L) = 1.00312 Viscosity (mPa s) = 0.89515 Activity of water = 1.000 Ionic strength (mol/kgw) = 7.365e-03 @@ -2523,13 +2523,13 @@ C(-4) 2.788e-05 C(4) 6.577e-03 HCO3- 4.943e-03 4.529e-03 -2.306 -2.344 -0.038 24.63 CO2 1.596e-03 1.598e-03 -2.797 -2.797 0.000 34.43 - CaHCO3+ 3.241e-05 2.973e-05 -4.489 -4.527 -0.037 122.68 + CaHCO3+ 3.241e-05 2.973e-05 -4.489 -4.527 -0.037 9.71 CaCO3 3.864e-06 3.871e-06 -5.413 -5.412 0.001 -14.61 CO3-2 1.921e-06 1.354e-06 -5.716 -5.868 -0.152 -3.73 (CO2)2 4.677e-08 4.685e-08 -7.330 -7.329 0.001 68.87 Ca 2.453e-03 Ca+2 2.417e-03 1.702e-03 -2.617 -2.769 -0.152 -17.98 - CaHCO3+ 3.241e-05 2.973e-05 -4.489 -4.527 -0.037 122.68 + CaHCO3+ 3.241e-05 2.973e-05 -4.489 -4.527 -0.037 9.71 CaCO3 3.864e-06 3.871e-06 -5.413 -5.412 0.001 -14.61 CaOH+ 1.970e-09 1.800e-09 -8.706 -8.745 -0.039 (0) H(0) 4.105e-10 @@ -2643,13 +2643,13 @@ C(-4) 5.573e-05 C(4) 7.193e-03 HCO3- 5.037e-03 4.613e-03 -2.298 -2.336 -0.038 24.63 CO2 2.117e-03 2.120e-03 -2.674 -2.674 0.000 34.43 - CaHCO3+ 3.297e-05 3.023e-05 -4.482 -4.520 -0.038 122.68 + CaHCO3+ 3.297e-05 3.023e-05 -4.482 -4.520 -0.038 9.71 CaCO3 3.016e-06 3.022e-06 -5.521 -5.520 0.001 -14.61 CO3-2 1.505e-06 1.059e-06 -5.822 -5.975 -0.153 -3.73 (CO2)2 8.234e-08 8.248e-08 -7.084 -7.084 0.001 68.87 Ca 2.453e-03 Ca+2 2.417e-03 1.699e-03 -2.617 -2.770 -0.153 -17.97 - CaHCO3+ 3.297e-05 3.023e-05 -4.482 -4.520 -0.038 122.68 + CaHCO3+ 3.297e-05 3.023e-05 -4.482 -4.520 -0.038 9.71 CaCO3 3.016e-06 3.022e-06 -5.521 -5.520 0.001 -14.61 CaOH+ 1.511e-09 1.380e-09 -8.821 -8.860 -0.039 (0) H(0) 4.548e-10 @@ -2734,7 +2734,7 @@ N2(g) -2.36 4.407e-03 1.000 0.000e+00 4.181e-03 4.181e-03 pH = 6.540 Charge balance pe = -3.309 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 471 - Density (g/cm³) = 0.99737 + Density (g/cm³) = 0.99738 Volume (L) = 1.00326 Viscosity (mPa s) = 0.89657 Activity of water = 1.000 @@ -2763,13 +2763,13 @@ C(-4) 1.088e-04 C(4) 8.394e-03 HCO3- 5.246e-03 4.799e-03 -2.280 -2.319 -0.039 24.63 CO2 3.110e-03 3.114e-03 -2.507 -2.507 0.001 34.43 - CaHCO3+ 3.418e-05 3.131e-05 -4.466 -4.504 -0.038 122.68 + CaHCO3+ 3.418e-05 3.131e-05 -4.466 -4.504 -0.038 9.71 CaCO3 2.212e-06 2.216e-06 -5.655 -5.654 0.001 -14.60 CO3-2 1.114e-06 7.800e-07 -5.953 -6.108 -0.155 -3.72 (CO2)2 1.777e-07 1.780e-07 -6.750 -6.750 0.001 68.87 Ca 2.453e-03 Ca+2 2.416e-03 1.691e-03 -2.617 -2.772 -0.155 -17.97 - CaHCO3+ 3.418e-05 3.131e-05 -4.466 -4.504 -0.038 122.68 + CaHCO3+ 3.418e-05 3.131e-05 -4.466 -4.504 -0.038 9.71 CaCO3 2.212e-06 2.216e-06 -5.655 -5.654 0.001 -14.60 CaOH+ 1.066e-09 9.727e-10 -8.972 -9.012 -0.040 (0) H(0) 4.883e-10 @@ -2854,8 +2854,8 @@ N2(g) -2.06 8.751e-03 1.000 0.000e+00 8.306e-03 8.306e-03 pH = 6.360 Charge balance pe = -3.139 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 490 - Density (g/cm³) = 0.99742 - Volume (L) = 1.00345 + Density (g/cm³) = 0.99743 + Volume (L) = 1.00344 Viscosity (mPa s) = 0.89810 Activity of water = 1.000 Ionic strength (mol/kgw) = 8.155e-03 @@ -2883,13 +2883,13 @@ C(-4) 2.173e-04 C(4) 1.092e-02 HCO3- 5.738e-03 5.237e-03 -2.241 -2.281 -0.040 24.64 CO2 5.139e-03 5.146e-03 -2.289 -2.289 0.001 34.43 - CaHCO3+ 3.699e-05 3.381e-05 -4.432 -4.471 -0.039 122.68 + CaHCO3+ 3.699e-05 3.381e-05 -4.432 -4.471 -0.039 9.71 CaCO3 1.577e-06 1.580e-06 -5.802 -5.801 0.001 -14.60 CO3-2 8.103e-07 5.622e-07 -6.091 -6.250 -0.159 -3.71 (CO2)2 4.851e-07 4.860e-07 -6.314 -6.313 0.001 68.87 Ca 2.452e-03 Ca+2 2.414e-03 1.673e-03 -2.617 -2.776 -0.159 -17.96 - CaHCO3+ 3.699e-05 3.381e-05 -4.432 -4.471 -0.039 122.68 + CaHCO3+ 3.699e-05 3.381e-05 -4.432 -4.471 -0.039 9.71 CaCO3 1.577e-06 1.580e-06 -5.802 -5.801 0.001 -14.60 CaOH+ 6.985e-10 6.355e-10 -9.156 -9.197 -0.041 (0) H(0) 5.119e-10 @@ -3003,13 +3003,13 @@ C(-4) 4.337e-04 C(4) 1.604e-02 CO2 9.180e-03 9.193e-03 -2.037 -2.037 0.001 34.43 HCO3- 6.813e-03 6.187e-03 -2.167 -2.209 -0.042 24.64 - CaHCO3+ 4.294e-05 3.905e-05 -4.367 -4.408 -0.041 122.69 + CaHCO3+ 4.294e-05 3.905e-05 -4.367 -4.408 -0.041 9.72 (CO2)2 1.548e-06 1.551e-06 -5.810 -5.809 0.001 68.87 CaCO3 1.205e-06 1.207e-06 -5.919 -5.918 0.001 -14.60 CO3-2 6.457e-07 4.392e-07 -6.190 -6.357 -0.167 -3.69 Ca 2.452e-03 Ca+2 2.408e-03 1.636e-03 -2.618 -2.786 -0.168 -17.94 - CaHCO3+ 4.294e-05 3.905e-05 -4.367 -4.408 -0.041 122.69 + CaHCO3+ 4.294e-05 3.905e-05 -4.367 -4.408 -0.041 9.72 CaCO3 1.205e-06 1.207e-06 -5.919 -5.918 0.001 -14.60 CaOH+ 4.540e-10 4.109e-10 -9.343 -9.386 -0.043 (0) H(0) 5.262e-10 @@ -3094,8 +3094,8 @@ N2(g) -1.46 3.459e-02 1.001 0.000e+00 3.292e-02 3.292e-02 pH = 6.022 Charge balance pe = -2.811 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 611 - Density (g/cm³) = 0.99773 - Volume (L) = 1.00454 + Density (g/cm³) = 0.99774 + Volume (L) = 1.00453 Viscosity (mPa s) = 0.90495 Activity of water = 0.999 Ionic strength (mol/kgw) = 1.135e-02 @@ -3123,13 +3123,13 @@ C(-4) 8.641e-04 C(4) 2.622e-02 CO2 1.720e-02 1.723e-02 -1.764 -1.764 0.001 34.43 HCO3- 8.951e-03 8.057e-03 -2.048 -2.094 -0.046 24.66 - CaHCO3+ 5.413e-05 4.881e-05 -4.267 -4.311 -0.045 122.69 + CaHCO3+ 5.416e-05 4.884e-05 -4.266 -4.311 -0.045 9.73 (CO2)2 5.435e-06 5.450e-06 -5.265 -5.264 0.001 68.87 CaCO3 1.047e-06 1.049e-06 -5.980 -5.979 0.001 -14.60 CO3-2 6.054e-07 3.974e-07 -6.218 -6.401 -0.183 -3.64 Ca 2.451e-03 Ca+2 2.396e-03 1.572e-03 -2.621 -2.804 -0.183 -17.91 - CaHCO3+ 5.413e-05 4.881e-05 -4.267 -4.311 -0.045 122.69 + CaHCO3+ 5.416e-05 4.884e-05 -4.266 -4.311 -0.045 9.73 CaCO3 1.047e-06 1.049e-06 -5.980 -5.979 0.001 -14.60 CaOH+ 3.058e-10 2.742e-10 -9.515 -9.562 -0.047 (0) H(0) 5.340e-10 diff --git a/ex7.sel b/ex7.sel index ce9b0612..f83f48d4 100644 --- a/ex7.sel +++ b/ex7.sel @@ -15,7 +15,7 @@ 2 react 1.0000e+00 -0.3204 -0.2586 -1.4585 -7.4178 1.1000e+00 1.0429e+00 2.3104e+01 4.5606e-01 5.2388e-01 3.2968e-02 0.0000e+00 3 i_gas -99 -1.5001 -21.5512 -999.9990 -999.9990 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 3 react 1.0000e-03 -1.4939 -3.2574 -4.4529 -9.5994 6.4111e-02 6.0800e-02 2.3190e+01 3.0424e-02 5.2421e-04 3.3415e-05 0.0000e+00 - 3 react 2.0000e-03 -1.4874 -2.9563 -4.1504 -9.3376 6.5180e-02 6.1814e-02 2.3190e+01 3.0880e-02 1.0486e-03 6.7058e-05 0.0000e+00 + 3 react 2.0000e-03 -1.4874 -2.9563 -4.1504 -9.3376 6.5179e-02 6.1814e-02 2.3190e+01 3.0880e-02 1.0486e-03 6.7058e-05 0.0000e+00 3 react 3.0000e-03 -1.4811 -2.7802 -3.9735 -9.1856 6.6249e-02 6.2828e-02 2.3190e+01 3.1336e-02 1.5730e-03 1.0076e-04 0.0000e+00 3 react 4.0000e-03 -1.4748 -2.6552 -3.8481 -9.0783 6.7318e-02 6.3843e-02 2.3190e+01 3.1792e-02 2.0975e-03 1.3450e-04 0.0000e+00 3 react 8.0000e-03 -1.4506 -2.3542 -3.5462 -8.8236 7.1596e-02 6.7900e-02 2.3190e+01 3.3615e-02 4.1953e-03 2.6955e-04 0.0000e+00 From ced9d90841fad0369346fe9d084ca5166614097c Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Sat, 31 May 2025 16:52:37 -0600 Subject: [PATCH 304/384] Working on subtree merge --- .github/workflows/subtree.yml | 91 +++++++++++++++++++++++++++++++++++ 1 file changed, 91 insertions(+) create mode 100644 .github/workflows/subtree.yml diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml new file mode 100644 index 00000000..0b62116b --- /dev/null +++ b/.github/workflows/subtree.yml @@ -0,0 +1,91 @@ +name: Merge subtrees + +on: + push: + # branches: + # - master + # paths-ignore: + # - .github/workflows/subtree.yml + + workflow_dispatch: + +jobs: + sync-subtrees: + runs-on: ubuntu-latest + steps: + - name: Debug + run: | + echo "CI_SERVER_HOST=${CI_SERVER_HOST}" + echo "GROUP=${GROUP}" + echo "GITHUB_REPOSITORY=${GITHUB_REPOSITORY}" + echo "GITHUB_REF=${GITHUB_REF}" + echo "GITHUB_SHA=${GITHUB_SHA}" + echo "GITHUB_EVENT_NAME=${GITHUB_EVENT_NAME}" + echo "GITHUB_WORKFLOW=${GITHUB_WORKFLOW}" + echo "GITHUB_ACTOR=${GITHUB_ACTOR}" + exit -99 + - name: Checkout repository + uses: actions/checkout@v4 + with: + fetch-depth: 0 # Fetch all history for all branches + ref: master # Checkout the master-subtree branch + + - name: Set up Git + run: | + git config --global user.name "github-actions[bot]" + git config --global user.email "41898282+github-actions[bot]@users.noreply.github.com" + + - name: Sync subtrees + run: | + #!/bin/bash -ex + # + # iphreeqc/ git@${CI_SERVER_HOST}:${GROUP}/iphreeqc.git + # ├─database/ ├─git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-database.git* database* + # ├─examples/ │ └─examples + # │ ├─c/ │ ├─git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-commanuscript-cgfinal-examples-c.git* examples/c* + # │ ├─com/ │ ├─git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-commanuscript-cgfinal-examples-com.git* examples/com* + # │ └─fortran/ │ └─git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-COMManuscript-CGfinal-examples-fortran.git* examples/fortran* + # ├─phreeqc3-doc/ ├─git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-doc.git* phreeqc3-doc* + # ├─phreeqc3-examples/ ├─git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-examples.git* phreeqc3-examples* + # └─src/ └─git@${CI_SERVER_HOST}:${GROUP}-subtrees/iphreeqc-src.git% src% + # └─phreeqcpp/ └─git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src.git src/phreeqcpp + # └─common/ └─git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src-common.git src/phreeqcpp/common + + git_subtree() { + git subtree "${1}" --prefix="${2}" "${4}" master 2>&1 | grep -v "^[[:digit:]].*/[[:digit:]].*" + } + + declare -A urls=( \ + ["iphreeqc-src"]="git@${CI_SERVER_HOST}:${GROUP}-subtrees/iphreeqc-src.git" \ + ["phreeqc-commanuscript-cgfinal-examples-c"]="git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-commanuscript-cgfinal-examples-c.git" \ + ["phreeqc-commanuscript-cgfinal-examples-com"]="git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-commanuscript-cgfinal-examples-com.git" \ + ["phreeqc-COMManuscript-CGfinal-examples-fortran"]="git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-COMManuscript-CGfinal-examples-fortran.git" \ + ["phreeqc3-database"]="git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-database.git" \ + ["phreeqc3-doc"]="git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-doc.git" \ + ["phreeqc3-examples"]="git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-examples.git" \ + ) + + declare -A prefixes=( \ + ["iphreeqc-src"]="src" \ + ["phreeqc-commanuscript-cgfinal-examples-c"]="examples/c" \ + ["phreeqc-commanuscript-cgfinal-examples-com"]="examples/com" \ + ["phreeqc-COMManuscript-CGfinal-examples-fortran"]="examples/fortran" \ + ["phreeqc3-database"]="database" \ + ["phreeqc3-doc"]="phreeqc3-doc" \ + ["phreeqc3-examples"]="phreeqc3-examples" \ + ) + + export GIT_EDITOR=true + + for remote in "${!urls[@]}"; do + git subtree pull --prefix "${prefixes[$remote]}" --squash "${urls[$remote]}" master + done + + for remote in "${!urls[@]}"; do + git_subtree "push" "${prefixes[$remote]}" "$remote" "${urls[$remote]}" + done + + git push origin master + git status + + From 4ccb129917782c18526e235c98f428c55741385a Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Sat, 31 May 2025 16:55:39 -0600 Subject: [PATCH 305/384] Only run manually --- .github/workflows/subtree.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml index 0b62116b..37bbd862 100644 --- a/.github/workflows/subtree.yml +++ b/.github/workflows/subtree.yml @@ -1,7 +1,7 @@ name: Merge subtrees on: - push: + # push: # branches: # - master # paths-ignore: From cc60dbb6159c06779deb9ee1f5e8cb1401857b04 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Tue, 10 Jun 2025 12:19:04 -0600 Subject: [PATCH 306/384] Master subtree (#71) Still working on subtree merging --- .github/subtrees.json | 30 ++++++ .github/workflows/lint-subtrees.yml | 45 ++++++++ .github/workflows/subtree.yml | 160 ++++++++++++++++++---------- 3 files changed, 178 insertions(+), 57 deletions(-) create mode 100644 .github/subtrees.json create mode 100644 .github/workflows/lint-subtrees.yml diff --git a/.github/subtrees.json b/.github/subtrees.json new file mode 100644 index 00000000..edd92bba --- /dev/null +++ b/.github/subtrees.json @@ -0,0 +1,30 @@ +{ + "iphreeqc-src": { + "prefix": "src", + "url": "https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}-subtrees/iphreeqc-src.git" + }, + "phreeqc-commanuscript-cgfinal-examples-c": { + "prefix": "examples/c", + "url": "https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}-subtrees/phreeqc-commanuscript-cgfinal-examples-c.git" + }, + "phreeqc-commanuscript-cgfinal-examples-com": { + "prefix": "examples/com", + "url": "https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}-subtrees/phreeqc-commanuscript-cgfinal-examples-com.git" + }, + "phreeqc-COMManuscript-CGfinal-examples-fortran": { + "prefix": "examples/fortran", + "url": "https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}-subtrees/phreeqc-COMManuscript-CGfinal-examples-fortran.git" + }, + "phreeqc3-database": { + "prefix": "database", + "url": "https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}-subtrees/phreeqc3-database.git" + }, + "phreeqc3-doc": { + "prefix": "phreeqc3-doc", + "url": "https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}-subtrees/phreeqc3-doc.git" + }, + "phreeqc3-examples": { + "prefix": "phreeqc3-examples", + "url": "https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}-subtrees/phreeqc3-examples.git" + } +} diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..5d1c9b22 --- /dev/null +++ b/.github/workflows/lint-subtrees.yml @@ -0,0 +1,45 @@ +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + steps: + - name: Checkout PR code + uses: actions/checkout@v4 + + - name: Validate subtrees.json + run: | + set -e + + FILE=".github/subtrees.json" + + echo "Validating $FILE..." + + # Ensure it's valid JSON + jq empty "$FILE" + + # Check required structure + missing=$(jq 'to_entries | map(select(.value.prefix == null or .value.url == null)) | length' "$FILE") + if [ "$missing" -ne 0 ]; then + echo "❌ Some subtree entries are missing 'prefix' or 'url'" + jq 'to_entries | map(select(.value.prefix == null or .value.url == null))' "$FILE" + exit 1 + fi + + # Optional: check for bad URLs + bad_urls=$(jq -r 'to_entries[] | select(.value.url | test("https://.+\\.git$") | not) | .key' "$FILE") + if [ -n "$bad_urls" ]; then + echo "❌ Invalid URLs found for the following subtrees:" + echo "$bad_urls" + exit 1 + fi + + echo "✅ subtrees.json looks good!" diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml index 37bbd862..cde071fd 100644 --- a/.github/workflows/subtree.yml +++ b/.github/workflows/subtree.yml @@ -1,68 +1,107 @@ -name: Merge subtrees +name: Sync subtrees on: - # push: - # branches: - # - master - # paths-ignore: - # - .github/workflows/subtree.yml - workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: true + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +env: + CI_SERVER_HOST: github.com + GROUP: ${{ github.repository_owner }} + AUTH_TOKEN: "x-access-token:${{ secrets.X_ACCESS_TOKEN }}" + DEFAULT_REF: ${{ github.event.repository.default_branch }} + TEST_REF: _gha-${{ github.event.repository.name }}-sync-subtrees-${{ github.run_number }} jobs: sync-subtrees: runs-on: ubuntu-latest - steps: - - name: Debug - run: | - echo "CI_SERVER_HOST=${CI_SERVER_HOST}" - echo "GROUP=${GROUP}" - echo "GITHUB_REPOSITORY=${GITHUB_REPOSITORY}" - echo "GITHUB_REF=${GITHUB_REF}" - echo "GITHUB_SHA=${GITHUB_SHA}" - echo "GITHUB_EVENT_NAME=${GITHUB_EVENT_NAME}" - echo "GITHUB_WORKFLOW=${GITHUB_WORKFLOW}" - echo "GITHUB_ACTOR=${GITHUB_ACTOR}" - exit -99 - - name: Checkout repository - uses: actions/checkout@v4 - with: - fetch-depth: 0 # Fetch all history for all branches - ref: master # Checkout the master-subtree branch + container: + image: buildpack-deps:bionic-scm - - name: Set up Git + steps: + - name: Install GitHub CLI + run: | + apt-get update && apt-get install -y curl unzip + curl -fsSL https://github.com/cli/cli/releases/download/v2.74.0/gh_2.74.0_linux_amd64.tar.gz | tar -xz + cp gh_*/bin/gh /usr/local/bin + gh --version + + - name: Print Configuration + run: | + echo "testMerge: ${{ github.event.inputs.testMerge }}" + echo "dryRun: ${{ github.event.inputs.dryRun }}" + echo "DEFAULT_REF: ${DEFAULT_REF}" + echo "TEST_REF: ${TEST_REF}" + + - name: Verify AUTH_TOKEN + run: | + expected="b7ff89ebb635bba5eac9652f5eae8a5123346c1da6ef42852d4494f58b0bf0cb" + actual=$(echo "$AUTH_TOKEN" | sha256sum | awk '{print $1}' | tr -d '\r') + if [ "$actual" != "$expected" ]; then + echo "ERROR: Invalid AUTH_TOKEN" >&2 + exit 1 + fi + + - name: System Information + run: | + uname -a + git --version + gh --version + printenv | sort + + - name: Clone repository + run: | + git clone https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}/${{ github.event.repository.name }}.git + + - name: Configure Git & Set REF run: | git config --global user.name "github-actions[bot]" git config --global user.email "41898282+github-actions[bot]@users.noreply.github.com" - - name: Sync subtrees - run: | - #!/bin/bash -ex - # - # iphreeqc/ git@${CI_SERVER_HOST}:${GROUP}/iphreeqc.git - # ├─database/ ├─git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-database.git* database* - # ├─examples/ │ └─examples - # │ ├─c/ │ ├─git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-commanuscript-cgfinal-examples-c.git* examples/c* - # │ ├─com/ │ ├─git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-commanuscript-cgfinal-examples-com.git* examples/com* - # │ └─fortran/ │ └─git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-COMManuscript-CGfinal-examples-fortran.git* examples/fortran* - # ├─phreeqc3-doc/ ├─git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-doc.git* phreeqc3-doc* - # ├─phreeqc3-examples/ ├─git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-examples.git* phreeqc3-examples* - # └─src/ └─git@${CI_SERVER_HOST}:${GROUP}-subtrees/iphreeqc-src.git% src% - # └─phreeqcpp/ └─git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src.git src/phreeqcpp - # └─common/ └─git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src-common.git src/phreeqcpp/common + if [ "${{ github.event.inputs.testMerge }}" = "true" ]; then + echo "REF=${TEST_REF}" >> $GITHUB_ENV + else + echo "REF=${DEFAULT_REF}" >> $GITHUB_ENV + fi - git_subtree() { - git subtree "${1}" --prefix="${2}" "${4}" master 2>&1 | grep -v "^[[:digit:]].*/[[:digit:]].*" - } + - name: Ensure REF is set + run: | + if [ -z "${REF}" ]; then + echo "ERROR: REF not set" >&2 + exit 1 + fi + echo "Using REF: ${REF}" + + - name: Checkout branch + run: | + cd ${{ github.event.repository.name }} + git fetch origin + git checkout ${REF} || git checkout -b ${REF} + + - name: Sync subtrees + shell: bash + run: | + # See .gitlab-ci.yml for the original script. + set -ex + cd ${{ github.event.repository.name }} declare -A urls=( \ - ["iphreeqc-src"]="git@${CI_SERVER_HOST}:${GROUP}-subtrees/iphreeqc-src.git" \ - ["phreeqc-commanuscript-cgfinal-examples-c"]="git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-commanuscript-cgfinal-examples-c.git" \ - ["phreeqc-commanuscript-cgfinal-examples-com"]="git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-commanuscript-cgfinal-examples-com.git" \ - ["phreeqc-COMManuscript-CGfinal-examples-fortran"]="git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-COMManuscript-CGfinal-examples-fortran.git" \ - ["phreeqc3-database"]="git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-database.git" \ - ["phreeqc3-doc"]="git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-doc.git" \ - ["phreeqc3-examples"]="git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-examples.git" \ + ["iphreeqc-src"]="https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}-subtrees/iphreeqc-src.git" \ + ["phreeqc-commanuscript-cgfinal-examples-c"]="https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}-subtrees/phreeqc-commanuscript-cgfinal-examples-c.git" \ + ["phreeqc-commanuscript-cgfinal-examples-com"]="https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}-subtrees/phreeqc-commanuscript-cgfinal-examples-com.git" \ + ["phreeqc-COMManuscript-CGfinal-examples-fortran"]="https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}-subtrees/phreeqc-COMManuscript-CGfinal-examples-fortran.git" \ + ["phreeqc3-database"]="https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}-subtrees/phreeqc3-database.git" \ + ["phreeqc3-doc"]="https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}-subtrees/phreeqc3-doc.git" \ + ["phreeqc3-examples"]="https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}-subtrees/phreeqc3-examples.git" \ ) declare -A prefixes=( \ @@ -77,15 +116,22 @@ jobs: export GIT_EDITOR=true + echo "---- Pulling subtrees ----" for remote in "${!urls[@]}"; do - git subtree pull --prefix "${prefixes[$remote]}" --squash "${urls[$remote]}" master + git subtree pull --prefix "${prefixes[$remote]}" --squash "${urls[$remote]}" ${DEFAULT_REF} done + echo "---- Completed subtree pulls ----" + + if [ "${{ github.event.inputs.dryRun }}" = "true" ]; then + echo "Dry run enabled: skipping pushes" + exit 0 + fi + + echo "---- Pushing changes to subtrees ----" for remote in "${!urls[@]}"; do - git_subtree "push" "${prefixes[$remote]}" "$remote" "${urls[$remote]}" - done - - git push origin master - git status - + git subtree push --prefix "${prefixes[$remote]}" "${urls[$remote]}" "${REF}" > /dev/null 2>&1 || echo "Failed to push to ${remote}" >&2 + done + echo "Pushing to origin..." + git push origin "${REF}" From d74ca5abbe773b0d4cd697996be77ebca795d080 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Fri, 20 Jun 2025 18:19:03 -0600 Subject: [PATCH 307/384] Changed to ssh protocol --- .github/subtrees.json | 32 ++++++++++++++++---------------- 1 file changed, 16 insertions(+), 16 deletions(-) diff --git a/.github/subtrees.json b/.github/subtrees.json index edd92bba..1d300735 100644 --- a/.github/subtrees.json +++ b/.github/subtrees.json @@ -1,30 +1,30 @@ -{ - "iphreeqc-src": { +[ + { "prefix": "src", - "url": "https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}-subtrees/iphreeqc-src.git" + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/iphreeqc-src.git" }, - "phreeqc-commanuscript-cgfinal-examples-c": { + { "prefix": "examples/c", - "url": "https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}-subtrees/phreeqc-commanuscript-cgfinal-examples-c.git" + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-commanuscript-cgfinal-examples-c.git" }, - "phreeqc-commanuscript-cgfinal-examples-com": { + { "prefix": "examples/com", - "url": "https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}-subtrees/phreeqc-commanuscript-cgfinal-examples-com.git" + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-commanuscript-cgfinal-examples-com.git" }, - "phreeqc-COMManuscript-CGfinal-examples-fortran": { + { "prefix": "examples/fortran", - "url": "https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}-subtrees/phreeqc-COMManuscript-CGfinal-examples-fortran.git" + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-COMManuscript-CGfinal-examples-fortran.git" }, - "phreeqc3-database": { + { "prefix": "database", - "url": "https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}-subtrees/phreeqc3-database.git" + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-database.git" }, - "phreeqc3-doc": { + { "prefix": "phreeqc3-doc", - "url": "https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}-subtrees/phreeqc3-doc.git" + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-doc.git" }, - "phreeqc3-examples": { + { "prefix": "phreeqc3-examples", - "url": "https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}-subtrees/phreeqc3-examples.git" + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-examples.git" } -} +] \ No newline at end of file From d53f91d57b14871eeb86f0e6b7a34c0141449f4b Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Wed, 25 Jun 2025 13:04:41 -0600 Subject: [PATCH 308/384] Refactor GitHub Actions workflows for subtree management and add subtrees.json configuration --- .github/workflows/lint-subtrees.yml | 39 +--- .github/workflows/subtree.yml | 257 ++++++++++++++---------- src/.github/subtrees.json | 6 + src/.github/workflows/lint-subtrees.yml | 20 ++ 4 files changed, 189 insertions(+), 133 deletions(-) create mode 100644 src/.github/subtrees.json create mode 100644 src/.github/workflows/lint-subtrees.yml diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml index 5d1c9b22..afa1f2f4 100644 --- a/.github/workflows/lint-subtrees.yml +++ b/.github/workflows/lint-subtrees.yml @@ -4,42 +4,17 @@ on: pull_request: paths: - '.github/subtrees.json' - workflow_call: workflow_dispatch: jobs: lint-subtrees: runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: ${{ github.repository_owner }} + SSH_PRIVATE_KEY: ${{ secrets.SSH_PRIVATE_KEY }} steps: - - name: Checkout PR code - uses: actions/checkout@v4 - - - name: Validate subtrees.json - run: | - set -e - - FILE=".github/subtrees.json" - - echo "Validating $FILE..." - - # Ensure it's valid JSON - jq empty "$FILE" - - # Check required structure - missing=$(jq 'to_entries | map(select(.value.prefix == null or .value.url == null)) | length' "$FILE") - if [ "$missing" -ne 0 ]; then - echo "❌ Some subtree entries are missing 'prefix' or 'url'" - jq 'to_entries | map(select(.value.prefix == null or .value.url == null))' "$FILE" - exit 1 - fi - - # Optional: check for bad URLs - bad_urls=$(jq -r 'to_entries[] | select(.value.url | test("https://.+\\.git$") | not) | .key' "$FILE") - if [ -n "$bad_urls" ]; then - echo "❌ Invalid URLs found for the following subtrees:" - echo "$bad_urls" - exit 1 - fi - - echo "✅ subtrees.json looks good!" + - uses: usgs-coupled/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml index cde071fd..08fb843a 100644 --- a/.github/workflows/subtree.yml +++ b/.github/workflows/subtree.yml @@ -1,4 +1,4 @@ -name: Sync subtrees +name: Sync Subtrees on: workflow_dispatch: @@ -14,124 +14,179 @@ on: default: false type: boolean -env: - CI_SERVER_HOST: github.com - GROUP: ${{ github.repository_owner }} - AUTH_TOKEN: "x-access-token:${{ secrets.X_ACCESS_TOKEN }}" - DEFAULT_REF: ${{ github.event.repository.default_branch }} - TEST_REF: _gha-${{ github.event.repository.name }}-sync-subtrees-${{ github.run_number }} - jobs: sync-subtrees: runs-on: ubuntu-latest - container: - image: buildpack-deps:bionic-scm - steps: - - name: Install GitHub CLI - run: | - apt-get update && apt-get install -y curl unzip - curl -fsSL https://github.com/cli/cli/releases/download/v2.74.0/gh_2.74.0_linux_amd64.tar.gz | tar -xz - cp gh_*/bin/gh /usr/local/bin - gh --version + - name: Run sync-subtrees-action + uses: usgs-coupled/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repoName: ${{ github.event.repository.name }} + defaultRef: ${{ github.event.repository.default_branch }} + runNumber: ${{ github.run_number }} + sshKey: ${{ secrets.SSH_PRIVATE_KEY }} + repoOwner: ${{ github.repository_owner }} - - name: Print Configuration - run: | - echo "testMerge: ${{ github.event.inputs.testMerge }}" - echo "dryRun: ${{ github.event.inputs.dryRun }}" - echo "DEFAULT_REF: ${DEFAULT_REF}" - echo "TEST_REF: ${TEST_REF}" + # old-sync-subtrees: + # runs-on: ubuntu-latest + # container: + # image: buildpack-deps:bionic-scm - - name: Verify AUTH_TOKEN - run: | - expected="b7ff89ebb635bba5eac9652f5eae8a5123346c1da6ef42852d4494f58b0bf0cb" - actual=$(echo "$AUTH_TOKEN" | sha256sum | awk '{print $1}' | tr -d '\r') - if [ "$actual" != "$expected" ]; then - echo "ERROR: Invalid AUTH_TOKEN" >&2 - exit 1 - fi + # steps: + # - name: Test SSH Connection + # shell: bash + # env: + # SSH_KEY: ${{ secrets.SSH_PRIVATE_KEY }} + # run: | + # set -euo pipefail + # # echo "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" + # # echo "USER: $USER" + # echo "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" + # echo "HOME: $HOME" + # echo "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" + # eval echo "~" + # echo "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" + # ## SSH_DIR="/root/.ssh" + # SSH_DIR="$(getent passwd $(whoami) | cut -d: -f6)/.ssh" + # KEY_PATH="${SSH_DIR}/id_ed25519" + # mkdir -p "$SSH_DIR" + # chmod 700 "$SSH_DIR" + # echo "$SSH_KEY" > "$KEY_PATH" + # chmod 600 "$KEY_PATH" + # unset SSH_KEY + # ssh-keyscan -t ed25519 github.com >> "${SSH_DIR}/known_hosts" 2>/dev/null + # git clone git@github.com:usgs-coupled/iphreeqc.git + # echo "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" + # ssh -Tv git@github.com - - name: System Information - run: | - uname -a - git --version - gh --version - printenv | sort - - name: Clone repository - run: | - git clone https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}/${{ github.event.repository.name }}.git - - name: Configure Git & Set REF - run: | - git config --global user.name "github-actions[bot]" - git config --global user.email "41898282+github-actions[bot]@users.noreply.github.com" +# name: Sync subtrees - if [ "${{ github.event.inputs.testMerge }}" = "true" ]; then - echo "REF=${TEST_REF}" >> $GITHUB_ENV - else - echo "REF=${DEFAULT_REF}" >> $GITHUB_ENV - fi +# on: +# workflow_dispatch: +# inputs: +# dryRun: +# description: 'If true, don’t push any changes (for testing only).' +# required: true +# default: true +# type: boolean +# testMerge: +# description: 'Run in test mode, pushing to a test branch.' +# required: true +# default: false +# type: boolean - - name: Ensure REF is set - run: | - if [ -z "${REF}" ]; then - echo "ERROR: REF not set" >&2 - exit 1 - fi - echo "Using REF: ${REF}" +# env: +# CI_SERVER_HOST: github.com +# GROUP: ${{ github.repository_owner }} +# AUTH_TOKEN: "x-access-token:${{ secrets.X_ACCESS_TOKEN }}" +# DEFAULT_REF: ${{ github.event.repository.default_branch }} +# TEST_REF: _gha-${{ github.event.repository.name }}-sync-subtrees-${{ github.run_number }} - - name: Checkout branch - run: | - cd ${{ github.event.repository.name }} - git fetch origin - git checkout ${REF} || git checkout -b ${REF} +# jobs: +# sync-subtrees: +# runs-on: ubuntu-latest +# container: +# image: buildpack-deps:bionic-scm + +# steps: +# - name: Install GitHub CLI +# run: | +# apt-get update && apt-get install -y curl gettext jq unzip +# curl -fsSL https://github.com/cli/cli/releases/download/v2.74.0/gh_2.74.0_linux_amd64.tar.gz | tar -xz +# cp gh_*/bin/gh /usr/local/bin +# gh --version + +# - name: Print Configuration +# run: | +# echo "testMerge: ${{ github.event.inputs.testMerge }}" +# echo "dryRun: ${{ github.event.inputs.dryRun }}" +# echo "DEFAULT_REF: ${DEFAULT_REF}" +# echo "TEST_REF: ${TEST_REF}" + +# - name: Verify AUTH_TOKEN +# run: | +# expected="b7ff89ebb635bba5eac9652f5eae8a5123346c1da6ef42852d4494f58b0bf0cb" +# actual=$(echo "$AUTH_TOKEN" | sha256sum | awk '{print $1}' | tr -d '\r') +# if [ "$actual" != "$expected" ]; then +# echo "ERROR: Invalid AUTH_TOKEN" >&2 +# exit 1 +# fi + +# - name: System Information +# run: | +# uname -a +# git --version +# gh --version +# printenv | sort + +# - name: Clone repository +# run: | +# git clone https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}/${{ github.event.repository.name }}.git + +# - name: Configure Git & Set REF +# run: | +# git config --global user.name "github-actions[bot]" +# git config --global user.email "41898282+github-actions[bot]@users.noreply.github.com" + +# if [ "${{ github.event.inputs.testMerge }}" = "true" ]; then +# echo "REF=${TEST_REF}" >> $GITHUB_ENV +# else +# echo "REF=${DEFAULT_REF}" >> $GITHUB_ENV +# fi + +# - name: Ensure REF is set +# run: | +# if [ -z "${REF}" ]; then +# echo "ERROR: REF not set" >&2 +# exit 1 +# fi +# echo "Using REF: ${REF}" + +# - name: Checkout branch +# run: | +# cd ${{ github.event.repository.name }} +# git fetch origin +# git checkout ${REF} || git checkout -b ${REF} - - name: Sync subtrees - shell: bash - run: | - # See .gitlab-ci.yml for the original script. - set -ex - cd ${{ github.event.repository.name }} +# - name: Sync subtrees +# shell: bash +# run: | +# # See .gitlab-ci.yml for the original script. +# set -euo pipefail - declare -A urls=( \ - ["iphreeqc-src"]="https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}-subtrees/iphreeqc-src.git" \ - ["phreeqc-commanuscript-cgfinal-examples-c"]="https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}-subtrees/phreeqc-commanuscript-cgfinal-examples-c.git" \ - ["phreeqc-commanuscript-cgfinal-examples-com"]="https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}-subtrees/phreeqc-commanuscript-cgfinal-examples-com.git" \ - ["phreeqc-COMManuscript-CGfinal-examples-fortran"]="https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}-subtrees/phreeqc-COMManuscript-CGfinal-examples-fortran.git" \ - ["phreeqc3-database"]="https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}-subtrees/phreeqc3-database.git" \ - ["phreeqc3-doc"]="https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}-subtrees/phreeqc3-doc.git" \ - ["phreeqc3-examples"]="https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}-subtrees/phreeqc3-examples.git" \ - ) +# cd ${{ github.event.repository.name }} - declare -A prefixes=( \ - ["iphreeqc-src"]="src" \ - ["phreeqc-commanuscript-cgfinal-examples-c"]="examples/c" \ - ["phreeqc-commanuscript-cgfinal-examples-com"]="examples/com" \ - ["phreeqc-COMManuscript-CGfinal-examples-fortran"]="examples/fortran" \ - ["phreeqc3-database"]="database" \ - ["phreeqc3-doc"]="phreeqc3-doc" \ - ["phreeqc3-examples"]="phreeqc3-examples" \ - ) +# JSON=".github/subtrees.json" - export GIT_EDITOR=true +# export GIT_EDITOR=true - echo "---- Pulling subtrees ----" - for remote in "${!urls[@]}"; do - git subtree pull --prefix "${prefixes[$remote]}" --squash "${urls[$remote]}" ${DEFAULT_REF} - done +# # Read subtrees config +# mapfile -t entries < <(jq -r 'to_entries[] | "\(.value.prefix) \(.value.url)"' "${JSON}" | envsubst) - echo "---- Completed subtree pulls ----" +# for entry in "${entries[@]}"; do +# read -r prefix url <<< "$entry" +# echo "🧩 Pulling: $url into $prefix" +# git subtree pull --prefix "$prefix" --squash "$url" "$DEFAULT_REF" +# done - if [ "${{ github.event.inputs.dryRun }}" = "true" ]; then - echo "Dry run enabled: skipping pushes" - exit 0 - fi +# if [ "${{ github.event.inputs.dryRun }}" = "true" ]; then +# echo "✅ Pull complete. Dry run enabled: skipping pushes" +# exit 0 +# fi - echo "---- Pushing changes to subtrees ----" - for remote in "${!urls[@]}"; do - git subtree push --prefix "${prefixes[$remote]}" "${urls[$remote]}" "${REF}" > /dev/null 2>&1 || echo "Failed to push to ${remote}" >&2 - done +# echo "✅ Pull complete. Pushing subtrees back to remotes..." - echo "Pushing to origin..." - git push origin "${REF}" +# for entry in "${entries[@]}"; do +# read -r prefix url <<< "$entry" +# echo "📤 Pushing $prefix to $url (branch: $REF)" +# git subtree push --prefix "$prefix" "$url" "$REF" > /dev/null 2>&1 || echo "⚠️ Push failed for $prefix" >&2 +# done + +# echo "Pushing to origin..." +# git push origin "${REF}" + +# echo "✅ Sync complete." diff --git a/src/.github/subtrees.json b/src/.github/subtrees.json new file mode 100644 index 00000000..3b8b0086 --- /dev/null +++ b/src/.github/subtrees.json @@ -0,0 +1,6 @@ +[ + { + "prefix": "phreeqcpp", + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src.git" + } +] \ No newline at end of file diff --git a/src/.github/workflows/lint-subtrees.yml b/src/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..afa1f2f4 --- /dev/null +++ b/src/.github/workflows/lint-subtrees.yml @@ -0,0 +1,20 @@ +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: ${{ github.repository_owner }} + SSH_PRIVATE_KEY: ${{ secrets.SSH_PRIVATE_KEY }} + steps: + - uses: usgs-coupled/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} From 5f0ff470f63040afd9c2024e45670f001e66b672 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Wed, 25 Jun 2025 13:04:41 -0600 Subject: [PATCH 309/384] Refactor GitHub Actions workflows for subtree management and add subtrees.json configuration --- .github/subtrees.json | 6 ++++++ .github/workflows/lint-subtrees.yml | 20 ++++++++++++++++++++ 2 files changed, 26 insertions(+) create mode 100644 .github/subtrees.json create mode 100644 .github/workflows/lint-subtrees.yml diff --git a/.github/subtrees.json b/.github/subtrees.json new file mode 100644 index 00000000..3b8b0086 --- /dev/null +++ b/.github/subtrees.json @@ -0,0 +1,6 @@ +[ + { + "prefix": "phreeqcpp", + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src.git" + } +] \ No newline at end of file diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..afa1f2f4 --- /dev/null +++ b/.github/workflows/lint-subtrees.yml @@ -0,0 +1,20 @@ +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: ${{ github.repository_owner }} + SSH_PRIVATE_KEY: ${{ secrets.SSH_PRIVATE_KEY }} + steps: + - uses: usgs-coupled/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} From 841ae669d6a9797c2929efd1666769618662df78 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Wed, 25 Jun 2025 13:12:03 -0600 Subject: [PATCH 310/384] Cleanup --- .github/workflows/subtree.yml | 162 ---------------------------------- 1 file changed, 162 deletions(-) diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml index 08fb843a..43011de4 100644 --- a/.github/workflows/subtree.yml +++ b/.github/workflows/subtree.yml @@ -28,165 +28,3 @@ jobs: runNumber: ${{ github.run_number }} sshKey: ${{ secrets.SSH_PRIVATE_KEY }} repoOwner: ${{ github.repository_owner }} - - # old-sync-subtrees: - # runs-on: ubuntu-latest - # container: - # image: buildpack-deps:bionic-scm - - # steps: - # - name: Test SSH Connection - # shell: bash - # env: - # SSH_KEY: ${{ secrets.SSH_PRIVATE_KEY }} - # run: | - # set -euo pipefail - # # echo "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" - # # echo "USER: $USER" - # echo "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" - # echo "HOME: $HOME" - # echo "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" - # eval echo "~" - # echo "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" - # ## SSH_DIR="/root/.ssh" - # SSH_DIR="$(getent passwd $(whoami) | cut -d: -f6)/.ssh" - # KEY_PATH="${SSH_DIR}/id_ed25519" - # mkdir -p "$SSH_DIR" - # chmod 700 "$SSH_DIR" - # echo "$SSH_KEY" > "$KEY_PATH" - # chmod 600 "$KEY_PATH" - # unset SSH_KEY - # ssh-keyscan -t ed25519 github.com >> "${SSH_DIR}/known_hosts" 2>/dev/null - # git clone git@github.com:usgs-coupled/iphreeqc.git - # echo "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" - # ssh -Tv git@github.com - - - -# name: Sync subtrees - -# on: -# workflow_dispatch: -# inputs: -# dryRun: -# description: 'If true, don’t push any changes (for testing only).' -# required: true -# default: true -# type: boolean -# testMerge: -# description: 'Run in test mode, pushing to a test branch.' -# required: true -# default: false -# type: boolean - -# env: -# CI_SERVER_HOST: github.com -# GROUP: ${{ github.repository_owner }} -# AUTH_TOKEN: "x-access-token:${{ secrets.X_ACCESS_TOKEN }}" -# DEFAULT_REF: ${{ github.event.repository.default_branch }} -# TEST_REF: _gha-${{ github.event.repository.name }}-sync-subtrees-${{ github.run_number }} - -# jobs: -# sync-subtrees: -# runs-on: ubuntu-latest -# container: -# image: buildpack-deps:bionic-scm - -# steps: -# - name: Install GitHub CLI -# run: | -# apt-get update && apt-get install -y curl gettext jq unzip -# curl -fsSL https://github.com/cli/cli/releases/download/v2.74.0/gh_2.74.0_linux_amd64.tar.gz | tar -xz -# cp gh_*/bin/gh /usr/local/bin -# gh --version - -# - name: Print Configuration -# run: | -# echo "testMerge: ${{ github.event.inputs.testMerge }}" -# echo "dryRun: ${{ github.event.inputs.dryRun }}" -# echo "DEFAULT_REF: ${DEFAULT_REF}" -# echo "TEST_REF: ${TEST_REF}" - -# - name: Verify AUTH_TOKEN -# run: | -# expected="b7ff89ebb635bba5eac9652f5eae8a5123346c1da6ef42852d4494f58b0bf0cb" -# actual=$(echo "$AUTH_TOKEN" | sha256sum | awk '{print $1}' | tr -d '\r') -# if [ "$actual" != "$expected" ]; then -# echo "ERROR: Invalid AUTH_TOKEN" >&2 -# exit 1 -# fi - -# - name: System Information -# run: | -# uname -a -# git --version -# gh --version -# printenv | sort - -# - name: Clone repository -# run: | -# git clone https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}/${{ github.event.repository.name }}.git - -# - name: Configure Git & Set REF -# run: | -# git config --global user.name "github-actions[bot]" -# git config --global user.email "41898282+github-actions[bot]@users.noreply.github.com" - -# if [ "${{ github.event.inputs.testMerge }}" = "true" ]; then -# echo "REF=${TEST_REF}" >> $GITHUB_ENV -# else -# echo "REF=${DEFAULT_REF}" >> $GITHUB_ENV -# fi - -# - name: Ensure REF is set -# run: | -# if [ -z "${REF}" ]; then -# echo "ERROR: REF not set" >&2 -# exit 1 -# fi -# echo "Using REF: ${REF}" - -# - name: Checkout branch -# run: | -# cd ${{ github.event.repository.name }} -# git fetch origin -# git checkout ${REF} || git checkout -b ${REF} - -# - name: Sync subtrees -# shell: bash -# run: | -# # See .gitlab-ci.yml for the original script. -# set -euo pipefail - -# cd ${{ github.event.repository.name }} - -# JSON=".github/subtrees.json" - -# export GIT_EDITOR=true - -# # Read subtrees config -# mapfile -t entries < <(jq -r 'to_entries[] | "\(.value.prefix) \(.value.url)"' "${JSON}" | envsubst) - -# for entry in "${entries[@]}"; do -# read -r prefix url <<< "$entry" -# echo "🧩 Pulling: $url into $prefix" -# git subtree pull --prefix "$prefix" --squash "$url" "$DEFAULT_REF" -# done - -# if [ "${{ github.event.inputs.dryRun }}" = "true" ]; then -# echo "✅ Pull complete. Dry run enabled: skipping pushes" -# exit 0 -# fi - -# echo "✅ Pull complete. Pushing subtrees back to remotes..." - -# for entry in "${entries[@]}"; do -# read -r prefix url <<< "$entry" -# echo "📤 Pushing $prefix to $url (branch: $REF)" -# git subtree push --prefix "$prefix" "$url" "$REF" > /dev/null 2>&1 || echo "⚠️ Push failed for $prefix" >&2 -# done - -# echo "Pushing to origin..." -# git push origin "${REF}" - -# echo "✅ Sync complete." From 9c5d9b3e6b2453ace717c7f1f5a6d7dff99e55a2 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Wed, 25 Jun 2025 14:29:02 -0600 Subject: [PATCH 311/384] Cleanup (#72) --- .github/workflows/subtree.yml | 162 ---------------------------------- 1 file changed, 162 deletions(-) diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml index 08fb843a..43011de4 100644 --- a/.github/workflows/subtree.yml +++ b/.github/workflows/subtree.yml @@ -28,165 +28,3 @@ jobs: runNumber: ${{ github.run_number }} sshKey: ${{ secrets.SSH_PRIVATE_KEY }} repoOwner: ${{ github.repository_owner }} - - # old-sync-subtrees: - # runs-on: ubuntu-latest - # container: - # image: buildpack-deps:bionic-scm - - # steps: - # - name: Test SSH Connection - # shell: bash - # env: - # SSH_KEY: ${{ secrets.SSH_PRIVATE_KEY }} - # run: | - # set -euo pipefail - # # echo "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" - # # echo "USER: $USER" - # echo "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" - # echo "HOME: $HOME" - # echo "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" - # eval echo "~" - # echo "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" - # ## SSH_DIR="/root/.ssh" - # SSH_DIR="$(getent passwd $(whoami) | cut -d: -f6)/.ssh" - # KEY_PATH="${SSH_DIR}/id_ed25519" - # mkdir -p "$SSH_DIR" - # chmod 700 "$SSH_DIR" - # echo "$SSH_KEY" > "$KEY_PATH" - # chmod 600 "$KEY_PATH" - # unset SSH_KEY - # ssh-keyscan -t ed25519 github.com >> "${SSH_DIR}/known_hosts" 2>/dev/null - # git clone git@github.com:usgs-coupled/iphreeqc.git - # echo "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" - # ssh -Tv git@github.com - - - -# name: Sync subtrees - -# on: -# workflow_dispatch: -# inputs: -# dryRun: -# description: 'If true, don’t push any changes (for testing only).' -# required: true -# default: true -# type: boolean -# testMerge: -# description: 'Run in test mode, pushing to a test branch.' -# required: true -# default: false -# type: boolean - -# env: -# CI_SERVER_HOST: github.com -# GROUP: ${{ github.repository_owner }} -# AUTH_TOKEN: "x-access-token:${{ secrets.X_ACCESS_TOKEN }}" -# DEFAULT_REF: ${{ github.event.repository.default_branch }} -# TEST_REF: _gha-${{ github.event.repository.name }}-sync-subtrees-${{ github.run_number }} - -# jobs: -# sync-subtrees: -# runs-on: ubuntu-latest -# container: -# image: buildpack-deps:bionic-scm - -# steps: -# - name: Install GitHub CLI -# run: | -# apt-get update && apt-get install -y curl gettext jq unzip -# curl -fsSL https://github.com/cli/cli/releases/download/v2.74.0/gh_2.74.0_linux_amd64.tar.gz | tar -xz -# cp gh_*/bin/gh /usr/local/bin -# gh --version - -# - name: Print Configuration -# run: | -# echo "testMerge: ${{ github.event.inputs.testMerge }}" -# echo "dryRun: ${{ github.event.inputs.dryRun }}" -# echo "DEFAULT_REF: ${DEFAULT_REF}" -# echo "TEST_REF: ${TEST_REF}" - -# - name: Verify AUTH_TOKEN -# run: | -# expected="b7ff89ebb635bba5eac9652f5eae8a5123346c1da6ef42852d4494f58b0bf0cb" -# actual=$(echo "$AUTH_TOKEN" | sha256sum | awk '{print $1}' | tr -d '\r') -# if [ "$actual" != "$expected" ]; then -# echo "ERROR: Invalid AUTH_TOKEN" >&2 -# exit 1 -# fi - -# - name: System Information -# run: | -# uname -a -# git --version -# gh --version -# printenv | sort - -# - name: Clone repository -# run: | -# git clone https://${AUTH_TOKEN}@${CI_SERVER_HOST}/${GROUP}/${{ github.event.repository.name }}.git - -# - name: Configure Git & Set REF -# run: | -# git config --global user.name "github-actions[bot]" -# git config --global user.email "41898282+github-actions[bot]@users.noreply.github.com" - -# if [ "${{ github.event.inputs.testMerge }}" = "true" ]; then -# echo "REF=${TEST_REF}" >> $GITHUB_ENV -# else -# echo "REF=${DEFAULT_REF}" >> $GITHUB_ENV -# fi - -# - name: Ensure REF is set -# run: | -# if [ -z "${REF}" ]; then -# echo "ERROR: REF not set" >&2 -# exit 1 -# fi -# echo "Using REF: ${REF}" - -# - name: Checkout branch -# run: | -# cd ${{ github.event.repository.name }} -# git fetch origin -# git checkout ${REF} || git checkout -b ${REF} - -# - name: Sync subtrees -# shell: bash -# run: | -# # See .gitlab-ci.yml for the original script. -# set -euo pipefail - -# cd ${{ github.event.repository.name }} - -# JSON=".github/subtrees.json" - -# export GIT_EDITOR=true - -# # Read subtrees config -# mapfile -t entries < <(jq -r 'to_entries[] | "\(.value.prefix) \(.value.url)"' "${JSON}" | envsubst) - -# for entry in "${entries[@]}"; do -# read -r prefix url <<< "$entry" -# echo "🧩 Pulling: $url into $prefix" -# git subtree pull --prefix "$prefix" --squash "$url" "$DEFAULT_REF" -# done - -# if [ "${{ github.event.inputs.dryRun }}" = "true" ]; then -# echo "✅ Pull complete. Dry run enabled: skipping pushes" -# exit 0 -# fi - -# echo "✅ Pull complete. Pushing subtrees back to remotes..." - -# for entry in "${entries[@]}"; do -# read -r prefix url <<< "$entry" -# echo "📤 Pushing $prefix to $url (branch: $REF)" -# git subtree push --prefix "$prefix" "$url" "$REF" > /dev/null 2>&1 || echo "⚠️ Push failed for $prefix" >&2 -# done - -# echo "Pushing to origin..." -# git push origin "${REF}" - -# echo "✅ Sync complete." From 264db5ed7a41ee575f227d7cacedf0b61f40b1d5 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Thu, 26 Jun 2025 00:18:26 +0000 Subject: [PATCH 312/384] Squashed 'src/' changes from b15a6bde..9545998b MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit 9545998b Merge commit 'dc93b6ea031d5bfb9b1a211261364f25d9bfb426' 5f0ff470 Refactor GitHub Actions workflows for subtree management and add subtrees.json configuration 5824a7cd Merge commit 'febfa05e38044719e80b19c6a74a6070fce3c1e7' 142a8641 Merge commit 'ff1bded8415c84af23ef99cbd47c0a9ef7a69a76' 444ba08c Merge commit '35f13a0f66449dd0d7f01732a52d2c2078728e2a' 584bb5a6 Merge commit 'd3b4c500de84f4dd207eb30b3a612fac16db167d' bc21c20a Merge commit '3e3c06308338cfdb1eda420553ff9b6058a95643' 8a45f9f2 Fix typos 0014b5b0 Merge commit '3e1c0d11a21bedfeb288ed4a8737d0a9287e2e7f' 8b212627 59 compiler error on macos (#60) 72075d5a Merge commit '21df9497a0c5083f8e6add67e29601662ff47598' 90b9269e Merge commit '5f272b1fe3cfa93d5e5512461e41d049fc3a00be' 092e3664 Merge commit 'e5c4d819de6ffc5246306e4ed4301c69d9754efa' d1745978 Merge commit 'aa9d98adea8397aa2f047ceb93ccc18aa9e726a6' 7814bf74 Merge commit 'dfdd36142fe914b3e6b89a5c55abc2eb4df8e19e' 418104cb Merge commit 'c27bfc7b64e0b47c6bde0ea233919dfa87808993' 7f683b40 Merge commit '622bc5fb4cc8f67f9303e45c98397b97fe30822f' 0bd82175 Merge commit 'ca6b882bcab9708f90c8761e0d4a4d572c57fce7' 9fac273e Merge commit 'ce2280a77a81e5a8214ae01f97e9766e168327cf' 672e854d Merge commit '9782e02486e4dfbb3148cdd6c235422caa8c06e6' aa8cdd01 Merge commit 'd7222e4f0b773e52ff448f83ba057ec492471ea1' 62ebb6ad Merge remote-tracking branch 'usgs-coupled/master' 1e41b0ca 50 apple clang 15 with c++11 or higher reports warnings wwritable strings in pbasiccpp (#57) 48ea6ea0 Merge commit '2d96a188772ef1fd12575913362d1fa01f198be8' 99e8a527 Merge pull request #48 from SpaceIm/fix/include-stddef-no-fortran 29f1d409 reorder classes in global_structures.h to avoid incomplete definitions c2446417 add missing include of stddef.h in IPhreeqc.h if no fortran module 4c58a0f6 Merge commit '7c714dfbd3c917247c9c9346799bb3fa1b9dee16' 78f374b8 Merge commit '0e2456f051d9e2ad6f61f899721fa8ab2db1a30c' 05175294 Merge commit '231f8e36589ed86c2270d0915bb91cc74b4a15ef' ab922805 Merge commit '1ec7448cb08f1cc2917b33e3337946a8da23208f' a8ac4794 [iphreeqc] Fixed for R ca0ba8d5 Merge commit 'ed24ec246bbfdcd57adbd0d4a9e8fe088a5de5b7' 051687d3 Merge commit '9ba726de0f8b36a9143922bf148f6a259982756a' 967cc4e6 Merge commit '7552f8f680a41d12454080cc1174765c86bb6354' bbcb4c0e Merge commit '06332bcb62daece34f3818f46e11064a56799f23' ad75e79e Merge commit '51648664f6f6550440d014f3a985ef9d575c02bd' a162eb9e Merge commit 'fff75534d73a06719ce2fbb482f843e0fb9dc4c6' fcaf4393 Merge commit '9882e3df3cca85659da2a430ffe240f895cdb272' 894d1c4d Merge commit 'a159b5af317ba8b61dd3a6c9242a98e76829467d' 01a8b140 Merge commit 'b1888bb5d68d0ae9736556acd5702d44448eb492' 1ba26537 Merge commit '799a4e7ee471ab80ac21f4dceb7233324576c6da' ff966074 Merge commit '1d8783186c3d231e5ca909a0427cb33b2c29d558' f23a7381 Merge commit 'ccdbd0ce2040eb00006775fe0cf2ab2faf4138b5' 15388e0f Merge commit '63ca4c7ef4b0202b4b6c6cd3463158dc10bfa758' df6534c7 Merge commit '07f1d0d4680fe19cf1d77ea86b6485b319607f96' 7a6efcbd Merge commit 'b96cfe81141ed6734872794468ac9bb321ba9d8b' 2294b1ed Try this to fix warning on Darwin d336cd67 fixed ‘nullptr’ was not declared in this scope on ubuntu-16.04 7824c9cb Merge commit '7f291d1c56070131ef8e5b665c58dfb953ec5ebd' b9e89390 Merge commit '70279357596338c2e09bbe32fefe5417e82193df' 83b1930e Merge commit 'd554fc3acfdfbe18c34c6c527fc685643129db2b' 77e7356d Merge commit 'd1b5d92efc04bd216d5354cb2df537d1ded008b0' 4883e481 Merge commit '37276c050f8194055e00a875c185c4f0ffe38abf' 832810fc Merge commit '1b2eb6ca0dfb1229d50bcb58c12ac6d6f63bbe4c' 42ba2432 Merge commit '10bcb271d74cf65f6427a7293f1b32c043bc7180' 4662baee Updated to pass unit tests on linux Added two additional selected_output tests: TestSelectedOutputFileMultipleRuns TestGetSelectedOutputRowCountMultipleRuns 6721837c Fixed bug that caused selected_output to accumulate in selected_output storage b4b9e7da Merge commit '1a3663493c8f6e1f9accef266dce18790271ca2b' c9d004b6 Merge commit 'fb29ba4c3af45fd6745970fda308ff13353edc9c' 1b46a8dc Merge commit '8d6d4a6b4fae111d36a3225507095202e684a40f' 3415544f Merge commit '90ccb6dc2bfcd1b2fa9aa0492f4553cf4f598f49' bdef7c5d Merge commit '0e67b4a4541435fa7c4f2c07a642c313d5e1ce1a' 90aef6de Merge commit 'c50de2e4a793129b1bf6d016c2ed405544bd21cd' 76d4300c Merge commit 'd83e815edb69ae222734ebc4168810cae56e3cec' 14b90528 Merge commit '0e6c28f22663d72c558025b5ae69ce50ac3b2f62' 0032f142 Merge commit '7c3113fb1d452576ff5b6f00a39665a3e3c6da54' 36e3e73d Merge commit '71af2952a3513766833883f90c18105fd8e7f174' 8d3032c9 Merge commit '8494cef9c5aca1120ce55dbf0be46f87beb49b96' a9b5eb69 Merge commit '4419fccb31acd4a82d2fbd618a45d4c78ae9aec6' 116b83a3 Merge commit '05d97e8baf75ee7adbef8da4511ae9b4e3e0b9df' 05e4a4d4 Merge commit '4fde5d2a9901d22e50df7ddf66dfaf9f6b808d20' 84f3957b Merge commit 'a695dadce25bdb17da3d297bd07e0d7873b64d4b' 5c1f3f19 Merge commit 'ad57aa549f45beecd2ae1bb6f2bbb2508af4bba4' f0a66171 [webmod] webmod-dist-windows-git fails to build on jenkins cc6f024c Merge commit 'c9064048568876e0687e08d6d6c65ab67111b732' 895d5dd3 Merge commit 'ce82b6836a8ae0dc278903bc218e9465da62e8bd' 38db9f9e Merge commit '1a19a99b23a31a1268b50af5429b3a89ee8e6a84' d70da60d Merge commit '90affba324b6d44f0703f8b703d94a038f291a1c' 602df248 Merge commit '15c997e31499728d7beb32a621ef522b1c72799a' 391ffd10 Merge commit '9fac4a5659c122db2b529cd16deef696af1496e6' 5dfa353b Merge commit '5bef6c5841bbcf3276ad78f81c77673aa43e25b5' 2355c9f9 Merge commit '27d160eafc07e0c195861725fc0534960ae7e871' 963b9088 Merge commit 'a5c0125bc0670499ea06a874ed96f2e6fc5b3c45' e60eb995 Merge commit 'eab05a830c0d10ca0eed06b7e4b917986b7b5e93' 00816dc6 [iphreeqc] Issue 8 -- change sprintf to snprintf for CRAN (#9) 8e55e49e Merge commit 'a284a4027629c14ed1dbc485b9aa448406e0acfd' af34bf87 Merge commit '937409a9e6d4a687ec7691e24c401202359f5c09' 210dbba7 Merge commit '03171b2d91a8383671f4c4fa13d15ea44de687cf' d4104547 Merge commit 'c995d50084cf598c12bdd45a585c8f67e999dc6e' ab1c055d Merge commit '141cad01907c7aebf3d86161dc699d1e50e8aff0' cc2c985a Merge commit '3ce6dfc59f237dc8788541d444a25693102a7208' 4d0e9a4c Merge commit '615fa476f56b91463f6c10e63b5266f412f87738' eaff17f8 Merge commit 'f715edb5897985acf0692d2b0bde4ab34379469f' 2af383aa Merge commit '6e8b89a2ef1547d485ca8bd59016646bedbf746f' 6e8b89a2 Merge commit '2243d25babbc524e7875b3d591bb6b91c4399a95' 1c92ac16 Merge commit 'd3bdd8b54a3af64f157001e84f1f46cd1c4c89fc' c7dfbb5f added newlines for CRAN 6f21dae9 Merge commit '60ad724c7a34fdd7a075e70da0e99a026d689bc2' 91823dd2 Merge commit '33f5157d8b000ea2b29ff1eef64e57761723ea31' af0c0b0e Merge commit 'ae41a1ffa67d7b4bf60373a164e24802cb7a1797' b135aab8 Merge commit 'fd78a499d084fc606f2df44065602e4017a895e0' 75c4938f Merge commit '47a8b4e3d826313c9c42fd3e74472574fedb4b84' 893faff9 Merge commit 'd4dfe590eb539c35219174adf5314480eebdf7f8' 48f9f227 Merge commit 'afff58ffb022065fab2fe9b960633f0b86e2066b' 8e7f7de5 Merge commit '9b94f8be88ba1d2b73948f2ddb790fd976fe8e0a' 510744ef Merge commit '37de8fa93ce958aeed5e61f6b3b3e507f059257e' cbc40fac Merge commit '5b7cf2f8f32d1df2855a34f51102876527236915' a68b8821 Merge commit '2e334cb417d144fb082c88cfcf5661ffa0cfacb8' eebc11b3 made tally_table a vector of class tally f3e27fcb Merge commit 'aa62814aa6731a0b093267ec2d361d4837fa3ba9' b8563691 Merge commit '2efc74230a9105f21920ee93317781e1c56e34d1' 749cf8f4 Merge commit '4ae649449235703be5a460fae083169e1d7a10e8' 1371228f Merge commit '4a848dccec5e555fd493c1565b6cc1e0707caf05' 71ed896a Merge commit '8080cbce1e8b54fa33d4e86c2f10f8e443419bd9' 08e7576b Merge commit 'abacccd0ee631ddcaf427f200ced4db1d0cf626f' a2974f37 Merge commit '2537a2c376658ea64bfaf37bc9738b76d71a787b' acf0a143 Merge commit '4b9b99267b55b2c9ee5cbf96c4dff2cc1d946c40' 0abe01ca Merge commit 'bd0962591257268d0726bf54db1bbdc39f691ced' fd0bc309 removed TESTING definition c27e7010 updated for classify branch 7993336a Merge commit '2697dc958cee10b7a5fedeec8b98fbb2aa30f62a' 78223d97 Merge commit '0479fc1adaec4ef03f9d3755219119c118afc531' 5c0e7189 Merge commit '0aa30d21ac10b0ea13ad3cb1f701e7e3cac7eda7' 9dffd1b9 Merge commit '639490d0610cc02b8618567d95ff30833eafd6c2' eb19293d Merge commit 'b1efa4f251731679e57d36e20579687b2d1efce2' dabf07b5 Merge commit '4ca2e4e1f403f232428f1010ddaa422088b2f474' cea69f62 Merge commit '7b0c2df096a26cb453170fe0a17c5e4d2fb8409e' 299be469 Merge commit 'de884e4e3637e62826fac1cea60d94759fb7a8cd' 30aece6c Merge commit '0c581ea4be8bceb2a122d409da9a8a2585c8daad' e892cc16 Merge commit '8e9c5b3592fdf2b1b016a9da1d1e1f6f1c23ef45' f686374e only call qsort with more than one element b6a0f193 Merge commit 'c1c08f2f2d4a08ec86b46d70716fb709eb863e9c' f03c3f7c Merge commit '3770354f0a980a6a5c3001bdf061d9543cb23c11' 29375bfc Merge commit 'ecbb26c3d7f6f15e97874b866b7b6b4a5be9a65d' 9ddd92f2 Merge commit '5688f837474cd7cda50564e379d291e9944a89fc' d19a31a6 Merge commit '8c8f6fd176aa60c9e0349f0e79888e5d50aca079' 50e81af4 Merge commit 'd6e6d11b2868f770f394fd7f2635ddaaed6598df' 3d05ce17 Merge commit '710d0096aa62355bf6c212efb3f6f9392ccd3f37' deec05fc Merge commit '62c51bb410b3f9fd18cc5a21b5341e9652089d86' a75a9caa Merge commit '4473286a216928665f9c1b00932687c9945175a9' 0409a3ed Merge commit 'b9f44da20a78a23395d38205c001298f6a68bd0c' dcd7188a Merge commit '20ab4be9f3235740e6ed5ede81bca488adffd991' 7ea1a6d4 Merge commit '2d2f55adc0376d3ba4bc366e0e8bcc44f658a9c7' 554256e3 Merge commit '33f589897a8e09ca3dd745b150f3eb6555347052' d4a8833a Merge commit 'e224625f086369b838e5db00d5105b30f444b963' fa25db5d Merge commit '50016849a03a70eeb0f714f23a3b56f1983a8189' fb31cc38 [iphreeqc] updated image location 870f0f08 Merge commit '055ebf5c1ffe61bba8b37743f1bddd93007131b9' 0c9d4081 Merge commit '589d88ff89b061b46289530165ad032642fbdaa4' b6fffd47 Merge commit 'f4bf55d7bf26ca64edec1836ca4d2708427962ce' 7cbba0ec Merge branch 'gtest' into 'master' 621401d3 reset for dlls c03b987c Merge commit 'e904f5b730e622046aedacf704a6e888654c7517' 1f5428a9 Merge commit 'e562e09e9ae00671933f9800a302629f50d945dc' 53ad340b Merge commit 'ea2c663c90fe84a9c191eac91286bb2afed4bd15' 7faca848 Merge commit '0b0fced395d40a23a1eb8514688a812c13e4db02' abb80b51 added src/phreeqcpp/common/PHRQ_exports.h b030a0b9 Merge remote-tracking branch 'origin/master' into gtest 5ab593e6 Merge commit '18e137ff556c9e9410d9cb995bfc0369891bc484' 6e38872a Merge commit '3782d4420d3d6282315acfecf33b3c7e7da333d0' c1077d70 Merge commit 'd4261840c7f7720e5a76a941790ce48d40480097' 99b48a4f Merge commit '6e7023f8428a4bfde82f7dc83287ae95b38f1d6b' c4599034 added googletest and fixed some minor bugs e221f73c implemented Get/SetErrorOn 75f4ab0b Merge commit 'b138ed208df65cd4653ea7a2e07332a3d3e1c8b2' 57cf38dd Merge commit '5631ce1e56cda328e8efac33a0ee998a7fd27489' fb6c36a7 Merge commit '9d480bc124a4e9e979b4995476d086f90e3833e7' 24d69a05 Merge commit 'ea21e58a8f9bd9ae4de057ca2422d8a4f399826c' 5d70f691 Merge commit '9029c2bcba781cba475c035d5fb81f83c8ec56fa' a19f9e7e Merge commit '74b541d42e40ef1ed8df0bfba9826e55b046e9f0' bef8a01c Merge commit '1c3edaa7473043f049372de76a3d622b45d3fed3' c41548d3 Merge commit '89ca3d279fed2341cf35bc240da008836972fc7e' c7f9087c Merge commit 'a208e3948a804c8fb689fa980739e341b6696a32' fa9c36cf Merge commit 'a4c582649b4aae5e535960843a7d71567ac3d12e' 939f7ed8 Merge commit '090f5e682b8b44251566a2624fe8189744f727c5' 981dd81e Merge commit '9bcc875c9ed6ddb30a29500ca89de8f9281bac80' 1bd3f958 Merge commit '8e901d060dba068ab2390e9917de4cee52c4979c' 40edae93 Merge commit 'bb5bcbf15eb0ff4efe3dceb70b3682fd6a59f47f' eff757c8 Merge commit '108755553045b7943d024ecd512cddb233ee9c63' 22ec3a55 Merge commit '92807718ee036df029c57351fdd15b4a456d4496' d5e6c6b7 Merge commit 'efbddbf6dc5b3bca3076b50d39c42a196ae551c8' d48de197 Merge commit 'eed9de906915d10ceaf4ec3df3bf5ee3132ad80b' 5f653835 Added .gitlab-ci.yml 918da84d Merge commit '757927da596446462e8daceb57b20bba2c591f33' bc0a05cc Merge commit 'aa963a9cae20b9634b4c41e7b6387a2b22b28445' c5ff2477 Merge commit '0366caf10b0748d78cb718898c714e1397a008b4' 49681a22 Merge commit 'd97736a3a718c05c91a3aa6eb567c18538464436' 10163985 Merge commit 'd0e5bac5843adf417da9a722e8f8ae8405442d26' 9d49905c IPhreeqc: ifdef'd out references to std::cerr and std::cout f6023203 Merge commit 'e5bf8b0aa61996d6b4ee40820a7b7f79cb649444' 077fbf97 Merge commit 'fd242bd33f1f6b3b91cd6d4f5a5336db0edfa81e' 1ab3235e Merge commit '3049467b561ef8176c81341b76b883b2179380f2' 9a6afb37 Merge commit 'd7188d25f30f33d2158082341224dda94f4bc1cc' 589d6ba5 Merge commit '679c637ed207c2a2418be64d4ee1ca140073ba90' d7ab7115 Merge commit 'd8ba4ac6103d1c7c360f637fddab0625bc616878' 545e81ba Merge commit '63108ac76d6fa7c378c21690b6342333c4cb446c' 82dc185a Merge commit '86888c465e9f7ff2ab6e5dfea003fc6ba73383b6' a18a3a3b Merge commit '26c751fd7e74b54a4e51859b0fcb35dc5c059558' cde1f9fa Merge commit 'd9a6717e802cbfebd983b9b2b2bca59508b732f6' a83306d3 Merge commit '86c543395fda4a9fe20062975c117edfca880c9d' 3a7b01f3 Merge remote-tracking branch 'coupled/master' 183eaeee CRAN: replaced deprecated std::ptr_fun with lambda function e0e589f7 Merge commit '5b3379b947de79f9182a880a74500f50dc234f54' 957b1211 Merge commit '67342a4d0414680313fce8eca4c7f81c67b49004' 0b392972 Merge commit '8412823930dd6ea12f1be8dbbe64c50354748df2' 7ff05ddc Merge commit '5a46f0d778ddd534e263fa93df8e4d0baab370a3' 5a43b70d Merge commit 'aa34ac11538c27f39c44c34938411f1e00afce19' 79896027 Merge commit '79c28e50c1ac44195f0aafc8279f601f1f40c836' 027862ac Merge commit '94155a63c62b057011f9c961e240e0e04721ca05' 5b1de2f7 Merge commit '51fbb3d5b08d20592bbc358d2f7ca25b75c74691' 788a8426 Merge commit '1e4a2941b3b1d0cecacd0bba8c0252b87e74dca8' b38349aa Merge commit '3b7308661a560e4d0984da531dbeb155a2420d1a' 2431c5b3 Merge commit 'f0c3701bdee8ef3901b9b50698eb46b61574d086' f485cbe9 Merge branch 'issue-3' into 'master' 9cbf676d Merge commit 'fbde6453ae53afa9bd4910ff00b48ecccc1153b8' 7237eb26 Merge branch 'issue-2' into 'master' e3ea51f8 Fixed -Wcatch-value warnings reported by CRAN d157977b Merge commit '548aead510d42fd3998eb74be8a5f94396c69bea' 1eb3ed94 Merge commit '12df06b34cba4744a36bf519bb7298caf98a320a' 1bbc0044 Merge commit '43386a0bc4d26c2891a23c27cfb2bae0f6cec9eb' f5695865 Merge commit 'f90fc5afeaa5347ef057416551bb406e8ce5d855' 4c7946af Added code to record git commit hash ad4fc43e Merge commit '1a4422b8af0f7801aa8cfcff161804516ac50910' 6091a42e Merge commit '1bfc9f49d032d42460c4e993f3aafc8a3f341625' 8170cb98 Merge commit '749c3e09ee53cd345d1375e72ebf3c10591581b2' eefd6bfa Merge commit '1150a4a2aa4b6957fbf8bb2cf1d0c58ce8cf81d5' fdb8d137 Merge commit 'c2dada993c2edb3f80f9bae636ace9b099073051' 85c8d55a Merge commit '4235170d91bbc77f6775c141ada27b130518329b' a8730c6e Merge commit '65dbd2c15b866dd75bc66faab28f0761ebaf348d' c1c6ca18 Merge commit '6e92ecf9efab80668453622bc42226616043320e' bf865f6a Merge commit 'dbefc44f31ee85768c0ac5a2f9eeba05c525eabe' 9e0bf943 Merge commit 'c83e4bf78e37924add9da5889dc133e335d3efe6' a69488c6 Merge commit 'c4fa021ec11b89ab9f4498823409abae9c256d1b' 39d69af2 Merge commit 'ec4ec0a3cb6abe172788ffc9d7db5d183390b4da' 30ae101a Merge commit '3a0292c6956e0bb4d9bf1e9b4bed9831ac517d39' da6660ae Merge commit '7b836dd6cffc6e52c29192e6ae7583044c27cadb' bda358e2 Merge commit 'b3e7b2eca602b628e05c15dd920a1cb470980736' d667690f Merge commit 'ae05e0a661652f55323bd8f394a8907b01df36ad' a56973f6 Merge branch 'cran-warnings' into 'master' e5a7fa63 [IPhreeqc] added parens for clang++ -Wlogical-op-parentheses 088f389c Merge commit '113fd9aa5ed6507dabd3364a831d8bcbc9cf17c4' 0f7b19ad Merge commit '6894b4a7b1ef73cae9d582609173cb84f52e5b3c' c6865539 Merge commit 'd96f386211ad5fbace94d550ca371d9eacb3262f' f2e39872 removed register keywords and updated for misc clang warnings 487accaf Merge commit 'ebeddcde9d54e3e79c8923496a0b7573432d9388' git-subtree-dir: src git-subtree-split: 9545998b7058790c2d5523f0191ed0ffc44ae44c --- .github/subtrees.json | 6 ++++++ .github/workflows/lint-subtrees.yml | 20 ++++++++++++++++++++ 2 files changed, 26 insertions(+) create mode 100644 .github/subtrees.json create mode 100644 .github/workflows/lint-subtrees.yml diff --git a/.github/subtrees.json b/.github/subtrees.json new file mode 100644 index 00000000..3b8b0086 --- /dev/null +++ b/.github/subtrees.json @@ -0,0 +1,6 @@ +[ + { + "prefix": "phreeqcpp", + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src.git" + } +] \ No newline at end of file diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..afa1f2f4 --- /dev/null +++ b/.github/workflows/lint-subtrees.yml @@ -0,0 +1,20 @@ +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: ${{ github.repository_owner }} + SSH_PRIVATE_KEY: ${{ secrets.SSH_PRIVATE_KEY }} + steps: + - uses: usgs-coupled/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} From 340a98787f19221e16cb4deeb2564a3a1e91e53f Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Thu, 26 Jun 2025 00:18:32 +0000 Subject: [PATCH 313/384] Squashed 'examples/com/' changes from a0ea2708..f9d9549b f9d9549b Merge commit 'fc1d6ef789171ce6feef8a7ad5fe0ce298a2a4d9' 26ffbfee Fix typos f7a1be4e Merge commit 'e9b2c29221ea97c7fbab9fdfced5fed601ea2e0f' b56d60a6 Merge commit 'ce6d37c593b1ba9c23cad05228bd1f57b50d5ccc' e007a52c Updated for phreeqc changes Introduce end-of-line normalization for CMakeLists.txt 1cce1503 Merge commit '59900306d4ccdc5f16a8ea479c234b7d4640dcf2' bffad8cc Added sleeps after curl -X POST bef44883 Merge commit 'f4cdf1a12b67211e0dc567bcd80d8718963da0c3' d98a0029 Merge commit 'a0ef46490f40ab0828b1a025da7d7dc00f407c98' 77aa5731 [iphreeqc] updated image location 7668c4c6 Merge commit 'fae004f42baa79cb40476a1814ffbf1278871c5f' f7313acf Merge commit 'a1cf1e608ea822184059a4c93887c025f983bbfe' 030fa168 Merge commit '0163f911a4a33619d6e0960c24b6707bc27f8c61' e1424d55 Merge commit '32073de75198725fcc69bfbe814941aecfdf6ba8' 195c800f Added .gitlab-ci.yml git-subtree-dir: examples/com git-subtree-split: f9d9549bf30116e33f20721af068979ec4ca5d6d From 250d1f1f8768c44334f3a8d2e300d125c8fbd28f Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Wed, 25 Jun 2025 23:11:29 -0600 Subject: [PATCH 314/384] Fix parameter names in sync-subtrees-action configuration in GitHub Actions workflow --- .github/workflows/subtree.yml | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml index 43011de4..52217a61 100644 --- a/.github/workflows/subtree.yml +++ b/.github/workflows/subtree.yml @@ -23,8 +23,8 @@ jobs: with: dryRun: ${{ inputs.dryRun }} testMerge: ${{ inputs.testMerge }} - repoName: ${{ github.event.repository.name }} + github_token: ${{ secrets.GITHUB_TOKEN }} + repository_name: ${{ github.event.repository.name }} defaultRef: ${{ github.event.repository.default_branch }} - runNumber: ${{ github.run_number }} - sshKey: ${{ secrets.SSH_PRIVATE_KEY }} - repoOwner: ${{ github.repository_owner }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} From 6dc392967d281e48b7ddf9091ea2facce7d02781 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Wed, 25 Jun 2025 23:20:20 -0600 Subject: [PATCH 315/384] Fix parameter name for default branch in sync-subtrees-action configuration --- .github/workflows/subtree.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml index 52217a61..5fd76582 100644 --- a/.github/workflows/subtree.yml +++ b/.github/workflows/subtree.yml @@ -25,6 +25,6 @@ jobs: testMerge: ${{ inputs.testMerge }} github_token: ${{ secrets.GITHUB_TOKEN }} repository_name: ${{ github.event.repository.name }} - defaultRef: ${{ github.event.repository.default_branch }} + default_branch: ${{ github.event.repository.default_branch }} run_number: ${{ github.run_number }} ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} From 365c9646e2e86f5618240189f50fd1009656d127 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Thu, 26 Jun 2025 11:51:38 -0600 Subject: [PATCH 316/384] Update SSH private key secret reference in sync-subtrees-action configuration --- .github/workflows/subtree.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml index 5fd76582..14b13263 100644 --- a/.github/workflows/subtree.yml +++ b/.github/workflows/subtree.yml @@ -27,4 +27,4 @@ jobs: repository_name: ${{ github.event.repository.name }} default_branch: ${{ github.event.repository.default_branch }} run_number: ${{ github.run_number }} - ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} + ssh_private_key: ${{ secrets.SCHARLTON2_SSH_PRIVATE_KEY }} From e6661a8fba6b120fbc3325347b1a9448e6434588 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Thu, 26 Jun 2025 12:18:10 -0600 Subject: [PATCH 317/384] Add comment to clarify purpose of linting workflow for subtrees.json --- .github/workflows/lint-subtrees.yml | 1 + 1 file changed, 1 insertion(+) diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml index afa1f2f4..0f34563b 100644 --- a/.github/workflows/lint-subtrees.yml +++ b/.github/workflows/lint-subtrees.yml @@ -1,3 +1,4 @@ +# This workflow lints the subtrees.json file to ensure it is valid and up-to-date. name: Lint subtrees.json on: From 02c5a6472fcbc888039cf0b1159757b3c7a2fcf5 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Thu, 26 Jun 2025 18:19:20 +0000 Subject: [PATCH 318/384] Squashed 'src/' changes from 9545998b..e6661a8f e6661a8f Add comment to clarify purpose of linting workflow for subtrees.json git-subtree-dir: src git-subtree-split: e6661a8fba6b120fbc3325347b1a9448e6434588 --- .github/workflows/lint-subtrees.yml | 1 + 1 file changed, 1 insertion(+) diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml index afa1f2f4..0f34563b 100644 --- a/.github/workflows/lint-subtrees.yml +++ b/.github/workflows/lint-subtrees.yml @@ -1,3 +1,4 @@ +# This workflow lints the subtrees.json file to ensure it is valid and up-to-date. name: Lint subtrees.json on: From 470638d989483487fb560f5f4cfeec8f87a52de3 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Thu, 26 Jun 2025 12:23:54 -0600 Subject: [PATCH 319/384] Add clarification comment for linting workflow in lint-subtrees.yml --- .github/workflows/lint-subtrees.yml | 1 + 1 file changed, 1 insertion(+) diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml index 0f34563b..abc0e4ee 100644 --- a/.github/workflows/lint-subtrees.yml +++ b/.github/workflows/lint-subtrees.yml @@ -1,4 +1,5 @@ # This workflow lints the subtrees.json file to ensure it is valid and up-to-date. +# It is triggered on pull requests that modify the subtrees.json file or can be run manually name: Lint subtrees.json on: From 966b0fc85125fd0de3a54462b764dd09a76dfb96 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Thu, 26 Jun 2025 12:25:56 -0600 Subject: [PATCH 320/384] Fix SSH private key secret reference in sync-subtrees-action configuration --- .github/workflows/subtree.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml index 14b13263..5fd76582 100644 --- a/.github/workflows/subtree.yml +++ b/.github/workflows/subtree.yml @@ -27,4 +27,4 @@ jobs: repository_name: ${{ github.event.repository.name }} default_branch: ${{ github.event.repository.default_branch }} run_number: ${{ github.run_number }} - ssh_private_key: ${{ secrets.SCHARLTON2_SSH_PRIVATE_KEY }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} From 6a325b52d5ee1821aa7de84d111c6354e36fb0d6 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Thu, 26 Jun 2025 18:27:07 +0000 Subject: [PATCH 321/384] Squashed 'src/' changes from e6661a8f..470638d9 470638d9 Add clarification comment for linting workflow in lint-subtrees.yml git-subtree-dir: src git-subtree-split: 470638d989483487fb560f5f4cfeec8f87a52de3 --- .github/workflows/lint-subtrees.yml | 1 + 1 file changed, 1 insertion(+) diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml index 0f34563b..abc0e4ee 100644 --- a/.github/workflows/lint-subtrees.yml +++ b/.github/workflows/lint-subtrees.yml @@ -1,4 +1,5 @@ # This workflow lints the subtrees.json file to ensure it is valid and up-to-date. +# It is triggered on pull requests that modify the subtrees.json file or can be run manually name: Lint subtrees.json on: From 64825ec73cbad2a119fb60c270431b5a5fd0e7db Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Thu, 26 Jun 2025 12:40:11 -0600 Subject: [PATCH 322/384] Add comment to clarify manual trigger for linting workflow in lint-subtrees.yml --- .github/workflows/lint-subtrees.yml | 1 + 1 file changed, 1 insertion(+) diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml index abc0e4ee..d151eb8d 100644 --- a/.github/workflows/lint-subtrees.yml +++ b/.github/workflows/lint-subtrees.yml @@ -1,5 +1,6 @@ # This workflow lints the subtrees.json file to ensure it is valid and up-to-date. # It is triggered on pull requests that modify the subtrees.json file or can be run manually +# via the GitHub Actions UI. name: Lint subtrees.json on: From 9ace336e12b63a70cd92fdf16ea7bff9008de850 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Thu, 26 Jun 2025 12:48:40 -0600 Subject: [PATCH 323/384] Update SSH private key secret reference in sync-subtrees-action configuration --- .github/workflows/subtree.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml index 5fd76582..14b13263 100644 --- a/.github/workflows/subtree.yml +++ b/.github/workflows/subtree.yml @@ -27,4 +27,4 @@ jobs: repository_name: ${{ github.event.repository.name }} default_branch: ${{ github.event.repository.default_branch }} run_number: ${{ github.run_number }} - ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} + ssh_private_key: ${{ secrets.SCHARLTON2_SSH_PRIVATE_KEY }} From c73b98be10295f3ea185b6342a3a2853c89affd3 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Thu, 26 Jun 2025 18:49:41 +0000 Subject: [PATCH 324/384] Squashed 'src/' changes from 470638d9..64825ec7 64825ec7 Add comment to clarify manual trigger for linting workflow in lint-subtrees.yml git-subtree-dir: src git-subtree-split: 64825ec73cbad2a119fb60c270431b5a5fd0e7db --- .github/workflows/lint-subtrees.yml | 1 + 1 file changed, 1 insertion(+) diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml index abc0e4ee..d151eb8d 100644 --- a/.github/workflows/lint-subtrees.yml +++ b/.github/workflows/lint-subtrees.yml @@ -1,5 +1,6 @@ # This workflow lints the subtrees.json file to ensure it is valid and up-to-date. # It is triggered on pull requests that modify the subtrees.json file or can be run manually +# via the GitHub Actions UI. name: Lint subtrees.json on: From 904e9b35956736d21020b31ec622eafc7d7d4c30 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Thu, 26 Jun 2025 19:05:18 -0600 Subject: [PATCH 325/384] Fix SSH private key secret reference in sync-subtrees-action configuration --- .github/workflows/subtree.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml index 14b13263..5fd76582 100644 --- a/.github/workflows/subtree.yml +++ b/.github/workflows/subtree.yml @@ -27,4 +27,4 @@ jobs: repository_name: ${{ github.event.repository.name }} default_branch: ${{ github.event.repository.default_branch }} run_number: ${{ github.run_number }} - ssh_private_key: ${{ secrets.SCHARLTON2_SSH_PRIVATE_KEY }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} From 9afaa30df10999663473b53c5863c777af9b1ae4 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Thu, 26 Jun 2025 19:10:03 -0600 Subject: [PATCH 326/384] Add comment to clarify the use of sync-subtrees-action in lint-subtrees.yml --- .github/workflows/lint-subtrees.yml | 1 + 1 file changed, 1 insertion(+) diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml index d151eb8d..b5574fd7 100644 --- a/.github/workflows/lint-subtrees.yml +++ b/.github/workflows/lint-subtrees.yml @@ -1,6 +1,7 @@ # This workflow lints the subtrees.json file to ensure it is valid and up-to-date. # It is triggered on pull requests that modify the subtrees.json file or can be run manually # via the GitHub Actions UI. +# The workflow uses the usgs-coupled/sync-subtrees-action to perform the linting. name: Lint subtrees.json on: From f2ee6230bc27cebfd005d29f2f1c4ad4fb2ed82e Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Fri, 27 Jun 2025 01:14:06 +0000 Subject: [PATCH 327/384] Squashed 'src/' changes from 64825ec7..9afaa30d 9afaa30d Add comment to clarify the use of sync-subtrees-action in lint-subtrees.yml git-subtree-dir: src git-subtree-split: 9afaa30df10999663473b53c5863c777af9b1ae4 --- .github/workflows/lint-subtrees.yml | 1 + 1 file changed, 1 insertion(+) diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml index d151eb8d..b5574fd7 100644 --- a/.github/workflows/lint-subtrees.yml +++ b/.github/workflows/lint-subtrees.yml @@ -1,6 +1,7 @@ # This workflow lints the subtrees.json file to ensure it is valid and up-to-date. # It is triggered on pull requests that modify the subtrees.json file or can be run manually # via the GitHub Actions UI. +# The workflow uses the usgs-coupled/sync-subtrees-action to perform the linting. name: Lint subtrees.json on: From 990fca2df9f8bbea97a7a772773f6c64d54f5fe4 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Fri, 27 Jun 2025 20:42:18 -0600 Subject: [PATCH 328/384] Refactor code structure for improved readability and maintainability (#73) The GitHub Actions workflow configuration for `sync-subtrees-action` was cleaned up by modifying parameter names and updating the SSH private key secret. --- .github/workflows/subtree.yml | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml index 43011de4..5fd76582 100644 --- a/.github/workflows/subtree.yml +++ b/.github/workflows/subtree.yml @@ -23,8 +23,8 @@ jobs: with: dryRun: ${{ inputs.dryRun }} testMerge: ${{ inputs.testMerge }} - repoName: ${{ github.event.repository.name }} - defaultRef: ${{ github.event.repository.default_branch }} - runNumber: ${{ github.run_number }} - sshKey: ${{ secrets.SSH_PRIVATE_KEY }} - repoOwner: ${{ github.repository_owner }} + github_token: ${{ secrets.GITHUB_TOKEN }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} From 281360bcc16c046fadb8912ef307ece67fc08ec8 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Fri, 27 Jun 2025 20:55:06 -0600 Subject: [PATCH 329/384] Remove SSH_PRIVATE_KEY environment variable from lint-subtrees workflows --- .github/workflows/lint-subtrees.yml | 1 - src/.github/workflows/lint-subtrees.yml | 1 - 2 files changed, 2 deletions(-) diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml index afa1f2f4..11c55ecc 100644 --- a/.github/workflows/lint-subtrees.yml +++ b/.github/workflows/lint-subtrees.yml @@ -13,7 +13,6 @@ jobs: env: CI_SERVER_HOST: github.com GROUP: ${{ github.repository_owner }} - SSH_PRIVATE_KEY: ${{ secrets.SSH_PRIVATE_KEY }} steps: - uses: usgs-coupled/sync-subtrees-action/lint-subtrees/@main with: diff --git a/src/.github/workflows/lint-subtrees.yml b/src/.github/workflows/lint-subtrees.yml index b5574fd7..d151eb8d 100644 --- a/src/.github/workflows/lint-subtrees.yml +++ b/src/.github/workflows/lint-subtrees.yml @@ -1,7 +1,6 @@ # This workflow lints the subtrees.json file to ensure it is valid and up-to-date. # It is triggered on pull requests that modify the subtrees.json file or can be run manually # via the GitHub Actions UI. -# The workflow uses the usgs-coupled/sync-subtrees-action to perform the linting. name: Lint subtrees.json on: From ae645ff334ebdaf4b9e420b721d8719bd4a63996 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Fri, 27 Jun 2025 20:55:06 -0600 Subject: [PATCH 330/384] Remove SSH_PRIVATE_KEY environment variable from lint-subtrees workflows --- .github/workflows/lint-subtrees.yml | 1 - 1 file changed, 1 deletion(-) diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml index b5574fd7..d151eb8d 100644 --- a/.github/workflows/lint-subtrees.yml +++ b/.github/workflows/lint-subtrees.yml @@ -1,7 +1,6 @@ # This workflow lints the subtrees.json file to ensure it is valid and up-to-date. # It is triggered on pull requests that modify the subtrees.json file or can be run manually # via the GitHub Actions UI. -# The workflow uses the usgs-coupled/sync-subtrees-action to perform the linting. name: Lint subtrees.json on: From d24994e83f58568001fe246aad0e80ecc04c479e Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Fri, 27 Jun 2025 20:57:46 -0600 Subject: [PATCH 331/384] Remove SSH_PRIVATE_KEY environment variable from lint-subtrees workflow --- src/.github/workflows/lint-subtrees.yml | 1 - 1 file changed, 1 deletion(-) diff --git a/src/.github/workflows/lint-subtrees.yml b/src/.github/workflows/lint-subtrees.yml index d151eb8d..bbd37c26 100644 --- a/src/.github/workflows/lint-subtrees.yml +++ b/src/.github/workflows/lint-subtrees.yml @@ -16,7 +16,6 @@ jobs: env: CI_SERVER_HOST: github.com GROUP: ${{ github.repository_owner }} - SSH_PRIVATE_KEY: ${{ secrets.SSH_PRIVATE_KEY }} steps: - uses: usgs-coupled/sync-subtrees-action/lint-subtrees/@main with: From 29c7e04b5c55d4508bb78bc4663b05aac1a5691a Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Fri, 27 Jun 2025 20:57:46 -0600 Subject: [PATCH 332/384] Remove SSH_PRIVATE_KEY environment variable from lint-subtrees workflow --- .github/workflows/lint-subtrees.yml | 1 - 1 file changed, 1 deletion(-) diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml index d151eb8d..bbd37c26 100644 --- a/.github/workflows/lint-subtrees.yml +++ b/.github/workflows/lint-subtrees.yml @@ -16,7 +16,6 @@ jobs: env: CI_SERVER_HOST: github.com GROUP: ${{ github.repository_owner }} - SSH_PRIVATE_KEY: ${{ secrets.SSH_PRIVATE_KEY }} steps: - uses: usgs-coupled/sync-subtrees-action/lint-subtrees/@main with: From 9b01d8b5b547003884c7bf221818858e33310672 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Fri, 27 Jun 2025 21:16:45 -0600 Subject: [PATCH 333/384] Remove unused GITHUB_TOKEN from sync-subtrees workflow --- .github/workflows/subtree.yml | 1 - 1 file changed, 1 deletion(-) diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml index 5fd76582..193b36e3 100644 --- a/.github/workflows/subtree.yml +++ b/.github/workflows/subtree.yml @@ -23,7 +23,6 @@ jobs: with: dryRun: ${{ inputs.dryRun }} testMerge: ${{ inputs.testMerge }} - github_token: ${{ secrets.GITHUB_TOKEN }} repository_name: ${{ github.event.repository.name }} default_branch: ${{ github.event.repository.default_branch }} run_number: ${{ github.run_number }} From d888aa0ea55e500f2bd0e665a492575f079df9b1 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Sat, 28 Jun 2025 03:17:34 +0000 Subject: [PATCH 334/384] Squashed 'src/' changes from 9afaa30d..29c7e04b 29c7e04b Remove SSH_PRIVATE_KEY environment variable from lint-subtrees workflow ae645ff3 Remove SSH_PRIVATE_KEY environment variable from lint-subtrees workflows git-subtree-dir: src git-subtree-split: 29c7e04b5c55d4508bb78bc4663b05aac1a5691a --- .github/workflows/lint-subtrees.yml | 2 -- 1 file changed, 2 deletions(-) diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml index b5574fd7..bbd37c26 100644 --- a/.github/workflows/lint-subtrees.yml +++ b/.github/workflows/lint-subtrees.yml @@ -1,7 +1,6 @@ # This workflow lints the subtrees.json file to ensure it is valid and up-to-date. # It is triggered on pull requests that modify the subtrees.json file or can be run manually # via the GitHub Actions UI. -# The workflow uses the usgs-coupled/sync-subtrees-action to perform the linting. name: Lint subtrees.json on: @@ -17,7 +16,6 @@ jobs: env: CI_SERVER_HOST: github.com GROUP: ${{ github.repository_owner }} - SSH_PRIVATE_KEY: ${{ secrets.SSH_PRIVATE_KEY }} steps: - uses: usgs-coupled/sync-subtrees-action/lint-subtrees/@main with: From 83fbeb407b6d9c60ebb3043e7a6602351ee2cb70 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Fri, 27 Jun 2025 21:24:48 -0600 Subject: [PATCH 335/384] Add sync-subtrees workflow for managing repository subtrees --- src/.github/workflows/subtree.yml | 29 +++++++++++++++++++++++++++++ 1 file changed, 29 insertions(+) create mode 100644 src/.github/workflows/subtree.yml diff --git a/src/.github/workflows/subtree.yml b/src/.github/workflows/subtree.yml new file mode 100644 index 00000000..193b36e3 --- /dev/null +++ b/src/.github/workflows/subtree.yml @@ -0,0 +1,29 @@ +name: Sync Subtrees + +on: + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: true + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + runs-on: ubuntu-latest + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} From 86e81886791cdc8973c6526c4f0168dfc9a9be07 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Fri, 27 Jun 2025 21:24:48 -0600 Subject: [PATCH 336/384] Add sync-subtrees workflow for managing repository subtrees --- .github/workflows/subtree.yml | 29 +++++++++++++++++++++++++++++ 1 file changed, 29 insertions(+) create mode 100644 .github/workflows/subtree.yml diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml new file mode 100644 index 00000000..193b36e3 --- /dev/null +++ b/.github/workflows/subtree.yml @@ -0,0 +1,29 @@ +name: Sync Subtrees + +on: + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: true + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + runs-on: ubuntu-latest + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} From f11422e59cb37e5dd869c77ddae69253bb3bb63f Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Fri, 27 Jun 2025 22:26:32 -0600 Subject: [PATCH 337/384] Fix URL format in subtrees.json for phreeqcpp prefix --- src/.github/subtrees.json | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/.github/subtrees.json b/src/.github/subtrees.json index 3b8b0086..19b97487 100644 --- a/src/.github/subtrees.json +++ b/src/.github/subtrees.json @@ -1,6 +1,6 @@ [ { "prefix": "phreeqcpp", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src.git" + "url": "git@${CI_SERVER_HOST}:${GROUP}/phreeqc3-src.git" } ] \ No newline at end of file From 61c8612f428fa5ce06333c598772249530c8221c Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Fri, 27 Jun 2025 22:26:32 -0600 Subject: [PATCH 338/384] Fix URL format in subtrees.json for phreeqcpp prefix --- .github/subtrees.json | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/subtrees.json b/.github/subtrees.json index 3b8b0086..19b97487 100644 --- a/.github/subtrees.json +++ b/.github/subtrees.json @@ -1,6 +1,6 @@ [ { "prefix": "phreeqcpp", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src.git" + "url": "git@${CI_SERVER_HOST}:${GROUP}/phreeqc3-src.git" } ] \ No newline at end of file From 336b21f6e3e4094768b447f9a52ec3fb82625bcd Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Sat, 28 Jun 2025 04:27:58 +0000 Subject: [PATCH 339/384] Squashed 'src/' changes from 29c7e04b..86e81886 86e81886 Add sync-subtrees workflow for managing repository subtrees git-subtree-dir: src git-subtree-split: 86e81886791cdc8973c6526c4f0168dfc9a9be07 --- .github/workflows/subtree.yml | 29 +++++++++++++++++++++++++++++ 1 file changed, 29 insertions(+) create mode 100644 .github/workflows/subtree.yml diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml new file mode 100644 index 00000000..193b36e3 --- /dev/null +++ b/.github/workflows/subtree.yml @@ -0,0 +1,29 @@ +name: Sync Subtrees + +on: + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: true + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + runs-on: ubuntu-latest + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} From 1a279aa00ee7d515c2674d146bad801387c60400 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Sat, 28 Jun 2025 15:55:48 -0600 Subject: [PATCH 340/384] Update GROUP environment variable to 'usgs-coupled' in workflow files --- .github/workflows/lint-subtrees.yml | 2 +- .github/workflows/subtree.yml | 3 +++ 2 files changed, 4 insertions(+), 1 deletion(-) diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml index 11c55ecc..60661485 100644 --- a/.github/workflows/lint-subtrees.yml +++ b/.github/workflows/lint-subtrees.yml @@ -12,7 +12,7 @@ jobs: runs-on: ubuntu-latest env: CI_SERVER_HOST: github.com - GROUP: ${{ github.repository_owner }} + GROUP: usgs-coupled steps: - uses: usgs-coupled/sync-subtrees-action/lint-subtrees/@main with: diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml index 193b36e3..59862107 100644 --- a/.github/workflows/subtree.yml +++ b/.github/workflows/subtree.yml @@ -17,6 +17,9 @@ on: jobs: sync-subtrees: runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled steps: - name: Run sync-subtrees-action uses: usgs-coupled/sync-subtrees-action@main From e438f3677e8fb900d6482682b249fc985a21ccff Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Sat, 28 Jun 2025 21:58:05 +0000 Subject: [PATCH 341/384] Squashed 'src/' changes from 86e81886..61c8612f 61c8612f Fix URL format in subtrees.json for phreeqcpp prefix git-subtree-dir: src git-subtree-split: 61c8612f428fa5ce06333c598772249530c8221c --- .github/subtrees.json | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/subtrees.json b/.github/subtrees.json index 3b8b0086..19b97487 100644 --- a/.github/subtrees.json +++ b/.github/subtrees.json @@ -1,6 +1,6 @@ [ { "prefix": "phreeqcpp", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src.git" + "url": "git@${CI_SERVER_HOST}:${GROUP}/phreeqc3-src.git" } ] \ No newline at end of file From a79d436ec2738d1f4e31ad5bfdb98e990e436b77 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Sat, 28 Jun 2025 16:06:57 -0600 Subject: [PATCH 342/384] Update subtrees.json and workflows to use 'usgs-coupled' for GROUP environment variable --- src/.github/subtrees.json | 2 +- src/.github/workflows/lint-subtrees.yml | 2 +- src/.github/workflows/subtree.yml | 3 +++ 3 files changed, 5 insertions(+), 2 deletions(-) diff --git a/src/.github/subtrees.json b/src/.github/subtrees.json index 19b97487..3b8b0086 100644 --- a/src/.github/subtrees.json +++ b/src/.github/subtrees.json @@ -1,6 +1,6 @@ [ { "prefix": "phreeqcpp", - "url": "git@${CI_SERVER_HOST}:${GROUP}/phreeqc3-src.git" + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src.git" } ] \ No newline at end of file diff --git a/src/.github/workflows/lint-subtrees.yml b/src/.github/workflows/lint-subtrees.yml index bbd37c26..4306e374 100644 --- a/src/.github/workflows/lint-subtrees.yml +++ b/src/.github/workflows/lint-subtrees.yml @@ -15,7 +15,7 @@ jobs: runs-on: ubuntu-latest env: CI_SERVER_HOST: github.com - GROUP: ${{ github.repository_owner }} + GROUP: usgs-coupled steps: - uses: usgs-coupled/sync-subtrees-action/lint-subtrees/@main with: diff --git a/src/.github/workflows/subtree.yml b/src/.github/workflows/subtree.yml index 193b36e3..1f62d41d 100644 --- a/src/.github/workflows/subtree.yml +++ b/src/.github/workflows/subtree.yml @@ -17,6 +17,9 @@ on: jobs: sync-subtrees: runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled steps: - name: Run sync-subtrees-action uses: usgs-coupled/sync-subtrees-action@main From 311bc42e32f3da405b3b7b8c89da0790b7088269 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Sat, 28 Jun 2025 16:06:57 -0600 Subject: [PATCH 343/384] Update subtrees.json and workflows to use 'usgs-coupled' for GROUP environment variable --- .github/subtrees.json | 2 +- .github/workflows/lint-subtrees.yml | 2 +- .github/workflows/subtree.yml | 3 +++ 3 files changed, 5 insertions(+), 2 deletions(-) diff --git a/.github/subtrees.json b/.github/subtrees.json index 19b97487..3b8b0086 100644 --- a/.github/subtrees.json +++ b/.github/subtrees.json @@ -1,6 +1,6 @@ [ { "prefix": "phreeqcpp", - "url": "git@${CI_SERVER_HOST}:${GROUP}/phreeqc3-src.git" + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src.git" } ] \ No newline at end of file diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml index bbd37c26..4306e374 100644 --- a/.github/workflows/lint-subtrees.yml +++ b/.github/workflows/lint-subtrees.yml @@ -15,7 +15,7 @@ jobs: runs-on: ubuntu-latest env: CI_SERVER_HOST: github.com - GROUP: ${{ github.repository_owner }} + GROUP: usgs-coupled steps: - uses: usgs-coupled/sync-subtrees-action/lint-subtrees/@main with: diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml index 193b36e3..1f62d41d 100644 --- a/.github/workflows/subtree.yml +++ b/.github/workflows/subtree.yml @@ -17,6 +17,9 @@ on: jobs: sync-subtrees: runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled steps: - name: Run sync-subtrees-action uses: usgs-coupled/sync-subtrees-action@main From 64b38cbef36b73ae2a4780605033c8c9e6f91869 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Sat, 28 Jun 2025 16:34:48 -0600 Subject: [PATCH 344/384] Add workflows for linting and syncing subtrees.json --- src/phreeqcpp/.github/subtrees.json | 6 ++++ .../.github/workflows/lint-subtrees.yml | 22 +++++++++++++ src/phreeqcpp/.github/workflows/subtree.yml | 32 +++++++++++++++++++ 3 files changed, 60 insertions(+) create mode 100644 src/phreeqcpp/.github/subtrees.json create mode 100644 src/phreeqcpp/.github/workflows/lint-subtrees.yml create mode 100644 src/phreeqcpp/.github/workflows/subtree.yml diff --git a/src/phreeqcpp/.github/subtrees.json b/src/phreeqcpp/.github/subtrees.json new file mode 100644 index 00000000..7f076eb3 --- /dev/null +++ b/src/phreeqcpp/.github/subtrees.json @@ -0,0 +1,6 @@ +[ + { + "prefix": "common", + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src-common.git" + } +] \ No newline at end of file diff --git a/src/phreeqcpp/.github/workflows/lint-subtrees.yml b/src/phreeqcpp/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..4306e374 --- /dev/null +++ b/src/phreeqcpp/.github/workflows/lint-subtrees.yml @@ -0,0 +1,22 @@ +# This workflow lints the subtrees.json file to ensure it is valid and up-to-date. +# It is triggered on pull requests that modify the subtrees.json file or can be run manually +# via the GitHub Actions UI. +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - uses: usgs-coupled/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/src/phreeqcpp/.github/workflows/subtree.yml b/src/phreeqcpp/.github/workflows/subtree.yml new file mode 100644 index 00000000..1f62d41d --- /dev/null +++ b/src/phreeqcpp/.github/workflows/subtree.yml @@ -0,0 +1,32 @@ +name: Sync Subtrees + +on: + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: true + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} From 9592f20922bb8dd17431c8975db68b17ab6598c1 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Sat, 28 Jun 2025 16:34:48 -0600 Subject: [PATCH 345/384] Add workflows for linting and syncing subtrees.json --- phreeqcpp/.github/subtrees.json | 6 ++++ phreeqcpp/.github/workflows/lint-subtrees.yml | 22 +++++++++++++ phreeqcpp/.github/workflows/subtree.yml | 32 +++++++++++++++++++ 3 files changed, 60 insertions(+) create mode 100644 phreeqcpp/.github/subtrees.json create mode 100644 phreeqcpp/.github/workflows/lint-subtrees.yml create mode 100644 phreeqcpp/.github/workflows/subtree.yml diff --git a/phreeqcpp/.github/subtrees.json b/phreeqcpp/.github/subtrees.json new file mode 100644 index 00000000..7f076eb3 --- /dev/null +++ b/phreeqcpp/.github/subtrees.json @@ -0,0 +1,6 @@ +[ + { + "prefix": "common", + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src-common.git" + } +] \ No newline at end of file diff --git a/phreeqcpp/.github/workflows/lint-subtrees.yml b/phreeqcpp/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..4306e374 --- /dev/null +++ b/phreeqcpp/.github/workflows/lint-subtrees.yml @@ -0,0 +1,22 @@ +# This workflow lints the subtrees.json file to ensure it is valid and up-to-date. +# It is triggered on pull requests that modify the subtrees.json file or can be run manually +# via the GitHub Actions UI. +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - uses: usgs-coupled/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/phreeqcpp/.github/workflows/subtree.yml b/phreeqcpp/.github/workflows/subtree.yml new file mode 100644 index 00000000..1f62d41d --- /dev/null +++ b/phreeqcpp/.github/workflows/subtree.yml @@ -0,0 +1,32 @@ +name: Sync Subtrees + +on: + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: true + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} From 367cad0d9bdc4cff58b644a8b3753cacb2605fd5 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Sat, 28 Jun 2025 22:37:04 +0000 Subject: [PATCH 346/384] Squashed 'src/' changes from 61c8612f..311bc42e 311bc42e Update subtrees.json and workflows to use 'usgs-coupled' for GROUP environment variable git-subtree-dir: src git-subtree-split: 311bc42e32f3da405b3b7b8c89da0790b7088269 --- .github/subtrees.json | 2 +- .github/workflows/lint-subtrees.yml | 2 +- .github/workflows/subtree.yml | 3 +++ 3 files changed, 5 insertions(+), 2 deletions(-) diff --git a/.github/subtrees.json b/.github/subtrees.json index 19b97487..3b8b0086 100644 --- a/.github/subtrees.json +++ b/.github/subtrees.json @@ -1,6 +1,6 @@ [ { "prefix": "phreeqcpp", - "url": "git@${CI_SERVER_HOST}:${GROUP}/phreeqc3-src.git" + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src.git" } ] \ No newline at end of file diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml index bbd37c26..4306e374 100644 --- a/.github/workflows/lint-subtrees.yml +++ b/.github/workflows/lint-subtrees.yml @@ -15,7 +15,7 @@ jobs: runs-on: ubuntu-latest env: CI_SERVER_HOST: github.com - GROUP: ${{ github.repository_owner }} + GROUP: usgs-coupled steps: - uses: usgs-coupled/sync-subtrees-action/lint-subtrees/@main with: diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml index 193b36e3..1f62d41d 100644 --- a/.github/workflows/subtree.yml +++ b/.github/workflows/subtree.yml @@ -17,6 +17,9 @@ on: jobs: sync-subtrees: runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled steps: - name: Run sync-subtrees-action uses: usgs-coupled/sync-subtrees-action@main From 34ef558eaf0e1c5452e15863419c53c3669c706b Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Mon, 30 Jun 2025 15:52:08 -0600 Subject: [PATCH 347/384] Add superprojects.json and lint workflow for validation --- src/.github/superprojects.json | 9 +++++++++ src/.github/workflows/lint-superprojects.yml | 16 ++++++++++++++++ 2 files changed, 25 insertions(+) create mode 100644 src/.github/superprojects.json create mode 100644 src/.github/workflows/lint-superprojects.yml diff --git a/src/.github/superprojects.json b/src/.github/superprojects.json new file mode 100644 index 00000000..3dec8709 --- /dev/null +++ b/src/.github/superprojects.json @@ -0,0 +1,9 @@ +{ + "iphreeqc-src": { + "superprojects": [ + "usgs-coupled/iphreeqc", + "usgs-coupled/iphreeqccom", + "usgs-coupled-subtrees/phreeqcrm-src" + ] + } +} diff --git a/src/.github/workflows/lint-superprojects.yml b/src/.github/workflows/lint-superprojects.yml new file mode 100644 index 00000000..da91f16a --- /dev/null +++ b/src/.github/workflows/lint-superprojects.yml @@ -0,0 +1,16 @@ +name: Lint superprojects.json + +on: + pull_request: + paths: + - '.github/superprojects.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + steps: + - uses: usgs-coupled/sync-subtrees-action/lint-superprojects/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} From 10b11c09fdebdd072e5c324185f9553e78dfe747 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Mon, 30 Jun 2025 15:52:08 -0600 Subject: [PATCH 348/384] Add superprojects.json and lint workflow for validation --- .github/superprojects.json | 9 +++++++++ .github/workflows/lint-superprojects.yml | 16 ++++++++++++++++ 2 files changed, 25 insertions(+) create mode 100644 .github/superprojects.json create mode 100644 .github/workflows/lint-superprojects.yml diff --git a/.github/superprojects.json b/.github/superprojects.json new file mode 100644 index 00000000..3dec8709 --- /dev/null +++ b/.github/superprojects.json @@ -0,0 +1,9 @@ +{ + "iphreeqc-src": { + "superprojects": [ + "usgs-coupled/iphreeqc", + "usgs-coupled/iphreeqccom", + "usgs-coupled-subtrees/phreeqcrm-src" + ] + } +} diff --git a/.github/workflows/lint-superprojects.yml b/.github/workflows/lint-superprojects.yml new file mode 100644 index 00000000..da91f16a --- /dev/null +++ b/.github/workflows/lint-superprojects.yml @@ -0,0 +1,16 @@ +name: Lint superprojects.json + +on: + pull_request: + paths: + - '.github/superprojects.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + steps: + - uses: usgs-coupled/sync-subtrees-action/lint-superprojects/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} From 513d19f200244cf3325f96441610462ebf258c69 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Mon, 30 Jun 2025 21:53:38 +0000 Subject: [PATCH 349/384] Squashed 'src/' changes from 311bc42e..9592f209 9592f209 Add workflows for linting and syncing subtrees.json git-subtree-dir: src git-subtree-split: 9592f20922bb8dd17431c8975db68b17ab6598c1 --- phreeqcpp/.github/subtrees.json | 6 ++++ phreeqcpp/.github/workflows/lint-subtrees.yml | 22 +++++++++++++ phreeqcpp/.github/workflows/subtree.yml | 32 +++++++++++++++++++ 3 files changed, 60 insertions(+) create mode 100644 phreeqcpp/.github/subtrees.json create mode 100644 phreeqcpp/.github/workflows/lint-subtrees.yml create mode 100644 phreeqcpp/.github/workflows/subtree.yml diff --git a/phreeqcpp/.github/subtrees.json b/phreeqcpp/.github/subtrees.json new file mode 100644 index 00000000..7f076eb3 --- /dev/null +++ b/phreeqcpp/.github/subtrees.json @@ -0,0 +1,6 @@ +[ + { + "prefix": "common", + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src-common.git" + } +] \ No newline at end of file diff --git a/phreeqcpp/.github/workflows/lint-subtrees.yml b/phreeqcpp/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..4306e374 --- /dev/null +++ b/phreeqcpp/.github/workflows/lint-subtrees.yml @@ -0,0 +1,22 @@ +# This workflow lints the subtrees.json file to ensure it is valid and up-to-date. +# It is triggered on pull requests that modify the subtrees.json file or can be run manually +# via the GitHub Actions UI. +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - uses: usgs-coupled/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/phreeqcpp/.github/workflows/subtree.yml b/phreeqcpp/.github/workflows/subtree.yml new file mode 100644 index 00000000..1f62d41d --- /dev/null +++ b/phreeqcpp/.github/workflows/subtree.yml @@ -0,0 +1,32 @@ +name: Sync Subtrees + +on: + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: true + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} From 4120429fd6a5b2bfb0218bbffe32dfa05eed3d84 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Mon, 30 Jun 2025 16:05:08 -0600 Subject: [PATCH 350/384] Rename job from 'lint-subtrees' to 'lint-superprojects' in lint-superprojects.yml --- src/.github/workflows/lint-superprojects.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/.github/workflows/lint-superprojects.yml b/src/.github/workflows/lint-superprojects.yml index da91f16a..3ab6debe 100644 --- a/src/.github/workflows/lint-superprojects.yml +++ b/src/.github/workflows/lint-superprojects.yml @@ -8,7 +8,7 @@ on: workflow_dispatch: jobs: - lint-subtrees: + lint-superprojects: runs-on: ubuntu-latest steps: - uses: usgs-coupled/sync-subtrees-action/lint-superprojects/@main From 06302c777e7281f119eb50abc18feb78a583c56c Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Mon, 30 Jun 2025 16:05:08 -0600 Subject: [PATCH 351/384] Rename job from 'lint-subtrees' to 'lint-superprojects' in lint-superprojects.yml --- .github/workflows/lint-superprojects.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/lint-superprojects.yml b/.github/workflows/lint-superprojects.yml index da91f16a..3ab6debe 100644 --- a/.github/workflows/lint-superprojects.yml +++ b/.github/workflows/lint-superprojects.yml @@ -8,7 +8,7 @@ on: workflow_dispatch: jobs: - lint-subtrees: + lint-superprojects: runs-on: ubuntu-latest steps: - uses: usgs-coupled/sync-subtrees-action/lint-superprojects/@main From 4cc59177811120eb31fa87f6e690e86b53cc630f Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Mon, 30 Jun 2025 23:39:23 +0000 Subject: [PATCH 352/384] Squashed 'src/' changes from 9592f209..06302c77 06302c77 Rename job from 'lint-subtrees' to 'lint-superprojects' in lint-superprojects.yml 10b11c09 Add superprojects.json and lint workflow for validation git-subtree-dir: src git-subtree-split: 06302c777e7281f119eb50abc18feb78a583c56c --- .github/superprojects.json | 9 +++++++++ .github/workflows/lint-superprojects.yml | 16 ++++++++++++++++ 2 files changed, 25 insertions(+) create mode 100644 .github/superprojects.json create mode 100644 .github/workflows/lint-superprojects.yml diff --git a/.github/superprojects.json b/.github/superprojects.json new file mode 100644 index 00000000..3dec8709 --- /dev/null +++ b/.github/superprojects.json @@ -0,0 +1,9 @@ +{ + "iphreeqc-src": { + "superprojects": [ + "usgs-coupled/iphreeqc", + "usgs-coupled/iphreeqccom", + "usgs-coupled-subtrees/phreeqcrm-src" + ] + } +} diff --git a/.github/workflows/lint-superprojects.yml b/.github/workflows/lint-superprojects.yml new file mode 100644 index 00000000..3ab6debe --- /dev/null +++ b/.github/workflows/lint-superprojects.yml @@ -0,0 +1,16 @@ +name: Lint superprojects.json + +on: + pull_request: + paths: + - '.github/superprojects.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-superprojects: + runs-on: ubuntu-latest + steps: + - uses: usgs-coupled/sync-subtrees-action/lint-superprojects/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} From 84b364ec810c8c0b12c18578205dc8094e1467bd Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Thu, 3 Jul 2025 23:30:21 -0600 Subject: [PATCH 353/384] Add repository fields to subtrees.json for better clarity --- .github/subtrees.json | 21 ++++++++++++++------- 1 file changed, 14 insertions(+), 7 deletions(-) diff --git a/.github/subtrees.json b/.github/subtrees.json index 1d300735..2e7193a9 100644 --- a/.github/subtrees.json +++ b/.github/subtrees.json @@ -1,30 +1,37 @@ [ { "prefix": "src", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/iphreeqc-src.git" + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/iphreeqc-src.git", + "repo": "usgs-coupled-subtrees/iphreeqc-src" }, { "prefix": "examples/c", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-commanuscript-cgfinal-examples-c.git" + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-commanuscript-cgfinal-examples-c.git", + "repo": "usgs-coupled-subtrees/phreeqc-commanuscript-cgfinal-examples-c" }, { "prefix": "examples/com", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-commanuscript-cgfinal-examples-com.git" + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-commanuscript-cgfinal-examples-com.git", + "repo": "usgs-coupled-subtrees/phreeqc-commanuscript-cgfinal-examples-com" }, { "prefix": "examples/fortran", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-COMManuscript-CGfinal-examples-fortran.git" + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-COMManuscript-CGfinal-examples-fortran.git", + "repo": "usgs-coupled-subtrees/phreeqc-COMManuscript-CGfinal-examples-fortran" }, { "prefix": "database", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-database.git" + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-database.git", + "repo": "usgs-coupled-subtrees/phreeqc3-database" }, { "prefix": "phreeqc3-doc", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-doc.git" + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-doc.git", + "repo": "usgs-coupled-subtrees/phreeqc3-doc" }, { "prefix": "phreeqc3-examples", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-examples.git" + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-examples.git", + "repo": "usgs-coupled-subtrees/phreeqc3-examples" } ] \ No newline at end of file From 4460ae04d338846fd752668a2d41ea3c972f936f Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Fri, 4 Jul 2025 11:35:28 -0600 Subject: [PATCH 354/384] Add GH_TOKEN environment variable to sync-subtrees job --- .github/workflows/subtree.yml | 1 + 1 file changed, 1 insertion(+) diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml index 59862107..f9297d34 100644 --- a/.github/workflows/subtree.yml +++ b/.github/workflows/subtree.yml @@ -20,6 +20,7 @@ jobs: env: CI_SERVER_HOST: github.com GROUP: usgs-coupled + GH_TOKEN: ${{ github.token }} steps: - name: Run sync-subtrees-action uses: usgs-coupled/sync-subtrees-action@main From 7ac0cb0f2513c07e5faf73add767bad6e0778587 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Sat, 5 Jul 2025 16:31:12 -0600 Subject: [PATCH 355/384] Update GH_TOKEN to use secrets for enhanced security in sync-subtrees job --- .github/workflows/subtree.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml index f9297d34..6dda6cf6 100644 --- a/.github/workflows/subtree.yml +++ b/.github/workflows/subtree.yml @@ -20,7 +20,7 @@ jobs: env: CI_SERVER_HOST: github.com GROUP: usgs-coupled - GH_TOKEN: ${{ github.token }} + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} steps: - name: Run sync-subtrees-action uses: usgs-coupled/sync-subtrees-action@main From 22eab2be4dfa503a7e7fde96649af3de71f9d924 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Sun, 6 Jul 2025 13:08:57 -0600 Subject: [PATCH 356/384] Add workflows for linting and syncing subtrees, and update subtrees.json format --- examples/c/.github/subtrees.json | 1 + .../c/.github/workflows/lint-subtrees.yml | 19 +++++++++++ examples/c/.github/workflows/subtree.yml | 33 +++++++++++++++++++ src/phreeqcpp/.github/subtrees.json | 3 +- 4 files changed, 55 insertions(+), 1 deletion(-) create mode 100644 examples/c/.github/subtrees.json create mode 100644 examples/c/.github/workflows/lint-subtrees.yml create mode 100644 examples/c/.github/workflows/subtree.yml diff --git a/examples/c/.github/subtrees.json b/examples/c/.github/subtrees.json new file mode 100644 index 00000000..fe51488c --- /dev/null +++ b/examples/c/.github/subtrees.json @@ -0,0 +1 @@ +[] diff --git a/examples/c/.github/workflows/lint-subtrees.yml b/examples/c/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..60661485 --- /dev/null +++ b/examples/c/.github/workflows/lint-subtrees.yml @@ -0,0 +1,19 @@ +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - uses: usgs-coupled/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/examples/c/.github/workflows/subtree.yml b/examples/c/.github/workflows/subtree.yml new file mode 100644 index 00000000..6dda6cf6 --- /dev/null +++ b/examples/c/.github/workflows/subtree.yml @@ -0,0 +1,33 @@ +name: Sync Subtrees + +on: + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: true + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/src/phreeqcpp/.github/subtrees.json b/src/phreeqcpp/.github/subtrees.json index 7f076eb3..ff31b0dd 100644 --- a/src/phreeqcpp/.github/subtrees.json +++ b/src/phreeqcpp/.github/subtrees.json @@ -1,6 +1,7 @@ [ { "prefix": "common", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src-common.git" + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src-common.git", + "repo": "usgs-coupled-subtrees/phreeqc3-src-common" } ] \ No newline at end of file From 79654e62f12543065b480f127e77de58d335d1e0 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Sun, 6 Jul 2025 13:08:57 -0600 Subject: [PATCH 357/384] Add workflows for linting and syncing subtrees, and update subtrees.json format --- phreeqcpp/.github/subtrees.json | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/phreeqcpp/.github/subtrees.json b/phreeqcpp/.github/subtrees.json index 7f076eb3..ff31b0dd 100644 --- a/phreeqcpp/.github/subtrees.json +++ b/phreeqcpp/.github/subtrees.json @@ -1,6 +1,7 @@ [ { "prefix": "common", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src-common.git" + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src-common.git", + "repo": "usgs-coupled-subtrees/phreeqc3-src-common" } ] \ No newline at end of file From be121f9d8a5f3eef3195eff02c90c2dcdbb7cf9c Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Sun, 6 Jul 2025 13:08:57 -0600 Subject: [PATCH 358/384] Add workflows for linting and syncing subtrees, and update subtrees.json format --- .github/subtrees.json | 1 + .github/workflows/lint-subtrees.yml | 19 +++++++++++++++++ .github/workflows/subtree.yml | 33 +++++++++++++++++++++++++++++ 3 files changed, 53 insertions(+) create mode 100644 .github/subtrees.json create mode 100644 .github/workflows/lint-subtrees.yml create mode 100644 .github/workflows/subtree.yml diff --git a/.github/subtrees.json b/.github/subtrees.json new file mode 100644 index 00000000..fe51488c --- /dev/null +++ b/.github/subtrees.json @@ -0,0 +1 @@ +[] diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..60661485 --- /dev/null +++ b/.github/workflows/lint-subtrees.yml @@ -0,0 +1,19 @@ +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - uses: usgs-coupled/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml new file mode 100644 index 00000000..6dda6cf6 --- /dev/null +++ b/.github/workflows/subtree.yml @@ -0,0 +1,33 @@ +name: Sync Subtrees + +on: + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: true + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} From afefbbcf95fbfe4b14579be20b23d251dd003424 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Sun, 6 Jul 2025 13:23:29 -0600 Subject: [PATCH 359/384] Add missing comma and ensure repo field is included in subtrees.json --- src/.github/subtrees.json | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/src/.github/subtrees.json b/src/.github/subtrees.json index 3b8b0086..352be8c8 100644 --- a/src/.github/subtrees.json +++ b/src/.github/subtrees.json @@ -1,6 +1,7 @@ [ { "prefix": "phreeqcpp", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src.git" + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src.git", + "repo": "usgs-coupled-subtrees/phreeqc3-src" } ] \ No newline at end of file From c3280180d4e23deabfa427fe80b3a89d0d9d4d5f Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R" Date: Sun, 6 Jul 2025 13:23:29 -0600 Subject: [PATCH 360/384] Add missing comma and ensure repo field is included in subtrees.json --- .github/subtrees.json | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/.github/subtrees.json b/.github/subtrees.json index 3b8b0086..352be8c8 100644 --- a/.github/subtrees.json +++ b/.github/subtrees.json @@ -1,6 +1,7 @@ [ { "prefix": "phreeqcpp", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src.git" + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src.git", + "repo": "usgs-coupled-subtrees/phreeqc3-src" } ] \ No newline at end of file From 7ab2a246ea7474f8e386af8efb675ab02642857f Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Sun, 6 Jul 2025 19:24:12 +0000 Subject: [PATCH 361/384] Squashed 'src/' changes from 06302c77..79654e62 79654e62 Add workflows for linting and syncing subtrees, and update subtrees.json format git-subtree-dir: src git-subtree-split: 79654e62f12543065b480f127e77de58d335d1e0 --- phreeqcpp/.github/subtrees.json | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/phreeqcpp/.github/subtrees.json b/phreeqcpp/.github/subtrees.json index 7f076eb3..ff31b0dd 100644 --- a/phreeqcpp/.github/subtrees.json +++ b/phreeqcpp/.github/subtrees.json @@ -1,6 +1,7 @@ [ { "prefix": "common", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src-common.git" + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src-common.git", + "repo": "usgs-coupled-subtrees/phreeqc3-src-common" } ] \ No newline at end of file From c3b41a797af2b4e38b6fee6b68480d762dcf1311 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Sun, 6 Jul 2025 19:24:13 +0000 Subject: [PATCH 362/384] Squashed 'examples/c/' changes from 1680e5b7..be121f9d be121f9d Add workflows for linting and syncing subtrees, and update subtrees.json format git-subtree-dir: examples/c git-subtree-split: be121f9d8a5f3eef3195eff02c90c2dcdbb7cf9c --- .github/subtrees.json | 1 + .github/workflows/lint-subtrees.yml | 19 +++++++++++++++++ .github/workflows/subtree.yml | 33 +++++++++++++++++++++++++++++ 3 files changed, 53 insertions(+) create mode 100644 .github/subtrees.json create mode 100644 .github/workflows/lint-subtrees.yml create mode 100644 .github/workflows/subtree.yml diff --git a/.github/subtrees.json b/.github/subtrees.json new file mode 100644 index 00000000..fe51488c --- /dev/null +++ b/.github/subtrees.json @@ -0,0 +1 @@ +[] diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..60661485 --- /dev/null +++ b/.github/workflows/lint-subtrees.yml @@ -0,0 +1,19 @@ +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - uses: usgs-coupled/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml new file mode 100644 index 00000000..6dda6cf6 --- /dev/null +++ b/.github/workflows/subtree.yml @@ -0,0 +1,33 @@ +name: Sync Subtrees + +on: + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: true + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} From 4a0e162b91bab857cd67097395147cdc665558a1 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Wed, 6 Aug 2025 16:46:25 -0600 Subject: [PATCH 363/384] Add workflows and configuration for syncing and linting subtrees - Created .github/subtrees.json to define subtree repositories. - Added linting workflow for subtrees.json in .github/workflows/lint-subtrees.yml. - Implemented sync workflow for subtrees in .github/workflows/subtree.yml. - Created subtrees.json and superprojects.json files in database, examples/c, examples/com, and examples/fortran directories. - Added linting workflows for subtrees.json and superprojects.json in respective directories. - Established sync workflows for subtrees in examples/c, examples/com, examples/fortran, and src directories. - Configured subtrees.json and superprojects.json for src and src/phreeqcpp directories. - Implemented linting workflows for subtrees.json and superprojects.json in src and src/phreeqcpp directories. - Added common superprojects.json in src/phreeqcpp/common directory. --- .github/subtrees.json | 37 +++++++++++++++++++ .github/workflows/lint-subtrees.yml | 19 ++++++++++ .github/workflows/subtree.yml | 37 +++++++++++++++++++ database/.github/subtrees.json | 1 + database/.github/superprojects.json | 11 ++++++ database/.github/workflows/lint-subtrees.yml | 19 ++++++++++ .../.github/workflows/lint-superprojects.yml | 20 ++++++++++ database/.github/workflows/subtree.yml | 37 +++++++++++++++++++ examples/c/.github/subtrees.json | 1 + examples/c/.github/superprojects.json | 9 +++++ .../c/.github/workflows/lint-subtrees.yml | 19 ++++++++++ .../.github/workflows/lint-superprojects.yml | 16 ++++++++ examples/c/.github/workflows/subtree.yml | 37 +++++++++++++++++++ examples/com/.github/subtrees.json | 1 + examples/com/.github/superprojects.json | 9 +++++ .../com/.github/workflows/lint-subtrees.yml | 19 ++++++++++ .../.github/workflows/lint-superprojects.yml | 16 ++++++++ examples/com/.github/workflows/subtree.yml | 37 +++++++++++++++++++ examples/fortran/.github/subtrees.json | 1 + examples/fortran/.github/superprojects.json | 9 +++++ .../.github/workflows/lint-subtrees.yml | 19 ++++++++++ .../.github/workflows/lint-superprojects.yml | 16 ++++++++ .../fortran/.github/workflows/subtree.yml | 37 +++++++++++++++++++ phreeqc3-doc/.github/subtrees.json | 1 + phreeqc3-doc/.github/superprojects.json | 10 +++++ .../.github/workflows/lint-subtrees.yml | 19 ++++++++++ .../.github/workflows/lint-superprojects.yml | 16 ++++++++ phreeqc3-doc/.github/workflows/subtree.yml | 37 +++++++++++++++++++ phreeqc3-examples/.github/subtrees.json | 1 + .../.github/workflows/lint-subtrees.yml | 19 ++++++++++ .../.github/workflows/subtree.yml | 37 +++++++++++++++++++ src/.github/subtrees.json | 7 ++++ src/.github/superprojects.json | 9 +++++ src/.github/workflows/lint-subtrees.yml | 22 +++++++++++ src/.github/workflows/lint-superprojects.yml | 16 ++++++++ src/.github/workflows/subtree.yml | 37 +++++++++++++++++++ src/phreeqcpp/.github/subtrees.json | 7 ++++ src/phreeqcpp/.github/superprojects.json | 8 ++++ .../.github/workflows/lint-subtrees.yml | 22 +++++++++++ src/phreeqcpp/.github/workflows/subtree.yml | 37 +++++++++++++++++++ .../common/.github/superprojects.json | 7 ++++ .../.github/workflows/lint-superprojects.yml | 16 ++++++++ .../common/.github/workflows/subtree.yml | 37 +++++++++++++++++++ 43 files changed, 792 insertions(+) create mode 100644 .github/subtrees.json create mode 100644 .github/workflows/lint-subtrees.yml create mode 100644 .github/workflows/subtree.yml create mode 100644 database/.github/subtrees.json create mode 100644 database/.github/superprojects.json create mode 100644 database/.github/workflows/lint-subtrees.yml create mode 100644 database/.github/workflows/lint-superprojects.yml create mode 100644 database/.github/workflows/subtree.yml create mode 100644 examples/c/.github/subtrees.json create mode 100644 examples/c/.github/superprojects.json create mode 100644 examples/c/.github/workflows/lint-subtrees.yml create mode 100644 examples/c/.github/workflows/lint-superprojects.yml create mode 100644 examples/c/.github/workflows/subtree.yml create mode 100644 examples/com/.github/subtrees.json create mode 100644 examples/com/.github/superprojects.json create mode 100644 examples/com/.github/workflows/lint-subtrees.yml create mode 100644 examples/com/.github/workflows/lint-superprojects.yml create mode 100644 examples/com/.github/workflows/subtree.yml create mode 100644 examples/fortran/.github/subtrees.json create mode 100644 examples/fortran/.github/superprojects.json create mode 100644 examples/fortran/.github/workflows/lint-subtrees.yml create mode 100644 examples/fortran/.github/workflows/lint-superprojects.yml create mode 100644 examples/fortran/.github/workflows/subtree.yml create mode 100644 phreeqc3-doc/.github/subtrees.json create mode 100644 phreeqc3-doc/.github/superprojects.json create mode 100644 phreeqc3-doc/.github/workflows/lint-subtrees.yml create mode 100644 phreeqc3-doc/.github/workflows/lint-superprojects.yml create mode 100644 phreeqc3-doc/.github/workflows/subtree.yml create mode 100644 phreeqc3-examples/.github/subtrees.json create mode 100644 phreeqc3-examples/.github/workflows/lint-subtrees.yml create mode 100644 phreeqc3-examples/.github/workflows/subtree.yml create mode 100644 src/.github/subtrees.json create mode 100644 src/.github/superprojects.json create mode 100644 src/.github/workflows/lint-subtrees.yml create mode 100644 src/.github/workflows/lint-superprojects.yml create mode 100644 src/.github/workflows/subtree.yml create mode 100644 src/phreeqcpp/.github/subtrees.json create mode 100644 src/phreeqcpp/.github/superprojects.json create mode 100644 src/phreeqcpp/.github/workflows/lint-subtrees.yml create mode 100644 src/phreeqcpp/.github/workflows/subtree.yml create mode 100644 src/phreeqcpp/common/.github/superprojects.json create mode 100644 src/phreeqcpp/common/.github/workflows/lint-superprojects.yml create mode 100644 src/phreeqcpp/common/.github/workflows/subtree.yml diff --git a/.github/subtrees.json b/.github/subtrees.json new file mode 100644 index 00000000..2e7193a9 --- /dev/null +++ b/.github/subtrees.json @@ -0,0 +1,37 @@ +[ + { + "prefix": "src", + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/iphreeqc-src.git", + "repo": "usgs-coupled-subtrees/iphreeqc-src" + }, + { + "prefix": "examples/c", + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-commanuscript-cgfinal-examples-c.git", + "repo": "usgs-coupled-subtrees/phreeqc-commanuscript-cgfinal-examples-c" + }, + { + "prefix": "examples/com", + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-commanuscript-cgfinal-examples-com.git", + "repo": "usgs-coupled-subtrees/phreeqc-commanuscript-cgfinal-examples-com" + }, + { + "prefix": "examples/fortran", + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-COMManuscript-CGfinal-examples-fortran.git", + "repo": "usgs-coupled-subtrees/phreeqc-COMManuscript-CGfinal-examples-fortran" + }, + { + "prefix": "database", + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-database.git", + "repo": "usgs-coupled-subtrees/phreeqc3-database" + }, + { + "prefix": "phreeqc3-doc", + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-doc.git", + "repo": "usgs-coupled-subtrees/phreeqc3-doc" + }, + { + "prefix": "phreeqc3-examples", + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-examples.git", + "repo": "usgs-coupled-subtrees/phreeqc3-examples" + } +] \ No newline at end of file diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..71d8e58f --- /dev/null +++ b/.github/workflows/lint-subtrees.yml @@ -0,0 +1,19 @@ +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml new file mode 100644 index 00000000..b4527205 --- /dev/null +++ b/.github/workflows/subtree.yml @@ -0,0 +1,37 @@ +name: Sync Subtrees + +on: + push: + branches: + - master + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: false + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + if: startsWith(github.repository, 'usgs-coupled-subtrees/') + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled-subtrees/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/database/.github/subtrees.json b/database/.github/subtrees.json new file mode 100644 index 00000000..fe51488c --- /dev/null +++ b/database/.github/subtrees.json @@ -0,0 +1 @@ +[] diff --git a/database/.github/superprojects.json b/database/.github/superprojects.json new file mode 100644 index 00000000..c1048e5a --- /dev/null +++ b/database/.github/superprojects.json @@ -0,0 +1,11 @@ +{ + "usgs-coupled-subtrees/phreeqc3-database": { + "superprojects": [ + "usgs-coupled-subtrees/iphreeqc", + "usgs-coupled-subtrees/iphreeqccom", + "usgs-coupled-subtrees/phreeqcrm", + "usgs-coupled-subtrees/phreeqc3", + "usgs-coupled-subtrees/wphast" + ] + } +} diff --git a/database/.github/workflows/lint-subtrees.yml b/database/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..71d8e58f --- /dev/null +++ b/database/.github/workflows/lint-subtrees.yml @@ -0,0 +1,19 @@ +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/database/.github/workflows/lint-superprojects.yml b/database/.github/workflows/lint-superprojects.yml new file mode 100644 index 00000000..c157704f --- /dev/null +++ b/database/.github/workflows/lint-superprojects.yml @@ -0,0 +1,20 @@ +name: Lint superprojects.json + +on: + pull_request: + paths: + - '.github/superprojects.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-superprojects: + runs-on: ubuntu-latest + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-superprojects/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} + # skip-repos: | + # - usgs-coupled-subtrees/iphreeqccom + # - usgs-coupled-subtrees/phreeqcrm-src + diff --git a/database/.github/workflows/subtree.yml b/database/.github/workflows/subtree.yml new file mode 100644 index 00000000..b4527205 --- /dev/null +++ b/database/.github/workflows/subtree.yml @@ -0,0 +1,37 @@ +name: Sync Subtrees + +on: + push: + branches: + - master + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: false + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + if: startsWith(github.repository, 'usgs-coupled-subtrees/') + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled-subtrees/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/examples/c/.github/subtrees.json b/examples/c/.github/subtrees.json new file mode 100644 index 00000000..fe51488c --- /dev/null +++ b/examples/c/.github/subtrees.json @@ -0,0 +1 @@ +[] diff --git a/examples/c/.github/superprojects.json b/examples/c/.github/superprojects.json new file mode 100644 index 00000000..c04bbc0d --- /dev/null +++ b/examples/c/.github/superprojects.json @@ -0,0 +1,9 @@ +{ + "usgs-coupled-subtrees/phreeqc-commanuscript-cgfinal-examples-c": { + "superprojects": [ + "usgs-coupled-subtrees/iphreeqc", + "usgs-coupled-subtrees/iphreeqccom", + "usgs-coupled-subtrees/phreeqc" + ] + } +} diff --git a/examples/c/.github/workflows/lint-subtrees.yml b/examples/c/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..71d8e58f --- /dev/null +++ b/examples/c/.github/workflows/lint-subtrees.yml @@ -0,0 +1,19 @@ +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/examples/c/.github/workflows/lint-superprojects.yml b/examples/c/.github/workflows/lint-superprojects.yml new file mode 100644 index 00000000..b46ff4bc --- /dev/null +++ b/examples/c/.github/workflows/lint-superprojects.yml @@ -0,0 +1,16 @@ +name: Lint superprojects.json + +on: + pull_request: + paths: + - '.github/superprojects.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-superprojects: + runs-on: ubuntu-latest + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-superprojects/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/examples/c/.github/workflows/subtree.yml b/examples/c/.github/workflows/subtree.yml new file mode 100644 index 00000000..b4527205 --- /dev/null +++ b/examples/c/.github/workflows/subtree.yml @@ -0,0 +1,37 @@ +name: Sync Subtrees + +on: + push: + branches: + - master + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: false + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + if: startsWith(github.repository, 'usgs-coupled-subtrees/') + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled-subtrees/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/examples/com/.github/subtrees.json b/examples/com/.github/subtrees.json new file mode 100644 index 00000000..fe51488c --- /dev/null +++ b/examples/com/.github/subtrees.json @@ -0,0 +1 @@ +[] diff --git a/examples/com/.github/superprojects.json b/examples/com/.github/superprojects.json new file mode 100644 index 00000000..b865fe72 --- /dev/null +++ b/examples/com/.github/superprojects.json @@ -0,0 +1,9 @@ +{ + "usgs-coupled-subtrees/phreeqc-commanuscript-cgfinal-examples-com": { + "superprojects": [ + "usgs-coupled-subtrees/iphreeqc", + "usgs-coupled-subtrees/iphreeqccom", + "usgs-coupled-subtrees/phreeqc" + ] + } +} diff --git a/examples/com/.github/workflows/lint-subtrees.yml b/examples/com/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..71d8e58f --- /dev/null +++ b/examples/com/.github/workflows/lint-subtrees.yml @@ -0,0 +1,19 @@ +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/examples/com/.github/workflows/lint-superprojects.yml b/examples/com/.github/workflows/lint-superprojects.yml new file mode 100644 index 00000000..b46ff4bc --- /dev/null +++ b/examples/com/.github/workflows/lint-superprojects.yml @@ -0,0 +1,16 @@ +name: Lint superprojects.json + +on: + pull_request: + paths: + - '.github/superprojects.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-superprojects: + runs-on: ubuntu-latest + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-superprojects/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/examples/com/.github/workflows/subtree.yml b/examples/com/.github/workflows/subtree.yml new file mode 100644 index 00000000..b4527205 --- /dev/null +++ b/examples/com/.github/workflows/subtree.yml @@ -0,0 +1,37 @@ +name: Sync Subtrees + +on: + push: + branches: + - master + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: false + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + if: startsWith(github.repository, 'usgs-coupled-subtrees/') + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled-subtrees/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/examples/fortran/.github/subtrees.json b/examples/fortran/.github/subtrees.json new file mode 100644 index 00000000..fe51488c --- /dev/null +++ b/examples/fortran/.github/subtrees.json @@ -0,0 +1 @@ +[] diff --git a/examples/fortran/.github/superprojects.json b/examples/fortran/.github/superprojects.json new file mode 100644 index 00000000..951d3f2d --- /dev/null +++ b/examples/fortran/.github/superprojects.json @@ -0,0 +1,9 @@ +{ + "usgs-coupled-subtrees/phreeqc-COMManuscript-CGfinal-examples-fortran": { + "superprojects": [ + "usgs-coupled-subtrees/iphreeqc", + "usgs-coupled-subtrees/iphreeqccom", + "usgs-coupled-subtrees/phreeqc" + ] + } +} diff --git a/examples/fortran/.github/workflows/lint-subtrees.yml b/examples/fortran/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..71d8e58f --- /dev/null +++ b/examples/fortran/.github/workflows/lint-subtrees.yml @@ -0,0 +1,19 @@ +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/examples/fortran/.github/workflows/lint-superprojects.yml b/examples/fortran/.github/workflows/lint-superprojects.yml new file mode 100644 index 00000000..b46ff4bc --- /dev/null +++ b/examples/fortran/.github/workflows/lint-superprojects.yml @@ -0,0 +1,16 @@ +name: Lint superprojects.json + +on: + pull_request: + paths: + - '.github/superprojects.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-superprojects: + runs-on: ubuntu-latest + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-superprojects/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/examples/fortran/.github/workflows/subtree.yml b/examples/fortran/.github/workflows/subtree.yml new file mode 100644 index 00000000..b4527205 --- /dev/null +++ b/examples/fortran/.github/workflows/subtree.yml @@ -0,0 +1,37 @@ +name: Sync Subtrees + +on: + push: + branches: + - master + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: false + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + if: startsWith(github.repository, 'usgs-coupled-subtrees/') + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled-subtrees/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/phreeqc3-doc/.github/subtrees.json b/phreeqc3-doc/.github/subtrees.json new file mode 100644 index 00000000..fe51488c --- /dev/null +++ b/phreeqc3-doc/.github/subtrees.json @@ -0,0 +1 @@ +[] diff --git a/phreeqc3-doc/.github/superprojects.json b/phreeqc3-doc/.github/superprojects.json new file mode 100644 index 00000000..837f958a --- /dev/null +++ b/phreeqc3-doc/.github/superprojects.json @@ -0,0 +1,10 @@ +{ + "usgs-coupled-subtrees/phreeqc3-doc": { + "superprojects": [ + "usgs-coupled-subtrees/iphreeqc", + "usgs-coupled-subtrees/iphreeqccom", + "usgs-coupled-subtrees/phast3-doc", + "usgs-coupled-subtrees/phreeqc3" + ] + } +} diff --git a/phreeqc3-doc/.github/workflows/lint-subtrees.yml b/phreeqc3-doc/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..71d8e58f --- /dev/null +++ b/phreeqc3-doc/.github/workflows/lint-subtrees.yml @@ -0,0 +1,19 @@ +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/phreeqc3-doc/.github/workflows/lint-superprojects.yml b/phreeqc3-doc/.github/workflows/lint-superprojects.yml new file mode 100644 index 00000000..b46ff4bc --- /dev/null +++ b/phreeqc3-doc/.github/workflows/lint-superprojects.yml @@ -0,0 +1,16 @@ +name: Lint superprojects.json + +on: + pull_request: + paths: + - '.github/superprojects.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-superprojects: + runs-on: ubuntu-latest + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-superprojects/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/phreeqc3-doc/.github/workflows/subtree.yml b/phreeqc3-doc/.github/workflows/subtree.yml new file mode 100644 index 00000000..b4527205 --- /dev/null +++ b/phreeqc3-doc/.github/workflows/subtree.yml @@ -0,0 +1,37 @@ +name: Sync Subtrees + +on: + push: + branches: + - master + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: false + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + if: startsWith(github.repository, 'usgs-coupled-subtrees/') + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled-subtrees/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/phreeqc3-examples/.github/subtrees.json b/phreeqc3-examples/.github/subtrees.json new file mode 100644 index 00000000..fe51488c --- /dev/null +++ b/phreeqc3-examples/.github/subtrees.json @@ -0,0 +1 @@ +[] diff --git a/phreeqc3-examples/.github/workflows/lint-subtrees.yml b/phreeqc3-examples/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..71d8e58f --- /dev/null +++ b/phreeqc3-examples/.github/workflows/lint-subtrees.yml @@ -0,0 +1,19 @@ +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/phreeqc3-examples/.github/workflows/subtree.yml b/phreeqc3-examples/.github/workflows/subtree.yml new file mode 100644 index 00000000..b4527205 --- /dev/null +++ b/phreeqc3-examples/.github/workflows/subtree.yml @@ -0,0 +1,37 @@ +name: Sync Subtrees + +on: + push: + branches: + - master + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: false + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + if: startsWith(github.repository, 'usgs-coupled-subtrees/') + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled-subtrees/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/src/.github/subtrees.json b/src/.github/subtrees.json new file mode 100644 index 00000000..352be8c8 --- /dev/null +++ b/src/.github/subtrees.json @@ -0,0 +1,7 @@ +[ + { + "prefix": "phreeqcpp", + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src.git", + "repo": "usgs-coupled-subtrees/phreeqc3-src" + } +] \ No newline at end of file diff --git a/src/.github/superprojects.json b/src/.github/superprojects.json new file mode 100644 index 00000000..bbc77cf2 --- /dev/null +++ b/src/.github/superprojects.json @@ -0,0 +1,9 @@ +{ + "usgs-coupled-subtrees/iphreeqc-src": { + "superprojects": [ + "usgs-coupled-subtrees/iphreeqc", + "usgs-coupled-subtrees/iphreeqccom", + "usgs-coupled-subtrees/phreeqcrm-src" + ] + } +} diff --git a/src/.github/workflows/lint-subtrees.yml b/src/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..7af56b67 --- /dev/null +++ b/src/.github/workflows/lint-subtrees.yml @@ -0,0 +1,22 @@ +# This workflow lints the subtrees.json file to ensure it is valid and up-to-date. +# It is triggered on pull requests that modify the subtrees.json file or can be run manually +# via the GitHub Actions UI. +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/src/.github/workflows/lint-superprojects.yml b/src/.github/workflows/lint-superprojects.yml new file mode 100644 index 00000000..b46ff4bc --- /dev/null +++ b/src/.github/workflows/lint-superprojects.yml @@ -0,0 +1,16 @@ +name: Lint superprojects.json + +on: + pull_request: + paths: + - '.github/superprojects.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-superprojects: + runs-on: ubuntu-latest + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-superprojects/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/src/.github/workflows/subtree.yml b/src/.github/workflows/subtree.yml new file mode 100644 index 00000000..b4527205 --- /dev/null +++ b/src/.github/workflows/subtree.yml @@ -0,0 +1,37 @@ +name: Sync Subtrees + +on: + push: + branches: + - master + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: false + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + if: startsWith(github.repository, 'usgs-coupled-subtrees/') + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled-subtrees/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/src/phreeqcpp/.github/subtrees.json b/src/phreeqcpp/.github/subtrees.json new file mode 100644 index 00000000..ff31b0dd --- /dev/null +++ b/src/phreeqcpp/.github/subtrees.json @@ -0,0 +1,7 @@ +[ + { + "prefix": "common", + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src-common.git", + "repo": "usgs-coupled-subtrees/phreeqc3-src-common" + } +] \ No newline at end of file diff --git a/src/phreeqcpp/.github/superprojects.json b/src/phreeqcpp/.github/superprojects.json new file mode 100644 index 00000000..97e0591c --- /dev/null +++ b/src/phreeqcpp/.github/superprojects.json @@ -0,0 +1,8 @@ +{ + "usgs-coupled-subtrees/phreeqc3-src": { + "superprojects": [ + "usgs-coupled-subtrees/iphreeqc-src", + "usgs-coupled-subtrees/phreeqc3" + ] + } +} diff --git a/src/phreeqcpp/.github/workflows/lint-subtrees.yml b/src/phreeqcpp/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..7af56b67 --- /dev/null +++ b/src/phreeqcpp/.github/workflows/lint-subtrees.yml @@ -0,0 +1,22 @@ +# This workflow lints the subtrees.json file to ensure it is valid and up-to-date. +# It is triggered on pull requests that modify the subtrees.json file or can be run manually +# via the GitHub Actions UI. +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/src/phreeqcpp/.github/workflows/subtree.yml b/src/phreeqcpp/.github/workflows/subtree.yml new file mode 100644 index 00000000..b4527205 --- /dev/null +++ b/src/phreeqcpp/.github/workflows/subtree.yml @@ -0,0 +1,37 @@ +name: Sync Subtrees + +on: + push: + branches: + - master + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: false + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + if: startsWith(github.repository, 'usgs-coupled-subtrees/') + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled-subtrees/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/src/phreeqcpp/common/.github/superprojects.json b/src/phreeqcpp/common/.github/superprojects.json new file mode 100644 index 00000000..89a9ab74 --- /dev/null +++ b/src/phreeqcpp/common/.github/superprojects.json @@ -0,0 +1,7 @@ +{ + "usgs-coupled-subtrees/phreeqc3-src-common": { + "superprojects": [ + "usgs-coupled-subtrees/phreeqc3-src" + ] + } +} diff --git a/src/phreeqcpp/common/.github/workflows/lint-superprojects.yml b/src/phreeqcpp/common/.github/workflows/lint-superprojects.yml new file mode 100644 index 00000000..b46ff4bc --- /dev/null +++ b/src/phreeqcpp/common/.github/workflows/lint-superprojects.yml @@ -0,0 +1,16 @@ +name: Lint superprojects.json + +on: + pull_request: + paths: + - '.github/superprojects.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-superprojects: + runs-on: ubuntu-latest + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-superprojects/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/src/phreeqcpp/common/.github/workflows/subtree.yml b/src/phreeqcpp/common/.github/workflows/subtree.yml new file mode 100644 index 00000000..b4527205 --- /dev/null +++ b/src/phreeqcpp/common/.github/workflows/subtree.yml @@ -0,0 +1,37 @@ +name: Sync Subtrees + +on: + push: + branches: + - master + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: false + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + if: startsWith(github.repository, 'usgs-coupled-subtrees/') + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled-subtrees/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} From e2bd17174b917c46184eaf107ea7add8f4b328e6 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Wed, 6 Aug 2025 22:48:13 +0000 Subject: [PATCH 364/384] Squashed 'src/' changes from b15a6bde..b33a48e2 b33a48e2 Add workflows and configuration for syncing and linting subtrees git-subtree-dir: src git-subtree-split: b33a48e2bab452868b846a242ce3ac8ba7e4748f --- .github/subtrees.json | 7 ++++ .github/superprojects.json | 9 +++++ .github/workflows/lint-subtrees.yml | 22 +++++++++++ .github/workflows/lint-superprojects.yml | 16 ++++++++ .github/workflows/subtree.yml | 37 +++++++++++++++++++ phreeqcpp/.github/subtrees.json | 7 ++++ phreeqcpp/.github/superprojects.json | 8 ++++ phreeqcpp/.github/workflows/lint-subtrees.yml | 22 +++++++++++ phreeqcpp/.github/workflows/subtree.yml | 37 +++++++++++++++++++ phreeqcpp/common/.github/superprojects.json | 7 ++++ .../.github/workflows/lint-superprojects.yml | 16 ++++++++ .../common/.github/workflows/subtree.yml | 37 +++++++++++++++++++ 12 files changed, 225 insertions(+) create mode 100644 .github/subtrees.json create mode 100644 .github/superprojects.json create mode 100644 .github/workflows/lint-subtrees.yml create mode 100644 .github/workflows/lint-superprojects.yml create mode 100644 .github/workflows/subtree.yml create mode 100644 phreeqcpp/.github/subtrees.json create mode 100644 phreeqcpp/.github/superprojects.json create mode 100644 phreeqcpp/.github/workflows/lint-subtrees.yml create mode 100644 phreeqcpp/.github/workflows/subtree.yml create mode 100644 phreeqcpp/common/.github/superprojects.json create mode 100644 phreeqcpp/common/.github/workflows/lint-superprojects.yml create mode 100644 phreeqcpp/common/.github/workflows/subtree.yml diff --git a/.github/subtrees.json b/.github/subtrees.json new file mode 100644 index 00000000..352be8c8 --- /dev/null +++ b/.github/subtrees.json @@ -0,0 +1,7 @@ +[ + { + "prefix": "phreeqcpp", + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src.git", + "repo": "usgs-coupled-subtrees/phreeqc3-src" + } +] \ No newline at end of file diff --git a/.github/superprojects.json b/.github/superprojects.json new file mode 100644 index 00000000..bbc77cf2 --- /dev/null +++ b/.github/superprojects.json @@ -0,0 +1,9 @@ +{ + "usgs-coupled-subtrees/iphreeqc-src": { + "superprojects": [ + "usgs-coupled-subtrees/iphreeqc", + "usgs-coupled-subtrees/iphreeqccom", + "usgs-coupled-subtrees/phreeqcrm-src" + ] + } +} diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..7af56b67 --- /dev/null +++ b/.github/workflows/lint-subtrees.yml @@ -0,0 +1,22 @@ +# This workflow lints the subtrees.json file to ensure it is valid and up-to-date. +# It is triggered on pull requests that modify the subtrees.json file or can be run manually +# via the GitHub Actions UI. +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/.github/workflows/lint-superprojects.yml b/.github/workflows/lint-superprojects.yml new file mode 100644 index 00000000..b46ff4bc --- /dev/null +++ b/.github/workflows/lint-superprojects.yml @@ -0,0 +1,16 @@ +name: Lint superprojects.json + +on: + pull_request: + paths: + - '.github/superprojects.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-superprojects: + runs-on: ubuntu-latest + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-superprojects/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml new file mode 100644 index 00000000..b4527205 --- /dev/null +++ b/.github/workflows/subtree.yml @@ -0,0 +1,37 @@ +name: Sync Subtrees + +on: + push: + branches: + - master + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: false + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + if: startsWith(github.repository, 'usgs-coupled-subtrees/') + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled-subtrees/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/phreeqcpp/.github/subtrees.json b/phreeqcpp/.github/subtrees.json new file mode 100644 index 00000000..ff31b0dd --- /dev/null +++ b/phreeqcpp/.github/subtrees.json @@ -0,0 +1,7 @@ +[ + { + "prefix": "common", + "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src-common.git", + "repo": "usgs-coupled-subtrees/phreeqc3-src-common" + } +] \ No newline at end of file diff --git a/phreeqcpp/.github/superprojects.json b/phreeqcpp/.github/superprojects.json new file mode 100644 index 00000000..97e0591c --- /dev/null +++ b/phreeqcpp/.github/superprojects.json @@ -0,0 +1,8 @@ +{ + "usgs-coupled-subtrees/phreeqc3-src": { + "superprojects": [ + "usgs-coupled-subtrees/iphreeqc-src", + "usgs-coupled-subtrees/phreeqc3" + ] + } +} diff --git a/phreeqcpp/.github/workflows/lint-subtrees.yml b/phreeqcpp/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..7af56b67 --- /dev/null +++ b/phreeqcpp/.github/workflows/lint-subtrees.yml @@ -0,0 +1,22 @@ +# This workflow lints the subtrees.json file to ensure it is valid and up-to-date. +# It is triggered on pull requests that modify the subtrees.json file or can be run manually +# via the GitHub Actions UI. +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/phreeqcpp/.github/workflows/subtree.yml b/phreeqcpp/.github/workflows/subtree.yml new file mode 100644 index 00000000..b4527205 --- /dev/null +++ b/phreeqcpp/.github/workflows/subtree.yml @@ -0,0 +1,37 @@ +name: Sync Subtrees + +on: + push: + branches: + - master + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: false + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + if: startsWith(github.repository, 'usgs-coupled-subtrees/') + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled-subtrees/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/phreeqcpp/common/.github/superprojects.json b/phreeqcpp/common/.github/superprojects.json new file mode 100644 index 00000000..89a9ab74 --- /dev/null +++ b/phreeqcpp/common/.github/superprojects.json @@ -0,0 +1,7 @@ +{ + "usgs-coupled-subtrees/phreeqc3-src-common": { + "superprojects": [ + "usgs-coupled-subtrees/phreeqc3-src" + ] + } +} diff --git a/phreeqcpp/common/.github/workflows/lint-superprojects.yml b/phreeqcpp/common/.github/workflows/lint-superprojects.yml new file mode 100644 index 00000000..b46ff4bc --- /dev/null +++ b/phreeqcpp/common/.github/workflows/lint-superprojects.yml @@ -0,0 +1,16 @@ +name: Lint superprojects.json + +on: + pull_request: + paths: + - '.github/superprojects.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-superprojects: + runs-on: ubuntu-latest + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-superprojects/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/phreeqcpp/common/.github/workflows/subtree.yml b/phreeqcpp/common/.github/workflows/subtree.yml new file mode 100644 index 00000000..b4527205 --- /dev/null +++ b/phreeqcpp/common/.github/workflows/subtree.yml @@ -0,0 +1,37 @@ +name: Sync Subtrees + +on: + push: + branches: + - master + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: false + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + if: startsWith(github.repository, 'usgs-coupled-subtrees/') + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled-subtrees/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} From 12119014f706723cce192eee04b88f39c96686e7 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Wed, 6 Aug 2025 22:48:14 +0000 Subject: [PATCH 365/384] Squashed 'examples/c/' changes from 1680e5b7..371cbbd8 371cbbd8 Add workflows and configuration for syncing and linting subtrees git-subtree-dir: examples/c git-subtree-split: 371cbbd81ba4173cbe3c13d267fda1573be27425 --- .github/subtrees.json | 1 + .github/superprojects.json | 9 ++++++ .github/workflows/lint-subtrees.yml | 19 ++++++++++++ .github/workflows/lint-superprojects.yml | 16 ++++++++++ .github/workflows/subtree.yml | 37 ++++++++++++++++++++++++ 5 files changed, 82 insertions(+) create mode 100644 .github/subtrees.json create mode 100644 .github/superprojects.json create mode 100644 .github/workflows/lint-subtrees.yml create mode 100644 .github/workflows/lint-superprojects.yml create mode 100644 .github/workflows/subtree.yml diff --git a/.github/subtrees.json b/.github/subtrees.json new file mode 100644 index 00000000..fe51488c --- /dev/null +++ b/.github/subtrees.json @@ -0,0 +1 @@ +[] diff --git a/.github/superprojects.json b/.github/superprojects.json new file mode 100644 index 00000000..c04bbc0d --- /dev/null +++ b/.github/superprojects.json @@ -0,0 +1,9 @@ +{ + "usgs-coupled-subtrees/phreeqc-commanuscript-cgfinal-examples-c": { + "superprojects": [ + "usgs-coupled-subtrees/iphreeqc", + "usgs-coupled-subtrees/iphreeqccom", + "usgs-coupled-subtrees/phreeqc" + ] + } +} diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..71d8e58f --- /dev/null +++ b/.github/workflows/lint-subtrees.yml @@ -0,0 +1,19 @@ +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/.github/workflows/lint-superprojects.yml b/.github/workflows/lint-superprojects.yml new file mode 100644 index 00000000..b46ff4bc --- /dev/null +++ b/.github/workflows/lint-superprojects.yml @@ -0,0 +1,16 @@ +name: Lint superprojects.json + +on: + pull_request: + paths: + - '.github/superprojects.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-superprojects: + runs-on: ubuntu-latest + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-superprojects/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml new file mode 100644 index 00000000..b4527205 --- /dev/null +++ b/.github/workflows/subtree.yml @@ -0,0 +1,37 @@ +name: Sync Subtrees + +on: + push: + branches: + - master + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: false + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + if: startsWith(github.repository, 'usgs-coupled-subtrees/') + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled-subtrees/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} From dc7a88c8c0b3206fe183e81736b77cbcfa7c8ec4 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Wed, 6 Aug 2025 22:48:15 +0000 Subject: [PATCH 366/384] Squashed 'examples/com/' changes from a0ea2708..98de25e0 98de25e0 Add workflows and configuration for syncing and linting subtrees git-subtree-dir: examples/com git-subtree-split: 98de25e096d6eb025f06a702576a562317aa6a6d --- .github/subtrees.json | 1 + .github/superprojects.json | 9 ++++++ .github/workflows/lint-subtrees.yml | 19 ++++++++++++ .github/workflows/lint-superprojects.yml | 16 ++++++++++ .github/workflows/subtree.yml | 37 ++++++++++++++++++++++++ 5 files changed, 82 insertions(+) create mode 100644 .github/subtrees.json create mode 100644 .github/superprojects.json create mode 100644 .github/workflows/lint-subtrees.yml create mode 100644 .github/workflows/lint-superprojects.yml create mode 100644 .github/workflows/subtree.yml diff --git a/.github/subtrees.json b/.github/subtrees.json new file mode 100644 index 00000000..fe51488c --- /dev/null +++ b/.github/subtrees.json @@ -0,0 +1 @@ +[] diff --git a/.github/superprojects.json b/.github/superprojects.json new file mode 100644 index 00000000..b865fe72 --- /dev/null +++ b/.github/superprojects.json @@ -0,0 +1,9 @@ +{ + "usgs-coupled-subtrees/phreeqc-commanuscript-cgfinal-examples-com": { + "superprojects": [ + "usgs-coupled-subtrees/iphreeqc", + "usgs-coupled-subtrees/iphreeqccom", + "usgs-coupled-subtrees/phreeqc" + ] + } +} diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..71d8e58f --- /dev/null +++ b/.github/workflows/lint-subtrees.yml @@ -0,0 +1,19 @@ +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/.github/workflows/lint-superprojects.yml b/.github/workflows/lint-superprojects.yml new file mode 100644 index 00000000..b46ff4bc --- /dev/null +++ b/.github/workflows/lint-superprojects.yml @@ -0,0 +1,16 @@ +name: Lint superprojects.json + +on: + pull_request: + paths: + - '.github/superprojects.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-superprojects: + runs-on: ubuntu-latest + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-superprojects/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml new file mode 100644 index 00000000..b4527205 --- /dev/null +++ b/.github/workflows/subtree.yml @@ -0,0 +1,37 @@ +name: Sync Subtrees + +on: + push: + branches: + - master + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: false + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + if: startsWith(github.repository, 'usgs-coupled-subtrees/') + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled-subtrees/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} From eead2b365915e5b65f4840e5f3fac5a0c4de749b Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Wed, 6 Aug 2025 22:48:16 +0000 Subject: [PATCH 367/384] Squashed 'examples/fortran/' changes from 209412f4..5b829f90 5b829f90 Add workflows and configuration for syncing and linting subtrees git-subtree-dir: examples/fortran git-subtree-split: 5b829f90667aefbe9eaaf9b1c97d7be7ddb87fa6 --- .github/subtrees.json | 1 + .github/superprojects.json | 9 ++++++ .github/workflows/lint-subtrees.yml | 19 ++++++++++++ .github/workflows/lint-superprojects.yml | 16 ++++++++++ .github/workflows/subtree.yml | 37 ++++++++++++++++++++++++ 5 files changed, 82 insertions(+) create mode 100644 .github/subtrees.json create mode 100644 .github/superprojects.json create mode 100644 .github/workflows/lint-subtrees.yml create mode 100644 .github/workflows/lint-superprojects.yml create mode 100644 .github/workflows/subtree.yml diff --git a/.github/subtrees.json b/.github/subtrees.json new file mode 100644 index 00000000..fe51488c --- /dev/null +++ b/.github/subtrees.json @@ -0,0 +1 @@ +[] diff --git a/.github/superprojects.json b/.github/superprojects.json new file mode 100644 index 00000000..951d3f2d --- /dev/null +++ b/.github/superprojects.json @@ -0,0 +1,9 @@ +{ + "usgs-coupled-subtrees/phreeqc-COMManuscript-CGfinal-examples-fortran": { + "superprojects": [ + "usgs-coupled-subtrees/iphreeqc", + "usgs-coupled-subtrees/iphreeqccom", + "usgs-coupled-subtrees/phreeqc" + ] + } +} diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..71d8e58f --- /dev/null +++ b/.github/workflows/lint-subtrees.yml @@ -0,0 +1,19 @@ +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/.github/workflows/lint-superprojects.yml b/.github/workflows/lint-superprojects.yml new file mode 100644 index 00000000..b46ff4bc --- /dev/null +++ b/.github/workflows/lint-superprojects.yml @@ -0,0 +1,16 @@ +name: Lint superprojects.json + +on: + pull_request: + paths: + - '.github/superprojects.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-superprojects: + runs-on: ubuntu-latest + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-superprojects/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml new file mode 100644 index 00000000..b4527205 --- /dev/null +++ b/.github/workflows/subtree.yml @@ -0,0 +1,37 @@ +name: Sync Subtrees + +on: + push: + branches: + - master + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: false + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + if: startsWith(github.repository, 'usgs-coupled-subtrees/') + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled-subtrees/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} From 7ad9ab5dc63ff6a4fa4400c19ac9ef8cdefed9c6 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Wed, 6 Aug 2025 22:48:17 +0000 Subject: [PATCH 368/384] Squashed 'database/' changes from dd98e151..5df53219 5df53219 Add workflows and configuration for syncing and linting subtrees git-subtree-dir: database git-subtree-split: 5df53219e1f6143cee10c67da88317f0dcd00c2b --- .github/subtrees.json | 1 + .github/superprojects.json | 11 +++++++ .github/workflows/lint-subtrees.yml | 19 ++++++++++++ .github/workflows/lint-superprojects.yml | 20 +++++++++++++ .github/workflows/subtree.yml | 37 ++++++++++++++++++++++++ 5 files changed, 88 insertions(+) create mode 100644 .github/subtrees.json create mode 100644 .github/superprojects.json create mode 100644 .github/workflows/lint-subtrees.yml create mode 100644 .github/workflows/lint-superprojects.yml create mode 100644 .github/workflows/subtree.yml diff --git a/.github/subtrees.json b/.github/subtrees.json new file mode 100644 index 00000000..fe51488c --- /dev/null +++ b/.github/subtrees.json @@ -0,0 +1 @@ +[] diff --git a/.github/superprojects.json b/.github/superprojects.json new file mode 100644 index 00000000..c1048e5a --- /dev/null +++ b/.github/superprojects.json @@ -0,0 +1,11 @@ +{ + "usgs-coupled-subtrees/phreeqc3-database": { + "superprojects": [ + "usgs-coupled-subtrees/iphreeqc", + "usgs-coupled-subtrees/iphreeqccom", + "usgs-coupled-subtrees/phreeqcrm", + "usgs-coupled-subtrees/phreeqc3", + "usgs-coupled-subtrees/wphast" + ] + } +} diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..71d8e58f --- /dev/null +++ b/.github/workflows/lint-subtrees.yml @@ -0,0 +1,19 @@ +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/.github/workflows/lint-superprojects.yml b/.github/workflows/lint-superprojects.yml new file mode 100644 index 00000000..c157704f --- /dev/null +++ b/.github/workflows/lint-superprojects.yml @@ -0,0 +1,20 @@ +name: Lint superprojects.json + +on: + pull_request: + paths: + - '.github/superprojects.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-superprojects: + runs-on: ubuntu-latest + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-superprojects/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} + # skip-repos: | + # - usgs-coupled-subtrees/iphreeqccom + # - usgs-coupled-subtrees/phreeqcrm-src + diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml new file mode 100644 index 00000000..b4527205 --- /dev/null +++ b/.github/workflows/subtree.yml @@ -0,0 +1,37 @@ +name: Sync Subtrees + +on: + push: + branches: + - master + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: false + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + if: startsWith(github.repository, 'usgs-coupled-subtrees/') + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled-subtrees/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} From 0a5c6fc279b5f7ba17de9303bf5bbf21c7c56f79 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Wed, 6 Aug 2025 22:48:18 +0000 Subject: [PATCH 369/384] Squashed 'phreeqc3-doc/' changes from 394240f2..05a4c62f 05a4c62f Add workflows and configuration for syncing and linting subtrees git-subtree-dir: phreeqc3-doc git-subtree-split: 05a4c62f48558d3d9c4b3dccf6ea4f2bb1f3b8e2 --- .github/subtrees.json | 1 + .github/superprojects.json | 10 +++++++ .github/workflows/lint-subtrees.yml | 19 ++++++++++++ .github/workflows/lint-superprojects.yml | 16 ++++++++++ .github/workflows/subtree.yml | 37 ++++++++++++++++++++++++ 5 files changed, 83 insertions(+) create mode 100644 .github/subtrees.json create mode 100644 .github/superprojects.json create mode 100644 .github/workflows/lint-subtrees.yml create mode 100644 .github/workflows/lint-superprojects.yml create mode 100644 .github/workflows/subtree.yml diff --git a/.github/subtrees.json b/.github/subtrees.json new file mode 100644 index 00000000..fe51488c --- /dev/null +++ b/.github/subtrees.json @@ -0,0 +1 @@ +[] diff --git a/.github/superprojects.json b/.github/superprojects.json new file mode 100644 index 00000000..837f958a --- /dev/null +++ b/.github/superprojects.json @@ -0,0 +1,10 @@ +{ + "usgs-coupled-subtrees/phreeqc3-doc": { + "superprojects": [ + "usgs-coupled-subtrees/iphreeqc", + "usgs-coupled-subtrees/iphreeqccom", + "usgs-coupled-subtrees/phast3-doc", + "usgs-coupled-subtrees/phreeqc3" + ] + } +} diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..71d8e58f --- /dev/null +++ b/.github/workflows/lint-subtrees.yml @@ -0,0 +1,19 @@ +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/.github/workflows/lint-superprojects.yml b/.github/workflows/lint-superprojects.yml new file mode 100644 index 00000000..b46ff4bc --- /dev/null +++ b/.github/workflows/lint-superprojects.yml @@ -0,0 +1,16 @@ +name: Lint superprojects.json + +on: + pull_request: + paths: + - '.github/superprojects.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-superprojects: + runs-on: ubuntu-latest + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-superprojects/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml new file mode 100644 index 00000000..b4527205 --- /dev/null +++ b/.github/workflows/subtree.yml @@ -0,0 +1,37 @@ +name: Sync Subtrees + +on: + push: + branches: + - master + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: false + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + if: startsWith(github.repository, 'usgs-coupled-subtrees/') + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled-subtrees/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} From 275553971d84e878866e8e326a6c3766a7e96aaa Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Wed, 6 Aug 2025 22:48:19 +0000 Subject: [PATCH 370/384] Squashed 'phreeqc3-examples/' changes from 1dbd65fc..6baa6075 6baa6075 Add workflows and configuration for syncing and linting subtrees git-subtree-dir: phreeqc3-examples git-subtree-split: 6baa60752980bb9647c76f946256341b16fb9ca8 --- .github/subtrees.json | 1 + .github/workflows/lint-subtrees.yml | 19 +++++++++++++++ .github/workflows/subtree.yml | 37 +++++++++++++++++++++++++++++ 3 files changed, 57 insertions(+) create mode 100644 .github/subtrees.json create mode 100644 .github/workflows/lint-subtrees.yml create mode 100644 .github/workflows/subtree.yml diff --git a/.github/subtrees.json b/.github/subtrees.json new file mode 100644 index 00000000..fe51488c --- /dev/null +++ b/.github/subtrees.json @@ -0,0 +1 @@ +[] diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..71d8e58f --- /dev/null +++ b/.github/workflows/lint-subtrees.yml @@ -0,0 +1,19 @@ +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml new file mode 100644 index 00000000..b4527205 --- /dev/null +++ b/.github/workflows/subtree.yml @@ -0,0 +1,37 @@ +name: Sync Subtrees + +on: + push: + branches: + - master + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: false + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + if: startsWith(github.repository, 'usgs-coupled-subtrees/') + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled-subtrees/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} From 8f505c6f0035e9a9f2cbb5e575247a521025ab13 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Wed, 6 Aug 2025 22:49:50 +0000 Subject: [PATCH 371/384] Squashed 'src/' changes from b33a48e2..fc5d3678 fc5d3678 Merge commit 'cf140ebf070063962cfffd64b0b9cdb36f70995f' cf140ebf Squashed 'phreeqcpp/' changes from 6991516..b8182e5 d69db23e Merge commit 'dd44fc2b0f3a6e6820b5f703741faa0a25b89530' dd44fc2b Squashed 'phreeqcpp/' changes from b24dedb..6991516 git-subtree-dir: src git-subtree-split: fc5d3678d9a257fb50c31b9507414db048cd7559 From 846d30ae5211cbabde521d866a67454cd0fe48b0 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Thu, 14 Aug 2025 00:09:12 +0000 Subject: [PATCH 372/384] Squashed 'src/' changes from fc5d3678..767640fe 767640fe Merge commit 'ee5a445a02e63b9973f1ebe9325556973033bb31' ee5a445a Squashed 'phreeqcpp/' changes from b8182e5..0f2dfae git-subtree-dir: src git-subtree-split: 767640fe35eca288be7f6597e5e88cbbad9f600f --- phreeqcpp/common/.github/subtrees.json | 1 + phreeqcpp/common/.github/superprojects.json | 3 ++- 2 files changed, 3 insertions(+), 1 deletion(-) create mode 100644 phreeqcpp/common/.github/subtrees.json diff --git a/phreeqcpp/common/.github/subtrees.json b/phreeqcpp/common/.github/subtrees.json new file mode 100644 index 00000000..fe51488c --- /dev/null +++ b/phreeqcpp/common/.github/subtrees.json @@ -0,0 +1 @@ +[] diff --git a/phreeqcpp/common/.github/superprojects.json b/phreeqcpp/common/.github/superprojects.json index 89a9ab74..0bf12112 100644 --- a/phreeqcpp/common/.github/superprojects.json +++ b/phreeqcpp/common/.github/superprojects.json @@ -1,7 +1,8 @@ { "usgs-coupled-subtrees/phreeqc3-src-common": { "superprojects": [ - "usgs-coupled-subtrees/phreeqc3-src" + "usgs-coupled-subtrees/phreeqc3-src", + "usgs-coupled-subtrees/wphast" ] } } From 6a6e8c5d188c57e67354794cac6f8b9e4f7398f9 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Thu, 14 Aug 2025 14:41:56 -0600 Subject: [PATCH 373/384] Remove unnecessary URL fields from subtrees.json files --- .github/subtrees.json | 7 ------- src/.github/subtrees.json | 1 - src/phreeqcpp/.github/subtrees.json | 1 - 3 files changed, 9 deletions(-) diff --git a/.github/subtrees.json b/.github/subtrees.json index 2e7193a9..fed22388 100644 --- a/.github/subtrees.json +++ b/.github/subtrees.json @@ -1,37 +1,30 @@ [ { "prefix": "src", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/iphreeqc-src.git", "repo": "usgs-coupled-subtrees/iphreeqc-src" }, { "prefix": "examples/c", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-commanuscript-cgfinal-examples-c.git", "repo": "usgs-coupled-subtrees/phreeqc-commanuscript-cgfinal-examples-c" }, { "prefix": "examples/com", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-commanuscript-cgfinal-examples-com.git", "repo": "usgs-coupled-subtrees/phreeqc-commanuscript-cgfinal-examples-com" }, { "prefix": "examples/fortran", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-COMManuscript-CGfinal-examples-fortran.git", "repo": "usgs-coupled-subtrees/phreeqc-COMManuscript-CGfinal-examples-fortran" }, { "prefix": "database", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-database.git", "repo": "usgs-coupled-subtrees/phreeqc3-database" }, { "prefix": "phreeqc3-doc", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-doc.git", "repo": "usgs-coupled-subtrees/phreeqc3-doc" }, { "prefix": "phreeqc3-examples", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-examples.git", "repo": "usgs-coupled-subtrees/phreeqc3-examples" } ] \ No newline at end of file diff --git a/src/.github/subtrees.json b/src/.github/subtrees.json index 352be8c8..d7194d1c 100644 --- a/src/.github/subtrees.json +++ b/src/.github/subtrees.json @@ -1,7 +1,6 @@ [ { "prefix": "phreeqcpp", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src.git", "repo": "usgs-coupled-subtrees/phreeqc3-src" } ] \ No newline at end of file diff --git a/src/phreeqcpp/.github/subtrees.json b/src/phreeqcpp/.github/subtrees.json index ff31b0dd..311cec70 100644 --- a/src/phreeqcpp/.github/subtrees.json +++ b/src/phreeqcpp/.github/subtrees.json @@ -1,7 +1,6 @@ [ { "prefix": "common", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src-common.git", "repo": "usgs-coupled-subtrees/phreeqc3-src-common" } ] \ No newline at end of file From 684223410a9be6ffdb3479c482e1d9a0f4a78823 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Thu, 14 Aug 2025 20:43:45 +0000 Subject: [PATCH 374/384] Squashed 'src/' changes from 767640fe..cd19c4bb cd19c4bb Remove unnecessary URL fields from subtrees.json files git-subtree-dir: src git-subtree-split: cd19c4bbf6788abf8a2a03edc5fad50a5c528d7f --- .github/subtrees.json | 1 - phreeqcpp/.github/subtrees.json | 1 - 2 files changed, 2 deletions(-) diff --git a/.github/subtrees.json b/.github/subtrees.json index 352be8c8..d7194d1c 100644 --- a/.github/subtrees.json +++ b/.github/subtrees.json @@ -1,7 +1,6 @@ [ { "prefix": "phreeqcpp", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src.git", "repo": "usgs-coupled-subtrees/phreeqc3-src" } ] \ No newline at end of file diff --git a/phreeqcpp/.github/subtrees.json b/phreeqcpp/.github/subtrees.json index ff31b0dd..311cec70 100644 --- a/phreeqcpp/.github/subtrees.json +++ b/phreeqcpp/.github/subtrees.json @@ -1,7 +1,6 @@ [ { "prefix": "common", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src-common.git", "repo": "usgs-coupled-subtrees/phreeqc3-src-common" } ] \ No newline at end of file From 941a71640e5bb24981ff0ff225a542e46d7ebff5 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Thu, 14 Aug 2025 20:45:19 +0000 Subject: [PATCH 375/384] Squashed 'src/' changes from cd19c4bb..01d16cb2 01d16cb2 Merge commit 'f1f5186496f31d9907867eb50303b3fad63b6c42' f1f51864 Squashed 'phreeqcpp/' changes from 0f2dfae..fadc352 git-subtree-dir: src git-subtree-split: 01d16cb2cda77bebca683191f2db2a6a2d681f24 From 4d67ec082e78dcdbc4e02ae69a44084fe84bd9f2 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Fri, 15 Aug 2025 19:12:11 +0000 Subject: [PATCH 376/384] Squashed 'src/' changes from 01d16cb2..4457acc3 4457acc3 Refactor subtrees configuration by removing unnecessary URL fields and ensuring consistent formatting across all subtrees.json files. git-subtree-dir: src git-subtree-split: 4457acc3910528dd1e364c9a41f8e06cd1258c26 --- .github/subtrees.json | 2 +- phreeqcpp/.github/subtrees.json | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/.github/subtrees.json b/.github/subtrees.json index d7194d1c..6d6f9b6e 100644 --- a/.github/subtrees.json +++ b/.github/subtrees.json @@ -3,4 +3,4 @@ "prefix": "phreeqcpp", "repo": "usgs-coupled-subtrees/phreeqc3-src" } -] \ No newline at end of file +] diff --git a/phreeqcpp/.github/subtrees.json b/phreeqcpp/.github/subtrees.json index 311cec70..0791105f 100644 --- a/phreeqcpp/.github/subtrees.json +++ b/phreeqcpp/.github/subtrees.json @@ -3,4 +3,4 @@ "prefix": "common", "repo": "usgs-coupled-subtrees/phreeqc3-src-common" } -] \ No newline at end of file +] From a78f34dc797a2b6c997ce986eab419c1a119a98b Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Fri, 15 Aug 2025 19:13:41 +0000 Subject: [PATCH 377/384] Squashed 'src/' changes from 4457acc3..7835c6d5 7835c6d5 Merge commit '8b244cf5d3f70a555ab60f2b0f282afd02a12c40' 8b244cf5 Squashed 'phreeqcpp/' changes from fadc352..83843db git-subtree-dir: src git-subtree-split: 7835c6d5f7d22dfb7689d09fc444020a68b9d63e From 8cb0264663591bca4b436f8313fd643a89d7386a Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Tue, 19 Aug 2025 12:18:26 -0600 Subject: [PATCH 378/384] Merged git@github.com:usgs-coupled-subtrees/iphreeqc.git master using git merge --strategy-option=theirs --squash subtrees/master --- .github/subtrees.json | 7 ---- .github/workflows/lint-subtrees.yml | 2 +- .github/workflows/subtree.yml | 8 +++- database/.github/subtrees.json | 1 + database/.github/superprojects.json | 11 ++++++ database/.github/workflows/lint-subtrees.yml | 19 ++++++++++ .../.github/workflows/lint-superprojects.yml | 20 ++++++++++ database/.github/workflows/subtree.yml | 37 +++++++++++++++++++ examples/c/.github/superprojects.json | 9 +++++ .../c/.github/workflows/lint-subtrees.yml | 2 +- .../.github/workflows/lint-superprojects.yml | 16 ++++++++ examples/c/.github/workflows/subtree.yml | 8 +++- examples/com/.github/subtrees.json | 1 + examples/com/.github/superprojects.json | 9 +++++ .../com/.github/workflows/lint-subtrees.yml | 19 ++++++++++ .../.github/workflows/lint-superprojects.yml | 16 ++++++++ examples/com/.github/workflows/subtree.yml | 37 +++++++++++++++++++ examples/fortran/.github/subtrees.json | 1 + examples/fortran/.github/superprojects.json | 9 +++++ .../.github/workflows/lint-subtrees.yml | 19 ++++++++++ .../.github/workflows/lint-superprojects.yml | 16 ++++++++ .../fortran/.github/workflows/subtree.yml | 37 +++++++++++++++++++ phreeqc3-doc/.github/subtrees.json | 1 + phreeqc3-doc/.github/superprojects.json | 10 +++++ .../.github/workflows/lint-subtrees.yml | 19 ++++++++++ .../.github/workflows/lint-superprojects.yml | 16 ++++++++ phreeqc3-doc/.github/workflows/subtree.yml | 37 +++++++++++++++++++ phreeqc3-examples/.github/subtrees.json | 1 + .../.github/workflows/lint-subtrees.yml | 19 ++++++++++ .../.github/workflows/subtree.yml | 37 +++++++++++++++++++ src/.github/subtrees.json | 3 +- src/.github/superprojects.json | 6 +-- src/.github/workflows/lint-subtrees.yml | 2 +- src/.github/workflows/lint-superprojects.yml | 2 +- src/.github/workflows/subtree.yml | 11 ++++-- src/phreeqcpp/.github/subtrees.json | 3 +- src/phreeqcpp/.github/superprojects.json | 8 ++++ .../.github/workflows/lint-subtrees.yml | 2 +- src/phreeqcpp/.github/workflows/subtree.yml | 11 ++++-- src/phreeqcpp/common/.github/subtrees.json | 1 + .../common/.github/superprojects.json | 8 ++++ .../.github/workflows/lint-superprojects.yml | 16 ++++++++ .../common/.github/workflows/subtree.yml | 37 +++++++++++++++++++ 43 files changed, 525 insertions(+), 29 deletions(-) create mode 100644 database/.github/subtrees.json create mode 100644 database/.github/superprojects.json create mode 100644 database/.github/workflows/lint-subtrees.yml create mode 100644 database/.github/workflows/lint-superprojects.yml create mode 100644 database/.github/workflows/subtree.yml create mode 100644 examples/c/.github/superprojects.json create mode 100644 examples/c/.github/workflows/lint-superprojects.yml create mode 100644 examples/com/.github/subtrees.json create mode 100644 examples/com/.github/superprojects.json create mode 100644 examples/com/.github/workflows/lint-subtrees.yml create mode 100644 examples/com/.github/workflows/lint-superprojects.yml create mode 100644 examples/com/.github/workflows/subtree.yml create mode 100644 examples/fortran/.github/subtrees.json create mode 100644 examples/fortran/.github/superprojects.json create mode 100644 examples/fortran/.github/workflows/lint-subtrees.yml create mode 100644 examples/fortran/.github/workflows/lint-superprojects.yml create mode 100644 examples/fortran/.github/workflows/subtree.yml create mode 100644 phreeqc3-doc/.github/subtrees.json create mode 100644 phreeqc3-doc/.github/superprojects.json create mode 100644 phreeqc3-doc/.github/workflows/lint-subtrees.yml create mode 100644 phreeqc3-doc/.github/workflows/lint-superprojects.yml create mode 100644 phreeqc3-doc/.github/workflows/subtree.yml create mode 100644 phreeqc3-examples/.github/subtrees.json create mode 100644 phreeqc3-examples/.github/workflows/lint-subtrees.yml create mode 100644 phreeqc3-examples/.github/workflows/subtree.yml create mode 100644 src/phreeqcpp/.github/superprojects.json create mode 100644 src/phreeqcpp/common/.github/subtrees.json create mode 100644 src/phreeqcpp/common/.github/superprojects.json create mode 100644 src/phreeqcpp/common/.github/workflows/lint-superprojects.yml create mode 100644 src/phreeqcpp/common/.github/workflows/subtree.yml diff --git a/.github/subtrees.json b/.github/subtrees.json index 2e7193a9..fed22388 100644 --- a/.github/subtrees.json +++ b/.github/subtrees.json @@ -1,37 +1,30 @@ [ { "prefix": "src", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/iphreeqc-src.git", "repo": "usgs-coupled-subtrees/iphreeqc-src" }, { "prefix": "examples/c", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-commanuscript-cgfinal-examples-c.git", "repo": "usgs-coupled-subtrees/phreeqc-commanuscript-cgfinal-examples-c" }, { "prefix": "examples/com", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-commanuscript-cgfinal-examples-com.git", "repo": "usgs-coupled-subtrees/phreeqc-commanuscript-cgfinal-examples-com" }, { "prefix": "examples/fortran", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc-COMManuscript-CGfinal-examples-fortran.git", "repo": "usgs-coupled-subtrees/phreeqc-COMManuscript-CGfinal-examples-fortran" }, { "prefix": "database", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-database.git", "repo": "usgs-coupled-subtrees/phreeqc3-database" }, { "prefix": "phreeqc3-doc", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-doc.git", "repo": "usgs-coupled-subtrees/phreeqc3-doc" }, { "prefix": "phreeqc3-examples", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-examples.git", "repo": "usgs-coupled-subtrees/phreeqc3-examples" } ] \ No newline at end of file diff --git a/.github/workflows/lint-subtrees.yml b/.github/workflows/lint-subtrees.yml index 60661485..71d8e58f 100644 --- a/.github/workflows/lint-subtrees.yml +++ b/.github/workflows/lint-subtrees.yml @@ -14,6 +14,6 @@ jobs: CI_SERVER_HOST: github.com GROUP: usgs-coupled steps: - - uses: usgs-coupled/sync-subtrees-action/lint-subtrees/@main + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-subtrees/@main with: ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/.github/workflows/subtree.yml b/.github/workflows/subtree.yml index 6dda6cf6..b4527205 100644 --- a/.github/workflows/subtree.yml +++ b/.github/workflows/subtree.yml @@ -1,12 +1,15 @@ name: Sync Subtrees on: + push: + branches: + - master workflow_dispatch: inputs: dryRun: description: 'If true, don’t push any changes (for testing only).' required: true - default: true + default: false type: boolean testMerge: description: 'Run in test mode, pushing to a test branch.' @@ -16,6 +19,7 @@ on: jobs: sync-subtrees: + if: startsWith(github.repository, 'usgs-coupled-subtrees/') runs-on: ubuntu-latest env: CI_SERVER_HOST: github.com @@ -23,7 +27,7 @@ jobs: GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} steps: - name: Run sync-subtrees-action - uses: usgs-coupled/sync-subtrees-action@main + uses: usgs-coupled-subtrees/sync-subtrees-action@main with: dryRun: ${{ inputs.dryRun }} testMerge: ${{ inputs.testMerge }} diff --git a/database/.github/subtrees.json b/database/.github/subtrees.json new file mode 100644 index 00000000..fe51488c --- /dev/null +++ b/database/.github/subtrees.json @@ -0,0 +1 @@ +[] diff --git a/database/.github/superprojects.json b/database/.github/superprojects.json new file mode 100644 index 00000000..c1048e5a --- /dev/null +++ b/database/.github/superprojects.json @@ -0,0 +1,11 @@ +{ + "usgs-coupled-subtrees/phreeqc3-database": { + "superprojects": [ + "usgs-coupled-subtrees/iphreeqc", + "usgs-coupled-subtrees/iphreeqccom", + "usgs-coupled-subtrees/phreeqcrm", + "usgs-coupled-subtrees/phreeqc3", + "usgs-coupled-subtrees/wphast" + ] + } +} diff --git a/database/.github/workflows/lint-subtrees.yml b/database/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..71d8e58f --- /dev/null +++ b/database/.github/workflows/lint-subtrees.yml @@ -0,0 +1,19 @@ +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/database/.github/workflows/lint-superprojects.yml b/database/.github/workflows/lint-superprojects.yml new file mode 100644 index 00000000..c157704f --- /dev/null +++ b/database/.github/workflows/lint-superprojects.yml @@ -0,0 +1,20 @@ +name: Lint superprojects.json + +on: + pull_request: + paths: + - '.github/superprojects.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-superprojects: + runs-on: ubuntu-latest + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-superprojects/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} + # skip-repos: | + # - usgs-coupled-subtrees/iphreeqccom + # - usgs-coupled-subtrees/phreeqcrm-src + diff --git a/database/.github/workflows/subtree.yml b/database/.github/workflows/subtree.yml new file mode 100644 index 00000000..b4527205 --- /dev/null +++ b/database/.github/workflows/subtree.yml @@ -0,0 +1,37 @@ +name: Sync Subtrees + +on: + push: + branches: + - master + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: false + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + if: startsWith(github.repository, 'usgs-coupled-subtrees/') + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled-subtrees/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/examples/c/.github/superprojects.json b/examples/c/.github/superprojects.json new file mode 100644 index 00000000..c04bbc0d --- /dev/null +++ b/examples/c/.github/superprojects.json @@ -0,0 +1,9 @@ +{ + "usgs-coupled-subtrees/phreeqc-commanuscript-cgfinal-examples-c": { + "superprojects": [ + "usgs-coupled-subtrees/iphreeqc", + "usgs-coupled-subtrees/iphreeqccom", + "usgs-coupled-subtrees/phreeqc" + ] + } +} diff --git a/examples/c/.github/workflows/lint-subtrees.yml b/examples/c/.github/workflows/lint-subtrees.yml index 60661485..71d8e58f 100644 --- a/examples/c/.github/workflows/lint-subtrees.yml +++ b/examples/c/.github/workflows/lint-subtrees.yml @@ -14,6 +14,6 @@ jobs: CI_SERVER_HOST: github.com GROUP: usgs-coupled steps: - - uses: usgs-coupled/sync-subtrees-action/lint-subtrees/@main + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-subtrees/@main with: ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/examples/c/.github/workflows/lint-superprojects.yml b/examples/c/.github/workflows/lint-superprojects.yml new file mode 100644 index 00000000..b46ff4bc --- /dev/null +++ b/examples/c/.github/workflows/lint-superprojects.yml @@ -0,0 +1,16 @@ +name: Lint superprojects.json + +on: + pull_request: + paths: + - '.github/superprojects.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-superprojects: + runs-on: ubuntu-latest + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-superprojects/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/examples/c/.github/workflows/subtree.yml b/examples/c/.github/workflows/subtree.yml index 6dda6cf6..b4527205 100644 --- a/examples/c/.github/workflows/subtree.yml +++ b/examples/c/.github/workflows/subtree.yml @@ -1,12 +1,15 @@ name: Sync Subtrees on: + push: + branches: + - master workflow_dispatch: inputs: dryRun: description: 'If true, don’t push any changes (for testing only).' required: true - default: true + default: false type: boolean testMerge: description: 'Run in test mode, pushing to a test branch.' @@ -16,6 +19,7 @@ on: jobs: sync-subtrees: + if: startsWith(github.repository, 'usgs-coupled-subtrees/') runs-on: ubuntu-latest env: CI_SERVER_HOST: github.com @@ -23,7 +27,7 @@ jobs: GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} steps: - name: Run sync-subtrees-action - uses: usgs-coupled/sync-subtrees-action@main + uses: usgs-coupled-subtrees/sync-subtrees-action@main with: dryRun: ${{ inputs.dryRun }} testMerge: ${{ inputs.testMerge }} diff --git a/examples/com/.github/subtrees.json b/examples/com/.github/subtrees.json new file mode 100644 index 00000000..fe51488c --- /dev/null +++ b/examples/com/.github/subtrees.json @@ -0,0 +1 @@ +[] diff --git a/examples/com/.github/superprojects.json b/examples/com/.github/superprojects.json new file mode 100644 index 00000000..b865fe72 --- /dev/null +++ b/examples/com/.github/superprojects.json @@ -0,0 +1,9 @@ +{ + "usgs-coupled-subtrees/phreeqc-commanuscript-cgfinal-examples-com": { + "superprojects": [ + "usgs-coupled-subtrees/iphreeqc", + "usgs-coupled-subtrees/iphreeqccom", + "usgs-coupled-subtrees/phreeqc" + ] + } +} diff --git a/examples/com/.github/workflows/lint-subtrees.yml b/examples/com/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..71d8e58f --- /dev/null +++ b/examples/com/.github/workflows/lint-subtrees.yml @@ -0,0 +1,19 @@ +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/examples/com/.github/workflows/lint-superprojects.yml b/examples/com/.github/workflows/lint-superprojects.yml new file mode 100644 index 00000000..b46ff4bc --- /dev/null +++ b/examples/com/.github/workflows/lint-superprojects.yml @@ -0,0 +1,16 @@ +name: Lint superprojects.json + +on: + pull_request: + paths: + - '.github/superprojects.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-superprojects: + runs-on: ubuntu-latest + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-superprojects/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/examples/com/.github/workflows/subtree.yml b/examples/com/.github/workflows/subtree.yml new file mode 100644 index 00000000..b4527205 --- /dev/null +++ b/examples/com/.github/workflows/subtree.yml @@ -0,0 +1,37 @@ +name: Sync Subtrees + +on: + push: + branches: + - master + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: false + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + if: startsWith(github.repository, 'usgs-coupled-subtrees/') + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled-subtrees/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/examples/fortran/.github/subtrees.json b/examples/fortran/.github/subtrees.json new file mode 100644 index 00000000..fe51488c --- /dev/null +++ b/examples/fortran/.github/subtrees.json @@ -0,0 +1 @@ +[] diff --git a/examples/fortran/.github/superprojects.json b/examples/fortran/.github/superprojects.json new file mode 100644 index 00000000..951d3f2d --- /dev/null +++ b/examples/fortran/.github/superprojects.json @@ -0,0 +1,9 @@ +{ + "usgs-coupled-subtrees/phreeqc-COMManuscript-CGfinal-examples-fortran": { + "superprojects": [ + "usgs-coupled-subtrees/iphreeqc", + "usgs-coupled-subtrees/iphreeqccom", + "usgs-coupled-subtrees/phreeqc" + ] + } +} diff --git a/examples/fortran/.github/workflows/lint-subtrees.yml b/examples/fortran/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..71d8e58f --- /dev/null +++ b/examples/fortran/.github/workflows/lint-subtrees.yml @@ -0,0 +1,19 @@ +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/examples/fortran/.github/workflows/lint-superprojects.yml b/examples/fortran/.github/workflows/lint-superprojects.yml new file mode 100644 index 00000000..b46ff4bc --- /dev/null +++ b/examples/fortran/.github/workflows/lint-superprojects.yml @@ -0,0 +1,16 @@ +name: Lint superprojects.json + +on: + pull_request: + paths: + - '.github/superprojects.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-superprojects: + runs-on: ubuntu-latest + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-superprojects/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/examples/fortran/.github/workflows/subtree.yml b/examples/fortran/.github/workflows/subtree.yml new file mode 100644 index 00000000..b4527205 --- /dev/null +++ b/examples/fortran/.github/workflows/subtree.yml @@ -0,0 +1,37 @@ +name: Sync Subtrees + +on: + push: + branches: + - master + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: false + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + if: startsWith(github.repository, 'usgs-coupled-subtrees/') + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled-subtrees/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/phreeqc3-doc/.github/subtrees.json b/phreeqc3-doc/.github/subtrees.json new file mode 100644 index 00000000..fe51488c --- /dev/null +++ b/phreeqc3-doc/.github/subtrees.json @@ -0,0 +1 @@ +[] diff --git a/phreeqc3-doc/.github/superprojects.json b/phreeqc3-doc/.github/superprojects.json new file mode 100644 index 00000000..837f958a --- /dev/null +++ b/phreeqc3-doc/.github/superprojects.json @@ -0,0 +1,10 @@ +{ + "usgs-coupled-subtrees/phreeqc3-doc": { + "superprojects": [ + "usgs-coupled-subtrees/iphreeqc", + "usgs-coupled-subtrees/iphreeqccom", + "usgs-coupled-subtrees/phast3-doc", + "usgs-coupled-subtrees/phreeqc3" + ] + } +} diff --git a/phreeqc3-doc/.github/workflows/lint-subtrees.yml b/phreeqc3-doc/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..71d8e58f --- /dev/null +++ b/phreeqc3-doc/.github/workflows/lint-subtrees.yml @@ -0,0 +1,19 @@ +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/phreeqc3-doc/.github/workflows/lint-superprojects.yml b/phreeqc3-doc/.github/workflows/lint-superprojects.yml new file mode 100644 index 00000000..b46ff4bc --- /dev/null +++ b/phreeqc3-doc/.github/workflows/lint-superprojects.yml @@ -0,0 +1,16 @@ +name: Lint superprojects.json + +on: + pull_request: + paths: + - '.github/superprojects.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-superprojects: + runs-on: ubuntu-latest + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-superprojects/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/phreeqc3-doc/.github/workflows/subtree.yml b/phreeqc3-doc/.github/workflows/subtree.yml new file mode 100644 index 00000000..b4527205 --- /dev/null +++ b/phreeqc3-doc/.github/workflows/subtree.yml @@ -0,0 +1,37 @@ +name: Sync Subtrees + +on: + push: + branches: + - master + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: false + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + if: startsWith(github.repository, 'usgs-coupled-subtrees/') + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled-subtrees/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/phreeqc3-examples/.github/subtrees.json b/phreeqc3-examples/.github/subtrees.json new file mode 100644 index 00000000..fe51488c --- /dev/null +++ b/phreeqc3-examples/.github/subtrees.json @@ -0,0 +1 @@ +[] diff --git a/phreeqc3-examples/.github/workflows/lint-subtrees.yml b/phreeqc3-examples/.github/workflows/lint-subtrees.yml new file mode 100644 index 00000000..71d8e58f --- /dev/null +++ b/phreeqc3-examples/.github/workflows/lint-subtrees.yml @@ -0,0 +1,19 @@ +name: Lint subtrees.json + +on: + pull_request: + paths: + - '.github/subtrees.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-subtrees: + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-subtrees/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/phreeqc3-examples/.github/workflows/subtree.yml b/phreeqc3-examples/.github/workflows/subtree.yml new file mode 100644 index 00000000..b4527205 --- /dev/null +++ b/phreeqc3-examples/.github/workflows/subtree.yml @@ -0,0 +1,37 @@ +name: Sync Subtrees + +on: + push: + branches: + - master + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: false + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + if: startsWith(github.repository, 'usgs-coupled-subtrees/') + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled-subtrees/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/src/.github/subtrees.json b/src/.github/subtrees.json index 352be8c8..6d6f9b6e 100644 --- a/src/.github/subtrees.json +++ b/src/.github/subtrees.json @@ -1,7 +1,6 @@ [ { "prefix": "phreeqcpp", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src.git", "repo": "usgs-coupled-subtrees/phreeqc3-src" } -] \ No newline at end of file +] diff --git a/src/.github/superprojects.json b/src/.github/superprojects.json index 3dec8709..bbc77cf2 100644 --- a/src/.github/superprojects.json +++ b/src/.github/superprojects.json @@ -1,8 +1,8 @@ { - "iphreeqc-src": { + "usgs-coupled-subtrees/iphreeqc-src": { "superprojects": [ - "usgs-coupled/iphreeqc", - "usgs-coupled/iphreeqccom", + "usgs-coupled-subtrees/iphreeqc", + "usgs-coupled-subtrees/iphreeqccom", "usgs-coupled-subtrees/phreeqcrm-src" ] } diff --git a/src/.github/workflows/lint-subtrees.yml b/src/.github/workflows/lint-subtrees.yml index 4306e374..7af56b67 100644 --- a/src/.github/workflows/lint-subtrees.yml +++ b/src/.github/workflows/lint-subtrees.yml @@ -17,6 +17,6 @@ jobs: CI_SERVER_HOST: github.com GROUP: usgs-coupled steps: - - uses: usgs-coupled/sync-subtrees-action/lint-subtrees/@main + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-subtrees/@main with: ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/src/.github/workflows/lint-superprojects.yml b/src/.github/workflows/lint-superprojects.yml index 3ab6debe..b46ff4bc 100644 --- a/src/.github/workflows/lint-superprojects.yml +++ b/src/.github/workflows/lint-superprojects.yml @@ -11,6 +11,6 @@ jobs: lint-superprojects: runs-on: ubuntu-latest steps: - - uses: usgs-coupled/sync-subtrees-action/lint-superprojects/@main + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-superprojects/@main with: ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/src/.github/workflows/subtree.yml b/src/.github/workflows/subtree.yml index 1f62d41d..b4527205 100644 --- a/src/.github/workflows/subtree.yml +++ b/src/.github/workflows/subtree.yml @@ -1,12 +1,15 @@ name: Sync Subtrees on: + push: + branches: + - master workflow_dispatch: inputs: dryRun: description: 'If true, don’t push any changes (for testing only).' required: true - default: true + default: false type: boolean testMerge: description: 'Run in test mode, pushing to a test branch.' @@ -16,13 +19,15 @@ on: jobs: sync-subtrees: + if: startsWith(github.repository, 'usgs-coupled-subtrees/') runs-on: ubuntu-latest env: CI_SERVER_HOST: github.com - GROUP: usgs-coupled + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} steps: - name: Run sync-subtrees-action - uses: usgs-coupled/sync-subtrees-action@main + uses: usgs-coupled-subtrees/sync-subtrees-action@main with: dryRun: ${{ inputs.dryRun }} testMerge: ${{ inputs.testMerge }} diff --git a/src/phreeqcpp/.github/subtrees.json b/src/phreeqcpp/.github/subtrees.json index ff31b0dd..0791105f 100644 --- a/src/phreeqcpp/.github/subtrees.json +++ b/src/phreeqcpp/.github/subtrees.json @@ -1,7 +1,6 @@ [ { "prefix": "common", - "url": "git@${CI_SERVER_HOST}:${GROUP}-subtrees/phreeqc3-src-common.git", "repo": "usgs-coupled-subtrees/phreeqc3-src-common" } -] \ No newline at end of file +] diff --git a/src/phreeqcpp/.github/superprojects.json b/src/phreeqcpp/.github/superprojects.json new file mode 100644 index 00000000..97e0591c --- /dev/null +++ b/src/phreeqcpp/.github/superprojects.json @@ -0,0 +1,8 @@ +{ + "usgs-coupled-subtrees/phreeqc3-src": { + "superprojects": [ + "usgs-coupled-subtrees/iphreeqc-src", + "usgs-coupled-subtrees/phreeqc3" + ] + } +} diff --git a/src/phreeqcpp/.github/workflows/lint-subtrees.yml b/src/phreeqcpp/.github/workflows/lint-subtrees.yml index 4306e374..7af56b67 100644 --- a/src/phreeqcpp/.github/workflows/lint-subtrees.yml +++ b/src/phreeqcpp/.github/workflows/lint-subtrees.yml @@ -17,6 +17,6 @@ jobs: CI_SERVER_HOST: github.com GROUP: usgs-coupled steps: - - uses: usgs-coupled/sync-subtrees-action/lint-subtrees/@main + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-subtrees/@main with: ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/src/phreeqcpp/.github/workflows/subtree.yml b/src/phreeqcpp/.github/workflows/subtree.yml index 1f62d41d..b4527205 100644 --- a/src/phreeqcpp/.github/workflows/subtree.yml +++ b/src/phreeqcpp/.github/workflows/subtree.yml @@ -1,12 +1,15 @@ name: Sync Subtrees on: + push: + branches: + - master workflow_dispatch: inputs: dryRun: description: 'If true, don’t push any changes (for testing only).' required: true - default: true + default: false type: boolean testMerge: description: 'Run in test mode, pushing to a test branch.' @@ -16,13 +19,15 @@ on: jobs: sync-subtrees: + if: startsWith(github.repository, 'usgs-coupled-subtrees/') runs-on: ubuntu-latest env: CI_SERVER_HOST: github.com - GROUP: usgs-coupled + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} steps: - name: Run sync-subtrees-action - uses: usgs-coupled/sync-subtrees-action@main + uses: usgs-coupled-subtrees/sync-subtrees-action@main with: dryRun: ${{ inputs.dryRun }} testMerge: ${{ inputs.testMerge }} diff --git a/src/phreeqcpp/common/.github/subtrees.json b/src/phreeqcpp/common/.github/subtrees.json new file mode 100644 index 00000000..fe51488c --- /dev/null +++ b/src/phreeqcpp/common/.github/subtrees.json @@ -0,0 +1 @@ +[] diff --git a/src/phreeqcpp/common/.github/superprojects.json b/src/phreeqcpp/common/.github/superprojects.json new file mode 100644 index 00000000..0bf12112 --- /dev/null +++ b/src/phreeqcpp/common/.github/superprojects.json @@ -0,0 +1,8 @@ +{ + "usgs-coupled-subtrees/phreeqc3-src-common": { + "superprojects": [ + "usgs-coupled-subtrees/phreeqc3-src", + "usgs-coupled-subtrees/wphast" + ] + } +} diff --git a/src/phreeqcpp/common/.github/workflows/lint-superprojects.yml b/src/phreeqcpp/common/.github/workflows/lint-superprojects.yml new file mode 100644 index 00000000..b46ff4bc --- /dev/null +++ b/src/phreeqcpp/common/.github/workflows/lint-superprojects.yml @@ -0,0 +1,16 @@ +name: Lint superprojects.json + +on: + pull_request: + paths: + - '.github/superprojects.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-superprojects: + runs-on: ubuntu-latest + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-superprojects/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} diff --git a/src/phreeqcpp/common/.github/workflows/subtree.yml b/src/phreeqcpp/common/.github/workflows/subtree.yml new file mode 100644 index 00000000..b4527205 --- /dev/null +++ b/src/phreeqcpp/common/.github/workflows/subtree.yml @@ -0,0 +1,37 @@ +name: Sync Subtrees + +on: + push: + branches: + - master + workflow_dispatch: + inputs: + dryRun: + description: 'If true, don’t push any changes (for testing only).' + required: true + default: false + type: boolean + testMerge: + description: 'Run in test mode, pushing to a test branch.' + required: true + default: false + type: boolean + +jobs: + sync-subtrees: + if: startsWith(github.repository, 'usgs-coupled-subtrees/') + runs-on: ubuntu-latest + env: + CI_SERVER_HOST: github.com + GROUP: usgs-coupled + GH_TOKEN: ${{ secrets.WORKFLOW_PAT }} + steps: + - name: Run sync-subtrees-action + uses: usgs-coupled-subtrees/sync-subtrees-action@main + with: + dryRun: ${{ inputs.dryRun }} + testMerge: ${{ inputs.testMerge }} + repository_name: ${{ github.event.repository.name }} + default_branch: ${{ github.event.repository.default_branch }} + run_number: ${{ github.run_number }} + ssh_private_key: ${{ secrets.SSH_PRIVATE_KEY }} From b6a59f94d9e2e7747fbea8c266fc9f5797e18c41 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Wed, 10 Sep 2025 22:44:27 +0000 Subject: [PATCH 379/384] Squashed 'database/' changes from 5df53219..b2736cd1 b2736cd1 Merge pull request #96 from dlparkhurst/mix_error 622420f1 Tony's fit of sulfate solubilities for phreeqc.dat, pitzer.dat, phreeqc_rates.dat git-subtree-dir: database git-subtree-split: b2736cd1fdff1a3a0665ef298045d7f3782aab9d --- Amm.dat | 154 +++++++++++++++++++++-------------------- phreeqc.dat | 160 +++++++++++++++++++++--------------------- phreeqc_rates.dat | 173 ++++++++++++++++++++++++---------------------- 3 files changed, 253 insertions(+), 234 deletions(-) diff --git a/Amm.dat b/Amm.dat index 58d6c0d9..73964b43 100644 --- a/Amm.dat +++ b/Amm.dat @@ -66,7 +66,7 @@ H+ = H+ -dw 9.31e-9 838 6.96 -2.285 0.206 24.01 0 # Dw(25 C) dw_T a a2 visc a3 a_v_dif # Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc -# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif for tracer diffusion. +# a = DH ion size (= 3.5 - 25), a2 = exponent (= 0 2.5), visc = viscosity exponent (= 0 2.5), a3 = switch [a3(H+) = 24.01 = new dw calculation from A.D. 2024], a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif for tracer diffusion. # For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 0.206 for H+) # a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Onsager-Falkenhagen eqn. (For H+, the reference ion, vm = v0 = 0, a *= (1 + mu)^a2.) @@ -76,7 +76,7 @@ H+ = H+ # If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. e- = e- H2O = H2O - -dw 2.299e-9 -249 # Holz et al., Phys. Chem. Chem. Phys., 2000, 2, 4740. + -dw 2.299e-9 -249 # Holz et al., Phys. Chem. Chem. Phys., 2000, 2, 4740. # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence Li+ = Li+ -gamma 6 0 # The apparent volume parameters are defined in ref. 1 & 2 @@ -143,10 +143,10 @@ CO3-2 = CO3-2 -viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147 -dw 0.955e-9 -103 2.246 7.13e-2 0.3686 SO4-2 = SO4-2 - -gamma 5 -0.04 - -Vm -7.77 43.17 176 -51.45 3.794 0 42.99 -541 -0.145 0.45 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC - -viscosity -0.3 0.501 2.57e-3 0.195 3.14e-2 2.015 0.605 - -dw 1.07e-9 -114 17 6.02e-2 4.94e-2 + -gamma 5.0 -0.04 + -Vm 5.36 10.69 33.566 -15.03 4.2582 25 0.341 153.8 1.089e-2 0.9224 # with Na2SO4 & better calculation of sulfates' solubilities in NaCl + -viscosity -0.5 0.521 4.2e-4 9.78e-3 1.24e-2 2.5 -4.94e-2 + -dw 1.07e-9 -77.4 10.14 0.5 0.5549 NO3- = NO3- -gamma 3 0 -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 @@ -206,14 +206,14 @@ H2Sg = H2Sg # H2S -dw 2.1e-9 # aqueous species H2O = OH- + H+ - -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 -gamma 3.5 0 + -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 -Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1 -viscosity -2.26e-2 0.106 2.184e-2 -3.2e-3 0 0.4082 -1.634 # < 5 M Li,Na,KOH -dw 5.27e-9 478 0.8695 2 H2O = O2 + 4 H+ + 4 e- - -log_k -86.08 - -delta_h 134.79 kcal + -log_k -86.06; -delta_h 138.43 kcal + -analytic -1e3 -0.322 -5897.7 416.82 0 -1.88e-5 -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt -dw 2.35e-9 2 H+ + 2 e- = H2 @@ -316,11 +316,11 @@ AmmH+ = Amm + H+ -dw 2.28e-9 AmmH+ + SO4-2 = AmmHSO4- #NH4+ + SO4-2 = NH4SO4- - -gamma 2.10 -0.0419 - -log_k 1.212; -delta_h 8.61 kJ - -Vm -8.78 0 -36.09 0 -8.60 0 87.62 0 -0.3123 0.1172 - -viscosity 0 0.121 -8e-3 0.177 -8e-3 0.512 0.629 - -dw 0.9e-9 100 2.1 2 0 + -gamma 3.64 -4.75e-2 + -log_k 1.276; -delta_h -3.24 kcal + -Vm 6.64 8.5 -5.84 -3.1 2 0 19.24 0 -7.84e-2 0.289 + -viscosity 0.267 -0.207 9.75e-2 6.18e-2 1.99e-2 1.166 0.61 + -dw 1.56e-9 498 25 0.5 0.684 H3BO3 = H2BO3- + H+ -log_k -9.24 -delta_h 3.224 kcal @@ -375,10 +375,11 @@ Ca+2 + CO3-2 + H+ = CaHCO3+ -Vm 3.19 .01 5.75 -2.78 .308 5.4 -dw 5.06e-10 Ca+2 + SO4-2 = CaSO4 - -log_k 2.25 - -delta_h 1.325 kcal - -dw 4.71e-10 - -Vm 2.791 -.9666 6.13 -2.739 -.001 # supcrt + -gamma 0 4.45e-2 + -log_k 2.14; -delta_h 24.4 + -analytical_expression 1.478 8.29e-3 -538.2 + -vm 2.7 2 2 -3.7 + -dw 4.71e-9 Ca+2 + HSO4- = CaHSO4+ -log_k 1.08 Ca+2 + PO4-3 = CaPO4- @@ -415,19 +416,19 @@ Mg+2 + H+ + CO3-2 = MgHCO3+ -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt -dw 4.78e-10 Mg+2 + SO4-2 = MgSO4 - -gamma 0 0.2 - -log_k 2.42; -delta_h 19 kJ - -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -Vm 8.65 -10.21 29.58 -18.6 1.061 - -viscosity 0.318 -5.4e-4 -3.42e-2 0.708 3.7e-3 0.696 + -gamma 0 0.20 + -log_k 2.42; -delta_h 19.0 + -analytical_expression 0 9.64e-3 -136 # epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm 11.92 -27.758 29.752 -10.302 -0.1 + -viscosity -0.799 1 2.2e-4 8.53e-2 -4.6e-3 1.35 -0.796 -dw 4.45e-10 SO4-2 + MgSO4 = Mg(SO4)2-2 -gamma 7 0.047 - -log_k 0.52; -delta_h -13.6 kJ - -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -Vm -8.14 -62.2 -15.96 3.29 -3.01 0 150 0 0.153 3.79e-2 - -viscosity -0.169 5e-4 -5.69e-2 0.11 2.03e-3 2.027 -1e-3 - -dw 0.845e-9 -200 8 0 0.965 + -log_k 0.52; -delta_h -13.6 + -analytical_expression 0 -1.51e-3 0 0 8.604e4 # epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm 4.248 9.83 -7 -2.672 2 3.5 5 100 0.3359 9.518e-2 + -viscosity 0.324 6.84e-2 -2.09e-2 0.104 6.19e-3 1.983 1e-3 + -dw 1.11e-9 -500 3.5 0.5 0.731 Mg+2 + PO4-3 = MgPO4- -log_k 6.589 -delta_h 3.1 kcal @@ -453,12 +454,19 @@ Na+ + HCO3- = NaHCO3 -viscosity -4e-2 -2.717 1.67e-5 -dw 6.73e-10 Na+ + SO4-2 = NaSO4- - -gamma 5.5 0 - -log_k 0.6; -delta_h -14.4 kJ - -analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC - -Vm 1.99 -10.78 21.88 -12.7 1.601 5 32.38 501 1.565e-2 0.2325 - -viscosity 0.2 -5.93e-2 -4e-4 8.46e-3 1.78e-3 2.308 -0.208 - -dw 1.13e-9 -23 8.5 0.392 0.521 + -gamma 3.5 0.1072 + -log_k 0.94; -delta_h 8.23 + -analytical_expression -0.304 4.51e-3 -28.9 # mirabilite/thenardite solubilities, 0 - 200 oC + -Vm 8.523 -4.685 -8.61 0.106 2.7 25 3.634 13.4 3.738e-2 0.5476 + -viscosity -1 0.33 0.128 1.143 7.7e-4 1.9e-2 -0.387 + -dw 4e-10 -200 3.5 0.5 0.5 +2 Na+ + SO4-2 = Na2SO4 + -gamma 0 8.85e-2 + -log_k -2.37; -delta_h 82 + -analytical_expression 15.432 -5.75e-3 -4796 # sulfates solubilities in NaCl + -Vm 9.405 -15.5 25 8.4 0.25 + -viscosity -0.5 0.485 -1e-3 0.147 0 0.947 -0.175 + -dw 0.8e-9 Na+ + HPO4-2 = NaHPO4- -log_k 0.29 -gamma 5.4 0 @@ -473,11 +481,11 @@ K+ + HCO3- = KHCO3 -viscosity 0.7 -1.289 9e-2 K+ + SO4-2 = KSO4- -gamma 5.4 0.19 - -log_k 0.6; -delta_h -10.4 kJ + -log_k 1.18; -delta_h 3 -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC - -Vm 13.48 -18.03 61.74 -19.6 2.046 5.4 -17.32 0 0.1522 1.919 - -viscosity -1 1.06 1e-4 -0.464 3.78e-2 0.539 -0.69 - -dw 0.9e-9 63 8.48 0 1.8 + -Vm 3.443 5.04 13 -3.324 2.447 0 20 0 7.77e-3 0.3497 + -viscosity 0.107 0.19 2.23e-2 -0.148 -4.91e-2 0.537 0.195 + -dw 1.22e-9 100 25 0.5 2.5 K+ + HPO4-2 = KHPO4- -log_k 0.29 -gamma 5.4 0 @@ -497,9 +505,8 @@ Fe+2 + CO3-2 = FeCO3 Fe+2 + HCO3- = FeHCO3+ -log_k 2 Fe+2 + SO4-2 = FeSO4 - -log_k 2.25 - -delta_h 3.23 kcal - -Vm -13 0 123 + -log_k 2.25; -delta_h 3.23 kcal + -Vm 5.8 6.5 3.7 -3 -0.09 Fe+2 + HSO4- = FeHSO4+ -log_k 1.08 Fe+2 + 2 HS- = Fe(HS)2 @@ -601,9 +608,9 @@ Mn+2 + HCO3- = MnHCO3+ -log_k 1.95 -gamma 5 0 Mn+2 + SO4-2 = MnSO4 - -log_k 2.25 - -delta_h 3.37 kcal - -Vm -1.31 -1.83 62.3 -2.7 + -gamma 0 -0.098 + -log_k 1.408; -delta_h 21.55 + -Vm 1.88 6.5 10 -3 0.1 Mn+2 + 2 NO3- = Mn(NO3)2 -log_k 0.6 -delta_h -0.396 kcal @@ -696,7 +703,8 @@ Ba+2 + HCO3- = BaHCO3+ -delta_h 5.56 kcal -analytic -3.0938 0.013669 Ba+2 + SO4-2 = BaSO4 - -log_k 2.7 + -log_k 3.457; -delta_h 26.15 + -vm -6.25 24.66 -4.38 10.97 0.5 Sr+2 + H2O = SrOH+ + H+ -log_k -13.29 -gamma 5 0 @@ -815,12 +823,13 @@ Zn+2 + 2 CO3-2 = Zn(CO3)2-2 Zn+2 + HCO3- = ZnHCO3+ -log_k 2.1 Zn+2 + SO4-2 = ZnSO4 - -log_k 2.37 - -delta_h 1.36 kcal - -Vm 2.51 0 18.8 + -gamma 0 0.1 + -log_k 2.26; -delta_h 16.15 + -Vm 0.409 6.5 2 -3 0 Zn+2 + 2 SO4-2 = Zn(SO4)2-2 - -log_k 3.28 - -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 + -gamma 0.59 0.1 + -log_k 1.15; -delta_h 17.52 + -Vm 9.21 10.6 9 -3.2 3.8 25 0 100 -1e-3 0.256 Zn+2 + Br- = ZnBr+ -log_k -0.58 Zn+2 + 2 Br- = ZnBr2 @@ -866,12 +875,13 @@ Cd+2 + 2 CO3-2 = Cd(CO3)2-2 Cd+2 + HCO3- = CdHCO3+ -log_k 1.5 Cd+2 + SO4-2 = CdSO4 - -log_k 2.46 - -delta_h 1.08 kcal - -Vm 10.4 0 57.9 + -gamma 0 0.1 + -log_k 1.016; -delta_h 6.84 + -Vm 2.11 6.5 10 -3 0.1 Cd+2 + 2 SO4-2 = Cd(SO4)2-2 - -log_k 3.5 - -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 + -gamma 5.201 -0.1 + -log_k 2.688; -delta_h 0.19 + -Vm 9.14 10.6 -3.06 -3.2 3.8 7.44 1.27 0.32 -1e-3 2.5 Cd+2 + Br- = CdBr+ -log_k 2.17 -delta_h -0.81 kcal @@ -991,29 +1001,24 @@ Witherite -Vm 46 Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O - -log_k -4.58 - -delta_h -0.109 kcal - -analytic 68.2401 0 -3221.51 -25.0627 - -analytical_expression 93.7 5.99E-3 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 - -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) + -log_k -4.55; -delta_h -6.70 + -analytical_expression 72.244 -1.474e-2 -4040 -23.7823 # fits the appendix data of Appelo, 2015, AG 55, 62 + -Vm 73.9 Anhydrite CaSO4 = Ca+2 + SO4-2 - -log_k -4.36 - -delta_h -1.71 kcal - -analytic 84.9 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323 + log_k -4.25; -delta_h -22.4 + -analytical_expression 5.725 -2.478e-2 -790.4 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323 -Vm 46.1 # 136.14 / 2.95 Celestite SrSO4 = Sr+2 + SO4-2 -log_k -6.63 -delta_h -4.037 kcal -# -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464 -Vm 46.4 Barite BaSO4 = Ba+2 + SO4-2 - -log_k -9.97 - -delta_h 6.35 kcal - -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 + -log_k -9.89; -delta_h 11.82 + -analytical_expression -34.438 -3.316e-2 -1500 15.9485 # Blount 1977; Templeton, 1960 -Vm 52.9 Arcanite K2SO4 = SO4-2 + 2 K+ @@ -1023,12 +1028,14 @@ Arcanite -Vm 65.5 Mirabilite Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O - -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 + -log_k -0.706; -delta_h 124 + -analytical_expression -53.037 0.1242 4562 # ref. 3 Vm 216 Thenardite Na2SO4 = 2 Na+ + SO4-2 - -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 - -Vm 52.9 + -log_k 0.65; -delta_h -23.1 + -analytical_expression 159.849 1.699e-2 -5000 -59.6073 # ref. 3 + Vm 52.9 Epsomite MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O log_k -1.74; -delta_h 10.57 kJ @@ -1901,7 +1908,6 @@ Pyrolusite 110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME 200 SAVE moles * SOLN_VOL -end - END # ============================================================================================= #(a) means amorphous. (d) means disordered, or less crystalline. @@ -1943,14 +1949,14 @@ END # Av is the Debye-Hckel limiting slope (DH_AV in PHREEQC basic). # a0 is the ion-size parameter in the extended Debye-Hckel equation: # f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), -# a0 = -gamma x for cations, = 0 for anions. +# a0 = -gamma x for cations, = 0 for anions (or fitted). # For details, consult ref. 1 and subroutine calc_vm(tc, pa) in prep.cpp. # ============================================================================================= # The viscosity is calculated with a (modified) Jones-Dole equation: # viscos / viscos_0 = 1 + A * Sum(0.5 z_i m_i) + fan * Sum(B_i m_i + D_i m_i n_i) # Parameters are for calculating the B and D terms: -# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 -# # b0 b1 b2 d1 d2 d3 tan +# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 +# # b0 b1 b2 d1 d2 d3 tan # z_i is absolute charge number, m_i is molality of i # B_i = b0 + b1 exp(-b2 * tc) # fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions and neutral species diff --git a/phreeqc.dat b/phreeqc.dat index 51d44013..9aec9ecf 100644 --- a/phreeqc.dat +++ b/phreeqc.dat @@ -70,7 +70,7 @@ H+ = H+ -dw 9.31e-9 838 6.96 -2.285 0.206 24.01 0 # Dw(25 C) dw_T a a2 visc a3 a_v_dif # Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc -# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif for tracer diffusion. +# a = DH ion size (= 3.5 - 25), a2 = exponent (= 0 2.5), visc = viscosity exponent (= 0 2.5), a3 = switch [a3(H+) = 24.01 = new dw calculation from A.D. 2024], a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif for tracer diffusion. # For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 0.206 for H+) # a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Onsager-Falkenhagen eqn. (For H+, the reference ion, vm = v0 = 0, a *= (1 + mu)^a2.) @@ -80,7 +80,7 @@ H+ = H+ # If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. e- = e- H2O = H2O - -dw 2.299e-9 -249 # Holz et al., Phys. Chem. Chem. Phys., 2000, 2, 4740. + -dw 2.299e-9 -249 # Holz et al., Phys. Chem. Chem. Phys., 2000, 2, 4740. # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence Li+ = Li+ -gamma 6 0 # The apparent volume parameters are defined in ref. 1 & 2 @@ -147,16 +147,16 @@ CO3-2 = CO3-2 -viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147 -dw 0.955e-9 -103 2.246 7.13e-2 0.3686 SO4-2 = SO4-2 - -gamma 5 -0.04 - -Vm -7.77 43.17 176 -51.45 3.794 0 42.99 -541 -0.145 0.45 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC - -viscosity -0.3 0.501 2.57e-3 0.195 3.14e-2 2.015 0.605 - -dw 1.07e-9 -114 17 6.02e-2 4.94e-2 + -gamma 5.0 -0.04 + -Vm 5.36 10.69 33.566 -15.03 4.2582 25 0.341 153.8 1.089e-2 0.9224 # with Na2SO4 & better calculation of sulfates' solubilities in NaCl + -viscosity -0.5 0.521 4.2e-4 9.78e-3 1.24e-2 2.5 -4.94e-2 + -dw 1.07e-9 -77.4 10.14 0.5 0.5549 NO3- = NO3- -gamma 3 0 -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 -viscosity 8.37e-2 -0.458 1.54e-2 0.34 1.79e-2 5.02e-2 0.7381 -dw 1.9e-9 104 1.11 -# AmmH+ = AmmH+ +#AmmH+ = AmmH+ # -gamma 2.5 0 # -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 # -viscosity 6.94e-2 -0.141 2.04e-2 9.4e-3 3.73e-2 0.898 @@ -210,14 +210,14 @@ H2Sg = H2Sg # H2S -dw 2.1e-9 # aqueous species H2O = OH- + H+ - -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 -gamma 3.5 0 + -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 -Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1 -viscosity -2.26e-2 0.106 2.184e-2 -3.2e-3 0 0.4082 -1.634 # < 5 M Li,Na,KOH -dw 5.27e-9 478 0.8695 2 H2O = O2 + 4 H+ + 4 e- - -log_k -86.08 - -delta_h 134.79 kcal + -log_k -86.06; -delta_h 138.43 kcal + -analytic -1e3 -0.322 -5897.7 416.82 0 -1.88e-5 -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt -dw 2.35e-9 2 H+ + 2 e- = H2 @@ -304,8 +304,8 @@ NO3- + 2 H+ + 2 e- = NO2- + H2O -Vm 7 # Pray et al., 1952, IEC 44 1146 -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O - -log_k 119.077 - -delta_h -187.055 kcal + -log_k 119.077 + -delta_h -187.055 kcal -gamma 2.5 0 -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 -viscosity 6.94e-2 -0.141 2.04e-2 9.4e-3 3.73e-2 0.898 @@ -320,11 +320,11 @@ NH4+ = NH3 + H+ -dw 2.28e-9 #AmmH+ + SO4-2 = AmmHSO4- NH4+ + SO4-2 = NH4SO4- - -gamma 2.10 -0.0419 - -log_k 1.212; -delta_h 8.61 kJ - -Vm -8.78 0 -36.09 0 -8.60 0 87.62 0 -0.3123 0.1172 - -viscosity 0 0.121 -8e-3 0.177 -8e-3 0.512 0.629 - -dw 0.9e-9 100 2.1 2 0 + -gamma 3.64 -4.75e-2 + -log_k 1.276; -delta_h -3.24 kcal + -Vm 6.64 8.5 -5.84 -3.1 2 0 19.24 0 -7.84e-2 0.289 + -viscosity 0.267 -0.207 9.75e-2 6.18e-2 1.99e-2 1.166 0.61 + -dw 1.56e-9 498 25 0.5 0.684 H3BO3 = H2BO3- + H+ -log_k -9.24 -delta_h 3.224 kcal @@ -379,10 +379,11 @@ Ca+2 + CO3-2 + H+ = CaHCO3+ -Vm 3.19 .01 5.75 -2.78 .308 5.4 -dw 5.06e-10 Ca+2 + SO4-2 = CaSO4 - -log_k 2.25 - -delta_h 1.325 kcal - -dw 4.71e-10 - -Vm 2.791 -.9666 6.13 -2.739 -.001 # supcrt + -gamma 0 4.45e-2 + -log_k 2.14; -delta_h 24.4 + -analytical_expression 1.478 8.29e-3 -538.2 + -vm 2.7 2 2 -3.7 + -dw 4.71e-9 Ca+2 + HSO4- = CaHSO4+ -log_k 1.08 Ca+2 + PO4-3 = CaPO4- @@ -419,19 +420,19 @@ Mg+2 + H+ + CO3-2 = MgHCO3+ -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt -dw 4.78e-10 Mg+2 + SO4-2 = MgSO4 - -gamma 0 0.2 - -log_k 2.42; -delta_h 19 kJ - -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -Vm 8.65 -10.21 29.58 -18.6 1.061 - -viscosity 0.318 -5.4e-4 -3.42e-2 0.708 3.7e-3 0.696 + -gamma 0 0.20 + -log_k 2.42; -delta_h 19.0 + -analytical_expression 0 9.64e-3 -136 # epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm 11.92 -27.758 29.752 -10.302 -0.1 + -viscosity -0.799 1 2.2e-4 8.53e-2 -4.6e-3 1.35 -0.796 -dw 4.45e-10 SO4-2 + MgSO4 = Mg(SO4)2-2 -gamma 7 0.047 - -log_k 0.52; -delta_h -13.6 kJ - -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -Vm -8.14 -62.2 -15.96 3.29 -3.01 0 150 0 0.153 3.79e-2 - -viscosity -0.169 5e-4 -5.69e-2 0.11 2.03e-3 2.027 -1e-3 - -dw 0.845e-9 -200 8 0 0.965 + -log_k 0.52; -delta_h -13.6 + -analytical_expression 0 -1.51e-3 0 0 8.604e4 # epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm 4.248 9.83 -7 -2.672 2 3.5 5 100 0.3359 9.518e-2 + -viscosity 0.324 6.84e-2 -2.09e-2 0.104 6.19e-3 1.983 1e-3 + -dw 1.11e-9 -500 3.5 0.5 0.731 Mg+2 + PO4-3 = MgPO4- -log_k 6.589 -delta_h 3.1 kcal @@ -457,12 +458,19 @@ Na+ + HCO3- = NaHCO3 -viscosity -4e-2 -2.717 1.67e-5 -dw 6.73e-10 Na+ + SO4-2 = NaSO4- - -gamma 5.5 0 - -log_k 0.6; -delta_h -14.4 kJ - -analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC - -Vm 1.99 -10.78 21.88 -12.7 1.601 5 32.38 501 1.565e-2 0.2325 - -viscosity 0.2 -5.93e-2 -4e-4 8.46e-3 1.78e-3 2.308 -0.208 - -dw 1.13e-9 -23 8.5 0.392 0.521 + -gamma 3.5 0.1072 + -log_k 0.94; -delta_h 8.23 + -analytical_expression -0.304 4.51e-3 -28.9 # mirabilite/thenardite solubilities, 0 - 200 oC + -Vm 8.523 -4.685 -8.61 0.106 2.7 25 3.634 13.4 3.738e-2 0.5476 + -viscosity -1 0.33 0.128 1.143 7.7e-4 1.9e-2 -0.387 + -dw 4e-10 -200 3.5 0.5 0.5 +2 Na+ + SO4-2 = Na2SO4 + -gamma 0 8.85e-2 + -log_k -2.37; -delta_h 82 + -analytical_expression 15.432 -5.75e-3 -4796 # sulfates solubilities in NaCl + -Vm 9.405 -15.5 25 8.4 0.25 + -viscosity -0.5 0.485 -1e-3 0.147 0 0.947 -0.175 + -dw 0.8e-9 Na+ + HPO4-2 = NaHPO4- -log_k 0.29 -gamma 5.4 0 @@ -477,11 +485,11 @@ K+ + HCO3- = KHCO3 -viscosity 0.7 -1.289 9e-2 K+ + SO4-2 = KSO4- -gamma 5.4 0.19 - -log_k 0.6; -delta_h -10.4 kJ + -log_k 1.18; -delta_h 3 -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC - -Vm 13.48 -18.03 61.74 -19.6 2.046 5.4 -17.32 0 0.1522 1.919 - -viscosity -1 1.06 1e-4 -0.464 3.78e-2 0.539 -0.69 - -dw 0.9e-9 63 8.48 0 1.8 + -Vm 3.443 5.04 13 -3.324 2.447 0 20 0 7.77e-3 0.3497 + -viscosity 0.107 0.19 2.23e-2 -0.148 -4.91e-2 0.537 0.195 + -dw 1.22e-9 100 25 0.5 2.5 K+ + HPO4-2 = KHPO4- -log_k 0.29 -gamma 5.4 0 @@ -501,9 +509,8 @@ Fe+2 + CO3-2 = FeCO3 Fe+2 + HCO3- = FeHCO3+ -log_k 2 Fe+2 + SO4-2 = FeSO4 - -log_k 2.25 - -delta_h 3.23 kcal - -Vm -13 0 123 + -log_k 2.25; -delta_h 3.23 kcal + -Vm 5.8 6.5 3.7 -3 -0.09 Fe+2 + HSO4- = FeHSO4+ -log_k 1.08 Fe+2 + 2 HS- = Fe(HS)2 @@ -605,9 +612,9 @@ Mn+2 + HCO3- = MnHCO3+ -log_k 1.95 -gamma 5 0 Mn+2 + SO4-2 = MnSO4 - -log_k 2.25 - -delta_h 3.37 kcal - -Vm -1.31 -1.83 62.3 -2.7 + -gamma 0 -0.098 + -log_k 1.408; -delta_h 21.55 + -Vm 1.88 6.5 10 -3 0.1 Mn+2 + 2 NO3- = Mn(NO3)2 -log_k 0.6 -delta_h -0.396 kcal @@ -700,7 +707,8 @@ Ba+2 + HCO3- = BaHCO3+ -delta_h 5.56 kcal -analytic -3.0938 0.013669 Ba+2 + SO4-2 = BaSO4 - -log_k 2.7 + -log_k 3.457; -delta_h 26.15 + -vm -6.25 24.66 -4.38 10.97 0.5 Sr+2 + H2O = SrOH+ + H+ -log_k -13.29 -gamma 5 0 @@ -819,12 +827,13 @@ Zn+2 + 2 CO3-2 = Zn(CO3)2-2 Zn+2 + HCO3- = ZnHCO3+ -log_k 2.1 Zn+2 + SO4-2 = ZnSO4 - -log_k 2.37 - -delta_h 1.36 kcal - -Vm 2.51 0 18.8 + -gamma 0 0.1 + -log_k 2.26; -delta_h 16.15 + -Vm 0.409 6.5 2 -3 0 Zn+2 + 2 SO4-2 = Zn(SO4)2-2 - -log_k 3.28 - -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 + -gamma 0.59 0.1 + -log_k 1.15; -delta_h 17.52 + -Vm 9.21 10.6 9 -3.2 3.8 25 0 100 -1e-3 0.256 Zn+2 + Br- = ZnBr+ -log_k -0.58 Zn+2 + 2 Br- = ZnBr2 @@ -870,12 +879,13 @@ Cd+2 + 2 CO3-2 = Cd(CO3)2-2 Cd+2 + HCO3- = CdHCO3+ -log_k 1.5 Cd+2 + SO4-2 = CdSO4 - -log_k 2.46 - -delta_h 1.08 kcal - -Vm 10.4 0 57.9 + -gamma 0 0.1 + -log_k 1.016; -delta_h 6.84 + -Vm 2.11 6.5 10 -3 0.1 Cd+2 + 2 SO4-2 = Cd(SO4)2-2 - -log_k 3.5 - -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 + -gamma 5.201 -0.1 + -log_k 2.688; -delta_h 0.19 + -Vm 9.14 10.6 -3.06 -3.2 3.8 7.44 1.27 0.32 -1e-3 2.5 Cd+2 + Br- = CdBr+ -log_k 2.17 -delta_h -0.81 kcal @@ -995,29 +1005,24 @@ Witherite -Vm 46 Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O - -log_k -4.58 - -delta_h -0.109 kcal - -analytic 68.2401 0 -3221.51 -25.0627 - -analytical_expression 93.7 5.99E-3 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 - -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) + -log_k -4.55; -delta_h -6.70 + -analytical_expression 72.244 -1.474e-2 -4040 -23.7823 # fits the appendix data of Appelo, 2015, AG 55, 62 + -Vm 73.9 Anhydrite CaSO4 = Ca+2 + SO4-2 - -log_k -4.36 - -delta_h -1.71 kcal - -analytic 84.9 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323 + log_k -4.25; -delta_h -22.4 + -analytical_expression 5.725 -2.478e-2 -790.4 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323 -Vm 46.1 # 136.14 / 2.95 Celestite SrSO4 = Sr+2 + SO4-2 -log_k -6.63 -delta_h -4.037 kcal -# -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464 -Vm 46.4 Barite BaSO4 = Ba+2 + SO4-2 - -log_k -9.97 - -delta_h 6.35 kcal - -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 + -log_k -9.89; -delta_h 11.82 + -analytical_expression -34.438 -3.316e-2 -1500 15.9485 # Blount 1977; Templeton, 1960 -Vm 52.9 Arcanite K2SO4 = SO4-2 + 2 K+ @@ -1027,12 +1032,14 @@ Arcanite -Vm 65.5 Mirabilite Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O - -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 + -log_k -0.706; -delta_h 124 + -analytical_expression -53.037 0.1242 4562 # ref. 3 Vm 216 Thenardite Na2SO4 = 2 Na+ + SO4-2 - -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 - -Vm 52.9 + -log_k 0.65; -delta_h -23.1 + -analytical_expression 159.849 1.699e-2 -5000 -59.6073 # ref. 3 + Vm 52.9 Epsomite MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O log_k -1.74; -delta_h 10.57 kJ @@ -1905,7 +1912,6 @@ Pyrolusite 110 moles = 2e-3 * 6.98e-5 * (1 - sr_pl) * TIME 200 SAVE moles * SOLN_VOL -end - END # ============================================================================================= #(a) means amorphous. (d) means disordered, or less crystalline. @@ -1947,14 +1953,14 @@ END # Av is the Debye-Hckel limiting slope (DH_AV in PHREEQC basic). # a0 is the ion-size parameter in the extended Debye-Hckel equation: # f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), -# a0 = -gamma x for cations, = 0 for anions. +# a0 = -gamma x for cations, = 0 for anions (or fitted). # For details, consult ref. 1 and subroutine calc_vm(tc, pa) in prep.cpp. # ============================================================================================= # The viscosity is calculated with a (modified) Jones-Dole equation: # viscos / viscos_0 = 1 + A * Sum(0.5 z_i m_i) + fan * Sum(B_i m_i + D_i m_i n_i) # Parameters are for calculating the B and D terms: -# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 -# # b0 b1 b2 d1 d2 d3 tan +# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 +# # b0 b1 b2 d1 d2 d3 tan # z_i is absolute charge number, m_i is molality of i # B_i = b0 + b1 exp(-b2 * tc) # fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions and neutral species diff --git a/phreeqc_rates.dat b/phreeqc_rates.dat index 47cd6072..620eba40 100644 --- a/phreeqc_rates.dat +++ b/phreeqc_rates.dat @@ -4,7 +4,7 @@ SOLUTION_MASTER_SPECIES # -#element species alk gfw_formula element_gfw +#element species alk gfw_formula element_gfw # H H+ -1 H 1.008 H(0) H2 0 H @@ -40,7 +40,7 @@ N(+5) NO3- 0 N N(+3) NO2- 0 N N(0) N2 0 N N(-3) NH4+ 0 N 14.0067 -#Amm AmmH+ 0 AmmH 17.031 +#Amm AmmH+ 0 AmmH 17.031 B H3BO3 0 B 10.81 P PO4-3 2 P 30.9738 F F- 0 F 18.9984 @@ -66,7 +66,7 @@ H+ = H+ -dw 9.31e-9 838 6.96 -2.285 0.206 24.01 0 # Dw(25 C) dw_T a a2 visc a3 a_v_dif # Dw(TK) = 9.31e-9 * exp(838 / TK - 838 / 298.15) * viscos_0_25 / viscos_0_tc -# a = DH ion size, a2 = exponent, visc = viscosity exponent, a3(H+) = 24.01 = new dw calculation from A.D. 2024, a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif for tracer diffusion. +# a = DH ion size (= 3.5 - 25), a2 = exponent (= 0 2.5), visc = viscosity exponent (= 0 2.5), a3 = switch [a3(H+) = 24.01 = new dw calculation from A.D. 2024], a_v_dif = exponent in (viscos_0_tc / viscos)^a_v_dif for tracer diffusion. # For SC, Dw(TK) *= (viscos_0_tc / viscos)^visc (visc = 0.206 for H+) # a3 > 5 or a3 = 0 or not defined ? ka = DH_B * a * (1 + (vm - v0))^a2 * mu^0.5, in Onsager-Falkenhagen eqn. (For H+, the reference ion, vm = v0 = 0, a *= (1 + mu)^a2.) @@ -76,7 +76,7 @@ H+ = H+ # If a_v_dif <> 0, Dw(TK) *= (viscos_0_tc / viscos)^a_v_dif in TRANSPORT. e- = e- H2O = H2O - -dw 2.299e-9 -249 # Holz et al., Phys. Chem. Chem. Phys., 2000, 2, 4740. + -dw 2.299e-9 -249 # Holz et al., Phys. Chem. Chem. Phys., 2000, 2, 4740. # H2O + 0.01e- = H2O-0.01; -log_k -9 # aids convergence Li+ = Li+ -gamma 6 0 # The apparent volume parameters are defined in ref. 1 & 2 @@ -143,20 +143,20 @@ CO3-2 = CO3-2 -viscosity -0.5 0.6521 5.44e-3 1.06e-3 -2.18e-2 1.208 -2.147 -dw 0.955e-9 -103 2.246 7.13e-2 0.3686 SO4-2 = SO4-2 - -gamma 5 -0.04 - -Vm -7.77 43.17 176 -51.45 3.794 0 42.99 -541 -0.145 0.45 # with analytical_expressions for log K of NaSO4-, KSO4- & MgSO4, 0 - 200 oC - -viscosity -0.3 0.501 2.57e-3 0.195 3.14e-2 2.015 0.605 - -dw 1.07e-9 -114 17 6.02e-2 4.94e-2 + -gamma 5.0 -0.04 + -Vm 5.36 10.69 33.566 -15.03 4.2582 25 0.341 153.8 1.089e-2 0.9224 # with Na2SO4 & better calculation of sulfates' solubilities in NaCl + -viscosity -0.5 0.521 4.2e-4 9.78e-3 1.24e-2 2.5 -4.94e-2 + -dw 1.07e-9 -77.4 10.14 0.5 0.5549 NO3- = NO3- -gamma 3 0 -Vm 6.32 6.78 0 -3.06 0.346 0 0.93 0 -0.012 1 -viscosity 8.37e-2 -0.458 1.54e-2 0.34 1.79e-2 5.02e-2 0.7381 -dw 1.9e-9 104 1.11 -# AmmH+ = AmmH+ - # -gamma 2.5 0 - # -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 - # -viscosity 6.94e-2 -0.141 2.04e-2 9.4e-3 3.73e-2 0.898 - # -dw 1.98e-9 203 1.47 2.644 6.81e-2 +#AmmH+ = AmmH+ +# -gamma 2.5 0 +# -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 +# -viscosity 6.94e-2 -0.141 2.04e-2 9.4e-3 3.73e-2 0.898 +# -dw 1.98e-9 203 1.47 2.644 6.81e-2 H3BO3 = H3BO3 -Vm 7.0643 8.8547 3.5844 -3.1451 -0.2 # supcrt -dw 1.1e-9 @@ -206,14 +206,14 @@ H2Sg = H2Sg # H2S -dw 2.1e-9 # aqueous species H2O = OH- + H+ - -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 -gamma 3.5 0 + -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5 -Vm -9.66 28.5 80 -22.9 1.89 0 1.09 0 0 1 -viscosity -2.26e-2 0.106 2.184e-2 -3.2e-3 0 0.4082 -1.634 # < 5 M Li,Na,KOH -dw 5.27e-9 478 0.8695 2 H2O = O2 + 4 H+ + 4 e- - -log_k -86.08 - -delta_h 134.79 kcal + -log_k -86.06; -delta_h 138.43 kcal + -analytic -1e3 -0.322 -5897.7 416.82 0 -1.88e-5 -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt -dw 2.35e-9 2 H+ + 2 e- = H2 @@ -300,8 +300,8 @@ NO3- + 2 H+ + 2 e- = NO2- + H2O -Vm 7 # Pray et al., 1952, IEC 44 1146 -dw 1.96e-9 -90 # Cadogan et al. 2014, JCED 59, 519 NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O - -log_k 119.077 - -delta_h -187.055 kcal + -log_k 119.077 + -delta_h -187.055 kcal -gamma 2.5 0 -Vm 5.35 2.345 3.72 -2.88 1.55 2.5 -4.54 217 2.344e-2 0.569 -viscosity 6.94e-2 -0.141 2.04e-2 9.4e-3 3.73e-2 0.898 @@ -316,11 +316,11 @@ NH4+ = NH3 + H+ -dw 2.28e-9 #AmmH+ + SO4-2 = AmmHSO4- NH4+ + SO4-2 = NH4SO4- - -gamma 2.10 -0.0419 - -log_k 1.212; -delta_h 8.61 kJ - -Vm -8.78 0 -36.09 0 -8.60 0 87.62 0 -0.3123 0.1172 - -viscosity 0 0.121 -8e-3 0.177 -8e-3 0.512 0.629 - -dw 0.9e-9 100 2.1 2 0 + -gamma 3.64 -4.75e-2 + -log_k 1.276; -delta_h -3.24 kcal + -Vm 6.64 8.5 -5.84 -3.1 2 0 19.24 0 -7.84e-2 0.289 + -viscosity 0.267 -0.207 9.75e-2 6.18e-2 1.99e-2 1.166 0.61 + -dw 1.56e-9 498 25 0.5 0.684 H3BO3 = H2BO3- + H+ -log_k -9.24 -delta_h 3.224 kcal @@ -375,10 +375,11 @@ Ca+2 + CO3-2 + H+ = CaHCO3+ -Vm 3.19 .01 5.75 -2.78 .308 5.4 -dw 5.06e-10 Ca+2 + SO4-2 = CaSO4 - -log_k 2.25 - -delta_h 1.325 kcal - -dw 4.71e-10 - -Vm 2.791 -.9666 6.13 -2.739 -.001 # supcrt + -gamma 0 4.45e-2 + -log_k 2.14; -delta_h 24.4 + -analytical_expression 1.478 8.29e-3 -538.2 + -vm 2.7 2 2 -3.7 + -dw 4.71e-9 Ca+2 + HSO4- = CaHSO4+ -log_k 1.08 Ca+2 + PO4-3 = CaPO4- @@ -415,19 +416,19 @@ Mg+2 + H+ + CO3-2 = MgHCO3+ -Vm 2.7171 -1.1469 6.2008 -2.7316 .5985 4 # supcrt -dw 4.78e-10 Mg+2 + SO4-2 = MgSO4 - -gamma 0 0.2 - -log_k 2.42; -delta_h 19 kJ - -analytical_expression 0 9.64e-3 -136 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -Vm 8.65 -10.21 29.58 -18.6 1.061 - -viscosity 0.318 -5.4e-4 -3.42e-2 0.708 3.7e-3 0.696 + -gamma 0 0.20 + -log_k 2.42; -delta_h 19.0 + -analytical_expression 0 9.64e-3 -136 # epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm 11.92 -27.758 29.752 -10.302 -0.1 + -viscosity -0.799 1 2.2e-4 8.53e-2 -4.6e-3 1.35 -0.796 -dw 4.45e-10 SO4-2 + MgSO4 = Mg(SO4)2-2 -gamma 7 0.047 - -log_k 0.52; -delta_h -13.6 kJ - -analytical_expression 0 -1.51e-3 0 0 8.604e4 # mean salt gamma from Pitzer.dat and epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC - -Vm -8.14 -62.2 -15.96 3.29 -3.01 0 150 0 0.153 3.79e-2 - -viscosity -0.169 5e-4 -5.69e-2 0.11 2.03e-3 2.027 -1e-3 - -dw 0.845e-9 -200 8 0 0.965 + -log_k 0.52; -delta_h -13.6 + -analytical_expression 0 -1.51e-3 0 0 8.604e4 # epsomite/hexahydrite/kieserite solubilities, 0 - 200 oC + -Vm 4.248 9.83 -7 -2.672 2 3.5 5 100 0.3359 9.518e-2 + -viscosity 0.324 6.84e-2 -2.09e-2 0.104 6.19e-3 1.983 1e-3 + -dw 1.11e-9 -500 3.5 0.5 0.731 Mg+2 + PO4-3 = MgPO4- -log_k 6.589 -delta_h 3.1 kcal @@ -453,12 +454,19 @@ Na+ + HCO3- = NaHCO3 -viscosity -4e-2 -2.717 1.67e-5 -dw 6.73e-10 Na+ + SO4-2 = NaSO4- - -gamma 5.5 0 - -log_k 0.6; -delta_h -14.4 kJ - -analytical_expression 255.903 0.10057 0 -1.11138e2 -8.5983e5 # mirabilite/thenardite solubilities, 0 - 200 oC - -Vm 1.99 -10.78 21.88 -12.7 1.601 5 32.38 501 1.565e-2 0.2325 - -viscosity 0.2 -5.93e-2 -4e-4 8.46e-3 1.78e-3 2.308 -0.208 - -dw 1.13e-9 -23 8.5 0.392 0.521 + -gamma 3.5 0.1072 + -log_k 0.94; -delta_h 8.23 + -analytical_expression -0.304 4.51e-3 -28.9 # mirabilite/thenardite solubilities, 0 - 200 oC + -Vm 8.523 -4.685 -8.61 0.106 2.7 25 3.634 13.4 3.738e-2 0.5476 + -viscosity -1 0.33 0.128 1.143 7.7e-4 1.9e-2 -0.387 + -dw 4e-10 -200 3.5 0.5 0.5 +2 Na+ + SO4-2 = Na2SO4 + -gamma 0 8.85e-2 + -log_k -2.37; -delta_h 82 + -analytical_expression 15.432 -5.75e-3 -4796 # sulfates solubilities in NaCl + -Vm 9.405 -15.5 25 8.4 0.25 + -viscosity -0.5 0.485 -1e-3 0.147 0 0.947 -0.175 + -dw 0.8e-9 Na+ + HPO4-2 = NaHPO4- -log_k 0.29 -gamma 5.4 0 @@ -473,11 +481,11 @@ K+ + HCO3- = KHCO3 -viscosity 0.7 -1.289 9e-2 K+ + SO4-2 = KSO4- -gamma 5.4 0.19 - -log_k 0.6; -delta_h -10.4 kJ + -log_k 1.18; -delta_h 3 -analytical_expression -3.0246 9.986e-3 0 0 1.093e5 # arcanite solubility, 0 - 200 oC - -Vm 13.48 -18.03 61.74 -19.6 2.046 5.4 -17.32 0 0.1522 1.919 - -viscosity -1 1.06 1e-4 -0.464 3.78e-2 0.539 -0.69 - -dw 0.9e-9 63 8.48 0 1.8 + -Vm 3.443 5.04 13 -3.324 2.447 0 20 0 7.77e-3 0.3497 + -viscosity 0.107 0.19 2.23e-2 -0.148 -4.91e-2 0.537 0.195 + -dw 1.22e-9 100 25 0.5 2.5 K+ + HPO4-2 = KHPO4- -log_k 0.29 -gamma 5.4 0 @@ -497,9 +505,8 @@ Fe+2 + CO3-2 = FeCO3 Fe+2 + HCO3- = FeHCO3+ -log_k 2 Fe+2 + SO4-2 = FeSO4 - -log_k 2.25 - -delta_h 3.23 kcal - -Vm -13 0 123 + -log_k 2.25; -delta_h 3.23 kcal + -Vm 5.8 6.5 3.7 -3 -0.09 Fe+2 + HSO4- = FeHSO4+ -log_k 1.08 Fe+2 + 2 HS- = Fe(HS)2 @@ -601,9 +608,9 @@ Mn+2 + HCO3- = MnHCO3+ -log_k 1.95 -gamma 5 0 Mn+2 + SO4-2 = MnSO4 - -log_k 2.25 - -delta_h 3.37 kcal - -Vm -1.31 -1.83 62.3 -2.7 + -gamma 0 -0.098 + -log_k 1.408; -delta_h 21.55 + -Vm 1.88 6.5 10 -3 0.1 Mn+2 + 2 NO3- = Mn(NO3)2 -log_k 0.6 -delta_h -0.396 kcal @@ -696,7 +703,8 @@ Ba+2 + HCO3- = BaHCO3+ -delta_h 5.56 kcal -analytic -3.0938 0.013669 Ba+2 + SO4-2 = BaSO4 - -log_k 2.7 + -log_k 3.457; -delta_h 26.15 + -vm -6.25 24.66 -4.38 10.97 0.5 Sr+2 + H2O = SrOH+ + H+ -log_k -13.29 -gamma 5 0 @@ -815,12 +823,13 @@ Zn+2 + 2 CO3-2 = Zn(CO3)2-2 Zn+2 + HCO3- = ZnHCO3+ -log_k 2.1 Zn+2 + SO4-2 = ZnSO4 - -log_k 2.37 - -delta_h 1.36 kcal - -Vm 2.51 0 18.8 + -gamma 0 0.1 + -log_k 2.26; -delta_h 16.15 + -Vm 0.409 6.5 2 -3 0 Zn+2 + 2 SO4-2 = Zn(SO4)2-2 - -log_k 3.28 - -Vm 10.9 0 -98.7 0 0 0 24 0 -0.236 1 + -gamma 0.59 0.1 + -log_k 1.15; -delta_h 17.52 + -Vm 9.21 10.6 9 -3.2 3.8 25 0 100 -1e-3 0.256 Zn+2 + Br- = ZnBr+ -log_k -0.58 Zn+2 + 2 Br- = ZnBr2 @@ -866,12 +875,13 @@ Cd+2 + 2 CO3-2 = Cd(CO3)2-2 Cd+2 + HCO3- = CdHCO3+ -log_k 1.5 Cd+2 + SO4-2 = CdSO4 - -log_k 2.46 - -delta_h 1.08 kcal - -Vm 10.4 0 57.9 + -gamma 0 0.1 + -log_k 1.016; -delta_h 6.84 + -Vm 2.11 6.5 10 -3 0.1 Cd+2 + 2 SO4-2 = Cd(SO4)2-2 - -log_k 3.5 - -Vm -6.29 0 -93 0 9.5 7 0 0 0 1 + -gamma 5.201 -0.1 + -log_k 2.688; -delta_h 0.19 + -Vm 9.14 10.6 -3.06 -3.2 3.8 7.44 1.27 0.32 -1e-3 2.5 Cd+2 + Br- = CdBr+ -log_k 2.17 -delta_h -0.81 kcal @@ -991,29 +1001,24 @@ Witherite -Vm 46 Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O - -log_k -4.58 - -delta_h -0.109 kcal - -analytic 68.2401 0 -3221.51 -25.0627 - -analytical_expression 93.7 5.99E-3 -4e3 -35.019 # better fits the appendix data of Appelo, 2015, AG 55, 62 - -Vm 73.9 # 172.18 / 2.33 (Vm H2O = 13.9 cm3/mol) + -log_k -4.55; -delta_h -6.70 + -analytical_expression 72.244 -1.474e-2 -4040 -23.7823 # fits the appendix data of Appelo, 2015, AG 55, 62 + -Vm 73.9 Anhydrite CaSO4 = Ca+2 + SO4-2 - -log_k -4.36 - -delta_h -1.71 kcal - -analytic 84.9 0 -3135.12 -31.79 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323 + log_k -4.25; -delta_h -22.4 + -analytical_expression 5.725 -2.478e-2 -790.4 # 50 - 160oC, 1 - 1e3 atm, anhydrite dissolution, Blount and Dickson, 1973, Am. Mineral. 58, 323 -Vm 46.1 # 136.14 / 2.95 Celestite SrSO4 = Sr+2 + SO4-2 -log_k -6.63 -delta_h -4.037 kcal -# -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 -analytic -7.14 6.11e-3 75 0 0 -1.79e-5 # Howell et al., 1992, JCED 37, 464 -Vm 46.4 Barite BaSO4 = Ba+2 + SO4-2 - -log_k -9.97 - -delta_h 6.35 kcal - -analytical_expression -282.43 -8.972e-2 5822 113.08 # Blount 1977; Templeton, 1960 + -log_k -9.89; -delta_h 11.82 + -analytical_expression -34.438 -3.316e-2 -1500 15.9485 # Blount 1977; Templeton, 1960 -Vm 52.9 Arcanite K2SO4 = SO4-2 + 2 K+ @@ -1023,12 +1028,14 @@ Arcanite -Vm 65.5 Mirabilite Na2SO4:10H2O = SO4-2 + 2 Na+ + 10 H2O - -analytical_expression -301.9326 -0.16232 0 141.078 # ref. 3 + -log_k -0.706; -delta_h 124 + -analytical_expression -53.037 0.1242 4562 # ref. 3 Vm 216 Thenardite Na2SO4 = 2 Na+ + SO4-2 - -analytical_expression 57.185 8.6024e-2 0 -30.8341 0 -7.6905e-5 # ref. 3 - -Vm 52.9 + -log_k 0.65; -delta_h -23.1 + -analytical_expression 159.849 1.699e-2 -5000 -59.6073 # ref. 3 + Vm 52.9 Epsomite MgSO4:7H2O = Mg+2 + SO4-2 + 7 H2O log_k -1.74; -delta_h 10.57 kJ @@ -1240,7 +1247,7 @@ CH4(g) #Amm(g) # Amm = Amm NH3(g) - NH3 = NH3 + NH3 = NH3 -log_k 1.7966 -analytic -18.758 3.367e-4 2.5113e3 4.8619 39.192 -T_c 405.6; -P_c 111.3; -Omega 0.25 @@ -3133,14 +3140,14 @@ Wollastonite -6.97 700 56 0.4 0 0 # Av is the Debye-Hckel limiting slope (DH_AV in PHREEQC basic). # a0 is the ion-size parameter in the extended Debye-Hckel equation: # f(I^0.5) = I^0.5 / (1 + a0 * DH_B * I^0.5), -# a0 = -gamma x for cations, = 0 for anions. +# a0 = -gamma x for cations, = 0 for anions (or fitted). # For details, consult ref. 1 and subroutine calc_vm(tc, pa) in prep.cpp. # ============================================================================================= # The viscosity is calculated with a (modified) Jones-Dole equation: # viscos / viscos_0 = 1 + A * Sum(0.5 z_i m_i) + fan * Sum(B_i m_i + D_i m_i n_i) # Parameters are for calculating the B and D terms: -# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 -# # b0 b1 b2 d1 d2 d3 tan +# -viscosity 9.35e-2 -8.31e-2 2.487e-2 4.49e-4 2.01e-2 1.570 0 +# # b0 b1 b2 d1 d2 d3 tan # z_i is absolute charge number, m_i is molality of i # B_i = b0 + b1 exp(-b2 * tc) # fan = (2 - tan V_i / V_Cl-), corrects for the volume of anions and neutral species From c36b70aa4a88216baa3cdcd9303b2a65a43b0310 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Wed, 10 Sep 2025 22:44:27 +0000 Subject: [PATCH 380/384] Squashed 'phreeqc3-doc/' changes from 05a4c62f..d76f816a d76f816a Merge pull request #96 from dlparkhurst/mix_error 5ce8cb55 Tony's fit of sulfate solubilities for phreeqc.dat, pitzer.dat, phreeqc_rates.dat 1f54041a Note on isotopes for PhreeqcRM. f0851e90 changed map to set to mix from largest mixing fraction to smallest git-subtree-dir: phreeqc3-doc git-subtree-split: d76f816aedab530a361a63c26a02b453eadf01a2 --- RELEASE.TXT | 31 +++++++++++++++++++++++++++++++ 1 file changed, 31 insertions(+) diff --git a/RELEASE.TXT b/RELEASE.TXT index cec40ef3..b81cd9d2 100644 --- a/RELEASE.TXT +++ b/RELEASE.TXT @@ -1,4 +1,35 @@ Version @PHREEQC_VER@: @PHREEQC_DATE@ + ----------------- + August 23, 2025 + ----------------- + PHREEQC: Sulfate solubilities refit for phreeqc.dat, Amm.dat, and phreeqc_rates.dat. + + ----------------- + August 5, 2025 + ----------------- + PHREEQC: Added two options to SIT parameters: -EPSILON1 and -EPSILON2. The + total epsilon parameter for a pair of ions is calculated as + epsilon + epsilon1*I + epsilon2*log10(I), where I is ionic strength. + + ----------------- + July 24, 2025 + ----------------- + PhreeqcRM: Isotopes were not included in the list of species generated by FindComponents. + Added a calculation necessary to produce the correct list including isotopic species. + + ----------------- + April 22, 2025 + ----------------- + PhreeqcRM: Fixed test case AdvectBMI_py.py. The test case was incorrect and + did not advect calcium through the column. Replaced the concentration pointer + with explicit calls to get_value("Concentration", c) and set_value("Concentration", c) + to correct the problem. + + ----------------- + April 22, 2025 + ----------------- + PHREEQC: Fixed MIX to allow negative mixing fractions. + ----------------- March 11, 2025 ----------------- From 73b69d87c515ade04778cd6806e3d659f8a97e4e Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Wed, 10 Sep 2025 22:44:28 +0000 Subject: [PATCH 381/384] Squashed 'phreeqc3-examples/' changes from 6baa6075..4d186387 4d186387 Update ctest.regression.cmake output for PR #96 (Mix error fix) git-subtree-dir: phreeqc3-examples git-subtree-split: 4d1863871ab50aaf1b85ad88dc5a2a43f2ea8557 --- ex1.out | 316 +- ex10.out | 26 +- ex11.out | 20 +- ex11trn.sel | 186 +- ex12.sel | 120 +- ex12a.sel | 198 +- ex13a.out | 36 +- ex13ac.out | 36 +- ex13b.out | 36 +- ex13c.out | 36 +- ex14.out | 688 ++-- ex14.sel | 402 +- ex15.sel | 2 +- ex16.out | 148 +- ex17b.out | 18 +- ex18.out | 414 ++- ex2.out | 4080 ++++++++++---------- ex2.sel | 102 +- ex20a.out | 84 +- ex20b.out | 10068 +++++++++++++++++++++++++------------------------- ex21.out | 142 +- ex22.out | 3034 +++++++-------- ex3.out | 658 ++-- ex4.out | 290 +- ex5.out | 1158 +++--- ex5.sel | 12 +- ex6.out | 372 +- ex6A-B.sel | 24 +- ex7.out | 104 +- ex8.out | 795 ++-- ex8.sel | 52 +- ex9.out | 94 +- 32 files changed, 11917 insertions(+), 11834 deletions(-) diff --git a/ex1.out b/ex1.out index a3d54813..576651ca 100644 --- a/ex1.out +++ b/ex1.out @@ -113,7 +113,7 @@ Initial solution 1. SEAWATER FROM NORDSTROM AND OTHERS (1979) N(-3) 1.724e-06 1.724e-06 N(5) 4.847e-06 4.847e-06 Na 4.854e-01 4.854e-01 - O(0) 4.381e-04 4.381e-04 Equilibrium with O2(g) + O(0) 4.378e-04 4.378e-04 Equilibrium with O2(g) S(6) 2.926e-02 2.926e-02 Si 7.382e-05 7.382e-05 U 1.437e-08 1.437e-08 @@ -122,210 +122,212 @@ Initial solution 1. SEAWATER FROM NORDSTROM AND OTHERS (1979) pH = 8.220 pe = 8.451 - Specific Conductance (µS/cm, 25°C) = 52856 - Density (g/cm³) = 1.02328 - Volume (L) = 1.01278 - Viscosity (mPa s) = 0.96030 + Specific Conductance (µS/cm, 25°C) = 52941 + Density (g/cm³) = 1.02326 + Volume (L) = 1.01280 + Viscosity (mPa s) = 0.95735 Activity of water = 0.981 - Ionic strength (mol/kgw) = 6.704e-01 + Ionic strength (mol/kgw) = 6.736e-01 Mass of water (kg) = 1.000e+00 - Total carbon (mol/kg) = 2.238e-03 - Total CO2 (mol/kg) = 2.238e-03 + Total carbon (mol/kg) = 2.240e-03 + Total CO2 (mol/kg) = 2.240e-03 Temperature (°C) = 25.00 Electrical balance (eq) = 7.936e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.07 Iterations = 7 Total H = 1.110148e+02 - Total O = 5.563071e+01 + Total O = 5.563072e+01 ---------------------------------Redox couples--------------------------------- Redox couple pe Eh (volts) - N(-3)/N(5) 4.6753 0.2766 - O(-2)/O(0) 12.4061 0.7339 + N(-3)/N(5) 4.6758 0.2766 + O(-2)/O(0) 12.4018 0.7336 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 2.703e-06 1.647e-06 -5.568 -5.783 -0.215 -2.63 - H+ 7.981e-09 6.026e-09 -8.098 -8.220 -0.122 0.00 - H2O 5.551e+01 9.806e-01 1.744 -0.008 0.000 18.07 -C(4) 2.238e-03 - HCO3- 1.541e-03 1.041e-03 -2.812 -2.983 -0.170 25.99 - MgHCO3+ 2.782e-04 1.751e-04 -3.556 -3.757 -0.201 5.82 - NaHCO3 2.252e-04 3.066e-04 -3.647 -3.513 0.134 31.73 - MgCO3 9.523e-05 1.111e-04 -4.021 -3.954 0.067 -17.09 - CO3-2 3.888e-05 8.103e-06 -4.410 -5.091 -0.681 -0.52 - CaCO3 2.908e-05 3.393e-05 -4.536 -4.469 0.067 -14.60 - CaHCO3+ 1.446e-05 1.001e-05 -4.840 -5.000 -0.160 9.96 - CO2 1.299e-05 1.438e-05 -4.886 -4.842 0.044 34.43 - KHCO3 2.969e-06 3.013e-06 -5.527 -5.521 0.006 41.03 - UO2(CO3)3-4 1.259e-08 1.169e-10 -7.900 -9.932 -2.032 (0) - UO2(CO3)2-2 1.767e-09 5.484e-10 -8.753 -9.261 -0.508 (0) - MnCO3 2.690e-10 3.139e-10 -9.570 -9.503 0.067 (0) - MnHCO3+ 6.820e-11 4.526e-11 -10.166 -10.344 -0.178 (0) - UO2CO3 7.086e-12 8.269e-12 -11.150 -11.083 0.067 (0) - (CO2)2 3.254e-12 3.797e-12 -11.488 -11.421 0.067 68.87 - FeCO3 1.866e-20 2.177e-20 -19.729 -19.662 0.067 (0) - FeHCO3+ 1.562e-20 1.166e-20 -19.806 -19.933 -0.127 (0) + OH- 2.705e-06 1.647e-06 -5.568 -5.783 -0.215 -2.63 + H+ 7.983e-09 6.026e-09 -8.098 -8.220 -0.122 0.00 + H2O 5.551e+01 9.806e-01 1.744 -0.009 0.000 18.07 +C(4) 2.240e-03 + HCO3- 1.549e-03 1.046e-03 -2.810 -2.980 -0.170 25.99 + MgHCO3+ 2.720e-04 1.711e-04 -3.565 -3.767 -0.201 5.82 + NaHCO3 2.281e-04 3.111e-04 -3.642 -3.507 0.135 31.73 + MgCO3 9.298e-05 1.086e-04 -4.032 -3.964 0.067 -17.09 + CO3-2 3.913e-05 8.141e-06 -4.408 -5.089 -0.682 -0.51 + CaCO3 2.897e-05 3.383e-05 -4.538 -4.471 0.067 -14.60 + CaHCO3+ 1.442e-05 9.980e-06 -4.841 -5.001 -0.160 9.96 + CO2 1.305e-05 1.445e-05 -4.885 -4.840 0.044 34.43 + KHCO3 2.966e-06 3.009e-06 -5.528 -5.522 0.006 41.03 + UO2(CO3)3-4 1.259e-08 1.177e-10 -7.900 -9.929 -2.029 (0) + UO2(CO3)2-2 1.768e-09 5.496e-10 -8.753 -9.260 -0.507 (0) + MnCO3 2.768e-10 3.232e-10 -9.558 -9.491 0.067 (0) + MnHCO3+ 7.025e-11 4.660e-11 -10.153 -10.332 -0.178 (0) + UO2CO3 7.063e-12 8.248e-12 -11.151 -11.084 0.067 (0) + (CO2)2 3.283e-12 3.834e-12 -11.484 -11.416 0.067 68.87 + FeCO3 1.893e-20 2.211e-20 -19.723 -19.655 0.067 (0) + FeHCO3+ 1.586e-20 1.184e-20 -19.800 -19.927 -0.127 (0) Ca 1.066e-02 - Ca+2 9.964e-03 2.493e-03 -2.002 -2.603 -0.602 -16.70 - CaSO4 6.537e-04 7.628e-04 -3.185 -3.118 0.067 7.50 - CaCO3 2.908e-05 3.393e-05 -4.536 -4.469 0.067 -14.60 - CaHCO3+ 1.446e-05 1.001e-05 -4.840 -5.000 -0.160 9.96 - CaOH+ 9.020e-08 6.732e-08 -7.045 -7.172 -0.127 (0) - CaHSO4+ 4.048e-11 3.021e-11 -10.393 -10.520 -0.127 (0) + Ca+2 9.891e-03 2.473e-03 -2.005 -2.607 -0.602 -16.70 + CaSO4 7.262e-04 7.781e-04 -3.139 -3.109 0.030 7.22 + CaCO3 2.897e-05 3.383e-05 -4.538 -4.471 0.067 -14.60 + CaHCO3+ 1.442e-05 9.980e-06 -4.841 -5.001 -0.160 9.96 + CaOH+ 8.946e-08 6.680e-08 -7.048 -7.175 -0.127 (0) + CaHSO4+ 5.262e-11 3.929e-11 -10.279 -10.406 -0.127 (0) Cl 5.657e-01 - Cl- 5.657e-01 3.570e-01 -0.247 -0.447 -0.200 18.79 - MnCl+ 1.069e-09 7.094e-10 -8.971 -9.149 -0.178 -2.79 - HCl 3.842e-10 7.411e-10 -9.415 -9.130 0.285 (0) - MnCl2 9.474e-11 1.106e-10 -10.023 -9.956 0.067 85.89 - MnCl3- 1.638e-11 1.087e-11 -10.786 -10.964 -0.178 45.78 - FeCl+2 1.515e-18 2.938e-19 -17.820 -18.532 -0.712 (0) - FeCl2+ 7.061e-19 4.686e-19 -18.151 -18.329 -0.178 (0) - FeCl+ 7.395e-20 5.520e-20 -19.131 -19.258 -0.127 (0) - FeCl3 1.434e-20 1.673e-20 -19.844 -19.777 0.067 (0) -Fe(2) 6.342e-19 - Fe+2 4.879e-19 1.120e-19 -18.312 -18.951 -0.639 -20.72 - FeCl+ 7.395e-20 5.520e-20 -19.131 -19.258 -0.127 (0) - FeSO4 2.937e-20 3.428e-20 -19.532 -19.465 0.067 18.97 - FeCO3 1.866e-20 2.177e-20 -19.729 -19.662 0.067 (0) - FeHCO3+ 1.562e-20 1.166e-20 -19.806 -19.933 -0.127 (0) - FeOH+ 8.686e-21 5.764e-21 -20.061 -20.239 -0.178 (0) - Fe(OH)2 6.842e-24 7.984e-24 -23.165 -23.098 0.067 (0) - Fe(OH)3- 7.275e-26 4.828e-26 -25.138 -25.316 -0.178 (0) - FeHSO4+ 1.819e-27 1.358e-27 -26.740 -26.867 -0.127 (0) + Cl- 5.657e-01 3.569e-01 -0.247 -0.447 -0.200 18.79 + MnCl+ 1.095e-09 7.266e-10 -8.960 -9.139 -0.178 -2.79 + HCl 3.828e-10 7.408e-10 -9.417 -9.130 0.287 (0) + MnCl2 9.693e-11 1.132e-10 -10.014 -9.946 0.067 85.89 + MnCl3- 1.677e-11 1.113e-11 -10.775 -10.954 -0.178 45.79 + FeCl+2 1.518e-18 2.939e-19 -17.819 -18.532 -0.713 (0) + FeCl2+ 7.062e-19 4.684e-19 -18.151 -18.329 -0.178 (0) + FeCl+ 7.468e-20 5.576e-20 -19.127 -19.254 -0.127 (0) + FeCl3 1.431e-20 1.672e-20 -19.844 -19.777 0.067 (0) +Fe(2) 6.509e-19 + Fe+2 4.937e-19 1.132e-19 -18.307 -18.946 -0.640 -20.71 + FeCl+ 7.468e-20 5.576e-20 -19.127 -19.254 -0.127 (0) + FeSO4 3.888e-20 4.540e-20 -19.410 -19.343 0.067 30.28 + FeCO3 1.893e-20 2.211e-20 -19.723 -19.655 0.067 (0) + FeHCO3+ 1.586e-20 1.184e-20 -19.800 -19.927 -0.127 (0) + FeOH+ 8.782e-21 5.825e-21 -20.056 -20.235 -0.178 (0) + Fe(OH)2 6.910e-24 8.069e-24 -23.161 -23.093 0.067 (0) + Fe(OH)3- 7.355e-26 4.879e-26 -25.133 -25.312 -0.178 (0) + FeHSO4+ 2.408e-27 1.798e-27 -26.618 -26.745 -0.127 (0) Fe(3) 3.711e-08 - Fe(OH)3 2.772e-08 3.235e-08 -7.557 -7.490 0.067 (0) - Fe(OH)4- 7.107e-09 4.802e-09 -8.148 -8.319 -0.170 (0) - Fe(OH)2+ 2.284e-09 1.543e-09 -8.641 -8.812 -0.170 (0) - FeOH+2 1.477e-13 2.863e-14 -12.831 -13.543 -0.712 (0) - FeCl+2 1.515e-18 2.938e-19 -17.820 -18.532 -0.712 (0) - FeSO4+ 7.749e-19 5.142e-19 -18.111 -18.289 -0.178 (0) - FeCl2+ 7.061e-19 4.686e-19 -18.151 -18.329 -0.178 (0) - Fe+3 3.421e-19 2.725e-20 -18.466 -19.565 -1.099 (0) - Fe(SO4)2- 2.594e-20 1.936e-20 -19.586 -19.713 -0.127 (0) - FeCl3 1.434e-20 1.673e-20 -19.844 -19.777 0.067 (0) - Fe2(OH)2+4 2.378e-24 2.207e-26 -23.624 -25.656 -2.032 (0) - FeHSO4+2 2.673e-26 8.297e-27 -25.573 -26.081 -0.508 (0) - Fe3(OH)4+5 1.066e-29 7.114e-33 -28.972 -32.148 -3.176 (0) + Fe(OH)3 2.772e-08 3.237e-08 -7.557 -7.490 0.067 (0) + Fe(OH)4- 7.112e-09 4.804e-09 -8.148 -8.318 -0.170 (0) + Fe(OH)2+ 2.286e-09 1.544e-09 -8.641 -8.811 -0.170 (0) + FeOH+2 1.480e-13 2.865e-14 -12.830 -13.543 -0.713 (0) + FeCl+2 1.518e-18 2.939e-19 -17.819 -18.532 -0.713 (0) + FeSO4+ 1.017e-18 6.743e-19 -17.993 -18.171 -0.178 (0) + FeCl2+ 7.062e-19 4.684e-19 -18.151 -18.329 -0.178 (0) + Fe+3 3.429e-19 2.727e-20 -18.465 -19.564 -1.099 (0) + Fe(SO4)2- 4.456e-20 3.327e-20 -19.351 -19.478 -0.127 (0) + FeCl3 1.431e-20 1.672e-20 -19.844 -19.777 0.067 (0) + Fe2(OH)2+4 2.364e-24 2.209e-26 -23.626 -25.656 -2.029 (0) + FeHSO4+2 3.499e-26 1.088e-26 -25.456 -25.963 -0.507 (0) + Fe3(OH)4+5 1.056e-29 7.126e-33 -28.976 -32.147 -3.171 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.469 -44.402 0.067 28.61 + H2 0.000e+00 0.000e+00 -44.461 -44.394 0.067 28.61 K 1.058e-02 - K+ 1.039e-02 6.478e-03 -1.983 -2.189 -0.205 9.66 - KSO4- 1.873e-04 1.696e-04 -3.728 -3.770 -0.043 11.34 - KHCO3 2.969e-06 3.013e-06 -5.527 -5.521 0.006 41.03 + K+ 1.033e-02 6.440e-03 -1.986 -2.191 -0.205 9.66 + KSO4- 2.437e-04 2.210e-04 -3.613 -3.656 -0.042 35.14 + KHCO3 2.966e-06 3.009e-06 -5.528 -5.522 0.006 41.03 Mg 5.507e-02 - Mg+2 4.979e-02 1.437e-02 -1.303 -1.842 -0.540 -20.42 - MgSO4 4.756e-03 6.476e-03 -2.323 -2.189 0.134 -7.92 - MgHCO3+ 2.782e-04 1.751e-04 -3.556 -3.757 -0.201 5.82 - Mg(SO4)2-2 1.296e-04 3.671e-05 -3.887 -4.435 -0.548 32.91 - MgCO3 9.523e-05 1.111e-04 -4.021 -3.954 0.067 -17.09 - MgOH+ 1.205e-05 8.493e-06 -4.919 -5.071 -0.152 (0) + Mg+2 4.842e-02 1.398e-02 -1.315 -1.855 -0.540 -20.41 + MgSO4 6.052e-03 8.253e-03 -2.218 -2.083 0.135 -0.40 + MgHCO3+ 2.720e-04 1.711e-04 -3.565 -3.767 -0.201 5.82 + Mg(SO4)2-2 2.167e-04 6.131e-05 -3.664 -4.212 -0.548 48.71 + MgCO3 9.298e-05 1.086e-04 -4.032 -3.964 0.067 -17.09 + MgOH+ 1.172e-05 8.258e-06 -4.931 -5.083 -0.152 (0) Mn(2) 3.773e-09 - Mn+2 2.125e-09 4.877e-10 -8.673 -9.312 -0.639 -16.37 - MnCl+ 1.069e-09 7.094e-10 -8.971 -9.149 -0.178 -2.79 - MnCO3 2.690e-10 3.139e-10 -9.570 -9.503 0.067 (0) - MnSO4 1.279e-10 1.493e-10 -9.893 -9.826 0.067 22.54 - MnCl2 9.474e-11 1.106e-10 -10.023 -9.956 0.067 85.89 - MnHCO3+ 6.820e-11 4.526e-11 -10.166 -10.344 -0.178 (0) - MnCl3- 1.638e-11 1.087e-11 -10.786 -10.964 -0.178 45.78 - MnOH+ 3.075e-12 2.040e-12 -11.512 -11.690 -0.178 (0) - Mn(OH)3- 5.021e-20 3.332e-20 -19.299 -19.477 -0.178 (0) - Mn(NO3)2 1.349e-20 1.574e-20 -19.870 -19.803 0.067 41.04 -Mn(3) 5.345e-26 - Mn+3 5.345e-26 4.258e-27 -25.272 -26.371 -1.099 (0) + Mn+2 2.180e-09 4.998e-10 -8.662 -9.301 -0.640 -16.36 + MnCl+ 1.095e-09 7.266e-10 -8.960 -9.139 -0.178 -2.79 + MnCO3 2.768e-10 3.232e-10 -9.558 -9.491 0.067 (0) + MnCl2 9.693e-11 1.132e-10 -10.014 -9.946 0.067 85.89 + MnHCO3+ 7.025e-11 4.660e-11 -10.153 -10.332 -0.178 (0) + MnSO4 3.358e-11 2.884e-11 -10.474 -10.540 -0.066 17.15 + MnCl3- 1.677e-11 1.113e-11 -10.775 -10.954 -0.178 45.79 + MnOH+ 3.152e-12 2.091e-12 -11.501 -11.680 -0.178 (0) + Mn(OH)3- 5.147e-20 3.414e-20 -19.288 -19.467 -0.178 (0) + Mn(NO3)2 1.379e-20 1.611e-20 -19.860 -19.793 0.067 41.04 +Mn(3) 5.486e-26 + Mn+3 5.486e-26 4.363e-27 -25.261 -26.360 -1.099 (0) N(-3) 1.724e-06 - NH4+ 1.601e-06 9.008e-07 -5.796 -6.045 -0.250 18.48 - NH3 7.301e-08 8.519e-08 -7.137 -7.070 0.067 24.42 - NH4SO4- 4.981e-08 2.526e-08 -7.303 -7.598 -0.295 26.92 + NH4+ 1.585e-06 8.912e-07 -5.800 -6.050 -0.250 18.48 + NH3 7.217e-08 8.428e-08 -7.142 -7.074 0.067 24.42 + NH4SO4- 6.644e-08 3.795e-08 -7.178 -7.421 -0.243 38.85 N(5) 4.847e-06 - NO3- 4.847e-06 2.847e-06 -5.314 -5.546 -0.231 30.29 - Mn(NO3)2 1.349e-20 1.574e-20 -19.870 -19.803 0.067 41.04 + NO3- 4.847e-06 2.845e-06 -5.314 -5.546 -0.231 30.29 + Mn(NO3)2 1.379e-20 1.611e-20 -19.860 -19.793 0.067 41.04 Na 4.854e-01 - Na+ 4.712e-01 3.381e-01 -0.327 -0.471 -0.144 -0.51 - NaSO4- 1.396e-02 9.473e-03 -1.855 -2.024 -0.168 8.22 - NaHCO3 2.252e-04 3.066e-04 -3.647 -3.513 0.134 31.73 -O(0) 4.381e-04 - O2 2.190e-04 2.556e-04 -3.659 -3.592 0.067 30.40 + Na+ 4.758e-01 3.414e-01 -0.323 -0.467 -0.144 -0.50 + NaSO4- 9.406e-03 6.765e-03 -2.027 -2.170 -0.143 21.71 + NaHCO3 2.281e-04 3.111e-04 -3.642 -3.507 0.135 31.73 + Na2SO4 9.817e-07 1.126e-06 -6.008 -5.948 0.060 47.96 +O(0) 4.378e-04 + O2 2.189e-04 2.556e-04 -3.660 -3.592 0.067 30.40 S(6) 2.926e-02 - NaSO4- 1.396e-02 9.473e-03 -1.855 -2.024 -0.168 8.22 - SO4-2 9.440e-03 1.721e-03 -2.025 -2.764 -0.739 38.42 - MgSO4 4.756e-03 6.476e-03 -2.323 -2.189 0.134 -7.92 - CaSO4 6.537e-04 7.628e-04 -3.185 -3.118 0.067 7.50 - KSO4- 1.873e-04 1.696e-04 -3.728 -3.770 -0.043 11.34 - Mg(SO4)2-2 1.296e-04 3.671e-05 -3.887 -4.435 -0.548 32.91 - NH4SO4- 4.981e-08 2.526e-08 -7.303 -7.598 -0.295 26.92 - HSO4- 1.351e-09 1.008e-09 -8.869 -8.996 -0.127 40.96 - MnSO4 1.279e-10 1.493e-10 -9.893 -9.826 0.067 22.54 - CaHSO4+ 4.048e-11 3.021e-11 -10.393 -10.520 -0.127 (0) - FeSO4+ 7.749e-19 5.142e-19 -18.111 -18.289 -0.178 (0) - FeSO4 2.937e-20 3.428e-20 -19.532 -19.465 0.067 18.97 - Fe(SO4)2- 2.594e-20 1.936e-20 -19.586 -19.713 -0.127 (0) - FeHSO4+2 2.673e-26 8.297e-27 -25.573 -26.081 -0.508 (0) - FeHSO4+ 1.819e-27 1.358e-27 -26.740 -26.867 -0.127 (0) + SO4-2 1.240e-02 2.255e-03 -1.907 -2.647 -0.740 17.12 + NaSO4- 9.406e-03 6.765e-03 -2.027 -2.170 -0.143 21.71 + MgSO4 6.052e-03 8.253e-03 -2.218 -2.083 0.135 -0.40 + CaSO4 7.262e-04 7.781e-04 -3.139 -3.109 0.030 7.22 + KSO4- 2.437e-04 2.210e-04 -3.613 -3.656 -0.042 35.14 + Mg(SO4)2-2 2.167e-04 6.131e-05 -3.664 -4.212 -0.548 48.71 + Na2SO4 9.817e-07 1.126e-06 -6.008 -5.948 0.060 47.96 + NH4SO4- 6.644e-08 3.795e-08 -7.178 -7.421 -0.243 38.85 + HSO4- 1.769e-09 1.321e-09 -8.752 -8.879 -0.127 40.96 + CaHSO4+ 5.262e-11 3.929e-11 -10.279 -10.406 -0.127 (0) + MnSO4 3.358e-11 2.884e-11 -10.474 -10.540 -0.066 17.15 + FeSO4+ 1.017e-18 6.743e-19 -17.993 -18.171 -0.178 (0) + Fe(SO4)2- 4.456e-20 3.327e-20 -19.351 -19.478 -0.127 (0) + FeSO4 3.888e-20 4.540e-20 -19.410 -19.343 0.067 30.28 + FeHSO4+2 3.499e-26 1.088e-26 -25.456 -25.963 -0.507 (0) + FeHSO4+ 2.408e-27 1.798e-27 -26.618 -26.745 -0.127 (0) Si 7.382e-05 - H4SiO4 7.062e-05 8.241e-05 -4.151 -4.084 0.067 52.08 - H3SiO4- 3.205e-06 2.017e-06 -5.494 -5.695 -0.201 28.72 - H2SiO4-2 1.092e-10 2.276e-11 -9.962 -10.643 -0.681 (0) -U(4) 9.680e-22 - U(OH)5- 9.679e-22 7.224e-22 -21.014 -21.141 -0.127 (0) - U(OH)4 1.546e-25 1.804e-25 -24.811 -24.744 0.067 (0) - U+4 0.000e+00 0.000e+00 -47.019 -49.052 -2.032 (0) -U(5) 1.519e-18 - UO2+ 1.519e-18 1.134e-18 -17.818 -17.945 -0.127 (0) + H4SiO4 7.061e-05 8.246e-05 -4.151 -4.084 0.067 52.08 + H3SiO4- 3.208e-06 2.018e-06 -5.494 -5.695 -0.201 28.72 + H2SiO4-2 1.095e-10 2.278e-11 -9.961 -10.642 -0.682 (0) +U(4) 9.579e-22 + U(OH)5- 9.578e-22 7.152e-22 -21.019 -21.146 -0.127 (0) + U(OH)4 1.530e-25 1.786e-25 -24.815 -24.748 0.067 (0) + U+4 0.000e+00 0.000e+00 -47.027 -49.056 -2.029 (0) +U(5) 1.505e-18 + UO2+ 1.505e-18 1.124e-18 -17.822 -17.949 -0.127 (0) U(6) 1.437e-08 - UO2(CO3)3-4 1.259e-08 1.169e-10 -7.900 -9.932 -2.032 (0) - UO2(CO3)2-2 1.767e-09 5.484e-10 -8.753 -9.261 -0.508 (0) - UO2CO3 7.086e-12 8.269e-12 -11.150 -11.083 0.067 (0) - UO2OH+ 3.172e-14 2.368e-14 -13.499 -13.626 -0.127 (0) - UO2+2 2.837e-16 8.807e-17 -15.547 -16.055 -0.508 (0) - (UO2)2(OH)2+2 1.566e-21 4.860e-22 -20.805 -21.313 -0.508 (0) - (UO2)3(OH)5+ 2.388e-23 1.782e-23 -22.622 -22.749 -0.127 (0) + UO2(CO3)3-4 1.259e-08 1.177e-10 -7.900 -9.929 -2.029 (0) + UO2(CO3)2-2 1.768e-09 5.496e-10 -8.753 -9.260 -0.507 (0) + UO2CO3 7.063e-12 8.248e-12 -11.151 -11.084 0.067 (0) + UO2OH+ 3.147e-14 2.350e-14 -13.502 -13.629 -0.127 (0) + UO2+2 2.812e-16 8.742e-17 -15.551 -16.058 -0.507 (0) + (UO2)2(OH)2+2 1.540e-21 4.789e-22 -20.812 -21.320 -0.507 (0) + (UO2)3(OH)5+ 2.334e-23 1.743e-23 -22.632 -22.759 -0.127 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -1.09 -5.37 -4.28 CaSO4 - Aragonite 0.64 -7.69 -8.34 CaCO3 - Arcanite -5.26 -7.14 -1.88 K2SO4 - Calcite 0.79 -7.69 -8.48 CaCO3 + Anhydrite -0.94 -5.25 -4.31 CaSO4 + Aragonite 0.64 -7.70 -8.34 CaCO3 + Arcanite -5.15 -7.03 -1.88 K2SO4 + Calcite 0.78 -7.70 -8.48 CaCO3 Chalcedony -0.52 -4.07 -3.55 SiO2 - Chrysotile 3.41 35.62 32.20 Mg3Si2O5(OH)4 + Chrysotile 3.38 35.58 32.20 Mg3Si2O5(OH)4 CO2(g) -3.37 -4.84 -1.47 CO2 - Dolomite 2.46 -14.63 -17.08 CaMg(CO3)2 - Epsomite -2.93 -4.67 -1.74 MgSO4:7H2O + Dolomite 2.44 -14.64 -17.08 CaMg(CO3)2 + Epsomite -2.82 -4.56 -1.74 MgSO4:7H2O Fe(OH)3(a) 0.18 5.07 4.89 Fe(OH)3 Goethite 6.08 5.08 -1.00 FeOOH - Gypsum -0.80 -5.38 -4.58 CaSO4:2H2O - H2(g) -41.30 -44.40 -3.10 H2 + Gypsum -0.72 -5.27 -4.55 CaSO4:2H2O + H2(g) -41.29 -44.39 -3.10 H2 H2O(g) -1.51 -0.01 1.50 H2O - Halite -2.49 -0.92 1.57 NaCl - Hausmannite 1.57 62.60 61.03 Mn3O4 + Halite -2.48 -0.91 1.57 NaCl + Hausmannite 1.60 62.63 61.03 Mn3O4 Hematite 14.17 10.17 -4.01 Fe2O3 - Hexahydrite -3.09 -4.66 -1.57 MgSO4:6H2O - Jarosite-K -7.93 -17.14 -9.21 KFe3(SO4)2(OH)6 - Kieserite -3.45 -4.62 -1.16 MgSO4:H2O + Hexahydrite -2.99 -4.55 -1.57 MgSO4:6H2O + Jarosite-K -7.70 -16.91 -9.21 KFe3(SO4)2(OH)6 + Kieserite -3.35 -4.51 -1.16 MgSO4:H2O Manganite 2.40 27.74 25.34 MnOOH - Melanterite -19.57 -21.77 -2.21 FeSO4:7H2O - Mirabilite -2.55 -3.79 -1.24 Na2SO4:10H2O + Melanterite -19.44 -21.65 -2.21 FeSO4:7H2O + Mirabilite -2.96 -3.67 -0.71 Na2SO4:10H2O NH3(g) -8.87 -7.07 1.80 NH3 O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000 - Pyrochroite -8.09 7.11 15.20 Mn(OH)2 - Pyrolusite 6.97 48.35 41.38 MnO2:H2O + Pyrochroite -8.08 7.12 15.20 Mn(OH)2 + Pyrolusite 6.98 48.36 41.38 MnO2:H2O Quartz -0.09 -4.07 -3.98 SiO2 - Rhodochrosite -3.27 -14.40 -11.13 MnCO3 - Sepiolite 1.19 16.95 15.76 Mg2Si3O7.5OH:3H2O - Sepiolite(d) -1.71 16.95 18.66 Mg2Si3O7.5OH:3H2O + Rhodochrosite -3.26 -14.39 -11.13 MnCO3 + Sepiolite 1.16 16.92 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -1.74 16.92 18.66 Mg2Si3O7.5OH:3H2O Siderite -13.15 -24.04 -10.89 FeCO3 - SiO2(a) -1.36 -4.07 -2.71 SiO2 + SiO2(a) -1.35 -4.07 -2.71 SiO2 Sylvite -3.54 -2.64 0.90 KCl - Talc 6.09 27.49 21.40 Mg3Si4O10(OH)2 - Thenardite -3.41 -3.71 -0.30 Na2SO4 + Talc 6.06 27.46 21.40 Mg3Si4O10(OH)2 + Thenardite -4.23 -3.58 0.65 Na2SO4 Uraninite -12.70 -16.19 -3.49 UO2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. diff --git a/ex10.out b/ex10.out index 024315a5..12c635b6 100644 --- a/ex10.out +++ b/ex10.out @@ -161,8 +161,8 @@ Ca 3.932e-03 CaOH+ 4.173e-08 3.742e-08 -7.380 -7.427 -0.047 (0) H(0) 1.674e-27 H2 8.369e-28 8.391e-28 -27.077 -27.076 0.001 28.61 -O(0) 1.181e-38 - O2 5.903e-39 5.918e-39 -38.229 -38.228 0.001 30.40 +O(0) 1.229e-38 + O2 6.145e-39 6.161e-39 -38.212 -38.210 0.001 30.40 ------------------------------Saturation indices------------------------------- @@ -174,7 +174,7 @@ O(0) 1.181e-38 CO2(g) -2.32 -3.78 -1.47 CO2 H2(g) -23.98 -27.08 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - O2(g) -35.34 -38.23 -2.89 O2 + O2(g) -35.32 -38.21 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -206,7 +206,7 @@ CO2(g) -0.01 -1.48 -1.47 1.000e+01 9.961e+00 -3.875e-02 ----------------------------Description of solution---------------------------- pH = 6.058 Charge balance - pe = 11.902 Adjusted to redox equilibrium + pe = 11.900 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 1684 Density (g/cm³) = 0.99865 Volume (L) = 1.00430 @@ -217,7 +217,7 @@ CO2(g) -0.01 -1.48 -1.47 1.000e+01 9.961e+00 -3.875e-02 Total alkalinity (eq/kg) = 1.986e-02 Total CO2 (mol/kg) = 5.262e-02 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.002e-11 + Electrical balance (eq) = 1.000e-11 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 10 Total H = 1.110200e+02 @@ -232,7 +232,7 @@ CO2(g) -0.01 -1.48 -1.47 1.000e+01 9.961e+00 -3.875e-02 OH- 1.365e-08 1.155e-08 -7.865 -7.937 -0.073 -3.95 H2O 5.551e+01 9.989e-01 1.744 -0.000 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.774 -120.771 0.003 35.46 + CH4 0.000e+00 0.000e+00 -120.758 -120.755 0.003 35.46 C(4) 5.262e-02 CO2 3.273e-02 3.287e-02 -1.485 -1.483 0.002 34.43 HCO3- 1.946e-02 1.669e-02 -1.711 -1.778 -0.067 24.73 @@ -245,10 +245,10 @@ Ca 9.930e-03 CaHCO3+ 3.858e-04 3.321e-04 -3.414 -3.479 -0.065 9.76 CaCO3 7.698e-06 7.750e-06 -5.114 -5.111 0.003 -14.60 CaOH+ 1.148e-09 9.773e-10 -8.940 -9.010 -0.070 (0) -H(0) 1.692e-39 - H2 8.460e-40 8.517e-40 -39.073 -39.070 0.003 28.61 -O(0) 1.139e-14 - O2 5.697e-15 5.735e-15 -14.244 -14.241 0.003 30.40 +H(0) 1.708e-39 + H2 8.539e-40 8.596e-40 -39.069 -39.066 0.003 28.61 +O(0) 1.164e-14 + O2 5.822e-15 5.861e-15 -14.235 -14.232 0.003 30.40 ------------------------------Saturation indices------------------------------- @@ -256,11 +256,11 @@ O(0) 1.139e-14 Aragonite 0.00 -8.34 -8.34 CaCO3 Calcite 0.14 -8.34 -8.48 CaCO3 - CH4(g) -117.97 -120.77 -2.80 CH4 + CH4(g) -117.95 -120.75 -2.80 CH4 CO2(g) -0.01 -1.48 -1.47 CO2 Pressure 1.0 atm, phi 0.995 - H2(g) -35.97 -39.07 -3.10 H2 + H2(g) -35.96 -39.07 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - O2(g) -11.35 -14.24 -2.89 O2 + O2(g) -11.34 -14.23 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. diff --git a/ex11.out b/ex11.out index dff27f2c..527623a2 100644 --- a/ex11.out +++ b/ex11.out @@ -60,7 +60,7 @@ Initial solution 0. CaCl2 ----------------------------Description of solution---------------------------- pH = 6.995 Charge balance - pe = 13.632 Equilibrium with O2(g) + pe = 13.628 Equilibrium with O2(g) Specific Conductance (µS/cm, 25°C) = 155 Density (g/cm³) = 0.99710 Volume (L) = 1.00298 @@ -68,9 +68,9 @@ Initial solution 0. CaCl2 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.800e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -1.854e-20 + Total alkalinity (eq/kg) = 1.017e-19 Temperature (°C) = 25.00 - Electrical balance (eq) = 2.979e-18 + Electrical balance (eq) = 2.860e-18 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 4 Total H = 1.110124e+02 @@ -91,7 +91,7 @@ Cl 1.200e-03 Cl- 1.200e-03 1.144e-03 -2.921 -2.941 -0.021 18.08 HCl 3.981e-11 3.988e-11 -10.400 -10.399 0.001 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.404 -44.404 0.000 28.61 + H2 0.000e+00 0.000e+00 -44.395 -44.395 0.000 28.61 O(0) 5.351e-04 O2 2.675e-04 2.676e-04 -3.573 -3.572 0.000 30.40 @@ -99,7 +99,7 @@ O(0) 5.351e-04 Phase SI** log IAP log K(298 K, 1 atm) - H2(g) -41.30 -44.40 -3.10 H2 + H2(g) -41.29 -44.40 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O O2(g) -0.68 -3.57 -2.89 O2 Pressure 0.2 atm, phi 1.000 @@ -119,7 +119,7 @@ Initial solution 1. Initial solution for column ----------------------------Description of solution---------------------------- pH = 6.997 Charge balance - pe = 13.630 Equilibrium with O2(g) + pe = 13.626 Equilibrium with O2(g) Specific Conductance (µS/cm, 25°C) = 145 Density (g/cm³) = 0.99711 Volume (L) = 1.00301 @@ -127,9 +127,9 @@ Initial solution 1. Initial solution for column Activity of water = 1.000 Ionic strength (mol/kgw) = 1.200e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -1.027e-18 + Total alkalinity (eq/kg) = -9.275e-19 Temperature (°C) = 25.00 - Electrical balance (eq) = -9.088e-17 + Electrical balance (eq) = -9.115e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 3 (7 overall) Total H = 1.110124e+02 @@ -144,7 +144,7 @@ Initial solution 1. Initial solution for column OH- 1.045e-07 1.005e-07 -6.981 -6.998 -0.017 -4.10 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.404 -44.404 0.000 28.61 + H2 0.000e+00 0.000e+00 -44.395 -44.395 0.000 28.61 K 2.000e-04 K+ 2.000e-04 1.923e-04 -3.699 -3.716 -0.017 9.01 N(5) 1.200e-03 @@ -158,7 +158,7 @@ O(0) 5.351e-04 Phase SI** log IAP log K(298 K, 1 atm) - H2(g) -41.30 -44.40 -3.10 H2 + H2(g) -41.29 -44.40 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O O2(g) -0.68 -3.57 -2.89 O2 Pressure 0.2 atm, phi 1.000 diff --git a/ex11trn.sel b/ex11trn.sel index c7d13157..2519ff56 100644 --- a/ex11trn.sel +++ b/ex11trn.sel @@ -7,96 +7,96 @@ 5 1.000000000001e-03 0.000000000000e+00 2.000000000001e-04 0.000000000000e+00 1.375000000000e-01 6 1.000000000001e-03 0.000000000000e+00 2.000000000001e-04 0.000000000000e+00 1.625000000000e-01 7 1.000000000001e-03 0.000000000000e+00 2.000000000001e-04 0.000000000000e+00 1.875000000000e-01 - 8 1.000000000001e-03 3.099695935214e-22 2.000000000001e-04 0.000000000000e+00 2.125000000000e-01 - 9 1.000000000001e-03 1.500942119489e-17 2.000000000001e-04 0.000000000000e+00 2.375000000000e-01 - 10 1.000000000001e-03 6.337830597342e-15 2.000000000001e-04 0.000000000000e+00 2.625000000000e-01 - 11 1.000000000001e-03 4.494808745371e-13 2.000000000001e-04 0.000000000000e+00 2.875000000000e-01 - 12 1.000000000001e-03 1.148716249618e-11 2.000000000001e-04 0.000000000000e+00 3.125000000000e-01 - 13 1.000000000001e-03 1.502206823478e-10 2.000000000001e-04 0.000000000000e+00 3.375000000000e-01 - 14 1.000000000001e-03 1.222542814082e-09 2.000000000001e-04 0.000000000000e+00 3.625000000000e-01 - 15 1.000000000001e-03 6.992469594648e-09 2.000000000001e-04 0.000000000000e+00 3.875000000000e-01 - 16 1.000000000001e-03 3.048043444697e-08 2.000000000001e-04 0.000000000000e+00 4.125000000000e-01 - 17 1.000000000000e-03 1.071736887963e-07 2.000000000002e-04 0.000000000000e+00 4.375000000000e-01 - 18 1.000000000000e-03 3.167880513057e-07 2.000000000004e-04 0.000000000000e+00 4.625000000000e-01 - 19 9.999999999996e-04 8.119152414853e-07 2.000000000010e-04 0.000000000000e+00 4.875000000000e-01 - 20 9.999999999969e-04 1.847753785443e-06 2.000000000038e-04 0.000000000000e+00 5.125000000000e-01 - 21 9.999999999827e-04 3.804229077195e-06 2.000000000179e-04 0.000000000000e+00 5.375000000000e-01 - 22 9.999999999205e-04 7.191769368188e-06 2.000000000800e-04 0.000000000000e+00 5.625000000000e-01 - 23 9.999999996780e-04 1.263506022590e-05 2.000000003226e-04 0.000000000000e+00 5.875000000000e-01 - 24 9.999999988273e-04 2.083413717341e-05 2.000000011732e-04 0.000000000000e+00 6.125000000000e-01 - 25 9.999999961127e-04 3.250742767801e-05 2.000000038882e-04 0.000000000000e+00 6.375000000000e-01 - 26 9.999999881436e-04 4.832522920786e-05 2.000000118574e-04 0.000000000000e+00 6.625000000000e-01 - 27 9.999999664326e-04 6.884373212029e-05 2.000000335677e-04 0.000000000000e+00 6.875000000000e-01 - 28 9.999999111053e-04 9.444901160399e-05 2.000000888947e-04 0.000000000000e+00 7.125000000000e-01 - 29 9.999997782999e-04 1.253179893826e-04 2.000002216984e-04 0.000000000000e+00 7.375000000000e-01 - 30 9.999994762263e-04 1.614000573149e-04 2.000005237713e-04 0.000000000000e+00 7.625000000000e-01 - 31 9.999988216501e-04 2.024196971846e-04 2.000011783465e-04 0.000000000000e+00 7.875000000000e-01 - 32 9.999974639177e-04 2.478976466374e-04 2.000025360780e-04 0.000000000000e+00 8.125000000000e-01 - 33 9.999947567695e-04 2.971862880219e-04 2.000052432252e-04 0.000000000000e+00 8.375000000000e-01 - 34 9.999895484279e-04 3.495140484286e-04 2.000104515658e-04 0.000000000000e+00 8.625000000000e-01 - 35 9.999798465390e-04 4.040335770972e-04 2.000201534538e-04 0.000000000000e+00 8.875000000000e-01 - 36 9.999622949296e-04 4.598690859751e-04 2.000377050623e-04 0.000000000000e+00 9.125000000000e-01 - 37 9.999313715129e-04 5.161592448424e-04 2.000686284782e-04 0.000000000000e+00 9.375000000000e-01 - 38 9.998781779394e-04 5.720931802492e-04 2.001218220509e-04 0.000000000000e+00 9.625000000000e-01 - 39 9.997886375328e-04 6.269382550211e-04 2.002113624569e-04 0.000000000000e+00 9.875000000000e-01 - 40 9.996408433311e-04 6.800592808323e-04 2.003591566592e-04 0.000000000000e+00 1.012500000000e+00 - 41 9.994011963772e-04 7.309295762325e-04 2.005988036124e-04 0.000000000000e+00 1.037500000000e+00 - 42 9.990188398148e-04 7.791348087968e-04 2.009811601742e-04 0.000000000000e+00 1.062500000000e+00 - 43 9.984177243185e-04 8.243708674758e-04 2.015822756708e-04 0.000000000000e+00 1.087500000000e+00 - 44 9.974854440232e-04 8.664371340741e-04 2.025145559656e-04 0.000000000000e+00 1.112500000000e+00 - 45 9.960577965326e-04 9.052265038233e-04 2.039422034560e-04 0.000000000000e+00 1.137500000000e+00 - 46 9.938979448378e-04 9.407133877483e-04 2.061020551494e-04 0.000000000000e+00 1.162500000000e+00 - 47 9.906693148732e-04 9.729407531498e-04 2.093306851137e-04 0.000000000000e+00 1.187500000000e+00 - 48 9.859023902769e-04 1.002007055046e-03 2.140976097098e-04 0.000000000000e+00 1.212500000000e+00 - 49 9.789581361256e-04 1.028053705197e-03 2.210418638608e-04 0.000000000000e+00 1.237500000000e+00 - 50 9.689960048283e-04 1.051253532901e-03 2.310039951580e-04 0.000000000000e+00 1.262500000000e+00 - 51 9.549633447242e-04 1.071800523379e-03 2.450366552618e-04 0.000000000000e+00 1.287500000000e+00 - 52 9.356347670797e-04 1.089900980030e-03 2.643652329060e-04 0.000000000000e+00 1.312500000000e+00 - 53 9.097384638237e-04 1.105766147280e-03 2.902615361617e-04 0.000000000000e+00 1.337500000000e+00 - 54 8.761960899973e-04 1.119606249493e-03 3.238039099878e-04 0.000000000000e+00 1.362500000000e+00 - 55 8.344533301406e-04 1.131625845338e-03 3.655466698441e-04 0.000000000000e+00 1.387500000000e+00 - 56 7.847919650475e-04 1.142020362045e-03 4.152080349369e-04 0.000000000000e+00 1.412500000000e+00 - 57 7.284538372959e-04 1.150973656035e-03 4.715461626881e-04 3.531139650213e-28 1.437500000000e+00 - 58 6.674661295231e-04 1.158656441394e-03 5.325338704605e-04 4.216133178352e-26 1.462500000000e+00 - 59 6.042301758578e-04 1.165225432017e-03 5.957698241254e-04 2.112623929847e-24 1.487500000000e+00 - 60 5.410707042902e-04 1.170823053923e-03 6.589292956926e-04 9.154192241148e-23 1.512500000000e+00 - 61 4.799177066706e-04 1.175577598779e-03 7.200822933118e-04 3.514353871102e-21 1.537500000000e+00 - 62 4.221746364521e-04 1.179603706071e-03 7.778253635299e-04 1.207213754642e-19 1.562500000000e+00 - 63 3.687296865690e-04 1.183003078326e-03 8.312703134126e-04 3.694071268301e-18 1.587500000000e+00 - 64 3.200378094467e-04 1.185865350144e-03 8.799621905343e-04 1.035721724513e-16 1.612500000000e+00 - 65 2.762284431584e-04 1.188269047043e-03 9.237715568171e-04 2.657316487700e-15 1.637500000000e+00 - 66 2.371960440990e-04 1.190282583741e-03 9.628039557559e-04 6.272120678985e-14 1.662500000000e+00 - 67 2.026802660677e-04 1.191965263410e-03 9.973197311041e-04 1.404108206640e-12 1.687500000000e+00 - 68 1.723175379753e-04 1.193368249524e-03 1.027682402586e-03 2.970943178734e-11 1.712500000000e+00 - 69 1.456986526365e-04 1.194535490349e-03 1.054300174205e-03 5.865691832666e-10 1.737500000000e+00 - 70 1.223834694923e-04 1.195504582884e-03 1.077593516927e-03 1.150677988345e-08 1.762500000000e+00 - 71 1.019262303182e-04 1.196307568531e-03 1.097657241059e-03 2.082643005567e-07 1.787500000000e+00 - 72 8.381480436917e-05 1.196971656899e-03 1.109525476375e-03 3.329859617448e-06 1.812500000000e+00 - 73 6.668225222783e-05 1.197519877322e-03 1.024937206784e-03 5.419027048446e-05 1.837500000000e+00 - 74 5.053198367604e-05 1.197971659937e-03 7.350507107061e-04 2.072086528030e-04 1.862500000000e+00 - 75 3.879701357395e-05 1.198343349753e-03 5.356918142767e-04 3.127555860708e-04 1.887500000000e+00 - 76 3.007678322722e-05 1.198648658204e-03 4.021188008094e-04 3.839022079790e-04 1.912500000000e+00 - 77 2.344463549483e-05 1.198899057198e-03 3.068522371411e-04 4.348515636801e-04 1.937500000000e+00 - 78 1.834047972307e-05 1.199104120993e-03 2.366187847945e-04 4.725203677398e-04 1.962500000000e+00 - 79 1.438416333582e-05 1.199271821253e-03 1.838015689086e-04 5.009071338768e-04 1.987500000000e+00 - 80 1.130287552755e-05 1.199408780437e-03 1.435541337153e-04 5.225714953778e-04 2.012500000000e+00 - 81 8.894854154099e-06 1.199520488471e-03 1.125953626079e-04 5.392548916185e-04 2.037500000000e+00 - 82 7.008145850810e-06 1.199611487223e-03 8.861328635354e-05 5.521892838974e-04 2.062500000000e+00 - 83 5.526939767886e-06 1.199685527005e-03 6.993373977306e-05 5.622696602292e-04 2.087500000000e+00 - 84 4.362237388672e-06 1.199745698858e-03 5.532050326743e-05 5.701586296717e-04 2.112500000000e+00 - 85 3.445231625616e-06 1.199794545990e-03 4.384740222256e-05 5.763536830758e-04 2.137500000000e+00 - 86 2.722483623513e-06 1.199834157394e-03 3.481279241283e-05 5.812323619826e-04 2.162500000000e+00 - 87 2.152343734153e-06 1.199866246232e-03 2.768046312193e-05 5.850835965725e-04 2.187500000000e+00 - 88 1.702259902002e-06 1.199892215323e-03 2.203774543638e-05 5.881299973317e-04 2.212500000000e+00 - 89 1.346733078607e-06 1.199913211686e-03 1.756522033724e-05 5.905440232928e-04 2.237500000000e+00 - 90 1.065752199293e-06 1.199930171882e-03 1.401446577327e-05 5.924598910143e-04 2.262500000000e+00 - 91 8.435890597776e-07 1.199943859609e-03 1.119149963194e-05 5.939824556550e-04 2.287500000000e+00 - 92 6.678659094763e-07 1.199954896813e-03 8.944331673377e-06 5.951939012093e-04 2.312500000000e+00 - 93 5.288312745990e-07 1.199963789378e-03 7.153523668294e-06 5.961588225292e-04 2.337500000000e+00 - 94 4.187957414427e-07 1.199970948301e-03 5.724978921457e-06 5.969281126691e-04 2.362500000000e+00 - 95 3.316912256408e-07 1.199976707113e-03 4.584400974714e-06 5.975419539002e-04 2.387500000000e+00 - 96 2.627259549757e-07 1.199981336185e-03 3.673012861562e-06 5.980321305921e-04 2.412500000000e+00 - 97 2.081138874134e-07 1.199985054462e-03 2.944235324406e-06 5.984238253944e-04 2.437500000000e+00 - 98 1.648621779965e-07 1.199988039067e-03 2.361099157053e-06 5.987370193327e-04 2.462500000000e+00 - 99 1.306040218716e-07 1.199990433149e-03 1.894222604012e-06 5.989875866872e-04 2.487500000000e+00 - 100 1.034670378746e-07 1.199992352295e-03 1.520225735974e-06 5.991881536132e-04 2.512500000000e+00 + 8 1.000000000001e-03 3.099695935216e-22 2.000000000001e-04 0.000000000000e+00 2.125000000000e-01 + 9 1.000000000001e-03 1.500905973391e-17 2.000000000001e-04 0.000000000000e+00 2.375000000000e-01 + 10 1.000000000001e-03 6.337810130194e-15 2.000000000001e-04 0.000000000000e+00 2.625000000000e-01 + 11 1.000000000001e-03 4.494806174889e-13 2.000000000001e-04 0.000000000000e+00 2.875000000000e-01 + 12 1.000000000001e-03 1.148716182625e-11 2.000000000001e-04 0.000000000000e+00 3.125000000000e-01 + 13 1.000000000001e-03 1.502206811058e-10 2.000000000001e-04 0.000000000000e+00 3.375000000000e-01 + 14 1.000000000001e-03 1.222542811910e-09 2.000000000001e-04 0.000000000000e+00 3.625000000000e-01 + 15 1.000000000001e-03 6.992469583284e-09 2.000000000002e-04 0.000000000000e+00 3.875000000000e-01 + 16 1.000000000000e-03 3.048043440204e-08 2.000000000003e-04 0.000000000000e+00 4.125000000000e-01 + 17 1.000000000000e-03 1.071736884874e-07 2.000000000005e-04 0.000000000000e+00 4.375000000000e-01 + 18 9.999999999997e-04 3.167880505857e-07 2.000000000010e-04 0.000000000000e+00 4.625000000000e-01 + 19 9.999999999987e-04 8.119152403764e-07 2.000000000020e-04 0.000000000000e+00 4.875000000000e-01 + 20 9.999999999961e-04 1.847753784000e-06 2.000000000046e-04 0.000000000000e+00 5.125000000000e-01 + 21 9.999999999821e-04 3.804229075475e-06 2.000000000187e-04 0.000000000000e+00 5.375000000000e-01 + 22 9.999999999200e-04 7.191769366246e-06 2.000000000808e-04 0.000000000000e+00 5.625000000000e-01 + 23 9.999999996775e-04 1.263506022269e-05 2.000000003233e-04 0.000000000000e+00 5.875000000000e-01 + 24 9.999999988269e-04 2.083413717053e-05 2.000000011739e-04 0.000000000000e+00 6.125000000000e-01 + 25 9.999999961119e-04 3.250742767479e-05 2.000000038888e-04 0.000000000000e+00 6.375000000000e-01 + 26 9.999999881427e-04 4.832522920503e-05 2.000000118579e-04 0.000000000000e+00 6.625000000000e-01 + 27 9.999999664322e-04 6.884373211788e-05 2.000000335683e-04 0.000000000000e+00 6.875000000000e-01 + 28 9.999999111049e-04 9.444901160173e-05 2.000000888954e-04 0.000000000000e+00 7.125000000000e-01 + 29 9.999997783005e-04 1.253179893805e-04 2.000002216994e-04 0.000000000000e+00 7.375000000000e-01 + 30 9.999994762268e-04 1.614000573129e-04 2.000005237726e-04 0.000000000000e+00 7.625000000000e-01 + 31 9.999988216503e-04 2.024196971827e-04 2.000011783485e-04 0.000000000000e+00 7.875000000000e-01 + 32 9.999974639172e-04 2.478976466357e-04 2.000025360800e-04 0.000000000000e+00 8.125000000000e-01 + 33 9.999947567688e-04 2.971862880203e-04 2.000052432271e-04 0.000000000000e+00 8.375000000000e-01 + 34 9.999895484269e-04 3.495140484272e-04 2.000104515676e-04 0.000000000000e+00 8.625000000000e-01 + 35 9.999798465377e-04 4.040335770959e-04 2.000201534554e-04 0.000000000000e+00 8.875000000000e-01 + 36 9.999622949280e-04 4.598690859739e-04 2.000377050639e-04 0.000000000000e+00 9.125000000000e-01 + 37 9.999313715110e-04 5.161592448413e-04 2.000686284796e-04 0.000000000000e+00 9.375000000000e-01 + 38 9.998781779370e-04 5.720931802482e-04 2.001218220523e-04 0.000000000000e+00 9.625000000000e-01 + 39 9.997886375300e-04 6.269382550202e-04 2.002113624581e-04 0.000000000000e+00 9.875000000000e-01 + 40 9.996408433268e-04 6.800592808307e-04 2.003591566602e-04 0.000000000000e+00 1.012500000000e+00 + 41 9.994011963725e-04 7.309295762311e-04 2.005988036133e-04 0.000000000000e+00 1.037500000000e+00 + 42 9.990188398097e-04 7.791348087955e-04 2.009811601751e-04 0.000000000000e+00 1.062500000000e+00 + 43 9.984177243120e-04 8.243708674740e-04 2.015822756719e-04 0.000000000000e+00 1.087500000000e+00 + 44 9.974854440159e-04 8.664371340724e-04 2.025145559672e-04 0.000000000000e+00 1.112500000000e+00 + 45 9.960577965245e-04 9.052265038216e-04 2.039422034574e-04 0.000000000000e+00 1.137500000000e+00 + 46 9.938979448300e-04 9.407133877476e-04 2.061020551507e-04 0.000000000000e+00 1.162500000000e+00 + 47 9.906693148653e-04 9.729407531493e-04 2.093306851145e-04 0.000000000000e+00 1.187500000000e+00 + 48 9.859023902690e-04 1.002007055046e-03 2.140976097102e-04 0.000000000000e+00 1.212500000000e+00 + 49 9.789581361180e-04 1.028053705196e-03 2.210418638607e-04 0.000000000000e+00 1.237500000000e+00 + 50 9.689960048214e-04 1.051253532901e-03 2.310039951572e-04 0.000000000000e+00 1.262500000000e+00 + 51 9.549633447183e-04 1.071800523379e-03 2.450366552601e-04 0.000000000000e+00 1.287500000000e+00 + 52 9.356347670752e-04 1.089900980030e-03 2.643652329033e-04 0.000000000000e+00 1.312500000000e+00 + 53 9.097384638210e-04 1.105766147279e-03 2.902615361578e-04 0.000000000000e+00 1.337500000000e+00 + 54 8.761960899965e-04 1.119606249493e-03 3.238039099829e-04 0.000000000000e+00 1.362500000000e+00 + 55 8.344533301419e-04 1.131625845338e-03 3.655466698383e-04 0.000000000000e+00 1.387500000000e+00 + 56 7.847919650505e-04 1.142020362045e-03 4.152080349307e-04 0.000000000000e+00 1.412500000000e+00 + 57 7.284538373002e-04 1.150973656035e-03 4.715461626821e-04 3.527692751705e-28 1.437500000000e+00 + 58 6.674661295281e-04 1.158656441394e-03 5.325338704552e-04 4.210831843280e-26 1.462500000000e+00 + 59 6.042301758632e-04 1.165225432016e-03 5.957698241215e-04 2.111264378881e-24 1.487500000000e+00 + 60 5.410707042956e-04 1.170823053923e-03 6.589292956904e-04 9.153155104822e-23 1.512500000000e+00 + 61 4.799177066756e-04 1.175577598779e-03 7.200822933117e-04 3.514330827253e-21 1.537500000000e+00 + 62 4.221746364565e-04 1.179603706072e-03 7.778253635321e-04 1.207213314352e-19 1.562500000000e+00 + 63 3.687296865729e-04 1.183003078326e-03 8.312703134170e-04 3.694071124104e-18 1.587500000000e+00 + 64 3.200378094500e-04 1.185865350144e-03 8.799621905409e-04 1.035721709812e-16 1.612500000000e+00 + 65 2.762284431611e-04 1.188269047044e-03 9.237715568259e-04 2.657316467811e-15 1.637500000000e+00 + 66 2.371960441011e-04 1.190282583742e-03 9.628039557667e-04 6.272120651918e-14 1.662500000000e+00 + 67 2.026802660693e-04 1.191965263410e-03 9.973197311165e-04 1.404108203279e-12 1.687500000000e+00 + 68 1.723175379765e-04 1.193368249524e-03 1.027682402599e-03 2.970943173885e-11 1.712500000000e+00 + 69 1.456986526374e-04 1.194535490349e-03 1.054300174220e-03 5.865691827083e-10 1.737500000000e+00 + 70 1.223834694930e-04 1.195504582884e-03 1.077593516943e-03 1.150677987322e-08 1.762500000000e+00 + 71 1.019262303188e-04 1.196307568530e-03 1.097657241077e-03 2.082643003552e-07 1.787500000000e+00 + 72 8.381480436988e-05 1.196971656898e-03 1.109525476398e-03 3.329859614474e-06 1.812500000000e+00 + 73 6.668225222962e-05 1.197519877322e-03 1.024937206893e-03 5.419027043882e-05 1.837500000000e+00 + 74 5.053198367741e-05 1.197971659937e-03 7.350507108179e-04 2.072086527560e-04 1.862500000000e+00 + 75 3.879701357474e-05 1.198343349752e-03 5.356918143586e-04 3.127555860395e-04 1.887500000000e+00 + 76 3.007678322769e-05 1.198648658204e-03 4.021188008750e-04 3.839022079564e-04 1.912500000000e+00 + 77 2.344463549509e-05 1.198899057198e-03 3.068522371966e-04 4.348515636630e-04 1.937500000000e+00 + 78 1.834047972320e-05 1.199104120993e-03 2.366187848432e-04 4.725203677266e-04 1.962500000000e+00 + 79 1.438416333586e-05 1.199271821253e-03 1.838015689528e-04 5.009071338667e-04 1.987500000000e+00 + 80 1.130287552753e-05 1.199408780438e-03 1.435541337563e-04 5.225714953698e-04 2.012500000000e+00 + 81 8.894854154048e-06 1.199520488471e-03 1.125953626463e-04 5.392548916117e-04 2.037500000000e+00 + 82 7.008145850738e-06 1.199611487223e-03 8.861328638935e-05 5.521892838915e-04 2.062500000000e+00 + 83 5.526939767802e-06 1.199685527006e-03 6.993373980612e-05 5.622696602240e-04 2.087500000000e+00 + 84 4.362237388583e-06 1.199745698858e-03 5.532050329786e-05 5.701586296671e-04 2.112500000000e+00 + 85 3.445231625528e-06 1.199794545990e-03 4.384740225026e-05 5.763536830716e-04 2.137500000000e+00 + 86 2.722483623426e-06 1.199834157394e-03 3.481279243709e-05 5.812323619783e-04 2.162500000000e+00 + 87 2.152343734072e-06 1.199866246232e-03 2.768046314401e-05 5.850835965688e-04 2.187500000000e+00 + 88 1.702259901924e-06 1.199892215323e-03 2.203774545530e-05 5.881299973283e-04 2.212500000000e+00 + 89 1.346733078537e-06 1.199913211686e-03 1.756522035378e-05 5.905440232898e-04 2.237500000000e+00 + 90 1.065752199229e-06 1.199930171882e-03 1.401446578768e-05 5.924598910117e-04 2.262500000000e+00 + 91 8.435890597178e-07 1.199943859609e-03 1.119149964379e-05 5.939824556526e-04 2.287500000000e+00 + 92 6.678659094228e-07 1.199954896813e-03 8.944331683465e-06 5.951939012073e-04 2.312500000000e+00 + 93 5.288312745517e-07 1.199963789378e-03 7.153523676926e-06 5.961588225274e-04 2.337500000000e+00 + 94 4.187957414013e-07 1.199970948301e-03 5.724978928847e-06 5.969281126675e-04 2.362500000000e+00 + 95 3.316912256047e-07 1.199976707113e-03 4.584400981034e-06 5.975419538989e-04 2.387500000000e+00 + 96 2.627259549445e-07 1.199981336185e-03 3.673012866959e-06 5.980321305909e-04 2.412500000000e+00 + 97 2.081138873864e-07 1.199985054462e-03 2.944235329006e-06 5.984238253934e-04 2.437500000000e+00 + 98 1.648621779734e-07 1.199988039067e-03 2.361099160966e-06 5.987370193318e-04 2.462500000000e+00 + 99 1.306040218517e-07 1.199990433149e-03 1.894222607335e-06 5.989875866865e-04 2.487500000000e+00 + 100 1.034670378576e-07 1.199992352295e-03 1.520225738791e-06 5.991881536126e-04 2.512500000000e+00 diff --git a/ex12.sel b/ex12.sel index 50a93134..610d09be 100644 --- a/ex12.sel +++ b/ex12.sel @@ -64,63 +64,63 @@ 19.5 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 19.8333 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 0 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 - 0.166666 2.173421535646e+01 2.173403615953e+01 2.265963837554e+00 2.269804797032e+01 - 0.499999 1.732877881136e+01 1.732819001087e+01 6.671809981447e+00 2.011807085412e+01 - 0.833333 1.328084086481e+01 1.327978568454e+01 1.072021430458e+01 1.760856603204e+01 - 1.16667 9.764795284605e+00 9.763307030585e+00 1.423669295683e+01 1.521227157407e+01 - 1.5 6.876991639258e+00 6.875215357913e+00 1.712478462908e+01 1.296595961051e+01 - 1.83333 4.633455927868e+00 4.631602980060e+00 1.936839700747e+01 1.089879733963e+01 - 2.16666 2.983966658160e+00 2.982242889576e+00 2.101775709910e+01 9.031344427781e+00 - 2.5 1.835677067321e+00 1.834226374349e+00 2.216577361580e+01 7.375229710910e+00 - 2.83333 1.078314727984e+00 1.077198297073e+00 2.292280169464e+01 5.933476222844e+00 - 3.16666 6.047305559881e-01 6.039382767914e-01 2.339606171644e+01 4.701379781820e+00 - 3.5 3.237709471477e-01 3.232490525632e-01 2.367675094204e+01 3.667800399953e+00 - 3.83333 1.655104664919e-01 1.651896628002e-01 2.383481033299e+01 2.816701882844e+00 - 4.16666 8.080257208790e-02 8.061777229753e-02 2.391938222449e+01 2.128773573946e+00 - 4.5 3.768568648974e-02 3.758557520676e-02 2.396241442239e+01 1.582986272153e+00 - 4.83333 1.679767757983e-02 1.674652868459e-02 2.398325346955e+01 1.157966472262e+00 - 5.16666 7.158752068527e-03 7.134045500783e-03 2.399286595322e+01 8.331126368298e-01 - 5.49999 2.918449216371e-03 2.907143229955e-03 2.399709285586e+01 5.894176946328e-01 - 5.83333 1.138722696853e-03 1.133812460285e-03 2.399886618691e+01 4.099979928622e-01 - 6.16666 4.254688739372e-04 4.234417524596e-04 2.399957655782e+01 2.803568840129e-01 - 6.49999 1.523139983733e-04 1.515173752178e-04 2.399984848233e+01 1.884293356574e-01 - 6.83333 5.227267561574e-05 5.197429168637e-05 2.399994802552e+01 1.244625136586e-01 - 7.16666 1.720732481390e-05 1.710067686712e-05 2.399998289920e+01 8.078763518547e-02 - 7.49999 5.436192377492e-06 5.399780020770e-06 2.399999460014e+01 5.153271367855e-02 - 7.83333 1.649130960882e-06 1.637243353861e-06 2.399999836271e+01 3.231654723819e-02 - 8.16666 4.806491384918e-07 4.769347036557e-07 2.399999952303e+01 1.995365519988e-02 - 8.49999 1.346725367296e-07 1.335606226401e-07 2.399999986642e+01 1.218958904340e-02 - 8.83332 3.634765900813e-08 3.602792250445e-08 2.399999996396e+01 7.477287156789e-03 - 9.16666 9.688623041821e-09 9.597781456237e-09 2.399999999039e+01 4.798487471577e-03 - 9.49999 3.521368977494e-09 3.486221174512e-09 2.399999999651e+01 3.529761278078e-03 - 9.83332 5.266906602284e-09 5.215747970494e-09 2.399999999478e+01 3.350250042338e-03 - 10.1667 1.826871464878e-08 1.810246493779e-08 2.399999998189e+01 4.187235209478e-03 - 10.5 6.734356351424e-08 6.676736728859e-08 2.399999993322e+01 6.195716015130e-03 - 10.8333 2.402639315261e-07 2.383343475339e-07 2.399999976165e+01 9.768664014259e-03 - 11.1667 8.242843021403e-07 8.180891310115e-07 2.399999918189e+01 1.557505013666e-02 - 11.5 2.716922550563e-06 2.697877300187e-06 2.399999730208e+01 2.462264894765e-02 - 11.8333 8.598959195576e-06 8.542946913518e-06 2.399999145699e+01 3.834165440595e-02 - 12.1667 2.611819664726e-05 2.596074280454e-05 2.399997403917e+01 5.868305693760e-02 - 12.5 7.608967018345e-05 7.566701745618e-05 2.399992433285e+01 8.822247450201e-02 - 12.8333 2.124941138848e-04 2.114118449125e-04 2.399978858795e+01 1.302558794738e-01 - 13.1667 5.685367830447e-04 5.658959587685e-04 2.399943410375e+01 1.888688939345e-01 - 13.5 1.456506511482e-03 1.450373187822e-03 2.399854962640e+01 2.689568433456e-01 - 13.8333 3.570772370464e-03 3.557230846966e-03 2.399644276858e+01 3.761696764504e-01 - 14.1667 8.372702448878e-03 8.344318209114e-03 2.399165568100e+01 5.167554989993e-01 - 14.5 1.876668623866e-02 1.871028306262e-02 2.398128971588e+01 6.972801618698e-01 - 14.8333 4.018855159260e-02 4.008246069532e-02 2.395991753791e+01 9.242091443387e-01 - 15.1667 8.218587186998e-02 8.199729506180e-02 2.391800270313e+01 1.203352315083e+00 - 15.5 1.604262489166e-01 1.601100284715e-01 2.383988996925e+01 1.539191520809e+00 - 15.8333 2.987859018794e-01 2.982865097097e-01 2.370171348749e+01 1.934133647612e+00 - 16.1667 5.307585250826e-01 5.300169112943e-01 2.346998308535e+01 2.387754908519e+00 - 16.5 8.989956902585e-01 8.979611508074e-01 2.310203884528e+01 2.896121734266e+00 - 16.8333 1.451582042860e+00 1.450226361452e+00 2.254977363414e+01 3.451285434102e+00 - 17.1666 2.233972730531e+00 2.232300602876e+00 2.176769939234e+01 4.041047732562e+00 - 17.5 3.276610345963e+00 3.274658958333e+00 2.072534103671e+01 4.649079608378e+00 - 17.8333 4.580032364282e+00 4.577856581120e+00 1.942214341402e+01 5.255445898757e+00 - 18.1666 6.101263068319e+00 6.098911107801e+00 1.790108888775e+01 5.837544906627e+00 - 18.5 7.746550871479e+00 7.744044086582e+00 1.625595590970e+01 6.371420572385e+00 - 18.8333 9.375124347455e+00 9.372456106636e+00 1.462754389061e+01 6.833351769771e+00 - 19.1666 1.081616435426e+01 1.081332243663e+01 1.318667756164e+01 7.201577340319e+00 - 19.5 1.189711476997e+01 1.189411416971e+01 1.210588582943e+01 7.457984760712e+00 - 19.8333 1.247718192013e+01 1.247408415261e+01 1.152591584704e+01 7.589581188890e+00 + 0.166666 2.173421535646e+01 2.173403615952e+01 2.265963837553e+00 2.269804797032e+01 + 0.499999 1.732877881136e+01 1.732819001086e+01 6.671809981446e+00 2.011807085410e+01 + 0.833333 1.328084086481e+01 1.327978568452e+01 1.072021430458e+01 1.760856603200e+01 + 1.16667 9.764795284605e+00 9.763307030575e+00 1.423669295682e+01 1.521227157402e+01 + 1.5 6.876991639258e+00 6.875215357908e+00 1.712478462907e+01 1.296595961048e+01 + 1.83333 4.633455927868e+00 4.631602980059e+00 1.936839700746e+01 1.089879733960e+01 + 2.16666 2.983966658160e+00 2.982242889579e+00 2.101775709909e+01 9.031344427757e+00 + 2.5 1.835677067321e+00 1.834226374356e+00 2.216577361579e+01 7.375229710892e+00 + 2.83333 1.078314727984e+00 1.077198297082e+00 2.292280169463e+01 5.933476222831e+00 + 3.16666 6.047305559881e-01 6.039382768019e-01 2.339606171642e+01 4.701379781811e+00 + 3.5 3.237709471477e-01 3.232490525737e-01 2.367675094202e+01 3.667800399947e+00 + 3.83333 1.655104664919e-01 1.651896628094e-01 2.383481033297e+01 2.816701882840e+00 + 4.16666 8.080257208790e-02 8.061777230439e-02 2.391938222446e+01 2.128773573943e+00 + 4.5 3.768568648974e-02 3.758557521047e-02 2.396241442236e+01 1.582986272151e+00 + 4.83333 1.679767757983e-02 1.674652868515e-02 2.398325346951e+01 1.157966472261e+00 + 5.16666 7.158752068527e-03 7.134045498639e-03 2.399286595319e+01 8.331126368288e-01 + 5.49999 2.918449216371e-03 2.907143228024e-03 2.399709285582e+01 5.894176946317e-01 + 5.83333 1.138722696853e-03 1.133812458958e-03 2.399886618686e+01 4.099979928610e-01 + 6.16666 4.254688739372e-04 4.234417516203e-04 2.399957655776e+01 2.803568840115e-01 + 6.49999 1.523139983733e-04 1.515173747129e-04 2.399984848228e+01 1.884293356558e-01 + 6.83333 5.227267561574e-05 5.197429139505e-05 2.399994802546e+01 1.244625136568e-01 + 7.16666 1.720732481390e-05 1.710067670559e-05 2.399998289914e+01 8.078763518346e-02 + 7.49999 5.436192377492e-06 5.399779934721e-06 2.399999460008e+01 5.153271367642e-02 + 7.83333 1.649130960882e-06 1.637243309891e-06 2.399999836265e+01 3.231654723603e-02 + 8.16666 4.806491384918e-07 4.769346821798e-07 2.399999952298e+01 1.995365519780e-02 + 8.49999 1.346725367296e-07 1.335606127303e-07 2.399999986637e+01 1.218958904147e-02 + 8.83332 3.634765900813e-08 3.602791839459e-08 2.399999996391e+01 7.477287155024e-03 + 9.16666 9.688623041821e-09 9.597780290504e-09 2.399999999035e+01 4.798487469933e-03 + 9.49999 3.521368977494e-09 3.486222293220e-09 2.399999999646e+01 3.529761276501e-03 + 9.83332 5.266906602284e-09 5.215749226507e-09 2.399999999473e+01 3.350250040814e-03 + 10.1667 1.826871464878e-08 1.810246324016e-08 2.399999998184e+01 4.187235208024e-03 + 10.5 6.734356351424e-08 6.676736160418e-08 2.399999993318e+01 6.195716013747e-03 + 10.8333 2.402639315261e-07 2.383343345219e-07 2.399999976160e+01 9.768664012917e-03 + 11.1667 8.242843021403e-07 8.180891038829e-07 2.399999918184e+01 1.557505013534e-02 + 11.5 2.716922550563e-06 2.697877246518e-06 2.399999730203e+01 2.462264894634e-02 + 11.8333 8.598959195576e-06 8.542946811951e-06 2.399999145694e+01 3.834165440468e-02 + 12.1667 2.611819664726e-05 2.596074262029e-05 2.399997403911e+01 5.868305693642e-02 + 12.5 7.608967018345e-05 7.566701713579e-05 2.399992433280e+01 8.822247450093e-02 + 12.8333 2.124941138848e-04 2.114118443810e-04 2.399978858791e+01 1.302558794728e-01 + 13.1667 5.685367830447e-04 5.658959579464e-04 2.399943410371e+01 1.888688939337e-01 + 13.5 1.456506511482e-03 1.450373186789e-03 2.399854962636e+01 2.689568433448e-01 + 13.8333 3.570772370464e-03 3.557230846911e-03 2.399644276854e+01 3.761696764497e-01 + 14.1667 8.372702448878e-03 8.344318210639e-03 2.399165568097e+01 5.167554989985e-01 + 14.5 1.876668623866e-02 1.871028306587e-02 2.398128971585e+01 6.972801618690e-01 + 14.8333 4.018855159260e-02 4.008246070012e-02 2.395991753788e+01 9.242091443376e-01 + 15.1667 8.218587186998e-02 8.199729506765e-02 2.391800270312e+01 1.203352315082e+00 + 15.5 1.604262489166e-01 1.601100284779e-01 2.383988996924e+01 1.539191520807e+00 + 15.8333 2.987859018794e-01 2.982865097159e-01 2.370171348748e+01 1.934133647610e+00 + 16.1667 5.307585250826e-01 5.300169113002e-01 2.346998308534e+01 2.387754908516e+00 + 16.5 8.989956902585e-01 8.979611508127e-01 2.310203884528e+01 2.896121734263e+00 + 16.8333 1.451582042860e+00 1.450226361457e+00 2.254977363414e+01 3.451285434098e+00 + 17.1666 2.233972730531e+00 2.232300602882e+00 2.176769939234e+01 4.041047732557e+00 + 17.5 3.276610345963e+00 3.274658958341e+00 2.072534103671e+01 4.649079608373e+00 + 17.8333 4.580032364282e+00 4.577856581130e+00 1.942214341402e+01 5.255445898751e+00 + 18.1666 6.101263068319e+00 6.098911107813e+00 1.790108888775e+01 5.837544906621e+00 + 18.5 7.746550871479e+00 7.744044086595e+00 1.625595590970e+01 6.371420572379e+00 + 18.8333 9.375124347455e+00 9.372456106649e+00 1.462754389060e+01 6.833351769764e+00 + 19.1666 1.081616435426e+01 1.081332243664e+01 1.318667756164e+01 7.201577340311e+00 + 19.5 1.189711476997e+01 1.189411416972e+01 1.210588582943e+01 7.457984760704e+00 + 19.8333 1.247718192013e+01 1.247408415262e+01 1.152591584704e+01 7.589581188882e+00 diff --git a/ex12a.sel b/ex12a.sel index 4ad41f40..74a0fb7c 100644 --- a/ex12a.sel +++ b/ex12a.sel @@ -1,46 +1,46 @@ dist_x temp Na_mmol K_mmol Cl_mmol error_Cl error_Na 0 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 - 0.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 - 1.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 - 2.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 - 3.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 - 4.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 - 5.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 - 6.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 - 7.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 - 8.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 - 9.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 - 10.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 - 11.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 - 12.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 - 13.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 - 14.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 - 15.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 - 16.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 - 17.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 - 18.5 0.000000000000e+00 0.000000000000e+00 2.400000000010e+01 0.000000000000e+00 + 0.5 0.000000000000e+00 0.000000000000e+00 2.400000000012e+01 0.000000000000e+00 + 1.5 0.000000000000e+00 0.000000000000e+00 2.400000000012e+01 0.000000000000e+00 + 2.5 0.000000000000e+00 0.000000000000e+00 2.400000000012e+01 0.000000000000e+00 + 3.5 0.000000000000e+00 0.000000000000e+00 2.400000000012e+01 0.000000000000e+00 + 4.5 0.000000000000e+00 0.000000000000e+00 2.400000000012e+01 0.000000000000e+00 + 5.5 0.000000000000e+00 0.000000000000e+00 2.400000000012e+01 0.000000000000e+00 + 6.5 0.000000000000e+00 0.000000000000e+00 2.400000000012e+01 0.000000000000e+00 + 7.5 0.000000000000e+00 0.000000000000e+00 2.400000000012e+01 0.000000000000e+00 + 8.5 0.000000000000e+00 0.000000000000e+00 2.400000000012e+01 0.000000000000e+00 + 9.5 0.000000000000e+00 0.000000000000e+00 2.400000000012e+01 0.000000000000e+00 + 10.5 0.000000000000e+00 0.000000000000e+00 2.400000000012e+01 0.000000000000e+00 + 11.5 0.000000000000e+00 0.000000000000e+00 2.400000000012e+01 0.000000000000e+00 + 12.5 0.000000000000e+00 0.000000000000e+00 2.400000000012e+01 0.000000000000e+00 + 13.5 0.000000000000e+00 0.000000000000e+00 2.400000000012e+01 0.000000000000e+00 + 14.5 0.000000000000e+00 0.000000000000e+00 2.400000000012e+01 0.000000000000e+00 + 15.5 0.000000000000e+00 0.000000000000e+00 2.400000000012e+01 0.000000000000e+00 + 16.5 0.000000000000e+00 0.000000000000e+00 2.400000000012e+01 0.000000000000e+00 + 17.5 0.000000000000e+00 0.000000000000e+00 2.400000000012e+01 0.000000000000e+00 + 18.5 0.000000000000e+00 0.000000000000e+00 2.400000000012e+01 0.000000000000e+00 19.5 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 0 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 -2.400000337355e-11 -2.400000684299e-11 - 0.5 1.686181418171e+01 1.686133609177e+01 7.138663899854e+00 2.011377529319e+01 4.381717856952e-06 5.068336357464e-04 - 1.5 6.421492325340e+00 6.419558988189e+00 1.758044099840e+01 1.294968671940e+01 1.730376476416e-05 5.127073405313e-04 - 2.5 1.759908542190e+00 1.758534659759e+00 2.224146533044e+01 7.342808261286e+00 3.561257293540e-05 9.186006161036e-05 - 3.5 3.571924633149e-01 3.567054178264e-01 2.364329457693e+01 3.623408283676e+00 4.959925524514e-05 -3.682506955347e-05 - 4.5 5.490209784602e-02 5.479279662416e-02 2.394520720113e+01 1.538555967128e+00 5.006313596864e-05 -1.968447681416e-05 - 5.5 6.484238384543e-03 6.467124486998e-03 2.399353287476e+01 5.556625533105e-01 3.820767165789e-05 -4.051252484614e-06 - 6.5 5.926340099388e-04 5.906785140030e-04 2.399940932133e+01 1.684990632467e-01 2.262672987221e-05 -4.873052767777e-07 - 7.5 4.190926759329e-05 4.174299654826e-05 2.399995825704e+01 4.224784404200e-02 1.054699173428e-05 -3.900783491551e-08 - 8.5 2.276345752225e-06 2.265781717011e-06 2.399999773430e+01 8.664946370886e-03 3.823149392516e-06 -2.221207693063e-09 - 9.5 1.396593678491e-07 1.389123928275e-07 2.399999986118e+01 2.055609847092e-03 - 10.5 1.138869022165e-06 1.133447609651e-06 2.399999886664e+01 4.374443607422e-03 - 11.5 2.090811414807e-05 2.082226931298e-05 2.399997917780e+01 2.044715368546e-02 - 12.5 2.951795283095e-04 2.941575642002e-04 2.399970584241e+01 7.995922685932e-02 - 13.5 3.221164571556e-03 3.212049565193e-03 2.399678795014e+01 2.567109777338e-01 - 14.5 2.715473190776e-02 2.709461903675e-02 2.397290538002e+01 6.850286499837e-01 - 15.5 1.753541124074e-01 1.750694114109e-01 2.382493058642e+01 1.533872870595e+00 - 16.5 8.525032219987e-01 8.515834471049e-01 2.314841654903e+01 2.902126148036e+00 - 17.5 3.032149930886e+00 3.030261194920e+00 2.096973880000e+01 4.663139220088e+00 - 18.5 7.550952819370e+00 7.548456392624e+00 1.645154360352e+01 6.385483516912e+00 - 19.5 1.235834674267e+01 1.235529368931e+01 1.164470631041e+01 7.468268986451e+00 + 0.5 1.686181418171e+01 1.686133609177e+01 7.138663899857e+00 2.011377529319e+01 4.381717856911e-06 5.068336357465e-04 + 1.5 6.421492325340e+00 6.419558988190e+00 1.758044099841e+01 1.294968671940e+01 1.730376476405e-05 5.127073405303e-04 + 2.5 1.759908542190e+00 1.758534659760e+00 2.224146533045e+01 7.342808261286e+00 3.561257293522e-05 9.186006160950e-05 + 3.5 3.571924633149e-01 3.567054178272e-01 2.364329457695e+01 3.623408283676e+00 4.959925524492e-05 -3.682506955420e-05 + 4.5 5.490209784602e-02 5.479279662349e-02 2.394520720116e+01 1.538555967128e+00 5.006313596843e-05 -1.968447681349e-05 + 5.5 6.484238384543e-03 6.467124486913e-03 2.399353287478e+01 5.556625533107e-01 3.820767165772e-05 -4.051252484529e-06 + 6.5 5.926340099388e-04 5.906785139699e-04 2.399940932136e+01 1.684990632468e-01 2.262672987207e-05 -4.873052767447e-07 + 7.5 4.190926759329e-05 4.174299653563e-05 2.399995825706e+01 4.224784404205e-02 1.054699173424e-05 -3.900783490287e-08 + 8.5 2.276345752225e-06 2.265781715229e-06 2.399999773432e+01 8.664946370898e-03 3.823149392504e-06 -2.221207691281e-09 + 9.5 1.396593678491e-07 1.389123927339e-07 2.399999986120e+01 2.055609847093e-03 + 10.5 1.138869022165e-06 1.133447608928e-06 2.399999886666e+01 4.374443607424e-03 + 11.5 2.090811414807e-05 2.082226930681e-05 2.399997917782e+01 2.044715368547e-02 + 12.5 2.951795283095e-04 2.941575641842e-04 2.399970584244e+01 7.995922685934e-02 + 13.5 3.221164571556e-03 3.212049565156e-03 2.399678795017e+01 2.567109777338e-01 + 14.5 2.715473190776e-02 2.709461903648e-02 2.397290538005e+01 6.850286499837e-01 + 15.5 1.753541124074e-01 1.750694114115e-01 2.382493058644e+01 1.533872870595e+00 + 16.5 8.525032219987e-01 8.515834471066e-01 2.314841654904e+01 2.902126148036e+00 + 17.5 3.032149930886e+00 3.030261194922e+00 2.096973880002e+01 4.663139220088e+00 + 18.5 7.550952819370e+00 7.548456392627e+00 1.645154360353e+01 6.385483516912e+00 + 19.5 1.235834674267e+01 1.235529368932e+01 1.164470631042e+01 7.468268986451e+00 0.166667 0.000000000000e+00 0.000000000000e+00 2.400000000000e+01 0.000000000000e+00 0.5 0.000000000000e+00 0.000000000000e+00 2.400000000000e+01 0.000000000000e+00 0.833333 0.000000000000e+00 0.000000000000e+00 2.400000000000e+01 0.000000000000e+00 @@ -101,64 +101,64 @@ 19.1667 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 19.5 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 19.8333 2.400000000000e+01 2.400000000000e+01 0.000000000000e+00 2.400000000000e+01 - 0.166667 2.173421305774e+01 2.173403386063e+01 2.265966136452e+00 2.269804666231e+01 - 0.5 1.732877229921e+01 1.732818349806e+01 6.671816494265e+00 2.011806700218e+01 9.000885942481e-08 3.998622946025e-05 - 0.833333 1.328083118520e+01 1.327977600374e+01 1.072022398538e+01 1.760855984595e+01 - 1.16667 9.764783867926e+00 9.763295612551e+00 1.423670437487e+01 1.521226338238e+01 - 1.5 6.876979953496e+00 6.875203671273e+00 1.712479631572e+01 1.296594983169e+01 1.040652470932e-06 5.706265744738e-05 - 1.83333 4.633445178267e+00 4.631592230628e+00 1.936840775690e+01 1.089878644681e+01 - 2.16667 2.983957613890e+00 2.982233846716e+00 2.101776614196e+01 9.031332911150e+00 - 2.5 1.835670035543e+00 1.834219344984e+00 2.216578064517e+01 7.375218041922e+00 3.202792299458e-06 1.617537638523e-05 - 2.83333 1.078309641974e+00 1.077193213980e+00 2.292280677773e+01 5.933464823767e+00 - 3.16667 6.047271174932e-01 6.039348411906e-01 2.339606515204e+01 4.701369003156e+00 - 3.5 3.237687664602e-01 3.232468743679e-01 2.367675312023e+01 3.667790507028e+00 5.217031892212e-06 -3.366526094922e-06 - 3.83333 1.655091654568e-01 1.651883636811e-01 2.383481163211e+01 2.816693051604e+00 - 4.16667 8.080184013938e-02 8.061704168687e-02 2.391938295510e+01 2.128765894911e+00 - 4.5 3.768529740313e-02 3.758518697825e-02 2.396241481061e+01 1.582979760724e+00 5.639342372492e-06 -2.476867168244e-06 - 4.83333 1.679748180460e-02 1.674633341902e-02 2.398325366481e+01 1.157961083143e+00 - 5.16667 7.158658677381e-03 7.133952391644e-03 2.399286604633e+01 8.331082803354e-01 - 5.5 2.918406918575e-03 2.907101078212e-03 2.399709289802e+01 5.894142528789e-01 4.455972089512e-06 -4.912290758281e-07 - 5.83333 1.138704484326e-03 1.133794318823e-03 2.399886620505e+01 4.099953343114e-01 - 6.16667 4.254614095066e-04 4.234343206137e-04 2.399957656525e+01 2.803548753976e-01 - 6.5 1.523110829998e-04 1.515144739607e-04 2.399984848524e+01 1.884278508358e-01 2.697942283073e-06 -4.814123673548e-08 - 6.83333 5.227158937090e-05 5.197321123247e-05 2.399994802660e+01 1.244614394110e-01 - 7.16667 1.720693832796e-05 1.710029263504e-05 2.399998289958e+01 8.078687428981e-02 - 7.5 5.436060938942e-06 5.399649415898e-06 2.399999460027e+01 5.153218579103e-02 1.262649985252e-06 -2.664487783141e-09 - 7.83333 1.649088196500e-06 1.637200882995e-06 2.399999836275e+01 3.231618817631e-02 - 8.16667 4.806358161413e-07 4.769214798035e-07 2.399999952305e+01 1.995341519604e-02 - 8.5 1.346685591699e-07 1.335566766312e-07 2.399999986642e+01 1.218943044882e-02 2.986653145795e-07 -8.898265268248e-11 - 8.83333 3.634651795932e-08 3.602679113545e-08 2.399999996396e+01 7.477181955864e-03 - 9.16667 9.688299811041e-09 9.597461159246e-09 2.399999999039e+01 4.798414843917e-03 - 9.5 3.521245211305e-09 3.486098607351e-09 2.399999999651e+01 3.529705336616e-03 - 9.83333 5.266729327194e-09 5.215572366278e-09 2.399999999478e+01 3.350197792357e-03 - 10.1667 1.826814043527e-08 1.810189577526e-08 2.399999998189e+01 4.187174719459e-03 - 10.5 6.734157443551e-08 6.676539459886e-08 2.399999993322e+01 6.195634766519e-03 - 10.8333 2.402572726978e-07 2.383277400061e-07 2.399999976166e+01 9.768547401637e-03 - 11.1667 8.242629303642e-07 8.180679126566e-07 2.399999918191e+01 1.557488011882e-02 - 11.5 2.716856872536e-06 2.697812059732e-06 2.399999730215e+01 2.462240289906e-02 - 11.8333 8.598766108992e-06 8.542755015543e-06 2.399999145719e+01 3.834130428025e-02 - 12.1667 2.611765409409e-05 2.596020332213e-05 2.399997403971e+01 5.868256892109e-02 - 12.5 7.608821448518e-05 7.566556929143e-05 2.399992433429e+01 8.822180939210e-02 - 12.8333 2.124903883306e-04 2.114081368791e-04 2.399978859166e+01 1.302549940497e-01 - 13.1667 5.685276981636e-04 5.658869124423e-04 2.399943411280e+01 1.888677435760e-01 - 13.5 1.456485428304e-03 1.450352184743e-03 2.399854964740e+01 2.689553860821e-01 - 13.8333 3.570725868134e-03 3.557184501357e-03 2.399644281492e+01 3.761678784769e-01 - 14.1667 8.372605104386e-03 8.344221152564e-03 2.399165577806e+01 5.167533414733e-01 - 14.5 1.876649315304e-02 1.871009047208e-02 2.398128990847e+01 6.972776485204e-01 - 14.8333 4.018818935056e-02 4.008209924661e-02 2.395991789935e+01 9.242063091066e-01 - 15.1667 8.218523045868e-02 8.199665482934e-02 2.391800334337e+01 1.203349228728e+00 - 15.5 1.604251797218e-01 1.601089608909e-01 2.383989103683e+01 1.539188295218e+00 - 15.8333 2.987842293275e-01 2.982848391787e-01 2.370171515802e+01 1.934130436525e+00 - 16.1667 5.307560799654e-01 5.300144684670e-01 2.346998552817e+01 2.387751903539e+00 - 16.5 8.989923689127e-01 8.979578317801e-01 2.310204216431e+01 2.896119155486e+00 - 16.8333 1.451577886699e+00 1.450222207355e+00 2.254977778824e+01 3.451283515303e+00 - 17.1667 2.233968006248e+00 2.232295880177e+00 2.176770411504e+01 4.041046701772e+00 - 17.5 3.276605593426e+00 3.274654206826e+00 2.072534578822e+01 4.649079665430e+00 - 17.8333 4.580028375190e+00 4.577852592597e+00 1.942214740254e+01 5.255447192243e+00 - 18.1667 6.101260771518e+00 6.098908811274e+00 1.790109118428e+01 5.837547513122e+00 - 18.5 7.746551131291e+00 7.744044346459e+00 1.625595564982e+01 6.371424480909e+00 - 18.8333 9.375127720227e+00 9.372459479193e+00 1.462754051805e+01 6.833356874077e+00 - 19.1667 1.081617087842e+01 1.081332896013e+01 1.318667103814e+01 7.201583440738e+00 - 19.5 1.189712386893e+01 1.189412326748e+01 1.210587673167e+01 7.457991576092e+00 - 19.8333 1.247719246828e+01 1.247409469920e+01 1.152590530045e+01 7.589588377780e+00 + 0.166667 2.173421305774e+01 2.173403386062e+01 2.265966136452e+00 2.269804666230e+01 + 0.5 1.732877229921e+01 1.732818349805e+01 6.671816494264e+00 2.011806700216e+01 9.000888655936e-08 3.998622946965e-05 + 0.833333 1.328083118520e+01 1.327977600372e+01 1.072022398538e+01 1.760855984591e+01 + 1.16667 9.764783867926e+00 9.763295612541e+00 1.423670437486e+01 1.521226338233e+01 + 1.5 6.876979953496e+00 6.875203671269e+00 1.712479631571e+01 1.296594983166e+01 1.040652508347e-06 5.706265745151e-05 + 1.83333 4.633445178267e+00 4.631592230628e+00 1.936840775689e+01 1.089878644678e+01 + 2.16667 2.983957613890e+00 2.982233846720e+00 2.101776614195e+01 9.031332911126e+00 + 2.5 1.835670035543e+00 1.834219344991e+00 2.216578064515e+01 7.375218041904e+00 3.202792317384e-06 1.617537637820e-05 + 2.83333 1.078309641974e+00 1.077193213990e+00 2.292280677772e+01 5.933464823754e+00 + 3.16667 6.047271174932e-01 6.039348412011e-01 2.339606515202e+01 4.701369003147e+00 + 3.5 3.237687664602e-01 3.232468743784e-01 2.367675312021e+01 3.667790507022e+00 5.217031898322e-06 -3.366526105468e-06 + 3.83333 1.655091654568e-01 1.651883636903e-01 2.383481163209e+01 2.816693051599e+00 + 4.16667 8.080184013938e-02 8.061704169374e-02 2.391938295507e+01 2.128765894909e+00 + 4.5 3.768529740313e-02 3.758518698196e-02 2.396241481059e+01 1.582979760722e+00 5.639342374260e-06 -2.476867171957e-06 + 4.83333 1.679748180460e-02 1.674633341958e-02 2.398325366478e+01 1.157961083142e+00 + 5.16667 7.158658677381e-03 7.133952389501e-03 2.399286604629e+01 8.331082803344e-01 + 5.5 2.918406918575e-03 2.907101076281e-03 2.399709289797e+01 5.894142528778e-01 4.455972090574e-06 -4.912290738971e-07 + 5.83333 1.138704484326e-03 1.133794317495e-03 2.399886620500e+01 4.099953343102e-01 + 6.16667 4.254614095066e-04 4.234343197745e-04 2.399957656520e+01 2.803548753963e-01 + 6.5 1.523110829998e-04 1.515144734559e-04 2.399984848518e+01 1.884278508342e-01 2.697942284667e-06 -4.814123623066e-08 + 6.83333 5.227158937090e-05 5.197321094117e-05 2.399994802654e+01 1.244614394092e-01 + 7.16667 1.720693832796e-05 1.710029247352e-05 2.399998289953e+01 8.078687428780e-02 + 7.5 5.436060938942e-06 5.399649329853e-06 2.399999460021e+01 5.153218578890e-02 1.262649987381e-06 -2.664487697096e-09 + 7.83333 1.649088196500e-06 1.637200839026e-06 2.399999836269e+01 3.231618817415e-02 + 8.16667 4.806358161413e-07 4.769214583283e-07 2.399999952299e+01 1.995341519396e-02 + 8.5 1.346685591699e-07 1.335566667217e-07 2.399999986637e+01 1.218943044689e-02 2.986653165113e-07 -8.898264277299e-11 + 8.83333 3.634651795932e-08 3.602678702572e-08 2.399999996391e+01 7.477181954098e-03 + 9.16667 9.688299811041e-09 9.597459993551e-09 2.399999999035e+01 4.798414842273e-03 + 9.5 3.521245211305e-09 3.486099726033e-09 2.399999999646e+01 3.529705335038e-03 + 9.83333 5.266729327194e-09 5.215573622272e-09 2.399999999473e+01 3.350197790833e-03 + 10.1667 1.826814043527e-08 1.810189407769e-08 2.399999998184e+01 4.187174718005e-03 + 10.5 6.734157443551e-08 6.676538891465e-08 2.399999993318e+01 6.195634765137e-03 + 10.8333 2.402572726978e-07 2.383277269947e-07 2.399999976161e+01 9.768547400295e-03 + 11.1667 8.242629303642e-07 8.180678855293e-07 2.399999918186e+01 1.557488011750e-02 + 11.5 2.716856872536e-06 2.697812006066e-06 2.399999730210e+01 2.462240289775e-02 + 11.8333 8.598766108992e-06 8.542754913983e-06 2.399999145713e+01 3.834130427899e-02 + 12.1667 2.611765409409e-05 2.596020313789e-05 2.399997403965e+01 5.868256891991e-02 + 12.5 7.608821448518e-05 7.566556897109e-05 2.399992433424e+01 8.822180939102e-02 + 12.8333 2.124903883306e-04 2.114081363477e-04 2.399978859161e+01 1.302549940488e-01 + 13.1667 5.685276981636e-04 5.658869116205e-04 2.399943411275e+01 1.888677435751e-01 + 13.5 1.456485428304e-03 1.450352183710e-03 2.399854964736e+01 2.689553860813e-01 + 13.8333 3.570725868134e-03 3.557184501303e-03 2.399644281489e+01 3.761678784761e-01 + 14.1667 8.372605104386e-03 8.344221154090e-03 2.399165577803e+01 5.167533414725e-01 + 14.5 1.876649315304e-02 1.871009047534e-02 2.398128990844e+01 6.972776485195e-01 + 14.8333 4.018818935056e-02 4.008209925142e-02 2.395991789933e+01 9.242063091055e-01 + 15.1667 8.218523045868e-02 8.199665483520e-02 2.391800334335e+01 1.203349228726e+00 + 15.5 1.604251797218e-01 1.601089608972e-01 2.383989103682e+01 1.539188295216e+00 + 15.8333 2.987842293275e-01 2.982848391849e-01 2.370171515801e+01 1.934130436523e+00 + 16.1667 5.307560799654e-01 5.300144684729e-01 2.346998552817e+01 2.387751903536e+00 + 16.5 8.989923689127e-01 8.979578317854e-01 2.310204216430e+01 2.896119155483e+00 + 16.8333 1.451577886699e+00 1.450222207360e+00 2.254977778823e+01 3.451283515299e+00 + 17.1667 2.233968006248e+00 2.232295880183e+00 2.176770411504e+01 4.041046701768e+00 + 17.5 3.276605593426e+00 3.274654206834e+00 2.072534578821e+01 4.649079665426e+00 + 17.8333 4.580028375190e+00 4.577852592607e+00 1.942214740254e+01 5.255447192237e+00 + 18.1667 6.101260771518e+00 6.098908811286e+00 1.790109118428e+01 5.837547513116e+00 + 18.5 7.746551131291e+00 7.744044346473e+00 1.625595564982e+01 6.371424480902e+00 + 18.8333 9.375127720227e+00 9.372459479205e+00 1.462754051805e+01 6.833356874070e+00 + 19.1667 1.081617087842e+01 1.081332896014e+01 1.318667103814e+01 7.201583440730e+00 + 19.5 1.189712386893e+01 1.189412326749e+01 1.210587673166e+01 7.457991576084e+00 + 19.8333 1.247719246828e+01 1.247409469920e+01 1.152590530045e+01 7.589588377772e+00 -99 2.500000000000e+01 0.000000000000e+00 0.000000000000e+00 0.000000000000e+00 diff --git a/ex13a.out b/ex13a.out index 2bfcc91d..83ef0187 100644 --- a/ex13a.out +++ b/ex13a.out @@ -55,7 +55,7 @@ Initial solution 0. ----------------------------Description of solution---------------------------- pH = 7.000 - pe = 13.622 Equilibrium with O2(g) + pe = 13.618 Equilibrium with O2(g) Specific Conductance (µS/cm, 25°C) = 191 Density (g/cm³) = 0.99712 Volume (L) = 1.00302 @@ -83,7 +83,7 @@ Cl 1.000e-03 Cl- 1.000e-03 9.576e-04 -3.000 -3.019 -0.019 18.08 HCl 3.294e-11 3.299e-11 -10.482 -10.482 0.001 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.394 -44.394 0.000 28.61 + H2 0.000e+00 0.000e+00 -44.385 -44.385 0.000 28.61 N(5) 1.000e-03 NO3- 1.000e-03 9.572e-04 -3.000 -3.019 -0.019 29.50 Na 1.000e-03 @@ -95,7 +95,7 @@ O(0) 5.110e-04 Phase SI** log IAP log K(298 K, 1 atm) - H2(g) -41.29 -44.39 -3.10 H2 + H2(g) -41.28 -44.39 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -7.61 -6.04 1.57 NaCl O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000 @@ -141,7 +141,7 @@ Initial solution 1. ----------------------------Description of solution---------------------------- pH = 7.000 - pe = 13.622 Equilibrium with O2(g) + pe = 13.618 Equilibrium with O2(g) Specific Conductance (µS/cm, 25°C) = 141 Density (g/cm³) = 0.99711 Volume (L) = 1.00301 @@ -166,7 +166,7 @@ Initial solution 1. H+ 1.035e-07 1.000e-07 -6.985 -7.000 -0.015 0.00 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.394 -44.394 0.000 28.61 + H2 0.000e+00 0.000e+00 -44.385 -44.385 0.000 28.61 K 1.000e-03 K+ 1.000e-03 9.649e-04 -3.000 -3.016 -0.016 9.01 N(5) 1.000e-03 @@ -178,7 +178,7 @@ O(0) 5.111e-04 Phase SI** log IAP log K(298 K, 1 atm) - H2(g) -41.29 -44.39 -3.10 H2 + H2(g) -41.28 -44.39 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000 @@ -215,7 +215,7 @@ X 1.000e-03 mol Species Moles alents Fraction Gamma KX 1.000e-03 1.000e-03 1.000e+00 -0.016 - NH4X 5.034e-63 5.034e-63 5.034e-60 -0.016 + NH4X 5.455e-63 5.455e-63 5.455e-60 -0.016 -----------------------------Solution composition------------------------------ @@ -227,7 +227,7 @@ X 1.000e-03 mol ----------------------------Description of solution---------------------------- pH = 7.000 Charge balance - pe = 13.622 Adjusted to redox equilibrium + pe = 13.618 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 141 Density (g/cm³) = 0.99711 Volume (L) = 1.00301 @@ -252,16 +252,16 @@ X 1.000e-03 mol H+ 1.035e-07 1.000e-07 -6.985 -7.000 -0.015 0.00 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.394 -44.394 0.000 28.61 + H2 0.000e+00 0.000e+00 -44.385 -44.385 0.000 28.61 K 1.000e-03 K+ 1.000e-03 9.649e-04 -3.000 -3.016 -0.016 9.01 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -62.898 -62.914 -0.016 17.89 - NH3 0.000e+00 0.000e+00 -65.158 -65.158 0.000 24.42 -N(0) 1.351e-19 - N2 6.757e-20 6.759e-20 -19.170 -19.170 0.000 29.29 -N(3) 2.120e-16 - NO2- 2.120e-16 2.045e-16 -15.674 -15.689 -0.016 24.97 + NH4+ 0.000e+00 0.000e+00 -62.863 -62.879 -0.016 17.89 + NH3 0.000e+00 0.000e+00 -65.123 -65.123 0.000 24.42 +N(0) 1.494e-19 + N2 7.471e-20 7.473e-20 -19.127 -19.127 0.000 29.29 +N(3) 2.163e-16 + NO2- 2.163e-16 2.086e-16 -15.665 -15.681 -0.016 24.97 N(5) 1.000e-03 NO3- 1.000e-03 9.647e-04 -3.000 -3.016 -0.016 29.49 O(0) 5.111e-04 @@ -271,10 +271,10 @@ O(0) 5.111e-04 Phase SI** log IAP log K(298 K, 1 atm) - H2(g) -41.29 -44.39 -3.10 H2 + H2(g) -41.28 -44.39 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -15.99 -19.17 -3.18 N2 - NH3(g) -66.95 -65.16 1.80 NH3 + N2(g) -15.95 -19.13 -3.18 N2 + NH3(g) -66.92 -65.12 1.80 NH3 O2(g) -0.70 -3.59 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. diff --git a/ex13ac.out b/ex13ac.out index 80af4cc0..1e3746be 100644 --- a/ex13ac.out +++ b/ex13ac.out @@ -55,7 +55,7 @@ Initial solution 0. ----------------------------Description of solution---------------------------- pH = 7.000 - pe = 13.622 Equilibrium with O2(g) + pe = 13.618 Equilibrium with O2(g) Specific Conductance (µS/cm, 25°C) = 191 Density (g/cm³) = 0.99712 Volume (L) = 1.00302 @@ -83,7 +83,7 @@ Cl 1.000e-03 Cl- 1.000e-03 9.576e-04 -3.000 -3.019 -0.019 18.08 HCl 3.294e-11 3.299e-11 -10.482 -10.482 0.001 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.394 -44.394 0.000 28.61 + H2 0.000e+00 0.000e+00 -44.385 -44.385 0.000 28.61 N(5) 1.000e-03 NO3- 1.000e-03 9.572e-04 -3.000 -3.019 -0.019 29.50 Na 1.000e-03 @@ -95,7 +95,7 @@ O(0) 5.110e-04 Phase SI** log IAP log K(298 K, 1 atm) - H2(g) -41.29 -44.39 -3.10 H2 + H2(g) -41.28 -44.39 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -7.61 -6.04 1.57 NaCl O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000 @@ -141,7 +141,7 @@ Initial solution 1. ----------------------------Description of solution---------------------------- pH = 7.000 - pe = 13.622 Equilibrium with O2(g) + pe = 13.618 Equilibrium with O2(g) Specific Conductance (µS/cm, 25°C) = 141 Density (g/cm³) = 0.99711 Volume (L) = 1.00301 @@ -166,7 +166,7 @@ Initial solution 1. H+ 1.035e-07 1.000e-07 -6.985 -7.000 -0.015 0.00 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.394 -44.394 0.000 28.61 + H2 0.000e+00 0.000e+00 -44.385 -44.385 0.000 28.61 K 1.000e-03 K+ 1.000e-03 9.649e-04 -3.000 -3.016 -0.016 9.01 N(5) 1.000e-03 @@ -178,7 +178,7 @@ O(0) 5.111e-04 Phase SI** log IAP log K(298 K, 1 atm) - H2(g) -41.29 -44.39 -3.10 H2 + H2(g) -41.28 -44.39 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000 @@ -215,7 +215,7 @@ X 1.000e-03 mol Species Moles alents Fraction Gamma KX 1.000e-03 1.000e-03 1.000e+00 -0.016 - NH4X 5.034e-63 5.034e-63 5.034e-60 -0.016 + NH4X 5.455e-63 5.455e-63 5.455e-60 -0.016 -----------------------------Solution composition------------------------------ @@ -227,7 +227,7 @@ X 1.000e-03 mol ----------------------------Description of solution---------------------------- pH = 7.000 Charge balance - pe = 13.622 Adjusted to redox equilibrium + pe = 13.618 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 141 Density (g/cm³) = 0.99711 Volume (L) = 1.00301 @@ -252,16 +252,16 @@ X 1.000e-03 mol H+ 1.035e-07 1.000e-07 -6.985 -7.000 -0.015 0.00 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.394 -44.394 0.000 28.61 + H2 0.000e+00 0.000e+00 -44.385 -44.385 0.000 28.61 K 1.000e-03 K+ 1.000e-03 9.649e-04 -3.000 -3.016 -0.016 9.01 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -62.898 -62.914 -0.016 17.89 - NH3 0.000e+00 0.000e+00 -65.158 -65.158 0.000 24.42 -N(0) 1.351e-19 - N2 6.757e-20 6.759e-20 -19.170 -19.170 0.000 29.29 -N(3) 2.120e-16 - NO2- 2.120e-16 2.045e-16 -15.674 -15.689 -0.016 24.97 + NH4+ 0.000e+00 0.000e+00 -62.863 -62.879 -0.016 17.89 + NH3 0.000e+00 0.000e+00 -65.123 -65.123 0.000 24.42 +N(0) 1.494e-19 + N2 7.471e-20 7.473e-20 -19.127 -19.127 0.000 29.29 +N(3) 2.163e-16 + NO2- 2.163e-16 2.086e-16 -15.665 -15.681 -0.016 24.97 N(5) 1.000e-03 NO3- 1.000e-03 9.647e-04 -3.000 -3.016 -0.016 29.49 O(0) 5.111e-04 @@ -271,10 +271,10 @@ O(0) 5.111e-04 Phase SI** log IAP log K(298 K, 1 atm) - H2(g) -41.29 -44.39 -3.10 H2 + H2(g) -41.28 -44.39 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -15.99 -19.17 -3.18 N2 - NH3(g) -66.95 -65.16 1.80 NH3 + N2(g) -15.95 -19.13 -3.18 N2 + NH3(g) -66.92 -65.12 1.80 NH3 O2(g) -0.70 -3.59 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. diff --git a/ex13b.out b/ex13b.out index d4289e43..4880bf4e 100644 --- a/ex13b.out +++ b/ex13b.out @@ -55,7 +55,7 @@ Initial solution 0. ----------------------------Description of solution---------------------------- pH = 7.000 - pe = 13.622 Equilibrium with O2(g) + pe = 13.618 Equilibrium with O2(g) Specific Conductance (µS/cm, 25°C) = 191 Density (g/cm³) = 0.99712 Volume (L) = 1.00302 @@ -83,7 +83,7 @@ Cl 1.000e-03 Cl- 1.000e-03 9.576e-04 -3.000 -3.019 -0.019 18.08 HCl 3.294e-11 3.299e-11 -10.482 -10.482 0.001 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.394 -44.394 0.000 28.61 + H2 0.000e+00 0.000e+00 -44.385 -44.385 0.000 28.61 N(5) 1.000e-03 NO3- 1.000e-03 9.572e-04 -3.000 -3.019 -0.019 29.50 Na 1.000e-03 @@ -95,7 +95,7 @@ O(0) 5.110e-04 Phase SI** log IAP log K(298 K, 1 atm) - H2(g) -41.29 -44.39 -3.10 H2 + H2(g) -41.28 -44.39 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -7.61 -6.04 1.57 NaCl O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000 @@ -141,7 +141,7 @@ Initial solution 1. ----------------------------Description of solution---------------------------- pH = 7.000 - pe = 13.622 Equilibrium with O2(g) + pe = 13.618 Equilibrium with O2(g) Specific Conductance (µS/cm, 25°C) = 141 Density (g/cm³) = 0.99711 Volume (L) = 1.00301 @@ -166,7 +166,7 @@ Initial solution 1. H+ 1.035e-07 1.000e-07 -6.985 -7.000 -0.015 0.00 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.394 -44.394 0.000 28.61 + H2 0.000e+00 0.000e+00 -44.385 -44.385 0.000 28.61 K 1.000e-03 K+ 1.000e-03 9.649e-04 -3.000 -3.016 -0.016 9.01 N(5) 1.000e-03 @@ -178,7 +178,7 @@ O(0) 5.111e-04 Phase SI** log IAP log K(298 K, 1 atm) - H2(g) -41.29 -44.39 -3.10 H2 + H2(g) -41.28 -44.39 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000 @@ -215,7 +215,7 @@ X 1.000e-03 mol Species Moles alents Fraction Gamma KX 1.000e-03 1.000e-03 1.000e+00 -0.016 - NH4X 5.034e-63 5.034e-63 5.034e-60 -0.016 + NH4X 5.455e-63 5.455e-63 5.455e-60 -0.016 -----------------------------Solution composition------------------------------ @@ -227,7 +227,7 @@ X 1.000e-03 mol ----------------------------Description of solution---------------------------- pH = 7.000 Charge balance - pe = 13.622 Adjusted to redox equilibrium + pe = 13.618 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 141 Density (g/cm³) = 0.99711 Volume (L) = 1.00301 @@ -252,16 +252,16 @@ X 1.000e-03 mol H+ 1.035e-07 1.000e-07 -6.985 -7.000 -0.015 0.00 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.394 -44.394 0.000 28.61 + H2 0.000e+00 0.000e+00 -44.385 -44.385 0.000 28.61 K 1.000e-03 K+ 1.000e-03 9.649e-04 -3.000 -3.016 -0.016 9.01 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -62.898 -62.914 -0.016 17.89 - NH3 0.000e+00 0.000e+00 -65.158 -65.158 0.000 24.42 -N(0) 1.351e-19 - N2 6.757e-20 6.759e-20 -19.170 -19.170 0.000 29.29 -N(3) 2.120e-16 - NO2- 2.120e-16 2.045e-16 -15.674 -15.689 -0.016 24.97 + NH4+ 0.000e+00 0.000e+00 -62.863 -62.879 -0.016 17.89 + NH3 0.000e+00 0.000e+00 -65.123 -65.123 0.000 24.42 +N(0) 1.494e-19 + N2 7.471e-20 7.473e-20 -19.127 -19.127 0.000 29.29 +N(3) 2.163e-16 + NO2- 2.163e-16 2.086e-16 -15.665 -15.681 -0.016 24.97 N(5) 1.000e-03 NO3- 1.000e-03 9.647e-04 -3.000 -3.016 -0.016 29.49 O(0) 5.111e-04 @@ -271,10 +271,10 @@ O(0) 5.111e-04 Phase SI** log IAP log K(298 K, 1 atm) - H2(g) -41.29 -44.39 -3.10 H2 + H2(g) -41.28 -44.39 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -15.99 -19.17 -3.18 N2 - NH3(g) -66.95 -65.16 1.80 NH3 + N2(g) -15.95 -19.13 -3.18 N2 + NH3(g) -66.92 -65.12 1.80 NH3 O2(g) -0.70 -3.59 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. diff --git a/ex13c.out b/ex13c.out index 915fc706..c48ea760 100644 --- a/ex13c.out +++ b/ex13c.out @@ -55,7 +55,7 @@ Initial solution 0. ----------------------------Description of solution---------------------------- pH = 7.000 - pe = 13.622 Equilibrium with O2(g) + pe = 13.618 Equilibrium with O2(g) Specific Conductance (µS/cm, 25°C) = 191 Density (g/cm³) = 0.99712 Volume (L) = 1.00302 @@ -83,7 +83,7 @@ Cl 1.000e-03 Cl- 1.000e-03 9.576e-04 -3.000 -3.019 -0.019 18.08 HCl 3.294e-11 3.299e-11 -10.482 -10.482 0.001 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.394 -44.394 0.000 28.61 + H2 0.000e+00 0.000e+00 -44.385 -44.385 0.000 28.61 N(5) 1.000e-03 NO3- 1.000e-03 9.572e-04 -3.000 -3.019 -0.019 29.50 Na 1.000e-03 @@ -95,7 +95,7 @@ O(0) 5.110e-04 Phase SI** log IAP log K(298 K, 1 atm) - H2(g) -41.29 -44.39 -3.10 H2 + H2(g) -41.28 -44.39 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -7.61 -6.04 1.57 NaCl O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000 @@ -141,7 +141,7 @@ Initial solution 1. ----------------------------Description of solution---------------------------- pH = 7.000 - pe = 13.622 Equilibrium with O2(g) + pe = 13.618 Equilibrium with O2(g) Specific Conductance (µS/cm, 25°C) = 141 Density (g/cm³) = 0.99711 Volume (L) = 1.00301 @@ -166,7 +166,7 @@ Initial solution 1. H+ 1.035e-07 1.000e-07 -6.985 -7.000 -0.015 0.00 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.394 -44.394 0.000 28.61 + H2 0.000e+00 0.000e+00 -44.385 -44.385 0.000 28.61 K 1.000e-03 K+ 1.000e-03 9.649e-04 -3.000 -3.016 -0.016 9.01 N(5) 1.000e-03 @@ -178,7 +178,7 @@ O(0) 5.111e-04 Phase SI** log IAP log K(298 K, 1 atm) - H2(g) -41.29 -44.39 -3.10 H2 + H2(g) -41.28 -44.39 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000 @@ -215,7 +215,7 @@ X 1.000e-03 mol Species Moles alents Fraction Gamma KX 1.000e-03 1.000e-03 1.000e+00 -0.016 - NH4X 5.034e-63 5.034e-63 5.034e-60 -0.016 + NH4X 5.455e-63 5.455e-63 5.455e-60 -0.016 -----------------------------Solution composition------------------------------ @@ -227,7 +227,7 @@ X 1.000e-03 mol ----------------------------Description of solution---------------------------- pH = 7.000 Charge balance - pe = 13.622 Adjusted to redox equilibrium + pe = 13.618 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 141 Density (g/cm³) = 0.99711 Volume (L) = 1.00301 @@ -252,16 +252,16 @@ X 1.000e-03 mol H+ 1.035e-07 1.000e-07 -6.985 -7.000 -0.015 0.00 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.394 -44.394 0.000 28.61 + H2 0.000e+00 0.000e+00 -44.385 -44.385 0.000 28.61 K 1.000e-03 K+ 1.000e-03 9.649e-04 -3.000 -3.016 -0.016 9.01 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -62.898 -62.914 -0.016 17.89 - NH3 0.000e+00 0.000e+00 -65.158 -65.158 0.000 24.42 -N(0) 1.351e-19 - N2 6.757e-20 6.759e-20 -19.170 -19.170 0.000 29.29 -N(3) 2.120e-16 - NO2- 2.120e-16 2.045e-16 -15.674 -15.689 -0.016 24.97 + NH4+ 0.000e+00 0.000e+00 -62.863 -62.879 -0.016 17.89 + NH3 0.000e+00 0.000e+00 -65.123 -65.123 0.000 24.42 +N(0) 1.494e-19 + N2 7.471e-20 7.473e-20 -19.127 -19.127 0.000 29.29 +N(3) 2.163e-16 + NO2- 2.163e-16 2.086e-16 -15.665 -15.681 -0.016 24.97 N(5) 1.000e-03 NO3- 1.000e-03 9.647e-04 -3.000 -3.016 -0.016 29.49 O(0) 5.111e-04 @@ -271,10 +271,10 @@ O(0) 5.111e-04 Phase SI** log IAP log K(298 K, 1 atm) - H2(g) -41.29 -44.39 -3.10 H2 + H2(g) -41.28 -44.39 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -15.99 -19.17 -3.18 N2 - NH3(g) -66.95 -65.16 1.80 NH3 + N2(g) -15.95 -19.13 -3.18 N2 + NH3(g) -66.92 -65.12 1.80 NH3 O2(g) -0.70 -3.59 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. diff --git a/ex14.out b/ex14.out index 2331707f..281b98ce 100644 --- a/ex14.out +++ b/ex14.out @@ -88,20 +88,20 @@ Initial solution 1. Brine ----------------------------Description of solution---------------------------- pH = 5.713 - pe = 14.962 Equilibrium with O2(g) - Specific Conductance (µS/cm, 25°C) = 243037 - Density (g/cm³) = 1.21639 - Volume (L) = 1.13690 - Viscosity (mPa s) = 1.95446 + pe = 14.957 Equilibrium with O2(g) + Specific Conductance (µS/cm, 25°C) = 243334 + Density (g/cm³) = 1.21644 + Volume (L) = 1.13686 + Viscosity (mPa s) = 1.95122 Activity of water = 0.785 - Ionic strength (mol/kgw) = 7.270e+00 + Ionic strength (mol/kgw) = 7.267e+00 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 3.608e-03 + Total alkalinity (eq/kg) = 3.607e-03 Total CO2 (mol/kg) = 3.960e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = -3.249e-13 + Electrical balance (eq) = -1.687e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 14 + Iterations = 11 Total H = 1.110160e+02 Total O = 5.553674e+01 @@ -111,86 +111,88 @@ Initial solution 1. Brine Species Molality Activity Molality Activity Gamma cm³/mol H+ 2.756e-06 1.936e-06 -5.560 -5.713 -0.153 0.00 - OH- 8.878e-09 4.101e-09 -8.052 -8.387 -0.335 6.33 + OH- 8.877e-09 4.101e-09 -8.052 -8.387 -0.335 6.33 H2O 5.551e+01 7.846e-01 1.744 -0.105 0.000 18.07 As 2.500e-08 - H2AsO4- 2.498e-08 1.374e-07 -7.602 -6.862 0.740 (0) - H3AsO4 8.669e-12 4.623e-11 -11.062 -10.335 0.727 (0) - HAsO4-2 8.507e-12 7.779e-09 -11.070 -8.109 2.961 (0) - AsO4-3 2.763e-21 1.270e-14 -20.559 -13.896 6.663 (0) + H2AsO4- 2.498e-08 1.373e-07 -7.602 -6.862 0.740 (0) + H3AsO4 8.666e-12 4.619e-11 -11.062 -10.335 0.727 (0) + HAsO4-2 8.529e-12 7.772e-09 -11.069 -8.109 2.960 (0) + AsO4-3 2.782e-21 1.269e-14 -20.556 -13.896 6.659 (0) C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -144.496 -143.769 0.727 35.46 + CH4 0.000e+00 0.000e+00 -144.460 -143.734 0.727 35.46 C(4) 3.960e-03 - MgHCO3+ 2.344e-03 1.167e-03 -2.630 -2.933 -0.303 6.01 - CaHCO3+ 8.690e-04 5.263e-04 -3.061 -3.279 -0.218 10.08 - CO2 3.518e-04 1.062e-03 -3.454 -2.974 0.480 34.43 - HCO3- 3.309e-04 1.914e-04 -3.480 -3.718 -0.238 37.32 - NaHCO3 6.284e-05 1.787e-03 -4.202 -2.748 1.454 31.73 - CaCO3 1.041e-06 5.551e-06 -5.983 -5.256 0.727 -14.60 - MgCO3 4.324e-07 2.306e-06 -6.364 -5.637 0.727 -17.09 - CO3-2 4.143e-08 4.635e-09 -7.383 -8.334 -0.951 10.19 - (CO2)2 3.882e-09 2.070e-08 -8.411 -7.684 0.727 68.87 + MgHCO3+ 2.344e-03 1.168e-03 -2.630 -2.933 -0.303 6.01 + CaHCO3+ 8.668e-04 5.250e-04 -3.062 -3.280 -0.218 10.08 + CO2 3.528e-04 1.064e-03 -3.453 -2.973 0.480 34.43 + HCO3- 3.317e-04 1.918e-04 -3.479 -3.717 -0.238 37.31 + NaHCO3 6.306e-05 1.791e-03 -4.200 -2.747 1.453 31.73 + CaCO3 1.039e-06 5.537e-06 -5.983 -5.257 0.727 -14.60 + MgCO3 4.327e-07 2.306e-06 -6.364 -5.637 0.727 -17.09 + CO3-2 4.152e-08 4.646e-09 -7.382 -8.333 -0.951 10.19 + (CO2)2 3.902e-09 2.080e-08 -8.409 -7.682 0.727 68.87 Ca 4.655e-01 - Ca+2 4.643e-01 7.129e-01 -0.333 -0.147 0.186 -13.79 - CaHCO3+ 8.690e-04 5.263e-04 -3.061 -3.279 -0.218 10.08 - CaSO4 3.227e-04 1.721e-03 -3.491 -2.764 0.727 7.50 - CaCO3 1.041e-06 5.551e-06 -5.983 -5.256 0.727 -14.60 - CaOH+ 8.717e-09 4.794e-08 -8.060 -7.319 0.740 (0) - CaHSO4+ 3.984e-09 2.191e-08 -8.400 -7.659 0.740 (0) + Ca+2 4.625e-01 7.095e-01 -0.335 -0.149 0.186 -13.79 + CaSO4 2.094e-03 4.409e-03 -2.679 -2.356 0.323 7.22 + CaHCO3+ 8.668e-04 5.250e-04 -3.062 -3.280 -0.218 10.08 + CaCO3 1.039e-06 5.537e-06 -5.983 -5.257 0.727 -14.60 + CaHSO4+ 1.302e-08 7.155e-08 -7.885 -7.145 0.740 (0) + CaOH+ 8.684e-09 4.771e-08 -8.061 -7.321 0.740 (0) Cl 6.642e+00 Cl- 6.642e+00 4.165e+00 0.822 0.620 -0.203 20.27 - HCl 2.238e-09 2.778e-06 -8.650 -5.556 3.094 (0) + HCl 2.243e-09 2.778e-06 -8.649 -5.556 3.093 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -45.226 -44.499 0.727 28.61 + H2 0.000e+00 0.000e+00 -45.217 -44.490 0.727 28.61 Mg 1.609e-01 - Mg+2 1.585e-01 5.213e-01 -0.800 -0.283 0.517 -17.22 - MgHCO3+ 2.344e-03 1.167e-03 -2.630 -2.933 -0.303 6.01 - MgSO4 6.515e-05 1.853e-03 -4.186 -2.732 1.454 -7.92 - MgOH+ 1.225e-06 7.669e-07 -5.912 -6.115 -0.204 (0) - MgCO3 4.324e-07 2.306e-06 -6.364 -5.637 0.727 -17.09 - Mg(SO4)2-2 2.191e-07 8.286e-08 -6.659 -7.082 -0.422 54.97 + Mg+2 1.583e-01 5.202e-01 -0.800 -0.284 0.517 -17.22 + MgHCO3+ 2.344e-03 1.168e-03 -2.630 -2.933 -0.303 6.01 + MgSO4 2.136e-04 6.068e-03 -3.670 -2.217 1.453 -0.40 + Mg(SO4)2-2 2.355e-06 8.904e-07 -5.628 -6.050 -0.422 56.94 + MgOH+ 1.223e-06 7.653e-07 -5.913 -6.116 -0.204 (0) + MgCO3 4.327e-07 2.306e-06 -6.364 -5.637 0.727 -17.09 Na 5.402e+00 - Na+ 5.398e+00 1.072e+01 0.732 1.030 0.298 1.52 - NaSO4- 4.063e-03 2.370e-03 -2.391 -2.625 -0.234 35.76 - NaHCO3 6.284e-05 1.787e-03 -4.202 -2.748 1.454 31.73 -O(0) 9.585e-05 - O2 4.793e-05 2.556e-04 -4.319 -3.592 0.727 30.40 + Na+ 5.400e+00 1.072e+01 0.732 1.030 0.298 1.52 + NaSO4- 1.511e-03 4.196e-03 -2.821 -2.377 0.444 35.63 + NaHCO3 6.306e-05 1.791e-03 -4.200 -2.747 1.453 31.73 + Na2SO4 4.989e-06 2.194e-05 -5.302 -4.659 0.643 47.96 +O(0) 9.591e-05 + O2 4.796e-05 2.556e-04 -4.319 -3.592 0.727 30.40 S(-2) 0.000e+00 - H2S 0.000e+00 0.000e+00 -141.404 -140.677 0.727 36.27 - HS- 0.000e+00 0.000e+00 -141.570 -141.905 -0.335 23.12 - S-2 0.000e+00 0.000e+00 -148.097 -149.110 -1.013 (0) - (H2S)2 0.000e+00 0.000e+00 -283.359 -282.632 0.727 30.09 + H2S 0.000e+00 0.000e+00 -140.852 -140.126 0.727 36.27 + HS- 0.000e+00 0.000e+00 -141.019 -141.354 -0.335 23.12 + S-2 0.000e+00 0.000e+00 -147.546 -148.559 -1.013 (0) + (H2S)2 0.000e+00 0.000e+00 -282.256 -281.530 0.727 30.09 S(6) 4.725e-03 - NaSO4- 4.063e-03 2.370e-03 -2.391 -2.625 -0.234 35.76 - CaSO4 3.227e-04 1.721e-03 -3.491 -2.764 0.727 7.50 - SO4-2 2.734e-04 1.358e-05 -3.563 -4.867 -1.304 85.83 - MgSO4 6.515e-05 1.853e-03 -4.186 -2.732 1.454 -7.92 - Mg(SO4)2-2 2.191e-07 8.286e-08 -6.659 -7.082 -0.422 54.97 - CaHSO4+ 3.984e-09 2.191e-08 -8.400 -7.659 0.740 (0) - HSO4- 4.648e-10 2.556e-09 -9.333 -8.592 0.740 42.16 + CaSO4 2.094e-03 4.409e-03 -2.679 -2.356 0.323 7.22 + NaSO4- 1.511e-03 4.196e-03 -2.821 -2.377 0.444 35.63 + SO4-2 8.970e-04 4.455e-05 -3.047 -4.351 -1.304 35.42 + MgSO4 2.136e-04 6.068e-03 -3.670 -2.217 1.453 -0.40 + Na2SO4 4.989e-06 2.194e-05 -5.302 -4.659 0.643 47.96 + Mg(SO4)2-2 2.355e-06 8.904e-07 -5.628 -6.050 -0.422 56.94 + CaHSO4+ 1.302e-08 7.155e-08 -7.885 -7.145 0.740 (0) + HSO4- 1.527e-09 8.387e-09 -8.816 -8.076 0.740 42.16 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -0.74 -5.01 -4.28 CaSO4 - Aragonite -0.14 -8.48 -8.34 CaCO3 + Anhydrite -0.19 -4.50 -4.31 CaSO4 + Aragonite -0.15 -8.48 -8.34 CaCO3 Calcite -0.00 -8.48 -8.48 CaCO3 - CH4(g) -140.97 -143.77 -2.80 CH4 - CO2(g) -1.51 -2.97 -1.47 CO2 + CH4(g) -140.93 -143.73 -2.80 CH4 + CO2(g) -1.50 -2.97 -1.47 CO2 Dolomite -0.01 -17.10 -17.08 CaMg(CO3)2 - Epsomite -4.15 -5.89 -1.74 MgSO4:7H2O - Gypsum -0.64 -5.22 -4.58 CaSO4:2H2O - H2(g) -41.40 -44.50 -3.10 H2 + Epsomite -3.63 -5.37 -1.74 MgSO4:7H2O + Gypsum -0.16 -4.71 -4.55 CaSO4:2H2O + H2(g) -41.39 -44.49 -3.10 H2 H2O(g) -1.61 -0.11 1.50 H2O - H2S(g) -139.68 -147.62 -7.94 H2S + H2S(g) -139.13 -147.07 -7.94 H2S Halite 0.08 1.65 1.57 NaCl - Hexahydrite -4.22 -5.78 -1.57 MgSO4:6H2O - Kieserite -4.09 -5.26 -1.16 MgSO4:H2O - Mirabilite -2.62 -3.86 -1.24 Na2SO4:10H2O + Hexahydrite -3.70 -5.27 -1.57 MgSO4:6H2O + Kieserite -3.58 -4.74 -1.16 MgSO4:H2O + Mirabilite -2.64 -3.34 -0.71 Na2SO4:10H2O O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000 - Sulfur -104.21 -99.33 4.88 S - Thenardite -2.51 -2.81 -0.30 Na2SO4 + Sulfur -103.67 -98.79 4.88 S + Thenardite -2.94 -2.29 0.65 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -230,8 +232,8 @@ Using pure phase assemblage 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Calcite 0.00 -8.48 -8.48 1.000e-01 1.065e-01 6.536e-03 -Dolomite 0.00 -17.08 -17.08 1.600e+00 1.597e+00 -3.272e-03 +Calcite 0.00 -8.48 -8.48 1.000e-01 1.059e-01 5.898e-03 +Dolomite 0.00 -17.08 -17.08 1.600e+00 1.597e+00 -2.953e-03 -----------------------------Solution composition------------------------------ @@ -239,27 +241,27 @@ Dolomite 0.00 -17.08 -17.08 1.600e+00 1.597e+00 -3.272e-03 As 2.500e-08 2.500e-08 C 3.968e-03 3.968e-03 - Ca 4.622e-01 4.622e-01 + Ca 4.626e-01 4.626e-01 Cl 6.642e+00 6.642e+00 - Mg 1.642e-01 1.642e-01 + Mg 1.639e-01 1.639e-01 Na 5.402e+00 5.402e+00 S 4.725e-03 4.725e-03 ----------------------------Description of solution---------------------------- pH = 5.720 Charge balance - pe = 14.955 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 242973 - Density (g/cm³) = 1.21636 - Volume (L) = 1.13689 - Viscosity (mPa s) = 1.95495 + pe = 14.950 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 243276 + Density (g/cm³) = 1.21641 + Volume (L) = 1.13685 + Viscosity (mPa s) = 1.95167 Activity of water = 0.785 - Ionic strength (mol/kgw) = 7.270e+00 + Ionic strength (mol/kgw) = 7.267e+00 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 3.625e-03 + Total alkalinity (eq/kg) = 3.623e-03 Total CO2 (mol/kg) = 3.968e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.117e-09 + Electrical balance (eq) = 2.017e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110160e+02 @@ -270,87 +272,89 @@ Dolomite 0.00 -17.08 -17.08 1.600e+00 1.597e+00 -3.272e-03 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 2.712e-06 1.905e-06 -5.567 -5.720 -0.153 0.00 - OH- 9.023e-09 4.168e-09 -8.045 -8.380 -0.335 6.33 + H+ 2.710e-06 1.904e-06 -5.567 -5.720 -0.153 0.00 + OH- 9.029e-09 4.171e-09 -8.044 -8.380 -0.335 6.33 H2O 5.551e+01 7.846e-01 1.744 -0.105 0.000 18.07 As 2.500e-08 - H2AsO4- 2.498e-08 1.374e-07 -7.602 -6.862 0.740 (0) - HAsO4-2 8.646e-12 7.906e-09 -11.063 -8.102 2.961 (0) - H3AsO4 8.529e-12 4.549e-11 -11.069 -10.342 0.727 (0) - AsO4-3 2.854e-21 1.312e-14 -20.545 -13.882 6.663 (0) + H2AsO4- 2.498e-08 1.373e-07 -7.602 -6.862 0.740 (0) + HAsO4-2 8.675e-12 7.905e-09 -11.062 -8.102 2.960 (0) + H3AsO4 8.520e-12 4.541e-11 -11.070 -10.343 0.727 (0) + AsO4-3 2.878e-21 1.313e-14 -20.541 -13.882 6.659 (0) C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -144.506 -143.780 0.727 35.46 + CH4 0.000e+00 0.000e+00 -144.470 -143.744 0.727 35.46 C(4) 3.968e-03 - MgHCO3+ 2.375e-03 1.183e-03 -2.624 -2.927 -0.303 6.01 - CaHCO3+ 8.569e-04 5.189e-04 -3.067 -3.285 -0.218 10.08 - CO2 3.437e-04 1.038e-03 -3.464 -2.984 0.480 34.43 - HCO3- 3.286e-04 1.901e-04 -3.483 -3.721 -0.238 37.32 - NaHCO3 6.240e-05 1.775e-03 -4.205 -2.751 1.454 31.73 - CaCO3 1.043e-06 5.563e-06 -5.982 -5.255 0.727 -14.60 - MgCO3 4.453e-07 2.375e-06 -6.351 -5.624 0.727 -17.09 - CO3-2 4.181e-08 4.678e-09 -7.379 -8.330 -0.951 10.19 - (CO2)2 3.706e-09 1.976e-08 -8.431 -7.704 0.727 68.87 -Ca 4.622e-01 - Ca+2 4.611e-01 7.079e-01 -0.336 -0.150 0.186 -13.79 - CaHCO3+ 8.569e-04 5.189e-04 -3.067 -3.285 -0.218 10.08 - CaSO4 3.205e-04 1.709e-03 -3.494 -2.767 0.727 7.50 - CaCO3 1.043e-06 5.563e-06 -5.982 -5.255 0.727 -14.60 - CaOH+ 8.798e-09 4.838e-08 -8.056 -7.315 0.740 (0) - CaHSO4+ 3.893e-09 2.141e-08 -8.410 -7.669 0.740 (0) + MgHCO3+ 2.373e-03 1.182e-03 -2.625 -2.927 -0.303 6.01 + CaHCO3+ 8.562e-04 5.186e-04 -3.067 -3.285 -0.218 10.08 + CO2 3.448e-04 1.040e-03 -3.462 -2.983 0.480 34.43 + HCO3- 3.297e-04 1.907e-04 -3.482 -3.720 -0.238 37.31 + NaHCO3 6.268e-05 1.781e-03 -4.203 -2.749 1.453 31.73 + CaCO3 1.044e-06 5.563e-06 -5.981 -5.255 0.727 -14.60 + MgCO3 4.455e-07 2.375e-06 -6.351 -5.624 0.727 -17.09 + CO3-2 4.198e-08 4.697e-09 -7.377 -8.328 -0.951 10.19 + (CO2)2 3.727e-09 1.986e-08 -8.429 -7.702 0.727 68.87 +Ca 4.626e-01 + Ca+2 4.596e-01 7.050e-01 -0.338 -0.152 0.186 -13.79 + CaSO4 2.085e-03 4.390e-03 -2.681 -2.358 0.323 7.22 + CaHCO3+ 8.562e-04 5.186e-04 -3.067 -3.285 -0.218 10.08 + CaCO3 1.044e-06 5.563e-06 -5.981 -5.255 0.727 -14.60 + CaHSO4+ 1.275e-08 7.003e-08 -7.895 -7.155 0.740 (0) + CaOH+ 8.776e-09 4.822e-08 -8.057 -7.317 0.740 (0) Cl 6.642e+00 Cl- 6.642e+00 4.165e+00 0.822 0.620 -0.203 20.27 - HCl 2.202e-09 2.734e-06 -8.657 -5.563 3.094 (0) + HCl 2.205e-09 2.731e-06 -8.657 -5.564 3.093 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -45.226 -44.499 0.727 28.61 -Mg 1.642e-01 - Mg+2 1.617e-01 5.320e-01 -0.791 -0.274 0.517 -17.22 - MgHCO3+ 2.375e-03 1.183e-03 -2.624 -2.927 -0.303 6.01 - MgSO4 6.650e-05 1.891e-03 -4.177 -2.723 1.454 -7.92 - MgOH+ 1.271e-06 7.954e-07 -5.896 -6.099 -0.204 (0) - MgCO3 4.453e-07 2.375e-06 -6.351 -5.624 0.727 -17.09 - Mg(SO4)2-2 2.237e-07 8.458e-08 -6.650 -7.073 -0.422 54.97 + H2 0.000e+00 0.000e+00 -45.217 -44.490 0.727 28.61 +Mg 1.639e-01 + Mg+2 1.613e-01 5.298e-01 -0.792 -0.276 0.517 -17.22 + MgHCO3+ 2.373e-03 1.182e-03 -2.625 -2.927 -0.303 6.01 + MgSO4 2.180e-04 6.192e-03 -3.662 -2.208 1.453 -0.40 + Mg(SO4)2-2 2.408e-06 9.104e-07 -5.618 -6.041 -0.422 56.94 + MgOH+ 1.267e-06 7.927e-07 -5.897 -6.101 -0.204 (0) + MgCO3 4.455e-07 2.375e-06 -6.351 -5.624 0.727 -17.09 Na 5.402e+00 - Na+ 5.398e+00 1.072e+01 0.732 1.030 0.298 1.52 - NaSO4- 4.064e-03 2.370e-03 -2.391 -2.625 -0.234 35.76 - NaHCO3 6.240e-05 1.775e-03 -4.205 -2.751 1.454 31.73 -O(0) 9.585e-05 - O2 4.793e-05 2.556e-04 -4.319 -3.592 0.727 30.40 + Na+ 5.400e+00 1.072e+01 0.732 1.030 0.298 1.52 + NaSO4- 1.514e-03 4.204e-03 -2.820 -2.376 0.444 35.63 + NaHCO3 6.268e-05 1.781e-03 -4.203 -2.749 1.453 31.73 + Na2SO4 4.999e-06 2.198e-05 -5.301 -4.658 0.643 47.96 +O(0) 9.591e-05 + O2 4.796e-05 2.556e-04 -4.319 -3.592 0.727 30.40 S(-2) 0.000e+00 - H2S 0.000e+00 0.000e+00 -141.418 -140.691 0.727 36.27 - HS- 0.000e+00 0.000e+00 -141.577 -141.912 -0.335 23.12 - S-2 0.000e+00 0.000e+00 -148.097 -149.110 -1.013 (0) - (H2S)2 0.000e+00 0.000e+00 -283.387 -282.660 0.727 30.09 + H2S 0.000e+00 0.000e+00 -140.866 -140.140 0.727 36.27 + HS- 0.000e+00 0.000e+00 -141.026 -141.361 -0.335 23.12 + S-2 0.000e+00 0.000e+00 -147.545 -148.559 -1.013 (0) + (H2S)2 0.000e+00 0.000e+00 -282.284 -281.557 0.727 30.09 S(6) 4.725e-03 - NaSO4- 4.064e-03 2.370e-03 -2.391 -2.625 -0.234 35.76 - CaSO4 3.205e-04 1.709e-03 -3.494 -2.767 0.727 7.50 - SO4-2 2.735e-04 1.358e-05 -3.563 -4.867 -1.304 85.83 - MgSO4 6.650e-05 1.891e-03 -4.177 -2.723 1.454 -7.92 - Mg(SO4)2-2 2.237e-07 8.458e-08 -6.650 -7.073 -0.422 54.97 - CaHSO4+ 3.893e-09 2.141e-08 -8.410 -7.669 0.740 (0) - HSO4- 4.574e-10 2.515e-09 -9.340 -8.599 0.740 42.16 + CaSO4 2.085e-03 4.390e-03 -2.681 -2.358 0.323 7.22 + NaSO4- 1.514e-03 4.204e-03 -2.820 -2.376 0.444 35.63 + SO4-2 8.987e-04 4.464e-05 -3.046 -4.350 -1.304 35.42 + MgSO4 2.180e-04 6.192e-03 -3.662 -2.208 1.453 -0.40 + Na2SO4 4.999e-06 2.198e-05 -5.301 -4.658 0.643 47.96 + Mg(SO4)2-2 2.408e-06 9.104e-07 -5.618 -6.041 -0.422 56.94 + CaHSO4+ 1.275e-08 7.003e-08 -7.895 -7.155 0.740 (0) + HSO4- 1.504e-09 8.262e-09 -8.823 -8.083 0.740 42.16 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -0.74 -5.02 -4.28 CaSO4 + Anhydrite -0.19 -4.50 -4.31 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -140.98 -143.78 -2.80 CH4 - CO2(g) -1.52 -2.98 -1.47 CO2 + CH4(g) -140.94 -143.74 -2.80 CH4 + CO2(g) -1.51 -2.98 -1.47 CO2 Dolomite 0.00 -17.08 -17.08 CaMg(CO3)2 - Epsomite -4.14 -5.88 -1.74 MgSO4:7H2O - Gypsum -0.65 -5.23 -4.58 CaSO4:2H2O - H2(g) -41.40 -44.50 -3.10 H2 + Epsomite -3.63 -5.36 -1.74 MgSO4:7H2O + Gypsum -0.16 -4.71 -4.55 CaSO4:2H2O + H2(g) -41.39 -44.49 -3.10 H2 H2O(g) -1.61 -0.11 1.50 H2O - H2S(g) -139.70 -147.63 -7.94 H2S + H2S(g) -139.15 -147.08 -7.94 H2S Halite 0.08 1.65 1.57 NaCl - Hexahydrite -4.21 -5.77 -1.57 MgSO4:6H2O - Kieserite -4.09 -5.25 -1.16 MgSO4:H2O - Mirabilite -2.62 -3.86 -1.24 Na2SO4:10H2O + Hexahydrite -3.69 -5.26 -1.57 MgSO4:6H2O + Kieserite -3.57 -4.73 -1.16 MgSO4:H2O + Mirabilite -2.64 -3.34 -0.71 Na2SO4:10H2O O2(g) -0.70 -3.59 -2.89 O2 - Sulfur -104.22 -99.34 4.88 S - Thenardite -2.51 -2.81 -0.30 Na2SO4 + Sulfur -103.68 -98.80 4.88 S + Thenardite -2.94 -2.29 0.65 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -383,9 +387,9 @@ X 1.000e+00 mol Equiv- Equivalent Log Species Moles alents Fraction Gamma - NaX 9.010e-01 9.010e-01 9.010e-01 0.298 - CaX2 4.053e-02 8.105e-02 8.105e-02 0.186 - MgX2 8.970e-03 1.794e-02 1.794e-02 0.517 + NaX 9.013e-01 9.013e-01 9.013e-01 0.298 + CaX2 4.039e-02 8.078e-02 8.078e-02 0.186 + MgX2 8.941e-03 1.788e-02 1.788e-02 0.517 ------------------------------------------------------ Beginning of initial surface-composition calculations. @@ -396,7 +400,7 @@ Surface 1. Diffuse Double Layer Surface-Complexation Model Surf - 5.630e-02 Surface charge, eq + 5.629e-02 Surface charge, eq 3.018e-01 sigma, C/m² 4.360e-02 psi, V -1.697e+00 -F*psi/RT @@ -411,11 +415,11 @@ Surf Species Moles Fraction Molality Molality SurfOH2+ 5.939e-02 0.848 5.939e-02 -1.226 - SurfOH 8.727e-03 0.125 8.727e-03 -2.059 - SurfHAsO4- 9.359e-04 0.013 9.359e-04 -3.029 - SurfOHAsO4-3 7.082e-04 0.010 7.082e-04 -3.150 - SurfH2AsO4 2.061e-04 0.003 2.061e-04 -3.686 - SurfO- 2.938e-05 0.000 2.938e-05 -4.532 + SurfOH 8.733e-03 0.125 8.733e-03 -2.059 + SurfHAsO4- 9.358e-04 0.013 9.358e-04 -3.029 + SurfOHAsO4-3 7.091e-04 0.010 7.091e-04 -3.149 + SurfH2AsO4 2.059e-04 0.003 2.059e-04 -3.686 + SurfO- 2.942e-05 0.000 2.942e-05 -4.531 ------------------ End of simulation. @@ -462,18 +466,18 @@ Initial solution 0. 20 x precipitation ----------------------------Description of solution---------------------------- pH = 4.600 - pe = 16.022 Equilibrium with O2(g) + pe = 16.018 Equilibrium with O2(g) Specific Conductance (µS/cm, 25°C) = 81 Density (g/cm³) = 0.99708 Volume (L) = 1.00298 - Viscosity (mPa s) = 0.89051 + Viscosity (mPa s) = 0.89049 Activity of water = 1.000 - Ionic strength (mol/kgw) = 1.036e-03 + Ionic strength (mol/kgw) = 1.041e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -2.630e-05 + Total alkalinity (eq/kg) = -2.631e-05 Total CO2 (mol/kg) = 1.096e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.978e-16 + Electrical balance (eq) = 1.884e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 9 Total H = 1.110125e+02 @@ -488,78 +492,80 @@ Initial solution 0. 20 x precipitation OH- 4.179e-10 4.029e-10 -9.379 -9.395 -0.016 -4.11 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -145.553 -145.553 0.000 35.46 + CH4 0.000e+00 0.000e+00 -145.518 -145.518 0.000 35.46 C(4) 1.096e-05 CO2 1.076e-05 1.076e-05 -4.968 -4.968 0.000 34.43 HCO3- 1.975e-07 1.906e-07 -6.704 -6.720 -0.016 24.58 - CaHCO3+ 1.228e-10 1.185e-10 -9.911 -9.926 -0.015 9.67 - MgHCO3+ 6.872e-11 6.627e-11 -10.163 -10.179 -0.016 5.48 - NaHCO3 1.957e-11 1.958e-11 -10.708 -10.708 0.000 31.73 + CaHCO3+ 1.235e-10 1.192e-10 -9.908 -9.924 -0.015 9.67 + MgHCO3+ 6.869e-11 6.624e-11 -10.163 -10.179 -0.016 5.48 + NaHCO3 1.960e-11 1.961e-11 -10.708 -10.708 0.000 31.73 (CO2)2 2.126e-12 2.127e-12 -11.672 -11.672 0.000 68.87 - CO3-2 4.105e-13 3.558e-13 -12.387 -12.449 -0.062 -3.93 - CaCO3 9.632e-14 9.634e-14 -13.016 -13.016 0.000 -14.60 - MgCO3 1.009e-14 1.009e-14 -13.996 -13.996 0.000 -17.09 + CO3-2 4.107e-13 3.558e-13 -12.386 -12.449 -0.062 -3.93 + CaCO3 9.689e-14 9.691e-14 -13.014 -13.014 0.000 -14.60 + MgCO3 1.008e-14 1.009e-14 -13.996 -13.996 0.000 -17.09 Ca 1.916e-04 - Ca+2 1.860e-04 1.612e-04 -3.731 -3.793 -0.062 -18.14 - CaSO4 5.634e-06 5.635e-06 -5.249 -5.249 0.000 7.50 - CaHSO4+ 9.648e-10 9.304e-10 -9.016 -9.031 -0.016 (0) - CaHCO3+ 1.228e-10 1.185e-10 -9.911 -9.926 -0.015 9.67 - CaOH+ 1.104e-12 1.065e-12 -11.957 -11.973 -0.016 (0) - CaCO3 9.632e-14 9.634e-14 -13.016 -13.016 0.000 -14.60 + Ca+2 1.872e-04 1.621e-04 -3.728 -3.790 -0.062 -18.14 + CaSO4 4.471e-06 4.471e-06 -5.350 -5.350 0.000 7.22 + CaHSO4+ 9.760e-10 9.411e-10 -9.011 -9.026 -0.016 (0) + CaHCO3+ 1.235e-10 1.192e-10 -9.908 -9.924 -0.015 9.67 + CaOH+ 1.111e-12 1.071e-12 -11.954 -11.970 -0.016 (0) + CaCO3 9.689e-14 9.691e-14 -13.014 -13.014 0.000 -14.60 Cl 1.337e-04 Cl- 1.337e-04 1.289e-04 -3.874 -3.890 -0.016 18.08 - HCl 1.114e-09 1.116e-09 -8.953 -8.952 0.000 (0) + HCl 1.114e-09 1.116e-09 -8.953 -8.953 0.000 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.394 -44.394 0.000 28.61 + H2 0.000e+00 0.000e+00 -44.385 -44.385 0.000 28.61 Mg 3.580e-05 - Mg+2 3.427e-05 2.972e-05 -4.465 -4.527 -0.062 -21.82 - MgSO4 1.529e-06 1.530e-06 -5.816 -5.815 0.000 -7.92 - Mg(SO4)2-2 1.140e-09 9.908e-10 -8.943 -9.004 -0.061 -4.49 - MgHCO3+ 6.872e-11 6.627e-11 -10.163 -10.179 -0.016 5.48 - MgOH+ 4.450e-12 4.296e-12 -11.352 -11.367 -0.015 (0) - MgCO3 1.009e-14 1.009e-14 -13.996 -13.996 0.000 -17.09 + Mg+2 3.426e-05 2.970e-05 -4.465 -4.527 -0.062 -21.82 + MgSO4 1.537e-06 1.538e-06 -5.813 -5.813 0.000 -0.40 + Mg(SO4)2-2 1.153e-09 1.001e-09 -8.938 -8.999 -0.061 33.95 + MgHCO3+ 6.869e-11 6.624e-11 -10.163 -10.179 -0.016 5.48 + MgOH+ 4.448e-12 4.293e-12 -11.352 -11.367 -0.015 (0) + MgCO3 1.008e-14 1.009e-14 -13.996 -13.996 0.000 -17.09 Na 1.227e-04 - Na+ 1.223e-04 1.179e-04 -3.913 -3.928 -0.016 -1.48 - NaSO4- 3.912e-07 3.775e-07 -6.408 -6.423 -0.016 -20.88 - NaHCO3 1.957e-11 1.958e-11 -10.708 -10.708 0.000 31.73 + Na+ 1.225e-04 1.181e-04 -3.912 -3.928 -0.016 -1.48 + NaSO4- 2.127e-07 2.051e-07 -6.672 -6.688 -0.016 16.59 + NaHCO3 1.960e-11 1.961e-11 -10.708 -10.708 0.000 31.73 + Na2SO4 1.181e-14 1.181e-14 -13.928 -13.928 0.000 47.96 O(0) 5.111e-04 O2 2.555e-04 2.556e-04 -3.593 -3.592 0.000 30.40 S(-2) 0.000e+00 - H2S 0.000e+00 0.000e+00 -137.290 -137.290 0.000 36.27 - HS- 0.000e+00 0.000e+00 -139.616 -139.632 -0.016 20.60 - S-2 0.000e+00 0.000e+00 -147.887 -147.950 -0.062 (0) - (H2S)2 0.000e+00 0.000e+00 -275.858 -275.858 0.000 30.09 + H2S 0.000e+00 0.000e+00 -137.253 -137.253 0.000 36.27 + HS- 0.000e+00 0.000e+00 -139.578 -139.594 -0.016 20.60 + S-2 0.000e+00 0.000e+00 -147.850 -147.912 -0.063 (0) + (H2S)2 0.000e+00 0.000e+00 -275.783 -275.783 0.000 30.09 S(6) 2.351e-04 - SO4-2 2.270e-04 1.966e-04 -3.644 -3.706 -0.062 15.61 - CaSO4 5.634e-06 5.635e-06 -5.249 -5.249 0.000 7.50 - MgSO4 1.529e-06 1.530e-06 -5.816 -5.815 0.000 -7.92 - HSO4- 4.979e-07 4.802e-07 -6.303 -6.319 -0.016 40.28 - NaSO4- 3.912e-07 3.775e-07 -6.408 -6.423 -0.016 -20.88 - Mg(SO4)2-2 1.140e-09 9.908e-10 -8.943 -9.004 -0.061 -4.49 - CaHSO4+ 9.648e-10 9.304e-10 -9.016 -9.031 -0.016 (0) + SO4-2 2.283e-04 1.977e-04 -3.641 -3.704 -0.063 14.53 + CaSO4 4.471e-06 4.471e-06 -5.350 -5.350 0.000 7.22 + MgSO4 1.537e-06 1.538e-06 -5.813 -5.813 0.000 -0.40 + HSO4- 5.007e-07 4.828e-07 -6.300 -6.316 -0.016 40.28 + NaSO4- 2.127e-07 2.051e-07 -6.672 -6.688 -0.016 16.59 + Mg(SO4)2-2 1.153e-09 1.001e-09 -8.938 -8.999 -0.061 33.95 + CaHSO4+ 9.760e-10 9.411e-10 -9.011 -9.026 -0.016 (0) + Na2SO4 1.181e-14 1.181e-14 -13.928 -13.928 0.000 47.96 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -3.22 -7.50 -4.28 CaSO4 - Aragonite -7.91 -16.24 -8.34 CaCO3 + Anhydrite -3.18 -7.49 -4.31 CaSO4 + Aragonite -7.90 -16.24 -8.34 CaCO3 Calcite -7.76 -16.24 -8.48 CaCO3 - CH4(g) -142.75 -145.55 -2.80 CH4 + CH4(g) -142.72 -145.52 -2.80 CH4 CO2(g) -3.50 -4.97 -1.47 CO2 - Dolomite -16.13 -33.22 -17.08 CaMg(CO3)2 + Dolomite -16.13 -33.21 -17.08 CaMg(CO3)2 Epsomite -6.49 -8.23 -1.74 MgSO4:7H2O - Gypsum -2.92 -7.50 -4.58 CaSO4:2H2O - H2(g) -41.29 -44.39 -3.10 H2 + Gypsum -2.95 -7.49 -4.55 CaSO4:2H2O + H2(g) -41.28 -44.39 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -136.30 -144.23 -7.94 H2S + H2S(g) -136.26 -144.19 -7.94 H2S Halite -9.39 -7.82 1.57 NaCl - Hexahydrite -6.67 -8.23 -1.57 MgSO4:6H2O + Hexahydrite -6.66 -8.23 -1.57 MgSO4:6H2O Kieserite -7.07 -8.23 -1.16 MgSO4:H2O - Mirabilite -10.32 -11.56 -1.24 Na2SO4:10H2O + Mirabilite -10.85 -11.56 -0.71 Na2SO4:10H2O O2(g) -0.70 -3.59 -2.89 O2 Pressure 0.2 atm, phi 1.000 - Sulfur -100.93 -96.05 4.88 S - Thenardite -11.26 -11.56 -0.30 Na2SO4 + Sulfur -100.90 -96.02 4.88 S + Thenardite -12.21 -11.56 0.65 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -578,122 +584,124 @@ Using pure phase assemblage 0. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -CO2(g) -1.50 -2.97 -1.47 1.000e+01 9.996e+00 -4.032e-03 -Calcite 0.00 -8.48 -8.48 1.000e-01 9.974e-02 -2.569e-04 -Dolomite 0.00 -17.08 -17.08 1.600e+00 1.599e+00 -1.375e-03 +CO2(g) -1.50 -2.97 -1.47 1.000e+01 9.996e+00 -4.031e-03 +Calcite 0.00 -8.48 -8.48 1.000e-01 9.975e-02 -2.516e-04 +Dolomite 0.00 -17.08 -17.08 1.600e+00 1.599e+00 -1.377e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 7.051e-03 7.051e-03 - Ca 1.824e-03 1.824e-03 + C 7.049e-03 7.049e-03 + Ca 1.821e-03 1.821e-03 Cl 1.337e-04 1.337e-04 - Mg 1.411e-03 1.411e-03 + Mg 1.413e-03 1.413e-03 Na 1.227e-04 1.227e-04 S 2.351e-04 2.351e-04 ----------------------------Description of solution---------------------------- - pH = 7.047 Charge balance - pe = 13.576 Adjusted to redox equilibrium + pH = 7.046 Charge balance + pe = 13.571 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 602 Density (g/cm³) = 0.99746 Volume (L) = 1.00305 - Viscosity (mPa s) = 0.89550 + Viscosity (mPa s) = 0.89566 Activity of water = 1.000 - Ionic strength (mol/kgw) = 9.649e-03 + Ionic strength (mol/kgw) = 9.663e-03 Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 5.989e-03 - Total CO2 (mol/kg) = 7.051e-03 + Total alkalinity (eq/kg) = 5.987e-03 + Total CO2 (mol/kg) = 7.049e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 2.051e-15 + Electrical balance (eq) = 1.893e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 9 Total H = 1.110125e+02 - Total O = 5.552478e+01 + Total O = 5.552477e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.250e-07 1.126e-07 -6.903 -6.948 -0.045 -4.04 - H+ 9.823e-08 8.983e-08 -7.008 -7.047 -0.039 0.00 + OH- 1.249e-07 1.126e-07 -6.903 -6.948 -0.045 -4.04 + H+ 9.828e-08 8.987e-08 -7.008 -7.046 -0.039 0.00 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -143.556 -143.555 0.001 35.46 -C(4) 7.051e-03 - HCO3- 5.875e-03 5.326e-03 -2.231 -2.274 -0.043 24.65 + CH4 0.000e+00 0.000e+00 -143.521 -143.520 0.001 35.46 +C(4) 7.049e-03 + HCO3- 5.873e-03 5.324e-03 -2.231 -2.274 -0.043 24.65 CO2 1.074e-03 1.076e-03 -2.969 -2.968 0.001 34.43 - MgHCO3+ 6.178e-05 5.578e-05 -4.209 -4.254 -0.044 5.53 - CaHCO3+ 2.695e-05 2.447e-05 -4.569 -4.611 -0.042 9.72 + MgHCO3+ 6.180e-05 5.580e-05 -4.209 -4.253 -0.044 5.53 + CaHCO3+ 2.696e-05 2.448e-05 -4.569 -4.611 -0.042 9.72 CaCO3 5.551e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 - CO3-2 4.119e-06 2.780e-06 -5.385 -5.556 -0.171 -3.67 + CO3-2 4.116e-06 2.778e-06 -5.386 -5.556 -0.171 -3.67 MgCO3 2.369e-06 2.375e-06 -5.625 -5.624 0.001 -17.09 - NaHCO3 5.094e-07 5.117e-07 -6.293 -6.291 0.002 31.73 + NaHCO3 5.096e-07 5.119e-07 -6.293 -6.291 0.002 31.73 (CO2)2 2.120e-08 2.125e-08 -7.674 -7.673 0.001 68.87 -Ca 1.824e-03 - Ca+2 1.766e-03 1.191e-03 -2.753 -2.924 -0.171 -17.93 - CaHCO3+ 2.695e-05 2.447e-05 -4.569 -4.611 -0.042 9.72 - CaSO4 2.566e-05 2.572e-05 -4.591 -4.590 0.001 7.50 +Ca 1.821e-03 + Ca+2 1.768e-03 1.192e-03 -2.753 -2.924 -0.171 -17.93 + CaHCO3+ 2.696e-05 2.448e-05 -4.569 -4.611 -0.042 9.72 + CaSO4 2.065e-05 2.068e-05 -4.685 -4.685 0.000 7.22 CaCO3 5.551e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 - CaOH+ 2.435e-09 2.200e-09 -8.613 -8.658 -0.044 (0) - CaHSO4+ 1.681e-11 1.519e-11 -10.774 -10.819 -0.044 (0) + CaOH+ 2.437e-09 2.201e-09 -8.613 -8.657 -0.044 (0) + CaHSO4+ 1.724e-11 1.557e-11 -10.764 -10.808 -0.044 (0) Cl 1.337e-04 Cl- 1.337e-04 1.206e-04 -3.874 -3.919 -0.045 18.14 - HCl 3.698e-12 3.733e-12 -11.432 -11.428 0.004 (0) + HCl 3.699e-12 3.735e-12 -11.432 -11.428 0.004 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.395 -44.394 0.001 28.61 -Mg 1.411e-03 - Mg+2 1.319e-03 8.951e-04 -2.880 -3.048 -0.168 -21.62 - MgHCO3+ 6.178e-05 5.578e-05 -4.209 -4.254 -0.044 5.53 - MgSO4 2.833e-05 2.845e-05 -4.548 -4.546 0.002 -7.92 + H2 0.000e+00 0.000e+00 -44.387 -44.386 0.001 28.61 +Mg 1.413e-03 + Mg+2 1.320e-03 8.958e-04 -2.879 -3.048 -0.168 -21.62 + MgHCO3+ 6.180e-05 5.580e-05 -4.209 -4.253 -0.044 5.53 + MgSO4 2.903e-05 2.916e-05 -4.537 -4.535 0.002 -0.40 MgCO3 2.369e-06 2.375e-06 -5.625 -5.624 0.001 -17.09 - MgOH+ 3.979e-08 3.617e-08 -7.400 -7.442 -0.041 (0) - Mg(SO4)2-2 1.656e-08 1.138e-08 -7.781 -7.944 -0.163 6.69 + MgOH+ 3.981e-08 3.618e-08 -7.400 -7.441 -0.041 (0) + Mg(SO4)2-2 1.739e-08 1.194e-08 -7.760 -7.923 -0.163 37.85 Na 1.227e-04 - Na+ 1.219e-04 1.103e-04 -3.914 -3.957 -0.043 -1.38 - NaHCO3 5.094e-07 5.117e-07 -6.293 -6.291 0.002 31.73 - NaSO4- 2.405e-07 2.180e-07 -6.619 -6.662 -0.043 -15.24 + Na+ 1.220e-04 1.104e-04 -3.914 -3.957 -0.044 -1.38 + NaHCO3 5.096e-07 5.119e-07 -6.293 -6.291 0.002 31.73 + NaSO4- 1.334e-07 1.206e-07 -6.875 -6.919 -0.044 16.98 + Na2SO4 6.478e-15 6.491e-15 -14.189 -14.188 0.001 47.96 O(0) 5.111e-04 O2 2.556e-04 2.561e-04 -3.593 -3.592 0.001 30.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -142.244 -142.289 -0.045 20.67 - H2S 0.000e+00 0.000e+00 -142.395 -142.394 0.001 36.27 - S-2 0.000e+00 0.000e+00 -147.988 -148.161 -0.173 (0) - (H2S)2 0.000e+00 0.000e+00 -286.067 -286.066 0.001 30.09 + HS- 0.000e+00 0.000e+00 -142.199 -142.244 -0.045 20.67 + H2S 0.000e+00 0.000e+00 -142.349 -142.348 0.001 36.27 + S-2 0.000e+00 0.000e+00 -147.943 -148.115 -0.173 (0) + (H2S)2 0.000e+00 0.000e+00 -285.976 -285.975 0.001 30.09 S(6) 2.351e-04 - SO4-2 1.808e-04 1.214e-04 -3.743 -3.916 -0.173 17.83 - MgSO4 2.833e-05 2.845e-05 -4.548 -4.546 0.002 -7.92 - CaSO4 2.566e-05 2.572e-05 -4.591 -4.590 0.001 7.50 - NaSO4- 2.405e-07 2.180e-07 -6.619 -6.662 -0.043 -15.24 - Mg(SO4)2-2 1.656e-08 1.138e-08 -7.781 -7.944 -0.163 6.69 - HSO4- 1.174e-09 1.060e-09 -8.930 -8.975 -0.044 40.34 - CaHSO4+ 1.681e-11 1.519e-11 -10.774 -10.819 -0.044 (0) + SO4-2 1.852e-04 1.243e-04 -3.732 -3.905 -0.173 14.68 + MgSO4 2.903e-05 2.916e-05 -4.537 -4.535 0.002 -0.40 + CaSO4 2.065e-05 2.068e-05 -4.685 -4.685 0.000 7.22 + NaSO4- 1.334e-07 1.206e-07 -6.875 -6.919 -0.044 16.98 + Mg(SO4)2-2 1.739e-08 1.194e-08 -7.760 -7.923 -0.163 37.85 + HSO4- 1.203e-09 1.086e-09 -8.920 -8.964 -0.044 40.34 + CaHSO4+ 1.724e-11 1.557e-11 -10.764 -10.808 -0.044 (0) + Na2SO4 6.478e-15 6.491e-15 -14.189 -14.188 0.001 47.96 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -2.56 -6.84 -4.28 CaSO4 + Anhydrite -2.51 -6.83 -4.31 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -140.75 -143.56 -2.80 CH4 + CH4(g) -140.72 -143.52 -2.80 CH4 CO2(g) -1.50 -2.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 Dolomite 0.00 -17.08 -17.08 CaMg(CO3)2 - Epsomite -5.23 -6.96 -1.74 MgSO4:7H2O - Gypsum -2.26 -6.84 -4.58 CaSO4:2H2O - H2(g) -41.29 -44.39 -3.10 H2 + Epsomite -5.22 -6.95 -1.74 MgSO4:7H2O + Gypsum -2.28 -6.83 -4.55 CaSO4:2H2O + H2(g) -41.28 -44.39 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -141.40 -149.34 -7.94 H2S + H2S(g) -141.35 -149.29 -7.94 H2S Halite -9.45 -7.88 1.57 NaCl - Hexahydrite -5.40 -6.96 -1.57 MgSO4:6H2O - Kieserite -5.80 -6.96 -1.16 MgSO4:H2O - Mirabilite -10.59 -11.83 -1.24 Na2SO4:10H2O + Hexahydrite -5.39 -6.95 -1.57 MgSO4:6H2O + Kieserite -5.79 -6.95 -1.16 MgSO4:H2O + Mirabilite -11.11 -11.82 -0.71 Na2SO4:10H2O O2(g) -0.70 -3.59 -2.89 O2 - Sulfur -106.03 -101.15 4.88 S - Thenardite -11.53 -11.83 -0.30 Na2SO4 + Sulfur -105.99 -101.11 4.88 S + Thenardite -12.47 -11.82 0.65 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -941,16 +949,16 @@ Using pure phase assemblage 1. Pure-phase assemblage after simulation 5. Phase SI log IAP log K(T, P) Initial Final Delta Calcite -0.01 -8.49 -8.48 0.000e+00 0 0.000e+00 -Dolomite 0.00 -17.08 -17.08 1.567e+00 1.567e+00 3.988e-07 +Dolomite 0.00 -17.08 -17.08 1.567e+00 1.567e+00 4.124e-07 ------------------------------Surface composition------------------------------ Diffuse Double Layer Surface-Complexation Model Surf - 2.452e-03 Surface charge, eq - 1.314e-02 sigma, C/m² - 5.022e-02 psi, V + 2.454e-03 Surface charge, eq + 1.315e-02 sigma, C/m² + 5.023e-02 psi, V -1.955e+00 -F*psi/RT 1.416e-01 exp(-F*psi/RT) 6.000e+02 specific area, m²/g @@ -962,12 +970,12 @@ Surf Mole Log Species Moles Fraction Molality Molality - SurfOH 5.085e-02 0.726 5.086e-02 -1.294 + SurfOH 5.085e-02 0.726 5.085e-02 -1.294 SurfOH2+ 1.263e-02 0.180 1.263e-02 -1.899 - SurfO- 4.692e-03 0.067 4.693e-03 -2.329 - SurfOHAsO4-3 1.826e-03 0.026 1.826e-03 -2.738 - SurfHAsO4- 2.521e-06 0.000 2.521e-06 -5.598 - SurfH2AsO4 2.025e-08 0.000 2.025e-08 -7.694 + SurfO- 4.691e-03 0.067 4.691e-03 -2.329 + SurfOHAsO4-3 1.827e-03 0.026 1.827e-03 -2.738 + SurfHAsO4- 2.523e-06 0.000 2.523e-06 -5.598 + SurfH2AsO4 2.027e-08 0.000 2.027e-08 -7.693 -----------------------------Exchange composition------------------------------ @@ -976,37 +984,37 @@ X 1.000e+00 mol Equiv- Equivalent Log Species Moles alents Fraction Gamma - CaX2 3.368e-01 6.735e-01 6.735e-01 -0.171 - MgX2 1.628e-01 3.255e-01 3.255e-01 -0.168 - NaX 9.536e-04 9.536e-04 9.536e-04 -0.043 + CaX2 3.366e-01 6.733e-01 6.733e-01 -0.171 + MgX2 1.629e-01 3.258e-01 3.258e-01 -0.168 + NaX 9.540e-04 9.540e-04 9.540e-04 -0.043 -----------------------------Solution composition------------------------------ Elements Molality Moles - As 1.837e-10 1.837e-10 - C 7.050e-03 7.050e-03 - Ca 1.803e-03 1.803e-03 + As 1.838e-10 1.838e-10 + C 7.048e-03 7.048e-03 + Ca 1.799e-03 1.799e-03 Cl 1.337e-04 1.337e-04 - Mg 1.431e-03 1.431e-03 + Mg 1.434e-03 1.434e-03 Na 1.227e-04 1.227e-04 S 2.351e-04 2.351e-04 ----------------------------Description of solution---------------------------- pH = 7.046 Charge balance - pe = 13.576 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 602 + pe = 13.572 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 601 Density (g/cm³) = 0.99746 Volume (L) = 1.00305 - Viscosity (mPa s) = 0.89550 + Viscosity (mPa s) = 0.89566 Activity of water = 1.000 - Ionic strength (mol/kgw) = 9.645e-03 + Ionic strength (mol/kgw) = 9.659e-03 Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 5.987e-03 - Total CO2 (mol/kg) = 7.050e-03 + Total alkalinity (eq/kg) = 5.985e-03 + Total CO2 (mol/kg) = 7.048e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 7.167e-09 + Electrical balance (eq) = 7.192e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 11 Total H = 1.110125e+02 @@ -1018,86 +1026,88 @@ X 1.000e+00 mol Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.248e-07 1.125e-07 -6.904 -6.949 -0.045 -4.04 - H+ 9.833e-08 8.993e-08 -7.007 -7.046 -0.039 0.00 + H+ 9.838e-08 8.997e-08 -7.007 -7.046 -0.039 0.00 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 -As 1.837e-10 - HAsO4-2 1.145e-10 7.625e-11 -9.941 -10.118 -0.177 (0) - H2AsO4- 6.923e-11 6.254e-11 -10.160 -10.204 -0.044 (0) - AsO4-3 6.692e-15 2.681e-15 -14.174 -14.572 -0.397 (0) - H3AsO4 9.752e-16 9.773e-16 -15.011 -15.010 0.001 (0) +As 1.838e-10 + HAsO4-2 1.145e-10 7.627e-11 -9.941 -10.118 -0.177 (0) + H2AsO4- 6.927e-11 6.258e-11 -10.159 -10.204 -0.044 (0) + AsO4-3 6.694e-15 2.681e-15 -14.174 -14.572 -0.397 (0) + H3AsO4 9.762e-16 9.783e-16 -15.010 -15.010 0.001 (0) C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -143.556 -143.555 0.001 35.46 -C(4) 7.050e-03 - HCO3- 5.873e-03 5.324e-03 -2.231 -2.274 -0.043 24.65 + CH4 0.000e+00 0.000e+00 -143.521 -143.520 0.001 35.46 +C(4) 7.048e-03 + HCO3- 5.871e-03 5.322e-03 -2.231 -2.274 -0.043 24.65 CO2 1.075e-03 1.077e-03 -2.969 -2.968 0.001 34.43 - MgHCO3+ 6.263e-05 5.655e-05 -4.203 -4.248 -0.044 5.53 - CaHCO3+ 2.664e-05 2.418e-05 -4.574 -4.616 -0.042 9.72 - CaCO3 5.481e-06 5.493e-06 -5.261 -5.260 0.001 -14.60 - CO3-2 4.113e-06 2.776e-06 -5.386 -5.557 -0.171 -3.67 - MgCO3 2.400e-06 2.405e-06 -5.620 -5.619 0.001 -17.09 - NaHCO3 5.093e-07 5.116e-07 -6.293 -6.291 0.002 31.73 + MgHCO3+ 6.270e-05 5.660e-05 -4.203 -4.247 -0.044 5.53 + CaHCO3+ 2.664e-05 2.418e-05 -4.575 -4.617 -0.042 9.72 + CaCO3 5.478e-06 5.490e-06 -5.261 -5.260 0.001 -14.60 + CO3-2 4.110e-06 2.774e-06 -5.386 -5.557 -0.171 -3.67 + MgCO3 2.401e-06 2.406e-06 -5.620 -5.619 0.001 -17.09 + NaHCO3 5.095e-07 5.118e-07 -6.293 -6.291 0.002 31.73 (CO2)2 2.123e-08 2.128e-08 -7.673 -7.672 0.001 68.87 -Ca 1.803e-03 - Ca+2 1.746e-03 1.178e-03 -2.758 -2.929 -0.171 -17.93 - CaHCO3+ 2.664e-05 2.418e-05 -4.574 -4.616 -0.042 9.72 - CaSO4 2.536e-05 2.542e-05 -4.596 -4.595 0.001 7.50 - CaCO3 5.481e-06 5.493e-06 -5.261 -5.260 0.001 -14.60 +Ca 1.799e-03 + Ca+2 1.747e-03 1.178e-03 -2.758 -2.929 -0.171 -17.93 + CaHCO3+ 2.664e-05 2.418e-05 -4.575 -4.617 -0.042 9.72 + CaSO4 2.040e-05 2.042e-05 -4.690 -4.690 0.000 7.22 + CaCO3 5.478e-06 5.490e-06 -5.261 -5.260 0.001 -14.60 CaOH+ 2.405e-09 2.173e-09 -8.619 -8.663 -0.044 (0) - CaHSO4+ 1.663e-11 1.502e-11 -10.779 -10.823 -0.044 (0) + CaHSO4+ 1.704e-11 1.539e-11 -10.769 -10.813 -0.044 (0) Cl 1.337e-04 Cl- 1.337e-04 1.206e-04 -3.874 -3.919 -0.045 18.14 - HCl 3.702e-12 3.737e-12 -11.432 -11.427 0.004 (0) + HCl 3.703e-12 3.739e-12 -11.431 -11.427 0.004 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.395 -44.394 0.001 28.61 -Mg 1.431e-03 - Mg+2 1.337e-03 9.078e-04 -2.874 -3.042 -0.168 -21.62 - MgHCO3+ 6.263e-05 5.655e-05 -4.203 -4.248 -0.044 5.53 - MgSO4 2.872e-05 2.885e-05 -4.542 -4.540 0.002 -7.92 - MgCO3 2.400e-06 2.405e-06 -5.620 -5.619 0.001 -17.09 - MgOH+ 4.031e-08 3.664e-08 -7.395 -7.436 -0.041 (0) - Mg(SO4)2-2 1.678e-08 1.153e-08 -7.775 -7.938 -0.163 6.68 + H2 0.000e+00 0.000e+00 -44.387 -44.386 0.001 28.61 +Mg 1.434e-03 + Mg+2 1.339e-03 9.091e-04 -2.873 -3.041 -0.168 -21.62 + MgHCO3+ 6.270e-05 5.660e-05 -4.203 -4.247 -0.044 5.53 + MgSO4 2.944e-05 2.957e-05 -4.531 -4.529 0.002 -0.40 + MgCO3 2.401e-06 2.406e-06 -5.620 -5.619 0.001 -17.09 + MgOH+ 4.035e-08 3.668e-08 -7.394 -7.436 -0.041 (0) + Mg(SO4)2-2 1.762e-08 1.210e-08 -7.754 -7.917 -0.163 37.85 Na 1.227e-04 - Na+ 1.220e-04 1.103e-04 -3.914 -3.957 -0.043 -1.38 - NaHCO3 5.093e-07 5.116e-07 -6.293 -6.291 0.002 31.73 - NaSO4- 2.404e-07 2.180e-07 -6.619 -6.662 -0.043 -15.24 + Na+ 1.221e-04 1.104e-04 -3.913 -3.957 -0.043 -1.38 + NaHCO3 5.095e-07 5.118e-07 -6.293 -6.291 0.002 31.73 + NaSO4- 1.334e-07 1.205e-07 -6.875 -6.919 -0.044 16.98 + Na2SO4 6.477e-15 6.489e-15 -14.189 -14.188 0.001 47.96 O(0) 5.111e-04 O2 2.556e-04 2.561e-04 -3.593 -3.592 0.001 30.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -142.244 -142.289 -0.045 20.67 - H2S 0.000e+00 0.000e+00 -142.394 -142.393 0.001 36.27 - S-2 0.000e+00 0.000e+00 -147.988 -148.161 -0.173 (0) - (H2S)2 0.000e+00 0.000e+00 -286.066 -286.065 0.001 30.09 + HS- 0.000e+00 0.000e+00 -142.199 -142.244 -0.045 20.67 + H2S 0.000e+00 0.000e+00 -142.349 -142.348 0.001 36.27 + S-2 0.000e+00 0.000e+00 -147.943 -148.116 -0.173 (0) + (H2S)2 0.000e+00 0.000e+00 -285.975 -285.974 0.001 30.09 S(6) 2.351e-04 - SO4-2 1.807e-04 1.214e-04 -3.743 -3.916 -0.173 17.83 - MgSO4 2.872e-05 2.885e-05 -4.542 -4.540 0.002 -7.92 - CaSO4 2.536e-05 2.542e-05 -4.596 -4.595 0.001 7.50 - NaSO4- 2.404e-07 2.180e-07 -6.619 -6.662 -0.043 -15.24 - Mg(SO4)2-2 1.678e-08 1.153e-08 -7.775 -7.938 -0.163 6.68 - HSO4- 1.175e-09 1.061e-09 -8.930 -8.974 -0.044 40.34 - CaHSO4+ 1.663e-11 1.502e-11 -10.779 -10.823 -0.044 (0) + SO4-2 1.851e-04 1.243e-04 -3.733 -3.906 -0.173 14.68 + MgSO4 2.944e-05 2.957e-05 -4.531 -4.529 0.002 -0.40 + CaSO4 2.040e-05 2.042e-05 -4.690 -4.690 0.000 7.22 + NaSO4- 1.334e-07 1.205e-07 -6.875 -6.919 -0.044 16.98 + Mg(SO4)2-2 1.762e-08 1.210e-08 -7.754 -7.917 -0.163 37.85 + HSO4- 1.203e-09 1.087e-09 -8.920 -8.964 -0.044 40.34 + CaHSO4+ 1.704e-11 1.539e-11 -10.769 -10.813 -0.044 (0) + Na2SO4 6.477e-15 6.489e-15 -14.189 -14.188 0.001 47.96 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -2.57 -6.84 -4.28 CaSO4 + Anhydrite -2.52 -6.83 -4.31 CaSO4 Aragonite -0.15 -8.49 -8.34 CaCO3 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -140.75 -143.55 -2.80 CH4 + CH4(g) -140.72 -143.52 -2.80 CH4 CO2(g) -1.50 -2.97 -1.47 CO2 Dolomite 0.00 -17.08 -17.08 CaMg(CO3)2 - Epsomite -5.22 -6.96 -1.74 MgSO4:7H2O - Gypsum -2.26 -6.85 -4.58 CaSO4:2H2O - H2(g) -41.29 -44.39 -3.10 H2 + Epsomite -5.21 -6.95 -1.74 MgSO4:7H2O + Gypsum -2.29 -6.83 -4.55 CaSO4:2H2O + H2(g) -41.28 -44.39 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -141.40 -149.34 -7.94 H2S + H2S(g) -141.35 -149.29 -7.94 H2S Halite -9.45 -7.88 1.57 NaCl - Hexahydrite -5.39 -6.96 -1.57 MgSO4:6H2O - Kieserite -5.80 -6.96 -1.16 MgSO4:H2O - Mirabilite -10.59 -11.83 -1.24 Na2SO4:10H2O + Hexahydrite -5.38 -6.95 -1.57 MgSO4:6H2O + Kieserite -5.79 -6.95 -1.16 MgSO4:H2O + Mirabilite -11.11 -11.82 -0.71 Na2SO4:10H2O O2(g) -0.70 -3.59 -2.89 O2 - Sulfur -106.03 -101.15 4.88 S - Thenardite -11.53 -11.83 -0.30 Na2SO4 + Sulfur -105.99 -101.11 4.88 S + Thenardite -12.47 -11.82 0.65 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. diff --git a/ex14.sel b/ex14.sel index ee307064..e975e193 100644 --- a/ex14.sel +++ b/ex14.sel @@ -1,202 +1,202 @@ step m_Ca m_Mg m_Na umol_As pH mmol_sorbedAs - 1 4.6224e-01 1.6417e-01 5.4020e+00 2.5000e-02 5.7200e+00 0.0000e+00 - 1 3.4012e-04 2.8376e-04 9.8893e-02 6.9061e-04 7.1604e+00 1.8502e+00 - 2 2.8798e-05 2.0914e-05 2.4017e-02 7.7563e-02 8.6169e+00 1.8501e+00 - 3 1.4730e-05 9.6045e-06 1.4376e-02 6.0687e-01 9.1600e+00 1.8495e+00 - 4 1.2797e-05 8.0657e-06 1.2262e-02 1.0664e+00 9.3111e+00 1.8485e+00 - 5 1.2388e-05 7.7402e-06 1.1473e-02 1.2555e+00 9.3547e+00 1.8472e+00 - 6 1.2412e-05 7.7568e-06 1.1090e-02 1.2842e+00 9.3600e+00 1.8459e+00 - 7 1.2606e-05 7.9080e-06 1.0866e-02 1.2413e+00 9.3499e+00 1.8447e+00 - 8 1.2879e-05 8.1219e-06 1.0710e-02 1.1714e+00 9.3334e+00 1.8435e+00 - 9 1.3195e-05 8.3693e-06 1.0588e-02 1.0944e+00 9.3143e+00 1.8424e+00 - 10 1.3537e-05 8.6376e-06 1.0483e-02 1.0181e+00 9.2942e+00 1.8414e+00 - 11 1.3899e-05 8.9215e-06 1.0388e-02 9.4559e-01 9.2738e+00 1.8405e+00 - 12 1.4278e-05 9.2189e-06 1.0300e-02 8.7770e-01 9.2533e+00 1.8396e+00 - 13 1.4674e-05 9.5292e-06 1.0218e-02 8.1456e-01 9.2330e+00 1.8388e+00 - 14 1.5086e-05 9.8526e-06 1.0139e-02 7.5594e-01 9.2127e+00 1.8380e+00 - 15 1.5516e-05 1.0190e-05 1.0065e-02 7.0154e-01 9.1925e+00 1.8373e+00 - 16 1.5964e-05 1.0541e-05 9.9941e-03 6.5104e-01 9.1725e+00 1.8367e+00 - 17 1.6431e-05 1.0908e-05 9.9263e-03 6.0413e-01 9.1525e+00 1.8361e+00 - 18 1.6919e-05 1.1291e-05 9.8615e-03 5.6054e-01 9.1325e+00 1.8355e+00 - 19 1.7429e-05 1.1691e-05 9.7994e-03 5.2000e-01 9.1127e+00 1.8350e+00 - 20 1.7963e-05 1.2109e-05 9.7399e-03 4.8229e-01 9.0928e+00 1.8345e+00 - 21 1.8521e-05 1.2547e-05 9.6827e-03 4.4720e-01 9.0729e+00 1.8340e+00 - 22 1.9106e-05 1.3006e-05 9.6278e-03 4.1452e-01 9.0531e+00 1.8336e+00 - 23 1.9719e-05 1.3487e-05 9.5749e-03 3.8410e-01 9.0332e+00 1.8332e+00 - 24 2.0362e-05 1.3991e-05 9.5240e-03 3.5576e-01 9.0133e+00 1.8329e+00 - 25 2.1037e-05 1.4521e-05 9.4749e-03 3.2937e-01 8.9934e+00 1.8326e+00 - 26 2.1746e-05 1.5077e-05 9.4275e-03 3.0479e-01 8.9733e+00 1.8323e+00 - 27 2.2492e-05 1.5662e-05 9.3817e-03 2.8190e-01 8.9533e+00 1.8320e+00 - 28 2.3276e-05 1.6277e-05 9.3374e-03 2.6057e-01 8.9331e+00 1.8317e+00 - 29 2.4102e-05 1.6925e-05 9.2944e-03 2.4072e-01 8.9128e+00 1.8315e+00 - 30 2.4972e-05 1.7607e-05 9.2528e-03 2.2224e-01 8.8925e+00 1.8313e+00 - 31 2.5890e-05 1.8327e-05 9.2123e-03 2.0503e-01 8.8720e+00 1.8310e+00 - 32 2.6858e-05 1.9087e-05 9.1730e-03 1.8903e-01 8.8514e+00 1.8309e+00 - 33 2.7881e-05 1.9889e-05 9.1347e-03 1.7414e-01 8.8307e+00 1.8307e+00 - 34 2.8963e-05 2.0738e-05 9.0973e-03 1.6030e-01 8.8098e+00 1.8305e+00 - 35 3.0107e-05 2.1635e-05 9.0608e-03 1.4744e-01 8.7887e+00 1.8304e+00 - 36 3.1318e-05 2.2585e-05 9.0251e-03 1.3549e-01 8.7675e+00 1.8302e+00 - 37 3.2602e-05 2.3592e-05 8.9902e-03 1.2440e-01 8.7461e+00 1.8301e+00 - 38 3.3964e-05 2.4659e-05 8.9558e-03 1.1412e-01 8.7246e+00 1.8300e+00 - 39 3.5409e-05 2.5793e-05 8.9221e-03 1.0458e-01 8.7028e+00 1.8299e+00 - 40 3.6945e-05 2.6997e-05 8.8888e-03 9.5744e-02 8.6808e+00 1.8298e+00 - 41 3.8578e-05 2.8278e-05 8.8559e-03 8.7564e-02 8.6586e+00 1.8297e+00 - 42 4.0316e-05 2.9641e-05 8.8234e-03 7.9998e-02 8.6362e+00 1.8296e+00 - 43 4.2168e-05 3.1093e-05 8.7911e-03 7.3004e-02 8.6136e+00 1.8296e+00 - 44 4.4143e-05 3.2641e-05 8.7589e-03 6.6546e-02 8.5907e+00 1.8295e+00 - 45 4.6251e-05 3.4294e-05 8.7268e-03 6.0588e-02 8.5675e+00 1.8294e+00 - 46 4.8503e-05 3.6060e-05 8.6947e-03 5.5097e-02 8.5441e+00 1.8294e+00 - 47 5.0912e-05 3.7949e-05 8.6625e-03 5.0041e-02 8.5204e+00 1.8293e+00 - 48 5.3491e-05 3.9971e-05 8.6300e-03 4.5392e-02 8.4964e+00 1.8293e+00 - 49 5.6256e-05 4.2138e-05 8.5972e-03 4.1120e-02 8.4721e+00 1.8292e+00 - 50 5.9221e-05 4.4462e-05 8.5640e-03 3.7201e-02 8.4475e+00 1.8292e+00 - 51 6.2406e-05 4.6958e-05 8.5301e-03 3.3609e-02 8.4226e+00 1.8292e+00 - 52 6.5830e-05 4.9642e-05 8.4956e-03 3.0322e-02 8.3973e+00 1.8291e+00 - 53 6.9514e-05 5.2529e-05 8.4602e-03 2.7317e-02 8.3718e+00 1.8291e+00 - 54 7.3485e-05 5.5640e-05 8.4238e-03 2.4574e-02 8.3459e+00 1.8291e+00 - 55 7.7766e-05 5.8996e-05 8.3863e-03 2.2075e-02 8.3196e+00 1.8291e+00 - 56 8.2389e-05 6.2618e-05 8.3474e-03 1.9801e-02 8.2930e+00 1.8290e+00 - 57 8.7386e-05 6.6532e-05 8.3070e-03 1.7734e-02 8.2660e+00 1.8290e+00 - 58 9.2793e-05 7.0768e-05 8.2648e-03 1.5859e-02 8.2386e+00 1.8290e+00 - 59 9.8649e-05 7.5354e-05 8.2207e-03 1.4162e-02 8.2109e+00 1.8290e+00 - 60 1.0500e-04 8.0327e-05 8.1743e-03 1.2627e-02 8.1828e+00 1.8290e+00 - 61 1.1189e-04 8.5723e-05 8.1255e-03 1.1242e-02 8.1543e+00 1.8290e+00 - 62 1.1938e-04 9.1584e-05 8.0738e-03 9.9950e-03 8.1254e+00 1.8290e+00 - 63 1.2751e-04 9.7956e-05 8.0191e-03 8.8736e-03 8.0962e+00 1.8290e+00 - 64 1.3637e-04 1.0489e-04 7.9610e-03 7.8674e-03 8.0666e+00 1.8289e+00 - 65 1.4602e-04 1.1244e-04 7.8991e-03 6.9663e-03 8.0366e+00 1.8289e+00 - 66 1.5653e-04 1.2066e-04 7.8330e-03 6.1611e-03 8.0062e+00 1.8289e+00 - 67 1.6799e-04 1.2963e-04 7.7623e-03 5.4429e-03 7.9756e+00 1.8289e+00 - 68 1.8049e-04 1.3940e-04 7.6865e-03 4.8037e-03 7.9446e+00 1.8289e+00 - 69 1.9413e-04 1.5007e-04 7.6053e-03 4.2361e-03 7.9133e+00 1.8289e+00 - 70 2.0902e-04 1.6170e-04 7.5180e-03 3.7330e-03 7.8817e+00 1.8289e+00 - 71 2.2526e-04 1.7439e-04 7.4242e-03 3.2880e-03 7.8499e+00 1.8289e+00 - 72 2.4297e-04 1.8823e-04 7.3235e-03 2.8954e-03 7.8180e+00 1.8289e+00 - 73 2.6228e-04 2.0331e-04 7.2151e-03 2.5496e-03 7.7859e+00 1.8289e+00 - 74 2.8331e-04 2.1973e-04 7.0987e-03 2.2456e-03 7.7537e+00 1.8289e+00 - 75 3.0619e-04 2.3759e-04 6.9737e-03 1.9790e-03 7.7214e+00 1.8289e+00 - 76 3.3104e-04 2.5698e-04 6.8397e-03 1.7456e-03 7.6893e+00 1.8289e+00 - 77 3.5798e-04 2.7798e-04 6.6963e-03 1.5416e-03 7.6572e+00 1.8289e+00 - 78 3.8711e-04 3.0069e-04 6.5431e-03 1.3636e-03 7.6254e+00 1.8289e+00 - 79 4.1854e-04 3.2518e-04 6.3799e-03 1.2085e-03 7.5938e+00 1.8289e+00 - 80 4.5223e-04 3.5158e-04 6.2066e-03 1.0736e-03 7.5627e+00 1.8289e+00 - 81 4.8765e-04 3.8060e-04 6.0223e-03 9.5591e-04 7.5319e+00 1.8289e+00 - 82 5.2542e-04 4.1158e-04 5.8285e-03 8.5381e-04 7.5017e+00 1.8289e+00 - 83 5.6547e-04 4.4448e-04 5.6253e-03 7.6535e-04 7.4722e+00 1.8289e+00 - 84 6.0773e-04 4.7922e-04 5.4134e-03 6.8877e-04 7.4435e+00 1.8289e+00 - 85 6.5205e-04 5.1570e-04 5.1935e-03 6.2251e-04 7.4157e+00 1.8289e+00 - 86 6.9826e-04 5.5377e-04 4.9668e-03 5.6518e-04 7.3888e+00 1.8289e+00 - 87 7.4613e-04 5.9324e-04 4.7345e-03 5.1559e-04 7.3631e+00 1.8289e+00 - 88 7.9538e-04 6.3387e-04 4.4979e-03 4.7268e-04 7.3385e+00 1.8289e+00 - 89 8.4568e-04 6.7540e-04 4.2586e-03 4.3553e-04 7.3150e+00 1.8289e+00 - 90 8.9670e-04 7.1753e-04 4.0183e-03 4.0336e-04 7.2928e+00 1.8289e+00 - 91 9.4805e-04 7.5995e-04 3.7788e-03 3.7548e-04 7.2719e+00 1.8289e+00 - 92 9.9935e-04 8.0234e-04 3.5416e-03 3.5130e-04 7.2522e+00 1.8289e+00 - 93 1.0502e-03 8.4437e-04 3.3084e-03 3.3030e-04 7.2338e+00 1.8289e+00 - 94 1.1003e-03 8.8573e-04 3.0808e-03 3.1206e-04 7.2167e+00 1.8289e+00 - 95 1.1492e-03 9.2613e-04 2.8602e-03 2.9619e-04 7.2008e+00 1.8289e+00 - 96 1.1966e-03 9.6531e-04 2.6478e-03 2.8237e-04 7.1861e+00 1.8289e+00 - 97 1.2423e-03 1.0030e-03 2.4445e-03 2.7032e-04 7.1726e+00 1.8289e+00 - 98 1.2860e-03 1.0391e-03 2.2513e-03 2.5980e-04 7.1602e+00 1.8289e+00 - 99 1.3276e-03 1.0734e-03 2.0686e-03 2.5061e-04 7.1488e+00 1.8289e+00 - 100 1.3669e-03 1.1058e-03 1.8968e-03 2.4257e-04 7.1384e+00 1.8289e+00 - 101 1.4039e-03 1.1362e-03 1.7362e-03 2.3553e-04 7.1290e+00 1.8289e+00 - 102 1.4385e-03 1.1646e-03 1.5868e-03 2.2936e-04 7.1204e+00 1.8289e+00 - 103 1.4707e-03 1.1910e-03 1.4483e-03 2.2395e-04 7.1126e+00 1.8289e+00 - 104 1.5005e-03 1.2155e-03 1.3205e-03 2.1920e-04 7.1056e+00 1.8289e+00 - 105 1.5280e-03 1.2380e-03 1.2031e-03 2.1502e-04 7.0993e+00 1.8289e+00 - 106 1.5533e-03 1.2586e-03 1.0956e-03 2.1134e-04 7.0936e+00 1.8289e+00 - 107 1.5765e-03 1.2775e-03 9.9741e-04 2.0810e-04 7.0885e+00 1.8289e+00 - 108 1.5977e-03 1.2947e-03 9.0805e-04 2.0525e-04 7.0839e+00 1.8289e+00 - 109 1.6170e-03 1.3104e-03 8.2693e-04 2.0274e-04 7.0797e+00 1.8289e+00 - 110 1.6345e-03 1.3245e-03 7.5347e-04 2.0052e-04 7.0760e+00 1.8289e+00 - 111 1.6505e-03 1.3373e-03 6.8709e-04 1.9857e-04 7.0727e+00 1.8289e+00 - 112 1.6648e-03 1.3488e-03 6.2722e-04 1.9684e-04 7.0698e+00 1.8289e+00 - 113 1.6779e-03 1.3592e-03 5.7333e-04 1.9531e-04 7.0671e+00 1.8289e+00 - 114 1.6896e-03 1.3685e-03 5.2489e-04 1.9396e-04 7.0648e+00 1.8289e+00 - 115 1.7002e-03 1.3768e-03 4.8141e-04 1.9277e-04 7.0627e+00 1.8289e+00 - 116 1.7097e-03 1.3843e-03 4.4244e-04 1.9172e-04 7.0608e+00 1.8289e+00 - 117 1.7182e-03 1.3909e-03 4.0755e-04 1.9079e-04 7.0591e+00 1.8289e+00 - 118 1.7259e-03 1.3968e-03 3.7634e-04 1.8996e-04 7.0577e+00 1.8289e+00 - 119 1.7328e-03 1.4021e-03 3.4845e-04 1.8923e-04 7.0563e+00 1.8289e+00 - 120 1.7390e-03 1.4068e-03 3.2355e-04 1.8859e-04 7.0552e+00 1.8289e+00 - 121 1.7445e-03 1.4109e-03 3.0134e-04 1.8802e-04 7.0541e+00 1.8289e+00 - 122 1.7495e-03 1.4146e-03 2.8153e-04 1.8751e-04 7.0532e+00 1.8289e+00 - 123 1.7540e-03 1.4179e-03 2.6388e-04 1.8706e-04 7.0524e+00 1.8289e+00 - 124 1.7580e-03 1.4207e-03 2.4816e-04 1.8667e-04 7.0516e+00 1.8289e+00 - 125 1.7616e-03 1.4233e-03 2.3417e-04 1.8632e-04 7.0510e+00 1.8289e+00 - 126 1.7648e-03 1.4255e-03 2.2171e-04 1.8600e-04 7.0504e+00 1.8289e+00 - 127 1.7677e-03 1.4274e-03 2.1064e-04 1.8573e-04 7.0499e+00 1.8289e+00 - 128 1.7703e-03 1.4292e-03 2.0079e-04 1.8549e-04 7.0494e+00 1.8289e+00 - 129 1.7727e-03 1.4307e-03 1.9203e-04 1.8527e-04 7.0490e+00 1.8289e+00 - 130 1.7748e-03 1.4320e-03 1.8425e-04 1.8508e-04 7.0487e+00 1.8289e+00 - 131 1.7767e-03 1.4331e-03 1.7733e-04 1.8491e-04 7.0484e+00 1.8289e+00 - 132 1.7784e-03 1.4341e-03 1.7119e-04 1.8476e-04 7.0481e+00 1.8289e+00 - 133 1.7799e-03 1.4349e-03 1.6574e-04 1.8463e-04 7.0478e+00 1.8289e+00 - 134 1.7813e-03 1.4357e-03 1.6089e-04 1.8451e-04 7.0476e+00 1.8289e+00 - 135 1.7826e-03 1.4363e-03 1.5659e-04 1.8441e-04 7.0474e+00 1.8289e+00 - 136 1.7838e-03 1.4368e-03 1.5277e-04 1.8432e-04 7.0473e+00 1.8289e+00 - 137 1.7848e-03 1.4373e-03 1.4938e-04 1.8424e-04 7.0471e+00 1.8289e+00 - 138 1.7858e-03 1.4376e-03 1.4637e-04 1.8417e-04 7.0470e+00 1.8289e+00 - 139 1.7866e-03 1.4379e-03 1.4370e-04 1.8411e-04 7.0468e+00 1.8289e+00 - 140 1.7874e-03 1.4382e-03 1.4133e-04 1.8405e-04 7.0467e+00 1.8289e+00 - 141 1.7882e-03 1.4384e-03 1.3922e-04 1.8400e-04 7.0467e+00 1.8289e+00 - 142 1.7888e-03 1.4385e-03 1.3736e-04 1.8396e-04 7.0466e+00 1.8289e+00 - 143 1.7895e-03 1.4386e-03 1.3570e-04 1.8392e-04 7.0465e+00 1.8289e+00 - 144 1.7900e-03 1.4387e-03 1.3423e-04 1.8389e-04 7.0464e+00 1.8289e+00 - 145 1.7906e-03 1.4388e-03 1.3293e-04 1.8386e-04 7.0464e+00 1.8289e+00 - 146 1.7911e-03 1.4388e-03 1.3177e-04 1.8383e-04 7.0463e+00 1.8289e+00 - 147 1.7915e-03 1.4388e-03 1.3075e-04 1.8381e-04 7.0463e+00 1.8289e+00 - 148 1.7920e-03 1.4387e-03 1.2983e-04 1.8379e-04 7.0462e+00 1.8289e+00 - 149 1.7924e-03 1.4387e-03 1.2903e-04 1.8377e-04 7.0462e+00 1.8289e+00 - 150 1.7928e-03 1.4386e-03 1.2831e-04 1.8376e-04 7.0462e+00 1.8289e+00 - 151 1.7931e-03 1.4385e-03 1.2768e-04 1.8375e-04 7.0462e+00 1.8289e+00 - 152 1.7935e-03 1.4384e-03 1.2711e-04 1.8373e-04 7.0461e+00 1.8289e+00 - 153 1.7938e-03 1.4383e-03 1.2661e-04 1.8372e-04 7.0461e+00 1.8289e+00 - 154 1.7941e-03 1.4382e-03 1.2617e-04 1.8372e-04 7.0461e+00 1.8289e+00 - 155 1.7944e-03 1.4381e-03 1.2578e-04 1.8371e-04 7.0461e+00 1.8289e+00 - 156 1.7947e-03 1.4380e-03 1.2543e-04 1.8370e-04 7.0461e+00 1.8289e+00 - 157 1.7950e-03 1.4378e-03 1.2512e-04 1.8370e-04 7.0461e+00 1.8289e+00 - 158 1.7953e-03 1.4377e-03 1.2484e-04 1.8369e-04 7.0461e+00 1.8289e+00 - 159 1.7955e-03 1.4376e-03 1.2460e-04 1.8369e-04 7.0461e+00 1.8289e+00 - 160 1.7958e-03 1.4374e-03 1.2438e-04 1.8369e-04 7.0460e+00 1.8289e+00 - 161 1.7960e-03 1.4372e-03 1.2419e-04 1.8369e-04 7.0460e+00 1.8289e+00 - 162 1.7963e-03 1.4371e-03 1.2402e-04 1.8368e-04 7.0460e+00 1.8289e+00 - 163 1.7965e-03 1.4369e-03 1.2387e-04 1.8368e-04 7.0460e+00 1.8289e+00 - 164 1.7967e-03 1.4368e-03 1.2374e-04 1.8368e-04 7.0460e+00 1.8289e+00 - 165 1.7970e-03 1.4366e-03 1.2362e-04 1.8368e-04 7.0460e+00 1.8289e+00 - 166 1.7972e-03 1.4364e-03 1.2351e-04 1.8368e-04 7.0460e+00 1.8289e+00 - 167 1.7974e-03 1.4363e-03 1.2342e-04 1.8368e-04 7.0460e+00 1.8289e+00 - 168 1.7976e-03 1.4361e-03 1.2334e-04 1.8368e-04 7.0460e+00 1.8289e+00 - 169 1.7978e-03 1.4359e-03 1.2326e-04 1.8368e-04 7.0460e+00 1.8289e+00 - 170 1.7980e-03 1.4358e-03 1.2320e-04 1.8368e-04 7.0460e+00 1.8289e+00 - 171 1.7982e-03 1.4356e-03 1.2314e-04 1.8368e-04 7.0460e+00 1.8289e+00 - 172 1.7984e-03 1.4354e-03 1.2309e-04 1.8368e-04 7.0460e+00 1.8289e+00 - 173 1.7986e-03 1.4353e-03 1.2304e-04 1.8369e-04 7.0460e+00 1.8289e+00 - 174 1.7988e-03 1.4351e-03 1.2300e-04 1.8369e-04 7.0460e+00 1.8289e+00 - 175 1.7990e-03 1.4349e-03 1.2297e-04 1.8369e-04 7.0460e+00 1.8289e+00 - 176 1.7992e-03 1.4348e-03 1.2294e-04 1.8369e-04 7.0460e+00 1.8289e+00 - 177 1.7993e-03 1.4346e-03 1.2291e-04 1.8369e-04 7.0460e+00 1.8289e+00 - 178 1.7995e-03 1.4344e-03 1.2288e-04 1.8369e-04 7.0460e+00 1.8289e+00 - 179 1.7997e-03 1.4343e-03 1.2286e-04 1.8369e-04 7.0460e+00 1.8289e+00 - 180 1.7999e-03 1.4341e-03 1.2284e-04 1.8370e-04 7.0461e+00 1.8289e+00 - 181 1.8001e-03 1.4339e-03 1.2282e-04 1.8370e-04 7.0461e+00 1.8289e+00 - 182 1.8002e-03 1.4338e-03 1.2281e-04 1.8370e-04 7.0461e+00 1.8289e+00 - 183 1.8004e-03 1.4336e-03 1.2279e-04 1.8370e-04 7.0461e+00 1.8289e+00 - 184 1.8006e-03 1.4335e-03 1.2278e-04 1.8370e-04 7.0461e+00 1.8289e+00 - 185 1.8008e-03 1.4333e-03 1.2277e-04 1.8371e-04 7.0461e+00 1.8289e+00 - 186 1.8009e-03 1.4331e-03 1.2276e-04 1.8371e-04 7.0461e+00 1.8289e+00 - 187 1.8011e-03 1.4330e-03 1.2275e-04 1.8371e-04 7.0461e+00 1.8289e+00 - 188 1.8013e-03 1.4328e-03 1.2275e-04 1.8371e-04 7.0461e+00 1.8289e+00 - 189 1.8014e-03 1.4327e-03 1.2274e-04 1.8371e-04 7.0461e+00 1.8289e+00 - 190 1.8016e-03 1.4325e-03 1.2273e-04 1.8371e-04 7.0461e+00 1.8289e+00 - 191 1.8018e-03 1.4324e-03 1.2273e-04 1.8372e-04 7.0461e+00 1.8289e+00 - 192 1.8019e-03 1.4322e-03 1.2272e-04 1.8372e-04 7.0461e+00 1.8289e+00 - 193 1.8021e-03 1.4321e-03 1.2272e-04 1.8372e-04 7.0461e+00 1.8289e+00 - 194 1.8022e-03 1.4319e-03 1.2272e-04 1.8372e-04 7.0461e+00 1.8289e+00 - 195 1.8024e-03 1.4318e-03 1.2271e-04 1.8372e-04 7.0461e+00 1.8289e+00 - 196 1.8025e-03 1.4316e-03 1.2271e-04 1.8373e-04 7.0461e+00 1.8289e+00 - 197 1.8027e-03 1.4315e-03 1.2271e-04 1.8373e-04 7.0461e+00 1.8289e+00 - 198 1.8028e-03 1.4313e-03 1.2270e-04 1.8373e-04 7.0461e+00 1.8289e+00 - 199 1.8030e-03 1.4312e-03 1.2270e-04 1.8373e-04 7.0461e+00 1.8289e+00 - 200 1.8032e-03 1.4310e-03 1.2270e-04 1.8373e-04 7.0461e+00 1.8289e+00 + 1 4.6256e-01 1.6385e-01 5.4020e+00 2.5000e-02 5.7204e+00 0.0000e+00 + 1 3.3952e-04 2.8361e-04 9.8901e-02 6.9283e-04 7.1612e+00 1.8508e+00 + 2 2.8743e-05 2.0924e-05 2.4018e-02 7.7786e-02 8.6174e+00 1.8507e+00 + 3 1.4707e-05 9.6112e-06 1.4378e-02 6.0780e-01 9.1603e+00 1.8501e+00 + 4 1.2777e-05 8.0708e-06 1.2262e-02 1.0679e+00 9.3114e+00 1.8491e+00 + 5 1.2370e-05 7.7447e-06 1.1473e-02 1.2573e+00 9.3550e+00 1.8478e+00 + 6 1.2393e-05 7.7613e-06 1.1090e-02 1.2861e+00 9.3603e+00 1.8465e+00 + 7 1.2586e-05 7.9125e-06 1.0865e-02 1.2432e+00 9.3502e+00 1.8453e+00 + 8 1.2858e-05 8.1266e-06 1.0710e-02 1.1733e+00 9.3338e+00 1.8441e+00 + 9 1.3173e-05 8.3742e-06 1.0588e-02 1.0961e+00 9.3147e+00 1.8430e+00 + 10 1.3514e-05 8.6428e-06 1.0483e-02 1.0197e+00 9.2945e+00 1.8420e+00 + 11 1.3875e-05 8.9269e-06 1.0388e-02 9.4708e-01 9.2741e+00 1.8410e+00 + 12 1.4253e-05 9.2246e-06 1.0300e-02 8.7909e-01 9.2537e+00 1.8402e+00 + 13 1.4647e-05 9.5351e-06 1.0217e-02 8.1586e-01 9.2333e+00 1.8393e+00 + 14 1.5058e-05 9.8588e-06 1.0139e-02 7.5715e-01 9.2130e+00 1.8386e+00 + 15 1.5486e-05 1.0196e-05 1.0064e-02 7.0268e-01 9.1929e+00 1.8379e+00 + 16 1.5933e-05 1.0548e-05 9.9931e-03 6.5211e-01 9.1728e+00 1.8372e+00 + 17 1.6399e-05 1.0915e-05 9.9253e-03 6.0514e-01 9.1528e+00 1.8366e+00 + 18 1.6885e-05 1.1298e-05 9.8605e-03 5.6148e-01 9.1329e+00 1.8361e+00 + 19 1.7394e-05 1.1698e-05 9.7984e-03 5.2089e-01 9.1130e+00 1.8355e+00 + 20 1.7925e-05 1.2117e-05 9.7388e-03 4.8313e-01 9.0931e+00 1.8351e+00 + 21 1.8482e-05 1.2555e-05 9.6816e-03 4.4798e-01 9.0733e+00 1.8346e+00 + 22 1.9064e-05 1.3014e-05 9.6267e-03 4.1527e-01 9.0534e+00 1.8342e+00 + 23 1.9675e-05 1.3496e-05 9.5738e-03 3.8480e-01 9.0336e+00 1.8338e+00 + 24 2.0316e-05 1.4000e-05 9.5229e-03 3.5643e-01 9.0137e+00 1.8335e+00 + 25 2.0988e-05 1.4530e-05 9.4738e-03 3.3000e-01 8.9937e+00 1.8331e+00 + 26 2.1695e-05 1.5086e-05 9.4263e-03 3.0538e-01 8.9737e+00 1.8328e+00 + 27 2.2438e-05 1.5671e-05 9.3805e-03 2.8245e-01 8.9536e+00 1.8325e+00 + 28 2.3219e-05 1.6287e-05 9.3362e-03 2.6110e-01 8.9335e+00 1.8323e+00 + 29 2.4042e-05 1.6935e-05 9.2932e-03 2.4122e-01 8.9132e+00 1.8320e+00 + 30 2.4909e-05 1.7617e-05 9.2515e-03 2.2270e-01 8.8929e+00 1.8318e+00 + 31 2.5823e-05 1.8337e-05 9.2111e-03 2.0548e-01 8.8724e+00 1.8316e+00 + 32 2.6788e-05 1.9097e-05 9.1717e-03 1.8944e-01 8.8518e+00 1.8314e+00 + 33 2.7806e-05 1.9900e-05 9.1334e-03 1.7453e-01 8.8311e+00 1.8312e+00 + 34 2.8884e-05 2.0748e-05 9.0961e-03 1.6067e-01 8.8102e+00 1.8311e+00 + 35 3.0023e-05 2.1645e-05 9.0596e-03 1.4779e-01 8.7892e+00 1.8309e+00 + 36 3.1229e-05 2.2595e-05 9.0239e-03 1.3582e-01 8.7680e+00 1.8308e+00 + 37 3.2508e-05 2.3602e-05 8.9890e-03 1.2471e-01 8.7466e+00 1.8307e+00 + 38 3.3864e-05 2.4669e-05 8.9546e-03 1.1441e-01 8.7251e+00 1.8306e+00 + 39 3.5303e-05 2.5803e-05 8.9209e-03 1.0485e-01 8.7033e+00 1.8305e+00 + 40 3.6832e-05 2.7006e-05 8.8876e-03 9.6002e-02 8.6813e+00 1.8304e+00 + 41 3.8458e-05 2.8287e-05 8.8547e-03 8.7806e-02 8.6592e+00 1.8303e+00 + 42 4.0188e-05 2.9649e-05 8.8222e-03 8.0224e-02 8.6368e+00 1.8302e+00 + 43 4.2032e-05 3.1101e-05 8.7899e-03 7.3217e-02 8.6141e+00 1.8301e+00 + 44 4.3998e-05 3.2648e-05 8.7578e-03 6.6745e-02 8.5912e+00 1.8300e+00 + 45 4.6096e-05 3.4300e-05 8.7257e-03 6.0774e-02 8.5681e+00 1.8300e+00 + 46 4.8338e-05 3.6065e-05 8.6936e-03 5.5271e-02 8.5447e+00 1.8299e+00 + 47 5.0735e-05 3.7952e-05 8.6614e-03 5.0203e-02 8.5210e+00 1.8299e+00 + 48 5.3302e-05 3.9973e-05 8.6290e-03 4.5543e-02 8.4970e+00 1.8298e+00 + 49 5.6053e-05 4.2138e-05 8.5962e-03 4.1261e-02 8.4727e+00 1.8298e+00 + 50 5.9004e-05 4.4460e-05 8.5630e-03 3.7331e-02 8.4482e+00 1.8298e+00 + 51 6.2172e-05 4.6954e-05 8.5292e-03 3.3730e-02 8.4233e+00 1.8297e+00 + 52 6.5579e-05 4.9635e-05 8.4948e-03 3.0434e-02 8.3981e+00 1.8297e+00 + 53 6.9245e-05 5.2519e-05 8.4594e-03 2.7421e-02 8.3725e+00 1.8297e+00 + 54 7.3194e-05 5.5626e-05 8.4231e-03 2.4671e-02 8.3466e+00 1.8296e+00 + 55 7.7453e-05 5.8977e-05 8.3857e-03 2.2164e-02 8.3204e+00 1.8296e+00 + 56 8.2051e-05 6.2594e-05 8.3469e-03 1.9883e-02 8.2938e+00 1.8296e+00 + 57 8.7021e-05 6.6503e-05 8.3065e-03 1.7809e-02 8.2668e+00 1.8296e+00 + 58 9.2398e-05 7.0732e-05 8.2644e-03 1.5929e-02 8.2395e+00 1.8296e+00 + 59 9.8221e-05 7.5312e-05 8.2204e-03 1.4225e-02 8.2118e+00 1.8296e+00 + 60 1.0453e-04 8.0276e-05 8.1742e-03 1.2685e-02 8.1837e+00 1.8295e+00 + 61 1.1139e-04 8.5662e-05 8.1255e-03 1.1295e-02 8.1552e+00 1.8295e+00 + 62 1.1883e-04 9.1512e-05 8.0740e-03 1.0043e-02 8.1264e+00 1.8295e+00 + 63 1.2692e-04 9.7871e-05 8.0194e-03 8.9176e-03 8.0972e+00 1.8295e+00 + 64 1.3572e-04 1.0479e-04 7.9615e-03 7.9074e-03 8.0676e+00 1.8295e+00 + 65 1.4531e-04 1.1232e-04 7.8998e-03 7.0025e-03 8.0376e+00 1.8295e+00 + 66 1.5576e-04 1.2053e-04 7.8339e-03 6.1938e-03 8.0073e+00 1.8295e+00 + 67 1.6715e-04 1.2947e-04 7.7634e-03 5.4724e-03 7.9767e+00 1.8295e+00 + 68 1.7957e-04 1.3923e-04 7.6880e-03 4.8303e-03 7.9457e+00 1.8295e+00 + 69 1.9312e-04 1.4987e-04 7.6070e-03 4.2599e-03 7.9145e+00 1.8295e+00 + 70 2.0791e-04 1.6148e-04 7.5201e-03 3.7544e-03 7.8829e+00 1.8295e+00 + 71 2.2405e-04 1.7414e-04 7.4267e-03 3.3072e-03 7.8512e+00 1.8295e+00 + 72 2.4165e-04 1.8794e-04 7.3263e-03 2.9125e-03 7.8192e+00 1.8295e+00 + 73 2.6084e-04 2.0298e-04 7.2184e-03 2.5648e-03 7.7871e+00 1.8295e+00 + 74 2.8173e-04 2.1936e-04 7.1025e-03 2.2592e-03 7.7550e+00 1.8295e+00 + 75 3.0447e-04 2.3717e-04 6.9780e-03 1.9910e-03 7.7227e+00 1.8295e+00 + 76 3.2916e-04 2.5651e-04 6.8445e-03 1.7562e-03 7.6906e+00 1.8295e+00 + 77 3.5593e-04 2.7746e-04 6.7016e-03 1.5510e-03 7.6586e+00 1.8295e+00 + 78 3.8489e-04 3.0012e-04 6.5490e-03 1.3719e-03 7.6267e+00 1.8295e+00 + 79 4.1612e-04 3.2455e-04 6.3865e-03 1.2158e-03 7.5952e+00 1.8295e+00 + 80 4.4921e-04 3.5135e-04 6.2131e-03 1.0797e-03 7.5639e+00 1.8294e+00 + 81 4.8440e-04 3.8036e-04 6.0296e-03 9.6124e-04 7.5331e+00 1.8294e+00 + 82 5.2193e-04 4.1133e-04 5.8365e-03 8.5849e-04 7.5029e+00 1.8294e+00 + 83 5.6173e-04 4.4421e-04 5.6339e-03 7.6947e-04 7.4733e+00 1.8294e+00 + 84 6.0373e-04 4.7895e-04 5.4226e-03 6.9239e-04 7.4446e+00 1.8294e+00 + 85 6.4779e-04 5.1543e-04 5.2033e-03 6.2570e-04 7.4168e+00 1.8294e+00 + 86 6.9375e-04 5.5350e-04 4.9771e-03 5.6799e-04 7.3899e+00 1.8294e+00 + 87 7.4137e-04 5.9299e-04 4.7452e-03 5.1806e-04 7.3642e+00 1.8294e+00 + 88 7.9038e-04 6.3365e-04 4.5090e-03 4.7486e-04 7.3395e+00 1.8294e+00 + 89 8.4047e-04 6.7522e-04 4.2701e-03 4.3745e-04 7.3160e+00 1.8294e+00 + 90 8.9128e-04 7.1741e-04 4.0300e-03 4.0506e-04 7.2938e+00 1.8294e+00 + 91 9.4245e-04 7.5991e-04 3.7906e-03 3.7698e-04 7.2728e+00 1.8294e+00 + 92 9.9360e-04 8.0239e-04 3.5534e-03 3.5262e-04 7.2531e+00 1.8294e+00 + 93 1.0443e-03 8.4453e-04 3.3202e-03 3.3148e-04 7.2346e+00 1.8294e+00 + 94 1.0943e-03 8.8602e-04 3.0925e-03 3.1310e-04 7.2174e+00 1.8294e+00 + 95 1.1431e-03 9.2656e-04 2.8716e-03 2.9711e-04 7.2015e+00 1.8294e+00 + 96 1.1905e-03 9.6588e-04 2.6589e-03 2.8319e-04 7.1867e+00 1.8294e+00 + 97 1.2361e-03 1.0038e-03 2.4553e-03 2.7106e-04 7.1731e+00 1.8294e+00 + 98 1.2799e-03 1.0400e-03 2.2616e-03 2.6046e-04 7.1606e+00 1.8294e+00 + 99 1.3214e-03 1.0745e-03 2.0784e-03 2.5120e-04 7.1492e+00 1.8294e+00 + 100 1.3608e-03 1.1070e-03 1.9062e-03 2.4311e-04 7.1388e+00 1.8294e+00 + 101 1.3978e-03 1.1376e-03 1.7450e-03 2.3602e-04 7.1293e+00 1.8294e+00 + 102 1.4324e-03 1.1662e-03 1.5950e-03 2.2980e-04 7.1207e+00 1.8294e+00 + 103 1.4647e-03 1.1928e-03 1.4560e-03 2.2435e-04 7.1129e+00 1.8294e+00 + 104 1.4945e-03 1.2174e-03 1.3277e-03 2.1956e-04 7.1058e+00 1.8294e+00 + 105 1.5221e-03 1.2400e-03 1.2098e-03 2.1535e-04 7.0994e+00 1.8294e+00 + 106 1.5475e-03 1.2608e-03 1.1017e-03 2.1164e-04 7.0937e+00 1.8294e+00 + 107 1.5708e-03 1.2798e-03 1.0030e-03 2.0838e-04 7.0886e+00 1.8294e+00 + 108 1.5920e-03 1.2972e-03 9.1322e-04 2.0551e-04 7.0839e+00 1.8294e+00 + 109 1.6114e-03 1.3129e-03 8.3166e-04 2.0298e-04 7.0798e+00 1.8294e+00 + 110 1.6290e-03 1.3272e-03 7.5778e-04 2.0074e-04 7.0760e+00 1.8294e+00 + 111 1.6450e-03 1.3400e-03 6.9101e-04 1.9877e-04 7.0727e+00 1.8294e+00 + 112 1.6594e-03 1.3517e-03 6.3079e-04 1.9703e-04 7.0697e+00 1.8294e+00 + 113 1.6725e-03 1.3621e-03 5.7656e-04 1.9549e-04 7.0671e+00 1.8294e+00 + 114 1.6843e-03 1.3715e-03 5.2782e-04 1.9413e-04 7.0647e+00 1.8294e+00 + 115 1.6949e-03 1.3799e-03 4.8406e-04 1.9293e-04 7.0626e+00 1.8294e+00 + 116 1.7045e-03 1.3874e-03 4.4483e-04 1.9187e-04 7.0607e+00 1.8294e+00 + 117 1.7131e-03 1.3941e-03 4.0970e-04 1.9093e-04 7.0590e+00 1.8294e+00 + 118 1.7208e-03 1.4000e-03 3.7828e-04 1.9010e-04 7.0575e+00 1.8294e+00 + 119 1.7277e-03 1.4054e-03 3.5020e-04 1.8937e-04 7.0562e+00 1.8294e+00 + 120 1.7340e-03 1.4101e-03 3.2512e-04 1.8872e-04 7.0550e+00 1.8294e+00 + 121 1.7396e-03 1.4143e-03 3.0275e-04 1.8814e-04 7.0540e+00 1.8294e+00 + 122 1.7446e-03 1.4180e-03 2.8280e-04 1.8763e-04 7.0530e+00 1.8294e+00 + 123 1.7491e-03 1.4212e-03 2.6502e-04 1.8718e-04 7.0522e+00 1.8294e+00 + 124 1.7531e-03 1.4241e-03 2.4918e-04 1.8678e-04 7.0515e+00 1.8294e+00 + 125 1.7567e-03 1.4267e-03 2.3508e-04 1.8643e-04 7.0508e+00 1.8294e+00 + 126 1.7600e-03 1.4289e-03 2.2253e-04 1.8611e-04 7.0502e+00 1.8294e+00 + 127 1.7629e-03 1.4309e-03 2.1137e-04 1.8584e-04 7.0497e+00 1.8294e+00 + 128 1.7656e-03 1.4326e-03 2.0144e-04 1.8559e-04 7.0493e+00 1.8294e+00 + 129 1.7679e-03 1.4341e-03 1.9262e-04 1.8537e-04 7.0489e+00 1.8294e+00 + 130 1.7700e-03 1.4354e-03 1.8477e-04 1.8518e-04 7.0485e+00 1.8294e+00 + 131 1.7720e-03 1.4366e-03 1.7780e-04 1.8501e-04 7.0482e+00 1.8294e+00 + 132 1.7737e-03 1.4376e-03 1.7161e-04 1.8486e-04 7.0479e+00 1.8294e+00 + 133 1.7753e-03 1.4384e-03 1.6611e-04 1.8473e-04 7.0477e+00 1.8294e+00 + 134 1.7767e-03 1.4391e-03 1.6123e-04 1.8461e-04 7.0474e+00 1.8294e+00 + 135 1.7780e-03 1.4398e-03 1.5689e-04 1.8451e-04 7.0472e+00 1.8294e+00 + 136 1.7791e-03 1.4403e-03 1.5304e-04 1.8441e-04 7.0471e+00 1.8294e+00 + 137 1.7802e-03 1.4407e-03 1.4962e-04 1.8433e-04 7.0469e+00 1.8294e+00 + 138 1.7812e-03 1.4411e-03 1.4658e-04 1.8426e-04 7.0468e+00 1.8294e+00 + 139 1.7821e-03 1.4414e-03 1.4389e-04 1.8420e-04 7.0467e+00 1.8294e+00 + 140 1.7829e-03 1.4416e-03 1.4150e-04 1.8414e-04 7.0466e+00 1.8294e+00 + 141 1.7836e-03 1.4418e-03 1.3938e-04 1.8409e-04 7.0465e+00 1.8294e+00 + 142 1.7843e-03 1.4420e-03 1.3749e-04 1.8405e-04 7.0464e+00 1.8294e+00 + 143 1.7849e-03 1.4421e-03 1.3582e-04 1.8401e-04 7.0463e+00 1.8294e+00 + 144 1.7855e-03 1.4421e-03 1.3434e-04 1.8398e-04 7.0462e+00 1.8294e+00 + 145 1.7861e-03 1.4422e-03 1.3302e-04 1.8395e-04 7.0462e+00 1.8294e+00 + 146 1.7866e-03 1.4422e-03 1.3186e-04 1.8392e-04 7.0461e+00 1.8294e+00 + 147 1.7871e-03 1.4422e-03 1.3082e-04 1.8390e-04 7.0461e+00 1.8294e+00 + 148 1.7875e-03 1.4421e-03 1.2990e-04 1.8388e-04 7.0461e+00 1.8294e+00 + 149 1.7879e-03 1.4421e-03 1.2909e-04 1.8386e-04 7.0460e+00 1.8294e+00 + 150 1.7883e-03 1.4420e-03 1.2837e-04 1.8385e-04 7.0460e+00 1.8294e+00 + 151 1.7887e-03 1.4419e-03 1.2772e-04 1.8384e-04 7.0460e+00 1.8294e+00 + 152 1.7891e-03 1.4418e-03 1.2716e-04 1.8382e-04 7.0459e+00 1.8294e+00 + 153 1.7894e-03 1.4417e-03 1.2665e-04 1.8381e-04 7.0459e+00 1.8294e+00 + 154 1.7897e-03 1.4416e-03 1.2620e-04 1.8381e-04 7.0459e+00 1.8294e+00 + 155 1.7901e-03 1.4415e-03 1.2581e-04 1.8380e-04 7.0459e+00 1.8294e+00 + 156 1.7904e-03 1.4413e-03 1.2545e-04 1.8379e-04 7.0459e+00 1.8294e+00 + 157 1.7906e-03 1.4412e-03 1.2514e-04 1.8379e-04 7.0459e+00 1.8294e+00 + 158 1.7909e-03 1.4410e-03 1.2486e-04 1.8378e-04 7.0459e+00 1.8294e+00 + 159 1.7912e-03 1.4409e-03 1.2462e-04 1.8378e-04 7.0459e+00 1.8294e+00 + 160 1.7915e-03 1.4407e-03 1.2440e-04 1.8378e-04 7.0459e+00 1.8294e+00 + 161 1.7917e-03 1.4405e-03 1.2421e-04 1.8378e-04 7.0458e+00 1.8294e+00 + 162 1.7920e-03 1.4404e-03 1.2404e-04 1.8377e-04 7.0458e+00 1.8294e+00 + 163 1.7922e-03 1.4402e-03 1.2388e-04 1.8377e-04 7.0458e+00 1.8294e+00 + 164 1.7924e-03 1.4400e-03 1.2375e-04 1.8377e-04 7.0458e+00 1.8294e+00 + 165 1.7927e-03 1.4399e-03 1.2363e-04 1.8377e-04 7.0458e+00 1.8294e+00 + 166 1.7929e-03 1.4397e-03 1.2352e-04 1.8377e-04 7.0458e+00 1.8294e+00 + 167 1.7931e-03 1.4395e-03 1.2343e-04 1.8377e-04 7.0458e+00 1.8294e+00 + 168 1.7933e-03 1.4394e-03 1.2334e-04 1.8377e-04 7.0458e+00 1.8294e+00 + 169 1.7935e-03 1.4392e-03 1.2327e-04 1.8377e-04 7.0458e+00 1.8294e+00 + 170 1.7938e-03 1.4390e-03 1.2320e-04 1.8377e-04 7.0458e+00 1.8294e+00 + 171 1.7940e-03 1.4388e-03 1.2315e-04 1.8377e-04 7.0458e+00 1.8294e+00 + 172 1.7942e-03 1.4387e-03 1.2309e-04 1.8378e-04 7.0458e+00 1.8294e+00 + 173 1.7944e-03 1.4385e-03 1.2305e-04 1.8378e-04 7.0458e+00 1.8294e+00 + 174 1.7946e-03 1.4383e-03 1.2301e-04 1.8378e-04 7.0458e+00 1.8294e+00 + 175 1.7948e-03 1.4381e-03 1.2297e-04 1.8378e-04 7.0458e+00 1.8294e+00 + 176 1.7950e-03 1.4380e-03 1.2294e-04 1.8378e-04 7.0458e+00 1.8294e+00 + 177 1.7952e-03 1.4378e-03 1.2291e-04 1.8378e-04 7.0458e+00 1.8294e+00 + 178 1.7953e-03 1.4376e-03 1.2289e-04 1.8378e-04 7.0459e+00 1.8294e+00 + 179 1.7955e-03 1.4374e-03 1.2286e-04 1.8379e-04 7.0459e+00 1.8294e+00 + 180 1.7957e-03 1.4373e-03 1.2284e-04 1.8379e-04 7.0459e+00 1.8294e+00 + 181 1.7959e-03 1.4371e-03 1.2283e-04 1.8379e-04 7.0459e+00 1.8294e+00 + 182 1.7961e-03 1.4369e-03 1.2281e-04 1.8379e-04 7.0459e+00 1.8294e+00 + 183 1.7963e-03 1.4368e-03 1.2280e-04 1.8379e-04 7.0459e+00 1.8294e+00 + 184 1.7964e-03 1.4366e-03 1.2278e-04 1.8380e-04 7.0459e+00 1.8294e+00 + 185 1.7966e-03 1.4364e-03 1.2277e-04 1.8380e-04 7.0459e+00 1.8294e+00 + 186 1.7968e-03 1.4363e-03 1.2276e-04 1.8380e-04 7.0459e+00 1.8294e+00 + 187 1.7970e-03 1.4361e-03 1.2275e-04 1.8380e-04 7.0459e+00 1.8294e+00 + 188 1.7971e-03 1.4359e-03 1.2275e-04 1.8380e-04 7.0459e+00 1.8294e+00 + 189 1.7973e-03 1.4358e-03 1.2274e-04 1.8380e-04 7.0459e+00 1.8294e+00 + 190 1.7975e-03 1.4356e-03 1.2273e-04 1.8381e-04 7.0459e+00 1.8294e+00 + 191 1.7977e-03 1.4354e-03 1.2273e-04 1.8381e-04 7.0459e+00 1.8294e+00 + 192 1.7978e-03 1.4353e-03 1.2272e-04 1.8381e-04 7.0459e+00 1.8294e+00 + 193 1.7980e-03 1.4351e-03 1.2272e-04 1.8381e-04 7.0459e+00 1.8294e+00 + 194 1.7982e-03 1.4350e-03 1.2272e-04 1.8381e-04 7.0459e+00 1.8294e+00 + 195 1.7983e-03 1.4348e-03 1.2271e-04 1.8382e-04 7.0459e+00 1.8294e+00 + 196 1.7985e-03 1.4347e-03 1.2271e-04 1.8382e-04 7.0459e+00 1.8294e+00 + 197 1.7986e-03 1.4345e-03 1.2271e-04 1.8382e-04 7.0459e+00 1.8294e+00 + 198 1.7988e-03 1.4343e-03 1.2270e-04 1.8382e-04 7.0459e+00 1.8294e+00 + 199 1.7990e-03 1.4342e-03 1.2270e-04 1.8382e-04 7.0459e+00 1.8294e+00 + 200 1.7991e-03 1.4340e-03 1.2270e-04 1.8383e-04 7.0459e+00 1.8294e+00 diff --git a/ex15.sel b/ex15.sel index 5e9063e5..45a612bb 100644 --- a/ex15.sel +++ b/ex15.sel @@ -4,7 +4,7 @@ 1 transp 10 9.5 7200 2 6 14.3937 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 2.5000e+00 0.0000e+00 0.0000e+00 1.3544e-04 1 transp 10 9.5 10800 3 6 14.3937 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 3.5000e+00 0.0000e+00 0.0000e+00 1.3515e-04 1 transp 10 9.5 14400 4 6 14.3937 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 4.5000e+00 0.0000e+00 0.0000e+00 1.3487e-04 - 1 transp 10 9.5 18000 5 6 14.3937 4.1637e-17 4.8356e-19 8.3076e-13 2.3172e-14 5.5000e+00 6.1781e-18 1.4377e-22 1.3459e-04 + 1 transp 10 9.5 18000 5 6 14.3937 4.1637e-17 4.8355e-19 8.3076e-13 2.3172e-14 5.5000e+00 6.1781e-18 1.4377e-22 1.3459e-04 1 transp 10 9.5 21600 6 6.00019 14.3935 5.3587e-15 7.6672e-15 1.0687e-10 2.8548e-12 6.5000e+00 1.0994e-15 2.6066e-18 1.3431e-04 1 transp 10 9.5 25200 7 6.00441 14.3893 1.1039e-13 3.4338e-12 2.1803e-09 6.2065e-11 7.5000e+00 2.2731e-14 9.7754e-16 1.3406e-04 1 transp 10 9.5 28800 8 6.03587 14.3576 8.7248e-13 1.8088e-10 1.6028e-08 4.1366e-10 8.5000e+00 1.5703e-13 4.8045e-14 1.3399e-04 diff --git a/ex16.out b/ex16.out index eceb8f1a..e7005a14 100644 --- a/ex16.out +++ b/ex16.out @@ -85,7 +85,7 @@ Initial solution 1. Volume (L) = 1.00300 Viscosity (mPa s) = 0.89070 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.855e-04 + Ionic strength (mol/kgw) = 4.856e-04 Mass of water (kg) = 1.000e+00 Total carbon (mol/kg) = 7.828e-04 Total CO2 (mol/kg) = 7.828e-04 @@ -108,20 +108,20 @@ C(4) 7.828e-04 CO2 4.542e-04 4.543e-04 -3.343 -3.343 0.000 34.43 HCO3- 3.283e-04 3.202e-04 -3.484 -3.495 -0.011 24.57 MgHCO3+ 1.003e-07 9.784e-08 -6.999 -7.009 -0.011 5.47 - CaHCO3+ 8.916e-08 8.698e-08 -7.050 -7.061 -0.011 9.66 - NaHCO3 3.643e-08 3.643e-08 -7.439 -7.438 0.000 31.73 + CaHCO3+ 8.919e-08 8.700e-08 -7.050 -7.060 -0.011 9.66 + NaHCO3 3.643e-08 3.644e-08 -7.439 -7.438 0.000 31.73 CO3-2 2.629e-08 2.380e-08 -7.580 -7.623 -0.043 -3.97 KHCO3 3.904e-09 3.904e-09 -8.408 -8.408 0.000 41.03 (CO2)2 3.787e-09 3.788e-09 -8.422 -8.422 0.000 68.87 - CaCO3 2.815e-09 2.815e-09 -8.550 -8.550 0.000 -14.60 + CaCO3 2.816e-09 2.816e-09 -8.550 -8.550 0.000 -14.60 MgCO3 5.930e-10 5.931e-10 -9.227 -9.227 0.000 -17.09 Ca 7.800e-05 - Ca+2 7.780e-05 7.042e-05 -4.109 -4.152 -0.043 -18.17 - CaSO4 1.111e-07 1.111e-07 -6.954 -6.954 0.000 7.50 - CaHCO3+ 8.916e-08 8.698e-08 -7.050 -7.061 -0.011 9.66 - CaCO3 2.815e-09 2.815e-09 -8.550 -8.550 0.000 -14.60 - CaOH+ 1.899e-11 1.852e-11 -10.721 -10.732 -0.011 (0) - CaHSO4+ 4.725e-13 4.608e-13 -12.326 -12.337 -0.011 (0) + Ca+2 7.782e-05 7.044e-05 -4.109 -4.152 -0.043 -18.17 + CaHCO3+ 8.919e-08 8.700e-08 -7.050 -7.060 -0.011 9.66 + CaSO4 8.745e-08 8.746e-08 -7.058 -7.058 0.000 7.22 + CaCO3 2.816e-09 2.816e-09 -8.550 -8.550 0.000 -14.60 + CaOH+ 1.900e-11 1.853e-11 -10.721 -10.732 -0.011 (0) + CaHSO4+ 4.742e-13 4.624e-13 -12.324 -12.335 -0.011 (0) Cl 1.400e-05 Cl- 1.400e-05 1.365e-05 -4.854 -4.865 -0.011 18.07 HCl 2.966e-12 2.967e-12 -11.528 -11.528 0.000 (0) @@ -130,29 +130,31 @@ H(0) 5.636e-24 K 2.800e-05 K+ 2.799e-05 2.730e-05 -4.553 -4.564 -0.011 9.00 KHCO3 3.904e-09 3.904e-09 -8.408 -8.408 0.000 41.03 - KSO4- 3.777e-09 3.685e-09 -8.423 -8.434 -0.011 14.13 + KSO4- 3.790e-09 3.697e-09 -8.421 -8.432 -0.011 17.92 Mg 2.900e-05 Mg+2 2.884e-05 2.611e-05 -4.540 -4.583 -0.043 -21.86 MgHCO3+ 1.003e-07 9.784e-08 -6.999 -7.009 -0.011 5.47 - MgSO4 6.065e-08 6.066e-08 -7.217 -7.217 0.000 -7.92 + MgSO4 6.085e-08 6.086e-08 -7.216 -7.216 0.000 -0.40 MgCO3 5.930e-10 5.931e-10 -9.227 -9.227 0.000 -17.09 MgOH+ 1.540e-10 1.503e-10 -9.812 -9.823 -0.011 (0) - Mg(SO4)2-2 1.956e-12 1.773e-12 -11.709 -11.751 -0.043 -8.04 + Mg(SO4)2-2 1.969e-12 1.784e-12 -11.706 -11.749 -0.043 32.82 Na 1.340e-04 - Na+ 1.339e-04 1.306e-04 -3.873 -3.884 -0.011 -1.49 - NaHCO3 3.643e-08 3.643e-08 -7.439 -7.438 0.000 31.73 - NaSO4- 1.934e-08 1.887e-08 -7.713 -7.724 -0.011 -22.22 + Na+ 1.340e-04 1.306e-04 -3.873 -3.884 -0.011 -1.49 + NaHCO3 3.643e-08 3.644e-08 -7.439 -7.438 0.000 31.73 + NaSO4- 1.048e-08 1.022e-08 -7.980 -7.991 -0.011 16.53 + Na2SO4 6.507e-16 6.508e-16 -15.187 -15.187 0.000 47.96 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.280 -45.280 0.000 30.40 + O2 0.000e+00 0.000e+00 -45.263 -45.263 0.000 30.40 S(6) 1.000e-05 - SO4-2 9.805e-06 8.872e-06 -5.009 -5.052 -0.043 15.25 - CaSO4 1.111e-07 1.111e-07 -6.954 -6.954 0.000 7.50 - MgSO4 6.065e-08 6.066e-08 -7.217 -7.217 0.000 -7.92 - NaSO4- 1.934e-08 1.887e-08 -7.713 -7.724 -0.011 -22.22 - KSO4- 3.777e-09 3.685e-09 -8.423 -8.434 -0.011 14.13 - HSO4- 5.581e-10 5.443e-10 -9.253 -9.264 -0.011 40.27 - Mg(SO4)2-2 1.956e-12 1.773e-12 -11.709 -11.751 -0.043 -8.04 - CaHSO4+ 4.725e-13 4.608e-13 -12.326 -12.337 -0.011 (0) + SO4-2 9.837e-06 8.902e-06 -5.007 -5.051 -0.043 14.51 + CaSO4 8.745e-08 8.746e-08 -7.058 -7.058 0.000 7.22 + MgSO4 6.085e-08 6.086e-08 -7.216 -7.216 0.000 -0.40 + NaSO4- 1.048e-08 1.022e-08 -7.980 -7.991 -0.011 16.53 + KSO4- 3.790e-09 3.697e-09 -8.421 -8.432 -0.011 17.92 + HSO4- 5.600e-10 5.461e-10 -9.252 -9.263 -0.011 40.27 + Mg(SO4)2-2 1.969e-12 1.784e-12 -11.706 -11.749 -0.043 32.82 + CaHSO4+ 4.742e-13 4.624e-13 -12.324 -12.335 -0.011 (0) + Na2SO4 6.507e-16 6.508e-16 -15.187 -15.187 0.000 47.96 Si 2.730e-04 H4SiO4 2.729e-04 2.730e-04 -3.564 -3.564 0.000 52.08 H3SiO4- 6.542e-08 6.379e-08 -7.184 -7.195 -0.011 27.96 @@ -162,7 +164,7 @@ Si 2.730e-04 Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -4.93 -9.20 -4.28 CaSO4 + Anhydrite -4.89 -9.20 -4.31 CaSO4 Aragonite -3.44 -11.78 -8.34 CaCO3 Arcanite -12.30 -14.18 -1.88 K2SO4 Calcite -3.30 -11.78 -8.48 CaCO3 @@ -170,22 +172,22 @@ Si 2.730e-04 Chrysotile -15.88 16.32 32.20 Mg3Si2O5(OH)4 CO2(g) -1.87 -3.34 -1.47 CO2 Dolomite -6.90 -23.98 -17.08 CaMg(CO3)2 - Epsomite -7.90 -9.64 -1.74 MgSO4:7H2O - Gypsum -4.62 -9.20 -4.58 CaSO4:2H2O + Epsomite -7.90 -9.63 -1.74 MgSO4:7H2O + Gypsum -4.65 -9.20 -4.55 CaSO4:2H2O H2(g) -20.45 -23.55 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -10.32 -8.75 1.57 NaCl - Hexahydrite -8.07 -9.64 -1.57 MgSO4:6H2O - Kieserite -8.47 -9.64 -1.16 MgSO4:H2O - Mirabilite -11.58 -12.82 -1.24 Na2SO4:10H2O - O2(g) -42.39 -45.28 -2.89 O2 + Hexahydrite -8.07 -9.63 -1.57 MgSO4:6H2O + Kieserite -8.47 -9.63 -1.16 MgSO4:H2O + Mirabilite -12.11 -12.82 -0.71 Na2SO4:10H2O + O2(g) -42.37 -45.26 -2.89 O2 Quartz 0.42 -3.56 -3.98 SiO2 Sepiolite -10.82 4.94 15.76 Mg2Si3O7.5OH:3H2O Sepiolite(d) -13.72 4.94 18.66 Mg2Si3O7.5OH:3H2O SiO2(a) -0.85 -3.56 -2.71 SiO2 Sylvite -10.33 -9.43 0.90 KCl Talc -12.20 9.20 21.40 Mg3Si4O10(OH)2 - Thenardite -12.52 -12.82 -0.30 Na2SO4 + Thenardite -13.47 -12.82 0.65 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -212,7 +214,7 @@ Initial solution 2. Specific Conductance (µS/cm, 25°C) = 97 Density (g/cm³) = 0.99712 Volume (L) = 1.00301 - Viscosity (mPa s) = 0.89116 + Viscosity (mPa s) = 0.89117 Activity of water = 1.000 Ionic strength (mol/kgw) = 1.317e-03 Mass of water (kg) = 1.000e+00 @@ -236,21 +238,21 @@ Initial solution 2. C(4) 1.200e-03 HCO3- 8.924e-04 8.574e-04 -3.049 -3.067 -0.017 24.58 CO2 3.055e-04 3.055e-04 -3.515 -3.515 0.000 34.43 - CaHCO3+ 7.574e-07 7.279e-07 -6.121 -6.138 -0.017 9.67 - MgHCO3+ 6.241e-07 5.992e-07 -6.205 -6.222 -0.018 5.48 + CaHCO3+ 7.579e-07 7.283e-07 -6.120 -6.138 -0.017 9.67 + MgHCO3+ 6.240e-07 5.992e-07 -6.205 -6.222 -0.018 5.48 CO3-2 2.978e-07 2.537e-07 -6.526 -6.596 -0.070 -3.92 NaHCO3 1.855e-07 1.856e-07 -6.732 -6.731 0.000 31.73 - CaCO3 9.377e-08 9.380e-08 -7.028 -7.028 0.000 -14.60 + CaCO3 9.383e-08 9.386e-08 -7.028 -7.028 0.000 -14.60 KHCO3 1.470e-08 1.470e-08 -7.833 -7.833 0.000 41.03 - MgCO3 1.446e-08 1.446e-08 -7.840 -7.840 0.000 -17.09 + MgCO3 1.445e-08 1.446e-08 -7.840 -7.840 0.000 -17.09 (CO2)2 1.713e-09 1.713e-09 -8.766 -8.766 0.000 68.87 Ca 2.600e-04 - Ca+2 2.584e-04 2.201e-04 -3.588 -3.657 -0.070 -18.13 - CaSO4 7.926e-07 7.928e-07 -6.101 -6.101 0.000 7.50 - CaHCO3+ 7.574e-07 7.279e-07 -6.121 -6.138 -0.017 9.67 - CaCO3 9.377e-08 9.380e-08 -7.028 -7.028 0.000 -14.60 - CaOH+ 2.400e-10 2.305e-10 -9.620 -9.637 -0.018 (0) - CaHSO4+ 8.602e-13 8.260e-13 -12.065 -12.083 -0.018 (0) + Ca+2 2.585e-04 2.202e-04 -3.587 -3.657 -0.070 -18.13 + CaHCO3+ 7.579e-07 7.283e-07 -6.120 -6.138 -0.017 9.67 + CaSO4 6.274e-07 6.275e-07 -6.202 -6.202 0.000 7.22 + CaCO3 9.383e-08 9.386e-08 -7.028 -7.028 0.000 -14.60 + CaOH+ 2.402e-10 2.306e-10 -9.619 -9.637 -0.018 (0) + CaHSO4+ 8.680e-13 8.334e-13 -12.061 -12.079 -0.018 (0) Cl 3.000e-05 Cl- 3.000e-05 2.880e-05 -4.523 -4.541 -0.018 18.08 HCl 1.571e-12 1.573e-12 -11.804 -11.803 0.001 (0) @@ -259,62 +261,64 @@ H(0) 3.555e-25 K 4.000e-05 K+ 3.998e-05 3.838e-05 -4.398 -4.416 -0.018 9.01 KHCO3 1.470e-08 1.470e-08 -7.833 -7.833 0.000 41.03 - KSO4- 1.230e-08 1.183e-08 -7.910 -7.927 -0.017 14.15 + KSO4- 1.241e-08 1.193e-08 -7.906 -7.923 -0.017 18.52 Mg 7.101e-05 Mg+2 7.005e-05 5.973e-05 -4.155 -4.224 -0.069 -21.81 - MgHCO3+ 6.241e-07 5.992e-07 -6.205 -6.222 -0.018 5.48 - MgSO4 3.166e-07 3.168e-07 -6.499 -6.499 0.000 -7.92 - MgCO3 1.446e-08 1.446e-08 -7.840 -7.840 0.000 -17.09 - MgOH+ 1.424e-09 1.368e-09 -8.847 -8.864 -0.017 (0) - Mg(SO4)2-2 2.474e-11 2.114e-11 -10.607 -10.675 -0.068 -3.35 + MgHCO3+ 6.240e-07 5.992e-07 -6.205 -6.222 -0.018 5.48 + MgSO4 3.193e-07 3.194e-07 -6.496 -6.496 0.000 -0.40 + MgCO3 1.445e-08 1.446e-08 -7.840 -7.840 0.000 -17.09 + MgOH+ 1.423e-09 1.368e-09 -8.847 -8.864 -0.017 (0) + Mg(SO4)2-2 2.515e-11 2.149e-11 -10.599 -10.668 -0.068 34.32 Na 2.590e-04 Na+ 2.588e-04 2.485e-04 -3.587 -3.605 -0.018 -1.47 NaHCO3 1.855e-07 1.856e-07 -6.732 -6.731 0.000 31.73 - NaSO4- 8.529e-08 8.195e-08 -7.069 -7.086 -0.017 -20.40 + NaSO4- 4.645e-08 4.460e-08 -7.333 -7.351 -0.018 16.62 + Na2SO4 5.404e-15 5.405e-15 -14.267 -14.267 0.000 47.96 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -42.880 -42.880 0.000 30.40 + O2 0.000e+00 0.000e+00 -42.863 -42.863 0.000 30.40 S(6) 2.500e-05 - SO4-2 2.380e-05 2.026e-05 -4.624 -4.693 -0.070 15.76 - CaSO4 7.926e-07 7.928e-07 -6.101 -6.101 0.000 7.50 - MgSO4 3.166e-07 3.168e-07 -6.499 -6.499 0.000 -7.92 - NaSO4- 8.529e-08 8.195e-08 -7.069 -7.086 -0.017 -20.40 - KSO4- 1.230e-08 1.183e-08 -7.910 -7.927 -0.017 14.15 - HSO4- 3.251e-10 3.121e-10 -9.488 -9.506 -0.018 40.28 - Mg(SO4)2-2 2.474e-11 2.114e-11 -10.607 -10.675 -0.068 -3.35 - CaHSO4+ 8.602e-13 8.260e-13 -12.065 -12.083 -0.018 (0) + SO4-2 2.400e-05 2.043e-05 -4.620 -4.690 -0.070 14.54 + CaSO4 6.274e-07 6.275e-07 -6.202 -6.202 0.000 7.22 + MgSO4 3.193e-07 3.194e-07 -6.496 -6.496 0.000 -0.40 + NaSO4- 4.645e-08 4.460e-08 -7.333 -7.351 -0.018 16.62 + KSO4- 1.241e-08 1.193e-08 -7.906 -7.923 -0.017 18.52 + HSO4- 3.278e-10 3.148e-10 -9.484 -9.502 -0.018 40.28 + Mg(SO4)2-2 2.515e-11 2.149e-11 -10.599 -10.668 -0.068 34.32 + CaHSO4+ 8.680e-13 8.334e-13 -12.061 -12.079 -0.018 (0) + Na2SO4 5.404e-15 5.405e-15 -14.267 -14.267 0.000 47.96 Si 4.100e-04 H4SiO4 4.096e-04 4.098e-04 -3.388 -3.387 0.000 52.08 - H3SiO4- 3.970e-07 3.812e-07 -6.401 -6.419 -0.018 27.98 + H3SiO4- 3.971e-07 3.812e-07 -6.401 -6.419 -0.018 27.98 H2SiO4-2 1.920e-13 1.636e-13 -12.717 -12.786 -0.070 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -4.07 -8.35 -4.28 CaSO4 + Anhydrite -4.03 -8.35 -4.31 CaSO4 Aragonite -1.92 -10.25 -8.34 CaCO3 - Arcanite -11.65 -13.53 -1.88 K2SO4 + Arcanite -11.64 -13.52 -1.88 K2SO4 Calcite -1.77 -10.25 -8.48 CaCO3 Chalcedony 0.16 -3.39 -3.55 SiO2 Chrysotile -10.85 21.35 32.20 Mg3Si2O5(OH)4 CO2(g) -2.05 -3.51 -1.47 CO2 Dolomite -3.99 -21.07 -17.08 CaMg(CO3)2 - Epsomite -7.18 -8.92 -1.74 MgSO4:7H2O - Gypsum -3.77 -8.35 -4.58 CaSO4:2H2O + Epsomite -7.18 -8.91 -1.74 MgSO4:7H2O + Gypsum -3.80 -8.35 -4.55 CaSO4:2H2O H2(g) -21.65 -24.75 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -9.72 -8.15 1.57 NaCl - Hexahydrite -7.35 -8.92 -1.57 MgSO4:6H2O - Kieserite -7.76 -8.92 -1.16 MgSO4:H2O - Mirabilite -10.66 -11.90 -1.24 Na2SO4:10H2O - O2(g) -39.99 -42.88 -2.89 O2 + Hexahydrite -7.35 -8.91 -1.57 MgSO4:6H2O + Kieserite -7.75 -8.91 -1.16 MgSO4:H2O + Mirabilite -11.19 -11.90 -0.71 Na2SO4:10H2O + O2(g) -39.97 -42.86 -2.89 O2 Quartz 0.59 -3.39 -3.98 SiO2 Sepiolite -7.17 8.59 15.76 Mg2Si3O7.5OH:3H2O Sepiolite(d) -10.07 8.59 18.66 Mg2Si3O7.5OH:3H2O SiO2(a) -0.68 -3.39 -2.71 SiO2 Sylvite -9.86 -8.96 0.90 KCl Talc -6.82 14.58 21.40 Mg3Si4O10(OH)2 - Thenardite -11.60 -11.90 -0.30 Na2SO4 + Thenardite -12.55 -11.90 0.65 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -369,7 +373,7 @@ Solution fractions: Minimum Maximum Phase mole transfers: Minimum Maximum Formula (Approximate SI in solution 1, 2 at 298 K, 1 atm) Halite 1.600e-05 1.490e-05 1.710e-05 NaCl (-10.32, -9.72) - Gypsum 1.500e-05 1.413e-05 1.588e-05 CaSO4:2H2O ( -4.62, -3.77) + Gypsum 1.500e-05 1.413e-05 1.588e-05 CaSO4:2H2O ( -4.65, -3.80) Kaolinite -3.392e-05 -5.587e-05 -1.224e-05 Al2Si2O5(OH)4 ( , ) Ca-Montmorillon -8.090e-05 -1.100e-04 -5.154e-05 Ca0.165Al2.33Si3.67O10(OH ( , ) CO2(g) 3.009e-04 2.365e-04 3.659e-04 CO2 ( -1.87, -2.05) @@ -431,7 +435,7 @@ Solution fractions: Minimum Maximum Phase mole transfers: Minimum Maximum Formula (Approximate SI in solution 1, 2 at 298 K, 1 atm) Halite 1.600e-05 1.490e-05 1.710e-05 NaCl (-10.32, -9.72) - Gypsum 1.500e-05 1.413e-05 1.588e-05 CaSO4:2H2O ( -4.62, -3.77) + Gypsum 1.500e-05 1.413e-05 1.588e-05 CaSO4:2H2O ( -4.65, -3.80) Kaolinite -1.282e-04 -1.403e-04 -1.159e-04 Al2Si2O5(OH)4 ( , ) CO2(g) 3.143e-04 2.493e-04 3.798e-04 CO2 ( -1.87, -2.05) Calcite 1.028e-04 8.680e-05 1.182e-04 CaCO3 ( -3.30, -1.77) diff --git a/ex17b.out b/ex17b.out index 54395b15..ec14f238 100644 --- a/ex17b.out +++ b/ex17b.out @@ -3100,7 +3100,7 @@ Gypsum 0.00 -4.60 -4.60 1.033e-03 1.058e-03 2.566e-05 Halite 0.00 1.58 1.58 2.218e-01 2.253e-01 3.499e-03 Hexahydrite -0.49 -2.06 -1.57 0.000e+00 0 0.000e+00 Kieserite -0.95 -1.21 -0.27 0.000e+00 0 0.000e+00 -Polyhalite 0.00 -13.74 -13.74 7.008e-04 9.425e-04 2.417e-04 +Polyhalite -0.00 -13.74 -13.74 7.008e-04 9.425e-04 2.417e-04 -----------------------------Solution composition------------------------------ @@ -3212,7 +3212,7 @@ S(6) 4.989e-01 Nesquehonite -0.53 -5.70 -5.17 MgCO3:3H2O Pentahydrite -0.61 -1.89 -1.28 MgSO4:5H2O Pirssonite -4.75 -13.98 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite 0.00 -13.74 -13.74 K2MgCa2(SO4)4:2H2O + Polyhalite -0.00 -13.74 -13.74 K2MgCa2(SO4)4:2H2O Portlandite -9.73 -14.92 -5.19 Ca(OH)2 Schoenite -1.57 -5.90 -4.33 K2Mg(SO4)2:6H2O Sylvite -0.69 0.21 0.90 KCl @@ -3259,7 +3259,7 @@ Gypsum 0.00 -4.60 -4.60 1.058e-03 1.112e-03 5.332e-05 Halite 0.00 1.58 1.58 2.253e-01 2.288e-01 3.484e-03 Hexahydrite -0.45 -2.01 -1.57 0.000e+00 0 0.000e+00 Kieserite -0.88 -1.15 -0.27 0.000e+00 0 0.000e+00 -Polyhalite 0.00 -13.74 -13.74 9.425e-04 1.172e-03 2.296e-04 +Polyhalite -0.00 -13.74 -13.74 9.425e-04 1.172e-03 2.296e-04 -----------------------------Solution composition------------------------------ @@ -3371,7 +3371,7 @@ S(6) 5.286e-01 Nesquehonite -0.48 -5.65 -5.17 MgCO3:3H2O Pentahydrite -0.56 -1.84 -1.28 MgSO4:5H2O Pirssonite -4.76 -14.00 -9.23 Na2Ca(CO3)2:2H2O - Polyhalite 0.00 -13.74 -13.74 K2MgCa2(SO4)4:2H2O + Polyhalite -0.00 -13.74 -13.74 K2MgCa2(SO4)4:2H2O Portlandite -9.73 -14.92 -5.19 Ca(OH)2 Schoenite -1.60 -5.93 -4.33 K2Mg(SO4)2:6H2O Sylvite -0.73 0.17 0.90 KCl @@ -3413,7 +3413,7 @@ CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 4.567e-07 Calcite 0.00 -8.41 -8.41 2.942e-04 2.856e-04 -8.634e-06 Carnallite -1.98 2.44 4.42 0.000e+00 0 0.000e+00 Epsomite -0.29 -2.14 -1.85 0.000e+00 0 0.000e+00 -Glauberite -0.00 -5.35 -5.35 2.040e-03 1.544e-03 -4.957e-04 +Glauberite 0.00 -5.35 -5.35 2.040e-03 1.544e-03 -4.957e-04 Gypsum -0.00 -4.60 -4.60 1.112e-03 0 -1.112e-03 Halite 0.00 1.58 1.58 2.288e-01 2.321e-01 3.235e-03 Hexahydrite -0.40 -1.96 -1.57 0.000e+00 0 0.000e+00 @@ -3449,7 +3449,7 @@ Polyhalite 0.00 -13.74 -13.74 1.172e-03 1.369e-03 1.969e-04 Temperature (°C) = 25.00 Electrical balance (eq) = 2.359e-03 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.60 - Iterations = 11 + Iterations = 12 Gamma iterations = 4 Osmotic coefficient = 1.89560 Density of water = 0.99704 @@ -3507,7 +3507,7 @@ S(6) 5.653e-01 Epsomite -0.29 -2.14 -1.85 MgSO4:7H2O Gaylussite -5.12 -14.54 -9.42 CaNa2(CO3)2:5H2O Glaserite -2.72 -6.52 -3.80 NaK3(SO4)2 - Glauberite -0.00 -5.35 -5.35 Na2Ca(SO4)2 + Glauberite 0.00 -5.35 -5.35 Na2Ca(SO4)2 Goergeyite 3.95 -25.42 -29.37 K2Ca5(SO4)6H2O Gypsum -0.00 -4.60 -4.60 CaSO4:2H2O H2O(g) -1.68 -0.18 1.50 H2O @@ -3572,7 +3572,7 @@ CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 6.284e-07 Calcite 0.00 -8.41 -8.41 2.856e-04 2.716e-04 -1.398e-05 Carnallite -1.96 2.46 4.42 0.000e+00 0 0.000e+00 Epsomite -0.23 -2.08 -1.85 0.000e+00 0 0.000e+00 -Glauberite -0.00 -5.35 -5.35 1.544e-03 9.450e-04 -5.993e-04 +Glauberite 0.00 -5.35 -5.35 1.544e-03 9.450e-04 -5.993e-04 Gypsum -0.01 -4.61 -4.60 0.000e+00 0 0.000e+00 Halite 0.00 1.58 1.58 2.321e-01 2.356e-01 3.547e-03 Hexahydrite -0.33 -1.90 -1.57 0.000e+00 0 0.000e+00 @@ -3666,7 +3666,7 @@ S(6) 6.200e-01 Epsomite -0.23 -2.08 -1.85 MgSO4:7H2O Gaylussite -5.14 -14.56 -9.42 CaNa2(CO3)2:5H2O Glaserite -2.84 -6.65 -3.80 NaK3(SO4)2 - Glauberite -0.00 -5.35 -5.35 Na2Ca(SO4)2 + Glauberite 0.00 -5.35 -5.35 Na2Ca(SO4)2 Goergeyite 3.87 -25.50 -29.37 K2Ca5(SO4)6H2O Gypsum -0.01 -4.61 -4.60 CaSO4:2H2O H2O(g) -1.68 -0.18 1.50 H2O diff --git a/ex18.out b/ex18.out index 5237ebd3..ca61ee0f 100644 --- a/ex18.out +++ b/ex18.out @@ -119,17 +119,17 @@ Initial solution 1. Recharge number 3 pH = 7.550 pe = 0.000 - Specific Conductance (µS/cm, 10°C) = 278 + Specific Conductance (µS/cm, 10°C) = 279 Density (g/cm³) = 0.99999 Volume (L) = 1.00035 - Viscosity (mPa s) = 1.31401 + Viscosity (mPa s) = 1.31413 Activity of water = 1.000 - Ionic strength (mol/kgw) = 6.588e-03 + Ionic strength (mol/kgw) = 6.609e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 4.014e-03 Total CO2 (mol/kg) = 4.300e-03 Temperature (°C) = 9.90 - Electrical balance (eq) = 1.077e-04 + Electrical balance (eq) = 1.076e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 1.25 Iterations = 8 Total H = 1.110164e+02 @@ -141,97 +141,99 @@ Initial solution 1. Recharge number 3 Species Molality Activity Molality Activity Gamma cm³/mol OH- 1.126e-07 1.034e-07 -6.948 -6.985 -0.037 -4.98 - H+ 3.038e-08 2.818e-08 -7.517 -7.550 -0.033 0.00 + H+ 3.039e-08 2.818e-08 -7.517 -7.550 -0.033 0.00 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.02 C(4) 4.300e-03 - HCO3- 3.951e-03 3.642e-03 -2.403 -2.439 -0.035 22.89 + HCO3- 3.951e-03 3.641e-03 -2.403 -2.439 -0.035 22.89 CO2 2.987e-04 2.990e-04 -3.525 -3.524 0.000 33.66 - MgHCO3+ 3.108e-05 2.857e-05 -4.508 -4.544 -0.037 4.93 - CaHCO3+ 6.407e-06 5.913e-06 -5.193 -5.228 -0.035 8.96 - CO3-2 5.802e-06 4.190e-06 -5.236 -5.378 -0.141 -6.10 - CaCO3 4.848e-06 4.855e-06 -5.314 -5.314 0.001 -14.66 - MgCO3 2.214e-06 2.217e-06 -5.655 -5.654 0.001 -17.07 - FeHCO3+ 2.093e-07 1.925e-07 -6.679 -6.716 -0.036 (0) - FeCO3 5.305e-08 5.313e-08 -7.275 -7.275 0.001 (0) - NaHCO3 3.694e-08 3.705e-08 -7.433 -7.431 0.001 31.86 - KHCO3 2.302e-08 2.303e-08 -7.638 -7.638 0.000 40.92 - (CO2)2 9.509e-10 9.523e-10 -9.022 -9.021 0.001 67.31 + MgHCO3+ 3.105e-05 2.854e-05 -4.508 -4.545 -0.037 4.93 + CaHCO3+ 6.435e-06 5.938e-06 -5.191 -5.226 -0.035 8.96 + CO3-2 5.804e-06 4.189e-06 -5.236 -5.378 -0.142 -6.10 + CaCO3 4.869e-06 4.876e-06 -5.313 -5.312 0.001 -14.66 + MgCO3 2.211e-06 2.215e-06 -5.655 -5.655 0.001 -17.07 + FeHCO3+ 2.092e-07 1.924e-07 -6.679 -6.716 -0.036 (0) + FeCO3 5.301e-08 5.309e-08 -7.276 -7.275 0.001 (0) + NaHCO3 3.695e-08 3.706e-08 -7.432 -7.431 0.001 31.86 + KHCO3 2.302e-08 2.302e-08 -7.638 -7.638 0.000 40.92 + (CO2)2 9.507e-10 9.521e-10 -9.022 -9.021 0.001 67.31 Ca 1.200e-03 - Ca+2 1.176e-03 8.486e-04 -2.930 -3.071 -0.142 -18.31 - CaSO4 1.298e-05 1.300e-05 -4.887 -4.886 0.001 6.78 - CaHCO3+ 6.407e-06 5.913e-06 -5.193 -5.228 -0.035 8.96 - CaCO3 4.848e-06 4.855e-06 -5.314 -5.314 0.001 -14.66 - CaOH+ 5.433e-09 4.996e-09 -8.265 -8.301 -0.036 (0) - CaHSO4+ 2.170e-12 1.995e-12 -11.664 -11.700 -0.036 (0) + Ca+2 1.181e-03 8.523e-04 -2.928 -3.069 -0.142 -18.31 + CaSO4 7.198e-06 7.203e-06 -5.143 -5.143 0.000 5.22 + CaHCO3+ 6.435e-06 5.938e-06 -5.191 -5.226 -0.035 8.96 + CaCO3 4.869e-06 4.876e-06 -5.313 -5.312 0.001 -14.66 + CaOH+ 5.457e-09 5.018e-09 -8.263 -8.299 -0.036 (0) + CaHSO4+ 2.265e-12 2.082e-12 -11.645 -11.681 -0.036 (0) Cl 2.000e-05 - Cl- 2.000e-05 1.838e-05 -4.699 -4.736 -0.037 17.40 - FeCl+ 1.458e-11 1.341e-11 -10.836 -10.873 -0.036 (0) - HCl 1.947e-13 1.960e-13 -12.711 -12.708 0.003 (0) + Cl- 2.000e-05 1.837e-05 -4.699 -4.736 -0.037 17.40 + FeCl+ 1.457e-11 1.340e-11 -10.836 -10.873 -0.036 (0) + HCl 1.947e-13 1.959e-13 -12.711 -12.708 0.003 (0) Fe(2) 1.000e-06 - Fe+2 7.288e-07 5.286e-07 -6.137 -6.277 -0.139 -23.19 - FeHCO3+ 2.093e-07 1.925e-07 -6.679 -6.716 -0.036 (0) - FeCO3 5.305e-08 5.313e-08 -7.275 -7.275 0.001 (0) - FeSO4 6.814e-09 6.824e-09 -8.167 -8.166 0.001 39.09 - FeOH+ 1.962e-09 1.807e-09 -8.707 -8.743 -0.036 (0) - FeCl+ 1.458e-11 1.341e-11 -10.836 -10.873 -0.036 (0) - Fe(OH)2 1.366e-13 1.368e-13 -12.865 -12.864 0.001 (0) - FeHSO4+ 1.352e-15 1.243e-15 -14.869 -14.906 -0.036 (0) - Fe(OH)3- 1.674e-16 1.542e-16 -15.776 -15.812 -0.036 (0) + Fe+2 7.287e-07 5.283e-07 -6.137 -6.277 -0.140 -23.19 + FeHCO3+ 2.092e-07 1.924e-07 -6.679 -6.716 -0.036 (0) + FeCO3 5.301e-08 5.309e-08 -7.276 -7.275 0.001 (0) + FeSO4 7.076e-09 7.087e-09 -8.150 -8.150 0.001 28.98 + FeOH+ 1.961e-09 1.806e-09 -8.708 -8.743 -0.036 (0) + FeCl+ 1.457e-11 1.340e-11 -10.836 -10.873 -0.036 (0) + Fe(OH)2 1.365e-13 1.367e-13 -12.865 -12.864 0.001 (0) + FeHSO4+ 1.404e-15 1.291e-15 -14.853 -14.889 -0.036 (0) + Fe(OH)3- 1.674e-16 1.541e-16 -15.776 -15.812 -0.036 (0) H(0) 1.316e-18 H2 6.578e-19 6.588e-19 -18.182 -18.181 0.001 28.63 K 2.000e-05 K+ 1.995e-05 1.832e-05 -4.700 -4.737 -0.037 8.43 - KSO4- 2.822e-08 2.609e-08 -7.549 -7.584 -0.034 12.38 - KHCO3 2.302e-08 2.303e-08 -7.638 -7.638 0.000 40.92 + KSO4- 2.932e-08 2.710e-08 -7.533 -7.567 -0.034 20.63 + KHCO3 2.302e-08 2.302e-08 -7.638 -7.638 0.000 40.92 Mg 1.010e-03 - Mg+2 9.647e-04 6.992e-04 -3.016 -3.155 -0.140 -21.10 - MgHCO3+ 3.108e-05 2.857e-05 -4.508 -4.544 -0.037 4.93 - MgSO4 1.198e-05 1.202e-05 -4.921 -4.920 0.001 -14.55 - MgCO3 2.214e-06 2.217e-06 -5.655 -5.654 0.001 -17.07 - MgOH+ 2.319e-08 2.142e-08 -7.635 -7.669 -0.034 (0) - Mg(SO4)2-2 7.075e-09 5.172e-09 -8.150 -8.286 -0.136 1.55 + Mg+2 9.643e-04 6.986e-04 -3.016 -3.156 -0.140 -21.10 + MgHCO3+ 3.105e-05 2.854e-05 -4.508 -4.545 -0.037 4.93 + MgSO4 1.244e-05 1.248e-05 -4.905 -4.904 0.001 -2.04 + MgCO3 2.211e-06 2.215e-06 -5.655 -5.655 0.001 -17.07 + MgOH+ 2.317e-08 2.140e-08 -7.635 -7.670 -0.035 (0) + Mg(SO4)2-2 7.635e-09 5.579e-09 -8.117 -8.253 -0.136 31.78 Na 2.000e-05 - Na+ 1.994e-05 1.835e-05 -4.700 -4.736 -0.036 -2.42 - NaHCO3 3.694e-08 3.705e-08 -7.433 -7.431 0.001 31.86 - NaSO4- 2.681e-08 2.471e-08 -7.572 -7.607 -0.035 -19.96 + Na+ 1.995e-05 1.836e-05 -4.700 -4.736 -0.036 -2.42 + NaHCO3 3.695e-08 3.706e-08 -7.432 -7.431 0.001 31.86 + NaSO4- 1.495e-08 1.375e-08 -7.825 -7.862 -0.036 16.07 + Na2SO4 2.464e-17 2.467e-17 -16.608 -16.608 0.001 57.39 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -61.151 -61.151 0.001 28.94 + O2 0.000e+00 0.000e+00 -61.300 -61.299 0.001 28.94 S(6) 1.600e-04 - SO4-2 1.350e-04 9.710e-05 -3.870 -4.013 -0.143 14.49 - CaSO4 1.298e-05 1.300e-05 -4.887 -4.886 0.001 6.78 - MgSO4 1.198e-05 1.202e-05 -4.921 -4.920 0.001 -14.55 - KSO4- 2.822e-08 2.609e-08 -7.549 -7.584 -0.034 12.38 - NaSO4- 2.681e-08 2.471e-08 -7.572 -7.607 -0.035 -19.96 - Mg(SO4)2-2 7.075e-09 5.172e-09 -8.150 -8.286 -0.136 1.55 - FeSO4 6.814e-09 6.824e-09 -8.167 -8.166 0.001 39.09 - HSO4- 2.127e-10 1.956e-10 -9.672 -9.709 -0.036 38.92 - CaHSO4+ 2.170e-12 1.995e-12 -11.664 -11.700 -0.036 (0) - FeHSO4+ 1.352e-15 1.243e-15 -14.869 -14.906 -0.036 (0) + SO4-2 1.403e-04 1.009e-04 -3.853 -3.996 -0.143 11.58 + MgSO4 1.244e-05 1.248e-05 -4.905 -4.904 0.001 -2.04 + CaSO4 7.198e-06 7.203e-06 -5.143 -5.143 0.000 5.22 + KSO4- 2.932e-08 2.710e-08 -7.533 -7.567 -0.034 20.63 + NaSO4- 1.495e-08 1.375e-08 -7.825 -7.862 -0.036 16.07 + Mg(SO4)2-2 7.635e-09 5.579e-09 -8.117 -8.253 -0.136 31.78 + FeSO4 7.076e-09 7.087e-09 -8.150 -8.150 0.001 28.98 + HSO4- 2.210e-10 2.032e-10 -9.656 -9.692 -0.036 38.92 + CaHSO4+ 2.265e-12 2.082e-12 -11.645 -11.681 -0.036 (0) + FeHSO4+ 1.404e-15 1.291e-15 -14.853 -14.889 -0.036 (0) + Na2SO4 2.464e-17 2.467e-17 -16.608 -16.608 0.001 57.39 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(283 K, 1 atm) - Anhydrite -2.96 -7.08 -4.12 CaSO4 + Anhydrite -2.98 -7.07 -4.08 CaSO4 Aragonite -0.19 -8.45 -8.25 CaCO3 - Arcanite -11.38 -13.49 -2.11 K2SO4 - Calcite -0.05 -8.45 -8.40 CaCO3 + Arcanite -11.36 -13.47 -2.11 K2SO4 + Calcite -0.04 -8.45 -8.40 CaCO3 CH2O -33.72 -33.72 0.00 CH2O CO2(g) -2.26 -3.52 -1.27 CO2 Dolomite -0.10 -16.98 -16.88 CaMg(CO3)2 - Epsomite -5.34 -7.17 -1.83 MgSO4:7H2O - Gypsum -2.49 -7.08 -4.60 CaSO4:2H2O + Epsomite -5.32 -7.15 -1.83 MgSO4:7H2O + Gypsum -2.55 -7.07 -4.51 CaSO4:2H2O H2(g) -15.13 -18.18 -3.05 H2 H2O(g) -1.91 -0.00 1.91 H2O Halite -11.03 -9.47 1.56 NaCl - Hexahydrite -5.58 -7.17 -1.59 MgSO4:6H2O - Kieserite -5.85 -7.17 -1.32 MgSO4:H2O - Melanterite -7.88 -10.29 -2.41 FeSO4:7H2O - Mirabilite -11.51 -13.49 -1.97 Na2SO4:10H2O - O2(g) -58.39 -61.15 -2.76 O2 + Hexahydrite -5.56 -7.15 -1.59 MgSO4:6H2O + Kieserite -5.84 -7.15 -1.32 MgSO4:H2O + Melanterite -7.86 -10.27 -2.41 FeSO4:7H2O + Mirabilite -11.70 -13.47 -1.76 Na2SO4:10H2O + O2(g) -58.53 -61.30 -2.76 O2 Siderite -0.86 -11.65 -10.79 FeCO3 Sylvite -9.47 -9.47 0.00 KCl - Thenardite -13.26 -13.49 -0.23 Na2SO4 + Thenardite -14.31 -13.47 0.84 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -256,139 +258,141 @@ Initial solution 2. Mysse pH = 6.610 pe = 0.000 - Specific Conductance (µS/cm, 63°C) = 10503 + Specific Conductance (µS/cm, 63°C) = 9671 Density (g/cm³) = 0.98523 Volume (L) = 1.01939 - Viscosity (mPa s) = 0.45647 + Viscosity (mPa s) = 0.45732 Activity of water = 0.999 - Ionic strength (mol/kgw) = 7.101e-02 + Ionic strength (mol/kgw) = 6.608e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.294e-03 + Total alkalinity (eq/kg) = 5.270e-03 Total CO2 (mol/kg) = 6.870e-03 Temperature (°C) = 63.00 - Electrical balance (eq) = 3.207e-03 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 3.22 + Electrical balance (eq) = 3.231e-03 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 3.41 Iterations = 8 (16 overall) Total H = 1.110179e+02 - Total O = 5.560452e+01 + Total O = 5.560450e+01 ---------------------------------Redox couples--------------------------------- Redox couple pe Eh (volts) - S(-2)/S(6) -3.6540 -0.2437 + S(-2)/S(6) -3.6569 -0.2439 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 5.957e-07 4.608e-07 -6.225 -6.337 -0.112 -3.63 - H+ 2.959e-07 2.455e-07 -6.529 -6.610 -0.081 0.00 - H2O 5.551e+01 9.985e-01 1.744 -0.001 0.000 18.35 + OH- 5.916e-07 4.608e-07 -6.228 -6.337 -0.109 -3.65 + H+ 2.948e-07 2.455e-07 -6.530 -6.610 -0.080 0.00 + H2O 5.551e+01 9.986e-01 1.744 -0.001 0.000 18.35 C(4) 6.870e-03 - HCO3- 4.575e-03 3.644e-03 -2.340 -2.438 -0.099 25.86 - CO2 1.746e-03 1.765e-03 -2.758 -2.753 0.005 36.36 - CaHCO3+ 2.772e-04 2.226e-04 -3.557 -3.653 -0.095 10.66 - NaHCO3 1.844e-04 1.905e-04 -3.734 -3.720 0.014 31.20 - MgHCO3+ 6.093e-05 4.753e-05 -4.215 -4.323 -0.108 6.10 - CaCO3 1.656e-05 1.683e-05 -4.781 -4.774 0.007 -14.51 - KHCO3 5.096e-06 5.104e-06 -5.293 -5.292 0.001 41.50 - CO3-2 2.687e-06 1.082e-06 -5.571 -5.966 -0.395 -2.58 - MgCO3 1.511e-06 1.536e-06 -5.821 -5.814 0.007 -17.09 - (CO2)2 1.545e-07 1.571e-07 -6.811 -6.804 0.007 72.72 - FeHCO3+ 1.153e-08 9.078e-09 -7.938 -8.042 -0.104 (0) - FeCO3 6.358e-10 6.462e-10 -9.197 -9.190 0.007 (0) + HCO3- 4.600e-03 3.684e-03 -2.337 -2.434 -0.096 25.84 + CO2 1.766e-03 1.784e-03 -2.753 -2.749 0.004 36.36 + CaHCO3+ 2.235e-04 1.803e-04 -3.651 -3.744 -0.093 10.65 + NaHCO3 1.936e-04 1.996e-04 -3.713 -3.700 0.013 31.20 + MgHCO3+ 6.338e-05 4.976e-05 -4.198 -4.303 -0.105 6.10 + CaCO3 1.343e-05 1.364e-05 -4.872 -4.865 0.007 -14.51 + KHCO3 5.205e-06 5.213e-06 -5.284 -5.283 0.001 41.50 + CO3-2 2.657e-06 1.093e-06 -5.576 -5.961 -0.386 -2.63 + MgCO3 1.583e-06 1.608e-06 -5.800 -5.794 0.007 -17.09 + (CO2)2 1.581e-07 1.605e-07 -6.801 -6.794 0.007 72.72 + FeHCO3+ 1.161e-08 9.189e-09 -7.935 -8.037 -0.101 (0) + FeCO3 6.443e-10 6.541e-10 -9.191 -9.184 0.007 (0) Ca 1.128e-02 - Ca+2 7.821e-03 3.163e-03 -2.107 -2.500 -0.393 -17.58 - CaSO4 3.165e-03 3.217e-03 -2.500 -2.492 0.007 8.42 - CaHCO3+ 2.772e-04 2.226e-04 -3.557 -3.653 -0.095 10.66 - CaCO3 1.656e-05 1.683e-05 -4.781 -4.774 0.007 -14.51 - CaHSO4+ 1.307e-08 1.029e-08 -7.884 -7.988 -0.104 (0) - CaOH+ 2.712e-09 2.135e-09 -8.567 -8.671 -0.104 (0) + Ca+2 6.137e-03 2.535e-03 -2.212 -2.596 -0.384 -17.60 + CaSO4 4.906e-03 4.939e-03 -2.309 -2.306 0.003 9.78 + CaHCO3+ 2.235e-04 1.803e-04 -3.651 -3.744 -0.093 10.65 + CaCO3 1.343e-05 1.364e-05 -4.872 -4.865 0.007 -14.51 + CaHSO4+ 9.914e-09 7.848e-09 -8.004 -8.105 -0.101 (0) + CaOH+ 2.162e-09 1.711e-09 -8.665 -8.767 -0.101 (0) Cl 1.785e-02 - Cl- 1.785e-02 1.388e-02 -1.748 -1.858 -0.109 18.29 - HCl 8.646e-10 9.269e-10 -9.063 -9.033 0.030 (0) - FeCl+ 6.061e-10 4.771e-10 -9.217 -9.321 -0.104 (0) + Cl- 1.785e-02 1.397e-02 -1.748 -1.855 -0.106 18.28 + HCl 8.746e-10 9.331e-10 -9.058 -9.030 0.028 (0) + FeCl+ 6.075e-10 4.809e-10 -9.216 -9.318 -0.101 (0) Fe(2) 4.000e-07 - Fe(HS)2 2.863e-07 2.910e-07 -6.543 -6.536 0.007 (0) - Fe+2 5.995e-08 2.491e-08 -7.222 -7.604 -0.381 -19.95 - FeSO4 3.586e-08 3.645e-08 -7.445 -7.438 0.007 -6.81 - FeHCO3+ 1.153e-08 9.078e-09 -7.938 -8.042 -0.104 (0) - Fe(HS)3- 4.609e-09 3.629e-09 -8.336 -8.440 -0.104 (0) - FeCO3 6.358e-10 6.462e-10 -9.197 -9.190 0.007 (0) - FeCl+ 6.061e-10 4.771e-10 -9.217 -9.321 -0.104 (0) - FeOH+ 5.020e-10 3.976e-10 -9.299 -9.401 -0.101 (0) - Fe(OH)2 2.540e-13 2.582e-13 -12.595 -12.588 0.007 (0) - FeHSO4+ 1.030e-13 8.105e-14 -12.987 -13.091 -0.104 (0) - Fe(OH)3- 6.860e-17 5.434e-17 -16.164 -16.265 -0.101 (0) -H(0) 1.219e-09 - H2 6.097e-10 6.197e-10 -9.215 -9.208 0.007 28.58 + Fe(HS)2 2.890e-07 2.934e-07 -6.539 -6.533 0.007 (0) + Fe+2 5.880e-08 2.494e-08 -7.231 -7.603 -0.373 -19.97 + FeSO4 3.420e-08 3.473e-08 -7.466 -7.459 0.007 32.00 + FeHCO3+ 1.161e-08 9.189e-09 -7.935 -8.037 -0.101 (0) + Fe(HS)3- 4.637e-09 3.671e-09 -8.334 -8.435 -0.101 (0) + FeCO3 6.443e-10 6.541e-10 -9.191 -9.184 0.007 (0) + FeCl+ 6.075e-10 4.809e-10 -9.216 -9.318 -0.101 (0) + FeOH+ 4.998e-10 3.981e-10 -9.301 -9.400 -0.099 (0) + Fe(OH)2 2.546e-13 2.586e-13 -12.594 -12.587 0.007 (0) + FeHSO4+ 9.755e-14 7.722e-14 -13.011 -13.112 -0.101 (0) + Fe(OH)3- 6.830e-17 5.441e-17 -16.166 -16.264 -0.099 (0) +H(0) 1.237e-09 + H2 6.185e-10 6.280e-10 -9.209 -9.202 0.007 28.58 K 2.540e-03 - K+ 2.339e-03 1.814e-03 -2.631 -2.741 -0.110 10.01 - KSO4- 1.955e-04 1.606e-04 -3.709 -3.794 -0.085 15.45 - KHCO3 5.096e-06 5.104e-06 -5.293 -5.292 0.001 41.50 + K+ 2.347e-03 1.833e-03 -2.629 -2.737 -0.108 10.00 + KSO4- 1.873e-04 1.544e-04 -3.727 -3.811 -0.084 22.74 + KHCO3 5.205e-06 5.213e-06 -5.284 -5.283 0.001 41.50 Mg 4.540e-03 - MgSO4 2.446e-03 2.528e-03 -2.611 -2.597 0.014 -0.04 - Mg+2 1.985e-03 8.301e-04 -2.702 -3.081 -0.379 -22.49 - MgHCO3+ 6.093e-05 4.753e-05 -4.215 -4.323 -0.108 6.10 - Mg(SO4)2-2 4.585e-05 2.015e-05 -4.339 -4.696 -0.357 26.88 - MgCO3 1.511e-06 1.536e-06 -5.821 -5.814 0.007 -17.09 - MgOH+ 3.184e-07 2.572e-07 -6.497 -6.590 -0.093 (0) + MgSO4 2.416e-03 2.491e-03 -2.617 -2.604 0.013 1.75 + Mg+2 2.016e-03 8.597e-04 -2.695 -3.066 -0.370 -22.51 + MgHCO3+ 6.338e-05 4.976e-05 -4.198 -4.303 -0.105 6.10 + Mg(SO4)2-2 4.224e-05 1.890e-05 -4.374 -4.724 -0.349 53.84 + MgCO3 1.583e-06 1.608e-06 -5.800 -5.794 0.007 -17.09 + MgOH+ 3.281e-07 2.664e-07 -6.484 -6.575 -0.091 (0) Na 3.189e-02 - Na+ 2.911e-02 2.304e-02 -1.536 -1.638 -0.102 0.09 - NaSO4- 2.599e-03 2.073e-03 -2.585 -2.683 -0.098 -3.67 - NaHCO3 1.844e-04 1.905e-04 -3.734 -3.720 0.014 31.20 + Na+ 2.999e-02 2.387e-02 -1.523 -1.622 -0.099 0.08 + NaSO4- 1.704e-03 1.349e-03 -2.768 -2.870 -0.101 17.70 + NaHCO3 1.936e-04 1.996e-04 -3.713 -3.700 0.013 31.20 + Na2SO4 4.053e-07 4.108e-07 -6.392 -6.386 0.006 35.74 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.096 -63.088 0.007 32.51 + O2 0.000e+00 0.000e+00 -62.995 -62.989 0.007 32.51 S(-2) 2.600e-04 - HS- 1.480e-04 1.145e-04 -3.830 -3.941 -0.112 21.38 - H2S 1.114e-04 1.132e-04 -3.953 -3.946 0.007 42.59 - Fe(HS)2 2.863e-07 2.910e-07 -6.543 -6.536 0.007 (0) - Fe(HS)3- 4.609e-09 3.629e-09 -8.336 -8.440 -0.104 (0) - S-2 1.440e-09 5.668e-10 -8.842 -9.247 -0.405 (0) - (H2S)2 1.351e-09 1.373e-09 -8.869 -8.862 0.007 27.88 + HS- 1.475e-04 1.149e-04 -3.831 -3.940 -0.109 21.36 + H2S 1.119e-04 1.136e-04 -3.951 -3.945 0.007 42.59 + Fe(HS)2 2.890e-07 2.934e-07 -6.539 -6.533 0.007 (0) + Fe(HS)3- 4.637e-09 3.671e-09 -8.334 -8.435 -0.101 (0) + S-2 1.412e-09 5.687e-10 -8.850 -9.245 -0.395 (0) + (H2S)2 1.362e-09 1.383e-09 -8.866 -8.859 0.007 27.88 S(6) 1.986e-02 - SO4-2 1.136e-02 4.443e-03 -1.945 -2.352 -0.408 23.91 - CaSO4 3.165e-03 3.217e-03 -2.500 -2.492 0.007 8.42 - NaSO4- 2.599e-03 2.073e-03 -2.585 -2.683 -0.098 -3.67 - MgSO4 2.446e-03 2.528e-03 -2.611 -2.597 0.014 -0.04 - KSO4- 1.955e-04 1.606e-04 -3.709 -3.794 -0.085 15.45 - Mg(SO4)2-2 4.585e-05 2.015e-05 -4.339 -4.696 -0.357 26.88 - HSO4- 3.438e-07 2.706e-07 -6.464 -6.568 -0.104 41.70 - FeSO4 3.586e-08 3.645e-08 -7.445 -7.438 0.007 -6.81 - CaHSO4+ 1.307e-08 1.029e-08 -7.884 -7.988 -0.104 (0) - FeHSO4+ 1.030e-13 8.105e-14 -12.987 -13.091 -0.104 (0) + SO4-2 1.056e-02 4.228e-03 -1.976 -2.374 -0.398 16.55 + CaSO4 4.906e-03 4.939e-03 -2.309 -2.306 0.003 9.78 + MgSO4 2.416e-03 2.491e-03 -2.617 -2.604 0.013 1.75 + NaSO4- 1.704e-03 1.349e-03 -2.768 -2.870 -0.101 17.70 + KSO4- 1.873e-04 1.544e-04 -3.727 -3.811 -0.084 22.74 + Mg(SO4)2-2 4.224e-05 1.890e-05 -4.374 -4.724 -0.349 53.84 + Na2SO4 4.053e-07 4.108e-07 -6.392 -6.386 0.006 35.74 + HSO4- 3.253e-07 2.575e-07 -6.488 -6.589 -0.101 41.68 + FeSO4 3.420e-08 3.473e-08 -7.466 -7.459 0.007 32.00 + CaHSO4+ 9.914e-09 7.848e-09 -8.004 -8.105 -0.101 (0) + FeHSO4+ 9.755e-14 7.722e-14 -13.011 -13.112 -0.101 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(336 K, 1 atm) - Anhydrite -0.11 -4.85 -4.75 CaSO4 - Aragonite 0.20 -8.47 -8.67 CaCO3 - Arcanite -6.28 -7.84 -1.55 K2SO4 - Calcite 0.46 -8.47 -8.92 CaCO3 - CH2O -14.58 -14.58 0.00 CH2O - CO2(g) -0.95 -2.75 -1.80 CO2 - Dolomite 0.54 -17.51 -18.06 CaMg(CO3)2 + Anhydrite -0.01 -4.97 -4.96 CaSO4 + Aragonite 0.11 -8.56 -8.67 CaCO3 + Arcanite -6.30 -7.85 -1.55 K2SO4 + Calcite 0.37 -8.56 -8.92 CaCO3 + CH2O -14.56 -14.56 0.00 CH2O + CO2(g) -0.94 -2.75 -1.80 CO2 + Dolomite 0.47 -17.58 -18.06 CaMg(CO3)2 Epsomite -3.94 -5.44 -1.50 MgSO4:7H2O FeS(ppt) -1.02 -4.93 -3.92 FeS - Gypsum -0.19 -4.85 -4.66 CaSO4:2H2O - H2(g) -6.07 -9.21 -3.14 H2 + Gypsum -0.16 -4.97 -4.82 CaSO4:2H2O + H2(g) -6.06 -9.20 -3.14 H2 H2O(g) -0.65 -0.00 0.65 H2O H2S(g) -2.63 -10.55 -7.92 H2S - Halite -5.09 -3.50 1.60 NaCl - Hexahydrite -3.92 -5.44 -1.51 MgSO4:6H2O - Kieserite -4.11 -5.43 -1.32 MgSO4:H2O - Mackinawite -0.29 -4.93 -4.65 FeS - Melanterite -8.11 -9.96 -1.85 FeSO4:7H2O - Mirabilite -5.58 -5.63 -0.06 Na2SO4:10H2O - O2(g) -60.02 -63.09 -3.07 O2 - Pyrite 7.97 -9.57 -17.54 FeS2 - Siderite -2.47 -13.57 -11.10 FeCO3 - Sulfur -2.13 1.97 4.09 S - Sylvite -4.60 -4.60 0.00 KCl - Thenardite -5.14 -5.63 -0.49 Na2SO4 + Halite -5.07 -3.48 1.60 NaCl + Hexahydrite -3.93 -5.44 -1.51 MgSO4:6H2O + Kieserite -4.12 -5.44 -1.32 MgSO4:H2O + Mackinawite -0.28 -4.93 -4.65 FeS + Melanterite -8.13 -9.98 -1.85 FeSO4:7H2O + Mirabilite -7.91 -5.62 2.28 Na2SO4:10H2O + O2(g) -59.92 -62.99 -3.07 O2 + Pyrite 7.97 -9.58 -17.54 FeS2 + Siderite -2.47 -13.56 -11.10 FeCO3 + Sulfur -2.13 1.96 4.09 S + Sylvite -4.59 -4.59 0.00 KCl + Thenardite -5.70 -5.62 0.09 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -403,7 +407,7 @@ Solution 1: Recharge number 3 Input Delta Input+Delta pH 7.550e+00 + 0.000e+00 = 7.550e+00 - Alkalinity 4.014e-03 + 1.077e-04 = 4.122e-03 + Alkalinity 4.014e-03 + 1.076e-04 = 4.122e-03 C(-4) 0.000e+00 + 0.000e+00 = 0.000e+00 C(4) 4.300e-03 + 0.000e+00 = 4.300e-03 Ca 1.200e-03 + 0.000e+00 = 1.200e-03 @@ -427,17 +431,17 @@ Solution 2: Mysse Input Delta Input+Delta pH 6.610e+00 + 0.000e+00 = 6.610e+00 - Alkalinity 5.294e-03 + 0.000e+00 = 5.294e-03 + Alkalinity 5.270e-03 + 0.000e+00 = 5.270e-03 C(-4) 0.000e+00 + 0.000e+00 = 0.000e+00 C(4) 6.870e-03 + 0.000e+00 = 6.870e-03 Ca 1.128e-02 + 0.000e+00 = 1.128e-02 Cl 1.785e-02 + 0.000e+00 = 1.785e-02 Fe(2) 4.000e-07 + 0.000e+00 = 4.000e-07 Fe(3) 0.000e+00 + 0.000e+00 = 0.000e+00 - H(0) 1.219e-09 + 0.000e+00 = 1.219e-09 + H(0) 1.237e-09 + 0.000e+00 = 1.237e-09 K 2.540e-03 + 0.000e+00 = 2.540e-03 Mg 4.540e-03 + 0.000e+00 = 4.540e-03 - Na 3.189e-02 + -1.221e-03 = 3.067e-02 + Na 3.189e-02 + -1.245e-03 = 3.064e-02 O(0) 0.000e+00 + 0.000e+00 = 0.000e+00 S(-2) 2.600e-04 + 0.000e+00 = 2.600e-04 S(6) 1.986e-02 + 9.930e-04 = 2.085e-02 @@ -450,8 +454,8 @@ Solution 2: Mysse Isotopic composition of phases: 13C Dolomite 3 + 0 = 3 13C Calcite -1.5 + 0 = -1.5 - 34S Anhydrite 13.5 + -0.70933 = 12.7907 - 13C CH2O -25 + 3.88835 = -21.1116 + 34S Anhydrite 13.5 + -0.72891 = 12.7711 + 13C CH2O -25 + 4.03258 = -20.9674 34S Pyrite -22 + 2 = -20 Solution fractions: Minimum Maximum @@ -459,24 +463,24 @@ Solution fractions: Minimum Maximum Solution 2 1.000e+00 1.000e+00 1.000e+00 Phase mole transfers: Minimum Maximum Formula (Approximate SI in solution 1, 2 at 336 K, 1 atm) - Dolomite 1.120e-02 1.022e-02 1.195e-02 CaMg(CO3)2 ( 1.07, 0.54) - Calcite -2.404e-02 -2.597e-02 -2.112e-02 CaCO3 ( 0.47, 0.46) - Anhydrite 2.292e-02 2.037e-02 2.378e-02 CaSO4 ( -2.34, -0.11) - CH2O 4.214e-03 2.473e-03 5.798e-03 CH2O ( , ) - Goethite 9.845e-04 5.123e-04 1.415e-03 FeOOH ( , ) - Pyrite -9.851e-04 -1.414e-03 -5.140e-04 FeS2 ( , ) - MgX2 -7.669e-03 -8.595e-03 -6.972e-03 MgX2 ( , ) - NaX 1.534e-02 1.394e-02 1.719e-02 NaX ( , ) - Halite 1.531e-02 1.429e-02 1.633e-02 NaCl (-11.07, -5.09) - Sylvite 2.520e-03 2.392e-03 2.648e-03 KCl ( -9.47, -4.60) + Dolomite 1.119e-02 1.022e-02 1.194e-02 CaMg(CO3)2 ( 1.07, 0.47) + Calcite -2.404e-02 -2.597e-02 -2.114e-02 CaCO3 ( 0.48, 0.37) + Anhydrite 2.294e-02 2.039e-02 2.379e-02 CaSO4 ( -2.11, -0.01) + CH2O 4.240e-03 2.500e-03 5.823e-03 CH2O ( , ) + Goethite 9.913e-04 5.195e-04 1.422e-03 FeOOH ( , ) + Pyrite -9.919e-04 -1.421e-03 -5.212e-04 FeS2 ( , ) + MgX2 -7.657e-03 -8.582e-03 -6.972e-03 MgX2 ( , ) + NaX 1.531e-02 1.394e-02 1.716e-02 NaX ( , ) + Halite 1.531e-02 1.429e-02 1.633e-02 NaCl (-11.07, -5.07) + Sylvite 2.520e-03 2.392e-03 2.648e-03 KCl ( -9.47, -4.59) Redox mole transfers: - Fe(3) 9.845e-04 - H(0) -1.219e-09 - S(-2) -2.230e-03 + Fe(3) 9.913e-04 + H(0) -1.237e-09 + S(-2) -2.244e-03 -Sum of residuals (epsilons in documentation): 2.315e+00 -Sum of delta/uncertainty limit: 4.435e+00 +Sum of residuals (epsilons in documentation): 2.330e+00 +Sum of delta/uncertainty limit: 4.488e+00 Maximum fractional error in element concentration: 5.000e-02 Model contains minimum number of phases. @@ -487,7 +491,7 @@ Solution 1: Recharge number 3 Input Delta Input+Delta pH 7.550e+00 + 0.000e+00 = 7.550e+00 - Alkalinity 4.014e-03 + 1.077e-04 = 4.122e-03 + Alkalinity 4.014e-03 + 1.076e-04 = 4.122e-03 C(-4) 0.000e+00 + 0.000e+00 = 0.000e+00 C(4) 4.300e-03 + 0.000e+00 = 4.300e-03 Ca 1.200e-03 + 0.000e+00 = 1.200e-03 @@ -511,17 +515,17 @@ Solution 2: Mysse Input Delta Input+Delta pH 6.610e+00 + 0.000e+00 = 6.610e+00 - Alkalinity 5.294e-03 + 0.000e+00 = 5.294e-03 + Alkalinity 5.270e-03 + 0.000e+00 = 5.270e-03 C(-4) 0.000e+00 + 0.000e+00 = 0.000e+00 - C(4) 6.870e-03 + -3.383e-04 = 6.532e-03 - Ca 1.128e-02 + 0.000e+00 = 1.128e-02 + C(4) 6.870e-03 + -3.435e-04 = 6.526e-03 + Ca 1.128e-02 + -7.992e-05 = 1.120e-02 Cl 1.785e-02 + 0.000e+00 = 1.785e-02 Fe(2) 4.000e-07 + 0.000e+00 = 4.000e-07 Fe(3) 0.000e+00 + 0.000e+00 = 0.000e+00 - H(0) 1.219e-09 + 0.000e+00 = 1.219e-09 + H(0) 1.237e-09 + 0.000e+00 = 1.237e-09 K 2.540e-03 + 0.000e+00 = 2.540e-03 Mg 4.540e-03 + 0.000e+00 = 4.540e-03 - Na 3.189e-02 + -1.221e-03 = 3.067e-02 + Na 3.189e-02 + -1.085e-03 = 3.080e-02 O(0) 0.000e+00 + 0.000e+00 = 0.000e+00 S(-2) 2.600e-04 + 0.000e+00 = 2.600e-04 S(6) 1.986e-02 + 9.930e-04 = 2.085e-02 @@ -534,7 +538,7 @@ Solution 2: Mysse Isotopic composition of phases: 13C Dolomite 3 + 2 = 5 13C Calcite -1.5 + -1 = -2.5 - 34S Anhydrite 13.5 + -0.146689 = 13.3533 + 34S Anhydrite 13.5 + -0.158223 = 13.3418 13C CH2O -25 + 5 = -20 34S Pyrite -22 + 2 = -20 @@ -543,24 +547,24 @@ Solution fractions: Minimum Maximum Solution 2 1.000e+00 1.000e+00 1.000e+00 Phase mole transfers: Minimum Maximum Formula (Approximate SI in solution 1, 2 at 336 K, 1 atm) - Dolomite 5.447e-03 4.995e-03 5.843e-03 CaMg(CO3)2 ( 1.07, 0.54) - Calcite -1.215e-02 -1.336e-02 -1.066e-02 CaCO3 ( 0.47, 0.46) - Anhydrite 2.254e-02 2.037e-02 2.298e-02 CaSO4 ( -2.34, -0.11) - CH2O 3.489e-03 2.473e-03 4.302e-03 CH2O ( , ) - Goethite 7.911e-04 5.123e-04 1.016e-03 FeOOH ( , ) - Pyrite -7.917e-04 -1.016e-03 -5.140e-04 FeS2 ( , ) - Ca.75Mg.25X2 -7.669e-03 -8.595e-03 -6.972e-03 Ca.75Mg.25X2 ( , ) - NaX 1.534e-02 1.394e-02 1.719e-02 NaX ( , ) - Halite 1.531e-02 1.429e-02 1.633e-02 NaCl (-11.07, -5.09) - Sylvite 2.520e-03 2.392e-03 2.648e-03 KCl ( -9.47, -4.60) + Dolomite 5.464e-03 4.995e-03 5.840e-03 CaMg(CO3)2 ( 1.07, 0.47) + Calcite -1.221e-02 -1.337e-02 -1.068e-02 CaCO3 ( 0.48, 0.37) + Anhydrite 2.254e-02 2.039e-02 2.298e-02 CaSO4 ( -2.11, -0.01) + CH2O 3.503e-03 2.500e-03 4.300e-03 CH2O ( , ) + Goethite 7.950e-04 5.195e-04 1.016e-03 FeOOH ( , ) + Pyrite -7.956e-04 -1.015e-03 -5.212e-04 FeS2 ( , ) + Ca.75Mg.25X2 -7.737e-03 -8.582e-03 -6.972e-03 Ca.75Mg.25X2 ( , ) + NaX 1.547e-02 1.394e-02 1.716e-02 NaX ( , ) + Halite 1.531e-02 1.429e-02 1.633e-02 NaCl (-11.07, -5.07) + Sylvite 2.520e-03 2.392e-03 2.648e-03 KCl ( -9.47, -4.59) Redox mole transfers: - Fe(3) 7.911e-04 - H(0) -1.219e-09 - S(-2) -1.843e-03 + Fe(3) 7.950e-04 + H(0) -1.237e-09 + S(-2) -1.851e-03 -Sum of residuals (epsilons in documentation): 3.311e+00 -Sum of delta/uncertainty limit: 7.361e+00 +Sum of residuals (epsilons in documentation): 3.382e+00 +Sum of delta/uncertainty limit: 7.438e+00 Maximum fractional error in element concentration: 5.000e-02 Model contains minimum number of phases. diff --git a/ex2.out b/ex2.out index cd8e570f..22b3d222 100644 --- a/ex2.out +++ b/ex2.out @@ -96,7 +96,7 @@ Initial solution 1. Pure water H(0) 1.416e-25 H2 7.079e-26 7.079e-26 -25.150 -25.150 0.000 28.61 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -42.080 -42.080 0.000 30.40 + O2 0.000e+00 0.000e+00 -42.063 -42.063 0.000 30.40 ------------------------------Saturation indices------------------------------- @@ -104,7 +104,7 @@ O(0) 0.000e+00 H2(g) -22.05 -25.15 -3.10 H2 H2O(g) -1.50 0.00 1.50 H2O - O2(g) -39.19 -42.08 -2.89 O2 + O2(g) -39.17 -42.06 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -124,74 +124,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.30 -4.58 -4.28 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.855e-01 +Anhydrite -0.23 -4.55 -4.31 1.000e+00 0 -1.000e+00 +Gypsum 0.00 -4.55 -4.55 1.000e+00 1.986e+00 9.856e-01 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.505e-02 1.451e-02 - S 1.505e-02 1.451e-02 + Ca 1.493e-02 1.440e-02 + S 1.493e-02 1.440e-02 ----------------------------Description of solution---------------------------- - pH = 7.066 Charge balance - pe = 10.745 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 2485 - Density (g/cm³) = 0.99901 - Volume (L) = 0.96742 - Viscosity (mPa s) = 0.89855 + pH = 7.068 Charge balance + pe = 10.738 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 2494 + Density (g/cm³) = 0.99907 + Volume (L) = 0.96735 + Viscosity (mPa s) = 0.89929 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.174e-02 + Ionic strength (mol/kgw) = 4.400e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 25.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 17 - Total H = 1.070705e+02 - Total O = 5.359328e+01 + Total H = 1.070700e+02 + Total O = 5.359260e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.431e-07 1.178e-07 -6.845 -6.929 -0.084 -3.90 - H+ 9.975e-08 8.589e-08 -7.001 -7.066 -0.065 0.00 + OH- 1.444e-07 1.184e-07 -6.841 -6.927 -0.086 -3.89 + H+ 9.950e-08 8.546e-08 -7.002 -7.068 -0.066 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.07 -Ca 1.505e-02 - Ca+2 1.043e-02 5.167e-03 -1.982 -2.287 -0.305 -17.66 - CaSO4 4.611e-03 4.656e-03 -2.336 -2.332 0.004 7.50 - CaOH+ 1.200e-08 9.980e-09 -7.921 -8.001 -0.080 (0) - CaHSO4+ 3.161e-09 2.629e-09 -8.500 -8.580 -0.080 (0) -H(0) 3.347e-39 - H2 1.674e-39 1.690e-39 -38.776 -38.772 0.004 28.61 -O(0) 2.889e-15 - O2 1.445e-15 1.458e-15 -14.840 -14.836 0.004 30.40 +Ca 1.493e-02 + Ca+2 1.100e-02 5.375e-03 -1.959 -2.270 -0.311 -17.65 + CaSO4 3.929e-03 3.946e-03 -2.406 -2.404 0.002 7.22 + CaOH+ 1.259e-08 1.043e-08 -7.900 -7.982 -0.082 (0) + CaHSO4+ 3.411e-09 2.826e-09 -8.467 -8.549 -0.082 (0) +H(0) 3.417e-39 + H2 1.709e-39 1.726e-39 -38.767 -38.763 0.004 28.61 +O(0) 2.882e-15 + O2 1.441e-15 1.455e-15 -14.841 -14.837 0.004 30.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -118.115 -118.199 -0.084 20.77 - H2S 0.000e+00 0.000e+00 -118.328 -118.324 0.004 36.27 - S-2 0.000e+00 0.000e+00 -123.739 -124.051 -0.312 (0) - (H2S)2 0.000e+00 0.000e+00 -237.929 -237.925 0.004 30.09 -S(6) 1.505e-02 - SO4-2 1.043e-02 5.067e-03 -1.982 -2.295 -0.314 21.14 - CaSO4 4.611e-03 4.656e-03 -2.336 -2.332 0.004 7.50 - HSO4- 5.088e-08 4.231e-08 -7.293 -7.374 -0.080 40.44 - CaHSO4+ 3.161e-09 2.629e-09 -8.500 -8.580 -0.080 (0) + HS- 0.000e+00 0.000e+00 -118.062 -118.148 -0.086 20.77 + H2S 0.000e+00 0.000e+00 -118.279 -118.275 0.004 36.27 + S-2 0.000e+00 0.000e+00 -123.680 -123.998 -0.318 (0) + (H2S)2 0.000e+00 0.000e+00 -237.832 -237.827 0.004 30.09 +S(6) 1.493e-02 + SO4-2 1.100e-02 5.264e-03 -1.959 -2.279 -0.320 14.91 + CaSO4 3.929e-03 3.946e-03 -2.406 -2.404 0.002 7.22 + HSO4- 5.279e-08 4.374e-08 -7.277 -7.359 -0.082 40.44 + CaHSO4+ 3.411e-09 2.826e-09 -8.467 -8.549 -0.082 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -0.30 -4.58 -4.28 CaSO4 - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2(g) -35.67 -38.77 -3.10 H2 + Anhydrite -0.23 -4.55 -4.31 CaSO4 + Gypsum 0.00 -4.55 -4.55 CaSO4:2H2O + H2(g) -35.66 -38.76 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -117.33 -125.27 -7.94 H2S + H2S(g) -117.28 -125.22 -7.94 H2S O2(g) -11.94 -14.84 -2.89 O2 - Sulfur -87.58 -82.70 4.88 S + Sulfur -87.54 -82.66 4.88 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -207,74 +207,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.29 -4.58 -4.29 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.854e-01 +Anhydrite -0.22 -4.55 -4.33 1.000e+00 0 -1.000e+00 +Gypsum 0.00 -4.55 -4.55 1.000e+00 1.986e+00 9.856e-01 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.509e-02 1.456e-02 - S 1.509e-02 1.456e-02 + Ca 1.497e-02 1.444e-02 + S 1.497e-02 1.444e-02 ----------------------------Description of solution---------------------------- - pH = 7.052 Charge balance - pe = 10.676 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 26°C) = 2545 - Density (g/cm³) = 0.99876 - Volume (L) = 0.96768 - Viscosity (mPa s) = 0.87847 + pH = 7.054 Charge balance + pe = 10.667 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 26°C) = 2539 + Density (g/cm³) = 0.99881 + Volume (L) = 0.96760 + Viscosity (mPa s) = 0.87919 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.180e-02 + Ionic strength (mol/kgw) = 4.379e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 26.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 17 - Total H = 1.070707e+02 - Total O = 5.359357e+01 + Total H = 1.070702e+02 + Total O = 5.359285e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.496e-07 1.231e-07 -6.825 -6.910 -0.085 -3.86 - H+ 1.030e-07 8.863e-08 -6.987 -7.052 -0.065 0.00 + OH- 1.509e-07 1.237e-07 -6.821 -6.908 -0.086 -3.86 + H+ 1.027e-07 8.823e-08 -6.988 -7.054 -0.066 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.07 -Ca 1.509e-02 - Ca+2 1.045e-02 5.167e-03 -1.981 -2.287 -0.306 -17.65 - CaSO4 4.645e-03 4.690e-03 -2.333 -2.329 0.004 7.54 - CaOH+ 1.163e-08 9.671e-09 -7.934 -8.015 -0.080 (0) - CaHSO4+ 3.335e-09 2.772e-09 -8.477 -8.557 -0.080 (0) -H(0) 4.857e-39 - H2 2.429e-39 2.452e-39 -38.615 -38.610 0.004 28.60 -O(0) 2.878e-15 - O2 1.439e-15 1.453e-15 -14.842 -14.838 0.004 30.48 +Ca 1.497e-02 + Ca+2 1.095e-02 5.349e-03 -1.961 -2.272 -0.311 -17.64 + CaSO4 4.023e-03 4.041e-03 -2.395 -2.393 0.002 7.32 + CaOH+ 1.214e-08 1.006e-08 -7.916 -7.997 -0.082 (0) + CaHSO4+ 3.566e-09 2.955e-09 -8.448 -8.529 -0.082 (0) +H(0) 4.996e-39 + H2 2.498e-39 2.523e-39 -38.602 -38.598 0.004 28.60 +O(0) 2.885e-15 + O2 1.443e-15 1.457e-15 -14.841 -14.836 0.004 30.48 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -117.584 -117.669 -0.085 20.81 - H2S 0.000e+00 0.000e+00 -117.797 -117.793 0.004 36.51 - S-2 0.000e+00 0.000e+00 -123.192 -123.505 -0.313 (0) - (H2S)2 0.000e+00 0.000e+00 -236.857 -236.853 0.004 30.05 -S(6) 1.509e-02 - SO4-2 1.045e-02 5.066e-03 -1.981 -2.295 -0.314 21.26 - CaSO4 4.645e-03 4.690e-03 -2.333 -2.329 0.004 7.54 - HSO4- 5.369e-08 4.462e-08 -7.270 -7.350 -0.080 40.50 - CaHSO4+ 3.335e-09 2.772e-09 -8.477 -8.557 -0.080 (0) + HS- 0.000e+00 0.000e+00 -117.520 -117.607 -0.086 20.82 + H2S 0.000e+00 0.000e+00 -117.737 -117.732 0.004 36.51 + S-2 0.000e+00 0.000e+00 -123.122 -123.441 -0.318 (0) + (H2S)2 0.000e+00 0.000e+00 -236.736 -236.732 0.004 30.05 +S(6) 1.497e-02 + SO4-2 1.095e-02 5.240e-03 -1.961 -2.281 -0.320 15.04 + CaSO4 4.023e-03 4.041e-03 -2.395 -2.393 0.002 7.32 + HSO4- 5.545e-08 4.594e-08 -7.256 -7.338 -0.082 40.51 + CaHSO4+ 3.566e-09 2.955e-09 -8.448 -8.529 -0.082 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(299 K, 1 atm) - Anhydrite -0.29 -4.58 -4.29 CaSO4 - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2(g) -35.51 -38.61 -3.10 H2 + Anhydrite -0.22 -4.55 -4.33 CaSO4 + Gypsum 0.00 -4.55 -4.55 CaSO4:2H2O + H2(g) -35.49 -38.60 -3.10 H2 H2O(g) -1.48 -0.00 1.48 H2O - H2S(g) -116.79 -124.72 -7.93 H2S + H2S(g) -116.73 -124.66 -7.93 H2S O2(g) -11.94 -14.84 -2.90 O2 - Sulfur -87.20 -82.34 4.86 S + Sulfur -87.15 -82.29 4.86 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -290,74 +290,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.28 -4.58 -4.30 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.854e-01 +Anhydrite -0.21 -4.56 -4.35 1.000e+00 0 -1.000e+00 +Gypsum 0.00 -4.56 -4.56 1.000e+00 1.986e+00 9.855e-01 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.514e-02 1.460e-02 - S 1.514e-02 1.460e-02 + Ca 1.501e-02 1.448e-02 + S 1.501e-02 1.448e-02 ----------------------------Description of solution---------------------------- - pH = 7.039 Charge balance - pe = 10.607 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 27°C) = 2606 - Density (g/cm³) = 0.99849 - Volume (L) = 0.96794 - Viscosity (mPa s) = 0.85911 + pH = 7.041 Charge balance + pe = 10.597 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 27°C) = 2584 + Density (g/cm³) = 0.99854 + Volume (L) = 0.96787 + Viscosity (mPa s) = 0.85981 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.185e-02 + Ionic strength (mol/kgw) = 4.357e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 27.00 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.205e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 20 - Total H = 1.070708e+02 - Total O = 5.359383e+01 + Iterations = 16 + Total H = 1.070703e+02 + Total O = 5.359308e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.564e-07 1.287e-07 -6.806 -6.891 -0.085 -3.83 - H+ 1.063e-07 9.144e-08 -6.974 -7.039 -0.065 0.00 + OH- 1.575e-07 1.292e-07 -6.803 -6.889 -0.086 -3.82 + H+ 1.060e-07 9.107e-08 -6.975 -7.041 -0.066 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.08 -Ca 1.514e-02 - Ca+2 1.046e-02 5.166e-03 -1.980 -2.287 -0.306 -17.64 - CaSO4 4.677e-03 4.722e-03 -2.330 -2.326 0.004 7.57 - CaOH+ 1.128e-08 9.371e-09 -7.948 -8.028 -0.080 (0) - CaHSO4+ 3.517e-09 2.922e-09 -8.454 -8.534 -0.080 (0) -H(0) 7.029e-39 - H2 3.515e-39 3.549e-39 -38.454 -38.450 0.004 28.60 -O(0) 2.867e-15 - O2 1.434e-15 1.448e-15 -14.844 -14.839 0.004 30.55 +Ca 1.501e-02 + Ca+2 1.089e-02 5.323e-03 -1.963 -2.274 -0.311 -17.63 + CaSO4 4.117e-03 4.136e-03 -2.385 -2.383 0.002 7.42 + CaOH+ 1.170e-08 9.697e-09 -7.932 -8.013 -0.082 (0) + CaHSO4+ 3.727e-09 3.088e-09 -8.429 -8.510 -0.082 (0) +H(0) 7.302e-39 + H2 3.651e-39 3.688e-39 -38.438 -38.433 0.004 28.60 +O(0) 2.875e-15 + O2 1.437e-15 1.452e-15 -14.842 -14.838 0.004 30.55 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -117.058 -117.143 -0.085 20.85 - H2S 0.000e+00 0.000e+00 -117.270 -117.265 0.004 36.75 - S-2 0.000e+00 0.000e+00 -122.649 -122.963 -0.313 (0) - (H2S)2 0.000e+00 0.000e+00 -235.792 -235.787 0.004 30.00 -S(6) 1.514e-02 - SO4-2 1.046e-02 5.065e-03 -1.980 -2.295 -0.315 21.37 - CaSO4 4.677e-03 4.722e-03 -2.330 -2.326 0.004 7.57 - HSO4- 5.663e-08 4.705e-08 -7.247 -7.327 -0.080 40.57 - CaHSO4+ 3.517e-09 2.922e-09 -8.454 -8.534 -0.080 (0) + HS- 0.000e+00 0.000e+00 -116.979 -117.065 -0.086 20.86 + H2S 0.000e+00 0.000e+00 -117.194 -117.189 0.004 36.75 + S-2 0.000e+00 0.000e+00 -122.565 -122.883 -0.318 (0) + (H2S)2 0.000e+00 0.000e+00 -235.640 -235.636 0.004 30.00 +S(6) 1.501e-02 + SO4-2 1.089e-02 5.215e-03 -1.963 -2.283 -0.320 15.17 + CaSO4 4.117e-03 4.136e-03 -2.385 -2.383 0.002 7.42 + HSO4- 5.824e-08 4.825e-08 -7.235 -7.317 -0.082 40.57 + CaHSO4+ 3.727e-09 3.088e-09 -8.429 -8.510 -0.082 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(300 K, 1 atm) - Anhydrite -0.28 -4.58 -4.30 CaSO4 - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2(g) -35.34 -38.45 -3.11 H2 + Anhydrite -0.21 -4.56 -4.35 CaSO4 + Gypsum 0.00 -4.56 -4.56 CaSO4:2H2O + H2(g) -35.33 -38.43 -3.11 H2 H2O(g) -1.45 -0.00 1.45 H2O - H2S(g) -116.25 -124.18 -7.93 H2S + H2S(g) -116.17 -124.11 -7.93 H2S O2(g) -11.93 -14.84 -2.91 O2 - Sulfur -86.81 -81.97 4.84 S + Sulfur -86.75 -81.91 4.84 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -373,74 +373,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.27 -4.58 -4.31 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.854e-01 +Anhydrite -0.20 -4.56 -4.36 1.000e+00 0 -1.000e+00 +Gypsum 0.00 -4.56 -4.56 1.000e+00 1.985e+00 9.855e-01 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.518e-02 1.464e-02 - S 1.518e-02 1.464e-02 + Ca 1.505e-02 1.451e-02 + S 1.505e-02 1.451e-02 ----------------------------Description of solution---------------------------- - pH = 7.025 Charge balance - pe = 10.539 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 28°C) = 2667 - Density (g/cm³) = 0.99821 - Volume (L) = 0.96822 - Viscosity (mPa s) = 0.84043 + pH = 7.027 Charge balance + pe = 10.527 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 28°C) = 2627 + Density (g/cm³) = 0.99827 + Volume (L) = 0.96815 + Viscosity (mPa s) = 0.84110 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.189e-02 + Ionic strength (mol/kgw) = 4.334e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 28.00 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.208e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 21 - Total H = 1.070710e+02 - Total O = 5.359407e+01 + Iterations = 19 + Total H = 1.070705e+02 + Total O = 5.359329e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.634e-07 1.344e-07 -6.787 -6.872 -0.085 -3.79 - H+ 1.096e-07 9.432e-08 -6.960 -7.025 -0.065 0.00 + OH- 1.644e-07 1.349e-07 -6.784 -6.870 -0.086 -3.79 + H+ 1.094e-07 9.398e-08 -6.961 -7.027 -0.066 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.08 -Ca 1.518e-02 - Ca+2 1.047e-02 5.164e-03 -1.980 -2.287 -0.307 -17.63 - CaSO4 4.708e-03 4.754e-03 -2.327 -2.323 0.004 7.61 - CaOH+ 1.094e-08 9.082e-09 -7.961 -8.042 -0.081 (0) - CaHSO4+ 3.708e-09 3.080e-09 -8.431 -8.511 -0.081 (0) -H(0) 1.011e-38 - H2 5.056e-39 5.105e-39 -38.296 -38.292 0.004 28.60 -O(0) 2.877e-15 - O2 1.439e-15 1.452e-15 -14.842 -14.838 0.004 30.63 +Ca 1.505e-02 + Ca+2 1.084e-02 5.296e-03 -1.965 -2.276 -0.311 -17.62 + CaSO4 4.212e-03 4.231e-03 -2.376 -2.374 0.002 7.52 + CaOH+ 1.128e-08 9.348e-09 -7.948 -8.029 -0.082 (0) + CaHSO4+ 3.893e-09 3.226e-09 -8.410 -8.491 -0.082 (0) +H(0) 1.061e-38 + H2 5.307e-39 5.360e-39 -38.275 -38.271 0.004 28.60 +O(0) 2.879e-15 + O2 1.440e-15 1.454e-15 -14.842 -14.837 0.004 30.63 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -116.541 -116.626 -0.085 20.89 - H2S 0.000e+00 0.000e+00 -116.752 -116.748 0.004 36.98 - S-2 0.000e+00 0.000e+00 -122.116 -122.430 -0.314 (0) - (H2S)2 0.000e+00 0.000e+00 -234.746 -234.742 0.004 29.96 -S(6) 1.518e-02 - SO4-2 1.047e-02 5.063e-03 -1.980 -2.296 -0.316 21.48 - CaSO4 4.708e-03 4.754e-03 -2.327 -2.323 0.004 7.61 - HSO4- 5.973e-08 4.961e-08 -7.224 -7.304 -0.081 40.63 - CaHSO4+ 3.708e-09 3.080e-09 -8.431 -8.511 -0.081 (0) + HS- 0.000e+00 0.000e+00 -116.446 -116.532 -0.086 20.90 + H2S 0.000e+00 0.000e+00 -116.660 -116.655 0.004 36.98 + S-2 0.000e+00 0.000e+00 -122.017 -122.335 -0.318 (0) + (H2S)2 0.000e+00 0.000e+00 -234.561 -234.557 0.004 29.96 +S(6) 1.505e-02 + SO4-2 1.084e-02 5.189e-03 -1.965 -2.285 -0.320 15.29 + CaSO4 4.212e-03 4.231e-03 -2.376 -2.374 0.002 7.52 + HSO4- 6.114e-08 5.066e-08 -7.214 -7.295 -0.082 40.63 + CaHSO4+ 3.893e-09 3.226e-09 -8.410 -8.491 -0.082 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(301 K, 1 atm) - Anhydrite -0.27 -4.58 -4.31 CaSO4 - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2(g) -35.18 -38.29 -3.11 H2 + Anhydrite -0.20 -4.56 -4.36 CaSO4 + Gypsum 0.00 -4.56 -4.56 CaSO4:2H2O + H2(g) -35.16 -38.27 -3.11 H2 H2O(g) -1.43 -0.00 1.43 H2O - H2S(g) -115.72 -123.65 -7.93 H2S + H2S(g) -115.63 -123.56 -7.93 H2S O2(g) -11.92 -14.84 -2.91 O2 - Sulfur -86.43 -81.62 4.81 S + Sulfur -86.36 -81.55 4.81 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -456,74 +456,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.26 -4.58 -4.32 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.853e-01 +Anhydrite -0.19 -4.57 -4.38 1.000e+00 0 -1.000e+00 +Gypsum 0.00 -4.57 -4.57 1.000e+00 1.985e+00 9.855e-01 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.522e-02 1.468e-02 - S 1.522e-02 1.468e-02 + Ca 1.508e-02 1.455e-02 + S 1.508e-02 1.455e-02 ----------------------------Description of solution---------------------------- - pH = 7.012 Charge balance - pe = 10.472 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 29°C) = 2727 - Density (g/cm³) = 0.99793 - Volume (L) = 0.96850 - Viscosity (mPa s) = 0.82239 + pH = 7.013 Charge balance + pe = 10.458 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 29°C) = 2670 + Density (g/cm³) = 0.99798 + Volume (L) = 0.96843 + Viscosity (mPa s) = 0.82304 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.193e-02 + Ionic strength (mol/kgw) = 4.310e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 29.00 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.208e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 - Total H = 1.070712e+02 - Total O = 5.359429e+01 + Iterations = 16 + Total H = 1.070706e+02 + Total O = 5.359349e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.706e-07 1.403e-07 -6.768 -6.853 -0.085 -3.76 - H+ 1.131e-07 9.726e-08 -6.947 -7.012 -0.065 0.00 + OH- 1.715e-07 1.407e-07 -6.766 -6.852 -0.086 -3.76 + H+ 1.129e-07 9.697e-08 -6.947 -7.013 -0.066 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.09 -Ca 1.522e-02 - Ca+2 1.048e-02 5.161e-03 -1.980 -2.287 -0.308 -17.61 - CaSO4 4.738e-03 4.783e-03 -2.324 -2.320 0.004 7.64 - CaOH+ 1.060e-08 8.803e-09 -7.975 -8.055 -0.081 (0) - CaHSO4+ 3.908e-09 3.244e-09 -8.408 -8.489 -0.081 (0) -H(0) 1.452e-38 - H2 7.258e-39 7.329e-39 -38.139 -38.135 0.004 28.60 -O(0) 2.886e-15 - O2 1.443e-15 1.457e-15 -14.841 -14.837 0.004 30.70 +Ca 1.508e-02 + Ca+2 1.078e-02 5.268e-03 -1.968 -2.278 -0.311 -17.61 + CaSO4 4.306e-03 4.326e-03 -2.366 -2.364 0.002 7.62 + CaOH+ 1.088e-08 9.012e-09 -7.964 -8.045 -0.082 (0) + CaHSO4+ 4.065e-09 3.368e-09 -8.391 -8.473 -0.082 (0) +H(0) 1.540e-38 + H2 7.702e-39 7.779e-39 -38.113 -38.109 0.004 28.60 +O(0) 2.877e-15 + O2 1.439e-15 1.453e-15 -14.842 -14.838 0.004 30.70 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -116.027 -116.112 -0.085 20.93 - H2S 0.000e+00 0.000e+00 -116.237 -116.233 0.004 37.21 - S-2 0.000e+00 0.000e+00 -121.586 -121.901 -0.315 (0) - (H2S)2 0.000e+00 0.000e+00 -233.706 -233.702 0.004 29.91 -S(6) 1.522e-02 - SO4-2 1.048e-02 5.060e-03 -1.980 -2.296 -0.316 21.58 - CaSO4 4.738e-03 4.783e-03 -2.324 -2.320 0.004 7.64 - HSO4- 6.298e-08 5.228e-08 -7.201 -7.282 -0.081 40.69 - CaHSO4+ 3.908e-09 3.244e-09 -8.408 -8.489 -0.081 (0) + HS- 0.000e+00 0.000e+00 -115.915 -116.001 -0.086 20.94 + H2S 0.000e+00 0.000e+00 -116.128 -116.123 0.004 37.21 + S-2 0.000e+00 0.000e+00 -121.471 -121.789 -0.318 (0) + (H2S)2 0.000e+00 0.000e+00 -233.487 -233.482 0.004 29.91 +S(6) 1.508e-02 + SO4-2 1.078e-02 5.162e-03 -1.968 -2.287 -0.320 15.40 + CaSO4 4.306e-03 4.326e-03 -2.366 -2.364 0.002 7.62 + HSO4- 6.418e-08 5.318e-08 -7.193 -7.274 -0.082 40.69 + CaHSO4+ 4.065e-09 3.368e-09 -8.391 -8.473 -0.082 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(302 K, 1 atm) - Anhydrite -0.26 -4.58 -4.32 CaSO4 - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2(g) -35.03 -38.13 -3.11 H2 + Anhydrite -0.19 -4.57 -4.38 CaSO4 + Gypsum 0.00 -4.57 -4.57 CaSO4:2H2O + H2(g) -35.00 -38.11 -3.11 H2 H2O(g) -1.40 -0.00 1.40 H2O - H2S(g) -115.20 -123.12 -7.93 H2S + H2S(g) -115.09 -123.01 -7.93 H2S O2(g) -11.92 -14.84 -2.92 O2 - Sulfur -86.05 -81.27 4.79 S + Sulfur -85.97 -81.18 4.79 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -539,74 +539,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.25 -4.58 -4.33 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.853e-01 +Anhydrite -0.18 -4.57 -4.39 1.000e+00 0 -1.000e+00 +Gypsum 0.00 -4.57 -4.57 1.000e+00 1.985e+00 9.854e-01 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.526e-02 1.471e-02 - S 1.526e-02 1.471e-02 + Ca 1.511e-02 1.458e-02 + S 1.511e-02 1.458e-02 ----------------------------Description of solution---------------------------- - pH = 6.999 Charge balance - pe = 10.404 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 30°C) = 2788 - Density (g/cm³) = 0.99763 - Volume (L) = 0.96879 - Viscosity (mPa s) = 0.80498 + pH = 7.000 Charge balance + pe = 10.389 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 30°C) = 2712 + Density (g/cm³) = 0.99768 + Volume (L) = 0.96872 + Viscosity (mPa s) = 0.80560 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.196e-02 + Ionic strength (mol/kgw) = 4.285e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 30.00 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.212e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 - Total H = 1.070713e+02 - Total O = 5.359450e+01 + Iterations = 18 + Total H = 1.070707e+02 + Total O = 5.359368e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.781e-07 1.463e-07 -6.749 -6.835 -0.085 -3.73 - H+ 1.166e-07 1.003e-07 -6.933 -6.999 -0.066 0.00 + OH- 1.788e-07 1.467e-07 -6.748 -6.834 -0.086 -3.73 + H+ 1.165e-07 1.000e-07 -6.934 -7.000 -0.066 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.09 -Ca 1.526e-02 - Ca+2 1.049e-02 5.158e-03 -1.979 -2.288 -0.308 -17.61 - CaSO4 4.766e-03 4.812e-03 -2.322 -2.318 0.004 7.68 - CaOH+ 1.028e-08 8.533e-09 -7.988 -8.069 -0.081 (0) - CaHSO4+ 4.117e-09 3.416e-09 -8.385 -8.466 -0.081 (0) -H(0) 2.087e-38 - H2 1.044e-38 1.054e-38 -37.981 -37.977 0.004 28.60 -O(0) 2.871e-15 - O2 1.436e-15 1.449e-15 -14.843 -14.839 0.004 30.77 +Ca 1.511e-02 + Ca+2 1.071e-02 5.239e-03 -1.970 -2.281 -0.311 -17.60 + CaSO4 4.401e-03 4.420e-03 -2.356 -2.355 0.002 7.71 + CaOH+ 1.048e-08 8.688e-09 -7.979 -8.061 -0.082 (0) + CaHSO4+ 4.242e-09 3.515e-09 -8.372 -8.454 -0.082 (0) +H(0) 2.225e-38 + H2 1.113e-38 1.124e-38 -37.954 -37.949 0.004 28.60 +O(0) 2.886e-15 + O2 1.443e-15 1.457e-15 -14.841 -14.836 0.004 30.77 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -115.510 -115.595 -0.085 20.97 - H2S 0.000e+00 0.000e+00 -115.719 -115.715 0.004 37.42 - S-2 0.000e+00 0.000e+00 -121.053 -121.368 -0.315 (0) - (H2S)2 0.000e+00 0.000e+00 -232.659 -232.655 0.004 29.87 -S(6) 1.526e-02 - SO4-2 1.049e-02 5.056e-03 -1.979 -2.296 -0.317 21.68 - CaSO4 4.766e-03 4.812e-03 -2.322 -2.318 0.004 7.68 - HSO4- 6.639e-08 5.509e-08 -7.178 -7.259 -0.081 40.74 - CaHSO4+ 4.117e-09 3.416e-09 -8.385 -8.466 -0.081 (0) + HS- 0.000e+00 0.000e+00 -115.392 -115.478 -0.086 20.97 + H2S 0.000e+00 0.000e+00 -115.603 -115.598 0.004 37.42 + S-2 0.000e+00 0.000e+00 -120.932 -121.250 -0.318 (0) + (H2S)2 0.000e+00 0.000e+00 -232.427 -232.422 0.004 29.87 +S(6) 1.511e-02 + SO4-2 1.071e-02 5.134e-03 -1.970 -2.290 -0.319 15.51 + CaSO4 4.401e-03 4.420e-03 -2.356 -2.355 0.002 7.71 + HSO4- 6.735e-08 5.581e-08 -7.172 -7.253 -0.082 40.75 + CaHSO4+ 4.242e-09 3.515e-09 -8.372 -8.454 -0.082 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(303 K, 1 atm) - Anhydrite -0.25 -4.58 -4.33 CaSO4 - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2(g) -34.87 -37.98 -3.11 H2 + Anhydrite -0.18 -4.57 -4.39 CaSO4 + Gypsum 0.00 -4.57 -4.57 CaSO4:2H2O + H2(g) -34.84 -37.95 -3.11 H2 H2O(g) -1.38 -0.00 1.38 H2O - H2S(g) -114.67 -122.59 -7.93 H2S + H2S(g) -114.55 -122.48 -7.93 H2S O2(g) -11.91 -14.84 -2.93 O2 - Sulfur -85.68 -80.91 4.77 S + Sulfur -85.59 -80.82 4.77 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -622,74 +622,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.24 -4.58 -4.35 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.853e-01 +Anhydrite -0.16 -4.58 -4.41 1.000e+00 0 -1.000e+00 +Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.854e-01 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.529e-02 1.475e-02 - S 1.529e-02 1.475e-02 + Ca 1.514e-02 1.461e-02 + S 1.514e-02 1.461e-02 ----------------------------Description of solution---------------------------- pH = 6.986 Charge balance - pe = 10.338 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 31°C) = 2849 - Density (g/cm³) = 0.99733 - Volume (L) = 0.96909 - Viscosity (mPa s) = 0.78815 + pe = 10.320 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 31°C) = 2753 + Density (g/cm³) = 0.99738 + Volume (L) = 0.96903 + Viscosity (mPa s) = 0.78874 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.198e-02 + Ionic strength (mol/kgw) = 4.259e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 31.00 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 - Total H = 1.070714e+02 - Total O = 5.359469e+01 + Iterations = 16 + Total H = 1.070709e+02 + Total O = 5.359385e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.858e-07 1.526e-07 -6.731 -6.816 -0.085 -3.71 - H+ 1.202e-07 1.033e-07 -6.920 -6.986 -0.066 0.00 + OH- 1.863e-07 1.529e-07 -6.730 -6.816 -0.086 -3.70 + H+ 1.201e-07 1.032e-07 -6.920 -6.986 -0.066 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.10 -Ca 1.529e-02 - Ca+2 1.050e-02 5.153e-03 -1.979 -2.288 -0.309 -17.60 - CaSO4 4.792e-03 4.839e-03 -2.319 -2.315 0.004 7.71 - CaOH+ 9.972e-09 8.273e-09 -8.001 -8.082 -0.081 (0) - CaHSO4+ 4.335e-09 3.596e-09 -8.363 -8.444 -0.081 (0) -H(0) 2.975e-38 - H2 1.488e-38 1.502e-38 -37.827 -37.823 0.004 28.60 -O(0) 2.892e-15 - O2 1.446e-15 1.460e-15 -14.840 -14.836 0.004 30.84 +Ca 1.514e-02 + Ca+2 1.065e-02 5.209e-03 -1.973 -2.283 -0.311 -17.59 + CaSO4 4.495e-03 4.515e-03 -2.347 -2.345 0.002 7.80 + CaOH+ 1.011e-08 8.376e-09 -7.995 -8.077 -0.082 (0) + CaHSO4+ 4.424e-09 3.667e-09 -8.354 -8.436 -0.082 (0) +H(0) 3.220e-38 + H2 1.610e-38 1.626e-38 -37.793 -37.789 0.004 28.60 +O(0) 2.870e-15 + O2 1.435e-15 1.449e-15 -14.843 -14.839 0.004 30.84 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -115.007 -115.092 -0.085 21.00 - H2S 0.000e+00 0.000e+00 -115.215 -115.210 0.004 37.64 - S-2 0.000e+00 0.000e+00 -120.534 -120.850 -0.316 (0) - (H2S)2 0.000e+00 0.000e+00 -231.641 -231.636 0.004 29.82 -S(6) 1.529e-02 - SO4-2 1.050e-02 5.052e-03 -1.979 -2.297 -0.318 21.77 - CaSO4 4.792e-03 4.839e-03 -2.319 -2.315 0.004 7.71 - HSO4- 6.997e-08 5.804e-08 -7.155 -7.236 -0.081 40.80 - CaHSO4+ 4.335e-09 3.596e-09 -8.363 -8.444 -0.081 (0) + HS- 0.000e+00 0.000e+00 -114.865 -114.951 -0.086 21.01 + H2S 0.000e+00 0.000e+00 -115.074 -115.070 0.004 37.64 + S-2 0.000e+00 0.000e+00 -120.390 -120.708 -0.318 (0) + (H2S)2 0.000e+00 0.000e+00 -231.360 -231.356 0.004 29.82 +S(6) 1.514e-02 + SO4-2 1.065e-02 5.105e-03 -1.973 -2.292 -0.319 15.61 + CaSO4 4.495e-03 4.515e-03 -2.347 -2.345 0.002 7.80 + HSO4- 7.065e-08 5.855e-08 -7.151 -7.232 -0.082 40.80 + CaHSO4+ 4.424e-09 3.667e-09 -8.354 -8.436 -0.082 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(304 K, 1 atm) - Anhydrite -0.24 -4.58 -4.35 CaSO4 + Anhydrite -0.16 -4.58 -4.41 CaSO4 Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2(g) -34.71 -37.82 -3.11 H2 + H2(g) -34.68 -37.79 -3.11 H2 H2O(g) -1.35 -0.00 1.35 H2O - H2S(g) -114.15 -122.08 -7.93 H2S - O2(g) -11.90 -14.84 -2.93 O2 - Sulfur -85.31 -80.56 4.74 S + H2S(g) -114.01 -121.94 -7.93 H2S + O2(g) -11.91 -14.84 -2.93 O2 + Sulfur -85.20 -80.46 4.74 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -705,74 +705,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.23 -4.59 -4.36 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.852e-01 +Anhydrite -0.15 -4.58 -4.43 1.000e+00 0 -1.000e+00 +Gypsum 0.00 -4.58 -4.58 1.000e+00 1.985e+00 9.854e-01 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.532e-02 1.477e-02 - S 1.532e-02 1.477e-02 + Ca 1.517e-02 1.463e-02 + S 1.517e-02 1.463e-02 ----------------------------Description of solution---------------------------- pH = 6.973 Charge balance - pe = 10.271 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 32°C) = 2910 - Density (g/cm³) = 0.99702 - Volume (L) = 0.96940 - Viscosity (mPa s) = 0.77188 + pe = 10.253 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 32°C) = 2793 + Density (g/cm³) = 0.99706 + Volume (L) = 0.96934 + Viscosity (mPa s) = 0.77244 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.200e-02 + Ionic strength (mol/kgw) = 4.232e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 32.00 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 - Total H = 1.070715e+02 - Total O = 5.359486e+01 + Iterations = 16 + Total H = 1.070710e+02 + Total O = 5.359400e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.938e-07 1.591e-07 -6.713 -6.798 -0.086 -3.68 - H+ 1.239e-07 1.065e-07 -6.907 -6.973 -0.066 0.00 + OH- 1.941e-07 1.592e-07 -6.712 -6.798 -0.086 -3.68 + H+ 1.238e-07 1.064e-07 -6.907 -6.973 -0.066 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.11 -Ca 1.532e-02 - Ca+2 1.050e-02 5.148e-03 -1.979 -2.288 -0.309 -17.59 - CaSO4 4.818e-03 4.864e-03 -2.317 -2.313 0.004 7.74 - CaOH+ 9.673e-09 8.021e-09 -8.014 -8.096 -0.081 (0) - CaHSO4+ 4.563e-09 3.784e-09 -8.341 -8.422 -0.081 (0) -H(0) 4.261e-38 - H2 2.131e-38 2.151e-38 -37.672 -37.667 0.004 28.60 -O(0) 2.873e-15 - O2 1.436e-15 1.450e-15 -14.843 -14.839 0.004 30.91 +Ca 1.517e-02 + Ca+2 1.058e-02 5.178e-03 -1.976 -2.286 -0.310 -17.59 + CaSO4 4.589e-03 4.609e-03 -2.338 -2.336 0.002 7.88 + CaOH+ 9.742e-09 8.075e-09 -8.011 -8.093 -0.082 (0) + CaHSO4+ 4.613e-09 3.823e-09 -8.336 -8.418 -0.082 (0) +H(0) 4.626e-38 + H2 2.313e-38 2.336e-38 -37.636 -37.632 0.004 28.60 +O(0) 2.879e-15 + O2 1.439e-15 1.454e-15 -14.842 -14.838 0.004 30.91 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -114.495 -114.581 -0.086 21.04 - H2S 0.000e+00 0.000e+00 -114.702 -114.697 0.004 37.85 - S-2 0.000e+00 0.000e+00 -120.006 -120.323 -0.316 (0) - (H2S)2 0.000e+00 0.000e+00 -230.605 -230.601 0.004 29.78 -S(6) 1.532e-02 - SO4-2 1.050e-02 5.047e-03 -1.979 -2.297 -0.318 21.85 - CaSO4 4.818e-03 4.864e-03 -2.317 -2.313 0.004 7.74 - HSO4- 7.372e-08 6.113e-08 -7.132 -7.214 -0.081 40.85 - CaHSO4+ 4.563e-09 3.784e-09 -8.341 -8.422 -0.081 (0) + HS- 0.000e+00 0.000e+00 -114.350 -114.436 -0.086 21.04 + H2S 0.000e+00 0.000e+00 -114.557 -114.553 0.004 37.85 + S-2 0.000e+00 0.000e+00 -119.860 -120.178 -0.317 (0) + (H2S)2 0.000e+00 0.000e+00 -230.316 -230.312 0.004 29.78 +S(6) 1.517e-02 + SO4-2 1.058e-02 5.076e-03 -1.976 -2.295 -0.319 15.70 + CaSO4 4.589e-03 4.609e-03 -2.338 -2.336 0.002 7.88 + HSO4- 7.410e-08 6.141e-08 -7.130 -7.212 -0.082 40.85 + CaHSO4+ 4.613e-09 3.823e-09 -8.336 -8.418 -0.082 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(305 K, 1 atm) - Anhydrite -0.23 -4.59 -4.36 CaSO4 - Gypsum 0.00 -4.59 -4.59 CaSO4:2H2O - H2(g) -34.55 -37.67 -3.12 H2 + Anhydrite -0.15 -4.58 -4.43 CaSO4 + Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O + H2(g) -34.52 -37.63 -3.12 H2 H2O(g) -1.33 -0.00 1.33 H2O - H2S(g) -113.63 -121.55 -7.92 H2S + H2S(g) -113.48 -121.41 -7.92 H2S O2(g) -11.90 -14.84 -2.94 O2 - Sulfur -84.93 -80.21 4.72 S + Sulfur -84.82 -80.10 4.72 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -788,34 +788,34 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.22 -4.59 -4.37 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.852e-01 +Anhydrite -0.14 -4.59 -4.44 1.000e+00 0 -1.000e+00 +Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.853e-01 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.534e-02 1.480e-02 - S 1.534e-02 1.480e-02 + Ca 1.519e-02 1.465e-02 + S 1.519e-02 1.465e-02 ----------------------------Description of solution---------------------------- pH = 6.960 Charge balance - pe = 10.206 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 33°C) = 2971 - Density (g/cm³) = 0.99669 - Volume (L) = 0.96972 - Viscosity (mPa s) = 0.75615 + pe = 10.185 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 33°C) = 2832 + Density (g/cm³) = 0.99674 + Volume (L) = 0.96965 + Viscosity (mPa s) = 0.75668 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.201e-02 + Ionic strength (mol/kgw) = 4.204e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 33.00 - Electrical balance (eq) = -1.207e-09 + Electrical balance (eq) = -1.212e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 20 - Total H = 1.070716e+02 - Total O = 5.359501e+01 + Iterations = 16 + Total H = 1.070710e+02 + Total O = 5.359414e+01 ----------------------------Distribution of species---------------------------- @@ -825,37 +825,37 @@ Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.852e-01 OH- 2.020e-07 1.658e-07 -6.695 -6.780 -0.086 -3.66 H+ 1.276e-07 1.097e-07 -6.894 -6.960 -0.066 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.11 -Ca 1.534e-02 - Ca+2 1.050e-02 5.143e-03 -1.979 -2.289 -0.310 -17.58 - CaSO4 4.841e-03 4.889e-03 -2.315 -2.311 0.004 7.77 - CaOH+ 9.384e-09 7.779e-09 -8.028 -8.109 -0.081 (0) - CaHSO4+ 4.801e-09 3.980e-09 -8.319 -8.400 -0.081 (0) -H(0) 6.053e-38 - H2 3.026e-38 3.056e-38 -37.519 -37.515 0.004 28.60 -O(0) 2.888e-15 - O2 1.444e-15 1.458e-15 -14.840 -14.836 0.004 30.97 +Ca 1.519e-02 + Ca+2 1.051e-02 5.146e-03 -1.978 -2.289 -0.310 -17.58 + CaSO4 4.683e-03 4.703e-03 -2.330 -2.328 0.002 7.97 + CaOH+ 9.392e-09 7.785e-09 -8.027 -8.109 -0.081 (0) + CaHSO4+ 4.807e-09 3.984e-09 -8.318 -8.400 -0.081 (0) +H(0) 6.647e-38 + H2 3.324e-38 3.356e-38 -37.478 -37.474 0.004 28.60 +O(0) 2.871e-15 + O2 1.436e-15 1.450e-15 -14.843 -14.839 0.004 30.97 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -113.998 -114.083 -0.086 21.07 - H2S 0.000e+00 0.000e+00 -114.202 -114.198 0.004 38.05 - S-2 0.000e+00 0.000e+00 -119.493 -119.810 -0.317 (0) - (H2S)2 0.000e+00 0.000e+00 -229.596 -229.592 0.004 29.73 -S(6) 1.534e-02 - SO4-2 1.050e-02 5.042e-03 -1.979 -2.297 -0.319 21.92 - CaSO4 4.841e-03 4.889e-03 -2.315 -2.311 0.004 7.77 - HSO4- 7.765e-08 6.436e-08 -7.110 -7.191 -0.081 40.90 - CaHSO4+ 4.801e-09 3.980e-09 -8.319 -8.400 -0.081 (0) + HS- 0.000e+00 0.000e+00 -113.834 -113.920 -0.086 21.07 + H2S 0.000e+00 0.000e+00 -114.039 -114.035 0.004 38.05 + S-2 0.000e+00 0.000e+00 -119.329 -119.647 -0.317 (0) + (H2S)2 0.000e+00 0.000e+00 -229.270 -229.266 0.004 29.73 +S(6) 1.519e-02 + SO4-2 1.051e-02 5.045e-03 -1.978 -2.297 -0.319 15.79 + CaSO4 4.683e-03 4.703e-03 -2.330 -2.328 0.002 7.97 + HSO4- 7.769e-08 6.440e-08 -7.110 -7.191 -0.081 40.90 + CaHSO4+ 4.807e-09 3.984e-09 -8.318 -8.400 -0.081 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(306 K, 1 atm) - Anhydrite -0.22 -4.59 -4.37 CaSO4 + Anhydrite -0.14 -4.59 -4.44 CaSO4 Gypsum 0.00 -4.59 -4.59 CaSO4:2H2O - H2(g) -34.40 -37.51 -3.12 H2 + H2(g) -34.36 -37.47 -3.12 H2 H2O(g) -1.30 -0.00 1.30 H2O - H2S(g) -113.12 -121.04 -7.92 H2S + H2S(g) -112.96 -120.88 -7.92 H2S O2(g) -11.89 -14.84 -2.95 O2 - Sulfur -84.57 -79.87 4.70 S + Sulfur -84.44 -79.74 4.70 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -871,74 +871,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.21 -4.59 -4.38 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.852e-01 +Anhydrite -0.13 -4.59 -4.46 1.000e+00 0 -1.000e+00 +Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.853e-01 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.537e-02 1.482e-02 - S 1.537e-02 1.482e-02 + Ca 1.521e-02 1.467e-02 + S 1.521e-02 1.467e-02 ----------------------------Description of solution---------------------------- pH = 6.947 Charge balance - pe = 10.139 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 34°C) = 3031 - Density (g/cm³) = 0.99636 - Volume (L) = 0.97005 - Viscosity (mPa s) = 0.74093 + pe = 10.118 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 34°C) = 2870 + Density (g/cm³) = 0.99641 + Volume (L) = 0.96998 + Viscosity (mPa s) = 0.74143 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.201e-02 + Ionic strength (mol/kgw) = 4.175e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 34.00 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 - Total H = 1.070717e+02 - Total O = 5.359514e+01 + Iterations = 16 + Total H = 1.070711e+02 + Total O = 5.359426e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 2.104e-07 1.727e-07 -6.677 -6.763 -0.086 -3.64 - H+ 1.315e-07 1.129e-07 -6.881 -6.947 -0.066 0.00 + OH- 2.102e-07 1.726e-07 -6.677 -6.763 -0.086 -3.64 + H+ 1.315e-07 1.130e-07 -6.881 -6.947 -0.066 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.12 -Ca 1.537e-02 - Ca+2 1.050e-02 5.137e-03 -1.979 -2.289 -0.311 -17.58 - CaSO4 4.864e-03 4.911e-03 -2.313 -2.309 0.004 7.80 - CaOH+ 9.105e-09 7.545e-09 -8.041 -8.122 -0.082 (0) - CaHSO4+ 5.049e-09 4.184e-09 -8.297 -8.378 -0.082 (0) -H(0) 8.628e-38 - H2 4.314e-38 4.356e-38 -37.365 -37.361 0.004 28.60 -O(0) 2.869e-15 - O2 1.434e-15 1.448e-15 -14.843 -14.839 0.004 31.04 +Ca 1.521e-02 + Ca+2 1.044e-02 5.114e-03 -1.981 -2.291 -0.310 -17.58 + CaSO4 4.776e-03 4.796e-03 -2.321 -2.319 0.002 8.05 + CaOH+ 9.054e-09 7.506e-09 -8.043 -8.125 -0.081 (0) + CaHSO4+ 5.006e-09 4.150e-09 -8.300 -8.382 -0.081 (0) +H(0) 9.522e-38 + H2 4.761e-38 4.807e-38 -37.322 -37.318 0.004 28.60 +O(0) 2.866e-15 + O2 1.433e-15 1.447e-15 -14.844 -14.840 0.004 31.04 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -113.493 -113.579 -0.086 21.10 - H2S 0.000e+00 0.000e+00 -113.696 -113.692 0.004 38.25 - S-2 0.000e+00 0.000e+00 -118.972 -119.289 -0.318 (0) - (H2S)2 0.000e+00 0.000e+00 -228.574 -228.570 0.004 29.68 -S(6) 1.537e-02 - SO4-2 1.050e-02 5.036e-03 -1.979 -2.298 -0.319 21.99 - CaSO4 4.864e-03 4.911e-03 -2.313 -2.309 0.004 7.80 - HSO4- 8.176e-08 6.775e-08 -7.087 -7.169 -0.082 40.95 - CaHSO4+ 5.049e-09 4.184e-09 -8.297 -8.378 -0.082 (0) + HS- 0.000e+00 0.000e+00 -113.323 -113.409 -0.086 21.10 + H2S 0.000e+00 0.000e+00 -113.526 -113.522 0.004 38.25 + S-2 0.000e+00 0.000e+00 -118.803 -119.120 -0.317 (0) + (H2S)2 0.000e+00 0.000e+00 -228.234 -228.230 0.004 29.68 +S(6) 1.521e-02 + SO4-2 1.044e-02 5.014e-03 -1.981 -2.300 -0.318 15.88 + CaSO4 4.776e-03 4.796e-03 -2.321 -2.319 0.002 8.05 + HSO4- 8.143e-08 6.751e-08 -7.089 -7.171 -0.081 40.95 + CaHSO4+ 5.006e-09 4.150e-09 -8.300 -8.382 -0.081 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(307 K, 1 atm) - Anhydrite -0.21 -4.59 -4.38 CaSO4 + Anhydrite -0.13 -4.59 -4.46 CaSO4 Gypsum 0.00 -4.59 -4.59 CaSO4:2H2O - H2(g) -34.24 -37.36 -3.12 H2 + H2(g) -34.20 -37.32 -3.12 H2 H2O(g) -1.28 -0.00 1.28 H2O - H2S(g) -112.60 -120.53 -7.92 H2S + H2S(g) -112.43 -120.36 -7.92 H2S O2(g) -11.89 -14.84 -2.95 O2 - Sulfur -84.20 -79.52 4.68 S + Sulfur -84.07 -79.39 4.68 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -954,74 +954,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.20 -4.59 -4.39 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.852e-01 +Anhydrite -0.12 -4.60 -4.48 1.000e+00 0 -1.000e+00 +Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.853e-01 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.539e-02 1.484e-02 - S 1.539e-02 1.484e-02 + Ca 1.523e-02 1.469e-02 + S 1.523e-02 1.469e-02 ----------------------------Description of solution---------------------------- - pH = 6.935 Charge balance - pe = 10.074 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 35°C) = 3092 - Density (g/cm³) = 0.99603 - Volume (L) = 0.97038 - Viscosity (mPa s) = 0.72620 + pH = 6.934 Charge balance + pe = 10.052 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 35°C) = 2907 + Density (g/cm³) = 0.99607 + Volume (L) = 0.97031 + Viscosity (mPa s) = 0.72667 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.200e-02 + Ionic strength (mol/kgw) = 4.146e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 35.00 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 20 - Total H = 1.070718e+02 - Total O = 5.359525e+01 + Iterations = 19 + Total H = 1.070712e+02 + Total O = 5.359437e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 2.192e-07 1.798e-07 -6.659 -6.745 -0.086 -3.62 - H+ 1.354e-07 1.163e-07 -6.868 -6.935 -0.066 0.00 + OH- 2.186e-07 1.795e-07 -6.660 -6.746 -0.086 -3.62 + H+ 1.355e-07 1.164e-07 -6.868 -6.934 -0.066 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.12 -Ca 1.539e-02 - Ca+2 1.050e-02 5.130e-03 -1.979 -2.290 -0.311 -17.57 - CaSO4 4.885e-03 4.932e-03 -2.311 -2.307 0.004 7.83 - CaOH+ 8.836e-09 7.319e-09 -8.054 -8.136 -0.082 (0) - CaHSO4+ 5.308e-09 4.397e-09 -8.275 -8.357 -0.082 (0) -H(0) 1.222e-37 - H2 6.111e-38 6.170e-38 -37.214 -37.210 0.004 28.60 -O(0) 2.873e-15 - O2 1.437e-15 1.451e-15 -14.843 -14.838 0.004 31.10 +Ca 1.523e-02 + Ca+2 1.036e-02 5.080e-03 -1.984 -2.294 -0.310 -17.58 + CaSO4 4.869e-03 4.890e-03 -2.313 -2.311 0.002 8.13 + CaOH+ 8.728e-09 7.237e-09 -8.059 -8.140 -0.081 (0) + CaHSO4+ 5.212e-09 4.321e-09 -8.283 -8.364 -0.081 (0) +H(0) 1.356e-37 + H2 6.782e-38 6.847e-38 -37.169 -37.164 0.004 28.60 +O(0) 2.878e-15 + O2 1.439e-15 1.453e-15 -14.842 -14.838 0.004 31.10 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -112.998 -113.084 -0.086 21.12 - H2S 0.000e+00 0.000e+00 -113.200 -113.196 0.004 38.44 - S-2 0.000e+00 0.000e+00 -118.462 -118.780 -0.318 (0) - (H2S)2 0.000e+00 0.000e+00 -227.572 -227.568 0.004 29.63 -S(6) 1.539e-02 - SO4-2 1.050e-02 5.029e-03 -1.979 -2.299 -0.320 22.06 - CaSO4 4.885e-03 4.932e-03 -2.311 -2.307 0.004 7.83 - HSO4- 8.607e-08 7.130e-08 -7.065 -7.147 -0.082 40.99 - CaHSO4+ 5.308e-09 4.397e-09 -8.275 -8.357 -0.082 (0) + HS- 0.000e+00 0.000e+00 -112.821 -112.907 -0.086 21.12 + H2S 0.000e+00 0.000e+00 -113.021 -113.017 0.004 38.44 + S-2 0.000e+00 0.000e+00 -118.287 -118.603 -0.316 (0) + (H2S)2 0.000e+00 0.000e+00 -227.216 -227.212 0.004 29.63 +S(6) 1.523e-02 + SO4-2 1.036e-02 4.982e-03 -1.984 -2.303 -0.318 15.95 + CaSO4 4.869e-03 4.890e-03 -2.313 -2.311 0.002 8.13 + HSO4- 8.533e-08 7.075e-08 -7.069 -7.150 -0.081 40.99 + CaHSO4+ 5.212e-09 4.321e-09 -8.283 -8.364 -0.081 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(308 K, 1 atm) - Anhydrite -0.20 -4.59 -4.39 CaSO4 - Gypsum 0.00 -4.59 -4.59 CaSO4:2H2O - H2(g) -34.09 -37.21 -3.12 H2 + Anhydrite -0.12 -4.60 -4.48 CaSO4 + Gypsum 0.00 -4.60 -4.60 CaSO4:2H2O + H2(g) -34.04 -37.16 -3.12 H2 H2O(g) -1.26 -0.00 1.26 H2O - H2S(g) -112.10 -120.02 -7.92 H2S + H2S(g) -111.92 -119.84 -7.92 H2S O2(g) -11.88 -14.84 -2.96 O2 - Sulfur -83.83 -79.18 4.66 S + Sulfur -83.70 -79.04 4.66 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1037,74 +1037,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.19 -4.59 -4.40 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.851e-01 +Anhydrite -0.11 -4.60 -4.49 1.000e+00 0 -1.000e+00 +Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.853e-01 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.540e-02 1.485e-02 - S 1.540e-02 1.485e-02 + Ca 1.525e-02 1.471e-02 + S 1.525e-02 1.471e-02 ----------------------------Description of solution---------------------------- - pH = 6.922 Charge balance - pe = 10.009 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 36°C) = 3152 - Density (g/cm³) = 0.99568 - Volume (L) = 0.97072 - Viscosity (mPa s) = 0.71194 + pH = 6.921 Charge balance + pe = 10.016 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 36°C) = 2944 + Density (g/cm³) = 0.99572 + Volume (L) = 0.97066 + Viscosity (mPa s) = 0.71238 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.199e-02 + Ionic strength (mol/kgw) = 4.115e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 36.00 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 18 - Total H = 1.070719e+02 - Total O = 5.359535e+01 + Iterations = 19 + Total H = 1.070713e+02 + Total O = 5.359446e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 2.282e-07 1.871e-07 -6.642 -6.728 -0.086 -3.60 - H+ 1.394e-07 1.196e-07 -6.856 -6.922 -0.066 0.00 + OH- 2.272e-07 1.866e-07 -6.644 -6.729 -0.085 -3.61 + H+ 1.396e-07 1.200e-07 -6.855 -6.921 -0.066 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.13 -Ca 1.540e-02 - Ca+2 1.050e-02 5.122e-03 -1.979 -2.291 -0.312 -17.57 - CaSO4 4.905e-03 4.952e-03 -2.309 -2.305 0.004 7.86 - CaOH+ 8.576e-09 7.102e-09 -8.067 -8.149 -0.082 (0) - CaHSO4+ 5.578e-09 4.619e-09 -8.254 -8.335 -0.082 (0) -H(0) 1.729e-37 - H2 8.645e-38 8.729e-38 -37.063 -37.059 0.004 28.60 -O(0) 2.872e-15 - O2 1.436e-15 1.450e-15 -14.843 -14.839 0.004 31.16 +Ca 1.525e-02 + Ca+2 1.029e-02 5.046e-03 -1.988 -2.297 -0.309 -17.58 + CaSO4 4.961e-03 4.982e-03 -2.304 -2.303 0.002 8.21 + CaOH+ 8.415e-09 6.978e-09 -8.075 -8.156 -0.081 (0) + CaHSO4+ 5.423e-09 4.497e-09 -8.266 -8.347 -0.081 (0) +H(0) 1.687e-37 + H2 8.437e-38 8.517e-38 -37.074 -37.070 0.004 28.60 +O(0) 3.769e-15 + O2 1.885e-15 1.903e-15 -14.725 -14.721 0.004 31.16 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -112.505 -112.592 -0.086 21.15 - H2S 0.000e+00 0.000e+00 -112.705 -112.701 0.004 38.63 - S-2 0.000e+00 0.000e+00 -117.953 -118.272 -0.319 (0) - (H2S)2 0.000e+00 0.000e+00 -226.574 -226.570 0.004 29.58 -S(6) 1.540e-02 - SO4-2 1.050e-02 5.021e-03 -1.979 -2.299 -0.320 22.12 - CaSO4 4.905e-03 4.952e-03 -2.309 -2.305 0.004 7.86 - HSO4- 9.058e-08 7.501e-08 -7.043 -7.125 -0.082 41.04 - CaHSO4+ 5.578e-09 4.619e-09 -8.254 -8.335 -0.082 (0) + HS- 0.000e+00 0.000e+00 -112.554 -112.639 -0.085 21.15 + H2S 0.000e+00 0.000e+00 -112.752 -112.748 0.004 38.63 + S-2 0.000e+00 0.000e+00 -118.005 -118.321 -0.316 (0) + (H2S)2 0.000e+00 0.000e+00 -226.667 -226.663 0.004 29.58 +S(6) 1.525e-02 + SO4-2 1.029e-02 4.949e-03 -1.988 -2.305 -0.318 16.03 + CaSO4 4.961e-03 4.982e-03 -2.304 -2.303 0.002 8.21 + HSO4- 8.938e-08 7.412e-08 -7.049 -7.130 -0.081 41.03 + CaHSO4+ 5.423e-09 4.497e-09 -8.266 -8.347 -0.081 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(309 K, 1 atm) - Anhydrite -0.19 -4.59 -4.40 CaSO4 - Gypsum 0.00 -4.59 -4.59 CaSO4:2H2O - H2(g) -33.94 -37.06 -3.12 H2 + Anhydrite -0.11 -4.60 -4.49 CaSO4 + Gypsum 0.00 -4.60 -4.60 CaSO4:2H2O + H2(g) -33.95 -37.07 -3.12 H2 H2O(g) -1.23 -0.00 1.23 H2O - H2S(g) -111.59 -119.51 -7.92 H2S - O2(g) -11.88 -14.84 -2.96 O2 - Sulfur -83.47 -78.84 4.63 S + H2S(g) -111.64 -119.56 -7.92 H2S + O2(g) -11.76 -14.72 -2.96 O2 + Sulfur -83.51 -78.87 4.63 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1120,74 +1120,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.18 -4.59 -4.42 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.851e-01 +Anhydrite -0.10 -4.61 -4.51 1.000e+00 0 -1.000e+00 +Gypsum 0.00 -4.61 -4.61 1.000e+00 1.985e+00 9.853e-01 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.541e-02 1.487e-02 - S 1.541e-02 1.487e-02 + Ca 1.526e-02 1.472e-02 + S 1.526e-02 1.472e-02 ----------------------------Description of solution---------------------------- - pH = 6.910 Charge balance - pe = -1.778 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 37°C) = 3213 - Density (g/cm³) = 0.99532 - Volume (L) = 0.97107 - Viscosity (mPa s) = 0.69812 + pH = 6.908 Charge balance + pe = 9.920 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 37°C) = 2979 + Density (g/cm³) = 0.99536 + Volume (L) = 0.97101 + Viscosity (mPa s) = 0.69853 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.197e-02 + Ionic strength (mol/kgw) = 4.084e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 37.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 46 - Total H = 1.070719e+02 - Total O = 5.359542e+01 + Iterations = 19 + Total H = 1.070713e+02 + Total O = 5.359454e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 2.375e-07 1.947e-07 -6.624 -6.711 -0.086 -3.59 - H+ 1.434e-07 1.231e-07 -6.843 -6.910 -0.066 0.00 + OH- 2.361e-07 1.940e-07 -6.627 -6.712 -0.085 -3.59 + H+ 1.437e-07 1.235e-07 -6.842 -6.908 -0.066 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.14 -Ca 1.541e-02 - Ca+2 1.049e-02 5.114e-03 -1.979 -2.291 -0.312 -17.57 - CaSO4 4.923e-03 4.971e-03 -2.308 -2.304 0.004 7.88 - CaOH+ 8.325e-09 6.892e-09 -8.080 -8.162 -0.082 (0) - CaHSO4+ 5.859e-09 4.850e-09 -8.232 -8.314 -0.082 (0) -H(0) 6.798e-14 - H2 3.399e-14 3.432e-14 -13.469 -13.464 0.004 28.60 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -61.733 -61.729 0.004 31.22 -S(-2) 9.482e-19 - HS- 5.803e-19 4.757e-19 -18.236 -18.323 -0.086 21.17 - H2S 3.679e-19 3.715e-19 -18.434 -18.430 0.004 38.82 - S-2 2.144e-24 1.029e-24 -23.669 -23.988 -0.319 (0) - (H2S)2 9.483e-39 9.575e-39 -38.023 -38.019 0.004 29.53 -S(6) 1.541e-02 - SO4-2 1.049e-02 5.013e-03 -1.979 -2.300 -0.321 22.17 - CaSO4 4.923e-03 4.971e-03 -2.308 -2.304 0.004 7.88 - HSO4- 9.530e-08 7.889e-08 -7.021 -7.103 -0.082 41.08 - CaHSO4+ 5.859e-09 4.850e-09 -8.232 -8.314 -0.082 (0) +Ca 1.526e-02 + Ca+2 1.021e-02 5.011e-03 -1.991 -2.300 -0.309 -17.58 + CaSO4 5.053e-03 5.074e-03 -2.296 -2.295 0.002 8.29 + CaOH+ 8.114e-09 6.730e-09 -8.091 -8.172 -0.081 (0) + CaHSO4+ 5.639e-09 4.677e-09 -8.249 -8.330 -0.081 (0) +H(0) 2.759e-37 + H2 1.380e-37 1.393e-37 -36.860 -36.856 0.004 28.60 +O(0) 2.842e-15 + O2 1.421e-15 1.435e-15 -14.847 -14.843 0.004 31.22 +S(-2) 0.000e+00 + HS- 0.000e+00 0.000e+00 -111.811 -111.896 -0.085 21.17 + H2S 0.000e+00 0.000e+00 -112.006 -112.002 0.004 38.82 + S-2 0.000e+00 0.000e+00 -117.247 -117.563 -0.316 (0) + (H2S)2 0.000e+00 0.000e+00 -225.167 -225.163 0.004 29.53 +S(6) 1.526e-02 + SO4-2 1.021e-02 4.915e-03 -1.991 -2.308 -0.317 16.09 + CaSO4 5.053e-03 5.074e-03 -2.296 -2.295 0.002 8.29 + HSO4- 9.360e-08 7.764e-08 -7.029 -7.110 -0.081 41.07 + CaHSO4+ 5.639e-09 4.677e-09 -8.249 -8.330 -0.081 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(310 K, 1 atm) - Anhydrite -0.18 -4.59 -4.42 CaSO4 - Gypsum 0.00 -4.59 -4.59 CaSO4:2H2O - H2(g) -10.34 -13.46 -3.12 H2 + Anhydrite -0.10 -4.61 -4.51 CaSO4 + Gypsum 0.00 -4.61 -4.61 CaSO4:2H2O + H2(g) -33.73 -36.86 -3.12 H2 H2O(g) -1.21 -0.00 1.21 H2O - H2S(g) -17.31 -25.23 -7.92 H2S - O2(g) -58.76 -61.73 -2.97 O2 - Sulfur -12.78 -8.17 4.61 S + H2S(g) -110.89 -118.80 -7.92 H2S + O2(g) -11.87 -14.84 -2.97 O2 + Sulfur -82.96 -78.35 4.61 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1203,74 +1203,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.17 -4.59 -4.43 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.851e-01 +Anhydrite -0.09 -4.61 -4.53 1.000e+00 0 -1.000e+00 +Gypsum 0.00 -4.61 -4.61 1.000e+00 1.985e+00 9.853e-01 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.543e-02 1.488e-02 - S 1.543e-02 1.488e-02 + Ca 1.527e-02 1.473e-02 + S 1.527e-02 1.473e-02 ----------------------------Description of solution---------------------------- - pH = 6.898 Charge balance - pe = 9.881 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 38°C) = 3273 - Density (g/cm³) = 0.99496 - Volume (L) = 0.97143 - Viscosity (mPa s) = 0.68474 + pH = 6.896 Charge balance + pe = -1.765 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 38°C) = 3013 + Density (g/cm³) = 0.99500 + Volume (L) = 0.97136 + Viscosity (mPa s) = 0.68512 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.194e-02 + Ionic strength (mol/kgw) = 4.052e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 38.00 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 - Total H = 1.070719e+02 - Total O = 5.359548e+01 + Iterations = 45 + Total H = 1.070714e+02 + Total O = 5.359461e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 2.471e-07 2.025e-07 -6.607 -6.694 -0.086 -3.58 - H+ 1.475e-07 1.266e-07 -6.831 -6.898 -0.066 0.00 + OH- 2.452e-07 2.015e-07 -6.610 -6.696 -0.085 -3.58 + H+ 1.480e-07 1.272e-07 -6.830 -6.896 -0.066 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.14 -Ca 1.543e-02 - Ca+2 1.049e-02 5.105e-03 -1.979 -2.292 -0.313 -17.57 - CaSO4 4.940e-03 4.988e-03 -2.306 -2.302 0.004 7.91 - CaOH+ 8.083e-09 6.689e-09 -8.092 -8.175 -0.082 (0) - CaHSO4+ 6.152e-09 5.091e-09 -8.211 -8.293 -0.082 (0) -H(0) 3.434e-37 - H2 1.717e-37 1.734e-37 -36.765 -36.761 0.004 28.59 -O(0) 2.874e-15 - O2 1.437e-15 1.451e-15 -14.842 -14.838 0.004 31.28 -S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -111.531 -111.618 -0.086 21.19 - H2S 0.000e+00 0.000e+00 -111.727 -111.723 0.004 39.00 - S-2 0.000e+00 0.000e+00 -116.948 -117.268 -0.320 (0) - (H2S)2 0.000e+00 0.000e+00 -224.600 -224.596 0.004 29.47 -S(6) 1.543e-02 - SO4-2 1.049e-02 5.005e-03 -1.979 -2.301 -0.321 22.22 - CaSO4 4.940e-03 4.988e-03 -2.306 -2.302 0.004 7.91 - HSO4- 1.002e-07 8.295e-08 -6.999 -7.081 -0.082 41.12 - CaHSO4+ 6.152e-09 5.091e-09 -8.211 -8.293 -0.082 (0) +Ca 1.527e-02 + Ca+2 1.013e-02 4.976e-03 -1.994 -2.303 -0.309 -17.58 + CaSO4 5.144e-03 5.165e-03 -2.289 -2.287 0.002 8.36 + CaOH+ 7.823e-09 6.490e-09 -8.107 -8.188 -0.081 (0) + CaHSO4+ 5.862e-09 4.863e-09 -8.232 -8.313 -0.081 (0) +H(0) 6.796e-14 + H2 3.398e-14 3.430e-14 -13.469 -13.465 0.004 28.59 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -61.328 -61.324 0.004 31.28 +S(-2) 7.229e-19 + HS- 4.403e-19 3.618e-19 -18.356 -18.442 -0.085 21.19 + H2S 2.826e-19 2.853e-19 -18.549 -18.545 0.004 39.00 + S-2 1.667e-24 8.065e-25 -23.778 -24.093 -0.315 (0) + (H2S)2 5.709e-39 5.762e-39 -38.243 -38.239 0.004 29.47 +S(6) 1.527e-02 + SO4-2 1.013e-02 4.881e-03 -1.994 -2.311 -0.317 16.16 + CaSO4 5.144e-03 5.165e-03 -2.289 -2.287 0.002 8.36 + HSO4- 9.799e-08 8.129e-08 -7.009 -7.090 -0.081 41.11 + CaHSO4+ 5.862e-09 4.863e-09 -8.232 -8.313 -0.081 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(311 K, 1 atm) - Anhydrite -0.17 -4.59 -4.43 CaSO4 - Gypsum 0.00 -4.59 -4.59 CaSO4:2H2O - H2(g) -33.64 -36.76 -3.13 H2 + Anhydrite -0.09 -4.61 -4.53 CaSO4 + Gypsum 0.00 -4.61 -4.61 CaSO4:2H2O + H2(g) -10.34 -13.46 -3.13 H2 H2O(g) -1.18 -0.00 1.18 H2O - H2S(g) -110.60 -118.52 -7.92 H2S - O2(g) -11.86 -14.84 -2.97 O2 - Sulfur -82.76 -78.17 4.59 S + H2S(g) -17.42 -25.34 -7.92 H2S + O2(g) -58.35 -61.32 -2.97 O2 + Sulfur -12.87 -8.28 4.59 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1286,74 +1286,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.15 -4.59 -4.44 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.59 -4.59 1.000e+00 1.985e+00 9.851e-01 +Anhydrite -0.08 -4.62 -4.54 1.000e+00 0 -1.000e+00 +Gypsum 0.00 -4.62 -4.62 1.000e+00 1.985e+00 9.853e-01 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.543e-02 1.488e-02 - S 1.543e-02 1.488e-02 + Ca 1.528e-02 1.474e-02 + S 1.528e-02 1.474e-02 ----------------------------Description of solution---------------------------- - pH = 6.886 Charge balance - pe = 9.848 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 39°C) = 3333 - Density (g/cm³) = 0.99459 - Volume (L) = 0.97179 - Viscosity (mPa s) = 0.67177 + pH = 6.883 Charge balance + pe = 10.253 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 39°C) = 3046 + Density (g/cm³) = 0.99462 + Volume (L) = 0.97173 + Viscosity (mPa s) = 0.67212 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.191e-02 + Ionic strength (mol/kgw) = 4.019e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 39.00 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 15 - Total H = 1.070720e+02 - Total O = 5.359552e+01 + Iterations = 34 + Total H = 1.070714e+02 + Total O = 5.359465e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 2.570e-07 2.105e-07 -6.590 -6.677 -0.087 -3.56 - H+ 1.517e-07 1.301e-07 -6.819 -6.886 -0.067 0.00 + OH- 2.546e-07 2.093e-07 -6.594 -6.679 -0.085 -3.57 + H+ 1.523e-07 1.309e-07 -6.817 -6.883 -0.066 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.15 -Ca 1.543e-02 - Ca+2 1.048e-02 5.095e-03 -1.980 -2.293 -0.313 -17.57 - CaSO4 4.955e-03 5.003e-03 -2.305 -2.301 0.004 7.94 - CaOH+ 7.850e-09 6.494e-09 -8.105 -8.187 -0.082 (0) - CaHSO4+ 6.456e-09 5.341e-09 -8.190 -8.272 -0.082 (0) -H(0) 4.196e-37 - H2 2.098e-37 2.118e-37 -36.678 -36.674 0.004 28.59 -O(0) 3.801e-15 - O2 1.901e-15 1.919e-15 -14.721 -14.717 0.004 31.34 +Ca 1.528e-02 + Ca+2 1.005e-02 4.939e-03 -1.998 -2.306 -0.308 -17.58 + CaSO4 5.234e-03 5.256e-03 -2.281 -2.279 0.002 8.44 + CaOH+ 7.544e-09 6.260e-09 -8.122 -8.203 -0.081 (0) + CaHSO4+ 6.090e-09 5.053e-09 -8.215 -8.296 -0.081 (0) +H(0) 6.552e-38 + H2 3.276e-38 3.307e-38 -37.485 -37.481 0.004 28.59 +O(0) 2.018e-13 + O2 1.009e-13 1.018e-13 -12.996 -12.992 0.004 31.34 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -111.291 -111.378 -0.087 21.21 - H2S 0.000e+00 0.000e+00 -111.485 -111.481 0.004 39.18 - S-2 0.000e+00 0.000e+00 -116.693 -117.013 -0.320 (0) - (H2S)2 0.000e+00 0.000e+00 -224.107 -224.103 0.004 29.42 -S(6) 1.543e-02 - SO4-2 1.048e-02 4.995e-03 -1.980 -2.301 -0.322 22.26 - CaSO4 4.955e-03 5.003e-03 -2.305 -2.301 0.004 7.94 - HSO4- 1.054e-07 8.720e-08 -6.977 -7.060 -0.082 41.15 - CaHSO4+ 6.456e-09 5.341e-09 -8.190 -8.272 -0.082 (0) + HS- 0.000e+00 0.000e+00 -114.530 -114.615 -0.085 21.21 + H2S 0.000e+00 0.000e+00 -114.720 -114.716 0.004 39.18 + S-2 0.000e+00 0.000e+00 -119.937 -120.252 -0.315 (0) + (H2S)2 0.000e+00 0.000e+00 -230.577 -230.573 0.004 29.42 +S(6) 1.528e-02 + SO4-2 1.005e-02 4.846e-03 -1.998 -2.315 -0.317 16.22 + CaSO4 5.234e-03 5.256e-03 -2.281 -2.279 0.002 8.44 + HSO4- 1.025e-07 8.509e-08 -6.989 -7.070 -0.081 41.15 + CaHSO4+ 6.090e-09 5.053e-09 -8.215 -8.296 -0.081 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(312 K, 1 atm) - Anhydrite -0.15 -4.59 -4.44 CaSO4 - Gypsum 0.00 -4.59 -4.59 CaSO4:2H2O - H2(g) -33.55 -36.67 -3.13 H2 + Anhydrite -0.08 -4.62 -4.54 CaSO4 + Gypsum 0.00 -4.62 -4.62 CaSO4:2H2O + H2(g) -34.35 -37.48 -3.13 H2 H2O(g) -1.16 -0.00 1.16 H2O - H2S(g) -110.35 -118.26 -7.92 H2S - O2(g) -11.74 -14.72 -2.98 O2 - Sulfur -82.58 -78.01 4.57 S + H2S(g) -113.58 -121.50 -7.92 H2S + O2(g) -10.01 -12.99 -2.98 O2 + Sulfur -85.01 -80.44 4.57 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1369,74 +1369,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.14 -4.60 -4.45 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 +Anhydrite -0.07 -4.63 -4.56 1.000e+00 0 -1.000e+00 +Gypsum 0.00 -4.63 -4.63 1.000e+00 1.985e+00 9.853e-01 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.544e-02 1.489e-02 - S 1.544e-02 1.489e-02 + Ca 1.529e-02 1.475e-02 + S 1.529e-02 1.475e-02 ----------------------------Description of solution---------------------------- - pH = 6.874 Charge balance - pe = 9.754 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 40°C) = 3392 - Density (g/cm³) = 0.99421 - Volume (L) = 0.97216 - Viscosity (mPa s) = 0.65919 + pH = 6.871 Charge balance + pe = 9.728 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 40°C) = 3078 + Density (g/cm³) = 0.99424 + Volume (L) = 0.97210 + Viscosity (mPa s) = 0.65951 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.187e-02 + Ionic strength (mol/kgw) = 3.986e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 40.00 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 - Total H = 1.070720e+02 - Total O = 5.359555e+01 + Iterations = 19 + Total H = 1.070714e+02 + Total O = 5.359469e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 2.671e-07 2.188e-07 -6.573 -6.660 -0.087 -3.55 - H+ 1.559e-07 1.338e-07 -6.807 -6.874 -0.067 0.00 + OH- 2.643e-07 2.173e-07 -6.578 -6.663 -0.085 -3.56 + H+ 1.567e-07 1.347e-07 -6.805 -6.871 -0.066 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.16 -Ca 1.544e-02 - Ca+2 1.047e-02 5.085e-03 -1.980 -2.294 -0.314 -17.57 - CaSO4 4.969e-03 5.017e-03 -2.304 -2.300 0.004 7.96 - CaOH+ 7.624e-09 6.306e-09 -8.118 -8.200 -0.082 (0) - CaHSO4+ 6.773e-09 5.602e-09 -8.169 -8.252 -0.082 (0) -H(0) 6.742e-37 - H2 3.371e-37 3.404e-37 -36.472 -36.468 0.004 28.59 -O(0) 2.894e-15 - O2 1.447e-15 1.461e-15 -14.840 -14.835 0.004 31.40 +Ca 1.529e-02 + Ca+2 9.964e-03 4.902e-03 -2.002 -2.310 -0.308 -17.58 + CaSO4 5.324e-03 5.346e-03 -2.274 -2.272 0.002 8.51 + CaOH+ 7.275e-09 6.038e-09 -8.138 -8.219 -0.081 (0) + CaHSO4+ 6.323e-09 5.248e-09 -8.199 -8.280 -0.081 (0) +H(0) 7.728e-37 + H2 3.864e-37 3.900e-37 -36.413 -36.409 0.004 28.59 +O(0) 2.879e-15 + O2 1.440e-15 1.453e-15 -14.842 -14.838 0.004 31.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -110.575 -110.662 -0.087 21.23 - H2S 0.000e+00 0.000e+00 -110.767 -110.763 0.004 39.35 - S-2 0.000e+00 0.000e+00 -115.961 -116.281 -0.320 (0) - (H2S)2 0.000e+00 0.000e+00 -222.662 -222.658 0.004 29.37 -S(6) 1.544e-02 - SO4-2 1.047e-02 4.985e-03 -1.980 -2.302 -0.322 22.30 - CaSO4 4.969e-03 5.017e-03 -2.304 -2.300 0.004 7.96 - HSO4- 1.108e-07 9.163e-08 -6.956 -7.038 -0.082 41.19 - CaHSO4+ 6.773e-09 5.602e-09 -8.169 -8.252 -0.082 (0) + HS- 0.000e+00 0.000e+00 -110.353 -110.438 -0.085 21.23 + H2S 0.000e+00 0.000e+00 -110.540 -110.536 0.004 39.35 + S-2 0.000e+00 0.000e+00 -115.746 -116.061 -0.315 (0) + (H2S)2 0.000e+00 0.000e+00 -222.208 -222.204 0.004 29.37 +S(6) 1.529e-02 + SO4-2 9.964e-03 4.811e-03 -2.002 -2.318 -0.316 16.27 + CaSO4 5.324e-03 5.346e-03 -2.274 -2.272 0.002 8.51 + HSO4- 1.073e-07 8.904e-08 -6.969 -7.050 -0.081 41.19 + CaHSO4+ 6.323e-09 5.248e-09 -8.199 -8.280 -0.081 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(313 K, 1 atm) - Anhydrite -0.14 -4.60 -4.45 CaSO4 - Gypsum 0.00 -4.60 -4.60 CaSO4:2H2O - H2(g) -33.34 -36.47 -3.13 H2 + Anhydrite -0.07 -4.63 -4.56 CaSO4 + Gypsum 0.00 -4.63 -4.63 CaSO4:2H2O + H2(g) -33.28 -36.41 -3.13 H2 H2O(g) -1.14 -0.00 1.14 H2O - H2S(g) -109.62 -117.54 -7.92 H2S + H2S(g) -109.39 -117.31 -7.92 H2S O2(g) -11.85 -14.84 -2.98 O2 - Sulfur -82.05 -77.51 4.55 S + Sulfur -81.89 -77.34 4.55 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1452,74 +1452,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.13 -4.60 -4.46 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 +Anhydrite -0.06 -4.63 -4.58 1.000e+00 0 -1.000e+00 +Gypsum 0.00 -4.63 -4.63 1.000e+00 1.985e+00 9.853e-01 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.544e-02 1.489e-02 - S 1.544e-02 1.489e-02 + Ca 1.529e-02 1.475e-02 + S 1.529e-02 1.475e-02 ----------------------------Description of solution---------------------------- - pH = 6.862 Charge balance - pe = 9.691 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 41°C) = 3452 - Density (g/cm³) = 0.99382 - Volume (L) = 0.97254 - Viscosity (mPa s) = 0.64699 + pH = 6.858 Charge balance + pe = 9.664 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 41°C) = 3109 + Density (g/cm³) = 0.99386 + Volume (L) = 0.97248 + Viscosity (mPa s) = 0.64728 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.182e-02 + Ionic strength (mol/kgw) = 3.952e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 41.00 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 15 - Total H = 1.070720e+02 - Total O = 5.359556e+01 + Iterations = 22 + Total H = 1.070714e+02 + Total O = 5.359471e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 2.776e-07 2.273e-07 -6.557 -6.643 -0.087 -3.55 - H+ 1.603e-07 1.374e-07 -6.795 -6.862 -0.067 0.00 + OH- 2.741e-07 2.255e-07 -6.562 -6.647 -0.085 -3.56 + H+ 1.611e-07 1.386e-07 -6.793 -6.858 -0.066 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.16 -Ca 1.544e-02 - Ca+2 1.046e-02 5.074e-03 -1.981 -2.295 -0.314 -17.57 - CaSO4 4.982e-03 5.030e-03 -2.303 -2.298 0.004 7.99 - CaOH+ 7.407e-09 6.124e-09 -8.130 -8.213 -0.083 (0) - CaHSO4+ 7.102e-09 5.872e-09 -8.149 -8.231 -0.083 (0) -H(0) 9.453e-37 - H2 4.727e-37 4.772e-37 -36.325 -36.321 0.004 28.59 -O(0) 2.881e-15 - O2 1.441e-15 1.455e-15 -14.841 -14.837 0.004 31.46 +Ca 1.529e-02 + Ca+2 9.879e-03 4.865e-03 -2.005 -2.313 -0.308 -17.58 + CaSO4 5.412e-03 5.434e-03 -2.267 -2.265 0.002 8.58 + CaOH+ 7.016e-09 5.824e-09 -8.154 -8.235 -0.081 (0) + CaHSO4+ 6.563e-09 5.448e-09 -8.183 -8.264 -0.081 (0) +H(0) 1.088e-36 + H2 5.438e-37 5.487e-37 -36.265 -36.261 0.004 28.59 +O(0) 2.872e-15 + O2 1.436e-15 1.449e-15 -14.843 -14.839 0.004 31.46 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -110.095 -110.182 -0.087 21.25 - H2S 0.000e+00 0.000e+00 -110.285 -110.280 0.004 39.52 - S-2 0.000e+00 0.000e+00 -115.465 -115.786 -0.321 (0) - (H2S)2 0.000e+00 0.000e+00 -221.689 -221.685 0.004 29.31 -S(6) 1.544e-02 - SO4-2 1.046e-02 4.975e-03 -1.981 -2.303 -0.323 22.33 - CaSO4 4.982e-03 5.030e-03 -2.303 -2.298 0.004 7.99 - HSO4- 1.164e-07 9.626e-08 -6.934 -7.017 -0.083 41.22 - CaHSO4+ 7.102e-09 5.872e-09 -8.149 -8.231 -0.083 (0) + HS- 0.000e+00 0.000e+00 -109.869 -109.954 -0.085 21.24 + H2S 0.000e+00 0.000e+00 -110.053 -110.049 0.004 39.52 + S-2 0.000e+00 0.000e+00 -115.247 -115.562 -0.314 (0) + (H2S)2 0.000e+00 0.000e+00 -221.225 -221.221 0.004 29.31 +S(6) 1.529e-02 + SO4-2 9.879e-03 4.775e-03 -2.005 -2.321 -0.316 16.32 + CaSO4 5.412e-03 5.434e-03 -2.267 -2.265 0.002 8.58 + HSO4- 1.122e-07 9.314e-08 -6.950 -7.031 -0.081 41.22 + CaHSO4+ 6.563e-09 5.448e-09 -8.183 -8.264 -0.081 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(314 K, 1 atm) - Anhydrite -0.13 -4.60 -4.46 CaSO4 - Gypsum 0.00 -4.60 -4.60 CaSO4:2H2O - H2(g) -33.19 -36.32 -3.13 H2 + Anhydrite -0.06 -4.63 -4.58 CaSO4 + Gypsum 0.00 -4.63 -4.63 CaSO4:2H2O + H2(g) -33.13 -36.26 -3.13 H2 H2O(g) -1.12 -0.00 1.12 H2O - H2S(g) -109.13 -117.04 -7.92 H2S + H2S(g) -108.90 -116.81 -7.92 H2S O2(g) -11.85 -14.84 -2.99 O2 - Sulfur -81.70 -77.17 4.53 S + Sulfur -81.53 -77.00 4.53 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1535,74 +1535,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.12 -4.60 -4.48 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 +Anhydrite -0.05 -4.64 -4.59 1.000e+00 0 -1.000e+00 +Gypsum 0.00 -4.64 -4.64 1.000e+00 1.985e+00 9.853e-01 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.544e-02 1.489e-02 - S 1.544e-02 1.489e-02 + Ca 1.529e-02 1.475e-02 + S 1.529e-02 1.475e-02 ----------------------------Description of solution---------------------------- - pH = 6.850 Charge balance - pe = 9.628 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 42°C) = 3511 - Density (g/cm³) = 0.99343 - Volume (L) = 0.97293 - Viscosity (mPa s) = 0.63516 + pH = 6.846 Charge balance + pe = 9.600 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 42°C) = 3139 + Density (g/cm³) = 0.99346 + Volume (L) = 0.97287 + Viscosity (mPa s) = 0.63541 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.177e-02 + Ionic strength (mol/kgw) = 3.917e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 42.00 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 15 - Total H = 1.070720e+02 - Total O = 5.359555e+01 + Iterations = 18 + Total H = 1.070714e+02 + Total O = 5.359471e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 2.884e-07 2.361e-07 -6.540 -6.627 -0.087 -3.54 - H+ 1.646e-07 1.412e-07 -6.783 -6.850 -0.067 0.00 + OH- 2.843e-07 2.339e-07 -6.546 -6.631 -0.085 -3.55 + H+ 1.657e-07 1.425e-07 -6.781 -6.846 -0.065 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.17 -Ca 1.544e-02 - Ca+2 1.044e-02 5.063e-03 -1.981 -2.296 -0.314 -17.57 - CaSO4 4.993e-03 5.042e-03 -2.302 -2.297 0.004 8.01 - CaHSO4+ 7.443e-09 6.153e-09 -8.128 -8.211 -0.083 (0) - CaOH+ 7.197e-09 5.949e-09 -8.143 -8.226 -0.083 (0) -H(0) 1.318e-36 - H2 6.588e-37 6.652e-37 -36.181 -36.177 0.004 28.59 -O(0) 2.890e-15 - O2 1.445e-15 1.459e-15 -14.840 -14.836 0.004 31.51 +Ca 1.529e-02 + Ca+2 9.792e-03 4.827e-03 -2.009 -2.316 -0.307 -17.59 + CaSO4 5.500e-03 5.522e-03 -2.260 -2.258 0.002 8.64 + CaHSO4+ 6.807e-09 5.652e-09 -8.167 -8.248 -0.081 (0) + CaOH+ 6.767e-09 5.619e-09 -8.170 -8.250 -0.081 (0) +H(0) 1.533e-36 + H2 7.665e-37 7.735e-37 -36.115 -36.112 0.004 28.59 +O(0) 2.840e-15 + O2 1.420e-15 1.433e-15 -14.848 -14.844 0.004 31.51 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -109.625 -109.712 -0.087 21.26 - H2S 0.000e+00 0.000e+00 -109.812 -109.808 0.004 39.69 - S-2 0.000e+00 0.000e+00 -114.980 -115.301 -0.321 (0) - (H2S)2 0.000e+00 0.000e+00 -220.735 -220.731 0.004 29.26 -S(6) 1.544e-02 - SO4-2 1.044e-02 4.964e-03 -1.981 -2.304 -0.323 22.35 - CaSO4 4.993e-03 5.042e-03 -2.302 -2.297 0.004 8.01 - HSO4- 1.223e-07 1.011e-07 -6.913 -6.995 -0.083 41.26 - CaHSO4+ 7.443e-09 6.153e-09 -8.128 -8.211 -0.083 (0) + HS- 0.000e+00 0.000e+00 -109.381 -109.466 -0.085 21.26 + H2S 0.000e+00 0.000e+00 -109.562 -109.558 0.004 39.69 + S-2 0.000e+00 0.000e+00 -114.745 -115.059 -0.314 (0) + (H2S)2 0.000e+00 0.000e+00 -220.235 -220.231 0.004 29.26 +S(6) 1.529e-02 + SO4-2 9.792e-03 4.738e-03 -2.009 -2.324 -0.315 16.36 + CaSO4 5.500e-03 5.522e-03 -2.260 -2.258 0.002 8.64 + HSO4- 1.173e-07 9.741e-08 -6.931 -7.011 -0.081 41.25 + CaHSO4+ 6.807e-09 5.652e-09 -8.167 -8.248 -0.081 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(315 K, 1 atm) - Anhydrite -0.12 -4.60 -4.48 CaSO4 - Gypsum 0.00 -4.60 -4.60 CaSO4:2H2O - H2(g) -33.05 -36.18 -3.13 H2 + Anhydrite -0.05 -4.64 -4.59 CaSO4 + Gypsum 0.00 -4.64 -4.64 CaSO4:2H2O + H2(g) -32.98 -36.11 -3.13 H2 H2O(g) -1.09 -0.00 1.09 H2O - H2S(g) -108.65 -116.56 -7.92 H2S - O2(g) -11.84 -14.84 -2.99 O2 - Sulfur -81.36 -76.85 4.51 S + H2S(g) -108.40 -116.31 -7.92 H2S + O2(g) -11.85 -14.84 -2.99 O2 + Sulfur -81.17 -76.67 4.51 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1618,74 +1618,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.11 -4.60 -4.49 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 +Anhydrite -0.04 -4.65 -4.61 1.000e+00 0 -1.000e+00 +Gypsum 0.00 -4.65 -4.65 1.000e+00 1.985e+00 9.853e-01 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.543e-02 1.488e-02 - S 1.543e-02 1.488e-02 + Ca 1.529e-02 1.475e-02 + S 1.529e-02 1.475e-02 ----------------------------Description of solution---------------------------- - pH = 6.839 Charge balance - pe = 9.566 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 43°C) = 3569 - Density (g/cm³) = 0.99302 - Volume (L) = 0.97332 - Viscosity (mPa s) = 0.62367 + pH = 6.834 Charge balance + pe = 9.539 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 43°C) = 3168 + Density (g/cm³) = 0.99306 + Volume (L) = 0.97326 + Viscosity (mPa s) = 0.62389 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.171e-02 + Ionic strength (mol/kgw) = 3.882e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 43.00 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 15 - Total H = 1.070720e+02 - Total O = 5.359552e+01 + Iterations = 19 + Total H = 1.070714e+02 + Total O = 5.359470e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 2.996e-07 2.452e-07 -6.523 -6.611 -0.087 -3.54 - H+ 1.691e-07 1.450e-07 -6.772 -6.839 -0.067 0.00 + OH- 2.947e-07 2.426e-07 -6.531 -6.615 -0.085 -3.55 + H+ 1.703e-07 1.465e-07 -6.769 -6.834 -0.065 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.18 -Ca 1.543e-02 - Ca+2 1.043e-02 5.051e-03 -1.982 -2.297 -0.315 -17.57 - CaSO4 5.003e-03 5.052e-03 -2.301 -2.297 0.004 8.04 - CaHSO4+ 7.798e-09 6.445e-09 -8.108 -8.191 -0.083 (0) - CaOH+ 6.994e-09 5.780e-09 -8.155 -8.238 -0.083 (0) -H(0) 1.840e-36 - H2 9.199e-37 9.288e-37 -36.036 -36.032 0.004 28.59 -O(0) 2.877e-15 - O2 1.439e-15 1.452e-15 -14.842 -14.838 0.004 31.57 +Ca 1.529e-02 + Ca+2 9.704e-03 4.788e-03 -2.013 -2.320 -0.307 -17.59 + CaSO4 5.587e-03 5.609e-03 -2.253 -2.251 0.002 8.71 + CaHSO4+ 7.058e-09 5.862e-09 -8.151 -8.232 -0.081 (0) + CaOH+ 6.528e-09 5.422e-09 -8.185 -8.266 -0.081 (0) +H(0) 2.125e-36 + H2 1.063e-36 1.072e-36 -35.974 -35.970 0.004 28.59 +O(0) 2.889e-15 + O2 1.445e-15 1.458e-15 -14.840 -14.836 0.004 31.57 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -109.151 -109.238 -0.087 21.28 - H2S 0.000e+00 0.000e+00 -109.336 -109.332 0.004 39.86 - S-2 0.000e+00 0.000e+00 -114.490 -114.812 -0.322 (0) - (H2S)2 0.000e+00 0.000e+00 -219.774 -219.770 0.004 29.20 -S(6) 1.543e-02 - SO4-2 1.043e-02 4.952e-03 -1.982 -2.305 -0.323 22.38 - CaSO4 5.003e-03 5.052e-03 -2.301 -2.297 0.004 8.04 - HSO4- 1.284e-07 1.061e-07 -6.891 -6.974 -0.083 41.29 - CaHSO4+ 7.798e-09 6.445e-09 -8.108 -8.191 -0.083 (0) + HS- 0.000e+00 0.000e+00 -108.922 -109.006 -0.085 21.27 + H2S 0.000e+00 0.000e+00 -109.099 -109.096 0.004 39.86 + S-2 0.000e+00 0.000e+00 -114.272 -114.585 -0.313 (0) + (H2S)2 0.000e+00 0.000e+00 -219.302 -219.298 0.004 29.20 +S(6) 1.529e-02 + SO4-2 9.704e-03 4.701e-03 -2.013 -2.328 -0.315 16.40 + CaSO4 5.587e-03 5.609e-03 -2.253 -2.251 0.002 8.71 + HSO4- 1.226e-07 1.018e-07 -6.911 -6.992 -0.081 41.28 + CaHSO4+ 7.058e-09 5.862e-09 -8.151 -8.232 -0.081 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(316 K, 1 atm) - Anhydrite -0.11 -4.60 -4.49 CaSO4 - Gypsum 0.00 -4.60 -4.60 CaSO4:2H2O - H2(g) -32.90 -36.03 -3.13 H2 + Anhydrite -0.04 -4.65 -4.61 CaSO4 + Gypsum 0.00 -4.65 -4.65 CaSO4:2H2O + H2(g) -32.84 -35.97 -3.13 H2 H2O(g) -1.07 -0.00 1.07 H2O - H2S(g) -108.16 -116.08 -7.92 H2S + H2S(g) -107.93 -115.84 -7.92 H2S O2(g) -11.84 -14.84 -3.00 O2 - Sulfur -81.01 -76.52 4.49 S + Sulfur -80.83 -76.35 4.49 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1701,74 +1701,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.10 -4.60 -4.50 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.60 -4.60 1.000e+00 1.985e+00 9.851e-01 +Anhydrite -0.03 -4.65 -4.63 1.000e+00 0 -1.000e+00 +Gypsum 0.00 -4.66 -4.66 1.000e+00 1.985e+00 9.853e-01 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.542e-02 1.488e-02 - S 1.542e-02 1.488e-02 + Ca 1.529e-02 1.474e-02 + S 1.529e-02 1.474e-02 ----------------------------Description of solution---------------------------- - pH = 6.827 Charge balance - pe = 9.503 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 44°C) = 3628 - Density (g/cm³) = 0.99261 - Volume (L) = 0.97372 - Viscosity (mPa s) = 0.61252 + pH = 6.822 Charge balance + pe = 9.475 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 44°C) = 3195 + Density (g/cm³) = 0.99265 + Volume (L) = 0.97367 + Viscosity (mPa s) = 0.61271 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.165e-02 + Ionic strength (mol/kgw) = 3.846e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 44.00 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 15 - Total H = 1.070719e+02 - Total O = 5.359548e+01 + Iterations = 18 + Total H = 1.070714e+02 + Total O = 5.359468e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 3.111e-07 2.545e-07 -6.507 -6.594 -0.087 -3.53 - H+ 1.736e-07 1.488e-07 -6.760 -6.827 -0.067 0.00 + OH- 3.054e-07 2.515e-07 -6.515 -6.600 -0.084 -3.55 + H+ 1.750e-07 1.506e-07 -6.757 -6.822 -0.065 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.19 -Ca 1.542e-02 - Ca+2 1.041e-02 5.038e-03 -1.982 -2.298 -0.315 -17.57 - CaSO4 5.012e-03 5.060e-03 -2.300 -2.296 0.004 8.06 - CaHSO4+ 8.167e-09 6.747e-09 -8.088 -8.171 -0.083 (0) - CaOH+ 6.799e-09 5.617e-09 -8.168 -8.250 -0.083 (0) -H(0) 2.560e-36 - H2 1.280e-36 1.292e-36 -35.893 -35.889 0.004 28.59 -O(0) 2.872e-15 - O2 1.436e-15 1.450e-15 -14.843 -14.839 0.004 31.62 +Ca 1.529e-02 + Ca+2 9.614e-03 4.749e-03 -2.017 -2.323 -0.306 -17.60 + CaSO4 5.672e-03 5.695e-03 -2.246 -2.245 0.002 8.78 + CaHSO4+ 7.314e-09 6.076e-09 -8.136 -8.216 -0.081 (0) + CaOH+ 6.297e-09 5.232e-09 -8.201 -8.281 -0.081 (0) +H(0) 2.988e-36 + H2 1.494e-36 1.507e-36 -35.826 -35.822 0.004 28.59 +O(0) 2.843e-15 + O2 1.422e-15 1.434e-15 -14.847 -14.843 0.004 31.62 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -108.682 -108.769 -0.087 21.29 - H2S 0.000e+00 0.000e+00 -108.865 -108.861 0.004 40.02 - S-2 0.000e+00 0.000e+00 -114.006 -114.329 -0.322 (0) - (H2S)2 0.000e+00 0.000e+00 -218.824 -218.820 0.004 29.14 -S(6) 1.542e-02 - SO4-2 1.041e-02 4.940e-03 -1.982 -2.306 -0.324 22.39 - CaSO4 5.012e-03 5.060e-03 -2.300 -2.296 0.004 8.06 - HSO4- 1.348e-07 1.114e-07 -6.870 -6.953 -0.083 41.32 - CaHSO4+ 8.167e-09 6.747e-09 -8.088 -8.171 -0.083 (0) + HS- 0.000e+00 0.000e+00 -108.437 -108.522 -0.084 21.28 + H2S 0.000e+00 0.000e+00 -108.612 -108.608 0.004 40.02 + S-2 0.000e+00 0.000e+00 -113.774 -114.086 -0.313 (0) + (H2S)2 0.000e+00 0.000e+00 -218.319 -218.315 0.004 29.14 +S(6) 1.529e-02 + SO4-2 9.614e-03 4.663e-03 -2.017 -2.331 -0.314 16.44 + CaSO4 5.672e-03 5.695e-03 -2.246 -2.245 0.002 8.78 + HSO4- 1.281e-07 1.064e-07 -6.892 -6.973 -0.081 41.31 + CaHSO4+ 7.314e-09 6.076e-09 -8.136 -8.216 -0.081 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(317 K, 1 atm) - Anhydrite -0.10 -4.60 -4.50 CaSO4 - Gypsum 0.00 -4.60 -4.60 CaSO4:2H2O - H2(g) -32.76 -35.89 -3.13 H2 + Anhydrite -0.03 -4.65 -4.63 CaSO4 + Gypsum 0.00 -4.66 -4.66 CaSO4:2H2O + H2(g) -32.69 -35.82 -3.13 H2 H2O(g) -1.05 -0.00 1.05 H2O - H2S(g) -107.68 -115.60 -7.91 H2S - O2(g) -11.83 -14.84 -3.00 O2 - Sulfur -80.66 -76.20 4.46 S + H2S(g) -107.43 -115.34 -7.91 H2S + O2(g) -11.84 -14.84 -3.00 O2 + Sulfur -80.48 -76.01 4.46 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1784,74 +1784,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.09 -4.61 -4.51 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.61 -4.61 1.000e+00 1.985e+00 9.851e-01 +Anhydrite -0.02 -4.66 -4.64 1.000e+00 0 -1.000e+00 +Gypsum 0.00 -4.66 -4.66 1.000e+00 1.985e+00 9.853e-01 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.541e-02 1.487e-02 - S 1.541e-02 1.487e-02 + Ca 1.528e-02 1.474e-02 + S 1.528e-02 1.474e-02 ----------------------------Description of solution---------------------------- - pH = 6.816 Charge balance - pe = 9.442 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 45°C) = 3686 - Density (g/cm³) = 0.99220 - Volume (L) = 0.97413 - Viscosity (mPa s) = 0.60169 + pH = 6.810 Charge balance + pe = -1.694 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 45°C) = 3222 + Density (g/cm³) = 0.99223 + Volume (L) = 0.97408 + Viscosity (mPa s) = 0.60185 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.158e-02 + Ionic strength (mol/kgw) = 3.809e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 45.00 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 20 - Total H = 1.070719e+02 - Total O = 5.359542e+01 + Iterations = 52 + Total H = 1.070714e+02 + Total O = 5.359464e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 3.229e-07 2.641e-07 -6.491 -6.578 -0.087 -3.53 - H+ 1.782e-07 1.527e-07 -6.749 -6.816 -0.067 0.00 + OH- 3.164e-07 2.606e-07 -6.500 -6.584 -0.084 -3.55 + H+ 1.798e-07 1.547e-07 -6.745 -6.810 -0.065 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.19 -Ca 1.541e-02 - Ca+2 1.040e-02 5.025e-03 -1.983 -2.299 -0.316 -17.58 - CaSO4 5.019e-03 5.068e-03 -2.299 -2.295 0.004 8.08 - CaHSO4+ 8.549e-09 7.061e-09 -8.068 -8.151 -0.083 (0) - CaOH+ 6.610e-09 5.460e-09 -8.180 -8.263 -0.083 (0) -H(0) 3.538e-36 - H2 1.769e-36 1.786e-36 -35.752 -35.748 0.004 28.59 -O(0) 2.893e-15 - O2 1.447e-15 1.461e-15 -14.840 -14.835 0.004 31.67 -S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -108.225 -108.312 -0.087 21.30 - H2S 0.000e+00 0.000e+00 -108.405 -108.401 0.004 40.17 - S-2 0.000e+00 0.000e+00 -113.534 -113.856 -0.323 (0) - (H2S)2 0.000e+00 0.000e+00 -217.897 -217.893 0.004 29.09 -S(6) 1.541e-02 - SO4-2 1.040e-02 4.927e-03 -1.983 -2.307 -0.324 22.41 - CaSO4 5.019e-03 5.068e-03 -2.299 -2.295 0.004 8.08 - HSO4- 1.415e-07 1.169e-07 -6.849 -6.932 -0.083 41.35 - CaHSO4+ 8.549e-09 7.061e-09 -8.068 -8.151 -0.083 (0) +Ca 1.528e-02 + Ca+2 9.523e-03 4.709e-03 -2.021 -2.327 -0.306 -17.60 + CaSO4 5.757e-03 5.779e-03 -2.240 -2.238 0.002 8.84 + CaHSO4+ 7.575e-09 6.295e-09 -8.121 -8.201 -0.080 (0) + CaOH+ 6.075e-09 5.049e-09 -8.216 -8.297 -0.080 (0) +H(0) 6.798e-14 + H2 3.399e-14 3.429e-14 -13.469 -13.465 0.004 28.59 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -59.274 -59.270 0.004 31.67 +S(-2) 1.280e-19 + HS- 7.643e-20 6.296e-20 -19.117 -19.201 -0.084 21.29 + H2S 5.156e-20 5.202e-20 -19.288 -19.284 0.004 40.17 + S-2 3.640e-25 1.774e-25 -24.439 -24.751 -0.312 (0) + (H2S)2 2.174e-40 2.193e-40 -39.663 -39.659 0.004 29.09 +S(6) 1.528e-02 + SO4-2 9.523e-03 4.625e-03 -2.021 -2.335 -0.314 16.47 + CaSO4 5.757e-03 5.779e-03 -2.240 -2.238 0.002 8.84 + HSO4- 1.338e-07 1.112e-07 -6.874 -6.954 -0.080 41.34 + CaHSO4+ 7.575e-09 6.295e-09 -8.121 -8.201 -0.080 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(318 K, 1 atm) - Anhydrite -0.09 -4.61 -4.51 CaSO4 - Gypsum 0.00 -4.61 -4.61 CaSO4:2H2O - H2(g) -32.62 -35.75 -3.13 H2 + Anhydrite -0.02 -4.66 -4.64 CaSO4 + Gypsum 0.00 -4.66 -4.66 CaSO4:2H2O + H2(g) -10.33 -13.46 -3.13 H2 H2O(g) -1.03 -0.00 1.03 H2O - H2S(g) -107.21 -115.13 -7.91 H2S - O2(g) -11.83 -14.84 -3.01 O2 - Sulfur -80.33 -75.88 4.44 S + H2S(g) -18.10 -26.01 -7.91 H2S + O2(g) -56.26 -59.27 -3.01 O2 + Sulfur -13.49 -9.05 4.44 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1867,74 +1867,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.08 -4.61 -4.53 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.61 -4.61 1.000e+00 1.985e+00 9.851e-01 +Anhydrite -0.01 -4.67 -4.66 1.000e+00 0 -1.000e+00 +Gypsum 0.00 -4.67 -4.67 1.000e+00 1.985e+00 9.853e-01 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.540e-02 1.485e-02 - S 1.540e-02 1.485e-02 + Ca 1.527e-02 1.473e-02 + S 1.527e-02 1.473e-02 ----------------------------Description of solution---------------------------- - pH = 6.805 Charge balance - pe = 9.381 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 46°C) = 3743 - Density (g/cm³) = 0.99177 - Volume (L) = 0.97454 - Viscosity (mPa s) = 0.59117 + pH = 6.799 Charge balance + pe = 9.353 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 46°C) = 3247 + Density (g/cm³) = 0.99180 + Volume (L) = 0.97449 + Viscosity (mPa s) = 0.59130 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.151e-02 + Ionic strength (mol/kgw) = 3.772e-02 Mass of water (kg) = 9.645e-01 Total alkalinity (eq/kg) = 1.261e-09 Temperature (°C) = 46.00 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 21 - Total H = 1.070719e+02 - Total O = 5.359535e+01 + Iterations = 20 + Total H = 1.070713e+02 + Total O = 5.359459e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 3.350e-07 2.740e-07 -6.475 -6.562 -0.087 -3.53 - H+ 1.828e-07 1.566e-07 -6.738 -6.805 -0.067 0.00 + OH- 3.276e-07 2.700e-07 -6.485 -6.569 -0.084 -3.55 + H+ 1.847e-07 1.589e-07 -6.734 -6.799 -0.065 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.20 -Ca 1.540e-02 - Ca+2 1.038e-02 5.011e-03 -1.984 -2.300 -0.316 -17.58 - CaSO4 5.025e-03 5.073e-03 -2.299 -2.295 0.004 8.11 - CaHSO4+ 8.945e-09 7.386e-09 -8.048 -8.132 -0.083 (0) - CaOH+ 6.428e-09 5.308e-09 -8.192 -8.275 -0.083 (0) -H(0) 4.905e-36 - H2 2.453e-36 2.476e-36 -35.610 -35.606 0.004 28.59 -O(0) 2.886e-15 - O2 1.443e-15 1.457e-15 -14.841 -14.837 0.004 31.72 +Ca 1.527e-02 + Ca+2 9.431e-03 4.669e-03 -2.025 -2.331 -0.305 -17.61 + CaSO4 5.840e-03 5.863e-03 -2.234 -2.232 0.002 8.90 + CaHSO4+ 7.842e-09 6.519e-09 -8.106 -8.186 -0.080 (0) + CaOH+ 5.862e-09 4.873e-09 -8.232 -8.312 -0.080 (0) +H(0) 5.737e-36 + H2 2.868e-36 2.893e-36 -35.542 -35.539 0.004 28.59 +O(0) 2.877e-15 + O2 1.439e-15 1.451e-15 -14.842 -14.838 0.004 31.72 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -107.762 -107.849 -0.087 21.31 - H2S 0.000e+00 0.000e+00 -107.939 -107.935 0.004 40.33 - S-2 0.000e+00 0.000e+00 -113.055 -113.378 -0.323 (0) - (H2S)2 0.000e+00 0.000e+00 -216.958 -216.954 0.004 29.03 -S(6) 1.540e-02 - SO4-2 1.038e-02 4.914e-03 -1.984 -2.309 -0.325 22.42 - CaSO4 5.025e-03 5.073e-03 -2.299 -2.295 0.004 8.11 - HSO4- 1.485e-07 1.226e-07 -6.828 -6.912 -0.083 41.37 - CaHSO4+ 8.945e-09 7.386e-09 -8.048 -8.132 -0.083 (0) + HS- 0.000e+00 0.000e+00 -107.518 -107.602 -0.084 21.30 + H2S 0.000e+00 0.000e+00 -107.686 -107.682 0.004 40.33 + S-2 0.000e+00 0.000e+00 -112.826 -113.138 -0.312 (0) + (H2S)2 0.000e+00 0.000e+00 -216.451 -216.447 0.004 29.03 +S(6) 1.527e-02 + SO4-2 9.431e-03 4.587e-03 -2.025 -2.339 -0.313 16.49 + CaSO4 5.840e-03 5.863e-03 -2.234 -2.232 0.002 8.90 + HSO4- 1.397e-07 1.161e-07 -6.855 -6.935 -0.080 41.36 + CaHSO4+ 7.842e-09 6.519e-09 -8.106 -8.186 -0.080 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(319 K, 1 atm) - Anhydrite -0.08 -4.61 -4.53 CaSO4 - Gypsum 0.00 -4.61 -4.61 CaSO4:2H2O - H2(g) -32.47 -35.61 -3.13 H2 + Anhydrite -0.01 -4.67 -4.66 CaSO4 + Gypsum 0.00 -4.67 -4.67 CaSO4:2H2O + H2(g) -32.40 -35.54 -3.13 H2 H2O(g) -1.00 -0.00 1.00 H2O - H2S(g) -106.74 -114.65 -7.91 H2S - O2(g) -11.82 -14.84 -3.01 O2 - Sulfur -79.99 -75.56 4.42 S + H2S(g) -106.49 -114.40 -7.91 H2S + O2(g) -11.83 -14.84 -3.01 O2 + Sulfur -79.80 -75.38 4.42 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1950,74 +1950,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.07 -4.61 -4.54 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.61 -4.61 1.000e+00 1.985e+00 9.852e-01 +Anhydrite 0.00 -4.68 -4.68 1.000e+00 1.984e+00 9.842e-01 +Gypsum -0.00 -4.68 -4.68 1.000e+00 0 -1.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.539e-02 1.484e-02 - S 1.539e-02 1.484e-02 + Ca 1.525e-02 1.580e-02 + S 1.525e-02 1.580e-02 ----------------------------Description of solution---------------------------- - pH = 6.794 Charge balance - pe = 9.319 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 47°C) = 3800 - Density (g/cm³) = 0.99134 - Volume (L) = 0.97497 - Viscosity (mPa s) = 0.58095 + pH = 6.787 Charge balance + pe = 9.285 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 47°C) = 3269 + Density (g/cm³) = 0.99137 + Volume (L) = 1.04722 + Viscosity (mPa s) = 0.58104 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.142e-02 - Mass of water (kg) = 9.645e-01 - Total alkalinity (eq/kg) = 1.261e-09 + Ionic strength (mol/kgw) = 3.733e-02 + Mass of water (kg) = 1.036e+00 + Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 47.00 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.249e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 19 - Total H = 1.070718e+02 - Total O = 5.359526e+01 + Iterations = 14 + Total H = 1.150124e+02 + Total O = 5.756941e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 3.476e-07 2.842e-07 -6.459 -6.546 -0.087 -3.53 - H+ 1.875e-07 1.606e-07 -6.727 -6.794 -0.067 0.00 + OH- 3.391e-07 2.795e-07 -6.470 -6.554 -0.084 -3.55 + H+ 1.897e-07 1.633e-07 -6.722 -6.787 -0.065 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.21 -Ca 1.539e-02 - Ca+2 1.036e-02 4.997e-03 -1.985 -2.301 -0.316 -17.59 - CaSO4 5.030e-03 5.078e-03 -2.298 -2.294 0.004 8.13 - CaHSO4+ 9.355e-09 7.723e-09 -8.029 -8.112 -0.083 (0) - CaOH+ 6.252e-09 5.162e-09 -8.204 -8.287 -0.083 (0) -H(0) 6.790e-36 - H2 3.395e-36 3.427e-36 -35.469 -35.465 0.004 28.59 -O(0) 2.875e-15 - O2 1.438e-15 1.451e-15 -14.842 -14.838 0.004 31.77 +Ca 1.525e-02 + Ca+2 9.332e-03 4.626e-03 -2.030 -2.335 -0.305 -17.62 + CaSO4 5.917e-03 5.940e-03 -2.228 -2.226 0.002 8.96 + CaHSO4+ 8.108e-09 6.743e-09 -8.091 -8.171 -0.080 (0) + CaOH+ 5.653e-09 4.701e-09 -8.248 -8.328 -0.080 (0) +H(0) 8.218e-36 + H2 4.109e-36 4.144e-36 -35.386 -35.383 0.004 28.59 +O(0) 2.688e-15 + O2 1.344e-15 1.355e-15 -14.872 -14.868 0.004 31.77 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -107.301 -107.388 -0.087 21.32 - H2S 0.000e+00 0.000e+00 -107.476 -107.472 0.004 40.48 - S-2 0.000e+00 0.000e+00 -112.579 -112.903 -0.323 (0) - (H2S)2 0.000e+00 0.000e+00 -216.023 -216.019 0.004 28.97 -S(6) 1.539e-02 - SO4-2 1.036e-02 4.900e-03 -1.985 -2.310 -0.325 22.42 - CaSO4 5.030e-03 5.078e-03 -2.298 -2.294 0.004 8.13 - HSO4- 1.557e-07 1.286e-07 -6.808 -6.891 -0.083 41.40 - CaHSO4+ 9.355e-09 7.723e-09 -8.029 -8.112 -0.083 (0) + HS- 0.000e+00 0.000e+00 -107.000 -107.084 -0.084 21.31 + H2S 0.000e+00 0.000e+00 -107.164 -107.160 0.004 40.48 + S-2 0.000e+00 0.000e+00 -112.294 -112.605 -0.311 (0) + (H2S)2 0.000e+00 0.000e+00 -215.399 -215.396 0.004 28.97 +S(6) 1.525e-02 + SO4-2 9.332e-03 4.546e-03 -2.030 -2.342 -0.312 16.52 + CaSO4 5.917e-03 5.940e-03 -2.228 -2.226 0.002 8.96 + HSO4- 1.458e-07 1.212e-07 -6.836 -6.916 -0.080 41.39 + CaHSO4+ 8.108e-09 6.743e-09 -8.091 -8.171 -0.080 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(320 K, 1 atm) - Anhydrite -0.07 -4.61 -4.54 CaSO4 - Gypsum 0.00 -4.61 -4.61 CaSO4:2H2O - H2(g) -32.33 -35.47 -3.13 H2 + Anhydrite 0.00 -4.68 -4.68 CaSO4 + Gypsum -0.00 -4.68 -4.68 CaSO4:2H2O + H2(g) -32.25 -35.38 -3.13 H2 H2O(g) -0.98 -0.00 0.98 H2O - H2S(g) -106.27 -114.18 -7.91 H2S - O2(g) -11.82 -14.84 -3.02 O2 - Sulfur -79.65 -75.25 4.40 S + H2S(g) -105.96 -113.87 -7.91 H2S + O2(g) -11.85 -14.87 -3.02 O2 + Sulfur -79.42 -75.02 4.40 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2033,74 +2033,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.06 -4.61 -4.55 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.61 -4.61 1.000e+00 1.985e+00 9.852e-01 +Anhydrite 0.00 -4.69 -4.69 1.000e+00 1.984e+00 9.845e-01 +Gypsum -0.01 -4.69 -4.68 1.000e+00 0 -1.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.537e-02 1.482e-02 - S 1.537e-02 1.482e-02 + Ca 1.497e-02 1.551e-02 + S 1.497e-02 1.551e-02 ----------------------------Description of solution---------------------------- - pH = 6.783 Charge balance - pe = 9.215 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 48°C) = 3857 - Density (g/cm³) = 0.99090 - Volume (L) = 0.97540 + pH = 6.775 Charge balance + pe = 9.225 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 48°C) = 3246 + Density (g/cm³) = 0.99089 + Volume (L) = 1.04768 Viscosity (mPa s) = 0.57101 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.134e-02 - Mass of water (kg) = 9.645e-01 - Total alkalinity (eq/kg) = 1.261e-09 + Ionic strength (mol/kgw) = 3.641e-02 + Mass of water (kg) = 1.036e+00 + Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 48.00 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 18 - Total H = 1.070717e+02 - Total O = 5.359515e+01 + Total H = 1.150124e+02 + Total O = 5.756826e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 3.605e-07 2.947e-07 -6.443 -6.531 -0.088 -3.54 - H+ 1.922e-07 1.646e-07 -6.716 -6.783 -0.067 0.00 + OH- 3.497e-07 2.888e-07 -6.456 -6.539 -0.083 -3.56 + H+ 1.950e-07 1.680e-07 -6.710 -6.775 -0.065 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.22 -Ca 1.537e-02 - Ca+2 1.033e-02 4.983e-03 -1.986 -2.303 -0.317 -17.60 - CaSO4 5.033e-03 5.081e-03 -2.298 -2.294 0.004 8.15 - CaHSO4+ 9.781e-09 8.072e-09 -8.010 -8.093 -0.083 (0) - CaOH+ 6.083e-09 5.020e-09 -8.216 -8.299 -0.083 (0) -H(0) 1.144e-35 - H2 5.722e-36 5.777e-36 -35.242 -35.238 0.004 28.59 -O(0) 1.924e-15 - O2 9.621e-16 9.713e-16 -15.017 -15.013 0.004 31.83 +Ca 1.497e-02 + Ca+2 9.102e-03 4.535e-03 -2.041 -2.343 -0.303 -17.63 + CaSO4 5.870e-03 5.892e-03 -2.231 -2.230 0.002 9.02 + CaHSO4+ 8.216e-09 6.841e-09 -8.085 -8.165 -0.079 (0) + CaOH+ 5.378e-09 4.478e-09 -8.269 -8.349 -0.079 (0) +H(0) 1.136e-35 + H2 5.679e-36 5.727e-36 -35.246 -35.242 0.004 28.59 +O(0) 2.685e-15 + O2 1.343e-15 1.354e-15 -14.872 -14.868 0.004 31.83 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -106.497 -106.585 -0.088 21.33 - H2S 0.000e+00 0.000e+00 -106.670 -106.665 0.004 40.63 - S-2 0.000e+00 0.000e+00 -111.760 -112.084 -0.324 (0) - (H2S)2 0.000e+00 0.000e+00 -214.403 -214.399 0.004 28.91 -S(6) 1.537e-02 - SO4-2 1.033e-02 4.886e-03 -1.986 -2.311 -0.325 22.42 - CaSO4 5.033e-03 5.081e-03 -2.298 -2.294 0.004 8.15 - HSO4- 1.633e-07 1.348e-07 -6.787 -6.870 -0.083 41.42 - CaHSO4+ 9.781e-09 8.072e-09 -8.010 -8.093 -0.083 (0) + HS- 0.000e+00 0.000e+00 -106.548 -106.631 -0.083 21.31 + H2S 0.000e+00 0.000e+00 -106.706 -106.703 0.004 40.63 + S-2 0.000e+00 0.000e+00 -111.831 -112.139 -0.309 (0) + (H2S)2 0.000e+00 0.000e+00 -214.477 -214.474 0.004 28.91 +S(6) 1.497e-02 + SO4-2 9.102e-03 4.458e-03 -2.041 -2.351 -0.310 16.53 + CaSO4 5.870e-03 5.892e-03 -2.231 -2.230 0.002 9.02 + HSO4- 1.507e-07 1.255e-07 -6.822 -6.901 -0.079 41.41 + CaHSO4+ 8.216e-09 6.841e-09 -8.085 -8.165 -0.079 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(321 K, 1 atm) - Anhydrite -0.06 -4.61 -4.55 CaSO4 - Gypsum 0.00 -4.61 -4.61 CaSO4:2H2O - H2(g) -32.10 -35.24 -3.14 H2 + Anhydrite 0.00 -4.69 -4.69 CaSO4 + Gypsum -0.01 -4.69 -4.68 CaSO4:2H2O + H2(g) -32.11 -35.24 -3.14 H2 H2O(g) -0.96 -0.00 0.96 H2O - H2S(g) -105.45 -113.37 -7.91 H2S - O2(g) -11.99 -15.01 -3.02 O2 - Sulfur -79.05 -74.67 4.38 S + H2S(g) -105.49 -113.41 -7.91 H2S + O2(g) -11.85 -14.87 -3.02 O2 + Sulfur -79.09 -74.70 4.38 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2116,74 +2116,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.05 -4.62 -4.56 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.62 -4.62 1.000e+00 1.985e+00 9.852e-01 +Anhydrite 0.00 -4.71 -4.71 1.000e+00 1.985e+00 9.848e-01 +Gypsum -0.02 -4.71 -4.69 1.000e+00 0 -1.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.535e-02 1.480e-02 - S 1.535e-02 1.480e-02 + Ca 1.470e-02 1.523e-02 + S 1.470e-02 1.523e-02 ----------------------------Description of solution---------------------------- - pH = 6.773 Charge balance - pe = 9.197 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 49°C) = 3913 - Density (g/cm³) = 0.99045 - Volume (L) = 0.97583 - Viscosity (mPa s) = 0.56135 + pH = 6.762 Charge balance + pe = 9.165 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 49°C) = 3223 + Density (g/cm³) = 0.99041 + Volume (L) = 1.04815 + Viscosity (mPa s) = 0.56125 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.125e-02 - Mass of water (kg) = 9.645e-01 - Total alkalinity (eq/kg) = 1.261e-09 + Ionic strength (mol/kgw) = 3.551e-02 + Mass of water (kg) = 1.036e+00 + Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 49.00 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 18 - Total H = 1.070716e+02 - Total O = 5.359503e+01 + Total H = 1.150124e+02 + Total O = 5.756713e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 3.737e-07 3.054e-07 -6.427 -6.515 -0.088 -3.54 - H+ 1.970e-07 1.687e-07 -6.705 -6.773 -0.067 0.00 + OH- 3.605e-07 2.982e-07 -6.443 -6.526 -0.082 -3.57 + H+ 2.004e-07 1.728e-07 -6.698 -6.762 -0.064 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.23 -Ca 1.535e-02 - Ca+2 1.031e-02 4.967e-03 -1.987 -2.304 -0.317 -17.60 - CaSO4 5.035e-03 5.083e-03 -2.298 -2.294 0.004 8.17 - CaHSO4+ 1.022e-08 8.434e-09 -7.991 -8.074 -0.083 (0) - CaOH+ 5.919e-09 4.884e-09 -8.228 -8.311 -0.083 (0) -H(0) 1.294e-35 - H2 6.469e-36 6.531e-36 -35.189 -35.185 0.004 28.59 -O(0) 2.851e-15 - O2 1.425e-15 1.439e-15 -14.846 -14.842 0.004 31.88 +Ca 1.470e-02 + Ca+2 8.877e-03 4.446e-03 -2.052 -2.352 -0.300 -17.65 + CaSO4 5.821e-03 5.842e-03 -2.235 -2.233 0.002 9.08 + CaHSO4+ 8.322e-09 6.940e-09 -8.080 -8.159 -0.079 (0) + CaOH+ 5.117e-09 4.267e-09 -8.291 -8.370 -0.079 (0) +H(0) 1.573e-35 + H2 7.867e-36 7.931e-36 -35.104 -35.101 0.004 28.59 +O(0) 2.657e-15 + O2 1.329e-15 1.340e-15 -14.877 -14.873 0.004 31.88 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -106.387 -106.474 -0.088 21.33 - H2S 0.000e+00 0.000e+00 -106.556 -106.552 0.004 40.78 - S-2 0.000e+00 0.000e+00 -111.635 -111.959 -0.324 (0) - (H2S)2 0.000e+00 0.000e+00 -214.169 -214.165 0.004 28.84 -S(6) 1.535e-02 - SO4-2 1.031e-02 4.872e-03 -1.987 -2.312 -0.326 22.42 - CaSO4 5.035e-03 5.083e-03 -2.298 -2.294 0.004 8.17 - HSO4- 1.711e-07 1.412e-07 -6.767 -6.850 -0.083 41.44 - CaHSO4+ 1.022e-08 8.434e-09 -7.991 -8.074 -0.083 (0) + HS- 0.000e+00 0.000e+00 -106.091 -106.173 -0.082 21.32 + H2S 0.000e+00 0.000e+00 -106.244 -106.241 0.004 40.78 + S-2 0.000e+00 0.000e+00 -111.362 -111.668 -0.306 (0) + (H2S)2 0.000e+00 0.000e+00 -213.546 -213.542 0.004 28.84 +S(6) 1.470e-02 + SO4-2 8.877e-03 4.372e-03 -2.052 -2.359 -0.308 16.54 + CaSO4 5.821e-03 5.842e-03 -2.235 -2.233 0.002 9.08 + HSO4- 1.557e-07 1.298e-07 -6.808 -6.887 -0.079 41.43 + CaHSO4+ 8.322e-09 6.940e-09 -8.080 -8.159 -0.079 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(322 K, 1 atm) - Anhydrite -0.05 -4.62 -4.56 CaSO4 - Gypsum 0.00 -4.62 -4.62 CaSO4:2H2O - H2(g) -32.05 -35.19 -3.14 H2 + Anhydrite 0.00 -4.71 -4.71 CaSO4 + Gypsum -0.02 -4.71 -4.69 CaSO4:2H2O + H2(g) -31.96 -35.10 -3.14 H2 H2O(g) -0.94 -0.00 0.94 H2O - H2S(g) -105.33 -113.25 -7.91 H2S - O2(g) -11.82 -14.84 -3.03 O2 - Sulfur -78.98 -74.61 4.36 S + H2S(g) -105.02 -112.94 -7.91 H2S + O2(g) -11.85 -14.87 -3.03 O2 + Sulfur -78.75 -74.39 4.36 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2199,74 +2199,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.04 -4.62 -4.58 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.62 -4.62 1.000e+00 1.985e+00 9.852e-01 +Anhydrite 0.00 -4.73 -4.73 1.000e+00 1.985e+00 9.851e-01 +Gypsum -0.03 -4.73 -4.70 1.000e+00 0 -1.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.532e-02 1.478e-02 - S 1.532e-02 1.478e-02 + Ca 1.443e-02 1.495e-02 + S 1.443e-02 1.495e-02 ----------------------------Description of solution---------------------------- - pH = 6.762 Charge balance - pe = -1.655 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 50°C) = 3969 - Density (g/cm³) = 0.99000 - Volume (L) = 0.97627 - Viscosity (mPa s) = 0.55195 + pH = 6.750 Charge balance + pe = 9.136 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 50°C) = 3198 + Density (g/cm³) = 0.98993 + Volume (L) = 1.04863 + Viscosity (mPa s) = 0.55177 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.115e-02 - Mass of water (kg) = 9.645e-01 - Total alkalinity (eq/kg) = 1.261e-09 + Ionic strength (mol/kgw) = 3.463e-02 + Mass of water (kg) = 1.036e+00 + Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 50.00 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 44 - Total H = 1.070716e+02 - Total O = 5.359489e+01 + Iterations = 18 + Total H = 1.150124e+02 + Total O = 5.756602e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 3.874e-07 3.165e-07 -6.412 -6.500 -0.088 -3.55 - H+ 2.019e-07 1.728e-07 -6.695 -6.762 -0.067 0.00 + OH- 3.715e-07 3.078e-07 -6.430 -6.512 -0.082 -3.58 + H+ 2.059e-07 1.778e-07 -6.686 -6.750 -0.064 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.23 -Ca 1.532e-02 - Ca+2 1.029e-02 4.952e-03 -1.988 -2.305 -0.318 -17.61 - CaSO4 5.036e-03 5.084e-03 -2.298 -2.294 0.004 8.19 - CaHSO4+ 1.068e-08 8.808e-09 -7.972 -8.055 -0.084 (0) - CaOH+ 5.761e-09 4.752e-09 -8.240 -8.323 -0.084 (0) -H(0) 6.797e-14 - H2 3.399e-14 3.431e-14 -13.469 -13.465 0.004 28.59 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -58.011 -58.007 0.004 31.92 -S(-2) 4.152e-20 - HS- 2.470e-20 2.018e-20 -19.607 -19.695 -0.088 21.34 - H2S 1.682e-20 1.698e-20 -19.774 -19.770 0.004 40.92 - S-2 1.445e-25 6.847e-26 -24.840 -25.164 -0.324 (0) - (H2S)2 0.000e+00 0.000e+00 -40.597 -40.593 0.004 28.78 -S(6) 1.532e-02 - SO4-2 1.029e-02 4.856e-03 -1.988 -2.314 -0.326 22.41 - CaSO4 5.036e-03 5.084e-03 -2.298 -2.294 0.004 8.19 - HSO4- 1.793e-07 1.479e-07 -6.746 -6.830 -0.084 41.46 - CaHSO4+ 1.068e-08 8.808e-09 -7.972 -8.055 -0.084 (0) +Ca 1.443e-02 + Ca+2 8.658e-03 4.358e-03 -2.063 -2.361 -0.298 -17.66 + CaSO4 5.772e-03 5.792e-03 -2.239 -2.237 0.002 9.14 + CaHSO4+ 8.428e-09 7.038e-09 -8.074 -8.153 -0.078 (0) + CaOH+ 4.870e-09 4.067e-09 -8.312 -8.391 -0.078 (0) +H(0) 1.883e-35 + H2 9.417e-36 9.493e-36 -35.026 -35.023 0.003 28.59 +O(0) 3.505e-15 + O2 1.752e-15 1.766e-15 -14.756 -14.753 0.003 31.92 +S(-2) 0.000e+00 + HS- 0.000e+00 0.000e+00 -105.887 -105.969 -0.082 21.32 + H2S 0.000e+00 0.000e+00 -106.035 -106.032 0.003 40.92 + S-2 0.000e+00 0.000e+00 -111.147 -111.451 -0.304 (0) + (H2S)2 0.000e+00 0.000e+00 -213.121 -213.117 0.003 28.78 +S(6) 1.443e-02 + SO4-2 8.658e-03 4.287e-03 -2.063 -2.368 -0.305 16.55 + CaSO4 5.772e-03 5.792e-03 -2.239 -2.237 0.002 9.14 + HSO4- 1.609e-07 1.343e-07 -6.794 -6.872 -0.078 41.44 + CaHSO4+ 8.428e-09 7.038e-09 -8.074 -8.153 -0.078 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 1 atm) - Anhydrite -0.04 -4.62 -4.58 CaSO4 - Gypsum 0.00 -4.62 -4.62 CaSO4:2H2O - H2(g) -10.33 -13.46 -3.14 H2 + Anhydrite 0.00 -4.73 -4.73 CaSO4 + Gypsum -0.03 -4.73 -4.70 CaSO4:2H2O + H2(g) -31.89 -35.02 -3.14 H2 H2O(g) -0.92 -0.00 0.92 H2O - H2S(g) -18.54 -26.46 -7.91 H2S - O2(g) -54.98 -58.01 -3.03 O2 - Sulfur -13.90 -9.56 4.34 S + H2S(g) -104.81 -112.72 -7.91 H2S + O2(g) -11.72 -14.75 -3.03 O2 + Sulfur -78.60 -74.26 4.34 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2282,74 +2282,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.03 -4.62 -4.59 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.62 -4.62 1.000e+00 1.985e+00 9.852e-01 +Anhydrite 0.00 -4.75 -4.75 1.000e+00 1.985e+00 9.853e-01 +Gypsum -0.04 -4.75 -4.71 1.000e+00 0 -1.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.530e-02 1.475e-02 - S 1.530e-02 1.475e-02 + Ca 1.417e-02 1.468e-02 + S 1.417e-02 1.468e-02 ----------------------------Description of solution---------------------------- - pH = 6.752 Charge balance - pe = -2.096 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 51°C) = 4024 - Density (g/cm³) = 0.98954 - Volume (L) = 0.97672 - Viscosity (mPa s) = 0.54281 + pH = 6.738 Charge balance + pe = 9.078 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 51°C) = 3174 + Density (g/cm³) = 0.98944 + Volume (L) = 1.04911 + Viscosity (mPa s) = 0.54254 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.105e-02 - Mass of water (kg) = 9.645e-01 - Total alkalinity (eq/kg) = 1.261e-09 + Ionic strength (mol/kgw) = 3.378e-02 + Mass of water (kg) = 1.036e+00 + Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 51.00 - Electrical balance (eq) = -1.208e-09 + Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 47 - Total H = 1.070714e+02 - Total O = 5.359474e+01 + Iterations = 18 + Total H = 1.150124e+02 + Total O = 5.756492e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 4.014e-07 3.280e-07 -6.396 -6.484 -0.088 -3.56 - H+ 2.068e-07 1.770e-07 -6.684 -6.752 -0.068 0.00 + OH- 3.828e-07 3.176e-07 -6.417 -6.498 -0.081 -3.59 + H+ 2.116e-07 1.828e-07 -6.675 -6.738 -0.063 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.24 -Ca 1.530e-02 - Ca+2 1.026e-02 4.936e-03 -1.989 -2.307 -0.318 -17.62 - CaSO4 5.036e-03 5.083e-03 -2.298 -2.294 0.004 8.21 - CaHSO4+ 1.115e-08 9.194e-09 -7.953 -8.036 -0.084 (0) - CaOH+ 5.608e-09 4.625e-09 -8.251 -8.335 -0.084 (0) -H(0) 5.384e-13 - H2 2.692e-13 2.718e-13 -12.570 -12.566 0.004 28.59 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -59.535 -59.531 0.004 31.97 -S(-2) 1.297e-16 - HS- 7.693e-17 6.285e-17 -16.114 -16.202 -0.088 21.34 - H2S 5.273e-17 5.323e-17 -16.278 -16.274 0.004 41.06 - S-2 4.659e-22 2.206e-22 -21.332 -21.656 -0.325 (0) - (H2S)2 2.524e-34 2.548e-34 -33.598 -33.594 0.004 28.72 -S(6) 1.530e-02 - SO4-2 1.026e-02 4.841e-03 -1.989 -2.315 -0.326 22.40 - CaSO4 5.036e-03 5.083e-03 -2.298 -2.294 0.004 8.21 - HSO4- 1.879e-07 1.549e-07 -6.726 -6.810 -0.084 41.48 - CaHSO4+ 1.115e-08 9.194e-09 -7.953 -8.036 -0.084 (0) +Ca 1.417e-02 + Ca+2 8.444e-03 4.271e-03 -2.073 -2.369 -0.296 -17.68 + CaSO4 5.722e-03 5.742e-03 -2.242 -2.241 0.002 9.19 + CaHSO4+ 8.534e-09 7.135e-09 -8.069 -8.147 -0.078 (0) + CaOH+ 4.636e-09 3.877e-09 -8.334 -8.412 -0.078 (0) +H(0) 2.582e-35 + H2 1.291e-35 1.301e-35 -34.889 -34.886 0.003 28.59 +O(0) 3.507e-15 + O2 1.754e-15 1.767e-15 -14.756 -14.753 0.003 31.97 +S(-2) 0.000e+00 + HS- 0.000e+00 0.000e+00 -105.447 -105.529 -0.081 21.32 + H2S 0.000e+00 0.000e+00 -105.590 -105.587 0.003 41.06 + S-2 0.000e+00 0.000e+00 -110.696 -110.997 -0.302 (0) + (H2S)2 0.000e+00 0.000e+00 -212.223 -212.220 0.003 28.72 +S(6) 1.417e-02 + SO4-2 8.444e-03 4.204e-03 -2.073 -2.376 -0.303 16.56 + CaSO4 5.722e-03 5.742e-03 -2.242 -2.241 0.002 9.19 + HSO4- 1.662e-07 1.389e-07 -6.779 -6.857 -0.078 41.46 + CaHSO4+ 8.534e-09 7.135e-09 -8.069 -8.147 -0.078 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(324 K, 1 atm) - Anhydrite -0.03 -4.62 -4.59 CaSO4 - Gypsum 0.00 -4.62 -4.62 CaSO4:2H2O - H2(g) -9.43 -12.57 -3.14 H2 + Anhydrite 0.00 -4.75 -4.75 CaSO4 + Gypsum -0.04 -4.75 -4.71 CaSO4:2H2O + H2(g) -31.75 -34.89 -3.14 H2 H2O(g) -0.89 -0.00 0.89 H2O - H2S(g) -15.04 -22.95 -7.91 H2S - O2(g) -56.50 -59.53 -3.03 O2 - Sulfur -11.28 -6.96 4.32 S + H2S(g) -104.35 -112.27 -7.91 H2S + O2(g) -11.72 -14.75 -3.03 O2 + Sulfur -78.28 -73.95 4.32 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2365,74 +2365,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.02 -4.62 -4.60 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.63 -4.63 1.000e+00 1.985e+00 9.853e-01 +Anhydrite 0.00 -4.76 -4.76 1.000e+00 1.986e+00 9.856e-01 +Gypsum -0.05 -4.76 -4.72 1.000e+00 0 -1.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.527e-02 1.473e-02 - S 1.527e-02 1.473e-02 + Ca 1.391e-02 1.441e-02 + S 1.391e-02 1.441e-02 ----------------------------Description of solution---------------------------- - pH = 6.742 Charge balance - pe = 9.047 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 52°C) = 4079 - Density (g/cm³) = 0.98908 - Volume (L) = 0.97718 - Viscosity (mPa s) = 0.53392 + pH = 6.726 Charge balance + pe = 8.990 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 52°C) = 3148 + Density (g/cm³) = 0.98894 + Volume (L) = 1.04960 + Viscosity (mPa s) = 0.53357 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.094e-02 - Mass of water (kg) = 9.645e-01 - Total alkalinity (eq/kg) = 1.261e-09 + Ionic strength (mol/kgw) = 3.294e-02 + Mass of water (kg) = 1.036e+00 + Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 52.00 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 18 - Total H = 1.070713e+02 - Total O = 5.359458e+01 + Total H = 1.150124e+02 + Total O = 5.756385e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 4.159e-07 3.397e-07 -6.381 -6.469 -0.088 -3.57 - H+ 2.117e-07 1.812e-07 -6.674 -6.742 -0.068 0.00 + OH- 3.943e-07 3.277e-07 -6.404 -6.485 -0.080 -3.60 + H+ 2.173e-07 1.879e-07 -6.663 -6.726 -0.063 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.25 -Ca 1.527e-02 - Ca+2 1.023e-02 4.919e-03 -1.990 -2.308 -0.318 -17.63 - CaSO4 5.034e-03 5.082e-03 -2.298 -2.294 0.004 8.23 - CaHSO4+ 1.163e-08 9.594e-09 -7.934 -8.018 -0.084 (0) - CaOH+ 5.460e-09 4.503e-09 -8.263 -8.347 -0.084 (0) -H(0) 2.900e-35 - H2 1.450e-35 1.464e-35 -34.839 -34.835 0.004 28.59 -O(0) 3.763e-15 - O2 1.882e-15 1.899e-15 -14.725 -14.721 0.004 32.02 +Ca 1.391e-02 + Ca+2 8.235e-03 4.186e-03 -2.084 -2.378 -0.294 -17.69 + CaSO4 5.671e-03 5.691e-03 -2.246 -2.245 0.001 9.25 + CaHSO4+ 8.638e-09 7.232e-09 -8.064 -8.141 -0.077 (0) + CaOH+ 4.415e-09 3.696e-09 -8.355 -8.432 -0.077 (0) +H(0) 4.067e-35 + H2 2.033e-35 2.049e-35 -34.692 -34.688 0.003 28.59 +O(0) 2.647e-15 + O2 1.323e-15 1.334e-15 -14.878 -14.875 0.003 32.02 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -105.290 -105.378 -0.088 21.34 - H2S 0.000e+00 0.000e+00 -105.451 -105.447 0.004 41.20 - S-2 0.000e+00 0.000e+00 -110.493 -110.818 -0.325 (0) - (H2S)2 0.000e+00 0.000e+00 -211.937 -211.933 0.004 28.65 -S(6) 1.527e-02 - SO4-2 1.023e-02 4.825e-03 -1.990 -2.317 -0.327 22.38 - CaSO4 5.034e-03 5.082e-03 -2.298 -2.294 0.004 8.23 - HSO4- 1.967e-07 1.622e-07 -6.706 -6.790 -0.084 41.50 - CaHSO4+ 1.163e-08 9.594e-09 -7.934 -8.018 -0.084 (0) + HS- 0.000e+00 0.000e+00 -104.766 -104.847 -0.080 21.32 + H2S 0.000e+00 0.000e+00 -104.903 -104.900 0.003 41.20 + S-2 0.000e+00 0.000e+00 -110.003 -110.302 -0.299 (0) + (H2S)2 0.000e+00 0.000e+00 -210.842 -210.839 0.003 28.65 +S(6) 1.391e-02 + SO4-2 8.234e-03 4.122e-03 -2.084 -2.385 -0.301 16.56 + CaSO4 5.671e-03 5.691e-03 -2.246 -2.245 0.001 9.25 + HSO4- 1.716e-07 1.437e-07 -6.765 -6.843 -0.077 41.47 + CaHSO4+ 8.638e-09 7.232e-09 -8.064 -8.141 -0.077 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(325 K, 1 atm) - Anhydrite -0.02 -4.62 -4.60 CaSO4 - Gypsum 0.00 -4.63 -4.63 CaSO4:2H2O - H2(g) -31.70 -34.83 -3.14 H2 + Anhydrite 0.00 -4.76 -4.76 CaSO4 + Gypsum -0.05 -4.76 -4.72 CaSO4:2H2O + H2(g) -31.55 -34.69 -3.14 H2 H2O(g) -0.87 -0.00 0.87 H2O - H2S(g) -104.21 -112.12 -7.91 H2S - O2(g) -11.68 -14.72 -3.04 O2 - Sulfur -78.17 -73.87 4.30 S + H2S(g) -103.66 -111.57 -7.91 H2S + O2(g) -11.84 -14.87 -3.04 O2 + Sulfur -77.77 -73.47 4.30 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2448,74 +2448,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.01 -4.63 -4.61 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.63 -4.63 1.000e+00 1.985e+00 9.853e-01 +Anhydrite 0.00 -4.78 -4.78 1.000e+00 1.986e+00 9.859e-01 +Gypsum -0.06 -4.78 -4.73 1.000e+00 0 -1.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.524e-02 1.470e-02 - S 1.524e-02 1.470e-02 + Ca 1.365e-02 1.414e-02 + S 1.365e-02 1.414e-02 ----------------------------Description of solution---------------------------- - pH = 6.732 Charge balance - pe = 8.915 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 53°C) = 4133 - Density (g/cm³) = 0.98860 - Volume (L) = 0.97764 - Viscosity (mPa s) = 0.52526 + pH = 6.714 Charge balance + pe = 8.932 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 53°C) = 3123 + Density (g/cm³) = 0.98843 + Volume (L) = 1.05010 + Viscosity (mPa s) = 0.52484 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.083e-02 - Mass of water (kg) = 9.645e-01 - Total alkalinity (eq/kg) = 1.261e-09 + Ionic strength (mol/kgw) = 3.212e-02 + Mass of water (kg) = 1.036e+00 + Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 53.00 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 18 - Total H = 1.070712e+02 - Total O = 5.359440e+01 + Total H = 1.150124e+02 + Total O = 5.756279e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 4.308e-07 3.518e-07 -6.366 -6.454 -0.088 -3.58 - H+ 2.167e-07 1.855e-07 -6.664 -6.732 -0.068 0.00 + OH- 4.060e-07 3.379e-07 -6.391 -6.471 -0.080 -3.61 + H+ 2.231e-07 1.931e-07 -6.652 -6.714 -0.063 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.26 -Ca 1.524e-02 - Ca+2 1.021e-02 4.902e-03 -1.991 -2.310 -0.319 -17.64 - CaSO4 5.031e-03 5.078e-03 -2.298 -2.294 0.004 8.25 - CaHSO4+ 1.214e-08 1.001e-08 -7.916 -8.000 -0.084 (0) - CaOH+ 5.318e-09 4.384e-09 -8.274 -8.358 -0.084 (0) -H(0) 5.523e-35 - H2 2.761e-35 2.788e-35 -34.559 -34.555 0.004 28.59 -O(0) 1.935e-15 - O2 9.674e-16 9.766e-16 -15.014 -15.010 0.004 32.07 +Ca 1.365e-02 + Ca+2 8.030e-03 4.103e-03 -2.095 -2.387 -0.292 -17.71 + CaSO4 5.620e-03 5.639e-03 -2.250 -2.249 0.001 9.30 + CaHSO4+ 8.742e-09 7.329e-09 -8.058 -8.135 -0.077 (0) + CaOH+ 4.205e-09 3.525e-09 -8.376 -8.453 -0.077 (0) +H(0) 5.546e-35 + H2 2.773e-35 2.794e-35 -34.557 -34.554 0.003 28.59 +O(0) 2.651e-15 + O2 1.326e-15 1.336e-15 -14.878 -14.874 0.003 32.07 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -104.272 -104.360 -0.088 21.34 - H2S 0.000e+00 0.000e+00 -104.430 -104.426 0.004 41.34 - S-2 0.000e+00 0.000e+00 -109.459 -109.785 -0.325 (0) - (H2S)2 0.000e+00 0.000e+00 -209.888 -209.884 0.004 28.59 -S(6) 1.524e-02 - SO4-2 1.021e-02 4.808e-03 -1.991 -2.318 -0.327 22.36 - CaSO4 5.031e-03 5.078e-03 -2.298 -2.294 0.004 8.25 - HSO4- 2.059e-07 1.698e-07 -6.686 -6.770 -0.084 41.52 - CaHSO4+ 1.214e-08 1.001e-08 -7.916 -8.000 -0.084 (0) + HS- 0.000e+00 0.000e+00 -104.334 -104.414 -0.080 21.32 + H2S 0.000e+00 0.000e+00 -104.466 -104.463 0.003 41.34 + S-2 0.000e+00 0.000e+00 -109.559 -109.856 -0.297 (0) + (H2S)2 0.000e+00 0.000e+00 -209.961 -209.958 0.003 28.59 +S(6) 1.365e-02 + SO4-2 8.030e-03 4.041e-03 -2.095 -2.394 -0.298 16.55 + CaSO4 5.620e-03 5.639e-03 -2.250 -2.249 0.001 9.30 + HSO4- 1.772e-07 1.486e-07 -6.751 -6.828 -0.077 41.49 + CaHSO4+ 8.742e-09 7.329e-09 -8.058 -8.135 -0.077 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(326 K, 1 atm) - Anhydrite -0.01 -4.63 -4.61 CaSO4 - Gypsum 0.00 -4.63 -4.63 CaSO4:2H2O + Anhydrite 0.00 -4.78 -4.78 CaSO4 + Gypsum -0.06 -4.78 -4.73 CaSO4:2H2O H2(g) -31.42 -34.55 -3.14 H2 H2O(g) -0.85 -0.00 0.85 H2O - H2S(g) -103.18 -111.09 -7.91 H2S - O2(g) -11.97 -15.01 -3.04 O2 - Sulfur -77.42 -73.13 4.28 S + H2S(g) -103.21 -111.13 -7.91 H2S + O2(g) -11.83 -14.87 -3.04 O2 + Sulfur -77.45 -73.17 4.28 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2531,74 +2531,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite -0.00 -4.63 -4.63 1.000e+00 0 -1.000e+00 -Gypsum 0.00 -4.63 -4.63 1.000e+00 1.985e+00 9.853e-01 +Anhydrite 0.00 -4.80 -4.80 1.000e+00 1.986e+00 9.861e-01 +Gypsum -0.06 -4.80 -4.73 1.000e+00 0 -1.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.520e-02 1.466e-02 - S 1.520e-02 1.466e-02 + Ca 1.340e-02 1.388e-02 + S 1.340e-02 1.388e-02 ----------------------------Description of solution---------------------------- - pH = 6.722 Charge balance - pe = -1.622 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 54°C) = 4187 - Density (g/cm³) = 0.98812 - Volume (L) = 0.97811 - Viscosity (mPa s) = 0.51684 + pH = 6.702 Charge balance + pe = 8.875 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 54°C) = 3096 + Density (g/cm³) = 0.98793 + Volume (L) = 1.05061 + Viscosity (mPa s) = 0.51634 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.071e-02 - Mass of water (kg) = 9.645e-01 - Total alkalinity (eq/kg) = 1.261e-09 + Ionic strength (mol/kgw) = 3.132e-02 + Mass of water (kg) = 1.036e+00 + Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 54.00 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 53 - Total H = 1.070711e+02 - Total O = 5.359420e+01 + Iterations = 18 + Total H = 1.150124e+02 + Total O = 5.756175e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 4.461e-07 3.642e-07 -6.351 -6.439 -0.088 -3.59 - H+ 2.218e-07 1.898e-07 -6.654 -6.722 -0.068 0.00 + OH- 4.180e-07 3.484e-07 -6.379 -6.458 -0.079 -3.63 + H+ 2.290e-07 1.984e-07 -6.640 -6.702 -0.062 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.27 -Ca 1.520e-02 - Ca+2 1.018e-02 4.884e-03 -1.992 -2.311 -0.319 -17.65 - CaSO4 5.027e-03 5.074e-03 -2.299 -2.295 0.004 8.27 - CaHSO4+ 1.266e-08 1.043e-08 -7.898 -7.982 -0.084 (0) - CaOH+ 5.180e-09 4.270e-09 -8.286 -8.370 -0.084 (0) -H(0) 6.798e-14 - H2 3.399e-14 3.431e-14 -13.469 -13.465 0.004 28.59 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -56.926 -56.922 0.004 32.11 -S(-2) 1.656e-20 - HS- 9.743e-21 7.956e-21 -20.011 -20.099 -0.088 21.34 - H2S 6.816e-21 6.880e-21 -20.166 -20.162 0.004 41.47 - S-2 6.550e-26 3.095e-26 -25.184 -25.509 -0.326 (0) - (H2S)2 0.000e+00 0.000e+00 -41.354 -41.350 0.004 28.52 -S(6) 1.520e-02 - SO4-2 1.018e-02 4.791e-03 -1.992 -2.320 -0.327 22.34 - CaSO4 5.027e-03 5.074e-03 -2.299 -2.295 0.004 8.27 - HSO4- 2.155e-07 1.777e-07 -6.666 -6.750 -0.084 41.53 - CaHSO4+ 1.266e-08 1.043e-08 -7.898 -7.982 -0.084 (0) +Ca 1.340e-02 + Ca+2 7.831e-03 4.021e-03 -2.106 -2.396 -0.289 -17.73 + CaSO4 5.569e-03 5.587e-03 -2.254 -2.253 0.001 9.36 + CaHSO4+ 8.844e-09 7.425e-09 -8.053 -8.129 -0.076 (0) + CaOH+ 4.005e-09 3.362e-09 -8.397 -8.473 -0.076 (0) +H(0) 7.547e-35 + H2 3.774e-35 3.801e-35 -34.423 -34.420 0.003 28.59 +O(0) 2.655e-15 + O2 1.328e-15 1.337e-15 -14.877 -14.874 0.003 32.11 +S(-2) 0.000e+00 + HS- 0.000e+00 0.000e+00 -103.906 -103.985 -0.079 21.31 + H2S 0.000e+00 0.000e+00 -104.032 -104.029 0.003 41.47 + S-2 0.000e+00 0.000e+00 -109.120 -109.414 -0.295 (0) + (H2S)2 0.000e+00 0.000e+00 -209.086 -209.083 0.003 28.52 +S(6) 1.340e-02 + SO4-2 7.831e-03 3.962e-03 -2.106 -2.402 -0.296 16.55 + CaSO4 5.569e-03 5.587e-03 -2.254 -2.253 0.001 9.36 + HSO4- 1.830e-07 1.536e-07 -6.738 -6.814 -0.076 41.50 + CaHSO4+ 8.844e-09 7.425e-09 -8.053 -8.129 -0.076 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(327 K, 1 atm) - Anhydrite -0.00 -4.63 -4.63 CaSO4 - Gypsum 0.00 -4.63 -4.63 CaSO4:2H2O - H2(g) -10.33 -13.46 -3.14 H2 + Anhydrite 0.00 -4.80 -4.80 CaSO4 + Gypsum -0.06 -4.80 -4.73 CaSO4:2H2O + H2(g) -31.28 -34.42 -3.14 H2 H2O(g) -0.83 -0.00 0.83 H2O - H2S(g) -18.91 -26.82 -7.91 H2S - O2(g) -53.88 -56.92 -3.05 O2 - Sulfur -14.23 -9.96 4.26 S + H2S(g) -102.77 -110.69 -7.91 H2S + O2(g) -11.83 -14.87 -3.05 O2 + Sulfur -77.14 -72.87 4.26 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2614,26 +2614,26 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite 0.00 -4.64 -4.64 1.000e+00 1.984e+00 9.845e-01 -Gypsum -0.01 -4.64 -4.63 1.000e+00 0 -1.000e+00 +Anhydrite 0.00 -4.82 -4.82 1.000e+00 1.986e+00 9.864e-01 +Gypsum -0.07 -4.82 -4.74 1.000e+00 0 -1.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.500e-02 1.554e-02 - S 1.500e-02 1.554e-02 + Ca 1.315e-02 1.363e-02 + S 1.315e-02 1.363e-02 ----------------------------Description of solution---------------------------- - pH = 6.711 Charge balance - pe = 8.832 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 55°C) = 4201 - Density (g/cm³) = 0.98762 - Volume (L) = 1.05117 - Viscosity (mPa s) = 0.50859 + pH = 6.691 Charge balance + pe = 8.819 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 55°C) = 3070 + Density (g/cm³) = 0.98741 + Volume (L) = 1.05112 + Viscosity (mPa s) = 0.50806 Activity of water = 1.000 - Ionic strength (mol/kgw) = 4.020e-02 + Ionic strength (mol/kgw) = 3.054e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 55.00 @@ -2641,47 +2641,47 @@ Gypsum -0.01 -4.64 -4.63 1.000e+00 0 -1.000e+00 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 18 Total H = 1.150124e+02 - Total O = 5.756840e+01 + Total O = 5.756072e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 4.606e-07 3.763e-07 -6.337 -6.424 -0.088 -3.60 - H+ 2.272e-07 1.944e-07 -6.644 -6.711 -0.068 0.00 + OH- 4.301e-07 3.591e-07 -6.366 -6.445 -0.078 -3.65 + H+ 2.350e-07 2.038e-07 -6.629 -6.691 -0.062 0.00 H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.28 -Ca 1.500e-02 - Ca+2 1.005e-02 4.833e-03 -1.998 -2.316 -0.318 -17.67 - CaSO4 4.953e-03 4.999e-03 -2.305 -2.301 0.004 8.29 - CaHSO4+ 1.303e-08 1.074e-08 -7.885 -7.969 -0.084 (0) - CaOH+ 5.000e-09 4.123e-09 -8.301 -8.385 -0.084 (0) -H(0) 8.750e-35 - H2 4.375e-35 4.416e-35 -34.359 -34.355 0.004 28.58 -O(0) 2.650e-15 - O2 1.325e-15 1.337e-15 -14.878 -14.874 0.004 32.16 +Ca 1.315e-02 + Ca+2 7.636e-03 3.940e-03 -2.117 -2.404 -0.287 -17.74 + CaSO4 5.517e-03 5.534e-03 -2.258 -2.257 0.001 9.41 + CaHSO4+ 8.946e-09 7.520e-09 -8.048 -8.124 -0.075 (0) + CaOH+ 3.816e-09 3.208e-09 -8.418 -8.494 -0.075 (0) +H(0) 1.026e-34 + H2 5.130e-35 5.166e-35 -34.290 -34.287 0.003 28.58 +O(0) 2.652e-15 + O2 1.326e-15 1.336e-15 -14.877 -14.874 0.003 32.16 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -103.675 -103.763 -0.088 21.34 - H2S 0.000e+00 0.000e+00 -103.826 -103.822 0.004 41.61 - S-2 0.000e+00 0.000e+00 -108.834 -109.159 -0.325 (0) - (H2S)2 0.000e+00 0.000e+00 -208.667 -208.663 0.004 28.46 -S(6) 1.500e-02 - SO4-2 1.005e-02 4.742e-03 -1.998 -2.324 -0.326 22.28 - CaSO4 4.953e-03 4.999e-03 -2.305 -2.301 0.004 8.29 - HSO4- 2.242e-07 1.849e-07 -6.649 -6.733 -0.084 41.54 - CaHSO4+ 1.303e-08 1.074e-08 -7.885 -7.969 -0.084 (0) + HS- 0.000e+00 0.000e+00 -103.479 -103.557 -0.078 21.31 + H2S 0.000e+00 0.000e+00 -103.599 -103.596 0.003 41.61 + S-2 0.000e+00 0.000e+00 -108.681 -108.973 -0.292 (0) + (H2S)2 0.000e+00 0.000e+00 -208.214 -208.210 0.003 28.46 +S(6) 1.315e-02 + SO4-2 7.636e-03 3.884e-03 -2.117 -2.411 -0.294 16.54 + CaSO4 5.517e-03 5.534e-03 -2.258 -2.257 0.001 9.41 + HSO4- 1.888e-07 1.587e-07 -6.724 -6.799 -0.075 41.51 + CaHSO4+ 8.946e-09 7.520e-09 -8.048 -8.124 -0.075 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(328 K, 1 atm) - Anhydrite 0.00 -4.64 -4.64 CaSO4 - Gypsum -0.01 -4.64 -4.63 CaSO4:2H2O - H2(g) -31.22 -34.35 -3.14 H2 + Anhydrite 0.00 -4.82 -4.82 CaSO4 + Gypsum -0.07 -4.82 -4.74 CaSO4:2H2O + H2(g) -31.15 -34.29 -3.14 H2 H2O(g) -0.81 -0.00 0.81 H2O - H2S(g) -102.56 -110.47 -7.92 H2S + H2S(g) -102.33 -110.25 -7.92 H2S O2(g) -11.83 -14.87 -3.05 O2 - Sulfur -76.98 -72.74 4.25 S + Sulfur -76.82 -72.58 4.25 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2697,26 +2697,26 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite 0.00 -4.65 -4.65 1.000e+00 1.985e+00 9.848e-01 -Gypsum -0.02 -4.65 -4.64 1.000e+00 0 -1.000e+00 +Anhydrite 0.00 -4.83 -4.83 1.000e+00 1.987e+00 9.866e-01 +Gypsum -0.08 -4.83 -4.75 1.000e+00 0 -1.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.470e-02 1.523e-02 - S 1.470e-02 1.523e-02 + Ca 1.291e-02 1.338e-02 + S 1.291e-02 1.338e-02 ----------------------------Description of solution---------------------------- - pH = 6.700 Charge balance - pe = 8.805 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 56°C) = 4190 - Density (g/cm³) = 0.98709 - Volume (L) = 1.05168 - Viscosity (mPa s) = 0.50054 + pH = 6.679 Charge balance + pe = 8.793 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 56°C) = 3043 + Density (g/cm³) = 0.98689 + Volume (L) = 1.05164 + Viscosity (mPa s) = 0.50001 Activity of water = 1.000 - Ionic strength (mol/kgw) = 3.946e-02 + Ionic strength (mol/kgw) = 2.978e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 56.00 @@ -2724,47 +2724,47 @@ Gypsum -0.02 -4.65 -4.64 1.000e+00 0 -1.000e+00 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 18 Total H = 1.150124e+02 - Total O = 5.756715e+01 + Total O = 5.755972e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 4.748e-07 3.883e-07 -6.324 -6.411 -0.087 -3.62 - H+ 2.328e-07 1.993e-07 -6.633 -6.700 -0.067 0.00 - H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.29 -Ca 1.470e-02 - Ca+2 9.866e-03 4.760e-03 -2.006 -2.322 -0.317 -17.68 - CaSO4 4.838e-03 4.882e-03 -2.315 -2.311 0.004 8.31 - CaHSO4+ 1.330e-08 1.098e-08 -7.876 -7.960 -0.083 (0) - CaOH+ 4.799e-09 3.961e-09 -8.319 -8.402 -0.083 (0) -H(0) 1.034e-34 - H2 5.168e-35 5.215e-35 -34.287 -34.283 0.004 28.58 -O(0) 3.503e-15 - O2 1.752e-15 1.768e-15 -14.757 -14.753 0.004 32.20 + OH- 4.425e-07 3.700e-07 -6.354 -6.432 -0.078 -3.66 + H+ 2.411e-07 2.092e-07 -6.618 -6.679 -0.062 0.00 + H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.29 +Ca 1.291e-02 + Ca+2 7.446e-03 3.861e-03 -2.128 -2.413 -0.285 -17.76 + CaSO4 5.464e-03 5.481e-03 -2.262 -2.261 0.001 9.46 + CaHSO4+ 9.046e-09 7.615e-09 -8.044 -8.118 -0.075 (0) + CaOH+ 3.637e-09 3.061e-09 -8.439 -8.514 -0.075 (0) +H(0) 1.209e-34 + H2 6.046e-35 6.087e-35 -34.219 -34.216 0.003 28.58 +O(0) 3.508e-15 + O2 1.754e-15 1.766e-15 -14.756 -14.753 0.003 32.20 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -103.490 -103.577 -0.087 21.34 - H2S 0.000e+00 0.000e+00 -103.636 -103.632 0.004 41.74 - S-2 0.000e+00 0.000e+00 -108.636 -108.959 -0.323 (0) - (H2S)2 0.000e+00 0.000e+00 -208.280 -208.276 0.004 28.39 -S(6) 1.470e-02 - SO4-2 9.866e-03 4.672e-03 -2.006 -2.330 -0.325 22.21 - CaSO4 4.838e-03 4.882e-03 -2.315 -2.311 0.004 8.31 - HSO4- 2.323e-07 1.918e-07 -6.634 -6.717 -0.083 41.55 - CaHSO4+ 1.330e-08 1.098e-08 -7.876 -7.960 -0.083 (0) + HS- 0.000e+00 0.000e+00 -103.299 -103.376 -0.078 21.30 + H2S 0.000e+00 0.000e+00 -103.413 -103.410 0.003 41.74 + S-2 0.000e+00 0.000e+00 -108.490 -108.780 -0.290 (0) + (H2S)2 0.000e+00 0.000e+00 -207.836 -207.833 0.003 28.39 +S(6) 1.291e-02 + SO4-2 7.446e-03 3.807e-03 -2.128 -2.419 -0.291 16.52 + CaSO4 5.464e-03 5.481e-03 -2.262 -2.261 0.001 9.46 + HSO4- 1.949e-07 1.640e-07 -6.710 -6.785 -0.075 41.52 + CaHSO4+ 9.046e-09 7.615e-09 -8.044 -8.118 -0.075 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(329 K, 1 atm) - Anhydrite 0.00 -4.65 -4.65 CaSO4 - Gypsum -0.02 -4.65 -4.64 CaSO4:2H2O - H2(g) -31.14 -34.28 -3.14 H2 + Anhydrite 0.00 -4.83 -4.83 CaSO4 + Gypsum -0.08 -4.83 -4.75 CaSO4:2H2O + H2(g) -31.08 -34.22 -3.14 H2 H2O(g) -0.79 -0.00 0.79 H2O - H2S(g) -102.36 -110.28 -7.92 H2S + H2S(g) -102.14 -110.06 -7.92 H2S O2(g) -11.70 -14.75 -3.05 O2 - Sulfur -76.85 -72.62 4.23 S + Sulfur -76.69 -72.47 4.23 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2780,26 +2780,26 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite 0.00 -4.67 -4.67 1.000e+00 1.985e+00 9.851e-01 -Gypsum -0.03 -4.67 -4.64 1.000e+00 0 -1.000e+00 +Anhydrite 0.00 -4.85 -4.85 1.000e+00 1.987e+00 9.869e-01 +Gypsum -0.09 -4.85 -4.76 1.000e+00 0 -1.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.441e-02 1.493e-02 - S 1.441e-02 1.493e-02 + Ca 1.267e-02 1.313e-02 + S 1.267e-02 1.313e-02 ----------------------------Description of solution---------------------------- - pH = 6.690 Charge balance - pe = 8.748 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 57°C) = 4178 - Density (g/cm³) = 0.98656 - Volume (L) = 1.05221 - Viscosity (mPa s) = 0.49270 + pH = 6.668 Charge balance + pe = 8.664 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 57°C) = 3015 + Density (g/cm³) = 0.98636 + Volume (L) = 1.05217 + Viscosity (mPa s) = 0.49216 Activity of water = 1.000 - Ionic strength (mol/kgw) = 3.874e-02 + Ionic strength (mol/kgw) = 2.904e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 57.00 @@ -2807,47 +2807,47 @@ Gypsum -0.03 -4.67 -4.64 1.000e+00 0 -1.000e+00 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 18 Total H = 1.150124e+02 - Total O = 5.756593e+01 + Total O = 5.755873e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 4.893e-07 4.006e-07 -6.310 -6.397 -0.087 -3.64 - H+ 2.385e-07 2.043e-07 -6.623 -6.690 -0.067 0.00 - H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.30 -Ca 1.441e-02 - Ca+2 9.684e-03 4.689e-03 -2.014 -2.329 -0.315 -17.70 - CaSO4 4.725e-03 4.767e-03 -2.326 -2.322 0.004 8.32 - CaHSO4+ 1.357e-08 1.121e-08 -7.868 -7.950 -0.083 (0) - CaOH+ 4.607e-09 3.806e-09 -8.337 -8.419 -0.083 (0) -H(0) 1.400e-34 - H2 7.001e-35 7.064e-35 -34.155 -34.151 0.004 28.58 -O(0) 3.507e-15 - O2 1.754e-15 1.769e-15 -14.756 -14.752 0.004 32.25 + OH- 4.552e-07 3.812e-07 -6.342 -6.419 -0.077 -3.68 + H+ 2.473e-07 2.148e-07 -6.607 -6.668 -0.061 0.00 + H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.30 +Ca 1.267e-02 + Ca+2 7.260e-03 3.783e-03 -2.139 -2.422 -0.283 -17.78 + CaSO4 5.411e-03 5.427e-03 -2.267 -2.265 0.001 9.51 + CaHSO4+ 9.146e-09 7.708e-09 -8.039 -8.113 -0.074 (0) + CaOH+ 3.467e-09 2.922e-09 -8.460 -8.534 -0.074 (0) +H(0) 2.285e-34 + H2 1.142e-34 1.150e-34 -33.942 -33.939 0.003 28.58 +O(0) 1.797e-15 + O2 8.986e-16 9.047e-16 -15.046 -15.044 0.003 32.25 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -103.066 -103.153 -0.087 21.33 - H2S 0.000e+00 0.000e+00 -103.207 -103.203 0.004 41.86 - S-2 0.000e+00 0.000e+00 -108.200 -108.521 -0.321 (0) - (H2S)2 0.000e+00 0.000e+00 -207.416 -207.412 0.004 28.32 -S(6) 1.441e-02 - SO4-2 9.684e-03 4.603e-03 -2.014 -2.337 -0.323 22.13 - CaSO4 4.725e-03 4.767e-03 -2.326 -2.322 0.004 8.32 - HSO4- 2.407e-07 1.989e-07 -6.619 -6.701 -0.083 41.56 - CaHSO4+ 1.357e-08 1.121e-08 -7.868 -7.950 -0.083 (0) + HS- 0.000e+00 0.000e+00 -102.298 -102.376 -0.077 21.30 + H2S 0.000e+00 0.000e+00 -102.407 -102.404 0.003 41.86 + S-2 0.000e+00 0.000e+00 -107.478 -107.766 -0.288 (0) + (H2S)2 0.000e+00 0.000e+00 -205.817 -205.814 0.003 28.32 +S(6) 1.267e-02 + SO4-2 7.260e-03 3.732e-03 -2.139 -2.428 -0.289 16.51 + CaSO4 5.411e-03 5.427e-03 -2.267 -2.265 0.001 9.51 + HSO4- 2.011e-07 1.695e-07 -6.697 -6.771 -0.074 41.53 + CaHSO4+ 9.146e-09 7.708e-09 -8.039 -8.113 -0.074 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(330 K, 1 atm) - Anhydrite 0.00 -4.67 -4.67 CaSO4 - Gypsum -0.03 -4.67 -4.64 CaSO4:2H2O - H2(g) -31.01 -34.15 -3.14 H2 + Anhydrite 0.00 -4.85 -4.85 CaSO4 + Gypsum -0.09 -4.85 -4.76 CaSO4:2H2O + H2(g) -30.80 -33.94 -3.14 H2 H2O(g) -0.77 -0.00 0.77 H2O - H2S(g) -101.93 -109.84 -7.92 H2S - O2(g) -11.70 -14.75 -3.06 O2 - Sulfur -76.53 -72.33 4.21 S + H2S(g) -101.13 -109.04 -7.92 H2S + O2(g) -11.99 -15.04 -3.06 O2 + Sulfur -75.95 -71.74 4.21 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2863,74 +2863,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite 0.00 -4.68 -4.68 1.000e+00 1.985e+00 9.854e-01 -Gypsum -0.04 -4.68 -4.64 1.000e+00 0 -1.000e+00 +Anhydrite 0.00 -4.87 -4.87 1.000e+00 1.987e+00 9.871e-01 +Gypsum -0.10 -4.87 -4.77 1.000e+00 0 -1.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.412e-02 1.463e-02 - S 1.412e-02 1.463e-02 + Ca 1.244e-02 1.288e-02 + S 1.244e-02 1.288e-02 ----------------------------Description of solution---------------------------- - pH = 6.679 Charge balance - pe = 8.661 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 58°C) = 4165 - Density (g/cm³) = 0.98602 - Volume (L) = 1.05274 - Viscosity (mPa s) = 0.48506 + pH = 6.657 Charge balance + pe = 8.652 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 58°C) = 2987 + Density (g/cm³) = 0.98583 + Volume (L) = 1.05270 + Viscosity (mPa s) = 0.48452 Activity of water = 1.000 - Ionic strength (mol/kgw) = 3.802e-02 + Ionic strength (mol/kgw) = 2.832e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 58.00 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 + Iterations = 14 Total H = 1.150124e+02 - Total O = 5.756472e+01 + Total O = 5.755776e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 5.041e-07 4.132e-07 -6.298 -6.384 -0.086 -3.66 - H+ 2.442e-07 2.094e-07 -6.612 -6.679 -0.067 0.00 - H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.31 -Ca 1.412e-02 - Ca+2 9.505e-03 4.618e-03 -2.022 -2.336 -0.314 -17.72 - CaSO4 4.613e-03 4.654e-03 -2.336 -2.332 0.004 8.34 - CaHSO4+ 1.384e-08 1.144e-08 -7.859 -7.941 -0.082 (0) - CaOH+ 4.424e-09 3.658e-09 -8.354 -8.437 -0.082 (0) -H(0) 2.180e-34 - H2 1.090e-34 1.100e-34 -33.962 -33.959 0.004 28.58 -O(0) 2.648e-15 - O2 1.324e-15 1.335e-15 -14.878 -14.874 0.004 32.29 + OH- 4.681e-07 3.925e-07 -6.330 -6.406 -0.076 -3.70 + H+ 2.535e-07 2.205e-07 -6.596 -6.657 -0.061 0.00 + H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.31 +Ca 1.244e-02 + Ca+2 7.079e-03 3.707e-03 -2.150 -2.431 -0.281 -17.80 + CaSO4 5.358e-03 5.374e-03 -2.271 -2.270 0.001 9.56 + CaHSO4+ 9.244e-09 7.801e-09 -8.034 -8.108 -0.074 (0) + CaOH+ 3.306e-09 2.790e-09 -8.481 -8.554 -0.074 (0) +H(0) 2.520e-34 + H2 1.260e-34 1.268e-34 -33.900 -33.897 0.003 28.58 +O(0) 2.690e-15 + O2 1.345e-15 1.354e-15 -14.871 -14.869 0.003 32.29 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -102.399 -102.485 -0.086 21.32 - H2S 0.000e+00 0.000e+00 -102.535 -102.531 0.004 41.99 - S-2 0.000e+00 0.000e+00 -107.521 -107.840 -0.320 (0) - (H2S)2 0.000e+00 0.000e+00 -206.066 -206.062 0.004 28.25 -S(6) 1.412e-02 - SO4-2 9.504e-03 4.535e-03 -2.022 -2.343 -0.321 22.05 - CaSO4 4.613e-03 4.654e-03 -2.336 -2.332 0.004 8.34 - HSO4- 2.493e-07 2.061e-07 -6.603 -6.686 -0.082 41.57 - CaHSO4+ 1.384e-08 1.144e-08 -7.859 -7.941 -0.082 (0) + HS- 0.000e+00 0.000e+00 -102.233 -102.309 -0.076 21.29 + H2S 0.000e+00 0.000e+00 -102.336 -102.333 0.003 41.99 + S-2 0.000e+00 0.000e+00 -107.401 -107.687 -0.286 (0) + (H2S)2 0.000e+00 0.000e+00 -205.668 -205.665 0.003 28.25 +S(6) 1.244e-02 + SO4-2 7.079e-03 3.658e-03 -2.150 -2.437 -0.287 16.48 + CaSO4 5.358e-03 5.374e-03 -2.271 -2.270 0.001 9.56 + HSO4- 2.074e-07 1.750e-07 -6.683 -6.757 -0.074 41.54 + CaHSO4+ 9.244e-09 7.801e-09 -8.034 -8.108 -0.074 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(331 K, 1 atm) - Anhydrite 0.00 -4.68 -4.68 CaSO4 - Gypsum -0.04 -4.68 -4.64 CaSO4:2H2O - H2(g) -30.82 -33.96 -3.14 H2 + Anhydrite 0.00 -4.87 -4.87 CaSO4 + Gypsum -0.10 -4.87 -4.77 CaSO4:2H2O + H2(g) -30.76 -33.90 -3.14 H2 H2O(g) -0.75 -0.00 0.75 H2O - H2S(g) -101.25 -109.16 -7.92 H2S - O2(g) -11.82 -14.87 -3.06 O2 - Sulfur -76.04 -71.85 4.19 S + H2S(g) -101.05 -108.97 -7.92 H2S + O2(g) -11.81 -14.87 -3.06 O2 + Sulfur -75.90 -71.71 4.19 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2946,74 +2946,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite 0.00 -4.69 -4.69 1.000e+00 1.986e+00 9.857e-01 -Gypsum -0.04 -4.69 -4.65 1.000e+00 0 -1.000e+00 +Anhydrite 0.00 -4.89 -4.89 1.000e+00 1.987e+00 9.874e-01 +Gypsum -0.11 -4.89 -4.78 1.000e+00 0 -1.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.383e-02 1.433e-02 - S 1.383e-02 1.433e-02 + Ca 1.221e-02 1.265e-02 + S 1.221e-02 1.265e-02 ----------------------------Description of solution---------------------------- - pH = 6.669 Charge balance - pe = 8.605 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 59°C) = 4151 - Density (g/cm³) = 0.98548 - Volume (L) = 1.05328 - Viscosity (mPa s) = 0.47762 + pH = 6.646 Charge balance + pe = 8.597 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 59°C) = 2959 + Density (g/cm³) = 0.98530 + Volume (L) = 1.05324 + Viscosity (mPa s) = 0.47707 Activity of water = 1.000 - Ionic strength (mol/kgw) = 3.731e-02 + Ionic strength (mol/kgw) = 2.761e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 59.00 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 + Iterations = 14 Total H = 1.150124e+02 - Total O = 5.756354e+01 + Total O = 5.755680e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 5.192e-07 4.261e-07 -6.285 -6.370 -0.086 -3.68 - H+ 2.500e-07 2.145e-07 -6.602 -6.669 -0.067 0.00 - H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.31 -Ca 1.383e-02 - Ca+2 9.328e-03 4.548e-03 -2.030 -2.342 -0.312 -17.74 - CaSO4 4.504e-03 4.543e-03 -2.346 -2.343 0.004 8.36 - CaHSO4+ 1.411e-08 1.168e-08 -7.850 -7.932 -0.082 (0) - CaOH+ 4.249e-09 3.517e-09 -8.372 -8.454 -0.082 (0) -H(0) 2.943e-34 - H2 1.472e-34 1.484e-34 -33.832 -33.828 0.004 28.58 -O(0) 2.651e-15 - O2 1.325e-15 1.337e-15 -14.878 -14.874 0.004 32.34 + OH- 4.812e-07 4.041e-07 -6.318 -6.393 -0.076 -3.73 + H+ 2.599e-07 2.262e-07 -6.585 -6.646 -0.060 0.00 + H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.31 +Ca 1.221e-02 + Ca+2 6.902e-03 3.632e-03 -2.161 -2.440 -0.279 -17.83 + CaSO4 5.304e-03 5.319e-03 -2.275 -2.274 0.001 9.60 + CaHSO4+ 9.341e-09 7.894e-09 -8.030 -8.103 -0.073 (0) + CaOH+ 3.153e-09 2.664e-09 -8.501 -8.574 -0.073 (0) +H(0) 3.400e-34 + H2 1.700e-34 1.711e-34 -33.770 -33.767 0.003 28.58 +O(0) 2.676e-15 + O2 1.338e-15 1.347e-15 -14.873 -14.871 0.003 32.34 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -101.980 -102.066 -0.086 21.31 - H2S 0.000e+00 0.000e+00 -102.111 -102.107 0.004 42.11 - S-2 0.000e+00 0.000e+00 -107.090 -107.408 -0.318 (0) - (H2S)2 0.000e+00 0.000e+00 -205.212 -205.208 0.004 28.18 -S(6) 1.383e-02 - SO4-2 9.328e-03 4.468e-03 -2.030 -2.350 -0.320 21.96 - CaSO4 4.504e-03 4.543e-03 -2.346 -2.343 0.004 8.36 - HSO4- 2.581e-07 2.137e-07 -6.588 -6.670 -0.082 41.58 - CaHSO4+ 1.411e-08 1.168e-08 -7.850 -7.932 -0.082 (0) + HS- 0.000e+00 0.000e+00 -101.816 -101.892 -0.076 21.28 + H2S 0.000e+00 0.000e+00 -101.913 -101.910 0.003 42.11 + S-2 0.000e+00 0.000e+00 -106.973 -107.257 -0.283 (0) + (H2S)2 0.000e+00 0.000e+00 -204.817 -204.814 0.003 28.18 +S(6) 1.221e-02 + SO4-2 6.902e-03 3.585e-03 -2.161 -2.445 -0.284 16.46 + CaSO4 5.304e-03 5.319e-03 -2.275 -2.274 0.001 9.60 + HSO4- 2.139e-07 1.808e-07 -6.670 -6.743 -0.073 41.54 + CaHSO4+ 9.341e-09 7.894e-09 -8.030 -8.103 -0.073 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(332 K, 1 atm) - Anhydrite 0.00 -4.69 -4.69 CaSO4 - Gypsum -0.04 -4.69 -4.65 CaSO4:2H2O - H2(g) -30.69 -33.83 -3.14 H2 + Anhydrite 0.00 -4.89 -4.89 CaSO4 + Gypsum -0.11 -4.89 -4.78 CaSO4:2H2O + H2(g) -30.63 -33.77 -3.14 H2 H2O(g) -0.73 -0.00 0.73 H2O - H2S(g) -100.82 -108.73 -7.92 H2S + H2S(g) -100.62 -108.54 -7.92 H2S O2(g) -11.81 -14.87 -3.06 O2 - Sulfur -75.73 -71.56 4.17 S + Sulfur -75.59 -71.43 4.17 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3029,74 +3029,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite 0.00 -4.71 -4.71 1.000e+00 1.986e+00 9.860e-01 -Gypsum -0.05 -4.71 -4.65 1.000e+00 0 -1.000e+00 +Anhydrite 0.00 -4.90 -4.90 1.000e+00 1.988e+00 9.876e-01 +Gypsum -0.12 -4.90 -4.79 1.000e+00 0 -1.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.355e-02 1.404e-02 - S 1.355e-02 1.404e-02 + Ca 1.198e-02 1.241e-02 + S 1.198e-02 1.241e-02 ----------------------------Description of solution---------------------------- - pH = 6.658 Charge balance - pe = 8.549 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 60°C) = 4136 - Density (g/cm³) = 0.98493 - Volume (L) = 1.05382 - Viscosity (mPa s) = 0.47036 + pH = 6.634 Charge balance + pe = 8.543 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 60°C) = 2931 + Density (g/cm³) = 0.98475 + Volume (L) = 1.05379 + Viscosity (mPa s) = 0.46980 Activity of water = 1.000 - Ionic strength (mol/kgw) = 3.662e-02 + Ionic strength (mol/kgw) = 2.692e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 60.00 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 + Iterations = 14 Total H = 1.150124e+02 - Total O = 5.756238e+01 + Total O = 5.755586e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 5.346e-07 4.392e-07 -6.272 -6.357 -0.085 -3.70 - H+ 2.559e-07 2.197e-07 -6.592 -6.658 -0.066 0.00 - H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.32 -Ca 1.355e-02 - Ca+2 9.155e-03 4.478e-03 -2.038 -2.349 -0.311 -17.76 - CaSO4 4.397e-03 4.434e-03 -2.357 -2.353 0.004 8.37 - CaHSO4+ 1.439e-08 1.192e-08 -7.842 -7.924 -0.082 (0) - CaOH+ 4.081e-09 3.382e-09 -8.389 -8.471 -0.082 (0) -H(0) 3.967e-34 - H2 1.983e-34 2.000e-34 -33.703 -33.699 0.004 28.58 -O(0) 2.652e-15 - O2 1.326e-15 1.337e-15 -14.877 -14.874 0.004 32.38 + OH- 4.945e-07 4.160e-07 -6.306 -6.381 -0.075 -3.75 + H+ 2.664e-07 2.320e-07 -6.575 -6.634 -0.060 0.00 + H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.32 +Ca 1.198e-02 + Ca+2 6.729e-03 3.559e-03 -2.172 -2.449 -0.277 -17.85 + CaSO4 5.250e-03 5.265e-03 -2.280 -2.279 0.001 9.65 + CaHSO4+ 9.436e-09 7.985e-09 -8.025 -8.098 -0.073 (0) + CaOH+ 3.007e-09 2.545e-09 -8.522 -8.594 -0.073 (0) +H(0) 4.553e-34 + H2 2.277e-34 2.291e-34 -33.643 -33.640 0.003 28.58 +O(0) 2.693e-15 + O2 1.346e-15 1.355e-15 -14.871 -14.868 0.003 32.38 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -101.563 -101.649 -0.085 21.30 - H2S 0.000e+00 0.000e+00 -101.689 -101.686 0.004 42.24 - S-2 0.000e+00 0.000e+00 -106.660 -106.977 -0.317 (0) - (H2S)2 0.000e+00 0.000e+00 -204.362 -204.359 0.004 28.10 -S(6) 1.355e-02 - SO4-2 9.154e-03 4.402e-03 -2.038 -2.356 -0.318 21.87 - CaSO4 4.397e-03 4.434e-03 -2.357 -2.353 0.004 8.37 - HSO4- 2.672e-07 2.214e-07 -6.573 -6.655 -0.082 41.58 - CaHSO4+ 1.439e-08 1.192e-08 -7.842 -7.924 -0.082 (0) + HS- 0.000e+00 0.000e+00 -101.412 -101.487 -0.075 21.27 + H2S 0.000e+00 0.000e+00 -101.503 -101.501 0.003 42.24 + S-2 0.000e+00 0.000e+00 -106.558 -106.839 -0.281 (0) + (H2S)2 0.000e+00 0.000e+00 -203.991 -203.989 0.003 28.10 +S(6) 1.198e-02 + SO4-2 6.729e-03 3.514e-03 -2.172 -2.454 -0.282 16.43 + CaSO4 5.250e-03 5.265e-03 -2.280 -2.279 0.001 9.65 + HSO4- 2.206e-07 1.866e-07 -6.656 -6.729 -0.073 41.55 + CaHSO4+ 9.436e-09 7.985e-09 -8.025 -8.098 -0.073 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(333 K, 1 atm) - Anhydrite 0.00 -4.71 -4.71 CaSO4 - Gypsum -0.05 -4.71 -4.65 CaSO4:2H2O - H2(g) -30.56 -33.70 -3.14 H2 + Anhydrite 0.00 -4.90 -4.90 CaSO4 + Gypsum -0.12 -4.90 -4.79 CaSO4:2H2O + H2(g) -30.50 -33.64 -3.14 H2 H2O(g) -0.71 -0.00 0.71 H2O - H2S(g) -100.39 -108.31 -7.92 H2S - O2(g) -11.81 -14.87 -3.06 O2 - Sulfur -75.42 -71.27 4.15 S + H2S(g) -100.20 -108.12 -7.92 H2S + O2(g) -11.80 -14.87 -3.06 O2 + Sulfur -75.30 -71.15 4.15 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3112,74 +3112,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite 0.00 -4.72 -4.72 1.000e+00 1.986e+00 9.862e-01 -Gypsum -0.06 -4.72 -4.66 1.000e+00 0 -1.000e+00 +Anhydrite 0.00 -4.92 -4.92 1.000e+00 1.988e+00 9.878e-01 +Gypsum -0.12 -4.92 -4.80 1.000e+00 0 -1.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.328e-02 1.375e-02 - S 1.328e-02 1.375e-02 + Ca 1.176e-02 1.218e-02 + S 1.176e-02 1.218e-02 ----------------------------Description of solution---------------------------- - pH = 6.648 Charge balance - pe = 8.493 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 61°C) = 4120 - Density (g/cm³) = 0.98438 - Volume (L) = 1.05438 - Viscosity (mPa s) = 0.46328 + pH = 6.624 Charge balance + pe = 8.488 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 61°C) = 2902 + Density (g/cm³) = 0.98421 + Volume (L) = 1.05434 + Viscosity (mPa s) = 0.46273 Activity of water = 1.000 - Ionic strength (mol/kgw) = 3.594e-02 + Ionic strength (mol/kgw) = 2.624e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 61.00 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 + Iterations = 14 Total H = 1.150124e+02 - Total O = 5.756123e+01 + Total O = 5.755494e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 5.504e-07 4.527e-07 -6.259 -6.344 -0.085 -3.73 - H+ 2.619e-07 2.250e-07 -6.582 -6.648 -0.066 0.00 - H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.33 -Ca 1.328e-02 - Ca+2 8.984e-03 4.410e-03 -2.047 -2.356 -0.309 -17.78 - CaSO4 4.291e-03 4.327e-03 -2.367 -2.364 0.004 8.39 - CaHSO4+ 1.466e-08 1.216e-08 -7.834 -7.915 -0.081 (0) - CaOH+ 3.922e-09 3.252e-09 -8.407 -8.488 -0.081 (0) -H(0) 5.333e-34 - H2 2.666e-34 2.688e-34 -33.574 -33.571 0.004 28.58 -O(0) 2.658e-15 - O2 1.329e-15 1.340e-15 -14.877 -14.873 0.004 32.42 + OH- 5.081e-07 4.280e-07 -6.294 -6.369 -0.074 -3.78 + H+ 2.729e-07 2.379e-07 -6.564 -6.624 -0.060 0.00 + H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.33 +Ca 1.176e-02 + Ca+2 6.561e-03 3.486e-03 -2.183 -2.458 -0.275 -17.87 + CaSO4 5.196e-03 5.210e-03 -2.284 -2.283 0.001 9.70 + CaHSO4+ 9.530e-09 8.075e-09 -8.021 -8.093 -0.072 (0) + CaOH+ 2.869e-09 2.431e-09 -8.542 -8.614 -0.072 (0) +H(0) 6.113e-34 + H2 3.057e-34 3.075e-34 -33.515 -33.512 0.003 28.58 +O(0) 2.683e-15 + O2 1.341e-15 1.349e-15 -14.872 -14.870 0.003 32.42 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -101.151 -101.236 -0.085 21.29 - H2S 0.000e+00 0.000e+00 -101.271 -101.268 0.004 42.36 - S-2 0.000e+00 0.000e+00 -106.235 -106.550 -0.315 (0) - (H2S)2 0.000e+00 0.000e+00 -203.521 -203.517 0.004 28.03 -S(6) 1.328e-02 - SO4-2 8.984e-03 4.336e-03 -2.047 -2.363 -0.316 21.78 - CaSO4 4.291e-03 4.327e-03 -2.367 -2.364 0.004 8.39 - HSO4- 2.766e-07 2.294e-07 -6.558 -6.639 -0.081 41.59 - CaHSO4+ 1.466e-08 1.216e-08 -7.834 -7.915 -0.081 (0) + HS- 0.000e+00 0.000e+00 -101.004 -101.078 -0.074 21.26 + H2S 0.000e+00 0.000e+00 -101.088 -101.086 0.003 42.36 + S-2 0.000e+00 0.000e+00 -106.138 -106.417 -0.279 (0) + (H2S)2 0.000e+00 0.000e+00 -203.156 -203.153 0.003 28.03 +S(6) 1.176e-02 + SO4-2 6.560e-03 3.443e-03 -2.183 -2.463 -0.280 16.40 + CaSO4 5.196e-03 5.210e-03 -2.284 -2.283 0.001 9.70 + HSO4- 2.274e-07 1.927e-07 -6.643 -6.715 -0.072 41.55 + CaHSO4+ 9.530e-09 8.075e-09 -8.021 -8.093 -0.072 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(334 K, 1 atm) - Anhydrite 0.00 -4.72 -4.72 CaSO4 - Gypsum -0.06 -4.72 -4.66 CaSO4:2H2O - H2(g) -30.43 -33.57 -3.14 H2 + Anhydrite 0.00 -4.92 -4.92 CaSO4 + Gypsum -0.12 -4.92 -4.80 CaSO4:2H2O + H2(g) -30.37 -33.51 -3.14 H2 H2O(g) -0.69 -0.00 0.69 H2O - H2S(g) -99.96 -107.88 -7.92 H2S - O2(g) -11.81 -14.87 -3.07 O2 - Sulfur -75.12 -70.99 4.13 S + H2S(g) -99.78 -107.70 -7.92 H2S + O2(g) -11.80 -14.87 -3.07 O2 + Sulfur -74.99 -70.86 4.13 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3195,74 +3195,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite 0.00 -4.73 -4.73 1.000e+00 1.987e+00 9.865e-01 -Gypsum -0.07 -4.73 -4.66 1.000e+00 0 -1.000e+00 +Anhydrite 0.00 -4.94 -4.94 1.000e+00 1.988e+00 9.880e-01 +Gypsum -0.13 -4.94 -4.81 1.000e+00 0 -1.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.300e-02 1.347e-02 - S 1.300e-02 1.347e-02 + Ca 1.154e-02 1.195e-02 + S 1.154e-02 1.195e-02 ----------------------------Description of solution---------------------------- - pH = 6.638 Charge balance - pe = 8.491 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 62°C) = 4104 - Density (g/cm³) = 0.98382 - Volume (L) = 1.05493 - Viscosity (mPa s) = 0.45638 + pH = 6.613 Charge balance + pe = 8.434 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 62°C) = 2873 + Density (g/cm³) = 0.98365 + Volume (L) = 1.05490 + Viscosity (mPa s) = 0.45582 Activity of water = 1.000 - Ionic strength (mol/kgw) = 3.526e-02 + Ionic strength (mol/kgw) = 2.558e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 62.00 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 + Iterations = 14 Total H = 1.150124e+02 - Total O = 5.756010e+01 + Total O = 5.755403e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 5.665e-07 4.664e-07 -6.247 -6.331 -0.084 -3.75 - H+ 2.679e-07 2.303e-07 -6.572 -6.638 -0.066 0.00 - H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.34 -Ca 1.300e-02 - Ca+2 8.816e-03 4.343e-03 -2.055 -2.362 -0.308 -17.80 - CaSO4 4.188e-03 4.222e-03 -2.378 -2.375 0.004 8.41 - CaHSO4+ 1.494e-08 1.240e-08 -7.826 -7.906 -0.081 (0) - CaOH+ 3.769e-09 3.128e-09 -8.424 -8.505 -0.081 (0) -H(0) 5.591e-34 - H2 2.795e-34 2.818e-34 -33.554 -33.550 0.004 28.58 -O(0) 4.363e-15 - O2 2.181e-15 2.199e-15 -14.661 -14.658 0.004 32.47 + OH- 5.220e-07 4.403e-07 -6.282 -6.356 -0.074 -3.80 + H+ 2.796e-07 2.439e-07 -6.554 -6.613 -0.059 0.00 + H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.34 +Ca 1.154e-02 + Ca+2 6.396e-03 3.415e-03 -2.194 -2.467 -0.272 -17.89 + CaSO4 5.141e-03 5.154e-03 -2.289 -2.288 0.001 9.74 + CaHSO4+ 9.623e-09 8.164e-09 -8.017 -8.088 -0.071 (0) + CaOH+ 2.738e-09 2.323e-09 -8.563 -8.634 -0.071 (0) +H(0) 8.177e-34 + H2 4.089e-34 4.113e-34 -33.388 -33.386 0.003 28.58 +O(0) 2.681e-15 + O2 1.340e-15 1.348e-15 -14.873 -14.870 0.003 32.47 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -101.169 -101.254 -0.084 21.28 - H2S 0.000e+00 0.000e+00 -101.285 -101.281 0.004 42.48 - S-2 0.000e+00 0.000e+00 -106.242 -106.555 -0.313 (0) - (H2S)2 0.000e+00 0.000e+00 -203.542 -203.538 0.004 27.96 -S(6) 1.300e-02 - SO4-2 8.816e-03 4.271e-03 -2.055 -2.369 -0.315 21.69 - CaSO4 4.188e-03 4.222e-03 -2.378 -2.375 0.004 8.41 - HSO4- 2.862e-07 2.376e-07 -6.543 -6.624 -0.081 41.59 - CaHSO4+ 1.494e-08 1.240e-08 -7.826 -7.906 -0.081 (0) + HS- 0.000e+00 0.000e+00 -100.601 -100.675 -0.074 21.24 + H2S 0.000e+00 0.000e+00 -100.680 -100.677 0.003 42.48 + S-2 0.000e+00 0.000e+00 -105.724 -106.001 -0.277 (0) + (H2S)2 0.000e+00 0.000e+00 -202.332 -202.330 0.003 27.96 +S(6) 1.154e-02 + SO4-2 6.396e-03 3.374e-03 -2.194 -2.472 -0.278 16.37 + CaSO4 5.141e-03 5.154e-03 -2.289 -2.288 0.001 9.74 + HSO4- 2.344e-07 1.988e-07 -6.630 -6.702 -0.071 41.56 + CaHSO4+ 9.623e-09 8.164e-09 -8.017 -8.088 -0.071 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(335 K, 1 atm) - Anhydrite 0.00 -4.73 -4.73 CaSO4 - Gypsum -0.07 -4.73 -4.66 CaSO4:2H2O - H2(g) -30.41 -33.55 -3.14 H2 + Anhydrite 0.00 -4.94 -4.94 CaSO4 + Gypsum -0.13 -4.94 -4.81 CaSO4:2H2O + H2(g) -30.25 -33.39 -3.14 H2 H2O(g) -0.67 -0.00 0.67 H2O - H2S(g) -99.97 -107.89 -7.92 H2S - O2(g) -11.59 -14.66 -3.07 O2 - Sulfur -75.14 -71.02 4.11 S + H2S(g) -99.37 -107.29 -7.92 H2S + O2(g) -11.80 -14.87 -3.07 O2 + Sulfur -74.70 -70.58 4.11 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3278,74 +3278,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite 0.00 -4.75 -4.75 1.000e+00 1.987e+00 9.868e-01 -Gypsum -0.08 -4.75 -4.66 1.000e+00 0 -1.000e+00 +Anhydrite 0.00 -4.96 -4.96 1.000e+00 1.988e+00 9.883e-01 +Gypsum -0.14 -4.96 -4.82 1.000e+00 0 -1.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.274e-02 1.320e-02 - S 1.274e-02 1.320e-02 + Ca 1.132e-02 1.173e-02 + S 1.132e-02 1.173e-02 ----------------------------Description of solution---------------------------- - pH = 6.628 Charge balance - pe = 8.383 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 63°C) = 4087 - Density (g/cm³) = 0.98326 - Volume (L) = 1.05550 - Viscosity (mPa s) = 0.44965 + pH = 6.602 Charge balance + pe = 8.380 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 63°C) = 2843 + Density (g/cm³) = 0.98309 + Volume (L) = 1.05547 + Viscosity (mPa s) = 0.44909 Activity of water = 1.000 - Ionic strength (mol/kgw) = 3.460e-02 + Ionic strength (mol/kgw) = 2.494e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 63.00 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 14 Total H = 1.150124e+02 - Total O = 5.755900e+01 + Total O = 5.755314e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 5.829e-07 4.805e-07 -6.234 -6.318 -0.084 -3.78 - H+ 2.740e-07 2.357e-07 -6.562 -6.628 -0.065 0.00 - H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.35 -Ca 1.274e-02 - Ca+2 8.650e-03 4.276e-03 -2.063 -2.369 -0.306 -17.82 - CaSO4 4.086e-03 4.119e-03 -2.389 -2.385 0.003 8.42 - CaHSO4+ 1.522e-08 1.265e-08 -7.818 -7.898 -0.080 (0) - CaOH+ 3.623e-09 3.010e-09 -8.441 -8.521 -0.080 (0) -H(0) 9.565e-34 - H2 4.782e-34 4.821e-34 -33.320 -33.317 0.003 28.58 -O(0) 2.681e-15 - O2 1.340e-15 1.351e-15 -14.873 -14.869 0.003 32.51 + OH- 5.360e-07 4.529e-07 -6.271 -6.344 -0.073 -3.83 + H+ 2.863e-07 2.500e-07 -6.543 -6.602 -0.059 0.00 + H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.35 +Ca 1.132e-02 + Ca+2 6.236e-03 3.346e-03 -2.205 -2.475 -0.270 -17.92 + CaSO4 5.086e-03 5.099e-03 -2.294 -2.293 0.001 9.78 + CaHSO4+ 9.714e-09 8.252e-09 -8.013 -8.083 -0.071 (0) + CaOH+ 2.613e-09 2.220e-09 -8.583 -8.654 -0.071 (0) +H(0) 1.092e-33 + H2 5.458e-34 5.489e-34 -33.263 -33.260 0.002 28.58 +O(0) 2.678e-15 + O2 1.339e-15 1.347e-15 -14.873 -14.871 0.002 32.51 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -100.337 -100.421 -0.084 21.27 - H2S 0.000e+00 0.000e+00 -100.447 -100.444 0.003 42.59 - S-2 0.000e+00 0.000e+00 -105.397 -105.709 -0.312 (0) - (H2S)2 0.000e+00 0.000e+00 -201.861 -201.857 0.003 27.88 -S(6) 1.274e-02 - SO4-2 8.650e-03 4.207e-03 -2.063 -2.376 -0.313 21.59 - CaSO4 4.086e-03 4.119e-03 -2.389 -2.385 0.003 8.42 - HSO4- 2.961e-07 2.460e-07 -6.529 -6.609 -0.080 41.59 - CaHSO4+ 1.522e-08 1.265e-08 -7.818 -7.898 -0.080 (0) + HS- 0.000e+00 0.000e+00 -100.201 -100.274 -0.073 21.23 + H2S 0.000e+00 0.000e+00 -100.274 -100.271 0.002 42.59 + S-2 0.000e+00 0.000e+00 -105.313 -105.588 -0.274 (0) + (H2S)2 0.000e+00 0.000e+00 -201.515 -201.512 0.002 27.88 +S(6) 1.132e-02 + SO4-2 6.235e-03 3.307e-03 -2.205 -2.481 -0.275 16.33 + CaSO4 5.086e-03 5.099e-03 -2.294 -2.293 0.001 9.78 + HSO4- 2.415e-07 2.052e-07 -6.617 -6.688 -0.071 41.56 + CaHSO4+ 9.714e-09 8.252e-09 -8.013 -8.083 -0.071 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(336 K, 1 atm) - Anhydrite 0.00 -4.75 -4.75 CaSO4 - Gypsum -0.08 -4.75 -4.66 CaSO4:2H2O - H2(g) -30.18 -33.32 -3.14 H2 + Anhydrite 0.00 -4.96 -4.96 CaSO4 + Gypsum -0.14 -4.96 -4.82 CaSO4:2H2O + H2(g) -30.12 -33.26 -3.14 H2 H2O(g) -0.65 -0.00 0.65 H2O - H2S(g) -99.13 -107.05 -7.92 H2S + H2S(g) -98.95 -106.88 -7.92 H2S O2(g) -11.80 -14.87 -3.07 O2 - Sulfur -74.52 -70.42 4.09 S + Sulfur -74.40 -70.31 4.09 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3361,74 +3361,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite 0.00 -4.76 -4.76 1.000e+00 1.987e+00 9.871e-01 -Gypsum -0.09 -4.76 -4.67 1.000e+00 0 -1.000e+00 +Anhydrite 0.00 -4.97 -4.97 1.000e+00 1.988e+00 9.885e-01 +Gypsum -0.15 -4.97 -4.83 1.000e+00 0 -1.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.247e-02 1.292e-02 - S 1.247e-02 1.292e-02 + Ca 1.111e-02 1.151e-02 + S 1.111e-02 1.151e-02 ----------------------------Description of solution---------------------------- - pH = 6.618 Charge balance + pH = 6.591 Charge balance pe = 8.328 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 64°C) = 4069 - Density (g/cm³) = 0.98269 - Volume (L) = 1.05607 - Viscosity (mPa s) = 0.44309 + Specific Conductance (µS/cm, 64°C) = 2814 + Density (g/cm³) = 0.98253 + Volume (L) = 1.05605 + Viscosity (mPa s) = 0.44252 Activity of water = 1.000 - Ionic strength (mol/kgw) = 3.395e-02 + Ionic strength (mol/kgw) = 2.432e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 64.00 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 14 Total H = 1.150124e+02 - Total O = 5.755791e+01 + Total O = 5.755226e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 5.996e-07 4.948e-07 -6.222 -6.306 -0.083 -3.81 - H+ 2.802e-07 2.411e-07 -6.553 -6.618 -0.065 0.00 - H2O 5.551e+01 9.996e-01 1.744 -0.000 0.000 18.36 -Ca 1.247e-02 - Ca+2 8.488e-03 4.210e-03 -2.071 -2.376 -0.305 -17.85 - CaSO4 3.986e-03 4.018e-03 -2.399 -2.396 0.003 8.44 - CaHSO4+ 1.550e-08 1.289e-08 -7.810 -7.890 -0.080 (0) - CaOH+ 3.483e-09 2.897e-09 -8.458 -8.538 -0.080 (0) -H(0) 1.281e-33 - H2 6.407e-34 6.457e-34 -33.193 -33.190 0.003 28.58 -O(0) 2.677e-15 - O2 1.338e-15 1.349e-15 -14.873 -14.870 0.003 32.55 + OH- 5.504e-07 4.657e-07 -6.259 -6.332 -0.073 -3.86 + H+ 2.931e-07 2.562e-07 -6.533 -6.591 -0.058 0.00 + H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.36 +Ca 1.111e-02 + Ca+2 6.079e-03 3.277e-03 -2.216 -2.484 -0.268 -17.94 + CaSO4 5.031e-03 5.043e-03 -2.298 -2.297 0.001 9.83 + CaHSO4+ 9.804e-09 8.339e-09 -8.009 -8.079 -0.070 (0) + CaOH+ 2.495e-09 2.122e-09 -8.603 -8.673 -0.070 (0) +H(0) 1.451e-33 + H2 7.254e-34 7.294e-34 -33.139 -33.137 0.002 28.58 +O(0) 2.687e-15 + O2 1.343e-15 1.351e-15 -14.872 -14.869 0.002 32.55 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -99.929 -100.012 -0.083 21.25 - H2S 0.000e+00 0.000e+00 -100.034 -100.030 0.003 42.71 - S-2 0.000e+00 0.000e+00 -104.977 -105.287 -0.310 (0) - (H2S)2 0.000e+00 0.000e+00 -201.028 -201.025 0.003 27.81 -S(6) 1.247e-02 - SO4-2 8.488e-03 4.143e-03 -2.071 -2.383 -0.311 21.50 - CaSO4 3.986e-03 4.018e-03 -2.399 -2.396 0.003 8.44 - HSO4- 3.062e-07 2.547e-07 -6.514 -6.594 -0.080 41.59 - CaHSO4+ 1.550e-08 1.289e-08 -7.810 -7.890 -0.080 (0) + HS- 0.000e+00 0.000e+00 -99.808 -99.881 -0.073 21.22 + H2S 0.000e+00 0.000e+00 -99.875 -99.872 0.002 42.71 + S-2 0.000e+00 0.000e+00 -104.909 -105.182 -0.272 (0) + (H2S)2 0.000e+00 0.000e+00 -200.712 -200.709 0.002 27.81 +S(6) 1.111e-02 + SO4-2 6.079e-03 3.240e-03 -2.216 -2.489 -0.273 16.29 + CaSO4 5.031e-03 5.043e-03 -2.298 -2.297 0.001 9.83 + HSO4- 2.488e-07 2.116e-07 -6.604 -6.674 -0.070 41.56 + CaHSO4+ 9.804e-09 8.339e-09 -8.009 -8.079 -0.070 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(337 K, 1 atm) - Anhydrite 0.00 -4.76 -4.76 CaSO4 - Gypsum -0.09 -4.76 -4.67 CaSO4:2H2O - H2(g) -30.05 -33.19 -3.14 H2 + Anhydrite 0.00 -4.97 -4.97 CaSO4 + Gypsum -0.15 -4.97 -4.83 CaSO4:2H2O + H2(g) -30.00 -33.14 -3.14 H2 H2O(g) -0.63 -0.00 0.63 H2O - H2S(g) -98.71 -106.63 -7.92 H2S + H2S(g) -98.55 -106.47 -7.92 H2S O2(g) -11.79 -14.87 -3.08 O2 - Sulfur -74.22 -70.14 4.08 S + Sulfur -74.11 -70.03 4.08 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3444,74 +3444,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite 0.00 -4.77 -4.77 1.000e+00 1.987e+00 9.873e-01 -Gypsum -0.10 -4.77 -4.67 1.000e+00 0 -1.000e+00 +Anhydrite 0.00 -4.99 -4.99 1.000e+00 1.989e+00 9.887e-01 +Gypsum -0.16 -4.99 -4.84 1.000e+00 0 -1.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.222e-02 1.266e-02 - S 1.222e-02 1.266e-02 + Ca 1.090e-02 1.129e-02 + S 1.090e-02 1.129e-02 ----------------------------Description of solution---------------------------- - pH = 6.608 Charge balance - pe = 8.273 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 65°C) = 4050 - Density (g/cm³) = 0.98212 - Volume (L) = 1.05665 - Viscosity (mPa s) = 0.43668 + pH = 6.581 Charge balance + pe = 8.274 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 65°C) = 2784 + Density (g/cm³) = 0.98196 + Volume (L) = 1.05663 + Viscosity (mPa s) = 0.43612 Activity of water = 1.000 - Ionic strength (mol/kgw) = 3.331e-02 + Ionic strength (mol/kgw) = 2.370e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 65.00 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 14 Total H = 1.150124e+02 - Total O = 5.755684e+01 + Total O = 5.755139e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 6.167e-07 5.095e-07 -6.210 -6.293 -0.083 -3.84 - H+ 2.864e-07 2.466e-07 -6.543 -6.608 -0.065 0.00 + OH- 5.650e-07 4.787e-07 -6.248 -6.320 -0.072 -3.89 + H+ 3.000e-07 2.625e-07 -6.523 -6.581 -0.058 0.00 H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.37 -Ca 1.222e-02 - Ca+2 8.328e-03 4.145e-03 -2.079 -2.382 -0.303 -17.87 - CaSO4 3.888e-03 3.918e-03 -2.410 -2.407 0.003 8.45 - CaHSO4+ 1.578e-08 1.314e-08 -7.802 -7.881 -0.080 (0) - CaOH+ 3.350e-09 2.789e-09 -8.475 -8.555 -0.080 (0) -H(0) 1.710e-33 - H2 8.551e-34 8.617e-34 -33.068 -33.065 0.003 28.58 -O(0) 2.683e-15 - O2 1.342e-15 1.352e-15 -14.872 -14.869 0.003 32.59 +Ca 1.090e-02 + Ca+2 5.926e-03 3.210e-03 -2.227 -2.493 -0.266 -17.97 + CaSO4 4.975e-03 4.987e-03 -2.303 -2.302 0.001 9.87 + CaHSO4+ 9.892e-09 8.425e-09 -8.005 -8.074 -0.070 (0) + CaOH+ 2.383e-09 2.029e-09 -8.623 -8.693 -0.070 (0) +H(0) 1.929e-33 + H2 9.645e-34 9.698e-34 -33.016 -33.013 0.002 28.58 +O(0) 2.681e-15 + O2 1.341e-15 1.348e-15 -14.873 -14.870 0.002 32.59 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -99.527 -99.610 -0.083 21.24 - H2S 0.000e+00 0.000e+00 -99.626 -99.623 0.003 42.82 - S-2 0.000e+00 0.000e+00 -104.562 -104.871 -0.308 (0) - (H2S)2 0.000e+00 0.000e+00 -200.207 -200.204 0.003 27.73 -S(6) 1.222e-02 - SO4-2 8.328e-03 4.080e-03 -2.079 -2.389 -0.310 21.40 - CaSO4 3.888e-03 3.918e-03 -2.410 -2.407 0.003 8.45 - HSO4- 3.167e-07 2.636e-07 -6.499 -6.579 -0.080 41.59 - CaHSO4+ 1.578e-08 1.314e-08 -7.802 -7.881 -0.080 (0) + HS- 0.000e+00 0.000e+00 -99.414 -99.486 -0.072 21.20 + H2S 0.000e+00 0.000e+00 -99.475 -99.472 0.002 42.82 + S-2 0.000e+00 0.000e+00 -104.504 -104.774 -0.270 (0) + (H2S)2 0.000e+00 0.000e+00 -199.906 -199.903 0.002 27.73 +S(6) 1.090e-02 + SO4-2 5.926e-03 3.174e-03 -2.227 -2.498 -0.271 16.24 + CaSO4 4.975e-03 4.987e-03 -2.303 -2.302 0.001 9.87 + HSO4- 2.563e-07 2.183e-07 -6.591 -6.661 -0.070 41.56 + CaHSO4+ 9.892e-09 8.425e-09 -8.005 -8.074 -0.070 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(338 K, 1 atm) - Anhydrite 0.00 -4.77 -4.77 CaSO4 - Gypsum -0.10 -4.77 -4.67 CaSO4:2H2O - H2(g) -29.93 -33.06 -3.14 H2 + Anhydrite 0.00 -4.99 -4.99 CaSO4 + Gypsum -0.16 -4.99 -4.84 CaSO4:2H2O + H2(g) -29.88 -33.01 -3.14 H2 H2O(g) -0.61 -0.00 0.61 H2O - H2S(g) -98.29 -106.22 -7.92 H2S + H2S(g) -98.14 -106.07 -7.92 H2S O2(g) -11.79 -14.87 -3.08 O2 - Sulfur -73.92 -69.86 4.06 S + Sulfur -73.82 -69.76 4.06 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3527,74 +3527,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite 0.00 -4.79 -4.79 1.000e+00 1.988e+00 9.876e-01 -Gypsum -0.11 -4.79 -4.67 1.000e+00 0 -1.000e+00 +Anhydrite 0.00 -5.01 -5.01 1.000e+00 1.989e+00 9.889e-01 +Gypsum -0.16 -5.01 -4.85 1.000e+00 0 -1.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.196e-02 1.239e-02 - S 1.196e-02 1.239e-02 + Ca 1.070e-02 1.108e-02 + S 1.070e-02 1.108e-02 ----------------------------Description of solution---------------------------- - pH = 6.598 Charge balance - pe = 8.218 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 66°C) = 4030 - Density (g/cm³) = 0.98154 - Volume (L) = 1.05724 - Viscosity (mPa s) = 0.43043 + pH = 6.571 Charge balance + pe = 8.222 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 66°C) = 2754 + Density (g/cm³) = 0.98139 + Volume (L) = 1.05722 + Viscosity (mPa s) = 0.42986 Activity of water = 1.000 - Ionic strength (mol/kgw) = 3.268e-02 + Ionic strength (mol/kgw) = 2.311e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 66.00 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 14 Total H = 1.150124e+02 - Total O = 5.755579e+01 + Total O = 5.755055e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 6.341e-07 5.244e-07 -6.198 -6.280 -0.082 -3.87 - H+ 2.927e-07 2.522e-07 -6.534 -6.598 -0.065 0.00 + OH- 5.798e-07 4.920e-07 -6.237 -6.308 -0.071 -3.92 + H+ 3.070e-07 2.688e-07 -6.513 -6.571 -0.058 0.00 H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.38 -Ca 1.196e-02 - Ca+2 8.171e-03 4.081e-03 -2.088 -2.389 -0.301 -17.89 - CaSO4 3.793e-03 3.821e-03 -2.421 -2.418 0.003 8.47 - CaHSO4+ 1.606e-08 1.338e-08 -7.794 -7.873 -0.079 (0) - CaOH+ 3.222e-09 2.685e-09 -8.492 -8.571 -0.079 (0) -H(0) 2.284e-33 - H2 1.142e-33 1.151e-33 -32.942 -32.939 0.003 28.58 -O(0) 2.676e-15 - O2 1.338e-15 1.348e-15 -14.873 -14.870 0.003 32.63 +Ca 1.070e-02 + Ca+2 5.777e-03 3.144e-03 -2.238 -2.502 -0.264 -18.00 + CaSO4 4.920e-03 4.931e-03 -2.308 -2.307 0.001 9.91 + CaHSO4+ 9.979e-09 8.510e-09 -8.001 -8.070 -0.069 (0) + CaOH+ 2.276e-09 1.941e-09 -8.643 -8.712 -0.069 (0) +H(0) 2.560e-33 + H2 1.280e-33 1.287e-33 -32.893 -32.890 0.002 28.58 +O(0) 2.675e-15 + O2 1.337e-15 1.344e-15 -14.874 -14.871 0.002 32.63 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -99.123 -99.205 -0.082 21.22 - H2S 0.000e+00 0.000e+00 -99.216 -99.213 0.003 42.94 - S-2 0.000e+00 0.000e+00 -104.146 -104.453 -0.307 (0) - (H2S)2 0.000e+00 0.000e+00 -199.383 -199.380 0.003 27.65 -S(6) 1.196e-02 - SO4-2 8.170e-03 4.018e-03 -2.088 -2.396 -0.308 21.29 - CaSO4 3.793e-03 3.821e-03 -2.421 -2.418 0.003 8.47 - HSO4- 3.274e-07 2.728e-07 -6.485 -6.564 -0.079 41.59 - CaHSO4+ 1.606e-08 1.338e-08 -7.794 -7.873 -0.079 (0) + HS- 0.000e+00 0.000e+00 -99.023 -99.095 -0.071 21.18 + H2S 0.000e+00 0.000e+00 -99.077 -99.075 0.002 42.94 + S-2 0.000e+00 0.000e+00 -104.102 -104.370 -0.268 (0) + (H2S)2 0.000e+00 0.000e+00 -199.106 -199.104 0.002 27.65 +S(6) 1.070e-02 + SO4-2 5.777e-03 3.110e-03 -2.238 -2.507 -0.269 16.20 + CaSO4 4.920e-03 4.931e-03 -2.308 -2.307 0.001 9.91 + HSO4- 2.640e-07 2.251e-07 -6.578 -6.648 -0.069 41.55 + CaHSO4+ 9.979e-09 8.510e-09 -8.001 -8.070 -0.069 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(339 K, 1 atm) - Anhydrite 0.00 -4.79 -4.79 CaSO4 - Gypsum -0.11 -4.79 -4.67 CaSO4:2H2O - H2(g) -29.80 -32.94 -3.14 H2 + Anhydrite 0.00 -5.01 -5.01 CaSO4 + Gypsum -0.16 -5.01 -4.85 CaSO4:2H2O + H2(g) -29.75 -32.89 -3.14 H2 H2O(g) -0.59 -0.00 0.59 H2O - H2S(g) -97.88 -105.80 -7.92 H2S + H2S(g) -97.74 -105.67 -7.92 H2S O2(g) -11.79 -14.87 -3.08 O2 - Sulfur -73.62 -69.58 4.04 S + Sulfur -73.53 -69.49 4.04 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3610,74 +3610,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite 0.00 -4.80 -4.80 1.000e+00 1.988e+00 9.879e-01 -Gypsum -0.12 -4.80 -4.68 1.000e+00 0 -1.000e+00 +Anhydrite 0.00 -5.03 -5.03 1.000e+00 1.989e+00 9.891e-01 +Gypsum -0.17 -5.03 -4.86 1.000e+00 0 -1.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.171e-02 1.214e-02 - S 1.171e-02 1.214e-02 + Ca 1.050e-02 1.087e-02 + S 1.050e-02 1.087e-02 ----------------------------Description of solution---------------------------- - pH = 6.589 Charge balance - pe = 8.164 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 67°C) = 4010 - Density (g/cm³) = 0.98095 - Volume (L) = 1.05783 - Viscosity (mPa s) = 0.42433 + pH = 6.560 Charge balance + pe = 8.170 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 67°C) = 2724 + Density (g/cm³) = 0.98081 + Volume (L) = 1.05781 + Viscosity (mPa s) = 0.42376 Activity of water = 1.000 - Ionic strength (mol/kgw) = 3.206e-02 + Ionic strength (mol/kgw) = 2.253e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 67.00 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 14 Total H = 1.150124e+02 - Total O = 5.755476e+01 + Total O = 5.754971e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 6.519e-07 5.397e-07 -6.186 -6.268 -0.082 -3.90 - H+ 2.990e-07 2.578e-07 -6.524 -6.589 -0.064 0.00 + OH- 5.949e-07 5.055e-07 -6.226 -6.296 -0.071 -3.95 + H+ 3.140e-07 2.752e-07 -6.503 -6.560 -0.057 0.00 H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.39 -Ca 1.171e-02 - Ca+2 8.016e-03 4.018e-03 -2.096 -2.396 -0.300 -17.92 - CaSO4 3.699e-03 3.726e-03 -2.432 -2.429 0.003 8.48 - CaHSO4+ 1.635e-08 1.363e-08 -7.787 -7.865 -0.079 (0) - CaOH+ 3.100e-09 2.586e-09 -8.509 -8.587 -0.079 (0) -H(0) 3.038e-33 - H2 1.519e-33 1.530e-33 -32.818 -32.815 0.003 28.58 -O(0) 2.684e-15 - O2 1.342e-15 1.352e-15 -14.872 -14.869 0.003 32.67 +Ca 1.050e-02 + Ca+2 5.632e-03 3.080e-03 -2.249 -2.511 -0.262 -18.02 + CaSO4 4.864e-03 4.875e-03 -2.313 -2.312 0.001 9.95 + CaHSO4+ 1.006e-08 8.593e-09 -7.997 -8.066 -0.069 (0) + CaOH+ 2.174e-09 1.856e-09 -8.663 -8.731 -0.069 (0) +H(0) 3.385e-33 + H2 1.692e-33 1.701e-33 -32.772 -32.769 0.002 28.58 +O(0) 2.676e-15 + O2 1.338e-15 1.345e-15 -14.874 -14.871 0.002 32.67 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -98.726 -98.808 -0.082 21.21 - H2S 0.000e+00 0.000e+00 -98.814 -98.811 0.003 43.05 - S-2 0.000e+00 0.000e+00 -103.737 -104.042 -0.305 (0) - (H2S)2 0.000e+00 0.000e+00 -198.573 -198.570 0.003 27.57 -S(6) 1.171e-02 - SO4-2 8.015e-03 3.957e-03 -2.096 -2.403 -0.307 21.19 - CaSO4 3.699e-03 3.726e-03 -2.432 -2.429 0.003 8.48 - HSO4- 3.384e-07 2.823e-07 -6.471 -6.549 -0.079 41.59 - CaHSO4+ 1.635e-08 1.363e-08 -7.787 -7.865 -0.079 (0) + HS- 0.000e+00 0.000e+00 -98.638 -98.709 -0.071 21.16 + H2S 0.000e+00 0.000e+00 -98.686 -98.684 0.002 43.05 + S-2 0.000e+00 0.000e+00 -103.706 -103.972 -0.266 (0) + (H2S)2 0.000e+00 0.000e+00 -198.318 -198.316 0.002 27.57 +S(6) 1.050e-02 + SO4-2 5.631e-03 3.047e-03 -2.249 -2.516 -0.267 16.15 + CaSO4 4.864e-03 4.875e-03 -2.313 -2.312 0.001 9.95 + HSO4- 2.718e-07 2.321e-07 -6.566 -6.634 -0.069 41.55 + CaHSO4+ 1.006e-08 8.593e-09 -7.997 -8.066 -0.069 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(340 K, 1 atm) - Anhydrite 0.00 -4.80 -4.80 CaSO4 - Gypsum -0.12 -4.80 -4.68 CaSO4:2H2O - H2(g) -29.68 -32.82 -3.14 H2 + Anhydrite 0.00 -5.03 -5.03 CaSO4 + Gypsum -0.17 -5.03 -4.86 CaSO4:2H2O + H2(g) -29.63 -32.77 -3.14 H2 H2O(g) -0.57 -0.00 0.57 H2O - H2S(g) -97.47 -105.40 -7.93 H2S + H2S(g) -97.34 -105.27 -7.93 H2S O2(g) -11.79 -14.87 -3.08 O2 - Sulfur -73.33 -69.30 4.02 S + Sulfur -73.25 -69.22 4.02 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3693,74 +3693,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite 0.00 -4.81 -4.81 1.000e+00 1.988e+00 9.881e-01 -Gypsum -0.13 -4.81 -4.68 1.000e+00 0 -1.000e+00 +Anhydrite 0.00 -5.05 -5.05 1.000e+00 1.989e+00 9.893e-01 +Gypsum -0.18 -5.05 -4.87 1.000e+00 0 -1.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.147e-02 1.188e-02 - S 1.147e-02 1.188e-02 + Ca 1.030e-02 1.067e-02 + S 1.030e-02 1.067e-02 ----------------------------Description of solution---------------------------- - pH = 6.579 Charge balance - pe = 8.110 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 68°C) = 3989 - Density (g/cm³) = 0.98037 - Volume (L) = 1.05843 - Viscosity (mPa s) = 0.41837 + pH = 6.550 Charge balance + pe = 8.118 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 68°C) = 2694 + Density (g/cm³) = 0.98023 + Volume (L) = 1.05841 + Viscosity (mPa s) = 0.41780 Activity of water = 1.000 - Ionic strength (mol/kgw) = 3.145e-02 + Ionic strength (mol/kgw) = 2.196e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 68.00 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 14 Total H = 1.150124e+02 - Total O = 5.755375e+01 + Total O = 5.754889e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 6.700e-07 5.553e-07 -6.174 -6.255 -0.082 -3.93 - H+ 3.054e-07 2.634e-07 -6.515 -6.579 -0.064 0.00 + OH- 6.102e-07 5.192e-07 -6.215 -6.285 -0.070 -3.99 + H+ 3.212e-07 2.818e-07 -6.493 -6.550 -0.057 0.00 H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.40 -Ca 1.147e-02 - Ca+2 7.864e-03 3.955e-03 -2.104 -2.403 -0.298 -17.95 - CaSO4 3.606e-03 3.633e-03 -2.443 -2.440 0.003 8.50 - CaHSO4+ 1.663e-08 1.388e-08 -7.779 -7.858 -0.078 (0) - CaOH+ 2.984e-09 2.491e-09 -8.525 -8.604 -0.078 (0) -H(0) 4.040e-33 - H2 2.020e-33 2.035e-33 -32.695 -32.692 0.003 28.58 -O(0) 2.683e-15 - O2 1.342e-15 1.351e-15 -14.872 -14.869 0.003 32.71 +Ca 1.030e-02 + Ca+2 5.490e-03 3.016e-03 -2.260 -2.521 -0.260 -18.05 + CaSO4 4.808e-03 4.819e-03 -2.318 -2.317 0.001 9.99 + CaHSO4+ 1.015e-08 8.675e-09 -7.994 -8.062 -0.068 (0) + CaOH+ 2.077e-09 1.776e-09 -8.682 -8.751 -0.068 (0) +H(0) 4.465e-33 + H2 2.232e-33 2.244e-33 -32.651 -32.649 0.002 28.58 +O(0) 2.679e-15 + O2 1.339e-15 1.346e-15 -14.873 -14.871 0.002 32.71 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -98.329 -98.410 -0.082 21.19 - H2S 0.000e+00 0.000e+00 -98.411 -98.408 0.003 43.16 - S-2 0.000e+00 0.000e+00 -103.327 -103.631 -0.304 (0) - (H2S)2 0.000e+00 0.000e+00 -197.763 -197.760 0.003 27.49 -S(6) 1.147e-02 - SO4-2 7.863e-03 3.896e-03 -2.104 -2.409 -0.305 21.08 - CaSO4 3.606e-03 3.633e-03 -2.443 -2.440 0.003 8.50 - HSO4- 3.498e-07 2.920e-07 -6.456 -6.535 -0.078 41.59 - CaHSO4+ 1.663e-08 1.388e-08 -7.779 -7.858 -0.078 (0) + HS- 0.000e+00 0.000e+00 -98.257 -98.327 -0.070 21.15 + H2S 0.000e+00 0.000e+00 -98.298 -98.296 0.002 43.16 + S-2 0.000e+00 0.000e+00 -103.313 -103.577 -0.264 (0) + (H2S)2 0.000e+00 0.000e+00 -197.537 -197.535 0.002 27.49 +S(6) 1.030e-02 + SO4-2 5.489e-03 2.985e-03 -2.260 -2.525 -0.265 16.09 + CaSO4 4.808e-03 4.819e-03 -2.318 -2.317 0.001 9.99 + HSO4- 2.798e-07 2.392e-07 -6.553 -6.621 -0.068 41.55 + CaHSO4+ 1.015e-08 8.675e-09 -7.994 -8.062 -0.068 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(341 K, 1 atm) - Anhydrite 0.00 -4.81 -4.81 CaSO4 - Gypsum -0.13 -4.81 -4.68 CaSO4:2H2O - H2(g) -29.55 -32.69 -3.14 H2 + Anhydrite 0.00 -5.05 -5.05 CaSO4 + Gypsum -0.18 -5.05 -4.87 CaSO4:2H2O + H2(g) -29.51 -32.65 -3.14 H2 H2O(g) -0.55 -0.00 0.55 H2O - H2S(g) -97.06 -104.99 -7.93 H2S - O2(g) -11.78 -14.87 -3.08 O2 - Sulfur -73.03 -69.03 4.00 S + H2S(g) -96.95 -104.88 -7.93 H2S + O2(g) -11.79 -14.87 -3.08 O2 + Sulfur -72.96 -68.96 4.00 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3776,74 +3776,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite 0.00 -4.83 -4.83 1.000e+00 1.988e+00 9.884e-01 -Gypsum -0.14 -4.83 -4.69 1.000e+00 0 -1.000e+00 +Anhydrite 0.00 -5.06 -5.06 1.000e+00 1.990e+00 9.895e-01 +Gypsum -0.19 -5.06 -4.88 1.000e+00 0 -1.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.123e-02 1.163e-02 - S 1.123e-02 1.163e-02 + Ca 1.010e-02 1.047e-02 + S 1.010e-02 1.047e-02 ----------------------------Description of solution---------------------------- - pH = 6.570 Charge balance - pe = 8.057 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 69°C) = 3968 - Density (g/cm³) = 0.97977 - Volume (L) = 1.05904 - Viscosity (mPa s) = 0.41255 + pH = 6.540 Charge balance + pe = 8.067 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 69°C) = 2664 + Density (g/cm³) = 0.97964 + Volume (L) = 1.05902 + Viscosity (mPa s) = 0.41198 Activity of water = 1.000 - Ionic strength (mol/kgw) = 3.086e-02 + Ionic strength (mol/kgw) = 2.140e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 69.00 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 14 Total H = 1.150124e+02 - Total O = 5.755276e+01 + Total O = 5.754809e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 6.884e-07 5.712e-07 -6.162 -6.243 -0.081 -3.97 - H+ 3.118e-07 2.692e-07 -6.506 -6.570 -0.064 0.00 + OH- 6.258e-07 5.332e-07 -6.204 -6.273 -0.070 -4.02 + H+ 3.284e-07 2.883e-07 -6.484 -6.540 -0.056 0.00 H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.42 -Ca 1.123e-02 - Ca+2 7.714e-03 3.893e-03 -2.113 -2.410 -0.297 -17.97 - CaSO4 3.516e-03 3.541e-03 -2.454 -2.451 0.003 8.51 - CaHSO4+ 1.692e-08 1.413e-08 -7.772 -7.850 -0.078 (0) - CaOH+ 2.872e-09 2.400e-09 -8.542 -8.620 -0.078 (0) -H(0) 5.355e-33 - H2 2.678e-33 2.697e-33 -32.572 -32.569 0.003 28.58 -O(0) 2.690e-15 - O2 1.345e-15 1.355e-15 -14.871 -14.868 0.003 32.75 +Ca 1.010e-02 + Ca+2 5.351e-03 2.954e-03 -2.272 -2.530 -0.258 -18.08 + CaSO4 4.752e-03 4.763e-03 -2.323 -2.322 0.001 10.03 + CaHSO4+ 1.023e-08 8.756e-09 -7.990 -8.058 -0.067 (0) + CaOH+ 1.986e-09 1.700e-09 -8.702 -8.770 -0.067 (0) +H(0) 5.877e-33 + H2 2.939e-33 2.953e-33 -32.532 -32.530 0.002 28.58 +O(0) 2.681e-15 + O2 1.340e-15 1.347e-15 -14.873 -14.871 0.002 32.75 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -97.937 -98.018 -0.081 21.17 - H2S 0.000e+00 0.000e+00 -98.014 -98.010 0.003 43.27 - S-2 0.000e+00 0.000e+00 -102.923 -103.225 -0.302 (0) - (H2S)2 0.000e+00 0.000e+00 -196.962 -196.959 0.003 27.41 -S(6) 1.123e-02 - SO4-2 7.714e-03 3.837e-03 -2.113 -2.416 -0.303 20.97 - CaSO4 3.516e-03 3.541e-03 -2.454 -2.451 0.003 8.51 - HSO4- 3.614e-07 3.019e-07 -6.442 -6.520 -0.078 41.58 - CaHSO4+ 1.692e-08 1.413e-08 -7.772 -7.850 -0.078 (0) + HS- 0.000e+00 0.000e+00 -97.879 -97.948 -0.070 21.12 + H2S 0.000e+00 0.000e+00 -97.913 -97.911 0.002 43.27 + S-2 0.000e+00 0.000e+00 -102.924 -103.185 -0.262 (0) + (H2S)2 0.000e+00 0.000e+00 -196.762 -196.760 0.002 27.41 +S(6) 1.010e-02 + SO4-2 5.351e-03 2.924e-03 -2.272 -2.534 -0.262 16.04 + CaSO4 4.752e-03 4.763e-03 -2.323 -2.322 0.001 10.03 + HSO4- 2.880e-07 2.465e-07 -6.541 -6.608 -0.067 41.54 + CaHSO4+ 1.023e-08 8.756e-09 -7.990 -8.058 -0.067 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(342 K, 1 atm) - Anhydrite 0.00 -4.83 -4.83 CaSO4 - Gypsum -0.14 -4.83 -4.69 CaSO4:2H2O - H2(g) -29.43 -32.57 -3.14 H2 + Anhydrite 0.00 -5.06 -5.06 CaSO4 + Gypsum -0.19 -5.06 -4.88 CaSO4:2H2O + H2(g) -29.39 -32.53 -3.14 H2 H2O(g) -0.53 -0.00 0.53 H2O - H2S(g) -96.66 -104.59 -7.93 H2S + H2S(g) -96.56 -104.49 -7.93 H2S O2(g) -11.78 -14.87 -3.09 O2 - Sulfur -72.74 -68.76 3.99 S + Sulfur -72.68 -68.70 3.99 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3859,26 +3859,26 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite 0.00 -4.84 -4.84 1.000e+00 1.989e+00 9.886e-01 -Gypsum -0.15 -4.84 -4.69 1.000e+00 0 -1.000e+00 +Anhydrite 0.00 -5.08 -5.08 1.000e+00 1.990e+00 9.897e-01 +Gypsum -0.19 -5.08 -4.89 1.000e+00 0 -1.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.099e-02 1.139e-02 - S 1.099e-02 1.139e-02 + Ca 9.912e-03 1.027e-02 + S 9.912e-03 1.027e-02 ----------------------------Description of solution---------------------------- - pH = 6.561 Charge balance - pe = 8.003 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 70°C) = 3946 - Density (g/cm³) = 0.97917 - Volume (L) = 1.05965 - Viscosity (mPa s) = 0.40686 + pH = 6.530 Charge balance + pe = 8.016 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 70°C) = 2633 + Density (g/cm³) = 0.97904 + Volume (L) = 1.05964 + Viscosity (mPa s) = 0.40630 Activity of water = 1.000 - Ionic strength (mol/kgw) = 3.027e-02 + Ionic strength (mol/kgw) = 2.086e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 70.00 @@ -3886,47 +3886,47 @@ Gypsum -0.15 -4.84 -4.69 1.000e+00 0 -1.000e+00 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 14 Total H = 1.150124e+02 - Total O = 5.755178e+01 + Total O = 5.754729e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 7.072e-07 5.874e-07 -6.150 -6.231 -0.081 -4.00 - H+ 3.183e-07 2.749e-07 -6.497 -6.561 -0.064 0.00 + OH- 6.416e-07 5.475e-07 -6.193 -6.262 -0.069 -4.06 + H+ 3.357e-07 2.950e-07 -6.474 -6.530 -0.056 0.00 H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.43 -Ca 1.099e-02 - Ca+2 7.567e-03 3.832e-03 -2.121 -2.417 -0.295 -18.00 - CaSO4 3.428e-03 3.452e-03 -2.465 -2.462 0.003 8.53 - CaHSO4+ 1.720e-08 1.438e-08 -7.764 -7.842 -0.078 (0) - CaOH+ 2.765e-09 2.312e-09 -8.558 -8.636 -0.078 (0) -H(0) 7.103e-33 - H2 3.551e-33 3.576e-33 -32.450 -32.447 0.003 28.58 -O(0) 2.685e-15 - O2 1.343e-15 1.352e-15 -14.872 -14.869 0.003 32.79 +Ca 9.912e-03 + Ca+2 5.216e-03 2.893e-03 -2.283 -2.539 -0.256 -18.11 + CaSO4 4.696e-03 4.706e-03 -2.328 -2.327 0.001 10.07 + CaHSO4+ 1.031e-08 8.835e-09 -7.987 -8.054 -0.067 (0) + CaOH+ 1.898e-09 1.627e-09 -8.722 -8.789 -0.067 (0) +H(0) 7.729e-33 + H2 3.864e-33 3.883e-33 -32.413 -32.411 0.002 28.58 +O(0) 2.677e-15 + O2 1.339e-15 1.345e-15 -14.873 -14.871 0.002 32.79 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -97.543 -97.624 -0.081 21.15 - H2S 0.000e+00 0.000e+00 -97.614 -97.611 0.003 43.37 - S-2 0.000e+00 0.000e+00 -102.517 -102.818 -0.300 (0) - (H2S)2 0.000e+00 0.000e+00 -196.159 -196.156 0.003 27.32 -S(6) 1.099e-02 - SO4-2 7.567e-03 3.778e-03 -2.121 -2.423 -0.302 20.86 - CaSO4 3.428e-03 3.452e-03 -2.465 -2.462 0.003 8.53 - HSO4- 3.733e-07 3.122e-07 -6.428 -6.506 -0.078 41.58 - CaHSO4+ 1.720e-08 1.438e-08 -7.764 -7.842 -0.078 (0) + HS- 0.000e+00 0.000e+00 -97.502 -97.570 -0.069 21.10 + H2S 0.000e+00 0.000e+00 -97.530 -97.527 0.002 43.37 + S-2 0.000e+00 0.000e+00 -102.536 -102.795 -0.259 (0) + (H2S)2 0.000e+00 0.000e+00 -195.990 -195.988 0.002 27.32 +S(6) 9.912e-03 + SO4-2 5.216e-03 2.864e-03 -2.283 -2.543 -0.260 15.98 + CaSO4 4.696e-03 4.706e-03 -2.328 -2.327 0.001 10.07 + HSO4- 2.964e-07 2.540e-07 -6.528 -6.595 -0.067 41.54 + CaHSO4+ 1.031e-08 8.835e-09 -7.987 -8.054 -0.067 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(343 K, 1 atm) - Anhydrite 0.00 -4.84 -4.84 CaSO4 - Gypsum -0.15 -4.84 -4.69 CaSO4:2H2O - H2(g) -29.31 -32.45 -3.14 H2 + Anhydrite 0.00 -5.08 -5.08 CaSO4 + Gypsum -0.19 -5.08 -4.89 CaSO4:2H2O + H2(g) -29.27 -32.41 -3.14 H2 H2O(g) -0.52 -0.00 0.51 H2O - H2S(g) -96.25 -104.18 -7.93 H2S + H2S(g) -96.17 -104.10 -7.93 H2S O2(g) -11.78 -14.87 -3.09 O2 - Sulfur -72.45 -68.48 3.97 S + Sulfur -72.40 -68.44 3.97 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3942,26 +3942,26 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite 0.00 -4.85 -4.85 1.000e+00 1.989e+00 9.888e-01 -Gypsum -0.16 -4.85 -4.70 1.000e+00 0 -1.000e+00 +Anhydrite 0.00 -5.10 -5.10 1.000e+00 1.990e+00 9.899e-01 +Gypsum -0.20 -5.10 -4.90 1.000e+00 0 -1.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.076e-02 1.115e-02 - S 1.076e-02 1.115e-02 + Ca 9.724e-03 1.007e-02 + S 9.724e-03 1.007e-02 ----------------------------Description of solution---------------------------- - pH = 6.552 Charge balance - pe = 7.950 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 71°C) = 3923 - Density (g/cm³) = 0.97857 - Volume (L) = 1.06027 - Viscosity (mPa s) = 0.40131 + pH = 6.520 Charge balance + pe = 7.965 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 71°C) = 2603 + Density (g/cm³) = 0.97844 + Volume (L) = 1.06026 + Viscosity (mPa s) = 0.40075 Activity of water = 1.000 - Ionic strength (mol/kgw) = 2.969e-02 + Ionic strength (mol/kgw) = 2.034e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 71.00 @@ -3969,47 +3969,47 @@ Gypsum -0.16 -4.85 -4.70 1.000e+00 0 -1.000e+00 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 14 Total H = 1.150124e+02 - Total O = 5.755082e+01 + Total O = 5.754652e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 7.264e-07 6.040e-07 -6.139 -6.219 -0.080 -4.04 - H+ 3.249e-07 2.808e-07 -6.488 -6.552 -0.063 0.00 + OH- 6.577e-07 5.620e-07 -6.182 -6.250 -0.068 -4.09 + H+ 3.431e-07 3.018e-07 -6.465 -6.520 -0.056 0.00 H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.44 -Ca 1.076e-02 - Ca+2 7.423e-03 3.772e-03 -2.129 -2.423 -0.294 -18.03 - CaSO4 3.341e-03 3.364e-03 -2.476 -2.473 0.003 8.54 - CaHSO4+ 1.748e-08 1.464e-08 -7.757 -7.835 -0.077 (0) - CaOH+ 2.663e-09 2.229e-09 -8.575 -8.652 -0.077 (0) -H(0) 9.405e-33 - H2 4.703e-33 4.735e-33 -32.328 -32.325 0.003 28.58 -O(0) 2.681e-15 - O2 1.340e-15 1.349e-15 -14.873 -14.870 0.003 32.83 +Ca 9.724e-03 + Ca+2 5.084e-03 2.833e-03 -2.294 -2.548 -0.254 -18.14 + CaSO4 4.640e-03 4.650e-03 -2.333 -2.333 0.001 10.11 + CaHSO4+ 1.038e-08 8.913e-09 -7.984 -8.050 -0.066 (0) + CaOH+ 1.815e-09 1.558e-09 -8.741 -8.808 -0.066 (0) +H(0) 1.014e-32 + H2 5.069e-33 5.093e-33 -32.295 -32.293 0.002 28.58 +O(0) 2.676e-15 + O2 1.338e-15 1.344e-15 -14.874 -14.872 0.002 32.83 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -97.152 -97.232 -0.080 21.12 - H2S 0.000e+00 0.000e+00 -97.217 -97.215 0.003 43.48 - S-2 0.000e+00 0.000e+00 -102.114 -102.413 -0.299 (0) - (H2S)2 0.000e+00 0.000e+00 -195.361 -195.358 0.003 27.24 -S(6) 1.076e-02 - SO4-2 7.422e-03 3.719e-03 -2.129 -2.430 -0.300 20.74 - CaSO4 3.341e-03 3.364e-03 -2.476 -2.473 0.003 8.54 - HSO4- 3.856e-07 3.227e-07 -6.414 -6.491 -0.077 41.57 - CaHSO4+ 1.748e-08 1.464e-08 -7.757 -7.835 -0.077 (0) + HS- 0.000e+00 0.000e+00 -97.128 -97.197 -0.068 21.08 + H2S 0.000e+00 0.000e+00 -97.150 -97.148 0.002 43.48 + S-2 0.000e+00 0.000e+00 -102.152 -102.409 -0.257 (0) + (H2S)2 0.000e+00 0.000e+00 -195.226 -195.224 0.002 27.24 +S(6) 9.724e-03 + SO4-2 5.084e-03 2.806e-03 -2.294 -2.552 -0.258 15.91 + CaSO4 4.640e-03 4.650e-03 -2.333 -2.333 0.001 10.11 + HSO4- 3.049e-07 2.617e-07 -6.516 -6.582 -0.066 41.53 + CaHSO4+ 1.038e-08 8.913e-09 -7.984 -8.050 -0.066 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(344 K, 1 atm) - Anhydrite 0.00 -4.85 -4.85 CaSO4 - Gypsum -0.16 -4.85 -4.70 CaSO4:2H2O - H2(g) -29.19 -32.32 -3.14 H2 + Anhydrite 0.00 -5.10 -5.10 CaSO4 + Gypsum -0.20 -5.10 -4.90 CaSO4:2H2O + H2(g) -29.16 -32.29 -3.14 H2 H2O(g) -0.50 -0.00 0.50 H2O - H2S(g) -95.85 -103.78 -7.93 H2S + H2S(g) -95.79 -103.72 -7.93 H2S O2(g) -11.78 -14.87 -3.09 O2 - Sulfur -72.16 -68.21 3.95 S + Sulfur -72.13 -68.18 3.95 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4025,74 +4025,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite 0.00 -4.87 -4.87 1.000e+00 1.989e+00 9.891e-01 -Gypsum -0.17 -4.87 -4.70 1.000e+00 0 -1.000e+00 +Anhydrite 0.00 -5.12 -5.12 1.000e+00 1.990e+00 9.901e-01 +Gypsum -0.21 -5.12 -4.91 1.000e+00 0 -1.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.054e-02 1.092e-02 - S 1.054e-02 1.092e-02 + Ca 9.540e-03 9.883e-03 + S 9.540e-03 9.883e-03 ----------------------------Description of solution---------------------------- - pH = 6.543 Charge balance - pe = 7.926 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 72°C) = 3900 - Density (g/cm³) = 0.97796 - Volume (L) = 1.06090 - Viscosity (mPa s) = 0.39588 + pH = 6.511 Charge balance + pe = 7.915 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 72°C) = 2572 + Density (g/cm³) = 0.97784 + Volume (L) = 1.06089 + Viscosity (mPa s) = 0.39533 Activity of water = 1.000 - Ionic strength (mol/kgw) = 2.912e-02 + Ionic strength (mol/kgw) = 1.982e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 72.00 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 + Iterations = 14 Total H = 1.150124e+02 - Total O = 5.754988e+01 + Total O = 5.754575e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 7.459e-07 6.209e-07 -6.127 -6.207 -0.080 -4.08 - H+ 3.314e-07 2.866e-07 -6.480 -6.543 -0.063 0.00 - H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.45 -Ca 1.054e-02 - Ca+2 7.281e-03 3.713e-03 -2.138 -2.430 -0.292 -18.06 - CaSO4 3.256e-03 3.278e-03 -2.487 -2.484 0.003 8.55 - CaHSO4+ 1.777e-08 1.489e-08 -7.750 -7.827 -0.077 (0) - CaOH+ 2.565e-09 2.149e-09 -8.591 -8.668 -0.077 (0) -H(0) 1.086e-32 - H2 5.432e-33 5.469e-33 -32.265 -32.262 0.003 28.58 -O(0) 3.505e-15 - O2 1.752e-15 1.764e-15 -14.756 -14.753 0.003 32.87 + OH- 6.741e-07 5.768e-07 -6.171 -6.239 -0.068 -4.13 + H+ 3.505e-07 3.086e-07 -6.455 -6.511 -0.055 0.00 + H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.45 +Ca 9.540e-03 + Ca+2 4.956e-03 2.774e-03 -2.305 -2.557 -0.252 -18.17 + CaSO4 4.584e-03 4.593e-03 -2.339 -2.338 0.001 10.15 + CaHSO4+ 1.046e-08 8.989e-09 -7.980 -8.046 -0.066 (0) + CaOH+ 1.736e-09 1.491e-09 -8.761 -8.826 -0.066 (0) +H(0) 1.325e-32 + H2 6.625e-33 6.656e-33 -32.179 -32.177 0.002 28.58 +O(0) 2.682e-15 + O2 1.341e-15 1.347e-15 -14.873 -14.871 0.002 32.87 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -96.998 -97.077 -0.080 21.10 - H2S 0.000e+00 0.000e+00 -97.057 -97.054 0.003 43.59 - S-2 0.000e+00 0.000e+00 -101.948 -102.245 -0.297 (0) - (H2S)2 0.000e+00 0.000e+00 -195.036 -195.033 0.003 27.16 -S(6) 1.054e-02 - SO4-2 7.280e-03 3.662e-03 -2.138 -2.436 -0.298 20.63 - CaSO4 3.256e-03 3.278e-03 -2.487 -2.484 0.003 8.55 - HSO4- 3.981e-07 3.336e-07 -6.400 -6.477 -0.077 41.56 - CaHSO4+ 1.777e-08 1.489e-08 -7.750 -7.827 -0.077 (0) + HS- 0.000e+00 0.000e+00 -96.761 -96.829 -0.068 21.06 + H2S 0.000e+00 0.000e+00 -96.776 -96.774 0.002 43.59 + S-2 0.000e+00 0.000e+00 -101.773 -102.029 -0.255 (0) + (H2S)2 0.000e+00 0.000e+00 -194.474 -194.472 0.002 27.16 +S(6) 9.540e-03 + SO4-2 4.955e-03 2.748e-03 -2.305 -2.561 -0.256 15.84 + CaSO4 4.584e-03 4.593e-03 -2.339 -2.338 0.001 10.15 + HSO4- 3.136e-07 2.695e-07 -6.504 -6.569 -0.066 41.52 + CaHSO4+ 1.046e-08 8.989e-09 -7.980 -8.046 -0.066 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(345 K, 1 atm) - Anhydrite 0.00 -4.87 -4.87 CaSO4 - Gypsum -0.17 -4.87 -4.70 CaSO4:2H2O - H2(g) -29.13 -32.26 -3.13 H2 + Anhydrite 0.00 -5.12 -5.12 CaSO4 + Gypsum -0.21 -5.12 -4.91 CaSO4:2H2O + H2(g) -29.04 -32.18 -3.13 H2 H2O(g) -0.48 -0.00 0.48 H2O - H2S(g) -95.69 -103.62 -7.93 H2S - O2(g) -11.66 -14.75 -3.09 O2 - Sulfur -72.05 -68.12 3.93 S + H2S(g) -95.41 -103.34 -7.93 H2S + O2(g) -11.78 -14.87 -3.09 O2 + Sulfur -71.86 -67.92 3.93 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4108,74 +4108,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite 0.00 -4.88 -4.88 1.000e+00 1.989e+00 9.893e-01 -Gypsum -0.18 -4.88 -4.70 1.000e+00 0 -1.000e+00 +Anhydrite 0.00 -5.14 -5.14 1.000e+00 1.990e+00 9.903e-01 +Gypsum -0.22 -5.14 -4.92 1.000e+00 0 -1.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.031e-02 1.069e-02 - S 1.031e-02 1.069e-02 + Ca 9.358e-03 9.695e-03 + S 9.358e-03 9.695e-03 ----------------------------Description of solution---------------------------- - pH = 6.534 Charge balance - pe = 7.873 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 73°C) = 3876 - Density (g/cm³) = 0.97735 - Volume (L) = 1.06153 - Viscosity (mPa s) = 0.39058 + pH = 6.501 Charge balance + pe = 7.865 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 73°C) = 2541 + Density (g/cm³) = 0.97723 + Volume (L) = 1.06152 + Viscosity (mPa s) = 0.39003 Activity of water = 1.000 - Ionic strength (mol/kgw) = 2.856e-02 + Ionic strength (mol/kgw) = 1.932e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 73.00 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 + Iterations = 14 Total H = 1.150124e+02 - Total O = 5.754896e+01 + Total O = 5.754500e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 7.658e-07 6.382e-07 -6.116 -6.195 -0.079 -4.12 - H+ 3.381e-07 2.926e-07 -6.471 -6.534 -0.063 0.00 - H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.46 -Ca 1.031e-02 - Ca+2 7.141e-03 3.654e-03 -2.146 -2.437 -0.291 -18.09 - CaSO4 3.173e-03 3.194e-03 -2.499 -2.496 0.003 8.57 - CaHSO4+ 1.806e-08 1.514e-08 -7.743 -7.820 -0.076 (0) - CaOH+ 2.471e-09 2.072e-09 -8.607 -8.684 -0.076 (0) -H(0) 1.432e-32 - H2 7.162e-33 7.209e-33 -32.145 -32.142 0.003 28.58 -O(0) 3.506e-15 - O2 1.753e-15 1.765e-15 -14.756 -14.753 0.003 32.91 + OH- 6.907e-07 5.918e-07 -6.161 -6.228 -0.067 -4.17 + H+ 3.581e-07 3.155e-07 -6.446 -6.501 -0.055 0.00 + H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.46 +Ca 9.358e-03 + Ca+2 4.830e-03 2.716e-03 -2.316 -2.566 -0.250 -18.20 + CaSO4 4.528e-03 4.537e-03 -2.344 -2.343 0.001 10.18 + CaHSO4+ 1.053e-08 9.064e-09 -7.977 -8.043 -0.065 (0) + CaOH+ 1.660e-09 1.428e-09 -8.780 -8.845 -0.065 (0) +H(0) 1.731e-32 + H2 8.653e-33 8.692e-33 -32.063 -32.061 0.002 28.58 +O(0) 2.681e-15 + O2 1.341e-15 1.347e-15 -14.873 -14.871 0.002 32.91 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -96.613 -96.692 -0.079 21.08 - H2S 0.000e+00 0.000e+00 -96.667 -96.664 0.003 43.69 - S-2 0.000e+00 0.000e+00 -101.551 -101.847 -0.296 (0) - (H2S)2 0.000e+00 0.000e+00 -194.251 -194.248 0.003 27.07 -S(6) 1.031e-02 - SO4-2 7.141e-03 3.605e-03 -2.146 -2.443 -0.297 20.51 - CaSO4 3.173e-03 3.194e-03 -2.499 -2.496 0.003 8.57 - HSO4- 4.110e-07 3.447e-07 -6.386 -6.463 -0.076 41.55 - CaHSO4+ 1.806e-08 1.514e-08 -7.743 -7.820 -0.076 (0) + HS- 0.000e+00 0.000e+00 -96.395 -96.462 -0.067 21.03 + H2S 0.000e+00 0.000e+00 -96.403 -96.401 0.002 43.69 + S-2 0.000e+00 0.000e+00 -101.396 -101.649 -0.253 (0) + (H2S)2 0.000e+00 0.000e+00 -193.723 -193.721 0.002 27.07 +S(6) 9.358e-03 + SO4-2 4.830e-03 2.692e-03 -2.316 -2.570 -0.254 15.78 + CaSO4 4.528e-03 4.537e-03 -2.344 -2.343 0.001 10.18 + HSO4- 3.226e-07 2.775e-07 -6.491 -6.557 -0.065 41.51 + CaHSO4+ 1.053e-08 9.064e-09 -7.977 -8.043 -0.065 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(346 K, 1 atm) - Anhydrite 0.00 -4.88 -4.88 CaSO4 - Gypsum -0.18 -4.88 -4.70 CaSO4:2H2O - H2(g) -29.01 -32.14 -3.13 H2 + Anhydrite 0.00 -5.14 -5.14 CaSO4 + Gypsum -0.22 -5.14 -4.92 CaSO4:2H2O + H2(g) -28.93 -32.06 -3.13 H2 H2O(g) -0.46 -0.00 0.46 H2O - H2S(g) -95.29 -103.23 -7.94 H2S - O2(g) -11.66 -14.75 -3.09 O2 - Sulfur -71.77 -67.85 3.92 S + H2S(g) -95.03 -102.96 -7.94 H2S + O2(g) -11.78 -14.87 -3.09 O2 + Sulfur -71.59 -67.67 3.92 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4191,74 +4191,74 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite 0.00 -4.89 -4.89 1.000e+00 1.990e+00 9.895e-01 -Gypsum -0.18 -4.89 -4.71 1.000e+00 0 -1.000e+00 +Anhydrite 0.00 -5.15 -5.15 1.000e+00 1.990e+00 9.905e-01 +Gypsum -0.22 -5.15 -4.93 1.000e+00 0 -1.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 1.010e-02 1.046e-02 - S 1.010e-02 1.046e-02 + Ca 9.180e-03 9.511e-03 + S 9.180e-03 9.511e-03 ----------------------------Description of solution---------------------------- - pH = 6.525 Charge balance - pe = 7.790 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 74°C) = 3851 - Density (g/cm³) = 0.97673 - Volume (L) = 1.06217 - Viscosity (mPa s) = 0.38540 + pH = 6.491 Charge balance + pe = 7.816 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 74°C) = 2511 + Density (g/cm³) = 0.97662 + Volume (L) = 1.06216 + Viscosity (mPa s) = 0.38485 Activity of water = 1.000 - Ionic strength (mol/kgw) = 2.802e-02 + Ionic strength (mol/kgw) = 1.883e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 74.00 - Electrical balance (eq) = -1.217e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 17 + Iterations = 14 Total H = 1.150124e+02 - Total O = 5.754806e+01 + Total O = 5.754426e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 7.861e-07 6.558e-07 -6.105 -6.183 -0.079 -4.16 - H+ 3.448e-07 2.985e-07 -6.462 -6.525 -0.063 0.00 - H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.47 -Ca 1.010e-02 - Ca+2 7.004e-03 3.596e-03 -2.155 -2.444 -0.289 -18.12 - CaSO4 3.092e-03 3.112e-03 -2.510 -2.507 0.003 8.58 - CaHSO4+ 1.834e-08 1.540e-08 -7.737 -7.813 -0.076 (0) - CaOH+ 2.381e-09 1.999e-09 -8.623 -8.699 -0.076 (0) -H(0) 2.168e-32 - H2 1.084e-32 1.091e-32 -31.965 -31.962 0.003 28.58 -O(0) 2.653e-15 - O2 1.326e-15 1.335e-15 -14.877 -14.875 0.003 32.95 + OH- 7.076e-07 6.071e-07 -6.150 -6.217 -0.067 -4.21 + H+ 3.657e-07 3.225e-07 -6.437 -6.491 -0.055 0.00 + H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.47 +Ca 9.180e-03 + Ca+2 4.708e-03 2.660e-03 -2.327 -2.575 -0.248 -18.24 + CaSO4 4.472e-03 4.481e-03 -2.350 -2.349 0.001 10.22 + CaHSO4+ 1.061e-08 9.137e-09 -7.974 -8.039 -0.065 (0) + CaOH+ 1.588e-09 1.368e-09 -8.799 -8.864 -0.065 (0) +H(0) 2.255e-32 + H2 1.127e-32 1.132e-32 -31.948 -31.946 0.002 28.58 +O(0) 2.683e-15 + O2 1.341e-15 1.347e-15 -14.872 -14.871 0.002 32.95 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -95.988 -96.067 -0.079 21.05 - H2S 0.000e+00 0.000e+00 -96.036 -96.034 0.003 43.79 - S-2 0.000e+00 0.000e+00 -100.914 -101.208 -0.294 (0) - (H2S)2 0.000e+00 0.000e+00 -192.985 -192.982 0.003 26.98 -S(6) 1.010e-02 - SO4-2 7.004e-03 3.549e-03 -2.155 -2.450 -0.295 20.38 - CaSO4 3.092e-03 3.112e-03 -2.510 -2.507 0.003 8.58 - HSO4- 4.242e-07 3.561e-07 -6.372 -6.448 -0.076 41.54 - CaHSO4+ 1.834e-08 1.540e-08 -7.737 -7.813 -0.076 (0) + HS- 0.000e+00 0.000e+00 -96.032 -96.098 -0.067 21.01 + H2S 0.000e+00 0.000e+00 -96.033 -96.031 0.002 43.79 + S-2 0.000e+00 0.000e+00 -101.022 -101.273 -0.251 (0) + (H2S)2 0.000e+00 0.000e+00 -192.980 -192.978 0.002 26.98 +S(6) 9.180e-03 + SO4-2 4.708e-03 2.636e-03 -2.327 -2.579 -0.252 15.70 + CaSO4 4.472e-03 4.481e-03 -2.350 -2.349 0.001 10.22 + HSO4- 3.317e-07 2.857e-07 -6.479 -6.544 -0.065 41.50 + CaHSO4+ 1.061e-08 9.137e-09 -7.974 -8.039 -0.065 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(347 K, 1 atm) - Anhydrite 0.00 -4.89 -4.89 CaSO4 - Gypsum -0.18 -4.89 -4.71 CaSO4:2H2O - H2(g) -28.83 -31.96 -3.13 H2 + Anhydrite 0.00 -5.15 -5.15 CaSO4 + Gypsum -0.22 -5.15 -4.93 CaSO4:2H2O + H2(g) -28.81 -31.95 -3.13 H2 H2O(g) -0.44 -0.00 0.44 H2O - H2S(g) -94.66 -102.59 -7.94 H2S - O2(g) -11.78 -14.87 -3.10 O2 - Sulfur -71.30 -67.40 3.90 S + H2S(g) -94.65 -102.59 -7.94 H2S + O2(g) -11.77 -14.87 -3.10 O2 + Sulfur -71.32 -67.42 3.90 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4274,26 +4274,26 @@ Using temperature 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Anhydrite 0.00 -4.91 -4.91 1.000e+00 1.990e+00 9.898e-01 -Gypsum -0.19 -4.91 -4.71 1.000e+00 0 -1.000e+00 +Anhydrite 0.00 -5.17 -5.17 1.000e+00 1.991e+00 9.907e-01 +Gypsum -0.23 -5.17 -4.94 1.000e+00 0 -1.000e+00 -----------------------------Solution composition------------------------------ Elements Molality Moles - Ca 9.882e-03 1.024e-02 - S 9.882e-03 1.024e-02 + Ca 9.004e-03 9.329e-03 + S 9.004e-03 9.329e-03 ----------------------------Description of solution---------------------------- - pH = 6.516 Charge balance - pe = 7.738 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 75°C) = 3826 - Density (g/cm³) = 0.97611 - Volume (L) = 1.06282 - Viscosity (mPa s) = 0.38033 + pH = 6.482 Charge balance + pe = 7.765 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 75°C) = 2480 + Density (g/cm³) = 0.97600 + Volume (L) = 1.06281 + Viscosity (mPa s) = 0.37978 Activity of water = 1.000 - Ionic strength (mol/kgw) = 2.748e-02 + Ionic strength (mol/kgw) = 1.835e-02 Mass of water (kg) = 1.036e+00 Total alkalinity (eq/kg) = 1.174e-09 Temperature (°C) = 75.00 @@ -4301,47 +4301,47 @@ Gypsum -0.19 -4.91 -4.71 1.000e+00 0 -1.000e+00 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 17 Total H = 1.150124e+02 - Total O = 5.754717e+01 + Total O = 5.754353e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 8.067e-07 6.737e-07 -6.093 -6.172 -0.078 -4.20 - H+ 3.515e-07 3.046e-07 -6.454 -6.516 -0.062 0.00 - H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.48 -Ca 9.882e-03 - Ca+2 6.869e-03 3.539e-03 -2.163 -2.451 -0.288 -18.15 - CaSO4 3.012e-03 3.031e-03 -2.521 -2.518 0.003 8.59 - CaHSO4+ 1.863e-08 1.565e-08 -7.730 -7.805 -0.076 (0) - CaOH+ 2.295e-09 1.928e-09 -8.639 -8.715 -0.076 (0) -H(0) 2.849e-32 - H2 1.424e-32 1.433e-32 -31.846 -31.844 0.003 28.58 -O(0) 2.655e-15 - O2 1.327e-15 1.336e-15 -14.877 -14.874 0.003 32.99 + OH- 7.247e-07 6.226e-07 -6.140 -6.206 -0.066 -4.26 + H+ 3.734e-07 3.296e-07 -6.428 -6.482 -0.054 0.00 + H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.48 +Ca 9.004e-03 + Ca+2 4.589e-03 2.604e-03 -2.338 -2.584 -0.246 -18.27 + CaSO4 4.416e-03 4.424e-03 -2.355 -2.354 0.001 10.26 + CaHSO4+ 1.068e-08 9.208e-09 -7.972 -8.036 -0.064 (0) + CaOH+ 1.520e-09 1.311e-09 -8.818 -8.882 -0.064 (0) +H(0) 2.948e-32 + H2 1.474e-32 1.480e-32 -31.831 -31.830 0.002 28.58 +O(0) 2.654e-15 + O2 1.327e-15 1.332e-15 -14.877 -14.875 0.002 32.99 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -95.609 -95.687 -0.078 21.03 - H2S 0.000e+00 0.000e+00 -95.651 -95.648 0.003 43.89 - S-2 0.000e+00 0.000e+00 -100.523 -100.815 -0.293 (0) - (H2S)2 0.000e+00 0.000e+00 -192.210 -192.207 0.003 26.89 -S(6) 9.882e-03 - SO4-2 6.869e-03 3.493e-03 -2.163 -2.457 -0.294 20.26 - CaSO4 3.012e-03 3.031e-03 -2.521 -2.518 0.003 8.59 - HSO4- 4.377e-07 3.678e-07 -6.359 -6.434 -0.076 41.53 - CaHSO4+ 1.863e-08 1.565e-08 -7.730 -7.805 -0.076 (0) + H2S 0.000e+00 0.000e+00 -95.657 -95.655 0.002 43.89 + HS- 0.000e+00 0.000e+00 -95.662 -95.728 -0.066 20.98 + S-2 0.000e+00 0.000e+00 -100.642 -100.891 -0.249 (0) + (H2S)2 0.000e+00 0.000e+00 -192.223 -192.221 0.002 26.89 +S(6) 9.004e-03 + SO4-2 4.588e-03 2.582e-03 -2.338 -2.588 -0.250 15.63 + CaSO4 4.416e-03 4.424e-03 -2.355 -2.354 0.001 10.26 + HSO4- 3.410e-07 2.941e-07 -6.467 -6.531 -0.064 41.49 + CaHSO4+ 1.068e-08 9.208e-09 -7.972 -8.036 -0.064 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 1 atm) - Anhydrite 0.00 -4.91 -4.91 CaSO4 - Gypsum -0.19 -4.91 -4.71 CaSO4:2H2O - H2(g) -28.71 -31.84 -3.13 H2 + Anhydrite 0.00 -5.17 -5.17 CaSO4 + Gypsum -0.23 -5.17 -4.94 CaSO4:2H2O + H2(g) -28.70 -31.83 -3.13 H2 H2O(g) -0.42 -0.00 0.42 H2O - H2S(g) -94.26 -102.20 -7.94 H2S - O2(g) -11.78 -14.87 -3.10 O2 - Sulfur -71.02 -67.14 3.88 S + H2S(g) -94.27 -102.21 -7.94 H2S + O2(g) -11.78 -14.88 -3.10 O2 + Sulfur -71.04 -67.16 3.88 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. diff --git a/ex2.sel b/ex2.sel index 46d6a684..a8ca5968 100644 --- a/ex2.sel +++ b/ex2.sel @@ -1,53 +1,53 @@ sim state soln dist_x time step pH pe temp si_anhydrite si_gypsum 1 i_soln 1 -99 -99 -99 7 4 25.000 -999.9990 -999.9990 - 1 react 1 -99 0 1 7.06605 10.745 25.000 -0.3045 0.0000 - 1 react 1 -99 0 2 7.0524 10.6757 26.000 -0.2935 0.0000 - 1 react 1 -99 0 3 7.03885 10.6068 27.000 -0.2825 0.0000 - 1 react 1 -99 0 4 7.0254 10.5392 28.000 -0.2716 0.0000 - 1 react 1 -99 0 5 7.01206 10.4719 29.000 -0.2608 0.0000 - 1 react 1 -99 0 6 6.99884 10.4042 30.000 -0.2500 0.0000 - 1 react 1 -99 0 7 6.98574 10.3382 31.000 -0.2392 0.0000 - 1 react 1 -99 0 8 6.97276 10.2711 32.000 -0.2285 0.0000 - 1 react 1 -99 0 9 6.95991 10.2057 33.000 -0.2179 0.0000 - 1 react 1 -99 0 10 6.94718 10.1394 34.000 -0.2073 0.0000 - 1 react 1 -99 0 11 6.93459 10.0743 35.000 -0.1967 0.0000 - 1 react 1 -99 0 12 6.92213 10.0094 36.000 -0.1862 0.0000 - 1 react 1 -99 0 13 6.90981 -1.77753 37.000 -0.1757 0.0000 - 1 react 1 -99 0 14 6.89762 9.88094 38.000 -0.1653 0.0000 - 1 react 1 -99 0 15 6.88557 9.8475 39.000 -0.1549 0.0000 - 1 react 1 -99 0 16 6.87366 9.75448 40.000 -0.1445 0.0000 - 1 react 1 -99 0 17 6.86189 9.69091 41.000 -0.1342 0.0000 - 1 react 1 -99 0 18 6.85026 9.62849 42.000 -0.1239 0.0000 - 1 react 1 -99 0 19 6.83878 9.56557 43.000 -0.1137 0.0000 - 1 react 1 -99 0 20 6.82743 9.50326 44.000 -0.1035 0.0000 - 1 react 1 -99 0 21 6.81623 9.44229 45.000 -0.0934 0.0000 - 1 react 1 -99 0 22 6.80517 9.38053 46.000 -0.0833 0.0000 - 1 react 1 -99 0 23 6.79425 9.31897 47.000 -0.0732 0.0000 - 1 react 1 -99 0 24 6.78347 9.21452 48.000 -0.0632 0.0000 - 1 react 1 -99 0 25 6.77284 9.19666 49.000 -0.0532 0.0000 - 1 react 1 -99 0 26 6.76235 -1.65493 50.000 -0.0432 0.0000 - 1 react 1 -99 0 27 6.752 -2.0958 51.000 -0.0333 0.0000 - 1 react 1 -99 0 28 6.7418 9.04692 52.000 -0.0234 0.0000 - 1 react 1 -99 0 29 6.73173 8.91531 53.000 -0.0136 0.0000 - 1 react 1 -99 0 30 6.72181 -1.62167 54.000 -0.0038 0.0000 - 1 react 1 -99 0 31 6.71125 8.8323 55.000 0.0000 -0.0060 - 1 react 1 -99 0 32 6.70039 8.80527 56.000 0.0000 -0.0157 - 1 react 1 -99 0 33 6.68965 8.74835 57.000 0.0000 -0.0254 - 1 react 1 -99 0 34 6.67903 8.66106 58.000 0.0000 -0.0350 - 1 react 1 -99 0 35 6.66853 8.60472 59.000 0.0000 -0.0446 - 1 react 1 -99 0 36 6.65815 8.54858 60.000 0.0000 -0.0542 - 1 react 1 -99 0 37 6.64789 8.49291 61.000 0.0000 -0.0638 - 1 react 1 -99 0 38 6.63774 8.4911 62.000 0.0000 -0.0733 - 1 react 1 -99 0 39 6.62771 8.38287 63.000 0.0000 -0.0828 - 1 react 1 -99 0 40 6.6178 8.32762 64.000 0.0000 -0.0922 - 1 react 1 -99 0 41 6.608 8.27306 65.000 0.0000 -0.1016 - 1 react 1 -99 0 42 6.59833 8.21823 66.000 0.0000 -0.1110 - 1 react 1 -99 0 43 6.58876 8.16425 67.000 0.0000 -0.1204 - 1 react 1 -99 0 44 6.57931 8.11019 68.000 0.0000 -0.1297 - 1 react 1 -99 0 45 6.56998 8.0567 69.000 0.0000 -0.1390 - 1 react 1 -99 0 46 6.56075 8.00299 70.000 0.0000 -0.1483 - 1 react 1 -99 0 47 6.55165 7.94953 71.000 0.0000 -0.1575 - 1 react 1 -99 0 48 6.54265 7.92562 72.000 0.0000 -0.1667 - 1 react 1 -99 0 49 6.53376 7.8729 73.000 0.0000 -0.1758 - 1 react 1 -99 0 50 6.52499 7.79009 74.000 0.0000 -0.1850 - 1 react 1 -99 0 51 6.51633 7.73789 75.000 0.0000 -0.1941 + 1 react 1 -99 0 1 7.06823 10.7383 25.000 -0.2342 0.0000 + 1 react 1 -99 0 2 7.05439 10.6675 26.000 -0.2223 0.0000 + 1 react 1 -99 0 3 7.04064 10.5967 27.000 -0.2105 0.0000 + 1 react 1 -99 0 4 7.02696 10.527 28.000 -0.1989 0.0000 + 1 react 1 -99 0 5 7.01337 10.4576 29.000 -0.1874 0.0000 + 1 react 1 -99 0 6 6.99987 10.3892 30.000 -0.1760 0.0000 + 1 react 1 -99 0 7 6.98646 10.3203 31.000 -0.1647 0.0000 + 1 react 1 -99 0 8 6.97316 10.2529 32.000 -0.1535 0.0000 + 1 react 1 -99 0 9 6.95995 10.1853 33.000 -0.1425 0.0000 + 1 react 1 -99 0 10 6.94686 10.1183 34.000 -0.1316 0.0000 + 1 react 1 -99 0 11 6.93387 10.0524 35.000 -0.1208 0.0000 + 1 react 1 -99 0 12 6.921 10.0159 36.000 -0.1101 0.0000 + 1 react 1 -99 0 13 6.90824 9.91989 37.000 -0.0995 0.0000 + 1 react 1 -99 0 14 6.89559 -1.76516 38.000 -0.0891 0.0000 + 1 react 1 -99 0 15 6.88307 10.2533 39.000 -0.0787 0.0000 + 1 react 1 -99 0 16 6.87066 9.72796 40.000 -0.0685 0.0000 + 1 react 1 -99 0 17 6.85837 9.66411 41.000 -0.0583 0.0000 + 1 react 1 -99 0 18 6.8462 9.5998 42.000 -0.0483 0.0000 + 1 react 1 -99 0 19 6.83415 9.53902 43.000 -0.0384 0.0000 + 1 react 1 -99 0 20 6.82223 9.47504 44.000 -0.0285 0.0000 + 1 react 1 -99 0 21 6.81043 -1.69352 45.000 -0.0188 0.0000 + 1 react 1 -99 0 22 6.79875 9.35314 46.000 -0.0092 0.0000 + 1 react 1 -99 0 23 6.7871 9.28488 47.000 0.0000 -0.0004 + 1 react 1 -99 0 24 6.77466 9.22522 48.000 0.0000 -0.0098 + 1 react 1 -99 0 25 6.76235 9.16496 49.000 0.0000 -0.0191 + 1 react 1 -99 0 26 6.75014 9.13629 50.000 0.0000 -0.0284 + 1 react 1 -99 0 27 6.73805 9.07807 51.000 0.0000 -0.0375 + 1 react 1 -99 0 28 6.72608 8.98963 52.000 0.0000 -0.0465 + 1 react 1 -99 0 29 6.71423 8.93234 53.000 0.0000 -0.0555 + 1 react 1 -99 0 30 6.70249 8.87542 54.000 0.0000 -0.0644 + 1 react 1 -99 0 31 6.69086 8.81863 55.000 0.0000 -0.0732 + 1 react 1 -99 0 32 6.67935 8.79272 56.000 0.0000 -0.0818 + 1 react 1 -99 0 33 6.66796 8.66422 57.000 0.0000 -0.0905 + 1 react 1 -99 0 34 6.65668 8.65249 58.000 0.0000 -0.0990 + 1 react 1 -99 0 35 6.64552 8.59687 59.000 0.0000 -0.1074 + 1 react 1 -99 0 36 6.63447 8.5428 60.000 0.0000 -0.1158 + 1 react 1 -99 0 37 6.62354 8.48807 61.000 0.0000 -0.1240 + 1 react 1 -99 0 38 6.61272 8.43404 62.000 0.0000 -0.1322 + 1 react 1 -99 0 39 6.60201 8.38036 63.000 0.0000 -0.1403 + 1 react 1 -99 0 40 6.59141 8.32752 64.000 0.0000 -0.1484 + 1 react 1 -99 0 41 6.58092 8.27447 65.000 0.0000 -0.1563 + 1 react 1 -99 0 42 6.57055 8.22176 66.000 0.0000 -0.1642 + 1 react 1 -99 0 43 6.56029 8.16975 67.000 0.0000 -0.1720 + 1 react 1 -99 0 44 6.55013 8.11813 68.000 0.0000 -0.1797 + 1 react 1 -99 0 45 6.54008 8.06687 69.000 0.0000 -0.1873 + 1 react 1 -99 0 46 6.53015 8.01573 70.000 0.0000 -0.1949 + 1 react 1 -99 0 47 6.52032 7.96505 71.000 0.0000 -0.2024 + 1 react 1 -99 0 48 6.51059 7.91503 72.000 0.0000 -0.2098 + 1 react 1 -99 0 49 6.50097 7.86507 73.000 0.0000 -0.2172 + 1 react 1 -99 0 50 6.49146 7.81557 74.000 0.0000 -0.2245 + 1 react 1 -99 0 51 6.48205 7.76517 75.000 0.0000 -0.2317 diff --git a/ex20a.out b/ex20a.out index ce948b54..5bef16ec 100644 --- a/ex20a.out +++ b/ex20a.out @@ -217,7 +217,7 @@ Calcite 2.54e-07 Isotope Ratio Ratio Input Units - R(D) 1.55760e-04 -6.6613e-13 permil + R(D) 1.55760e-04 -8.8818e-13 permil R(18O) 2.00520e-03 -3.9446e-07 permil R(13C) 1.11802e-02 -0.00026756 permil R(D) H2O(l) 1.55760e-04 1.138e-05 permil @@ -226,7 +226,7 @@ Calcite 2.54e-07 R(18O) OH- 1.93086e-03 -37.072 permil R(D) H3O+ 1.62250e-04 41.665 permil R(18O) H3O+ 2.05157e-03 23.123 permil - R(D) H2(aq) 1.55760e-04 1.138e-05 permil + R(D) H2(aq) 1.55760e-04 1.1381e-05 permil R(13C) CO2(aq) 1.10852e-02 -8.4965 permil R(18O) CO2(aq) 2.08959e-03 42.084 permil R(D) HCO3- 1.55760e-04 1.1383e-05 permil @@ -249,15 +249,15 @@ Alpha D OH-/H2O(l) 0.23812 -1435 -1435 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha D H3O+/H2O(l) 1.0417 40.82 40.82 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha D H2(aq)/H2O(l) 1 -2.2204e-12 0 +Alpha D H2(aq)/H2O(l) 1 1.9984e-12 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha D HCO3-/H2O(l) 1 2.2549e-09 0 -Alpha 18O HCO3-/H2O(l) 1 -2.1094e-12 0 +Alpha D HCO3-/H2O(l) 1 2.2553e-09 0 +Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 -Alpha 18O CO3-2/H2O(l) 1 -1.5561e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.568e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 -Alpha D CH4(aq)/H2O(l) 1 -3.7301e-09 0 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.8874e-12 0 +Alpha D CH4(aq)/H2O(l) 1 -3.7468e-09 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -6.1062e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 @@ -275,7 +275,7 @@ Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 ----------------------------Description of solution---------------------------- pH = 8.199 Charge balance - pe = -2.402 Adjusted to redox equilibrium + pe = -2.406 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 2.301e-03 Mass of water (kg) = 9.968e-01 @@ -284,7 +284,7 @@ Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Temperature (°C) = 25.00 Electrical balance (eq) = 1.667e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 94 + Iterations = 85 Total H = 1.109971e+02 Total O = 5.540110e+01 @@ -296,9 +296,9 @@ Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 OH- 1.661e-06 1.575e-06 -5.780 -5.803 -0.023 (0) H3O+ 6.648e-09 6.328e-09 -8.177 -8.199 -0.021 0.00 H2O 5.556e+01 9.977e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.760e-27 - CH4 2.758e-27 2.759e-27 -26.559 -26.559 0.000 (0) - CH3D 1.718e-30 1.719e-30 -29.765 -29.765 0.000 (0) +C(-4) 2.966e-27 + CH4 2.964e-27 2.965e-27 -26.528 -26.528 0.000 (0) + CH3D 1.847e-30 1.848e-30 -29.734 -29.733 0.000 (0) C(4) 1.984e-03 HCO3- 1.916e-03 1.817e-03 -2.718 -2.741 -0.023 (0) CO2 2.597e-05 2.598e-05 -4.586 -4.585 0.000 (0) @@ -336,17 +336,17 @@ Ca 3.098e-04 CaHCO[18O]O+ 1.186e-08 1.126e-08 -7.926 -7.948 -0.023 (0) CaDCO3+ 9.216e-10 8.750e-10 -9.035 -9.058 -0.023 (0) Ca[13C]O2[18O] 3.672e-10 3.674e-10 -9.435 -9.435 0.000 (0) -D(0) 5.647e-19 - HD 5.646e-19 5.649e-19 -18.248 -18.248 0.000 (0) - D2 4.397e-23 4.399e-23 -22.357 -22.357 0.000 (0) +D(0) 5.749e-19 + HD 5.748e-19 5.752e-19 -18.240 -18.240 0.000 (0) + D2 4.477e-23 4.479e-23 -22.349 -22.349 0.000 (0) D(1) 1.734e-02 HDO 1.731e-02 3.108e-04 -1.762 -3.507 -1.746 (0) HD[18O] 3.470e-05 6.233e-07 -4.460 -6.205 -1.746 (0) D2O 1.348e-06 2.421e-08 -5.870 -7.616 -1.746 (0) DCO3- 2.985e-07 2.831e-07 -6.525 -6.548 -0.023 (0) -H(0) 3.626e-15 - H2 1.812e-15 1.813e-15 -14.742 -14.742 0.000 (0) - HD 5.646e-19 5.649e-19 -18.248 -18.248 0.000 (0) +H(0) 3.692e-15 + H2 1.845e-15 1.846e-15 -14.734 -14.734 0.000 (0) + HD 5.748e-19 5.752e-19 -18.240 -18.240 0.000 (0) Na 1.385e-03 Na+ 1.383e-03 1.312e-03 -2.859 -2.882 -0.023 (0) NaHCO3 1.340e-06 1.341e-06 -5.873 -5.873 0.000 (0) @@ -358,11 +358,11 @@ Na 1.385e-03 NaHC[18O]O2 2.687e-09 2.689e-09 -8.571 -8.570 0.000 (0) NaCO2[18O]- 2.083e-09 1.976e-09 -8.681 -8.704 -0.023 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -62.899 -62.899 0.000 (0) - O[18O] 0.000e+00 0.000e+00 -65.296 -65.296 0.000 (0) -[13C](-4) 3.059e-29 - [13C]H4 3.057e-29 3.059e-29 -28.515 -28.514 0.000 (0) - [13C]H3D 1.905e-32 1.906e-32 -31.720 -31.720 0.000 (0) + O2 0.000e+00 0.000e+00 -62.915 -62.915 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -65.312 -65.311 0.000 (0) +[13C](-4) 3.287e-29 + [13C]H4 3.285e-29 3.287e-29 -28.483 -28.483 0.000 (0) + [13C]H3D 2.047e-32 2.048e-32 -31.689 -31.689 0.000 (0) [13C](4) 2.218e-05 H[13C]O3- 2.143e-05 2.032e-05 -4.669 -4.692 -0.023 (0) [13C]O2 2.878e-07 2.880e-07 -6.541 -6.541 0.000 (0) @@ -395,22 +395,22 @@ O(0) 0.000e+00 HC[18O]O2- 3.842e-06 3.644e-06 -5.415 -5.438 -0.023 (0) HCO[18O]O- 3.842e-06 3.644e-06 -5.415 -5.438 -0.023 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -65.296 -65.296 0.000 (0) - [18O]2 0.000e+00 0.000e+00 -68.295 -68.295 0.000 (0) + O[18O] 0.000e+00 0.000e+00 -65.312 -65.311 0.000 (0) + [18O]2 0.000e+00 0.000e+00 -68.310 -68.310 0.000 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -10.43 -11.94 -1.50 [13C][18O]2 - [13C]D4(g) -40.88 -43.74 -2.86 [13C]D4 - [13C]H2D2(g) -32.49 -36.13 -3.64 [13C]H2D2 - [13C]H3D(g) -28.86 -32.32 -3.46 [13C]H3D - [13C]H4(g) -25.65 -28.51 -2.86 [13C]H4 - [13C]HD3(g) -36.48 -39.94 -3.46 [13C]HD3 + [13C]D4(g) -40.85 -43.71 -2.86 [13C]D4 + [13C]H2D2(g) -32.46 -36.10 -3.64 [13C]H2D2 + [13C]H3D(g) -28.83 -32.29 -3.46 [13C]H3D + [13C]H4(g) -25.62 -28.48 -2.86 [13C]H4 + [13C]HD3(g) -36.44 -39.91 -3.46 [13C]HD3 [13C]O2(g) -5.07 -6.54 -1.47 [13C]O2 [13C]O[18O](g) -7.45 -9.24 -1.79 [13C]O[18O] - [18O]2(g) -66.00 -68.29 -2.29 [18O]2 + [18O]2(g) -66.02 -68.31 -2.29 [18O]2 C[18O]2(g) -8.48 -9.98 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.01 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -420,24 +420,24 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.50 7.71 CaCO2[18O] CaCO[18O]2(s) -4.90 2.80 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CD4(g) -38.93 -41.79 -2.86 CD4 - CH2D2(g) -30.54 -34.17 -3.64 CH2D2 - CH3D(g) -26.90 -30.37 -3.46 CH3D - CH4(g) -23.70 -26.56 -2.86 CH4 - CHD3(g) -34.52 -37.98 -3.46 CHD3 + CD4(g) -38.90 -41.76 -2.86 CD4 + CH2D2(g) -30.50 -34.14 -3.64 CH2D2 + CH3D(g) -26.87 -30.34 -3.46 CH3D + CH4(g) -23.67 -26.53 -2.86 CH4 + CHD3(g) -34.49 -37.95 -3.46 CHD3 CO2(g) -3.12 -4.59 -1.47 CO2 CO[18O](g) -5.50 -7.28 -1.79 CO[18O] - D2(g) -19.21 -22.36 -3.15 D2 + D2(g) -19.20 -22.35 -3.15 D2 D2[18O](g) -11.89 -10.31 1.58 D2[18O] D2O(g) -9.19 -7.62 1.58 D2O - H2(g) -11.59 -14.74 -3.15 H2 + H2(g) -11.58 -14.73 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - HD(g) -15.10 -18.55 -3.45 HD + HD(g) -15.09 -18.54 -3.45 HD HD[18O](g) -7.75 -6.51 1.25 HD[18O] HDO(g) -5.05 -3.81 1.24 HDO - O2(g) -60.01 -62.90 -2.89 O2 - O[18O](g) -62.70 -65.60 -2.89 O[18O] + O2(g) -60.02 -62.91 -2.89 O2 + O[18O](g) -62.72 -65.61 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. diff --git a/ex20b.out b/ex20b.out index 0dfc16cc..d3af98f8 100644 --- a/ex20b.out +++ b/ex20b.out @@ -882,7 +882,7 @@ Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8096e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.3664e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 @@ -921,7 +921,7 @@ Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 OH- 3.415e-08 3.176e-08 -7.467 -7.498 -0.032 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.330 -122.330 0.000 (0) + CH4 0.000e+00 0.000e+00 -122.330 -122.329 0.000 (0) C(4) 4.904e-03 HCO3- 2.915e-03 2.713e-03 -2.535 -2.567 -0.031 (0) CO2 1.921e-03 1.923e-03 -2.716 -2.716 0.000 (0) @@ -950,12 +950,12 @@ Ca 1.504e-03 Ca[13C]O3 8.262e-09 8.270e-09 -8.083 -8.082 0.000 (0) CaCO2[18O] 4.490e-09 4.494e-09 -8.348 -8.347 0.000 (0) H(0) 1.410e-39 - H2 7.048e-40 7.055e-40 -39.152 -39.152 0.000 (0) -O(0) 1.673e-14 - O2 8.334e-15 8.342e-15 -14.079 -14.079 0.000 (0) - O[18O] 3.326e-17 3.329e-17 -16.478 -16.478 0.000 (0) + H2 7.050e-40 7.058e-40 -39.152 -39.151 0.000 (0) +O(0) 1.672e-14 + O2 8.327e-15 8.336e-15 -14.079 -14.079 0.000 (0) + O[18O] 3.323e-17 3.326e-17 -16.478 -16.478 0.000 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.292 -124.291 0.000 (0) + [13C]H4 0.000e+00 0.000e+00 -124.291 -124.290 0.000 (0) [13C](4) 5.391e-05 H[13C]O3- 3.215e-05 2.993e-05 -4.493 -4.524 -0.031 (0) [13C]O2 2.101e-05 2.103e-05 -4.678 -4.677 0.000 (0) @@ -974,7 +974,7 @@ O(0) 1.673e-14 H[13C][18O]O[18O]- 1.280e-10 1.191e-10 -9.893 -9.924 -0.031 (0) [13C][18O]2 9.082e-11 9.091e-11 -10.042 -10.041 0.000 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.417 -134.416 0.000 (0) + [14C]H4 0.000e+00 0.000e+00 -134.416 -134.416 0.000 (0) [14C](4) 4.061e-15 H[14C]O3- 2.430e-15 2.262e-15 -14.614 -14.645 -0.031 (0) [14C]O2 1.574e-15 1.576e-15 -14.803 -14.802 0.000 (0) @@ -998,9 +998,9 @@ O(0) 1.673e-14 HC[18O]O2- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) HCO[18O]O- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) HCO2[18O]- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) -[18O](0) 3.332e-17 - O[18O] 3.326e-17 3.329e-17 -16.478 -16.478 0.000 (0) - [18O]2 3.318e-20 3.321e-20 -19.479 -19.479 0.000 (0) +[18O](0) 3.329e-17 + O[18O] 3.323e-17 3.326e-17 -16.478 -16.478 0.000 (0) + [18O]2 3.315e-20 3.318e-20 -19.480 -19.479 0.000 (0) ------------------------------Saturation indices------------------------------- @@ -1141,10 +1141,10 @@ Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O O2(aq)/H2O(l) 1 -2.2545e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 0 0 +Alpha 18O HCO3-/H2O(l) 1 2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8202e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.4985e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 @@ -1183,7 +1183,7 @@ Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 OH- 6.090e-08 5.607e-08 -7.215 -7.251 -0.036 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.123 -122.122 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.125 -122.124 0.001 (0) C(4) 5.400e-03 HCO3- 3.868e-03 3.565e-03 -2.413 -2.448 -0.035 (0) CO2 1.430e-03 1.432e-03 -2.845 -2.844 0.001 (0) @@ -1213,13 +1213,13 @@ Ca 2.006e-03 CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) Ca[13C]O3 2.442e-08 2.445e-08 -7.612 -7.612 0.001 (0) CaCO2[18O] 1.326e-08 1.328e-08 -7.877 -7.877 0.001 (0) -H(0) 1.710e-39 - H2 8.549e-40 8.560e-40 -39.068 -39.068 0.001 (0) -O(0) 1.136e-14 - O2 5.658e-15 5.666e-15 -14.247 -14.247 0.001 (0) - O[18O] 2.258e-17 2.261e-17 -16.646 -16.646 0.001 (0) +H(0) 1.708e-39 + H2 8.539e-40 8.550e-40 -39.069 -39.068 0.001 (0) +O(0) 1.139e-14 + O2 5.672e-15 5.679e-15 -14.246 -14.246 0.001 (0) + O[18O] 2.263e-17 2.266e-17 -16.645 -16.645 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.084 -124.083 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.086 -124.085 0.001 (0) [13C](4) 5.947e-05 H[13C]O3- 4.269e-05 3.935e-05 -4.370 -4.405 -0.035 (0) [13C]O2 1.564e-05 1.566e-05 -4.806 -4.805 0.001 (0) @@ -1240,7 +1240,7 @@ O(0) 1.136e-14 [13C]O2[18O]-2 8.578e-11 6.191e-11 -10.067 -10.208 -0.142 (0) [13C][18O]2 6.763e-11 6.772e-11 -10.170 -10.169 0.001 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.252 -134.251 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -134.254 -134.254 0.001 (0) [14C](4) 4.061e-15 H[14C]O3- 2.922e-15 2.694e-15 -14.534 -14.570 -0.035 (0) [14C]O2 1.062e-15 1.063e-15 -14.974 -14.973 0.001 (0) @@ -1269,16 +1269,16 @@ O(0) 1.136e-14 CaHCO2[18O]+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) CaHC[18O]O2+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) -[18O](0) 2.262e-17 - O[18O] 2.258e-17 2.261e-17 -16.646 -16.646 0.001 (0) - [18O]2 2.252e-20 2.256e-20 -19.647 -19.647 0.001 (0) +[18O](0) 2.268e-17 + O[18O] 2.263e-17 2.266e-17 -16.645 -16.645 0.001 (0) + [18O]2 2.258e-20 2.261e-20 -19.646 -19.646 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.70 -10.21 -1.50 [13C][18O]2 - [13C]H4(g) -121.22 -124.08 -2.86 [13C]H4 + [13C]H4(g) -121.23 -124.09 -2.86 [13C]H4 [13C]O2(g) -3.34 -4.81 -1.47 [13C]O2 [13C]O[18O](g) -5.72 -7.51 -1.79 [13C]O[18O] [14C][18O]2(g) -18.87 -20.37 -1.50 [14C][18O]2 @@ -1413,12 +1413,12 @@ Calcite 5.60e-05 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2545e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2548e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -4.4409e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.653e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.715e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -1438,7 +1438,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.791 Adjusted to redox equilibrium + pe = 10.790 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 @@ -1447,7 +1447,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 Temperature (°C) = 25.00 Electrical balance (eq) = 5.094e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 77 + Iterations = 84 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -1460,7 +1460,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.842 -120.842 0.001 (0) + CH4 0.000e+00 0.000e+00 -120.828 -120.827 0.001 (0) C(4) 5.841e-03 HCO3- 4.704e-03 4.304e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.976e-04 -3.002 -3.001 0.001 (0) @@ -1489,13 +1489,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.023e-08 6.033e-08 -7.220 -7.219 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.910e-39 - H2 1.955e-39 1.958e-39 -38.709 -38.708 0.001 (0) -O(0) 2.171e-15 - O2 1.081e-15 1.083e-15 -14.966 -14.965 0.001 (0) - O[18O] 4.314e-18 4.321e-18 -17.365 -17.364 0.001 (0) +H(0) 3.942e-39 + H2 1.971e-39 1.974e-39 -38.705 -38.705 0.001 (0) +O(0) 2.135e-15 + O2 1.063e-15 1.065e-15 -14.973 -14.973 0.001 (0) + O[18O] 4.244e-18 4.250e-18 -17.372 -17.372 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -122.803 -122.802 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -122.789 -122.788 0.001 (0) [13C](4) 6.441e-05 H[13C]O3- 5.195e-05 4.753e-05 -4.284 -4.323 -0.039 (0) [13C]O2 1.090e-05 1.092e-05 -4.962 -4.962 0.001 (0) @@ -1515,7 +1515,7 @@ O(0) 2.171e-15 H[13C]O[18O]2- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) [13C]O2[18O]-2 1.849e-10 1.295e-10 -9.733 -9.888 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -133.011 -133.010 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -132.996 -132.996 0.001 (0) [14C](4) 4.023e-15 H[14C]O3- 3.250e-15 2.973e-15 -14.488 -14.527 -0.039 (0) [14C]O2 6.762e-16 6.773e-16 -15.170 -15.169 0.001 (0) @@ -1543,20 +1543,20 @@ O(0) 2.171e-15 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.323e-18 - O[18O] 4.314e-18 4.321e-18 -17.365 -17.364 0.001 (0) - [18O]2 4.304e-21 4.311e-21 -20.366 -20.365 0.001 (0) +[18O](0) 4.252e-18 + O[18O] 4.244e-18 4.250e-18 -17.372 -17.372 0.001 (0) + [18O]2 4.233e-21 4.240e-21 -20.373 -20.373 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -119.94 -122.80 -2.86 [13C]H4 + [13C]H4(g) -119.93 -122.79 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.07 -20.57 -1.50 [14C][18O]2 - [14C]H4(g) -130.15 -133.01 -2.86 [14C]H4 + [14C]H4(g) -130.14 -133.00 -2.86 [14C]H4 [14C]O2(g) -13.70 -15.17 -1.47 [14C]O2 [14C]O[18O](g) -16.08 -17.87 -1.79 [14C]O[18O] [18O]2(g) -18.08 -20.37 -2.29 [18O]2 @@ -1573,14 +1573,14 @@ O(0) 2.171e-15 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -117.98 -120.84 -2.86 CH4 + CH4(g) -117.97 -120.83 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.56 -38.71 -3.15 H2 + H2(g) -35.55 -38.70 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -12.07 -14.97 -2.89 O2 - O[18O](g) -14.77 -17.67 -2.89 O[18O] + O2(g) -12.08 -14.97 -2.89 O2 + O[18O](g) -14.78 -17.67 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1689,14 +1689,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 6.6613e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7905e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7492e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.7431e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -4.885e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.8874e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.0214e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -1714,7 +1714,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.455 Adjusted to redox equilibrium + pe = -1.446 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 @@ -1723,7 +1723,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 Temperature (°C) = 25.00 Electrical balance (eq) = 5.094e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 133 (234 overall) + Iterations = 78 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -1735,8 +1735,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.346e-23 - CH4 1.346e-23 1.348e-23 -22.871 -22.870 0.001 (0) +C(-4) 1.130e-23 + CH4 1.130e-23 1.132e-23 -22.947 -22.946 0.001 (0) C(4) 5.841e-03 HCO3- 4.704e-03 4.304e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -1765,13 +1765,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.028e-08 6.038e-08 -7.220 -7.219 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.216e-14 - H2 6.081e-15 6.091e-15 -14.216 -14.215 0.001 (0) +H(0) 1.164e-14 + H2 5.821e-15 5.830e-15 -14.235 -14.234 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.952 -63.951 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -66.351 -66.350 0.001 (0) -[13C](-4) 1.475e-25 - [13C]H4 1.475e-25 1.477e-25 -24.831 -24.831 0.001 (0) + O2 0.000e+00 0.000e+00 -63.914 -63.913 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.313 -66.312 0.001 (0) +[13C](-4) 1.238e-25 + [13C]H4 1.238e-25 1.240e-25 -24.907 -24.906 0.001 (0) [13C](4) 6.447e-05 H[13C]O3- 5.200e-05 4.757e-05 -4.284 -4.323 -0.039 (0) [13C]O2 1.091e-05 1.093e-05 -4.962 -4.961 0.001 (0) @@ -1790,8 +1790,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) H[13C]O[18O]2- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) [13C]O2[18O]-2 1.851e-10 1.297e-10 -9.733 -9.887 -0.155 (0) -[14C](-4) 8.417e-36 - [14C]H4 8.417e-36 8.431e-36 -35.075 -35.074 0.001 (0) +[14C](-4) 7.067e-36 + [14C]H4 7.067e-36 7.078e-36 -35.151 -35.150 0.001 (0) [14C](4) 3.706e-15 H[14C]O3- 2.994e-15 2.739e-15 -14.524 -14.562 -0.039 (0) [14C]O2 6.229e-16 6.239e-16 -15.206 -15.205 0.001 (0) @@ -1820,22 +1820,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -66.351 -66.350 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -69.352 -69.351 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.313 -66.312 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -69.314 -69.313 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -21.97 -24.83 -2.86 [13C]H4 + [13C]H4(g) -22.05 -24.91 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.10 -20.60 -1.50 [14C][18O]2 - [14C]H4(g) -32.21 -35.07 -2.86 [14C]H4 + [14C]H4(g) -32.29 -35.15 -2.86 [14C]H4 [14C]O2(g) -13.74 -15.20 -1.47 [14C]O2 [14C]O[18O](g) -16.12 -17.90 -1.79 [14C]O[18O] - [18O]2(g) -67.06 -69.35 -2.29 [18O]2 + [18O]2(g) -67.02 -69.31 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -1849,14 +1849,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -20.01 -22.87 -2.86 CH4 + CH4(g) -20.09 -22.95 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -11.07 -14.22 -3.15 H2 + H2(g) -11.08 -14.23 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -61.06 -63.95 -2.89 O2 - O[18O](g) -63.76 -66.65 -2.89 O[18O] + O2(g) -61.02 -63.91 -2.89 O2 + O[18O](g) -63.72 -66.61 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1965,14 +1965,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.2157e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.6605e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.542e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6366e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 3.1086e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -3.1086e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.7764e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.199e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -1990,7 +1990,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.627 Adjusted to redox equilibrium + pe = -1.594 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 @@ -1999,7 +1999,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 Temperature (°C) = 25.00 Electrical balance (eq) = 5.094e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 79 (180 overall) + Iterations = 71 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -2011,8 +2011,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.178e-22 - CH4 3.178e-22 3.183e-22 -21.498 -21.497 0.001 (0) +C(-4) 1.727e-22 + CH4 1.727e-22 1.730e-22 -21.763 -21.762 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.304e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -2041,13 +2041,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.034e-08 6.044e-08 -7.219 -7.219 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.681e-14 - H2 1.340e-14 1.343e-14 -13.873 -13.872 0.001 (0) +H(0) 2.302e-14 + H2 1.151e-14 1.153e-14 -13.939 -13.938 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.638 -64.638 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.037 -67.037 0.001 (0) -[13C](-4) 3.486e-24 - [13C]H4 3.486e-24 3.491e-24 -23.458 -23.457 0.001 (0) + O2 0.000e+00 0.000e+00 -64.506 -64.505 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.905 -66.904 0.001 (0) +[13C](-4) 1.895e-24 + [13C]H4 1.895e-24 1.898e-24 -23.722 -23.722 0.001 (0) [13C](4) 6.453e-05 H[13C]O3- 5.205e-05 4.762e-05 -4.284 -4.322 -0.039 (0) [13C]O2 1.092e-05 1.094e-05 -4.962 -4.961 0.001 (0) @@ -2066,8 +2066,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.072e-10 1.896e-10 -9.684 -9.722 -0.039 (0) H[13C]O[18O]2- 2.072e-10 1.896e-10 -9.684 -9.722 -0.039 (0) [13C]O2[18O]-2 1.853e-10 1.298e-10 -9.732 -9.887 -0.155 (0) -[14C](-4) 1.831e-34 - [14C]H4 1.831e-34 1.834e-34 -33.737 -33.737 0.001 (0) +[14C](-4) 9.953e-35 + [14C]H4 9.953e-35 9.969e-35 -34.002 -34.001 0.001 (0) [14C](4) 3.414e-15 H[14C]O3- 2.758e-15 2.523e-15 -14.559 -14.598 -0.039 (0) [14C]O2 5.738e-16 5.748e-16 -15.241 -15.241 0.001 (0) @@ -2096,22 +2096,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.037 -67.037 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.038 -70.038 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.905 -66.904 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -69.906 -69.905 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -20.60 -23.46 -2.86 [13C]H4 + [13C]H4(g) -20.86 -23.72 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.14 -20.64 -1.50 [14C][18O]2 - [14C]H4(g) -30.88 -33.74 -2.86 [14C]H4 + [14C]H4(g) -31.14 -34.00 -2.86 [14C]H4 [14C]O2(g) -13.77 -15.24 -1.47 [14C]O2 [14C]O[18O](g) -16.15 -17.94 -1.79 [14C]O[18O] - [18O]2(g) -67.75 -70.04 -2.29 [18O]2 + [18O]2(g) -67.62 -69.91 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -2125,14 +2125,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -18.64 -21.50 -2.86 CH4 + CH4(g) -18.90 -21.76 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.72 -13.87 -3.15 H2 + H2(g) -10.79 -13.94 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -61.75 -64.64 -2.89 O2 - O[18O](g) -64.45 -67.34 -2.89 O[18O] + O2(g) -61.61 -64.51 -2.89 O2 + O[18O](g) -64.31 -67.21 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2241,14 +2241,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7215e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.817e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 2.2204e-13 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -6.1062e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -2.9976e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.521e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -2266,7 +2266,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.851 Adjusted to redox equilibrium + pe = -1.840 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 @@ -2275,7 +2275,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 Temperature (°C) = 25.00 Electrical balance (eq) = 5.094e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 80 + Iterations = 92 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -2287,8 +2287,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.988e-20 - CH4 1.988e-20 1.991e-20 -19.702 -19.701 0.001 (0) +C(-4) 1.615e-20 + CH4 1.615e-20 1.618e-20 -19.792 -19.791 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -2317,13 +2317,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.039e-08 6.049e-08 -7.219 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.540e-14 - H2 3.770e-14 3.776e-14 -13.424 -13.423 0.001 (0) +H(0) 7.159e-14 + H2 3.579e-14 3.585e-14 -13.446 -13.445 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.537 -65.536 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.936 -67.935 0.001 (0) -[13C](-4) 2.182e-22 - [13C]H4 2.182e-22 2.186e-22 -21.661 -21.660 0.001 (0) + O2 0.000e+00 0.000e+00 -65.491 -65.491 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.890 -67.890 0.001 (0) +[13C](-4) 1.773e-22 + [13C]H4 1.773e-22 1.776e-22 -21.751 -21.750 0.001 (0) [13C](4) 6.458e-05 H[13C]O3- 5.209e-05 4.766e-05 -4.283 -4.322 -0.039 (0) [13C]O2 1.093e-05 1.095e-05 -4.961 -4.961 0.001 (0) @@ -2342,8 +2342,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.074e-10 1.897e-10 -9.683 -9.722 -0.039 (0) H[13C]O[18O]2- 2.074e-10 1.897e-10 -9.683 -9.722 -0.039 (0) [13C]O2[18O]-2 1.854e-10 1.299e-10 -9.732 -9.886 -0.155 (0) -[14C](-4) 1.055e-32 - [14C]H4 1.055e-32 1.057e-32 -31.977 -31.976 0.001 (0) +[14C](-4) 8.575e-33 + [14C]H4 8.575e-33 8.589e-33 -32.067 -32.066 0.001 (0) [14C](4) 3.145e-15 H[14C]O3- 2.541e-15 2.324e-15 -14.595 -14.634 -0.039 (0) [14C]O2 5.286e-16 5.295e-16 -15.277 -15.276 0.001 (0) @@ -2372,22 +2372,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.936 -67.935 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.937 -70.936 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.890 -67.890 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.892 -70.891 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.80 -21.66 -2.86 [13C]H4 + [13C]H4(g) -18.89 -21.75 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.17 -20.68 -1.50 [14C][18O]2 - [14C]H4(g) -29.12 -31.98 -2.86 [14C]H4 + [14C]H4(g) -29.21 -32.07 -2.86 [14C]H4 [14C]O2(g) -13.81 -15.28 -1.47 [14C]O2 [14C]O[18O](g) -16.19 -17.98 -1.79 [14C]O[18O] - [18O]2(g) -68.65 -70.94 -2.29 [18O]2 + [18O]2(g) -68.60 -70.89 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -2401,14 +2401,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.84 -19.70 -2.86 CH4 + CH4(g) -16.93 -19.79 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.27 -13.42 -3.15 H2 + H2(g) -10.30 -13.45 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.64 -65.54 -2.89 O2 - O[18O](g) -65.34 -68.24 -2.89 O[18O] + O2(g) -62.60 -65.49 -2.89 O2 + O[18O](g) -65.30 -68.19 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2517,14 +2517,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.5503e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6854e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6668e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -2.8866e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 3.3307e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -8.9928e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -3.1086e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -2542,16 +2542,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.832 Adjusted to redox equilibrium + pe = -1.766 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.395e-13 + Electrical balance (eq) = 5.122e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 58 + Iterations = 50 (151 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -2563,8 +2563,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.391e-20 - CH4 1.391e-20 1.393e-20 -19.857 -19.856 0.001 (0) +C(-4) 4.107e-21 + CH4 4.107e-21 4.114e-21 -20.386 -20.386 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -2593,13 +2593,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.043e-08 6.053e-08 -7.219 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.896e-14 - H2 3.448e-14 3.453e-14 -13.462 -13.462 0.001 (0) +H(0) 5.083e-14 + H2 2.542e-14 2.546e-14 -13.595 -13.594 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.459 -65.458 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.858 -67.857 0.001 (0) -[13C](-4) 1.528e-22 - [13C]H4 1.528e-22 1.531e-22 -21.816 -21.815 0.001 (0) + O2 0.000e+00 0.000e+00 -65.194 -65.193 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.593 -67.592 0.001 (0) +[13C](-4) 4.513e-23 + [13C]H4 4.513e-23 4.520e-23 -22.346 -22.345 0.001 (0) [13C](4) 6.463e-05 H[13C]O3- 5.213e-05 4.769e-05 -4.283 -4.322 -0.039 (0) [13C]O2 1.094e-05 1.096e-05 -4.961 -4.960 0.001 (0) @@ -2618,8 +2618,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.075e-10 1.898e-10 -9.683 -9.722 -0.039 (0) H[13C]O[18O]2- 2.075e-10 1.898e-10 -9.683 -9.722 -0.039 (0) [13C]O2[18O]-2 1.856e-10 1.300e-10 -9.732 -9.886 -0.155 (0) -[14C](-4) 6.801e-33 - [14C]H4 6.801e-33 6.812e-33 -32.167 -32.167 0.001 (0) +[14C](-4) 2.008e-33 + [14C]H4 2.008e-33 2.012e-33 -32.697 -32.696 0.001 (0) [14C](4) 2.897e-15 H[14C]O3- 2.340e-15 2.141e-15 -14.631 -14.669 -0.039 (0) [14C]O2 4.870e-16 4.878e-16 -15.312 -15.312 0.001 (0) @@ -2648,22 +2648,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.858 -67.857 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.859 -70.858 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.593 -67.592 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.594 -70.593 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.96 -21.82 -2.86 [13C]H4 + [13C]H4(g) -19.48 -22.34 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.21 -20.71 -1.50 [14C][18O]2 - [14C]H4(g) -29.31 -32.17 -2.86 [14C]H4 + [14C]H4(g) -29.84 -32.70 -2.86 [14C]H4 [14C]O2(g) -13.84 -15.31 -1.47 [14C]O2 [14C]O[18O](g) -16.22 -18.01 -1.79 [14C]O[18O] - [18O]2(g) -68.57 -70.86 -2.29 [18O]2 + [18O]2(g) -68.30 -70.59 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -2677,14 +2677,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.00 -19.86 -2.86 CH4 + CH4(g) -17.53 -20.39 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.31 -13.46 -3.15 H2 + H2(g) -10.44 -13.59 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.57 -65.46 -2.89 O2 - O[18O](g) -65.27 -68.16 -2.89 O[18O] + O2(g) -62.30 -65.19 -2.89 O2 + O[18O](g) -65.00 -67.89 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2793,14 +2793,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.4385e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7835e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6518e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -6.1062e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 2.2204e-13 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.0214e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -3.8858e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -2818,16 +2818,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.890 Adjusted to redox equilibrium + pe = -1.834 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.395e-13 + Electrical balance (eq) = 5.122e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 53 + Iterations = 79 (180 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -2839,8 +2839,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.094e-20 - CH4 4.094e-20 4.101e-20 -19.388 -19.387 0.001 (0) +C(-4) 1.456e-20 + CH4 1.456e-20 1.458e-20 -19.837 -19.836 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -2869,13 +2869,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.048e-08 6.057e-08 -7.218 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 9.032e-14 - H2 4.516e-14 4.524e-14 -13.345 -13.345 0.001 (0) +H(0) 6.975e-14 + H2 3.487e-14 3.493e-14 -13.457 -13.457 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.693 -65.693 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.092 -68.092 0.001 (0) -[13C](-4) 4.501e-22 - [13C]H4 4.501e-22 4.509e-22 -21.347 -21.346 0.001 (0) + O2 0.000e+00 0.000e+00 -65.469 -65.468 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.868 -67.867 0.001 (0) +[13C](-4) 1.601e-22 + [13C]H4 1.601e-22 1.603e-22 -21.796 -21.795 0.001 (0) [13C](4) 6.467e-05 H[13C]O3- 5.217e-05 4.772e-05 -4.283 -4.321 -0.039 (0) [13C]O2 1.095e-05 1.097e-05 -4.961 -4.960 0.001 (0) @@ -2894,8 +2894,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) H[13C]O[18O]2- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) [13C]O2[18O]-2 1.857e-10 1.301e-10 -9.731 -9.886 -0.155 (0) -[14C](-4) 1.844e-32 - [14C]H4 1.844e-32 1.847e-32 -31.734 -31.733 0.001 (0) +[14C](-4) 6.559e-33 + [14C]H4 6.559e-33 6.569e-33 -32.183 -32.182 0.001 (0) [14C](4) 2.669e-15 H[14C]O3- 2.156e-15 1.972e-15 -14.666 -14.705 -0.039 (0) [14C]O2 4.486e-16 4.494e-16 -15.348 -15.347 0.001 (0) @@ -2924,22 +2924,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.092 -68.092 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.093 -71.093 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.868 -67.867 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.869 -70.868 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.49 -21.35 -2.86 [13C]H4 + [13C]H4(g) -18.93 -21.79 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.24 -20.75 -1.50 [14C][18O]2 - [14C]H4(g) -28.87 -31.73 -2.86 [14C]H4 + [14C]H4(g) -29.32 -32.18 -2.86 [14C]H4 [14C]O2(g) -13.88 -15.35 -1.47 [14C]O2 [14C]O[18O](g) -16.26 -18.05 -1.79 [14C]O[18O] - [18O]2(g) -68.80 -71.09 -2.29 [18O]2 + [18O]2(g) -68.58 -70.87 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -2953,14 +2953,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.53 -19.39 -2.86 CH4 + CH4(g) -16.98 -19.84 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.19 -13.34 -3.15 H2 + H2(g) -10.31 -13.46 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.80 -65.69 -2.89 O2 - O[18O](g) -65.50 -68.39 -2.89 O[18O] + O2(g) -62.58 -65.47 -2.89 O2 + O[18O](g) -65.28 -68.17 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3069,14 +3069,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 1.1102e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7113e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7129e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.3101e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 4.885e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -6.3283e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -2.0539e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -3094,16 +3094,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.781 Adjusted to redox equilibrium + pe = -1.763 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.395e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 86 + Iterations = 54 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -3115,8 +3115,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 5.433e-21 - CH4 5.433e-21 5.442e-21 -20.265 -20.264 0.001 (0) +C(-4) 3.895e-21 + CH4 3.895e-21 3.901e-21 -20.410 -20.409 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -3145,13 +3145,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.051e-08 6.061e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.451e-14 - H2 2.726e-14 2.730e-14 -13.565 -13.564 0.001 (0) +H(0) 5.016e-14 + H2 2.508e-14 2.512e-14 -13.601 -13.600 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.255 -65.254 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.654 -67.653 0.001 (0) -[13C](-4) 5.977e-23 - [13C]H4 5.977e-23 5.987e-23 -22.224 -22.223 0.001 (0) + O2 0.000e+00 0.000e+00 -65.183 -65.182 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.582 -67.581 0.001 (0) +[13C](-4) 4.285e-23 + [13C]H4 4.285e-23 4.292e-23 -22.368 -22.367 0.001 (0) [13C](4) 6.471e-05 H[13C]O3- 5.220e-05 4.776e-05 -4.282 -4.321 -0.039 (0) [13C]O2 1.096e-05 1.097e-05 -4.960 -4.960 0.001 (0) @@ -3170,8 +3170,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) H[13C]O[18O]2- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.858e-10 1.302e-10 -9.731 -9.886 -0.155 (0) -[14C](-4) 2.255e-33 - [14C]H4 2.255e-33 2.258e-33 -32.647 -32.646 0.001 (0) +[14C](-4) 1.616e-33 + [14C]H4 1.616e-33 1.619e-33 -32.791 -32.791 0.001 (0) [14C](4) 2.459e-15 H[14C]O3- 1.986e-15 1.817e-15 -14.702 -14.741 -0.039 (0) [14C]O2 4.133e-16 4.140e-16 -15.384 -15.383 0.001 (0) @@ -3200,22 +3200,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.654 -67.653 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.655 -70.654 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.582 -67.581 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.583 -70.582 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.36 -22.22 -2.86 [13C]H4 + [13C]H4(g) -19.51 -22.37 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.28 -20.78 -1.50 [14C][18O]2 - [14C]H4(g) -29.79 -32.65 -2.86 [14C]H4 + [14C]H4(g) -29.93 -32.79 -2.86 [14C]H4 [14C]O2(g) -13.91 -15.38 -1.47 [14C]O2 [14C]O[18O](g) -16.30 -18.08 -1.79 [14C]O[18O] - [18O]2(g) -68.36 -70.65 -2.29 [18O]2 + [18O]2(g) -68.29 -70.58 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -3229,14 +3229,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.40 -20.26 -2.86 CH4 + CH4(g) -17.55 -20.41 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.41 -13.56 -3.15 H2 + H2(g) -10.45 -13.60 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.36 -65.25 -2.89 O2 - O[18O](g) -65.06 -67.95 -2.89 O[18O] + O2(g) -62.29 -65.18 -2.89 O2 + O[18O](g) -64.99 -67.88 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3345,14 +3345,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.4409e-13 0 +Alpha 18O HCO3-/H2O(l) 1 1.1102e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6107e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7308e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.2212e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.843e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -8.2157e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 5.9952e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -3370,16 +3370,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.754 Adjusted to redox equilibrium + pe = -1.630 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.395e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 99 (200 overall) + Iterations = 100 (201 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -3391,8 +3391,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.311e-21 - CH4 3.311e-21 3.316e-21 -20.480 -20.479 0.001 (0) +C(-4) 3.349e-22 + CH4 3.349e-22 3.354e-22 -21.475 -21.474 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -3421,13 +3421,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.055e-08 6.065e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.817e-14 - H2 2.408e-14 2.412e-14 -13.618 -13.618 0.001 (0) +H(0) 2.716e-14 + H2 1.358e-14 1.360e-14 -13.867 -13.866 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.147 -65.147 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.546 -67.546 0.001 (0) -[13C](-4) 3.644e-23 - [13C]H4 3.644e-23 3.650e-23 -22.438 -22.438 0.001 (0) + O2 0.000e+00 0.000e+00 -64.650 -64.649 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.049 -67.048 0.001 (0) +[13C](-4) 3.686e-24 + [13C]H4 3.686e-24 3.692e-24 -23.433 -23.433 0.001 (0) [13C](4) 6.475e-05 H[13C]O3- 5.223e-05 4.778e-05 -4.282 -4.321 -0.039 (0) [13C]O2 1.096e-05 1.098e-05 -4.960 -4.959 0.001 (0) @@ -3446,8 +3446,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) H[13C]O[18O]2- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.859e-10 1.302e-10 -9.731 -9.885 -0.155 (0) -[14C](-4) 1.266e-33 - [14C]H4 1.266e-33 1.268e-33 -32.898 -32.897 0.001 (0) +[14C](-4) 1.280e-34 + [14C]H4 1.280e-34 1.282e-34 -33.893 -33.892 0.001 (0) [14C](4) 2.265e-15 H[14C]O3- 1.830e-15 1.674e-15 -14.738 -14.776 -0.039 (0) [14C]O2 3.807e-16 3.814e-16 -15.419 -15.419 0.001 (0) @@ -3476,22 +3476,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.546 -67.546 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.547 -70.547 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.049 -67.048 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.050 -70.049 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.58 -22.44 -2.86 [13C]H4 + [13C]H4(g) -20.57 -23.43 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.32 -20.82 -1.50 [14C][18O]2 - [14C]H4(g) -30.04 -32.90 -2.86 [14C]H4 + [14C]H4(g) -31.03 -33.89 -2.86 [14C]H4 [14C]O2(g) -13.95 -15.42 -1.47 [14C]O2 [14C]O[18O](g) -16.33 -18.12 -1.79 [14C]O[18O] - [18O]2(g) -68.26 -70.55 -2.29 [18O]2 + [18O]2(g) -67.76 -70.05 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -3505,14 +3505,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.62 -20.48 -2.86 CH4 + CH4(g) -18.61 -21.47 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.47 -13.62 -3.15 H2 + H2(g) -10.72 -13.87 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.25 -65.15 -2.89 O2 - O[18O](g) -64.95 -67.85 -2.89 O[18O] + O2(g) -61.76 -64.65 -2.89 O2 + O[18O](g) -64.46 -67.35 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3621,14 +3621,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7043e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.685e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.1102e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 4.6629e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.9984e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -6.3283e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -3646,16 +3646,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.824 Adjusted to redox equilibrium + pe = -1.753 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.395e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 98 (199 overall) + Iterations = 93 (194 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -3667,8 +3667,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.204e-20 - CH4 1.204e-20 1.206e-20 -19.919 -19.919 0.001 (0) +C(-4) 3.249e-21 + CH4 3.249e-21 3.254e-21 -20.488 -20.488 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -3697,13 +3697,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.058e-08 6.068e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.651e-14 - H2 3.326e-14 3.331e-14 -13.478 -13.477 0.001 (0) +H(0) 4.794e-14 + H2 2.397e-14 2.401e-14 -13.620 -13.620 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.428 -65.427 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.827 -67.826 0.001 (0) -[13C](-4) 1.326e-22 - [13C]H4 1.326e-22 1.328e-22 -21.878 -21.877 0.001 (0) + O2 0.000e+00 0.000e+00 -65.143 -65.143 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.542 -67.542 0.001 (0) +[13C](-4) 3.579e-23 + [13C]H4 3.579e-23 3.584e-23 -22.446 -22.446 0.001 (0) [13C](4) 6.479e-05 H[13C]O3- 5.226e-05 4.781e-05 -4.282 -4.320 -0.039 (0) [13C]O2 1.097e-05 1.099e-05 -4.960 -4.959 0.001 (0) @@ -3722,8 +3722,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) H[13C]O[18O]2- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.860e-10 1.303e-10 -9.730 -9.885 -0.155 (0) -[14C](-4) 4.239e-33 - [14C]H4 4.239e-33 4.246e-33 -32.373 -32.372 0.001 (0) +[14C](-4) 1.144e-33 + [14C]H4 1.144e-33 1.146e-33 -32.941 -32.941 0.001 (0) [14C](4) 2.087e-15 H[14C]O3- 1.686e-15 1.542e-15 -14.773 -14.812 -0.039 (0) [14C]O2 3.507e-16 3.513e-16 -15.455 -15.454 0.001 (0) @@ -3752,22 +3752,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.827 -67.826 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.828 -70.827 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.542 -67.542 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.543 -70.543 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.02 -21.88 -2.86 [13C]H4 + [13C]H4(g) -19.59 -22.45 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.35 -20.85 -1.50 [14C][18O]2 - [14C]H4(g) -29.51 -32.37 -2.86 [14C]H4 + [14C]H4(g) -30.08 -32.94 -2.86 [14C]H4 [14C]O2(g) -13.99 -15.45 -1.47 [14C]O2 [14C]O[18O](g) -16.37 -18.15 -1.79 [14C]O[18O] - [18O]2(g) -68.54 -70.83 -2.29 [18O]2 + [18O]2(g) -68.25 -70.54 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -3781,14 +3781,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.06 -19.92 -2.86 CH4 + CH4(g) -17.63 -20.49 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.33 -13.48 -3.15 H2 + H2(g) -10.47 -13.62 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.53 -65.43 -2.89 O2 - O[18O](g) -65.23 -68.13 -2.89 O[18O] + O2(g) -62.25 -65.14 -2.89 O2 + O[18O](g) -64.95 -67.84 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3897,14 +3897,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.5503e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.65e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6988e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -3.1086e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 6.8834e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.9984e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 0 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -3922,16 +3922,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.903 Adjusted to redox equilibrium + pe = -1.813 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.395e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 104 (205 overall) + Iterations = 70 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -3943,8 +3943,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 5.185e-20 - CH4 5.185e-20 5.194e-20 -19.285 -19.285 0.001 (0) +C(-4) 9.743e-21 + CH4 9.743e-21 9.759e-21 -20.011 -20.011 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -3973,13 +3973,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.061e-08 6.071e-08 -7.217 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 9.582e-14 - H2 4.791e-14 4.799e-14 -13.320 -13.319 0.001 (0) +H(0) 6.308e-14 + H2 3.154e-14 3.159e-14 -13.501 -13.500 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.745 -65.744 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.144 -68.143 0.001 (0) -[13C](-4) 5.714e-22 - [13C]H4 5.714e-22 5.723e-22 -21.243 -21.242 0.001 (0) + O2 0.000e+00 0.000e+00 -65.382 -65.381 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.781 -67.780 0.001 (0) +[13C](-4) 1.074e-22 + [13C]H4 1.074e-22 1.075e-22 -21.969 -21.968 0.001 (0) [13C](4) 6.482e-05 H[13C]O3- 5.228e-05 4.783e-05 -4.282 -4.320 -0.039 (0) [13C]O2 1.097e-05 1.099e-05 -4.960 -4.959 0.001 (0) @@ -3998,8 +3998,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) H[13C]O[18O]2- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) [13C]O2[18O]-2 1.861e-10 1.304e-10 -9.730 -9.885 -0.155 (0) -[14C](-4) 1.682e-32 - [14C]H4 1.682e-32 1.685e-32 -31.774 -31.773 0.001 (0) +[14C](-4) 3.161e-33 + [14C]H4 3.161e-33 3.166e-33 -32.500 -32.499 0.001 (0) [14C](4) 1.922e-15 H[14C]O3- 1.553e-15 1.421e-15 -14.809 -14.848 -0.039 (0) [14C]O2 3.231e-16 3.236e-16 -15.491 -15.490 0.001 (0) @@ -4028,22 +4028,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.144 -68.143 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.145 -71.144 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.781 -67.780 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.782 -70.781 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.38 -21.24 -2.86 [13C]H4 + [13C]H4(g) -19.11 -21.97 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.39 -20.89 -1.50 [14C][18O]2 - [14C]H4(g) -28.91 -31.77 -2.86 [14C]H4 + [14C]H4(g) -29.64 -32.50 -2.86 [14C]H4 [14C]O2(g) -14.02 -15.49 -1.47 [14C]O2 [14C]O[18O](g) -16.40 -18.19 -1.79 [14C]O[18O] - [18O]2(g) -68.85 -71.14 -2.29 [18O]2 + [18O]2(g) -68.49 -70.78 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -4057,14 +4057,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.42 -19.28 -2.86 CH4 + CH4(g) -17.15 -20.01 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.17 -13.32 -3.15 H2 + H2(g) -10.35 -13.50 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.85 -65.74 -2.89 O2 - O[18O](g) -65.55 -68.44 -2.89 O[18O] + O2(g) -62.49 -65.38 -2.89 O2 + O[18O](g) -65.19 -68.08 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4176,11 +4176,11 @@ Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.567e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6112e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 7.7716e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.9984e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 6.2172e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -2.2204e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -4198,16 +4198,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.728 Adjusted to redox equilibrium + pe = -1.706 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.395e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 132 (233 overall) + Iterations = 137 (238 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -4219,8 +4219,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.058e-21 - CH4 2.058e-21 2.062e-21 -20.687 -20.686 0.001 (0) +C(-4) 1.368e-21 + CH4 1.368e-21 1.370e-21 -20.864 -20.863 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -4249,13 +4249,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.064e-08 6.074e-08 -7.217 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.277e-14 - H2 2.138e-14 2.142e-14 -13.670 -13.669 0.001 (0) +H(0) 3.862e-14 + H2 1.931e-14 1.934e-14 -13.714 -13.714 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.044 -65.043 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.443 -67.442 0.001 (0) -[13C](-4) 2.269e-23 - [13C]H4 2.269e-23 2.273e-23 -22.644 -22.643 0.001 (0) + O2 0.000e+00 0.000e+00 -64.955 -64.955 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.354 -67.354 0.001 (0) +[13C](-4) 1.508e-23 + [13C]H4 1.508e-23 1.511e-23 -22.822 -22.821 0.001 (0) [13C](4) 6.485e-05 H[13C]O3- 5.231e-05 4.786e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.098e-05 1.100e-05 -4.959 -4.959 0.001 (0) @@ -4274,8 +4274,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) H[13C]O[18O]2- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.862e-10 1.304e-10 -9.730 -9.885 -0.155 (0) -[14C](-4) 6.152e-34 - [14C]H4 6.152e-34 6.162e-34 -33.211 -33.210 0.001 (0) +[14C](-4) 4.089e-34 + [14C]H4 4.089e-34 4.096e-34 -33.388 -33.388 0.001 (0) [14C](4) 1.771e-15 H[14C]O3- 1.431e-15 1.309e-15 -14.845 -14.883 -0.039 (0) [14C]O2 2.977e-16 2.981e-16 -15.526 -15.526 0.001 (0) @@ -4304,22 +4304,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.443 -67.442 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.444 -70.443 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.354 -67.354 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.355 -70.355 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.78 -22.64 -2.86 [13C]H4 + [13C]H4(g) -19.96 -22.82 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.42 -20.93 -1.50 [14C][18O]2 - [14C]H4(g) -30.35 -33.21 -2.86 [14C]H4 + [14C]H4(g) -30.53 -33.39 -2.86 [14C]H4 [14C]O2(g) -14.06 -15.53 -1.47 [14C]O2 [14C]O[18O](g) -16.44 -18.23 -1.79 [14C]O[18O] - [18O]2(g) -68.15 -70.44 -2.29 [18O]2 + [18O]2(g) -68.06 -70.35 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -4333,14 +4333,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.83 -20.69 -2.86 CH4 + CH4(g) -18.00 -20.86 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.52 -13.67 -3.15 H2 + H2(g) -10.56 -13.71 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.15 -65.04 -2.89 O2 - O[18O](g) -64.85 -67.74 -2.89 O[18O] + O2(g) -62.06 -64.95 -2.89 O2 + O[18O](g) -64.76 -67.65 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4447,12 +4447,12 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2684e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.265e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8585e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7676e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -4472,16 +4472,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.737 Adjusted to redox equilibrium + pe = 10.819 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.395e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 134 (235 overall) + Iterations = 83 (184 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -4494,7 +4494,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.404 -120.403 0.001 (0) + CH4 0.000e+00 0.000e+00 -121.063 -121.062 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -4523,13 +4523,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.067e-08 6.077e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.032e-39 - H2 2.516e-39 2.520e-39 -38.599 -38.599 0.001 (0) -O(0) 1.311e-15 - O2 6.527e-16 6.537e-16 -15.185 -15.185 0.001 (0) - O[18O] 2.604e-18 2.609e-18 -17.584 -17.584 0.001 (0) +H(0) 3.445e-39 + H2 1.722e-39 1.725e-39 -38.764 -38.763 0.001 (0) +O(0) 2.797e-15 + O2 1.393e-15 1.395e-15 -14.856 -14.855 0.001 (0) + O[18O] 5.558e-18 5.567e-18 -17.255 -17.254 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -122.362 -122.361 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -123.020 -123.019 0.001 (0) [13C](4) 6.488e-05 H[13C]O3- 5.233e-05 4.788e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.098e-05 1.100e-05 -4.959 -4.959 0.001 (0) @@ -4549,7 +4549,7 @@ O(0) 1.311e-15 H[13C]O[18O]2- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.863e-10 1.305e-10 -9.730 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -132.964 -132.963 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -133.623 -133.622 0.001 (0) [14C](4) 1.631e-15 H[14C]O3- 1.318e-15 1.206e-15 -14.880 -14.919 -0.039 (0) [14C]O2 2.742e-16 2.747e-16 -15.562 -15.561 0.001 (0) @@ -4577,23 +4577,23 @@ O(0) 1.311e-15 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.610e-18 - O[18O] 2.604e-18 2.609e-18 -17.584 -17.584 0.001 (0) - [18O]2 2.598e-21 2.602e-21 -20.585 -20.585 0.001 (0) +[18O](0) 5.569e-18 + O[18O] 5.558e-18 5.567e-18 -17.255 -17.254 0.001 (0) + [18O]2 5.544e-21 5.554e-21 -20.256 -20.255 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -119.50 -122.36 -2.86 [13C]H4 + [13C]H4(g) -120.16 -123.02 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.46 -20.96 -1.50 [14C][18O]2 - [14C]H4(g) -130.10 -132.96 -2.86 [14C]H4 + [14C]H4(g) -130.76 -133.62 -2.86 [14C]H4 [14C]O2(g) -14.09 -15.56 -1.47 [14C]O2 [14C]O[18O](g) -16.47 -18.26 -1.79 [14C]O[18O] - [18O]2(g) -18.29 -20.58 -2.29 [18O]2 + [18O]2(g) -17.97 -20.26 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -4607,14 +4607,14 @@ O(0) 1.311e-15 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -117.54 -120.40 -2.86 CH4 + CH4(g) -118.20 -121.06 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.45 -38.60 -3.15 H2 + H2(g) -35.61 -38.76 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -12.29 -15.18 -2.89 O2 - O[18O](g) -14.99 -17.88 -2.89 O[18O] + O2(g) -11.96 -14.86 -2.89 O2 + O[18O](g) -14.66 -17.56 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4699,6 +4699,7 @@ Calcite 5.00e-04 R(18O) H2O(l) 1.99518e-03 -4.9954 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.012 permil + R(18O) O2(aq) 1.99518e-03 -4.9954 permil R(13C) CO2(aq) 1.10338e-02 -13.097 permil R(14C) CO2(aq) 2.53668e-13 21.573 pmc R(18O) CO2(aq) 2.07915e-03 36.878 permil @@ -4708,8 +4709,6 @@ Calcite 5.00e-04 R(18O) CO3-2 1.99518e-03 -4.9954 permil R(13C) CO3-2 1.11138e-02 -5.9399 permil R(14C) CO3-2 2.57361e-13 21.887 pmc - R(13C) CH4(aq) 1.10338e-02 -13.097 permil - R(14C) CH4(aq) 2.53668e-13 21.573 pmc R(18O) Calcite 2.05262e-03 23.651 permil R(13C) Calcite 1.11518e-02 -2.5396 permil R(14C) Calcite 2.59125e-13 22.037 pmc @@ -4722,15 +4721,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 +Alpha 18O O2(aq)/H2O(l) 1 -2.2512e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5774e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6911e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.1324e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.3767e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -4748,16 +4746,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.621 Adjusted to redox equilibrium + pe = 10.815 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.395e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 92 (193 overall) + Iterations = 74 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -4769,8 +4767,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.835e-22 - CH4 2.835e-22 2.840e-22 -21.547 -21.547 0.001 (0) +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -121.030 -121.030 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -4799,13 +4797,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.069e-08 6.079e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.606e-14 - H2 1.303e-14 1.305e-14 -13.885 -13.884 0.001 (0) -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.614 -64.613 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.013 -67.012 0.001 (0) -[13C](-4) 3.128e-24 - [13C]H4 3.128e-24 3.133e-24 -23.505 -23.504 0.001 (0) +H(0) 3.509e-39 + H2 1.755e-39 1.757e-39 -38.756 -38.755 0.001 (0) +O(0) 2.695e-15 + O2 1.342e-15 1.344e-15 -14.872 -14.871 0.001 (0) + O[18O] 5.355e-18 5.364e-18 -17.271 -17.270 0.001 (0) +[13C](-4) 0.000e+00 + [13C]H4 0.000e+00 0.000e+00 -122.988 -122.987 0.001 (0) [13C](4) 6.490e-05 H[13C]O3- 5.235e-05 4.789e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) @@ -4824,8 +4822,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) H[13C]O[18O]2- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.863e-10 1.305e-10 -9.730 -9.884 -0.155 (0) -[14C](-4) 7.191e-35 - [14C]H4 7.191e-35 7.203e-35 -34.143 -34.142 0.001 (0) +[14C](-4) 0.000e+00 + [14C]H4 0.000e+00 0.000e+00 -133.626 -133.625 0.001 (0) [14C](4) 1.503e-15 H[14C]O3- 1.214e-15 1.111e-15 -14.916 -14.954 -0.039 (0) [14C]O2 2.526e-16 2.530e-16 -15.598 -15.597 0.001 (0) @@ -4853,23 +4851,23 @@ O(0) 0.000e+00 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.013 -67.012 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.014 -70.013 0.001 (0) +[18O](0) 5.366e-18 + O[18O] 5.355e-18 5.364e-18 -17.271 -17.270 0.001 (0) + [18O]2 5.343e-21 5.351e-21 -20.272 -20.272 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -20.64 -23.50 -2.86 [13C]H4 + [13C]H4(g) -120.13 -122.99 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.49 -21.00 -1.50 [14C][18O]2 - [14C]H4(g) -31.28 -34.14 -2.86 [14C]H4 + [14C]H4(g) -130.77 -133.63 -2.86 [14C]H4 [14C]O2(g) -14.13 -15.60 -1.47 [14C]O2 [14C]O[18O](g) -16.51 -18.30 -1.79 [14C]O[18O] - [18O]2(g) -67.72 -70.01 -2.29 [18O]2 + [18O]2(g) -17.98 -20.27 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -4883,14 +4881,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -18.69 -21.55 -2.86 CH4 + CH4(g) -118.17 -121.03 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.73 -13.88 -3.15 H2 + H2(g) -35.61 -38.76 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -61.72 -64.61 -2.89 O2 - O[18O](g) -64.42 -67.31 -2.89 O[18O] + O2(g) -11.98 -14.87 -2.89 O2 + O[18O](g) -14.68 -17.57 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4999,14 +4997,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.535e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6459e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 0 0 -Alpha 14C CH4(aq)/CO2(aq) 1 2.2204e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 9.3259e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -8.8818e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -5024,16 +5022,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.735 Adjusted to redox equilibrium + pe = -1.461 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.395e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 77 + Iterations = 68 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -5045,8 +5043,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.331e-21 - CH4 2.331e-21 2.334e-21 -20.633 -20.632 0.001 (0) +C(-4) 1.505e-23 + CH4 1.505e-23 1.508e-23 -22.822 -22.822 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -5075,13 +5073,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.071e-08 6.081e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.412e-14 - H2 2.206e-14 2.210e-14 -13.656 -13.656 0.001 (0) +H(0) 1.251e-14 + H2 6.254e-15 6.264e-15 -14.204 -14.203 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.071 -65.070 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.470 -67.469 0.001 (0) -[13C](-4) 2.572e-23 - [13C]H4 2.572e-23 2.577e-23 -22.590 -22.589 0.001 (0) + O2 0.000e+00 0.000e+00 -63.976 -63.975 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.375 -66.374 0.001 (0) +[13C](-4) 1.662e-25 + [13C]H4 1.662e-25 1.664e-25 -24.779 -24.779 0.001 (0) [13C](4) 6.493e-05 H[13C]O3- 5.237e-05 4.791e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) @@ -5100,8 +5098,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) H[13C]O[18O]2- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.864e-10 1.306e-10 -9.730 -9.884 -0.155 (0) -[14C](-4) 5.446e-34 - [14C]H4 5.446e-34 5.455e-34 -33.264 -33.263 0.001 (0) +[14C](-4) 3.518e-36 + [14C]H4 3.518e-36 3.524e-36 -35.454 -35.453 0.001 (0) [14C](4) 1.385e-15 H[14C]O3- 1.118e-15 1.023e-15 -14.951 -14.990 -0.039 (0) [14C]O2 2.327e-16 2.331e-16 -15.633 -15.632 0.001 (0) @@ -5130,22 +5128,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.470 -67.469 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.471 -70.470 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.375 -66.374 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -69.376 -69.376 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.73 -22.59 -2.86 [13C]H4 + [13C]H4(g) -21.92 -24.78 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.53 -21.03 -1.50 [14C][18O]2 - [14C]H4(g) -30.40 -33.26 -2.86 [14C]H4 + [14C]H4(g) -32.59 -35.45 -2.86 [14C]H4 [14C]O2(g) -14.16 -15.63 -1.47 [14C]O2 [14C]O[18O](g) -16.55 -18.33 -1.79 [14C]O[18O] - [18O]2(g) -68.18 -70.47 -2.29 [18O]2 + [18O]2(g) -67.09 -69.38 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -5159,14 +5157,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.77 -20.63 -2.86 CH4 + CH4(g) -19.96 -22.82 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.51 -13.66 -3.15 H2 + H2(g) -11.05 -14.20 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.18 -65.07 -2.89 O2 - O[18O](g) -64.88 -67.77 -2.89 O[18O] + O2(g) -61.08 -63.98 -2.89 O2 + O[18O](g) -63.78 -66.68 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5273,12 +5271,12 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2516e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2423e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.69e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6611e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -5298,16 +5296,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.863 Adjusted to redox equilibrium + pe = 11.031 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.395e-13 + Electrical balance (eq) = 5.147e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 95 + Iterations = 67 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -5320,7 +5318,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -121.419 -121.419 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.762 -122.761 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -5349,13 +5347,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.073e-08 6.083e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.805e-39 - H2 1.402e-39 1.405e-39 -38.853 -38.852 0.001 (0) -O(0) 4.218e-15 - O2 2.101e-15 2.104e-15 -14.678 -14.677 0.001 (0) - O[18O] 8.383e-18 8.397e-18 -17.077 -17.076 0.001 (0) +H(0) 1.295e-39 + H2 6.476e-40 6.487e-40 -39.189 -39.188 0.001 (0) +O(0) 1.978e-14 + O2 9.850e-15 9.866e-15 -14.007 -14.006 0.001 (0) + O[18O] 3.931e-17 3.937e-17 -16.406 -16.405 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -123.376 -123.376 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.719 -124.718 0.001 (0) [13C](4) 6.495e-05 H[13C]O3- 5.239e-05 4.793e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.101e-05 -4.959 -4.958 0.001 (0) @@ -5375,7 +5373,7 @@ O(0) 4.218e-15 H[13C]O[18O]2- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.865e-10 1.306e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.086 -134.086 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -135.429 -135.428 0.001 (0) [14C](4) 1.275e-15 H[14C]O3- 1.030e-15 9.426e-16 -14.987 -15.026 -0.039 (0) [14C]O2 2.144e-16 2.147e-16 -15.669 -15.668 0.001 (0) @@ -5403,23 +5401,23 @@ O(0) 4.218e-15 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 8.400e-18 - O[18O] 8.383e-18 8.397e-18 -17.077 -17.076 0.001 (0) - [18O]2 8.363e-21 8.377e-21 -20.078 -20.077 0.001 (0) +[18O](0) 3.938e-17 + O[18O] 3.931e-17 3.937e-17 -16.406 -16.405 0.001 (0) + [18O]2 3.921e-20 3.928e-20 -19.407 -19.406 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -120.52 -123.38 -2.86 [13C]H4 + [13C]H4(g) -121.86 -124.72 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.56 -21.07 -1.50 [14C][18O]2 - [14C]H4(g) -131.23 -134.09 -2.86 [14C]H4 + [14C]H4(g) -132.57 -135.43 -2.86 [14C]H4 [14C]O2(g) -14.20 -15.67 -1.47 [14C]O2 [14C]O[18O](g) -16.58 -18.37 -1.79 [14C]O[18O] - [18O]2(g) -17.79 -20.08 -2.29 [18O]2 + [18O]2(g) -17.12 -19.41 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -5433,14 +5431,14 @@ O(0) 4.218e-15 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -118.56 -121.42 -2.86 CH4 + CH4(g) -119.90 -122.76 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.70 -38.85 -3.15 H2 + H2(g) -36.04 -39.19 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.78 -14.68 -2.89 O2 - O[18O](g) -14.48 -17.38 -2.89 O[18O] + O2(g) -11.11 -14.01 -2.89 O2 + O[18O](g) -13.81 -16.71 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5547,12 +5545,12 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2614e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2523e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.3323e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.9051e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7394e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -5572,16 +5570,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.954 Adjusted to redox equilibrium + pe = 11.056 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.395e-13 + Electrical balance (eq) = 5.147e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 92 (193 overall) + Iterations = 122 (223 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -5594,7 +5592,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.147 -122.147 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.961 -122.961 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -5623,13 +5621,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.075e-08 6.085e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.845e-39 - H2 9.224e-40 9.239e-40 -39.035 -39.034 0.001 (0) -O(0) 9.751e-15 - O2 4.856e-15 4.864e-15 -14.314 -14.313 0.001 (0) - O[18O] 1.938e-17 1.941e-17 -16.713 -16.712 0.001 (0) +H(0) 1.155e-39 + H2 5.773e-40 5.783e-40 -39.239 -39.238 0.001 (0) +O(0) 2.489e-14 + O2 1.240e-14 1.242e-14 -13.907 -13.906 0.001 (0) + O[18O] 4.946e-17 4.955e-17 -16.306 -16.305 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.104 -124.103 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.918 -124.917 0.001 (0) [13C](4) 6.497e-05 H[13C]O3- 5.240e-05 4.794e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) @@ -5649,7 +5647,7 @@ O(0) 9.751e-15 H[13C]O[18O]2- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.865e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.850 -134.849 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -135.664 -135.663 0.001 (0) [14C](4) 1.175e-15 H[14C]O3- 9.491e-16 8.683e-16 -15.023 -15.061 -0.039 (0) [14C]O2 1.975e-16 1.978e-16 -15.704 -15.704 0.001 (0) @@ -5677,23 +5675,23 @@ O(0) 9.751e-15 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.942e-17 - O[18O] 1.938e-17 1.941e-17 -16.713 -16.712 0.001 (0) - [18O]2 1.933e-20 1.936e-20 -19.714 -19.713 0.001 (0) +[18O](0) 4.956e-17 + O[18O] 4.946e-17 4.955e-17 -16.306 -16.305 0.001 (0) + [18O]2 4.934e-20 4.943e-20 -19.307 -19.306 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.24 -124.10 -2.86 [13C]H4 + [13C]H4(g) -122.06 -124.92 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.60 -21.10 -1.50 [14C][18O]2 - [14C]H4(g) -131.99 -134.85 -2.86 [14C]H4 + [14C]H4(g) -132.80 -135.66 -2.86 [14C]H4 [14C]O2(g) -14.24 -15.70 -1.47 [14C]O2 [14C]O[18O](g) -16.62 -18.40 -1.79 [14C]O[18O] - [18O]2(g) -17.42 -19.71 -2.29 [18O]2 + [18O]2(g) -17.02 -19.31 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -5707,14 +5705,14 @@ O(0) 9.751e-15 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.29 -122.15 -2.86 CH4 + CH4(g) -120.10 -122.96 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.88 -39.03 -3.15 H2 + H2(g) -36.09 -39.24 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.42 -14.31 -2.89 O2 - O[18O](g) -14.12 -17.01 -2.89 O[18O] + O2(g) -11.01 -13.91 -2.89 O2 + O[18O](g) -13.71 -16.61 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5821,12 +5819,12 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.27e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2612e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -7.6605e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7033e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7439e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -5846,16 +5844,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.999 Adjusted to redox equilibrium + pe = 11.006 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.395e-13 + Electrical balance (eq) = 5.147e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 95 + Iterations = 99 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -5868,7 +5866,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.504 -122.503 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.557 -122.557 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -5897,13 +5895,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.077e-08 6.087e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.503e-39 - H2 7.513e-40 7.525e-40 -39.124 -39.123 0.001 (0) -O(0) 1.470e-14 - O2 7.320e-15 7.332e-15 -14.136 -14.135 0.001 (0) - O[18O] 2.921e-17 2.926e-17 -16.534 -16.534 0.001 (0) +H(0) 1.457e-39 + H2 7.284e-40 7.296e-40 -39.138 -39.137 0.001 (0) +O(0) 1.563e-14 + O2 7.786e-15 7.799e-15 -14.109 -14.108 0.001 (0) + O[18O] 3.107e-17 3.112e-17 -16.508 -16.507 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.460 -124.460 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.514 -124.513 0.001 (0) [13C](4) 6.499e-05 H[13C]O3- 5.242e-05 4.796e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) @@ -5923,7 +5921,7 @@ O(0) 1.470e-14 H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -135.242 -135.241 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -135.296 -135.295 0.001 (0) [14C](4) 1.082e-15 H[14C]O3- 8.744e-16 7.999e-16 -15.058 -15.097 -0.039 (0) [14C]O2 1.819e-16 1.822e-16 -15.740 -15.739 0.001 (0) @@ -5951,23 +5949,23 @@ O(0) 1.470e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.927e-17 - O[18O] 2.921e-17 2.926e-17 -16.534 -16.534 0.001 (0) - [18O]2 2.914e-20 2.919e-20 -19.536 -19.535 0.001 (0) +[18O](0) 3.113e-17 + O[18O] 3.107e-17 3.112e-17 -16.508 -16.507 0.001 (0) + [18O]2 3.099e-20 3.104e-20 -19.509 -19.508 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.60 -124.46 -2.86 [13C]H4 + [13C]H4(g) -121.65 -124.51 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.64 -21.14 -1.50 [14C][18O]2 - [14C]H4(g) -132.38 -135.24 -2.86 [14C]H4 + [14C]H4(g) -132.43 -135.29 -2.86 [14C]H4 [14C]O2(g) -14.27 -15.74 -1.47 [14C]O2 [14C]O[18O](g) -16.65 -18.44 -1.79 [14C]O[18O] - [18O]2(g) -17.24 -19.53 -2.29 [18O]2 + [18O]2(g) -17.22 -19.51 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -5981,14 +5979,14 @@ O(0) 1.470e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.64 -122.50 -2.86 CH4 + CH4(g) -119.70 -122.56 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.97 -39.12 -3.15 H2 + H2(g) -35.99 -39.14 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.24 -14.13 -2.89 O2 - O[18O](g) -13.94 -16.83 -2.89 O[18O] + O2(g) -11.22 -14.11 -2.89 O2 + O[18O](g) -13.92 -16.81 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6095,12 +6093,12 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2777e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2671e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.4385e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7817e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.682e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -6120,16 +6118,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.044 Adjusted to redox equilibrium + pe = 11.077 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.395e-13 + Electrical balance (eq) = 5.147e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 78 (179 overall) + Iterations = 84 (185 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -6142,7 +6140,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.860 -122.859 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.128 -123.128 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -6171,13 +6169,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.078e-08 6.088e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.224e-39 - H2 6.120e-40 6.130e-40 -39.213 -39.213 0.001 (0) -O(0) 2.215e-14 - O2 1.103e-14 1.105e-14 -13.957 -13.957 0.001 (0) - O[18O] 4.402e-17 4.409e-17 -16.356 -16.356 0.001 (0) +H(0) 1.049e-39 + H2 5.244e-40 5.252e-40 -39.280 -39.280 0.001 (0) +O(0) 3.017e-14 + O2 1.502e-14 1.505e-14 -13.823 -13.822 0.001 (0) + O[18O] 5.995e-17 6.005e-17 -16.222 -16.221 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.817 -124.816 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.085 -125.084 0.001 (0) [13C](4) 6.500e-05 H[13C]O3- 5.243e-05 4.797e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.958 -4.958 0.001 (0) @@ -6197,7 +6195,7 @@ O(0) 2.215e-14 H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -135.634 -135.633 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -135.902 -135.901 0.001 (0) [14C](4) 9.972e-16 H[14C]O3- 8.055e-16 7.369e-16 -15.094 -15.133 -0.039 (0) [14C]O2 1.676e-16 1.679e-16 -15.776 -15.775 0.001 (0) @@ -6225,23 +6223,23 @@ O(0) 2.215e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.411e-17 - O[18O] 4.402e-17 4.409e-17 -16.356 -16.356 0.001 (0) - [18O]2 4.391e-20 4.399e-20 -19.357 -19.357 0.001 (0) +[18O](0) 6.007e-17 + O[18O] 5.995e-17 6.005e-17 -16.222 -16.221 0.001 (0) + [18O]2 5.981e-20 5.991e-20 -19.223 -19.223 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.96 -124.82 -2.86 [13C]H4 + [13C]H4(g) -122.22 -125.08 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.67 -21.18 -1.50 [14C][18O]2 - [14C]H4(g) -132.77 -135.63 -2.86 [14C]H4 + [14C]H4(g) -133.04 -135.90 -2.86 [14C]H4 [14C]O2(g) -14.31 -15.77 -1.47 [14C]O2 [14C]O[18O](g) -16.69 -18.48 -1.79 [14C]O[18O] - [18O]2(g) -17.07 -19.36 -2.29 [18O]2 + [18O]2(g) -16.93 -19.22 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -6255,14 +6253,14 @@ O(0) 2.215e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.00 -122.86 -2.86 CH4 + CH4(g) -120.27 -123.13 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.06 -39.21 -3.15 H2 + H2(g) -36.13 -39.28 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.06 -13.96 -2.89 O2 - O[18O](g) -13.76 -16.66 -2.89 O[18O] + O2(g) -10.93 -13.82 -2.89 O2 + O[18O](g) -13.63 -16.52 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6369,12 +6367,12 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2504e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2384e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5867e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6248e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -6394,16 +6392,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.751 Adjusted to redox equilibrium + pe = 11.010 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.395e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 70 + Iterations = 90 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -6416,7 +6414,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.523 -120.522 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.593 -122.593 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -6445,13 +6443,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.080e-08 6.090e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.699e-39 - H2 2.349e-39 2.353e-39 -38.629 -38.628 0.001 (0) -O(0) 1.503e-15 - O2 7.485e-16 7.497e-16 -15.126 -15.125 0.001 (0) - O[18O] 2.987e-18 2.992e-18 -17.525 -17.524 0.001 (0) +H(0) 1.427e-39 + H2 7.135e-40 7.147e-40 -39.147 -39.146 0.001 (0) +O(0) 1.630e-14 + O2 8.116e-15 8.129e-15 -14.091 -14.090 0.001 (0) + O[18O] 3.239e-17 3.244e-17 -16.490 -16.489 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -122.480 -122.479 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.550 -124.549 0.001 (0) [13C](4) 6.502e-05 H[13C]O3- 5.244e-05 4.798e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.958 0.001 (0) @@ -6471,7 +6469,7 @@ O(0) 1.503e-15 H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -133.333 -133.332 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -135.403 -135.402 0.001 (0) [14C](4) 9.186e-16 H[14C]O3- 7.420e-16 6.789e-16 -15.130 -15.168 -0.039 (0) [14C]O2 1.544e-16 1.547e-16 -15.811 -15.811 0.001 (0) @@ -6499,23 +6497,23 @@ O(0) 1.503e-15 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.993e-18 - O[18O] 2.987e-18 2.992e-18 -17.525 -17.524 0.001 (0) - [18O]2 2.980e-21 2.984e-21 -20.526 -20.525 0.001 (0) +[18O](0) 3.245e-17 + O[18O] 3.239e-17 3.244e-17 -16.490 -16.489 0.001 (0) + [18O]2 3.231e-20 3.236e-20 -19.491 -19.490 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -119.62 -122.48 -2.86 [13C]H4 + [13C]H4(g) -121.69 -124.55 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.71 -21.21 -1.50 [14C][18O]2 - [14C]H4(g) -130.47 -133.33 -2.86 [14C]H4 + [14C]H4(g) -132.54 -135.40 -2.86 [14C]H4 [14C]O2(g) -14.34 -15.81 -1.47 [14C]O2 [14C]O[18O](g) -16.72 -18.51 -1.79 [14C]O[18O] - [18O]2(g) -18.23 -20.53 -2.29 [18O]2 + [18O]2(g) -17.20 -19.49 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -6529,14 +6527,14 @@ O(0) 1.503e-15 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -117.66 -120.52 -2.86 CH4 + CH4(g) -119.73 -122.59 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.48 -38.63 -3.15 H2 + H2(g) -36.00 -39.15 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -12.23 -15.13 -2.89 O2 - O[18O](g) -14.93 -17.83 -2.89 O[18O] + O2(g) -11.20 -14.09 -2.89 O2 + O[18O](g) -13.90 -16.79 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6643,12 +6641,12 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2877e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2432e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7185e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6857e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -6668,16 +6666,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.739 Adjusted to redox equilibrium + pe = 10.947 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.395e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 74 + Iterations = 96 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -6690,7 +6688,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.427 -120.426 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.090 -122.089 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -6719,13 +6717,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.081e-08 6.091e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.967e-39 - H2 2.483e-39 2.488e-39 -38.605 -38.604 0.001 (0) -O(0) 1.345e-15 - O2 6.699e-16 6.710e-16 -15.174 -15.173 0.001 (0) - O[18O] 2.673e-18 2.677e-18 -17.573 -17.572 0.001 (0) +H(0) 1.907e-39 + H2 9.535e-40 9.551e-40 -39.021 -39.020 0.001 (0) +O(0) 9.125e-15 + O2 4.544e-15 4.552e-15 -14.343 -14.342 0.001 (0) + O[18O] 1.813e-17 1.816e-17 -16.742 -16.741 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -122.383 -122.382 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.046 -124.045 0.001 (0) [13C](4) 6.503e-05 H[13C]O3- 5.245e-05 4.799e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.958 0.001 (0) @@ -6745,7 +6743,7 @@ O(0) 1.345e-15 H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -133.272 -133.271 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -134.935 -134.934 0.001 (0) [14C](4) 8.462e-16 H[14C]O3- 6.836e-16 6.254e-16 -15.165 -15.204 -0.039 (0) [14C]O2 1.422e-16 1.425e-16 -15.847 -15.846 0.001 (0) @@ -6773,23 +6771,23 @@ O(0) 1.345e-15 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.678e-18 - O[18O] 2.673e-18 2.677e-18 -17.573 -17.572 0.001 (0) - [18O]2 2.667e-21 2.671e-21 -20.574 -20.573 0.001 (0) +[18O](0) 1.817e-17 + O[18O] 1.813e-17 1.816e-17 -16.742 -16.741 0.001 (0) + [18O]2 1.809e-20 1.812e-20 -19.743 -19.742 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -119.52 -122.38 -2.86 [13C]H4 + [13C]H4(g) -121.19 -124.05 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.74 -21.25 -1.50 [14C][18O]2 - [14C]H4(g) -130.41 -133.27 -2.86 [14C]H4 + [14C]H4(g) -132.07 -134.93 -2.86 [14C]H4 [14C]O2(g) -14.38 -15.85 -1.47 [14C]O2 [14C]O[18O](g) -16.76 -18.55 -1.79 [14C]O[18O] - [18O]2(g) -18.28 -20.57 -2.29 [18O]2 + [18O]2(g) -17.45 -19.74 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -6803,14 +6801,14 @@ O(0) 1.345e-15 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -117.57 -120.43 -2.86 CH4 + CH4(g) -119.23 -122.09 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.45 -38.60 -3.15 H2 + H2(g) -35.87 -39.02 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -12.28 -15.17 -2.89 O2 - O[18O](g) -14.98 -17.87 -2.89 O[18O] + O2(g) -11.45 -14.34 -2.89 O2 + O[18O](g) -14.15 -17.04 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6895,6 +6893,7 @@ Calcite 5.00e-04 R(18O) H2O(l) 1.99519e-03 -4.9943 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.014 permil + R(18O) O2(aq) 1.99519e-03 -4.9943 permil R(13C) CO2(aq) 1.10583e-02 -10.907 permil R(14C) CO2(aq) 1.31587e-13 11.19 pmc R(18O) CO2(aq) 2.07915e-03 36.88 permil @@ -6904,8 +6903,6 @@ Calcite 5.00e-04 R(18O) CO3-2 1.99519e-03 -4.9943 permil R(13C) CO3-2 1.11385e-02 -3.7334 permil R(14C) CO3-2 1.33503e-13 11.353 pmc - R(13C) CH4(aq) 1.10583e-02 -10.907 permil - R(14C) CH4(aq) 1.31587e-13 11.19 pmc R(18O) Calcite 2.05263e-03 23.652 permil R(13C) Calcite 1.11766e-02 -0.3255 permil R(14C) Calcite 1.34417e-13 11.431 pmc @@ -6918,15 +6915,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 +Alpha 18O O2(aq)/H2O(l) 1 -2.2448e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5808e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.4787e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.0325e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -6.1062e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -6944,16 +6940,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.504 Adjusted to redox equilibrium + pe = 10.920 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.396e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 77 + Iterations = 71 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -6965,8 +6961,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.301e-23 - CH4 3.301e-23 3.306e-23 -22.481 -22.481 0.001 (0) +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -121.874 -121.873 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -6995,13 +6991,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.522e-14 - H2 7.610e-15 7.622e-15 -14.119 -14.118 0.001 (0) -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.147 -64.146 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -66.546 -66.545 0.001 (0) -[13C](-4) 3.650e-25 - [13C]H4 3.650e-25 3.656e-25 -24.438 -24.437 0.001 (0) +H(0) 2.160e-39 + H2 1.080e-39 1.082e-39 -38.967 -38.966 0.001 (0) +O(0) 7.116e-15 + O2 3.544e-15 3.549e-15 -14.451 -14.450 0.001 (0) + O[18O] 1.414e-17 1.416e-17 -16.850 -16.849 0.001 (0) +[13C](-4) 0.000e+00 + [13C]H4 0.000e+00 0.000e+00 -123.830 -123.829 0.001 (0) [13C](4) 6.505e-05 H[13C]O3- 5.247e-05 4.800e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) @@ -7020,8 +7016,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.308e-10 -9.729 -9.883 -0.155 (0) -[14C](-4) 4.343e-36 - [14C]H4 4.343e-36 4.350e-36 -35.362 -35.361 0.001 (0) +[14C](-4) 0.000e+00 + [14C]H4 0.000e+00 0.000e+00 -134.754 -134.754 0.001 (0) [14C](4) 7.796e-16 H[14C]O3- 6.297e-16 5.761e-16 -15.201 -15.239 -0.039 (0) [14C]O2 1.310e-16 1.313e-16 -15.883 -15.882 0.001 (0) @@ -7049,23 +7045,23 @@ O(0) 0.000e+00 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -66.546 -66.545 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -69.547 -69.546 0.001 (0) +[18O](0) 1.417e-17 + O[18O] 1.414e-17 1.416e-17 -16.850 -16.849 0.001 (0) + [18O]2 1.411e-20 1.413e-20 -19.851 -19.850 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -21.58 -24.44 -2.86 [13C]H4 + [13C]H4(g) -120.97 -123.83 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.78 -21.28 -1.50 [14C][18O]2 - [14C]H4(g) -32.50 -35.36 -2.86 [14C]H4 + [14C]H4(g) -131.89 -134.75 -2.86 [14C]H4 [14C]O2(g) -14.41 -15.88 -1.47 [14C]O2 [14C]O[18O](g) -16.79 -18.58 -1.79 [14C]O[18O] - [18O]2(g) -67.26 -69.55 -2.29 [18O]2 + [18O]2(g) -17.56 -19.85 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -7079,14 +7075,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -19.62 -22.48 -2.86 CH4 + CH4(g) -119.01 -121.87 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.97 -14.12 -3.15 H2 + H2(g) -35.82 -38.97 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -61.25 -64.15 -2.89 O2 - O[18O](g) -63.95 -66.85 -2.89 O[18O] + O2(g) -11.56 -14.45 -2.89 O2 + O[18O](g) -14.26 -17.15 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7171,6 +7167,7 @@ Calcite 5.00e-04 R(18O) H2O(l) 1.99519e-03 -4.9941 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.014 permil + R(18O) O2(aq) 1.99519e-03 -4.9941 permil R(13C) CO2(aq) 1.10603e-02 -10.72 permil R(14C) CO2(aq) 1.21222e-13 10.309 pmc R(18O) CO2(aq) 2.07915e-03 36.88 permil @@ -7180,8 +7177,6 @@ Calcite 5.00e-04 R(18O) CO3-2 1.99519e-03 -4.9941 permil R(13C) CO3-2 1.11406e-02 -3.5458 permil R(14C) CO3-2 1.22986e-13 10.459 pmc - R(13C) CH4(aq) 1.10603e-02 -10.72 permil - R(14C) CH4(aq) 1.21222e-13 10.309 pmc R(18O) Calcite 2.05263e-03 23.652 permil R(13C) Calcite 1.11787e-02 -0.13726 permil R(14C) Calcite 1.23829e-13 10.531 pmc @@ -7194,15 +7189,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 +Alpha 18O O2(aq)/H2O(l) 1 -2.2806e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6409e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7437e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.1102e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.3545e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -7220,16 +7214,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.474 Adjusted to redox equilibrium + pe = 10.693 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.396e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 100 + Iterations = 52 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -7241,8 +7235,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.896e-23 - CH4 1.896e-23 1.899e-23 -22.722 -22.721 0.001 (0) +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -120.057 -120.056 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -7271,13 +7265,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.325e-14 - H2 6.625e-15 6.636e-15 -14.179 -14.178 0.001 (0) -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.026 -64.026 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -66.425 -66.425 0.001 (0) -[13C](-4) 2.097e-25 - [13C]H4 2.097e-25 2.101e-25 -24.678 -24.678 0.001 (0) +H(0) 6.146e-39 + H2 3.073e-39 3.078e-39 -38.512 -38.512 0.001 (0) +O(0) 8.785e-16 + O2 4.375e-16 4.382e-16 -15.359 -15.358 0.001 (0) + O[18O] 1.746e-18 1.749e-18 -17.758 -17.757 0.001 (0) +[13C](-4) 0.000e+00 + [13C]H4 0.000e+00 0.000e+00 -122.013 -122.012 0.001 (0) [13C](4) 6.506e-05 H[13C]O3- 5.248e-05 4.801e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) @@ -7296,8 +7290,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) -[14C](-4) 2.299e-36 - [14C]H4 2.299e-36 2.303e-36 -35.639 -35.638 0.001 (0) +[14C](-4) 0.000e+00 + [14C]H4 0.000e+00 0.000e+00 -132.973 -132.972 0.001 (0) [14C](4) 7.182e-16 H[14C]O3- 5.801e-16 5.307e-16 -15.236 -15.275 -0.039 (0) [14C]O2 1.207e-16 1.209e-16 -15.918 -15.918 0.001 (0) @@ -7325,23 +7319,23 @@ O(0) 0.000e+00 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -66.425 -66.425 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -69.426 -69.426 0.001 (0) +[18O](0) 1.749e-18 + O[18O] 1.746e-18 1.749e-18 -17.758 -17.757 0.001 (0) + [18O]2 1.742e-21 1.744e-21 -20.759 -20.758 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -21.82 -24.68 -2.86 [13C]H4 + [13C]H4(g) -119.15 -122.01 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.81 -21.32 -1.50 [14C][18O]2 - [14C]H4(g) -32.78 -35.64 -2.86 [14C]H4 + [14C]H4(g) -130.11 -132.97 -2.86 [14C]H4 [14C]O2(g) -14.45 -15.92 -1.47 [14C]O2 [14C]O[18O](g) -16.83 -18.62 -1.79 [14C]O[18O] - [18O]2(g) -67.14 -69.43 -2.29 [18O]2 + [18O]2(g) -18.47 -20.76 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -7355,14 +7349,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -19.86 -22.72 -2.86 CH4 + CH4(g) -117.20 -120.06 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -11.03 -14.18 -3.15 H2 + H2(g) -35.36 -38.51 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -61.13 -64.03 -2.89 O2 - O[18O](g) -63.83 -66.73 -2.89 O[18O] + O2(g) -12.47 -15.36 -2.89 O2 + O[18O](g) -15.17 -18.06 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7471,14 +7465,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6317e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5967e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.3101e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -5.5511e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -7.3275e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.1102e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -7496,16 +7490,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.842 Adjusted to redox equilibrium + pe = -1.792 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.396e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 79 + Iterations = 77 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -7517,8 +7511,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.673e-20 - CH4 1.673e-20 1.676e-20 -19.777 -19.776 0.001 (0) +C(-4) 6.672e-21 + CH4 6.672e-21 6.683e-21 -20.176 -20.175 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -7547,13 +7541,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.222e-14 - H2 3.611e-14 3.617e-14 -13.442 -13.442 0.001 (0) +H(0) 5.739e-14 + H2 2.869e-14 2.874e-14 -13.542 -13.541 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.499 -65.498 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.898 -67.897 0.001 (0) -[13C](-4) 1.851e-22 - [13C]H4 1.851e-22 1.854e-22 -21.733 -21.732 0.001 (0) + O2 0.000e+00 0.000e+00 -65.299 -65.299 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.698 -67.698 0.001 (0) +[13C](-4) 7.380e-23 + [13C]H4 7.380e-23 7.393e-23 -22.132 -22.131 0.001 (0) [13C](4) 6.507e-05 H[13C]O3- 5.248e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.103e-05 -4.958 -4.957 0.001 (0) @@ -7572,8 +7566,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) -[14C](-4) 1.868e-33 - [14C]H4 1.868e-33 1.871e-33 -32.729 -32.728 0.001 (0) +[14C](-4) 7.451e-34 + [14C]H4 7.451e-34 7.463e-34 -33.128 -33.127 0.001 (0) [14C](4) 6.616e-16 H[14C]O3- 5.344e-16 4.889e-16 -15.272 -15.311 -0.039 (0) [14C]O2 1.112e-16 1.114e-16 -15.954 -15.953 0.001 (0) @@ -7602,22 +7596,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.898 -67.897 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.899 -70.898 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.698 -67.698 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.700 -70.699 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.87 -21.73 -2.86 [13C]H4 + [13C]H4(g) -19.27 -22.13 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.85 -21.35 -1.50 [14C][18O]2 - [14C]H4(g) -29.87 -32.73 -2.86 [14C]H4 + [14C]H4(g) -30.27 -33.13 -2.86 [14C]H4 [14C]O2(g) -14.48 -15.95 -1.47 [14C]O2 [14C]O[18O](g) -16.87 -18.65 -1.79 [14C]O[18O] - [18O]2(g) -68.61 -70.90 -2.29 [18O]2 + [18O]2(g) -68.41 -70.70 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -7631,14 +7625,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.92 -19.78 -2.86 CH4 + CH4(g) -17.32 -20.18 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.29 -13.44 -3.15 H2 + H2(g) -10.39 -13.54 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.61 -65.50 -2.89 O2 - O[18O](g) -65.31 -68.20 -2.89 O[18O] + O2(g) -62.41 -65.30 -2.89 O2 + O[18O](g) -65.11 -68.00 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7747,14 +7741,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.512e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6763e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 9.77e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 3.7748e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.1324e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 6.8834e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -7772,16 +7766,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.823 Adjusted to redox equilibrium + pe = -1.820 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.395e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 84 + Iterations = 72 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -7793,8 +7787,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.175e-20 - CH4 1.175e-20 1.177e-20 -19.930 -19.929 0.001 (0) +C(-4) 1.126e-20 + CH4 1.126e-20 1.128e-20 -19.948 -19.948 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -7823,13 +7817,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.611e-14 - H2 3.305e-14 3.311e-14 -13.481 -13.480 0.001 (0) +H(0) 6.542e-14 + H2 3.271e-14 3.276e-14 -13.485 -13.485 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.422 -65.422 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.821 -67.821 0.001 (0) -[13C](-4) 1.300e-22 - [13C]H4 1.300e-22 1.302e-22 -21.886 -21.885 0.001 (0) + O2 0.000e+00 0.000e+00 -65.413 -65.412 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.812 -67.811 0.001 (0) +[13C](-4) 1.246e-22 + [13C]H4 1.246e-22 1.248e-22 -21.904 -21.904 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.249e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -7848,8 +7842,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.729 -9.883 -0.155 (0) -[14C](-4) 1.208e-33 - [14C]H4 1.208e-33 1.210e-33 -32.918 -32.917 0.001 (0) +[14C](-4) 1.159e-33 + [14C]H4 1.159e-33 1.161e-33 -32.936 -32.935 0.001 (0) [14C](4) 6.095e-16 H[14C]O3- 4.923e-16 4.504e-16 -15.308 -15.346 -0.039 (0) [14C]O2 1.024e-16 1.026e-16 -15.990 -15.989 0.001 (0) @@ -7878,22 +7872,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.821 -67.821 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.822 -70.822 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.812 -67.811 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.813 -70.813 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.03 -21.89 -2.86 [13C]H4 + [13C]H4(g) -19.04 -21.90 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.89 -21.39 -1.50 [14C][18O]2 - [14C]H4(g) -30.06 -32.92 -2.86 [14C]H4 + [14C]H4(g) -30.08 -32.94 -2.86 [14C]H4 [14C]O2(g) -14.52 -15.99 -1.47 [14C]O2 [14C]O[18O](g) -16.90 -18.69 -1.79 [14C]O[18O] - [18O]2(g) -68.53 -70.82 -2.29 [18O]2 + [18O]2(g) -68.52 -70.81 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -7907,14 +7901,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.07 -19.93 -2.86 CH4 + CH4(g) -17.09 -19.95 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] H2(g) -10.33 -13.48 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.53 -65.42 -2.89 O2 - O[18O](g) -65.23 -68.12 -2.89 O[18O] + O2(g) -62.52 -65.41 -2.89 O2 + O[18O](g) -65.22 -68.11 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8023,14 +8017,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5896e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6155e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.2212e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 8.8818e-13 0 +Alpha 13C CH4(aq)/CO2(aq) 1 6.2172e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.2212e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -8048,16 +8042,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.807 Adjusted to redox equilibrium + pe = -1.753 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.395e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 67 (168 overall) + Iterations = 129 (230 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -8069,8 +8063,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 8.738e-21 - CH4 8.738e-21 8.753e-21 -20.059 -20.058 0.001 (0) +C(-4) 3.236e-21 + CH4 3.236e-21 3.242e-21 -20.490 -20.489 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -8099,13 +8093,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.139e-14 - H2 3.070e-14 3.075e-14 -13.513 -13.512 0.001 (0) +H(0) 4.789e-14 + H2 2.395e-14 2.399e-14 -13.621 -13.620 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.358 -65.357 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.757 -67.756 0.001 (0) -[13C](-4) 9.670e-23 - [13C]H4 9.670e-23 9.686e-23 -22.015 -22.014 0.001 (0) + O2 0.000e+00 0.000e+00 -65.142 -65.142 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.541 -67.541 0.001 (0) +[13C](-4) 3.581e-23 + [13C]H4 3.581e-23 3.587e-23 -22.446 -22.445 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -8124,8 +8118,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 8.282e-34 - [14C]H4 8.282e-34 8.295e-34 -33.082 -33.081 0.001 (0) +[14C](-4) 3.067e-34 + [14C]H4 3.067e-34 3.072e-34 -33.513 -33.513 0.001 (0) [14C](4) 5.615e-16 H[14C]O3- 4.536e-16 4.149e-16 -15.343 -15.382 -0.039 (0) [14C]O2 9.438e-17 9.453e-17 -16.025 -16.024 0.001 (0) @@ -8154,22 +8148,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.757 -67.756 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.758 -70.757 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.541 -67.541 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.542 -70.542 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.15 -22.01 -2.86 [13C]H4 + [13C]H4(g) -19.59 -22.45 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.92 -21.42 -1.50 [14C][18O]2 - [14C]H4(g) -30.22 -33.08 -2.86 [14C]H4 + [14C]H4(g) -30.65 -33.51 -2.86 [14C]H4 [14C]O2(g) -14.56 -16.02 -1.47 [14C]O2 [14C]O[18O](g) -16.94 -18.72 -1.79 [14C]O[18O] - [18O]2(g) -68.47 -70.76 -2.29 [18O]2 + [18O]2(g) -68.25 -70.54 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -8183,14 +8177,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.20 -20.06 -2.86 CH4 + CH4(g) -17.63 -20.49 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.36 -13.51 -3.15 H2 + H2(g) -10.47 -13.62 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.47 -65.36 -2.89 O2 - O[18O](g) -65.17 -68.06 -2.89 O[18O] + O2(g) -62.25 -65.14 -2.89 O2 + O[18O](g) -64.95 -67.84 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8299,14 +8293,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.7716e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5654e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6613e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -7.7716e-13 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -9.1038e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 3.9968e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.9984e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -8324,16 +8318,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.759 Adjusted to redox equilibrium + pe = -1.690 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.395e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 118 (219 overall) + Iterations = 90 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -8345,8 +8339,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.600e-21 - CH4 3.600e-21 3.606e-21 -20.444 -20.443 0.001 (0) +C(-4) 1.017e-21 + CH4 1.017e-21 1.018e-21 -20.993 -20.992 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -8375,13 +8369,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.919e-14 - H2 2.459e-14 2.463e-14 -13.609 -13.608 0.001 (0) +H(0) 3.586e-14 + H2 1.793e-14 1.796e-14 -13.746 -13.746 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.166 -65.165 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.565 -67.564 0.001 (0) -[13C](-4) 3.985e-23 - [13C]H4 3.985e-23 3.991e-23 -22.400 -22.399 0.001 (0) + O2 0.000e+00 0.000e+00 -64.891 -64.890 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.290 -67.289 0.001 (0) +[13C](-4) 1.125e-23 + [13C]H4 1.125e-23 1.127e-23 -22.949 -22.948 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -8400,8 +8394,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 3.143e-34 - [14C]H4 3.143e-34 3.149e-34 -33.503 -33.502 0.001 (0) +[14C](-4) 8.876e-35 + [14C]H4 8.876e-35 8.891e-35 -34.052 -34.051 0.001 (0) [14C](4) 5.172e-16 H[14C]O3- 4.178e-16 3.823e-16 -15.379 -15.418 -0.039 (0) [14C]O2 8.694e-17 8.708e-17 -16.061 -16.060 0.001 (0) @@ -8430,22 +8424,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.565 -67.564 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.566 -70.565 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.290 -67.289 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.291 -70.290 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.54 -22.40 -2.86 [13C]H4 + [13C]H4(g) -20.09 -22.95 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.96 -21.46 -1.50 [14C][18O]2 - [14C]H4(g) -30.64 -33.50 -2.86 [14C]H4 + [14C]H4(g) -31.19 -34.05 -2.86 [14C]H4 [14C]O2(g) -14.59 -16.06 -1.47 [14C]O2 [14C]O[18O](g) -16.97 -18.76 -1.79 [14C]O[18O] - [18O]2(g) -68.27 -70.56 -2.29 [18O]2 + [18O]2(g) -68.00 -70.29 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -8459,14 +8453,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.58 -20.44 -2.86 CH4 + CH4(g) -18.13 -20.99 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.46 -13.61 -3.15 H2 + H2(g) -10.60 -13.75 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.27 -65.16 -2.89 O2 - O[18O](g) -64.97 -67.86 -2.89 O[18O] + O2(g) -62.00 -64.89 -2.89 O2 + O[18O](g) -64.70 -67.59 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8575,14 +8569,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7498e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7778e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -7.8826e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -7.9936e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.3656e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -9.1038e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -8600,16 +8594,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.545 Adjusted to redox equilibrium + pe = -1.559 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.395e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 95 + Iterations = 118 (219 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -8621,8 +8615,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 7.068e-23 - CH4 7.068e-23 7.079e-23 -22.151 -22.150 0.001 (0) +C(-4) 9.101e-23 + CH4 9.101e-23 9.116e-23 -22.041 -22.040 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -8651,13 +8645,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.841e-14 - H2 9.206e-15 9.221e-15 -14.036 -14.035 0.001 (0) +H(0) 1.961e-14 + H2 9.806e-15 9.822e-15 -14.008 -14.008 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.312 -64.311 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -66.711 -66.710 0.001 (0) -[13C](-4) 7.823e-25 - [13C]H4 7.823e-25 7.836e-25 -24.107 -24.106 0.001 (0) + O2 0.000e+00 0.000e+00 -64.367 -64.366 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.766 -66.765 0.001 (0) +[13C](-4) 1.007e-24 + [13C]H4 1.007e-24 1.009e-24 -23.997 -23.996 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -8676,8 +8670,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 5.685e-36 - [14C]H4 5.685e-36 5.694e-36 -35.245 -35.245 0.001 (0) +[14C](-4) 7.320e-36 + [14C]H4 7.320e-36 7.332e-36 -35.135 -35.135 0.001 (0) [14C](4) 4.765e-16 H[14C]O3- 3.849e-16 3.521e-16 -15.415 -15.453 -0.039 (0) [14C]O2 8.009e-17 8.022e-17 -16.096 -16.096 0.001 (0) @@ -8706,22 +8700,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -66.711 -66.710 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -69.712 -69.711 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.766 -66.765 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -69.767 -69.766 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -21.25 -24.11 -2.86 [13C]H4 + [13C]H4(g) -21.14 -24.00 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.99 -21.50 -1.50 [14C][18O]2 - [14C]H4(g) -32.38 -35.24 -2.86 [14C]H4 + [14C]H4(g) -32.27 -35.13 -2.86 [14C]H4 [14C]O2(g) -14.63 -16.10 -1.47 [14C]O2 [14C]O[18O](g) -17.01 -18.80 -1.79 [14C]O[18O] - [18O]2(g) -67.42 -69.71 -2.29 [18O]2 + [18O]2(g) -67.48 -69.77 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -8735,14 +8729,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -19.29 -22.15 -2.86 CH4 + CH4(g) -19.18 -22.04 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.89 -14.04 -3.15 H2 + H2(g) -10.86 -14.01 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -61.42 -64.31 -2.89 O2 - O[18O](g) -64.12 -67.01 -2.89 O[18O] + O2(g) -61.47 -64.37 -2.89 O2 + O[18O](g) -64.17 -67.07 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8849,12 +8843,12 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.245e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2866e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 +Alpha 18O HCO3-/H2O(l) 1 0 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6309e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5858e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -8874,16 +8868,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.690 Adjusted to redox equilibrium + pe = 11.041 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.395e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 98 + Iterations = 63 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -8896,7 +8890,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.033 -120.032 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.837 -122.836 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -8925,13 +8919,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.089e-08 6.099e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.232e-39 - H2 3.116e-39 3.121e-39 -38.506 -38.506 0.001 (0) -O(0) 8.545e-16 - O2 4.255e-16 4.262e-16 -15.371 -15.370 0.001 (0) - O[18O] 1.698e-18 1.701e-18 -17.770 -17.769 0.001 (0) +H(0) 1.240e-39 + H2 6.201e-40 6.211e-40 -39.208 -39.207 0.001 (0) +O(0) 2.158e-14 + O2 1.074e-14 1.076e-14 -13.969 -13.968 0.001 (0) + O[18O] 4.288e-17 4.295e-17 -16.368 -16.367 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -121.988 -121.988 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.793 -124.792 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.252e-05 4.805e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -8951,7 +8945,7 @@ O(0) 8.545e-16 H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -133.163 -133.162 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -135.967 -135.967 0.001 (0) [14C](4) 4.390e-16 H[14C]O3- 3.546e-16 3.244e-16 -15.450 -15.489 -0.039 (0) [14C]O2 7.378e-17 7.390e-17 -16.132 -16.131 0.001 (0) @@ -8979,23 +8973,23 @@ O(0) 8.545e-16 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.701e-18 - O[18O] 1.698e-18 1.701e-18 -17.770 -17.769 0.001 (0) - [18O]2 1.694e-21 1.697e-21 -20.771 -20.770 0.001 (0) +[18O](0) 4.296e-17 + O[18O] 4.288e-17 4.295e-17 -16.368 -16.367 0.001 (0) + [18O]2 4.277e-20 4.284e-20 -19.369 -19.368 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -119.13 -121.99 -2.86 [13C]H4 + [13C]H4(g) -121.93 -124.79 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.03 -21.53 -1.50 [14C][18O]2 - [14C]H4(g) -130.30 -133.16 -2.86 [14C]H4 + [14C]H4(g) -133.11 -135.97 -2.86 [14C]H4 [14C]O2(g) -14.66 -16.13 -1.47 [14C]O2 [14C]O[18O](g) -17.04 -18.83 -1.79 [14C]O[18O] - [18O]2(g) -18.48 -20.77 -2.29 [18O]2 + [18O]2(g) -17.08 -19.37 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -9009,14 +9003,14 @@ O(0) 8.545e-16 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -117.17 -120.03 -2.86 CH4 + CH4(g) -119.98 -122.84 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.36 -38.51 -3.15 H2 + H2(g) -36.06 -39.21 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -12.48 -15.37 -2.89 O2 - O[18O](g) -15.18 -18.07 -2.89 O[18O] + O2(g) -11.08 -13.97 -2.89 O2 + O[18O](g) -13.78 -16.67 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9123,12 +9117,12 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2448e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2575e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6954e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6557e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -9148,16 +9142,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.980 Adjusted to redox equilibrium + pe = 11.087 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.395e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 70 (171 overall) + Iterations = 81 (182 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -9170,7 +9164,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.356 -122.355 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.204 -123.203 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -9199,13 +9193,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.089e-08 6.099e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.636e-39 - H2 8.182e-40 8.195e-40 -39.087 -39.086 0.001 (0) -O(0) 1.239e-14 - O2 6.172e-15 6.182e-15 -14.210 -14.209 0.001 (0) - O[18O] 2.463e-17 2.467e-17 -16.609 -16.608 0.001 (0) +H(0) 1.004e-39 + H2 5.020e-40 5.028e-40 -39.299 -39.299 0.001 (0) +O(0) 3.292e-14 + O2 1.639e-14 1.642e-14 -13.785 -13.785 0.001 (0) + O[18O] 6.541e-17 6.552e-17 -16.184 -16.184 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.311 -124.311 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.160 -125.159 0.001 (0) [13C](4) 6.512e-05 H[13C]O3- 5.253e-05 4.805e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -9225,7 +9219,7 @@ O(0) 1.239e-14 H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.870e-10 1.310e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -135.521 -135.521 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.370 -136.369 0.001 (0) [14C](4) 4.044e-16 H[14C]O3- 3.267e-16 2.989e-16 -15.486 -15.525 -0.039 (0) [14C]O2 6.797e-17 6.808e-17 -16.168 -16.167 0.001 (0) @@ -9253,23 +9247,23 @@ O(0) 1.239e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.468e-17 - O[18O] 2.463e-17 2.467e-17 -16.609 -16.608 0.001 (0) - [18O]2 2.457e-20 2.461e-20 -19.610 -19.609 0.001 (0) +[18O](0) 6.555e-17 + O[18O] 6.541e-17 6.552e-17 -16.184 -16.184 0.001 (0) + [18O]2 6.526e-20 6.536e-20 -19.185 -19.185 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.45 -124.31 -2.86 [13C]H4 + [13C]H4(g) -122.30 -125.16 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.06 -21.57 -1.50 [14C][18O]2 - [14C]H4(g) -132.66 -135.52 -2.86 [14C]H4 + [14C]H4(g) -133.51 -136.37 -2.86 [14C]H4 [14C]O2(g) -14.70 -16.17 -1.47 [14C]O2 [14C]O[18O](g) -17.08 -18.87 -1.79 [14C]O[18O] - [18O]2(g) -17.32 -19.61 -2.29 [18O]2 + [18O]2(g) -16.89 -19.18 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -9283,14 +9277,14 @@ O(0) 1.239e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.49 -122.35 -2.86 CH4 + CH4(g) -120.34 -123.20 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.94 -39.09 -3.15 H2 + H2(g) -36.15 -39.30 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.32 -14.21 -2.89 O2 - O[18O](g) -14.02 -16.91 -2.89 O[18O] + O2(g) -10.89 -13.78 -2.89 O2 + O[18O](g) -13.59 -16.48 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9375,6 +9369,7 @@ Calcite 5.00e-04 R(18O) H2O(l) 1.99519e-03 -4.993 permil R(18O) OH- 1.92122e-03 -41.88 permil R(18O) H3O+ 2.04132e-03 18.015 permil + R(18O) O2(aq) 1.99519e-03 -4.993 permil R(13C) CO2(aq) 1.10721e-02 -9.6709 permil R(14C) CO2(aq) 6.28814e-14 5.3476 pmc R(18O) CO2(aq) 2.07915e-03 36.881 permil @@ -9384,8 +9379,6 @@ Calcite 5.00e-04 R(18O) CO3-2 1.99519e-03 -4.993 permil R(13C) CO3-2 1.11524e-02 -2.4887 permil R(14C) CO3-2 6.37967e-14 5.4254 pmc - R(13C) CH4(aq) 1.10721e-02 -9.6709 permil - R(14C) CH4(aq) 6.28814e-14 5.3476 pmc R(18O) Calcite 2.05263e-03 23.653 permil R(13C) Calcite 1.11905e-02 0.92343 permil R(14C) Calcite 6.42339e-14 5.4626 pmc @@ -9398,15 +9391,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 +Alpha 18O O2(aq)/H2O(l) 1 -2.2625e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -8.4377e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5644e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6487e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 6.2172e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.6653e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -9424,16 +9416,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.371 Adjusted to redox equilibrium + pe = 10.955 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.395e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 83 + Iterations = 124 (225 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -9445,8 +9437,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.861e-24 - CH4 2.861e-24 2.865e-24 -23.544 -23.543 0.001 (0) +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -122.150 -122.149 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -9475,13 +9467,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.090e-08 6.100e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 8.258e-15 - H2 4.129e-15 4.136e-15 -14.384 -14.383 0.001 (0) -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.616 -63.615 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -66.015 -66.014 0.001 (0) -[13C](-4) 3.167e-26 - [13C]H4 3.167e-26 3.172e-26 -25.499 -25.499 0.001 (0) +H(0) 1.842e-39 + H2 9.210e-40 9.225e-40 -39.036 -39.035 0.001 (0) +O(0) 9.779e-15 + O2 4.870e-15 4.878e-15 -14.312 -14.312 0.001 (0) + O[18O] 1.943e-17 1.947e-17 -16.711 -16.711 0.001 (0) +[13C](-4) 0.000e+00 + [13C]H4 0.000e+00 0.000e+00 -124.106 -124.105 0.001 (0) [13C](4) 6.513e-05 H[13C]O3- 5.253e-05 4.806e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -9500,8 +9492,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.870e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 1.799e-37 - [14C]H4 1.799e-37 1.802e-37 -36.745 -36.744 0.001 (0) +[14C](-4) 0.000e+00 + [14C]H4 0.000e+00 0.000e+00 -135.351 -135.351 0.001 (0) [14C](4) 3.725e-16 H[14C]O3- 3.009e-16 2.753e-16 -15.522 -15.560 -0.039 (0) [14C]O2 6.262e-17 6.272e-17 -16.203 -16.203 0.001 (0) @@ -9529,23 +9521,23 @@ O(0) 0.000e+00 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -66.015 -66.014 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -69.016 -69.015 0.001 (0) +[18O](0) 1.947e-17 + O[18O] 1.943e-17 1.947e-17 -16.711 -16.711 0.001 (0) + [18O]2 1.939e-20 1.942e-20 -19.712 -19.712 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -22.64 -25.50 -2.86 [13C]H4 + [13C]H4(g) -121.24 -124.10 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.10 -21.60 -1.50 [14C][18O]2 - [14C]H4(g) -33.88 -36.74 -2.86 [14C]H4 + [14C]H4(g) -132.49 -135.35 -2.86 [14C]H4 [14C]O2(g) -14.73 -16.20 -1.47 [14C]O2 [14C]O[18O](g) -17.12 -18.90 -1.79 [14C]O[18O] - [18O]2(g) -66.72 -69.01 -2.29 [18O]2 + [18O]2(g) -17.42 -19.71 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -9559,14 +9551,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -20.68 -23.54 -2.86 CH4 + CH4(g) -119.29 -122.15 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -11.23 -14.38 -3.15 H2 + H2(g) -35.89 -39.04 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -60.72 -63.61 -2.89 O2 - O[18O](g) -63.42 -66.31 -2.89 O[18O] + O2(g) -11.42 -14.31 -2.89 O2 + O[18O](g) -14.12 -17.01 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9675,14 +9667,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.1102e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6539e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6809e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 3.7748e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 4.4409e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -3.8858e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -8.5487e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -9700,16 +9692,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.748 Adjusted to redox equilibrium + pe = -1.495 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.395e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 100 + Iterations = 64 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -9721,8 +9713,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.946e-21 - CH4 2.946e-21 2.951e-21 -20.531 -20.530 0.001 (0) +C(-4) 2.816e-23 + CH4 2.816e-23 2.821e-23 -22.550 -22.550 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -9751,13 +9743,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.090e-08 6.100e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.678e-14 - H2 2.339e-14 2.343e-14 -13.631 -13.630 0.001 (0) +H(0) 1.463e-14 + H2 7.314e-15 7.326e-15 -14.136 -14.135 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.122 -65.121 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.521 -67.520 0.001 (0) -[13C](-4) 3.262e-23 - [13C]H4 3.262e-23 3.267e-23 -22.487 -22.486 0.001 (0) + O2 0.000e+00 0.000e+00 -64.112 -64.111 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.511 -66.510 0.001 (0) +[13C](-4) 3.118e-25 + [13C]H4 3.118e-25 3.123e-25 -24.506 -24.505 0.001 (0) [13C](4) 6.513e-05 H[13C]O3- 5.253e-05 4.806e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -9776,8 +9768,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.870e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 1.706e-34 - [14C]H4 1.706e-34 1.709e-34 -33.768 -33.767 0.001 (0) +[14C](-4) 1.631e-36 + [14C]H4 1.631e-36 1.634e-36 -35.787 -35.787 0.001 (0) [14C](4) 3.432e-16 H[14C]O3- 2.772e-16 2.536e-16 -15.557 -15.596 -0.039 (0) [14C]O2 5.768e-17 5.778e-17 -16.239 -16.238 0.001 (0) @@ -9806,22 +9798,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.521 -67.520 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.522 -70.521 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.511 -66.510 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -69.512 -69.512 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.63 -22.49 -2.86 [13C]H4 + [13C]H4(g) -21.65 -24.51 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.13 -21.64 -1.50 [14C][18O]2 - [14C]H4(g) -30.91 -33.77 -2.86 [14C]H4 + [14C]H4(g) -32.93 -35.79 -2.86 [14C]H4 [14C]O2(g) -14.77 -16.24 -1.47 [14C]O2 [14C]O[18O](g) -17.15 -18.94 -1.79 [14C]O[18O] - [18O]2(g) -68.23 -70.52 -2.29 [18O]2 + [18O]2(g) -67.22 -69.51 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -9835,14 +9827,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.67 -20.53 -2.86 CH4 + CH4(g) -19.69 -22.55 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.48 -13.63 -3.15 H2 + H2(g) -10.99 -14.14 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.23 -65.12 -2.89 O2 - O[18O](g) -64.93 -67.82 -2.89 O[18O] + O2(g) -61.22 -64.11 -2.89 O2 + O[18O](g) -63.92 -66.81 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9927,6 +9919,7 @@ Calcite 5.00e-04 R(18O) H2O(l) 1.99519e-03 -4.9927 permil R(18O) OH- 1.92122e-03 -41.88 permil R(18O) H3O+ 2.04132e-03 18.015 permil + R(18O) O2(aq) 1.99519e-03 -4.9927 permil R(13C) CO2(aq) 1.10740e-02 -9.4994 permil R(14C) CO2(aq) 5.33650e-14 4.5383 pmc R(18O) CO2(aq) 2.07915e-03 36.881 permil @@ -9936,8 +9929,6 @@ Calcite 5.00e-04 R(18O) CO3-2 1.99519e-03 -4.9927 permil R(13C) CO3-2 1.11543e-02 -2.316 permil R(14C) CO3-2 5.41419e-14 4.6043 pmc - R(13C) CH4(aq) 1.10740e-02 -9.4994 permil - R(14C) CH4(aq) 5.33650e-14 4.5383 pmc R(18O) Calcite 2.05263e-03 23.654 permil R(13C) Calcite 1.11925e-02 1.0967 permil R(14C) Calcite 5.45129e-14 4.6359 pmc @@ -9950,15 +9941,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 +Alpha 18O O2(aq)/H2O(l) 1 -2.2441e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6174e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.714e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.3545e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 7.5495e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -9976,16 +9966,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.651 Adjusted to redox equilibrium + pe = 10.608 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.395e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 90 (191 overall) + Iterations = 97 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -9997,8 +9987,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.946e-22 - CH4 4.946e-22 4.954e-22 -21.306 -21.305 0.001 (0) +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -119.376 -119.375 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -10027,13 +10017,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.091e-08 6.101e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.995e-14 - H2 1.497e-14 1.500e-14 -13.825 -13.824 0.001 (0) -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.735 -64.734 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.133 -67.133 0.001 (0) -[13C](-4) 5.477e-24 - [13C]H4 5.477e-24 5.486e-24 -23.261 -23.261 0.001 (0) +H(0) 9.096e-39 + H2 4.548e-39 4.556e-39 -38.342 -38.341 0.001 (0) +O(0) 4.011e-16 + O2 1.997e-16 2.001e-16 -15.700 -15.699 0.001 (0) + O[18O] 7.970e-19 7.983e-19 -18.099 -18.098 0.001 (0) +[13C](-4) 0.000e+00 + [13C]H4 0.000e+00 0.000e+00 -121.331 -121.331 0.001 (0) [13C](4) 6.514e-05 H[13C]O3- 5.254e-05 4.807e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.958 -4.957 0.001 (0) @@ -10052,8 +10042,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.870e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 2.640e-35 - [14C]H4 2.640e-35 2.644e-35 -34.578 -34.578 0.001 (0) +[14C](-4) 0.000e+00 + [14C]H4 0.000e+00 0.000e+00 -132.648 -132.648 0.001 (0) [14C](4) 3.162e-16 H[14C]O3- 2.554e-16 2.336e-16 -15.593 -15.631 -0.039 (0) [14C]O2 5.314e-17 5.323e-17 -16.275 -16.274 0.001 (0) @@ -10081,23 +10071,23 @@ O(0) 0.000e+00 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.133 -67.133 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.135 -70.134 0.001 (0) +[18O](0) 7.986e-19 + O[18O] 7.970e-19 7.983e-19 -18.099 -18.098 0.001 (0) + [18O]2 7.951e-22 7.964e-22 -21.100 -21.099 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -20.40 -23.26 -2.86 [13C]H4 + [13C]H4(g) -118.47 -121.33 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.17 -21.67 -1.50 [14C][18O]2 - [14C]H4(g) -31.72 -34.58 -2.86 [14C]H4 + [14C]H4(g) -129.79 -132.65 -2.86 [14C]H4 [14C]O2(g) -14.81 -16.27 -1.47 [14C]O2 [14C]O[18O](g) -17.19 -18.97 -1.79 [14C]O[18O] - [18O]2(g) -67.84 -70.13 -2.29 [18O]2 + [18O]2(g) -18.81 -21.10 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -10111,14 +10101,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -18.45 -21.31 -2.86 CH4 + CH4(g) -116.51 -119.37 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.67 -13.82 -3.15 H2 + H2(g) -35.19 -38.34 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -61.84 -64.73 -2.89 O2 - O[18O](g) -64.54 -67.43 -2.89 O[18O] + O2(g) -12.81 -15.70 -2.89 O2 + O[18O](g) -15.51 -18.40 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10227,14 +10217,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6641e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6774e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -8.1046e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -6.3283e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 4.2188e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.2323e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -10252,16 +10242,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.804 Adjusted to redox equilibrium + pe = -1.736 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.395e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 54 + Iterations = 78 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -10273,8 +10263,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 8.270e-21 - CH4 8.270e-21 8.283e-21 -20.083 -20.082 0.001 (0) +C(-4) 2.361e-21 + CH4 2.361e-21 2.365e-21 -20.627 -20.626 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -10303,13 +10293,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.091e-08 6.101e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.055e-14 - H2 3.028e-14 3.033e-14 -13.519 -13.518 0.001 (0) +H(0) 4.426e-14 + H2 2.213e-14 2.217e-14 -13.655 -13.654 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.346 -65.345 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.745 -67.744 0.001 (0) -[13C](-4) 9.158e-23 - [13C]H4 9.158e-23 9.174e-23 -22.038 -22.037 0.001 (0) + O2 0.000e+00 0.000e+00 -65.074 -65.073 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.473 -67.472 0.001 (0) +[13C](-4) 2.615e-23 + [13C]H4 2.615e-23 2.619e-23 -22.583 -22.582 0.001 (0) [13C](4) 6.514e-05 H[13C]O3- 5.254e-05 4.807e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) @@ -10328,8 +10318,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.092e-10 1.914e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.870e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 4.065e-34 - [14C]H4 4.065e-34 4.072e-34 -33.391 -33.390 0.001 (0) +[14C](-4) 1.161e-34 + [14C]H4 1.161e-34 1.163e-34 -33.935 -33.935 0.001 (0) [14C](4) 2.913e-16 H[14C]O3- 2.353e-16 2.152e-16 -15.628 -15.667 -0.039 (0) [14C]O2 4.895e-17 4.904e-17 -16.310 -16.309 0.001 (0) @@ -10358,22 +10348,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.745 -67.744 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.746 -70.745 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.473 -67.472 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.474 -70.473 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.18 -22.04 -2.86 [13C]H4 + [13C]H4(g) -19.72 -22.58 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.21 -21.71 -1.50 [14C][18O]2 - [14C]H4(g) -30.53 -33.39 -2.86 [14C]H4 + [14C]H4(g) -31.07 -33.93 -2.86 [14C]H4 [14C]O2(g) -14.84 -16.31 -1.47 [14C]O2 [14C]O[18O](g) -17.22 -19.01 -1.79 [14C]O[18O] - [18O]2(g) -68.46 -70.75 -2.29 [18O]2 + [18O]2(g) -68.18 -70.47 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -10387,14 +10377,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.22 -20.08 -2.86 CH4 + CH4(g) -17.77 -20.63 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.37 -13.52 -3.15 H2 + H2(g) -10.50 -13.65 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.45 -65.35 -2.89 O2 - O[18O](g) -65.15 -68.05 -2.89 O[18O] + O2(g) -62.18 -65.07 -2.89 O2 + O[18O](g) -64.88 -67.77 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10503,14 +10493,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.2164e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.66e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7483e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 4.4409e-13 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.1102e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -8.3267e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 8.2157e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -10535,9 +10525,9 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 51 + Iterations = 123 (224 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -10549,8 +10539,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 9.647e-22 - CH4 9.647e-22 9.663e-22 -21.016 -21.015 0.001 (0) +C(-4) 9.563e-22 + CH4 9.563e-22 9.579e-22 -21.019 -21.019 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -10579,13 +10569,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.092e-08 6.102e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.539e-14 - H2 1.769e-14 1.772e-14 -13.752 -13.751 0.001 (0) +H(0) 3.531e-14 + H2 1.766e-14 1.768e-14 -13.753 -13.752 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.880 -64.879 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.279 -67.278 0.001 (0) -[13C](-4) 1.069e-23 - [13C]H4 1.069e-23 1.070e-23 -22.971 -22.971 0.001 (0) + O2 0.000e+00 0.000e+00 -64.878 -64.877 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.277 -67.276 0.001 (0) +[13C](-4) 1.059e-23 + [13C]H4 1.059e-23 1.061e-23 -22.975 -22.974 0.001 (0) [13C](4) 6.515e-05 H[13C]O3- 5.255e-05 4.807e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) @@ -10604,8 +10594,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.870e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 4.369e-35 - [14C]H4 4.369e-35 4.376e-35 -34.360 -34.359 0.001 (0) +[14C](-4) 4.331e-35 + [14C]H4 4.331e-35 4.338e-35 -34.363 -34.363 0.001 (0) [14C](4) 2.683e-16 H[14C]O3- 2.167e-16 1.983e-16 -15.664 -15.703 -0.039 (0) [14C]O2 4.510e-17 4.517e-17 -16.346 -16.345 0.001 (0) @@ -10634,8 +10624,8 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.279 -67.278 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.280 -70.279 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.277 -67.276 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.278 -70.277 0.001 (0) ------------------------------Saturation indices------------------------------- @@ -10663,14 +10653,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -18.15 -21.01 -2.86 CH4 + CH4(g) -18.16 -21.02 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] H2(g) -10.60 -13.75 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -61.99 -64.88 -2.89 O2 - O[18O](g) -64.69 -67.58 -2.89 O[18O] + O2(g) -61.98 -64.88 -2.89 O2 + O[18O](g) -64.68 -67.58 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10779,14 +10769,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.6605e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5635e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.722e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -6.6613e-13 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.7319e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 6.2172e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 8.2157e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -10804,16 +10794,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.736 Adjusted to redox equilibrium + pe = -1.814 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 74 (175 overall) + Iterations = 66 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -10825,8 +10815,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.387e-21 - CH4 2.387e-21 2.391e-21 -20.622 -20.621 0.001 (0) +C(-4) 9.998e-21 + CH4 9.998e-21 1.001e-20 -20.000 -19.999 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -10855,13 +10845,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.092e-08 6.102e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.438e-14 - H2 2.219e-14 2.223e-14 -13.654 -13.653 0.001 (0) +H(0) 6.350e-14 + H2 3.175e-14 3.180e-14 -13.498 -13.498 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.076 -65.076 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.475 -67.475 0.001 (0) -[13C](-4) 2.644e-23 - [13C]H4 2.644e-23 2.648e-23 -22.578 -22.577 0.001 (0) + O2 0.000e+00 0.000e+00 -65.387 -65.387 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.786 -67.786 0.001 (0) +[13C](-4) 1.107e-22 + [13C]H4 1.107e-22 1.109e-22 -21.956 -21.955 0.001 (0) [13C](4) 6.515e-05 H[13C]O3- 5.255e-05 4.808e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) @@ -10880,8 +10870,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 9.959e-35 - [14C]H4 9.959e-35 9.975e-35 -34.002 -34.001 0.001 (0) +[14C](-4) 4.171e-34 + [14C]H4 4.171e-34 4.178e-34 -33.380 -33.379 0.001 (0) [14C](4) 2.472e-16 H[14C]O3- 1.997e-16 1.827e-16 -15.700 -15.738 -0.039 (0) [14C]O2 4.155e-17 4.161e-17 -16.381 -16.381 0.001 (0) @@ -10910,22 +10900,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.475 -67.475 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.476 -70.476 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.786 -67.786 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.787 -70.787 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.72 -22.58 -2.86 [13C]H4 + [13C]H4(g) -19.09 -21.95 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.28 -21.78 -1.50 [14C][18O]2 - [14C]H4(g) -31.14 -34.00 -2.86 [14C]H4 + [14C]H4(g) -30.52 -33.38 -2.86 [14C]H4 [14C]O2(g) -14.91 -16.38 -1.47 [14C]O2 [14C]O[18O](g) -17.29 -19.08 -1.79 [14C]O[18O] - [18O]2(g) -68.19 -70.48 -2.29 [18O]2 + [18O]2(g) -68.50 -70.79 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -10939,14 +10929,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.76 -20.62 -2.86 CH4 + CH4(g) -17.14 -20.00 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.50 -13.65 -3.15 H2 + H2(g) -10.35 -13.50 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.18 -65.08 -2.89 O2 - O[18O](g) -64.88 -67.78 -2.89 O[18O] + O2(g) -62.49 -65.39 -2.89 O2 + O[18O](g) -65.19 -68.09 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11055,14 +11045,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7528e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7052e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 9.3259e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 2.176e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 6.2172e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -6.5503e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -11080,14 +11070,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.663 Adjusted to redox equilibrium + pe = -1.906 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 141 (242 overall) Total H = 1.110126e+02 @@ -11101,8 +11091,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 6.150e-22 - CH4 6.150e-22 6.160e-22 -21.211 -21.210 0.001 (0) +C(-4) 5.495e-20 + CH4 5.495e-20 5.504e-20 -19.260 -19.259 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -11131,13 +11121,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.092e-08 6.102e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.162e-14 - H2 1.581e-14 1.584e-14 -13.801 -13.800 0.001 (0) +H(0) 9.722e-14 + H2 4.861e-14 4.869e-14 -13.313 -13.313 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.782 -64.781 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.181 -67.180 0.001 (0) -[13C](-4) 6.812e-24 - [13C]H4 6.812e-24 6.824e-24 -23.167 -23.166 0.001 (0) + O2 0.000e+00 0.000e+00 -65.757 -65.757 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.156 -68.156 0.001 (0) +[13C](-4) 6.087e-22 + [13C]H4 6.087e-22 6.097e-22 -21.216 -21.215 0.001 (0) [13C](4) 6.515e-05 H[13C]O3- 5.255e-05 4.808e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) @@ -11156,8 +11146,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 2.364e-35 - [14C]H4 2.364e-35 2.368e-35 -34.626 -34.626 0.001 (0) +[14C](-4) 2.112e-33 + [14C]H4 2.112e-33 2.116e-33 -32.675 -32.675 0.001 (0) [14C](4) 2.277e-16 H[14C]O3- 1.839e-16 1.683e-16 -15.735 -15.774 -0.039 (0) [14C]O2 3.827e-17 3.834e-17 -16.417 -16.416 0.001 (0) @@ -11186,22 +11176,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.181 -67.180 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.182 -70.181 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.156 -68.156 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.157 -71.157 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -20.31 -23.17 -2.86 [13C]H4 + [13C]H4(g) -18.35 -21.21 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.31 -21.82 -1.50 [14C][18O]2 - [14C]H4(g) -31.77 -34.63 -2.86 [14C]H4 + [14C]H4(g) -29.81 -32.67 -2.86 [14C]H4 [14C]O2(g) -14.95 -16.42 -1.47 [14C]O2 [14C]O[18O](g) -17.33 -19.12 -1.79 [14C]O[18O] - [18O]2(g) -67.89 -70.18 -2.29 [18O]2 + [18O]2(g) -68.87 -71.16 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -11215,14 +11205,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -18.35 -21.21 -2.86 CH4 + CH4(g) -16.40 -19.26 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.65 -13.80 -3.15 H2 + H2(g) -10.16 -13.31 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -61.89 -64.78 -2.89 O2 - O[18O](g) -64.59 -67.48 -2.89 O[18O] + O2(g) -62.86 -65.76 -2.89 O2 + O[18O](g) -65.56 -68.46 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11331,14 +11321,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.4409e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6772e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.628e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 4.2188e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 2.2204e-13 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.7764e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.0214e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -11356,16 +11346,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.739 Adjusted to redox equilibrium + pe = -1.871 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 85 + Iterations = 84 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -11377,8 +11367,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.532e-21 - CH4 2.532e-21 2.536e-21 -20.597 -20.596 0.001 (0) +C(-4) 2.858e-20 + CH4 2.858e-20 2.863e-20 -19.544 -19.543 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -11407,13 +11397,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.093e-08 6.103e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.504e-14 - H2 2.252e-14 2.256e-14 -13.647 -13.647 0.001 (0) +H(0) 8.256e-14 + H2 4.128e-14 4.135e-14 -13.384 -13.384 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.089 -65.088 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.488 -67.487 0.001 (0) -[13C](-4) 2.805e-23 - [13C]H4 2.805e-23 2.810e-23 -22.552 -22.551 0.001 (0) + O2 0.000e+00 0.000e+00 -65.615 -65.615 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.014 -68.014 0.001 (0) +[13C](-4) 3.166e-22 + [13C]H4 3.166e-22 3.172e-22 -21.499 -21.499 0.001 (0) [13C](4) 6.516e-05 H[13C]O3- 5.256e-05 4.808e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) @@ -11432,8 +11422,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 8.965e-35 - [14C]H4 8.965e-35 8.980e-35 -34.047 -34.047 0.001 (0) +[14C](-4) 1.012e-33 + [14C]H4 1.012e-33 1.014e-33 -32.995 -32.994 0.001 (0) [14C](4) 2.098e-16 H[14C]O3- 1.694e-16 1.550e-16 -15.771 -15.810 -0.039 (0) [14C]O2 3.526e-17 3.532e-17 -16.453 -16.452 0.001 (0) @@ -11462,22 +11452,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.488 -67.487 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.489 -70.488 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.014 -68.014 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.015 -71.015 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.69 -22.55 -2.86 [13C]H4 + [13C]H4(g) -18.64 -21.50 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.35 -21.85 -1.50 [14C][18O]2 - [14C]H4(g) -31.19 -34.05 -2.86 [14C]H4 + [14C]H4(g) -30.13 -32.99 -2.86 [14C]H4 [14C]O2(g) -14.98 -16.45 -1.47 [14C]O2 [14C]O[18O](g) -17.36 -19.15 -1.79 [14C]O[18O] - [18O]2(g) -68.20 -70.49 -2.29 [18O]2 + [18O]2(g) -68.72 -71.01 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -11491,14 +11481,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.74 -20.60 -2.86 CH4 + CH4(g) -16.68 -19.54 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.50 -13.65 -3.15 H2 + H2(g) -10.23 -13.38 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.20 -65.09 -2.89 O2 - O[18O](g) -64.90 -67.79 -2.89 O[18O] + O2(g) -62.72 -65.61 -2.89 O2 + O[18O](g) -65.42 -68.31 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11607,14 +11597,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.719e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7163e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 2.8866e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -7.5495e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 9.3259e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.3323e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -11632,16 +11622,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.898 Adjusted to redox equilibrium + pe = -1.946 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 62 + Iterations = 111 (212 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -11653,8 +11643,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.671e-20 - CH4 4.671e-20 4.679e-20 -19.331 -19.330 0.001 (0) +C(-4) 1.148e-19 + CH4 1.148e-19 1.149e-19 -18.940 -18.940 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -11683,13 +11673,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.093e-08 6.103e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 9.335e-14 - H2 4.668e-14 4.675e-14 -13.331 -13.330 0.001 (0) +H(0) 1.169e-13 + H2 5.844e-14 5.853e-14 -13.233 -13.233 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.722 -65.721 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.121 -68.120 0.001 (0) -[13C](-4) 5.175e-22 - [13C]H4 5.175e-22 5.184e-22 -21.286 -21.285 0.001 (0) + O2 0.000e+00 0.000e+00 -65.917 -65.917 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.316 -68.316 0.001 (0) +[13C](-4) 1.271e-21 + [13C]H4 1.271e-21 1.273e-21 -20.896 -20.895 0.001 (0) [13C](4) 6.516e-05 H[13C]O3- 5.256e-05 4.808e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) @@ -11708,8 +11698,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 1.524e-33 - [14C]H4 1.524e-33 1.526e-33 -32.817 -32.816 0.001 (0) +[14C](-4) 3.743e-33 + [14C]H4 3.743e-33 3.749e-33 -32.427 -32.426 0.001 (0) [14C](4) 1.932e-16 H[14C]O3- 1.561e-16 1.428e-16 -15.807 -15.845 -0.039 (0) [14C]O2 3.248e-17 3.253e-17 -16.488 -16.488 0.001 (0) @@ -11738,22 +11728,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.121 -68.120 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.122 -71.121 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.316 -68.316 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.317 -71.317 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.43 -21.29 -2.86 [13C]H4 + [13C]H4(g) -18.04 -20.90 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.38 -21.89 -1.50 [14C][18O]2 - [14C]H4(g) -29.96 -32.82 -2.86 [14C]H4 + [14C]H4(g) -29.57 -32.43 -2.86 [14C]H4 [14C]O2(g) -15.02 -16.49 -1.47 [14C]O2 [14C]O[18O](g) -17.40 -19.19 -1.79 [14C]O[18O] - [18O]2(g) -68.83 -71.12 -2.29 [18O]2 + [18O]2(g) -69.03 -71.32 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -11767,14 +11757,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.47 -19.33 -2.86 CH4 + CH4(g) -16.08 -18.94 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.18 -13.33 -3.15 H2 + H2(g) -10.08 -13.23 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.83 -65.72 -2.89 O2 - O[18O](g) -65.53 -68.42 -2.89 O[18O] + O2(g) -63.02 -65.92 -2.89 O2 + O[18O](g) -65.72 -68.62 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11883,14 +11873,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7465e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6752e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -6.2172e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 6.2172e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.1102e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.7431e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -11908,16 +11898,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.856 Adjusted to redox equilibrium + pe = -1.891 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 120 (221 overall) + Iterations = 112 (213 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -11929,8 +11919,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.172e-20 - CH4 2.172e-20 2.176e-20 -19.663 -19.662 0.001 (0) +C(-4) 4.148e-20 + CH4 4.148e-20 4.155e-20 -19.382 -19.381 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -11959,13 +11949,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.093e-08 6.103e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.709e-14 - H2 3.854e-14 3.861e-14 -13.414 -13.413 0.001 (0) +H(0) 9.062e-14 + H2 4.531e-14 4.538e-14 -13.344 -13.343 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.556 -65.555 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.955 -67.954 0.001 (0) -[13C](-4) 2.407e-22 - [13C]H4 2.407e-22 2.411e-22 -21.619 -21.618 0.001 (0) + O2 0.000e+00 0.000e+00 -65.696 -65.696 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.095 -68.095 0.001 (0) +[13C](-4) 4.596e-22 + [13C]H4 4.596e-22 4.603e-22 -21.338 -21.337 0.001 (0) [13C](4) 6.516e-05 H[13C]O3- 5.256e-05 4.809e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) @@ -11984,8 +11974,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 6.528e-34 - [14C]H4 6.528e-34 6.538e-34 -33.185 -33.185 0.001 (0) +[14C](-4) 1.246e-33 + [14C]H4 1.246e-33 1.249e-33 -32.904 -32.904 0.001 (0) [14C](4) 1.780e-16 H[14C]O3- 1.438e-16 1.316e-16 -15.842 -15.881 -0.039 (0) [14C]O2 2.992e-17 2.997e-17 -16.524 -16.523 0.001 (0) @@ -12014,22 +12004,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.955 -67.954 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.956 -70.955 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.095 -68.095 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.096 -71.096 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.76 -21.62 -2.86 [13C]H4 + [13C]H4(g) -18.48 -21.34 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.42 -21.92 -1.50 [14C][18O]2 - [14C]H4(g) -30.32 -33.18 -2.86 [14C]H4 + [14C]H4(g) -30.04 -32.90 -2.86 [14C]H4 [14C]O2(g) -15.05 -16.52 -1.47 [14C]O2 [14C]O[18O](g) -17.44 -19.22 -1.79 [14C]O[18O] - [18O]2(g) -68.66 -70.96 -2.29 [18O]2 + [18O]2(g) -68.81 -71.10 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -12043,14 +12033,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.80 -19.66 -2.86 CH4 + CH4(g) -16.52 -19.38 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.26 -13.41 -3.15 H2 + H2(g) -10.19 -13.34 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.66 -65.56 -2.89 O2 - O[18O](g) -65.36 -68.26 -2.89 O[18O] + O2(g) -62.80 -65.70 -2.89 O2 + O[18O](g) -65.50 -68.40 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12159,14 +12149,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7226e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8509e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 6.2172e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 3.9968e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -4.1078e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -2.2204e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -12184,16 +12174,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.653 Adjusted to redox equilibrium + pe = -1.737 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 84 + Iterations = 88 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -12205,8 +12195,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 5.161e-22 - CH4 5.161e-22 5.170e-22 -21.287 -21.287 0.001 (0) +C(-4) 2.405e-21 + CH4 2.405e-21 2.409e-21 -20.619 -20.618 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -12235,13 +12225,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.094e-08 6.104e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.027e-14 - H2 1.513e-14 1.516e-14 -13.820 -13.819 0.001 (0) +H(0) 4.447e-14 + H2 2.223e-14 2.227e-14 -13.653 -13.652 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.744 -64.743 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.143 -67.142 0.001 (0) -[13C](-4) 5.718e-24 - [13C]H4 5.718e-24 5.728e-24 -23.243 -23.242 0.001 (0) + O2 0.000e+00 0.000e+00 -65.078 -65.077 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.477 -67.476 0.001 (0) +[13C](-4) 2.665e-23 + [13C]H4 2.665e-23 2.669e-23 -22.574 -22.574 0.001 (0) [13C](4) 6.517e-05 H[13C]O3- 5.256e-05 4.809e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) @@ -12260,8 +12250,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.092e-10 1.914e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.429e-35 - [14C]H4 1.429e-35 1.431e-35 -34.845 -34.844 0.001 (0) +[14C](-4) 6.658e-35 + [14C]H4 6.658e-35 6.669e-35 -34.177 -34.176 0.001 (0) [14C](4) 1.640e-16 H[14C]O3- 1.325e-16 1.212e-16 -15.878 -15.917 -0.039 (0) [14C]O2 2.757e-17 2.761e-17 -16.560 -16.559 0.001 (0) @@ -12290,22 +12280,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.143 -67.142 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.144 -70.143 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.477 -67.476 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.478 -70.477 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -20.38 -23.24 -2.86 [13C]H4 + [13C]H4(g) -19.71 -22.57 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.46 -21.96 -1.50 [14C][18O]2 - [14C]H4(g) -31.98 -34.84 -2.86 [14C]H4 + [14C]H4(g) -31.32 -34.18 -2.86 [14C]H4 [14C]O2(g) -15.09 -16.56 -1.47 [14C]O2 [14C]O[18O](g) -17.47 -19.26 -1.79 [14C]O[18O] - [18O]2(g) -67.85 -70.14 -2.29 [18O]2 + [18O]2(g) -68.19 -70.48 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -12319,14 +12309,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -18.43 -21.29 -2.86 CH4 + CH4(g) -17.76 -20.62 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.67 -13.82 -3.15 H2 + H2(g) -10.50 -13.65 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -61.85 -64.74 -2.89 O2 - O[18O](g) -64.55 -67.44 -2.89 O[18O] + O2(g) -62.18 -65.08 -2.89 O2 + O[18O](g) -64.88 -67.78 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12435,14 +12425,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7342e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6541e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.954e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.3323e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -4.2188e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.9984e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -12460,16 +12450,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.729 Adjusted to redox equilibrium + pe = -1.840 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 5.148e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 130 (231 overall) + Iterations = 96 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -12481,8 +12471,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.072e-21 - CH4 2.072e-21 2.075e-21 -20.684 -20.683 0.001 (0) +C(-4) 1.624e-20 + CH4 1.624e-20 1.627e-20 -19.789 -19.789 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -12511,13 +12501,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.094e-08 6.104e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.284e-14 - H2 2.142e-14 2.146e-14 -13.669 -13.668 0.001 (0) +H(0) 7.168e-14 + H2 3.584e-14 3.590e-14 -13.446 -13.445 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.046 -65.045 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.445 -67.444 0.001 (0) -[13C](-4) 2.296e-23 - [13C]H4 2.296e-23 2.299e-23 -22.639 -22.638 0.001 (0) + O2 0.000e+00 0.000e+00 -65.493 -65.492 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.892 -67.891 0.001 (0) +[13C](-4) 1.799e-22 + [13C]H4 1.799e-22 1.802e-22 -21.745 -21.744 0.001 (0) [13C](4) 6.517e-05 H[13C]O3- 5.257e-05 4.809e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) @@ -12536,8 +12526,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 5.284e-35 - [14C]H4 5.284e-35 5.293e-35 -34.277 -34.276 0.001 (0) +[14C](-4) 4.141e-34 + [14C]H4 4.141e-34 4.148e-34 -33.383 -33.382 0.001 (0) [14C](4) 1.511e-16 H[14C]O3- 1.220e-16 1.117e-16 -15.913 -15.952 -0.039 (0) [14C]O2 2.539e-17 2.544e-17 -16.595 -16.595 0.001 (0) @@ -12566,22 +12556,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.445 -67.444 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.446 -70.445 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.892 -67.891 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.893 -70.892 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -19.78 -22.64 -2.86 [13C]H4 + [13C]H4(g) -18.88 -21.74 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.49 -21.99 -1.50 [14C][18O]2 - [14C]H4(g) -31.42 -34.28 -2.86 [14C]H4 + [14C]H4(g) -30.52 -33.38 -2.86 [14C]H4 [14C]O2(g) -15.13 -16.59 -1.47 [14C]O2 [14C]O[18O](g) -17.51 -19.29 -1.79 [14C]O[18O] - [18O]2(g) -68.15 -70.44 -2.29 [18O]2 + [18O]2(g) -68.60 -70.89 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -12595,14 +12585,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -17.82 -20.68 -2.86 CH4 + CH4(g) -16.93 -19.79 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.52 -13.67 -3.15 H2 + H2(g) -10.29 -13.44 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.15 -65.04 -2.89 O2 - O[18O](g) -64.85 -67.74 -2.89 O[18O] + O2(g) -62.60 -65.49 -2.89 O2 + O[18O](g) -65.30 -68.19 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12711,14 +12701,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7574e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6568e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 2.8866e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -7.4385e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -7.9936e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 2.2204e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -12736,16 +12726,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.658 Adjusted to redox equilibrium + pe = -1.803 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 6.468e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 69 (170 overall) + Iterations = 50 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -12757,8 +12747,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 5.618e-22 - CH4 5.618e-22 5.628e-22 -21.250 -21.250 0.001 (0) +C(-4) 8.170e-21 + CH4 8.170e-21 8.183e-21 -20.088 -20.087 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -12787,13 +12777,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.094e-08 6.104e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.091e-14 - H2 1.546e-14 1.548e-14 -13.811 -13.810 0.001 (0) +H(0) 6.037e-14 + H2 3.018e-14 3.023e-14 -13.520 -13.520 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.762 -64.761 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.161 -67.160 0.001 (0) -[13C](-4) 6.225e-24 - [13C]H4 6.225e-24 6.235e-24 -23.206 -23.205 0.001 (0) + O2 0.000e+00 0.000e+00 -65.343 -65.343 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.742 -67.742 0.001 (0) +[13C](-4) 9.052e-23 + [13C]H4 9.052e-23 9.067e-23 -22.043 -22.043 0.001 (0) [13C](4) 6.517e-05 H[13C]O3- 5.257e-05 4.809e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) @@ -12812,8 +12802,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.914e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.320e-35 - [14C]H4 1.320e-35 1.322e-35 -34.879 -34.879 0.001 (0) +[14C](-4) 1.919e-34 + [14C]H4 1.919e-34 1.922e-34 -33.717 -33.716 0.001 (0) [14C](4) 1.392e-16 H[14C]O3- 1.124e-16 1.029e-16 -15.949 -15.988 -0.039 (0) [14C]O2 2.339e-17 2.343e-17 -16.631 -16.630 0.001 (0) @@ -12842,22 +12832,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.161 -67.160 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.162 -70.161 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.742 -67.742 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.744 -70.743 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -20.35 -23.21 -2.86 [13C]H4 + [13C]H4(g) -19.18 -22.04 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.53 -22.03 -1.50 [14C][18O]2 - [14C]H4(g) -32.02 -34.88 -2.86 [14C]H4 + [14C]H4(g) -30.86 -33.72 -2.86 [14C]H4 [14C]O2(g) -15.16 -16.63 -1.47 [14C]O2 [14C]O[18O](g) -17.54 -19.33 -1.79 [14C]O[18O] - [18O]2(g) -67.87 -70.16 -2.29 [18O]2 + [18O]2(g) -68.45 -70.74 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -12871,14 +12861,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -18.39 -21.25 -2.86 CH4 + CH4(g) -17.23 -20.09 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.66 -13.81 -3.15 H2 + H2(g) -10.37 -13.52 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -61.87 -64.76 -2.89 O2 - O[18O](g) -64.57 -67.46 -2.89 O[18O] + O2(g) -62.45 -65.34 -2.89 O2 + O[18O](g) -65.15 -68.04 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12987,14 +12977,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.4409e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5854e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6402e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 5.3291e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -5.107e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 5.9952e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.2434e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -13012,16 +13002,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.323 Adjusted to redox equilibrium + pe = -1.754 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 6.468e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 65 + Iterations = 113 (214 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -13033,8 +13023,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.189e-24 - CH4 1.189e-24 1.191e-24 -23.925 -23.924 0.001 (0) +C(-4) 3.288e-21 + CH4 3.288e-21 3.294e-21 -20.483 -20.482 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -13063,13 +13053,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.094e-08 6.104e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.630e-15 - H2 3.315e-15 3.321e-15 -14.480 -14.479 0.001 (0) +H(0) 4.809e-14 + H2 2.404e-14 2.408e-14 -13.619 -13.618 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.425 -63.424 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -65.824 -65.823 0.001 (0) -[13C](-4) 1.317e-26 - [13C]H4 1.317e-26 1.319e-26 -25.880 -25.880 0.001 (0) + O2 0.000e+00 0.000e+00 -65.146 -65.145 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.545 -67.544 0.001 (0) +[13C](-4) 3.644e-23 + [13C]H4 3.644e-23 3.650e-23 -22.438 -22.438 0.001 (0) [13C](4) 6.517e-05 H[13C]O3- 5.257e-05 4.809e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) @@ -13088,8 +13078,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.572e-38 - [14C]H4 2.572e-38 2.577e-38 -37.590 -37.589 0.001 (0) +[14C](-4) 7.117e-35 + [14C]H4 7.117e-35 7.128e-35 -34.148 -34.147 0.001 (0) [14C](4) 1.282e-16 H[14C]O3- 1.036e-16 9.475e-17 -15.985 -16.023 -0.039 (0) [14C]O2 2.155e-17 2.159e-17 -16.667 -16.666 0.001 (0) @@ -13118,22 +13108,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -65.824 -65.823 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -68.825 -68.824 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.545 -67.544 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.546 -70.545 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -23.02 -25.88 -2.86 [13C]H4 + [13C]H4(g) -19.58 -22.44 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.56 -22.07 -1.50 [14C][18O]2 - [14C]H4(g) -34.73 -37.59 -2.86 [14C]H4 + [14C]H4(g) -31.29 -34.15 -2.86 [14C]H4 [14C]O2(g) -15.20 -16.67 -1.47 [14C]O2 [14C]O[18O](g) -17.58 -19.37 -1.79 [14C]O[18O] - [18O]2(g) -66.53 -68.82 -2.29 [18O]2 + [18O]2(g) -68.25 -70.55 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -13147,14 +13137,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -21.06 -23.92 -2.86 CH4 + CH4(g) -17.62 -20.48 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -11.33 -14.48 -3.15 H2 + H2(g) -10.47 -13.62 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -60.53 -63.42 -2.89 O2 - O[18O](g) -63.23 -66.12 -2.89 O[18O] + O2(g) -62.25 -65.15 -2.89 O2 + O[18O](g) -64.95 -67.85 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13263,14 +13253,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.57e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7587e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -6.2172e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -2.2204e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 3.1086e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -3.3307e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -13288,16 +13278,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.682 Adjusted to redox equilibrium + pe = -1.768 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 6.468e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 57 (158 overall) + Iterations = 80 (181 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -13309,8 +13299,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 8.730e-22 - CH4 8.730e-22 8.745e-22 -21.059 -21.058 0.001 (0) +C(-4) 4.280e-21 + CH4 4.280e-21 4.287e-21 -20.369 -20.368 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -13339,13 +13329,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.452e-14 - H2 1.726e-14 1.729e-14 -13.763 -13.762 0.001 (0) +H(0) 5.136e-14 + H2 2.568e-14 2.572e-14 -13.590 -13.590 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.858 -64.857 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.257 -67.256 0.001 (0) -[13C](-4) 9.674e-24 - [13C]H4 9.674e-24 9.690e-24 -23.014 -23.014 0.001 (0) + O2 0.000e+00 0.000e+00 -65.203 -65.202 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.602 -67.601 0.001 (0) +[13C](-4) 4.742e-23 + [13C]H4 4.742e-23 4.750e-23 -22.324 -22.323 0.001 (0) [13C](4) 6.518e-05 H[13C]O3- 5.257e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) @@ -13364,8 +13354,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.741e-35 - [14C]H4 1.741e-35 1.743e-35 -34.759 -34.759 0.001 (0) +[14C](-4) 8.533e-35 + [14C]H4 8.533e-35 8.547e-35 -34.069 -34.068 0.001 (0) [14C](4) 1.181e-16 H[14C]O3- 9.541e-17 8.729e-17 -16.020 -16.059 -0.039 (0) [14C]O2 1.985e-17 1.989e-17 -16.702 -16.701 0.001 (0) @@ -13394,22 +13384,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.257 -67.256 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.258 -70.257 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.602 -67.601 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.603 -70.602 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -20.15 -23.01 -2.86 [13C]H4 + [13C]H4(g) -19.46 -22.32 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.60 -22.10 -1.50 [14C][18O]2 - [14C]H4(g) -31.90 -34.76 -2.86 [14C]H4 + [14C]H4(g) -31.21 -34.07 -2.86 [14C]H4 [14C]O2(g) -15.23 -16.70 -1.47 [14C]O2 [14C]O[18O](g) -17.61 -19.40 -1.79 [14C]O[18O] - [18O]2(g) -67.97 -70.26 -2.29 [18O]2 + [18O]2(g) -68.31 -70.60 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -13423,14 +13413,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -18.20 -21.06 -2.86 CH4 + CH4(g) -17.51 -20.37 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.61 -13.76 -3.15 H2 + H2(g) -10.44 -13.59 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -61.96 -64.86 -2.89 O2 - O[18O](g) -64.66 -67.56 -2.89 O[18O] + O2(g) -62.31 -65.20 -2.89 O2 + O[18O](g) -65.01 -67.90 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13539,14 +13529,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6622e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6491e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.1102e-13 0 -Alpha 14C CH4(aq)/CO2(aq) 1 2.2204e-13 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.1102e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 4.885e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -13564,16 +13554,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.671 Adjusted to redox equilibrium + pe = -1.858 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 6.468e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 90 (191 overall) + Iterations = 157 (258 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -13585,8 +13575,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 7.222e-22 - CH4 7.222e-22 7.234e-22 -21.141 -21.141 0.001 (0) +C(-4) 2.232e-20 + CH4 2.232e-20 2.235e-20 -19.651 -19.651 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -13615,13 +13605,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.292e-14 - H2 1.646e-14 1.649e-14 -13.784 -13.783 0.001 (0) +H(0) 7.761e-14 + H2 3.881e-14 3.887e-14 -13.411 -13.410 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.817 -64.816 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.216 -67.215 0.001 (0) -[13C](-4) 8.003e-24 - [13C]H4 8.003e-24 8.016e-24 -23.097 -23.096 0.001 (0) + O2 0.000e+00 0.000e+00 -65.562 -65.561 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.961 -67.960 0.001 (0) +[13C](-4) 2.473e-22 + [13C]H4 2.473e-22 2.477e-22 -21.607 -21.606 0.001 (0) [13C](4) 6.518e-05 H[13C]O3- 5.257e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) @@ -13640,8 +13630,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.326e-35 - [14C]H4 1.326e-35 1.329e-35 -34.877 -34.877 0.001 (0) +[14C](-4) 4.099e-34 + [14C]H4 4.099e-34 4.106e-34 -33.387 -33.387 0.001 (0) [14C](4) 1.088e-16 H[14C]O3- 8.790e-17 8.041e-17 -16.056 -16.095 -0.039 (0) [14C]O2 1.829e-17 1.832e-17 -16.738 -16.737 0.001 (0) @@ -13670,22 +13660,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.216 -67.215 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.217 -70.216 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.961 -67.960 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.962 -70.961 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -20.24 -23.10 -2.86 [13C]H4 + [13C]H4(g) -18.75 -21.61 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.63 -22.14 -1.50 [14C][18O]2 - [14C]H4(g) -32.02 -34.88 -2.86 [14C]H4 + [14C]H4(g) -30.53 -33.39 -2.86 [14C]H4 [14C]O2(g) -15.27 -16.74 -1.47 [14C]O2 [14C]O[18O](g) -17.65 -19.44 -1.79 [14C]O[18O] - [18O]2(g) -67.93 -70.22 -2.29 [18O]2 + [18O]2(g) -68.67 -70.96 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -13699,14 +13689,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -18.28 -21.14 -2.86 CH4 + CH4(g) -16.79 -19.65 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.63 -13.78 -3.15 H2 + H2(g) -10.26 -13.41 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -61.92 -64.82 -2.89 O2 - O[18O](g) -64.62 -67.52 -2.89 O[18O] + O2(g) -62.67 -65.56 -2.89 O2 + O[18O](g) -65.37 -68.26 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13815,14 +13805,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7669e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6189e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 7.3275e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -7.7716e-13 0 +Alpha 13C CH4(aq)/CO2(aq) 1 9.3259e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 5.107e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -13840,16 +13830,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.881 Adjusted to redox equilibrium + pe = -1.919 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 6.468e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 75 (176 overall) + Iterations = 103 (204 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -13861,8 +13851,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.469e-20 - CH4 3.469e-20 3.475e-20 -19.460 -19.459 0.001 (0) +C(-4) 6.933e-20 + CH4 6.933e-20 6.944e-20 -19.159 -19.158 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -13891,13 +13881,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 8.666e-14 - H2 4.333e-14 4.340e-14 -13.363 -13.362 0.001 (0) +H(0) 1.030e-13 + H2 5.152e-14 5.160e-14 -13.288 -13.287 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.657 -65.657 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.056 -68.056 0.001 (0) -[13C](-4) 3.844e-22 - [13C]H4 3.844e-22 3.851e-22 -21.415 -21.414 0.001 (0) + O2 0.000e+00 0.000e+00 -65.808 -65.807 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.207 -68.206 0.001 (0) +[13C](-4) 7.683e-22 + [13C]H4 7.683e-22 7.695e-22 -21.114 -21.114 0.001 (0) [13C](4) 6.518e-05 H[13C]O3- 5.257e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) @@ -13916,8 +13906,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 5.870e-34 - [14C]H4 5.870e-34 5.880e-34 -33.231 -33.231 0.001 (0) +[14C](-4) 1.173e-33 + [14C]H4 1.173e-33 1.175e-33 -32.931 -32.930 0.001 (0) [14C](4) 1.002e-16 H[14C]O3- 8.097e-17 7.408e-17 -16.092 -16.130 -0.039 (0) [14C]O2 1.685e-17 1.688e-17 -16.773 -16.773 0.001 (0) @@ -13946,22 +13936,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.056 -68.056 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.058 -71.057 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.207 -68.206 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.208 -71.207 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.55 -21.41 -2.86 [13C]H4 + [13C]H4(g) -18.25 -21.11 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.67 -22.17 -1.50 [14C][18O]2 - [14C]H4(g) -30.37 -33.23 -2.86 [14C]H4 + [14C]H4(g) -30.07 -32.93 -2.86 [14C]H4 [14C]O2(g) -15.30 -16.77 -1.47 [14C]O2 [14C]O[18O](g) -17.69 -19.47 -1.79 [14C]O[18O] - [18O]2(g) -68.77 -71.06 -2.29 [18O]2 + [18O]2(g) -68.92 -71.21 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -13975,14 +13965,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.60 -19.46 -2.86 CH4 + CH4(g) -16.30 -19.16 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.21 -13.36 -3.15 H2 + H2(g) -10.14 -13.29 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.76 -65.66 -2.89 O2 - O[18O](g) -65.46 -68.36 -2.89 O[18O] + O2(g) -62.91 -65.81 -2.89 O2 + O[18O](g) -65.61 -68.51 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -14091,14 +14081,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5987e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6568e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -7.3275e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 3.1086e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 4.2188e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 0 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -14116,16 +14106,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.862 Adjusted to redox equilibrium + pe = -1.982 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 6.468e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 52 + Iterations = 105 (206 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -14137,8 +14127,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.404e-20 - CH4 2.404e-20 2.408e-20 -19.619 -19.618 0.001 (0) +C(-4) 2.223e-19 + CH4 2.223e-19 2.226e-19 -18.653 -18.652 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -14167,13 +14157,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.907e-14 - H2 3.953e-14 3.960e-14 -13.403 -13.402 0.001 (0) +H(0) 1.379e-13 + H2 6.894e-14 6.905e-14 -13.162 -13.161 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.578 -65.577 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -67.977 -67.976 0.001 (0) -[13C](-4) 2.664e-22 - [13C]H4 2.664e-22 2.668e-22 -21.575 -21.574 0.001 (0) + O2 0.000e+00 0.000e+00 -66.061 -66.060 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.460 -68.459 0.001 (0) +[13C](-4) 2.463e-21 + [13C]H4 2.463e-21 2.467e-21 -20.608 -20.608 0.001 (0) [13C](4) 6.518e-05 H[13C]O3- 5.258e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.103e-05 1.105e-05 -4.957 -4.957 0.001 (0) @@ -14192,8 +14182,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.871e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.747e-34 - [14C]H4 3.747e-34 3.753e-34 -33.426 -33.426 0.001 (0) +[14C](-4) 3.465e-33 + [14C]H4 3.465e-33 3.470e-33 -32.460 -32.460 0.001 (0) [14C](4) 9.234e-17 H[14C]O3- 7.459e-17 6.824e-17 -16.127 -16.166 -0.039 (0) [14C]O2 1.552e-17 1.555e-17 -16.809 -16.808 0.001 (0) @@ -14222,22 +14212,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -67.977 -67.976 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -70.978 -70.977 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.460 -68.459 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.461 -71.460 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -18.71 -21.57 -2.86 [13C]H4 + [13C]H4(g) -17.75 -20.61 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.70 -22.21 -1.50 [14C][18O]2 - [14C]H4(g) -30.57 -33.43 -2.86 [14C]H4 + [14C]H4(g) -29.60 -32.46 -2.86 [14C]H4 [14C]O2(g) -15.34 -16.81 -1.47 [14C]O2 [14C]O[18O](g) -17.72 -19.51 -1.79 [14C]O[18O] - [18O]2(g) -68.69 -70.98 -2.29 [18O]2 + [18O]2(g) -69.17 -71.46 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -14251,14 +14241,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -16.76 -19.62 -2.86 CH4 + CH4(g) -15.79 -18.65 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -10.25 -13.40 -3.15 H2 + H2(g) -10.01 -13.16 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -62.68 -65.58 -2.89 O2 - O[18O](g) -65.38 -68.28 -2.89 O[18O] + O2(g) -63.17 -66.06 -2.89 O2 + O[18O](g) -65.87 -68.76 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -14367,14 +14357,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 +Alpha 18O HCO3-/H2O(l) 1 8.8818e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5461e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6246e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.1435e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.1102e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.3101e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 9.5479e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -14392,16 +14382,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.995 Adjusted to redox equilibrium + pe = -2.109 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 6.468e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 57 (158 overall) + Iterations = 78 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -14413,8 +14403,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.793e-19 - CH4 2.793e-19 2.798e-19 -18.554 -18.553 0.001 (0) +C(-4) 2.290e-18 + CH4 2.290e-18 2.294e-18 -17.640 -17.639 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -14443,13 +14433,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.460e-13 - H2 7.299e-14 7.311e-14 -13.137 -13.136 0.001 (0) +H(0) 2.470e-13 + H2 1.235e-13 1.237e-13 -12.908 -12.908 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.110 -66.110 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.509 -68.509 0.001 (0) -[13C](-4) 3.095e-21 - [13C]H4 3.095e-21 3.101e-21 -20.509 -20.509 0.001 (0) + O2 0.000e+00 0.000e+00 -66.567 -66.567 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.966 -68.966 0.001 (0) +[13C](-4) 2.538e-20 + [13C]H4 2.538e-20 2.542e-20 -19.596 -19.595 0.001 (0) [13C](4) 6.518e-05 H[13C]O3- 5.258e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.957 0.001 (0) @@ -14468,8 +14458,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 4.011e-33 - [14C]H4 4.011e-33 4.018e-33 -32.397 -32.396 0.001 (0) +[14C](-4) 3.288e-32 + [14C]H4 3.288e-32 3.294e-32 -31.483 -31.482 0.001 (0) [14C](4) 8.507e-17 H[14C]O3- 6.872e-17 6.287e-17 -16.163 -16.202 -0.039 (0) [14C]O2 1.430e-17 1.432e-17 -16.845 -16.844 0.001 (0) @@ -14498,22 +14488,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.509 -68.509 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.510 -71.510 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.966 -68.966 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.967 -71.967 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.65 -20.51 -2.86 [13C]H4 + [13C]H4(g) -16.73 -19.59 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.74 -22.24 -1.50 [14C][18O]2 - [14C]H4(g) -29.54 -32.40 -2.86 [14C]H4 + [14C]H4(g) -28.62 -31.48 -2.86 [14C]H4 [14C]O2(g) -15.38 -16.84 -1.47 [14C]O2 [14C]O[18O](g) -17.76 -19.54 -1.79 [14C]O[18O] - [18O]2(g) -69.22 -71.51 -2.29 [18O]2 + [18O]2(g) -69.68 -71.97 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -14527,14 +14517,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.69 -18.55 -2.86 CH4 + CH4(g) -14.78 -17.64 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.99 -13.14 -3.15 H2 + H2(g) -9.76 -12.91 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.22 -66.11 -2.89 O2 - O[18O](g) -65.92 -68.81 -2.89 O[18O] + O2(g) -63.67 -66.57 -2.89 O2 + O[18O](g) -66.37 -69.27 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -14643,14 +14633,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.9936e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6446e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7087e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.5543e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.1102e-13 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.2323e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -4.1078e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -14668,16 +14658,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.042 Adjusted to redox equilibrium + pe = -2.146 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 6.468e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 64 + Iterations = 54 (155 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -14689,8 +14679,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 6.713e-19 - CH4 6.713e-19 6.724e-19 -18.173 -18.172 0.001 (0) +C(-4) 4.513e-18 + CH4 4.513e-18 4.521e-18 -17.346 -17.345 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -14719,13 +14709,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.818e-13 - H2 9.088e-14 9.103e-14 -13.042 -13.041 0.001 (0) +H(0) 2.927e-13 + H2 1.463e-13 1.466e-13 -12.835 -12.834 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.301 -66.300 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.700 -68.699 0.001 (0) -[13C](-4) 7.439e-21 - [13C]H4 7.439e-21 7.451e-21 -20.128 -20.128 0.001 (0) + O2 0.000e+00 0.000e+00 -66.715 -66.714 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.114 -69.113 0.001 (0) +[13C](-4) 5.002e-20 + [13C]H4 5.002e-20 5.010e-20 -19.301 -19.300 0.001 (0) [13C](4) 6.518e-05 H[13C]O3- 5.258e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) @@ -14744,8 +14734,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 8.880e-33 - [14C]H4 8.880e-33 8.894e-33 -32.052 -32.051 0.001 (0) +[14C](-4) 5.970e-32 + [14C]H4 5.970e-32 5.980e-32 -31.224 -31.223 0.001 (0) [14C](4) 7.837e-17 H[14C]O3- 6.330e-17 5.792e-17 -16.199 -16.237 -0.039 (0) [14C]O2 1.317e-17 1.319e-17 -16.880 -16.880 0.001 (0) @@ -14774,22 +14764,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.700 -68.699 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.701 -71.700 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.114 -69.113 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.115 -72.114 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.27 -20.13 -2.86 [13C]H4 + [13C]H4(g) -16.44 -19.30 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.78 -22.28 -1.50 [14C][18O]2 - [14C]H4(g) -29.19 -32.05 -2.86 [14C]H4 + [14C]H4(g) -28.36 -31.22 -2.86 [14C]H4 [14C]O2(g) -15.41 -16.88 -1.47 [14C]O2 [14C]O[18O](g) -17.79 -19.58 -1.79 [14C]O[18O] - [18O]2(g) -69.41 -71.70 -2.29 [18O]2 + [18O]2(g) -69.82 -72.11 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -14803,14 +14793,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.31 -18.17 -2.86 CH4 + CH4(g) -14.48 -17.34 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.89 -13.04 -3.15 H2 + H2(g) -9.68 -12.83 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.41 -66.30 -2.89 O2 - O[18O](g) -66.11 -69.00 -2.89 O[18O] + O2(g) -63.82 -66.71 -2.89 O2 + O[18O](g) -66.52 -69.41 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -14919,14 +14909,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.8842e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.565e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6678e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.2434e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 5.9952e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -3.1086e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.3101e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -14944,16 +14934,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.059 Adjusted to redox equilibrium + pe = -2.140 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 6.468e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 98 + Iterations = 67 (168 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -14965,8 +14955,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 9.176e-19 - CH4 9.176e-19 9.191e-19 -18.037 -18.037 0.001 (0) +C(-4) 4.042e-18 + CH4 4.042e-18 4.049e-18 -17.393 -17.393 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -14995,13 +14985,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.965e-13 - H2 9.826e-14 9.843e-14 -13.008 -13.007 0.001 (0) +H(0) 2.847e-13 + H2 1.424e-13 1.426e-13 -12.847 -12.846 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.369 -66.368 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.768 -68.767 0.001 (0) -[13C](-4) 1.017e-20 - [13C]H4 1.017e-20 1.019e-20 -19.993 -19.992 0.001 (0) + O2 0.000e+00 0.000e+00 -66.691 -66.690 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.090 -69.089 0.001 (0) +[13C](-4) 4.480e-20 + [13C]H4 4.480e-20 4.487e-20 -19.349 -19.348 0.001 (0) [13C](4) 6.518e-05 H[13C]O3- 5.258e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) @@ -15020,8 +15010,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.118e-32 - [14C]H4 1.118e-32 1.120e-32 -31.952 -31.951 0.001 (0) +[14C](-4) 4.926e-32 + [14C]H4 4.926e-32 4.934e-32 -31.308 -31.307 0.001 (0) [14C](4) 7.219e-17 H[14C]O3- 5.832e-17 5.335e-17 -16.234 -16.273 -0.039 (0) [14C]O2 1.213e-17 1.215e-17 -16.916 -16.915 0.001 (0) @@ -15050,22 +15040,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.768 -68.767 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.769 -71.768 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.090 -69.089 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.091 -72.090 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.13 -19.99 -2.86 [13C]H4 + [13C]H4(g) -16.49 -19.35 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.81 -22.32 -1.50 [14C][18O]2 - [14C]H4(g) -29.09 -31.95 -2.86 [14C]H4 + [14C]H4(g) -28.45 -31.31 -2.86 [14C]H4 [14C]O2(g) -15.45 -16.92 -1.47 [14C]O2 [14C]O[18O](g) -17.83 -19.62 -1.79 [14C]O[18O] - [18O]2(g) -69.48 -71.77 -2.29 [18O]2 + [18O]2(g) -69.80 -72.09 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -15079,14 +15069,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.18 -18.04 -2.86 CH4 + CH4(g) -14.53 -17.39 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.86 -13.01 -3.15 H2 + H2(g) -9.70 -12.85 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.48 -66.37 -2.89 O2 - O[18O](g) -66.18 -69.07 -2.89 O[18O] + O2(g) -63.80 -66.69 -2.89 O2 + O[18O](g) -66.50 -69.39 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -15195,14 +15185,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5291e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.4968e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -2.9976e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.1102e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 7.1054e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -2.9976e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -15220,16 +15210,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.038 Adjusted to redox equilibrium + pe = -2.141 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 6.468e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 96 + Iterations = 72 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -15241,8 +15231,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 6.172e-19 - CH4 6.172e-19 6.182e-19 -18.210 -18.209 0.001 (0) +C(-4) 4.148e-18 + CH4 4.148e-18 4.155e-18 -17.382 -17.381 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -15271,13 +15261,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.095e-08 6.105e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.780e-13 - H2 8.899e-14 8.914e-14 -13.051 -13.050 0.001 (0) +H(0) 2.866e-13 + H2 1.433e-13 1.435e-13 -12.844 -12.843 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.283 -66.282 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.682 -68.681 0.001 (0) -[13C](-4) 6.840e-21 - [13C]H4 6.840e-21 6.851e-21 -20.165 -20.164 0.001 (0) + O2 0.000e+00 0.000e+00 -66.696 -66.696 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.095 -69.095 0.001 (0) +[13C](-4) 4.597e-20 + [13C]H4 4.597e-20 4.605e-20 -19.338 -19.337 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) @@ -15296,8 +15286,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 6.929e-33 - [14C]H4 6.929e-33 6.940e-33 -32.159 -32.159 0.001 (0) +[14C](-4) 4.657e-32 + [14C]H4 4.657e-32 4.664e-32 -31.332 -31.331 0.001 (0) [14C](4) 6.651e-17 H[14C]O3- 5.372e-17 4.915e-17 -16.270 -16.308 -0.039 (0) [14C]O2 1.118e-17 1.120e-17 -16.952 -16.951 0.001 (0) @@ -15326,22 +15316,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.682 -68.681 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.683 -71.682 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.095 -69.095 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.096 -72.096 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.30 -20.16 -2.86 [13C]H4 + [13C]H4(g) -16.48 -19.34 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.85 -22.35 -1.50 [14C][18O]2 - [14C]H4(g) -29.30 -32.16 -2.86 [14C]H4 + [14C]H4(g) -28.47 -31.33 -2.86 [14C]H4 [14C]O2(g) -15.48 -16.95 -1.47 [14C]O2 [14C]O[18O](g) -17.86 -19.65 -1.79 [14C]O[18O] - [18O]2(g) -69.39 -71.68 -2.29 [18O]2 + [18O]2(g) -69.81 -72.10 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -15355,14 +15345,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.35 -18.21 -2.86 CH4 + CH4(g) -14.52 -17.38 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.90 -13.05 -3.15 H2 + H2(g) -9.69 -12.84 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.39 -66.28 -2.89 O2 - O[18O](g) -66.09 -68.98 -2.89 O[18O] + O2(g) -63.80 -66.70 -2.89 O2 + O[18O](g) -66.50 -69.40 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -15471,14 +15461,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.9944e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6459e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6159e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -4.1078e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -6.2172e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.1102e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 5.107e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -15496,16 +15486,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.004 Adjusted to redox equilibrium + pe = -2.121 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 6.468e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 98 (199 overall) + Iterations = 70 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -15517,8 +15507,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.344e-19 - CH4 3.344e-19 3.349e-19 -18.476 -18.475 0.001 (0) +C(-4) 2.840e-18 + CH4 2.840e-18 2.845e-18 -17.547 -17.546 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -15547,13 +15537,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.527e-13 - H2 7.635e-14 7.647e-14 -13.117 -13.117 0.001 (0) +H(0) 2.607e-13 + H2 1.303e-13 1.305e-13 -12.885 -12.884 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.149 -66.149 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.548 -68.548 0.001 (0) -[13C](-4) 3.706e-21 - [13C]H4 3.706e-21 3.712e-21 -20.431 -20.430 0.001 (0) + O2 0.000e+00 0.000e+00 -66.614 -66.613 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.013 -69.012 0.001 (0) +[13C](-4) 3.147e-20 + [13C]H4 3.147e-20 3.153e-20 -19.502 -19.501 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) @@ -15572,8 +15562,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.458e-33 - [14C]H4 3.458e-33 3.464e-33 -32.461 -32.460 0.001 (0) +[14C](-4) 2.937e-32 + [14C]H4 2.937e-32 2.942e-32 -31.532 -31.531 0.001 (0) [14C](4) 6.127e-17 H[14C]O3- 4.949e-17 4.528e-17 -16.305 -16.344 -0.039 (0) [14C]O2 1.030e-17 1.032e-17 -16.987 -16.987 0.001 (0) @@ -15602,22 +15592,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.548 -68.548 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.550 -71.549 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.013 -69.012 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.014 -72.013 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.57 -20.43 -2.86 [13C]H4 + [13C]H4(g) -16.64 -19.50 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.88 -22.39 -1.50 [14C][18O]2 - [14C]H4(g) -29.60 -32.46 -2.86 [14C]H4 + [14C]H4(g) -28.67 -31.53 -2.86 [14C]H4 [14C]O2(g) -15.52 -16.99 -1.47 [14C]O2 [14C]O[18O](g) -17.90 -19.69 -1.79 [14C]O[18O] - [18O]2(g) -69.26 -71.55 -2.29 [18O]2 + [18O]2(g) -69.72 -72.01 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -15631,14 +15621,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.62 -18.48 -2.86 CH4 + CH4(g) -14.69 -17.55 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.97 -13.12 -3.15 H2 + H2(g) -9.73 -12.88 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.26 -66.15 -2.89 O2 - O[18O](g) -65.96 -68.85 -2.89 O[18O] + O2(g) -63.72 -66.61 -2.89 O2 + O[18O](g) -66.42 -69.31 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -15747,14 +15737,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5477e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6555e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.5543e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 4.885e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.3323e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -3.1086e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -15772,16 +15762,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.051 Adjusted to redox equilibrium + pe = -2.137 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 6.468e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 118 (219 overall) + Iterations = 97 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -15793,8 +15783,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 7.807e-19 - CH4 7.807e-19 7.820e-19 -18.107 -18.107 0.001 (0) +C(-4) 3.867e-18 + CH4 3.867e-18 3.873e-18 -17.413 -17.412 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -15823,13 +15813,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.888e-13 - H2 9.438e-14 9.453e-14 -13.025 -13.024 0.001 (0) +H(0) 2.816e-13 + H2 1.408e-13 1.410e-13 -12.851 -12.851 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.334 -66.333 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.733 -68.732 0.001 (0) -[13C](-4) 8.653e-21 - [13C]H4 8.653e-21 8.667e-21 -20.063 -20.062 0.001 (0) + O2 0.000e+00 0.000e+00 -66.681 -66.680 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.080 -69.079 0.001 (0) +[13C](-4) 4.286e-20 + [13C]H4 4.286e-20 4.293e-20 -19.368 -19.367 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.810e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) @@ -15848,8 +15838,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 7.438e-33 - [14C]H4 7.438e-33 7.451e-33 -32.129 -32.128 0.001 (0) +[14C](-4) 3.684e-32 + [14C]H4 3.684e-32 3.690e-32 -31.434 -31.433 0.001 (0) [14C](4) 5.644e-17 H[14C]O3- 4.559e-17 4.171e-17 -16.341 -16.380 -0.039 (0) [14C]O2 9.487e-18 9.503e-18 -17.023 -17.022 0.001 (0) @@ -15878,22 +15868,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.733 -68.732 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.734 -71.733 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.080 -69.079 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.081 -72.080 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.20 -20.06 -2.86 [13C]H4 + [13C]H4(g) -16.51 -19.37 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.92 -22.42 -1.50 [14C][18O]2 - [14C]H4(g) -29.27 -32.13 -2.86 [14C]H4 + [14C]H4(g) -28.57 -31.43 -2.86 [14C]H4 [14C]O2(g) -15.55 -17.02 -1.47 [14C]O2 [14C]O[18O](g) -17.94 -19.72 -1.79 [14C]O[18O] - [18O]2(g) -69.44 -71.73 -2.29 [18O]2 + [18O]2(g) -69.79 -72.08 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -15907,14 +15897,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.25 -18.11 -2.86 CH4 + CH4(g) -14.55 -17.41 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.87 -13.02 -3.15 H2 + H2(g) -9.70 -12.85 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.44 -66.33 -2.89 O2 - O[18O](g) -66.14 -69.03 -2.89 O[18O] + O2(g) -63.79 -66.68 -2.89 O2 + O[18O](g) -66.49 -69.38 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -16023,14 +16013,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5606e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6031e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 5.107e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 5.107e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.2323e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -4.1078e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -16048,16 +16038,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.145 Adjusted to redox equilibrium + pe = -2.188 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 6.468e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 89 + Iterations = 106 (207 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -16069,8 +16059,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.479e-18 - CH4 4.479e-18 4.486e-18 -17.349 -17.348 0.001 (0) +C(-4) 9.879e-18 + CH4 9.879e-18 9.895e-18 -17.005 -17.005 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -16099,13 +16089,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.921e-13 - H2 1.461e-13 1.463e-13 -12.835 -12.835 0.001 (0) +H(0) 3.560e-13 + H2 1.780e-13 1.783e-13 -12.750 -12.749 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.713 -66.712 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.112 -69.111 0.001 (0) -[13C](-4) 4.964e-20 - [13C]H4 4.964e-20 4.972e-20 -19.304 -19.303 0.001 (0) + O2 0.000e+00 0.000e+00 -66.885 -66.884 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.284 -69.283 0.001 (0) +[13C](-4) 1.095e-19 + [13C]H4 1.095e-19 1.097e-19 -18.961 -18.960 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) @@ -16124,8 +16114,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.931e-32 - [14C]H4 3.931e-32 3.938e-32 -31.405 -31.405 0.001 (0) +[14C](-4) 8.671e-32 + [14C]H4 8.671e-32 8.685e-32 -31.062 -31.061 0.001 (0) [14C](4) 5.200e-17 H[14C]O3- 4.200e-17 3.843e-17 -16.377 -16.415 -0.039 (0) [14C]O2 8.740e-18 8.754e-18 -17.058 -17.058 0.001 (0) @@ -16154,22 +16144,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.112 -69.111 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.113 -72.112 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.284 -69.283 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.285 -72.284 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.44 -19.30 -2.86 [13C]H4 + [13C]H4(g) -16.10 -18.96 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.95 -22.46 -1.50 [14C][18O]2 - [14C]H4(g) -28.54 -31.40 -2.86 [14C]H4 + [14C]H4(g) -28.20 -31.06 -2.86 [14C]H4 [14C]O2(g) -15.59 -17.06 -1.47 [14C]O2 [14C]O[18O](g) -17.97 -19.76 -1.79 [14C]O[18O] - [18O]2(g) -69.82 -72.11 -2.29 [18O]2 + [18O]2(g) -69.99 -72.28 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -16183,14 +16173,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.49 -17.35 -2.86 CH4 + CH4(g) -14.14 -17.00 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.68 -12.83 -3.15 H2 + H2(g) -9.60 -12.75 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.82 -66.71 -2.89 O2 - O[18O](g) -66.52 -69.41 -2.89 O[18O] + O2(g) -63.99 -66.88 -2.89 O2 + O[18O](g) -66.69 -69.58 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -16299,14 +16289,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7349e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7791e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.5543e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 7.3275e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.7764e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.7764e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -16324,16 +16314,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.029 Adjusted to redox equilibrium + pe = -2.134 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 6.468e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 178 (279 overall) + Iterations = 55 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -16345,8 +16335,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 5.279e-19 - CH4 5.279e-19 5.287e-19 -18.277 -18.277 0.001 (0) +C(-4) 3.665e-18 + CH4 3.665e-18 3.671e-18 -17.436 -17.435 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -16375,13 +16365,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.712e-13 - H2 8.558e-14 8.572e-14 -13.068 -13.067 0.001 (0) +H(0) 2.778e-13 + H2 1.389e-13 1.391e-13 -12.857 -12.857 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.249 -66.248 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.648 -68.647 0.001 (0) -[13C](-4) 5.850e-21 - [13C]H4 5.850e-21 5.860e-21 -20.233 -20.232 0.001 (0) + O2 0.000e+00 0.000e+00 -66.669 -66.669 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.068 -69.068 0.001 (0) +[13C](-4) 4.061e-20 + [13C]H4 4.061e-20 4.068e-20 -19.391 -19.391 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) @@ -16400,8 +16390,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 4.268e-33 - [14C]H4 4.268e-33 4.275e-33 -32.370 -32.369 0.001 (0) +[14C](-4) 2.963e-32 + [14C]H4 2.963e-32 2.968e-32 -31.528 -31.528 0.001 (0) [14C](4) 4.790e-17 H[14C]O3- 3.869e-17 3.540e-17 -16.412 -16.451 -0.039 (0) [14C]O2 8.051e-18 8.065e-18 -17.094 -17.093 0.001 (0) @@ -16430,22 +16420,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.648 -68.647 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.649 -71.648 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.068 -69.068 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.069 -72.069 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.37 -20.23 -2.86 [13C]H4 + [13C]H4(g) -16.53 -19.39 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.99 -22.49 -1.50 [14C][18O]2 - [14C]H4(g) -29.51 -32.37 -2.86 [14C]H4 + [14C]H4(g) -28.67 -31.53 -2.86 [14C]H4 [14C]O2(g) -15.62 -17.09 -1.47 [14C]O2 [14C]O[18O](g) -18.01 -19.79 -1.79 [14C]O[18O] - [18O]2(g) -69.36 -71.65 -2.29 [18O]2 + [18O]2(g) -69.78 -72.07 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -16459,14 +16449,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.42 -18.28 -2.86 CH4 + CH4(g) -14.58 -17.44 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.92 -13.07 -3.15 H2 + H2(g) -9.71 -12.86 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.36 -66.25 -2.89 O2 - O[18O](g) -66.06 -68.95 -2.89 O[18O] + O2(g) -63.78 -66.67 -2.89 O2 + O[18O](g) -66.48 -69.37 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -16575,14 +16565,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7299e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7085e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -3.3307e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.1102e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 7.3275e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.5765e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -16600,16 +16590,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.064 Adjusted to redox equilibrium + pe = -2.156 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 6.468e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 75 (176 overall) + Iterations = 108 (209 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -16621,8 +16611,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 9.984e-19 - CH4 9.984e-19 1.000e-18 -18.001 -18.000 0.001 (0) +C(-4) 5.479e-18 + CH4 5.479e-18 5.488e-18 -17.261 -17.261 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -16651,13 +16641,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.007e-13 - H2 1.004e-13 1.005e-13 -12.998 -12.998 0.001 (0) +H(0) 3.072e-13 + H2 1.536e-13 1.539e-13 -12.814 -12.813 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.387 -66.386 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.786 -68.785 0.001 (0) -[13C](-4) 1.107e-20 - [13C]H4 1.107e-20 1.108e-20 -19.956 -19.955 0.001 (0) + O2 0.000e+00 0.000e+00 -66.757 -66.756 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.156 -69.155 0.001 (0) +[13C](-4) 6.073e-20 + [13C]H4 6.073e-20 6.083e-20 -19.217 -19.216 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) @@ -16676,8 +16666,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 7.436e-33 - [14C]H4 7.436e-33 7.449e-33 -32.129 -32.128 0.001 (0) +[14C](-4) 4.081e-32 + [14C]H4 4.081e-32 4.088e-32 -31.389 -31.389 0.001 (0) [14C](4) 4.413e-17 H[14C]O3- 3.565e-17 3.261e-17 -16.448 -16.487 -0.039 (0) [14C]O2 7.417e-18 7.429e-18 -17.130 -17.129 0.001 (0) @@ -16706,22 +16696,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.786 -68.785 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.787 -71.786 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.156 -69.155 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.157 -72.156 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.10 -19.96 -2.86 [13C]H4 + [13C]H4(g) -16.36 -19.22 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.03 -22.53 -1.50 [14C][18O]2 - [14C]H4(g) -29.27 -32.13 -2.86 [14C]H4 + [14C]H4(g) -28.53 -31.39 -2.86 [14C]H4 [14C]O2(g) -15.66 -17.13 -1.47 [14C]O2 [14C]O[18O](g) -18.04 -19.83 -1.79 [14C]O[18O] - [18O]2(g) -69.50 -71.79 -2.29 [18O]2 + [18O]2(g) -69.87 -72.16 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -16735,14 +16725,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.14 -18.00 -2.86 CH4 + CH4(g) -14.40 -17.26 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.85 -13.00 -3.15 H2 + H2(g) -9.66 -12.81 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.49 -66.39 -2.89 O2 - O[18O](g) -66.19 -69.09 -2.89 O[18O] + O2(g) -63.86 -66.76 -2.89 O2 + O[18O](g) -66.56 -69.46 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -16851,14 +16841,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.9936e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7544e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8715e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -6.9944e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.521e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 5.9952e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 0 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -16876,16 +16866,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.179 Adjusted to redox equilibrium + pe = -2.223 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 6.467e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 127 (228 overall) + Iterations = 84 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -16897,8 +16887,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 8.337e-18 - CH4 8.337e-18 8.350e-18 -17.079 -17.078 0.001 (0) +C(-4) 1.887e-17 + CH4 1.887e-17 1.890e-17 -16.724 -16.724 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -16927,13 +16917,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.412e-13 - H2 1.706e-13 1.709e-13 -12.768 -12.767 0.001 (0) +H(0) 4.185e-13 + H2 2.092e-13 2.096e-13 -12.679 -12.679 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.848 -66.847 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.247 -69.246 0.001 (0) -[13C](-4) 9.240e-20 - [13C]H4 9.240e-20 9.255e-20 -19.034 -19.034 0.001 (0) + O2 0.000e+00 0.000e+00 -67.025 -67.025 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.424 -69.423 0.001 (0) +[13C](-4) 2.091e-19 + [13C]H4 2.091e-19 2.094e-19 -18.680 -18.679 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) @@ -16952,8 +16942,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 5.720e-32 - [14C]H4 5.720e-32 5.730e-32 -31.243 -31.242 0.001 (0) +[14C](-4) 1.295e-31 + [14C]H4 1.295e-31 1.297e-31 -30.888 -30.887 0.001 (0) [14C](4) 4.065e-17 H[14C]O3- 3.284e-17 3.004e-17 -16.484 -16.522 -0.039 (0) [14C]O2 6.833e-18 6.844e-18 -17.165 -17.165 0.001 (0) @@ -16982,22 +16972,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.247 -69.246 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.248 -72.247 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.424 -69.423 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.425 -72.425 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.17 -19.03 -2.86 [13C]H4 + [13C]H4(g) -15.82 -18.68 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.06 -22.56 -1.50 [14C][18O]2 - [14C]H4(g) -28.38 -31.24 -2.86 [14C]H4 + [14C]H4(g) -28.03 -30.89 -2.86 [14C]H4 [14C]O2(g) -15.70 -17.16 -1.47 [14C]O2 [14C]O[18O](g) -18.08 -19.86 -1.79 [14C]O[18O] - [18O]2(g) -69.96 -72.25 -2.29 [18O]2 + [18O]2(g) -70.13 -72.42 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -17011,14 +17001,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.22 -17.08 -2.86 CH4 + CH4(g) -13.86 -16.72 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.62 -12.77 -3.15 H2 + H2(g) -9.53 -12.68 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.95 -66.85 -2.89 O2 - O[18O](g) -66.65 -69.55 -2.89 O[18O] + O2(g) -64.13 -67.02 -2.89 O2 + O[18O](g) -66.83 -69.72 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -17127,14 +17117,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6076e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5193e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -3.1086e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.3212e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -9.1038e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.9207e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -17152,16 +17142,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.211 Adjusted to redox equilibrium + pe = -2.243 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 6.468e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 64 (165 overall) + Iterations = 67 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -17173,8 +17163,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.490e-17 - CH4 1.490e-17 1.493e-17 -16.827 -16.826 0.001 (0) +C(-4) 2.689e-17 + CH4 2.689e-17 2.693e-17 -16.570 -16.570 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -17203,13 +17193,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.945e-13 - H2 1.973e-13 1.976e-13 -12.705 -12.704 0.001 (0) +H(0) 4.573e-13 + H2 2.286e-13 2.290e-13 -12.641 -12.640 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.974 -66.973 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.373 -69.372 0.001 (0) -[13C](-4) 1.652e-19 - [13C]H4 1.652e-19 1.654e-19 -18.782 -18.781 0.001 (0) + O2 0.000e+00 0.000e+00 -67.102 -67.101 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.501 -69.500 0.001 (0) +[13C](-4) 2.980e-19 + [13C]H4 2.980e-19 2.985e-19 -18.526 -18.525 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.105e-05 -4.957 -4.956 0.001 (0) @@ -17228,8 +17218,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 9.419e-32 - [14C]H4 9.419e-32 9.435e-32 -31.026 -31.025 0.001 (0) +[14C](-4) 1.700e-31 + [14C]H4 1.700e-31 1.703e-31 -30.770 -30.769 0.001 (0) [14C](4) 3.745e-17 H[14C]O3- 3.025e-17 2.768e-17 -16.519 -16.558 -0.039 (0) [14C]O2 6.295e-18 6.305e-18 -17.201 -17.200 0.001 (0) @@ -17258,22 +17248,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.373 -69.372 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.374 -72.373 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.501 -69.500 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.502 -72.501 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.92 -18.78 -2.86 [13C]H4 + [13C]H4(g) -15.67 -18.53 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.10 -22.60 -1.50 [14C][18O]2 - [14C]H4(g) -28.17 -31.03 -2.86 [14C]H4 + [14C]H4(g) -27.91 -30.77 -2.86 [14C]H4 [14C]O2(g) -15.73 -17.20 -1.47 [14C]O2 [14C]O[18O](g) -18.11 -19.90 -1.79 [14C]O[18O] - [18O]2(g) -70.08 -72.37 -2.29 [18O]2 + [18O]2(g) -70.21 -72.50 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -17287,14 +17277,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.97 -16.83 -2.86 CH4 + CH4(g) -13.71 -16.57 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.55 -12.70 -3.15 H2 + H2(g) -9.49 -12.64 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.08 -66.97 -2.89 O2 - O[18O](g) -66.78 -69.67 -2.89 O[18O] + O2(g) -64.21 -67.10 -2.89 O2 + O[18O](g) -66.91 -69.80 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -17403,14 +17393,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -6.5503e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6371e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7594e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 0 0 -Alpha 14C CH4(aq)/CO2(aq) 1 5.9952e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 9.1038e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 7.1054e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -17428,16 +17418,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.238 Adjusted to redox equilibrium + pe = -2.260 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 6.468e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 99 + Iterations = 80 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -17449,8 +17439,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.453e-17 - CH4 2.453e-17 2.457e-17 -16.610 -16.610 0.001 (0) +C(-4) 3.685e-17 + CH4 3.685e-17 3.691e-17 -16.434 -16.433 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -17479,13 +17469,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.469e-13 - H2 2.234e-13 2.238e-13 -12.651 -12.650 0.001 (0) +H(0) 4.948e-13 + H2 2.474e-13 2.478e-13 -12.607 -12.606 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.082 -67.082 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.481 -69.480 0.001 (0) -[13C](-4) 2.719e-19 - [13C]H4 2.719e-19 2.723e-19 -18.566 -18.565 0.001 (0) + O2 0.000e+00 0.000e+00 -67.171 -67.170 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.570 -69.569 0.001 (0) +[13C](-4) 4.085e-19 + [13C]H4 4.085e-19 4.092e-19 -18.389 -18.388 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -17504,8 +17494,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.429e-31 - [14C]H4 1.429e-31 1.431e-31 -30.845 -30.844 0.001 (0) +[14C](-4) 2.146e-31 + [14C]H4 2.146e-31 2.150e-31 -30.668 -30.668 0.001 (0) [14C](4) 3.450e-17 H[14C]O3- 2.787e-17 2.550e-17 -16.555 -16.594 -0.039 (0) [14C]O2 5.799e-18 5.808e-18 -17.237 -17.236 0.001 (0) @@ -17534,22 +17524,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.481 -69.480 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.482 -72.482 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.570 -69.569 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.571 -72.570 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.70 -18.56 -2.86 [13C]H4 + [13C]H4(g) -15.53 -18.39 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.13 -22.64 -1.50 [14C][18O]2 - [14C]H4(g) -27.98 -30.84 -2.86 [14C]H4 + [14C]H4(g) -27.81 -30.67 -2.86 [14C]H4 [14C]O2(g) -15.77 -17.24 -1.47 [14C]O2 [14C]O[18O](g) -18.15 -19.94 -1.79 [14C]O[18O] - [18O]2(g) -70.19 -72.48 -2.29 [18O]2 + [18O]2(g) -70.28 -72.57 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -17563,14 +17553,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.75 -16.61 -2.86 CH4 + CH4(g) -13.57 -16.43 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.50 -12.65 -3.15 H2 + H2(g) -9.46 -12.61 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.19 -67.08 -2.89 O2 - O[18O](g) -66.89 -69.78 -2.89 O[18O] + O2(g) -64.28 -67.17 -2.89 O2 + O[18O](g) -66.98 -69.87 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -17679,14 +17669,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7274e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7156e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -6.8834e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -9.1038e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.1324e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 7.1054e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -17704,16 +17694,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.242 Adjusted to redox equilibrium + pe = -2.244 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 6.468e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 97 (198 overall) + Iterations = 92 (193 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -17725,8 +17715,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.640e-17 - CH4 2.640e-17 2.644e-17 -16.578 -16.578 0.001 (0) +C(-4) 2.746e-17 + CH4 2.746e-17 2.751e-17 -16.561 -16.561 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -17755,13 +17745,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.551e-13 - H2 2.276e-13 2.279e-13 -12.643 -12.642 0.001 (0) +H(0) 4.597e-13 + H2 2.298e-13 2.302e-13 -12.639 -12.638 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.098 -67.097 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.497 -69.496 0.001 (0) -[13C](-4) 2.926e-19 - [13C]H4 2.926e-19 2.931e-19 -18.534 -18.533 0.001 (0) + O2 0.000e+00 0.000e+00 -67.107 -67.106 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.506 -69.505 0.001 (0) +[13C](-4) 3.044e-19 + [13C]H4 3.044e-19 3.049e-19 -18.517 -18.516 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.258e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -17780,8 +17770,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.416e-31 - [14C]H4 1.416e-31 1.418e-31 -30.849 -30.848 0.001 (0) +[14C](-4) 1.473e-31 + [14C]H4 1.473e-31 1.476e-31 -30.832 -30.831 0.001 (0) [14C](4) 3.178e-17 H[14C]O3- 2.567e-17 2.349e-17 -16.591 -16.629 -0.039 (0) [14C]O2 5.342e-18 5.351e-18 -17.272 -17.272 0.001 (0) @@ -17810,22 +17800,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.497 -69.496 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.498 -72.497 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.506 -69.505 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.507 -72.506 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.67 -18.53 -2.86 [13C]H4 + [13C]H4(g) -15.66 -18.52 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.17 -22.67 -1.50 [14C][18O]2 - [14C]H4(g) -27.99 -30.85 -2.86 [14C]H4 + [14C]H4(g) -27.97 -30.83 -2.86 [14C]H4 [14C]O2(g) -15.80 -17.27 -1.47 [14C]O2 [14C]O[18O](g) -18.18 -19.97 -1.79 [14C]O[18O] - [18O]2(g) -70.21 -72.50 -2.29 [18O]2 + [18O]2(g) -70.22 -72.51 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -17839,14 +17829,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.72 -16.58 -2.86 CH4 + CH4(g) -13.70 -16.56 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] H2(g) -9.49 -12.64 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.21 -67.10 -2.89 O2 - O[18O](g) -66.91 -69.80 -2.89 O[18O] + O2(g) -64.21 -67.11 -2.89 O2 + O[18O](g) -66.91 -69.81 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -17935,7 +17925,7 @@ Calcite 5.00e-04 R(14C) CO2(aq) 4.94201e-15 0.42028 pmc R(18O) CO2(aq) 2.07916e-03 36.885 permil R(18O) HCO3- 1.99520e-03 -4.9887 permil - R(13C) HCO3- 1.11802e-02 0.00021706 permil + R(13C) HCO3- 1.11802e-02 0.00021709 permil R(14C) HCO3- 5.02838e-15 0.42762 pmc R(18O) CO3-2 1.99520e-03 -4.9887 permil R(13C) CO3-2 1.11642e-02 -1.4349 permil @@ -17955,14 +17945,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6915e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6828e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.3101e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 8.8818e-13 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.0214e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 2.2204e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -17980,16 +17970,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.215 Adjusted to redox equilibrium + pe = -2.217 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 6.468e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 71 (172 overall) + Iterations = 104 (205 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -18001,8 +17991,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.623e-17 - CH4 1.623e-17 1.626e-17 -16.790 -16.789 0.001 (0) +C(-4) 1.688e-17 + CH4 1.688e-17 1.691e-17 -16.773 -16.772 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -18031,13 +18021,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.031e-13 - H2 2.015e-13 2.019e-13 -12.696 -12.695 0.001 (0) +H(0) 4.070e-13 + H2 2.035e-13 2.039e-13 -12.691 -12.691 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.993 -66.992 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.392 -69.391 0.001 (0) -[13C](-4) 1.799e-19 - [13C]H4 1.799e-19 1.802e-19 -18.745 -18.744 0.001 (0) + O2 0.000e+00 0.000e+00 -67.001 -67.000 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.400 -69.399 0.001 (0) +[13C](-4) 1.871e-19 + [13C]H4 1.871e-19 1.874e-19 -18.728 -18.727 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -18056,8 +18046,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 8.022e-32 - [14C]H4 8.022e-32 8.035e-32 -31.096 -31.095 0.001 (0) +[14C](-4) 8.344e-32 + [14C]H4 8.344e-32 8.358e-32 -31.079 -31.078 0.001 (0) [14C](4) 2.928e-17 H[14C]O3- 2.365e-17 2.164e-17 -16.626 -16.665 -0.039 (0) [14C]O2 4.921e-18 4.929e-18 -17.308 -17.307 0.001 (0) @@ -18086,22 +18076,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.392 -69.391 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.393 -72.392 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.400 -69.399 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.401 -72.400 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.88 -18.74 -2.86 [13C]H4 + [13C]H4(g) -15.87 -18.73 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.20 -22.71 -1.50 [14C][18O]2 - [14C]H4(g) -28.23 -31.09 -2.86 [14C]H4 + [14C]H4(g) -28.22 -31.08 -2.86 [14C]H4 [14C]O2(g) -15.84 -17.31 -1.47 [14C]O2 [14C]O[18O](g) -18.22 -20.01 -1.79 [14C]O[18O] - [18O]2(g) -70.10 -72.39 -2.29 [18O]2 + [18O]2(g) -70.11 -72.40 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -18115,14 +18105,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.93 -16.79 -2.86 CH4 + CH4(g) -13.91 -16.77 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] H2(g) -9.54 -12.69 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.10 -66.99 -2.89 O2 - O[18O](g) -66.80 -69.69 -2.89 O[18O] + O2(g) -64.11 -67.00 -2.89 O2 + O[18O](g) -66.81 -69.70 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -18211,7 +18201,7 @@ Calcite 5.00e-04 R(14C) CO2(aq) 4.55272e-15 0.38717 pmc R(18O) CO2(aq) 2.07916e-03 36.886 permil R(18O) HCO3- 1.99520e-03 -4.9886 permil - R(13C) HCO3- 1.11803e-02 0.0073507 permil + R(13C) HCO3- 1.11803e-02 0.0073508 permil R(14C) HCO3- 4.63228e-15 0.39394 pmc R(18O) CO3-2 1.99520e-03 -4.9886 permil R(13C) CO3-2 1.11642e-02 -1.4277 permil @@ -18231,14 +18221,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.4377e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5591e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6198e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.1102e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -9.992e-13 0 +Alpha 13C CH4(aq)/CO2(aq) 1 7.1054e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 2.8866e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -18256,16 +18246,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.199 Adjusted to redox equilibrium + pe = -2.201 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 6.468e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 151 (252 overall) + Iterations = 143 (244 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -18277,8 +18267,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.198e-17 - CH4 1.198e-17 1.200e-17 -16.921 -16.921 0.001 (0) +C(-4) 1.242e-17 + CH4 1.242e-17 1.244e-17 -16.906 -16.905 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -18307,13 +18297,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.736e-13 - H2 1.868e-13 1.871e-13 -12.729 -12.728 0.001 (0) +H(0) 3.769e-13 + H2 1.885e-13 1.888e-13 -12.725 -12.724 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.927 -66.926 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.326 -69.325 0.001 (0) -[13C](-4) 1.328e-19 - [13C]H4 1.328e-19 1.330e-19 -18.877 -18.876 0.001 (0) + O2 0.000e+00 0.000e+00 -66.934 -66.934 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.333 -69.333 0.001 (0) +[13C](-4) 1.376e-19 + [13C]H4 1.376e-19 1.379e-19 -18.861 -18.861 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -18332,8 +18322,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 5.455e-32 - [14C]H4 5.455e-32 5.464e-32 -31.263 -31.262 0.001 (0) +[14C](-4) 5.653e-32 + [14C]H4 5.653e-32 5.663e-32 -31.248 -31.247 0.001 (0) [14C](4) 2.697e-17 H[14C]O3- 2.179e-17 1.993e-17 -16.662 -16.700 -0.039 (0) [14C]O2 4.534e-18 4.541e-18 -17.344 -17.343 0.001 (0) @@ -18362,19 +18352,19 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.326 -69.325 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.327 -72.326 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.333 -69.333 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.334 -72.334 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.02 -18.88 -2.86 [13C]H4 + [13C]H4(g) -16.00 -18.86 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.24 -22.74 -1.50 [14C][18O]2 - [14C]H4(g) -28.40 -31.26 -2.86 [14C]H4 + [14C]H4(g) -28.39 -31.25 -2.86 [14C]H4 [14C]O2(g) -15.87 -17.34 -1.47 [14C]O2 [14C]O[18O](g) -18.26 -20.04 -1.79 [14C]O[18O] [18O]2(g) -70.04 -72.33 -2.29 [18O]2 @@ -18391,14 +18381,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.06 -16.92 -2.86 CH4 + CH4(g) -14.05 -16.91 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.58 -12.73 -3.15 H2 + H2(g) -9.57 -12.72 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.03 -66.93 -2.89 O2 - O[18O](g) -66.73 -69.63 -2.89 O[18O] + O2(g) -64.04 -66.93 -2.89 O2 + O[18O](g) -66.74 -69.63 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -18510,11 +18500,11 @@ Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 Alpha 18O HCO3-/H2O(l) 1 -5.8842e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5529e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.616e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 2.2204e-13 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -9.77e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -2.7756e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -4.5519e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -18532,16 +18522,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.165 Adjusted to redox equilibrium + pe = -2.176 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 6.468e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 98 (199 overall) + Iterations = 68 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -18553,8 +18543,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 6.407e-18 - CH4 6.407e-18 6.417e-18 -17.193 -17.193 0.001 (0) +C(-4) 7.918e-18 + CH4 7.918e-18 7.931e-18 -17.101 -17.101 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -18583,13 +18573,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.195e-13 - H2 1.597e-13 1.600e-13 -12.797 -12.796 0.001 (0) +H(0) 3.368e-13 + H2 1.684e-13 1.687e-13 -12.774 -12.773 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.791 -66.790 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.190 -69.189 0.001 (0) -[13C](-4) 7.101e-20 - [13C]H4 7.101e-20 7.113e-20 -19.149 -19.148 0.001 (0) + O2 0.000e+00 0.000e+00 -66.837 -66.836 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.236 -69.235 0.001 (0) +[13C](-4) 8.776e-20 + [13C]H4 8.776e-20 8.791e-20 -19.057 -19.056 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -18608,8 +18598,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.687e-32 - [14C]H4 2.687e-32 2.691e-32 -31.571 -31.570 0.001 (0) +[14C](-4) 3.321e-32 + [14C]H4 3.321e-32 3.326e-32 -31.479 -31.478 0.001 (0) [14C](4) 2.485e-17 H[14C]O3- 2.007e-17 1.836e-17 -16.697 -16.736 -0.039 (0) [14C]O2 4.176e-18 4.183e-18 -17.379 -17.378 0.001 (0) @@ -18638,22 +18628,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.190 -69.189 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.191 -72.190 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.236 -69.235 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.237 -72.236 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.29 -19.15 -2.86 [13C]H4 + [13C]H4(g) -16.20 -19.06 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.27 -22.78 -1.50 [14C][18O]2 - [14C]H4(g) -28.71 -31.57 -2.86 [14C]H4 + [14C]H4(g) -28.62 -31.48 -2.86 [14C]H4 [14C]O2(g) -15.91 -17.38 -1.47 [14C]O2 [14C]O[18O](g) -18.29 -20.08 -1.79 [14C]O[18O] - [18O]2(g) -69.90 -72.19 -2.29 [18O]2 + [18O]2(g) -69.95 -72.24 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -18667,14 +18657,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.33 -17.19 -2.86 CH4 + CH4(g) -14.24 -17.10 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.65 -12.80 -3.15 H2 + H2(g) -9.62 -12.77 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.90 -66.79 -2.89 O2 - O[18O](g) -66.60 -69.49 -2.89 O[18O] + O2(g) -63.94 -66.84 -2.89 O2 + O[18O](g) -66.64 -69.54 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -18783,14 +18773,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.9944e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6414e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7762e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.2212e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.8874e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.1546e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 9.3259e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -18808,16 +18798,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.176 Adjusted to redox equilibrium + pe = -2.178 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 6.468e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 112 (213 overall) + Iterations = 77 (178 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -18829,8 +18819,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 7.947e-18 - CH4 7.947e-18 7.960e-18 -17.100 -17.099 0.001 (0) +C(-4) 8.184e-18 + CH4 8.184e-18 8.197e-18 -17.087 -17.086 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -18859,13 +18849,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.371e-13 - H2 1.686e-13 1.688e-13 -12.773 -12.772 0.001 (0) +H(0) 3.396e-13 + H2 1.698e-13 1.701e-13 -12.770 -12.769 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.837 -66.837 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.236 -69.236 0.001 (0) -[13C](-4) 8.809e-20 - [13C]H4 8.809e-20 8.823e-20 -19.055 -19.054 0.001 (0) + O2 0.000e+00 0.000e+00 -66.844 -66.843 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.243 -69.242 0.001 (0) +[13C](-4) 9.071e-20 + [13C]H4 9.071e-20 9.086e-20 -19.042 -19.042 0.001 (0) [13C](4) 6.519e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -18884,8 +18874,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.071e-32 - [14C]H4 3.071e-32 3.076e-32 -31.513 -31.512 0.001 (0) +[14C](-4) 3.162e-32 + [14C]H4 3.162e-32 3.167e-32 -31.500 -31.499 0.001 (0) [14C](4) 2.289e-17 H[14C]O3- 1.849e-17 1.692e-17 -16.733 -16.772 -0.039 (0) [14C]O2 3.847e-18 3.854e-18 -17.415 -17.414 0.001 (0) @@ -18914,19 +18904,19 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.236 -69.236 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.238 -72.237 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.243 -69.242 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.244 -72.243 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.19 -19.05 -2.86 [13C]H4 + [13C]H4(g) -16.18 -19.04 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.31 -22.81 -1.50 [14C][18O]2 - [14C]H4(g) -28.65 -31.51 -2.86 [14C]H4 + [14C]H4(g) -28.64 -31.50 -2.86 [14C]H4 [14C]O2(g) -15.95 -17.41 -1.47 [14C]O2 [14C]O[18O](g) -18.33 -20.11 -1.79 [14C]O[18O] [18O]2(g) -69.95 -72.24 -2.29 [18O]2 @@ -18943,14 +18933,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.24 -17.10 -2.86 CH4 + CH4(g) -14.23 -17.09 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] H2(g) -9.62 -12.77 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.94 -66.84 -2.89 O2 - O[18O](g) -66.64 -69.54 -2.89 O[18O] + O2(g) -63.95 -66.84 -2.89 O2 + O[18O](g) -66.65 -69.54 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -19059,14 +19049,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.4409e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.584e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6505e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -8.8818e-13 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.1102e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.1324e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 5.107e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -19084,16 +19074,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.201 Adjusted to redox equilibrium + pe = -2.194 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 6.467e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 73 + Iterations = 149 (250 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -19105,8 +19095,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.254e-17 - CH4 1.254e-17 1.256e-17 -16.902 -16.901 0.001 (0) +C(-4) 1.099e-17 + CH4 1.099e-17 1.101e-17 -16.959 -16.958 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -19135,13 +19125,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.779e-13 - H2 1.889e-13 1.892e-13 -12.724 -12.723 0.001 (0) +H(0) 3.656e-13 + H2 1.828e-13 1.831e-13 -12.738 -12.737 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.937 -66.936 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.336 -69.335 0.001 (0) -[13C](-4) 1.390e-19 - [13C]H4 1.390e-19 1.392e-19 -18.857 -18.856 0.001 (0) + O2 0.000e+00 0.000e+00 -66.908 -66.907 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.307 -69.306 0.001 (0) +[13C](-4) 1.218e-19 + [13C]H4 1.218e-19 1.220e-19 -18.914 -18.914 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -19160,8 +19150,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 4.464e-32 - [14C]H4 4.464e-32 4.471e-32 -31.350 -31.350 0.001 (0) +[14C](-4) 3.912e-32 + [14C]H4 3.912e-32 3.919e-32 -31.408 -31.407 0.001 (0) [14C](4) 2.109e-17 H[14C]O3- 1.703e-17 1.558e-17 -16.769 -16.807 -0.039 (0) [14C]O2 3.544e-18 3.550e-18 -17.450 -17.450 0.001 (0) @@ -19190,22 +19180,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.336 -69.335 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.337 -72.336 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.307 -69.306 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.308 -72.307 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.00 -18.86 -2.86 [13C]H4 + [13C]H4(g) -16.05 -18.91 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.35 -22.85 -1.50 [14C][18O]2 - [14C]H4(g) -28.49 -31.35 -2.86 [14C]H4 + [14C]H4(g) -28.55 -31.41 -2.86 [14C]H4 [14C]O2(g) -15.98 -17.45 -1.47 [14C]O2 [14C]O[18O](g) -18.36 -20.15 -1.79 [14C]O[18O] - [18O]2(g) -70.05 -72.34 -2.29 [18O]2 + [18O]2(g) -70.02 -72.31 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -19219,14 +19209,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.04 -16.90 -2.86 CH4 + CH4(g) -14.10 -16.96 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.57 -12.72 -3.15 H2 + H2(g) -9.59 -12.74 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.04 -66.94 -2.89 O2 - O[18O](g) -66.74 -69.64 -2.89 O[18O] + O2(g) -64.01 -66.91 -2.89 O2 + O[18O](g) -66.71 -69.61 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -19335,14 +19325,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8248e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5996e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.1102e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 4.885e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.8874e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 6.2172e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -19360,16 +19350,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.202 Adjusted to redox equilibrium + pe = -2.195 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 6.468e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 82 + Iterations = 71 (172 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -19381,8 +19371,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.269e-17 - CH4 1.269e-17 1.271e-17 -16.897 -16.896 0.001 (0) +C(-4) 1.114e-17 + CH4 1.114e-17 1.116e-17 -16.953 -16.952 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -19411,13 +19401,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.790e-13 - H2 1.895e-13 1.898e-13 -12.722 -12.722 0.001 (0) +H(0) 3.669e-13 + H2 1.834e-13 1.837e-13 -12.737 -12.736 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.939 -66.938 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.338 -69.337 0.001 (0) -[13C](-4) 1.406e-19 - [13C]H4 1.406e-19 1.409e-19 -18.852 -18.851 0.001 (0) + O2 0.000e+00 0.000e+00 -66.911 -66.910 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.310 -69.309 0.001 (0) +[13C](-4) 1.235e-19 + [13C]H4 1.235e-19 1.237e-19 -18.908 -18.908 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -19436,8 +19426,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 4.160e-32 - [14C]H4 4.160e-32 4.167e-32 -31.381 -31.380 0.001 (0) +[14C](-4) 3.654e-32 + [14C]H4 3.654e-32 3.660e-32 -31.437 -31.437 0.001 (0) [14C](4) 1.943e-17 H[14C]O3- 1.569e-17 1.436e-17 -16.804 -16.843 -0.039 (0) [14C]O2 3.265e-18 3.271e-18 -17.486 -17.485 0.001 (0) @@ -19466,22 +19456,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.338 -69.337 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.339 -72.338 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.310 -69.309 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.311 -72.310 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.99 -18.85 -2.86 [13C]H4 + [13C]H4(g) -16.05 -18.91 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.38 -22.89 -1.50 [14C][18O]2 - [14C]H4(g) -28.52 -31.38 -2.86 [14C]H4 + [14C]H4(g) -28.58 -31.44 -2.86 [14C]H4 [14C]O2(g) -16.02 -17.49 -1.47 [14C]O2 [14C]O[18O](g) -18.40 -20.19 -1.79 [14C]O[18O] - [18O]2(g) -70.05 -72.34 -2.29 [18O]2 + [18O]2(g) -70.02 -72.31 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -19495,14 +19485,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.04 -16.90 -2.86 CH4 + CH4(g) -14.09 -16.95 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.57 -12.72 -3.15 H2 + H2(g) -9.59 -12.74 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.05 -66.94 -2.89 O2 - O[18O](g) -66.75 -69.64 -2.89 O[18O] + O2(g) -64.02 -66.91 -2.89 O2 + O[18O](g) -66.72 -69.61 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -19611,14 +19601,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5835e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6328e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -4.4409e-13 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -4.3299e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.0436e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 2.2204e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -19636,16 +19626,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.245 Adjusted to redox equilibrium + pe = -2.227 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 6.468e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 104 (205 overall) + Iterations = 69 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -19657,8 +19647,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.810e-17 - CH4 2.810e-17 2.815e-17 -16.551 -16.551 0.001 (0) +C(-4) 2.022e-17 + CH4 2.022e-17 2.025e-17 -16.694 -16.694 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -19687,13 +19677,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.623e-13 - H2 2.312e-13 2.315e-13 -12.636 -12.635 0.001 (0) +H(0) 4.258e-13 + H2 2.129e-13 2.132e-13 -12.672 -12.671 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.112 -67.111 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.511 -69.510 0.001 (0) -[13C](-4) 3.115e-19 - [13C]H4 3.115e-19 3.120e-19 -18.507 -18.506 0.001 (0) + O2 0.000e+00 0.000e+00 -67.040 -67.039 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.439 -69.438 0.001 (0) +[13C](-4) 2.241e-19 + [13C]H4 2.241e-19 2.244e-19 -18.650 -18.649 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -19712,8 +19702,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 8.490e-32 - [14C]H4 8.490e-32 8.504e-32 -31.071 -31.070 0.001 (0) +[14C](-4) 6.106e-32 + [14C]H4 6.106e-32 6.116e-32 -31.214 -31.214 0.001 (0) [14C](4) 1.790e-17 H[14C]O3- 1.446e-17 1.323e-17 -16.840 -16.879 -0.039 (0) [14C]O2 3.008e-18 3.013e-18 -17.522 -17.521 0.001 (0) @@ -19742,22 +19732,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.511 -69.510 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.512 -72.511 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.439 -69.438 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.440 -72.440 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.65 -18.51 -2.86 [13C]H4 + [13C]H4(g) -15.79 -18.65 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.42 -22.92 -1.50 [14C][18O]2 - [14C]H4(g) -28.21 -31.07 -2.86 [14C]H4 + [14C]H4(g) -28.35 -31.21 -2.86 [14C]H4 [14C]O2(g) -16.05 -17.52 -1.47 [14C]O2 [14C]O[18O](g) -18.43 -20.22 -1.79 [14C]O[18O] - [18O]2(g) -70.22 -72.51 -2.29 [18O]2 + [18O]2(g) -70.15 -72.44 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -19771,14 +19761,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.69 -16.55 -2.86 CH4 + CH4(g) -13.83 -16.69 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.49 -12.64 -3.15 H2 + H2(g) -9.52 -12.67 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.22 -67.11 -2.89 O2 - O[18O](g) -66.92 -69.81 -2.89 O[18O] + O2(g) -64.15 -67.04 -2.89 O2 + O[18O](g) -66.85 -69.74 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -19887,14 +19877,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6689e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7717e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -7.7716e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -7.8826e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -8.6597e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -8.6597e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -19912,16 +19902,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.252 Adjusted to redox equilibrium + pe = -2.248 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.720e-13 + Electrical balance (eq) = 6.468e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 84 + Iterations = 132 (233 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -19933,8 +19923,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 3.205e-17 - CH4 3.205e-17 3.210e-17 -16.494 -16.494 0.001 (0) +C(-4) 2.988e-17 + CH4 2.988e-17 2.993e-17 -16.525 -16.524 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -19963,13 +19953,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.778e-13 - H2 2.389e-13 2.393e-13 -12.622 -12.621 0.001 (0) +H(0) 4.695e-13 + H2 2.347e-13 2.351e-13 -12.629 -12.629 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.140 -67.140 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.539 -69.539 0.001 (0) -[13C](-4) 3.552e-19 - [13C]H4 3.552e-19 3.558e-19 -18.450 -18.449 0.001 (0) + O2 0.000e+00 0.000e+00 -67.125 -67.124 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.524 -69.523 0.001 (0) +[13C](-4) 3.312e-19 + [13C]H4 3.312e-19 3.317e-19 -18.480 -18.479 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -19988,8 +19978,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 8.917e-32 - [14C]H4 8.917e-32 8.932e-32 -31.050 -31.049 0.001 (0) +[14C](-4) 8.314e-32 + [14C]H4 8.314e-32 8.328e-32 -31.080 -31.079 0.001 (0) [14C](4) 1.649e-17 H[14C]O3- 1.332e-17 1.218e-17 -16.876 -16.914 -0.039 (0) [14C]O2 2.771e-18 2.776e-18 -17.557 -17.557 0.001 (0) @@ -20018,22 +20008,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.539 -69.539 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.540 -72.540 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.524 -69.523 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.525 -72.524 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.59 -18.45 -2.86 [13C]H4 + [13C]H4(g) -15.62 -18.48 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.45 -22.96 -1.50 [14C][18O]2 - [14C]H4(g) -28.19 -31.05 -2.86 [14C]H4 + [14C]H4(g) -28.22 -31.08 -2.86 [14C]H4 [14C]O2(g) -16.09 -17.56 -1.47 [14C]O2 [14C]O[18O](g) -18.47 -20.26 -1.79 [14C]O[18O] - [18O]2(g) -70.25 -72.54 -2.29 [18O]2 + [18O]2(g) -70.23 -72.52 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -20047,14 +20037,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.63 -16.49 -2.86 CH4 + CH4(g) -13.66 -16.52 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.47 -12.62 -3.15 H2 + H2(g) -9.48 -12.63 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.25 -67.14 -2.89 O2 - O[18O](g) -66.95 -69.84 -2.89 O[18O] + O2(g) -64.23 -67.12 -2.89 O2 + O[18O](g) -66.93 -69.82 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -20163,14 +20153,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6559e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6237e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 2.2204e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -3.8858e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 5.3291e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -2.7756e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -20188,16 +20178,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.236 Adjusted to redox equilibrium + pe = -2.233 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.774e-13 + Electrical balance (eq) = 6.467e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 52 (153 overall) + Iterations = 59 (160 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -20209,8 +20199,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.384e-17 - CH4 2.384e-17 2.388e-17 -16.623 -16.622 0.001 (0) +C(-4) 2.258e-17 + CH4 2.258e-17 2.262e-17 -16.646 -16.646 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -20239,13 +20229,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.437e-13 - H2 2.219e-13 2.222e-13 -12.654 -12.653 0.001 (0) +H(0) 4.377e-13 + H2 2.189e-13 2.192e-13 -12.660 -12.659 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.076 -67.075 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.475 -69.474 0.001 (0) -[13C](-4) 2.643e-19 - [13C]H4 2.643e-19 2.647e-19 -18.578 -18.577 0.001 (0) + O2 0.000e+00 0.000e+00 -67.064 -67.064 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.463 -69.463 0.001 (0) +[13C](-4) 2.503e-19 + [13C]H4 2.503e-19 2.507e-19 -18.602 -18.601 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -20264,8 +20254,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 6.112e-32 - [14C]H4 6.112e-32 6.122e-32 -31.214 -31.213 0.001 (0) +[14C](-4) 5.789e-32 + [14C]H4 5.789e-32 5.798e-32 -31.237 -31.237 0.001 (0) [14C](4) 1.519e-17 H[14C]O3- 1.227e-17 1.122e-17 -16.911 -16.950 -0.039 (0) [14C]O2 2.553e-18 2.557e-18 -17.593 -17.592 0.001 (0) @@ -20294,22 +20284,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.475 -69.474 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.476 -72.475 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.463 -69.463 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.464 -72.464 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.72 -18.58 -2.86 [13C]H4 + [13C]H4(g) -15.74 -18.60 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.49 -22.99 -1.50 [14C][18O]2 - [14C]H4(g) -28.35 -31.21 -2.86 [14C]H4 + [14C]H4(g) -28.38 -31.24 -2.86 [14C]H4 [14C]O2(g) -16.12 -17.59 -1.47 [14C]O2 [14C]O[18O](g) -18.51 -20.29 -1.79 [14C]O[18O] - [18O]2(g) -70.19 -72.48 -2.29 [18O]2 + [18O]2(g) -70.17 -72.46 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -20323,14 +20313,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.76 -16.62 -2.86 CH4 + CH4(g) -13.79 -16.65 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.50 -12.65 -3.15 H2 + H2(g) -9.51 -12.66 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.18 -67.08 -2.89 O2 - O[18O](g) -66.88 -69.78 -2.89 O[18O] + O2(g) -64.17 -67.06 -2.89 O2 + O[18O](g) -66.87 -69.76 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -20439,14 +20429,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 +Alpha 18O HCO3-/H2O(l) 1 2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7558e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.766e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.7208e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -2.1427e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 7.1054e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.7542e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -20464,16 +20454,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.219 Adjusted to redox equilibrium + pe = -2.221 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.774e-13 + Electrical balance (eq) = 6.467e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 64 + Iterations = 129 (230 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -20485,8 +20475,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.737e-17 - CH4 1.737e-17 1.740e-17 -16.760 -16.759 0.001 (0) +C(-4) 1.813e-17 + CH4 1.813e-17 1.816e-17 -16.742 -16.741 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -20515,13 +20505,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.100e-13 - H2 2.050e-13 2.053e-13 -12.688 -12.688 0.001 (0) +H(0) 4.144e-13 + H2 2.072e-13 2.075e-13 -12.684 -12.683 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.007 -67.007 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.406 -69.406 0.001 (0) -[13C](-4) 1.926e-19 - [13C]H4 1.926e-19 1.929e-19 -18.715 -18.715 0.001 (0) + O2 0.000e+00 0.000e+00 -67.017 -67.016 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.416 -69.415 0.001 (0) +[13C](-4) 2.010e-19 + [13C]H4 2.010e-19 2.013e-19 -18.697 -18.696 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -20540,8 +20530,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 4.103e-32 - [14C]H4 4.103e-32 4.110e-32 -31.387 -31.386 0.001 (0) +[14C](-4) 4.283e-32 + [14C]H4 4.283e-32 4.290e-32 -31.368 -31.368 0.001 (0) [14C](4) 1.399e-17 H[14C]O3- 1.130e-17 1.034e-17 -16.947 -16.985 -0.039 (0) [14C]O2 2.352e-18 2.356e-18 -17.629 -17.628 0.001 (0) @@ -20570,22 +20560,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.406 -69.406 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.407 -72.407 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.416 -69.415 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.417 -72.416 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.85 -18.71 -2.86 [13C]H4 + [13C]H4(g) -15.84 -18.70 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.52 -23.03 -1.50 [14C][18O]2 - [14C]H4(g) -28.53 -31.39 -2.86 [14C]H4 + [14C]H4(g) -28.51 -31.37 -2.86 [14C]H4 [14C]O2(g) -16.16 -17.63 -1.47 [14C]O2 [14C]O[18O](g) -18.54 -20.33 -1.79 [14C]O[18O] - [18O]2(g) -70.12 -72.41 -2.29 [18O]2 + [18O]2(g) -70.13 -72.42 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -20599,14 +20589,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.90 -16.76 -2.86 CH4 + CH4(g) -13.88 -16.74 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.54 -12.69 -3.15 H2 + H2(g) -9.53 -12.68 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.11 -67.01 -2.89 O2 - O[18O](g) -66.81 -69.71 -2.89 O[18O] + O2(g) -64.12 -67.02 -2.89 O2 + O[18O](g) -66.82 -69.72 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -20695,7 +20685,7 @@ Calcite 5.00e-04 R(14C) CO2(aq) 2.17557e-15 0.18502 pmc R(18O) CO2(aq) 2.07917e-03 36.887 permil R(18O) HCO3- 1.99520e-03 -4.9873 permil - R(13C) HCO3- 1.11808e-02 0.050965 permil + R(13C) HCO3- 1.11808e-02 0.050964 permil R(14C) HCO3- 2.21359e-15 0.18825 pmc R(18O) CO3-2 1.99520e-03 -4.9873 permil R(13C) CO3-2 1.11647e-02 -1.3842 permil @@ -20715,14 +20705,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.7724e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.658e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7404e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 2.2204e-13 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.2212e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 5.9952e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 8.2157e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -20740,16 +20730,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.194 Adjusted to redox equilibrium + pe = -2.184 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.774e-13 + Electrical balance (eq) = 6.467e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 81 (182 overall) + Iterations = 99 (200 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -20761,8 +20751,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.098e-17 - CH4 1.098e-17 1.100e-17 -16.959 -16.959 0.001 (0) +C(-4) 9.107e-18 + CH4 9.107e-18 9.122e-18 -17.041 -17.040 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -20791,13 +20781,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.106e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.655e-13 - H2 1.828e-13 1.831e-13 -12.738 -12.737 0.001 (0) +H(0) 3.488e-13 + H2 1.744e-13 1.747e-13 -12.758 -12.758 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.908 -66.907 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.307 -69.306 0.001 (0) -[13C](-4) 1.217e-19 - [13C]H4 1.217e-19 1.219e-19 -18.915 -18.914 0.001 (0) + O2 0.000e+00 0.000e+00 -66.867 -66.866 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.266 -69.265 0.001 (0) +[13C](-4) 1.009e-19 + [13C]H4 1.009e-19 1.011e-19 -18.996 -18.995 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -20816,8 +20806,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.389e-32 - [14C]H4 2.389e-32 2.393e-32 -31.622 -31.621 0.001 (0) +[14C](-4) 1.981e-32 + [14C]H4 1.981e-32 1.984e-32 -31.703 -31.702 0.001 (0) [14C](4) 1.289e-17 H[14C]O3- 1.041e-17 9.525e-18 -16.982 -17.021 -0.039 (0) [14C]O2 2.166e-18 2.170e-18 -17.664 -17.664 0.001 (0) @@ -20846,22 +20836,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.307 -69.306 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.308 -72.307 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.266 -69.265 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.267 -72.266 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.05 -18.91 -2.86 [13C]H4 + [13C]H4(g) -16.14 -19.00 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.56 -23.06 -1.50 [14C][18O]2 - [14C]H4(g) -28.76 -31.62 -2.86 [14C]H4 + [14C]H4(g) -28.84 -31.70 -2.86 [14C]H4 [14C]O2(g) -16.19 -17.66 -1.47 [14C]O2 [14C]O[18O](g) -18.58 -20.36 -1.79 [14C]O[18O] - [18O]2(g) -70.02 -72.31 -2.29 [18O]2 + [18O]2(g) -69.98 -72.27 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -20875,14 +20865,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.10 -16.96 -2.86 CH4 + CH4(g) -14.18 -17.04 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.59 -12.74 -3.15 H2 + H2(g) -9.61 -12.76 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.01 -66.91 -2.89 O2 - O[18O](g) -66.71 -69.61 -2.89 O[18O] + O2(g) -63.97 -66.87 -2.89 O2 + O[18O](g) -66.67 -69.57 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -20991,14 +20981,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 6.6613e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7755e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6613e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.0436e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 2.2204e-13 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -5.218e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -5.107e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -21016,16 +21006,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.179 Adjusted to redox equilibrium + pe = -2.186 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.774e-13 + Electrical balance (eq) = 6.467e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 63 (164 overall) + Iterations = 107 (208 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -21037,8 +21027,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 8.305e-18 - CH4 8.305e-18 8.319e-18 -17.081 -17.080 0.001 (0) +C(-4) 9.548e-18 + CH4 9.548e-18 9.564e-18 -17.020 -17.019 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -21067,13 +21057,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.409e-13 - H2 1.704e-13 1.707e-13 -12.768 -12.768 0.001 (0) +H(0) 3.530e-13 + H2 1.765e-13 1.768e-13 -12.753 -12.753 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.847 -66.846 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.246 -69.245 0.001 (0) -[13C](-4) 9.205e-20 - [13C]H4 9.205e-20 9.221e-20 -19.036 -19.035 0.001 (0) + O2 0.000e+00 0.000e+00 -66.877 -66.877 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.276 -69.276 0.001 (0) +[13C](-4) 1.058e-19 + [13C]H4 1.058e-19 1.060e-19 -18.975 -18.975 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -21092,8 +21082,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.664e-32 - [14C]H4 1.664e-32 1.667e-32 -31.779 -31.778 0.001 (0) +[14C](-4) 1.914e-32 + [14C]H4 1.914e-32 1.917e-32 -31.718 -31.717 0.001 (0) [14C](4) 1.187e-17 H[14C]O3- 9.591e-18 8.775e-18 -17.018 -17.057 -0.039 (0) [14C]O2 1.996e-18 1.999e-18 -17.700 -17.699 0.001 (0) @@ -21122,22 +21112,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.246 -69.245 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.247 -72.246 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.276 -69.276 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.277 -72.277 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.18 -19.04 -2.86 [13C]H4 + [13C]H4(g) -16.11 -18.97 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.60 -23.10 -1.50 [14C][18O]2 - [14C]H4(g) -28.92 -31.78 -2.86 [14C]H4 + [14C]H4(g) -28.86 -31.72 -2.86 [14C]H4 [14C]O2(g) -16.23 -17.70 -1.47 [14C]O2 [14C]O[18O](g) -18.61 -20.40 -1.79 [14C]O[18O] - [18O]2(g) -69.96 -72.25 -2.29 [18O]2 + [18O]2(g) -69.99 -72.28 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -21151,14 +21141,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.22 -17.08 -2.86 CH4 + CH4(g) -14.16 -17.02 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.62 -12.77 -3.15 H2 + H2(g) -9.60 -12.75 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.95 -66.85 -2.89 O2 - O[18O](g) -66.65 -69.55 -2.89 O[18O] + O2(g) -63.98 -66.88 -2.89 O2 + O[18O](g) -66.68 -69.58 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -21267,14 +21257,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7063e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.653e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.3989e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.2212e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 6.2172e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 5.9952e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -21292,16 +21282,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.209 Adjusted to redox equilibrium + pe = -2.230 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.835e-13 + Electrical balance (eq) = 6.467e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 50 + Iterations = 99 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -21313,8 +21303,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.444e-17 - CH4 1.444e-17 1.447e-17 -16.840 -16.840 0.001 (0) +C(-4) 2.122e-17 + CH4 2.122e-17 2.126e-17 -16.673 -16.672 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -21343,13 +21333,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.096e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.914e-13 - H2 1.957e-13 1.960e-13 -12.708 -12.708 0.001 (0) +H(0) 4.310e-13 + H2 2.155e-13 2.159e-13 -12.667 -12.666 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.967 -66.966 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.366 -69.365 0.001 (0) -[13C](-4) 1.601e-19 - [13C]H4 1.601e-19 1.603e-19 -18.796 -18.795 0.001 (0) + O2 0.000e+00 0.000e+00 -67.051 -67.050 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.450 -69.449 0.001 (0) +[13C](-4) 2.353e-19 + [13C]H4 2.353e-19 2.356e-19 -18.628 -18.628 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -21368,8 +21358,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.667e-32 - [14C]H4 2.667e-32 2.671e-32 -31.574 -31.573 0.001 (0) +[14C](-4) 3.919e-32 + [14C]H4 3.919e-32 3.925e-32 -31.407 -31.406 0.001 (0) [14C](4) 1.094e-17 H[14C]O3- 8.836e-18 8.084e-18 -17.054 -17.092 -0.039 (0) [14C]O2 1.839e-18 1.842e-18 -17.736 -17.735 0.001 (0) @@ -21398,22 +21388,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.366 -69.365 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.367 -72.367 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.450 -69.449 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.451 -72.450 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.93 -18.79 -2.86 [13C]H4 + [13C]H4(g) -15.77 -18.63 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.63 -23.13 -1.50 [14C][18O]2 - [14C]H4(g) -28.71 -31.57 -2.86 [14C]H4 + [14C]H4(g) -28.55 -31.41 -2.86 [14C]H4 [14C]O2(g) -16.27 -17.73 -1.47 [14C]O2 [14C]O[18O](g) -18.65 -20.43 -1.79 [14C]O[18O] - [18O]2(g) -70.08 -72.37 -2.29 [18O]2 + [18O]2(g) -70.16 -72.45 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -21427,14 +21417,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.98 -16.84 -2.86 CH4 + CH4(g) -13.81 -16.67 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.56 -12.71 -3.15 H2 + H2(g) -9.52 -12.67 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.07 -66.97 -2.89 O2 - O[18O](g) -66.77 -69.67 -2.89 O[18O] + O2(g) -64.16 -67.05 -2.89 O2 + O[18O](g) -66.86 -69.75 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -21543,14 +21533,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.4385e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7585e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6918e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 5.107e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 5.107e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -7.9936e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -5.8842e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -21568,16 +21558,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.164 Adjusted to redox equilibrium + pe = -2.199 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.835e-13 + Electrical balance (eq) = 6.467e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 48 + Iterations = 94 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -21589,8 +21579,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 6.357e-18 - CH4 6.357e-18 6.367e-18 -17.197 -17.196 0.001 (0) +C(-4) 1.197e-17 + CH4 1.197e-17 1.199e-17 -16.922 -16.921 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -21619,13 +21609,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.188e-13 - H2 1.594e-13 1.597e-13 -12.797 -12.797 0.001 (0) +H(0) 3.735e-13 + H2 1.868e-13 1.871e-13 -12.729 -12.728 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.789 -66.788 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.188 -69.187 0.001 (0) -[13C](-4) 7.046e-20 - [13C]H4 7.046e-20 7.057e-20 -19.152 -19.151 0.001 (0) + O2 0.000e+00 0.000e+00 -66.926 -66.926 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.325 -69.325 0.001 (0) +[13C](-4) 1.327e-19 + [13C]H4 1.327e-19 1.329e-19 -18.877 -18.876 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -21644,8 +21634,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.081e-32 - [14C]H4 1.081e-32 1.083e-32 -31.966 -31.965 0.001 (0) +[14C](-4) 2.036e-32 + [14C]H4 2.036e-32 2.039e-32 -31.691 -31.690 0.001 (0) [14C](4) 1.008e-17 H[14C]O3- 8.140e-18 7.447e-18 -17.089 -17.128 -0.039 (0) [14C]O2 1.694e-18 1.697e-18 -17.771 -17.770 0.001 (0) @@ -21674,22 +21664,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.188 -69.187 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.189 -72.188 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.325 -69.325 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.326 -72.326 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.29 -19.15 -2.86 [13C]H4 + [13C]H4(g) -16.02 -18.88 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.67 -23.17 -1.50 [14C][18O]2 - [14C]H4(g) -29.11 -31.97 -2.86 [14C]H4 + [14C]H4(g) -28.83 -31.69 -2.86 [14C]H4 [14C]O2(g) -16.30 -17.77 -1.47 [14C]O2 [14C]O[18O](g) -18.68 -20.47 -1.79 [14C]O[18O] - [18O]2(g) -69.90 -72.19 -2.29 [18O]2 + [18O]2(g) -70.04 -72.33 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -21703,14 +21693,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.34 -17.20 -2.86 CH4 + CH4(g) -14.06 -16.92 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.65 -12.80 -3.15 H2 + H2(g) -9.58 -12.73 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.90 -66.79 -2.89 O2 - O[18O](g) -66.60 -69.49 -2.89 O[18O] + O2(g) -64.03 -66.93 -2.89 O2 + O[18O](g) -66.73 -69.63 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -21819,14 +21809,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 +Alpha 18O HCO3-/H2O(l) 1 0 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5583e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6311e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 5.107e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.3323e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 3.3307e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -9.992e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -21844,16 +21834,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.173 Adjusted to redox equilibrium + pe = -2.197 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.835e-13 + Electrical balance (eq) = 6.467e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 76 + Iterations = 126 (227 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -21865,8 +21855,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 7.435e-18 - CH4 7.435e-18 7.447e-18 -17.129 -17.128 0.001 (0) +C(-4) 1.153e-17 + CH4 1.153e-17 1.155e-17 -16.938 -16.937 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -21895,13 +21885,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.316e-13 - H2 1.658e-13 1.661e-13 -12.780 -12.780 0.001 (0) +H(0) 3.700e-13 + H2 1.850e-13 1.853e-13 -12.733 -12.732 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.823 -66.822 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.222 -69.221 0.001 (0) -[13C](-4) 8.241e-20 - [13C]H4 8.241e-20 8.255e-20 -19.084 -19.083 0.001 (0) + O2 0.000e+00 0.000e+00 -66.918 -66.918 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.317 -69.317 0.001 (0) +[13C](-4) 1.278e-19 + [13C]H4 1.278e-19 1.280e-19 -18.893 -18.893 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -21920,8 +21910,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.165e-32 - [14C]H4 1.165e-32 1.167e-32 -31.934 -31.933 0.001 (0) +[14C](-4) 1.807e-32 + [14C]H4 1.807e-32 1.810e-32 -31.743 -31.742 0.001 (0) [14C](4) 9.283e-18 H[14C]O3- 7.499e-18 6.860e-18 -17.125 -17.164 -0.039 (0) [14C]O2 1.560e-18 1.563e-18 -17.807 -17.806 0.001 (0) @@ -21950,22 +21940,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.222 -69.221 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.223 -72.222 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.317 -69.317 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.318 -72.318 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.22 -19.08 -2.86 [13C]H4 + [13C]H4(g) -16.03 -18.89 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.70 -23.21 -1.50 [14C][18O]2 - [14C]H4(g) -29.07 -31.93 -2.86 [14C]H4 + [14C]H4(g) -28.88 -31.74 -2.86 [14C]H4 [14C]O2(g) -16.34 -17.81 -1.47 [14C]O2 [14C]O[18O](g) -18.72 -20.51 -1.79 [14C]O[18O] - [18O]2(g) -69.93 -72.22 -2.29 [18O]2 + [18O]2(g) -70.03 -72.32 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -21979,14 +21969,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.27 -17.13 -2.86 CH4 + CH4(g) -14.08 -16.94 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.63 -12.78 -3.15 H2 + H2(g) -9.58 -12.73 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.93 -66.82 -2.89 O2 - O[18O](g) -66.63 -69.52 -2.89 O[18O] + O2(g) -64.03 -66.92 -2.89 O2 + O[18O](g) -66.73 -69.62 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -22095,14 +22085,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.2164e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6543e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5904e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.5543e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 3.7748e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.3323e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 8.8818e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -22120,16 +22110,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.141 Adjusted to redox equilibrium + pe = -2.158 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.834e-13 + Electrical balance (eq) = 6.467e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 125 (226 overall) + Iterations = 103 (204 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -22141,8 +22131,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.115e-18 - CH4 4.115e-18 4.122e-18 -17.386 -17.385 0.001 (0) +C(-4) 5.683e-18 + CH4 5.683e-18 5.692e-18 -17.245 -17.245 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -22171,13 +22161,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.860e-13 - H2 1.430e-13 1.432e-13 -12.845 -12.844 0.001 (0) +H(0) 3.100e-13 + H2 1.550e-13 1.553e-13 -12.810 -12.809 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.695 -66.694 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.094 -69.093 0.001 (0) -[13C](-4) 4.561e-20 - [13C]H4 4.561e-20 4.569e-20 -19.341 -19.340 0.001 (0) + O2 0.000e+00 0.000e+00 -66.765 -66.764 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.164 -69.163 0.001 (0) +[13C](-4) 6.299e-20 + [13C]H4 6.299e-20 6.310e-20 -19.201 -19.200 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -22196,8 +22186,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 5.940e-33 - [14C]H4 5.940e-33 5.950e-33 -32.226 -32.225 0.001 (0) +[14C](-4) 8.203e-33 + [14C]H4 8.203e-33 8.217e-33 -32.086 -32.085 0.001 (0) [14C](4) 8.552e-18 H[14C]O3- 6.908e-18 6.320e-18 -17.161 -17.199 -0.039 (0) [14C]O2 1.437e-18 1.440e-18 -17.842 -17.842 0.001 (0) @@ -22226,22 +22216,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.094 -69.093 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.095 -72.094 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.164 -69.163 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.165 -72.164 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.48 -19.34 -2.86 [13C]H4 + [13C]H4(g) -16.34 -19.20 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.74 -23.24 -1.50 [14C][18O]2 - [14C]H4(g) -29.37 -32.23 -2.86 [14C]H4 + [14C]H4(g) -29.23 -32.09 -2.86 [14C]H4 [14C]O2(g) -16.37 -17.84 -1.47 [14C]O2 [14C]O[18O](g) -18.75 -20.54 -1.79 [14C]O[18O] - [18O]2(g) -69.80 -72.09 -2.29 [18O]2 + [18O]2(g) -69.87 -72.16 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -22255,14 +22245,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.52 -17.38 -2.86 CH4 + CH4(g) -14.38 -17.24 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.69 -12.84 -3.15 H2 + H2(g) -9.66 -12.81 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.80 -66.69 -2.89 O2 - O[18O](g) -66.50 -69.39 -2.89 O[18O] + O2(g) -63.87 -66.76 -2.89 O2 + O[18O](g) -66.57 -69.46 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -22371,14 +22361,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -6.5503e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6886e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8289e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 7.1054e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -2.1538e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -6.5503e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 3.1086e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -22396,16 +22386,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.093 Adjusted to redox equilibrium + pe = -2.115 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.834e-13 + Electrical balance (eq) = 6.467e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 100 + Iterations = 98 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -22417,8 +22407,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.714e-18 - CH4 1.714e-18 1.717e-18 -17.766 -17.765 0.001 (0) +C(-4) 2.557e-18 + CH4 2.557e-18 2.561e-18 -17.592 -17.592 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -22447,13 +22437,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.298e-13 - H2 1.149e-13 1.151e-13 -12.940 -12.939 0.001 (0) +H(0) 2.539e-13 + H2 1.270e-13 1.272e-13 -12.896 -12.896 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.504 -66.504 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.903 -68.903 0.001 (0) -[13C](-4) 1.900e-20 - [13C]H4 1.900e-20 1.903e-20 -19.721 -19.721 0.001 (0) + O2 0.000e+00 0.000e+00 -66.591 -66.591 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.990 -68.989 0.001 (0) +[13C](-4) 2.834e-20 + [13C]H4 2.834e-20 2.839e-20 -19.548 -19.547 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -22472,8 +22462,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.279e-33 - [14C]H4 2.279e-33 2.283e-33 -32.642 -32.641 0.001 (0) +[14C](-4) 3.400e-33 + [14C]H4 3.400e-33 3.406e-33 -32.469 -32.468 0.001 (0) [14C](4) 7.878e-18 H[14C]O3- 6.364e-18 5.822e-18 -17.196 -17.235 -0.039 (0) [14C]O2 1.324e-18 1.326e-18 -17.878 -17.877 0.001 (0) @@ -22502,22 +22492,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.903 -68.903 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.904 -71.904 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.990 -68.989 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.991 -71.991 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.86 -19.72 -2.86 [13C]H4 + [13C]H4(g) -16.69 -19.55 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.77 -23.28 -1.50 [14C][18O]2 - [14C]H4(g) -29.78 -32.64 -2.86 [14C]H4 + [14C]H4(g) -29.61 -32.47 -2.86 [14C]H4 [14C]O2(g) -16.41 -17.88 -1.47 [14C]O2 [14C]O[18O](g) -18.79 -20.58 -1.79 [14C]O[18O] - [18O]2(g) -69.61 -71.90 -2.29 [18O]2 + [18O]2(g) -69.70 -71.99 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -22531,14 +22521,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.91 -17.77 -2.86 CH4 + CH4(g) -14.73 -17.59 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.79 -12.94 -3.15 H2 + H2(g) -9.75 -12.90 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.61 -66.50 -2.89 O2 - O[18O](g) -66.31 -69.20 -2.89 O[18O] + O2(g) -63.70 -66.59 -2.89 O2 + O[18O](g) -66.40 -69.29 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -22647,14 +22637,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6507e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6557e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.6209e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -6.3283e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 5.9952e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 8.4377e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -22672,16 +22662,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.101 Adjusted to redox equilibrium + pe = -2.110 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.834e-13 + Electrical balance (eq) = 6.467e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 80 + Iterations = 161 (262 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -22693,8 +22683,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.972e-18 - CH4 1.972e-18 1.975e-18 -17.705 -17.704 0.001 (0) +C(-4) 2.331e-18 + CH4 2.331e-18 2.335e-18 -17.632 -17.632 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -22723,13 +22713,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.379e-13 - H2 1.190e-13 1.192e-13 -12.925 -12.924 0.001 (0) +H(0) 2.481e-13 + H2 1.241e-13 1.243e-13 -12.906 -12.906 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.535 -66.534 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.934 -68.933 0.001 (0) -[13C](-4) 2.185e-20 - [13C]H4 2.185e-20 2.189e-20 -19.660 -19.660 0.001 (0) + O2 0.000e+00 0.000e+00 -66.571 -66.570 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.970 -68.969 0.001 (0) +[13C](-4) 2.584e-20 + [13C]H4 2.584e-20 2.588e-20 -19.588 -19.587 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -22748,8 +22738,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.415e-33 - [14C]H4 2.415e-33 2.419e-33 -32.617 -32.616 0.001 (0) +[14C](-4) 2.855e-33 + [14C]H4 2.855e-33 2.860e-33 -32.544 -32.544 0.001 (0) [14C](4) 7.257e-18 H[14C]O3- 5.862e-18 5.363e-18 -17.232 -17.271 -0.039 (0) [14C]O2 1.220e-18 1.222e-18 -17.914 -17.913 0.001 (0) @@ -22778,22 +22768,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.934 -68.933 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.935 -71.934 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.970 -68.969 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.971 -71.970 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.80 -19.66 -2.86 [13C]H4 + [13C]H4(g) -16.73 -19.59 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.81 -23.31 -1.50 [14C][18O]2 - [14C]H4(g) -29.76 -32.62 -2.86 [14C]H4 + [14C]H4(g) -29.68 -32.54 -2.86 [14C]H4 [14C]O2(g) -16.44 -17.91 -1.47 [14C]O2 [14C]O[18O](g) -18.83 -20.61 -1.79 [14C]O[18O] - [18O]2(g) -69.64 -71.93 -2.29 [18O]2 + [18O]2(g) -69.68 -71.97 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -22807,14 +22797,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.84 -17.70 -2.86 CH4 + CH4(g) -14.77 -17.63 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.77 -12.92 -3.15 H2 + H2(g) -9.76 -12.91 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.64 -66.53 -2.89 O2 - O[18O](g) -66.34 -69.23 -2.89 O[18O] + O2(g) -63.68 -66.57 -2.89 O2 + O[18O](g) -66.38 -69.27 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -22923,14 +22913,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6666e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6737e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.2212e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.199e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.1102e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -9.992e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -22948,16 +22938,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.117 Adjusted to redox equilibrium + pe = -2.100 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.834e-13 + Electrical balance (eq) = 6.467e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 84 + Iterations = 117 (218 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -22969,8 +22959,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.636e-18 - CH4 2.636e-18 2.640e-18 -17.579 -17.578 0.001 (0) +C(-4) 1.940e-18 + CH4 1.940e-18 1.943e-18 -17.712 -17.712 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -22999,13 +22989,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.559e-13 - H2 1.279e-13 1.281e-13 -12.893 -12.892 0.001 (0) +H(0) 2.370e-13 + H2 1.185e-13 1.187e-13 -12.926 -12.926 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.598 -66.597 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.997 -68.996 0.001 (0) -[13C](-4) 2.922e-20 - [13C]H4 2.922e-20 2.927e-20 -19.534 -19.534 0.001 (0) + O2 0.000e+00 0.000e+00 -66.531 -66.531 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.930 -68.930 0.001 (0) +[13C](-4) 2.150e-20 + [13C]H4 2.150e-20 2.154e-20 -19.668 -19.667 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -23024,8 +23014,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.975e-33 - [14C]H4 2.975e-33 2.980e-33 -32.527 -32.526 0.001 (0) +[14C](-4) 2.189e-33 + [14C]H4 2.189e-33 2.193e-33 -32.660 -32.659 0.001 (0) [14C](4) 6.686e-18 H[14C]O3- 5.401e-18 4.941e-18 -17.268 -17.306 -0.039 (0) [14C]O2 1.124e-18 1.126e-18 -17.949 -17.949 0.001 (0) @@ -23054,22 +23044,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.997 -68.996 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.998 -71.997 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.930 -68.930 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.931 -71.931 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.67 -19.53 -2.86 [13C]H4 + [13C]H4(g) -16.81 -19.67 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.85 -23.35 -1.50 [14C][18O]2 - [14C]H4(g) -29.67 -32.53 -2.86 [14C]H4 + [14C]H4(g) -29.80 -32.66 -2.86 [14C]H4 [14C]O2(g) -16.48 -17.95 -1.47 [14C]O2 [14C]O[18O](g) -18.86 -20.65 -1.79 [14C]O[18O] - [18O]2(g) -69.71 -72.00 -2.29 [18O]2 + [18O]2(g) -69.64 -71.93 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -23083,14 +23073,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.72 -17.58 -2.86 CH4 + CH4(g) -14.85 -17.71 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.74 -12.89 -3.15 H2 + H2(g) -9.78 -12.93 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.70 -66.60 -2.89 O2 - O[18O](g) -66.40 -69.30 -2.89 O[18O] + O2(g) -63.64 -66.53 -2.89 O2 + O[18O](g) -66.34 -69.23 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -23199,14 +23189,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.585e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6668e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -5.3291e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 3.1086e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -9.1038e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -2.1427e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -23224,16 +23214,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.079 Adjusted to redox equilibrium + pe = -2.058 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.834e-13 + Electrical balance (eq) = 6.467e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 61 + Iterations = 137 (238 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -23245,8 +23235,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.314e-18 - CH4 1.314e-18 1.316e-18 -17.881 -17.881 0.001 (0) +C(-4) 9.028e-19 + CH4 9.028e-19 9.043e-19 -18.044 -18.044 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -23275,13 +23265,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.150e-13 - H2 1.075e-13 1.077e-13 -12.969 -12.968 0.001 (0) +H(0) 1.957e-13 + H2 9.787e-14 9.803e-14 -13.009 -13.009 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.447 -66.446 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.846 -68.845 0.001 (0) -[13C](-4) 1.457e-20 - [13C]H4 1.457e-20 1.459e-20 -19.837 -19.836 0.001 (0) + O2 0.000e+00 0.000e+00 -66.365 -66.364 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.764 -68.763 0.001 (0) +[13C](-4) 1.001e-20 + [13C]H4 1.001e-20 1.002e-20 -20.000 -19.999 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -23300,8 +23290,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.366e-33 - [14C]H4 1.366e-33 1.369e-33 -32.864 -32.864 0.001 (0) +[14C](-4) 9.386e-34 + [14C]H4 9.386e-34 9.401e-34 -33.028 -33.027 0.001 (0) [14C](4) 6.159e-18 H[14C]O3- 4.975e-18 4.552e-18 -17.303 -17.342 -0.039 (0) [14C]O2 1.035e-18 1.037e-18 -17.985 -17.984 0.001 (0) @@ -23330,22 +23320,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.846 -68.845 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.847 -71.846 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.764 -68.763 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.765 -71.764 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.98 -19.84 -2.86 [13C]H4 + [13C]H4(g) -17.14 -20.00 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.88 -23.38 -1.50 [14C][18O]2 - [14C]H4(g) -30.00 -32.86 -2.86 [14C]H4 + [14C]H4(g) -30.17 -33.03 -2.86 [14C]H4 [14C]O2(g) -16.52 -17.98 -1.47 [14C]O2 [14C]O[18O](g) -18.90 -20.68 -1.79 [14C]O[18O] - [18O]2(g) -69.56 -71.85 -2.29 [18O]2 + [18O]2(g) -69.47 -71.76 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -23359,14 +23349,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.02 -17.88 -2.86 CH4 + CH4(g) -15.18 -18.04 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.82 -12.97 -3.15 H2 + H2(g) -9.86 -13.01 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.55 -66.45 -2.89 O2 - O[18O](g) -66.25 -69.15 -2.89 O[18O] + O2(g) -63.47 -66.36 -2.89 O2 + O[18O](g) -66.17 -69.06 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -23475,14 +23465,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.2164e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.4409e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6089e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7569e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 4.4409e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 4.2188e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -2.9976e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 9.3259e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -23500,16 +23490,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.096 Adjusted to redox equilibrium + pe = -2.076 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.834e-13 + Electrical balance (eq) = 6.467e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 58 (159 overall) + Iterations = 139 (240 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -23521,8 +23511,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.788e-18 - CH4 1.788e-18 1.791e-18 -17.748 -17.747 0.001 (0) +C(-4) 1.248e-18 + CH4 1.248e-18 1.251e-18 -17.904 -17.903 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -23551,13 +23541,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.322e-13 - H2 1.161e-13 1.163e-13 -12.935 -12.934 0.001 (0) +H(0) 2.123e-13 + H2 1.061e-13 1.063e-13 -12.974 -12.973 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.514 -66.513 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.913 -68.912 0.001 (0) -[13C](-4) 1.982e-20 - [13C]H4 1.982e-20 1.985e-20 -19.703 -19.702 0.001 (0) + O2 0.000e+00 0.000e+00 -66.436 -66.435 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.835 -68.834 0.001 (0) +[13C](-4) 1.384e-20 + [13C]H4 1.384e-20 1.386e-20 -19.859 -19.858 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -23576,8 +23566,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.713e-33 - [14C]H4 1.713e-33 1.715e-33 -32.766 -32.766 0.001 (0) +[14C](-4) 1.196e-33 + [14C]H4 1.196e-33 1.198e-33 -32.922 -32.922 0.001 (0) [14C](4) 5.674e-18 H[14C]O3- 4.583e-18 4.193e-18 -17.339 -17.377 -0.039 (0) [14C]O2 9.537e-19 9.553e-19 -18.021 -18.020 0.001 (0) @@ -23606,22 +23596,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.913 -68.912 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.914 -71.913 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.835 -68.834 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.836 -71.835 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.84 -19.70 -2.86 [13C]H4 + [13C]H4(g) -17.00 -19.86 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.92 -23.42 -1.50 [14C][18O]2 - [14C]H4(g) -29.91 -32.77 -2.86 [14C]H4 + [14C]H4(g) -30.06 -32.92 -2.86 [14C]H4 [14C]O2(g) -16.55 -18.02 -1.47 [14C]O2 [14C]O[18O](g) -18.93 -20.72 -1.79 [14C]O[18O] - [18O]2(g) -69.62 -71.91 -2.29 [18O]2 + [18O]2(g) -69.54 -71.83 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -23635,14 +23625,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.89 -17.75 -2.86 CH4 + CH4(g) -15.04 -17.90 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.78 -12.93 -3.15 H2 + H2(g) -9.82 -12.97 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.62 -66.51 -2.89 O2 - O[18O](g) -66.32 -69.21 -2.89 O[18O] + O2(g) -63.54 -66.43 -2.89 O2 + O[18O](g) -66.24 -69.13 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -23728,7 +23718,7 @@ Calcite 5.00e-04 R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.022 permil R(13C) CO2(aq) 1.10846e-02 -8.5507 permil - R(14C) CO2(aq) 8.82289e-16 0.075032 pmc + R(14C) CO2(aq) 8.82290e-16 0.075032 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil R(18O) HCO3- 1.99520e-03 -4.9858 permil R(13C) HCO3- 1.11810e-02 0.074756 permil @@ -23737,10 +23727,10 @@ Calcite 5.00e-04 R(13C) CO3-2 1.11650e-02 -1.3604 permil R(14C) CO3-2 8.95133e-16 0.076124 pmc R(13C) CH4(aq) 1.10846e-02 -8.5507 permil - R(14C) CH4(aq) 8.82289e-16 0.075032 pmc + R(14C) CH4(aq) 8.82290e-16 0.075032 pmc R(18O) Calcite 2.05264e-03 23.661 permil R(13C) Calcite 1.12032e-02 2.0556 permil - R(14C) Calcite 9.01267e-16 0.076646 pmc + R(14C) Calcite 9.01268e-16 0.076646 pmc --------------------------------Isotope Alphas--------------------------------- @@ -23751,14 +23741,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7676e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7083e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 3.3307e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -4.996e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.1102e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.6209e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -23776,16 +23766,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.073 Adjusted to redox equilibrium + pe = -2.067 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.891e-13 + Electrical balance (eq) = 6.467e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 55 + Iterations = 50 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -23797,8 +23787,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.170e-18 - CH4 1.170e-18 1.172e-18 -17.932 -17.931 0.001 (0) +C(-4) 1.048e-18 + CH4 1.048e-18 1.050e-18 -17.980 -17.979 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -23827,13 +23817,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.089e-13 - H2 1.044e-13 1.046e-13 -12.981 -12.980 0.001 (0) +H(0) 2.032e-13 + H2 1.016e-13 1.018e-13 -12.993 -12.992 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.422 -66.421 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.821 -68.820 0.001 (0) -[13C](-4) 1.297e-20 - [13C]H4 1.297e-20 1.299e-20 -19.887 -19.886 0.001 (0) + O2 0.000e+00 0.000e+00 -66.398 -66.397 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.797 -68.796 0.001 (0) +[13C](-4) 1.162e-20 + [13C]H4 1.162e-20 1.164e-20 -19.935 -19.934 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -23852,8 +23842,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.033e-33 - [14C]H4 1.033e-33 1.034e-33 -32.986 -32.985 0.001 (0) +[14C](-4) 9.249e-34 + [14C]H4 9.249e-34 9.264e-34 -33.034 -33.033 0.001 (0) [14C](4) 5.227e-18 H[14C]O3- 4.222e-18 3.863e-18 -17.374 -17.413 -0.039 (0) [14C]O2 8.786e-19 8.800e-19 -18.056 -18.056 0.001 (0) @@ -23882,22 +23872,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.821 -68.820 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.822 -71.821 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.797 -68.796 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.798 -71.797 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -17.03 -19.89 -2.86 [13C]H4 + [13C]H4(g) -17.07 -19.93 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.95 -23.46 -1.50 [14C][18O]2 - [14C]H4(g) -30.13 -32.99 -2.86 [14C]H4 + [14C]H4(g) -30.17 -33.03 -2.86 [14C]H4 [14C]O2(g) -16.59 -18.06 -1.47 [14C]O2 [14C]O[18O](g) -18.97 -20.76 -1.79 [14C]O[18O] - [18O]2(g) -69.53 -71.82 -2.29 [18O]2 + [18O]2(g) -69.51 -71.80 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -23911,14 +23901,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -15.07 -17.93 -2.86 CH4 + CH4(g) -15.12 -17.98 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.83 -12.98 -3.15 H2 + H2(g) -9.84 -12.99 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.53 -66.42 -2.89 O2 - O[18O](g) -66.23 -69.12 -2.89 O[18O] + O2(g) -63.50 -66.40 -2.89 O2 + O[18O](g) -66.20 -69.10 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -24027,14 +24017,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5781e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7762e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.9984e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -8.2157e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 9.3259e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 5.107e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -24052,16 +24042,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.109 Adjusted to redox equilibrium + pe = -2.122 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.891e-13 + Electrical balance (eq) = 6.467e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 64 + Iterations = 87 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -24073,8 +24063,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.300e-18 - CH4 2.300e-18 2.303e-18 -17.638 -17.638 0.001 (0) +C(-4) 2.934e-18 + CH4 2.934e-18 2.939e-18 -17.532 -17.532 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -24103,13 +24093,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.473e-13 - H2 1.236e-13 1.238e-13 -12.908 -12.907 0.001 (0) +H(0) 2.628e-13 + H2 1.314e-13 1.316e-13 -12.881 -12.881 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.568 -66.567 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -68.967 -68.966 0.001 (0) -[13C](-4) 2.549e-20 - [13C]H4 2.549e-20 2.553e-20 -19.594 -19.593 0.001 (0) + O2 0.000e+00 0.000e+00 -66.621 -66.620 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.020 -69.019 0.001 (0) +[13C](-4) 3.253e-20 + [13C]H4 3.253e-20 3.258e-20 -19.488 -19.487 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -24128,8 +24118,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.869e-33 - [14C]H4 1.869e-33 1.872e-33 -32.728 -32.728 0.001 (0) +[14C](-4) 2.385e-33 + [14C]H4 2.385e-33 2.389e-33 -32.623 -32.622 0.001 (0) [14C](4) 4.815e-18 H[14C]O3- 3.890e-18 3.559e-18 -17.410 -17.449 -0.039 (0) [14C]O2 8.094e-19 8.107e-19 -18.092 -18.091 0.001 (0) @@ -24158,22 +24148,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -68.967 -68.966 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -71.968 -71.968 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.020 -69.019 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.021 -72.020 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.73 -19.59 -2.86 [13C]H4 + [13C]H4(g) -16.63 -19.49 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -21.99 -23.49 -1.50 [14C][18O]2 - [14C]H4(g) -29.87 -32.73 -2.86 [14C]H4 + [14C]H4(g) -29.76 -32.62 -2.86 [14C]H4 [14C]O2(g) -16.62 -18.09 -1.47 [14C]O2 [14C]O[18O](g) -19.00 -20.79 -1.79 [14C]O[18O] - [18O]2(g) -69.68 -71.97 -2.29 [18O]2 + [18O]2(g) -69.73 -72.02 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -24187,14 +24177,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.78 -17.64 -2.86 CH4 + CH4(g) -14.67 -17.53 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.76 -12.91 -3.15 H2 + H2(g) -9.73 -12.88 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.68 -66.57 -2.89 O2 - O[18O](g) -66.38 -69.27 -2.89 O[18O] + O2(g) -63.73 -66.62 -2.89 O2 + O[18O](g) -66.43 -69.32 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -24303,14 +24293,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.653e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7839e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 8.2157e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 8.4377e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -4.1078e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -6.3283e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -24328,16 +24318,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.118 Adjusted to redox equilibrium + pe = -2.146 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.891e-13 + Electrical balance (eq) = 6.467e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 97 + Iterations = 114 (215 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -24349,8 +24339,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.727e-18 - CH4 2.727e-18 2.732e-18 -17.564 -17.564 0.001 (0) +C(-4) 4.572e-18 + CH4 4.572e-18 4.579e-18 -17.340 -17.339 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -24379,13 +24369,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.580e-13 - H2 1.290e-13 1.292e-13 -12.889 -12.889 0.001 (0) +H(0) 2.936e-13 + H2 1.468e-13 1.471e-13 -12.833 -12.833 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.605 -66.605 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.004 -69.004 0.001 (0) -[13C](-4) 3.023e-20 - [13C]H4 3.023e-20 3.028e-20 -19.520 -19.519 0.001 (0) + O2 0.000e+00 0.000e+00 -66.717 -66.717 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.116 -69.116 0.001 (0) +[13C](-4) 5.067e-20 + [13C]H4 5.067e-20 5.076e-20 -19.295 -19.294 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -24404,8 +24394,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.042e-33 - [14C]H4 2.042e-33 2.046e-33 -32.690 -32.689 0.001 (0) +[14C](-4) 3.423e-33 + [14C]H4 3.423e-33 3.429e-33 -32.466 -32.465 0.001 (0) [14C](4) 4.436e-18 H[14C]O3- 3.583e-18 3.278e-18 -17.446 -17.484 -0.039 (0) [14C]O2 7.456e-19 7.468e-19 -18.127 -18.127 0.001 (0) @@ -24434,22 +24424,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.004 -69.004 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.005 -72.005 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.116 -69.116 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.117 -72.117 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.66 -19.52 -2.86 [13C]H4 + [13C]H4(g) -16.43 -19.29 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.02 -23.53 -1.50 [14C][18O]2 - [14C]H4(g) -29.83 -32.69 -2.86 [14C]H4 + [14C]H4(g) -29.60 -32.46 -2.86 [14C]H4 [14C]O2(g) -16.66 -18.13 -1.47 [14C]O2 [14C]O[18O](g) -19.04 -20.83 -1.79 [14C]O[18O] - [18O]2(g) -69.71 -72.00 -2.29 [18O]2 + [18O]2(g) -69.83 -72.12 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -24463,14 +24453,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.70 -17.56 -2.86 CH4 + CH4(g) -14.48 -17.34 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.74 -12.89 -3.15 H2 + H2(g) -9.68 -12.83 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.71 -66.60 -2.89 O2 - O[18O](g) -66.41 -69.30 -2.89 O[18O] + O2(g) -63.82 -66.72 -2.89 O2 + O[18O](g) -66.52 -69.42 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -24579,14 +24569,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7333e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.66e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 8.8818e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.5321e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 7.1054e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 9.1038e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -24604,16 +24594,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.160 Adjusted to redox equilibrium + pe = -2.154 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.891e-13 + Electrical balance (eq) = 6.467e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 82 (183 overall) + Iterations = 70 (171 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -24625,8 +24615,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 5.816e-18 - CH4 5.816e-18 5.826e-18 -17.235 -17.235 0.001 (0) +C(-4) 5.276e-18 + CH4 5.276e-18 5.284e-18 -17.278 -17.277 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -24655,13 +24645,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.118e-13 - H2 1.559e-13 1.562e-13 -12.807 -12.806 0.001 (0) +H(0) 3.043e-13 + H2 1.522e-13 1.524e-13 -12.818 -12.817 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.770 -66.769 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.169 -69.168 0.001 (0) -[13C](-4) 6.447e-20 - [13C]H4 6.447e-20 6.458e-20 -19.191 -19.190 0.001 (0) + O2 0.000e+00 0.000e+00 -66.749 -66.748 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.147 -69.147 0.001 (0) +[13C](-4) 5.848e-20 + [13C]H4 5.848e-20 5.857e-20 -19.233 -19.232 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -24680,8 +24670,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 4.012e-33 - [14C]H4 4.012e-33 4.019e-33 -32.397 -32.396 0.001 (0) +[14C](-4) 3.639e-33 + [14C]H4 3.639e-33 3.645e-33 -32.439 -32.438 0.001 (0) [14C](4) 4.087e-18 H[14C]O3- 3.301e-18 3.020e-18 -17.481 -17.520 -0.039 (0) [14C]O2 6.869e-19 6.880e-19 -18.163 -18.162 0.001 (0) @@ -24710,22 +24700,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.169 -69.168 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.170 -72.169 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.147 -69.147 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.149 -72.148 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.33 -19.19 -2.86 [13C]H4 + [13C]H4(g) -16.37 -19.23 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.06 -23.56 -1.50 [14C][18O]2 - [14C]H4(g) -29.54 -32.40 -2.86 [14C]H4 + [14C]H4(g) -29.58 -32.44 -2.86 [14C]H4 [14C]O2(g) -16.69 -18.16 -1.47 [14C]O2 [14C]O[18O](g) -19.08 -20.86 -1.79 [14C]O[18O] - [18O]2(g) -69.88 -72.17 -2.29 [18O]2 + [18O]2(g) -69.86 -72.15 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -24739,14 +24729,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.37 -17.23 -2.86 CH4 + CH4(g) -14.42 -17.28 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.66 -12.81 -3.15 H2 + H2(g) -9.67 -12.82 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.88 -66.77 -2.89 O2 - O[18O](g) -66.58 -69.47 -2.89 O[18O] + O2(g) -63.86 -66.75 -2.89 O2 + O[18O](g) -66.56 -69.45 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -24855,14 +24845,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6745e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8059e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.0436e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -1.8763e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -7.9936e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.1768e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -24880,16 +24870,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.144 Adjusted to redox equilibrium + pe = -2.138 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.891e-13 + Electrical balance (eq) = 6.467e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 105 (206 overall) + Iterations = 112 (213 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -24901,8 +24891,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.373e-18 - CH4 4.373e-18 4.380e-18 -17.359 -17.359 0.001 (0) +C(-4) 3.936e-18 + CH4 3.936e-18 3.943e-18 -17.405 -17.404 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -24931,13 +24921,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.904e-13 - H2 1.452e-13 1.454e-13 -12.838 -12.837 0.001 (0) +H(0) 2.828e-13 + H2 1.414e-13 1.417e-13 -12.849 -12.849 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.708 -66.707 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.107 -69.106 0.001 (0) -[13C](-4) 4.847e-20 - [13C]H4 4.847e-20 4.855e-20 -19.315 -19.314 0.001 (0) + O2 0.000e+00 0.000e+00 -66.685 -66.684 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.084 -69.083 0.001 (0) +[13C](-4) 4.363e-20 + [13C]H4 4.363e-20 4.371e-20 -19.360 -19.359 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -24956,8 +24946,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 2.779e-33 - [14C]H4 2.779e-33 2.783e-33 -32.556 -32.555 0.001 (0) +[14C](-4) 2.501e-33 + [14C]H4 2.501e-33 2.506e-33 -32.602 -32.601 0.001 (0) [14C](4) 3.765e-18 H[14C]O3- 3.041e-18 2.782e-18 -17.517 -17.556 -0.039 (0) [14C]O2 6.328e-19 6.338e-19 -18.199 -18.198 0.001 (0) @@ -24986,22 +24976,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.107 -69.106 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.108 -72.107 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.084 -69.083 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.085 -72.084 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.45 -19.31 -2.86 [13C]H4 + [13C]H4(g) -16.50 -19.36 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.09 -23.60 -1.50 [14C][18O]2 - [14C]H4(g) -29.70 -32.56 -2.86 [14C]H4 + [14C]H4(g) -29.74 -32.60 -2.86 [14C]H4 [14C]O2(g) -16.73 -18.20 -1.47 [14C]O2 [14C]O[18O](g) -19.11 -20.90 -1.79 [14C]O[18O] - [18O]2(g) -69.82 -72.11 -2.29 [18O]2 + [18O]2(g) -69.79 -72.08 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -25015,14 +25005,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.50 -17.36 -2.86 CH4 + CH4(g) -14.54 -17.40 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.69 -12.84 -3.15 H2 + H2(g) -9.70 -12.85 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.81 -66.71 -2.89 O2 - O[18O](g) -66.51 -69.41 -2.89 O[18O] + O2(g) -63.79 -66.68 -2.89 O2 + O[18O](g) -66.49 -69.38 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -25131,14 +25121,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 +Alpha 18O HCO3-/H2O(l) 1 2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8087e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6693e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 3.9968e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -8.2157e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.1102e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 9.3259e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -25156,16 +25146,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.167 Adjusted to redox equilibrium + pe = -2.171 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.891e-13 + Electrical balance (eq) = 6.467e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 98 + Iterations = 103 (204 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -25177,8 +25167,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 6.711e-18 - CH4 6.711e-18 6.722e-18 -17.173 -17.172 0.001 (0) +C(-4) 7.243e-18 + CH4 7.243e-18 7.255e-18 -17.140 -17.139 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -25207,13 +25197,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.232e-13 - H2 1.616e-13 1.619e-13 -12.792 -12.791 0.001 (0) +H(0) 3.294e-13 + H2 1.647e-13 1.650e-13 -12.783 -12.783 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.801 -66.800 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.200 -69.199 0.001 (0) -[13C](-4) 7.439e-20 - [13C]H4 7.439e-20 7.451e-20 -19.128 -19.128 0.001 (0) + O2 0.000e+00 0.000e+00 -66.817 -66.817 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.216 -69.216 0.001 (0) +[13C](-4) 8.029e-20 + [13C]H4 8.029e-20 8.042e-20 -19.095 -19.095 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -25232,8 +25222,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.929e-33 - [14C]H4 3.929e-33 3.935e-33 -32.406 -32.405 0.001 (0) +[14C](-4) 4.240e-33 + [14C]H4 4.240e-33 4.247e-33 -32.373 -32.372 0.001 (0) [14C](4) 3.468e-18 H[14C]O3- 2.801e-18 2.563e-18 -17.553 -17.591 -0.039 (0) [14C]O2 5.829e-19 5.839e-19 -18.234 -18.234 0.001 (0) @@ -25262,22 +25252,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.200 -69.199 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.201 -72.200 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.216 -69.216 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.217 -72.217 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.27 -19.13 -2.86 [13C]H4 + [13C]H4(g) -16.23 -19.09 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.13 -23.63 -1.50 [14C][18O]2 - [14C]H4(g) -29.55 -32.41 -2.86 [14C]H4 + [14C]H4(g) -29.51 -32.37 -2.86 [14C]H4 [14C]O2(g) -16.77 -18.23 -1.47 [14C]O2 [14C]O[18O](g) -19.15 -20.93 -1.79 [14C]O[18O] - [18O]2(g) -69.91 -72.20 -2.29 [18O]2 + [18O]2(g) -69.93 -72.22 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -25291,14 +25281,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.31 -17.17 -2.86 CH4 + CH4(g) -14.28 -17.14 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.64 -12.79 -3.15 H2 + H2(g) -9.63 -12.78 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.91 -66.80 -2.89 O2 - O[18O](g) -66.61 -69.50 -2.89 O[18O] + O2(g) -63.92 -66.82 -2.89 O2 + O[18O](g) -66.62 -69.52 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -25407,14 +25397,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.6605e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6593e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5878e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -8.8818e-13 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -2.1427e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 5.9952e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.7764e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -25432,16 +25422,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.188 Adjusted to redox equilibrium + pe = -2.182 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.891e-13 + Electrical balance (eq) = 6.467e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 115 (417 overall) + Iterations = 106 (207 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -25453,8 +25443,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 9.738e-18 - CH4 9.738e-18 9.754e-18 -17.012 -17.011 0.001 (0) +C(-4) 8.863e-18 + CH4 8.863e-18 8.877e-18 -17.052 -17.052 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -25483,13 +25473,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.547e-13 - H2 1.774e-13 1.777e-13 -12.751 -12.750 0.001 (0) +H(0) 3.465e-13 + H2 1.732e-13 1.735e-13 -12.761 -12.761 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.882 -66.881 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.281 -69.280 0.001 (0) -[13C](-4) 1.079e-19 - [13C]H4 1.079e-19 1.081e-19 -18.967 -18.966 0.001 (0) + O2 0.000e+00 0.000e+00 -66.861 -66.860 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.260 -69.259 0.001 (0) +[13C](-4) 9.824e-20 + [13C]H4 9.824e-20 9.840e-20 -19.008 -19.007 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -25508,8 +25498,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.093e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 5.252e-33 - [14C]H4 5.252e-33 5.260e-33 -32.280 -32.279 0.001 (0) +[14C](-4) 4.779e-33 + [14C]H4 4.779e-33 4.787e-33 -32.321 -32.320 0.001 (0) [14C](4) 3.195e-18 H[14C]O3- 2.581e-18 2.361e-18 -17.588 -17.627 -0.039 (0) [14C]O2 5.370e-19 5.379e-19 -18.270 -18.269 0.001 (0) @@ -25538,22 +25528,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.281 -69.280 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.282 -72.281 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.260 -69.259 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.261 -72.260 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -16.11 -18.97 -2.86 [13C]H4 + [13C]H4(g) -16.15 -19.01 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.17 -23.67 -1.50 [14C][18O]2 - [14C]H4(g) -29.42 -32.28 -2.86 [14C]H4 + [14C]H4(g) -29.46 -32.32 -2.86 [14C]H4 [14C]O2(g) -16.80 -18.27 -1.47 [14C]O2 [14C]O[18O](g) -19.18 -20.97 -1.79 [14C]O[18O] - [18O]2(g) -69.99 -72.28 -2.29 [18O]2 + [18O]2(g) -69.97 -72.26 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -25567,14 +25557,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -14.15 -17.01 -2.86 CH4 + CH4(g) -14.19 -17.05 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.60 -12.75 -3.15 H2 + H2(g) -9.61 -12.76 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -63.99 -66.88 -2.89 O2 - O[18O](g) -66.69 -69.58 -2.89 O[18O] + O2(g) -63.97 -66.86 -2.89 O2 + O[18O](g) -66.67 -69.56 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -25655,7 +25645,7 @@ Calcite 5.00e-04 R(18O) 1.99521e-03 -4.9833 permil R(13C) 1.11646e-02 -1.3971 permil - R(14C) 5.03991e-16 0.042861 pmc + R(14C) 5.03992e-16 0.042861 pmc R(18O) H2O(l) 1.99520e-03 -4.9848 permil R(18O) OH- 1.92124e-03 -41.872 permil R(18O) H3O+ 2.04134e-03 18.023 permil @@ -25683,14 +25673,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5585e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6924e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.7764e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 0 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.1324e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 4.885e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -25708,16 +25698,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.243 Adjusted to redox equilibrium + pe = -2.231 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.891e-13 + Electrical balance (eq) = 6.468e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 112 (213 overall) + Iterations = 91 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -25729,8 +25719,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.686e-17 - CH4 2.686e-17 2.691e-17 -16.571 -16.570 0.001 (0) +C(-4) 2.189e-17 + CH4 2.189e-17 2.192e-17 -16.660 -16.659 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -25759,13 +25749,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.572e-13 - H2 2.286e-13 2.290e-13 -12.641 -12.640 0.001 (0) +H(0) 4.343e-13 + H2 2.172e-13 2.175e-13 -12.663 -12.663 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.102 -67.101 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.501 -69.500 0.001 (0) -[13C](-4) 2.978e-19 - [13C]H4 2.978e-19 2.983e-19 -18.526 -18.525 0.001 (0) + O2 0.000e+00 0.000e+00 -67.057 -67.057 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.456 -69.456 0.001 (0) +[13C](-4) 2.426e-19 + [13C]H4 2.426e-19 2.430e-19 -18.615 -18.614 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -25784,8 +25774,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.335e-32 - [14C]H4 1.335e-32 1.337e-32 -31.875 -31.874 0.001 (0) +[14C](-4) 1.087e-32 + [14C]H4 1.087e-32 1.089e-32 -31.964 -31.963 0.001 (0) [14C](4) 2.943e-18 H[14C]O3- 2.377e-18 2.175e-18 -17.624 -17.663 -0.039 (0) [14C]O2 4.947e-19 4.955e-19 -18.306 -18.305 0.001 (0) @@ -25814,22 +25804,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.501 -69.500 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.502 -72.501 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.456 -69.456 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.457 -72.457 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.67 -18.53 -2.86 [13C]H4 + [13C]H4(g) -15.75 -18.61 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.20 -23.70 -1.50 [14C][18O]2 - [14C]H4(g) -29.01 -31.87 -2.86 [14C]H4 + [14C]H4(g) -29.10 -31.96 -2.86 [14C]H4 [14C]O2(g) -16.84 -18.30 -1.47 [14C]O2 [14C]O[18O](g) -19.22 -21.00 -1.79 [14C]O[18O] - [18O]2(g) -70.21 -72.50 -2.29 [18O]2 + [18O]2(g) -70.17 -72.46 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -25843,14 +25833,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.71 -16.57 -2.86 CH4 + CH4(g) -13.80 -16.66 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.49 -12.64 -3.15 H2 + H2(g) -9.51 -12.66 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.21 -67.10 -2.89 O2 - O[18O](g) -66.91 -69.80 -2.89 O[18O] + O2(g) -64.16 -67.06 -2.89 O2 + O[18O](g) -66.86 -69.76 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -25959,14 +25949,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6269e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7084e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -8.1046e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -5.9952e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.9984e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 4.2188e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -25984,16 +25974,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.244 Adjusted to redox equilibrium + pe = -2.233 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.891e-13 + Electrical balance (eq) = 6.467e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 63 + Iterations = 74 (175 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -26005,8 +25995,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 2.776e-17 - CH4 2.776e-17 2.781e-17 -16.557 -16.556 0.001 (0) +C(-4) 2.260e-17 + CH4 2.260e-17 2.264e-17 -16.646 -16.645 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -26035,13 +26025,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.609e-13 - H2 2.305e-13 2.308e-13 -12.637 -12.637 0.001 (0) +H(0) 4.378e-13 + H2 2.189e-13 2.193e-13 -12.660 -12.659 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.109 -67.108 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.508 -69.507 0.001 (0) -[13C](-4) 3.077e-19 - [13C]H4 3.077e-19 3.082e-19 -18.512 -18.511 0.001 (0) + O2 0.000e+00 0.000e+00 -67.064 -67.064 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.463 -69.463 0.001 (0) +[13C](-4) 2.506e-19 + [13C]H4 2.506e-19 2.510e-19 -18.601 -18.600 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -26060,8 +26050,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.270e-32 - [14C]H4 1.270e-32 1.273e-32 -31.896 -31.895 0.001 (0) +[14C](-4) 1.034e-32 + [14C]H4 1.034e-32 1.036e-32 -31.985 -31.985 0.001 (0) [14C](4) 2.711e-18 H[14C]O3- 2.190e-18 2.004e-18 -17.660 -17.698 -0.039 (0) [14C]O2 4.557e-19 4.565e-19 -18.341 -18.341 0.001 (0) @@ -26090,22 +26080,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.508 -69.507 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.509 -72.508 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.463 -69.463 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.464 -72.464 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.65 -18.51 -2.86 [13C]H4 + [13C]H4(g) -15.74 -18.60 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.24 -23.74 -1.50 [14C][18O]2 - [14C]H4(g) -29.04 -31.90 -2.86 [14C]H4 + [14C]H4(g) -29.12 -31.98 -2.86 [14C]H4 [14C]O2(g) -16.87 -18.34 -1.47 [14C]O2 [14C]O[18O](g) -19.25 -21.04 -1.79 [14C]O[18O] - [18O]2(g) -70.22 -72.51 -2.29 [18O]2 + [18O]2(g) -70.17 -72.46 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -26119,14 +26109,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.70 -16.56 -2.86 CH4 + CH4(g) -13.79 -16.65 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.49 -12.64 -3.15 H2 + H2(g) -9.51 -12.66 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.22 -67.11 -2.89 O2 - O[18O](g) -66.92 -69.81 -2.89 O[18O] + O2(g) -64.17 -67.06 -2.89 O2 + O[18O](g) -66.87 -69.76 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -26215,7 +26205,7 @@ Calcite 5.00e-04 R(14C) CO2(aq) 4.21613e-16 0.035855 pmc R(18O) CO2(aq) 2.07917e-03 36.89 permil R(18O) HCO3- 1.99520e-03 -4.9846 permil - R(13C) HCO3- 1.11811e-02 0.083255 permil + R(13C) HCO3- 1.11811e-02 0.083254 permil R(14C) HCO3- 4.28981e-16 0.036481 pmc R(18O) CO3-2 1.99520e-03 -4.9846 permil R(13C) CO3-2 1.11651e-02 -1.352 permil @@ -26235,14 +26225,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.2196e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6813e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7832e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -1.2212e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 4.885e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 4.4409e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 5.9952e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -26260,16 +26250,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.273 Adjusted to redox equilibrium + pe = -2.269 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.891e-13 + Electrical balance (eq) = 6.468e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 115 (216 overall) + Iterations = 51 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -26281,8 +26271,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 4.735e-17 - CH4 4.735e-17 4.743e-17 -16.325 -16.324 0.001 (0) +C(-4) 4.329e-17 + CH4 4.329e-17 4.336e-17 -16.364 -16.363 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -26311,13 +26301,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.267e-13 - H2 2.634e-13 2.638e-13 -12.579 -12.579 0.001 (0) +H(0) 5.151e-13 + H2 2.575e-13 2.580e-13 -12.589 -12.588 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.225 -67.224 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.624 -69.623 0.001 (0) -[13C](-4) 5.248e-19 - [13C]H4 5.248e-19 5.257e-19 -18.280 -18.279 0.001 (0) + O2 0.000e+00 0.000e+00 -67.206 -67.205 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.605 -69.604 0.001 (0) +[13C](-4) 4.798e-19 + [13C]H4 4.798e-19 4.806e-19 -18.319 -18.318 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -26336,8 +26326,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 1.996e-32 - [14C]H4 1.996e-32 2.000e-32 -31.700 -31.699 0.001 (0) +[14C](-4) 1.825e-32 + [14C]H4 1.825e-32 1.828e-32 -31.739 -31.738 0.001 (0) [14C](4) 2.498e-18 H[14C]O3- 2.018e-18 1.846e-18 -17.695 -17.734 -0.039 (0) [14C]O2 4.198e-19 4.205e-19 -18.377 -18.376 0.001 (0) @@ -26366,22 +26356,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.624 -69.623 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.625 -72.624 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.605 -69.604 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.606 -72.605 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.42 -18.28 -2.86 [13C]H4 + [13C]H4(g) -15.46 -18.32 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.27 -23.78 -1.50 [14C][18O]2 - [14C]H4(g) -28.84 -31.70 -2.86 [14C]H4 + [14C]H4(g) -28.88 -31.74 -2.86 [14C]H4 [14C]O2(g) -16.91 -18.38 -1.47 [14C]O2 [14C]O[18O](g) -19.29 -21.08 -1.79 [14C]O[18O] - [18O]2(g) -70.33 -72.62 -2.29 [18O]2 + [18O]2(g) -70.31 -72.60 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -26395,14 +26385,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.46 -16.32 -2.86 CH4 + CH4(g) -13.50 -16.36 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.43 -12.58 -3.15 H2 + H2(g) -9.44 -12.59 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.33 -67.22 -2.89 O2 - O[18O](g) -67.03 -69.92 -2.89 O[18O] + O2(g) -64.31 -67.20 -2.89 O2 + O[18O](g) -67.01 -69.90 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -26511,14 +26501,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.635e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6693e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 4.4409e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.0436e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.3323e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 3.3307e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -26536,16 +26526,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.309 Adjusted to redox equilibrium + pe = -2.300 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.891e-13 + Electrical balance (eq) = 6.468e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 75 (176 overall) + Iterations = 159 (260 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -26557,8 +26547,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 9.146e-17 - CH4 9.146e-17 9.161e-17 -16.039 -16.038 0.001 (0) +C(-4) 7.737e-17 + CH4 7.737e-17 7.750e-17 -16.111 -16.111 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -26587,13 +26577,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.210e-13 - H2 3.105e-13 3.110e-13 -12.508 -12.507 0.001 (0) +H(0) 5.955e-13 + H2 2.978e-13 2.983e-13 -12.526 -12.525 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.368 -67.367 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.767 -69.766 0.001 (0) -[13C](-4) 1.014e-18 - [13C]H4 1.014e-18 1.015e-18 -17.994 -17.993 0.001 (0) + O2 0.000e+00 0.000e+00 -67.332 -67.331 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.731 -69.730 0.001 (0) +[13C](-4) 8.577e-19 + [13C]H4 8.577e-19 8.591e-19 -18.067 -18.066 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -26612,8 +26602,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.552e-32 - [14C]H4 3.552e-32 3.558e-32 -31.449 -31.449 0.001 (0) +[14C](-4) 3.005e-32 + [14C]H4 3.005e-32 3.010e-32 -31.522 -31.521 0.001 (0) [14C](4) 2.301e-18 H[14C]O3- 1.859e-18 1.701e-18 -17.731 -17.769 -0.039 (0) [14C]O2 3.868e-19 3.874e-19 -18.413 -18.412 0.001 (0) @@ -26642,22 +26632,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.767 -69.766 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.768 -72.767 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.731 -69.730 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.732 -72.731 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.13 -17.99 -2.86 [13C]H4 + [13C]H4(g) -15.21 -18.07 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.31 -23.81 -1.50 [14C][18O]2 - [14C]H4(g) -28.59 -31.45 -2.86 [14C]H4 + [14C]H4(g) -28.66 -31.52 -2.86 [14C]H4 [14C]O2(g) -16.94 -18.41 -1.47 [14C]O2 [14C]O[18O](g) -19.32 -21.11 -1.79 [14C]O[18O] - [18O]2(g) -70.48 -72.77 -2.29 [18O]2 + [18O]2(g) -70.44 -72.73 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -26671,14 +26661,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.18 -16.04 -2.86 CH4 + CH4(g) -13.25 -16.11 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.36 -12.51 -3.15 H2 + H2(g) -9.38 -12.53 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.47 -67.37 -2.89 O2 - O[18O](g) -67.17 -70.07 -2.89 O[18O] + O2(g) -64.44 -67.33 -2.89 O2 + O[18O](g) -67.14 -70.03 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -26787,14 +26777,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.9944e-12 0 +Alpha 18O HCO3-/H2O(l) 1 6.6613e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5581e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6439e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 7.1054e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.954e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -7.2164e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.5432e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -26812,16 +26802,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.318 Adjusted to redox equilibrium + pe = -2.294 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.891e-13 + Electrical balance (eq) = 6.471e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 125 (226 overall) + Iterations = 48 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -26833,8 +26823,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.086e-16 - CH4 1.086e-16 1.088e-16 -15.964 -15.964 0.001 (0) +C(-4) 6.950e-17 + CH4 6.950e-17 6.961e-17 -16.158 -16.157 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -26863,13 +26853,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.482e-13 - H2 3.241e-13 3.246e-13 -12.489 -12.489 0.001 (0) +H(0) 5.798e-13 + H2 2.899e-13 2.904e-13 -12.538 -12.537 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.405 -67.405 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.804 -69.804 0.001 (0) -[13C](-4) 1.204e-18 - [13C]H4 1.204e-18 1.206e-18 -17.920 -17.919 0.001 (0) + O2 0.000e+00 0.000e+00 -67.308 -67.308 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.707 -69.707 0.001 (0) +[13C](-4) 7.704e-19 + [13C]H4 7.704e-19 7.717e-19 -18.113 -18.113 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -26888,8 +26878,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.885e-32 - [14C]H4 3.885e-32 3.891e-32 -31.411 -31.410 0.001 (0) +[14C](-4) 2.487e-32 + [14C]H4 2.487e-32 2.491e-32 -31.604 -31.604 0.001 (0) [14C](4) 2.120e-18 H[14C]O3- 1.712e-18 1.567e-18 -17.766 -17.805 -0.039 (0) [14C]O2 3.563e-19 3.569e-19 -18.448 -18.447 0.001 (0) @@ -26918,22 +26908,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.804 -69.804 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.805 -72.805 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.707 -69.707 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.708 -72.708 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.06 -17.92 -2.86 [13C]H4 + [13C]H4(g) -15.25 -18.11 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.34 -23.85 -1.50 [14C][18O]2 - [14C]H4(g) -28.55 -31.41 -2.86 [14C]H4 + [14C]H4(g) -28.74 -31.60 -2.86 [14C]H4 [14C]O2(g) -16.98 -18.45 -1.47 [14C]O2 [14C]O[18O](g) -19.36 -21.15 -1.79 [14C]O[18O] - [18O]2(g) -70.51 -72.80 -2.29 [18O]2 + [18O]2(g) -70.42 -72.71 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -26947,14 +26937,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.10 -15.96 -2.86 CH4 + CH4(g) -13.30 -16.16 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.34 -12.49 -3.15 H2 + H2(g) -9.39 -12.54 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.51 -67.40 -2.89 O2 - O[18O](g) -67.21 -70.10 -2.89 O[18O] + O2(g) -64.42 -67.31 -2.89 O2 + O[18O](g) -67.12 -70.01 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -27063,14 +27053,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5767e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6609e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 -7.2164e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 -2.9976e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 8.8818e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.1324e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -27088,16 +27078,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.310 Adjusted to redox equilibrium + pe = -2.292 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.891e-13 + Electrical balance (eq) = 6.471e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 112 (213 overall) + Iterations = 68 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -27109,8 +27099,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 9.291e-17 - CH4 9.291e-17 9.307e-17 -16.032 -16.031 0.001 (0) +C(-4) 6.669e-17 + CH4 6.669e-17 6.680e-17 -16.176 -16.175 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -27139,13 +27129,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.234e-13 - H2 3.117e-13 3.122e-13 -12.506 -12.506 0.001 (0) +H(0) 5.738e-13 + H2 2.869e-13 2.874e-13 -12.542 -12.542 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.371 -67.371 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.770 -69.770 0.001 (0) -[13C](-4) 1.030e-18 - [13C]H4 1.030e-18 1.032e-18 -17.987 -17.986 0.001 (0) + O2 0.000e+00 0.000e+00 -67.299 -67.299 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.698 -69.698 0.001 (0) +[13C](-4) 7.392e-19 + [13C]H4 7.392e-19 7.404e-19 -18.131 -18.131 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -27164,8 +27154,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.063e-32 - [14C]H4 3.063e-32 3.068e-32 -31.514 -31.513 0.001 (0) +[14C](-4) 2.198e-32 + [14C]H4 2.198e-32 2.202e-32 -31.658 -31.657 0.001 (0) [14C](4) 1.953e-18 H[14C]O3- 1.577e-18 1.443e-18 -17.802 -17.841 -0.039 (0) [14C]O2 3.282e-19 3.288e-19 -18.484 -18.483 0.001 (0) @@ -27194,22 +27184,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.770 -69.770 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.771 -72.771 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.698 -69.698 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.699 -72.699 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -15.13 -17.99 -2.86 [13C]H4 + [13C]H4(g) -15.27 -18.13 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.38 -23.88 -1.50 [14C][18O]2 - [14C]H4(g) -28.65 -31.51 -2.86 [14C]H4 + [14C]H4(g) -28.80 -31.66 -2.86 [14C]H4 [14C]O2(g) -17.01 -18.48 -1.47 [14C]O2 [14C]O[18O](g) -19.40 -21.18 -1.79 [14C]O[18O] - [18O]2(g) -70.48 -72.77 -2.29 [18O]2 + [18O]2(g) -70.41 -72.70 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -27223,14 +27213,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.17 -16.03 -2.86 CH4 + CH4(g) -13.32 -16.18 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.36 -12.51 -3.15 H2 + H2(g) -9.39 -12.54 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.48 -67.37 -2.89 O2 - O[18O](g) -67.18 -70.07 -2.89 O[18O] + O2(g) -64.41 -67.30 -2.89 O2 + O[18O](g) -67.11 -70.00 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -27339,14 +27329,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7619e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8152e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 9.992e-12 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.843e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 -2.2204e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 2.2204e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -27364,16 +27354,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.327 Adjusted to redox equilibrium + pe = -2.315 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.891e-13 + Electrical balance (eq) = 6.471e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 51 + Iterations = 130 (231 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -27385,8 +27375,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.279e-16 - CH4 1.279e-16 1.281e-16 -15.893 -15.892 0.001 (0) +C(-4) 1.024e-16 + CH4 1.024e-16 1.026e-16 -15.990 -15.989 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -27415,13 +27405,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.753e-13 - H2 3.376e-13 3.382e-13 -12.472 -12.471 0.001 (0) +H(0) 6.387e-13 + H2 3.194e-13 3.199e-13 -12.496 -12.495 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.441 -67.440 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.840 -69.839 0.001 (0) -[13C](-4) 1.418e-18 - [13C]H4 1.418e-18 1.420e-18 -17.848 -17.848 0.001 (0) + O2 0.000e+00 0.000e+00 -67.392 -67.392 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.791 -69.791 0.001 (0) +[13C](-4) 1.135e-18 + [13C]H4 1.135e-18 1.137e-18 -17.945 -17.944 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -27440,8 +27430,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 3.884e-32 - [14C]H4 3.884e-32 3.891e-32 -31.411 -31.410 0.001 (0) +[14C](-4) 3.109e-32 + [14C]H4 3.109e-32 3.114e-32 -31.507 -31.507 0.001 (0) [14C](4) 1.799e-18 H[14C]O3- 1.453e-18 1.329e-18 -17.838 -17.876 -0.039 (0) [14C]O2 3.024e-19 3.029e-19 -18.519 -18.519 0.001 (0) @@ -27470,22 +27460,22 @@ O(0) 0.000e+00 CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.840 -69.839 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.841 -72.840 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.791 -69.791 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.793 -72.792 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.99 -17.85 -2.86 [13C]H4 + [13C]H4(g) -15.08 -17.94 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.42 -23.92 -1.50 [14C][18O]2 - [14C]H4(g) -28.55 -31.41 -2.86 [14C]H4 + [14C]H4(g) -28.65 -31.51 -2.86 [14C]H4 [14C]O2(g) -17.05 -18.52 -1.47 [14C]O2 [14C]O[18O](g) -19.43 -21.22 -1.79 [14C]O[18O] - [18O]2(g) -70.55 -72.84 -2.29 [18O]2 + [18O]2(g) -70.50 -72.79 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -27499,14 +27489,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -13.03 -15.89 -2.86 CH4 + CH4(g) -13.13 -15.99 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.32 -12.47 -3.15 H2 + H2(g) -9.34 -12.49 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.55 -67.44 -2.89 O2 - O[18O](g) -67.25 -70.14 -2.89 O[18O] + O2(g) -64.50 -67.39 -2.89 O2 + O[18O](g) -67.20 -70.09 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -27615,14 +27605,14 @@ Calcite 5.00e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7341e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7542e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.0214e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 8.2157e-12 0 +Alpha 13C CH4(aq)/CO2(aq) 1 8.8818e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 8.8818e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -27640,16 +27630,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -2.337 Adjusted to redox equilibrium + pe = -2.320 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.891e-13 + Electrical balance (eq) = 6.471e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 52 + Iterations = 106 (207 overall) Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -27661,8 +27651,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.521e-16 - CH4 1.521e-16 1.524e-16 -15.818 -15.817 0.001 (0) +C(-4) 1.109e-16 + CH4 1.109e-16 1.111e-16 -15.955 -15.954 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -27691,13 +27681,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.097e-08 6.107e-08 -7.215 -7.214 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.052e-13 - H2 3.526e-13 3.532e-13 -12.453 -12.452 0.001 (0) +H(0) 6.517e-13 + H2 3.258e-13 3.264e-13 -12.487 -12.486 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -67.478 -67.478 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -69.877 -69.877 0.001 (0) -[13C](-4) 1.686e-18 - [13C]H4 1.686e-18 1.689e-18 -17.773 -17.772 0.001 (0) + O2 0.000e+00 0.000e+00 -67.410 -67.409 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.809 -69.808 0.001 (0) +[13C](-4) 1.230e-18 + [13C]H4 1.230e-18 1.232e-18 -17.910 -17.910 0.001 (0) [13C](4) 6.520e-05 H[13C]O3- 5.259e-05 4.811e-05 -4.279 -4.318 -0.039 (0) [13C]O2 1.104e-05 1.106e-05 -4.957 -4.956 0.001 (0) @@ -27716,8 +27706,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) H[13C]O[18O]2- 2.094e-10 1.915e-10 -9.679 -9.718 -0.039 (0) [13C]O2[18O]-2 1.872e-10 1.311e-10 -9.728 -9.882 -0.155 (0) -[14C](-4) 4.256e-32 - [14C]H4 4.256e-32 4.263e-32 -31.371 -31.370 0.001 (0) +[14C](-4) 3.103e-32 + [14C]H4 3.103e-32 3.108e-32 -31.508 -31.508 0.001 (0) [14C](4) 1.657e-18 H[14C]O3- 1.339e-18 1.225e-18 -17.873 -17.912 -0.039 (0) [14C]O2 2.786e-19 2.790e-19 -18.555 -18.554 0.001 (0) @@ -27746,22 +27736,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -69.877 -69.877 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -72.879 -72.878 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -69.809 -69.808 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -72.810 -72.809 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -14.91 -17.77 -2.86 [13C]H4 + [13C]H4(g) -15.05 -17.91 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -22.45 -23.95 -1.50 [14C][18O]2 - [14C]H4(g) -28.51 -31.37 -2.86 [14C]H4 + [14C]H4(g) -28.65 -31.51 -2.86 [14C]H4 [14C]O2(g) -17.09 -18.55 -1.47 [14C]O2 [14C]O[18O](g) -19.47 -21.25 -1.79 [14C]O[18O] - [18O]2(g) -70.59 -72.88 -2.29 [18O]2 + [18O]2(g) -70.52 -72.81 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -27775,14 +27765,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -12.96 -15.82 -2.86 CH4 + CH4(g) -13.09 -15.95 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -9.30 -12.45 -3.15 H2 + H2(g) -9.34 -12.49 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -64.59 -67.48 -2.89 O2 - O[18O](g) -67.29 -70.18 -2.89 O[18O] + O2(g) -64.52 -67.41 -2.89 O2 + O[18O](g) -67.22 -70.11 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -28541,7 +28531,7 @@ Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8096e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.3664e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 @@ -28580,7 +28570,7 @@ Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 OH- 3.415e-08 3.176e-08 -7.467 -7.498 -0.032 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.330 -122.330 0.000 (0) + CH4 0.000e+00 0.000e+00 -122.330 -122.329 0.000 (0) C(4) 4.904e-03 HCO3- 2.915e-03 2.713e-03 -2.535 -2.567 -0.031 (0) CO2 1.921e-03 1.923e-03 -2.716 -2.716 0.000 (0) @@ -28609,12 +28599,12 @@ Ca 1.504e-03 Ca[13C]O3 8.262e-09 8.270e-09 -8.083 -8.082 0.000 (0) CaCO2[18O] 4.490e-09 4.494e-09 -8.348 -8.347 0.000 (0) H(0) 1.410e-39 - H2 7.048e-40 7.055e-40 -39.152 -39.152 0.000 (0) -O(0) 1.673e-14 - O2 8.334e-15 8.342e-15 -14.079 -14.079 0.000 (0) - O[18O] 3.326e-17 3.329e-17 -16.478 -16.478 0.000 (0) + H2 7.050e-40 7.058e-40 -39.152 -39.151 0.000 (0) +O(0) 1.672e-14 + O2 8.327e-15 8.336e-15 -14.079 -14.079 0.000 (0) + O[18O] 3.323e-17 3.326e-17 -16.478 -16.478 0.000 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.292 -124.291 0.000 (0) + [13C]H4 0.000e+00 0.000e+00 -124.291 -124.290 0.000 (0) [13C](4) 5.391e-05 H[13C]O3- 3.215e-05 2.993e-05 -4.493 -4.524 -0.031 (0) [13C]O2 2.101e-05 2.103e-05 -4.678 -4.677 0.000 (0) @@ -28633,7 +28623,7 @@ O(0) 1.673e-14 H[13C][18O]O[18O]- 1.280e-10 1.191e-10 -9.893 -9.924 -0.031 (0) [13C][18O]2 9.082e-11 9.091e-11 -10.042 -10.041 0.000 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.417 -134.416 0.000 (0) + [14C]H4 0.000e+00 0.000e+00 -134.416 -134.416 0.000 (0) [14C](4) 4.061e-15 H[14C]O3- 2.430e-15 2.262e-15 -14.614 -14.645 -0.031 (0) [14C]O2 1.574e-15 1.576e-15 -14.803 -14.802 0.000 (0) @@ -28657,9 +28647,9 @@ O(0) 1.673e-14 HC[18O]O2- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) HCO[18O]O- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) HCO2[18O]- 5.816e-06 5.413e-06 -5.235 -5.267 -0.031 (0) -[18O](0) 3.332e-17 - O[18O] 3.326e-17 3.329e-17 -16.478 -16.478 0.000 (0) - [18O]2 3.318e-20 3.321e-20 -19.479 -19.479 0.000 (0) +[18O](0) 3.329e-17 + O[18O] 3.323e-17 3.326e-17 -16.478 -16.478 0.000 (0) + [18O]2 3.315e-20 3.318e-20 -19.480 -19.479 0.000 (0) ------------------------------Saturation indices------------------------------- @@ -28783,10 +28773,10 @@ Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O O2(aq)/H2O(l) 1 -2.2545e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 0 0 +Alpha 18O HCO3-/H2O(l) 1 2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8202e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.4985e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 @@ -28825,7 +28815,7 @@ Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 OH- 6.090e-08 5.607e-08 -7.215 -7.251 -0.036 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.123 -122.122 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.125 -122.124 0.001 (0) C(4) 5.400e-03 HCO3- 3.868e-03 3.565e-03 -2.413 -2.448 -0.035 (0) CO2 1.430e-03 1.432e-03 -2.845 -2.844 0.001 (0) @@ -28855,13 +28845,13 @@ Ca 2.006e-03 CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) Ca[13C]O3 2.442e-08 2.445e-08 -7.612 -7.612 0.001 (0) CaCO2[18O] 1.326e-08 1.328e-08 -7.877 -7.877 0.001 (0) -H(0) 1.710e-39 - H2 8.549e-40 8.560e-40 -39.068 -39.068 0.001 (0) -O(0) 1.136e-14 - O2 5.658e-15 5.666e-15 -14.247 -14.247 0.001 (0) - O[18O] 2.258e-17 2.261e-17 -16.646 -16.646 0.001 (0) +H(0) 1.708e-39 + H2 8.539e-40 8.550e-40 -39.069 -39.068 0.001 (0) +O(0) 1.139e-14 + O2 5.672e-15 5.679e-15 -14.246 -14.246 0.001 (0) + O[18O] 2.263e-17 2.266e-17 -16.645 -16.645 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.084 -124.083 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.086 -124.085 0.001 (0) [13C](4) 5.947e-05 H[13C]O3- 4.269e-05 3.935e-05 -4.370 -4.405 -0.035 (0) [13C]O2 1.564e-05 1.566e-05 -4.806 -4.805 0.001 (0) @@ -28882,7 +28872,7 @@ O(0) 1.136e-14 [13C]O2[18O]-2 8.578e-11 6.191e-11 -10.067 -10.208 -0.142 (0) [13C][18O]2 6.763e-11 6.772e-11 -10.170 -10.169 0.001 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.252 -134.251 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -134.254 -134.254 0.001 (0) [14C](4) 4.061e-15 H[14C]O3- 2.922e-15 2.694e-15 -14.534 -14.570 -0.035 (0) [14C]O2 1.062e-15 1.063e-15 -14.974 -14.973 0.001 (0) @@ -28911,16 +28901,16 @@ O(0) 1.136e-14 CaHCO2[18O]+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) CaHCO[18O]O+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) CaHC[18O]O2+ 1.383e-07 1.277e-07 -6.859 -6.894 -0.034 (0) -[18O](0) 2.262e-17 - O[18O] 2.258e-17 2.261e-17 -16.646 -16.646 0.001 (0) - [18O]2 2.252e-20 2.256e-20 -19.647 -19.647 0.001 (0) +[18O](0) 2.268e-17 + O[18O] 2.263e-17 2.266e-17 -16.645 -16.645 0.001 (0) + [18O]2 2.258e-20 2.261e-20 -19.646 -19.646 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.70 -10.21 -1.50 [13C][18O]2 - [13C]H4(g) -121.22 -124.08 -2.86 [13C]H4 + [13C]H4(g) -121.23 -124.09 -2.86 [13C]H4 [13C]O2(g) -3.34 -4.81 -1.47 [13C]O2 [13C]O[18O](g) -5.72 -7.51 -1.79 [13C]O[18O] [14C][18O]2(g) -18.87 -20.37 -1.50 [14C][18O]2 @@ -29038,12 +29028,12 @@ Calcite 5.60e-05 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2545e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2548e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -4.4409e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.653e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.715e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -29063,7 +29053,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.791 Adjusted to redox equilibrium + pe = 10.790 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 @@ -29072,7 +29062,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 Temperature (°C) = 25.00 Electrical balance (eq) = 5.094e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 77 + Iterations = 84 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -29085,7 +29075,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.842 -120.842 0.001 (0) + CH4 0.000e+00 0.000e+00 -120.828 -120.827 0.001 (0) C(4) 5.841e-03 HCO3- 4.704e-03 4.304e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.976e-04 -3.002 -3.001 0.001 (0) @@ -29114,13 +29104,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.023e-08 6.033e-08 -7.220 -7.219 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 3.910e-39 - H2 1.955e-39 1.958e-39 -38.709 -38.708 0.001 (0) -O(0) 2.171e-15 - O2 1.081e-15 1.083e-15 -14.966 -14.965 0.001 (0) - O[18O] 4.314e-18 4.321e-18 -17.365 -17.364 0.001 (0) +H(0) 3.942e-39 + H2 1.971e-39 1.974e-39 -38.705 -38.705 0.001 (0) +O(0) 2.135e-15 + O2 1.063e-15 1.065e-15 -14.973 -14.973 0.001 (0) + O[18O] 4.244e-18 4.250e-18 -17.372 -17.372 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -122.803 -122.802 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -122.789 -122.788 0.001 (0) [13C](4) 6.441e-05 H[13C]O3- 5.195e-05 4.753e-05 -4.284 -4.323 -0.039 (0) [13C]O2 1.090e-05 1.092e-05 -4.962 -4.962 0.001 (0) @@ -29140,7 +29130,7 @@ O(0) 2.171e-15 H[13C]O[18O]2- 2.068e-10 1.892e-10 -9.684 -9.723 -0.039 (0) [13C]O2[18O]-2 1.849e-10 1.295e-10 -9.733 -9.888 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -133.011 -133.010 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -132.996 -132.996 0.001 (0) [14C](4) 4.023e-15 H[14C]O3- 3.250e-15 2.973e-15 -14.488 -14.527 -0.039 (0) [14C]O2 6.762e-16 6.773e-16 -15.170 -15.169 0.001 (0) @@ -29168,20 +29158,20 @@ O(0) 2.171e-15 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.323e-18 - O[18O] 4.314e-18 4.321e-18 -17.365 -17.364 0.001 (0) - [18O]2 4.304e-21 4.311e-21 -20.366 -20.365 0.001 (0) +[18O](0) 4.252e-18 + O[18O] 4.244e-18 4.250e-18 -17.372 -17.372 0.001 (0) + [18O]2 4.233e-21 4.240e-21 -20.373 -20.373 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -119.94 -122.80 -2.86 [13C]H4 + [13C]H4(g) -119.93 -122.79 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.07 -20.57 -1.50 [14C][18O]2 - [14C]H4(g) -130.15 -133.01 -2.86 [14C]H4 + [14C]H4(g) -130.14 -133.00 -2.86 [14C]H4 [14C]O2(g) -13.70 -15.17 -1.47 [14C]O2 [14C]O[18O](g) -16.08 -17.87 -1.79 [14C]O[18O] [18O]2(g) -18.08 -20.37 -2.29 [18O]2 @@ -29198,14 +29188,14 @@ O(0) 2.171e-15 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -117.98 -120.84 -2.86 CH4 + CH4(g) -117.97 -120.83 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.56 -38.71 -3.15 H2 + H2(g) -35.55 -38.70 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -12.07 -14.97 -2.89 O2 - O[18O](g) -14.77 -17.67 -2.89 O[18O] + O2(g) -12.08 -14.97 -2.89 O2 + O[18O](g) -14.78 -17.67 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -29297,14 +29287,14 @@ Calcite 5.56e-04 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.637e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.702e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 -Alpha 13C CH4(aq)/CO2(aq) 1 1.3323e-11 0 -Alpha 14C CH4(aq)/CO2(aq) 1 1.1324e-11 0 +Alpha 13C CH4(aq)/CO2(aq) 1 1.3323e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.521e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -29322,14 +29312,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = -1.460 Adjusted to redox equilibrium + pe = -1.450 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.841e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 4.012e-13 + Electrical balance (eq) = 4.020e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 19 Total H = 1.110126e+02 @@ -29343,8 +29333,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 1.483e-23 - CH4 1.483e-23 1.486e-23 -22.829 -22.828 0.001 (0) +C(-4) 1.234e-23 + CH4 1.234e-23 1.236e-23 -22.909 -22.908 0.001 (0) C(4) 5.841e-03 HCO3- 4.704e-03 4.304e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -29373,13 +29363,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.028e-08 6.038e-08 -7.220 -7.219 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.246e-14 - H2 6.231e-15 6.241e-15 -14.205 -14.205 0.001 (0) +H(0) 1.190e-14 + H2 5.951e-15 5.961e-15 -14.225 -14.225 0.001 (0) O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.973 -63.972 0.001 (0) - O[18O] 0.000e+00 0.000e+00 -66.372 -66.371 0.001 (0) -[13C](-4) 1.626e-25 - [13C]H4 1.626e-25 1.628e-25 -24.789 -24.788 0.001 (0) + O2 0.000e+00 0.000e+00 -63.933 -63.932 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.332 -66.331 0.001 (0) +[13C](-4) 1.353e-25 + [13C]H4 1.353e-25 1.355e-25 -24.869 -24.868 0.001 (0) [13C](4) 6.447e-05 H[13C]O3- 5.200e-05 4.757e-05 -4.284 -4.323 -0.039 (0) [13C]O2 1.091e-05 1.093e-05 -4.962 -4.961 0.001 (0) @@ -29398,8 +29388,8 @@ O(0) 0.000e+00 H[13C][18O]2O- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) H[13C]O[18O]2- 2.070e-10 1.894e-10 -9.684 -9.723 -0.039 (0) [13C]O2[18O]-2 1.851e-10 1.297e-10 -9.733 -9.887 -0.155 (0) -[14C](-4) 9.285e-36 - [14C]H4 9.285e-36 9.301e-36 -35.032 -35.031 0.001 (0) +[14C](-4) 7.726e-36 + [14C]H4 7.726e-36 7.738e-36 -35.112 -35.111 0.001 (0) [14C](4) 3.709e-15 H[14C]O3- 2.996e-15 2.741e-15 -14.523 -14.562 -0.039 (0) [14C]O2 6.234e-16 6.244e-16 -15.205 -15.205 0.001 (0) @@ -29428,22 +29418,22 @@ O(0) 0.000e+00 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) [18O](0) 0.000e+00 - O[18O] 0.000e+00 0.000e+00 -66.372 -66.371 0.001 (0) - [18O]2 0.000e+00 0.000e+00 -69.373 -69.372 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.332 -66.331 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -69.333 -69.332 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -21.93 -24.79 -2.86 [13C]H4 + [13C]H4(g) -22.01 -24.87 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.10 -20.60 -1.50 [14C][18O]2 - [14C]H4(g) -32.17 -35.03 -2.86 [14C]H4 + [14C]H4(g) -32.25 -35.11 -2.86 [14C]H4 [14C]O2(g) -13.74 -15.20 -1.47 [14C]O2 [14C]O[18O](g) -16.12 -17.90 -1.79 [14C]O[18O] - [18O]2(g) -67.08 -69.37 -2.29 [18O]2 + [18O]2(g) -67.04 -69.33 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -29457,14 +29447,14 @@ O(0) 0.000e+00 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -19.97 -22.83 -2.86 CH4 + CH4(g) -20.05 -22.91 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -11.05 -14.20 -3.15 H2 + H2(g) -11.07 -14.22 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -61.08 -63.97 -2.89 O2 - O[18O](g) -63.78 -66.67 -2.89 O[18O] + O2(g) -61.04 -63.93 -2.89 O2 + O[18O](g) -63.74 -66.63 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -29534,17 +29524,17 @@ Calcite 1.06e-03 R(18O) H3O+ 2.04132e-03 18.011 permil R(18O) O2(aq) 1.99518e-03 -4.9968 permil R(13C) CO2(aq) 1.09684e-02 -18.949 permil - R(14C) CO2(aq) 5.80599e-13 49.375 pmc + R(14C) CO2(aq) 5.80598e-13 49.375 pmc R(18O) CO2(aq) 2.07915e-03 36.877 permil R(18O) HCO3- 1.99518e-03 -4.9968 permil R(13C) HCO3- 1.10638e-02 -10.413 permil R(14C) HCO3- 5.90745e-13 50.238 pmc R(18O) CO3-2 1.99518e-03 -4.9968 permil R(13C) CO3-2 1.10479e-02 -11.834 permil - R(14C) CO3-2 5.89051e-13 50.094 pmc + R(14C) CO3-2 5.89050e-13 50.094 pmc R(18O) Calcite 2.05262e-03 23.649 permil R(13C) Calcite 1.10857e-02 -8.4535 permil - R(14C) Calcite 5.93088e-13 50.437 pmc + R(14C) Calcite 5.93087e-13 50.437 pmc --------------------------------Isotope Alphas--------------------------------- @@ -29554,12 +29544,12 @@ Calcite 1.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2516e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2634e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6414e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6428e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -29579,14 +29569,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.997 Adjusted to redox equilibrium + pe = 10.952 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.128e-13 + Electrical balance (eq) = 3.402e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 15 Total H = 1.110126e+02 @@ -29601,7 +29591,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.489 -122.488 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.126 -122.126 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.304e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -29630,13 +29620,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.033e-08 6.043e-08 -7.219 -7.219 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.515e-39 - H2 7.576e-40 7.588e-40 -39.121 -39.120 0.001 (0) -O(0) 1.445e-14 - O2 7.198e-15 7.210e-15 -14.143 -14.142 0.001 (0) - O[18O] 2.872e-17 2.877e-17 -16.542 -16.541 0.001 (0) +H(0) 1.867e-39 + H2 9.335e-40 9.351e-40 -39.030 -39.029 0.001 (0) +O(0) 9.519e-15 + O2 4.741e-15 4.748e-15 -14.324 -14.323 0.001 (0) + O[18O] 1.892e-17 1.895e-17 -16.723 -16.722 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.449 -124.448 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.086 -124.085 0.001 (0) [13C](4) 6.452e-05 H[13C]O3- 5.204e-05 4.761e-05 -4.284 -4.322 -0.039 (0) [13C]O2 1.092e-05 1.094e-05 -4.962 -4.961 0.001 (0) @@ -29656,7 +29646,7 @@ O(0) 1.445e-14 H[13C]O[18O]2- 2.072e-10 1.895e-10 -9.684 -9.722 -0.039 (0) [13C]O2[18O]-2 1.853e-10 1.298e-10 -9.732 -9.887 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.725 -134.725 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -134.362 -134.362 0.001 (0) [14C](4) 3.440e-15 H[14C]O3- 2.779e-15 2.542e-15 -14.556 -14.595 -0.039 (0) [14C]O2 5.782e-16 5.792e-16 -15.238 -15.237 0.001 (0) @@ -29684,23 +29674,23 @@ O(0) 1.445e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.878e-17 - O[18O] 2.872e-17 2.877e-17 -16.542 -16.541 0.001 (0) - [18O]2 2.865e-20 2.870e-20 -19.543 -19.542 0.001 (0) +[18O](0) 1.895e-17 + O[18O] 1.892e-17 1.895e-17 -16.723 -16.722 0.001 (0) + [18O]2 1.887e-20 1.890e-20 -19.724 -19.723 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.59 -124.45 -2.86 [13C]H4 + [13C]H4(g) -121.23 -124.09 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.13 -20.64 -1.50 [14C][18O]2 - [14C]H4(g) -131.86 -134.72 -2.86 [14C]H4 + [14C]H4(g) -131.50 -134.36 -2.86 [14C]H4 [14C]O2(g) -13.77 -15.24 -1.47 [14C]O2 [14C]O[18O](g) -16.15 -17.94 -1.79 [14C]O[18O] - [18O]2(g) -17.25 -19.54 -2.29 [18O]2 + [18O]2(g) -17.43 -19.72 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -29714,14 +29704,14 @@ O(0) 1.445e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.63 -122.49 -2.86 CH4 + CH4(g) -119.27 -122.13 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.97 -39.12 -3.15 H2 + H2(g) -35.88 -39.03 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.25 -14.14 -2.89 O2 - O[18O](g) -13.95 -16.84 -2.89 O[18O] + O2(g) -11.43 -14.32 -2.89 O2 + O[18O](g) -14.13 -17.02 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -29791,17 +29781,17 @@ Calcite 1.56e-03 R(18O) H3O+ 2.04132e-03 18.011 permil R(18O) O2(aq) 1.99518e-03 -4.9966 permil R(13C) CO2(aq) 1.09762e-02 -18.247 permil - R(14C) CO2(aq) 5.41392e-13 46.041 pmc + R(14C) CO2(aq) 5.41391e-13 46.041 pmc R(18O) CO2(aq) 2.07915e-03 36.877 permil R(18O) HCO3- 1.99518e-03 -4.9966 permil R(13C) HCO3- 1.10717e-02 -9.7061 permil - R(14C) HCO3- 5.50853e-13 46.846 pmc + R(14C) HCO3- 5.50852e-13 46.846 pmc R(18O) CO3-2 1.99518e-03 -4.9966 permil R(13C) CO3-2 1.10558e-02 -11.127 permil - R(14C) CO3-2 5.49273e-13 46.711 pmc + R(14C) CO3-2 5.49272e-13 46.711 pmc R(18O) Calcite 2.05262e-03 23.65 permil R(13C) Calcite 1.10936e-02 -7.7446 permil - R(14C) Calcite 5.53037e-13 47.031 pmc + R(14C) Calcite 5.53036e-13 47.031 pmc --------------------------------Isotope Alphas--------------------------------- @@ -29811,12 +29801,12 @@ Calcite 1.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2702e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2818e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 4.4409e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6221e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6194e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -29836,14 +29826,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.052 Adjusted to redox equilibrium + pe = 10.996 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.128e-13 + Electrical balance (eq) = 3.402e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 4 Total H = 1.110126e+02 @@ -29858,7 +29848,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.926 -122.925 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.482 -122.481 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -29887,13 +29877,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.038e-08 6.048e-08 -7.219 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.178e-39 - H2 5.891e-40 5.900e-40 -39.230 -39.229 0.001 (0) -O(0) 2.391e-14 - O2 1.191e-14 1.193e-14 -13.924 -13.924 0.001 (0) - O[18O] 4.751e-17 4.759e-17 -16.323 -16.323 0.001 (0) +H(0) 1.522e-39 + H2 7.608e-40 7.621e-40 -39.119 -39.118 0.001 (0) +O(0) 1.433e-14 + O2 7.137e-15 7.149e-15 -14.146 -14.146 0.001 (0) + O[18O] 2.848e-17 2.853e-17 -16.545 -16.545 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.886 -124.885 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.441 -124.441 0.001 (0) [13C](4) 6.457e-05 H[13C]O3- 5.208e-05 4.765e-05 -4.283 -4.322 -0.039 (0) [13C]O2 1.093e-05 1.095e-05 -4.961 -4.961 0.001 (0) @@ -29913,7 +29903,7 @@ O(0) 2.391e-14 H[13C]O[18O]2- 2.073e-10 1.897e-10 -9.683 -9.722 -0.039 (0) [13C]O2[18O]-2 1.854e-10 1.299e-10 -9.732 -9.886 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -135.193 -135.192 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -134.748 -134.748 0.001 (0) [14C](4) 3.208e-15 H[14C]O3- 2.591e-15 2.371e-15 -14.587 -14.625 -0.039 (0) [14C]O2 5.392e-16 5.401e-16 -15.268 -15.268 0.001 (0) @@ -29941,23 +29931,23 @@ O(0) 2.391e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 4.760e-17 - O[18O] 4.751e-17 4.759e-17 -16.323 -16.323 0.001 (0) - [18O]2 4.739e-20 4.747e-20 -19.324 -19.324 0.001 (0) +[18O](0) 2.854e-17 + O[18O] 2.848e-17 2.853e-17 -16.545 -16.545 0.001 (0) + [18O]2 2.841e-20 2.846e-20 -19.547 -19.546 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.03 -124.89 -2.86 [13C]H4 + [13C]H4(g) -121.58 -124.44 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.16 -20.67 -1.50 [14C][18O]2 - [14C]H4(g) -132.33 -135.19 -2.86 [14C]H4 + [14C]H4(g) -131.89 -134.75 -2.86 [14C]H4 [14C]O2(g) -13.80 -15.27 -1.47 [14C]O2 [14C]O[18O](g) -16.18 -17.97 -1.79 [14C]O[18O] - [18O]2(g) -17.03 -19.32 -2.29 [18O]2 + [18O]2(g) -17.26 -19.55 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -29971,14 +29961,14 @@ O(0) 2.391e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.07 -122.93 -2.86 CH4 + CH4(g) -119.62 -122.48 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.08 -39.23 -3.15 H2 + H2(g) -35.97 -39.12 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.03 -13.92 -2.89 O2 - O[18O](g) -13.73 -16.62 -2.89 O[18O] + O2(g) -11.25 -14.15 -2.89 O2 + O[18O](g) -13.95 -16.85 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -30068,12 +30058,12 @@ Calcite 2.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2647e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2764e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.7724e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5002e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6344e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -30093,14 +30083,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.996 Adjusted to redox equilibrium + pe = 10.457 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.128e-13 + Electrical balance (eq) = 3.402e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -30115,7 +30105,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.481 -122.480 0.001 (0) + CH4 0.000e+00 0.000e+00 -118.167 -118.166 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -30144,13 +30134,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.041e-08 6.051e-08 -7.219 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.522e-39 - H2 7.612e-40 7.625e-40 -39.118 -39.118 0.001 (0) -O(0) 1.432e-14 - O2 7.129e-15 7.141e-15 -14.147 -14.146 0.001 (0) - O[18O] 2.845e-17 2.850e-17 -16.546 -16.545 0.001 (0) +H(0) 1.824e-38 + H2 9.121e-39 9.136e-39 -38.040 -38.039 0.001 (0) +O(0) 9.973e-17 + O2 4.967e-17 4.975e-17 -16.304 -16.303 0.001 (0) + O[18O] 1.982e-19 1.985e-19 -18.703 -18.702 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -124.440 -124.439 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -120.126 -120.125 0.001 (0) [13C](4) 6.461e-05 H[13C]O3- 5.211e-05 4.768e-05 -4.283 -4.322 -0.039 (0) [13C]O2 1.094e-05 1.096e-05 -4.961 -4.960 0.001 (0) @@ -30170,7 +30160,7 @@ O(0) 1.432e-14 H[13C]O[18O]2- 2.074e-10 1.898e-10 -9.683 -9.722 -0.039 (0) [13C]O2[18O]-2 1.855e-10 1.300e-10 -9.732 -9.886 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.776 -134.775 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -130.462 -130.461 0.001 (0) [14C](4) 3.005e-15 H[14C]O3- 2.427e-15 2.221e-15 -14.615 -14.654 -0.039 (0) [14C]O2 5.051e-16 5.059e-16 -15.297 -15.296 0.001 (0) @@ -30198,23 +30188,23 @@ O(0) 1.432e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.851e-17 - O[18O] 2.845e-17 2.850e-17 -16.546 -16.545 0.001 (0) - [18O]2 2.838e-20 2.843e-20 -19.547 -19.546 0.001 (0) +[18O](0) 1.986e-19 + O[18O] 1.982e-19 1.985e-19 -18.703 -18.702 0.001 (0) + [18O]2 1.977e-22 1.980e-22 -21.704 -21.703 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -121.58 -124.44 -2.86 [13C]H4 + [13C]H4(g) -117.27 -120.13 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.19 -20.70 -1.50 [14C][18O]2 - [14C]H4(g) -131.91 -134.77 -2.86 [14C]H4 + [14C]H4(g) -127.60 -130.46 -2.86 [14C]H4 [14C]O2(g) -13.83 -15.30 -1.47 [14C]O2 [14C]O[18O](g) -16.21 -18.00 -1.79 [14C]O[18O] - [18O]2(g) -17.26 -19.55 -2.29 [18O]2 + [18O]2(g) -19.41 -21.70 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.03 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -30228,14 +30218,14 @@ O(0) 1.432e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -119.62 -122.48 -2.86 CH4 + CH4(g) -115.31 -118.17 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.97 -39.12 -3.15 H2 + H2(g) -34.89 -38.04 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.25 -14.15 -2.89 O2 - O[18O](g) -13.95 -16.85 -2.89 O[18O] + O2(g) -13.41 -16.30 -2.89 O2 + O[18O](g) -16.11 -19.00 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -30309,10 +30299,10 @@ Calcite 2.56e-03 R(18O) CO2(aq) 2.07915e-03 36.877 permil R(18O) HCO3- 1.99518e-03 -4.9963 permil R(13C) HCO3- 1.10847e-02 -8.5432 permil - R(14C) HCO3- 4.85308e-13 41.272 pmc + R(14C) HCO3- 4.85307e-13 41.272 pmc R(18O) CO3-2 1.99518e-03 -4.9963 permil R(13C) CO3-2 1.10688e-02 -9.966 permil - R(14C) CO3-2 4.83916e-13 41.153 pmc + R(14C) CO3-2 4.83915e-13 41.153 pmc R(18O) Calcite 2.05262e-03 23.65 permil R(13C) Calcite 1.11066e-02 -6.5794 permil R(14C) Calcite 4.87232e-13 41.435 pmc @@ -30325,12 +30315,12 @@ Calcite 2.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2714e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2832e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.6613e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6498e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5792e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -30350,16 +30340,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.186 Adjusted to redox equilibrium + pe = 11.135 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.128e-13 + Electrical balance (eq) = 3.402e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 3 + Iterations = 4 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -30372,7 +30362,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.997 -123.996 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.593 -123.592 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -30401,13 +30391,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.045e-08 6.055e-08 -7.219 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.360e-40 - H2 3.180e-40 3.185e-40 -39.498 -39.497 0.001 (0) -O(0) 8.203e-14 - O2 4.085e-14 4.092e-14 -13.389 -13.388 0.001 (0) - O[18O] 1.630e-16 1.633e-16 -15.788 -15.787 0.001 (0) +H(0) 8.028e-40 + H2 4.014e-40 4.020e-40 -39.396 -39.396 0.001 (0) +O(0) 5.149e-14 + O2 2.564e-14 2.569e-14 -13.591 -13.590 0.001 (0) + O[18O] 1.023e-16 1.025e-16 -15.990 -15.989 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.956 -125.955 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.552 -125.551 0.001 (0) [13C](4) 6.464e-05 H[13C]O3- 5.214e-05 4.770e-05 -4.283 -4.321 -0.039 (0) [13C]O2 1.094e-05 1.096e-05 -4.961 -4.960 0.001 (0) @@ -30427,7 +30417,7 @@ O(0) 8.203e-14 H[13C]O[18O]2- 2.076e-10 1.899e-10 -9.683 -9.721 -0.039 (0) [13C]O2[18O]-2 1.856e-10 1.300e-10 -9.731 -9.886 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.319 -136.318 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -135.914 -135.913 0.001 (0) [14C](4) 2.826e-15 H[14C]O3- 2.283e-15 2.088e-15 -14.642 -14.680 -0.039 (0) [14C]O2 4.750e-16 4.758e-16 -15.323 -15.323 0.001 (0) @@ -30455,23 +30445,23 @@ O(0) 8.203e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.633e-16 - O[18O] 1.630e-16 1.633e-16 -15.788 -15.787 0.001 (0) - [18O]2 1.626e-19 1.629e-19 -18.789 -18.788 0.001 (0) +[18O](0) 1.025e-16 + O[18O] 1.023e-16 1.025e-16 -15.990 -15.989 0.001 (0) + [18O]2 1.021e-19 1.023e-19 -18.991 -18.990 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.10 -125.96 -2.86 [13C]H4 + [13C]H4(g) -122.69 -125.55 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.22 -20.72 -1.50 [14C][18O]2 - [14C]H4(g) -133.46 -136.32 -2.86 [14C]H4 + [14C]H4(g) -133.05 -135.91 -2.86 [14C]H4 [14C]O2(g) -13.85 -15.32 -1.47 [14C]O2 [14C]O[18O](g) -16.24 -18.02 -1.79 [14C]O[18O] - [18O]2(g) -16.50 -18.79 -2.29 [18O]2 + [18O]2(g) -16.70 -18.99 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -30485,14 +30475,14 @@ O(0) 8.203e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.14 -124.00 -2.86 CH4 + CH4(g) -120.73 -123.59 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.35 -39.50 -3.15 H2 + H2(g) -36.25 -39.40 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.50 -13.39 -2.89 O2 - O[18O](g) -13.20 -16.09 -2.89 O[18O] + O2(g) -10.70 -13.59 -2.89 O2 + O[18O](g) -13.40 -16.29 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -30562,7 +30552,7 @@ Calcite 3.06e-03 R(18O) H3O+ 2.04132e-03 18.012 permil R(18O) O2(aq) 1.99518e-03 -4.9962 permil R(13C) CO2(aq) 1.09944e-02 -16.615 permil - R(14C) CO2(aq) 4.50189e-13 38.285 pmc + R(14C) CO2(aq) 4.50188e-13 38.285 pmc R(18O) CO2(aq) 2.07915e-03 36.878 permil R(18O) HCO3- 1.99518e-03 -4.9962 permil R(13C) HCO3- 1.10901e-02 -8.0594 permil @@ -30572,7 +30562,7 @@ Calcite 3.06e-03 R(14C) CO3-2 4.56742e-13 38.842 pmc R(18O) Calcite 2.05262e-03 23.65 permil R(13C) Calcite 1.11121e-02 -6.0947 permil - R(14C) Calcite 4.59872e-13 39.109 pmc + R(14C) Calcite 4.59872e-13 39.108 pmc --------------------------------Isotope Alphas--------------------------------- @@ -30582,12 +30572,12 @@ Calcite 3.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2932e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2711e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6845e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6128e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -30607,14 +30597,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.170 Adjusted to redox equilibrium + pe = 11.142 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.128e-13 + Electrical balance (eq) = 3.402e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -30629,7 +30619,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.869 -123.868 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.644 -123.644 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -30658,13 +30648,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.048e-08 6.058e-08 -7.218 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.846e-40 - H2 3.423e-40 3.429e-40 -39.466 -39.465 0.001 (0) -O(0) 7.080e-14 - O2 3.526e-14 3.532e-14 -13.453 -13.452 0.001 (0) - O[18O] 1.407e-16 1.409e-16 -15.852 -15.851 0.001 (0) +H(0) 7.792e-40 + H2 3.896e-40 3.903e-40 -39.409 -39.409 0.001 (0) +O(0) 5.465e-14 + O2 2.722e-14 2.726e-14 -13.565 -13.564 0.001 (0) + O[18O] 1.086e-16 1.088e-16 -15.964 -15.963 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.828 -125.827 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.603 -125.602 0.001 (0) [13C](4) 6.467e-05 H[13C]O3- 5.217e-05 4.773e-05 -4.283 -4.321 -0.039 (0) [13C]O2 1.095e-05 1.097e-05 -4.961 -4.960 0.001 (0) @@ -30684,7 +30674,7 @@ O(0) 7.080e-14 H[13C]O[18O]2- 2.077e-10 1.900e-10 -9.683 -9.721 -0.039 (0) [13C]O2[18O]-2 1.857e-10 1.301e-10 -9.731 -9.886 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.216 -136.215 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -135.991 -135.990 0.001 (0) [14C](4) 2.667e-15 H[14C]O3- 2.155e-15 1.971e-15 -14.667 -14.705 -0.039 (0) [14C]O2 4.483e-16 4.491e-16 -15.348 -15.348 0.001 (0) @@ -30712,23 +30702,23 @@ O(0) 7.080e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.410e-16 - O[18O] 1.407e-16 1.409e-16 -15.852 -15.851 0.001 (0) - [18O]2 1.404e-19 1.406e-19 -18.853 -18.852 0.001 (0) +[18O](0) 1.088e-16 + O[18O] 1.086e-16 1.088e-16 -15.964 -15.963 0.001 (0) + [18O]2 1.083e-19 1.085e-19 -18.965 -18.965 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.97 -125.83 -2.86 [13C]H4 + [13C]H4(g) -122.74 -125.60 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.24 -20.75 -1.50 [14C][18O]2 - [14C]H4(g) -133.36 -136.22 -2.86 [14C]H4 + [14C]H4(g) -133.13 -135.99 -2.86 [14C]H4 [14C]O2(g) -13.88 -15.35 -1.47 [14C]O2 [14C]O[18O](g) -16.26 -18.05 -1.79 [14C]O[18O] - [18O]2(g) -16.56 -18.85 -2.29 [18O]2 + [18O]2(g) -16.67 -18.96 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -30742,14 +30732,14 @@ O(0) 7.080e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.01 -123.87 -2.86 CH4 + CH4(g) -120.78 -123.64 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.31 -39.46 -3.15 H2 + H2(g) -36.26 -39.41 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.56 -13.45 -2.89 O2 - O[18O](g) -13.26 -16.15 -2.89 O[18O] + O2(g) -10.67 -13.56 -2.89 O2 + O[18O](g) -13.37 -16.26 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -30839,12 +30829,12 @@ Calcite 3.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2645e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2423e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.4409e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6209e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6874e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -30864,14 +30854,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.187 Adjusted to redox equilibrium + pe = 11.175 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.128e-13 + Electrical balance (eq) = 3.402e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -30886,7 +30876,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.012 -124.011 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.912 -123.911 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -30915,13 +30905,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.050e-08 6.060e-08 -7.218 -7.218 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.308e-40 - H2 3.154e-40 3.159e-40 -39.501 -39.500 0.001 (0) -O(0) 8.341e-14 - O2 4.154e-14 4.161e-14 -13.382 -13.381 0.001 (0) - O[18O] 1.657e-16 1.660e-16 -15.781 -15.780 0.001 (0) +H(0) 6.679e-40 + H2 3.340e-40 3.345e-40 -39.476 -39.476 0.001 (0) +O(0) 7.438e-14 + O2 3.704e-14 3.711e-14 -13.431 -13.431 0.001 (0) + O[18O] 1.478e-16 1.481e-16 -15.830 -15.830 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.970 -125.970 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.871 -125.870 0.001 (0) [13C](4) 6.470e-05 H[13C]O3- 5.219e-05 4.775e-05 -4.282 -4.321 -0.039 (0) [13C]O2 1.095e-05 1.097e-05 -4.960 -4.960 0.001 (0) @@ -30941,7 +30931,7 @@ O(0) 8.341e-14 H[13C]O[18O]2- 2.077e-10 1.901e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.858e-10 1.301e-10 -9.731 -9.886 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.382 -136.381 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.282 -136.282 0.001 (0) [14C](4) 2.525e-15 H[14C]O3- 2.040e-15 1.866e-15 -14.690 -14.729 -0.039 (0) [14C]O2 4.245e-16 4.252e-16 -15.372 -15.371 0.001 (0) @@ -30969,23 +30959,23 @@ O(0) 8.341e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.661e-16 - O[18O] 1.657e-16 1.660e-16 -15.781 -15.780 0.001 (0) - [18O]2 1.654e-19 1.656e-19 -18.782 -18.781 0.001 (0) +[18O](0) 1.481e-16 + O[18O] 1.478e-16 1.481e-16 -15.830 -15.830 0.001 (0) + [18O]2 1.475e-19 1.477e-19 -18.831 -18.831 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.11 -125.97 -2.86 [13C]H4 + [13C]H4(g) -123.01 -125.87 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.27 -20.77 -1.50 [14C][18O]2 - [14C]H4(g) -133.52 -136.38 -2.86 [14C]H4 + [14C]H4(g) -133.42 -136.28 -2.86 [14C]H4 [14C]O2(g) -13.90 -15.37 -1.47 [14C]O2 [14C]O[18O](g) -16.28 -18.07 -1.79 [14C]O[18O] - [18O]2(g) -16.49 -18.78 -2.29 [18O]2 + [18O]2(g) -16.54 -18.83 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -30999,14 +30989,14 @@ O(0) 8.341e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.15 -124.01 -2.86 CH4 + CH4(g) -121.05 -123.91 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.35 -39.50 -3.15 H2 + H2(g) -36.33 -39.48 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.49 -13.38 -2.89 O2 - O[18O](g) -13.19 -16.08 -2.89 O[18O] + O2(g) -10.54 -13.43 -2.89 O2 + O[18O](g) -13.24 -16.13 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -31070,7 +31060,7 @@ Calcite 4.06e-03 R(18O) 1.99519e-03 -4.9944 permil R(13C) 1.10829e-02 -8.7063 permil - R(14C) 4.10595e-13 34.918 pmc + R(14C) 4.10594e-13 34.918 pmc R(18O) H2O(l) 1.99518e-03 -4.9959 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.012 permil @@ -31083,7 +31073,7 @@ Calcite 4.06e-03 R(14C) HCO3- 4.11807e-13 35.021 pmc R(18O) CO3-2 1.99518e-03 -4.9959 permil R(13C) CO3-2 1.10833e-02 -8.6629 permil - R(14C) CO3-2 4.10626e-13 34.921 pmc + R(14C) CO3-2 4.10626e-13 34.92 pmc R(18O) Calcite 2.05262e-03 23.65 permil R(13C) Calcite 1.11213e-02 -5.2719 permil R(14C) Calcite 4.13440e-13 35.16 pmc @@ -31096,12 +31086,12 @@ Calcite 4.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2532e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2636e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5379e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7398e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -31121,14 +31111,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.219 Adjusted to redox equilibrium + pe = 11.209 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.128e-13 + Electrical balance (eq) = 3.402e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -31143,7 +31133,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.262 -124.261 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.188 -124.187 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -31172,13 +31162,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.053e-08 6.062e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.462e-40 - H2 2.731e-40 2.736e-40 -39.564 -39.563 0.001 (0) -O(0) 1.112e-13 - O2 5.539e-14 5.548e-14 -13.257 -13.256 0.001 (0) - O[18O] 2.210e-16 2.214e-16 -15.656 -15.655 0.001 (0) +H(0) 5.700e-40 + H2 2.850e-40 2.855e-40 -39.545 -39.544 0.001 (0) +O(0) 1.021e-13 + O2 5.087e-14 5.095e-14 -13.294 -13.293 0.001 (0) + O[18O] 2.030e-16 2.033e-16 -15.693 -15.692 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.220 -126.219 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.146 -126.145 0.001 (0) [13C](4) 6.473e-05 H[13C]O3- 5.221e-05 4.776e-05 -4.282 -4.321 -0.039 (0) [13C]O2 1.096e-05 1.098e-05 -4.960 -4.960 0.001 (0) @@ -31198,7 +31188,7 @@ O(0) 1.112e-13 H[13C]O[18O]2- 2.078e-10 1.901e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.858e-10 1.302e-10 -9.731 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.654 -136.654 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.580 -136.580 0.001 (0) [14C](4) 2.398e-15 H[14C]O3- 1.937e-15 1.772e-15 -14.713 -14.751 -0.039 (0) [14C]O2 4.031e-16 4.037e-16 -15.395 -15.394 0.001 (0) @@ -31226,23 +31216,23 @@ O(0) 1.112e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.215e-16 - O[18O] 2.210e-16 2.214e-16 -15.656 -15.655 0.001 (0) - [18O]2 2.205e-19 2.209e-19 -18.657 -18.656 0.001 (0) +[18O](0) 2.034e-16 + O[18O] 2.030e-16 2.033e-16 -15.693 -15.692 0.001 (0) + [18O]2 2.025e-19 2.028e-19 -18.694 -18.693 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.36 -126.22 -2.86 [13C]H4 + [13C]H4(g) -123.29 -126.15 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.29 -20.79 -1.50 [14C][18O]2 - [14C]H4(g) -133.79 -136.65 -2.86 [14C]H4 + [14C]H4(g) -133.72 -136.58 -2.86 [14C]H4 [14C]O2(g) -13.93 -15.39 -1.47 [14C]O2 [14C]O[18O](g) -16.31 -18.09 -1.79 [14C]O[18O] - [18O]2(g) -16.37 -18.66 -2.29 [18O]2 + [18O]2(g) -16.40 -18.69 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.87 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.53 7.71 Ca[13C]O2[18O] @@ -31256,14 +31246,14 @@ O(0) 1.112e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.40 -124.26 -2.86 CH4 + CH4(g) -121.33 -124.19 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.41 -39.56 -3.15 H2 + H2(g) -36.39 -39.54 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.36 -13.26 -2.89 O2 - O[18O](g) -13.06 -15.96 -2.89 O[18O] + O2(g) -10.40 -13.29 -2.89 O2 + O[18O](g) -13.10 -15.99 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -31333,14 +31323,14 @@ Calcite 4.56e-03 R(18O) H3O+ 2.04132e-03 18.012 permil R(18O) O2(aq) 1.99518e-03 -4.9958 permil R(13C) CO2(aq) 1.10074e-02 -15.452 permil - R(14C) CO2(aq) 3.85284e-13 32.765 pmc + R(14C) CO2(aq) 3.85283e-13 32.765 pmc R(18O) CO2(aq) 2.07915e-03 36.878 permil R(18O) HCO3- 1.99518e-03 -4.9958 permil R(13C) HCO3- 1.11032e-02 -6.8866 permil - R(14C) HCO3- 3.92017e-13 33.338 pmc + R(14C) HCO3- 3.92016e-13 33.338 pmc R(18O) CO3-2 1.99518e-03 -4.9958 permil R(13C) CO3-2 1.10873e-02 -8.3119 permil - R(14C) CO3-2 3.90893e-13 33.242 pmc + R(14C) CO3-2 3.90892e-13 33.242 pmc R(18O) Calcite 2.05262e-03 23.65 permil R(13C) Calcite 1.11252e-02 -4.9196 permil R(14C) Calcite 3.93571e-13 33.47 pmc @@ -31353,12 +31343,12 @@ Calcite 4.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.258e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2362e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 4.4409e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6883e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6859e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -31378,14 +31368,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.204 Adjusted to redox equilibrium + pe = 11.202 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.128e-13 + Electrical balance (eq) = 3.402e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -31400,7 +31390,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.145 -124.144 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.128 -124.128 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -31429,13 +31419,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.055e-08 6.065e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.841e-40 - H2 2.920e-40 2.925e-40 -39.535 -39.534 0.001 (0) -O(0) 9.726e-14 - O2 4.844e-14 4.852e-14 -13.315 -13.314 0.001 (0) - O[18O] 1.933e-16 1.936e-16 -15.714 -15.713 0.001 (0) +H(0) 5.898e-40 + H2 2.949e-40 2.954e-40 -39.530 -39.530 0.001 (0) +O(0) 9.539e-14 + O2 4.751e-14 4.759e-14 -13.323 -13.323 0.001 (0) + O[18O] 1.896e-16 1.899e-16 -15.722 -15.722 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.103 -126.103 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.087 -126.086 0.001 (0) [13C](4) 6.475e-05 H[13C]O3- 5.223e-05 4.778e-05 -4.282 -4.321 -0.039 (0) [13C]O2 1.096e-05 1.098e-05 -4.960 -4.959 0.001 (0) @@ -31455,7 +31445,7 @@ O(0) 9.726e-14 H[13C]O[18O]2- 2.079e-10 1.902e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.859e-10 1.302e-10 -9.731 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.559 -136.559 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.542 -136.542 0.001 (0) [14C](4) 2.283e-15 H[14C]O3- 1.844e-15 1.687e-15 -14.734 -14.773 -0.039 (0) [14C]O2 3.837e-16 3.843e-16 -15.416 -15.415 0.001 (0) @@ -31483,23 +31473,23 @@ O(0) 9.726e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.937e-16 - O[18O] 1.933e-16 1.936e-16 -15.714 -15.713 0.001 (0) - [18O]2 1.928e-19 1.931e-19 -18.715 -18.714 0.001 (0) +[18O](0) 1.899e-16 + O[18O] 1.896e-16 1.899e-16 -15.722 -15.722 0.001 (0) + [18O]2 1.891e-19 1.894e-19 -18.723 -18.723 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.24 -126.10 -2.86 [13C]H4 + [13C]H4(g) -123.23 -126.09 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.31 -20.82 -1.50 [14C][18O]2 - [14C]H4(g) -133.70 -136.56 -2.86 [14C]H4 + [14C]H4(g) -133.68 -136.54 -2.86 [14C]H4 [14C]O2(g) -13.95 -15.42 -1.47 [14C]O2 [14C]O[18O](g) -16.33 -18.12 -1.79 [14C]O[18O] - [18O]2(g) -16.42 -18.71 -2.29 [18O]2 + [18O]2(g) -16.43 -18.72 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -31513,14 +31503,14 @@ O(0) 9.726e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.28 -124.14 -2.86 CH4 + CH4(g) -121.27 -124.13 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] H2(g) -36.38 -39.53 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.42 -13.31 -2.89 O2 - O[18O](g) -13.12 -16.01 -2.89 O[18O] + O2(g) -10.43 -13.32 -2.89 O2 + O[18O](g) -13.13 -16.02 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -31584,7 +31574,7 @@ Calcite 5.06e-03 R(18O) 1.99519e-03 -4.9941 permil R(13C) 1.10904e-02 -8.0364 permil - R(14C) 3.72940e-13 31.716 pmc + R(14C) 3.72939e-13 31.716 pmc R(18O) H2O(l) 1.99518e-03 -4.9957 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.012 permil @@ -31597,10 +31587,10 @@ Calcite 5.06e-03 R(14C) HCO3- 3.74041e-13 31.809 pmc R(18O) CO3-2 1.99518e-03 -4.9957 permil R(13C) CO3-2 1.10908e-02 -7.993 permil - R(14C) CO3-2 3.72969e-13 31.718 pmc + R(14C) CO3-2 3.72968e-13 31.718 pmc R(18O) Calcite 2.05262e-03 23.651 permil R(13C) Calcite 1.11288e-02 -4.5996 permil - R(14C) Calcite 3.75525e-13 31.935 pmc + R(14C) Calcite 3.75524e-13 31.935 pmc --------------------------------Isotope Alphas--------------------------------- @@ -31610,12 +31600,12 @@ Calcite 5.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2523e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2301e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.6613e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6979e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6954e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -31635,14 +31625,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.175 Adjusted to redox equilibrium + pe = 11.161 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.128e-13 + Electrical balance (eq) = 3.402e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -31657,7 +31647,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.915 -123.914 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.803 -123.802 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -31686,13 +31676,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.057e-08 6.067e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.668e-40 - H2 3.334e-40 3.339e-40 -39.477 -39.476 0.001 (0) -O(0) 7.464e-14 - O2 3.717e-14 3.723e-14 -13.430 -13.429 0.001 (0) - O[18O] 1.483e-16 1.486e-16 -15.829 -15.828 0.001 (0) +H(0) 7.114e-40 + H2 3.557e-40 3.563e-40 -39.449 -39.448 0.001 (0) +O(0) 6.556e-14 + O2 3.265e-14 3.270e-14 -13.486 -13.485 0.001 (0) + O[18O] 1.303e-16 1.305e-16 -15.885 -15.884 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.873 -125.873 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.761 -125.760 0.001 (0) [13C](4) 6.477e-05 H[13C]O3- 5.224e-05 4.780e-05 -4.282 -4.321 -0.039 (0) [13C]O2 1.097e-05 1.098e-05 -4.960 -4.959 0.001 (0) @@ -31712,7 +31702,7 @@ O(0) 7.464e-14 H[13C]O[18O]2- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.860e-10 1.303e-10 -9.731 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.350 -136.349 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.237 -136.236 0.001 (0) [14C](4) 2.178e-15 H[14C]O3- 1.759e-15 1.610e-15 -14.755 -14.793 -0.039 (0) [14C]O2 3.661e-16 3.667e-16 -15.436 -15.436 0.001 (0) @@ -31740,23 +31730,23 @@ O(0) 7.464e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.486e-16 - O[18O] 1.483e-16 1.486e-16 -15.829 -15.828 0.001 (0) - [18O]2 1.480e-19 1.482e-19 -18.830 -18.829 0.001 (0) +[18O](0) 1.305e-16 + O[18O] 1.303e-16 1.305e-16 -15.885 -15.884 0.001 (0) + [18O]2 1.300e-19 1.302e-19 -18.886 -18.885 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.01 -125.87 -2.86 [13C]H4 + [13C]H4(g) -122.90 -125.76 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.33 -20.84 -1.50 [14C][18O]2 - [14C]H4(g) -133.49 -136.35 -2.86 [14C]H4 + [14C]H4(g) -133.38 -136.24 -2.86 [14C]H4 [14C]O2(g) -13.97 -15.44 -1.47 [14C]O2 [14C]O[18O](g) -16.35 -18.14 -1.79 [14C]O[18O] - [18O]2(g) -16.54 -18.83 -2.29 [18O]2 + [18O]2(g) -16.60 -18.89 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -31770,14 +31760,14 @@ O(0) 7.464e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.05 -123.91 -2.86 CH4 + CH4(g) -120.94 -123.80 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.33 -39.48 -3.15 H2 + H2(g) -36.30 -39.45 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.54 -13.43 -2.89 O2 - O[18O](g) -13.24 -16.13 -2.89 O[18O] + O2(g) -10.59 -13.49 -2.89 O2 + O[18O](g) -13.29 -16.19 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -31841,7 +31831,7 @@ Calcite 5.56e-03 R(18O) 1.99519e-03 -4.994 permil R(13C) 1.10936e-02 -7.7455 permil - R(14C) 3.56589e-13 30.325 pmc + R(14C) 3.56588e-13 30.325 pmc R(18O) H2O(l) 1.99518e-03 -4.9955 permil R(18O) OH- 1.92122e-03 -41.883 permil R(18O) H3O+ 2.04132e-03 18.012 permil @@ -31867,12 +31857,12 @@ Calcite 5.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2647e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2754e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6028e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5987e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -31892,14 +31882,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.216 Adjusted to redox equilibrium + pe = 11.206 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.128e-13 + Electrical balance (eq) = 3.402e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -31914,7 +31904,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.238 -124.237 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.162 -124.162 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -31943,13 +31933,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.058e-08 6.068e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.538e-40 - H2 2.769e-40 2.774e-40 -39.558 -39.557 0.001 (0) -O(0) 1.082e-13 - O2 5.388e-14 5.397e-14 -13.269 -13.268 0.001 (0) - O[18O] 2.150e-16 2.154e-16 -15.668 -15.667 0.001 (0) +H(0) 5.783e-40 + H2 2.892e-40 2.896e-40 -39.539 -39.538 0.001 (0) +O(0) 9.922e-14 + O2 4.941e-14 4.949e-14 -13.306 -13.305 0.001 (0) + O[18O] 1.972e-16 1.975e-16 -15.705 -15.704 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.196 -126.195 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.120 -126.120 0.001 (0) [13C](4) 6.479e-05 H[13C]O3- 5.226e-05 4.781e-05 -4.282 -4.320 -0.039 (0) [13C]O2 1.097e-05 1.099e-05 -4.960 -4.959 0.001 (0) @@ -31969,7 +31959,7 @@ O(0) 1.082e-13 H[13C]O[18O]2- 2.080e-10 1.903e-10 -9.682 -9.721 -0.039 (0) [13C]O2[18O]-2 1.860e-10 1.303e-10 -9.730 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.692 -136.691 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.616 -136.616 0.001 (0) [14C](4) 2.083e-15 H[14C]O3- 1.682e-15 1.539e-15 -14.774 -14.813 -0.039 (0) [14C]O2 3.500e-16 3.506e-16 -15.456 -15.455 0.001 (0) @@ -31997,23 +31987,23 @@ O(0) 1.082e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.154e-16 - O[18O] 2.150e-16 2.154e-16 -15.668 -15.667 0.001 (0) - [18O]2 2.145e-19 2.149e-19 -18.669 -18.668 0.001 (0) +[18O](0) 1.976e-16 + O[18O] 1.972e-16 1.975e-16 -15.705 -15.704 0.001 (0) + [18O]2 1.967e-19 1.970e-19 -18.706 -18.705 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.33 -126.19 -2.86 [13C]H4 + [13C]H4(g) -123.26 -126.12 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.35 -20.86 -1.50 [14C][18O]2 - [14C]H4(g) -133.83 -136.69 -2.86 [14C]H4 + [14C]H4(g) -133.76 -136.62 -2.86 [14C]H4 [14C]O2(g) -13.99 -15.46 -1.47 [14C]O2 [14C]O[18O](g) -16.37 -18.16 -1.79 [14C]O[18O] - [18O]2(g) -16.38 -18.67 -2.29 [18O]2 + [18O]2(g) -16.42 -18.71 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -32027,14 +32017,14 @@ O(0) 1.082e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.38 -124.24 -2.86 CH4 + CH4(g) -121.30 -124.16 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.41 -39.56 -3.15 H2 + H2(g) -36.39 -39.54 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.38 -13.27 -2.89 O2 - O[18O](g) -13.08 -15.97 -2.89 O[18O] + O2(g) -10.41 -13.31 -2.89 O2 + O[18O](g) -13.11 -16.01 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -32104,14 +32094,14 @@ Calcite 6.06e-03 R(18O) H3O+ 2.04132e-03 18.012 permil R(18O) O2(aq) 1.99518e-03 -4.9954 permil R(13C) CO2(aq) 1.10172e-02 -14.582 permil - R(14C) CO2(aq) 3.36736e-13 28.637 pmc + R(14C) CO2(aq) 3.36735e-13 28.637 pmc R(18O) CO2(aq) 2.07915e-03 36.878 permil R(18O) HCO3- 1.99518e-03 -4.9954 permil R(13C) HCO3- 1.11130e-02 -6.0089 permil R(14C) HCO3- 3.42620e-13 29.137 pmc R(18O) CO3-2 1.99518e-03 -4.9954 permil R(13C) CO3-2 1.10971e-02 -7.4354 permil - R(14C) CO3-2 3.41638e-13 29.054 pmc + R(14C) CO3-2 3.41637e-13 29.054 pmc R(18O) Calcite 2.05262e-03 23.651 permil R(13C) Calcite 1.11350e-02 -4.0402 permil R(14C) Calcite 3.43979e-13 29.253 pmc @@ -32124,12 +32114,12 @@ Calcite 6.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2666e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2764e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5854e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5129e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -32149,14 +32139,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.206 Adjusted to redox equilibrium + pe = 11.211 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.128e-13 + Electrical balance (eq) = 3.402e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -32171,7 +32161,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.156 -124.156 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.202 -124.201 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.959e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -32200,13 +32190,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.060e-08 6.070e-08 -7.218 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.803e-40 - H2 2.901e-40 2.906e-40 -39.537 -39.537 0.001 (0) -O(0) 9.854e-14 - O2 4.907e-14 4.916e-14 -13.309 -13.308 0.001 (0) - O[18O] 1.958e-16 1.961e-16 -15.708 -15.707 0.001 (0) +H(0) 5.653e-40 + H2 2.827e-40 2.831e-40 -39.549 -39.548 0.001 (0) +O(0) 1.038e-13 + O2 5.171e-14 5.179e-14 -13.286 -13.286 0.001 (0) + O[18O] 2.063e-16 2.067e-16 -15.685 -15.685 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.114 -126.114 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.160 -126.159 0.001 (0) [13C](4) 6.481e-05 H[13C]O3- 5.227e-05 4.782e-05 -4.282 -4.320 -0.039 (0) [13C]O2 1.097e-05 1.099e-05 -4.960 -4.959 0.001 (0) @@ -32226,7 +32216,7 @@ O(0) 9.854e-14 H[13C]O[18O]2- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) [13C]O2[18O]-2 1.861e-10 1.304e-10 -9.730 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.629 -136.628 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.675 -136.674 0.001 (0) [14C](4) 1.995e-15 H[14C]O3- 1.612e-15 1.474e-15 -14.793 -14.831 -0.039 (0) [14C]O2 3.353e-16 3.359e-16 -15.475 -15.474 0.001 (0) @@ -32254,23 +32244,23 @@ O(0) 9.854e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.962e-16 - O[18O] 1.958e-16 1.961e-16 -15.708 -15.707 0.001 (0) - [18O]2 1.954e-19 1.957e-19 -18.709 -18.708 0.001 (0) +[18O](0) 2.067e-16 + O[18O] 2.063e-16 2.067e-16 -15.685 -15.685 0.001 (0) + [18O]2 2.058e-19 2.062e-19 -18.686 -18.686 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.25 -126.11 -2.86 [13C]H4 + [13C]H4(g) -123.30 -126.16 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.37 -20.87 -1.50 [14C][18O]2 - [14C]H4(g) -133.77 -136.63 -2.86 [14C]H4 + [14C]H4(g) -133.81 -136.67 -2.86 [14C]H4 [14C]O2(g) -14.01 -15.47 -1.47 [14C]O2 [14C]O[18O](g) -16.39 -18.17 -1.79 [14C]O[18O] - [18O]2(g) -16.42 -18.71 -2.29 [18O]2 + [18O]2(g) -16.40 -18.69 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -32284,14 +32274,14 @@ O(0) 9.854e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.30 -124.16 -2.86 CH4 + CH4(g) -121.34 -124.20 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.39 -39.54 -3.15 H2 + H2(g) -36.40 -39.55 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.42 -13.31 -2.89 O2 - O[18O](g) -13.12 -16.01 -2.89 O[18O] + O2(g) -10.39 -13.29 -2.89 O2 + O[18O](g) -13.09 -15.99 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -32365,13 +32355,13 @@ Calcite 6.56e-03 R(18O) CO2(aq) 2.07915e-03 36.879 permil R(18O) HCO3- 1.99518e-03 -4.9952 permil R(13C) HCO3- 1.11158e-02 -5.7634 permil - R(14C) HCO3- 3.28810e-13 27.963 pmc + R(14C) HCO3- 3.28809e-13 27.963 pmc R(18O) CO3-2 1.99518e-03 -4.9952 permil R(13C) CO3-2 1.10998e-02 -7.1903 permil - R(14C) CO3-2 3.27867e-13 27.882 pmc + R(14C) CO3-2 3.27866e-13 27.882 pmc R(18O) Calcite 2.05262e-03 23.651 permil R(13C) Calcite 1.11378e-02 -3.7942 permil - R(14C) Calcite 3.30114e-13 28.074 pmc + R(14C) Calcite 3.30113e-13 28.074 pmc --------------------------------Isotope Alphas--------------------------------- @@ -32381,12 +32371,12 @@ Calcite 6.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2251e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2353e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.6605e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6954e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6909e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -32406,14 +32396,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.226 Adjusted to redox equilibrium + pe = 11.231 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.128e-13 + Electrical balance (eq) = 3.402e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -32428,7 +32418,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.321 -124.321 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.359 -124.358 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -32457,13 +32447,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.061e-08 6.071e-08 -7.217 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.277e-40 - H2 2.638e-40 2.643e-40 -39.579 -39.578 0.001 (0) -O(0) 1.192e-13 - O2 5.935e-14 5.944e-14 -13.227 -13.226 0.001 (0) - O[18O] 2.368e-16 2.372e-16 -15.626 -15.625 0.001 (0) +H(0) 5.165e-40 + H2 2.582e-40 2.587e-40 -39.588 -39.587 0.001 (0) +O(0) 1.244e-13 + O2 6.195e-14 6.205e-14 -13.208 -13.207 0.001 (0) + O[18O] 2.472e-16 2.476e-16 -15.607 -15.606 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.279 -126.279 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.317 -126.316 0.001 (0) [13C](4) 6.482e-05 H[13C]O3- 5.229e-05 4.783e-05 -4.282 -4.320 -0.039 (0) [13C]O2 1.097e-05 1.099e-05 -4.960 -4.959 0.001 (0) @@ -32483,10 +32473,10 @@ O(0) 1.192e-13 H[13C]O[18O]2- 2.081e-10 1.904e-10 -9.682 -9.720 -0.039 (0) [13C]O2[18O]-2 1.861e-10 1.304e-10 -9.730 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.812 -136.811 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.849 -136.849 0.001 (0) [14C](4) 1.915e-15 H[14C]O3- 1.547e-15 1.415e-15 -14.811 -14.849 -0.039 (0) - [14C]O2 3.218e-16 3.224e-16 -15.492 -15.492 0.001 (0) + [14C]O2 3.218e-16 3.223e-16 -15.492 -15.492 0.001 (0) CaH[14C]O3+ 3.266e-17 2.996e-17 -16.486 -16.523 -0.037 (0) H[14C][18O]O2- 3.086e-18 2.823e-18 -17.511 -17.549 -0.039 (0) H[14C]O[18O]O- 3.086e-18 2.823e-18 -17.511 -17.549 -0.039 (0) @@ -32511,23 +32501,23 @@ O(0) 1.192e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.373e-16 - O[18O] 2.368e-16 2.372e-16 -15.626 -15.625 0.001 (0) - [18O]2 2.362e-19 2.366e-19 -18.627 -18.626 0.001 (0) +[18O](0) 2.477e-16 + O[18O] 2.472e-16 2.476e-16 -15.607 -15.606 0.001 (0) + [18O]2 2.466e-19 2.470e-19 -18.608 -18.607 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.42 -126.28 -2.86 [13C]H4 + [13C]H4(g) -123.46 -126.32 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.39 -20.89 -1.50 [14C][18O]2 - [14C]H4(g) -133.95 -136.81 -2.86 [14C]H4 + [14C]H4(g) -133.99 -136.85 -2.86 [14C]H4 [14C]O2(g) -14.02 -15.49 -1.47 [14C]O2 [14C]O[18O](g) -16.40 -18.19 -1.79 [14C]O[18O] - [18O]2(g) -16.34 -18.63 -2.29 [18O]2 + [18O]2(g) -16.32 -18.61 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -32541,14 +32531,14 @@ O(0) 1.192e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.46 -124.32 -2.86 CH4 + CH4(g) -121.50 -124.36 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.43 -39.58 -3.15 H2 + H2(g) -36.44 -39.59 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.33 -13.23 -2.89 O2 - O[18O](g) -13.03 -15.93 -2.89 O[18O] + O2(g) -10.31 -13.21 -2.89 O2 + O[18O](g) -13.01 -15.91 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -32618,17 +32608,17 @@ Calcite 7.06e-03 R(18O) H3O+ 2.04132e-03 18.013 permil R(18O) O2(aq) 1.99518e-03 -4.9951 permil R(13C) CO2(aq) 1.10224e-02 -14.114 permil - R(14C) CO2(aq) 3.10641e-13 26.418 pmc + R(14C) CO2(aq) 3.10640e-13 26.418 pmc R(18O) CO2(aq) 2.07915e-03 36.879 permil R(18O) HCO3- 1.99518e-03 -4.9951 permil R(13C) HCO3- 1.11183e-02 -5.537 permil R(14C) HCO3- 3.16069e-13 26.879 pmc R(18O) CO3-2 1.99518e-03 -4.9951 permil R(13C) CO3-2 1.11023e-02 -6.9641 permil - R(14C) CO3-2 3.15163e-13 26.802 pmc + R(14C) CO3-2 3.15162e-13 26.802 pmc R(18O) Calcite 2.05263e-03 23.651 permil R(13C) Calcite 1.11403e-02 -3.5673 permil - R(14C) Calcite 3.17323e-13 26.986 pmc + R(14C) Calcite 3.17322e-13 26.986 pmc --------------------------------Isotope Alphas--------------------------------- @@ -32638,12 +32628,12 @@ Calcite 7.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2721e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2825e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6972e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6931e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -32663,14 +32653,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.242 Adjusted to redox equilibrium + pe = 11.240 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.128e-13 + Electrical balance (eq) = 3.402e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -32685,7 +32675,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.445 -124.445 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.434 -124.433 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -32714,13 +32704,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.063e-08 6.073e-08 -7.217 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.914e-40 - H2 2.457e-40 2.461e-40 -39.610 -39.609 0.001 (0) -O(0) 1.374e-13 - O2 6.844e-14 6.856e-14 -13.165 -13.164 0.001 (0) - O[18O] 2.731e-16 2.736e-16 -15.564 -15.563 0.001 (0) +H(0) 4.947e-40 + H2 2.473e-40 2.478e-40 -39.607 -39.606 0.001 (0) +O(0) 1.356e-13 + O2 6.753e-14 6.764e-14 -13.171 -13.170 0.001 (0) + O[18O] 2.695e-16 2.699e-16 -15.569 -15.569 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.403 -126.402 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.391 -126.391 0.001 (0) [13C](4) 6.484e-05 H[13C]O3- 5.230e-05 4.785e-05 -4.282 -4.320 -0.039 (0) [13C]O2 1.098e-05 1.099e-05 -4.960 -4.959 0.001 (0) @@ -32740,7 +32730,7 @@ O(0) 1.374e-13 H[13C]O[18O]2- 2.082e-10 1.905e-10 -9.682 -9.720 -0.039 (0) [13C]O2[18O]-2 1.862e-10 1.304e-10 -9.730 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.953 -136.952 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.941 -136.941 0.001 (0) [14C](4) 1.840e-15 H[14C]O3- 1.487e-15 1.360e-15 -14.828 -14.866 -0.039 (0) [14C]O2 3.094e-16 3.099e-16 -15.510 -15.509 0.001 (0) @@ -32768,23 +32758,23 @@ O(0) 1.374e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.737e-16 - O[18O] 2.731e-16 2.736e-16 -15.564 -15.563 0.001 (0) - [18O]2 2.725e-19 2.729e-19 -18.565 -18.564 0.001 (0) +[18O](0) 2.700e-16 + O[18O] 2.695e-16 2.699e-16 -15.569 -15.569 0.001 (0) + [18O]2 2.688e-19 2.693e-19 -18.571 -18.570 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.54 -126.40 -2.86 [13C]H4 + [13C]H4(g) -123.53 -126.39 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.41 -20.91 -1.50 [14C][18O]2 - [14C]H4(g) -134.09 -136.95 -2.86 [14C]H4 + [14C]H4(g) -134.08 -136.94 -2.86 [14C]H4 [14C]O2(g) -14.04 -15.51 -1.47 [14C]O2 [14C]O[18O](g) -16.42 -18.21 -1.79 [14C]O[18O] - [18O]2(g) -16.27 -18.56 -2.29 [18O]2 + [18O]2(g) -16.28 -18.57 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -32798,14 +32788,14 @@ O(0) 1.374e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.58 -124.44 -2.86 CH4 + CH4(g) -121.57 -124.43 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] H2(g) -36.46 -39.61 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.27 -13.16 -2.89 O2 - O[18O](g) -12.97 -15.86 -2.89 O[18O] + O2(g) -10.28 -13.17 -2.89 O2 + O[18O](g) -12.98 -15.87 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -32882,7 +32872,7 @@ Calcite 7.56e-03 R(14C) HCO3- 3.04279e-13 25.877 pmc R(18O) CO3-2 1.99518e-03 -4.995 permil R(13C) CO3-2 1.11047e-02 -6.7548 permil - R(14C) CO3-2 3.03407e-13 25.802 pmc + R(14C) CO3-2 3.03406e-13 25.802 pmc R(18O) Calcite 2.05263e-03 23.651 permil R(13C) Calcite 1.11427e-02 -3.3572 permil R(14C) Calcite 3.05486e-13 25.979 pmc @@ -32895,12 +32885,12 @@ Calcite 7.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2775e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2562e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.9944e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.5503e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7398e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7365e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -32920,14 +32910,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.263 Adjusted to redox equilibrium + pe = 11.258 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.128e-13 + Electrical balance (eq) = 3.401e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -32942,7 +32932,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.620 -124.619 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.573 -124.572 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -32971,13 +32961,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.064e-08 6.074e-08 -7.217 -7.217 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.445e-40 - H2 2.222e-40 2.226e-40 -39.653 -39.652 0.001 (0) -O(0) 1.679e-13 - O2 8.364e-14 8.378e-14 -13.078 -13.077 0.001 (0) - O[18O] 3.338e-16 3.343e-16 -15.477 -15.476 0.001 (0) +H(0) 4.567e-40 + H2 2.283e-40 2.287e-40 -39.641 -39.641 0.001 (0) +O(0) 1.591e-13 + O2 7.923e-14 7.936e-14 -13.101 -13.100 0.001 (0) + O[18O] 3.162e-16 3.167e-16 -15.500 -15.499 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.577 -126.576 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.530 -126.529 0.001 (0) [13C](4) 6.485e-05 H[13C]O3- 5.231e-05 4.786e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.098e-05 1.100e-05 -4.959 -4.959 0.001 (0) @@ -32997,7 +32987,7 @@ O(0) 1.679e-13 H[13C]O[18O]2- 2.082e-10 1.905e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.862e-10 1.304e-10 -9.730 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.144 -137.143 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.097 -137.096 0.001 (0) [14C](4) 1.772e-15 H[14C]O3- 1.431e-15 1.309e-15 -14.844 -14.883 -0.039 (0) [14C]O2 2.978e-16 2.983e-16 -15.526 -15.525 0.001 (0) @@ -33025,23 +33015,23 @@ O(0) 1.679e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.344e-16 - O[18O] 3.338e-16 3.343e-16 -15.477 -15.476 0.001 (0) - [18O]2 3.330e-19 3.335e-19 -18.478 -18.477 0.001 (0) +[18O](0) 3.168e-16 + O[18O] 3.162e-16 3.167e-16 -15.500 -15.499 0.001 (0) + [18O]2 3.154e-19 3.159e-19 -18.501 -18.500 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.72 -126.58 -2.86 [13C]H4 + [13C]H4(g) -123.67 -126.53 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.42 -20.93 -1.50 [14C][18O]2 - [14C]H4(g) -134.28 -137.14 -2.86 [14C]H4 + [14C]H4(g) -134.24 -137.10 -2.86 [14C]H4 [14C]O2(g) -14.06 -15.53 -1.47 [14C]O2 [14C]O[18O](g) -16.44 -18.23 -1.79 [14C]O[18O] - [18O]2(g) -16.19 -18.48 -2.29 [18O]2 + [18O]2(g) -16.21 -18.50 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -33055,14 +33045,14 @@ O(0) 1.679e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.76 -124.62 -2.86 CH4 + CH4(g) -121.71 -124.57 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.50 -39.65 -3.15 H2 + H2(g) -36.49 -39.64 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.18 -13.08 -2.89 O2 - O[18O](g) -12.88 -15.78 -2.89 O[18O] + O2(g) -10.21 -13.10 -2.89 O2 + O[18O](g) -12.91 -15.80 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -33126,7 +33116,7 @@ Calcite 8.06e-03 R(18O) 1.99519e-03 -4.9933 permil R(13C) 1.11064e-02 -6.604 permil - R(14C) 2.92474e-13 24.873 pmc + R(14C) 2.92473e-13 24.873 pmc R(18O) H2O(l) 1.99518e-03 -4.9948 permil R(18O) OH- 1.92122e-03 -41.882 permil R(18O) H3O+ 2.04132e-03 18.013 permil @@ -33142,7 +33132,7 @@ Calcite 8.06e-03 R(14C) CO3-2 2.92496e-13 24.874 pmc R(18O) Calcite 2.05263e-03 23.651 permil R(13C) Calcite 1.11448e-02 -3.1623 permil - R(14C) Calcite 2.94501e-13 25.045 pmc + R(14C) Calcite 2.94500e-13 25.045 pmc --------------------------------Isotope Alphas--------------------------------- @@ -33152,12 +33142,12 @@ Calcite 8.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2434e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2223e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6931e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.827e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -33177,14 +33167,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.246 Adjusted to redox equilibrium + pe = 11.244 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.128e-13 + Electrical balance (eq) = 3.401e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -33199,7 +33189,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.476 -124.476 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.465 -124.464 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -33228,13 +33218,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.065e-08 6.075e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.827e-40 - H2 2.414e-40 2.418e-40 -39.617 -39.617 0.001 (0) -O(0) 1.424e-13 - O2 7.092e-14 7.104e-14 -13.149 -13.148 0.001 (0) - O[18O] 2.830e-16 2.835e-16 -15.548 -15.547 0.001 (0) +H(0) 4.858e-40 + H2 2.429e-40 2.433e-40 -39.615 -39.614 0.001 (0) +O(0) 1.406e-13 + O2 7.001e-14 7.013e-14 -13.155 -13.154 0.001 (0) + O[18O] 2.794e-16 2.798e-16 -15.554 -15.553 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.434 -126.433 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.423 -126.422 0.001 (0) [13C](4) 6.486e-05 H[13C]O3- 5.232e-05 4.786e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.098e-05 1.100e-05 -4.959 -4.959 0.001 (0) @@ -33254,7 +33244,7 @@ O(0) 1.424e-13 H[13C]O[18O]2- 2.083e-10 1.905e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.862e-10 1.305e-10 -9.730 -9.885 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.016 -137.016 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.005 -137.004 0.001 (0) [14C](4) 1.708e-15 H[14C]O3- 1.380e-15 1.262e-15 -14.860 -14.899 -0.039 (0) [14C]O2 2.871e-16 2.876e-16 -15.542 -15.541 0.001 (0) @@ -33282,20 +33272,20 @@ O(0) 1.424e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.836e-16 - O[18O] 2.830e-16 2.835e-16 -15.548 -15.547 0.001 (0) - [18O]2 2.823e-19 2.828e-19 -18.549 -18.549 0.001 (0) +[18O](0) 2.799e-16 + O[18O] 2.794e-16 2.798e-16 -15.554 -15.553 0.001 (0) + [18O]2 2.787e-19 2.792e-19 -18.555 -18.554 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.57 -126.43 -2.86 [13C]H4 + [13C]H4(g) -123.56 -126.42 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.44 -20.94 -1.50 [14C][18O]2 - [14C]H4(g) -134.16 -137.02 -2.86 [14C]H4 + [14C]H4(g) -134.14 -137.00 -2.86 [14C]H4 [14C]O2(g) -14.07 -15.54 -1.47 [14C]O2 [14C]O[18O](g) -16.45 -18.24 -1.79 [14C]O[18O] [18O]2(g) -16.26 -18.55 -2.29 [18O]2 @@ -33312,10 +33302,10 @@ O(0) 1.424e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.62 -124.48 -2.86 CH4 + CH4(g) -121.60 -124.46 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.47 -39.62 -3.15 H2 + H2(g) -36.46 -39.61 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O O2(g) -10.26 -13.15 -2.89 O2 @@ -33389,7 +33379,7 @@ Calcite 8.56e-03 R(18O) H3O+ 2.04132e-03 18.013 permil R(18O) O2(aq) 1.99518e-03 -4.9947 permil R(13C) CO2(aq) 1.10289e-02 -13.534 permil - R(14C) CO2(aq) 2.78292e-13 23.667 pmc + R(14C) CO2(aq) 2.78291e-13 23.667 pmc R(18O) CO2(aq) 2.07915e-03 36.879 permil R(18O) HCO3- 1.99518e-03 -4.9947 permil R(13C) HCO3- 1.11248e-02 -4.9517 permil @@ -33409,12 +33399,12 @@ Calcite 8.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2675e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2791e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6435e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.642e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -33434,14 +33424,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.262 Adjusted to redox equilibrium + pe = 11.270 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.128e-13 + Electrical balance (eq) = 3.401e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -33456,7 +33446,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.609 -124.609 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.672 -124.672 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -33485,13 +33475,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.066e-08 6.076e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.471e-40 - H2 2.236e-40 2.239e-40 -39.651 -39.650 0.001 (0) -O(0) 1.660e-13 - O2 8.267e-14 8.280e-14 -13.083 -13.082 0.001 (0) - O[18O] 3.299e-16 3.304e-16 -15.482 -15.481 0.001 (0) +H(0) 4.312e-40 + H2 2.156e-40 2.159e-40 -39.666 -39.666 0.001 (0) +O(0) 1.785e-13 + O2 8.890e-14 8.904e-14 -13.051 -13.050 0.001 (0) + O[18O] 3.547e-16 3.553e-16 -15.450 -15.449 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.567 -126.566 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.630 -126.629 0.001 (0) [13C](4) 6.487e-05 H[13C]O3- 5.233e-05 4.787e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.098e-05 1.100e-05 -4.959 -4.959 0.001 (0) @@ -33511,7 +33501,7 @@ O(0) 1.660e-13 H[13C]O[18O]2- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.863e-10 1.305e-10 -9.730 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.165 -137.164 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.228 -137.227 0.001 (0) [14C](4) 1.649e-15 H[14C]O3- 1.332e-15 1.218e-15 -14.876 -14.914 -0.039 (0) [14C]O2 2.771e-16 2.776e-16 -15.557 -15.557 0.001 (0) @@ -33539,23 +33529,23 @@ O(0) 1.660e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.305e-16 - O[18O] 3.299e-16 3.304e-16 -15.482 -15.481 0.001 (0) - [18O]2 3.291e-19 3.296e-19 -18.483 -18.482 0.001 (0) +[18O](0) 3.554e-16 + O[18O] 3.547e-16 3.553e-16 -15.450 -15.449 0.001 (0) + [18O]2 3.539e-19 3.545e-19 -18.451 -18.450 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.71 -126.57 -2.86 [13C]H4 + [13C]H4(g) -123.77 -126.63 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.45 -20.96 -1.50 [14C][18O]2 - [14C]H4(g) -134.30 -137.16 -2.86 [14C]H4 + [14C]H4(g) -134.37 -137.23 -2.86 [14C]H4 [14C]O2(g) -14.09 -15.56 -1.47 [14C]O2 [14C]O[18O](g) -16.47 -18.26 -1.79 [14C]O[18O] - [18O]2(g) -16.19 -18.48 -2.29 [18O]2 + [18O]2(g) -16.16 -18.45 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -33569,14 +33559,14 @@ O(0) 1.660e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.75 -124.61 -2.86 CH4 + CH4(g) -121.81 -124.67 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.50 -39.65 -3.15 H2 + H2(g) -36.52 -39.67 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.19 -13.08 -2.89 O2 - O[18O](g) -12.89 -15.78 -2.89 O[18O] + O2(g) -10.16 -13.05 -2.89 O2 + O[18O](g) -12.86 -15.75 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -33646,7 +33636,7 @@ Calcite 9.06e-03 R(18O) H3O+ 2.04132e-03 18.013 permil R(18O) O2(aq) 1.99518e-03 -4.9945 permil R(13C) CO2(aq) 1.10308e-02 -13.366 permil - R(14C) CO2(aq) 2.68956e-13 22.873 pmc + R(14C) CO2(aq) 2.68955e-13 22.873 pmc R(18O) CO2(aq) 2.07915e-03 36.879 permil R(18O) HCO3- 1.99518e-03 -4.9945 permil R(13C) HCO3- 1.11267e-02 -4.7828 permil @@ -33666,12 +33656,12 @@ Calcite 9.06e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2847e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2645e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.8842e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.648e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6457e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -33691,14 +33681,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.270 Adjusted to redox equilibrium + pe = 11.281 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.128e-13 + Electrical balance (eq) = 3.401e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -33713,7 +33703,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.669 -124.669 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.760 -124.759 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -33742,13 +33732,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.067e-08 6.077e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.320e-40 - H2 2.160e-40 2.163e-40 -39.666 -39.665 0.001 (0) -O(0) 1.778e-13 - O2 8.857e-14 8.871e-14 -13.053 -13.052 0.001 (0) - O[18O] 3.534e-16 3.540e-16 -15.452 -15.451 0.001 (0) +H(0) 4.100e-40 + H2 2.050e-40 2.054e-40 -39.688 -39.688 0.001 (0) +O(0) 1.974e-13 + O2 9.830e-14 9.846e-14 -13.007 -13.007 0.001 (0) + O[18O] 3.922e-16 3.929e-16 -15.406 -15.406 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.627 -126.626 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.717 -126.716 0.001 (0) [13C](4) 6.489e-05 H[13C]O3- 5.234e-05 4.788e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.098e-05 1.100e-05 -4.959 -4.958 0.001 (0) @@ -33768,7 +33758,7 @@ O(0) 1.778e-13 H[13C]O[18O]2- 2.083e-10 1.906e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.863e-10 1.305e-10 -9.730 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.240 -137.239 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.330 -137.329 0.001 (0) [14C](4) 1.593e-15 H[14C]O3- 1.287e-15 1.178e-15 -14.890 -14.929 -0.039 (0) [14C]O2 2.678e-16 2.683e-16 -15.572 -15.571 0.001 (0) @@ -33796,23 +33786,23 @@ O(0) 1.778e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.541e-16 - O[18O] 3.534e-16 3.540e-16 -15.452 -15.451 0.001 (0) - [18O]2 3.526e-19 3.532e-19 -18.453 -18.452 0.001 (0) +[18O](0) 3.930e-16 + O[18O] 3.922e-16 3.929e-16 -15.406 -15.406 0.001 (0) + [18O]2 3.913e-19 3.919e-19 -18.407 -18.407 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.77 -126.63 -2.86 [13C]H4 + [13C]H4(g) -123.86 -126.72 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.47 -20.97 -1.50 [14C][18O]2 - [14C]H4(g) -134.38 -137.24 -2.86 [14C]H4 + [14C]H4(g) -134.47 -137.33 -2.86 [14C]H4 [14C]O2(g) -14.10 -15.57 -1.47 [14C]O2 [14C]O[18O](g) -16.48 -18.27 -1.79 [14C]O[18O] - [18O]2(g) -16.16 -18.45 -2.29 [18O]2 + [18O]2(g) -16.12 -18.41 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -33826,14 +33816,14 @@ O(0) 1.778e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.81 -124.67 -2.86 CH4 + CH4(g) -121.90 -124.76 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.51 -39.66 -3.15 H2 + H2(g) -36.54 -39.69 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.16 -13.05 -2.89 O2 - O[18O](g) -12.86 -15.75 -2.89 O[18O] + O2(g) -10.11 -13.01 -2.89 O2 + O[18O](g) -12.81 -15.71 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -33897,7 +33887,7 @@ Calcite 9.56e-03 R(18O) 1.99519e-03 -4.9929 permil R(13C) 1.11120e-02 -6.0968 permil - R(14C) 2.63994e-13 22.451 pmc + R(14C) 2.63993e-13 22.451 pmc R(18O) H2O(l) 1.99519e-03 -4.9944 permil R(18O) OH- 1.92122e-03 -41.882 permil R(18O) H3O+ 2.04132e-03 18.013 permil @@ -33923,12 +33913,12 @@ Calcite 9.56e-03 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2652e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2436e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7181e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7145e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -33948,14 +33938,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.263 Adjusted to redox equilibrium + pe = 11.283 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.128e-13 + Electrical balance (eq) = 3.402e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -33970,7 +33960,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.614 -124.613 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.775 -124.774 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -33999,13 +33989,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.068e-08 6.078e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.459e-40 - H2 2.229e-40 2.233e-40 -39.652 -39.651 0.001 (0) -O(0) 1.669e-13 - O2 8.312e-14 8.326e-14 -13.080 -13.080 0.001 (0) - O[18O] 3.317e-16 3.322e-16 -15.479 -15.479 0.001 (0) +H(0) 4.065e-40 + H2 2.032e-40 2.036e-40 -39.692 -39.691 0.001 (0) +O(0) 2.009e-13 + O2 1.000e-13 1.002e-13 -13.000 -12.999 0.001 (0) + O[18O] 3.992e-16 3.998e-16 -15.399 -15.398 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.571 -126.571 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.732 -126.732 0.001 (0) [13C](4) 6.490e-05 H[13C]O3- 5.234e-05 4.789e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.099e-05 1.100e-05 -4.959 -4.958 0.001 (0) @@ -34025,7 +34015,7 @@ O(0) 1.669e-13 H[13C]O[18O]2- 2.084e-10 1.906e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.863e-10 1.305e-10 -9.730 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.199 -137.198 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.360 -137.359 0.001 (0) [14C](4) 1.542e-15 H[14C]O3- 1.245e-15 1.139e-15 -14.905 -14.943 -0.039 (0) [14C]O2 2.591e-16 2.596e-16 -15.586 -15.586 0.001 (0) @@ -34053,23 +34043,23 @@ O(0) 1.669e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.323e-16 - O[18O] 3.317e-16 3.322e-16 -15.479 -15.479 0.001 (0) - [18O]2 3.309e-19 3.314e-19 -18.480 -18.480 0.001 (0) +[18O](0) 4.000e-16 + O[18O] 3.992e-16 3.998e-16 -15.399 -15.398 0.001 (0) + [18O]2 3.982e-19 3.988e-19 -18.400 -18.399 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.71 -126.57 -2.86 [13C]H4 + [13C]H4(g) -123.87 -126.73 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.48 -20.99 -1.50 [14C][18O]2 - [14C]H4(g) -134.34 -137.20 -2.86 [14C]H4 + [14C]H4(g) -134.50 -137.36 -2.86 [14C]H4 [14C]O2(g) -14.12 -15.59 -1.47 [14C]O2 [14C]O[18O](g) -16.50 -18.29 -1.79 [14C]O[18O] - [18O]2(g) -16.19 -18.48 -2.29 [18O]2 + [18O]2(g) -16.11 -18.40 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -34083,14 +34073,14 @@ O(0) 1.669e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.75 -124.61 -2.86 CH4 + CH4(g) -121.91 -124.77 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.50 -39.65 -3.15 H2 + H2(g) -36.54 -39.69 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.19 -13.08 -2.89 O2 - O[18O](g) -12.89 -15.78 -2.89 O[18O] + O2(g) -10.11 -13.00 -2.89 O2 + O[18O](g) -12.81 -15.70 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -34160,7 +34150,7 @@ Calcite 1.01e-02 R(18O) H3O+ 2.04132e-03 18.014 permil R(18O) O2(aq) 1.99519e-03 -4.9943 permil R(13C) CO2(aq) 1.10342e-02 -13.063 permil - R(14C) CO2(aq) 2.52045e-13 21.434 pmc + R(14C) CO2(aq) 2.52044e-13 21.434 pmc R(18O) CO2(aq) 2.07915e-03 36.88 permil R(18O) HCO3- 1.99519e-03 -4.9943 permil R(13C) HCO3- 1.11301e-02 -4.4767 permil @@ -34180,12 +34170,12 @@ Calcite 1.01e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2393e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2503e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6444e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5749e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -34205,14 +34195,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.281 Adjusted to redox equilibrium + pe = 11.295 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.128e-13 + Electrical balance (eq) = 3.402e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -34227,7 +34217,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.759 -124.758 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.869 -124.869 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -34256,13 +34246,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.069e-08 6.079e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.103e-40 - H2 2.052e-40 2.055e-40 -39.688 -39.687 0.001 (0) -O(0) 1.971e-13 - O2 9.816e-14 9.832e-14 -13.008 -13.007 0.001 (0) - O[18O] 3.917e-16 3.923e-16 -15.407 -15.406 0.001 (0) +H(0) 3.849e-40 + H2 1.925e-40 1.928e-40 -39.716 -39.715 0.001 (0) +O(0) 2.239e-13 + O2 1.115e-13 1.117e-13 -12.953 -12.952 0.001 (0) + O[18O] 4.450e-16 4.457e-16 -15.352 -15.351 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.716 -126.715 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.827 -126.826 0.001 (0) [13C](4) 6.490e-05 H[13C]O3- 5.235e-05 4.790e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) @@ -34282,7 +34272,7 @@ O(0) 1.971e-13 H[13C]O[18O]2- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.864e-10 1.305e-10 -9.730 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.357 -137.356 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.468 -137.467 0.001 (0) [14C](4) 1.493e-15 H[14C]O3- 1.206e-15 1.104e-15 -14.919 -14.957 -0.039 (0) [14C]O2 2.510e-16 2.514e-16 -15.600 -15.600 0.001 (0) @@ -34310,23 +34300,23 @@ O(0) 1.971e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.925e-16 - O[18O] 3.917e-16 3.923e-16 -15.407 -15.406 0.001 (0) - [18O]2 3.908e-19 3.914e-19 -18.408 -18.407 0.001 (0) +[18O](0) 4.459e-16 + O[18O] 4.450e-16 4.457e-16 -15.352 -15.351 0.001 (0) + [18O]2 4.439e-19 4.447e-19 -18.353 -18.352 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.86 -126.72 -2.86 [13C]H4 + [13C]H4(g) -123.97 -126.83 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.50 -21.00 -1.50 [14C][18O]2 - [14C]H4(g) -134.50 -137.36 -2.86 [14C]H4 + [14C]H4(g) -134.61 -137.47 -2.86 [14C]H4 [14C]O2(g) -14.13 -15.60 -1.47 [14C]O2 [14C]O[18O](g) -16.51 -18.30 -1.79 [14C]O[18O] - [18O]2(g) -16.12 -18.41 -2.29 [18O]2 + [18O]2(g) -16.06 -18.35 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -34340,14 +34330,14 @@ O(0) 1.971e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.90 -124.76 -2.86 CH4 + CH4(g) -122.01 -124.87 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.54 -39.69 -3.15 H2 + H2(g) -36.56 -39.71 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.11 -13.01 -2.89 O2 - O[18O](g) -12.82 -15.71 -2.89 O[18O] + O2(g) -10.06 -12.95 -2.89 O2 + O[18O](g) -12.76 -15.65 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -34411,7 +34401,7 @@ Calcite 1.06e-02 R(18O) 1.99519e-03 -4.9926 permil R(13C) 1.11152e-02 -5.8101 permil - R(14C) 2.47901e-13 21.082 pmc + R(14C) 2.47900e-13 21.082 pmc R(18O) H2O(l) 1.99519e-03 -4.9941 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.014 permil @@ -34424,10 +34414,10 @@ Calcite 1.06e-02 R(14C) HCO3- 2.48633e-13 21.144 pmc R(18O) CO3-2 1.99519e-03 -4.9941 permil R(13C) CO3-2 1.11157e-02 -5.7665 permil - R(14C) CO3-2 2.47920e-13 21.084 pmc + R(14C) CO3-2 2.47919e-13 21.084 pmc R(18O) Calcite 2.05263e-03 23.652 permil R(13C) Calcite 1.11538e-02 -2.3656 permil - R(14C) Calcite 2.49619e-13 21.228 pmc + R(14C) Calcite 2.49618e-13 21.228 pmc --------------------------------Isotope Alphas--------------------------------- @@ -34437,12 +34427,12 @@ Calcite 1.06e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2756e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2554e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6046e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.67e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -34462,14 +34452,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.273 Adjusted to redox equilibrium + pe = 11.285 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.128e-13 + Electrical balance (eq) = 3.402e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -34484,7 +34474,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.699 -124.698 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.788 -124.787 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -34513,13 +34503,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.070e-08 6.080e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.246e-40 - H2 2.123e-40 2.126e-40 -39.673 -39.672 0.001 (0) -O(0) 1.841e-13 - O2 9.167e-14 9.182e-14 -13.038 -13.037 0.001 (0) - O[18O] 3.658e-16 3.664e-16 -15.437 -15.436 0.001 (0) +H(0) 4.035e-40 + H2 2.017e-40 2.021e-40 -39.695 -39.695 0.001 (0) +O(0) 2.038e-13 + O2 1.015e-13 1.017e-13 -12.993 -12.993 0.001 (0) + O[18O] 4.051e-16 4.058e-16 -15.392 -15.392 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.656 -126.656 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.745 -126.744 0.001 (0) [13C](4) 6.491e-05 H[13C]O3- 5.236e-05 4.790e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) @@ -34539,7 +34529,7 @@ O(0) 1.841e-13 H[13C]O[18O]2- 2.084e-10 1.907e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.864e-10 1.306e-10 -9.730 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.311 -137.310 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.400 -137.399 0.001 (0) [14C](4) 1.448e-15 H[14C]O3- 1.169e-15 1.070e-15 -14.932 -14.971 -0.039 (0) [14C]O2 2.433e-16 2.437e-16 -15.614 -15.613 0.001 (0) @@ -34567,23 +34557,23 @@ O(0) 1.841e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.665e-16 - O[18O] 3.658e-16 3.664e-16 -15.437 -15.436 0.001 (0) - [18O]2 3.649e-19 3.655e-19 -18.438 -18.437 0.001 (0) +[18O](0) 4.059e-16 + O[18O] 4.051e-16 4.058e-16 -15.392 -15.392 0.001 (0) + [18O]2 4.041e-19 4.048e-19 -18.393 -18.393 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.80 -126.66 -2.86 [13C]H4 + [13C]H4(g) -123.88 -126.74 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.51 -21.01 -1.50 [14C][18O]2 - [14C]H4(g) -134.45 -137.31 -2.86 [14C]H4 + [14C]H4(g) -134.54 -137.40 -2.86 [14C]H4 [14C]O2(g) -14.14 -15.61 -1.47 [14C]O2 [14C]O[18O](g) -16.53 -18.31 -1.79 [14C]O[18O] - [18O]2(g) -16.15 -18.44 -2.29 [18O]2 + [18O]2(g) -16.10 -18.39 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -34597,14 +34587,14 @@ O(0) 1.841e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.84 -124.70 -2.86 CH4 + CH4(g) -121.93 -124.79 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.52 -39.67 -3.15 H2 + H2(g) -36.54 -39.69 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.14 -13.04 -2.89 O2 - O[18O](g) -12.84 -15.74 -2.89 O[18O] + O2(g) -10.10 -12.99 -2.89 O2 + O[18O](g) -12.80 -15.69 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -34674,14 +34664,14 @@ Calcite 1.11e-02 R(18O) H3O+ 2.04132e-03 18.014 permil R(18O) O2(aq) 1.99519e-03 -4.994 permil R(13C) CO2(aq) 1.10371e-02 -12.795 permil - R(14C) CO2(aq) 2.37135e-13 20.166 pmc + R(14C) CO2(aq) 2.37134e-13 20.166 pmc R(18O) CO2(aq) 2.07915e-03 36.88 permil R(18O) HCO3- 1.99519e-03 -4.994 permil R(13C) HCO3- 1.11332e-02 -4.2068 permil - R(14C) HCO3- 2.41279e-13 20.519 pmc + R(14C) HCO3- 2.41278e-13 20.519 pmc R(18O) CO3-2 1.99519e-03 -4.994 permil R(13C) CO3-2 1.11172e-02 -5.6359 permil - R(14C) CO3-2 2.40587e-13 20.46 pmc + R(14C) CO3-2 2.40586e-13 20.46 pmc R(18O) Calcite 2.05263e-03 23.652 permil R(13C) Calcite 1.11552e-02 -2.2345 permil R(14C) Calcite 2.42235e-13 20.6 pmc @@ -34694,12 +34684,12 @@ Calcite 1.11e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2758e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2558e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5935e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5926e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -34719,14 +34709,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.273 Adjusted to redox equilibrium + pe = 11.281 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.128e-13 + Electrical balance (eq) = 3.402e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -34741,7 +34731,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.700 -124.699 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.758 -124.757 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -34770,13 +34760,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.071e-08 6.081e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.245e-40 - H2 2.122e-40 2.126e-40 -39.673 -39.672 0.001 (0) -O(0) 1.842e-13 - O2 9.173e-14 9.188e-14 -13.038 -13.037 0.001 (0) - O[18O] 3.660e-16 3.666e-16 -15.436 -15.436 0.001 (0) +H(0) 4.105e-40 + H2 2.052e-40 2.056e-40 -39.688 -39.687 0.001 (0) +O(0) 1.969e-13 + O2 9.807e-14 9.823e-14 -13.008 -13.008 0.001 (0) + O[18O] 3.913e-16 3.920e-16 -15.407 -15.407 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.657 -126.656 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.715 -126.714 0.001 (0) [13C](4) 6.492e-05 H[13C]O3- 5.237e-05 4.791e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) @@ -34796,7 +34786,7 @@ O(0) 1.842e-13 H[13C]O[18O]2- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.864e-10 1.306e-10 -9.730 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.325 -137.324 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.383 -137.382 0.001 (0) [14C](4) 1.405e-15 H[14C]O3- 1.135e-15 1.038e-15 -14.945 -14.984 -0.039 (0) [14C]O2 2.361e-16 2.365e-16 -15.627 -15.626 0.001 (0) @@ -34824,23 +34814,23 @@ O(0) 1.842e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.667e-16 - O[18O] 3.660e-16 3.666e-16 -15.436 -15.436 0.001 (0) - [18O]2 3.651e-19 3.657e-19 -18.438 -18.437 0.001 (0) +[18O](0) 3.921e-16 + O[18O] 3.913e-16 3.920e-16 -15.407 -15.407 0.001 (0) + [18O]2 3.904e-19 3.910e-19 -18.408 -18.408 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.80 -126.66 -2.86 [13C]H4 + [13C]H4(g) -123.85 -126.71 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.52 -21.03 -1.50 [14C][18O]2 - [14C]H4(g) -134.46 -137.32 -2.86 [14C]H4 + [14C]H4(g) -134.52 -137.38 -2.86 [14C]H4 [14C]O2(g) -14.16 -15.63 -1.47 [14C]O2 [14C]O[18O](g) -16.54 -18.33 -1.79 [14C]O[18O] - [18O]2(g) -16.15 -18.44 -2.29 [18O]2 + [18O]2(g) -16.12 -18.41 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -34854,14 +34844,14 @@ O(0) 1.842e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.84 -124.70 -2.86 CH4 + CH4(g) -121.90 -124.76 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.52 -39.67 -3.15 H2 + H2(g) -36.54 -39.69 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.14 -13.04 -2.89 O2 - O[18O](g) -12.84 -15.74 -2.89 O[18O] + O2(g) -10.12 -13.01 -2.89 O2 + O[18O](g) -12.82 -15.71 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -34951,12 +34941,12 @@ Calcite 1.16e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2419e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2543e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 +Alpha 18O HCO3-/H2O(l) 1 4.4409e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6163e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6153e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -34976,14 +34966,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.262 Adjusted to redox equilibrium + pe = 11.265 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.129e-13 + Electrical balance (eq) = 3.402e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -34998,7 +34988,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.606 -124.606 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.635 -124.634 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -35027,13 +35017,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.072e-08 6.082e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.479e-40 - H2 2.239e-40 2.243e-40 -39.650 -39.649 0.001 (0) -O(0) 1.654e-13 - O2 8.238e-14 8.251e-14 -13.084 -13.083 0.001 (0) - O[18O] 3.287e-16 3.293e-16 -15.483 -15.482 0.001 (0) +H(0) 4.406e-40 + H2 2.203e-40 2.206e-40 -39.657 -39.656 0.001 (0) +O(0) 1.710e-13 + O2 8.514e-14 8.528e-14 -13.070 -13.069 0.001 (0) + O[18O] 3.397e-16 3.403e-16 -15.469 -15.468 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.563 -126.563 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.592 -126.591 0.001 (0) [13C](4) 6.493e-05 H[13C]O3- 5.237e-05 4.791e-05 -4.281 -4.320 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) @@ -35053,7 +35043,7 @@ O(0) 1.654e-13 H[13C]O[18O]2- 2.085e-10 1.907e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.864e-10 1.306e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.244 -137.243 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.273 -137.272 0.001 (0) [14C](4) 1.365e-15 H[14C]O3- 1.102e-15 1.008e-15 -14.958 -14.996 -0.039 (0) [14C]O2 2.294e-16 2.297e-16 -15.639 -15.639 0.001 (0) @@ -35081,23 +35071,23 @@ O(0) 1.654e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.294e-16 - O[18O] 3.287e-16 3.293e-16 -15.483 -15.482 0.001 (0) - [18O]2 3.279e-19 3.285e-19 -18.484 -18.484 0.001 (0) +[18O](0) 3.404e-16 + O[18O] 3.397e-16 3.403e-16 -15.469 -15.468 0.001 (0) + [18O]2 3.389e-19 3.395e-19 -18.470 -18.469 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.86 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.70 -126.56 -2.86 [13C]H4 + [13C]H4(g) -123.73 -126.59 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.54 -21.04 -1.50 [14C][18O]2 - [14C]H4(g) -134.38 -137.24 -2.86 [14C]H4 + [14C]H4(g) -134.41 -137.27 -2.86 [14C]H4 [14C]O2(g) -14.17 -15.64 -1.47 [14C]O2 [14C]O[18O](g) -16.55 -18.34 -1.79 [14C]O[18O] - [18O]2(g) -16.19 -18.48 -2.29 [18O]2 + [18O]2(g) -16.18 -18.47 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -35111,14 +35101,14 @@ O(0) 1.654e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.75 -124.61 -2.86 CH4 + CH4(g) -121.77 -124.63 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.50 -39.65 -3.15 H2 + H2(g) -36.51 -39.66 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.19 -13.08 -2.89 O2 - O[18O](g) -12.89 -15.78 -2.89 O[18O] + O2(g) -10.18 -13.07 -2.89 O2 + O[18O](g) -12.88 -15.77 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -35182,7 +35172,7 @@ Calcite 1.21e-02 R(18O) 1.99519e-03 -4.9922 permil R(13C) 1.11194e-02 -5.44 permil - R(14C) 2.27132e-13 19.316 pmc + R(14C) 2.27131e-13 19.316 pmc R(18O) H2O(l) 1.99519e-03 -4.9937 permil R(18O) OH- 1.92122e-03 -41.881 permil R(18O) H3O+ 2.04132e-03 18.014 permil @@ -35208,12 +35198,12 @@ Calcite 1.21e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2723e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2845e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6119e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6098e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -35233,14 +35223,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.260 Adjusted to redox equilibrium + pe = 11.263 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.128e-13 + Electrical balance (eq) = 3.401e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -35255,7 +35245,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.589 -124.588 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.618 -124.617 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -35284,13 +35274,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.072e-08 6.082e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.525e-40 - H2 2.262e-40 2.266e-40 -39.645 -39.645 0.001 (0) -O(0) 1.621e-13 - O2 8.072e-14 8.085e-14 -13.093 -13.092 0.001 (0) - O[18O] 3.221e-16 3.226e-16 -15.492 -15.491 0.001 (0) +H(0) 4.448e-40 + H2 2.224e-40 2.228e-40 -39.653 -39.652 0.001 (0) +O(0) 1.677e-13 + O2 8.351e-14 8.365e-14 -13.078 -13.078 0.001 (0) + O[18O] 3.332e-16 3.338e-16 -15.477 -15.477 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.546 -126.545 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.575 -126.575 0.001 (0) [13C](4) 6.494e-05 H[13C]O3- 5.238e-05 4.792e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) @@ -35310,7 +35300,7 @@ O(0) 1.621e-13 H[13C]O[18O]2- 2.085e-10 1.908e-10 -9.681 -9.720 -0.039 (0) [13C]O2[18O]-2 1.864e-10 1.306e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.239 -137.238 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.268 -137.267 0.001 (0) [14C](4) 1.326e-15 H[14C]O3- 1.071e-15 9.803e-16 -14.970 -15.009 -0.039 (0) [14C]O2 2.230e-16 2.233e-16 -15.652 -15.651 0.001 (0) @@ -35338,23 +35328,23 @@ O(0) 1.621e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.228e-16 - O[18O] 3.221e-16 3.226e-16 -15.492 -15.491 0.001 (0) - [18O]2 3.213e-19 3.219e-19 -18.493 -18.492 0.001 (0) +[18O](0) 3.339e-16 + O[18O] 3.332e-16 3.338e-16 -15.477 -15.477 0.001 (0) + [18O]2 3.324e-19 3.330e-19 -18.478 -18.478 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.69 -126.55 -2.86 [13C]H4 + [13C]H4(g) -123.71 -126.57 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.55 -21.05 -1.50 [14C][18O]2 - [14C]H4(g) -134.38 -137.24 -2.86 [14C]H4 + [14C]H4(g) -134.41 -137.27 -2.86 [14C]H4 [14C]O2(g) -14.18 -15.65 -1.47 [14C]O2 [14C]O[18O](g) -16.56 -18.35 -1.79 [14C]O[18O] - [18O]2(g) -16.20 -18.49 -2.29 [18O]2 + [18O]2(g) -16.19 -18.48 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -35368,14 +35358,14 @@ O(0) 1.621e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.73 -124.59 -2.86 CH4 + CH4(g) -121.76 -124.62 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.49 -39.64 -3.15 H2 + H2(g) -36.50 -39.65 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.20 -13.09 -2.89 O2 - O[18O](g) -12.90 -15.79 -2.89 O[18O] + O2(g) -10.19 -13.08 -2.89 O2 + O[18O](g) -12.89 -15.78 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -35449,7 +35439,7 @@ Calcite 1.26e-02 R(18O) CO2(aq) 2.07915e-03 36.88 permil R(18O) HCO3- 1.99519e-03 -4.9936 permil R(13C) HCO3- 1.11371e-02 -3.8569 permil - R(14C) HCO3- 2.21614e-13 18.846 pmc + R(14C) HCO3- 2.21613e-13 18.846 pmc R(18O) CO3-2 1.99519e-03 -4.9936 permil R(13C) CO3-2 1.11211e-02 -5.2865 permil R(14C) CO3-2 2.20978e-13 18.792 pmc @@ -35465,12 +35455,12 @@ Calcite 1.26e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2669e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2795e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7769e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7748e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -35490,14 +35480,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.258 Adjusted to redox equilibrium + pe = 11.246 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.128e-13 + Electrical balance (eq) = 3.401e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -35512,7 +35502,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.573 -124.572 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.483 -124.482 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -35541,13 +35531,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.073e-08 6.083e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.565e-40 - H2 2.283e-40 2.286e-40 -39.642 -39.641 0.001 (0) -O(0) 1.592e-13 - O2 7.929e-14 7.942e-14 -13.101 -13.100 0.001 (0) - O[18O] 3.164e-16 3.169e-16 -15.500 -15.499 0.001 (0) +H(0) 4.808e-40 + H2 2.404e-40 2.408e-40 -39.619 -39.618 0.001 (0) +O(0) 1.435e-13 + O2 7.147e-14 7.159e-14 -13.146 -13.145 0.001 (0) + O[18O] 2.852e-16 2.857e-16 -15.545 -15.544 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.530 -126.529 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.440 -126.439 0.001 (0) [13C](4) 6.494e-05 H[13C]O3- 5.238e-05 4.793e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.099e-05 1.101e-05 -4.959 -4.958 0.001 (0) @@ -35567,7 +35557,7 @@ O(0) 1.592e-13 H[13C]O[18O]2- 2.085e-10 1.908e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.865e-10 1.306e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.235 -137.234 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.145 -137.144 0.001 (0) [14C](4) 1.290e-15 H[14C]O3- 1.042e-15 9.536e-16 -14.982 -15.021 -0.039 (0) [14C]O2 2.169e-16 2.173e-16 -15.664 -15.663 0.001 (0) @@ -35595,23 +35585,23 @@ O(0) 1.592e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 3.170e-16 - O[18O] 3.164e-16 3.169e-16 -15.500 -15.499 0.001 (0) - [18O]2 3.156e-19 3.162e-19 -18.501 -18.500 0.001 (0) +[18O](0) 2.858e-16 + O[18O] 2.852e-16 2.857e-16 -15.545 -15.544 0.001 (0) + [18O]2 2.845e-19 2.850e-19 -18.546 -18.545 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.67 -126.53 -2.86 [13C]H4 + [13C]H4(g) -123.58 -126.44 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.56 -21.06 -1.50 [14C][18O]2 - [14C]H4(g) -134.37 -137.23 -2.86 [14C]H4 + [14C]H4(g) -134.28 -137.14 -2.86 [14C]H4 [14C]O2(g) -14.19 -15.66 -1.47 [14C]O2 [14C]O[18O](g) -16.58 -18.36 -1.79 [14C]O[18O] - [18O]2(g) -16.21 -18.50 -2.29 [18O]2 + [18O]2(g) -16.25 -18.55 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -35625,14 +35615,14 @@ O(0) 1.592e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.71 -124.57 -2.86 CH4 + CH4(g) -121.62 -124.48 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.49 -39.64 -3.15 H2 + H2(g) -36.47 -39.62 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.21 -13.10 -2.89 O2 - O[18O](g) -12.91 -15.80 -2.89 O[18O] + O2(g) -10.25 -13.15 -2.89 O2 + O[18O](g) -12.95 -15.85 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -35702,7 +35692,7 @@ Calcite 1.31e-02 R(18O) H3O+ 2.04132e-03 18.014 permil R(18O) O2(aq) 1.99519e-03 -4.9934 permil R(13C) CO2(aq) 1.10422e-02 -12.345 permil - R(14C) CO2(aq) 2.12047e-13 18.033 pmc + R(14C) CO2(aq) 2.12046e-13 18.033 pmc R(18O) CO2(aq) 2.07915e-03 36.88 permil R(18O) HCO3- 1.99519e-03 -4.9934 permil R(13C) HCO3- 1.11382e-02 -3.7526 permil @@ -35712,7 +35702,7 @@ Calcite 1.31e-02 R(14C) CO3-2 2.15133e-13 18.295 pmc R(18O) Calcite 2.05263e-03 23.653 permil R(13C) Calcite 1.11603e-02 -1.7794 permil - R(14C) Calcite 2.16608e-13 18.421 pmc + R(14C) Calcite 2.16607e-13 18.421 pmc --------------------------------Isotope Alphas--------------------------------- @@ -35722,12 +35712,12 @@ Calcite 1.31e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2947e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2754e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6793e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7467e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -35747,14 +35737,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.228 Adjusted to redox equilibrium + pe = 11.213 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.129e-13 + Electrical balance (eq) = 3.402e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -35769,7 +35759,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.336 -124.335 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.215 -124.214 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -35798,13 +35788,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.074e-08 6.084e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.233e-40 - H2 2.617e-40 2.621e-40 -39.582 -39.582 0.001 (0) -O(0) 1.212e-13 - O2 6.035e-14 6.044e-14 -13.219 -13.219 0.001 (0) - O[18O] 2.408e-16 2.412e-16 -15.618 -15.618 0.001 (0) +H(0) 5.611e-40 + H2 2.805e-40 2.810e-40 -39.552 -39.551 0.001 (0) +O(0) 1.054e-13 + O2 5.249e-14 5.258e-14 -13.280 -13.279 0.001 (0) + O[18O] 2.095e-16 2.098e-16 -15.679 -15.678 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.293 -126.292 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.172 -126.171 0.001 (0) [13C](4) 6.495e-05 H[13C]O3- 5.239e-05 4.793e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.101e-05 -4.959 -4.958 0.001 (0) @@ -35824,7 +35814,7 @@ O(0) 1.212e-13 H[13C]O[18O]2- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.865e-10 1.306e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.010 -137.009 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.889 -136.888 0.001 (0) [14C](4) 1.256e-15 H[14C]O3- 1.015e-15 9.284e-16 -14.994 -15.032 -0.039 (0) [14C]O2 2.112e-16 2.115e-16 -15.675 -15.675 0.001 (0) @@ -35852,23 +35842,23 @@ O(0) 1.212e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.413e-16 - O[18O] 2.408e-16 2.412e-16 -15.618 -15.618 0.001 (0) - [18O]2 2.402e-19 2.406e-19 -18.619 -18.619 0.001 (0) +[18O](0) 2.099e-16 + O[18O] 2.095e-16 2.098e-16 -15.679 -15.678 0.001 (0) + [18O]2 2.090e-19 2.093e-19 -18.680 -18.679 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.43 -126.29 -2.86 [13C]H4 + [13C]H4(g) -123.31 -126.17 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.57 -21.07 -1.50 [14C][18O]2 - [14C]H4(g) -134.15 -137.01 -2.86 [14C]H4 + [14C]H4(g) -134.03 -136.89 -2.86 [14C]H4 [14C]O2(g) -14.21 -15.67 -1.47 [14C]O2 [14C]O[18O](g) -16.59 -18.37 -1.79 [14C]O[18O] - [18O]2(g) -16.33 -18.62 -2.29 [18O]2 + [18O]2(g) -16.39 -18.68 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -35882,14 +35872,14 @@ O(0) 1.212e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.48 -124.34 -2.86 CH4 + CH4(g) -121.35 -124.21 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.43 -39.58 -3.15 H2 + H2(g) -36.40 -39.55 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.33 -13.22 -2.89 O2 - O[18O](g) -13.03 -15.92 -2.89 O[18O] + O2(g) -10.39 -13.28 -2.89 O2 + O[18O](g) -13.09 -15.98 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -35959,7 +35949,7 @@ Calcite 1.36e-02 R(18O) H3O+ 2.04132e-03 18.015 permil R(18O) O2(aq) 1.99519e-03 -4.9933 permil R(13C) CO2(aq) 1.10433e-02 -12.247 permil - R(14C) CO2(aq) 2.06583e-13 17.568 pmc + R(14C) CO2(aq) 2.06582e-13 17.568 pmc R(18O) CO2(aq) 2.07915e-03 36.881 permil R(18O) HCO3- 1.99519e-03 -4.9933 permil R(13C) HCO3- 1.11394e-02 -3.6537 permil @@ -35979,12 +35969,12 @@ Calcite 1.36e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2258e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2395e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -5.8842e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7569e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7571e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -36004,14 +35994,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.203 Adjusted to redox equilibrium + pe = 11.192 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.128e-13 + Electrical balance (eq) = 3.402e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -36026,7 +36016,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.132 -124.131 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.051 -124.050 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -36055,13 +36045,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.074e-08 6.084e-08 -7.217 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.886e-40 - H2 2.943e-40 2.948e-40 -39.531 -39.530 0.001 (0) -O(0) 9.578e-14 - O2 4.770e-14 4.778e-14 -13.321 -13.321 0.001 (0) - O[18O] 1.903e-16 1.907e-16 -15.720 -15.720 0.001 (0) +H(0) 6.166e-40 + H2 3.083e-40 3.088e-40 -39.511 -39.510 0.001 (0) +O(0) 8.729e-14 + O2 4.347e-14 4.354e-14 -13.362 -13.361 0.001 (0) + O[18O] 1.735e-16 1.738e-16 -15.761 -15.760 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.089 -126.088 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.008 -126.007 0.001 (0) [13C](4) 6.496e-05 H[13C]O3- 5.240e-05 4.793e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) @@ -36081,7 +36071,7 @@ O(0) 9.578e-14 H[13C]O[18O]2- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.865e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.817 -136.816 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.736 -136.735 0.001 (0) [14C](4) 1.224e-15 H[14C]O3- 9.887e-16 9.045e-16 -15.005 -15.044 -0.039 (0) [14C]O2 2.057e-16 2.061e-16 -15.687 -15.686 0.001 (0) @@ -36109,23 +36099,23 @@ O(0) 9.578e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.907e-16 - O[18O] 1.903e-16 1.907e-16 -15.720 -15.720 0.001 (0) - [18O]2 1.899e-19 1.902e-19 -18.722 -18.721 0.001 (0) +[18O](0) 1.738e-16 + O[18O] 1.735e-16 1.738e-16 -15.761 -15.760 0.001 (0) + [18O]2 1.731e-19 1.733e-19 -18.762 -18.761 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.23 -126.09 -2.86 [13C]H4 + [13C]H4(g) -123.15 -126.01 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.58 -21.09 -1.50 [14C][18O]2 - [14C]H4(g) -133.96 -136.82 -2.86 [14C]H4 + [14C]H4(g) -133.88 -136.74 -2.86 [14C]H4 [14C]O2(g) -14.22 -15.69 -1.47 [14C]O2 [14C]O[18O](g) -16.60 -18.39 -1.79 [14C]O[18O] - [18O]2(g) -16.43 -18.72 -2.29 [18O]2 + [18O]2(g) -16.47 -18.76 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -36139,14 +36129,14 @@ O(0) 9.578e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.27 -124.13 -2.86 CH4 + CH4(g) -121.19 -124.05 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.38 -39.53 -3.15 H2 + H2(g) -36.36 -39.51 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.43 -13.32 -2.89 O2 - O[18O](g) -13.13 -16.02 -2.89 O[18O] + O2(g) -10.47 -13.36 -2.89 O2 + O[18O](g) -13.17 -16.06 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -36220,7 +36210,7 @@ Calcite 1.41e-02 R(18O) CO2(aq) 2.07915e-03 36.881 permil R(18O) HCO3- 1.99519e-03 -4.9932 permil R(13C) HCO3- 1.11404e-02 -3.5597 permil - R(14C) HCO3- 2.04913e-13 17.426 pmc + R(14C) HCO3- 2.04912e-13 17.426 pmc R(18O) CO3-2 1.99519e-03 -4.9932 permil R(13C) CO3-2 1.11244e-02 -4.9897 permil R(14C) CO3-2 2.04325e-13 17.376 pmc @@ -36236,12 +36226,12 @@ Calcite 1.41e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2564e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2362e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.9944e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7297e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8663e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -36261,14 +36251,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.201 Adjusted to redox equilibrium + pe = 11.191 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.129e-13 + Electrical balance (eq) = 3.401e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -36283,7 +36273,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.119 -124.119 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.037 -124.036 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -36312,13 +36302,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.075e-08 6.085e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.928e-40 - H2 2.964e-40 2.969e-40 -39.528 -39.527 0.001 (0) -O(0) 9.442e-14 - O2 4.702e-14 4.710e-14 -13.328 -13.327 0.001 (0) - O[18O] 1.876e-16 1.879e-16 -15.727 -15.726 0.001 (0) +H(0) 6.216e-40 + H2 3.108e-40 3.113e-40 -39.507 -39.507 0.001 (0) +O(0) 8.587e-14 + O2 4.276e-14 4.283e-14 -13.369 -13.368 0.001 (0) + O[18O] 1.706e-16 1.709e-16 -15.768 -15.767 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.076 -126.075 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.994 -125.993 0.001 (0) [13C](4) 6.496e-05 H[13C]O3- 5.240e-05 4.794e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) @@ -36338,7 +36328,7 @@ O(0) 9.442e-14 H[13C]O[18O]2- 2.086e-10 1.908e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.865e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.815 -136.815 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.733 -136.732 0.001 (0) [14C](4) 1.193e-15 H[14C]O3- 9.638e-16 8.818e-16 -15.016 -15.055 -0.039 (0) [14C]O2 2.006e-16 2.009e-16 -15.698 -15.697 0.001 (0) @@ -36366,23 +36356,23 @@ O(0) 9.442e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.880e-16 - O[18O] 1.876e-16 1.879e-16 -15.727 -15.726 0.001 (0) - [18O]2 1.872e-19 1.875e-19 -18.728 -18.727 0.001 (0) +[18O](0) 1.710e-16 + O[18O] 1.706e-16 1.709e-16 -15.768 -15.767 0.001 (0) + [18O]2 1.702e-19 1.705e-19 -18.769 -18.768 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.22 -126.08 -2.86 [13C]H4 + [13C]H4(g) -123.13 -125.99 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.59 -21.10 -1.50 [14C][18O]2 - [14C]H4(g) -133.95 -136.81 -2.86 [14C]H4 + [14C]H4(g) -133.87 -136.73 -2.86 [14C]H4 [14C]O2(g) -14.23 -15.70 -1.47 [14C]O2 [14C]O[18O](g) -16.61 -18.40 -1.79 [14C]O[18O] - [18O]2(g) -16.44 -18.73 -2.29 [18O]2 + [18O]2(g) -16.48 -18.77 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -36396,14 +36386,14 @@ O(0) 9.442e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.26 -124.12 -2.86 CH4 + CH4(g) -121.18 -124.04 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.38 -39.53 -3.15 H2 + H2(g) -36.36 -39.51 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.43 -13.33 -2.89 O2 - O[18O](g) -13.13 -16.03 -2.89 O[18O] + O2(g) -10.48 -13.37 -2.89 O2 + O[18O](g) -13.18 -16.07 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -36467,7 +36457,7 @@ Calcite 1.46e-02 R(18O) 1.99519e-03 -4.9915 permil R(13C) 1.11249e-02 -4.944 permil - R(14C) 1.99303e-13 16.949 pmc + R(14C) 1.99302e-13 16.949 pmc R(18O) H2O(l) 1.99519e-03 -4.993 permil R(18O) OH- 1.92122e-03 -41.88 permil R(18O) H3O+ 2.04132e-03 18.015 permil @@ -36493,9 +36483,9 @@ Calcite 1.46e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2552e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2684e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 Alpha 18O CO3-2/H2O(l) 1 -1.6891e-09 0 @@ -36518,14 +36508,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.140 Adjusted to redox equilibrium + pe = 11.137 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.129e-13 + Electrical balance (eq) = 3.402e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -36540,7 +36530,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.634 -123.633 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.608 -123.608 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -36569,13 +36559,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.075e-08 6.085e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.840e-40 - H2 3.920e-40 3.926e-40 -39.407 -39.406 0.001 (0) -O(0) 5.399e-14 - O2 2.689e-14 2.693e-14 -13.570 -13.570 0.001 (0) - O[18O] 1.073e-16 1.075e-16 -15.969 -15.969 0.001 (0) +H(0) 7.955e-40 + H2 3.978e-40 3.984e-40 -39.400 -39.400 0.001 (0) +O(0) 5.243e-14 + O2 2.611e-14 2.616e-14 -13.583 -13.582 0.001 (0) + O[18O] 1.042e-16 1.044e-16 -15.982 -15.981 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.591 -125.590 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.565 -125.565 0.001 (0) [13C](4) 6.497e-05 H[13C]O3- 5.240e-05 4.794e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) @@ -36595,7 +36585,7 @@ O(0) 5.399e-14 H[13C]O[18O]2- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.865e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.340 -136.340 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.315 -136.314 0.001 (0) [14C](4) 1.164e-15 H[14C]O3- 9.402e-16 8.602e-16 -15.027 -15.065 -0.039 (0) [14C]O2 1.956e-16 1.960e-16 -15.709 -15.708 0.001 (0) @@ -36623,23 +36613,23 @@ O(0) 5.399e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.075e-16 - O[18O] 1.073e-16 1.075e-16 -15.969 -15.969 0.001 (0) - [18O]2 1.070e-19 1.072e-19 -18.971 -18.970 0.001 (0) +[18O](0) 1.044e-16 + O[18O] 1.042e-16 1.044e-16 -15.982 -15.981 0.001 (0) + [18O]2 1.039e-19 1.041e-19 -18.983 -18.982 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.73 -125.59 -2.86 [13C]H4 + [13C]H4(g) -122.70 -125.56 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.60 -21.11 -1.50 [14C][18O]2 - [14C]H4(g) -133.48 -136.34 -2.86 [14C]H4 + [14C]H4(g) -133.45 -136.31 -2.86 [14C]H4 [14C]O2(g) -14.24 -15.71 -1.47 [14C]O2 [14C]O[18O](g) -16.62 -18.41 -1.79 [14C]O[18O] - [18O]2(g) -16.68 -18.97 -2.29 [18O]2 + [18O]2(g) -16.69 -18.98 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -36653,14 +36643,14 @@ O(0) 5.399e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.77 -123.63 -2.86 CH4 + CH4(g) -120.75 -123.61 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.26 -39.41 -3.15 H2 + H2(g) -36.25 -39.40 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.68 -13.57 -2.89 O2 - O[18O](g) -13.38 -16.27 -2.89 O[18O] + O2(g) -10.69 -13.58 -2.89 O2 + O[18O](g) -13.39 -16.28 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -36724,7 +36714,7 @@ Calcite 1.51e-02 R(18O) 1.99519e-03 -4.9914 permil R(13C) 1.11259e-02 -4.8591 permil - R(14C) 1.94536e-13 16.544 pmc + R(14C) 1.94535e-13 16.544 pmc R(18O) H2O(l) 1.99519e-03 -4.9929 permil R(18O) OH- 1.92122e-03 -41.88 permil R(18O) H3O+ 2.04132e-03 18.015 permil @@ -36737,7 +36727,7 @@ Calcite 1.51e-02 R(14C) HCO3- 1.95110e-13 16.593 pmc R(18O) CO3-2 1.99519e-03 -4.9929 permil R(13C) CO3-2 1.11264e-02 -4.8155 permil - R(14C) CO3-2 1.94551e-13 16.545 pmc + R(14C) CO3-2 1.94550e-13 16.545 pmc R(18O) Calcite 2.05263e-03 23.653 permil R(13C) Calcite 1.11644e-02 -1.4113 permil R(14C) Calcite 1.95884e-13 16.658 pmc @@ -36750,12 +36740,12 @@ Calcite 1.51e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2571e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.27e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.3323e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.833e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7639e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -36775,14 +36765,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.161 Adjusted to redox equilibrium + pe = 11.131 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.129e-13 + Electrical balance (eq) = 3.401e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -36797,7 +36787,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.799 -123.798 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.562 -123.561 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -36826,13 +36816,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.076e-08 6.086e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.129e-40 - H2 3.565e-40 3.570e-40 -39.448 -39.447 0.001 (0) -O(0) 6.529e-14 - O2 3.251e-14 3.257e-14 -13.488 -13.487 0.001 (0) - O[18O] 1.297e-16 1.300e-16 -15.887 -15.886 0.001 (0) +H(0) 8.172e-40 + H2 4.086e-40 4.093e-40 -39.389 -39.388 0.001 (0) +O(0) 4.969e-14 + O2 2.475e-14 2.479e-14 -13.606 -13.606 0.001 (0) + O[18O] 9.875e-17 9.891e-17 -16.005 -16.005 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.756 -125.755 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.519 -125.518 0.001 (0) [13C](4) 6.498e-05 H[13C]O3- 5.241e-05 4.795e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) @@ -36852,7 +36842,7 @@ O(0) 6.529e-14 H[13C]O[18O]2- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.516 -136.515 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.279 -136.278 0.001 (0) [14C](4) 1.136e-15 H[14C]O3- 9.177e-16 8.396e-16 -15.037 -15.076 -0.039 (0) [14C]O2 1.910e-16 1.913e-16 -15.719 -15.718 0.001 (0) @@ -36880,23 +36870,23 @@ O(0) 6.529e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.300e-16 - O[18O] 1.297e-16 1.300e-16 -15.887 -15.886 0.001 (0) - [18O]2 1.294e-19 1.296e-19 -18.888 -18.887 0.001 (0) +[18O](0) 9.895e-17 + O[18O] 9.875e-17 9.891e-17 -16.005 -16.005 0.001 (0) + [18O]2 9.851e-20 9.868e-20 -19.007 -19.006 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.89 -125.75 -2.86 [13C]H4 + [13C]H4(g) -122.66 -125.52 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.61 -21.12 -1.50 [14C][18O]2 - [14C]H4(g) -133.66 -136.52 -2.86 [14C]H4 + [14C]H4(g) -133.42 -136.28 -2.86 [14C]H4 [14C]O2(g) -14.25 -15.72 -1.47 [14C]O2 [14C]O[18O](g) -16.63 -18.42 -1.79 [14C]O[18O] - [18O]2(g) -16.60 -18.89 -2.29 [18O]2 + [18O]2(g) -16.72 -19.01 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -36910,14 +36900,14 @@ O(0) 6.529e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.94 -123.80 -2.86 CH4 + CH4(g) -120.70 -123.56 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.30 -39.45 -3.15 H2 + H2(g) -36.24 -39.39 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.59 -13.49 -2.89 O2 - O[18O](g) -13.29 -16.19 -2.89 O[18O] + O2(g) -10.71 -13.61 -2.89 O2 + O[18O](g) -13.41 -16.31 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -36987,14 +36977,14 @@ Calcite 1.56e-02 R(18O) H3O+ 2.04132e-03 18.015 permil R(18O) O2(aq) 1.99519e-03 -4.9927 permil R(13C) CO2(aq) 1.10472e-02 -11.9 permil - R(14C) CO2(aq) 1.87280e-13 15.927 pmc + R(14C) CO2(aq) 1.87279e-13 15.927 pmc R(18O) CO2(aq) 2.07915e-03 36.881 permil R(18O) HCO3- 1.99519e-03 -4.9927 permil R(13C) HCO3- 1.11433e-02 -3.3041 permil R(14C) HCO3- 1.90552e-13 16.205 pmc R(18O) CO3-2 1.99519e-03 -4.9927 permil R(13C) CO3-2 1.11273e-02 -4.7344 permil - R(14C) CO3-2 1.90006e-13 16.159 pmc + R(14C) CO3-2 1.90006e-13 16.158 pmc R(18O) Calcite 2.05263e-03 23.654 permil R(13C) Calcite 1.11653e-02 -1.33 permil R(14C) Calcite 1.91308e-13 16.269 pmc @@ -37007,12 +36997,12 @@ Calcite 1.56e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2605e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2747e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.562e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6289e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -37032,14 +37022,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.162 Adjusted to redox equilibrium + pe = 11.133 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.129e-13 + Electrical balance (eq) = 3.402e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -37054,7 +37044,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.810 -123.810 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.575 -123.574 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -37083,13 +37073,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.076e-08 6.086e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.082e-40 - H2 3.541e-40 3.547e-40 -39.451 -39.450 0.001 (0) -O(0) 6.616e-14 - O2 3.295e-14 3.300e-14 -13.482 -13.481 0.001 (0) - O[18O] 1.315e-16 1.317e-16 -15.881 -15.880 0.001 (0) +H(0) 8.110e-40 + H2 4.055e-40 4.062e-40 -39.392 -39.391 0.001 (0) +O(0) 5.045e-14 + O2 2.512e-14 2.516e-14 -13.600 -13.599 0.001 (0) + O[18O] 1.003e-16 1.004e-16 -15.999 -15.998 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.767 -125.766 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.532 -125.531 0.001 (0) [13C](4) 6.498e-05 H[13C]O3- 5.241e-05 4.795e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) @@ -37109,7 +37099,7 @@ O(0) 6.616e-14 H[13C]O[18O]2- 2.086e-10 1.909e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.538 -136.537 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.302 -136.302 0.001 (0) [14C](4) 1.110e-15 H[14C]O3- 8.963e-16 8.200e-16 -15.048 -15.086 -0.039 (0) [14C]O2 1.865e-16 1.868e-16 -15.729 -15.729 0.001 (0) @@ -37137,23 +37127,23 @@ O(0) 6.616e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.317e-16 - O[18O] 1.315e-16 1.317e-16 -15.881 -15.880 0.001 (0) - [18O]2 1.312e-19 1.314e-19 -18.882 -18.881 0.001 (0) +[18O](0) 1.005e-16 + O[18O] 1.003e-16 1.004e-16 -15.999 -15.998 0.001 (0) + [18O]2 1.000e-19 1.002e-19 -19.000 -18.999 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.91 -125.77 -2.86 [13C]H4 + [13C]H4(g) -122.67 -125.53 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.63 -21.13 -1.50 [14C][18O]2 - [14C]H4(g) -133.68 -136.54 -2.86 [14C]H4 + [14C]H4(g) -133.44 -136.30 -2.86 [14C]H4 [14C]O2(g) -14.26 -15.73 -1.47 [14C]O2 [14C]O[18O](g) -16.64 -18.43 -1.79 [14C]O[18O] - [18O]2(g) -16.59 -18.88 -2.29 [18O]2 + [18O]2(g) -16.71 -19.00 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -37167,14 +37157,14 @@ O(0) 6.616e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.95 -123.81 -2.86 CH4 + CH4(g) -120.71 -123.57 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.30 -39.45 -3.15 H2 + H2(g) -36.24 -39.39 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.59 -13.48 -2.89 O2 - O[18O](g) -13.29 -16.18 -2.89 O[18O] + O2(g) -10.71 -13.60 -2.89 O2 + O[18O](g) -13.41 -16.30 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -37244,14 +37234,14 @@ Calcite 1.61e-02 R(18O) H3O+ 2.04132e-03 18.015 permil R(18O) O2(aq) 1.99519e-03 -4.9926 permil R(13C) CO2(aq) 1.10480e-02 -11.824 permil - R(14C) CO2(aq) 1.83005e-13 15.563 pmc + R(14C) CO2(aq) 1.83004e-13 15.563 pmc R(18O) CO2(aq) 2.07915e-03 36.881 permil R(18O) HCO3- 1.99519e-03 -4.9926 permil R(13C) HCO3- 1.11441e-02 -3.2267 permil R(14C) HCO3- 1.86203e-13 15.835 pmc R(18O) CO3-2 1.99519e-03 -4.9926 permil R(13C) CO3-2 1.11281e-02 -4.6571 permil - R(14C) CO3-2 1.85669e-13 15.79 pmc + R(14C) CO3-2 1.85668e-13 15.79 pmc R(18O) Calcite 2.05263e-03 23.654 permil R(13C) Calcite 1.11662e-02 -1.2524 permil R(14C) Calcite 1.86941e-13 15.898 pmc @@ -37264,12 +37254,12 @@ Calcite 1.61e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2686e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.25e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.5503e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6639e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7328e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -37289,14 +37279,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.186 Adjusted to redox equilibrium + pe = 11.164 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.129e-13 + Electrical balance (eq) = 3.402e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -37311,7 +37301,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.003 -124.003 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.822 -123.821 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -37340,13 +37330,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.077e-08 6.087e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.338e-40 - H2 3.169e-40 3.174e-40 -39.499 -39.498 0.001 (0) -O(0) 8.262e-14 - O2 4.114e-14 4.121e-14 -13.386 -13.385 0.001 (0) - O[18O] 1.642e-16 1.645e-16 -15.785 -15.784 0.001 (0) +H(0) 7.035e-40 + H2 3.517e-40 3.523e-40 -39.454 -39.453 0.001 (0) +O(0) 6.706e-14 + O2 3.339e-14 3.345e-14 -13.476 -13.476 0.001 (0) + O[18O] 1.333e-16 1.335e-16 -15.875 -15.875 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.960 -125.959 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.779 -125.778 0.001 (0) [13C](4) 6.499e-05 H[13C]O3- 5.242e-05 4.796e-05 -4.281 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) @@ -37366,7 +37356,7 @@ O(0) 8.262e-14 H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.741 -136.740 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.560 -136.559 0.001 (0) [14C](4) 1.084e-15 H[14C]O3- 8.758e-16 8.013e-16 -15.058 -15.096 -0.039 (0) [14C]O2 1.822e-16 1.825e-16 -15.739 -15.739 0.001 (0) @@ -37394,23 +37384,23 @@ O(0) 8.262e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.645e-16 - O[18O] 1.642e-16 1.645e-16 -15.785 -15.784 0.001 (0) - [18O]2 1.638e-19 1.641e-19 -18.786 -18.785 0.001 (0) +[18O](0) 1.335e-16 + O[18O] 1.333e-16 1.335e-16 -15.875 -15.875 0.001 (0) + [18O]2 1.329e-19 1.332e-19 -18.876 -18.876 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.10 -125.96 -2.86 [13C]H4 + [13C]H4(g) -122.92 -125.78 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.64 -21.14 -1.50 [14C][18O]2 - [14C]H4(g) -133.88 -136.74 -2.86 [14C]H4 + [14C]H4(g) -133.70 -136.56 -2.86 [14C]H4 [14C]O2(g) -14.27 -15.74 -1.47 [14C]O2 [14C]O[18O](g) -16.65 -18.44 -1.79 [14C]O[18O] - [18O]2(g) -16.49 -18.79 -2.29 [18O]2 + [18O]2(g) -16.59 -18.88 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -37424,14 +37414,14 @@ O(0) 8.262e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.14 -124.00 -2.86 CH4 + CH4(g) -120.96 -123.82 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.35 -39.50 -3.15 H2 + H2(g) -36.30 -39.45 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.49 -13.38 -2.89 O2 - O[18O](g) -13.19 -16.08 -2.89 O[18O] + O2(g) -10.58 -13.48 -2.89 O2 + O[18O](g) -13.28 -16.18 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -37521,12 +37511,12 @@ Calcite 1.66e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2816e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2632e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8633e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7952e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -37546,14 +37536,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.229 Adjusted to redox equilibrium + pe = 11.222 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.129e-13 + Electrical balance (eq) = 3.401e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -37568,7 +37558,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.347 -124.347 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.286 -124.285 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -37597,13 +37587,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.077e-08 6.087e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.199e-40 - H2 2.599e-40 2.604e-40 -39.585 -39.584 0.001 (0) -O(0) 1.228e-13 - O2 6.114e-14 6.124e-14 -13.214 -13.213 0.001 (0) - O[18O] 2.440e-16 2.444e-16 -15.613 -15.612 0.001 (0) +H(0) 5.386e-40 + H2 2.693e-40 2.697e-40 -39.570 -39.569 0.001 (0) +O(0) 1.144e-13 + O2 5.697e-14 5.706e-14 -13.244 -13.244 0.001 (0) + O[18O] 2.273e-16 2.277e-16 -15.643 -15.643 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.304 -126.303 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.243 -126.242 0.001 (0) [13C](4) 6.499e-05 H[13C]O3- 5.242e-05 4.796e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.959 -4.958 0.001 (0) @@ -37623,7 +37613,7 @@ O(0) 1.228e-13 H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.681 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.095 -137.094 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.033 -137.033 0.001 (0) [14C](4) 1.060e-15 H[14C]O3- 8.563e-16 7.834e-16 -15.067 -15.106 -0.039 (0) [14C]O2 1.782e-16 1.785e-16 -15.749 -15.748 0.001 (0) @@ -37651,23 +37641,23 @@ O(0) 1.228e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.445e-16 - O[18O] 2.440e-16 2.444e-16 -15.613 -15.612 0.001 (0) - [18O]2 2.434e-19 2.438e-19 -18.614 -18.613 0.001 (0) +[18O](0) 2.278e-16 + O[18O] 2.273e-16 2.277e-16 -15.643 -15.643 0.001 (0) + [18O]2 2.268e-19 2.271e-19 -18.644 -18.644 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.44 -126.30 -2.86 [13C]H4 + [13C]H4(g) -123.38 -126.24 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.64 -21.15 -1.50 [14C][18O]2 - [14C]H4(g) -134.23 -137.09 -2.86 [14C]H4 + [14C]H4(g) -134.17 -137.03 -2.86 [14C]H4 [14C]O2(g) -14.28 -15.75 -1.47 [14C]O2 [14C]O[18O](g) -16.66 -18.45 -1.79 [14C]O[18O] - [18O]2(g) -16.32 -18.61 -2.29 [18O]2 + [18O]2(g) -16.35 -18.64 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -37681,14 +37671,14 @@ O(0) 1.228e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.49 -124.35 -2.86 CH4 + CH4(g) -121.43 -124.29 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.43 -39.58 -3.15 H2 + H2(g) -36.42 -39.57 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.32 -13.21 -2.89 O2 - O[18O](g) -13.02 -15.91 -2.89 O[18O] + O2(g) -10.35 -13.24 -2.89 O2 + O[18O](g) -13.05 -15.94 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -37752,13 +37742,13 @@ Calcite 1.71e-02 R(18O) 1.99519e-03 -4.9908 permil R(13C) 1.11293e-02 -4.5562 permil - R(14C) 1.77549e-13 15.099 pmc + R(14C) 1.77548e-13 15.099 pmc R(18O) H2O(l) 1.99519e-03 -4.9923 permil R(18O) OH- 1.92122e-03 -41.88 permil R(18O) H3O+ 2.04132e-03 18.016 permil R(18O) O2(aq) 1.99519e-03 -4.9923 permil R(13C) CO2(aq) 1.10496e-02 -11.68 permil - R(14C) CO2(aq) 1.75015e-13 14.884 pmc + R(14C) CO2(aq) 1.75014e-13 14.884 pmc R(18O) CO2(aq) 2.07916e-03 36.882 permil R(18O) HCO3- 1.99519e-03 -4.9923 permil R(13C) HCO3- 1.11457e-02 -3.0819 permil @@ -37778,12 +37768,12 @@ Calcite 1.71e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2656e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2475e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8223e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.687e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -37803,14 +37793,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.244 Adjusted to redox equilibrium + pe = 11.248 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.129e-13 + Electrical balance (eq) = 3.401e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -37825,7 +37815,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.460 -124.459 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.495 -124.495 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -37854,13 +37844,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.078e-08 6.088e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 4.873e-40 - H2 2.436e-40 2.440e-40 -39.613 -39.613 0.001 (0) -O(0) 1.397e-13 - O2 6.959e-14 6.971e-14 -13.157 -13.157 0.001 (0) - O[18O] 2.777e-16 2.782e-16 -15.556 -15.556 0.001 (0) +H(0) 4.775e-40 + H2 2.387e-40 2.391e-40 -39.622 -39.621 0.001 (0) +O(0) 1.456e-13 + O2 7.249e-14 7.261e-14 -13.140 -13.139 0.001 (0) + O[18O] 2.893e-16 2.897e-16 -15.539 -15.538 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.417 -126.416 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.452 -126.451 0.001 (0) [13C](4) 6.499e-05 H[13C]O3- 5.242e-05 4.796e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.958 -4.958 0.001 (0) @@ -37880,7 +37870,7 @@ O(0) 1.397e-13 H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.217 -137.216 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.252 -137.252 0.001 (0) [14C](4) 1.037e-15 H[14C]O3- 8.376e-16 7.663e-16 -15.077 -15.116 -0.039 (0) [14C]O2 1.743e-16 1.746e-16 -15.759 -15.758 0.001 (0) @@ -37908,23 +37898,23 @@ O(0) 1.397e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.783e-16 - O[18O] 2.777e-16 2.782e-16 -15.556 -15.556 0.001 (0) - [18O]2 2.770e-19 2.775e-19 -18.557 -18.557 0.001 (0) +[18O](0) 2.898e-16 + O[18O] 2.893e-16 2.897e-16 -15.539 -15.538 0.001 (0) + [18O]2 2.886e-19 2.890e-19 -18.540 -18.539 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.56 -126.42 -2.86 [13C]H4 + [13C]H4(g) -123.59 -126.45 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.65 -21.16 -1.50 [14C][18O]2 - [14C]H4(g) -134.36 -137.22 -2.86 [14C]H4 + [14C]H4(g) -134.39 -137.25 -2.86 [14C]H4 [14C]O2(g) -14.29 -15.76 -1.47 [14C]O2 [14C]O[18O](g) -16.67 -18.46 -1.79 [14C]O[18O] - [18O]2(g) -16.27 -18.56 -2.29 [18O]2 + [18O]2(g) -16.25 -18.54 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -37938,14 +37928,14 @@ O(0) 1.397e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.60 -124.46 -2.86 CH4 + CH4(g) -121.63 -124.49 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.46 -39.61 -3.15 H2 + H2(g) -36.47 -39.62 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.26 -13.16 -2.89 O2 - O[18O](g) -12.96 -15.86 -2.89 O[18O] + O2(g) -10.25 -13.14 -2.89 O2 + O[18O](g) -12.95 -15.84 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -38009,13 +37999,13 @@ Calcite 1.76e-02 R(18O) 1.99519e-03 -4.9907 permil R(13C) 1.11300e-02 -4.4886 permil - R(14C) 1.73756e-13 14.777 pmc + R(14C) 1.73755e-13 14.777 pmc R(18O) H2O(l) 1.99519e-03 -4.9922 permil R(18O) OH- 1.92122e-03 -41.879 permil R(18O) H3O+ 2.04133e-03 18.016 permil R(18O) O2(aq) 1.99519e-03 -4.9922 permil R(13C) CO2(aq) 1.10504e-02 -11.613 permil - R(14C) CO2(aq) 1.71276e-13 14.566 pmc + R(14C) CO2(aq) 1.71275e-13 14.566 pmc R(18O) CO2(aq) 2.07916e-03 36.882 permil R(18O) HCO3- 1.99519e-03 -4.9922 permil R(13C) HCO3- 1.11465e-02 -3.0142 permil @@ -38035,12 +38025,12 @@ Calcite 1.76e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2564e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2707e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.575e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7131e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -38060,14 +38050,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.231 Adjusted to redox equilibrium + pe = 11.236 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.129e-13 + Electrical balance (eq) = 3.401e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -38082,7 +38072,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.360 -124.359 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.400 -124.399 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -38111,13 +38101,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.078e-08 6.088e-08 -7.216 -7.216 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.161e-40 - H2 2.580e-40 2.585e-40 -39.588 -39.588 0.001 (0) -O(0) 1.246e-13 - O2 6.205e-14 6.215e-14 -13.207 -13.207 0.001 (0) - O[18O] 2.476e-16 2.480e-16 -15.606 -15.606 0.001 (0) +H(0) 5.044e-40 + H2 2.522e-40 2.526e-40 -39.598 -39.598 0.001 (0) +O(0) 1.304e-13 + O2 6.495e-14 6.506e-14 -13.187 -13.187 0.001 (0) + O[18O] 2.592e-16 2.596e-16 -15.586 -15.586 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.317 -126.316 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.356 -126.356 0.001 (0) [13C](4) 6.500e-05 H[13C]O3- 5.243e-05 4.797e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.958 -4.958 0.001 (0) @@ -38137,7 +38127,7 @@ O(0) 1.246e-13 H[13C]O[18O]2- 2.087e-10 1.909e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.126 -137.126 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.166 -137.165 0.001 (0) [14C](4) 1.015e-15 H[14C]O3- 8.197e-16 7.499e-16 -15.086 -15.125 -0.039 (0) [14C]O2 1.706e-16 1.708e-16 -15.768 -15.767 0.001 (0) @@ -38165,23 +38155,23 @@ O(0) 1.246e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.481e-16 - O[18O] 2.476e-16 2.480e-16 -15.606 -15.606 0.001 (0) - [18O]2 2.470e-19 2.474e-19 -18.607 -18.607 0.001 (0) +[18O](0) 2.597e-16 + O[18O] 2.592e-16 2.596e-16 -15.586 -15.586 0.001 (0) + [18O]2 2.585e-19 2.590e-19 -18.587 -18.587 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.46 -126.32 -2.86 [13C]H4 + [13C]H4(g) -123.50 -126.36 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.66 -21.17 -1.50 [14C][18O]2 - [14C]H4(g) -134.27 -137.13 -2.86 [14C]H4 + [14C]H4(g) -134.31 -137.17 -2.86 [14C]H4 [14C]O2(g) -14.30 -15.77 -1.47 [14C]O2 [14C]O[18O](g) -16.68 -18.47 -1.79 [14C]O[18O] - [18O]2(g) -16.32 -18.61 -2.29 [18O]2 + [18O]2(g) -16.30 -18.59 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -38195,14 +38185,14 @@ O(0) 1.246e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.50 -124.36 -2.86 CH4 + CH4(g) -121.54 -124.40 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.44 -39.59 -3.15 H2 + H2(g) -36.45 -39.60 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.31 -13.21 -2.89 O2 - O[18O](g) -13.01 -15.91 -2.89 O[18O] + O2(g) -10.29 -13.19 -2.89 O2 + O[18O](g) -12.99 -15.89 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -38276,7 +38266,7 @@ Calcite 1.81e-02 R(18O) CO2(aq) 2.07916e-03 36.882 permil R(18O) HCO3- 1.99519e-03 -4.9921 permil R(13C) HCO3- 1.11472e-02 -2.9493 permil - R(14C) HCO3- 1.70624e-13 14.51 pmc + R(14C) HCO3- 1.70623e-13 14.51 pmc R(18O) CO3-2 1.99519e-03 -4.9921 permil R(13C) CO3-2 1.11312e-02 -4.3802 permil R(14C) CO3-2 1.70134e-13 14.469 pmc @@ -38292,12 +38282,12 @@ Calcite 1.81e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2536e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2355e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.8842e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7072e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6407e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -38317,14 +38307,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.227 Adjusted to redox equilibrium + pe = 11.239 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.129e-13 + Electrical balance (eq) = 3.401e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 3 Total H = 1.110126e+02 @@ -38339,7 +38329,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.331 -124.330 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.420 -124.419 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -38368,13 +38358,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.078e-08 6.088e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.248e-40 - H2 2.624e-40 2.628e-40 -39.581 -39.580 0.001 (0) -O(0) 1.205e-13 - O2 6.001e-14 6.011e-14 -13.222 -13.221 0.001 (0) - O[18O] 2.395e-16 2.398e-16 -15.621 -15.620 0.001 (0) +H(0) 4.986e-40 + H2 2.493e-40 2.497e-40 -39.603 -39.603 0.001 (0) +O(0) 1.335e-13 + O2 6.647e-14 6.658e-14 -13.177 -13.177 0.001 (0) + O[18O] 2.652e-16 2.657e-16 -15.576 -15.576 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.288 -126.287 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.377 -126.376 0.001 (0) [13C](4) 6.500e-05 H[13C]O3- 5.243e-05 4.797e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.100e-05 1.102e-05 -4.958 -4.958 0.001 (0) @@ -38394,7 +38384,7 @@ O(0) 1.205e-13 H[13C]O[18O]2- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.307e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.107 -137.106 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.195 -137.195 0.001 (0) [14C](4) 9.935e-16 H[14C]O3- 8.025e-16 7.342e-16 -15.096 -15.134 -0.039 (0) [14C]O2 1.670e-16 1.673e-16 -15.777 -15.777 0.001 (0) @@ -38422,23 +38412,23 @@ O(0) 1.205e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.399e-16 - O[18O] 2.395e-16 2.398e-16 -15.621 -15.620 0.001 (0) - [18O]2 2.389e-19 2.393e-19 -18.622 -18.621 0.001 (0) +[18O](0) 2.658e-16 + O[18O] 2.652e-16 2.657e-16 -15.576 -15.576 0.001 (0) + [18O]2 2.646e-19 2.650e-19 -18.577 -18.577 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.43 -126.29 -2.86 [13C]H4 + [13C]H4(g) -123.52 -126.38 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.67 -21.18 -1.50 [14C][18O]2 - [14C]H4(g) -134.25 -137.11 -2.86 [14C]H4 + [14C]H4(g) -134.33 -137.19 -2.86 [14C]H4 [14C]O2(g) -14.31 -15.78 -1.47 [14C]O2 [14C]O[18O](g) -16.69 -18.48 -1.79 [14C]O[18O] - [18O]2(g) -16.33 -18.62 -2.29 [18O]2 + [18O]2(g) -16.29 -18.58 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -38452,14 +38442,14 @@ O(0) 1.205e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.47 -124.33 -2.86 CH4 + CH4(g) -121.56 -124.42 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.43 -39.58 -3.15 H2 + H2(g) -36.45 -39.60 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.33 -13.22 -2.89 O2 - O[18O](g) -13.03 -15.92 -2.89 O[18O] + O2(g) -10.28 -13.18 -2.89 O2 + O[18O](g) -12.98 -15.88 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -38539,7 +38529,7 @@ Calcite 1.86e-02 R(14C) CO3-2 1.66648e-13 14.172 pmc R(18O) Calcite 2.05263e-03 23.654 permil R(13C) Calcite 1.11700e-02 -0.91214 permil - R(14C) Calcite 1.67791e-13 14.269 pmc + R(14C) Calcite 1.67790e-13 14.269 pmc --------------------------------Isotope Alphas--------------------------------- @@ -38549,12 +38539,12 @@ Calcite 1.86e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.251e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2325e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.6613e-13 0 +Alpha 18O HCO3-/H2O(l) 1 1.1102e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5861e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7226e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -38574,14 +38564,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.215 Adjusted to redox equilibrium + pe = 11.234 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.128e-13 + Electrical balance (eq) = 3.401e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -38596,7 +38586,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.235 -124.234 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.383 -124.382 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -38625,13 +38615,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.079e-08 6.089e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.547e-40 - H2 2.773e-40 2.778e-40 -39.557 -39.556 0.001 (0) -O(0) 1.078e-13 - O2 5.371e-14 5.380e-14 -13.270 -13.269 0.001 (0) - O[18O] 2.143e-16 2.147e-16 -15.669 -15.668 0.001 (0) +H(0) 5.093e-40 + H2 2.546e-40 2.551e-40 -39.594 -39.593 0.001 (0) +O(0) 1.279e-13 + O2 6.371e-14 6.382e-14 -13.196 -13.195 0.001 (0) + O[18O] 2.542e-16 2.547e-16 -15.595 -15.594 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.191 -126.191 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.340 -126.339 0.001 (0) [13C](4) 6.501e-05 H[13C]O3- 5.244e-05 4.797e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.102e-05 -4.958 -4.958 0.001 (0) @@ -38651,7 +38641,7 @@ O(0) 1.078e-13 H[13C]O[18O]2- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.866e-10 1.308e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.019 -137.019 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.168 -137.167 0.001 (0) [14C](4) 9.731e-16 H[14C]O3- 7.861e-16 7.192e-16 -15.105 -15.143 -0.039 (0) [14C]O2 1.636e-16 1.638e-16 -15.786 -15.786 0.001 (0) @@ -38679,23 +38669,23 @@ O(0) 1.078e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.148e-16 - O[18O] 2.143e-16 2.147e-16 -15.669 -15.668 0.001 (0) - [18O]2 2.138e-19 2.142e-19 -18.670 -18.669 0.001 (0) +[18O](0) 2.548e-16 + O[18O] 2.542e-16 2.547e-16 -15.595 -15.594 0.001 (0) + [18O]2 2.536e-19 2.541e-19 -18.596 -18.595 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.33 -126.19 -2.86 [13C]H4 + [13C]H4(g) -123.48 -126.34 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.68 -21.19 -1.50 [14C][18O]2 - [14C]H4(g) -134.16 -137.02 -2.86 [14C]H4 + [14C]H4(g) -134.31 -137.17 -2.86 [14C]H4 [14C]O2(g) -14.32 -15.79 -1.47 [14C]O2 [14C]O[18O](g) -16.70 -18.49 -1.79 [14C]O[18O] - [18O]2(g) -16.38 -18.67 -2.29 [18O]2 + [18O]2(g) -16.30 -18.60 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -38709,14 +38699,14 @@ O(0) 1.078e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.37 -124.23 -2.86 CH4 + CH4(g) -121.52 -124.38 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.41 -39.56 -3.15 H2 + H2(g) -36.44 -39.59 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.38 -13.27 -2.89 O2 - O[18O](g) -13.08 -15.97 -2.89 O[18O] + O2(g) -10.30 -13.20 -2.89 O2 + O[18O](g) -13.00 -15.90 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -38786,7 +38776,7 @@ Calcite 1.91e-02 R(18O) H3O+ 2.04133e-03 18.016 permil R(18O) O2(aq) 1.99519e-03 -4.9918 permil R(13C) CO2(aq) 1.10524e-02 -11.428 permil - R(14C) CO2(aq) 1.60960e-13 13.688 pmc + R(14C) CO2(aq) 1.60959e-13 13.688 pmc R(18O) CO2(aq) 2.07916e-03 36.882 permil R(18O) HCO3- 1.99519e-03 -4.9918 permil R(13C) HCO3- 1.11486e-02 -2.8273 permil @@ -38806,12 +38796,12 @@ Calcite 1.91e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2558e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.27e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6929e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.557e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -38831,14 +38821,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.231 Adjusted to redox equilibrium + pe = 11.248 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.128e-13 + Electrical balance (eq) = 3.401e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -38853,7 +38843,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.363 -124.362 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.492 -124.492 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -38882,13 +38872,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.079e-08 6.089e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.153e-40 - H2 2.576e-40 2.581e-40 -39.589 -39.588 0.001 (0) -O(0) 1.250e-13 - O2 6.224e-14 6.234e-14 -13.206 -13.205 0.001 (0) - O[18O] 2.484e-16 2.488e-16 -15.605 -15.604 0.001 (0) +H(0) 4.783e-40 + H2 2.391e-40 2.395e-40 -39.621 -39.621 0.001 (0) +O(0) 1.451e-13 + O2 7.224e-14 7.236e-14 -13.141 -13.140 0.001 (0) + O[18O] 2.883e-16 2.887e-16 -15.540 -15.539 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.319 -126.319 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.449 -126.448 0.001 (0) [13C](4) 6.501e-05 H[13C]O3- 5.244e-05 4.797e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.102e-05 -4.958 -4.958 0.001 (0) @@ -38908,7 +38898,7 @@ O(0) 1.250e-13 H[13C]O[18O]2- 2.087e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.884 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.156 -137.155 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.286 -137.285 0.001 (0) [14C](4) 9.536e-16 H[14C]O3- 7.703e-16 7.047e-16 -15.113 -15.152 -0.039 (0) [14C]O2 1.603e-16 1.605e-16 -15.795 -15.794 0.001 (0) @@ -38936,23 +38926,23 @@ O(0) 1.250e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.489e-16 - O[18O] 2.484e-16 2.488e-16 -15.605 -15.604 0.001 (0) - [18O]2 2.478e-19 2.482e-19 -18.606 -18.605 0.001 (0) +[18O](0) 2.888e-16 + O[18O] 2.883e-16 2.887e-16 -15.540 -15.539 0.001 (0) + [18O]2 2.876e-19 2.881e-19 -18.541 -18.541 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.46 -126.32 -2.86 [13C]H4 + [13C]H4(g) -123.59 -126.45 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.69 -21.19 -1.50 [14C][18O]2 - [14C]H4(g) -134.30 -137.16 -2.86 [14C]H4 + [14C]H4(g) -134.42 -137.28 -2.86 [14C]H4 [14C]O2(g) -14.33 -15.79 -1.47 [14C]O2 [14C]O[18O](g) -16.71 -18.49 -1.79 [14C]O[18O] - [18O]2(g) -16.31 -18.61 -2.29 [18O]2 + [18O]2(g) -16.25 -18.54 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -38966,14 +38956,14 @@ O(0) 1.250e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.50 -124.36 -2.86 CH4 + CH4(g) -121.63 -124.49 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.44 -39.59 -3.15 H2 + H2(g) -36.47 -39.62 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.31 -13.21 -2.89 O2 - O[18O](g) -13.01 -15.91 -2.89 O[18O] + O2(g) -10.25 -13.14 -2.89 O2 + O[18O](g) -12.95 -15.84 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -39043,14 +39033,14 @@ Calcite 1.96e-02 R(18O) H3O+ 2.04133e-03 18.016 permil R(18O) O2(aq) 1.99519e-03 -4.9916 permil R(13C) CO2(aq) 1.10531e-02 -11.371 permil - R(14C) CO2(aq) 1.57792e-13 13.419 pmc + R(14C) CO2(aq) 1.57791e-13 13.419 pmc R(18O) CO2(aq) 2.07916e-03 36.882 permil R(18O) HCO3- 1.99519e-03 -4.9916 permil R(13C) HCO3- 1.11492e-02 -2.7699 permil R(14C) HCO3- 1.60549e-13 13.653 pmc R(18O) CO3-2 1.99519e-03 -4.9916 permil R(13C) CO3-2 1.11332e-02 -4.2011 permil - R(14C) CO3-2 1.60089e-13 13.614 pmc + R(14C) CO3-2 1.60088e-13 13.614 pmc R(18O) Calcite 2.05263e-03 23.655 permil R(13C) Calcite 1.11713e-02 -0.79477 permil R(14C) Calcite 1.61186e-13 13.708 pmc @@ -39063,12 +39053,12 @@ Calcite 1.96e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2691e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.218e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6972e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6995e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -39088,14 +39078,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.214 Adjusted to redox equilibrium + pe = 11.233 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.128e-13 + Electrical balance (eq) = 3.400e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -39110,7 +39100,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.225 -124.224 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.375 -124.374 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -39139,13 +39129,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.079e-08 6.089e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.579e-40 - H2 2.790e-40 2.794e-40 -39.554 -39.554 0.001 (0) -O(0) 1.066e-13 - O2 5.309e-14 5.318e-14 -13.275 -13.274 0.001 (0) - O[18O] 2.118e-16 2.122e-16 -15.674 -15.673 0.001 (0) +H(0) 5.117e-40 + H2 2.558e-40 2.563e-40 -39.592 -39.591 0.001 (0) +O(0) 1.267e-13 + O2 6.312e-14 6.322e-14 -13.200 -13.199 0.001 (0) + O[18O] 2.519e-16 2.523e-16 -15.599 -15.598 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.181 -126.181 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.332 -126.331 0.001 (0) [13C](4) 6.501e-05 H[13C]O3- 5.244e-05 4.798e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.102e-05 -4.958 -4.958 0.001 (0) @@ -39165,7 +39155,7 @@ O(0) 1.066e-13 H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -137.027 -137.026 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.177 -137.176 0.001 (0) [14C](4) 9.348e-16 H[14C]O3- 7.552e-16 6.909e-16 -15.122 -15.161 -0.039 (0) [14C]O2 1.571e-16 1.574e-16 -15.804 -15.803 0.001 (0) @@ -39179,7 +39169,7 @@ O(0) 1.066e-13 CaH[14C]O2[18O]+ 3.182e-20 2.919e-20 -19.497 -19.535 -0.037 (0) CaH[14C][18O]O2+ 3.182e-20 2.919e-20 -19.497 -19.535 -0.037 (0) CaH[14C]O[18O]O+ 3.182e-20 2.919e-20 -19.497 -19.535 -0.037 (0) - Ca[14C]O2[18O] 5.233e-21 5.241e-21 -20.281 -20.281 0.001 (0) + Ca[14C]O2[18O] 5.232e-21 5.241e-21 -20.281 -20.281 0.001 (0) H[14C]O[18O]2- 3.006e-21 2.750e-21 -20.522 -20.561 -0.039 (0) H[14C][18O]2O- 3.006e-21 2.750e-21 -20.522 -20.561 -0.039 (0) H[14C][18O]O[18O]- 3.006e-21 2.750e-21 -20.522 -20.561 -0.039 (0) @@ -39193,23 +39183,23 @@ O(0) 1.066e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.123e-16 - O[18O] 2.118e-16 2.122e-16 -15.674 -15.673 0.001 (0) - [18O]2 2.113e-19 2.117e-19 -18.675 -18.674 0.001 (0) +[18O](0) 2.524e-16 + O[18O] 2.519e-16 2.523e-16 -15.599 -15.598 0.001 (0) + [18O]2 2.513e-19 2.517e-19 -18.600 -18.599 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.32 -126.18 -2.86 [13C]H4 + [13C]H4(g) -123.47 -126.33 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.70 -21.20 -1.50 [14C][18O]2 - [14C]H4(g) -134.17 -137.03 -2.86 [14C]H4 + [14C]H4(g) -134.32 -137.18 -2.86 [14C]H4 [14C]O2(g) -14.33 -15.80 -1.47 [14C]O2 [14C]O[18O](g) -16.72 -18.50 -1.79 [14C]O[18O] - [18O]2(g) -16.38 -18.67 -2.29 [18O]2 + [18O]2(g) -16.31 -18.60 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -39223,14 +39213,14 @@ O(0) 1.066e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.36 -124.22 -2.86 CH4 + CH4(g) -121.51 -124.37 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.40 -39.55 -3.15 H2 + H2(g) -36.44 -39.59 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.38 -13.27 -2.89 O2 - O[18O](g) -13.08 -15.97 -2.89 O[18O] + O2(g) -10.31 -13.20 -2.89 O2 + O[18O](g) -13.01 -15.90 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -39294,7 +39284,7 @@ Calcite 2.01e-02 R(18O) 1.99519e-03 -4.99 permil R(13C) 1.11334e-02 -4.1896 permil - R(14C) 1.56987e-13 13.35 pmc + R(14C) 1.56986e-13 13.35 pmc R(18O) H2O(l) 1.99519e-03 -4.9915 permil R(18O) OH- 1.92122e-03 -41.879 permil R(18O) H3O+ 2.04133e-03 18.016 permil @@ -39307,10 +39297,10 @@ Calcite 2.01e-02 R(14C) HCO3- 1.57450e-13 13.39 pmc R(18O) CO3-2 1.99519e-03 -4.9915 permil R(13C) CO3-2 1.11338e-02 -4.146 permil - R(14C) CO3-2 1.56999e-13 13.351 pmc + R(14C) CO3-2 1.56998e-13 13.351 pmc R(18O) Calcite 2.05263e-03 23.655 permil R(13C) Calcite 1.11719e-02 -0.73948 permil - R(14C) Calcite 1.58075e-13 13.443 pmc + R(14C) Calcite 1.58074e-13 13.443 pmc --------------------------------Isotope Alphas--------------------------------- @@ -39320,12 +39310,12 @@ Calcite 2.01e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2593e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2734e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6922e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6933e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -39345,14 +39335,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.163 Adjusted to redox equilibrium + pe = 11.208 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.127e-13 + Electrical balance (eq) = 3.400e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -39367,7 +39357,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.813 -123.812 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.174 -124.174 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -39396,13 +39386,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.080e-08 6.090e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.071e-40 - H2 3.535e-40 3.541e-40 -39.452 -39.451 0.001 (0) -O(0) 6.637e-14 - O2 3.305e-14 3.311e-14 -13.481 -13.480 0.001 (0) - O[18O] 1.319e-16 1.321e-16 -15.880 -15.879 0.001 (0) +H(0) 5.744e-40 + H2 2.872e-40 2.877e-40 -39.542 -39.541 0.001 (0) +O(0) 1.006e-13 + O2 5.009e-14 5.018e-14 -13.300 -13.299 0.001 (0) + O[18O] 1.999e-16 2.002e-16 -15.699 -15.698 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.770 -125.769 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.131 -126.130 0.001 (0) [13C](4) 6.502e-05 H[13C]O3- 5.244e-05 4.798e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.958 0.001 (0) @@ -39422,7 +39412,7 @@ O(0) 6.637e-14 H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.624 -136.623 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.985 -136.984 0.001 (0) [14C](4) 9.168e-16 H[14C]O3- 7.406e-16 6.775e-16 -15.130 -15.169 -0.039 (0) [14C]O2 1.541e-16 1.544e-16 -15.812 -15.811 0.001 (0) @@ -39450,23 +39440,23 @@ O(0) 6.637e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.322e-16 - O[18O] 1.319e-16 1.321e-16 -15.880 -15.879 0.001 (0) - [18O]2 1.316e-19 1.318e-19 -18.881 -18.880 0.001 (0) +[18O](0) 2.003e-16 + O[18O] 1.999e-16 2.002e-16 -15.699 -15.698 0.001 (0) + [18O]2 1.994e-19 1.997e-19 -18.700 -18.700 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.91 -125.77 -2.86 [13C]H4 + [13C]H4(g) -123.27 -126.13 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.71 -21.21 -1.50 [14C][18O]2 - [14C]H4(g) -133.76 -136.62 -2.86 [14C]H4 + [14C]H4(g) -134.12 -136.98 -2.86 [14C]H4 [14C]O2(g) -14.34 -15.81 -1.47 [14C]O2 [14C]O[18O](g) -16.72 -18.51 -1.79 [14C]O[18O] - [18O]2(g) -16.59 -18.88 -2.29 [18O]2 + [18O]2(g) -16.41 -18.70 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -39480,14 +39470,14 @@ O(0) 6.637e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.95 -123.81 -2.86 CH4 + CH4(g) -121.31 -124.17 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.30 -39.45 -3.15 H2 + H2(g) -36.39 -39.54 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.59 -13.48 -2.89 O2 - O[18O](g) -13.29 -16.18 -2.89 O[18O] + O2(g) -10.41 -13.30 -2.89 O2 + O[18O](g) -13.11 -16.00 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -39557,14 +39547,14 @@ Calcite 2.06e-02 R(18O) H3O+ 2.04133e-03 18.017 permil R(18O) O2(aq) 1.99519e-03 -4.9914 permil R(13C) CO2(aq) 1.10543e-02 -11.264 permil - R(14C) CO2(aq) 1.51816e-13 12.911 pmc + R(14C) CO2(aq) 1.51815e-13 12.911 pmc R(18O) CO2(aq) 2.07916e-03 36.883 permil R(18O) HCO3- 1.99519e-03 -4.9914 permil R(13C) HCO3- 1.11504e-02 -2.6617 permil R(14C) HCO3- 1.54469e-13 13.136 pmc R(18O) CO3-2 1.99519e-03 -4.9914 permil R(13C) CO3-2 1.11344e-02 -4.0929 permil - R(14C) CO3-2 1.54026e-13 13.099 pmc + R(14C) CO3-2 1.54025e-13 13.099 pmc R(18O) Calcite 2.05263e-03 23.655 permil R(13C) Calcite 1.11725e-02 -0.68629 permil R(14C) Calcite 1.55081e-13 13.188 pmc @@ -39577,12 +39567,12 @@ Calcite 2.06e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2267e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2403e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5661e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7006e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -39602,14 +39592,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.140 Adjusted to redox equilibrium + pe = 11.193 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.127e-13 + Electrical balance (eq) = 3.399e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -39624,7 +39614,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.629 -123.628 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.059 -124.058 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -39653,13 +39643,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.080e-08 6.090e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.864e-40 - H2 3.932e-40 3.938e-40 -39.405 -39.405 0.001 (0) -O(0) 5.366e-14 - O2 2.672e-14 2.677e-14 -13.573 -13.572 0.001 (0) - O[18O] 1.066e-16 1.068e-16 -15.972 -15.971 0.001 (0) +H(0) 6.137e-40 + H2 3.069e-40 3.074e-40 -39.513 -39.512 0.001 (0) +O(0) 8.810e-14 + O2 4.387e-14 4.395e-14 -13.358 -13.357 0.001 (0) + O[18O] 1.751e-16 1.754e-16 -15.757 -15.756 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.585 -125.584 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.016 -126.015 0.001 (0) [13C](4) 6.502e-05 H[13C]O3- 5.245e-05 4.798e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.958 0.001 (0) @@ -39679,7 +39669,7 @@ O(0) 5.366e-14 H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.447 -136.447 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.878 -136.877 0.001 (0) [14C](4) 8.994e-16 H[14C]O3- 7.266e-16 6.647e-16 -15.139 -15.177 -0.039 (0) [14C]O2 1.512e-16 1.514e-16 -15.821 -15.820 0.001 (0) @@ -39707,23 +39697,23 @@ O(0) 5.366e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.069e-16 - O[18O] 1.066e-16 1.068e-16 -15.972 -15.971 0.001 (0) - [18O]2 1.064e-19 1.066e-19 -18.973 -18.972 0.001 (0) +[18O](0) 1.754e-16 + O[18O] 1.751e-16 1.754e-16 -15.757 -15.756 0.001 (0) + [18O]2 1.747e-19 1.749e-19 -18.758 -18.757 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.72 -125.58 -2.86 [13C]H4 + [13C]H4(g) -123.15 -126.01 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.72 -21.22 -1.50 [14C][18O]2 - [14C]H4(g) -133.59 -136.45 -2.86 [14C]H4 + [14C]H4(g) -134.02 -136.88 -2.86 [14C]H4 [14C]O2(g) -14.35 -15.82 -1.47 [14C]O2 [14C]O[18O](g) -16.73 -18.52 -1.79 [14C]O[18O] - [18O]2(g) -16.68 -18.97 -2.29 [18O]2 + [18O]2(g) -16.47 -18.76 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -39737,14 +39727,14 @@ O(0) 5.366e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.77 -123.63 -2.86 CH4 + CH4(g) -121.20 -124.06 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.25 -39.40 -3.15 H2 + H2(g) -36.36 -39.51 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.68 -13.57 -2.89 O2 - O[18O](g) -13.38 -16.27 -2.89 O[18O] + O2(g) -10.46 -13.36 -2.89 O2 + O[18O](g) -13.16 -16.06 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -39834,12 +39824,12 @@ Calcite 2.11e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2358e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2508e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.625e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6271e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -39859,14 +39849,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.131 Adjusted to redox equilibrium + pe = 11.156 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.127e-13 + Electrical balance (eq) = 3.399e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -39881,7 +39871,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.559 -123.559 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.763 -123.763 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -39910,13 +39900,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.080e-08 6.090e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.269e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 8.183e-40 - H2 4.092e-40 4.098e-40 -39.388 -39.387 0.001 (0) -O(0) 4.955e-14 - O2 2.468e-14 2.472e-14 -13.608 -13.607 0.001 (0) - O[18O] 9.847e-17 9.863e-17 -16.007 -16.006 0.001 (0) +H(0) 7.277e-40 + H2 3.639e-40 3.645e-40 -39.439 -39.438 0.001 (0) +O(0) 6.266e-14 + O2 3.121e-14 3.126e-14 -13.506 -13.505 0.001 (0) + O[18O] 1.245e-16 1.247e-16 -15.905 -15.904 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.516 -125.515 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.720 -125.719 0.001 (0) [13C](4) 6.503e-05 H[13C]O3- 5.245e-05 4.798e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.958 0.001 (0) @@ -39936,7 +39926,7 @@ O(0) 4.955e-14 H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.386 -136.385 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.590 -136.589 0.001 (0) [14C](4) 8.827e-16 H[14C]O3- 7.130e-16 6.523e-16 -15.147 -15.186 -0.039 (0) [14C]O2 1.484e-16 1.486e-16 -15.829 -15.828 0.001 (0) @@ -39964,23 +39954,23 @@ O(0) 4.955e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 9.867e-17 - O[18O] 9.847e-17 9.863e-17 -16.007 -16.006 0.001 (0) - [18O]2 9.824e-20 9.840e-20 -19.008 -19.007 0.001 (0) +[18O](0) 1.248e-16 + O[18O] 1.245e-16 1.247e-16 -15.905 -15.904 0.001 (0) + [18O]2 1.242e-19 1.244e-19 -18.906 -18.905 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.66 -125.52 -2.86 [13C]H4 + [13C]H4(g) -122.86 -125.72 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.72 -21.23 -1.50 [14C][18O]2 - [14C]H4(g) -133.53 -136.39 -2.86 [14C]H4 + [14C]H4(g) -133.73 -136.59 -2.86 [14C]H4 [14C]O2(g) -14.36 -15.83 -1.47 [14C]O2 [14C]O[18O](g) -16.74 -18.53 -1.79 [14C]O[18O] - [18O]2(g) -16.72 -19.01 -2.29 [18O]2 + [18O]2(g) -16.61 -18.91 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -39994,14 +39984,14 @@ O(0) 4.955e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.70 -123.56 -2.86 CH4 + CH4(g) -120.90 -123.76 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.24 -39.39 -3.15 H2 + H2(g) -36.29 -39.44 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.71 -13.61 -2.89 O2 - O[18O](g) -13.41 -16.31 -2.89 O[18O] + O2(g) -10.61 -13.51 -2.89 O2 + O[18O](g) -13.31 -16.21 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -40091,12 +40081,12 @@ Calcite 2.16e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2902e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2723e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.6605e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.6621e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7165e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7859e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -40116,14 +40106,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.091 Adjusted to redox equilibrium + pe = 11.109 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.126e-13 + Electrical balance (eq) = 3.399e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -40138,7 +40128,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.244 -123.243 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.386 -123.385 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -40167,13 +40157,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.081e-08 6.091e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 9.814e-40 - H2 4.907e-40 4.915e-40 -39.309 -39.308 0.001 (0) -O(0) 3.445e-14 - O2 1.716e-14 1.719e-14 -13.766 -13.765 0.001 (0) - O[18O] 6.846e-17 6.858e-17 -16.165 -16.164 0.001 (0) +H(0) 9.044e-40 + H2 4.522e-40 4.529e-40 -39.345 -39.344 0.001 (0) +O(0) 4.057e-14 + O2 2.020e-14 2.024e-14 -13.695 -13.694 0.001 (0) + O[18O] 8.062e-17 8.076e-17 -16.094 -16.093 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.200 -125.199 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.342 -125.341 0.001 (0) [13C](4) 6.503e-05 H[13C]O3- 5.245e-05 4.799e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.958 0.001 (0) @@ -40193,7 +40183,7 @@ O(0) 3.445e-14 H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.078 -136.078 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.220 -136.220 0.001 (0) [14C](4) 8.666e-16 H[14C]O3- 7.000e-16 6.404e-16 -15.155 -15.194 -0.039 (0) [14C]O2 1.457e-16 1.459e-16 -15.837 -15.836 0.001 (0) @@ -40221,23 +40211,23 @@ O(0) 3.445e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 6.860e-17 - O[18O] 6.846e-17 6.858e-17 -16.165 -16.164 0.001 (0) - [18O]2 6.830e-20 6.841e-20 -19.166 -19.165 0.001 (0) +[18O](0) 8.079e-17 + O[18O] 8.062e-17 8.076e-17 -16.094 -16.093 0.001 (0) + [18O]2 8.043e-20 8.056e-20 -19.095 -19.094 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.34 -125.20 -2.86 [13C]H4 + [13C]H4(g) -122.48 -125.34 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.73 -21.24 -1.50 [14C][18O]2 - [14C]H4(g) -133.22 -136.08 -2.86 [14C]H4 + [14C]H4(g) -133.36 -136.22 -2.86 [14C]H4 [14C]O2(g) -14.37 -15.84 -1.47 [14C]O2 [14C]O[18O](g) -16.75 -18.54 -1.79 [14C]O[18O] - [18O]2(g) -16.87 -19.16 -2.29 [18O]2 + [18O]2(g) -16.80 -19.09 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -40251,14 +40241,14 @@ O(0) 3.445e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.38 -123.24 -2.86 CH4 + CH4(g) -120.52 -123.38 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.16 -39.31 -3.15 H2 + H2(g) -36.19 -39.34 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.87 -13.76 -2.89 O2 - O[18O](g) -13.57 -16.46 -2.89 O[18O] + O2(g) -10.80 -13.69 -2.89 O2 + O[18O](g) -13.50 -16.39 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -40348,12 +40338,12 @@ Calcite 2.21e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2589e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2403e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.9944e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6137e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6839e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -40373,14 +40363,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.142 Adjusted to redox equilibrium + pe = 11.139 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.126e-13 + Electrical balance (eq) = 3.399e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -40395,7 +40385,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.651 -123.651 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.627 -123.626 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -40424,13 +40414,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.081e-08 6.091e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 7.761e-40 - H2 3.880e-40 3.887e-40 -39.411 -39.410 0.001 (0) -O(0) 5.509e-14 - O2 2.744e-14 2.748e-14 -13.562 -13.561 0.001 (0) - O[18O] 1.095e-16 1.097e-16 -15.961 -15.960 0.001 (0) +H(0) 7.873e-40 + H2 3.936e-40 3.943e-40 -39.405 -39.404 0.001 (0) +O(0) 5.354e-14 + O2 2.666e-14 2.671e-14 -13.574 -13.573 0.001 (0) + O[18O] 1.064e-16 1.066e-16 -15.973 -15.972 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.608 -125.607 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.583 -125.582 0.001 (0) [13C](4) 6.503e-05 H[13C]O3- 5.245e-05 4.799e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.958 0.001 (0) @@ -40450,7 +40440,7 @@ O(0) 5.509e-14 H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.494 -136.493 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.469 -136.469 0.001 (0) [14C](4) 8.511e-16 H[14C]O3- 6.875e-16 6.290e-16 -15.163 -15.201 -0.039 (0) [14C]O2 1.431e-16 1.433e-16 -15.845 -15.844 0.001 (0) @@ -40478,23 +40468,23 @@ O(0) 5.509e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.097e-16 - O[18O] 1.095e-16 1.097e-16 -15.961 -15.960 0.001 (0) - [18O]2 1.092e-19 1.094e-19 -18.962 -18.961 0.001 (0) +[18O](0) 1.066e-16 + O[18O] 1.064e-16 1.066e-16 -15.973 -15.972 0.001 (0) + [18O]2 1.061e-19 1.063e-19 -18.974 -18.973 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.75 -125.61 -2.86 [13C]H4 + [13C]H4(g) -122.72 -125.58 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.74 -21.24 -1.50 [14C][18O]2 - [14C]H4(g) -133.63 -136.49 -2.86 [14C]H4 + [14C]H4(g) -133.61 -136.47 -2.86 [14C]H4 [14C]O2(g) -14.38 -15.84 -1.47 [14C]O2 [14C]O[18O](g) -16.76 -18.54 -1.79 [14C]O[18O] - [18O]2(g) -16.67 -18.96 -2.29 [18O]2 + [18O]2(g) -16.68 -18.97 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -40508,14 +40498,14 @@ O(0) 5.509e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.79 -123.65 -2.86 CH4 + CH4(g) -120.77 -123.63 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.26 -39.41 -3.15 H2 + H2(g) -36.25 -39.40 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.67 -13.56 -2.89 O2 - O[18O](g) -13.37 -16.26 -2.89 O[18O] + O2(g) -10.68 -13.57 -2.89 O2 + O[18O](g) -13.38 -16.27 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -40595,7 +40585,7 @@ Calcite 2.26e-02 R(14C) CO3-2 1.43180e-13 12.176 pmc R(18O) Calcite 2.05263e-03 23.656 permil R(13C) Calcite 1.11747e-02 -0.49222 permil - R(14C) Calcite 1.44162e-13 12.26 pmc + R(14C) Calcite 1.44161e-13 12.26 pmc --------------------------------Isotope Alphas--------------------------------- @@ -40605,12 +40595,12 @@ Calcite 2.26e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2712e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2541e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5783e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7158e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -40630,14 +40620,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.171 Adjusted to redox equilibrium + pe = 11.169 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.126e-13 + Electrical balance (eq) = 3.399e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -40652,7 +40642,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.877 -123.876 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.862 -123.861 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.975e-04 -3.002 -3.001 0.001 (0) @@ -40681,13 +40671,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.081e-08 6.091e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.815e-40 - H2 3.407e-40 3.413e-40 -39.468 -39.467 0.001 (0) -O(0) 7.145e-14 - O2 3.558e-14 3.564e-14 -13.449 -13.448 0.001 (0) - O[18O] 1.420e-16 1.422e-16 -15.848 -15.847 0.001 (0) +H(0) 6.877e-40 + H2 3.438e-40 3.444e-40 -39.464 -39.463 0.001 (0) +O(0) 7.017e-14 + O2 3.495e-14 3.500e-14 -13.457 -13.456 0.001 (0) + O[18O] 1.394e-16 1.397e-16 -15.856 -15.855 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.834 -125.833 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.818 -125.817 0.001 (0) [13C](4) 6.503e-05 H[13C]O3- 5.246e-05 4.799e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) @@ -40707,7 +40697,7 @@ O(0) 7.145e-14 H[13C]O[18O]2- 2.088e-10 1.910e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.728 -136.727 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.712 -136.711 0.001 (0) [14C](4) 8.361e-16 H[14C]O3- 6.754e-16 6.179e-16 -15.170 -15.209 -0.039 (0) [14C]O2 1.405e-16 1.408e-16 -15.852 -15.852 0.001 (0) @@ -40716,7 +40706,7 @@ O(0) 7.145e-14 H[14C]O[18O]O- 1.348e-18 1.233e-18 -17.870 -17.909 -0.039 (0) H[14C]O2[18O]- 1.348e-18 1.233e-18 -17.870 -17.909 -0.039 (0) Ca[14C]O3 7.819e-19 7.831e-19 -18.107 -18.106 0.001 (0) - [14C]O[18O] 5.844e-19 5.854e-19 -18.233 -18.233 0.001 (0) + [14C]O[18O] 5.844e-19 5.853e-19 -18.233 -18.233 0.001 (0) [14C]O3-2 4.011e-19 2.810e-19 -18.397 -18.551 -0.155 (0) CaH[14C]O2[18O]+ 2.846e-20 2.610e-20 -19.546 -19.583 -0.037 (0) CaH[14C][18O]O2+ 2.846e-20 2.610e-20 -19.546 -19.583 -0.037 (0) @@ -40735,23 +40725,23 @@ O(0) 7.145e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.423e-16 - O[18O] 1.420e-16 1.422e-16 -15.848 -15.847 0.001 (0) - [18O]2 1.416e-19 1.419e-19 -18.849 -18.848 0.001 (0) +[18O](0) 1.397e-16 + O[18O] 1.394e-16 1.397e-16 -15.856 -15.855 0.001 (0) + [18O]2 1.391e-19 1.393e-19 -18.857 -18.856 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.97 -125.83 -2.86 [13C]H4 + [13C]H4(g) -122.96 -125.82 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.75 -21.25 -1.50 [14C][18O]2 - [14C]H4(g) -133.87 -136.73 -2.86 [14C]H4 + [14C]H4(g) -133.85 -136.71 -2.86 [14C]H4 [14C]O2(g) -14.38 -15.85 -1.47 [14C]O2 [14C]O[18O](g) -16.76 -18.55 -1.79 [14C]O[18O] - [18O]2(g) -16.56 -18.85 -2.29 [18O]2 + [18O]2(g) -16.57 -18.86 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -40765,14 +40755,14 @@ O(0) 7.145e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.02 -123.88 -2.86 CH4 + CH4(g) -121.00 -123.86 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.32 -39.47 -3.15 H2 + H2(g) -36.31 -39.46 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.56 -13.45 -2.89 O2 - O[18O](g) -13.26 -16.15 -2.89 O[18O] + O2(g) -10.56 -13.46 -2.89 O2 + O[18O](g) -13.26 -16.16 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -40849,7 +40839,7 @@ Calcite 2.31e-02 R(14C) HCO3- 1.41108e-13 12 pmc R(18O) CO3-2 1.99519e-03 -4.9907 permil R(13C) CO3-2 1.11371e-02 -3.8554 permil - R(14C) CO3-2 1.40704e-13 11.966 pmc + R(14C) CO3-2 1.40703e-13 11.966 pmc R(18O) Calcite 2.05263e-03 23.656 permil R(13C) Calcite 1.11752e-02 -0.44789 permil R(14C) Calcite 1.41668e-13 12.048 pmc @@ -40862,12 +40852,12 @@ Calcite 2.31e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2645e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2808e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7417e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8139e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -40887,14 +40877,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.165 Adjusted to redox equilibrium + pe = 11.163 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.126e-13 + Electrical balance (eq) = 3.399e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -40909,7 +40899,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.831 -123.830 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.816 -123.816 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -40938,13 +40928,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.998e-40 - H2 3.499e-40 3.505e-40 -39.456 -39.455 0.001 (0) -O(0) 6.776e-14 - O2 3.375e-14 3.380e-14 -13.472 -13.471 0.001 (0) - O[18O] 1.347e-16 1.349e-16 -15.871 -15.870 0.001 (0) +H(0) 7.057e-40 + H2 3.529e-40 3.534e-40 -39.452 -39.452 0.001 (0) +O(0) 6.662e-14 + O2 3.318e-14 3.323e-14 -13.479 -13.478 0.001 (0) + O[18O] 1.324e-16 1.326e-16 -15.878 -15.877 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.788 -125.787 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.773 -125.772 0.001 (0) [13C](4) 6.504e-05 H[13C]O3- 5.246e-05 4.799e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) @@ -40964,7 +40954,7 @@ O(0) 6.776e-14 H[13C]O[18O]2- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.689 -136.688 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.674 -136.674 0.001 (0) [14C](4) 8.216e-16 H[14C]O3- 6.637e-16 6.072e-16 -15.178 -15.217 -0.039 (0) [14C]O2 1.381e-16 1.383e-16 -15.860 -15.859 0.001 (0) @@ -40992,23 +40982,23 @@ O(0) 6.776e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.349e-16 - O[18O] 1.347e-16 1.349e-16 -15.871 -15.870 0.001 (0) - [18O]2 1.343e-19 1.346e-19 -18.872 -18.871 0.001 (0) +[18O](0) 1.327e-16 + O[18O] 1.324e-16 1.326e-16 -15.878 -15.877 0.001 (0) + [18O]2 1.321e-19 1.323e-19 -18.879 -18.878 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.93 -125.79 -2.86 [13C]H4 + [13C]H4(g) -122.91 -125.77 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.76 -21.26 -1.50 [14C][18O]2 - [14C]H4(g) -133.83 -136.69 -2.86 [14C]H4 + [14C]H4(g) -133.81 -136.67 -2.86 [14C]H4 [14C]O2(g) -14.39 -15.86 -1.47 [14C]O2 [14C]O[18O](g) -16.77 -18.56 -1.79 [14C]O[18O] - [18O]2(g) -16.58 -18.87 -2.29 [18O]2 + [18O]2(g) -16.59 -18.88 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -41022,14 +41012,14 @@ O(0) 6.776e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.97 -123.83 -2.86 CH4 + CH4(g) -120.96 -123.82 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.31 -39.46 -3.15 H2 + H2(g) -36.30 -39.45 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.58 -13.47 -2.89 O2 - O[18O](g) -13.28 -16.17 -2.89 O[18O] + O2(g) -10.59 -13.48 -2.89 O2 + O[18O](g) -13.29 -16.18 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -41119,9 +41109,9 @@ Calcite 2.36e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2732e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2551e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 Alpha 18O CO3-2/H2O(l) 1 -1.6309e-09 0 @@ -41144,14 +41134,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.180 Adjusted to redox equilibrium + pe = 11.168 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.126e-13 + Electrical balance (eq) = 3.399e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -41166,7 +41156,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.954 -123.953 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.857 -123.856 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -41195,13 +41185,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.520e-40 - H2 3.260e-40 3.265e-40 -39.487 -39.486 0.001 (0) -O(0) 7.806e-14 - O2 3.887e-14 3.894e-14 -13.410 -13.410 0.001 (0) - O[18O] 1.551e-16 1.554e-16 -15.809 -15.809 0.001 (0) +H(0) 6.894e-40 + H2 3.447e-40 3.453e-40 -39.463 -39.462 0.001 (0) +O(0) 6.982e-14 + O2 3.477e-14 3.483e-14 -13.459 -13.458 0.001 (0) + O[18O] 1.387e-16 1.390e-16 -15.858 -15.857 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.910 -125.910 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.814 -125.813 0.001 (0) [13C](4) 6.504e-05 H[13C]O3- 5.246e-05 4.800e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) @@ -41221,7 +41211,7 @@ O(0) 7.806e-14 H[13C]O[18O]2- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.819 -136.819 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.723 -136.722 0.001 (0) [14C](4) 8.077e-16 H[14C]O3- 6.524e-16 5.969e-16 -15.185 -15.224 -0.039 (0) [14C]O2 1.358e-16 1.360e-16 -15.867 -15.867 0.001 (0) @@ -41249,23 +41239,23 @@ O(0) 7.806e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.554e-16 - O[18O] 1.551e-16 1.554e-16 -15.809 -15.809 0.001 (0) - [18O]2 1.547e-19 1.550e-19 -18.810 -18.810 0.001 (0) +[18O](0) 1.390e-16 + O[18O] 1.387e-16 1.390e-16 -15.858 -15.857 0.001 (0) + [18O]2 1.384e-19 1.386e-19 -18.859 -18.858 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.05 -125.91 -2.86 [13C]H4 + [13C]H4(g) -122.95 -125.81 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.76 -21.27 -1.50 [14C][18O]2 - [14C]H4(g) -133.96 -136.82 -2.86 [14C]H4 + [14C]H4(g) -133.86 -136.72 -2.86 [14C]H4 [14C]O2(g) -14.40 -15.87 -1.47 [14C]O2 [14C]O[18O](g) -16.78 -18.57 -1.79 [14C]O[18O] - [18O]2(g) -16.52 -18.81 -2.29 [18O]2 + [18O]2(g) -16.57 -18.86 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -41279,14 +41269,14 @@ O(0) 7.806e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.09 -123.95 -2.86 CH4 + CH4(g) -121.00 -123.86 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.34 -39.49 -3.15 H2 + H2(g) -36.31 -39.46 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.52 -13.41 -2.89 O2 - O[18O](g) -13.22 -16.11 -2.89 O[18O] + O2(g) -10.57 -13.46 -2.89 O2 + O[18O](g) -13.27 -16.16 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -41360,7 +41350,7 @@ Calcite 2.41e-02 R(18O) CO2(aq) 2.07916e-03 36.884 permil R(18O) HCO3- 1.99519e-03 -4.9904 permil R(13C) HCO3- 1.11540e-02 -2.3397 permil - R(14C) HCO3- 1.36390e-13 11.599 pmc + R(14C) HCO3- 1.36389e-13 11.599 pmc R(18O) CO3-2 1.99519e-03 -4.9904 permil R(13C) CO3-2 1.11380e-02 -3.7714 permil R(14C) CO3-2 1.35998e-13 11.566 pmc @@ -41376,12 +41366,12 @@ Calcite 2.41e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2301e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2449e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5804e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5822e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -41401,14 +41391,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.119 Adjusted to redox equilibrium + pe = 11.116 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.126e-13 + Electrical balance (eq) = 3.399e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -41423,7 +41413,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.462 -123.462 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.436 -123.435 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -41452,13 +41442,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 8.653e-40 - H2 4.326e-40 4.333e-40 -39.364 -39.363 0.001 (0) -O(0) 4.432e-14 - O2 2.207e-14 2.211e-14 -13.656 -13.655 0.001 (0) - O[18O] 8.808e-17 8.823e-17 -16.055 -16.054 0.001 (0) +H(0) 8.786e-40 + H2 4.393e-40 4.400e-40 -39.357 -39.357 0.001 (0) +O(0) 4.299e-14 + O2 2.141e-14 2.145e-14 -13.669 -13.669 0.001 (0) + O[18O] 8.543e-17 8.557e-17 -16.068 -16.068 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.419 -125.418 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.392 -125.392 0.001 (0) [13C](4) 6.504e-05 H[13C]O3- 5.246e-05 4.800e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) @@ -41478,7 +41468,7 @@ O(0) 4.432e-14 H[13C]O[18O]2- 2.088e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.867e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.335 -136.335 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.309 -136.308 0.001 (0) [14C](4) 7.942e-16 H[14C]O3- 6.415e-16 5.869e-16 -15.193 -15.231 -0.039 (0) [14C]O2 1.335e-16 1.337e-16 -15.875 -15.874 0.001 (0) @@ -41506,23 +41496,23 @@ O(0) 4.432e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 8.826e-17 - O[18O] 8.808e-17 8.823e-17 -16.055 -16.054 0.001 (0) - [18O]2 8.787e-20 8.802e-20 -19.056 -19.055 0.001 (0) +[18O](0) 8.560e-17 + O[18O] 8.543e-17 8.557e-17 -16.068 -16.068 0.001 (0) + [18O]2 8.523e-20 8.537e-20 -19.069 -19.069 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.56 -125.42 -2.86 [13C]H4 + [13C]H4(g) -122.53 -125.39 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.77 -21.27 -1.50 [14C][18O]2 - [14C]H4(g) -133.47 -136.33 -2.86 [14C]H4 + [14C]H4(g) -133.45 -136.31 -2.86 [14C]H4 [14C]O2(g) -14.41 -15.87 -1.47 [14C]O2 [14C]O[18O](g) -16.79 -18.57 -1.79 [14C]O[18O] - [18O]2(g) -16.77 -19.06 -2.29 [18O]2 + [18O]2(g) -16.78 -19.07 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -41536,14 +41526,14 @@ O(0) 4.432e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.60 -123.46 -2.86 CH4 + CH4(g) -120.58 -123.44 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] H2(g) -36.21 -39.36 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.76 -13.66 -2.89 O2 - O[18O](g) -13.46 -16.36 -2.89 O[18O] + O2(g) -10.78 -13.67 -2.89 O2 + O[18O](g) -13.48 -16.37 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -41607,7 +41597,7 @@ Calcite 2.46e-02 R(18O) 1.99520e-03 -4.9887 permil R(13C) 1.11380e-02 -3.7752 permil - R(14C) 1.33752e-13 11.375 pmc + R(14C) 1.33751e-13 11.375 pmc R(18O) H2O(l) 1.99519e-03 -4.9903 permil R(18O) OH- 1.92123e-03 -41.878 permil R(18O) H3O+ 2.04133e-03 18.018 permil @@ -41623,7 +41613,7 @@ Calcite 2.46e-02 R(14C) CO3-2 1.33762e-13 11.375 pmc R(18O) Calcite 2.05264e-03 23.656 permil R(13C) Calcite 1.11766e-02 -0.32366 permil - R(14C) Calcite 1.34679e-13 11.453 pmc + R(14C) Calcite 1.34678e-13 11.453 pmc --------------------------------Isotope Alphas--------------------------------- @@ -41633,12 +41623,12 @@ Calcite 2.46e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2669e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2808e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7435e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.675e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -41658,14 +41648,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.183 Adjusted to redox equilibrium + pe = 11.194 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.126e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -41680,7 +41670,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.978 -123.978 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.060 -124.060 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -41709,13 +41699,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.082e-08 6.092e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.429e-40 - H2 3.215e-40 3.220e-40 -39.493 -39.492 0.001 (0) -O(0) 8.028e-14 - O2 3.998e-14 4.004e-14 -13.398 -13.397 0.001 (0) - O[18O] 1.595e-16 1.598e-16 -15.797 -15.796 0.001 (0) +H(0) 6.133e-40 + H2 3.066e-40 3.072e-40 -39.513 -39.513 0.001 (0) +O(0) 8.822e-14 + O2 4.394e-14 4.401e-14 -13.357 -13.356 0.001 (0) + O[18O] 1.753e-16 1.756e-16 -15.756 -15.755 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.935 -125.934 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.017 -126.016 0.001 (0) [13C](4) 6.505e-05 H[13C]O3- 5.247e-05 4.800e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) @@ -41735,7 +41725,7 @@ O(0) 8.028e-14 H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.858 -136.858 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.940 -136.940 0.001 (0) [14C](4) 7.811e-16 H[14C]O3- 6.310e-16 5.772e-16 -15.200 -15.239 -0.039 (0) [14C]O2 1.313e-16 1.315e-16 -15.882 -15.881 0.001 (0) @@ -41763,23 +41753,23 @@ O(0) 8.028e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.598e-16 - O[18O] 1.595e-16 1.598e-16 -15.797 -15.796 0.001 (0) - [18O]2 1.591e-19 1.594e-19 -18.798 -18.797 0.001 (0) +[18O](0) 1.757e-16 + O[18O] 1.753e-16 1.756e-16 -15.756 -15.755 0.001 (0) + [18O]2 1.749e-19 1.752e-19 -18.757 -18.756 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.07 -125.93 -2.86 [13C]H4 + [13C]H4(g) -123.16 -126.02 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.78 -21.28 -1.50 [14C][18O]2 - [14C]H4(g) -134.00 -136.86 -2.86 [14C]H4 + [14C]H4(g) -134.08 -136.94 -2.86 [14C]H4 [14C]O2(g) -14.41 -15.88 -1.47 [14C]O2 [14C]O[18O](g) -16.79 -18.58 -1.79 [14C]O[18O] - [18O]2(g) -16.51 -18.80 -2.29 [18O]2 + [18O]2(g) -16.47 -18.76 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -41793,14 +41783,14 @@ O(0) 8.028e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.12 -123.98 -2.86 CH4 + CH4(g) -121.20 -124.06 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.34 -39.49 -3.15 H2 + H2(g) -36.36 -39.51 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.51 -13.40 -2.89 O2 - O[18O](g) -13.21 -16.10 -2.89 O[18O] + O2(g) -10.46 -13.36 -2.89 O2 + O[18O](g) -13.16 -16.06 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -41864,13 +41854,13 @@ Calcite 2.51e-02 R(18O) 1.99520e-03 -4.9886 permil R(13C) 1.11384e-02 -3.7366 permil - R(14C) 1.31588e-13 11.19 pmc + R(14C) 1.31587e-13 11.19 pmc R(18O) H2O(l) 1.99519e-03 -4.9901 permil R(18O) OH- 1.92123e-03 -41.877 permil R(18O) H3O+ 2.04133e-03 18.018 permil R(18O) O2(aq) 1.99519e-03 -4.9901 permil R(13C) CO2(aq) 1.10587e-02 -10.866 permil - R(14C) CO2(aq) 1.29710e-13 11.031 pmc + R(14C) CO2(aq) 1.29709e-13 11.031 pmc R(18O) CO2(aq) 2.07916e-03 36.884 permil R(18O) HCO3- 1.99519e-03 -4.9901 permil R(13C) HCO3- 1.11549e-02 -2.2611 permil @@ -41880,7 +41870,7 @@ Calcite 2.51e-02 R(14C) CO3-2 1.31598e-13 11.191 pmc R(18O) Calcite 2.05264e-03 23.656 permil R(13C) Calcite 1.11770e-02 -0.28493 permil - R(14C) Calcite 1.32500e-13 11.268 pmc + R(14C) Calcite 1.32499e-13 11.268 pmc --------------------------------Isotope Alphas--------------------------------- @@ -41890,12 +41880,12 @@ Calcite 2.51e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2536e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2662e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 +Alpha 18O HCO3-/H2O(l) 1 0 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6487e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7143e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -41915,14 +41905,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.196 Adjusted to redox equilibrium + pe = 11.203 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.126e-13 + Electrical balance (eq) = 3.399e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -41937,7 +41927,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.079 -124.079 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.133 -124.133 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -41966,13 +41956,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.067e-40 - H2 3.033e-40 3.038e-40 -39.518 -39.517 0.001 (0) -O(0) 9.016e-14 - O2 4.490e-14 4.498e-14 -13.348 -13.347 0.001 (0) - O[18O] 1.792e-16 1.795e-16 -15.747 -15.746 0.001 (0) +H(0) 5.880e-40 + H2 2.940e-40 2.945e-40 -39.532 -39.531 0.001 (0) +O(0) 9.597e-14 + O2 4.779e-14 4.787e-14 -13.321 -13.320 0.001 (0) + O[18O] 1.907e-16 1.910e-16 -15.720 -15.719 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.036 -126.035 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.090 -126.089 0.001 (0) [13C](4) 6.505e-05 H[13C]O3- 5.247e-05 4.800e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) @@ -41992,7 +41982,7 @@ O(0) 9.016e-14 H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.966 -136.966 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.020 -137.020 0.001 (0) [14C](4) 7.685e-16 H[14C]O3- 6.208e-16 5.679e-16 -15.207 -15.246 -0.039 (0) [14C]O2 1.292e-16 1.294e-16 -15.889 -15.888 0.001 (0) @@ -42020,23 +42010,23 @@ O(0) 9.016e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.795e-16 - O[18O] 1.792e-16 1.795e-16 -15.747 -15.746 0.001 (0) - [18O]2 1.787e-19 1.790e-19 -18.748 -18.747 0.001 (0) +[18O](0) 1.911e-16 + O[18O] 1.907e-16 1.910e-16 -15.720 -15.719 0.001 (0) + [18O]2 1.903e-19 1.906e-19 -18.721 -18.720 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.17 -126.03 -2.86 [13C]H4 + [13C]H4(g) -123.23 -126.09 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.78 -21.29 -1.50 [14C][18O]2 - [14C]H4(g) -134.11 -136.97 -2.86 [14C]H4 + [14C]H4(g) -134.16 -137.02 -2.86 [14C]H4 [14C]O2(g) -14.42 -15.89 -1.47 [14C]O2 [14C]O[18O](g) -16.80 -18.59 -1.79 [14C]O[18O] - [18O]2(g) -16.46 -18.75 -2.29 [18O]2 + [18O]2(g) -16.43 -18.72 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -42050,14 +42040,14 @@ O(0) 9.016e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.22 -124.08 -2.86 CH4 + CH4(g) -121.27 -124.13 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.37 -39.52 -3.15 H2 + H2(g) -36.38 -39.53 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.45 -13.35 -2.89 O2 - O[18O](g) -13.15 -16.05 -2.89 O[18O] + O2(g) -10.43 -13.32 -2.89 O2 + O[18O](g) -13.13 -16.02 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -42121,7 +42111,7 @@ Calcite 2.56e-02 R(18O) 1.99520e-03 -4.9885 permil R(13C) 1.11388e-02 -3.6992 permil - R(14C) 1.29493e-13 11.012 pmc + R(14C) 1.29492e-13 11.012 pmc R(18O) H2O(l) 1.99519e-03 -4.99 permil R(18O) OH- 1.92123e-03 -41.877 permil R(18O) H3O+ 2.04133e-03 18.018 permil @@ -42134,7 +42124,7 @@ Calcite 2.56e-02 R(14C) HCO3- 1.29875e-13 11.045 pmc R(18O) CO3-2 1.99519e-03 -4.99 permil R(13C) CO3-2 1.11393e-02 -3.6556 permil - R(14C) CO3-2 1.29503e-13 11.013 pmc + R(14C) CO3-2 1.29502e-13 11.013 pmc R(18O) Calcite 2.05264e-03 23.656 permil R(13C) Calcite 1.11774e-02 -0.24743 permil R(14C) Calcite 1.30390e-13 11.089 pmc @@ -42147,12 +42137,12 @@ Calcite 2.56e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2582e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2384e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7258e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7242e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -42172,14 +42162,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.199 Adjusted to redox equilibrium + pe = 11.197 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.126e-13 + Electrical balance (eq) = 3.399e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -42194,7 +42184,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.103 -124.102 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.091 -124.090 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -42223,13 +42213,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 5.985e-40 - H2 2.992e-40 2.997e-40 -39.524 -39.523 0.001 (0) -O(0) 9.265e-14 - O2 4.614e-14 4.622e-14 -13.336 -13.335 0.001 (0) - O[18O] 1.841e-16 1.844e-16 -15.735 -15.734 0.001 (0) +H(0) 6.026e-40 + H2 3.013e-40 3.018e-40 -39.521 -39.520 0.001 (0) +O(0) 9.140e-14 + O2 4.552e-14 4.559e-14 -13.342 -13.341 0.001 (0) + O[18O] 1.816e-16 1.819e-16 -15.741 -15.740 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -126.059 -126.058 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.047 -126.047 0.001 (0) [13C](4) 6.505e-05 H[13C]O3- 5.247e-05 4.800e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) @@ -42249,7 +42239,7 @@ O(0) 9.265e-14 H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.997 -136.996 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.985 -136.984 0.001 (0) [14C](4) 7.562e-16 H[14C]O3- 6.109e-16 5.589e-16 -15.214 -15.253 -0.039 (0) [14C]O2 1.271e-16 1.273e-16 -15.896 -15.895 0.001 (0) @@ -42277,23 +42267,23 @@ O(0) 9.265e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.845e-16 - O[18O] 1.841e-16 1.844e-16 -15.735 -15.734 0.001 (0) - [18O]2 1.837e-19 1.840e-19 -18.736 -18.735 0.001 (0) +[18O](0) 1.820e-16 + O[18O] 1.816e-16 1.819e-16 -15.741 -15.740 0.001 (0) + [18O]2 1.812e-19 1.815e-19 -18.742 -18.741 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.20 -126.06 -2.86 [13C]H4 + [13C]H4(g) -123.19 -126.05 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.79 -21.30 -1.50 [14C][18O]2 - [14C]H4(g) -134.14 -137.00 -2.86 [14C]H4 + [14C]H4(g) -134.12 -136.98 -2.86 [14C]H4 [14C]O2(g) -14.43 -15.90 -1.47 [14C]O2 [14C]O[18O](g) -16.81 -18.60 -1.79 [14C]O[18O] - [18O]2(g) -16.44 -18.74 -2.29 [18O]2 + [18O]2(g) -16.45 -18.74 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -42307,14 +42297,14 @@ O(0) 9.265e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.24 -124.10 -2.86 CH4 + CH4(g) -121.23 -124.09 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] H2(g) -36.37 -39.52 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.44 -13.34 -2.89 O2 - O[18O](g) -13.14 -16.04 -2.89 O[18O] + O2(g) -10.45 -13.34 -2.89 O2 + O[18O](g) -13.15 -16.04 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -42394,7 +42384,7 @@ Calcite 2.61e-02 R(14C) CO3-2 1.27473e-13 10.841 pmc R(18O) Calcite 2.05264e-03 23.657 permil R(13C) Calcite 1.11778e-02 -0.2111 permil - R(14C) Calcite 1.28347e-13 10.915 pmc + R(14C) Calcite 1.28346e-13 10.915 pmc --------------------------------Isotope Alphas--------------------------------- @@ -42404,12 +42394,12 @@ Calcite 2.61e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2475e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2267e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7224e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7882e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -42429,14 +42419,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.183 Adjusted to redox equilibrium + pe = 11.181 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.126e-13 + Electrical balance (eq) = 3.399e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -42451,7 +42441,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.976 -123.976 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.961 -123.961 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -42480,13 +42470,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 6.437e-40 - H2 3.219e-40 3.224e-40 -39.492 -39.492 0.001 (0) -O(0) 8.008e-14 - O2 3.988e-14 3.995e-14 -13.399 -13.399 0.001 (0) - O[18O] 1.591e-16 1.594e-16 -15.798 -15.798 0.001 (0) +H(0) 6.493e-40 + H2 3.246e-40 3.252e-40 -39.489 -39.488 0.001 (0) +O(0) 7.872e-14 + O2 3.920e-14 3.927e-14 -13.407 -13.406 0.001 (0) + O[18O] 1.564e-16 1.567e-16 -15.806 -15.805 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.932 -125.932 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.918 -125.917 0.001 (0) [13C](4) 6.505e-05 H[13C]O3- 5.247e-05 4.800e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) @@ -42506,7 +42496,7 @@ O(0) 8.008e-14 H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.308e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -136.877 -136.876 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.862 -136.861 0.001 (0) [14C](4) 7.444e-16 H[14C]O3- 6.013e-16 5.501e-16 -15.221 -15.260 -0.039 (0) [14C]O2 1.251e-16 1.253e-16 -15.903 -15.902 0.001 (0) @@ -42534,23 +42524,23 @@ O(0) 8.008e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.595e-16 - O[18O] 1.591e-16 1.594e-16 -15.798 -15.798 0.001 (0) - [18O]2 1.588e-19 1.590e-19 -18.799 -18.799 0.001 (0) +[18O](0) 1.567e-16 + O[18O] 1.564e-16 1.567e-16 -15.806 -15.805 0.001 (0) + [18O]2 1.561e-19 1.563e-19 -18.807 -18.806 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -123.07 -125.93 -2.86 [13C]H4 + [13C]H4(g) -123.06 -125.92 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.80 -21.30 -1.50 [14C][18O]2 - [14C]H4(g) -134.02 -136.88 -2.86 [14C]H4 + [14C]H4(g) -134.00 -136.86 -2.86 [14C]H4 [14C]O2(g) -14.43 -15.90 -1.47 [14C]O2 [14C]O[18O](g) -16.81 -18.60 -1.79 [14C]O[18O] - [18O]2(g) -16.51 -18.80 -2.29 [18O]2 + [18O]2(g) -16.52 -18.81 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -42564,14 +42554,14 @@ O(0) 8.008e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -121.12 -123.98 -2.86 CH4 + CH4(g) -121.10 -123.96 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] H2(g) -36.34 -39.49 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.51 -13.40 -2.89 O2 - O[18O](g) -13.21 -16.10 -2.89 O[18O] + O2(g) -10.51 -13.41 -2.89 O2 + O[18O](g) -13.21 -16.11 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -42661,12 +42651,12 @@ Calcite 2.66e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2539e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2655e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 Alpha 18O HCO3-/H2O(l) 1 -7.2164e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7211e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5831e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -42686,14 +42676,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.067 Adjusted to redox equilibrium + pe = 11.084 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -42708,7 +42698,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.049 -123.048 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.187 -123.186 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -42737,13 +42727,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 1.098e-39 - H2 5.489e-40 5.498e-40 -39.261 -39.260 0.001 (0) -O(0) 2.754e-14 - O2 1.371e-14 1.374e-14 -13.863 -13.862 0.001 (0) - O[18O] 5.472e-17 5.481e-17 -16.262 -16.261 0.001 (0) +H(0) 1.014e-39 + H2 5.069e-40 5.078e-40 -39.295 -39.294 0.001 (0) +O(0) 3.228e-14 + O2 1.608e-14 1.610e-14 -13.794 -13.793 0.001 (0) + O[18O] 6.415e-17 6.426e-17 -16.193 -16.192 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -125.005 -125.005 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.143 -125.143 0.001 (0) [13C](4) 6.505e-05 H[13C]O3- 5.247e-05 4.801e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) @@ -42763,7 +42753,7 @@ O(0) 2.754e-14 H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -135.957 -135.956 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.095 -136.094 0.001 (0) [14C](4) 7.329e-16 H[14C]O3- 5.920e-16 5.416e-16 -15.228 -15.266 -0.039 (0) [14C]O2 1.232e-16 1.234e-16 -15.909 -15.909 0.001 (0) @@ -42772,7 +42762,7 @@ O(0) 2.754e-14 H[14C]O[18O]O- 1.181e-18 1.081e-18 -17.928 -17.966 -0.039 (0) H[14C]O2[18O]- 1.181e-18 1.081e-18 -17.928 -17.966 -0.039 (0) Ca[14C]O3 6.853e-19 6.865e-19 -18.164 -18.163 0.001 (0) - [14C]O[18O] 5.123e-19 5.131e-19 -18.291 -18.290 0.001 (0) + [14C]O[18O] 5.122e-19 5.131e-19 -18.291 -18.290 0.001 (0) [14C]O3-2 3.516e-19 2.463e-19 -18.454 -18.609 -0.155 (0) CaH[14C]O2[18O]+ 2.494e-20 2.288e-20 -19.603 -19.641 -0.037 (0) CaH[14C][18O]O2+ 2.494e-20 2.288e-20 -19.603 -19.641 -0.037 (0) @@ -42791,23 +42781,23 @@ O(0) 2.754e-14 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 5.483e-17 - O[18O] 5.472e-17 5.481e-17 -16.262 -16.261 0.001 (0) - [18O]2 5.459e-20 5.468e-20 -19.263 -19.262 0.001 (0) +[18O](0) 6.428e-17 + O[18O] 6.415e-17 6.426e-17 -16.193 -16.192 0.001 (0) + [18O]2 6.400e-20 6.411e-20 -19.194 -19.193 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -122.14 -125.00 -2.86 [13C]H4 + [13C]H4(g) -122.28 -125.14 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.81 -21.31 -1.50 [14C][18O]2 - [14C]H4(g) -133.10 -135.96 -2.86 [14C]H4 + [14C]H4(g) -133.23 -136.09 -2.86 [14C]H4 [14C]O2(g) -14.44 -15.91 -1.47 [14C]O2 [14C]O[18O](g) -16.82 -18.61 -1.79 [14C]O[18O] - [18O]2(g) -16.97 -19.26 -2.29 [18O]2 + [18O]2(g) -16.90 -19.19 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -42821,14 +42811,14 @@ O(0) 2.754e-14 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -120.19 -123.05 -2.86 CH4 + CH4(g) -120.33 -123.19 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.11 -39.26 -3.15 H2 + H2(g) -36.14 -39.29 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -10.97 -13.86 -2.89 O2 - O[18O](g) -13.67 -16.56 -2.89 O[18O] + O2(g) -10.90 -13.79 -2.89 O2 + O[18O](g) -13.60 -16.49 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -42918,12 +42908,12 @@ Calcite 2.71e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.246e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2584e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -4.4409e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5489e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5481e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -42943,14 +42933,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 10.853 Adjusted to redox equilibrium + pe = 11.034 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -42965,7 +42955,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -121.334 -121.333 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.786 -122.785 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -42994,13 +42984,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.083e-08 6.093e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 2.946e-39 - H2 1.473e-39 1.475e-39 -38.832 -38.831 0.001 (0) -O(0) 3.823e-15 - O2 1.904e-15 1.907e-15 -14.720 -14.720 0.001 (0) - O[18O] 7.598e-18 7.611e-18 -17.119 -17.119 0.001 (0) +H(0) 1.277e-39 + H2 6.385e-40 6.396e-40 -39.195 -39.194 0.001 (0) +O(0) 2.035e-14 + O2 1.013e-14 1.015e-14 -13.994 -13.994 0.001 (0) + O[18O] 4.043e-17 4.050e-17 -16.393 -16.393 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -123.290 -123.290 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.742 -124.742 0.001 (0) [13C](4) 6.506e-05 H[13C]O3- 5.247e-05 4.801e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) @@ -43020,7 +43010,7 @@ O(0) 3.823e-15 H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -134.248 -134.248 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -135.700 -135.700 0.001 (0) [14C](4) 7.218e-16 H[14C]O3- 5.830e-16 5.334e-16 -15.234 -15.273 -0.039 (0) [14C]O2 1.213e-16 1.215e-16 -15.916 -15.915 0.001 (0) @@ -43048,23 +43038,23 @@ O(0) 3.823e-15 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 7.613e-18 - O[18O] 7.598e-18 7.611e-18 -17.119 -17.119 0.001 (0) - [18O]2 7.580e-21 7.592e-21 -20.120 -20.120 0.001 (0) +[18O](0) 4.051e-17 + O[18O] 4.043e-17 4.050e-17 -16.393 -16.393 0.001 (0) + [18O]2 4.033e-20 4.040e-20 -19.394 -19.394 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -120.43 -123.29 -2.86 [13C]H4 + [13C]H4(g) -121.88 -124.74 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.81 -21.32 -1.50 [14C][18O]2 - [14C]H4(g) -131.39 -134.25 -2.86 [14C]H4 + [14C]H4(g) -132.84 -135.70 -2.86 [14C]H4 [14C]O2(g) -14.45 -15.92 -1.47 [14C]O2 [14C]O[18O](g) -16.83 -18.62 -1.79 [14C]O[18O] - [18O]2(g) -17.83 -20.12 -2.29 [18O]2 + [18O]2(g) -17.10 -19.39 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -43078,14 +43068,14 @@ O(0) 3.823e-15 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -118.47 -121.33 -2.86 CH4 + CH4(g) -119.93 -122.79 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -35.68 -38.83 -3.15 H2 + H2(g) -36.04 -39.19 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -11.83 -14.72 -2.89 O2 - O[18O](g) -14.53 -17.42 -2.89 O[18O] + O2(g) -11.10 -13.99 -2.89 O2 + O[18O](g) -13.80 -16.69 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -43175,12 +43165,12 @@ Calcite 2.76e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2558e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2364e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6396e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.572e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -43200,14 +43190,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.471 Adjusted to redox equilibrium + pe = 11.070 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.126e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -43222,7 +43212,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.284 -126.283 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.072 -123.072 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -43251,13 +43241,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.069 -40.068 0.001 (0) -O(0) 1.141e-12 - O2 5.681e-13 5.691e-13 -12.246 -12.245 0.001 (0) - O[18O] 2.267e-15 2.271e-15 -14.645 -14.644 0.001 (0) +H(0) 1.083e-39 + H2 5.416e-40 5.425e-40 -39.266 -39.266 0.001 (0) +O(0) 2.828e-14 + O2 1.409e-14 1.411e-14 -13.851 -13.850 0.001 (0) + O[18O] 5.621e-17 5.630e-17 -16.250 -16.249 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.240 -128.239 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.029 -125.028 0.001 (0) [13C](4) 6.506e-05 H[13C]O3- 5.248e-05 4.801e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) @@ -43277,7 +43267,7 @@ O(0) 1.141e-12 H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.204 -139.204 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -135.993 -135.992 0.001 (0) [14C](4) 7.109e-16 H[14C]O3- 5.743e-16 5.254e-16 -15.241 -15.280 -0.039 (0) [14C]O2 1.195e-16 1.197e-16 -15.923 -15.922 0.001 (0) @@ -43305,23 +43295,23 @@ O(0) 1.141e-12 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.272e-15 - O[18O] 2.267e-15 2.271e-15 -14.645 -14.644 0.001 (0) - [18O]2 2.262e-18 2.265e-18 -17.646 -17.645 0.001 (0) +[18O](0) 5.632e-17 + O[18O] 5.621e-17 5.630e-17 -16.250 -16.249 0.001 (0) + [18O]2 5.607e-20 5.617e-20 -19.251 -19.251 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.38 -128.24 -2.86 [13C]H4 + [13C]H4(g) -122.17 -125.03 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.82 -21.32 -1.50 [14C][18O]2 - [14C]H4(g) -136.34 -139.20 -2.86 [14C]H4 + [14C]H4(g) -133.13 -135.99 -2.86 [14C]H4 [14C]O2(g) -14.45 -15.92 -1.47 [14C]O2 [14C]O[18O](g) -16.83 -18.62 -1.79 [14C]O[18O] - [18O]2(g) -15.35 -17.64 -2.29 [18O]2 + [18O]2(g) -16.96 -19.25 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -43335,14 +43325,14 @@ O(0) 1.141e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.42 -126.28 -2.86 CH4 + CH4(g) -120.21 -123.07 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.92 -40.07 -3.15 H2 + H2(g) -36.12 -39.27 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.35 -12.24 -2.89 O2 - O[18O](g) -12.05 -14.94 -2.89 O[18O] + O2(g) -10.96 -13.85 -2.89 O2 + O[18O](g) -13.66 -16.55 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -43432,12 +43422,12 @@ Calcite 2.81e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2532e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2657e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.2164e-12 0 +Alpha 18O HCO3-/H2O(l) 1 2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.685e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5477e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -43457,14 +43447,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.472 Adjusted to redox equilibrium + pe = 11.114 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -43479,7 +43469,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.291 -126.290 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.420 -123.419 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -43508,13 +43498,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.071 -40.070 0.001 (0) -O(0) 1.150e-12 - O2 5.728e-13 5.738e-13 -12.242 -12.241 0.001 (0) - O[18O] 2.286e-15 2.290e-15 -14.641 -14.640 0.001 (0) +H(0) 8.867e-40 + H2 4.433e-40 4.441e-40 -39.353 -39.353 0.001 (0) +O(0) 4.221e-14 + O2 2.102e-14 2.105e-14 -13.677 -13.677 0.001 (0) + O[18O] 8.388e-17 8.401e-17 -16.076 -16.076 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.247 -128.246 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.376 -125.375 0.001 (0) [13C](4) 6.506e-05 H[13C]O3- 5.248e-05 4.801e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) @@ -43534,7 +43524,7 @@ O(0) 1.150e-12 H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.218 -139.217 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.347 -136.347 0.001 (0) [14C](4) 7.005e-16 H[14C]O3- 5.658e-16 5.177e-16 -15.247 -15.286 -0.039 (0) [14C]O2 1.177e-16 1.179e-16 -15.929 -15.928 0.001 (0) @@ -43562,23 +43552,23 @@ O(0) 1.150e-12 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.290e-15 - O[18O] 2.286e-15 2.290e-15 -14.641 -14.640 0.001 (0) - [18O]2 2.280e-18 2.284e-18 -17.642 -17.641 0.001 (0) +[18O](0) 8.404e-17 + O[18O] 8.388e-17 8.401e-17 -16.076 -16.076 0.001 (0) + [18O]2 8.367e-20 8.381e-20 -19.077 -19.077 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.39 -128.25 -2.86 [13C]H4 + [13C]H4(g) -122.52 -125.38 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.82 -21.33 -1.50 [14C][18O]2 - [14C]H4(g) -136.36 -139.22 -2.86 [14C]H4 + [14C]H4(g) -133.49 -136.35 -2.86 [14C]H4 [14C]O2(g) -14.46 -15.93 -1.47 [14C]O2 [14C]O[18O](g) -16.84 -18.63 -1.79 [14C]O[18O] - [18O]2(g) -15.35 -17.64 -2.29 [18O]2 + [18O]2(g) -16.79 -19.08 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -43592,14 +43582,14 @@ O(0) 1.150e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.43 -126.29 -2.86 CH4 + CH4(g) -120.56 -123.42 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.92 -40.07 -3.15 H2 + H2(g) -36.20 -39.35 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.35 -12.24 -2.89 O2 - O[18O](g) -12.05 -14.94 -2.89 O[18O] + O2(g) -10.78 -13.68 -2.89 O2 + O[18O](g) -13.48 -16.38 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -43689,12 +43679,12 @@ Calcite 2.86e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2382e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2519e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.6613e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6469e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7147e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -43714,14 +43704,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.470 Adjusted to redox equilibrium + pe = 11.008 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -43736,7 +43726,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.270 -126.269 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.575 -122.574 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -43765,13 +43755,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.066 -40.065 0.001 (0) -O(0) 1.123e-12 - O2 5.593e-13 5.602e-13 -12.252 -12.252 0.001 (0) - O[18O] 2.232e-15 2.235e-15 -14.651 -14.651 0.001 (0) +H(0) 1.442e-39 + H2 7.211e-40 7.222e-40 -39.142 -39.141 0.001 (0) +O(0) 1.596e-14 + O2 7.946e-15 7.959e-15 -14.100 -14.099 0.001 (0) + O[18O] 3.171e-17 3.176e-17 -16.499 -16.498 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.226 -128.225 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.531 -124.531 0.001 (0) [13C](4) 6.506e-05 H[13C]O3- 5.248e-05 4.801e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.101e-05 1.103e-05 -4.958 -4.957 0.001 (0) @@ -43791,7 +43781,7 @@ O(0) 1.123e-12 H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.204 -139.203 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -135.509 -135.508 0.001 (0) [14C](4) 6.903e-16 H[14C]O3- 5.576e-16 5.101e-16 -15.254 -15.292 -0.039 (0) [14C]O2 1.160e-16 1.162e-16 -15.935 -15.935 0.001 (0) @@ -43819,23 +43809,23 @@ O(0) 1.123e-12 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.236e-15 - O[18O] 2.232e-15 2.235e-15 -14.651 -14.651 0.001 (0) - [18O]2 2.226e-18 2.230e-18 -17.652 -17.652 0.001 (0) +[18O](0) 3.177e-17 + O[18O] 3.171e-17 3.176e-17 -16.499 -16.498 0.001 (0) + [18O]2 3.163e-20 3.168e-20 -19.500 -19.499 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.37 -128.23 -2.86 [13C]H4 + [13C]H4(g) -121.67 -124.53 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.83 -21.33 -1.50 [14C][18O]2 - [14C]H4(g) -136.34 -139.20 -2.86 [14C]H4 + [14C]H4(g) -132.65 -135.51 -2.86 [14C]H4 [14C]O2(g) -14.47 -15.93 -1.47 [14C]O2 [14C]O[18O](g) -16.85 -18.63 -1.79 [14C]O[18O] - [18O]2(g) -15.36 -17.65 -2.29 [18O]2 + [18O]2(g) -17.21 -19.50 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -43849,14 +43839,14 @@ O(0) 1.123e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.41 -126.27 -2.86 CH4 + CH4(g) -119.71 -122.57 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.92 -40.07 -3.15 H2 + H2(g) -35.99 -39.14 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.36 -12.25 -2.89 O2 - O[18O](g) -12.06 -14.95 -2.89 O[18O] + O2(g) -11.21 -14.10 -2.89 O2 + O[18O](g) -13.91 -16.80 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -43926,7 +43916,7 @@ Calcite 2.91e-02 R(18O) H3O+ 2.04133e-03 18.019 permil R(18O) O2(aq) 1.99520e-03 -4.989 permil R(13C) CO2(aq) 1.10617e-02 -10.599 permil - R(14C) CO2(aq) 1.14845e-13 9.7667 pmc + R(14C) CO2(aq) 1.14845e-13 9.7666 pmc R(18O) CO2(aq) 2.07916e-03 36.885 permil R(18O) HCO3- 1.99520e-03 -4.989 permil R(13C) HCO3- 1.11579e-02 -1.9917 permil @@ -43946,12 +43936,12 @@ Calcite 2.91e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2455e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2914e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.4409e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6968e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6291e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -43971,14 +43961,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.468 Adjusted to redox equilibrium + pe = 10.916 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -43993,7 +43983,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.258 -126.257 0.001 (0) + CH4 0.000e+00 0.000e+00 -121.838 -121.837 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -44022,13 +44012,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.063 -40.062 0.001 (0) -O(0) 1.107e-12 - O2 5.515e-13 5.524e-13 -12.258 -12.258 0.001 (0) - O[18O] 2.201e-15 2.204e-15 -14.657 -14.657 0.001 (0) +H(0) 2.205e-39 + H2 1.102e-39 1.104e-39 -38.958 -38.957 0.001 (0) +O(0) 6.827e-15 + O2 3.400e-15 3.405e-15 -14.469 -14.468 0.001 (0) + O[18O] 1.357e-17 1.359e-17 -16.868 -16.867 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.214 -128.213 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -123.794 -123.793 0.001 (0) [13C](4) 6.506e-05 H[13C]O3- 5.248e-05 4.801e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.103e-05 -4.958 -4.957 0.001 (0) @@ -44048,7 +44038,7 @@ O(0) 1.107e-12 H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.198 -139.197 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -134.778 -134.777 0.001 (0) [14C](4) 6.804e-16 H[14C]O3- 5.496e-16 5.028e-16 -15.260 -15.299 -0.039 (0) [14C]O2 1.144e-16 1.146e-16 -15.942 -15.941 0.001 (0) @@ -44056,7 +44046,7 @@ O(0) 1.107e-12 H[14C][18O]O2- 1.097e-18 1.003e-18 -17.960 -17.999 -0.039 (0) H[14C]O[18O]O- 1.097e-18 1.003e-18 -17.960 -17.999 -0.039 (0) H[14C]O2[18O]- 1.097e-18 1.003e-18 -17.960 -17.999 -0.039 (0) - Ca[14C]O3 6.363e-19 6.373e-19 -18.196 -18.196 0.001 (0) + Ca[14C]O3 6.362e-19 6.373e-19 -18.196 -18.196 0.001 (0) [14C]O[18O] 4.756e-19 4.763e-19 -18.323 -18.322 0.001 (0) [14C]O3-2 3.264e-19 2.286e-19 -18.486 -18.641 -0.155 (0) CaH[14C]O2[18O]+ 2.316e-20 2.124e-20 -19.635 -19.673 -0.037 (0) @@ -44076,23 +44066,23 @@ O(0) 1.107e-12 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.205e-15 - O[18O] 2.201e-15 2.204e-15 -14.657 -14.657 0.001 (0) - [18O]2 2.195e-18 2.199e-18 -17.658 -17.658 0.001 (0) +[18O](0) 1.359e-17 + O[18O] 1.357e-17 1.359e-17 -16.868 -16.867 0.001 (0) + [18O]2 1.353e-20 1.356e-20 -19.869 -19.868 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.35 -128.21 -2.86 [13C]H4 + [13C]H4(g) -120.93 -123.79 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.84 -21.34 -1.50 [14C][18O]2 - [14C]H4(g) -136.34 -139.20 -2.86 [14C]H4 + [14C]H4(g) -131.92 -134.78 -2.86 [14C]H4 [14C]O2(g) -14.47 -15.94 -1.47 [14C]O2 [14C]O[18O](g) -16.85 -18.64 -1.79 [14C]O[18O] - [18O]2(g) -15.37 -17.66 -2.29 [18O]2 + [18O]2(g) -17.58 -19.87 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -44106,14 +44096,14 @@ O(0) 1.107e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.40 -126.26 -2.86 CH4 + CH4(g) -118.98 -121.84 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.91 -40.06 -3.15 H2 + H2(g) -35.81 -38.96 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.37 -12.26 -2.89 O2 - O[18O](g) -12.07 -14.96 -2.89 O[18O] + O2(g) -11.58 -14.47 -2.89 O2 + O[18O](g) -14.28 -17.17 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -44203,12 +44193,12 @@ Calcite 2.96e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2716e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2536e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6654e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5989e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -44228,14 +44218,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.469 Adjusted to redox equilibrium + pe = 10.986 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -44250,7 +44240,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.263 -126.262 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.401 -122.400 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -44279,13 +44269,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.084e-08 6.094e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.064 -40.063 0.001 (0) -O(0) 1.114e-12 - O2 5.546e-13 5.555e-13 -12.256 -12.255 0.001 (0) - O[18O] 2.213e-15 2.217e-15 -14.655 -14.654 0.001 (0) +H(0) 1.594e-39 + H2 7.972e-40 7.985e-40 -39.098 -39.098 0.001 (0) +O(0) 1.305e-14 + O2 6.500e-15 6.511e-15 -14.187 -14.186 0.001 (0) + O[18O] 2.594e-17 2.598e-17 -16.586 -16.585 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.219 -128.218 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.357 -124.356 0.001 (0) [13C](4) 6.507e-05 H[13C]O3- 5.248e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.103e-05 -4.958 -4.957 0.001 (0) @@ -44305,7 +44295,7 @@ O(0) 1.114e-12 H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.209 -139.208 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -135.347 -135.346 0.001 (0) [14C](4) 6.708e-16 H[14C]O3- 5.419e-16 4.957e-16 -15.266 -15.305 -0.039 (0) [14C]O2 1.127e-16 1.129e-16 -15.948 -15.947 0.001 (0) @@ -44333,23 +44323,23 @@ O(0) 1.114e-12 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.217e-15 - O[18O] 2.213e-15 2.217e-15 -14.655 -14.654 0.001 (0) - [18O]2 2.208e-18 2.211e-18 -17.656 -17.655 0.001 (0) +[18O](0) 2.599e-17 + O[18O] 2.594e-17 2.598e-17 -16.586 -16.585 0.001 (0) + [18O]2 2.588e-20 2.592e-20 -19.587 -19.586 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.36 -128.22 -2.86 [13C]H4 + [13C]H4(g) -121.50 -124.36 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.84 -21.35 -1.50 [14C][18O]2 - [14C]H4(g) -136.35 -139.21 -2.86 [14C]H4 + [14C]H4(g) -132.49 -135.35 -2.86 [14C]H4 [14C]O2(g) -14.48 -15.95 -1.47 [14C]O2 [14C]O[18O](g) -16.86 -18.65 -1.79 [14C]O[18O] - [18O]2(g) -15.37 -17.66 -2.29 [18O]2 + [18O]2(g) -17.30 -19.59 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -44363,14 +44353,14 @@ O(0) 1.114e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.40 -126.26 -2.86 CH4 + CH4(g) -119.54 -122.40 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.91 -40.06 -3.15 H2 + H2(g) -35.95 -39.10 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.36 -12.26 -2.89 O2 - O[18O](g) -12.06 -14.96 -2.89 O[18O] + O2(g) -11.29 -14.19 -2.89 O2 + O[18O](g) -13.99 -16.89 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -44447,7 +44437,7 @@ Calcite 3.01e-02 R(14C) HCO3- 1.13597e-13 9.6606 pmc R(18O) CO3-2 1.99520e-03 -4.9887 permil R(13C) CO3-2 1.11426e-02 -3.366 permil - R(14C) CO3-2 1.13272e-13 9.6329 pmc + R(14C) CO3-2 1.13271e-13 9.6328 pmc R(18O) Calcite 2.05264e-03 23.658 permil R(13C) Calcite 1.11807e-02 0.043097 permil R(14C) Calcite 1.14048e-13 9.6989 pmc @@ -44460,12 +44450,12 @@ Calcite 3.01e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2908e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2721e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -7.9936e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5935e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6632e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -44485,14 +44475,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.467 Adjusted to redox equilibrium + pe = 10.523 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -44507,7 +44497,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.248 -126.247 0.001 (0) + CH4 0.000e+00 0.000e+00 -118.698 -118.697 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -44536,13 +44526,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.084e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.060 -40.060 0.001 (0) -O(0) 1.095e-12 - O2 5.454e-13 5.463e-13 -12.263 -12.263 0.001 (0) - O[18O] 2.176e-15 2.180e-15 -14.662 -14.662 0.001 (0) +H(0) 1.344e-38 + H2 6.718e-39 6.729e-39 -38.173 -38.172 0.001 (0) +O(0) 1.838e-16 + O2 9.156e-17 9.171e-17 -16.038 -16.038 0.001 (0) + O[18O] 3.653e-19 3.659e-19 -18.437 -18.437 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.204 -128.204 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -120.654 -120.654 0.001 (0) [13C](4) 6.507e-05 H[13C]O3- 5.248e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.103e-05 -4.958 -4.957 0.001 (0) @@ -44562,7 +44552,7 @@ O(0) 1.095e-12 H[13C]O[18O]2- 2.089e-10 1.911e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.200 -139.200 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -131.650 -131.650 0.001 (0) [14C](4) 6.614e-16 H[14C]O3- 5.343e-16 4.888e-16 -15.272 -15.311 -0.039 (0) [14C]O2 1.112e-16 1.114e-16 -15.954 -15.953 0.001 (0) @@ -44590,23 +44580,23 @@ O(0) 1.095e-12 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.181e-15 - O[18O] 2.176e-15 2.180e-15 -14.662 -14.662 0.001 (0) - [18O]2 2.171e-18 2.175e-18 -17.663 -17.663 0.001 (0) +[18O](0) 3.661e-19 + O[18O] 3.653e-19 3.659e-19 -18.437 -18.437 0.001 (0) + [18O]2 3.645e-22 3.651e-22 -21.438 -21.438 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.34 -128.20 -2.86 [13C]H4 + [13C]H4(g) -117.79 -120.65 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.85 -21.35 -1.50 [14C][18O]2 - [14C]H4(g) -136.34 -139.20 -2.86 [14C]H4 + [14C]H4(g) -128.79 -131.65 -2.86 [14C]H4 [14C]O2(g) -14.48 -15.95 -1.47 [14C]O2 [14C]O[18O](g) -16.87 -18.65 -1.79 [14C]O[18O] - [18O]2(g) -15.37 -17.66 -2.29 [18O]2 + [18O]2(g) -19.15 -21.44 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -44620,14 +44610,14 @@ O(0) 1.095e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.39 -126.25 -2.86 CH4 + CH4(g) -115.84 -118.70 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.91 -40.06 -3.15 H2 + H2(g) -35.02 -38.17 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.37 -12.26 -2.89 O2 - O[18O](g) -12.07 -14.96 -2.89 O[18O] + O2(g) -13.15 -16.04 -2.89 O2 + O[18O](g) -15.85 -18.74 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -44706,8 +44696,8 @@ Calcite 3.06e-02 R(13C) CO3-2 1.11429e-02 -3.3383 permil R(14C) CO3-2 1.11716e-13 9.5005 pmc R(18O) Calcite 2.05264e-03 23.658 permil - R(13C) Calcite 1.11810e-02 0.070947 permil - R(14C) Calcite 1.12481e-13 9.5657 pmc + R(13C) Calcite 1.11810e-02 0.070946 permil + R(14C) Calcite 1.12481e-13 9.5656 pmc --------------------------------Isotope Alphas--------------------------------- @@ -44717,12 +44707,12 @@ Calcite 3.06e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2643e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2879e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7243e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6639e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -44742,16 +44732,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.469 Adjusted to redox equilibrium + pe = 11.231 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 2 + Iterations = 3 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -44764,7 +44754,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.267 -126.267 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.361 -124.360 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -44793,13 +44783,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.065 -40.064 0.001 (0) -O(0) 1.120e-12 - O2 5.575e-13 5.584e-13 -12.254 -12.253 0.001 (0) - O[18O] 2.225e-15 2.228e-15 -14.653 -14.652 0.001 (0) +H(0) 5.159e-40 + H2 2.579e-40 2.584e-40 -39.588 -39.588 0.001 (0) +O(0) 1.247e-13 + O2 6.209e-14 6.219e-14 -13.207 -13.206 0.001 (0) + O[18O] 2.478e-16 2.482e-16 -15.606 -15.605 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.223 -128.223 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.317 -126.316 0.001 (0) [13C](4) 6.507e-05 H[13C]O3- 5.249e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.103e-05 -4.958 -4.957 0.001 (0) @@ -44819,7 +44809,7 @@ O(0) 1.120e-12 H[13C]O[18O]2- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.225 -139.225 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.319 -137.318 0.001 (0) [14C](4) 6.524e-16 H[14C]O3- 5.270e-16 4.821e-16 -15.278 -15.317 -0.039 (0) [14C]O2 1.097e-16 1.098e-16 -15.960 -15.959 0.001 (0) @@ -44847,23 +44837,23 @@ O(0) 1.120e-12 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.229e-15 - O[18O] 2.225e-15 2.228e-15 -14.653 -14.652 0.001 (0) - [18O]2 2.219e-18 2.223e-18 -17.654 -17.653 0.001 (0) +[18O](0) 2.483e-16 + O[18O] 2.478e-16 2.482e-16 -15.606 -15.605 0.001 (0) + [18O]2 2.472e-19 2.476e-19 -18.607 -18.606 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.36 -128.22 -2.86 [13C]H4 + [13C]H4(g) -123.46 -126.32 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.86 -21.36 -1.50 [14C][18O]2 - [14C]H4(g) -136.36 -139.22 -2.86 [14C]H4 + [14C]H4(g) -134.46 -137.32 -2.86 [14C]H4 [14C]O2(g) -14.49 -15.96 -1.47 [14C]O2 [14C]O[18O](g) -16.87 -18.66 -1.79 [14C]O[18O] - [18O]2(g) -15.36 -17.65 -2.29 [18O]2 + [18O]2(g) -16.32 -18.61 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -44877,14 +44867,14 @@ O(0) 1.120e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.41 -126.27 -2.86 CH4 + CH4(g) -121.50 -124.36 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.91 -40.06 -3.15 H2 + H2(g) -36.44 -39.59 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.36 -12.25 -2.89 O2 - O[18O](g) -12.06 -14.95 -2.89 O[18O] + O2(g) -10.31 -13.21 -2.89 O2 + O[18O](g) -13.01 -15.91 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -44964,7 +44954,7 @@ Calcite 3.11e-02 R(14C) CO3-2 1.10202e-13 9.3718 pmc R(18O) Calcite 2.05264e-03 23.658 permil R(13C) Calcite 1.11813e-02 0.098042 permil - R(14C) Calcite 1.10957e-13 9.4361 pmc + R(14C) Calcite 1.10957e-13 9.436 pmc --------------------------------Isotope Alphas--------------------------------- @@ -44974,12 +44964,12 @@ Calcite 3.11e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2308e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2541e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6884e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6986e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -44999,14 +44989,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.467 Adjusted to redox equilibrium + pe = 11.213 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -45021,7 +45011,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.245 -126.244 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.213 -124.212 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -45050,13 +45040,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.059 -40.059 0.001 (0) -O(0) 1.091e-12 - O2 5.432e-13 5.441e-13 -12.265 -12.264 0.001 (0) - O[18O] 2.168e-15 2.171e-15 -14.664 -14.663 0.001 (0) +H(0) 5.616e-40 + H2 2.808e-40 2.813e-40 -39.552 -39.551 0.001 (0) +O(0) 1.052e-13 + O2 5.239e-14 5.247e-14 -13.281 -13.280 0.001 (0) + O[18O] 2.090e-16 2.094e-16 -15.680 -15.679 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.201 -128.200 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.169 -126.169 0.001 (0) [13C](4) 6.507e-05 H[13C]O3- 5.249e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.103e-05 -4.958 -4.957 0.001 (0) @@ -45076,7 +45066,7 @@ O(0) 1.091e-12 H[13C]O[18O]2- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.209 -139.208 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.177 -137.177 0.001 (0) [14C](4) 6.435e-16 H[14C]O3- 5.198e-16 4.756e-16 -15.284 -15.323 -0.039 (0) [14C]O2 1.082e-16 1.083e-16 -15.966 -15.965 0.001 (0) @@ -45104,23 +45094,23 @@ O(0) 1.091e-12 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.172e-15 - O[18O] 2.168e-15 2.171e-15 -14.664 -14.663 0.001 (0) - [18O]2 2.162e-18 2.166e-18 -17.665 -17.664 0.001 (0) +[18O](0) 2.095e-16 + O[18O] 2.090e-16 2.094e-16 -15.680 -15.679 0.001 (0) + [18O]2 2.085e-19 2.089e-19 -18.681 -18.680 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.34 -128.20 -2.86 [13C]H4 + [13C]H4(g) -123.31 -126.17 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.86 -21.37 -1.50 [14C][18O]2 - [14C]H4(g) -136.35 -139.21 -2.86 [14C]H4 + [14C]H4(g) -134.32 -137.18 -2.86 [14C]H4 [14C]O2(g) -14.50 -15.97 -1.47 [14C]O2 [14C]O[18O](g) -16.88 -18.67 -1.79 [14C]O[18O] - [18O]2(g) -15.37 -17.66 -2.29 [18O]2 + [18O]2(g) -16.39 -18.68 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -45134,14 +45124,14 @@ O(0) 1.091e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.38 -126.24 -2.86 CH4 + CH4(g) -121.35 -124.21 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.91 -40.06 -3.15 H2 + H2(g) -36.40 -39.55 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.37 -12.26 -2.89 O2 - O[18O](g) -12.07 -14.96 -2.89 O[18O] + O2(g) -10.39 -13.28 -2.89 O2 + O[18O](g) -13.09 -15.98 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -45218,7 +45208,7 @@ Calcite 3.16e-02 R(14C) HCO3- 1.09042e-13 9.2731 pmc R(18O) CO3-2 1.99520e-03 -4.9883 permil R(13C) CO3-2 1.11435e-02 -3.285 permil - R(14C) CO3-2 1.08729e-13 9.2466 pmc + R(14C) CO3-2 1.08729e-13 9.2465 pmc R(18O) Calcite 2.05264e-03 23.658 permil R(13C) Calcite 1.11816e-02 0.12441 permil R(14C) Calcite 1.09474e-13 9.3099 pmc @@ -45231,12 +45221,12 @@ Calcite 3.16e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2534e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2439e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 6.6613e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5287e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6078e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -45256,14 +45246,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.464 Adjusted to redox equilibrium + pe = 11.206 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -45278,7 +45268,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.222 -126.221 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.156 -124.155 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -45307,13 +45297,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.054 -40.053 0.001 (0) -O(0) 1.063e-12 - O2 5.292e-13 5.301e-13 -12.276 -12.276 0.001 (0) - O[18O] 2.112e-15 2.115e-15 -14.675 -14.675 0.001 (0) +H(0) 5.805e-40 + H2 2.902e-40 2.907e-40 -39.537 -39.537 0.001 (0) +O(0) 9.849e-14 + O2 4.905e-14 4.913e-14 -13.309 -13.309 0.001 (0) + O[18O] 1.957e-16 1.960e-16 -15.708 -15.708 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.178 -128.177 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.112 -126.111 0.001 (0) [13C](4) 6.507e-05 H[13C]O3- 5.249e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.103e-05 -4.958 -4.957 0.001 (0) @@ -45333,7 +45323,7 @@ O(0) 1.063e-12 H[13C]O[18O]2- 2.089e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.192 -139.191 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.126 -137.125 0.001 (0) [14C](4) 6.349e-16 H[14C]O3- 5.129e-16 4.692e-16 -15.290 -15.329 -0.039 (0) [14C]O2 1.067e-16 1.069e-16 -15.972 -15.971 0.001 (0) @@ -45361,23 +45351,23 @@ O(0) 1.063e-12 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.116e-15 - O[18O] 2.112e-15 2.115e-15 -14.675 -14.675 0.001 (0) - [18O]2 2.107e-18 2.110e-18 -17.676 -17.676 0.001 (0) +[18O](0) 1.961e-16 + O[18O] 1.957e-16 1.960e-16 -15.708 -15.708 0.001 (0) + [18O]2 1.953e-19 1.956e-19 -18.709 -18.709 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.32 -128.18 -2.86 [13C]H4 + [13C]H4(g) -123.25 -126.11 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.87 -21.37 -1.50 [14C][18O]2 - [14C]H4(g) -136.33 -139.19 -2.86 [14C]H4 + [14C]H4(g) -134.27 -137.13 -2.86 [14C]H4 [14C]O2(g) -14.50 -15.97 -1.47 [14C]O2 [14C]O[18O](g) -16.88 -18.67 -1.79 [14C]O[18O] - [18O]2(g) -15.39 -17.68 -2.29 [18O]2 + [18O]2(g) -16.42 -18.71 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -45391,14 +45381,14 @@ O(0) 1.063e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.36 -126.22 -2.86 CH4 + CH4(g) -121.30 -124.16 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.90 -40.05 -3.15 H2 + H2(g) -36.39 -39.54 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.38 -12.28 -2.89 O2 - O[18O](g) -12.08 -14.98 -2.89 O[18O] + O2(g) -10.42 -13.31 -2.89 O2 + O[18O](g) -13.12 -16.01 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -45462,13 +45452,13 @@ Calcite 3.21e-02 R(18O) 1.99520e-03 -4.9867 permil R(13C) 1.11433e-02 -3.3031 permil - R(14C) 1.07287e-13 9.1239 pmc + R(14C) 1.07286e-13 9.1239 pmc R(18O) H2O(l) 1.99520e-03 -4.9882 permil R(18O) OH- 1.92123e-03 -41.876 permil R(18O) H3O+ 2.04133e-03 18.02 permil R(18O) O2(aq) 1.99520e-03 -4.9882 permil R(13C) CO2(aq) 1.10635e-02 -10.436 permil - R(14C) CO2(aq) 1.05755e-13 8.9937 pmc + R(14C) CO2(aq) 1.05755e-13 8.9936 pmc R(18O) CO2(aq) 2.07916e-03 36.886 permil R(18O) HCO3- 1.99520e-03 -4.9882 permil R(13C) HCO3- 1.11598e-02 -1.8269 permil @@ -45488,12 +45478,12 @@ Calcite 3.21e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2684e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2593e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.4401e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7013e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7102e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -45513,14 +45503,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.463 Adjusted to redox equilibrium + pe = 11.211 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -45535,7 +45525,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.215 -126.214 0.001 (0) + CH4 0.000e+00 0.000e+00 -124.201 -124.200 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -45564,13 +45554,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.052 -40.051 0.001 (0) -O(0) 1.054e-12 - O2 5.248e-13 5.256e-13 -12.280 -12.279 0.001 (0) - O[18O] 2.094e-15 2.097e-15 -14.679 -14.678 0.001 (0) +H(0) 5.656e-40 + H2 2.828e-40 2.833e-40 -39.548 -39.548 0.001 (0) +O(0) 1.037e-13 + O2 5.165e-14 5.174e-14 -13.287 -13.286 0.001 (0) + O[18O] 2.061e-16 2.064e-16 -15.686 -15.685 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.171 -128.170 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -126.157 -126.156 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.249e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -45590,7 +45580,7 @@ O(0) 1.054e-12 H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.190 -139.190 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -137.177 -137.176 0.001 (0) [14C](4) 6.265e-16 H[14C]O3- 5.061e-16 4.630e-16 -15.296 -15.334 -0.039 (0) [14C]O2 1.053e-16 1.055e-16 -15.978 -15.977 0.001 (0) @@ -45618,23 +45608,23 @@ O(0) 1.054e-12 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.098e-15 - O[18O] 2.094e-15 2.097e-15 -14.679 -14.678 0.001 (0) - [18O]2 2.089e-18 2.092e-18 -17.680 -17.679 0.001 (0) +[18O](0) 2.065e-16 + O[18O] 2.061e-16 2.064e-16 -15.686 -15.685 0.001 (0) + [18O]2 2.056e-19 2.060e-19 -18.687 -18.686 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.31 -128.17 -2.86 [13C]H4 + [13C]H4(g) -123.30 -126.16 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.87 -21.38 -1.50 [14C][18O]2 - [14C]H4(g) -136.33 -139.19 -2.86 [14C]H4 + [14C]H4(g) -134.32 -137.18 -2.86 [14C]H4 [14C]O2(g) -14.51 -15.98 -1.47 [14C]O2 [14C]O[18O](g) -16.89 -18.68 -1.79 [14C]O[18O] - [18O]2(g) -15.39 -17.68 -2.29 [18O]2 + [18O]2(g) -16.40 -18.69 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -45648,14 +45638,14 @@ O(0) 1.054e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.35 -126.21 -2.86 CH4 + CH4(g) -121.34 -124.20 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.90 -40.05 -3.15 H2 + H2(g) -36.40 -39.55 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.39 -12.28 -2.89 O2 - O[18O](g) -12.09 -14.98 -2.89 O[18O] + O2(g) -10.39 -13.29 -2.89 O2 + O[18O](g) -13.09 -15.99 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -45745,12 +45735,12 @@ Calcite 3.26e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.243e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2671e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6461e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -45770,14 +45760,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.461 Adjusted to redox equilibrium + pe = 11.176 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -45792,7 +45782,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.197 -126.196 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.923 -123.922 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -45821,13 +45811,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.047 -40.047 0.001 (0) -O(0) 1.032e-12 - O2 5.141e-13 5.150e-13 -12.289 -12.288 0.001 (0) - O[18O] 2.052e-15 2.055e-15 -14.688 -14.687 0.001 (0) +H(0) 6.637e-40 + H2 3.318e-40 3.324e-40 -39.479 -39.478 0.001 (0) +O(0) 7.533e-14 + O2 3.752e-14 3.758e-14 -13.426 -13.425 0.001 (0) + O[18O] 1.497e-16 1.500e-16 -15.825 -15.824 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.153 -128.152 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.879 -125.879 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.249e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -45847,14 +45837,14 @@ O(0) 1.032e-12 H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.868e-10 1.309e-10 -9.729 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.178 -139.178 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.905 -136.904 0.001 (0) [14C](4) 6.184e-16 H[14C]O3- 4.995e-16 4.570e-16 -15.301 -15.340 -0.039 (0) [14C]O2 1.039e-16 1.041e-16 -15.983 -15.983 0.001 (0) CaH[14C]O3+ 1.055e-17 9.676e-18 -16.977 -17.014 -0.037 (0) - H[14C][18O]O2- 9.967e-19 9.118e-19 -18.001 -18.040 -0.039 (0) - H[14C]O[18O]O- 9.967e-19 9.118e-19 -18.001 -18.040 -0.039 (0) - H[14C]O2[18O]- 9.967e-19 9.118e-19 -18.001 -18.040 -0.039 (0) + H[14C][18O]O2- 9.966e-19 9.118e-19 -18.001 -18.040 -0.039 (0) + H[14C]O[18O]O- 9.966e-19 9.118e-19 -18.001 -18.040 -0.039 (0) + H[14C]O2[18O]- 9.966e-19 9.118e-19 -18.001 -18.040 -0.039 (0) Ca[14C]O3 5.783e-19 5.792e-19 -18.238 -18.237 0.001 (0) [14C]O[18O] 4.322e-19 4.329e-19 -18.364 -18.364 0.001 (0) [14C]O3-2 2.966e-19 2.078e-19 -18.528 -18.682 -0.155 (0) @@ -45875,23 +45865,23 @@ O(0) 1.032e-12 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.056e-15 - O[18O] 2.052e-15 2.055e-15 -14.688 -14.687 0.001 (0) - [18O]2 2.047e-18 2.050e-18 -17.689 -17.688 0.001 (0) +[18O](0) 1.500e-16 + O[18O] 1.497e-16 1.500e-16 -15.825 -15.824 0.001 (0) + [18O]2 1.494e-19 1.496e-19 -18.826 -18.825 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.29 -128.15 -2.86 [13C]H4 + [13C]H4(g) -123.02 -125.88 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.88 -21.38 -1.50 [14C][18O]2 - [14C]H4(g) -136.32 -139.18 -2.86 [14C]H4 + [14C]H4(g) -134.04 -136.90 -2.86 [14C]H4 [14C]O2(g) -14.51 -15.98 -1.47 [14C]O2 [14C]O[18O](g) -16.90 -18.68 -1.79 [14C]O[18O] - [18O]2(g) -15.40 -17.69 -2.29 [18O]2 + [18O]2(g) -16.53 -18.83 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -45905,14 +45895,14 @@ O(0) 1.032e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.34 -126.20 -2.86 CH4 + CH4(g) -121.06 -123.92 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.90 -40.05 -3.15 H2 + H2(g) -36.33 -39.48 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.40 -12.29 -2.89 O2 - O[18O](g) -12.10 -14.99 -2.89 O[18O] + O2(g) -10.53 -13.43 -2.89 O2 + O[18O](g) -13.23 -16.13 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -45976,7 +45966,7 @@ Calcite 3.31e-02 R(18O) 1.99520e-03 -4.9864 permil R(13C) 1.11438e-02 -3.2539 permil - R(14C) 1.04529e-13 8.8894 pmc + R(14C) 1.04529e-13 8.8893 pmc R(18O) H2O(l) 1.99520e-03 -4.9879 permil R(18O) OH- 1.92123e-03 -41.875 permil R(18O) H3O+ 2.04133e-03 18.02 permil @@ -45986,7 +45976,7 @@ Calcite 3.31e-02 R(18O) CO2(aq) 2.07916e-03 36.886 permil R(18O) HCO3- 1.99520e-03 -4.9879 permil R(13C) HCO3- 1.11603e-02 -1.7777 permil - R(14C) HCO3- 1.04838e-13 8.9156 pmc + R(14C) HCO3- 1.04837e-13 8.9156 pmc R(18O) CO3-2 1.99520e-03 -4.9879 permil R(13C) CO3-2 1.11443e-02 -3.2102 permil R(14C) CO3-2 1.04537e-13 8.89 pmc @@ -46002,12 +45992,12 @@ Calcite 3.31e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2439e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2684e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.3323e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.584e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7292e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -46027,14 +46017,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.458 Adjusted to redox equilibrium + pe = 11.152 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -46049,7 +46039,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.178 -126.177 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.729 -123.728 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -46078,13 +46068,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.085e-08 6.095e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.043 -40.042 0.001 (0) -O(0) 1.010e-12 - O2 5.031e-13 5.039e-13 -12.298 -12.298 0.001 (0) - O[18O] 2.007e-15 2.011e-15 -14.697 -14.697 0.001 (0) +H(0) 7.422e-40 + H2 3.711e-40 3.717e-40 -39.430 -39.430 0.001 (0) +O(0) 6.023e-14 + O2 3.000e-14 3.005e-14 -13.523 -13.522 0.001 (0) + O[18O] 1.197e-16 1.199e-16 -15.922 -15.921 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.134 -128.133 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.685 -125.684 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.249e-05 4.802e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -46104,7 +46094,7 @@ O(0) 1.010e-12 H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.165 -139.164 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.716 -136.715 0.001 (0) [14C](4) 6.104e-16 H[14C]O3- 4.931e-16 4.511e-16 -15.307 -15.346 -0.039 (0) [14C]O2 1.026e-16 1.028e-16 -15.989 -15.988 0.001 (0) @@ -46132,23 +46122,23 @@ O(0) 1.010e-12 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.011e-15 - O[18O] 2.007e-15 2.011e-15 -14.697 -14.697 0.001 (0) - [18O]2 2.003e-18 2.006e-18 -17.698 -17.698 0.001 (0) +[18O](0) 1.199e-16 + O[18O] 1.197e-16 1.199e-16 -15.922 -15.921 0.001 (0) + [18O]2 1.194e-19 1.196e-19 -18.923 -18.922 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.27 -128.13 -2.86 [13C]H4 + [13C]H4(g) -122.82 -125.68 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.88 -21.39 -1.50 [14C][18O]2 - [14C]H4(g) -136.30 -139.16 -2.86 [14C]H4 + [14C]H4(g) -133.86 -136.72 -2.86 [14C]H4 [14C]O2(g) -14.52 -15.99 -1.47 [14C]O2 [14C]O[18O](g) -16.90 -18.69 -1.79 [14C]O[18O] - [18O]2(g) -15.41 -17.70 -2.29 [18O]2 + [18O]2(g) -16.63 -18.92 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -46162,14 +46152,14 @@ O(0) 1.010e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.32 -126.18 -2.86 CH4 + CH4(g) -120.87 -123.73 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.89 -40.04 -3.15 H2 + H2(g) -36.28 -39.43 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.41 -12.30 -2.89 O2 - O[18O](g) -12.11 -15.00 -2.89 O[18O] + O2(g) -10.63 -13.52 -2.89 O2 + O[18O](g) -13.33 -16.22 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -46233,13 +46223,13 @@ Calcite 3.36e-02 R(18O) 1.99520e-03 -4.9862 permil R(13C) 1.11441e-02 -3.2302 permil - R(14C) 1.03202e-13 8.7766 pmc + R(14C) 1.03202e-13 8.7765 pmc R(18O) H2O(l) 1.99520e-03 -4.9878 permil R(18O) OH- 1.92123e-03 -41.875 permil R(18O) H3O+ 2.04133e-03 18.02 permil R(18O) O2(aq) 1.99520e-03 -4.9878 permil R(13C) CO2(aq) 1.10643e-02 -10.364 permil - R(14C) CO2(aq) 1.01730e-13 8.6513 pmc + R(14C) CO2(aq) 1.01729e-13 8.6513 pmc R(18O) CO2(aq) 2.07916e-03 36.886 permil R(18O) HCO3- 1.99520e-03 -4.9878 permil R(13C) HCO3- 1.11606e-02 -1.754 permil @@ -46259,12 +46249,12 @@ Calcite 3.36e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2723e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2308e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.4578e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.605e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -46284,14 +46274,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.458 Adjusted to redox equilibrium + pe = 11.130 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -46306,7 +46296,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.174 -126.174 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.550 -123.550 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -46335,13 +46325,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.042 -40.041 0.001 (0) -O(0) 1.006e-12 - O2 5.010e-13 5.018e-13 -12.300 -12.299 0.001 (0) - O[18O] 1.999e-15 2.003e-15 -14.699 -14.698 0.001 (0) +H(0) 8.226e-40 + H2 4.113e-40 4.120e-40 -39.386 -39.385 0.001 (0) +O(0) 4.904e-14 + O2 2.442e-14 2.446e-14 -13.612 -13.612 0.001 (0) + O[18O] 9.745e-17 9.761e-17 -16.011 -16.011 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.130 -128.130 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.506 -125.506 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.249e-05 4.803e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -46361,7 +46351,7 @@ O(0) 1.006e-12 H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.167 -139.166 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.543 -136.542 0.001 (0) [14C](4) 6.027e-16 H[14C]O3- 4.868e-16 4.454e-16 -15.313 -15.351 -0.039 (0) [14C]O2 1.013e-16 1.015e-16 -15.994 -15.994 0.001 (0) @@ -46389,23 +46379,23 @@ O(0) 1.006e-12 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.003e-15 - O[18O] 1.999e-15 2.003e-15 -14.699 -14.698 0.001 (0) - [18O]2 1.994e-18 1.998e-18 -17.700 -17.699 0.001 (0) +[18O](0) 9.764e-17 + O[18O] 9.745e-17 9.761e-17 -16.011 -16.011 0.001 (0) + [18O]2 9.721e-20 9.737e-20 -19.012 -19.012 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.27 -128.13 -2.86 [13C]H4 + [13C]H4(g) -122.65 -125.51 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.89 -21.39 -1.50 [14C][18O]2 - [14C]H4(g) -136.31 -139.17 -2.86 [14C]H4 + [14C]H4(g) -133.68 -136.54 -2.86 [14C]H4 [14C]O2(g) -14.52 -15.99 -1.47 [14C]O2 [14C]O[18O](g) -16.91 -18.69 -1.79 [14C]O[18O] - [18O]2(g) -15.41 -17.70 -2.29 [18O]2 + [18O]2(g) -16.72 -19.01 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -46419,14 +46409,14 @@ O(0) 1.006e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.31 -126.17 -2.86 CH4 + CH4(g) -120.69 -123.55 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.89 -40.04 -3.15 H2 + H2(g) -36.24 -39.39 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.41 -12.30 -2.89 O2 - O[18O](g) -12.11 -15.00 -2.89 O[18O] + O2(g) -10.72 -13.61 -2.89 O2 + O[18O](g) -13.42 -16.31 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -46503,10 +46493,10 @@ Calcite 3.41e-02 R(14C) HCO3- 1.02210e-13 8.6922 pmc R(18O) CO3-2 1.99520e-03 -4.9876 permil R(13C) CO3-2 1.11448e-02 -3.1635 permil - R(14C) CO3-2 1.01917e-13 8.6673 pmc + R(14C) CO3-2 1.01917e-13 8.6672 pmc R(18O) Calcite 2.05264e-03 23.659 permil R(13C) Calcite 1.11830e-02 0.24636 permil - R(14C) Calcite 1.02616e-13 8.7267 pmc + R(14C) Calcite 1.02616e-13 8.7266 pmc --------------------------------Isotope Alphas--------------------------------- @@ -46516,12 +46506,12 @@ Calcite 3.41e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2292e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2519e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.648e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5193e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -46541,14 +46531,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.458 Adjusted to redox equilibrium + pe = 11.123 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -46563,7 +46553,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.172 -126.171 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.497 -123.496 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -46592,13 +46582,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.041 -40.041 0.001 (0) -O(0) 1.003e-12 - O2 4.996e-13 5.005e-13 -12.301 -12.301 0.001 (0) - O[18O] 1.994e-15 1.997e-15 -14.700 -14.700 0.001 (0) +H(0) 8.482e-40 + H2 4.241e-40 4.248e-40 -39.373 -39.372 0.001 (0) +O(0) 4.612e-14 + O2 2.297e-14 2.301e-14 -13.639 -13.638 0.001 (0) + O[18O] 9.166e-17 9.181e-17 -16.038 -16.037 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.128 -128.127 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.453 -125.452 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -46618,7 +46608,7 @@ O(0) 1.003e-12 H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.170 -139.169 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.495 -136.494 0.001 (0) [14C](4) 5.951e-16 H[14C]O3- 4.807e-16 4.398e-16 -15.318 -15.357 -0.039 (0) [14C]O2 1.000e-16 1.002e-16 -16.000 -15.999 0.001 (0) @@ -46646,23 +46636,23 @@ O(0) 1.003e-12 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.998e-15 - O[18O] 1.994e-15 1.997e-15 -14.700 -14.700 0.001 (0) - [18O]2 1.989e-18 1.992e-18 -17.701 -17.701 0.001 (0) +[18O](0) 9.184e-17 + O[18O] 9.166e-17 9.181e-17 -16.038 -16.037 0.001 (0) + [18O]2 9.144e-20 9.159e-20 -19.039 -19.038 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.27 -128.13 -2.86 [13C]H4 + [13C]H4(g) -122.59 -125.45 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.90 -21.40 -1.50 [14C][18O]2 - [14C]H4(g) -136.31 -139.17 -2.86 [14C]H4 + [14C]H4(g) -133.63 -136.49 -2.86 [14C]H4 [14C]O2(g) -14.53 -16.00 -1.47 [14C]O2 [14C]O[18O](g) -16.91 -18.70 -1.79 [14C]O[18O] - [18O]2(g) -15.41 -17.70 -2.29 [18O]2 + [18O]2(g) -16.75 -19.04 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -46676,14 +46666,14 @@ O(0) 1.003e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.31 -126.17 -2.86 CH4 + CH4(g) -120.64 -123.50 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.89 -40.04 -3.15 H2 + H2(g) -36.22 -39.37 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.41 -12.30 -2.89 O2 - O[18O](g) -12.11 -15.00 -2.89 O[18O] + O2(g) -10.75 -13.64 -2.89 O2 + O[18O](g) -13.45 -16.34 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -46753,7 +46743,7 @@ Calcite 3.46e-02 R(18O) H3O+ 2.04133e-03 18.02 permil R(18O) O2(aq) 1.99520e-03 -4.9875 permil R(13C) CO2(aq) 1.10648e-02 -10.318 permil - R(14C) CO2(aq) 9.92117e-14 8.4372 pmc + R(14C) CO2(aq) 9.92116e-14 8.4372 pmc R(18O) CO2(aq) 2.07917e-03 36.887 permil R(18O) HCO3- 1.99520e-03 -4.9875 permil R(13C) HCO3- 1.11611e-02 -1.7083 permil @@ -46773,12 +46763,12 @@ Calcite 3.46e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2466e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2695e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7233e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6634e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -46798,14 +46788,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.461 Adjusted to redox equilibrium + pe = 11.170 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -46820,7 +46810,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.199 -126.198 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.873 -123.872 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -46849,13 +46839,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.048 -40.047 0.001 (0) -O(0) 1.035e-12 - O2 5.155e-13 5.163e-13 -12.288 -12.287 0.001 (0) - O[18O] 2.057e-15 2.060e-15 -14.687 -14.686 0.001 (0) +H(0) 6.833e-40 + H2 3.416e-40 3.422e-40 -39.466 -39.466 0.001 (0) +O(0) 7.108e-14 + O2 3.540e-14 3.545e-14 -13.451 -13.450 0.001 (0) + O[18O] 1.412e-16 1.415e-16 -15.850 -15.849 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.155 -128.154 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.829 -125.828 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -46875,7 +46865,7 @@ O(0) 1.035e-12 H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.203 -139.202 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.876 -136.875 0.001 (0) [14C](4) 5.878e-16 H[14C]O3- 4.748e-16 4.344e-16 -15.323 -15.362 -0.039 (0) [14C]O2 9.880e-17 9.896e-17 -16.005 -16.005 0.001 (0) @@ -46903,23 +46893,23 @@ O(0) 1.035e-12 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.061e-15 - O[18O] 2.057e-15 2.060e-15 -14.687 -14.686 0.001 (0) - [18O]2 2.052e-18 2.055e-18 -17.688 -17.687 0.001 (0) +[18O](0) 1.415e-16 + O[18O] 1.412e-16 1.415e-16 -15.850 -15.849 0.001 (0) + [18O]2 1.409e-19 1.411e-19 -18.851 -18.850 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.29 -128.15 -2.86 [13C]H4 + [13C]H4(g) -122.97 -125.83 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.90 -21.40 -1.50 [14C][18O]2 - [14C]H4(g) -136.34 -139.20 -2.86 [14C]H4 + [14C]H4(g) -134.02 -136.88 -2.86 [14C]H4 [14C]O2(g) -14.54 -16.00 -1.47 [14C]O2 [14C]O[18O](g) -16.92 -18.70 -1.79 [14C]O[18O] - [18O]2(g) -15.40 -17.69 -2.29 [18O]2 + [18O]2(g) -16.56 -18.85 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -46933,14 +46923,14 @@ O(0) 1.035e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.34 -126.20 -2.86 CH4 + CH4(g) -121.01 -123.87 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.90 -40.05 -3.15 H2 + H2(g) -36.32 -39.47 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.39 -12.29 -2.89 O2 - O[18O](g) -12.09 -14.99 -2.89 O[18O] + O2(g) -10.56 -13.45 -2.89 O2 + O[18O](g) -13.26 -16.15 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -47004,20 +46994,20 @@ Calcite 3.51e-02 R(18O) 1.99520e-03 -4.9858 permil R(13C) 1.11448e-02 -3.1627 permil - R(14C) 9.94179e-14 8.4547 pmc + R(14C) 9.94178e-14 8.4547 pmc R(18O) H2O(l) 1.99520e-03 -4.9873 permil R(18O) OH- 1.92123e-03 -41.875 permil R(18O) H3O+ 2.04133e-03 18.021 permil R(18O) O2(aq) 1.99520e-03 -4.9873 permil R(13C) CO2(aq) 1.10651e-02 -10.297 permil - R(14C) CO2(aq) 9.79990e-14 8.334 pmc + R(14C) CO2(aq) 9.79989e-14 8.334 pmc R(18O) CO2(aq) 2.07917e-03 36.887 permil R(18O) HCO3- 1.99520e-03 -4.9873 permil R(13C) HCO3- 1.11613e-02 -1.6863 permil - R(14C) HCO3- 9.97116e-14 8.4797 pmc + R(14C) HCO3- 9.97115e-14 8.4797 pmc R(18O) CO3-2 1.99520e-03 -4.9873 permil R(13C) CO3-2 1.11453e-02 -3.119 permil - R(14C) CO3-2 9.94256e-14 8.4554 pmc + R(14C) CO3-2 9.94255e-14 8.4554 pmc R(18O) Calcite 2.05264e-03 23.659 permil R(13C) Calcite 1.11835e-02 0.29097 permil R(14C) Calcite 1.00107e-13 8.5133 pmc @@ -47030,12 +47020,12 @@ Calcite 3.51e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2934e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2508e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.5503e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6028e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6122e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -47055,14 +47045,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.457 Adjusted to redox equilibrium + pe = 11.114 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -47077,7 +47067,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.169 -126.168 0.001 (0) + CH4 0.000e+00 0.000e+00 -123.428 -123.427 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -47106,13 +47096,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.040 -40.040 0.001 (0) -O(0) 9.995e-13 - O2 4.978e-13 4.986e-13 -12.303 -12.302 0.001 (0) - O[18O] 1.986e-15 1.990e-15 -14.702 -14.701 0.001 (0) +H(0) 8.828e-40 + H2 4.414e-40 4.421e-40 -39.355 -39.354 0.001 (0) +O(0) 4.258e-14 + O2 2.121e-14 2.124e-14 -13.674 -13.673 0.001 (0) + O[18O] 8.462e-17 8.476e-17 -16.073 -16.072 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.125 -128.124 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -125.384 -125.383 0.001 (0) [13C](4) 6.508e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.319 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -47132,7 +47122,7 @@ O(0) 9.995e-13 H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.178 -139.177 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -136.436 -136.436 0.001 (0) [14C](4) 5.806e-16 H[14C]O3- 4.690e-16 4.291e-16 -15.329 -15.367 -0.039 (0) [14C]O2 9.759e-17 9.775e-17 -16.011 -16.010 0.001 (0) @@ -47160,23 +47150,23 @@ O(0) 9.995e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.990e-15 - O[18O] 1.986e-15 1.990e-15 -14.702 -14.701 0.001 (0) - [18O]2 1.981e-18 1.985e-18 -17.703 -17.702 0.001 (0) +[18O](0) 8.479e-17 + O[18O] 8.462e-17 8.476e-17 -16.073 -16.072 0.001 (0) + [18O]2 8.441e-20 8.455e-20 -19.074 -19.073 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.26 -128.12 -2.86 [13C]H4 + [13C]H4(g) -122.52 -125.38 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.91 -21.41 -1.50 [14C][18O]2 - [14C]H4(g) -136.32 -139.18 -2.86 [14C]H4 + [14C]H4(g) -133.58 -136.44 -2.86 [14C]H4 [14C]O2(g) -14.54 -16.01 -1.47 [14C]O2 [14C]O[18O](g) -16.92 -18.71 -1.79 [14C]O[18O] - [18O]2(g) -15.41 -17.70 -2.29 [18O]2 + [18O]2(g) -16.78 -19.07 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -47190,14 +47180,14 @@ O(0) 9.995e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.31 -126.17 -2.86 CH4 + CH4(g) -120.57 -123.43 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.89 -40.04 -3.15 H2 + H2(g) -36.20 -39.35 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.41 -12.30 -2.89 O2 - O[18O](g) -12.11 -15.00 -2.89 O[18O] + O2(g) -10.78 -13.67 -2.89 O2 + O[18O](g) -13.48 -16.37 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -47261,23 +47251,23 @@ Calcite 3.56e-02 R(18O) 1.99520e-03 -4.9857 permil R(13C) 1.11451e-02 -3.1413 permil - R(14C) 9.82173e-14 8.3526 pmc + R(14C) 9.82172e-14 8.3526 pmc R(18O) H2O(l) 1.99520e-03 -4.9872 permil R(18O) OH- 1.92123e-03 -41.875 permil R(18O) H3O+ 2.04134e-03 18.021 permil R(18O) O2(aq) 1.99520e-03 -4.9872 permil R(13C) CO2(aq) 1.10653e-02 -10.275 permil - R(14C) CO2(aq) 9.68155e-14 8.2334 pmc + R(14C) CO2(aq) 9.68154e-14 8.2334 pmc R(18O) CO2(aq) 2.07917e-03 36.887 permil R(18O) HCO3- 1.99520e-03 -4.9872 permil R(13C) HCO3- 1.11616e-02 -1.6649 permil - R(14C) HCO3- 9.85074e-14 8.3773 pmc + R(14C) HCO3- 9.85073e-14 8.3773 pmc R(18O) CO3-2 1.99520e-03 -4.9872 permil R(13C) CO3-2 1.11456e-02 -3.0976 permil - R(14C) CO3-2 9.82249e-14 8.3533 pmc + R(14C) CO3-2 9.82248e-14 8.3532 pmc R(18O) Calcite 2.05264e-03 23.659 permil R(13C) Calcite 1.11837e-02 0.31246 permil - R(14C) Calcite 9.88980e-14 8.4105 pmc + R(14C) Calcite 9.88979e-14 8.4105 pmc --------------------------------Isotope Alphas--------------------------------- @@ -47287,12 +47277,12 @@ Calcite 3.56e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2716e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2612e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8134e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.8213e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -47312,14 +47302,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.455 Adjusted to redox equilibrium + pe = 11.048 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -47334,7 +47324,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.152 -126.151 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.895 -122.894 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -47363,13 +47353,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.036 -40.035 0.001 (0) -O(0) 9.800e-13 - O2 4.881e-13 4.889e-13 -12.312 -12.311 0.001 (0) - O[18O] 1.948e-15 1.951e-15 -14.711 -14.710 0.001 (0) +H(0) 1.200e-39 + H2 5.999e-40 6.009e-40 -39.222 -39.221 0.001 (0) +O(0) 2.305e-14 + O2 1.148e-14 1.150e-14 -13.940 -13.939 0.001 (0) + O[18O] 4.581e-17 4.589e-17 -16.339 -16.338 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.108 -128.107 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.851 -124.850 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -47389,7 +47379,7 @@ O(0) 9.800e-13 H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.166 -139.165 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -135.909 -135.908 0.001 (0) [14C](4) 5.736e-16 H[14C]O3- 4.633e-16 4.239e-16 -15.334 -15.373 -0.039 (0) [14C]O2 9.641e-17 9.657e-17 -16.016 -16.015 0.001 (0) @@ -47417,23 +47407,23 @@ O(0) 9.800e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.951e-15 - O[18O] 1.948e-15 1.951e-15 -14.711 -14.710 0.001 (0) - [18O]2 1.943e-18 1.946e-18 -17.712 -17.711 0.001 (0) +[18O](0) 4.591e-17 + O[18O] 4.581e-17 4.589e-17 -16.339 -16.338 0.001 (0) + [18O]2 4.570e-20 4.578e-20 -19.340 -19.339 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.25 -128.11 -2.86 [13C]H4 + [13C]H4(g) -121.99 -124.85 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.91 -21.42 -1.50 [14C][18O]2 - [14C]H4(g) -136.31 -139.17 -2.86 [14C]H4 + [14C]H4(g) -133.05 -135.91 -2.86 [14C]H4 [14C]O2(g) -14.55 -16.02 -1.47 [14C]O2 [14C]O[18O](g) -16.93 -18.72 -1.79 [14C]O[18O] - [18O]2(g) -15.42 -17.71 -2.29 [18O]2 + [18O]2(g) -17.05 -19.34 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -47447,14 +47437,14 @@ O(0) 9.800e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.29 -126.15 -2.86 CH4 + CH4(g) -120.03 -122.89 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.89 -40.04 -3.15 H2 + H2(g) -36.07 -39.22 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.42 -12.31 -2.89 O2 - O[18O](g) -12.12 -15.01 -2.89 O[18O] + O2(g) -11.05 -13.94 -2.89 O2 + O[18O](g) -13.75 -16.64 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -47518,23 +47508,23 @@ Calcite 3.61e-02 R(18O) 1.99520e-03 -4.9856 permil R(13C) 1.11453e-02 -3.1204 permil - R(14C) 9.70454e-14 8.2529 pmc + R(14C) 9.70453e-14 8.2529 pmc R(18O) H2O(l) 1.99520e-03 -4.9871 permil R(18O) OH- 1.92123e-03 -41.875 permil R(18O) H3O+ 2.04134e-03 18.021 permil R(18O) O2(aq) 1.99520e-03 -4.9871 permil R(13C) CO2(aq) 1.10656e-02 -10.255 permil - R(14C) CO2(aq) 9.56603e-14 8.1352 pmc + R(14C) CO2(aq) 9.56602e-14 8.1352 pmc R(18O) CO2(aq) 2.07917e-03 36.887 permil R(18O) HCO3- 1.99520e-03 -4.9871 permil R(13C) HCO3- 1.11618e-02 -1.644 permil R(14C) HCO3- 9.73320e-14 8.2773 pmc R(18O) CO3-2 1.99520e-03 -4.9871 permil R(13C) CO3-2 1.11458e-02 -3.0767 permil - R(14C) CO3-2 9.70529e-14 8.2536 pmc + R(14C) CO3-2 9.70528e-14 8.2536 pmc R(18O) Calcite 2.05264e-03 23.659 permil R(13C) Calcite 1.11839e-02 0.33345 permil - R(14C) Calcite 9.77180e-14 8.3101 pmc + R(14C) Calcite 9.77179e-14 8.3101 pmc --------------------------------Isotope Alphas--------------------------------- @@ -47544,12 +47534,12 @@ Calcite 3.61e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2795e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2686e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.6613e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7241e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6632e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -47569,14 +47559,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.454 Adjusted to redox equilibrium + pe = 11.018 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -47591,7 +47581,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.141 -126.140 0.001 (0) + CH4 0.000e+00 0.000e+00 -122.656 -122.656 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -47620,13 +47610,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.033 -40.033 0.001 (0) -O(0) 9.677e-13 - O2 4.819e-13 4.827e-13 -12.317 -12.316 0.001 (0) - O[18O] 1.923e-15 1.926e-15 -14.716 -14.715 0.001 (0) +H(0) 1.376e-39 + H2 6.881e-40 6.892e-40 -39.162 -39.162 0.001 (0) +O(0) 1.752e-14 + O2 8.726e-15 8.741e-15 -14.059 -14.058 0.001 (0) + O[18O] 3.482e-17 3.488e-17 -16.458 -16.457 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.097 -128.096 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -124.612 -124.612 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -47646,7 +47636,7 @@ O(0) 9.677e-13 H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.160 -139.159 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -135.676 -135.675 0.001 (0) [14C](4) 5.667e-16 H[14C]O3- 4.578e-16 4.188e-16 -15.339 -15.378 -0.039 (0) [14C]O2 9.526e-17 9.542e-17 -16.021 -16.020 0.001 (0) @@ -47674,23 +47664,23 @@ O(0) 9.677e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.927e-15 - O[18O] 1.923e-15 1.926e-15 -14.716 -14.715 0.001 (0) - [18O]2 1.918e-18 1.922e-18 -17.717 -17.716 0.001 (0) +[18O](0) 3.489e-17 + O[18O] 3.482e-17 3.488e-17 -16.458 -16.457 0.001 (0) + [18O]2 3.474e-20 3.480e-20 -19.459 -19.458 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.24 -128.10 -2.86 [13C]H4 + [13C]H4(g) -121.75 -124.61 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.92 -21.42 -1.50 [14C][18O]2 - [14C]H4(g) -136.30 -139.16 -2.86 [14C]H4 + [14C]H4(g) -132.81 -135.67 -2.86 [14C]H4 [14C]O2(g) -14.55 -16.02 -1.47 [14C]O2 [14C]O[18O](g) -16.93 -18.72 -1.79 [14C]O[18O] - [18O]2(g) -15.43 -17.72 -2.29 [18O]2 + [18O]2(g) -17.17 -19.46 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -47704,14 +47694,14 @@ O(0) 9.677e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.28 -126.14 -2.86 CH4 + CH4(g) -119.80 -122.66 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.88 -40.03 -3.15 H2 + H2(g) -36.01 -39.16 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.42 -12.32 -2.89 O2 - O[18O](g) -12.12 -15.02 -2.89 O[18O] + O2(g) -11.17 -14.06 -2.89 O2 + O[18O](g) -13.87 -16.76 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -47775,23 +47765,23 @@ Calcite 3.66e-02 R(18O) 1.99520e-03 -4.9854 permil R(13C) 1.11455e-02 -3.1 permil - R(14C) 9.59011e-14 8.1556 pmc + R(14C) 9.59010e-14 8.1556 pmc R(18O) H2O(l) 1.99520e-03 -4.9869 permil R(18O) OH- 1.92123e-03 -41.874 permil R(18O) H3O+ 2.04134e-03 18.021 permil R(18O) O2(aq) 1.99520e-03 -4.9869 permil R(13C) CO2(aq) 1.10658e-02 -10.234 permil - R(14C) CO2(aq) 9.45324e-14 8.0392 pmc + R(14C) CO2(aq) 9.45323e-14 8.0392 pmc R(18O) CO2(aq) 2.07917e-03 36.887 permil R(18O) HCO3- 1.99520e-03 -4.9869 permil R(13C) HCO3- 1.11620e-02 -1.6235 permil - R(14C) HCO3- 9.61844e-14 8.1797 pmc + R(14C) HCO3- 9.61843e-14 8.1797 pmc R(18O) CO3-2 1.99520e-03 -4.9869 permil R(13C) CO3-2 1.11460e-02 -3.0563 permil - R(14C) CO3-2 9.59085e-14 8.1563 pmc + R(14C) CO3-2 9.59084e-14 8.1563 pmc R(18O) Calcite 2.05264e-03 23.66 permil R(13C) Calcite 1.11842e-02 0.35394 permil - R(14C) Calcite 9.65658e-14 8.2122 pmc + R(14C) Calcite 9.65657e-14 8.2122 pmc --------------------------------Isotope Alphas--------------------------------- @@ -47801,12 +47791,12 @@ Calcite 3.66e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2523e-09 0 +Alpha 18O O2(aq)/H2O(l) 1 -2.2421e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.8e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7399e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 @@ -47826,14 +47816,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.451 Adjusted to redox equilibrium + pe = 10.375 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -47848,7 +47838,7 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.121 -126.120 0.001 (0) + CH4 0.000e+00 0.000e+00 -117.513 -117.512 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -47877,13 +47867,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.029 -40.028 0.001 (0) -O(0) 9.460e-13 - O2 4.711e-13 4.719e-13 -12.327 -12.326 0.001 (0) - O[18O] 1.880e-15 1.883e-15 -14.726 -14.725 0.001 (0) +H(0) 2.658e-38 + H2 1.329e-38 1.331e-38 -37.876 -37.876 0.001 (0) +O(0) 4.696e-17 + O2 2.339e-17 2.343e-17 -16.631 -16.630 0.001 (0) + O[18O] 9.332e-20 9.348e-20 -19.030 -19.029 0.001 (0) [13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.077 -128.076 0.001 (0) + [13C]H4 0.000e+00 0.000e+00 -119.469 -119.468 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -47903,7 +47893,7 @@ O(0) 9.460e-13 H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.719 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) [14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.145 -139.145 0.001 (0) + [14C]H4 0.000e+00 0.000e+00 -130.537 -130.536 0.001 (0) [14C](4) 5.601e-16 H[14C]O3- 4.524e-16 4.139e-16 -15.344 -15.383 -0.039 (0) [14C]O2 9.414e-17 9.429e-17 -16.026 -16.026 0.001 (0) @@ -47914,9 +47904,9 @@ O(0) 9.460e-13 Ca[14C]O3 5.237e-19 5.246e-19 -18.281 -18.280 0.001 (0) [14C]O[18O] 3.914e-19 3.921e-19 -18.407 -18.407 0.001 (0) [14C]O3-2 2.687e-19 1.882e-19 -18.571 -18.725 -0.155 (0) - CaH[14C]O2[18O]+ 1.906e-20 1.749e-20 -19.720 -19.757 -0.037 (0) - CaH[14C][18O]O2+ 1.906e-20 1.749e-20 -19.720 -19.757 -0.037 (0) - CaH[14C]O[18O]O+ 1.906e-20 1.749e-20 -19.720 -19.757 -0.037 (0) + CaH[14C]O2[18O]+ 1.906e-20 1.748e-20 -19.720 -19.757 -0.037 (0) + CaH[14C][18O]O2+ 1.906e-20 1.748e-20 -19.720 -19.757 -0.037 (0) + CaH[14C]O[18O]O+ 1.906e-20 1.748e-20 -19.720 -19.757 -0.037 (0) Ca[14C]O2[18O] 3.135e-21 3.140e-21 -20.504 -20.503 0.001 (0) H[14C][18O]2O- 1.801e-21 1.648e-21 -20.745 -20.783 -0.039 (0) H[14C][18O]O[18O]- 1.801e-21 1.648e-21 -20.745 -20.783 -0.039 (0) @@ -47931,23 +47921,23 @@ O(0) 9.460e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.884e-15 - O[18O] 1.880e-15 1.883e-15 -14.726 -14.725 0.001 (0) - [18O]2 1.875e-18 1.879e-18 -17.727 -17.726 0.001 (0) +[18O](0) 9.351e-20 + O[18O] 9.332e-20 9.348e-20 -19.030 -19.029 0.001 (0) + [18O]2 9.310e-23 9.325e-23 -22.031 -22.030 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.22 -128.08 -2.86 [13C]H4 + [13C]H4(g) -116.61 -119.47 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.92 -21.43 -1.50 [14C][18O]2 - [14C]H4(g) -136.28 -139.14 -2.86 [14C]H4 + [14C]H4(g) -127.68 -130.54 -2.86 [14C]H4 [14C]O2(g) -14.56 -16.03 -1.47 [14C]O2 [14C]O[18O](g) -16.94 -18.73 -1.79 [14C]O[18O] - [18O]2(g) -15.44 -17.73 -2.29 [18O]2 + [18O]2(g) -19.74 -22.03 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -47961,14 +47951,14 @@ O(0) 9.460e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.26 -126.12 -2.86 CH4 + CH4(g) -114.65 -117.51 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.88 -40.03 -3.15 H2 + H2(g) -34.73 -37.88 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.43 -12.33 -2.89 O2 - O[18O](g) -12.13 -15.03 -2.89 O[18O] + O2(g) -13.74 -16.63 -2.89 O2 + O[18O](g) -16.44 -19.33 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -48032,23 +48022,24 @@ Calcite 3.71e-02 R(18O) 1.99520e-03 -4.9853 permil R(13C) 1.11458e-02 -3.08 permil - R(14C) 9.47835e-14 8.0606 pmc + R(14C) 9.47834e-14 8.0606 pmc R(18O) H2O(l) 1.99520e-03 -4.9868 permil R(18O) OH- 1.92123e-03 -41.874 permil R(18O) H3O+ 2.04134e-03 18.021 permil - R(18O) O2(aq) 1.99520e-03 -4.9868 permil R(13C) CO2(aq) 1.10660e-02 -10.215 permil - R(14C) CO2(aq) 9.34307e-14 7.9455 pmc + R(14C) CO2(aq) 9.34306e-14 7.9455 pmc R(18O) CO2(aq) 2.07917e-03 36.887 permil R(18O) HCO3- 1.99520e-03 -4.9868 permil R(13C) HCO3- 1.11623e-02 -1.6035 permil - R(14C) HCO3- 9.50635e-14 8.0844 pmc + R(14C) HCO3- 9.50634e-14 8.0844 pmc R(18O) CO3-2 1.99520e-03 -4.9868 permil R(13C) CO3-2 1.11463e-02 -3.0363 permil - R(14C) CO3-2 9.47908e-14 8.0612 pmc + R(14C) CO3-2 9.47907e-14 8.0612 pmc + R(13C) CH4(aq) 1.10660e-02 -10.215 permil + R(14C) CH4(aq) 9.34306e-14 7.9455 pmc R(18O) Calcite 2.05264e-03 23.66 permil R(13C) Calcite 1.11844e-02 0.37395 permil - R(14C) Calcite 9.54404e-14 8.1165 pmc + R(14C) Calcite 9.54403e-14 8.1164 pmc --------------------------------Isotope Alphas--------------------------------- @@ -48058,14 +48049,15 @@ Calcite 3.71e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2558e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7508e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7009e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 5.7732e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -2.4425e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -48083,16 +48075,16 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.451 Adjusted to redox equilibrium + pe = -1.514 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 2 + Iterations = 19 Total H = 1.110126e+02 Total O = 5.540996e+01 @@ -48104,8 +48096,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.117 -126.117 0.001 (0) +C(-4) 3.955e-23 + CH4 3.955e-23 3.961e-23 -22.403 -22.402 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -48134,13 +48126,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.086e-08 6.096e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.028 -40.027 0.001 (0) -O(0) 9.420e-13 - O2 4.691e-13 4.699e-13 -12.329 -12.328 0.001 (0) - O[18O] 1.872e-15 1.875e-15 -14.728 -14.727 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.073 -128.073 0.001 (0) +H(0) 1.592e-14 + H2 7.962e-15 7.975e-15 -14.099 -14.098 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -64.186 -64.185 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.585 -66.584 0.001 (0) +[13C](-4) 4.376e-25 + [13C]H4 4.376e-25 4.384e-25 -24.359 -24.358 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -48159,8 +48151,8 @@ O(0) 9.420e-13 H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.147 -139.146 0.001 (0) +[14C](-4) 3.695e-36 + [14C]H4 3.695e-36 3.701e-36 -35.432 -35.432 0.001 (0) [14C](4) 5.535e-16 H[14C]O3- 4.471e-16 4.091e-16 -15.350 -15.388 -0.039 (0) [14C]O2 9.304e-17 9.319e-17 -16.031 -16.031 0.001 (0) @@ -48188,23 +48180,23 @@ O(0) 9.420e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.876e-15 - O[18O] 1.872e-15 1.875e-15 -14.728 -14.727 0.001 (0) - [18O]2 1.867e-18 1.871e-18 -17.729 -17.728 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -66.585 -66.584 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -69.586 -69.585 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.21 -128.07 -2.86 [13C]H4 + [13C]H4(g) -21.50 -24.36 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.93 -21.43 -1.50 [14C][18O]2 - [14C]H4(g) -136.29 -139.15 -2.86 [14C]H4 + [14C]H4(g) -32.57 -35.43 -2.86 [14C]H4 [14C]O2(g) -14.56 -16.03 -1.47 [14C]O2 [14C]O[18O](g) -16.94 -18.73 -1.79 [14C]O[18O] - [18O]2(g) -15.44 -17.73 -2.29 [18O]2 + [18O]2(g) -67.29 -69.59 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -48218,14 +48210,14 @@ O(0) 9.420e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.26 -126.12 -2.86 CH4 + CH4(g) -19.54 -22.40 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.88 -40.03 -3.15 H2 + H2(g) -10.95 -14.10 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.44 -12.33 -2.89 O2 - O[18O](g) -12.14 -15.03 -2.89 O[18O] + O2(g) -61.29 -64.19 -2.89 O2 + O[18O](g) -63.99 -66.89 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -48289,23 +48281,24 @@ Calcite 3.76e-02 R(18O) 1.99520e-03 -4.9851 permil R(13C) 1.11460e-02 -3.0605 permil - R(14C) 9.36916e-14 7.9677 pmc + R(14C) 9.36915e-14 7.9677 pmc R(18O) H2O(l) 1.99520e-03 -4.9867 permil R(18O) OH- 1.92123e-03 -41.874 permil R(18O) H3O+ 2.04134e-03 18.021 permil - R(18O) O2(aq) 1.99520e-03 -4.9867 permil R(13C) CO2(aq) 1.10662e-02 -10.195 permil - R(14C) CO2(aq) 9.23544e-14 7.854 pmc + R(14C) CO2(aq) 9.23543e-14 7.854 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil R(18O) HCO3- 1.99520e-03 -4.9867 permil R(13C) HCO3- 1.11625e-02 -1.584 permil - R(14C) HCO3- 9.39684e-14 7.9913 pmc + R(14C) HCO3- 9.39683e-14 7.9913 pmc R(18O) CO3-2 1.99520e-03 -4.9867 permil R(13C) CO3-2 1.11465e-02 -3.0168 permil R(14C) CO3-2 9.36988e-14 7.9683 pmc + R(13C) CH4(aq) 1.10662e-02 -10.195 permil + R(14C) CH4(aq) 9.23543e-14 7.854 pmc R(18O) Calcite 2.05264e-03 23.66 permil R(13C) Calcite 1.11846e-02 0.3935 permil - R(14C) Calcite 9.43410e-14 8.023 pmc + R(14C) Calcite 9.43409e-14 8.0229 pmc --------------------------------Isotope Alphas--------------------------------- @@ -48315,14 +48308,15 @@ Calcite 3.76e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2278e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.8842e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7045e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6552e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -3.1086e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.7208e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -48340,14 +48334,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.448 Adjusted to redox equilibrium + pe = -1.969 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -48361,8 +48355,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.095 -126.094 0.001 (0) +C(-4) 1.726e-19 + CH4 1.726e-19 1.729e-19 -18.763 -18.762 0.001 (0) C(4) 5.840e-03 HCO3- 4.704e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -48391,13 +48385,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.022 -40.021 0.001 (0) -O(0) 9.183e-13 - O2 4.573e-13 4.581e-13 -12.340 -12.339 0.001 (0) - O[18O] 1.825e-15 1.828e-15 -14.739 -14.738 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.051 -128.050 0.001 (0) +H(0) 1.294e-13 + H2 6.472e-14 6.482e-14 -13.189 -13.188 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -66.006 -66.005 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.405 -68.404 0.001 (0) +[13C](-4) 1.910e-21 + [13C]H4 1.910e-21 1.914e-21 -20.719 -20.718 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -48416,8 +48410,8 @@ O(0) 9.183e-13 H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.130 -139.129 0.001 (0) +[14C](-4) 1.594e-32 + [14C]H4 1.594e-32 1.597e-32 -31.797 -31.797 0.001 (0) [14C](4) 5.471e-16 H[14C]O3- 4.420e-16 4.044e-16 -15.355 -15.393 -0.039 (0) [14C]O2 9.197e-17 9.212e-17 -16.036 -16.036 0.001 (0) @@ -48445,23 +48439,23 @@ O(0) 9.183e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.829e-15 - O[18O] 1.825e-15 1.828e-15 -14.739 -14.738 0.001 (0) - [18O]2 1.821e-18 1.824e-18 -17.740 -17.739 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -68.405 -68.404 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.406 -71.405 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.19 -128.05 -2.86 [13C]H4 + [13C]H4(g) -17.86 -20.72 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.93 -21.44 -1.50 [14C][18O]2 - [14C]H4(g) -136.27 -139.13 -2.86 [14C]H4 + [14C]H4(g) -28.94 -31.80 -2.86 [14C]H4 [14C]O2(g) -14.57 -16.04 -1.47 [14C]O2 [14C]O[18O](g) -16.95 -18.74 -1.79 [14C]O[18O] - [18O]2(g) -15.45 -17.74 -2.29 [18O]2 + [18O]2(g) -69.11 -71.41 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -48475,14 +48469,14 @@ O(0) 9.183e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.23 -126.09 -2.86 CH4 + CH4(g) -15.90 -18.76 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.87 -40.02 -3.15 H2 + H2(g) -10.04 -13.19 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.45 -12.34 -2.89 O2 - O[18O](g) -12.15 -15.04 -2.89 O[18O] + O2(g) -63.11 -66.01 -2.89 O2 + O[18O](g) -65.81 -68.71 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -48546,23 +48540,24 @@ Calcite 3.81e-02 R(18O) 1.99520e-03 -4.985 permil R(13C) 1.11462e-02 -3.0415 permil - R(14C) 9.26246e-14 7.877 pmc + R(14C) 9.26245e-14 7.877 pmc R(18O) H2O(l) 1.99520e-03 -4.9865 permil R(18O) OH- 1.92123e-03 -41.874 permil R(18O) H3O+ 2.04134e-03 18.021 permil - R(18O) O2(aq) 1.99520e-03 -4.9865 permil R(13C) CO2(aq) 1.10664e-02 -10.176 permil - R(14C) CO2(aq) 9.13027e-14 7.7646 pmc + R(14C) CO2(aq) 9.13026e-14 7.7646 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil R(18O) HCO3- 1.99520e-03 -4.9865 permil R(13C) HCO3- 1.11627e-02 -1.565 permil - R(14C) HCO3- 9.28982e-14 7.9003 pmc + R(14C) HCO3- 9.28981e-14 7.9003 pmc R(18O) CO3-2 1.99520e-03 -4.9865 permil R(13C) CO3-2 1.11467e-02 -2.9978 permil - R(14C) CO3-2 9.26318e-14 7.8776 pmc + R(14C) CO3-2 9.26317e-14 7.8776 pmc + R(13C) CH4(aq) 1.10664e-02 -10.176 permil + R(14C) CH4(aq) 9.13026e-14 7.7646 pmc R(18O) Calcite 2.05264e-03 23.66 permil R(13C) Calcite 1.11848e-02 0.4126 permil - R(14C) Calcite 9.32666e-14 7.9316 pmc + R(14C) Calcite 9.32665e-14 7.9316 pmc --------------------------------Isotope Alphas--------------------------------- @@ -48572,14 +48567,15 @@ Calcite 3.81e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2958e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.1102e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7794e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6611e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 1.4211e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -6.2172e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -48597,14 +48593,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.448 Adjusted to redox equilibrium + pe = -1.866 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -48618,8 +48614,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.100 -126.099 0.001 (0) +C(-4) 2.623e-20 + CH4 2.623e-20 2.628e-20 -19.581 -19.580 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -48648,13 +48644,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.023 -40.022 0.001 (0) -O(0) 9.231e-13 - O2 4.597e-13 4.605e-13 -12.337 -12.337 0.001 (0) - O[18O] 1.835e-15 1.838e-15 -14.736 -14.736 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.056 -128.055 0.001 (0) +H(0) 8.081e-14 + H2 4.041e-14 4.047e-14 -13.394 -13.393 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.597 -65.596 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.996 -67.995 0.001 (0) +[13C](-4) 2.903e-22 + [13C]H4 2.903e-22 2.908e-22 -21.537 -21.536 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.803e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -48673,8 +48669,8 @@ O(0) 9.231e-13 H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.139 -139.139 0.001 (0) +[14C](-4) 2.395e-33 + [14C]H4 2.395e-33 2.399e-33 -32.621 -32.620 0.001 (0) [14C](4) 5.409e-16 H[14C]O3- 4.369e-16 3.997e-16 -15.360 -15.398 -0.039 (0) [14C]O2 9.092e-17 9.107e-17 -16.041 -16.041 0.001 (0) @@ -48702,23 +48698,23 @@ O(0) 9.231e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.838e-15 - O[18O] 1.835e-15 1.838e-15 -14.736 -14.736 0.001 (0) - [18O]2 1.830e-18 1.833e-18 -17.738 -17.737 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -67.996 -67.995 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.997 -70.996 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.20 -128.06 -2.86 [13C]H4 + [13C]H4(g) -18.68 -21.54 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.94 -21.44 -1.50 [14C][18O]2 - [14C]H4(g) -136.28 -139.14 -2.86 [14C]H4 + [14C]H4(g) -29.76 -32.62 -2.86 [14C]H4 [14C]O2(g) -14.57 -16.04 -1.47 [14C]O2 [14C]O[18O](g) -16.95 -18.74 -1.79 [14C]O[18O] - [18O]2(g) -15.45 -17.74 -2.29 [18O]2 + [18O]2(g) -68.71 -71.00 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -48732,14 +48728,14 @@ O(0) 9.231e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.24 -126.10 -2.86 CH4 + CH4(g) -16.72 -19.58 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.87 -40.02 -3.15 H2 + H2(g) -10.24 -13.39 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.44 -12.34 -2.89 O2 - O[18O](g) -12.14 -15.04 -2.89 O[18O] + O2(g) -62.70 -65.60 -2.89 O2 + O[18O](g) -65.40 -68.30 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -48803,23 +48799,24 @@ Calcite 3.86e-02 R(18O) 1.99520e-03 -4.9849 permil R(13C) 1.11464e-02 -3.0229 permil - R(14C) 9.15817e-14 7.7883 pmc + R(14C) 9.15816e-14 7.7883 pmc R(18O) H2O(l) 1.99520e-03 -4.9864 permil R(18O) OH- 1.92123e-03 -41.874 permil R(18O) H3O+ 2.04134e-03 18.022 permil - R(18O) O2(aq) 1.99520e-03 -4.9864 permil R(13C) CO2(aq) 1.10666e-02 -10.158 permil - R(14C) CO2(aq) 9.02746e-14 7.6771 pmc + R(14C) CO2(aq) 9.02745e-14 7.6771 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil R(18O) HCO3- 1.99520e-03 -4.9864 permil R(13C) HCO3- 1.11629e-02 -1.5463 permil - R(14C) HCO3- 9.18522e-14 7.8113 pmc + R(14C) HCO3- 9.18521e-14 7.8113 pmc R(18O) CO3-2 1.99520e-03 -4.9864 permil R(13C) CO3-2 1.11469e-02 -2.9792 permil - R(14C) CO3-2 9.15887e-14 7.7889 pmc + R(14C) CO3-2 9.15886e-14 7.7889 pmc + R(13C) CH4(aq) 1.10666e-02 -10.158 permil + R(14C) CH4(aq) 9.02745e-14 7.6771 pmc R(18O) Calcite 2.05264e-03 23.66 permil R(13C) Calcite 1.11850e-02 0.43128 permil - R(14C) Calcite 9.22164e-14 7.8423 pmc + R(14C) Calcite 9.22163e-14 7.8423 pmc --------------------------------Isotope Alphas--------------------------------- @@ -48829,14 +48826,15 @@ Calcite 3.86e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2342e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.763e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5102e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -9.2149e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 2.8866e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -48854,14 +48852,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.449 Adjusted to redox equilibrium + pe = -1.918 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -48875,8 +48873,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.103 -126.102 0.001 (0) +C(-4) 6.802e-20 + CH4 6.802e-20 6.813e-20 -19.167 -19.167 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -48905,13 +48903,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.024 -40.023 0.001 (0) -O(0) 9.264e-13 - O2 4.614e-13 4.621e-13 -12.336 -12.335 0.001 (0) - O[18O] 1.841e-15 1.844e-15 -14.735 -14.734 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.059 -128.058 0.001 (0) +H(0) 1.025e-13 + H2 5.127e-14 5.136e-14 -13.290 -13.289 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.804 -65.803 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.203 -68.202 0.001 (0) +[13C](-4) 7.527e-22 + [13C]H4 7.527e-22 7.540e-22 -21.123 -21.123 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.250e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -48930,8 +48928,8 @@ O(0) 9.264e-13 H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.147 -139.147 0.001 (0) +[14C](-4) 6.140e-33 + [14C]H4 6.140e-33 6.150e-33 -32.212 -32.211 0.001 (0) [14C](4) 5.348e-16 H[14C]O3- 4.320e-16 3.952e-16 -15.364 -15.403 -0.039 (0) [14C]O2 8.990e-17 9.004e-17 -16.046 -16.046 0.001 (0) @@ -48959,23 +48957,23 @@ O(0) 9.264e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.845e-15 - O[18O] 1.841e-15 1.844e-15 -14.735 -14.734 0.001 (0) - [18O]2 1.837e-18 1.840e-18 -17.736 -17.735 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -68.203 -68.202 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.204 -71.203 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.20 -128.06 -2.86 [13C]H4 + [13C]H4(g) -18.26 -21.12 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.94 -21.45 -1.50 [14C][18O]2 - [14C]H4(g) -136.29 -139.15 -2.86 [14C]H4 + [14C]H4(g) -29.35 -32.21 -2.86 [14C]H4 [14C]O2(g) -14.58 -16.05 -1.47 [14C]O2 [14C]O[18O](g) -16.96 -18.75 -1.79 [14C]O[18O] - [18O]2(g) -15.44 -17.74 -2.29 [18O]2 + [18O]2(g) -68.91 -71.20 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -48989,14 +48987,14 @@ O(0) 9.264e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.24 -126.10 -2.86 CH4 + CH4(g) -16.31 -19.17 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.87 -40.02 -3.15 H2 + H2(g) -10.14 -13.29 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.44 -12.34 -2.89 O2 - O[18O](g) -12.14 -15.04 -2.89 O[18O] + O2(g) -62.91 -65.80 -2.89 O2 + O[18O](g) -65.61 -68.50 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -49060,23 +49058,24 @@ Calcite 3.91e-02 R(18O) 1.99520e-03 -4.9847 permil R(13C) 1.11466e-02 -3.0047 permil - R(14C) 9.05619e-14 7.7016 pmc + R(14C) 9.05618e-14 7.7016 pmc R(18O) H2O(l) 1.99520e-03 -4.9862 permil R(18O) OH- 1.92123e-03 -41.874 permil R(18O) H3O+ 2.04134e-03 18.022 permil - R(18O) O2(aq) 1.99520e-03 -4.9862 permil R(13C) CO2(aq) 1.10668e-02 -10.14 permil - R(14C) CO2(aq) 8.92694e-14 7.5917 pmc + R(14C) CO2(aq) 8.92693e-14 7.5917 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil R(18O) HCO3- 1.99520e-03 -4.9862 permil R(13C) HCO3- 1.11631e-02 -1.5281 permil - R(14C) HCO3- 9.08294e-14 7.7243 pmc + R(14C) HCO3- 9.08293e-14 7.7243 pmc R(18O) CO3-2 1.99520e-03 -4.9862 permil R(13C) CO3-2 1.11471e-02 -2.961 permil - R(14C) CO3-2 9.05689e-14 7.7022 pmc + R(14C) CO3-2 9.05688e-14 7.7022 pmc + R(13C) CH4(aq) 1.10668e-02 -10.14 permil + R(14C) CH4(aq) 8.92693e-14 7.5917 pmc R(18O) Calcite 2.05264e-03 23.66 permil R(13C) Calcite 1.11852e-02 0.44954 permil - R(14C) Calcite 9.11896e-14 7.755 pmc + R(14C) Calcite 9.11895e-14 7.7549 pmc --------------------------------Isotope Alphas--------------------------------- @@ -49086,14 +49085,15 @@ Calcite 3.91e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2394e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.996e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7767e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5924e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 4.885e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.1102e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -49111,14 +49111,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.451 Adjusted to redox equilibrium + pe = -1.800 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -49132,8 +49132,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.123 -126.122 0.001 (0) +C(-4) 7.721e-21 + CH4 7.721e-21 7.734e-21 -20.112 -20.112 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -49162,13 +49162,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.029 -40.028 0.001 (0) -O(0) 9.480e-13 - O2 4.721e-13 4.729e-13 -12.326 -12.325 0.001 (0) - O[18O] 1.884e-15 1.887e-15 -14.725 -14.724 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.079 -128.078 0.001 (0) +H(0) 5.952e-14 + H2 2.976e-14 2.981e-14 -13.526 -13.526 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.331 -65.331 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.730 -67.729 0.001 (0) +[13C](-4) 8.545e-23 + [13C]H4 8.545e-23 8.559e-23 -22.068 -22.068 0.001 (0) [13C](4) 6.509e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -49187,8 +49187,8 @@ O(0) 9.480e-13 H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.172 -139.171 0.001 (0) +[14C](-4) 6.893e-34 + [14C]H4 6.893e-34 6.904e-34 -33.162 -33.161 0.001 (0) [14C](4) 5.289e-16 H[14C]O3- 4.272e-16 3.908e-16 -15.369 -15.408 -0.039 (0) [14C]O2 8.889e-17 8.904e-17 -16.051 -16.050 0.001 (0) @@ -49216,23 +49216,23 @@ O(0) 9.480e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.888e-15 - O[18O] 1.884e-15 1.887e-15 -14.725 -14.724 0.001 (0) - [18O]2 1.879e-18 1.883e-18 -17.726 -17.725 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -67.730 -67.729 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.731 -70.731 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.22 -128.08 -2.86 [13C]H4 + [13C]H4(g) -19.21 -22.07 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.95 -21.45 -1.50 [14C][18O]2 - [14C]H4(g) -136.31 -139.17 -2.86 [14C]H4 + [14C]H4(g) -30.30 -33.16 -2.86 [14C]H4 [14C]O2(g) -14.58 -16.05 -1.47 [14C]O2 [14C]O[18O](g) -16.96 -18.75 -1.79 [14C]O[18O] - [18O]2(g) -15.43 -17.73 -2.29 [18O]2 + [18O]2(g) -68.44 -70.73 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -49246,14 +49246,14 @@ O(0) 9.480e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.26 -126.12 -2.86 CH4 + CH4(g) -17.25 -20.11 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.88 -40.03 -3.15 H2 + H2(g) -10.38 -13.53 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.43 -12.33 -2.89 O2 - O[18O](g) -12.13 -15.03 -2.89 O[18O] + O2(g) -62.44 -65.33 -2.89 O2 + O[18O](g) -65.14 -68.03 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -49317,23 +49317,24 @@ Calcite 3.96e-02 R(18O) 1.99520e-03 -4.9846 permil R(13C) 1.11468e-02 -2.9869 permil - R(14C) 8.95646e-14 7.6168 pmc + R(14C) 8.95645e-14 7.6168 pmc R(18O) H2O(l) 1.99520e-03 -4.9861 permil R(18O) OH- 1.92124e-03 -41.874 permil R(18O) H3O+ 2.04134e-03 18.022 permil - R(18O) O2(aq) 1.99520e-03 -4.9861 permil R(13C) CO2(aq) 1.10670e-02 -10.122 permil - R(14C) CO2(aq) 8.82863e-14 7.5081 pmc + R(14C) CO2(aq) 8.82862e-14 7.5081 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil R(18O) HCO3- 1.99520e-03 -4.9861 permil R(13C) HCO3- 1.11633e-02 -1.5103 permil - R(14C) HCO3- 8.98292e-14 7.6393 pmc + R(14C) HCO3- 8.98291e-14 7.6393 pmc R(18O) CO3-2 1.99520e-03 -4.9861 permil R(13C) CO3-2 1.11473e-02 -2.9432 permil - R(14C) CO3-2 8.95715e-14 7.6174 pmc + R(14C) CO3-2 8.95714e-14 7.6173 pmc + R(13C) CH4(aq) 1.10670e-02 -10.122 permil + R(14C) CH4(aq) 8.82862e-14 7.5081 pmc R(18O) Calcite 2.05264e-03 23.66 permil R(13C) Calcite 1.11854e-02 0.4674 permil - R(14C) Calcite 9.01854e-14 7.6696 pmc + R(14C) Calcite 9.01853e-14 7.6695 pmc --------------------------------Isotope Alphas--------------------------------- @@ -49343,14 +49344,15 @@ Calcite 3.96e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2464e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.774e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6083e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5595e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -9.2149e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -3.3307e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -49368,14 +49370,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.453 Adjusted to redox equilibrium + pe = -1.616 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -49389,8 +49391,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.132 -126.131 0.001 (0) +C(-4) 2.587e-22 + CH4 2.587e-22 2.591e-22 -21.587 -21.587 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -49419,13 +49421,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.031 -40.031 0.001 (0) -O(0) 9.582e-13 - O2 4.772e-13 4.780e-13 -12.321 -12.321 0.001 (0) - O[18O] 1.904e-15 1.907e-15 -14.720 -14.720 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.088 -128.087 0.001 (0) +H(0) 2.547e-14 + H2 1.273e-14 1.275e-14 -13.895 -13.894 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -64.594 -64.593 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -66.993 -66.992 0.001 (0) +[13C](-4) 2.863e-24 + [13C]H4 2.863e-24 2.868e-24 -23.543 -23.542 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -49444,8 +49446,8 @@ O(0) 9.582e-13 H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.186 -139.186 0.001 (0) +[14C](-4) 2.284e-35 + [14C]H4 2.284e-35 2.288e-35 -34.641 -34.641 0.001 (0) [14C](4) 5.230e-16 H[14C]O3- 4.225e-16 3.865e-16 -15.374 -15.413 -0.039 (0) [14C]O2 8.792e-17 8.806e-17 -16.056 -16.055 0.001 (0) @@ -49473,23 +49475,23 @@ O(0) 9.582e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.908e-15 - O[18O] 1.904e-15 1.907e-15 -14.720 -14.720 0.001 (0) - [18O]2 1.900e-18 1.903e-18 -17.721 -17.721 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -66.993 -66.992 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -69.994 -69.993 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.23 -128.09 -2.86 [13C]H4 + [13C]H4(g) -20.68 -23.54 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.95 -21.46 -1.50 [14C][18O]2 - [14C]H4(g) -136.33 -139.19 -2.86 [14C]H4 + [14C]H4(g) -31.78 -34.64 -2.86 [14C]H4 [14C]O2(g) -14.59 -16.06 -1.47 [14C]O2 [14C]O[18O](g) -16.97 -18.76 -1.79 [14C]O[18O] - [18O]2(g) -15.43 -17.72 -2.29 [18O]2 + [18O]2(g) -67.70 -69.99 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -49503,14 +49505,14 @@ O(0) 9.582e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.27 -126.13 -2.86 CH4 + CH4(g) -18.73 -21.59 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.88 -40.03 -3.15 H2 + H2(g) -10.74 -13.89 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.43 -12.32 -2.89 O2 - O[18O](g) -12.13 -15.02 -2.89 O[18O] + O2(g) -61.70 -64.59 -2.89 O2 + O[18O](g) -64.40 -67.29 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -49574,20 +49576,21 @@ Calcite 4.01e-02 R(18O) 1.99521e-03 -4.9844 permil R(13C) 1.11470e-02 -2.9695 permil - R(14C) 8.85891e-14 7.5338 pmc + R(14C) 8.85890e-14 7.5338 pmc R(18O) H2O(l) 1.99520e-03 -4.986 permil R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.022 permil - R(18O) O2(aq) 1.99520e-03 -4.986 permil R(13C) CO2(aq) 1.10672e-02 -10.105 permil - R(14C) CO2(aq) 8.73247e-14 7.4263 pmc + R(14C) CO2(aq) 8.73246e-14 7.4263 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil R(18O) HCO3- 1.99520e-03 -4.986 permil R(13C) HCO3- 1.11635e-02 -1.4928 permil - R(14C) HCO3- 8.88507e-14 7.5561 pmc + R(14C) HCO3- 8.88506e-14 7.556 pmc R(18O) CO3-2 1.99520e-03 -4.986 permil R(13C) CO3-2 1.11475e-02 -2.9258 permil - R(14C) CO3-2 8.85959e-14 7.5344 pmc + R(14C) CO3-2 8.85958e-14 7.5344 pmc + R(13C) CH4(aq) 1.10672e-02 -10.105 permil + R(14C) CH4(aq) 8.73246e-14 7.4263 pmc R(18O) Calcite 2.05264e-03 23.661 permil R(13C) Calcite 1.11856e-02 0.48487 permil R(14C) Calcite 8.92030e-14 7.586 pmc @@ -49600,14 +49603,15 @@ Calcite 4.01e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2569e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 1.1102e-12 0 +Alpha 18O HCO3-/H2O(l) 1 6.6613e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6513e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.605e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 5.5511e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 7.3275e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -49625,14 +49629,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.448 Adjusted to redox equilibrium + pe = -1.898 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -49646,8 +49650,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.097 -126.096 0.001 (0) +C(-4) 4.709e-20 + CH4 4.709e-20 4.717e-20 -19.327 -19.326 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -49676,13 +49680,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.022 -40.022 0.001 (0) -O(0) 9.198e-13 - O2 4.581e-13 4.588e-13 -12.339 -12.338 0.001 (0) - O[18O] 1.828e-15 1.831e-15 -14.738 -14.737 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.053 -128.052 0.001 (0) +H(0) 9.354e-14 + H2 4.677e-14 4.685e-14 -13.330 -13.329 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.724 -65.723 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.123 -68.122 0.001 (0) +[13C](-4) 5.211e-22 + [13C]H4 5.211e-22 5.220e-22 -21.283 -21.282 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -49701,8 +49705,8 @@ O(0) 9.198e-13 H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.155 -139.155 0.001 (0) +[14C](-4) 4.112e-33 + [14C]H4 4.112e-33 4.119e-33 -32.386 -32.385 0.001 (0) [14C](4) 5.173e-16 H[14C]O3- 4.179e-16 3.823e-16 -15.379 -15.418 -0.039 (0) [14C]O2 8.696e-17 8.710e-17 -16.061 -16.060 0.001 (0) @@ -49730,23 +49734,23 @@ O(0) 9.198e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.832e-15 - O[18O] 1.828e-15 1.831e-15 -14.738 -14.737 0.001 (0) - [18O]2 1.824e-18 1.827e-18 -17.739 -17.738 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -68.123 -68.122 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.124 -71.123 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.19 -128.05 -2.86 [13C]H4 + [13C]H4(g) -18.42 -21.28 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.96 -21.46 -1.50 [14C][18O]2 - [14C]H4(g) -136.29 -139.15 -2.86 [14C]H4 + [14C]H4(g) -29.53 -32.39 -2.86 [14C]H4 [14C]O2(g) -14.59 -16.06 -1.47 [14C]O2 [14C]O[18O](g) -16.97 -18.76 -1.79 [14C]O[18O] - [18O]2(g) -15.45 -17.74 -2.29 [18O]2 + [18O]2(g) -68.83 -71.12 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -49760,14 +49764,14 @@ O(0) 9.198e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.24 -126.10 -2.86 CH4 + CH4(g) -16.47 -19.33 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.87 -40.02 -3.15 H2 + H2(g) -10.18 -13.33 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.45 -12.34 -2.89 O2 - O[18O](g) -12.15 -15.04 -2.89 O[18O] + O2(g) -62.83 -65.72 -2.89 O2 + O[18O](g) -65.53 -68.42 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -49831,23 +49835,24 @@ Calcite 4.06e-02 R(18O) 1.99521e-03 -4.9843 permil R(13C) 1.11472e-02 -2.9524 permil - R(14C) 8.76345e-14 7.4526 pmc + R(14C) 8.76344e-14 7.4526 pmc R(18O) H2O(l) 1.99520e-03 -4.9858 permil R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.022 permil - R(18O) O2(aq) 1.99520e-03 -4.9858 permil R(13C) CO2(aq) 1.10674e-02 -10.088 permil - R(14C) CO2(aq) 8.63838e-14 7.3463 pmc + R(14C) CO2(aq) 8.63837e-14 7.3463 pmc R(18O) CO2(aq) 2.07917e-03 36.888 permil R(18O) HCO3- 1.99520e-03 -4.9858 permil R(13C) HCO3- 1.11637e-02 -1.4758 permil - R(14C) HCO3- 8.78934e-14 7.4746 pmc + R(14C) HCO3- 8.78933e-14 7.4746 pmc R(18O) CO3-2 1.99520e-03 -4.9858 permil R(13C) CO3-2 1.11477e-02 -2.9087 permil - R(14C) CO3-2 8.76413e-14 7.4532 pmc + R(14C) CO3-2 8.76412e-14 7.4532 pmc + R(13C) CH4(aq) 1.10674e-02 -10.088 permil + R(14C) CH4(aq) 8.63837e-14 7.3463 pmc R(18O) Calcite 2.05264e-03 23.661 permil R(13C) Calcite 1.11858e-02 0.50196 permil - R(14C) Calcite 8.82419e-14 7.5043 pmc + R(14C) Calcite 8.82418e-14 7.5043 pmc --------------------------------Isotope Alphas--------------------------------- @@ -49857,14 +49862,15 @@ Calcite 4.06e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2373e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6954e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.715e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 8.8818e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 2.7534e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -49882,14 +49888,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.449 Adjusted to redox equilibrium + pe = -1.895 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -49903,8 +49909,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.101 -126.100 0.001 (0) +C(-4) 4.453e-20 + CH4 4.453e-20 4.460e-20 -19.351 -19.351 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -49933,13 +49939,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.023 -40.023 0.001 (0) -O(0) 9.243e-13 - O2 4.603e-13 4.611e-13 -12.337 -12.336 0.001 (0) - O[18O] 1.837e-15 1.840e-15 -14.736 -14.735 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.057 -128.056 0.001 (0) +H(0) 9.224e-14 + H2 4.612e-14 4.620e-14 -13.336 -13.335 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.712 -65.711 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.111 -68.110 0.001 (0) +[13C](-4) 4.928e-22 + [13C]H4 4.928e-22 4.936e-22 -21.307 -21.307 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -49958,8 +49964,8 @@ O(0) 9.243e-13 H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.164 -139.164 0.001 (0) +[14C](-4) 3.847e-33 + [14C]H4 3.847e-33 3.853e-33 -32.415 -32.414 0.001 (0) [14C](4) 5.118e-16 H[14C]O3- 4.134e-16 3.782e-16 -15.384 -15.422 -0.039 (0) [14C]O2 8.602e-17 8.616e-17 -16.065 -16.065 0.001 (0) @@ -49987,23 +49993,23 @@ O(0) 9.243e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.841e-15 - O[18O] 1.837e-15 1.840e-15 -14.736 -14.735 0.001 (0) - [18O]2 1.833e-18 1.836e-18 -17.737 -17.736 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -68.111 -68.110 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.112 -71.111 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.20 -128.06 -2.86 [13C]H4 + [13C]H4(g) -18.45 -21.31 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.96 -21.46 -1.50 [14C][18O]2 - [14C]H4(g) -136.30 -139.16 -2.86 [14C]H4 + [14C]H4(g) -29.55 -32.41 -2.86 [14C]H4 [14C]O2(g) -14.60 -16.06 -1.47 [14C]O2 [14C]O[18O](g) -16.98 -18.76 -1.79 [14C]O[18O] - [18O]2(g) -15.45 -17.74 -2.29 [18O]2 + [18O]2(g) -68.82 -71.11 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -50017,14 +50023,14 @@ O(0) 9.243e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.24 -126.10 -2.86 CH4 + CH4(g) -16.49 -19.35 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.87 -40.02 -3.15 H2 + H2(g) -10.19 -13.34 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.44 -12.34 -2.89 O2 - O[18O](g) -12.14 -15.04 -2.89 O[18O] + O2(g) -62.82 -65.71 -2.89 O2 + O[18O](g) -65.52 -68.41 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -50092,19 +50098,20 @@ Calcite 4.11e-02 R(18O) H2O(l) 1.99520e-03 -4.9857 permil R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.022 permil - R(18O) O2(aq) 1.99520e-03 -4.9857 permil R(13C) CO2(aq) 1.10676e-02 -10.071 permil - R(14C) CO2(aq) 8.54629e-14 7.2679 pmc + R(14C) CO2(aq) 8.54628e-14 7.2679 pmc R(18O) CO2(aq) 2.07917e-03 36.889 permil R(18O) HCO3- 1.99520e-03 -4.9857 permil R(13C) HCO3- 1.11639e-02 -1.4591 permil - R(14C) HCO3- 8.69564e-14 7.395 pmc + R(14C) HCO3- 8.69563e-14 7.395 pmc R(18O) CO3-2 1.99520e-03 -4.9857 permil R(13C) CO3-2 1.11479e-02 -2.8921 permil - R(14C) CO3-2 8.67070e-14 7.3738 pmc + R(14C) CO3-2 8.67069e-14 7.3737 pmc + R(13C) CH4(aq) 1.10676e-02 -10.071 permil + R(14C) CH4(aq) 8.54628e-14 7.2679 pmc R(18O) Calcite 2.05264e-03 23.661 permil R(13C) Calcite 1.11860e-02 0.51869 permil - R(14C) Calcite 8.73012e-14 7.4243 pmc + R(14C) Calcite 8.73011e-14 7.4243 pmc --------------------------------Isotope Alphas--------------------------------- @@ -50114,14 +50121,15 @@ Calcite 4.11e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2545e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 0 0 +Alpha 18O HCO3-/H2O(l) 1 -7.9936e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.5259e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6798e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -8.1046e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 3.7748e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -50139,14 +50147,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.447 Adjusted to redox equilibrium + pe = -1.879 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -50160,8 +50168,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.091 -126.090 0.001 (0) +C(-4) 3.322e-20 + CH4 3.322e-20 3.327e-20 -19.479 -19.478 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -50190,13 +50198,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.021 -40.020 0.001 (0) -O(0) 9.134e-13 - O2 4.549e-13 4.556e-13 -12.342 -12.341 0.001 (0) - O[18O] 1.815e-15 1.818e-15 -14.741 -14.740 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.046 -128.046 0.001 (0) +H(0) 8.572e-14 + H2 4.286e-14 4.293e-14 -13.368 -13.367 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.648 -65.647 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.047 -68.046 0.001 (0) +[13C](-4) 3.676e-22 + [13C]H4 3.676e-22 3.682e-22 -21.435 -21.434 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -50215,8 +50223,8 @@ O(0) 9.134e-13 H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.159 -139.158 0.001 (0) +[14C](-4) 2.839e-33 + [14C]H4 2.839e-33 2.843e-33 -32.547 -32.546 0.001 (0) [14C](4) 5.063e-16 H[14C]O3- 4.090e-16 3.742e-16 -15.388 -15.427 -0.039 (0) [14C]O2 8.510e-17 8.524e-17 -16.070 -16.069 0.001 (0) @@ -50226,7 +50234,7 @@ O(0) 9.134e-13 H[14C]O2[18O]- 8.160e-19 7.466e-19 -18.088 -18.127 -0.039 (0) Ca[14C]O3 4.735e-19 4.742e-19 -18.325 -18.324 0.001 (0) [14C]O[18O] 3.539e-19 3.545e-19 -18.451 -18.450 0.001 (0) - [14C]O3-2 2.429e-19 1.702e-19 -18.615 -18.769 -0.155 (0) + [14C]O3-2 2.429e-19 1.701e-19 -18.615 -18.769 -0.155 (0) CaH[14C]O2[18O]+ 1.723e-20 1.581e-20 -19.764 -19.801 -0.037 (0) CaH[14C][18O]O2+ 1.723e-20 1.581e-20 -19.764 -19.801 -0.037 (0) CaH[14C]O[18O]O+ 1.723e-20 1.581e-20 -19.764 -19.801 -0.037 (0) @@ -50244,23 +50252,23 @@ O(0) 9.134e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.819e-15 - O[18O] 1.815e-15 1.818e-15 -14.741 -14.740 0.001 (0) - [18O]2 1.811e-18 1.814e-18 -17.742 -17.741 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -68.047 -68.046 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.048 -71.047 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.19 -128.05 -2.86 [13C]H4 + [13C]H4(g) -18.57 -21.43 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.97 -21.47 -1.50 [14C][18O]2 - [14C]H4(g) -136.30 -139.16 -2.86 [14C]H4 + [14C]H4(g) -29.69 -32.55 -2.86 [14C]H4 [14C]O2(g) -14.60 -16.07 -1.47 [14C]O2 [14C]O[18O](g) -16.98 -18.77 -1.79 [14C]O[18O] - [18O]2(g) -15.45 -17.74 -2.29 [18O]2 + [18O]2(g) -68.76 -71.05 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -50274,14 +50282,14 @@ O(0) 9.134e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.23 -126.09 -2.86 CH4 + CH4(g) -16.62 -19.48 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.87 -40.02 -3.15 H2 + H2(g) -10.22 -13.37 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.45 -12.34 -2.89 O2 - O[18O](g) -12.15 -15.04 -2.89 O[18O] + O2(g) -62.75 -65.65 -2.89 O2 + O[18O](g) -65.45 -68.35 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -50345,23 +50353,24 @@ Calcite 4.16e-02 R(18O) 1.99521e-03 -4.984 permil R(13C) 1.11476e-02 -2.9195 permil - R(14C) 8.57859e-14 7.2954 pmc + R(14C) 8.57858e-14 7.2954 pmc R(18O) H2O(l) 1.99520e-03 -4.9856 permil R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.022 permil - R(18O) O2(aq) 1.99520e-03 -4.9856 permil R(13C) CO2(aq) 1.10678e-02 -10.055 permil - R(14C) CO2(aq) 8.45615e-14 7.1913 pmc + R(14C) CO2(aq) 8.45614e-14 7.1913 pmc R(18O) CO2(aq) 2.07917e-03 36.889 permil R(18O) HCO3- 1.99520e-03 -4.9856 permil R(13C) HCO3- 1.11641e-02 -1.4427 permil R(14C) HCO3- 8.60392e-14 7.317 pmc R(18O) CO3-2 1.99520e-03 -4.9856 permil R(13C) CO3-2 1.11480e-02 -2.8758 permil - R(14C) CO3-2 8.57925e-14 7.296 pmc + R(14C) CO3-2 8.57924e-14 7.296 pmc + R(13C) CH4(aq) 1.10678e-02 -10.055 permil + R(14C) CH4(aq) 8.45614e-14 7.1913 pmc R(18O) Calcite 2.05264e-03 23.661 permil R(13C) Calcite 1.11862e-02 0.53506 permil - R(14C) Calcite 8.63804e-14 7.346 pmc + R(14C) Calcite 8.63803e-14 7.346 pmc --------------------------------Isotope Alphas--------------------------------- @@ -50371,14 +50380,15 @@ Calcite 4.16e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2432e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.2204e-13 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6761e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6934e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 1.1102e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -6.9944e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -50396,14 +50406,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.447 Adjusted to redox equilibrium + pe = -1.833 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -50417,8 +50427,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.092 -126.091 0.001 (0) +C(-4) 1.415e-20 + CH4 1.415e-20 1.417e-20 -19.849 -19.849 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -50447,13 +50457,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.087e-08 6.097e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.021 -40.020 0.001 (0) -O(0) 9.146e-13 - O2 4.555e-13 4.562e-13 -12.342 -12.341 0.001 (0) - O[18O] 1.817e-15 1.820e-15 -14.741 -14.740 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.048 -128.047 0.001 (0) +H(0) 6.925e-14 + H2 3.462e-14 3.468e-14 -13.461 -13.460 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.463 -65.462 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.862 -67.861 0.001 (0) +[13C](-4) 1.566e-22 + [13C]H4 1.566e-22 1.568e-22 -21.805 -21.805 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -50472,8 +50482,8 @@ O(0) 9.146e-13 H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.164 -139.164 0.001 (0) +[14C](-4) 1.196e-33 + [14C]H4 1.196e-33 1.198e-33 -32.922 -32.921 0.001 (0) [14C](4) 5.010e-16 H[14C]O3- 4.047e-16 3.702e-16 -15.393 -15.432 -0.039 (0) [14C]O2 8.421e-17 8.434e-17 -16.075 -16.074 0.001 (0) @@ -50501,23 +50511,23 @@ O(0) 9.146e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.821e-15 - O[18O] 1.817e-15 1.820e-15 -14.741 -14.740 0.001 (0) - [18O]2 1.813e-18 1.816e-18 -17.742 -17.741 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -67.862 -67.861 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.863 -70.862 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.19 -128.05 -2.86 [13C]H4 + [13C]H4(g) -18.94 -21.80 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.97 -21.47 -1.50 [14C][18O]2 - [14C]H4(g) -136.30 -139.16 -2.86 [14C]H4 + [14C]H4(g) -30.06 -32.92 -2.86 [14C]H4 [14C]O2(g) -14.61 -16.07 -1.47 [14C]O2 [14C]O[18O](g) -16.99 -18.77 -1.79 [14C]O[18O] - [18O]2(g) -15.45 -17.74 -2.29 [18O]2 + [18O]2(g) -68.57 -70.86 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -50531,14 +50541,14 @@ O(0) 9.146e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.23 -126.09 -2.86 CH4 + CH4(g) -16.99 -19.85 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.87 -40.02 -3.15 H2 + H2(g) -10.31 -13.46 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.45 -12.34 -2.89 O2 - O[18O](g) -12.15 -15.04 -2.89 O[18O] + O2(g) -62.57 -65.46 -2.89 O2 + O[18O](g) -65.27 -68.16 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -50602,23 +50612,24 @@ Calcite 4.21e-02 R(18O) 1.99521e-03 -4.9839 permil R(13C) 1.11477e-02 -2.9035 permil - R(14C) 8.48905e-14 7.2193 pmc + R(14C) 8.48904e-14 7.2193 pmc R(18O) H2O(l) 1.99520e-03 -4.9854 permil R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.023 permil - R(18O) O2(aq) 1.99520e-03 -4.9854 permil R(13C) CO2(aq) 1.10680e-02 -10.039 permil - R(14C) CO2(aq) 8.36789e-14 7.1162 pmc + R(14C) CO2(aq) 8.36788e-14 7.1162 pmc R(18O) CO2(aq) 2.07917e-03 36.889 permil R(18O) HCO3- 1.99520e-03 -4.9854 permil R(13C) HCO3- 1.11642e-02 -1.4267 permil - R(14C) HCO3- 8.51412e-14 7.2406 pmc + R(14C) HCO3- 8.51411e-14 7.2406 pmc R(18O) CO3-2 1.99520e-03 -4.9854 permil R(13C) CO3-2 1.11482e-02 -2.8598 permil - R(14C) CO3-2 8.48970e-14 7.2198 pmc + R(14C) CO3-2 8.48969e-14 7.2198 pmc + R(13C) CH4(aq) 1.10680e-02 -10.039 permil + R(14C) CH4(aq) 8.36788e-14 7.1162 pmc R(18O) Calcite 2.05265e-03 23.661 permil R(13C) Calcite 1.11864e-02 0.5511 permil - R(14C) Calcite 8.54788e-14 7.2693 pmc + R(14C) Calcite 8.54787e-14 7.2693 pmc --------------------------------Isotope Alphas--------------------------------- @@ -50628,14 +50639,15 @@ Calcite 4.21e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2689e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.4425e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.4417e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6604e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7483e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 9.3259e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -2.6645e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -50653,14 +50665,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.446 Adjusted to redox equilibrium + pe = -1.948 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -50674,8 +50686,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.076 -126.075 0.001 (0) +C(-4) 1.181e-19 + CH4 1.181e-19 1.183e-19 -18.928 -18.927 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -50704,13 +50716,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.017 -40.017 0.001 (0) -O(0) 8.982e-13 - O2 4.473e-13 4.480e-13 -12.349 -12.349 0.001 (0) - O[18O] 1.785e-15 1.788e-15 -14.748 -14.748 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.032 -128.031 0.001 (0) +H(0) 1.177e-13 + H2 5.886e-14 5.895e-14 -13.230 -13.229 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.923 -65.923 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.322 -68.322 0.001 (0) +[13C](-4) 1.307e-21 + [13C]H4 1.307e-21 1.309e-21 -20.884 -20.883 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -50729,8 +50741,8 @@ O(0) 8.982e-13 H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.153 -139.153 0.001 (0) +[14C](-4) 9.882e-33 + [14C]H4 9.882e-33 9.898e-33 -32.005 -32.004 0.001 (0) [14C](4) 4.957e-16 H[14C]O3- 4.005e-16 3.664e-16 -15.397 -15.436 -0.039 (0) [14C]O2 8.333e-17 8.346e-17 -16.079 -16.078 0.001 (0) @@ -50758,23 +50770,23 @@ O(0) 8.982e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.788e-15 - O[18O] 1.785e-15 1.788e-15 -14.748 -14.748 0.001 (0) - [18O]2 1.781e-18 1.784e-18 -17.749 -17.749 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -68.322 -68.322 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.324 -71.323 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.17 -128.03 -2.86 [13C]H4 + [13C]H4(g) -18.02 -20.88 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.97 -21.48 -1.50 [14C][18O]2 - [14C]H4(g) -136.29 -139.15 -2.86 [14C]H4 + [14C]H4(g) -29.14 -32.00 -2.86 [14C]H4 [14C]O2(g) -14.61 -16.08 -1.47 [14C]O2 [14C]O[18O](g) -16.99 -18.78 -1.79 [14C]O[18O] - [18O]2(g) -15.46 -17.75 -2.29 [18O]2 + [18O]2(g) -69.03 -71.32 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -50788,14 +50800,14 @@ O(0) 8.982e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.22 -126.08 -2.86 CH4 + CH4(g) -16.07 -18.93 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.87 -40.02 -3.15 H2 + H2(g) -10.08 -13.23 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.46 -12.35 -2.89 O2 - O[18O](g) -12.16 -15.05 -2.89 O[18O] + O2(g) -63.03 -65.92 -2.89 O2 + O[18O](g) -65.73 -68.62 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -50859,20 +50871,21 @@ Calcite 4.26e-02 R(18O) 1.99521e-03 -4.9838 permil R(13C) 1.11479e-02 -2.8878 permil - R(14C) 8.40136e-14 7.1447 pmc + R(14C) 8.40135e-14 7.1447 pmc R(18O) H2O(l) 1.99520e-03 -4.9853 permil R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.023 permil - R(18O) O2(aq) 1.99520e-03 -4.9853 permil R(13C) CO2(aq) 1.10681e-02 -10.024 permil - R(14C) CO2(aq) 8.28145e-14 7.0427 pmc + R(14C) CO2(aq) 8.28144e-14 7.0427 pmc R(18O) CO2(aq) 2.07917e-03 36.889 permil R(18O) HCO3- 1.99520e-03 -4.9853 permil R(13C) HCO3- 1.11644e-02 -1.4111 permil - R(14C) HCO3- 8.42617e-14 7.1658 pmc + R(14C) HCO3- 8.42616e-14 7.1658 pmc R(18O) CO3-2 1.99520e-03 -4.9853 permil R(13C) CO3-2 1.11484e-02 -2.8441 permil - R(14C) CO3-2 8.40201e-14 7.1452 pmc + R(14C) CO3-2 8.40200e-14 7.1452 pmc + R(13C) CH4(aq) 1.10681e-02 -10.024 permil + R(14C) CH4(aq) 8.28144e-14 7.0427 pmc R(18O) Calcite 2.05265e-03 23.661 permil R(13C) Calcite 1.11865e-02 0.5668 permil R(14C) Calcite 8.45958e-14 7.1942 pmc @@ -50885,14 +50898,15 @@ Calcite 4.26e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2684e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -7.4385e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.61e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5613e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -4.4409e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 4.2188e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -50910,14 +50924,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.449 Adjusted to redox equilibrium + pe = -1.844 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -50931,8 +50945,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.103 -126.103 0.001 (0) +C(-4) 1.744e-20 + CH4 1.744e-20 1.747e-20 -19.759 -19.758 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -50961,13 +50975,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.024 -40.023 0.001 (0) -O(0) 9.269e-13 - O2 4.616e-13 4.624e-13 -12.336 -12.335 0.001 (0) - O[18O] 1.842e-15 1.845e-15 -14.735 -14.734 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.059 -128.059 0.001 (0) +H(0) 7.297e-14 + H2 3.648e-14 3.654e-14 -13.438 -13.437 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.508 -65.507 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.907 -67.906 0.001 (0) +[13C](-4) 1.930e-22 + [13C]H4 1.930e-22 1.933e-22 -21.714 -21.714 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -50986,8 +51000,8 @@ O(0) 9.269e-13 H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.185 -139.185 0.001 (0) +[14C](-4) 1.444e-33 + [14C]H4 1.444e-33 1.446e-33 -32.840 -32.840 0.001 (0) [14C](4) 4.906e-16 H[14C]O3- 3.963e-16 3.626e-16 -15.402 -15.441 -0.039 (0) [14C]O2 8.247e-17 8.260e-17 -16.084 -16.083 0.001 (0) @@ -51015,23 +51029,23 @@ O(0) 9.269e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.846e-15 - O[18O] 1.842e-15 1.845e-15 -14.735 -14.734 0.001 (0) - [18O]2 1.838e-18 1.841e-18 -17.736 -17.735 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -67.907 -67.906 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.908 -70.907 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.20 -128.06 -2.86 [13C]H4 + [13C]H4(g) -18.85 -21.71 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.98 -21.48 -1.50 [14C][18O]2 - [14C]H4(g) -136.32 -139.18 -2.86 [14C]H4 + [14C]H4(g) -29.98 -32.84 -2.86 [14C]H4 [14C]O2(g) -14.61 -16.08 -1.47 [14C]O2 [14C]O[18O](g) -17.00 -18.78 -1.79 [14C]O[18O] - [18O]2(g) -15.44 -17.74 -2.29 [18O]2 + [18O]2(g) -68.62 -70.91 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -51045,14 +51059,14 @@ O(0) 9.269e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.24 -126.10 -2.86 CH4 + CH4(g) -16.90 -19.76 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.87 -40.02 -3.15 H2 + H2(g) -10.29 -13.44 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.44 -12.33 -2.89 O2 - O[18O](g) -12.14 -15.04 -2.89 O[18O] + O2(g) -62.62 -65.51 -2.89 O2 + O[18O](g) -65.32 -68.21 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -51116,20 +51130,21 @@ Calcite 4.31e-02 R(18O) 1.99521e-03 -4.9836 permil R(13C) 1.11481e-02 -2.8725 permil - R(14C) 8.31546e-14 7.0716 pmc + R(14C) 8.31545e-14 7.0716 pmc R(18O) H2O(l) 1.99520e-03 -4.9851 permil R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.023 permil - R(18O) O2(aq) 1.99520e-03 -4.9851 permil R(13C) CO2(aq) 1.10683e-02 -10.009 permil - R(14C) CO2(aq) 8.19678e-14 6.9707 pmc + R(14C) CO2(aq) 8.19677e-14 6.9707 pmc R(18O) CO2(aq) 2.07917e-03 36.889 permil R(18O) HCO3- 1.99520e-03 -4.9851 permil R(13C) HCO3- 1.11646e-02 -1.3957 permil R(14C) HCO3- 8.34002e-14 7.0925 pmc R(18O) CO3-2 1.99520e-03 -4.9851 permil R(13C) CO3-2 1.11486e-02 -2.8288 permil - R(14C) CO3-2 8.31610e-14 7.0722 pmc + R(14C) CO3-2 8.31609e-14 7.0722 pmc + R(13C) CH4(aq) 1.10683e-02 -10.009 permil + R(14C) CH4(aq) 8.19677e-14 6.9707 pmc R(18O) Calcite 2.05265e-03 23.661 permil R(13C) Calcite 1.11867e-02 0.58218 permil R(14C) Calcite 8.37309e-14 7.1207 pmc @@ -51142,14 +51157,15 @@ Calcite 4.31e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2721e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.2204e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6482e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6693e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 1.4433e-11 0 +Alpha 14C CH4(aq)/CO2(aq) 1 8.2157e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -51167,14 +51183,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.454 Adjusted to redox equilibrium + pe = -1.183 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.398e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -51188,8 +51204,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.144 -126.144 0.001 (0) +C(-4) 8.914e-26 + CH4 8.914e-26 8.929e-26 -25.050 -25.049 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -51218,13 +51234,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.034 -40.034 0.001 (0) -O(0) 9.718e-13 - O2 4.840e-13 4.848e-13 -12.315 -12.314 0.001 (0) - O[18O] 1.931e-15 1.934e-15 -14.714 -14.713 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.100 -128.100 0.001 (0) +H(0) 3.470e-15 + H2 1.735e-15 1.738e-15 -14.761 -14.760 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -62.862 -62.862 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -65.261 -65.261 0.001 (0) +[13C](-4) 9.866e-28 + [13C]H4 9.866e-28 9.883e-28 -27.006 -27.005 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -51243,8 +51259,8 @@ O(0) 9.718e-13 H[13C][18O]2O- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.912e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.309e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.231 -139.230 0.001 (0) +[14C](-4) 7.307e-39 + [14C]H4 7.307e-39 7.319e-39 -38.136 -38.136 0.001 (0) [14C](4) 4.856e-16 H[14C]O3- 3.923e-16 3.589e-16 -15.406 -15.445 -0.039 (0) [14C]O2 8.162e-17 8.176e-17 -16.088 -16.087 0.001 (0) @@ -51272,23 +51288,23 @@ O(0) 9.718e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.935e-15 - O[18O] 1.931e-15 1.934e-15 -14.714 -14.713 0.001 (0) - [18O]2 1.927e-18 1.930e-18 -17.715 -17.714 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -65.261 -65.261 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -68.262 -68.262 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.24 -128.10 -2.86 [13C]H4 + [13C]H4(g) -24.15 -27.01 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.98 -21.49 -1.50 [14C][18O]2 - [14C]H4(g) -136.37 -139.23 -2.86 [14C]H4 + [14C]H4(g) -35.28 -38.14 -2.86 [14C]H4 [14C]O2(g) -14.62 -16.09 -1.47 [14C]O2 [14C]O[18O](g) -17.00 -18.79 -1.79 [14C]O[18O] - [18O]2(g) -15.42 -17.71 -2.29 [18O]2 + [18O]2(g) -65.97 -68.26 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -51302,14 +51318,14 @@ O(0) 9.718e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.28 -126.14 -2.86 CH4 + CH4(g) -22.19 -25.05 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.88 -40.03 -3.15 H2 + H2(g) -11.61 -14.76 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.42 -12.31 -2.89 O2 - O[18O](g) -12.12 -15.01 -2.89 O[18O] + O2(g) -59.97 -62.86 -2.89 O2 + O[18O](g) -62.67 -65.56 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -51365,7 +51381,7 @@ Calcite 4.36e-02 Ca[14C]O3(s) 3.55e-15 4.87e-18 8.15e-14 Ca[14C]O2[18O](s) 2.18e-17 3.00e-20 5.02e-16 Ca[14C]O[18O]2(s) 4.49e-20 6.16e-23 1.03e-18 - Ca[14C][18O]3(s) 3.07e-23 4.21e-26 7.05e-22 + Ca[14C][18O]3(s) 3.07e-23 4.22e-26 7.05e-22 --------------------------------Isotope Ratios--------------------------------- @@ -51377,16 +51393,17 @@ Calcite 4.36e-02 R(18O) H2O(l) 1.99520e-03 -4.985 permil R(18O) OH- 1.92124e-03 -41.873 permil R(18O) H3O+ 2.04134e-03 18.023 permil - R(18O) O2(aq) 1.99520e-03 -4.985 permil R(13C) CO2(aq) 1.10685e-02 -9.9936 permil R(14C) CO2(aq) 8.11382e-14 6.9002 pmc R(18O) CO2(aq) 2.07917e-03 36.889 permil R(18O) HCO3- 1.99520e-03 -4.985 permil R(13C) HCO3- 1.11648e-02 -1.3807 permil - R(14C) HCO3- 8.25562e-14 7.0208 pmc + R(14C) HCO3- 8.25561e-14 7.0208 pmc R(18O) CO3-2 1.99520e-03 -4.985 permil R(13C) CO3-2 1.11487e-02 -2.8138 permil R(14C) CO3-2 8.23194e-14 7.0006 pmc + R(13C) CH4(aq) 1.10685e-02 -9.9936 permil + R(14C) CH4(aq) 8.11382e-14 6.9002 pmc R(18O) Calcite 2.05265e-03 23.662 permil R(13C) Calcite 1.11869e-02 0.59725 permil R(14C) Calcite 8.28835e-14 7.0486 pmc @@ -51399,14 +51416,15 @@ Calcite 4.36e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2206e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -4.3299e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6365e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6122e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 8.8818e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -3.1086e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -51424,14 +51442,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.454 Adjusted to redox equilibrium + pe = -1.715 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.392e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -51445,8 +51463,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.147 -126.146 0.001 (0) +C(-4) 1.619e-21 + CH4 1.619e-21 1.621e-21 -20.791 -20.790 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -51475,13 +51493,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.035 -40.034 0.001 (0) -O(0) 9.745e-13 - O2 4.853e-13 4.861e-13 -12.314 -12.313 0.001 (0) - O[18O] 1.937e-15 1.940e-15 -14.713 -14.712 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.103 -128.102 0.001 (0) +H(0) 4.028e-14 + H2 2.014e-14 2.017e-14 -13.696 -13.695 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -64.992 -64.991 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.391 -67.390 0.001 (0) +[13C](-4) 1.792e-23 + [13C]H4 1.792e-23 1.795e-23 -22.747 -22.746 0.001 (0) [13C](4) 6.510e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -51500,8 +51518,8 @@ O(0) 9.745e-13 H[13C][18O]2O- 2.090e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.090e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.238 -139.237 0.001 (0) +[14C](-4) 1.313e-34 + [14C]H4 1.313e-34 1.316e-34 -33.882 -33.881 0.001 (0) [14C](4) 4.807e-16 H[14C]O3- 3.883e-16 3.552e-16 -15.411 -15.449 -0.039 (0) [14C]O2 8.080e-17 8.093e-17 -16.093 -16.092 0.001 (0) @@ -51529,23 +51547,23 @@ O(0) 9.745e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.940e-15 - O[18O] 1.937e-15 1.940e-15 -14.713 -14.712 0.001 (0) - [18O]2 1.932e-18 1.935e-18 -17.714 -17.713 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -67.391 -67.390 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.392 -70.391 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.24 -128.10 -2.86 [13C]H4 + [13C]H4(g) -19.89 -22.75 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.99 -21.49 -1.50 [14C][18O]2 - [14C]H4(g) -136.38 -139.24 -2.86 [14C]H4 + [14C]H4(g) -31.02 -33.88 -2.86 [14C]H4 [14C]O2(g) -14.62 -16.09 -1.47 [14C]O2 [14C]O[18O](g) -17.00 -18.79 -1.79 [14C]O[18O] - [18O]2(g) -15.42 -17.71 -2.29 [18O]2 + [18O]2(g) -68.10 -70.39 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -51559,14 +51577,14 @@ O(0) 9.745e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.29 -126.15 -2.86 CH4 + CH4(g) -17.93 -20.79 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.88 -40.03 -3.15 H2 + H2(g) -10.55 -13.70 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.42 -12.31 -2.89 O2 - O[18O](g) -12.12 -15.01 -2.89 O[18O] + O2(g) -62.10 -64.99 -2.89 O2 + O[18O](g) -64.80 -67.69 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -51634,7 +51652,6 @@ Calcite 4.41e-02 R(18O) H2O(l) 1.99520e-03 -4.9849 permil R(18O) OH- 1.92124e-03 -41.872 permil R(18O) H3O+ 2.04134e-03 18.023 permil - R(18O) O2(aq) 1.99520e-03 -4.9849 permil R(13C) CO2(aq) 1.10686e-02 -9.979 permil R(14C) CO2(aq) 8.03253e-14 6.831 pmc R(18O) CO2(aq) 2.07917e-03 36.889 permil @@ -51644,6 +51661,8 @@ Calcite 4.41e-02 R(18O) CO3-2 1.99520e-03 -4.9849 permil R(13C) CO3-2 1.11489e-02 -2.7991 permil R(14C) CO3-2 8.14946e-14 6.9305 pmc + R(13C) CH4(aq) 1.10686e-02 -9.979 permil + R(14C) CH4(aq) 8.03253e-14 6.831 pmc R(18O) Calcite 2.05265e-03 23.662 permil R(13C) Calcite 1.11870e-02 0.61202 permil R(14C) Calcite 8.20531e-14 6.978 pmc @@ -51656,14 +51675,15 @@ Calcite 4.41e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2405e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.5503e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.9984e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.771e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6076e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 1.1102e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 7.1054e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -51681,14 +51701,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.454 Adjusted to redox equilibrium + pe = -1.756 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.392e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -51702,8 +51722,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.143 -126.142 0.001 (0) +C(-4) 3.430e-21 + CH4 3.430e-21 3.436e-21 -20.465 -20.464 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -51732,13 +51752,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.034 -40.033 0.001 (0) -O(0) 9.700e-13 - O2 4.831e-13 4.839e-13 -12.316 -12.315 0.001 (0) - O[18O] 1.928e-15 1.931e-15 -14.715 -14.714 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.099 -128.098 0.001 (0) +H(0) 4.859e-14 + H2 2.430e-14 2.434e-14 -13.614 -13.614 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.155 -65.154 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.554 -67.553 0.001 (0) +[13C](-4) 3.797e-23 + [13C]H4 3.797e-23 3.803e-23 -22.421 -22.420 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -51757,8 +51777,8 @@ O(0) 9.700e-13 H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.238 -139.237 0.001 (0) +[14C](-4) 2.755e-34 + [14C]H4 2.755e-34 2.760e-34 -33.560 -33.559 0.001 (0) [14C](4) 4.759e-16 H[14C]O3- 3.844e-16 3.517e-16 -15.415 -15.454 -0.039 (0) [14C]O2 7.999e-17 8.012e-17 -16.097 -16.096 0.001 (0) @@ -51786,23 +51806,23 @@ O(0) 9.700e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.931e-15 - O[18O] 1.928e-15 1.931e-15 -14.715 -14.714 0.001 (0) - [18O]2 1.923e-18 1.926e-18 -17.716 -17.715 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -67.554 -67.553 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.555 -70.554 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.24 -128.10 -2.86 [13C]H4 + [13C]H4(g) -19.56 -22.42 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -19.99 -21.50 -1.50 [14C][18O]2 - [14C]H4(g) -136.38 -139.24 -2.86 [14C]H4 + [14C]H4(g) -30.70 -33.56 -2.86 [14C]H4 [14C]O2(g) -14.63 -16.10 -1.47 [14C]O2 [14C]O[18O](g) -17.01 -18.80 -1.79 [14C]O[18O] - [18O]2(g) -15.43 -17.72 -2.29 [18O]2 + [18O]2(g) -68.26 -70.55 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -51816,14 +51836,14 @@ O(0) 9.700e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.28 -126.14 -2.86 CH4 + CH4(g) -17.60 -20.46 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.88 -40.03 -3.15 H2 + H2(g) -10.46 -13.61 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.42 -12.32 -2.89 O2 - O[18O](g) -12.12 -15.02 -2.89 O[18O] + O2(g) -62.26 -65.15 -2.89 O2 + O[18O](g) -64.96 -67.85 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -51891,7 +51911,6 @@ Calcite 4.46e-02 R(18O) H2O(l) 1.99520e-03 -4.9847 permil R(18O) OH- 1.92124e-03 -41.872 permil R(18O) H3O+ 2.04134e-03 18.023 permil - R(18O) O2(aq) 1.99520e-03 -4.9847 permil R(13C) CO2(aq) 1.10688e-02 -9.9647 permil R(14C) CO2(aq) 7.95285e-14 6.7633 pmc R(18O) CO2(aq) 2.07917e-03 36.89 permil @@ -51901,9 +51920,11 @@ Calcite 4.46e-02 R(18O) CO3-2 1.99520e-03 -4.9847 permil R(13C) CO3-2 1.11491e-02 -2.7846 permil R(14C) CO3-2 8.06862e-14 6.8617 pmc + R(13C) CH4(aq) 1.10688e-02 -9.9647 permil + R(14C) CH4(aq) 7.95285e-14 6.7633 pmc R(18O) Calcite 2.05265e-03 23.662 permil R(13C) Calcite 1.11872e-02 0.6265 permil - R(14C) Calcite 8.12391e-14 6.9088 pmc + R(14C) Calcite 8.12391e-14 6.9087 pmc --------------------------------Isotope Alphas--------------------------------- @@ -51913,14 +51934,15 @@ Calcite 4.46e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2682e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -2.7756e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -3.6637e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.56e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.67e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -3.8858e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -3.7748e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -51938,14 +51960,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.453 Adjusted to redox equilibrium + pe = -1.849 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.392e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -51959,8 +51981,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.138 -126.137 0.001 (0) +C(-4) 1.906e-20 + CH4 1.906e-20 1.909e-20 -19.720 -19.719 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -51989,13 +52011,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.033 -40.032 0.001 (0) -O(0) 9.643e-13 - O2 4.802e-13 4.810e-13 -12.319 -12.318 0.001 (0) - O[18O] 1.916e-15 1.919e-15 -14.718 -14.717 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.094 -128.093 0.001 (0) +H(0) 7.461e-14 + H2 3.731e-14 3.737e-14 -13.428 -13.428 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.527 -65.527 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.926 -67.926 0.001 (0) +[13C](-4) 2.110e-22 + [13C]H4 2.110e-22 2.113e-22 -21.676 -21.675 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.251e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -52014,8 +52036,8 @@ O(0) 9.643e-13 H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.237 -139.236 0.001 (0) +[14C](-4) 1.516e-33 + [14C]H4 1.516e-33 1.519e-33 -32.819 -32.819 0.001 (0) [14C](4) 4.712e-16 H[14C]O3- 3.806e-16 3.482e-16 -15.420 -15.458 -0.039 (0) [14C]O2 7.919e-17 7.932e-17 -16.101 -16.101 0.001 (0) @@ -52043,23 +52065,23 @@ O(0) 9.643e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.920e-15 - O[18O] 1.916e-15 1.919e-15 -14.718 -14.717 0.001 (0) - [18O]2 1.912e-18 1.915e-18 -17.719 -17.718 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -67.926 -67.926 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.927 -70.927 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.23 -128.09 -2.86 [13C]H4 + [13C]H4(g) -18.81 -21.67 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.00 -21.50 -1.50 [14C][18O]2 - [14C]H4(g) -136.38 -139.24 -2.86 [14C]H4 + [14C]H4(g) -29.96 -32.82 -2.86 [14C]H4 [14C]O2(g) -14.63 -16.10 -1.47 [14C]O2 [14C]O[18O](g) -17.01 -18.80 -1.79 [14C]O[18O] - [18O]2(g) -15.43 -17.72 -2.29 [18O]2 + [18O]2(g) -68.64 -70.93 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -52073,14 +52095,14 @@ O(0) 9.643e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.28 -126.14 -2.86 CH4 + CH4(g) -16.86 -19.72 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.88 -40.03 -3.15 H2 + H2(g) -10.28 -13.43 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.43 -12.32 -2.89 O2 - O[18O](g) -12.13 -15.02 -2.89 O[18O] + O2(g) -62.63 -65.53 -2.89 O2 + O[18O](g) -65.33 -68.23 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -52148,7 +52170,6 @@ Calcite 4.51e-02 R(18O) H2O(l) 1.99520e-03 -4.9846 permil R(18O) OH- 1.92124e-03 -41.872 permil R(18O) H3O+ 2.04134e-03 18.023 permil - R(18O) O2(aq) 1.99520e-03 -4.9846 permil R(13C) CO2(aq) 1.10690e-02 -9.9506 permil R(14C) CO2(aq) 7.87473e-14 6.6968 pmc R(18O) CO2(aq) 2.07917e-03 36.89 permil @@ -52158,6 +52179,8 @@ Calcite 4.51e-02 R(18O) CO3-2 1.99520e-03 -4.9846 permil R(13C) CO3-2 1.11492e-02 -2.7705 permil R(14C) CO3-2 7.98937e-14 6.7943 pmc + R(13C) CH4(aq) 1.10690e-02 -9.9506 permil + R(14C) CH4(aq) 7.87473e-14 6.6968 pmc R(18O) Calcite 2.05265e-03 23.662 permil R(13C) Calcite 1.11874e-02 0.64069 permil R(14C) Calcite 8.04412e-14 6.8409 pmc @@ -52170,14 +52193,15 @@ Calcite 4.51e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2399e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -6.1062e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -1.5543e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7556e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7265e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 7.1054e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.1102e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -52195,14 +52219,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.453 Adjusted to redox equilibrium + pe = -1.922 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.392e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -52216,8 +52240,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.137 -126.136 0.001 (0) +C(-4) 7.353e-20 + CH4 7.353e-20 7.365e-20 -19.134 -19.133 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -52246,13 +52270,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.033 -40.032 0.001 (0) -O(0) 9.637e-13 - O2 4.799e-13 4.807e-13 -12.319 -12.318 0.001 (0) - O[18O] 1.915e-15 1.918e-15 -14.718 -14.717 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.093 -128.092 0.001 (0) +H(0) 1.046e-13 + H2 5.228e-14 5.237e-14 -13.282 -13.281 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.821 -65.820 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.220 -68.219 0.001 (0) +[13C](-4) 8.139e-22 + [13C]H4 8.139e-22 8.153e-22 -21.089 -21.089 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.252e-05 4.804e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -52271,8 +52295,8 @@ O(0) 9.637e-13 H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.241 -139.240 0.001 (0) +[14C](-4) 5.790e-33 + [14C]H4 5.790e-33 5.800e-33 -32.237 -32.237 0.001 (0) [14C](4) 4.665e-16 H[14C]O3- 3.769e-16 3.448e-16 -15.424 -15.462 -0.039 (0) [14C]O2 7.842e-17 7.855e-17 -16.106 -16.105 0.001 (0) @@ -52300,23 +52324,23 @@ O(0) 9.637e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.919e-15 - O[18O] 1.915e-15 1.918e-15 -14.718 -14.717 0.001 (0) - [18O]2 1.911e-18 1.914e-18 -17.719 -17.718 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -68.220 -68.219 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.221 -71.220 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.23 -128.09 -2.86 [13C]H4 + [13C]H4(g) -18.23 -21.09 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.00 -21.50 -1.50 [14C][18O]2 - [14C]H4(g) -136.38 -139.24 -2.86 [14C]H4 + [14C]H4(g) -29.38 -32.24 -2.86 [14C]H4 [14C]O2(g) -14.64 -16.10 -1.47 [14C]O2 [14C]O[18O](g) -17.02 -18.80 -1.79 [14C]O[18O] - [18O]2(g) -15.43 -17.72 -2.29 [18O]2 + [18O]2(g) -68.93 -71.22 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -52330,14 +52354,14 @@ O(0) 9.637e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.28 -126.14 -2.86 CH4 + CH4(g) -16.27 -19.13 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.88 -40.03 -3.15 H2 + H2(g) -10.13 -13.28 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.43 -12.32 -2.89 O2 - O[18O](g) -12.13 -15.02 -2.89 O[18O] + O2(g) -62.93 -65.82 -2.89 O2 + O[18O](g) -65.63 -68.52 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -52401,20 +52425,21 @@ Calcite 4.56e-02 R(18O) 1.99521e-03 -4.9829 permil R(13C) 1.11489e-02 -2.8003 permil - R(14C) 7.91105e-14 6.7277 pmc + R(14C) 7.91104e-14 6.7277 pmc R(18O) H2O(l) 1.99521e-03 -4.9844 permil R(18O) OH- 1.92124e-03 -41.872 permil R(18O) H3O+ 2.04134e-03 18.024 permil - R(18O) O2(aq) 1.99521e-03 -4.9844 permil R(13C) CO2(aq) 1.10691e-02 -9.9369 permil - R(14C) CO2(aq) 7.79814e-14 6.6317 pmc + R(14C) CO2(aq) 7.79813e-14 6.6317 pmc R(18O) CO2(aq) 2.07917e-03 36.89 permil R(18O) HCO3- 1.99521e-03 -4.9844 permil R(13C) HCO3- 1.11654e-02 -1.3234 permil R(14C) HCO3- 7.93441e-14 6.7476 pmc R(18O) CO3-2 1.99521e-03 -4.9844 permil R(13C) CO3-2 1.11494e-02 -2.7566 permil - R(14C) CO3-2 7.91166e-14 6.7282 pmc + R(14C) CO3-2 7.91165e-14 6.7282 pmc + R(13C) CH4(aq) 1.10691e-02 -9.9369 permil + R(14C) CH4(aq) 7.79813e-14 6.6317 pmc R(18O) Calcite 2.05265e-03 23.662 permil R(13C) Calcite 1.11875e-02 0.6546 permil R(14C) Calcite 7.96587e-14 6.7743 pmc @@ -52427,14 +52452,15 @@ Calcite 4.56e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2219e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.1078e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6663e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7041e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -3.8858e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 2.2204e-13 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -52452,14 +52478,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.454 Adjusted to redox equilibrium + pe = -1.907 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.392e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -52473,8 +52499,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.147 -126.146 0.001 (0) +C(-4) 5.506e-20 + CH4 5.506e-20 5.515e-20 -19.259 -19.258 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -52503,13 +52529,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.035 -40.034 0.001 (0) -O(0) 9.746e-13 - O2 4.854e-13 4.862e-13 -12.314 -12.313 0.001 (0) - O[18O] 1.937e-15 1.940e-15 -14.713 -14.712 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.103 -128.102 0.001 (0) +H(0) 9.727e-14 + H2 4.863e-14 4.871e-14 -13.313 -13.312 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.758 -65.757 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.157 -68.156 0.001 (0) +[13C](-4) 6.095e-22 + [13C]H4 6.095e-22 6.105e-22 -21.215 -21.214 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.252e-05 4.805e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -52528,8 +52554,8 @@ O(0) 9.746e-13 H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.255 -139.254 0.001 (0) +[14C](-4) 4.294e-33 + [14C]H4 4.294e-33 4.301e-33 -32.367 -32.366 0.001 (0) [14C](4) 4.620e-16 H[14C]O3- 3.732e-16 3.414e-16 -15.428 -15.467 -0.039 (0) [14C]O2 7.765e-17 7.778e-17 -16.110 -16.109 0.001 (0) @@ -52557,23 +52583,23 @@ O(0) 9.746e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.941e-15 - O[18O] 1.937e-15 1.940e-15 -14.713 -14.712 0.001 (0) - [18O]2 1.932e-18 1.935e-18 -17.714 -17.713 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -68.157 -68.156 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.158 -71.157 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.24 -128.10 -2.86 [13C]H4 + [13C]H4(g) -18.35 -21.21 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.01 -21.51 -1.50 [14C][18O]2 - [14C]H4(g) -136.39 -139.25 -2.86 [14C]H4 + [14C]H4(g) -29.51 -32.37 -2.86 [14C]H4 [14C]O2(g) -14.64 -16.11 -1.47 [14C]O2 [14C]O[18O](g) -17.02 -18.81 -1.79 [14C]O[18O] - [18O]2(g) -15.42 -17.71 -2.29 [18O]2 + [18O]2(g) -68.87 -71.16 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -52587,14 +52613,14 @@ O(0) 9.746e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.29 -126.15 -2.86 CH4 + CH4(g) -16.40 -19.26 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.88 -40.03 -3.15 H2 + H2(g) -10.16 -13.31 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.42 -12.31 -2.89 O2 - O[18O](g) -12.12 -15.01 -2.89 O[18O] + O2(g) -62.86 -65.76 -2.89 O2 + O[18O](g) -65.56 -68.46 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -52662,9 +52688,8 @@ Calcite 4.61e-02 R(18O) H2O(l) 1.99521e-03 -4.9843 permil R(18O) OH- 1.92124e-03 -41.872 permil R(18O) H3O+ 2.04134e-03 18.024 permil - R(18O) O2(aq) 1.99521e-03 -4.9843 permil R(13C) CO2(aq) 1.10693e-02 -9.9234 permil - R(14C) CO2(aq) 7.72302e-14 6.5678 pmc + R(14C) CO2(aq) 7.72301e-14 6.5678 pmc R(18O) CO2(aq) 2.07917e-03 36.89 permil R(18O) HCO3- 1.99521e-03 -4.9843 permil R(13C) HCO3- 1.11656e-02 -1.3098 permil @@ -52672,6 +52697,8 @@ Calcite 4.61e-02 R(18O) CO3-2 1.99521e-03 -4.9843 permil R(13C) CO3-2 1.11495e-02 -2.743 permil R(14C) CO3-2 7.83544e-14 6.6634 pmc + R(13C) CH4(aq) 1.10693e-02 -9.9234 permil + R(14C) CH4(aq) 7.72301e-14 6.5678 pmc R(18O) Calcite 2.05265e-03 23.662 permil R(13C) Calcite 1.11877e-02 0.66825 permil R(14C) Calcite 7.88914e-14 6.7091 pmc @@ -52684,14 +52711,15 @@ Calcite 4.61e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2466e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -4.5519e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -2.5535e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.697e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7302e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 1.9984e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 3.9968e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -52709,14 +52737,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.454 Adjusted to redox equilibrium + pe = -1.872 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.392e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -52730,8 +52758,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.147 -126.146 0.001 (0) +C(-4) 2.924e-20 + CH4 2.924e-20 2.929e-20 -19.534 -19.533 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -52760,13 +52788,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.035 -40.034 0.001 (0) -O(0) 9.749e-13 - O2 4.855e-13 4.863e-13 -12.314 -12.313 0.001 (0) - O[18O] 1.937e-15 1.941e-15 -14.713 -14.712 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.103 -128.102 0.001 (0) +H(0) 8.304e-14 + H2 4.152e-14 4.159e-14 -13.382 -13.381 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.620 -65.620 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -68.019 -68.019 0.001 (0) +[13C](-4) 3.237e-22 + [13C]H4 3.237e-22 3.242e-22 -21.490 -21.489 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.252e-05 4.805e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -52785,8 +52813,8 @@ O(0) 9.749e-13 H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.259 -139.259 0.001 (0) +[14C](-4) 2.259e-33 + [14C]H4 2.259e-33 2.262e-33 -32.646 -32.645 0.001 (0) [14C](4) 4.575e-16 H[14C]O3- 3.696e-16 3.381e-16 -15.432 -15.471 -0.039 (0) [14C]O2 7.691e-17 7.703e-17 -16.114 -16.113 0.001 (0) @@ -52814,23 +52842,23 @@ O(0) 9.749e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.941e-15 - O[18O] 1.937e-15 1.941e-15 -14.713 -14.712 0.001 (0) - [18O]2 1.933e-18 1.936e-18 -17.714 -17.713 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -68.019 -68.019 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -71.020 -71.020 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.24 -128.10 -2.86 [13C]H4 + [13C]H4(g) -18.63 -21.49 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.01 -21.51 -1.50 [14C][18O]2 - [14C]H4(g) -136.40 -139.26 -2.86 [14C]H4 + [14C]H4(g) -29.79 -32.65 -2.86 [14C]H4 [14C]O2(g) -14.64 -16.11 -1.47 [14C]O2 [14C]O[18O](g) -17.03 -18.81 -1.79 [14C]O[18O] - [18O]2(g) -15.42 -17.71 -2.29 [18O]2 + [18O]2(g) -68.73 -71.02 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -52844,14 +52872,14 @@ O(0) 9.749e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.29 -126.15 -2.86 CH4 + CH4(g) -16.67 -19.53 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.88 -40.03 -3.15 H2 + H2(g) -10.23 -13.38 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.42 -12.31 -2.89 O2 - O[18O](g) -12.12 -15.01 -2.89 O[18O] + O2(g) -62.73 -65.62 -2.89 O2 + O[18O](g) -65.43 -68.32 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -52919,7 +52947,6 @@ Calcite 4.66e-02 R(18O) H2O(l) 1.99521e-03 -4.9842 permil R(18O) OH- 1.92124e-03 -41.872 permil R(18O) H3O+ 2.04134e-03 18.024 permil - R(18O) O2(aq) 1.99521e-03 -4.9842 permil R(13C) CO2(aq) 1.10694e-02 -9.9101 permil R(14C) CO2(aq) 7.64933e-14 6.5052 pmc R(18O) CO2(aq) 2.07917e-03 36.89 permil @@ -52929,9 +52956,11 @@ Calcite 4.66e-02 R(18O) CO3-2 1.99521e-03 -4.9842 permil R(13C) CO3-2 1.11497e-02 -2.7297 permil R(14C) CO3-2 7.76068e-14 6.5998 pmc + R(13C) CH4(aq) 1.10694e-02 -9.9101 permil + R(14C) CH4(aq) 7.64933e-14 6.5052 pmc R(18O) Calcite 2.05265e-03 23.662 permil R(13C) Calcite 1.11878e-02 0.68164 permil - R(14C) Calcite 7.81387e-14 6.6451 pmc + R(14C) Calcite 7.81386e-14 6.6451 pmc --------------------------------Isotope Alphas--------------------------------- @@ -52941,14 +52970,15 @@ Calcite 4.66e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2795e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -8.8818e-13 0 +Alpha 18O HCO3-/H2O(l) 1 -2.9976e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6317e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.5972e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -1.2212e-12 0 +Alpha 14C CH4(aq)/CO2(aq) 1 1.3101e-11 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -52966,14 +52996,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.458 Adjusted to redox equilibrium + pe = -1.692 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.392e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -52987,8 +53017,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.175 -126.174 0.001 (0) +C(-4) 1.052e-21 + CH4 1.052e-21 1.053e-21 -20.978 -20.977 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -53017,13 +53047,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.216 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.042 -40.041 0.001 (0) -O(0) 1.006e-12 - O2 5.012e-13 5.020e-13 -12.300 -12.299 0.001 (0) - O[18O] 2.000e-15 2.003e-15 -14.699 -14.698 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.131 -128.130 0.001 (0) +H(0) 3.616e-14 + H2 1.808e-14 1.811e-14 -13.743 -13.742 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -64.898 -64.898 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.297 -67.297 0.001 (0) +[13C](-4) 1.164e-23 + [13C]H4 1.164e-23 1.166e-23 -22.934 -22.933 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.252e-05 4.805e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -53042,8 +53072,8 @@ O(0) 1.006e-12 H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.291 -139.290 0.001 (0) +[14C](-4) 8.043e-35 + [14C]H4 8.043e-35 8.057e-35 -34.095 -34.094 0.001 (0) [14C](4) 4.532e-16 H[14C]O3- 3.661e-16 3.349e-16 -15.436 -15.475 -0.039 (0) [14C]O2 7.617e-17 7.630e-17 -16.118 -16.117 0.001 (0) @@ -53071,23 +53101,23 @@ O(0) 1.006e-12 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 2.004e-15 - O[18O] 2.000e-15 2.003e-15 -14.699 -14.698 0.001 (0) - [18O]2 1.995e-18 1.998e-18 -17.700 -17.699 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -67.297 -67.297 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.298 -70.298 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.27 -128.13 -2.86 [13C]H4 + [13C]H4(g) -20.07 -22.93 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.01 -21.52 -1.50 [14C][18O]2 - [14C]H4(g) -136.43 -139.29 -2.86 [14C]H4 + [14C]H4(g) -31.23 -34.09 -2.86 [14C]H4 [14C]O2(g) -14.65 -16.12 -1.47 [14C]O2 [14C]O[18O](g) -17.03 -18.82 -1.79 [14C]O[18O] - [18O]2(g) -15.41 -17.70 -2.29 [18O]2 + [18O]2(g) -68.01 -70.30 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -53101,14 +53131,14 @@ O(0) 1.006e-12 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.31 -126.17 -2.86 CH4 + CH4(g) -18.12 -20.98 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.89 -40.04 -3.15 H2 + H2(g) -10.59 -13.74 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.41 -12.30 -2.89 O2 - O[18O](g) -12.11 -15.00 -2.89 O[18O] + O2(g) -62.01 -64.90 -2.89 O2 + O[18O](g) -64.71 -67.60 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -53176,19 +53206,20 @@ Calcite 4.71e-02 R(18O) H2O(l) 1.99521e-03 -4.984 permil R(18O) OH- 1.92124e-03 -41.872 permil R(18O) H3O+ 2.04134e-03 18.024 permil - R(18O) O2(aq) 1.99521e-03 -4.984 permil R(13C) CO2(aq) 1.10695e-02 -9.8971 permil - R(14C) CO2(aq) 7.57704e-14 6.4437 pmc + R(14C) CO2(aq) 7.57703e-14 6.4437 pmc R(18O) CO2(aq) 2.07917e-03 36.89 permil R(18O) HCO3- 1.99521e-03 -4.984 permil R(13C) HCO3- 1.11659e-02 -1.2833 permil R(14C) HCO3- 7.70945e-14 6.5563 pmc R(18O) CO3-2 1.99521e-03 -4.984 permil R(13C) CO3-2 1.11498e-02 -2.7166 permil - R(14C) CO3-2 7.68734e-14 6.5375 pmc + R(14C) CO3-2 7.68733e-14 6.5375 pmc + R(13C) CH4(aq) 1.10695e-02 -9.8971 permil + R(14C) CH4(aq) 7.57703e-14 6.4437 pmc R(18O) Calcite 2.05265e-03 23.663 permil R(13C) Calcite 1.11880e-02 0.69477 permil - R(14C) Calcite 7.74002e-14 6.5823 pmc + R(14C) Calcite 7.74001e-14 6.5823 pmc --------------------------------Isotope Alphas--------------------------------- @@ -53198,14 +53229,15 @@ Calcite 4.71e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2297e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -3.8858e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -6.3283e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.7443e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.7061e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 2.2204e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 -1.9984e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -53223,14 +53255,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.453 Adjusted to redox equilibrium + pe = -1.777 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.392e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -53244,8 +53276,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.135 -126.135 0.001 (0) +C(-4) 5.063e-21 + CH4 5.063e-21 5.072e-21 -20.296 -20.295 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -53274,13 +53306,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.098e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.032 -40.031 0.001 (0) -O(0) 9.617e-13 - O2 4.789e-13 4.797e-13 -12.320 -12.319 0.001 (0) - O[18O] 1.911e-15 1.914e-15 -14.719 -14.718 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.091 -128.090 0.001 (0) +H(0) 5.356e-14 + H2 2.678e-14 2.683e-14 -13.572 -13.571 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -65.240 -65.239 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -67.639 -67.638 0.001 (0) +[13C](-4) 5.605e-23 + [13C]H4 5.605e-23 5.614e-23 -22.251 -22.251 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.252e-05 4.805e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -53299,8 +53331,8 @@ O(0) 9.617e-13 H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.256 -139.255 0.001 (0) +[14C](-4) 3.836e-34 + [14C]H4 3.836e-34 3.843e-34 -33.416 -33.415 0.001 (0) [14C](4) 4.489e-16 H[14C]O3- 3.626e-16 3.317e-16 -15.441 -15.479 -0.039 (0) [14C]O2 7.545e-17 7.558e-17 -16.122 -16.122 0.001 (0) @@ -53328,23 +53360,23 @@ O(0) 9.617e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.915e-15 - O[18O] 1.911e-15 1.914e-15 -14.719 -14.718 0.001 (0) - [18O]2 1.907e-18 1.910e-18 -17.720 -17.719 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -67.639 -67.638 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -70.640 -70.639 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.23 -128.09 -2.86 [13C]H4 + [13C]H4(g) -19.39 -22.25 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.02 -21.52 -1.50 [14C][18O]2 - [14C]H4(g) -136.40 -139.26 -2.86 [14C]H4 + [14C]H4(g) -30.56 -33.42 -2.86 [14C]H4 [14C]O2(g) -14.65 -16.12 -1.47 [14C]O2 [14C]O[18O](g) -17.03 -18.82 -1.79 [14C]O[18O] - [18O]2(g) -15.43 -17.72 -2.29 [18O]2 + [18O]2(g) -68.35 -70.64 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -53358,14 +53390,14 @@ O(0) 9.617e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.27 -126.13 -2.86 CH4 + CH4(g) -17.43 -20.29 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.88 -40.03 -3.15 H2 + H2(g) -10.42 -13.57 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.43 -12.32 -2.89 O2 - O[18O](g) -12.13 -15.02 -2.89 O[18O] + O2(g) -62.35 -65.24 -2.89 O2 + O[18O](g) -65.05 -67.94 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -53429,11 +53461,10 @@ Calcite 4.76e-02 R(18O) 1.99521e-03 -4.9824 permil R(13C) 1.11495e-02 -2.7474 permil - R(14C) 7.61478e-14 6.4758 pmc + R(14C) 7.61477e-14 6.4758 pmc R(18O) H2O(l) 1.99521e-03 -4.9839 permil R(18O) OH- 1.92124e-03 -41.871 permil R(18O) H3O+ 2.04134e-03 18.024 permil - R(18O) O2(aq) 1.99521e-03 -4.9839 permil R(13C) CO2(aq) 1.10697e-02 -9.8844 permil R(14C) CO2(aq) 7.50609e-14 6.3833 pmc R(18O) CO2(aq) 2.07917e-03 36.89 permil @@ -53443,6 +53474,8 @@ Calcite 4.76e-02 R(18O) CO3-2 1.99521e-03 -4.9839 permil R(13C) CO3-2 1.11500e-02 -2.7037 permil R(14C) CO3-2 7.61536e-14 6.4763 pmc + R(13C) CH4(aq) 1.10697e-02 -9.8844 permil + R(14C) CH4(aq) 7.50609e-14 6.3833 pmc R(18O) Calcite 2.05265e-03 23.663 permil R(13C) Calcite 1.11881e-02 0.70766 permil R(14C) Calcite 7.66755e-14 6.5206 pmc @@ -53455,14 +53488,15 @@ Calcite 4.76e-02 Alpha 18O OH-/H2O(l) 0.96293 -37.777 -37.777 Alpha 18O H3O+/H2O(l) 1.0231 22.86 22.86 -Alpha 18O O2(aq)/H2O(l) 1 -2.2555e-09 0 Alpha 18O CO2(aq)/H2O(l) 1.0421 41.223 41.223 -Alpha 18O HCO3-/H2O(l) 1 -1.7764e-12 0 +Alpha 18O HCO3-/H2O(l) 1 -5.218e-12 0 Alpha 13C HCO3-/CO2(aq) 1.0087 8.6622 8.6622 Alpha 14C HCO3-/CO2(aq) 1.0175 17.324 17.324 -Alpha 18O CO3-2/H2O(l) 1 -1.6828e-09 0 +Alpha 18O CO3-2/H2O(l) 1 -1.6405e-09 0 Alpha 13C CO3-2/CO2(aq) 1.0073 7.2261 7.2261 Alpha 14C CO3-2/CO2(aq) 1.0146 14.452 14.452 +Alpha 13C CH4(aq)/CO2(aq) 1 -7.7716e-13 0 +Alpha 14C CH4(aq)/CO2(aq) 1 3.3307e-12 0 Alpha 18O Calcite/H2O(l) 1.0288 28.383 28.383 Alpha 13C Calcite/CO2(aq) 1.0107 10.641 10.641 Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 @@ -53480,14 +53514,14 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 ----------------------------Description of solution---------------------------- pH = 6.989 Charge balance - pe = 11.456 Adjusted to redox equilibrium + pe = -1.313 Adjusted to redox equilibrium Activity of water = 0.998 Ionic strength (mol/kgw) = 7.138e-03 Mass of water (kg) = 9.971e-01 Total alkalinity (eq/kg) = 4.902e-03 Total CO2 (mol/kg) = 5.840e-03 Temperature (°C) = 25.00 - Electrical balance (eq) = 3.125e-13 + Electrical balance (eq) = 3.392e-13 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 2 Total H = 1.110126e+02 @@ -53501,8 +53535,8 @@ Alpha 14C Calcite/CO2(aq) 1.0215 21.282 21.282 H3O+ 1.111e-07 1.027e-07 -6.954 -6.989 -0.034 0.00 OH- 1.063e-07 9.713e-08 -6.973 -7.013 -0.039 (0) H2O 5.556e+01 9.980e-01 1.745 -0.001 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -126.160 -126.160 0.001 (0) +C(-4) 9.765e-25 + CH4 9.765e-25 9.781e-25 -24.010 -24.010 0.001 (0) C(4) 5.840e-03 HCO3- 4.703e-03 4.303e-03 -2.328 -2.366 -0.039 (0) CO2 9.958e-04 9.974e-04 -3.002 -3.001 0.001 (0) @@ -53531,13 +53565,13 @@ Ca 2.451e-03 CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) Ca[13C]O3 6.088e-08 6.099e-08 -7.215 -7.215 0.001 (0) CaCO2[18O] 3.268e-08 3.274e-08 -7.486 -7.485 0.001 (0) -H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.038 -40.038 0.001 (0) -O(0) 9.897e-13 - O2 4.929e-13 4.937e-13 -12.307 -12.307 0.001 (0) - O[18O] 1.967e-15 1.970e-15 -14.706 -14.706 0.001 (0) -[13C](-4) 0.000e+00 - [13C]H4 0.000e+00 0.000e+00 -128.116 -128.115 0.001 (0) +H(0) 6.312e-15 + H2 3.156e-15 3.161e-15 -14.501 -14.500 0.001 (0) +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -63.382 -63.381 0.001 (0) + O[18O] 0.000e+00 0.000e+00 -65.781 -65.780 0.001 (0) +[13C](-4) 1.081e-26 + [13C]H4 1.081e-26 1.083e-26 -25.966 -25.965 0.001 (0) [13C](4) 6.511e-05 H[13C]O3- 5.252e-05 4.805e-05 -4.280 -4.318 -0.039 (0) [13C]O2 1.102e-05 1.104e-05 -4.958 -4.957 0.001 (0) @@ -53556,8 +53590,8 @@ O(0) 9.897e-13 H[13C][18O]2O- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) H[13C]O[18O]2- 2.091e-10 1.913e-10 -9.680 -9.718 -0.039 (0) [13C]O2[18O]-2 1.869e-10 1.310e-10 -9.728 -9.883 -0.155 (0) -[14C](-4) 0.000e+00 - [14C]H4 0.000e+00 0.000e+00 -139.285 -139.284 0.001 (0) +[14C](-4) 7.330e-38 + [14C]H4 7.330e-38 7.342e-38 -37.135 -37.134 0.001 (0) [14C](4) 4.447e-16 H[14C]O3- 3.592e-16 3.286e-16 -15.445 -15.483 -0.039 (0) [14C]O2 7.475e-17 7.487e-17 -16.126 -16.126 0.001 (0) @@ -53585,23 +53619,23 @@ O(0) 9.897e-13 CaHCO2[18O]+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHCO[18O]O+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) CaHC[18O]O2+ 1.982e-07 1.818e-07 -6.703 -6.740 -0.037 (0) -[18O](0) 1.971e-15 - O[18O] 1.967e-15 1.970e-15 -14.706 -14.706 0.001 (0) - [18O]2 1.962e-18 1.965e-18 -17.707 -17.707 0.001 (0) +[18O](0) 0.000e+00 + O[18O] 0.000e+00 0.000e+00 -65.781 -65.780 0.001 (0) + [18O]2 0.000e+00 0.000e+00 -68.782 -68.782 0.001 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) [13C][18O]2(g) -8.85 -10.36 -1.50 [13C][18O]2 - [13C]H4(g) -125.26 -128.12 -2.86 [13C]H4 + [13C]H4(g) -23.11 -25.97 -2.86 [13C]H4 [13C]O2(g) -3.49 -4.96 -1.47 [13C]O2 [13C]O[18O](g) -5.87 -7.66 -1.79 [13C]O[18O] [14C][18O]2(g) -20.02 -21.53 -1.50 [14C][18O]2 - [14C]H4(g) -136.42 -139.28 -2.86 [14C]H4 + [14C]H4(g) -34.27 -37.13 -2.86 [14C]H4 [14C]O2(g) -14.66 -16.13 -1.47 [14C]O2 [14C]O[18O](g) -17.04 -18.83 -1.79 [14C]O[18O] - [18O]2(g) -15.42 -17.71 -2.29 [18O]2 + [18O]2(g) -66.49 -68.78 -2.29 [18O]2 C[18O]2(g) -6.90 -8.40 -1.50 C[18O]2 Ca[13C][18O]3(s) -10.02 -1.86 8.16 Ca[13C][18O]3 Ca[13C]O2[18O](s) -4.17 3.54 7.71 Ca[13C]O2[18O] @@ -53615,14 +53649,14 @@ O(0) 9.897e-13 CaCO2[18O](s) -2.22 5.49 7.71 CaCO2[18O] CaCO[18O]2(s) -4.91 2.79 7.70 CaCO[18O]2 Calcite -0.01 -8.49 -8.48 CaCO3 - CH4(g) -123.30 -126.16 -2.86 CH4 + CH4(g) -21.15 -24.01 -2.86 CH4 CO2(g) -1.53 -3.00 -1.47 CO2 CO[18O](g) -3.91 -5.70 -1.79 CO[18O] - H2(g) -36.89 -40.04 -3.15 H2 + H2(g) -11.35 -14.50 -3.15 H2 H2[18O](g) -4.21 -2.70 1.51 H2[18O] H2O(g) -1.51 -0.00 1.51 H2O - O2(g) -9.41 -12.31 -2.89 O2 - O[18O](g) -12.11 -15.01 -2.89 O[18O] + O2(g) -60.49 -63.38 -2.89 O2 + O[18O](g) -63.19 -66.08 -2.89 O[18O] **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. diff --git a/ex21.out b/ex21.out index 61315161..690b570f 100644 --- a/ex21.out +++ b/ex21.out @@ -141,7 +141,7 @@ H(0) 1.416e-25 Na 1.000e-03 Na+ 1.000e-03 9.652e-04 -3.000 -3.015 -0.015 -1.48 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -42.080 -42.080 0.000 30.40 + O2 0.000e+00 0.000e+00 -42.063 -42.063 0.000 30.40 ------------------------------Saturation indices------------------------------- @@ -150,7 +150,7 @@ O(0) 0.000e+00 H2(g) -22.05 -25.15 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -7.60 -6.03 1.57 NaCl - O2(g) -39.19 -42.08 -2.89 O2 + O2(g) -39.17 -42.06 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -436,15 +436,15 @@ WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. pH = 7.600 pe = 13.120 Equilibrium with O2(g) - Specific Conductance (µS/cm, 23°C) = 29069 + Specific Conductance (µS/cm, 23°C) = 29103 Density (g/cm³) = 1.01168 Volume (L) = 0.20146 - Viscosity (mPa s) = 0.96932 + Viscosity (mPa s) = 0.96837 Activity of water = 0.990 - Ionic strength (mol/kgw) = 3.633e-01 + Ionic strength (mol/kgw) = 3.657e-01 Mass of water (kg) = 2.000e-01 - Total carbon (mol/kg) = 4.811e-04 - Total CO2 (mol/kg) = 4.811e-04 + Total carbon (mol/kg) = 4.812e-04 + Total CO2 (mol/kg) = 4.812e-04 Temperature (°C) = 23.00 Electrical balance (eq) = -1.312e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.10 @@ -457,93 +457,95 @@ WARNING: USER_PUNCH: Headings count does not match number of calls to PUNCH. Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 5.188e-07 3.419e-07 -6.285 -6.466 -0.181 -3.26 - H+ 3.237e-08 2.512e-08 -7.490 -7.600 -0.110 0.00 + OH- 5.192e-07 3.419e-07 -6.285 -6.466 -0.181 -3.26 + H+ 3.238e-08 2.512e-08 -7.490 -7.600 -0.110 0.00 H2O 5.551e+01 9.899e-01 1.744 -0.004 0.000 18.06 -C(4) 4.811e-04 - HCO3- 3.911e-04 2.781e-04 -3.408 -3.556 -0.148 25.30 - NaHCO3 3.292e-05 3.892e-05 -4.483 -4.410 0.073 31.75 - MgHCO3+ 2.266e-05 1.528e-05 -4.645 -4.816 -0.171 5.70 - CO2 1.541e-05 1.628e-05 -4.812 -4.788 0.024 34.33 - CaHCO3+ 9.133e-06 6.615e-06 -5.039 -5.179 -0.140 9.83 - CaCO3 4.998e-06 5.434e-06 -5.301 -5.265 0.036 -14.61 - MgCO3 2.008e-06 2.184e-06 -5.697 -5.661 0.036 -17.09 - CO3-2 1.949e-06 4.981e-07 -5.710 -6.303 -0.593 -1.75 - SrHCO3+ 7.330e-07 5.211e-07 -6.135 -6.283 -0.148 (0) - KHCO3 1.261e-07 1.271e-07 -6.899 -6.896 0.003 41.01 - SrCO3 3.617e-08 3.932e-08 -7.442 -7.405 0.036 -14.14 - (CO2)2 4.185e-12 4.551e-12 -11.378 -11.342 0.036 68.67 +C(4) 4.812e-04 + HCO3- 3.915e-04 2.782e-04 -3.407 -3.556 -0.148 25.30 + NaHCO3 3.313e-05 3.921e-05 -4.480 -4.407 0.073 31.75 + MgHCO3+ 2.221e-05 1.497e-05 -4.654 -4.825 -0.171 5.70 + CO2 1.541e-05 1.629e-05 -4.812 -4.788 0.024 34.33 + CaHCO3+ 9.143e-06 6.619e-06 -5.039 -5.179 -0.140 9.83 + CaCO3 4.998e-06 5.437e-06 -5.301 -5.265 0.037 -14.61 + MgCO3 1.966e-06 2.138e-06 -5.706 -5.670 0.037 -17.09 + CO3-2 1.954e-06 4.983e-07 -5.709 -6.303 -0.593 -1.74 + SrHCO3+ 7.215e-07 5.127e-07 -6.142 -6.290 -0.148 (0) + KHCO3 1.255e-07 1.265e-07 -6.901 -6.898 0.003 41.01 + SrCO3 3.557e-08 3.869e-08 -7.449 -7.412 0.037 -14.14 + (CO2)2 4.186e-12 4.554e-12 -11.378 -11.342 0.037 68.67 Ca 2.580e-02 - Ca+2 2.429e-02 6.749e-03 -1.615 -2.171 -0.556 -17.03 - CaSO4 1.496e-03 1.626e-03 -2.825 -2.789 0.036 7.42 - CaHCO3+ 9.133e-06 6.615e-06 -5.039 -5.179 -0.140 9.83 - CaCO3 4.998e-06 5.434e-06 -5.301 -5.265 0.036 -14.61 - CaOH+ 6.034e-08 4.414e-08 -7.219 -7.355 -0.136 (0) - CaHSO4+ 3.568e-10 2.610e-10 -9.448 -9.583 -0.136 (0) + Ca+2 2.433e-02 6.751e-03 -1.614 -2.171 -0.557 -17.02 + CaSO4 1.454e-03 1.509e-03 -2.837 -2.821 0.016 7.01 + CaHCO3+ 9.143e-06 6.619e-06 -5.039 -5.179 -0.140 9.83 + CaCO3 4.998e-06 5.437e-06 -5.301 -5.265 0.037 -14.61 + CaOH+ 6.036e-08 4.416e-08 -7.219 -7.355 -0.136 (0) + CaHSO4+ 4.444e-10 3.251e-10 -9.352 -9.488 -0.136 (0) Cl 3.000e-01 - Cl- 3.000e-01 2.018e-01 -0.523 -0.695 -0.172 18.53 - HCl 1.239e-09 1.768e-09 -8.907 -8.752 0.155 (0) + Cl- 3.000e-01 2.017e-01 -0.523 -0.695 -0.172 18.53 + HCl 1.235e-09 1.767e-09 -8.908 -8.753 0.156 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.617 -44.580 0.036 28.61 + H2 0.000e+00 0.000e+00 -44.618 -44.581 0.037 28.61 Hto 1.140e-09 Hto 1.140e-09 1.140e-09 -8.943 -8.943 0.000 (0) K 1.610e-03 - K+ 1.584e-03 1.057e-03 -2.800 -2.976 -0.176 9.40 - KSO4- 2.634e-05 2.195e-05 -4.579 -4.659 -0.079 13.22 - KHCO3 1.261e-07 1.271e-07 -6.899 -6.896 0.003 41.01 + K+ 1.577e-03 1.052e-03 -2.802 -2.978 -0.176 9.40 + KSO4- 3.262e-05 2.720e-05 -4.486 -4.565 -0.079 31.55 + KHCO3 1.255e-07 1.265e-07 -6.901 -6.898 0.003 41.01 Mg 1.690e-02 - Mg+2 1.548e-02 4.737e-03 -1.810 -2.325 -0.514 -20.64 - MgSO4 1.371e-03 1.620e-03 -2.863 -2.790 0.073 -8.62 - Mg(SO4)2-2 2.392e-05 7.620e-06 -4.621 -5.118 -0.497 27.97 - MgHCO3+ 2.266e-05 1.528e-05 -4.645 -4.816 -0.171 5.70 - MgCO3 2.008e-06 2.184e-06 -5.697 -5.661 0.036 -17.09 - MgOH+ 7.694e-07 5.651e-07 -6.114 -6.248 -0.134 (0) + Mg+2 1.517e-02 4.637e-03 -1.819 -2.334 -0.515 -20.64 + MgSO4 1.669e-03 1.975e-03 -2.778 -2.704 0.073 -0.58 + Mg(SO4)2-2 3.635e-05 1.156e-05 -4.440 -4.937 -0.497 46.00 + MgHCO3+ 2.221e-05 1.497e-05 -4.654 -4.825 -0.171 5.70 + MgCO3 1.966e-06 2.138e-06 -5.706 -5.670 0.037 -17.09 + MgOH+ 7.536e-07 5.532e-07 -6.123 -6.257 -0.134 (0) Na 2.400e-01 - Na+ 2.347e-01 1.701e-01 -0.629 -0.769 -0.140 -0.85 - NaSO4- 5.251e-03 3.746e-03 -2.280 -2.426 -0.147 2.97 - NaHCO3 3.292e-05 3.892e-05 -4.483 -4.410 0.073 31.75 -O(0) 2.438e-04 - O2 1.219e-04 1.325e-04 -3.914 -3.878 0.036 30.24 + Na+ 2.365e-01 1.714e-01 -0.626 -0.766 -0.140 -0.85 + NaSO4- 3.498e-03 2.521e-03 -2.456 -2.598 -0.142 20.13 + NaHCO3 3.313e-05 3.921e-05 -4.480 -4.407 0.073 31.75 + Na2SO4 1.599e-07 1.722e-07 -6.796 -6.764 0.032 48.97 +O(0) 2.437e-04 + O2 1.218e-04 1.325e-04 -3.914 -3.878 0.037 30.24 S(6) 1.410e-02 - SO4-2 5.877e-03 1.376e-03 -2.231 -2.862 -0.631 32.29 - NaSO4- 5.251e-03 3.746e-03 -2.280 -2.426 -0.147 2.97 - CaSO4 1.496e-03 1.626e-03 -2.825 -2.789 0.036 7.42 - MgSO4 1.371e-03 1.620e-03 -2.863 -2.790 0.073 -8.62 - SrSO4 3.160e-05 3.436e-05 -4.500 -4.464 0.036 24.16 - KSO4- 2.634e-05 2.195e-05 -4.579 -4.659 -0.079 13.22 - Mg(SO4)2-2 2.392e-05 7.620e-06 -4.621 -5.118 -0.497 27.97 - HSO4- 4.398e-09 3.217e-09 -8.357 -8.493 -0.136 40.64 - CaHSO4+ 3.568e-10 2.610e-10 -9.448 -9.583 -0.136 (0) + SO4-2 7.335e-03 1.713e-03 -2.135 -2.766 -0.632 15.84 + NaSO4- 3.498e-03 2.521e-03 -2.456 -2.598 -0.142 20.13 + MgSO4 1.669e-03 1.975e-03 -2.778 -2.704 0.073 -0.58 + CaSO4 1.454e-03 1.509e-03 -2.837 -2.821 0.016 7.01 + SrSO4 3.868e-05 4.208e-05 -4.413 -4.376 0.037 24.16 + Mg(SO4)2-2 3.635e-05 1.156e-05 -4.440 -4.937 -0.497 46.00 + KSO4- 3.262e-05 2.720e-05 -4.486 -4.565 -0.079 31.55 + Na2SO4 1.599e-07 1.722e-07 -6.796 -6.764 0.032 48.97 + HSO4- 5.475e-09 4.005e-09 -8.262 -8.397 -0.136 40.64 + CaHSO4+ 4.444e-10 3.251e-10 -9.352 -9.488 -0.136 (0) Sr 5.050e-04 - Sr+2 4.726e-04 1.312e-04 -3.325 -3.882 -0.557 -16.75 - SrSO4 3.160e-05 3.436e-05 -4.500 -4.464 0.036 24.16 - SrHCO3+ 7.330e-07 5.211e-07 -6.135 -6.283 -0.148 (0) - SrCO3 3.617e-08 3.932e-08 -7.442 -7.405 0.036 -14.14 - SrOH+ 3.780e-10 2.652e-10 -9.422 -9.576 -0.154 (0) + Sr+2 4.656e-04 1.290e-04 -3.332 -3.889 -0.557 -16.75 + SrSO4 3.868e-05 4.208e-05 -4.413 -4.376 0.037 24.16 + SrHCO3+ 7.215e-07 5.127e-07 -6.142 -6.290 -0.148 (0) + SrCO3 3.557e-08 3.869e-08 -7.449 -7.412 0.037 -14.14 + SrOH+ 3.720e-10 2.608e-10 -9.429 -9.584 -0.154 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(296 K, 1 atm) - Anhydrite -0.78 -5.03 -4.26 CaSO4 + Anhydrite -0.65 -4.94 -4.28 CaSO4 Aragonite -0.15 -8.47 -8.32 CaCO3 - Arcanite -6.91 -8.81 -1.91 K2SO4 + Arcanite -6.82 -8.72 -1.91 K2SO4 Calcite -0.01 -8.47 -8.47 CaCO3 - Celestite -0.10 -6.74 -6.65 SrSO4 + Celestite -0.01 -6.66 -6.65 SrSO4 CO2(g) -3.34 -4.79 -1.44 CO2 - Dolomite -0.05 -17.10 -17.05 CaMg(CO3)2 - Epsomite -3.47 -5.22 -1.75 MgSO4:7H2O - Gypsum -0.46 -5.04 -4.58 CaSO4:2H2O + Dolomite -0.06 -17.11 -17.05 CaMg(CO3)2 + Epsomite -3.38 -5.13 -1.75 MgSO4:7H2O + Gypsum -0.40 -4.95 -4.54 CaSO4:2H2O H2(g) -41.48 -44.58 -3.10 H2 H2O(g) -1.56 -0.00 1.55 H2O Halite -3.03 -1.46 1.57 NaCl - Hexahydrite -3.64 -5.21 -1.57 MgSO4:6H2O - Kieserite -4.02 -5.19 -1.17 MgSO4:H2O - Mirabilite -3.12 -4.44 -1.33 Na2SO4:10H2O + Hexahydrite -3.56 -5.13 -1.57 MgSO4:6H2O + Kieserite -3.93 -5.10 -1.17 MgSO4:H2O + Mirabilite -3.49 -4.34 -0.85 Na2SO4:10H2O O2(g) -1.00 -3.88 -2.88 O2 Pressure 0.1 atm, phi 1.000 - Strontianite -0.92 -10.18 -9.27 SrCO3 + Strontianite -0.92 -10.19 -9.27 SrCO3 Sylvite -4.56 -3.67 0.89 KCl - Thenardite -4.11 -4.40 -0.29 Na2SO4 + Thenardite -4.98 -4.30 0.68 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. diff --git a/ex22.out b/ex22.out index 09fbe689..9f41fbdd 100644 --- a/ex22.out +++ b/ex22.out @@ -102,7 +102,7 @@ Initial solution 1. H(0) 1.416e-25 H2 7.079e-26 7.079e-26 -25.150 -25.150 0.000 28.61 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -42.080 -42.080 0.000 30.40 + O2 0.000e+00 0.000e+00 -42.063 -42.063 0.000 30.40 ------------------------------Saturation indices------------------------------- @@ -110,7 +110,7 @@ O(0) 0.000e+00 H2(g) -22.05 -25.15 -3.10 H2 H2O(g) -1.50 0.00 1.50 H2O - O2(g) -39.19 -42.08 -2.89 O2 + O2(g) -39.17 -42.06 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -187,10 +187,10 @@ H2O(g) -1.50 3.143e-02 1.000 0.000e+00 1.285e-03 1.285e-03 OH- 1.013e-07 1.012e-07 -6.995 -6.995 -0.000 -4.14 H+ 1.000e-07 1.000e-07 -7.000 -7.000 -0.000 0.00 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 -H(0) 1.140e-39 - H2 5.700e-40 5.700e-40 -39.244 -39.244 0.000 28.61 -O(0) 2.566e-14 - O2 1.283e-14 1.283e-14 -13.892 -13.892 0.000 30.40 +H(0) 1.141e-39 + H2 5.707e-40 5.707e-40 -39.244 -39.244 0.000 28.61 +O(0) 2.665e-14 + O2 1.332e-14 1.332e-14 -13.875 -13.875 0.000 30.40 ------------------------------Saturation indices------------------------------- @@ -198,7 +198,7 @@ O(0) 2.566e-14 H2(g) -36.14 -39.24 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 1.000 - O2(g) -11.00 -13.89 -2.89 O2 + O2(g) -10.98 -13.88 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -246,7 +246,7 @@ H2O(g) -1.45 3.586e-02 0.878 1.285e-03 1.587e-03 3.014e-04 ----------------------------Description of solution---------------------------- pH = 3.368 Charge balance - pe = 14.672 Adjusted to redox equilibrium + pe = 14.669 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 164 Density (g/cm³) = 1.00156 Volume (L) = 1.01670 @@ -273,24 +273,24 @@ H2O(g) -1.45 3.586e-02 0.878 1.285e-03 1.587e-03 3.014e-04 OH- 2.430e-11 2.372e-11 -10.614 -10.625 -0.010 -4.07 H2O 5.551e+01 9.930e-01 1.744 -0.003 0.000 18.06 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.321 -120.321 0.000 35.47 + CH4 0.000e+00 0.000e+00 -120.297 -120.297 0.000 35.47 C(4) 4.161e-01 CO2 4.095e-01 4.096e-01 -0.388 -0.388 0.000 34.43 (CO2)2 3.079e-03 3.079e-03 -2.512 -2.512 0.000 68.85 HCO3- 4.384e-04 4.282e-04 -3.358 -3.368 -0.010 24.61 CO3-2 5.227e-11 4.754e-11 -10.282 -10.323 -0.041 -3.86 -H(0) 1.160e-39 - H2 5.798e-40 5.798e-40 -39.237 -39.237 0.000 28.60 -O(0) 2.383e-14 - O2 1.191e-14 1.192e-14 -13.924 -13.924 0.000 30.38 +H(0) 1.176e-39 + H2 5.878e-40 5.879e-40 -39.231 -39.231 0.000 28.60 +O(0) 2.413e-14 + O2 1.206e-14 1.207e-14 -13.919 -13.918 0.000 30.38 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 13 atm) - CH4(g) -117.51 -120.32 -2.81 CH4 + CH4(g) -117.49 -120.30 -2.81 CH4 CO2(g) 1.09 -0.39 -1.48 CO2 Pressure 13.2 atm, phi 0.928 - H2(g) -36.13 -39.24 -3.11 H2 + H2(g) -36.12 -39.23 -3.11 H2 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.878 O2(g) -11.02 -13.92 -2.90 O2 @@ -340,7 +340,7 @@ H2O(g) -1.38 4.125e-02 0.766 1.587e-03 1.998e-03 4.108e-04 ----------------------------Description of solution---------------------------- pH = 3.241 Charge balance - pe = 14.793 Adjusted to redox equilibrium + pe = 14.799 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 216 Density (g/cm³) = 1.00523 Volume (L) = 1.02762 @@ -367,26 +367,26 @@ H2O(g) -1.38 4.125e-02 0.766 1.587e-03 1.998e-03 4.108e-04 OH- 1.829e-11 1.779e-11 -10.738 -10.750 -0.012 -4.02 H2O 5.551e+01 9.874e-01 1.744 -0.006 0.000 18.05 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.022 -120.022 0.000 35.49 + CH4 0.000e+00 0.000e+00 -120.071 -120.071 0.000 35.49 C(4) 7.506e-01 CO2 7.304e-01 7.304e-01 -0.136 -0.136 0.000 34.42 (CO2)2 9.792e-03 9.794e-03 -2.009 -2.009 0.000 68.84 HCO3- 5.901e-04 5.742e-04 -3.229 -3.241 -0.012 24.66 CO3-2 5.380e-11 4.823e-11 -10.269 -10.317 -0.047 -3.73 -H(0) 1.177e-39 - H2 5.884e-40 5.885e-40 -39.230 -39.230 0.000 28.59 -O(0) 2.227e-14 - O2 1.114e-14 1.114e-14 -13.953 -13.953 0.000 30.36 +H(0) 1.144e-39 + H2 5.721e-40 5.721e-40 -39.243 -39.243 0.000 28.59 +O(0) 2.453e-14 + O2 1.227e-14 1.227e-14 -13.911 -13.911 0.000 30.36 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 26 atm) - CH4(g) -117.20 -120.02 -2.82 CH4 + CH4(g) -117.25 -120.07 -2.82 CH4 CO2(g) 1.35 -0.14 -1.48 CO2 Pressure 25.8 atm, phi 0.862 - H2(g) -36.12 -39.23 -3.11 H2 + H2(g) -36.13 -39.24 -3.11 H2 H2O(g) -1.50 -0.01 1.49 H2O Pressure 0.0 atm, phi 0.766 - O2(g) -11.05 -13.95 -2.91 O2 + O2(g) -11.01 -13.91 -2.91 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -434,7 +434,7 @@ H2O(g) -1.32 4.764e-02 0.666 1.998e-03 2.555e-03 5.569e-04 ----------------------------Description of solution---------------------------- pH = 3.178 Charge balance - pe = 14.865 Adjusted to redox equilibrium + pe = 14.836 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 245 Density (g/cm³) = 1.00802 Volume (L) = 1.03574 @@ -461,26 +461,26 @@ H2O(g) -1.32 4.764e-02 0.666 1.998e-03 2.555e-03 5.569e-04 OH- 1.595e-11 1.548e-11 -10.797 -10.810 -0.013 -3.98 H2O 5.551e+01 9.832e-01 1.744 -0.007 0.000 18.04 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.972 -119.972 0.000 35.51 + CH4 0.000e+00 0.000e+00 -119.741 -119.741 0.000 35.51 C(4) 1.002e+00 CO2 9.669e-01 9.670e-01 -0.015 -0.015 0.000 34.42 (CO2)2 1.716e-02 1.717e-02 -1.765 -1.765 0.000 68.83 HCO3- 6.833e-04 6.636e-04 -3.165 -3.178 -0.013 24.70 CO3-2 5.494e-11 4.887e-11 -10.260 -10.311 -0.051 -3.61 -H(0) 1.117e-39 - H2 5.584e-40 5.585e-40 -39.253 -39.253 0.000 28.59 -O(0) 2.393e-14 - O2 1.197e-14 1.197e-14 -13.922 -13.922 0.000 30.35 +H(0) 1.275e-39 + H2 6.377e-40 6.378e-40 -39.195 -39.195 0.000 28.59 +O(0) 1.910e-14 + O2 9.552e-15 9.554e-15 -14.020 -14.020 0.000 30.35 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 37 atm) - CH4(g) -117.15 -119.97 -2.82 CH4 + CH4(g) -116.92 -119.74 -2.82 CH4 CO2(g) 1.48 -0.01 -1.49 CO2 Pressure 37.3 atm, phi 0.803 - H2(g) -36.13 -39.25 -3.12 H2 + H2(g) -36.08 -39.20 -3.12 H2 H2O(g) -1.50 -0.01 1.49 H2O Pressure 0.0 atm, phi 0.666 - O2(g) -11.01 -13.92 -2.91 O2 + O2(g) -11.11 -14.02 -2.91 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -528,7 +528,7 @@ H2O(g) -1.26 5.498e-02 0.580 2.555e-03 3.300e-03 7.455e-04 ----------------------------Description of solution---------------------------- pH = 3.142 Charge balance - pe = 14.877 Adjusted to redox equilibrium + pe = 14.906 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 263 Density (g/cm³) = 1.01002 Volume (L) = 1.04130 @@ -555,26 +555,26 @@ H2O(g) -1.26 5.498e-02 0.580 2.555e-03 3.300e-03 7.455e-04 OH- 1.480e-11 1.435e-11 -10.830 -10.843 -0.013 -3.94 H2O 5.551e+01 9.804e-01 1.744 -0.009 0.000 18.03 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.727 -119.727 0.000 35.52 + CH4 0.000e+00 0.000e+00 -119.955 -119.955 0.000 35.52 C(4) 1.177e+00 CO2 1.129e+00 1.129e+00 0.053 0.053 0.000 34.41 (CO2)2 2.341e-02 2.341e-02 -1.631 -1.631 0.000 68.82 HCO3- 7.422e-04 7.200e-04 -3.129 -3.143 -0.013 24.73 CO3-2 5.582e-11 4.942e-11 -10.253 -10.306 -0.053 -3.52 -H(0) 1.226e-39 - H2 6.128e-40 6.130e-40 -39.213 -39.213 0.000 28.58 -O(0) 1.936e-14 - O2 9.678e-15 9.679e-15 -14.014 -14.014 0.000 30.33 +H(0) 1.075e-39 + H2 5.374e-40 5.375e-40 -39.270 -39.270 0.000 28.58 +O(0) 2.620e-14 + O2 1.310e-14 1.310e-14 -13.883 -13.883 0.000 30.33 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 47 atm) - CH4(g) -116.90 -119.73 -2.83 CH4 + CH4(g) -117.12 -119.95 -2.83 CH4 CO2(g) 1.55 0.05 -1.50 CO2 Pressure 47.0 atm, phi 0.753 - H2(g) -36.09 -39.21 -3.12 H2 + H2(g) -36.15 -39.27 -3.12 H2 H2O(g) -1.50 -0.01 1.49 H2O Pressure 0.1 atm, phi 0.580 - O2(g) -11.10 -14.01 -2.92 O2 + O2(g) -10.97 -13.88 -2.92 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -622,7 +622,7 @@ H2O(g) -1.20 6.307e-02 0.507 3.300e-03 4.278e-03 9.775e-04 ----------------------------Description of solution---------------------------- pH = 3.122 Charge balance - pe = 14.890 Adjusted to redox equilibrium + pe = 14.936 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 273 Density (g/cm³) = 1.01134 Volume (L) = 1.04476 @@ -649,26 +649,26 @@ H2O(g) -1.20 6.307e-02 0.507 3.300e-03 4.278e-03 9.775e-04 OH- 1.421e-11 1.376e-11 -10.848 -10.861 -0.014 -3.91 H2O 5.551e+01 9.786e-01 1.744 -0.009 0.000 18.03 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.630 -119.630 0.000 35.53 + CH4 0.000e+00 0.000e+00 -120.002 -120.002 0.000 35.53 C(4) 1.288e+00 CO2 1.232e+00 1.232e+00 0.090 0.091 0.000 34.41 (CO2)2 2.784e-02 2.785e-02 -1.555 -1.555 0.000 68.82 HCO3- 7.783e-04 7.545e-04 -3.109 -3.122 -0.014 24.76 CO3-2 5.646e-11 4.985e-11 -10.248 -10.302 -0.054 -3.44 -H(0) 1.260e-39 - H2 6.298e-40 6.299e-40 -39.201 -39.201 0.000 28.58 -O(0) 1.797e-14 - O2 8.983e-15 8.984e-15 -14.047 -14.047 0.000 30.32 +H(0) 1.017e-39 + H2 5.084e-40 5.085e-40 -39.294 -39.294 0.000 28.58 +O(0) 2.870e-14 + O2 1.435e-14 1.435e-14 -13.843 -13.843 0.000 30.32 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 55 atm) - CH4(g) -116.79 -119.63 -2.84 CH4 + CH4(g) -117.17 -120.00 -2.84 CH4 CO2(g) 1.59 0.09 -1.50 CO2 Pressure 54.7 atm, phi 0.713 - H2(g) -36.07 -39.20 -3.13 H2 + H2(g) -36.17 -39.29 -3.13 H2 H2O(g) -1.50 -0.01 1.49 H2O Pressure 0.1 atm, phi 0.507 - O2(g) -11.13 -14.05 -2.92 O2 + O2(g) -10.92 -13.84 -2.92 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -716,7 +716,7 @@ H2O(g) -1.15 7.157e-02 0.448 4.278e-03 5.528e-03 1.251e-03 ----------------------------Description of solution---------------------------- pH = 3.111 Charge balance - pe = 14.943 Adjusted to redox equilibrium + pe = 14.941 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 279 Density (g/cm³) = 1.01215 Volume (L) = 1.04668 @@ -743,26 +743,26 @@ H2O(g) -1.15 7.157e-02 0.448 4.278e-03 5.528e-03 1.251e-03 OH- 1.390e-11 1.347e-11 -10.857 -10.871 -0.014 -3.89 H2O 5.551e+01 9.775e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.948 -119.948 0.000 35.54 + CH4 0.000e+00 0.000e+00 -119.937 -119.937 0.000 35.54 C(4) 1.352e+00 CO2 1.290e+00 1.290e+00 0.111 0.111 0.000 34.40 (CO2)2 3.055e-02 3.055e-02 -1.515 -1.515 0.000 68.81 HCO3- 7.989e-04 7.741e-04 -3.098 -3.111 -0.014 24.77 CO3-2 5.690e-11 5.016e-11 -10.245 -10.300 -0.055 -3.39 -H(0) 1.032e-39 - H2 5.158e-40 5.159e-40 -39.288 -39.287 0.000 28.58 -O(0) 2.643e-14 - O2 1.321e-14 1.322e-14 -13.879 -13.879 0.000 30.31 +H(0) 1.038e-39 + H2 5.192e-40 5.192e-40 -39.285 -39.285 0.000 28.58 +O(0) 2.715e-14 + O2 1.358e-14 1.358e-14 -13.867 -13.867 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 60 atm) - CH4(g) -117.11 -119.95 -2.84 CH4 + CH4(g) -117.10 -119.94 -2.84 CH4 CO2(g) 1.62 0.11 -1.50 CO2 Pressure 60.2 atm, phi 0.685 - H2(g) -36.16 -39.29 -3.13 H2 + H2(g) -36.15 -39.28 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.448 - O2(g) -10.95 -13.88 -2.92 O2 + O2(g) -10.94 -13.87 -2.92 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -810,7 +810,7 @@ H2O(g) -1.10 8.014e-02 0.401 5.528e-03 7.089e-03 1.561e-03 ----------------------------Description of solution---------------------------- pH = 3.105 Charge balance - pe = 14.977 Adjusted to redox equilibrium + pe = 14.961 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 282 Density (g/cm³) = 1.01257 Volume (L) = 1.04759 @@ -837,26 +837,26 @@ H2O(g) -1.10 8.014e-02 0.401 5.528e-03 7.089e-03 1.561e-03 OH- 1.376e-11 1.333e-11 -10.861 -10.875 -0.014 -3.88 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.171 -120.171 0.000 35.54 + CH4 0.000e+00 0.000e+00 -120.043 -120.043 0.000 35.54 C(4) 1.384e+00 CO2 1.319e+00 1.319e+00 0.120 0.120 0.000 34.40 (CO2)2 3.193e-02 3.194e-02 -1.496 -1.496 0.000 68.81 HCO3- 8.092e-04 7.839e-04 -3.092 -3.106 -0.014 24.78 CO3-2 5.716e-11 5.035e-11 -10.243 -10.298 -0.055 -3.36 -H(0) 8.998e-40 - H2 4.499e-40 4.500e-40 -39.347 -39.347 0.000 28.58 -O(0) 3.445e-14 - O2 1.723e-14 1.723e-14 -13.764 -13.764 0.000 30.31 +H(0) 9.686e-40 + H2 4.843e-40 4.844e-40 -39.315 -39.315 0.000 28.58 +O(0) 3.095e-14 + O2 1.548e-14 1.548e-14 -13.810 -13.810 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 64 atm) - CH4(g) -117.33 -120.17 -2.84 CH4 + CH4(g) -117.20 -120.04 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 63.5 atm, phi 0.667 - H2(g) -36.21 -39.35 -3.13 H2 + H2(g) -36.18 -39.31 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.401 - O2(g) -10.84 -13.76 -2.93 O2 + O2(g) -10.88 -13.81 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -904,7 +904,7 @@ H2O(g) -1.05 8.845e-02 0.364 7.089e-03 8.995e-03 1.905e-03 ----------------------------Description of solution---------------------------- pH = 3.103 Charge balance - pe = 14.980 Adjusted to redox equilibrium + pe = 14.949 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 283 Density (g/cm³) = 1.01273 Volume (L) = 1.04788 @@ -931,26 +931,26 @@ H2O(g) -1.05 8.845e-02 0.364 7.089e-03 8.995e-03 1.905e-03 OH- 1.372e-11 1.328e-11 -10.863 -10.877 -0.014 -3.87 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.173 -120.173 0.000 35.54 + CH4 0.000e+00 0.000e+00 -119.926 -119.926 0.000 35.54 C(4) 1.395e+00 CO2 1.329e+00 1.330e+00 0.124 0.124 0.000 34.40 (CO2)2 3.244e-02 3.245e-02 -1.489 -1.489 0.000 68.81 HCO3- 8.131e-04 7.876e-04 -3.090 -3.104 -0.014 24.79 CO3-2 5.727e-11 5.043e-11 -10.242 -10.297 -0.055 -3.35 -H(0) 8.956e-40 - H2 4.478e-40 4.479e-40 -39.349 -39.349 0.000 28.58 -O(0) 3.466e-14 - O2 1.733e-14 1.733e-14 -13.761 -13.761 0.000 30.31 +H(0) 1.032e-39 + H2 5.162e-40 5.163e-40 -39.287 -39.287 0.000 28.58 +O(0) 2.715e-14 + O2 1.358e-14 1.358e-14 -13.867 -13.867 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -117.33 -120.17 -2.84 CH4 + CH4(g) -117.08 -119.93 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.0 atm, phi 0.658 - H2(g) -36.22 -39.35 -3.13 H2 + H2(g) -36.15 -39.29 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.364 - O2(g) -10.83 -13.76 -2.93 O2 + O2(g) -10.94 -13.87 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -998,7 +998,7 @@ H2O(g) -1.02 9.646e-02 0.334 8.995e-03 1.127e-02 2.272e-03 ----------------------------Description of solution---------------------------- pH = 3.103 Charge balance - pe = 14.928 Adjusted to redox equilibrium + pe = 14.917 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 283 Density (g/cm³) = 1.01275 Volume (L) = 1.04787 @@ -1025,26 +1025,26 @@ H2O(g) -1.02 9.646e-02 0.334 8.995e-03 1.127e-02 2.272e-03 OH- 1.371e-11 1.328e-11 -10.863 -10.877 -0.014 -3.87 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.759 -119.759 0.000 35.54 + CH4 0.000e+00 0.000e+00 -119.669 -119.669 0.000 35.54 C(4) 1.396e+00 CO2 1.330e+00 1.331e+00 0.124 0.124 0.000 34.40 (CO2)2 3.249e-02 3.250e-02 -1.488 -1.488 0.000 68.81 HCO3- 8.134e-04 7.880e-04 -3.090 -3.103 -0.014 24.79 CO3-2 5.728e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 -H(0) 1.136e-39 - H2 5.681e-40 5.682e-40 -39.246 -39.245 0.000 28.58 -O(0) 2.152e-14 - O2 1.076e-14 1.076e-14 -13.968 -13.968 0.000 30.31 +H(0) 1.197e-39 + H2 5.985e-40 5.986e-40 -39.223 -39.223 0.000 28.58 +O(0) 2.019e-14 + O2 1.010e-14 1.010e-14 -13.996 -13.996 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -116.92 -119.76 -2.84 CH4 + CH4(g) -116.83 -119.67 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.1 atm, phi 0.657 - H2(g) -36.11 -39.25 -3.13 H2 + H2(g) -36.09 -39.22 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.334 - O2(g) -11.04 -13.97 -2.93 O2 + O2(g) -11.07 -14.00 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1092,7 +1092,7 @@ H2O(g) -0.98 1.051e-01 0.306 1.127e-02 1.389e-02 2.628e-03 ----------------------------Description of solution---------------------------- pH = 3.103 Charge balance - pe = 14.901 Adjusted to redox equilibrium + pe = 14.892 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 283 Density (g/cm³) = 1.01275 Volume (L) = 1.04780 @@ -1119,26 +1119,26 @@ H2O(g) -0.98 1.051e-01 0.306 1.127e-02 1.389e-02 2.628e-03 OH- 1.371e-11 1.328e-11 -10.863 -10.877 -0.014 -3.87 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.538 -119.538 0.000 35.54 + CH4 0.000e+00 0.000e+00 -119.469 -119.469 0.000 35.54 C(4) 1.396e+00 CO2 1.330e+00 1.330e+00 0.124 0.124 0.000 34.40 (CO2)2 3.246e-02 3.247e-02 -1.489 -1.489 0.000 68.81 HCO3- 8.133e-04 7.878e-04 -3.090 -3.104 -0.014 24.79 CO3-2 5.728e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 -H(0) 1.291e-39 - H2 6.453e-40 6.454e-40 -39.190 -39.190 0.000 28.58 -O(0) 1.668e-14 - O2 8.341e-15 8.343e-15 -14.079 -14.079 0.000 30.31 +H(0) 1.343e-39 + H2 6.715e-40 6.716e-40 -39.173 -39.173 0.000 28.58 +O(0) 1.604e-14 + O2 8.019e-15 8.021e-15 -14.096 -14.096 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -116.70 -119.54 -2.84 CH4 + CH4(g) -116.63 -119.47 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.1 atm, phi 0.657 - H2(g) -36.06 -39.19 -3.13 H2 + H2(g) -36.04 -39.17 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.306 - O2(g) -11.15 -14.08 -2.93 O2 + O2(g) -11.17 -14.10 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1186,7 +1186,7 @@ H2O(g) -0.94 1.145e-01 0.281 1.389e-02 1.691e-02 3.018e-03 ----------------------------Description of solution---------------------------- pH = 3.103 Charge balance - pe = 14.638 Adjusted to redox equilibrium + pe = 14.826 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 283 Density (g/cm³) = 1.01273 Volume (L) = 1.04770 @@ -1200,7 +1200,7 @@ H2O(g) -0.94 1.145e-01 0.281 1.389e-02 1.691e-02 3.018e-03 Pressure (atm) = 65.17 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 47 + Iterations = 46 Total H = 1.109786e+02 Total O = 5.827687e+01 @@ -1213,26 +1213,26 @@ H2O(g) -0.94 1.145e-01 0.281 1.389e-02 1.691e-02 3.018e-03 OH- 1.372e-11 1.328e-11 -10.863 -10.877 -0.014 -3.87 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -117.437 -117.437 0.000 35.54 + CH4 0.000e+00 0.000e+00 -118.942 -118.941 0.000 35.54 C(4) 1.394e+00 CO2 1.329e+00 1.329e+00 0.123 0.123 0.000 34.40 (CO2)2 3.240e-02 3.241e-02 -1.489 -1.489 0.000 68.81 HCO3- 8.129e-04 7.875e-04 -3.090 -3.104 -0.014 24.79 CO3-2 5.727e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 -H(0) 4.327e-39 - H2 2.163e-39 2.164e-39 -38.665 -38.665 0.000 28.58 -O(0) 1.484e-15 - O2 7.422e-16 7.423e-16 -15.129 -15.129 0.000 30.31 +H(0) 1.820e-39 + H2 9.101e-40 9.102e-40 -39.041 -39.041 0.000 28.58 +O(0) 8.733e-15 + O2 4.366e-15 4.367e-15 -14.360 -14.360 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -114.59 -117.44 -2.84 CH4 + CH4(g) -116.10 -118.94 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.1 atm, phi 0.657 - H2(g) -35.53 -38.66 -3.13 H2 + H2(g) -35.91 -39.04 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.281 - O2(g) -12.20 -15.13 -2.93 O2 + O2(g) -11.43 -14.36 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1280,7 +1280,7 @@ H2O(g) -0.90 1.248e-01 0.258 1.691e-02 2.036e-02 3.449e-03 ----------------------------Description of solution---------------------------- pH = 3.104 Charge balance - pe = 2.312 Adjusted to redox equilibrium + pe = 2.525 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 283 Density (g/cm³) = 1.01271 Volume (L) = 1.04756 @@ -1294,7 +1294,7 @@ H2O(g) -0.90 1.248e-01 0.258 1.691e-02 2.036e-02 3.449e-03 Pressure (atm) = 65.15 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 58 + Iterations = 65 Total H = 1.109717e+02 Total O = 5.826914e+01 @@ -1306,27 +1306,27 @@ H2O(g) -0.90 1.248e-01 0.258 1.691e-02 2.036e-02 3.449e-03 H+ 8.123e-04 7.877e-04 -3.090 -3.104 -0.013 0.00 OH- 1.373e-11 1.329e-11 -10.862 -10.876 -0.014 -3.87 H2O 5.551e+01 9.769e-01 1.744 -0.010 0.000 18.02 -C(-4) 1.454e-19 - CH4 1.454e-19 1.455e-19 -18.837 -18.837 0.000 35.54 +C(-4) 2.885e-21 + CH4 2.885e-21 2.886e-21 -20.540 -20.540 0.000 35.54 C(4) 1.392e+00 CO2 1.327e+00 1.327e+00 0.123 0.123 0.000 34.40 (CO2)2 3.231e-02 3.232e-02 -1.491 -1.491 0.000 68.81 HCO3- 8.123e-04 7.869e-04 -3.090 -3.104 -0.014 24.79 CO3-2 5.727e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 -H(0) 1.933e-14 - H2 9.667e-15 9.669e-15 -14.015 -14.015 0.000 28.58 +H(0) 7.256e-15 + H2 3.628e-15 3.629e-15 -14.440 -14.440 0.000 28.58 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.430 -64.430 0.000 30.31 + O2 0.000e+00 0.000e+00 -63.561 -63.561 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -15.99 -18.84 -2.84 CH4 + CH4(g) -17.70 -20.54 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.0 atm, phi 0.656 - H2(g) -10.88 -14.01 -3.13 H2 + H2(g) -11.31 -14.44 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.258 - O2(g) -61.50 -64.43 -2.93 O2 + O2(g) -60.63 -63.56 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1374,7 +1374,7 @@ H2O(g) -0.87 1.359e-01 0.237 2.036e-02 2.428e-02 3.919e-03 ----------------------------Description of solution---------------------------- pH = 3.104 Charge balance - pe = 14.806 Adjusted to redox equilibrium + pe = 14.801 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 283 Density (g/cm³) = 1.01269 Volume (L) = 1.04741 @@ -1388,7 +1388,7 @@ H2O(g) -0.87 1.359e-01 0.237 2.036e-02 2.428e-02 3.919e-03 Pressure (atm) = 65.14 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 60 + Iterations = 55 Total H = 1.109639e+02 Total O = 5.826024e+01 @@ -1401,26 +1401,26 @@ H2O(g) -0.87 1.359e-01 0.237 2.036e-02 2.428e-02 3.919e-03 OH- 1.374e-11 1.331e-11 -10.862 -10.876 -0.014 -3.87 H2O 5.551e+01 9.769e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -118.793 -118.793 0.000 35.54 + CH4 0.000e+00 0.000e+00 -118.750 -118.750 0.000 35.54 C(4) 1.390e+00 CO2 1.325e+00 1.325e+00 0.122 0.122 0.000 34.40 (CO2)2 3.221e-02 3.221e-02 -1.492 -1.492 0.000 68.81 HCO3- 8.116e-04 7.863e-04 -3.091 -3.104 -0.014 24.79 CO3-2 5.727e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 -H(0) 1.984e-39 - H2 9.922e-40 9.923e-40 -39.003 -39.003 0.000 28.58 -O(0) 7.060e-15 - O2 3.530e-15 3.531e-15 -14.452 -14.452 0.000 30.31 +H(0) 2.034e-39 + H2 1.017e-39 1.017e-39 -38.993 -38.993 0.000 28.58 +O(0) 6.992e-15 + O2 3.496e-15 3.497e-15 -14.456 -14.456 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -115.95 -118.79 -2.84 CH4 + CH4(g) -115.91 -118.75 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.0 atm, phi 0.655 - H2(g) -35.87 -39.00 -3.13 H2 + H2(g) -35.86 -38.99 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.237 - O2(g) -11.53 -14.45 -2.93 O2 + O2(g) -11.53 -14.46 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1468,7 +1468,7 @@ H2O(g) -0.83 1.479e-01 0.218 2.428e-02 2.871e-02 4.427e-03 ----------------------------Description of solution---------------------------- pH = 3.104 Charge balance - pe = 14.718 Adjusted to redox equilibrium + pe = 14.700 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 283 Density (g/cm³) = 1.01267 Volume (L) = 1.04724 @@ -1495,26 +1495,26 @@ H2O(g) -0.83 1.479e-01 0.218 2.428e-02 2.871e-02 4.427e-03 OH- 1.375e-11 1.332e-11 -10.862 -10.876 -0.014 -3.87 H2O 5.551e+01 9.769e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -118.092 -118.092 0.000 35.54 + CH4 0.000e+00 0.000e+00 -117.944 -117.943 0.000 35.54 C(4) 1.387e+00 CO2 1.322e+00 1.323e+00 0.121 0.121 0.000 34.40 (CO2)2 3.210e-02 3.211e-02 -1.493 -1.493 0.000 68.81 HCO3- 8.110e-04 7.856e-04 -3.091 -3.105 -0.014 24.79 CO3-2 5.726e-11 5.044e-11 -10.242 -10.297 -0.055 -3.34 -H(0) 2.972e-39 - H2 1.486e-39 1.486e-39 -38.828 -38.828 0.000 28.58 -O(0) 3.147e-15 - O2 1.573e-15 1.574e-15 -14.803 -14.803 0.000 30.31 +H(0) 3.237e-39 + H2 1.618e-39 1.619e-39 -38.791 -38.791 0.000 28.58 +O(0) 2.762e-15 + O2 1.381e-15 1.381e-15 -14.860 -14.860 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -115.25 -118.09 -2.84 CH4 + CH4(g) -115.10 -117.94 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 65.0 atm, phi 0.655 - H2(g) -35.69 -38.83 -3.13 H2 + H2(g) -35.66 -38.79 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.1 atm, phi 0.218 - O2(g) -11.88 -14.80 -2.93 O2 + O2(g) -11.93 -14.86 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1562,7 +1562,7 @@ H2O(g) -0.79 1.606e-01 0.200 2.871e-02 3.368e-02 4.970e-03 ----------------------------Description of solution---------------------------- pH = 3.105 Charge balance - pe = 14.909 Adjusted to redox equilibrium + pe = 14.862 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 283 Density (g/cm³) = 1.01265 Volume (L) = 1.04709 @@ -1589,26 +1589,26 @@ H2O(g) -0.79 1.606e-01 0.200 2.871e-02 3.368e-02 4.970e-03 OH- 1.376e-11 1.332e-11 -10.861 -10.875 -0.014 -3.87 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.621 -119.621 0.000 35.54 + CH4 0.000e+00 0.000e+00 -119.248 -119.248 0.000 35.54 C(4) 1.386e+00 CO2 1.321e+00 1.321e+00 0.121 0.121 0.000 34.40 (CO2)2 3.202e-02 3.203e-02 -1.495 -1.494 0.000 68.81 HCO3- 8.105e-04 7.852e-04 -3.091 -3.105 -0.014 24.79 CO3-2 5.726e-11 5.043e-11 -10.242 -10.297 -0.055 -3.35 -H(0) 1.233e-39 - H2 6.164e-40 6.165e-40 -39.210 -39.210 0.000 28.58 -O(0) 1.829e-14 - O2 9.147e-15 9.149e-15 -14.039 -14.039 0.000 30.31 +H(0) 1.528e-39 + H2 7.642e-40 7.643e-40 -39.117 -39.117 0.000 28.58 +O(0) 1.239e-14 + O2 6.195e-15 6.196e-15 -14.208 -14.208 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -116.78 -119.62 -2.84 CH4 + CH4(g) -116.41 -119.25 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 64.9 atm, phi 0.654 - H2(g) -36.08 -39.21 -3.13 H2 + H2(g) -35.98 -39.12 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.2 atm, phi 0.200 - O2(g) -11.11 -14.04 -2.93 O2 + O2(g) -11.28 -14.21 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1656,7 +1656,7 @@ H2O(g) -0.76 1.742e-01 0.185 3.368e-02 3.922e-02 5.546e-03 ----------------------------Description of solution---------------------------- pH = 3.105 Charge balance - pe = 14.952 Adjusted to redox equilibrium + pe = 14.903 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 282 Density (g/cm³) = 1.01265 Volume (L) = 1.04696 @@ -1683,26 +1683,26 @@ H2O(g) -0.76 1.742e-01 0.185 3.368e-02 3.922e-02 5.546e-03 OH- 1.377e-11 1.333e-11 -10.861 -10.875 -0.014 -3.87 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 18.02 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.965 -119.965 0.000 35.54 + CH4 0.000e+00 0.000e+00 -119.576 -119.576 0.000 35.54 C(4) 1.385e+00 CO2 1.320e+00 1.320e+00 0.121 0.121 0.000 34.40 (CO2)2 3.198e-02 3.199e-02 -1.495 -1.495 0.000 68.81 HCO3- 8.102e-04 7.849e-04 -3.091 -3.105 -0.014 24.79 CO3-2 5.726e-11 5.043e-11 -10.242 -10.297 -0.055 -3.35 -H(0) 1.012e-39 - H2 5.058e-40 5.059e-40 -39.296 -39.296 0.000 28.58 -O(0) 2.717e-14 - O2 1.359e-14 1.359e-14 -13.867 -13.867 0.000 30.31 +H(0) 1.266e-39 + H2 6.328e-40 6.330e-40 -39.199 -39.199 0.000 28.58 +O(0) 1.807e-14 + O2 9.035e-15 9.036e-15 -14.044 -14.044 0.000 30.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 65 atm) - CH4(g) -117.12 -119.96 -2.84 CH4 + CH4(g) -116.73 -119.58 -2.84 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 64.9 atm, phi 0.654 - H2(g) -36.16 -39.30 -3.13 H2 + H2(g) -36.07 -39.20 -3.13 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.2 atm, phi 0.185 - O2(g) -10.94 -13.87 -2.93 O2 + O2(g) -11.12 -14.04 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1750,7 +1750,7 @@ H2O(g) -0.69 2.026e-01 0.159 3.922e-02 4.502e-02 5.801e-03 ----------------------------Description of solution---------------------------- pH = 3.102 Charge balance - pe = 14.961 Adjusted to redox equilibrium + pe = 14.914 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 284 Density (g/cm³) = 1.01297 Volume (L) = 1.04694 @@ -1777,26 +1777,26 @@ H2O(g) -0.69 2.026e-01 0.159 3.922e-02 4.502e-02 5.801e-03 OH- 1.374e-11 1.331e-11 -10.862 -10.876 -0.014 -3.86 H2O 5.551e+01 9.768e-01 1.744 -0.010 0.000 18.01 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.015 -120.014 0.000 35.55 + CH4 0.000e+00 0.000e+00 -119.639 -119.639 0.000 35.55 C(4) 1.395e+00 CO2 1.329e+00 1.329e+00 0.124 0.124 0.000 34.40 (CO2)2 3.242e-02 3.243e-02 -1.489 -1.489 0.000 68.80 HCO3- 8.154e-04 7.899e-04 -3.089 -3.102 -0.014 24.81 CO3-2 5.762e-11 5.074e-11 -10.239 -10.295 -0.055 -3.30 -H(0) 9.773e-40 - H2 4.886e-40 4.887e-40 -39.311 -39.311 0.000 28.57 -O(0) 2.878e-14 - O2 1.439e-14 1.439e-14 -13.842 -13.842 0.000 30.30 +H(0) 1.213e-39 + H2 6.066e-40 6.067e-40 -39.217 -39.217 0.000 28.57 +O(0) 1.944e-14 + O2 9.721e-15 9.723e-15 -14.012 -14.012 0.000 30.30 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 70 atm) - CH4(g) -117.17 -120.01 -2.85 CH4 + CH4(g) -116.79 -119.64 -2.85 CH4 CO2(g) 1.63 0.12 -1.51 CO2 Pressure 70.2 atm, phi 0.613 - H2(g) -36.17 -39.31 -3.14 H2 + H2(g) -36.08 -39.22 -3.14 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.2 atm, phi 0.159 - O2(g) -10.91 -13.84 -2.93 O2 + O2(g) -11.08 -14.01 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1844,7 +1844,7 @@ H2O(g) -0.61 2.464e-01 0.132 4.502e-02 5.114e-02 6.118e-03 ----------------------------Description of solution---------------------------- pH = 3.097 Charge balance - pe = 14.914 Adjusted to redox equilibrium + pe = 14.952 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 287 Density (g/cm³) = 1.01354 Volume (L) = 1.04694 @@ -1871,26 +1871,26 @@ H2O(g) -0.61 2.464e-01 0.132 4.502e-02 5.114e-02 6.118e-03 OH- 1.371e-11 1.327e-11 -10.863 -10.877 -0.014 -3.82 H2O 5.551e+01 9.766e-01 1.744 -0.010 0.000 18.01 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.602 -119.602 0.000 35.56 + CH4 0.000e+00 0.000e+00 -119.907 -119.907 0.000 35.56 C(4) 1.411e+00 CO2 1.344e+00 1.344e+00 0.128 0.128 0.000 34.40 (CO2)2 3.314e-02 3.315e-02 -1.480 -1.480 0.000 68.79 HCO3- 8.244e-04 7.985e-04 -3.084 -3.098 -0.014 24.84 CO3-2 5.830e-11 5.130e-11 -10.234 -10.290 -0.056 -3.21 -H(0) 1.226e-39 - H2 6.131e-40 6.132e-40 -39.212 -39.212 0.000 28.57 -O(0) 1.790e-14 - O2 8.949e-15 8.951e-15 -14.048 -14.048 0.000 30.29 +H(0) 1.029e-39 + H2 5.143e-40 5.144e-40 -39.289 -39.289 0.000 28.57 +O(0) 2.648e-14 + O2 1.324e-14 1.324e-14 -13.878 -13.878 0.000 30.29 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 80 atm) - CH4(g) -116.75 -119.60 -2.85 CH4 + CH4(g) -117.06 -119.91 -2.85 CH4 CO2(g) 1.64 0.13 -1.52 CO2 Pressure 79.9 atm, phi 0.552 - H2(g) -36.07 -39.21 -3.14 H2 + H2(g) -36.15 -39.29 -3.14 H2 H2O(g) -1.49 -0.01 1.48 H2O Pressure 0.2 atm, phi 0.132 - O2(g) -11.11 -14.05 -2.93 O2 + O2(g) -10.94 -13.88 -2.93 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1938,7 +1938,7 @@ H2O(g) -0.51 3.084e-01 0.107 5.114e-02 5.758e-02 6.433e-03 ----------------------------Description of solution---------------------------- pH = 3.091 Charge balance - pe = 14.977 Adjusted to redox equilibrium + pe = 14.922 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 291 Density (g/cm³) = 1.01434 Volume (L) = 1.04689 @@ -1965,26 +1965,26 @@ H2O(g) -0.51 3.084e-01 0.107 5.114e-02 5.758e-02 6.433e-03 OH- 1.368e-11 1.324e-11 -10.864 -10.878 -0.014 -3.77 H2O 5.551e+01 9.762e-01 1.744 -0.010 0.000 17.99 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -120.056 -120.056 0.000 35.58 + CH4 0.000e+00 0.000e+00 -119.622 -119.622 0.000 35.58 C(4) 1.432e+00 CO2 1.363e+00 1.363e+00 0.134 0.134 0.000 34.39 (CO2)2 3.408e-02 3.409e-02 -1.467 -1.467 0.000 68.78 HCO3- 8.368e-04 8.103e-04 -3.077 -3.091 -0.014 24.89 CO3-2 5.929e-11 5.213e-11 -10.227 -10.283 -0.056 -3.08 -H(0) 9.303e-40 - H2 4.651e-40 4.652e-40 -39.332 -39.332 0.000 28.56 -O(0) 3.016e-14 - O2 1.508e-14 1.508e-14 -13.822 -13.821 0.000 30.26 +H(0) 1.194e-39 + H2 5.970e-40 5.972e-40 -39.224 -39.224 0.000 28.56 +O(0) 1.906e-14 + O2 9.529e-15 9.531e-15 -14.021 -14.021 0.000 30.26 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 94 atm) - CH4(g) -117.20 -120.06 -2.86 CH4 + CH4(g) -116.76 -119.62 -2.86 CH4 CO2(g) 1.66 0.13 -1.53 CO2 Pressure 94.1 atm, phi 0.485 - H2(g) -36.18 -39.33 -3.15 H2 + H2(g) -36.08 -39.22 -3.15 H2 H2O(g) -1.48 -0.01 1.47 H2O Pressure 0.3 atm, phi 0.107 - O2(g) -10.88 -13.82 -2.94 O2 + O2(g) -11.08 -14.02 -2.94 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2032,7 +2032,7 @@ H2O(g) -0.40 3.942e-01 0.085 5.758e-02 6.425e-02 6.677e-03 ----------------------------Description of solution---------------------------- pH = 3.083 Charge balance - pe = 14.941 Adjusted to redox equilibrium + pe = 15.000 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 297 Density (g/cm³) = 1.01543 Volume (L) = 1.04675 @@ -2059,26 +2059,26 @@ H2O(g) -0.40 3.942e-01 0.085 5.758e-02 6.425e-02 6.677e-03 OH- 1.365e-11 1.321e-11 -10.865 -10.879 -0.014 -3.70 H2O 5.551e+01 9.758e-01 1.744 -0.011 0.000 17.98 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.713 -119.713 0.000 35.61 + CH4 0.000e+00 0.000e+00 -120.184 -120.184 0.000 35.61 C(4) 1.457e+00 CO2 1.386e+00 1.386e+00 0.142 0.142 0.000 34.38 (CO2)2 3.526e-02 3.526e-02 -1.453 -1.453 0.000 68.76 HCO3- 8.532e-04 8.259e-04 -3.069 -3.083 -0.014 24.95 CO3-2 6.067e-11 5.329e-11 -10.217 -10.273 -0.056 -2.90 -H(0) 1.111e-39 - H2 5.555e-40 5.556e-40 -39.255 -39.255 0.000 28.55 -O(0) 2.028e-14 - O2 1.014e-14 1.014e-14 -13.994 -13.994 0.000 30.24 +H(0) 8.470e-40 + H2 4.235e-40 4.236e-40 -39.373 -39.373 0.000 28.55 +O(0) 3.631e-14 + O2 1.815e-14 1.816e-14 -13.741 -13.741 0.000 30.24 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 114 atm) - CH4(g) -116.84 -119.71 -2.87 CH4 + CH4(g) -117.31 -120.18 -2.87 CH4 CO2(g) 1.68 0.14 -1.54 CO2 Pressure 113.8 atm, phi 0.420 - H2(g) -36.10 -39.26 -3.16 H2 + H2(g) -36.21 -39.37 -3.16 H2 H2O(g) -1.48 -0.01 1.47 H2O Pressure 0.4 atm, phi 0.085 - O2(g) -11.04 -13.99 -2.95 O2 + O2(g) -10.79 -13.74 -2.95 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2126,7 +2126,7 @@ H2O(g) -0.29 5.106e-01 0.066 6.425e-02 7.108e-02 6.829e-03 ----------------------------Description of solution---------------------------- pH = 3.072 Charge balance - pe = 14.978 Adjusted to redox equilibrium + pe = 15.013 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 305 Density (g/cm³) = 1.01684 Volume (L) = 1.04648 @@ -2153,26 +2153,26 @@ H2O(g) -0.29 5.106e-01 0.066 6.425e-02 7.108e-02 6.829e-03 OH- 1.363e-11 1.318e-11 -10.866 -10.880 -0.014 -3.61 H2O 5.551e+01 9.753e-01 1.744 -0.011 0.000 17.96 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.928 -119.928 0.000 35.64 + CH4 0.000e+00 0.000e+00 -120.214 -120.214 0.000 35.64 C(4) 1.488e+00 CO2 1.413e+00 1.414e+00 0.150 0.150 0.000 34.37 (CO2)2 3.667e-02 3.668e-02 -1.436 -1.436 0.000 68.73 HCO3- 8.742e-04 8.461e-04 -3.058 -3.073 -0.014 25.03 CO3-2 6.256e-11 5.487e-11 -10.204 -10.261 -0.057 -2.66 -H(0) 9.564e-40 - H2 4.782e-40 4.783e-40 -39.320 -39.320 0.000 28.54 -O(0) 2.585e-14 - O2 1.292e-14 1.293e-14 -13.889 -13.889 0.000 30.20 +H(0) 8.114e-40 + H2 4.057e-40 4.058e-40 -39.392 -39.392 0.000 28.54 +O(0) 3.739e-14 + O2 1.869e-14 1.870e-14 -13.728 -13.728 0.000 30.20 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 141 atm) - CH4(g) -117.04 -119.93 -2.89 CH4 + CH4(g) -117.32 -120.21 -2.89 CH4 CO2(g) 1.70 0.15 -1.55 CO2 Pressure 140.2 atm, phi 0.361 - H2(g) -36.15 -39.32 -3.17 H2 + H2(g) -36.22 -39.39 -3.17 H2 H2O(g) -1.47 -0.01 1.46 H2O Pressure 0.5 atm, phi 0.066 - O2(g) -10.92 -13.89 -2.97 O2 + O2(g) -10.76 -13.73 -2.97 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2220,7 +2220,7 @@ H2O(g) -0.18 6.655e-01 0.052 7.108e-02 7.795e-02 6.869e-03 ----------------------------Description of solution---------------------------- pH = 3.059 Charge balance - pe = 15.552 Adjusted to redox equilibrium + pe = 16.015 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 314 Density (g/cm³) = 1.01866 Volume (L) = 1.04600 @@ -2234,7 +2234,7 @@ H2O(g) -0.18 6.655e-01 0.052 7.108e-02 7.795e-02 6.869e-03 Pressure (atm) = 175.50 Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 48 (149 overall) + Iterations = 40 (141 overall) Total H = 1.108565e+02 Total O = 5.846928e+01 @@ -2247,26 +2247,26 @@ H2O(g) -0.18 6.655e-01 0.052 7.108e-02 7.795e-02 6.869e-03 OH- 1.363e-11 1.317e-11 -10.866 -10.880 -0.015 -3.49 H2O 5.551e+01 9.748e-01 1.744 -0.011 0.000 17.93 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -124.435 -124.435 0.000 35.68 + CH4 0.000e+00 0.000e+00 -128.139 -128.139 0.000 35.68 C(4) 1.523e+00 CO2 1.445e+00 1.445e+00 0.160 0.160 0.000 34.35 (CO2)2 3.833e-02 3.834e-02 -1.416 -1.416 0.000 68.70 HCO3- 9.010e-04 8.715e-04 -3.045 -3.060 -0.014 25.14 CO3-2 6.509e-11 5.700e-11 -10.186 -10.244 -0.058 -2.36 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.461 -40.461 0.000 28.53 -O(0) 4.595e-12 - O2 2.298e-12 2.298e-12 -11.639 -11.639 0.000 30.15 + H2 0.000e+00 0.000e+00 -41.388 -41.387 0.000 28.53 +O(0) 3.404e-10 + O2 1.702e-10 1.702e-10 -9.769 -9.769 0.000 30.15 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 176 atm) - CH4(g) -121.52 -124.43 -2.91 CH4 + CH4(g) -125.23 -128.14 -2.91 CH4 CO2(g) 1.73 0.16 -1.57 CO2 Pressure 174.8 atm, phi 0.310 - H2(g) -37.27 -40.46 -3.19 H2 + H2(g) -38.20 -41.39 -3.19 H2 H2O(g) -1.46 -0.01 1.45 H2O Pressure 0.7 atm, phi 0.052 - O2(g) -8.65 -11.64 -2.99 O2 + O2(g) -6.78 -9.77 -2.99 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2314,7 +2314,7 @@ H2O(g) -0.06 8.678e-01 0.041 7.795e-02 8.472e-02 6.772e-03 ----------------------------Description of solution---------------------------- pH = 3.044 Charge balance - pe = 16.115 Adjusted to redox equilibrium + pe = 16.030 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 326 Density (g/cm³) = 1.02093 Volume (L) = 1.04525 @@ -2322,13 +2322,13 @@ H2O(g) -0.06 8.678e-01 0.041 7.795e-02 8.472e-02 6.772e-03 Activity of water = 0.974 Ionic strength (mol/kgw) = 9.345e-04 Mass of water (kg) = 9.985e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.562e+00 Temperature (°C) = 25.00 Pressure (atm) = 220.47 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 38 (139 overall) + Iterations = 35 (136 overall) Total H = 1.108430e+02 Total O = 5.854160e+01 @@ -2341,26 +2341,26 @@ H2O(g) -0.06 8.678e-01 0.041 7.795e-02 8.472e-02 6.772e-03 OH- 1.365e-11 1.319e-11 -10.865 -10.880 -0.015 -3.34 H2O 5.551e+01 9.741e-01 1.744 -0.011 0.000 17.89 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -128.831 -128.831 0.000 35.73 + CH4 0.000e+00 0.000e+00 -128.150 -128.150 0.000 35.73 C(4) 1.562e+00 CO2 1.481e+00 1.481e+00 0.171 0.171 0.000 34.33 (CO2)2 4.026e-02 4.027e-02 -1.395 -1.395 0.000 68.66 HCO3- 9.345e-04 9.035e-04 -3.029 -3.044 -0.015 25.28 CO3-2 6.845e-11 5.982e-11 -10.165 -10.223 -0.059 -1.98 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.579 -41.578 0.000 28.51 -O(0) 7.163e-10 - O2 3.582e-10 3.582e-10 -9.446 -9.446 0.000 30.09 + H2 0.000e+00 0.000e+00 -41.408 -41.408 0.000 28.51 +O(0) 3.405e-10 + O2 1.702e-10 1.703e-10 -9.769 -9.769 0.000 30.09 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 220 atm) - CH4(g) -125.89 -128.83 -2.94 CH4 + CH4(g) -125.21 -128.15 -2.94 CH4 CO2(g) 1.77 0.17 -1.60 CO2 Pressure 219.6 atm, phi 0.270 - H2(g) -38.37 -41.58 -3.21 H2 + H2(g) -38.20 -41.41 -3.21 H2 H2O(g) -1.44 -0.01 1.43 H2O Pressure 0.9 atm, phi 0.041 - O2(g) -6.44 -9.45 -3.01 O2 + O2(g) -6.76 -9.77 -3.01 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2408,7 +2408,7 @@ H2O(g) 0.05 1.127e+00 0.033 8.472e-02 9.124e-02 6.514e-03 ----------------------------Description of solution---------------------------- pH = 3.025 Charge balance - pe = 16.133 Adjusted to redox equilibrium + pe = 16.047 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 341 Density (g/cm³) = 1.02376 Volume (L) = 1.04415 @@ -2416,13 +2416,13 @@ H2O(g) 0.05 1.127e+00 0.033 8.472e-02 9.124e-02 6.514e-03 Activity of water = 0.973 Ionic strength (mol/kgw) = 9.763e-04 Mass of water (kg) = 9.983e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.607e+00 Temperature (°C) = 25.00 Pressure (atm) = 277.89 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 36 (137 overall) + Iterations = 35 (136 overall) Total H = 1.108300e+02 Total O = 5.862318e+01 @@ -2435,26 +2435,26 @@ H2O(g) 0.05 1.127e+00 0.033 8.472e-02 9.124e-02 6.514e-03 OH- 1.370e-11 1.323e-11 -10.863 -10.878 -0.015 -3.15 H2O 5.551e+01 9.734e-01 1.744 -0.012 0.000 17.85 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -128.847 -128.846 0.000 35.80 + CH4 0.000e+00 0.000e+00 -128.166 -128.165 0.000 35.80 C(4) 1.607e+00 CO2 1.521e+00 1.521e+00 0.182 0.182 0.000 34.30 (CO2)2 4.246e-02 4.247e-02 -1.372 -1.372 0.000 68.61 HCO3- 9.763e-04 9.433e-04 -3.010 -3.025 -0.015 25.45 CO3-2 7.290e-11 6.355e-11 -10.137 -10.197 -0.060 -1.51 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.605 -41.605 0.000 28.48 -O(0) 7.164e-10 - O2 3.582e-10 3.583e-10 -9.446 -9.446 0.000 30.02 + H2 0.000e+00 0.000e+00 -41.435 -41.435 0.000 28.48 +O(0) 3.405e-10 + O2 1.702e-10 1.703e-10 -9.769 -9.769 0.000 30.02 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 278 atm) - CH4(g) -125.87 -128.85 -2.98 CH4 + CH4(g) -125.19 -128.17 -2.98 CH4 CO2(g) 1.82 0.18 -1.64 CO2 Pressure 276.8 atm, phi 0.238 - H2(g) -38.36 -41.60 -3.24 H2 + H2(g) -38.19 -41.43 -3.24 H2 H2O(g) -1.43 -0.01 1.42 H2O Pressure 1.1 atm, phi 0.033 - O2(g) -6.41 -9.45 -3.04 O2 + O2(g) -6.73 -9.77 -3.04 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2502,7 +2502,7 @@ H2O(g) 0.16 1.455e+00 0.027 9.124e-02 9.730e-02 6.064e-03 ----------------------------Description of solution---------------------------- pH = 3.003 Charge balance - pe = 16.153 Adjusted to redox equilibrium + pe = 16.068 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 360 Density (g/cm³) = 1.02723 Volume (L) = 1.04258 @@ -2510,11 +2510,11 @@ H2O(g) 0.16 1.455e+00 0.027 9.124e-02 9.730e-02 6.064e-03 Activity of water = 0.973 Ionic strength (mol/kgw) = 1.028e-03 Mass of water (kg) = 9.982e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.655e+00 Temperature (°C) = 25.00 Pressure (atm) = 350.70 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.108178e+02 @@ -2529,26 +2529,26 @@ H2O(g) 0.16 1.455e+00 0.027 9.124e-02 9.730e-02 6.064e-03 OH- 1.380e-11 1.332e-11 -10.860 -10.876 -0.016 -2.93 H2O 5.551e+01 9.726e-01 1.744 -0.012 0.000 17.79 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -128.869 -128.869 0.000 35.87 + CH4 0.000e+00 0.000e+00 -128.188 -128.188 0.000 35.87 C(4) 1.655e+00 CO2 1.564e+00 1.565e+00 0.194 0.194 0.000 34.27 (CO2)2 4.492e-02 4.493e-02 -1.348 -1.347 0.000 68.54 HCO3- 1.028e-03 9.930e-04 -2.988 -3.003 -0.015 25.66 CO3-2 7.880e-11 6.850e-11 -10.103 -10.164 -0.061 -0.93 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.638 -41.638 0.000 28.46 -O(0) 7.165e-10 - O2 3.583e-10 3.583e-10 -9.446 -9.446 0.000 29.93 + H2 0.000e+00 0.000e+00 -41.468 -41.468 0.000 28.46 +O(0) 3.405e-10 + O2 1.703e-10 1.703e-10 -9.769 -9.769 0.000 29.93 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 351 atm) - CH4(g) -125.84 -128.87 -3.02 CH4 + CH4(g) -125.16 -128.19 -3.02 CH4 CO2(g) 1.88 0.19 -1.68 CO2 Pressure 349.2 atm, phi 0.215 - H2(g) -38.36 -41.64 -3.28 H2 + H2(g) -38.19 -41.47 -3.28 H2 H2O(g) -1.40 -0.01 1.39 H2O Pressure 1.5 atm, phi 0.027 - O2(g) -6.37 -9.45 -3.08 O2 + O2(g) -6.69 -9.77 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2596,7 +2596,7 @@ H2O(g) 0.27 1.863e+00 0.023 9.730e-02 1.027e-01 5.386e-03 ----------------------------Description of solution---------------------------- pH = 2.976 Charge balance - pe = 16.178 Adjusted to redox equilibrium + pe = 16.092 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 384 Density (g/cm³) = 1.03147 Volume (L) = 1.04041 @@ -2604,11 +2604,11 @@ H2O(g) 0.27 1.863e+00 0.023 9.730e-02 1.027e-01 5.386e-03 Activity of water = 0.972 Ionic strength (mol/kgw) = 1.094e-03 Mass of water (kg) = 9.981e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.707e+00 Temperature (°C) = 25.00 Pressure (atm) = 442.66 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.108071e+02 @@ -2623,26 +2623,26 @@ H2O(g) 0.27 1.863e+00 0.023 9.730e-02 1.027e-01 5.386e-03 OH- 1.395e-11 1.345e-11 -10.855 -10.871 -0.016 -2.66 H2O 5.551e+01 9.718e-01 1.744 -0.012 0.000 17.73 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -128.900 -128.899 0.000 35.96 + CH4 0.000e+00 0.000e+00 -128.219 -128.218 0.000 35.96 C(4) 1.707e+00 CO2 1.611e+00 1.611e+00 0.207 0.207 0.000 34.23 (CO2)2 4.764e-02 4.765e-02 -1.322 -1.322 0.000 68.46 HCO3- 1.094e-03 1.055e-03 -2.961 -2.977 -0.016 25.91 CO3-2 8.669e-11 7.509e-11 -10.062 -10.124 -0.062 -0.24 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.680 -41.680 0.000 28.42 -O(0) 7.166e-10 - O2 3.583e-10 3.584e-10 -9.446 -9.446 0.000 29.83 + H2 0.000e+00 0.000e+00 -41.510 -41.510 0.000 28.42 +O(0) 3.406e-10 + O2 1.703e-10 1.703e-10 -9.769 -9.769 0.000 29.83 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 443 atm) - CH4(g) -125.82 -128.90 -3.08 CH4 + CH4(g) -125.13 -128.22 -3.08 CH4 CO2(g) 1.94 0.21 -1.74 CO2 Pressure 440.8 atm, phi 0.199 - H2(g) -38.36 -41.68 -3.32 H2 + H2(g) -38.19 -41.51 -3.32 H2 H2O(g) -1.38 -0.01 1.36 H2O Pressure 1.9 atm, phi 0.023 - O2(g) -6.32 -9.45 -3.13 O2 + O2(g) -6.64 -9.77 -3.13 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2690,7 +2690,7 @@ H2O(g) 0.37 2.361e+00 0.019 1.027e-01 1.071e-01 4.442e-03 ----------------------------Description of solution---------------------------- pH = 2.945 Charge balance - pe = 16.206 Adjusted to redox equilibrium + pe = 16.121 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 415 Density (g/cm³) = 1.03663 Volume (L) = 1.03747 @@ -2698,13 +2698,13 @@ H2O(g) 0.37 2.361e+00 0.019 1.027e-01 1.071e-01 4.442e-03 Activity of water = 0.971 Ionic strength (mol/kgw) = 1.176e-03 Mass of water (kg) = 9.980e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.213e-09 Total CO2 (mol/kg) = 1.762e+00 Temperature (°C) = 25.00 Pressure (atm) = 558.75 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 37 (138 overall) + Iterations = 32 (133 overall) Total H = 1.107982e+02 Total O = 5.891645e+01 @@ -2717,26 +2717,26 @@ H2O(g) 0.37 2.361e+00 0.019 1.027e-01 1.071e-01 4.442e-03 OH- 1.418e-11 1.366e-11 -10.848 -10.865 -0.016 -2.33 H2O 5.551e+01 9.709e-01 1.744 -0.013 0.000 17.64 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -128.942 -128.941 0.000 36.07 + CH4 0.000e+00 0.000e+00 -128.261 -128.261 0.000 36.07 C(4) 1.762e+00 CO2 1.660e+00 1.660e+00 0.220 0.220 0.000 34.18 (CO2)2 5.057e-02 5.059e-02 -1.296 -1.296 0.000 68.35 HCO3- 1.176e-03 1.133e-03 -2.930 -2.946 -0.016 26.21 CO3-2 9.737e-11 8.398e-11 -10.012 -10.076 -0.064 0.59 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.733 -41.733 0.000 28.38 -O(0) 7.167e-10 - O2 3.583e-10 3.584e-10 -9.446 -9.446 0.000 29.70 + H2 0.000e+00 0.000e+00 -41.563 -41.563 0.000 28.38 +O(0) 3.406e-10 + O2 1.703e-10 1.703e-10 -9.769 -9.769 0.000 29.70 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 559 atm) - CH4(g) -125.78 -128.94 -3.16 CH4 + CH4(g) -125.10 -128.26 -3.16 CH4 CO2(g) 2.03 0.22 -1.81 CO2 Pressure 556.4 atm, phi 0.191 - H2(g) -38.35 -41.73 -3.38 H2 + H2(g) -38.18 -41.56 -3.38 H2 H2O(g) -1.34 -0.01 1.33 H2O Pressure 2.4 atm, phi 0.019 - O2(g) -6.26 -9.45 -3.19 O2 + O2(g) -6.58 -9.77 -3.19 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2784,7 +2784,7 @@ H2O(g) 0.47 2.960e+00 0.017 1.071e-01 1.103e-01 3.179e-03 ----------------------------Description of solution---------------------------- pH = 2.909 Charge balance - pe = 16.239 Adjusted to redox equilibrium + pe = 16.154 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 454 Density (g/cm³) = 1.04287 Volume (L) = 1.03356 @@ -2792,13 +2792,13 @@ H2O(g) 0.47 2.960e+00 0.017 1.071e-01 1.103e-01 3.179e-03 Activity of water = 0.970 Ionic strength (mol/kgw) = 1.280e-03 Mass of water (kg) = 9.980e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.213e-09 Total CO2 (mol/kg) = 1.818e+00 Temperature (°C) = 25.00 Pressure (atm) = 705.72 - Electrical balance (eq) = -1.212e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 37 (138 overall) + Iterations = 41 (142 overall) Total H = 1.107918e+02 Total O = 5.902505e+01 @@ -2811,26 +2811,26 @@ H2O(g) 0.47 2.960e+00 0.017 1.071e-01 1.103e-01 3.179e-03 OH- 1.451e-11 1.395e-11 -10.838 -10.855 -0.017 -1.95 H2O 5.551e+01 9.700e-01 1.744 -0.013 0.000 17.54 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -128.999 -128.998 0.000 36.18 + CH4 0.000e+00 0.000e+00 -128.318 -128.317 0.000 36.18 C(4) 1.818e+00 CO2 1.710e+00 1.710e+00 0.233 0.233 0.000 34.11 (CO2)2 5.365e-02 5.367e-02 -1.270 -1.270 0.000 68.22 HCO3- 1.280e-03 1.232e-03 -2.893 -2.909 -0.017 26.56 CO3-2 1.121e-10 9.622e-11 -9.950 -10.017 -0.066 1.56 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.800 -41.800 0.000 28.34 -O(0) 7.167e-10 - O2 3.583e-10 3.585e-10 -9.446 -9.446 0.000 29.55 + H2 0.000e+00 0.000e+00 -41.630 -41.630 0.000 28.34 +O(0) 3.406e-10 + O2 1.703e-10 1.704e-10 -9.769 -9.769 0.000 29.55 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 706 atm) - CH4(g) -125.74 -129.00 -3.25 CH4 + CH4(g) -125.06 -128.32 -3.25 CH4 CO2(g) 2.13 0.23 -1.89 CO2 Pressure 702.8 atm, phi 0.191 - H2(g) -38.34 -41.80 -3.46 H2 + H2(g) -38.17 -41.63 -3.46 H2 H2O(g) -1.30 -0.01 1.28 H2O Pressure 3.0 atm, phi 0.017 - O2(g) -6.18 -9.45 -3.26 O2 + O2(g) -6.51 -9.77 -3.26 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2878,7 +2878,7 @@ H2O(g) 0.56 3.666e+00 0.016 1.103e-01 1.118e-01 1.531e-03 ----------------------------Description of solution---------------------------- pH = 2.866 Charge balance - pe = 16.278 Adjusted to redox equilibrium + pe = 16.193 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 505 Density (g/cm³) = 1.05046 Volume (L) = 1.02838 @@ -2886,13 +2886,13 @@ H2O(g) 0.56 3.666e+00 0.016 1.103e-01 1.118e-01 1.531e-03 Activity of water = 0.969 Ionic strength (mol/kgw) = 1.414e-03 Mass of water (kg) = 9.980e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.213e-09 Total CO2 (mol/kg) = 1.873e+00 Temperature (°C) = 25.00 Pressure (atm) = 893.08 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 46 (147 overall) + Iterations = 52 (153 overall) Total H = 1.107888e+02 Total O = 5.913372e+01 @@ -2905,26 +2905,26 @@ H2O(g) 0.56 3.666e+00 0.016 1.103e-01 1.118e-01 1.531e-03 OH- 1.496e-11 1.436e-11 -10.825 -10.843 -0.018 -1.51 H2O 5.551e+01 9.691e-01 1.744 -0.014 0.000 17.42 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -129.076 -129.076 0.000 36.31 + CH4 0.000e+00 0.000e+00 -128.395 -128.395 0.000 36.31 C(4) 1.873e+00 CO2 1.759e+00 1.759e+00 0.245 0.245 0.000 34.03 (CO2)2 5.677e-02 5.679e-02 -1.246 -1.246 0.000 68.06 HCO3- 1.414e-03 1.359e-03 -2.849 -2.867 -0.017 26.97 CO3-2 1.330e-10 1.135e-10 -9.876 -9.945 -0.069 2.69 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.886 -41.886 0.000 28.28 -O(0) 7.167e-10 - O2 3.584e-10 3.585e-10 -9.446 -9.446 0.000 29.38 + H2 0.000e+00 0.000e+00 -41.715 -41.715 0.000 28.28 +O(0) 3.406e-10 + O2 1.703e-10 1.704e-10 -9.769 -9.769 0.000 29.38 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 893 atm) - CH4(g) -125.70 -129.08 -3.38 CH4 + CH4(g) -125.02 -128.39 -3.38 CH4 CO2(g) 2.25 0.25 -2.01 CO2 Pressure 889.4 atm, phi 0.201 - H2(g) -38.34 -41.89 -3.55 H2 + H2(g) -38.17 -41.72 -3.55 H2 H2O(g) -1.24 -0.01 1.23 H2O Pressure 3.7 atm, phi 0.016 - O2(g) -6.09 -9.45 -3.36 O2 + O2(g) -6.41 -9.77 -3.36 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2972,7 +2972,7 @@ H2O(g) 0.65 4.478e+00 0.015 1.118e-01 1.112e-01 -5.962e-04 ----------------------------Description of solution---------------------------- pH = 2.816 Charge balance - pe = 16.323 Adjusted to redox equilibrium + pe = 16.238 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 572 Density (g/cm³) = 1.05981 Volume (L) = 1.02144 @@ -2980,13 +2980,13 @@ H2O(g) 0.65 4.478e+00 0.015 1.118e-01 1.112e-01 -5.962e-04 Activity of water = 0.968 Ionic strength (mol/kgw) = 1.591e-03 Mass of water (kg) = 9.980e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.214e-09 Total CO2 (mol/kg) = 1.925e+00 Temperature (°C) = 25.00 Pressure (atm) = 1134.73 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 54 (155 overall) + Iterations = 53 (154 overall) Total H = 1.107900e+02 Total O = 5.923633e+01 @@ -2999,26 +2999,26 @@ H2O(g) 0.65 4.478e+00 0.015 1.118e-01 1.112e-01 -5.962e-04 OH- 1.558e-11 1.493e-11 -10.807 -10.826 -0.018 -0.99 H2O 5.551e+01 9.683e-01 1.744 -0.014 0.000 17.26 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -129.181 -129.181 0.000 36.45 + CH4 0.000e+00 0.000e+00 -128.500 -128.500 0.000 36.45 C(4) 1.925e+00 CO2 1.804e+00 1.804e+00 0.256 0.256 0.000 33.93 (CO2)2 5.971e-02 5.974e-02 -1.224 -1.224 0.000 67.87 HCO3- 1.591e-03 1.527e-03 -2.798 -2.816 -0.018 27.45 CO3-2 1.638e-10 1.387e-10 -9.786 -9.858 -0.072 4.01 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -41.996 -41.995 0.000 28.22 -O(0) 7.167e-10 - O2 3.584e-10 3.585e-10 -9.446 -9.446 0.000 29.18 + H2 0.000e+00 0.000e+00 -41.825 -41.825 0.000 28.22 +O(0) 3.406e-10 + O2 1.703e-10 1.704e-10 -9.769 -9.769 0.000 29.18 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1135 atm) - CH4(g) -125.65 -129.18 -3.54 CH4 + CH4(g) -124.96 -128.50 -3.54 CH4 CO2(g) 2.41 0.26 -2.15 CO2 Pressure 1130.2 atm, phi 0.226 - H2(g) -38.33 -42.00 -3.67 H2 + H2(g) -38.16 -41.83 -3.67 H2 H2O(g) -1.17 -0.01 1.16 H2O Pressure 4.5 atm, phi 0.015 - O2(g) -5.97 -9.45 -3.48 O2 + O2(g) -6.29 -9.77 -3.48 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3066,7 +3066,7 @@ H2O(g) 0.73 5.375e+00 0.016 1.112e-01 1.079e-01 -3.372e-03 ----------------------------Description of solution---------------------------- pH = 2.756 Charge balance - pe = 16.377 Adjusted to redox equilibrium + pe = 16.292 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 663 Density (g/cm³) = 1.07179 Volume (L) = 1.01178 @@ -3074,11 +3074,11 @@ H2O(g) 0.73 5.375e+00 0.016 1.112e-01 1.079e-01 -3.372e-03 Activity of water = 0.968 Ionic strength (mol/kgw) = 1.831e-03 Mass of water (kg) = 9.980e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.213e-09 Total CO2 (mol/kg) = 1.966e+00 Temperature (°C) = 25.00 Pressure (atm) = 1452.23 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 67 (168 overall) Total H = 1.107967e+02 @@ -3093,26 +3093,26 @@ H2O(g) 0.73 5.375e+00 0.016 1.112e-01 1.079e-01 -3.372e-03 OH- 1.644e-11 1.572e-11 -10.784 -10.804 -0.020 -0.40 H2O 5.551e+01 9.676e-01 1.744 -0.014 0.000 17.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -129.327 -129.327 0.000 36.60 + CH4 0.000e+00 0.000e+00 -128.646 -128.646 0.000 36.60 C(4) 1.966e+00 CO2 1.840e+00 1.841e+00 0.265 0.265 0.000 33.81 (CO2)2 6.216e-02 6.218e-02 -1.207 -1.206 0.000 67.63 HCO3- 1.831e-03 1.752e-03 -2.737 -2.756 -0.019 28.01 CO3-2 2.117e-10 1.776e-10 -9.674 -9.751 -0.076 5.53 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.140 -42.140 0.000 28.15 -O(0) 7.167e-10 - O2 3.583e-10 3.585e-10 -9.446 -9.446 0.000 28.96 + H2 0.000e+00 0.000e+00 -41.970 -41.970 0.000 28.15 +O(0) 3.406e-10 + O2 1.703e-10 1.704e-10 -9.769 -9.769 0.000 28.96 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1452 atm) - CH4(g) -125.58 -129.33 -3.74 CH4 + CH4(g) -124.90 -128.65 -3.74 CH4 CO2(g) 2.60 0.26 -2.34 CO2 Pressure 1446.9 atm, phi 0.278 - H2(g) -38.31 -42.14 -3.83 H2 + H2(g) -38.14 -41.97 -3.83 H2 H2O(g) -1.08 -0.01 1.06 H2O Pressure 5.4 atm, phi 0.016 - O2(g) -5.81 -9.45 -3.64 O2 + O2(g) -6.13 -9.77 -3.64 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3181,7 +3181,7 @@ H2O(g) -0.92 1.216e-01 0.998 0.000e+00 4.591e-03 4.591e-03 ----------------------------Description of solution---------------------------- pH = 6.632 Charge balance - pe = 9.262 Adjusted to redox equilibrium + pe = 9.227 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 0 Density (g/cm³) = 0.98799 Volume (L) = 1.01207 @@ -3206,8 +3206,8 @@ H2O(g) -0.92 1.216e-01 0.998 0.000e+00 4.591e-03 4.591e-03 OH- 2.347e-07 2.346e-07 -6.629 -6.630 -0.000 -3.83 H+ 2.335e-07 2.334e-07 -6.632 -6.632 -0.000 0.00 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.23 -H(0) 1.838e-35 - H2 9.189e-36 9.189e-36 -35.037 -35.037 0.000 28.59 +H(0) 2.155e-35 + H2 1.077e-35 1.077e-35 -34.968 -34.968 0.000 28.59 O(0) 2.744e-15 O2 1.372e-15 1.372e-15 -14.863 -14.863 0.000 31.93 @@ -3215,7 +3215,7 @@ O(0) 2.744e-15 Phase SI** log IAP log K(323 K, 0 atm) - H2(g) -31.90 -35.04 -3.14 H2 + H2(g) -31.83 -34.97 -3.14 H2 H2O(g) -0.92 -0.00 0.92 H2O Pressure 0.1 atm, phi 0.998 O2(g) -11.83 -14.86 -3.03 O2 @@ -3266,7 +3266,7 @@ H2O(g) -0.85 1.400e-01 0.872 4.591e-03 5.717e-03 1.126e-03 ----------------------------Description of solution---------------------------- pH = 3.402 Charge balance - pe = 12.495 Adjusted to redox equilibrium + pe = 12.461 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 205 Density (g/cm³) = 0.99137 Volume (L) = 1.02222 @@ -3293,26 +3293,26 @@ H2O(g) -0.85 1.400e-01 0.872 4.591e-03 5.717e-03 1.126e-03 OH- 1.426e-10 1.392e-10 -9.846 -9.856 -0.011 -3.83 H2O 5.551e+01 9.948e-01 1.744 -0.002 0.000 18.22 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -106.551 -106.551 0.000 37.34 + CH4 0.000e+00 0.000e+00 -106.285 -106.285 0.000 37.34 C(4) 3.070e-01 CO2 2.998e-01 2.998e-01 -0.523 -0.523 0.000 35.64 (CO2)2 3.375e-03 3.375e-03 -2.472 -2.472 0.000 71.28 HCO3- 4.059e-04 3.963e-04 -3.392 -3.402 -0.010 25.62 CO3-2 7.490e-11 6.807e-11 -10.126 -10.167 -0.042 -3.09 -H(0) 1.781e-35 - H2 8.907e-36 8.908e-36 -35.050 -35.050 0.000 28.58 -O(0) 2.799e-15 - O2 1.399e-15 1.400e-15 -14.854 -14.854 0.000 31.89 +H(0) 2.076e-35 + H2 1.038e-35 1.038e-35 -34.984 -34.984 0.000 28.58 +O(0) 2.833e-15 + O2 1.416e-15 1.416e-15 -14.849 -14.849 0.000 31.89 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 17 atm) - CH4(g) -103.58 -106.55 -2.97 CH4 + CH4(g) -103.32 -106.28 -2.97 CH4 CO2(g) 1.20 -0.52 -1.72 CO2 Pressure 17.0 atm, phi 0.928 - H2(g) -31.91 -35.05 -3.14 H2 + H2(g) -31.84 -34.98 -3.14 H2 H2O(g) -0.91 -0.00 0.91 H2O Pressure 0.1 atm, phi 0.872 - O2(g) -11.82 -14.85 -3.04 O2 + O2(g) -11.81 -14.85 -3.04 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3361,7 +3361,7 @@ H2O(g) -0.79 1.615e-01 0.761 5.717e-03 7.178e-03 1.461e-03 ----------------------------Description of solution---------------------------- pH = 3.277 Charge balance - pe = 2.454 Adjusted to redox equilibrium + pe = 2.499 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 269 Density (g/cm³) = 0.99409 Volume (L) = 1.03007 @@ -3387,27 +3387,27 @@ H2O(g) -0.79 1.615e-01 0.761 5.717e-03 7.178e-03 1.461e-03 H+ 5.432e-04 5.288e-04 -3.265 -3.277 -0.012 0.00 OH- 1.083e-10 1.053e-10 -9.965 -9.978 -0.012 -3.84 H2O 5.551e+01 9.909e-01 1.744 -0.004 0.000 18.21 -C(-4) 1.040e-25 - CH4 1.040e-25 1.040e-25 -24.983 -24.983 0.000 37.35 +C(-4) 4.473e-26 + CH4 4.473e-26 4.474e-26 -25.349 -25.349 0.000 37.35 C(4) 5.478e-01 CO2 5.265e-01 5.265e-01 -0.279 -0.279 0.000 35.62 (CO2)2 1.041e-02 1.041e-02 -1.983 -1.983 0.000 71.25 HCO3- 5.432e-04 5.284e-04 -3.265 -3.277 -0.012 25.68 CO3-2 7.726e-11 6.922e-11 -10.112 -10.160 -0.048 -2.93 -H(0) 3.765e-15 - H2 1.883e-15 1.883e-15 -14.725 -14.725 0.000 28.57 +H(0) 3.050e-15 + H2 1.525e-15 1.525e-15 -14.817 -14.817 0.000 28.57 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -55.521 -55.521 0.000 31.85 + O2 0.000e+00 0.000e+00 -55.200 -55.200 0.000 31.85 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 33 atm) - CH4(g) -22.00 -24.98 -2.98 CH4 + CH4(g) -22.37 -25.35 -2.98 CH4 CO2(g) 1.45 -0.28 -1.73 CO2 Pressure 32.7 atm, phi 0.864 - H2(g) -11.57 -14.73 -3.15 H2 + H2(g) -11.67 -14.82 -3.15 H2 H2O(g) -0.91 -0.00 0.91 H2O Pressure 0.2 atm, phi 0.761 - O2(g) -52.47 -55.52 -3.05 O2 + O2(g) -52.15 -55.20 -3.05 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3456,7 +3456,7 @@ H2O(g) -0.73 1.861e-01 0.665 7.178e-03 9.044e-03 1.866e-03 ----------------------------Description of solution---------------------------- pH = 3.215 Charge balance - pe = 2.643 Adjusted to redox equilibrium + pe = 2.412 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 307 Density (g/cm³) = 0.99620 Volume (L) = 1.03584 @@ -3482,27 +3482,27 @@ H2O(g) -0.73 1.861e-01 0.665 7.178e-03 9.044e-03 1.866e-03 H+ 6.276e-04 6.099e-04 -3.202 -3.215 -0.012 0.00 OH- 9.491e-11 9.211e-11 -10.023 -10.036 -0.013 -3.86 H2O 5.551e+01 9.879e-01 1.744 -0.005 0.000 18.20 -C(-4) 1.291e-26 - CH4 1.291e-26 1.291e-26 -25.889 -25.889 0.000 37.36 +C(-4) 9.033e-25 + CH4 9.033e-25 9.034e-25 -24.044 -24.044 0.000 37.36 C(4) 7.286e-01 CO2 6.920e-01 6.921e-01 -0.160 -0.160 0.000 35.61 (CO2)2 1.798e-02 1.798e-02 -1.745 -1.745 0.000 71.22 HCO3- 6.276e-04 6.094e-04 -3.202 -3.215 -0.013 25.74 CO3-2 7.904e-11 7.026e-11 -10.102 -10.153 -0.051 -2.79 -H(0) 2.063e-15 - H2 1.032e-15 1.032e-15 -14.986 -14.986 0.000 28.57 +H(0) 5.968e-15 + H2 2.984e-15 2.984e-15 -14.525 -14.525 0.000 28.57 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -55.013 -55.013 0.000 31.82 + O2 0.000e+00 0.000e+00 -55.798 -55.798 0.000 31.82 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 47 atm) - CH4(g) -22.90 -25.89 -2.99 CH4 + CH4(g) -21.06 -24.04 -2.99 CH4 CO2(g) 1.58 -0.16 -1.74 CO2 Pressure 46.7 atm, phi 0.809 - H2(g) -11.83 -14.99 -3.16 H2 + H2(g) -11.37 -14.53 -3.16 H2 H2O(g) -0.91 -0.01 0.90 H2O Pressure 0.2 atm, phi 0.665 - O2(g) -51.96 -55.01 -3.05 O2 + O2(g) -52.74 -55.80 -3.05 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3551,7 +3551,7 @@ H2O(g) -0.67 2.136e-01 0.583 9.044e-03 1.139e-02 2.342e-03 ----------------------------Description of solution---------------------------- pH = 3.178 Charge balance - pe = 12.681 Adjusted to redox equilibrium + pe = 12.793 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 330 Density (g/cm³) = 0.99780 Volume (L) = 1.03988 @@ -3565,7 +3565,7 @@ H2O(g) -0.67 2.136e-01 0.583 9.044e-03 1.139e-02 2.342e-03 Pressure (atm) = 59.15 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 30 + Iterations = 28 Total H = 1.109897e+02 Total O = 5.721235e+01 @@ -3578,26 +3578,26 @@ H2O(g) -0.67 2.136e-01 0.583 9.044e-03 1.139e-02 2.342e-03 OH- 8.811e-11 8.541e-11 -10.055 -10.068 -0.014 -3.87 H2O 5.551e+01 9.858e-01 1.744 -0.006 0.000 18.19 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -105.840 -105.840 0.000 37.37 + CH4 0.000e+00 0.000e+00 -106.739 -106.739 0.000 37.37 C(4) 8.589e-01 CO2 8.091e-01 8.092e-01 -0.092 -0.092 0.000 35.60 (CO2)2 2.458e-02 2.458e-02 -1.609 -1.609 0.000 71.19 HCO3- 6.831e-04 6.625e-04 -3.166 -3.179 -0.013 25.79 CO3-2 8.045e-11 7.117e-11 -10.094 -10.148 -0.053 -2.68 -H(0) 2.022e-35 - H2 1.011e-35 1.011e-35 -34.995 -34.995 0.000 28.56 -O(0) 1.963e-15 - O2 9.815e-16 9.816e-16 -15.008 -15.008 0.000 31.79 +H(0) 1.205e-35 + H2 6.024e-36 6.025e-36 -35.220 -35.220 0.000 28.56 +O(0) 7.600e-15 + O2 3.800e-15 3.800e-15 -14.420 -14.420 0.000 31.79 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 59 atm) - CH4(g) -102.84 -105.84 -2.99 CH4 + CH4(g) -103.74 -106.74 -2.99 CH4 CO2(g) 1.65 -0.09 -1.74 CO2 Pressure 58.9 atm, phi 0.763 - H2(g) -31.83 -35.00 -3.16 H2 + H2(g) -32.06 -35.22 -3.16 H2 H2O(g) -0.90 -0.01 0.90 H2O Pressure 0.2 atm, phi 0.583 - O2(g) -11.95 -15.01 -3.06 O2 + O2(g) -11.36 -14.42 -3.06 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3646,7 +3646,7 @@ H2O(g) -0.61 2.437e-01 0.514 1.139e-02 1.427e-02 2.881e-03 ----------------------------Description of solution---------------------------- pH = 3.156 Charge balance - pe = 12.723 Adjusted to redox equilibrium + pe = 12.850 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 346 Density (g/cm³) = 0.99898 Volume (L) = 1.04261 @@ -3673,26 +3673,26 @@ H2O(g) -0.61 2.437e-01 0.514 1.139e-02 1.427e-02 2.881e-03 OH- 8.429e-11 8.164e-11 -10.074 -10.088 -0.014 -3.88 H2O 5.551e+01 9.843e-01 1.744 -0.007 0.000 18.18 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -105.961 -105.961 0.000 37.37 + CH4 0.000e+00 0.000e+00 -106.978 -106.978 0.000 37.37 C(4) 9.501e-01 CO2 8.899e-01 8.900e-01 -0.051 -0.051 0.000 35.58 (CO2)2 2.973e-02 2.974e-02 -1.527 -1.527 0.000 71.17 HCO3- 7.202e-04 6.979e-04 -3.143 -3.156 -0.014 25.83 CO3-2 8.158e-11 7.195e-11 -10.088 -10.143 -0.055 -2.58 -H(0) 1.826e-35 - H2 9.132e-36 9.134e-36 -35.039 -35.039 0.000 28.55 -O(0) 2.350e-15 - O2 1.175e-15 1.175e-15 -14.930 -14.930 0.000 31.77 +H(0) 1.017e-35 + H2 5.084e-36 5.085e-36 -35.294 -35.294 0.000 28.55 +O(0) 1.042e-14 + O2 5.211e-15 5.212e-15 -14.283 -14.283 0.000 31.77 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 69 atm) - CH4(g) -102.96 -105.96 -3.00 CH4 + CH4(g) -103.98 -106.98 -3.00 CH4 CO2(g) 1.70 -0.05 -1.75 CO2 Pressure 69.2 atm, phi 0.724 - H2(g) -31.87 -35.04 -3.17 H2 + H2(g) -32.13 -35.29 -3.17 H2 H2O(g) -0.90 -0.01 0.90 H2O Pressure 0.2 atm, phi 0.514 - O2(g) -11.86 -14.93 -3.07 O2 + O2(g) -11.22 -14.28 -3.07 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3741,7 +3741,7 @@ H2O(g) -0.56 2.762e-01 0.456 1.427e-02 1.774e-02 3.477e-03 ----------------------------Description of solution---------------------------- pH = 3.141 Charge balance - pe = 12.654 Adjusted to redox equilibrium + pe = 12.763 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 357 Density (g/cm³) = 0.99985 Volume (L) = 1.04438 @@ -3768,26 +3768,26 @@ H2O(g) -0.56 2.762e-01 0.456 1.427e-02 1.774e-02 3.477e-03 OH- 8.202e-11 7.941e-11 -10.086 -10.100 -0.014 -3.89 H2O 5.551e+01 9.833e-01 1.744 -0.007 0.000 18.17 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -105.271 -105.271 0.000 37.38 + CH4 0.000e+00 0.000e+00 -106.138 -106.138 0.000 37.38 C(4) 1.013e+00 CO2 9.448e-01 9.449e-01 -0.025 -0.025 0.000 35.58 (CO2)2 3.351e-02 3.352e-02 -1.475 -1.475 0.000 71.15 HCO3- 7.453e-04 7.219e-04 -3.128 -3.142 -0.014 25.86 CO3-2 8.247e-11 7.259e-11 -10.084 -10.139 -0.055 -2.50 -H(0) 2.659e-35 - H2 1.330e-35 1.330e-35 -34.876 -34.876 0.000 28.55 -O(0) 1.088e-15 - O2 5.440e-16 5.441e-16 -15.264 -15.264 0.000 31.75 +H(0) 1.614e-35 + H2 8.068e-36 8.069e-36 -35.093 -35.093 0.000 28.55 +O(0) 4.062e-15 + O2 2.031e-15 2.031e-15 -14.692 -14.692 0.000 31.75 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 78 atm) - CH4(g) -102.26 -105.27 -3.01 CH4 + CH4(g) -103.13 -106.14 -3.01 CH4 CO2(g) 1.73 -0.02 -1.76 CO2 Pressure 77.6 atm, phi 0.693 - H2(g) -31.70 -34.88 -3.17 H2 + H2(g) -31.92 -35.09 -3.17 H2 H2O(g) -0.90 -0.01 0.89 H2O Pressure 0.3 atm, phi 0.456 - O2(g) -12.19 -15.26 -3.07 O2 + O2(g) -11.62 -14.69 -3.07 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3836,7 +3836,7 @@ H2O(g) -0.51 3.107e-01 0.407 1.774e-02 2.186e-02 4.119e-03 ----------------------------Description of solution---------------------------- pH = 3.131 Charge balance - pe = 2.402 Adjusted to redox equilibrium + pe = 12.921 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 364 Density (g/cm³) = 1.00049 Volume (L) = 1.04551 @@ -3850,7 +3850,7 @@ H2O(g) -0.51 3.107e-01 0.407 1.774e-02 2.186e-02 4.119e-03 Pressure (atm) = 84.81 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 43 + Iterations = 31 Total H = 1.109687e+02 Total O = 5.759384e+01 @@ -3862,27 +3862,27 @@ H2O(g) -0.51 3.107e-01 0.407 1.774e-02 2.186e-02 4.119e-03 H+ 7.626e-04 7.391e-04 -3.118 -3.131 -0.014 0.00 OH- 8.063e-11 7.803e-11 -10.094 -10.108 -0.014 -3.90 H2O 5.551e+01 9.827e-01 1.744 -0.008 0.000 18.17 -C(-4) 6.907e-24 - CH4 6.907e-24 6.908e-24 -23.161 -23.161 0.000 37.38 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -107.312 -107.312 0.000 37.38 C(4) 1.055e+00 CO2 9.820e-01 9.821e-01 -0.008 -0.008 0.000 35.57 (CO2)2 3.620e-02 3.621e-02 -1.441 -1.441 0.000 71.14 HCO3- 7.626e-04 7.384e-04 -3.118 -3.132 -0.014 25.88 CO3-2 8.319e-11 7.312e-11 -10.080 -10.136 -0.056 -2.44 -H(0) 8.826e-15 - H2 4.413e-15 4.414e-15 -14.355 -14.355 0.000 28.55 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -56.313 -56.313 0.000 31.74 +H(0) 8.088e-36 + H2 4.044e-36 4.045e-36 -35.393 -35.393 0.000 28.55 +O(0) 1.592e-14 + O2 7.962e-15 7.964e-15 -14.099 -14.099 0.000 31.74 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 85 atm) - CH4(g) -20.15 -23.16 -3.01 CH4 + CH4(g) -104.30 -107.31 -3.01 CH4 CO2(g) 1.75 -0.01 -1.76 CO2 Pressure 84.5 atm, phi 0.668 - H2(g) -11.18 -14.36 -3.18 H2 + H2(g) -32.22 -35.39 -3.18 H2 H2O(g) -0.90 -0.01 0.89 H2O Pressure 0.3 atm, phi 0.407 - O2(g) -53.24 -56.31 -3.07 O2 + O2(g) -11.03 -14.10 -3.07 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3931,7 +3931,7 @@ H2O(g) -0.46 3.475e-01 0.365 2.186e-02 2.666e-02 4.799e-03 ----------------------------Description of solution---------------------------- pH = 3.125 Charge balance - pe = 12.650 Adjusted to redox equilibrium + pe = 12.956 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 369 Density (g/cm³) = 1.00098 Volume (L) = 1.04621 @@ -3945,7 +3945,7 @@ H2O(g) -0.46 3.475e-01 0.365 2.186e-02 2.666e-02 4.799e-03 Pressure (atm) = 90.49 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 54 + Iterations = 34 Total H = 1.109591e+02 Total O = 5.764790e+01 @@ -3958,26 +3958,26 @@ H2O(g) -0.46 3.475e-01 0.365 2.186e-02 2.666e-02 4.799e-03 OH- 7.974e-11 7.715e-11 -10.098 -10.113 -0.014 -3.90 H2O 5.551e+01 9.822e-01 1.744 -0.008 0.000 18.16 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -105.082 -105.082 0.000 37.38 + CH4 0.000e+00 0.000e+00 -107.531 -107.531 0.000 37.38 C(4) 1.085e+00 CO2 1.008e+00 1.008e+00 0.003 0.003 0.000 35.56 (CO2)2 3.812e-02 3.813e-02 -1.419 -1.419 0.000 71.12 HCO3- 7.747e-04 7.500e-04 -3.111 -3.125 -0.014 25.90 CO3-2 8.376e-11 7.356e-11 -10.077 -10.133 -0.056 -2.39 -H(0) 2.889e-35 - H2 1.445e-35 1.445e-35 -34.840 -34.840 0.000 28.54 -O(0) 8.968e-16 - O2 4.484e-16 4.485e-16 -15.348 -15.348 0.000 31.72 +H(0) 7.055e-36 + H2 3.527e-36 3.528e-36 -35.453 -35.452 0.000 28.54 +O(0) 2.068e-14 + O2 1.034e-14 1.034e-14 -13.985 -13.985 0.000 31.72 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 90 atm) - CH4(g) -102.07 -105.08 -3.01 CH4 + CH4(g) -104.52 -107.53 -3.01 CH4 CO2(g) 1.77 0.00 -1.76 CO2 Pressure 90.1 atm, phi 0.648 - H2(g) -31.66 -34.84 -3.18 H2 + H2(g) -32.27 -35.45 -3.18 H2 H2O(g) -0.90 -0.01 0.89 H2O Pressure 0.3 atm, phi 0.365 - O2(g) -12.27 -15.35 -3.08 O2 + O2(g) -10.91 -13.99 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4026,7 +4026,7 @@ H2O(g) -0.41 3.869e-01 0.329 2.666e-02 3.217e-02 5.510e-03 ----------------------------Description of solution---------------------------- pH = 3.120 Charge balance - pe = 12.901 Adjusted to redox equilibrium + pe = 12.993 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 373 Density (g/cm³) = 1.00135 Volume (L) = 1.04665 @@ -4053,26 +4053,26 @@ H2O(g) -0.41 3.869e-01 0.329 2.666e-02 3.217e-02 5.510e-03 OH- 7.914e-11 7.655e-11 -10.102 -10.116 -0.014 -3.91 H2O 5.551e+01 9.819e-01 1.744 -0.008 0.000 18.16 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.050 -107.050 0.000 37.39 + CH4 0.000e+00 0.000e+00 -107.784 -107.784 0.000 37.39 C(4) 1.106e+00 CO2 1.026e+00 1.026e+00 0.011 0.011 0.000 35.56 (CO2)2 3.954e-02 3.955e-02 -1.403 -1.403 0.000 71.11 HCO3- 7.838e-04 7.586e-04 -3.106 -3.120 -0.014 25.92 CO3-2 8.424e-11 7.393e-11 -10.074 -10.131 -0.057 -2.34 -H(0) 9.229e-36 - H2 4.615e-36 4.615e-36 -35.336 -35.336 0.000 28.54 -O(0) 8.699e-15 - O2 4.350e-15 4.351e-15 -14.362 -14.361 0.000 31.71 +H(0) 6.048e-36 + H2 3.024e-36 3.025e-36 -35.519 -35.519 0.000 28.54 +O(0) 2.785e-14 + O2 1.392e-14 1.393e-14 -13.856 -13.856 0.000 31.71 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 95 atm) - CH4(g) -104.03 -107.05 -3.02 CH4 + CH4(g) -104.77 -107.78 -3.02 CH4 CO2(g) 1.78 0.01 -1.77 CO2 Pressure 94.9 atm, phi 0.630 - H2(g) -32.16 -35.34 -3.18 H2 + H2(g) -32.34 -35.52 -3.18 H2 H2O(g) -0.90 -0.01 0.89 H2O Pressure 0.4 atm, phi 0.329 - O2(g) -11.28 -14.36 -3.08 O2 + O2(g) -10.78 -13.86 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4121,7 +4121,7 @@ H2O(g) -0.37 4.298e-01 0.297 3.217e-02 3.841e-02 6.243e-03 ----------------------------Description of solution---------------------------- pH = 3.116 Charge balance - pe = 12.991 Adjusted to redox equilibrium + pe = 12.962 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 376 Density (g/cm³) = 1.00168 Volume (L) = 1.04693 @@ -4148,26 +4148,26 @@ H2O(g) -0.37 4.298e-01 0.297 3.217e-02 3.841e-02 6.243e-03 OH- 7.869e-11 7.611e-11 -10.104 -10.119 -0.014 -3.91 H2O 5.551e+01 9.816e-01 1.744 -0.008 0.000 18.16 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.730 -107.730 0.000 37.39 + CH4 0.000e+00 0.000e+00 -107.503 -107.503 0.000 37.39 C(4) 1.123e+00 CO2 1.041e+00 1.041e+00 0.017 0.017 0.000 35.55 (CO2)2 4.066e-02 4.067e-02 -1.391 -1.391 0.000 71.10 HCO3- 7.911e-04 7.656e-04 -3.102 -3.116 -0.014 25.94 CO3-2 8.468e-11 7.427e-11 -10.072 -10.129 -0.057 -2.30 -H(0) 6.199e-36 - H2 3.100e-36 3.100e-36 -35.509 -35.509 0.000 28.54 -O(0) 1.910e-14 - O2 9.552e-15 9.553e-15 -14.020 -14.020 0.000 31.70 +H(0) 7.063e-36 + H2 3.532e-36 3.532e-36 -35.452 -35.452 0.000 28.54 +O(0) 2.023e-14 + O2 1.012e-14 1.012e-14 -13.995 -13.995 0.000 31.70 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 100 atm) - CH4(g) -104.71 -107.73 -3.02 CH4 + CH4(g) -104.48 -107.50 -3.02 CH4 CO2(g) 1.79 0.02 -1.77 CO2 Pressure 99.3 atm, phi 0.615 - H2(g) -32.33 -35.51 -3.18 H2 + H2(g) -32.27 -35.45 -3.18 H2 H2O(g) -0.89 -0.01 0.89 H2O Pressure 0.4 atm, phi 0.297 - O2(g) -10.94 -14.02 -3.08 O2 + O2(g) -10.91 -13.99 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4216,7 +4216,7 @@ H2O(g) -0.32 4.775e-01 0.268 3.841e-02 4.540e-02 6.987e-03 ----------------------------Description of solution---------------------------- pH = 3.112 Charge balance - pe = 12.971 Adjusted to redox equilibrium + pe = 12.878 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 379 Density (g/cm³) = 1.00199 Volume (L) = 1.04712 @@ -4243,26 +4243,26 @@ H2O(g) -0.32 4.775e-01 0.268 3.841e-02 4.540e-02 6.987e-03 OH- 7.834e-11 7.576e-11 -10.106 -10.121 -0.015 -3.92 H2O 5.551e+01 9.814e-01 1.744 -0.008 0.000 18.15 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.544 -107.544 0.000 37.39 + CH4 0.000e+00 0.000e+00 -106.798 -106.798 0.000 37.39 C(4) 1.137e+00 CO2 1.053e+00 1.053e+00 0.023 0.023 0.000 35.55 (CO2)2 4.165e-02 4.166e-02 -1.380 -1.380 0.000 71.09 HCO3- 7.977e-04 7.718e-04 -3.098 -3.112 -0.014 25.96 CO3-2 8.511e-11 7.462e-11 -10.070 -10.127 -0.057 -2.26 -H(0) 6.854e-36 - H2 3.427e-36 3.428e-36 -35.465 -35.465 0.000 28.54 -O(0) 1.548e-14 - O2 7.742e-15 7.744e-15 -14.111 -14.111 0.000 31.69 +H(0) 1.053e-35 + H2 5.265e-36 5.266e-36 -35.279 -35.278 0.000 28.54 +O(0) 9.018e-15 + O2 4.509e-15 4.510e-15 -14.346 -14.346 0.000 31.69 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 104 atm) - CH4(g) -104.52 -107.54 -3.02 CH4 + CH4(g) -103.78 -106.80 -3.02 CH4 CO2(g) 1.79 0.02 -1.77 CO2 Pressure 103.7 atm, phi 0.599 - H2(g) -32.28 -35.47 -3.18 H2 + H2(g) -32.09 -35.28 -3.18 H2 H2O(g) -0.89 -0.01 0.89 H2O Pressure 0.5 atm, phi 0.268 - O2(g) -11.03 -14.11 -3.08 O2 + O2(g) -11.26 -14.35 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4311,7 +4311,7 @@ H2O(g) -0.27 5.320e-01 0.241 4.540e-02 5.313e-02 7.732e-03 ----------------------------Description of solution---------------------------- pH = 3.109 Charge balance - pe = 12.832 Adjusted to redox equilibrium + pe = 12.934 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 381 Density (g/cm³) = 1.00231 Volume (L) = 1.04725 @@ -4325,7 +4325,7 @@ H2O(g) -0.27 5.320e-01 0.241 4.540e-02 5.313e-02 7.732e-03 Pressure (atm) = 109.16 Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 37 + Iterations = 33 Total H = 1.109062e+02 Total O = 5.775348e+01 @@ -4338,26 +4338,26 @@ H2O(g) -0.27 5.320e-01 0.241 4.540e-02 5.313e-02 7.732e-03 OH- 7.802e-11 7.544e-11 -10.108 -10.122 -0.015 -3.92 H2O 5.551e+01 9.811e-01 1.744 -0.008 0.000 18.15 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -106.401 -106.401 0.000 37.39 + CH4 0.000e+00 0.000e+00 -107.216 -107.216 0.000 37.39 C(4) 1.151e+00 CO2 1.065e+00 1.065e+00 0.027 0.028 0.000 35.54 (CO2)2 4.261e-02 4.262e-02 -1.371 -1.370 0.000 71.08 HCO3- 8.043e-04 7.781e-04 -3.095 -3.109 -0.014 25.97 CO3-2 8.560e-11 7.500e-11 -10.068 -10.125 -0.057 -2.22 -H(0) 1.315e-35 - H2 6.574e-36 6.575e-36 -35.182 -35.182 0.000 28.54 -O(0) 4.165e-15 - O2 2.083e-15 2.083e-15 -14.681 -14.681 0.000 31.68 +H(0) 8.226e-36 + H2 4.113e-36 4.114e-36 -35.386 -35.386 0.000 28.54 +O(0) 1.463e-14 + O2 7.314e-15 7.316e-15 -14.136 -14.136 0.000 31.68 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 109 atm) - CH4(g) -103.38 -106.40 -3.03 CH4 + CH4(g) -104.19 -107.22 -3.03 CH4 CO2(g) 1.80 0.03 -1.77 CO2 Pressure 108.6 atm, phi 0.583 - H2(g) -32.00 -35.18 -3.19 H2 + H2(g) -32.20 -35.39 -3.19 H2 H2O(g) -0.89 -0.01 0.88 H2O Pressure 0.5 atm, phi 0.241 - O2(g) -11.60 -14.68 -3.09 O2 + O2(g) -11.05 -14.14 -3.09 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4406,7 +4406,7 @@ H2O(g) -0.22 5.960e-01 0.216 5.313e-02 6.160e-02 8.464e-03 ----------------------------Description of solution---------------------------- pH = 3.105 Charge balance - pe = 12.852 Adjusted to redox equilibrium + pe = 12.712 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 384 Density (g/cm³) = 1.00268 Volume (L) = 1.04734 @@ -4414,7 +4414,7 @@ H2O(g) -0.22 5.960e-01 0.216 5.313e-02 6.160e-02 8.464e-03 Activity of water = 0.981 Ionic strength (mol/kgw) = 8.115e-04 Mass of water (kg) = 9.989e-01 - Total alkalinity (eq/kg) = 1.222e-09 + Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.166e+00 Temperature (°C) = 50.00 Pressure (atm) = 115.10 @@ -4433,26 +4433,26 @@ H2O(g) -0.22 5.960e-01 0.216 5.313e-02 6.160e-02 8.464e-03 OH- 7.771e-11 7.513e-11 -10.110 -10.124 -0.015 -3.93 H2O 5.551e+01 9.809e-01 1.744 -0.008 0.000 18.14 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -106.526 -106.526 0.000 37.40 + CH4 0.000e+00 0.000e+00 -105.406 -105.406 0.000 37.40 C(4) 1.166e+00 CO2 1.078e+00 1.078e+00 0.033 0.033 0.000 35.54 (CO2)2 4.362e-02 4.363e-02 -1.360 -1.360 0.000 71.07 HCO3- 8.115e-04 7.850e-04 -3.091 -3.105 -0.014 25.99 CO3-2 8.617e-11 7.547e-11 -10.065 -10.122 -0.058 -2.16 -H(0) 1.215e-35 - H2 6.074e-36 6.075e-36 -35.217 -35.216 0.000 28.53 -O(0) 4.819e-15 - O2 2.410e-15 2.410e-15 -14.618 -14.618 0.000 31.67 +H(0) 2.315e-35 + H2 1.158e-35 1.158e-35 -34.936 -34.936 0.000 28.53 +O(0) 1.825e-15 + O2 9.123e-16 9.124e-16 -15.040 -15.040 0.000 31.67 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 115 atm) - CH4(g) -103.50 -106.53 -3.03 CH4 + CH4(g) -102.38 -105.41 -3.03 CH4 CO2(g) 1.81 0.03 -1.78 CO2 Pressure 114.5 atm, phi 0.564 - H2(g) -32.03 -35.22 -3.19 H2 + H2(g) -31.75 -34.94 -3.19 H2 H2O(g) -0.89 -0.01 0.88 H2O Pressure 0.6 atm, phi 0.216 - O2(g) -11.53 -14.62 -3.09 O2 + O2(g) -11.95 -15.04 -3.09 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4501,7 +4501,7 @@ H2O(g) -0.17 6.730e-01 0.192 6.160e-02 7.077e-02 9.169e-03 ----------------------------Description of solution---------------------------- pH = 3.100 Charge balance - pe = 12.941 Adjusted to redox equilibrium + pe = 2.403 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 388 Density (g/cm³) = 1.00313 Volume (L) = 1.04741 @@ -4509,13 +4509,13 @@ H2O(g) -0.17 6.730e-01 0.192 6.160e-02 7.077e-02 9.169e-03 Activity of water = 0.981 Ionic strength (mol/kgw) = 8.198e-04 Mass of water (kg) = 9.987e-01 - Total alkalinity (eq/kg) = 1.221e-09 + Total alkalinity (eq/kg) = 1.223e-09 Total CO2 (mol/kg) = 1.182e+00 Temperature (°C) = 50.00 Pressure (atm) = 122.58 - Electrical balance (eq) = -1.220e-09 + Electrical balance (eq) = -1.221e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 25 + Iterations = 34 Total H = 1.108709e+02 Total O = 5.779678e+01 @@ -4527,27 +4527,27 @@ H2O(g) -0.17 6.730e-01 0.192 6.160e-02 7.077e-02 9.169e-03 H+ 8.198e-04 7.938e-04 -3.086 -3.100 -0.014 0.00 OH- 7.740e-11 7.482e-11 -10.111 -10.126 -0.015 -3.93 H2O 5.551e+01 9.806e-01 1.744 -0.008 0.000 18.14 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.201 -107.201 0.000 37.40 +C(-4) 1.272e-23 + CH4 1.272e-23 1.273e-23 -22.895 -22.895 0.000 37.40 C(4) 1.182e+00 CO2 1.092e+00 1.092e+00 0.038 0.038 0.000 35.53 (CO2)2 4.476e-02 4.477e-02 -1.349 -1.349 0.000 71.05 HCO3- 8.198e-04 7.930e-04 -3.086 -3.101 -0.014 26.02 CO3-2 8.689e-11 7.606e-11 -10.061 -10.119 -0.058 -2.10 -H(0) 8.166e-36 - H2 4.083e-36 4.084e-36 -35.389 -35.389 0.000 28.53 -O(0) 1.051e-14 - O2 5.253e-15 5.254e-15 -14.280 -14.280 0.000 31.65 +H(0) 9.736e-15 + H2 4.868e-15 4.869e-15 -14.313 -14.313 0.000 28.53 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -56.294 -56.294 0.000 31.65 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 123 atm) - CH4(g) -104.17 -107.20 -3.03 CH4 + CH4(g) -19.86 -22.90 -3.03 CH4 CO2(g) 1.82 0.04 -1.78 CO2 Pressure 121.9 atm, phi 0.542 - H2(g) -32.20 -35.39 -3.19 H2 + H2(g) -11.12 -14.31 -3.19 H2 H2O(g) -0.89 -0.01 0.88 H2O Pressure 0.7 atm, phi 0.192 - O2(g) -11.19 -14.28 -3.09 O2 + O2(g) -53.20 -56.29 -3.09 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4596,7 +4596,7 @@ H2O(g) -0.12 7.673e-01 0.170 7.077e-02 8.060e-02 9.828e-03 ----------------------------Description of solution---------------------------- pH = 3.095 Charge balance - pe = 13.004 Adjusted to redox equilibrium + pe = 2.132 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 392 Density (g/cm³) = 1.00368 Volume (L) = 1.04745 @@ -4604,13 +4604,13 @@ H2O(g) -0.12 7.673e-01 0.170 7.077e-02 8.060e-02 9.828e-03 Activity of water = 0.980 Ionic strength (mol/kgw) = 8.298e-04 Mass of water (kg) = 9.985e-01 - Total alkalinity (eq/kg) = 1.222e-09 + Total alkalinity (eq/kg) = 1.223e-09 Total CO2 (mol/kg) = 1.201e+00 Temperature (°C) = 50.00 Pressure (atm) = 132.16 - Electrical balance (eq) = -1.220e-09 + Electrical balance (eq) = -1.222e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 22 + Iterations = 26 Total H = 1.108512e+02 Total O = 5.782314e+01 @@ -4622,27 +4622,27 @@ H2O(g) -0.12 7.673e-01 0.170 7.077e-02 8.060e-02 9.828e-03 H+ 8.298e-04 8.033e-04 -3.081 -3.095 -0.014 0.00 OH- 7.709e-11 7.451e-11 -10.113 -10.128 -0.015 -3.94 H2O 5.551e+01 9.804e-01 1.744 -0.009 0.000 18.13 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.663 -107.662 0.000 37.41 +C(-4) 2.042e-21 + CH4 2.042e-21 2.042e-21 -20.690 -20.690 0.000 37.41 C(4) 1.201e+00 CO2 1.108e+00 1.108e+00 0.044 0.044 0.000 35.52 (CO2)2 4.606e-02 4.607e-02 -1.337 -1.337 0.000 71.03 HCO3- 8.298e-04 8.024e-04 -3.081 -3.096 -0.015 26.06 CO3-2 8.782e-11 7.681e-11 -10.056 -10.115 -0.058 -2.01 -H(0) 6.194e-36 - H2 3.097e-36 3.098e-36 -35.509 -35.509 0.000 28.53 -O(0) 1.790e-14 - O2 8.951e-15 8.953e-15 -14.048 -14.048 0.000 31.63 +H(0) 3.429e-14 + H2 1.714e-14 1.715e-14 -13.766 -13.766 0.000 28.53 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -57.396 -57.396 0.000 31.63 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 132 atm) - CH4(g) -104.62 -107.66 -3.04 CH4 + CH4(g) -17.65 -20.69 -3.04 CH4 CO2(g) 1.83 0.04 -1.79 CO2 Pressure 131.4 atm, phi 0.516 - H2(g) -32.31 -35.51 -3.20 H2 + H2(g) -10.57 -13.77 -3.20 H2 H2O(g) -0.89 -0.01 0.88 H2O Pressure 0.8 atm, phi 0.170 - O2(g) -10.95 -14.05 -3.10 O2 + O2(g) -54.30 -57.40 -3.10 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4691,7 +4691,7 @@ H2O(g) -0.05 8.845e-01 0.148 8.060e-02 9.102e-02 1.042e-02 ----------------------------Description of solution---------------------------- pH = 3.089 Charge balance - pe = 13.053 Adjusted to redox equilibrium + pe = 2.038 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 398 Density (g/cm³) = 1.00438 Volume (L) = 1.04745 @@ -4699,11 +4699,11 @@ H2O(g) -0.05 8.845e-01 0.148 8.060e-02 9.102e-02 1.042e-02 Activity of water = 0.980 Ionic strength (mol/kgw) = 8.417e-04 Mass of water (kg) = 9.983e-01 - Total alkalinity (eq/kg) = 1.222e-09 + Total alkalinity (eq/kg) = 1.223e-09 Total CO2 (mol/kg) = 1.221e+00 Temperature (°C) = 50.00 Pressure (atm) = 144.52 - Electrical balance (eq) = -1.220e-09 + Electrical balance (eq) = -1.221e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 44 Total H = 1.108304e+02 @@ -4717,27 +4717,27 @@ H2O(g) -0.05 8.845e-01 0.148 8.060e-02 9.102e-02 1.042e-02 H+ 8.417e-04 8.147e-04 -3.075 -3.089 -0.014 0.00 OH- 7.679e-11 7.420e-11 -10.115 -10.130 -0.015 -3.96 H2O 5.551e+01 9.800e-01 1.744 -0.009 0.000 18.12 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -108.005 -108.005 0.000 37.41 +C(-4) 1.295e-20 + CH4 1.295e-20 1.295e-20 -19.888 -19.888 0.000 37.41 C(4) 1.221e+00 CO2 1.125e+00 1.126e+00 0.051 0.051 0.000 35.50 (CO2)2 4.756e-02 4.757e-02 -1.323 -1.323 0.000 71.01 HCO3- 8.417e-04 8.138e-04 -3.075 -3.089 -0.015 26.10 CO3-2 8.902e-11 7.780e-11 -10.051 -10.109 -0.059 -1.91 -H(0) 5.019e-36 - H2 2.510e-36 2.510e-36 -35.600 -35.600 0.000 28.52 -O(0) 2.659e-14 - O2 1.330e-14 1.330e-14 -13.876 -13.876 0.000 31.61 +H(0) 5.371e-14 + H2 2.686e-14 2.686e-14 -13.571 -13.571 0.000 28.52 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -57.797 -57.797 0.000 31.61 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 145 atm) - CH4(g) -104.96 -108.01 -3.05 CH4 + CH4(g) -16.84 -19.89 -3.05 CH4 CO2(g) 1.85 0.05 -1.79 CO2 Pressure 143.6 atm, phi 0.488 - H2(g) -32.40 -35.60 -3.20 H2 + H2(g) -10.37 -13.57 -3.20 H2 H2O(g) -0.88 -0.01 0.87 H2O Pressure 0.9 atm, phi 0.148 - O2(g) -10.77 -13.88 -3.10 O2 + O2(g) -54.69 -57.80 -3.10 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4786,7 +4786,7 @@ H2O(g) 0.01 1.031e+00 0.129 9.102e-02 1.020e-01 1.094e-02 ----------------------------Description of solution---------------------------- pH = 3.082 Charge balance - pe = 12.930 Adjusted to redox equilibrium + pe = 1.998 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 404 Density (g/cm³) = 1.00524 Volume (L) = 1.04738 @@ -4794,11 +4794,11 @@ H2O(g) 0.01 1.031e+00 0.129 9.102e-02 1.020e-01 1.094e-02 Activity of water = 0.980 Ionic strength (mol/kgw) = 8.561e-04 Mass of water (kg) = 9.981e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.245e+00 Temperature (°C) = 50.00 Pressure (atm) = 160.38 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.218e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 43 Total H = 1.108085e+02 @@ -4812,27 +4812,27 @@ H2O(g) 0.01 1.031e+00 0.129 9.102e-02 1.020e-01 1.094e-02 H+ 8.561e-04 8.285e-04 -3.067 -3.082 -0.014 0.00 OH- 7.651e-11 7.391e-11 -10.116 -10.131 -0.015 -3.97 H2O 5.551e+01 9.797e-01 1.744 -0.009 0.000 18.11 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -106.970 -106.970 0.000 37.42 +C(-4) 3.082e-20 + CH4 3.082e-20 3.082e-20 -19.511 -19.511 0.000 37.42 C(4) 1.245e+00 CO2 1.146e+00 1.146e+00 0.059 0.059 0.000 35.49 (CO2)2 4.929e-02 4.930e-02 -1.307 -1.307 0.000 70.97 HCO3- 8.561e-04 8.276e-04 -3.067 -3.082 -0.015 26.16 CO3-2 9.056e-11 7.907e-11 -10.043 -10.102 -0.059 -1.77 -H(0) 8.964e-36 - H2 4.482e-36 4.483e-36 -35.349 -35.348 0.000 28.51 -O(0) 8.076e-15 - O2 4.038e-15 4.039e-15 -14.394 -14.394 0.000 31.58 +H(0) 6.565e-14 + H2 3.283e-14 3.283e-14 -13.484 -13.484 0.000 28.51 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -57.985 -57.985 0.000 31.58 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 160 atm) - CH4(g) -103.91 -106.97 -3.06 CH4 + CH4(g) -16.45 -19.51 -3.06 CH4 CO2(g) 1.86 0.06 -1.80 CO2 Pressure 159.3 atm, phi 0.457 - H2(g) -32.14 -35.35 -3.21 H2 + H2(g) -10.27 -13.48 -3.21 H2 H2O(g) -0.88 -0.01 0.87 H2O Pressure 1.0 atm, phi 0.129 - O2(g) -11.28 -14.39 -3.11 O2 + O2(g) -54.87 -57.99 -3.11 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4881,7 +4881,7 @@ H2O(g) 0.08 1.215e+00 0.111 1.020e-01 1.133e-01 1.134e-02 ----------------------------Description of solution---------------------------- pH = 3.073 Charge balance - pe = 12.959 Adjusted to redox equilibrium + pe = 1.972 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 412 Density (g/cm³) = 1.00631 Volume (L) = 1.04724 @@ -4889,11 +4889,11 @@ H2O(g) 0.08 1.215e+00 0.111 1.020e-01 1.133e-01 1.134e-02 Activity of water = 0.979 Ionic strength (mol/kgw) = 8.735e-04 Mass of water (kg) = 9.979e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.272e+00 Temperature (°C) = 50.00 Pressure (atm) = 180.60 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.218e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 56 Total H = 1.107858e+02 @@ -4907,27 +4907,27 @@ H2O(g) 0.08 1.215e+00 0.111 1.020e-01 1.133e-01 1.134e-02 H+ 8.735e-04 8.451e-04 -3.059 -3.073 -0.014 0.00 OH- 7.627e-11 7.366e-11 -10.118 -10.133 -0.015 -3.99 H2O 5.551e+01 9.792e-01 1.744 -0.009 0.000 18.09 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.134 -107.134 0.000 37.43 +C(-4) 5.807e-20 + CH4 5.807e-20 5.808e-20 -19.236 -19.236 0.000 37.43 C(4) 1.272e+00 CO2 1.169e+00 1.169e+00 0.068 0.068 0.000 35.47 (CO2)2 5.130e-02 5.131e-02 -1.290 -1.290 0.000 70.93 HCO3- 8.735e-04 8.441e-04 -3.059 -3.074 -0.015 26.23 CO3-2 9.255e-11 8.072e-11 -10.034 -10.093 -0.059 -1.59 -H(0) 7.998e-36 - H2 3.999e-36 4.000e-36 -35.398 -35.398 0.000 28.51 -O(0) 9.740e-15 - O2 4.870e-15 4.871e-15 -14.312 -14.312 0.000 31.53 +H(0) 7.543e-14 + H2 3.771e-14 3.772e-14 -13.424 -13.423 0.000 28.51 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -58.123 -58.123 0.000 31.53 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 181 atm) - CH4(g) -104.06 -107.13 -3.07 CH4 + CH4(g) -16.17 -19.24 -3.07 CH4 CO2(g) 1.88 0.07 -1.82 CO2 Pressure 179.4 atm, phi 0.426 - H2(g) -32.18 -35.40 -3.22 H2 + H2(g) -10.20 -13.42 -3.22 H2 H2O(g) -0.87 -0.01 0.86 H2O Pressure 1.2 atm, phi 0.111 - O2(g) -11.19 -14.31 -3.12 O2 + O2(g) -55.00 -58.12 -3.12 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -4976,7 +4976,7 @@ H2O(g) 0.16 1.445e+00 0.095 1.133e-01 1.249e-01 1.161e-02 ----------------------------Description of solution---------------------------- pH = 3.063 Charge balance - pe = 13.006 Adjusted to redox equilibrium + pe = 1.908 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 421 Density (g/cm³) = 1.00763 Volume (L) = 1.04697 @@ -4984,11 +4984,11 @@ H2O(g) 0.16 1.445e+00 0.095 1.133e-01 1.249e-01 1.161e-02 Activity of water = 0.979 Ionic strength (mol/kgw) = 8.944e-04 Mass of water (kg) = 9.977e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.303e+00 Temperature (°C) = 50.00 Pressure (atm) = 206.19 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 65 Total H = 1.107626e+02 @@ -5002,27 +5002,27 @@ H2O(g) 0.16 1.445e+00 0.095 1.133e-01 1.249e-01 1.161e-02 H+ 8.944e-04 8.650e-04 -3.048 -3.063 -0.015 0.00 OH- 7.611e-11 7.347e-11 -10.119 -10.134 -0.015 -4.02 H2O 5.551e+01 9.787e-01 1.744 -0.009 0.000 18.07 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.434 -107.434 0.000 37.44 +C(-4) 2.221e-19 + CH4 2.221e-19 2.221e-19 -18.653 -18.653 0.000 37.44 C(4) 1.303e+00 CO2 1.195e+00 1.195e+00 0.077 0.077 0.000 35.44 (CO2)2 5.359e-02 5.360e-02 -1.271 -1.271 0.000 70.88 HCO3- 8.944e-04 8.641e-04 -3.048 -3.063 -0.015 26.32 CO3-2 9.511e-11 8.283e-11 -10.022 -10.082 -0.060 -1.38 -H(0) 6.572e-36 - H2 3.286e-36 3.287e-36 -35.483 -35.483 0.000 28.49 -O(0) 1.370e-14 - O2 6.852e-15 6.853e-15 -14.164 -14.164 0.000 31.48 +H(0) 1.030e-13 + H2 5.149e-14 5.150e-14 -13.288 -13.288 0.000 28.49 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -58.416 -58.416 0.000 31.48 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 206 atm) - CH4(g) -104.35 -107.43 -3.09 CH4 + CH4(g) -15.57 -18.65 -3.09 CH4 CO2(g) 1.91 0.08 -1.83 CO2 Pressure 204.7 atm, phi 0.394 - H2(g) -32.25 -35.48 -3.23 H2 + H2(g) -10.06 -13.29 -3.23 H2 H2O(g) -0.86 -0.01 0.86 H2O Pressure 1.4 atm, phi 0.095 - O2(g) -11.03 -14.16 -3.14 O2 + O2(g) -55.28 -58.42 -3.14 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5071,7 +5071,7 @@ H2O(g) 0.24 1.731e+00 0.081 1.249e-01 1.366e-01 1.171e-02 ----------------------------Description of solution---------------------------- pH = 3.051 Charge balance - pe = 13.077 Adjusted to redox equilibrium + pe = 1.912 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 432 Density (g/cm³) = 1.00924 Volume (L) = 1.04656 @@ -5079,11 +5079,11 @@ H2O(g) 0.24 1.731e+00 0.081 1.249e-01 1.366e-01 1.171e-02 Activity of water = 0.978 Ionic strength (mol/kgw) = 9.196e-04 Mass of water (kg) = 9.975e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.337e+00 Temperature (°C) = 50.00 Pressure (atm) = 238.31 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 75 Total H = 1.107392e+02 @@ -5097,27 +5097,27 @@ H2O(g) 0.24 1.731e+00 0.081 1.249e-01 1.366e-01 1.171e-02 H+ 9.196e-04 8.890e-04 -3.036 -3.051 -0.015 0.00 OH- 7.605e-11 7.339e-11 -10.119 -10.134 -0.015 -4.04 H2O 5.551e+01 9.782e-01 1.744 -0.010 0.000 18.05 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.915 -107.915 0.000 37.46 +C(-4) 2.550e-19 + CH4 2.550e-19 2.551e-19 -18.593 -18.593 0.000 37.46 C(4) 1.337e+00 CO2 1.223e+00 1.224e+00 0.088 0.088 0.000 35.41 (CO2)2 5.620e-02 5.621e-02 -1.250 -1.250 0.000 70.81 HCO3- 9.196e-04 8.880e-04 -3.036 -3.052 -0.015 26.43 CO3-2 9.837e-11 8.553e-11 -10.007 -10.068 -0.061 -1.11 -H(0) 4.838e-36 - H2 2.419e-36 2.419e-36 -35.616 -35.616 0.000 28.48 -O(0) 2.372e-14 - O2 1.186e-14 1.186e-14 -13.926 -13.926 0.000 31.42 +H(0) 1.036e-13 + H2 5.178e-14 5.179e-14 -13.286 -13.286 0.000 28.48 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -58.449 -58.449 0.000 31.42 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 238 atm) - CH4(g) -104.81 -107.92 -3.10 CH4 + CH4(g) -15.49 -18.59 -3.10 CH4 CO2(g) 1.94 0.09 -1.85 CO2 Pressure 236.6 atm, phi 0.365 - H2(g) -32.37 -35.62 -3.25 H2 + H2(g) -10.04 -13.29 -3.25 H2 H2O(g) -0.86 -0.01 0.85 H2O Pressure 1.7 atm, phi 0.081 - O2(g) -10.77 -13.93 -3.15 O2 + O2(g) -55.30 -58.45 -3.15 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5166,7 +5166,7 @@ H2O(g) 0.32 2.086e+00 0.069 1.366e-01 1.482e-01 1.162e-02 ----------------------------Description of solution---------------------------- pH = 3.037 Charge balance - pe = 13.058 Adjusted to redox equilibrium + pe = 1.910 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 446 Density (g/cm³) = 1.01120 Volume (L) = 1.04594 @@ -5174,11 +5174,11 @@ H2O(g) 0.32 2.086e+00 0.069 1.366e-01 1.482e-01 1.162e-02 Activity of water = 0.978 Ionic strength (mol/kgw) = 9.498e-04 Mass of water (kg) = 9.973e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.374e+00 Temperature (°C) = 50.00 Pressure (atm) = 278.39 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 86 Total H = 1.107160e+02 @@ -5192,27 +5192,27 @@ H2O(g) 0.32 2.086e+00 0.069 1.366e-01 1.482e-01 1.162e-02 H+ 9.498e-04 9.178e-04 -3.022 -3.037 -0.015 0.00 OH- 7.616e-11 7.346e-11 -10.118 -10.134 -0.016 -4.08 H2O 5.551e+01 9.776e-01 1.744 -0.010 0.000 18.02 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -107.667 -107.667 0.000 37.48 +C(-4) 3.264e-19 + CH4 3.264e-19 3.265e-19 -18.486 -18.486 0.000 37.48 C(4) 1.374e+00 CO2 1.255e+00 1.255e+00 0.099 0.099 0.000 35.37 (CO2)2 5.915e-02 5.916e-02 -1.228 -1.228 0.000 70.73 HCO3- 9.498e-04 9.167e-04 -3.022 -3.038 -0.015 26.56 CO3-2 1.025e-10 8.898e-11 -9.989 -10.051 -0.062 -0.79 -H(0) 5.390e-36 - H2 2.695e-36 2.695e-36 -35.569 -35.569 0.000 28.46 -O(0) 1.765e-14 - O2 8.823e-15 8.825e-15 -14.054 -14.054 0.000 31.34 +H(0) 1.063e-13 + H2 5.317e-14 5.318e-14 -13.274 -13.274 0.000 28.46 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -58.506 -58.506 0.000 31.34 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 278 atm) - CH4(g) -104.54 -107.67 -3.13 CH4 + CH4(g) -15.36 -18.49 -3.13 CH4 CO2(g) 1.97 0.10 -1.87 CO2 Pressure 276.3 atm, phi 0.338 - H2(g) -32.30 -35.57 -3.27 H2 + H2(g) -10.01 -13.27 -3.27 H2 H2O(g) -0.84 -0.01 0.83 H2O Pressure 2.1 atm, phi 0.069 - O2(g) -10.88 -14.05 -3.17 O2 + O2(g) -55.33 -58.51 -3.17 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5261,7 +5261,7 @@ H2O(g) 0.40 2.523e+00 0.059 1.482e-01 1.595e-01 1.130e-02 ----------------------------Description of solution---------------------------- pH = 3.021 Charge balance - pe = 14.519 Adjusted to redox equilibrium + pe = 1.871 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 463 Density (g/cm³) = 1.01357 Volume (L) = 1.04507 @@ -5269,13 +5269,13 @@ H2O(g) 0.40 2.523e+00 0.059 1.482e-01 1.595e-01 1.130e-02 Activity of water = 0.977 Ionic strength (mol/kgw) = 9.860e-04 Mass of water (kg) = 9.971e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.416e+00 Temperature (°C) = 50.00 Pressure (atm) = 328.12 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 43 (144 overall) + Iterations = 44 (145 overall) Total H = 1.106934e+02 Total O = 5.816996e+01 @@ -5287,27 +5287,27 @@ H2O(g) 0.40 2.523e+00 0.059 1.482e-01 1.595e-01 1.130e-02 H+ 9.860e-04 9.524e-04 -3.006 -3.021 -0.015 0.00 OH- 7.650e-11 7.375e-11 -10.116 -10.132 -0.016 -4.12 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 17.98 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.243 -119.243 0.000 37.50 +C(-4) 8.626e-19 + CH4 8.626e-19 8.628e-19 -18.064 -18.064 0.000 37.50 C(4) 1.416e+00 CO2 1.290e+00 1.290e+00 0.111 0.111 0.000 35.32 (CO2)2 6.246e-02 6.248e-02 -1.204 -1.204 0.000 70.63 HCO3- 9.860e-04 9.512e-04 -3.006 -3.022 -0.016 26.72 CO3-2 1.078e-10 9.339e-11 -9.967 -10.030 -0.062 -0.39 -H(0) 6.592e-39 - H2 3.296e-39 3.297e-39 -38.482 -38.482 0.000 28.45 -O(0) 1.069e-08 - O2 5.344e-09 5.345e-09 -8.272 -8.272 0.000 31.25 +H(0) 1.299e-13 + H2 6.497e-14 6.499e-14 -13.187 -13.187 0.000 28.45 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -58.723 -58.723 0.000 31.25 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 328 atm) - CH4(g) -116.08 -119.24 -3.16 CH4 + CH4(g) -14.90 -18.06 -3.16 CH4 CO2(g) 2.01 0.11 -1.90 CO2 Pressure 325.6 atm, phi 0.315 - H2(g) -35.19 -38.48 -3.29 H2 + H2(g) -9.90 -13.19 -3.29 H2 H2O(g) -0.83 -0.01 0.82 H2O Pressure 2.5 atm, phi 0.059 - O2(g) -5.07 -8.27 -3.20 O2 + O2(g) -55.53 -58.72 -3.20 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5356,7 +5356,7 @@ H2O(g) 0.48 3.055e+00 0.050 1.595e-01 1.702e-01 1.071e-02 ----------------------------Description of solution---------------------------- pH = 3.003 Charge balance - pe = 14.536 Adjusted to redox equilibrium + pe = 14.086 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 482 Density (g/cm³) = 1.01643 Volume (L) = 1.04387 @@ -5370,7 +5370,7 @@ H2O(g) 0.48 3.055e+00 0.050 1.595e-01 1.702e-01 1.071e-02 Pressure (atm) = 389.62 Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 35 (136 overall) + Iterations = 126 (227 overall) Total H = 1.106719e+02 Total O = 5.824829e+01 @@ -5383,26 +5383,26 @@ H2O(g) 0.48 3.055e+00 0.050 1.595e-01 1.702e-01 1.071e-02 OH- 7.716e-11 7.434e-11 -10.113 -10.129 -0.016 -4.17 H2O 5.551e+01 9.763e-01 1.744 -0.010 0.000 17.94 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.260 -119.260 0.000 37.52 + CH4 0.000e+00 0.000e+00 -115.657 -115.657 0.000 37.52 C(4) 1.461e+00 CO2 1.327e+00 1.328e+00 0.123 0.123 0.000 35.26 (CO2)2 6.615e-02 6.616e-02 -1.179 -1.179 0.000 70.51 HCO3- 1.030e-03 9.926e-04 -2.987 -3.003 -0.016 26.91 CO3-2 1.147e-10 9.905e-11 -9.941 -10.004 -0.064 0.08 -H(0) 6.203e-39 - H2 3.102e-39 3.102e-39 -38.508 -38.508 0.000 28.42 -O(0) 1.069e-08 - O2 5.345e-09 5.346e-09 -8.272 -8.272 0.000 31.14 +H(0) 4.935e-38 + H2 2.468e-38 2.468e-38 -37.608 -37.608 0.000 28.42 +O(0) 2.322e-10 + O2 1.161e-10 1.161e-10 -9.935 -9.935 0.000 31.14 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 390 atm) - CH4(g) -116.06 -119.26 -3.20 CH4 + CH4(g) -112.46 -115.66 -3.20 CH4 CO2(g) 2.06 0.12 -1.94 CO2 Pressure 386.6 atm, phi 0.296 - H2(g) -35.19 -38.51 -3.32 H2 + H2(g) -34.29 -37.61 -3.32 H2 H2O(g) -0.81 -0.01 0.80 H2O Pressure 3.1 atm, phi 0.050 - O2(g) -5.04 -8.27 -3.23 O2 + O2(g) -6.71 -9.94 -3.23 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5451,7 +5451,7 @@ H2O(g) 0.57 3.696e+00 0.044 1.702e-01 1.801e-01 9.820e-03 ----------------------------Description of solution---------------------------- pH = 2.981 Charge balance - pe = 14.556 Adjusted to redox equilibrium + pe = 14.106 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 507 Density (g/cm³) = 1.01986 Volume (L) = 1.04226 @@ -5478,26 +5478,26 @@ H2O(g) 0.57 3.696e+00 0.044 1.702e-01 1.801e-01 9.820e-03 OH- 7.827e-11 7.534e-11 -10.106 -10.123 -0.017 -4.22 H2O 5.551e+01 9.755e-01 1.744 -0.011 0.000 17.88 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.283 -119.283 0.000 37.55 + CH4 0.000e+00 0.000e+00 -115.680 -115.680 0.000 37.55 C(4) 1.509e+00 CO2 1.368e+00 1.368e+00 0.136 0.136 0.000 35.18 (CO2)2 7.022e-02 7.023e-02 -1.154 -1.153 0.000 70.37 HCO3- 1.082e-03 1.042e-03 -2.966 -2.982 -0.016 27.14 CO3-2 1.235e-10 1.063e-10 -9.909 -9.973 -0.065 0.64 -H(0) 5.756e-39 - H2 2.878e-39 2.879e-39 -38.541 -38.541 0.000 28.39 -O(0) 1.069e-08 - O2 5.346e-09 5.347e-09 -8.272 -8.272 0.000 31.01 +H(0) 4.580e-38 + H2 2.290e-38 2.290e-38 -37.640 -37.640 0.000 28.39 +O(0) 2.322e-10 + O2 1.161e-10 1.161e-10 -9.935 -9.935 0.000 31.01 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 466 atm) - CH4(g) -116.04 -119.28 -3.25 CH4 + CH4(g) -112.44 -115.68 -3.25 CH4 CO2(g) 2.11 0.14 -1.98 CO2 Pressure 461.8 atm, phi 0.282 - H2(g) -35.19 -38.54 -3.35 H2 + H2(g) -34.29 -37.64 -3.35 H2 H2O(g) -0.79 -0.01 0.78 H2O Pressure 3.7 atm, phi 0.044 - O2(g) -5.01 -8.27 -3.27 O2 + O2(g) -6.67 -9.94 -3.27 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5546,7 +5546,7 @@ H2O(g) 0.65 4.463e+00 0.039 1.801e-01 1.886e-01 8.575e-03 ----------------------------Description of solution---------------------------- pH = 2.957 Charge balance - pe = 14.579 Adjusted to redox equilibrium + pe = 14.129 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 536 Density (g/cm³) = 1.02395 Volume (L) = 1.04014 @@ -5573,26 +5573,26 @@ H2O(g) 0.65 4.463e+00 0.039 1.801e-01 1.886e-01 8.575e-03 OH- 7.998e-11 7.693e-11 -10.097 -10.114 -0.017 -4.28 H2O 5.551e+01 9.747e-01 1.744 -0.011 0.000 17.82 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.314 -119.314 0.000 37.58 + CH4 0.000e+00 0.000e+00 -115.711 -115.711 0.000 37.58 C(4) 1.561e+00 CO2 1.410e+00 1.410e+00 0.149 0.149 0.000 35.10 (CO2)2 7.466e-02 7.468e-02 -1.127 -1.127 0.000 70.20 HCO3- 1.146e-03 1.103e-03 -2.941 -2.958 -0.017 27.41 CO3-2 1.349e-10 1.158e-10 -9.870 -9.936 -0.066 1.29 -H(0) 5.251e-39 - H2 2.626e-39 2.626e-39 -38.581 -38.581 0.000 28.36 -O(0) 1.069e-08 - O2 5.347e-09 5.348e-09 -8.272 -8.272 0.000 30.85 +H(0) 4.178e-38 + H2 2.089e-38 2.090e-38 -37.680 -37.680 0.000 28.36 +O(0) 2.323e-10 + O2 1.161e-10 1.162e-10 -9.935 -9.935 0.000 30.85 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 559 atm) - CH4(g) -116.01 -119.31 -3.30 CH4 + CH4(g) -112.41 -115.71 -3.30 CH4 CO2(g) 2.18 0.15 -2.03 CO2 Pressure 554.6 atm, phi 0.274 - H2(g) -35.19 -38.58 -3.40 H2 + H2(g) -34.28 -37.68 -3.40 H2 H2O(g) -0.76 -0.01 0.75 H2O Pressure 4.5 atm, phi 0.039 - O2(g) -4.96 -8.27 -3.31 O2 + O2(g) -6.62 -9.93 -3.31 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5641,7 +5641,7 @@ H2O(g) 0.73 5.366e+00 0.035 1.886e-01 1.956e-01 6.925e-03 ----------------------------Description of solution---------------------------- pH = 2.929 Charge balance - pe = 14.605 Adjusted to redox equilibrium + pe = 14.154 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 572 Density (g/cm³) = 1.02885 Volume (L) = 1.03737 @@ -5653,7 +5653,7 @@ H2O(g) 0.73 5.366e+00 0.035 1.886e-01 1.956e-01 6.925e-03 Total CO2 (mol/kg) = 1.615e+00 Temperature (°C) = 50.00 Pressure (atm) = 674.65 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.106213e+02 @@ -5668,26 +5668,26 @@ H2O(g) 0.73 5.366e+00 0.035 1.886e-01 1.956e-01 6.925e-03 OH- 8.256e-11 7.933e-11 -10.083 -10.101 -0.017 -4.35 H2O 5.551e+01 9.739e-01 1.744 -0.011 0.000 17.74 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.355 -119.355 0.000 37.61 + CH4 0.000e+00 0.000e+00 -115.752 -115.752 0.000 37.61 C(4) 1.615e+00 CO2 1.455e+00 1.455e+00 0.163 0.163 0.000 35.00 (CO2)2 7.945e-02 7.947e-02 -1.100 -1.100 0.000 69.99 HCO3- 1.223e-03 1.176e-03 -2.913 -2.930 -0.017 27.73 CO3-2 1.500e-10 1.283e-10 -9.824 -9.892 -0.068 2.06 -H(0) 4.690e-39 - H2 2.345e-39 2.346e-39 -38.630 -38.630 0.000 28.33 -O(0) 1.069e-08 - O2 5.347e-09 5.349e-09 -8.272 -8.272 0.000 30.67 +H(0) 3.732e-38 + H2 1.866e-38 1.866e-38 -37.729 -37.729 0.000 28.33 +O(0) 2.323e-10 + O2 1.161e-10 1.162e-10 -9.935 -9.935 0.000 30.67 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 675 atm) - CH4(g) -115.98 -119.35 -3.37 CH4 + CH4(g) -112.38 -115.75 -3.37 CH4 CO2(g) 2.26 0.16 -2.10 CO2 Pressure 669.3 atm, phi 0.272 - H2(g) -35.18 -38.63 -3.45 H2 + H2(g) -34.28 -37.73 -3.45 H2 H2O(g) -0.73 -0.01 0.72 H2O Pressure 5.4 atm, phi 0.035 - O2(g) -4.90 -8.27 -3.37 O2 + O2(g) -6.57 -9.93 -3.37 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5736,7 +5736,7 @@ H2O(g) 0.81 6.418e+00 0.032 1.956e-01 2.004e-01 4.813e-03 ----------------------------Description of solution---------------------------- pH = 2.897 Charge balance - pe = 14.634 Adjusted to redox equilibrium + pe = 14.184 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 616 Density (g/cm³) = 1.03468 Volume (L) = 1.03381 @@ -5748,7 +5748,7 @@ H2O(g) 0.81 6.418e+00 0.032 1.956e-01 2.004e-01 4.813e-03 Total CO2 (mol/kg) = 1.671e+00 Temperature (°C) = 50.00 Pressure (atm) = 817.86 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.106117e+02 @@ -5763,26 +5763,26 @@ H2O(g) 0.81 6.418e+00 0.032 1.956e-01 2.004e-01 4.813e-03 OH- 8.639e-11 8.290e-11 -10.064 -10.081 -0.018 -4.43 H2O 5.551e+01 9.730e-01 1.744 -0.012 0.000 17.64 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.408 -119.408 0.000 37.65 + CH4 0.000e+00 0.000e+00 -115.805 -115.805 0.000 37.65 C(4) 1.671e+00 CO2 1.501e+00 1.501e+00 0.176 0.176 0.000 34.88 (CO2)2 8.454e-02 8.456e-02 -1.073 -1.073 0.000 69.76 HCO3- 1.318e-03 1.266e-03 -2.880 -2.898 -0.017 28.09 CO3-2 1.703e-10 1.450e-10 -9.769 -9.839 -0.070 2.95 -H(0) 4.080e-39 - H2 2.040e-39 2.041e-39 -38.690 -38.690 0.000 28.28 -O(0) 1.070e-08 - O2 5.348e-09 5.349e-09 -8.272 -8.272 0.000 30.47 +H(0) 3.246e-38 + H2 1.623e-38 1.623e-38 -37.790 -37.790 0.000 28.28 +O(0) 2.323e-10 + O2 1.162e-10 1.162e-10 -9.935 -9.935 0.000 30.47 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 818 atm) - CH4(g) -115.94 -119.41 -3.46 CH4 + CH4(g) -112.34 -115.81 -3.46 CH4 CO2(g) 2.35 0.18 -2.18 CO2 Pressure 811.4 atm, phi 0.278 - H2(g) -35.18 -38.69 -3.51 H2 + H2(g) -34.27 -37.79 -3.51 H2 H2O(g) -0.69 -0.01 0.68 H2O Pressure 6.4 atm, phi 0.032 - O2(g) -4.83 -8.27 -3.44 O2 + O2(g) -6.50 -9.93 -3.44 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5831,7 +5831,7 @@ H2O(g) 0.88 7.621e+00 0.030 2.004e-01 2.025e-01 2.166e-03 ----------------------------Description of solution---------------------------- pH = 2.860 Charge balance - pe = 14.667 Adjusted to redox equilibrium + pe = 14.217 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 670 Density (g/cm³) = 1.04167 Volume (L) = 1.02922 @@ -5843,9 +5843,9 @@ H2O(g) 0.88 7.621e+00 0.030 2.004e-01 2.025e-01 2.166e-03 Total CO2 (mol/kg) = 1.728e+00 Temperature (°C) = 50.00 Pressure (atm) = 996.34 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 42 (143 overall) + Iterations = 47 (148 overall) Total H = 1.106074e+02 Total O = 5.874637e+01 @@ -5858,26 +5858,26 @@ H2O(g) 0.88 7.621e+00 0.030 2.004e-01 2.025e-01 2.166e-03 OH- 9.204e-11 8.821e-11 -10.036 -10.054 -0.018 -4.50 H2O 5.551e+01 9.721e-01 1.744 -0.012 0.000 17.53 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.478 -119.478 0.000 37.68 + CH4 0.000e+00 0.000e+00 -115.875 -115.875 0.000 37.68 C(4) 1.728e+00 CO2 1.547e+00 1.547e+00 0.189 0.189 0.000 34.74 (CO2)2 8.981e-02 8.984e-02 -1.047 -1.047 0.000 69.48 HCO3- 1.435e-03 1.377e-03 -2.843 -2.861 -0.018 28.52 CO3-2 1.982e-10 1.679e-10 -9.703 -9.775 -0.072 3.97 -H(0) 3.431e-39 - H2 1.716e-39 1.716e-39 -38.766 -38.765 0.000 28.24 -O(0) 1.070e-08 - O2 5.348e-09 5.350e-09 -8.272 -8.272 0.000 30.24 +H(0) 2.730e-38 + H2 1.365e-38 1.365e-38 -37.865 -37.865 0.000 28.24 +O(0) 2.323e-10 + O2 1.162e-10 1.162e-10 -9.935 -9.935 0.000 30.24 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 996 atm) - CH4(g) -115.90 -119.48 -3.57 CH4 + CH4(g) -112.30 -115.87 -3.57 CH4 CO2(g) 2.47 0.19 -2.28 CO2 Pressure 988.7 atm, phi 0.296 - H2(g) -35.17 -38.77 -3.60 H2 + H2(g) -34.27 -37.86 -3.60 H2 H2O(g) -0.64 -0.01 0.63 H2O Pressure 7.6 atm, phi 0.030 - O2(g) -4.75 -8.27 -3.52 O2 + O2(g) -6.41 -9.93 -3.52 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -5926,7 +5926,7 @@ H2O(g) 0.95 8.967e+00 0.029 2.025e-01 2.014e-01 -1.108e-03 ----------------------------Description of solution---------------------------- pH = 2.818 Charge balance - pe = 14.705 Adjusted to redox equilibrium + pe = 14.255 Adjusted to redox equilibrium Specific Conductance (µS/cm, 50°C) = 739 Density (g/cm³) = 1.05008 Volume (L) = 1.02332 @@ -5934,7 +5934,7 @@ H2O(g) 0.95 8.967e+00 0.029 2.025e-01 2.014e-01 -1.108e-03 Activity of water = 0.971 Ionic strength (mol/kgw) = 1.583e-03 Mass of water (kg) = 9.963e-01 - Total alkalinity (eq/kg) = 1.220e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.783e+00 Temperature (°C) = 50.00 Pressure (atm) = 1220.78 @@ -5953,26 +5953,26 @@ H2O(g) 0.95 8.967e+00 0.029 2.025e-01 2.014e-01 -1.108e-03 OH- 1.005e-10 9.618e-11 -9.998 -10.017 -0.019 -4.59 H2O 5.551e+01 9.713e-01 1.744 -0.013 0.000 17.39 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -119.569 -119.569 0.000 37.71 + CH4 0.000e+00 0.000e+00 -115.966 -115.966 0.000 37.71 C(4) 1.783e+00 CO2 1.592e+00 1.592e+00 0.202 0.202 0.000 34.57 (CO2)2 9.511e-02 9.514e-02 -1.022 -1.022 0.000 69.15 HCO3- 1.583e-03 1.516e-03 -2.801 -2.819 -0.019 29.00 CO3-2 2.378e-10 2.002e-10 -9.624 -9.699 -0.075 5.14 -H(0) 2.761e-39 - H2 1.381e-39 1.381e-39 -38.860 -38.860 0.000 28.18 -O(0) 1.070e-08 - O2 5.348e-09 5.350e-09 -8.272 -8.272 0.000 29.97 +H(0) 2.197e-38 + H2 1.098e-38 1.099e-38 -37.959 -37.959 0.000 28.18 +O(0) 2.323e-10 + O2 1.162e-10 1.162e-10 -9.935 -9.935 0.000 29.97 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(323 K, 1221 atm) - CH4(g) -115.86 -119.57 -3.71 CH4 + CH4(g) -112.25 -115.97 -3.71 CH4 CO2(g) 2.60 0.20 -2.40 CO2 Pressure 1211.8 atm, phi 0.331 - H2(g) -35.16 -38.86 -3.70 H2 + H2(g) -34.26 -37.96 -3.70 H2 H2O(g) -0.58 -0.01 0.57 H2O Pressure 9.0 atm, phi 0.029 - O2(g) -4.64 -8.27 -3.63 O2 + O2(g) -6.31 -9.93 -3.63 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6043,7 +6043,7 @@ H2O(g) -0.42 3.792e-01 0.996 0.000e+00 1.332e-02 1.332e-02 ----------------------------Description of solution---------------------------- pH = 6.344 Charge balance - pe = 7.913 Adjusted to redox equilibrium + pe = 7.906 Adjusted to redox equilibrium Specific Conductance (µS/cm, 75°C) = 0 Density (g/cm³) = 0.97481 Volume (L) = 1.02560 @@ -6068,8 +6068,8 @@ H2O(g) -0.42 3.792e-01 0.996 0.000e+00 1.332e-02 1.332e-02 OH- 4.540e-07 4.536e-07 -6.343 -6.343 -0.000 -4.48 H+ 4.528e-07 4.524e-07 -6.344 -6.344 -0.000 0.00 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.48 -H(0) 2.829e-32 - H2 1.415e-32 1.415e-32 -31.849 -31.849 0.000 28.58 +H(0) 2.918e-32 + H2 1.459e-32 1.459e-32 -31.836 -31.836 0.000 28.58 O(0) 2.745e-15 O2 1.372e-15 1.372e-15 -14.863 -14.863 0.000 32.99 @@ -6077,7 +6077,7 @@ O(0) 2.745e-15 Phase SI** log IAP log K(348 K, 0 atm) - H2(g) -28.72 -31.85 -3.13 H2 + H2(g) -28.70 -31.84 -3.13 H2 H2O(g) -0.42 -0.00 0.42 H2O Pressure 0.4 atm, phi 0.996 O2(g) -11.76 -14.86 -3.10 O2 @@ -6128,7 +6128,7 @@ H2O(g) -0.36 4.356e-01 0.874 1.332e-02 1.642e-02 3.100e-03 ----------------------------Description of solution---------------------------- pH = 3.465 Charge balance - pe = 10.797 Adjusted to redox equilibrium + pe = 10.793 Adjusted to redox equilibrium Specific Conductance (µS/cm, 75°C) = 215 Density (g/cm³) = 0.97762 Volume (L) = 1.03384 @@ -6155,26 +6155,26 @@ H2O(g) -0.36 4.356e-01 0.874 1.332e-02 1.642e-02 3.100e-03 OH- 6.206e-10 6.060e-10 -9.207 -9.218 -0.010 -4.53 H2O 5.551e+01 9.958e-01 1.744 -0.002 0.000 18.46 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -96.527 -96.527 0.000 39.08 + CH4 0.000e+00 0.000e+00 -96.493 -96.493 0.000 39.08 C(4) 2.500e-01 CO2 2.422e-01 2.422e-01 -0.616 -0.616 0.000 37.04 (CO2)2 3.732e-03 3.732e-03 -2.428 -2.428 0.000 74.08 HCO3- 3.505e-04 3.424e-04 -3.455 -3.465 -0.010 25.25 CO3-2 8.398e-11 7.645e-11 -10.076 -10.117 -0.041 -4.80 -H(0) 2.704e-32 - H2 1.352e-32 1.352e-32 -31.869 -31.869 0.000 28.57 -O(0) 2.875e-15 - O2 1.437e-15 1.437e-15 -14.842 -14.842 0.000 32.93 +H(0) 2.758e-32 + H2 1.379e-32 1.379e-32 -31.860 -31.860 0.000 28.57 +O(0) 2.939e-15 + O2 1.469e-15 1.470e-15 -14.833 -14.833 0.000 32.93 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 20 atm) - CH4(g) -93.50 -96.53 -3.02 CH4 + CH4(g) -93.47 -96.49 -3.02 CH4 CO2(g) 1.27 -0.62 -1.88 CO2 Pressure 19.9 atm, phi 0.933 - H2(g) -28.73 -31.87 -3.14 H2 + H2(g) -28.72 -31.86 -3.14 H2 H2O(g) -0.42 -0.00 0.42 H2O Pressure 0.4 atm, phi 0.874 - O2(g) -11.73 -14.84 -3.11 O2 + O2(g) -11.73 -14.83 -3.11 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6223,7 +6223,7 @@ H2O(g) -0.30 4.993e-01 0.769 1.642e-02 2.026e-02 3.838e-03 ----------------------------Description of solution---------------------------- pH = 3.339 Charge balance - pe = 2.019 Adjusted to redox equilibrium + pe = 2.031 Adjusted to redox equilibrium Specific Conductance (µS/cm, 75°C) = 284 Density (g/cm³) = 0.97995 Volume (L) = 1.04028 @@ -6249,27 +6249,27 @@ H2O(g) -0.30 4.993e-01 0.769 1.642e-02 2.026e-02 3.838e-03 H+ 4.703e-04 4.580e-04 -3.328 -3.339 -0.011 0.00 OH- 4.712e-10 4.585e-10 -9.327 -9.339 -0.012 -4.59 H2O 5.551e+01 9.925e-01 1.744 -0.003 0.000 18.45 -C(-4) 8.775e-26 - CH4 8.775e-26 8.775e-26 -25.057 -25.057 0.000 39.07 +C(-4) 7.080e-26 + CH4 7.080e-26 7.081e-26 -25.150 -25.150 0.000 39.07 C(4) 4.496e-01 CO2 4.260e-01 4.261e-01 -0.371 -0.371 0.000 37.01 (CO2)2 1.155e-02 1.155e-02 -1.937 -1.937 0.000 74.01 HCO3- 4.703e-04 4.577e-04 -3.328 -3.339 -0.012 25.34 CO3-2 8.682e-11 7.791e-11 -10.061 -10.108 -0.047 -4.59 -H(0) 1.707e-14 - H2 8.536e-15 8.537e-15 -14.069 -14.069 0.000 28.56 +H(0) 1.618e-14 + H2 8.090e-15 8.091e-15 -14.092 -14.092 0.000 28.56 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.461 -50.461 0.000 32.88 + O2 0.000e+00 0.000e+00 -50.387 -50.387 0.000 32.88 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 39 atm) - CH4(g) -22.02 -25.06 -3.04 CH4 + CH4(g) -22.11 -25.15 -3.04 CH4 CO2(g) 1.52 -0.37 -1.89 CO2 Pressure 38.2 atm, phi 0.875 - H2(g) -10.92 -14.07 -3.15 H2 + H2(g) -10.94 -14.09 -3.15 H2 H2O(g) -0.42 -0.00 0.41 H2O Pressure 0.5 atm, phi 0.769 - O2(g) -47.34 -50.46 -3.12 O2 + O2(g) -47.27 -50.39 -3.12 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6318,7 +6318,7 @@ H2O(g) -0.24 5.707e-01 0.679 2.026e-02 2.494e-02 4.679e-03 ----------------------------Description of solution---------------------------- pH = 3.275 Charge balance - pe = 1.995 Adjusted to redox equilibrium + pe = 2.034 Adjusted to redox equilibrium Specific Conductance (µS/cm, 75°C) = 326 Density (g/cm³) = 0.98185 Volume (L) = 1.04514 @@ -6344,27 +6344,27 @@ H2O(g) -0.24 5.707e-01 0.679 2.026e-02 2.494e-02 4.679e-03 H+ 5.461e-04 5.309e-04 -3.263 -3.275 -0.012 0.00 OH- 4.119e-10 3.999e-10 -9.385 -9.398 -0.013 -4.64 H2O 5.551e+01 9.901e-01 1.744 -0.004 0.000 18.43 -C(-4) 5.788e-25 - CH4 5.788e-25 5.789e-25 -24.237 -24.237 0.000 39.07 +C(-4) 2.860e-25 + CH4 2.860e-25 2.861e-25 -24.544 -24.544 0.000 39.07 C(4) 6.050e-01 CO2 5.640e-01 5.640e-01 -0.249 -0.249 0.000 36.98 (CO2)2 2.024e-02 2.024e-02 -1.694 -1.694 0.000 73.95 HCO3- 5.462e-04 5.305e-04 -3.263 -3.275 -0.013 25.42 CO3-2 8.903e-11 7.926e-11 -10.050 -10.101 -0.050 -4.41 -H(0) 2.520e-14 - H2 1.260e-14 1.260e-14 -13.900 -13.900 0.000 28.55 +H(0) 2.113e-14 + H2 1.056e-14 1.056e-14 -13.976 -13.976 0.000 28.55 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.815 -50.815 0.000 32.83 + O2 0.000e+00 0.000e+00 -50.635 -50.635 0.000 32.83 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 55 atm) - CH4(g) -21.19 -24.24 -3.05 CH4 + CH4(g) -21.50 -24.54 -3.05 CH4 CO2(g) 1.66 -0.25 -1.90 CO2 Pressure 54.8 atm, phi 0.825 - H2(g) -10.74 -13.90 -3.16 H2 + H2(g) -10.82 -13.98 -3.16 H2 H2O(g) -0.41 -0.00 0.41 H2O Pressure 0.6 atm, phi 0.679 - O2(g) -47.69 -50.81 -3.13 O2 + O2(g) -47.51 -50.63 -3.13 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6413,7 +6413,7 @@ H2O(g) -0.19 6.497e-01 0.601 2.494e-02 3.056e-02 5.615e-03 ----------------------------Description of solution---------------------------- pH = 3.236 Charge balance - pe = 2.005 Adjusted to redox equilibrium + pe = 2.143 Adjusted to redox equilibrium Specific Conductance (µS/cm, 75°C) = 354 Density (g/cm³) = 0.98339 Volume (L) = 1.04871 @@ -6439,27 +6439,27 @@ H2O(g) -0.19 6.497e-01 0.601 2.494e-02 3.056e-02 5.615e-03 H+ 5.986e-04 5.812e-04 -3.223 -3.236 -0.013 0.00 OH- 3.806e-10 3.691e-10 -9.419 -9.433 -0.013 -4.69 H2O 5.551e+01 9.882e-01 1.744 -0.005 0.000 18.42 -C(-4) 1.164e-24 - CH4 1.164e-24 1.164e-24 -23.934 -23.934 0.000 39.07 +C(-4) 9.189e-26 + CH4 9.189e-26 9.190e-26 -25.037 -25.037 0.000 39.07 C(4) 7.238e-01 CO2 6.667e-01 6.667e-01 -0.176 -0.176 0.000 36.95 (CO2)2 2.828e-02 2.829e-02 -1.548 -1.548 0.000 73.90 HCO3- 5.986e-04 5.807e-04 -3.223 -3.236 -0.013 25.49 CO3-2 9.086e-11 8.049e-11 -10.042 -10.094 -0.053 -4.25 -H(0) 2.847e-14 - H2 1.423e-14 1.424e-14 -13.847 -13.847 0.000 28.54 +H(0) 1.509e-14 + H2 7.545e-15 7.546e-15 -14.122 -14.122 0.000 28.54 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.934 -50.934 0.000 32.79 + O2 0.000e+00 0.000e+00 -50.356 -50.356 0.000 32.79 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 70 atm) - CH4(g) -20.88 -23.93 -3.05 CH4 + CH4(g) -21.98 -25.04 -3.05 CH4 CO2(g) 1.74 -0.18 -1.91 CO2 Pressure 69.7 atm, phi 0.782 - H2(g) -10.68 -13.85 -3.16 H2 + H2(g) -10.96 -14.12 -3.16 H2 H2O(g) -0.41 -0.01 0.40 H2O Pressure 0.6 atm, phi 0.601 - O2(g) -47.80 -50.93 -3.13 O2 + O2(g) -47.22 -50.36 -3.13 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6508,7 +6508,7 @@ H2O(g) -0.13 7.364e-01 0.534 3.056e-02 3.718e-02 6.627e-03 ----------------------------Description of solution---------------------------- pH = 3.209 Charge balance - pe = 1.984 Adjusted to redox equilibrium + pe = 2.090 Adjusted to redox equilibrium Specific Conductance (µS/cm, 75°C) = 374 Density (g/cm³) = 0.98464 Volume (L) = 1.05128 @@ -6534,27 +6534,27 @@ H2O(g) -0.13 7.364e-01 0.534 3.056e-02 3.718e-02 6.627e-03 H+ 6.364e-04 6.174e-04 -3.196 -3.209 -0.013 0.00 OH- 3.620e-10 3.507e-10 -9.441 -9.455 -0.014 -4.73 H2O 5.551e+01 9.867e-01 1.744 -0.006 0.000 18.41 -C(-4) 3.073e-24 - CH4 3.073e-24 3.073e-24 -23.512 -23.512 0.000 39.07 +C(-4) 4.351e-25 + CH4 4.351e-25 4.351e-25 -24.361 -24.361 0.000 39.07 C(4) 8.142e-01 CO2 7.432e-01 7.433e-01 -0.129 -0.129 0.000 36.92 (CO2)2 3.515e-02 3.516e-02 -1.454 -1.454 0.000 73.85 HCO3- 6.364e-04 6.169e-04 -3.196 -3.210 -0.014 25.55 CO3-2 9.243e-11 8.159e-11 -10.034 -10.088 -0.054 -4.11 -H(0) 3.498e-14 - H2 1.749e-14 1.749e-14 -13.757 -13.757 0.000 28.54 +H(0) 2.146e-14 + H2 1.073e-14 1.073e-14 -13.969 -13.969 0.000 28.54 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -51.125 -51.125 0.000 32.75 + O2 0.000e+00 0.000e+00 -50.674 -50.674 0.000 32.75 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 84 atm) - CH4(g) -20.45 -23.51 -3.06 CH4 + CH4(g) -21.30 -24.36 -3.06 CH4 CO2(g) 1.79 -0.13 -1.92 CO2 Pressure 82.9 atm, phi 0.746 - H2(g) -10.59 -13.76 -3.17 H2 + H2(g) -10.80 -13.97 -3.17 H2 H2O(g) -0.41 -0.01 0.40 H2O Pressure 0.7 atm, phi 0.534 - O2(g) -47.99 -51.13 -3.14 O2 + O2(g) -47.53 -50.67 -3.14 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6603,7 +6603,7 @@ H2O(g) -0.08 8.308e-01 0.476 3.718e-02 4.488e-02 7.699e-03 ----------------------------Description of solution---------------------------- pH = 3.191 Charge balance - pe = 1.945 Adjusted to redox equilibrium + pe = 2.102 Adjusted to redox equilibrium Specific Conductance (µS/cm, 75°C) = 389 Density (g/cm³) = 0.98568 Volume (L) = 1.05312 @@ -6629,27 +6629,27 @@ H2O(g) -0.08 8.308e-01 0.476 3.718e-02 4.488e-02 7.699e-03 H+ 6.648e-04 6.445e-04 -3.177 -3.191 -0.013 0.00 OH- 3.500e-10 3.389e-10 -9.456 -9.470 -0.014 -4.77 H2O 5.551e+01 9.857e-01 1.744 -0.006 0.000 18.40 -C(-4) 9.441e-24 - CH4 9.441e-24 9.442e-24 -23.025 -23.025 0.000 39.06 +C(-4) 5.171e-25 + CH4 5.171e-25 5.172e-25 -24.286 -24.286 0.000 39.06 C(4) 8.833e-01 CO2 8.010e-01 8.010e-01 -0.096 -0.096 0.000 36.90 (CO2)2 4.082e-02 4.083e-02 -1.389 -1.389 0.000 73.80 HCO3- 6.648e-04 6.439e-04 -3.177 -3.191 -0.014 25.60 CO3-2 9.379e-11 8.258e-11 -10.028 -10.083 -0.055 -3.99 -H(0) 4.508e-14 - H2 2.254e-14 2.254e-14 -13.647 -13.647 0.000 28.53 +H(0) 2.181e-14 + H2 1.090e-14 1.090e-14 -13.962 -13.962 0.000 28.53 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -51.356 -51.356 0.000 32.72 + O2 0.000e+00 0.000e+00 -50.698 -50.698 0.000 32.72 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 96 atm) - CH4(g) -19.96 -23.02 -3.07 CH4 + CH4(g) -21.22 -24.29 -3.07 CH4 CO2(g) 1.83 -0.10 -1.93 CO2 Pressure 94.7 atm, phi 0.714 - H2(g) -10.47 -13.65 -3.17 H2 + H2(g) -10.79 -13.96 -3.17 H2 H2O(g) -0.40 -0.01 0.40 H2O Pressure 0.8 atm, phi 0.476 - O2(g) -48.21 -51.36 -3.15 O2 + O2(g) -47.55 -50.70 -3.15 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6698,7 +6698,7 @@ H2O(g) -0.03 9.337e-01 0.426 4.488e-02 5.370e-02 8.815e-03 ----------------------------Description of solution---------------------------- pH = 3.177 Charge balance - pe = 1.879 Adjusted to redox equilibrium + pe = 2.022 Adjusted to redox equilibrium Specific Conductance (µS/cm, 75°C) = 400 Density (g/cm³) = 0.98654 Volume (L) = 1.05442 @@ -6706,7 +6706,7 @@ H2O(g) -0.03 9.337e-01 0.426 4.488e-02 5.370e-02 8.815e-03 Activity of water = 0.985 Ionic strength (mol/kgw) = 6.867e-04 Mass of water (kg) = 9.990e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 9.370e-01 Temperature (°C) = 75.00 Pressure (atm) = 106.37 @@ -6724,27 +6724,27 @@ H2O(g) -0.03 9.337e-01 0.426 4.488e-02 5.370e-02 8.815e-03 H+ 6.867e-04 6.655e-04 -3.163 -3.177 -0.014 0.00 OH- 3.419e-10 3.308e-10 -9.466 -9.480 -0.014 -4.81 H2O 5.551e+01 9.848e-01 1.744 -0.007 0.000 18.39 -C(-4) 4.230e-23 - CH4 4.230e-23 4.231e-23 -22.374 -22.374 0.000 39.06 +C(-4) 3.067e-24 + CH4 3.067e-24 3.068e-24 -23.513 -23.513 0.000 39.06 C(4) 9.370e-01 CO2 8.454e-01 8.455e-01 -0.073 -0.073 0.000 36.88 (CO2)2 4.548e-02 4.549e-02 -1.342 -1.342 0.000 73.77 HCO3- 6.867e-04 6.649e-04 -3.163 -3.177 -0.014 25.65 CO3-2 9.501e-11 8.349e-11 -10.022 -10.078 -0.056 -3.88 -H(0) 6.421e-14 - H2 3.211e-14 3.211e-14 -13.493 -13.493 0.000 28.53 +H(0) 3.332e-14 + H2 1.666e-14 1.666e-14 -13.778 -13.778 0.000 28.53 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -51.673 -51.673 0.000 32.69 + O2 0.000e+00 0.000e+00 -51.076 -51.076 0.000 32.69 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 106 atm) - CH4(g) -19.30 -22.37 -3.08 CH4 + CH4(g) -20.44 -23.51 -3.08 CH4 CO2(g) 1.86 -0.07 -1.93 CO2 Pressure 105.4 atm, phi 0.687 - H2(g) -10.31 -13.49 -3.18 H2 + H2(g) -10.60 -13.78 -3.18 H2 H2O(g) -0.40 -0.01 0.39 H2O Pressure 0.9 atm, phi 0.426 - O2(g) -48.52 -51.67 -3.15 O2 + O2(g) -47.93 -51.08 -3.15 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6793,7 +6793,7 @@ H2O(g) 0.02 1.046e+00 0.383 5.370e-02 6.365e-02 9.958e-03 ----------------------------Description of solution---------------------------- pH = 3.166 Charge balance - pe = 1.968 Adjusted to redox equilibrium + pe = 1.905 Adjusted to redox equilibrium Specific Conductance (µS/cm, 75°C) = 409 Density (g/cm³) = 0.98730 Volume (L) = 1.05534 @@ -6819,27 +6819,27 @@ H2O(g) 0.02 1.046e+00 0.383 5.370e-02 6.365e-02 9.958e-03 H+ 7.045e-04 6.825e-04 -3.152 -3.166 -0.014 0.00 OH- 3.360e-10 3.251e-10 -9.474 -9.488 -0.014 -4.84 H2O 5.551e+01 9.842e-01 1.744 -0.007 0.000 18.38 -C(-4) 1.039e-23 - CH4 1.039e-23 1.039e-23 -22.983 -22.983 0.000 39.06 +C(-4) 3.318e-23 + CH4 3.318e-23 3.318e-23 -22.479 -22.479 0.000 39.06 C(4) 9.802e-01 CO2 8.807e-01 8.808e-01 -0.055 -0.055 0.000 36.87 (CO2)2 4.936e-02 4.937e-02 -1.307 -1.307 0.000 73.73 HCO3- 7.045e-04 6.819e-04 -3.152 -3.166 -0.014 25.70 CO3-2 9.612e-11 8.434e-11 -10.017 -10.074 -0.057 -3.78 -H(0) 4.444e-14 - H2 2.222e-14 2.222e-14 -13.653 -13.653 0.000 28.52 +H(0) 5.940e-14 + H2 2.970e-14 2.971e-14 -13.527 -13.527 0.000 28.52 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -51.362 -51.362 0.000 32.67 + O2 0.000e+00 0.000e+00 -51.587 -51.587 0.000 32.67 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 116 atm) - CH4(g) -19.90 -22.98 -3.08 CH4 + CH4(g) -19.40 -22.48 -3.08 CH4 CO2(g) 1.88 -0.06 -1.94 CO2 Pressure 115.4 atm, phi 0.662 - H2(g) -10.47 -13.65 -3.18 H2 + H2(g) -10.34 -13.53 -3.18 H2 H2O(g) -0.40 -0.01 0.39 H2O Pressure 1.0 atm, phi 0.383 - O2(g) -48.21 -51.36 -3.16 O2 + O2(g) -48.43 -51.59 -3.16 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6888,7 +6888,7 @@ H2O(g) 0.07 1.170e+00 0.344 6.365e-02 7.477e-02 1.111e-02 ----------------------------Description of solution---------------------------- pH = 3.157 Charge balance - pe = 2.153 Adjusted to redox equilibrium + pe = 1.990 Adjusted to redox equilibrium Specific Conductance (µS/cm, 75°C) = 417 Density (g/cm³) = 0.98799 Volume (L) = 1.05600 @@ -6914,27 +6914,27 @@ H2O(g) 0.07 1.170e+00 0.344 6.365e-02 7.477e-02 1.111e-02 H+ 7.197e-04 6.970e-04 -3.143 -3.157 -0.014 0.00 OH- 3.316e-10 3.207e-10 -9.479 -9.494 -0.015 -4.87 H2O 5.551e+01 9.836e-01 1.744 -0.007 0.000 18.38 -C(-4) 4.141e-25 - CH4 4.141e-25 4.141e-25 -24.383 -24.383 0.000 39.06 +C(-4) 8.335e-24 + CH4 8.335e-24 8.336e-24 -23.079 -23.079 0.000 39.06 C(4) 1.016e+00 CO2 9.101e-01 9.102e-01 -0.041 -0.041 0.000 36.85 (CO2)2 5.270e-02 5.271e-02 -1.278 -1.278 0.000 73.70 HCO3- 7.197e-04 6.963e-04 -3.143 -3.157 -0.014 25.74 CO3-2 9.718e-11 8.517e-11 -10.012 -10.070 -0.057 -3.68 -H(0) 1.956e-14 - H2 9.781e-15 9.783e-15 -14.010 -14.010 0.000 28.52 +H(0) 4.144e-14 + H2 2.072e-14 2.072e-14 -13.684 -13.684 0.000 28.52 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.657 -50.657 0.000 32.64 + O2 0.000e+00 0.000e+00 -51.282 -51.282 0.000 32.64 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 126 atm) - CH4(g) -21.30 -24.38 -3.09 CH4 + CH4(g) -19.99 -23.08 -3.09 CH4 CO2(g) 1.90 -0.04 -1.94 CO2 Pressure 124.9 atm, phi 0.640 - H2(g) -10.82 -14.01 -3.19 H2 + H2(g) -10.50 -13.68 -3.19 H2 H2O(g) -0.40 -0.01 0.39 H2O Pressure 1.2 atm, phi 0.344 - O2(g) -47.50 -50.66 -3.16 O2 + O2(g) -48.12 -51.28 -3.16 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -6983,7 +6983,7 @@ H2O(g) 0.12 1.308e+00 0.310 7.477e-02 8.703e-02 1.226e-02 ----------------------------Description of solution---------------------------- pH = 3.149 Charge balance - pe = 2.246 Adjusted to redox equilibrium + pe = 1.973 Adjusted to redox equilibrium Specific Conductance (µS/cm, 75°C) = 424 Density (g/cm³) = 0.98864 Volume (L) = 1.05647 @@ -7009,27 +7009,27 @@ H2O(g) 0.12 1.308e+00 0.310 7.477e-02 8.703e-02 1.226e-02 H+ 7.333e-04 7.100e-04 -3.135 -3.149 -0.014 0.00 OH- 3.281e-10 3.172e-10 -9.484 -9.499 -0.015 -4.90 H2O 5.551e+01 9.831e-01 1.744 -0.007 0.000 18.37 -C(-4) 8.872e-26 - CH4 8.872e-26 8.874e-26 -25.052 -25.052 0.000 39.06 +C(-4) 1.345e-23 + CH4 1.345e-23 1.345e-23 -22.871 -22.871 0.000 39.06 C(4) 1.048e+00 CO2 9.357e-01 9.358e-01 -0.029 -0.029 0.000 36.83 (CO2)2 5.571e-02 5.572e-02 -1.254 -1.254 0.000 73.66 HCO3- 7.333e-04 7.093e-04 -3.135 -3.149 -0.014 25.78 CO3-2 9.824e-11 8.600e-11 -10.008 -10.065 -0.058 -3.59 -H(0) 1.313e-14 - H2 6.565e-15 6.566e-15 -14.183 -14.183 0.000 28.51 +H(0) 4.607e-14 + H2 2.304e-14 2.304e-14 -13.638 -13.638 0.000 28.51 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.319 -50.319 0.000 32.62 + O2 0.000e+00 0.000e+00 -51.383 -51.383 0.000 32.62 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 136 atm) - CH4(g) -21.96 -25.05 -3.09 CH4 + CH4(g) -19.78 -22.87 -3.09 CH4 CO2(g) 1.92 -0.03 -1.95 CO2 Pressure 134.5 atm, phi 0.618 - H2(g) -10.99 -14.18 -3.19 H2 + H2(g) -10.45 -13.64 -3.19 H2 H2O(g) -0.39 -0.01 0.39 H2O Pressure 1.3 atm, phi 0.310 - O2(g) -47.15 -50.32 -3.16 O2 + O2(g) -48.22 -51.38 -3.16 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7078,7 +7078,7 @@ H2O(g) 0.17 1.463e+00 0.278 8.703e-02 1.004e-01 1.338e-02 ----------------------------Description of solution---------------------------- pH = 3.141 Charge balance - pe = 2.060 Adjusted to redox equilibrium + pe = 1.892 Adjusted to redox equilibrium Specific Conductance (µS/cm, 75°C) = 431 Density (g/cm³) = 0.98930 Volume (L) = 1.05681 @@ -7104,27 +7104,27 @@ H2O(g) 0.17 1.463e+00 0.278 8.703e-02 1.004e-01 1.338e-02 H+ 7.462e-04 7.224e-04 -3.127 -3.141 -0.014 0.00 OH- 3.252e-10 3.143e-10 -9.488 -9.503 -0.015 -4.94 H2O 5.551e+01 9.827e-01 1.744 -0.008 0.000 18.36 -C(-4) 3.179e-24 - CH4 3.179e-24 3.180e-24 -23.498 -23.498 0.000 39.05 +C(-4) 6.912e-23 + CH4 6.912e-23 6.913e-23 -22.160 -22.160 0.000 39.05 C(4) 1.077e+00 CO2 9.591e-01 9.592e-01 -0.018 -0.018 0.000 36.81 (CO2)2 5.854e-02 5.855e-02 -1.233 -1.232 0.000 73.63 HCO3- 7.462e-04 7.216e-04 -3.127 -3.142 -0.015 25.82 CO3-2 9.935e-11 8.688e-11 -10.003 -10.061 -0.058 -3.49 -H(0) 3.171e-14 - H2 1.585e-14 1.586e-14 -13.800 -13.800 0.000 28.51 +H(0) 6.847e-14 + H2 3.423e-14 3.424e-14 -13.466 -13.465 0.000 28.51 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -51.093 -51.093 0.000 32.59 + O2 0.000e+00 0.000e+00 -51.735 -51.735 0.000 32.59 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 146 atm) - CH4(g) -20.40 -23.50 -3.10 CH4 + CH4(g) -19.06 -22.16 -3.10 CH4 CO2(g) 1.94 -0.02 -1.95 CO2 Pressure 144.6 atm, phi 0.598 - H2(g) -10.60 -13.80 -3.20 H2 + H2(g) -10.27 -13.47 -3.20 H2 H2O(g) -0.39 -0.01 0.38 H2O Pressure 1.5 atm, phi 0.278 - O2(g) -47.92 -51.09 -3.17 O2 + O2(g) -48.57 -51.74 -3.17 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7173,7 +7173,7 @@ H2O(g) 0.21 1.640e+00 0.250 1.004e-01 1.149e-01 1.446e-02 ----------------------------Description of solution---------------------------- pH = 3.134 Charge balance - pe = 1.950 Adjusted to redox equilibrium + pe = 2.032 Adjusted to redox equilibrium Specific Conductance (µS/cm, 75°C) = 437 Density (g/cm³) = 0.98999 Volume (L) = 1.05704 @@ -7199,27 +7199,27 @@ H2O(g) 0.21 1.640e+00 0.250 1.004e-01 1.149e-01 1.446e-02 H+ 7.591e-04 7.347e-04 -3.120 -3.134 -0.014 0.00 OH- 3.226e-10 3.117e-10 -9.491 -9.506 -0.015 -4.97 H2O 5.551e+01 9.822e-01 1.744 -0.008 0.000 18.35 -C(-4) 2.777e-23 - CH4 2.777e-23 2.777e-23 -22.556 -22.556 0.000 39.05 +C(-4) 6.070e-24 + CH4 6.070e-24 6.071e-24 -23.217 -23.217 0.000 39.05 C(4) 1.105e+00 CO2 9.817e-01 9.818e-01 -0.008 -0.008 0.000 36.79 (CO2)2 6.132e-02 6.133e-02 -1.212 -1.212 0.000 73.59 HCO3- 7.592e-04 7.339e-04 -3.120 -3.134 -0.015 25.87 CO3-2 1.006e-10 8.786e-11 -9.998 -10.056 -0.059 -3.38 -H(0) 5.378e-14 - H2 2.689e-14 2.690e-14 -13.570 -13.570 0.000 28.50 +H(0) 3.678e-14 + H2 1.839e-14 1.839e-14 -13.735 -13.735 0.000 28.50 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -51.562 -51.562 0.000 32.56 + O2 0.000e+00 0.000e+00 -51.205 -51.205 0.000 32.56 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 157 atm) - CH4(g) -19.45 -22.56 -3.11 CH4 + CH4(g) -20.11 -23.22 -3.11 CH4 CO2(g) 1.95 -0.01 -1.96 CO2 Pressure 155.6 atm, phi 0.577 - H2(g) -10.37 -13.57 -3.20 H2 + H2(g) -10.53 -13.74 -3.20 H2 H2O(g) -0.39 -0.01 0.38 H2O Pressure 1.6 atm, phi 0.250 - O2(g) -48.39 -51.56 -3.18 O2 + O2(g) -48.03 -51.20 -3.18 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7268,7 +7268,7 @@ H2O(g) 0.27 1.845e+00 0.224 1.149e-01 1.303e-01 1.547e-02 ----------------------------Description of solution---------------------------- pH = 3.126 Charge balance - pe = 1.990 Adjusted to redox equilibrium + pe = 2.120 Adjusted to redox equilibrium Specific Conductance (µS/cm, 75°C) = 444 Density (g/cm³) = 0.99075 Volume (L) = 1.05719 @@ -7294,27 +7294,27 @@ H2O(g) 0.27 1.845e+00 0.224 1.149e-01 1.303e-01 1.547e-02 H+ 7.726e-04 7.475e-04 -3.112 -3.126 -0.014 0.00 OH- 3.204e-10 3.095e-10 -9.494 -9.509 -0.015 -5.01 H2O 5.551e+01 9.818e-01 1.744 -0.008 0.000 18.34 -C(-4) 1.540e-23 - CH4 1.540e-23 1.540e-23 -22.812 -22.812 0.000 39.05 +C(-4) 1.408e-24 + CH4 1.408e-24 1.408e-24 -23.852 -23.851 0.000 39.05 C(4) 1.133e+00 CO2 1.004e+00 1.004e+00 0.002 0.002 0.000 36.77 (CO2)2 6.416e-02 6.417e-02 -1.193 -1.193 0.000 73.54 HCO3- 7.726e-04 7.468e-04 -3.112 -3.127 -0.015 25.92 CO3-2 1.019e-10 8.896e-11 -9.992 -10.051 -0.059 -3.26 -H(0) 4.576e-14 - H2 2.288e-14 2.288e-14 -13.641 -13.640 0.000 28.50 +H(0) 2.516e-14 + H2 1.258e-14 1.258e-14 -13.900 -13.900 0.000 28.50 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -51.432 -51.432 0.000 32.53 + O2 0.000e+00 0.000e+00 -50.886 -50.886 0.000 32.53 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 170 atm) - CH4(g) -19.70 -22.81 -3.11 CH4 + CH4(g) -20.74 -23.85 -3.11 CH4 CO2(g) 1.97 0.00 -1.97 CO2 Pressure 168.0 atm, phi 0.555 - H2(g) -10.43 -13.64 -3.21 H2 + H2(g) -10.69 -13.90 -3.21 H2 H2O(g) -0.38 -0.01 0.38 H2O Pressure 1.8 atm, phi 0.224 - O2(g) -48.25 -51.43 -3.18 O2 + O2(g) -47.70 -50.89 -3.18 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7363,7 +7363,7 @@ H2O(g) 0.32 2.085e+00 0.200 1.303e-01 1.467e-01 1.639e-02 ----------------------------Description of solution---------------------------- pH = 3.118 Charge balance - pe = 2.109 Adjusted to redox equilibrium + pe = 3.464 Adjusted to redox equilibrium Specific Conductance (µS/cm, 75°C) = 452 Density (g/cm³) = 0.99159 Volume (L) = 1.05726 @@ -7371,13 +7371,13 @@ H2O(g) 0.32 2.085e+00 0.200 1.303e-01 1.467e-01 1.639e-02 Activity of water = 0.981 Ionic strength (mol/kgw) = 7.871e-04 Mass of water (kg) = 9.973e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.162e+00 Temperature (°C) = 75.00 Pressure (atm) = 184.57 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 28 + Iterations = 31 Total H = 1.107190e+02 Total O = 5.767786e+01 @@ -7389,27 +7389,27 @@ H2O(g) 0.32 2.085e+00 0.200 1.303e-01 1.467e-01 1.639e-02 H+ 7.871e-04 7.614e-04 -3.104 -3.118 -0.014 0.00 OH- 3.184e-10 3.074e-10 -9.497 -9.512 -0.015 -5.05 H2O 5.551e+01 9.814e-01 1.744 -0.008 0.000 18.33 -C(-4) 1.984e-24 - CH4 1.984e-24 1.984e-24 -23.703 -23.702 0.000 39.05 +C(-4) 2.882e-35 + CH4 2.882e-35 2.882e-35 -34.540 -34.540 0.000 39.05 C(4) 1.162e+00 CO2 1.027e+00 1.027e+00 0.012 0.012 0.000 36.75 (CO2)2 6.714e-02 6.716e-02 -1.173 -1.173 0.000 73.49 HCO3- 7.871e-04 7.606e-04 -3.104 -3.119 -0.015 25.99 CO3-2 1.035e-10 9.026e-11 -9.985 -10.045 -0.060 -3.12 -H(0) 2.699e-14 - H2 1.350e-14 1.350e-14 -13.870 -13.870 0.000 28.49 +H(0) 5.270e-17 + H2 2.635e-17 2.635e-17 -16.579 -16.579 0.000 28.49 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.986 -50.986 0.000 32.49 + O2 0.000e+00 0.000e+00 -45.540 -45.540 0.000 32.49 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 185 atm) - CH4(g) -20.58 -23.70 -3.12 CH4 + CH4(g) -31.42 -34.54 -3.12 CH4 CO2(g) 1.99 0.01 -1.98 CO2 Pressure 182.5 atm, phi 0.533 - H2(g) -10.66 -13.87 -3.21 H2 + H2(g) -13.37 -16.58 -3.21 H2 H2O(g) -0.38 -0.01 0.37 H2O Pressure 2.1 atm, phi 0.200 - O2(g) -47.80 -50.99 -3.19 O2 + O2(g) -42.35 -45.54 -3.19 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7458,7 +7458,7 @@ H2O(g) 0.37 2.368e+00 0.178 1.467e-01 1.639e-01 1.719e-02 ----------------------------Description of solution---------------------------- pH = 3.110 Charge balance - pe = 2.181 Adjusted to redox equilibrium + pe = 2.207 Adjusted to redox equilibrium Specific Conductance (µS/cm, 75°C) = 460 Density (g/cm³) = 0.99256 Volume (L) = 1.05726 @@ -7466,13 +7466,13 @@ H2O(g) 0.37 2.368e+00 0.178 1.467e-01 1.639e-01 1.719e-02 Activity of water = 0.981 Ionic strength (mol/kgw) = 8.031e-04 Mass of water (kg) = 9.970e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.193e+00 Temperature (°C) = 75.00 Pressure (atm) = 201.89 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 30 + Iterations = 29 Total H = 1.106846e+02 Total O = 5.772096e+01 @@ -7484,27 +7484,27 @@ H2O(g) 0.37 2.368e+00 0.178 1.467e-01 1.639e-01 1.719e-02 H+ 8.031e-04 7.766e-04 -3.095 -3.110 -0.015 0.00 OH- 3.166e-10 3.056e-10 -9.499 -9.515 -0.015 -5.11 H2O 5.551e+01 9.809e-01 1.744 -0.008 0.000 18.32 -C(-4) 6.179e-25 - CH4 6.179e-25 6.180e-25 -24.209 -24.209 0.000 39.04 +C(-4) 3.851e-25 + CH4 3.851e-25 3.852e-25 -24.414 -24.414 0.000 39.04 C(4) 1.193e+00 CO2 1.051e+00 1.052e+00 0.022 0.022 0.000 36.72 (CO2)2 7.034e-02 7.035e-02 -1.153 -1.153 0.000 73.43 HCO3- 8.031e-04 7.758e-04 -3.095 -3.110 -0.015 26.06 CO3-2 1.054e-10 9.180e-11 -9.977 -10.037 -0.060 -2.95 -H(0) 1.982e-14 - H2 9.909e-15 9.911e-15 -14.004 -14.004 0.000 28.49 +H(0) 1.761e-14 + H2 8.805e-15 8.806e-15 -14.055 -14.055 0.000 28.49 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.731 -50.731 0.000 32.45 + O2 0.000e+00 0.000e+00 -50.602 -50.602 0.000 32.45 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 202 atm) - CH4(g) -21.08 -24.21 -3.13 CH4 + CH4(g) -21.28 -24.41 -3.13 CH4 CO2(g) 2.01 0.02 -1.99 CO2 Pressure 199.5 atm, phi 0.510 - H2(g) -10.78 -14.00 -3.22 H2 + H2(g) -10.84 -14.06 -3.22 H2 H2O(g) -0.38 -0.01 0.37 H2O Pressure 2.4 atm, phi 0.178 - O2(g) -47.53 -50.73 -3.20 O2 + O2(g) -47.40 -50.60 -3.20 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7553,7 +7553,7 @@ H2O(g) 0.43 2.704e+00 0.158 1.639e-01 1.818e-01 1.784e-02 ----------------------------Description of solution---------------------------- pH = 3.100 Charge balance - pe = 2.157 Adjusted to redox equilibrium + pe = 2.526 Adjusted to redox equilibrium Specific Conductance (µS/cm, 75°C) = 469 Density (g/cm³) = 0.99369 Volume (L) = 1.05716 @@ -7561,11 +7561,11 @@ H2O(g) 0.43 2.704e+00 0.158 1.639e-01 1.818e-01 1.784e-02 Activity of water = 0.980 Ionic strength (mol/kgw) = 8.210e-04 Mass of water (kg) = 9.967e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.226e+00 Temperature (°C) = 75.00 Pressure (atm) = 222.54 - Electrical balance (eq) = -1.212e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 52 Total H = 1.106489e+02 @@ -7579,27 +7579,27 @@ H2O(g) 0.43 2.704e+00 0.158 1.639e-01 1.818e-01 1.784e-02 H+ 8.210e-04 7.937e-04 -3.086 -3.100 -0.015 0.00 OH- 3.151e-10 3.041e-10 -9.502 -9.517 -0.015 -5.17 H2O 5.551e+01 9.804e-01 1.744 -0.009 0.000 18.30 -C(-4) 1.149e-24 - CH4 1.149e-24 1.149e-24 -23.940 -23.940 0.000 39.04 +C(-4) 1.271e-27 + CH4 1.271e-27 1.271e-27 -26.896 -26.896 0.000 39.04 C(4) 1.226e+00 CO2 1.077e+00 1.077e+00 0.032 0.032 0.000 36.68 (CO2)2 7.382e-02 7.383e-02 -1.132 -1.132 0.000 73.37 HCO3- 8.210e-04 7.928e-04 -3.086 -3.101 -0.015 26.14 CO3-2 1.077e-10 9.367e-11 -9.968 -10.028 -0.061 -2.76 -H(0) 2.269e-14 - H2 1.134e-14 1.135e-14 -13.945 -13.945 0.000 28.48 +H(0) 4.138e-15 + H2 2.069e-15 2.069e-15 -14.684 -14.684 0.000 28.48 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.866 -50.866 0.000 32.40 + O2 0.000e+00 0.000e+00 -49.361 -49.361 0.000 32.40 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 223 atm) - CH4(g) -20.80 -23.94 -3.14 CH4 + CH4(g) -23.75 -26.90 -3.14 CH4 CO2(g) 2.03 0.03 -2.00 CO2 Pressure 219.8 atm, phi 0.487 - H2(g) -10.72 -13.95 -3.23 H2 + H2(g) -11.46 -14.68 -3.23 H2 H2O(g) -0.37 -0.01 0.36 H2O Pressure 2.7 atm, phi 0.158 - O2(g) -47.66 -50.87 -3.21 O2 + O2(g) -46.15 -49.36 -3.21 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7648,7 +7648,7 @@ H2O(g) 0.49 3.103e+00 0.140 1.818e-01 2.001e-01 1.830e-02 ----------------------------Description of solution---------------------------- pH = 3.090 Charge balance - pe = 2.124 Adjusted to redox equilibrium + pe = 2.114 Adjusted to redox equilibrium Specific Conductance (µS/cm, 75°C) = 480 Density (g/cm³) = 0.99500 Volume (L) = 1.05696 @@ -7656,11 +7656,11 @@ H2O(g) 0.49 3.103e+00 0.140 1.818e-01 2.001e-01 1.830e-02 Activity of water = 0.980 Ionic strength (mol/kgw) = 8.413e-04 Mass of water (kg) = 9.964e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.261e+00 Temperature (°C) = 75.00 Pressure (atm) = 247.32 - Electrical balance (eq) = -1.212e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 60 Total H = 1.106123e+02 @@ -7674,27 +7674,27 @@ H2O(g) 0.49 3.103e+00 0.140 1.818e-01 2.001e-01 1.830e-02 H+ 8.413e-04 8.131e-04 -3.075 -3.090 -0.015 0.00 OH- 3.140e-10 3.030e-10 -9.503 -9.519 -0.016 -5.24 H2O 5.551e+01 9.799e-01 1.744 -0.009 0.000 18.28 -C(-4) 2.508e-24 - CH4 2.508e-24 2.509e-24 -23.601 -23.601 0.000 39.03 +C(-4) 3.034e-24 + CH4 3.034e-24 3.035e-24 -23.518 -23.518 0.000 39.03 C(4) 1.261e+00 CO2 1.104e+00 1.105e+00 0.043 0.043 0.000 36.64 (CO2)2 7.762e-02 7.764e-02 -1.110 -1.110 0.000 73.28 HCO3- 8.413e-04 8.122e-04 -3.075 -3.090 -0.015 26.24 CO3-2 1.105e-10 9.594e-11 -9.957 -10.018 -0.061 -2.53 -H(0) 2.696e-14 - H2 1.348e-14 1.348e-14 -13.870 -13.870 0.000 28.47 +H(0) 2.827e-14 + H2 1.414e-14 1.414e-14 -13.850 -13.850 0.000 28.47 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -51.036 -51.036 0.000 32.34 + O2 0.000e+00 0.000e+00 -51.050 -51.050 0.000 32.34 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 247 atm) - CH4(g) -20.44 -23.60 -3.16 CH4 + CH4(g) -20.36 -23.52 -3.16 CH4 CO2(g) 2.05 0.04 -2.01 CO2 Pressure 244.2 atm, phi 0.464 - H2(g) -10.63 -13.87 -3.24 H2 + H2(g) -10.61 -13.85 -3.24 H2 H2O(g) -0.36 -0.01 0.35 H2O Pressure 3.1 atm, phi 0.140 - O2(g) -47.82 -51.04 -3.22 O2 + O2(g) -47.83 -51.05 -3.22 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7743,7 +7743,7 @@ H2O(g) 0.55 3.579e+00 0.123 2.001e-01 2.186e-01 1.854e-02 ----------------------------Description of solution---------------------------- pH = 3.078 Charge balance - pe = 2.151 Adjusted to redox equilibrium + pe = 2.037 Adjusted to redox equilibrium Specific Conductance (µS/cm, 75°C) = 492 Density (g/cm³) = 0.99654 Volume (L) = 1.05664 @@ -7751,11 +7751,11 @@ H2O(g) 0.55 3.579e+00 0.123 2.001e-01 2.186e-01 1.854e-02 Activity of water = 0.979 Ionic strength (mol/kgw) = 8.646e-04 Mass of water (kg) = 9.960e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.298e+00 Temperature (°C) = 75.00 Pressure (atm) = 277.14 - Electrical balance (eq) = -1.212e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 67 Total H = 1.105752e+02 @@ -7769,27 +7769,27 @@ H2O(g) 0.55 3.579e+00 0.123 2.001e-01 2.186e-01 1.854e-02 H+ 8.646e-04 8.353e-04 -3.063 -3.078 -0.015 0.00 OH- 3.134e-10 3.023e-10 -9.504 -9.520 -0.016 -5.33 H2O 5.551e+01 9.793e-01 1.744 -0.009 0.000 18.26 -C(-4) 1.866e-24 - CH4 1.866e-24 1.866e-24 -23.729 -23.729 0.000 39.03 +C(-4) 1.546e-23 + CH4 1.546e-23 1.547e-23 -22.811 -22.811 0.000 39.03 C(4) 1.298e+00 CO2 1.134e+00 1.134e+00 0.055 0.055 0.000 36.59 (CO2)2 8.181e-02 8.183e-02 -1.087 -1.087 0.000 73.19 HCO3- 8.646e-04 8.343e-04 -3.063 -3.079 -0.015 26.36 CO3-2 1.139e-10 9.872e-11 -9.944 -10.006 -0.062 -2.26 -H(0) 2.439e-14 - H2 1.219e-14 1.220e-14 -13.914 -13.914 0.000 28.45 +H(0) 4.138e-14 + H2 2.069e-14 2.069e-14 -13.684 -13.684 0.000 28.45 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.973 -50.973 0.000 32.27 + O2 0.000e+00 0.000e+00 -51.405 -51.405 0.000 32.27 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 277 atm) - CH4(g) -20.55 -23.73 -3.18 CH4 + CH4(g) -19.63 -22.81 -3.18 CH4 CO2(g) 2.08 0.05 -2.03 CO2 Pressure 273.6 atm, phi 0.441 - H2(g) -10.66 -13.91 -3.25 H2 + H2(g) -10.43 -13.68 -3.25 H2 H2O(g) -0.36 -0.01 0.35 H2O Pressure 3.6 atm, phi 0.123 - O2(g) -47.74 -50.97 -3.23 O2 + O2(g) -48.17 -51.41 -3.23 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7838,7 +7838,7 @@ H2O(g) 0.62 4.146e+00 0.109 2.186e-01 2.371e-01 1.851e-02 ----------------------------Description of solution---------------------------- pH = 3.065 Charge balance - pe = 2.230 Adjusted to redox equilibrium + pe = 2.051 Adjusted to redox equilibrium Specific Conductance (µS/cm, 75°C) = 506 Density (g/cm³) = 0.99835 Volume (L) = 1.05616 @@ -7846,11 +7846,11 @@ H2O(g) 0.62 4.146e+00 0.109 2.186e-01 2.371e-01 1.851e-02 Activity of water = 0.979 Ionic strength (mol/kgw) = 8.914e-04 Mass of water (kg) = 9.957e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.339e+00 Temperature (°C) = 75.00 Pressure (atm) = 313.08 - Electrical balance (eq) = -1.212e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 76 Total H = 1.105382e+02 @@ -7864,27 +7864,27 @@ H2O(g) 0.62 4.146e+00 0.109 2.186e-01 2.371e-01 1.851e-02 H+ 8.914e-04 8.608e-04 -3.050 -3.065 -0.015 0.00 OH- 3.135e-10 3.022e-10 -9.504 -9.520 -0.016 -5.43 H2O 5.551e+01 9.787e-01 1.744 -0.009 0.000 18.23 -C(-4) 5.452e-25 - CH4 5.452e-25 5.453e-25 -24.263 -24.263 0.000 39.02 +C(-4) 1.488e-23 + CH4 1.488e-23 1.488e-23 -22.828 -22.827 0.000 39.02 C(4) 1.339e+00 CO2 1.165e+00 1.166e+00 0.066 0.067 0.000 36.53 (CO2)2 8.643e-02 8.645e-02 -1.063 -1.063 0.000 73.07 HCO3- 8.914e-04 8.598e-04 -3.050 -3.066 -0.016 26.50 CO3-2 1.180e-10 1.021e-10 -9.928 -9.991 -0.063 -1.94 -H(0) 1.739e-14 - H2 8.695e-15 8.697e-15 -14.061 -14.061 0.000 28.44 +H(0) 3.975e-14 + H2 1.987e-14 1.988e-14 -13.702 -13.702 0.000 28.44 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.708 -50.708 0.000 32.18 + O2 0.000e+00 0.000e+00 -51.399 -51.399 0.000 32.18 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 313 atm) - CH4(g) -21.07 -24.26 -3.20 CH4 + CH4(g) -19.63 -22.83 -3.20 CH4 CO2(g) 2.11 0.07 -2.05 CO2 Pressure 308.9 atm, phi 0.420 - H2(g) -10.79 -14.06 -3.27 H2 + H2(g) -10.43 -13.70 -3.27 H2 H2O(g) -0.35 -0.01 0.34 H2O Pressure 4.1 atm, phi 0.109 - O2(g) -47.46 -50.71 -3.25 O2 + O2(g) -48.15 -51.40 -3.25 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -7933,7 +7933,7 @@ H2O(g) 0.68 4.819e+00 0.096 2.371e-01 2.553e-01 1.819e-02 ----------------------------Description of solution---------------------------- pH = 3.050 Charge balance - pe = 2.295 Adjusted to redox equilibrium + pe = 2.124 Adjusted to redox equilibrium Specific Conductance (µS/cm, 75°C) = 522 Density (g/cm³) = 1.00048 Volume (L) = 1.05549 @@ -7941,13 +7941,13 @@ H2O(g) 0.68 4.819e+00 0.096 2.371e-01 2.553e-01 1.819e-02 Activity of water = 0.978 Ionic strength (mol/kgw) = 9.224e-04 Mass of water (kg) = 9.954e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.383e+00 Temperature (°C) = 75.00 Pressure (atm) = 356.38 - Electrical balance (eq) = -1.212e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 86 + Iterations = 85 Total H = 1.105018e+02 Total O = 5.800454e+01 @@ -7959,27 +7959,27 @@ H2O(g) 0.68 4.819e+00 0.096 2.371e-01 2.553e-01 1.819e-02 H+ 9.224e-04 8.903e-04 -3.035 -3.050 -0.015 0.00 OH- 3.144e-10 3.029e-10 -9.502 -9.519 -0.016 -5.54 H2O 5.551e+01 9.780e-01 1.744 -0.010 0.000 18.20 -C(-4) 2.089e-25 - CH4 2.089e-25 2.090e-25 -24.680 -24.680 0.000 39.01 +C(-4) 4.894e-24 + CH4 4.894e-24 4.895e-24 -23.310 -23.310 0.000 39.01 C(4) 1.383e+00 CO2 1.199e+00 1.199e+00 0.079 0.079 0.000 36.47 (CO2)2 9.152e-02 9.154e-02 -1.038 -1.038 0.000 72.93 HCO3- 9.224e-04 8.892e-04 -3.035 -3.051 -0.016 26.67 CO3-2 1.231e-10 1.064e-10 -9.910 -9.973 -0.064 -1.57 -H(0) 1.320e-14 - H2 6.602e-15 6.603e-15 -14.180 -14.180 0.000 28.42 +H(0) 2.905e-14 + H2 1.452e-14 1.453e-14 -13.838 -13.838 0.000 28.42 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -50.504 -50.504 0.000 32.08 + O2 0.000e+00 0.000e+00 -51.162 -51.162 0.000 32.08 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 356 atm) - CH4(g) -21.46 -24.68 -3.22 CH4 + CH4(g) -20.09 -23.31 -3.22 CH4 CO2(g) 2.15 0.08 -2.07 CO2 Pressure 351.6 atm, phi 0.401 - H2(g) -10.89 -14.18 -3.29 H2 + H2(g) -10.55 -13.84 -3.29 H2 H2O(g) -0.33 -0.01 0.32 H2O Pressure 4.8 atm, phi 0.096 - O2(g) -47.23 -50.50 -3.27 O2 + O2(g) -47.89 -51.16 -3.27 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8028,7 +8028,7 @@ H2O(g) 0.75 5.616e+00 0.085 2.553e-01 2.728e-01 1.752e-02 ----------------------------Description of solution---------------------------- pH = 3.034 Charge balance - pe = 12.341 Adjusted to redox equilibrium + pe = 2.027 Adjusted to redox equilibrium Specific Conductance (µS/cm, 75°C) = 541 Density (g/cm³) = 1.00298 Volume (L) = 1.05459 @@ -8036,13 +8036,13 @@ H2O(g) 0.75 5.616e+00 0.085 2.553e-01 2.728e-01 1.752e-02 Activity of water = 0.977 Ionic strength (mol/kgw) = 9.585e-04 Mass of water (kg) = 9.951e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.431e+00 Temperature (°C) = 75.00 Pressure (atm) = 408.56 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 122 (223 overall) + Iterations = 96 Total H = 1.104668e+02 Total O = 5.808036e+01 @@ -8054,27 +8054,27 @@ H2O(g) 0.75 5.616e+00 0.085 2.553e-01 2.728e-01 1.752e-02 H+ 9.585e-04 9.247e-04 -3.018 -3.034 -0.016 0.00 OH- 3.166e-10 3.048e-10 -9.500 -9.516 -0.016 -5.68 H2O 5.551e+01 9.773e-01 1.744 -0.010 0.000 18.16 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -104.932 -104.932 0.000 39.00 +C(-4) 3.786e-23 + CH4 3.786e-23 3.787e-23 -22.422 -22.422 0.000 39.00 C(4) 1.431e+00 CO2 1.235e+00 1.236e+00 0.092 0.092 0.000 36.39 (CO2)2 9.711e-02 9.713e-02 -1.013 -1.013 0.000 72.77 HCO3- 9.585e-04 9.235e-04 -3.018 -3.035 -0.016 26.86 CO3-2 1.295e-10 1.116e-10 -9.888 -9.952 -0.065 -1.13 -H(0) 1.096e-34 - H2 5.478e-35 5.479e-35 -34.261 -34.261 0.000 28.40 -O(0) 8.268e-11 - O2 4.134e-11 4.135e-11 -10.384 -10.384 0.000 31.97 +H(0) 4.647e-14 + H2 2.323e-14 2.324e-14 -13.634 -13.634 0.000 28.40 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -51.612 -51.612 0.000 31.97 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 409 atm) - CH4(g) -101.68 -104.93 -3.25 CH4 + CH4(g) -19.17 -22.42 -3.25 CH4 CO2(g) 2.19 0.09 -2.10 CO2 Pressure 402.9 atm, phi 0.385 - H2(g) -30.95 -34.26 -3.31 H2 + H2(g) -10.33 -13.63 -3.31 H2 H2O(g) -0.32 -0.01 0.31 H2O Pressure 5.6 atm, phi 0.085 - O2(g) -7.09 -10.38 -3.30 O2 + O2(g) -48.32 -51.61 -3.30 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8123,7 +8123,7 @@ H2O(g) 0.82 6.552e+00 0.076 2.728e-01 2.893e-01 1.646e-02 ----------------------------Description of solution---------------------------- pH = 3.016 Charge balance - pe = 12.359 Adjusted to redox equilibrium + pe = 1.964 Adjusted to redox equilibrium Specific Conductance (µS/cm, 75°C) = 563 Density (g/cm³) = 1.00591 Volume (L) = 1.05341 @@ -8131,13 +8131,13 @@ H2O(g) 0.82 6.552e+00 0.076 2.728e-01 2.893e-01 1.646e-02 Activity of water = 0.977 Ionic strength (mol/kgw) = 1.001e-03 Mass of water (kg) = 9.948e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.481e+00 Temperature (°C) = 75.00 Pressure (atm) = 471.44 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 35 (136 overall) + Iterations = 38 (139 overall) Total H = 1.104339e+02 Total O = 5.816398e+01 @@ -8149,27 +8149,27 @@ H2O(g) 0.82 6.552e+00 0.076 2.728e-01 2.893e-01 1.646e-02 H+ 1.001e-03 9.647e-04 -3.000 -3.016 -0.016 0.00 OH- 3.203e-10 3.082e-10 -9.494 -9.511 -0.017 -5.84 H2O 5.551e+01 9.766e-01 1.744 -0.010 0.000 18.11 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -104.948 -104.948 0.000 38.98 +C(-4) 1.603e-22 + CH4 1.603e-22 1.603e-22 -21.795 -21.795 0.000 38.98 C(4) 1.481e+00 CO2 1.274e+00 1.274e+00 0.105 0.105 0.000 36.29 (CO2)2 1.032e-01 1.033e-01 -0.986 -0.986 0.000 72.58 HCO3- 1.001e-03 9.634e-04 -3.000 -3.016 -0.016 27.09 CO3-2 1.374e-10 1.181e-10 -9.862 -9.928 -0.066 -0.62 -H(0) 1.034e-34 - H2 5.169e-35 5.170e-35 -34.287 -34.286 0.000 28.38 -O(0) 8.270e-11 - O2 4.135e-11 4.136e-11 -10.384 -10.383 0.000 31.83 +H(0) 6.347e-14 + H2 3.174e-14 3.174e-14 -13.498 -13.498 0.000 28.38 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -51.933 -51.933 0.000 31.83 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 471 atm) - CH4(g) -101.66 -104.95 -3.29 CH4 + CH4(g) -18.50 -21.79 -3.29 CH4 CO2(g) 2.24 0.11 -2.13 CO2 Pressure 464.9 atm, phi 0.372 - H2(g) -30.95 -34.29 -3.34 H2 + H2(g) -10.16 -13.50 -3.34 H2 H2O(g) -0.30 -0.01 0.29 H2O Pressure 6.6 atm, phi 0.076 - O2(g) -7.06 -10.38 -3.33 O2 + O2(g) -48.61 -51.93 -3.33 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8218,7 +8218,7 @@ H2O(g) 0.88 7.646e+00 0.068 2.893e-01 3.042e-01 1.496e-02 ----------------------------Description of solution---------------------------- pH = 2.995 Charge balance - pe = 12.378 Adjusted to redox equilibrium + pe = 2.055 Adjusted to redox equilibrium Specific Conductance (µS/cm, 75°C) = 589 Density (g/cm³) = 1.00936 Volume (L) = 1.05188 @@ -8226,11 +8226,11 @@ H2O(g) 0.88 7.646e+00 0.068 2.893e-01 3.042e-01 1.496e-02 Activity of water = 0.976 Ionic strength (mol/kgw) = 1.050e-03 Mass of water (kg) = 9.945e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.535e+00 Temperature (°C) = 75.00 Pressure (atm) = 547.25 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.104039e+02 @@ -8244,27 +8244,27 @@ H2O(g) 0.88 7.646e+00 0.068 2.893e-01 3.042e-01 1.496e-02 H+ 1.050e-03 1.012e-03 -2.979 -2.995 -0.016 0.00 OH- 3.262e-10 3.137e-10 -9.486 -9.504 -0.017 -6.01 H2O 5.551e+01 9.757e-01 1.744 -0.011 0.000 18.05 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -104.969 -104.969 0.000 38.96 +C(-4) 4.146e-23 + CH4 4.146e-23 4.147e-23 -22.382 -22.382 0.000 38.96 C(4) 1.535e+00 CO2 1.314e+00 1.315e+00 0.119 0.119 0.000 36.18 (CO2)2 1.099e-01 1.100e-01 -0.959 -0.959 0.000 72.36 HCO3- 1.050e-03 1.010e-03 -2.979 -2.996 -0.017 27.35 CO3-2 1.474e-10 1.263e-10 -9.832 -9.899 -0.067 -0.02 -H(0) 9.645e-35 - H2 4.822e-35 4.824e-35 -34.317 -34.317 0.000 28.36 -O(0) 8.270e-11 - O2 4.135e-11 4.136e-11 -10.383 -10.383 0.000 31.68 +H(0) 4.274e-14 + H2 2.137e-14 2.138e-14 -13.670 -13.670 0.000 28.36 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -51.650 -51.650 0.000 31.68 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 547 atm) - CH4(g) -101.63 -104.97 -3.34 CH4 + CH4(g) -19.05 -22.38 -3.34 CH4 CO2(g) 2.29 0.12 -2.17 CO2 Pressure 539.6 atm, phi 0.364 - H2(g) -30.95 -34.32 -3.37 H2 + H2(g) -10.30 -13.67 -3.37 H2 H2O(g) -0.28 -0.01 0.27 H2O Pressure 7.6 atm, phi 0.068 - O2(g) -7.02 -10.38 -3.36 O2 + O2(g) -48.29 -51.65 -3.36 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8313,7 +8313,7 @@ H2O(g) 0.95 8.913e+00 0.062 3.042e-01 3.172e-01 1.297e-02 ----------------------------Description of solution---------------------------- pH = 2.972 Charge balance - pe = 12.400 Adjusted to redox equilibrium + pe = 12.035 Adjusted to redox equilibrium Specific Conductance (µS/cm, 75°C) = 619 Density (g/cm³) = 1.01339 Volume (L) = 1.04992 @@ -8321,13 +8321,13 @@ H2O(g) 0.95 8.913e+00 0.062 3.042e-01 3.172e-01 1.297e-02 Activity of water = 0.975 Ionic strength (mol/kgw) = 1.108e-03 Mass of water (kg) = 9.943e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.593e+00 Temperature (°C) = 75.00 Pressure (atm) = 638.75 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.212e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 36 (137 overall) + Iterations = 87 (188 overall) Total H = 1.103780e+02 Total O = 5.835630e+01 @@ -8340,26 +8340,26 @@ H2O(g) 0.95 8.913e+00 0.062 3.042e-01 3.172e-01 1.297e-02 OH- 3.351e-10 3.220e-10 -9.475 -9.492 -0.017 -6.22 H2O 5.551e+01 9.749e-01 1.744 -0.011 0.000 17.99 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -104.996 -104.996 0.000 38.94 + CH4 0.000e+00 0.000e+00 -102.078 -102.078 0.000 38.94 C(4) 1.593e+00 CO2 1.357e+00 1.357e+00 0.133 0.133 0.000 36.05 (CO2)2 1.172e-01 1.173e-01 -0.931 -0.931 0.000 72.11 HCO3- 1.108e-03 1.065e-03 -2.955 -2.973 -0.017 27.65 CO3-2 1.600e-10 1.367e-10 -9.796 -9.864 -0.068 0.66 -H(0) 8.872e-35 - H2 4.436e-35 4.437e-35 -34.353 -34.353 0.000 28.33 -O(0) 8.272e-11 - O2 4.136e-11 4.137e-11 -10.383 -10.383 0.000 31.50 +H(0) 4.759e-34 + H2 2.380e-34 2.380e-34 -33.624 -33.623 0.000 28.33 +O(0) 3.058e-12 + O2 1.529e-12 1.529e-12 -11.816 -11.815 0.000 31.50 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 639 atm) - CH4(g) -101.61 -105.00 -3.39 CH4 + CH4(g) -98.69 -102.08 -3.39 CH4 CO2(g) 2.36 0.13 -2.22 CO2 Pressure 629.8 atm, phi 0.360 - H2(g) -30.95 -34.35 -3.41 H2 + H2(g) -30.22 -33.62 -3.41 H2 H2O(g) -0.26 -0.01 0.25 H2O Pressure 8.9 atm, phi 0.062 - O2(g) -6.98 -10.38 -3.40 O2 + O2(g) -8.41 -11.82 -3.40 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8408,7 +8408,7 @@ H2O(g) 1.02 1.037e+01 0.057 3.172e-01 3.276e-01 1.043e-02 ----------------------------Description of solution---------------------------- pH = 2.946 Charge balance - pe = 12.424 Adjusted to redox equilibrium + pe = 12.581 Adjusted to redox equilibrium Specific Conductance (µS/cm, 75°C) = 655 Density (g/cm³) = 1.01812 Volume (L) = 1.04745 @@ -8416,13 +8416,13 @@ H2O(g) 1.02 1.037e+01 0.057 3.172e-01 3.276e-01 1.043e-02 Activity of water = 0.974 Ionic strength (mol/kgw) = 1.177e-03 Mass of water (kg) = 9.941e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.653e+00 Temperature (°C) = 75.00 Pressure (atm) = 749.41 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 33 (134 overall) + Iterations = 44 (145 overall) Total H = 1.103572e+02 Total O = 5.846543e+01 @@ -8435,26 +8435,26 @@ H2O(g) 1.02 1.037e+01 0.057 3.172e-01 3.276e-01 1.043e-02 OH- 3.482e-10 3.342e-10 -9.458 -9.476 -0.018 -6.45 H2O 5.551e+01 9.740e-01 1.744 -0.011 0.000 17.91 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -105.032 -105.032 0.000 38.91 + CH4 0.000e+00 0.000e+00 -106.294 -106.294 0.000 38.91 C(4) 1.653e+00 CO2 1.402e+00 1.402e+00 0.147 0.147 0.000 35.91 (CO2)2 1.251e-01 1.251e-01 -0.903 -0.903 0.000 71.82 HCO3- 1.177e-03 1.131e-03 -2.929 -2.947 -0.017 27.99 CO3-2 1.762e-10 1.500e-10 -9.754 -9.824 -0.070 1.44 -H(0) 8.024e-35 - H2 4.012e-35 4.013e-35 -34.397 -34.397 0.000 28.29 -O(0) 8.272e-11 - O2 4.136e-11 4.137e-11 -10.383 -10.383 0.000 31.30 +H(0) 3.879e-35 + H2 1.940e-35 1.940e-35 -34.712 -34.712 0.000 28.29 +O(0) 3.764e-10 + O2 1.882e-10 1.883e-10 -9.725 -9.725 0.000 31.30 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 749 atm) - CH4(g) -101.58 -105.03 -3.46 CH4 + CH4(g) -102.84 -106.29 -3.46 CH4 CO2(g) 2.43 0.15 -2.28 CO2 Pressure 739.0 atm, phi 0.363 - H2(g) -30.94 -34.40 -3.45 H2 + H2(g) -31.26 -34.71 -3.45 H2 H2O(g) -0.23 -0.01 0.22 H2O Pressure 10.4 atm, phi 0.057 - O2(g) -6.93 -10.38 -3.45 O2 + O2(g) -6.27 -9.73 -3.45 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8503,7 +8503,7 @@ H2O(g) 1.08 1.202e+01 0.053 3.276e-01 3.349e-01 7.291e-03 ----------------------------Description of solution---------------------------- pH = 2.917 Charge balance - pe = 12.450 Adjusted to redox equilibrium + pe = 12.608 Adjusted to redox equilibrium Specific Conductance (µS/cm, 75°C) = 698 Density (g/cm³) = 1.02365 Volume (L) = 1.04435 @@ -8511,11 +8511,11 @@ H2O(g) 1.08 1.202e+01 0.053 3.276e-01 3.349e-01 7.291e-03 Activity of water = 0.973 Ionic strength (mol/kgw) = 1.259e-03 Mass of water (kg) = 9.939e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.716e+00 Temperature (°C) = 75.00 Pressure (atm) = 883.67 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.103426e+02 @@ -8530,26 +8530,26 @@ H2O(g) 1.08 1.202e+01 0.053 3.276e-01 3.349e-01 7.291e-03 OH- 3.673e-10 3.521e-10 -9.435 -9.453 -0.018 -6.70 H2O 5.551e+01 9.731e-01 1.744 -0.012 0.000 17.82 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -105.078 -105.077 0.000 38.88 + CH4 0.000e+00 0.000e+00 -106.340 -106.340 0.000 38.88 C(4) 1.716e+00 CO2 1.448e+00 1.448e+00 0.161 0.161 0.000 35.74 (CO2)2 1.335e-01 1.335e-01 -0.875 -0.875 0.000 71.48 HCO3- 1.259e-03 1.208e-03 -2.900 -2.918 -0.018 28.38 CO3-2 1.974e-10 1.673e-10 -9.705 -9.776 -0.072 2.33 -H(0) 7.106e-35 - H2 3.553e-35 3.554e-35 -34.449 -34.449 0.000 28.26 -O(0) 8.273e-11 - O2 4.137e-11 4.138e-11 -10.383 -10.383 0.000 31.07 +H(0) 3.436e-35 + H2 1.718e-35 1.718e-35 -34.765 -34.765 0.000 28.26 +O(0) 3.765e-10 + O2 1.882e-10 1.883e-10 -9.725 -9.725 0.000 31.07 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 884 atm) - CH4(g) -101.54 -105.08 -3.53 CH4 + CH4(g) -102.81 -106.34 -3.53 CH4 CO2(g) 2.51 0.16 -2.35 CO2 Pressure 871.7 atm, phi 0.375 - H2(g) -30.94 -34.45 -3.51 H2 + H2(g) -31.25 -34.76 -3.51 H2 H2O(g) -0.20 -0.01 0.18 H2O Pressure 12.0 atm, phi 0.053 - O2(g) -6.87 -10.38 -3.52 O2 + O2(g) -6.21 -9.73 -3.52 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8598,7 +8598,7 @@ H2O(g) 1.14 1.386e+01 0.051 3.349e-01 3.384e-01 3.493e-03 ----------------------------Description of solution---------------------------- pH = 2.885 Charge balance - pe = 12.480 Adjusted to redox equilibrium + pe = 12.638 Adjusted to redox equilibrium Specific Conductance (µS/cm, 75°C) = 749 Density (g/cm³) = 1.03011 Volume (L) = 1.04050 @@ -8606,13 +8606,13 @@ H2O(g) 1.14 1.386e+01 0.051 3.349e-01 3.384e-01 3.493e-03 Activity of water = 0.972 Ionic strength (mol/kgw) = 1.357e-03 Mass of water (kg) = 9.939e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.781e+00 Temperature (°C) = 75.00 Pressure (atm) = 1047.32 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 34 (135 overall) + Iterations = 37 (138 overall) Total H = 1.103356e+02 Total O = 5.870889e+01 @@ -8625,26 +8625,26 @@ H2O(g) 1.14 1.386e+01 0.051 3.349e-01 3.384e-01 3.493e-03 OH- 3.950e-10 3.783e-10 -9.403 -9.422 -0.019 -6.98 H2O 5.551e+01 9.721e-01 1.744 -0.012 0.000 17.72 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -105.136 -105.136 0.000 38.84 + CH4 0.000e+00 0.000e+00 -106.398 -106.398 0.000 38.84 C(4) 1.781e+00 CO2 1.495e+00 1.496e+00 0.175 0.175 0.000 35.55 (CO2)2 1.423e-01 1.424e-01 -0.847 -0.847 0.000 71.10 HCO3- 1.357e-03 1.301e-03 -2.867 -2.886 -0.018 28.83 CO3-2 2.254e-10 1.903e-10 -9.647 -9.721 -0.074 3.34 -H(0) 6.132e-35 - H2 3.066e-35 3.067e-35 -34.513 -34.513 0.000 28.21 -O(0) 8.274e-11 - O2 4.137e-11 4.138e-11 -10.383 -10.383 0.000 30.82 +H(0) 2.965e-35 + H2 1.482e-35 1.483e-35 -34.829 -34.829 0.000 28.21 +O(0) 3.765e-10 + O2 1.882e-10 1.883e-10 -9.725 -9.725 0.000 30.82 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(348 K, 1047 atm) - CH4(g) -101.50 -105.14 -3.63 CH4 + CH4(g) -102.77 -106.40 -3.63 CH4 CO2(g) 2.61 0.17 -2.44 CO2 Pressure 1033.5 atm, phi 0.398 - H2(g) -30.93 -34.51 -3.58 H2 + H2(g) -31.25 -34.83 -3.58 H2 H2O(g) -0.15 -0.01 0.14 H2O Pressure 13.9 atm, phi 0.051 - O2(g) -6.79 -10.38 -3.59 O2 + O2(g) -6.14 -9.73 -3.59 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8715,7 +8715,7 @@ H2O(g) -0.00 9.971e-01 0.991 0.000e+00 3.285e-02 3.285e-02 ----------------------------Description of solution---------------------------- pH = 6.120 Charge balance - pe = 6.720 Adjusted to redox equilibrium + pe = 6.806 Adjusted to redox equilibrium Specific Conductance (µS/cm, 100°C) = 0 Density (g/cm³) = 0.95835 Volume (L) = 1.04285 @@ -8740,8 +8740,8 @@ H2O(g) -0.00 9.971e-01 0.991 0.000e+00 3.285e-02 3.285e-02 OH- 7.616e-07 7.607e-07 -6.118 -6.119 -0.001 -5.96 H+ 7.604e-07 7.594e-07 -6.119 -6.120 -0.001 0.00 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.80 -H(0) 1.629e-29 - H2 8.146e-30 8.146e-30 -29.089 -29.089 0.000 28.57 +H(0) 1.098e-29 + H2 5.491e-30 5.491e-30 -29.260 -29.260 0.000 28.57 O(0) 2.746e-15 O2 1.373e-15 1.373e-15 -14.862 -14.862 0.000 33.90 @@ -8749,7 +8749,7 @@ O(0) 2.746e-15 Phase SI** log IAP log K(373 K, 1 atm) - H2(g) -25.99 -29.09 -3.10 H2 + H2(g) -26.16 -29.26 -3.10 H2 H2O(g) -0.00 -0.00 0.00 H2O Pressure 1.0 atm, phi 0.991 O2(g) -11.75 -14.86 -3.11 O2 @@ -8800,7 +8800,7 @@ H2O(g) 0.06 1.139e+00 0.877 3.285e-02 3.984e-02 6.990e-03 ----------------------------Description of solution---------------------------- pH = 3.544 Charge balance - pe = 9.305 Adjusted to redox equilibrium + pe = 9.385 Adjusted to redox equilibrium Specific Conductance (µS/cm, 100°C) = 205 Density (g/cm³) = 0.96086 Volume (L) = 1.05014 @@ -8827,26 +8827,26 @@ H2O(g) 0.06 1.139e+00 0.877 3.285e-02 3.984e-02 6.990e-03 OH- 2.101e-09 2.053e-09 -8.678 -8.688 -0.010 -6.03 H2O 5.551e+01 9.963e-01 1.744 -0.002 0.000 18.78 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -87.982 -87.982 0.000 41.03 + CH4 0.000e+00 0.000e+00 -88.619 -88.619 0.000 41.03 C(4) 2.218e-01 CO2 2.131e-01 2.131e-01 -0.671 -0.671 0.000 38.83 (CO2)2 4.215e-03 4.215e-03 -2.375 -2.375 0.000 77.65 HCO3- 2.920e-04 2.854e-04 -3.535 -3.545 -0.010 23.81 CO3-2 7.845e-11 7.159e-11 -10.105 -10.145 -0.040 -8.64 -H(0) 1.525e-29 - H2 7.627e-30 7.628e-30 -29.118 -29.118 0.000 28.56 -O(0) 2.989e-15 - O2 1.494e-15 1.494e-15 -14.826 -14.826 0.000 33.82 +H(0) 1.057e-29 + H2 5.284e-30 5.285e-30 -29.277 -29.277 0.000 28.56 +O(0) 2.830e-15 + O2 1.415e-15 1.415e-15 -14.849 -14.849 0.000 33.82 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 23 atm) - CH4(g) -84.96 -87.98 -3.02 CH4 + CH4(g) -85.60 -88.62 -3.02 CH4 CO2(g) 1.32 -0.67 -1.99 CO2 Pressure 22.3 atm, phi 0.939 - H2(g) -26.01 -29.12 -3.11 H2 + H2(g) -26.17 -29.28 -3.11 H2 H2O(g) -0.00 -0.00 -0.00 H2O Pressure 1.1 atm, phi 0.877 - O2(g) -11.70 -14.83 -3.13 O2 + O2(g) -11.72 -14.85 -3.13 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8895,7 +8895,7 @@ H2O(g) 0.11 1.294e+00 0.779 3.984e-02 4.816e-02 8.320e-03 ----------------------------Description of solution---------------------------- pH = 3.416 Charge balance - pe = 2.060 Adjusted to redox equilibrium + pe = 2.081 Adjusted to redox equilibrium Specific Conductance (µS/cm, 100°C) = 273 Density (g/cm³) = 0.96303 Volume (L) = 1.05598 @@ -8921,27 +8921,27 @@ H2O(g) 0.11 1.294e+00 0.779 3.984e-02 4.816e-02 8.320e-03 H+ 3.941e-04 3.841e-04 -3.404 -3.416 -0.011 0.00 OH- 1.589e-09 1.547e-09 -8.799 -8.810 -0.012 -6.11 H2O 5.551e+01 9.933e-01 1.744 -0.003 0.000 18.76 -C(-4) 1.776e-29 - CH4 1.776e-29 1.776e-29 -28.751 -28.751 0.000 41.01 +C(-4) 1.200e-29 + CH4 1.200e-29 1.200e-29 -28.921 -28.921 0.000 41.01 C(4) 4.049e-01 CO2 3.780e-01 3.780e-01 -0.423 -0.422 0.000 38.77 (CO2)2 1.326e-02 1.326e-02 -1.877 -1.877 0.000 77.53 HCO3- 3.941e-04 3.838e-04 -3.404 -3.416 -0.011 23.93 CO3-2 8.130e-11 7.316e-11 -10.090 -10.136 -0.046 -8.35 -H(0) 8.372e-15 - H2 4.186e-15 4.186e-15 -14.378 -14.378 0.000 28.55 +H(0) 7.591e-15 + H2 3.796e-15 3.796e-15 -14.421 -14.421 0.000 28.55 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -44.323 -44.323 0.000 33.76 + O2 0.000e+00 0.000e+00 -44.580 -44.580 0.000 33.76 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 44 atm) - CH4(g) -25.72 -28.75 -3.03 CH4 + CH4(g) -25.89 -28.92 -3.03 CH4 CO2(g) 1.58 -0.42 -2.00 CO2 Pressure 42.9 atm, phi 0.888 - H2(g) -11.26 -14.38 -3.12 H2 + H2(g) -11.30 -14.42 -3.12 H2 H2O(g) 0.00 -0.00 -0.01 H2O Pressure 1.3 atm, phi 0.779 - O2(g) -41.19 -44.32 -3.14 O2 + O2(g) -41.44 -44.58 -3.14 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -8990,7 +8990,7 @@ H2O(g) 0.17 1.465e+00 0.695 4.816e-02 5.795e-02 9.787e-03 ----------------------------Description of solution---------------------------- pH = 3.348 Charge balance - pe = 9.623 Adjusted to redox equilibrium + pe = 2.465 Adjusted to redox equilibrium Specific Conductance (µS/cm, 100°C) = 316 Density (g/cm³) = 0.96489 Volume (L) = 1.06054 @@ -9004,7 +9004,7 @@ H2O(g) 0.17 1.465e+00 0.695 4.816e-02 5.795e-02 9.787e-03 Pressure (atm) = 63.31 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 31 + Iterations = 26 Total H = 1.108965e+02 Total O = 5.655464e+01 @@ -9016,27 +9016,27 @@ H2O(g) 0.17 1.465e+00 0.695 4.816e-02 5.795e-02 9.787e-03 H+ 4.610e-04 4.484e-04 -3.336 -3.348 -0.012 0.00 OH- 1.382e-09 1.343e-09 -8.859 -8.872 -0.013 -6.19 H2O 5.551e+01 9.910e-01 1.744 -0.004 0.000 18.74 -C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -88.598 -88.598 0.000 40.98 +C(-4) 4.636e-32 + CH4 4.636e-32 4.636e-32 -31.334 -31.334 0.000 40.98 C(4) 5.538e-01 CO2 5.058e-01 5.059e-01 -0.296 -0.296 0.000 38.71 (CO2)2 2.375e-02 2.375e-02 -1.624 -1.624 0.000 77.42 HCO3- 4.610e-04 4.481e-04 -3.336 -3.349 -0.012 24.05 CO3-2 8.360e-11 7.462e-11 -10.078 -10.127 -0.049 -8.10 -H(0) 8.388e-30 - H2 4.194e-30 4.195e-30 -29.377 -29.377 0.000 28.54 -O(0) 9.122e-15 - O2 4.561e-15 4.562e-15 -14.341 -14.341 0.000 33.69 +H(0) 1.737e-15 + H2 8.685e-16 8.686e-16 -15.061 -15.061 0.000 28.54 +O(0) 0.000e+00 + O2 0.000e+00 0.000e+00 -43.316 -43.316 0.000 33.69 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 63 atm) - CH4(g) -85.56 -88.60 -3.04 CH4 + CH4(g) -28.29 -31.33 -3.04 CH4 CO2(g) 1.72 -0.30 -2.01 CO2 Pressure 61.8 atm, phi 0.844 - H2(g) -26.25 -29.38 -3.13 H2 + H2(g) -11.94 -15.06 -3.13 H2 H2O(g) 0.01 -0.00 -0.01 H2O Pressure 1.5 atm, phi 0.695 - O2(g) -11.20 -14.34 -3.14 O2 + O2(g) -40.17 -43.32 -3.14 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9085,7 +9085,7 @@ H2O(g) 0.22 1.653e+00 0.621 5.795e-02 6.931e-02 1.136e-02 ----------------------------Description of solution---------------------------- pH = 3.306 Charge balance - pe = 9.528 Adjusted to redox equilibrium + pe = 9.546 Adjusted to redox equilibrium Specific Conductance (µS/cm, 100°C) = 346 Density (g/cm³) = 0.96649 Volume (L) = 1.06404 @@ -9097,9 +9097,9 @@ H2O(g) 0.22 1.653e+00 0.621 5.795e-02 6.931e-02 1.136e-02 Total CO2 (mol/kg) = 6.740e-01 Temperature (°C) = 100.00 Pressure (atm) = 81.00 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 27 + Iterations = 29 Total H = 1.108738e+02 Total O = 5.678324e+01 @@ -9112,26 +9112,26 @@ H2O(g) 0.22 1.653e+00 0.621 5.795e-02 6.931e-02 1.136e-02 OH- 1.271e-09 1.233e-09 -8.896 -8.909 -0.013 -6.27 H2O 5.551e+01 9.891e-01 1.744 -0.005 0.000 18.72 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -87.422 -87.422 0.000 40.96 + CH4 0.000e+00 0.000e+00 -87.567 -87.567 0.000 40.96 C(4) 6.740e-01 CO2 6.055e-01 6.055e-01 -0.218 -0.218 0.000 38.66 (CO2)2 3.402e-02 3.403e-02 -1.468 -1.468 0.000 77.32 HCO3- 5.093e-04 4.944e-04 -3.293 -3.306 -0.013 24.15 CO3-2 8.560e-11 7.599e-11 -10.068 -10.119 -0.052 -7.87 -H(0) 1.560e-29 - H2 7.802e-30 7.803e-30 -29.108 -29.108 0.000 28.53 -O(0) 2.547e-15 - O2 1.274e-15 1.274e-15 -14.895 -14.895 0.000 33.64 +H(0) 1.435e-29 + H2 7.176e-30 7.177e-30 -29.144 -29.144 0.000 28.53 +O(0) 1.368e-15 + O2 6.842e-16 6.842e-16 -15.165 -15.165 0.000 33.64 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 81 atm) - CH4(g) -84.37 -87.42 -3.05 CH4 + CH4(g) -84.52 -87.57 -3.05 CH4 CO2(g) 1.81 -0.22 -2.02 CO2 Pressure 79.3 atm, phi 0.805 - H2(g) -25.97 -29.11 -3.13 H2 + H2(g) -26.01 -29.14 -3.13 H2 H2O(g) 0.01 -0.00 -0.02 H2O Pressure 1.7 atm, phi 0.621 - O2(g) -11.74 -14.89 -3.15 O2 + O2(g) -12.01 -15.16 -3.15 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9180,7 +9180,7 @@ H2O(g) 0.27 1.859e+00 0.557 6.931e-02 8.231e-02 1.301e-02 ----------------------------Description of solution---------------------------- pH = 3.276 Charge balance - pe = 2.016 Adjusted to redox equilibrium + pe = 2.000 Adjusted to redox equilibrium Specific Conductance (µS/cm, 100°C) = 368 Density (g/cm³) = 0.96788 Volume (L) = 1.06668 @@ -9188,11 +9188,11 @@ H2O(g) 0.27 1.859e+00 0.557 6.931e-02 8.231e-02 1.301e-02 Activity of water = 0.988 Ionic strength (mol/kgw) = 5.462e-04 Mass of water (kg) = 9.985e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 7.714e-01 Temperature (°C) = 100.00 Pressure (atm) = 97.41 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 31 Total H = 1.108478e+02 @@ -9206,27 +9206,27 @@ H2O(g) 0.27 1.859e+00 0.557 6.931e-02 8.231e-02 1.301e-02 H+ 5.462e-04 5.301e-04 -3.263 -3.276 -0.013 0.00 OH- 1.202e-09 1.165e-09 -8.920 -8.934 -0.014 -6.33 H2O 5.551e+01 9.876e-01 1.744 -0.005 0.000 18.71 -C(-4) 8.959e-28 - CH4 8.959e-28 8.960e-28 -27.048 -27.048 0.000 40.94 +C(-4) 1.219e-27 + CH4 1.219e-27 1.219e-27 -26.914 -26.914 0.000 40.94 C(4) 7.714e-01 CO2 6.840e-01 6.841e-01 -0.165 -0.165 0.000 38.62 (CO2)2 4.343e-02 4.343e-02 -1.362 -1.362 0.000 77.23 HCO3- 5.462e-04 5.296e-04 -3.263 -3.276 -0.013 24.24 CO3-2 8.739e-11 7.727e-11 -10.059 -10.112 -0.053 -7.66 -H(0) 1.857e-14 - H2 9.286e-15 9.287e-15 -14.032 -14.032 0.000 28.52 +H(0) 2.006e-14 + H2 1.003e-14 1.003e-14 -13.999 -13.999 0.000 28.52 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.060 -45.060 0.000 33.58 + O2 0.000e+00 0.000e+00 -45.469 -45.469 0.000 33.58 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 97 atm) - CH4(g) -23.99 -27.05 -3.06 CH4 + CH4(g) -23.85 -26.91 -3.06 CH4 CO2(g) 1.87 -0.16 -2.03 CO2 Pressure 95.5 atm, phi 0.771 - H2(g) -10.89 -14.03 -3.14 H2 + H2(g) -10.86 -14.00 -3.14 H2 H2O(g) 0.02 -0.01 -0.02 H2O Pressure 1.9 atm, phi 0.557 - O2(g) -41.90 -45.06 -3.16 O2 + O2(g) -42.31 -45.47 -3.16 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9275,7 +9275,7 @@ H2O(g) 0.32 2.085e+00 0.501 8.231e-02 9.701e-02 1.470e-02 ----------------------------Description of solution---------------------------- pH = 3.253 Charge balance - pe = 1.941 Adjusted to redox equilibrium + pe = 2.013 Adjusted to redox equilibrium Specific Conductance (µS/cm, 100°C) = 385 Density (g/cm³) = 0.96910 Volume (L) = 1.06867 @@ -9283,11 +9283,11 @@ H2O(g) 0.32 2.085e+00 0.501 8.231e-02 9.701e-02 1.470e-02 Activity of water = 0.986 Ionic strength (mol/kgw) = 5.755e-04 Mass of water (kg) = 9.982e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 8.512e-01 Temperature (°C) = 100.00 Pressure (atm) = 112.79 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 24 Total H = 1.108184e+02 @@ -9301,27 +9301,27 @@ H2O(g) 0.32 2.085e+00 0.501 8.231e-02 9.701e-02 1.470e-02 H+ 5.755e-04 5.581e-04 -3.240 -3.253 -0.013 0.00 OH- 1.155e-09 1.119e-09 -8.937 -8.951 -0.014 -6.40 H2O 5.551e+01 9.864e-01 1.744 -0.006 0.000 18.70 -C(-4) 5.827e-27 - CH4 5.827e-27 5.827e-27 -26.235 -26.235 0.000 40.93 +C(-4) 1.539e-27 + CH4 1.539e-27 1.539e-27 -26.813 -26.813 0.000 40.93 C(4) 8.512e-01 CO2 7.471e-01 7.471e-01 -0.127 -0.127 0.000 38.57 (CO2)2 5.180e-02 5.181e-02 -1.286 -1.286 0.000 77.15 HCO3- 5.755e-04 5.576e-04 -3.240 -3.254 -0.014 24.33 CO3-2 8.902e-11 7.849e-11 -10.050 -10.105 -0.055 -7.47 -H(0) 2.872e-14 - H2 1.436e-14 1.436e-14 -13.843 -13.843 0.000 28.52 +H(0) 2.059e-14 + H2 1.030e-14 1.030e-14 -13.987 -13.987 0.000 28.52 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.451 -45.451 0.000 33.54 + O2 0.000e+00 0.000e+00 -45.505 -45.505 0.000 33.54 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 113 atm) - CH4(g) -23.17 -26.23 -3.07 CH4 + CH4(g) -23.74 -26.81 -3.07 CH4 CO2(g) 1.91 -0.13 -2.04 CO2 Pressure 110.7 atm, phi 0.741 - H2(g) -10.70 -13.84 -3.15 H2 + H2(g) -10.84 -13.99 -3.15 H2 H2O(g) 0.02 -0.01 -0.02 H2O Pressure 2.1 atm, phi 0.501 - O2(g) -42.28 -45.45 -3.17 O2 + O2(g) -42.34 -45.50 -3.17 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9370,7 +9370,7 @@ H2O(g) 0.37 2.333e+00 0.451 9.701e-02 1.134e-01 1.641e-02 ----------------------------Description of solution---------------------------- pH = 3.236 Charge balance - pe = 1.889 Adjusted to redox equilibrium + pe = 2.266 Adjusted to redox equilibrium Specific Conductance (µS/cm, 100°C) = 399 Density (g/cm³) = 0.97021 Volume (L) = 1.07015 @@ -9396,27 +9396,27 @@ H2O(g) 0.37 2.333e+00 0.451 9.701e-02 1.134e-01 1.641e-02 H+ 5.997e-04 5.813e-04 -3.222 -3.236 -0.014 0.00 OH- 1.122e-09 1.086e-09 -8.950 -8.964 -0.014 -6.46 H2O 5.551e+01 9.854e-01 1.744 -0.006 0.000 18.68 -C(-4) 2.189e-26 - CH4 2.189e-26 2.190e-26 -25.660 -25.660 0.000 40.91 +C(-4) 2.139e-29 + CH4 2.139e-29 2.140e-29 -28.670 -28.670 0.000 40.91 C(4) 9.180e-01 CO2 7.989e-01 7.990e-01 -0.098 -0.097 0.000 38.53 (CO2)2 5.924e-02 5.925e-02 -1.227 -1.227 0.000 77.07 HCO3- 5.997e-04 5.807e-04 -3.222 -3.236 -0.014 24.41 CO3-2 9.057e-11 7.966e-11 -10.043 -10.099 -0.056 -7.29 -H(0) 3.896e-14 - H2 1.948e-14 1.948e-14 -13.710 -13.710 0.000 28.51 +H(0) 6.888e-15 + H2 3.444e-15 3.445e-15 -14.463 -14.463 0.000 28.51 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -45.728 -45.728 0.000 33.49 + O2 0.000e+00 0.000e+00 -44.565 -44.565 0.000 33.49 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 127 atm) - CH4(g) -22.58 -25.66 -3.08 CH4 + CH4(g) -25.59 -28.67 -3.08 CH4 CO2(g) 1.95 -0.10 -2.05 CO2 Pressure 125.1 atm, phi 0.714 - H2(g) -10.56 -13.71 -3.15 H2 + H2(g) -11.31 -14.46 -3.15 H2 H2O(g) 0.02 -0.01 -0.03 H2O Pressure 2.3 atm, phi 0.451 - O2(g) -42.55 -45.73 -3.17 O2 + O2(g) -41.39 -44.57 -3.17 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9465,7 +9465,7 @@ H2O(g) 0.42 2.605e+00 0.407 1.134e-01 1.315e-01 1.811e-02 ----------------------------Description of solution---------------------------- pH = 3.221 Charge balance - pe = 1.824 Adjusted to redox equilibrium + pe = 9.614 Adjusted to redox equilibrium Specific Conductance (µS/cm, 100°C) = 411 Density (g/cm³) = 0.97124 Volume (L) = 1.07126 @@ -9473,13 +9473,13 @@ H2O(g) 0.42 2.605e+00 0.407 1.134e-01 1.315e-01 1.811e-02 Activity of water = 0.985 Ionic strength (mol/kgw) = 6.205e-04 Mass of water (kg) = 9.976e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 9.752e-01 Temperature (°C) = 100.00 Pressure (atm) = 141.77 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 24 + Iterations = 28 Total H = 1.107494e+02 Total O = 5.732053e+01 @@ -9491,27 +9491,27 @@ H2O(g) 0.42 2.605e+00 0.407 1.134e-01 1.315e-01 1.811e-02 H+ 6.205e-04 6.012e-04 -3.207 -3.221 -0.014 0.00 OH- 1.098e-09 1.062e-09 -8.959 -8.974 -0.014 -6.51 H2O 5.551e+01 9.845e-01 1.744 -0.007 0.000 18.67 -C(-4) 9.904e-26 - CH4 9.904e-26 9.905e-26 -25.004 -25.004 0.000 40.89 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -87.321 -87.321 0.000 40.89 C(4) 9.752e-01 CO2 8.428e-01 8.429e-01 -0.074 -0.074 0.000 38.49 (CO2)2 6.592e-02 6.593e-02 -1.181 -1.181 0.000 76.99 HCO3- 6.205e-04 6.006e-04 -3.207 -3.221 -0.014 24.49 CO3-2 9.206e-11 8.081e-11 -10.036 -10.093 -0.057 -7.11 -H(0) 5.556e-14 - H2 2.778e-14 2.778e-14 -13.556 -13.556 0.000 28.50 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.048 -46.048 0.000 33.45 +H(0) 1.464e-29 + H2 7.321e-30 7.322e-30 -29.135 -29.135 0.000 28.50 +O(0) 1.172e-15 + O2 5.862e-16 5.863e-16 -15.232 -15.232 0.000 33.45 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 142 atm) - CH4(g) -21.92 -25.00 -3.09 CH4 + CH4(g) -84.23 -87.32 -3.09 CH4 CO2(g) 1.98 -0.07 -2.06 CO2 Pressure 139.2 atm, phi 0.689 - H2(g) -10.40 -13.56 -3.16 H2 + H2(g) -25.98 -29.14 -3.16 H2 H2O(g) 0.03 -0.01 -0.03 H2O Pressure 2.6 atm, phi 0.407 - O2(g) -42.87 -46.05 -3.18 O2 + O2(g) -12.05 -15.23 -3.18 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9560,7 +9560,7 @@ H2O(g) 0.46 2.906e+00 0.368 1.315e-01 1.513e-01 1.977e-02 ----------------------------Description of solution---------------------------- pH = 3.208 Charge balance - pe = 1.845 Adjusted to redox equilibrium + pe = 1.923 Adjusted to redox equilibrium Specific Conductance (µS/cm, 100°C) = 422 Density (g/cm³) = 0.97222 Volume (L) = 1.07208 @@ -9568,13 +9568,13 @@ H2O(g) 0.46 2.906e+00 0.368 1.315e-01 1.513e-01 1.977e-02 Activity of water = 0.984 Ionic strength (mol/kgw) = 6.392e-04 Mass of water (kg) = 9.973e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.026e+00 Temperature (°C) = 100.00 Pressure (atm) = 156.12 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 24 + Iterations = 27 Total H = 1.107098e+02 Total O = 5.740115e+01 @@ -9586,27 +9586,27 @@ H2O(g) 0.46 2.906e+00 0.368 1.315e-01 1.513e-01 1.977e-02 H+ 6.392e-04 6.190e-04 -3.194 -3.208 -0.014 0.00 OH- 1.079e-09 1.043e-09 -8.967 -8.982 -0.015 -6.57 H2O 5.551e+01 9.838e-01 1.744 -0.007 0.000 18.66 -C(-4) 8.725e-26 - CH4 8.725e-26 8.726e-26 -25.059 -25.059 0.000 40.88 +C(-4) 2.068e-26 + CH4 2.068e-26 2.068e-26 -25.685 -25.684 0.000 40.88 C(4) 1.026e+00 CO2 8.812e-01 8.812e-01 -0.055 -0.055 0.000 38.46 (CO2)2 7.207e-02 7.208e-02 -1.142 -1.142 0.000 76.91 HCO3- 6.392e-04 6.184e-04 -3.194 -3.209 -0.014 24.57 CO3-2 9.355e-11 8.197e-11 -10.029 -10.086 -0.057 -6.94 -H(0) 5.275e-14 - H2 2.637e-14 2.638e-14 -13.579 -13.579 0.000 28.50 +H(0) 3.680e-14 + H2 1.840e-14 1.840e-14 -13.735 -13.735 0.000 28.50 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.014 -46.014 0.000 33.40 + O2 0.000e+00 0.000e+00 -46.044 -46.044 0.000 33.40 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 156 atm) - CH4(g) -21.96 -25.06 -3.09 CH4 + CH4(g) -22.59 -25.68 -3.09 CH4 CO2(g) 2.01 -0.05 -2.06 CO2 Pressure 153.2 atm, phi 0.666 - H2(g) -10.42 -13.58 -3.16 H2 + H2(g) -10.57 -13.74 -3.16 H2 H2O(g) 0.03 -0.01 -0.04 H2O Pressure 2.9 atm, phi 0.368 - O2(g) -42.83 -46.01 -3.19 O2 + O2(g) -42.86 -46.04 -3.19 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9655,7 +9655,7 @@ H2O(g) 0.51 3.242e+00 0.332 1.513e-01 1.727e-01 2.137e-02 ----------------------------Description of solution---------------------------- pH = 3.197 Charge balance - pe = 1.796 Adjusted to redox equilibrium + pe = 2.105 Adjusted to redox equilibrium Specific Conductance (µS/cm, 100°C) = 432 Density (g/cm³) = 0.97320 Volume (L) = 1.07268 @@ -9663,11 +9663,11 @@ H2O(g) 0.51 3.242e+00 0.332 1.513e-01 1.727e-01 2.137e-02 Activity of water = 0.983 Ionic strength (mol/kgw) = 6.566e-04 Mass of water (kg) = 9.969e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.072e+00 Temperature (°C) = 100.00 Pressure (atm) = 170.91 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 26 Total H = 1.106671e+02 @@ -9681,27 +9681,27 @@ H2O(g) 0.51 3.242e+00 0.332 1.513e-01 1.727e-01 2.137e-02 H+ 6.566e-04 6.356e-04 -3.183 -3.197 -0.014 0.00 OH- 1.063e-09 1.028e-09 -8.973 -8.988 -0.015 -6.63 H2O 5.551e+01 9.831e-01 1.744 -0.007 0.000 18.64 -C(-4) 2.742e-25 - CH4 2.742e-25 2.743e-25 -24.562 -24.562 0.000 40.86 +C(-4) 9.248e-28 + CH4 9.248e-28 9.249e-28 -27.034 -27.034 0.000 40.86 C(4) 1.072e+00 CO2 9.159e-01 9.160e-01 -0.038 -0.038 0.000 38.42 (CO2)2 7.786e-02 7.787e-02 -1.109 -1.109 0.000 76.83 HCO3- 6.566e-04 6.350e-04 -3.183 -3.197 -0.015 24.65 CO3-2 9.508e-11 8.318e-11 -10.022 -10.080 -0.058 -6.76 -H(0) 6.891e-14 - H2 3.446e-14 3.446e-14 -13.463 -13.463 0.000 28.49 +H(0) 1.661e-14 + H2 8.303e-15 8.305e-15 -14.081 -14.081 0.000 28.49 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.258 -46.258 0.000 33.36 + O2 0.000e+00 0.000e+00 -45.364 -45.364 0.000 33.36 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 171 atm) - CH4(g) -21.46 -24.56 -3.10 CH4 + CH4(g) -23.93 -27.03 -3.10 CH4 CO2(g) 2.03 -0.04 -2.07 CO2 Pressure 167.7 atm, phi 0.645 - H2(g) -10.29 -13.46 -3.17 H2 + H2(g) -10.91 -14.08 -3.17 H2 H2O(g) 0.03 -0.01 -0.04 H2O Pressure 3.2 atm, phi 0.332 - O2(g) -43.06 -46.26 -3.20 O2 + O2(g) -42.17 -45.36 -3.20 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9750,7 +9750,7 @@ H2O(g) 0.56 3.618e+00 0.300 1.727e-01 1.955e-01 2.287e-02 ----------------------------Description of solution---------------------------- pH = 3.186 Charge balance - pe = 1.849 Adjusted to redox equilibrium + pe = 2.210 Adjusted to redox equilibrium Specific Conductance (µS/cm, 100°C) = 442 Density (g/cm³) = 0.97420 Volume (L) = 1.07311 @@ -9758,11 +9758,11 @@ H2O(g) 0.56 3.618e+00 0.300 1.727e-01 1.955e-01 2.287e-02 Activity of water = 0.982 Ionic strength (mol/kgw) = 6.734e-04 Mass of water (kg) = 9.965e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.116e+00 Temperature (°C) = 100.00 Pressure (atm) = 186.59 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 28 Total H = 1.106214e+02 @@ -9776,27 +9776,27 @@ H2O(g) 0.56 3.618e+00 0.300 1.727e-01 1.955e-01 2.287e-02 H+ 6.734e-04 6.517e-04 -3.172 -3.186 -0.014 0.00 OH- 1.051e-09 1.015e-09 -8.979 -8.993 -0.015 -6.69 H2O 5.551e+01 9.824e-01 1.744 -0.008 0.000 18.63 -C(-4) 1.283e-25 - CH4 1.283e-25 1.283e-25 -24.892 -24.892 0.000 40.84 +C(-4) 1.662e-28 + CH4 1.662e-28 1.662e-28 -27.779 -27.779 0.000 40.84 C(4) 1.116e+00 CO2 9.484e-01 9.485e-01 -0.023 -0.023 0.000 38.38 (CO2)2 8.348e-02 8.349e-02 -1.078 -1.078 0.000 76.75 HCO3- 6.734e-04 6.511e-04 -3.172 -3.186 -0.015 24.73 CO3-2 9.670e-11 8.448e-11 -10.015 -10.073 -0.059 -6.58 -H(0) 5.594e-14 - H2 2.797e-14 2.798e-14 -13.553 -13.553 0.000 28.48 +H(0) 1.061e-14 + H2 5.307e-15 5.308e-15 -14.275 -14.275 0.000 28.48 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.089 -46.089 0.000 33.31 + O2 0.000e+00 0.000e+00 -44.988 -44.988 0.000 33.31 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 187 atm) - CH4(g) -21.78 -24.89 -3.11 CH4 + CH4(g) -24.67 -27.78 -3.11 CH4 CO2(g) 2.06 -0.02 -2.08 CO2 Pressure 183.0 atm, phi 0.624 - H2(g) -10.38 -13.55 -3.18 H2 + H2(g) -11.10 -14.28 -3.18 H2 H2O(g) 0.04 -0.01 -0.04 H2O Pressure 3.6 atm, phi 0.300 - O2(g) -42.89 -46.09 -3.20 O2 + O2(g) -41.79 -44.99 -3.20 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9845,7 +9845,7 @@ H2O(g) 0.61 4.045e+00 0.271 1.955e-01 2.198e-01 2.424e-02 ----------------------------Description of solution---------------------------- pH = 3.175 Charge balance - pe = 1.832 Adjusted to redox equilibrium + pe = 9.957 Adjusted to redox equilibrium Specific Conductance (µS/cm, 100°C) = 451 Density (g/cm³) = 0.97525 Volume (L) = 1.07339 @@ -9853,13 +9853,13 @@ H2O(g) 0.61 4.045e+00 0.271 1.955e-01 2.198e-01 2.424e-02 Activity of water = 0.982 Ionic strength (mol/kgw) = 6.903e-04 Mass of water (kg) = 9.960e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.222e-09 Total CO2 (mol/kg) = 1.158e+00 Temperature (°C) = 100.00 Pressure (atm) = 203.65 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 29 + Iterations = 43 Total H = 1.105729e+02 Total O = 5.759422e+01 @@ -9871,27 +9871,27 @@ H2O(g) 0.61 4.045e+00 0.271 1.955e-01 2.198e-01 2.424e-02 H+ 6.903e-04 6.678e-04 -3.161 -3.175 -0.014 0.00 OH- 1.040e-09 1.005e-09 -8.983 -8.998 -0.015 -6.75 H2O 5.551e+01 9.818e-01 1.744 -0.008 0.000 18.62 -C(-4) 2.155e-25 - CH4 2.155e-25 2.156e-25 -24.666 -24.666 0.000 40.82 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -89.669 -89.669 0.000 40.82 C(4) 1.158e+00 CO2 9.797e-01 9.798e-01 -0.009 -0.009 0.000 38.33 (CO2)2 8.908e-02 8.909e-02 -1.050 -1.050 0.000 76.66 HCO3- 6.903e-04 6.671e-04 -3.161 -3.176 -0.015 24.82 CO3-2 9.847e-11 8.590e-11 -10.007 -10.066 -0.059 -6.38 -H(0) 6.252e-14 - H2 3.126e-14 3.126e-14 -13.505 -13.505 0.000 28.48 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.199 -46.199 0.000 33.26 +H(0) 3.509e-30 + H2 1.755e-30 1.755e-30 -29.756 -29.756 0.000 28.48 +O(0) 1.824e-14 + O2 9.122e-15 9.124e-15 -14.040 -14.040 0.000 33.26 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 204 atm) - CH4(g) -21.54 -24.67 -3.12 CH4 + CH4(g) -86.55 -89.67 -3.12 CH4 CO2(g) 2.08 -0.01 -2.09 CO2 Pressure 199.6 atm, phi 0.603 - H2(g) -10.32 -13.50 -3.18 H2 + H2(g) -26.57 -29.76 -3.18 H2 H2O(g) 0.04 -0.01 -0.05 H2O Pressure 4.0 atm, phi 0.271 - O2(g) -42.99 -46.20 -3.21 O2 + O2(g) -10.83 -14.04 -3.21 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -9940,7 +9940,7 @@ H2O(g) 0.66 4.530e+00 0.245 2.198e-01 2.452e-01 2.545e-02 ----------------------------Description of solution---------------------------- pH = 3.165 Charge balance - pe = 1.850 Adjusted to redox equilibrium + pe = 10.042 Adjusted to redox equilibrium Specific Conductance (µS/cm, 100°C) = 461 Density (g/cm³) = 0.97639 Volume (L) = 1.07355 @@ -9948,11 +9948,11 @@ H2O(g) 0.66 4.530e+00 0.245 2.198e-01 2.452e-01 2.545e-02 Activity of water = 0.981 Ionic strength (mol/kgw) = 7.077e-04 Mass of water (kg) = 9.956e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.219e-09 Total CO2 (mol/kg) = 1.201e+00 Temperature (°C) = 100.00 Pressure (atm) = 222.60 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 30 Total H = 1.105220e+02 @@ -9966,27 +9966,27 @@ H2O(g) 0.66 4.530e+00 0.245 2.198e-01 2.452e-01 2.545e-02 H+ 7.077e-04 6.844e-04 -3.150 -3.165 -0.015 0.00 OH- 1.031e-09 9.955e-10 -8.987 -9.002 -0.015 -6.83 H2O 5.551e+01 9.812e-01 1.744 -0.008 0.000 18.60 -C(-4) 1.890e-25 - CH4 1.890e-25 1.890e-25 -24.724 -24.724 0.000 40.80 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -90.263 -90.263 0.000 40.80 C(4) 1.201e+00 CO2 1.011e+00 1.011e+00 0.005 0.005 0.000 38.28 (CO2)2 9.478e-02 9.480e-02 -1.023 -1.023 0.000 76.56 HCO3- 7.077e-04 6.837e-04 -3.150 -3.165 -0.015 24.92 CO3-2 1.004e-10 8.750e-11 -9.998 -10.058 -0.060 -6.16 -H(0) 5.932e-14 - H2 2.966e-14 2.967e-14 -13.528 -13.528 0.000 28.47 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.168 -46.168 0.000 33.21 +H(0) 2.445e-30 + H2 1.223e-30 1.223e-30 -29.913 -29.913 0.000 28.47 +O(0) 3.633e-14 + O2 1.817e-14 1.817e-14 -13.741 -13.741 0.000 33.21 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 223 atm) - CH4(g) -21.59 -24.72 -3.13 CH4 + CH4(g) -87.13 -90.26 -3.13 CH4 CO2(g) 2.10 0.00 -2.10 CO2 Pressure 218.1 atm, phi 0.583 - H2(g) -10.34 -13.53 -3.19 H2 + H2(g) -26.72 -29.91 -3.19 H2 H2O(g) 0.05 -0.01 -0.05 H2O Pressure 4.5 atm, phi 0.245 - O2(g) -42.95 -46.17 -3.22 O2 + O2(g) -10.52 -13.74 -3.22 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10035,7 +10035,7 @@ H2O(g) 0.71 5.087e+00 0.221 2.452e-01 2.717e-01 2.646e-02 ----------------------------Description of solution---------------------------- pH = 3.154 Charge balance - pe = 1.840 Adjusted to redox equilibrium + pe = 10.058 Adjusted to redox equilibrium Specific Conductance (µS/cm, 100°C) = 472 Density (g/cm³) = 0.97763 Volume (L) = 1.07359 @@ -10043,11 +10043,11 @@ H2O(g) 0.71 5.087e+00 0.221 2.452e-01 2.717e-01 2.646e-02 Activity of water = 0.981 Ionic strength (mol/kgw) = 7.261e-04 Mass of water (kg) = 9.951e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.244e+00 Temperature (°C) = 100.00 Pressure (atm) = 244.02 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 37 Total H = 1.104690e+02 @@ -10061,27 +10061,27 @@ H2O(g) 0.71 5.087e+00 0.221 2.452e-01 2.717e-01 2.646e-02 H+ 7.261e-04 7.020e-04 -3.139 -3.154 -0.015 0.00 OH- 1.024e-09 9.879e-10 -8.990 -9.005 -0.015 -6.91 H2O 5.551e+01 9.806e-01 1.744 -0.009 0.000 18.58 -C(-4) 2.769e-25 - CH4 2.769e-25 2.769e-25 -24.558 -24.558 0.000 40.78 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -90.302 -90.302 0.000 40.78 C(4) 1.244e+00 CO2 1.042e+00 1.042e+00 0.018 0.018 0.000 38.23 (CO2)2 1.007e-01 1.007e-01 -0.997 -0.997 0.000 76.46 HCO3- 7.261e-04 7.012e-04 -3.139 -3.154 -0.015 25.03 CO3-2 1.027e-10 8.933e-11 -9.988 -10.049 -0.061 -5.92 -H(0) 6.392e-14 - H2 3.196e-14 3.197e-14 -13.495 -13.495 0.000 28.46 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.249 -46.249 0.000 33.15 +H(0) 2.342e-30 + H2 1.171e-30 1.171e-30 -29.931 -29.931 0.000 28.46 +O(0) 3.814e-14 + O2 1.907e-14 1.907e-14 -13.720 -13.720 0.000 33.15 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 244 atm) - CH4(g) -21.41 -24.56 -3.14 CH4 + CH4(g) -87.16 -90.30 -3.14 CH4 CO2(g) 2.13 0.02 -2.11 CO2 Pressure 238.9 atm, phi 0.563 - H2(g) -10.30 -13.50 -3.20 H2 + H2(g) -26.73 -29.93 -3.20 H2 H2O(g) 0.05 -0.01 -0.06 H2O Pressure 5.1 atm, phi 0.221 - O2(g) -43.02 -46.25 -3.23 O2 + O2(g) -10.49 -13.72 -3.23 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10130,7 +10130,7 @@ H2O(g) 0.76 5.727e+00 0.199 2.717e-01 2.989e-01 2.722e-02 ----------------------------Description of solution---------------------------- pH = 3.142 Charge balance - pe = 1.755 Adjusted to redox equilibrium + pe = 10.050 Adjusted to redox equilibrium Specific Conductance (µS/cm, 100°C) = 483 Density (g/cm³) = 0.97902 Volume (L) = 1.07352 @@ -10138,11 +10138,11 @@ H2O(g) 0.76 5.727e+00 0.199 2.717e-01 2.989e-01 2.722e-02 Activity of water = 0.980 Ionic strength (mol/kgw) = 7.459e-04 Mass of water (kg) = 9.946e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.288e+00 Temperature (°C) = 100.00 Pressure (atm) = 268.56 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 43 Total H = 1.104146e+02 @@ -10156,27 +10156,27 @@ H2O(g) 0.76 5.727e+00 0.199 2.717e-01 2.989e-01 2.722e-02 H+ 7.459e-04 7.209e-04 -3.127 -3.142 -0.015 0.00 OH- 1.018e-09 9.817e-10 -8.992 -9.008 -0.016 -7.00 H2O 5.551e+01 9.799e-01 1.744 -0.009 0.000 18.56 -C(-4) 1.641e-24 - CH4 1.641e-24 1.641e-24 -23.785 -23.785 0.000 40.75 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -90.141 -90.141 0.000 40.75 C(4) 1.288e+00 CO2 1.073e+00 1.074e+00 0.031 0.031 0.000 38.17 (CO2)2 1.070e-01 1.070e-01 -0.971 -0.971 0.000 76.33 HCO3- 7.459e-04 7.201e-04 -3.127 -3.143 -0.015 25.15 CO3-2 1.053e-10 9.145e-11 -9.978 -10.039 -0.061 -5.65 -H(0) 9.751e-14 - H2 4.875e-14 4.876e-14 -13.312 -13.312 0.000 28.45 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.635 -46.635 0.000 33.08 +H(0) 2.512e-30 + H2 1.256e-30 1.256e-30 -29.901 -29.901 0.000 28.45 +O(0) 3.173e-14 + O2 1.587e-14 1.587e-14 -13.799 -13.799 0.000 33.08 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 269 atm) - CH4(g) -20.63 -23.78 -3.16 CH4 + CH4(g) -86.98 -90.14 -3.16 CH4 CO2(g) 2.15 0.03 -2.12 CO2 Pressure 262.8 atm, phi 0.544 - H2(g) -10.10 -13.31 -3.21 H2 + H2(g) -26.69 -29.90 -3.21 H2 H2O(g) 0.06 -0.01 -0.07 H2O Pressure 5.7 atm, phi 0.199 - O2(g) -43.39 -46.63 -3.24 O2 + O2(g) -10.56 -13.80 -3.24 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10225,7 +10225,7 @@ H2O(g) 0.81 6.466e+00 0.179 2.989e-01 3.266e-01 2.770e-02 ----------------------------Description of solution---------------------------- pH = 3.130 Charge balance - pe = 1.795 Adjusted to redox equilibrium + pe = 10.072 Adjusted to redox equilibrium Specific Conductance (µS/cm, 100°C) = 495 Density (g/cm³) = 0.98059 Volume (L) = 1.07333 @@ -10233,11 +10233,11 @@ H2O(g) 0.81 6.466e+00 0.179 2.989e-01 3.266e-01 2.770e-02 Activity of water = 0.979 Ionic strength (mol/kgw) = 7.676e-04 Mass of water (kg) = 9.941e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.220e-09 Total CO2 (mol/kg) = 1.334e+00 Temperature (°C) = 100.00 Pressure (atm) = 296.94 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 63 Total H = 1.103592e+02 @@ -10251,27 +10251,27 @@ H2O(g) 0.81 6.466e+00 0.179 2.989e-01 3.266e-01 2.770e-02 H+ 7.676e-04 7.415e-04 -3.115 -3.130 -0.015 0.00 OH- 1.013e-09 9.773e-10 -8.994 -9.010 -0.016 -7.10 H2O 5.551e+01 9.792e-01 1.744 -0.009 0.000 18.54 -C(-4) 9.754e-25 - CH4 9.754e-25 9.756e-25 -24.011 -24.011 0.000 40.72 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -90.219 -90.219 0.000 40.72 C(4) 1.334e+00 CO2 1.106e+00 1.107e+00 0.044 0.044 0.000 38.10 (CO2)2 1.136e-01 1.136e-01 -0.945 -0.944 0.000 76.19 HCO3- 7.676e-04 7.407e-04 -3.115 -3.130 -0.015 25.29 CO3-2 1.084e-10 9.394e-11 -9.965 -10.027 -0.062 -5.34 -H(0) 8.350e-14 - H2 4.175e-14 4.176e-14 -13.379 -13.379 0.000 28.44 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.522 -46.522 0.000 33.00 +H(0) 2.342e-30 + H2 1.171e-30 1.171e-30 -29.931 -29.931 0.000 28.44 +O(0) 3.474e-14 + O2 1.737e-14 1.737e-14 -13.760 -13.760 0.000 33.00 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 297 atm) - CH4(g) -20.84 -24.01 -3.18 CH4 + CH4(g) -87.04 -90.22 -3.18 CH4 CO2(g) 2.18 0.04 -2.14 CO2 Pressure 290.5 atm, phi 0.525 - H2(g) -10.16 -13.38 -3.22 H2 + H2(g) -26.71 -29.93 -3.22 H2 H2O(g) 0.06 -0.01 -0.07 H2O Pressure 6.5 atm, phi 0.179 - O2(g) -43.27 -46.52 -3.25 O2 + O2(g) -10.51 -13.76 -3.25 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10320,7 +10320,7 @@ H2O(g) 0.86 7.319e+00 0.161 3.266e-01 3.544e-01 2.783e-02 ----------------------------Description of solution---------------------------- pH = 3.117 Charge balance - pe = 1.787 Adjusted to redox equilibrium + pe = 10.093 Adjusted to redox equilibrium Specific Conductance (µS/cm, 100°C) = 509 Density (g/cm³) = 0.98238 Volume (L) = 1.07300 @@ -10328,11 +10328,11 @@ H2O(g) 0.86 7.319e+00 0.161 3.266e-01 3.544e-01 2.783e-02 Activity of water = 0.979 Ionic strength (mol/kgw) = 7.916e-04 Mass of water (kg) = 9.936e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.383e+00 Temperature (°C) = 100.00 Pressure (atm) = 329.97 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 70 Total H = 1.103035e+02 @@ -10346,27 +10346,27 @@ H2O(g) 0.86 7.319e+00 0.161 3.266e-01 3.544e-01 2.783e-02 H+ 7.916e-04 7.644e-04 -3.101 -3.117 -0.015 0.00 OH- 1.011e-09 9.749e-10 -8.995 -9.011 -0.016 -7.21 H2O 5.551e+01 9.785e-01 1.744 -0.009 0.000 18.51 -C(-4) 1.444e-24 - CH4 1.444e-24 1.444e-24 -23.840 -23.840 0.000 40.69 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -90.291 -90.291 0.000 40.69 C(4) 1.383e+00 CO2 1.141e+00 1.141e+00 0.057 0.057 0.000 38.02 (CO2)2 1.208e-01 1.208e-01 -0.918 -0.918 0.000 76.03 HCO3- 7.916e-04 7.635e-04 -3.101 -3.117 -0.016 25.46 CO3-2 1.120e-10 9.689e-11 -9.951 -10.014 -0.063 -4.98 -H(0) 8.958e-14 - H2 4.479e-14 4.480e-14 -13.349 -13.349 0.000 28.43 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.608 -46.608 0.000 32.91 +H(0) 2.185e-30 + H2 1.093e-30 1.093e-30 -29.961 -29.961 0.000 28.43 +O(0) 3.765e-14 + O2 1.883e-14 1.883e-14 -13.725 -13.725 0.000 32.91 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 330 atm) - CH4(g) -20.65 -23.84 -3.19 CH4 + CH4(g) -87.10 -90.29 -3.19 CH4 CO2(g) 2.21 0.06 -2.16 CO2 Pressure 322.7 atm, phi 0.507 - H2(g) -10.12 -13.35 -3.23 H2 + H2(g) -26.73 -29.96 -3.23 H2 H2O(g) 0.07 -0.01 -0.08 H2O Pressure 7.3 atm, phi 0.161 - O2(g) -43.34 -46.61 -3.27 O2 + O2(g) -10.46 -13.73 -3.27 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10415,7 +10415,7 @@ H2O(g) 0.92 8.305e+00 0.145 3.544e-01 3.820e-01 2.758e-02 ----------------------------Description of solution---------------------------- pH = 3.102 Charge balance - pe = 1.799 Adjusted to redox equilibrium + pe = 10.071 Adjusted to redox equilibrium Specific Conductance (µS/cm, 100°C) = 524 Density (g/cm³) = 0.98441 Volume (L) = 1.07253 @@ -10423,11 +10423,11 @@ H2O(g) 0.92 8.305e+00 0.145 3.544e-01 3.820e-01 2.758e-02 Activity of water = 0.978 Ionic strength (mol/kgw) = 8.184e-04 Mass of water (kg) = 9.931e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.221e-09 Total CO2 (mol/kg) = 1.434e+00 Temperature (°C) = 100.00 Pressure (atm) = 368.63 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 77 Total H = 1.102484e+02 @@ -10441,27 +10441,27 @@ H2O(g) 0.92 8.305e+00 0.145 3.544e-01 3.820e-01 2.758e-02 H+ 8.184e-04 7.899e-04 -3.087 -3.102 -0.015 0.00 OH- 1.012e-09 9.749e-10 -8.995 -9.011 -0.016 -7.34 H2O 5.551e+01 9.778e-01 1.744 -0.010 0.000 18.48 -C(-4) 1.481e-24 - CH4 1.481e-24 1.481e-24 -23.830 -23.830 0.000 40.65 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -90.011 -90.011 0.000 40.65 C(4) 1.434e+00 CO2 1.177e+00 1.177e+00 0.071 0.071 0.000 37.92 (CO2)2 1.285e-01 1.285e-01 -0.891 -0.891 0.000 75.85 HCO3- 8.184e-04 7.890e-04 -3.087 -3.103 -0.016 25.64 CO3-2 1.163e-10 1.004e-10 -9.935 -9.998 -0.064 -4.58 -H(0) 8.736e-14 - H2 4.368e-14 4.369e-14 -13.360 -13.360 0.000 28.41 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.615 -46.615 0.000 32.81 +H(0) 2.488e-30 + H2 1.244e-30 1.244e-30 -29.905 -29.905 0.000 28.41 +O(0) 2.716e-14 + O2 1.358e-14 1.358e-14 -13.867 -13.867 0.000 32.81 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 369 atm) - CH4(g) -20.61 -23.83 -3.22 CH4 + CH4(g) -86.79 -90.01 -3.22 CH4 CO2(g) 2.25 0.07 -2.18 CO2 Pressure 360.3 atm, phi 0.491 - H2(g) -10.11 -13.36 -3.25 H2 + H2(g) -26.66 -29.91 -3.25 H2 H2O(g) 0.08 -0.01 -0.09 H2O Pressure 8.3 atm, phi 0.145 - O2(g) -43.33 -46.62 -3.29 O2 + O2(g) -10.58 -13.87 -3.29 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10510,7 +10510,7 @@ H2O(g) 0.98 9.442e+00 0.131 3.820e-01 4.089e-01 2.690e-02 ----------------------------Description of solution---------------------------- pH = 3.087 Charge balance - pe = 1.822 Adjusted to redox equilibrium + pe = 10.094 Adjusted to redox equilibrium Specific Conductance (µS/cm, 100°C) = 541 Density (g/cm³) = 0.98675 Volume (L) = 1.07187 @@ -10518,11 +10518,11 @@ H2O(g) 0.98 9.442e+00 0.131 3.820e-01 4.089e-01 2.690e-02 Activity of water = 0.977 Ionic strength (mol/kgw) = 8.487e-04 Mass of water (kg) = 9.926e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.222e-09 Total CO2 (mol/kg) = 1.489e+00 Temperature (°C) = 100.00 Pressure (atm) = 414.00 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 85 Total H = 1.101946e+02 @@ -10536,27 +10536,27 @@ H2O(g) 0.98 9.442e+00 0.131 3.820e-01 4.089e-01 2.690e-02 H+ 8.487e-04 8.187e-04 -3.071 -3.087 -0.016 0.00 OH- 1.016e-09 9.781e-10 -8.993 -9.010 -0.016 -7.50 H2O 5.551e+01 9.770e-01 1.744 -0.010 0.000 18.44 -C(-4) 1.248e-24 - CH4 1.248e-24 1.248e-24 -23.904 -23.904 0.000 40.60 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -90.075 -90.075 0.000 40.60 C(4) 1.489e+00 CO2 1.214e+00 1.214e+00 0.084 0.084 0.000 37.82 (CO2)2 1.368e-01 1.369e-01 -0.864 -0.864 0.000 75.64 HCO3- 8.487e-04 8.177e-04 -3.071 -3.087 -0.016 25.85 CO3-2 1.214e-10 1.047e-10 -9.916 -9.980 -0.065 -4.12 -H(0) 8.078e-14 - H2 4.039e-14 4.040e-14 -13.394 -13.394 0.000 28.40 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.582 -46.582 0.000 32.69 +H(0) 2.315e-30 + H2 1.157e-30 1.158e-30 -29.937 -29.936 0.000 28.40 +O(0) 2.901e-14 + O2 1.450e-14 1.451e-14 -13.838 -13.838 0.000 32.69 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 414 atm) - CH4(g) -20.66 -23.90 -3.24 CH4 + CH4(g) -86.83 -90.08 -3.24 CH4 CO2(g) 2.29 0.08 -2.20 CO2 Pressure 404.6 atm, phi 0.477 - H2(g) -10.13 -13.39 -3.27 H2 + H2(g) -26.67 -29.94 -3.27 H2 H2O(g) 0.09 -0.01 -0.10 H2O Pressure 9.4 atm, phi 0.131 - O2(g) -43.28 -46.58 -3.31 O2 + O2(g) -10.53 -13.84 -3.31 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10605,7 +10605,7 @@ H2O(g) 1.03 1.075e+01 0.119 4.089e-01 4.347e-01 2.572e-02 ----------------------------Description of solution---------------------------- pH = 3.070 Charge balance - pe = 1.820 Adjusted to redox equilibrium + pe = 10.132 Adjusted to redox equilibrium Specific Conductance (µS/cm, 100°C) = 560 Density (g/cm³) = 0.98942 Volume (L) = 1.07102 @@ -10613,11 +10613,11 @@ H2O(g) 1.03 1.075e+01 0.119 4.089e-01 4.347e-01 2.572e-02 Activity of water = 0.976 Ionic strength (mol/kgw) = 8.829e-04 Mass of water (kg) = 9.922e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.222e-09 Total CO2 (mol/kg) = 1.546e+00 Temperature (°C) = 100.00 Pressure (atm) = 467.40 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 95 Total H = 1.101431e+02 @@ -10631,27 +10631,27 @@ H2O(g) 1.03 1.075e+01 0.119 4.089e-01 4.347e-01 2.572e-02 H+ 8.829e-04 8.513e-04 -3.054 -3.070 -0.016 0.00 OH- 1.024e-09 9.852e-10 -8.990 -9.006 -0.017 -7.67 H2O 5.551e+01 9.762e-01 1.744 -0.010 0.000 18.40 -C(-4) 1.728e-24 - CH4 1.728e-24 1.728e-24 -23.762 -23.762 0.000 40.55 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -90.264 -90.264 0.000 40.55 C(4) 1.546e+00 CO2 1.254e+00 1.254e+00 0.098 0.098 0.000 37.70 (CO2)2 1.459e-01 1.459e-01 -0.836 -0.836 0.000 75.40 HCO3- 8.829e-04 8.503e-04 -3.054 -3.070 -0.016 26.09 CO3-2 1.277e-10 1.098e-10 -9.894 -9.959 -0.066 -3.59 -H(0) 8.416e-14 - H2 4.208e-14 4.209e-14 -13.376 -13.376 0.000 28.38 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.657 -46.657 0.000 32.56 +H(0) 1.994e-30 + H2 9.968e-31 9.970e-31 -30.001 -30.001 0.000 28.38 +O(0) 3.566e-14 + O2 1.783e-14 1.783e-14 -13.749 -13.749 0.000 32.56 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 467 atm) - CH4(g) -20.49 -23.76 -3.27 CH4 + CH4(g) -86.99 -90.26 -3.27 CH4 CO2(g) 2.33 0.10 -2.23 CO2 Pressure 456.6 atm, phi 0.465 - H2(g) -10.09 -13.38 -3.29 H2 + H2(g) -26.71 -30.00 -3.29 H2 H2O(g) 0.11 -0.01 -0.12 H2O Pressure 10.7 atm, phi 0.119 - O2(g) -43.33 -46.66 -3.33 O2 + O2(g) -10.42 -13.75 -3.33 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10700,7 +10700,7 @@ H2O(g) 1.09 1.225e+01 0.108 4.347e-01 4.587e-01 2.401e-02 ----------------------------Description of solution---------------------------- pH = 3.051 Charge balance - pe = 1.790 Adjusted to redox equilibrium + pe = 11.415 Adjusted to redox equilibrium Specific Conductance (µS/cm, 100°C) = 582 Density (g/cm³) = 0.99250 Volume (L) = 1.06991 @@ -10708,13 +10708,13 @@ H2O(g) 1.09 1.225e+01 0.108 4.347e-01 4.587e-01 2.401e-02 Activity of water = 0.975 Ionic strength (mol/kgw) = 9.220e-04 Mass of water (kg) = 9.917e-01 - Total alkalinity (eq/kg) = 1.220e-09 + Total alkalinity (eq/kg) = 1.222e-09 Total CO2 (mol/kg) = 1.607e+00 Temperature (°C) = 100.00 Pressure (atm) = 530.35 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.212e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 38 (139 overall) + Iterations = 41 (142 overall) Total H = 1.100951e+02 Total O = 5.823576e+01 @@ -10726,27 +10726,27 @@ H2O(g) 1.09 1.225e+01 0.108 4.347e-01 4.587e-01 2.401e-02 H+ 9.220e-04 8.885e-04 -3.035 -3.051 -0.016 0.00 OH- 1.037e-09 9.976e-10 -8.984 -9.001 -0.017 -7.86 H2O 5.551e+01 9.753e-01 1.744 -0.011 0.000 18.35 -C(-4) 4.003e-24 - CH4 4.003e-24 4.004e-24 -23.398 -23.397 0.000 40.49 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -100.399 -100.399 0.000 40.49 C(4) 1.607e+00 CO2 1.295e+00 1.295e+00 0.112 0.112 0.000 37.56 (CO2)2 1.557e-01 1.557e-01 -0.808 -0.808 0.000 75.12 HCO3- 9.220e-04 8.873e-04 -3.035 -3.052 -0.017 26.36 CO3-2 1.353e-10 1.160e-10 -9.869 -9.935 -0.067 -2.99 -H(0) 9.914e-14 - H2 4.957e-14 4.958e-14 -13.305 -13.305 0.000 28.35 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -46.846 -46.846 0.000 32.41 +H(0) 5.571e-33 + H2 2.786e-33 2.786e-33 -32.555 -32.555 0.000 28.35 +O(0) 4.098e-09 + O2 2.049e-09 2.050e-09 -8.688 -8.688 0.000 32.41 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 530 atm) - CH4(g) -20.09 -23.40 -3.31 CH4 + CH4(g) -97.09 -100.40 -3.31 CH4 CO2(g) 2.37 0.11 -2.26 CO2 Pressure 518.1 atm, phi 0.456 - H2(g) -9.99 -13.30 -3.31 H2 + H2(g) -29.24 -32.55 -3.31 H2 H2O(g) 0.12 -0.01 -0.13 H2O Pressure 12.2 atm, phi 0.108 - O2(g) -43.49 -46.85 -3.36 O2 + O2(g) -5.33 -8.69 -3.36 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10795,7 +10795,7 @@ H2O(g) 1.14 1.395e+01 0.099 4.587e-01 4.804e-01 2.170e-02 ----------------------------Description of solution---------------------------- pH = 3.031 Charge balance - pe = 1.764 Adjusted to redox equilibrium + pe = 11.434 Adjusted to redox equilibrium Specific Conductance (µS/cm, 100°C) = 607 Density (g/cm³) = 0.99605 Volume (L) = 1.06852 @@ -10803,13 +10803,13 @@ H2O(g) 1.14 1.395e+01 0.099 4.587e-01 4.804e-01 2.170e-02 Activity of water = 0.974 Ionic strength (mol/kgw) = 9.668e-04 Mass of water (kg) = 9.913e-01 - Total alkalinity (eq/kg) = 1.214e-09 + Total alkalinity (eq/kg) = 1.223e-09 Total CO2 (mol/kg) = 1.672e+00 Temperature (°C) = 100.00 Pressure (atm) = 604.71 - Electrical balance (eq) = -1.204e-09 + Electrical balance (eq) = -1.212e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 139 (240 overall) + Iterations = 35 (136 overall) Total H = 1.100517e+02 Total O = 5.834105e+01 @@ -10821,27 +10821,27 @@ H2O(g) 1.14 1.395e+01 0.099 4.587e-01 4.804e-01 2.170e-02 H+ 9.668e-04 9.310e-04 -3.015 -3.031 -0.016 0.00 OH- 1.058e-09 1.017e-09 -8.975 -8.993 -0.017 -8.07 H2O 5.551e+01 9.744e-01 1.744 -0.011 0.000 18.29 -C(-4) 8.886e-24 - CH4 8.886e-24 8.888e-24 -23.051 -23.051 0.000 40.42 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -100.417 -100.417 0.000 40.42 C(4) 1.672e+00 CO2 1.339e+00 1.339e+00 0.127 0.127 0.000 37.41 (CO2)2 1.663e-01 1.663e-01 -0.779 -0.779 0.000 74.81 HCO3- 9.668e-04 9.298e-04 -3.015 -3.032 -0.017 26.67 CO3-2 1.446e-10 1.237e-10 -9.840 -9.908 -0.068 -2.30 -H(0) 1.147e-13 - H2 5.737e-14 5.738e-14 -13.241 -13.241 0.000 28.33 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -47.029 -47.029 0.000 32.23 +H(0) 5.227e-33 + H2 2.614e-33 2.614e-33 -32.583 -32.583 0.000 28.33 +O(0) 4.100e-09 + O2 2.050e-09 2.050e-09 -8.688 -8.688 0.000 32.23 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 605 atm) - CH4(g) -19.70 -23.05 -3.35 CH4 + CH4(g) -97.07 -100.42 -3.35 CH4 CO2(g) 2.43 0.13 -2.30 CO2 Pressure 590.8 atm, phi 0.452 - H2(g) -9.90 -13.24 -3.34 H2 + H2(g) -29.24 -32.58 -3.34 H2 H2O(g) 0.14 -0.01 -0.15 H2O Pressure 14.0 atm, phi 0.099 - O2(g) -43.64 -47.03 -3.39 O2 + O2(g) -5.30 -8.69 -3.39 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10890,7 +10890,7 @@ H2O(g) 1.20 1.588e+01 0.091 4.804e-01 4.991e-01 1.875e-02 ----------------------------Description of solution---------------------------- pH = 3.009 Charge balance - pe = 11.341 Adjusted to redox equilibrium + pe = 11.455 Adjusted to redox equilibrium Specific Conductance (µS/cm, 100°C) = 636 Density (g/cm³) = 1.00012 Volume (L) = 1.06679 @@ -10898,13 +10898,13 @@ H2O(g) 1.20 1.588e+01 0.091 4.804e-01 4.991e-01 1.875e-02 Activity of water = 0.973 Ionic strength (mol/kgw) = 1.018e-03 Mass of water (kg) = 9.910e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.223e-09 Total CO2 (mol/kg) = 1.740e+00 Temperature (°C) = 100.00 Pressure (atm) = 692.70 - Electrical balance (eq) = -1.204e-09 + Electrical balance (eq) = -1.212e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 65 (166 overall) + Iterations = 36 (137 overall) Total H = 1.100142e+02 Total O = 5.845661e+01 @@ -10917,26 +10917,26 @@ H2O(g) 1.20 1.588e+01 0.091 4.804e-01 4.991e-01 1.875e-02 OH- 1.089e-09 1.045e-09 -8.963 -8.981 -0.018 -8.32 H2O 5.551e+01 9.734e-01 1.744 -0.012 0.000 18.23 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -99.529 -99.529 0.000 40.34 + CH4 0.000e+00 0.000e+00 -100.441 -100.441 0.000 40.34 C(4) 1.740e+00 CO2 1.384e+00 1.384e+00 0.141 0.141 0.000 37.23 (CO2)2 1.778e-01 1.778e-01 -0.750 -0.750 0.000 74.46 HCO3- 1.018e-03 9.786e-04 -2.992 -3.009 -0.017 27.02 CO3-2 1.561e-10 1.331e-10 -9.807 -9.876 -0.069 -1.53 -H(0) 8.197e-33 - H2 4.099e-33 4.100e-33 -32.387 -32.387 0.000 28.30 -O(0) 3.158e-09 - O2 1.579e-09 1.580e-09 -8.802 -8.801 0.000 32.04 +H(0) 4.849e-33 + H2 2.425e-33 2.425e-33 -32.615 -32.615 0.000 28.30 +O(0) 4.101e-09 + O2 2.051e-09 2.051e-09 -8.688 -8.688 0.000 32.04 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 693 atm) - CH4(g) -96.13 -99.53 -3.40 CH4 + CH4(g) -97.04 -100.44 -3.40 CH4 CO2(g) 2.49 0.14 -2.34 CO2 Pressure 676.8 atm, phi 0.452 - H2(g) -29.01 -32.39 -3.38 H2 + H2(g) -29.24 -32.62 -3.38 H2 H2O(g) 0.16 -0.01 -0.17 H2O Pressure 15.9 atm, phi 0.091 - O2(g) -5.37 -8.80 -3.43 O2 + O2(g) -5.26 -8.69 -3.43 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -10985,7 +10985,7 @@ H2O(g) 1.26 1.804e+01 0.085 4.991e-01 5.142e-01 1.511e-02 ----------------------------Description of solution---------------------------- pH = 2.984 Charge balance - pe = 11.364 Adjusted to redox equilibrium + pe = 11.478 Adjusted to redox equilibrium Specific Conductance (µS/cm, 100°C) = 669 Density (g/cm³) = 1.00480 Volume (L) = 1.06465 @@ -10993,11 +10993,11 @@ H2O(g) 1.26 1.804e+01 0.085 4.991e-01 5.142e-01 1.511e-02 Activity of water = 0.972 Ionic strength (mol/kgw) = 1.078e-03 Mass of water (kg) = 9.907e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.223e-09 Total CO2 (mol/kg) = 1.812e+00 Temperature (°C) = 100.00 Pressure (atm) = 797.06 - Electrical balance (eq) = -1.204e-09 + Electrical balance (eq) = -1.212e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 36 (137 overall) Total H = 1.099840e+02 @@ -11012,26 +11012,26 @@ H2O(g) 1.26 1.804e+01 0.085 4.991e-01 5.142e-01 1.511e-02 OH- 1.132e-09 1.086e-09 -8.946 -8.964 -0.018 -8.59 H2O 5.551e+01 9.724e-01 1.744 -0.012 0.000 18.15 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -99.559 -99.559 0.000 40.25 + CH4 0.000e+00 0.000e+00 -100.471 -100.471 0.000 40.25 C(4) 1.812e+00 CO2 1.431e+00 1.431e+00 0.156 0.156 0.000 37.03 (CO2)2 1.901e-01 1.902e-01 -0.721 -0.721 0.000 74.06 HCO3- 1.078e-03 1.035e-03 -2.967 -2.985 -0.018 27.42 CO3-2 1.706e-10 1.450e-10 -9.768 -9.839 -0.071 -0.67 -H(0) 7.503e-33 - H2 3.751e-33 3.752e-33 -32.426 -32.426 0.000 28.27 -O(0) 3.159e-09 - O2 1.580e-09 1.580e-09 -8.801 -8.801 0.000 31.83 +H(0) 4.439e-33 + H2 2.219e-33 2.220e-33 -32.654 -32.654 0.000 28.27 +O(0) 4.102e-09 + O2 2.051e-09 2.052e-09 -8.688 -8.688 0.000 31.83 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 797 atm) - CH4(g) -96.10 -99.56 -3.46 CH4 + CH4(g) -97.01 -100.47 -3.46 CH4 CO2(g) 2.55 0.16 -2.40 CO2 Pressure 779.0 atm, phi 0.459 - H2(g) -29.01 -32.43 -3.42 H2 + H2(g) -29.23 -32.65 -3.42 H2 H2O(g) 0.19 -0.01 -0.20 H2O Pressure 18.0 atm, phi 0.085 - O2(g) -5.33 -8.80 -3.47 O2 + O2(g) -5.21 -8.69 -3.47 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11080,7 +11080,7 @@ H2O(g) 1.31 2.044e+01 0.081 5.142e-01 5.250e-01 1.075e-02 ----------------------------Description of solution---------------------------- pH = 2.958 Charge balance - pe = 11.389 Adjusted to redox equilibrium + pe = 11.503 Adjusted to redox equilibrium Specific Conductance (µS/cm, 100°C) = 708 Density (g/cm³) = 1.01017 Volume (L) = 1.06205 @@ -11088,13 +11088,13 @@ H2O(g) 1.31 2.044e+01 0.081 5.142e-01 5.250e-01 1.075e-02 Activity of water = 0.971 Ionic strength (mol/kgw) = 1.147e-03 Mass of water (kg) = 9.905e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.224e-09 Total CO2 (mol/kg) = 1.888e+00 Temperature (°C) = 100.00 Pressure (atm) = 921.15 - Electrical balance (eq) = -1.204e-09 + Electrical balance (eq) = -1.212e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 44 (145 overall) + Iterations = 38 (139 overall) Total H = 1.099625e+02 Total O = 5.872141e+01 @@ -11107,26 +11107,26 @@ H2O(g) 1.31 2.044e+01 0.081 5.142e-01 5.250e-01 1.075e-02 OH- 1.194e-09 1.144e-09 -8.923 -8.941 -0.018 -8.89 H2O 5.551e+01 9.713e-01 1.744 -0.013 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -99.597 -99.597 0.000 40.15 + CH4 0.000e+00 0.000e+00 -100.509 -100.509 0.000 40.15 C(4) 1.888e+00 CO2 1.480e+00 1.480e+00 0.170 0.170 0.000 36.81 (CO2)2 2.033e-01 2.034e-01 -0.692 -0.692 0.000 73.62 HCO3- 1.147e-03 1.100e-03 -2.940 -2.958 -0.018 27.86 CO3-2 1.888e-10 1.599e-10 -9.724 -9.796 -0.072 0.29 -H(0) 6.757e-33 - H2 3.379e-33 3.379e-33 -32.471 -32.471 0.000 28.24 -O(0) 3.160e-09 - O2 1.580e-09 1.580e-09 -8.801 -8.801 0.000 31.59 +H(0) 3.998e-33 + H2 1.999e-33 1.999e-33 -32.699 -32.699 0.000 28.24 +O(0) 4.103e-09 + O2 2.052e-09 2.052e-09 -8.688 -8.688 0.000 31.59 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 921 atm) - CH4(g) -96.07 -99.60 -3.53 CH4 + CH4(g) -96.98 -100.51 -3.53 CH4 CO2(g) 2.63 0.17 -2.46 CO2 Pressure 900.7 atm, phi 0.474 - H2(g) -29.00 -32.47 -3.47 H2 + H2(g) -29.23 -32.70 -3.47 H2 H2O(g) 0.22 -0.01 -0.23 H2O Pressure 20.4 atm, phi 0.081 - O2(g) -5.27 -8.80 -3.53 O2 + O2(g) -5.16 -8.69 -3.53 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11175,7 +11175,7 @@ H2O(g) 1.36 2.308e+01 0.078 5.250e-01 5.306e-01 5.633e-03 ----------------------------Description of solution---------------------------- pH = 2.929 Charge balance - pe = 11.416 Adjusted to redox equilibrium + pe = 11.530 Adjusted to redox equilibrium Specific Conductance (µS/cm, 100°C) = 752 Density (g/cm³) = 1.01630 Volume (L) = 1.05892 @@ -11183,13 +11183,13 @@ H2O(g) 1.36 2.308e+01 0.078 5.250e-01 5.306e-01 5.633e-03 Activity of water = 0.970 Ionic strength (mol/kgw) = 1.228e-03 Mass of water (kg) = 9.904e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.225e-09 Total CO2 (mol/kg) = 1.967e+00 Temperature (°C) = 100.00 Pressure (atm) = 1069.23 - Electrical balance (eq) = -1.205e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 37 (138 overall) + Iterations = 39 (140 overall) Total H = 1.099512e+02 Total O = 5.887174e+01 @@ -11202,26 +11202,26 @@ H2O(g) 1.36 2.308e+01 0.078 5.250e-01 5.306e-01 5.633e-03 OH- 1.282e-09 1.227e-09 -8.892 -8.911 -0.019 -9.21 H2O 5.551e+01 9.702e-01 1.744 -0.013 0.000 17.97 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -99.644 -99.644 0.000 40.04 + CH4 0.000e+00 0.000e+00 -100.556 -100.556 0.000 40.04 C(4) 1.967e+00 CO2 1.531e+00 1.531e+00 0.185 0.185 0.000 36.56 (CO2)2 2.175e-01 2.175e-01 -0.663 -0.662 0.000 73.13 HCO3- 1.228e-03 1.177e-03 -2.911 -2.929 -0.018 28.34 CO3-2 2.122e-10 1.790e-10 -9.673 -9.747 -0.074 1.36 -H(0) 5.967e-33 - H2 2.984e-33 2.985e-33 -32.525 -32.525 0.000 28.20 -O(0) 3.160e-09 - O2 1.580e-09 1.581e-09 -8.801 -8.801 0.000 31.32 +H(0) 3.530e-33 + H2 1.765e-33 1.766e-33 -32.753 -32.753 0.000 28.20 +O(0) 4.104e-09 + O2 2.052e-09 2.052e-09 -8.688 -8.688 0.000 31.32 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 1069 atm) - CH4(g) -96.03 -99.64 -3.61 CH4 + CH4(g) -96.94 -100.56 -3.61 CH4 CO2(g) 2.72 0.18 -2.53 CO2 Pressure 1046.2 atm, phi 0.500 - H2(g) -29.00 -32.53 -3.53 H2 + H2(g) -29.23 -32.75 -3.53 H2 H2O(g) 0.25 -0.01 -0.27 H2O Pressure 23.1 atm, phi 0.078 - O2(g) -5.21 -8.80 -3.59 O2 + O2(g) -5.10 -8.69 -3.59 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11270,7 +11270,7 @@ H2O(g) 1.41 2.593e+01 0.076 5.306e-01 5.304e-01 -2.391e-04 ----------------------------Description of solution---------------------------- pH = 2.897 Charge balance - pe = 11.445 Adjusted to redox equilibrium + pe = 11.559 Adjusted to redox equilibrium Specific Conductance (µS/cm, 100°C) = 803 Density (g/cm³) = 1.02323 Volume (L) = 1.05524 @@ -11278,13 +11278,13 @@ H2O(g) 1.41 2.593e+01 0.076 5.306e-01 5.304e-01 -2.391e-04 Activity of water = 0.969 Ionic strength (mol/kgw) = 1.323e-03 Mass of water (kg) = 9.904e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.226e-09 Total CO2 (mol/kg) = 2.049e+00 Temperature (°C) = 100.00 Pressure (atm) = 1246.74 - Electrical balance (eq) = -1.205e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 42 (143 overall) + Iterations = 45 (146 overall) Total H = 1.099517e+02 Total O = 5.903436e+01 @@ -11297,26 +11297,26 @@ H2O(g) 1.41 2.593e+01 0.076 5.306e-01 5.304e-01 -2.391e-04 OH- 1.409e-09 1.347e-09 -8.851 -8.871 -0.019 -9.57 H2O 5.551e+01 9.691e-01 1.744 -0.014 0.000 17.86 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -99.703 -99.703 0.000 39.91 + CH4 0.000e+00 0.000e+00 -100.615 -100.615 0.000 39.91 C(4) 2.049e+00 CO2 1.583e+00 1.583e+00 0.199 0.199 0.000 36.29 (CO2)2 2.325e-01 2.326e-01 -0.634 -0.633 0.000 72.59 HCO3- 1.323e-03 1.266e-03 -2.879 -2.898 -0.019 28.88 CO3-2 2.428e-10 2.039e-10 -9.615 -9.691 -0.076 2.54 -H(0) 5.145e-33 - H2 2.573e-33 2.573e-33 -32.590 -32.589 0.000 28.16 -O(0) 3.160e-09 - O2 1.580e-09 1.581e-09 -8.801 -8.801 0.000 31.03 +H(0) 3.044e-33 + H2 1.522e-33 1.522e-33 -32.818 -32.817 0.000 28.16 +O(0) 4.104e-09 + O2 2.052e-09 2.052e-09 -8.688 -8.688 0.000 31.03 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 1247 atm) - CH4(g) -95.99 -99.70 -3.71 CH4 + CH4(g) -96.91 -100.61 -3.71 CH4 CO2(g) 2.82 0.20 -2.62 CO2 Pressure 1220.8 atm, phi 0.541 - H2(g) -28.99 -32.59 -3.60 H2 + H2(g) -29.22 -32.82 -3.60 H2 H2O(g) 0.30 -0.01 -0.31 H2O Pressure 25.9 atm, phi 0.076 - O2(g) -5.14 -8.80 -3.66 O2 + O2(g) -5.02 -8.69 -3.66 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11365,7 +11365,7 @@ H2O(g) 1.46 2.896e+01 0.077 5.304e-01 5.236e-01 -6.811e-03 ----------------------------Description of solution---------------------------- pH = 2.862 Charge balance - pe = 11.476 Adjusted to redox equilibrium + pe = 11.590 Adjusted to redox equilibrium Specific Conductance (µS/cm, 100°C) = 864 Density (g/cm³) = 1.03092 Volume (L) = 1.05107 @@ -11373,11 +11373,11 @@ H2O(g) 1.46 2.896e+01 0.077 5.304e-01 5.236e-01 -6.811e-03 Activity of water = 0.968 Ionic strength (mol/kgw) = 1.435e-03 Mass of water (kg) = 9.905e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.225e-09 Total CO2 (mol/kg) = 2.133e+00 Temperature (°C) = 100.00 Pressure (atm) = 1460.80 - Electrical balance (eq) = -1.205e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 57 (158 overall) Total H = 1.099653e+02 @@ -11392,26 +11392,26 @@ H2O(g) 1.46 2.896e+01 0.077 5.304e-01 5.236e-01 -6.811e-03 OH- 1.595e-09 1.523e-09 -8.797 -8.817 -0.020 -9.96 H2O 5.551e+01 9.679e-01 1.744 -0.014 0.000 17.73 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -99.776 -99.776 0.000 39.77 + CH4 0.000e+00 0.000e+00 -100.688 -100.688 0.000 39.77 C(4) 2.133e+00 CO2 1.635e+00 1.636e+00 0.214 0.214 0.000 36.00 (CO2)2 2.483e-01 2.483e-01 -0.605 -0.605 0.000 71.99 HCO3- 1.435e-03 1.372e-03 -2.843 -2.863 -0.019 29.47 CO3-2 2.835e-10 2.370e-10 -9.547 -9.625 -0.078 3.83 -H(0) 4.307e-33 - H2 2.154e-33 2.154e-33 -32.667 -32.667 0.000 28.11 -O(0) 3.160e-09 - O2 1.580e-09 1.580e-09 -8.801 -8.801 0.000 30.71 +H(0) 2.548e-33 + H2 1.274e-33 1.275e-33 -32.895 -32.895 0.000 28.11 +O(0) 4.103e-09 + O2 2.052e-09 2.052e-09 -8.688 -8.688 0.000 30.71 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(373 K, 1461 atm) - CH4(g) -95.95 -99.78 -3.83 CH4 + CH4(g) -96.86 -100.69 -3.83 CH4 CO2(g) 2.94 0.21 -2.72 CO2 Pressure 1431.8 atm, phi 0.606 - H2(g) -28.98 -32.67 -3.68 H2 + H2(g) -29.21 -32.89 -3.68 H2 H2O(g) 0.35 -0.01 -0.36 H2O Pressure 29.0 atm, phi 0.077 - O2(g) -5.05 -8.80 -3.75 O2 + O2(g) -4.94 -8.69 -3.75 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11484,7 +11484,7 @@ H2O(g) 0.67 4.702e+00 0.971 0.000e+00 1.395e-01 1.395e-01 ----------------------------Description of solution---------------------------- pH = 5.813 Charge balance - pe = 4.695 Adjusted to redox equilibrium + pe = 5.167 Adjusted to redox equilibrium Specific Conductance (µS/cm, 150°C) = 1 Density (g/cm³) = 0.91701 Volume (L) = 1.08776 @@ -11509,8 +11509,8 @@ H2O(g) 0.67 4.702e+00 0.971 0.000e+00 1.395e-01 1.395e-01 OH- 1.542e-06 1.539e-06 -5.812 -5.813 -0.001 -12.11 H+ 1.540e-06 1.537e-06 -5.812 -5.813 -0.001 0.00 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 19.65 -H(0) 5.655e-25 - H2 2.828e-25 2.828e-25 -24.549 -24.549 0.000 28.56 +H(0) 6.431e-26 + H2 3.216e-26 3.216e-26 -25.493 -25.493 0.000 28.56 O(0) 2.751e-15 O2 1.376e-15 1.376e-15 -14.862 -14.862 0.000 35.91 @@ -11518,7 +11518,7 @@ O(0) 2.751e-15 Phase SI** log IAP log K(423 K, 5 atm) - H2(g) -21.57 -24.55 -2.98 H2 + H2(g) -22.51 -25.49 -2.98 H2 H2O(g) 0.66 -0.00 -0.66 H2O Pressure 4.7 atm, phi 0.971 O2(g) -11.82 -14.86 -3.04 O2 @@ -11569,7 +11569,7 @@ H2O(g) 0.73 5.310e+00 0.870 1.395e-01 1.635e-01 2.395e-02 ----------------------------Description of solution---------------------------- pH = 3.727 Charge balance - pe = 1.888 Adjusted to redox equilibrium + pe = 1.898 Adjusted to redox equilibrium Specific Conductance (µS/cm, 150°C) = 157 Density (g/cm³) = 0.91912 Volume (L) = 1.09483 @@ -11581,7 +11581,7 @@ H2O(g) 0.73 5.310e+00 0.870 1.395e-01 1.635e-01 2.395e-02 Total CO2 (mol/kg) = 2.102e-01 Temperature (°C) = 150.00 Pressure (atm) = 30.98 - Electrical balance (eq) = -1.216e-09 + Electrical balance (eq) = -1.215e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 32 Total H = 1.106854e+02 @@ -11595,27 +11595,27 @@ H2O(g) 0.73 5.310e+00 0.870 1.395e-01 1.635e-01 2.395e-02 H+ 1.914e-04 1.874e-04 -3.718 -3.727 -0.009 0.00 OH- 1.316e-08 1.288e-08 -7.881 -7.890 -0.009 -12.11 H2O 5.551e+01 9.965e-01 1.744 -0.002 0.000 19.61 -C(-4) 1.161e-35 - CH4 1.161e-35 1.161e-35 -34.935 -34.935 0.000 46.77 +C(-4) 9.644e-36 + CH4 9.644e-36 9.645e-36 -35.016 -35.016 0.000 46.77 C(4) 2.102e-01 CO2 1.989e-01 1.990e-01 -0.701 -0.701 0.000 44.58 (CO2)2 5.541e-03 5.541e-03 -2.256 -2.256 0.000 89.15 HCO3- 1.914e-04 1.873e-04 -3.718 -3.727 -0.009 17.09 CO3-2 4.629e-11 4.250e-11 -10.335 -10.372 -0.037 -24.46 -H(0) 3.385e-15 - H2 1.693e-15 1.693e-15 -14.771 -14.771 0.000 28.55 -O(0) 7.320e-35 - O2 3.660e-35 3.660e-35 -34.436 -34.436 0.000 35.79 +H(0) 3.232e-15 + H2 1.616e-15 1.616e-15 -14.792 -14.792 0.000 28.55 +O(0) 1.039e-36 + O2 5.193e-37 5.193e-37 -36.285 -36.285 0.000 35.79 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 31 atm) - CH4(g) -32.02 -34.94 -2.91 CH4 + CH4(g) -32.10 -35.02 -2.91 CH4 CO2(g) 1.39 -0.70 -2.09 CO2 Pressure 25.7 atm, phi 0.952 - H2(g) -11.78 -14.77 -2.99 H2 + H2(g) -11.80 -14.79 -2.99 H2 H2O(g) 0.66 -0.00 -0.67 H2O Pressure 5.3 atm, phi 0.870 - O2(g) -31.38 -34.44 -3.05 O2 + O2(g) -33.23 -36.28 -3.05 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11664,7 +11664,7 @@ H2O(g) 0.77 5.925e+00 0.788 1.635e-01 1.905e-01 2.700e-02 ----------------------------Description of solution---------------------------- pH = 3.592 Charge balance - pe = 1.691 Adjusted to redox equilibrium + pe = 7.938 Adjusted to redox equilibrium Specific Conductance (µS/cm, 150°C) = 211 Density (g/cm³) = 0.92109 Volume (L) = 1.10082 @@ -11672,13 +11672,13 @@ H2O(g) 0.77 5.925e+00 0.788 1.635e-01 1.905e-01 2.700e-02 Activity of water = 0.994 Ionic strength (mol/kgw) = 2.622e-04 Mass of water (kg) = 9.966e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 3.962e-01 Temperature (°C) = 150.00 Pressure (atm) = 55.85 - Electrical balance (eq) = -1.215e-09 + Electrical balance (eq) = -1.214e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 30 + Iterations = 26 Total H = 1.106314e+02 Total O = 5.610546e+01 @@ -11690,27 +11690,27 @@ H2O(g) 0.77 5.925e+00 0.788 1.635e-01 1.905e-01 2.700e-02 H+ 2.622e-04 2.559e-04 -3.581 -3.592 -0.011 0.00 OH- 9.869e-09 9.625e-09 -8.006 -8.017 -0.011 -12.16 H2O 5.551e+01 9.936e-01 1.744 -0.003 0.000 19.58 -C(-4) 9.231e-33 - CH4 9.231e-33 9.231e-33 -32.035 -32.035 0.000 46.64 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -82.006 -82.006 0.000 46.64 C(4) 3.962e-01 CO2 3.597e-01 3.598e-01 -0.444 -0.444 0.000 44.40 (CO2)2 1.812e-02 1.812e-02 -1.742 -1.742 0.000 88.80 HCO3- 2.621e-04 2.557e-04 -3.581 -3.592 -0.011 17.38 CO3-2 4.832e-11 4.375e-11 -10.316 -10.359 -0.043 -23.81 -H(0) 1.528e-14 - H2 7.639e-15 7.640e-15 -14.117 -14.117 0.000 28.53 -O(0) 3.438e-36 - O2 1.719e-36 1.719e-36 -35.765 -35.765 0.000 35.67 +H(0) 4.912e-27 + H2 2.456e-27 2.456e-27 -26.610 -26.610 0.000 28.53 +O(0) 4.301e-13 + O2 2.150e-13 2.151e-13 -12.667 -12.667 0.000 35.67 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 56 atm) - CH4(g) -29.11 -32.03 -2.93 CH4 + CH4(g) -79.08 -82.01 -2.93 CH4 CO2(g) 1.66 -0.44 -2.10 CO2 Pressure 49.9 atm, phi 0.913 - H2(g) -11.12 -14.12 -3.00 H2 + H2(g) -23.61 -26.61 -3.00 H2 H2O(g) 0.67 -0.00 -0.67 H2O Pressure 5.9 atm, phi 0.788 - O2(g) -32.70 -35.76 -3.06 O2 + O2(g) -9.60 -12.67 -3.06 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11759,7 +11759,7 @@ H2O(g) 0.82 6.593e+00 0.716 1.905e-01 2.207e-01 3.020e-02 ----------------------------Description of solution---------------------------- pH = 3.518 Charge balance - pe = 1.836 Adjusted to redox equilibrium + pe = 8.013 Adjusted to redox equilibrium Specific Conductance (µS/cm, 150°C) = 248 Density (g/cm³) = 0.92293 Volume (L) = 1.10577 @@ -11767,11 +11767,11 @@ H2O(g) 0.82 6.593e+00 0.716 1.905e-01 2.207e-01 3.020e-02 Activity of water = 0.991 Ionic strength (mol/kgw) = 3.114e-04 Mass of water (kg) = 9.960e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 5.595e-01 Temperature (°C) = 150.00 Pressure (atm) = 79.56 - Electrical balance (eq) = -1.214e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 30 Total H = 1.105710e+02 @@ -11785,27 +11785,27 @@ H2O(g) 0.82 6.593e+00 0.716 1.905e-01 2.207e-01 3.020e-02 H+ 3.114e-04 3.033e-04 -3.507 -3.518 -0.011 0.00 OH- 8.504e-09 8.275e-09 -8.070 -8.082 -0.012 -12.20 H2O 5.551e+01 9.911e-01 1.744 -0.004 0.000 19.56 -C(-4) 3.349e-33 - CH4 3.349e-33 3.349e-33 -32.475 -32.475 0.000 46.52 +C(-4) 0.000e+00 + CH4 0.000e+00 0.000e+00 -81.896 -81.896 0.000 46.52 C(4) 5.595e-01 CO2 4.915e-01 4.915e-01 -0.308 -0.308 0.000 44.24 (CO2)2 3.382e-02 3.382e-02 -1.471 -1.471 0.000 88.47 HCO3- 3.114e-04 3.032e-04 -3.507 -3.518 -0.012 17.65 CO3-2 5.008e-11 4.496e-11 -10.300 -10.347 -0.047 -23.21 -H(0) 1.082e-14 - H2 5.409e-15 5.410e-15 -14.267 -14.267 0.000 28.52 -O(0) 6.578e-36 - O2 3.289e-36 3.289e-36 -35.483 -35.483 0.000 35.57 +H(0) 4.775e-27 + H2 2.388e-27 2.388e-27 -26.622 -26.622 0.000 28.52 +O(0) 4.366e-13 + O2 2.183e-13 2.183e-13 -12.661 -12.661 0.000 35.57 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 80 atm) - CH4(g) -29.53 -32.48 -2.94 CH4 + CH4(g) -78.96 -81.90 -2.94 CH4 CO2(g) 1.81 -0.31 -2.12 CO2 Pressure 73.0 atm, phi 0.880 - H2(g) -11.26 -14.27 -3.01 H2 + H2(g) -23.61 -26.62 -3.01 H2 H2O(g) 0.67 -0.00 -0.68 H2O Pressure 6.6 atm, phi 0.716 - O2(g) -32.41 -35.48 -3.07 O2 + O2(g) -9.59 -12.66 -3.07 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11854,7 +11854,7 @@ H2O(g) 0.86 7.320e+00 0.652 2.207e-01 2.542e-01 3.349e-02 ----------------------------Description of solution---------------------------- pH = 3.469 Charge balance - pe = 6.992 Adjusted to redox equilibrium + pe = 8.063 Adjusted to redox equilibrium Specific Conductance (µS/cm, 150°C) = 275 Density (g/cm³) = 0.92467 Volume (L) = 1.10980 @@ -11862,13 +11862,13 @@ H2O(g) 0.86 7.320e+00 0.652 2.207e-01 2.542e-01 3.349e-02 Activity of water = 0.989 Ionic strength (mol/kgw) = 3.496e-04 Mass of water (kg) = 9.954e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 7.026e-01 Temperature (°C) = 150.00 Pressure (atm) = 102.37 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.212e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 34 + Iterations = 31 Total H = 1.105041e+02 Total O = 5.665087e+01 @@ -11881,26 +11881,26 @@ H2O(g) 0.86 7.320e+00 0.652 2.207e-01 2.542e-01 3.349e-02 OH- 7.742e-09 7.522e-09 -8.111 -8.124 -0.012 -12.24 H2O 5.551e+01 9.889e-01 1.744 -0.005 0.000 19.53 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -73.252 -73.252 0.000 46.41 + CH4 0.000e+00 0.000e+00 -81.815 -81.815 0.000 46.41 C(4) 7.026e-01 CO2 6.011e-01 6.012e-01 -0.221 -0.221 0.000 44.08 (CO2)2 5.059e-02 5.059e-02 -1.296 -1.296 0.000 88.16 HCO3- 3.496e-04 3.398e-04 -3.456 -3.469 -0.012 17.90 CO3-2 5.169e-11 4.614e-11 -10.287 -10.336 -0.049 -22.66 -H(0) 6.493e-25 - H2 3.247e-25 3.247e-25 -24.489 -24.489 0.000 28.51 -O(0) 1.756e-15 - O2 8.778e-16 8.778e-16 -15.057 -15.057 0.000 35.47 +H(0) 4.696e-27 + H2 2.348e-27 2.348e-27 -26.629 -26.629 0.000 28.51 +O(0) 4.340e-13 + O2 2.170e-13 2.170e-13 -12.664 -12.664 0.000 35.47 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 102 atm) - CH4(g) -70.30 -73.25 -2.95 CH4 + CH4(g) -78.86 -81.81 -2.95 CH4 CO2(g) 1.91 -0.22 -2.13 CO2 Pressure 95.0 atm, phi 0.850 - H2(g) -21.47 -24.49 -3.02 H2 + H2(g) -23.61 -26.63 -3.02 H2 H2O(g) 0.68 -0.00 -0.68 H2O Pressure 7.3 atm, phi 0.652 - O2(g) -11.97 -15.06 -3.08 O2 + O2(g) -9.58 -12.66 -3.08 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -11949,7 +11949,7 @@ H2O(g) 0.91 8.113e+00 0.594 2.542e-01 2.910e-01 3.678e-02 ----------------------------Description of solution---------------------------- pH = 3.432 Charge balance - pe = 7.038 Adjusted to redox equilibrium + pe = 8.100 Adjusted to redox equilibrium Specific Conductance (µS/cm, 150°C) = 296 Density (g/cm³) = 0.92633 Volume (L) = 1.11305 @@ -11957,11 +11957,11 @@ H2O(g) 0.91 8.113e+00 0.594 2.542e-01 2.910e-01 3.678e-02 Activity of water = 0.987 Ionic strength (mol/kgw) = 3.809e-04 Mass of water (kg) = 9.948e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 8.289e-01 Temperature (°C) = 150.00 Pressure (atm) = 124.54 - Electrical balance (eq) = -1.212e-09 + Electrical balance (eq) = -1.211e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 31 Total H = 1.104305e+02 @@ -11976,26 +11976,26 @@ H2O(g) 0.91 8.113e+00 0.594 2.542e-01 2.910e-01 3.678e-02 OH- 7.255e-09 7.041e-09 -8.139 -8.152 -0.013 -12.28 H2O 5.551e+01 9.870e-01 1.744 -0.006 0.000 19.50 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -73.270 -73.270 0.000 46.30 + CH4 0.000e+00 0.000e+00 -81.769 -81.769 0.000 46.30 C(4) 8.289e-01 CO2 6.938e-01 6.938e-01 -0.159 -0.159 0.000 43.93 (CO2)2 6.738e-02 6.739e-02 -1.171 -1.171 0.000 87.87 HCO3- 3.808e-04 3.698e-04 -3.419 -3.432 -0.013 18.14 CO3-2 5.323e-11 4.730e-11 -10.274 -10.325 -0.051 -22.13 -H(0) 6.122e-25 - H2 3.061e-25 3.061e-25 -24.514 -24.514 0.000 28.50 -O(0) 1.902e-15 - O2 9.509e-16 9.510e-16 -15.022 -15.022 0.000 35.37 +H(0) 4.594e-27 + H2 2.297e-27 2.297e-27 -26.639 -26.639 0.000 28.50 +O(0) 4.368e-13 + O2 2.184e-13 2.184e-13 -12.661 -12.661 0.000 35.37 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 125 atm) - CH4(g) -70.30 -73.27 -2.97 CH4 + CH4(g) -78.80 -81.77 -2.97 CH4 CO2(g) 1.98 -0.16 -2.14 CO2 Pressure 116.4 atm, phi 0.823 - H2(g) -21.49 -24.51 -3.02 H2 + H2(g) -23.62 -26.64 -3.02 H2 H2O(g) 0.68 -0.01 -0.69 H2O Pressure 8.1 atm, phi 0.594 - O2(g) -11.93 -15.02 -3.09 O2 + O2(g) -9.57 -12.66 -3.09 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12044,7 +12044,7 @@ H2O(g) 0.95 8.979e+00 0.543 2.910e-01 3.310e-01 4.000e-02 ----------------------------Description of solution---------------------------- pH = 3.403 Charge balance - pe = 7.221 Adjusted to redox equilibrium + pe = 8.129 Adjusted to redox equilibrium Specific Conductance (µS/cm, 150°C) = 314 Density (g/cm³) = 0.92793 Volume (L) = 1.11563 @@ -12052,11 +12052,11 @@ H2O(g) 0.95 8.979e+00 0.543 2.910e-01 3.310e-01 4.000e-02 Activity of water = 0.985 Ionic strength (mol/kgw) = 4.076e-04 Mass of water (kg) = 9.940e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 9.415e-01 Temperature (°C) = 150.00 Pressure (atm) = 146.37 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.210e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 31 Total H = 1.103505e+02 @@ -12071,26 +12071,26 @@ H2O(g) 0.95 8.979e+00 0.543 2.910e-01 3.310e-01 4.000e-02 OH- 6.917e-09 6.707e-09 -8.160 -8.173 -0.013 -12.33 H2O 5.551e+01 9.854e-01 1.744 -0.006 0.000 19.48 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -74.466 -74.466 0.000 46.20 + CH4 0.000e+00 0.000e+00 -81.729 -81.729 0.000 46.20 C(4) 9.415e-01 CO2 7.735e-01 7.736e-01 -0.112 -0.111 0.000 43.79 (CO2)2 8.376e-02 8.377e-02 -1.077 -1.077 0.000 87.58 HCO3- 4.076e-04 3.954e-04 -3.390 -3.403 -0.013 18.38 CO3-2 5.474e-11 4.846e-11 -10.262 -10.315 -0.053 -21.62 -H(0) 2.957e-25 - H2 1.478e-25 1.478e-25 -24.830 -24.830 0.000 28.49 -O(0) 7.861e-15 - O2 3.931e-15 3.931e-15 -14.406 -14.405 0.000 35.28 +H(0) 4.520e-27 + H2 2.260e-27 2.260e-27 -26.646 -26.646 0.000 28.49 +O(0) 4.350e-13 + O2 2.175e-13 2.175e-13 -12.663 -12.662 0.000 35.28 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 146 atm) - CH4(g) -71.49 -74.47 -2.98 CH4 + CH4(g) -78.75 -81.73 -2.98 CH4 CO2(g) 2.04 -0.11 -2.15 CO2 Pressure 137.4 atm, phi 0.799 - H2(g) -21.80 -24.83 -3.03 H2 + H2(g) -23.61 -26.65 -3.03 H2 H2O(g) 0.69 -0.01 -0.69 H2O Pressure 9.0 atm, phi 0.543 - O2(g) -11.30 -14.41 -3.10 O2 + O2(g) -9.56 -12.66 -3.10 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12139,7 +12139,7 @@ H2O(g) 1.00 9.926e+00 0.496 3.310e-01 3.740e-01 4.308e-02 ----------------------------Description of solution---------------------------- pH = 3.378 Charge balance - pe = 7.289 Adjusted to redox equilibrium + pe = 8.156 Adjusted to redox equilibrium Specific Conductance (µS/cm, 150°C) = 329 Density (g/cm³) = 0.92950 Volume (L) = 1.11766 @@ -12147,7 +12147,7 @@ H2O(g) 1.00 9.926e+00 0.496 3.310e-01 3.740e-01 4.308e-02 Activity of water = 0.984 Ionic strength (mol/kgw) = 4.313e-04 Mass of water (kg) = 9.933e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.043e+00 Temperature (°C) = 150.00 Pressure (atm) = 168.19 @@ -12166,26 +12166,26 @@ H2O(g) 1.00 9.926e+00 0.496 3.310e-01 3.740e-01 4.308e-02 OH- 6.670e-09 6.462e-09 -8.176 -8.190 -0.014 -12.37 H2O 5.551e+01 9.840e-01 1.744 -0.007 0.000 19.45 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -74.791 -74.791 0.000 46.09 + CH4 0.000e+00 0.000e+00 -81.722 -81.722 0.000 46.09 C(4) 1.043e+00 CO2 8.436e-01 8.436e-01 -0.074 -0.074 0.000 43.65 (CO2)2 9.962e-02 9.963e-02 -1.002 -1.002 0.000 87.31 HCO3- 4.313e-04 4.180e-04 -3.365 -3.379 -0.014 18.60 CO3-2 5.623e-11 4.962e-11 -10.250 -10.304 -0.054 -21.12 -H(0) 2.370e-25 - H2 1.185e-25 1.185e-25 -24.926 -24.926 0.000 28.48 -O(0) 1.180e-14 - O2 5.899e-15 5.900e-15 -14.229 -14.229 0.000 35.18 +H(0) 4.386e-27 + H2 2.193e-27 2.193e-27 -26.659 -26.659 0.000 28.48 +O(0) 4.456e-13 + O2 2.228e-13 2.228e-13 -12.652 -12.652 0.000 35.18 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 168 atm) - CH4(g) -71.80 -74.79 -2.99 CH4 + CH4(g) -78.73 -81.72 -2.99 CH4 CO2(g) 2.09 -0.07 -2.16 CO2 Pressure 158.3 atm, phi 0.777 - H2(g) -21.89 -24.93 -3.04 H2 + H2(g) -23.62 -26.66 -3.04 H2 H2O(g) 0.69 -0.01 -0.70 H2O Pressure 9.9 atm, phi 0.496 - O2(g) -11.12 -14.23 -3.11 O2 + O2(g) -9.54 -12.65 -3.11 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12234,7 +12234,7 @@ H2O(g) 1.04 1.096e+01 0.454 3.740e-01 4.200e-01 4.597e-02 ----------------------------Description of solution---------------------------- pH = 3.357 Charge balance - pe = 7.298 Adjusted to redox equilibrium + pe = 8.177 Adjusted to redox equilibrium Specific Conductance (µS/cm, 150°C) = 343 Density (g/cm³) = 0.93106 Volume (L) = 1.11925 @@ -12242,11 +12242,11 @@ H2O(g) 1.04 1.096e+01 0.454 3.740e-01 4.200e-01 4.597e-02 Activity of water = 0.983 Ionic strength (mol/kgw) = 4.530e-04 Mass of water (kg) = 9.924e-01 - Total alkalinity (eq/kg) = 1.215e-09 + Total alkalinity (eq/kg) = 1.214e-09 Total CO2 (mol/kg) = 1.137e+00 Temperature (°C) = 150.00 Pressure (atm) = 190.35 - Electrical balance (eq) = -1.206e-09 + Electrical balance (eq) = -1.205e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 32 Total H = 1.101724e+02 @@ -12261,26 +12261,26 @@ H2O(g) 1.04 1.096e+01 0.454 3.740e-01 4.200e-01 4.597e-02 OH- 6.481e-09 6.275e-09 -8.188 -8.202 -0.014 -12.41 H2O 5.551e+01 9.826e-01 1.744 -0.008 0.000 19.43 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -74.675 -74.675 0.000 45.99 + CH4 0.000e+00 0.000e+00 -81.704 -81.704 0.000 45.99 C(4) 1.137e+00 CO2 9.064e-01 9.064e-01 -0.043 -0.043 0.000 43.51 (CO2)2 1.150e-01 1.150e-01 -0.939 -0.939 0.000 87.03 HCO3- 4.530e-04 4.387e-04 -3.344 -3.358 -0.014 18.83 CO3-2 5.774e-11 5.082e-11 -10.239 -10.294 -0.055 -20.63 -H(0) 2.459e-25 - H2 1.230e-25 1.230e-25 -24.910 -24.910 0.000 28.47 -O(0) 1.057e-14 - O2 5.283e-15 5.284e-15 -14.277 -14.277 0.000 35.09 +H(0) 4.300e-27 + H2 2.150e-27 2.150e-27 -26.668 -26.668 0.000 28.47 +O(0) 4.470e-13 + O2 2.235e-13 2.235e-13 -12.651 -12.651 0.000 35.09 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 190 atm) - CH4(g) -71.67 -74.67 -3.00 CH4 + CH4(g) -78.70 -81.70 -3.00 CH4 CO2(g) 2.13 -0.04 -2.18 CO2 Pressure 179.4 atm, phi 0.757 - H2(g) -21.86 -24.91 -3.05 H2 + H2(g) -23.62 -26.67 -3.05 H2 H2O(g) 0.70 -0.01 -0.70 H2O Pressure 11.0 atm, phi 0.454 - O2(g) -11.15 -14.28 -3.12 O2 + O2(g) -9.53 -12.65 -3.12 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12329,7 +12329,7 @@ H2O(g) 1.08 1.211e+01 0.416 4.200e-01 4.686e-01 4.860e-02 ----------------------------Description of solution---------------------------- pH = 3.339 Charge balance - pe = 7.321 Adjusted to redox equilibrium + pe = 8.193 Adjusted to redox equilibrium Specific Conductance (µS/cm, 150°C) = 356 Density (g/cm³) = 0.93265 Volume (L) = 1.12046 @@ -12337,7 +12337,7 @@ H2O(g) 1.08 1.211e+01 0.416 4.200e-01 4.686e-01 4.860e-02 Activity of water = 0.981 Ionic strength (mol/kgw) = 4.734e-04 Mass of water (kg) = 9.915e-01 - Total alkalinity (eq/kg) = 1.216e-09 + Total alkalinity (eq/kg) = 1.215e-09 Total CO2 (mol/kg) = 1.225e+00 Temperature (°C) = 150.00 Pressure (atm) = 213.25 @@ -12356,26 +12356,26 @@ H2O(g) 1.08 1.211e+01 0.416 4.200e-01 4.686e-01 4.860e-02 OH- 6.334e-09 6.128e-09 -8.198 -8.213 -0.014 -12.45 H2O 5.551e+01 9.814e-01 1.744 -0.008 0.000 19.40 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -74.686 -74.686 0.000 45.89 + CH4 0.000e+00 0.000e+00 -81.662 -81.662 0.000 45.89 C(4) 1.225e+00 CO2 9.639e-01 9.640e-01 -0.016 -0.016 0.000 43.37 (CO2)2 1.301e-01 1.301e-01 -0.886 -0.886 0.000 86.75 HCO3- 4.734e-04 4.582e-04 -3.325 -3.339 -0.014 19.06 CO3-2 5.931e-11 5.207e-11 -10.227 -10.283 -0.056 -20.12 -H(0) 2.376e-25 - H2 1.188e-25 1.188e-25 -24.925 -24.925 0.000 28.46 -O(0) 1.091e-14 - O2 5.454e-15 5.454e-15 -14.263 -14.263 0.000 35.00 +H(0) 4.285e-27 + H2 2.142e-27 2.143e-27 -26.669 -26.669 0.000 28.46 +O(0) 4.337e-13 + O2 2.169e-13 2.169e-13 -12.664 -12.664 0.000 35.00 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 213 atm) - CH4(g) -71.67 -74.69 -3.02 CH4 + CH4(g) -78.65 -81.66 -3.02 CH4 CO2(g) 2.17 -0.02 -2.19 CO2 Pressure 201.1 atm, phi 0.738 - H2(g) -21.87 -24.93 -3.05 H2 + H2(g) -23.61 -26.67 -3.05 H2 H2O(g) 0.70 -0.01 -0.71 H2O Pressure 12.1 atm, phi 0.416 - O2(g) -11.13 -14.26 -3.13 O2 + O2(g) -9.53 -12.66 -3.13 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12424,7 +12424,7 @@ H2O(g) 1.13 1.337e+01 0.381 4.686e-01 5.195e-01 5.091e-02 ----------------------------Description of solution---------------------------- pH = 3.321 Charge balance - pe = 7.422 Adjusted to redox equilibrium + pe = 8.212 Adjusted to redox equilibrium Specific Conductance (µS/cm, 150°C) = 368 Density (g/cm³) = 0.93428 Volume (L) = 1.12137 @@ -12436,7 +12436,7 @@ H2O(g) 1.13 1.337e+01 0.381 4.686e-01 5.195e-01 5.091e-02 Total CO2 (mol/kg) = 1.308e+00 Temperature (°C) = 150.00 Pressure (atm) = 237.29 - Electrical balance (eq) = -1.205e-09 + Electrical balance (eq) = -1.204e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 39 Total H = 1.099734e+02 @@ -12451,26 +12451,26 @@ H2O(g) 1.13 1.337e+01 0.381 4.686e-01 5.195e-01 5.091e-02 OH- 6.217e-09 6.011e-09 -8.206 -8.221 -0.015 -12.50 H2O 5.551e+01 9.802e-01 1.744 -0.009 0.000 19.38 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -75.344 -75.344 0.000 45.78 + CH4 0.000e+00 0.000e+00 -81.666 -81.666 0.000 45.78 C(4) 1.308e+00 CO2 1.018e+00 1.018e+00 0.008 0.008 0.000 43.23 (CO2)2 1.450e-01 1.450e-01 -0.839 -0.839 0.000 86.46 HCO3- 4.931e-04 4.771e-04 -3.307 -3.321 -0.014 19.30 CO3-2 6.096e-11 5.340e-11 -10.215 -10.272 -0.057 -19.61 -H(0) 1.584e-25 - H2 7.922e-26 7.923e-26 -25.101 -25.101 0.000 28.45 -O(0) 2.359e-14 - O2 1.180e-14 1.180e-14 -13.928 -13.928 0.000 34.90 +H(0) 4.162e-27 + H2 2.081e-27 2.081e-27 -26.682 -26.682 0.000 28.45 +O(0) 4.421e-13 + O2 2.211e-13 2.211e-13 -12.655 -12.655 0.000 34.90 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 237 atm) - CH4(g) -72.31 -75.34 -3.03 CH4 + CH4(g) -78.64 -81.67 -3.03 CH4 CO2(g) 2.21 0.01 -2.20 CO2 Pressure 223.9 atm, phi 0.721 - H2(g) -22.04 -25.10 -3.06 H2 + H2(g) -23.62 -26.68 -3.06 H2 H2O(g) 0.71 -0.01 -0.72 H2O Pressure 13.4 atm, phi 0.381 - O2(g) -10.79 -13.93 -3.14 O2 + O2(g) -9.51 -12.66 -3.14 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12519,7 +12519,7 @@ H2O(g) 1.17 1.476e+01 0.350 5.195e-01 5.723e-01 5.282e-02 ----------------------------Description of solution---------------------------- pH = 3.304 Charge balance - pe = 7.469 Adjusted to redox equilibrium + pe = 8.232 Adjusted to redox equilibrium Specific Conductance (µS/cm, 150°C) = 380 Density (g/cm³) = 0.93600 Volume (L) = 1.12201 @@ -12527,11 +12527,11 @@ H2O(g) 1.17 1.476e+01 0.350 5.195e-01 5.723e-01 5.282e-02 Activity of water = 0.979 Ionic strength (mol/kgw) = 5.127e-04 Mass of water (kg) = 9.897e-01 - Total alkalinity (eq/kg) = 1.217e-09 + Total alkalinity (eq/kg) = 1.216e-09 Total CO2 (mol/kg) = 1.389e+00 Temperature (°C) = 150.00 Pressure (atm) = 262.95 - Electrical balance (eq) = -1.205e-09 + Electrical balance (eq) = -1.204e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 43 Total H = 1.098677e+02 @@ -12546,26 +12546,26 @@ H2O(g) 1.17 1.476e+01 0.350 5.195e-01 5.723e-01 5.282e-02 OH- 6.123e-09 5.917e-09 -8.213 -8.228 -0.015 -12.55 H2O 5.551e+01 9.791e-01 1.744 -0.009 0.000 19.35 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -75.579 -75.579 0.000 45.67 + CH4 0.000e+00 0.000e+00 -81.678 -81.678 0.000 45.67 C(4) 1.389e+00 CO2 1.069e+00 1.069e+00 0.029 0.029 0.000 43.08 (CO2)2 1.599e-01 1.599e-01 -0.796 -0.796 0.000 86.15 HCO3- 5.127e-04 4.957e-04 -3.290 -3.305 -0.015 19.54 CO3-2 6.273e-11 5.484e-11 -10.202 -10.261 -0.058 -19.07 -H(0) 1.348e-25 - H2 6.741e-26 6.741e-26 -25.171 -25.171 0.000 28.44 -O(0) 3.128e-14 - O2 1.564e-14 1.564e-14 -13.806 -13.806 0.000 34.80 +H(0) 4.026e-27 + H2 2.013e-27 2.013e-27 -26.696 -26.696 0.000 28.44 +O(0) 4.537e-13 + O2 2.268e-13 2.269e-13 -12.644 -12.644 0.000 34.80 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 263 atm) - CH4(g) -72.53 -75.58 -3.04 CH4 + CH4(g) -78.63 -81.68 -3.04 CH4 CO2(g) 2.24 0.03 -2.21 CO2 Pressure 248.2 atm, phi 0.704 - H2(g) -22.10 -25.17 -3.07 H2 + H2(g) -23.62 -26.70 -3.07 H2 H2O(g) 0.71 -0.01 -0.72 H2O Pressure 14.8 atm, phi 0.350 - O2(g) -10.65 -13.81 -3.15 O2 + O2(g) -9.49 -12.64 -3.15 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12614,7 +12614,7 @@ H2O(g) 1.21 1.630e+01 0.321 5.723e-01 6.266e-01 5.427e-02 ----------------------------Description of solution---------------------------- pH = 3.288 Charge balance - pe = 7.460 Adjusted to redox equilibrium + pe = 8.246 Adjusted to redox equilibrium Specific Conductance (µS/cm, 150°C) = 392 Density (g/cm³) = 0.93782 Volume (L) = 1.12243 @@ -12622,7 +12622,7 @@ H2O(g) 1.21 1.630e+01 0.321 5.723e-01 6.266e-01 5.427e-02 Activity of water = 0.978 Ionic strength (mol/kgw) = 5.324e-04 Mass of water (kg) = 9.887e-01 - Total alkalinity (eq/kg) = 1.218e-09 + Total alkalinity (eq/kg) = 1.217e-09 Total CO2 (mol/kg) = 1.469e+00 Temperature (°C) = 150.00 Pressure (atm) = 290.70 @@ -12641,26 +12641,26 @@ H2O(g) 1.21 1.630e+01 0.321 5.723e-01 6.266e-01 5.427e-02 OH- 6.048e-09 5.842e-09 -8.218 -8.233 -0.015 -12.60 H2O 5.551e+01 9.780e-01 1.744 -0.010 0.000 19.32 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -75.370 -75.370 0.000 45.55 + CH4 0.000e+00 0.000e+00 -81.654 -81.654 0.000 45.55 C(4) 1.469e+00 CO2 1.118e+00 1.118e+00 0.049 0.049 0.000 42.92 (CO2)2 1.751e-01 1.751e-01 -0.757 -0.757 0.000 85.83 HCO3- 5.324e-04 5.146e-04 -3.274 -3.289 -0.015 19.80 CO3-2 6.467e-11 5.641e-11 -10.189 -10.249 -0.059 -18.50 -H(0) 1.481e-25 - H2 7.404e-26 7.405e-26 -25.131 -25.130 0.000 28.43 -O(0) 2.481e-14 - O2 1.241e-14 1.241e-14 -13.906 -13.906 0.000 34.70 +H(0) 3.976e-27 + H2 1.988e-27 1.988e-27 -26.702 -26.702 0.000 28.43 +O(0) 4.450e-13 + O2 2.225e-13 2.226e-13 -12.653 -12.653 0.000 34.70 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 291 atm) - CH4(g) -72.31 -75.37 -3.06 CH4 + CH4(g) -78.59 -81.65 -3.06 CH4 CO2(g) 2.28 0.05 -2.23 CO2 Pressure 274.4 atm, phi 0.689 - H2(g) -22.05 -25.13 -3.08 H2 + H2(g) -23.62 -26.70 -3.08 H2 H2O(g) 0.72 -0.01 -0.73 H2O Pressure 16.3 atm, phi 0.321 - O2(g) -10.74 -13.91 -3.17 O2 + O2(g) -9.49 -12.65 -3.17 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12709,7 +12709,7 @@ H2O(g) 1.26 1.802e+01 0.295 6.266e-01 6.818e-01 5.518e-02 ----------------------------Description of solution---------------------------- pH = 3.272 Charge balance - pe = 7.400 Adjusted to redox equilibrium + pe = 8.260 Adjusted to redox equilibrium Specific Conductance (µS/cm, 150°C) = 405 Density (g/cm³) = 0.93978 Volume (L) = 1.12265 @@ -12717,7 +12717,7 @@ H2O(g) 1.26 1.802e+01 0.295 6.266e-01 6.818e-01 5.518e-02 Activity of water = 0.977 Ionic strength (mol/kgw) = 5.529e-04 Mass of water (kg) = 9.877e-01 - Total alkalinity (eq/kg) = 1.219e-09 + Total alkalinity (eq/kg) = 1.218e-09 Total CO2 (mol/kg) = 1.549e+00 Temperature (°C) = 150.00 Pressure (atm) = 321.10 @@ -12736,26 +12736,26 @@ H2O(g) 1.26 1.802e+01 0.295 6.266e-01 6.818e-01 5.518e-02 OH- 5.991e-09 5.783e-09 -8.223 -8.238 -0.015 -12.66 H2O 5.551e+01 9.769e-01 1.744 -0.010 0.000 19.28 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -74.754 -74.754 0.000 45.43 + CH4 0.000e+00 0.000e+00 -81.634 -81.634 0.000 45.43 C(4) 1.549e+00 CO2 1.167e+00 1.167e+00 0.067 0.067 0.000 42.75 (CO2)2 1.907e-01 1.907e-01 -0.720 -0.720 0.000 85.49 HCO3- 5.528e-04 5.340e-04 -3.257 -3.272 -0.015 20.08 CO3-2 6.681e-11 5.815e-11 -10.175 -10.235 -0.060 -17.89 -H(0) 2.054e-25 - H2 1.027e-25 1.027e-25 -24.988 -24.988 0.000 28.42 -O(0) 1.229e-14 - O2 6.145e-15 6.145e-15 -14.211 -14.211 0.000 34.58 +H(0) 3.916e-27 + H2 1.958e-27 1.958e-27 -26.708 -26.708 0.000 28.42 +O(0) 4.373e-13 + O2 2.186e-13 2.187e-13 -12.660 -12.660 0.000 34.58 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 321 atm) - CH4(g) -71.68 -74.75 -3.08 CH4 + CH4(g) -78.56 -81.63 -3.08 CH4 CO2(g) 2.31 0.07 -2.24 CO2 Pressure 303.1 atm, phi 0.675 - H2(g) -21.90 -24.99 -3.09 H2 + H2(g) -23.62 -26.71 -3.09 H2 H2O(g) 0.73 -0.01 -0.74 H2O Pressure 18.0 atm, phi 0.295 - O2(g) -11.03 -14.21 -3.18 O2 + O2(g) -9.48 -12.66 -3.18 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12804,7 +12804,7 @@ H2O(g) 1.30 1.992e+01 0.272 6.818e-01 7.373e-01 5.548e-02 ----------------------------Description of solution---------------------------- pH = 3.256 Charge balance - pe = 7.402 Adjusted to redox equilibrium + pe = 8.278 Adjusted to redox equilibrium Specific Conductance (µS/cm, 150°C) = 417 Density (g/cm³) = 0.94192 Volume (L) = 1.12269 @@ -12816,7 +12816,7 @@ H2O(g) 1.30 1.992e+01 0.272 6.818e-01 7.373e-01 5.548e-02 Total CO2 (mol/kg) = 1.630e+00 Temperature (°C) = 150.00 Pressure (atm) = 354.75 - Electrical balance (eq) = -1.204e-09 + Electrical balance (eq) = -1.203e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 55 Total H = 1.095379e+02 @@ -12831,26 +12831,26 @@ H2O(g) 1.30 1.992e+01 0.272 6.818e-01 7.373e-01 5.548e-02 OH- 5.950e-09 5.741e-09 -8.225 -8.241 -0.016 -12.72 H2O 5.551e+01 9.758e-01 1.744 -0.011 0.000 19.25 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -74.637 -74.637 0.000 45.29 + CH4 0.000e+00 0.000e+00 -81.649 -81.649 0.000 45.29 C(4) 1.630e+00 CO2 1.215e+00 1.216e+00 0.085 0.085 0.000 42.56 (CO2)2 2.068e-01 2.068e-01 -0.684 -0.684 0.000 85.12 HCO3- 5.742e-04 5.543e-04 -3.241 -3.256 -0.015 20.39 CO3-2 6.921e-11 6.011e-11 -10.160 -10.221 -0.061 -17.24 -H(0) 2.137e-25 - H2 1.068e-25 1.069e-25 -24.971 -24.971 0.000 28.41 -O(0) 1.077e-14 - O2 5.387e-15 5.387e-15 -14.269 -14.269 0.000 34.46 +H(0) 3.774e-27 + H2 1.887e-27 1.887e-27 -26.724 -26.724 0.000 28.41 +O(0) 4.468e-13 + O2 2.234e-13 2.234e-13 -12.651 -12.651 0.000 34.46 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 355 atm) - CH4(g) -71.54 -74.64 -3.09 CH4 + CH4(g) -78.55 -81.65 -3.09 CH4 CO2(g) 2.35 0.08 -2.26 CO2 Pressure 334.8 atm, phi 0.662 - H2(g) -21.87 -24.97 -3.10 H2 + H2(g) -23.62 -26.72 -3.10 H2 H2O(g) 0.73 -0.01 -0.74 H2O Pressure 19.9 atm, phi 0.272 - O2(g) -11.08 -14.27 -3.19 O2 + O2(g) -9.46 -12.65 -3.19 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12899,7 +12899,7 @@ H2O(g) 1.34 2.204e+01 0.250 7.373e-01 7.924e-01 5.509e-02 ----------------------------Description of solution---------------------------- pH = 3.239 Charge balance - pe = 7.377 Adjusted to redox equilibrium + pe = 8.295 Adjusted to redox equilibrium Specific Conductance (µS/cm, 150°C) = 431 Density (g/cm³) = 0.94427 Volume (L) = 1.12256 @@ -12911,7 +12911,7 @@ H2O(g) 1.34 2.204e+01 0.250 7.373e-01 7.924e-01 5.509e-02 Total CO2 (mol/kg) = 1.712e+00 Temperature (°C) = 150.00 Pressure (atm) = 392.31 - Electrical balance (eq) = -1.204e-09 + Electrical balance (eq) = -1.203e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 61 Total H = 1.094277e+02 @@ -12926,26 +12926,26 @@ H2O(g) 1.34 2.204e+01 0.250 7.373e-01 7.924e-01 5.509e-02 OH- 5.927e-09 5.716e-09 -8.227 -8.243 -0.016 -12.79 H2O 5.551e+01 9.747e-01 1.744 -0.011 0.000 19.21 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -74.309 -74.309 0.000 45.15 + CH4 0.000e+00 0.000e+00 -81.655 -81.655 0.000 45.15 C(4) 1.712e+00 CO2 1.264e+00 1.264e+00 0.102 0.102 0.000 42.36 (CO2)2 2.237e-01 2.237e-01 -0.650 -0.650 0.000 84.72 HCO3- 5.969e-04 5.760e-04 -3.224 -3.240 -0.016 20.71 CO3-2 7.193e-11 6.234e-11 -10.143 -10.205 -0.062 -16.53 -H(0) 2.505e-25 - H2 1.252e-25 1.253e-25 -24.902 -24.902 0.000 28.39 -O(0) 7.396e-15 - O2 3.698e-15 3.698e-15 -14.432 -14.432 0.000 34.32 +H(0) 3.651e-27 + H2 1.825e-27 1.826e-27 -26.739 -26.739 0.000 28.39 +O(0) 4.502e-13 + O2 2.251e-13 2.251e-13 -12.648 -12.648 0.000 34.32 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 392 atm) - CH4(g) -71.19 -74.31 -3.12 CH4 + CH4(g) -78.54 -81.65 -3.12 CH4 CO2(g) 2.38 0.10 -2.28 CO2 Pressure 370.3 atm, phi 0.650 - H2(g) -21.78 -24.90 -3.12 H2 + H2(g) -23.62 -26.74 -3.12 H2 H2O(g) 0.74 -0.01 -0.75 H2O Pressure 22.0 atm, phi 0.250 - O2(g) -11.22 -14.43 -3.21 O2 + O2(g) -9.44 -12.65 -3.21 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -12994,7 +12994,7 @@ H2O(g) 1.39 2.439e+01 0.231 7.924e-01 8.463e-01 5.394e-02 ----------------------------Description of solution---------------------------- pH = 3.222 Charge balance - pe = 7.495 Adjusted to redox equilibrium + pe = 8.314 Adjusted to redox equilibrium Specific Conductance (µS/cm, 150°C) = 445 Density (g/cm³) = 0.94686 Volume (L) = 1.12226 @@ -13002,11 +13002,11 @@ H2O(g) 1.39 2.439e+01 0.231 7.924e-01 8.463e-01 5.394e-02 Activity of water = 0.974 Ionic strength (mol/kgw) = 6.213e-04 Mass of water (kg) = 9.847e-01 - Total alkalinity (eq/kg) = 1.223e-09 + Total alkalinity (eq/kg) = 1.222e-09 Total CO2 (mol/kg) = 1.797e+00 Temperature (°C) = 150.00 Pressure (atm) = 434.51 - Electrical balance (eq) = -1.204e-09 + Electrical balance (eq) = -1.203e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 83 Total H = 1.093198e+02 @@ -13021,26 +13021,26 @@ H2O(g) 1.39 2.439e+01 0.231 7.924e-01 8.463e-01 5.394e-02 OH- 5.923e-09 5.708e-09 -8.227 -8.244 -0.016 -12.87 H2O 5.551e+01 9.735e-01 1.744 -0.012 0.000 19.17 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -75.118 -75.118 0.000 44.99 + CH4 0.000e+00 0.000e+00 -81.671 -81.671 0.000 44.99 C(4) 1.797e+00 CO2 1.313e+00 1.313e+00 0.118 0.118 0.000 42.14 (CO2)2 2.414e-01 2.415e-01 -0.617 -0.617 0.000 84.28 HCO3- 6.213e-04 5.991e-04 -3.207 -3.222 -0.016 21.07 CO3-2 7.503e-11 6.488e-11 -10.125 -10.188 -0.063 -15.75 -H(0) 1.523e-25 - H2 7.614e-26 7.616e-26 -25.118 -25.118 0.000 28.38 -O(0) 1.875e-14 - O2 9.373e-15 9.374e-15 -14.028 -14.028 0.000 34.18 +H(0) 3.502e-27 + H2 1.751e-27 1.751e-27 -26.757 -26.757 0.000 28.38 +O(0) 4.583e-13 + O2 2.292e-13 2.292e-13 -12.640 -12.640 0.000 34.18 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 435 atm) - CH4(g) -71.98 -75.12 -3.14 CH4 + CH4(g) -78.53 -81.67 -3.14 CH4 CO2(g) 2.42 0.12 -2.30 CO2 Pressure 410.1 atm, phi 0.640 - H2(g) -21.99 -25.12 -3.13 H2 + H2(g) -23.62 -26.76 -3.13 H2 H2O(g) 0.75 -0.01 -0.76 H2O Pressure 24.4 atm, phi 0.231 - O2(g) -10.80 -14.03 -3.22 O2 + O2(g) -9.41 -12.64 -3.22 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13089,7 +13089,7 @@ H2O(g) 1.43 2.700e+01 0.214 8.463e-01 8.983e-01 5.197e-02 ----------------------------Description of solution---------------------------- pH = 3.204 Charge balance - pe = 7.495 Adjusted to redox equilibrium + pe = 8.328 Adjusted to redox equilibrium Specific Conductance (µS/cm, 150°C) = 461 Density (g/cm³) = 0.94973 Volume (L) = 1.12180 @@ -13097,11 +13097,11 @@ H2O(g) 1.43 2.700e+01 0.214 8.463e-01 8.983e-01 5.197e-02 Activity of water = 0.972 Ionic strength (mol/kgw) = 6.477e-04 Mass of water (kg) = 9.838e-01 - Total alkalinity (eq/kg) = 1.224e-09 + Total alkalinity (eq/kg) = 1.223e-09 Total CO2 (mol/kg) = 1.884e+00 Temperature (°C) = 150.00 Pressure (atm) = 482.20 - Electrical balance (eq) = -1.204e-09 + Electrical balance (eq) = -1.203e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 89 Total H = 1.092159e+02 @@ -13116,26 +13116,26 @@ H2O(g) 1.43 2.700e+01 0.214 8.463e-01 8.983e-01 5.197e-02 OH- 5.940e-09 5.721e-09 -8.226 -8.243 -0.016 -12.96 H2O 5.551e+01 9.724e-01 1.744 -0.012 0.000 19.12 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -74.984 -74.984 0.000 44.82 + CH4 0.000e+00 0.000e+00 -81.648 -81.648 0.000 44.82 C(4) 1.884e+00 CO2 1.363e+00 1.363e+00 0.135 0.135 0.000 41.90 (CO2)2 2.602e-01 2.602e-01 -0.585 -0.585 0.000 83.81 HCO3- 6.477e-04 6.243e-04 -3.189 -3.205 -0.016 21.46 CO3-2 7.860e-11 6.782e-11 -10.105 -10.169 -0.064 -14.91 -H(0) 1.589e-25 - H2 7.944e-26 7.945e-26 -25.100 -25.100 0.000 28.36 -O(0) 1.600e-14 - O2 8.002e-15 8.004e-15 -14.097 -14.097 0.000 34.02 +H(0) 3.429e-27 + H2 1.715e-27 1.715e-27 -26.766 -26.766 0.000 28.36 +O(0) 4.443e-13 + O2 2.222e-13 2.222e-13 -12.653 -12.653 0.000 34.02 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 482 atm) - CH4(g) -71.82 -74.98 -3.16 CH4 + CH4(g) -78.48 -81.65 -3.16 CH4 CO2(g) 2.46 0.13 -2.32 CO2 Pressure 455.2 atm, phi 0.633 - H2(g) -21.95 -25.10 -3.15 H2 + H2(g) -23.62 -26.77 -3.15 H2 H2O(g) 0.76 -0.01 -0.77 H2O Pressure 27.0 atm, phi 0.214 - O2(g) -10.85 -14.10 -3.24 O2 + O2(g) -9.41 -12.65 -3.24 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13184,7 +13184,7 @@ H2O(g) 1.48 2.988e+01 0.199 8.983e-01 9.474e-01 4.911e-02 ----------------------------Description of solution---------------------------- pH = 3.185 Charge balance - pe = 7.542 Adjusted to redox equilibrium + pe = 8.349 Adjusted to redox equilibrium Specific Conductance (µS/cm, 150°C) = 478 Density (g/cm³) = 0.95293 Volume (L) = 1.12117 @@ -13192,11 +13192,11 @@ H2O(g) 1.48 2.988e+01 0.199 8.983e-01 9.474e-01 4.911e-02 Activity of water = 0.971 Ionic strength (mol/kgw) = 6.766e-04 Mass of water (kg) = 9.829e-01 - Total alkalinity (eq/kg) = 1.225e-09 + Total alkalinity (eq/kg) = 1.224e-09 Total CO2 (mol/kg) = 1.975e+00 Temperature (°C) = 150.00 Pressure (atm) = 536.30 - Electrical balance (eq) = -1.204e-09 + Electrical balance (eq) = -1.203e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 96 Total H = 1.091177e+02 @@ -13211,26 +13211,26 @@ H2O(g) 1.48 2.988e+01 0.199 8.983e-01 9.474e-01 4.911e-02 OH- 5.982e-09 5.758e-09 -8.223 -8.240 -0.017 -13.06 H2O 5.551e+01 9.712e-01 1.744 -0.013 0.000 19.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -75.224 -75.224 0.000 44.63 + CH4 0.000e+00 0.000e+00 -81.681 -81.681 0.000 44.63 C(4) 1.975e+00 CO2 1.415e+00 1.415e+00 0.151 0.151 0.000 41.65 (CO2)2 2.801e-01 2.802e-01 -0.553 -0.553 0.000 83.29 HCO3- 6.766e-04 6.517e-04 -3.170 -3.186 -0.016 21.88 CO3-2 8.275e-11 7.122e-11 -10.082 -10.147 -0.065 -13.99 -H(0) 1.332e-25 - H2 6.660e-26 6.661e-26 -25.176 -25.176 0.000 28.34 -O(0) 2.096e-14 - O2 1.048e-14 1.048e-14 -13.980 -13.980 0.000 33.84 +H(0) 3.239e-27 + H2 1.620e-27 1.620e-27 -26.791 -26.791 0.000 28.34 +O(0) 4.584e-13 + O2 2.292e-13 2.292e-13 -12.640 -12.640 0.000 33.84 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 536 atm) - CH4(g) -72.03 -75.22 -3.19 CH4 + CH4(g) -78.49 -81.68 -3.19 CH4 CO2(g) 2.50 0.15 -2.35 CO2 Pressure 506.4 atm, phi 0.627 - H2(g) -22.01 -25.18 -3.17 H2 + H2(g) -23.62 -26.79 -3.17 H2 H2O(g) 0.77 -0.01 -0.79 H2O Pressure 29.9 atm, phi 0.199 - O2(g) -10.71 -13.98 -3.27 O2 + O2(g) -9.37 -12.64 -3.27 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13279,7 +13279,7 @@ H2O(g) 1.52 3.305e+01 0.185 9.474e-01 9.927e-01 4.531e-02 ----------------------------Description of solution---------------------------- pH = 3.166 Charge balance - pe = 8.088 Adjusted to redox equilibrium + pe = 8.720 Adjusted to redox equilibrium Specific Conductance (µS/cm, 150°C) = 496 Density (g/cm³) = 0.95649 Volume (L) = 1.12036 @@ -13287,13 +13287,13 @@ H2O(g) 1.52 3.305e+01 0.185 9.474e-01 9.927e-01 4.531e-02 Activity of water = 0.970 Ionic strength (mol/kgw) = 7.082e-04 Mass of water (kg) = 9.821e-01 - Total alkalinity (eq/kg) = 1.226e-09 + Total alkalinity (eq/kg) = 1.225e-09 Total CO2 (mol/kg) = 2.071e+00 Temperature (°C) = 150.00 Pressure (atm) = 597.87 - Electrical balance (eq) = -1.204e-09 + Electrical balance (eq) = -1.203e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 38 (139 overall) + Iterations = 40 (141 overall) Total H = 1.090271e+02 Total O = 5.858049e+01 @@ -13306,26 +13306,26 @@ H2O(g) 1.52 3.305e+01 0.185 9.474e-01 9.927e-01 4.531e-02 OH- 6.054e-09 5.824e-09 -8.218 -8.235 -0.017 -13.17 H2O 5.551e+01 9.699e-01 1.744 -0.013 0.000 19.01 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -79.450 -79.450 0.000 44.42 + CH4 0.000e+00 0.000e+00 -84.502 -84.502 0.000 44.42 C(4) 2.071e+00 CO2 1.467e+00 1.467e+00 0.166 0.167 0.000 41.36 (CO2)2 3.013e-01 3.014e-01 -0.521 -0.521 0.000 82.73 HCO3- 7.082e-04 6.817e-04 -3.150 -3.166 -0.017 22.34 CO3-2 8.758e-11 7.519e-11 -10.058 -10.124 -0.066 -12.98 -H(0) 1.122e-26 - H2 5.610e-27 5.611e-27 -26.251 -26.251 0.000 28.32 -O(0) 2.691e-12 - O2 1.345e-12 1.346e-12 -11.871 -11.871 0.000 33.65 +H(0) 6.125e-28 + H2 3.062e-28 3.063e-28 -27.514 -27.514 0.000 28.32 +O(0) 1.168e-11 + O2 5.839e-12 5.840e-12 -11.234 -11.234 0.000 33.65 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 598 atm) - CH4(g) -76.22 -79.45 -3.23 CH4 + CH4(g) -81.28 -84.50 -3.23 CH4 CO2(g) 2.55 0.17 -2.38 CO2 Pressure 564.8 atm, phi 0.625 - H2(g) -23.06 -26.25 -3.19 H2 + H2(g) -24.32 -27.51 -3.19 H2 H2O(g) 0.79 -0.01 -0.80 H2O Pressure 33.0 atm, phi 0.185 - O2(g) -8.58 -11.87 -3.29 O2 + O2(g) -7.94 -11.23 -3.29 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13374,7 +13374,7 @@ H2O(g) 1.56 3.652e+01 0.174 9.927e-01 1.033e+00 4.054e-02 ----------------------------Description of solution---------------------------- pH = 3.145 Charge balance - pe = 8.426 Adjusted to redox equilibrium + pe = 8.740 Adjusted to redox equilibrium Specific Conductance (µS/cm, 150°C) = 516 Density (g/cm³) = 0.96046 Volume (L) = 1.11937 @@ -13382,13 +13382,13 @@ H2O(g) 1.56 3.652e+01 0.174 9.927e-01 1.033e+00 4.054e-02 Activity of water = 0.969 Ionic strength (mol/kgw) = 7.432e-04 Mass of water (kg) = 9.814e-01 - Total alkalinity (eq/kg) = 1.226e-09 + Total alkalinity (eq/kg) = 1.224e-09 Total CO2 (mol/kg) = 2.170e+00 Temperature (°C) = 150.00 Pressure (atm) = 668.12 - Electrical balance (eq) = -1.203e-09 + Electrical balance (eq) = -1.201e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 36 (137 overall) + Iterations = 31 (132 overall) Total H = 1.089460e+02 Total O = 5.873211e+01 @@ -13401,26 +13401,26 @@ H2O(g) 1.56 3.652e+01 0.174 9.927e-01 1.033e+00 4.054e-02 OH- 6.164e-09 5.926e-09 -8.210 -8.227 -0.017 -13.29 H2O 5.551e+01 9.686e-01 1.744 -0.014 0.000 18.94 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -82.004 -82.004 0.000 44.20 + CH4 0.000e+00 0.000e+00 -84.515 -84.515 0.000 44.20 C(4) 2.170e+00 CO2 1.521e+00 1.521e+00 0.182 0.182 0.000 41.06 (CO2)2 3.240e-01 3.240e-01 -0.489 -0.489 0.000 82.11 HCO3- 7.432e-04 7.149e-04 -3.129 -3.146 -0.017 22.84 CO3-2 9.326e-11 7.984e-11 -10.030 -10.098 -0.067 -11.89 -H(0) 2.464e-27 - H2 1.232e-27 1.232e-27 -26.909 -26.909 0.000 28.30 -O(0) 5.019e-11 - O2 2.509e-11 2.510e-11 -10.600 -10.600 0.000 33.44 +H(0) 5.807e-28 + H2 2.903e-28 2.904e-28 -27.537 -27.537 0.000 28.30 +O(0) 1.168e-11 + O2 5.842e-12 5.843e-12 -11.233 -11.233 0.000 33.44 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 668 atm) - CH4(g) -78.74 -82.00 -3.26 CH4 + CH4(g) -81.25 -84.51 -3.26 CH4 CO2(g) 2.60 0.18 -2.42 CO2 Pressure 631.6 atm, phi 0.626 - H2(g) -23.69 -26.91 -3.22 H2 + H2(g) -24.32 -27.54 -3.22 H2 H2O(g) 0.80 -0.01 -0.82 H2O Pressure 36.5 atm, phi 0.174 - O2(g) -7.28 -10.60 -3.32 O2 + O2(g) -7.91 -11.23 -3.32 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13469,7 +13469,7 @@ H2O(g) 1.61 4.029e+01 0.164 1.033e+00 1.068e+00 3.480e-02 ----------------------------Description of solution---------------------------- pH = 3.123 Charge balance - pe = 8.447 Adjusted to redox equilibrium + pe = 8.761 Adjusted to redox equilibrium Specific Conductance (µS/cm, 150°C) = 538 Density (g/cm³) = 0.96488 Volume (L) = 1.11819 @@ -13477,13 +13477,13 @@ H2O(g) 1.61 4.029e+01 0.164 1.033e+00 1.068e+00 3.480e-02 Activity of water = 0.967 Ionic strength (mol/kgw) = 7.819e-04 Mass of water (kg) = 9.807e-01 - Total alkalinity (eq/kg) = 1.234e-09 + Total alkalinity (eq/kg) = 1.225e-09 Total CO2 (mol/kg) = 2.274e+00 Temperature (°C) = 150.00 Pressure (atm) = 748.42 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.201e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 30 (131 overall) + Iterations = 35 (136 overall) Total H = 1.088764e+02 Total O = 5.889912e+01 @@ -13496,26 +13496,26 @@ H2O(g) 1.61 4.029e+01 0.164 1.033e+00 1.068e+00 3.480e-02 OH- 6.322e-09 6.072e-09 -8.199 -8.217 -0.017 -13.43 H2O 5.551e+01 9.672e-01 1.744 -0.014 0.000 18.87 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -82.020 -82.020 0.000 43.96 + CH4 0.000e+00 0.000e+00 -84.531 -84.531 0.000 43.96 C(4) 2.274e+00 CO2 1.577e+00 1.577e+00 0.198 0.198 0.000 40.72 (CO2)2 3.482e-01 3.483e-01 -0.458 -0.458 0.000 81.45 HCO3- 7.819e-04 7.516e-04 -3.107 -3.124 -0.017 23.39 CO3-2 9.996e-11 8.534e-11 -10.000 -10.069 -0.069 -10.71 -H(0) 2.319e-27 - H2 1.160e-27 1.160e-27 -26.936 -26.936 0.000 28.28 -O(0) 5.021e-11 - O2 2.510e-11 2.511e-11 -10.600 -10.600 0.000 33.21 +H(0) 5.464e-28 + H2 2.732e-28 2.733e-28 -27.564 -27.563 0.000 28.28 +O(0) 1.170e-11 + O2 5.848e-12 5.849e-12 -11.233 -11.233 0.000 33.21 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 748 atm) - CH4(g) -78.71 -82.02 -3.31 CH4 + CH4(g) -81.23 -84.53 -3.31 CH4 CO2(g) 2.65 0.20 -2.45 CO2 Pressure 708.1 atm, phi 0.632 - H2(g) -23.69 -26.94 -3.24 H2 + H2(g) -24.32 -27.56 -3.24 H2 H2O(g) 0.82 -0.01 -0.84 H2O Pressure 40.3 atm, phi 0.164 - O2(g) -7.25 -10.60 -3.35 O2 + O2(g) -7.88 -11.23 -3.35 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13564,7 +13564,7 @@ H2O(g) 1.65 4.437e+01 0.156 1.068e+00 1.096e+00 2.810e-02 ----------------------------Description of solution---------------------------- pH = 3.101 Charge balance - pe = 8.469 Adjusted to redox equilibrium + pe = 8.783 Adjusted to redox equilibrium Specific Conductance (µS/cm, 150°C) = 562 Density (g/cm³) = 0.96981 Volume (L) = 1.11681 @@ -13572,13 +13572,13 @@ H2O(g) 1.65 4.437e+01 0.156 1.068e+00 1.096e+00 2.810e-02 Activity of water = 0.966 Ionic strength (mol/kgw) = 8.249e-04 Mass of water (kg) = 9.802e-01 - Total alkalinity (eq/kg) = 1.235e-09 + Total alkalinity (eq/kg) = 1.227e-09 Total CO2 (mol/kg) = 2.384e+00 Temperature (°C) = 150.00 Pressure (atm) = 840.34 - Electrical balance (eq) = -1.210e-09 + Electrical balance (eq) = -1.203e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 35 (136 overall) + Iterations = 32 (133 overall) Total H = 1.088202e+02 Total O = 5.908349e+01 @@ -13591,26 +13591,26 @@ H2O(g) 1.65 4.437e+01 0.156 1.068e+00 1.096e+00 2.810e-02 OH- 6.539e-09 6.276e-09 -8.184 -8.202 -0.018 -13.58 H2O 5.551e+01 9.658e-01 1.744 -0.015 0.000 18.79 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -82.040 -82.040 0.000 43.71 + CH4 0.000e+00 0.000e+00 -84.552 -84.552 0.000 43.71 C(4) 2.384e+00 CO2 1.635e+00 1.635e+00 0.213 0.214 0.000 40.37 (CO2)2 3.741e-01 3.742e-01 -0.427 -0.427 0.000 80.73 HCO3- 8.249e-04 7.923e-04 -3.084 -3.101 -0.017 23.97 CO3-2 1.079e-10 9.186e-11 -9.967 -10.037 -0.070 -9.44 -H(0) 2.165e-27 - H2 1.082e-27 1.083e-27 -26.966 -26.966 0.000 28.25 -O(0) 5.024e-11 - O2 2.512e-11 2.512e-11 -10.600 -10.600 0.000 32.97 +H(0) 5.098e-28 + H2 2.549e-28 2.550e-28 -27.594 -27.594 0.000 28.25 +O(0) 1.171e-11 + O2 5.855e-12 5.857e-12 -11.232 -11.232 0.000 32.97 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 840 atm) - CH4(g) -78.69 -82.04 -3.35 CH4 + CH4(g) -81.20 -84.55 -3.35 CH4 CO2(g) 2.71 0.21 -2.50 CO2 Pressure 796.0 atm, phi 0.644 - H2(g) -23.69 -26.97 -3.28 H2 + H2(g) -24.32 -27.59 -3.28 H2 H2O(g) 0.84 -0.02 -0.86 H2O Pressure 44.4 atm, phi 0.156 - O2(g) -7.21 -10.60 -3.39 O2 + O2(g) -7.85 -11.23 -3.39 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13659,7 +13659,7 @@ H2O(g) 1.69 4.873e+01 0.150 1.096e+00 1.117e+00 2.047e-02 ----------------------------Description of solution---------------------------- pH = 3.076 Charge balance - pe = 8.491 Adjusted to redox equilibrium + pe = 8.805 Adjusted to redox equilibrium Specific Conductance (µS/cm, 150°C) = 589 Density (g/cm³) = 0.97529 Volume (L) = 1.11521 @@ -13667,13 +13667,13 @@ H2O(g) 1.69 4.873e+01 0.150 1.096e+00 1.117e+00 2.047e-02 Activity of water = 0.964 Ionic strength (mol/kgw) = 8.727e-04 Mass of water (kg) = 9.799e-01 - Total alkalinity (eq/kg) = 1.236e-09 + Total alkalinity (eq/kg) = 1.228e-09 Total CO2 (mol/kg) = 2.499e+00 Temperature (°C) = 150.00 Pressure (atm) = 945.69 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.203e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 32 (133 overall) + Iterations = 37 (138 overall) Total H = 1.087793e+02 Total O = 5.928720e+01 @@ -13686,26 +13686,26 @@ H2O(g) 1.69 4.873e+01 0.150 1.096e+00 1.117e+00 2.047e-02 OH- 6.834e-09 6.554e-09 -8.165 -8.183 -0.018 -13.75 H2O 5.551e+01 9.643e-01 1.744 -0.016 0.000 18.70 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -82.066 -82.065 0.000 43.43 + CH4 0.000e+00 0.000e+00 -84.577 -84.577 0.000 43.43 C(4) 2.499e+00 CO2 1.694e+00 1.695e+00 0.229 0.229 0.000 39.98 (CO2)2 4.019e-01 4.020e-01 -0.396 -0.396 0.000 79.97 HCO3- 8.727e-04 8.376e-04 -3.059 -3.077 -0.018 24.60 CO3-2 1.174e-10 9.965e-11 -9.930 -10.002 -0.071 -8.08 -H(0) 2.001e-27 - H2 1.001e-27 1.001e-27 -27.000 -27.000 0.000 28.22 -O(0) 5.026e-11 - O2 2.513e-11 2.514e-11 -10.600 -10.600 0.000 32.70 +H(0) 4.713e-28 + H2 2.357e-28 2.357e-28 -27.628 -27.628 0.000 28.22 +O(0) 1.172e-11 + O2 5.859e-12 5.860e-12 -11.232 -11.232 0.000 32.70 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 946 atm) - CH4(g) -78.66 -82.07 -3.41 CH4 + CH4(g) -81.17 -84.58 -3.41 CH4 CO2(g) 2.77 0.23 -2.54 CO2 Pressure 897.0 atm, phi 0.663 - H2(g) -23.69 -27.00 -3.31 H2 + H2(g) -24.32 -27.63 -3.31 H2 H2O(g) 0.86 -0.02 -0.88 H2O Pressure 48.7 atm, phi 0.150 - O2(g) -7.17 -10.60 -3.43 O2 + O2(g) -7.81 -11.23 -3.43 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13754,7 +13754,7 @@ H2O(g) 1.73 5.335e+01 0.146 1.117e+00 1.129e+00 1.199e-02 ----------------------------Description of solution---------------------------- pH = 3.051 Charge balance - pe = 8.515 Adjusted to redox equilibrium + pe = 8.829 Adjusted to redox equilibrium Specific Conductance (µS/cm, 150°C) = 618 Density (g/cm³) = 0.98137 Volume (L) = 1.11340 @@ -13762,11 +13762,11 @@ H2O(g) 1.73 5.335e+01 0.146 1.117e+00 1.129e+00 1.199e-02 Activity of water = 0.963 Ionic strength (mol/kgw) = 9.259e-04 Mass of water (kg) = 9.797e-01 - Total alkalinity (eq/kg) = 1.237e-09 + Total alkalinity (eq/kg) = 1.228e-09 Total CO2 (mol/kg) = 2.621e+00 Temperature (°C) = 150.00 Pressure (atm) = 1066.57 - Electrical balance (eq) = -1.212e-09 + Electrical balance (eq) = -1.203e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 38 (139 overall) Total H = 1.087553e+02 @@ -13781,26 +13781,26 @@ H2O(g) 1.73 5.335e+01 0.146 1.117e+00 1.129e+00 1.199e-02 OH- 7.232e-09 6.930e-09 -8.141 -8.159 -0.019 -13.95 H2O 5.551e+01 9.628e-01 1.744 -0.016 0.000 18.61 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -82.096 -82.096 0.000 43.14 + CH4 0.000e+00 0.000e+00 -84.607 -84.607 0.000 43.14 C(4) 2.621e+00 CO2 1.756e+00 1.756e+00 0.245 0.245 0.000 39.58 (CO2)2 4.318e-01 4.319e-01 -0.365 -0.365 0.000 79.16 HCO3- 9.259e-04 8.880e-04 -3.033 -3.052 -0.018 25.27 CO3-2 1.289e-10 1.090e-10 -9.890 -9.963 -0.073 -6.63 -H(0) 1.830e-27 - H2 9.149e-28 9.151e-28 -27.039 -27.039 0.000 28.19 -O(0) 5.028e-11 - O2 2.514e-11 2.514e-11 -10.600 -10.600 0.000 32.42 +H(0) 4.312e-28 + H2 2.156e-28 2.156e-28 -27.666 -27.666 0.000 28.19 +O(0) 1.171e-11 + O2 5.855e-12 5.856e-12 -11.232 -11.232 0.000 32.42 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 1067 atm) - CH4(g) -78.63 -82.10 -3.47 CH4 + CH4(g) -81.14 -84.61 -3.47 CH4 CO2(g) 2.84 0.24 -2.60 CO2 Pressure 1013.2 atm, phi 0.690 - H2(g) -23.68 -27.04 -3.35 H2 + H2(g) -24.31 -27.67 -3.35 H2 H2O(g) 0.89 -0.02 -0.91 H2O Pressure 53.4 atm, phi 0.146 - O2(g) -7.13 -10.60 -3.47 O2 + O2(g) -7.76 -11.23 -3.47 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13849,7 +13849,7 @@ H2O(g) 1.76 5.818e+01 0.143 1.129e+00 1.131e+00 2.758e-03 ----------------------------Description of solution---------------------------- pH = 3.024 Charge balance - pe = 8.540 Adjusted to redox equilibrium + pe = 8.854 Adjusted to redox equilibrium Specific Conductance (µS/cm, 150°C) = 650 Density (g/cm³) = 0.98809 Volume (L) = 1.11136 @@ -13857,11 +13857,11 @@ H2O(g) 1.76 5.818e+01 0.143 1.129e+00 1.131e+00 2.758e-03 Activity of water = 0.961 Ionic strength (mol/kgw) = 9.853e-04 Mass of water (kg) = 9.796e-01 - Total alkalinity (eq/kg) = 1.238e-09 + Total alkalinity (eq/kg) = 1.229e-09 Total CO2 (mol/kg) = 2.749e+00 Temperature (°C) = 150.00 Pressure (atm) = 1205.43 - Electrical balance (eq) = -1.212e-09 + Electrical balance (eq) = -1.204e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 42 (143 overall) Total H = 1.087498e+02 @@ -13876,26 +13876,26 @@ H2O(g) 1.76 5.818e+01 0.143 1.129e+00 1.131e+00 2.758e-03 OH- 7.769e-09 7.438e-09 -8.110 -8.129 -0.019 -14.16 H2O 5.551e+01 9.611e-01 1.744 -0.017 0.000 18.50 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -82.132 -82.132 0.000 42.84 + CH4 0.000e+00 0.000e+00 -84.643 -84.643 0.000 42.84 C(4) 2.749e+00 CO2 1.820e+00 1.820e+00 0.260 0.260 0.000 39.15 (CO2)2 4.638e-01 4.639e-01 -0.334 -0.334 0.000 78.30 HCO3- 9.853e-04 9.441e-04 -3.006 -3.025 -0.019 25.98 CO3-2 1.427e-10 1.203e-10 -9.845 -9.920 -0.074 -5.10 -H(0) 1.652e-27 - H2 8.261e-28 8.263e-28 -27.083 -27.083 0.000 28.16 -O(0) 5.027e-11 - O2 2.514e-11 2.514e-11 -10.600 -10.600 0.000 32.11 +H(0) 3.892e-28 + H2 1.946e-28 1.946e-28 -27.711 -27.711 0.000 28.16 +O(0) 1.172e-11 + O2 5.859e-12 5.860e-12 -11.232 -11.232 0.000 32.11 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 1205 atm) - CH4(g) -78.59 -82.13 -3.54 CH4 + CH4(g) -81.10 -84.64 -3.54 CH4 CO2(g) 2.92 0.26 -2.66 CO2 Pressure 1147.2 atm, phi 0.729 - H2(g) -23.68 -27.08 -3.40 H2 + H2(g) -24.31 -27.71 -3.40 H2 H2O(g) 0.92 -0.02 -0.94 H2O Pressure 58.2 atm, phi 0.143 - O2(g) -7.08 -10.60 -3.52 O2 + O2(g) -7.71 -11.23 -3.52 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -13944,7 +13944,7 @@ H2O(g) 1.80 6.316e+01 0.143 1.131e+00 1.124e+00 -7.074e-03 ----------------------------Description of solution---------------------------- pH = 2.996 Charge balance - pe = 8.565 Adjusted to redox equilibrium + pe = 8.879 Adjusted to redox equilibrium Specific Conductance (µS/cm, 150°C) = 685 Density (g/cm³) = 0.99549 Volume (L) = 1.10912 @@ -13952,13 +13952,13 @@ H2O(g) 1.80 6.316e+01 0.143 1.131e+00 1.124e+00 -7.074e-03 Activity of water = 0.959 Ionic strength (mol/kgw) = 1.052e-03 Mass of water (kg) = 9.797e-01 - Total alkalinity (eq/kg) = 1.238e-09 + Total alkalinity (eq/kg) = 1.229e-09 Total CO2 (mol/kg) = 2.884e+00 Temperature (°C) = 150.00 Pressure (atm) = 1365.16 - Electrical balance (eq) = -1.213e-09 + Electrical balance (eq) = -1.204e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 49 (150 overall) + Iterations = 50 (151 overall) Total H = 1.087639e+02 Total O = 6.003374e+01 @@ -13971,26 +13971,26 @@ H2O(g) 1.80 6.316e+01 0.143 1.131e+00 1.124e+00 -7.074e-03 OH- 8.498e-09 8.128e-09 -8.071 -8.090 -0.019 -14.39 H2O 5.551e+01 9.594e-01 1.744 -0.018 0.000 18.38 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -82.175 -82.175 0.000 42.52 + CH4 0.000e+00 0.000e+00 -84.686 -84.686 0.000 42.52 C(4) 2.884e+00 CO2 1.887e+00 1.887e+00 0.276 0.276 0.000 38.70 (CO2)2 4.983e-01 4.984e-01 -0.302 -0.302 0.000 77.40 HCO3- 1.052e-03 1.007e-03 -2.978 -2.997 -0.019 26.72 CO3-2 1.597e-10 1.342e-10 -9.797 -9.872 -0.076 -3.49 -H(0) 1.470e-27 - H2 7.349e-28 7.351e-28 -27.134 -27.134 0.000 28.12 -O(0) 5.027e-11 - O2 2.513e-11 2.514e-11 -10.600 -10.600 0.000 31.79 +H(0) 3.462e-28 + H2 1.731e-28 1.731e-28 -27.762 -27.762 0.000 28.12 +O(0) 1.172e-11 + O2 5.858e-12 5.860e-12 -11.232 -11.232 0.000 31.79 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(423 K, 1365 atm) - CH4(g) -78.55 -82.17 -3.62 CH4 + CH4(g) -81.07 -84.69 -3.62 CH4 CO2(g) 3.01 0.28 -2.73 CO2 Pressure 1302.0 atm, phi 0.783 - H2(g) -23.67 -27.13 -3.46 H2 + H2(g) -24.30 -27.76 -3.46 H2 H2O(g) 0.95 -0.02 -0.97 H2O Pressure 63.2 atm, phi 0.143 - O2(g) -7.02 -10.60 -3.58 O2 + O2(g) -7.65 -11.23 -3.58 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. diff --git a/ex3.out b/ex3.out index ef1a7797..c922c214 100644 --- a/ex3.out +++ b/ex3.out @@ -78,7 +78,7 @@ Initial solution 1. Pure water H(0) 1.416e-25 H2 7.079e-26 7.079e-26 -25.150 -25.150 0.000 28.61 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -42.080 -42.080 0.000 30.40 + O2 0.000e+00 0.000e+00 -42.063 -42.063 0.000 30.40 ------------------------------Saturation indices------------------------------- @@ -86,7 +86,7 @@ O(0) 0.000e+00 H2(g) -22.05 -25.15 -3.10 H2 H2O(g) -1.50 0.00 1.50 H2O - O2(g) -39.19 -42.08 -2.89 O2 + O2(g) -39.17 -42.06 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -160,7 +160,7 @@ Ca 1.623e-03 H(0) 5.084e-15 H2 2.542e-15 2.545e-15 -14.595 -14.594 0.000 28.61 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.192 -63.191 0.000 30.40 + O2 0.000e+00 0.000e+00 -63.174 -63.174 0.000 30.40 ------------------------------Saturation indices------------------------------- @@ -172,7 +172,7 @@ O(0) 0.000e+00 CO2(g) -2.00 -3.47 -1.47 CO2 Pressure 0.0 atm, phi 1.000 H2(g) -11.49 -14.59 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - O2(g) -60.30 -63.19 -2.89 O2 + O2(g) -60.28 -63.17 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -230,112 +230,114 @@ Initial solution 2. Seawater pH = 8.220 pe = 8.451 - Specific Conductance (µS/cm, 25°C) = 52856 - Density (g/cm³) = 1.02328 - Volume (L) = 1.01278 - Viscosity (mPa s) = 0.96030 + Specific Conductance (µS/cm, 25°C) = 52942 + Density (g/cm³) = 1.02326 + Volume (L) = 1.01279 + Viscosity (mPa s) = 0.95735 Activity of water = 0.981 - Ionic strength (mol/kgw) = 6.704e-01 + Ionic strength (mol/kgw) = 6.736e-01 Mass of water (kg) = 1.000e+00 - Total carbon (mol/kg) = 2.238e-03 - Total CO2 (mol/kg) = 2.238e-03 + Total carbon (mol/kg) = 2.241e-03 + Total CO2 (mol/kg) = 2.241e-03 Temperature (°C) = 25.00 Electrical balance (eq) = 7.967e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.07 Iterations = 8 Total H = 1.110148e+02 - Total O = 5.563026e+01 + Total O = 5.563027e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 2.703e-06 1.647e-06 -5.568 -5.783 -0.215 -2.63 - H+ 7.981e-09 6.026e-09 -8.098 -8.220 -0.122 0.00 - H2O 5.551e+01 9.806e-01 1.744 -0.008 0.000 18.07 -C(4) 2.238e-03 - HCO3- 1.541e-03 1.041e-03 -2.812 -2.982 -0.170 25.99 - MgHCO3+ 2.783e-04 1.751e-04 -3.556 -3.757 -0.201 5.82 - NaHCO3 2.252e-04 3.066e-04 -3.647 -3.513 0.134 31.73 - MgCO3 9.524e-05 1.111e-04 -4.021 -3.954 0.067 -17.09 - CO3-2 3.889e-05 8.104e-06 -4.410 -5.091 -0.681 -0.52 - CaCO3 2.908e-05 3.393e-05 -4.536 -4.469 0.067 -14.60 - CaHCO3+ 1.446e-05 1.001e-05 -4.840 -5.000 -0.160 9.96 - CO2 1.299e-05 1.438e-05 -4.886 -4.842 0.044 34.43 - KHCO3 2.970e-06 3.013e-06 -5.527 -5.521 0.006 41.03 - (CO2)2 3.254e-12 3.798e-12 -11.488 -11.420 0.067 68.87 + OH- 2.705e-06 1.647e-06 -5.568 -5.783 -0.215 -2.63 + H+ 7.983e-09 6.026e-09 -8.098 -8.220 -0.122 0.00 + H2O 5.551e+01 9.806e-01 1.744 -0.009 0.000 18.07 +C(4) 2.241e-03 + HCO3- 1.549e-03 1.046e-03 -2.810 -2.980 -0.170 25.99 + MgHCO3+ 2.720e-04 1.711e-04 -3.565 -3.767 -0.201 5.82 + NaHCO3 2.281e-04 3.111e-04 -3.642 -3.507 0.135 31.73 + MgCO3 9.298e-05 1.086e-04 -4.032 -3.964 0.067 -17.09 + CO3-2 3.913e-05 8.142e-06 -4.407 -5.089 -0.682 -0.51 + CaCO3 2.897e-05 3.383e-05 -4.538 -4.471 0.067 -14.60 + CaHCO3+ 1.442e-05 9.981e-06 -4.841 -5.001 -0.160 9.96 + CO2 1.305e-05 1.445e-05 -4.884 -4.840 0.044 34.43 + KHCO3 2.966e-06 3.009e-06 -5.528 -5.522 0.006 41.03 + (CO2)2 3.283e-12 3.834e-12 -11.484 -11.416 0.067 68.87 Ca 1.066e-02 - Ca+2 9.964e-03 2.493e-03 -2.002 -2.603 -0.602 -16.70 - CaSO4 6.537e-04 7.628e-04 -3.185 -3.118 0.067 7.50 - CaCO3 2.908e-05 3.393e-05 -4.536 -4.469 0.067 -14.60 - CaHCO3+ 1.446e-05 1.001e-05 -4.840 -5.000 -0.160 9.96 - CaOH+ 9.020e-08 6.732e-08 -7.045 -7.172 -0.127 (0) - CaHSO4+ 4.048e-11 3.021e-11 -10.393 -10.520 -0.127 (0) + Ca+2 9.891e-03 2.473e-03 -2.005 -2.607 -0.602 -16.70 + CaSO4 7.262e-04 7.781e-04 -3.139 -3.109 0.030 7.22 + CaCO3 2.897e-05 3.383e-05 -4.538 -4.471 0.067 -14.60 + CaHCO3+ 1.442e-05 9.981e-06 -4.841 -5.001 -0.160 9.96 + CaOH+ 8.946e-08 6.680e-08 -7.048 -7.175 -0.127 (0) + CaHSO4+ 5.262e-11 3.929e-11 -10.279 -10.406 -0.127 (0) Cl 5.657e-01 - Cl- 5.657e-01 3.570e-01 -0.247 -0.447 -0.200 18.79 - HCl 3.842e-10 7.411e-10 -9.415 -9.130 0.285 (0) -H(0) 5.521e-37 - H2 2.760e-37 3.221e-37 -36.559 -36.492 0.067 28.61 + Cl- 5.657e-01 3.569e-01 -0.247 -0.447 -0.200 18.79 + HCl 3.828e-10 7.408e-10 -9.417 -9.130 0.287 (0) +H(0) 5.517e-37 + H2 2.758e-37 3.221e-37 -36.559 -36.492 0.067 28.61 K 1.058e-02 - K+ 1.039e-02 6.478e-03 -1.983 -2.189 -0.205 9.66 - KSO4- 1.873e-04 1.696e-04 -3.728 -3.770 -0.043 11.34 - KHCO3 2.970e-06 3.013e-06 -5.527 -5.521 0.006 41.03 + K+ 1.033e-02 6.440e-03 -1.986 -2.191 -0.205 9.66 + KSO4- 2.437e-04 2.210e-04 -3.613 -3.656 -0.042 35.14 + KHCO3 2.966e-06 3.009e-06 -5.528 -5.522 0.006 41.03 Mg 5.507e-02 - Mg+2 4.979e-02 1.437e-02 -1.303 -1.842 -0.540 -20.42 - MgSO4 4.756e-03 6.476e-03 -2.323 -2.189 0.134 -7.92 - MgHCO3+ 2.783e-04 1.751e-04 -3.556 -3.757 -0.201 5.82 - Mg(SO4)2-2 1.296e-04 3.671e-05 -3.887 -4.435 -0.548 32.91 - MgCO3 9.524e-05 1.111e-04 -4.021 -3.954 0.067 -17.09 - MgOH+ 1.205e-05 8.493e-06 -4.919 -5.071 -0.152 (0) + Mg+2 4.842e-02 1.398e-02 -1.315 -1.855 -0.540 -20.41 + MgSO4 6.052e-03 8.253e-03 -2.218 -2.083 0.135 -0.40 + MgHCO3+ 2.720e-04 1.711e-04 -3.565 -3.767 -0.201 5.82 + Mg(SO4)2-2 2.167e-04 6.131e-05 -3.664 -4.212 -0.548 48.71 + MgCO3 9.298e-05 1.086e-04 -4.032 -3.964 0.067 -17.09 + MgOH+ 1.172e-05 8.258e-06 -4.931 -5.083 -0.152 (0) Na 4.854e-01 - Na+ 4.712e-01 3.381e-01 -0.327 -0.471 -0.144 -0.51 - NaSO4- 1.396e-02 9.473e-03 -1.855 -2.024 -0.168 8.22 - NaHCO3 2.252e-04 3.066e-04 -3.647 -3.513 0.134 31.73 -O(0) 6.622e-20 - O2 3.311e-20 3.864e-20 -19.480 -19.413 0.067 30.40 + Na+ 4.758e-01 3.414e-01 -0.323 -0.467 -0.144 -0.50 + NaSO4- 9.406e-03 6.765e-03 -2.027 -2.170 -0.143 21.71 + NaHCO3 2.281e-04 3.111e-04 -3.642 -3.507 0.135 31.73 + Na2SO4 9.817e-07 1.126e-06 -6.008 -5.948 0.060 47.96 +O(0) 6.888e-20 + O2 3.444e-20 4.022e-20 -19.463 -19.396 0.067 30.40 S(6) 2.926e-02 - NaSO4- 1.396e-02 9.473e-03 -1.855 -2.024 -0.168 8.22 - SO4-2 9.440e-03 1.721e-03 -2.025 -2.764 -0.739 38.42 - MgSO4 4.756e-03 6.476e-03 -2.323 -2.189 0.134 -7.92 - CaSO4 6.537e-04 7.628e-04 -3.185 -3.118 0.067 7.50 - KSO4- 1.873e-04 1.696e-04 -3.728 -3.770 -0.043 11.34 - Mg(SO4)2-2 1.296e-04 3.671e-05 -3.887 -4.435 -0.548 32.91 - HSO4- 1.351e-09 1.008e-09 -8.869 -8.996 -0.127 40.96 - CaHSO4+ 4.048e-11 3.021e-11 -10.393 -10.520 -0.127 (0) + SO4-2 1.240e-02 2.255e-03 -1.907 -2.647 -0.740 17.12 + NaSO4- 9.406e-03 6.765e-03 -2.027 -2.170 -0.143 21.71 + MgSO4 6.052e-03 8.253e-03 -2.218 -2.083 0.135 -0.40 + CaSO4 7.262e-04 7.781e-04 -3.139 -3.109 0.030 7.22 + KSO4- 2.437e-04 2.210e-04 -3.613 -3.656 -0.042 35.14 + Mg(SO4)2-2 2.167e-04 6.131e-05 -3.664 -4.212 -0.548 48.71 + Na2SO4 9.817e-07 1.126e-06 -6.008 -5.948 0.060 47.96 + HSO4- 1.769e-09 1.321e-09 -8.752 -8.879 -0.127 40.96 + CaHSO4+ 5.262e-11 3.929e-11 -10.279 -10.406 -0.127 (0) Si 7.382e-05 - H4SiO4 7.062e-05 8.241e-05 -4.151 -4.084 0.067 52.08 - H3SiO4- 3.205e-06 2.017e-06 -5.494 -5.695 -0.201 28.72 - H2SiO4-2 1.092e-10 2.276e-11 -9.962 -10.643 -0.681 (0) + H4SiO4 7.061e-05 8.246e-05 -4.151 -4.084 0.067 52.08 + H3SiO4- 3.208e-06 2.018e-06 -5.494 -5.695 -0.201 28.72 + H2SiO4-2 1.095e-10 2.278e-11 -9.961 -10.642 -0.682 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -1.09 -5.37 -4.28 CaSO4 - Aragonite 0.64 -7.69 -8.34 CaCO3 - Arcanite -5.26 -7.14 -1.88 K2SO4 - Calcite 0.79 -7.69 -8.48 CaCO3 + Anhydrite -0.94 -5.25 -4.31 CaSO4 + Aragonite 0.64 -7.70 -8.34 CaCO3 + Arcanite -5.15 -7.03 -1.88 K2SO4 + Calcite 0.78 -7.70 -8.48 CaCO3 Chalcedony -0.52 -4.07 -3.55 SiO2 - Chrysotile 3.41 35.62 32.20 Mg3Si2O5(OH)4 + Chrysotile 3.38 35.58 32.20 Mg3Si2O5(OH)4 CO2(g) -3.37 -4.84 -1.47 CO2 - Dolomite 2.46 -14.63 -17.08 CaMg(CO3)2 - Epsomite -2.93 -4.67 -1.74 MgSO4:7H2O - Gypsum -0.80 -5.38 -4.58 CaSO4:2H2O + Dolomite 2.44 -14.64 -17.08 CaMg(CO3)2 + Epsomite -2.82 -4.56 -1.74 MgSO4:7H2O + Gypsum -0.72 -5.27 -4.55 CaSO4:2H2O H2(g) -33.39 -36.49 -3.10 H2 H2O(g) -1.51 -0.01 1.50 H2O - Halite -2.49 -0.92 1.57 NaCl - Hexahydrite -3.09 -4.66 -1.57 MgSO4:6H2O - Kieserite -3.45 -4.62 -1.16 MgSO4:H2O - Mirabilite -2.55 -3.79 -1.24 Na2SO4:10H2O - O2(g) -16.52 -19.41 -2.89 O2 + Halite -2.48 -0.91 1.57 NaCl + Hexahydrite -2.99 -4.55 -1.57 MgSO4:6H2O + Kieserite -3.35 -4.51 -1.16 MgSO4:H2O + Mirabilite -2.96 -3.67 -0.71 Na2SO4:10H2O + O2(g) -16.50 -19.40 -2.89 O2 Quartz -0.09 -4.07 -3.98 SiO2 - Sepiolite 1.19 16.95 15.76 Mg2Si3O7.5OH:3H2O - Sepiolite(d) -1.71 16.95 18.66 Mg2Si3O7.5OH:3H2O - SiO2(a) -1.36 -4.07 -2.71 SiO2 + Sepiolite 1.16 16.92 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -1.74 16.92 18.66 Mg2Si3O7.5OH:3H2O + SiO2(a) -1.35 -4.07 -2.71 SiO2 Sylvite -3.54 -2.64 0.90 KCl - Talc 6.09 27.49 21.40 Mg3Si4O10(OH)2 - Thenardite -3.41 -3.71 -0.30 Na2SO4 + Talc 6.06 27.46 21.40 Mg3Si4O10(OH)2 + Thenardite -4.23 -3.58 0.65 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -388,21 +390,21 @@ Mixture 1. ----------------------------Description of solution---------------------------- - pH = 7.327 Charge balance - pe = 10.559 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 18310 - Density (g/cm³) = 1.00527 - Volume (L) = 1.00578 - Viscosity (mPa s) = 0.91375 + pH = 7.325 Charge balance + pe = 10.568 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 18307 + Density (g/cm³) = 1.00525 + Volume (L) = 1.00579 + Viscosity (mPa s) = 0.91318 Activity of water = 0.994 - Ionic strength (mol/kgw) = 2.068e-01 + Ionic strength (mol/kgw) = 2.079e-01 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 2.994e-03 Total CO2 (mol/kg) = 3.175e-03 Temperature (°C) = 25.00 Electrical balance (eq) = 2.390e-04 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.07 - Iterations = 16 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.06 + Iterations = 14 Total H = 1.110131e+02 Total O = 5.554957e+01 @@ -411,101 +413,103 @@ Mixture 1. Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 3.031e-07 2.134e-07 -6.518 -6.671 -0.152 -3.48 - H+ 5.921e-08 4.715e-08 -7.228 -7.327 -0.099 0.00 + OH- 3.025e-07 2.129e-07 -6.519 -6.672 -0.153 -3.48 + H+ 5.938e-08 4.727e-08 -7.226 -7.325 -0.099 0.00 H2O 5.551e+01 9.941e-01 1.744 -0.003 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.396 -122.375 0.021 35.46 + CH4 0.000e+00 0.000e+00 -122.455 -122.434 0.021 35.46 C(4) 3.175e-03 - HCO3- 2.615e-03 1.945e-03 -2.583 -2.711 -0.128 25.15 - CO2 2.010e-04 2.074e-04 -3.697 -3.683 0.014 34.43 - NaHCO3 1.640e-04 1.804e-04 -3.785 -3.744 0.041 31.73 - MgHCO3+ 1.611e-04 1.153e-04 -3.793 -3.938 -0.145 5.72 - CaHCO3+ 1.284e-05 9.686e-06 -4.892 -5.014 -0.122 9.88 - MgCO3 8.919e-06 9.354e-06 -5.050 -5.029 0.021 -17.09 - CO3-2 6.313e-06 1.935e-06 -5.200 -5.713 -0.514 -2.19 - CaCO3 4.001e-06 4.196e-06 -5.398 -5.377 0.021 -14.60 - KHCO3 1.915e-06 1.924e-06 -5.718 -5.716 0.002 41.03 - (CO2)2 7.531e-10 7.898e-10 -9.123 -9.102 0.021 68.87 + HCO3- 2.616e-03 1.946e-03 -2.582 -2.711 -0.129 25.15 + CO2 2.016e-04 2.080e-04 -3.696 -3.682 0.014 34.43 + NaHCO3 1.650e-04 1.816e-04 -3.782 -3.741 0.042 31.73 + MgHCO3+ 1.585e-04 1.134e-04 -3.800 -3.945 -0.145 5.72 + CaHCO3+ 1.287e-05 9.706e-06 -4.890 -5.013 -0.122 9.88 + MgCO3 8.746e-06 9.174e-06 -5.058 -5.037 0.021 -17.09 + CO3-2 6.309e-06 1.931e-06 -5.200 -5.714 -0.514 -2.18 + CaCO3 3.998e-06 4.194e-06 -5.398 -5.377 0.021 -14.60 + KHCO3 1.909e-06 1.918e-06 -5.719 -5.717 0.002 41.03 + (CO2)2 7.573e-10 7.945e-10 -9.121 -9.100 0.021 68.87 Ca 4.334e-03 - Ca+2 4.054e-03 1.291e-03 -2.392 -2.889 -0.497 -17.20 - CaSO4 2.639e-04 2.767e-04 -3.579 -3.558 0.021 7.50 - CaHCO3+ 1.284e-05 9.686e-06 -4.892 -5.014 -0.122 9.88 - CaCO3 4.001e-06 4.196e-06 -5.398 -5.377 0.021 -14.60 - CaOH+ 6.063e-09 4.517e-09 -8.217 -8.345 -0.128 (0) - CaHSO4+ 1.151e-10 8.576e-11 -9.939 -10.067 -0.128 (0) + Ca+2 4.066e-03 1.293e-03 -2.391 -2.888 -0.498 -17.20 + CaSO4 2.509e-04 2.563e-04 -3.600 -3.591 0.009 7.22 + CaHCO3+ 1.287e-05 9.706e-06 -4.890 -5.013 -0.122 9.88 + CaCO3 3.998e-06 4.194e-06 -5.398 -5.377 0.021 -14.60 + CaOH+ 6.059e-09 4.513e-09 -8.218 -8.346 -0.128 (0) + CaHSO4+ 1.363e-10 1.015e-10 -9.865 -9.993 -0.128 (0) Cl 1.697e-01 - Cl- 1.697e-01 1.210e-01 -0.770 -0.917 -0.147 18.46 - HCl 1.605e-09 1.965e-09 -8.795 -8.707 0.088 (0) -H(0) 2.283e-39 - H2 1.142e-39 1.197e-39 -38.942 -38.922 0.021 28.61 + Cl- 1.697e-01 1.210e-01 -0.770 -0.917 -0.147 18.47 + HCl 1.607e-09 1.970e-09 -8.794 -8.706 0.088 (0) +H(0) 2.205e-39 + H2 1.103e-39 1.157e-39 -38.958 -38.937 0.021 28.61 K 3.173e-03 - K+ 3.122e-03 2.214e-03 -2.506 -2.655 -0.149 9.35 - KSO4- 4.986e-05 4.061e-05 -4.302 -4.391 -0.089 14.03 - KHCO3 1.915e-06 1.924e-06 -5.718 -5.716 0.002 41.03 + K+ 3.113e-03 2.207e-03 -2.507 -2.656 -0.149 9.35 + KSO4- 5.857e-05 4.771e-05 -4.232 -4.321 -0.089 28.76 + KHCO3 1.909e-06 1.918e-06 -5.719 -5.717 0.002 41.03 Mg 1.652e-02 - Mg+2 1.488e-02 5.065e-03 -1.827 -2.295 -0.468 -20.91 - MgSO4 1.454e-03 1.599e-03 -2.838 -2.796 0.041 -7.92 - MgHCO3+ 1.611e-04 1.153e-04 -3.793 -3.938 -0.145 5.72 - Mg(SO4)2-2 1.764e-05 6.349e-06 -4.754 -5.197 -0.444 24.64 - MgCO3 8.919e-06 9.354e-06 -5.050 -5.029 0.021 -17.09 - MgOH+ 5.085e-07 3.878e-07 -6.294 -6.411 -0.118 (0) + Mg+2 1.464e-02 4.980e-03 -1.834 -2.303 -0.468 -20.91 + MgSO4 1.684e-03 1.853e-03 -2.774 -2.732 0.042 -0.40 + MgHCO3+ 1.585e-04 1.134e-04 -3.800 -3.945 -0.145 5.72 + Mg(SO4)2-2 2.413e-05 8.674e-06 -4.617 -5.062 -0.444 45.19 + MgCO3 8.746e-06 9.174e-06 -5.058 -5.037 0.021 -17.09 + MgOH+ 4.988e-07 3.802e-07 -6.302 -6.420 -0.118 (0) Na 1.456e-01 - Na+ 1.427e-01 1.065e-01 -0.846 -0.973 -0.127 -0.92 - NaSO4- 2.801e-03 2.089e-03 -2.553 -2.680 -0.127 -0.72 - NaHCO3 1.640e-04 1.804e-04 -3.785 -3.744 0.041 31.73 -O(0) 5.481e-15 - O2 2.740e-15 2.874e-15 -14.562 -14.541 0.021 30.40 + Na+ 1.437e-01 1.072e-01 -0.843 -0.970 -0.127 -0.92 + NaSO4- 1.806e-03 1.338e-03 -2.743 -2.874 -0.130 19.24 + NaHCO3 1.650e-04 1.816e-04 -3.782 -3.741 0.042 31.73 + Na2SO4 6.700e-08 6.990e-08 -7.174 -7.156 0.018 47.96 +O(0) 6.112e-15 + O2 3.056e-15 3.206e-15 -14.515 -14.494 0.021 30.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -119.520 -119.672 -0.152 21.00 - H2S 0.000e+00 0.000e+00 -120.078 -120.057 0.021 36.27 - S-2 0.000e+00 0.000e+00 -124.733 -125.264 -0.531 (0) - (H2S)2 0.000e+00 0.000e+00 -241.413 -241.393 0.021 30.09 + HS- 0.000e+00 0.000e+00 -119.507 -119.660 -0.153 21.00 + H2S 0.000e+00 0.000e+00 -120.064 -120.044 0.021 36.27 + S-2 0.000e+00 0.000e+00 -124.720 -125.252 -0.532 (0) + (H2S)2 0.000e+00 0.000e+00 -241.386 -241.365 0.021 30.09 S(6) 8.777e-03 - SO4-2 4.174e-03 1.206e-03 -2.379 -2.919 -0.539 28.42 - NaSO4- 2.801e-03 2.089e-03 -2.553 -2.680 -0.127 -0.72 - MgSO4 1.454e-03 1.599e-03 -2.838 -2.796 0.041 -7.92 - CaSO4 2.639e-04 2.767e-04 -3.579 -3.558 0.021 7.50 - KSO4- 4.986e-05 4.061e-05 -4.302 -4.391 -0.089 14.03 - Mg(SO4)2-2 1.764e-05 6.349e-06 -4.754 -5.197 -0.444 24.64 - HSO4- 7.416e-09 5.526e-09 -8.130 -8.258 -0.128 40.66 - CaHSO4+ 1.151e-10 8.576e-11 -9.939 -10.067 -0.128 (0) + SO4-2 4.930e-03 1.421e-03 -2.307 -2.847 -0.540 15.57 + NaSO4- 1.806e-03 1.338e-03 -2.743 -2.874 -0.130 19.24 + MgSO4 1.684e-03 1.853e-03 -2.774 -2.732 0.042 -0.40 + CaSO4 2.509e-04 2.563e-04 -3.600 -3.591 0.009 7.22 + KSO4- 5.857e-05 4.771e-05 -4.232 -4.321 -0.089 28.76 + Mg(SO4)2-2 2.413e-05 8.674e-06 -4.617 -5.062 -0.444 45.19 + Na2SO4 6.700e-08 6.990e-08 -7.174 -7.156 0.018 47.96 + HSO4- 8.768e-09 6.531e-09 -8.057 -8.185 -0.128 40.66 + CaHSO4+ 1.363e-10 1.015e-10 -9.865 -9.993 -0.128 (0) Si 2.215e-05 - H4SiO4 2.205e-05 2.312e-05 -4.657 -4.636 0.021 52.08 - H3SiO4- 1.010e-07 7.231e-08 -6.996 -7.141 -0.145 28.37 - H2SiO4-2 3.404e-13 1.043e-13 -12.468 -12.982 -0.514 (0) + H4SiO4 2.205e-05 2.313e-05 -4.657 -4.636 0.021 52.08 + H3SiO4- 1.008e-07 7.214e-08 -6.996 -7.142 -0.145 28.37 + H2SiO4-2 3.393e-13 1.038e-13 -12.469 -12.984 -0.514 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -1.53 -5.81 -4.28 CaSO4 + Anhydrite -1.42 -5.74 -4.31 CaSO4 Aragonite -0.27 -8.60 -8.34 CaCO3 - Arcanite -6.35 -8.23 -1.88 K2SO4 + Arcanite -6.28 -8.16 -1.88 K2SO4 Calcite -0.12 -8.60 -8.48 CaCO3 - CH4(g) -119.57 -122.37 -2.80 CH4 + CH4(g) -119.63 -122.43 -2.80 CH4 Chalcedony -1.08 -4.63 -3.55 SiO2 - Chrysotile -4.40 27.80 32.20 Mg3Si2O5(OH)4 + Chrysotile -4.43 27.77 32.20 Mg3Si2O5(OH)4 CO2(g) -2.21 -3.68 -1.47 CO2 - Dolomite 0.47 -16.61 -17.08 CaMg(CO3)2 - Epsomite -3.49 -5.23 -1.74 MgSO4:7H2O - Gypsum -1.23 -5.81 -4.58 CaSO4:2H2O - H2(g) -35.82 -38.92 -3.10 H2 + Dolomite 0.46 -16.62 -17.08 CaMg(CO3)2 + Epsomite -3.43 -5.17 -1.74 MgSO4:7H2O + Gypsum -1.19 -5.74 -4.55 CaSO4:2H2O + H2(g) -35.84 -38.94 -3.10 H2 H2O(g) -1.51 -0.00 1.50 H2O - H2S(g) -119.06 -127.00 -7.94 H2S + H2S(g) -119.05 -126.99 -7.94 H2S Halite -3.46 -1.89 1.57 NaCl - Hexahydrite -3.66 -5.23 -1.57 MgSO4:6H2O - Kieserite -4.06 -5.22 -1.16 MgSO4:H2O - Mirabilite -3.65 -4.89 -1.24 Na2SO4:10H2O - O2(g) -11.65 -14.54 -2.89 O2 + Hexahydrite -3.60 -5.17 -1.57 MgSO4:6H2O + Kieserite -3.99 -5.15 -1.16 MgSO4:H2O + Mirabilite -4.11 -4.81 -0.71 Na2SO4:10H2O + O2(g) -11.60 -14.49 -2.89 O2 Quartz -0.65 -4.63 -3.98 SiO2 - Sepiolite -4.95 10.81 15.76 Mg2Si3O7.5OH:3H2O - Sepiolite(d) -7.85 10.81 18.66 Mg2Si3O7.5OH:3H2O + Sepiolite -4.97 10.79 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -7.87 10.79 18.66 Mg2Si3O7.5OH:3H2O SiO2(a) -1.92 -4.63 -2.71 SiO2 - Sulfur -89.17 -84.29 4.88 S + Sulfur -89.14 -84.26 4.88 S Sylvite -4.47 -3.57 0.90 KCl - Talc -2.86 18.54 21.40 Mg3Si4O10(OH)2 - Thenardite -4.56 -4.86 -0.30 Na2SO4 + Talc -2.89 18.51 21.40 Mg3Si4O10(OH)2 + Thenardite -5.44 -4.79 0.65 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -544,142 +548,144 @@ Using pure phase assemblage 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Calcite 0.00 -8.48 -8.48 1.000e+01 9.985e+00 -1.541e-02 -Dolomite 0.00 -17.08 -17.08 1.000e+01 1.001e+01 7.786e-03 +Calcite 0.00 -8.48 -8.48 1.000e+01 9.985e+00 -1.521e-02 +Dolomite 0.00 -17.08 -17.08 1.000e+01 1.001e+01 7.684e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 3.016e-03 3.016e-03 - Ca 1.196e-02 1.196e-02 + C 3.020e-03 3.020e-03 + Ca 1.186e-02 1.186e-02 Cl 1.697e-01 1.697e-01 K 3.173e-03 3.173e-03 - Mg 8.734e-03 8.734e-03 + Mg 8.836e-03 8.836e-03 Na 1.456e-01 1.456e-01 S 8.777e-03 8.777e-03 Si 2.215e-05 2.215e-05 ----------------------------Description of solution---------------------------- - pH = 7.047 Charge balance - pe = 10.928 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 18478 + pH = 7.050 Charge balance + pe = 10.837 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 18488 Density (g/cm³) = 1.00533 - Volume (L) = 1.00582 - Viscosity (mPa s) = 0.91253 + Volume (L) = 1.00583 + Viscosity (mPa s) = 0.91208 Activity of water = 0.994 - Ionic strength (mol/kgw) = 2.071e-01 + Ionic strength (mol/kgw) = 2.086e-01 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 2.677e-03 - Total CO2 (mol/kg) = 3.016e-03 + Total alkalinity (eq/kg) = 2.682e-03 + Total CO2 (mol/kg) = 3.020e-03 Temperature (°C) = 25.00 Electrical balance (eq) = 2.390e-04 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.07 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.06 Iterations = 5 Total H = 1.110131e+02 - Total O = 5.554910e+01 + Total O = 5.554911e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.593e-07 1.121e-07 -6.798 -6.950 -0.152 -3.48 - H+ 1.127e-07 8.972e-08 -6.948 -7.047 -0.099 0.00 + OH- 1.605e-07 1.129e-07 -6.795 -6.947 -0.153 -3.48 + H+ 1.120e-07 8.914e-08 -6.951 -7.050 -0.099 0.00 H2O 5.551e+01 9.941e-01 1.744 -0.003 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -122.866 -122.845 0.021 35.46 -C(4) 3.016e-03 - HCO3- 2.394e-03 1.781e-03 -2.621 -2.749 -0.128 25.15 - CO2 3.502e-04 3.614e-04 -3.456 -3.442 0.014 34.43 - NaHCO3 1.500e-04 1.650e-04 -3.824 -3.782 0.041 31.73 - MgHCO3+ 7.783e-05 5.571e-05 -4.109 -4.254 -0.145 5.72 - CaHCO3+ 3.239e-05 2.444e-05 -4.490 -4.612 -0.122 9.88 - CaCO3 5.304e-06 5.563e-06 -5.275 -5.255 0.021 -14.60 - CO3-2 3.038e-06 9.308e-07 -5.517 -6.031 -0.514 -2.19 - MgCO3 2.264e-06 2.375e-06 -5.645 -5.624 0.021 -17.09 - KHCO3 1.752e-06 1.760e-06 -5.756 -5.754 0.002 41.03 - (CO2)2 2.285e-09 2.397e-09 -8.641 -8.620 0.021 68.87 -Ca 1.196e-02 - Ca+2 1.118e-02 3.558e-03 -1.952 -2.449 -0.497 -17.20 - CaSO4 7.475e-04 7.840e-04 -3.126 -3.106 0.021 7.50 - CaHCO3+ 3.239e-05 2.444e-05 -4.490 -4.612 -0.122 9.88 - CaCO3 5.304e-06 5.563e-06 -5.275 -5.255 0.021 -14.60 - CaOH+ 8.781e-09 6.542e-09 -8.056 -8.184 -0.128 (0) - CaHSO4+ 6.206e-10 4.624e-10 -9.207 -9.335 -0.128 (0) + CH4 0.000e+00 0.000e+00 -122.163 -122.142 0.021 35.46 +C(4) 3.020e-03 + HCO3- 2.398e-03 1.783e-03 -2.620 -2.749 -0.129 25.15 + CO2 3.483e-04 3.595e-04 -3.458 -3.444 0.014 34.43 + NaHCO3 1.511e-04 1.663e-04 -3.821 -3.779 0.042 31.73 + MgHCO3+ 7.738e-05 5.534e-05 -4.111 -4.257 -0.146 5.72 + CaHCO3+ 3.220e-05 2.428e-05 -4.492 -4.615 -0.123 9.88 + CaCO3 5.302e-06 5.563e-06 -5.276 -5.255 0.021 -14.60 + CO3-2 3.069e-06 9.382e-07 -5.513 -6.028 -0.515 -2.18 + MgCO3 2.263e-06 2.375e-06 -5.645 -5.624 0.021 -17.09 + KHCO3 1.748e-06 1.756e-06 -5.758 -5.756 0.002 41.03 + (CO2)2 2.261e-09 2.372e-09 -8.646 -8.625 0.021 68.87 +Ca 1.186e-02 + Ca+2 1.111e-02 3.530e-03 -1.954 -2.452 -0.498 -17.20 + CaSO4 7.150e-04 7.304e-04 -3.146 -3.136 0.009 7.22 + CaHCO3+ 3.220e-05 2.428e-05 -4.492 -4.615 -0.123 9.88 + CaCO3 5.302e-06 5.563e-06 -5.276 -5.255 0.021 -14.60 + CaOH+ 8.772e-09 6.533e-09 -8.057 -8.185 -0.128 (0) + CaHSO4+ 7.326e-10 5.456e-10 -9.135 -9.263 -0.128 (0) Cl 1.697e-01 - Cl- 1.697e-01 1.210e-01 -0.770 -0.917 -0.147 18.47 - HCl 3.053e-09 3.740e-09 -8.515 -8.427 0.088 (0) -H(0) 1.516e-39 - H2 7.579e-40 7.949e-40 -39.120 -39.100 0.021 28.61 + Cl- 1.697e-01 1.209e-01 -0.770 -0.918 -0.147 18.47 + HCl 3.026e-09 3.713e-09 -8.519 -8.430 0.089 (0) +H(0) 2.275e-39 + H2 1.137e-39 1.193e-39 -38.944 -38.923 0.021 28.61 K 3.173e-03 - K+ 3.120e-03 2.213e-03 -2.506 -2.655 -0.149 9.35 - KSO4- 5.122e-05 4.172e-05 -4.291 -4.380 -0.089 14.03 - KHCO3 1.752e-06 1.760e-06 -5.756 -5.754 0.002 41.03 -Mg 8.734e-03 - Mg+2 7.855e-03 2.674e-03 -2.105 -2.573 -0.468 -20.91 - MgSO4 7.885e-04 8.675e-04 -3.103 -3.062 0.041 -7.92 - MgHCO3+ 7.783e-05 5.571e-05 -4.109 -4.254 -0.145 5.72 - Mg(SO4)2-2 9.841e-06 3.541e-06 -5.007 -5.451 -0.444 24.65 - MgCO3 2.264e-06 2.375e-06 -5.645 -5.624 0.021 -17.09 - MgOH+ 1.410e-07 1.076e-07 -6.851 -6.968 -0.118 (0) + K+ 3.111e-03 2.204e-03 -2.507 -2.657 -0.150 9.35 + KSO4- 6.108e-05 4.975e-05 -4.214 -4.303 -0.089 28.78 + KHCO3 1.748e-06 1.756e-06 -5.758 -5.756 0.002 41.03 +Mg 8.836e-03 + Mg+2 7.806e-03 2.652e-03 -2.108 -2.576 -0.469 -20.91 + MgSO4 9.360e-04 1.030e-03 -3.029 -2.987 0.042 -0.40 + MgHCO3+ 7.738e-05 5.534e-05 -4.111 -4.257 -0.146 5.72 + Mg(SO4)2-2 1.402e-05 5.035e-06 -4.853 -5.298 -0.445 45.20 + MgCO3 2.263e-06 2.375e-06 -5.645 -5.624 0.021 -17.09 + MgOH+ 1.409e-07 1.074e-07 -6.851 -6.969 -0.118 (0) Na 1.456e-01 - Na+ 1.426e-01 1.064e-01 -0.846 -0.973 -0.127 -0.92 - NaSO4- 2.878e-03 2.146e-03 -2.541 -2.668 -0.127 -0.71 - NaHCO3 1.500e-04 1.650e-04 -3.824 -3.782 0.041 31.73 -O(0) 1.243e-14 - O2 6.216e-15 6.519e-15 -14.207 -14.186 0.021 30.40 + Na+ 1.436e-01 1.071e-01 -0.843 -0.970 -0.127 -0.92 + NaSO4- 1.884e-03 1.396e-03 -2.725 -2.855 -0.130 19.24 + NaHCO3 1.511e-04 1.663e-04 -3.821 -3.779 0.042 31.73 + Na2SO4 6.984e-08 7.287e-08 -7.156 -7.137 0.018 47.96 +O(0) 5.741e-15 + O2 2.870e-15 3.012e-15 -14.542 -14.521 0.021 30.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -119.940 -120.092 -0.152 21.00 - H2S 0.000e+00 0.000e+00 -120.218 -120.198 0.021 36.27 - S-2 0.000e+00 0.000e+00 -125.432 -125.963 -0.531 (0) - (H2S)2 0.000e+00 0.000e+00 -241.694 -241.674 0.021 30.09 + HS- 0.000e+00 0.000e+00 -119.159 -119.311 -0.153 21.00 + H2S 0.000e+00 0.000e+00 -119.440 -119.420 0.021 36.27 + S-2 0.000e+00 0.000e+00 -124.647 -125.179 -0.532 (0) + (H2S)2 0.000e+00 0.000e+00 -240.138 -240.117 0.021 30.09 S(6) 8.777e-03 - SO4-2 4.293e-03 1.239e-03 -2.367 -2.907 -0.540 28.43 - NaSO4- 2.878e-03 2.146e-03 -2.541 -2.668 -0.127 -0.71 - MgSO4 7.885e-04 8.675e-04 -3.103 -3.062 0.041 -7.92 - CaSO4 7.475e-04 7.840e-04 -3.126 -3.106 0.021 7.50 - KSO4- 5.122e-05 4.172e-05 -4.291 -4.380 -0.089 14.03 - Mg(SO4)2-2 9.841e-06 3.541e-06 -5.007 -5.451 -0.444 24.65 - HSO4- 1.451e-08 1.081e-08 -7.838 -7.966 -0.128 40.66 - CaHSO4+ 6.206e-10 4.624e-10 -9.207 -9.335 -0.128 (0) + SO4-2 5.153e-03 1.484e-03 -2.288 -2.829 -0.541 15.57 + NaSO4- 1.884e-03 1.396e-03 -2.725 -2.855 -0.130 19.24 + MgSO4 9.360e-04 1.030e-03 -3.029 -2.987 0.042 -0.40 + CaSO4 7.150e-04 7.304e-04 -3.146 -3.136 0.009 7.22 + KSO4- 6.108e-05 4.975e-05 -4.214 -4.303 -0.089 28.78 + Mg(SO4)2-2 1.402e-05 5.035e-06 -4.853 -5.298 -0.445 45.20 + Na2SO4 6.984e-08 7.287e-08 -7.156 -7.137 0.018 47.96 + HSO4- 1.726e-08 1.286e-08 -7.763 -7.891 -0.128 40.66 + CaHSO4+ 7.326e-10 5.456e-10 -9.135 -9.263 -0.128 (0) Si 2.215e-05 - H4SiO4 2.209e-05 2.317e-05 -4.656 -4.635 0.021 52.08 - H3SiO4- 5.321e-08 3.808e-08 -7.274 -7.419 -0.145 28.37 - H2SiO4-2 9.424e-14 2.887e-14 -13.026 -13.540 -0.514 (0) + H4SiO4 2.209e-05 2.318e-05 -4.656 -4.635 0.021 52.08 + H3SiO4- 5.362e-08 3.834e-08 -7.271 -7.416 -0.146 28.37 + H2SiO4-2 9.573e-14 2.926e-14 -13.019 -13.534 -0.515 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -1.08 -5.36 -4.28 CaSO4 + Anhydrite -0.97 -5.28 -4.31 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 - Arcanite -6.34 -8.22 -1.88 K2SO4 + Arcanite -6.26 -8.14 -1.88 K2SO4 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -120.04 -122.85 -2.80 CH4 + CH4(g) -119.34 -122.14 -2.80 CH4 Chalcedony -1.08 -4.63 -3.55 SiO2 - Chrysotile -6.91 25.29 32.20 Mg3Si2O5(OH)4 - CO2(g) -1.97 -3.44 -1.47 CO2 + Chrysotile -6.90 25.30 32.20 Mg3Si2O5(OH)4 + CO2(g) -1.98 -3.44 -1.47 CO2 Dolomite 0.00 -17.08 -17.08 CaMg(CO3)2 - Epsomite -3.76 -5.50 -1.74 MgSO4:7H2O - Gypsum -0.78 -5.36 -4.58 CaSO4:2H2O - H2(g) -36.00 -39.10 -3.10 H2 + Epsomite -3.68 -5.42 -1.74 MgSO4:7H2O + Gypsum -0.74 -5.29 -4.55 CaSO4:2H2O + H2(g) -35.82 -38.92 -3.10 H2 H2O(g) -1.51 -0.00 1.50 H2O - H2S(g) -119.20 -127.14 -7.94 H2S + H2S(g) -118.43 -126.36 -7.94 H2S Halite -3.46 -1.89 1.57 NaCl - Hexahydrite -3.93 -5.50 -1.57 MgSO4:6H2O - Kieserite -4.32 -5.48 -1.16 MgSO4:H2O - Mirabilite -3.64 -4.88 -1.24 Na2SO4:10H2O - O2(g) -11.29 -14.19 -2.89 O2 + Hexahydrite -3.85 -5.42 -1.57 MgSO4:6H2O + Kieserite -4.25 -5.41 -1.16 MgSO4:H2O + Mirabilite -4.09 -4.79 -0.71 Na2SO4:10H2O + O2(g) -11.63 -14.52 -2.89 O2 Quartz -0.65 -4.63 -3.98 SiO2 Sepiolite -6.62 9.14 15.76 Mg2Si3O7.5OH:3H2O Sepiolite(d) -9.52 9.14 18.66 Mg2Si3O7.5OH:3H2O SiO2(a) -1.92 -4.63 -2.71 SiO2 - Sulfur -89.13 -84.25 4.88 S + Sulfur -88.53 -83.65 4.88 S Sylvite -4.47 -3.57 0.90 KCl - Talc -5.36 16.03 21.40 Mg3Si4O10(OH)2 - Thenardite -4.55 -4.85 -0.30 Na2SO4 + Talc -5.36 16.04 21.40 Mg3Si4O10(OH)2 + Thenardite -5.42 -4.77 0.65 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -717,13 +723,13 @@ Using pure phase assemblage 2. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Calcite 0.00 -8.48 -8.48 1.000e+01 1.000e+01 -4.587e-05 +Calcite 0.00 -8.48 -8.48 1.000e+01 1.000e+01 -4.599e-05 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 3.221e-03 3.220e-03 + C 3.221e-03 3.221e-03 Ca 4.380e-03 4.380e-03 Cl 1.697e-01 1.697e-01 K 3.173e-03 3.173e-03 @@ -734,20 +740,20 @@ Calcite 0.00 -8.48 -8.48 1.000e+01 1.000e+01 -4.587e-05 ----------------------------Description of solution---------------------------- - pH = 7.433 Charge balance - pe = 10.542 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 18314 - Density (g/cm³) = 1.00527 - Volume (L) = 1.00578 - Viscosity (mPa s) = 0.91382 + pH = 7.432 Charge balance + pe = 10.454 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 18311 + Density (g/cm³) = 1.00526 + Volume (L) = 1.00579 + Viscosity (mPa s) = 0.91325 Activity of water = 0.994 - Ionic strength (mol/kgw) = 2.069e-01 + Ionic strength (mol/kgw) = 2.080e-01 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 3.085e-03 + Total alkalinity (eq/kg) = 3.086e-03 Total CO2 (mol/kg) = 3.221e-03 Temperature (°C) = 25.00 Electrical balance (eq) = 2.390e-04 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.07 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.06 Iterations = 3 Total H = 1.110131e+02 Total O = 5.554971e+01 @@ -757,101 +763,103 @@ Calcite 0.00 -8.48 -8.48 1.000e+01 1.000e+01 -4.587e-05 Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 3.874e-07 2.728e-07 -6.412 -6.564 -0.152 -3.48 - H+ 4.632e-08 3.688e-08 -7.334 -7.433 -0.099 0.00 + OH- 3.868e-07 2.722e-07 -6.413 -6.565 -0.153 -3.48 + H+ 4.644e-08 3.697e-08 -7.333 -7.432 -0.099 0.00 H2O 5.551e+01 9.941e-01 1.744 -0.003 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -123.204 -123.183 0.021 35.46 + CH4 0.000e+00 0.000e+00 -122.495 -122.474 0.021 35.46 C(4) 3.221e-03 - HCO3- 2.685e-03 1.998e-03 -2.571 -2.699 -0.128 25.15 - NaHCO3 1.684e-04 1.852e-04 -3.774 -3.732 0.041 31.73 - MgHCO3+ 1.653e-04 1.183e-04 -3.782 -3.927 -0.145 5.72 - CO2 1.615e-04 1.666e-04 -3.792 -3.778 0.014 34.43 - CaHCO3+ 1.332e-05 1.005e-05 -4.876 -4.998 -0.122 9.88 - MgCO3 1.170e-05 1.227e-05 -4.932 -4.911 0.021 -17.09 - CO3-2 8.287e-06 2.540e-06 -5.082 -5.595 -0.514 -2.19 - CaCO3 5.304e-06 5.563e-06 -5.275 -5.255 0.021 -14.60 - KHCO3 1.967e-06 1.975e-06 -5.706 -5.704 0.002 41.03 - (CO2)2 4.860e-10 5.097e-10 -9.313 -9.293 0.021 68.87 + HCO3- 2.687e-03 1.998e-03 -2.571 -2.699 -0.129 25.15 + NaHCO3 1.695e-04 1.865e-04 -3.771 -3.729 0.042 31.73 + MgHCO3+ 1.627e-04 1.164e-04 -3.789 -3.934 -0.145 5.72 + CO2 1.619e-04 1.671e-04 -3.791 -3.777 0.014 34.43 + CaHCO3+ 1.335e-05 1.007e-05 -4.875 -4.997 -0.123 9.88 + MgCO3 1.148e-05 1.204e-05 -4.940 -4.919 0.021 -17.09 + CO3-2 8.287e-06 2.535e-06 -5.082 -5.596 -0.514 -2.18 + CaCO3 5.303e-06 5.563e-06 -5.275 -5.255 0.021 -14.60 + KHCO3 1.961e-06 1.970e-06 -5.708 -5.706 0.002 41.03 + (CO2)2 4.884e-10 5.124e-10 -9.311 -9.290 0.021 68.87 Ca 4.380e-03 - Ca+2 4.095e-03 1.304e-03 -2.388 -2.885 -0.497 -17.20 - CaSO4 2.664e-04 2.794e-04 -3.574 -3.554 0.021 7.50 - CaHCO3+ 1.332e-05 1.005e-05 -4.876 -4.998 -0.122 9.88 - CaCO3 5.304e-06 5.563e-06 -5.275 -5.255 0.021 -14.60 - CaOH+ 7.828e-09 5.832e-09 -8.106 -8.234 -0.128 (0) - CaHSO4+ 9.093e-11 6.775e-11 -10.041 -10.169 -0.128 (0) + Ca+2 4.108e-03 1.306e-03 -2.386 -2.884 -0.498 -17.20 + CaSO4 2.534e-04 2.589e-04 -3.596 -3.587 0.009 7.22 + CaHCO3+ 1.335e-05 1.007e-05 -4.875 -4.997 -0.123 9.88 + CaCO3 5.303e-06 5.563e-06 -5.275 -5.255 0.021 -14.60 + CaOH+ 7.826e-09 5.830e-09 -8.106 -8.234 -0.128 (0) + CaHSO4+ 1.076e-10 8.018e-11 -9.968 -10.096 -0.128 (0) Cl 1.697e-01 - Cl- 1.697e-01 1.210e-01 -0.770 -0.917 -0.147 18.47 - HCl 1.255e-09 1.538e-09 -8.901 -8.813 0.088 (0) -H(0) 1.514e-39 - H2 7.572e-40 7.942e-40 -39.121 -39.100 0.021 28.61 + Cl- 1.697e-01 1.209e-01 -0.770 -0.917 -0.147 18.47 + HCl 1.256e-09 1.540e-09 -8.901 -8.812 0.089 (0) +H(0) 2.275e-39 + H2 1.138e-39 1.194e-39 -38.944 -38.923 0.021 28.61 K 3.173e-03 - K+ 3.122e-03 2.214e-03 -2.506 -2.655 -0.149 9.35 - KSO4- 4.984e-05 4.060e-05 -4.302 -4.392 -0.089 14.03 - KHCO3 1.967e-06 1.975e-06 -5.706 -5.704 0.002 41.03 + K+ 3.113e-03 2.206e-03 -2.507 -2.656 -0.149 9.35 + KSO4- 5.855e-05 4.770e-05 -4.232 -4.322 -0.089 28.76 + KHCO3 1.961e-06 1.970e-06 -5.708 -5.706 0.002 41.03 Mg 1.652e-02 - Mg+2 1.487e-02 5.063e-03 -1.828 -2.296 -0.468 -20.91 - MgSO4 1.452e-03 1.598e-03 -2.838 -2.797 0.041 -7.92 - MgHCO3+ 1.653e-04 1.183e-04 -3.782 -3.927 -0.145 5.72 - Mg(SO4)2-2 1.762e-05 6.342e-06 -4.754 -5.198 -0.444 24.64 - MgCO3 1.170e-05 1.227e-05 -4.932 -4.911 0.021 -17.09 - MgOH+ 6.496e-07 4.954e-07 -6.187 -6.305 -0.118 (0) + Mg+2 1.464e-02 4.977e-03 -1.834 -2.303 -0.469 -20.91 + MgSO4 1.682e-03 1.852e-03 -2.774 -2.732 0.042 -0.40 + MgHCO3+ 1.627e-04 1.164e-04 -3.789 -3.934 -0.145 5.72 + Mg(SO4)2-2 2.411e-05 8.664e-06 -4.618 -5.062 -0.444 45.19 + MgCO3 1.148e-05 1.204e-05 -4.940 -4.919 0.021 -17.09 + MgOH+ 6.375e-07 4.860e-07 -6.196 -6.313 -0.118 (0) Na 1.456e-01 - Na+ 1.427e-01 1.064e-01 -0.846 -0.973 -0.127 -0.92 - NaSO4- 2.800e-03 2.088e-03 -2.553 -2.680 -0.127 -0.72 - NaHCO3 1.684e-04 1.852e-04 -3.774 -3.732 0.041 31.73 -O(0) 1.246e-14 - O2 6.228e-15 6.532e-15 -14.206 -14.185 0.021 30.40 + Na+ 1.437e-01 1.072e-01 -0.843 -0.970 -0.127 -0.92 + NaSO4- 1.805e-03 1.337e-03 -2.743 -2.874 -0.130 19.24 + NaHCO3 1.695e-04 1.865e-04 -3.771 -3.729 0.042 31.73 + Na2SO4 6.697e-08 6.987e-08 -7.174 -7.156 0.018 47.96 +O(0) 5.739e-15 + O2 2.869e-15 3.010e-15 -14.542 -14.521 0.021 30.40 S(-2) 0.000e+00 - HS- 0.000e+00 0.000e+00 -120.340 -120.492 -0.152 21.00 - H2S 0.000e+00 0.000e+00 -121.004 -120.984 0.021 36.27 - S-2 0.000e+00 0.000e+00 -125.446 -125.977 -0.531 (0) - (H2S)2 0.000e+00 0.000e+00 -243.266 -243.245 0.021 30.09 + HS- 0.000e+00 0.000e+00 -119.559 -119.712 -0.153 21.00 + H2S 0.000e+00 0.000e+00 -120.223 -120.203 0.021 36.27 + S-2 0.000e+00 0.000e+00 -124.666 -125.198 -0.532 (0) + (H2S)2 0.000e+00 0.000e+00 -241.704 -241.683 0.021 30.09 S(6) 8.777e-03 - SO4-2 4.174e-03 1.205e-03 -2.379 -2.919 -0.539 28.43 - NaSO4- 2.800e-03 2.088e-03 -2.553 -2.680 -0.127 -0.72 - MgSO4 1.452e-03 1.598e-03 -2.838 -2.797 0.041 -7.92 - CaSO4 2.664e-04 2.794e-04 -3.574 -3.554 0.021 7.50 - KSO4- 4.984e-05 4.060e-05 -4.302 -4.392 -0.089 14.03 - Mg(SO4)2-2 1.762e-05 6.342e-06 -4.754 -5.198 -0.444 24.64 - HSO4- 5.801e-09 4.322e-09 -8.237 -8.364 -0.128 40.66 - CaHSO4+ 9.093e-11 6.775e-11 -10.041 -10.169 -0.128 (0) + SO4-2 4.930e-03 1.421e-03 -2.307 -2.847 -0.540 15.57 + NaSO4- 1.805e-03 1.337e-03 -2.743 -2.874 -0.130 19.24 + MgSO4 1.682e-03 1.852e-03 -2.774 -2.732 0.042 -0.40 + CaSO4 2.534e-04 2.589e-04 -3.596 -3.587 0.009 7.22 + KSO4- 5.855e-05 4.770e-05 -4.232 -4.322 -0.089 28.76 + Mg(SO4)2-2 2.411e-05 8.664e-06 -4.618 -5.062 -0.444 45.19 + Na2SO4 6.697e-08 6.987e-08 -7.174 -7.156 0.018 47.96 + HSO4- 6.855e-09 5.106e-09 -8.164 -8.292 -0.128 40.66 + CaHSO4+ 1.076e-10 8.018e-11 -9.968 -10.096 -0.128 (0) Si 2.215e-05 - H4SiO4 2.202e-05 2.309e-05 -4.657 -4.637 0.021 52.08 - H3SiO4- 1.290e-07 9.232e-08 -6.890 -7.035 -0.145 28.37 - H2SiO4-2 5.555e-13 1.703e-13 -12.255 -12.769 -0.514 (0) + H4SiO4 2.202e-05 2.310e-05 -4.657 -4.636 0.021 52.08 + H3SiO4- 1.288e-07 9.214e-08 -6.890 -7.036 -0.145 28.37 + H2SiO4-2 5.542e-13 1.696e-13 -12.256 -12.771 -0.514 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -1.53 -5.80 -4.28 CaSO4 + Anhydrite -1.42 -5.73 -4.31 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 - Arcanite -6.35 -8.23 -1.88 K2SO4 + Arcanite -6.28 -8.16 -1.88 K2SO4 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -120.38 -123.18 -2.80 CH4 + CH4(g) -119.67 -122.47 -2.80 CH4 Chalcedony -1.08 -4.63 -3.55 SiO2 - Chrysotile -3.76 28.44 32.20 Mg3Si2O5(OH)4 + Chrysotile -3.79 28.41 32.20 Mg3Si2O5(OH)4 CO2(g) -2.31 -3.78 -1.47 CO2 - Dolomite 0.71 -16.37 -17.08 CaMg(CO3)2 - Epsomite -3.49 -5.23 -1.74 MgSO4:7H2O - Gypsum -1.23 -5.81 -4.58 CaSO4:2H2O - H2(g) -36.00 -39.10 -3.10 H2 + Dolomite 0.71 -16.38 -17.08 CaMg(CO3)2 + Epsomite -3.43 -5.17 -1.74 MgSO4:7H2O + Gypsum -1.19 -5.74 -4.55 CaSO4:2H2O + H2(g) -35.82 -38.92 -3.10 H2 H2O(g) -1.51 -0.00 1.50 H2O - H2S(g) -119.99 -127.93 -7.94 H2S + H2S(g) -119.21 -127.14 -7.94 H2S Halite -3.46 -1.89 1.57 NaCl - Hexahydrite -3.66 -5.23 -1.57 MgSO4:6H2O - Kieserite -4.06 -5.22 -1.16 MgSO4:H2O - Mirabilite -3.65 -4.89 -1.24 Na2SO4:10H2O - O2(g) -11.29 -14.18 -2.89 O2 + Hexahydrite -3.60 -5.17 -1.57 MgSO4:6H2O + Kieserite -3.99 -5.15 -1.16 MgSO4:H2O + Mirabilite -4.11 -4.81 -0.71 Na2SO4:10H2O + O2(g) -11.63 -14.52 -2.89 O2 Quartz -0.65 -4.63 -3.98 SiO2 - Sepiolite -4.53 11.23 15.76 Mg2Si3O7.5OH:3H2O - Sepiolite(d) -7.43 11.23 18.66 Mg2Si3O7.5OH:3H2O + Sepiolite -4.55 11.21 15.76 Mg2Si3O7.5OH:3H2O + Sepiolite(d) -7.45 11.21 18.66 Mg2Si3O7.5OH:3H2O SiO2(a) -1.92 -4.63 -2.71 SiO2 - Sulfur -89.92 -85.03 4.88 S + Sulfur -89.31 -84.43 4.88 S Sylvite -4.47 -3.57 0.90 KCl - Talc -2.22 19.18 21.40 Mg3Si4O10(OH)2 - Thenardite -4.56 -4.86 -0.30 Na2SO4 + Talc -2.25 19.15 21.40 Mg3Si4O10(OH)2 + Thenardite -5.44 -4.79 0.65 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. diff --git a/ex4.out b/ex4.out index d9683df9..1b7b5666 100644 --- a/ex4.out +++ b/ex4.out @@ -75,7 +75,7 @@ Initial solution 1. Precipitation from Central Oklahoma Volume (L) = 1.00297 Viscosity (mPa s) = 0.89009 Activity of water = 1.000 - Ionic strength (mol/kgw) = 8.839e-05 + Ionic strength (mol/kgw) = 8.841e-05 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = -3.185e-05 Total CO2 (mol/kg) = 1.091e-05 @@ -103,21 +103,21 @@ Initial solution 1. Precipitation from Central Oklahoma C(4) 1.091e-05 CO2 1.076e-05 1.076e-05 -4.968 -4.968 0.000 34.43 HCO3- 1.530e-07 1.513e-07 -6.815 -6.820 -0.005 24.56 - CaHCO3+ 5.402e-12 5.344e-12 -11.267 -11.272 -0.005 9.65 + CaHCO3+ 5.404e-12 5.346e-12 -11.267 -11.272 -0.005 9.65 MgHCO3+ 3.022e-12 2.989e-12 -11.520 -11.524 -0.005 5.46 (CO2)2 2.125e-12 2.125e-12 -11.673 -11.673 0.000 68.87 - NaHCO3 7.995e-13 7.995e-13 -12.097 -12.097 0.000 31.73 + NaHCO3 7.996e-13 7.996e-13 -12.097 -12.097 0.000 31.73 CO3-2 2.344e-13 2.244e-13 -12.630 -12.649 -0.019 -4.02 KHCO3 6.155e-14 6.155e-14 -13.211 -13.211 0.000 41.03 - CaCO3 3.451e-15 3.451e-15 -14.462 -14.462 0.000 -14.60 - MgCO3 3.616e-16 3.616e-16 -15.442 -15.442 0.000 -17.09 + CaCO3 3.453e-15 3.453e-15 -14.462 -14.462 0.000 -14.60 + MgCO3 3.615e-16 3.616e-16 -15.442 -15.442 0.000 -17.09 Ca 9.581e-06 - Ca+2 9.560e-06 9.153e-06 -5.020 -5.038 -0.019 -18.22 - CaSO4 2.098e-08 2.098e-08 -7.678 -7.678 0.000 7.50 - CaHCO3+ 5.402e-12 5.344e-12 -11.267 -11.272 -0.005 9.65 - CaHSO4+ 4.408e-12 4.361e-12 -11.356 -11.360 -0.005 (0) - CaOH+ 4.856e-14 4.804e-14 -13.314 -13.318 -0.005 (0) - CaCO3 3.451e-15 3.451e-15 -14.462 -14.462 0.000 -14.60 + Ca+2 9.564e-06 9.158e-06 -5.019 -5.038 -0.019 -18.22 + CaSO4 1.647e-08 1.647e-08 -7.783 -7.783 0.000 7.22 + CaHCO3+ 5.404e-12 5.346e-12 -11.267 -11.272 -0.005 9.65 + CaHSO4+ 4.412e-12 4.364e-12 -11.355 -11.360 -0.005 (0) + CaOH+ 4.859e-14 4.806e-14 -13.313 -13.318 -0.005 (0) + CaCO3 3.453e-15 3.453e-15 -14.462 -14.462 0.000 -14.60 Cl 6.657e-06 Cl- 6.657e-06 6.584e-06 -5.177 -5.181 -0.005 18.05 HCl 7.172e-11 7.173e-11 -10.144 -10.144 0.000 (0) @@ -125,60 +125,62 @@ H(0) 1.416e-20 H2 7.079e-21 7.079e-21 -20.150 -20.150 0.000 28.61 K 9.207e-07 K+ 9.205e-07 9.105e-07 -6.036 -6.041 -0.005 8.99 - KSO4- 1.805e-10 1.786e-10 -9.744 -9.748 -0.005 14.12 + KSO4- 1.806e-10 1.786e-10 -9.743 -9.748 -0.005 17.26 KHCO3 6.155e-14 6.155e-14 -13.211 -13.211 0.000 41.03 Mg 1.769e-06 Mg+2 1.763e-06 1.688e-06 -5.754 -5.773 -0.019 -21.90 - MgSO4 5.696e-09 5.697e-09 -8.244 -8.244 0.000 -7.92 + MgSO4 5.698e-09 5.699e-09 -8.244 -8.244 0.000 -0.40 MgHCO3+ 3.022e-12 2.989e-12 -11.520 -11.524 -0.005 5.46 - Mg(SO4)2-2 2.525e-13 2.418e-13 -12.598 -12.616 -0.019 -15.61 + Mg(SO4)2-2 2.527e-13 2.420e-13 -12.597 -12.616 -0.019 30.61 MgOH+ 1.959e-13 1.938e-13 -12.708 -12.713 -0.005 (0) - MgCO3 3.616e-16 3.616e-16 -15.442 -15.442 0.000 -17.09 + MgCO3 3.615e-16 3.616e-16 -15.442 -15.442 0.000 -17.09 N(-3) 1.485e-05 NH4+ 1.485e-05 1.468e-05 -4.828 -4.833 -0.005 17.87 - NH4SO4- 3.118e-09 3.084e-09 -8.506 -8.511 -0.005 -14.54 + NH4SO4- 3.614e-09 3.574e-09 -8.442 -8.447 -0.005 26.75 NH3 2.646e-10 2.646e-10 -9.577 -9.577 0.000 24.42 N(5) 1.692e-05 NO3- 1.692e-05 1.674e-05 -4.772 -4.776 -0.005 29.47 Na 6.133e-06 - Na+ 6.132e-06 6.065e-06 -5.212 -5.217 -0.005 -1.51 - NaSO4- 1.286e-09 1.273e-09 -8.891 -8.895 -0.005 -24.48 - NaHCO3 7.995e-13 7.995e-13 -12.097 -12.097 0.000 31.73 + Na+ 6.132e-06 6.066e-06 -5.212 -5.217 -0.005 -1.51 + NaSO4- 6.946e-10 6.870e-10 -9.158 -9.163 -0.005 16.47 + NaHCO3 7.996e-13 7.996e-13 -12.097 -12.097 0.000 31.73 + Na2SO4 2.032e-18 2.032e-18 -17.692 -17.692 0.000 47.96 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -52.080 -52.080 0.000 30.40 + O2 0.000e+00 0.000e+00 -52.063 -52.063 0.000 30.40 S(6) 1.353e-05 - SO4-2 1.346e-05 1.289e-05 -4.871 -4.890 -0.019 14.77 - HSO4- 4.006e-08 3.963e-08 -7.397 -7.402 -0.005 40.26 - CaSO4 2.098e-08 2.098e-08 -7.678 -7.678 0.000 7.50 - MgSO4 5.696e-09 5.697e-09 -8.244 -8.244 0.000 -7.92 - NH4SO4- 3.118e-09 3.084e-09 -8.506 -8.511 -0.005 -14.54 - NaSO4- 1.286e-09 1.273e-09 -8.891 -8.895 -0.005 -24.48 - KSO4- 1.805e-10 1.786e-10 -9.744 -9.748 -0.005 14.12 - CaHSO4+ 4.408e-12 4.361e-12 -11.356 -11.360 -0.005 (0) - Mg(SO4)2-2 2.525e-13 2.418e-13 -12.598 -12.616 -0.019 -15.61 + SO4-2 1.347e-05 1.289e-05 -4.871 -4.890 -0.019 14.47 + HSO4- 4.007e-08 3.964e-08 -7.397 -7.402 -0.005 40.26 + CaSO4 1.647e-08 1.647e-08 -7.783 -7.783 0.000 7.22 + MgSO4 5.698e-09 5.699e-09 -8.244 -8.244 0.000 -0.40 + NH4SO4- 3.614e-09 3.574e-09 -8.442 -8.447 -0.005 26.75 + NaSO4- 6.946e-10 6.870e-10 -9.158 -9.163 -0.005 16.47 + KSO4- 1.806e-10 1.786e-10 -9.743 -9.748 -0.005 17.26 + CaHSO4+ 4.412e-12 4.364e-12 -11.355 -11.360 -0.005 (0) + Mg(SO4)2-2 2.527e-13 2.420e-13 -12.597 -12.616 -0.019 30.61 + Na2SO4 2.032e-18 2.032e-18 -17.692 -17.692 0.000 47.96 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -5.65 -9.93 -4.28 CaSO4 + Anhydrite -5.61 -9.93 -4.31 CaSO4 Aragonite -9.35 -17.69 -8.34 CaCO3 Arcanite -15.09 -16.97 -1.88 K2SO4 Calcite -9.21 -17.69 -8.48 CaCO3 CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 Dolomite -19.02 -36.11 -17.08 CaMg(CO3)2 Epsomite -8.92 -10.66 -1.74 MgSO4:7H2O - Gypsum -5.35 -9.93 -4.58 CaSO4:2H2O + Gypsum -5.38 -9.93 -4.55 CaSO4:2H2O H2(g) -17.05 -20.15 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -11.97 -10.40 1.57 NaCl Hexahydrite -9.10 -10.66 -1.57 MgSO4:6H2O Kieserite -9.50 -10.66 -1.16 MgSO4:H2O - Mirabilite -14.08 -15.32 -1.24 Na2SO4:10H2O + Mirabilite -14.62 -15.32 -0.71 Na2SO4:10H2O NH3(g) -11.37 -9.58 1.80 NH3 - O2(g) -49.19 -52.08 -2.89 O2 + O2(g) -49.17 -52.06 -2.89 O2 Sylvite -12.12 -11.22 0.90 KCl - Thenardite -15.02 -15.32 -0.30 Na2SO4 + Thenardite -15.97 -15.32 0.65 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -226,15 +228,15 @@ Reaction 1. Specific Conductance (µS/cm, 25°C) = 292 Density (g/cm³) = 0.99709 Volume (L) = 0.05017 - Viscosity (mPa s) = 0.89048 + Viscosity (mPa s) = 0.89046 Activity of water = 1.000 - Ionic strength (mol/kgw) = 1.529e-03 + Ionic strength (mol/kgw) = 1.534e-03 Mass of water (kg) = 5.002e-02 Total alkalinity (eq/kg) = -7.555e-04 Total CO2 (mol/kg) = 2.182e-04 Temperature (°C) = 25.00 Electrical balance (eq) = 2.581e-05 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 24.29 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 24.23 Iterations = 32 Total H = 5.552525e+00 Total O = 2.776344e+00 @@ -244,103 +246,105 @@ Reaction 1. Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.406e-04 7.107e-04 -3.130 -3.148 -0.018 0.00 + H+ 7.405e-04 7.106e-04 -3.130 -3.148 -0.018 0.00 OH- 1.488e-11 1.424e-11 -10.827 -10.846 -0.019 -4.10 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -136.694 -136.693 0.000 35.46 + CH4 0.000e+00 0.000e+00 -136.693 -136.693 0.000 35.46 C(4) 2.182e-04 CO2 2.180e-04 2.181e-04 -3.661 -3.661 0.000 34.43 HCO3- 1.425e-07 1.365e-07 -6.846 -6.865 -0.019 24.59 (CO2)2 8.728e-10 8.731e-10 -9.059 -9.059 0.000 68.87 - CaHCO3+ 8.591e-11 8.233e-11 -10.066 -10.084 -0.019 9.68 - MgHCO3+ 4.754e-11 4.551e-11 -10.323 -10.342 -0.019 5.48 - NaHCO3 1.390e-11 1.391e-11 -10.857 -10.857 0.000 31.73 + CaHCO3+ 8.646e-11 8.285e-11 -10.063 -10.082 -0.019 9.68 + MgHCO3+ 4.753e-11 4.549e-11 -10.323 -10.342 -0.019 5.48 + NaHCO3 1.392e-11 1.393e-11 -10.856 -10.856 0.000 31.73 KHCO3 1.071e-12 1.071e-12 -11.970 -11.970 0.000 41.03 - CO3-2 1.069e-14 9.006e-15 -13.971 -14.045 -0.075 -3.90 - CaCO3 2.365e-15 2.366e-15 -14.626 -14.626 0.000 -14.60 + CO3-2 1.070e-14 9.009e-15 -13.971 -14.045 -0.075 -3.90 + CaCO3 2.380e-15 2.381e-15 -14.623 -14.623 0.000 -14.60 MgCO3 2.448e-16 2.449e-16 -15.611 -15.611 0.000 -17.09 Ca 1.916e-04 - Ca+2 1.857e-04 1.564e-04 -3.731 -3.806 -0.075 -18.12 - CaSO4 5.792e-06 5.795e-06 -5.237 -5.237 0.000 7.50 - CaHSO4+ 2.828e-08 2.707e-08 -7.549 -7.568 -0.019 (0) - CaHCO3+ 8.591e-11 8.233e-11 -10.066 -10.084 -0.019 9.68 - CaOH+ 3.814e-14 3.651e-14 -13.419 -13.438 -0.019 (0) - CaCO3 2.365e-15 2.366e-15 -14.626 -14.626 0.000 -14.60 + Ca+2 1.869e-04 1.573e-04 -3.728 -3.803 -0.075 -18.12 + CaSO4 4.595e-06 4.596e-06 -5.338 -5.338 0.000 7.22 + CaHSO4+ 2.859e-08 2.737e-08 -7.544 -7.563 -0.019 (0) + CaHCO3+ 8.646e-11 8.285e-11 -10.063 -10.082 -0.019 9.68 + CaOH+ 3.839e-14 3.675e-14 -13.416 -13.435 -0.019 (0) + CaCO3 2.380e-15 2.381e-15 -14.623 -14.623 0.000 -14.60 Cl 1.331e-04 - Cl- 1.331e-04 1.274e-04 -3.876 -3.895 -0.019 18.08 - HCl 3.113e-08 3.118e-08 -7.507 -7.506 0.001 (0) + Cl- 1.331e-04 1.273e-04 -3.876 -3.895 -0.019 18.08 + HCl 3.113e-08 3.117e-08 -7.507 -7.506 0.001 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.506 -42.506 0.000 28.61 K 1.841e-05 K+ 1.835e-05 1.756e-05 -4.736 -4.755 -0.019 9.02 - KSO4- 5.808e-08 5.568e-08 -7.236 -7.254 -0.018 14.15 + KSO4- 5.837e-08 5.595e-08 -7.234 -7.252 -0.018 18.64 KHCO3 1.071e-12 1.071e-12 -11.970 -11.970 0.000 41.03 Mg 3.536e-05 - Mg+2 3.381e-05 2.850e-05 -4.471 -4.545 -0.074 -21.80 - MgSO4 1.554e-06 1.555e-06 -5.809 -5.808 0.000 -7.92 - Mg(SO4)2-2 1.263e-09 1.067e-09 -8.899 -8.972 -0.073 -2.63 - MgHCO3+ 4.754e-11 4.551e-11 -10.323 -10.342 -0.019 5.48 - MgOH+ 1.519e-13 1.456e-13 -12.819 -12.837 -0.018 (0) + Mg+2 3.380e-05 2.848e-05 -4.471 -4.545 -0.074 -21.80 + MgSO4 1.561e-06 1.562e-06 -5.807 -5.806 0.000 -0.40 + Mg(SO4)2-2 1.275e-09 1.077e-09 -8.894 -8.968 -0.073 34.56 + MgHCO3+ 4.753e-11 4.549e-11 -10.323 -10.342 -0.019 5.48 + MgOH+ 1.518e-13 1.455e-13 -12.819 -12.837 -0.018 (0) MgCO3 2.448e-16 2.449e-16 -15.611 -15.611 0.000 -17.09 N(-3) 0.000e+00 NH4+ 0.000e+00 0.000e+00 -48.437 -48.457 -0.019 17.90 - NH4SO4- 0.000e+00 0.000e+00 -50.906 -50.926 -0.019 -5.79 + NH4SO4- 0.000e+00 0.000e+00 -50.841 -50.860 -0.019 27.97 NH3 0.000e+00 0.000e+00 -54.553 -54.553 0.000 24.42 N(0) 4.751e-04 N2 2.375e-04 2.376e-04 -3.624 -3.624 0.000 29.29 -N(3) 2.623e-15 - NO2- 2.623e-15 2.510e-15 -14.581 -14.600 -0.019 24.97 +N(3) 2.624e-15 + NO2- 2.624e-15 2.510e-15 -14.581 -14.600 -0.019 24.97 N(5) 1.601e-04 NO3- 1.601e-04 1.532e-04 -3.796 -3.815 -0.019 29.50 Na 1.226e-04 - Na+ 1.222e-04 1.170e-04 -3.913 -3.932 -0.019 -1.47 - NaSO4- 4.143e-07 3.969e-07 -6.383 -6.401 -0.019 -20.09 - NaHCO3 1.390e-11 1.391e-11 -10.857 -10.857 0.000 31.73 -O(0) 8.552e-08 - O2 4.276e-08 4.278e-08 -7.369 -7.369 0.000 30.40 + Na+ 1.224e-04 1.172e-04 -3.912 -3.931 -0.019 -1.47 + NaSO4- 2.252e-07 2.156e-07 -6.647 -6.666 -0.019 16.63 + NaHCO3 1.392e-11 1.393e-11 -10.856 -10.856 0.000 31.73 + Na2SO4 1.232e-14 1.232e-14 -13.910 -13.909 0.000 47.96 +O(0) 8.901e-08 + O2 4.450e-08 4.452e-08 -7.352 -7.351 0.000 30.40 S(-2) 0.000e+00 - H2S 0.000e+00 0.000e+00 -126.809 -126.808 0.000 36.27 - HS- 0.000e+00 0.000e+00 -130.583 -130.602 -0.019 20.61 - S-2 0.000e+00 0.000e+00 -140.297 -140.372 -0.075 (0) - (H2S)2 0.000e+00 0.000e+00 -254.895 -254.895 0.000 30.09 + H2S 0.000e+00 0.000e+00 -126.806 -126.806 0.000 36.27 + HS- 0.000e+00 0.000e+00 -130.580 -130.600 -0.019 20.61 + S-2 0.000e+00 0.000e+00 -140.294 -140.369 -0.075 (0) + (H2S)2 0.000e+00 0.000e+00 -254.891 -254.891 0.000 30.09 S(6) 2.706e-04 - SO4-2 2.477e-04 2.084e-04 -3.606 -3.681 -0.075 15.86 - HSO4- 1.504e-05 1.440e-05 -4.823 -4.842 -0.019 40.28 - CaSO4 5.792e-06 5.795e-06 -5.237 -5.237 0.000 7.50 - MgSO4 1.554e-06 1.555e-06 -5.809 -5.808 0.000 -7.92 - NaSO4- 4.143e-07 3.969e-07 -6.383 -6.401 -0.019 -20.09 - KSO4- 5.808e-08 5.568e-08 -7.236 -7.254 -0.018 14.15 - CaHSO4+ 2.828e-08 2.707e-08 -7.549 -7.568 -0.019 (0) - Mg(SO4)2-2 1.263e-09 1.067e-09 -8.899 -8.972 -0.073 -2.63 - NH4SO4- 0.000e+00 0.000e+00 -50.906 -50.926 -0.019 -5.79 + SO4-2 2.490e-04 2.094e-04 -3.604 -3.679 -0.075 14.55 + HSO4- 1.511e-05 1.447e-05 -4.821 -4.840 -0.019 40.28 + CaSO4 4.595e-06 4.596e-06 -5.338 -5.338 0.000 7.22 + MgSO4 1.561e-06 1.562e-06 -5.807 -5.806 0.000 -0.40 + NaSO4- 2.252e-07 2.156e-07 -6.647 -6.666 -0.019 16.63 + KSO4- 5.837e-08 5.595e-08 -7.234 -7.252 -0.018 18.64 + CaHSO4+ 2.859e-08 2.737e-08 -7.544 -7.563 -0.019 (0) + Mg(SO4)2-2 1.275e-09 1.077e-09 -8.894 -8.968 -0.073 34.56 + Na2SO4 1.232e-14 1.232e-14 -13.910 -13.909 0.000 47.96 + NH4SO4- 0.000e+00 0.000e+00 -50.841 -50.860 -0.019 27.97 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -3.21 -7.49 -4.28 CaSO4 - Aragonite -9.52 -17.85 -8.34 CaCO3 + Anhydrite -3.17 -7.48 -4.31 CaSO4 + Aragonite -9.51 -17.85 -8.34 CaCO3 Arcanite -11.31 -13.19 -1.88 K2SO4 Calcite -9.37 -17.85 -8.48 CaCO3 CH4(g) -133.89 -136.69 -2.80 CH4 CO2(g) -2.19 -3.66 -1.47 CO2 Dolomite -19.36 -36.44 -17.08 CaMg(CO3)2 - Epsomite -6.49 -8.23 -1.74 MgSO4:7H2O - Gypsum -2.90 -7.49 -4.58 CaSO4:2H2O + Epsomite -6.49 -8.22 -1.74 MgSO4:7H2O + Gypsum -2.93 -7.48 -4.55 CaSO4:2H2O H2(g) -39.40 -42.51 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O H2S(g) -125.81 -133.75 -7.94 H2S Halite -9.40 -7.83 1.57 NaCl - Hexahydrite -6.66 -8.23 -1.57 MgSO4:6H2O - Kieserite -7.06 -8.23 -1.16 MgSO4:H2O - Mirabilite -10.30 -11.54 -1.24 Na2SO4:10H2O + Hexahydrite -6.66 -8.22 -1.57 MgSO4:6H2O + Kieserite -7.06 -8.22 -1.16 MgSO4:H2O + Mirabilite -10.84 -11.54 -0.71 Na2SO4:10H2O N2(g) -0.45 -3.62 -3.18 N2 NH3(g) -56.35 -54.55 1.80 NH3 - O2(g) -4.48 -7.37 -2.89 O2 + O2(g) -4.46 -7.35 -2.89 O2 Sulfur -92.33 -87.45 4.88 S Sylvite -9.55 -8.65 0.90 KCl - Thenardite -11.24 -11.54 -0.30 Na2SO4 + Thenardite -12.19 -11.54 0.65 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -396,15 +400,15 @@ Mixture 1. Specific Conductance (µS/cm, 25°C) = 292 Density (g/cm³) = 0.99709 Volume (L) = 1.00332 - Viscosity (mPa s) = 0.89048 + Viscosity (mPa s) = 0.89046 Activity of water = 1.000 - Ionic strength (mol/kgw) = 1.529e-03 + Ionic strength (mol/kgw) = 1.534e-03 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = -7.555e-04 Total CO2 (mol/kg) = 2.182e-04 Temperature (°C) = 25.00 Electrical balance (eq) = 5.162e-04 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 24.29 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = 24.23 Iterations = 0 Total H = 1.110505e+02 Total O = 5.552687e+01 @@ -414,103 +418,105 @@ Mixture 1. Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 7.406e-04 7.107e-04 -3.130 -3.148 -0.018 0.00 + H+ 7.405e-04 7.106e-04 -3.130 -3.148 -0.018 0.00 OH- 1.488e-11 1.424e-11 -10.827 -10.846 -0.019 -4.10 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 C(-4) 0.000e+00 - CH4 0.000e+00 0.000e+00 -136.694 -136.693 0.000 35.46 + CH4 0.000e+00 0.000e+00 -136.693 -136.693 0.000 35.46 C(4) 2.182e-04 CO2 2.180e-04 2.181e-04 -3.661 -3.661 0.000 34.43 HCO3- 1.425e-07 1.365e-07 -6.846 -6.865 -0.019 24.59 (CO2)2 8.728e-10 8.731e-10 -9.059 -9.059 0.000 68.87 - CaHCO3+ 8.591e-11 8.233e-11 -10.066 -10.084 -0.019 9.68 - MgHCO3+ 4.754e-11 4.551e-11 -10.323 -10.342 -0.019 5.48 - NaHCO3 1.390e-11 1.391e-11 -10.857 -10.857 0.000 31.73 + CaHCO3+ 8.646e-11 8.285e-11 -10.063 -10.082 -0.019 9.68 + MgHCO3+ 4.753e-11 4.549e-11 -10.323 -10.342 -0.019 5.48 + NaHCO3 1.392e-11 1.393e-11 -10.856 -10.856 0.000 31.73 KHCO3 1.071e-12 1.071e-12 -11.970 -11.970 0.000 41.03 - CO3-2 1.069e-14 9.006e-15 -13.971 -14.045 -0.075 -3.90 - CaCO3 2.365e-15 2.366e-15 -14.626 -14.626 0.000 -14.60 + CO3-2 1.070e-14 9.009e-15 -13.971 -14.045 -0.075 -3.90 + CaCO3 2.380e-15 2.381e-15 -14.623 -14.623 0.000 -14.60 MgCO3 2.448e-16 2.449e-16 -15.611 -15.611 0.000 -17.09 Ca 1.916e-04 - Ca+2 1.857e-04 1.564e-04 -3.731 -3.806 -0.075 -18.12 - CaSO4 5.792e-06 5.795e-06 -5.237 -5.237 0.000 7.50 - CaHSO4+ 2.828e-08 2.707e-08 -7.549 -7.568 -0.019 (0) - CaHCO3+ 8.591e-11 8.233e-11 -10.066 -10.084 -0.019 9.68 - CaOH+ 3.814e-14 3.651e-14 -13.419 -13.438 -0.019 (0) - CaCO3 2.365e-15 2.366e-15 -14.626 -14.626 0.000 -14.60 + Ca+2 1.869e-04 1.573e-04 -3.728 -3.803 -0.075 -18.12 + CaSO4 4.595e-06 4.596e-06 -5.338 -5.338 0.000 7.22 + CaHSO4+ 2.859e-08 2.737e-08 -7.544 -7.563 -0.019 (0) + CaHCO3+ 8.646e-11 8.285e-11 -10.063 -10.082 -0.019 9.68 + CaOH+ 3.839e-14 3.675e-14 -13.416 -13.435 -0.019 (0) + CaCO3 2.380e-15 2.381e-15 -14.623 -14.623 0.000 -14.60 Cl 1.331e-04 - Cl- 1.331e-04 1.274e-04 -3.876 -3.895 -0.019 18.08 - HCl 3.113e-08 3.118e-08 -7.507 -7.506 0.001 (0) + Cl- 1.331e-04 1.273e-04 -3.876 -3.895 -0.019 18.08 + HCl 3.113e-08 3.117e-08 -7.507 -7.506 0.001 (0) H(0) 0.000e+00 H2 0.000e+00 0.000e+00 -42.506 -42.506 0.000 28.61 K 1.841e-05 K+ 1.835e-05 1.756e-05 -4.736 -4.755 -0.019 9.02 - KSO4- 5.808e-08 5.568e-08 -7.236 -7.254 -0.018 14.15 + KSO4- 5.837e-08 5.595e-08 -7.234 -7.252 -0.018 18.64 KHCO3 1.071e-12 1.071e-12 -11.970 -11.970 0.000 41.03 Mg 3.536e-05 - Mg+2 3.381e-05 2.850e-05 -4.471 -4.545 -0.074 -21.80 - MgSO4 1.554e-06 1.555e-06 -5.809 -5.808 0.000 -7.92 - Mg(SO4)2-2 1.263e-09 1.067e-09 -8.899 -8.972 -0.073 -2.63 - MgHCO3+ 4.754e-11 4.551e-11 -10.323 -10.342 -0.019 5.48 - MgOH+ 1.519e-13 1.456e-13 -12.819 -12.837 -0.018 (0) + Mg+2 3.380e-05 2.848e-05 -4.471 -4.545 -0.074 -21.80 + MgSO4 1.561e-06 1.562e-06 -5.807 -5.806 0.000 -0.40 + Mg(SO4)2-2 1.275e-09 1.077e-09 -8.894 -8.968 -0.073 34.56 + MgHCO3+ 4.753e-11 4.549e-11 -10.323 -10.342 -0.019 5.48 + MgOH+ 1.518e-13 1.455e-13 -12.819 -12.837 -0.018 (0) MgCO3 2.448e-16 2.449e-16 -15.611 -15.611 0.000 -17.09 N(-3) 0.000e+00 NH4+ 0.000e+00 0.000e+00 -48.437 -48.457 -0.019 17.90 - NH4SO4- 0.000e+00 0.000e+00 -50.906 -50.926 -0.019 -5.79 + NH4SO4- 0.000e+00 0.000e+00 -50.841 -50.860 -0.019 27.97 NH3 0.000e+00 0.000e+00 -54.553 -54.553 0.000 24.42 N(0) 4.751e-04 N2 2.375e-04 2.376e-04 -3.624 -3.624 0.000 29.29 -N(3) 2.623e-15 - NO2- 2.623e-15 2.510e-15 -14.581 -14.600 -0.019 24.97 +N(3) 2.624e-15 + NO2- 2.624e-15 2.510e-15 -14.581 -14.600 -0.019 24.97 N(5) 1.601e-04 NO3- 1.601e-04 1.532e-04 -3.796 -3.815 -0.019 29.50 Na 1.226e-04 - Na+ 1.222e-04 1.170e-04 -3.913 -3.932 -0.019 -1.47 - NaSO4- 4.143e-07 3.969e-07 -6.383 -6.401 -0.019 -20.09 - NaHCO3 1.390e-11 1.391e-11 -10.857 -10.857 0.000 31.73 -O(0) 8.552e-08 - O2 4.276e-08 4.278e-08 -7.369 -7.369 0.000 30.40 + Na+ 1.224e-04 1.172e-04 -3.912 -3.931 -0.019 -1.47 + NaSO4- 2.252e-07 2.156e-07 -6.647 -6.666 -0.019 16.63 + NaHCO3 1.392e-11 1.393e-11 -10.856 -10.856 0.000 31.73 + Na2SO4 1.232e-14 1.232e-14 -13.910 -13.909 0.000 47.96 +O(0) 8.901e-08 + O2 4.450e-08 4.452e-08 -7.352 -7.351 0.000 30.40 S(-2) 0.000e+00 - H2S 0.000e+00 0.000e+00 -126.809 -126.808 0.000 36.27 - HS- 0.000e+00 0.000e+00 -130.583 -130.602 -0.019 20.61 - S-2 0.000e+00 0.000e+00 -140.297 -140.372 -0.075 (0) - (H2S)2 0.000e+00 0.000e+00 -254.895 -254.895 0.000 30.09 + H2S 0.000e+00 0.000e+00 -126.806 -126.806 0.000 36.27 + HS- 0.000e+00 0.000e+00 -130.580 -130.600 -0.019 20.61 + S-2 0.000e+00 0.000e+00 -140.294 -140.369 -0.075 (0) + (H2S)2 0.000e+00 0.000e+00 -254.891 -254.891 0.000 30.09 S(6) 2.706e-04 - SO4-2 2.477e-04 2.084e-04 -3.606 -3.681 -0.075 15.86 - HSO4- 1.504e-05 1.440e-05 -4.823 -4.842 -0.019 40.28 - CaSO4 5.792e-06 5.795e-06 -5.237 -5.237 0.000 7.50 - MgSO4 1.554e-06 1.555e-06 -5.809 -5.808 0.000 -7.92 - NaSO4- 4.143e-07 3.969e-07 -6.383 -6.401 -0.019 -20.09 - KSO4- 5.808e-08 5.568e-08 -7.236 -7.254 -0.018 14.15 - CaHSO4+ 2.828e-08 2.707e-08 -7.549 -7.568 -0.019 (0) - Mg(SO4)2-2 1.263e-09 1.067e-09 -8.899 -8.972 -0.073 -2.63 - NH4SO4- 0.000e+00 0.000e+00 -50.906 -50.926 -0.019 -5.79 + SO4-2 2.490e-04 2.094e-04 -3.604 -3.679 -0.075 14.55 + HSO4- 1.511e-05 1.447e-05 -4.821 -4.840 -0.019 40.28 + CaSO4 4.595e-06 4.596e-06 -5.338 -5.338 0.000 7.22 + MgSO4 1.561e-06 1.562e-06 -5.807 -5.806 0.000 -0.40 + NaSO4- 2.252e-07 2.156e-07 -6.647 -6.666 -0.019 16.63 + KSO4- 5.837e-08 5.595e-08 -7.234 -7.252 -0.018 18.64 + CaHSO4+ 2.859e-08 2.737e-08 -7.544 -7.563 -0.019 (0) + Mg(SO4)2-2 1.275e-09 1.077e-09 -8.894 -8.968 -0.073 34.56 + Na2SO4 1.232e-14 1.232e-14 -13.910 -13.909 0.000 47.96 + NH4SO4- 0.000e+00 0.000e+00 -50.841 -50.860 -0.019 27.97 ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -3.21 -7.49 -4.28 CaSO4 - Aragonite -9.52 -17.85 -8.34 CaCO3 + Anhydrite -3.17 -7.48 -4.31 CaSO4 + Aragonite -9.51 -17.85 -8.34 CaCO3 Arcanite -11.31 -13.19 -1.88 K2SO4 Calcite -9.37 -17.85 -8.48 CaCO3 CH4(g) -133.89 -136.69 -2.80 CH4 CO2(g) -2.19 -3.66 -1.47 CO2 Dolomite -19.36 -36.44 -17.08 CaMg(CO3)2 - Epsomite -6.49 -8.23 -1.74 MgSO4:7H2O - Gypsum -2.90 -7.49 -4.58 CaSO4:2H2O + Epsomite -6.49 -8.22 -1.74 MgSO4:7H2O + Gypsum -2.93 -7.48 -4.55 CaSO4:2H2O H2(g) -39.40 -42.51 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O H2S(g) -125.81 -133.75 -7.94 H2S Halite -9.40 -7.83 1.57 NaCl - Hexahydrite -6.66 -8.23 -1.57 MgSO4:6H2O - Kieserite -7.06 -8.23 -1.16 MgSO4:H2O - Mirabilite -10.30 -11.54 -1.24 Na2SO4:10H2O + Hexahydrite -6.66 -8.22 -1.57 MgSO4:6H2O + Kieserite -7.06 -8.22 -1.16 MgSO4:H2O + Mirabilite -10.84 -11.54 -0.71 Na2SO4:10H2O N2(g) -0.45 -3.62 -3.18 N2 NH3(g) -56.35 -54.55 1.80 NH3 - O2(g) -4.48 -7.37 -2.89 O2 + O2(g) -4.46 -7.35 -2.89 O2 Sulfur -92.33 -87.45 4.88 S Sylvite -9.55 -8.65 0.90 KCl - Thenardite -11.24 -11.54 -0.30 Na2SO4 + Thenardite -12.19 -11.54 0.65 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. diff --git a/ex5.out b/ex5.out index 1bdef19e..9718598d 100644 --- a/ex5.out +++ b/ex5.out @@ -100,7 +100,7 @@ Initial solution 1. PURE WATER H(0) 1.416e-25 H2 7.079e-26 7.079e-26 -25.150 -25.150 0.000 28.61 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -42.080 -42.080 0.000 30.40 + O2 0.000e+00 0.000e+00 -42.063 -42.063 0.000 30.40 ------------------------------Saturation indices------------------------------- @@ -108,7 +108,7 @@ O(0) 0.000e+00 H2(g) -22.05 -25.15 -3.10 H2 H2O(g) -1.50 0.00 1.50 H2O - O2(g) -39.19 -42.08 -2.89 O2 + O2(g) -39.17 -42.06 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -146,9 +146,9 @@ Phase SI log IAP log K(T, P) Initial Final Delta CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 -4.846e-04 Calcite 0.00 -8.48 -8.48 1.000e+01 1.000e+01 -4.910e-04 -Goethite -0.00 -1.00 -1.00 1.000e+01 1.000e+01 1.089e-08 -Gypsum -6.13 -10.71 -4.58 0.000e+00 0 0.000e+00 -Pyrite -0.00 -18.48 -18.48 1.000e+01 1.000e+01 -3.140e-08 +Goethite -0.00 -1.00 -1.00 1.000e+01 1.000e+01 1.071e-08 +Gypsum -6.16 -10.70 -4.55 0.000e+00 0 0.000e+00 +Pyrite 0.00 -18.48 -18.48 1.000e+01 1.000e+01 -3.121e-08 -----------------------------Solution composition------------------------------ @@ -156,8 +156,8 @@ Pyrite -0.00 -18.48 -18.48 1.000e+01 1.000e+01 -3.140e-08 C 9.756e-04 9.756e-04 Ca 4.910e-04 4.910e-04 - Fe 2.051e-08 2.051e-08 - S 6.280e-08 6.280e-08 + Fe 2.050e-08 2.050e-08 + S 6.242e-08 6.242e-08 ----------------------------Description of solution---------------------------- @@ -187,73 +187,73 @@ Pyrite -0.00 -18.48 -18.48 1.000e+01 1.000e+01 -3.140e-08 OH- 2.007e-06 1.923e-06 -5.697 -5.716 -0.019 -4.10 H+ 5.481e-09 5.264e-09 -8.261 -8.279 -0.018 0.00 H2O 5.551e+01 1.000e+00 1.744 -0.000 0.000 18.07 -C(-4) 5.377e-08 - CH4 5.377e-08 5.379e-08 -7.269 -7.269 0.000 35.46 +C(-4) 5.342e-08 + CH4 5.342e-08 5.344e-08 -7.272 -7.272 0.000 35.46 C(4) 9.756e-04 HCO3- 9.482e-04 9.091e-04 -3.023 -3.041 -0.018 24.58 CO2 1.076e-05 1.076e-05 -4.968 -4.968 0.000 34.43 CO3-2 9.583e-06 8.099e-06 -5.019 -5.092 -0.073 -3.91 CaCO3 5.561e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 CaHCO3+ 1.495e-06 1.434e-06 -5.825 -5.843 -0.018 9.67 - FeCO3 2.597e-09 2.598e-09 -8.585 -8.585 0.000 (0) - FeHCO3+ 1.269e-09 1.216e-09 -8.897 -8.915 -0.019 (0) + FeCO3 2.595e-09 2.596e-09 -8.586 -8.586 0.000 (0) + FeHCO3+ 1.268e-09 1.215e-09 -8.897 -8.915 -0.019 (0) (CO2)2 2.125e-12 2.125e-12 -11.673 -11.673 0.000 68.87 Ca 4.910e-04 Ca+2 4.840e-04 4.089e-04 -3.315 -3.388 -0.073 -18.12 CaCO3 5.561e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 CaHCO3+ 1.495e-06 1.434e-06 -5.825 -5.843 -0.018 9.67 CaOH+ 1.345e-08 1.289e-08 -7.871 -7.890 -0.019 (0) - CaSO4 3.487e-09 3.488e-09 -8.458 -8.457 0.000 7.50 - CaHSO4+ 1.260e-16 1.207e-16 -15.900 -15.918 -0.019 (0) -Fe(2) 2.051e-08 - Fe+2 1.581e-08 1.337e-08 -7.801 -7.874 -0.073 -22.11 - FeCO3 2.597e-09 2.598e-09 -8.585 -8.585 0.000 (0) - FeHCO3+ 1.269e-09 1.216e-09 -8.897 -8.915 -0.019 (0) - FeOH+ 8.381e-10 8.034e-10 -9.077 -9.095 -0.018 (0) - Fe(OH)2 1.298e-12 1.299e-12 -11.887 -11.886 0.000 (0) - FeSO4 1.141e-13 1.141e-13 -12.943 -12.943 0.000 18.97 - Fe(OH)3- 9.563e-15 9.167e-15 -14.019 -14.038 -0.018 (0) - Fe(HS)2 6.281e-17 6.283e-17 -16.202 -16.202 0.000 (0) - FeHSO4+ 4.120e-21 3.948e-21 -20.385 -20.404 -0.019 (0) - Fe(HS)3- 1.639e-23 1.571e-23 -22.785 -22.804 -0.019 (0) + CaSO4 2.753e-09 2.753e-09 -8.560 -8.560 0.000 7.22 + CaHSO4+ 1.268e-16 1.215e-16 -15.897 -15.916 -0.019 (0) +Fe(2) 2.050e-08 + Fe+2 1.579e-08 1.336e-08 -7.802 -7.874 -0.073 -22.11 + FeCO3 2.595e-09 2.596e-09 -8.586 -8.586 0.000 (0) + FeHCO3+ 1.268e-09 1.215e-09 -8.897 -8.915 -0.019 (0) + FeOH+ 8.374e-10 8.027e-10 -9.077 -9.095 -0.018 (0) + Fe(OH)2 1.297e-12 1.298e-12 -11.887 -11.887 0.000 (0) + FeSO4 1.147e-13 1.147e-13 -12.941 -12.940 0.000 30.28 + Fe(OH)3- 9.555e-15 9.159e-15 -14.020 -14.038 -0.018 (0) + Fe(HS)2 6.270e-17 6.272e-17 -16.203 -16.203 0.000 (0) + FeHSO4+ 4.143e-21 3.969e-21 -20.383 -20.401 -0.019 (0) + Fe(HS)3- 1.636e-23 1.567e-23 -22.786 -22.805 -0.019 (0) Fe(3) 3.368e-14 Fe(OH)3 2.753e-14 2.754e-14 -13.560 -13.560 0.000 (0) Fe(OH)4- 4.976e-15 4.771e-15 -14.303 -14.321 -0.018 (0) Fe(OH)2+ 1.174e-15 1.125e-15 -14.930 -14.949 -0.018 (0) FeOH+2 2.119e-20 1.789e-20 -19.674 -19.747 -0.073 (0) Fe+3 2.098e-26 1.459e-26 -25.678 -25.836 -0.158 (0) - FeSO4+ 8.005e-30 7.674e-30 -29.097 -29.115 -0.018 (0) - Fe(SO4)2- 8.405e-36 8.054e-36 -35.075 -35.094 -0.019 (0) - FeHSO4+2 1.284e-37 1.082e-37 -36.892 -36.966 -0.074 (0) + FeSO4+ 8.055e-30 7.722e-30 -29.094 -29.112 -0.018 (0) + Fe(SO4)2- 8.510e-36 8.154e-36 -35.070 -35.089 -0.019 (0) + FeHSO4+2 1.292e-37 1.089e-37 -36.889 -36.963 -0.074 (0) Fe2(OH)2+4 1.708e-38 8.618e-39 -37.768 -38.065 -0.297 (0) Fe3(OH)4+5 0.000e+00 0.000e+00 -50.229 -50.693 -0.464 (0) -H(0) 3.006e-10 - H2 1.503e-10 1.504e-10 -9.823 -9.823 0.000 28.61 +H(0) 3.001e-10 + H2 1.501e-10 1.501e-10 -9.824 -9.824 0.000 28.61 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -72.734 -72.734 0.000 30.40 -S(-2) 2.502e-09 - HS- 2.397e-09 2.296e-09 -8.620 -8.639 -0.019 20.61 - H2S 1.056e-10 1.057e-10 -9.976 -9.976 0.000 36.27 - S-2 6.237e-14 5.267e-14 -13.205 -13.278 -0.073 (0) - Fe(HS)2 6.281e-17 6.283e-17 -16.202 -16.202 0.000 (0) - (H2S)2 5.882e-22 5.884e-22 -21.230 -21.230 0.000 30.09 - Fe(HS)3- 1.639e-23 1.571e-23 -22.785 -22.804 -0.019 (0) -S(6) 6.030e-08 - SO4-2 5.681e-08 4.797e-08 -7.246 -7.319 -0.073 15.83 - CaSO4 3.487e-09 3.488e-09 -8.458 -8.457 0.000 7.50 - FeSO4 1.141e-13 1.141e-13 -12.943 -12.943 0.000 18.97 - HSO4- 2.562e-14 2.455e-14 -13.591 -13.610 -0.019 40.28 - CaHSO4+ 1.260e-16 1.207e-16 -15.900 -15.918 -0.019 (0) - FeHSO4+ 4.120e-21 3.948e-21 -20.385 -20.404 -0.019 (0) - FeSO4+ 8.005e-30 7.674e-30 -29.097 -29.115 -0.018 (0) - Fe(SO4)2- 8.405e-36 8.054e-36 -35.075 -35.094 -0.019 (0) - FeHSO4+2 1.284e-37 1.082e-37 -36.892 -36.966 -0.074 (0) + O2 0.000e+00 0.000e+00 -72.716 -72.715 0.000 30.40 +S(-2) 2.501e-09 + HS- 2.396e-09 2.295e-09 -8.621 -8.639 -0.019 20.61 + H2S 1.056e-10 1.056e-10 -9.976 -9.976 0.000 36.27 + S-2 6.235e-14 5.265e-14 -13.205 -13.279 -0.073 (0) + Fe(HS)2 6.270e-17 6.272e-17 -16.203 -16.203 0.000 (0) + (H2S)2 5.877e-22 5.879e-22 -21.231 -21.231 0.000 30.09 + Fe(HS)3- 1.636e-23 1.567e-23 -22.786 -22.805 -0.019 (0) +S(6) 5.992e-08 + SO4-2 5.717e-08 4.827e-08 -7.243 -7.316 -0.073 14.55 + CaSO4 2.753e-09 2.753e-09 -8.560 -8.560 0.000 7.22 + FeSO4 1.147e-13 1.147e-13 -12.941 -12.940 0.000 30.28 + HSO4- 2.578e-14 2.470e-14 -13.589 -13.607 -0.019 40.28 + CaHSO4+ 1.268e-16 1.215e-16 -15.897 -15.916 -0.019 (0) + FeHSO4+ 4.143e-21 3.969e-21 -20.383 -20.401 -0.019 (0) + FeSO4+ 8.055e-30 7.722e-30 -29.094 -29.112 -0.018 (0) + Fe(SO4)2- 8.510e-36 8.154e-36 -35.070 -35.089 -0.019 (0) + FeHSO4+2 1.292e-37 1.089e-37 -36.889 -36.963 -0.074 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -6.43 -10.71 -4.28 CaSO4 + Anhydrite -6.39 -10.70 -4.31 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 Calcite 0.00 -8.48 -8.48 CaCO3 CH4(g) -4.47 -7.27 -2.80 CH4 @@ -261,17 +261,17 @@ S(6) 6.030e-08 Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 FeS(ppt) -4.32 -8.23 -3.92 FeS Goethite -0.00 -1.00 -1.00 FeOOH - Gypsum -6.13 -10.71 -4.58 CaSO4:2H2O + Gypsum -6.16 -10.70 -4.55 CaSO4:2H2O H2(g) -6.72 -9.82 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O H2S(g) -8.98 -16.92 -7.94 H2S Hematite 2.01 -2.00 -4.01 Fe2O3 Mackinawite -3.59 -8.23 -4.65 FeS Melanterite -12.98 -15.19 -2.21 FeSO4:7H2O - O2(g) -69.84 -72.73 -2.89 O2 - Pyrite -0.00 -18.48 -18.48 FeS2 + O2(g) -69.82 -72.72 -2.89 O2 + Pyrite 0.00 -18.48 -18.48 FeS2 Siderite -2.08 -12.97 -10.89 FeCO3 - Sulfur -8.19 -3.30 4.88 S + Sulfur -8.18 -3.30 4.88 S **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -303,156 +303,158 @@ Reaction 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 1.452e-04 -Calcite 0.00 -8.48 -8.48 1.000e+01 9.999e+00 -9.242e-04 -Goethite 0.00 -1.00 -1.00 1.000e+01 1.000e+01 2.667e-04 -Gypsum -2.01 -6.60 -4.58 0.000e+00 0 0.000e+00 -Pyrite -0.00 -18.48 -18.48 1.000e+01 1.000e+01 -2.667e-04 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 1.465e-04 +Calcite 0.00 -8.48 -8.48 1.000e+01 9.999e+00 -9.228e-04 +Goethite -0.00 -1.00 -1.00 1.000e+01 1.000e+01 2.667e-04 +Gypsum -2.04 -6.58 -4.55 0.000e+00 0 0.000e+00 +Pyrite 0.00 -18.48 -18.48 1.000e+01 1.000e+01 -2.667e-04 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 7.789e-04 7.789e-04 - Ca 9.242e-04 9.242e-04 + C 7.763e-04 7.763e-04 + Ca 9.228e-04 9.228e-04 Cl 5.000e-04 5.000e-04 - Fe 9.984e-09 9.984e-09 + Fe 1.003e-08 1.003e-08 Na 5.000e-04 5.000e-04 S 5.333e-04 5.333e-04 ----------------------------Description of solution---------------------------- - pH = 8.170 Charge balance - pe = -4.285 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 271 + pH = 8.168 Charge balance + pe = -4.282 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 272 Density (g/cm³) = 0.99719 Volume (L) = 1.00298 - Viscosity (mPa s) = 0.89165 + Viscosity (mPa s) = 0.89179 Activity of water = 1.000 - Ionic strength (mol/kgw) = 3.605e-03 + Ionic strength (mol/kgw) = 3.639e-03 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 7.817e-04 - Total CO2 (mol/kg) = 7.789e-04 + Total alkalinity (eq/kg) = 7.790e-04 + Total CO2 (mol/kg) = 7.763e-04 Temperature (°C) = 25.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 24 Total H = 1.110122e+02 - Total O = 5.551017e+01 + Total O = 5.551016e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.598e-06 1.496e-06 -5.796 -5.825 -0.029 -4.08 - H+ 7.182e-09 6.764e-09 -8.144 -8.170 -0.026 0.00 + OH- 1.593e-06 1.491e-06 -5.798 -5.827 -0.029 -4.08 + H+ 7.210e-09 6.789e-09 -8.142 -8.168 -0.026 0.00 H2O 5.551e+01 9.999e-01 1.744 -0.000 0.000 18.07 -C(-4) 2.213e-12 - CH4 2.213e-12 2.215e-12 -11.655 -11.655 0.000 35.46 -C(4) 7.789e-04 - HCO3- 7.540e-04 7.075e-04 -3.123 -3.150 -0.028 24.61 +C(-4) 2.151e-12 + CH4 2.151e-12 2.153e-12 -11.667 -11.667 0.000 35.46 +C(4) 7.763e-04 + HCO3- 7.515e-04 7.049e-04 -3.124 -3.152 -0.028 24.61 CO2 1.075e-05 1.076e-05 -4.968 -4.968 0.000 34.43 - CO3-2 6.329e-06 4.905e-06 -5.199 -5.309 -0.111 -3.82 - CaCO3 5.559e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 - CaHCO3+ 1.962e-06 1.842e-06 -5.707 -5.735 -0.027 9.69 - NaHCO3 2.864e-07 2.869e-07 -6.543 -6.542 0.001 31.73 - FeCO3 7.348e-10 7.354e-10 -9.134 -9.133 0.000 (0) - FeHCO3+ 4.720e-10 4.422e-10 -9.326 -9.354 -0.028 (0) + CO3-2 6.289e-06 4.869e-06 -5.201 -5.313 -0.111 -3.82 + CaCO3 5.558e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 + CaHCO3+ 1.970e-06 1.849e-06 -5.705 -5.733 -0.027 9.69 + NaHCO3 2.861e-07 2.866e-07 -6.544 -6.543 0.001 31.73 + FeCO3 7.322e-10 7.328e-10 -9.135 -9.135 0.000 (0) + FeHCO3+ 4.722e-10 4.423e-10 -9.326 -9.354 -0.028 (0) (CO2)2 2.124e-12 2.125e-12 -11.673 -11.673 0.000 68.87 -Ca 9.242e-04 - Ca+2 8.716e-04 6.752e-04 -3.060 -3.171 -0.111 -18.05 - CaSO4 4.502e-05 4.506e-05 -4.347 -4.346 0.000 7.50 - CaCO3 5.559e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 - CaHCO3+ 1.962e-06 1.842e-06 -5.707 -5.735 -0.027 9.69 - CaOH+ 1.768e-08 1.656e-08 -7.753 -7.781 -0.028 (0) - CaHSO4+ 2.139e-12 2.003e-12 -11.670 -11.698 -0.028 (0) +Ca 9.228e-04 + Ca+2 8.790e-04 6.802e-04 -3.056 -3.167 -0.111 -18.05 + CaSO4 3.629e-05 3.631e-05 -4.440 -4.440 0.000 7.22 + CaCO3 5.558e-06 5.563e-06 -5.255 -5.255 0.000 -14.60 + CaHCO3+ 1.970e-06 1.849e-06 -5.705 -5.733 -0.027 9.69 + CaOH+ 1.775e-08 1.662e-08 -7.751 -7.779 -0.028 (0) + CaHSO4+ 2.205e-12 2.066e-12 -11.656 -11.685 -0.028 (0) Cl 5.000e-04 - Cl- 5.000e-04 4.682e-04 -3.301 -3.330 -0.029 18.10 - FeCl+ 4.312e-12 4.040e-12 -11.365 -11.394 -0.028 (0) - HCl 1.087e-12 1.091e-12 -11.964 -11.962 0.002 (0) - FeCl+2 5.659e-28 4.377e-28 -27.247 -27.359 -0.111 (0) - FeCl2+ 9.762e-31 9.155e-31 -30.010 -30.038 -0.028 (0) - FeCl3 4.283e-35 4.287e-35 -34.368 -34.368 0.000 (0) -Fe(2) 9.984e-09 - Fe+2 8.044e-09 6.251e-09 -8.095 -8.204 -0.110 -22.04 - FeCO3 7.348e-10 7.354e-10 -9.134 -9.133 0.000 (0) - FeHCO3+ 4.720e-10 4.422e-10 -9.326 -9.354 -0.028 (0) - FeSO4 4.168e-10 4.171e-10 -9.380 -9.380 0.000 18.97 - FeOH+ 3.116e-10 2.922e-10 -9.506 -9.534 -0.028 (0) - FeCl+ 4.312e-12 4.040e-12 -11.365 -11.394 -0.028 (0) - Fe(OH)2 3.673e-13 3.676e-13 -12.435 -12.435 0.000 (0) - Fe(OH)3- 2.153e-15 2.019e-15 -14.667 -14.695 -0.028 (0) - FeHSO4+ 1.980e-17 1.855e-17 -16.703 -16.732 -0.028 (0) - Fe(HS)2 5.029e-18 5.033e-18 -17.299 -17.298 0.000 (0) - Fe(HS)3- 5.560e-25 5.209e-25 -24.255 -24.283 -0.028 (0) -Fe(3) 3.302e-14 + Cl- 5.000e-04 4.681e-04 -3.301 -3.330 -0.029 18.10 + FeCl+ 4.329e-12 4.054e-12 -11.364 -11.392 -0.028 (0) + HCl 1.091e-12 1.095e-12 -11.962 -11.961 0.002 (0) + FeCl+2 5.726e-28 4.425e-28 -27.242 -27.354 -0.112 (0) + FeCl2+ 9.868e-31 9.252e-31 -30.006 -30.034 -0.028 (0) + FeCl3 4.327e-35 4.331e-35 -34.364 -34.363 0.000 (0) +Fe(2) 1.003e-08 + Fe+2 8.083e-09 6.274e-09 -8.092 -8.202 -0.110 -22.04 + FeCO3 7.322e-10 7.328e-10 -9.135 -9.135 0.000 (0) + FeHCO3+ 4.722e-10 4.423e-10 -9.326 -9.354 -0.028 (0) + FeSO4 4.266e-10 4.270e-10 -9.370 -9.370 0.000 30.28 + FeOH+ 3.117e-10 2.922e-10 -9.506 -9.534 -0.028 (0) + FeCl+ 4.329e-12 4.054e-12 -11.364 -11.392 -0.028 (0) + Fe(OH)2 3.660e-13 3.663e-13 -12.437 -12.436 0.000 (0) + Fe(OH)3- 2.138e-15 2.004e-15 -14.670 -14.698 -0.028 (0) + FeHSO4+ 2.035e-17 1.905e-17 -16.692 -16.720 -0.028 (0) + Fe(HS)2 4.993e-18 4.997e-18 -17.302 -17.301 0.000 (0) + Fe(HS)3- 5.492e-25 5.144e-25 -24.260 -24.289 -0.028 (0) +Fe(3) 3.301e-14 Fe(OH)3 2.752e-14 2.754e-14 -13.560 -13.560 0.000 (0) - Fe(OH)4- 3.957e-15 3.713e-15 -14.403 -14.430 -0.028 (0) - Fe(OH)2+ 1.541e-15 1.446e-15 -14.812 -14.840 -0.028 (0) - FeOH+2 3.819e-20 2.955e-20 -19.418 -19.530 -0.111 (0) - FeSO4+ 1.358e-25 1.274e-25 -24.867 -24.895 -0.028 (0) - Fe+3 5.307e-26 3.096e-26 -25.275 -25.509 -0.234 (0) - Fe(SO4)2- 1.116e-27 1.046e-27 -26.952 -26.981 -0.028 (0) - FeCl+2 5.659e-28 4.377e-28 -27.247 -27.359 -0.111 (0) - FeCl2+ 9.762e-31 9.155e-31 -30.010 -30.038 -0.028 (0) - FeHSO4+2 2.995e-33 2.307e-33 -32.524 -32.637 -0.113 (0) - FeCl3 4.283e-35 4.287e-35 -34.368 -34.368 0.000 (0) - Fe2(OH)2+4 6.674e-38 2.350e-38 -37.176 -37.629 -0.453 (0) - Fe3(OH)4+5 0.000e+00 0.000e+00 -49.440 -50.149 -0.708 (0) -H(0) 2.407e-11 - H2 1.204e-11 1.205e-11 -10.920 -10.919 0.000 28.61 + Fe(OH)4- 3.944e-15 3.699e-15 -14.404 -14.432 -0.028 (0) + Fe(OH)2+ 1.547e-15 1.452e-15 -14.810 -14.838 -0.028 (0) + FeOH+2 3.852e-20 2.976e-20 -19.414 -19.526 -0.112 (0) + FeSO4+ 1.401e-25 1.313e-25 -24.854 -24.882 -0.028 (0) + Fe+3 5.377e-26 3.130e-26 -25.269 -25.504 -0.235 (0) + Fe(SO4)2- 1.174e-27 1.099e-27 -26.930 -26.959 -0.028 (0) + FeCl+2 5.726e-28 4.425e-28 -27.242 -27.354 -0.112 (0) + FeCl2+ 9.868e-31 9.252e-31 -30.006 -30.034 -0.028 (0) + FeHSO4+2 3.103e-33 2.388e-33 -32.508 -32.622 -0.114 (0) + FeCl3 4.327e-35 4.331e-35 -34.364 -34.363 0.000 (0) + Fe2(OH)2+4 6.803e-38 2.384e-38 -37.167 -37.623 -0.455 (0) + Fe3(OH)4+5 0.000e+00 0.000e+00 -49.429 -50.141 -0.711 (0) +H(0) 2.390e-11 + H2 1.195e-11 1.196e-11 -10.923 -10.922 0.000 28.61 Na 5.000e-04 - Na+ 4.967e-04 4.656e-04 -3.304 -3.332 -0.028 -1.44 - NaSO4- 3.031e-06 2.845e-06 -5.518 -5.546 -0.028 -18.09 - NaHCO3 2.864e-07 2.869e-07 -6.543 -6.542 0.001 31.73 + Na+ 4.980e-04 4.668e-04 -3.303 -3.331 -0.028 -1.44 + NaSO4- 1.675e-06 1.569e-06 -5.776 -5.804 -0.028 16.75 + NaHCO3 2.861e-07 2.866e-07 -6.544 -6.543 0.001 31.73 + Na2SO4 3.568e-13 3.571e-13 -12.448 -12.447 0.000 47.96 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -70.542 -70.542 0.000 30.40 -S(-2) 1.071e-09 - HS- 1.015e-09 9.505e-10 -8.993 -9.022 -0.029 20.63 - H2S 5.617e-11 5.622e-11 -10.251 -10.250 0.000 36.27 - S-2 2.194e-14 1.697e-14 -13.659 -13.770 -0.111 (0) - Fe(HS)2 5.029e-18 5.033e-18 -17.299 -17.298 0.000 (0) - (H2S)2 1.664e-22 1.665e-22 -21.779 -21.779 0.000 30.09 - Fe(HS)3- 5.560e-25 5.209e-25 -24.255 -24.283 -0.028 (0) + O2 0.000e+00 0.000e+00 -70.518 -70.518 0.000 30.40 +S(-2) 1.066e-09 + HS- 1.010e-09 9.453e-10 -8.996 -9.024 -0.029 20.63 + H2S 5.607e-11 5.612e-11 -10.251 -10.251 0.000 36.27 + S-2 2.176e-14 1.682e-14 -13.662 -13.774 -0.112 (0) + Fe(HS)2 4.993e-18 4.997e-18 -17.302 -17.301 0.000 (0) + (H2S)2 1.658e-22 1.659e-22 -21.780 -21.780 0.000 30.09 + Fe(HS)3- 5.492e-25 5.144e-25 -24.260 -24.289 -0.028 (0) S(6) 5.333e-04 - SO4-2 4.853e-04 3.753e-04 -3.314 -3.426 -0.112 16.58 - CaSO4 4.502e-05 4.506e-05 -4.347 -4.346 0.000 7.50 - NaSO4- 3.031e-06 2.845e-06 -5.518 -5.546 -0.028 -18.09 - FeSO4 4.168e-10 4.171e-10 -9.380 -9.380 0.000 18.97 - HSO4- 2.635e-10 2.468e-10 -9.579 -9.608 -0.028 40.30 - CaHSO4+ 2.139e-12 2.003e-12 -11.670 -11.698 -0.028 (0) - FeHSO4+ 1.980e-17 1.855e-17 -16.703 -16.732 -0.028 (0) - FeSO4+ 1.358e-25 1.274e-25 -24.867 -24.895 -0.028 (0) - Fe(SO4)2- 1.116e-27 1.046e-27 -26.952 -26.981 -0.028 (0) - FeHSO4+2 2.995e-33 2.307e-33 -32.524 -32.637 -0.113 (0) + SO4-2 4.954e-04 3.827e-04 -3.305 -3.417 -0.112 14.60 + CaSO4 3.629e-05 3.631e-05 -4.440 -4.440 0.000 7.22 + NaSO4- 1.675e-06 1.569e-06 -5.776 -5.804 -0.028 16.75 + FeSO4 4.266e-10 4.270e-10 -9.370 -9.370 0.000 30.28 + HSO4- 2.697e-10 2.526e-10 -9.569 -9.598 -0.028 40.30 + CaHSO4+ 2.205e-12 2.066e-12 -11.656 -11.685 -0.028 (0) + Na2SO4 3.568e-13 3.571e-13 -12.448 -12.447 0.000 47.96 + FeHSO4+ 2.035e-17 1.905e-17 -16.692 -16.720 -0.028 (0) + FeSO4+ 1.401e-25 1.313e-25 -24.854 -24.882 -0.028 (0) + Fe(SO4)2- 1.174e-27 1.099e-27 -26.930 -26.959 -0.028 (0) + FeHSO4+2 3.103e-33 2.388e-33 -32.508 -32.622 -0.114 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -2.32 -6.60 -4.28 CaSO4 + Anhydrite -2.27 -6.58 -4.31 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -8.85 -11.65 -2.80 CH4 + CH4(g) -8.87 -11.67 -2.80 CH4 CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 FeS(ppt) -5.14 -9.06 -3.92 FeS - Goethite 0.00 -1.00 -1.00 FeOOH - Gypsum -2.01 -6.60 -4.58 CaSO4:2H2O + Goethite -0.00 -1.00 -1.00 FeOOH + Gypsum -2.04 -6.58 -4.55 CaSO4:2H2O H2(g) -7.82 -10.92 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O H2S(g) -9.26 -17.19 -7.94 H2S Halite -8.23 -6.66 1.57 NaCl Hematite 2.01 -2.00 -4.01 Fe2O3 Mackinawite -4.41 -9.06 -4.65 FeS - Melanterite -9.42 -11.63 -2.21 FeSO4:7H2O - Mirabilite -8.85 -10.09 -1.24 Na2SO4:10H2O - O2(g) -67.65 -70.54 -2.89 O2 - Pyrite -0.00 -18.48 -18.48 FeS2 - Siderite -2.62 -13.51 -10.89 FeCO3 + Melanterite -9.41 -11.62 -2.21 FeSO4:7H2O + Mirabilite -9.37 -10.08 -0.71 Na2SO4:10H2O + O2(g) -67.63 -70.52 -2.89 O2 + Pyrite 0.00 -18.48 -18.48 FeS2 + Siderite -2.63 -13.52 -10.89 FeCO3 Sulfur -7.36 -2.48 4.88 S - Thenardite -9.79 -10.09 -0.30 Na2SO4 + Thenardite -10.73 -10.08 0.65 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -484,156 +486,158 @@ Reaction 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 2.401e-03 -Calcite 0.00 -8.48 -8.48 1.000e+01 9.997e+00 -2.932e-03 -Goethite 0.00 -1.00 -1.00 1.000e+01 1.000e+01 1.333e-03 -Gypsum -1.05 -5.64 -4.58 0.000e+00 0 0.000e+00 -Pyrite -0.00 -18.48 -18.48 1.000e+01 9.999e+00 -1.333e-03 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.000e+01 2.403e-03 +Calcite 0.00 -8.48 -8.48 1.000e+01 9.997e+00 -2.929e-03 +Goethite -0.00 -1.00 -1.00 1.000e+01 1.000e+01 1.333e-03 +Gypsum -1.06 -5.61 -4.55 0.000e+00 0 0.000e+00 +Pyrite 0.00 -18.48 -18.48 1.000e+01 9.999e+00 -1.333e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 5.312e-04 5.312e-04 - Ca 2.932e-03 2.932e-03 + C 5.264e-04 5.264e-04 + Ca 2.929e-03 2.929e-03 Cl 2.500e-03 2.500e-03 - Fe 2.155e-08 2.155e-08 + Fe 2.201e-08 2.201e-08 Na 2.500e-03 2.500e-03 S 2.667e-03 2.667e-03 ----------------------------Description of solution---------------------------- - pH = 7.979 Charge balance - pe = -3.966 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 913 - Density (g/cm³) = 0.99754 - Volume (L) = 1.00300 - Viscosity (mPa s) = 0.89303 + pH = 7.974 Charge balance + pe = -3.958 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 921 + Density (g/cm³) = 0.99755 + Volume (L) = 1.00299 + Viscosity (mPa s) = 0.89313 Activity of water = 1.000 - Ionic strength (mol/kgw) = 1.219e-02 + Ionic strength (mol/kgw) = 1.251e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 5.303e-04 - Total CO2 (mol/kg) = 5.312e-04 + Total alkalinity (eq/kg) = 5.254e-04 + Total CO2 (mol/kg) = 5.264e-04 Temperature (°C) = 25.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 25 Total H = 1.110111e+02 - Total O = 5.551754e+01 + Total O = 5.551753e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 1.081e-06 9.635e-07 -5.966 -6.016 -0.050 -4.02 - H+ 1.158e-08 1.050e-08 -7.936 -7.979 -0.042 0.00 + OH- 1.071e-06 9.533e-07 -5.970 -6.021 -0.051 -4.02 + H+ 1.172e-08 1.062e-08 -7.931 -7.974 -0.043 0.00 H2O 5.551e+01 9.998e-01 1.744 -0.000 0.000 18.07 -C(-4) 2.093e-13 - CH4 2.093e-13 2.099e-13 -12.679 -12.678 0.001 35.46 -C(4) 5.312e-04 - HCO3- 5.077e-04 4.556e-04 -3.294 -3.341 -0.047 24.66 +C(-4) 1.967e-13 + CH4 1.967e-13 1.973e-13 -12.706 -12.705 0.001 35.46 +C(4) 5.264e-04 + HCO3- 5.030e-04 4.507e-04 -3.298 -3.346 -0.048 24.66 CO2 1.074e-05 1.076e-05 -4.969 -4.968 0.001 34.43 - CaCO3 5.548e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 - CaHCO3+ 3.182e-06 2.861e-06 -5.497 -5.543 -0.046 9.73 - CO3-2 3.139e-06 2.034e-06 -5.503 -5.692 -0.188 -3.63 - NaHCO3 8.629e-07 8.678e-07 -6.064 -6.062 0.002 31.73 - FeHCO3+ 5.724e-10 5.115e-10 -9.242 -9.291 -0.049 (0) - FeCO3 5.463e-10 5.478e-10 -9.263 -9.261 0.001 (0) + CaCO3 5.547e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 + CaHCO3+ 3.220e-06 2.892e-06 -5.492 -5.539 -0.047 9.73 + CO3-2 3.087e-06 1.991e-06 -5.510 -5.701 -0.190 -3.62 + NaHCO3 8.611e-07 8.661e-07 -6.065 -6.062 0.003 31.73 + FeHCO3+ 5.748e-10 5.130e-10 -9.240 -9.290 -0.049 (0) + FeCO3 5.421e-10 5.436e-10 -9.266 -9.265 0.001 (0) (CO2)2 2.119e-12 2.125e-12 -11.674 -11.673 0.001 68.87 -Ca 2.932e-03 - Ca+2 2.514e-03 1.628e-03 -2.600 -2.788 -0.189 -17.90 - CaSO4 4.092e-04 4.104e-04 -3.388 -3.387 0.001 7.50 - CaCO3 5.548e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 - CaHCO3+ 3.182e-06 2.861e-06 -5.497 -5.543 -0.046 9.73 - CaOH+ 2.878e-08 2.572e-08 -7.541 -7.590 -0.049 (0) - CaHSO4+ 3.171e-11 2.833e-11 -10.499 -10.548 -0.049 (0) +Ca 2.929e-03 + Ca+2 2.580e-03 1.663e-03 -2.588 -2.779 -0.191 -17.89 + CaSO4 3.406e-04 3.411e-04 -3.468 -3.467 0.001 7.22 + CaCO3 5.547e-06 5.563e-06 -5.256 -5.255 0.001 -14.60 + CaHCO3+ 3.220e-06 2.892e-06 -5.492 -5.539 -0.047 9.73 + CaOH+ 2.913e-08 2.599e-08 -7.536 -7.585 -0.049 (0) + CaHSO4+ 3.400e-11 3.034e-11 -10.469 -10.518 -0.049 (0) Cl 2.500e-03 - Cl- 2.500e-03 2.230e-03 -2.602 -2.652 -0.050 18.15 - FeCl+ 3.868e-11 3.457e-11 -10.412 -10.461 -0.049 (0) - HCl 7.975e-12 8.070e-12 -11.098 -11.093 0.005 (0) - FeCl+2 1.211e-26 7.808e-27 -25.917 -26.107 -0.191 (0) - FeCl2+ 8.682e-29 7.779e-29 -28.061 -28.109 -0.048 (0) - FeCl3 1.730e-32 1.735e-32 -31.762 -31.761 0.001 (0) -Fe(2) 2.155e-08 - Fe+2 1.719e-08 1.123e-08 -7.765 -7.950 -0.185 -21.90 - FeSO4 2.822e-09 2.830e-09 -8.549 -8.548 0.001 18.97 - FeHCO3+ 5.724e-10 5.115e-10 -9.242 -9.291 -0.049 (0) - FeCO3 5.463e-10 5.478e-10 -9.263 -9.261 0.001 (0) - FeOH+ 3.772e-10 3.380e-10 -9.423 -9.471 -0.048 (0) - FeCl+ 3.868e-11 3.457e-11 -10.412 -10.461 -0.049 (0) - Fe(OH)2 2.730e-13 2.738e-13 -12.564 -12.563 0.001 (0) - Fe(OH)3- 1.081e-15 9.684e-16 -14.966 -15.014 -0.048 (0) - FeHSO4+ 2.186e-16 1.954e-16 -15.660 -15.709 -0.049 (0) - Fe(HS)2 2.784e-18 2.792e-18 -17.555 -17.554 0.001 (0) - Fe(HS)3- 1.797e-25 1.606e-25 -24.745 -24.794 -0.049 (0) + Cl- 2.500e-03 2.228e-03 -2.602 -2.652 -0.050 18.15 + FeCl+ 3.921e-11 3.500e-11 -10.407 -10.456 -0.049 (0) + HCl 8.047e-12 8.146e-12 -11.094 -11.089 0.005 (0) + FeCl+2 1.255e-26 8.051e-27 -25.901 -26.094 -0.193 (0) + FeCl2+ 8.951e-29 8.011e-29 -28.048 -28.096 -0.048 (0) + FeCl3 1.779e-32 1.785e-32 -31.750 -31.748 0.001 (0) +Fe(2) 2.201e-08 + Fe+2 1.750e-08 1.138e-08 -7.757 -7.944 -0.187 -21.90 + FeSO4 2.967e-09 2.976e-09 -8.528 -8.526 0.001 30.28 + FeHCO3+ 5.748e-10 5.130e-10 -9.240 -9.290 -0.049 (0) + FeCO3 5.421e-10 5.436e-10 -9.266 -9.265 0.001 (0) + FeOH+ 3.787e-10 3.390e-10 -9.422 -9.470 -0.048 (0) + FeCl+ 3.921e-11 3.500e-11 -10.407 -10.456 -0.049 (0) + Fe(OH)2 2.709e-13 2.717e-13 -12.567 -12.566 0.001 (0) + Fe(OH)3- 1.062e-15 9.508e-16 -14.974 -15.022 -0.048 (0) + FeHSO4+ 2.326e-16 2.076e-16 -15.633 -15.683 -0.049 (0) + Fe(HS)2 2.741e-18 2.749e-18 -17.562 -17.561 0.001 (0) + Fe(HS)3- 1.746e-25 1.559e-25 -24.758 -24.807 -0.049 (0) Fe(3) 3.263e-14 Fe(OH)3 2.746e-14 2.754e-14 -13.561 -13.560 0.001 (0) - Fe(OH)4- 2.664e-15 2.391e-15 -14.574 -14.621 -0.047 (0) - Fe(OH)2+ 2.503e-15 2.246e-15 -14.602 -14.649 -0.047 (0) - FeOH+2 1.105e-19 7.124e-20 -18.957 -19.147 -0.191 (0) - FeSO4+ 2.011e-24 1.802e-24 -23.697 -23.744 -0.048 (0) - Fe+3 2.794e-25 1.159e-25 -24.554 -24.936 -0.382 (0) - Fe(SO4)2- 6.252e-26 5.587e-26 -25.204 -25.253 -0.049 (0) - FeCl+2 1.211e-26 7.808e-27 -25.917 -26.107 -0.191 (0) - FeCl2+ 8.682e-29 7.779e-29 -28.061 -28.109 -0.048 (0) - FeHSO4+2 7.946e-32 5.067e-32 -31.100 -31.295 -0.195 (0) - FeCl3 1.730e-32 1.735e-32 -31.762 -31.761 0.001 (0) - Fe2(OH)2+4 8.262e-37 1.366e-37 -36.083 -36.865 -0.782 (0) - Fe3(OH)4+5 0.000e+00 0.000e+00 -47.972 -49.193 -1.221 (0) -H(0) 1.333e-11 - H2 6.663e-12 6.682e-12 -11.176 -11.175 0.001 28.61 + Fe(OH)4- 2.639e-15 2.365e-15 -14.579 -14.626 -0.048 (0) + Fe(OH)2+ 2.533e-15 2.270e-15 -14.596 -14.644 -0.048 (0) + FeOH+2 1.134e-19 7.278e-20 -18.945 -19.138 -0.193 (0) + FeSO4+ 2.156e-24 1.929e-24 -23.666 -23.715 -0.048 (0) + Fe+3 2.910e-25 1.197e-25 -24.536 -24.922 -0.386 (0) + Fe(SO4)2- 6.953e-26 6.206e-26 -25.158 -25.207 -0.049 (0) + FeCl+2 1.255e-26 8.051e-27 -25.901 -26.094 -0.193 (0) + FeCl2+ 8.951e-29 8.011e-29 -28.048 -28.096 -0.048 (0) + FeHSO4+2 8.644e-32 5.485e-32 -31.063 -31.261 -0.198 (0) + FeCl3 1.779e-32 1.785e-32 -31.750 -31.748 0.001 (0) + Fe2(OH)2+4 8.795e-37 1.426e-37 -36.056 -36.846 -0.790 (0) + Fe3(OH)4+5 0.000e+00 0.000e+00 -47.935 -49.170 -1.235 (0) +H(0) 1.312e-11 + H2 6.561e-12 6.580e-12 -11.183 -11.182 0.001 28.61 Na 2.500e-03 - Na+ 2.443e-03 2.187e-03 -2.612 -2.660 -0.048 -1.36 - NaSO4- 5.622e-05 5.046e-05 -4.250 -4.297 -0.047 -14.46 - NaHCO3 8.629e-07 8.678e-07 -6.064 -6.062 0.002 31.73 + Na+ 2.467e-03 2.206e-03 -2.608 -2.656 -0.049 -1.36 + NaSO4- 3.191e-05 2.849e-05 -4.496 -4.545 -0.049 17.06 + NaHCO3 8.611e-07 8.661e-07 -6.065 -6.062 0.003 31.73 + Na2SO4 3.057e-11 3.065e-11 -10.515 -10.514 0.001 47.96 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -70.031 -70.030 0.001 30.40 -S(-2) 6.410e-10 - HS- 5.926e-10 5.282e-10 -9.227 -9.277 -0.050 20.68 - H2S 4.837e-11 4.851e-11 -10.315 -10.314 0.001 36.27 - S-2 9.422e-15 6.074e-15 -14.026 -14.217 -0.191 (0) - Fe(HS)2 2.784e-18 2.792e-18 -17.555 -17.554 0.001 (0) - (H2S)2 1.237e-22 1.240e-22 -21.908 -21.907 0.001 30.09 - Fe(HS)3- 1.797e-25 1.606e-25 -24.745 -24.794 -0.049 (0) + O2 0.000e+00 0.000e+00 -70.000 -69.999 0.001 30.40 +S(-2) 6.331e-10 + HS- 5.849e-10 5.206e-10 -9.233 -9.283 -0.051 20.68 + H2S 4.818e-11 4.832e-11 -10.317 -10.316 0.001 36.27 + S-2 9.232e-15 5.923e-15 -14.035 -14.227 -0.193 (0) + Fe(HS)2 2.741e-18 2.749e-18 -17.562 -17.561 0.001 (0) + (H2S)2 1.227e-22 1.230e-22 -21.911 -21.910 0.001 30.09 + Fe(HS)3- 1.746e-25 1.559e-25 -24.758 -24.807 -0.049 (0) S(6) 2.667e-03 - SO4-2 2.201e-03 1.417e-03 -2.657 -2.848 -0.191 18.23 - CaSO4 4.092e-04 4.104e-04 -3.388 -3.387 0.001 7.50 - NaSO4- 5.622e-05 5.046e-05 -4.250 -4.297 -0.047 -14.46 - FeSO4 2.822e-09 2.830e-09 -8.549 -8.548 0.001 18.97 - HSO4- 1.620e-09 1.447e-09 -8.791 -8.839 -0.049 40.35 - CaHSO4+ 3.171e-11 2.833e-11 -10.499 -10.548 -0.049 (0) - FeHSO4+ 2.186e-16 1.954e-16 -15.660 -15.709 -0.049 (0) - FeSO4+ 2.011e-24 1.802e-24 -23.697 -23.744 -0.048 (0) - Fe(SO4)2- 6.252e-26 5.587e-26 -25.204 -25.253 -0.049 (0) - FeHSO4+2 7.946e-32 5.067e-32 -31.100 -31.295 -0.195 (0) + SO4-2 2.294e-03 1.470e-03 -2.639 -2.833 -0.193 14.71 + CaSO4 3.406e-04 3.411e-04 -3.468 -3.467 0.001 7.22 + NaSO4- 3.191e-05 2.849e-05 -4.496 -4.545 -0.049 17.06 + FeSO4 2.967e-09 2.976e-09 -8.528 -8.526 0.001 30.28 + HSO4- 1.700e-09 1.517e-09 -8.770 -8.819 -0.049 40.35 + CaHSO4+ 3.400e-11 3.034e-11 -10.469 -10.518 -0.049 (0) + Na2SO4 3.057e-11 3.065e-11 -10.515 -10.514 0.001 47.96 + FeHSO4+ 2.326e-16 2.076e-16 -15.633 -15.683 -0.049 (0) + FeSO4+ 2.156e-24 1.929e-24 -23.666 -23.715 -0.048 (0) + Fe(SO4)2- 6.953e-26 6.206e-26 -25.158 -25.207 -0.049 (0) + FeHSO4+2 8.644e-32 5.485e-32 -31.063 -31.261 -0.198 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -1.36 -5.64 -4.28 CaSO4 + Anhydrite -1.30 -5.61 -4.31 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -9.88 -12.68 -2.80 CH4 + CH4(g) -9.90 -12.70 -2.80 CH4 CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 - FeS(ppt) -5.33 -9.25 -3.92 FeS - Goethite 0.00 -1.00 -1.00 FeOOH - Gypsum -1.05 -5.64 -4.58 CaSO4:2H2O - H2(g) -8.07 -11.18 -3.10 H2 + FeS(ppt) -5.34 -9.25 -3.92 FeS + Goethite -0.00 -1.00 -1.00 FeOOH + Gypsum -1.06 -5.61 -4.55 CaSO4:2H2O + H2(g) -8.08 -11.18 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O H2S(g) -9.32 -17.26 -7.94 H2S Halite -6.88 -5.31 1.57 NaCl Hematite 2.01 -2.00 -4.01 Fe2O3 - Mackinawite -4.60 -9.25 -4.65 FeS - Melanterite -8.59 -10.80 -2.21 FeSO4:7H2O - Mirabilite -6.93 -8.17 -1.24 Na2SO4:10H2O - O2(g) -67.14 -70.03 -2.89 O2 - Pyrite -0.00 -18.48 -18.48 FeS2 + Mackinawite -4.61 -9.25 -4.65 FeS + Melanterite -8.57 -10.78 -2.21 FeSO4:7H2O + Mirabilite -7.44 -8.15 -0.71 Na2SO4:10H2O + O2(g) -67.11 -70.00 -2.89 O2 + Pyrite 0.00 -18.48 -18.48 FeS2 Siderite -2.75 -13.64 -10.89 FeCO3 - Sulfur -7.17 -2.29 4.88 S - Thenardite -7.87 -8.17 -0.30 Na2SO4 + Sulfur -7.17 -2.28 4.88 S + Thenardite -8.80 -8.15 0.65 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -665,156 +669,158 @@ Reaction 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.001e+01 5.112e-03 -Calcite 0.00 -8.48 -8.48 1.000e+01 9.994e+00 -5.552e-03 +CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.001e+01 5.115e-03 +Calcite 0.00 -8.48 -8.48 1.000e+01 9.994e+00 -5.550e-03 Goethite -0.00 -1.00 -1.00 1.000e+01 1.000e+01 2.667e-03 -Gypsum -0.64 -5.22 -4.58 0.000e+00 0 0.000e+00 -Pyrite -0.00 -18.48 -18.48 1.000e+01 9.997e+00 -2.667e-03 +Gypsum -0.64 -5.19 -4.55 0.000e+00 0 0.000e+00 +Pyrite 0.00 -18.48 -18.48 1.000e+01 9.997e+00 -2.667e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 4.402e-04 4.402e-04 - Ca 5.553e-03 5.552e-03 + C 4.354e-04 4.354e-04 + Ca 5.550e-03 5.550e-03 Cl 5.000e-03 5.000e-03 - Fe 3.499e-08 3.499e-08 + Fe 3.609e-08 3.609e-08 Na 5.000e-03 5.000e-03 S 5.333e-03 5.333e-03 ----------------------------Description of solution---------------------------- - pH = 7.879 Charge balance - pe = -3.812 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 1657 - Density (g/cm³) = 0.99799 - Volume (L) = 1.00304 - Viscosity (mPa s) = 0.89444 + pH = 7.873 Charge balance + pe = -3.801 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 1674 + Density (g/cm³) = 0.99801 + Volume (L) = 1.00302 + Viscosity (mPa s) = 0.89451 Activity of water = 1.000 - Ionic strength (mol/kgw) = 2.237e-02 + Ionic strength (mol/kgw) = 2.316e-02 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = 4.382e-04 - Total CO2 (mol/kg) = 4.402e-04 + Total alkalinity (eq/kg) = 4.333e-04 + Total CO2 (mol/kg) = 4.354e-04 Temperature (°C) = 25.00 Electrical balance (eq) = -1.217e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 25 Total H = 1.110098e+02 - Total O = 5.552732e+01 + Total O = 5.552730e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 8.902e-07 7.663e-07 -6.051 -6.116 -0.065 -3.97 - H+ 1.491e-08 1.320e-08 -7.826 -7.879 -0.053 0.00 + OH- 8.802e-07 7.560e-07 -6.055 -6.121 -0.066 -3.97 + H+ 1.514e-08 1.338e-08 -7.820 -7.873 -0.054 0.00 H2O 5.551e+01 9.997e-01 1.744 -0.000 0.000 18.07 -C(-4) 7.558e-14 - CH4 7.558e-14 7.597e-14 -13.122 -13.119 0.002 35.46 -C(4) 4.402e-04 - HCO3- 4.163e-04 3.623e-04 -3.381 -3.441 -0.060 24.70 - CO2 1.072e-05 1.076e-05 -4.970 -4.968 0.001 34.43 - CaCO3 5.535e-06 5.563e-06 -5.257 -5.255 0.002 -14.60 - CaHCO3+ 4.119e-06 3.596e-06 -5.385 -5.444 -0.059 9.75 - CO3-2 2.242e-06 1.287e-06 -5.649 -5.890 -0.241 -3.47 - NaHCO3 1.305e-06 1.319e-06 -5.884 -5.880 0.004 31.73 - FeHCO3+ 6.547e-10 5.664e-10 -9.184 -9.247 -0.063 (0) - FeCO3 4.801e-10 4.825e-10 -9.319 -9.316 0.002 (0) +C(-4) 6.972e-14 + CH4 6.972e-14 7.010e-14 -13.157 -13.154 0.002 35.46 +C(4) 4.354e-04 + HCO3- 4.115e-04 3.575e-04 -3.386 -3.447 -0.061 24.71 + CO2 1.072e-05 1.076e-05 -4.970 -4.968 0.002 34.43 + CaCO3 5.534e-06 5.563e-06 -5.257 -5.255 0.002 -14.60 + CaHCO3+ 4.183e-06 3.645e-06 -5.379 -5.438 -0.060 9.75 + CO3-2 2.199e-06 1.253e-06 -5.658 -5.902 -0.244 -3.46 + NaHCO3 1.305e-06 1.319e-06 -5.884 -5.880 0.005 31.73 + FeHCO3+ 6.583e-10 5.683e-10 -9.182 -9.245 -0.064 (0) + FeCO3 4.752e-10 4.777e-10 -9.323 -9.321 0.002 (0) (CO2)2 2.114e-12 2.125e-12 -11.675 -11.673 0.002 68.87 -Ca 5.553e-03 - Ca+2 4.485e-03 2.573e-03 -2.348 -2.590 -0.241 -17.79 - CaSO4 1.058e-03 1.064e-03 -2.975 -2.973 0.002 7.50 - CaCO3 5.535e-06 5.563e-06 -5.257 -5.255 0.002 -14.60 - CaHCO3+ 4.119e-06 3.596e-06 -5.385 -5.444 -0.059 9.75 - CaOH+ 3.737e-08 3.233e-08 -7.427 -7.490 -0.063 (0) - CaHSO4+ 1.067e-10 9.230e-11 -9.972 -10.035 -0.063 (0) +Ca 5.550e-03 + Ca+2 4.643e-03 2.644e-03 -2.333 -2.578 -0.245 -17.79 + CaSO4 8.974e-04 8.996e-04 -3.047 -3.046 0.001 7.22 + CaCO3 5.534e-06 5.563e-06 -5.257 -5.255 0.002 -14.60 + CaHCO3+ 4.183e-06 3.645e-06 -5.379 -5.438 -0.060 9.75 + CaOH+ 3.796e-08 3.277e-08 -7.421 -7.485 -0.064 (0) + CaHSO4+ 1.169e-10 1.009e-10 -9.932 -9.996 -0.064 (0) Cl 5.000e-03 - Cl- 5.000e-03 4.311e-03 -2.301 -2.365 -0.064 18.18 - FeCl+ 1.075e-10 9.302e-11 -9.968 -10.031 -0.063 (0) - HCl 1.919e-11 1.961e-11 -10.717 -10.708 0.010 (0) - FeCl+2 5.272e-26 2.999e-26 -25.278 -25.523 -0.245 (0) - FeCl2+ 6.651e-28 5.776e-28 -27.177 -27.238 -0.061 (0) - FeCl3 2.478e-31 2.490e-31 -30.606 -30.604 0.002 (0) -Fe(2) 3.499e-08 - Fe+2 2.689e-08 1.563e-08 -7.570 -7.806 -0.236 -21.80 - FeSO4 6.427e-09 6.460e-09 -8.192 -8.190 0.002 18.97 - FeHCO3+ 6.547e-10 5.664e-10 -9.184 -9.247 -0.063 (0) - FeCO3 4.801e-10 4.825e-10 -9.319 -9.316 0.002 (0) - FeOH+ 4.309e-10 3.742e-10 -9.366 -9.427 -0.061 (0) - FeCl+ 1.075e-10 9.302e-11 -9.968 -10.031 -0.063 (0) - Fe(OH)2 2.399e-13 2.411e-13 -12.620 -12.618 0.002 (0) - Fe(OH)3- 7.810e-16 6.783e-16 -15.107 -15.169 -0.061 (0) - FeHSO4+ 6.481e-16 5.607e-16 -15.188 -15.251 -0.063 (0) - Fe(HS)2 2.154e-18 2.165e-18 -17.667 -17.664 0.002 (0) - Fe(HS)3- 1.075e-25 9.297e-26 -24.969 -25.032 -0.063 (0) -Fe(3) 3.282e-14 + Cl- 5.000e-03 4.302e-03 -2.301 -2.366 -0.065 18.19 + FeCl+ 1.094e-10 9.442e-11 -9.961 -10.025 -0.064 (0) + HCl 1.939e-11 1.983e-11 -10.712 -10.703 0.010 (0) + FeCl+2 5.522e-26 3.117e-26 -25.258 -25.506 -0.248 (0) + FeCl2+ 6.910e-28 5.990e-28 -27.161 -27.223 -0.062 (0) + FeCl3 2.563e-31 2.577e-31 -30.591 -30.589 0.002 (0) +Fe(2) 3.609e-08 + Fe+2 2.756e-08 1.590e-08 -7.560 -7.799 -0.239 -21.79 + FeSO4 6.860e-09 6.897e-09 -8.164 -8.161 0.002 30.28 + FeHCO3+ 6.583e-10 5.683e-10 -9.182 -9.245 -0.064 (0) + FeCO3 4.752e-10 4.777e-10 -9.323 -9.321 0.002 (0) + FeOH+ 4.332e-10 3.755e-10 -9.363 -9.425 -0.062 (0) + FeCl+ 1.094e-10 9.442e-11 -9.961 -10.025 -0.064 (0) + Fe(OH)2 2.375e-13 2.387e-13 -12.624 -12.622 0.002 (0) + Fe(OH)3- 7.643e-16 6.625e-16 -15.117 -15.179 -0.062 (0) + FeHSO4+ 7.028e-16 6.067e-16 -15.153 -15.217 -0.064 (0) + Fe(HS)2 2.111e-18 2.122e-18 -17.675 -17.673 0.002 (0) + Fe(HS)3- 1.036e-25 8.944e-26 -24.985 -25.048 -0.064 (0) +Fe(3) 3.284e-14 Fe(OH)3 2.739e-14 2.753e-14 -13.562 -13.560 0.002 (0) - Fe(OH)2+ 3.243e-15 2.823e-15 -14.489 -14.549 -0.060 (0) - Fe(OH)4- 2.184e-15 1.901e-15 -14.661 -14.721 -0.060 (0) - FeOH+2 1.979e-19 1.126e-19 -18.703 -18.948 -0.245 (0) - FeSO4+ 6.759e-24 5.870e-24 -23.170 -23.231 -0.061 (0) - Fe+3 6.894e-25 2.304e-25 -24.162 -24.638 -0.476 (0) - Fe(SO4)2- 3.451e-25 2.985e-25 -24.462 -24.525 -0.063 (0) - FeCl+2 5.272e-26 2.999e-26 -25.278 -25.523 -0.245 (0) - FeCl2+ 6.651e-28 5.776e-28 -27.177 -27.238 -0.061 (0) - FeHSO4+2 3.706e-31 2.076e-31 -30.431 -30.683 -0.252 (0) - FeCl3 2.478e-31 2.490e-31 -30.606 -30.604 0.002 (0) - Fe2(OH)2+4 3.468e-36 3.413e-37 -35.460 -36.467 -1.007 (0) - Fe3(OH)4+5 0.000e+00 0.000e+00 -47.123 -48.696 -1.573 (0) -H(0) 1.031e-11 - H2 5.156e-12 5.183e-12 -11.288 -11.285 0.002 28.61 + Fe(OH)2+ 3.294e-15 2.861e-15 -14.482 -14.543 -0.061 (0) + Fe(OH)4- 2.159e-15 1.876e-15 -14.666 -14.727 -0.061 (0) + FeOH+2 2.050e-19 1.157e-19 -18.688 -18.937 -0.248 (0) + FeSO4+ 7.403e-24 6.417e-24 -23.131 -23.193 -0.062 (0) + Fe+3 7.275e-25 2.399e-25 -24.138 -24.620 -0.482 (0) + Fe(SO4)2- 3.966e-25 3.424e-25 -24.402 -24.465 -0.064 (0) + FeCl+2 5.522e-26 3.117e-26 -25.258 -25.506 -0.248 (0) + FeCl2+ 6.910e-28 5.990e-28 -27.161 -27.223 -0.062 (0) + FeHSO4+2 4.140e-31 2.300e-31 -30.383 -30.638 -0.255 (0) + FeCl3 2.563e-31 2.577e-31 -30.591 -30.589 0.002 (0) + Fe2(OH)2+4 3.782e-36 3.603e-37 -35.422 -36.443 -1.021 (0) + Fe3(OH)4+5 0.000e+00 0.000e+00 -47.071 -48.667 -1.596 (0) +H(0) 1.010e-11 + H2 5.052e-12 5.079e-12 -11.296 -11.294 0.002 28.61 Na 5.000e-03 - Na+ 4.817e-03 4.179e-03 -2.317 -2.379 -0.062 -1.31 - NaSO4- 1.816e-04 1.581e-04 -3.741 -3.801 -0.060 -12.22 - NaHCO3 1.305e-06 1.319e-06 -5.884 -5.880 0.004 31.73 + Na+ 4.894e-03 4.237e-03 -2.310 -2.373 -0.063 -1.31 + NaSO4- 1.051e-04 9.080e-05 -3.978 -4.042 -0.064 17.30 + NaHCO3 1.305e-06 1.319e-06 -5.884 -5.880 0.005 31.73 + Na2SO4 1.867e-10 1.876e-10 -9.729 -9.727 0.002 47.96 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -69.812 -69.809 0.002 30.40 -S(-2) 5.033e-10 - HS- 4.580e-10 3.943e-10 -9.339 -9.404 -0.065 20.71 - H2S 4.528e-11 4.552e-11 -10.344 -10.342 0.002 36.27 - S-2 6.339e-15 3.607e-15 -14.198 -14.443 -0.245 (0) - Fe(HS)2 2.154e-18 2.165e-18 -17.667 -17.664 0.002 (0) - (H2S)2 1.086e-22 1.092e-22 -21.964 -21.962 0.002 30.09 - Fe(HS)3- 1.075e-25 9.297e-26 -24.969 -25.032 -0.063 (0) + O2 0.000e+00 0.000e+00 -69.777 -69.774 0.002 30.40 +S(-2) 4.956e-10 + HS- 4.506e-10 3.870e-10 -9.346 -9.412 -0.066 20.72 + H2S 4.505e-11 4.529e-11 -10.346 -10.344 0.002 36.27 + S-2 6.188e-15 3.493e-15 -14.208 -14.457 -0.248 (0) + Fe(HS)2 2.111e-18 2.122e-18 -17.675 -17.673 0.002 (0) + (H2S)2 1.075e-22 1.081e-22 -21.969 -21.966 0.002 30.09 + Fe(HS)3- 1.036e-25 8.944e-26 -24.985 -25.048 -0.064 (0) S(6) 5.333e-03 - SO4-2 4.094e-03 2.324e-03 -2.388 -2.634 -0.246 19.46 - CaSO4 1.058e-03 1.064e-03 -2.975 -2.973 0.002 7.50 - NaSO4- 1.816e-04 1.581e-04 -3.741 -3.801 -0.060 -12.22 - FeSO4 6.427e-09 6.460e-09 -8.192 -8.190 0.002 18.97 - HSO4- 3.449e-09 2.984e-09 -8.462 -8.525 -0.063 40.39 - CaHSO4+ 1.067e-10 9.230e-11 -9.972 -10.035 -0.063 (0) - FeHSO4+ 6.481e-16 5.607e-16 -15.188 -15.251 -0.063 (0) - FeSO4+ 6.759e-24 5.870e-24 -23.170 -23.231 -0.061 (0) - Fe(SO4)2- 3.451e-25 2.985e-25 -24.462 -24.525 -0.063 (0) - FeHSO4+2 3.706e-31 2.076e-31 -30.431 -30.683 -0.252 (0) + SO4-2 4.331e-03 2.439e-03 -2.363 -2.613 -0.249 14.79 + CaSO4 8.974e-04 8.996e-04 -3.047 -3.046 0.001 7.22 + NaSO4- 1.051e-04 9.080e-05 -3.978 -4.042 -0.064 17.30 + FeSO4 6.860e-09 6.897e-09 -8.164 -8.161 0.002 30.28 + HSO4- 3.677e-09 3.174e-09 -8.435 -8.498 -0.064 40.39 + Na2SO4 1.867e-10 1.876e-10 -9.729 -9.727 0.002 47.96 + CaHSO4+ 1.169e-10 1.009e-10 -9.932 -9.996 -0.064 (0) + FeHSO4+ 7.028e-16 6.067e-16 -15.153 -15.217 -0.064 (0) + FeSO4+ 7.403e-24 6.417e-24 -23.131 -23.193 -0.062 (0) + Fe(SO4)2- 3.966e-25 3.424e-25 -24.402 -24.465 -0.064 (0) + FeHSO4+2 4.140e-31 2.300e-31 -30.383 -30.638 -0.255 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -0.95 -5.22 -4.28 CaSO4 + Anhydrite -0.88 -5.19 -4.31 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -10.32 -13.12 -2.80 CH4 + CH4(g) -10.35 -13.15 -2.80 CH4 CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 - FeS(ppt) -5.42 -9.33 -3.92 FeS + FeS(ppt) -5.42 -9.34 -3.92 FeS Goethite -0.00 -1.00 -1.00 FeOOH - Gypsum -0.64 -5.22 -4.58 CaSO4:2H2O - H2(g) -8.18 -11.29 -3.10 H2 + Gypsum -0.64 -5.19 -4.55 CaSO4:2H2O + H2(g) -8.19 -11.29 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -9.35 -17.28 -7.94 H2S + H2S(g) -9.35 -17.29 -7.94 H2S Halite -6.31 -4.74 1.57 NaCl Hematite 2.01 -2.00 -4.01 Fe2O3 - Mackinawite -4.68 -9.33 -4.65 FeS - Melanterite -8.23 -10.44 -2.21 FeSO4:7H2O - Mirabilite -6.15 -7.39 -1.24 Na2SO4:10H2O - O2(g) -66.92 -69.81 -2.89 O2 - Pyrite -0.00 -18.48 -18.48 FeS2 + Mackinawite -4.69 -9.34 -4.65 FeS + Melanterite -8.20 -10.41 -2.21 FeSO4:7H2O + Mirabilite -6.65 -7.36 -0.71 Na2SO4:10H2O + O2(g) -66.88 -69.77 -2.89 O2 + Pyrite 0.00 -18.48 -18.48 FeS2 Siderite -2.81 -13.70 -10.89 FeCO3 - Sulfur -7.09 -2.21 4.88 S - Thenardite -7.09 -7.39 -0.30 Na2SO4 + Sulfur -7.08 -2.20 4.88 S + Thenardite -8.01 -7.36 0.65 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -847,155 +853,157 @@ Reaction 1. Phase SI log IAP log K(T, P) Initial Final Delta CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.002e+01 1.583e-02 -Calcite 0.00 -8.48 -8.48 1.000e+01 9.984e+00 -1.617e-02 -Goethite -0.00 -1.00 -1.00 1.000e+01 1.001e+01 8.000e-03 -Gypsum -0.03 -4.61 -4.58 0.000e+00 0 0.000e+00 -Pyrite 0.00 -18.48 -18.48 1.000e+01 9.992e+00 -8.000e-03 +Calcite 0.00 -8.48 -8.48 1.000e+01 9.984e+00 -1.616e-02 +Goethite 0.00 -1.00 -1.00 1.000e+01 1.001e+01 8.000e-03 +Gypsum -0.01 -4.56 -4.55 0.000e+00 0 0.000e+00 +Pyrite -0.00 -18.48 -18.48 1.000e+01 9.992e+00 -8.000e-03 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 3.341e-04 3.340e-04 - Ca 1.617e-02 1.617e-02 + C 3.304e-04 3.304e-04 + Ca 1.616e-02 1.616e-02 Cl 1.500e-02 1.500e-02 - Fe 8.228e-08 8.227e-08 + Fe 8.610e-08 8.609e-08 Na 1.500e-02 1.500e-02 S 1.600e-02 1.600e-02 ----------------------------Description of solution---------------------------- - pH = 7.722 Charge balance - pe = -3.572 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 4332 - Density (g/cm³) = 0.99980 - Volume (L) = 1.00321 - Viscosity (mPa s) = 0.89930 + pH = 7.715 Charge balance + pe = -3.559 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 4388 + Density (g/cm³) = 0.99986 + Volume (L) = 1.00315 + Viscosity (mPa s) = 0.89941 Activity of water = 0.999 - Ionic strength (mol/kgw) = 6.003e-02 + Ionic strength (mol/kgw) = 6.301e-02 Mass of water (kg) = 9.999e-01 - Total alkalinity (eq/kg) = 3.310e-04 - Total CO2 (mol/kg) = 3.341e-04 + Total alkalinity (eq/kg) = 3.273e-04 + Total CO2 (mol/kg) = 3.304e-04 Temperature (°C) = 25.00 - Electrical balance (eq) = -1.211e-09 + Electrical balance (eq) = -1.213e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 25 Total H = 1.110044e+02 - Total O = 5.556705e+01 + Total O = 5.556704e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 6.668e-07 5.327e-07 -6.176 -6.274 -0.097 -3.84 - H+ 2.243e-08 1.898e-08 -7.649 -7.722 -0.072 0.00 + OH- 6.592e-07 5.244e-07 -6.181 -6.280 -0.099 -3.83 + H+ 2.284e-08 1.928e-08 -7.641 -7.715 -0.073 0.00 H2O 5.551e+01 9.990e-01 1.744 -0.000 0.000 18.07 -C(-4) 1.646e-14 - CH4 1.646e-14 1.669e-14 -13.784 -13.778 0.006 35.46 -C(4) 3.341e-04 - HCO3- 3.078e-04 2.519e-04 -3.512 -3.599 -0.087 24.82 +C(-4) 1.474e-14 + CH4 1.474e-14 1.496e-14 -13.831 -13.825 0.006 35.46 +C(4) 3.304e-04 + HCO3- 3.041e-04 2.480e-04 -3.517 -3.606 -0.089 24.83 CO2 1.066e-05 1.076e-05 -4.972 -4.968 0.004 34.43 - CaHCO3+ 6.277e-06 5.170e-06 -5.202 -5.286 -0.084 9.80 - CaCO3 5.487e-06 5.563e-06 -5.261 -5.255 0.006 -14.60 - NaHCO3 2.424e-06 2.492e-06 -5.615 -5.603 0.012 31.73 - CO3-2 1.388e-06 6.223e-07 -5.858 -6.206 -0.348 -3.08 - FeHCO3+ 8.315e-10 6.740e-10 -9.080 -9.171 -0.091 (0) - FeCO3 3.940e-10 3.995e-10 -9.405 -9.399 0.006 (0) - (CO2)2 2.096e-12 2.125e-12 -11.679 -11.673 0.006 68.87 -Ca 1.617e-02 - Ca+2 1.182e-02 5.322e-03 -1.927 -2.274 -0.347 -17.57 - CaSO4 4.337e-03 4.397e-03 -2.363 -2.357 0.006 7.50 - CaHCO3+ 6.277e-06 5.170e-06 -5.202 -5.286 -0.084 9.80 - CaCO3 5.487e-06 5.563e-06 -5.261 -5.255 0.006 -14.60 - CaOH+ 5.734e-08 4.648e-08 -7.242 -7.333 -0.091 (0) - CaHSO4+ 6.768e-10 5.486e-10 -9.170 -9.261 -0.091 (0) + CaHCO3+ 6.397e-06 5.252e-06 -5.194 -5.280 -0.086 9.80 + CaCO3 5.483e-06 5.563e-06 -5.261 -5.255 0.006 -14.60 + NaHCO3 2.446e-06 2.518e-06 -5.611 -5.599 0.013 31.73 + CO3-2 1.364e-06 6.031e-07 -5.865 -6.220 -0.354 -3.06 + FeHCO3+ 8.360e-10 6.753e-10 -9.078 -9.170 -0.093 (0) + FeCO3 3.884e-10 3.940e-10 -9.411 -9.404 0.006 (0) + (CO2)2 2.095e-12 2.125e-12 -11.679 -11.673 0.006 68.87 +Ca 1.616e-02 + Ca+2 1.235e-02 5.491e-03 -1.908 -2.260 -0.352 -17.56 + CaSO4 3.798e-03 3.823e-03 -2.420 -2.418 0.003 7.22 + CaHCO3+ 6.397e-06 5.252e-06 -5.194 -5.280 -0.086 9.80 + CaCO3 5.483e-06 5.563e-06 -5.261 -5.255 0.006 -14.60 + CaOH+ 5.845e-08 4.721e-08 -7.233 -7.326 -0.093 (0) + CaHSO4+ 7.646e-10 6.177e-10 -9.117 -9.209 -0.093 (0) Cl 1.500e-02 - Cl- 1.500e-02 1.203e-02 -1.824 -1.920 -0.096 18.27 - FeCl+ 5.484e-10 4.446e-10 -9.261 -9.352 -0.091 (0) - HCl 7.420e-11 7.870e-11 -10.130 -10.104 0.026 (0) - FeCl+2 5.659e-25 2.491e-25 -24.247 -24.604 -0.356 (0) - FeCl2+ 1.644e-26 1.339e-26 -25.784 -25.873 -0.089 (0) - FeCl3 1.589e-29 1.611e-29 -28.799 -28.793 0.006 (0) -Fe(2) 8.228e-08 - Fe+2 5.815e-08 2.676e-08 -7.235 -7.573 -0.337 -21.59 - FeSO4 2.181e-08 2.211e-08 -7.661 -7.655 0.006 18.97 - FeHCO3+ 8.315e-10 6.740e-10 -9.080 -9.171 -0.091 (0) - FeCl+ 5.484e-10 4.446e-10 -9.261 -9.352 -0.091 (0) - FeOH+ 5.468e-10 4.454e-10 -9.262 -9.351 -0.089 (0) - FeCO3 3.940e-10 3.995e-10 -9.405 -9.399 0.006 (0) - Fe(OH)2 1.968e-13 1.995e-13 -12.706 -12.700 0.006 (0) - FeHSO4+ 3.403e-15 2.759e-15 -14.468 -14.559 -0.091 (0) - Fe(OH)3- 4.789e-16 3.901e-16 -15.320 -15.409 -0.089 (0) - Fe(HS)2 1.462e-18 1.482e-18 -17.835 -17.829 0.006 (0) - Fe(HS)3- 4.963e-26 4.023e-26 -25.304 -25.395 -0.091 (0) -Fe(3) 3.371e-14 - Fe(OH)3 2.714e-14 2.752e-14 -13.566 -13.560 0.006 (0) - Fe(OH)2+ 4.960e-15 4.058e-15 -14.305 -14.392 -0.087 (0) - Fe(OH)4- 1.614e-15 1.321e-15 -14.792 -14.879 -0.087 (0) - FeOH+2 5.291e-19 2.329e-19 -18.276 -18.633 -0.356 (0) - FeSO4+ 4.287e-23 3.492e-23 -22.368 -22.457 -0.089 (0) - Fe(SO4)2- 4.378e-24 3.549e-24 -23.359 -23.450 -0.091 (0) - Fe+3 3.077e-24 6.853e-25 -23.512 -24.164 -0.652 (0) - FeCl+2 5.659e-25 2.491e-25 -24.247 -24.604 -0.356 (0) - FeCl2+ 1.644e-26 1.339e-26 -25.784 -25.873 -0.089 (0) - FeCl3 1.589e-29 1.611e-29 -28.799 -28.793 0.006 (0) - FeHSO4+2 4.110e-30 1.775e-30 -29.386 -29.751 -0.365 (0) - Fe2(OH)2+4 4.199e-35 1.460e-36 -34.377 -35.836 -1.459 (0) - Fe3(OH)4+5 0.000e+00 0.000e+00 -45.628 -47.907 -2.280 (0) -H(0) 6.997e-12 - H2 3.499e-12 3.547e-12 -11.456 -11.450 0.006 28.61 + Cl- 1.500e-02 1.199e-02 -1.824 -1.921 -0.097 18.28 + FeCl+ 5.578e-10 4.506e-10 -9.254 -9.346 -0.093 (0) + HCl 7.484e-11 7.961e-11 -10.126 -10.099 0.027 (0) + FeCl+2 5.992e-25 2.600e-25 -24.222 -24.585 -0.363 (0) + FeCl2+ 1.715e-26 1.392e-26 -25.766 -25.856 -0.091 (0) + FeCl3 1.644e-29 1.668e-29 -28.784 -28.778 0.006 (0) +Fe(2) 8.610e-08 + Fe+2 5.994e-08 2.723e-08 -7.222 -7.565 -0.343 -21.58 + FeSO4 2.383e-08 2.417e-08 -7.623 -7.617 0.006 30.28 + FeHCO3+ 8.360e-10 6.753e-10 -9.078 -9.170 -0.093 (0) + FeCl+ 5.578e-10 4.506e-10 -9.254 -9.346 -0.093 (0) + FeOH+ 5.498e-10 4.462e-10 -9.260 -9.350 -0.091 (0) + FeCO3 3.884e-10 3.940e-10 -9.411 -9.404 0.006 (0) + Fe(OH)2 1.939e-13 1.968e-13 -12.712 -12.706 0.006 (0) + FeHSO4+ 3.793e-15 3.064e-15 -14.421 -14.514 -0.093 (0) + Fe(OH)3- 4.667e-16 3.788e-16 -15.331 -15.422 -0.091 (0) + Fe(HS)2 1.421e-18 1.442e-18 -17.847 -17.841 0.006 (0) + Fe(HS)3- 4.738e-26 3.827e-26 -25.324 -25.417 -0.093 (0) +Fe(3) 3.377e-14 + Fe(OH)3 2.712e-14 2.752e-14 -13.567 -13.560 0.006 (0) + Fe(OH)2+ 5.055e-15 4.122e-15 -14.296 -14.385 -0.089 (0) + Fe(OH)4- 1.594e-15 1.300e-15 -14.797 -14.886 -0.089 (0) + FeOH+2 5.537e-19 2.403e-19 -18.257 -18.619 -0.363 (0) + FeSO4+ 4.843e-23 3.931e-23 -22.315 -22.406 -0.091 (0) + Fe(SO4)2- 5.314e-24 4.293e-24 -23.275 -23.367 -0.093 (0) + Fe+3 3.294e-24 7.182e-25 -23.482 -24.144 -0.661 (0) + FeCl+2 5.992e-25 2.600e-25 -24.222 -24.585 -0.363 (0) + FeCl2+ 1.715e-26 1.392e-26 -25.766 -25.856 -0.091 (0) + FeCl3 1.644e-29 1.668e-29 -28.784 -28.778 0.006 (0) + FeHSO4+2 4.766e-30 2.030e-30 -29.322 -29.693 -0.371 (0) + Fe2(OH)2+4 4.726e-35 1.554e-36 -34.325 -35.809 -1.483 (0) + Fe3(OH)4+5 0.000e+00 0.000e+00 -45.556 -47.873 -2.317 (0) +H(0) 6.803e-12 + H2 3.401e-12 3.451e-12 -11.468 -11.462 0.006 28.61 Na 1.500e-02 - Na+ 1.395e-02 1.136e-02 -1.855 -1.945 -0.089 -1.18 - NaSO4- 1.049e-03 8.593e-04 -2.979 -3.066 -0.087 -7.84 - NaHCO3 2.424e-06 2.492e-06 -5.615 -5.603 0.012 31.73 + Na+ 1.437e-02 1.166e-02 -1.843 -1.933 -0.091 -1.18 + NaSO4- 6.328e-04 5.113e-04 -3.199 -3.291 -0.093 17.91 + NaHCO3 2.446e-06 2.518e-06 -5.611 -5.599 0.013 31.73 + Na2SO4 2.870e-09 2.907e-09 -8.542 -8.537 0.006 47.96 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -69.487 -69.481 0.006 30.40 -S(-2) 3.528e-10 - HS- 3.120e-10 2.493e-10 -9.506 -9.603 -0.097 20.80 - H2S 4.081e-11 4.137e-11 -10.389 -10.383 0.006 36.27 - S-2 3.604e-15 1.586e-15 -14.443 -14.800 -0.356 (0) - Fe(HS)2 1.462e-18 1.482e-18 -17.835 -17.829 0.006 (0) - (H2S)2 8.897e-23 9.020e-23 -22.051 -22.045 0.006 30.09 - Fe(HS)3- 4.963e-26 4.023e-26 -25.304 -25.395 -0.091 (0) + O2 0.000e+00 0.000e+00 -69.446 -69.439 0.006 30.40 +S(-2) 3.469e-10 + HS- 3.064e-10 2.437e-10 -9.514 -9.613 -0.099 20.81 + H2S 4.050e-11 4.109e-11 -10.393 -10.386 0.006 36.27 + S-2 3.519e-15 1.527e-15 -14.454 -14.816 -0.363 (0) + Fe(HS)2 1.421e-18 1.442e-18 -17.847 -17.841 0.006 (0) + (H2S)2 8.769e-23 8.897e-23 -22.057 -22.051 0.006 30.09 + Fe(HS)3- 4.738e-26 3.827e-26 -25.324 -25.417 -0.093 (0) S(6) 1.600e-02 - SO4-2 1.062e-02 4.647e-03 -1.974 -2.333 -0.359 22.36 - CaSO4 4.337e-03 4.397e-03 -2.363 -2.357 0.006 7.50 - NaSO4- 1.049e-03 8.593e-04 -2.979 -3.066 -0.087 -7.84 - FeSO4 2.181e-08 2.211e-08 -7.661 -7.655 0.006 18.97 - HSO4- 1.058e-08 8.575e-09 -7.976 -8.067 -0.091 40.47 - CaHSO4+ 6.768e-10 5.486e-10 -9.170 -9.261 -0.091 (0) - FeHSO4+ 3.403e-15 2.759e-15 -14.468 -14.559 -0.091 (0) - FeSO4+ 4.287e-23 3.492e-23 -22.368 -22.457 -0.089 (0) - Fe(SO4)2- 4.378e-24 3.549e-24 -23.359 -23.450 -0.091 (0) - FeHSO4+2 4.110e-30 1.775e-30 -29.386 -29.751 -0.365 (0) + SO4-2 1.157e-02 4.991e-03 -1.937 -2.302 -0.365 15.00 + CaSO4 3.798e-03 3.823e-03 -2.420 -2.418 0.003 7.22 + NaSO4- 6.328e-04 5.113e-04 -3.199 -3.291 -0.093 17.91 + FeSO4 2.383e-08 2.417e-08 -7.623 -7.617 0.006 30.28 + HSO4- 1.158e-08 9.357e-09 -7.936 -8.029 -0.093 40.48 + Na2SO4 2.870e-09 2.907e-09 -8.542 -8.537 0.006 47.96 + CaHSO4+ 7.646e-10 6.177e-10 -9.117 -9.209 -0.093 (0) + FeHSO4+ 3.793e-15 3.064e-15 -14.421 -14.514 -0.093 (0) + FeSO4+ 4.843e-23 3.931e-23 -22.315 -22.406 -0.091 (0) + Fe(SO4)2- 5.314e-24 4.293e-24 -23.275 -23.367 -0.093 (0) + FeHSO4+2 4.766e-30 2.030e-30 -29.322 -29.693 -0.371 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -0.33 -4.61 -4.28 CaSO4 + Anhydrite -0.25 -4.56 -4.31 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -10.98 -13.78 -2.80 CH4 + CH4(g) -11.02 -13.83 -2.80 CH4 CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 - FeS(ppt) -5.54 -9.45 -3.92 FeS - Goethite -0.00 -1.00 -1.00 FeOOH - Gypsum -0.03 -4.61 -4.58 CaSO4:2H2O - H2(g) -8.35 -11.45 -3.10 H2 + FeS(ppt) -5.55 -9.46 -3.92 FeS + Goethite 0.00 -1.00 -1.00 FeOOH + Gypsum -0.01 -4.56 -4.55 CaSO4:2H2O + H2(g) -8.36 -11.46 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - H2S(g) -9.39 -17.32 -7.94 H2S - Halite -5.43 -3.86 1.57 NaCl + H2S(g) -9.39 -17.33 -7.94 H2S + Halite -5.42 -3.85 1.57 NaCl Hematite 2.01 -2.00 -4.01 Fe2O3 - Mackinawite -4.81 -9.45 -4.65 FeS - Melanterite -7.70 -9.91 -2.21 FeSO4:7H2O - Mirabilite -4.99 -6.23 -1.24 Na2SO4:10H2O - O2(g) -66.59 -69.48 -2.89 O2 - Pyrite 0.00 -18.48 -18.48 FeS2 + Mackinawite -4.82 -9.46 -4.65 FeS + Melanterite -7.66 -9.87 -2.21 FeSO4:7H2O + Mirabilite -5.47 -6.17 -0.71 Na2SO4:10H2O + O2(g) -66.55 -69.44 -2.89 O2 + Pyrite -0.00 -18.48 -18.48 FeS2 Siderite -2.89 -13.78 -10.89 FeCO3 - Sulfur -6.97 -2.08 4.88 S - Thenardite -5.92 -6.22 -0.30 Na2SO4 + Sulfur -6.96 -2.07 4.88 S + Thenardite -6.82 -6.17 0.65 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1030,153 +1038,155 @@ Phase SI log IAP log K(T, P) Initial Final Delta CO2(g) -3.50 -4.97 -1.47 1.000e+01 1.003e+01 2.650e-02 Calcite 0.00 -8.48 -8.48 1.000e+01 9.973e+00 -2.683e-02 Goethite -0.00 -1.00 -1.00 1.000e+01 1.001e+01 1.333e-02 -Gypsum 0.00 -4.58 -4.58 0.000e+00 8.976e-03 8.976e-03 -Pyrite -0.00 -18.48 -18.48 1.000e+01 9.987e+00 -1.333e-02 +Gypsum 0.00 -4.55 -4.55 0.000e+00 9.408e-03 9.408e-03 +Pyrite 0.00 -18.48 -18.48 1.000e+01 9.987e+00 -1.333e-02 -----------------------------Solution composition------------------------------ Elements Molality Moles - C 3.317e-04 3.315e-04 - Ca 1.786e-02 1.786e-02 + C 3.312e-04 3.310e-04 + Ca 1.743e-02 1.742e-02 Cl 2.501e-02 2.500e-02 - Fe 9.033e-08 9.029e-08 + Fe 9.233e-08 9.228e-08 Na 2.501e-02 2.500e-02 - S 1.770e-02 1.769e-02 + S 1.727e-02 1.726e-02 ----------------------------Description of solution---------------------------- - pH = 7.709 Charge balance - pe = -3.556 Adjusted to redox equilibrium - Specific Conductance (µS/cm, 25°C) = 5635 + pH = 7.708 Charge balance + pe = -3.549 Adjusted to redox equilibrium + Specific Conductance (µS/cm, 25°C) = 5642 Density (g/cm³) = 1.00044 - Volume (L) = 1.00301 - Viscosity (mPa s) = 0.90054 + Volume (L) = 1.00294 + Viscosity (mPa s) = 0.90027 Activity of water = 0.999 - Ionic strength (mol/kgw) = 7.442e-02 - Mass of water (kg) = 9.996e-01 - Total alkalinity (eq/kg) = 3.286e-04 - Total CO2 (mol/kg) = 3.317e-04 + Ionic strength (mol/kgw) = 7.674e-02 + Mass of water (kg) = 9.995e-01 + Total alkalinity (eq/kg) = 3.281e-04 + Total CO2 (mol/kg) = 3.312e-04 Temperature (°C) = 25.00 - Electrical balance (eq) = -1.182e-09 + Electrical balance (eq) = -1.171e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 25 - Total H = 1.109632e+02 - Total O = 5.555319e+01 + Total H = 1.109615e+02 + Total O = 5.555060e+01 ----------------------------Distribution of species---------------------------- Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - OH- 6.607e-07 5.177e-07 -6.180 -6.286 -0.106 -3.80 - H+ 2.331e-08 1.952e-08 -7.632 -7.709 -0.077 0.00 + OH- 6.597e-07 5.155e-07 -6.181 -6.288 -0.107 -3.79 + H+ 2.345e-08 1.961e-08 -7.630 -7.708 -0.078 0.00 H2O 5.551e+01 9.986e-01 1.744 -0.001 0.000 18.07 -C(-4) 1.539e-14 - CH4 1.539e-14 1.566e-14 -13.813 -13.805 0.007 35.46 -C(4) 3.317e-04 - HCO3- 3.038e-04 2.448e-04 -3.517 -3.611 -0.094 24.86 +C(-4) 1.416e-14 + CH4 1.416e-14 1.442e-14 -13.849 -13.841 0.008 35.46 +C(4) 3.312e-04 + HCO3- 3.031e-04 2.437e-04 -3.518 -3.613 -0.095 24.87 CO2 1.064e-05 1.076e-05 -4.973 -4.968 0.005 34.43 - CaHCO3+ 6.550e-06 5.318e-06 -5.184 -5.274 -0.090 9.81 - CaCO3 5.469e-06 5.563e-06 -5.262 -5.255 0.007 -14.60 - NaHCO3 3.843e-06 3.977e-06 -5.415 -5.400 0.015 31.73 - CO3-2 1.394e-06 5.880e-07 -5.856 -6.231 -0.375 -2.97 - FeHCO3+ 8.620e-10 6.880e-10 -9.064 -9.162 -0.098 (0) - FeCO3 3.897e-10 3.964e-10 -9.409 -9.402 0.007 (0) - (CO2)2 2.089e-12 2.125e-12 -11.680 -11.673 0.007 68.87 -Ca 1.786e-02 - Ca+2 1.327e-02 5.632e-03 -1.877 -2.249 -0.372 -17.52 - CaSO4 4.585e-03 4.664e-03 -2.339 -2.331 0.007 7.50 - CaHCO3+ 6.550e-06 5.318e-06 -5.184 -5.274 -0.090 9.81 - CaCO3 5.469e-06 5.563e-06 -5.262 -5.255 0.007 -14.60 - CaOH+ 5.990e-08 4.781e-08 -7.223 -7.320 -0.098 (0) - CaHSO4+ 7.500e-10 5.986e-10 -9.125 -9.223 -0.098 (0) + CaHCO3+ 6.592e-06 5.341e-06 -5.181 -5.272 -0.091 9.82 + CaCO3 5.466e-06 5.563e-06 -5.262 -5.255 0.008 -14.60 + NaHCO3 3.928e-06 4.069e-06 -5.406 -5.390 0.015 31.73 + CO3-2 1.395e-06 5.829e-07 -5.855 -6.234 -0.379 -2.95 + FeHCO3+ 8.587e-10 6.839e-10 -9.066 -9.165 -0.099 (0) + FeCO3 3.855e-10 3.923e-10 -9.414 -9.406 0.008 (0) + (CO2)2 2.088e-12 2.125e-12 -11.680 -11.673 0.008 68.87 +Ca 1.743e-02 + Ca+2 1.350e-02 5.681e-03 -1.870 -2.246 -0.376 -17.51 + CaSO4 3.923e-03 3.954e-03 -2.406 -2.403 0.003 7.22 + CaHCO3+ 6.592e-06 5.341e-06 -5.181 -5.272 -0.091 9.82 + CaCO3 5.466e-06 5.563e-06 -5.262 -5.255 0.008 -14.60 + CaOH+ 6.030e-08 4.802e-08 -7.220 -7.319 -0.099 (0) + CaHSO4+ 8.159e-10 6.497e-10 -9.088 -9.187 -0.099 (0) Cl 2.501e-02 - Cl- 2.501e-02 1.970e-02 -1.602 -1.706 -0.104 18.30 - FeCl+ 9.575e-10 7.642e-10 -9.019 -9.117 -0.098 (0) - HCl 1.232e-10 1.325e-10 -9.910 -9.878 0.032 (0) - FeCl+2 1.076e-24 4.440e-25 -23.968 -24.353 -0.384 (0) - FeCl2+ 4.874e-26 3.906e-26 -25.312 -25.408 -0.096 (0) - FeCl3 7.564e-29 7.694e-29 -28.121 -28.114 0.007 (0) -Fe(2) 9.033e-08 - Fe+2 6.467e-08 2.811e-08 -7.189 -7.551 -0.362 -21.54 - FeSO4 2.288e-08 2.328e-08 -7.641 -7.633 0.007 18.97 - FeCl+ 9.575e-10 7.642e-10 -9.019 -9.117 -0.098 (0) - FeHCO3+ 8.620e-10 6.880e-10 -9.064 -9.162 -0.098 (0) - FeOH+ 5.671e-10 4.546e-10 -9.246 -9.342 -0.096 (0) - FeCO3 3.897e-10 3.964e-10 -9.409 -9.402 0.007 (0) - Fe(OH)2 1.945e-13 1.979e-13 -12.711 -12.704 0.007 (0) - FeHSO4+ 3.743e-15 2.987e-15 -14.427 -14.525 -0.098 (0) - Fe(OH)3- 4.692e-16 3.761e-16 -15.329 -15.425 -0.096 (0) - Fe(HS)2 1.434e-18 1.458e-18 -17.844 -17.836 0.007 (0) - Fe(HS)3- 4.801e-26 3.832e-26 -25.319 -25.417 -0.098 (0) -Fe(3) 3.381e-14 - Fe(OH)3 2.704e-14 2.751e-14 -13.568 -13.561 0.007 (0) - Fe(OH)2+ 5.180e-15 4.174e-15 -14.286 -14.379 -0.094 (0) - Fe(OH)4- 1.592e-15 1.283e-15 -14.798 -14.892 -0.094 (0) - FeOH+2 5.972e-19 2.465e-19 -18.224 -18.608 -0.384 (0) - FeSO4+ 4.755e-23 3.811e-23 -22.323 -22.419 -0.096 (0) - Fe(SO4)2- 4.865e-24 3.883e-24 -23.313 -23.411 -0.098 (0) - Fe+3 3.682e-24 7.463e-25 -23.434 -24.127 -0.693 (0) - FeCl+2 1.076e-24 4.440e-25 -23.968 -24.353 -0.384 (0) - FeCl2+ 4.874e-26 3.906e-26 -25.312 -25.408 -0.096 (0) - FeCl3 7.564e-29 7.694e-29 -28.121 -28.114 0.007 (0) - FeHSO4+2 4.910e-30 1.993e-30 -29.309 -29.701 -0.392 (0) - Fe2(OH)2+4 6.031e-35 1.635e-36 -34.220 -35.786 -1.567 (0) - Fe3(OH)4+5 0.000e+00 0.000e+00 -45.398 -47.846 -2.448 (0) -H(0) 6.862e-12 - H2 3.431e-12 3.490e-12 -11.465 -11.457 0.007 28.61 + Cl- 2.501e-02 1.964e-02 -1.602 -1.707 -0.105 18.30 + FeCl+ 9.554e-10 7.609e-10 -9.020 -9.119 -0.099 (0) + HCl 1.231e-10 1.327e-10 -9.910 -9.877 0.033 (0) + FeCl+2 1.097e-24 4.486e-25 -23.960 -24.348 -0.388 (0) + FeCl2+ 4.922e-26 3.936e-26 -25.308 -25.405 -0.097 (0) + FeCl3 7.597e-29 7.732e-29 -28.119 -28.112 0.008 (0) +Fe(2) 9.233e-08 + Fe+2 6.510e-08 2.806e-08 -7.186 -7.552 -0.366 -21.53 + FeSO4 2.446e-08 2.489e-08 -7.612 -7.604 0.008 30.28 + FeCl+ 9.554e-10 7.609e-10 -9.020 -9.119 -0.099 (0) + FeHCO3+ 8.587e-10 6.839e-10 -9.066 -9.165 -0.099 (0) + FeOH+ 5.651e-10 4.519e-10 -9.248 -9.345 -0.097 (0) + FeCO3 3.855e-10 3.923e-10 -9.414 -9.406 0.008 (0) + Fe(OH)2 1.924e-13 1.959e-13 -12.716 -12.708 0.008 (0) + FeHSO4+ 4.029e-15 3.209e-15 -14.395 -14.494 -0.099 (0) + Fe(OH)3- 4.634e-16 3.706e-16 -15.334 -15.431 -0.097 (0) + Fe(HS)2 1.404e-18 1.429e-18 -17.853 -17.845 0.008 (0) + Fe(HS)3- 4.669e-26 3.718e-26 -25.331 -25.430 -0.099 (0) +Fe(3) 3.383e-14 + Fe(OH)3 2.702e-14 2.750e-14 -13.568 -13.561 0.008 (0) + Fe(OH)2+ 5.214e-15 4.192e-15 -14.283 -14.378 -0.095 (0) + Fe(OH)4- 1.589e-15 1.277e-15 -14.799 -14.894 -0.095 (0) + FeOH+2 6.081e-19 2.486e-19 -18.216 -18.604 -0.388 (0) + FeSO4+ 5.173e-23 4.136e-23 -22.286 -22.383 -0.097 (0) + Fe(SO4)2- 5.669e-24 4.515e-24 -23.246 -23.345 -0.099 (0) + Fe+3 3.781e-24 7.561e-25 -23.422 -24.121 -0.699 (0) + FeCl+2 1.097e-24 4.486e-25 -23.960 -24.348 -0.388 (0) + FeCl2+ 4.922e-26 3.936e-26 -25.308 -25.405 -0.097 (0) + FeCl3 7.597e-29 7.732e-29 -28.119 -28.112 0.008 (0) + FeHSO4+2 5.401e-30 2.172e-30 -29.268 -29.663 -0.396 (0) + Fe2(OH)2+4 6.359e-35 1.664e-36 -34.197 -35.779 -1.582 (0) + Fe3(OH)4+5 0.000e+00 0.000e+00 -45.364 -47.836 -2.472 (0) +H(0) 6.718e-12 + H2 3.359e-12 3.419e-12 -11.474 -11.466 0.008 28.61 Na 2.501e-02 - Na+ 2.325e-02 1.865e-02 -1.633 -1.729 -0.096 -1.15 - NaSO4- 1.753e-03 1.414e-03 -2.756 -2.850 -0.093 -6.75 - NaHCO3 3.843e-06 3.977e-06 -5.415 -5.400 0.015 31.73 + Na+ 2.395e-02 1.917e-02 -1.621 -1.717 -0.097 -1.14 + NaSO4- 1.055e-03 8.402e-04 -2.977 -3.076 -0.099 18.08 + NaHCO3 3.928e-06 4.069e-06 -5.406 -5.390 0.015 31.73 + Na2SO4 7.731e-09 7.853e-09 -8.112 -8.105 0.007 47.96 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -69.474 -69.467 0.007 30.40 -S(-2) 3.484e-10 - HS- 3.079e-10 2.413e-10 -9.512 -9.617 -0.106 20.83 - H2S 4.049e-11 4.119e-11 -10.393 -10.385 0.007 36.27 - S-2 3.617e-15 1.493e-15 -14.442 -14.826 -0.384 (0) - Fe(HS)2 1.434e-18 1.458e-18 -17.844 -17.836 0.007 (0) - (H2S)2 8.789e-23 8.941e-23 -22.056 -22.049 0.007 30.09 - Fe(HS)3- 4.801e-26 3.832e-26 -25.319 -25.417 -0.098 (0) -S(6) 1.770e-02 - SO4-2 1.136e-02 4.657e-03 -1.945 -2.332 -0.387 23.18 - CaSO4 4.585e-03 4.664e-03 -2.339 -2.331 0.007 7.50 - NaSO4- 1.753e-03 1.414e-03 -2.756 -2.850 -0.093 -6.75 - FeSO4 2.288e-08 2.328e-08 -7.641 -7.633 0.007 18.97 - HSO4- 1.108e-08 8.840e-09 -7.956 -8.054 -0.098 40.50 - CaHSO4+ 7.500e-10 5.986e-10 -9.125 -9.223 -0.098 (0) - FeHSO4+ 3.743e-15 2.987e-15 -14.427 -14.525 -0.098 (0) - FeSO4+ 4.755e-23 3.811e-23 -22.323 -22.419 -0.096 (0) - Fe(SO4)2- 4.865e-24 3.883e-24 -23.313 -23.411 -0.098 (0) - FeHSO4+2 4.910e-30 1.993e-30 -29.309 -29.701 -0.392 (0) + O2 0.000e+00 0.000e+00 -69.439 -69.432 0.008 30.40 +S(-2) 3.462e-10 + HS- 3.059e-10 2.390e-10 -9.514 -9.622 -0.107 20.83 + H2S 4.026e-11 4.098e-11 -10.395 -10.387 0.008 36.27 + S-2 3.600e-15 1.472e-15 -14.444 -14.832 -0.388 (0) + Fe(HS)2 1.404e-18 1.429e-18 -17.853 -17.845 0.008 (0) + (H2S)2 8.694e-23 8.849e-23 -22.061 -22.053 0.008 30.09 + Fe(HS)3- 4.669e-26 3.718e-26 -25.331 -25.430 -0.099 (0) +S(6) 1.727e-02 + SO4-2 1.229e-02 4.989e-03 -1.910 -2.302 -0.391 15.06 + CaSO4 3.923e-03 3.954e-03 -2.406 -2.403 0.003 7.22 + NaSO4- 1.055e-03 8.402e-04 -2.977 -3.076 -0.099 18.08 + FeSO4 2.446e-08 2.489e-08 -7.612 -7.604 0.008 30.28 + HSO4- 1.194e-08 9.512e-09 -7.923 -8.022 -0.099 40.50 + Na2SO4 7.731e-09 7.853e-09 -8.112 -8.105 0.007 47.96 + CaHSO4+ 8.159e-10 6.497e-10 -9.088 -9.187 -0.099 (0) + FeHSO4+ 4.029e-15 3.209e-15 -14.395 -14.494 -0.099 (0) + FeSO4+ 5.173e-23 4.136e-23 -22.286 -22.383 -0.097 (0) + Fe(SO4)2- 5.669e-24 4.515e-24 -23.246 -23.345 -0.099 (0) + FeHSO4+2 5.401e-30 2.172e-30 -29.268 -29.663 -0.396 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) - Anhydrite -0.30 -4.58 -4.28 CaSO4 + Anhydrite -0.23 -4.55 -4.31 CaSO4 Aragonite -0.14 -8.48 -8.34 CaCO3 Calcite 0.00 -8.48 -8.48 CaCO3 - CH4(g) -11.00 -13.81 -2.80 CH4 + CH4(g) -11.04 -13.84 -2.80 CH4 CO2(g) -3.50 -4.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 Fe(OH)3(a) -5.89 -1.00 4.89 Fe(OH)3 - FeS(ppt) -5.54 -9.46 -3.92 FeS + FeS(ppt) -5.55 -9.47 -3.92 FeS Goethite -0.00 -1.00 -1.00 FeOOH - Gypsum 0.00 -4.58 -4.58 CaSO4:2H2O - H2(g) -8.36 -11.46 -3.10 H2 + Gypsum 0.00 -4.55 -4.55 CaSO4:2H2O + H2(g) -8.37 -11.47 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O H2S(g) -9.39 -17.33 -7.94 H2S - Halite -5.00 -3.43 1.57 NaCl + Halite -4.99 -3.42 1.57 NaCl Hematite 2.01 -2.00 -4.01 Fe2O3 - Mackinawite -4.81 -9.46 -4.65 FeS - Melanterite -7.68 -9.89 -2.21 FeSO4:7H2O - Mirabilite -4.56 -5.80 -1.24 Na2SO4:10H2O - O2(g) -66.57 -69.47 -2.89 O2 - Pyrite -0.00 -18.48 -18.48 FeS2 - Siderite -2.89 -13.78 -10.89 FeCO3 - Sulfur -6.96 -2.08 4.88 S - Thenardite -5.49 -5.79 -0.30 Na2SO4 + Mackinawite -4.82 -9.47 -4.65 FeS + Melanterite -7.65 -9.86 -2.21 FeSO4:7H2O + Mirabilite -5.04 -5.74 -0.71 Na2SO4:10H2O + O2(g) -66.54 -69.43 -2.89 O2 + Pyrite 0.00 -18.48 -18.48 FeS2 + Siderite -2.90 -13.79 -10.89 FeCO3 + Sulfur -6.95 -2.07 4.88 S + Thenardite -6.39 -5.74 0.65 Na2SO4 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. diff --git a/ex5.sel b/ex5.sel index f577caf6..13fc15b4 100644 --- a/ex5.sel +++ b/ex5.sel @@ -1,8 +1,8 @@ sim state soln dist_x time step pH pe Cl pyrite d_pyrite goethite d_goethite calcite d_calcite CO2(g) d_CO2(g) gypsum d_gypsum si_Gypsum 1 i_soln 1 -99 -99 -99 7 4 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -999.9990 - 1 react 1 -99 0 1 8.27866 -4.94223 0.0000e+00 1.0000e+01 -3.1401e-08 1.0000e+01 1.0888e-08 9.9995e+00 -4.9102e-04 9.9995e+00 -4.8459e-04 0.0000e+00 0.0000e+00 -6.1251 - 1 react 1 -99 0 2 8.16976 -4.28517 5.0000e-04 9.9997e+00 -2.6667e-04 1.0000e+01 2.6666e-04 9.9991e+00 -9.2415e-04 1.0000e+01 1.4524e-04 0.0000e+00 0.0000e+00 -2.0139 - 1 react 1 -99 0 3 7.97867 -3.96612 2.5000e-03 9.9987e+00 -1.3333e-03 1.0001e+01 1.3333e-03 9.9971e+00 -2.9318e-03 1.0002e+01 2.4006e-03 0.0000e+00 0.0000e+00 -1.0546 - 1 react 1 -99 0 4 7.8793 -3.81158 5.0001e-03 9.9973e+00 -2.6667e-03 1.0003e+01 2.6666e-03 9.9944e+00 -5.5524e-03 1.0005e+01 5.1122e-03 0.0000e+00 0.0000e+00 -0.6412 - 1 react 1 -99 0 5 7.72165 -3.57159 1.5001e-02 9.9920e+00 -8.0000e-03 1.0008e+01 7.9999e-03 9.9838e+00 -1.6165e-02 1.0016e+01 1.5831e-02 0.0000e+00 0.0000e+00 -0.0253 - 1 react 1 -99 0 6 7.70941 -3.55585 2.5011e-02 9.9867e+00 -1.3333e-02 1.0013e+01 1.3333e-02 9.9732e+00 -2.6831e-02 1.0026e+01 2.6499e-02 8.9755e-03 8.9755e-03 0.0000 + 1 react 1 -99 0 1 8.27866 -4.94187 0.0000e+00 1.0000e+01 -3.1210e-08 1.0000e+01 1.0714e-08 9.9995e+00 -4.9102e-04 9.9995e+00 -4.8459e-04 0.0000e+00 0.0000e+00 -6.1560 + 1 react 1 -99 0 2 8.16816 -4.28202 5.0000e-04 9.9997e+00 -2.6667e-04 1.0000e+01 2.6666e-04 9.9991e+00 -9.2282e-04 1.0000e+01 1.4652e-04 0.0000e+00 0.0000e+00 -2.0359 + 1 react 1 -99 0 3 7.97404 -3.95815 2.5000e-03 9.9987e+00 -1.3333e-03 1.0001e+01 1.3333e-03 9.9971e+00 -2.9293e-03 1.0002e+01 2.4029e-03 0.0000e+00 0.0000e+00 -1.0632 + 1 react 1 -99 0 4 7.87342 -3.80133 5.0001e-03 9.9973e+00 -2.6667e-03 1.0003e+01 2.6666e-03 9.9945e+00 -5.5500e-03 1.0005e+01 5.1145e-03 0.0000e+00 0.0000e+00 -0.6421 + 1 react 1 -99 0 5 7.71486 -3.55884 1.5001e-02 9.9920e+00 -8.0000e-03 1.0008e+01 7.9999e-03 9.9838e+00 -1.6164e-02 1.0016e+01 1.5833e-02 0.0000e+00 0.0000e+00 -0.0143 + 1 react 1 -99 0 6 7.70753 -3.54948 2.5012e-02 9.9867e+00 -1.3333e-02 1.0013e+01 1.3333e-02 9.9732e+00 -2.6831e-02 1.0026e+01 2.6500e-02 9.4079e-03 9.4079e-03 0.0000 diff --git a/ex6.out b/ex6.out index 8138bb08..fa3b1cc2 100644 --- a/ex6.out +++ b/ex6.out @@ -96,7 +96,7 @@ Initial solution 1. PURE WATER H(0) 1.433e-25 H2 7.166e-26 7.166e-26 -25.145 -25.145 0.000 28.61 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -42.090 -42.090 0.000 30.40 + O2 0.000e+00 0.000e+00 -42.073 -42.073 0.000 30.40 ------------------------------Saturation indices------------------------------- @@ -104,7 +104,7 @@ O(0) 0.000e+00 H2(g) -22.04 -25.14 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - O2(g) -39.20 -42.09 -2.89 O2 + O2(g) -39.18 -42.07 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -154,7 +154,7 @@ Using pure phase assemblage 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Gibbsite -0.00 8.05 8.05 +Gibbsite 0.00 8.05 8.05 KAlSi3O8 is reactant 1.000e+01 1.000e+01 -2.658e-08 K-feldspar -14.69 -13.82 0.88 0.000e+00 0 0.000e+00 K-mica -10.69 2.28 12.97 0.000e+00 0 0.000e+00 @@ -171,7 +171,7 @@ Kaolinite -3.81 1.90 5.71 0.000e+00 0 0.000e+00 ----------------------------Description of solution---------------------------- pH = 7.004 Charge balance - pe = 10.368 Adjusted to redox equilibrium + pe = 10.364 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 0 Density (g/cm³) = 0.99704 Volume (L) = 1.00297 @@ -201,8 +201,8 @@ Al 2.658e-08 Al(OH)2+ 8.645e-10 8.641e-10 -9.063 -9.063 -0.000 (0) AlOH+2 1.095e-11 1.093e-11 -10.961 -10.961 -0.001 -27.87 Al+3 1.095e-13 1.091e-13 -12.960 -12.962 -0.002 -42.53 -H(0) 2.557e-38 - H2 1.279e-38 1.279e-38 -37.893 -37.893 0.000 28.61 +H(0) 2.609e-38 + H2 1.305e-38 1.305e-38 -37.885 -37.885 0.000 28.61 K 2.658e-08 K+ 2.658e-08 2.657e-08 -7.575 -7.576 -0.000 8.98 O(0) 5.099e-17 @@ -218,8 +218,8 @@ Si 7.974e-08 Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 Chalcedony -3.55 -7.10 -3.55 SiO2 - Gibbsite -0.00 8.05 8.05 Al(OH)3 - H2(g) -34.79 -37.89 -3.10 H2 + Gibbsite 0.00 8.05 8.05 Al(OH)3 + H2(g) -34.78 -37.88 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -14.69 -13.82 0.88 KAlSi3O8 K-mica -10.69 2.28 12.97 KAl3Si3O10(OH)2 @@ -286,7 +286,7 @@ Kaolinite 0.00 5.71 5.71 ----------------------------Description of solution---------------------------- pH = 8.209 Charge balance - pe = 9.163 Adjusted to redox equilibrium + pe = 9.158 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 0 Density (g/cm³) = 0.99704 Volume (L) = 1.00297 @@ -296,7 +296,7 @@ Kaolinite 0.00 5.71 5.71 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 3.359e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = -3.402e-17 + Electrical balance (eq) = -3.403e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 13 Total H = 1.110124e+02 @@ -316,12 +316,12 @@ Al 3.935e-07 Al(OH)2+ 5.397e-11 5.388e-11 -10.268 -10.269 -0.001 (0) AlOH+2 4.280e-14 4.250e-14 -13.369 -13.372 -0.003 -27.87 Al+3 2.687e-17 2.645e-17 -16.571 -16.578 -0.007 -42.52 -H(0) 2.557e-38 - H2 1.279e-38 1.279e-38 -37.893 -37.893 0.000 28.61 +H(0) 2.609e-38 + H2 1.305e-38 1.305e-38 -37.885 -37.885 0.000 28.61 K 2.178e-06 K+ 2.178e-06 2.175e-06 -5.662 -5.663 -0.001 8.98 O(0) 5.099e-17 - O2 2.550e-17 2.550e-17 -16.594 -16.594 0.000 30.40 + O2 2.549e-17 2.549e-17 -16.594 -16.594 0.000 30.40 Si 6.535e-06 H4SiO4 6.383e-06 6.383e-06 -5.195 -5.195 0.000 52.08 H3SiO4- 1.525e-07 1.522e-07 -6.817 -6.818 -0.001 27.95 @@ -334,7 +334,7 @@ Si 6.535e-06 Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 Chalcedony -1.64 -5.20 -3.55 SiO2 Gibbsite 0.00 8.05 8.05 Al(OH)3 - H2(g) -34.79 -37.89 -3.10 H2 + H2(g) -34.78 -37.88 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -5.86 -4.99 0.88 KAlSi3O8 K-mica -1.86 11.11 12.97 KAl3Si3O10(OH)2 @@ -401,7 +401,7 @@ Kaolinite 0.00 5.71 5.71 0.000e+00 9.760e-06 9.760e-06 ----------------------------Description of solution---------------------------- pH = 9.107 Charge balance - pe = 8.265 Adjusted to redox equilibrium + pe = 8.260 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 4 Density (g/cm³) = 0.99705 Volume (L) = 1.00297 @@ -411,9 +411,9 @@ Kaolinite 0.00 5.71 5.71 0.000e+00 9.760e-06 9.760e-06 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 2.184e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = -2.771e-16 + Electrical balance (eq) = -3.055e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 15 + Iterations = 14 Total H = 1.110124e+02 Total O = 5.550629e+01 @@ -431,12 +431,12 @@ Al 5.799e-07 Al(OH)2+ 1.275e-12 1.268e-12 -11.895 -11.897 -0.002 (0) AlOH+2 1.291e-16 1.265e-16 -15.889 -15.898 -0.009 -27.86 Al+3 1.043e-20 9.949e-21 -19.982 -20.002 -0.020 -42.50 -H(0) 2.558e-38 - H2 1.279e-38 1.279e-38 -37.893 -37.893 0.000 28.61 +H(0) 2.609e-38 + H2 1.305e-38 1.305e-38 -37.885 -37.885 0.000 28.61 K 2.010e-05 K+ 2.010e-05 2.000e-05 -4.697 -4.699 -0.002 8.98 -O(0) 5.097e-17 - O2 2.549e-17 2.549e-17 -16.594 -16.594 0.000 30.40 +O(0) 5.100e-17 + O2 2.550e-17 2.550e-17 -16.593 -16.593 0.000 30.40 Si 4.078e-05 H4SiO4 3.428e-05 3.428e-05 -4.465 -4.465 0.000 52.08 H3SiO4- 6.501e-06 6.468e-06 -5.187 -5.189 -0.002 27.95 @@ -449,7 +449,7 @@ Si 4.078e-05 Al(OH)3(a) -3.48 7.32 10.80 Al(OH)3 Chalcedony -0.91 -4.46 -3.55 SiO2 Gibbsite -0.73 7.32 8.05 Al(OH)3 - H2(g) -34.79 -37.89 -3.10 H2 + H2(g) -34.78 -37.88 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -2.54 -1.67 0.88 KAlSi3O8 K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 @@ -500,9 +500,9 @@ Using pure phase assemblage 1. Phase SI log IAP log K(T, P) Initial Final Delta Gibbsite -2.00 6.05 8.05 0.000e+00 0 0.000e+00 -K-feldspar -0.00 0.87 0.88 +K-feldspar 0.00 0.88 0.88 KAlSi3O8 is reactant 1.000e+01 1.000e+01 -1.909e-04 -K-mica -0.00 12.97 12.97 0.000e+00 6.362e-05 6.362e-05 +K-mica 0.00 12.97 12.97 0.000e+00 6.362e-05 6.362e-05 Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 -----------------------------Solution composition------------------------------ @@ -516,7 +516,7 @@ Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 ----------------------------Description of solution---------------------------- pH = 9.388 Charge balance - pe = 7.984 Adjusted to redox equilibrium + pe = 7.979 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 14 Density (g/cm³) = 0.99707 Volume (L) = 1.00297 @@ -526,7 +526,7 @@ Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.275e-04 Temperature (°C) = 25.00 - Electrical balance (eq) = -3.034e-17 + Electrical balance (eq) = -3.056e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 15 Total H = 1.110123e+02 @@ -546,12 +546,12 @@ Al 5.973e-08 Al(OH)2+ 3.600e-14 3.554e-14 -13.444 -13.449 -0.006 (0) AlOH+2 1.954e-18 1.855e-18 -17.709 -17.732 -0.023 -27.83 Al+3 8.576e-23 7.641e-23 -22.067 -22.117 -0.050 -42.44 -H(0) 2.557e-38 - H2 1.278e-38 1.278e-38 -37.893 -37.893 0.000 28.61 +H(0) 2.616e-38 + H2 1.308e-38 1.308e-38 -37.883 -37.883 0.000 28.61 K 1.273e-04 K+ 1.273e-04 1.256e-04 -3.895 -3.901 -0.006 8.99 -O(0) 5.102e-17 - O2 2.551e-17 2.551e-17 -16.593 -16.593 0.000 30.40 +O(0) 5.072e-17 + O2 2.536e-17 2.536e-17 -16.596 -16.596 0.000 30.40 Si 3.819e-04 H4SiO4 2.797e-04 2.797e-04 -3.553 -3.553 0.000 52.08 H3SiO4- 1.021e-04 1.008e-04 -3.991 -3.996 -0.006 27.95 @@ -564,12 +564,12 @@ Si 3.819e-04 Al(OH)3(a) -4.75 6.05 10.80 Al(OH)3 Chalcedony -0.00 -3.55 -3.55 SiO2 Gibbsite -2.00 6.05 8.05 Al(OH)3 - H2(g) -34.79 -37.89 -3.10 H2 + H2(g) -34.78 -37.88 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -0.00 0.87 0.88 KAlSi3O8 - K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 + K-feldspar 0.00 0.88 0.88 KAlSi3O8 + K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 Kaolinite -0.72 4.99 5.71 Al2Si2O5(OH)4 - O2(g) -13.70 -16.59 -2.89 O2 + O2(g) -13.70 -16.60 -2.89 O2 Quartz 0.43 -3.55 -3.98 SiO2 SiO2(a) -0.84 -3.55 -2.71 SiO2 @@ -627,7 +627,7 @@ Kaolinite -0.00 5.71 5.71 1.000e+00 1.000e+00 1.240e-06 ----------------------------Description of solution---------------------------- pH = 8.351 Charge balance - pe = 9.021 Adjusted to redox equilibrium + pe = 9.017 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 0 Density (g/cm³) = 0.99704 Volume (L) = 1.00297 @@ -637,7 +637,7 @@ Kaolinite -0.00 5.71 5.71 1.000e+00 1.000e+00 1.240e-06 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 4.660e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = -2.999e-17 + Electrical balance (eq) = -2.997e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 13 Total H = 1.110124e+02 @@ -657,12 +657,12 @@ Al 5.450e-07 Al(OH)2+ 3.895e-11 3.887e-11 -10.409 -10.410 -0.001 (0) AlOH+2 2.230e-14 2.212e-14 -13.652 -13.655 -0.004 -27.87 Al+3 1.012e-17 9.934e-18 -16.995 -17.003 -0.008 -42.52 -H(0) 2.557e-38 - H2 1.279e-38 1.279e-38 -37.893 -37.893 0.000 28.61 +H(0) 2.609e-38 + H2 1.305e-38 1.305e-38 -37.884 -37.884 0.000 28.61 K 3.025e-06 K+ 3.025e-06 3.018e-06 -5.519 -5.520 -0.001 8.98 O(0) 5.099e-17 - O2 2.550e-17 2.550e-17 -16.594 -16.594 0.000 30.40 + O2 2.549e-17 2.549e-17 -16.594 -16.594 0.000 30.40 Si 6.594e-06 H4SiO4 6.383e-06 6.383e-06 -5.195 -5.195 0.000 52.08 H3SiO4- 2.114e-07 2.110e-07 -6.675 -6.676 -0.001 27.95 @@ -675,7 +675,7 @@ Si 6.594e-06 Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 Chalcedony -1.64 -5.20 -3.55 SiO2 Gibbsite 0.00 8.05 8.05 Al(OH)3 - H2(g) -34.79 -37.89 -3.10 H2 + H2(g) -34.78 -37.88 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -5.58 -4.71 0.88 KAlSi3O8 K-mica -1.58 11.39 12.97 KAl3Si3O10(OH)2 @@ -773,7 +773,7 @@ H(0) 3.401e-15 K 2.198e-05 K+ 2.198e-05 2.186e-05 -4.658 -4.660 -0.002 8.98 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -62.841 -62.841 0.000 30.40 + O2 0.000e+00 0.000e+00 -62.824 -62.824 0.000 30.40 Si 6.595e-05 H4SiO4 5.620e-05 5.620e-05 -4.250 -4.250 0.000 52.08 H3SiO4- 9.751e-06 9.697e-06 -5.011 -5.013 -0.002 27.95 @@ -791,7 +791,7 @@ Si 6.595e-05 K-feldspar -2.11 -1.24 0.88 KAlSi3O8 K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 Kaolinite 0.00 5.71 5.71 Al2Si2O5(OH)4 - O2(g) -59.95 -62.84 -2.89 O2 + O2(g) -59.93 -62.82 -2.89 O2 Quartz -0.27 -4.25 -3.98 SiO2 SiO2(a) -1.54 -4.25 -2.71 SiO2 @@ -909,7 +909,7 @@ H(0) 4.005e-15 K 4.000e-08 K+ 4.000e-08 3.998e-08 -7.398 -7.398 -0.000 8.98 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -62.983 -62.983 0.000 30.40 + O2 0.000e+00 0.000e+00 -62.966 -62.966 0.000 30.40 Si 1.200e-07 H4SiO4 1.198e-07 1.198e-07 -6.922 -6.922 0.000 52.08 H3SiO4- 1.890e-10 1.889e-10 -9.723 -9.724 -0.000 27.94 @@ -927,7 +927,7 @@ Si 1.200e-07 K-feldspar -13.96 -13.08 0.88 KAlSi3O8 K-mica -9.96 3.01 12.97 KAl3Si3O10(OH)2 Kaolinite -3.45 2.25 5.71 Al2Si2O5(OH)4 - O2(g) -60.09 -62.98 -2.89 O2 + O2(g) -60.07 -62.97 -2.89 O2 Quartz -2.94 -6.92 -3.98 SiO2 SiO2(a) -4.21 -6.92 -2.71 SiO2 @@ -977,7 +977,7 @@ Kaolinite -2.85 2.86 5.71 0.000e+00 0 0.000e+00 ----------------------------Description of solution---------------------------- pH = 7.103 Charge balance - pe = 11.463 Adjusted to redox equilibrium + pe = 11.467 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 0 Density (g/cm³) = 0.99704 Volume (L) = 1.00297 @@ -987,7 +987,7 @@ Kaolinite -2.85 2.86 5.71 0.000e+00 0 0.000e+00 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.781e-07 Temperature (°C) = 25.00 - Electrical balance (eq) = -2.583e-17 + Electrical balance (eq) = -2.733e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 9 Total H = 1.110124e+02 @@ -1008,11 +1008,11 @@ Al 3.269e-08 AlOH+2 6.926e-12 6.913e-12 -11.160 -11.160 -0.001 -27.87 Al+3 5.511e-14 5.487e-14 -13.259 -13.261 -0.002 -42.53 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -40.282 -40.282 0.000 28.61 + H2 0.000e+00 0.000e+00 -40.290 -40.290 0.000 28.61 K 8.000e-08 K+ 8.000e-08 7.996e-08 -7.097 -7.097 -0.000 8.98 -O(0) 3.051e-12 - O2 1.526e-12 1.526e-12 -11.817 -11.817 0.000 30.40 +O(0) 3.307e-12 + O2 1.653e-12 1.653e-12 -11.782 -11.782 0.000 30.40 Si 2.400e-07 H4SiO4 2.396e-07 2.396e-07 -6.621 -6.621 0.000 52.08 H3SiO4- 4.482e-10 4.480e-10 -9.349 -9.349 -0.000 27.94 @@ -1025,12 +1025,12 @@ Si 2.400e-07 Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 Chalcedony -3.07 -6.62 -3.55 SiO2 Gibbsite 0.00 8.05 8.05 Al(OH)3 - H2(g) -37.18 -40.28 -3.10 H2 + H2(g) -37.19 -40.29 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -12.68 -11.81 0.88 KAlSi3O8 K-mica -8.68 4.29 12.97 KAl3Si3O10(OH)2 Kaolinite -2.85 2.86 5.71 Al2Si2O5(OH)4 - O2(g) -8.92 -11.82 -2.89 O2 + O2(g) -8.89 -11.78 -2.89 O2 Quartz -2.64 -6.62 -3.98 SiO2 SiO2(a) -3.91 -6.62 -2.71 SiO2 @@ -1115,7 +1115,7 @@ H(0) 1.378e-15 K 1.600e-07 K+ 1.600e-07 1.599e-07 -6.796 -6.796 -0.000 8.98 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -62.056 -62.056 0.000 30.40 + O2 0.000e+00 0.000e+00 -62.039 -62.039 0.000 30.40 Si 4.800e-07 H4SiO4 4.788e-07 4.788e-07 -6.320 -6.320 0.000 52.08 H3SiO4- 1.222e-09 1.221e-09 -8.913 -8.913 -0.000 27.94 @@ -1133,7 +1133,7 @@ Si 4.800e-07 K-feldspar -11.34 -10.47 0.88 KAlSi3O8 K-mica -7.34 5.63 12.97 KAl3Si3O10(OH)2 Kaolinite -2.25 3.46 5.71 Al2Si2O5(OH)4 - O2(g) -59.16 -62.06 -2.89 O2 + O2(g) -59.15 -62.04 -2.89 O2 Quartz -2.34 -6.32 -3.98 SiO2 SiO2(a) -3.61 -6.32 -2.71 SiO2 @@ -1218,7 +1218,7 @@ H(0) 2.725e-15 K 3.200e-07 K+ 3.200e-07 3.198e-07 -6.495 -6.495 -0.000 8.98 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -62.649 -62.649 0.000 30.40 + O2 0.000e+00 0.000e+00 -62.631 -62.631 0.000 30.40 Si 9.600e-07 H4SiO4 9.560e-07 9.560e-07 -6.020 -6.020 0.000 52.08 H3SiO4- 3.957e-09 3.954e-09 -8.403 -8.403 -0.000 27.94 @@ -1236,7 +1236,7 @@ Si 9.600e-07 K-feldspar -9.93 -9.06 0.88 KAlSi3O8 K-mica -5.93 7.04 12.97 KAl3Si3O10(OH)2 Kaolinite -1.65 4.06 5.71 Al2Si2O5(OH)4 - O2(g) -59.76 -62.65 -2.89 O2 + O2(g) -59.74 -62.63 -2.89 O2 Quartz -2.04 -6.02 -3.98 SiO2 SiO2(a) -3.31 -6.02 -2.71 SiO2 @@ -1321,7 +1321,7 @@ H(0) 5.420e-15 K 6.400e-07 K+ 6.400e-07 6.394e-07 -6.194 -6.194 -0.000 8.98 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.246 -63.246 0.000 30.40 + O2 0.000e+00 0.000e+00 -63.229 -63.229 0.000 30.40 Si 1.920e-06 H4SiO4 1.906e-06 1.906e-06 -5.720 -5.720 0.000 52.08 H3SiO4- 1.445e-08 1.444e-08 -7.840 -7.840 -0.000 27.94 @@ -1339,7 +1339,7 @@ Si 1.920e-06 K-feldspar -8.47 -7.59 0.88 KAlSi3O8 K-mica -4.47 8.50 12.97 KAl3Si3O10(OH)2 Kaolinite -1.05 4.66 5.71 Al2Si2O5(OH)4 - O2(g) -60.35 -63.25 -2.89 O2 + O2(g) -60.34 -63.23 -2.89 O2 Quartz -1.74 -5.72 -3.98 SiO2 SiO2(a) -3.01 -5.72 -2.71 SiO2 @@ -1389,7 +1389,7 @@ Kaolinite -0.67 5.04 5.71 0.000e+00 0 0.000e+00 ----------------------------Description of solution---------------------------- pH = 7.892 Charge balance - pe = 9.814 Adjusted to redox equilibrium + pe = 9.809 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 0 Density (g/cm³) = 0.99704 Volume (L) = 1.00297 @@ -1399,7 +1399,7 @@ Kaolinite -0.67 5.04 5.71 0.000e+00 0 0.000e+00 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.571e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = -3.344e-17 + Electrical balance (eq) = -3.305e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 11 Total H = 1.110124e+02 @@ -1419,8 +1419,8 @@ Al 1.903e-07 Al(OH)2+ 1.119e-10 1.118e-10 -9.951 -9.952 -0.001 (0) AlOH+2 1.839e-13 1.830e-13 -12.736 -12.738 -0.002 -27.87 Al+3 2.388e-16 2.363e-16 -15.622 -15.626 -0.005 -42.53 -H(0) 5.499e-39 - H2 2.749e-39 2.749e-39 -38.561 -38.561 0.000 28.61 +H(0) 5.610e-39 + H2 2.805e-39 2.805e-39 -38.552 -38.552 0.000 28.61 K 1.000e-06 K+ 1.000e-06 9.988e-07 -6.000 -6.001 -0.001 8.98 O(0) 1.103e-15 @@ -1437,7 +1437,7 @@ Si 3.000e-06 Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 Chalcedony -1.98 -5.53 -3.55 SiO2 Gibbsite 0.00 8.05 8.05 Al(OH)3 - H2(g) -35.46 -38.56 -3.10 H2 + H2(g) -35.45 -38.55 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -7.52 -6.64 0.88 KAlSi3O8 K-mica -3.52 9.45 12.97 KAl3Si3O10(OH)2 @@ -1476,7 +1476,7 @@ Reaction 1. Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Gibbsite 0.00 8.05 8.05 0.000e+00 1.636e-06 1.636e-06 +Gibbsite -0.00 8.05 8.05 0.000e+00 1.636e-06 1.636e-06 K-feldspar -6.05 -5.17 0.88 0.000e+00 0 0.000e+00 K-mica -2.04 10.93 12.97 0.000e+00 0 0.000e+00 Kaolinite -0.07 5.64 5.71 0.000e+00 0 0.000e+00 @@ -1492,7 +1492,7 @@ Kaolinite -0.07 5.64 5.71 0.000e+00 0 0.000e+00 ----------------------------Description of solution---------------------------- pH = 8.174 Charge balance - pe = 9.607 Adjusted to redox equilibrium + pe = 9.603 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 0 Density (g/cm³) = 0.99704 Volume (L) = 1.00297 @@ -1502,7 +1502,7 @@ Kaolinite -0.07 5.64 5.71 0.000e+00 0 0.000e+00 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 3.091e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = -6.917e-16 + Electrical balance (eq) = -3.154e-17 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 11 Total H = 1.110124e+02 @@ -1522,11 +1522,11 @@ Al 3.636e-07 Al(OH)2+ 5.842e-11 5.832e-11 -10.233 -10.234 -0.001 (0) AlOH+2 5.013e-14 4.980e-14 -13.300 -13.303 -0.003 -27.87 Al+3 3.406e-17 3.355e-17 -16.468 -16.474 -0.006 -42.52 -H(0) 3.874e-39 - H2 1.937e-39 1.937e-39 -38.713 -38.713 0.000 28.61 +H(0) 3.953e-39 + H2 1.977e-39 1.977e-39 -38.704 -38.704 0.000 28.61 K 2.000e-06 K+ 2.000e-06 1.997e-06 -5.699 -5.700 -0.001 8.98 -O(0) 2.223e-15 +O(0) 2.222e-15 O2 1.111e-15 1.111e-15 -14.954 -14.954 0.000 30.40 Si 6.000e-06 H4SiO4 5.870e-06 5.870e-06 -5.231 -5.231 0.000 52.08 @@ -1539,8 +1539,8 @@ Si 6.000e-06 Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 Chalcedony -1.68 -5.23 -3.55 SiO2 - Gibbsite 0.00 8.05 8.05 Al(OH)3 - H2(g) -35.61 -38.71 -3.10 H2 + Gibbsite -0.00 8.05 8.05 Al(OH)3 + H2(g) -35.60 -38.70 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -6.05 -5.17 0.88 KAlSi3O8 K-mica -2.04 10.93 12.97 KAl3Si3O10(OH)2 @@ -1630,7 +1630,7 @@ H(0) 5.295e-15 K 4.000e-06 K+ 4.000e-06 3.991e-06 -5.398 -5.399 -0.001 8.98 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.226 -63.226 0.000 30.40 + O2 0.000e+00 0.000e+00 -63.208 -63.208 0.000 30.40 Si 8.571e-06 H4SiO4 8.205e-06 8.205e-06 -5.086 -5.086 0.000 52.08 H3SiO4- 3.665e-07 3.657e-07 -6.436 -6.437 -0.001 27.95 @@ -1648,7 +1648,7 @@ Si 8.571e-06 K-feldspar -5.11 -4.24 0.88 KAlSi3O8 K-mica -1.33 11.64 12.97 KAl3Si3O10(OH)2 Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 - O2(g) -60.33 -63.23 -2.89 O2 + O2(g) -60.32 -63.21 -2.89 O2 Quartz -1.11 -5.09 -3.98 SiO2 SiO2(a) -2.37 -5.09 -2.71 SiO2 @@ -1698,7 +1698,7 @@ Kaolinite 0.00 5.71 5.71 0.000e+00 3.697e-06 3.697e-06 ----------------------------Description of solution---------------------------- pH = 8.775 Charge balance - pe = 8.985 Adjusted to redox equilibrium + pe = 8.981 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 1 Density (g/cm³) = 0.99704 Volume (L) = 1.00297 @@ -1708,9 +1708,9 @@ Kaolinite 0.00 5.71 5.71 0.000e+00 3.697e-06 3.697e-06 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 9.817e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = -3.042e-17 + Electrical balance (eq) = -5.179e-14 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 13 + Iterations = 12 Total H = 1.110124e+02 Total O = 5.550625e+01 @@ -1728,12 +1728,12 @@ Al 6.057e-07 Al(OH)2+ 6.137e-12 6.117e-12 -11.212 -11.213 -0.001 (0) AlOH+2 1.327e-15 1.310e-15 -14.877 -14.883 -0.006 -27.86 Al+3 2.280e-19 2.213e-19 -18.642 -18.655 -0.013 -42.51 -H(0) 4.273e-39 - H2 2.136e-39 2.136e-39 -38.670 -38.670 0.000 28.61 +H(0) 4.361e-39 + H2 2.181e-39 2.181e-39 -38.661 -38.661 0.000 28.61 K 8.000e-06 K+ 8.000e-06 7.974e-06 -5.097 -5.098 -0.001 8.98 -O(0) 1.827e-15 - O2 9.133e-16 9.133e-16 -15.039 -15.039 0.000 30.40 +O(0) 1.825e-15 + O2 9.126e-16 9.126e-16 -15.040 -15.040 0.000 30.40 Si 1.661e-05 H4SiO4 1.526e-05 1.526e-05 -4.816 -4.816 0.000 52.08 H3SiO4- 1.345e-06 1.341e-06 -5.871 -5.873 -0.001 27.95 @@ -1746,7 +1746,7 @@ Si 1.661e-05 Al(OH)3(a) -3.13 7.67 10.80 Al(OH)3 Chalcedony -1.27 -4.82 -3.55 SiO2 Gibbsite -0.38 7.67 8.05 Al(OH)3 - H2(g) -35.57 -38.67 -3.10 H2 + H2(g) -35.56 -38.66 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -3.98 -3.10 0.88 KAlSi3O8 K-mica -0.73 12.24 12.97 KAl3Si3O10(OH)2 @@ -1836,7 +1836,7 @@ H(0) 6.880e-15 K 1.600e-05 K+ 1.600e-05 1.593e-05 -4.796 -4.798 -0.002 8.98 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.453 -63.453 0.000 30.40 + O2 0.000e+00 0.000e+00 -63.436 -63.436 0.000 30.40 Si 3.259e-05 H4SiO4 2.812e-05 2.812e-05 -4.551 -4.551 0.000 52.08 H3SiO4- 4.477e-06 4.456e-06 -5.349 -5.351 -0.002 27.95 @@ -1854,7 +1854,7 @@ Si 3.259e-05 K-feldspar -2.89 -2.01 0.88 KAlSi3O8 K-mica -0.17 12.80 12.97 KAl3Si3O10(OH)2 Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 - O2(g) -60.56 -63.45 -2.89 O2 + O2(g) -60.54 -63.44 -2.89 O2 Quartz -0.57 -4.55 -3.98 SiO2 SiO2(a) -1.84 -4.55 -2.71 SiO2 @@ -1890,7 +1890,7 @@ Phase SI log IAP log K(T, P) Initial Final Delta Gibbsite -0.93 7.12 8.05 0.000e+00 0 0.000e+00 K-feldspar -2.14 -1.26 0.88 0.000e+00 0 0.000e+00 -K-mica 0.00 12.97 12.97 0.000e+00 1.014e-05 1.014e-05 +K-mica -0.00 12.97 12.97 0.000e+00 1.014e-05 1.014e-05 Kaolinite 0.00 5.71 5.71 0.000e+00 6.295e-07 6.295e-07 -----------------------------Solution composition------------------------------ @@ -1904,7 +1904,7 @@ Kaolinite 0.00 5.71 5.71 0.000e+00 6.295e-07 6.295e-07 ----------------------------Description of solution---------------------------- pH = 9.071 Charge balance - pe = 8.470 Adjusted to redox equilibrium + pe = 8.465 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 3 Density (g/cm³) = 0.99705 Volume (L) = 1.00297 @@ -1914,7 +1914,7 @@ Kaolinite 0.00 5.71 5.71 0.000e+00 6.295e-07 6.295e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 2.287e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = 4.087e-14 + Electrical balance (eq) = 9.271e-14 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 13 Total H = 1.110124e+02 @@ -1934,11 +1934,11 @@ Al 3.338e-07 Al(OH)2+ 8.678e-13 8.630e-13 -12.062 -12.064 -0.002 (0) AlOH+2 9.565e-17 9.359e-17 -16.019 -16.029 -0.009 -27.86 Al+3 8.407e-21 8.007e-21 -20.075 -20.097 -0.021 -42.50 -H(0) 1.177e-38 - H2 5.883e-39 5.884e-39 -38.230 -38.230 0.000 28.61 +H(0) 1.201e-38 + H2 6.004e-39 6.004e-39 -38.222 -38.222 0.000 28.61 K 2.186e-05 K+ 2.186e-05 2.175e-05 -4.660 -4.663 -0.002 8.98 -O(0) 2.409e-16 +O(0) 2.408e-16 O2 1.204e-16 1.204e-16 -15.919 -15.919 0.000 30.40 Si 6.433e-05 H4SiO4 5.478e-05 5.478e-05 -4.261 -4.261 0.000 52.08 @@ -1952,10 +1952,10 @@ Si 6.433e-05 Al(OH)3(a) -3.68 7.12 10.80 Al(OH)3 Chalcedony -0.71 -4.26 -3.55 SiO2 Gibbsite -0.93 7.12 8.05 Al(OH)3 - H2(g) -35.13 -38.23 -3.10 H2 + H2(g) -35.12 -38.22 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -2.14 -1.26 0.88 KAlSi3O8 - K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 + K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 Kaolinite 0.00 5.71 5.71 Al2Si2O5(OH)4 O2(g) -13.03 -15.92 -2.89 O2 Quartz -0.28 -4.26 -3.98 SiO2 @@ -1993,7 +1993,7 @@ Phase SI log IAP log K(T, P) Initial Final Delta Gibbsite -1.35 6.70 8.05 0.000e+00 0 0.000e+00 K-feldspar -1.30 -0.42 0.88 0.000e+00 0 0.000e+00 -K-mica -0.00 12.97 12.97 0.000e+00 2.127e-05 2.127e-05 +K-mica 0.00 12.97 12.97 0.000e+00 2.127e-05 2.127e-05 Kaolinite -0.29 5.41 5.71 0.000e+00 0 0.000e+00 -----------------------------Solution composition------------------------------ @@ -2007,7 +2007,7 @@ Kaolinite -0.29 5.41 5.71 0.000e+00 0 0.000e+00 ----------------------------Description of solution---------------------------- pH = 9.223 Charge balance - pe = 8.396 Adjusted to redox equilibrium + pe = 8.391 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 6 Density (g/cm³) = 0.99705 Volume (L) = 1.00297 @@ -2017,9 +2017,9 @@ Kaolinite -0.29 5.41 5.71 0.000e+00 0 0.000e+00 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 4.327e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = -1.175e-13 + Electrical balance (eq) = -7.043e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 13 + Iterations = 14 Total H = 1.110124e+02 Total O = 5.550647e+01 @@ -2037,12 +2037,12 @@ Al 1.804e-07 Al(OH)2+ 2.326e-13 2.308e-13 -12.633 -12.637 -0.003 (0) AlOH+2 1.816e-17 1.762e-17 -16.741 -16.754 -0.013 -27.85 Al+3 1.136e-21 1.062e-21 -20.945 -20.974 -0.029 -42.48 -H(0) 8.192e-39 - H2 4.096e-39 4.096e-39 -38.388 -38.388 0.000 28.61 +H(0) 8.360e-39 + H2 4.180e-39 4.180e-39 -38.379 -38.379 0.000 28.61 K 4.273e-05 K+ 4.273e-05 4.240e-05 -4.369 -4.373 -0.003 8.99 -O(0) 4.970e-16 - O2 2.485e-16 2.485e-16 -15.605 -15.605 0.000 30.40 +O(0) 4.967e-16 + O2 2.484e-16 2.484e-16 -15.605 -15.605 0.000 30.40 Si 1.282e-04 H4SiO4 1.027e-04 1.027e-04 -3.989 -3.989 0.000 52.08 H3SiO4- 2.550e-05 2.530e-05 -4.594 -4.597 -0.003 27.95 @@ -2055,10 +2055,10 @@ Si 1.282e-04 Al(OH)3(a) -4.10 6.70 10.80 Al(OH)3 Chalcedony -0.44 -3.99 -3.55 SiO2 Gibbsite -1.35 6.70 8.05 Al(OH)3 - H2(g) -35.29 -38.39 -3.10 H2 + H2(g) -35.28 -38.38 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -1.30 -0.42 0.88 KAlSi3O8 - K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 + K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 Kaolinite -0.29 5.41 5.71 Al2Si2O5(OH)4 O2(g) -12.71 -15.60 -2.89 O2 Quartz -0.01 -3.99 -3.98 SiO2 @@ -2145,7 +2145,7 @@ H(0) 3.759e-15 K 6.671e-05 K+ 6.671e-05 6.608e-05 -4.176 -4.180 -0.004 8.99 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -62.928 -62.928 0.000 30.40 + O2 0.000e+00 0.000e+00 -62.911 -62.911 0.000 30.40 Si 2.001e-04 H4SiO4 1.541e-04 1.541e-04 -3.812 -3.812 0.000 52.08 H3SiO4- 4.606e-05 4.562e-05 -4.337 -4.341 -0.004 27.95 @@ -2163,7 +2163,7 @@ Si 2.001e-04 K-feldspar -0.76 0.11 0.88 KAlSi3O8 K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 Kaolinite -0.48 5.23 5.71 Al2Si2O5(OH)4 - O2(g) -60.04 -62.93 -2.89 O2 + O2(g) -60.02 -62.91 -2.89 O2 Quartz 0.17 -3.81 -3.98 SiO2 SiO2(a) -1.10 -3.81 -2.71 SiO2 @@ -2198,7 +2198,7 @@ Reaction 1. Phase SI log IAP log K(T, P) Initial Final Delta Gibbsite -2.00 6.05 8.05 0.000e+00 0 0.000e+00 -K-feldspar -0.00 0.87 0.88 0.000e+00 9.093e-06 9.093e-06 +K-feldspar 0.00 0.88 0.88 0.000e+00 9.093e-06 9.093e-06 K-mica -0.00 12.97 12.97 0.000e+00 6.362e-05 6.362e-05 Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 @@ -2213,7 +2213,7 @@ Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 ----------------------------Description of solution---------------------------- pH = 9.388 Charge balance - pe = 8.438 Adjusted to redox equilibrium + pe = 8.434 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 14 Density (g/cm³) = 0.99707 Volume (L) = 1.00297 @@ -2223,9 +2223,9 @@ Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.275e-04 Temperature (°C) = 25.00 - Electrical balance (eq) = 1.578e-16 - Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 - Iterations = 17 + Electrical balance (eq) = -1.367e-14 + Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 + Iterations = 15 Total H = 1.110123e+02 Total O = 5.550698e+01 @@ -2243,11 +2243,11 @@ Al 5.973e-08 Al(OH)2+ 3.600e-14 3.554e-14 -13.444 -13.449 -0.006 (0) AlOH+2 1.954e-18 1.855e-18 -17.709 -17.732 -0.023 -27.83 Al+3 8.576e-23 7.641e-23 -22.067 -22.117 -0.050 -42.44 -H(0) 3.150e-39 - H2 1.575e-39 1.575e-39 -38.803 -38.803 0.000 28.61 +H(0) 3.214e-39 + H2 1.607e-39 1.607e-39 -38.794 -38.794 0.000 28.61 K 1.273e-04 K+ 1.273e-04 1.256e-04 -3.895 -3.901 -0.006 8.99 -O(0) 3.361e-15 +O(0) 3.360e-15 O2 1.680e-15 1.680e-15 -14.775 -14.775 0.000 30.40 Si 3.819e-04 H4SiO4 2.797e-04 2.797e-04 -3.553 -3.553 0.000 52.08 @@ -2261,9 +2261,9 @@ Si 3.819e-04 Al(OH)3(a) -4.75 6.05 10.80 Al(OH)3 Chalcedony -0.00 -3.55 -3.55 SiO2 Gibbsite -2.00 6.05 8.05 Al(OH)3 - H2(g) -35.70 -38.80 -3.10 H2 + H2(g) -35.69 -38.79 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - K-feldspar -0.00 0.87 0.88 KAlSi3O8 + K-feldspar 0.00 0.88 0.88 KAlSi3O8 K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 Kaolinite -0.72 4.99 5.71 Al2Si2O5(OH)4 O2(g) -11.88 -14.77 -2.89 O2 @@ -2425,7 +2425,7 @@ H(0) 1.416e-25 K 1.000e-13 K+ 1.000e-13 9.996e-14 -13.000 -13.000 -0.000 8.98 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -42.080 -42.080 0.000 30.40 + O2 0.000e+00 0.000e+00 -42.063 -42.063 0.000 30.40 Si 3.000e-13 H4SiO4 2.996e-13 2.996e-13 -12.524 -12.524 0.000 52.08 H3SiO4- 4.419e-16 4.417e-16 -15.355 -15.355 -0.000 27.94 @@ -2443,7 +2443,7 @@ Si 3.000e-13 K-feldspar -41.82 -40.94 0.88 KAlSi3O8 K-mica -48.66 -35.69 12.97 KAl3Si3O10(OH)2 Kaolinite -25.50 -19.79 5.71 Al2Si2O5(OH)4 - O2(g) -39.19 -42.08 -2.89 O2 + O2(g) -39.17 -42.06 -2.89 O2 Quartz -8.54 -12.52 -3.98 SiO2 SiO2(a) -9.81 -12.52 -2.71 SiO2 @@ -2494,7 +2494,7 @@ Kaolinite -9.09 -3.38 5.71 0.000e+00 0 0.000e+00 ----------------------------Description of solution---------------------------- pH = 7.000 Charge balance - pe = 11.011 Adjusted to redox equilibrium + pe = 11.040 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 0 Density (g/cm³) = 0.99704 Volume (L) = 1.00297 @@ -2524,12 +2524,12 @@ Al 1.266e-09 Al(OH)2+ 4.178e-11 4.176e-11 -10.379 -10.379 -0.000 (0) AlOH+2 5.332e-13 5.324e-13 -12.273 -12.274 -0.001 -27.87 Al+3 5.375e-15 5.357e-15 -14.270 -14.271 -0.001 -42.53 -H(0) 1.346e-39 - H2 6.732e-40 6.732e-40 -39.172 -39.172 0.000 28.61 +H(0) 1.176e-39 + H2 5.880e-40 5.880e-40 -39.231 -39.231 0.000 28.61 K 1.266e-09 K+ 1.266e-09 1.265e-09 -8.898 -8.898 -0.000 8.98 -O(0) 1.839e-14 - O2 9.197e-15 9.197e-15 -14.036 -14.036 0.000 30.40 +O(0) 2.510e-14 + O2 1.255e-14 1.255e-14 -13.901 -13.901 0.000 30.40 Si 3.797e-09 H4SiO4 3.791e-09 3.791e-09 -8.421 -8.421 0.000 52.08 H3SiO4- 5.596e-12 5.594e-12 -11.252 -11.252 -0.000 27.94 @@ -2542,12 +2542,12 @@ Si 3.797e-09 Al(OH)3(a) -4.07 6.73 10.80 Al(OH)3 Chalcedony -4.87 -8.42 -3.55 SiO2 Gibbsite -1.32 6.73 8.05 Al(OH)3 - H2(g) -36.07 -39.17 -3.10 H2 + H2(g) -36.13 -39.23 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -21.31 -20.43 0.88 KAlSi3O8 K-mica -19.94 -6.97 12.97 KAl3Si3O10(OH)2 Kaolinite -9.09 -3.38 5.71 Al2Si2O5(OH)4 - O2(g) -11.14 -14.04 -2.89 O2 + O2(g) -11.01 -13.90 -2.89 O2 Quartz -4.44 -8.42 -3.98 SiO2 SiO2(a) -5.71 -8.42 -2.71 SiO2 @@ -2594,7 +2594,7 @@ Kaolinite -4.93 0.78 5.71 0.000e+00 0 0.000e+00 ----------------------------Description of solution---------------------------- pH = 7.003 Charge balance - pe = 10.987 Adjusted to redox equilibrium + pe = 11.024 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 0 Density (g/cm³) = 0.99704 Volume (L) = 1.00297 @@ -2624,12 +2624,12 @@ Al 1.392e-08 Al(OH)2+ 4.535e-10 4.534e-10 -9.343 -9.344 -0.000 (0) AlOH+2 5.750e-12 5.741e-12 -11.240 -11.241 -0.001 -27.87 Al+3 5.756e-14 5.735e-14 -13.240 -13.241 -0.002 -42.53 -H(0) 1.484e-39 - H2 7.418e-40 7.418e-40 -39.130 -39.130 0.000 28.61 +H(0) 1.249e-39 + H2 6.245e-40 6.245e-40 -39.205 -39.205 0.000 28.61 K 1.392e-08 K+ 1.392e-08 1.392e-08 -7.856 -7.856 -0.000 8.98 -O(0) 1.515e-14 - O2 7.576e-15 7.576e-15 -14.121 -14.121 0.000 30.40 +O(0) 2.226e-14 + O2 1.113e-14 1.113e-14 -13.954 -13.954 0.000 30.40 Si 4.176e-08 H4SiO4 4.170e-08 4.170e-08 -7.380 -7.380 0.000 52.08 H3SiO4- 6.198e-11 6.196e-11 -10.208 -10.208 -0.000 27.94 @@ -2642,12 +2642,12 @@ Si 4.176e-08 Al(OH)3(a) -3.03 7.77 10.80 Al(OH)3 Chalcedony -3.83 -7.38 -3.55 SiO2 Gibbsite -0.28 7.77 8.05 Al(OH)3 - H2(g) -36.03 -39.13 -3.10 H2 + H2(g) -36.10 -39.20 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -16.10 -15.22 0.88 KAlSi3O8 K-mica -12.66 0.31 12.97 KAl3Si3O10(OH)2 Kaolinite -4.93 0.78 5.71 Al2Si2O5(OH)4 - O2(g) -11.23 -14.12 -2.89 O2 + O2(g) -11.06 -13.95 -2.89 O2 Quartz -3.40 -7.38 -3.98 SiO2 SiO2(a) -4.67 -7.38 -2.71 SiO2 @@ -2680,7 +2680,7 @@ A: Gibbsite 1100 1.4048e-01 3.5642e-01 -6.3763e+00 Moles in assemblage Phase SI log IAP log K(T, P) Initial Final Delta -Gibbsite 0.00 8.05 8.05 0.000e+00 9.946e-08 9.946e-08 +Gibbsite -0.00 8.05 8.05 0.000e+00 9.946e-08 9.946e-08 K-mica -7.60 5.37 12.97 0.000e+00 0 0.000e+00 Kaolinite -2.36 3.35 5.71 0.000e+00 0 0.000e+00 @@ -2695,7 +2695,7 @@ Kaolinite -2.36 3.35 5.71 0.000e+00 0 0.000e+00 ----------------------------Description of solution---------------------------- pH = 7.209 Charge balance - pe = 10.746 Adjusted to redox equilibrium + pe = 10.794 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 0 Density (g/cm³) = 0.99704 Volume (L) = 1.00297 @@ -2725,12 +2725,12 @@ Al 4.101e-08 Al(OH)2+ 5.388e-10 5.386e-10 -9.269 -9.269 -0.000 (0) AlOH+2 4.255e-12 4.246e-12 -11.371 -11.372 -0.001 -27.87 Al+3 2.654e-14 2.642e-14 -13.576 -13.578 -0.002 -42.53 -H(0) 1.742e-39 - H2 8.708e-40 8.708e-40 -39.060 -39.060 0.000 28.61 +H(0) 1.394e-39 + H2 6.969e-40 6.969e-40 -39.157 -39.157 0.000 28.61 K 1.405e-07 K+ 1.405e-07 1.404e-07 -6.852 -6.853 -0.000 8.98 -O(0) 1.099e-14 - O2 5.497e-15 5.497e-15 -14.260 -14.260 0.000 30.40 +O(0) 1.787e-14 + O2 8.935e-15 8.935e-15 -14.049 -14.049 0.000 30.40 Si 4.214e-07 H4SiO4 4.204e-07 4.204e-07 -6.376 -6.376 0.000 52.08 H3SiO4- 1.004e-09 1.003e-09 -8.998 -8.999 -0.000 27.94 @@ -2742,13 +2742,13 @@ Si 4.214e-07 Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 Chalcedony -2.82 -6.38 -3.55 SiO2 - Gibbsite 0.00 8.05 8.05 Al(OH)3 - H2(g) -35.96 -39.06 -3.10 H2 + Gibbsite -0.00 8.05 8.05 Al(OH)3 + H2(g) -36.06 -39.16 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -11.60 -10.72 0.88 KAlSi3O8 K-mica -7.60 5.37 12.97 KAl3Si3O10(OH)2 Kaolinite -2.36 3.35 5.71 Al2Si2O5(OH)4 - O2(g) -11.37 -14.26 -2.89 O2 + O2(g) -11.16 -14.05 -2.89 O2 Quartz -2.40 -6.38 -3.98 SiO2 SiO2(a) -3.66 -6.38 -2.71 SiO2 @@ -2796,7 +2796,7 @@ Kaolinite -0.37 5.33 5.71 0.000e+00 0 0.000e+00 ----------------------------Description of solution---------------------------- pH = 8.032 Charge balance - pe = -2.768 Adjusted to redox equilibrium + pe = -2.844 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 0 Density (g/cm³) = 0.99704 Volume (L) = 1.00297 @@ -2808,7 +2808,7 @@ Kaolinite -0.37 5.33 5.71 0.000e+00 0 0.000e+00 Temperature (°C) = 25.00 Electrical balance (eq) = -1.216e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.04 - Iterations = 137 + Iterations = 89 Total H = 1.110124e+02 Total O = 5.550622e+01 @@ -2826,12 +2826,12 @@ Al 2.620e-07 Al(OH)2+ 8.115e-11 8.104e-11 -10.091 -10.091 -0.001 (0) AlOH+2 9.668e-14 9.614e-14 -13.015 -13.017 -0.002 -27.87 Al+3 9.113e-17 8.999e-17 -16.040 -16.046 -0.005 -42.52 -H(0) 4.202e-14 - H2 2.101e-14 2.101e-14 -13.678 -13.678 0.000 28.61 +H(0) 5.960e-14 + H2 2.980e-14 2.980e-14 -13.526 -13.526 0.000 28.61 K 1.406e-06 K+ 1.406e-06 1.404e-06 -5.852 -5.853 -0.001 8.98 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.025 -65.025 0.000 30.40 + O2 0.000e+00 0.000e+00 -65.311 -65.311 0.000 30.40 Si 4.218e-06 H4SiO4 4.152e-06 4.152e-06 -5.382 -5.382 0.000 52.08 H3SiO4- 6.594e-08 6.584e-08 -7.181 -7.181 -0.001 27.94 @@ -2844,12 +2844,12 @@ Si 4.218e-06 Al(OH)3(a) -2.75 8.05 10.80 Al(OH)3 Chalcedony -1.83 -5.38 -3.55 SiO2 Gibbsite 0.00 8.05 8.05 Al(OH)3 - H2(g) -10.58 -13.68 -3.10 H2 + H2(g) -10.42 -13.53 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -6.79 -5.92 0.88 KAlSi3O8 K-mica -2.79 10.18 12.97 KAl3Si3O10(OH)2 Kaolinite -0.37 5.33 5.71 Al2Si2O5(OH)4 - O2(g) -62.13 -65.02 -2.89 O2 + O2(g) -62.42 -65.31 -2.89 O2 Quartz -1.40 -5.38 -3.98 SiO2 SiO2(a) -2.67 -5.38 -2.71 SiO2 @@ -2899,7 +2899,7 @@ Kaolinite 0.00 5.71 5.71 0.000e+00 6.730e-06 6.730e-06 ----------------------------Description of solution---------------------------- pH = 8.987 Charge balance - pe = -3.532 Adjusted to redox equilibrium + pe = -3.794 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 2 Density (g/cm³) = 0.99705 Volume (L) = 1.00297 @@ -2929,12 +2929,12 @@ Al 5.993e-07 Al(OH)2+ 2.295e-12 2.285e-12 -11.639 -11.641 -0.002 (0) AlOH+2 3.060e-16 3.007e-16 -15.514 -15.522 -0.008 -27.86 Al+3 3.247e-20 3.122e-20 -19.489 -19.506 -0.017 -42.50 -H(0) 1.747e-14 - H2 8.737e-15 8.737e-15 -14.059 -14.059 0.000 28.61 +H(0) 5.847e-14 + H2 2.923e-14 2.923e-14 -13.534 -13.534 0.000 28.61 K 1.406e-05 K+ 1.406e-05 1.400e-05 -4.852 -4.854 -0.002 8.98 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -64.263 -64.263 0.000 30.40 + O2 0.000e+00 0.000e+00 -65.294 -65.294 0.000 30.40 Si 2.872e-05 H4SiO4 2.511e-05 2.511e-05 -4.600 -4.600 0.000 52.08 H3SiO4- 3.606e-06 3.590e-06 -5.443 -5.445 -0.002 27.95 @@ -2947,12 +2947,12 @@ Si 2.872e-05 Al(OH)3(a) -3.35 7.45 10.80 Al(OH)3 Chalcedony -1.05 -4.60 -3.55 SiO2 Gibbsite -0.59 7.45 8.05 Al(OH)3 - H2(g) -10.96 -14.06 -3.10 H2 + H2(g) -10.43 -13.53 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -3.09 -2.21 0.88 KAlSi3O8 K-mica -0.28 12.69 12.97 KAl3Si3O10(OH)2 Kaolinite 0.00 5.71 5.71 Al2Si2O5(OH)4 - O2(g) -61.37 -64.26 -2.89 O2 + O2(g) -62.40 -65.29 -2.89 O2 Quartz -0.62 -4.60 -3.98 SiO2 SiO2(a) -1.89 -4.60 -2.71 SiO2 @@ -2990,7 +2990,7 @@ E: Kaolinite -> K-mica 2.6017e+06 3.2848e+01 4.4087e+00 -4.2499e+00 Phase SI log IAP log K(T, P) Initial Final Delta Gibbsite -1.76 6.29 8.05 0.000e+00 0 0.000e+00 -K-mica 0.00 12.97 12.97 0.000e+00 4.218e-05 4.218e-05 +K-mica -0.00 12.97 12.97 0.000e+00 4.218e-05 4.218e-05 Kaolinite -0.57 5.14 5.71 6.730e-06 0 -6.730e-06 -----------------------------Solution composition------------------------------ @@ -3004,7 +3004,7 @@ Kaolinite -0.57 5.14 5.71 6.730e-06 0 -6.730e-06 ----------------------------Description of solution---------------------------- pH = 9.338 Charge balance - pe = -4.301 Adjusted to redox equilibrium + pe = 9.034 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 10 Density (g/cm³) = 0.99706 Volume (L) = 1.00297 @@ -3016,7 +3016,7 @@ Kaolinite -0.57 5.14 5.71 6.730e-06 0 -6.730e-06 Temperature (°C) = 25.00 Electrical balance (eq) = -1.219e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 - Iterations = 3497 + Iterations = 3126 Total H = 1.110123e+02 Total O = 5.550672e+01 @@ -3034,12 +3034,12 @@ Al 9.244e-08 Al(OH)2+ 7.020e-14 6.946e-14 -13.154 -13.158 -0.005 (0) AlOH+2 4.247e-18 4.070e-18 -17.372 -17.390 -0.018 -27.84 Al+3 2.069e-22 1.882e-22 -21.684 -21.725 -0.041 -42.46 -H(0) 1.194e-13 - H2 5.971e-14 5.971e-14 -13.224 -13.224 0.000 28.61 +H(0) 2.554e-40 + H2 1.277e-40 1.277e-40 -39.894 -39.894 0.000 28.61 K 8.445e-05 K+ 8.445e-05 8.355e-05 -4.073 -4.078 -0.005 8.99 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -65.932 -65.932 0.000 30.40 +O(0) 5.321e-13 + O2 2.661e-13 2.661e-13 -12.575 -12.575 0.000 30.40 Si 2.534e-04 H4SiO4 1.913e-04 1.913e-04 -3.718 -3.718 0.000 52.08 H3SiO4- 6.207e-05 6.141e-05 -4.207 -4.212 -0.005 27.95 @@ -3052,12 +3052,12 @@ Si 2.534e-04 Al(OH)3(a) -4.51 6.29 10.80 Al(OH)3 Chalcedony -0.17 -3.72 -3.55 SiO2 Gibbsite -1.76 6.29 8.05 Al(OH)3 - H2(g) -10.12 -13.22 -3.10 H2 + H2(g) -36.79 -39.89 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -0.48 0.39 0.88 KAlSi3O8 - K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 + K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 Kaolinite -0.57 5.14 5.71 Al2Si2O5(OH)4 - O2(g) -63.04 -65.93 -2.89 O2 + O2(g) -9.68 -12.58 -2.89 O2 Quartz 0.26 -3.72 -3.98 SiO2 SiO2(a) -1.01 -3.72 -2.71 SiO2 @@ -3110,7 +3110,7 @@ Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 ----------------------------Description of solution---------------------------- pH = 9.388 Charge balance - pe = -4.487 Adjusted to redox equilibrium + pe = 8.980 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 14 Density (g/cm³) = 0.99707 Volume (L) = 1.00297 @@ -3120,7 +3120,7 @@ Kaolinite -0.72 4.99 5.71 0.000e+00 0 0.000e+00 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.275e-04 Temperature (°C) = 25.00 - Electrical balance (eq) = -1.219e-09 + Electrical balance (eq) = -1.220e-09 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00 Iterations = 1790 Total H = 1.110123e+02 @@ -3140,12 +3140,12 @@ Al 5.973e-08 Al(OH)2+ 3.600e-14 3.553e-14 -13.444 -13.449 -0.006 (0) AlOH+2 1.954e-18 1.855e-18 -17.709 -17.732 -0.023 -27.83 Al+3 8.576e-23 7.641e-23 -22.067 -22.117 -0.050 -42.44 -H(0) 2.228e-13 - H2 1.114e-13 1.114e-13 -12.953 -12.953 0.000 28.61 +H(0) 2.598e-40 + H2 1.299e-40 1.299e-40 -39.886 -39.886 0.000 28.61 K 1.273e-04 K+ 1.273e-04 1.256e-04 -3.895 -3.901 -0.006 8.99 -O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -66.474 -66.474 0.000 30.40 +O(0) 5.144e-13 + O2 2.572e-13 2.572e-13 -12.590 -12.590 0.000 30.40 Si 3.819e-04 H4SiO4 2.797e-04 2.797e-04 -3.553 -3.553 0.000 52.08 H3SiO4- 1.021e-04 1.008e-04 -3.991 -3.996 -0.006 27.95 @@ -3158,12 +3158,12 @@ Si 3.819e-04 Al(OH)3(a) -4.75 6.05 10.80 Al(OH)3 Chalcedony -0.00 -3.55 -3.55 SiO2 Gibbsite -2.00 6.05 8.05 Al(OH)3 - H2(g) -9.85 -12.95 -3.10 H2 + H2(g) -36.79 -39.89 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O K-feldspar -0.00 0.87 0.88 KAlSi3O8 K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 Kaolinite -0.72 4.99 5.71 Al2Si2O5(OH)4 - O2(g) -63.58 -66.47 -2.89 O2 + O2(g) -9.70 -12.59 -2.89 O2 Quartz 0.43 -3.55 -3.98 SiO2 SiO2(a) -0.84 -3.55 -2.71 SiO2 @@ -3259,8 +3259,8 @@ H(0) 1.416e-33 H2 7.078e-34 7.079e-34 -33.150 -33.150 0.000 28.61 K 1.039e-03 K+ 1.039e-03 1.000e-03 -2.983 -3.000 -0.017 9.01 -O(0) 1.663e-26 - O2 8.315e-27 8.317e-27 -26.080 -26.080 0.000 30.40 +O(0) 1.731e-26 + O2 8.655e-27 8.658e-27 -26.063 -26.063 0.000 30.40 Si 6.661e-06 H3SiO4- 6.208e-06 5.974e-06 -5.207 -5.224 -0.017 27.98 H4SiO4 4.050e-07 4.051e-07 -6.393 -6.392 0.000 52.08 @@ -3279,7 +3279,7 @@ Si 6.661e-06 K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 K_H 8.00 8.00 0.00 KH Kaolinite -2.39 3.31 5.71 Al2Si2O5(OH)4 - O2(g) -23.19 -26.08 -2.89 O2 + O2(g) -23.17 -26.06 -2.89 O2 Quartz -2.41 -6.39 -3.98 SiO2 SiO2(a) -3.68 -6.39 -2.71 SiO2 @@ -3334,7 +3334,7 @@ H(0) 1.415e-25 K 2.666e-03 K+ 2.666e-03 2.558e-03 -2.574 -2.592 -0.018 9.01 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -42.080 -42.080 0.000 30.40 + O2 0.000e+00 0.000e+00 -42.063 -42.063 0.000 30.40 Si 6.390e-06 H4SiO4 6.380e-06 6.382e-06 -5.195 -5.195 0.000 52.08 H3SiO4- 9.803e-09 9.410e-09 -8.009 -8.026 -0.018 27.98 @@ -3353,7 +3353,7 @@ Si 6.390e-06 K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 K_H 4.41 4.41 0.00 KH Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 - O2(g) -39.19 -42.08 -2.89 O2 + O2(g) -39.17 -42.06 -2.89 O2 Quartz -1.21 -5.20 -3.98 SiO2 SiO2(a) -2.48 -5.20 -2.71 SiO2 @@ -3408,7 +3408,7 @@ H(0) 1.415e-25 K 2.666e-03 K+ 2.666e-03 2.558e-03 -2.574 -2.592 -0.018 9.01 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -42.080 -42.080 0.000 30.40 + O2 0.000e+00 0.000e+00 -42.063 -42.063 0.000 30.40 Si 6.412e-04 H4SiO4 6.402e-04 6.404e-04 -3.194 -3.194 0.000 52.08 H3SiO4- 9.837e-07 9.443e-07 -6.007 -6.025 -0.018 27.98 @@ -3427,7 +3427,7 @@ Si 6.412e-04 K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 K_H 4.41 4.41 0.00 KH Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 - O2(g) -39.19 -42.08 -2.89 O2 + O2(g) -39.17 -42.06 -2.89 O2 Quartz 0.79 -3.19 -3.98 SiO2 SiO2(a) -0.48 -3.19 -2.71 SiO2 @@ -3482,7 +3482,7 @@ H(0) 1.416e-25 K 1.018e-08 K+ 1.018e-08 1.000e-08 -7.992 -8.000 -0.008 8.99 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -42.085 -42.085 0.000 30.40 + O2 0.000e+00 0.000e+00 -42.067 -42.067 0.000 30.40 Si 3.205e-01 H4SiO4 3.200e-01 3.200e-01 -0.495 -0.495 0.000 52.08 H3SiO4- 4.803e-04 4.719e-04 -3.318 -3.326 -0.008 27.96 @@ -3501,7 +3501,7 @@ Si 3.205e-01 K-mica -5.40 7.57 12.97 KAl3Si3O10(OH)2 K_H -1.00 -1.00 0.00 KH Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 - O2(g) -39.19 -42.08 -2.89 O2 + O2(g) -39.17 -42.07 -2.89 O2 Quartz 3.49 -0.49 -3.98 SiO2 SiO2(a) 2.22 -0.49 -2.71 SiO2 @@ -3590,8 +3590,8 @@ H(0) 1.415e-33 H2 7.077e-34 7.079e-34 -33.150 -33.150 0.000 28.61 K 1.043e-03 K+ 1.043e-03 1.000e-03 -2.982 -3.000 -0.018 9.01 -O(0) 1.663e-26 - O2 8.314e-27 8.317e-27 -26.080 -26.080 0.000 30.40 +O(0) 1.731e-26 + O2 8.655e-27 8.658e-27 -26.063 -26.063 0.000 30.40 Si 6.703e-04 H3SiO4- 6.249e-04 5.995e-04 -3.204 -3.222 -0.018 27.98 H4SiO4 4.064e-05 4.066e-05 -4.391 -4.391 0.000 52.08 @@ -3610,7 +3610,7 @@ Si 6.703e-04 K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 K_H 8.00 8.00 0.00 KH Kaolinite -2.39 3.31 5.71 Al2Si2O5(OH)4 - O2(g) -23.19 -26.08 -2.89 O2 + O2(g) -23.17 -26.06 -2.89 O2 Quartz -0.41 -4.39 -3.98 SiO2 SiO2(a) -1.68 -4.39 -2.71 SiO2 @@ -3665,7 +3665,7 @@ H(0) 1.415e-25 K 2.666e-03 K+ 2.666e-03 2.558e-03 -2.574 -2.592 -0.018 9.01 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -42.080 -42.080 0.000 30.40 + O2 0.000e+00 0.000e+00 -42.063 -42.063 0.000 30.40 Si 6.412e-04 H4SiO4 6.402e-04 6.404e-04 -3.194 -3.194 0.000 52.08 H3SiO4- 9.837e-07 9.443e-07 -6.007 -6.025 -0.018 27.98 @@ -3684,7 +3684,7 @@ Si 6.412e-04 K-mica -0.00 12.97 12.97 KAl3Si3O10(OH)2 K_H 4.41 4.41 0.00 KH Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 - O2(g) -39.19 -42.08 -2.89 O2 + O2(g) -39.17 -42.06 -2.89 O2 Quartz 0.79 -3.19 -3.98 SiO2 SiO2(a) -0.48 -3.19 -2.71 SiO2 @@ -3739,7 +3739,7 @@ H(0) 1.415e-25 K 2.666e-03 K+ 2.666e-03 2.558e-03 -2.574 -2.592 -0.018 9.01 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -42.080 -42.080 0.000 30.40 + O2 0.000e+00 0.000e+00 -42.063 -42.063 0.000 30.40 Si 6.390e-06 H4SiO4 6.380e-06 6.382e-06 -5.195 -5.195 0.000 52.08 H3SiO4- 9.803e-09 9.410e-09 -8.009 -8.026 -0.018 27.98 @@ -3758,7 +3758,7 @@ Si 6.390e-06 K-mica 0.00 12.97 12.97 KAl3Si3O10(OH)2 K_H 4.41 4.41 0.00 KH Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 - O2(g) -39.19 -42.08 -2.89 O2 + O2(g) -39.17 -42.06 -2.89 O2 Quartz -1.21 -5.20 -3.98 SiO2 SiO2(a) -2.48 -5.20 -2.71 SiO2 @@ -3813,7 +3813,7 @@ H(0) 1.416e-25 K 1.000e-08 K+ 1.000e-08 1.000e-08 -8.000 -8.000 -0.000 8.98 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -42.080 -42.080 0.000 30.40 + O2 0.000e+00 0.000e+00 -42.063 -42.063 0.000 30.40 Si 6.392e-06 H4SiO4 6.383e-06 6.383e-06 -5.195 -5.195 0.000 52.08 H3SiO4- 9.415e-09 9.411e-09 -8.026 -8.026 -0.000 27.94 @@ -3832,7 +3832,7 @@ Si 6.392e-06 K-mica -5.41 7.56 12.97 KAl3Si3O10(OH)2 K_H -1.00 -1.00 0.00 KH Kaolinite -0.00 5.71 5.71 Al2Si2O5(OH)4 - O2(g) -39.19 -42.08 -2.89 O2 + O2(g) -39.17 -42.06 -2.89 O2 Quartz -1.21 -5.20 -3.98 SiO2 SiO2(a) -2.48 -5.20 -2.71 SiO2 diff --git a/ex6A-B.sel b/ex6A-B.sel index 81e9f18a..22e870d3 100644 --- a/ex6A-B.sel +++ b/ex6A-B.sel @@ -1,22 +1,22 @@ sim state soln dist_x time step pH pe la_K+ la_H+ la_H4SiO4 Gibbsite d_Gibbsite Kaolinite d_Kaolinite K-mica d_K-mica K-feldspar d_K-feldspar si_Gibbsite si_Kaolinite si_K-mica si_K-feldspar 1 i_soln 1 -99 -99 -99 6.99738 4 -1.0000e+03 -6.9974e+00 -1.0000e+03 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -999.9990 -999.9990 -999.9990 -999.9990 - 2 react 1 -99 0 1 7.00369 10.3679 -7.5756e+00 -7.0037e+00 -7.0990e+00 1.0000e+01 -2.6579e-08 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.0000 -3.8080 -10.6919 -14.6949 - 3 react 1 -99 0 1 8.20884 9.16277 -5.6626e+00 -8.2088e+00 -5.1950e+00 1.7849e-06 1.7849e-06 1.0000e+01 -2.1784e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 0.0000 -1.8618 -5.8648 - 4 react 1 -99 0 1 9.10706 8.26452 -4.6991e+00 -9.1071e+00 -4.4650e+00 0.0000e+00 0.0000e+00 9.7604e-06 9.7604e-06 1.0000e+01 -2.0101e-05 0.0000e+00 0.0000e+00 -0.7300 0.0000 0.0000 -2.5429 - 5 react 1 -99 0 1 9.38811 7.98357 -3.9009e+00 -9.3881e+00 -3.5533e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 6.3616e-05 6.3616e-05 9.9998e+00 -1.9091e-04 -2.0015 -0.7195 -0.0000 -0.0000 - 6 react 1 -99 0 1 8.35063 9.02099 -5.5202e+00 -8.3506e+00 -5.1950e+00 1.0000e+01 -3.0245e-06 1.0000e+00 1.2397e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -0.0000 -1.5776 -5.5806 + 2 react 1 -99 0 1 7.00369 10.3636 -7.5756e+00 -7.0037e+00 -7.0990e+00 1.0000e+01 -2.6579e-08 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -3.8080 -10.6919 -14.6949 + 3 react 1 -99 0 1 8.20884 9.15841 -5.6626e+00 -8.2088e+00 -5.1950e+00 1.7849e-06 1.7849e-06 1.0000e+01 -2.1784e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 0.0000 -1.8618 -5.8648 + 4 react 1 -99 0 1 9.10706 8.2602 -4.6991e+00 -9.1071e+00 -4.4650e+00 0.0000e+00 0.0000e+00 9.7604e-06 9.7604e-06 1.0000e+01 -2.0101e-05 0.0000e+00 0.0000e+00 -0.7300 0.0000 0.0000 -2.5429 + 5 react 1 -99 0 1 9.38811 7.97856 -3.9009e+00 -9.3881e+00 -3.5533e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 6.3616e-05 6.3616e-05 9.9998e+00 -1.9091e-04 -2.0015 -0.7195 0.0000 0.0000 + 6 react 1 -99 0 1 8.35063 9.01662 -5.5202e+00 -8.3506e+00 -5.1950e+00 1.0000e+01 -3.0245e-06 1.0000e+00 1.2397e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -0.0000 -1.5776 -5.5806 7 react 1 -99 0 1 9.06827 -3.25856 -4.6603e+00 -9.0683e+00 -4.2503e+00 0.0000e+00 0.0000e+00 1.0000e+01 -3.2815e-05 1.0000e+00 1.0830e-05 0.0000e+00 0.0000e+00 -0.9448 0.0000 0.0000 -2.1135 8 react 1 -99 0 1 7.02917 -1.25493 -7.3981e+00 -7.0292e+00 -6.9215e+00 1.1996e-08 1.1996e-08 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -3.4530 -9.9565 -13.9595 - 8 react 1 -99 0 2 7.10321 11.4626 -7.0971e+00 -7.1032e+00 -6.6206e+00 4.7312e-08 4.7312e-08 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -2.8512 -8.6787 -12.6817 + 8 react 1 -99 0 2 7.10321 11.467 -7.0971e+00 -7.1032e+00 -6.6206e+00 4.7312e-08 4.7312e-08 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -2.8512 -8.6787 -12.6817 8 react 1 -99 0 3 7.2381 -1.23219 -6.7961e+00 -7.2381e+00 -6.3199e+00 1.1631e-07 1.1631e-07 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.0000 -2.2497 -7.3406 -11.3436 8 react 1 -99 0 4 7.44792 -1.59012 -6.4952e+00 -7.4479e+00 -6.0195e+00 2.5047e-07 2.5047e-07 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -1.6490 -5.9288 -9.9318 8 react 1 -99 0 5 7.71092 -2.00241 -6.1942e+00 -7.7109e+00 -5.7200e+00 5.1404e-07 5.1404e-07 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -1.0500 -4.4663 -8.4693 - 8 react 1 -99 0 6 7.89183 9.81356 -6.0005e+00 -7.8918e+00 -5.5278e+00 8.0972e-07 8.0972e-07 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -0.6657 -3.5152 -7.5182 - 8 react 1 -99 0 7 8.17443 9.60703 -5.6997e+00 -8.1744e+00 -5.2313e+00 1.6364e-06 1.6364e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -0.0727 -2.0422 -6.0452 + 8 react 1 -99 0 6 7.89183 9.8092 -6.0005e+00 -7.8918e+00 -5.5278e+00 8.0972e-07 8.0972e-07 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000 -0.6657 -3.5152 -7.5182 + 8 react 1 -99 0 7 8.17443 9.60262 -5.6997e+00 -8.1744e+00 -5.2313e+00 1.6364e-06 1.6364e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.0000 -0.0727 -2.0422 -6.0452 8 react 1 -99 0 8 8.48037 -2.7668 -5.3990e+00 -8.4804e+00 -5.0859e+00 0.0000e+00 0.0000e+00 1.7143e-06 1.7143e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.1091 -0.0000 -1.3266 -5.1114 - 8 react 1 -99 0 9 8.77515 8.985 -5.0983e+00 -8.7752e+00 -4.8164e+00 0.0000e+00 0.0000e+00 3.6971e-06 3.6971e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.3786 0.0000 -0.7312 -3.9771 + 8 react 1 -99 0 9 8.77515 8.98055 -5.0983e+00 -8.7752e+00 -4.8164e+00 0.0000e+00 0.0000e+00 3.6971e-06 3.6971e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.3786 0.0000 -0.7312 -3.9771 8 react 1 -99 0 10 9.03134 -3.37462 -4.7979e+00 -9.0313e+00 -4.5510e+00 0.0000e+00 0.0000e+00 7.7032e-06 7.7032e-06 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -0.6440 -0.0000 -0.1746 -2.8896 - 8 react 1 -99 0 11 9.07064 8.46955 -4.6626e+00 -9.0706e+00 -4.2614e+00 0.0000e+00 0.0000e+00 6.2948e-07 6.2948e-07 1.0136e-05 1.0136e-05 0.0000e+00 0.0000e+00 -0.9336 0.0000 0.0000 -2.1358 - 8 react 1 -99 0 12 9.22303 8.3958 -4.3726e+00 -9.2230e+00 -3.9885e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 2.1273e-05 2.1273e-05 0.0000e+00 0.0000e+00 -1.3540 -0.2950 -0.0000 -1.2950 + 8 react 1 -99 0 11 9.07064 8.46515 -4.6626e+00 -9.0706e+00 -4.2614e+00 0.0000e+00 0.0000e+00 6.2948e-07 6.2948e-07 1.0136e-05 1.0136e-05 0.0000e+00 0.0000e+00 -0.9336 0.0000 -0.0000 -2.1358 + 8 react 1 -99 0 12 9.22303 8.39138 -4.3726e+00 -9.2230e+00 -3.9885e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 2.1273e-05 2.1273e-05 0.0000e+00 0.0000e+00 -1.3540 -0.2950 0.0000 -1.2950 8 react 1 -99 0 13 9.30283 -3.51486 -4.1800e+00 -9.3028e+00 -3.8123e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 3.3294e-05 3.3294e-05 0.0000e+00 0.0000e+00 -1.6210 -0.4766 -0.0000 -0.7610 - 8 react 1 -99 0 14 9.38811 8.43824 -3.9009e+00 -9.3881e+00 -3.5533e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 6.3616e-05 6.3616e-05 9.0932e-06 9.0932e-06 -2.0015 -0.7195 -0.0000 -0.0000 + 8 react 1 -99 0 14 9.38811 8.43384 -3.9009e+00 -9.3881e+00 -3.5533e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 6.3616e-05 6.3616e-05 9.0932e-06 9.0932e-06 -2.0015 -0.7195 -0.0000 0.0000 diff --git a/ex7.out b/ex7.out index 710cbcc1..5632da70 100644 --- a/ex7.out +++ b/ex7.out @@ -102,7 +102,7 @@ Initial solution 1. H(0) 1.416e-25 H2 7.079e-26 7.079e-26 -25.150 -25.150 0.000 28.61 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -42.080 -42.080 0.000 30.40 + O2 0.000e+00 0.000e+00 -42.063 -42.063 0.000 30.40 ------------------------------Saturation indices------------------------------- @@ -110,7 +110,7 @@ O(0) 0.000e+00 H2(g) -22.05 -25.15 -3.10 H2 H2O(g) -1.50 0.00 1.50 H2O - O2(g) -39.19 -42.08 -2.89 O2 + O2(g) -39.17 -42.06 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -184,7 +184,7 @@ Ca 2.453e-03 H(0) 5.087e-15 H2 2.544e-15 2.548e-15 -14.595 -14.594 0.001 28.61 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -63.193 -63.192 0.001 30.40 + O2 0.000e+00 0.000e+00 -63.176 -63.175 0.001 30.40 ------------------------------Saturation indices------------------------------- @@ -196,7 +196,7 @@ O(0) 0.000e+00 CO2(g) -1.50 -2.97 -1.47 CO2 Pressure 0.0 atm, phi 1.000 H2(g) -11.49 -14.59 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - O2(g) -60.30 -63.19 -2.89 O2 + O2(g) -60.28 -63.18 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -346,7 +346,7 @@ N(3) 0.000e+00 N(5) 0.000e+00 NO3- 0.000e+00 0.000e+00 -84.708 -84.748 -0.040 29.54 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -73.647 -73.646 0.001 30.40 + O2 0.000e+00 0.000e+00 -73.629 -73.629 0.001 30.40 ------------------------------Saturation indices------------------------------- @@ -360,7 +360,7 @@ O(0) 0.000e+00 H2O(g) -1.50 -0.00 1.50 H2O N2(g) -3.98 -7.16 -3.18 N2 NH3(g) -8.38 -6.61 1.77 NH3 - O2(g) -70.75 -73.65 -2.89 O2 + O2(g) -70.74 -73.63 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -452,7 +452,7 @@ N(3) 0.000e+00 N(5) 0.000e+00 NO3- 0.000e+00 0.000e+00 -84.804 -84.845 -0.041 29.54 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -73.743 -73.742 0.001 30.40 + O2 0.000e+00 0.000e+00 -73.725 -73.725 0.001 30.40 ------------------------------Saturation indices------------------------------- @@ -466,7 +466,7 @@ O(0) 0.000e+00 H2O(g) -1.50 -0.00 1.50 H2O N2(g) -3.73 -6.91 -3.18 N2 NH3(g) -8.18 -6.41 1.77 NH3 - O2(g) -70.85 -73.74 -2.89 O2 + O2(g) -70.83 -73.72 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -558,7 +558,7 @@ N(3) 0.000e+00 N(5) 0.000e+00 NO3- 0.000e+00 0.000e+00 -84.879 -84.920 -0.041 29.54 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -73.787 -73.787 0.001 30.40 + O2 0.000e+00 0.000e+00 -73.770 -73.769 0.001 30.40 ------------------------------Saturation indices------------------------------- @@ -572,7 +572,7 @@ O(0) 0.000e+00 H2O(g) -1.50 -0.00 1.50 H2O N2(g) -3.61 -6.78 -3.18 N2 NH3(g) -8.09 -6.32 1.77 NH3 - O2(g) -70.89 -73.79 -2.89 O2 + O2(g) -70.88 -73.77 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -678,7 +678,7 @@ N(3) 0.000e+00 N(5) 0.000e+00 NO3- 0.000e+00 0.000e+00 -84.824 -84.865 -0.041 29.54 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -73.761 -73.760 0.001 30.40 + O2 0.000e+00 0.000e+00 -73.744 -73.743 0.001 30.40 ------------------------------Saturation indices------------------------------- @@ -692,7 +692,7 @@ O(0) 0.000e+00 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.995 N2(g) -3.44 -6.62 -3.18 N2 Pressure 0.0 atm, phi 1.000 NH3(g) -8.03 -6.26 1.77 NH3 - O2(g) -70.87 -73.76 -2.89 O2 + O2(g) -70.85 -73.74 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -798,7 +798,7 @@ N(3) 0.000e+00 N(5) 0.000e+00 NO3- 0.000e+00 0.000e+00 -84.645 -84.687 -0.042 29.54 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -73.661 -73.660 0.001 30.40 + O2 0.000e+00 0.000e+00 -73.643 -73.642 0.001 30.40 ------------------------------Saturation indices------------------------------- @@ -812,7 +812,7 @@ O(0) 0.000e+00 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.995 N2(g) -3.02 -6.19 -3.18 N2 Pressure 0.0 atm, phi 1.000 NH3(g) -7.89 -6.12 1.77 NH3 - O2(g) -70.77 -73.66 -2.89 O2 + O2(g) -70.75 -73.64 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -918,7 +918,7 @@ N(3) 0.000e+00 N(5) 0.000e+00 NO3- 0.000e+00 0.000e+00 -84.437 -84.480 -0.043 29.55 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -73.548 -73.547 0.001 30.40 + O2 0.000e+00 0.000e+00 -73.530 -73.530 0.001 30.40 ------------------------------Saturation indices------------------------------- @@ -932,7 +932,7 @@ O(0) 0.000e+00 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.994 N2(g) -2.58 -5.75 -3.18 N2 Pressure 0.0 atm, phi 1.000 NH3(g) -7.75 -5.98 1.77 NH3 - O2(g) -70.65 -73.55 -2.89 O2 + O2(g) -70.64 -73.53 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1038,7 +1038,7 @@ N(3) 0.000e+00 N(5) 0.000e+00 NO3- 0.000e+00 0.000e+00 -84.183 -84.228 -0.045 29.55 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -73.439 -73.438 0.001 30.40 + O2 0.000e+00 0.000e+00 -73.421 -73.420 0.001 30.40 ------------------------------Saturation indices------------------------------- @@ -1052,7 +1052,7 @@ O(0) 0.000e+00 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.994 N2(g) -2.13 -5.30 -3.18 N2 Pressure 0.0 atm, phi 1.000 NH3(g) -7.61 -5.84 1.77 NH3 - O2(g) -70.55 -73.44 -2.89 O2 + O2(g) -70.53 -73.42 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1158,7 +1158,7 @@ N(3) 0.000e+00 N(5) 0.000e+00 NO3- 0.000e+00 0.000e+00 -83.957 -84.004 -0.047 29.56 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -73.353 -73.352 0.001 30.40 + O2 0.000e+00 0.000e+00 -73.336 -73.335 0.001 30.40 ------------------------------Saturation indices------------------------------- @@ -1172,7 +1172,7 @@ O(0) 0.000e+00 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.993 N2(g) -1.77 -4.95 -3.18 N2 Pressure 0.0 atm, phi 1.000 NH3(g) -7.50 -5.73 1.77 NH3 - O2(g) -70.46 -73.35 -2.89 O2 + O2(g) -70.44 -73.33 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1278,7 +1278,7 @@ N(3) 0.000e+00 N(5) 0.000e+00 NO3- 0.000e+00 0.000e+00 -83.832 -83.880 -0.048 29.56 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -73.301 -73.300 0.001 30.40 + O2 0.000e+00 0.000e+00 -73.284 -73.283 0.001 30.40 ------------------------------Saturation indices------------------------------- @@ -1292,7 +1292,7 @@ O(0) 0.000e+00 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.993 N2(g) -1.60 -4.77 -3.18 N2 Pressure 0.0 atm, phi 1.001 NH3(g) -7.45 -5.68 1.77 NH3 - O2(g) -70.41 -73.30 -2.89 O2 + O2(g) -70.39 -73.28 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1398,7 +1398,7 @@ N(3) 0.000e+00 N(5) 0.000e+00 NO3- 0.000e+00 0.000e+00 -83.770 -83.818 -0.049 29.56 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -73.272 -73.271 0.001 30.40 + O2 0.000e+00 0.000e+00 -73.255 -73.254 0.001 30.40 ------------------------------Saturation indices------------------------------- @@ -1412,7 +1412,7 @@ O(0) 0.000e+00 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.993 N2(g) -1.51 -4.69 -3.18 N2 Pressure 0.0 atm, phi 1.001 NH3(g) -7.43 -5.66 1.77 NH3 - O2(g) -70.38 -73.27 -2.89 O2 + O2(g) -70.36 -73.25 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1518,7 +1518,7 @@ N(3) 0.000e+00 N(5) 0.000e+00 NO3- 0.000e+00 0.000e+00 -83.741 -83.790 -0.049 29.56 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -73.258 -73.256 0.001 30.40 + O2 0.000e+00 0.000e+00 -73.240 -73.239 0.001 30.40 ------------------------------Saturation indices------------------------------- @@ -1532,7 +1532,7 @@ O(0) 0.000e+00 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.993 N2(g) -1.48 -4.65 -3.18 N2 Pressure 0.0 atm, phi 1.001 NH3(g) -7.42 -5.65 1.77 NH3 - O2(g) -70.36 -73.26 -2.89 O2 + O2(g) -70.35 -73.24 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1638,7 +1638,7 @@ N(3) 0.000e+00 N(5) 0.000e+00 NO3- 0.000e+00 0.000e+00 -83.727 -83.776 -0.049 29.56 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -73.250 -73.249 0.001 30.40 + O2 0.000e+00 0.000e+00 -73.233 -73.232 0.001 30.40 ------------------------------Saturation indices------------------------------- @@ -1652,7 +1652,7 @@ O(0) 0.000e+00 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.993 N2(g) -1.46 -4.63 -3.18 N2 Pressure 0.0 atm, phi 1.001 NH3(g) -7.42 -5.65 1.77 NH3 - O2(g) -70.36 -73.25 -2.89 O2 + O2(g) -70.34 -73.23 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1824,7 +1824,7 @@ N(3) 0.000e+00 N(5) 0.000e+00 NO3- 0.000e+00 0.000e+00 -83.172 -83.212 -0.040 29.54 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -72.337 -72.336 0.001 30.40 + O2 0.000e+00 0.000e+00 -72.320 -72.319 0.001 30.40 ------------------------------Saturation indices------------------------------- @@ -1838,7 +1838,7 @@ O(0) 0.000e+00 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.999 N2(g) -4.45 -7.63 -3.18 N2 Pressure 0.0 atm, phi 1.000 NH3(g) -9.60 -7.83 1.77 NH3 - O2(g) -69.44 -72.34 -2.89 O2 + O2(g) -69.43 -72.32 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -1944,7 +1944,7 @@ N(3) 0.000e+00 N(5) 0.000e+00 NO3- 0.000e+00 0.000e+00 -83.211 -83.251 -0.040 29.54 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -72.484 -72.484 0.001 30.40 + O2 0.000e+00 0.000e+00 -72.467 -72.466 0.001 30.40 ------------------------------Saturation indices------------------------------- @@ -1958,7 +1958,7 @@ O(0) 0.000e+00 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.999 N2(g) -4.15 -7.33 -3.18 N2 Pressure 0.0 atm, phi 1.000 NH3(g) -9.34 -7.57 1.77 NH3 - O2(g) -69.59 -72.48 -2.89 O2 + O2(g) -69.57 -72.47 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2064,7 +2064,7 @@ N(3) 0.000e+00 N(5) 0.000e+00 NO3- 0.000e+00 0.000e+00 -83.235 -83.275 -0.040 29.54 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -72.569 -72.569 0.001 30.40 + O2 0.000e+00 0.000e+00 -72.552 -72.551 0.001 30.40 ------------------------------Saturation indices------------------------------- @@ -2078,7 +2078,7 @@ O(0) 0.000e+00 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.999 N2(g) -3.97 -7.15 -3.18 N2 Pressure 0.0 atm, phi 1.000 NH3(g) -9.19 -7.42 1.77 NH3 - O2(g) -69.68 -72.57 -2.89 O2 + O2(g) -69.66 -72.55 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2184,7 +2184,7 @@ N(3) 0.000e+00 N(5) 0.000e+00 NO3- 0.000e+00 0.000e+00 -83.252 -83.292 -0.040 29.54 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -72.629 -72.628 0.001 30.40 + O2 0.000e+00 0.000e+00 -72.611 -72.610 0.001 30.40 ------------------------------Saturation indices------------------------------- @@ -2198,7 +2198,7 @@ O(0) 0.000e+00 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.999 N2(g) -3.85 -7.02 -3.18 N2 Pressure 0.0 atm, phi 1.000 NH3(g) -9.08 -7.31 1.77 NH3 - O2(g) -69.74 -72.63 -2.89 O2 + O2(g) -69.72 -72.61 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2304,7 +2304,7 @@ N(3) 0.000e+00 N(5) 0.000e+00 NO3- 0.000e+00 0.000e+00 -83.297 -83.338 -0.040 29.54 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -72.767 -72.766 0.001 30.40 + O2 0.000e+00 0.000e+00 -72.750 -72.749 0.001 30.40 ------------------------------Saturation indices------------------------------- @@ -2318,7 +2318,7 @@ O(0) 0.000e+00 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.999 N2(g) -3.55 -6.72 -3.18 N2 Pressure 0.0 atm, phi 1.000 NH3(g) -8.82 -7.05 1.77 NH3 - O2(g) -69.87 -72.77 -2.89 O2 + O2(g) -69.86 -72.75 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2424,7 +2424,7 @@ N(3) 0.000e+00 N(5) 0.000e+00 NO3- 0.000e+00 0.000e+00 -83.350 -83.390 -0.040 29.54 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -72.895 -72.894 0.001 30.40 + O2 0.000e+00 0.000e+00 -72.878 -72.877 0.001 30.40 ------------------------------Saturation indices------------------------------- @@ -2438,7 +2438,7 @@ O(0) 0.000e+00 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.999 N2(g) -3.24 -6.42 -3.18 N2 Pressure 0.0 atm, phi 1.000 NH3(g) -8.58 -6.81 1.77 NH3 - O2(g) -70.00 -72.89 -2.89 O2 + O2(g) -69.98 -72.88 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2544,7 +2544,7 @@ N(3) 0.000e+00 N(5) 0.000e+00 NO3- 0.000e+00 0.000e+00 -83.413 -83.453 -0.040 29.54 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -73.007 -73.006 0.001 30.40 + O2 0.000e+00 0.000e+00 -72.989 -72.989 0.001 30.40 ------------------------------Saturation indices------------------------------- @@ -2558,7 +2558,7 @@ O(0) 0.000e+00 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.999 N2(g) -2.94 -6.12 -3.18 N2 Pressure 0.0 atm, phi 1.000 NH3(g) -8.34 -6.57 1.77 NH3 - O2(g) -70.11 -73.01 -2.89 O2 + O2(g) -70.10 -72.99 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2664,7 +2664,7 @@ N(3) 0.000e+00 N(5) 0.000e+00 NO3- 0.000e+00 0.000e+00 -83.489 -83.529 -0.041 29.54 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -73.096 -73.095 0.001 30.40 + O2 0.000e+00 0.000e+00 -73.079 -73.078 0.001 30.40 ------------------------------Saturation indices------------------------------- @@ -2678,7 +2678,7 @@ O(0) 0.000e+00 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.999 N2(g) -2.64 -5.82 -3.18 N2 Pressure 0.0 atm, phi 1.000 NH3(g) -8.13 -6.36 1.77 NH3 - O2(g) -70.20 -73.10 -2.89 O2 + O2(g) -70.19 -73.08 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2784,7 +2784,7 @@ N(3) 0.000e+00 N(5) 0.000e+00 NO3- 0.000e+00 0.000e+00 -83.571 -83.612 -0.041 29.54 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -73.158 -73.157 0.001 30.40 + O2 0.000e+00 0.000e+00 -73.140 -73.140 0.001 30.40 ------------------------------Saturation indices------------------------------- @@ -2798,7 +2798,7 @@ O(0) 0.000e+00 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.998 N2(g) -2.36 -5.53 -3.18 N2 Pressure 0.0 atm, phi 1.000 NH3(g) -7.94 -6.17 1.77 NH3 - O2(g) -70.26 -73.16 -2.89 O2 + O2(g) -70.25 -73.14 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -2904,7 +2904,7 @@ N(3) 0.000e+00 N(5) 0.000e+00 NO3- 0.000e+00 0.000e+00 -83.653 -83.695 -0.042 29.55 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -73.199 -73.198 0.001 30.40 + O2 0.000e+00 0.000e+00 -73.182 -73.181 0.001 30.40 ------------------------------Saturation indices------------------------------- @@ -2918,7 +2918,7 @@ O(0) 0.000e+00 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.997 N2(g) -2.06 -5.23 -3.18 N2 Pressure 0.0 atm, phi 1.000 NH3(g) -7.76 -5.99 1.77 NH3 - O2(g) -70.31 -73.20 -2.89 O2 + O2(g) -70.29 -73.18 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3024,7 +3024,7 @@ N(3) 0.000e+00 N(5) 0.000e+00 NO3- 0.000e+00 0.000e+00 -83.711 -83.756 -0.045 29.55 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -73.223 -73.222 0.001 30.40 + O2 0.000e+00 0.000e+00 -73.206 -73.205 0.001 30.40 ------------------------------Saturation indices------------------------------- @@ -3038,7 +3038,7 @@ O(0) 0.000e+00 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.996 N2(g) -1.76 -4.94 -3.18 N2 Pressure 0.0 atm, phi 1.000 NH3(g) -7.59 -5.82 1.77 NH3 - O2(g) -70.33 -73.22 -2.89 O2 + O2(g) -70.31 -73.20 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. @@ -3144,7 +3144,7 @@ N(3) 0.000e+00 N(5) 0.000e+00 NO3- 0.000e+00 0.000e+00 -83.732 -83.781 -0.049 29.56 O(0) 0.000e+00 - O2 0.000e+00 0.000e+00 -73.237 -73.236 0.001 30.40 + O2 0.000e+00 0.000e+00 -73.220 -73.218 0.001 30.40 ------------------------------Saturation indices------------------------------- @@ -3158,7 +3158,7 @@ O(0) 0.000e+00 H2O(g) -1.50 -0.00 1.50 H2O Pressure 0.0 atm, phi 0.992 N2(g) -1.46 -4.64 -3.18 N2 Pressure 0.0 atm, phi 1.001 NH3(g) -7.43 -5.66 1.77 NH3 - O2(g) -70.34 -73.24 -2.89 O2 + O2(g) -70.33 -73.22 -2.89 O2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. diff --git a/ex8.out b/ex8.out index 8cdf27c8..e8a5f7fd 100644 --- a/ex8.out +++ b/ex8.out @@ -120,8 +120,8 @@ N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 1.000e-01 Na+ 1.000e-01 7.851e-02 -1.000 -1.105 -0.105 -1.09 -O(0) 1.615e-38 - O2 8.073e-39 8.261e-39 -38.093 -38.083 0.010 30.40 +O(0) 1.681e-38 + O2 8.404e-39 8.600e-39 -38.076 -38.066 0.010 30.40 Zn 1.000e-07 Zn+2 9.102e-08 3.424e-08 -7.041 -7.465 -0.425 -24.68 ZnOH+ 4.790e-09 3.742e-09 -8.320 -8.427 -0.107 (0) @@ -135,7 +135,7 @@ Zn 1.000e-07 H2(g) -24.05 -27.15 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - O2(g) -35.19 -38.08 -2.89 O2 + O2(g) -35.17 -38.07 -2.89 O2 Zn(OH)2(e) -2.97 8.53 11.50 Zn(OH)2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -214,8 +214,8 @@ N(5) 1.000e-01 NO3- 1.000e-01 7.533e-02 -1.000 -1.123 -0.123 29.77 Na 9.981e-02 Na+ 9.981e-02 7.836e-02 -1.001 -1.106 -0.105 -1.09 -O(0) 1.615e-38 - O2 8.073e-39 8.261e-39 -38.093 -38.083 0.010 30.40 +O(0) 1.681e-38 + O2 8.404e-39 8.600e-39 -38.076 -38.066 0.010 30.40 Zn 1.000e-04 Zn+2 9.103e-05 3.423e-05 -4.041 -4.466 -0.425 -24.68 ZnOH+ 4.789e-06 3.741e-06 -5.320 -5.427 -0.107 (0) @@ -229,7 +229,7 @@ Zn 1.000e-04 H2(g) -24.05 -27.15 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - O2(g) -35.19 -38.08 -2.89 O2 + O2(g) -35.17 -38.07 -2.89 O2 Zn(OH)2(e) 0.03 11.53 11.50 Zn(OH)2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -297,7 +297,7 @@ Using pure phase assemblage 1. Phase SI log IAP log K(T, P) Initial Final Delta Fix_H+ -5.00 -5.00 0.00 - NaOH is reactant 1.000e+01 1.000e+01 1.272e-04 + NaOH is reactant 1.000e+01 1.000e+01 1.273e-04 ------------------------------Surface composition------------------------------ @@ -344,7 +344,7 @@ Hfo_w ----------------------------Description of solution---------------------------- pH = 5.000 Charge balance - pe = 15.095 Adjusted to redox equilibrium + pe = 15.093 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 9915 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 @@ -356,7 +356,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -1.123e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.06 - Iterations = 16 + Iterations = 17 Total H = 1.110122e+02 Total O = 5.580609e+01 @@ -369,20 +369,20 @@ Hfo_w OH- 1.324e-09 1.009e-09 -8.878 -8.996 -0.118 -3.73 H2O 5.551e+01 9.966e-01 1.744 -0.001 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -43.349 -43.339 0.010 28.61 + H2 0.000e+00 0.000e+00 -43.347 -43.337 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -52.670 -52.798 -0.128 18.15 - NH3 0.000e+00 0.000e+00 -57.052 -57.042 0.010 24.42 -N(0) 1.543e-06 - N2 7.715e-07 7.895e-07 -6.113 -6.103 0.010 29.29 -N(3) 2.412e-13 - NO2- 2.412e-13 1.817e-13 -12.618 -12.741 -0.123 25.24 + NH4+ 0.000e+00 0.000e+00 -52.660 -52.788 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -57.042 -57.032 0.010 24.42 +N(0) 1.588e-06 + N2 7.940e-07 8.125e-07 -6.100 -6.090 0.010 29.29 +N(3) 2.426e-13 + NO2- 2.426e-13 1.828e-13 -12.615 -12.738 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.535e-02 -1.000 -1.123 -0.123 29.77 Na 9.987e-02 Na+ 9.987e-02 7.841e-02 -1.001 -1.106 -0.105 -1.09 -O(0) 3.858e-06 - O2 1.929e-06 1.974e-06 -5.715 -5.705 0.010 30.40 +O(0) 3.970e-06 + O2 1.985e-06 2.031e-06 -5.702 -5.692 0.010 30.40 Zn 9.967e-08 Zn+2 9.967e-08 3.750e-08 -7.001 -7.426 -0.425 -24.68 ZnOH+ 5.245e-12 4.098e-12 -11.280 -11.387 -0.107 (0) @@ -397,9 +397,9 @@ Zn 9.967e-08 Fix_H+ -5.00 -5.00 0.00 H+ H2(g) -40.24 -43.34 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -2.93 -6.10 -3.18 N2 - NH3(g) -58.84 -57.04 1.80 NH3 - O2(g) -2.81 -5.70 -2.89 O2 + N2(g) -2.91 -6.09 -3.18 N2 + NH3(g) -58.83 -57.03 1.80 NH3 + O2(g) -2.80 -5.69 -2.89 O2 Zn(OH)2(e) -8.93 2.57 11.50 Zn(OH)2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -434,7 +434,7 @@ Using pure phase assemblage 1. Phase SI log IAP log K(T, P) Initial Final Delta Fix_H+ -5.25 -5.25 0.00 - NaOH is reactant 1.000e+01 1.000e+01 1.059e-04 + NaOH is reactant 1.000e+01 1.000e+01 1.060e-04 ------------------------------Surface composition------------------------------ @@ -481,7 +481,7 @@ Hfo_w ----------------------------Description of solution---------------------------- pH = 5.250 Charge balance - pe = 14.809 Adjusted to redox equilibrium + pe = 14.808 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 9914 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 @@ -506,20 +506,20 @@ Hfo_w OH- 2.355e-09 1.794e-09 -8.628 -8.746 -0.118 -3.73 H2O 5.551e+01 9.966e-01 1.744 -0.001 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -43.278 -43.268 0.010 28.61 + H2 0.000e+00 0.000e+00 -43.275 -43.265 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -52.884 -53.012 -0.128 18.15 - NH3 0.000e+00 0.000e+00 -57.017 -57.007 0.010 24.42 -N(0) 1.111e-06 - N2 5.553e-07 5.682e-07 -6.255 -6.246 0.010 29.29 -N(3) 2.843e-13 - NO2- 2.843e-13 2.142e-13 -12.546 -12.669 -0.123 25.24 + NH4+ 0.000e+00 0.000e+00 -52.874 -53.002 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -57.007 -56.997 0.010 24.42 +N(0) 1.143e-06 + N2 5.714e-07 5.847e-07 -6.243 -6.233 0.010 29.29 +N(3) 2.859e-13 + NO2- 2.859e-13 2.154e-13 -12.544 -12.667 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.535e-02 -1.000 -1.123 -0.123 29.77 Na 9.990e-02 Na+ 9.990e-02 7.843e-02 -1.000 -1.106 -0.105 -1.09 -O(0) 2.776e-06 - O2 1.388e-06 1.420e-06 -5.858 -5.848 0.010 30.40 +O(0) 2.857e-06 + O2 1.429e-06 1.462e-06 -5.845 -5.835 0.010 30.40 Zn 9.910e-08 Zn+2 9.909e-08 3.728e-08 -7.004 -7.428 -0.425 -24.68 ZnOH+ 9.274e-12 7.245e-12 -11.033 -11.140 -0.107 (0) @@ -532,11 +532,11 @@ Zn 9.910e-08 Phase SI** log IAP log K(298 K, 1 atm) Fix_H+ -5.25 -5.25 0.00 H+ - H2(g) -40.17 -43.27 -3.10 H2 + H2(g) -40.16 -43.27 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.07 -6.25 -3.18 N2 - NH3(g) -58.80 -57.01 1.80 NH3 - O2(g) -2.96 -5.85 -2.89 O2 + N2(g) -3.06 -6.23 -3.18 N2 + NH3(g) -58.79 -57.00 1.80 NH3 + O2(g) -2.94 -5.84 -2.89 O2 Zn(OH)2(e) -8.43 3.07 11.50 Zn(OH)2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -571,7 +571,7 @@ Using pure phase assemblage 1. Phase SI log IAP log K(T, P) Initial Final Delta Fix_H+ -5.50 -5.50 0.00 - NaOH is reactant 1.000e+01 1.000e+01 8.808e-05 + NaOH is reactant 1.000e+01 1.000e+01 8.811e-05 ------------------------------Surface composition------------------------------ @@ -618,7 +618,7 @@ Hfo_w ----------------------------Description of solution---------------------------- pH = 5.500 Charge balance - pe = 14.523 Adjusted to redox equilibrium + pe = 14.522 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 9913 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 @@ -630,7 +630,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -8.214e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.04 - Iterations = 16 + Iterations = 15 Total H = 1.110123e+02 Total O = 5.580613e+01 @@ -643,20 +643,20 @@ Hfo_w OH- 4.188e-09 3.190e-09 -8.378 -8.496 -0.118 -3.73 H2O 5.551e+01 9.966e-01 1.744 -0.001 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -43.206 -43.196 0.010 28.61 + H2 0.000e+00 0.000e+00 -43.204 -43.194 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.099 -53.227 -0.128 18.15 - NH3 0.000e+00 0.000e+00 -56.981 -56.971 0.010 24.42 -N(0) 7.992e-07 - N2 3.996e-07 4.089e-07 -6.398 -6.388 0.010 29.29 -N(3) 3.351e-13 - NO2- 3.351e-13 2.525e-13 -12.475 -12.598 -0.123 25.24 + NH4+ 0.000e+00 0.000e+00 -53.089 -53.217 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -56.971 -56.961 0.010 24.42 +N(0) 8.225e-07 + N2 4.112e-07 4.208e-07 -6.386 -6.376 0.010 29.29 +N(3) 3.371e-13 + NO2- 3.371e-13 2.540e-13 -12.472 -12.595 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.991e-02 Na+ 9.991e-02 7.844e-02 -1.000 -1.105 -0.105 -1.09 -O(0) 1.998e-06 - O2 9.990e-07 1.022e-06 -6.000 -5.990 0.010 30.40 +O(0) 2.056e-06 + O2 1.028e-06 1.052e-06 -5.988 -5.978 0.010 30.40 Zn 9.759e-08 Zn+2 9.757e-08 3.671e-08 -7.011 -7.435 -0.425 -24.68 ZnOH+ 1.624e-11 1.269e-11 -10.789 -10.897 -0.107 (0) @@ -669,11 +669,11 @@ Zn 9.759e-08 Phase SI** log IAP log K(298 K, 1 atm) Fix_H+ -5.50 -5.50 0.00 H+ - H2(g) -40.10 -43.20 -3.10 H2 + H2(g) -40.09 -43.19 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.21 -6.39 -3.18 N2 - NH3(g) -58.77 -56.97 1.80 NH3 - O2(g) -3.10 -5.99 -2.89 O2 + N2(g) -3.20 -6.38 -3.18 N2 + NH3(g) -58.76 -56.96 1.80 NH3 + O2(g) -3.09 -5.98 -2.89 O2 Zn(OH)2(e) -7.94 3.56 11.50 Zn(OH)2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -708,7 +708,7 @@ Using pure phase assemblage 1. Phase SI log IAP log K(T, P) Initial Final Delta Fix_H+ -5.75 -5.75 0.00 - NaOH is reactant 1.000e+01 1.000e+01 7.292e-05 + NaOH is reactant 1.000e+01 1.000e+01 7.293e-05 ------------------------------Surface composition------------------------------ @@ -755,7 +755,7 @@ Hfo_w ----------------------------Description of solution---------------------------- pH = 5.750 Charge balance - pe = 14.237 Adjusted to redox equilibrium + pe = 14.236 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 9914 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 @@ -767,7 +767,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -6.888e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.03 - Iterations = 15 + Iterations = 16 Total H = 1.110123e+02 Total O = 5.580615e+01 @@ -780,20 +780,20 @@ Hfo_w OH- 7.448e-09 5.672e-09 -8.128 -8.246 -0.118 -3.73 H2O 5.551e+01 9.966e-01 1.744 -0.001 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -43.135 -43.125 0.010 28.61 + H2 0.000e+00 0.000e+00 -43.132 -43.122 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.313 -53.441 -0.128 18.15 - NH3 0.000e+00 0.000e+00 -56.945 -56.935 0.010 24.42 -N(0) 5.752e-07 - N2 2.876e-07 2.943e-07 -6.541 -6.531 0.010 29.29 -N(3) 3.950e-13 - NO2- 3.950e-13 2.976e-13 -12.403 -12.526 -0.123 25.24 + NH4+ 0.000e+00 0.000e+00 -53.303 -53.431 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -56.935 -56.925 0.010 24.42 +N(0) 5.919e-07 + N2 2.960e-07 3.029e-07 -6.529 -6.519 0.010 29.29 +N(3) 3.973e-13 + NO2- 3.973e-13 2.994e-13 -12.401 -12.524 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.993e-02 Na+ 9.993e-02 7.846e-02 -1.000 -1.105 -0.105 -1.09 -O(0) 1.438e-06 - O2 7.190e-07 7.357e-07 -6.143 -6.133 0.010 30.40 +O(0) 1.480e-06 + O2 7.399e-07 7.571e-07 -6.131 -6.121 0.010 30.40 Zn 9.369e-08 Zn+2 9.367e-08 3.524e-08 -7.028 -7.453 -0.425 -24.68 ZnOH+ 2.772e-11 2.165e-11 -10.557 -10.664 -0.107 (0) @@ -808,9 +808,9 @@ Zn 9.369e-08 Fix_H+ -5.75 -5.75 0.00 H+ H2(g) -40.02 -43.12 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.36 -6.53 -3.18 N2 - NH3(g) -58.73 -56.94 1.80 NH3 - O2(g) -3.24 -6.13 -2.89 O2 + N2(g) -3.34 -6.52 -3.18 N2 + NH3(g) -58.72 -56.93 1.80 NH3 + O2(g) -3.23 -6.12 -2.89 O2 Zn(OH)2(e) -7.46 4.04 11.50 Zn(OH)2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -845,7 +845,7 @@ Using pure phase assemblage 1. Phase SI log IAP log K(T, P) Initial Final Delta Fix_H+ -6.00 -6.00 0.00 - NaOH is reactant 1.000e+01 1.000e+01 5.991e-05 + NaOH is reactant 1.000e+01 1.000e+01 5.992e-05 ------------------------------Surface composition------------------------------ @@ -892,7 +892,7 @@ Hfo_w ----------------------------Description of solution---------------------------- pH = 6.000 Charge balance - pe = 13.952 Adjusted to redox equilibrium + pe = 13.950 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 9914 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 @@ -917,20 +917,20 @@ Hfo_w OH- 1.324e-08 1.009e-08 -7.878 -7.996 -0.118 -3.73 H2O 5.551e+01 9.966e-01 1.744 -0.001 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -43.063 -43.053 0.010 28.61 + H2 0.000e+00 0.000e+00 -43.061 -43.051 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.527 -53.655 -0.128 18.15 - NH3 0.000e+00 0.000e+00 -56.909 -56.899 0.010 24.42 -N(0) 4.140e-07 - N2 2.070e-07 2.118e-07 -6.684 -6.674 0.010 29.29 -N(3) 4.657e-13 - NO2- 4.657e-13 3.508e-13 -12.332 -12.455 -0.123 25.24 + NH4+ 0.000e+00 0.000e+00 -53.517 -53.645 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -56.899 -56.889 0.010 24.42 +N(0) 4.260e-07 + N2 2.130e-07 2.180e-07 -6.672 -6.662 0.010 29.29 +N(3) 4.683e-13 + NO2- 4.683e-13 3.529e-13 -12.329 -12.452 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.994e-02 Na+ 9.994e-02 7.847e-02 -1.000 -1.105 -0.105 -1.09 -O(0) 1.035e-06 - O2 5.174e-07 5.295e-07 -6.286 -6.276 0.010 30.40 +O(0) 1.065e-06 + O2 5.325e-07 5.449e-07 -6.274 -6.264 0.010 30.40 Zn 8.454e-08 Zn+2 8.450e-08 3.179e-08 -7.073 -7.498 -0.425 -24.68 ZnOH+ 4.447e-11 3.474e-11 -10.352 -10.459 -0.107 (0) @@ -945,9 +945,9 @@ Zn 8.454e-08 Fix_H+ -6.00 -6.00 0.00 H+ H2(g) -39.95 -43.05 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.50 -6.67 -3.18 N2 - NH3(g) -58.70 -56.90 1.80 NH3 - O2(g) -3.38 -6.28 -2.89 O2 + N2(g) -3.49 -6.66 -3.18 N2 + NH3(g) -58.69 -56.89 1.80 NH3 + O2(g) -3.37 -6.26 -2.89 O2 Zn(OH)2(e) -7.00 4.50 11.50 Zn(OH)2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -982,7 +982,7 @@ Using pure phase assemblage 1. Phase SI log IAP log K(T, P) Initial Final Delta Fix_H+ -6.25 -6.25 0.00 - NaOH is reactant 1.000e+01 1.000e+01 4.869e-05 + NaOH is reactant 1.000e+01 1.000e+01 4.870e-05 ------------------------------Surface composition------------------------------ @@ -1029,7 +1029,7 @@ Hfo_w ----------------------------Description of solution---------------------------- pH = 6.250 Charge balance - pe = 13.666 Adjusted to redox equilibrium + pe = 13.665 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 9914 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 @@ -1041,7 +1041,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -4.647e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.02 - Iterations = 15 + Iterations = 14 Total H = 1.110123e+02 Total O = 5.580617e+01 @@ -1054,20 +1054,20 @@ Hfo_w OH- 2.355e-08 1.794e-08 -7.628 -7.746 -0.118 -3.73 H2O 5.551e+01 9.966e-01 1.744 -0.001 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.992 -42.982 0.010 28.61 + H2 0.000e+00 0.000e+00 -42.989 -42.979 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.741 -53.869 -0.128 18.15 - NH3 0.000e+00 0.000e+00 -56.874 -56.864 0.010 24.42 -N(0) 2.979e-07 - N2 1.490e-07 1.524e-07 -6.827 -6.817 0.010 29.29 -N(3) 5.489e-13 - NO2- 5.489e-13 4.136e-13 -12.261 -12.383 -0.123 25.24 + NH4+ 0.000e+00 0.000e+00 -53.731 -53.859 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -56.864 -56.854 0.010 24.42 +N(0) 3.066e-07 + N2 1.533e-07 1.569e-07 -6.814 -6.804 0.010 29.29 +N(3) 5.521e-13 + NO2- 5.521e-13 4.159e-13 -12.258 -12.381 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.995e-02 Na+ 9.995e-02 7.847e-02 -1.000 -1.105 -0.105 -1.09 -O(0) 7.448e-07 - O2 3.724e-07 3.811e-07 -6.429 -6.419 0.010 30.40 +O(0) 7.665e-07 + O2 3.832e-07 3.922e-07 -6.417 -6.407 0.010 30.40 Zn 6.679e-08 Zn+2 6.673e-08 2.510e-08 -7.176 -7.600 -0.425 -24.68 ZnOH+ 6.244e-11 4.878e-11 -10.205 -10.312 -0.107 (0) @@ -1082,9 +1082,9 @@ Zn 6.679e-08 Fix_H+ -6.25 -6.25 0.00 H+ H2(g) -39.88 -42.98 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.64 -6.82 -3.18 N2 - NH3(g) -58.66 -56.86 1.80 NH3 - O2(g) -3.53 -6.42 -2.89 O2 + N2(g) -3.63 -6.80 -3.18 N2 + NH3(g) -58.65 -56.85 1.80 NH3 + O2(g) -3.51 -6.41 -2.89 O2 Zn(OH)2(e) -6.60 4.90 11.50 Zn(OH)2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -1166,7 +1166,7 @@ Hfo_w ----------------------------Description of solution---------------------------- pH = 6.500 Charge balance - pe = 13.380 Adjusted to redox equilibrium + pe = 13.379 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 9914 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 @@ -1191,20 +1191,20 @@ Hfo_w OH- 4.188e-08 3.190e-08 -7.378 -7.496 -0.118 -3.73 H2O 5.551e+01 9.966e-01 1.744 -0.001 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.921 -42.911 0.010 28.61 + H2 0.000e+00 0.000e+00 -42.918 -42.908 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.956 -54.084 -0.128 18.15 - NH3 0.000e+00 0.000e+00 -56.838 -56.828 0.010 24.42 -N(0) 2.144e-07 - N2 1.072e-07 1.097e-07 -6.970 -6.960 0.010 29.29 -N(3) 6.470e-13 - NO2- 6.470e-13 4.875e-13 -12.189 -12.312 -0.123 25.24 + NH4+ 0.000e+00 0.000e+00 -53.946 -54.074 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -56.828 -56.818 0.010 24.42 +N(0) 2.206e-07 + N2 1.103e-07 1.129e-07 -6.957 -6.947 0.010 29.29 +N(3) 6.508e-13 + NO2- 6.508e-13 4.903e-13 -12.187 -12.310 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.996e-02 Na+ 9.996e-02 7.848e-02 -1.000 -1.105 -0.105 -1.09 -O(0) 5.360e-07 - O2 2.680e-07 2.742e-07 -6.572 -6.562 0.010 30.40 +O(0) 5.516e-07 + O2 2.758e-07 2.822e-07 -6.559 -6.549 0.010 30.40 Zn 4.243e-08 Zn+2 4.236e-08 1.594e-08 -7.373 -7.798 -0.425 -24.68 ZnOH+ 7.049e-11 5.507e-11 -10.152 -10.259 -0.107 (0) @@ -1219,9 +1219,9 @@ Zn 4.243e-08 Fix_H+ -6.50 -6.50 0.00 H+ H2(g) -39.81 -42.91 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.78 -6.96 -3.18 N2 - NH3(g) -58.62 -56.83 1.80 NH3 - O2(g) -3.67 -6.56 -2.89 O2 + N2(g) -3.77 -6.95 -3.18 N2 + NH3(g) -58.61 -56.82 1.80 NH3 + O2(g) -3.66 -6.55 -2.89 O2 Zn(OH)2(e) -6.30 5.20 11.50 Zn(OH)2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -1303,7 +1303,7 @@ Hfo_w ----------------------------Description of solution---------------------------- pH = 6.750 Charge balance - pe = 13.095 Adjusted to redox equilibrium + pe = 13.093 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 9914 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 @@ -1328,20 +1328,20 @@ Hfo_w OH- 7.448e-08 5.672e-08 -7.128 -7.246 -0.118 -3.73 H2O 5.551e+01 9.966e-01 1.744 -0.001 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.849 -42.839 0.010 28.61 + H2 0.000e+00 0.000e+00 -42.847 -42.837 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -54.170 -54.298 -0.128 18.15 - NH3 0.000e+00 0.000e+00 -56.802 -56.792 0.010 24.42 -N(0) 1.543e-07 - N2 7.715e-08 7.895e-08 -7.113 -7.103 0.010 29.29 -N(3) 7.627e-13 - NO2- 7.627e-13 5.746e-13 -12.118 -12.241 -0.123 25.24 + NH4+ 0.000e+00 0.000e+00 -54.160 -54.288 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -56.792 -56.782 0.010 24.42 +N(0) 1.588e-07 + N2 7.940e-08 8.125e-08 -7.100 -7.090 0.010 29.29 +N(3) 7.671e-13 + NO2- 7.671e-13 5.779e-13 -12.115 -12.238 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.997e-02 Na+ 9.997e-02 7.849e-02 -1.000 -1.105 -0.105 -1.09 -O(0) 3.858e-07 - O2 1.929e-07 1.974e-07 -6.715 -6.705 0.010 30.40 +O(0) 3.970e-07 + O2 1.985e-07 2.031e-07 -6.702 -6.692 0.010 30.40 Zn 2.114e-08 Zn+2 2.108e-08 7.929e-09 -7.676 -8.101 -0.425 -24.68 ZnOH+ 6.237e-11 4.872e-11 -10.205 -10.312 -0.107 (0) @@ -1356,9 +1356,9 @@ Zn 2.114e-08 Fix_H+ -6.75 -6.75 0.00 H+ H2(g) -39.74 -42.84 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.93 -7.10 -3.18 N2 - NH3(g) -58.59 -56.79 1.80 NH3 - O2(g) -3.81 -6.70 -2.89 O2 + N2(g) -3.91 -7.09 -3.18 N2 + NH3(g) -58.58 -56.78 1.80 NH3 + O2(g) -3.80 -6.69 -2.89 O2 Zn(OH)2(e) -6.10 5.40 11.50 Zn(OH)2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -1440,7 +1440,7 @@ Hfo_w ----------------------------Description of solution---------------------------- pH = 7.000 Charge balance - pe = 12.809 Adjusted to redox equilibrium + pe = 12.808 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 9915 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 @@ -1465,20 +1465,20 @@ Hfo_w H+ 1.212e-07 1.000e-07 -6.917 -7.000 -0.083 0.00 H2O 5.551e+01 9.966e-01 1.744 -0.001 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.778 -42.768 0.010 28.61 + H2 0.000e+00 0.000e+00 -42.775 -42.765 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -54.384 -54.512 -0.128 18.15 - NH3 0.000e+00 0.000e+00 -56.767 -56.757 0.010 24.42 -N(0) 1.111e-07 - N2 5.553e-08 5.682e-08 -7.256 -7.246 0.010 29.29 -N(3) 8.991e-13 - NO2- 8.991e-13 6.774e-13 -12.046 -12.169 -0.123 25.24 + NH4+ 0.000e+00 0.000e+00 -54.374 -54.502 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -56.757 -56.747 0.010 24.42 +N(0) 1.143e-07 + N2 5.714e-08 5.847e-08 -7.243 -7.233 0.010 29.29 +N(3) 9.042e-13 + NO2- 9.042e-13 6.813e-13 -12.044 -12.167 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.998e-02 Na+ 9.998e-02 7.849e-02 -1.000 -1.105 -0.105 -1.09 -O(0) 2.776e-07 - O2 1.388e-07 1.420e-07 -6.858 -6.848 0.010 30.40 +O(0) 2.857e-07 + O2 1.429e-07 1.462e-07 -6.845 -6.835 0.010 30.40 Zn 8.811e-09 Zn+2 8.761e-09 3.296e-09 -8.057 -8.482 -0.425 -24.68 ZnOH+ 4.610e-11 3.601e-11 -10.336 -10.444 -0.107 (0) @@ -1491,11 +1491,11 @@ Zn 8.811e-09 Phase SI** log IAP log K(298 K, 1 atm) Fix_H+ -7.00 -7.00 0.00 H+ - H2(g) -39.67 -42.77 -3.10 H2 + H2(g) -39.66 -42.77 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -4.07 -7.25 -3.18 N2 - NH3(g) -58.55 -56.76 1.80 NH3 - O2(g) -3.96 -6.85 -2.89 O2 + N2(g) -4.06 -7.23 -3.18 N2 + NH3(g) -58.54 -56.75 1.80 NH3 + O2(g) -3.94 -6.84 -2.89 O2 Zn(OH)2(e) -5.99 5.51 11.50 Zn(OH)2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -1530,7 +1530,7 @@ Using pure phase assemblage 1. Phase SI log IAP log K(T, P) Initial Final Delta Fix_H+ -7.25 -7.25 0.00 - NaOH is reactant 1.000e+01 1.000e+01 1.679e-05 + NaOH is reactant 1.000e+01 1.000e+01 1.680e-05 ------------------------------Surface composition------------------------------ @@ -1577,7 +1577,7 @@ Hfo_w ----------------------------Description of solution---------------------------- pH = 7.250 Charge balance - pe = 12.523 Adjusted to redox equilibrium + pe = 12.522 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 9915 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 @@ -1602,20 +1602,20 @@ Hfo_w H+ 6.813e-08 5.623e-08 -7.167 -7.250 -0.083 0.00 H2O 5.551e+01 9.966e-01 1.744 -0.001 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.706 -42.696 0.010 28.61 + H2 0.000e+00 0.000e+00 -42.704 -42.694 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -54.599 -54.727 -0.128 18.15 - NH3 0.000e+00 0.000e+00 -56.731 -56.721 0.010 24.42 -N(0) 7.992e-08 - N2 3.996e-08 4.089e-08 -7.398 -7.388 0.010 29.29 -N(3) 1.060e-12 - NO2- 1.060e-12 7.985e-13 -11.975 -12.098 -0.123 25.24 + NH4+ 0.000e+00 0.000e+00 -54.589 -54.717 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -56.721 -56.711 0.010 24.42 +N(0) 8.225e-08 + N2 4.112e-08 4.208e-08 -7.386 -7.376 0.010 29.29 +N(3) 1.066e-12 + NO2- 1.066e-12 8.031e-13 -11.972 -12.095 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.998e-02 Na+ 9.998e-02 7.850e-02 -1.000 -1.105 -0.105 -1.09 -O(0) 1.998e-07 - O2 9.990e-08 1.022e-07 -7.000 -6.990 0.010 30.40 +O(0) 2.056e-07 + O2 1.028e-07 1.052e-07 -6.988 -6.978 0.010 30.40 Zn 3.340e-09 Zn+2 3.304e-09 1.243e-09 -8.481 -8.905 -0.425 -24.68 ZnOH+ 3.092e-11 2.416e-11 -10.510 -10.617 -0.107 (0) @@ -1628,11 +1628,11 @@ Zn 3.340e-09 Phase SI** log IAP log K(298 K, 1 atm) Fix_H+ -7.25 -7.25 0.00 H+ - H2(g) -39.60 -42.70 -3.10 H2 + H2(g) -39.59 -42.69 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -4.21 -7.39 -3.18 N2 - NH3(g) -58.52 -56.72 1.80 NH3 - O2(g) -4.10 -6.99 -2.89 O2 + N2(g) -4.20 -7.38 -3.18 N2 + NH3(g) -58.51 -56.71 1.80 NH3 + O2(g) -4.09 -6.98 -2.89 O2 Zn(OH)2(e) -5.91 5.59 11.50 Zn(OH)2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -1714,7 +1714,7 @@ Hfo_w ----------------------------Description of solution---------------------------- pH = 7.500 Charge balance - pe = 12.237 Adjusted to redox equilibrium + pe = 12.236 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 9915 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 @@ -1739,20 +1739,20 @@ Hfo_w H+ 3.831e-08 3.162e-08 -7.417 -7.500 -0.083 0.00 H2O 5.551e+01 9.966e-01 1.744 -0.001 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.635 -42.625 0.010 28.61 + H2 0.000e+00 0.000e+00 -42.632 -42.622 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -54.813 -54.941 -0.128 18.15 - NH3 0.000e+00 0.000e+00 -56.695 -56.685 0.010 24.42 -N(0) 5.752e-08 - N2 2.876e-08 2.943e-08 -7.541 -7.531 0.010 29.29 -N(3) 1.249e-12 - NO2- 1.249e-12 9.412e-13 -11.903 -12.026 -0.123 25.24 + NH4+ 0.000e+00 0.000e+00 -54.803 -54.931 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -56.685 -56.675 0.010 24.42 +N(0) 5.919e-08 + N2 2.960e-08 3.028e-08 -7.529 -7.519 0.010 29.29 +N(3) 1.256e-12 + NO2- 1.256e-12 9.466e-13 -11.901 -12.024 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.999e-02 Na+ 9.999e-02 7.850e-02 -1.000 -1.105 -0.105 -1.09 -O(0) 1.438e-07 - O2 7.190e-08 7.357e-08 -7.143 -7.133 0.010 30.40 +O(0) 1.480e-07 + O2 7.399e-08 7.571e-08 -7.131 -7.121 0.010 30.40 Zn 1.217e-09 Zn+2 1.192e-09 4.484e-10 -8.924 -9.348 -0.425 -24.68 ZnOH+ 1.983e-11 1.549e-11 -10.703 -10.810 -0.107 (0) @@ -1767,9 +1767,9 @@ Zn 1.217e-09 Fix_H+ -7.50 -7.50 0.00 H+ H2(g) -39.52 -42.62 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -4.36 -7.53 -3.18 N2 - NH3(g) -58.48 -56.69 1.80 NH3 - O2(g) -4.24 -7.13 -2.89 O2 + N2(g) -4.34 -7.52 -3.18 N2 + NH3(g) -58.47 -56.68 1.80 NH3 + O2(g) -4.23 -7.12 -2.89 O2 Zn(OH)2(e) -5.85 5.65 11.50 Zn(OH)2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -1804,7 +1804,7 @@ Using pure phase assemblage 1. Phase SI log IAP log K(T, P) Initial Final Delta Fix_H+ -7.75 -7.75 0.00 - NaOH is reactant 1.000e+01 1.000e+01 5.407e-06 + NaOH is reactant 1.000e+01 1.000e+01 5.408e-06 ------------------------------Surface composition------------------------------ @@ -1851,7 +1851,7 @@ Hfo_w ----------------------------Description of solution---------------------------- pH = 7.750 Charge balance - pe = 11.952 Adjusted to redox equilibrium + pe = 11.950 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 9915 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 @@ -1876,20 +1876,20 @@ Hfo_w H+ 2.155e-08 1.778e-08 -7.667 -7.750 -0.083 0.00 H2O 5.551e+01 9.966e-01 1.744 -0.001 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.563 -42.553 0.010 28.61 + H2 0.000e+00 0.000e+00 -42.561 -42.551 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -55.027 -55.155 -0.128 18.15 - NH3 0.000e+00 0.000e+00 -56.659 -56.649 0.010 24.42 -N(0) 4.139e-08 - N2 2.070e-08 2.118e-08 -7.684 -7.674 0.010 29.29 -N(3) 1.473e-12 - NO2- 1.473e-12 1.109e-12 -11.832 -11.955 -0.123 25.24 + NH4+ 0.000e+00 0.000e+00 -55.017 -55.145 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -56.649 -56.639 0.010 24.42 +N(0) 4.260e-08 + N2 2.130e-08 2.180e-08 -7.672 -7.662 0.010 29.29 +N(3) 1.481e-12 + NO2- 1.481e-12 1.116e-12 -11.829 -11.952 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 1.000e-01 Na+ 1.000e-01 7.851e-02 -1.000 -1.105 -0.105 -1.09 -O(0) 1.035e-07 - O2 5.174e-08 5.295e-08 -7.286 -7.276 0.010 30.40 +O(0) 1.065e-07 + O2 5.325e-08 5.449e-08 -7.274 -7.264 0.010 30.40 Zn 4.403e-10 Zn+2 4.217e-10 1.586e-10 -9.375 -9.800 -0.425 -24.68 ZnOH+ 1.248e-11 9.748e-12 -10.904 -11.011 -0.107 (0) @@ -1904,9 +1904,9 @@ Zn 4.403e-10 Fix_H+ -7.75 -7.75 0.00 H+ H2(g) -39.45 -42.55 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -4.50 -7.67 -3.18 N2 - NH3(g) -58.45 -56.65 1.80 NH3 - O2(g) -4.38 -7.28 -2.89 O2 + N2(g) -4.49 -7.66 -3.18 N2 + NH3(g) -58.44 -56.64 1.80 NH3 + O2(g) -4.37 -7.26 -2.89 O2 Zn(OH)2(e) -5.80 5.70 11.50 Zn(OH)2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -1941,7 +1941,7 @@ Using pure phase assemblage 1. Phase SI log IAP log K(T, P) Initial Final Delta Fix_H+ -8.00 -8.00 0.00 - NaOH is reactant 1.000e+01 1.000e+01 -1.389e-07 + NaOH is reactant 1.000e+01 1.000e+01 -1.380e-07 ------------------------------Surface composition------------------------------ @@ -1988,7 +1988,7 @@ Hfo_w ----------------------------Description of solution---------------------------- pH = 8.000 Charge balance - pe = 11.666 Adjusted to redox equilibrium + pe = 11.665 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 9916 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 @@ -2013,20 +2013,20 @@ Hfo_w H+ 1.212e-08 1.000e-08 -7.917 -8.000 -0.083 0.00 H2O 5.551e+01 9.966e-01 1.744 -0.001 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.492 -42.482 0.010 28.61 + H2 0.000e+00 0.000e+00 -42.489 -42.479 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -55.241 -55.369 -0.128 18.15 - NH3 0.000e+00 0.000e+00 -56.624 -56.614 0.010 24.42 -N(0) 2.979e-08 - N2 1.490e-08 1.524e-08 -7.827 -7.817 0.010 29.29 -N(3) 1.736e-12 - NO2- 1.736e-12 1.308e-12 -11.761 -11.883 -0.123 25.24 + NH4+ 0.000e+00 0.000e+00 -55.231 -55.359 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -56.614 -56.604 0.010 24.42 +N(0) 3.066e-08 + N2 1.533e-08 1.569e-08 -7.814 -7.804 0.010 29.29 +N(3) 1.746e-12 + NO2- 1.746e-12 1.315e-12 -11.758 -11.881 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 1.000e-01 Na+ 1.000e-01 7.851e-02 -1.000 -1.105 -0.105 -1.09 -O(0) 7.448e-08 - O2 3.724e-08 3.811e-08 -7.429 -7.419 0.010 30.40 +O(0) 7.665e-08 + O2 3.832e-08 3.922e-08 -7.417 -7.407 0.010 30.40 Zn 1.628e-10 Zn+2 1.482e-10 5.574e-11 -9.829 -10.254 -0.425 -24.68 ZnOH+ 7.797e-12 6.091e-12 -11.108 -11.215 -0.107 (0) @@ -2041,9 +2041,9 @@ Zn 1.628e-10 Fix_H+ -8.00 -8.00 0.00 H+ H2(g) -39.38 -42.48 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -4.64 -7.82 -3.18 N2 - NH3(g) -58.41 -56.61 1.80 NH3 - O2(g) -4.53 -7.42 -2.89 O2 + N2(g) -4.63 -7.80 -3.18 N2 + NH3(g) -58.40 -56.60 1.80 NH3 + O2(g) -4.51 -7.41 -2.89 O2 Zn(OH)2(e) -5.76 5.74 11.50 Zn(OH)2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -2159,7 +2159,7 @@ Hfo_w ----------------------------Description of solution---------------------------- pH = 5.000 Charge balance - pe = 15.095 Adjusted to redox equilibrium + pe = 15.093 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 9912 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 @@ -2171,7 +2171,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -1.124e-04 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.06 - Iterations = 23 + Iterations = 21 Total H = 1.110122e+02 Total O = 5.580609e+01 @@ -2184,20 +2184,20 @@ Hfo_w OH- 1.325e-09 1.009e-09 -8.878 -8.996 -0.118 -3.73 H2O 5.551e+01 9.966e-01 1.744 -0.001 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -43.349 -43.339 0.010 28.61 + H2 0.000e+00 0.000e+00 -43.347 -43.337 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -52.670 -52.798 -0.128 18.15 - NH3 0.000e+00 0.000e+00 -57.052 -57.042 0.010 24.42 -N(0) 1.543e-06 - N2 7.715e-07 7.895e-07 -6.113 -6.103 0.010 29.29 -N(3) 2.412e-13 - NO2- 2.412e-13 1.817e-13 -12.618 -12.741 -0.123 25.24 + NH4+ 0.000e+00 0.000e+00 -52.660 -52.788 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -57.042 -57.032 0.010 24.42 +N(0) 1.588e-06 + N2 7.940e-07 8.126e-07 -6.100 -6.090 0.010 29.29 +N(3) 2.426e-13 + NO2- 2.426e-13 1.828e-13 -12.615 -12.738 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.967e-02 Na+ 9.967e-02 7.825e-02 -1.001 -1.107 -0.105 -1.09 -O(0) 3.857e-06 - O2 1.929e-06 1.974e-06 -5.715 -5.705 0.010 30.40 +O(0) 3.969e-06 + O2 1.985e-06 2.031e-06 -5.702 -5.692 0.010 30.40 Zn 9.969e-05 Zn+2 9.969e-05 3.749e-05 -4.001 -4.426 -0.425 -24.68 ZnOH+ 5.245e-09 4.097e-09 -8.280 -8.388 -0.107 (0) @@ -2212,9 +2212,9 @@ Zn 9.969e-05 Fix_H+ -5.00 -5.00 0.00 H+ H2(g) -40.24 -43.34 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -2.93 -6.10 -3.18 N2 - NH3(g) -58.84 -57.04 1.80 NH3 - O2(g) -2.81 -5.70 -2.89 O2 + N2(g) -2.91 -6.09 -3.18 N2 + NH3(g) -58.83 -57.03 1.80 NH3 + O2(g) -2.80 -5.69 -2.89 O2 Zn(OH)2(e) -5.93 5.57 11.50 Zn(OH)2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -2239,6 +2239,9 @@ Beginning of batch-reaction calculations. Reaction step 1. +WARNING: Fix_H+, Pure phase with add formula has not converged. + SI may be a local minimum. Residual: 1.971071e-03 + Using solution 2. Using surface 1. Using pure phase assemblage 1. @@ -2256,11 +2259,11 @@ Fix_H+ -5.25 -5.25 0.00 Diffuse Double Layer Surface-Complexation Model Hfo - 9.689e-05 Surface charge, eq - 1.731e-01 sigma, C/m² + 9.684e-05 Surface charge, eq + 1.730e-01 sigma, C/m² 1.153e-01 psi, V - -4.489e+00 -F*psi/RT - 1.123e-02 exp(-F*psi/RT) + -4.488e+00 -F*psi/RT + 1.124e-02 exp(-F*psi/RT) 6.000e+02 specific area, m²/g 5.400e+01 m² for 9.000e-02 g @@ -2271,19 +2274,19 @@ Hfo_s Species Moles Fraction Molality Molality Hfo_sOH 2.155e-06 0.431 2.155e-06 -5.667 - Hfo_sOH2+ 2.059e-06 0.412 2.059e-06 -5.686 - Hfo_sOZn+ 7.340e-07 0.147 7.340e-07 -6.134 - Hfo_sO- 5.165e-08 0.010 5.166e-08 -7.287 + Hfo_sOH2+ 2.057e-06 0.411 2.057e-06 -5.687 + Hfo_sOZn+ 7.361e-07 0.147 7.361e-07 -6.133 + Hfo_sO- 5.170e-08 0.010 5.170e-08 -7.287 Hfo_w 2.000e-04 moles Mole Log Species Moles Fraction Molality Molality - Hfo_wOH 1.010e-04 0.505 1.010e-04 -3.996 - Hfo_wOH2+ 9.653e-05 0.483 9.653e-05 -4.015 - Hfo_wO- 2.421e-06 0.012 2.421e-06 -5.616 - Hfo_wOZn+ 3.603e-08 0.000 3.603e-08 -7.443 + Hfo_wOH 1.011e-04 0.505 1.011e-04 -3.995 + Hfo_wOH2+ 9.649e-05 0.482 9.649e-05 -4.016 + Hfo_wO- 2.425e-06 0.012 2.425e-06 -5.615 + Hfo_wOZn+ 3.615e-08 0.000 3.615e-08 -7.442 -----------------------------Solution composition------------------------------ @@ -2295,8 +2298,8 @@ Hfo_w ----------------------------Description of solution---------------------------- - pH = 5.250 Charge balance - pe = 14.809 Adjusted to redox equilibrium + pH = 5.251 Charge balance + pe = 14.807 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 9911 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 @@ -2304,11 +2307,11 @@ Hfo_w Activity of water = 0.997 Ionic strength (mol/kgw) = 1.000e-01 Mass of water (kg) = 1.000e+00 - Total alkalinity (eq/kg) = -6.802e-06 + Total alkalinity (eq/kg) = -6.788e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = -9.689e-05 + Electrical balance (eq) = -9.684e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.05 - Iterations = 21 + Iterations = 22 Total H = 1.110122e+02 Total O = 5.580611e+01 @@ -2317,41 +2320,41 @@ Hfo_w Log Log Log mole V Species Molality Activity Molality Activity Gamma cm³/mol - H+ 6.813e-06 5.623e-06 -5.167 -5.250 -0.083 0.00 - OH- 2.355e-09 1.794e-09 -8.628 -8.746 -0.118 -3.73 + H+ 6.800e-06 5.612e-06 -5.167 -5.251 -0.083 0.00 + OH- 2.360e-09 1.797e-09 -8.627 -8.745 -0.118 -3.73 H2O 5.551e+01 9.966e-01 1.744 -0.001 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -43.278 -43.268 0.010 28.61 + H2 0.000e+00 0.000e+00 -43.275 -43.265 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -52.884 -53.012 -0.128 18.15 - NH3 0.000e+00 0.000e+00 -57.016 -57.006 0.010 24.42 -N(0) 1.111e-06 - N2 5.553e-07 5.683e-07 -6.255 -6.245 0.010 29.29 -N(3) 2.843e-13 - NO2- 2.843e-13 2.142e-13 -12.546 -12.669 -0.123 25.24 + NH4+ 0.000e+00 0.000e+00 -52.875 -53.003 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -57.006 -56.996 0.010 24.42 +N(0) 1.141e-06 + N2 5.707e-07 5.840e-07 -6.244 -6.234 0.010 29.29 +N(3) 2.861e-13 + NO2- 2.861e-13 2.155e-13 -12.543 -12.666 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.970e-02 Na+ 9.970e-02 7.827e-02 -1.001 -1.106 -0.105 -1.09 -O(0) 2.776e-06 - O2 1.388e-06 1.420e-06 -5.858 -5.848 0.010 30.40 +O(0) 2.854e-06 + O2 1.427e-06 1.460e-06 -5.846 -5.836 0.010 30.40 Zn 9.923e-05 Zn+2 9.922e-05 3.732e-05 -4.003 -4.428 -0.425 -24.68 - ZnOH+ 9.283e-09 7.252e-09 -8.032 -8.140 -0.107 (0) - Zn(OH)2 1.442e-11 1.476e-11 -10.841 -10.831 0.010 (0) - Zn(OH)3- 1.059e-17 8.270e-18 -16.975 -17.083 -0.107 (0) - Zn(OH)4-2 6.238e-25 2.323e-25 -24.205 -24.634 -0.429 (0) + ZnOH+ 9.301e-09 7.266e-09 -8.031 -8.139 -0.107 (0) + Zn(OH)2 1.448e-11 1.481e-11 -10.839 -10.829 0.010 (0) + Zn(OH)3- 1.065e-17 8.319e-18 -16.973 -17.080 -0.107 (0) + Zn(OH)4-2 6.287e-25 2.341e-25 -24.202 -24.631 -0.429 (0) ------------------------------Saturation indices------------------------------- Phase SI** log IAP log K(298 K, 1 atm) Fix_H+ -5.25 -5.25 0.00 H+ - H2(g) -40.17 -43.27 -3.10 H2 + H2(g) -40.16 -43.26 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.07 -6.25 -3.18 N2 - NH3(g) -58.80 -57.01 1.80 NH3 - O2(g) -2.96 -5.85 -2.89 O2 + N2(g) -3.06 -6.23 -3.18 N2 + NH3(g) -58.79 -57.00 1.80 NH3 + O2(g) -2.94 -5.84 -2.89 O2 Zn(OH)2(e) -5.43 6.07 11.50 Zn(OH)2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -2386,7 +2389,7 @@ Using pure phase assemblage 1. Phase SI log IAP log K(T, P) Initial Final Delta Fix_H+ -5.50 -5.50 0.00 - NaOH is reactant 1.000e+01 1.000e+01 9.831e-05 + NaOH is reactant 1.000e+01 1.000e+01 9.833e-05 ------------------------------Surface composition------------------------------ @@ -2433,7 +2436,7 @@ Hfo_w ----------------------------Description of solution---------------------------- pH = 5.500 Charge balance - pe = 14.523 Adjusted to redox equilibrium + pe = 14.522 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 9911 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 @@ -2445,7 +2448,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -8.259e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.04 - Iterations = 22 + Iterations = 23 Total H = 1.110123e+02 Total O = 5.580613e+01 @@ -2458,20 +2461,20 @@ Hfo_w OH- 4.189e-09 3.190e-09 -8.378 -8.496 -0.118 -3.73 H2O 5.551e+01 9.966e-01 1.744 -0.001 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -43.206 -43.196 0.010 28.61 + H2 0.000e+00 0.000e+00 -43.204 -43.194 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.099 -53.227 -0.128 18.15 - NH3 0.000e+00 0.000e+00 -56.981 -56.971 0.010 24.42 -N(0) 7.992e-07 - N2 3.996e-07 4.089e-07 -6.398 -6.388 0.010 29.29 -N(3) 3.351e-13 - NO2- 3.351e-13 2.525e-13 -12.475 -12.598 -0.123 25.24 + NH4+ 0.000e+00 0.000e+00 -53.089 -53.217 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -56.971 -56.961 0.010 24.42 +N(0) 8.224e-07 + N2 4.112e-07 4.208e-07 -6.386 -6.376 0.010 29.29 +N(3) 3.371e-13 + NO2- 3.371e-13 2.539e-13 -12.472 -12.595 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.972e-02 Na+ 9.972e-02 7.828e-02 -1.001 -1.106 -0.105 -1.09 -O(0) 1.998e-06 - O2 9.990e-07 1.022e-06 -6.000 -5.990 0.010 30.40 +O(0) 2.056e-06 + O2 1.028e-06 1.052e-06 -5.988 -5.978 0.010 30.40 Zn 9.832e-05 Zn+2 9.830e-05 3.697e-05 -4.007 -4.432 -0.425 -24.68 ZnOH+ 1.636e-08 1.278e-08 -7.786 -7.894 -0.107 (0) @@ -2484,11 +2487,11 @@ Zn 9.832e-05 Phase SI** log IAP log K(298 K, 1 atm) Fix_H+ -5.50 -5.50 0.00 H+ - H2(g) -40.10 -43.20 -3.10 H2 + H2(g) -40.09 -43.19 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.21 -6.39 -3.18 N2 - NH3(g) -58.77 -56.97 1.80 NH3 - O2(g) -3.10 -5.99 -2.89 O2 + N2(g) -3.20 -6.38 -3.18 N2 + NH3(g) -58.76 -56.96 1.80 NH3 + O2(g) -3.09 -5.98 -2.89 O2 Zn(OH)2(e) -4.94 6.56 11.50 Zn(OH)2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -2523,7 +2526,7 @@ Using pure phase assemblage 1. Phase SI log IAP log K(T, P) Initial Final Delta Fix_H+ -5.75 -5.75 0.00 - NaOH is reactant 1.000e+01 1.000e+01 8.082e-05 + NaOH is reactant 1.000e+01 1.000e+01 8.084e-05 ------------------------------Surface composition------------------------------ @@ -2570,7 +2573,7 @@ Hfo_w ----------------------------Description of solution---------------------------- pH = 5.750 Charge balance - pe = 14.237 Adjusted to redox equilibrium + pe = 14.236 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 9911 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 @@ -2582,7 +2585,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -6.970e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.03 - Iterations = 23 + Iterations = 22 Total H = 1.110123e+02 Total O = 5.580615e+01 @@ -2595,20 +2598,20 @@ Hfo_w OH- 7.449e-09 5.672e-09 -8.128 -8.246 -0.118 -3.73 H2O 5.551e+01 9.966e-01 1.744 -0.001 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -43.135 -43.125 0.010 28.61 + H2 0.000e+00 0.000e+00 -43.132 -43.122 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.313 -53.441 -0.128 18.15 - NH3 0.000e+00 0.000e+00 -56.945 -56.935 0.010 24.42 -N(0) 5.751e-07 - N2 2.876e-07 2.943e-07 -6.541 -6.531 0.010 29.29 -N(3) 3.950e-13 - NO2- 3.950e-13 2.976e-13 -12.403 -12.526 -0.123 25.24 + NH4+ 0.000e+00 0.000e+00 -53.303 -53.431 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -56.935 -56.925 0.010 24.42 +N(0) 5.919e-07 + N2 2.959e-07 3.028e-07 -6.529 -6.519 0.010 29.29 +N(3) 3.973e-13 + NO2- 3.973e-13 2.993e-13 -12.401 -12.524 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.973e-02 Na+ 9.973e-02 7.830e-02 -1.001 -1.106 -0.105 -1.09 -O(0) 1.438e-06 - O2 7.189e-07 7.357e-07 -6.143 -6.133 0.010 30.40 +O(0) 1.480e-06 + O2 7.399e-07 7.571e-07 -6.131 -6.121 0.010 30.40 Zn 9.698e-05 Zn+2 9.695e-05 3.646e-05 -4.013 -4.438 -0.425 -24.68 ZnOH+ 2.868e-08 2.241e-08 -7.542 -7.650 -0.107 (0) @@ -2623,9 +2626,9 @@ Zn 9.698e-05 Fix_H+ -5.75 -5.75 0.00 H+ H2(g) -40.02 -43.12 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.36 -6.53 -3.18 N2 - NH3(g) -58.73 -56.94 1.80 NH3 - O2(g) -3.24 -6.13 -2.89 O2 + N2(g) -3.34 -6.52 -3.18 N2 + NH3(g) -58.72 -56.93 1.80 NH3 + O2(g) -3.23 -6.12 -2.89 O2 Zn(OH)2(e) -4.44 7.06 11.50 Zn(OH)2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -2660,7 +2663,7 @@ Using pure phase assemblage 1. Phase SI log IAP log K(T, P) Initial Final Delta Fix_H+ -6.00 -6.00 0.00 - NaOH is reactant 1.000e+01 1.000e+01 6.522e-05 + NaOH is reactant 1.000e+01 1.000e+01 6.523e-05 ------------------------------Surface composition------------------------------ @@ -2707,7 +2710,7 @@ Hfo_w ----------------------------Description of solution---------------------------- pH = 6.000 Charge balance - pe = 13.952 Adjusted to redox equilibrium + pe = 13.950 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 9911 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 @@ -2719,7 +2722,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -5.821e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.03 - Iterations = 22 + Iterations = 24 Total H = 1.110123e+02 Total O = 5.580617e+01 @@ -2732,20 +2735,20 @@ Hfo_w OH- 1.325e-08 1.009e-08 -7.878 -7.996 -0.118 -3.73 H2O 5.551e+01 9.966e-01 1.744 -0.001 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -43.063 -43.053 0.010 28.61 + H2 0.000e+00 0.000e+00 -43.061 -43.051 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.527 -53.655 -0.128 18.15 - NH3 0.000e+00 0.000e+00 -56.909 -56.899 0.010 24.42 -N(0) 4.139e-07 - N2 2.070e-07 2.118e-07 -6.684 -6.674 0.010 29.29 -N(3) 4.657e-13 - NO2- 4.657e-13 3.508e-13 -12.332 -12.455 -0.123 25.24 + NH4+ 0.000e+00 0.000e+00 -53.517 -53.645 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -56.899 -56.889 0.010 24.42 +N(0) 4.260e-07 + N2 2.130e-07 2.179e-07 -6.672 -6.662 0.010 29.29 +N(3) 4.684e-13 + NO2- 4.684e-13 3.528e-13 -12.329 -12.452 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.975e-02 Na+ 9.975e-02 7.831e-02 -1.001 -1.106 -0.105 -1.09 -O(0) 1.035e-06 - O2 5.174e-07 5.295e-07 -6.286 -6.276 0.010 30.40 +O(0) 1.065e-06 + O2 5.325e-07 5.449e-07 -6.274 -6.264 0.010 30.40 Zn 9.549e-05 Zn+2 9.544e-05 3.589e-05 -4.020 -4.445 -0.425 -24.68 ZnOH+ 5.021e-08 3.922e-08 -7.299 -7.406 -0.107 (0) @@ -2760,9 +2763,9 @@ Zn 9.549e-05 Fix_H+ -6.00 -6.00 0.00 H+ H2(g) -39.95 -43.05 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.50 -6.67 -3.18 N2 - NH3(g) -58.70 -56.90 1.80 NH3 - O2(g) -3.38 -6.28 -2.89 O2 + N2(g) -3.49 -6.66 -3.18 N2 + NH3(g) -58.69 -56.89 1.80 NH3 + O2(g) -3.37 -6.26 -2.89 O2 Zn(OH)2(e) -3.95 7.55 11.50 Zn(OH)2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -2797,7 +2800,7 @@ Using pure phase assemblage 1. Phase SI log IAP log K(T, P) Initial Final Delta Fix_H+ -6.25 -6.25 0.00 - NaOH is reactant 1.000e+01 1.000e+01 5.093e-05 + NaOH is reactant 1.000e+01 1.000e+01 5.094e-05 ------------------------------Surface composition------------------------------ @@ -2844,7 +2847,7 @@ Hfo_w ----------------------------Description of solution---------------------------- pH = 6.250 Charge balance - pe = 13.666 Adjusted to redox equilibrium + pe = 13.665 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 9912 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 @@ -2869,20 +2872,20 @@ Hfo_w OH- 2.355e-08 1.794e-08 -7.628 -7.746 -0.118 -3.73 H2O 5.551e+01 9.966e-01 1.744 -0.001 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.992 -42.982 0.010 28.61 + H2 0.000e+00 0.000e+00 -42.989 -42.979 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.741 -53.869 -0.128 18.15 - NH3 0.000e+00 0.000e+00 -56.874 -56.864 0.010 24.42 -N(0) 2.980e-07 - N2 1.490e-07 1.525e-07 -6.827 -6.817 0.010 29.29 -N(3) 5.489e-13 - NO2- 5.489e-13 4.136e-13 -12.260 -12.383 -0.123 25.24 + NH4+ 0.000e+00 0.000e+00 -53.731 -53.859 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -56.864 -56.854 0.010 24.42 +N(0) 3.066e-07 + N2 1.533e-07 1.569e-07 -6.814 -6.804 0.010 29.29 +N(3) 5.521e-13 + NO2- 5.521e-13 4.159e-13 -12.258 -12.381 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.976e-02 Na+ 9.976e-02 7.832e-02 -1.001 -1.106 -0.105 -1.09 -O(0) 7.447e-07 - O2 3.723e-07 3.810e-07 -6.429 -6.419 0.010 30.40 +O(0) 7.664e-07 + O2 3.832e-07 3.921e-07 -6.417 -6.407 0.010 30.40 Zn 9.374e-05 Zn+2 9.365e-05 3.522e-05 -4.028 -4.453 -0.425 -24.68 ZnOH+ 8.762e-08 6.845e-08 -7.057 -7.165 -0.107 (0) @@ -2897,9 +2900,9 @@ Zn 9.374e-05 Fix_H+ -6.25 -6.25 0.00 H+ H2(g) -39.88 -42.98 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.64 -6.82 -3.18 N2 - NH3(g) -58.66 -56.86 1.80 NH3 - O2(g) -3.53 -6.42 -2.89 O2 + N2(g) -3.63 -6.80 -3.18 N2 + NH3(g) -58.65 -56.85 1.80 NH3 + O2(g) -3.51 -6.41 -2.89 O2 Zn(OH)2(e) -3.46 8.04 11.50 Zn(OH)2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -2981,7 +2984,7 @@ Hfo_w ----------------------------Description of solution---------------------------- pH = 6.500 Charge balance - pe = 13.380 Adjusted to redox equilibrium + pe = 13.379 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 9912 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 @@ -3006,20 +3009,20 @@ Hfo_w OH- 4.189e-08 3.190e-08 -7.378 -7.496 -0.118 -3.73 H2O 5.551e+01 9.966e-01 1.744 -0.001 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.920 -42.910 0.010 28.61 + H2 0.000e+00 0.000e+00 -42.918 -42.908 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -53.955 -54.083 -0.128 18.15 - NH3 0.000e+00 0.000e+00 -56.838 -56.828 0.010 24.42 -N(0) 2.146e-07 - N2 1.073e-07 1.098e-07 -6.969 -6.959 0.010 29.29 -N(3) 6.472e-13 - NO2- 6.472e-13 4.875e-13 -12.189 -12.312 -0.123 25.24 + NH4+ 0.000e+00 0.000e+00 -53.945 -54.073 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -56.828 -56.818 0.010 24.42 +N(0) 2.208e-07 + N2 1.104e-07 1.130e-07 -6.957 -6.947 0.010 29.29 +N(3) 6.509e-13 + NO2- 6.509e-13 4.903e-13 -12.187 -12.310 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.978e-02 Na+ 9.978e-02 7.833e-02 -1.001 -1.106 -0.105 -1.09 -O(0) 5.358e-07 - O2 2.679e-07 2.741e-07 -6.572 -6.562 0.010 30.40 +O(0) 5.514e-07 + O2 2.757e-07 2.821e-07 -6.560 -6.550 0.010 30.40 Zn 9.075e-05 Zn+2 9.059e-05 3.407e-05 -4.043 -4.468 -0.425 -24.68 ZnOH+ 1.507e-07 1.177e-07 -6.822 -6.929 -0.107 (0) @@ -3034,9 +3037,9 @@ Zn 9.075e-05 Fix_H+ -6.50 -6.50 0.00 H+ H2(g) -39.81 -42.91 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.78 -6.96 -3.18 N2 - NH3(g) -58.62 -56.83 1.80 NH3 - O2(g) -3.67 -6.56 -2.89 O2 + N2(g) -3.77 -6.95 -3.18 N2 + NH3(g) -58.61 -56.82 1.80 NH3 + O2(g) -3.66 -6.55 -2.89 O2 Zn(OH)2(e) -2.97 8.53 11.50 Zn(OH)2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -3118,7 +3121,7 @@ Hfo_w ----------------------------Description of solution---------------------------- pH = 6.750 Charge balance - pe = 13.094 Adjusted to redox equilibrium + pe = 13.093 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 9912 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 @@ -3143,20 +3146,20 @@ Hfo_w OH- 7.449e-08 5.672e-08 -7.128 -7.246 -0.118 -3.73 H2O 5.551e+01 9.966e-01 1.744 -0.001 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.849 -42.839 0.010 28.61 + H2 0.000e+00 0.000e+00 -42.846 -42.836 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -54.169 -54.297 -0.128 18.15 - NH3 0.000e+00 0.000e+00 -56.801 -56.791 0.010 24.42 -N(0) 1.547e-07 - N2 7.733e-08 7.913e-08 -7.112 -7.102 0.010 29.29 -N(3) 7.631e-13 - NO2- 7.631e-13 5.749e-13 -12.117 -12.240 -0.123 25.24 + NH4+ 0.000e+00 0.000e+00 -54.159 -54.287 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -56.792 -56.782 0.010 24.42 +N(0) 1.591e-07 + N2 7.954e-08 8.139e-08 -7.099 -7.089 0.010 29.29 +N(3) 7.674e-13 + NO2- 7.674e-13 5.781e-13 -12.115 -12.238 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.980e-02 Na+ 9.980e-02 7.835e-02 -1.001 -1.106 -0.105 -1.09 -O(0) 3.854e-07 - O2 1.927e-07 1.972e-07 -6.715 -6.705 0.010 30.40 +O(0) 3.967e-07 + O2 1.983e-07 2.030e-07 -6.703 -6.693 0.010 30.40 Zn 8.484e-05 Zn+2 8.458e-05 3.181e-05 -4.073 -4.497 -0.425 -24.68 ZnOH+ 2.502e-07 1.955e-07 -6.602 -6.709 -0.107 (0) @@ -3171,9 +3174,9 @@ Zn 8.484e-05 Fix_H+ -6.75 -6.75 0.00 H+ H2(g) -39.74 -42.84 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -3.93 -7.10 -3.18 N2 - NH3(g) -58.59 -56.79 1.80 NH3 - O2(g) -3.81 -6.71 -2.89 O2 + N2(g) -3.91 -7.09 -3.18 N2 + NH3(g) -58.58 -56.78 1.80 NH3 + O2(g) -3.80 -6.69 -2.89 O2 Zn(OH)2(e) -2.50 9.00 11.50 Zn(OH)2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -3208,7 +3211,7 @@ Using pure phase assemblage 1. Phase SI log IAP log K(T, P) Initial Final Delta Fix_H+ -7.00 -7.00 0.00 - NaOH is reactant 1.000e+01 1.000e+01 -7.649e-06 + NaOH is reactant 1.000e+01 1.000e+01 -7.646e-06 ------------------------------Surface composition------------------------------ @@ -3255,7 +3258,7 @@ Hfo_w ----------------------------Description of solution---------------------------- pH = 7.000 Charge balance - pe = 12.809 Adjusted to redox equilibrium + pe = 12.808 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 9913 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 @@ -3280,20 +3283,20 @@ Hfo_w H+ 1.212e-07 1.000e-07 -6.917 -7.000 -0.083 0.00 H2O 5.551e+01 9.966e-01 1.744 -0.001 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.778 -42.768 0.010 28.61 + H2 0.000e+00 0.000e+00 -42.775 -42.765 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -54.384 -54.512 -0.128 18.15 - NH3 0.000e+00 0.000e+00 -56.767 -56.757 0.010 24.42 -N(0) 1.110e-07 - N2 5.552e-08 5.682e-08 -7.256 -7.246 0.010 29.29 -N(3) 8.991e-13 - NO2- 8.991e-13 6.773e-13 -12.046 -12.169 -0.123 25.24 + NH4+ 0.000e+00 0.000e+00 -54.374 -54.502 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -56.757 -56.747 0.010 24.42 +N(0) 1.143e-07 + N2 5.714e-08 5.847e-08 -7.243 -7.233 0.010 29.29 +N(3) 9.042e-13 + NO2- 9.042e-13 6.812e-13 -12.044 -12.167 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.982e-02 Na+ 9.982e-02 7.837e-02 -1.001 -1.106 -0.105 -1.09 -O(0) 2.776e-07 - O2 1.388e-07 1.420e-07 -6.858 -6.848 0.010 30.40 +O(0) 2.857e-07 + O2 1.428e-07 1.462e-07 -6.845 -6.835 0.010 30.40 Zn 7.503e-05 Zn+2 7.460e-05 2.806e-05 -4.127 -4.552 -0.425 -24.68 ZnOH+ 3.925e-07 3.066e-07 -6.406 -6.513 -0.107 (0) @@ -3306,11 +3309,11 @@ Zn 7.503e-05 Phase SI** log IAP log K(298 K, 1 atm) Fix_H+ -7.00 -7.00 0.00 H+ - H2(g) -39.67 -42.77 -3.10 H2 + H2(g) -39.66 -42.77 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -4.07 -7.25 -3.18 N2 - NH3(g) -58.55 -56.76 1.80 NH3 - O2(g) -3.96 -6.85 -2.89 O2 + N2(g) -4.06 -7.23 -3.18 N2 + NH3(g) -58.54 -56.75 1.80 NH3 + O2(g) -3.94 -6.84 -2.89 O2 Zn(OH)2(e) -2.05 9.45 11.50 Zn(OH)2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -3392,7 +3395,7 @@ Hfo_w ----------------------------Description of solution---------------------------- pH = 7.250 Charge balance - pe = 12.523 Adjusted to redox equilibrium + pe = 12.522 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 9913 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 @@ -3417,20 +3420,20 @@ Hfo_w H+ 6.813e-08 5.623e-08 -7.167 -7.250 -0.083 0.00 H2O 5.551e+01 9.966e-01 1.744 -0.001 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.706 -42.696 0.010 28.61 + H2 0.000e+00 0.000e+00 -42.704 -42.694 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -54.598 -54.727 -0.128 18.15 - NH3 0.000e+00 0.000e+00 -56.731 -56.721 0.010 24.42 -N(0) 7.993e-08 - N2 3.997e-08 4.090e-08 -7.398 -7.388 0.010 29.29 -N(3) 1.060e-12 - NO2- 1.060e-12 7.985e-13 -11.975 -12.098 -0.123 25.24 + NH4+ 0.000e+00 0.000e+00 -54.589 -54.717 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -56.721 -56.711 0.010 24.42 +N(0) 8.225e-08 + N2 4.113e-08 4.209e-08 -7.386 -7.376 0.010 29.29 +N(3) 1.066e-12 + NO2- 1.066e-12 8.030e-13 -11.972 -12.095 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.985e-02 Na+ 9.985e-02 7.839e-02 -1.001 -1.106 -0.105 -1.09 -O(0) 1.998e-07 - O2 9.989e-08 1.022e-07 -7.000 -6.990 0.010 30.40 +O(0) 2.056e-07 + O2 1.028e-07 1.052e-07 -6.988 -6.978 0.010 30.40 Zn 6.248e-05 Zn+2 6.181e-05 2.325e-05 -4.209 -4.634 -0.425 -24.68 ZnOH+ 5.783e-07 4.517e-07 -6.238 -6.345 -0.107 (0) @@ -3443,11 +3446,11 @@ Zn 6.248e-05 Phase SI** log IAP log K(298 K, 1 atm) Fix_H+ -7.25 -7.25 0.00 H+ - H2(g) -39.60 -42.70 -3.10 H2 + H2(g) -39.59 -42.69 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -4.21 -7.39 -3.18 N2 - NH3(g) -58.52 -56.72 1.80 NH3 - O2(g) -4.10 -6.99 -2.89 O2 + N2(g) -4.20 -7.38 -3.18 N2 + NH3(g) -58.51 -56.71 1.80 NH3 + O2(g) -4.09 -6.98 -2.89 O2 Zn(OH)2(e) -1.64 9.86 11.50 Zn(OH)2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -3529,7 +3532,7 @@ Hfo_w ----------------------------Description of solution---------------------------- pH = 7.500 Charge balance - pe = 12.237 Adjusted to redox equilibrium + pe = 12.236 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 9913 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 @@ -3541,7 +3544,7 @@ Hfo_w Temperature (°C) = 25.00 Electrical balance (eq) = -2.288e-05 Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.01 - Iterations = 26 + Iterations = 24 Total H = 1.110126e+02 Total O = 5.580630e+01 @@ -3554,20 +3557,20 @@ Hfo_w H+ 3.831e-08 3.162e-08 -7.417 -7.500 -0.083 0.00 H2O 5.551e+01 9.966e-01 1.744 -0.001 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.635 -42.625 0.010 28.61 + H2 0.000e+00 0.000e+00 -42.632 -42.622 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -54.813 -54.941 -0.128 18.15 - NH3 0.000e+00 0.000e+00 -56.695 -56.685 0.010 24.42 -N(0) 5.752e-08 - N2 2.876e-08 2.943e-08 -7.541 -7.531 0.010 29.29 -N(3) 1.249e-12 - NO2- 1.249e-12 9.412e-13 -11.903 -12.026 -0.123 25.24 + NH4+ 0.000e+00 0.000e+00 -54.803 -54.931 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -56.685 -56.675 0.010 24.42 +N(0) 5.919e-08 + N2 2.959e-08 3.028e-08 -7.529 -7.519 0.010 29.29 +N(3) 1.256e-12 + NO2- 1.256e-12 9.466e-13 -11.901 -12.024 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.988e-02 Na+ 9.988e-02 7.841e-02 -1.001 -1.106 -0.105 -1.09 -O(0) 1.438e-07 - O2 7.189e-08 7.357e-08 -7.143 -7.133 0.010 30.40 +O(0) 1.480e-07 + O2 7.399e-08 7.571e-08 -7.131 -7.121 0.010 30.40 Zn 4.944e-05 Zn+2 4.841e-05 1.821e-05 -4.315 -4.740 -0.425 -24.68 ZnOH+ 8.055e-07 6.292e-07 -6.094 -6.201 -0.107 (0) @@ -3582,9 +3585,9 @@ Zn 4.944e-05 Fix_H+ -7.50 -7.50 0.00 H+ H2(g) -39.52 -42.62 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -4.36 -7.53 -3.18 N2 - NH3(g) -58.48 -56.69 1.80 NH3 - O2(g) -4.24 -7.13 -2.89 O2 + N2(g) -4.34 -7.52 -3.18 N2 + NH3(g) -58.47 -56.68 1.80 NH3 + O2(g) -4.23 -7.12 -2.89 O2 Zn(OH)2(e) -1.24 10.26 11.50 Zn(OH)2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -3666,7 +3669,7 @@ Hfo_w ----------------------------Description of solution---------------------------- pH = 7.750 Charge balance - pe = 11.951 Adjusted to redox equilibrium + pe = 11.950 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 9914 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 @@ -3691,20 +3694,20 @@ Hfo_w H+ 2.155e-08 1.778e-08 -7.667 -7.750 -0.083 0.00 H2O 5.551e+01 9.966e-01 1.744 -0.001 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.563 -42.553 0.010 28.61 + H2 0.000e+00 0.000e+00 -42.560 -42.550 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -55.025 -55.153 -0.128 18.15 - NH3 0.000e+00 0.000e+00 -56.657 -56.647 0.010 24.42 -N(0) 4.165e-08 - N2 2.082e-08 2.131e-08 -7.681 -7.671 0.010 29.29 -N(3) 1.474e-12 - NO2- 1.474e-12 1.111e-12 -11.831 -11.954 -0.123 25.24 + NH4+ 0.000e+00 0.000e+00 -55.015 -55.143 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -56.647 -56.637 0.010 24.42 +N(0) 4.285e-08 + N2 2.142e-08 2.192e-08 -7.669 -7.659 0.010 29.29 +N(3) 1.483e-12 + NO2- 1.483e-12 1.117e-12 -11.829 -11.952 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.991e-02 Na+ 9.991e-02 7.844e-02 -1.000 -1.105 -0.105 -1.09 -O(0) 1.032e-07 - O2 5.162e-08 5.282e-08 -7.287 -7.277 0.010 30.40 +O(0) 1.062e-07 + O2 5.312e-08 5.436e-08 -7.275 -7.265 0.010 30.40 Zn 3.752e-05 Zn+2 3.594e-05 1.352e-05 -4.444 -4.869 -0.425 -24.68 ZnOH+ 1.063e-06 8.307e-07 -5.973 -6.081 -0.107 (0) @@ -3719,9 +3722,9 @@ Zn 3.752e-05 Fix_H+ -7.75 -7.75 0.00 H+ H2(g) -39.45 -42.55 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -4.50 -7.67 -3.18 N2 - NH3(g) -58.44 -56.65 1.80 NH3 - O2(g) -4.38 -7.28 -2.89 O2 + N2(g) -4.48 -7.66 -3.18 N2 + NH3(g) -58.43 -56.64 1.80 NH3 + O2(g) -4.37 -7.26 -2.89 O2 Zn(OH)2(e) -0.87 10.63 11.50 Zn(OH)2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. @@ -3803,7 +3806,7 @@ Hfo_w ----------------------------Description of solution---------------------------- pH = 8.000 Charge balance - pe = 11.666 Adjusted to redox equilibrium + pe = 11.665 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 9914 Density (g/cm³) = 1.00265 Volume (L) = 1.00583 @@ -3828,20 +3831,20 @@ Hfo_w H+ 1.212e-08 1.000e-08 -7.917 -8.000 -0.083 0.00 H2O 5.551e+01 9.966e-01 1.744 -0.001 0.000 18.07 H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -42.492 -42.482 0.010 28.61 + H2 0.000e+00 0.000e+00 -42.489 -42.479 0.010 28.61 N(-3) 0.000e+00 - NH4+ 0.000e+00 0.000e+00 -55.241 -55.369 -0.128 18.15 - NH3 0.000e+00 0.000e+00 -56.624 -56.614 0.010 24.42 -N(0) 2.979e-08 - N2 1.490e-08 1.524e-08 -7.827 -7.817 0.010 29.29 -N(3) 1.736e-12 - NO2- 1.736e-12 1.308e-12 -11.760 -11.883 -0.123 25.24 + NH4+ 0.000e+00 0.000e+00 -55.231 -55.359 -0.128 18.15 + NH3 0.000e+00 0.000e+00 -56.614 -56.604 0.010 24.42 +N(0) 3.066e-08 + N2 1.533e-08 1.569e-08 -7.814 -7.804 0.010 29.29 +N(3) 1.746e-12 + NO2- 1.746e-12 1.315e-12 -11.758 -11.881 -0.123 25.24 N(5) 1.000e-01 NO3- 1.000e-01 7.534e-02 -1.000 -1.123 -0.123 29.77 Na 9.993e-02 Na+ 9.993e-02 7.845e-02 -1.000 -1.105 -0.105 -1.09 -O(0) 7.448e-08 - O2 3.724e-08 3.811e-08 -7.429 -7.419 0.010 30.40 +O(0) 7.664e-08 + O2 3.832e-08 3.921e-08 -7.417 -7.407 0.010 30.40 Zn 2.762e-05 Zn+2 2.514e-05 9.458e-06 -4.600 -5.024 -0.425 -24.68 ZnOH+ 1.323e-06 1.033e-06 -5.878 -5.986 -0.107 (0) @@ -3856,9 +3859,9 @@ Zn 2.762e-05 Fix_H+ -8.00 -8.00 0.00 H+ H2(g) -39.38 -42.48 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O - N2(g) -4.64 -7.82 -3.18 N2 - NH3(g) -58.41 -56.61 1.80 NH3 - O2(g) -4.53 -7.42 -2.89 O2 + N2(g) -4.63 -7.80 -3.18 N2 + NH3(g) -58.40 -56.60 1.80 NH3 + O2(g) -4.51 -7.41 -2.89 O2 Zn(OH)2(e) -0.53 10.97 11.50 Zn(OH)2 **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. diff --git a/ex8.sel b/ex8.sel index 880c923a..4d7ab7a7 100644 --- a/ex8.sel +++ b/ex8.sel @@ -1,27 +1,27 @@ sim state soln dist_x time step pH pe reaction temp Alk mu mass_H2O charge pct_err m_Zn+2 m_Hfo_wOZn+ m_Hfo_sOZn+ - 5 react 1 -99 0 1 5 15.0946 -99 25.000 -1.21142e-05 0.0999427 0.999998 -0.000112255 -0.05616 9.9667e-08 1.3174e-11 3.1450e-10 - 6 react 1 -99 0 1 5.25 14.8088 -99 25.000 -6.81073e-06 0.0999508 0.999998 -9.66739e-05 -0.0483609 9.9094e-08 3.6062e-11 8.6083e-10 - 7 react 1 -99 0 1 5.5 14.5231 -99 25.000 -3.8271e-06 0.0999584 0.999998 -8.21358e-05 -0.0410851 9.7570e-08 9.7072e-11 2.3165e-09 - 8 react 1 -99 0 1 5.75 14.2374 -99 25.000 -2.14703e-06 0.0999652 0.999999 -6.88825e-05 -0.0344533 9.3666e-08 2.5380e-10 6.0522e-09 - 9 react 1 -99 0 1 6 13.9517 -99 25.000 -1.19828e-06 0.0999713 0.999999 -5.70006e-05 -0.0285086 8.4496e-08 6.2324e-10 1.4836e-08 - 10 react 1 -99 0 1 6.25 13.666 -99 25.000 -6.57701e-07 0.0999766 0.999999 -4.64735e-05 -0.0232422 6.6729e-08 1.3432e-09 3.1864e-08 - 11 react 1 -99 0 1 6.5 13.3803 -99 25.000 -3.41177e-07 0.0999813 0.999999 -3.7219e-05 -0.018613 4.2359e-08 2.3391e-09 5.5230e-08 - 12 react 1 -99 0 1 6.75 13.0946 -99 25.000 -1.40904e-07 0.0999854 0.999999 -2.91148e-05 -0.0145595 2.1076e-08 3.2169e-09 7.5642e-08 - 13 react 1 -99 0 1 7 12.8088 -99 25.000 1.13439e-08 0.0999891 1 -2.20135e-05 -0.011008 8.7607e-09 3.7285e-09 8.7461e-08 - 14 react 1 -99 0 1 7.25 12.5231 -99 25.000 1.67438e-07 0.0999923 1 -1.57484e-05 -0.0078748 3.3044e-09 3.9562e-09 9.2704e-08 - 15 react 1 -99 0 1 7.5 12.2374 -99 25.000 3.80557e-07 0.0999953 1 -1.01328e-05 -0.00506665 1.1918e-09 4.0447e-09 9.4738e-08 - 16 react 1 -99 0 1 7.75 11.9517 -99 25.000 7.23295e-07 0.0999982 1 -4.96214e-06 -0.00248112 4.2167e-10 4.0771e-09 9.5483e-08 - 17 react 1 -99 0 1 8 11.666 -99 25.000 1.3124e-06 0.100001 1 -1.7871e-08 -8.9354e-06 1.4817e-10 4.0887e-09 9.5749e-08 - 20 react 2 -99 0 1 5 15.0946 -99 25.000 -1.21096e-05 0.100042 0.999998 -0.000112354 -0.0562096 9.9686e-05 1.3167e-08 2.9577e-07 - 21 react 2 -99 0 1 5.25 14.8088 -99 25.000 -6.80176e-06 0.10005 0.999998 -9.68903e-05 -0.0484692 9.9221e-05 3.6026e-08 7.3398e-07 - 22 react 2 -99 0 1 5.5 14.5231 -99 25.000 -3.81085e-06 0.100056 0.999998 -8.25933e-05 -0.041314 9.8302e-05 9.7147e-08 1.5849e-06 - 23 react 2 -99 0 1 5.75 14.2374 -99 25.000 -2.1182e-06 0.100062 0.999999 -6.96993e-05 -0.034862 9.6949e-05 2.5852e-07 2.7639e-06 - 24 react 2 -99 0 1 6 13.9517 -99 25.000 -1.14729e-06 0.100066 0.999999 -5.82072e-05 -0.0291122 9.5439e-05 6.8198e-07 3.8284e-06 - 25 react 2 -99 0 1 6.25 13.666 -99 25.000 -5.67452e-07 0.100069 0.999999 -4.8109e-05 -0.0240603 9.3655e-05 1.7788e-06 4.4775e-06 - 26 react 2 -99 0 1 6.5 13.3802 -99 25.000 -1.82222e-07 0.100071 1 -3.95664e-05 -0.0197871 9.0590e-05 4.4736e-06 4.7812e-06 - 27 react 2 -99 0 1 6.75 13.0945 -99 25.000 1.33839e-07 0.100068 1 -3.28749e-05 -0.0164401 8.4578e-05 1.0254e-05 4.9050e-06 - 28 react 2 -99 0 1 7 12.8088 -99 25.000 4.7235e-07 0.10006 1 -2.81879e-05 -0.0140959 7.4599e-05 2.0021e-05 4.9534e-06 - 29 react 2 -99 0 1 7.25 12.5231 -99 25.000 9.25371e-07 0.100049 1 -2.51184e-05 -0.0125608 6.1808e-05 3.2551e-05 4.9732e-06 - 30 react 2 -99 0 1 7.5 12.2374 -99 25.000 1.63108e-06 0.100037 1 -2.28778e-05 -0.0114402 4.8410e-05 4.5580e-05 4.9823e-06 - 31 react 2 -99 0 1 7.75 11.9514 -99 25.000 2.83165e-06 0.100026 1 -2.08025e-05 -0.0104023 3.5937e-05 5.7490e-05 4.9870e-06 - 32 react 2 -99 0 1 8 11.666 -99 25.000 4.94809e-06 0.100017 1 -1.85413e-05 -0.00927139 2.5143e-05 6.7388e-05 4.9897e-06 + 5 react 1 -99 0 1 5 15.0933 -99 25.000 -1.21142e-05 0.0999426 0.999998 -0.000112255 -0.0561601 9.9667e-08 1.3174e-11 3.1450e-10 + 6 react 1 -99 0 1 5.25 14.8076 -99 25.000 -6.81073e-06 0.0999508 0.999998 -9.66739e-05 -0.0483609 9.9094e-08 3.6062e-11 8.6083e-10 + 7 react 1 -99 0 1 5.5 14.5219 -99 25.000 -3.8271e-06 0.0999584 0.999998 -8.21358e-05 -0.0410851 9.7570e-08 9.7072e-11 2.3165e-09 + 8 react 1 -99 0 1 5.75 14.2362 -99 25.000 -2.14703e-06 0.0999652 0.999999 -6.88825e-05 -0.0344533 9.3666e-08 2.5380e-10 6.0522e-09 + 9 react 1 -99 0 1 6 13.9505 -99 25.000 -1.19828e-06 0.0999713 0.999999 -5.70006e-05 -0.0285086 8.4496e-08 6.2324e-10 1.4836e-08 + 10 react 1 -99 0 1 6.25 13.6647 -99 25.000 -6.57701e-07 0.0999766 0.999999 -4.64735e-05 -0.0232422 6.6729e-08 1.3432e-09 3.1864e-08 + 11 react 1 -99 0 1 6.5 13.379 -99 25.000 -3.41177e-07 0.0999813 0.999999 -3.7219e-05 -0.018613 4.2359e-08 2.3391e-09 5.5230e-08 + 12 react 1 -99 0 1 6.75 13.0933 -99 25.000 -1.40904e-07 0.0999854 0.999999 -2.91148e-05 -0.0145595 2.1076e-08 3.2169e-09 7.5642e-08 + 13 react 1 -99 0 1 7 12.8076 -99 25.000 1.13439e-08 0.0999891 1 -2.20135e-05 -0.011008 8.7607e-09 3.7285e-09 8.7461e-08 + 14 react 1 -99 0 1 7.25 12.5219 -99 25.000 1.67438e-07 0.0999923 1 -1.57484e-05 -0.00787483 3.3044e-09 3.9562e-09 9.2704e-08 + 15 react 1 -99 0 1 7.5 12.2362 -99 25.000 3.80557e-07 0.0999953 1 -1.01328e-05 -0.00506665 1.1918e-09 4.0447e-09 9.4738e-08 + 16 react 1 -99 0 1 7.75 11.9505 -99 25.000 7.23295e-07 0.0999982 1 -4.96214e-06 -0.00248112 4.2167e-10 4.0771e-09 9.5483e-08 + 17 react 1 -99 0 1 8 11.6647 -99 25.000 1.3124e-06 0.100001 1 -1.7871e-08 -8.9354e-06 1.4817e-10 4.0887e-09 9.5749e-08 + 20 react 2 -99 0 1 5 15.0933 -99 25.000 -1.21096e-05 0.100042 0.999998 -0.000112354 -0.0562096 9.9686e-05 1.3167e-08 2.9577e-07 + 21 react 2 -99 0 1 5.25086 14.8066 -99 25.000 -6.78832e-06 0.10005 0.999998 -9.68392e-05 -0.0484436 9.9219e-05 3.6149e-08 7.3612e-07 + 22 react 2 -99 0 1 5.5 14.5219 -99 25.000 -3.81085e-06 0.100056 0.999998 -8.25933e-05 -0.041314 9.8302e-05 9.7147e-08 1.5849e-06 + 23 react 2 -99 0 1 5.75 14.2362 -99 25.000 -2.1182e-06 0.100062 0.999999 -6.96993e-05 -0.034862 9.6949e-05 2.5852e-07 2.7639e-06 + 24 react 2 -99 0 1 6 13.9505 -99 25.000 -1.14729e-06 0.100066 0.999999 -5.82072e-05 -0.0291122 9.5439e-05 6.8198e-07 3.8284e-06 + 25 react 2 -99 0 1 6.25 13.6647 -99 25.000 -5.67452e-07 0.100069 0.999999 -4.8109e-05 -0.0240603 9.3655e-05 1.7788e-06 4.4775e-06 + 26 react 2 -99 0 1 6.5 13.379 -99 25.000 -1.82222e-07 0.100071 1 -3.95664e-05 -0.0197871 9.0590e-05 4.4736e-06 4.7812e-06 + 27 react 2 -99 0 1 6.75 13.0932 -99 25.000 1.33839e-07 0.100068 1 -3.28749e-05 -0.0164401 8.4578e-05 1.0254e-05 4.9050e-06 + 28 react 2 -99 0 1 7 12.8076 -99 25.000 4.7235e-07 0.10006 1 -2.81879e-05 -0.0140959 7.4599e-05 2.0021e-05 4.9534e-06 + 29 react 2 -99 0 1 7.25 12.5219 -99 25.000 9.25371e-07 0.100049 1 -2.51184e-05 -0.0125608 6.1808e-05 3.2551e-05 4.9732e-06 + 30 react 2 -99 0 1 7.5 12.2362 -99 25.000 1.63108e-06 0.100037 1 -2.28778e-05 -0.0114402 4.8410e-05 4.5580e-05 4.9823e-06 + 31 react 2 -99 0 1 7.75 11.9502 -99 25.000 2.83165e-06 0.100026 1 -2.08025e-05 -0.0104023 3.5937e-05 5.7490e-05 4.9870e-06 + 32 react 2 -99 0 1 8 11.6647 -99 25.000 4.94809e-06 0.100017 1 -1.85413e-05 -0.00927139 2.5143e-05 6.7388e-05 4.9897e-06 diff --git a/ex9.out b/ex9.out index 349e2e55..e47a77a9 100644 --- a/ex9.out +++ b/ex9.out @@ -181,7 +181,7 @@ Initial solution 1. ----------------------------Description of solution---------------------------- pH = 7.000 - pe = 13.629 Equilibrium with O2(g) + pe = 13.625 Equilibrium with O2(g) Specific Conductance (µS/cm, 25°C) = 1190 Density (g/cm³) = 0.99747 Volume (L) = 1.00315 @@ -214,7 +214,7 @@ Fe_di 1.000e-04 Fe_diCl+ 9.148e-07 8.240e-07 -6.039 -6.084 -0.045 (0) Fe_diOH+ 2.284e-07 2.057e-07 -6.641 -6.687 -0.045 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 + H2 0.000e+00 0.000e+00 -44.401 -44.400 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 O(0) 5.465e-04 @@ -224,7 +224,7 @@ O(0) 5.465e-04 Phase SI** log IAP log K(298 K, 1 atm) - H2(g) -41.31 -44.41 -3.10 H2 + H2(g) -41.30 -44.40 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -5.65 -4.08 1.57 NaCl O2(g) -0.67 -3.56 -2.89 O2 Pressure 0.2 atm, phi 1.000 @@ -270,7 +270,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -2.669e-07 ----------------------------Description of solution---------------------------- pH = 6.045 Charge balance - pe = 14.585 Adjusted to redox equilibrium + pe = 14.580 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 1191 Density (g/cm³) = 0.99747 Volume (L) = 1.00315 @@ -280,7 +280,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -2.669e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.298e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = 8.209e-16 + Electrical balance (eq) = 8.348e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 208 (195 overall) Total H = 1.110124e+02 @@ -317,7 +317,7 @@ Fe_tri 1.067e-06 Fe_triCl3 3.360e-18 3.368e-18 -17.474 -17.473 0.001 (0) Fe_tri3(OH)4+5 3.491e-19 2.556e-20 -18.457 -19.592 -1.135 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 + H2 0.000e+00 0.000e+00 -44.401 -44.400 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 O(0) 5.465e-04 @@ -328,7 +328,7 @@ O(0) 5.465e-04 Phase SI** log IAP log K(298 K, 1 atm) Goethite 6.64 5.64 -1.00 Fe_triOOH - H2(g) -41.31 -44.41 -3.10 H2 + H2(g) -41.30 -44.40 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -5.65 -4.08 1.57 NaCl O2(g) -0.67 -3.56 -2.89 O2 Pressure 0.2 atm, phi 1.000 @@ -370,7 +370,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -1.858e-07 ----------------------------Description of solution---------------------------- pH = 5.807 Charge balance - pe = 14.823 Adjusted to redox equilibrium + pe = 14.818 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 1191 Density (g/cm³) = 0.99747 Volume (L) = 1.00315 @@ -380,7 +380,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -1.858e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 2.041e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = 8.134e-16 + Electrical balance (eq) = 8.290e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 27 Total H = 1.110124e+02 @@ -417,7 +417,7 @@ Fe_tri 1.810e-06 Fe_triCl3 1.785e-17 1.790e-17 -16.748 -16.747 0.001 (0) Fe_tri3(OH)4+5 5.855e-18 4.288e-19 -17.232 -18.368 -1.135 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 + H2 0.000e+00 0.000e+00 -44.401 -44.400 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 O(0) 5.465e-04 @@ -428,7 +428,7 @@ O(0) 5.465e-04 Phase SI** log IAP log K(298 K, 1 atm) Goethite 6.66 5.66 -1.00 Fe_triOOH - H2(g) -41.31 -44.41 -3.10 H2 + H2(g) -41.30 -44.40 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -5.65 -4.08 1.57 NaCl O2(g) -0.67 -3.56 -2.89 O2 Pressure 0.2 atm, phi 1.000 @@ -470,7 +470,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.073e-07 ----------------------------Description of solution---------------------------- pH = 5.522 Charge balance - pe = 15.107 Adjusted to redox equilibrium + pe = 15.103 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 1192 Density (g/cm³) = 0.99747 Volume (L) = 1.00315 @@ -480,7 +480,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.073e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 3.670e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = 9.043e-16 + Electrical balance (eq) = 9.147e-16 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 67 Total H = 1.110124e+02 @@ -517,7 +517,7 @@ Fe_tri 3.439e-06 Fe_tri3(OH)4+5 1.621e-16 1.188e-17 -15.790 -16.925 -1.135 (0) Fe_triCl3 1.296e-16 1.299e-16 -15.888 -15.887 0.001 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 + H2 0.000e+00 0.000e+00 -44.401 -44.400 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 O(0) 5.465e-04 @@ -528,7 +528,7 @@ O(0) 5.465e-04 Phase SI** log IAP log K(298 K, 1 atm) Goethite 6.66 5.66 -1.00 Fe_triOOH - H2(g) -41.31 -44.41 -3.10 H2 + H2(g) -41.30 -44.40 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -5.65 -4.08 1.57 NaCl O2(g) -0.67 -3.56 -2.89 O2 Pressure 0.2 atm, phi 1.000 @@ -570,7 +570,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.928e-07 ----------------------------Description of solution---------------------------- pH = 5.324 Charge balance - pe = 15.305 Adjusted to redox equilibrium + pe = 15.301 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 1192 Density (g/cm³) = 0.99747 Volume (L) = 1.00315 @@ -580,7 +580,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.928e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 5.641e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = 6.887e-15 + Electrical balance (eq) = 6.902e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 26 Total H = 1.110124e+02 @@ -617,7 +617,7 @@ Fe_tri 5.410e-06 Fe_tri3(OH)4+5 1.600e-15 1.172e-16 -14.796 -15.931 -1.135 (0) Fe_triCl3 5.101e-16 5.113e-16 -15.292 -15.291 0.001 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 + H2 0.000e+00 0.000e+00 -44.401 -44.400 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 O(0) 5.465e-04 @@ -628,7 +628,7 @@ O(0) 5.465e-04 Phase SI** log IAP log K(298 K, 1 atm) Goethite 6.66 5.66 -1.00 Fe_triOOH - H2(g) -41.31 -44.41 -3.10 H2 + H2(g) -41.30 -44.40 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -5.65 -4.08 1.57 NaCl O2(g) -0.67 -3.56 -2.89 O2 Pressure 0.2 atm, phi 1.000 @@ -670,7 +670,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.731e-07 ----------------------------Description of solution---------------------------- pH = 5.195 Charge balance - pe = 15.435 Adjusted to redox equilibrium + pe = 15.430 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 1193 Density (g/cm³) = 0.99747 Volume (L) = 1.00315 @@ -680,7 +680,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.731e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 7.533e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = 6.899e-15 + Electrical balance (eq) = 6.918e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 24 Total H = 1.110124e+02 @@ -717,7 +717,7 @@ Fe_tri 7.302e-06 Fe_tri3(OH)4+5 7.125e-15 5.221e-16 -14.147 -15.282 -1.135 (0) Fe_triCl3 1.248e-15 1.251e-15 -14.904 -14.903 0.001 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 + H2 0.000e+00 0.000e+00 -44.401 -44.400 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 O(0) 5.465e-04 @@ -728,7 +728,7 @@ O(0) 5.465e-04 Phase SI** log IAP log K(298 K, 1 atm) Goethite 6.66 5.66 -1.00 Fe_triOOH - H2(g) -41.31 -44.41 -3.10 H2 + H2(g) -41.30 -44.40 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -5.65 -4.08 1.57 NaCl O2(g) -0.67 -3.56 -2.89 O2 Pressure 0.2 atm, phi 1.000 @@ -770,7 +770,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -6.071e-07 ----------------------------Description of solution---------------------------- pH = 5.072 Charge balance - pe = 15.557 Adjusted to redox equilibrium + pe = 15.553 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 1194 Density (g/cm³) = 0.99747 Volume (L) = 1.00315 @@ -780,7 +780,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -6.071e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 9.960e-06 Temperature (°C) = 25.00 - Electrical balance (eq) = 6.911e-15 + Electrical balance (eq) = 6.935e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 24 Total H = 1.110124e+02 @@ -817,7 +817,7 @@ Fe_tri 9.729e-06 Fe_tri3(OH)4+5 2.927e-14 2.145e-15 -13.534 -14.668 -1.135 (0) Fe_triCl3 2.912e-15 2.919e-15 -14.536 -14.535 0.001 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 + H2 0.000e+00 0.000e+00 -44.401 -44.400 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 O(0) 5.465e-04 @@ -828,7 +828,7 @@ O(0) 5.465e-04 Phase SI** log IAP log K(298 K, 1 atm) Goethite 6.66 5.66 -1.00 Fe_triOOH - H2(g) -41.31 -44.41 -3.10 H2 + H2(g) -41.30 -44.40 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -5.65 -4.08 1.57 NaCl O2(g) -0.67 -3.56 -2.89 O2 Pressure 0.2 atm, phi 1.000 @@ -870,7 +870,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -6.211e-07 ----------------------------Description of solution---------------------------- pH = 4.976 Charge balance - pe = 15.653 Adjusted to redox equilibrium + pe = 15.649 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 1194 Density (g/cm³) = 0.99747 Volume (L) = 1.00314 @@ -880,7 +880,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -6.211e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.244e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = 6.909e-15 + Electrical balance (eq) = 6.935e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 23 Total H = 1.110124e+02 @@ -917,7 +917,7 @@ Fe_tri 1.221e-05 Fe_tri3(OH)4+5 8.852e-14 6.490e-15 -13.053 -14.188 -1.135 (0) Fe_triCl3 5.655e-15 5.668e-15 -14.248 -14.247 0.001 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 + H2 0.000e+00 0.000e+00 -44.401 -44.400 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 O(0) 5.465e-04 @@ -928,7 +928,7 @@ O(0) 5.465e-04 Phase SI** log IAP log K(298 K, 1 atm) Goethite 6.66 5.66 -1.00 Fe_triOOH - H2(g) -41.31 -44.41 -3.10 H2 + H2(g) -41.30 -44.40 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -5.65 -4.08 1.57 NaCl O2(g) -0.67 -3.56 -2.89 O2 Pressure 0.2 atm, phi 1.000 @@ -970,7 +970,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -7.790e-07 ----------------------------Description of solution---------------------------- pH = 4.882 Charge balance - pe = 15.748 Adjusted to redox equilibrium + pe = 15.744 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 1195 Density (g/cm³) = 0.99747 Volume (L) = 1.00314 @@ -980,7 +980,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -7.790e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.556e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = 6.909e-15 + Electrical balance (eq) = 6.940e-15 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 23 Total H = 1.110124e+02 @@ -1017,7 +1017,7 @@ Fe_tri 1.533e-05 Fe_tri3(OH)4+5 2.644e-13 1.939e-14 -12.578 -13.712 -1.135 (0) Fe_triCl3 1.090e-14 1.093e-14 -13.963 -13.962 0.001 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 + H2 0.000e+00 0.000e+00 -44.401 -44.400 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 O(0) 5.465e-04 @@ -1028,7 +1028,7 @@ O(0) 5.465e-04 Phase SI** log IAP log K(298 K, 1 atm) Goethite 6.66 5.66 -1.00 Fe_triOOH - H2(g) -41.31 -44.41 -3.10 H2 + H2(g) -41.30 -44.40 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -5.65 -4.08 1.57 NaCl O2(g) -0.67 -3.56 -2.89 O2 Pressure 0.2 atm, phi 1.000 @@ -1070,7 +1070,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -5.440e-07 ----------------------------Description of solution---------------------------- pH = 4.827 Charge balance - pe = 15.803 Adjusted to redox equilibrium + pe = 15.799 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 1196 Density (g/cm³) = 0.99747 Volume (L) = 1.00314 @@ -1080,7 +1080,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -5.440e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.774e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.315e-14 + Electrical balance (eq) = 5.318e-14 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 20 Total H = 1.110124e+02 @@ -1117,7 +1117,7 @@ Fe_tri 1.750e-05 Fe_tri3(OH)4+5 4.979e-13 3.653e-14 -12.303 -13.437 -1.135 (0) Fe_triCl3 1.594e-14 1.597e-14 -13.798 -13.797 0.001 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 + H2 0.000e+00 0.000e+00 -44.401 -44.400 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 O(0) 5.465e-04 @@ -1128,7 +1128,7 @@ O(0) 5.465e-04 Phase SI** log IAP log K(298 K, 1 atm) Goethite 6.67 5.67 -1.00 Fe_triOOH - H2(g) -41.31 -44.41 -3.10 H2 + H2(g) -41.30 -44.40 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -5.65 -4.08 1.57 NaCl O2(g) -0.67 -3.56 -2.89 O2 Pressure 0.2 atm, phi 1.000 @@ -1170,7 +1170,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.315e-07 ----------------------------Description of solution---------------------------- pH = 4.788 Charge balance - pe = 15.842 Adjusted to redox equilibrium + pe = 15.837 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 1197 Density (g/cm³) = 0.99747 Volume (L) = 1.00314 @@ -1180,7 +1180,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -4.315e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 1.946e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.625e-14 + Electrical balance (eq) = 5.628e-14 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 20 Total H = 1.110124e+02 @@ -1217,7 +1217,7 @@ Fe_tri 1.923e-05 Fe_tri3(OH)4+5 7.776e-13 5.705e-14 -12.109 -13.244 -1.134 (0) Fe_triCl3 2.082e-14 2.087e-14 -13.681 -13.680 0.001 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 + H2 0.000e+00 0.000e+00 -44.401 -44.400 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 O(0) 5.465e-04 @@ -1228,7 +1228,7 @@ O(0) 5.465e-04 Phase SI** log IAP log K(298 K, 1 atm) Goethite 6.67 5.67 -1.00 Fe_triOOH - H2(g) -41.31 -44.41 -3.10 H2 + H2(g) -41.30 -44.40 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -5.65 -4.08 1.57 NaCl O2(g) -0.67 -3.56 -2.89 O2 Pressure 0.2 atm, phi 1.000 @@ -1270,7 +1270,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -3.633e-07 ----------------------------Description of solution---------------------------- pH = 4.758 Charge balance - pe = 15.871 Adjusted to redox equilibrium + pe = 15.867 Adjusted to redox equilibrium Specific Conductance (µS/cm, 25°C) = 1197 Density (g/cm³) = 0.99747 Volume (L) = 1.00314 @@ -1280,7 +1280,7 @@ O2(g) -0.67 -3.56 -2.89 1.000e+01 1.000e+01 -3.633e-07 Mass of water (kg) = 1.000e+00 Total alkalinity (eq/kg) = 2.091e-05 Temperature (°C) = 25.00 - Electrical balance (eq) = 5.667e-14 + Electrical balance (eq) = 5.670e-14 Percent error, 100*(Cat-|An|)/(Cat+|An|) = 0.00 Iterations = 20 Total H = 1.110124e+02 @@ -1317,7 +1317,7 @@ Fe_tri 2.068e-05 Fe_tri3(OH)4+5 1.096e-12 8.045e-14 -11.960 -13.094 -1.134 (0) Fe_triCl3 2.559e-14 2.565e-14 -13.592 -13.591 0.001 (0) H(0) 0.000e+00 - H2 0.000e+00 0.000e+00 -44.410 -44.409 0.001 28.61 + H2 0.000e+00 0.000e+00 -44.401 -44.400 0.001 28.61 Na 1.000e-02 Na+ 1.000e-02 9.022e-03 -2.000 -2.045 -0.045 -1.38 O(0) 5.465e-04 @@ -1328,7 +1328,7 @@ O(0) 5.465e-04 Phase SI** log IAP log K(298 K, 1 atm) Goethite 6.67 5.67 -1.00 Fe_triOOH - H2(g) -41.31 -44.41 -3.10 H2 + H2(g) -41.30 -44.40 -3.10 H2 H2O(g) -1.50 -0.00 1.50 H2O Halite -5.65 -4.08 1.57 NaCl O2(g) -0.67 -3.56 -2.89 O2 Pressure 0.2 atm, phi 1.000 From 7939dd32097aa6395b7bd6b8e335b710a49f2b4a Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Wed, 10 Sep 2025 22:46:07 +0000 Subject: [PATCH 382/384] Squashed 'src/' changes from 7835c6d5..8b97f7b5 8b97f7b5 Merge commit 'a11ac56700283d1570e045d3fc791f56fef913dd' a11ac567 Squashed 'phreeqcpp/' changes from 83843db..50e4d89 git-subtree-dir: src git-subtree-split: 8b97f7b51ed6af2d64b5df31c0d15c16290e8337 --- phreeqcpp/NameDouble.cxx | 4 +- phreeqcpp/Solution.cxx | 43 +++++++++--- phreeqcpp/global_structures.h | 3 +- phreeqcpp/pitzer.cpp | 2 +- phreeqcpp/sit.cpp | 29 +++++++- phreeqcpp/step.cpp | 120 +++++++++++++++++----------------- 6 files changed, 126 insertions(+), 75 deletions(-) diff --git a/phreeqcpp/NameDouble.cxx b/phreeqcpp/NameDouble.cxx index d9ceb6eb..ce485232 100644 --- a/phreeqcpp/NameDouble.cxx +++ b/phreeqcpp/NameDouble.cxx @@ -226,7 +226,7 @@ cxxNameDouble::add_intensive(const cxxNameDouble & addee, LDBLE f1, // Sums two name doubles, this*f1 + f2*nd2 // { - assert(f1 >= 0 && f2 >= 0); + //assert(f1 >= 0 && f2 >= 0); for (cxxNameDouble::const_iterator it = addee.begin(); it != addee.end(); it++) { @@ -248,7 +248,7 @@ cxxNameDouble::add_log_activities(const cxxNameDouble & addee, LDBLE f1, // Sums two name doubles, this*f1 + f2*nd2, assuming log values // { - assert(f1 >= 0 && f2 >= 0); + //assert(f1 >= 0 && f2 >= 0); for (cxxNameDouble::const_iterator it = addee.begin(); it != addee.end(); it++) { diff --git a/phreeqcpp/Solution.cxx b/phreeqcpp/Solution.cxx index b2f4187a..50a88427 100644 --- a/phreeqcpp/Solution.cxx +++ b/phreeqcpp/Solution.cxx @@ -129,24 +129,33 @@ cxxSolution::cxxSolution(std::map < int, cxxSolution > &solutions, else this->potV = cxxsoln_ptr1->potV; } + // + // Sort to enable positive mixes first + const std::map < int, LDBLE >& mixcomps = mix.Get_mixComps(); + std::set >s; + for (std::map < int, LDBLE >::const_iterator it = mixcomps.begin(); + it != mixcomps.end(); it++) + { + std::pair p(it->second, it->first); + s.insert(p); + } // // Mix solutions // - const std::map < int, LDBLE >&mixcomps = mix.Get_mixComps(); - std::map < int, LDBLE >::const_iterator it; - for (it = mixcomps.begin(); it != mixcomps.end(); it++) + std::set < std::pair< LDBLE, int > >::const_reverse_iterator rit = s.rbegin(); + for (rit = s.rbegin(); rit != s.rend(); rit++) { - sol = solutions.find(it->first); + sol = solutions.find(rit->second); if (sol == solutions.end()) { std::ostringstream msg; - msg << "Solution " << it->first << " not found in mix_cxxSolutions."; + msg << "Solution " << rit->second << " not found in mix_cxxSolutions."; error_msg(msg.str(), CONTINUE); } else { cxxsoln_ptr1 = &(sol->second); - this->add(*cxxsoln_ptr1, it->second); + this->add(*cxxsoln_ptr1, rit->first); } } @@ -1418,8 +1427,25 @@ cxxSolution::add(const cxxSolution & addee, LDBLE extensive) return; LDBLE ext1 = this->mass_water; LDBLE ext2 = addee.mass_water * extensive; - LDBLE f1 = ext1 / (ext1 + ext2); - LDBLE f2 = ext2 / (ext1 + ext2); + this->mass_water += addee.mass_water * extensive; + if (this->mass_water <= 0.0) + { + std::ostringstream msg; + msg << "Negative mass of water when mixing solutions."; + error_msg(msg.str(), STOP); + } + LDBLE fconc = 0.0, f1 = 0.0, f2 = 0.0; + if (extensive > 0.0) + { + + f1 = ext1 / (ext1 + ext2); + f2 = ext2 / (ext1 + ext2); + } + else + { + f1 = 1.0; + f2 = 0.0; + } this->tc = f1 * this->tc + f2 * addee.tc; this->ph = f1 * this->ph + f2 * addee.ph; this->pe = f1 * this->pe + f2 * addee.pe; @@ -1433,7 +1459,6 @@ cxxSolution::add(const cxxSolution & addee, LDBLE extensive) this->viscos_0 = f1 * this->viscos_0 + f2 * addee.viscos_0; this->patm = f1 * this->patm + f2 * addee.patm; // this->potV = f1 * this->potV + f2 * addee.potV; // appt - this->mass_water += addee.mass_water * extensive; this->soln_vol += addee.soln_vol * extensive; this->total_alkalinity += addee.total_alkalinity * extensive; this->totals.add_extensive(addee.totals, extensive); diff --git a/phreeqcpp/global_structures.h b/phreeqcpp/global_structures.h index 3e7cc701..bedaee8f 100644 --- a/phreeqcpp/global_structures.h +++ b/phreeqcpp/global_structures.h @@ -1586,7 +1586,7 @@ public: typedef enum { TYPE_B0, TYPE_B1, TYPE_B2, TYPE_C0, TYPE_THETA, TYPE_LAMBDA, TYPE_ZETA, TYPE_PSI, TYPE_ETHETA, TYPE_ALPHAS, TYPE_MU, TYPE_ETA, TYPE_Other, - TYPE_SIT_EPSILON, TYPE_SIT_EPSILON_MU, TYPE_APHI + TYPE_SIT_EPSILON, TYPE_SIT_EPSILON_MU, TYPE_APHI, TYPE_SIT_EPSILON2 } pitz_param_type; class pitz_param { @@ -1625,6 +1625,7 @@ public: LDBLE eps; LDBLE eps1; LDBLE aphi; + LDBLE eps2; } U; LDBLE a[6]; LDBLE alpha; diff --git a/phreeqcpp/pitzer.cpp b/phreeqcpp/pitzer.cpp index 9282b576..1f32a085 100644 --- a/phreeqcpp/pitzer.cpp +++ b/phreeqcpp/pitzer.cpp @@ -2690,7 +2690,7 @@ pitzer_make_lists(void) /* TYPE_B0, TYPE_B1, TYPE_B2, TYPE_C0, TYPE_THETA, TYPE_LAMBDA, TYPE_ZETA, TYPE_PSI, TYPE_ETHETA, TYPE_ALPHAS, TYPE_MU, TYPE_ETA, TYPE_Other, - TYPE_SIT_EPSILON, TYPE_SIT_EPSILON_MU + TYPE_SIT_EPSILON, TYPE_SIT_EPSILON_MU, TYPE_APHI, TYPE_SIT_EPSILON2 */ int i0 = pitz_params[i]->ispec[0]; int i1 = pitz_params[i]->ispec[1]; diff --git a/phreeqcpp/sit.cpp b/phreeqcpp/sit.cpp index 4f3feb53..2d061f01 100644 --- a/phreeqcpp/sit.cpp +++ b/phreeqcpp/sit.cpp @@ -188,9 +188,10 @@ read_sit(void) const char* next_char; const char *opt_list[] = { "epsilon", /* 0 */ - "epsilon1" /* 1 */ + "epsilon1", /* 1 */ + "epsilon2" /* 2 */ }; - int count_opt_list = 2; + int count_opt_list = 3; /* * Read lines */ @@ -237,6 +238,11 @@ read_sit(void) n = 2; opt_save = OPTION_DEFAULT; break; + case 2: /* epsilon2 */ + pzp_type = TYPE_SIT_EPSILON2; + n = 2; + opt_save = OPTION_DEFAULT; + break; } if (return_value == EOF || return_value == KEYWORD) break; @@ -275,6 +281,9 @@ calc_sit_param(class pitz_param *pz_ptr, LDBLE TK, LDBLE TR) case TYPE_SIT_EPSILON_MU: pz_ptr->U.eps1 = param; break; + case TYPE_SIT_EPSILON2: + pz_ptr->U.eps2 = param; + break; case TYPE_Other: default: error_msg("Should not be TYPE_Other in function calc_sit_param", @@ -399,6 +408,7 @@ sit(void) * Sums for sit_LGAMMA, and OSMOT * epsilons are tabulated for log10 gamma (not ln gamma) */ + LDBLE logmu = log10(I); for (size_t j = 0; j < param_list.size(); j++) { int i = param_list[j]; @@ -425,7 +435,7 @@ sit(void) case TYPE_SIT_EPSILON_MU: sit_LGAMMA[i0] += sit_M[i1] * I * param; sit_LGAMMA[i1] += sit_M[i0] * I * param; - OSMOT += sit_M[i0] * sit_M[i1] * param; + //OSMOT += sit_M[i0] * sit_M[i1] * param; if (z0 == 0.0 && z1 == 0.0) { OSMOT += sit_M[i0] * sit_M[i1] * param * I / 2.0; @@ -435,6 +445,19 @@ sit(void) OSMOT += sit_M[i0] * sit_M[i1] * param * I; } break; + case TYPE_SIT_EPSILON2: + sit_LGAMMA[i0] += sit_M[i1] * logmu * param; + sit_LGAMMA[i1] += sit_M[i0] * logmu * param; + //OSMOT += sit_M[i0] * sit_M[i1] * param; + if (z0 == 0.0 && z1 == 0.0) + { + OSMOT += sit_M[i0] * sit_M[i1] * param * logmu / 2.0; + } + else + { + OSMOT += sit_M[i0] * sit_M[i1] * param * logmu; + } + break; default: case TYPE_Other: error_msg("TYPE_Other in pitz_param list.", STOP); diff --git a/phreeqcpp/step.cpp b/phreeqcpp/step.cpp index 131aec3a..e7eb271e 100644 --- a/phreeqcpp/step.cpp +++ b/phreeqcpp/step.cpp @@ -621,70 +621,72 @@ add_mix(cxxMix *mix_ptr) * calls add_solution to accumulate all data in master->totals * and other variables. */ - LDBLE sum_fractions, intensive, extensive; - LDBLE sum_fractions_water=0, sum_positive_water=0, intensive_water=0, extensive_water=0; - cxxSolution *solution_ptr; - int count_positive; - LDBLE sum_positive; + //LDBLE sum_fractions, intensive, extensive; + //LDBLE sum_fractions_water=0, sum_positive_water=0, intensive_water=0, extensive_water=0; + //cxxSolution *solution_ptr; + //int count_positive; + //LDBLE sum_positive; if (mix_ptr == NULL) return (OK); if (mix_ptr->Get_mixComps().size() == 0) return (OK); - sum_fractions = 0.0; - sum_positive = 0.0; - count_positive = 0; - std::map::const_iterator it; - for (it = mix_ptr->Get_mixComps().begin(); it != mix_ptr->Get_mixComps().end(); it++) - { - solution_ptr = Utilities::Rxn_find(Rxn_solution_map, it->first); - if (solution_ptr == NULL) - { - error_string = sformatf("Mix solution not found, %d.", - it->first); - error_msg(error_string, CONTINUE); - input_error++; - continue; - } - sum_fractions += it->second; - sum_fractions_water += it->second * solution_ptr->Get_mass_water(); - if (it->second > 0) - { - sum_positive += it->second; - sum_positive_water += it->second * solution_ptr->Get_mass_water(); - count_positive++; - } - } - for (it = mix_ptr->Get_mixComps().begin(); it != mix_ptr->Get_mixComps().end(); it++) - { - solution_ptr = Utilities::Rxn_find(Rxn_solution_map, it->first); - if (solution_ptr == NULL) - { - error_string = sformatf( "Mix solution not found, %d.", - it->first); - error_msg(error_string, CONTINUE); - input_error++; - continue; - } - extensive = it->second; - extensive_water = it->second * solution_ptr->Get_mass_water(); - intensive = extensive / sum_fractions; - intensive_water = extensive_water / sum_fractions_water; - - if (count_positive < (int) mix_ptr->Get_mixComps().size()) - { - if (it->second > 0) - { - intensive = extensive / sum_positive; - intensive_water = extensive_water / sum_positive_water; - } - else - { - intensive = 0; - } - } - add_solution(solution_ptr, extensive, intensive_water); - } + //sum_fractions = 0.0; + //sum_positive = 0.0; + //count_positive = 0; + //std::map::const_iterator it; + //for (it = mix_ptr->Get_mixComps().begin(); it != mix_ptr->Get_mixComps().end(); it++) + //{ + // solution_ptr = Utilities::Rxn_find(Rxn_solution_map, it->first); + // if (solution_ptr == NULL) + // { + // error_string = sformatf("Mix solution not found, %d.", + // it->first); + // error_msg(error_string, CONTINUE); + // input_error++; + // continue; + // } + // sum_fractions += it->second; + // sum_fractions_water += it->second * solution_ptr->Get_mass_water(); + // if (it->second > 0) + // { + // sum_positive += it->second; + // sum_positive_water += it->second * solution_ptr->Get_mass_water(); + // count_positive++; + // } + //} + //for (it = mix_ptr->Get_mixComps().begin(); it != mix_ptr->Get_mixComps().end(); it++) + //{ + // solution_ptr = Utilities::Rxn_find(Rxn_solution_map, it->first); + // if (solution_ptr == NULL) + // { + // error_string = sformatf( "Mix solution not found, %d.", + // it->first); + // error_msg(error_string, CONTINUE); + // input_error++; + // continue; + // } + // extensive = it->second; + // extensive_water = it->second * solution_ptr->Get_mass_water(); + // intensive = extensive / sum_fractions; + // intensive_water = extensive_water / sum_fractions_water; + // + // if (count_positive < (int) mix_ptr->Get_mixComps().size()) + // { + // if (it->second > 0) + // { + // intensive = extensive / sum_positive; + // intensive_water = extensive_water / sum_positive_water; + // } + // else + // { + // intensive = 0; + // } + // } + // add_solution(solution_ptr, extensive, intensive_water); + //} + cxxSolution s(Rxn_solution_map, *mix_ptr, 1); + add_solution(&s, 1.0, 1.0); return (OK); } #ifdef SKIP_ERROR From 55e64124d965eb0291136a227ba88f449d3b74a0 Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Wed, 10 Sep 2025 19:30:37 -0600 Subject: [PATCH 383/384] Add superprojects.json and lint workflow for validation --- .github/superprojects.json | 7 +++++++ .github/workflows/lint-superprojects.yml | 16 ++++++++++++++++ 2 files changed, 23 insertions(+) create mode 100644 .github/superprojects.json create mode 100644 .github/workflows/lint-superprojects.yml diff --git a/.github/superprojects.json b/.github/superprojects.json new file mode 100644 index 00000000..518d022b --- /dev/null +++ b/.github/superprojects.json @@ -0,0 +1,7 @@ +{ + "usgs-coupled-subtrees/iphreeqc": { + "superprojects": [ + "usgs-coupled-subtrees/webmod" + ] + } +} diff --git a/.github/workflows/lint-superprojects.yml b/.github/workflows/lint-superprojects.yml new file mode 100644 index 00000000..b46ff4bc --- /dev/null +++ b/.github/workflows/lint-superprojects.yml @@ -0,0 +1,16 @@ +name: Lint superprojects.json + +on: + pull_request: + paths: + - '.github/superprojects.json' + workflow_call: + workflow_dispatch: + +jobs: + lint-superprojects: + runs-on: ubuntu-latest + steps: + - uses: usgs-coupled-subtrees/sync-subtrees-action/lint-superprojects/@main + with: + ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }} From 9941fff19a9d6d7b763058742afa2cc0ce08f67a Mon Sep 17 00:00:00 2001 From: "Charlton, Scott R." Date: Wed, 10 Sep 2025 20:15:35 -0600 Subject: [PATCH 384/384] Update CMake configuration to use LLVM 18 on macOS --- .github/workflows/cmake.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/cmake.yml b/.github/workflows/cmake.yml index a8fcbe56..7731b00c 100644 --- a/.github/workflows/cmake.yml +++ b/.github/workflows/cmake.yml @@ -150,7 +150,7 @@ jobs: - name: CMake configure if: runner.os == 'macOS' - run: CC=$(brew --prefix llvm@15)/bin/clang CXX=$(brew --prefix llvm@15)/bin/clang++ cmake -B ${{ env.BUILD_DIR }} -DBUILD_SHARED_LIBS=${{ matrix.shared_libs }} -DIPHREEQC_ENABLE_MODULE=${{ matrix.enable_module }} -DCMAKE_CXX_STANDARD=20 -DCMAKE_CXX_STANDARD_REQUIRED=ON + run: CC=$(brew --prefix llvm@18)/bin/clang CXX=$(brew --prefix llvm@18)/bin/clang++ cmake -B ${{ env.BUILD_DIR }} -DBUILD_SHARED_LIBS=${{ matrix.shared_libs }} -DIPHREEQC_ENABLE_MODULE=${{ matrix.enable_module }} -DCMAKE_CXX_STANDARD=20 -DCMAKE_CXX_STANDARD_REQUIRED=ON - name: CMake configure if: runner.os == 'Windows'

    aU7d8Rf||)sdn7pKh^0U&hGV@54Bfdg3VUhv zKu~FqB~~9_1=*!IuQV0Z0G%bp z2_67Ta7N_fS?t4iWn1d7{iGg=CzgRD6xKd1C!n?Ju{~K(%paUX;?jpasopOTWId&N zD506_6Uhsdn%%T+XnB6CDhYKz0Y0>WMaFhO|LHo~GxDi0lYtRrTV;Es6Ep>yw~W8mpM z#*9;hX@joHX;2~aJy_0|RGw6*`_$IIrIU#%Yd|S(caSClT3x5xQbNZ<#5&ScN2h-h zRY!+N-OKx~HmMBBTFgPFWoD;NDG9VLMi@}yPAYZ6K(5`&3D8&-52eqDf;P`C42E-EUH4T*pl@YUK^5A(;QG|Nk*=3j*39!SDq~I|Uc&i+k%O zEjgB1E|!)-kCgqO8OHe6BAaP%&}n*L3dSR|%X(eT13UNI||xLVq)Gyi&EEnt0-gnq3#)q|Kctl(PF{x6qWfug`pHCFIbV9;-NTBFpTq&Il{ z)_{tuxNHZIX-^eP6+O2|yk!8Qq!M=<{m-Z*Bc{JwyLlz^v_sL!(Bb&6SV-(;p$g9W z0sE=sqv;x_jbj|YBkz&z8xyl_Xv*!lF<2uXL@b(uX$4aU!aUR~MM>-nvaalS^h+_LcoVsfmYVs~uux`!n4|N>|MJvgq~(+5J5|JwM0M zt6(7tOvtP8GxV4oz?Uo24{z9k3*&W1MuumpjFQ(6+jHk=!O4&nK=Y(eU#$W^gjB62#R zI=4gmii95jwL(kzrL-umPt zG2&ua%H+tdt?OCFr(F;Ut;*AUNKPx*f_} z9L~`UYP=fUAT_oLBw1;5sAQZ~7U@=-{qFp@h(P}SGDoady=8M!e}Bv4(Z z&kCkQ0z90v_Y|G^dIuAi^KoFfzCdPxSp!~q?Hsp4mS}RDHl$Ow@F`R%#~)E;1L%ia zPzs{IM{s8|M2u@?&HNiw@C^G&=yy$yew9c|oup0!SEWA-rBGh}{;#>& zVhq-ddR5{6tfah#)j$&9Q;^Pe(OJ#j|MvX&L4vXyhVjvB@$|<*O^r>=WF%NN4OMIy zK{H!Bl6;O<(dn9)X6+&>e75(W)vg$C;YLGwqE3Hfo$b{}kdXIstO8%MWu`QvqBrnu zVlrNO$$5Y@v+brn=l(vT1MM>_<7ukJp{#LH+yEw5)nA}edz$HbZy<5P)!WL8|I5yH z?|kxWCpjzB44JFH_rE?D{J?)`1Fl9sTQYsXSwrYxx3xl9Z>43Fl(oi}bMpSz7$x{b z(X-aFu-v{o$H(Ll?w5p~$2eSoT(2px{R|{#vb>D`X|wfT?G-DfT{I=@iYL#fLQ zsh>(Iyg<9dw60;tWxW>R?!V!)qjv|4())uBZ-;aiyB5pYBh#P*xPgF)1F0?=yOgpY z&s85BD8qwy^m|)BJ7qd?vXUHKX#XUaeXhy~#rTWG32P*ln|1fu5D;zOdzA)H5Y0kW>5hX~2QPjPZsejn- z;W>T|QKBD42`;(0QF;^gl9u}>+vPic1%|}~uHfx2uOmWH3ozu8f)7GDKSE@brW@9{%^zugW#w(*xrvd`a|)`*;P3)k?AoOT+7 zzFkuUlXeF!{-d&Qb1_xO)&1V?(t_m}oUct%47IA-gmWG|_tHT?|M67OUHP_81Yj1+ z5tck>7eZe45(o-S+_QKT7u6X@`lgxNG8r2?zxvGtGn?Tc32PU8dvfvOwq}xcDSG|l z4dA1U1ODpndv7}<1zx;vB%K%3i+$-koGvGoGs<*Me3XyqYdfqQzN4r3^!&i`^8PI| zmOH03;Nv?tzg5EJ&03sqz6-F7o=^GxaQB#QCvd6kqlZL@Q~h6mxrdKWVg21^iP7uH zayq}KU9p%Nf@tUIWEhSZQIK4z-sQL5E}})n{*Rg)Je-yVzHRT+f19Bb^_n-g1cd>w z$&ItGM~3Cs^W=KGm$$%7TK0b6-wzSqmu<9<=aQ{CC>1B8hckW>Eupu)x>3}_(lKIF z|JmS@+0h*^Xy2p2IT@mrCfKCuTU9c40+cAHxD*F3*D;tXAZzaL`5 z-sa^5je)%u*~^dVFdT_@s*_LX*-&c&C7mXu0ux&SoV|_GUn1AeC~>B*o|ZvOd>bP zpj}H*K;)uZmmFwp2E4*z(`3>`LqS2y8@`V8g+*-i^q;QNCu@6q&Yv^xy}7-OBjv4Y z^A*>%o(~ic4Gqg|_*^7IGl$GL1$n!<-4yS5lRrCkC~F!Sp_+{~h(xOA1elpBNJtE_ zLrB|&%@F93oB_X8ZN=rG9sS%)+d2iV(xbV)U%tJt7Q9^IApj#S6$TK}phW4&rL&R6 z!V5dyDjN>UMQp@qT~khX?lb?N{E4!R6fdT0IgeM0{l5Kd|kdLzS{Q z~9yj zyc=Nf*}7y#x}R)f?)CML6o1Mc(|Y(i6^6wPZ>uzq+hwO&6@^fWCWT+t)J&^A>l=0c zE3*D#rkb8N)B0v5&)-`5JPc4ASTO z6*pkbJ z_{_osN8rqi3{f!1G@hosyc{5JpU}!)M`4bmpg@d;HDv{W)<0epFmsM|4!i2DZEf|O zA#v%L8UJ}$1F{m`IrMGm`t)IZrnh|Hq2fvR6|tKw@znHXT-u=LdaD5F@3ptz$;#f7 zjiRS{;&RS>otaKOhx2bribg)|)9dSPh~Pd+T;iM74v1y1Ie z%5M7~$&98_IrYh#7SWXi33jme)XgsC-i~f%%E0!xL#Ev*ZlBV@9kkyriGpak3QeEp zA}Y_CNgf(^e1BU}rydW`>lr`s`Fwi}gNqOLxx9Qp=PERKf6g}B7IoPPA+v+wCh7lC zFmuJOR6Mlv9`W5oo_@#%$E8PKx1!P^TvSHzeg7}B=~ntZXiANTlTK2)pqk$o5Emfa zsJ5Q!6ZrXWm*$vP2d~jJdK=89EcWT zLKE|*G$C2QvlWWwVg@UQ?j|PhVlt^@qY*+c_8xl}zG>73Gs%mlVo56*&v3paWP~ZS zqS9l(G5s+TOJgGv>VReSl5T(_np#Oe_NG!Ok?<*Zb(Z}|gJ@>sw4$;bE9mDq)ag6Hdu(Nnfj zUbR;T%_;5Icb#oXJ6ZH#k^=tsjh<4&ZQtD#G3D194-{b-)Jx&ZFp1ucPy;J6;D&Jv zkcf{m9%%CP-XR>DgX=VC@P@Q>%I?GKlJ3Xq`fx88$E%|B!0qasD8}irl2LiVlonGY zb=tuDk*|loTf?0i2y%ya^L*JTaAGwwAYE-dCH6J8n(YdjY(l*No%`1>&xKnsNLNpvcV~ezIZ61-8hIi`sxA zKv@BGkmj%HK&58Nw5rNtYC=Yi*iMc#(Zc@AWXj>|%YJFli%WH;i^~)J@5T(=7eC$| zghv436@75~n{&V5t*5!x8!ae!GRIy&2eXE$@@0|O#O-4@!OU#x&Uc^W{^gs#4M)(+ z*M$}rzvp-dzl~Kj1d(+A8S)PSi}y)UFb0qAb&mI^uP?LiVm{ArV>*GCy}fw1{~C{s zfBVZf3v~6p3UC&sW)?!pYQ}DZce*YLJ%FFmJ&Nm0YC&R!UR!Oq-SvbE<(-od*Xr52 znoS{(x!(n#`&<+Mx9;yIkAIix#LrF=1AFr~xP2zNZkZ4O59BrwT=GS`dfmF;+!`rK zo^dCh#vJ@&aD{0cq4_wR)AaQ8jd35B zrD$S8+nRPUK4{K)V&!d6ZYIxe92zY438nfz?JOm;Z2LO~P^?u-#}5zmiuS$nIRUL4=8wvbfRalvCEGRF=0@ zY5@bax~M8vN~CF+KVRYYJ;8~OHNV4cD@R3vG*9ntWL+kA`Q2x+3x4bS`%Q`|KJaF7 zo}|Iy=h$*B_<(-{o%P|{yCKM?!)`GPinlzU)L+!JeKXf@K3~sUgNSt!Vg zld!3qiLlPW-wdZ*x(&6fg_p|sC!3w6t5@slpu@X%6`;@pMX9f%du&TCO$(C`yk?lL z@y13`4eE=XO{=4&p3ePaNZS;C;OlM1tH))5yYnqgAT_nO^Rx3t;@LkS3xL3s>ot++ zsER~PZ0;q-+CkJfAXsZ1(!a~A{oofZm7&g^e4xu`b2JOHcgU-A27QPG?y#S27=82V zUd*ilsTj5ibbAex_kVexQX@$y_j25xYv3Yy^(!-9YtI*RdbFB~{L7aRru5zx`}*C- zndza!ah0Zg>4+U%Z6yl9vid>)1%oCkB}VBh7(SFA(LEU4J(aY zW=(@lc<4ax=lSvc@C*30OSmnBLDXCRF(Kuuia|{AK(6|gFhH*AHH+~{gH0r~xzxxz zZ7Si@lhy4HiwJ}SGRC_nlmL5)PQSUzOYqIR`}WmvAJ?l1+e60U)j?}z-oxp~1FY$* zN#xFyuW9GAe`i;}_Lk|P*s&IvOw=1>O>p7=NmRGwe(vUNsc3CYIOu(kJa(D*(B-IX zFB3X172SoB`0;uT{GPIZP&0{vZWo|y@i7`IyO7WvvPH+raKVQy*)l6P2gn+wJnj%g zCTJk)xPA=lxOcKqof=h#%T7bUJ}V`hV^-2={kw7iB;u7Az4{mrC1Ddb+)%9&fy-HS zC`<3mo+i0>5CQgbylHNW z=>^t&F{#LSdMmf;TW~jZv-4G`Zv5HWQwGx0yo7*C=})gUlR?0y-@fu0cuF!M1hX`W z5y-lGRc7ZFNkeh^=4(@INbI~z-X#lp)N+f8^;O+e2uhvRf3PjW3<5BwIVEL5A=`*Q zG?yBNFNa#8KIO!hWk{pY+nM675;ibWdTw=?$1xI&@k*%4r=ud3upPCY?40$CqNT=9 zs_&L!SIH;!*lLTa?+pMY`xXyTTR%K(%c2S&5T$VE8C1qrcCH=|fG;pyA0gB58bLN? zifR%q+FZ*LclHi%_x=hg#)!GbG)R!;8$SEP1z$A}|I7=f%_K3c|n%)9w2;STWMt2qac^dLz5(QW3_(gK$$q^gu{>On9% z##@Er=FKa1@RN>INgbCS6|%8C6fY>j`H#cLfjWuKf=wgw#7RZwD0GS2)SL-Q;3Wg^ehOx}K8?>A5oU^E zSoH6T1ID;dW$qjD2(U&jNhUbQ4I+2x+9IE;@SZ;#7Zyr!^@$qrSz&f&hF(Sn=0WEp zU58A2uN8tqPUIwzkQMc9L{t*lqhRF`o7Y}z%!+G7DbM+s2!`mogOwvrmaw&(ANcPs z4i5F&Z1{Xx7yfc_<7Lxu5768Z^-!;={+3tYNGvsV;3{I;`XKBi`bXL#8|&9+&tXLr znmq%Oor()kR^f@QojYDI+ov$d2uX`2;U@pAi3bk(lC^O$<1JTOD~F_JZ&_lE~7+o8%%>`pJQU)jwe)~Pupk--4GCZ&uv;~EDRlFB9&r;-Qvu2EZXM762dU0et(7fErnrltGkhFIxEp>X4kDQZoa zP05(hRM*p#`_<@cZo?t{#agr$8Y6_(VPs*C8b{P&tZ0&!BHEX$+@H0Ai+xqJ40PJ+ z%GRZKom_BqTEdQ-;mpKvI>-pm(VuR$18=Bi5-boIT|_^lnXhmNYH|Gtnftp zPi-KN;ET?~lXju${nJ~JSZ&>DN}KQ8@Q%Gm)PVWJVKFtq6Cc*V$h^!{RJ8KiXmTWV zr1YQ3q*Gaz>OWU7XTBP=$!)@s7I}&}SmjNw4XCj=MN`+arbW!qd!K|HBZKm&oXF@G z=tLGYquwaQop+W$Vc9Lqlx64OR4<@v1tUT;O^ncFy-6a{Ay(TEbV29qP)2FX(+VnN z3U+R8gAuth56}R?)Ik6JISlxWBX)MB)M+B~Fm>!dt;6jnI#}ugEJdE+TxKf*7 zP*a>83o7iLdjvYfmw*EBpKsdIAPZ3lvy`x=M@MmuI`5dvIk=@}v7gc*^|hTCiJBwr zy(E`R1U*6Pq+2Z~#6_A7g_Zr>+N!QP@F&)ULJnsK>K{dJDt_UrlJj|H8m6uwJc8>fEw#CJL;;MyMBq9O#vjQf1qbx?yLcjq>a*=fUb_6W__<_*J`y` zuPh8qZ*>g|Y_{-nk|+$d1vcUIiuJta85^cDcKJEB^A3{;qXKNA$=p65Fs4CF#j+1e zbOatRGCU`G{+i5uWQBl=w+{yT56yQDjG}JdFuoJ(Y4V62%s)lbi(c%hbZ&T#+5<2v7 zzBXvHy4_QyO;i7>dZ4Q9ropM!V{~e=#Pfm2b5o$0$|+eQ^oTxC{iIQ=c^)mMK+iSz z!-}m@Sw{Qe^N0xv@{^0c>JLkumViA!OUJ?a0W~KZ^cG}n@9uB@mnrDg-}6;%;&q20 zik0}MESt{Y!+M~7QcyeA*YBgCvRS~yi6>KxyXL74gxwv5p47QRm_~X-w1M=gq~Lt5 z@jngZB`Cs4Yb45Han8EA|3qwu7@=EuJBmTc4|4c={|V1Sd*U#|J4#aop4M+5=t?Zw z{dXuNgnXof6aAb zbFGWyki78UwMrH%q$T%c=vOh1pGZmHolc4X09UXj31Oq7>BA{2WHdRu^&AN{(Ao2y z;3UB_WEea`fl|z19|LepbX3>Qo&1~^=vtZLRKV88s0~Aw#R+Mk`}~r!H(pjy?k`&{ zht*z};LIhze~mWhY^WZB*AlW&cehrwNs3Rlq_o9RU0A0J>k?7<}sSTveUs}`qJjVpLq#&aip!D z5+Q`q(oY;{gN~40Y*-aGZpy(PZ!kKewM@(^iXk z%!c%m|9B}SX_NQmhElLesR_f}y7u)@mB~O#$58{^=fEiVnWU17841#8_!)gpn>vd- zY%?!Y#!KH!w396Z?iy~NQM}*`7UitzXNj)~xC!d=9=>juyp{`Rt@&pIr=!LW zWxq~Bw5J65g<%N$r3entomeN|O(sowE6`Q^a4-peOGRT0X67g9G(Qf(n;B^yfZ3RFZoGT*X9HU98rBj%`uK zbM2SxY4t9)1cUHETHpC|=Yj?T=3}#0X2^u5M82*oHkx$r>}<{STttXp;k|PKdAS;i z>+XDPd%=&Nx7%G^JNSZ+ewgFjjy0OGWfinNZ_}H`t?%QX;(88hJX`ai&XhN9rs^`I zr2l!}xPr=14!BgIE(2alXHK;Vxxgk5XWjh@wO%n2IhD5V|FL%-w+tX7!o#e4n2zA$Q;|YH~tY>Nm=Asi3t|8t1>Efp=1BW}a(L~%a9oQ&G3^-Ep zF%6?l4O%r6NoRkud&4bC^^?{}li48!TrU!w#joE-y@w#x?i<$5vuqq`r1fmobN%oe z{_G%RqGq;zS+A6q(a=3pI=ri~*m8YRMqhbM>9M&FX`cQKp@X*1;{=-RmpR%N1hxzH zVB}raAp@cGpI<>d)-IJW5S2QgojA|Hg4*J$R#@@UC0u~KT^7_QcEPf(DcfW+C8+Nx zF~J$rJPY<2>zLzWCfGlBn(c&wf0@>EOD+et35?37;}Srvc3JmrTzL2MAc!m2X)LXm z^9qye_f9*&e#>Okl=1j!M(%2>Q2J@z@j z+1W_PGXsv{7ISdy&c7j^&Bey2)_LH|$+CfL&h3l~hS{$em*<_J3Gdk$+JSMl-u+sq z?pooFU!m2F31_?&DltAMG56zyD?hw;-)Z?#$6aS9NjQH}e4rx$J_UVT`HGJQldwVc zpyg5m=lLT_*Uh)a_IfkDXMD2<21zyzMIR0Kyw$cH)fy@FU<^yOe{mj$o%6fo$pr46 z9s!!}-uf-hiZgf4?mKE5U1D9>p3N?XNIq>_O@dhSBip6STOC=JXsc>GH)hQ88F=;G ztw`m*B+6Y9b`I6gt5lRybDaIToBUpH=ci<*_>v&z-=Slx=Lsp0HJqJCJc|Zf9I3W1 zrb2|@D*{%xT`LNq04fP@yWU4|MlbRGZ#}rL4V5Q?Og^v2nRHujCuPE|8 z(iwz`JKD+o-iNIdgM@iDs?44?9=T}MG}q0h>-Xfq%@*rUy)y}eMRLMrykj9AfA{V9 z3oF5FYGY(GmA*5SJD49d8qMCG;lEP7aKf%!1yk4+p#Vm1U;%XPo^F7e*x z+aj{wh}AiRzMkLHp(kMN53oG^OJhNf7ML7l9YvXc8BdqOI`E6ygAhqHEMtpQD5fve6dGN%& zSg(T*k<19i3+0mlI5{P^W8-15f{{D`t;l2Ja8~pML<-YoKsLjw-{d+O8g=RKh|Di4 zl?0gE9iN4|rEu`&g5t0_r$Ck&BcgA{7!8fkB4nCMtyKBqa*-vEa!)i|$@W*>u@+8= z0tFu%eZ&kii!gGzJLZVX5HbdlETM887d)3ZiuvzbC>&BKgq!J5B17PRgAoa{q%v8D z#*Y668sU`)=kam)dXO1{4IW zEnzU+DZGHnQ1SCD)zWYm0xK8pvaa1GY`pzxO$VqqACZEE{S~RK)N>giu`m5=oiWlt z1U^>d1Ch1#W_3MrnsAEZz->>ABeNu4W&vJtSeg0vU+ntUYpbLIepKgawMW9#2C6;jqczt&ZM!~Ip7Cy#FJ_~l8FaB)L1p_br=*3nLCA;N2nqN)9RSG7y% zPT4q*c3qqot2HD6TwOjsEJU*JLG_XMaufMNCuJcR@lrQ-V$?|P}OSex{PJDzkEEbl0 zN?F6bwZpPgv1VG`x8s>#2z^?(R!5;~C34ThP*t|d=eW2UDCXb z!uDg@R#?B(k*Z&2f#47b7$=7cb9LGz$r{JJ%4=(?p~k}|zHJOu&wmx5zgqo#6D{hn z6Z@9;2_+f;4WJXer|TA6N?~Bt4j-DH?HBk)r{)caSR*<~oX%hM(MI(D>^D1n)Ze53 z%*ANL7DTYZJ4|8hI+57z<7oIhV@?4_zq1Z*?61;IBmc z=6S4j)&KA~y;W0-i{eEtP2t3j&d?cQ@uCJ1kbPw37Rp~ckESo|DgA)U_wQM2>pJgP<*?Tc`q_J%~Y3#Rz@)tBM1Y^-*F^+R~qWqLTY18JEf-)Ix(a$=m&VOX`P z-_DHgX?LZG!JJ8nQ_ ziG$Ssxk1d}^zPSQup zyMN4avn1n2%!XvvuWCY(X+i6YJ%7epgbwtuNOS6Lo%@{b2u=&&Y~f-V{44QH3Z2v1 z?QWS!hvTq2jK4A1T>XA&@^=0yUihL2FP>Bws*=$PwD+y-%pbESV!8O-r3D+0&%VsO zvx;`9IZs`~6MuWOTTU{_x89Jsn-4N=e&THXBpm!#{TT@Cx{#K{_N-sB+LJWch`~Zo zI?An1U7-*bIjd@fz)T9k@-? zY)aUz!yokt`)a*tG-~bOh|o8eSK`&(k3SRf9hUfCAmVmcH*W0cki(smu% z3}SIq-&-B3i5J7zeY8tOy)TZr6rx+Vl7OFPoT`$Bq@HYt4}S_&WsXLtB#BkOB_IXA z%if*F=px~LtY3UddwCvK9&YDmbFz4pph`~*x?EYA*t$UZ-Eyb7|8+Am@+^1^WalP! zgk-)}gX5?2*CMvfyhsli=YK*Hoay6yULyN_=o~3k-R*R) z*-opqj$@ou-~mqz1V;qvl*w|hR_YGleCaj|%d=+5F6+Xp*Wa>rORR2bh%MmJWmvN| zyl;gccD9R)o9)D5>%Fd@+TG)_A~b!LfcStOsGn%~8debq2pFtDKgT*ZR_6~2qE|PI zl0Eb@+DcCUU=L^_7;BM)Mpj94JQ6C2w593fx9gr`YwMJco2sAb%__~#3wqYFux>nf zCG+m}mhyq(R{7G;yHd|kqF~7JGD)D^l6zyZ^U~)v(%$UgykZC0xxALGMJ{E0Sst?b zf`q%F^t;#?h(s`iFyGnsTQx4f7;)*A_UrvY_%t7WPpZuSQ&t%&mRJm{M==TE2}WGV z-IE&gg3j@z^o|N$YJ6CSy(1?s**GOHf{?gg!%#)NXNv}Z=Rq7fEHLx&B*M^0b;K!I^t1j%{Xb*k z|NRRHc$fx71hAm*6Eu4X6xoTip_4#pMO^y(YOtUFZ%XjsQ3Hw;X~{>cjE3r3C`)s~ zIw0Ghj0+l#S{OJ43`&4FOk!W#cfl|e)p1<&Xu*erq6v?Idra`6}kST$5Z~%%_J+I6@g>`_J6MoY}HB- zhR`a2Uy#b)N^m8pv8EDc>+mYN!+#H~-3Cu!u@f+oqVk|mO+ zMmwK3QyqM}8{Ch#mavL~SM;moHA-~}dTod$qB595!>j_V0;rNHK#jh6>YepluW#cT zR>`Xnqxe_=zn3gYyub$pgxNCV6s-qh5+K72xpgazri&%!k3d^dUm^mcE;ck)9=Bvzv@^8b3wn zEE+WqNaXF$UMz6r)k`n}6o`}1s8wmi;QWG{Xid=;w;lYW0a6#5$<6jX-K~t8mSB%> zmeF&9Q4BIwoNaOIcEE?v=;Jg;47OsEPZw5iwPyAB*i~?hEAX``$rswnsJt!n3;LP< z!+BDe=s)EHg&-8C>IV1hx@0rR1DDcH35VbTwoqI~|D0zMV z0hF2->~^o+cZyMyK%b*P+;$&mhZ@&lrPEgZ-A6>nInNjvh-h7T$K$jA<-Vh!eI|*b z0)FmuNpb0}e#}x)obT?Ko`|lN{G*T*S?ZIdJIN60T$?Firgb>nVso1VsGzA#~Az zO*)_|RTy1erUC1G1OiJBftd%-n}0E-34%zne)ZBtb4JHDVzJA;W7)JbfV4o@ z=XyA!x)gJcyR&IZ*;hY0JD5WbItLvL_7C?NtBgJ>Bemn27Gp^I7h9!e^zs74`9#)h z3mBh+7sP^pI|`a# z0LbcL`*y}$jyTBf=eEm}8;1+Sx>Xq|_2J%Po8+6+I02_(plOGgFuva#e8$Wvt; zf6JQyfuo4iM}&!Xb$F~1yUk$jGPa*18uLHbQ4yUd(-nd+eunP*L7OF5I|XQ#LoOWD zAlB>zhJByZ@k5;W^Na6sgkAqGhQ}{}y}mILOG?W4#R`U5!XSAqP}hEG_n?~eNv`G% zZ?X{I5M_xNKA8a24%QWZ5&v~m`E_t0TXJSxu005;fYG)gm5L|{Qw>P_-!>Ef_^ z>tWFz7KGo8Wh7D3K&FlYlG6D|fQ-zF&!V#0SOVdfFdu3b&{7}d5JSt#?yrb(D8R+4 zVF-_Ifq77@K_CgQ?4NHYtlqHlvKE;u^ThO%hJM@;sq1)FZ61?6d{unjqk;;bo)S7P z%cz3Ee3yyT);Z{=nRARnOe?v?E@HQ^Ql1JgSeu4E3$bKgejTm$JDPI-2qb+}TFPUR z%cmtUJ9rA`ty*tc?I;-C2_58RQ|Q<>w7PV34=HvD_eX=B*kVBAfl7P)Km+((h7Jr!%JZ$FYQ zE4$oSg1rIIFD}RGCa```zBq0U*StU7k&~DoNssjHq|47W+4_srxG}8476Q^fx5gKI zdM!XkDqCB@gGFq8?`T1YvUIK*z&SLuJ{M&@S$g`>sua1%m}Nyr+e@l_;GU*E-%UV* z&vm+X(|>R7o7xubmwec*Xom9Oxp6CJ+N9g~T)NUU<=Z&( z=GD7j6FeSqxoZbhhu{%N7GDnWJ(_KIC$+UbzuqhCoJ>Pn=C=A~S;~+?;_<1xA2#QL zq6A&g2{I$yRUq&~4(Cm;zHJRIUYdMqe~O>mYY#+U+k|P1p8?MUhoM`*uu_R@gdqvr zwUrY{f$?iVi=5Ux2WJysIaKXS0~io5~H+9EK=rX z9xCKL=3A-J;4w6sfCS^U=tADid=_oAFlLL9YiMT^6H+V)6e&>@2;wZr) z$q}AiXOjH{mA%EZ`M~YQkpBy%;x57jrRD7nT$B7ifNgTixX0KjOee%}2hgQ5tvi4I z+5zQcX$UtRCEuCYiLug;5!?0x1h{b{!G=9m8;$1#!Gvxp5{O2BvsN+G$$jnID%k^X z+1O?0AHrgWk7;d~8N3sEcEi1H;JZ~Zzr;tocHS@TlIK9b^)fLEfV414gUD_ITwxZ1C;bi&8p;wVuZiX zk&-I2OFgQZWVFb%U^k_S{Y{{=Ua*vMo!+>F#8IYQ!yAlKx|RQq61=Xme^f+I^lMU}h^2H^!%Agvs z__u}PeY!6oZfM%({>81cprhk*?Vafgm_`5q&bh2( z8d(9mb*g@((BNp=;QDG!tUa^|tP+t01LUItWepr?YiYf}I2k#^?h%}dS2X4|+;c(H09UEqW`U50rAa0(bXSv+Vq@5)C~XSl^wcC? zPry$Z+!z<3Y4OdD>hBaAS02p1z28!WVK@PDzRMJ}JE$1lYgT$q)NJrAo~R$zWsXb!Vk1m%PW);k6C+5-Y7j zSg;3@gP2bmQHWGv+6r?Sp>Rb=@S1Sb592Fq?@gO0ztm+LO%A|dn1WCgQqfZ)<;cf4 z_+6-DJ-g>No2;>Uh^)3*rBX2f132lsF4`1{W$;Hwh%12QK1RzE4k`4CM&Xu%5YL5J zw3_qZok!w^4wN0zRK`cJ+;~BzFFJw!zKR?v$qK|@S9}Y`7opliK6cCJx;f@+SFR2c`sZV{c&cC!DfqLtnOgnbcI_5RY)xLKp7!QuZSEP zm_Y{HL|@!aut-7NPt<5O&b+KHiL08&NXNS2>$kHws?T_=LHP}69WV{@cJ(>~>`s~H z_5tGl)pODo;#ZL>(Q1k0GdIEgrwbY6-U-WNl>_JU047Q&hEDqgdhp%8JrjUbWiu0DK%*0bwAZ<>Qsrkj2UHd(%&VU+_B)q}D2 zAv0iF0l>^DI_Gw8nPfQ+Z(v4z>bzC9jY>I&NNZsTFwiP^=w|X5-K75*hV7lrh3_7D zA7IAz!*X`0Rx>?XkZX&_S#;~fqpZ))TTpR?JEuCP(Zo^(r#>Mf-oWV2IG=8Hh@o~M zO;6JNMUeBU1(XE|+giwy~C2l|M*Fo;5M&xJ-8^opV7`L3=}Fdqf8w z#^$mJDyN-)6J)SU#4a03J5YRBd|u3}JQ=Ui2`B@;(fg4CR_5ECc% zF2f&8|AtW?n|+4nD+`4P$?qUOKv6O@%P+CM@XB!5oUNM=`aQY}_+!p@xhe-!uzokF zEtbXxtSQJ&>4qP8CU6>m&ZoQ>c7?2F7Tyv8UB;;(tpQ5O0OskvlmpcTe@ z9GAv;8qX74bF7i>5I7I*2(N(7HJej^k zyXEo^4+r_rhZCPFXuF}@_+SmcIyx5zWol<5U}0y3(P2{#uIw`xW!j_>ZIq2~o#i_{ zbMEcybDwBxTcdy&G*dueASfA$a51@E^s&b2sx2S+s7$pT;9p)vE3AZwvF+&aqfNq| z>Q0x|a}QR)puvb&6N||TG}4dQ=tJap~ zDZx6!lo$Lp$4>_~REtW1jd5F6aeq?{unKi#662^Ywo9+CBnlNI<726jAEII4ew}`N z$i=m^f?q_Me4I48B!mmF;TyWHD~{I=(ShpmI0HgSK{>W{7`G1{s&bjqz)osQ8^#Ya@P^x(D66>tr}%g} zZhZsr*XecbUH2(!AMze0rXw^=VoRmJ6OF|%k&%Bta>%ssqL)JgE|4JuKL3I^f?E#v zqC5A+Fj?lmvzv5|SJ%9s`%?d;?8=qy3!J~+zWJOC^@ycW%XV!6zDfPT?h)gaL6O97 z``=pZ_DTyZlkkux0y^i*%9{6EWDyjO7O>Upx%4jpAwD)T(s>8j*E|Wn>ebZWus==B zyDZ@yWOvJ63N^y8O?=V)Ovu!ay{{Ckt_CbI6Dan%f@T>_%x#ux|7gbF9@SP)J73su z=^klnTw{sg)&=t*FErvB3;S}S2kba3e%xDwjHKIY7f8vwCoyom%5FNurMGPQjEW%H z?w{^Msd_fauqrXQGFuT^*08bqWtfa6T2gC>m254BLYU>brZd?MO#xdOVPUTagPB_F zNadOj-eZJofu(LqW}lukK?4_BC2aDp?u8jtDz4ZV)SXYUJ`IZxS?oHW&`kAW&1;h0 zTNG+&p(RaJR{D){*l~#X--ZK*nu3ALZRRw(zJbYmr&}(=b%w6#0Iok{aGsXcW8IRQ zZ6~p6tG<_pQ3M(f+xaG;%P=9t&JS7Q*W3?tg=Odz82!whJGKw~VUVr5wm^q78L3V|Wt~Wv{3?oT!t=vW1!%>j<0y;^UNDJhLPunoz`U`|9KIt^8;+YAQf~ z^vE65;d)_KY{8Dm|43Y3j7Z$(2jQ2&Z|f}`%w5>U`^7NLd!E03b(twz#QSFB`NvkP znsA_GE1Ag{XrDM6?V}5>){aT?F>aF4KTD?4IhW7}Ucxb z)o%L3_-x%&HxI+8y<>M3-CK{o-39;LbAdN+E{H-Vg}$p}_3ieY^x`F%SEm+EzbRGi zhN4jdue>&>q8C957(WJPEAW3oX*s7zif)RHC%}e{ctvixO_OD$`mUaQ`h8 zJQtLCgB7tO!8{7OUSWgCn_0_hVdO%7cFh zpoOjiffTY@!d_6v*y63*TpW0AIn9K1{uJXj8+#>_ z(#1w=XyW`M>5@cA%T&9@1-BQ3OqcQ331(r`uQJW}NvEqcWLL(FlNY9n{_Xhr{j`R@ zL;CdBagl06agUcy7IY66^smMU{BnmE<(2eAwzH<9oUEP%Lt?+5_e>=dzH1H<$n=83 z;U4ynOW`YB%aKqjnBkjT3(-(qhA1R)tLAuv2wq!V`h^Ic?p>xdy9ZnTIkEXa62!hgK^RPY$uq zUl$iRl<&`yLE?u{#Xjr~qvEQo z6Dac+7F|?hSK=6F|r}j%q{z8Cdl*hMIp5IJ{z402}T#xes!LRUQ z4WgR&DefhYt{~6XEtYZao?01b9o<|K#XV>Rb}yBSp&%`u(Rg=7z}dT|9jpSK0UD{L z>A(Zp1)@R>#q+hx!QlPk?rc#6v)q!8iL|TezAkr?Dpwp48Iv3w-+D##kax2n3{565 zCKKFR#R_>67x0P(XJ>^b?aTpHp>wN&lFtgMX$jyEN8WN=M}q;|VA65kxy_QrL`xeG zLih2*9!a~}WGl}`7rum6LP_AiapS$B-!!S4T{$tRk|%?bDRrJ(toG*;jYnzX^h%)E zJmM?ED}2DHRw_S345m}E(6B{3>8wa*f?sa??DmFc{z;?e^n197ThgyzEH|^I*{@A+ z)Ys1RdmfIY3mVq74RiJ^WMy&c* z&Lv2ki;0Wq=kofa!STj+gyxet_#9X3^@!T*E<3Uy3ZzWv{D*OqF9vX2;yXPX&1ZKu z`$(h>%~YuPn~(_*fHb&v#4X$Ar611u*Yp>=>fWDJX}Iq0_YVLk;uQ*MIk)q%myi#N z6ZYRtZ&HZ<4YpFI9QA+F@4Y%UE!XT)maX|w#G_6_mV`4hY&ws}0$b{#-QzApU=3}unkJS7pcvDvNDZrS8X5~t1m2)>3J&^ z`A3g**zxzvoVqp>Q`wg`mp-KCcMtaRo%o#i*stbSY9i(ut={gtMK!#hka2VL#MU!v zhd_2W*#_O7eoz9Q10^AYOiZF#?6j3CAtIKzOsn^N*_gR${UD{k_@v0l!xp{D9Q*X( zF@=i#b37`8>Eg9>JK9+w;ClM>iu z6*bGA$4oO`_O&e!=k=2RBasMUHu)xIm1@p(z#>^f@n(avZT1a)iP8ZG}D z*+$+?zrXW8)v2y`WCEVin!v`$u4vUO8wavx+J@Mh&}Px7&`(XkJ|UrUpSjJ;;Dm4X z<}JDNtZA*U1Sx(UR{?yV=dd0x86UpZxxbz%${oLabC|JV@iPQr*0gXdngmJ>9;ARXc1E{# z9}z+ILUdt`i<1Q|``UE~I)2C^OVc>k-`-R_>M0{=B(u<>NzOJYV@=?^A-d8{{o$ z2gO4Xq9F43GH_NgoSB6tf^bZT)6+|r8{RFg|u$r^N6jjkFoAKy0V5gD3!j-)s~?Wa}s9v^6QdaTvsqd`#|>*{s*HP%G6KUKi%XkyLZ;q-IH{N0q~6h2+O)PQf>iqYmKWB{#&k*Cq{MWRe(L-J5`qTU!HP6?EtV0jm+H*DNyb60<7zS8`Y#HA?LMi_BhG-(1#^yT<7_NO2uoxT@wwyk4ayGv2wpcv(D?w=VJS-U0#6%DI$M@;@_`FR5q?= zXu^puuXgs!)E~y>-_DYuiX2on55osnFem_TdzTS1{PHe2Rs;2^pPd$0e{ZiXeRs?d7 z7e?kjz`MQg#I7A_wVv`h*iz9{@U>)8!Tl$6=DJEw)La{dO*_RB{~ zi%upnR)InSzR)b;@57s)g7gxMI4WE129`Rpc7CC5??xm$D;=#)mxWE&T_ym)%+BL& z?-hX(ne#f3U-EFM%lbjMbx%H%PW*iZEEc-!8|iNRgxbN{u(xwWepHviY_+?6>^I56 zWo{m(P$J)Y{y+uJ0bV!EDQ1XxumP1c#rVjej#WRN5=j}SLid2Kt&nP?p$O->xLuz4 zqX`L*jI9Y|T9Fk^eorZAZkV(}9ov*u%qdopbR97X2G#Fvl&29)AAEVJhPI%Ww73_9 zdi`Bn1Zmz$DOF>H*}FWYbWLiu$XD5$5WiX)whT}nVzqn*;K-A;+y?G6;WVzTIci_X z&r!|*WZzpjUbT!kpoJ@2c)$CM5(?dUbnT}%x|AAoARWOe7>Q(JlecwooyHdZW;92a z!+t2(bvYj&olnSrVagTCxyQlbnVjk;GyN?8niJ4=;;VY_pSeh9q23zWOq1b9S z{A~E37?LOBe}zOS7ir->4KaExl41;`)YH}H1V5Nfc4QAWF{aqq;XR2meY&wvN-0kR zT5kzrr>UfO%AHrzDXGXT2bg~zyM~%f{bJGaPWt-VOHInQa-G+H@sA!g`@?rY%Y`P! zHcgZ;K|Y1P(CjJCY6!SBeaE)PDuskQ-`GP!z8Q``KZD!FmnF3wz-(KVH!XEOyf~1r zR|A+=;hg`T$cKxSj+otg%wmp@fEP6S;%LGsROA<#EkJ4dMLE(&ok71Jf2|(xIDNKc zc|5tQBRK!ls$#{lr{RmYfAPV_2-TUdKrmj~0l(yRKt;h8;UeYkG&9hm1R&V+~VYK5>SnXdL;`{>9K^u6G zhcf_FM0v8p`94-)#N6v}%eCGQlM8kG<5?taFQt0K5R%d+DzE^^=&QXz-ZgfT}?pVOak22et%*@BWO|qY=#$nys2 zGh3_kad%tQ06DaDO&aDMjpdKSYJ5*PIxq+GkEuCNRJ4>d`(0{uy1OD;M9CD|3!C)^ zdk{kjzT{zPW{_2%R3w@$n@tSD$&@YvCBqmSYjYRiw_q3l2&%?5#1*rth z#X%y<8^mA9dtdF^CJMRS>B-*gGr4*^)Q!K{b<QFHDMaPk%N0lo;lUPb^>&g~?@@%)o9*17 zHQgy+qxC%Y<VJ$K1 zB_XVsWOIKkh+_7!@7SaLm8CAP{_=ph3j#K%3|oSkN`fVH5>o@#t(g0DdZ16x{##QH zP`EpI;6Lp!95Wcdoy*HCPo4fc$$gf|*BdNGEX5=sKL*!UR+m4!4+twv1QSTv?;JmD z=c_EF==Mqq5qZHRAN6OZY0kemETAcOqdju({PyG8dd>0K0%z;C1v%B+*xhj2_LnzU z=yoj4C`cnjmq3R?TzDGzXppPI4E|I(#8sS}E+R%=fD)`J&a+m(dPudJ=dt!RoZ<3x z&WSIy?l}5O$1j&lPOUSDyP;^-k0fp{rKAKM3bF~Ic7-mQ%%NG$RleQ%^e>re7;oB4 zUV*?`93JP+H_@`5VQ`UKkR7eJeRHb|+qWcIV(&@zk;!bk`)`G9%#n`t7``XZx?i%F z3F|)3GyC*>_ee$C4sBXI?l@cfV6|TKvXs8# z5?sh~T|xH|fD?3?=JvP&o-^^Vedi7LZM`l&u|%-NMlk_?9D&<{rZU&N0$8(9urC^T zFQ?p@nd?ILtLPgJePM^Re9{Ai%R|kW=QaF&Xz`?A0uX(OHbl3{v|-S;*$Tcal5K}- zw${Cz$YH%Ch!7Zxn1693Pb;mp+P$m3b`ZOAJr2peO}Ky6TOX!mceGsKG=PA}?XD@- zB++#opD`MWOEFbW8g6xvbcG3Hfcb0R*f@1$<|hqD0mvE>6HenfAw&l;!VIWjbT`jf z*}XLtz2hvq_W69C#PKuHl`fgE8v&A(ex2rrS&makDwte#uHn5VVU1(~EQHtlS&mob z6d7%O6_ojB_5DTB=)+K_is6ixxG5=29lg;%&e z7pp}*n$ACwk!RCRw>fKCS7h!zN{siQ*JIUWaA@ys5T1`Cs1b zJkqnUx!B5%XjIYYiaPh;xN z-rp9(V~z?)41{M)pPTE~pU0@kIQ^DJaF!s@^n0 z*<0>^b)-6hj;GLd9317kRqT!734{1cp!8xk7_@TQYDFYuMuI5OQ&s*6zfM(NFId); z3W~qdSV_d-8`~1{4H`lvNn|9R#_@h)2>}Pm*naj+Q%5&_Bme^$g2~V}FPrc1w)|`d z&qd$zJpVSlqhWV>2SG*0z?>E?KQEY;vOs3Vka$?X-u=QP#(y2z(DSC7+A}9cp|_1n zQ{81-l$Zfh`4)eub6s0Tzz-2_UN8-iy-_=u^yIHO3A%H$qzMxY*$55{dilW}7#goR z{5Y9P3Fd)Kw$)0;nW^)x$&y$)_uvvV%7eczX8x4XO><<*ohO^p!!!@?v` zT9xq+XTR*Pd9>9?!5kApyYL$rE-)N`I)MF7i9t-{=;iAJh%aW7#$?6^x!EZGGPl`g zoy;ho?}s5~sVylU(zLX8i%W@}tEFhVz?g^-dHJ-t*y!?GqGgb@;;w1Y%X?t^ZdF1G z8OXoY=rA=7x+AU~e11~g>e+RB5Kt!7a>2edl%m{IOPRBY3qkbVaE(KfnorV{_PFU* zMUjEUzGEOE5uTP(94RMti|Xc1MfJC_xAjNL--e$YA%E>xI6eMv7NAya0F7`y0>dzh zlxH1H#9jZ%vpa?M8uwhf@aR^LwMejk_=%$0QVXw!+_~fgUvqE{QQKPtJk9 zaWBxoMk{=V5yYn`qB56^3@+3=YHSO<;VOL|4`+{&L3GJWJAAP$35eR-Nn>LHU(B3- zC8H>T+9`mq`!$CZ-uLd6nH^WF9?`-2t+9;VLoZ{QbsgqRY?U%HyfZPxUA&Dy&Sr^s z*=_T*Y@V*o&T;*O?Ld{P{!kk>BNl~V^hRFe`E?3cHLSQ93D88mt}zvrnWnbM3@)P5 zSSMgUYHcGMaLX2wqJ%1fj3_DaI+96}3eK<724Huk2tbx*CJGM=LuQ1>oVqXfX+GX? zU5>lI!mrZgpNf83q?>x=?9*CqowJlOi9@2$H)_jGx4z)r*+86JreCGWD@n^&*pEJ@ zK%A^iN*m-PSBnI=q}V(r*~nC`rHheC%Vd7=5eUg!tZ2|a4*mb%bkg6-VuIOEmO6b0 z`A$3pN`$^jy#)=F)uiK5As0T7oDPGi@MwQPvt$AP8+CYD>&SZzxP}TsLRfE@JWtma zmSCL~Z&AyhaqigZFl(4$#g+Af~dg#qFsPfbjiI>gJ zH$=CAgZ~HMA!HEc$RHY&hHiY-D)|1fOh2!3SG?(@uRo9mDo()v`09sBO7mz^nou=q zikS)fJXt}P{%b#YA4%5nu|+v;^2CqL6p@5TruLv<;>%(739rM~X&nJ%tLw^jTI(KO z1oVzNx!gxKiz9>Az_xzqG6%Rq#31aKpGucKrBCKkf?oqyUh(=6C z{mTwtP>f4TW{(IpI>#ZYNgygWMAnZ~z}alf>Az|m9IFtgG89GAZgB~6#b1@Fc@9Xa z{Od8Wp7(yQ{nWSYurG3q9RL3D8YD|UGopq6{rEN4U*DECy=^j;q+Yi-z*5XhNvkZ) z>_&Y}emPVF=!VeDX_)FAw6z4(PN*V(uA z;LLcv-FR@^0l+oUO&?pRS%!>EVq&?=n&)@TKnBMDMKpV0M2m#)U6dylsRS~oiNk61 zIMv6l`LKO8Ki0}~Et#M*>t#SKTS-8T3WhiyM@!Yc9_4#x+8sIvv$EWN1W+pesO}*! zoZZSOEZN20>AUzir5$lAM)w8O#CoEvtIBS`Pv$RtHqD*WE(6=Xx~@C({hqd6yBJ#V z)!I2LFI5G+CiOJr=RXL3C{(0N+z-ykH>oLXpFOH18R%R`4L7(dD$bL^9p3fL4cuZR zYXGx^I1mN~__{5SyCdE_GpQeAXy?hlF+6{nh<7APO(b(L)N6$glD$FVh^t8UvY5s! zJy~1h6t(CJ96mL7cK1|zGP$&O$#|544&m84sLJ+#$t$3ic^Ol6|gvw z&fhDb5GRPUQ@xek8(|Oq^ikHm&wkZ<@IXp)icy@G*?e+hm+0HlV0sJ193pswlqSG0 z0tH<=FqpBHfRd7690FoWr?1yq1+sK(CLYTRdud%;u~j-a8n-180SvG z=M;({(TeQkhGZW*ZVdF8L3`X6Nq@(7+VMPw5E`HOjdGhWicu~%v!Z7nPn?>rPZ?fU zY1Ey(JW}H=!Fy4w^ek*lmF&tLMkk6@`a>>L*Wh62=i)DCb? zlfm0W=Taq_flEZ^wX`b{(!f;a-F9Ph$IMjbKa~5{SA~1p9KOH*Ccl96-v9b_Gd?PX zwXdk9+wr{j*kIaxX}j6n1DF&Fwb5*yIdl+V#|d;}N6mmHP(uzqp)KoyYyQPink%4C8@_djIHZem~uF2r<(^;%xWx$&HtiR|JgYS4s*D9r5ePWypB)mi@2hC;7FvbM80D zEH2Wo&6ngcfDFiu)wasRiA%*k1t`WqAd4v}vO1>S757R|1-f=w6^B#>eW!2tPrJvK z$WHT69If=W5mx5+<1JE3QlX9jUhSJPNdK-bU5eHI~%!%(eBNwAn+13>QL8Do3 zN4)oI*sLt_nb&3gO(mbZ=JuDiF@O-($T|0~n(<=#HcO{PPT4s!M-g~)0nOE$x4I*Cm+w@E&Qa` zO`DeWuG5WgwjZzC``jIRC;Hd2wgO|L+0O@kfsrOMU<{5+(bnAC&1~^PVZi)tzz~&n zQhdf#w2ljYzwxfAece$t8KwY}WAx%;-lI{wTJE};`lBr2qKe`#$5@}yTl1v7u*Lb{ z_W9(Wb5RgNd{T^4bI&RYNm<6^GzEK9)*;p;g_%gu7r*?eWC{#nrh(v8K_+p2*~yJm zl5ToFB;uV93b|TkshsHu{-xJd@x_mD8#Mh`Sd@XdJhU68?*ua5Y6@xCvVKjpwZ|Wok z)AvO*1bHATNkDeQJ$UIN23*2uvqXHYh3f0uGUVsk^{s1!LvKF*j3MH>C=g4`DWQQt1d-7;Mx_yjkb7hL5BJ55$RAae1cV-@iAl!0NvJ@|5=*%y zR%bj(l9wZxZNieGF(n7TwmF{96FgH+_XZ*ZF=m@+yEunBZPP@EtQ*AH~y zKZ*&tq_B~6uhTgOy7IWL@X!r=Ig!do(%R=V73+)56W0y+B>mBtEV4AHYFknoz3+{? z{6x^`Qpbw`?wTRe-QtO{37R7+^*N3~~Gh3;JM51s?(BpsC*D>NIOOgST zJac@LGz%!j-o94ltfH)8_P{?v=bhn-VrSvI2*Q<5{NWBiGa4k;UI`mPfmdTZa5{dc zWipK;1VgsRV~kPAWD0eZ!kmiCh8~)9{x~lZl^8SZvc?Aj@i0u7VuS6FNJT)L)Mop> zpf3v0{1mz_$Nx+Lxhh^8sfjN(+T@kA1eG=YCb9bG;wi%z^^d&;X8Lc3ofSzfi@{t_JJ$iVDi4S9pk>- zp=Ek_N*wQFk|12>x8rhc8|j@A)}x`2}9M=VwqH0U3JP_x(-g&pH44t zJy6vpOuu>PYEBI_9>{h6gbY9snGfw_JpLnV`=BxAf*PCemgKbD-+RaerEl-;PQl1B zoC(>b!jYU1S`jxV4zowgh5`U2@-O3CB`w!LV@{^yX8LO4G zr5*^#-v{=Zu9MLYC$|eZ!#1NXl2|nr8mQ;Buth+TH*9$GbV%xdz|?~f8H9*nrnIsH zAFEBJ;qkyYe6l4|kj0sE#gw(jlNWEKJ`D^(hyXdg*XKL(al7{D#Nm?5)6#cq^IOPe z>PTiMoT7`QdB;7ywB}+WS_+tT-!-7r*ScS<==D%x^azGn5}8UV0@Ifb%Evp;wHITx zea(yVDHh?wPG|x6*<}@1GkO$TVQl@6lct`aZ-IV0B`qdK8gF+~)XGa&bXdIhA=tfh zqB_(ir2*<;N4_{?uF3p*Kf_?8bN?*KC53UW@r2dr+yCu!woOs)pgRuTAbpT|$#|WV z$|@_jhAMc$XJv6EIo4P7gGKmfRn{k)92uae489i3QoQxuUFR-*iyJz8v`BvSHjc*j zbw7oa<)NGn>^|um9vh`YqHv{ff%ejD%eM}{f-Sh9W~+96@3IsUYf-t~LZ6O?lYr3F zF=O&iVD7yydD-J!u#doV5s!HgM2-obuQR!NxPx}${sfRlNdPP-anXr%!^2%9*^Tqf zjyizlRG~5r*RALg38u9HRP@eqbIM%57TpQ<|Fl^{6oGb$+rfbmUYO*n>wZ%m34w5* zs-Hfcgz1bn1MZ@V)Oy>i`DZOX5zSa!egj)i8tiu2^q12egIru?c@c6f^brZW&=x&$ zZP;bz^ds01Nt(%IyAQ&Xd`$XQ+Ann(iA^Y6YopkgK#hB;2nK6^J#iuZ+%0tIEHP<1 zm&M5^vOi=V==uGgsj0Ff(YC6z@fyGMHzUNt5lo}pghajdsmA2SvC_GKZ9QU3Q`I}F{(7(k#%0UW#+o;Z_BFmE->z;6wU4AjX`Z3jf^cm zr=mA!*8^D_*OiA*Z_2U0{zpCnPs@M!q$tcunflwSG4~Rcq_N26-^_A_>kDFotco=U zt!&OMtc+GN$rt`(z}EeFm8+Gfz6Kt_vW#1Gf24!yAo`G+4J4ijqBoXjC*Bpyos0($ z!|@3#K+N&~(e#yJaWqZWiv@QG5PWfW3+}GL9fAaRcXxMp2=49{9D=)B(8XQ8y`SrQ zXQ%f^_e}4#-96Pcb*fISF4%0wDX_yXhDUEmQ;_Ad3qQ<(wF!PJS~pif8|d-`^QgAh zbbCOxq!(F)L`)6_Li6g!cPkIoFU1rP-j3&8cJj+5M76n~i|&v@A!RJLh}`;(izS%@ zPgL+j1tLF?LM;m2ko2hC4|}Heq8Uf>nEs)Sduc!NUvPNDJ3(9_cc2lcq?OhK_mN%ecN#l=to*(}$O8V6GC z8+L}g_K`FA^_3#A3^uCY2mvc=P5_h9pP_OU(vUzo_seLOlXpA7 zR67d~jr{A|ukNp2#9Z%(^EaK?V@nN!Mal|;eqt@NoCnhVZ0ygT;%cCy69}36KnJRQY za}MM11jdKvvZx|@v+OOc8fz;^Q2QKQ2k<^B?d{;9MRPV-(y%TC9IKqP^)Ih`d*TYm zXxx-S2U(4B*YH}W{4P^H7zFx$I9cD_PdBNFk)WB7w`1mcyIO!%Ho((!=n=BckL{!) z;g`=NeLGo7(@OKkLUzKNroEyEweeY9z-X;%MK)A|>=CjjNxro5O`YG1@#mS&LvIaJjVlNmfHelCn*5(3&vdO1g%l0W zdTP=Gby9A=oG{e0$ynjL6;G|ag^TA;vGZg#tBk;lL43Q*kEKP4&Q}zgGft?V6BWdD zA?Y~`I_ekJQ2tpUJ>T-LRvi92m2%+R&yBW?u>L$UCQADfU%*h!MDEPdbV4%+KEf|N z8+WDA^vSAte(+AOtD{~`ee-eh)2tb3?Qgko-;W<^om6e5s-Kb{Igu(J3H(FWs}064 zfov&}g`?)S?RGF|OUaMbD~Xo~D9NY1>f@1MGkJi4fL2+I+3iA=kB_^i^uxY~_eQ!OOgMbI=pHVB4kDoBL331!SL= zB`OQyz8Poh@^^^Q=GFsO4`5)e0_eW9)fZ}LnYHuC0S}<$y1Am(YrVKH@pTJfr>C=Q zo8Qmpq4(VWJSMN^E#JDT#aI$zU!;+GOeqJim;#-sp6z~|r>CfFPAAWV#VNsRWDP9A z_}wKA4? z&edWOY}ZLRzBI#D=r}sg+mGLNtFDmRl*w%xKjJn6~{mLX4bfo4JJ}q=5bOyh*3c?Ijo$OUI*R`QD)w6 z?ym&dHS@AJe^zDso|uO{ou+xXXUG}gcR-Zco<&-IPR$=P4_$A!;6YGjd9gC*{rt_a zCOQe$p4Gn2A1^Q5Xlv22aG8R3D(MH;mCT(T4q|a(vIUKsh`1n07#zsPN*V_pO3ub} z&ag~3r{AlI#8(}WS}>Re;Fx2Inm8jJ?K2$K-!d?d`B!?Zw5_HNClIsN%gQ<>%1LVv zCJ66cB$bBo&q5cuan%K`M19lPgw8$G+H(0QjW znp<$$YG`Il=Xl~TsZ;gz8vB5R|ry3#uyOWuKA7ZQM=7)hZs#~1{ z8I&HsWk)4gq(Enc4AwgO`TM$~)+RkpTDMlU05-Gz)0@AkZWA{ZAK_gPgG0{ zS-+C^NxKDYc8`GpimzS>P1+vpW2U5J9ybn`!yjOKeZo*Dv_-yp2mt|NmEH%=!=|K4$Ae3{7ev)POZ zU~oIm@pL@be${=)|7eBHxEyr2Tt!pRaa53~sf@;CriYgq!ZLVc1lN!Y66~m1I9ZjY z5RY4?Yj~Xep(F6`yOYWK_@5%lU017h_TG2KBcJZPAguR^3oGp5WtFy%!`4`zITX1C zzpEY}J4{+#TXCBEW-Qx`9spp+`*0A|q1d)z9y$L^PI7Alwub2PtsM5zt#=N(&Gzl< z4PTMHbJDur?%H5GRmcru12Jn;A=#f$Na4Uqf-+t_M5avKkBJq;%3iP6UjU(xg<5j= zr;UVu>ydV{y91c39{1V1_32lfWd_9K8vRdJKz@GPQ`UrfjhmdU&@7t~7* zAJ8S_)t_3|U#61!o9>3zt4p4Tob&Wwmi62yGB5R-Pm+*zaE>6Z7Lq47sp-aLJ6om~ zLmj&5^8ynvZ%fMr`Ny~M>8rfQI9*2L1@8l zt6-NJj3Or|irz@wu!H#E|AdVwAxgSP_pZIvfg!u?Lfxgm=d`^=n<%vmSaiS*CJa(b z8XE|>X|@_n;qT%mkd<`GfW=L`7B@jOLG*|10&{Q0QH*^w0cBw?SPu0;gViw>GD3)y zysR@^8v6e_`O9KvL=Kd|Wsy@+i5d6`Q z(d7^+kM`xfecz!}B;yva^w^D|Uw^vkbglnp`kMq1iG*^yn&u-4I z7P(e#)B@2gFEtm-!Z~aBxZogcjSGtX-1 z+fn{vhu2UUy}|Bf1Kt%@;KQs8aB+vvzUCUwZqkEY=bwzuvjr zdvS?14c>3DYBEgs!y(zDIXbQI3=$TFO1JaO*@q>Qu|RVDVYLTfpuDWZl5{UurbB>8S$K&d&^PWk)Ja|?y}LSaPb^dU3uFK~;yV^C zWsyJG)1O56?G_5iamGk{V72!DqU0PPQO2OPk@`Hy=5l)%fVVr{e9)#Wx8 z#o0N(5^yI$2%G&6!2cT+8qo#M8X${4(}^)OsV8UgZnp* zt)wPMn*XIE-&f((e5f~GvvqJ6gj6@<>8Rj_Y6Y6)U*vgfyxjFox&J+MPolue#T=rI zwiXd+BVu-e4LlcExC9oCRx0+lj4ASieF30h{>u@7oGRAo7c^oTn!1El0?iFq6k6}( zM0kwi=1s$8e!y%o#2f~7U^oOfS$7Dh+vyygKrYQQ=twR-r%Jv2%LyoAi-4Bq2_ifBv0jFN;es=vFj8Bu%vjiUI*``tCY z?mK2Z%Qu=%E|Zr_xu0sYYt zBk&(2w?m|OvA7U;ntC~sR2pG)||-^0QvZ7(&s8&7}|M$SVXMlOv~nkK~)OCT9L z*q?4o>`-$t!xQFPZuC14uwYx`3dt`9VQi`4KmFn~{X}T)NdP|ee5bNaHhv+_@x$|x zC!RbYAeeXT124Nri9NH*U!b-sT|_%tmmm0w1@HKqJ#hnroTlM1(9v;ON=MXBaDv0x zqq4&-N^@P0uXcE|!@hA{eMw?G_q-CvN;f{Ea87j0@ z)u*|4T<}5UduAMqf10OFpQr|tL`9&0f&z=8<(A;x-^7z10IJpVUnfF`ik%+{N60UH zJ_~l)zO@CueiG**EVamTI!Y!+z1Wd0zqDEPZ(jn90Z^1h~=j?`LYhdo;Y?bLj}YT@8hH7ISxf5bEb=_i#UU7}5C9_>_I zmb2@^W)|MzN2)AhUkhOg-<)&`w?ETb)exKgmWq%{#3ieXFE=0X9`?+k`L$I^`&enI zD1`i5SIvWDg&;xltTJ$R`L)wbx+nLYh_TrQM?8QM6#O+dIXh|CBbi-*hi^Rb9&@Bg zcCz=*yWGEr9fF7KQ}E`)GKJ}rVIBZJq{S7)YD5eJm1Loy!C6H9caQ>pDpn+?76JhO zm9OABH#t};?HP8 z+QH#rftfvmg^Iiy>ahJ}ub3D)yZk&KkzFPi!{(VhW+r7YB{T%IfB$5>%C|(aQ1;?v z6`9av6>(;gReBVX_>SKqe6gWwRD4w3a+#4Q&2-PSmMFMH@b?_t38p=@W z3kM;G-;(&|zWOIp1#zfW(vy)kgx)QV1`~7Iox1G7tHG-vr}{mt;+5s;PsnvuKXrBm z{zNV4z`C9~UF<|v^}QPowRhz*Ir3Ef2ZN()59;=N1$}O9b=n!I@kGD@*eVf8g9#N- z_LM9vyA&`6veP9p6;-{lcrn=MN`JBqL>jBJHjeC1S77ATdFno;__1>p#h}feW!S;@X%Tm=x}I(065m7@G5E` znC+8Ro}GXkdi5lQTqOPav|u?HFo^MIa^?L=Jx$+X^>JO+W|t7z4Z}&!-PLSu26nub z&}-8z%Z;0NdUEQzOHSQDgJAP|O!B|vzoZ*PFGcKkOmPzYn351uI(V?vn$y>Z+}frOe8?+*Efh$ zyTw`)3v=cADwbhs*tBKmQ5J7({*))>HaPjUfe14QOu4 za$@lk?D6n{U>;h8go>$1cKHF*Agy@$K4>X;wa^an&}3+!E3KmPAs}`=f32V7p3<;E zhv;xN+{k~QC!vV&r;ABbFQ6~`T}_o)7;3-}wVy=&G)t<6c?6SU#aKENf_0@>77syo zOz@m~JuQdjwjJlsCf_QQ;asuww%v2VxDKI@a6+j?CMEk68MH;F>2Q}*rTWd}-%L(yIP&r4?qN$~O#uLnEu?gJ00Hl7lN|qMYkSPM)gP zXSM%C2h{^jKu9oy@n2+Vcz~wdK(f$hDr==7Lz-2?atSk}L2^RYuX=%ok;GnUay3=4 z)aQ=-j(^xaE6GXG2YZ%aCIn;6qJ3dusb_YPQ|A&1sWg#6F)Hr@h$Cs?p=70&<1Vhu zO4iRS)@lR~NN{7ohYY%&w(5I$JWl8BeZP20^337*YyQbTkRriNz$lmxk(dubg6qF* zgh6Jw6-r2Kw+_40fqA=>LR429XE!gRtzEn)1CMK+Xhx1@Y$0U09S}+Uczh>VohJD! zm#((!Chzl+JF(wPS{_s67g5~NEMMlx{`D{YT8;SyMfrL5-ShNx^mLO^%IRW^utY-q zG)l7Bpy9phmIgC97+<4`$Za^#Y7%D?ddI(K0(PzZI|OK&J0%z5dOBm;a-Myn>#yx z?hX6%C|o{X6+o3I(v6Z>-s{j|S8>tEol$+v!f4UNa(!A2Lq|pW5SwKO37DkBRJog_ zs?-LureEa#I4xkuO&y?4hO9`IbjqBZBo9y5LQ7xZ5Hd^@izkQavz|I1V}Xh%FT80) z3q)2ww-_4)q-m&LZo2)oEzcZX*W1hXm!vA+xrrQCqVBT$6z&YXo#DTYobbbRgZ1?~ zjG=nq<);<*C{fl@Znw(=Kns&C0Z>UGQ0oEE>HbqCuTXxSMH;pHL>~6q%MkCEU2j}W zy*EdfaX~4$;ZuniCV)_&3?;lf-MA@vAUj~Cqw)MepUNFzVs6e0^Syl;%+~G?@1mb&t5lshi$8AmtZZ5X_%F4HRNolr&m9DReYFhr^Sz zGcfS8@w2hfv9Ym{F-)CFD}p5@c*;H6v^m1QcAg0w1i~2 z;yWcXNGQmm=<)HtA5gFtj7_{NrLrR-9-!`TAp^Tg+{R|m5Tg`;r;8M>HNE>&Sw)By zzx<6$FtHf|83Dq@HWMI*MEYB*B~8j$B8mUD+qApoc+<%YKhFshCPdfUcozP)$7|uk z$!-wriV8W!pkXk?7#{!-fO8R?wFqc!wtv8bEpR-_^Qp@u2_bYYKS4Xx09+EB&(AxSmE{!6Dno> zD-H}70Psl6Ug6duYSDx{tImw}Sl6)siJa%R`q7l6^F1;BQ{th<<3f-ZaMy0FBwS-; z_@1fA=9!yt5yM!_BFZW|MlU6^LTftpJ?S}oSl(h^nvxSMVn|sJ8CoH|infGJqBfX= zs`)H@o-QF?AYt0rk50Jgp#iIn^?OiUyOwm@+-f{+=Ya2gf@t&;dFoLm+>rKQCcMVkq$$4%345zv?=0`(oME%oZ}4&5$YPbs z`Ra13oA>c|jScTH6t#Yj$>ZfFfYY~kN?rEW^|I>Ug2PPc{WoDKK5~vgoO4olI3gj< z)NwYR_g0Oqr-fc3=(>Z&Wr?UflsBXnvyCrkMq;?=N@9r(s-Cys!|28n@VX_(A~4iJ z_+MH#^#v z{wMfrZp?t+NiI|K8e>1Op{bm4`Y2gU@bL!%=)o|~4hT+n6c;~CW z^7a0Wn#D-2t8*$A06zZV(kiY8r)$A&s$3uJdlu^!^R~|Ttfs-8%N^!Hn)^-uolHH< zq}nt5e-TARUdDfv12lE0@Yx zl*tCrU_L5#KGtk^$&b;6cO918nk!0MAC)X`POaLg&eMt(Y?iz}e02HkKdzq#%(8LS zc6D_*pFNi7^lFeE9v%WXZCB0Wawazg)sjf6*7`A51SciX(>X|X=(Yp zKx|q)cq!Xyp!Mij%iSyjG+^0T-t?c#NCZHofL5FHa!+HZ-rDfW-EOAMdaD;xTirw_ zh#pG&{gg|T*TeVY;QrGF;(H$3+qpvS1#$1kF6zIHb|>}YBri9M_M@bbZJ*xS*NEf$ zi^Z=;uYwi&@%b$_O?IvqXY;o!I*Q_}o^0_|@W{&AXEl=McxaX?{atSFWyE?IPiJ_9 z5En<~e$r5O>SR=ni>pto0P@ebpO5;)Z(d_M2DZd5+OUUxNwbG{*KN#*9+1km>n6vkc=F}OmjX|kNnyxndS)rdF*++KYFae~?~O+4>&bd9dQZx{XN zc^ZtH+mAPmq6U6%i(F;;d^J-aJDD*Bc|F^6h3hoO**=^QfoNOz໶lXm9Me%9? zfQM>>9S-2Aa2gnI?K4f6*P6|r1Pw1NA_NB%4wS+qpX|isLahq1%%I0wr1?Q<`IjN- zUy?}$70F?_5&x|jZGmnz!L3_Vzm;xGtxE9PbbnH5%fCcSjB<{XgKm>qy5aPnm?^pw z%G72LrW7q(vMn581icLVh1!!8##Rp5Mwv{~XhBj!4FyDc^KDWhW3^4Pq;TX_&30&X zzE~!>CXN*KDpVH)a!xe05%A;Sp~0VACRnVPeDV264XfZ zq!VT`@n~3Utq1#!wcpaZ35Y>s-}v8FaP;-tPD0t11s`_fYTxevXykg{PU8D6JFGWY ze>Ui*2TS4E6q>G9YO29I=H7h9mhrPs$^`o> zy-W4TGHG+4{-N^a-#x0FAqVpLJ*FQ!{3-T}0g>0eB?!`woVbBKf8lwSjJaHE*L|nU zMZ20nn`d@j37s4Flf7#gxos^VOzua)?e3LLaOBJeD(_2c=gZs1t3bhgXeD~grjFT8 zZibDJCi^p2R5D-LiAK^K#6(Yrl}am(lVZl_+_zUk`QS&Qo~Q1xfbHHJCWGm2jb7K` zl9Wv*!fj3*oa4vs=iQ?i2)*pA3`o}t(FI`6ZF(Dj@b#yLa{JIr+a{5~Jflzu9vftzpwBk&wVv^5?pIq}>F3Pa{JW)&q0XTT7Wd>x!P6DK_+^hhBB?54b z@^WZMp(bYT{9EjH-_hZRgIRBnbUrgzaI~|gMdZ8T^=p^+uPsH2J?81zFuFf?$KAGd zzNJm9SIBE?dp6DRStREkS!`;{cXQN9$YqiXVb1Cjiv2sm`-HeU8<)?D>V3KGB!+l$ zDTTGD2Eh4~L+48ymwzpj0szUP#vijhMUhMQt*o8DljN!wyH=(@2BiP zD*GP>{+vGY)qGj9!f*6_zaz|a(r0IJX6u&+(YGr1E%$j6B?On$DrZ=bk zj@mhE-{L6PZi&rm-xe>I%U(73Ui!xJ`0vtUaz37(1hu{EF4yO;@xKW8oXpN;XH#wC zuaB>c;@&(y``P8$S|fk#yQq7){CYlP%4I%JN7eTtTzTF+MSRWKK=)7f{?N12_f*jE zC%@g?ugy^7JIW=f@&UCgauNP=*|Bo&4$t7-bg+6=&`N`R)_4!NR%%*JBf5u_(njFX<+29l|5FjjxM+>xElsQ$!Zz^;*Q%U5&?UgJF3%w$U3lTv zK}n4?lJ*~EzW6hz%feMgFBfkaASDIKfQ6PQ6wBmm$|e3up&db#3iZDmJ=qJznI$;T(ZsD`fc)nT9c%XwddV zBF9E_0FyEtrGI?Z6aa=fypuq5qZ?M}Bttl9$Z)9}OCrmhv-kEy9$NEc>YN~J^HJW% zsa9W3J{`81)xW!3bMe@R2}xuVh8QL7h`||g0$wYlKh{0j2jSQZ=inQYt6Tx&OAV%f zPSQR*@cX(x77Ke#b3gWKJ0Vsc#Awp zb+4bxLeIOL-cQ+TI)3M{2UZGjA14Rsf4?$q%SQSlJII{A8jnHWU9I@-@r=O<$F9xO z9rf^Jv*(e=qjmFkJ2wsmltEX*{)6o}&+Rz{lzlUMqw#^|y#pqhYK7|9_8VL`xQ&RO zXUcO|ZnYQZ##kFcqOQyXzsZq>CP()yZ*8YRKltAFf=LOtDt*LQ0YRi0WEh4}rdC9m zEGG>K*anxW+wZD8ZyorLU2SLlp(f6j85VWgraz(RGmwv}E4LHh?X;UY-kZGjq0DUQ z#KLMsZTU!X03=$Ff_|?D+h4Qa{vJT+AB88+ImVmZn)P)N0@zfSG2zb&WV|m4XNrP) z(6ZQN_^;PUDJYD7B(Nd>ysme}n7HNsKIojTF_{rN=eux;x+pQ9U0Aq?A154`pGak4gU5#WGIX#2JAj86t~Os zetFh$O_s4zH)r&~gm}=#oU}5AG&MChEiUnzpKEB;;Wofs(r)M94&O3%NyyFE9h)4t zTo;aCfXnp%;ts=ZEH8v+6%WruGQt~yPI|+PmxvUaHf9)1QG7IJ?YH1&3VVAKyQK}E zMaO}$_polKb7Q1Bd$H2f{j`|>Ho^Fq?b|UqK4IgrSJRMfw_MFDV6KtH*`CGe#}rI5 zPe3`R~N;@`YS0IdcPQfhB^R{%dOde&kT!urxNgSGR_2D)Wi>W;m^F_m zk++nR;WX&=`8pl8jlXHzyW`%k;@xU_v1Yeaz1TsNb#~qKZQ-W!J-ndDA?#o07Ljpo2*wsvK9jbveb#X~IT+B)c>HvJxwL{%Y34 zwH>X?dQ#H zG$TysR=OTAx&fJP;!v5vi7llv{=PLD*IJ5Zic4!iN;;SywVEa4R??;2GBSo{N*$}} z>UZdGDUI1Y(`l$G4-+IO;&1e~t}fD(y>M!j)fFEH{q+y~Vwe*04cseB{Zshdy> zeBdsc!TDMWe130CqtTx7hpK5g24}~Rq>D)x`Ry=J!s;u?OTR5Aj?LAoo z-MIC#)1riy9Bk*k@7MDqZlU`A&ZY+2V!&Z4MHb^pDq54-ZeuK@(H{Cdl+lkh9^T4_ zrfGRg=qQrbw-PI#FYtL~yF z&(*7Snr-I`)oeY@O2HV?ZE<;WXmTj2Xo9`C>4A`VTNh9jJyumBS_({z0hA!OzQBS; zME<*wnELH*w$0&7c#}9~oA3ObF+!9tb+1s5mO_%8&h8d$OpP49 zQ6k6Uq!mf{&$5c20$!+6&9$>E!nFykn3vji=4L`N z@bM+G73ON%an0p&WbGUSJb`<=&b`t=bJe#Yc4?5Jcbn;|tUp7plP-w>efz@00`K>^ zs%VrF_HRd5Sgq=W^6%42Ym*lB?I8Sd6`M=Y*Q20n@u|Jp?%jduoU+&doQ$sAczzBYy{0-a z<(0QlCZn#pwsR``t}>AMzAo_t?{cWf_8vsuRE-SFaB=D~gQJ?c4m#&E%CKoRP&0FTP zhhY}UU$0&|17(l@HpY=;gdw7F=a{*zN0r1vffCf#!N3Mq(`gaGNeI*zP;xiXM6E{imHs>@>N?Y7sr|qy?tZz$ReiD6j*xi6hTx1j`m#vh zxC^_HVgapG>bTOB>U&Lo;)@qTUcWUXyC&5yFs~#?1s;4vG$rT}!DL2pBSj(X^1m`m z6MmwSjqqu*+&k`ZPxD>=vN&&4U}#vPJ%{akSzf}?r^#0b;QnP- zlrZI{v#yi61!r4i6{+$-zH!e-?;{xu4<=*9;zUsw^JPT6U_w<322*hqv0_DviGab7 zSlm#PAR~+tG_lO@-7pWltDYVeUed8##5ye3zZ?{F@~!>g!u5u$_nrYHCDFJ9EXCCt zq2T^D@1{ac@H%O&wJv{W7G5*~60452i)W%wk^E$Y_g92czDpk_v+MHHKfsYf^gAq3 z0)ZBnzOfx>TJuiEW3y_8=0)*MP}D6iE6~@p-*_2+KBrW4T3x@ynf9xG{%|hlZqSsN zCU3M1gJ5@{D{heGE)OZ7+=@gblwI+MhB!*K=MZnj8P6zyzkOl^&X=i($CEd>-TZ!M z9@v1g{T(AXDUwJ+y6Ax`BQnN$FN;>c#*EU!DWhGF6bikn8?oZ66tTK?C6>x2=^Q@7 z-m9ISJTcY)72FN{KVN_$q$yg$X?c$+LfOO&WFfdD@{qrLU??6f6HTNM#VGLhVFYV< z7BWXM(U`r{%lb9!+n(hM+=Seorl^XS(&Q?R+yp#!`2rrcPpNO-JBW6(Es zf2H6sGHr5O^h4_Or_FwEuA?;1uRh04(55P4f+9#W`a}Cw99Nj7=i{xVTyoK58wV>q z?JK?W327?sRHFq77VB&izg1v`CL(?1W$b_-(N9;=o0ugFA00z9^DKDFD;mL4V?xxK z-WwyXNx!sLSjj%*HehzJSeSwCaISfU2l@vwV&hV#jWsVG3j*RKf03YjzP?3H^3!uSm2 zK{WDkpplWnNWlXu4+v?*VC~jSvW!@Q>S*eT_Fu~JAWCT0>zbTb4?W?|%odQ0Hg z`9IA@rxm`tIRY}}OyzlEak+s#<#d;ZXMv>Rr5gF9!zLVM3>7iLD15_ zL-sd^0Y2b%dR01Pe z?lBGK!ou2_%UZgL^}_&?^FdL1o_!w*W7fvo9_^}MBD63hq0~QV<`&orjyA0=3N0Np zGM#M2i7}AQ(w?iVL?%Wp6EZdn)fCn@TraenEmAU4Qc@FkueGCiLcg-`rI1#ec9e;i z9t%y}MJg4ungkCN*mGM4i+-7~7kj?3koy*lR!pOY0Z0Jo{D7f$gKHU8mLIU`aOP{0 zmhj-%I6RjOvjMKznW2w?zE(t5mygpR$1QGC#XeI}0>>L&_X(Oc^p=c(FVo6U%(lKi^?A1skKD0Kb$CYi z#He4%#pN?B-F0Mz#x3Ekj6@mG5-b+6{CN<`taxJvy+&^+8f0C^zuJhX7XF)QGyBsT zOJ7(WXi|Ny+(1!y(Fsl&i^KnSbib<5d?xT>y=6L=zpUdX6Kg?EbDr-6PYW+2LyJMD z)iNh*la-2}Y(D8f=n;EHx*W+HEXP&Q5i~-hm4@K(=fcI12AQM7zXLUR!i0a-+1eue z{4|Mh50 zwIcoC*=Y~H6Omh0Qdv|42YlHRjA(g0qjCqhS{&IvqJgH!I;cjGuczAM<&S^8r@g2a z?eiZL64Ja%R^$KE`$2HK*pjj)`yY%IW?B#MUt>PvN=hSsf3vF5NHFnomO)Vo973Zn?8$fUiPfYGw4}AUzfy_ zM9)WtW0SEMQQ)1R+@KL~Rs_?gP~Li+K`+nqmRgg!Fd+eYC7R!5XNarV&S;$%)9?cd z=w!Apv!Hye@4mZCYL7Qs(nMlnuP;HHG2!nkGTa|!^!6Ua4L{5^|*L*Pe#E?KT#+ZS~`a|09U?}pY@`Yj%l zDa(L#LR^tSv(y6X`kKd+3QKO^LR)pCg7XvQ{it;UE~Dv4M>Dgnj+dBS7|p9SS&BYm zAA0mDJ*_W>hZ_-M><+fGlSZm-`MB=IUf^*J*zvn;{chcdiMZT1zS!$W4E*-`DDEmx zr|)G;%6xTczB=nwv98=AoX0KVB1*h{G1j>$J|8F^b%Z|XdWDYuXSl%d*6Xara1N@` zo8J*&a&Vv9oGh5@Ac=Cd)i}dQ{ijfVQg`72oWPL?PW^|Rgg!_MRc;{F1!NQZ<)yU2 zPtMQqU*ufL55nc1V)0}jrx}hA8^3+?Bk_-Idg`ttaGdM()6T(V($NQZQE&#AJgvU{ zd$nJ4<=P>S8UHQt6PG@V-)h=XvedTGAQQ?k+7G>#zsA~OH(n@z-P9@FW478H`%BI9 zYh^5t_39t4)PhetUoIQxZ6tt@J}BY#lW?0FRy)osiwcPeKxv~b*ozCoMi% z!WPQd`P}2Ta}k8|5!wyZ!Lc!BJbBo^I|YwT z5(FE;w-O)6nkdS+8kiiwhU;QU2a$JvTXNaUX=_h(7sPwL^}}aO`fsK)*2Ika{^!}1 z$mSV=z#lbj*1BAP=O4Z9ZSvQWpIW98xqcs}fN5M`;d>76>knDJt~lXInUB67w$DMbbumX^*CCow?{ zKv1=U88dC+gi&XGf)neSI+dMhS@e*4sT#Tlj$BFaM&efLSdO+#N#6YKT#Fw2xSnT4m@d`O&k{YJ3iY_wkX=hNn5u~9MH>mUk;ugY!=pwvQorRa?3 ztU^ozQ>m?>j*rEpsn1!1uikTC4XkWH_T0^8^pRjzT>qH8>vFR7yFDzN^fI-4!wRr|dyu@F(t5vliwJS!{Y+%k^gW%RJ2J>M zXwb}SzHFQ5P@~zzOGBlBn?#8wjyRKqw0C`#-i(928qmnoTck7JlJik}xx#e1l4j68 zDRk(6c4$2nU_2^J*the`yYw?1g?0LT4#0N2=yp4V@_O*YhQs;-3Bl$(=Wj|JlQQP>cyKxI`Rd**$vJEjP3YtB){c;kgxPCV5NhJQ z@5JvD-+y|<4RVLrCDBh+?z!5D7ZB$Rde$3zc}_#l({>kkqcHen@$LRr?y1+@^NRx6 zlN?Rc2DZYs_k4|R-|R(RRDZjJ z`%%T2384*_T_^Epr$E3boHD&O+2;(HX0N! zG$)Ozv4kZvDtxOYaRRo*i_$Np;!3+X*=|dnAiqM|?(5iI;3sB2BGkOT_8e%pED|Dr z=TD~u)W2Q)6G>lCmx=CiR)@>|vtqX`ZIo;4@g3n*36%nqZXGQ5WtFU2?J*c&bmOVv z07!c2vBM8}|CIZc8-vfe@wkHp==RL9|9pSk_Pmw9gg^doHy;iRw{3UJoD|T`k;r(y z{cg3m{-#|F-u-pkn2j2Zt77K#CLR9M000lLZAP!kOM6a9|0xUC6aLSHu8^zSlMXme z|0xdx5J15B6BcwQ?BoA*1B^N+#G?Q8^BbWwW-iC+KSe^EJ~@h~zd*S|?gZQ=4hmXO z_DEH^P#W!j3dsO;z}ON=4yO!IAIin;T>5wo2Z^SBZ-iwQfG3E zW>|QKL!x-{>OsNFp$+IlyDMn}yWOVmWPH4n&`igSPWk10?ag^?;@6>E@>YzXl4;5W!GY8pPQjTxYkh3Fs-Wl-# zi5z)qZ~H~f8kDZD?H3*q66J7>-K?Kvk7xF>_wjKL*AIQ)?ptnMqBZ|fqVEUBEnbSt zz8#nIG!8Ik1-mydC7w)P2ydGVvIRO#O^}>D7pIp=!L^^hZmDNb%ZG(Y^cfi8fSh`lYHqVzNG}y5uAj7(->tC9K&@MaFi4e9sat7g2 z{aA{;_08XF<<~!bkbQjsiVYf|8F6u?pLQp6TlpqTuKwHVyllNKiLWkj@&0-GPXrYc zi-k6OEb!tjK5b2hK>7@}1?gBR;Qo!E#pbyVAZG$oE0pKKErEMHhw$P0#JTsEKu3&s z!R?`NbS%ku57w8X(Dqa(R*UR(-=l4lQKbD~7f9g1;I3SU`@Nni`+K?Cqw|I9SjFtc z`&_g8@oU2c-qY82kKNpP20bOt`?qw6;VIvTv015UPWKxb0N7&(NAu`e{bwdyV^ojn zc3LbQM90_dC!cO<*dZjT6B1uJ)p5rq|IbMz(fg5JOsjU?MTO~0dtQ+AE36PevJKBg z2Okq;S!@FQ#=9A?UP$h8f5gxr8*jO&0EBmB$Ukw2L33Oe2Zs!a$?Tgd4cjd+kws6B z^+-K5q#6H8ruB!SB#0N)R90$mJ?(rO0yvz+xDWX))tHpUbEksXAPUHpQT{R$#M3A^5-uXE96;`RE;D8YqS2-8xa6Mi6Eqk!v zEWB^;=WuLv`+YW9tRFtLWB!jglhhXa}Z-}E+KIh7bj134OKNX=}Z)6T+<^Pvlk5QnuL zQqbY{HTM?my{Y=5{X>@Ugq#OR4qvWamdzy`-#lS!m4a(YNE%a~A;L6{d1l;+I?E^U zLU7z;4TbV>^HI#L`Ir6J7#h2~*4fVO*s0{}kxI|>@JPb!9{(n?vvvt|CIaSove^uu zr-XHvkNze=OoJ=xbo@o>bsjtnJDbTu@#bNkJw=zWwLDr!p8|{C567Y7wdd&^ zEhplx^c7$LI{5m}LNWJSDx*s-W(x7<(1cGhBfSc|yD@Cx@)IZ*60B8^CUeJCcx<%` zc?^gEEE>K2sXrBlTG))CXQm-aZ-43Q{L#_fQiK9v96$$rPlr8I^Xtt;i^oo5#aY-P zYM%DyEM^Pvct~hff}KbAZXSzphx}b`1<74s%3GLS%+fqHxv3KR=-HWC#dwspHZ&PL_wu10>97hdcGZ9J3FTx{{gb1Gy<i`PUDrjXcj^vy9Dch?c)pS!L-E=i@ma*PBL>WLN)8P_Tr4 z&&>-806B)~QIv?ej8vYI+2hWc{;#=&pqB2qZr7*1uWXkq2twqa-;!*iOfjgvz54R9 zI&*eF8P=6$GI;^ZK4ZMvygo@^ua#p>Rofm5_u&_Fzqcy3u}fw(qGijqjIgb!b+(SH zwpN+O60FnL26{3g>?0nNU3U;5HVS_l_|B91rqn>B-R_IfmbnZ~4G8;!$$Q@B&yIcF$qZF{E3t0#~U6m5MgHFu>31VRo7`0O}VT`W*rlvZAz3EU>| zXkop9C~;lg_HT*RpE(|D92ee?mM}a20dqmVprU?|qE~TUP+3VbJ^;t}O80d;Zwb`p zeLWo`*7aGT=TYhq_*Fkp;(Z)gS>I8H)V4<}My-ENMkl6>i~=hJZncP~_yr?9Mqqy5 z^fEEgwSbi+>+&F`nv1?cJ_CT@#zt6j$3RqxT8m$pWfWaOcpcZ{wG1H^q=^Uco^rr~ zH--})pA}5aFdk8|3ewq$;Nq?KR0tpwhY$x5M^PJQA6S1K{KqJI9pbq;C2e)1p_Z1E zw=>6e7@{`VgZd486%29BxKDOdq1<)YAYhU(ZSg1)D1kA|i=^XfQv~ddgl_7?14nm@ z97^nc69tA7s)&mJ`!Xy`hqLN2Xrjo%Fr;$vT7Xt#Wvz*H4wYQa0`oYfIDOxWx9(x! z_N|O@W$_B{yPf_b%Re(wumFHu{OXCWZ_l<#hlx+#^*{eBy(h;cy>mCvM>h_rIg451 zle7?qnG?O|mA3wJmjeg!Hi5G?b`5sx*C_Zi?TOGpYZ)gcB8L&x$Qjpe#|~%|Au?29 z7_j*r9lAhkE2b{3eWWD;z1GhCSAy0!+$8|}I8=ajq0Rpoc}+}%lIpC5P!Ow-Fbn{g zzI^v~)#GD)fHZNOmFanw?XJtRorddOYP6Q2-s)O?wbI(Ty!Jav9~^f_?~3Qj`{z|! z(t@QB&l0GI5J-v?fmqT&|yk`s_%i_lbI`>n;y^7Yq9yA`BRxqc*&^3qH4FD@(qUQb+!(qFy-a{#~r3 z)(Nh9`-}l!<9m&B1bft&l7jy#CJVYR;;Y^CT=AuijjPKkpkL&joG(TpLfq3<)6 zoB+gRwXO5wD@B^9pl^|&`riS>J}#~*X8estZ6Smh+>~JPZsb89dilb{VI<{bd6U`F z+d(t&n%?-q@#TTI{7m9xV2A-MW+v{oCM<`y{R&4qPUr5%2uYSA2~dFh zYrMf7JWwJrA$F4foGv3z2{(#7sP-kVKKK^HD%b{d%4c*aa$wEQJJqkh^^gT zx+(`gz_}~bM7;*^)F_LR={-=!5yy#VAn$8DU}jJ@WvuWW#d?FPxvy(WQ&+q{4}#n=SBv37!Yz>bZc%$psV_HlfE=7z(b@Nr<7db1 zzK&|cu{#Bft((vG7eHO`&Ds;q`C;?D@C=r@p>Nxhm6?zog;Q@6F| zGHDZC`8VU>Tm1PQ>ZTuhiW41UM^PWP-=I#b+k0^-TDJ2zNax0wW(E;JJKpH+BH|@1 znJtpdQ_gCJRMov1oe`($tW*n=0*N6&hzr`{N>4Mckl@#EC@`WBX9M{oM|Ue;?tPkV z1BV#daj(fAXMg;-rfdJbAMtMhY_7a!psQqIKx9bOzVE%MbtJZI@yIF@5qB|1XDF`6 zCwDT9K7$%}v8{qFNa!xET7b6Zmj$wKm(5V(Ms;nA|6})a+(=ye$?${uq3za!_kOk% z2>*(HCLA(3Xi5-t_L9Dz3~%Jxt#`YvZ4w68KD>Qo;b&4(Fx2}iVc>j6QB@UkNxeJ^!9}Dq@IgRz0r1GL2TL zVYf5XyPfIp-x|SyU3dPuquTx)kbRpBIsUeHOfRm(yOYSxdJ|max(zF7j~Q|zxB%BB zFn5j%O9gM7}3FyjJ4MW>dg|>%bCeA}K#k%fkcz$ zATT%|0$K!mTx8-W0GJ%6|7Emh{iBtRZZk=EDEssMO6tq|+3UbIXYDG^78>E$xh;mv z$RflK7}J8;N>W~^^rnPrI718xKHH3Y@U6V8QNBVF2T>5nr{yaPqRxOIE2Nk32xl+= zSMWo>D#}4kH*~Ic+im;rAGzM%rk6=al zUdsi|);I5cV$Q4dYx|>acl)jAiUS-r!|}uzs6J8F_kVQ>k?T^@AqGh811&OQZR-6iq*k-Q#IJVo1c?M~#ynT0^t0b&HL`uD8|RubB&x z23C|DtVIE-0R7P`lUkGa=DB5xAsP{eP)#P59JiBhOl)4X5LG)vmb`q^Z_33NQJQVK7B(RG{k5ocFy z#&v)9{~|kMGpj#d@oH=}P~zZ+oi@o?MI>c#)|wq5tGDEnap)(`5WM_21!;$82ep=$ z$fPJvwqX*q0eCn$=TP+~&IMdv_SzMr=$C2#LF%xY%)I}z+#goai(;iF3p`RJ@5l|n zi2Gve*pe)?-Dbh-*eihuH!GX_7)Gv&_szaEK(rY(rEnYAQxNVeC}2@(|Jp& z<5-hO@;c}gc7-d&PfTjo4VA zs#=lC#vjUdaRX(ih)aie}W|* z^A{a8TOKNT{NJ4wzQqir>=&%$2M#B5qs(zlsyCh=7BF+bF+w0i1{-)NUJ4Zx4<#>> z`CGkDjh@;7ulU|}uH92HPdoUnE&n2I!iXD>n|&INa&bVq==Q!TUp@)eRiK_?{Qrf9 z#w#w6EDkT%bo;29W5r|n9mH=UVO>x*VNiv?vpL2C$vyg@(;)eLHBcd{e}$VVzi>|o`>zF(G2YVkUbhq=ATWo zY)5eNpV1wd;>DZI$ls7m0D|IX?AMDq%=^npM;-83lYmnT$=^u)7KBu4tp8SG(IoDF z>L~J>4-Iu&+vY)@m%HPBoELZF5+IjV(a5aK7Y?^}Ug%pbbz9Dc*hlHnmeWiRP}!Aw z`+05Gq7?|?Xntdo;x?fit?fxS9{gTAXuX#5OWl+^MkVH@BOzRA(UouGlDpR~oL`9t zKKtj%6ZFMAN#^lI3vMwIei_fIGEv$C77>c?>}dhl4{3>~>TG(`X-+T$SfRr0*zlG0`wi_tN@Hw13-DKjjfY{Hy&M= zExIJvI8wP7+6crLT1a8G1e;Gf2Ba(ZqlfA!32NHZz6~QIV{D7EPvx?pEipz?rJCt%>6liKM!7- zft$ah%;1iGYVX9eFS25mEmCPfJF|L-FyDHeb$s4*Y+QZUSFaqxr{cAOqK5=v4iGad zk1c`rIAM0;;7ilX+1~sE!KA%9!CD;*`?!5(8N*UX?xbZ0=N}M;7|rAzyC(5>45&pW zTOXl-C|3J#_{cz(`eH@>02%wPO0#Zew*;xOxFZW(STGVvMQOPV50G3E7_b^&ys2$} zCd3~7Kdd-?i|SA)6{N$2%$)mqF1b7hP+joSp=thWCRJ1<#=hCpAn?8c)3tRZkDsu1 zl@S0@itlM&Zk zA}~Yr6L!g+u6&SU+)IcN`yuKV^n1}c)=Jy!c)MV(6B^L`Z@zRYoU|V8tDEq-^i;2% zHHY8AJWYMdP#9qu%MvSio~0<;)f2sTPoBq2*481!=t;gp=BL=SQYBz3zhzJiA4q>f zbnITbIf>&)E2Z)j^=q=+7wy!))_p7oVni)-r%=g?d0jSxw;+t3H#h9A@$?%0o0mR(^^pI>mJJ%^L=U9iI6=crJFzjgQ~9q zA0CTMmT8c2iutK>B^KDWK5kvT?!-;Y_Z*~4#nHV!;S53-?Q%7b3JlW{M|>IU=F@=m zzGBd|!8TkdDwnUk)|waeF~TA!Pw>*Xvj`Ky=!Q`)D?8ryId;canqW$jTxXldzj@D- zg0i*BhXqoDR1;E!%52hRe|+Nd#dDi)1Xb}TtWw`(vqAMhXn*bXsV^t zTrt-2oo@NfB1;y-_9y1~ZyR1HNET!Al{Mx*MTp!X~R*$>#jHwkB>4-du8Ppk3h<`O+yb z5?!}QP>Z8PM0W{obp>{<`@_K3$Qp8%8w5VZ-zM`^Pop9_WAT7U|2F~{Wkj`-Pp&EX z(YG(HQn(O;EF3Q>R#>Is`4zB+d2y$Jy$Q8VKk{`J$FYzJe28uPsFQ#kXNB!cy)yRq z)x1xpw^Vl@^(v0~WpFvGrd8BkpleU7(OsBNJvY#>75DtQ=yW)T5e4p^3>Yfz#INV! zu#rbq{x+eoKq=_k$Buz4C|yWS5+Y98-2U{4_0@6i9_W9J7TOAS3$4JD;wRfaE*?g9 zDPid)2jvRrdB-+9U5`_)E+uNvJCW~J2~+Up)E2T#c(|6f3+GX`M=w9?kkg8&|Gy5? z{Y8TI=cXC@ev7lH+wm-&lqAOW$5s|>I9JZDqD|;`ykcZvqV&p1#oO!Gh<}(~+xDJ< z-ZE9JM)GEedN&?mG1`o;?1$6+!JAF@Tx^4D-(a~I(y6?da&o$cC2i3Oswu75i2rjP zfAi?8ZTM~Y{mZFT)Pn0qyT|Synr!Z?bz|In+VO-n+>1Lm22I0I8!Vo?1o9%UFfzNa%WOaD4X>xlz)tq6d7<; zAj9CwDc=t9bxfa5Y8G!54eTZAnH-4If@6lcS~1H$dNN)?VZY5LiCkx8U@P_A3?UeyI1<7f3x`14zwzdYmVQCX!=U1T>SlYivuF~dg_ zUUW|Xd~dx9(O0#81I0fDFMDG>$vr-n2zx)Snp?knd+Xf{sM;TvN=`Hf)||=B@=2b! zNb^M9J;0_w+E&XIgLW9O!2Haemb^wVd9xgKpdQ)et9o3WqLTGdp|hq4T%vZvH>sTX zlDw(Jdm?U?a{n&fKNdMW{7f?paq7QJ{?O~9*>lKR1=o32xVT)_?I)-Qa_p~sc%DjJ zVM~fFQWqD+^&zl5x9j|E<6C)_!=--H7=Npe>=&*)r+^8oSPZj#sf-n$tgK3mmU=RM zc>(H!bd9jHtkU`5O2=JP0Jqb+=e5VY7+L(*VF}p}aeP2@#`BXrmH>9M5-rW|86cJ^ zoOidg*W*Y5)tApS88+i~)zIrd)%C_4wQf8Eb9vnr>SV_m_MaL4J~uy>m6AboYBYUH zFqBOr?h0LSkqu8WD`eqj`s^SUU43c>XW*<|O=cP3$MMU*Yy3JjS^TjovHqw_fE!0Q zw>v`iLqvM?2dCHCCIM2xH;?tzBD;WCIR{p$e820WdaUT1Y*8pnz*ghS(dTx%V9f=tim&8sqKq#sVnyT6 zQl~@+j=V@s^b5CG3W!Aaek20_^^!Zi$?3l^Gc2MIBawKz!*E+E@Hkx{C+611qN(a> z{gc=7xz8MWbqLdzR{3G|r%hOqp0UxcRzH2aCKuk&WOL?dT6EafGz4_R*0h+Igcgw8 z0#NXijy|KYpvmXVs(0%u_eMPCHadfIh;$s05T|)drX8jj;-*z~gNsNXm+@ z>Sjh|FQG`B+Nw;PrqUTIVqQC&g2%O^LT&DB9W%Xbf64Ym0%~%Qt%1q1UuqU0%2gu3 zSZ)Ez0UZAFQdWAniTc@W|AimqY@Vx6xyhj{m@Qi=5NSFOHB@@5Q0-w<#DJ8 zvb~YTwOgaNO)9wHDet1ZurB4DVu?Im!aQNkAzk`tEEgu=t;u8mw=k@;No@msWX~5j zh~k}tso8S6DJk!X>v=8Pj(t+^`84Of-Acq|Nq@=(g8>heM9Uy1$t(8oQfw5`y?FSZ z0trC`8DFQbEw%!Ev#Q6lC~`5{vh0wx0{|hoah?^v%LefQA^LxpO8z_tO6KTF z0Slzc%If)6iW_>eBU3lWZnwZE{SplsU6Nwj^XX;$IrfWCF2s)U&_A{_{0N2_1^#+Y zMexGcf8E#CUDxt*)$B)R_N=)#vnF~MMw}+jzP2`(M+0mz2%Qyxu(7@Uk9vd-IRY|lPx#|)UtbQ{j zz(OoYGZIdf*!l-D^5gp_CyV*?)Wp=^%Zc-I=B+tSZ@0rN7W-+x>AT3=TSX2PaeK}> z4@O+~GZ9M#UWq>3T1y9b%U=%M-+Jdy;&1uIAiwJmBoRKN=8W?6git{y9eFY%b|4+3 zMSikb*5b^#izi*oA(P!!3POY^6Ap15Bj&>_J-Y2W#-Qbk{wo34Vy(;TBn+(sbA3?+ zi^Kff_7H#D{^dBg((wq6;6{#SegE9P`+B$vcHO~n-8o=rWlL75X55oV51-!v0phcY z2fxveRVgvim<|QkqL{gWz1t?t^7T)$=dbN7pZ zwWHs+uu&5t8z5PotRP3;EwX%5!9ERkZ}gUhiTn<(Qdf{=F{u#fP!Nq7tx2x*E?z{@*`5_r?Y6b=n_4IQ-ckxUa4` zuO>vHt%i%DiPo1p$G-D>`GiUxq{9VyKNR1eBxqSids zXWv04DT+L)AD46el&&}+XOS}FQ;3o2C@nO(SS8=2jFKHJfC(Z-#yr_?>V5~;5?VWK zVbSJhazx6|XYv1t7LfSq%D6ocsQ-C%U6}d#dR)@m)6@8paf%n?C&GR9H=p!hIN5`9 za16EtZKS*kL9rHE>B(Z5)QpRflS{!6+hS0Lmu%H;j*Sent9gUv8P(*kuqJb`E-W)+ zL{07sa=?fJm9o+=&Pa%FQtIpIlCDI-)==%TKn9*|&hPOAzUU@F=Gfwip& zgA(R2gIWdqk>tl2XubXKTc;Q9z33?LpDCN%p?C~?2BC}#w3AI4mnfwaBImy7adW{@ zj#;uUTNYbzxY4?hGJ3Xl6Sos4D@7QuEtagfJd)6HCVYdkg-181V(T{mK-@7IjSFog z{!I4J?K2*}=bgLbJ-hkumZ#|lv^K5XOR+xO0QrK9Qg*R>!vUjwL!KH@<{>$oZ`$!3 zkLE(5AwKt1O|knUeQV>=!w5p3u{&f@5%$fW?iW#mLm>`;U|HrE@-TBg7(AjHq?deP z$KN_uxg>3+0ZBeHm_i`_kSTbY4RMR2sFi^w!*XAJU}&OHD4HTn!i!{kAXi{Y|rz13qL>X0Nrkc`z z)eyXH8F~HGQjSauhyY~R4|YNIGhc!1d!6VbPr$R)8jJep{ua-s*F>V(0*|E7HxbqN zDiJok)M|t9KM`Ss1Im(kEE30A;RA96sG5X}V!{Q5oY}mtY|Hq<^NqSYttQJ6Mc}7W zddj4xm6LFbgpT7(PQ=qeXgA0mTI%##Yu`axuZPBQiThSJ7lY$%5sA-_32*xvpR37M zH``7>ui|uM@sf<^lLJB%Hd-YXgjv%7yK-1?x!v;E##UC!9QK9x6_$qWrVNXxxYAq4*75lmFAtL{}Y@cwOG9GT`sOrs>ys;cs7EwiH zdKxjf3>ZuoaG=cTvB)B(5BL&)PL)5qc+%2BG5;Mmng|Tn!SsY<05T8=5M=jE^ezz& zwnl~o>vU{L=nZxMcHmX--(EN!Jr*Z{h-74HXmI>HEbjfNJtbzk*#=#}?<*8Xbt%aR z`QP*pzA0)ZG>NpIuw0KpiBqhs?L}h&VynTPuLywH^<5kCMBZFq+Fx&gah@TV^j+F= zI@#6ny<+nPIw=%-`ieaAhGM2NdmXUkL9UxZNXQL9AXk{Pt1<%kn~HHfvbaQWSyhFB z21^sLHE93LR?*FflJ0kmq<-q34*!PPc*g@X$PlYQtqHcu?GocWD#pkl+p&ln{AcGl|`ruDDBQ2oufuwMS_uLZgeKBql~ zb~eVA3?eK*0Nan88jl_d150TL23)7-(dFsZo;#m2p2<#uF2`ZI%^kx^YS?IFw75A68nqKnP} zv$!Xsz=UXqKZOFI1ZN`JWh1E@E5gPL>F_OVJ1Hrk=>C33i!HVfTN%`39qwYVOwC=P z$_$CP0mh}4Z5CFzI^kkc+>Ex6wM;H;aENtKxv9dbinWOG#3u2$dPbiMt*tglMd>_sc0(-j(9 z+${ibg1hVzR_cb$CK_%K16P8(IIxt#x=JR`u+ zT&!IoNiq^`J-mOdW!W#BuP7xYMH@1d<+}Fcdas#ox3qQrb^y^hm?I9P%jCG^3eN>- zGkct=&^Ev5srm|xMM1j)516gM)J6ZiubLiKgWm&hD(0jHYKBvFZ5J4VR-&ir<707c zYpbbruOz+E=FpKq4sZ|^q-rIOQv;^w2DTXDj$LeKwmy$GcA8O)8~{n9-Q5^2^Xg`c z2H-$_q9xDGCo%;uEK==~Q>`feM^=LZX}I`GFuRn@^XPtZflEE;u|dJNsE_aAj(G0r zTTBeYQc1$+71Ove!`1Wk0RfTS zr^%HZi#^+CLMr|)h-qNg1QtZ*<@4I_vSCw*nadQG1U$hM$_^(p6a77hV_j()sAksG zg!w2VtQ)6Z;T0r=POm_62B=3yS*{2*foVl2;=0Fk>3JI5)TU0nJF~Nb&Qs!|_sU>TIIqD6`yQtvwJtd;NwqZXn=o~oBwm>*?ftc7+;u}wkB_oGG7GwWbL z0hD`x_J^^e#$g^o#$L+_p@%>TIsa4>8f&3i{~l8G3T*<-h0aYD7hf0^h%KSODv`Vb0>hIgyB6E}17slW(3 zEdY$3b_I*ts5z1q*~Y?3nv5R_l=ZK6=>NV0kd`nQJU#ORkyJ=K90uhynYN{qLIy2h+qt#P2^a_=$|`jNxls3aoJKjKk3wdM9WV+}~W` zWU@3^MxuuVG{s4S+v`)K%#z4mH8pF;Shq(Bq$Y?@2ISn$(cR_$ya{31g7WK5Gmc_@JSm<(@%bF6*8#J_~p$||Gd69A974x^P#=a7|{t*6av^{~W7M3s{KU2tyv{a;5Yh;Y>3P%1Ok}u`3hM1O1r|!UTNzB`{ zsflW5%mPy{qj&F-3#cPO6KTYsw*+)i_Hn}O1~u$q=cc#w3qJ2xQ!ugPn$b*{hcu?I^C3bnI%4#bUfruL?}4mNLUT0##@Gh&3W5~gG{Ei$Sc=vc^05dnMjqFhY*5f zqh*I3%w0_-oT`k78c5h-glSMmQ}y($ld$iqM%_=yzzS=+^6m^}cKkW}xl^HUSgk`$ zaH)ng{MMfR^_4~Nrz9r7)>7jZB2x~teiIi2n&rCul9JGgEz1)n5jCP_$?*-AjV@6k zt2rEVqx1%M)H#Cmvhjh|#DIr!Yz+yiyH|t*KicLhg4lh!H08P^qgiFI(c$ryWq|*F zgboA9_sNTLXsqAVg~+}LH?IQ^Mi7OGF#f4jGTWg3T(S?r7-}#27}F(heK3)6pWx)8%B2T z#Sxay%oT_Vh4?0Pe|)1Z@bBpq`mII0C(Y$7`_Q<%7_2h-Q2_&IS*hYor<1G0FR!T- z0Di2G?;72;AiTie)vOg)Gq5bljdbl`BHwF$)$6-SL@pp5UA+*vZM8ONj5owiN);@e zPBDA#JA*+nd3X_YRRn(6UW7%A5i(B01yV(-~D#wOED_E_Vz;G zh%+St3^$(TgTEQ@Ry;`waYMTlqV8FrO3k81AvLU^6gwccE9jGJ;ytnf;3a@N6^AK0 zk4|!|kSIt=^q1UHq{iwnF_EV5t4cQ-ORA%i1RejAPj&QeeQlqo;`BaB8M44KE$kBRz$jE7w@<_ zGiMK*)kgIGUqmyHfcL}Tbju|l=SfRmf>~YRu&AMqc03J%so8@m&Qod=N?y%JwzAW$ ziB$A?Snekk8X!*BInNK+5UUKT3=H5Uqm(r5m3qP?dS4dE25#brL-{&(Z8KPs{af7< zWcHKMCy%pKnibdL%BBRkn$!g8TdYYa?~fIr9OUydnoghacQ~ysWt=$~pJXH8pa99k zw1+<^Y#|@A_i;sGe($Q{CstlBe!mcf7gE9J0xw7)f57wE=MFiohaq8YS^d*9SD1!G zeDZ@S?VW_L?zsZTwC~!kWCS?g}o2y6j1X1gL?Amss|UC$%zQ=<9g7l)*@aS&3<1h z3IK==N{Gf~dprbB>%TdCb$TPoeNN)D;7mPKQmuYVbp=NLGch=Y?_l(zFQ-I{Ps>8# zN2>gPwE$Uq3QG^l7v-m$i`Qvx=l75v=kx*0OK(Uofbh0&>2cFI*WJ4_8;fp{;tv5Tg9gnp-_y6L828ahTGln6f8Zd{Qz_tnWG6{~9mTd;Gg? zR!OlL6KnO!fZw9c0(RXp3wFo~N94O+`#+cYc|n4ygB)LGH8_>-q>+PDqYu%H(gUUo zic(>q*}pIn!#!;#zM|1*4SQSZ|0^7YF|1P;}YYVb-)kF{^Z5 zFjyjv*n0+ID8S|3MQqlZGrraq{UIY^TKit@7B6D}!oRExX2r^LHx~0|nVcH6 zj`VdZ|i6cCD&HKf+%reMcQa*B+Pd#2eO_iyB*<>MY!N!yWbc=Sp6`<^{a~ojf)Q863S6^6rl?RD=%fH^dRy>OT z(%*z&`fmF3WK$UX;cKZ@n`6U96Ds6Z&Xi(!t(?6UDPbxyKa}ujH`7$mOgKHYP2eG13Vi@5DcMucZz7G`oE(t9 zW4HqN@@op}IS^78HkHsvU7agi=vV7Z$cG)#-E~d zp|ypqA;d7}%BffJM`B;m*_g_K>Z= z|E)U=iOVOop~#;Ja+Hrn23-DzyWuPEnmRX$BR6LDU3 zP;BLDcwhd}8a|B?dfmkS4<+?yU*@Q&Sh6}1DqtW=Dw>fRi5CXLWl+n=*v3#Z8Ft2W ziLIo^+bqGUwETtVD{TAx7*;lCVzs5EKcCj>2K z2KdBdAH2QkueAF|(TJ!2#hGGj*x(G!G6IIQ6&ot5d8qA*hN)q~34qz^ooKf3sDCoc+(+I*P**n<6oPt7+kTXJ*Jhd4TF)H%t*Cb;du<`rhyNO9LYd zJ4kScXDq{akw}GbNRON#Xq{}AEuGdPhXg=eQ$-$?NZCv!p9<(3%jX||IUcq%Z?>8~ zP;#OqGKEvKAE2a=r(qf=$gTDC|4NAsF2OF=zMhgj7h{&+cjAoalceb_qC`&>OIrOA zUK)BiN0q4gjW$__kVD5fuQ1DL8R9nwJ>OR-G_=l_ppnVVZf3y6LqAFaHx{)KmJ{ugJa0b?*)!4 z$(oH`(erUlaazYC2*#UtNYjZe_q#o>8M`04@k>i2T;Klv-KsJ8>aAbdylbnI+&S z{RLpGepnBVy&o5ATT)H>7VCGs1|2xy1wJ1cRS+;+Gxj`663$>t7j2-Us`8u34neP; z{Yx7vC=tbh_(h3w)K%m}k1?aTI@j`PKsJeI_0w2z~CU!aqIv{Q@-2Ilk)G`PDMiOvRpZTc{-#DS9IT78)t^MAW1V#MP2aB%=Ggl>iPd^j19hru2v@wj26eKvW zrc5tYFqF0B$tDbJ5!~DXkT{49CK&ku)rXz={Wg}D_p=-i zSDVs?h%ELDIkbz*<900&o$3mMx*(2V5y9+3Mkcs~;BH-6hqR#iR|gpEO~;xIjoYr4 z=tft#N(TeIFFL|*2>^gD%k;F4N)mAk7y*>UqW&E6g4o{kSeQO^d%wz5^cd9ek!)f# zv=1yZuz1CxDk85uaGZ*~2&IoWrT{BySe8d5owN1g8BpDUY%V;f8PikP73lLqnfZ4O z`Pbun`J>aesLpjV6d>T(cezo`K4hjVyq^SS6c-OnQ78gHlK8Za9hke^*MQ+qOWjTO z`ic?_!&9)*kD?YRBO$IF!ijl6 z8FtihsYj3`6)3)~LEfAQVN5SVLe6cE;(&h?nP;Q@Kh1^Qh*z^XH@oV(08~HQ&Wf(3D4b|(SP$OvYM4M^-HC{9M zR>D-%Re%o=2P&XK8j^C1u5Op?EY-$9N;DdnI7T9>d0&vH%7(UalAS8WLJXHClG?rR zK$7B&@&A$rFPvmOk=!R!SG?Za^xT66$-YvBFdpJvREe7q;tIb7-`L} zZBpC2!5GlObAy$hGW>O12ZvryGMqK61xUJ);zQ$?5;wAX#}Dv-Z*WUI7g3#N&E$?D za-U+pTz+`OUd{2cRgXXN9@dVmKHxQerxsXiI+FQYzqylvKS~Ik(45XEX@CV_2OI%O z{@G0nJxM7pEGqp8sQlXf^Xzqz=14>jj{j5`{Y$o*xt9a*YqQ&BbU}il%4dIIT*8bY z{)4)@j2f+f!+Dd)Zx)J?wt27{>=dKOVTq?&2t9~`VrKnk2vaw|orLP?A+SgW46u#M ziTYRaA^Fd!NCR?Uq)ei*kl8C}mop*0bjWb*q}U<)o4;urSN?VcTUEwKA4e#}-s38R zDfICKl}gxu*~}B3tpt-kh_$OO^WgEgL$Vrk*^a`bvaVAka4AM|X|MFSi%#oFRO1lSUyskfJssAEWjJ%iO&F^d1mgH!rVZc_G#&I|#NRm0;9=M?{1&?7*gy)9q9+y7E&|38$j4a!{)(m)f7+d{Fa2*)=L- z<90$*2pR!-`29UcjxtpYfRxDP4A3#af$WEanSXN;OqUkBY$6QKAn-^Ta_7Muv9$#+ zN%%>tBOy`VSh}lSx>Bs5TmPeeGX($}eOuoan+V8M{w2-<-#F#(fVu-uNF_plM$r8!PtmqY_pi$@U|iboBNhiToEZw=8S&B z_uC&Vt3W@iNCOhtDkUPbnXVb-Gh*N{YqXXEde~{%}tOc0MGMdUQjF>x0?XT1X0Ngpr=Sqic11NAZFahc7(%}E-2N6DJ$FYQ9YHD|liPAuV;g-u^CA}Dm^jOI zKyhIxzVcDbe^a3^pV397$5D42$20NIsEnaS*7Sm5O@J%xDGF;WJUhC)^JQNQzeEXE zxuU`5s3D%a$&PTJ%;p3y@DAA~dVIqB_a%6X$=782dF073nvC_s-*GZcpP|PZlqB&A zBj*M~5pVZ;E3It30-ZJRXwj&~(V5S*?GSwKHB9c{9c8P?z6%4+|0My*TVT0cj&!o;rP)x&gF+#M0 zk{fugQS_u3Vtvfgv_XlJrMH*dDN3jU(i0k8avyc6u!v5%CF=>}Ay8V9tp@k#U3T0z z5&Ey=cF{LKWJ=R;7GOa_>g+frw$P@|^d-b#@pR`k=sPS(Js}b#kPSq|yZr{%x%I@S zGN)cAX3VMUgTUh21*bW;w|;rRbKOBw6ton0(ejAKg4L|p4ux^l@-z(cgUQC~W5&xo z-H;c{&`=d`9UezDbihL;Au6QMdJ>7bBMV4knnvQ6l+6YoZ53>jhcXKp}U*;0|vXz_x;u$`!;{3 zbrHt~2Y3O;pRr5QW*0`nJ6Xg!&WMAv)d@YdW#$;$V)g6SS}oJ=&f8YYuRJZN>I|bf zY&d2NgzKo76%5q1gP8ZK$`wrMHdWe}IdMj3IdOtt1cWw|M?80LDD6#OZMJit=QnYc zTy0A;*pJT0IuUlxD5TPZXGagx<3f@V1t8*!jR{;TI*I6Qj$@4p@o?!G!N>Yf+Vw`> z3A5p6q!$;H>#)ij5rb#!*==^OdX(oW&zckhL;!)+2K->yJsH&~zF}6xEoa>sbjr%O z%N^zSd&9-t4CW1oTReGm(lOwEIr`uyF&sCC^EJzljk@;BN>GdU2MOTt5%>66SRCn8 z2pv);c(J3Qshz;n&K5o8)ig=XU-%_m<-DjMEot;cJ`u3)atc&PmgZLnqn}e05?m&T z?nF2IH2G)5biS&*Zn>1U1lQ+43@J2*3Q4=z1Q}|Ue=<-kivEc{=lQf5+73<)&>xeg zufb_%I6P?+;f<7#K%O_>emy3DnH=|v511dr(w*Wv;VIwjP=M8Gd@a|D>g}{g{y$7c`?>%|t>wa~*&<#@ zodr}ra6mv^9~Z1BMmeaC3zNl5_>g#KuKnlX>q=})*Ej1c+k28xF&y)d%p9?($Es$? zDU@z+y%>qvhm#_Ovm0OJur(|h38UrKFJRbXFUgVCx{6|lJ=T*d6qK3_2aY-%tGB1`co-0JfZKq2>I0<9p*Sf)meF96rDqVnm}|M`v13%u-#wb>K4_LvxVK zH6LrKJfOE!X+9-`LN>>aHk3y!~6<5tAS$c0+NwM z9%uXIu^pDT%i$dRINYNNY6Q9d z#6&kaEBxshc;ZPhB6+*PBRx+EfJgtIzUf>nN!iJF2Q+kGS0QGElB4opLjn|K8#6@) zY1Uutey5diStPEME6@wN^mr}vrSB+(Ylqwe;Zo3^=N{D_A|*cbZDqRYzH38Dd>g76 zY@d^lD88@#i@UJ4uge7Y*H!+`!#7Pcmt-GhsMw`Bcs8Txsz_fvQ&64(%I&$4tRfvH zklzqG1-2$&9*LfsN_^u^!YnDSuBC?&;`HzV_lWZ1sQP*YL_aNnFKjKbikk@;=q?ZQ0OO0yNkD#;K^Z$d|M^t zz^BOOiXZ4(wI-ZJ#bE-O4YwbJC^35w4pgS8c_HCG#{$1~p8Aic2-bMaAEAWnURzL0 z2$h7{&MA2dc0YN#DG#C( zO%OqGhcN%5g{HqMAqfSm7F-TFh7%{J0+knWN=DPrQMn#77Fvb$&xk)2^7M*Q)Ff^k zR4CCKlY*rgD%O(iq!mDbiDSZ!oFx$0_MBpPDv>74KuaEexuTx6%-BT6Noi~L&w95- zJci5en-dl}8ZpavBrLP!CF=#eYj}jq})x>I|p!@6`j{4&2{ZxV-QhU(p*x4@t{>8xP=}t6#MBh zn^Rm;iNfKwL~ser10G%foJ;BhXcAFCit6BiLg2|oE`MaIcpLjc%zY0*;9XE*bOOEOjyTPOO=l@t9`wdmViidjfId74R|tY`bQlZ-=} zA{!(PT+NR12}75JQSzf>RohRr=z~{$>?<(PmG?;wo29sV!2w#_Ixe9|?8w3rX2S}^ zL&mh}7%s*$es!B+ga%*b|3)H^*ZPZP377cE(V!Bsgb_DFsq8WlbFu@FmXOJbAb=Ys z)%HieCk#9*6+#9VonZ*mJQ>lZ_kIMCzI!xzc@xjWoZKuPi|b4aJa&$ZCD254^e0`W zWen}eQ+eC=VftU*Dt5!FR_*O{R?M{PK7wEh7kj`F zdp~Xh7bqmL_v?fM90Z7Y#4Loe1s~`*O+O?+GZCZs0b?+S@Gpqb_oo2SwH2oG%7+Ka zKg)%QI|6N6oKs9!T&$KZifE!tXt0K1t{2|JtT9G7iweN)c4CJTaY*T`{?iV|!sKh& zE_eJmrFx!Q^uj37mRWMGDI{<*xvssRT8*Al5>}QCmh+?gVzrS(xN2k&FyLg|7VThq}!c z-*oUf(mH^M76Z3zd1(EPkF){Ex0OrYB}yU^^Tb)iIC`eCKdXiZ0MxyOpAU!y7Vqce zbbG8^Kmh8S-&O3yT6CS^_}_Pb5*N^jokho}#@gN;+!AkDsB#d88Q!d|d$bO~G1Tmn7;nOQlmv=m3UK2#ahxQzk}uJrHS^JMk? zFeVUmV#5l~&;TGwGj5?$Glg^wJzkLP+FcHsHB14zAYRp150_+eEG`ve0;utJ^mqoDTC&WS46x`X%xVy=*KW(_Vs<-*ZoRKZ4=?WYv6X^nZ+c zQK$yf?62l7!sdqsU%dD7BM#S1U5_tn>_bCfrqcXe%_?v8+))<^onV`nkR>Gmz|2f$ z>``k>kV50nHtyIl`shSd{3U=Gg;1geAV7mI5q_T$%?d%$%<6P8^{zz;)01+bcnE7$ zX0C#|uImQI2LlT5e*mJz{~sU{-JC7c_x`YS8_q)_=$8*=6u_+d+c=Io+(cn2^|m{da#jp@iGJf;Eul&0~~ag3xBw(NkzR< zLc!xWzDTTAraqZ}+dpd)_`gMIx?^r;4kLKl$eByy-XT88bviKIX-&RdH%XPmeA=Sll}t@lzuz)X<_eK}RYaZ0G86W$67 zBg6lJPz_o0Ph~nhiKjbBiVI`-(0gtKxQ;Ht9S{8DhVW)4I9ht0qR(s%il1En@o!2P z0Kfzx1b|}_2_MJ|JcwuZHrc|!PJ7hXqClu^X>n6{*X-y)Mf4D*+J*hSAd{EAA>;WE z#AU1L#6(_C)%l&_lMEZ5(kdEPCZJigM*d@W#$EQX8t)&O2iF1QyhE4}VWb=k^RE5^ zmd8^^Vd;&6b2z5w+Avm$d`b{5Z-GW|*#SlcSRqC5S5OFX# zB$~4}*?j??BewQ=S`vR0)%bd7)?B>%CvTPZ^_-b`-^3`JMT&aTQA;mksAq*sqydxK zT&pp1^%E@XzpMw_Q(0Ids)ea@Ee`z*Z1f^E@yR;+ifx69!FS^pcuphYReF!prhlb} z{YAKa`M+EMT!|2~a?YjhHmq>eI9guMSc=|M6Zshxn{|MlbL75;)OOYwiX@38R{64; zuibGXL6iT%P;eR~AAhLhSoX;C7tvlPRHA%!MV#0&$-TtiZ8bpsJ-emr6=Oc6#Nm$nC; zcriKtvy$RWithdB^r_Wi-`j1tpS}6+4h5Z@v)LP#lm9XuWDn0fHyM2ucH$yQ+cvg_ zEO>T7h6fo@??zd#1yyhyPgJ2IAHge9jjlN_$wlffIn7}!zmjEs+of#}ty;?k0N7U5 z_SHU|A3-w3MF^-UU{g~bgm*I^vq-b!_)}czr{w)$!Hc1A2%oVdFg=S}@ z;-e^{`I^5I%|%KK7Jr;wjzVzshA>dkg1ovwkC8gEf>J2-NylGsP{YQ0Bku3AL$n%F zk<7o1s9s?3np-@Q^Bto=B7O@#SgclYyZ5v@udc-U%e~Incwcz^XCI2=?V2fUDp6$F ztAGBaw2hr0I=R@=^sZ)>L?D^T43{Islb4)H+}B8nV?I)bRARENvzHClW4*@QtG%_3zJD+h`OM;}^q-6PE>!nSmEKF=NRa}6Z)LUET|)f)5u zGG6`R^$fA*sWCz&X@US@`+VmXM6|HqI{d;xKjZhSRTLQs1vQ7s7JqQXmSJns#g5%t z?P>549DuN2L5-TaNsdr9)@Zp*^_z4H)g-61`U}!>%}iBR^&@IF)hVD9p)rF= zEMpeQ4U#c_4d=wl`CVs0*Tan|c~-beu1ap|r8q+zkLSq;)G(Q)8Ivr%G+BYe_u$D@ zM0|q1^~1G7FaPM&+6+*eDjZt z=OWVCL(-?wPOAkEv_Yk-an3`av>fu~mrANXUr!Ra#~R`)nGT{1sTxepPGS!FRlNfc zz&vU&ws!wAzIrFm?Y#Buz5xgY4=ck#?&^xshTG|>^aOj9pfT&32o-l-nykVGu_S42~0ThlSC@0ArIX3{`7%&TeZg@h{R z7%KhNu%jp3h)NV?q-|2NxH?HE2(vZZ#Wp4Vm#v|J*5EjwqhdOZy`GZ`1^|Vw&ssF+ z%3_Z{uWyHCVD)D!$WXPkIG@JOA)m30QpmERE{!LrfU-SZ^@qs`@;1p5tJ~FX!^^GU zN@Uao4tWVFz~x#Q{J{P*$3TwU8@Ki|e?(Ait011_cLz+`LxQEr-;P3IXC+0bL~u$H z=Nsa}8ue%Frd&VTI`*~)xp90EeLCfRr~cjEtF;+QroyQ z+9Y%_qA5>`j$$A^ByReg5+<#Aq+vcM>mMoc)bGCCbEz|)^GODqlh)vRH zIQ!??%(t3d_P0@*uL4-eZAvm=?TQ(wFno(cE*&r<|9Lv?&cNSSSqz2IDcVIRPqpsy z&!M+y;X>$ojUB=ZYhrnN_-w~l*dR>WupY+?jfyxLe^Ig=5s=24N;@}wK3V89oY{IP zh-b)BVv<5Dzp)IgUF9_J^%P(IGsjzRQZE`&ln6orYw^M<^v)x0Kb>TXm79V-0Ega725(mDS8J zbCKwK^{?uCiyhnRERmC&cKp*0Ax_*Q1w?x@vjovNx!+~6y^~n}g>gC)(-T(J{iGof zE{Ok{?U{S?@rD9g_xsgz#Jw>36;-2p1QrO+bd%1#rvA~Gft#A>8H~QQ07I@(<~%h> z4M08ZDxoejNr0f=$<7_f&eTR0*;s@a7w`=|H06`~w# zf|VnOI0Ic#JDEeKUDXMX@Cl&=XGGv-B3(y9N^mH(#iV~6<+B&GeC zPTBfCWqAHD<`@zv2@}>f;S%0aEw8qZtF+L2fR(urCLU-_0ByL?i)0rJc8wRNJ<_6X zU%a}Uy3__^B(e_XV2&d2jTO%nL8rk0$aEqi`zC z@tmz-At}_Q+^{1@vV_~H%qsbS!6UDd)Xcek0!PI1@vCZCl|F7CIM-N3)Cl!g6j5F= z7q>YTq$Oe)7jsJ5g!A`mM>oXo34@|fO1vW70!?u4FdX@u&~{W62;T_cV4{_rBRXNVf#p$4#CdwnxeUa0g}-1xpF!fyfz$bSom=B;b(lm z0CLc=ndL}LR^H&?{%?ng0*r)cJy|l*7t$;@&Da1qu8cu0DD`FS!s3U+;E+^%QfOM7f zvd(cP6UMu_FxhYlSWs0*CTHnuJ>!>@yk&95e-;~eD&@_mCxu{(%^1TI*{75f{0nw> zma*Onji!Usc-Hle^;8h{2-Sl+I3ufyURKa^Lbb3UgmgVjl97fBC*20PbLz8NjD`Gw zWW(rHT77&6mtMlc8Y)^BiV-cMI{~8^zDN5Pi z4+zsB#vsW>KF7{g7NdHp2_XBsGC5f(e^IBql@b+(?j3r#Ix(%Hf2J{$}X+HnFKq5!|jD4not;E2s_@e0<#Otd+fP~2f!WOW8@ zu`wKTkab+2C%#jYnj8)}5kM-|;&S81*7qs`CyBFkc+P&Fo3VA1n=pgU4iKUo8MliqVjWaEPP{$opD545^)T1LA*0!m zVY#VGaaKrvodpBL?_)4Y5iy%zpRe4^mv1+b){`-Z(Y8e_Z#L%J*rk4z*2#!Spd|D8 zFgg@Nmm_v1jB!9_==f5cQ-ZO)Z880JHgjqfISxlg27t@`mG)@Nxv^!Q5N$V+jOY(s zOUTtrq;2z+pIC%>=pfE?yz)I%jb)(ef%#c9tfA#a!a{Q`f=4!bP1`kdhE)cKCS=qS zE)+g|SdL|?q?=LZdCR(&zG%_+AKAv`Cauy>ruHwV4iRX+9^z|Hr!Tpp3SPL>3G|G6*O%#1M&d>wWq< zU)}Y;-HvUu?|me1{JSh99^)1_vPTM49C66P*23O^_*LV6o1^vE-JHa#pFm20NPl~oh&t&&n z#M&T%3nHogyH@fesnw*19;|%imVx%LChS{IAG0xO!@kvLDU>|)q@*g4i%qSHL(YmL ze8HYr#C_-(d$qV6oqaTRd>F$)8g)Q>r4#DN|KBHI*-L?|g)5j@TlQu!Nx zMJ&oj04z-n93pVj@8VjG+=pydd&8%c5V|YZ+u&8tx(7Q*#4X7-N3^ZDNQ6=kPeyJm zt637d2(O^;wUz|8N? zY0gG{;-g%XN|Hs3)5S^?4s~z2C0A8zg_%Q`m6Iu7$%HmV1L{t4G9w=fsZtp<)0B$`nCMhXG`iWIgVrH#FA}yAO;YMiCA&8mI&wM zDu*uDLU*Zr$8Y*A&bXhZWZ4OEaKOt*dyH)d1Aw%~tT?0QfT!8u=`w~V1#~>#c0R+g zoG?|4;4v}{04;zp1fqX$I4+%n;P(R3XR6JQAZTdG&5{D}2?=6bOlVwa!`zoHn8JQm z2O%n0_hi7t6b&>GR&&HCqm~c^L_^S_dvbLtbAYf>_4M%lip*W~eC@EBohDr;vdB)q z7OwyS-YiFhl{ggP`TD^5qA-2`?{(mKKL(C>@?Ec<9<}SyzgutN%`@uD!_SvCRAG0i zatn^A0D4-R|9ectz=w1^#B0Ep)c}olXsn==*9EDYi!*=pZ#S7g0}`O2!m-Ud_LK+ zj6}FP0<@vX28{^gX*d;a9kDjll&B%hQNb~NmQJtzlJ0J`INNOY{&S8XZ=%nEh&;eO z`z=PDHrLVoTk4y6-sE`8&E8Ph$zQC!fCf^^d(tfSSi^~k1v?as|JS+(aJkwgsEfcNKMg!Q>ww!m$84J;?T;) zS9g-`Yx)RVz`L;?Hw_E*o3glJhe;r`VdtNqPLqz!Ci~&t1w~3+eZyu<){4I8Z=YM> z(!EnGVCUxmw-^SgWkW#iN=np9D;NMx6}&9|z!o1AU@+rUU`tT1F6LWf)8WOvQpd&U zqNGVU(Y(l;Fz!@fNU%;@i#`duu?Q3z*sTDx87;=&RD4F*y6@`rUe!5RgU6@|r4)jh z9medw{gifZBC*YDev4iIc{Z*|LoUi4h`{Obj^Q6X5Wx%!4#5_QBlh+lOsu+BdpswV zN;Z)fV;S0l4YK|m5Q}EgXHC(XwmoYtCzjxs%yIt}Xrr&(mM$)BjFe9vJ+TL*`vEaP z%mW8_m0Q{L9_Djv)5YZ~YRK~66 zW^n;I=^bYy3wVxyOVxj3OeBSrB3xOP`4NlNZ@+vEdxx%zH~`raL229&o~J{O*B{HjgiRj>OG zpR^4NmB_Qsc)9W?aM~AvX5;hu zPOU68(CiP)`ii4S>pwgPR+`IWH*rx&!ro(hJ222ko^+|h`?!9RWy6EaQkTmT*TCBk zgK#1u;$?Vt6|L;|YWqPWU3K7oQ6)e7&yQ&x*L8jPv{x9LPK~k9heubWx#!-cu8^-4 z5oG&a9yvr182=)M!KeAJdJ(YMcw3N2|$l<-Ocd1v>W`rS-^66mt zj*BE*OuFRrPkmv%$^wZp@*7VF5nF^%aw3C~eFPq@1=RrDcC~GW&JxI6+cf|Hey&&X z-g!153!itbX0^klDc^l}_EUeugV;=umjeI5C4mz9{!rl>Qvii76tOj-&F$4|er#OjH)2oJl^`WrzI$>?)#w~eOIv4)sUr{{>_tL7}>jQ7kOO3tL; z^dl#(JDkbS%;=x&4$lG{o+J?H21xXng5OS)R6e%s?sDd5Cwrv(5#%6mp> zy9=EYKiPW>Tu$49A&J2iaARp-if1dzFa)|zoYp3q*B!;&NaSO`VnIf8<5L=y`2ZZJ z$-DPKMY;<;mfr5N0|D1o%^HHMUwF&L^QzWicK)}DVW9!1_<~4JA|Qayyk)TbYfWC& zRqCrM3|^OG|3@1P@V%0nuGU}BRV&x^-y%TovSj(Q+^A76c2zS|c21u|C zqaVXG?&kc{yuUPp!Rb^3-R$M|H~MlkKMGPL&hJ)hlccWY)AS-&onq$0b5^Uz(WBBB zsBsKLJFIHma0Iw7rij+of|!o0B1`sgSulVwIBt`d`$}3?{o#h`<3AfJ_u2EBND;T$ zb3Ff1+y*agu>&(tCc6yR;yF7maY?t|f)YMd2f<8dN+-u!^8oi&3 z#5aK%55(-7Dx&SS>zW-#<@i(;U#Fa2dpX|NFP#ZmxpY6=5mmWE$aQXT06;{YSEcR3 zAxJvsO>5ohQG7LW^Y3XluezdG0OC}IV+i2C8-qg7z3WmA#n-*Z zkKD)Q>#o>&JH@N5(bnJ8TXVw)s!o8|2Uy6T!^}QZ;+&_w!NlfAs(W!%+iA z(m_n2Oa{1M{#RH3RnLqBOg*h=MEjfJEqXy*NrVlW64|&40^mq1bU*C!o=fp)hVD!b zC#KFYXYfQv&;g&^o+0l;8IfPS$Ia(cuE-dE;2Ch5`=>F5M7mVw5E3491O&YFwp$NR z&e=Ea;I*Kr{ej|aD2!JC06qWF{c8sM#bqIk4;Iofh!A=}3V=DH3LC`eOALjii45C= z90)JODx}Vks~m%r$!Jbym=RI{RQ(J-HQxcqd_wH;c|Uf)$)uk88lIq z=FS|mY>X@f4WC<&G5+gMD0F~Kpn9v=(S!y`4Y1cj0+o!3aTY-A~X09-}aN;O18@D870lPhMYHR+9_)tKS6r(#ZOHjZaKJrZ4Ej$V&We z&hxM6rh-eP|8{2FzfSG=MJ-VTogNq~Zel5WV(OgTCytYXknyeA@=@ zd;5D0d{L`-6`R1$-HY$Q#`yB=Z@s>ctN!WS$*2R_BZ0bk_r90}-Nz|!_Am_Y7mcOW ze!aaV@mAkO-DyJ@A7sq0RC&j&!ves#4gbocCl5uo>Hj`6-toI`$^2dS#1Q@fv9{Cg zC<2kkzr@0$OL;%Jnwx`4G<87^Do!iT~*rprB?k}cX1FzAiuS!LVO4v z7>o!r#7mv$dxxfP+{aItK=U_`7$Y(Gcv=#ljrg7_J38J@${dW4t0N_vSJ#z@)hFE5 zvu^-dmR1p9e{;?rDxi*Uy|oq3uG~`r$?nWsO3GPX!E5ZNc`w^B1)`qg5Ca&HR1p9f z8z<0E|Bzxj5c$+X!*?5V#78T{d@QjS)tmmX2M$}dd*78vRss!=tFMBb&3z#i(1Qx8 z?MB_{w6bL&s(6&HXK}MYBJ2ewF!#d`t(vm33O5*X*YWsST(8UbY_+!T*RqFJl+3RpjpCs|og2H#-Y^A2I+{Bs#^6lpaOVZynpU9>K^Z5K5c^!!5AjaqbB|95{du2ctn8GyMWp!} z0=GPu7%)77wO{Suahu+VFl;r?CB=wc0x_JJl9EjEUm$!wYk@(#A9J6vE?d`;+h23N zh*<(9L{pTXhl2l!k^&GaD#$0YlK*CZy?~?pgbzwGYSai4A?^^z@ee6r>5D|bFr_h* z0Q4B6p=n*660?gPE2il~?yZ~ySYf!LqFo=F z(EHdto`Won-milHTI$FJ0wUlC*E!;_vq~|`2eBQS%X0z#rB+&Y^k1WPguW^?+LYV1 zA57+y|6E-t@ACOoc2P$9DZv3dkv*$WPIxab_(hdXz`OoKxa~Be$xlUx+HR-QOB-r5 zpu{G{6BA6Lg1V&d&>;JUz!vi=_-EFW#&(Mm5{@t1xstvAw2sF1CvBddRDlu<2J147 zl>>MEEJY7*jCboo%I#^s-zY6&Mk+)21b4n~N}`XsEya}Z#iN-SJ$bDg!u9FAR?`U$TUtiteDI-TqqPmyf-zM-o5Kcnq-kVPY{%k`CeG zdC$ZXeB+~4jqj}`QEv%P2~nI^H1(#*qxpSzD4;jCmcjTHX$dzsg0ow6_J~ce7ycwg z5Y=YsnPrJ91R;@1@s=m{@q3<|`j4}B_GqO-KGLcBzIQ>FN(RTuQ*hDTg zk{EV}Dw6ZmxcJcs*wGnLD~60xn*|n5!^)AN{M=HVhST4d?cwM{Qsln7Rviziou7-} z(ul2ZWh3Vdp`+5JYfG2Ylz45Us}fOGq??-3GE{lyaEbgeE}o2Pd;uEwI}NfL%P9V` zNiYSZJ(BX(QWB#$Uye7F>!*wN)xlv;`PVwGQ*F;*pRN3TA3MGNV~m3V4j&VRLCkwv z7P?3&Jc}sFPToN#!qA4<^@wK0aIs`A(|)4zSW_sXU$7IORmF_Hp$$$_FhR_QXw}PL z&Sn$7^2@uFT8D9-nL#Lk`h{=)+l*Bd*Xf_ach$?@WO|^>#R`R(MU9EgBq5B$qz#lm z#QT|)%o8rhF7xUsumb(6IPi)y;f+jic`-`bhh5lZ&+G{)mO!~0>}Bj-x_?hfNpgTf z_BUWchL30;LM2H-y2(iiR7{|jnK-^MQba0smHO@ZWWJ%V|_9UuFQK?nFu`?l#WsouP=XclXb}n z1_5guBpJ*LPBNt5i(mA6V35awg43`v-lLOt&7+D4hOiP118%hX;k^*% zaRiQX_dopCU2o9Ny*Ek9zV46Mfq|wDs^kegjb3k}{Nr8r#p-faVmrr9CH1E8vT}7l zFh~OZu?b8oI49`Q%`(mfAJSG33~cUxio#qM{3D9EIE$tbQ0#QzQ=z>FdG zwM-TO@ZX6JEOWPaGGVYaHL)~gu(UNaH)Um|cd#>$P>>UchsFNyXYi5|B1!-NXgu&F zg$4zdkVi+G06!p&q{T%5-~YYxd&-i4B`^*Wn$AGe%J6?DND2)C&i`emcw}GtdIso< zrhK`d_g2#e22g^!fl?zE*_>16y9qBL5VnixV9o!E#8zw&HZTJxjs>+uPEZ_vIF)x4 z#1e;)K@?k{4lgPU02xe_#0L4<2rz`%zFv9#RJ_pLx!|pPcjRku*5BT+SM_z3%c(5n z<#%;`J5=*KzkP_P`4~Qah}Acc={H7|C0U>qSqyKC<{hm<+X6!SjxcfZQU^#ENQJl; zDr3(y(dL&$G2XcMqpbeXJed)&PyXc8Vrd=ozia<75h%MCST-@5l2fx#pP_0$w9a(< zYQMb`T=CFxepa*a-^^X(sKO4-l|M`DonZP1;G3~A3tF2KbF7q7(|cC#siY!d5YLGZ zHAK-^)MP*wbu+iq(y$g*?$!OWejHl*MDB{#Cm_EMo77LdS44-k;aQ4xPh{GM?mXit zZ7?>f+vE*H>bPhEXG|Y-9?*_)SGiMpLMMWx_SIhrr}_~74FE*Kr%&SE2i||9I}0EE z^Zv(nFHFF7#l5SgIeu1tlk)v?KF0qv&lG(VDerqItpB!wDaL`_{oT&)``PFJHB#sE zxxk>`XgkFM=8Z4K@ag!0jz{c?isg=@g#ZcFaQJ8tXTVT=tnCfBF zb&*qsgK0$7{Icw5Fv7Kw#ffOs9E!D>GA?S_(@#BIyQZ0tMq~L87ON7o_`=hHPHp~# zsQ0NSP8>-|AyzZomJ|2jTd_|n8BYq#C37Z>$0kKg{|30(fp(i+f|-Z(MydeWfY0hq+_{{dDKJD}s7HSMu9L5@sbi_v-V9IG8e>|rY8jYc+2fdx;r(n*{rfGgDmCvtP0KP62HXfif1Hi=eJY`?s*7^xZWe7+C+qz!I4)y*!|9l~VqLi?45haXZxN9` zl?PxXlC$I&m0ltfL1`q!NJhRd&=5Gx0p7d?2dPeLI`BECXg@s=dxs3o0q3=Woa-LR znLBi|A7vICkWv?axpssM5#DIP#8|(dIo^4>FA^5O{HW_4WmJa}B|Fk)> zn>_QU6sw+Y7?^ApwaXKSshQ|SM%^(dN6=B7@zUb>UnyClF-C<_t75CHN#?S^|DTt2kbJcO9m=o&>5MGS6Ce3`cKme5}pC~WG#*Pv? z{5Gwp!E0K{F3!{}%j8_H&TyT~ENGG2774VWrp> zE$yGtAt^v{a#Kukc8fibKBJg4oWX<~vf$vZyiIUu-5X_Gr5mc&bTJpqs6I zWy8s-+P!pl$%dy08Y7r*gFO<{5_vQ(v05|}`WJ&M1Mac$WZCg0fNYC{m6bk_X?wt4 zT}N4HD*$Ffjsgh&89wbGguK}FXeg-*a#`Y^X2=cWVDyUxtt1mhft{ui{jF$U z`tw%&YMev~K`=6rGJfqWFm@0!GR~4)q2h!N!BO01h7a#zJz{A?4$4$NOe($h>VAzz-q>{NmuR<9FD9Ou}Li!oLo8O5?1w= z6|FLuGODsnO4FJavnqZl<>7UJ6er59#Fe*wLQ~U%TR0i|mlGce;;RTtA)6C^=y<#7 zEo37lmHFk|hzfT>W7_Ytsr(FF@@(2DfzOg_>taRsLDcv1guRVNF^Ia3N=6oV?q$ZD zkrpVHx1>gAlaufu*s(ZIxe(WXsi7op3=6F=f`V7Vgtp-;vpBr-jTw5F>co^R*hmSV zl7#hUC2(WRRLngv0nAnqrWflWBsDR|IUq-vTAOmivA$Q|EtVg4Zq|=rf2}h4SQz6A zCg3QB?L1EkHw9R0O3wsZHux1p(fi()fjJ->TMuctr@hxd)Z6fLq8hbiJ@bKyhL*ps zV9P;8)Cg*`DTel8;)7yztUUfwTzvc83&&yc*Li+bx8dGwJSChR_N`Ypk!ssCHC~nGu$CJv{u+s@Yb*Pz0-6f9riDSWF$e@#dsexkSEI(!fhQ7KW z3zEEvlPh+gP=P%2#Y@>rHdmz^&&+aim6m!{XJ)DDLNc?Ux+K-HiZDxaYsUm@B{Ml? z!3e9%x0}pd*;yOiWwU=;6LFyv zEDimU8?I(JkIi4frZqfyc8Ovl>)0+VJoizWV>M(Btw~M7!cOq>$eB);xbD1nsAL!POQv=^4KSOiIzjy1`j! zep1V#UP@KNzIi73iyoe6+f>AUgkhJLZniz29O}N)j4iBp&`)-&EH-P&wyexOJd5k2 z1O9zYZB*60dEKIV(|VnRA@c5*BQ?b+IDZ4w-yd1zS@LBIpiPFY2|+3YKml$W5Zt0& zuLWa1kx@IZhPpLh*F*B7^kdg7Q@|bIv;Zvg-lzX`Y9H3$^8hwfWc6GB&4-tFIiJlF zK7T`qe*7+(MV^=LZIjt%ec_=$EdCjs6>m@8Fnu`rwahB2GA(u1vWnVLp7?W+ zk|b&}DVmZhk>qogCQasGqnbUkU`!_Su{SFcns;Opy-51lL5GD_-Cbh<*^U#OxE<>T zil@%06C2%?K^Y58FBhc z#3e2x>bzy8c!P?1#zk7u%4-{hjqx)(_C*^gb_i_giCpSXTGl<_FVwm__V!dahWez&9@{ z{9COeTRgBqIl)?DCzJg&{nY%8rLG2kLP4y}IZ9O}7si!ZG?=barqJ~Bm ziKb|TkESXiYSgBhYd-2rc+TvqhE&{3(; z{_{zlP!xm8`Z@mRo^Q9NCMRPP#-uRo+hHN6=y*Lwg>NXR>Pe_60disfx;t)PTu0ZX zv%`+|p;b;bwvKbq{t|6~>PgZz%d@Swzv<*q287 zs}&j2Cq)*Yby^CJ`f!6C^TEJ2Nh6jf8E{~K(twX&e_Z{wn2$y4A@ zL|`H;wsPYpv3}7@e^4edij@@R(q0blajO@j0IPJ)p$oMgVgt5!{G0d|$i3u5ve2yb z9jfl{(Q;uwbzJvxVow&3E55{)nvI$zIh8&?v*rpQ`uh7XbYlUa_rUV-V}R%^-k^qP zPLRpw$2#hvGe!|KWK$KwV6{>}IbLR|DCI0Q{Hj^0LeuvgtKsbGotF^ptFel@*R}$e zjjK$!^_}pcS19+~QP6XP`{R6Y1!mC)k&o}9QF48nv#!;`w7KMN32TMq@}P*@Bg_YO$&BEOY@yt{SBlN~V#(iP84r5cFBobp-f(&oW8T zN$F5HPF_OJyu@9uPj3mCYNnX_7f#vl*%er+PAtD{q|B)HMBL-SK2UFb<14|Xwx}#X zz)N(j@!&)JIM@8v$yL4i?A=dSw$FxznOd$ovU5aT+m$|)+4y8iw50~T@zeJD6vm2Q+r3K*6 zcnv%8S5oLba zdOsJV<~*luE_oh=RLS*(ozkU0DOcn4Shks|r(fPhp+XVRVDe455jgp>QypFR%Cbby%G^ik_Z_P^Zi!sb zn)^MB#!&sK_;S$q=*CmLwyd%b%T&BP3PZ{p7Z#x4##2$NrU4}Dd+eUE?a|6)&?FscO`m53T7}iH?;AsR%5tLQjXV+_3Tiu7W5abf5W&R_yQJ2D0VFMwD_#ry{Ya zVT$mSGb^Szj;@Ln|XA^@o5VH_T4)plp1+!fWZ$E5RK9p^iL ziXs_GZ7uy~%Y{G6e$({i^4a$}y*zt*#2E5wJLT_ko;`LMAZzm4pQp%qtjg)S3}65N z+V3;&I}QPxoi?3s0XffOF$`XhM1by$^Y%j(fcH!H!s0m_2sn$-{X?Z(qne)|{4DE~ z?L2tx{ZN#$f?{8Y#gbtHXhdB;nR)24$pP0y05%(lNlkXluB$?A=TuS{xb3lp^TqXp zZhwLE!(`B@h6}ed$+jj{I%B#O%SXM|UwoTSWlg-cHdLUx{eDp(-o~`n{ zoht=HlkY=48fDq8q>7FDkcpb*X16q9CjCJ~HE5GdQ_$ zB9P1~9-GHjzv8pu1AFk)F_%==4ls9h&M))1jnBMBu=#fqns*~|9(PM7O|m+zXFKRi zBa_mWFY@zPDCflm)5W2HnMu_smciy2jUv{#&xfb!O*R5=#zd~ruV@9Wha)9cBO`bW zz5<2AII$T<7F-wo4jav$w`4K8vLHqY(NfJK6IT)oRmFu{{q0Fq zKc7818(Tc_Lbz^~ZAia??<-!emXSB#W!N#==jTIvzRQ(ow(++T-tIi(P}4;fuZJ(~ zx91uR*&sY6a1a0?4RAqcNOg7S0+Sn)NWW!>e-Ij$sf(qA5iPB7YF)cIW${J+CjOXoWa_xo>SWO|c?1nh1}987 z>5ULgJ>FftAC5FJI(((Q?IokrlOs3 z0Fh5=IK|>+g3CpM%jN9-g#v!IH#v)&y-7*x#x9sTrID0$DuB0y(Bpz{h^T!MhMlkc zU9i~@_*}4iyYF=l5x#6`ux-`g%W|J>dPQ>^=Io$8UeIL-La%uC1%;e=ypTK-`3!er zuRg$IVDQ?H)q2J7J8tZtt=;!B%W{K(_>CVhrr$jzZ^lE;?)Qc6J+AX;*yWJ}f50q1 z{S>Z?QJ=XSQ;>N)%hGGyN;Yao;c2PyhZl~qY`qYfr+Z- zzMXc@BO1=O;WeG70zPR|$#(rSgNep_o$m2*&0$spRpYL)uhZo?S$JBZDZAk$Vx#Ra zB80&Mv^BQw{NVD|KClZ%oZ#o9>G7~^<1_Hz=WV@jp`YaWGlXy$DI`^qqW)EJwx=VV z_H?ZRCGE1B?k|+odZwd29?Cbe<5`qAaEXU)>yKyvzkEm$L{-?Z$oI1hY&1+q>@@UxfJ7Am>77tj?YGJi_#3Ez?LTunxn0hb@ zMkzdn>P}}3P|HY&*wiumTz8E0d*P1bJBl$Af0TQ-p+JUOs2oSEM50Lim!vO06ytwE zcPltS~NNBqf#cL&4NNeXPRV z9M#WDbpruu1Q1KPmD24|MA!4pVCQk`L>7vr2lXDsd4KmOiO)MXQ~t(%*&rJ!w_1hGfcypEJA|e}v*1NW$`cTvN zw$nIv57)Tvy5d3KzSTyPeSZu?(X|_bmhDAceHhF@aGk~vzB=}}A#kSebl9^Jn;azM z=iH6za_jpcy!4b2({3}Om$LTM(9+@`sC-spQW>*ZM6r6s&+#Hnq3!v?x#)9y!K;}X z0ot%<1Q1;A@ze9#GoV*LB@UE9Y=%mLr`&e6kpr4muMFiIXG>Tnw$xJi!Cslz;k0EAOElycw)Vo`}AlFE+~ zWWw8zc6^7-bN9^Z4=u9l8&kGHh;BR+u1!hkub}-Hv2WcyKC(wXotc9U(&a3FC8dFD zHT8FrK#`uK6gkCHEBn}|%eeS6XlRBFt>?}5Dq!U!U*S&zm$KNZawb?AB_X}z#sa!?zp*ju4CQYm}HjHBYXd;!uQd&~W48*JpxF0vC;-1&!Bwmr) z+n4!yikh0SEw)&(IB-eIXkz91#OJsab1PBJL*}>CI45~&?~kBj#rP~|@>y=glZ(}3E64Z*{YeO zsf5NK+0^XJOpKGgFFd3uWbdt3ou5x*lraIaJV})=Jvq;1t?IXu&1tw)CZ{acT(1|H z5P%Z!MUM&}+!FNW!*vQFGk$k_f_6w58^8Z6#AbU{wkNvpZI{l(W(=WccEsj|825rs z&t}41OE2d*$nzjT%kxM{>^+DNgV(E(P3Ja6|I6^(>q&Y6y@vMaf>B58+E{>0^IjE& zW#?8td;4b3`G$?zUSxJo`+Y94G=%C!#Tn8H(ervHb7hCY7>38`;H9L-x(AWl!xA=c zh}~2#{$i62c)p0@Ww->qZnF;Jdsa!wTCyAJ_`Gx;G}Zm;1BUcDDS2j0Js5vBoowmS zT zl9dDt0TA=LturBPDZA&t-z_49tKz^7$-Ey+dCv|5vQ~4Sa9eDnc8;SvOKsw=elC-N zzSz^y;l^HKy4QWVxvZ#1@+D*N7}N6rEbUcCV_r;zeBND|pY|9OHHLc<|;tQSL}=Gw|b#zbrShkGt*_Z+buf_W^|ktFl3XN;xP} zoM4@?@lTlijMfC1OijrsROzwMlpysu_7y$uY|}c3$vWJMBHJlU@yH{ez(E= z?j`8mN}2*{DnjsWv1$Eer0ZPDKeQ0c7TtW4%p9{ahAUNbRh2KiJfxe+JxhT(PxpJzG{$-LfKT{{m6@pC>zSU>q(bk+$~7(3iV@d;y4T+T>AJQnV3+!;? z=EzdS6)b`^a;6t5&GK9PJfs*4=rM-l^ghd}O#T8smyeuNxP_bx4_@ zzG|UD5Sfsr>kFZLoJLs2m1XsQ9`76A#K6uOK}Z~c-F#3@VBY40YSZXEF)$!33WmM!LN+ws+3i7v9bMi)=P6<$ZCo0p1i91kz!{H`VvQj@9{ zUV-V0J6n9t((t|Qy!9GW_O{Oq9unfYkDs&dCrUxX_*H`$jRLj8yQKY+Gbw;neUFfh3C=$?5UE#B5cq+T_6Jed`YTL#JtOg&CfpjJ{FjTJ1sj{!$wV#KJ6q4* z&UD(1hMx?O0HS!82_sfYb%PG5-fx^a{EsI1-c8M4(=V9}x(r%%UiZ+vcb^xvA16|( zoeU~C=YtdL7dBsGUWJe2_&Xk#Voo00K3^;!tlExt7N2N%dkt{&IUabOZ+Q54%%nLJ z?B)9}|F)#&H2P)$q+1dL@!@=8aG|0u%Vt_Bh zx-X7`&n8*smiOKfDuUCfaKB(_ZGuh2g%jHXWwm}+)~0Lk7w6JlNz&qGq-?wIY!ou_ zd|l3B;{D4Tc>j#mm+}%~ruAcIpXHx5KN6 zxY?f^-1O#Nb6G-$1!b6I5MWKo1H~sRxIKO3tU8N5ioRud@HVk=vfcvV6eI=pGq}c* z*|wGvv}ENWuWf?5_$6GDLMBHh7{bbdI?rmyGG;ksQ4V_cTNw`fT>*5o4PZ=s5YTf5 zWHYIZA3Z;*ZQLFWzRhQYNc=#R5dz1?+qnT|06&&0RoHM`u6Oah^v}L}%bJysMq5I` zpE1=FJ3qf+zPr;IBX}Iu|4yp_v9W!2i;BU2g94vdC$ivoB(Zy|L2JUV&k>wy|#ak`*yt{#*^Zw zCPvHubkeu+gaGLFx2f=)6bvS~D7q8TVbbQW+rB4kTiN=EypK)Tb&{%*_4rEG`Bs^t zD#py6w${2kc#P_LYIpt|PO}_uAp@F~T-w*0OzFJW>GV80=)8L(0uRgHUBacEfmhhG zf+yeHw2n2orGMZqh_eh=mj@JK=4y@OL%8=f@q0ZX0=jPx*5PTvTj7{!H%ggIwzEUY zIlA5*TLCGV4@0uf9gp!EIZgP{;LUhRnU<>r{+2%pXaw%yu&teE`$vyq)esXanGYQL zf*ZIYI!FK{nM3b$2QOv6EHv)xM6&gVih+=f2kpD6#jfKiVk?{H>slmWBYpe9iH#n3 zxh&fK-HHI|0v@wi?R@=e^R|+&HbFWF)UIcCtx@qv%dBO+8g+>oCXp0u=n$zV-z$+&7FFJiP2g z?)g}~d??jl92aQmB0MA(jnAKcDxIR-9?i!}#SCHwb#IgV)f(e6$;p7Q%qCu28?Q~J zSR&)Y0Y3R@WGlq8Eo#L~*q#G;HbdKYC-RN;<8CM|S-LOaN;tlU?4}ox$;9&dhR+OW zy>_A!snkssQ*Yx6+0skNd$Sqrka$ez6>gpr+hkDz#SM@iuwt1DSBm2ef`C6Ot_1x!2PENBzKaIpArs4;m*ygsNx_X>}nWVd1`KF3@>k1UV#?3fV z%=((!w*RE2C9d2^!@Yb;q&^S+YMD>pIKf2BU5Y8*+0LK-pJM!-!eAUmSs+2thXEi- ziuMC4QGQcst%~x?uBn+@EDR}6rW^cn@U6XDGq&k&H3VzXUI|=NeGFQB_`jXW8 z9x;h&+?8B1xj4?fsP0O7k*Z*%!OnuJI9C%uN~(|Df2wVV5$^yk(C=`cJ?|_&#$Ney zsq<#DmJnlo)e>n>1b&DXOv4_&k?ED0E#5WWYMH=?A%G@d6+{D@S>UzAP7^j$%SZQ! zFC*HepUjMuwrMlJ1eQP{jaSq7cj}!q%mQC^ZsJv3ytf)}-yV+1K%V8gj-3Zia0DD( zAFye+3*XPhpZbZhue$VgGavf0BBsYNL5aUg4+xl_TQE0*#euD!j>3vHHoN5NPOYkq z_o;;tqO5!7ZmVh1XD#bPxOk3O_;zI;$IHunymxK0{BHY`LQ)kQf4J^%>s|(yzTttz z`C!Y-O|$DtLYcRrenON4vZK?#FY-ptTeOK|= zJ`UUaadQl0=Gx!YAbS{Q4DgRXz#;3^wRuD~a1OJPNMM<HhcrDlumHBGDysliG z{yho8R_WT;p_o#a+)^2DSWR#s#TYg$*-Kvg0>&4&s(JScpZ*eh1iA198T9$mC>`ug z7Y%LW?CnWT>VKE;$Fy>SB)R$L#Ig}DP`bTdCs8v0KtEu!ITiP566Q=6H~qQnDNVn= z)37M)lkO6`k&J@Yyr%T6fRakZmvJbiwVWexY0FqdS-Jv^!jRIoAV)7>iZFN;`Xnn2GXWFcCgJA`O?6(2G&OS{Y>o zb2b%gUpQooG^?uuIW$h~%7lO|NFvYir51ufLb@hbCFdRvIl%}MpH zESWdi-VjSGxXxj;S+fmZ3j|Hek~LGWZy1PikY>#HCUU=S2iog6?ufDHSPNflrA*Ce z2EwE##STMbQK~d2^j_){q)_ar$`VQ| z8n8M^fxz45-9Kgk&H5V-;8T$* z#$Gm_Cbh1z$|ieSQm)Y+Z5#9qjm9;l)hwbJPD+bgOP7zk;pDT9SmrZ}_rJguC=LI* zD-b0}DMB^>M1OYg%{ug}GeENZ!z6Ea8}!@sMr=nuQ74B`Y0}81`s_LJ-lUlNw%bJv z?uu;1W&l~X$3leOQtKtwBs7{ z-h2Qm)^w_q9ZEPUe>SQfEX0O{9xEvH6JwIq*xAit?$e#RA}Qv+jaMLSQD~F9x=sA$Vn`-HhPmfNlNde2&&0tyMqz)Nw|ZPC5?kN zvLp^zi#xV1ypxlA7RGu`57hGR{&I0M35bD07I{*8Y~!}OIB7Ccr3vyxhw?1;vCxLO zE<4?!EZhm_Ea<$FX7BDeG?QGEiEkFof&p2!K$(x$@St}4CQXMU`S2psQ)OL3$>%Wt zE<*0URovfPw8>&}hOnx~L01jO2Z4`%Om+I&Oui^#b=QdsZB8u?i6<3H-i+MymY+&r zH%b>o-6}DbT8-P|GPPu(qe=!FL?jr@J-o<3v&2!cD25?(9IuKN z?XjY}zjVN!gc27Jb19tPy%Gx!p_6AyYTn!IOP$^((l6r^dBQIL| zMz(ebqcStcfrap`#8zaXa|B8@GQ-hz7!d;6E5`S?!wvE~`V(UHE1qn~BbJ3G!LYby zpryg!4(*BW(k;BYzlq8+$wWcHKBZX=LxlDI*SUGNDD$ z%pzM`2~H*BfELXqR#dC|ZAJ^z+LB>vf2I)rwy-4oE6rcsrnU#=P}^5V?TL;*hO`J; zc8Qp(m@=cPlaVDI8f6UFP;AH`+4#InT@Z6`e+R6Zur{3l^OpvzI;76MgLW;+nU`&= z92HfMErG}d?osuRdJ@r0bg)A))4;FZS`NP^JBN9&OFQXb^g@D5(^}rWl9V^uEI{j> zv`(Y8!F2_b?1UQ-E%b1^u|=n?exCfm!`29(FlUe(d4}GhU9~V0Z(Z_1p1gLJBIydf zy|Wf2x1vJoASyGQ2tAR6?X!P-qv@{FPj(9-{nu6Gk@AS8W7px@IMAOW&9Uhg=WS51 z74yOj$Ysj3G)3(Wm9oIp3FxC$caJLxF>0I|$%R(#qDA=R9%+D%?Yv2i&rr-2A^yd3>>3(RSv=o?k zN319}SogLXc+l+>$0=6O={>U*dXamf0OG7stl9j!X9-$@h&vruvi8&l=kl~5bY&kk ze_cMsr{zc{4r*U>A8fQ}En3EKG-73&FZ>1#6|K=cyZw5&y(UH+_q4^B4IbI$ca(ds zd$9bxlqn|HdAzdE!S_JhFVLCfX2cD$YAaH6p7>fdCZvkkLriM_fGpn8Q`psJX7gr%xS3c!*r9GRqb;s)x(>4^sb#FJkfa9l zgfi3KJgLvP_)pLS4$R7(Xz1>Hgf39B5D?=7w7hM-RdPGTH+g$1;~*PpWKt35CLHFB zw%c5ec|a^>s*=?=L1rw*I(tmW3OcHI5JXWv*_PC;McLDxR)(%ihsSNR5doQ$yBvrS z@<7-M(~FjJG2Tn7iIt=|vaSw%y0J<^O}1r;sj>!YwR9K>A?2^dJb{sM?uYPWVO*wz z>p{$Axty`?;R42&Pcr#r5`NI1cT{YR%sfm$&bR7c2-e;TV9!?!1*@7Vq4SNUK6Pp09Hvp)C4J8&5_43P3q;R6rEn2AdjNkIrGdx zE;mgppJW10Q-)SUi9RslGK^>wPE;1)h}qpcM{T3^C}edLq}?VfJ>{0G4GFy?=<*j; zlB&#%5EdO=sad&C4rb^@SkHRU-@ZEshba*NU%yc}!T53d_@@7ugkN3e%eIh#cz*#@ z*4ck@LdMCeeo1PjU@B&4wG<^@cH&l0o{J-%_c4w)Co`=4!irbUalIL%K~UVu@i&_Q zmH4to{Wxo`HANHe+*haKeL3ExNVTmsoyV2@~FB*PNvdKA-LTD@13p z{%vzn2#GzL{zULtwTIHmua23&hQ zdo3Gah3~s=HkX0juXAUd*dAZzNbWwwiI3D1%g{TPxYqED{<=3H+W{)%)$bLmPM{39 z=i>DtW6$*1hSGi37&#Xt9fQAG+7$By7ph`pfq8{^SGV0Iu{KRSV#Pn zwyu$^UBQz$|G0@0U$v4Q{A3(RXC{7H%;&IhiWwlnBaED>Z!+xeNHNGX+|`% zCw&Fy3!^J+@HY-*hF->q!pwZJz#g$@y!q~yJDxy2M@1ZaXfjzdDgKAyFg=bf(ca8H zStD1z;KULVLz{LDMK{9&uq9a*baEixj-GX9djB8eO9S4-MZA_{TO+kkqG=V3Ptie* zH=Ruko;!>-wD!&jdXt&)FPp9S3vb)pWYU_%=v#d_C-6=`h{ySxlZ#_OAXWWuX@61DZ+5`t(YJzs&+^Ni z{zbxBwu**P4fB`YlvaXnICDCU_tcn$+xFij^hgx@l3L>A>VjET;i*r5YszIDCJOyj z_(x#rj{Lt`pix9K zF9k6=3#8?_Xl;9Wy9M;t|7e1ckv#k>1Dm$ej|r10{*{9k^0&uMl5fwXOQieTPeC#{ zUHv4tuR{rlgAg5(zmbvJo=4k7ChP=uG#zmRBBS{7rw{V9MW0%+7b==b$QjFZJ0!!B z?@(#dV0-3e+^j7UJG^tZ46YPYbmjZx9eWU^4J~_I3rY-Rv_2eat-PNO9p}$2>Nl!2 znEG(*#8Ajd$cx*Q9nHBjit4q7L^Y9|OJCRuy%VawXtCm;kZM7oPmLbQ>&~_BdSs^6 z0|b_RGEpn@+7mV2|5)LqDH@7Lb>=!pD|c?hS?m1A9MeyR*wol|%U)V?X?F>4KSkgh zYIV6`jh#`O-C1kpB2WLy*m}`!Ve)&8!u5`3Jw;8z8;6QnJya#K6QMUnPcxB_T{rW+ zXPq1iJ*jodfdfpRNRKqS8h<)fZhLm1q@T{5%>AlY%|ADfcr~JCN||?0(iA4#5GvjJ zGp|}{JV&Ej!LwLN@25Mb3ji{HrNId%|0du|x@FN5EiksNWWfc2m1;sez1Z=sME2}3 zRl!6miet`$A-ac`&|zD(ZN=Q-Zi#>vh=~{MMa)Ja&EXVKACqA9P*AtoGc$_}r=9qVhN}`HZ`eSN&^KOtRi)uMFz0^_UecCgk{g^>LBDnya+~ zi>8zna^EB0h4>~9l(i#ov5W$g=;6g>6(d)~pMpMC zh%)??qB|nXP3;q|h(H$A(Xb78G#$pqzDU+@zh! zIG@cuDXwtLCd>yq7$=lC5{jv&FGu7Vl3Z7}iIo2hmGb>dk^1ZN%B@#lxuI~xsS|A( zT-jE0bz^x!H!%!>em0E%r68>cO|G~!cvUbeBs^5ful}hKuM1t$^G(amjtn#EQEcw zw5@Z+zS|Sf^6?hs*j+SpU|Q@CbQ|qsi))21_rfxLcTp@w$BF;x6!o%kxx@G$=e>cT z2Dxa+04&?cD_V49>;V{a5nYE!4!^WCKn*5#B$9nFzqYv=n?5&T$)nTi)S{QVvDY+4 z_Tn_xtyx%FMw4GeWJ5dWVm=Jn$o4NXM`gD?RueK@Yw7?c^(=c1#EBDReC@CJ9D4%e zR{N||wYqWR?KGBmyJ;Bt-Vk)6=_Y=K--k>Jxr&e#?0Ng%wa4r|3-9H>ytF9mO$cbH|N%gVS`BU z(^IO=@K>GeBiHECJwxPXix|B{;tn(v=%>P{{{`~wF#|IlooKQ$`eJ2Rgv)Q$-!xgKvBGTFQG zRWY0M%c#DB+nLn{{*&%<-#|^F`cCXhSoQkZrDagi%0CBFe)azc5R@Ea%gVjk`EaSJ z5X#}HKj1a~gOvbI$_|?Fv~GnNh%f!+EHsef%2ofBAi$9_WOu=(gv4|Rk{_6d{_Rg* zU9R^(l!#@dF`%T-ry-M~;F9j{M>lHz3tG@9Ar$W~4a*?EEhkKDe*Pa^AcE(nQ{zt6 zwuOT$!iceb|MpAZ8wom1$43yW6(pA7<9`qr76|lOLe`HZhotgV4g4RngveXehBpXH zV$l?Rtf|H73}B}Chnn5K0>qFUpK?E90%m@uV+k>i%rE_iP9M&K=|{Dz%;?t&5ff&J zjpHk{{=0z+?#GIbk@@{CG|Vxdg-Tg;;#1Op&5jBnv8Yw?#aY5sWcey3k)fsaMbzYf zg?8)LF84k!2or?=z@UmX*F~iu3^g<-dv8P^U`*?yP=Ha2cyA>ROp9`1UOjJ{V&p_H zgqi2x9twxXGJi>Bp2%-ya#@JEs7cto(qmHNvp@du)s__>0 zX;HSNW_v3QhZwk+!`KE zEjb2v@2Fq27FTD}v>>_A7dYpJv+UkJ?V+XeoDV}+G31ng+^T($UXeXDYvJ;?USvmy z*VF1k)!>v@VleRz%$eTY!YqlyFa<$s`O&CM3Q_%2roqEkK#w${0 z=BmR)s>jWx>dF$Y^;OY>e29xoUU03``3xuF_2SZAaHv~b<=|d%k#oaz&^6o2!8erC zBh{u8wOScD%;YM+g|9RqvO!TzpURTOV=(TZOP%k>_F~La8uoqiU++^5T3AtvV!h_x zr#&V7V&6k4=>wWg6$-flZ#)DfWq-D{?`1vQbi z812+2;}T-ftbT@JI`Ft^B5m;5dM#2{%W}zS`R_oCMpXdRKhc_>H&?odSkSy9c3NIo z%k|36!Mot{{RA-8Y3YBkRBJDQPTVLLm~?|kZBSPxp0R3~h~ zBaQKJUpw1qH8grAPzdQ*bZTH&QB??=YkE4$o-is?ueFoutTBrBLw6Ynudr--O_xlm zg%;|mcHiQlo>2d!(`mnDw&s;G6#d@i1IL@xg9)RZgbN&fRZEF6v&dz3A@qdLeWm#J z_IJ&bChuC>&k!$bow<;OJf-^=sP--dF^qt#OVyj_&Uuyl+>(%1(x!Q@2s#6?c}$q! zYp<`K2)Bw3| z9zu0&obP}nCo`R@b7~>)n!S#J>0-mer{8w@j-7)%DwsrGWmRW25~eo38wx|Jp4DeI z_-%`|i~bn{s5JIHp?YkZn1XUs;Tcw1QpIZN(o&TIasEk-jRzN`ANS=yLC5VJDw;K~FlUb)_9BI{Z&ZIn?s^ zCR%M}n_JhZvyJyAdZ=iCh&`>^ITavXh65t$cHkPDe7<4UX;mn9%GPRhf10pHtf#-c zUi-^yZ7ZRne_D6gDlM^RV@YzIU~DuUZwV~GTqOqJ^nJDu4D)_56edlTs z{E(X2raDY3aDi02jl9YEg6f|>Ntmt78rQSE+_f&Fp8Pvq9srJ6tAUI)-h8d=eEK7y z1CtYj!C14Ow82Prt5Dn7b+5ym@dEmXh|#*HW`#E4FUxPg(vw>n$IiRZ-%-$XHWXb z^O@J(`oVA$O^wFsp_zHEWDeBm@XkC(F*!`FsGlznjlpic`S-1rt2I#mg8|}HZO*49 z9HSXg%yIv)s|QD)^qNIChS#hwJ*=wUmCb+rhso9_^rnijpR6N>??5D_`pz3)h2~Q8 zonWrRMNPi{gaQv^xqO#^fwynqRQhi(C%B`_y1u>wPDr5qZ`uKu{{T_w7Q_Lm*a z(8MU~D~C_|d=|8Gzr16JKV#3XJ}#NK0|#^a_Ij#;q*+KNi6#_Xgv#Z1WFN%!tHZgI zR%(}VewO(^@*e>|2AFm&3-h0=$Gi3+(Vabc8Bcz>R~`Fjo!?aGL^x|UReNp;{?iup z47Tf#MT$2kBvy$^;+MDPb#Lgcj=vw^Idq-|JMsSMX^#TZeH%k}_(bZ{^KUSqg$AIF zaUF~i({|+E2UDP4x^3%yeyz0rXksSgakTnZ8C~w#1Ka-&oM>d&1k)}Ux}jO8kFC@` z8y>D?>3NEKajs^{f>W2T+S%(=^4!Ry{+*V`LeA%HDYY8t8bIk|>N=3~s~2FmBVx&X zXr{vn8y?EIdchvd4vaiCV#Q=*8&QQSNFT2GF^GpVFC1+JWL7>n#i<28^qe-3$F^Pf zmG&b*qk}AN@WfZ%xpC~crpiOl8Oh@vXS!dY$gQpZ>O8u=dh#{MRHWa*n^*?CGAOGv zFaWQ$5~rKQN%y}3RZJzL47gt8z~#>6vI)a%z;T-afP0VdZV2azi0=f>3lO+eZF|;wv}A74sa%`0;98F8fs`6 zklb#lioYU>A~?vVFwK=)29$PRu(T)AVG8x&2z-frFWFTS`-C0&0hyANRDODOlHQ1$ zBAWv)?4MqEaRM#kj#pJx6F7eNkVvi+&aUP6SJ|8DufBJb3+{TiP-tz!GP2{h#r=Bx zw-82jPsZ~Te!Qw}8>-Z*v102WY5W`QT0fwC!@Cu&;78y5=N=1Yfu&YEbeiS=tN+uP zyY$Bjd6g3+li6WYyjIbDRY%5^)tdi54Z;ceiRxFG2_abbnCn6=k8 zRvY<8vI~iU6*R6D9N!Trji}4aZw6Z%-L3CM{&(?>KtaZ}l#i`08`&%=+Cp0?*D5*u z`TziUX8V}8stpHBF7VWx{M%}MpnRYUW1{%LyPFi8?lMQVl7^WbQRN{kt7`GgOuTGy#BBw}ZIbcO9@}I)q zQ|Qmix5Y=Y649OgLB!cMmwRKxOIS$ zGgi-2_fcc%-xdcG7g79V)M?6{yMWn+EY!S~yRCmv>aS=`K-s@S6WM=LUS$(C`6-Z} zo5%@Qfxszqw!GT&|L5sX&_eTJyg68**2km{qqtPfP>Si8`Dh!A|9_$nyVB#mY?hRP z2@{dr?Bh&qEg~LuzE<86{D1e9JakCil zJ)~Vg?CfJy)|f>4UqSzmwdDK>UYsrZ7cJts6YI_3xfcyi;!N!6f4?&b3t9S)8bN`4 z|1j76LT00?OVXm%(+p|fOrEtbMSnXfh>(8dE={IELt}#9)^-}NK zUlD2gJr<*6Bt2QFz0U6ExFZRh(Vm6F=ViD2kJx{QC@`3Rigq|tVBjSK9U~Reik+#z z0M^42vE0+jn~nlrBZfcp*AFa(1Wft2sGzwn-NbMAdI!q(uU1;h!^&rQKQ>vn^xxC) zkrXKXU&q6ip18Tv=lF3&IOCKe*&*zY7ydCbaVl15p{WmBI1|hNN7Yw{RTXS+AEg8Y zq@|_1yG0J&A>G~G9ZGjMNOyNi3)0<4HwZ}Aw~yX?pYO+W{s7LN*;DIXYrSjDj7|9@ zhC&>(MEZ8fVp3x4OZ@>6 ziVrD2^h6sB@?5@ghWyaNq8aJwyLtl^>PM5PKv3bXBv5-Ok%E@U>iI|fKn4@4M+$cVu^1z zmHj%DrjJ`Mf!&Jp#7c+Wn}-trKXY(IncQDp(?nT|e*e5lB|oNkPi|Ci@xLqxtRh5wZLSij?CzH|=0~Cv?K1*Pzqg7 zRFd%@?TrqLa4Ikw7C=%-RqN^k4-tzGDNJ^j3-D+LhE675ZT>wL`AKNjdcGRnz>vzO z62=|48rK--FC~MHF_1y`Q(-p+1Gs+sD>(M`oBTAz9uD3%{E@t_$)iOkvBlVTtReqH zXZR3|lAgv&$xoOfm?EKzle5(W5SNAzLKx^=GgMres4@K+IkmBR$#$w?{-QR-0l+q} zXkVZQqV!UkKduDebEY~f$}5z9%6}93Ih6BD8$iL29qb=y^^T0R7uEp;dvV=b!Azse zj_9R@&!Y+S8%|qM4g0^`znR4`R}v0?Se<}~3lbiUf_lB!N;bAPAC^ugL&^mBVtugZ}CU~Yb?2NLwK7zTde4z5!OkmMtF z97v^6KUiZnQ*RGbT^wdXh8t;;gV?*>k5D~rfWtcJtbK+&nhnt~6s#0PKjqIaP)gsS ziG*se+Pu}p2E2akCDpNpuBE+Eq^eK!DCmX1YbYRS&20}+hgszBQIc>3l_Mmz$P<8K z7Mu8_Yi;!vh?$mHO(4Lxhf_R;o!VsLO5%t|2%@1hoTDpC7S6N z1Q1+I++bs>T+t%rfFGV(Mp9ukt^&Ho90 z`Ma)cV|5$Qdqg~MkyOZXg^qt~^m%Qp{;ePH!3cw1JZ7Dk9lJ6;UI zDZEt#`>jlQFO7;fKTwnaqZyFU#bCRVPzC?q)7~IfrPVGYzp)n00mIMivp6!QAzwDBirOX;YJdK`>to=R@ zF5}}>dTxqP+%KjprYVs%=)Cuu=H1`gLf(;W;Ewa(tg%ijJ?!;rc%C%8%w|6o%{^Z} zO_<8gu6=HEd9paW((Y>TIlAHXVIdr)$nz#dMV+K`dw0|N3OM^W1|A(A&KSi|$dqP7 zooa_$(7=wufjP%Q_$m(tt#xS6$}W>yf$j3w3D2VEcQGcwO3$4cEz_&d*U zWtri)1#;bNfa&fOjA{HUJw(EhBEKuS=%-3e5k(6kT~Ai_{_MOZXTbGz6kcJ=_h%db zCn4&-z_E~!6uxV|Os=n&WBNr7XL|3;m=Snh1#zyterSWahBHQ`e(uJnJ0?NsnQG)+ zdF&fbVqs-A#R@@#1Df3^B+;P#*vsm!H1g%C@$~8!9hMnZ5w*f*2rm=}Bo7yX;kYkT zMtmNkOxwRC*#v7!!Xx0t)e*~8ncD|++b_s~oNYRVu3#j#3;*pHn5^R0%_A8ViVo3~ ziVI{|oJnz=3bU3CGL=T8ODf;QdVI*i`ye?-U)`mt=PQp;gII!XRwriEgX@TWB$>Fo z@dq|=GZRXo7UxaOe1=a=JOuh_f7l2pii#8e8h3#);7@+A-rCFZMH_-mu%3t_V zVGVI6jBZvhn71)-HxCx)SKB)oA@_shMcsx#BS2OW+M4lB6F5rBm5!8O zI_*Bpv_4b7_aCwKYY+8<4S)6Lr@=-KfZ4eDQh|LzM!Qdw5oV8O@;&OnV1QQ1e>e2L zJAbU@=ZX)nk+duf>cQL!7wyl`$8E!SM}CC0uufksSp52P1?_usYa(B%ZdF;&@8 zv*RZnm@y6v3j%$Q8k*moCpcP8`OS*V-WDP{D*7PQnZRRyBTD72($ye-3pWZp_A7&F zI+ghBTY1DL7-RDEzJOx%`=60xb1O3rV4?`(6Aa}N2crhUlw#G+Sy^f94L8RQ#U1vS ziyQc?=R<&_uKi%q9P>S|EBgZZz{7^~XjiKuA#|}pDB27oD~+l7qObm~r|+>iR^$u# z`TVSmL*zQtlKdHK`H5!^5%ME%{5?neijoLO@-_oPE-F4+?))1PDtL0?dxt}H!(VZ3 z3Id1J)3|w~WE;Z_bt11xf3r5i4Sbseh8O=k7>&NF1Y0+Kh5GA2aQZuIib(;9B~HS`1&83ccm2*8z!;xbwm0UPQ05`QUkvr2Xe~`N@7^ayxe}a&g<)i(aOy`aUAmLBlSK5sJ69t;zAu~MNBwyKIg-mbC z+K~GF6%d*bw}r3lo<2P#Gvw1akg;&(x)2oh63^gvB{}cEQy4w6*nKq()CxNM7z*fD zRo2{%KcaCNNW%~BA+6iVzY8Ttxb6rfo(z0&9!rapP0im!kRDK|&Rlso6>dM51$*zgv6l8vk|6k#LvB{;e7^$o@ zw|_374rJ$E(ShQ=vJVZg&i(+@K0&?9NC{@^B#bNIvrzQ>1b2smHGPcc7|O}<@7u3GIT3S{(Wg8rR!%p%JK6^gFHr)< zIH3P_RfWZkjUp}b`i^PBlD(v&pzXbM0mAj;w%sQrB%a>k%37iSO5duHoeL{LX>jks z<(9xI@B1k`kITd6jBk6ViSy9BuQ-4Xp8<;)o_(M4Dq45Qes|iyE;WFk3!R(x%&xzi zAHapx?)p1+`BTXS5%*)DF@3Cfe$7iP-RwGaL3l#Ld09=;vKCL!UR zCLR^l9SP4MF(a|g6t+P4i=jC#G_{-Sdr#@RF_wwF?gU>DNEJG5etmYLc zr$xDhCD9b+i27v-dt)Lo;X=j4wiob1!PDvCWlz077qXJkJ%CFQkyGretTUsc!VtB7 zlZ`|);|2efcS}k7&nAw1sHh~mKd{dWLVPQN&o1Q{P{zQDj`@shT2nDPgfQ{1LtBCo znCoUPlxMP^)UrNRObh)7*?eV6z{UyJnIlqTPDuepCY9?C&x%F|51rW$pW0lR@;@01 zvbJ=lO&(wTYDrUVPMtFIO-=*AB4?IO*qCn}8`WspL+rn~0PbyCotIBHon08ZnZK`t zTRYQYOJOuz_5eddrK;HX(Tk^?4DaUv^LokvEXWT_0c@-sP**2pQCO!4wZO-Y_T20G zv&we8OZ&b_s^FI~ejCgE4beO8PWAZ*2^ai0Mzsg^k@io6vu?K(Vgp!K-M}Y_rm@`m z(6Rd4u(H^p>+d8IsaT@Uwx`Lqo%yq;CaHC7^{}p|bJ{a4E2#^tul{c>uA%B19b70BeV540ln+E}Q^^I4x<1|yPfbmNZV%65XGv$?>i5nLHQ0M% zlU40*jwSIqr!i_StlBg%M)H!B*xUc$g-KE|^$wm$*389OCj3%vbhBnizuR2jk=wnK zv6E4^v*YP`zG>ap6H@V6^0PHzw+`xuK`pX+%{>{!&U0Y$*=WmdC6K|@xSsqrye*)= zpv5$-kb3tMzC=r(hx*3OgA@>^#Lx11ML~UCk3bIa_`?KnpsD9s((?(+V9YJ9N!}A_ zs{~T9uGq`%EE2&9QLU^jYo{IC4`g8Sz9tm0Y>7eT-pxjY1Vs~FJD*28j48rpdS6|g zsM^{>Dtzha@NWCFzJq$)y*TPrjA&)yL_YCrc%7V3@%`L=#(m_ z0$6rpfkGsB4EMF@r~29P-KWk8ly&+pkB8^7D%-A?tCO~y=e8SeXixj+12c{cfu?dM zuC`R+F;UU=C``iGV--Sxa6n zSYdc-`nls7d*hzl2T>##GR}px{sP>c0*ge(ck4NkISmef@s$XJ+!{2m^l}NTkc+jO zbw=ZZpHt(Q_QNe(*xL$s1Q>o1x{HsMT>py zuB3< z3NPSdO`Obj2?Q709NgF_jrni<>$EI?JlKvvxu^o{lNKh`j;xYX*9LhaGz_Th7Vj^n-sGT6gWroN_m$ zAKz89bVox5fdQTkA_l3?;W> zIB=711=5j2%^b`q(3D~S9GC{82^Lt){DE`4g;@UO!UYc*k=LKor zKOu8K|JP=BO+mXXwv&!;&mi8Y2uw6iV7F@Gv0(<@m}9YUuNu!z*4YxFnsl=QkM?vZ zZwdS#uZ~L)q3$bWSZ4+4j!42H-NI+<;5jO@h6dOmwrl_0^xZV2l`#k1THZSG9!^H?IN9Tr%YFb*aKx$Rm zh|L&2hdSv-Z7g*}+H&6Jgw=m%cwOR@;4S(rYr?#?$|lB~g^b6C<}!X^`Wlx6oVuyw z@^d@SHopERco0Zilw7tZKKS5|zA?G%0rj9qwEDH%!GmOFrVZV7cbt;U@6(g#J}_T^u)dMP5d4rvpp}CX?k}+WKa>8;+qWhFI--_ z2Hwf`RVT5(_lui9tO85vIKt!YyW|uu@~Ay#&k@&~c3#i5wX8k&5$-DwpE$HO8& zYVDGS{jyD4N&Mas#h*$FzSoBC2n~Q{$=qyhH*p8665{ZU8;M6Bd^^t z1PEkpag`pS62$R%T4es>d>3LZi$Y^jUBVCYQ}_14#|o4)FQ=xP$;=MhwUaA8TSmDX zCY?efFXE{TMQ!SG&GZHX!GT^tvbyq{=RIuc6qBwv~sr{xJF5|c6V!Y zHb%I<_%l_E{KwHJu+v>(!VE)$sClDo_JuN4nj~;x>&LJ4o%g~yvxmNGS%ZX^kWzEO zuANuinYP|;VlX+@UhQt32~U&KCn=HFc&S{*Qpd+87s~qy5Fe$QbgER4s}HPu#8s&X zQ@zK0=KeSY=PIy&(xJ()-g$F&>Q3}0ro_oIXBv1|iR)0eEvqA|jC^6sQltHu?YFkM z!w+RW=0}~e-yt_qZcTAmhO5Z(7OBp8G$TUY(f_uc?%`~ z|N1qqVrsr6gy$Q8*3wpuhv=*l-xs0tz(dADmdx`^{&B-Y_u4-#dpjsRmUtc(xHp6V z97U@=(6Ofsb$Zo(@Zct{m>)iYz=|AZ)4n?)x;vd`)*rspZ%Y(_eDcH}%C!8cgNq(u zOO3dmg?|fZvLgv=^3~e6!r#I>Zp z<%)%=MN2DN9Q%JylB1i5sTa&$nO(}T)cnKvxX*NshVUH0DnG8AKjXJ0uG8hi@37ZJ z#~FTq72XDP0pBT7B8pGOGHEq=J|nx&LRm+5w45d>J)VIG6-BccGZDD;6;uzKi6~+o ze|bzrtCry_ps=VYt$>6X#DV9{%(w*=p$Dg{gTlLA-5-`<`ojqT`wxueFJ)3L2~L$& zCg3f~$(Y}YXhmk#Yppa)G=T9z{!TL*PzIf@Ok`v}Ovr!e)YJ#v>|})@S%S<4kB$lxM=#TJNJ>e&OowCXl*eTIqhl6Mlwlw9NC3tCI z4jN!Jzl3l_yQpH~&TIAbQA?Bb^r>wEP;5Up*I^^ttKRa)1B1R*ozGFyewQ*Mj)s5a zhoTDM)#{{B)zaO?O%&8$D2&RS@36@lW>R2D=8EU)ocN>c=0!@RBWnu`=%$c+gWSi@ z|KlDsloE&g(7XqRDl|nC8uY|OdseTI0Kem0+1%oCFW%1o=GU=-mgGtN2{jfKgIs~- zUwKyHQcewU=2*P0UPQ)r?fK_Ms_Ag%LO|EUPEZTi1u%o-lP@!~fXVe6UXTIXG|=Q( zn3vwCrG+z>9OoZGEPRr@-dHMo5(jR7fF^KHtTE!Pt*sbwFka3npXuHNw8#W(>F3n` zyP`aGw$;5~$0j@(_*o;N5Zp-CA`FP=<-6T4Qs z6XEMxScCc>g3^~#;i?+tB-DaFs5j8F-px^+4M`)n-NY$zo?}E;HpI-!ow`~>1@!JiN0HG)aIsl@jrqxg+jsm6-y;9W_<58p`|X#`mu)F0UH@2 z4%4{)mr+t`R{e%7+i%s{ES*(@Qz#Ra4#~xn3lfzzJmQjseuX*2HnVDkT%TwkIN;99(o^Hap46p zJ919Bb$ZR}NPNkOyE6zp)Baa5C~BK#A0y@GQ!-a0TC`PxMRyz|Uss@Qy?-?eFydr~ zQpu^QtnaL9o(B_@LU$?g36PsR(=er7br88&Oe^9lgISm8T@wLwjgKYQl_2{wcX1ze zwit$-=W0u`qzK)Xx}r9dWc$S=$P_GtMszf6S`Bbi5%t?3Kby(jeeFapV~!? z{Znq7rcI|$NcGn<6^vIqmV031<+mTc2Is3S7n@o)5^cwvJfFv(n{nWrT!w^%m~;o$ zib7d@QJg;swm*y`%klUxpYO|465Faqp6=fgCjG*=sgF&7S!KkQ)9^z{>l?^#Ot0#D z)Tm}t-#ABj{#)|o(wR^tFj&HE!#@Ks-_^Sf>oK-;mPt1z73>e95RpOqSY?`xK~0{a z5!7Kr#Byd{3Q5ap8ND_rcTyFf15*os{03_MI&5`-b`KDb#ca2FE9Ns7uMDXOf6N}`@LV2DFzLV zmxf`!+k|L?`BzxwAq=*QZf>J+92zJPSDy%jxU3Bu^*E=8f}sJShTjp>c%aWI3=bbP z;i9pdtSr$yvQ(RrOgsyNmO!W;KOZSassr!h!Ww@8aZ{NV05Wi_hw2<{<*5HIRx-l^ zFtmx67R?$?KQ_n!Bp`cy@1K;T`dOXy4>XO^284}k>Rx1C&;8=T!!TMAp=r7gr09K_ zfY=p-B*MS^p3)I*>GOP6#5}5fz5Ka>A+0^b)|YF-?0*x8P?7mPiX26bTy7WR;mIPL zexb)|*u_6{s#C!pda~uOr;dVvns1+|r>A9&Jf|NnM?&V~?|K?P0YxzDz4rX@}Q?*yv3+qjKs&g2paPREqDQq1+%+Qvv1S?htY^dBkE$PiRN zvz=@b@dWXy-R!DALKBJ*!D_ z`$-a=;#)D59R}s2Lwu$-NPNj@_1VC@E>@0#$*FB)u(5J9Ij7cyZyG1Iy0k8Jy0nmt z3eaRWqzb;R9t}1G`U%Yk{$|}txt;6>XokH9G7^>pZ4&9C{jWfo6f;&O8Woz0RvOHk zLKCS}u}MtbsoM!Bo^Zmsa5uczXgWeG>Q)GaB2auljo%esmiUAn8*zlRsq}a2xsN}b z(w&|EizYa+>aHTBT#48WyQk*r0Q!)uFJdX~8eRmU)R}g5ACnBd2z;o&9Nu<;|Gd^6 zW9IN9H1+r#Mzo((`03+eYeJC$2Zzl`$|@~%8ytjYk;@-jljrJ0^+*gL-9#s%&xio~`>Kecgv zrbE#jXQ}pSWfz*jVM)h?{bmY8#o|jx-Pw76MmA!$R;Z=PfM>!Z{ShVBeB@OF$BMr& zA2C&ZoGYN7VgXFP3E7AMvgPtoHr`!^Wn^h=@Y1_TE_4LG;}3-NRQriiHINa=>+Ovf zOQ~AJ&AZ)oh=~6EvEmgdQqNhc!I;+s?vIn*ioHyNn?FMOWqdEZNSHJCm{TLGGDcI_ zIY;aoIew$3DkUg~9K(g>7KgUW7`>|XYnJQpueG^-C&t4XAU3&>0S0r*#+*wufFs&kg?#%D&*2XO^8NIHYG# zStx7q&k325bjCo_?uL<3oxIZ!i$}$(xq6FdxF@clU?MGD)O-W9-2jS`l(2C6q~%aK zLU|An4)KRtvWq6Z!qN$6mT|h-9V=u{v4XjJ6F60!nuZ_%3eXYWfI!y9Wi5y7!4?Yc zG9okDhVfh?R;q0Tgf0bH=J{~ukLFSphzwU#7Ej8pd|#nJX3RASQT@!;KD2DSDFh+N zq3E%nE5e(u4th$Cgpzlwh55&R*pH_SyaqYNBxXrEH1kp~+bO(uB4p*=ANleXQRJtK zeNsrKWZou5Lz3C-=`j)_2&De8qA7UP z&)N&w^C6%>Tg%5f#tep=r9^op6NvB6z~xQ6hh>yy3Z|!6d3$;_(6?I-&^X6u393@a zHJiYSi{U5Cvg)45v6l5BXpCV51~avB)Ol`$`?xsv&l{1Hd!rjlXb`9Y>RD9%50zbw za|l=O5G=XhzZpOH@>BP}dY)_g zMvMwoLaV*XaHTC2bzf)&dV4ErU0}vJj4ob**wWM{zZ8$J(h=oFk>R?JD?<;_PF;hu-I7y`l@<%MVOE$P0GuZt>!%kC?hoId>H8)S5*^4p6~}EU_i(q(E(63pyg?!^|X+* z3eve+27c$vHYS%H!0FfrLY7C<3jtx+uH8ehpkt8Fz~ML_`_C#ou{@_Q6@t0))#M>) z>mIng5s2f338=yS=~B2;QmooOPMuU6#W}dG@5nVxfezM>JYOhBs9FtjUi`wCF6?lL)T{3+ci2h=UTTEJ-0gtW@DS~<~ z5%7Ak!O)I^q$=u4Ui9Vm&WQ_PY+OBL+5Nen0s7n+RrM$+C>@nuTZ~UJjGkmub9mK{ zD9`uh)#Oh4ai;>^MdZ{#N$FY-&Ad%e0@e$iNiHBRNgv(_J(06}0{0bYR>Np&RFf;% z6}y;oqN=aWy?@9FzFM^XC%s( zTHOBQyjoa(KGh2JaVx}BER>zTaMj!(ewvLS^xM2X;$7}QZ%dGd3>Xpz4rb$iE6oq# z2?ns8wa>?dRyw?8=6RCMhU)1g8|?vu(cJ&3H`cC=ApD+iG*5vij!XrG_pVvsPqgmp z#N;#a(Q(meaR)t^4!mRfjNI0eWJ^GRi88qDDi$&4C1tHNM)_oJ z7pK%3RM>>YtRgx*h4N01vW1H)30(}C6fH*oRC_0?QWjXN)53!m*h>%Oc?fJpS-eng zp?N8OkXP>Xi?jO##l0DfYF^932KiOSFK*3CX}xxiG5DM!q~lb`N-TKG|4S!X%&JgK zGRt0Ey$$nAxFL{EQjKXju=ht?|L)}dLWZ7ta!8Ea=8?T-{Z;?Fp^%^Nauo}d%^UCI zi*o<8AzQ2lP%Zw2ANyA`TK)qx{)6DdtKfB)}v!zPAKn`u9Qx{W&=H6$7m@ zHY6ZW8%5R!@+T4Ib)K3zL}jVIzN|1EEQBz9#Fe9q#hL_?a~zPK@Z8&=bj;F{iud&f zO(`A=oncSt7u1KAfm7nJp|3!Gyw&gO)&KN-ohRuTxjoVFcc`_eeGM`wmxzhG2*L%| zye2_ViVu5pgrC;^+ii>4KP?g&MEz+hdp(srrKQfK3JPfSq1DT0ctu>e&r*C zx&9_IixSg6Aqs54TmKKW*^~V0Pzx?wi5& zap}-M@_#N!&?}pv29xE+^>4bCBlE^e!pyYGa)9)b-^Z?bkl~MlpZ32>v?%AtW%Ui5 z%_u7#8O6`0uZ>!(?NKc`(FzM+I+-C&eg!sW1Tr@lt#oi50kEhf%7u`O92+*qt9+%-d0C!PF! z-w}(@C={K}{jADRAqSj{4IpWAgYUB+=G@D-IcIwDN9b<+MsXuXn7EbM!TJ z;Pr3Wk!)L_`jAhZ4P>n+zw0c6bb<+x*eydf<}2Dw-nVC>u5{04Q^#SynotQVZ6GdL zL^5a75JWc$>I)6%R2KG0yP5$PDZLpb7=>=@4M%bo0-3#XpVOpdzEf0O9%*gNlaNkd zC)|m;PEt&AR>&-K*GRg&_C*AX~ly{xt#pkcPZlx!P)5sI+r=H>_G1=74 z4_Y-&J8#`lJjDf8v5Waj#k^(_5sdZ~tX`NeSjAPSvrO1Pin3Wf9-RKV!4BY|lL*SL zYy=Rw#FFPRn7id-4rw;T*Qxfu!jVogIN_NOyfPy(Mh@)ls3aCo!#gnWzKP`4zh^CxlzeH&N!+NQWBTTAQ>JsF-c-VMmUZkm^=HFW)H%Z z`9@r`t$k|ahEh&R(@%&BAInIl(M&vhVk(k$UaFMz8Wbk)^xAT-BvweFT(sHLp#a*y z=XL|X=8|L)123MD-IzKz0TNOw(0WL&TUgQyZgF5Mhn-1hvJYDw?8#h{kp`u$hL6w3 z`e`%+4zX0rHKT8hGo2|{F?V-#LExAd+IoUY@7W%L>p^=Y87UMlh&_L#0NvB9F>IzmXa`X&Ejv1(jJl-$VPWB5XZPtyKtD@XDFS|-} z?c%qLEjW3WWr>Vwv=uxZD@kgrgne@WN%j%WmG*V$oJefxRPytapuq=>rG%CXQzzK?3FyeE6 z22mxKs#y2OMITPGvK>bjQG!WGgy`Qqz3HXk6;lipcs=TJ6}YXF8>ux1@sewMo`-a7 z6&s~uej9lP{QTzLcR6^dwb@xZRlttN&x{RyRDtQTAw|sT!(q%g2^{S>VD#Lu4)aeg zFt4llYUv)ySnGmHjtcV_-^)FX1DQm(B%LTI%cwMot|}W+B?=o-?lh&78y}c}%U-9* zF+tnJEoxG$LYTfZXhBWyI*>hanjNJr3Zc5n40E+9hSXGc98#pR5YU&iICBSIsR?~% zoh$jE?}m2(ANy`O-~@eZumY1us}DN*n8vt-M9Mo=0_?H``)WdZWradNd@?AXDl<5= zn6i(oJ|T;cUmsN;b^L1RRb--4zxwc0Ir)(S zypDVW)s^4G%6WDkw+JwQR1QoikRW>#wM^!LzbLK!s$q@!y#7Mod$5+3Jr#l$)G!N8E51^+%=a3#&WG%27a(NrPu9kJUvi113+blZQ4y(OHGpCo<`t?XKiDsg|SbW65viJQX37^g!&@<><(D;ybTiXRi)3d)gQ z7^a^OVvQ}@60u>9DtJH2g?znL0k%lFNN-PP$%UX*Aqgork`#uMb<;X2+L|^UEzOz7 zx11cmr8mwnNcPjfCO%*=MZqpms(spuHO6q6j>i1zV+JJ}JWP+3_ACS4Ko#V@N^Is`5|^)_wJZ7DD)GkUX-Mn5 z;KrD%khdjXX={>Ws3FdSjqU&zvqrAgn5-OqQZUat%`rxb`N1%6{rfU}0%8 z>b8{uRsFocc6YYh>@)9r$+=mH<1$8l1g%Q{cGh*}#(Ss*=JbcYWPP%B`a?jRI z$7OupO{x@qfH<4aK;gHynj=aYlaEF+o`Yk=*B)=Ut3xCHG{3!*9r;XJTaJKRM%r=3 zSb}niF3_H__QO8g%%|r;Y=%lRS#~arkpeAV_v+)7HsDD5`c-RCN^?nYmb4 z`0LHb%ON|DJbGTPw)dAC*q2*%{>#%25(8mX4c%tD9W`6|h%H}EL@%Ig8OxW4t z8pBh;ql4K&wFKt+b-46V$026i>fXr<*Iv4Hm9`S5v)}{CJ=$j8?=ajx*T6Vl0J)>F8RGZchfHD5t>$-vFKypqATs zNpFgYZ6wm$mg z?_WB%`MxjRV*<^MP!ZRm#;tYTT~@DaWR7xljOKoY_obt?`4TxJep+YPU`UZ@DsK|E zlQhWAdYbW(TKd)#8=$wO8A0k?dJ^mNx7eZkx;9!}Axj@gaNjtU@dGPueZ^+g!3Di# zlj$)+fBBRgyifR#vriZVgnK_yT-*#|Pk8G_N>41mE@}!I=yU~#54x8Q$%BJ>bSX^texMqrW z-BTB!E&8-x%}cNDJkod9z3o;zPm0h+<6aWAT|AZ#)qZ8^n;a(_k?XS7XF%&B(o}_M z@}OHwxbOy^vMJ#7-2n!>srVy6Z!@54o(zR>?O<6^pPTXW)RZ@-=b;2>hxYEzQQizC z-H~@+1Mc?5?1k;Rca3ITx%SWrdA3?)RAV@r=JHX9=fW)m5}FkWkj%}lptlGRBe^37 z!9hqf0NJttqq!fVM8eN;MTSbQqnUan=*5>0$gu2c}R>dypr%*)+v+1GF`7G?;;`(nU>&04lyLuk;7|e_4Q*fpB3bHsV`~P?hEYM-`6tk z;4P!Zu#a?+CCTeMca2W(6PCsw$xbu|Bdckrj-&DPIROsi6W*Zj*Xxzn8g-hSWP}N_ z=%_7jOiQ-+XESU7w_)x@jO9!lI4!VC+1hC9L~8SeAlAZnvqt}alFaR`cx}F{#u!6h`_1=Jk|eyg zXG)X414d&PFg_)V8e;!aRX_6@rSWGoyHmyIXcSl8%*LAo1#D8fGSskrfLD9~XY>XW zDvWg4)K&pGx>Ac4d*7fE9lY7|7I(TG*$bRl3tXh}*^yV?M0H303IIaUUx0x6!%UK< z-&TLJ0ijF$EN-)@9Yxa5NkJb%S?X641a_pyz!(E*)LxTW3j*3H>`K*N(<&E$6f0^? z=EUs?U`xg5(QG4VospL#7RNQe1cEm4D5$ z8)Cg|b-F4~h4J^tHegVw>(p+^T|`Qs^q+^-EjI^VU_+VDlaN9o$w(*A0YIb`H1j5r z;Vbv4fiPqnh96I^;&NJ1qh3)m938B&4vI&DIK+Qc<1Q-2~jZDGz}#t6cCjUaaci)7?*rTgjce>7DeDkANu8jpg_dy@ijO3}H4Bu&Of%J=uL6Rw!AJJ1F+ip?RZqsgaJRH?P9gZx42J zYIMGP0F_@QM#F-^fnrgv{vhkp5_}DZS6oe%~;) z6wmw`UwYmKkJ8(_!C33+_|T(`(`p3hepnIh!ec_MPD@MXt9{r{3BRiqDiA^RX^-wAt zK6R}77%D%WJ?{`b1i$PjzwDho!q#TJn!pDp>_Jt|f~f!rLlj+_N zE|8u)q%?hRHNj)d)))7z^)jBZ8dhfD?3v(eIxNLueGi_iS1ak#Ga}vVVv{{;m~;r76Iz4YD}r!#|O8`_g8e|kp*cRzFq!Qh$q)wSSDm0*}xz#G)7 zwe`E-O+J_F$1e-6m0dRttqi^|D89dSUw*@-XX%*iIj{aSBJCbK9na5_*`7n_SSzPB z5a9$Y=Y~>WRNv(}&Ysf$$JAE<#qk9F9uC1ng1fr}cXtTR;qLAPJ6wZHu;A_v!66WW zyW8RJ?!3$YtM9#cTU#}?HhXRJ+n%28?V2OFYJsCD^oh3X(X&DigsdCIr-C|tke+;> zlC19;J{9s^Nf-C6o$qC&>J!$}t=JHO-l<%6WU2VlUv#wgyMEJfdH=_#oZypZpJ0oL zdanyz>gDhgdFCs#Id0vVHtp0YIWPy$O4`k`(u}(HsK<2;WK4Qwyr#asJ6Mm8No zTEcjisO$QJzsv2Yz^N}$JH!Pp?<*#f^PiL&GuPQ?Y0rxC%W%)wOd(zuY3rSw@Vgdx z7^CX2kF2^I^^J1sM`Wn}#erq+PC*G8k{R~5d6t8U=w1bx=HsM2u@@n8Np_>rtovLf zf!|L3?=xH0xjWI%UyBUioBXfVf*oh%j@5gygXIW3d8kaz#q8We+}C=V+PR*>;GWkG zPggy(POW1bWSf1oSx_Q6$daAw3|kMwEn5vY@0c20|CCTpbTHl|aNDI0Sxto17`z`= z2;1Ja-`Z++Gk*Ft>Y(TgJYjSrkx$dAd@C+uo`<2n#o;X$LWm1mGf8*~t?yEMVY=*` zPa3O9Z8S8tXJNYxV-gyB6KNiw)!VQ9%M`SryN$aCXSXgUApr@BS2)^GAjIWg#2{wc zO>VY9QfpiJm3HQka%=+eG`w&$%abf2uRmh0`rQ4Iwq&Jl%=*h^v*H&_pMJt5v!bP8W%7Kt1(4{8 zDTCSEpP!(b$}U-Nwn@xAo8~`jBwor9j*tq1#So171rk=7SR6N`AqR;f4W0|+diy$xoUSLxu6jq_up#(Yk?mBw)o#5oWDPx zgM1gBi@M*@iQlWbvmTAnma@>>9|N|RP1R+Fa%!hGH4TQT{C~V&LC2nFm{NCKT#aT3 ze$3ccEK)ANPr27B`u_YhHbjhS`O-aKDLhnYuLj1NDHR~<8bw#=B0nx(p2l1}aN}w_ zbOC|uGs94;TfyF!j_;2(@5`yeZGQJv!tyyUJZp~;{#!eSOx^GPslpFQ_x>*kBP1`8 z{@2gCepWC8LG0tT8Cc+xQdE4Gnw?@2qU^h`b{i%!YDFjI?iIxdb0;JP zBKy`&o_g^q(q*GNEhMk7Yp)T)Z)}Ht!RNl$?=V~ZMym*Q1&}a406q1H0NPuc5<+cRQ@WB`T_sn zZK$#`5~>h<@C&j#BK}+M-;yNzZwU#!iM+G~;Qim0+gXwXIfCRQqYXKO*8gvZN?|~Q ztOy_l{F_hv_VYyF$LQ1C?c4YoYDjoIfLt^XE{Ie|#OgCv#rHT2n_Y81Y|0?Hsvq#7 zQNk7c6&fna`OQuA>a?G1DiBLU`=#d*J~eGpX(Sk7D+hOc%=S7Re|&Yew6HWBg0GK1 z83z(roUgXt|Kz_1xt_JM*sxaz!~w6~POD=5xc9D*+1s*0y?bugD&NVXJTimwL&3%Y zCKJ430efncEWb-^C$l!T~_YDP>yZz%wP&nmdu(Tsn4PUe_`0Hvf}%!Uytz$kBww7XWQz z{H-Mt05dQM%rRtGD2Y{8?H+>Y+hg4n*Cso2b<{%J;3SysXa@z8_jB!Hms)*X$_4j1Ea9@CRs%CtsW(EfEWgpSb&*C5Ggr1 zSwX@Z%rX;MG-O$p$_5=Pawc_RHf}_z=R5m=;rn-eA2j%5nc{aCW5+uE%z5cp4KUwf zbB*U264}EO*wg*KdOw?g<6yyX8BwAZ2DTXnb`cOnPd=A+h;R--nXt}hS_CAGI6?^s$9TQd<{j~}Vc^xw&f^q?Qwde2dDxVS8rmdB)kI#krA!(Gl`~P3T5(uh88kJds-bcBJeOeu zZzn=jM|6RO3<#L4Vss76D1}8C#4fI*>_fk5kV>_&&nhnmzbQLESREO@H@gkjST4S{ z3#DH|ih#tqh}`9J8DS7$B`C&|)-S`m;2M@I z|H6LECEqA!@qD zoJ0#O0$5?9#NSd@^EHf;grM3`^la@vC^sRDz9^!E5s!~zC{rPn_xHorV-7i1XQwMe zWdd-6L|_pyV1gpaBt+oS(JCE|)(IP_(L?ywPd2vN8lpVDl~3&yW!l1B zJr2MM$Bx6|)b~y{6C%=ijvw>C)~M~o7U7ocemmfJkY_3`!Y&n>*9b3uL&ve!hb}lh zG9;OPgT=67+zf-J3{z>uc^95zC!Lkf{~%hG1PD`m+m2+J^FRW zWXhG99@hB8`I}K$5Hnqw7Dygpa#NZyr-BYViVR(o4EdX{<5EnJq1W3)oxzDGAGBEp ztGjV)Vf6GZ^Hh0yz4~sGyVJ1X1q#=^#=oZ#TMUK#Aw6dNmxV>CPG&+gX~ZTs-yWc+ z@&hzGlISQ#MuHrDMNsaSAq%u6SsH5+>pdFrLC<0;<|-~|^>iVa((-Cvx1BVHW7w-X z!;C2XdBV@vVB*C1Uf=&z`2BV-&^;SJQ^{0T1nv2 zAFrxk^yHi9)(zHuEVxEkgle?UGQmDr9p73VhgPXQ^U;mcFI<#}TC-?L&_~RSu@j3& z{6cY~W6~UEhL`Y_q>YTO>Lr()QrlF)4^{1$v#SVDF>QeE6t%=sqGlKn5~LtZmrc)f z0YDl~D|d)44;!;S(msB*75q-x#Wgx)q@u7;EJei38w5(XQvY3353ZSidU1D$D0_F? zxFybS>JSV{Ul8=hf*a+WVzeToA_*B6cXbo@5D66sdnFy2K2-NG%@_-=kbKbuyCmSE;$U z(YB6~HmfbZjXvz!fKeDAP5bi~>3BEgdNb~^HZx&lGF%LLEG@)MOT;|hP}qd>@(i%5 zCOUKjJuDJ{w0qpU&=XV$Q&n7icQCb`F=VwR^O`aCiL6i6F2A|Dx_aF6X3_b8Nl+iq z!{YGMMgnv?hXX|@XkZ>vsJZZPY-1Zo{5c>dH}PmeQT{O%0JRG8IQp(M?sMkopML2- z1NCxk=m@$VKeBCWtmX$r=iw#N_o2^1(I*Y>Aow*|3(k_wRFX`LV#nV+`(7ISiHgAi$<-=RUx7Rr8oo4h} z2P^Zf+;X!U4zVzoMzQKAkFn;qO>ys%yr*z~=9MINFPZ1QqMGhz_yb;-tAlwTVco|) z8bIm&fo=F)mA5@7U}M_Wkzkt7XfzOy>ip$0^W5q37yrazyo*s%$+sCzz*@~{d#R5u zK)S;ge3|V!W-fTr6R1ey`)k)9F#f)z-?;*OyU)o%`L%iELC4c}Eo``iV3;-q4*r-C&*Rw)4s6Dz_R;QSYxBDH;|U@fY$V6c^YiKW0aAn%>lU zqBaqK;?C`f$#{PGupj{wOG072&Zs8Yu zIjshijhijTO|AzS53(l|%Hw*_TYvo+;|9wnl2KH4q#%`u-PFQTSo6`S6tyte!! zG)N(3P$~mPEh7gMh7t5S`a~LcV|rArC<4d+?v#6VTz}r!O9cIBQ+9_Nw2py=SavEQ zXIplutv`K7B%tnma1g7%tK)@%da``f69{v-=HnsMjuS9FA;jmj0m%&3-o*{i-gf$$ z$G2S>%-_6%$kp?;JSHBx8S4a=pA^9r@mHGe`_@1i%iE(ffCN&O9(LLDgjMVQ>k|~o zhUr6^ufnuidZP1JefQ6*FpfjSmt%?R%C8`yhWk0ab_CA$`}bOy07b-h#YOwy7FcuO z>UWUQdgtqiBfh^%3lLdYTPyi-B&TQv6Eko)7ZnHgO3W&S8pC&2G6$F?%-Dc6clNr# zklEls@^tpH3qvi;ib9a{w6j5E`EuWc*6O&*1K2onTIdHc<)i1J6r2WqCVedvgNdO>y38_gHfHG7@y%&J{-7tJe)n%f@!Lt|+IL5y z&izpCk+U`rRKkS`zanwn(f}p%6nh9b^U&1T1TL|psgHf-PHzxhvm`f>Oj>f?xwmleD#;C;P7ysdSj zJPXs*Fq76^jx3J*ad(P>PcWsYRKLlJDNEAc2z48qArwFP@xiNW{1y0}^XI3p|05W^icXSMZJ%n2nQ==AU z=gw+))V+2NxcQKvdAMIs%FD~6&OJ4JyXC{wH8h|eEP%X+ectwHCl%GDr4JVEF-8a{ z8=rcsa+i_lLO%5rT$pgQ3uL1N#>t-W_~E}o?`gM}@!2-uYbw}9KCIK_6pVci?Y*ZkE>xo7b@`nn zIZyh0)T1*T{V=O}s^O-B2!WmD<&RRBg_TRK^*rWfy1rdb>N$Z&Z~SwEa$QPO*LUX} zouc~@yM4=oB6SC^OLX9Tc73Mw*5C&oBymqT zgw#S_R7`Vjw8?m(gWkTZ>@3iC#9@AYA>6MLZ*NK9R5~z?g(ZA>*{&b&gKuJC@qJ#r zs4O^MaDbZj7ub7hexCQ&pF2AkcqhbjS)+0{e6u{p5wC8onwdgx_El^5zi&D9K^-Or zv0=ihtOX`+-OB~I);ki;5yR$g2k`$y$=!b3&(%DAnCY$&G#w)UXhwm^n^^o#1B*n4 z2x=gpEp39o?~UQ9w8`;nkWN(C7DD9W?GsUvsa1(!OL(f{Ra0eUqgMGO#omE|PhO|} z>Q?6ejGri9z~#EX@)DuxIF>VL6bZdofAgfgF($%|*c53M&n$O1M%iTgx>hq($ToA5yt&gg45{=63o((jFop zitve&4Hm~tARGHm`-1!x6~~g|-p9Wc78k<@#Du(=142kM6$=Xws+7imm_U<4hu$rx z2M@eHjb~(JP_evK>2{A+R1eZ$J$8Nbo9fvXwyLi+Zo;hF@k4A!#B**rHYZYNDc58s zy1U5Hd=u(E-pKrQC0_oR?f3a@nGc|oIs4>GN?tCc`~o`bKeT*7u)S-^6nYB^GOzKw zJRaemV0hUZgTAjX!8Z7E&AsMP(|UP{PICDACR*Ymf1l-A?Oi+5kdFQd-TM|D=6gNM z+M8A0Ho`p(SfTCs4tZ>DAT5v-+@sO5)=bZDyRJB~{+y{oy3sminj?NUV|&hv@a;WT zcU>CNwnX7gDyj&p^%q}C5za~`zw35iD*DdjI)BBzf`ttha$>8u#Oe0s3if0Kx4-{A zTrkVIOhx6eD)g0Ce_Ru0bv2;Dh$1F5q;!41EJ$kX?fe>S=xfYM&!v==D{xg)GOhpz z6?D*9GSG=&G%Wn)roG&kwEhcZr6WKR_JbG7qNf_a*tOFT}jY`R0`_UWI>5~*UrCZW=-++4Dh z-YvX(dmF5e(w=d!TGQWro?zkA*5L^*ar@(=seN*btKkB*JZQD*qsxOLc5u1HL7du% zLnQ%(AZ1R9R6NE)I3yEnv4daAD|Z1O|a{m5JegtO^lJ5eB==JYiAag6f{LfCjJSYfX+qnNt=t@tORq37VW;BbK`;(QQVI z>?EHYs|}q(0yDi0+b(lUuU?$-oW^%Xqm=HHvfZ@lx2IbRGzo?8##So)-S$aFQRAQt z|2SLR%@J>|TUV)D9QmI9UFq_=pBT1XH@rtEuJYX;fC7|zuvdSx?iIWX_5azq-9h7> zlR#c%JJWgUbKEs}=(;{3U|9VAC~2XIhh^|)GI{?!RiMFI2h?4~GWJ$2zkd9E*@6Dq zA~&P2XTRdjmr?LF@-x=NMpksid#&%dcG<&bf#te#lb2Y1_ZSiTdDl&rK0=)Pkkv@Q zuWDKr;KdVya+@|)sX)QOA?DVG!m907!2h61QXPpsmG-U7+V~57kv}5`1(*A8 znfnrq#zTe^OR|l71gUDOrVoA}ir5C2VC#lmKt&u%8luq3MX8CAk?LN$8c38qza5km zMZ@oiUdl-VNb|Yu%hWs%z!ugQNB%`-$;)k3f<+o~aupu-E4CUM%I!kIzem3Mh_ECk zYnI({+3R{9n!woga|LBBG8@6z1=;rpkp?g*`@nS}1b9@jt3VnwfKwfI9ptb$x=^w- zSn*Oy0Et@E*jMXAI_ZkBPUc|R7~TOCBS-t;L~bzOR*OG)uY|wNpyFxnh#p*fBRKsy z5I+Og)58ng)%TYLW-7Nzxfb9S(2gqOS-&-MrLM8_VT~@{EqrcR)^B=&$kFik9B-RV z1mM?mp2x1a1)(e5zojb3Kwq~Z!PbG)8u4!Do2hmXaqYgpZ3Dtbk`I{|5?#f8R{ON|!=>Gc&5O@n8{Q5T?YHkAb8DwE`N5JloX500C zphRMLdm(85LeIWoS&Gu#q5t@J0(T!vqW0Py{Brx2!Pc_wyfFv!2PI{ysuSB#W4F=C zV(+}A@(#V*bmqP)>~?1&U89LzWg!~~W+RP(svQPx3@)&=gZbX;d>T$hg=Cj1JHMcf z1}+>VrjHe@4LDi%sFk$P#n7T4Cqy5*8qEWlp(=ftQ02@uhh}BDGps_Q?8lio7)4C& zKtaKw(P?I8(LjnHp?km&z0*xdq}0r zaYwpE)~=(ow*5#XSB)!NUTL&mc~lU!qgaHs6Nw6lS)?Y7uvhN0&ExGysAqrFxMEjL zdx_@zTt2p5YHDlJ^QZ#mMslqF_}Beehqbn* z^US5w>wIn@@WtVLvQVl%*C&GYC*N%vUG8EO{LE+5bNq=^=>fwTkGRvV@64UO9!|I6 zB)%>`eJtE;YrgO_m1K>8{YwT{JO-0T;J>);x4}3v8t(1}-Wz(>Wf`wLZO+H!IIJxW zvprNM&mZpJ9!1=MnwpC6)_mB+HS(6HL0=BTUL8B14hNLbZw1b;0z1`HbaUnys+wL$ zuN%5nwU&?f5^&tCw}HH!(%~%VMK{N*&9~{De2o@ElJreN$3a3|K{>|fP96&$bo2$@ zVE=_my{3Z7t^ND4VXG1Pk@s5Lk&+eR_w&0dgkFul>uSN48h_KNH#^JJCdaN;9Q&uA z!i`EL>OSEO?aeLhC2qJpjZLU_{1hqNzPElQB+c*lC&sOQ<8r2ZjnUP9Z7txfN6*9g z#J)qAal6#~FKA~%v(RQ#dm%1Z;=Z_(`2YPNnhSrdl)*9(uc zI^E!X;A?p~Jj*0mRTP{aUgB0Gy%m==?ZyKtDz`A6z+8c|k?Zg+jact{D4aB?aD4;u zJ`$5j^uuF|kSxr??GUg#LKIGXDnA^A611+)y0f5Gf^(>jKw*?FC#BKE;CC>^v6%`} zr+r>;1=enGUu#usQ>=ROSl}*GA8QIPy<(lemdfQ#@({qim zMJFm-)qPtVZ>}mm8iXq67ju^mIY*o$%3G$mqI=z99dbKrd`I)U{!>?w@*GDfv~vx7 zm<@J6g34)|`1|bF(Sr7TbRnL#s3uMJp0Y4SOmbRQbj7!8P2z^TXI&VaX(k~ zeDs3gXY-g>AT1fyy%0Z4F;^d9H-}K>jw5}Ts++BUnQmai)57lOCnDI=um}=4mAUg2 zz6X-jsA+Wh*y&0myqP)L@cByn!!wpkZI80Z<@ zhTa0~Iq-gfCI`9^CE8%B-gKhMKx9BA(-B&2+1oCM%jAIu7VU#i^d!mVdo8bs^eOru z@Ke|wZ@c)zDPmO=R8L7cs9R_MpSD1V2ysZ4T|>ys>E6}$kE$#{j&gc+G-i3ORLhGJ z`TI1d!fuN;jud0kSWS>IN#w!g2hM)9C=p4T@sx;31a4uRqC=;PocK%~xad0vv4)5= z>4(0}Dv9@>AvPF?nMOKV4jBU&tDwlSY@CKvU@+^kz$+ z)bH5UQ*e82?NILH4>Pei(3lzI28Rj7^+cyP#Ss;OEJ0~@{Q<1;%yqduPy8Hn1>R+0 zC`>^!NU_p^A!Coy#wuT2iZ1TWajlK@!<>-t&paAf4C=J z6SWVqSdrS`pfF_SeKS#?>`416L{YHmBcQWwhf-bWiwIG}hZV%Anq^Hsogjn^SB^E! z8kCmXd`}GN8W5$XyP+>LuTr{6X41gz(n@cgs+wJEda8_7uC;!(32ruXtC5`Kj}h3^ zgO^Pylr8?Kt_hcPM3a-V>wz0Y8iMhpmnVX6_v=7ARqx%l8bpm9*yR;>r<$JItul|? zS4$G}cqDbyhKDO7hio~2pElV%XKdwWy?!n|ol{2>Pv%`~ZyrJ9w1_Jf(oFxV^i7)i z<{EP{amzdgd?!MH-~~rp+PXW ze7a9kqP)7xYjrik?x{oac<6Vj5o?`Y?c|gO;#QqeP*r%wSj!m4=Rk&F$B=*mOKqHqE6FxBCOA$ zq#DfQQy#dgRK`fq>>;G_^azvb=`dMt1@#Fkaw(2?{~HS+yF+MZZR31)Yzm|oOmRHkw7RAiB2VZi%XS}Hmbrcx1&g?o#3ld0GelTqz%s_~#rl@dw% zLXU~0npYF}-Ad{pEZs(q9YfYqnX4|*L#+kI*r|jpZT2hHkc=#iTpzwV=ZLb#t&_&N zaYbPEug%z5eQy-l=9F3MDN35$+u5<<45qQ#FArrKLY4&j#WxxA5HPUk> z1pzm3Z{DSqlu)OLr1J~=h@E>Fb@clg;<0I1;sGxpY-oiic)Up(d`!|b4SUF(r-{|f zyge6mL%EnkCzM6zWQZD`m?g)O%WgH{WCdG;H8mE`Fpvh3Fijg@NL(b&6hDSTH#g8} zT6hZ(w66j!lH*`a$Awv!g3zhDq(7-PUA8DOJwQ=>R+fG;8f|wLM=*;wsC|A8PfLeE zXrfc!o9Ep`YRb=vn|XEQk#8JTP8}HZz_<7VMN{k@?}>u%8V(#OmLRGG`&v;{t-I7q zFHy8M*|OmD)lO?qr(P6I_EGYS*r;%{gMMug>H*RzgZ=~#1*MA&uaxhX#v5{vDY5Ao z(dh%c&|=Fs75^2qG0u*13ChFLtuTMJ!54;|FBpLU`x)c{oIF9@E9_5e#Y zD`wgFIy_bm^x|k+MpZUP%F6anvMV>V8?e(6<7p|FlL4deRywe+h_tvy9WwW~xwUJ_ zcnT6eXoS@~zN-0acgl*Rdj? z_t1?#%H=5ZztekwmK9V0qMa>lz#NP*#FtXFxkU zUE+1%L_j4$te^C##mI7!fos~%P8({mZZ8xhVOq?B)XnLq(5-^(5q8Y!{z4T-iKK*9BMe% z+iUPxyJ>VszhBLYer>t>bF0ra!dXJ6lJlBPau49c!pq7pgI_c+JOBIp*@lHFmqXLe3H!LrX7MS*ZY=TvW1l zJ*GzcizJp0=vIEY%b!Zxe7{d2913hCQW4OG>@J_*h z>3ZvEOt8U!)1{TiT3PcTN?CwCDt(Dx7-x{)!eVa=5AbE*C%x4UUQCCg!4p(`rwpqw z3>~kl+B^D3d-BNb5(O}rbw2k|LX*vPXv-Inq!(ITGHd}D%;rY)CVaGl;d$vK2E9iUEAh%qAe zCqnO&oq?4oXu#SYoA;s~lDqK?baB|8{Sf|g-u3P?d!gcT;0%Y2qVE4VtcTLI*+$n1 z;MueLxmI?w?Qa)#x-`6-Ilno-kcz4Zv(e#vq@l&`b4&~nDXGX#n?`n8rC36K$loCV zwCwBx1~av_1}YGKIQ~Sw0irWR)gN^~L-{_wNipq?E&(AA_=yuU9-Zb|Qc?Xg-@Wr^ zTqj$1mb5b(p4)Q<*22v&Lk*16)IkNlIwTXkbEvs1A(_dn+NWDcQApV2P}_9gzf-x4 zG-*Nsqf1ICiZB69SEUEKVMv3SF?1mT&)z40mG%tRgij)(i4 zL9TwL`l+RN>Q|m$;8oPaxfTZ2d;1AOKOa8FglQjxxTra`X*3N&m^P2;BdroH`@re# zIV-qawUwI#a^AmtfYM4nc%zjk?$u-Pq*)nn@t?tyMEqTCrkZB^#)>TDGh9y}I%O?Q zw#(|9r(g93iYsn5x`rSKGZR+7L$T$5l6);KD}lwQkb9?-GxQscZY59$?%8DyZn3t zL@?Nx_tKi~R{6G?-Fvo*DwN(bXX}mZ3|LxK?^SHzOUzZI#B_3;wI6I=EeYtM)UjLN zbe0bjb5Pm-I>mN$3Gc<`o(M>)e3ESSTE5nDeRdsr3pW6w9Rz;9ep5F9IH(vf~Sk}w?i-LSo4zuM1f zn7*0+XlXPNj=$9lgg!4>K|9LpEY`ce&RB6A0{QF5;hcM9cTi$texFa_*Obw9ahClP zk~d_b2o0qP8-#`v+{8tL*!g4t7$p)-?*3)AzPu&LVWQQhDFD%PiXhwZJ|)5Zrv;fx z-5rAxgx&ERkLyPOh}~;i=3a1ZWfcZ6NWWL&1A`eZEWOUlbpIwm6kwV>HNf(Z;oA3k^IbYWrBb9!Lx;kfmMocki?WGsFP}?ze71$t^-4JNSdi!L zt%Y#|;cI}T@K?O)aYIQ#)+_d>9Ly>k%|s18sTX7%LC z@PhT27ceZrq^F8UY4Z0+q-^9kp}r5lWAhGi$t4+~_7{ho^oV{ZV*X)8CQ+Wbaq;2p zoAFfeXw@-XWTPZY9hvig$W>-4=;hsi9s_p$(#s^{U^6`Y%xE@VNrT;|^1&>2T-b8q zI9su*qCDY8lxqVa0Q8oWGmsY7`bB~<3TviqL=xDhhm(;w8a;&?k2|>!IFt@5f(%8^ zIGOuZtAO11r7U9qlc^2{1RegLy0sYm#c_xCa|fP4rN}i-9g-gkBJGRmLUyR}oYt4K zBZMWo8HHiZl8y%|7{7fNAb>8Wrz2%0lR6K=gJZ$++J)q~l@bm`O>BHvTWOa}zvLJ} z+39}>@FTG|ke@Y9mDyH6a9Zmhh;$9=A`9~n`fB8j(Yq!44?rRYop{qcbJ;?gwHUD& zhK2e$EE4lFvH#Ge%s~<@86qOe9tMEimR;`Oxl)c3rfQ*LASXMiRGI#n7RVj&UQfBY!zGc6i<5n-T!8-5I}`c8xUsDx@bi z$wHx*o3C6a+~gbQS)1$s9Vs%75kx5m9YR_k8&r!C#uO?^fDWgRL+2lHc#xWfEVP_a zrhvPA!lla7SXb&Kf6=r*BqJRbO4_!?Cg_k?6bOqslt2(fReg{z>5Vo(~Zsp+~;`tE3K#JoXU#%YHKz zsi-7g@QBNME!E6<1zQk9x0n4`G>#@eV8{Gtd&kG^f-iqI_^XfMzJaqdy%w7K84Kh;Ii}To`knXKnsV-t}Ez>jGAv> zvR(1vQ;F@o>32V+7cOB6LHmg%%h#gKeL_#1?AuAltLJ6<@wUUwc9*O>F0Uw6ovxBs z82|K59w^??op1Gw>CMl_`%xWO)g4vuHPpLa-uxZr1diU{RAdUB{@hv_JbtSu>P|Tz zg(gTkr){#$nPzEualXa25aOmd#cbg}kGifzGGs!$dMKY^3Jrxf>MX{FC2!l$gVy~E zL0z>ZFJGK2V%=-gLb0TG!}dRD;?W>w#G%-fl`DhbqObQ$c}V4|UYba_rVOo4o=XcN)V-VOyyn@CKCCJZ zT30=_k#}FRw=YId?kfA6$>0ewiZ-Xsrg@ul8dWR?Fa4E-fQGZ2 zy1hGL@9m^+h+WZPp6}QoZg4Stpk(w(T}_PQMFWiUE)>mw%MdV~_CQMPD8(v@e>Uki zZuQgwdochf2ze$RreN?-T z*JdAwiC9BOMWLTQO4*-sXZ^@?bW~ZtrV3?IsEhb#I%C9l(WqEfgb$j({W_HaYoZnt zjl;3!JQeY#5d0`a&pe=K{LZ7jphIWYE2f%P*Y5E(Ct26&Y{WN*{p%Itn#(7E2*wtN z0$TZMt=Y?~zmA@2o`m+yWN8*Q!Dl>?pQ;WgXYqA^;|zymVhFpZZS7tx$eVAcGwF91 zmkQc^uA<}4ZL6adFqaCmetT-S(gYF%D!Z2lFU+Nc_pg7rLjW=D}%4$*2{2PRFMF}8) z&l{PXy1DefQH-*XmoB0)i%t|HBg;CA#iM-FdWQ|32@R=+G*SGonG;J$Kt#y;43|`A zWY5(nUF4FFNZmlO-wY8ulWd0(i91V;7-FOl&ElZ0@|%ZrVANZSJ0!44Nb1x9-=PFe z97l85Ws1#6NtI!2ic_r5);QxDl56p;F>U71&cS?Pr}mQqfHFAtvN+sgaq(7>Edrue zJodUKl>8aGyH+lg9YHc^L`ug3!!z)H#%L!l7^_nK62C1li~dm%@@k~eOR(v26*2pw z82|p?TMO)>mD8`y=V=fJ6OyD#hK4B(dAmL&;M9TLvojKwlmA$USjDZa z=pVpX&7+lbwLPg{sX}#w2@o7CRVAL#_7fpR zSHUmI6q_qr|8cCYHQnbDVaYy_ipL{fNKgix|DOyb65=!1go_*y+%J#1hW=wBS*s{) zyP^nKOR+r>O>RWm>nP!(v-yAMboEF(WP!z%S&Ibq;b%GwG}+K_J}>G2cEPsfn|x)b z14{&ym#ISvo2L;TgZ}4X`+W$HxwQL94wmZ=05gIqvGJc14)u5LP)|Cq#BZs2F542~ z|DT2*mj&dEGn~*wXHnvCY{L*5IC&Z2umD53rX7CCW7Ty@%}Vi#fPrDcOj3e`s&q_q zc7e1ph;6wPfe@&W$@r5Pq7}rxHp1X$;wb(10@lH+tPwZcHb{^tyUG1rU7i#xO~a{g zq??~5Tn-jjUtBK3xZ+fW*`*KiiYe@vev17+o~;PT9f0ANmgc$7Ql3?H7+n9+2nt|L zP$|0z^^hL704e$2{I}w|bL%jYrTEqOHrYTlZ#}=P0X%;2!=Nj?c-#Y3@w?g{L_)2G zF0fxs&W;w|cvxs_UBVOJWxQI}@qC8)qC3ym>w+`5l;&!PE6Sk&80^S^l)tuy&vyH^ zIj2t#$9|V-Ze6aurOxa>Lg0YRzifAu&fOTIu6n)^-=&odUE5>IJQ(Qy$LLG9$6bj3 zF>jrM`y34wd@)ZV{CG&gGOn2%`n|c*uXyNs&HrE#teN_93a0uFOjVzIfDI^^>uOrL zuUhFk|9+0f=>;lXy&OI>WbW`+)q3ErsTy)~Q-YbS`fD`mw?c4Nx`ImnO+b-ap1pE% zOu4XF@_z)3n8aLf4%}FwFDvP+sr7(El`?LugWj}K-JD%Kem^;Nw3SHohrr_-*GXyF zwY8tUMrgTMOn5g}RZTtwKB6Mmtaihv+p9s5HYxHO9rq4T(lX|Ft@Lb?BHlwFGZr6*- zr;UQ%Za04m;%u>v8v;0tFN{erGC6ISe4WxEmXtPi@q@bHT zran8Vffy>+?$whn0cSEMi0NhA)N7o!eo4E( znYqe`d^QQ}ev&m}G`1Thw#|mrV@x~Tbfr|n{3LlC-M*Ihdif*h{~E3&7e7}K^LE}} zWGoWq35ovgK2v9vvdpOr7;UCPQ~kZE!nMDze-+67i6)wEvx}VL{9kKR*ZN4ijc#JG zeQZ?2ZG%V;cFuVuYoIuh>NWX9$Kn-up<9AdPmt~AI0G>a&LL)U^ATUTK+dC^ymPy{ z$vCM5qS{_^u`mFaWd2O8-)Y9a<3;*NBWe)GerPd(eFVnkM#XU`6V-A3xV8S-s0E3_ zXXb{AV2jBClHv3MTO#@Yw^*t`;1i+5MaR26w%|L(OU$#7xGBV()!R{*IxSn z!_`{`#T9I8!-Iw(!7aECuE8a^1r6@*ZbKlrySsZJxH|-QcPF?zgY!+!x%a+RU)B7X zsouT2S1);%Os_=}r1XR2Hb#G7#=3faY21IT<~LrFqEDRg&Yy!m-l(y$-)KRi>C?(B6Au@V#-3O-lhXXC`T>* zGjBC%VwNG~9|$FdbpcaCeKqFPa^3|(5Krc=m6cS!3*?e3?N~+1pH+bKYC#r)R5uxsLz&yL#{{eOo&uqs&!l&NzGup+CXTn|*ScxQadpMU?C@ z|Cp9v_xtNN`w=x$o;$0Abo2jCaex0Sf4@ay%#7nWGFJO#CeIN2Y)zT9ka@z0OKa{| zvL?t=PI?f2f|`k@_UB*J4hF2{Cd@n<3@3o!$%YUn)9Y{ZJa?!MXoEh;ry$uiy=({W zwLvxs4H(bo;G;b$8L7|f@^oxjmK?Um-N@uS#6s{u+zOObB5hH2^pHo9rT)K@cM+69 zd;*IVf1qN>)GEo)4gV`B{)75|fs~fu2-@7u`sGAn=+J$iWb;GCSQxT&qC5?jxFOYY zXD$vyrUb`m5>Fh&EAoXHq{ml2sI-C$P#Wv<^c=KIpR1`n2i}0+sA<%pMzupYT2~Se zA3r^oxZ|fI%i1&En6ygZ2(BD8gDU0Xd^&S`!CmFEx%1i-!`s5Y*pYvIF%2 z&*<2EVA#6jf6*O=(&(v|ryUWi9nlsY!_6)?bRN59Ab}lN-IRY2{Y(j3Lpz)zG8S)q zBTuMnaL=hh=;u}-oV_qN+{quzPQU*$j5f6_v;)7o&d6AJ7!?%v0gJPE-pMiEc*jye z+1UTq0_0YLL{*Nmq}e+xy|BgcPfiJ(s-%7lV`?WeA}u6BI9`j5us72S#Dr%`tU`M| zqHW0|BM&21dQoO}?7cm#Yz^>)0@6tYFS9KJ?+ng zq}L2lceWmg{f2sSC)#52$F9ZWFO;M_&~`&oZ&N2 zPm}BI7;+67MNi#NuPTuG#CI%l&F0&g4PE>1i6sM{x(@y<_AUVl^9nYi7@!XbZxU~k zZm8!ln_hZ_?lKM@I>TFRo)TgNjat7yDs#SCn9;INzD!4-rnE;TY$sC49|X|+FYjbi zlbG(oC@?XX8dPfBOf$YFzcPQdqe8kSSyR{eGiDkzDU?Ja5LDl|bYF@K*m`x*ma~%d zU4<@s{!Ks;;*D59iV?-*&uZ2VmY7~T0+|;=M`xZF@$nBtjo5E!gpi;dAsGzCJXNlq z+dj2tU@bguLAcTC^ylkynVsmYZ+++aa9Ys&(_Hh--a>78dnN}UI&*+_s0W?A0!Y z=)OU+n`w?w>`ZCe)dqP~1+pH+?T7PVXy=Eb0;WtpqhefN^Zk3TXb)vY#O%p=CUbs1 zduZRW>Bp#L&{};j&zBw;CCx&hbz|ZnUR%9U*U{nz5tO8;YsjCpZKWZx=>S^9@yhc9Qh@xu*r*{LHb% zTYUaLVulFdWT)!%Sac%@bu7jM3;J0XOEfCSZOdyWv&ZgeM<A;llIBJfEJiNBQ#vgG8%1+H#4>Odj32qy$t+Ju~tU47{x~#%^%RY*)7!8uZms#Zr}C=4bti4 zn~Ar|#2AE6x-0Zmf&>X7D5FF$sS!9-WpEhkZ8!|;5ar7LzUsdod;e&0blbN-cwcP3 zIh`Xgv!BaJcS)IGMag}LdSp^J3~+>6V|yL86Y}}?1_FO;ij{SOMGqAld$m7Uq7AQg zz;(V_QdMYOr|^`_`pbSDto`P;J`Tw-O^#hhtMf$?tTTE2kT`nj!h+JcKFx7D5OUJ9 z>Vr+E-Hkqk7>!Vh8Hr3))lLJNEyh*{wf%}k6!!B-VxNt2By$g_Q=Lm`@sq2X@i3R@ ztb7jcVSWr~L7C~)Ji^IvxbXPJ1dG14^37HqCiOSJ25T;NxBywD=YB+bAX` zKm}4pkZkh{KGWIVCdM^9pRoO~GTFV@IN=+fj5}EEe;g4xzx2C4uQq+9#3217mGWfv zzC|n?HRx!5pgBG<=0*PYzvmGFQeHRg2kKhmn~~Gf0(?I$&&?GIo!>aFIpgd zw5hNM7VtJewFP0ZoG$)s9GC20jAQdB+X?x^@jZ?FxnPDGcxiadhtdv5z5WZTN+N*& zLM1X&3tKG|k|Rix(fPX^nf^^uM*=e_q@YgFMws26G4j3x%x@?EI7s3-jRuk%ZAZ%1 zR{O}H)3)%#h`ipR&yu_qf>qLC!&gzdRW;n$*42a!pjW%2_GF0aj~|63&Ru9el!rlx z&0&tk--YMvX>y^o{hQP{7_A(mIjM^&=oK2JT=^Pj@2+se+0Q?$_ZG@)aDW&WnP>YY zf%xOahRlD02HBOB;9&~eLs&Dtj@xCZ-<7p|%NAj*z=2focKwKtE@YZVgp6Bk}>LZ$q;wioLE-vpp5P7_(Gut zM@DIyWrlNn*;jmt(}!1t-iF&jeK(Etx(;|T>v|lGFCHoGgdR> zLcPIuy@BHS_>Gf&w5f4}2kGu`gWE6K)4Jb+ZCaBC(eU<4*^dlYI*Y5(37F(c+wFwm z5!=eg%Od~h?F}X$!dijaseW?kTh5MJTd zQyKMrfbeV+ff#8M2CIBeTho7~f-xB=upB3;X68ZQttM2i##foV>y791(fFHySmidE zP#ZWY>4NN_)kbd{DwF1y1bKiiB9{0n9}Hq{rd=4MkcyLAB8s5%JnF7@aGl3VF_@O0 ze%~??_EpEerO6@EGn20}%@5tjtJ9#O?OOhWfG1xqHKR@8sWdD(jn2piyZ-)>qvU@7 zpxuBS@Tj_Zq)g74{i;R5l31|FGg+Z7{%kSc1kcN#1TLr!VlVH~(LIlynvl;aUe{lh zx=$I@x(RI)@&ZBj{{xh4774ztB;q3a{Md%uNRaAbiUE+3#TZArKIe`yjl;13!TZ83 zC**KGoRWC*JzE=IOl zCWtKm`@k>}mvEKkMMxeFMFNx(k?e{;RP4yzUkP`B(49+u8| zC5o^B$d0LG1_}3hXegX1rbX2E=U^<=wVbCJH4yw}k0KR3LHy^-x7@kArfuuYM}BEH z9qqNOs}C}pl%%0z6chJMo3#=v9@n=7NKyWose!$Mn&ZWZ^ zAR3xFfw$VSRr{yu1j&DmKo+MelPhoI14CfXk~#2yg9L-g@`*Gb(I3J!Ts4eZ_G)|{XKL}|umgJaYbc>ZAaGo~6mLi|u}xWf~|6Q>qnu zfC2$JESLmwJ(fa`FOvqF0pgF5MPK5eEA59mLRK-fD`Li^nb~!oXX=?Rh-SjJ((pPF z1i+(gHVkl@On8;}wR7$QSKKma9dgsBord`-X3*GW?VEG3e2J7CQk{QTxXBdj1|zE- zy>tC;U5MN$sKo=);P=eTcG)#YcA#0OfwgKZZikB#3SO$uK&jYmxNk^bAa|ErUgvZv z)}7wD2Ysd+RgCC@9$)%Y0}A%fH@Wi_5b!D_=`^U(Z77X+DoIIv^I*kQ5oP zz&iE{j?~jCj1kADgt*EJ^zkmX(Z>j-SEhlN+LO;K9X;F$dAdkYWT{fNOZnv+`r*$hK8}bJck=LJH=|OO-vEQ6Y-6n7;EA*=F&QK^hjcjK zmy58eClCb>+YAwG!+Ad9_y=tTGmhASyZCnslB%*}$8bcHVmxIrOi%feI20%Y-kI=S zY#_2aTx^5d?(=%actqo577gFl*r|=cf>-kZ>|mE1)BP|--WzReAtYlTSL;9&%j3Eb z7&({Ar@g?S-RVu>fvi*gTV{nLE|*5t}aEM+Gu;Y9E^a zJuiuq>=@n4ZW+1S!nX2fJ(_j|3xE>sAnC_>Sy82l`g_HYp|JUBah zSIO{}CpVC&=SyL}b2`)2p=Y#4`*M)(xmh*j2yoc=IcvJ{OFDDRu>raI)Yn>auNsZP zrbaU{s<-ocA_Zl(6MB8F5^DS2#;4fjbV9s~JfGzC7+ZW;dZH+{rmYDJcc{XmM7lmR zISu)(&1CB87Hu!jex+EClsQC)ztIT{wKL(;T*_+M*8s&c+u!6(9kIX0e+3!Yy4O@B$;Jww zGwO-6Y5BE}W!}9w>g|u2#E%80jg6(fe);s=e&IT?d{W+VzhNDqq2wxVDl?Fe%tVzw zO&Z?{tEk7jQRA|*t083KdM6HGDyuwSYCq2sbhYo=yr@q)yKBjG^LC%j!0GfwV{s|E zgp}OQp(d49JZXC-NoB3})}Iaob-pVut(0j|>;l=n*q4 z?Y@Hb&SS3YWOL+)^C=UvycVWWH#RSK6&3^@cah$wkK0avrx#N-s>*$0W*%%w(Ww;I zbk2S6XsZ0xb*@H|T?Rf&rp5uPPv(?%p-$%lyA+Jn*M#KMOWo0FP zGwF+5#_~XVv1O)bJ|#6A)J?KTtfOyj!hjLBPuaxghRf`_gwx{n_3Glw^v3nty83c> zf81$IV;NHAalOja$w_kF@fB1wz~PRFeloRg?V)Y2@|jX;Wzp(X*cf8)vI=& z!JCD2KZ*T0Jy%!V<(E~yCY5tN5BJmZL%aTi3VUrfjQ*-@i%RXA%OCx(nLYD` zTN~GpTkKYAW*vOYtti<3@0DmKW6?3Sg-^GbUp8Dz1ZEjr2PRLFY2z0}kMj_obKzRA9dcK9Iu_A?!FbTjsJrz&qo`2#e6X@6HPG zrW3nab=%CXU}Pi%Y(=@bFF zjNs$T3`hm$|3cS|B3&NHRGU^j(HAOl?Ct&TbH5Ta$q;(+@w2G(9<&m^EZ#Z5^rvQN2`zx+^{y+fVX(5lU zZQz{VwV0Hgh?3jc%SMWwHIJ@!rZd`B*!Q=)1%l4%SKJLsW~Q*cT~Ykcq97;E6-BZ> zD+XBnAhhLDuN;Oy4f&6X{&%WTr7qGOFyQ0D`yR~Tbg}v84)e~o*AvDMeJ#wJEuS~i zi+wI95ui7AotYeClc6E~0D^U@gcb4F_Dhms(R2>L_6pVB(xMpQ@n4bQw^*OD!6Iit z81UloO~A=iAD{X86{2R!>t~`ejhE4NiV}GUWQ%t(;yT?ud1i<+f!%D(`%w&}HXSI4 zj9o!efTcsN1V+%mUo?jFqBOkS0ld46hoSUn`N9vNgToV zR>$l6if6?<$C8WM461I}wxQF8EAMn`{cZ&S4(Ydnn&$77rj8aSnM}GUl0|E27P+ak_|)1J$P*O5@s{D zmU-9(m*4nS9>>*`?3NY66*r9}MZ^BZKF_DOdl`Iyt$2F7a#=%4QmD&nQ>9>6sva2( zK^fTOWJWD)-OSnMKPg7VRGeu{1`?9D497By)@WG4kv}S^paA_f6tLe#4SkoZfzsxb z+mr}zX4vQ6=Zx&BlIETdlhMt4@tKsH`L8mRM^v{R^u`s3sNV9s0`9}uoq1;ZY?->3wQTC{|FgmNV*y*Mq)smG+a2t>`3%~gK55mC z?F#fRT`*?uuHR<+_*fg)8qe(sE`RUoM)(A_Jf)N`a5lW|zbBndKN2rHNZVjqs?uT1 zC=oL;g>P8Qf;tm6L*AS?;thI4X*f{81D#VfjaLyEO;9Zdd?D-h1E9rrgir=`pWk(D ztp2hzF0fY4TwMKS9g;?#yZhwnq0ZJ69<0?x(tV~5^UI2W+pUUn5DjgB(o_rp`{Lx@ z+_#<>UD;YltD519z+%0O2*Zmu9pwRvZ^gjXUCp&jcLSsB1zhmCK>K~oCU^-*zy>G# z8Uz;$&*qLJo2ba*{8yQ}NRK%f9(=!lagzvem`c|PL}WYOA~pkHnHkB~4)a0Qe`=TL zYVH5b#u*VXdEnfUKNjsddi&i9+S}rD9J6!l|8l!*{^Y@^$q&@dx`U~Efr;)!>HY#( z0}yw}L@3K`VesBkWX9~n8PXs$rfC+Vkl{VtnB|DZKy6}kW}ZY*{Ux4c2+t43Bi-Sj z7ZXuMvsLTJ5c$4U+NY6cmx7Fvg8$0e3d<_mL|rcz4BAu=`6H=`u$$;P8p@NnLAaOb zi=U5X;?jZ1fUfjBZF9F!QA+l=4V8-YxPT#Nwpl@olt!|$r71Exd4ArKozYpY`}#0^F>4@_y?{mD-tw#!tn8#2 zG>N+7ES(}g9Q!CVqz+mV>M%0!DpbBBN3hsAlKVB5f8>u!Ak5@hDwav5zVhT4!RM~( zWp?t9;?nmqJ%H0rVd<5mKMU4gv!NE}f1}#eRTw-hW~Xk1NP}1cS@mPb`QjtvuX;8r z*e{n+<@wS3B3tn_?lKJMBs~d_C<&ZJtnDjbA9_&QJD(@!Q{BL_Bq};Y&BocxNx!M3 z$&d}lC`?LRr1ys|(IoWy`;Kdi{O*}^cse2h2GSXzSkXw!{;}cy@&Q7LnU3+cXqT$>rxsSqC$cHW|u&OYglmL}!1#B31sCqI!`)=jzOd4&esRH2IN-yqv54mn6u&?4rd z-imW!z-g#RfWyGL0@IJb3u(K$w^PT~r7j-edVKu!#Wu7dNpNx=FyU5fzreRt8G&uT zB_CNwZPCTj^kX;;16n>}RnoX#hR!W%sxWILC40$K_Kx=QG^eqs0T&>*Olht#*kMs`v0D_4_CAoCPk zfyz^{Tea! zt2g>Vn~R@s0ECEU(n`cHV4+tqlAK8S+qBVSLrmA_$kld_y#gZXtiiU+#^uQgPV9xh zQG5wJ!BVXEAx8xq^TzRCF5)%QIjPOY#q8fbyXJ|n=QGHrCfz|UfJ>gnx7!qLpR3g` zU3xyi7Fk&*bSSbVI!QkO;#X^_;IIH@A|W+1$`Y@)*8Q{hu+LQ;to1iFQjd|mHVQv& z7{I!&VfT(5#Xq2Io+ip$C|30!(m`9ILwT45Q9Ow@A6nu+$BEp?NtOuK%zeX+;ca{; z{W+aR0d4=fmzbo!y(pa{7a!3l&j7WZpgT)-wB5bxL*VKc$AAygI*`2JYlQ0(dR@?L zTX}z2Pm<0A{>Nl@nu&tPXx}ZKRAb;iL`Mjd2IXdW`5FC89Om2)blY(5KaituG&)yk zqQ2x`iKHh!)A;<|Y7%$Z^}&<9vPx%#ySqlh+>5}|i>V~*yv$^V#`$!(aQ3H`nSKVq zx%&WS>jvNUFO=tGLJK3rS&-q%jInO-j4uA@Rn8dcWcA{;|p%?s1F0UA!V|7^3;#ThbG-s?(h^h%YkiM^$VAql&)xhK(-lfh-F0WQa@_A~sr!DzPn z_blE8;uE;AGERjuoX}`8KQkS$#+}F z#4L7QAQbp$VBP7tnv&JI$Sr$U%yZJ|IoSQIpw%3dW}8t{=mf>ruv-{(k|9p_2*R$s z@Ha;|w40r|Lq%Uck+f75DBv_s_%55QVrNJ^^&LNz)!@DVjnsddb!b{($nH+QHbhZ+ z4`%Z9&2O%X@hIY?ZEG2NrMT!B{-XJfjQnEI0~OB6<)d5loqV2Cy-@Wq&w{pEK9zJ& z{>M3FH8JCQ+r&tzY}U*;O*Jg6dIz5ON$}q5+FGyL{Rm5(pT!=`6O4crttyx z2NCL1f^%qY)sIs3&YKcx0nLT6!^_0*C@Xce^-@nIm;AgN8wka|YuEb5K+4GHQ zU61o@B!z{%+T5Tp@&!emtZUPL975hkLWl|)m=c?t8?)7UM^lPbwO0;}s>Yj+<3aTM z$Z>m=K_%J?Aw?qG?c*u6Oc#l-LEHvm5y_&E7*=sUB{^IlY>0T86)ssAB?SV4aqwdr zd!FT#8GLOPg|y+{)Xof}{X6(VVcKC{v%A;mMF4<=>R*ol7ukp0F!dLM2{5Olbhgoe z1_kLrz6-KFVW7cDL#L$}2k2^Got_Rypq`ffkpV&HV&ikT@0gpfEcZaz!D)rltEiZ; zS_c$b+Gn;h;72KWh2Vt^o#(3{S?=ay!v7fT7k5)q(Paj}zej6*Cw824lv>}&@&VXX zXA;xdm8q`EL(&F-!1yp;sp?V2lL3K$$$YF ziRNpsyBKBJk9`$@%PA|BdFxrWbcL|Ko>E{@WunPvPwLQA@5DqC>u7sZ$<-UPYJ-YB zE;jN3=`9biS}<&V@!oJ>%l83@XuxUQHL`Hz>)ufZG*6GR9zmf50^C{_nDJq9MHEVT5r3JIO zIEC>!$RXrIOCrR556Z&$WJpOKB&8&!3QuyvsNF%u6O;!uB{7g*VWn>O6IBwS`Xv@{ zB3&@w_G05K-RO}+_>XHdd^I^3AzZ7}Ehqzn3V_BUS5;C8!V-KvYqZC_!f@aK`d4ixnxPo=uo(sx7b$cAm&YHvLYH4}CRzjnF%l82xQ{>Iwi5 zR>g{uAy!qIC$zdtmI{_Qt>^DiKx1&q_tS|tPn9TAnx z4uJ)hbTCX-dC(YH`}P-P{yU%*TX?O+&_025wgFJwCsLf!D=A)um3~D$oUNz8W6sYj z@lTN$NUM+){$g8`lW;e8g9W(x+u~>v5}R52x0F6Y=2HnF zna|rw5vmPRstI^$Fo0*6jF&3?mFC=9?u0b@KutVd$Ohz~&KBty7fkI&QuWw$G1xhg zj6E*#@@NIhly{XP;A??EF)@~Lb`3hQ zYoR1jxo0ehipC_vek%et83TR#G%K$e<->s*8oKJ3?$27MT}BAU?4|fN=6@?SOVVfi z6je?;VnC0Mu39dD*F;wD)@WI3ds?756K(Vjs8&cPUiMcBSgMKlef#ovj4H>EcQ^mX z?!VaJP2BY<*R6?g=0$;-KVva-N7&9jX^xsy@rBZ!qs=B#f#;f6I-WGn2MddpmG1k@ zN>tO=z0aHqmPaQ0FpQHADRAtWs4=YKwsB?AimIy8)MHv!?Jqx1+WVQm0pZ)fn7h3& z03ISy`b|;KSIsF;%=8zoDsV*~(vcUbhlvU=*q#Z0-rLhm{9=G&S$-dPI!p0MeUC9C zIbUfbF8iXqk?uq1#fsoQ>uKo(kLqtJ8m)*OBSVM6>&-Mbbww|za}N0&VMJiSOfbEtG)WT zGbZK{nI1)Kyx&hA!#c(Hx*ibiMg)ok@h?20qnUHTC+odsj;zwndanQcb9c@NLa?y< zNX}-1+#6we^a(V?&9bbNm`5Rbh3{GVyDcUkxlviOV!?^@dy>-VFOJ_U6e|4*ejZ%D z*UEcRC28lptY+7RsTD%+8`#)#+l?h^H2e#P<@Ux^lY8~E%|m-G(Iy35E=>F*ot99} z*Yr84usGy2=c=7T=Yghcg*GE;G|``jr>4QO|H8F+HrOfaZxj`KzQ3*pNK!e+j;tI# z9uMC5<~n#UH@@4ubgnp_rrUcBrq0mo*4tZ@Yh!ZE+{qqiW%yekj~sA(a zK}70)V$Dou&SZ4rS|>GEwq)+fW<2T$Ci066PG#V0fJ0G+1O?Hio8xres9 z>>(nlLzOEKEs4Owp0Vxc)%n%!<_oe(spnLo<{p(ZF4DBS=XdwsDE(XLrIi^B=xp}~ z{m}ysHyb_1Kr|y;mflAeuSDW`!o-BP5zz2%F>WKbI+g;rJ_EqltCqF~u%>N?sfd8% zi(bXZ+tFAm;R;vSBT-v8!o17Mp;RGXAmsvN2hfR`dr27})@K*CkPzu5#Qm7bPtG$5&RP>!2 zomkAYcR@VQh<4eC;eahuyI`~4*ISB$QTThT+&a9 zmU1e@WQ)~CjA@?yo9Uf($jJAOwkAFX>>@EX!Ur_8WZ~iT%jcV(S_Z{$;>$nUpNDEN zNkDflcfoa8MLj+LT`Ae9#X>jCfP zC1|@v?`vjcWbxCL<^d}o>fYASRnPZClUFtXDh%(An0>RldNe4c&7&wkQK~kQkS7~6 zRVE%1(?ONIt*!)}wAzftNjX9BIPsUT&>x;%aj#$H^s&|xNJW2UHc{u_3x zxD`kGO?-H)^;55Y+B!1!=gLKjN?f#Fa^r;zk7kxH0e7yKOV+y@_F zp%+7ny|DFk?Sc-Ngq+5UpfuyA zqe1wt#26nj@SV)fRwUB`g0fCYLh>0b6l`&Z8&W9FAiQCsEx|q#%uLD=OwFc3!~Bh; zr~)TxDG3rQrF;xQ^PM~Z_g;KJA7Vyqi{kA-b80_kjFXBN`^q9Z+l_2njBh8(X0r6e z9vjX!+T01L$%KldVEeow(*=mTgo_m36|>CHYUqAe@_^qIkC%4Jk2J-A@XcCW+%hiU zXOBiLpKfuHS35+4IR6318wspib5ZhPdkl#K2YKgY>l#icoNzh!NEO43c?@Y`Qe#_W z{GiaUg{e0lvR*uEyD}Aw#*jViCPm(J52b!el~!~Z@%tM7BLd+P2!IkV!&tb}X~PU+ zVH;eZ$pgTOZH%PO@VBPjEA4L$5kfBqvDL(L>$Wq#ogZ8KI z9)GszYzRQ~NxlL$?hg;kz_MRFMYL2H!_@|hgX7`|fL+}3kIv42L;$(&D*Xj?MFo

    UwhR&{ zarE)*GEwBSy9AI9+u9#aL#HTY;FaorN$98-WZEn1D{E=@il>z=(i6(z^)hPyLl#pp zWt~5nENWZECz_Z0oVl0Dq6rUAOzCW%K*t@5X&7-!oPZ~o-t8aT^&@ITHm*q%U6x*D z(E@Tb(YB3o@kYwo7Fu$c(T0n6nNT{!(Y%znsP4XH4gKa`lUMS)lr2q%QOUh@7E2j; zu%ujrG-2Y}$(MFIO~+ogW#%<5v@1U%#)JvvyNHl&xi?s#bA?UsyHstf=dkE6Y#~5^ zx%{FZ)Dbv(+cCRm!Gxul#DjOMyYo}J*h>wEl;>QB5P4AIaO{OK11+M>JF7*^l2ERI z@t~f0oh#{9R`1nWESsa2clu#Om78Q~!IUy(DdS#jDqHMEa?(JMYMzm-lzBL%Be9rcZe-E}@(IzXZvIR4d`qIrJP+18%B(q^*7Kvq1*6rV}}G>&Ju z%c(XYDGS-;x-|9?q${H~OwU)? z=u`(9A^+*ciuKjk$e+S``wITY_|fuHZa%SdJNfLq`(Z_$BVLg~cjZ=1vy1&KnC@nA zSbM^hdXJ)xYQT>nK}Ar`JJqECA8#I+Yg7#8cW6;!GfEymYo|gI4KcoBf@5G_H`UEO zBYsfo%8n@+CKa@4&I}v}37ROF8R}ITi<)JJN^2n-`q?AAOWdTL*zoqCNB53e5Fh(O zi5+YA3wZR{*a%EyM~U44-c0m{=4AqDK>;{+no_5+rP1V~srpc763ByFTa-;ojY`b! zB0NNWJ3I!*1jQwfq)=pjD0m0LN4FJR>tKIp$zB^V%Q^1UZW<=E?Pk^!#FDAb!NMVL z0o&^zL>FQ~(5@LV$rupv!4YFM?!M!&5<7u|B?85WoH318x2L2W66UiwJvGIXx^Ddy z14(|w8EXD|q4ya4`S2$?>rhJ(4whz%neMQ)vFd2ssRn1HgtQyl=A2_kKDHk&bRk^e z)->odRA14;r4P_b>ydkQQ{`(ae0iZk?snT;&ta@ox~PO247|GIY^`mSWePL_T!7P0 zE&y3ba!tskn{N$(3osq8=Ozgd@$ymJ)N~a7^Zm!~GSM~ysG8{dv_>Z8Rl23~9q)XO zSEt?l`}n39yyoU^-d`Q>!oPI9^Uwc5#~W&+czpSvLj1pPROcFM-#_tbJ>_qRRBfla z`x<17qd6`KU(2%YI$JS&2^k~OUmqaj6HS+xJJ`9;>aY6NG?C4L2)Ob)B3>R^`kin9 zGG6j)g3Lj3fQ+{rA2ZgDmyO-(Ai#=kSL6YH5#IZHg+_4W{o=0Y<|Ms4Z+N;E%DRLP9_MY+gbU_n70o4BuPjmPOp7!%!@HD6qZ@38Wm_c8-2+x>7 zAGnibZjTx~9;g6B$VtN61u$1)*t><}q)@~!9Lgx-PTJ&@L}XJN`pP5xKK{h5r?J}# z!*0a2X&9KjMbS7?*DK$Mdz^GW?DgW*uNKZ~YTjVB|MI8f0=_!z?KiV|e(p(%c_sMQ z-vN6PnD+n6pEd^UNrwRbw1>n$dy*tzPXY$)NsF#ITK}^r`2hB$=YR31k3RX+7-N7+ z^S_0sar^^Mqk+bo+e)Pw&RzkhVlGiG*xZJ?w2?@$qqPxOek-QCwAw-o*BSN z2A@IUg7H+5kymy$K7)v4oSgp4pWcK9@TUdLj49B`IU$zx!arrarRNWjWq6-5-jPok zuWI2ww$9_ z>^)1$Pe)sR@~6K#u=wkU*S@(v{IGrN812EDAj?TGODsFrSoFeZXpKNlrXpKWzE zWtB_=jja6mc2<4vZeS-!Wr2nrh*xOLMQk&(<^Azgo{ar5T<; zn6f4V)ae4qA=%t|F$HTyB65ZMwI~pELAQDzQ`N}efYx(4`00@S@Lw0NsYDK0DVy?z z^l6pWfH!cv4j>pkRAe=S)IEco1$d@>%kxz=Zsp=1Rwi(D%)k{BC} zy{Uij#fMaEsBvDku)odH>Iz6QWU$X2LmHXj<-{lIS4IuA1Cy%vF|SF$FjBw2>S%3!?A}0Ly0~HvbD#ms0x=_|V0b?a1ty0b6y*Q} z>RUy-I8DiXGz#>*CtmYTEMByo>DZiUBt_7fSPHSFKg$6`phHsnWG(vcab5`^|DsPf z7JUKGr>AF5Ti{il>c z{&1m@=B|^xeQaa*vgZ_uh1GfbBDs~XILG|s;)PI2>diZxD#Pw;pTTc?3`Zcv?0UD&L+iw+h@yw*)f%+h2HEl)XY*5IQ?k$Sg%D zR7>RDt892zBnd`5KY@hxY@s~g00(&kHOQQ6=k-ej_TA)Gm^B~?a4YwHnS$PF0l?GV zR;wU?cot~&e8SU~BvG>j_Am*jKjCSd0C*buUw9fg3vTISag zbTEsH5DK?8s$Y7l2xxKiV3E)%L8JMhuP3mSH8h)JIkBINX|in$0Am`+Lm;7N{_sT3 zI&H&T@{6l_`R|B)B3ifT!OPl>61MXdfQpx>R1OTggQpju;++B&Wd@V|vQM9mqDLRk zr7|CaGt>v_SQ!?XEPJ6dt*m?^k(z-9*{p>bNB=&Y7Y>N2#)9q*j*lC*> zntv(N|FF|E0PM7XDAWJNPRm&h_)0{qX&S)i4FGa-rieHYg{Lrl*|w`aPFxz&FhD<_ zFh=5A4(}c)Nk635dEVN1+59K=;6HPLV5VBC!G%Qxp5d)hmT`r_+ z%rm|1EX+wZa|a>c&Ry^DFU0nkYdGaf4B4Hg{;GJV04m;jfQpyyUn*Yle^k6?765h{ zx;;f2x<7m0E;4wqk`{oSW;0|(%aJVKmXcPK7J!8kgNuK> zkZ$FQ$W7|2#s98 zIbBNn`YO(hR7Eb}6G^`e8|Z=_KI)D&ilc;+n4AWV`N$R>d7Bv2{ z({S(2zrzR=Rvn-%HXHp?1F+M+W(T)da<<1z>YyK^ZSPntI4+B1GIhMqnbj`1m3H$; zef%SVIR%NyG}>LYs-q*jzHyix zGm*x21K4%Ox)64Cb(E=g;Yg;dP=*?G&UJ~&86qzcO3j;t%&8z~OH6viO>y|f zH!m>FaTALf>Kpq|b|IO0`OVtvD_T42Y?UtqIaTjyA9S7f1=qgg8vk6G_R5;MI_dyV zZ}#FB{BByAd#%Grc8i!k&7VaK(ci&DabaH!iJ>6#qr!FC9)-)HwiA+(EXZi`#t&;3 zwNgAsb6LhDTQ1EUC$J$yOJXvhFN-QX+_XQXeFt-$r=wqRs^E z&T`=rttSyJB(fh;LLG2ro4vD<>BPf|`xD>>V_FHP8ND8xv+DPbIuz5&-nS=4D^yIE zDFybK!`yNna{xBpdi;^pXLl&{1NjTR2@X3Pj#WLeU(Fwd&M~DOzbey5L&w8w$5)c% z?SD^_WigrQ5m27J9@nwRMq*g1%i7?VXrm3#W%^i|HTiK>>}raVSsj0R-*+kqf5hqtBMm*vr2`Z)?9OgpmX zZA@8;M-km0Irddb$mvQ~hSVwq81aU!XY>#ms*wr0= z&-XQH>2^R}zpm;8sbat#L+rk+0YB(|{60eTPLsTU>G`)o5|opA@qbJ~8UJ^J|Nqfx z{~w+9ztL%}Vv7{sQQnw3Z2Xv$+jA-WRSLM%-w%GDTe08wvK6BKF)l9ns8zW;j{~_k z<_1Cgt$Q?rAwZ0Km_>xz4Ej9~vLvv&_(M6AHev4URYq%IqXs=G)M4Y>wrSIhs$478 zuRjp~F2e64QXl<~!^`xahj*>`V!!%(AtC^Hk!FuAz;}PraeS<5Bc|$2#9+?vo3e?< z?gmL&fY%Uf)g(4*68*KfbgFHwdUpEA4ucw%Q%+enSk*cvb|SxHJ&wTkQ6pg;sxo=} zF|=A?r)!kKwNXE@ReH2+QP%FAbP@S%GE^z_Y3-0B=6mZYRt2RKLdvVqLM+F^_OSsj zZHqDDFfhkRBjHkm@U+BKsP>LkCwAZ*G~tRt2Ao1eg90qBGQ7Z@B%wSjp^nU_N;=A- z&{;xLmUuF>aFJz>Fl(Qox5)s8jD1aNcc*64Q1aZ$f)2^d&-N)`+njq#gW2rH7a-7V~+Kb7C~EIMl9@*!grwz9HOn{Hbo zBzbmOKnof$i2?N!t+e7sE_pZmEW21z8Sew_N~H#5Je10>LeboR4Y!iL~FXLVAAw`OO^B zM{*;~YZR-JEMNBfMwi@#k|3P2lw?C#)m%y^lswo8l3=j-B6Ki0n3Q=r9k=q{PUR1I zqZwN5Qn=_zW?>o+e|_zV6o+bk6Uj?^QE8p&~Fvc^Cs7%)##Ri(YWotGU`FqEFDS_(dhVn zCau_PM#c;L7dq(0 zAfAgU^38xEpdS$6@A88Mw|a&se|!e`0BN+L9&rSL@UAW~D?lj? zxFP}s_`+ZE1YyOxQ}S$$mAcXK=C6T)!!&nKtB=Ucf+bq3gyqKHhs=LB8M-0O~IXoPM==ctCUqfcjU>6sMTFgLospsja{0j=nr0 zVZGul4Ssn-yE520$YGcD-tUvc@snVkP8#oIe%=6DQ3DDD{`Kiai=l=v;mNj*-s}Fy zi>8nJBw05B@S-h$deJ5aoqeG`1=9UiO(IT>&zHxTNbi_R4*-F*U-6HbKW#xXG5Xki z`EC3Ffiz46XSK91(3$6Fe*b)wrop8d{c}@XnOcRpECQW_Zzibe3sqFrA`nbzDmbWJq{VI#sIOvo+m9 zbrM<`eNJYozTI*7@S+R?cvE{f2SWX~eu6dY>J@6+=NA71Fs!JmGz_t@f$3qg$tJv>MLD7&)JXj8K?8QpVKUA>v z*83+kj+fylpuJJlgL|CHIUXgT%g!8$tup5`Mp1F_Ny90cb+&jg zX=gEN$=SdaYvXke5-F;X&S^@F!NMX|SnAsw9GlnV5z7_C?jx{;`BR3-?{xmY;Ou;A z#QRvmptLwclAI502V>vb_-#o;bhq{WxBj`r|2aqh_YxoSXFP{Q3c`vABPgV_etxph z$!JS2hRc^!M(jny0nyuj0UNYpSQEQ{1mu&iY&4Z|(Cn zt5fj1B>m!OxzGjNjT+%!xx$(D6Oz+6Y}Bsb-v;%j`q@chfnAfp-XVj<>e6hs|M>>WeZY_EKd?qT}J>ePU>Q()Y`YugG@Eiy8lAGwD^sD!`6js|u zM6@1bpEl^ulkt(Rb+|CTM|b!o38?lSpXEuZwP+jcGW0P;t|G0_LCZ4Y*c#nm)_;!@ zvRpvnWA7-LKU29mZ7Rv&o z6asi`F73psdsx$pY)pr)|LqPW=KA?tUK$b(yfHb*L(5;2baJW;z$BeYwk@X@B_HeA z`_eQjY2Zjq!eAYV`yp9Mta+IcF>kDXqXg=Pr?|n6b%_$xkqVjgLvYr6`xJzhDEU3T z?dBn)S~3HFjXV@_r3N30eDYI>_Ur|c4x1D`V+W@n`l~=ZI2E9gOCy=-LD(em6Tsim zjsLLv#Z21CyR)M@#_oXj;fVgqC8@oa2@s;y5Y|I#{}rN%d^NyXQw^xW;8R<^P`7D1 zbR184V|sl!g0a%uAT{|h)wn4%jaF=TB3TRxi}<^RjhB9lUv@%ao8(o$Ev-h>Wy8|t z&z}~dKS~9NVzv)0K~02HChI7!!k&`UwaYemYD4yoSLhEa%cBSnl|2 zingdDQ?1-}Axd2QF~K33cdTFXN&e43NfWWb07#YSkcqL}PzW>F60}dJoblP=t!*Q8) z8^z-~myvN{3VT*paS-CA-qr-VIoYpUd8zGJX>+of-t^UVVp?;LaBi84HPtNj!I`%X+mSg%B|&NH zyrG)286DlRKC6XYYY-4A>;yfM@y6VkR{9RNug$L+%qj&d6G{`sLv=IA4$spm=MrhW z@BZwvo2=kp=~(KuUs7_Q_5FUeue8tJ-Zj%uJE7$w^0Z!k`lNl9PDGozmpy#EVwWAr z0pfr=Ya@6wGgdsiyb_=GDOR*YXTEw5%Qkkjw zs93(jvx2(ZU_}rW*UJIdRQLt4=3E*$3pv(aLkwf@W6Q$?AZ+Jj7)Z%7T5_)%yNNmP z#fz2egfoKVAhz?jAFm`o@vAae^eqobGY)>1n4*#%RlP6~v~bsNB%65mnuGz31x@LG zLqsSpWx5r`f(&1pg&JP%rgq@sx-X9UU5iO@JT*~#&<2YAY-zCjv=K!OcjC*f<)Y#$ z2h=f!G=a+JwzT2fq2owgK^GcG309sEft$_CM$)_qA+~ge|AOCByIeJI#2#W*-Zc7+ zEqz-1&DeI4uVD;2Pb+-Af6cnUycxbxIJ4*6;*I0%D!q2m3eHV>`>YFPgbHK8#=1=3 zK623?3zFtSYhIGirghU`{VDyAYOsmy>guX>QB=V!UtO1>%6e#%2KFQzqIn51k3aDc z9SVXrgyc+$S3v&b!ex$TZ`E!C0&LNRKE4}W2)imcNNYu0`|pS@iqc2NS)-QwQS&Rv zE+m&61U>A$s_4U8%@nu#K(y+{1F+Z^qhX^9?%Q{4+%R z?zw|}Q6tSI>bXkv-6Hjo-`xU4`G3EEe{7I$q5x|S%u}9FJ->-?+4V>3P|aIi^8Vo8mz_}|rsG!uo6--G|6O+G`1?i$*p$8(d~5IK zM>^uilpSolsW274&OC*-?}JBk>q^&$G(k}m@cV5{W~t)l;-ai3H<1-J9UH2h>)qmg zOL}(oK{1dAI9)s(nRUv36-lmPXwD>07OLUil}k=Hrdu zk6sf&!phz?sVQ>MyV?tggf{T!w`qijbLrzui>x7pXTxD4B<@(dH4&r|biwba5z>;_ znXV~)MQff(XBxjD%u)!18x*_zzatS!r{&~;ba?mW`CHiui#*SxP9`<)`U| z?n09+;t)P63CNeTOKcp)`{v<(aFV>zD&9E(fWRa>P7-$gl-@Yo4u;~j^AYp%khK}@ zBBdoGPPbqID0t7I1kc+bjFNv4e!R`zpdj~YAO^?R`C{cu2G^NDM!SedPO(Zk;kneEZbvJ#%0A5&IB@e>$B6q z0=&rcsO!!le9|{oz;wV#CCO*;vj;2fG(^tX0zMiAneuomSkC|hTD6vkuNc*d*%vk9 zc^I0GUjgRGE?-*kck8qtO2-s|pZB|srY~6PLON%yB>Yl);?S#5rggq)V2?CY_ElV(jvaPy)sQkn zx07V6#v<*y%+}L!H14hfpbJ)l*7!EC)6n^{z6=J-Wit}PmK7@l&Z z!*|~{{#1a2m3eD_(5=$%2G;QdQZ_bMuukL$)!CzD2+q5*q;SFzjm5~rCsPjI%_JG! zY^=i@VH0e@#?seOh!)b@F1aaiOE?_`^R-oGrDij;fWK*wV0_Rl3}Zl5n89|?5SCeF za7v`M&pFEMLPZeVDQekJqcu7nJHt zxNIV+;*U+Ujb9a@7%Pq1X}(I+Csv;19bHCd+*;ToMGilUL-(pPcuE21iwrtAzE3jg zZ#ZHAkCt;r2?s~xpA*L{58s8@HmXP)CzZz{H3)wEn=po;-b^m>&*b?_e|#wX?{JR9 zYD^?Wh+V05U^gc3Yu&XVMblcf>2CzDic&tjrDB+9SAURWe6bNS&aGM&kT#7=k*@Y} z?&){>1Ii;RT@s4|p>v|WZ&is`67=k9N z+pwvseX5}G4TUO7ukHT(YgTkm6mvAmo%izSH|!K_ac+&BW>tWS3%rk2(%`M0Y_Q)U)rgF z%RmP*k8-;fD}mz%4Dn+x?&W~^KNAfPUepi2(6D03T#`LPdd*od-GEXEb5i)MuT9)u zL}edIm-z_Zewx|@OM)=-thWfl5_tpPP0K-a5Z>|m835pu362IC4+;$o?sE&2CEKBO zUxPw_=aGn>{Z?`{2|N16?a;;Cp-7dN>I?PipYwJXk;oBqW+o@aQOn5*`aB^oN9@B( zyk}EGa$k_*?SUH{rxK^vd4Xq1;|c3pQFsv$fR0#{K^OWcl+$sH%KQ1G_O{QKmpaz> z!sN`P2{s>t9>O+<)=S9e)?dU-dFu9eD6{qfLtCu>iy$P*zSt>s;;tBYtV2ICX1JUtFKh*xr6Z`^=zbB_`*qALj6jBNJtXbcG zDot}TRF5-M#Sy>Ym|Uv&xW)8`rJ1gT%aWSuAf{|V9tV9`SHJhu@61r!9s(V(WtvwR zkNh;+{{E~<{Yo7RS!WB8wi#+;9*cX?hTKB5Y^M_wHEPegMnm4D^z)@l#wq-3OTSI*>=b#EU9f{ev_@R>RZl<7deSLh5bw1gY)HqI+L|0kz?`P-%< zeb0;zXPbpVLoj=tHlR}+=VKk=+Q6eEr69@uWu@DDS~q2&q^ZE~+dQI>gXBa7G-rKF z?KEoKotxX@Ftf?S&zzb?asuYc=BXiAX|_StBwY1VD@Ghbdk4~BI0&us!XhhV?H1W1 z(eI2}iPO>!t$E$Gi_kn_%9;#edoO6vGC3_1JuRP>Zn)DIul)J4oF7pvQ-fCco45R% zb-VN$8^$j~c-h$TKci(o@_;E6|JF2-pshJTMYEri7ygBlcSpwp7v7N?m8a(o9PxJJ zs^n3$^{Hg7Wop=^uBA@-CiezWs?&}rf%niPBZIK?DR4#Gl(InCnW9X=yc|vlbyUv?e!hN|$q`N?bKF{eTI=R4oEo}qa|ygKc?Q|*LUr!Pj<*sSxabr~)& zO94ILhYw^pZ*OYWg>Pm-z-I3I3|})opUtqK%L^PclIe{J6;e5)*5-rF>v9eM)>ZAn z4=$&imZ~jc+c&IFcbp&di4qx{t2C2-Oi1ED>A&j5)KThVKQ)a#2DWiJEOv5`Xl?-_aCnK(`8|TzphsU3?jzK zHH}8%e@bd}Bq!ki8ls%GWo7S5r{xF$xJN-HC3hrd8f+dWVYTD~`=HRnv^cp!)d0_SM!e z+}ybwIV?s6wlwuH98`if#aOHO;sb>su!l3RxJy-iwzL$=CBj<-_pEUhJyLVD2+uv4 zCav@0b8M%%gqI#dI=7TA@72$01b3lc-_*tfq!LtGwmE*KFJtO?tl%+`dpO?>=3Aj` zLm;1))UL>)cz9@3Vw+^KD|XaigW;=SF8O_ikXB7?@1U~YUr?iylSU((N_GKpS}+O^ z*vtZLuSrM}1@ktv8ao!q4)d-Kb^MK6tiZ(RyFkL-Vu({pr1~kVO@GpwmSQQDFD|!j z)#+{%(;OvUR$Z~Nu%#)DL@Khs($G?_eA|VCbPQR23%Oh>lzRblnn!WL zb`NJf64#Izi{f=V2{XjXMPihGwGyI`%~5RZUPb`p1jVMk=c-5B^i*ej96l5OnXCf_ zD2zd;n)Z(F#4TMk;lbtbR-U>zQr$3_T(U$??aAU6=C^fisj^|}j4O$ap<_=8BWubr z%sj0#g0Ie%To4e3*V@f{Lai-RYSYG2ie?thXoA zx=nxos!=YEl)e>}dX8tbvT;gbXUt}^leyF(kP)0U%e6ZjpNm#wHyaIQ6tbw>X7Goo>AC?gF|FgP?j zr3!D-DvAx--H@^&rh8c%y6=<6n7ZM2x!+_Znkz%Vw?E!J?uSl>4J2@Z4)H0ffOMuF zIXWAGmW>AC=2P5|e?7>&LR|z@eCkq-zojEu_VS;!Po6-(yy%F>7rQLn9vQ_k*N=&> zxCS>)FwYP#~ME6?Cc& zErBLP233UOyE_~H_2EtLo8x~z*2{8|EdR%QC(HkPvJ7(0MD7-WL@998I8-728&a2Q ziG+lnh??R16GB6)GVV|!}IAT$~rX|FXjCWnwh1g7y_&lPHOoov*m!*iIV&1wz zb~9o!45D<^sH*>p@=-0*mOqL4|`~Ar=J{di-T2Yxtz>vl*y%jdx|Bf5! zu-1T0MAXDcZ0kQcus_DpWa)EBcodxyVmy?r((ARq$cts)ZmmGjr-i4egQ$HU0``dE zILCKnWt@FeU1FbQa_l0$I<7-?D|j)`M?>J0i87@N6n}6S7Y*@-I>R8?O=Z~^1r3t} z4fgN`Hv;9yfHzQPVLYu}c6jKjH|Lx!aYZ=C!-X&R`4Pqix-e6)C=%a%NpsiO7Zbj~ zKFJrOO<}&aCA&2y=I)|R;>l4ui65aO=5Zvs)x9o7uR9Cvl(}=q&BTB`B~J}5lj*F8 zeU<1(A|3@q!b>IB#ZN5n`PF%`2JhYk{{hGEY*VN}&oa?ee+U(9TfY@&7WcD_?FE_-q{dn?r3ne@bPgl0u_Q?Kl8Q`ef zfWdtw6OZerr-jAfLnZr<$@+Nd#}SJKW?-+G5%d+uSwY!?Zrv#%=W{MyN)ev_UrG9^ zPULTc>LP_A1ee?!+Ty{fLaVY87D41OWOEc*y{`+XHuy?*Lf$^q;CG_7|r`SpNZ_&-tfn^5%TuvtT@n=VE4;z@T-)_ z88+xYx$APiZPv7Y3qc$=Cx>Y42}5 zCdmbq?^2pjw*oolP>2u0%aUi4kK2_{#Lw>zp6oRdL~){hd{pQtL+sQdr$RIJzXOMTjsvv&|`j>wb^qE|m zdprvBE-nlpa|ppD{t)z+E~v?j{|7;T8$i%E`-`BDL-0bR_!mJR+}#yi6NoP-FB{W3 zm8+0cQ&m2^#48Y78Okg|rC9U`iJMe&U%YiVR9QNp1>in&c@;E=#jpx|Q6nFQ=x;b~ z=P9w!Fy8`UC7I#s5KcM>gX&Dowk77TPzpe9$H(f25mJR_#R&R$g8nX8NInG-m5C_1 znr92}6d4XtC28OHwkw6kS6yWAKLq{c4G@;AzX|#gA^1GrPnAP^Ty`WM1brx2JNWQw z>_#P>Cck2RP9`-$^|I#KjwXtGjNi!R`uGfv<044g-%>Ob9dx-NaZ5|P?eT^$$>P;m ztOhxB0gL-$l@$U06o_xzr6SSZIqOW?m{BE_xP}gDd~N2z&_nU69cL6LlP6AHtaz4y zC5bRfKn0IZ0^Ye|_6I*7#&1FJ(Z<$9H5?@QUFcRfF>Euu#i*a+VPzwQTSDj$Kc5`H z&mZSueB>U#Uf~eraQ(y2hxxQZomg4N`?cZ#{K%GUSnCfzU$83uNdFH%f1~J*%mt%l z6VA&z9xx=qQ~>Wc$qd}P{F|RYL=&teJ8fb{SXqa!9lr6w&p*BhXZA@9xB1}bGyeL% z;MUo`7-fA4R|=cwMjqnDsFJt|O$|NJ%1MhW?@P{`haTMoYRLZ63QwOrL1=A19#(%v zQL_cz?XSJP@}Ir^mYEY)f3^+8H*hwBGUOY$F`rafeR)~HjD-2?S(FCRygeG+a z=gO0St9{n59#yhPnH{RG7g+zmn&wD-@I%}`XM5K{ZdC*?;h$9tD9e}oVQ`-r zAndCsoxGsl3ZfB>em!_c|40Z=yZV^itG)jr=+Ar*^zWX+;1z~?0R(+~6K@N^v3X7nxZ(@ukVB99AncWNz_Mb<)Q~;$ zc&X3;D{%|B2RI0!ciD)YyENg2kAzr1j(jZcArx$xX$FD%S3v#+(60{w`t%2&KPU}R zH26uN?ZD@}_hWIt_t)Znx92B6!z5$W1Xw7wnwc<<-k-(2(V@z>MkP9g6|m$VuI6A4 zGoT|?72JfrxWHg~VPzbjYvA&YB7sjZL>#hGi!HXdIz(pq6^cFFyt$UfG!dNw$OqV6DKWhum7(pTvjMw#(TjtHq65BuN-=Rx%Vo(r?EQfb z^KD}|FH^nu)O6fF*49?tNSc0FmhqrTuFR8n@!r9BwrQG_rRaG_aqX8cY&YAh|HRD; zne1~NsE2I+wSNLQocKU^4>xig$l9r5Uim7%@%5o8FBGITR?W)-GsGZ?j(bd9eY})a z`%M#U04judUJ25AoN2T(?h-D|a4 z_wCKlWB1kF*1SDz%B)w4`JKBON;$W`pDbi>2)urtuUYBC z4pz%X?G#Esl89`bW>$tV#0tMx?dbqL-$Weq)+qb zWD)`_PoK;ac?J`{^2ENf;`M3wUltxED#0v;9+(+SWj@6;&OwFPH2aGzd=26rB@ap? z#-9LgBft+|T0115wfM~{mrFz6;3y0sm{;UEA#kK3C`ocMzdUO{(M_)(Ps$TL$hI6< z_0{9^ujk|b{DGkiy++>i$l>BR{8=^z7*Q9J36w(0Id&Ctw<~^Hn;a>k;Yl4t0ZUXan_ybfvKcPCS(8f*zeSIw6U1CTxqCTPdzNw*Gwl^YFn<>S?ufpJbRW?baN5t1c3ZV6#P?w{RDpes;ort6TTH&W7ps=RwrOiX zv&aoy8U8%#jD^;x+r(qWvUC(m={_)n^12fQEB}58I?G0&Nmwhf5#-_+hI^qL{{}R0f`JabSteE z(ao+9!$X`32g>U5Bq#HIXh40XQ-QPC4ornHhgpC67^NT?e&UOg`ib1`6z*um-p&HD zYGB*CT=v(;5W=~Mr*a}i*jlF&n%FTk8EtKR+P3w?r<}^#yHaZF$5u(`20P09_(Qw8 z18K$$AXAdgMGB@Woc+Ti0C)qx#O!(b>%@qVN8g#=cXR4Eb*ABl)U%AbmIiuSs}>vf zBM?=%1lflL7U++mU%>#nR91(y! ztkSz2uhTcfFq;0V-z!ar0^D!i284bnU24D_nyMQOm`@Z5rwSOcHx0JsYt*^f&CRh^ zWZxC7!|;@7JpCRDc}WsKfz@52j!=6eIrxMR%n5Xu+2KO?Z%* z@{c}l`Iw$+L{Bd^|Cj=_K|hRb18(_g6#sV1H#O2T1c1vp**;PLz;~3*Hg}>Iq3)aC zCd6JpN5S~q)^bT8?ebLzgTgnQC31@#>5985Ld9DAqS#W|0_%HSZ~GjwtLPV3_DqMq zmsdiOjd^C&0eUFH;~C7_Z!E(2Sk|Web4_V)pgL9kAvidth(gyjUd-E10I2@`k5@h$ z9*FXsS-q8Cq^~t+WD+wJ!D=pJ0uh~Hl?Z}xrARuaqWocg!vIQr}L=r2YKvu&I z>J#z<0eB4tTlY&QR?t!|jd0*J|FdF7rZ7ynqar~Ke}M}dp947{Vra7?I<)I)d0L+q zchH#^G^DK~c*SD?Qy*#&K-2g7py`LWh4uYFIE>%{x53BzVjK)X2L#F{sBMbs1Jlmx zF3=T|+MIgaHVmy7dx9?NBz%sFm!r(#@6F_e<3kFfoBY{8OQFkvFF^0P_HDC~pl+>l zPUl+_df|JG)s!=c9!3Zu<$S{hX=_=ci%%wmadNx{Y4#y0pD&~H$^izx@5D#%87B5s z99VrrXMY#@wma{xeR8g1>;mKg`HrCx_9gV1kW_I8vOI*?n&xv)&oN(BI@pk(4*OfY z`B}Wwcg6=T-~$eza%(R}buFd`Scsg?bU^Rf>q1T2?o%0{_bgH~18K0)G`0c^*yD5Z z2MFohN^Su5_}u264vyibZ+L&WWzEwHhVM&)(Zu3;e~9{l48%->PQ!A#+6XhR#8E#Y zQX29^sT3jHJxqguN>igag$DBid4H;C0P)A38A z1+F%3wyPBcXvkFd=TcWR)WnKIo&1J4Fp22@XvlmHmk<<{<90b?Z4{}LEef{-AwHVV zx2cGZ6Raa_9qu4z%y8t>_oGa+_ky3rX6vd%$$`_ZdgjOdQO0#3quF8H*?;9h@=O25|yDJ9W26){FxLsT%f71wg%9c*$)bM}xp^CPE` z0Dy&TMG~f>s|KjkMsR!eU=g#RlheK9i}?7Lz&@tfN)i$nY)+L_6?^!=re?_J;8CoI z(wZ|8gV0Ik*B|)woo#SdUQJlkTgMPZc+%8S`{29V^7r-$Q!j$eCWzhoMf8-!A*5(A zGReeArQf|qJz$)|tm%gRmej-V=Psh5B1w zsx}|j-N8Cn%g1u>b0=qxSwb=u9zD^WMu$8@28#=F%u#mH(mM%{FPW5yOG97v)DpCY z8-T0ePemm>q2t+rWkHCM6mra3j7VI&+Z{*HM1PLN+`rn-6+qBncO-=ORaDbjjD0R$ zV^zMd{uxt7YF6tU{?*7n)VBT2i#X^w`UeKt(<_T$);Fqt;CM@ed&{l*!Pp(b-MVj} z;)6z?1RO}%1hX8w3BA~$%0j$uKiOJ~YEmM(8lM8KFb<$|r=I7IU@end79|>nR@EJgEd}Ri=>RQ;pKnT;iziIl1e7O|w7|p71=aMHMj;z6B?@bY2-lB}e`sXB z<&2Ht-J43~pa+$7yDI>F>#NXa-%KjJvcZ_FN1hpRutE~hDvIry4UzXR)YE&9O2PvN zccZabznM?1--%;?k4qdnYNU>uj~aV|kPcwnNnQDuo(wNqN5CHr6Urf^bnJr{f@#_8 z4;JzAHnmP7Kn|OJ9osIL#YN=M;y9>miq+UzIl{Wao8TMlHvg1-L$8*cq0YkhX^~>l zA!v+mp(mU(!8`9^c!pB!YGJ`;(Oc~39OcVr^mQC5OO#_^K|OXeG zXBu&8&{99^A^(~wh%5{3U5$?1hi=1P6y07tT}ouzl&LzupVw$41vb579p)Mp0nEM= za;7S}Syj^W7mG#hXb!D%GAaljYEXP)sCXtIPka zVAIU4`68@vEYSCg&`$g;Wi1kzrfxHcr$(f?Nrc_7Bn)p+)#4|6hz+VvS zYXkvx#f-LTq_nHV!c5dvA|o;Cp*sC{xe0P2Zfxi3+?}qoklgx{t!p31EXcfT|Fuk3 z`vmGDm9NWLTNMn3JL*~*`MbZUi;$<*lJDv(h!OnOEEi~i`M#MgTuXCVW^GX$&8}YXCmSuaXj}i*7|LNCt+MysRJ69l zBG>rh@Q^XBQTO2<*Ma4bSu?(4ps;#|`H`8!)xoOs#4jpqa)KaI<64ZYl_Jp^17}_E z%oOq(8enCt3o$uV$}=e1M>dm-9$M`nnGr6Wlq_jcB3n;BxtG~#vIy$r6OaeEo4gIX zutiI*MMQ*-1K4uVJQ*iNG&%9!z>M+2URhNMV^|M3NI7$z{OzHAoR|^}o}8wPlWVt} zapNALYVh%+PtwHhrLD;bhIS1rH!^}`k^-uEc|AO17^Ns7+P=w2DH-T;(xfHeDTZ%Ct7T zGAG_t_sxRC(>aM;SMCnYt&a-#mNrZ7dn!e1N(*A?Kk*p8Z%=9t?X4N7 z&1jfi@GY+#^{p&MAkbffHJfInN?2f3&2qKt+#-5^0`_ZR%ZjL=Z-++@BdA9cSF?=c zJT)22JCsfx&S5jRB$K&7O5k6_UVeo@>Qx!ZW#N(foGKpI>pk%sBH?Z@y`NyvAoa31sd6wj` zLFW#O*m0n_l6i1Mz?b69GWvJku_dw*R{(_z_LWYBWiw@Y;Dj9&vgnrrl(A zNwHtcGS(iXO3CNa;EUkS8^-N$DD7rhRKD)v(cT6WJQ@hwIQh;+_B zUV=|T1#y``1)O%}Z*-SrmmTsa=tPx@-3{!>`=@ z3LU#@@=UZoCm({~6J7;X{4**!Ps2t+DgSeoq{5=hs40Ty*k;80SQa%Ip$v+a=j7yl zU##NzSmP+o0y;PJY^dL)zEDx6s8DiH@smp0&cy@0>S8$q+5hl(750VD$Dpn0A?(s#ppye-P50{Hv039;FE8 zVN9#qk0YW=45KEfJP`I#sCs1A%<1A*H2hNR`%$QJ{NsQiUgbvhcG8>nE3}9QI3U95 z##6}dB<;=Pl{H;N{>xv24e*zgyZ_5yqAy2lZhONSnTY+zUt*Ao3hKWsNwsx zBZhSNN1>|whtSN(&{otIpQ5Y9qi-X|Kl(DzJfjyt@PK>^n=>V_`)@v<(6{W`X+R_8&Orqg&`6Q!ZU;0{rhj~TO%y*=dMzx` zyHkY?edV;Ku&qnA`Dmn^d;Mc0rRLZ8FEl_S1&8_{lGMNDq>Hh6t=JuM%4^-bUlVY% z2rzINKOai?Tq3L`HQFeaL*ODA530Ha^Xg@i#a6GL9e$3>%p5LJGCwen_L9hYlj-yt z{_(1L){-y-M+*56rF?{{UXk2^05`bKucA771~5*B=+AN}VLt2`G%)5Jt$%)hl>0HR z(TJ?FVajiA|;>HQzTY2a0?O;;;z@v{iQ zcS06eO?ch>o0~b^b3gf6ts!JB0`!ATbW7lyz)0WE&8B;Rb}Gbf^_ z>$7UTQcnEN2oGF+_9PeqZEYFYfs1qf4l&xXs zz$VLNsqK{C%06l- zw>*rvGMRZtI=x!k$df+VyPv3RirfmjnWYLSQ{-KoT?jyeo8Vuj7Y2_3;+Nt z&sQAM%(55omolem5<>jGnXkiH9{RFjAuGTeh0sHFmeN(0-DAM!pXtLT|CK9rv~r#v z(|F`jf%;biUO&i9J9q>~o{4I-m+g&bWOOPte26}ow&)iuX8Cf~iU%Ax8#{&*A$rn< zQqfk>2x|YxqufW!?kMZqcdXCr@SrJepnjoGKfh?A@xnvA->TUudM~tnA*5VxR|4f1-y$TPPeR$uejJoCPbqg?84(a6S8=0aXQlDjKrN-UW@mB>0`Ei+0uig8nJoqh#YX%QZ%K zW!|nz3M34>V|Tfaj%ElRd_Shq~881Ef%@mj|qu~7rwxK zm1IJoQ*``Xl9n4Yc2JSVyFhsS zLW8&q>pp`ph8h1>K=Iu+U=yu7=(^WC@=5L>BNn%C0Vp4Oey*EjBoFfVkc4g%H<8aU zFy#NNb{tR9EX4rk2pM1JWn1BS1C_+lz(em-6@v3sX@3mSBcgT)U$CBXdO{5=W&d1N zUp!F6U7kUxyQH^Q5yagai`P5ZSs?4!;%d2>3u_Y61$tEqIVM)-SYh&sn^@2wg&cPW z7d|+n>44aHw*mvckLiM5Mzw`7o1fF<;I-7F$hV1yR|}Dn&XL}25jL|)U+i5w+Tt1$ z=@3*Bgix}{QZObO{9YxJUYek+OqMKUOB(6EN5FeRcdqc>#6<8!&*(SurU$_IV4rUO zwi56@*LrT;R#Zd$>|73ydA%4Kho*4ywwt8&5J8FPZVb=fi#|H;-#%(Bw&QE*=OxEW ze;xDlcz3MUqzKYj=zgf*lLf-W*Ww8}>+rFr>}J5@E`CgwnFo`R2%AZB4myQ(Pdfz1 zIG1&ZV#Ia^5zvXOeHmhY3L?>Q&8e$y++Q-^v?js1y>0SpD0435(- zi5TjXa_Q6=Z+@EcW(8|7h&@h9`?D$Ks6I_-_+Ir=IWoGg+WK`Gwt5#!sOK6BY2NEj zs}T%^~&?BYx5Z8)Ywrtgp}-6et&7j9ySO6qfF)SDTz(x1x5Q^ zVIikAS&>z1IL8XH6M~1AG#ZvI7GFxMCy87`M4!7%u~!HYvxut|ZH^%A6IehvTRO49 zaPXTFVXKCYgwc-!eSr#oE`o$JY983ojG25#o(xSnKDN<}-rptoL*H<2NX?F2LtBZP zz^wx6e2O;`f+{K0L@|S` zzC?AR_B0t#KluizpD_8!06P%nR*EwWpM|Hzz1gp*&m+=q&^b6G0Pn`DtU)Q|9nTue zBq*k_G08yrF``8fSf})*m^(*t4tNRk->Udy&w=udFLf4~z(J`7uI^&OG8{t*c~Ios z`rx>{ZmJim28jNew(4fBmqD%|`E-b$p?;)MBtcBR?L_L|?JT44-D+kvUX&~10G-sa zmc75?L_};;EyMXf- z#Sk8F7cH|fNneZJcqZLbY6lVB!C&G;kP@rX`&v1N8BZ_qvFcuGTyy5U`HLGw_whSg z;mrw+CFqUy+w&RNQ_)KS*pT^|l~3-63t^N_UFV1BS}Lcnm#!G9<=N#8K;CcWd>Kgb z@zau9oQ+->PAx2CR~ky!DTQQgh+#_$=MCTWs*}il8Y)n1#}FWJefBx7&FX*4?r&GG z=a@P$;o_$+F&mG^tTzpgs@>s+q@V9(ltd*KMTc?}A;qa~I zLVI#%F`(^jU_Yshh8^;EnMraN%xW;+2=w~F%~pU#D|byw1i6$$)Yg8zMER@jQcquD zKT~u*%0p z&mP3!Zhwt%SotjYz(&I=tGd;0Z|8lYQ)QzPCe%r-Kzsm7!K?NgzU;_Zc}5Ugk!j1q z^{`iKa4YtKW4fJZVab{gJT=9U%Mw1@Rs9%-9}a|4JbT*Eez$$zE zV-iNAXIfZo!#PQ8%OgF!Vtt06*XZO}-FVyFnB}6v;+9kTMieV2_~4S|ZbHOn4g*=E ze#fmEvi0cWde%@lTYTdKTC^2D4#{T?MBeMY)?*$G!C4{i+jW$|17E_vDS5j4G6w#s z%X`?18qj0spzn)Ao_KVoLc}Vg-VejG3vKFL z_~#s9Cp6UF+!5B7t%Tk@pl&kS;V??U-|YwnHV!Gy{l?gc@cA@){>?Gp?5Gt?Yf&6C zaag~eWHyE@=8+W7SE?}sqjRFBE|PckxHsXwJOo3}!tipm9Uv?TwUCWC+F|b&QWXhe zQ;&JbI2zs3yp?VB4ow`_WX&6>{RI5ruNw6F7WE3`_VF`j-k@m}KC(dkrA)Vgw_`sk zi-uu#OR>GJjau-sAFZ{;y`xg7VVX`6i8kQ6buar0tgDwP9X+j zai2B(Z~oGM1pt5ADF1VM^}oqqYIrRDfBmKZzx9`n{-5!e()WY#|HnPm9|dH7;=lV# zp~)9(@QIzhS*>C;WAYKZqI-MXn_) z0$H}`4pvaHT4hrJDLG9<4n-I-qzc(8J~7LKYQRW*^4%p^t{#ZlX4Ejg01oG~jTDcJ z$Qz7AjtX4K)~rABi~XRVqTDOgO%;P*mAYp?k|7lz#aI`{yw$Yyvnu|kq$`Rs253xi zN-$+}2{$CaLdR(ufjM8ypG0@J_?NvB3%p%WC&TSKZRrs(L<^!Aantp{fbl3(3d9K299lRDvlDxR{Im z)Cd${Es@eqBI z_{u@W00fX;{rU+=uU3E1za-jjD%}>A=-#PuVrQh^vg4CC8q@5`Y3t6g5K9PMeE&Ji$9ek(_n?W z_5u1`uECWx!UCwfF}2E2w$Ms|I@-519P>jRePz`M*s|si1N|0NrW%0V zYllb2vI8_g(A>pJIZ$IT5lkPbwT%m4_ilZ>UOae(>o5hW6J>aTu)o;7av$v8QL}tk zamm7%Jz>D>HA9lM$J&sr1EFXd5#QRVTGW#m(=0Ion(Mn%1^nKDS+p9ldcvCiV)wc^ zGZA+y8cC1UB?8pZtRhPb6WkxK_cX1rPFH^g@Ot5m#VE@ytj4j{XZLVLq=sQs-QaO4 zx}r*}x#s_3_og&Ozj`1nNKJLPOiuk__b$&2PJ#{&+5D0X)p&gFqr$TTyk7P2kJnp) z0*$=F@Ym}V#mK@yLIjc;5%r?g7%0`#T{3CfzlbrLwLb#9-ZdU}9QFTty#$Eqh* zA*5V2+Swi?ZPGJNL4T>E|M+(c&dgo_{@o5Tf|vFk5S2Lj{lEOXlmP#3{^53|eBe)* z4|cDBKjbX*10`6f4S?ONvi(*Ls$($u$G=ObCv0*Bl%h^f+(*v1LU&vjlLb83EjBS&*B24*+*s(5MK&oj%zwr})F227H))aHpRD z-06}hnXkPkRTyZ`f4I|Z>wmb@um8xMehz5U!TwLt>)%SL#n`RCqF0|SrQN{kZG1*b zK5B!yWm;p4W(l``h-K!r%}T|2cr*3!4koEo$#J^8B82-uD z5vl2F(zTph0;Lg(gdK16FMux*g!9!f&}U%FWj0z8$QTJgk#$QE3%EDbfHR>OJOx9Q z!B+J0Gb_t)drmCiTK`Q`1%31htQihJTQE6R9nh%{v()by3#z@eoFlNUBXp!^VxkYT z)R}>}4V3CT7RoD5$t4rn9-HE|fq2!*@Q>3CqI!@8Q@^2k6txIv|0pB#K06_4qr{5;D-bOyIuz%Tgz}0g* zPs5NML{*7#wX?^^Z5MOdwS~qiu>psk!$DRjm?4GIAB4A=>VBufv2?5?TAW9Veq3wN zAy7QmGVjD(%Kr^F;eD?6uFtbh!}ZQhBGS>D3bn<)#Yg)y{dyz>k?+B63$bKRwq=IL zZvq{FO_k>;cd-U2c=y2l7&BEldhFI)01Dm$fP(kAT7V^MF5tHWp?nBM6FWZxT7`M zaBahklzdnht7{DXR1xyqSX>A+vc&cPz(kGeBz-# z?zbV7SSriahf*}xL{xWD@}LT&KKiBiCl2Q}WbbF4;?r__#uKKR(*?=T*S2Yt62*%i zTMZfjimz5XXq?p*eCQ+29!!)s0vMgDpc~J)gJs5cDLUwgAX^Ey6Z$}{)u=ePkt$+X zs1{l(Naw9d&9yiz0A-{wC#@@;2Lm&~3#yD~`uQVz<)-=sh+bI+)Da^cwDNGf0nuyy z+}TI;I`GfYtLXoTUhxtE(JLMxdR43!^zp=$!3|QAD2Q(Qyz7mXRIj2Z_W7wtqSICl z{;_*L-P@G_A0U>h^VSgz7&Hgt19iwYvQLlKuF|F-i@(lOR6GC=1wZhB#jz2csPy*T ziVFWwOEqN^D}?8d215x$geD|rX!&i@or!1z7J-@#3${6cMc^ziYZfWkWyKpq?|z#e zk%Nn_yh0YHsgw}fPfvzo!k~_M(8xDLOi+Hg5EbAvaAmX}Bx@1uo9>aQ?agmLxgQVL zsqx;k;!eMn3L+H_N5vdVg`~dYhgjZ=xoy4&hv-5*bjA*TVvP@f(HZ{oHS6uNsq@|A zOHa+a7jr#fi=cT5!=B$cQm2lkx~pcJrEztBuM(d15Y?kw`M{u3*hWkbE|^hAsut{2 zL-smV2qj3md=5S<5XjhXE6nrUiRL7jwf7KA=z;I}_pM~r$(x!TGAp(A>Dd5EX_>_U zumpZ9L_CE>Kh=b|EHU@V&kXQ9va>31=&VkPixrq_P#~6s1wLWK>=JH?x6t)j81K}9 zXQ~rab7)?~=T3Jc110C15jh_eTuvtxA3x$fKONcv{%^DDON(*9d7_>>poF%5X zjSDrINm>XfkYsnFLIw$_-%A-(94(CJ_v(~;fPQPT`2}1(YT(muKs;t*C6|NLw82I} z$ZcAc2oHy=fP`?FV8C!fw0CtsE598c*=}VDCtYd||E$7n_kIFKzn8x5=?l;_LYXNa zqgIAxH0`72-at~=AO^j=Z6X#gQI&g_XT9XSdtojr3TvWrtzgHL_kvp(fu72m`IKNR z(ED%4glFI92otoB@KE*aZ)FmE0qAn9g)Wg-q3{)Pq6vw5Dc7YoOohe<+!@bzBQ8gZ`IsGSMb`P+9ElKp(Br}jHNh43A#stpW2%4G-C zRRqAcQ%D^v*D1srR$QHLi~^UA=Wu}n=RZOBRFKPeS@f6~EUg)rmY_I6;3 zI(ZqUy}p(tKgaMiaqKVI6O1T0L$S;VXN3VmMnGR8pYO<-dq=qR)X1uqxEjIVC4fSO1Y70?$5yzBE z$t$TQoY^0pmX!TOwU2tjjk&u>v3v6(%?3Bk`1)gW+py0@mgasq)l;*UeVIQVyR{Gk z>2PwGWWR@*+jB22n%2+`VI7-9xyIcWx{97(J;S=ojFox17M6vXsgAg9=s83@1V+mME4{o+}<99NK{{e@#Jr=q+4{WVoV-H5&P;2 zg_&90d~QiiJkh`C;Krsq?@ZCzt%m?wb$dY_S-HnwI6mxsd}T`%drMk8e{CUx+L9DF z24%K-?yixfmEkBdNw}a(6$pG z`&867HOT?vZLzRu)sk1Fv^@~M)Fqt4qM8E80A9$wkjKrFr%#NC}{oE=GG0a(Xu7oBQ>R?^ zXQz7Y<6tS$I``m0NTbSdLQJjKF-NQXDZleAV>tqxmlLm(5B1hoWvLDpQTP;~{$at; zOOlF+B^_FQ&CIxlT#tW%|Fu&&)pj^$zMV-1(WOHsA+TB}5#4{=sY8A7@-?kb;?;!* z?inYvey?V7t&BP*-x20%%q4n&r&((j<@~!;(-$+L%j0b*ldB@Y{z_)l>EuiSal&qa z&KxALu4_NW!tL(4lD>n2XYZHs9g z%)AO@FFxp!g^v$liHkZ1qGLl71vPfxsVyN(-)BD^-tMn!%)2Rk9s2 zLzi2{Kc_s+eXB~resWb%+?!)3B|UO!W}DjCJo#9ZjI$?F!6+6NFjB|^K}FivLx!IG zV}^~BW3)+n!4Z(K2|f*-zvE+R9q=NgNZST;bXk)z0+;*NEa*zfv+dw6&V|_mnaS64*~nHRh8{Xs$a>-`XC-aeay*7gKb(Khl=4TW_9V)}Xj7 zGo$HQt>;p%a#U!RR`Y2LbYVx*#0V`g+FbMQM*sU$z>UVmFU}JzLnLzfVZ-FCLhSHE zqPlD5S(GK(m)alkgx{yu7ToSFz~|YO`|jH91ajaS@a1*oc3NKDPz~*AhfyBdcDH>5 z#4foti=CZWNyyt01z1(a=amZYp2+rTA8bYru6h5G9z_3|ee}00z;A}-pZC{)p|Af! zU;isT*z(^~pK@vqH~KG!_fPbdo$l|2R{yF`{i{Cp@AWCK|DO7kIfy#uGWxcU0? z_Tc{oxBah22iX6Ex$PE_|CCPqf7AV=_BkB*yZx2@&maI`f8~mAI}dh+^ou;edZVJ% z`S!?J(%q-S0%{bLf^g2V5PylF^7`S`|C*R+kT2%P?Yx1Z(!HcZ9OG1cWUh?y^knqI z@jA?UiGdMnGrmi?e8zxTFPwwUPv2J!O=@?UGBXnCnGRX*4~gTmH5e+t?jGCUZsuD~ z(dED+5w@IgkH(eA#JX7cdz$p0%w7haZ=rfR#CZ-o$b1YNo5XhT8K9DLMKxfEGE;2f z3XTf-^ZNh|H7!6xEqDeSLD&agzR|?&Qb-jy@e>e ze4k*ki1+kGwUHuU0TV1*(Ib8ClX~u4|M#_@vA^az`Ar}yCqbesNGmZH{VRm~nLPYD zvfgC^je{6^F(>fCj^DN++5B?OpuAQeto%tgLA!5``ryI2RHn&IwEKBi`-$e3cOQ=T zdAe@aSgBJZiAD%7w{}=q+@j8gHVG#b*5Qy#nF$%V3q?NkL}IPweETKGv~aM(S8Yv! zf8DCy&Xv2?IP*qc8r)7t;vK;ovHoBj;Z=_4^3p#~o zD|aR6hoWRicE8~q5bhQ~YM-?Uxe3Tmqaf4KWt8N7ioD(apZ#lvITeWlZE8xdFwZyTj)_l?*`A z1nP5z&ME;j3;UuJwACRzE+ih{p*ehw8UnBhkh}lG$!3OMPTk}A4!?rZg#lIK0^rw6 zEj?l1*~Ot@GB@0RiGvF1kMK~I9BQS_X!sIe(FK%9}_G)=pPg8 zoz%QjW-+EkjhG$w7Zu9n!=Jvu_XvePX1$2INc!*Dq++Q&w6CU7rvTD|>fOz92NoKg(F455#x>5UvW{d~7sWP};Bd~*D`)hRrK z#B5`>w_0G$_~-J=cc6xF@EGgWg@_hiF2~(%&!>Z44xy0bND%KWHJw7L929wEI6zAc zEfWm(ry!*mfe*+dO)?8YRg5^nx#titJx$SRSE$ELK&;nh<>#w!*6hHS3>@KGf(*WZ z5qAHN5!Ps%jiPz2Nh673UnDPg0tOX!;vSc&4U^m5uLY|E+&;!fOYj$h0LHvF*!?SDoReTtS5HG`cke8G{dweqMIQrwc)z(Ym^czr#eT)3np%%qbL>%dvpl+Cx3V( zYh^oZ)W-o1H7sDoOrJp5*~lcY{(Un)qe=b`9W$Wxo>Bte=WqoZhXY)_M>y!C5J7qs zW53NHAB|V!wp2R|CoLDFfznEita~z7uWmq-z@L(SBxMx<>2hkledk}_9Rt(9`Bwx0 z|626UziOrf_*b;k0s#L?^`*gUeC5IIa-mNMaSZtz*^ZJ-VwBV2S6W2}0lz*536_Bh zCVZzh;V3#vZSzS!zy`bI5c>=b*kFCvD%=o1Kez=IEN|vUjFD8hcU~)R9eG39nZJP$ zx(kSHC>+LHk|S3GBm;mAwz27`FB_k{Mdun6mj^WO%kn2@{)I}0Q<#fZ!5et?!CIZO zPH*$o`>R(cy>L*n$-uD2YO~O4{F}F{eZOC6M2K!y@BHhsqRXRC^S2(J;^Prwb_a9;3)@}NOZF#-X6&#Io6T4ZR*cUpB10OFn`RP+hzHBIAHsO}3H0GV8kEv! zTOWUsIUZhQLw7@$J(h_QX>=Zy*XStS34p&kpE1ZEZc9s3M2VwTNh2?fRO~-m z37{zs&jC<*@=6K=1i=-Q1Cm9BWP1ix>89f+U+`4J&k0bnR;Ih~GR$sXQl>?5OU2M? z;^_Va=72gt?wO=L@m3-j{3~%86k~CaTfFm|=s3DfCR8T}Kr^(q`xr@>4WM7|UpEaU zE57P?TDW6E@ExU` z>2g*^gs}Jd^xkP4FV&pwu&LzAa@bSN53gj(J)AAsY1m?l)diLlui4em-wm>8LF!M_ zb2&LED=n7yd)n$kAW__@U_fw94d-)|gfumrQ)GV#r00#>T{UgiAaBE)MHrz_U2-SF zxC$p`JqY{(T~IrR2>phPx5o@{Y^0p6uso6k0O!rg#r_b&W*BubIDx!%1e%$2;UeK) zMi(zzY#WrD>T&$?(?GpQ*s}kNHcoLLhm`bNVYKv>>3pI^uVxJsOrp4bpZe)owFgv< zJ@rw23=N7!vHthM;cI+DZ zuaU=dz{fbzzvF!hojp_!o~p{Cy&~s>65;+{)7mr3{PO_*)1xi{-q-IDuoWW(D}ed6 zsCNhMXh`QEcx;KDQxopM0WrI5NFpN1Z;s)}?0tT{J+g_p|8&Zbn_R67CC_(PBeXKi z-*7A)11lv4$&#J;bN$p|c46L51j-y;HlEXhqYW+|E5cqSGw;zZ4q-3tRabh5)9Ji( zK?>ouWj6ZL9tmkafTDHH9^CGwoN{&2NNqV|icZ*mTA_WlDVFifmS*j7O-)NhD?vhA z-WW62Yu}pzMaR-IuoM&5NB81s!Oj=wpV^=xpfWb!8kj!Il$muV(;HJDfRH@R)2Tqy zvO|*=X4vPLbm>qnv#oOZXaT-P@+bm&p|6yR(9f)BN-lfvrvU*e=yH97j0C}B*RDH2 z&1~#o>bXc$sherooL1FU;o{ZrTuIXW;vmcc*3b;>q}&3sK7gaei;>M6=u*b}_<19J zsRou5%?caW6^c|(OpBW$=FAfPnIl0>#^lH41YgsZNH7+FlqU=zrR3jF;%D4{bxKG^ z{`jT!&L6P9@&#D$&I7?7x7uA?Gm!HpA=%@es%YM47wr%m>@vrQ^jqLw?cK;9V4*t~>`2Sr`;PJnyCm^+vfBAR&>;LZZ zfK+OFP_sY`&j;Uvev|1h)dOb;@`9X3IP+!^F~jIWl5%PGb(%RDv{9cZQQ2h_rTvvH zA|gk!nwQ5jtnL>3mZ3_24BrKo%Wbv}(mB=Y#Qc;PESi<34dz4#F$H`ri4@R zP~+nOp~XeKsMdxnb$8T`pLJ{!O&9OZ6d<#;I9o7OL%dP%fo<4jd@`1snyX-2K$d~o zYT`o_bV@HQL2!;E<6&5iBI#l+k(i!-=r@t^6k7>$AH)E>Fqe*9@su2~=Z8}i7po~K zn~MJff93ZVnT7Tz0~0p^;IE3?o25Cj`V-U|g>d1cj9;i+{d6=&;%%G0@?@K#wh8fs z)1=^q8`+o+dzZ>#kH_x5o|v=Vbg<;2z8U0adp7|1*C>!115N<{s!w4dBAZCMXMs|5A(nrz&rq|QXy1zgjEddab2aADEImY|7uLV3}tRpi&t08 z=UuvNi(N}cHDx)ikRy|x6NC?<{2~U43qdtJDMbaE81mh(Owl+?|jv!yMqe+IS`( z>WvfKv92oxW{Y)+i>5W^y4&*&_l4^+NYTDPV=Jw5ABL|DM91MeEv5J4w`Lukr|TnO zwlU6x*^dR)FkQCkA0=8CA-o1haQF;*0$-)bca$p7F-!W2%Y<1)M1uDk=!ModV9upQ zI^Ukr1Zcs;F2eUb@Rl~%iH!hNR*2GJzb5US$$R>m%2^;`aT#m)J02*d(E#kuUAb?# zT9ki`uLV@eu3{qf^VzwWWY6ivWmzSuKtt%3LB0^?X(tcR zGaOlf$`$q|$23k~qYg-n>tZ?oINq}O*v|r{##jYj9E4#vpdtl&8I^&+j1In_b~8W{ zKg4e?qT;L8*k7v$N+G&&75D*ZhjZ)fN#Q%Ij$j=Yt_J{ zNozU_8%%_*M+tqpT9P}yxZH~3vz?qt=v5haSXzJ?oo_)zu@R6b+MKM*9>u|3+Y!Hv zAWw;JOQ5I{t7pvJ2HWyvGr@^pi-hIrIk~>cz(KN*rw$5DL)(;dJI~_1v@PVUZ)Z#V zyL_PJPx*l2AM$~(|Bw&($&38}5U{g8g;YglD=^&uHojJ{1K)9RK;`^22B`>yiMsvZ zCOqhy9GUa;$nDflH$NHg$Ck#h92MWX`h*Lkn^P|y4tEAou93i(Y;-YYB&0w%R7xqz zHi&NZ71-wQ!%+3b(Pw=6Fj+ZGCOqmFIqI+4f#c5Ie0ygdnb|zFlkxuKyH~B5Uf54s zh=%_r9~jb-6#|CaG)fe}D}80dJ?quKkohIO`S2^%;$9y91wX_)Tti#D=hd0GIu&m> z;1?08AHl{iaa=|fIfg555)?6yr~dV~w{xVT@PBp>>^}F#D_NN*jKak;C5CpxW03Gh z-5$gh5^%}?1Z^Ku*)}I=L94|gaazulESx|%0tGfYj8`~&2Vlh;f9caAhd;Y59>;XV z!>wOgp2Yu1_}|M1Mr|KnnEy#WAV$abX8u?{4>aS@7}dq&i`ji$d0(Q=9H=DH@U%l- z<*U$7z?NJGYV!hxW3A&2iA(w2aS9EjkRKQxvbfa%85{4IK3NE|4N(EH=Y|BD|7$bK zE~(1kv*(=Jl?$1yU?tax%jZIEEm2q9!(_$=MQRW$KXJYvk+wwvvBXU&Uerh4I?oO6M&hHZMB)#OgUZX{@4`nDmtYu?+ey8B&g zhV?`qz772CWVi{BCII`u&AWZTP5ka6pgPHivCqz{%h=89WTnx4N=7EhJD+oN?YzI+kSAg+oFAeBk48XDYJ zja(Hv?+k*a_6>dXg{`y#9vehxvoL0{S zB<9(Gq{PgZ_qEn)AJX+qh*uMG$~^6s)uNobFGJ>2SLxR!)28dehzHAR;FPX@{y^y> z*>Vl)qPN_WQ>#zgVDCJwBc(>SUqGFJq&f=SK|UW-1HVr|F_pqW?@-@+!3OCnDs4du zHkvmdVgDi97??0$0Q*Q*(EI*a+r7w1&4uy=@qS zU%QV}%Oks8&dU`wsFbxS-b8(nUr&*(BuLyUkX%sCoQ#$xsKwgNhFb=mT@lfgGDKd0 z)VKvsVUBV#q$SGWtykv2yBOV*>{u8LkPl!i*Fp`|Vi2LlRqfu)l}etwd?+RwN><$` zi%dbKBuiX z_)p?3JF1T-w&jy02pU*>Kfx@x49lTT7BHY6@UupkjKlJ11h^%pjC#lT6=2yI%s<)O1j8XRCmW=7MoQ4y5%jYI= zl04s_T3EE1P(d}9Os-kIn&5)SO|h3jA+?J-tmP!0qi<)A@Zq4re9-X9o*O;mp#XMw zVuWhUnrKL2x5Ox~V?Tvi7%gbcX$yzBDz)WoIKMMytik%$EyfPwk%A{`Az*N*%fe^7rsK;vh)=DX_`D;#pz~>6 z%)Bc3FF;t5A-%akGahucoOeqs%kt1B5a+6PFqBi%j@bK4{TQ@zCA{2T97Q4FrjagZirC#vly5<%%Q#X%%o#8e37Lu= zrN=a)mugehZ)UE*?N|Vq2cXHAlF{NeAL-KeRYA{?x9sZsB0&z}p1|t3bwl~UNOY>T zL!W26B495KdSKQO`azer`X0B0DnEilegcrM;j?27Y*v}#_6Ux&LrOM${wgx8XB{0u z=PXQbg5KPemd4TCP@6Ls$6ik=0RzgC&%OP+Xy}cErUZo5BH~K37j=p~Nz9QYw z>9ES@C)Q%;g85LYAbzza_T8bPdtq54Uo*O7E6dk`B>V$wnu>-K6q6cwaV~_|r{)4n zy}MwjqdH1uNj~r~aGGW?Rn>FlZ+LhT0<93^qclz5>Sbv{7*?yp?G)msGs98$T1lI# zpXy#p5`v=tP!5P+{=vY$?<|RY;$u8Ol`|Q zv#*sA7k|UPp4Oq!{_O(r8)Est-mm^4AN-pIV4X&p+%CN^6{>6j6DR45b3+F2>PgMN z2(16f1Qvkt{_oJfUchuZ{FlS~5BBvh%$ffO;LG(``@E|9i12z`~;Y< z?8*LvIrC5U^^co_|Jrgj9E>;SfPHMUe2mvd;zL_mT_ZI2oCepMDE zpwSIn@$~~BLG%&%7kw_PKMGG^Pn&SDCtQeogyJvsDN5%nElxHlNj&(k_&18dO`E<~ zGZ(0kh)`^@Svl>kZUP(zzpWO-LO(I~VJ{=-GM4y7)A8dG{!ox4I ze&11t5#_pPp@mO$#;vOesCUv0BzqsO>eBYnQoXUFvjD>toUQizaCPRo-SY+ar4}$; zT}w8O03L3``*?!mAMA0)_QL0Q^=94_Oh?$JI^&jLN$Y+L-{zu-cQuB4iAgdBiUx*% zZkAn0(V}Qk4gd^S&LaK6d-wFc>zj7xNs)ftQ8@luP+J?&qmT5poeH9owwhNss`H?? zFW*G~)ZmmdC@KYaD?Qr-z9RD{TmMKAXjhjI)!z-GPo~KjS^DY;HsKWB!r)3iCbPns zfk!~>IUTbm^;-Kw{-JhAJu^$UL51*&wHRUj3{omdUt^C~#4M-f^*?PPg_ML)*Yjlr z?bP`$LU4|slu$qel*kMM z{@s`v4@c%lNo<}}n|wd_u-3&Ppj5gIUd|4QbojA|g#J0-zB0PFSfH$LLJvOAY_t|< zov#s;B2&Z8*NXwZx=+deL$~ibgJwc_Q90}sMsd0(Gd`Hb5T&*=N1=g2)66-_GXkczy9S5NNlZk2|qfk4fK1EgG6vMJPSTG zATbnRaAv8EOoTRG%h{fE*=|P9FsW}06`C59U40BDM!H8EDmY(LPqBIZ2zZJgBtNWX zje?*~j?(etswGRbN<)vg%e)*?c?fL{^hAP;w)2^whLx}xvAmggCAMAKvY#PHIqjJB zZm{+|hf;^&c()B)T(`6zIPAkVYv ziQW%8kY?y$KFf&@90HW4Y|?xpuh^BpD0(%6wiljmlp(EQE~SC2qT$y;O0)2MmlZN+ zC*I`R)Z!#olBc!1yyi)Aq`rgdzF&%KQmM>MJk4g1Q@BNmXR&c0mYNE-5f41Lh&j1Y z?hQUp^EPC9dWFrl=86*s7C(x%=kL?Q@XhxIG<2Zx^S+d-Fp(z2lmg91L>`a@6oiUQ4a%M*_T3m=D&MYeX4%xk$H;$GXlC;1(o&C`{(^ zC$SAAYDYK|R`mM2qR3_ziZd*@`;gAnVbGyTqdAui7vDYCrYDgt!Fls02-7B$3@9$0 zb~pS~CYXJ83-*%~P96@kiOYj>uY4KwqHR!ofBNzDyb+K?u;k0SF;^)%}S1pF*ukqoDZ?Fca z?`&-2XMi1z(n#IP={zN5P)4ll8#8~-yRk(gN%(-k!xGYIe!+ykA&PfP6Mb#+$x*FB1I4->^X6^Q2 ztjYry7B&QE3aJ80dVoyUVR?kkvL5o#0`QdkTN{?YA6s?!8~u2^)&UjuuDlxU>#0VO zSQRr)VV`KCLtw0AoF5DL5}3_ixxj}d&bi+rP2-cU#4i1?@g+@qlim^yQx?}zB&J5p zU7Z1(o-)b(!c07EgqH!6)0N4G#DnFg0i=#yH>b6{w*c!P$ach_5(~6JWn(7Q*(ELa zMyn#Vuj;9Ejvqy zZW|~*r-=fdaw`=XX6RK`1v0SAp-(%n0H&;1gA+tekiuKzg6Uj$Y1*ltNXk>eB-&C< z87ap7pLU-`ni9ZX3(MHn1XriT$G#G97LBE#@XpL(l7uNGRFk`J(d`R$ZW?t6Gm@7E zLFQCDFF_7t&W|e0pVHJBd;yg`HKBf<8ZM4sP)Elcz9);;%UD%j+Fk|xOk+0o9;#>D zFa5w5uav4(SWRY#%t!;e%Oaw%w6Z;=m^6iJM|+C2c8A ztTS?;NrqhsDD;BLD`mZ6%?iSKCE+raWHCvMIQq$jtgiksjT-kE=qIJu6?Fxp0dTjN z`nG&y5Vr5j9F&xS&Ih9M5?0%QSkXI5I8tsOp+zh{rc!5#Tb8pH-X>~SooZ~UC6So! zZeoa36U(V<%z=s2(Mwt?uE2P#gd)^va2Zk@I@IfvhGTI~`n(;$aWyzZ$DSPWQH<5Z zFj3K|JD|LHi=Y^q6Gwh7H5)wT5;~LhD@n@?6Ty#fu>@V31C%0J?TKIQ%xd{*NIZAh zj+*D5ESz^XNp~8h6|_39?`#smX%1}jw{5<~PO?CP(eXg4gO{SJ*NcGKV#^luCgyXN zux`a~Oo67s6;mcsI)`&>Vt=QPa z#~oHWs!AgEpDD|#Bgd-nF=(pv+_3?DTP0q-rJ?>T6cA3GXlep~AZUefx-lX5RBu4F z7l3zHC~dv6lu{QxUY|Uobx@X?_Z<%MwYLkiX0N6Bt5WL*oANj(e|TM3>ypEEqJ7<{ zS>3#ItN417Yl4vhsz{Wu#4&r~1^L~i-?+``q*;Ddd;yK$VqOJ5Wy)E7yk5kt)u}JW-_NC6}{ITNPE?XtSyL-hX=Tez1fK7Vq`USa;(F56qz{22eSR# z;}420sMNy7y`gd9$U?Kr@(t|q@~+fkp)*}xb4RFNE=vzpbjLbVf-%v<+2Hcl(Z`K0 zQ*1&-)pLqS*QR3ud{#if)+B0pOCW^nD3 zdp*O{Oq-hlDyoyy^%_SSWWPXAw4F}MtCuJJi7KGvnj1DPCR51&QC1aDavcCAe+@bj z1-b;3TonL0Sr)gHg@aIY`*{b)z{pWtlq{&}IP9-SgwtZk!m$=bo~V#$b*-RH$n|zN zFixq2ZYm@9%O?zDu2)_tHg1comdeyXhH-@7`$gq%nKyK8>Q#04Y}_Ye34Cu$9FyV1ys$MD$v0bD?lupsBB2M1VX2kaE2Qq+CnHG>&6f z%B5|kzM0D_J|;f^Qm$7Ol009$R!Lr)B%U&R+RtMC{PV9yi6%0T+Q6(q?G*9e1S_Za zlxvE1v&(zR6@i&dQmzHWfAMS7pA>*f?D9~Rm-Fl^ zB3086Ef*y*vTr}-CqA&fRBa6?P!M7}2=CW4V9~Rq6LGCFje0x;B@j}t>FL#LNBz6= zU*sAE(Z1yMp688X9-S%h8;5PW?gjgMM%27jqr$0$=~*0Ykm)HT!70BUp1i#u-Pf37 z3xSQ@ZCMd-_Va%b^MC5rTLme{^tQF+zS3WpY&&QRd(1aI1{!`H=nzfqD3Sm0$Pujn zQ&HxYf!S(p<7P|WL^yZPh5^JvzbQ``np}%6I0NEP2fMEgoRAk7%vluKI;$`vFq@uu z7Ay0vz$a7D`a4I)7dK=3oBi(t4Wc9a-wPW=Pxjv*Up>!tz5=;aPTvrzNa-+h=$2z@ zPHjMgK$_{9*Xxs!^z zSao|ly-fs8jiQE4*rt;umQG#S7si{^EqOMvWwj9R)clqwy4FS%Y?*W0Iky}~0xegKqQ@o^b>2)i20*GO!$Als>4 zC}vyaX)gJ%8bQBX1DW7>(5bG_FJM9B14^#``ra3+tF~r<@W8WBRSzWlMO0S{NN_|? zr58*<%kjrA_OpU@GY^{wP)IMSvT2YShiy}GHcxfmG6lUbTQV2h16f?Mda!p%czqo? zWh)R}U(CBoshE8v506$m2d{~g>@x)~T$nP0SU6o+OOE=8AN1?wkk>k54A zsCQzO{r&hVA3fDz(W%BPpo*NoY~&PDy&0gtiXWH4wnho(6N@56N;EqnE(|I_FBh3R zxGr=ni<$Dha$x+((6oWIiz&cLKl2H)7@+}_690>ZhnY%RJd8?gBv8F z?TqiLTV=o9Z4Qn58`qWR^(oUOy}dqh)hf}f{UqO8gzszhF5xS zy45PvZ3ABQ0*cEKjnu!u^R+6Wmz1o< z`tgyxR_Jy{>n=^ij4mJp%W?GL)^&#OWu$JCO~x^clCWU*CEGXoNcV|JVS{UUZWjuH z|18f*rs8YgM9d|3#FHRuxt{iJ3$NCRN`ebGi2#dr?j)_9p_GiM*!SbDOqvdy(hUqt z;((1$1Fn)jd*oo)?VD}IFYq5|50H=}zST`oi>4w6U=Gm*d$p9b{Ej&va6 zT9^U3A)NcHYC{(FbabJqfxx|kde6CD39C+t{K~q@JN)z^I ztxpc7s^p5(M*03SeC+{BD*}7jSB&$pYzX-UJ`a?BS#9osUb4^HqF_565v?Qk?Gcq& z3AH10uS+pPN9zEth2v24EZ{(E0+%{u`nn`D*kt0`HPI}|NhpB!XM=d}<^n7KmSbzA ztRtE{^owY6rHGl5p&G-8Hj`32K0H`Gf^)2+J}M>h&*xCqbqPaR{5NCY?sZ<2hf83w zwV+AT`U+WHV*c$1>)D#ci!7Ya4F38c52vpy4&L@hV}-Z}GZi4D7us6db?VYntWWn=R)WGKG7iRS9@nh8Re-|-9Co>8AIEW zoD>}aA_()SV*TWbbc*}*u=wiWCjWaYO;h*c|crdp9OtF^~H>$Mq)^2k2)QM4zLUsjg?x^fPv&Pk9OJ zk$$fBddC3!mGduPz{{)7m!i87niXV*twE{@KsL~xs5cv*%4M?$(d7Y)%5CS+tfCU7 zbc7g~XTH!gNQQA#o#Udt@s#t?mY2CN{f9~StX-9EPYC{i_p^EDudz*IZdS@Rn_*!!k-_^8dIKB!gX8YhHtkBW#SG)5T=FL@)JD3 zgZtA!Ek)9(HnF48_x#ufjAP#~|I_fZ8>3Bc#tp0Nh};cv%gaWGmPZlcGLokOm;VPL zOsS~Yc)^LZ%07(7IFHeFWH@ToI4T*@68g!h?r8#XjhPAM!{6{7m{R7@PJiA6&4esd zUm)ivZyy&iGPt=LGw~QdMeY{D*wiHjJg+o6^&ITn#%?wx_QEP)!q0^tgqBFjP}><{ zxKVX8^e<>iv+-H2vVX`wW#Te8Ht0`feD>JNS5*T>*yf(-C%~Q0`S*~Yz1k+C2=r%VNe@c@4_%j z4@*-`R8eaY_UxrTYvEXw zgf>V_oK3L$0|oZ<9?g&aAPTJyCt~K#F8aXDeq$J6y7^6gyWllFt+$Fx^2SU1l9fM& zd35KM*DeLsoz!8KNfhfz3@D6r`UHuBf~3vHnI$@DLgweb7=H5&hPk0S2gF@JZs-uC zPU%%T${>&5lM-^^6<#mkY4z{q&s-Qfk#kyFs`RC(O8=1mYM^e?xoM0BOXIS#xBH zgSJ>o8x;lFmDOQ~HJF)86SPegu1SKG$T-nmh%c?d2c*nLO5+DoRX=+iewPf$xA*x^FRL;Lk{mpIb>n+H$g^v4b8(tH@+ zHA|cDxF0uN3*bCycR1E{1JlD8H`~%-JQBU~_lal;?60Rr+d!5UAJn^gFVedE<_KVE z8%bw5QbXsJhMonQ`cc0OHX0}#7#H679v|+DiG@C+#Y(Su{&7ey%P+JnExzat`zB7YDT(AEUuD%z_h!e3# z=hb5u9){Hk71`k&ant60WhdzkJQ0<7sd6JxHc9mLDU5rm95}E-zV^*`_E)MJZj~B^Z2m;D7LK@vZvakY}Qz8i`v3x_1DRhZEBxS4})_l8|Hp zl+08GXh8~*p}O;I+z{W_x8>V0~ zGyuDIPC|19kZ}aU5nZs14No|5MNPPbeHvfs=y5{i3ldR|Te1nwg#5@)(p#zk`T*ecjZY@U;$5F#|T>&9E|9Sn%nkj`?BNN z?(g;yEyxT`F|%i!tWLk%4ev#N7Wa8y~?}h4m)l39Izy>*0nnwY3tM%kxP&e+evv z1L&pQsgIfUueWPR_7UQzr(b{hyvky$7wB(qN&n0X{JWwZ+U$U6T^lKs6$vlo`((_E@;fy$z~srE#Af$vkp*!+5&UL_cmNAanv9ps;89!i~t?u$2){J@EnifK4ICsl~7YT1y= z;2}%eYl|LWD1#-GR989kiSWKB8&f2z+oXs9lJ2epBOil45{FaRf!-j}`mz`?RK!Oo z$aY3VidLAqQe_r&RM?kKDT)bC!7e*R&vKMC4r!$&4daOj#4`%&Q#AE+}l+}&ixePPfr z8PH&NA8SgdcF={HyhWk7pO=((^*zzy z3-5+@O;WS9KMn1ge;V4gMgBCj)9B1XJErg4anRFZOv+M#OQk!>V_e05BNUASBIF{M z>EI=h^-yqHtirxG#(BW}cD5;yr)v>!qBnp7wyoC$w>@hXIrK+fu+*C_xg(F-Qwxw6 z6dLY7oOgP6To0@+N{ao`9op+nv-_*(ReLL(A01|2_q(h^P^FculVOa!nKKunw%tJH zOCIYzx|A;8SpV|y&K+?5{M*C(r=k7d53k=D%YQk%UGT)ac{1x+$_-|qYM1=EVxs^- zdlHiMxr`qqq#2ch9ZKIcIb0#}XMMYNXzwak9Eohjd-| z_u(~Kob~^R{5i)Xo*A_c8kT5!$!luK{m|4v&y*Xjc|yOpNCdEi4i!}@1= zsLz^*%m(C;yq`_&^8rr-`v6Y^t?`5Iv28xIxSkho|M4`i>>p19H+}#fsMs=XFmY$s zp%Vfgs9=$R5dKtmi8H53#X_XwfyX}tj`v4+QDq8u9OcU$wi?$3oi5%~EZAZ%wYT7^ ze1D(=68tI-A(xq!YtC;*Qayu9*uLx zvKV#=(&mkUb8v2oJ#=8Wo>loMUzJC6IJxLBR`rDUiwd+oUfp)f_rgByNpQ|w*#u}B zHf{X&w)lRccs@oER%#S7>$cIWKIVzH{pFVS7x|JC=KRJHo$06O%f_>O(;3p>9-A^g z2_Eotq;Fsghh(5&V3n5RmBAoAr2Mg{A?k8)aFk*j$}wnrU*+4oFm|6OMpP*`^uPv? z150{~lz4PydEusr!Lo1vy^BfD3)hPjT%y8v^2h6x_X_40Hh`o3#+>*~Uv$L$T@9qw zsBp2=$!`!~GXY_nnOBL$DVW*YPvz#*5gqT=wC{chPy?;N3txA=tAR?+pn&z?=s;w^ zI%+-oTC#k`Z>bQL=Wh}3Z-Z~0>fWB3Dk@*@Enyo_ph_fPiCfDe0GIq`jd0;qm0hUj z5y8}WM@ar5$3pi9A3RXu5t>-PzqrE;fc|2s2rdL%@>>V6G%|FfY`8D9FVS33j8fZ?Q$@L-bmD_)_eeuWIN7B4p>O(7m~D+S zY8L+eb;@NrszfW`b;{@nqfd{d)P0cbL5dc1t+E8Oio{uDqX z+yq4UX;*5+CI5V#0s>nMHMQWB+q?9EgQ)+4c-8FEQ8J*BTuAZl>Dvqo)zV1sK8INK z|6=c*f-4Q!Hr?2EI_|iGj&0kv*|BZgwr#s(Tb-nnj%{;R`ul!N)&K21bFlZ!RL$9Y zzTR3@&wJnZb)jwQx4XpuSk>4sF%vR!<3X6<@tuzKq8ANI1L^U?-}(~ekblOJS*cYK zchXj%L5Fdwv_HY<=3A8UT5_CoMHx@>=VvK!?_*he%sLF|KL;X_oT% zH<}0^1{IY*(3H?a?Ih)2Efs9x>tx)tyl?8quD8Ztv&;2UGgFJ+1eH$}m z-i6$B0NFNoLL)cd1mTBg=2=6|zlgt27x4pQ#wjBVBiLrlR*n(C)V1 z_A+CGmGseAv7<%h0BS5(bLwxxpMKU!CvNDdG@I7j9*`kSm#=Auz+GP){$>q72}t<& zs67R@2Lz(yH9o-e^r=nE7d~>J4TJWF_gXobej}R{eUSWS{SkKdcp@y*QyL)L!kOX? z^IjB-cq$t7YBSneX1(QI6glw`7O6|muMPU=!N^qSN2mb4cX#MH8>rR}&ySh0!)X6}3fWg3Q;8r6$PPY@96UhcH8eM~y7^URuWaI2orq6dj&?Ti78}%u=#6c`p z07`J**3PXn3nw1sy=>3{l{=!Gqsl}zr+jsWd%vvcYfV2?twC7?vOQsf5Up?qqS()t zS0`|-1rt>nU4zPn0B7PZb)Fz$^R6y2!vqZ^nwSecvg{Vo@E{ulK=fa3K;Um4rE&we zgD^g6?Q5`|m|QG?o3AX5vf>fd^q*yD{gcXQfOv}%riwI20*prVOWl9!o! zqVBT1q6@wIek%?cqhFIFF%lf6oxS^c@Z6p;k~O7u%C;>R*z-p#KP#ez1a~FPiSx2e z;FgAc^3L{8|Hr+_7Us)v89Vfb5&;e74fA)ZESZZ7AF4rK@M}G^ds|KohgU5}Pit1P zltM6ww<$a2Xz~~DRjs>?*O|;&FZ;F?nZBScO?@&n5w}yyx3d1M`X}?BG(vD` zA876(X zHX&jjH)F1VHyhX9a18|uu2pMVCPvuRe5?)?VQ#iOlhmPu6TjM(JvPNsoC?<44o1^6 zVw1d20GZkywN%A)%%nuSTcYKa=m8;`j&uskHjztXXjdrvi)I?EhTIziKU(;T`oS$1m!hUGSzN?YKb0Ka8!b(;%R9WbQ-dq*j%%Q)OuiC-FSI$r1{E-_uphwn z&!-BX(-JuVg+GTZ7!TCRak7uQn37i6%uaBc8-G4H=h|E`yrVW9V}XWeT$5YSb2_%7 zD##qV)v!$z$bW3Aa6ixsBU(+f(srzQIZ63>39QKq7_r+c>3ZmP#;l5mBb_Io_P~PU3uQg(=PA9g znj+p5{)7(wQi*CHlXegJlZzA$OmBv!mCR}qW9q~}qHN58*7Z|fMXN*}d+*BC)=x^F zSeOE{#7u=`|JZI8cM{YXB?>zwXLYGg>Hc}l6tqhm=)Qi2Afw9n7u}j@TO&&&tNoWR z#AN6p;8iliflN7e&2xFTi)mWm$zzZw1uWdtv>dOo=T}4CU!W;tkKBOTy*LszpS;`Y z0=Z}FF*@i>iDemMux1E}V>qD{4B0nc1O+Fc*mXq2 zOPvI|s)(nM*`WffO(PZH=W^9b&wjdJ(JggBucynQQ9giip1x|+B57j4`V`98CdXo* zO>{Gy%;(aP9EbQU>fB44>2z?rGTobg_`^Oy=Air_bE1l?Pz4;~R>E8JSB5lh#hM(a z}WAw4DtZ){;Wv8Zw9}gRSqa%IiQZkfii4X!MY2j#ZwseI0_(@C$KOcMxSE>Ej z)aYW;)Q!l45aO7!ArA8bwF>;^oQ$Y#Z8TVy6!r;&M1M6K6ucYZ!@~f`k0M`ZbHX2@ zH-#>gUc&oyTh;7Gh$U0`B<9nbIOG<=4Yd6j~S16?1Ec zGlhS-3_dZlInL&@dT&Z)bWI6mA}U@*nMDKlARK-7R)C%3Y)1Zpva>#Rnc(rQ1lF=q&>cQDOtMg)RPY8C;X(q&N8I2 zgGshv*?jPFIJ6|PNK)=(hof9lTFlQ(S?NjR*mDEKXTO?Oe<3k`BBDkGGbIn#bDt$MOH##HMAR ziFo+0V*I}!sZP~36AD_-uoK9Nq%NOecOw_Vo3Y+8ol$RAhg&Di7Y!>N5&y{w;+HURoU{JZ&r9keeutv2=iV^WSNl_2n$y zy@Z0_`IzVj42MLO9-SvU$cV`t5mK0YQE`E8Lj->IT;E z$5wOuPNIAt+k1pz8lwHyMUoph(AmVjH&js9OVUq=sEJFsM={69!`D=WSHR$_`&z#9 zqb(}8XbY_;_lY-T$s=!ov0Bm_=%hJM$HxBAVT_uKSVRh2qv|&gNSQu_7;z)_H;R5L z5|GDm6!1;4dCE}S;dX!a;%9VpCHnY9&APZR+=-F!GP$cJsEfL4;Zyl=l0j>T;+myq z4F}W8>D7$>6HfSF2koL1WB=fXp$@QU=F2MDYZ|2h9nFuy4;(VoewPH(F0v(vgojNF z-~c7yL_cz}oR(c7*-7-XH`4I$JHZPrvV(Lw$-^H{N~y>5Gl%hgvB14fMKhB5f}J)G zAs^hD4z-5Q_g+1bwYyt_5RL$YOusD>S&H2fIdaXXQRkIP6IZ1?7f(?2ry$5Huw0Ed z64Vri(Cu4H^7;|S`)|SOa#k=ueYfB$6{+DHVw^0z5#U7$pvnTn1a?0=;F3zrrYu52 zFA*f)8!+W*KV(#3ggxmRQK&Us1fp}>A2|b;WEgeAb|-nNMT8Yvm*|}A)`LLLkFO^@ z3(AVVQ#~syoO?!02HWj3qunfOai*;t_GgwyZ*_rB5RPxaa&d;j^0_^b?PQ8_FnKG= zwtKYUo&{m2wXsA}g1P4JCQ&=>(Me8Yalm!x2NdDpZRy{ga} zYI4yA_LCH!6SUOlP@Pe>Ij~aTjru^&W+hZca(hQ3QiAC16wCoBK09!H^6a;DrU946 z!wZI`Uh~T=+*}>9Vaf?6$UyXU*Xm*l`cM!NoTb|uw$u=%);~;fC+TI69^Um?? z@<`}Y-qGyuaONBo(W%7aua-n(y;?`Dt66XaohjvFlA-SKW=|B!3dcD7>_4g99zx7+ z=WR!fbvc9ljvx$(R!3P634Z#p`BD2no^8@Zw1A}r<6;mCxXj^_8Wmj=ENqt*rd^o* zfpEs@T2#ib+9MTtPMv!1uKB>xctoC1n9%XrN+>II3f092{TP1tL-?(jcC+aqf8V5Y z@J^u6A9jjaab-fXY~vbY3kdP$#)a1nm6AL@(&qR#n6L+xAdGvdV)#t*G zrIye1i`=uwb|{9X|N6t(kQ6oFTRg(+#v?|^!FsK3UuFXz7eFTu-T3W z2j*913eI_ZJ-Od7o@{wV4QRMoW58PzJzMUKxAIn@#IY@OeBjt-FC%9{;;{ll!zUn=QUK2`8!krgv6m=!%_X7_i(6ezHN+WC+iC!WilMJ%!ncT zap~{dEDFCzAep+TLu@DaF7`0Fl5oB_?>7bRr*ODmimk31w0?&>@8HSX>8I3?#of$h zubX|PdH8b%st~~h+K2=u%T|{i`mKtgL#MEHPWZ}RLi*5!qn6`hR55?tgPUxG0qJ-9 zc`ecW)6Q7QD6ok@1Ol z10GH2F|p*uo;L-tp0L|Kj*c#ApG72-IUch^PFYRp?q)2sfr3`#ahXbNAyjiDbQ(A{D9S`3eA$_c4H%wHSjo?Lg)+>mS^+ zaW*~)$Pc!9Y3Mkr?@RaSPaR)^Jg@7lPaML2V-8v7=B-^@)1%|sT`H!u2eYk9Cs}iF z+)HvKaB6t3Pwh=x!@f=SNBI_^yhbtglPfG;KyjtdmInpT8BYe!O^cV*y?cV?C(#3< zhnSr> zljpmxxMibH-=aDdrAP0M);BDM+Aa|#dz^EdxXuNHANu3!^6p?yicd>y9tZeod*~R|C+IqReubCf&urr7jcAE{oyqR2B|vMo;HZ z$2usD(_aV*`-Pa^HtJTSUWLegsViQ_7xZGD4+p@cSQOdP8A^y;cuox4_0l~WrX=s- zoCaV0{L3e3&7H_5j?CE4E87G?L#r7(ihZxfDQrlJtAm@==k+2@q^D#PrB{g)&Q4xO zbJDX#@ES_3Nq>dgE6_GyJG{iaN&(GIwdT*0!<*uXTg0Gs^4cC$uk|3TE)EtRw0ZwI z+203ImE$%~nWEP17`@HU6v0W==;%w=Z#T)ejs~N{uBGzk5%&}8#pwzHV)VhHN#&!Dou+5xqaz4r} zv*1uYWIoJa99}=MIH%*m#4B|dWTGqJ)bOA(tD<`v&Vt7ZVK1op*zSrQssDBUTNWxG z^9o%#(^+K9O&W$}is1ZpOVGwb(35WkrhOw%>ylAzo9odfSid79QcRnS?hhwcd|8uy zk*n>acym|z`fo1bt1S&>6w+{q56>R%$_X6lEb53|tuD+pQNjt>_a_DO5a%?)4io!{ z@d<$_AQC8l^mT5Y@vP?4F7QT;p!7=Im_!@EBi(=zPPJn+MSHQ}LQpwY*1W3NH?)OC za9+H*b_XgrGns&}_?$E7E%(J{GjgH1xn*A)R_ma))Y@oeP-0~@B^m&EbQR2rZ{}}U z;uE^|+HgvajeWkmasNlA=owFFIE2n5m`vv_DuGaJC=r+qY5pCNtnp7^%y5;Ca19``oM>UX5E8 zWhuP1H->5@6P881rw>p6AOE4#4=xS>)qD7)q%jPW_2@P!=wuv1fp}NR%`rgxSH-3O8 z;O>wQ=*Fzfr9@@Huw#8ry#$RpyQ6b9NSyI#rF?6^%$tI3e)X0k?WfX_ag*}&HTez= zCjt4O)Wu}wlkJlE_w6|&^S=A`U&f3Xg}~Dbn7IvEt!T{CoExgZv7|Z4O5$@Q(2SM4 z;(~&J`3Lj1*97QwDG4OC>y08KI5I)k+U0F>+D&qEw>4%eVfgCyx;dihoJ721S=4Yd z=bVv*M`GzF@ER4gaGRGmXolgFWjJfcjtel6#}Vsef#>oiArW1W+V$i`V3miY;f3WW zx}G@Dn+9YAnHtVsRPq@5_j?_kuRZ1VWndtw;*&Q~db150GTz=~{uYCG0YE;Ij&|%} z5!!P@dz97Yw({W;x{yBZk4di;@hy40ybiBVX*<)?xIW(dk2&7^u5xHU_06t>x)r(u z&|7%%*73i$h{CygoYC@+LPETPZ|^mLdb__o?%>N26srldGB|B>V6JE0A|6{!5 z1L;qfzj(Myu zk0Y^XN0uyy%J-X`wgVLf#_+6OpUS^tpWC}$+t+?Wr!Eu%jYSDKrA@hwURHvNAb{BC z>FL7fh0#)zu)KHCdwojat8VFsqo^ZcgGnop zSO>{}ihWv+OTEiK#Xi|RpJE?4+E1}h%OX_j6Dq{r1|eJ@a@8{5Eu?R5Ak*EK^7jon zYQI)@@P$Vtq+P&5|K@X{Z^#=g)FWcy4OjO5rR?sXY{^SPCNDNK@VF9?l_-S35|I*; zPq#V@?xY=_9G_HtS6^wg&ohvy?IK=Z1nLBy*fUeC`QKD=F6+o8w&mGn5ug zq|Sdv86;{juUyb>EBA!3NT9pgik<&!88p;bnmjayt~DQ17)0m^l-*{vXQCCanh?Jp zcLpT$P)Bd1CwgjDFXUgb4+6lgUhgK8`5$7RAHi0O%V&h;STb-b0I`oX^uNdVJ3-ZL zPzLK%ijo!xQU`j1%FHV!3FQe)iE4~i!>oGezA&XK>wLUv5IQ^M!m+-2oAlb4F=f>_ zMhkj=!!Q%jb_y9ml zstULv4th7cHzWvozWKPWntW zB(sP^V+>qGq zU(%2hW~+qA!#$g9Da-BDec_+(#VtJ|f!JGEOQd4ldoKmIrxEP~>bj8MnY^TgnUF>J zJJHW0l8-GMkA*UXfJrU}SFJDloamDX&>FIp54D3vjfzGeCo?uOTzaeGzR}^nnz%$E zyw;bkYgT*>WH8(Rv%j{S1ibu6|1{<-o~f_pdI$}CauuCR9tSY~o_)wc-OdyoQJDQ%eoNk?&acv zF8{&7N~m!m=|x$wUo*3LOy-;-l-Rxf5e@U2=)~nN?@0-l58r`$uJpda>nX%!!7^b; z*O5GNdaFC;D`s6a6xb?asjGv!F!PWa~X+ z&Bg6rY2T-i5)nF4?%da3)ec0h$b3l68FxeE$$pI!^u8O#hx;WM$G=)zZ4~ch(T;WS z^`cpB?gg{-N8JPTKg6;g-KCd@q%qG?ArVJv@af3U=GwAL4?RHA$EmT2HnI5Nx`bos zzS~5Z0R#PGq7TIVvyJaRPxK2uC;E?0Ah`dW=+8ka(Q_w8uLgf50!;LAwE-{Ua#t%A z6v}tpM$BT`;IjFE34e7iWuPb2?3VQzm92^E^S)jT4qus9}#> ztN4K2?pF@pio@3|^2!NAJ_ZxCrLa^qTkDiB#sV&>lO+XLgt)Ex1NMgFShx|MN5WHc z3bajkbDOk@WI1XLc@~kY<~B@|>^!F^{FtCq8_H-x_tDOS**osfnaNSuY|g2jRQCGh z>geHwbm{#T3dFSj@^8IXr1iewZ@cz-Ln5XJ(d5HQo6W5p5L(p-2ip6(sn(8{ka~?{ z2X#hwL;cDPCr&9R(dnkrPp2*ERr@^myOgGLI5zq)4I=g`bLcB9F=Y;1wv73`z6GwP z#|eyX)m9yq%l^j~C_*fIx;OyU&p0qZ^%F&6R0*AbaZId=BQ+n!YfqoclA0r2eekO{Z`tDm*Ce#=C+~^EF&QCqcgBJRX?;v8rwwbP&yhIN zQv~s+iEYoo_cwy0%lzAw0B)M2 zajH|i1ey-3m~rBgGqJj=@;MUgY8C>NC4X$C^b^($PK`n^rW7Aq-{@8^twAC&XY4TZ zT5wGQ9l^odoq>Yk?i8J7w#%^5!f5nyI;vX%XPhbYJgQ{|(VC4I*5yR@bldJOUaJ&O zjS8~`t>tPP%SNVlTDEvWgv2xI@R{2Ua+dBum!M_G+Z@F0Dvkzo-|z3uB%B*rkfYs> z8Q540_2aHoH9=C^;hlz8Z}fztO}5T`LkfbyXBR5iUn8du$s!Lze??_Ly!x(2Qw|u4c=s_{MQxy16y(l*go$$rfqv zEr^RXqok*aIc4%k4)q*E@;v;L-5qFZ@`R`@cs_fOu1tP z*yl?t)w$JA*W*Ee)32P#{EBRD-ww;BZxZ5t`U8^aUD~Q2#oI2bkqnuec5knV6XDi9 z4KimZf?&7Km?%pkIhF62UU7vzjVe?z9`Q49x{!IA$`kTQy+rl-kNFPyX=jL-qK-c; zEas(G+YIb^;bN4~0}E61M3(_km8G`$Vd$hl#VU;kJ^76|l6VLyt1`xmqTB6|eE~DO z^FY#{^9R&JCGYK!y9OSr&;|b=+Q;D}jKY$C=lQS-ybH=pI!yyKs;ZRTEa!oV4BXZj zS=DQqNT9$%}XdbFW zvTQH}N&n9C9eBQHVRwAJ-)W!CbZ?}+Dvp!B zJNkX_+|01F;OAb5hUM%W@y?+cIIIv-XP+C?mrEMszNDiWoaV`KL`nYx3{2s4185HE z@`H%efRE|%ncNIzl2pVe0qbiEi;I7SqLIOU8I}l^pNp7IVDXMy;Lw`q!w5W$fd{0c zo6+7Q`YB0(V;t4}+A9Mk)+=D0zf!a3DM|xOn))?&_|kI+u+Db{tn-iUxTCVYv&Q4p zviD5v8!FEB8Hnim zF!C!X=agHks&f9|#dTsL;bc@jr&P5r?fEFU?NYHG48wt#wmOCVWv%XqoNjIFXwH1tk8TxFm}L}T353Bu^Kr< z+^j@5az<2O%^4n+^5=?>Et=qo3R*~T5{VuqKde2C`Q}#SwV|0wCAuC17zuL!?DoPp zUAo#Fh&&_={of#ea)3ZEwpTPMwoCHbp%#wek)9|Ca{*@5V+XMdtmQXcly{7PFs{*`5gODqCp-H2)RTQFZ@8Yib^hj|#i{0+{?eTV~DGcXfw zB+s9(=3rm00H4vJZlY0mS{m36H}-kC_XQU{CSTXi==-mEnyJ;Ig)15E;%|9a-$O6b zj||L=y3q@pmSb10eF^#r?bZ+b5Z+B^`AQrhM}2mE*B{Pz!l7QaR9^6#!leH#)bCz4 zdp8t(n@nenc89fsu==~vD2{_^h?$dz$)~uu*};E?A@#iavEJ<0ht9R zDvxSKCN>k{rlHHEvre;)ulB7vYais**b#+&hEl4lCU9G#mO3ukHyf?$-owY+`c^MF zkHwF?Rk}no3@>Ht3LV*q%87fk zvt9B}D3sRwrrY8SMYHNOP6Y)zH6f+(%;nYTVwdUMXY!fMa z@CgSk!RS7uR2_|rM+pXqIH_~v1#+1`&!-g$55o~}$ADO0sCU1L`dzsC$00Naw5>J@ zGrV3O%IU0%#Djq5|nXRP0AtXrfI;F!Rt-<4o9!yEKr zE6@csd)iAt1KT3R4bMgm5@A4?2&X(&sPuf|F4k=iK_4*%S*R01cM;XtriXqb%)ZQS-~CL5VJd6fK7)OHK(H@=`Ch!BAp+n*lU^}*ZvrN>R$bRF(CT@xCSyw>qch-rlr zjQ+lA?eAM{Ih>zRyWCJSAQ0)awjNbRuHM!qw&=ugAhzCoMKL%}pCM={8RHJwNQ3c&YimvfFy5m`}ry@yU z^*`xl^95<&NnCA@>l;Flb?H`Iyg-ISl<%{l$|JU^#ox0#MghrwjkUX89*L)a*qu_v zoMruqFbtJ8()Ws4Fs~BO@|$d~YA3fEQN($sTN`bc`5ZopR@GWyri&!Z-vpPAHS`{} zov+Slr5TFLkF+CQFNjD_s9X~{=@X~G33^B|&d|D^Ict`b$Zp$aW{jX^_M(_0g_us;iur>$*n-FxZ+lDMakL>C%ND|es^0>leWst-N->u_k+oiO&kef3BC z_Q0Zs8%F&C1rflU*{>Is=P3%u-Bq){qj$LI>+a*uQ*m9?YG0nwMpSSHaJJO^xw|V9C!{LZ zulv-xse1D7cb);kM3hJV4$2a9CP_hMJ4(9J_fvzYFhSSbS3!##{cYc7mI(&&85>_WxkrEQof!e%rfQQPQ zL_xLQA|Q=MRYE>TTyZ-@tTFV|K05rmsft!+Q(=@flBOVj<7pUUl9XDuM$Ljy03S^G zEc}~=zYXq^*+U5yxL`S&tn4&MfcBrYbe1a_NRW* zbEuCxGSg(gVv~Gz9I$j%koUG%=3zDWpG1SRTn)DW0Q)9}1CRy2xdiUH1PWUgk6c&3-P zIE=Q1CmV9jcqHu8j}VGth1#QbCYjzNP+mG2i=c=Og!nR7`bC;-?i<=#B8u2|Yo{f0 zO`N#tRw*ZuA$q9cgfF&@F2osH%CKHr5u_2YFJF^_XerS(t@DAPoUp051+9E!+@8K3g*N0B`4*YjZN~8VdNH3e=9JU=Fm3@?&-5MNiJ8f zI}dlzkvo()L3`w%B=0`eN#3ao%>U6T7$gVMLGqE)D0J%DR#vB&LW4twRYrh%1YW`a|u_-J5kH6`W?? zP9Aeju*Qc4IkcmCWamGO<5#c-d6|i*@FBpYuPgdnKC%{opbR`U&Xx4 z!>+XwLQ*#5CA7PxIvZT`sORHpJ3Zl%z!oLDUD17?2>0FrKPBkTsTN+HoSh#g-!di= zSDTu4xIqOOYYR|&>9`K^GvNe=?U14z*scZ;ei*#~-Lhfr?ZTh70@zr!I^^ z*1US^#sDKEwx<0eVR6Oqt@(4&hS8|meBySgnGZiMu6DX)rI!6O9Ri~$_qJ)PBxLj0 z=j_?)@Sman4dZZ54*PpW4m&;?xGi1dyTGQ!@4m6M90co_#WQ4(-#Q&QGtZ!)uOL^~ ztH3;6Z!gmXw}8&`3E(jLFRmk-hfDU;e{mhL{AKT-sxRB`d|pS3Z;%+;dzg6eC~>Zp zc0_cjXb$dnL@0!Dz+W#ZUL3&?6r{zHan1y zvcK%I`DM`lD@57J#rl^KW*qVI=ip**q*JfEs=RRG$AV$n&#JMHq$wD$fLf%5yAMnf?bFjN1)W@P2ujMa3xhEOP#ngT$;$ z>zv14!R4hTP97%Y!6o?Q6LVu9Ea`qJ?Gtq6Nw9m@Xo9YyiGBqUT~SF3BqVRB@+5ea zo(B_QKaMik3_1$Y#DmMxJFj0 zi^gozVXGXWkDXnpsaI$6E83=a6&S&cwWT!563_*5;JzFEemOA0NrD^;)iwSE@)n49~=E2Asq*Ps=?O zYf+$V9|CuJO9}b|4aTG<&q+jX>A4zPzn16L4B>C!51&DExrDE|B0iuTwWa;g{8yOe z_NH!_`u*@YumtF+qvusErN$ZV8Wm$4sWj!I1*pp_?hOFY?>}HVtjFZUGbMJQSB#J8Q!Mte^$i z0J0s4I^$P4h;4~^2^%BVgRWLs4YHXEvUboqGy_qm6J(9a4qoAcoM6xtuQRl7`59o) z6G=kD&FKI)C6<>p(pNKhM*jAEbAveH3A0JLo8r#(FM@8d5IOZ9O4 z1e09r_jf)5u*0%*Sar)To($;jS!3TH0MN1z60%>4Wlx`XQBzRE2W*-C^H9X18KVlI z?_9E7OhwEu8Q=~hhK{GV)pl4pB!}4!+C$4Rr%Bw++}J_lRFunsh7AAg2UL{2r=;}g z@8MO-hWoM~>-q+$KRcl-P1bo-PnJi%rz#(y90Xsd)%O=FWY)VE@h5~@A$ils+&B;^?(eXsn4}lyY zjtWRvWrLu&kyNsAM_34^08z&QX6ohZ2X0Z7fG8<330Ii~-3++_rS#$!k6qSDvu~-G zdvn^8J9-?;4b;PqU6S*88yc&SXsIu$vJl_OR=jbMjq>BeN4{y%1GNe*#(Pyy&Q(N8&0J zcBfW0SKV+T9R5u^G)3Lgzh~ZW!A%xlwY_t>0NnhG>vDC*QA{k#6gZ3TarZRY2`p=8ce=gsUvK{aisR1jf32IEU`Y-1cddoF-F{inazar@Gxc{xf&h7iU<~8Z z$^>`z4LOL0S|*LRxfCyca=?7oJn7E3XhAhRT`ObJnlPnOQ4y+pY3afEdBNqq;9yyc zU5({ThO1@5`V+Gi?bc)4Ts?B=MTh^phqH5G&M1C&sts8mxFP$;#DTlr@wcu~zp$wW zvx$iy7$n(4yqy8ZTApSCjaRyA(Xwe_AEd(X?4BU^PYa>feAFVyO*37Ayk zH1^K;Pq^cCF9R7=o#NG9Wt1`+2WBZW^Y9)MnLBvQq9FY(U*t%#Ekfm=PC5m zs(~$iC>ksIF~}5Z{n#)|SfeeUvN8!4fUFDvEX$E4FT&ZwA)qtvDFdZXrN#&Ej$?0loUMqm>i*=TE!;BRKu)=II_!btkNHFRqL`F zU>wDMv*6SLOQX5NKXYsr?{$Pu6LB#KA657w0YGo5j(IfV#1QK^+?N>KoCh$x`-QSnN zW|#BN_mzM}i0y?561BdrBvm=1@fg&d($R|>OmZlZoU^>BurPZB^1x51tvO>Tjmx<9 zbkr>%9~CYL@3;c6nf7O@zQ4_~&rCa^%^lfj2v8`7nAOj0pmfm6LR<+cZ+0A84zY`t zH*imrdNye8g91Y)#EjfwO@~to#8JXrF{i)vvPl&5N#U7s9?-=FTlWmQFosy6XE#j! zkoAuCK&0_XZXcf;sAoklrQ%y1V8H&;Tsbq$qX38rj3c*?{liZigmWZH%ua}`1^ zoaZkW==tjEt92 zgdOUH63bG_@C=3Y4G1Wt#pi+91@Bc9!dtO3`#Z*`Yjm*UTNdfu49z1)_2SqO0+DVKxT@LNdu z9kxu*ODBm|T)cD`Q9MPhFh&N6l@U#c4S3#-#Geggh+nH4)Qp_Hz(PIuFQ>du%sb8~ zPV79xVnX&Sam(K#l6+BZ>v?0koP0KuBGojilOyZ58NMcBWuU-R_h=N_V)=uKhpvxsDu-5M2?rL|h+k}s| z7FN7;`1>j`hrW`@9BK`xfaTDhe5tC_thLt(;6-f2J7%nuq9S2|U(Qp(Oxhd?iqdrm)` z@3&d(F}Y*8Jur>_kLvTs;xw*HI0!CCP4^7zu}kgtb4kF7p_`YG@AC5bm&WH_-)_E6 zPiH>aztA%7N~ZUJ0WB-Fm!*jY0Rpmw`A=Bqf2f@p>F8)(t$zGZd&x$6y}V9$SvG?f3;}@Zen&E`=FXD3n&S40JY4V zL1=PHgvM5m8EBH+k8jb}kvZx%W|F2jZjQ*DJ&Fk@US(b^z&5@gXgQb?Yu$`0ETqRd zg0#-2s12x=D7(kL?+rQiDt{2E`ZpN>{1i=S`m`EIn#^HpklcdSB~qlUZs;?+3VEb% zwaJtPj=BRleX8j>UH^DmS`I%}v-r$3CQ3bxS*|budoPTkuRAXC%M|tL%?dbQulUtJ_8Px1-k_Ivg{RbeFrd95LA8#K%+$hFXIeE!SJ{weBE?(JWJ zpZ*q~Pt`4BGA7X9b;>^a?2EjwI{sMDd1okL!FB5g)L8nIwFbb$LBOr_bTjICxHM## zHHd2}hZpotq@|foSxvD|yzk@~V=>utihCh>S)=4!n)F9Y={?20w6$qSAZD2mPu`Bq zfg-KuWSDYVz2A)Meq6`opBRaQR!7fSBWL7f=p+wn!%0d{Bi!989%ev``6YNU@P`5q zUrFOo@fqlo$ZRQ7$@rR=P_9eN6llq2sIoP95~L>`f@?(rnNQr_k~EBy!)=G~|H2A! z(gBSl0P;tPAF!l24#~rUv%7-{egE4XRd_KJvw<4+gbVYG8t{e-bB|hh`m{U2=yI}! zoB9`!CpEmH>fC*0w%fHX}|Q3_8>&I z&4Jou^zYA(#n)o|(t$R4KenTgX;~s3rm#dK`jypT0g$;}xQ@?m*QmIfkm;o;+c;PT zEa%7ZNB)Hdj}}cqb?gaJ3=Z8)*}Pm=xfcT3kn1(u}6XNK$SD`K?wrnPmZ}m=)h^$BMWOmpG~k?^|gFV z`e-yhqYSL^=tb8p??q)x4BK-+l*RrTk0t@7z8kJJo($Lxj@c{nJb!kyff>p(%|ZRT zhO-C0|Ae24C+dLrtTW}@27U*$slM*L|8vd*Ccdp$(((HX&rnogr%1)`4kH^!mU?=>D{04 z=-pdsa0IPBTe6dQW&eXxda;NFgIy$s((PyS$DF`*>H3BH;K4W zw3y?vBVnWK@EXWFxB`R@0W@&|ILIGMpwfPN?9rZ9?lF0AA!qAe&uz0cOB1m(v_j(O zS>aNycJ)|dPCUbT;_S-0=NwZn&;5E6y&R;nHoKH*uY^cAgNErsukY!MF2>&4G3~-? zJc`zQ5BOJI2BRY}KXi9bBe_%WpVKduE*XNoas{Y&eWeDSy+QA3ObXv9n0*Go?BRnp z60F%q>_&VWSd2{sn78nupeciJ`pBN+5AcEjtR_~>z9H!r^^J5kduMEJOHKuR?lkq zlwK1*pB?V-tz!Gt-Cy+zAb?6bB(k+C{m~hBJu*|(ae6EU6QE@Jj(rS0rhrKK!-a}| z!Zrx5UneDBfXPOJ#*5~r4Q$xwIJa62{az>FNhJ4t4|w0a{ghwc27k?;bNiS7 ziT)q|Q`%Rb|K@*MW@`WNKP^yw_@DO6b0Rvk2k*6ge)et1qe|RwGcaPhn7$Ht(Ia~Y z$~k^YhrIkzPXIP>Zg2U8gn>mYvbD)jv}ge^P-{+jPwcxl-GbvNK<~5c09-sXb#;R? z#(9RCaAlwF)^#RzdTnIKGXswQ#hU@&vkv>wP2Je=u5?wMG9lJpKXMd+$CAwtW z`%6ScWOLG*j+pa?K?-Fut}cFucy?@sLiOFUW~iDYSuWK|5#XB5vyH|s5>S+ii4}zl zL*JxTCnvfh7#2K!7BZjs*~&Kl`*S-Q89j#V=uOjt6)wM#xswOPr;$B&9G?)tfONZQ zDCH6>isE^7)rqqlM7z>-Xo#e(VW2-6V#!=%LUH^kHdI;_ZeT!aYBV5=umEAjz}13N zjWa_#w0tdNreud*&lJ}s=h^dHhT#E>T@wHD{%#l{fHOh!dR=tFjo{VgQddA*tdp#JUE7 zbDu*tb#@b6INfcrjXiS#j|hT~aY*78=zUUr&50IBjHGEUdEDzYMi#_1AU zsd*vF3f3iVl1|!zwl^sdq1(R+q>Bhz`^loScBUPc^^`mz>|&~PPy`Wqz$A` z4ujS$?ygZy4N?r_3T&QtD?%uYLTU5I3p#pFgCfQ|kh+Qhzmn2$qJ0M{+9zHHbAYYf z+>QfFhkW-1)v19>&(F5mD4h{u;kBL-^RRUrRK1goWCG zy+i5PtDb#jVqRh0!hJY$1%CsiK;IY3hiB9jX7&9A66uRs+SHsLTz6DVO)K6H0n0z)0 zl-}V7CfVYUnfKI!KBQ-hv+KfW@u6Km3xKA1QsWaYjANKL^P0VOLyPK$$mRyz$Lo0x zEe&uGULq%>t_%e9Mo3yKfK0aZD?oJIXe^tTXiLLqO^pT(Nv6j%U?vH9@RlxCO!?yw zZ~d~{E7q?R`2Er6wGJ@SEXpqks-ihbQ$)cJznvC4&7Y7eaKv|A%znc^C-}7$6XqE> z;nrR&Y-Cp`v1Ry_1&u6iV#u%D!7$>iEbM)O=_JHLFBZj!Ul?K zyWTrIP4-u`2L zQvBL$)feUaDP7G^FZ32uAP@A2ZwPLo%>6vGoZ|{ZAOAabcTL~Cw4i27`;1gj z4Sg^-xV1IL6b=b`nDiZbX&cIqEx=BcrZpSP-~CFF$0fM2To*lW$?k>XJUyXWy$eovn>`+3n`2#`JjHlp`BGk<^n*G3e{?QWr1?6pWs_Z`9I zEW1XhVffCr0HVs)e(F!b>G-4Iq~^t`alQBNExDWx8UVbLJIIJ&jS63^ODY}-zQ0G{bhwi%_>%r`A2=(4C7C~&u)>hbq3Wo5j zf8KgXRw^vK-W6-^H+{|&RE!5vOVZUW6yE+5gdOEh%(ei>>`$wWK>@zOPjf4G4=X23 zAe@957_t=lxe}S2t+CPkhV33Lrzd5w9ffr`7{HLr)Axp>2n45_J{a)qnyzuD;t)Tz z57rqF!w_v7FBCGg+qb|kKOJv)9dI}93y6_kBD$dp@rrqg1b;o~u-fj0@=1G8Dt0%~ z-VWS#ge2Mks^xyzG_W7q{EC(OR@aUk^V(zMJXF>hV0VhyheEj9EkJz(L&T2K_e6zu zZL0eR*j!Qw|&ej6}l=AWr84_=+nCotJJ7;x964 zo`fR9WkE>fz6cK8qx_spt~Gj`T8}1!QsM!b;+YbiBeCs=iWJhia~h4s3BjkZYMD1x zNgyb?DhRR$t5;uv$78(TDOV+=!#)IkHWpHvrX50N?dv6nS8p=wt_Q`*U9$6f1&OkZ zDoF83hwDJF%Pjxmj3=uIhbLZ3 zBA<|-;~^z&jA#l|mOj&h`E42e;~sXICMQy0?YWnVDn%M{ia<^O1J3-dwJ|K-Q5B?J|aNBsr^sCsn9n}9X+@Q(GbWJ z8_;i>0qt553_dUg11(S#93Qk-bnSF)JyMhdTy*E5hrv!g3*lVUm5^M$oBsAPkboBy zAc-Nh5(`T5Z$U{N{t!Q5Qpt~EHI;w271oQ0ui|z_tlD48$)A?%6H4?x!vLUAtPd0# z2tc8s$mNohZ!Q27stG`$22=XLq)tdCj6}H6z6BU^Y~wG2u(M3umlf4llvSfZ#|8eg z-g@s84Yi$|;Ygm|L*$O%7phLL4aOkadqr#~ zr1$#nt&1G!mj^%6i@sSvz-daKv}gODfD<7g;N<;Z0jI&z^N)ZNzO3Cb=`};H{cnZc zZuw> zHgdhe{s}lWeFU7AtK}{qfJC3e1F$KH;~xG7oR$FrCsaVd38u0{D%k~Jhe0vv=(DfC zChAKTMB#+zb?MArC&suO%0?&K+P60_;oh!Z_+0Lq%1fWn63>_=v7^1_PW|=F#V1#x z^KoClpV?CeZ_47Pxb)CmSH>8JefO=cM}u{wbRtKj2qJ)h6ZgLYPHiY&)$v~cA>g#N z8%|2)`)o!0M!#wHH{i5~u{~_?5pZ&S@sVq*jGTU0q)Bz29GMu4I^C++vpv>hin&)L zUWkljKKdeOol4)!)Q(0Y$ZLvFiO-}#!pY1uM&=$jNeuDAe$s~L_jd#Batl%4{FsQDaELWvt5afy4${$PwhCx}W_)vwPD@zy>pv?^psIJ2-~YR#S4l|Be2%fv*F$ALO<$K*nIy&^5vVja!%GHT ztoM9u45v5CwpmxY7`H}``t7LBp@dR1Q9q&izLDz|+OS#^Pa&8Z&i9k|npADM2oBZ< zt-;BOotTeO%;Mc_=5vlnjW)Gh%<5Db>3D+Mz;qVn#mo4j5LQkd?eYzV59Z}A4M~5` zSlY@19EbutW0bEQQVWBGNnz7^nQYD#-F;HG!FzI8(~+aWtzlAGFlbO(2a~~@0sW?i z_M(YOhE#p~Xs_Pt&JI*)O?xd^T{7h^GLwJ$O_1b`2kCQt^x@(s24DZ_H+fA?eDs@a zVDK~AN~$Sc$eEW3ORxT0zX@A&CHab6bw+nd=TE z-@;tl;WcKm2`QN#bd0HUueC3{nIusLkSbJ}Po>dL-t?85B~{n)XyAVJRmYD+AgKKm zepYoFD34HLPq_sH2slO5e?qfg&(cka)SaTKskBuZND#0aozA8w{p!hnw`8uSIn5b8 z9EOK3>k=j{%q3e=4~}uahki+-J;rVi?nb7bO>mnn zp-(3hrf-757;f2EpStgE9kmnc$j#$oYANFRpYqG?qB^T$L7ofTvc6(ECRLis!U$ly0VJJ zElb{W6tfnFlPr|mNq6p)`M~x0b}Z7Rbix@wn7fpaD_+?q-Yk?Fvy8j|1xyKC3!xAu z%r-6ECFmO+stIKSr0cag>iXkPf+);dwXvRRJg4Fsv6xa`ykL&84ida00K^QC0_80MJ%wA#{Hor+<<@+^!Dy+OOQ)4Mrb)AtG-&M+;Mlv9YO=! z6Q5eZ|H^<9-+vA`y=I;o{RfQ>3*(=i=>KIFsz3F=l7-H(s4DH_(cT4@;@g+@O!skW z+71&$f!f7b2vwSeX2)m3xArc$v4It#3fA_qV&|Kh6<~0d;`r?+3g%i0wxx@G6r5%y zj^Y|J#nRy=D=Z3yIEM}VtoqPoY#WmM`}Eoe5*C|hw1F0pCiPl3-=N0arVXLgzM`V} ztBA+dzgYL8NN2GyjcP^c7R;1ae*bZJ8hBgT^fi4VAl!bm*I^+Qzr(JpvC+s&EknRu zQ>xf&kIgy_NWgLr#EEJI$3G}k@(&7~ z^`-7hkvMXG{Rf5iaoUpqpP*3j6!ew<`0+CT-vasn|Hu3Py^lBl|B;V3GU{Cm^xr$6 z{#l^_uBKvFI8l7`^xp%wfPW9nPFoCL%b4Z$-P3LOU>~Mf>!g&9{_v3;c5yA?5h_Vs z8UV3J3a3pVJTX)We?9o&I9XLBhQ{Onu1>+fb(g+n<$wM#Z{*#1%-?X_h(*~|-Qxe1 zcOLdr_51UU!26ZiJiCx`V8v@oR`9aX8U&Fw;AUzmq@+KGS3EL+ld*?_?y|O<6@R?D zj%bDnh2pXfUCiIKpJ`P}`9(SWM2(ZqmoS}x3i|`%%hV@BVF3hCS8GIHqWUyz{C^?> z2|-J4v!UIs$-{*J1W+QrP*4tcFlCQ_1W^1TB3)vJ01Z^9n58$|Q8JHv4L&avJRw55 z&@L5_%O}{Iq{E~jL?ljSzXI-RP?)fA77na|D>=eVsOq*)Zb@%zP_+BtZCi>@@MLb4 z6!9Bf)xIq?;+4%6cMA*N!CPHlwOa5)vAOJw?6hz@#a-tdsHRXRFNMn3XqmN3hq_~J zC_2O;FAB`wKHxvbrTbtcABsy+Nz3Cbxld-dbHu~P?T(Y(7-)uxcd_&og`@IJ| z)!kYTqEQh&E@uY`6~|fjP%hy3Ie@OwfeNrMWH30Q=FvfCvt>DY?bqEaZ8?)wkYa8M z)wi>lE~QPgf&00q&MrO^fAtuc(gde$LfHT?e4LFT|VaRd9#Xk)Hjmb2n38h!!$l}a@4>CT#?Zf|MIn`%X1U`kz4dapgQ$>yHaxP0QDwie`Fn~TSM@?6D*uaVbQ?tZlMLCKM3C;KtvG*NtvYphPG?f zPXZ5Ke*yWlOXse1*@rPUpxcWb(K5=_ANdi6vHwH=^i5d02Lc06H^pj1B=`h&b-qq@nOiUnUeQ{YuZS!ktM?Ncfj zl>1z~@b?i){XE9u8xr%rS!owRp)g*G_BoF-4LAo{LsXclK}&-$?DU|a);sY0ygtu+0)X=6BQX0VDa%yX5#I7@59 z$9~pIlDm^Ur&a8wdRZ;?@W>r6z=@dDM)iq)h=9~V=BmQkWfLhcwwP^zTv&>kkKRPv z)sjyE=$uP@pWEd45I{-uym`g<9JuS9J7H`i_WVG*_J0Ei zpuR}sz{t-Z-|2F}Y2tWV@>7(*j0QCzX zfHIVy|Ca!2mJ0O`!7u(x@EObi1V7;)f?t<<*2}D*(tw)4?!-#@WjRJc3gYrIv=S~wS86i%0D^ni$a%K8?tqP*RGGD9HK^e5W zN(e18YMDupsaepZ^Pn3APlL?nlOGP6yld{VGtL-)NwikOVv4cp8zi^91B z;H?J3loUY@G#V-$o{y%o{J#*sHH{@+3pC@~WfIhWDP)q~3L0hrE-;uuM$w_14C)NC zIHXGk(UKh9ug1~st}pUAP`^5PyYXyx&mhZ(H^HKt-~K9~=rib7DG&(a^!So88)yzZ z^7AjC&FKpa!F-K?m~JunsNLPIMBss-I!>m(TtglrPk=xD*ydO2T|p(VE%L%uxneNu zsX^T|*8^{b_XUpU&y6_Ba~NYsgI=0qc692zRM&GgltjYl(7ysDc!PkAZ=jz*sn<7~ zN8WS{KGgC`FYh|-ecvy>FbxINo1WR_L#5rnn-+x=IlbR$O}zJPiPNz_u56_nV0P>= zKO=Yb59Ds3%2s%>^50(Xmz$Lg?E@~X017C0daRXeRQlO#CD)k@%`q;G%%P~UZ+>p8 zt1Pm=WPlH(`WaCRh1fIT#9wPKLXi8SWjcLnuZu9bq#b=ND!;wCbeTQ&XCk0^_seki zNlskl1%WFewdS}`2`!+GKc2(aaZJz3#kP_x|l_!RpKNfMk1LwlnL}PpEdq-&;h0 zx0F@auff*ta3WJaQ&xq);rgpy{-O?8}aoGtK zMo~JZ>%M%7Ia`d>VM=2Ba%%;(#JjzYymqtGGh-sUKR6wB%_nLfm$f~wJtj>x2HP-;cwf$M@ z$x)nf?@kNH75zY%mbg}3Z4qem5v{sd1L6(cgv_hs5T`PptWa}&w78Z#o$<(ZHxKy+ zE-;=R>;bvDk(5Mz=bDr*DWnzq7jE@In=kl7r((hg<1xfq2V-dxX^gNgWSd8&JcbL| zlg@6Xp?u`~q#6XrZ&WD({ug!i?kM|o?sV<;`5~T4d~Gy3+^I)gT#3d)6tmXz(zEa+<{!WjRs@9o?57B%yzfafh)AtxD9iB+;AKH@~19H_|A}2>O9< zj8p?-{BEDy9vVuJuSttJ$;Z_~RY?R`WL8SKMcLrXB@Onha-Xv{Mt$$DS$6-Lo)D#8 zPUw&R{`{WPUg$~UX9d;qVx?5|^uJX;l?sk(;W>@pI5h`))V!xWf)kR5@xMdUNoZ6Vd7@n5Gb&p6ktOq6qHKW zm^@uStsL!ww6c=S1@<}&Iw#*>*pS+=+9i@*WpuOtm_37niJ7jyy;%whgA+n9s>7n9yCttr=$}c>`mXbRo=QROJ_mOcaeBgHe*}HAvKj8`J|9 zQC6aN0OdcM}< zal`TlLeMlgwW2y5WZ$>CVu~anvMVgAKKHQo0IZ%p1E*IvAO5VK1LV>+qPq=z%t2zA zzfx`)u|x*`c7E;i<}>Wnsrk`$PUCmqWwYf10x|MSdS+$$fv>IN+h|_=BasA6l>yUb zF2Nt)69N89Y<`c>0YrkYG;r(1+CDn+)kMMX#wqdzQ#S}N#AmgYN8RzqW@P9W{CN?i zd-Mx~tx>+OnGaKeIUH|smb#SR+{`Xpf#Yg`)ImE~G*%fOXdp~^b8Lflx^C3h>?|vY z@a{Ff_wyKS5~jHW$EB7Xd11o1&(egsXVJozIg>d-@XSG{q zunefn|D?qsA7ug9;;DdHIPuIFRv~7^7jb6pg12cX7|=^0C%3;5HNr;%d{2vj(eoy$ zRBNKKzD3%%eB}7;AOwwq$?fAtnMs1(k}NC6eCa%QU7v`7leL)5AK_CfK=_nfIbKe-rd9Cw$OI5R>0^+q)X36t9Re@7_CNV z<@Iyht#${sf>P%$U4Gty8ncWp$?Bs$gT&u-pG)0$H(&~$t1l7#*XS7^#{wB1Xtv7Q zjf_PiztsDnLP51Xa~g1DvJ^Mi&VN~Gudf&+9`lVi4fJ5jWNNGgE6mYQ)Q5@)DfgD_ zbhb)m5ahT3LZ?(j;(XD{&9H=aA~tV_C|?B!1f?iLfx(H@5r)z#Si9@|;;HXsY7#!0 zx1x8ya`xyA>C(FaDBtYE_LTcT%lNq-*__`=bQfTIVn-^=HkG-i*FId3t$kIgyr| z$QvNT9TH9C3A5w)l3*e_r#?bprkJ^Gs_E>kYi51=8H;eb()vczVi!mnt#JDkA!}-= zR(9)<^T2UJ0emP^v{|F1@RU{@{0_MQf^e8$dL?NT#P>vSVBG{@}He*L%x^_p| z#4ID1AKCo$8fX@has?3$6ulSrl%X|4n;~vlWi}9(Yzx$(GBhID^A`y;p_ICo?GZbjRaO|!y1|vLria+tk_SE>J;g9Xf(a`kEQ#zON(1^Y^j3KE}o;I*-rwZQS zM9i)7z@3+o6#bZ_$01`;C5!@vR@Qw&{~>+Fc0$c6wG82Od7a zy!%1&wdLg6Nm>{ktRXv{YN<3#9gjyfMYrv0fg9oNPr#(Z@JdXcAkYZd7Fc!4g-g^q8f&DCpKgQ0`W zWT8FMi4}eZY(uCB1`g+>}a%%Kl+Kc=2h1tz^b0AxN4AbHWIGk zSeP6u69f4Y0ludr!y(q(XeHNZ|I~=6jzh06ljuasO_o#Mn=28NE`!W~ZS!RrM@!Vt zJB=aC$G5Smr{9^CsB9L+a}@qlH{pvx{*94y$C3o7hJz4r{FJ#ley>n)=lIhbDG-Os6p@)%)^UW&;qSqZKaxb?G<@-{$pu+0Yad^w-#4a`T=rnglF#Kk{O>9R_ zz{6{`yjYx&-2o;PC0*~V4oondTwNBxI)~CMPC4)Drzgs*aXK zY!R_=(Y^O1=cSqAI`rb0Il2dh9aZ-SB)bySSo>rcvK{FiSoN-o+Xe zjcT?uJ$WZ+B2`fVBBTiy<>yr$gw3rLMv)p5I`GJ8jmltcm_9cR<)V1?v4#8=OrEes z1xta#5hMZ)@c80wyf$lKt+jzAPFV3QW|qE2nE*ck_TA{f6 z!X?c>zo4tln2-HNU-r7;BX53Qb9cUN)gs5x&}q2xNXcnzC%9F{u1}~cs!^j}Q08Fi zgY1!(eFN&V>r9Hkgh;(ty7Dz1fP0Pu|Jl#hISM3%+!!HIR}yB9uf*QSS}R{-sIpbEnjeHyb3iJhIu&@^^zD zpw7`gv4G8Ut@fm_Yd8iqg~E5h=GpyY^PJQ>gPB_qnp5FBer$D^V-@3D&Gpv0|8S7L z^R;uoC6qEucykWkyWkCirpA}M#bt7V9;Cy^Wg&MC9JI~ft; zE0WvDQ*E{c)wmKWlpG(*=}SZYdLc)Gh%lyJy$d1AK@5{xNWJIqLr6fc>x(L7ZOqT4 zU8y>FZkEXN3x3}=K5`99klGY>F3UEdG)L~9#hEB*!>?c^Vj7K(9Lms@E{M3ot zoKd}XCDHj~nt*rB@sNfJ(FG+24Zq?(VR>%C%|>Aj$>M)%!(kq>>NpPEMkZP`z`IkJ ztx$kHRk;(aS0Iv~`!qfj|MtCgfKzdmf^I0j*n7qjuMAT*pKw!(1v-((1kC<&;q*Jv ze$^Bzkk$4B&15SND2p~LR`1>ll&Jn3N6CxG8~z$qm>GHqJ;!7K~|ZaebZ$oM9dA z7o`RMAMcu*s$%j$5#sf7vVPL+U7!}&bz69dSTTw8=2)>yfr;2PUs5h;b8_IQd*KMK zg3?mrK72RFsz~>@__mha2U)DrS0+2)=ytGZt`GmBH3r^YOg~QoNt z*w2NU`Q!(MID&d92Zgqgq~k(8^r`{bHJHoOB5#3}L6(m7hvn1vxiw}NH~?7wL@fOY zVHCNYg>()(C7jvxwZT&({&F2Ym4hpj(u{9vox95c-YqF42>Po~(E+C5r_+NTa2@COvP&(JV5PZ?;(#SRc*@^9E!o|7mR)o?b}Aju|5oR0;B<)jA6Y)@|Nh$z zIEViG?apF!{p;Ip@h|MSJ>vOwtZG9v${)sB_W0n)$+ErHr*Nq+7i}U{-S@x_14xt+{-gJIplLm`v zq`az~Op2&+jrsGmP#PSW0$wto4O-rOucBV+1vcSu>};qUghi%i>* z#4HV;NBJqSfdlZ#?FrdhvDn0QRS;S6!9i5`W~}j!2s1KbKaqLQ7~)yXe0;$kTcl6G z)vU>kttw*rkiO#x(AMj)-k|!?_?||Yt*DFz?twirU9s|Ds&qm!b&=4pq{?ECq*j!c z_!wfvjjvyxgg}6Mtm(s%VG~0?m zEa|}E4*ydDhi=`={m#G`$l~R9sTCz>IDEUXm#0&(nj~MDr~=@UBjl<9Bxv92B}!zZ zp0(ZrZO8ppH~lLMAW1|<3a8DXd;?l52ofC^PXydlRrnHa^htv(qaA;?%dbpkKpCyH zKf)4NeMHwWcruMvAlfKqMn%RoS0ytaB`&I^gD%9-+X}v)m}gXz61;Tof~aQ6A4uBP zpxz`H!6z%mIn^hQY;qt(5b=S8UFPxvzXu6keOW3Ra#+oA-n5c&L&T(pH=0#83gkeF zx)~;sN}+jhc~E%3;1Xyn^<_-&Eu!<(4OL)`#*9s@Ih#UV+YV^2PfK{~OB#>lv7bsj zXHvcuPtMW>#wQUlV3Z3ABL%S{T4wzFA7Z?jjk^+8VRmT*ZjYw^MW<4 zC6gLgesmQYdzvyQ>N87fp@juX>=Hj-S@Rx*-NgE0bg7LBqO~(VXqWKE-{C;PecVm8 zcIn;`EZ=Enn){czGXmwDm?15^Kkn7|K8mk@Pbdvhg|w$YjGlC+knBYe>JI_+qI=tI z7XvdgC(D65M4hVB21VkEk_jNEs%o1^*mlmH=Fn|?D1}7eg zBF}3eF90_~>X!eC6ZQs#ln_^}E6gMSH%G##R^zvb2uxh9OUxz^avNe-6-zu_6WaWmN2SYl)JEh&WQz@Q}sv9iRmQE@}uSi+;MLc*|Y;KPpX^wx8~HS9Uyib zNJP~rCekhJ5hQflvc<>!Kqx94H~~-koDIUf(LO#Ze4HhIrj_@leC!hJf#7#d(@kf@ z&BZ6hU7pHt;&YnyzTQ7~Q$GW9*a3G_*;L;=KJKQbYJfB$+|24)3>s>%g07s}m|~tM zjGX(*Dg*3SDFzfTqWtw(Zs3U6QD+~C(VmLcKx*bt#;3R23yefAjbzv^?9ATNVm?0~ zAbb`Guy_dCf5Th8q$1sKp??IfJn{GN`MHy0WO`&y9Ff#DjlB#U#kwYpm$#!JOrT3c z=a=(S;j+RyAivN^Yr!t6%vT6pCCuEK;uk;+oB4gfj&yCm)k9LWm9j_q{7Lv10`>CP zzyY^p9omA)E{`NgN{R9Zlt63CZLjE(Li+w%nDTfY>fG)i_;)|{tDwxJI2ArRo|-4JK0*BYh&cmPoDB1 zm9f5cQa2jw18J`al^bf|i8o3R6j|bP+Un=8`lHF$xKD9{)NAipn5B~U34&#-#aLuR z-e8w!^U={lFaBvcp)Jij1Etzp^wFgCp#*2~=r!iA?nULO4;xSfeUH2Ww47`i0w~{u z)8Wep%m>Hn4CA~E9?69hB>p?g&(3qtex?Vo`~Y64wCWI8*K$!7x-N|xY_ruZi8}XW z2z3lbl-Bg)e02hr08Zd%J!wQ9L) zB_N)p$YFmxpD(|@nyNB0Gae28Tq0sx)^Eu^UTka3be=UuBr^4o#gI}#lihl&e zoX}A}Voq`{`vW1IyUBoq=DS>OF~5s8R#60Azkb8XzvuBZ%iX*;0A0qa0vVVT=zaFAS1Sujn~U%Ii~2 z;f4tc0X#C3dSul#sOd>QqEnr4e*msIyu;#eSRQ@RPyIiiMTA<`hs|d+6Q^6hDb({H3G;vJ$Qno!74|^eTCBxS;4&b1www_@uy+q`K3ZBlLH9XLRLU_%>3fVI9-)`b~-N9^_@z z4s@DVeyyeOo9(dRF|q&1N;FfRlB0KVw2p{fcXRj|Ws_kh^+EGJ#sa04B2M+=qErWH zv$d|>TDD2`G^<6cezp!!nLFCp5a@5T;0M4D!MqGt`xu%fIJn&p($EDM@^bk#Fzp~4zx!-;wV1LT-(#S+nh zEmMi1`ocznB~zmdsV0*z%bSZg9@2a(aY%J_^xWTkdNjR!4UU~0bNhJ?cEjC&9Em2P z*0etxea~tw(Seqj<#9!~xV0}SOcEz^3@3)xxl7~S_%a+|xx&4IHpYbmlL1L`?tFy4 zl;H@=to~&W-qBoW9ppwDjH7f!Ce*QE%@b#z_Ok~6~S4iH69yWmU+vQ_-;B(I*bKZhkmbP)bW8z%%fgAq)%$r8G z8Lm}jc9HT@vA;nvZp3koY^RM$(rl{kO;bW7TC)qQ#+Dpj{F0KOQby!xxA($EeHzSD z(y$=XQS5bsK~^fFhn6(%tZlFMtxMvbO8K;Hir=GqPiz{koRYg;ZN#rS_BW^IDRMf6 zk%Y6)>-Z4eO(l42coeY66N=Yv_U(3})nqf5#_9DOPd@ZQe86Oz#(3F-jy9zi+Md)g zU*;^nR1zc-$~+oZC3UspUvZrr?Fjp3P_L65`?EN%o|%;_UYPZb8#|GMhVC6;nrgR> z-=@yQaQ(>Klt;U>kgIDC4$XJz(xax!|K6m$QyHGPZov8Tu|N(E$DL*zr+%oO8=EhmZn0rSpj?R%FQlUMB!5~14fBm%FzC?{WRXVw+TuNc4&siraGmk_ulueb>sW? z(a*ltO?;Mp*3M->xXbuU@X^TI5q+7eB}Sh!CpA-Mif-r9v>yfcUhWh!vdu8p- zC)@guZiKAm4n|nh;MMIQLidk8*M8S4rEW}!?Joth4xvd)aLfCidEQAZKkGGjv2+=a zO)wD1PVkht&-#;~3PKbaaW022+G~HYYe@W0?J#c8&ca&O3>ifisMmF51OQ4 z7v(09F8S&odW+kOwP zN(oygfAh2Lv4OR!4<~WPHHS>=Je7PdMYva9#BUgCC%e4s3C|md+-hnTVdNfA6r=+F z@-%OqKDlh`OZ&{vw(3wjLdC>NyV(#tk||~+jdg1Z5tK)&Z^(qXYYH@S`X*8b|3EB`~$u==Nw-j zy$>gG?;Di0kj+L|Zxoy(XU(osHsG-k6%a4HCLNHv-Hkxie9M_5gsnrx3dJ6D+n7v4 z#i&+gUEeZ`6CAJ5yS7WUc*GjQ?_Y=MY8Ma6N#`w+&fK1c7W)=RtDMGIt7PqD{4Erf zpFupkZ^fRgb-aS!x};uyCf^B!dT)`v|MU6NA=yz5%nVK>$=j+-MYnD6{z`A@@_BVI zUHgjl>-2AQNZniRjf?Hgvu|9 zsy{}4K44UmQ~B^8D;*8DL3lk(&q5t)k9;h=NJb5(U-qHb>-o5k4Y;^Wy-Yp5lpu4% zl!Fr&n=P(C$?$(6_@n{pj`L-|(R)%i?wVeJ{z7Z!v2$75rrkiW|AR~-a+=i>({K0` zi*&);>-|jkBX%j1xhiKtUvY}$toF3XT)DVpz+OO)R2O6_OdllkE*u;bnls82_-k;j zOf9oeyeg^?3@OyABvaqGc$pe|xhp{$9u9|Q1hCtveIz^hAQQx`KBBK83ciF@NHP`gC!aJI$tMTFy| zhmSyY+QUP`yxBqJA>1Aj=b5|hyo;bWzkx7x-Pu9G%~f#;@TupEAXETu@SR#=Lw!=` z8PtDo``GEiuh;puq^tXg*5kd^WX2T;B63P`VrBJ)zmYhWKFtYEC>^?3g83vKO)ste ztxYU=yWY%fy3^N)Pl+G>soBkK0I>G_PT9aB#l#KT75rX)0n)wyb`%2p4sT%)@*4J7 zbA6G;CJVCPJB8yd$?`2>tb^%k9cWn%C=YxymBt$LH=2K4mK@vA&EK`>LKXU`#|rgB zz}mBii4G8{^N)4{L46zd!fQ2M}0z=7`{!D)i&M@b0XGBg0ZjmXo&Fb9y zEFpuavp9r5XK%-Zvfi+n9F{`l3t%hUZ7}+l>3FbRIBujShTUxXu|^R|cj@6gK!j12 zipF$^Ox?Z}xRx0|r;23$XZvr3CL#7vB1fHZA#A00)PdYs5WrE5u!Vq0oCe>V6e-&k zkuVUB6+LD3Jqu(V#S;f!2t%j@t@(w$#on*93d6GfYBYZRGbLK#{u~F1NKZ-Uxh)-V z@fGR@sD{S?5H9OQ7P;rrP4qjrACjxsFTw8}=zp&EFm1*YO86u;gd7D-O3QZ0FJ?Vnm&pYT%7#Spoji^%RA`$8i=vegS`AHlwTO>G5 zb1v1dGNk#vkCj~M$Onxi{Hlz45ymF}743R8#rC>DtHaNtz+RoPs|%ZC?Aa$N*h?2W z3K6Fl1#eD9i;b8bX_+o8EKwNq$Z_Bo&=BFiGXU(BFVpRy0s7iImEq&AgEuI#3QS+J zJ!HrtnkB$aU#B0J^mkNB0E|kSDd16nQ3(OZW@yS;=oMjj>Il;u#7G>MObW6hKgTzp z%yw3by+f?4C9*|&x+GQ|pRowrBS?3Wer)75m;c3_y`Zj|Y1;?$=bk@U{4et^KX0?( zcI**WgafS4m7yo)7-Ml`BS{EWEA7>1K&}(EP3O;^~|&DH%0>`FZUk$8k&X8qMjBhE|RAfF-Bgvr$Qxp zezP~?E#5<&&f>2u$!8$c&BC4sq|; zygN}TedT2Kk8nyt&C8WiEmO=(nBaCgs_L_nv28%7j7&m)o`79I9#zBObG&2UT|t#X zhQKPZ2l8AKAt2TLM0ZMAdxj(&P`H1I1RkH(x=XnRWXhoCP$2-BvTKA9sty=Vkf2XN z1RFWmmW5d-ZBcJ7n4bg%S@%LQYu7G_E1+~5_>x-{B(XJEF0#IS*97Hbs|4)-j<3JLh+k>a4gkX$ZtgAljRbA9Q zqtgb6&cJ!twA(@x)K+G$pgK~iHPVz5Xg#%FFlN!Wla^oTCz`9Kn_k5cB}~BQ6mmV- z_$P)|8>paIrQH$=tyNvDNux@)bc1?^_r=TVLek#5FI_7O_4>M}9@Xay-3yqJWHp5Id z#Ic%_1wRW?J!{b``-4sbr5&uZqZTduubMZE(BOS7UU#=GG25i9hBEzkY4kvaBg+BF zHmk6*1Dmxu6Ou6G#_F^5y*UG3xW1U1Kz8l(Cg)YPz^I}64ke2!)!+My7U^rUl;vr> zlI|WVs*l6S^2c`Rne7_dEf(%)mD-btsU;frB7t?$N)oS!HSHdWgB(MBB)ONaCF5#Z-B3d?la8y&`52yw06{QfrV@> zf3PqfXyUYFEy%y%mt5yaAd5Pab@9C}7@|+7N)De&l{d?7lCouIZZYCYk##jzjiB*n zH`AP;Sk1~LYPPgMmI10X`j{87ROoFWgA-9MqA9H!4`|w%m9wx&!g6kgERYsI3EwRL z&gd2sUN!;ioluPFWYy1l0B;(R+F} zIf;9Jt)GfP<^hTulMP5*hzL+Og4Pzu@70Y!^mofeg$KSvMW!!=TM|xQVG`Vj_P?PW z>nuNdzQyV!XWAo!sHP{+*4}*6jl&>Prj9y#eVUx_1t+6(k-)(yX({S8ruymy+@<&I z|5hG%mAjS9(f!TAOZTwjDE$4=c=Bp2L$_tTHCR8Oe|kTfHt{!Ceai>d@hXpQJLa`} ztGr*F1*+%NZ_idg55R`=BOZY)w)gwLCrQ^jCPe=cgR=bZN;3h;uPB5x_Ed=tXZt0I zSxCY!TGIUVKAy*OE;BQgs}VG>g8x#QFY%)k!8}Z8)Sj_L;t|1VioXJmEJS*Bd9`cg z^>D@&3zuY6&V*{**?vCHZ4muZMDcO5j`uIJNZ=?&iJ+ZGA$2C^U;%K@ba}GcRcj98 zryS|9J$mS|EY>ha3;oh>q+2NAKX7^A^9zG;dzL{>Q%nZfozF3624l23`T!ghAHYF} z6bM*4F20K%N(xZE_u(>6N`# zH&~S!9{ULGFPTz^6uuc6pu)4uM4QnDi9b0^h=vAyxkSf5NMkw@1r3)24e{{dFb3sA zhcnb*qQ9tHb9m}$_`$wV>I#2_ivw5T>mAMkx;$UFB9hQ@L;cV+5F4?~I?WUNo&2R~={z`r|LyQd80l>66(lYtInUaq2K8ux|0@klz5NDMx( zu&aEQkGEjXQ_*>yA;;wu=QRt&Mt`7W|1!=p|J(%#QbYodoM?YPd#Q| zDXo_dQGNDs^yoPN2Mw~4AX;CMmiW{kJsivgJC=9=`}&eEDOc?yx;&*JLum;~4*n0r zZ~e~<|KFcv=72Sk{f}XN*8lzC%_jU6bz!z^v|4nrUlm_~z>nCJVvEhsdw0@)e5`6E zs_IEZZ^q}9w1LLv0!fvJS0823DEiAdg1D$;vURm;X6ncWgBq1XPFXfU)iN?_Jhy!< zn!x%&BX;deMdH{)P?f??=P!Ea2EDizsb8fFvNmsI3&>{^K}tc7tB357@hzuVwyF1kz1`_8M=5#=oAxGb| zZN0%vI?NaX%9o(Rddf&fG`v{#LklNUQx0fFsuj#t7MFD$9|YW0*VtrCdk0zo3n&)j z@H*^UtE&uMt z(%;iCb=k8+GFNsmUyRJ&;bO^H2k}9B2)1pXjbW-VyI9S>j4TJe+s2O|?3`6n4)2mc z!OOVz2v|TVmztY;y=^3S$ff@^%l~4 zYv;3PQH)L1S8q%MUScag#ixdS^s7$9^FdF?Uwl!%o8si-1;yT>KZ4B#Kzvkgb~Hzp z_hClM&;*?&n^o*Xuf`nah&>Y!w(`IxcL2nH`1fDE%7}$q{~@f;ME`dK(p>{CD=TkP`M$w4o0z6b@lgBz zY{`2xaDU`I)>C~zDA7sjS)!CZ;tm&JV&s;4E3ZrI@i^g5J8?HX`%VdlaE~H>_WAyH z<^8VFa86U&yP&`N)!;Vw(nMpOIAq>YAg4GRWJ)@ZxvpN$1QjvX%7dIRjI#DiT7md_ zSo{c>Idt>sv3^zYJxqp17s7<(9SEJM4~>4Cdz|lYDE}Ah7ziT7i6#C!NS~Yl=6me0 zXKTtRe(g>W13oaYR`e}-gmw1a!f~#bbl;-! z`@0puF;S`P?y#oz`TXmc0FRE#)t{~I100hisaQ8y{uKR6B&h3L{Cs++&L?y{zdw%2 zBlI7~#BE#m2#w+XAIC(+#1#bKm|(1ddkq2{6RO{T9Fyihj>$omnk>k1uN;oIILlOm zR43DuHt?|;PzDs>?Nk-!1Pp{eZzjMo>AY3{Zub@7m|RKJ&I25iQD!Ux{~QhsmVL>k|`L|ow$>s)6nsot3wpAZRgKMY=*pc?X5au5#KYE;}<{Dd< zPh{8<(b?x}k7466-vA)x>qavGy83-f69IUt9k4)S{j41^YvOq=PJ895yWeGxLlbbD zcPa1XKhCz6FUXL_y=yOhegF)U`U_N}Y>nLB7}EK3huuc4+>RdYZcrsXGlA`HsJ0=g z97ut=1^FFWJLZ01TUKY|Ik*MDdA7wUuDu?tN(@90;5@ZEPO$wYdG`^q8yh z;t3)WRa^xn{c7nV%OMi&dP$^1*LoK)N=mz zx8VT3Y2cKdm4;A|7m5sa2jKyA$T`|$E-%t4)=nvX5UZ?UmPCb}enn^5gw5`3x{Lo? z)dylGh5p0w^~d>pk(X`B)ZBivT$AyP7(7b4eT`U^rtzEr?3Gk z{-`+LZUHmQa2)2-Ps2W+>6aE~?pM2he&>3lpKPGO`U!13`+eWccdX+i&&li#l(r}un; z&{x(pRu#FwN^hMoekI)U!2gRpLRfuf6_8*QPZTdZoXZ*U7mCPEAhR(#J zMw;2tA-W)v2SqZzSur7w$<@`)*}dFA_8k%Kogl+w!01blKN)+Su#VG>PN1<-_Parb-eV#lbusvb5`rhU!}f5*Uhqz!u(&b@rbKQxnX zx=a-nLd1-EBYB)1WBCrl_OnF}dxNCAZ8)Rh>wh`<@(hAq3_h6d;aPe*o7fC_G~s?@ z(<;9`j*&L8Ub-*&{y6!U)rFog|2X;a<4oPq_IMv4#NA?Ob3YGKXep8Fat)J@-FI@k zPKy-VE5oeBa6_)y;$ao1Tc+F{r9? zHJ`P9{J7Pk`XGwos;_}uwH>@EJAPU>5vCiFoljnSHRiy!IjE~m*zjCRnPF^Av6wrS zzMilG!iq$BR1EAD<9`6)%c}J0gqZM)3^AMz=DTAOBO4ynMCmgCbcwy^=j3 z7Vik`cay)l!6Y-8Ca-`FWY9Z)AGh60^@Ge#!6B)NEO%OXf&a<`VL|6Z&h z$wPFBn_Mi@zCq7DDZg@u3Wp^&t^6Ad=H+I^JfdPUpAY-WUdaL)76Q=K4<07wW-Azg zdR?&vboCc5qadVopbG}e@{_^&_yT0Qe%Z|F@gf0r!lO=S)eZNP>zZJ9k9B5}NQa_8 z;1)&q;1Z1VXOi0qpp@wnhZqn8-d2quhw};$8N#U;RWRi7F$!%R%l)=vzhlUm$-a1u z-^^tXM|pImIKVNs<{NcaaBnYkX(l<~zAT;{f+24cwU%wjoJLVKm+Ko)#|rpb!>f;S zIgk&38`gjCBWsG)jLo^Yu^5lLhR@d9b@T`b>yzh)Twvop(j-^VjyR0v;Jiz;*&%op z$KZG|@_q?w-bh{@=dz?Hl(FeB&YOFk*cX3RE|P?mz?AGk9W;?lQl4X24l*mXrL;Z| zX;>;sHj+CyGHS_iUK)=I2g4~jBF*a<9ZeIj?cA2NI!)N@us9OyBd!P)Kwtx`Xk%7M zpV!B*Ap8ykf#z*gO z#kE}53Su;BKpcY^y#e0eR*Lw*tVJ-RGn5f&;!lPuggA*gy%D_5$%Z?YL1~Y#=`w6o z#)W_1g7MmvbqQfChIE)WiK|MzaaNjyhR|=V3zsh*wYx$O(++jP5d#DUTXLUtmZ((X zxMF=qomih7KH#}-3tMTuHr6X9Ivobhy904Y1}RiBAB%RdPjK;BwgSHRB3 zU9up-5Tsi4Wmj6Rvv-=R+ zEzZWVal@fK{X?gU9rx~$i!F}w2RqW}Gf@^=X`^QbThI@BtYMO&15?)J*R6TyWr)9!D z5oLl+#1q{Ft;%JVastZwyye+FRd(zs+SmzUg0$@(1|h&WH+53?SDX_(?2!XSR%kKx zt?t}S6g+O-X>$1HLaBuTJv`(Sq@Lrk9#mjN=vGb&(rr8n2_i^%wljl1yEV-R(Oeh` zq)4*p3O;666Si?S#=Z=IvOf2I@PU!o18Oj;3I_AcLLc+7hiNoUtiN?v0-1X_@WCWL zC0>)Q+PLZ*`uMW-HG`>LuF)a4&|$QU@1?VE>f-^=n(5JG*-zJm=$SCHYKQPiA9sEnghi@*I>72z6VRr5UMR6Iy zG}!Z%h7=Yaw|O{_A2~M)iAt=pRWxu}Z0(S3x^!0!PqG~3VJD#PHPOy`a?{}vz^40s z27JtgU8FXlZUs&ttA!*2IA!Kn+Ak=f{XXeK>iE)`ZW4|dx4f0HkoE0&55oiItcuV# zslaWSwO^}*?MR$s`nbL`01Qc9)7Xda3Y}oVbeeZVSLNpQOZefZgeY4fhnUx6F(122 z=7R2Pto}|vveLxfiZ($ih|wY57%e-&jJVh^G~sVsY0kSQjf*9LvA0Q7MG8RdN;^PQ zRAV>p_ZzF?<`M_079rIoTwo+d`~|0?Ta{8905x;Z~!pPiEL z0201G@@JdW%Riq#kLXU4zHDQM4g7=g4-T&Mk}pqYMbfn|S-;AAhWl5!WnDVUU)^sp zc5nAj#!dbE`{F8Cm$J}*>Sg~9YLK_J;>=D4hYmFKH7sIy4>zbnsg(N^KjN|^G5d;-ml zH)4)zbT$IiaQq=9iz%2->Hv`cpyL<~-)lN^z5M|Z_bv{svAuP8fb`g#|Ij(T_;upX zfpNgfGt65Y;J~>3Ib?+d;UzV1UthDwCOcFOWVhuT)k23N-DB^z1L*b^kU0929$@8p zz8W*)-o6bg>aiEF@=R4JXxo7?XipH~>ur39#&1C4@u@`lCQ}WoVL@nUL+T<%5wd-h zf_!Crw4E45{I~=!$QERN=Xdyyt@%ktdRXxHz__pb&yjdtLz7xIVq7ZF@);K)Oq`-< zj=tf1Kb{UjTK=qMg^_Sp0fCc&MKol?GF>|XG=0rVB&^z*;Yms;#<8VDlSD;3I>CUi zy51?PJtFBm-eq-`k?}0KKPei03=4RPNy-SRWx9m3hwd8rO$l!2MqqJgSj@7MG22FC zYDpPsXyEbhc=D9Tml}EGLd8YH^f;L4dgI36LQH=FIpFDEt|dm-;q{rr=HC9mUraeA zK@5ffk-;R!EvKq&4OZVu2`xcf>Iq3#=>Jm56G7dSoI{q>D5B>+tR0)YG<{nV`@q+!@DU0=aB4y3b$e<_gog^K;w zy_&S92x9*f34$3NbR8P7L-y$kbBe8`rcu4HIIYy`^8{`C04gEA4kP|Vbd*Wf!{}=& zj~UG@hYC|iDMy2m>XTp`3sbZ6*#m-U94qBTOJb*Dh4`8F&F`od>Ey{H|9oXSZ3qoH z2Mx-@$P8>5BXlXPrUX%uV`8?RPN(^?LN=lp@sknzl6v$@I%DgCLbiB6^RvR$`;AF= z+aPrbI{Z;0^T(i`#t=mwDeie(iKQMC`csUme6D~2Ynv6a0$HNq=1~F+@+u>CAPVGu zB-?xV81?{y*FMk9@KA_-0LQ-? znu-$b+wErZ>KYJ7(G!ZJ{FTgr1PO;s>+5g5bB+JJ3xCMin=fkMww&_g9LtNNpN8a0 z4t!RwUqA6@CMe{<6Al4sfVA8#+FP-6OS!N0E#OoQft55sV+vA1-^qdBg?%+TNKSe3 zO_4zWe%+$Xy*7vPmKn%isNY+YdArbTZB9D+a%%|kh~DvmqV1~hXMmj7ogZJiYNgb< zPVqqi5c5f`39qx2kX|%V0zVO|fCXPgejwW(-=;51?p?8*?k0tni)L_$Ck>@>6^cfb z>vj_)6`}$D_GNxj`@e07o4C&xs^qi)!K4F%dWK@AwM%x=;zWPO81mdGg+`qNCJO&AV0lDNuJx zV1Gb9WQP$|UO;#+NmXr&l1iMHj$^v$yXEzQnKJ>Mtgs;lks` zoZ!zr-epy*5>j&}Wrt-y(LP`5$**)e!1s113o3Vx;-=XuvQl@}hd(o&rlwq`+IXNJ zM{sEl>l4?pEi{k3KU7P+zn=GwW`3B|#Ob&t_WmY ze|KisI==23xu;jLFK2fi`o57UdveYkclZ_D2*r-ttu}>d(8kVR+v5KAmn;3b2oGNv znep**XMd|YSZ%Xy6X4!B@w#+#T^gtRR!#713lAnn7EJu^_%QVLQZK5RJ1vh@J=y9= z@HkgX*klIPHlZ8D;_*NhJ}WI%iQ#=SCOJX5O=RI>ib(WMNG$}DK?PDS9}MW$d1So; z`!!Y0N;+=z-Xv9b$==VG>CvXS*4uTK-+f#(oxz}M6L~tbtM0wa%Qb6ER|9V?tP4Z> zmQ~UwMf09R`VWTDToY38OFwy23C&q-FM>0d?D0&MA%~;3G*VX50&5mo(_f{UOE@H5 ztkXM|aVXZ_f7u*|6G)Z0Aq0p*H;hM4lH(A1GrZKu4 z!NdC8t18`D+Iqz(hPqgxS& zYFT${>49!>c$iTUC%ekiY`U_FB|BBA45{G}I?FPApHw_q#5`(_S%K=3!Ny_U$hK;D zK+2R_4w|JkMv>b+=l7j9-H*-`265of!Gmc2Ar#q}HHu-Mhg5sKP2I4lC{LSm`vX(* zY~0bxg8RZG_dRB)ZO2_3qB$PYdnw)HYs{n-s|5wp5`LRvhq~+wiVLUi$!$?1vu~F` z=7SL*5*f5vWh={W@Yk)a2aHWeB8~Xn3N5_cYebyL@Oak9_6o~NJ$Y0sue!+Rz&hq& z%cGIncJz2Hf8RSqgJ9hRF&hp{qLkXsdT;G=)kn2 zy*191SN%?xIAhes;yw+6dCjBRtUH7s-+3}9b4>6iZY*Pk^DA_(PqR%mj@H^nw9{PL$nj^=1O@fIkTQ)&qI2XOLjR5ey&a7yb zDk=T6Beevu$L!l%s=m6?ybg}uqS)zY93B-Rmgno-I97FmvrFbGo-ue9%hv8PYW6Xh z7^cj+;j7f8>0Y-FY1UL-hfm zpWxZx^JnVqE8`Icox`O*=AJFhyP;I!+ayhuH$>YXOCPvHhb|%K4m)tYzC*hzW^=9k z;5`rla!~gZ{NG9XO=!5<|B>*s{Xa!#kSkWQl^fy#sF*fdd+NA5V9cW@%Xf8zF;Pj&CP6KeB6{;?O$+VMgMOs{bE0*{EF39Dix6OjVPs{=+Odp z`23o4^L)yBbO0pX_f=QkJ2uCpW!e8SgwHZN35 zp#=P)%suCs60zho)_UlFTKXpc$Cf_Le_8s4|G%^J*=R3m=sXJ^3I1g|-$c*gx5v5O zJ;qV1I|+U#Z+%ZmIf^hVN$?|&_9%sQn-D-M5CcNOPoUV&Mx^YbYCl(wdaZ}|j1+LO z&7GxZm1Ac3=lXci&5urz14_^E41({Ae3&xZvq`*G@|ctP2mR+3Tn)xtiu;!aMFpSq z#<%B_9LEyy0K)GtIrZ(o3BSW-CUo2Bhtf{7Fm!Pln+$k;H@5uwupN)@*@CAQ?@pQP zBhJ5jcnL1k{r)52|9gD=|M*H z;#B9v{cYp=ftG@(FxSnfLxa1W!^vuG3R{6{h_brvd*6{#Zt?~Zt2W6gLCT{DO`lf+ z$dWis4U(EsJ4FjsGz`6GRv=F_thSgl!BO^-0uQPfxLkKUEi8tgs#v|J8xo|SM=h2a zfxYHO(bgRo1Y`?)^=1T}uQ>E5M7aKcbuOa%T>d_|K1wiBpxHK;ahh!kw)UTgcj)Bw zg}TgrM{8f`s_t391|qrX%{+3~HH+rTRNr9ZzK68{^~0zj@3Thb_BOVzs>mav57%eI z&OT+QWtXK@mt6U=|2MwR2QyV^Z1UgH{gX4_ou}a87fGbQntn-FZkw+S@1hh_)#vT) z*5`xiA59-Z^%bD$-w(HClIlbD8*H%huzc)uxT6mECVI|-BEZm$&B)Lo5QCD~frwSo zLpw4>^{VnLOw9v4{kibRT&&nM|3So>(32)?GLxGC0Z+Csk+tftEQrs*goH#A9YJ|r zIAOhn08c-S00cz4Q!wwZrw=Gejx31-Y<-3Q^7JdudA14GM z0I@5hh&gCePyv%quInie^ZoQ8sX2|>Rv2<2X`uf`FP+S2P1$S66ZtmzHzH}&sZ{wV zA}Rg&bItEUeVhiFP1f2X|M9p=a}v`1G}X(mAxNYM<_`0z_9Ec%c>5gY?$t>L>dEd%@$IV`@_?3VR|J@Ej~#ZqzzANePeNsG zMcTWWy+;uIT_Adnx0%0ogJ!x6^j_vpg4idyq8H$b>!1hhvQVWum>|4e+1_C>0)7IE0?{ooM-PFw`tHwA^nrz{Oq9dI zm5W^}v>gGv(D#d#dL9XFKMzb%Yl$GonSaJ)B-#nr2Dy@Mp*!AnPEm=?mjrjgz{4o8 zD`eUtHGyusIKGrH&jmDJ8ORaO-_Wk)lpmM=m{Y#gr`keGHdp*d8rZ^k2}t-iHbUfJ z&}ApEb{jRGvL*tWJi?l+2~h04^??Xa76uRBY#;T=5FRd|m#SZf98Sb2>X0d4pzPox zanqk|qNBu+`$uLe!wbTg1p zmN{on(0%xvKi&Pic=H^VDoqG;#ygLqvpj|cCx1`)GE+4;B;d5)qe~kBo#YL$xb$$4 zE7y|fIl}r!lWLXx?FrXViMY;vgwA>&IO{8Dc|iN!@;oUE2K0v38nvmO)^*H*d;I@P z)_;eWP9oN5x|f+|(FEcCl2Qc$^EbR-c*fEhkcl2Or)Dla#&}<#E8`SfF)ijxJFVmq z#}z$q3&G1)mW6a2UIMYlGzO%td+$RnSiInu2O+V*{4*(3FZ1G95Uhy*QIRXyGy$r{ z$dfvsHzrWwQfTt^V#3QY+*F=B zHHoO2!2ZCVTlqujJ4(kN=hx4u#4IS7$Pf~B(4mATJ$mMvdSps&ziF>UK(-kH@%Rd^ zo)qo<5^ENra*!*R!5M^pUmNG8W8ZJ-tDS`jL@@$P2y9zjmv;_L4sYzC+X{iEASdva z=zbyAqFC1>t9~f2EbIVPzqtMyEz}T&Q_|oAT+m-#noa++n>^wKhah?Ha@tI+Oa;zM zsH1urdFAFPJi}85cHc|)^d0d{iijYM0PS~moZa`0o_A@i($CNcU3vj+(4A(ZVjasb zLip}oA(xb(+Izfa<~f$&tuTvF+mzW#EFcHXTzBQGbge9TT0-qg$julztDxjKeB1mY z795m2+&em4lqv?_>~C&))0}7@5CNt>YP(uZNeUW&YDwt}lq3!(XAJq-06iJS_I2L* zo$BD1vrKO^_NRAh;4N3eL8#Y#_@_;oe^rc%YaLQtFEy@RYr|Ds}K+CBVRNkR^BwSQ+?dQ0pQHo&-kbBX=yi zLX|uy03&7h-OV@1)stKv_N$c{1=#%>3{^GF#^_j7*`RMa`5{3TwlD5I(5*$VLI1v} zxL?g&URpLL_O$)5_&K~l6K|vblIY;iU_e~5#={MWW0i&z0ad2nD$L+xB;(0lW=TK> z;~WJNVY(V0@gGzF+5;qItOB!l3)2U-QzRM@VCtI*#DQ%(9g{zUUVk|PdDC^urrNoH zLTFa(0xf?^uJ2ir*ggJNb)To_Z*?CY5o+~X5AE80r?%^K*t411ZUdBUzsH91ex!d; z!vJzR^|5`sl>Y@H+c@o8`*wFDe#^5L7ZZ6`rdfU=O{L~r!y4MhjaKh_@2(h6b5QzB zn7PDyud%bCXXvA!?=lY+z|_Zp(L}m97oUh$bP@PiAUFE;7u(CPfa<>1EZR%d*@=T9tI4lgF^rC$piX5fmkqi~jtFv=Jw{9g zNN18AGRk9$WKbSfcP$rg4wILn3B@nAt!dfKt=_rM$J+>Tv5Mn{zfPlrCBq+|4$6wr z-K2P5FI3wbqj}s$)Am=jQZ_W0c&-@9RvMyG9k^?lDujLVT`f-InY^qmU56|{?{6`a z+hg!9z1gzj?f?DA}@5c6fA|@tb@+#6D(l( z!pl~6d0&@f2W`3CooAoFqCSyYVbIu0RYCe{QG{A8`|!7n1X>JmISVWzcP*X6kjnY! zm--z{;HD_NYT*+8Ngn;4 zZkzaX3g7t3s8zRNy@;n2+rBX`3W-`uez_jcmSdvnYog zr1pDOO^LYMU~F~W8{;ILn>}Q4=1HW3wYkE;$w;-H@^{p2ouI*Dwm0sGRol@14xM3W zx69spqw;u8PA%PdlGLJNM72RMn>sga?`%lrit|)~n?|9tgJ$iTa*b=KwJ?*;(0>xt zUQ^H!qUL{lz&33#;bNkKsO26+wb{x>-n9O1tPvA?_T|FCzYYr_5VZbg7n%BZPVG}b_z zX4S|Mx<_9z;UMVJcQ6~a=d6wJqEW5;ykmY*Jl=sIp~Rj#B_IXZpEQ!gHZEvuCRZ@J zOolOE*eV9W-KbyTmL+c5Ahi`rDTZlV~@%E7$!;scgFDE1Q1yw?ad zUW{v`o0p9{sjDm>?X4TEA`NOAU6#~Zu1S!zjkNnl>O8mSK9f$^BajDm?jAo>@gt*n z)b8+`hvM1;TX9!n@I%Oo|I7TUjLAX4G^3enE z0ht$q+6Up+>L>J@cq5m3(@A1KEvjkzwRtn|U~yPMVZT0D1DU7TeiCsJ^Rqv_EG>}6 z$-voVVuQ3ZHh)*6xSmH1#S~7VJKD|wk{-50jI8JQ7=fp?bbxf^FgticJ12#7^rd}F z-({pSzXS9oBZM~{=b`06s6bp{hgoz%@q^ef?2GZ&mPSsNT5+KkG^`87a1>n!$fOm& zdDE<)({_WoUr2H>LsHgE(H12d`gof`dlcHt4&=E$6~j^Y~(us(Y;EE*6xGo&Yg zK%z{I(*do`1`7u{C0ac(6mwn zzW}qyFrVPNFaFDR{T`0jeBnV5nKsLt%wEB-boV~E#7Vh9qrUj7%xy%8{RCGjuqDqu zGIySBUPUe03n_86oBabK-@UXL()YkcH{YCcR6yr!L-@ZtXZ3*2SuqrisVLc>&e{L8 z_d(f12^)0(*!vw|!oFERa1c;`?0t^E_Wr**XGlo9*q91TfOgwSPl-XRT^)a&s)ST$ zGsGkMB2t;bcfPwGu%QCAq9j;HpLUm+vZpjkMnxI^(p8`+9Cb<;LU3hjeCFsLVhiqf z*tr56v!2_LluI{yg8b8!IU&KGqK@BAY`NrmD7(OVtph=7jQ(WMXMdpo%0HbmoOY;c7yN|qnTT4eVZ!IH;vlrYm=!Oi{ssNrAxp+<>u5eu9YvA|F$9~+w?{K~ zI5f5ce+&x8(X+%B1(vh_S&(KPE5%1b=b~bSaKoPRJBr1Rntl{rsn6jE{mRZi#$uGs z{}}ttpqfQbp|`+3jbn7xEORfd@{3IGN8!@rH%d^W(I-{0pTuzS`(hoBN9pgU=-+a% zDKpe&k1_m>v9fF8wHO5@`W@dpwSHKW3BdLC`(ZRp)+m7_#~Zg=Oe>54JR&i z<%WDusVMSOe}<=3pck}t*D}!&rZ150tReCCe{YuAd#_7E=l9G2bzkZ4O+2m4e$3t6 za)@FBVIhl2G)06`nr)jwo$sT=U&Vg=K}2WBTsB-39#JY>b(zQ%!T8&YGR6xV9#D6M zT_zOVdLkS$vQMktCRp96f~cD?bQ|(+V&FwH!cx=-@%s}wi%--w*rhP|VGUC8nG>*H zO!mft#8+mzR?mF*2l=BPA>J7JywkeAvjJNC?4hALKvc|84 z5L^vG3Oc$EjldP?UEnQ35PF$KGf8cB-Z9L7^b52E2|FqJ$8b7Nazi9x7UH z0qn}4kC2}OnF+xB)h)jLVg9b(8u&=~x?fP4kp06JkWX#4#NCWfRM!`rNP=|IeE5Fy z2m4m|C0BS{>u9t0x=??2cP5XPk-fo z1S_+%bwd6$V*eqI};Lzmw!Ggk8_TT1heK<1Y2D4G0HgFn{Fqmr*!Nh}cA zLub;bill1)FZSLkI`4kpyN+$!wr$%@lg4ap+iBd`wr$(C)7VL)#(l5!zSr9O*?X-q zp7-cES!X@&xW>r%|Gu9&C$rk(()Mq4D&MiY-ieFLw&sd3RgV zl}1>DS(my%Ce!shuO@zp%zl9~>E_SKk*7*kC&8%nP5gSpjN)#5?67jaG1aUr= z4dgsfTx{JWwX_Scnt8g5WkTySZUH&kOF0;DGWV0A}Oa+p}NcIlweIE6;Qd938itrG9WrsRe*MXoM zdFE^(B)cqiL|q8P`Z`Q0FLMTmvmD44Ut==bx0aa+hYLv$3ctN+hwNBJLwM%A~-hwWXJebURE@8Y(6O z4QV2P*o@*=E1lxJ>5)EWv~~6CtV@w&!(8qC;|zU67@w-sWrOyqjirUA0i&5q5pa+- zR1Qbln0pIEG`*SKIGS{7L|#I*=(0UZD&%;1(mx64d)f4 zNc@Qq`y{dulJ~ByfeuniNLDABgVIjciSBt11)EfQJB}+vqN6VC6p)Ft>28TTQ%+) zk)?f^uH6qdFFc(G`T?UY6sd=s8a+(xz3@dSLv^XT$S}TrvmkuWi4AqfmOS zDD)Tzz6#|gUMB6hskOQ-XDhh5t4GS&&e*0z!COyGeb;JYi>2^0<=b{b(n=7t4iChk zQB6{lGz5`#J)T_4Flk#n0bxc(d1g5m&}J#kUPg;Jag~gqf3rI;v3KN*cDL@lLh0Ev zpePHx*kXI`d^2Rl0+aUbX4OI?Zze1{gau`5>{ZjG8B?DH!23mUJ;c5fZWZ2=sk(up zti$=$zJhY;^v*eQ?O`_(Y?OZ6p?9`EX+g(j*3acDe6rL4cpo?kx%{sGs&A>;ufxSP zSDZ1u@t{AZb-@W_q&c2gaFC3^k=q@dN0Y;6Ct0d`+=Uw&m^MoGWaTlLaWn#{41N8c z&+DtjUI0pRdqEVen)duo9U6K!kY3HJ@cXCHUo!w&|1W@l>vr%RaMuT%`WdwkH~N|S z49sqZlVqMUHMM`kIbCE`>%h5nYEuc1vcq(Jb??&d1qk@ZU!oCt!@A!8<#n|Ekk|j; zp7y!_!$1FrfBwJVpPv(Q{?8sc;WAb9(dfdAfPnw)UyAvF&-=Ll-H(@<=|4Z- z|NMCWuYSCF|4)9r3_py~e*ZfG|DRpTxu#Z3J{N|Mp80RlgxCji)k%7x5xM(tArTw0 zeIIvhdqik`5HKm9w>1jsPtKp3%gQ}n8dZuH^$FLrrzel_w0+;(p+ZAVipHGZf8o=nyNOG{epMMnm34av)+wgrlA5qA7#jYr+p2oK)+=lrYBvLHpHp0e+b)(f9IAQ;$d5j&*>n6*uxS zI26$i?DHlv$k4M5SQeC@$xEcOC~(Z8DjrAmhk_sZZ1N9}V(H>@vL00(~w!xO?^ z4*qyTBh#jNQY>oF`c+3!q_Yr2?ttNZ5dMw;`agY0Sk4QOc>q*FHKZokA3zh(;K4d) z)CrjxYvdMZ^Gyz2^-mwN8_Axk7@P%$KC4w=(MtNP-0V~G0&G7SnAaM`cHX1|}= z@NY46m*xqrQ@1a7wuQfSgZzSk~}J zI5vN5T)rt73gSWcW#*;=oc?=+(=r2QKeo}Z^!c5mjy`r=P@1vE z>jsr422*28z;1nya5v&TP#cNE7f>{GF`DAkd^!I!m#o#WA87l!9`oK3*dnqN%`B&& znpj5y=N;Qy=aS8C5aj)4y4-_;ShVBUK?z_+Iw*AfIis$u$nj-;w#57 zaA=#8$-Xeq|H1Bu$E(!}D+xypTflv=`(OLX=>G;%Br6-3U_RJ=f)92d9~yrw8(Sb- zq`*K_G>=F+nHYHp4vo$lvT9#Ou?xJb1+-Oerz9(dfUOA2vkl;u9P4?}vA^rLyH4M1 zCVMndZEZe0f*R9bxtwgS=6%b!=wOmIa#EX3?P&{47iY>_w};@b%L|if4>;VWe0Rd= zBC$6lm6X2tL+@)M-2b-hTgkn*=e|UUay1^ad#3*-r)2Tz1#^ZE+K$U~uO)_Ye|#co+k>-5=dzy#xa>3i?ci@ox#(e;otXrU zEUQrDXatZC)DF6jO&f(8gA?QUv&3YA)w+E3ALgl8e6c_qhvGh$cXP8Nn zKj(GLIEbnfSp|vRz34s6h?xFYh0}6@*}E#JvujI>t;z%?j58x5ljOSit-pb$|5vK# zmqK&@v0ko)(PBO0P&daT~t$7QQb=Py_@$I*z8jgAwHd2PIl`&Rk# znT>fz!Ohv8jr^s?%AB#Bx;dw`4vs~cDe7lmWZ{jB43JQBFHsR{Rryc3=()8Yj*T-M zBDyRWo3hS%rfLibd3?T_8q1>id8~hT!7MD{4Pa@6OS>o=HFdo!)HZl?b3=o(^`ufa zx@zh5W9$5RSgSzDaT<10>O{gyW?%*!f0T}_sRX}VQlH1}FN)kw8K)4D6`u($NZ$Wc z(rNsFhlJ!}L zvley92G!I%+yP${P7InYxB~y_J*gYE{cm)9x(WS67f_WLsu7-XJe!v3 zsfL+>Q)8R-efOqK^kgi%5cCSE?jg|&l3qT5lzVZkgL=@v{4NSAuE>#sG57gE}~958k!)DdzKEt=JG969Mn`I+mOW5AH-9c;mqt@|4A@vKLgLgK9eS zAskb9{#wIPT-sl`@2I1Q20GYN4=mbA!^5faKp8HXa#pUap5}c*sp_D-mBoPboS8(~ z*J(hEdPHsAM-XA16sv|YwctvmAhqI8pKN-qK9^&& zI%x>((lI1VMt&W!+C(~bS?8#)awu^P(iaI;64vp|y(?sB2a4j-d+hyMY*;miACzW9|0lgq$xhUHkkZS-JRODVqiPGX z`z;u_8%~Q6_-t-7`0&lD4CY++5))NfT>iu*p9~TVyMt2u`eyx^(p!{$2LSy1%S5SKVHKDDw(n`2YI% z@9g#hPZB>%DwN-ir7Aur7|Y#(I_*c6nAQ%R>r}!&=@Hrv-P_iMKOU-H0}v^r1b;*R zs~djwdoPtd;1xg)(2+y|6wO?19gG?OA>se?P<8%A({_)m$)~&L6|x_GBiSi$@C)6q z0*D(D#-9|Lx_S^_s5F~6ER%iTz9(E1@RYVmm(98=QDJ_`Ll}+uy7z$Ko)Qlc0;*LsYW zyBXioFKLt}C=!l`p7~wKY34j4go^!MC_a)Jx?vzO0x=5Vc(gDr12in6=pQQhlhc4? zng8F(vi?!1@5GUv800x_LpcI)eJCKaUhrZ7d|yUNwK^AvFk}~MV3C&SP*v!A`Ddx~ zqwiZt(Jy!?Z#ZGU@l^KMRc;-nsy9YGFLs2XyjIM?V~feJS?iz`0m(8qM1MfC%xTy; z4#hBT16{)Lb&rxOpxy>bxBrz1MA6M3dLzVL9Gc+Fe7~9D_R97a`K;37{lGaLc;gp6 zY%(g85}8eg_L0QZtPXo8E>0 zd@liA@%`;O{m{&JliY5sAYWv99WBc+G6{ziiFUZnLuv9{(bj~Q7{a%qcmK4Sj$mbRe;qXET;~tY0@N-^OV&rsxHJYG%_yR>*__ZOViBK%< zQY3okp+p$5+5k3((h2RZPhLr%r_LFEFy$FDMJf3EP=g5lT*wS|D+IuG7F%jW!xw?_ zx9hB6QjOq@Y*fjseYQQet!GY!Q<&cnPy%oY7KpjFj7?zJFHSUP%4-I#S0i@H6!Nw& z!B)asIpL8iMf-x+oQM`yP$;bw6-iU`_~ANR5Z3niw(bCMoxSw(!GN3%a+NU8$_wpV zLLY*+Q~o|%zty8F-16c%z)n#4e2e;#`y!= zo%5@q_y6Q0x07Ef4D8%XzdrYaDOuj=;Q~ROwr^ySiqG8!u8MeJTZX^Ep2*Un9{@8R zgVp0ib=f%$%mOhPOga~Yay zGD~%_xk==JLzDqr{Lh-bUf^wjYd)Z!=TF%U+196;11r3~sC2lckBt={1*1SjSm$^+t1Xne?C1-=uZl}WWS=8JSLCKXQ3FM6vEY(a9Y*Y~x@Cp=PTAo#F6 zGMzy&EHF?uM4}fl&kWqMSe(NGsXLtu8OhI-?Ak7O&$PBD}v5;6t zGUE(kUpF-{qr^h`xnxpMYK%QLdm9%tC)J zP>AJT6=T#ysYE;$Kd536`C2^b3&0{;OoPtqnGZ|s)jPbWKka;Gq9&=@d)?x zwww*2*drMXvB^mzr;iLB9Zbm)&@QNXSJ=(IwNS=d-7rT!+BwRW1^yRT)064vi7iW{MXJAu{YYXIzPOumzn!P@HSK z7*bO6U)}O)c_to<}Be%~ioOE>iXT2_L4!)fY^l;FZI^PPY7I1A1m)Be$|@J)Q`3O|js07$7CW!19n~_^jA?glEuS2BEwNi}t>q$QnjB zJcuNu13spb6R{3|1`9DS7U0Y%V4XHs7j)D(Rg!9@5kT4iZvTAr0l@nN7rBwL?6HiP84{_+uztct-QWe+PX8=jwOZ zrPRL;dRhI+6BhkkFJ??AfeVl{tJ?Gp7`aro2Mjw+VZ(ze%(TGUWV|XEJ?)z}lLnjU z5yT&H$MDw#cwzfO2xx2TV~W~?4CwAkGzbBHQ|S!0^7b*CFTsz zXFE}}zDyV^W-k7Q^*wTx{z%L!3CboJ=iuU!DO+AbG0<)&1euag^KeHA1D4SNW9h-G zS^M$qDG5{6l4oIp(q;}<9!40hU2JC1kM(m@fLV90PU%rg7IQv2AZf;9HJcbz6JK`F zv}x)bI&VV35UAXbvBaX;x908Dv`SfDZ=XFBI-$WC3<04{_qAC5GJDm=_$AP|0Ha=` z$wN^z@ycU!ur42+yE@~QVte1Uwpb2KsJesOOfmJYVRFHEl91&{A67MQ0I-w>jrfvd zIWhh;iVb(&WP9d(BfaGYnB-_8hDQ@gpx?CQ_{?5xlB{Yc(-=J*36FSw%JFr z<0-)H|Lc@_1hBcsSxKw}VRL+fL#fy$hm=URXB6MI0-$NO#?v2O1lKO|AT*$ot}ZQo zh(7nZxbxFq4|o9hz9X8Fg2_Rn6my&_B_|+hw$)glzy$4>H=j?R&g1C4O&J|FjaB>} z2c%5OR@ZS$&u`R|yTOlu$hwN@nYR+#ZswaawW;q!Fh8zBnP{a|7um(IXA)QNR!6C| zwmC<_I~hPb37%d>RaTu<;0$P*p?0F3OK;^q9_XIQ2caq&KLAu{hjb>i&4LTRhJsdG zvAOI5cvamNFSEHV8)jqa>0qTI(cZY$;lOtkD> zjxHg>NkOX4V>KBOO1I)C#bKQ}GFBaf7cvO;W@|YXvnV9KuH`W8EG4P~y!Uhc7j{47 zFhT5YRagonevs|=^3m}wd5k5=l|&*Se2X%~55kjX1oid+tc4O4B}gx)K6~_u4Emj# zC4j-J7&hLFUb4$|CPd0I>=2HvvV9>mS_%(=7B?DAP6DDY+5?AqsNL}S;o zrVjN7uAog*!co=s4=rukE;<@D@5_)!9kR4)TdALG?DLRv@S~oO)_ACRW}Z-*iuxC? z25CRZ6I)hrST>ex2(}^_a+!XJj#(pU!?$8kI|Q!Uq$lVT#H zk~F?Y#=nM|MHtY^94s(=;nF}S(e5z*aD|Y$>IROmYWFE_AR&$i*J#%AoH^$l3)FJx zfVD7{+TQhwEfC&7xyKOmeUAO}o7h}b=cUzRmidsO>SW5(7C%byme|i1Vr{!d{CWIO zKMQ3-9f+SZSjJyy_420A@W?XG4qzM`4uf>*pb8WN%v{7v`7sU*NPLch2K<(dZtklq z#~Z$!$o_ToyAsZcg==-TDV!YL^&5;Be}s*4prdcBB@Wp0gv_-cTWRs%p+h3v zTCb=?DX-dji<}R3n`T3r(WzrnPuhf%`f`o>6@D{AjZ$B=u}+|;>~Sy7c`jO zo$sWDfg3=5G8UZ)HYERV53S7q`_OttG&&5Bq^Gt0mn7X!ALwbO_$n`7wGmtM zXK+u>+oPt-=Zy{gLa2ucjj9{=@G23snvAl9qjvV^`&aKe5r1bg#V{pqt$ft_4GKv4WhzGnN-V83X6f_9{ROJ>rps`eutk?~>V8NQ6}(VojfV#11Wj03 zZ}O+C4*`JvhX4QwAOPt95C9kre`5%l`1#)j04IZg2>@3A2mlWEq<*h#7~)Z1#wYDb z%?p^bM=!uqt|HnMY9hpInUL9EFQ3KS zOsN@ADU_3&56N39VRBblSNtD_e|A$z$_h)XNu=#hhq&UfqYj@v;BhH>VrZJNm#v+@ z8<{huvVVW`L|BoX?Qor$?fI~zud5Bu0EdoLPb-AWJiQE1;n}4T%zlB3y>|ImhJWzC z4F8}0{~7)*wssY6CL}$6)rvhDd>Hc5uJo=zT@T_MU%L(=)bzU!qDoQ|vg*k76RoykA%nh?m zawM62k0^oK(oh&3F7W9^} z7}V#YuVQzlHuLEhA#69f3fHGjbDEU5O+Q1y=rd^T>cjOL=+A@eg8%ZzONk(O|L+6< z%zsMf|AzqJcuP1Ae|>gficNlfREJWU(2vN9`3KwIeTvfm-lwp+LI{B5wV+dVKp*<7 zjHM*4Hni`8{_gQ4pc&%ttYMl$EB*OL?Ao=>+td7oz$7cGUt`0GZv3Yd-eT1ty3x{} z2N@>AgipAx;t4_)^#(zCoh;Zgd0aG}Yg8hY!G&Fht^FJo_WMkcN!T5bMu-{2aYlQ` zxkdwDMXP4vzdQ(!e&{R0UP?|@OSo?U`ij4Py;Z{>`idtml{rfKq1YntIS0H_Oocqc z9T`>Vcw7@Om+NJ#*q+16k6-Wk3hmwmzCZRPE}ZF&^`Ab4VOplV22n1{Sh1$4a(N9C zOXUS+WoL4h`h)ZQ7bO8JO^r*4*}%Pj^eG_4VT20-eG0gP9Z7QQDJL!b0Sz3vLwMs~ zv7jyioL3jld`ye)pVtWf*{5*(=u_aq|J|o>>o(0769RLEjd7R^bKLVEECwdy@5z|) zCyWTGt-$`~w0gm9rT>LJ<5Z0=)Hyl|a;c|#FayZyu;-hhMsHxfcwhh0S1bVZ6+h;Z_$&LU(gq`5PMTeg{cY@e zH%9@13iGkUReXTH!WE0=xpOR<(GMXuyB-I11wqc?@E`h$AlSe46}U>f!^-^rr+?`y zTHgO9yK>%z-UR+{1OR_+Ts{N<`F{xjL=$KyWo_8CK!|^-#}Iw@Cim2>(f|dl1Wd=P z3321pK7DpBZ)>}XlsIj`IX40%y}YJ+?~l4!rz^=!vABDDD^#*aEC%nK^|{^wcbhLR z1Zj&hV4t>?bav8X7B?cxe!ss?`@W_&(P632SO{7a`oC*562pA~Lq2IbDV?R9o)tv` zhV_~AmjoJjaEg}_HbY{Qjuoec^0$#dUMs774#W9WZRhbIz(%U3+JFVR1ih&)YG$g4 zwcr}a29;&j1(7ER6hu}~x~w$eDq0J6c#5v{CMpEj3P?r80P2%?FU(}m>?psO$qoUJ zUPgaEdJ!>svzhtNs1l!sK=!HjtK#ty?Fa=&AGRP&AXAKP{f+-O0Pufi0RC?m1PM29 z5{V1rRxy;j-B#t>QaxPJJa)gl>>Yg4WvkVIub6`EMCzu6+x4*#fIhDM`dl-EgPg`N zM|w@V4t)uD^P0?gzX9m~ z-T$KheIiqXD^N%8p!7@j6)@ZprxuWCx*-_&iv zElM6@S?k~==j8p%F#z>Rq9TW7!n`J>SyQT*PjMBh86zXEamHUP&PDi0nDDlXWbZUJ zIxv`Akp(No#F2HtB)Y_AK7quD`US(6Wulrn=IOw@oyFmMv34S)_f z2esIK78q+nG$jUFs&|(%3V@xQ`JB57As|-UM$}~Occ-H~;dmZIQHQ{yO#CN4Iiupe z31Kj3N75ozryh~yW*c=$UqPxi$fLWH#)^avkXDkJPCFrRsC>#i;L2z_wh(8v9_CcK z6oM&H*Urh7%h%W|A z>|>`Lwb}+$MUamKem|jUu`AX{GkB5!oZ(vfV~zJ{qRcgm5Dpy5v_`_c(N^=^EEFAz zb8+NmjwDuD{RCiXxdd+M^eP|ALbZ{3DeLU+4H+QiUg7VzS5qz1{lYT(cLJzi4QQ=Ajfb-;|r-T8eSFUit!2Ip3 z%*!imVxhge#^cA&m_H?o)L#bE1?MCvC%%ac0Av|7#m9ZA8r$|g%3tiT>f4TV)owKbJ)OdTZ#QK)@%Fi7rGXP z%j*+K|8#v8$@uL9VsAIvP42rg@oxs~4ey)?2$)s)CG1VA6b{f!4R%}bb#K! za|CF)CFTnbjh6CdpEC&0*pUXj^3%n`TU}FNvxJ+anJbLbdQJ(yUENQAKbkM&)F@M^ zmyN0gGP~joK3j~YIuV@#KRm5vHfUG!QZ8~>lvVFhlQ`_0$mHk3?PNlZuQC2i1eSSy zO~{_#z-KuLWD0@E??+mR0D6DfxNc0qM1ZJJwBj=xr4sS8%bkzwcyCR{aZ)whGLV@i zRzSQaHwd1iqc(v3r|GTz6o>Hvw7^4_cIu;K5R@Zb<$-QXYT^KZmSqjgX#mjj>H57x zi1vg17i0ffEDrro_CKjiyeBI6DYQ6*N|Jx)bL+BpD7ArdT#QNFbq|v`s9oFy!eaQ4)DvOXs>j+Qxzr6dzR24 zi>$;5Cj^tI?QDNQa*5b<@DDCa2QcS$bH{oiFTa?l?!%ETLb?ZNJh;4X!nd|&i^ zj#qH88$a5j&^cx;DKe}6z{DSC!NaFA(PYXQu)D&?u*b{U%_ji#9|>|Hb&SM=f!SMB z0cG;D_TBcEUmH%{nOLOTA#3`%6Q48KFb1c(ea3?X-EK;X)qPntYB#jGTFz~x7)Cgb zod@SxaHAhKD{9ZzMr)Z1+xJCQjY<8ClR1TDp zb`*9g@zQLC;Xnh%<5uC38`1G&{9CIZ!Bc%}Iu_-@-KiH`#7z|5i&%9=?o3l|#NVNa z(EU_hu>)qd=4>Qgv=y`G!kPVtT}b13yk?@4pA^t=)A}uLJrV+e9d|e#StP;VjvdV4 zq8^s;qoc#R%x~m?TQuaS*B83k3a)p4?dYe<=eLq0zQ`)v0NnnSrqsn5ZxqY>53$9O z?(w>wtg0Ccd$$aleekYw8GHWONbbN~-2ek5JivmZ z*i(#*qL{qL;j}9`6(rt!=z$uy?woL3r%uGN*6rnGTv!L!To&0Jqh*U-$l9f6A__A1 zq88y>$IWRAhVN6k9z?ARksZ4(Q7{Z*@J}le@Ty*%*n-b3?3gS(C3!TKO3br(Y`*4_ zTcY^2RWx46a+Yg(eP(8Bo5hvneK~KMx9NwM{Hp8tP;ABOJk<{Jy~uTnMeStX22Yg% z{0K!9Wo^P}&WV$lwak6y6uvhlKR3soEH7G$adav}Rmzt;c6lNeyaOhisQPpI~d3&B)PPp58<^2$9R7G=H)5U;uh?q+VzayO=Z) zHk&5*61d*!;%tdL{!|q!Q#X$5Y#lFI{w=({l}}OIl54Wits~59^V>4oqE;4f`W)2} zapx|g!&*^GV&$08`-JAGf#KZ3^Dfg@<&{#_Dw|5^c~jzr#MlET#)ht~TOzg4NOoz4 z_gJ!~jROsyhaAZeidoY$M@Nx69KP;VWfw@Y9KlLuPfhzFh;@tuGXmpE=-sH6_R^gE%9i;daR1(KbAk%y+!R6{sgz?LoL0$&HYc4EtL8P1x7b1H$< z;n*b?$Hsc6juYB;Z9Snws4J>d*`Qhiq5r|~F!%jI-JxijIdgeWnkO+TjPasnj*94# zMjkQ}xBl60-vf;tKCyJ@OIDfj-nf*gOtC@7%1=z|Ena-e+b+3Z9%6ObbWT2-Rtmq? z9FnZ-ojKDn{KiiEXj|pso~5_WU7Ak@Y?fWUZ3Tpx4{aFFe#@@K-P-ja_#5 z50KFOI*o8*Ue2I9T@;zVT2NR%n|^1>$C-|yGBjN=oF+8UWJ0&RsUj`0!N}sRcdBHT zXo)-3Kdwf6GG08FGzFFt*RrUr!=%X(=D?qq@FhCX5zV9(TaSP18P^ygBq_>vij$}c z5ed{oaO1jWl+=-VZZbjyX*nJ^x0+`JlEjRwTEw!4x;PBCn_i0L)l2DJ;)U!NK%ID0 zHDgk)x?mNyViHL*%@Qxm6b16P&#KH^lv+rCDO9>GiU479EXb_TO7&84!$k0|ZC7&0 zb9ahn45*~yDwshIsv_EfqFw2eN-PRghIc*XLio1F!lmC=t_LYYbshU6AGo0+BYIWE zxDJkhwCWW*b}_510o|uyw%2N{nKC7nzT?UX_zV?Nw<)gHN0sv>*lpa}mlsMpvAchh z?yz@5K}u1Ry4l4vI?)ZSZEoeOd}{$RE@q*KV&-Q$=Ih#Ey7m=^%*-wZq~0yx=Ecs|S+|K#Zzy>G^l#vQH5O=6a(U7CH)8?j zKkrq5v4G>Q6ksfXd`k$$v)eV(#6d>vp^b_n0y5FHmkfP@VkRm>e|<*D3cj-Fve>AD z?@dVqBN?_ZI>9)dL^(aWoBf*xv^z;l`c(XfXl5Jb89OZ-$vkXk=(9!XM&oHCnptk? zld>8Af};ADzsCX*P4ICz8TdsPBpd{%3_$kjL@ND_AoQJxe57G>BM`qN{&dko#L<)u zQ2^gfE$Ec728GnxW%Enbtg|p&*uWgn{fj92iPKmMp~4y>L|>}?j}?K0 zq0LX((QXa?>Y`crz(6_N!-T!zeRR>X|8&u^Ke}j*0-^utqNzjiUQj`^0qLQJLN)Av zA9MwD(fo=%yC4;i;`ghV(l7}GdXY1nMWL{6`=R)d#flDC57EgzO1?_3bWL=(PfAua zmp>&}ufvV|Zr9my``5_q6z}kGy2o6Woj4d9`=f&Zw$-&>CBsy5I*eW7p*!_vHS?VT z``fBQ1dq%1;&Ppi<=(UnqyO9r`0M?PtpH$K{lB&XHCyf)+RR@t;riURHlc<+kDA(c z)zpQ#w(1Q_U59!ES#Lpz*!@p@p#F5x9NBYPzj!!01(|tAQa?br!ss4Tx%gO-mPjWI zPMdATcQIG5DQ*t2O{f)Pt2o;EJH6O52XPQ`e$~9Ccr$k zH5_51NRJDtMg60T_Fr3p&{?)Hl9xYQ0Z4Tei=I<4V!wZO(X@sqWa-TC%}D45$eH>~ zHDqvFy|3iUs_Xh}|%@V0<$bqZixeXcc6HE0Xi3TW|n7mYTf+^Gh=>L6V zz!Qwq8-kL5?q6epp?{18rfTH>&#}OG6FsO?d9DBk1~)YugwN@80A?6Qj6tVzXKF07 zyaknzsP1W_66~L`Kz`kyu|P(-UDg@43`i)^@42-p*fFFumd-=vY_5=>KSDcyy+phn zqcG+eV@+9V-URm6g)2%)Gp!WbFZ!X-?NC(utAxw!cbcuT4at-Rbwrg?6tomJ%JM?b zaBANvGL#bwK4zgJP1o;{ftR6!voE-nP|mP2L4FaC6K22T+3%BU6tM7DVN_-l+HS7- zY5JUIhFLj5iR>lndz#tV^T5JO}^F?yW%r%%XJ?b85Qnph(b}`+Mq`({HyPhqD3wmxQ1_bcuz6~ z?JH*sgdAU1VaPO=V7JVkU74%&wZ3d9IE|c&vM><4>qG+>#+r{{MH!c!HQ92APd-pL z>QhNr-53*!!G(nGy#2r(IkV&!PvS9o zhKZMP8Mxa=k(>kzWx58`kmn0pYDPMpvyrBv;@E89vlt;+eV|s+FsF2k6;B?B&p6+9 zIi}gJxH0Bnron8|54C=Qcsbe=Zx^L_eryHwd2A9dctcFUla5*i0kuBu(PsPkP};&- z{F@5i3E6gs>aR3yynYb%H0mRqJV=7Jv#1l}TKpbhLTK7;Rdw6K+1FEckY?|&>>d0& zmtPv2m3!asOEzTuzIvhVuf0)zdqqH(bWOBu%9R=kkJia69|(OeOCO74LnW6ykGP)C zb~ZaYr-y>y-#kpA5UceCvmYVh3cht-h^H+;Z`j)Jr$! z`eE-$uYHNl-V#7Ije-OlRN+rHE$Jb#>IiZuC@bBl=BlQ!0?M9JE6XKr;FO?vI_-oS zhbg)yHI`DN9dR1r#muGYea|i%H$ACGzh}_GVFTkwY9cD-xqok6MgeR4%ZlEO0}-P- zekI-G6SLJ%`gdyhL(<;7<=%z3p~>@>@nrq}D@WTaD5KpVV91jtmJrFCm6Z|gnSj$| z=sc{j>L_xKF!30`Rse$4xPmy(Hr2oSm&6kj-XoUMl{`XdtOMQD?#LvLLs$CLMP(U! zVY8k`6o2WVJ!7J)F4G*x{-xMDG{1#Hp>oPGZDtCze0B}A>%Q`^`{0i@#bVT+N{HxH zw;SW(rcnB`oX0Vd>1AUy_I8h9{&JIfjD^bPYPBWB5J}-*SqKNFyZEkH zfG?{pmf7Qen*?P6a8njhlxH^ma6?WC*|LLUd3Cn0HMFL`#LA@Z;?zuEGvEO7#I#k% zSbeQ}M-*jUlY=NJ_QV`!OY?*!3n_PrlpyZ8liujbj?&Ar0pK9{y^<;@S_4B;MxO0C zR*0Z6f{VlzsPHN(7gLrs!jjukPAES%XR_wggOmJ#ImaCEr|==&EJ7nU5bl5h!0L^`ure0dM(3=6dD%J z5b+!qk=o06G!Zvje3zy-I>a*}CzYF|@kQ0?JK4z#_F{K5MbPHnDwLh@-B(U9=Y3-O z{i+(V%6IMRNua+d*MnXq?z?T=z71B4Ab6H1*TLIt(;p2<6yxIB#%JVq-(`J+hFzjS zN2{!~mDsYu@dE)x;2m=F)!iQyp6aVNvl+oSuKUr|`wZ%Ad#;)m`-Y*vnNVcxy`*(f zT%VdC?=Zw=PCX63T4awRG0>y_d2#8iF7P1Xl>gxiWDFKYJEc}ZyXf+2pnHMSXC24B zj63uGJe&Aa7YF=sf4D$Zo$uI2`5X9uVhnc9ZFgAe3xEU z?6b#E7=lKIg>M&Ef}~wQci2M|*CTWxbFDSv?Bz)m=@sB0m$iiFvGlQDTqos3^W%pO31f_w>_ih7o>Ii#R><<)LVS+vkk zdMhk+Dl=0}p%*}2-I7*{2;<>vZ4#=`?DJ*Aw6rLUwX{>I^XE-dbs|ni?K3Y)Hz7?+ zEXxfp9k0st;>0Qk{H2ffvl)(V?|5urZhF>8<~nSdEzIJyMHZ=o>xOBGJC5CzCH*EU zp9L2Je>a!mT)smjLwfiAoDYNzA$VinAE#w8g>(Acp`*Vibmqd_pW1>ln7JZs#H(Y^ zLQYGI+J~U5z6&Q1@wtXOuN&^x!}gUTXM>R)t_8o~*o*5MxI_A9KkT?mXDZKhS-6xb z(QV6}M=s%wk?NKN>IMyPo@x0setv6LY&bLOg>sTlazc<N83$gwf+D0^ve3bcLV>atN*92{=e$#&rVVQZ|dq&G382B z?M&J7KlyCIRq40t>ff)!+2ZSsyEu6G6c;2cgl9Hs64n7ya?1#J`?5Q!%u;^wKFq>G zK*K-f(y4^3kUyRf&<1-N;=vTi&kU+4Kho+xaFgNpAP9e@)ic%(U?J}3iSUS#Dw~Dw zDE)R|%ungjZs(Qw{2M$#2LMk97WWWgFL-mj5qpB6V%_2v0CS*w#KJS)T)G|176jL~ zb0iKPB7{3M^*wy#>~0#jI4}Q~|NVo-+-qlNzpv zx_}w%ddx=Q2TbSnN&wR8zej)oY4sO$|8-H^L3|&lzL1 zfVTu@x_e=SSM^k0zX2KgU&TttWa>v6>a>ZkuI`T!`pi^19)-8+x6C=HnEIn zVbgwDn!RDl(9N{&Q`Ruxp8CX7b{9?bEs~BT_^)1GiG0x6>;dcf5TqR;{C-~?L#&2?}-%nt?G4`fO_@9)rU8+PSlKuWFtFOgLasF`7&%Ywh7wKd;a1Ti; z_)1;kF@&z+&;>F}Ww_{%*SFlH*1XrN_AvWgQ^{9t(~Je zCKYpihIdBX4H?rgXt1O*v+NCdwyQux7{%!>0s~-& z1M%u~SQCU+B=(i0P;WP6Su=6vm!i*=1N9j*xY*nll0-iNY4y#8ivgg+ZmI3nMg0|{ zQ?9T~pMw&LY2}%^UwxL1BJROYcffK^vM zrQ_P^hFtL0dol*u#im72)3_EuvBIcK;gy!Y zmzM5CxDE0Bn@^;C8F~Z zlM0u~=9K|`uJO}qNJ>JXQa;Z!kB7o7{jy)F$WGKt-l@Z5@7HBFXA7b(X@8whM5HSr zX&>iejkKWjqn4n5qzC8tiAuV>3c#V8lszd^(?_A$13zy`?dd$6k8Jp+^6O#E)#Q@? ze{{W5cV&$ltsC2RQn78@wpmFkwp}qRwo|bywr$&XDt6Ay_pPx>wjS7S@9)z0Fb|$NIujmayyD2UB8Q=$SxjN@Zx5+$e?q&RItt%CxO=;!remt z0;xbreZ*|t$#mWP2k54koBosk&#sAhgLK_QeN(EiRk-)y;P~D;oW8j$L#bk_Ss;(xy_#4>GkE?o^koQh#RIF5wTaS zL^hiVLz*d%+HkQ&*BEMSdKw=~WrC_7RWM`%`nS_1nbqn6|Kc6*gPKpi9 zWKh|8Y;R3lZ7-edx=_jcp+OPiqiteh_G@d^pMVHX#e#_I`!GEXS~n7AwmcN%p3K z%PLt@e3xo)g%}G@hR7hcRUpL=*N?}q{! zs-wq4v|1j5YpRJNhHbI87WtM6f>W%qNdZ09;-hxPOkcCA+1)Q;Pv@Ook78Y-ET0jb8W_ zJ#Qa3yu^ruy!^o^7t|Ue#Ed_UY6HGRs2l z$*s8wC&7_IdEG8v=FGNe2tCaY^CE-biT&6aBNI$lbtg5tdn1L!$AZZkmFZA(0W@Nr zU*5_aQH!hd(G&^dcAD2(n^?B;b#c<%YeojA&8LlSiov5H<3Yv%0v#*lw8fn zD#uqkk04&%&W{8h_$Gv&XG{`K+pCF&EF=lZf_F5f2k@O2HSwZ_9=LDi7uio)U8)`* zy;C)$X8Mm_Z?dK`4IWW69TAtI zYv9DOj33W*Gq3C7sunk=QAbCR?G4k7@PY(&+?YhEa%S7$S<%wgSya*^Uu!{XxEIh}T`6C>_^GzS&kJqsk|N zo*T402ybQ8gnW0PM)eZv)4DSARwJ<3l}2lto*Z5-OZ~~@HLN8%TvZaDudO=_+~D`> z&0*^LJFetjw*b8o0ZJRyDBJGY0>d5dRg- z>y;JN(N8W)MxsCy$I$xB4&bcH#H)VN`m-_}m!IAFj^c%p@EV#?H23KMY2ORkfDnb0 z^W=c3GqczcwlhI+u|BR|yYG5;V za=`8xdaGZDZmZ(O1)~4f@s9T2rT>jM??Rz0O99*}RsZW&`B!fKb*pfv`+UjG!SI+{c$Ip*yKMee(C@XvC zROg6c_o_Av92Y2JCS988c)I}eej;GkmkA(XVCyv&+I*l|scBNNU1c=TK4}!rq~CzJ zbKVXRcXF|^EW&VN0XIVRE$q%y8!(m_Kmg?F+na!$BhXKb*?F&$Lk2)iboLZq@k~Zg zvD{5^d?}WnG3Ffy<(;7Po$dFb7wM&y;LAe$m%)%K^{ua-2w=p2uXIgl!wtG1QdvT{(mTwog zSVqq|85r_IsOo6|mJ}hb-=N!qJvNq>VKCJL4zdpa9SIcbQY67Sk~ca$d#hXQn>oTT z=;vm2Scw9CLstQN3rrvEw)uS50R1)1gkOwgTuvDIPxq*&C>Xn=b}N)_IN!7xpy+O zmrD(h=mq78g?Nd464A4zL}LQ`l}`l~)+^eF#U)}t8a=|RrjM9D zXy+mk?@#t|zB?nQrl1E^p_b5vvx26B;`$(Rp`W_YFff0QPcFBr3rlE$=!wb>vyMX8^d#yr)&@dk_m?~T~C_Dl_z10xxGTFZTb0*+hulRZxGDblR z1`d6gRZ+@snjcp9Dg6=_ZAn-n+6S_heX45(%6(?Bu{IAG!_= znpBS53mW5Mq($dwB9mwwPsKqQTAI&%V4H|lIa#S)T0T7 z$79N6h%QSd#r@)6@CQq&m$w)Ke(9C+8`gwB=$VT5cgMybkXo%1R1^t5@`PgnwaPu% zBdu)RY+Fw(J(MV{pO+DZIDR#ZMm$l8TmEG9=~Vn}+apLEUx88s$^{x%Xj<&X?u}$n zAxMY1Tt*fG8A#O+NILoMBHaDLB|iDqMWmvho#(Ev%mT9CHr18_{|f5DEhcmw`WUU~ zeXymCfSUgD++q8rD)_Sfh`Y3Rz5WwKhI?Jb&^S-*O;=$u4WqAPhA;^IZ_%T$H^VWa z)Ts;*D(Gks5|n*gEng-)Lvs_%q{;4tu!ml?y2U`h=FZTd5N{)9`y6F#pUVX24w4r{ zJ^2;skB;9dP#3F&b6ms)UD7E0eua!nM%kdvyC_#Mw*f_(@o%7AXKX+w0k^;p0dB(X zHLxGo<%7+q#~L{(bc&oVIDrXjJRl6R)BNzSUiN;XGow6Exe)NIe8;X8r2b7KXcNZ% zj6pI`R6aVg!&cR@9?QWleiPZ6LmCidXc9g5NG6f`SJ-Li$CLgSyY-tnBF)d0@N_=I`GT1)T$Ni!L>|}N=F#I%O|G& z4)q<|MBVIXLQ%=Kp~)6e)eBWjmm<+F9vJo23!$HdK$VY3Jfd8lOT-{8V6K$Z<~Hsq zQc*V1>47Hv4uXI2@NPV=Agmg1J^VBeooD&L*x!5u75xZ$Ixig^M_`2ppQ)8`e)6lT zZVRW4C?n$T74)AHO!{$jN(T+8Zl;IasUg`(R@_2B@BL(F_u}iYEH~kBT=Zh!qPS$^ zK^!sq`Bs4Tu|HCvv>bS0Khdbx^LOPvOgA3o__2Sk3@;k7BVOx%{cU*sm;kV@EZ&x` zZ(-bnE#Rd}*qk?-O7kSBg9QeShpsd4NF7nxOer<`HX3Nmjve!&wDrq4nQ+DI)14|s z=$!82y`fe=WbL_=?)!stZW@W}EWW(7e%L>Rr^9Mvq&A*ajn-^JEEZ2A`MHAr#6P_f z%8jk(VsSHk>KZyD;BXlTU1}q+>$XE0q1b7&lZ4T~T51oT$RTvA%#ZYt^|85Jdwsce zlj=kp+6sEg=pb(#=`2iV^fN`OCK?c>YErK;I-n1eIc-djd^)9@E=(@*@qMLr8Mhf% zv<9DKvvGCO;5mxsexW1&{kvSYxR^@P_A%wgJ5~-T_87LdUOW#?lzJar2+!ceY%$9zh6w=@^)@5yT_vwb=(+nhtJWvg!>w}CTATi2KINh zmGQ&1#PrjuW!I;|3J#2vdv3?u0P$Pz)r=!B^C>E1P-!B9LRO?ZW@GYM>SAw}EijfE z<)tFt{C;C9t@BzLaw4kIOY!lTIqcFHQd

    cC<*JOdM)6bz$HOrk6y8%$%y3b0*Zu;800s9W11Y1B1?Js?R zE7f*2X6i?02VwMEpOw=@i#;*Ys{QX{=AUEJx%(9(#R2a7gYKWuqveVKro*BaY z7YD&vm)74t`URsOO;Iy312pcU4nFW!&(dMw+$ry1fLPVFu|HM=-C(}}#Q+%m1Un-Q zmmdO$^*);VLfH@?_Od~tJ`0F62w%)B!;dmf)@<{m`87L}D;hdM`N!p{XBv?-hiMAX zN$OL3c=206;;cm;7=9aB2cuT}cn4iBv=5_R()U$p`zHpQYkjfs&3x~9LIj%Tg|iL)%L2A5@3rQlJ{VM zQ=7V7WP(##Mj0dk(~89^DGPP}M?L*$B1&c(cblkiFbPwD@wC+MGSF_oHo+0z(JDXQ zm0sqO)Rfrv>rBOrq3>_*WIi_Ocd~}Sppv0~@dt@CIs-L1K~kgmQ>5 z@dX0Ow&-=>60k*$o(D{R?g=o_lP!#;$C(})wGba-%Nd0IsAsf1R69Z!O(CqYohG3k zL^gcyrR53EK^Gz8pbS-E$001sLrxkx5f3@4HzWFxFm=pFyl0t!qou6@+8+}A#8>(A z57)Y%I=cYv&uC}dP>*;LE0+KMdHSE z7oTuZz}iPgJn+Rf>Dr?LNXi?x`ta-}|E+~V11=ElTo4<#8a9akO6^gUx6K_SktJ4) zpQSJBZAE%24J*L&7(O7~a$bwD8?Dhp>QsWz0QC5S0F^(yP8$_ux^)=_M)!R2(p96T z#bmNueA}bG_mUFaI0bLpN@h`Rw5A%Naf}OkgTxH2Px>!!kPyUc$6()`3k-q|L90;h zB+3(rzb^?U&L?hHMide|5I8U<=%wE_!_nvEVwN4xOa&k5Mv~qM3xb@<9%j1$hyyd` zm47CbPNE9|KPZK1Ywx-EDAERjQfoLK1n>%*{P7urzp6*xZykD)H>uykOx^MngljnW z-~3-Ml9JWptOK_cnn>>J7v4d&ovqkheUZ1!_I|2!O4?YNVLDOVN?|vmR>yJTX1@yd zdP5qoBiL2x;`LTDj!%J#G{8ySPT;p?XkSg@D&O~VN<0JYodQeDl?9x&p^>?6(>0)j z`ILZ4-syTo8oAYo!Oo*jr-!)Fo~_ARih>qwrX~`!PU>6q<(yE?*&+kR%|OwRbsD{x}bn= zSIv~YF{PfuWiN8RIfwd~n&b`**FJT+(Pu$=xh^vw6Xqjn4!P7KU!a>nUIuIFBg(6> z!BV6Hea4*V;Q-TZ5ypWST0`5)-%0o#0A#k=zsT&MiF9}s!wKn*0<$sLxX2(TkW7y= z_Q))rlP}}XnS;IA#9V=JihWE>p`{M4aNLr%sM4AQS~Nw*7Nsk=;`zS8yrIyV$KDv@ zvI~wJVeg`e_a;VPP_iKxW?_L7ha74J7hbi-YKj`R1TCzy8v=W>VGfE9$AOIf8NIaK z($rLlXV&G4;U%7xcd!bSZQ{9%m;LZ`Ro28a4nt3*{*bck8BJbP6$B=57OP@z16i$? zToktz!z6j%sF3fPo;RnA$I&j4bXFzlQOMBT+S6jbV~ju0puQ4+CB z-68E;)yzPL19ud;N0xFYY8&=|=@<-nsO%_;mLAnAwht5Puj=aj7V120LzyXAsx39a zJkc9jCK`?4cu2=m5|cHTTb1*MJrP+ZJ`H=~;VkOgyP~UQs;@iyCH&d>@XeA7m^Bu( zrh@-@7!q!6(LuFJ@|VLKInlF;!dP?s*Ij~E+blXNTRIg0WtJN07ye);2C zc-da$V2X!=p$m32B6URmEwPO}x$OjnDhO?qnL~ZUz=LJ3ktKa`o2uS_oo?UKc zQg>nc+ku(=>@Bbm-218mmsEf)5B%GlVw$}i*CxFCEC<%@2H|EF*aj~NmuIGni)R~d z=@F?lG7LyzB&(gXAfrV`bLY91@&eY`W`5{0_VC=qA5EMw!?pQgSsTI09E9||Y>6hm zsVD$*;m3UT$jneI+W?17Md!^3?Bi(Axk%hOJa1f6bKx9&oATk!)J*Lifq3(ov0T1V z+B*F5OTA?6c9~bA8)tDPt?DGjh6~e$#I#d3y5Vo`?C3ZxM+Y9&8xuM|NxQg^!J&c=lSPLz^=AbPLcYMn z4kapfbiokxMq?`)2dnNY*p@%eC{@fNREO^((VJGlTJ+fUG092Crm`lz3y{wP!sEq>ENsk3j&^P+tNlh2A|2M4K$4Ph-o zgL=y(f8ng=W`JddjzmMfSqoOi%E}0hu6!V_>-VT7hUQ zAmIq`-U`94_l1)?+W3xHNMB16+}%H)nyKlMp+$9Hfk=92nP_=n5)$hJmhbv^STlH= z{UaH#o@&G;TPgJ;;0Q%&wf;b)1my(1`}eOqi6?K2(C1WCkSq|GwbV4d>;i|mj5a?! zg@a56?0FDB91Z%ENVxa%nYfes8{oJj{J+&e+i3O_@Hx)DepX%jxK(s?KmZ}JzmgU! z(?>FNi|;spjzP&(;mqD9w0E%!m=m% zs+{0msKG@pfk+f2@3Rdf#uJx(Qx?0Tq#Ec{2)0Y9W)4KVNzIo|(Fc^aO z-hPv!>`v>QI#t%o#h;Yf^gJyzSky8svfZL8ERkUMPWq_u&H zPb@h404$}aUzSp3ho=3*W2jkxrE~>b`(W#Y!rq$}DcCMmq{ei6c}BE`vX1{KKBu=G zY{4s*yk~e~ZjmUJ(yM^W-k)K~5z!uOpa7Vs(~s77b4FnXlC275KCTLzVuYn<08|Cc zOqy-ZzzQrY&f`dJ9aH7 zfyKRBB;R=BEdk#j?SSt(aFgcXc^P0>Qbd!!yS)O41Vw_~bQdDQ!gKX3mA}5?N;k+X z2^Ikz@t{@5t4d3NEnY~T7aO9v^tB>2LgT_IAg(yDl09x9op#jK%6<=}HN`b0q8TIw z016fsK?dOWf}!Ib!HunUlU*%jtZ560UBkh>_ciVq`nuX1_meGwM}o=?*t3l}wIP$u z|JV!Y^#cY#GnTG-c8$`V!}H|~Qepzrx7^&tZh*M5eX=@FB+XykdF{lkFLtg2LGw)y zTXz&Cp5k=#**wuT1qPrgEwDx<16t&J8NMVy(El63GE$B)@SS;Gw(_1!%pPZ4UcTvR z!J;MD4Yd6Qj6z6(X7U5dAwZ2E(ZARtH-Jl|$&BJ>gFe3iMKrm@BTtT8Hq3(G??lG{!IsWX~h&l?Su87LxTelJWNx-9;W{;xGy@0Mgbd`5FM7#g|%t4S+3x%lfu}g0jBJ+OfAvAi% z7d|YUCBia4e3T|7yNAUCzi!qK1ESNk!{^TZOFEGgEEWo>M7wMl!>?Q;v(*z;>`j!P z+`igmw#rg)Kv9%~{CB6{-LqVMsA4`mTCo!_?{4~cetyk=yc#pBOzuAL`;F*erC0(% zaW5iLd#~7DhkvxGgETv;i|4ZCje41rl}JbE3*3teWLeEy5O@E$$0mJnC!B&9eHWnU z#WDmv2dQaIL2%aHm2up7I-9ASr#E?4r47}R={qn6`qonYUCdHVkKgRp+TWj~ib%Pf zZ)%4E^shqv^$T%O3ElAqAzTAkX5P0MRI&J;9hU}VK~Oz%Ux#fGr0m1@Er95!`b+d9 ztN`62yLWBMia-d3qMW(o2^2xZq_8Oh1W%C*ox8@EK-ei*Y>Gh)2ZG5KdLjizSoJ5& zJ^}X5JBNue#s!2Fbw2o^BKY+Uo06VJ=bN|Me8SAQ;+c!|JVwLftXDmJ(feCN^NNP%q=sknX&SDu}JIn_ZE=XqHo5f}p0&n)U zD{YmIvdY$!|40xjrVq3|?#DObk5I)G!;2K1FGPW1%5mrCg7(ul2~-sU$G|wCoVc}u zEM|2Sg!744BF`EmFDY3E9(C92>CI8yoBE9OgkG748~eO!HwomSKE4lKm>!qW0ELx; z3)jh;@@?0Rk2LN0E_uB05tSEix9`d4=EsMS&Z39_MJX5jG}snGy{vxXh#ylX=LV&c z+&61NJ$@$rC!Ek#?h98GRytub<%z_b2AnZnREMlz>xqaeZTE(?jZa4*4@@glPo1%= z^KmA;4w62ViMWLEq4NE{%r_5D+#F@e6cF^ z4kLgOakZiGBTQxzAT*3pF{*^lztS|6OG)xXiR6JR9dFoE_?{WwklVT%ka%?j>%q1V zj)J4Qy~B@iCoWsabB$&tbxFMzZ5EUkA&GQmktNR+DYg<=0d(3}%CQl7Y?N$&R%giD z2{cxBA+gSh(AlRr&1QtjwKJFAv-Wh3_8Sy9?A+<7^v!LK{C`r_vxF`0j?j;K@NxsybaVu;*Xw zY@xJ5X1*21n9CXZUEe%Oh-?dRrNTTy{rTGYBOKQye)2cQ?uK=n8C?JmaCS-lPPk?> zN6j*_ZU3JItERn9r^7W3qX&lVS&lTJnROc?(XvNp&7|b&N?lJo5vo2-bg_cG;$zLG z^5}b$u7hIK9wga<8|!*hXT4vHj6Rw%ra_34-yk+pO(GN#--6o3``-DR*%s4HhTSZG zBX6^f6r7nSY0&i@0+EHe{iblE^5`IO)h|fcuuDyO2u$U`o;q9hW>sp`hZ? zD3hkArr6SwA?LXmDmLb0t{O5CC7ZLu&3ORtn_vSLnpht{cjL?>%}swB;3Ok zk(CQMkxa|jl!OJ&aV)e;ZQL`aY>wevU0o$JV_!6x8vcpHB$f8zMfF+}ceJdX_tH|+q zws(mz*2qeo#R}HiQD~`|*QF5?r`#hf>kxIriJP23ZRlKBSfwTmM8yN@b{()?;~m%* z&-1D&l}1jLMLSz2DT@xy2bSE}?U9N;QDaKEb3S^<;#t#jss(eZgWbZLSG#UJ-Pk}B$TNkiX*qSL-u5_bN4M*eM~{Pgs)tokyIzB{zJfbh=fFyYs@1A@lq z^RF+uS~!5N79+F!ZPQZS4_KOwo%_c!^@*PqfUX8BJqhafutHPS`Z7K3^LL!@wmM4~ zzLhhy!_AcYM-~Zm2PQgp^nt|<`4%e?5-8V;5fDCT^92@qa=_@IcxG>fDkktixM6Ej zDR>$>TaB&g4KEAxoIN1EG&2s&<_}V3Glt?rW< z(*E zx{i%Ssv>fz@fW;39%i)G{1e?FXp8Ctxxa%Y_si^aXR|9>xjUVA3nVg>!!urZD zJYYogU->0Y9MsdjpdQFmNL;X{+yWgPf3-cpQ09(>wp2*M%1xMVK6DlvyF4fp;OiwtlW>{fmTbp3oPd5M;I!=R!X2!W1{34pJQ9x7fuh< zpe=Yp9y+|Iz>>>pKkJmBM69>`NFqvNVF7aXOA#JJ&sKmm7NYhX%5}Tici|Ff@*B_v z=3VZvJ40Q*fHW;K7+mNG|uu1jtNHF0$SGW$R^1{Oj%PBAV84W(6s zCG^wM!4?2upi+4rmdys~uvnoiZ3<8Ov?HL>^b0|Dpa5(_XVY<`H@FRy8gOp$cc`DV zj44SWk_`-$fDiLE+t$|#`13rqKr>~yh8R{NRZrtgS0=8$zAXj@J; z8zRD=IaJs|k^KTO*@%r$iCh;r3h(0Xj98Q0u%j}Sz%P^Iea8ROZ7?w&+oOAMaOYin z@}%;oWJeG7W%i>q{*w-y;{kr7COP4iKj9B7dAJqPd-lab1-#;DMRrZTR|;^o10f(W zHTQ3XoPoI~&y->G-LB(8xY(p^;LKI!ZBs>11eQMvjFAKJRGQngNO1ygJaQ@2b!u(T zCOzpcbdS`b*G*KeHTo5Xs(~i?)z}oIHYYd=>6N$z$(g+aS|%kmD$%7|FKPh;+dU}H zF_6ks{*t_|472K_eLK&Diw&zl3a8NXG?}QD(C@DIpEqZHrP(KoH6V*X|Ils~4q%i= zsil=qI_iPnDvWi$&~EAf&~BW(?5K@Vz=1%f7K8U}df%$LkPhk9hTbMXs`kF1)N`i9 zEo=+hx{@9yr>eTHY`hS<>FR#3nqW=~pyM?&c;S)BII*>qYgJ?(R_c!+vDOF2)MrXOTPw^3)c zRi~gnQh*0%mroRjCYHsV<4Jpa5H?Bu{0Vk-b3d)NV9C6F`Uk3#uk)!t9%!Fk5?hBk z1Z@ZO1dI_&4LwWo8(>9+*m+jK+jZTotKS^tk$&iM-Ut(XgqBMX&|jf&_fA(b^d7^^ zwLG)_4hn(%T+awdyUr;-BDF{HY1A$~my<^ZJH7U!dFJPOH$Ql^=hkGwPvLi;w2fwP zK!!8kZKNJf>e8O2SsjbLk52vrNKW9Gl>moS8t#y!(!pr}SIL=2KkYLNQrs#2zL;~W zy>1-Vp^)9rndCWlB!o^z!`3<*gjkch`)_U**Ys6i$;l0$uc<_M3Xes~uMiE7@R4!0 z0swcT21&RR@l@IdtbfGlCoLS&PV*@o@_ts2XA#Y|Pn=kC)Axmcx7R{vFc9Q#!#k;? z0u)IBuWg%Y#Z~+#9xmRKAu-!A@dE{!HPIW?o8I2-|u(_Plgc8JLYn13t7zM&fISSG5$C$bf^QsK%Q<#rQm4^VjTU*sPdb3@kt4nRY zx#s6;(#!B4YfggDBtBI})XR^IxK3zkoD7x-9Ky`mWRsrGj9OkTZnc-tR#~L-nrEvJ zkhz=7qQ@kdHW^8n#d7nYWLsQj@{=ZOQRHTFZcinK+)gtcF!7{rSJd;PzvU#M<0KXc zLX2KFN^ZS5hF}AEPi)dTR5;P*#c5N)97Cin%>p1REc}G=v3pkmuTX$?msGcIMYL|U zs4I|h*1zCxOv-a(bFp%pZC9f!RM2a~8oEZRA|Ya_QQPxQ;G93a?YjtrOUJ*7p;wQj!hU;n#X!qX4t`)W@qM`*~dL3sx5TK zMDrV58@v0nxYb>MYLeESwxX@TespI|(fz8W(ieSI_LFSN`UzWDRTU%2kw^c1LPH+a zP!bG1mtWV|E2SY97hlelCP+CLpnh;#q zS1G?Ylne-^t_aL<+41RFb|(fGP~Ul!gdqdkh+$XX1kh;3L$k;ZwEp_DE@F_jC9M%gHG0K0;=1ba0;VEjM0~W5*c@$ zT&C{0bwxz#^xk$YPzxt3<0N2egwm!Aq;-?U#bBybT~jvJFhnqfgAX{}T2FXFpvVC%};)52zh z7Y06-*W|w)l}_je_>WnN#y!$>A%8)(PU=B87R8ZjER zWF}K^U%hqPl}$q~N0L_+z2_A?CMMB^S0OVmE{5CLXJZEuLbFQRI;W3!>y`{Ux#Row zd+Eh|ylNN*ydAz{W3yX>UZemo81#RJU8n=+_qFf~s!7tb9m-ltZ2)kHJVCw6?)gSo z24Gu59?H(lR28tX3cXZI6Q_Bm>k@aD;?H|(M&3JWWq)PPIKDJP0lLCYCM z1>$yJ9<_Q0ZjOYq_ndsPesoVAO022*XWgF=N!9G3kd-a-BiKB$^#psOFX*sAQrFJR zq^#8$=mocn^^8Q$TCY?e=izGMsw9;zRjrkN7iEJlmozxE%6rS=FZY`|V>x)znZNER zM3e%IT~Gh>{K@Yo`6L3gjO6~XTrBptNK5+@!SynAnSSlSvqdpTwT1H}{rJTe62O0> zyMyJsAbowe`=1w}X7jF0YCwo0{~s$Lmj7D;?frKJ1cqA2Ak&0c8}q9y`zC-3{^xq9 z%<~|G-gBs4Pa@n87d00fmxl}63$cz4Ybr9Iap|(;=f83DPnLiakS!L^QiQyFmnpcI zd3)bSUALwb;-x2@WK-`#Cu1$axfxB_=bx8rzqhWF6$@?9f}lcWkzu1v$={_x1`)gJ zfD_QI&NqalSvh{}ytt6B45b=e7m>gjP@ses7Men;Pb~=RNLQw}8-43zZd!@1&j@C1 z5Lz%)rov}{v<)w0K)d7%E#eCVB_V;rke9v5-AdRGP$P9C4RD#b;4aSOU7g7567WIiMio<&(jM|MUwFuB~eKI^|B z5aU_w4#(8Bm_Fmz4aj0kp?|~^12XIUIqc1S)UyP~@9&1V`qo=9`0u)(D#f~qTf<)v zI5us#n8}tvG(d==Lp))ELm7#=n(OtZBiF`dly7gonG)140yg9rFO{j@L@h z+Vm6k^tKr3jhi~E(1v(tSO~*$r^6m7qHp@MaJfgZ_Fh)sF@!)jP%iv=Rt8`RpRZC{yc8Jh~Qr;=!HkD$4Palg$tqh0!0 z6W{MKMrF@#5DMe+gbaclk!=UK=qSu!dfXaK(&Ev90LTj80c3^Y^ef=l-rG`O#2RAQ zUJm=O&RT_tv-vqrG}FTjQC=ia)nY`WIxdh|VFsMsJcye3k6O&4_;GDQflL3wsZ9PQ zhfYyO?*=c5h}0?*T^Oxa@&OoQ00nN&EFqh>SDs>7K;&5Xt`lt51+JMa!4$|rpx{`j z2&B9E&;vsB>j>mIjQ*d_nsskA-HK29nMz8KJw{mG-%7$+tm7h8Jo7TLU_lr|HWC;) zsC%6Zt&+(YI(>Y764F67#z4b`IgkP9{q$4vQ%m(?tUo;jKPpD-TzKZg+bN>6ASuzu&iQ_~8UoCvW6r#uVdeYw$w3%EHq-iUS_n^M|NO=WG zq7^bl6(AJaUXrRJGD4w-Jc}eKsxp+@trDF0+{7iS%at%a##1%=3PFDN3Fz9AIlvW& zm*(E8_C`G}z>ElR1aP!NzKAja{&;Mtc2`c| ziC)=5^9aaQ;eRw5QNFo;Yu!lDRylu?cUT5ZKhE>nbm``0(UvsFn$-Yf2cek`AYAqh zkKj0fyZp5JqtE!Vjd?>uuKAf5F%v{IKJS;L#I~}}fLypnw*7PBQKoNhZ>_75M_iz$ zy{X4W`V$(!W{@;$eeoS=W~p8lh3IyBXE>**+lh_W{NzF}%7M;&rtx_%$kz&ZA!TzH zUu?ejUKZg#ci{&o!_R~ikOR77$Zb3RlLZ*ZR_040CX7KEGlziS{mn`{4#uOi*+)UqLx0D(TryhXy4{Ey@q zr|CH=yhVsrv0PZL{lb9YaWTT&yGZZZA#fqH>Z*si5*+-;e$Sz;V;AscZa$=`R6pd2 z24Z-c+@Y@g5BDFS5DnC-H)=RU{55k%gA-PCoYlMY7d6eP`e~Z{W}Z zHuN^Yn;}yy(jc$N3hizrt0A2b-&fDO)h?P*o$xrz__QZe(7%oIF#O$5OMHtNLKHJV zWFJ5WG<~)T7LmJqLu$A8<0c#dbOkBPRi|4}HZreg!|q?fn9&xH*jiYJiiuuHyguW} zzkg;sK_SUgrnnkW%WKG!hJrI7M3(X3Jrs0f4zY6APkroa)4#9iteh3qX@X_^8n^$& zi*0@sp4uVYX51z*D1;0w*JXk?Je_)9SbhF7oSd1FbWfyEL|K;*Pd7t7quefiE=9u? zHgJ@^N%@S8mol8j%f=j11%PKe8vQoSfU>Vk&u$jA&l_|ny#KvhpGh9Mi4UI|eG(Ow zlA8j~!Vhj!JavKM2dFK!J(^+gTbNL==@sK1#dn19a`#O`+5fbrGxF}2kBO0Zv&r>E z9)S7fWkFjVLidUV9K-e_w{AGT+XjKRi{TgmS0EPX;^!qWIsKu{xjKepSUr98*j$2M z1egNFfNo6`_>z=YGg#qj^Cr28+QnYD|)Qvhxru za2A(*NJ)!B*|W*#HyB$W&b{Z9uo6@Lq^B#`4bbpV!EvhZP9Q!pDws(XF7v73x zby?L|*Q7Wgn?6}DyDE6G0}l#Z-l4d!E~6>yH8>5LUgyZ3QQonIacl}>g9lN>*fEJ; z<-x4VtEQyRf@9l}j}mOa5M4aLdP2awd`c6bQk86dklh$X%D5@Wk^c0}Rg7wZ67^oS zEsw2$=TCh%7xOUn{X~7wukt^pE*dA_w56ajQ39yLgxirPJ1zo6{U>%A;WJt#ERN^8 zDd>}HJAObOe!qKq8*`PWMKR>E9a|+|#m(10y~G~Q$%H^P$ZTI7`t=>>Ch@n*n|K|_ zk6VN5-iLc@1Lmu2^`AvjZ%ezK_7G>TOf#zu0d*ZAo{vwmPSOf@Lz+^TKUE`|+E`4L zj4I&Ynb5I?kcoQh)`s^Vs2ji5}WqFgaVNJ5NT#b^GAq$I?aMa**r50?XCY)#*xLS^|@_&~Z!(a`l%S3GFiVUC%Hl z<~n=Yn2J20~hI>B6i$ZXGkYZcpG&2AYmRr9DloG8gb8di#cRC^uHc7ElN}WF;*cgT9l5AHm+k z$AOB#olG;vz&F4Bn^9m!WXap1B*Fj8fRatX3cQP1xfeB{8mxn*7Y^&x9~7B6@1tnOdzm(Zk0N^WB>N z+gbDmd-(1l{dAXlbxgOpuKf=9k~!>$%6tat9Zpy>=Euk*vvt17!j1dGXEmm(_UH1`=SPj7DgH>brFj#f zTm7tiH8)Zy{y$z_<8uaNG-Ws_t}hEn9F#RK7DfVi!WXYDwTcl2jwW_aHSwrKQ@f`R z`{j6cQetA(5N;GHv_N!rT#vC-55fRC`#;sXVA8K@-IQLaCGyV-H-X7Ce~%B zA0q8@D~WqA(km;8sV9lc8saV|itDZ*$h^Y>LGExK_M6HbeH%5-A{860=9sgquw5tJD7jGI+TBG?f>xVc25AjI=12! zNbTLOc}4g4E&+vnB51wY-s?PgT_wZN8L}RK7ueEeL4r>L7HM%<#p3(u>75hEgyN3y zZ)gN;2fI!4AkQ&);C|!9DQV8u=Qz_$57#FG=p;D5p_?SWcy(-CiMEo4U4{9YU`#0; zyy0ttU)4Ho3P81P(DYjHOtU$)6)6r%Ha6`9#)lv!hm2NxP@ZB@K@1bLL7n*Id%y_b zG!@TjJ`4V(QPuKF&`$sWY!@d>L85Bhh|&i^2W^7gt<}29n+Ycih-&qwgmF-{%|*K* z=%{Xp#}~;I9YG4O*ZSK@iR$BB;v=MpZ6lD`24atJ<&YL-kOt5bn{=B8#jW1W4e;}n zX>Wv<(;*#J0c>r{2ReJ_`0}3^BlT#Th39OWj{bJ}YXFgIOFQ#CBEY1&e{LXD`Dxk9ENC%+3&7REa3gkGdbCLgY^#qMP{0}bpX+`0 zRpWt|euS*em17hDs&%n+&sjyS7}CU3-Q-&x=;OGPQxuHYk%ktJW_= zlz$|ZxRZtk9OP=^N!D{1(5^SbtyC1Z7nQDvCQyyHe2} zLVrsS<3WC_BsgG`DKEzU{X_5^Pk$6SJ+Mpq98XVicr^acU$lo167AIPc{jiA)oa^7 zFy&E+9&{1DEGnw2&@|9R?VOc35`kneb2yVjKp9mV>cp~KS_4bX&#U^;PZd6vH&V3R>=evdU^d*C}9mTBU*?bDudpzqxlpMPfb zdgT1z&*ar(F0>^U-oukr!$vNG%cP;h-Ada1b}h=h$1GN$X$@p7LkyCxH8oq&`6g{~ zzdgYFla?vR7VpCxvvBM>=+K%i=%e=Yh5^apBP z#5@8-DKW6D|AH)jz(r)Rtb!Wa5Y#$Pn6Zv8L|8*AZMQ zJK9ZDU-94jy|TFv6zvxT0iVIV-2?I4ob17FIB@-PNgu;RQV=pH&TH=+2rilRE3TzS z956H8e0jNbx6{f=qD@hzYktK<-8vcECcj132m4T6D@qa*<6*UD_oULn|Gy(at9$Xl%BJ-)k#SMsZ&2pvg|G=aUBD?SKIyJFD3 zx3hb-bzPC2s=F5OY1J;Zs^&%(eewH9fc3jQ7#qFlb8WSCD7SakdP8m_Ey}G4KUU$x zAxzHHp_217G;0*1$6U9tCu?oax%rila~Q$Q3t$*~Vz*!jK}!r@bc2(yhjgwNh5lN> zH*OfSUqF1b#cFy60OI6DyYEQ=<+|lz&r`c&FFA>eQvnw7DoH!eF%RMk6u}m-%(e>3 z@J#&6ao!!z;b`5T%I=9PoiulO$(4~^l=a`uPpMHc`)WN7TBtR0VYs^qRuiZ$H|Cy` zan{+lX@S$uS54Ah)S7Ye|MKBg-)dB@b|AGqeFfr3>||Esy?5u0<`j$0*p4r3%nULD73 zsp*x@dPbM@OZmMnCx;>#gH3bqT^D=K<8|!T3u%G$tss@cx#Pd2dD<}Lo8*!wPBp(w z-l%>lUlvT)2A1XL#q%Q9(azH-skVWi))aTi-YvkmuPfCk3IvRgYXuk@*W@*`Nm+3W zvJ%VmXP(^K&yed^bHg}<@)>C-vl)m^%}TJGihI%nC)Bfv&MjZnQ9vcG4gCp#MEtw! zB2xpKrCsGRT|<8H>lgL!)Vz!EP<(Xw9-By?GWGA?ZpLjHyT1IWH31f}oZ03`I`*2h%VfD+ z+zI_6dF$CM)}HWIa(y0^Pw5B7)wY;tg>JxMyb@e$*jWd8c3J)Q>&odPH=Il|RzO^C zt1X>O7S_SzbsQZwtkEIHJDmHS+s$fb>G-Q9tB;IUlb#UptR_w=Co$HfRTZh0ihf=y zPLaRwx|Zyp|61VO|NfEUE~}a1U!Rl6UM71smTLu_k|h_a`0V&et7IDK)UZjy0l;K>(!H5*n?O_y{_wexznYFkQx zJCs~EEGw5$wiVe(&z+>6!PvpB#kgs6@gQo^lvw+d9yfb`)QF=L&x@lm)2D_h4YKNY zz~w|q!glMls&dE^Hh#0(Fc*b8<*!Dm2WBm;Voc{J(CT>;V^p+m9s5uti zL7VIut5uut%sCD6?9MI+Kb?s8145X z|3uH~MwV;Dn7OJTre^FVkX6XV3SoIvIh-a-?Px@|cc<$oj=?6xb;g*=GN0PB9aC{&w6wEw} zYTdW!rYmbs+Z}|0{AWyxRt-L~oq{kzY*)qpZ-`o{8;YyxqF-hY#T<1T(GO~wOUfQN0PP9 z*T0uXw5y|=7jl?eIZ8#uHk`K|A}Ci!_#*D9qtH<$0?KEHt&SZKQEk6_`_coz+VI+# zpN@w6!lZnAsW#q}LuT0CXrhq1uzHOjl%L~XOP_jY9}EmGh`)(|B5D1?%T&y!-ydP; zs|L}`9bgIR+4yItX|o)t@gNj$hJo<_2~Y;RV&LFE2@sW>zeNd^ zw$yxqkbH(3XTvL2dddk|W;76X|NT8_Lj@+>S&5*!5Yh9Kz&(Y3ZYb*mLHXa`3U~p9 zo{)pyFi=tt2oZnr<~fr0`NBkc#Lv7D%D$FBc=H|hFx!xv;g?XZ--)0f;8ao5pdJo> zjvyj&F0pLifbw$-12#Z?C%(?_!6Noc_{7#){4uk{Li($M>+N~|Bc|CRo9FLgZ{DPy zE!lwkkJ(D!NNUIgKmueUn7(;LPFSbIs{>(5u%;MVB}VEBbP1KeaJSFR9h@T?l(hw4 z_?!S7$=Di0V{{gzb?LQ0zHI9b{2um5CaQO}j5{||p_l`UtJ8dB`1q54@6-m{v4E^wi$ zsRw_E(DsE?ZkuPZm!~J9bFlemrosjO6<&9};>E|B7#1l}oZjrao-l5gf?>oo8GnGw zra}#e$E#I;B@b_?40ifv0&ai^2M8td1_3nOZt9#&kn+q9@HAEmDgsDK zW%CjC)`U0G0FqKJkSH*q<3&z$CZ^E~(s>pw5JiYK91bZ0|3_QeOXVvH_Im_pWYs;X z=vpkdhtYe1`Pz3@En%IE)`gC=;wO}PWS*f{1H2X3_&v=mO&Blpw`xe)A$$DPqVI4E zE494*_4-%-5a#S4`UEzxGtl=eqYa9rtAhS-_e4O4c-h&YyuxQEh3jz}rLFNBl^NxrowXWPAqah=Ag1yR z_<+6B8pr6{qSV&N0;-bsd`C)B@ChvDU+KX!N(5gtu)&E7PRWJ<_% zNG6$LpEUdWq&rvfYtA2*Do-(Cy=O26c}sTg^9A+>Qlyqvju9=IMdTd`nLhvcWVI71+_=&Wx64Ol6Ts@7To-`02=hF zoTmewHjQH6hzq$RP9-&M--(z+;;1+W*Z`I09tt-Y5d(J$nVO@ciXd-rNC21xLaJUx z0A>O0o7MOrbGH&@5mt7HZ@)rM*W4}je9TQpdqN=5%mx3B&GJJ5B-$UH(2~82rNn^N z_2M4J+M@fa$@ANOOafJ&OskF`Z?HrCfJ=)lcE=fC<0`_4^V$YsNRF=El#Vvs4hfaJ zfZ&7w(8*H5!+hjC_kD_vw4iSRDD+*`BiO`k6#=L*b|>ee4o4HAKIbzg*1PA;ILJ1^ zjlFcGPO|cLY+zW(Bu5Xd<2k@n`o|yYA}@BF{s%PItP8dCnxD1pYuU!Rh2adkIElAd zx=076pJ;0>^Yzn?SIk<=K_z3p3D9R&iGc#&wdoS;EwfRlre#KK<)h~~zi-7LKiI8) z>a;ocmOZ|#GpH>;v05QmXwa5}j%@KvP^1oG=U(shDR7&nt=W!{^D`x;RKs`bGyNmS z5^ZkTwjzKED0$P#w;$sd(&$3##aMx3bu7hzJJujHg$$mRJEvL&;~%x@kNLIA{7b`a zWG6HB`6}p=#}P}i@H!bFY|!Z-7Z4OXaY(6cL?I_RhAIu$_!TMDVD<6kW1pH496mF1 z8Bd7)W*Td@Te!RP`@MQp={4}A(>%tO&e>uAimCTTngUoF3R~96;d9GuOF2JgO}7ID zT^rIaYVHZ;LAU2=Cmec}zT%wzkj)IH7Yn`02AgArXGpc5$Yy{MkXthsZ$inE>X8sZ zx*mDB68bi`v~l=id~SThFplFATGRE~elJ$}5GxKO)-2X^oVW^C3Z~-2ZL0PKrnDKy z?8G>K<=>?MJhVTIDNnwoXIhSa#aY3szeMF@P>hU_(tE*zh26{Lvr?Oa<-dK;GTSh{ z(5y1kbHz6sUl%7+P!;TR;casyh=z5j& z2rvOXeSDug-PfHe^B-qzlSLUOu}(Ym6;nmK#(|^J#JPxE1x=vl^^~R7G?NrN*Z3^+ z+40|5StA2Z*7Ne9QHn-sX4Nfm?p~yE>?fgJ%pLJ!f5HsqAd1x({8`c$TASo*jZt*Z z%Wc$~KweSe#EdZ1O(~Tg{RnyHO%ThV?CHclYEsAF5M9SxlJR2<^0-@-hbw7FV_M~# zmSZ2EWGh$K+&(nK22T-FiAHr|W`IcfTkJeJ-qcZpvLMZi7z%^aR`bhhnR4{uWgC{F zB-i3gR=vx;eo#qx2(5J{7sQXZ1g9m4PDQXTMR7(~{Bh2cfkT;i6Gws=QWp;e zY#*9TVUttO48s;ZsuYpojq(wA)el`x`QlRx$!UoegbZcxbnE*$+v^S%3(Kair8UL1 z!@jee@FvdMW}}x$uwhae<*Q1}w_shJrQzToN|DAzhWvzh;8wEZ1F`|Yarfl~44U=W zJT&PWQ2|u3DlUF&Rce}0RSgGa56OymHfQO#z3k6ihf1;Etf8Jf-rzLJ%Epu}e$b04 zBY+ZIELszlH%c~J6r~Yz^^h!DV~NmIHO4`D{j8^(=2s11;BMBS2!E<_J)-2 z6Gz)hbb5sW^Au-MiaHLM zW#0*H@kR?u@!Uz_+PGeGq>qN0l8Oy&sVpt=*Or4%rq7SlEy?-doEK%j7 zbXTTy^MQdQ>1CuB>JJsMMvW|W+7JB!Ga%lv zF^eC(4w4oi%bHn>F&_Dw!d|7*Y{cC08;rWmsTre0ae zjh7+%KW6*<2P)NBT-#1%xb!K6O9qsMrEBIlQ~B5HaE2!2reO}q@I5evsEs`~Z&}$l z5J~thV7oigOgru@oxV@s8CBIM$JLu@!13D9;+U-AG^1^?=wbIT$g(+ni}X_LAHIsh zR`_MqN5uRnB8&Dms=?t{8pSZ<_Pc04BXW%r)vtGtLqO)xjvyioZQE(`hKg;*JGN(` z1!$Xj5gzIHqLzSId)SPpHsG|g`=&Hr)_-5s?4^dC8{FUy*^V`~9U*DHJe5lT79jc( zC>31XwSt714nKkjaz79e6dQlyA2o3z5jo9#LIe}n!443V#(v(=oqwvee;%e>UHu#R zm;pvUN0rq*h&mO=Ru79l1rS4NRL<+3ZH9SkZ-g%&Bw=P`dY^z6+UF-Ikb*QQ7#a`+ z5EP)VMhpb=x7zP7Ae`9!kCD%R!ik1f+#V-}ub#yxs9~XxLAetdrfInvF?2BZE&@Y= zHgWtQF_YxZa!nSH%HrZ;dG!^xMN#o$gpai!A4iVU-s@eD$Bvp3g&YqOpK6)BanoKf zMs1ho9f?Lo6bOMqtD8NxF1aOpEQ66>VasKoE034+N?~l^oe;c1SER?@E5uX4@ zDUReb);x_Hj4n54cqS5jI}rk0c>AAJsOV?=NCG5#V}Y4_Z$yCiXKYg+j)BM9|6Ai( zEE40R+qWALAnOsc3tSlY%Iv*b2c1uQy*LfK?PhcC1bfF5ikoJ3-?*#s zLzr5*0MvdVE0K$5i8vw|S6$~ggg)`P*_|thL|hT(6KPqjCWGq@DMw>u><{DtXe;{c`4S3IEsns(g!1&Am8=s~sF zavZ~dwmd3rIg3;nW1kAu&$5_qq)oGdN!c6SwgK_vUTUWag4I>b(akyf#G6q0fqR3? zy|}>q%?L6NKS=pL_~>a5H~AFB2M@D`isvmnN6a!ed<*Q+BQ&=Hj6j-X zKxi*laC<;X6u_xYLd6*46jYdwmaaW;1kIP^5zrP7e{(%7unyD51Kr`v2xBFGnT-$z z{mu+U9JvUtxCLBzJwC{l-MJ#TBuGvj+zKJK5RD^dekq_`*9A5mU%8mS*xB;>gt3HN zZrDY1o5ds%sryS)N!+RP5}_>e@Yyq~_?%KDV|p6aCYd`Pq#T`49dd+z>3JACQ=cLk zf16<#ZX0qHN@b=S`Tx8>k<4!R_SQAEyD5`K5&6SeHB!14j>Gbm2c^gXg99(}9S!S| zz~g=ibuQyW=EI{dsF1#ex?gmsH7 zz?Q32qgldsb5E?)D{|0YuFKVwdw|ubizCrOlfRR^qGit~e%+w-Vy_)`03R`nG$~J+ zg^H&!EMXJW?JIOlXOmes-<)pHWJ(X*oG`b}QG6Xu9IJ|c6~Lf()Z6Xc-ntNPafc|% zHP_`D;>Y?w?+?nC_Xq9E`;!4Uq^z(<{GazHG2evMkptld*XA{31ZM@Y`w(pK_Zg*} z{yMNAI0r!m(`|Gh=(kIX+RT3wpAEtmecK~Wteq!bOK&#sa_>8eu$dAhi|?cHoD%aU z5+Y2XkkTWfG;Q-=3m;ozdQ?_R($uhMs-f)NG?q!`8(%fNzl?aVrcXB5KC3^js#dv# zn14<`9<48D`A)m){_MpfRPiQ<+02_FL7U6s6eZBWmbPgMJl>}GaK_k*=X9to5ID9& z!tpJZzoS<=kLA}he)g!8{h^ZP2lY`Dk9Z*-^4?*r zoy=j+uRP4m@bR13w-3w(K6pDZ%L5?z@ff-jb!K4hWxFa!jTl!=?y%4DkG=h4JXrev z$Zepp-lz4gn{ARC{FRx~5;4KzV{` zrZm+mm0^WH_b-a!ft5^RN6Abi{@y9-`l>k;exB9ii1PO%@B|mJNXb9Zb5AF}&OGwl z*mjgz6G;4j{65%7KHLyJZ-@HYa`zKzu~tBhY|(vvWf#D)ZD!g_kOb6y0KX5!m*2+* z5#aYh!6T?Zx;6}86w$z8@tImyx0(@Yn^3v==oA3>eaIDr>OfHHf?qE~lGRde4^0Lb zQFn53@5J>7DaCnr-q-X8p|+rqMBuXx_#IqCCU|hKaL}gwQ0(2*(4OEUUqp7V4uKEN zDeQO{U9ycV(*J&YNCfPA3d~>4bHI4?dps#QEt01nM25CeN44d~pk7jdCjt8&hd#i* zM+S%(s#=(1j4)o@9rNHb^iu{}FXzUd<`B0v60q0u$r70HL_J`C2N!wurzsAbXTp^r zwH~O-*gp>$In$O+HdRhb*DCv#rzf6vdO4JVqP2isCVQW0@S2EMY|8m(&d)9HW!03e z@og6&ee+Z#=WaZA)%x#oi}tH9>67Y_Yw9M~$oc%z@e;42)VP2Z2Vz6#@^<6hYh{=8 z(*yD*c}dbCk~Wksl)RzoVc1eG?}p<@lJA8RY8en|(rfzNo+pf`US7L~@~LrwU`vT; zI^j^}ij$3v-*k!Kh3w`-5qnPP#GmvuxvN^E6<*t1SI9O>Q5fK45c`7}L!@if#%(2D z{#vp7L4y7+?U|HRtg(_+k4@_(**F##cCH}$2K2P=9%A4=pY>Hw)*gpXuWt*QFeJ)A za>oVx)UXULWLu#)7t^ z;>}>00Z7)ynG;TPlQx0y~I zZ=Gy=HGJa3)yafL$JNN+0&~v{;ch&S5f@;I-&S@Qxc3IUoQizlE+NFwPI!zO%>;>D zWY)6H^sC=-BG0@?EZ9!5SLa`#v8O}N0#}^`obmsnfR58tbtY3bqc1r3<-+AH$;b!G zu7D<8Ri9JXSzoOU0*6+*SkFLHn3B*;9kkqQ1Cf}x$xu#$0_^h|YBw*vLAX_3r@!wS zB<1EG+NRSdoS5a;zTJ|Xo;qjJxUk?i4@kngi@_C!Z15#hm{60^SBTtyxBHVeJrvDq zC{vNV`a|1=rDOJue)oIRpLl!csdU-z<9VoWw5$i4{*5Ml8Yp=Z4NKHVsp}w&N?ry| z=ina;s=@Kc5qX3c+zVpMq9($UtBuQWkG$l+8s_Zl=H%W&gl*Tg+FXiTVA=KMcmuRX z3w&a%u)&EA>DwNgr@VMAN^OHRR|1a7hzE9QQIe)ia|s|EY9(UNc$&_l@bMh~K-7vS zbi#$^)037hSy}Rs#lc@I039Wo)=&;HIqM+YHtkAP98%_b$!@m}8a0Y!=F9W>8wQ>$ zDknL4grGvPIU-I-qG|rho$zUM!UL6^g%t?Hfk(_R>YC`yuD4{W@@Yh7+fG}~VvWeU zQO68A&BN{gbEfXLZ@~ErCp2D3{6n3)Ap;#PNzyK)8+UQ26i7QT2nkk4G6PDnRbu|b zx)C}2w`qIC3Fx=gtcF(08MrhKQodC@3R$MJMIk*7&sWb*omrn0A_R)D63l}}piKBs zZ+TP%T?{kBLWvS#zn1j@>~*E%a&E)vqt+vO%S`MDZ#rpG3mGJ(rG=7J0UJprt;Cz% zR9B^zCMuwp-@ai~Fpt8}kYPuCFp#Ikbj;-6Z<@n=7zr=NmfWSKUZ;_7n)(@MJEKM( zMq|^b*I>FVCLl|I@FuLAGgvYX9mnrCzY{vJV^XV*vlzFdh-j+d(=4t*sv1$Od)&2J z=JaNo(<^0!zOJkjTo%penf^+!m15R9$MR$Y$q*SW#ioW!{BFEJgM5i zaEedag*+zRYqtA7B#(jAb*g!?p<%ZBqqD3AWUD|0`kB_a3(WYi19qzYw2dWo6YHeULWY&bAr=l-g!u}50|+6|2%)r@Xqrh=dz(`ycd-z`5qoE_XOy4 z99v=9Id&~m3P$1Lc@Nz=*93Xhe8#?j6VgZXe48L-%{<=!(A9F!%dwsx?sqbpvyK{nh=TGa9KOdetjVKi1rx5n! z2-4$RC?xw41P6;jy?HB-NUHBxxwqtC^#pCZoPInQ%$yk#AW*>}5x5HM23*%i`qBz?&?bkXpQt4Lyvb^jA zal_Y4s~Jlnkl^m%n1Smf;8fH!W-d zvSlq!C`0?#F80m03q6}-FZAOtODg1-C6$G*zrV$5>&ueL&+tyQ*r`DO(6{3RnyUv~ zOa821-)hiUgBASJ*}?Q*{xqOL{g&2k4q)QmFmLWTBPtOhc(h`Kqq-%(&B za^ob!^riI?5(kV-*oF85EuN!~K5*7_@QlqM0*n)d-^;~OiNZa&Su$B*vRu~p%BXJ&j+XJkz? zc)?}p4a~6ih(W=u|7ub(sW2qvQPpFjscWCV;?jnowpaL@<6?m&q&HFpd)1ULp*u@0ak1Xl$*|a z`6r&AGYStErv{R}#hte<9K;MwHTb=b(zv=~JgJly8!zSPhty{8gHj0G#L+sL0RFVA z7qZ9;!@^T;dbHT2H8;eVTJczu7F@)Sw?xmkO8xGC$DHj#k8Cf@`?AbHZK&1iP#U+$ zl2Y;@Fs1}jw21^#Cv?aacE%)IwgsAyA-TwCMZOrbzB>uTl9NtFAC1{eaW*_a59)SQ z;3f!`C|o=fU>x*0GJowvEQNZQHi(HZ~fYjcwa(%*OVW}5fV(69r)DM2x2$9#S5Or9sL|Yd{I;xk`435jfty99U8LoaE%v+KN ztc49oWFSbUBR{OW2L`yEgkJfzcyMJtK4G8mP*v~z)h`T@ibp>alw5gs0W8m0!eynY zcgp^;;`!Fx6wzD-@I&+OyUXo9_+8Sz(MQOpY}j`@%df1D@%sRfc?j6st4fkj(a53x z$zCoXg|pPKaEzs9d1AUm%W}q+o1YRm1zJkpbB{5%LA6NYQhgmJsLD#wEaqa3=`OV^ zSzCGHfP$D85C_wwO@3p(aVD-Ag!E^Dlc9TDahbZ!YfsX;9RQaXO$A}a{MQ)#NDfT5W;k+NMNZ()F!MFrfePQv-or6GGV=Ndg^SN zg8a;{jnDoHt^%t(^-dTa?O#QSQ22u9Ky^pC*Pf&9v#Su=gl7f;*eEkj@oUoLJJ)qN z+p02{V5Kj;GWutPm5mtr8wb>${+drIJY9fNs+O(Fnu>z|tJoNgbaQ=YuodcY5%kmi zG6|Xhz60`{R{?%EM*>+*bMx%;32g2o8~r)C zC`Tv`X!Zf$0g|~PEwguarEVFdR^kr!lo{d_(63Nx*@_0L%pX?q943W&NyZx~0b@pP z{NydFZm6h4_I(>}{guqF9E=M=XB^1-+|Xc+t+uZGn$h$0CK4^nNl~(hm}J3HpK%hK zK1CgXWscJad+wUnP`#jYai#TUtBJza;jd?BQ9N%vQd3*lzRrv2_~9$;cwTxSihXt> z#ewfoG&#kVgZr=%ue1C*3LunP{q5w=v7#_ZoUD9<6x#TL+UUrE1gmrMB5~>+np{(9yMM!T7f63)whw zxt!#J<2?83U=bO=(huf--06ViX9Ex0%-$?k6H1iFJVIVCPR_ETcSW<=c2VSy$YJ%L~Ovs#E3Mv`SR^imHWq9^5e1xS#kdt~iz z(dZuH4j#x*xJ*cp4A$2pl$CyXh^{L2@43|fo=a?9X+jtY&dI-?O85Gkw&d#kCkFBc z1q_*LO8ph(O2Rsf&px8K`K+uSQ%D(;C~IC!yPR)ss$N!?oQ_O)*jqUzU^WMJm&(=w zj;L~pdu2pYHAkY~hcBy^EDtngzAJBrTyln&iPyPZsLyHt3jkER(&(!A_aanJAJ(NpKQuxapCuN-)Ej$v^m$W z;8 zIe0T@&;^Y^BWmJ(Do}7R6FunJ#STToI{4t|!`bB3SIBf8gyN84S6X6v*+;9m-;^B2 zMmw}Wp;b;y^c?Idr5w}Cr%AQQ8{i{aHP}zZnUyem=)!nFYu_?O39k$|ZW!zb;NgbiQif?BVwkriUe#oWIBtt+7ZJTJH6G2xCszoQ|Q9Ffc_{+pQ#^JpT)26-oeo?U}77|5A_b`MQpD!Mf?p^ND$5=$^FNZJfPY-cdHV zLP_Nn#K-wT{JBOCKiu!n+*rBi-h!&Kuw>(*Tf%LL)>t{@{1MO1v-{jX-Fy9V`8A&)|7})1YPUl=0-m5k{>y#b zzq3kXH8EcT-|tVvI{_Spk$#pH!uN&rQ)n>Jj_aXRXgdYMceH>$)7X{N zqI|+>2LGef^p9ut9q-187=U4J+I1IJuO>YZ0gj_K_v}pdvrM&SFcKTH91`TV)sKDe zMPL8(`3L`PoUsTSCwBz5XDR4wDyi2@fJ&+}Cl;_$+C{0N(KiOn0r}t=4IJxEaAJO7FgDW2 zW`)VGo)76F4&kY?fI>Nk#NE-)EycKJT!3K?a44sAOQ&?^EMea_>W{Nc$O^h*891U2 z_EE8uH7ZIkpy$(V`Nj$o{oKRYS?nkbJblj!1L*n4 zKR!#`$+7)U&nMN|*z7-hYQSyL1^Bqk9zxQRjh30$LL6xTkV*Zg=kpgJM_2{)e4YV4 zAAA%7nZ`@SOoi4R@GFvCecvPR`#K11QGM&!GXZr@neV37b&E?*>|%4%9V-xQ~Oi1CZaZv<>lrj7XTWa)pTO-3DiL z*c9>Dx*)lPSpDTFUl80M2yD>Sx>KNx0D?L2$#*u^lTZ|Am#;ZxEyPRi`DWcmi^mos zb8?0^iXc#Eg`WgfEDkT`QFRC8)h{5JTW|5rl>5dN-cjbAhDRZ^Huf~cs!)m%Go3s- z5$;b-YLx?nlmZ~@NAuTo!A*nA6n;`k zV%g8x_8!g}LKi$?U&qo@1-zA$){#<$YHQDU;^YNZ;KdOD#lyfsh$4=+(g@kk0HAoB zfDVy?mihs=aZ}P0lnSVckb)qsZ8rOOKGRJtw`AU&AOnpWxilCdoijxj| zCg84BsYMr^tX-);W4Ec6?uDnbf?Fz8wWZAvWR~6X$|%E%PRLh-bTdv`0)Zb9EC6!~ z^ktTH?0b$Ege5U}$BCzD?x`nXZtr|UNth|9(}8MrJM21-`#B?g^W9EkYcwkiw|lFV zXzLhOXMB9W9KbJk?jPLV@($JW&Y)u3kO3z?K}*A)Si{=O%nD5Ry5doxMp?tiLC{kO z6-0hQU}!gn#TbxxWOckTg=7<5e8z@XF33n5H?OYy)$=J-kG+$URSXf5PqIH3J>ya8 zr|Pg#VFNt|P&_N?d4zU(FN{cvBUX8(zlyEW_$Ea-rycM8z{2ykmAD^-$1z`+y72P( z>L63O^|9Lc_5P}-dIX>lrhcud^m<|n6VeeEM-B8m2uA; zg1TE@=mtY`GmAn0BHK|;3Fn6dx-!1c7==0u<_C|SbA}8TqXfi;Gc3vWbsHz$$U{vQ zszyi-xQ#RI7|-Tadtz`tg5|d&zaue{sNWTqz>J`hrD;{%$-d9$OJWY|w5n{MN!8ge z*JBf^(0DA7xa05N3M8V{j`zT{mJXi* zh9OE1t@yc0Y(cMi6yWHiL=8SxY0gBi~9GMQUYq{NxKzl$=qWHP86yb;7;Ag zben`(yOB!0JcFK%zGat?PcqAn`1+gJ`E)Y4kL5!yNA{vdRg@?t$f4^nR9P5@Uog`M zUb%DqWW8(@FQUD?w;+_FexyQtyN$>EPc!X)1A>aeMJX;~^)l{?PrY z{m6l|ifU9-Le0pnK(;TuPCfJev$gADP^g*4SvND0^GO2m2|b2;s=-QX! zEeN1^tD5W?e{3&fLdX)qp~tw%Kqud{`_%77-ypDk%R5T>jaQAOc4+fMQS1rjs8`@G zzWSg=2L`Mc8P{rHPCRj!j!nsSP+b+F?U9$`U-^Nu$tn%NVy{M$hf7wQO!?_6zeqdor3Q3I5|* za7{GdT;ld)6AH#3|XAd`!h>WdW_Y6#Ipv@NJ}2VburqPtyre37PG-v(0P zjdiCt64bPHG_)Y)O&f@EzIoCq?6mN)vcCAxura@oqym;ya#W9(!cUfz@(>}0mBpPu z^kbP$rqV;A(=M=>`e~>xK~UTBhfLi=-weZ}HsgVP5)^bTg-V}Tpd~rA8CUTBJ#0e> zx^eN?jLOVlNQ5LDCcDjf61mP8Md3wK$JlHE?woIu8RHk|wyK5wgMb>iNxg%~6%kyyG#yI=XoCuxv-bF3lgI#JA^_QJgPprJxB;Mcw z><1yp0S~T4>_pDD;rTK=%`wfi31{b}3}y{>w21~fWJNwT?e>o)C2@ETyZZKTv6G+$ zmZxNS^#p8j&q-EV1^vVZj1tx#I;+vLS()Q8em`OS`~dCn+rk>rW`^cihn6#FCj;eq z@R}M{XD*hP-HCKXBj{55;>_8i=?3014EljuWCu828P8birkHOSB^M&=_?o`(Z}~{0 z=_r#;sbt)JuS|jSI>i$M#_L*v)mUydfp|Y#MBy#&dFn+Cse-qp;-h3w*B@M(Nf7R+ zR#v@9u$+F6D3h9+Z6^M~48e4dK#Xo8!5g%-H_Y6Kq6B_kQp^N=?uD@G@q0~rQWof; z;Mya^yNL-+`xbtk_(gdcyreY#e11Vk<|=kYPJZ9g{=5I6|wv{Z&!IT(e}xx3fZ5iLmQIrasu*Y zs)gXmVsaI|n&LaJt@JAC3DRM6 zBGA*TlsiWZOf4gD34E9CQdUtS9SLij=xhgGbM!c7oM_)27^I~%DGln^rmj0Vxl#fS zvr2aTY%ZG*^UEyJq!Y<$P|R55*qZ7VCDL6VJIp4p;(t?lCCIR;JKNHouW{Q_i2Gpt zDGd^my+Kt=3SjczkXtoKf*O?yT?d*9R9R~l3ODykeE0cYG`j24=c4MgK10EDnG-CF zjQ~nF6DniXGR3%2S@&&a0wFo1m}7RmiD_xL@K2PRh7~^JeLGVJ zhMA5QGmPU-v&v92_@xU7D~Gn*ez3)pv%H4#nY zt(?n8oXBff=_@-!<%~FSIHf{F2*+{?bs)6TKjit52~T!j>0&PwBLnJ{?Z#nH%=dYHbF0S{3ity{)f^&)xqc;&Xu52NDk0Ct?3(pRoUj-?86o zL-%8t`7~$|(Dz|k!+2#^mPm0Qekju635Aei=( z_}t44Jz{5Oi4xrA=ZLiTXfS;7G64GHXJ^OpPSLd*fx5_{!f`cuWM(-u>F@V>rvDM| zj!RPLEA!KGmp|~nX7Yno- zV%jLLcuB|Rum|ju?_c`_V8EXHzxD~E2F~6e(0KiS4A|b3rzO8M00wM?hz}H`{Zl-Y zTed>P5aaGJkuLGwt}u~K@!jsQyQ%DsM+E$kVnoO)!kYy!HxiuNh2yL+c_dC1)I4Ae zQnG=8Rqhy=w_6O(pbC5_d{e+Y3HJ;%Y)f(!htA2g+;_J-%f&xKKFjucKfl#5Y|CB$ zX16>vLF~A<-^KnCb8&j0lvk2-LXo^wJL2*SAC%us;AsS5OMP}b&lz&muP|W3`SSMW z=aWh4yQWp56-x(@U)X!*IZyN9+i(Qf2edVD#BkJf?Uma!HwFIPc4};QVTSq`8DF~3 z1<*b>kQxWSChZ008$9T|em>4lfPB~@-j@Iym>~-AcR)W!CTIdyB;bxp6h_*=1lY1F z;;{q(0rq6Bag=9I@)iwV=tB*7A0Z52pTNIiuN{+-9Ukl4plUP+c;W3|*Dy7>Eg+dm z$zR6U@JFajhT`^KSqLE7t9%o%Kc+lZW}D2=AJlTXSVYDWPF{;wN}X|l2|*og!_GPn+y!h6sUpy@1M#xTTFzFj z1!2j2(_Vb0W?X&-@eH7MblEDQMv^$X@X2l5+na&sfs*0v{}Ev0|0}=-6ny&SFb9AZ zyLW;&{m^<|Fv^=W8Nyf&Q_wR<-BXI7f{gR5^p!6+u@B*oFHrMX1sV4dncNp)js<4` zT~r5i=s5E3KVXW9q!ekt61fc@~69yt28bpe<9tUi?AIKi$jlUeQfq;IaP5E9z7Bsh(8${9Ev; z$sCAH{{F`6sO3PXEx7SR=*GRJnoWQd!L( z0OzgIkb`=-%FNJvZND-aA!2n*`Zs8_&~k6M-Wc<14S-#F+d8%jrJTHmV}ELIsfa~o)+7^oNJw^)a&IQ z8X`v1C5JN1STg0ve_Ft&oyont7?vX{m||Z;9-St8tzECQ^tZ5gIvd3kBxpqDk1r3k zIEmIz(yKWY#7$BEAbQ|xMj(~PoJ>bQ+her+oPQ0KBbq#^&B_V4n|br)a}8jZ>rg#JUIX2=LfPjoxumrcL&Y z%1vb9Zl5jsebZrzdz^Qx#yINYNn8C(rmI){SE>}~I!#dniAi(Ljm#)3dX6%8d~cKy zx6N>%i6VuGCwXu!x@S$Py6SxG4+ENYmp2$e@w$Kkd39 zb>wpsX^c~{+GL3C*9|!~lcFe@u?-r@@KSrz>epY%^!j$WI@cx!j`24}?~+cuyJS@Z z&d%SQM&4;iM4R|!hBA%t8LGBSe(wPE&i3tA@y->|)6P8ZF`da9?4#MujDuL&dPz2k ze_NFy`4t} z{BAS?ww(OA2OnhJF!hN|g)*9zmHh&funubhOV9)+JB%r4+oPxW>QZx266tyo^#qpM z@Y+q57!8c#5Cf*F&Mi3c*F1*J#_JY%fhO8ZNgUI@&D~4&c=%v0@@HJjf`Z!Ty<;;H zW|YHG&W`QR0geSHMOA@&tt->LqGdpmO2C;CWYbYuDD?5PWH7_OL&XnT0g9ZUX0{CE z7&2U#bkuK;qE5k&sT(kl91UA>Ty=u$%&E(igaWn)odPqyHI4hKLI>JLDMk=xBiP^7 z($HvG%>%MgbC(!`>CD7bO3ghVr|)!t`$ia}4O^~4atK{ap$8$cc@Tz|saomSe3Gfi zgsoqhw}#$b6dqDmr!r`zsFE992Jcf82gdf*WXaLD-7vy8=4xLRv0NNAcV5uU=w$g? zP4?;6QxZBxCcpC=ds@?`7x5D3`;^~=e{3mH&><;r1Tru>$M4g1f~dqLE`86PO=A0A z#hfCCh|k6|Eswj72QlQcs4UlCkWGP0)DOMcBXfO=7SS8F1S!Z#K;btnAIPHfVunX` zLfY9vv(D6$7Y#YJv^E3bUp#S9}n;afCQvd6gfJYQhk@;5|9b+b3= zd3&RYJ?#K#L)GOAHIWeWBrebw_|x#)Wf5oCFJYB2PN;_hNz@ zw;z7v%bMeMLlEWk?yTf?=t&WTiCB`6esYBfUb9K7Ou=CNMl~Y08FlR@ld+TfOTJcT zR}1%VI;lD1OH3WJ$~x=IF*V5|U#~3|6Mdx?E~UO_Kh>6XMXK@n8C{W+kL?q`nNvZ2 zmJaCeR#mG$)n!*x&LA`#cff2ioJtS*p{S`T1Lku^ouj@93Cpf8eIfV-q(_rcEUiLn z4@CuM-oDH@*?|eOA(oX)2-67XzT6Eq$6By(s7{WpQwMtbNDx5*LD~)>M2G4DhlBM< zMVbAhAW{gsnvVy6IW3g2;XFVI3266G|K#?2=vN<}BeQ3qo@ruPM8QLxc&w|7W#VH_ zQVYbJ9qK%`l$5r6xBGBFWmGNsa+(yv^@KK~nXQ&ae_3_3J%pjddZ@a;{VG1n0oDNq*UwDp&3;M;szCMb z9@bM-bH`WH<0U%#O?8eq?B8v2zh0Nd$zbodK06*E`EW^IKK{FSx&zFW0}^no_TTC~ z|E?BI%^&Lk@wC3dXYda2!{GcZoo3DnE$R4;?`X3=1Q*?E8?9oh|9e8h`GuT&kQ_xr zH25wdiY6)l(qK8t>$Lw-j<)n9r5ng+ot#hK8Qc6aX#X|hkNZU>KZ_-6CIw$%SI|E` zl^A9^pN~iWAA8f4rh%mp>aUJ8u=m4l@B%A+wHnQ`^0EA$aroel27&VbESK+Xk*0zs z2BdP^rZh1iUoR`F+V{$A)%rVkZ@v~{g=P*+AcahuY9t1S@|Xke!Hk$c*z`gF)9$gR zJZ=AHxxhqxAOV&OI?64e)DvRN4_Gc@yL^DNB zST;)qO+e^S3L@^T1Br%&YHrV1zL(3_gRBEMRHNK$N9LS>g_|#m!I8SskSFeT{fFz( zuvh(u>zVic)8xR7&*Hp2wB5w+_2Z%(uv{o|PJ)%JHB8zRegqP%%X$1j*b)aU7hh1x z?xKJNXZzdwpB_hwuUZy~)c>37;c4Cla6Moj2!Q4CKU@!Bx%`LgA^V5x*{1<4mp@-z z&m;{*F@LsQ$X>^-2H<6-f)MvevTlIecsq512Q&iSU`h?pH;#F=G6manH|NDmS* zrtAN6El4!;7tfMo7CC49>4s#2WmzQbOoV`=PiEzex#F`{Kws$FZzXgw7beCivXE+H z3t9wKyeLpeT}UeQ8&_KzXcS3V0fotb@6?DLSp#&%YhT>}cWSS_v@jrNt30Jlz2Ij1 z6+JePd;xWBq)q35;ZmG-G!XgEa8Zh|HUJElqL(&25w`xwUX-za57pY5f5sW0p8zXmcaxx0X!0mG&95aMN&bqp|Ez@U#`ZRcIbnHF7x zZD1<#e1g{7_*SMRj$AP4M z3f&v1MeoFvnGTXa$=t$)?kW7k^@IYro_7S99AeL$SMuXF9S~lqjOs8L_aHK=6!TNI zP60fG;q(gDV$*c4V-@91CAIy6nQsTm-U-~%3l1Rs9OXI4#|@=nyDWmj-H)n>ZNyGm zbR*UgDzftwmKfCyc)D@hX#09rXIC-IK`AlzrVEhu4(YE_NAC}2{B46Ql+a?gS}5-Z zm6d&{N+>a|jv8!vV1QF~YeEcAlP0HiPTFJ@XwO__x`^?VwXv!ZVf&U74EzdW{-+dF z1Nn-6N(fz+E349LjURdDNw}paln{#x>q!9V^hYVU6P&vtt@P{35|Rgc$Y+&&X9vjtScn8as=*Tm6?U=_Iowwiy`OJC8m`WOEJod)7HFKLj#Y`LRq=TX1G5V}7P03~xOd;;6k8wx$V<+))n36vzmo!bZ=TEny5V_{OMf2&+|8hNd z|8hO*UtEvasXy@^h78iOz!TkS83s=NPjx39$rFwfT)%%sV_gdfcYv1A6gH*30XC2weEzn{QXFtpD>(HTFJ#L02(=|F@Iqcd z80aFv$(DtG26Ube*@f7^YV-m)*gf@<7?~$g2bk1-F%}@!i3nIGhv=`c7_mKjd zW?No)m~mv#aqlFqy8x`G!lun3m(xSQ?_R-at~~23GOCLruXQ2{`7IWZ?a}^nvQ;6| z0TEvPgZ1Qzb7CBSmcPnC+sk{jB;U}f40dOMcgqD7_@n;^>!B_VA7j#1AT{X^PA&jo zJul^`()pYi1Hm&G+co_5iQ&-=JqWcd=Mh(}B6sk7l5F~pJO0+2&JFKwMln7(7Qvy+ z`i^rNXb1l9DX{)mPm0r(A7-^it*s6YtD8vr+vj=9=i?J(=!W|+N( ziS<3=8*1HBhpcw&&A89+2*jNfWm@Er&7lUys5tS=e8v!q zLhwU`OL=C^(atvXAC=7ctA!e{ZJ;Ay|`G`A;;QQ+g6>9TsM$*(53gq zCG#45<`{-H6!27=lW5lKstp_8>9dEBFN+NsQrzM=)Ht5139BM-=UE*8imyraAM%_V zeKY%kw_B-#Tm5Rn1OC^_ff3tVoJ(V=)H26JUC-hK8xf?fpz&OqqlB)j0uy`mZs>Z7 zul>Aoyk+)y!g}f>$-a2XQynB>e@at~+H)-ywU4YvC*MIP(^DnooZLf>6%l(9Y6ur0 zbOJfrG+t--CQI4D|NBX0841o+%J*&&;2jmUEhsQL?^sV|vIR3?8PtiMm^v{8H<{fD z*7oS^0Qs|{3m6s>>V^5rcQ)SCfcMrGJDR7SOn0zfys0zK0>Q6a+swr3pP2G5a1TwY`TEkllYV)#QwQcKe8eyO9H+p(>;nqGXcBYYDjVAj-uo$ z?W&i^B`YtW%-dJu*UhUIXRNh(6-q$^>78un4*T7HkBA#>^`dV!#)vU$8iubIk!*WS zwZmi@jQ4q< zR62tr7}%K_SYFS}(b~`NJLJ2YH>Al4;URs@+NvLN!`0s@v*;k(AN$7Lsch=_OV%bf zTn&)xM$D%_8?FmUI9CmQ37`W1fAg!{%w3Qg}nLCOWSvah1MjYaCMH zUb2O{W40$vXJy4D3;Ft(fpn9z_k@H#(t5T3<*`W>To=06jp|mwnu2%A7!_+d} zvGn64yoc?+WNwA3s5DLIJd{%hWbL$GIGvk^GI5iy&zO_nG0(l77Q(T4H{}|a%ww-j zrJc8hR{h`@nn41g;AA!tUNy$ewu84$(V}=hGw;;J>x>-*zr&4ZcKI?(mli^dqP?Ee zGqsC!{Jq^x$briKV8<)8xvXzKNt45!`6lk+x6ON?@N9UQMz;6iB~-nMN?95HWs0Vf(Q40|0}IB<9&q|IMPG9QuRS7 z#N?;^aN#V0gy^!u5zNv9m*4RL?KUFQqWnP;)q;e<(?I|v=%>>{(QkY12SPB|?}p}? ze$bq4+W=NDQrLh)J?_?n9ZwP%d$B6s&D7EU_@OXNvc?>alPnup!ST zH#HJP`-@be{!DtQo{e}nyv;Fgict678H{$=qMi)#qbK5(sGwlj8Dd>Q0c5q>(0FQD z$O4Gd8A^nRJ!($EzKUEpQp~5T_psjPkiO&1d((CSVB%bcdO2@a48TPi>Y9aJJBf^W zOYC(!j)6Cs08Mj)dM#BxKjO8P{SEoHmml-mYof>A6{!GYSgWy~zg0a1`r`D?^ z^oSgH1gqGFL`_Q)y+uRw8_KEbHyU!n9vus_WgysBr^cs$F49u=+Kz{ogceE5UB}tW z$` zrC$l4$c^+k7xjAB4`uE{Vpo|AQj9#)uZWF-X@DHpv!JZjT~)gOCj zpKk}3p5t=)Fd29QRXnT&6>}nJX5#}7Y4Hjj@I^R*-+7uQs;h|)nI>A)Ct>3czZ=VbTSh<-M#_`J5$npyo3@aD z_HvQwhXlhtjkIpb$;?6~pZsIs0tog5k+7b{Z7)|5h#^rDX!TTRbD%wG$QI5 z0*naBw*Vso+_tZc=I<Nik7*=HhFz8uq^#32kX99ru5QMT9vG%iU zi~rN>k(&A=ZgPyMfhr6*Neco|MZyf9V_s1A09@T_D@CSG^{V{T6ym zl((Ml#<-8c>!)GLTHt#v(@~~;n4sO}hu{J>WGT18lz(Mw&~hp$+6so<#fKxdhtqa1 z9LzsMjsmUqXaX zjeigy49lRPnYt<(&LNfV{2*$P-(oZiB)$Pz@inll<1{wO3X1enjH)dkNR6RU?A9L| zMJEs>BllC;g+SW!onVg=u7WlVWG}SDHKI-rNc>eY;>fyTOP-N=6=)aH!kZ$yd2-W( z{|FIo(V`1WplQX$$TWOff$LZ=@~U|kd|Pi6n?O0E34iOy2xBL9fQba=1h9V*KG1dN z0K#Vs_kR;UB7or}0vJw^#h?XI2ScMMqgrHi&s*4kv^B&_qg>x-Kv^&oYnU5N@(?#V zgH;x{!Q-r1v69N+w_5^3ogkG28g~V6p=gg8Ep zP$SgZ8jxo@m5PUa0X~8`Lk-)Wh2f|!Ta?|j7E}2!2s1LEc;X_00KJ@^= zCr?&O5(dktA>MTFCuJGh4PS8&yFlqaoZx`&tvVi+1p>%>%&);J@b5=>wDj5U;J8Bp6>&7 zp$7v>3rD}E4Htn%9yn|3O)*6sAs{taKmV!qoD%mMEmRB_NB?CIt-eSmiDB0GRQUVO zii@&W0b<1BB;2tXsbhNi13>tIY99UCXt}J4aYsoHbNQAp0+bK;?08U;<{>U;@u?mi z9z6Q#58Q2>f6b8o#0AyI`piM4I!y9`COAg>Jf+oS-iXIrzM(zt9C2qA@J>hfPSN5J z%o*u$^A5T`Rj3z^`NVhislm_GgGB@kX!VfkV`aRu_`Wsd2lsfTVDt7f({)Z{kT&Su zQdwag^8{Fd==c*&W-IXu9bwxeC5bvaS&KA>IhK&>;Ur`rP+S8^9hVxklg9J!>G4ZI z3;8PVb-a-mRI9QY0{9-~#{%H*WG;&Dw#SFa)`Tvyq_Rs&<}s3E-$Dta2xwYVa; zkyQ|oyg#sVQ++V9ZEL~nzkP`k=rGE%8KHmtSOlvv>LV0bL^ONRf;9Z6go?5AZn`7w z;X|Y_!7AbcNA>IDCHBjdU<$CB+el@UTq& zAH1htsQX{M2U&0Hl*u4L;B(D2@f{d&swK!R@Tgb1a}JEyEUW~Z`=bjl6u~dj`s4q? zdy1@^{tw=>s7j$`qM5kg$@+7~KCf~0eNb1y`;O^+b|uHR3dk3M?VW0|JKbb1tF zBk6oL`q>MFA!!CqiHRfHSp8h~0l;F)8T-*A3veAab>KK^5_`e0OqiPflwaH_C3xs$ z+#QU!y+=GU+7Z9#+tRbD5UtIz1*dAH0NupCwlXjMmXAh_rUJFSpe@Ge#9q04-jZW4 zx7x}kiC|l;&}OtEmwHr1>l`+Yqea5kZ|KWV&Gr%#C$$IoT~zZt7SQTpcHTrg1N&v6|_xQ>N!2J8ths2)r5IhG&v`C+WyGgUb%0BCGpNDvT=!Nay~(a*Zw<67kuzy z)!{0q$9?Ij$I2HO*3SLytjv22MIdFfZCt|qhc=rj5BY2omn;@bch1o|v@YXh=j=AA zw6HFbd){vK1pP@h`NWCA_Y@HTJYC|EmZIckl=6UAXti?ouhC=f+n)`pIEaWC=!P+7y22v7Yp2_%y@dtXfOP8Zn%!7pR7~KV*aeQ&#!CM64HW{ z8F<5mLw?rhQp2uBRye#G+J5;z)+aZ{W18 zwPx7Y6gVg%#hgY0=*Qo=8FRMPJ2zd~cwq}EVb#qX_VLg|l5^UO36BkhdDjk(WOl|3 z7Ad}Gw%!6#=g#0ppCYQg2f|$V7am}jUZc50m8C+eCYloQUOEf56Ynjd@%cSqDDk?X z_Tjz;E;h3!!=z2C!GIBoXH@^K(>=4;r3G2vtz#}_kQTQV2he3FUBfKP!a%lmUhX8% z?|R=xe{RC8Nsg%S*HoQY`g&;Mp&6endO3nwx3{pzhF#wf+rgT+yq>Ov=Cd`fUe|8X zy+ATupiQ~`MxEw{uCL~HDLare0HM~_XfntdaDVg?1X`bCw6REA=)v)O_#1pXVbpqS z*B~qSBQh0KN^i(&>x8xe+^NsRl~G>T6`)4g{rzLV$;|{RFF){vdGfu)rLP4wqX=#3 z7){jIT?59@Nr6ru!7OvTR>`!h;y$$!#jB2Id>O(tw0MIj4q;eK9ebG^PXLJGB+OIG zg<%6k)K0rfGuTK(zABVl*|wWsS~HC0iGs$I3-V`8TB8pqc(^k2MixSG!U5YdR`E{x zG>LS|EP27VH#moe5)H$3pL$EB`&LGnWW0b5X~|s`SXhU26TyP{Y+K->CI)zME00sB zM6T15{3=pk@`oiYalnnTTs|qo)-9mb^hN>Y{Dyc;lTh65`N-R3ZuXepD$Ju9)7L z(yHst(0K@4X{>`Alr=3X^d5D9O?A>plPW_9Bx`lJ3>4kfey~3*E>x;!vwVAH+7f#v zsdJw2|D}9zp4G{Qf9W^7blaVLhPz>34Wa&Se@_4E_4xglE4qJ| zm4>GM-v9L;mAK^VNzVI|R=aEeHR7Fl=IcFbl_PrX^r{e7+6m zimtOILSW(*pA)m=XWFF<+QLc0FT?!4litRXOcHZ@7>od+t+$=7ttFO{i5Y;#P2MGC zu4DyQcKyw`Ja>pbMads#My>@6AuNE+qC+=Yd4m=FWQhcU%J@Nt^bAc{E0o{?EBelg z7A;t{1vHxr0;1I^_+?I*+Fh9@inot%nI=-Sj|WVwPUwADG)l)#erTB zy6-uAfDWp4dWm;esw&XegH#3vKL0OdOjmIz%G(lTPTB~W@sbG~sk;>(3d2{fj~zbz z@~!G&ef~$}l+QZLUKbFvn4x87gYIrne9;it zn>Z35B%u3&{%7g~1AtxiSSnk+c?I``d|%TA`=)hEK!WlF*#S*-LBf~cclO;r1B@^z zm*OMIQt$tuK9z>PjG7yaPc#r_JePJ6d%h0Zn+{er0=So}|DryodO(F{W^Diu_SWC1 z-a4(~RxN-BJHp~UOKAeH8b)u0(#_A7gi_KaE_b#A;KAlmHUggh*MrUQ<-s1K)un@w z!NNQbL=}rHeib08<;5oK!x;g+f(HTjQ<$ZW$9-u7{tob9oWXO$-{N4qFB#mR{(RYB#w(u&fX(Wz7&--)RQ%jaS|T@}28| z#?XtJHG<5@!Zj7unFSmKi2Vr`1NYJ$k7m(HaGT0+GyhkE9oY}@cP(hMi z%};P)h`l7UAaRJg4_aw9Q;f25wHmGJI`~e{h(75A*RMdzd2yO@7D_&X*8?;eMu7E| zLG`JMnp!3NtI_pijrGruC@N0gSFISZnPl}&fC$^1`kYlh9t{cyls4GlJFa=Pb)C&RbG_Z>yf{rLG7L}P*2`^qv`93?cD>^A z#7G(${Kym-9V^bSZvg@!L>1zupi!rGL!|0GoXad;(8nOb($?Gzq{iFBcWx0cA_!vX zh@lrhC|(z-^aMr&#&M4J0jv)>g#~Gki=_@m4@`&UFEk3!1wzH~n)l@GpjWMat z5E-Cu_c4!D?slGy_)pmjpF{CY5Wf&O$t52sC{X4iQ*#dLjt0FsP_5!TRcUy{CnXu4 z$r|rtwzChk$Pe?D_5`Tgo${SWGvJgrt_+zXvZTCC_>y4ff=3z_5_KIsASo^he8RA8 zzb^rHLrMVYF=AhaVS_eNEBakK=`A<%F3|BkBZ{D29q<0L`Gz%kDD8uld`IOnPJOXX z;T5m2!6Q$Qk`&_4#%e6_eYt6%iqUnd4Qx&H{<}9md*Q9;_JQ78Ky^Wju$ZK_Rp}DM zM;?VX?lW#{QVi^GoDbqlz&HVCFL?K>tFe;%-I+Y}BXJs+bbi4ir-)u!UkKcbHzBgn z^u8_B3=k|UuYp^k30QS3R@PudACe75>7DDIKt-p2;*IgSFLGB&&Ah{vm@PsdXIk6LM^`6 zsl-e(IEgrsq;hprbGIUH{Oi*d|YUX>idn`>I$*o}x-fXCFWGL_Mj{E3-~mef;0 z=4-z^zH|OBy3YAO4u0Rav2EK{W7}+O+qRR&W@Fnn8rzL+TTOZ=&)(;pi+%ru`DNzy zp6_R^Wf%(R^dPFX!=cz)UNclbvTRJdWqGtvf==PpTe+8|24PKTkdgM4_evN1@+JAu zTe$}{mS&igaywxv-ay@(_Efzji)H(VU1|=XGOy}d23Ego%N^%oRBQ&k>qzntt9ntC z8y3{M+Az%Wn;F-fA(x6(@0tmgEJW)f;x{%wn~b!Kbh%!5Uu1;d%KAT7??+&I9d~O>MC87v1|ZZquXDt(T@3B zF~F0R*0$Oy_r$dHQuex*we3EBj|r{wSR!uF$$4pxGS49!$x3t~27ZusrqVd#hrqnqz+V_dkt0%@dt zjYvBl$yqsBM)IkNMb&Ag88S0kUVBs*CJQibG(T%JRK!mvrA9WOn(^dy6fd|kHf@tMe-rn` zacK1Y7G2&iHdVm&SM;p2REk0?MI(~eGvAg2yP=UN!%(j{ig#Hhjg}t{DX+F>nVqi& zlJ6HUt<4Jw^%RuoCtZNu-RVIyY!s6F|MKF)KO zbIy(25isj{i@$@@PQcRR1uQhXWhzIjQ0!zzM|R(6t<0{RUIN|QrUG!dD#g^778Y*F zT%$=rbR_4R1jtSTZYV^TNTp;;rtyRM!FaOFA2*A8e{>Go2KyG$IJiY># zf!g#ull&u|qsaF^#Lp42Hy@+lpAGbeZScdN4if^F4F8cm#aimjB ze(zC_W3;|cev0eFZ$Ymv;*gPKYEGiz-9Lv{UA zc>FOn$JJ7ujmcaG&6ZyDjPje?qKbg z7b_wcSLKhM)W|DnHH{?DWS96J+pvgGI``SKC|0_jFW z?;b>d*7{v3lpJRz>>Sx$Plz0e{_>Tew5shn!Vcq)zrxP~ZL^zvAj8OPmdgd7v+ z3c@Q^uGKwlwu^ZuG~m}-GnjN5-tUcD9A0f^cmE&W2lY0>BMh)q{QtvJ;ruu6leE|N z@3JVM*K6Y1@Y zziQw%RTbG|!A-N2&)`pZS~ije*zA=fuO;u@%ow%>VU_#BSub0?DnPF1`tK{@Upk(e z47R>Arpx5|+clR)x+?<>t2VW~;%$%_$pW^9MtgBIg9Kaeu+S7GBO}1!Tp2oLf?+ZB z?~2OM&{TGN2k}QPHr6@mIxLX+^j#|{GgW)6UyNUebB@=6ql`en&{BJRXpa+$bP(-c zkfQ$3P!51z&nwP6$b@tbZb6|9)$gk-P3rHy!vdX?(= zzw@eTd>*%euivJtn)+pKu2AI8>2~WxM)TGUz*)k}&=H<6!>Fu85v~%y(BNRXToVn= zpecfV`s!h$=E61i%GfH~hH>=G)cH5+?yO|}#Y^ZDFqDJ3)wspR@Y}ebmIC5^vE64Z zKay(yMVT~%AK(Mohx1QZG`Q2yU|8El1n>HvuxK@iV;9E|O73K!zv&S)(KptG4|24- z8g;muC6=kB`S3y!(essbBLauC9VvKRM-5Z4(j+$;KL*H)eKz2sXbmXco?(K4_X@ z65cFOv&GL1jdoQ5xu6CcTUKEU;xV0gE0%+8;5B1%p-D|NmgQtD8k{~Ni0(N6b;cOP zU7o3LA{2U}h&?Uv<}vrrRFN&RRN{tWk1qZA?Mj+=Jv_jDtY-v#4unelRTgF2kHx^T zOJo|Za*qmi=@qB>{u(-12bLZsu+D<9el zQW1dsNDPm$%;D&Fih8ocb*5eyGEY4hIzh_p6(KbBbuD)UXHWBArhKSt|;ln7qWb5En1g1}{L z{X_heJrHkyyqfiP4xuK4C3=!70K%fntI#yiMSxrnu3!*3)SS3lgc7(frrpnBNvY=e zIIhPawB{yxQ%c}JL2`fh>Tq0wb6h(DQU24@j)Zcm+(LMO&5c z0&BxWl)gT~b<215CX4+wZ-Y#Nx<4G=-M$22d-dhbj*yWQnuBi*_AY!zv=T3A!v<<{ zQRE9i?Dz1sEjiYa5k!9oH_SF_^d@cRcz`6o??fI4o;@=p3m7o+9=)?~YejICmduYjc8)6%PK#bl>=Nv%}os#bAdAW_Q!EA%=35~9U;fxe5VZD zha03n#Y^45JJG=L58{IzJ4v3qi8mAE#%CWg!^>bTWRh2bzCR6Cl)*V&guL25mZu>M zElc`!pfnV{iVKk-D3pbl;N_1os101!wkYIKVkpef2YQFRF2+ULo^rNrb4q%>~;D?d)*2`vXMrfkB14Te2&$F_&ia2gV z%{nT@Tp}%UfK2!F1Q^s;Ov4T}X=WAQ3cxaUZ>I8;od)~PpMbwD!R{5Q@T}mXr@9(2 zRGNYPH2`9{N9Ggi@?k5G(1c)+eVo<3!`wmMLVxK!5}@AQhh}^ZS_^D`7}4B`kM|tj z4%!I+3!>E3xA>^cV+Q#H%=Y9rI`3gG`-&4y1fVDy%Y@d)`n|Kr`7t#el$%u(>>9nu z{?;=8UqdBOpTJGU8KonGUyEVURa;rK{#pNTS%`q=AB*HC2Oh0PTU7@iH-X_a4-TA% zp@j+@1%!`C&Bx8X(aBN%FC)Pmy0x?6beg#98TCi`V2<-6uOTJ~$S)PM882uRlP*T& zLgnPJLs{$?$lJa+)KtRtqaBa(RG~fk%a7(}y|DGy9{K}-NG-!yEkQzh2(~^%3J>sbS)nE11XZt;Q)TLGS52SQlFlo7!(t;13(h-LegmFlWqmPpN1GoodkqDRyQ z7$7J*|LUn<)nNOs;UN*83sCuRO1q~rbL}55s~LeJl<5!DDI;&;%H-7_0+Hs`i_@?z zgU!1yj;=sTGeb)Nh6-fkg4AjDL}gx^rwq*#peK56ZF-2Wu6O?9Im#nm+M7|aiN2>d z-c6Y1LFfB`sQ!8S_`=sv*+V`So7y##ENP6^jl*kny&)TEq0DkU0}K^C8^BO8?LOCg zN4LHI2rW;V6qI_tTD?y79af+)*Ly}Nwc@#-_6Czo^tMm2IIyfe2vIPp5Cses#IlAB zh1t$|=U?+Vk~KFuYkE7oRy6iyq`0>&#d=9UZmekS!Go^A=~EVgJxC9um~M)n6Pvy z58ev)qm29wEquMDRxJI)^ue1orfDPQqE0Usrx<@aUq!bJ)_0TxcM4W$)(h0Qmp5b{ zQAQsgJhX{L5Ge2nKhmD#Ghxl|%%BE(WRl-NPyG_cFhdAnhANM6U9fi%z5gNy@M*S*Vdb8hKnOe!O zLi8my(J6nHd**eD9g+3Q8WScs@4OVpTDTB2h*Gt$39h1ED1*(U28 zeb`xZsdBi)-cQS)rz`=-0j}FFrUvmBa1B~U(nULmS{Iv%CYfca#9TFLoD`7Wf`Edx z9YR;l0)U|Tnuv?FK?KkYoRAd6%h3Alk`X|*9`X>?#uLt`1iLDuumygF_0cWJ6xnAR z3lLU&zwb&vg{gp1%}-Xvk2Q^}e50gZ+nZPtY*}CMB#4(zx$aEeMO#l=D>gOlT6?

    ;-Y>!6fjxkloq#96byfp{S+oq-48aRtBfhaH z!VV~W!2%7SfU!@gOWP|oFqSqntGfNfe)}Rjj`>6oHZO}BYd;#MsDpcwVQH)bep(Y^ zD{h)f&?FfrG*;0)@xG4CFN$ZNa`32@Ybh^4X$o%{wjnu>yrB^WEUY0COT!WX9EwEW zwpFbFbi^q%u9K(b1lktx1@*vWkfK6-;45N~*TLia@HcAVHC{=U20sDX6RBmP7+jG7 z_KBC9XP)Ba{MF}(9a2Qvo|L6&KP_$4AsZ6B7n0aPNW39|mynpCcJS%#FZ+C-k};B` z5QQ`#2>Ek|zC~y<4pY-0jqym#v*QO4ylXo}(LmqXMa_25!xLfmjg@!b_?5o<3Xk+d zl~9pNz{EpfP?1V-9&(d);B&jLq2+-Nc}oVo2j5xRHBc)Db_BGEK$8x868AO-pEpwV zqsCMs5{aHP-Zi<{bl3m$4WEtkD{bgq1^7$NfF;@z_vV(*hUe9Oyx#V}OPsbZS;?!0 z4NV*2jphCe8eigAf^0)ogo2`~=!Z4ovZ@tA^DRtn*_M+yYDOI78h+ypVGX@03(ivZ z++{5hOlD=>n+cuW7i;&0+h1|itbwdF>Xrp2+SP!y%n)L~!t zZQ%{wNV|?9Dd^^bqU{f)zox=JnS09#zTIFu!BdWFL0TX*ebG{Qhy?z4ZW`h{(@@sH zJQ{)*h(jy*3?%af2u@YZ-6+8Cz|#~p4!Q=&*^B^dU^~E%fzG<3BR2>PierfmFT<}A zc(wy{d^=jZ8wk+>HvDzLB5idfLU}vx2Wyl9Mj*L0n9*p$Ggi;c5gZICOxt0DhUVOO zdGdzn@hCuF!M`hJHnHO+%va%zRR~@pj?8SxS!E2Uk-O_xyZ5F^xHx8R?w-0 zpL_4~oYzg~a{e-YZY;e=MLYzai~2xsqYBT$13O3hyu*EZ66;#90b`kbwDA3}|NHF= z($nSW2M3n7v6(}9)M>`__y72B{|A%$tMJ|}-ufcV=y(&vTOYzJ&m|X0_g1Fg&+5Oy zb|aSzxs}9`-}?MFYPDS&A=39NIby%wLrcE`SX9Axd%%7}g8*wll)wJ{-xdG{bo8PA zom*Q$OLSNYgbct=c zj&$!YjkP9<{($aMH1$ZC`)iJ2J|!O$F>qz62#)*|p&nE4myFhuPgLxYfc` z%7r|%ft>?3)BtM&TiJ*^v-;=Oq5_spq!r9n{`RGpw{w|HJDr)N%W3deZf92$O{BAv zd^(+}XThZ|ygncs3r_E-;Gfhlsmt-OA=Gr);VMjL*-PZ=>2>ix{mUx-SAtZM?O5Al z)dt;8D^6roY?jw)vZQ3HksJ#MEl1U6#9=tIF)?OxqBG?p;pAdHtWplss6|24v8_{sW8!@)tomcT)OEXfa9=b2-z6t zu9Nk8fn*~JXXn`Q)HM~tY0Zl1bdDgF_4LcZOGgQ&L{Jm(qtecR|7!>!yg7_iRIXHC z)O7gSoXzTm`Erx4%WgQg7_~amu*fb~%CxJ5r(|(qmh9X}(dz7g9Ia`|qU+ICrmkC@ zHz*v@PDNEhBILS4%{!HTnYNowyjPhB;jxmNNK!2+&I)RQ;TC<;Frs-bD{qRcsFW&p z1dfiC>h?&UtJ$R|HZj$z%~PB*o~;H=Wj>eJ3f0|e!=YAEG)RK^`xFoSL;=9sR^%- zOO;KH?yWhpvly*oQEsqK_BCn|$xhmY9%G1QOF;m|aC0d2TwAQVwA*7l^C=ULIo(#V zSm&tjs7Kd^o5aRV(?Y~GXERqw%=?s_sHbzS)+V>f0r^<5sp6o@Qw0Q254UEuI$KWl znckwB+7K-%WhNxOSX6Uivq~BoACt5+yP#YmEH>7&j9Tk3Eq12N@*2^O7ip$hq#Lus zY`}UvoG+*0*{V$0jajANDdp0uerY_Y=4zP)MUKr+ij;%N{*{; zv$r0Q^ZIgJ=##U#VRmEsGR?(m(RIbKDqW620K@%?-d1_CHmHYFw1Ur##4 z!dz@CGFvF=xlvm+8-1sxZ`Q+JXDzMejl~GnQ8OQD6cS>KAtqtLYOgz+d2wM8CY4>( zH!B2?ofOk5|A+t!=W^(x%f{>cw=vSLHM7=r~_y>Jdh) zY3!_EH492~BM@0X@H6T_9#w~I=*lQFcq)JYFbZq+1&k-DgtYx(|4 z&O~J?%;&ZGa3D_Ee2Rm0FGOIE(k&IlrI4`&P_$tX6vRq8`$d)+}#*N8jp3V2# zYH>znZK+T*>0V}6)< z+q24@E)ryBIMJeUN?u4kxo<58iB3E^uH{&!W3#bIyIh)^lWyE_a?Ko{QW{grlx7(zJsoDpd?lv0`mrcc zW|G;pU?uJJGBzI9Jh5rnxkRPhODbJ6u}JrunQ}cjlaeiI(C!=hvbFBV%XzVyw5Jm> zl_|_tlVn!OjVh5?GS4Qgf}BsR#d<2$=vN5@uwX^UN~%OH*Nl)6TjBDi5^eXi#A1?+ zlzW0p#v_fP)oZSz(QHbWYN=i_eKZrM4QPMS9|8z0^s?!srPu@*?B)piGQER^rqpp! zm20%>j0S>QXJSiE6Dz%ZtdwgTY!*(TX{y5HJIo$nehI#1qU8*{SqC!QK{G*dG;>NF zKuNllOcU{J3Je>(Ug7idm^AtB$fw6WD<|9Fd({&grq{{z^Gd}W*9j)$$iVVT ziNuo2&8U{SZs)Tc*KhZV@@P`YmUCoM-i$>vF`DZPGmSRV&6Qo6jLOoaS5rJ|Gp>~B zxSLxJhnaGbrc1fWEYD1|LT29UC>GhQ43n&-XDSJo1}y96d0kr8cw&>Z7J68Urprc6 zFqvs}t|(Q{e2uE*QA^~sn3G6EsMq3)MGexcVNb@GEvW@?062{3vE!zt9()vPrJ59;cg zUsP*U*iL1ZIjf#;&(uO?tZGBHrkZScxC*By>7|y8G(Anpb!%%zQEg}85Yt(zHKr_f zJeKEk!Oes(0x(!hnS}wz?{T7!XI+{)rx;1zB z?k3l1Ab=fp*q3{5WZ^W$KI`;539(8KRx}W!rJhW+hE0j+rp892AXjEiR48@GRJ<@= zjf>q`n3zVx4bfe5EbUB3V+2svX3bnXl3G|wlrIpGSX?vbd9<(1R|Ui7pC;%%|%W%HyH3qGYE(cce&%baLrLlW@)9JiMu_ zdA;4MmR+v7NhVgQUZL3Q_wwzvF_!rZCC9@HtG48enMIt}#}R=uW}bgoTrGgF$&cOs z#vRVwZY8TxPOVEij-6>U%Ym3EMjS#UhuwC4LbPI1MO)ciVF8I)P*pS1EJrspAiRbn zAb_JWT_;nmZgUwg87reHQ%R|mStfy8&_iY3&nS^hK2rd`k|?Fy>0;U_whTqlxQID# zBoc*~I8+l-(^8HP)^#^Z8*!mf|@rUx`cy z8(kUHV{#)y7usecs|*s}pmYbTF0-i&%9cZvXnh_T#Uk})YMiJw*o@Wb0heRE8s=xq zNuK7x{AP}-U=_2dt?hPep6k;&xt4Vkvk@>Zp2gOf5j&Me-LTOzIvswb)79+UXwzz^ zI;1)?GN0m^7`suzc0DtVCwi{Y1P)1L+FL7ZHs7Gk(Xgtm%sy4{tW8T;*Cz`;BZo;+ zaw8Ecxp1Ya)ocM%QD=0D$aP$5oz70hd`nhSslFldI-hXIR&O{RRc5Nf)Ojn*Pk<_T zVxv$>zQ`BsaIZS9Br3#;n6;qMZ4pFz2_>hVF93s^P9yUyr>lmRv*K_b0D}QntTSk# zXJ9$DKmd1(o^iLb=oC{^v}DbK0U4||aygaR4~DSHY;y5|-s>4Ft{gGMjKid(OQzTu zuQEo3VImX)m|$Avicv_bM4ccuv{oXBWL1xv+*B(}GwX~PLzQ|Oo0`=nUe3$BwwcYQ@qxJJ=jE`$ z4r0}UGu@O^bvhFrjjT#FuXN+R4DYDZ29apxS~FdC6DRes-|aLZ(cqjdkY*{k5j{O^p~Gh_7oRW5e_Wg z5kNtKE6df{k((={=E6cFB?DWSF1AmhX8O>-K^BTitvw2XMjS6&mwSe1+9U6=3FvBR z2?wQ|^(5gNdiV>B+SzbpXd9h7?7^Oi&rvWt<7#{kZN~lu18-KgvenMYWFE)l^YY4@Y7YY4q@!&=LP&^T4{v5@}Jjj2dJ-+MFu^bnbxLN{A zZMo;EMf!^Pm)7kKiK1iPN(M#8!Z12kkCw|_HZjY|*|gHgB+`r%jSQMRGjV1GEUrlOG7%X2bf zWa-3wTAHpka}}Xnom?tiuu_V0Ow^XGbUr)&|LlF)lHy3S=Br>mH~kw`rF}ccy3If! z#J(foW=ty*XhSP-HDfamGxG-XR_7H)AwgzBl4PnxQPuS)ZPt|_$vqYi_izvYTz0oH zn?zDA@oVh9UTfOxgTD`r>RcEOGRMQiM+m*vRyH5CJlyVYY>%^AM52E^aTM@^hP5}Y zc7XN`hZvW63ez{+aIY(C4;#@IYOZ0%kB&AVTb$Pn0q4OTE`-1r4j6(8*kxa+4)idH z1uvP5xPcFX6@^x_7S4%DIPHo}7zuTRX_i-=#%#y#(RE|IXVhfxXL-TzGt&u7*(f(g}iX_V9r8(5Yur=P%z=X6wbPwMQ#%7sLk=k!4pYz!;-sg!)zxW zU&m9Ylc|QVd%@=Qd0U#WhZZuE+UxF|=p5up6ln|}&NFXtHQ-ylwz3*d3B6ig?%ODK z;19{BnT%;fCJsZFw8#N7>1tJM5DWy4l@GIFP-S}f6!lz`?^kfV*FE5S`lR6AiXgJp zWu-OVfiJyuiNCp-871~JnTKpEz%?h)Dx&p4x6uijChG}%i8I0`Z*1W}o6zGHDZyQ= z<2x2bQZ!bT`E|E8(7N3SX@JcPq0q|;hD~FEO$nm)i5Du%7~=QJpvg5GifPn|4GeKC z%cveHI@WAG97Nkm;%)20rW-p**g8mK-`(()S+ZGNjkz-IDJ$-f65Pz-Kw2oZ)k0|u zj5X4(^vKT2?+ci_TXspFB3YfD_9C+hNdXQK;e25SlLi$g%Q84#*>cHnCA)!I<-+FOQXHqxnbk=IR~n*Bs5EAw!ZA~IUNvO|P6s`i zuxiDCEAI*a1;OmY$H_&GNq0Y;eYOj_O0daoDrN^zs$l7pPhxZasm4j~8l%0uXEqY1 zfMtfB4C={fRN}-!cI4!b8lKTV8I2OifcWbVE6betf|8{76@zj5i<#wUd;uSj`Qd@= zjxT2Vf1sm13?WerPVUQ|On>|Gm4s=0r~Uzop_yq>kiY(rOi|tdYvVa-R-cwysx+NO z^gJhaHX!u|9CaP-*SR5k&KS66#*jZsStja#JN_7e+?+QpTWZe0Y5viirN{VBhe+u` z{)g?^r+^0Mn~XyzM9}q?ttDGX5Qt^s2VUUzM=|3 z&$LDpdgBace!xhJb|+ZD(9~Vy^NQRIheLs5u&Lq7e!Cm48$q&F#~dc84V=sawvfZN zs?$};a0o+eFMFK67g!^9Eu@N$QKk{klhKPHj2C&5a+q+1Dp0x888pLLV?~n8NN!FD z1kw>GJ4=jai`b^Al{#L?70ITnzmJvba}%4I{Aeo$EP?^-K>8Mi7jT0#_aHC=pzYr_ zAuki9t{D;Zl@UQ<^oAA5Y)5vW|71MUbNxcj(5E^1G$;SQ=A_y=>__Dt7}oclo`FcW zGJ;%p66tf2Cq@E|OyLe>+1t@}=&<#cJE_o2WQp2-+3`_AS9)`T3Xodd?;g4mvF2ot z4f@<5S_@sSQ|{JNf>oY(lV98MT-~WlvPM_9<)R!eIPTDj4=qaL^wl;%Ir-p4!~N9I zd9=-j&M*WKTxPj}7mPC6?U_~C&$Pd8tf|D#shu4c3XmnXxSk8otMazfSg#4My|l}F z)?7e#8|u;80BawhjccscdO-9VaQ^+1g7 zX0YEKq8z4Q(g4)gKbfi58$`T~_ke`g@j zl@dG#re1!)iNHnvOYbVdF->nYA6SGMFa;UG+G~P5=-oB(NQQt*PX|F*u+psr=^6%6 zNAUUU~fw?ejUj?b8U()~nNV5Vz(^fyzR)2%E)h8i;xn+tGIE8?f zvQ5eE2ztx5RcStGMla0}1u3M@d86RlYgFO2Zv66qL<**oz2DsdiJ<7?6+j{bdUQ8H zA_mh8g41c<@9zyrq%Q%988G$}koXBmd`8MJuK|gfUHrEMBvMB((!zXiPTR4B$CK0KqC1BJp8QyiT5tt{Xx$zeSg`fXZJm= z`~)QaI{*^tb3h_}HOP+@105ftYZO>ByXp`!0)_Sh?Ki8rX~q znm!tL>V3!MY0tLTKI9SsHtdDN)w(5YQ-XWcB+XgH=x>QOsv`Sx6s`4x61Am9Um4H5 z8LRBe#?aR!jiDE+G`AGPv%HzvZ4S})_#lYPL0E^j&)C`0qs=XR;BdDy*)F`+$h8)I z9hH%GjCqSlKrDJcS{^Xh99!^|Vh{vjq-^!>M1hvvV~O+C?j= ze4vI{M{y)qh?=9S?Q@1JwQ4Jzk?eVgXM0q0Uq(e^itV>vdp_r92XizVj|n=NfS%>< zI2qNZ*|}O2EELm%U|1DbJ?CJXB-7CtIIImwAH(Cy1YPjEIka#Z^Q3zinka=G6;5b` zU2?iotv4p|x`r!_k&vCZGj~|Z>p|Qej%_jLa>5?2s9MVm&&9s=+iC} zu>I+LGYHUXmtg{EL{p|E*lVG)kf23#<);K?%3aQ9gRwtaZp#ha=dhR?^!Xj$l;yS2 zrC{4`z`bC$*^Z}`>g?cjg=jf5H{zNbAZ|F?YBPfvM~4OrWoxCVLOU-7w#VPz8@Rbb}|s<(THFswYXynDM4Ny zuW1wSZ{kJSh%ve4>^6}s29>_u+NxGr-r$%)&-aI#Mef>izf2JF0y>PE6SB5Atf|(7 zIv`q$2o5I%j$MfucfV=T?e+op@hD^{JZfv@7J;u}?JzPoqp8y%nA(OQbS+WO@M^nr zmzrDctqvBlG*w!PW1`y|Wf|wtLA8{Av(cjo%Mqzj+nf;9s=C&RM7W^Hwso^Qo)5HG znbph%+AyYzWINs$89H$W#ne{oeXkGA zC)n0(<7+HND{Vs_R=0i!8*MBt9*~YDRMkB_z{1Kll6kA!;YBwy0q_V9x(I}pS8#JM zs6;GdHktBR;ufp+Ds=iaqP@oZt(CK`dJc;_2OcbdmXBA2I!7UKZMvlV>3lR!)L2T; z&=yV3peSLf;UjOaR~UF3Sqw+OtxivDR5GX@o#C9jrn5$HLgkiM~=PY4rTIYgg zUmo(vc-W;|S;}a;W(l)dbsFKk-|W>|dPQO4#Qs7}q`CIm`*E*(SV?h1Q}$h37!z1! z!sxZWv2U~(r{3EeF(r5pB;pB#nCZhi zAQ4X>#FXGYkccM`VoLBHNW>EeF(r5pB;pB#m=e4P67d8=ObOltiFg7bW(4nmL_C2I zQ-b$EBA!5qDZzUn5l)StgWlf1!C75E3?(n=0THQS*s~KPYKco2pWhBEwMgZ z5aQ(!y^2u7mBCNr^%iBx@{EGwjlrSgnusQo&NUjcqBBfG5q)Jenwy8NV>a>MT||LY4AU_?;018-Ywb%$E{z zBAOZf^rL589#lxU3R!?rx{FB0=s@Os&zc^QZsntOQ>#2@Di{4 zBDbmmmYxPCt6o3CMo+m_Zy^zxtARQE6N&hll>3>K`%5O}CJJq+&v(hc--Sesn$5Yt zu-KWW^o-rCUfV6V<`UQTs&6TSeqz@;ArsKpDy;6TmKj;y*|yfiobA*v`;H`ShpkMP zONk3GZ$vm`Zy9ws9(BDA*IKvSKG$Fot+QV^joEtGgQgzT3C648M4xTtnuVE(ChJ$W z3)icgodDObA`vmeMw%~?h)t5RpOA>OCK1unpD(FkB1t4Q7iPp@rw(xgCe~1l9WfpX z8R$wx*CSMG*O#?U_b8-qLHp4%kM7IBDzO|ezAsVzCj<@SdpKh{YRkuGe&;e$nHs;;h0UaBIRL9KkM!p5|M&WNJNax zheS-C{Lx56kUMb2j1k3=h}0(%@zY9uTB-a<#DQh4tr!gJdseCrb)J!kJ-7pH`uJ)c z^hmnJ_r~zH*4?pHa#xPq0ui_faJ42PfkyUzUl&GHUnS(8tJfJN85)me)zO}9vSi?; z1Uvd%_Vn_hH(cAB$rLp=cGcMJHssuZV|XI9kg{{YU^j6LscLmL#XPlTwn=B-W+jwZ z;4-gC4Q*Iew(~6L#7~G?*swQEXDh%~t>=h5YdZLhn?OXoU*UFnx0ZLiJ_beQ{SI@= zdZf)Zf{*aSJ=Kv{g9=ujLpxMMoh-hwMTG@VllA7lHaRcqlg~nd&zTJpOcRk>Bdg(%~MYIeo6Gk9S2_5z1@Ce%gNAanu_7<@)k%#Rp zycY5kQEtyyQ+{8LoJ3X6%r#D|rckTRBlAw|`_*oEh-{@7^5f00S&riw!Zu)QIWBu$ z%iyU{=<}|PAe&>t%v_uyRZML%F-jXqYiijencF+QIO|Q+nW<6JHnP$B1NtyP${T7> zR;_kp(W01kXS(g_5kc12-k4uPMka@mGHtuzrVja3Voun33eo#b9G=%waGhW=hv$bO z5I^%&Kl4<7^*q&oC<4*{1CaP(2tZnB^Sv(sk;GvVzD4&H{*b_!6Fdu{5IjTb+y{P0qOTzj*^2uFAifPiJb{ERfh6Yu zkrXlW5`_44Pxe3_GTf9&_0%ob*KM995@Kjl=tuv=U1|qN52i7cpjJn*orrZT!&udjR^l^;Nkbvqx*Lu7efHK zs8+L39|N!DSZfNcDM<}0E0bKb;W5lQe51OV?Ao1WV@FIHdbB3`XagRPgr0MNDB2F0 zSl(^8Zlkv%x8ZQxAxD|R0{g^*G&~{-7_)}7;%coK_q&Nd>hh-RkxW}t`1O7_wmf63 zEe_@B*cJv0suF6wrl_>ZZoSprF%`E4IayY9-<)`kr_WK7s~e^z_tBBk3)U>Lt8t9W zhLioGS|ucdl!my!cUstr5r*(SF;1PsifAkB+-!H&ku1wY(snOP^DVkdP)~L&<=*$|Z)gB&h7ttgTsC8tlS4S#73mdiQSD2uZ2;# z6?Y57Lewpdh{zdR7%!c4%d5S$Fu6p9@i|_ zrdifRFPsMxk=s);v#^wIs5rZBw?AqRb!ctzT@?**oLer-y}AKK%W|@v8{6wJXxXwY z*R);LXbq|5vOZSV$Cr_r3<>KDHX18>c>&F~+JO`gsH>rpTjnA|<+o#6pbt_{syc*i zaQLjPZ8yD^J#wK@6!{<_Gn(9RG^-B?0{5g<#?WG78@^=!wBf&S` zTQKO>-j7Zuge$cJ_zM~ipU3b=hbTWiqM{zrivZfqu-P%RRyb^S+3;iSl@|^F`t|Es z!*4%Nq_rT?t6dA|2`OdUT7 zY;r&P^d*yCG4WGhhukqHtAz1pJpC%L;pOnD04a|cza@zZ1S(p-BUMB368b9sBKDb(cA6_??F;{3AAFrg;k6kICKz&sXz>(1_&S}5);4~)dvz!n&?9d7Q zqdcz0V7D6sErBL(2Vj#P)MqXTxS=biYu0hoGp6{I14Gj3x9lh)aY?hUncg7LjFKuU zYIg1%|A*!{!PA#j7#zQ(OcGT9dTfW*(NQ?AH7cW{ZbQ)&z$s03wv|3`Y&A@$i8-eS z(v|!2I*z=&j!?(ko~Ii?N1v}_$Go1W%M=Em));7H`bRd{&#LW~lmIxzU8TewgHxu{ zbXFZ@56;pq<@==7QRLX);tKp`FF{_$Jx$ujdYQSCDUk7fcM?U?n8{IkaqQ%vzqC$o zDEe4eJ@viZp_h7uedpdQn*6xseBpa$H7=j2UT<6HYP*8J4ZjrVYAIRovT6sOm@*TC z32%bww8fT9;&ziPhTXnX%(Uw+Y1 zHNIn14g1At#{c?qqqXntSH3TM?d4eA$}hYgJ1NixFfNbjZSZ$8(vM=5m?KH`9>vYk z9>vK`Ov9siML^Z450j2Rzdm@~Jt9~4>t!tYb7?Au@2bf*A~J&g!(_|)*P~d8wvvO@ zeR7{)isuJnCF-!a(*Vs);9T)bjL3xO}ZR-eV-`eq(K{C z1JeWAzyA2|lH+VF(c4f2a18%LH~hfy_F4Y(`CO&73r=GJGCeu&a<RZsU=AbVpX-%AA;B^CC#+`gjWFI zNT)}>l~_F)8ADM)TSd?#Fe_;Wb1BPnE&;I>Jumqs?PA&?O*2CPr4hA2^-7MdKKH^> zv*!AaVuV)mgb^5`Y3@tuj3>_=X&fz zj+Ib*6h9z%#`Q~~^{7VV^9YKK@52OC1*`61{SqJ6FVlIPbUvp&+8Q&hoZt}RPvkb*`jKuim@<@?FA+CIqS&WzDsp2NkJtth{F|Ng!%3*T# zVcZfg?_s>Mg^-6`foNCow<9M*nP-(3>zx=pj+NwukK=}XBOb;p=W#_bX2V< zwjL$ZSzV=nY|=%{{5sS2n?6kDT^@&~lo%BmxT*j8QhJ&o;HP@3sfs>up;PzsxNRtL zh7BA|;Cv^3Z}R7<>CX@AqMta%$<-5yFIP^klc!SeCiPxr58Rjd@lNJi2db#-zoswz zym;)`dc)3qDxPH)T}9Bm9ZE&BIMw^1)HG^(K4`~90LJ_% zcOcwwb2+{x^_Q^;Q0oGOG?HD3B?iu^LWV1XBrE$EqRFxPE-?!EOl%^l_M@1|;=@=; zd31EaPGym0D*vA4mYGw=|1FuhwI{ls-*v=Qdk}pQY$5>IXWPOFJB?=7X=j!5j?ofBnz@ z{l2u^cz&B(BOHh92GRU7b-&@rQ%(36?@Ga$m2=N5@(MLmWIPg`{qd=|gI@aQE-C!3 zatMOViXkU{&F`39okde0#m%rE#mRR(DOcRD*eJe?P(O<4qY-jBqe&k`2;NTxUG(&Q z<@+(sl%MRmrGRej*NVM^;YzsU_rb4&Bd(LUypLZenKYsIc>k%<&+v67J8?Q*e+5sc z(QMBTeJ?!y-j(X|ZM-u^`LGSyke((HIYklAkKew>^c8RmKTY3VOdm)Geb^}e4AbXC zkHZt^lgL8CpN7-F<=|E*hb!NiMj=+Yv(pN3`(BYO#5C9XF2pIHKo*?0M3p>n5CdHV zXpa;A1Jsp06^clqABJB-zQHByxbyvzrha58H0d*?Y}@}jJLd!~@k{VGg7{DH%vlSd zTecm%6Xz!e)vnv_Yu5UE1;0?Da<2U3%Sur{R*MwkmTN&5;*@Ve7dq}WY_O(`T(F9Q zbCz3!6q~g?JJmv*4yyOK9F@G8XN7uZg?^q4=t8{IC{b7;(Dskw=%pC!M@`)0v8V(4$Wz&ll_x@c2FULvw&fJlEm(_lr^`|(;mD;M;H$x}Exp4$O z(L+Cn0zaj#-1Pwbd&?gEk6UF}f7RRvG}WZv#qEJ3`+swf*6VZ6*Q3=t&w=~Ea1qBC zW&A|+_-@MY;a^#acE6=#(KW)bg zY|}nqEdDC}2_grjuO;|j(4XfObS|h|E}S1=Hg2^Pw6OG78s`Avk&m}DJFvTROMlVa z&8(37cQO0Ps`TDP?{fyD?yqKVound(5a$`#pOO?%7x#4U@Waz znB-WYAqT%gr$av?(3&d_e(ys4|F+2r2+4qAh^Gf$Wh>wa^Rn3ft84|Fp-#B&@5)x7 zKm&hjw!$kL^45_??wEfexLkSw`>6Ho>rQCqiK7+bmepf>7`In1 zgquQBmF)u`CW4^S!=sqx+^81fm9vh^9lXs8im$fmSBt$sw+ztFdC$qy+gwhuwKFe< zyl#Pd386fWz$@=A=j7%uEAtPjQV43zo5`(tlxR_F{;-`xJ~dj1)l*Tw^Y!)vXD(l+ zSfS2+ZwgBxrnwGj3)U;loeoiKb)TvcJ!UB1p!n+jaKU*24Ct1r__<}{nY8fw_heRs zHJZ>mCUAi+o|zTo+pQNAUXEa)th!UW+@tti%BSN=!FU1NqzF*Ji#-8LeC9Oi;yPVXm&ErX~pAR3;A^{(2Z?W=A zk8f|WNZzCLail)k96$Yk4n@lzLHs|LGl#fFmM{^{oA~ zcNTFUsS|sT)FJ?G|9s}of$K#h3VZ|)tderBuD?iUfH4i0hu3$5(o$MDW^|TB#RN83mP|sNK=DI}Q zT#p1T$j9{=lNjf^xs_19O64~Q4u=>pM{=F-`s#j z%papbth~9NeTHR3^yYen_OVY&5{bK{mRaC{EguRi|INt{67y9H8^=E73l_X`VD1eA zi$oTROgZ^e@lfOZAqdsfJu9pSaxJe01G9%FIdC-jj9nfIjw zXxaODAUficQU4yh^K`OTx9ujnkBN5bRRSMsUB==C4SHSDX8rkGm|6 z*$|%AZGJ6%W8y+|8-0OCZM+sZp6ngjd^r2#m|v#QZpOn0KpGxJ=rcOmYc!?z2V@iu zh~(W)N_;_e!BNTIrJRL0Y}t!=D0TF#qp(%u3NAshcwXI4hF#`!;++N2^v2x0`p4h? zvtY7%b8mlJ@h)J-B9BWV$=&q@om}VM#MxGh)T3y1K@&<|-2j@tid>tr|D{Z=MHRnD ztxu}dYD;20rERv7iJ}f(oqY3SS6`6rC+o{}oMYRac}a(7r&yQEE-nRyjg$0X1-9sD zFB98YVbGCdm@`w$6%c>_Hw6LlyDD>XG4~?V^I!jCeWo>v<>Hj#np|yA)@a08f7+p; zQzj#;MF8z20F{lJW%z%_p5j7m$y~^t$%`_mkQol@n{z{ax?iuf+m$F)Cl^lFwz>j5ttf@M5Br+c-OHhNDc{1 zf$AC?u82}&y^06K*kHv26%r<^@baYPJo2Z#5X{9)1Jxq&c&;TLb6j0TJ}4A#3FZ!< z=>=mpj-;+p@&pyQfoyT9;RTYOo?tvg``r>mmp&i3qQ8%c|EuT51N=gMkf7e;?aL1m z)YIpkI(PiZ$BFn&A2-^W=L?^=Y@2J~s=$%|P;x(Ayr?o1fP@RQVW;VCMHy~Q;mt}q zmz@g%yA2uZWhQ_dk|%%)KS#$Ta0VXCk=g3Evt?bZ=;K$i{x#ShHk@A=I6L0$2aOxQTS4lbyVrqP~7e4jmieWamJ(0d6T z9s%_QTFI!`t#cd|d_Y}~4~xA00VzE?PSLWSIh0Alr=!$9`4_HJ@1n#nZ!ZH-2cnzcslu&B*%{0m?TOiy#52lmlXh*w`FU7k)?=12ij0OLHciQo%kc@6vK*g2I91uC^TJE%g#YAS`^$_s2 z_zjmv4m6RZ3D)03&(bu!yxh9N)H)t1NmI8h44qgamBva_Pb8Yo&EqeC>A-WYLO=>R zlpObG?tBL3iBJgy(J?vM8^rPGxLS>z0UeU4!bUWJXE1q&B!6U8Lvwt^RMF-wl4IHa*Nz@L~(a|bgB8=rZ= z0ZrS+tB6Zea{Sy2hxnKEdUMi+;G8X-u+{13qcDnpp=@a355N|1;4DKPKSvUq*|M(j-{55+mm|Mt9F6dJUpJyH!R|)NA!`^~QK>eGe60S;B2~E3p*s|L@p%Uti z*0xl_;k*Pm{HYTD&?;ef7(!Pi9KD=M$eXacr4r&(5X399s7hR-!{VD2WgV9aswhE6 zKlr}r=v{C$KbVqRRYB%iX>oUexW|n%UUgXmf}9I&NRYWV*2#u6iCAjJTHpniQ^a z?6knBXe1xNN_V}U%u0=5u^vBB8gT19eqxzDwV=N&cT6pqUmmP=Csxe(dtTu9W1bid zHvUYSv?rQT;gq)MO#!ELIX%|kmo#m9HNPk}tr)PxoPCA4#fe?9aA3M2B|qXp$j1GF z<&5F61zck#yNrGkcuHWgesn;AIzSl}QJe&gHUhq48%C+Hlp^1nkcdBtJ)o>9h{^sk zQ}AMD43d)Vqc?2Heic&yr?TD@L<}#R?4g>^LT~g;0Rj^lU*N84Q!x4bHU@3~Y&4=i zLr0?mNUbH#EsNsZ{md}1?@b{AwqWa>F=$T%&rwl+TEILNm9Cek=d(Cg@@43CEZ90E zQ){z=jx1@T)V1pR=&rMdR7G5GDyf-~n~> zE1JuZv*j0pDCh!mREgNP{?oT;$*KO{OoG(_*R=c^k>}hSa?Ce z)st}d_kaGt_0xrKkzNch+14#8r*A?zWmSz9=PaFFoyyT+t5a*(M|P{#rU$UzwDyNX z=2t(z`xiT3z2>)s?(L8#5m^|{iY(lhBFf!N{kbCK;9>2Xm<3)mfYI_NR-ZA~BK?r^ z#G;DzD_GBSw!jvXaW zy%szb_nHF$GXnP(9aI24iIzR z`gID9Fl1;xL@vugwdS-ieTFXNtKmg83)68(2`tZwYG}^WSYz9Ed@7Q%jfpj-^*^sz zvniyFf<1a7TPa^ot8-ux(z%_XTkM#U&sVEoYEBzH8I5~ujq&}o6rw3os_7tu`=+&e z#Q>Hu-Aa9Kv8ynN-mEspj!)G0RRV7sz?QVQ;7lMsu8QUi!fKJ4*E{ef?H=yu`PWD`%Hy(wG5Unb;vj}Cva2@7OgpHF!Ltaw`7Wlu-@Z| zK1vl{w0fwvO3~`v2o|%(V6Ab=NU3z(G(TOdmrBVKTHW(WSbVrdx&1Ok!8N7Rg2bs7 zXohN?r! z!P%@1_)*!X31%hZN9YjnLQ<1?K{B@Is)6SolP5~8i;eP^&jc$@e6QR8_qTulewLh3 z_nidp_YYpLH^yV?zF+y{X8|(5K^`_-ICoEGSmd0$mlSHvd&Kj@vNIqfDzC2cq_FHq z!8BUZNLlNxe8QlfTqKOF9GTa9IkJkq=cAVn-pdg|5$)m>=iS0JoeZxAW1O_F2HC=u z^=_dGGPuau{wAlGelg&+K`od!_k8&qBb0X)QvlCQ0a9jpJ(*!pI(e~2e5HyzdMx7kzEbR43!38oqyUIO zcfZ#$pIuLJPpTHQPZuhi>Gd_Unln#t#A3^CS^xV#7nrI`e;2O3t z9y~@%u!cmcSoh;@1Y`n3(Vx7BH)UDGw5&%85eeHAgpEXTRO+J1i3MB65tywZ8(Lik zM5ci&iZP}bLBmlr9^xPejN72th|h3aldLE*gZ>k=9>KVP!5UzJ7Z>qza*HIyr(hQo zrDQ2RyQRyx(D&$!5;^69H^QTeK-Vr;UNwW&ru^L&Xf*-5 z8M76#KwXqME+cXD^0$kRXE(oGe!suHytux+Urp$BAe21iToSAJw6$P$@pvUuz_uYG z$I;y4vRY)+jGU9FiYY*qYLHK3!|!^61lV=xql( z5njC^zghb}>wo{j4+^indvERAyb-Y>84OG?K|`=<(b9w_VIdKDBB8+)zbI|}(SkIX zxFPGCJ5*QASFCAp306>X(P;rx^WSQL+HVw{&r&KVr2^1;<{dS*#=uQsj|L~S!$7!r z4yHUAvzCpnZIpNQ>2b=40xgYElIsprz|74zP;Opmk>AIZjnT_E4q_UD-4I8GzAUr| zSAsm~li_gL@mijX2V?X+8iMkTn6;$FQc~wC)#=HR8!zwo`}Bec)J^q*FwSv=A(KJ&ePI{wkPi?M+bw{d4lfTw8Z;8ZDSe186G?Potz zio0onN_@S>_Ufxu#L)sJxyKYZCHP?1t$fD5z z<1VH^vge7~s!|IY8ZDlZiKYh*UWh^F(Tal2L2aiXNyf8hd{g^}5?N5eIy4 z@#8Fb!BLUoV5K>|NuaxaP=M}yiPihbu*-aISDXdW^v0aF{Kwz_J0IgzEnm#U6z2`t zKa^RM|8D)DjZx%F0)vMmX$?qZH4nL6gMrr6%m(w7W`;Sjk8lqUj2!`PU;&Kw^l0kt zgqxh`z_qw%RmrTZH%j+&zbO4Vsk6eNTI8I?@(^V@XQu)o4J_ArVTVNzE5Es9VxEOC zsb|T6osd+^-GGey{1-ML7j3`h;hAFTkRq|L@H~B35!_nQ)S}?j-z2GkeWRY`5KY`S z6Z-k%$Y=ZngbXEw3%!85M_`^N zq1#AVW3*L)Fb`~@NK)O-N{DKa4#6$GW!6|xOk7$|kz|};nVbpiTk@CpzU#|Bk{VtA zSBqC};ZZ>>@-lnO06f0t@(4@2h+d0V+-H)$@tI7p_|w= zl{Ul!lFJ_BaAn#;upls#PS@&}(?f{w7-GwVp=9=oKfK^}_{{UnjevbTCxI(b2-vse zD#als+b^N#;?F+(g*F7{hlj27jECtfF`7V&+_K1Q=S!GPG$KKVAE_i2@49U#&g%3H zNBlpzk^{_f%Ok9OF_-<%N;aXg?9VNYTY%UP$!M@_5~Oi$JRXC0VP%k895jj7nEM^?5hdmBZ@!}Y`GtPwo-ZJwknY*JnJ72&tKgifyhF^C~Z--Cm7%G|s(qH1Ah zStrRDc47zKZc{KVLb1a*Dy4*&9%RMB9lJe4wjv7WU?erw3XqmnLn@h8tK2-oJC67x zUS3ykf7nECr`2G#p|>xL>+Ni6y=27|OoU_?Z>-C54^PTr8pA@FhHB?Hn8tB~&CI4z zOm}Z7hc!(Kzg-?=Fo>XPVxejLZpZaB9>8j9_- zw%N2y&c;2po0Y;Q=1`JxL}Sup_{9WrpKiWpQ#~~&`?7NSqLG)F?Atw|W0kGgvZc$W z^r<@zJf-~_JK{Q$8Bt~O+_EyqFUND+J^NrI1#=`8Er@xZg4r6IqBXug2eqUidrEH9 z6V>SqlWA#i3>Y(#;ztCE=%coIW{aiQMCj%tlLsbzKmAhfKdxQ zW+gD{>U9d{Ht4F_ul9alWe>V(T~@RMVFQZQD(z00b9>}697wzulL*>9-`V3BWYPy+8ftL|LP^~`+C zRoAB>$EmI~OlHHyCP$`Z#Cb&IG_FHrJ~&`YHtlyrQ)eK z9TgTktrQTH+n9|Zs9sLgAaY9iraPkK?N*ubgY%7orQ6&dcfNzc(naUabl}7$y1FRK zv3e8T&sak~%icqEs6Am8^C~;|cNBJfO2l-IU2Kq>Y zJuBo@3Bqf)dBht91pD_02shZ;XxYH;0mi)#g_VOZd?5%dW+S-YsLhrhZXfciE{kI} zVPOq5r;=sM$ zz240x-wyqAueSi7yVtv3t9LXud!KINakkZ;b$mwB^T^KD6?LAbf{e>UvCu1Y$O$f zw!+uuBbhtJ*K4ebijNNe$=AR{8$~_0%h%?^p5?_b)%j!9QA`?xd$HB<(nf=O@mAwY zH{?$W)7-R+SOquJi6OtK$VbzJJ9%lssVlu3@>`}shN zEJ@SIy+TX!W2uJZR`;)MCR}zfaP$W>B-c^<dX2vf!@} zz7Z$Zy56=XM(^Vl!DwR}i~*0)(GDRBkS!!x1B0JV^! zg{~?I3>XBZq0sX7j@Zj+s?5sD%F4>Ae*K*ppIFi_{Kxq9cl2*!d}5e#w|RQNvPmve z5XuLMF_%2iMMJE1PY=>UhGp}`f^*jb6ARtVxc?nEjWpcG&Vk$?Sg^^FsGJ@MY4(6| zfw^x;&cCy(d-&@3^nhczObP-xv8FmWJ?Kuv*>~=n`Z|>I8&F!?Bj;8L^h8^+(38B7 z$rX8wzwQEQSyKhfkZ+3}1vDVUz9H%ZgbzeV?3nJ~*=q{uS*UqkGhsh+>FoT?wQuk_ z9>0P5<~C;Pq9m(*_=X~@u=jkDMX#farmesmqHSqTtFqcfPhf+m2Pr=1+;mB6zRv*i zGpge!%)EcjKknOep!ky`-f3%7BM{qPM}2WP6fx$`gHLU4{#fj|*W2(&ZO0>b%eAl@W=Z6)OQEHJTq-^~LTBLzUGJi!#@tHVr zYfMx_;W!mB5FD6=H2yQ!D zhO5qSB)ZlPb0!_CfJdwpGhR)`LBKDIZ!Vjpr)-exn>#b(&SG;1^8yr`$!wUch(}QFVZ4xj9 z=PtEhj_Z8c5~Jlh`nJSctnJEX)U3S& z7M5X$%GvQVyOsBAc8hRdGJr&UhMNaTHf2rSoja56rg%KN!OhgzNH;8d;Kulw49njp z!>xQBGEae_?$zS&DQDwnek||T{78Eze%mTHpBuOJ;(3_E8b7mMdB0{oj%D3wm-$+9(}Bd zubv)+J!>qIrr1N30Kqh61kr947@}nxaV8^MB$39nY1oxbU4d=wdz!4k*dY?L7^Y5I ziJ#A_^6m55#sWtYP!!K#lPxPmNURuYV0a~d4zCJ*hZn7IrGebD2*QRthA-x}os6*XeJ!kg)(j+Kk|$0AjH3S}nOih6MVM z#5_pbqF>i&AU7M+70olC1c;xDuR`C&w@m^>JHNdra<6BjF^4K1==Eet1}agin2XuI zH@)8iAPfQE@jG?GJuV)&v=@*g=;Hb&~+Wr|L89=+h ziUBOq=!#@!E9xZdX~w>3NNx-m0C9OiW`YT1KmM&qi_#WY`u?qtaUiQ7i^;H+*U$)U zm$ExZv~s-^=Ft1`Cq+E;F-)LJJF&9}^H0@=y^E{{;tmfsXkB03wyW250>MJXsI)`I z{;!}*az&m1l6d2Ngr3A0Jw8bkbV6Hi5Y;%3ZCzXmEr}O;lBP;A9@`&1+3-%*-1pRl z3ssEiH*>zln*+N)V~pR5=DdgTU4gN~&RSNLmF#^cnAR7&`$+(vY47zdq{Shzw}HB5GkUCcv)-E*pMWbCFB zWNxKgW}__fc3{6um{t1=Z0sT*3T*r$AEK@4?8UMKivONib_dfi#|QR!T=PHrBpN*J zoSBfzTCm6IOqjDgcF_$5mVR^tohe)QJS$^m%DNLY>M84~%^U*~=H11X8e(W(fs3DG zo}=%Wr^C7=R>W`C-Ojq3oJL-(o6JO*0#M-oA}&mi5%%GvqMc@)${wvGN5y?Aw!|Tc ziF&&R6taDlB+i|-{oK?PHOA->Fe3GFmE%k}l>+!Li41IkXro*kiy%lq{O8`PcEwqCXvFBQtD@1=x)l z+$RgnKr+-@#|bLMR%6{vLl050WneTx4;Vm|5dXQez(MaIVVuaYM@F@q%()TYJx#OL zeF8>6U3%YLnl`<^4urdg>irh#4w{_2YjzwUj>*nSYUur%h`MBHI=au}SMYJZa7?oJ zs-sz!HiS<(=czLp($0m`Z5(EgmNFN|(}Nt32d!^g_;L=dZV%fKY52&rM8iU7y}Q(a zTQ(Ejc9=9XC%!}Vk6Gn#)dv0v+j0I`8P2+0S*iu>AUkIiqoS!6>WpYgvV3}wH)K)4 z)XJ;o{Ccaz*tr>q-O5zNV$WlC6E^)>95|kYKoTZE_XO@Z%FfOF4;1>g*sH4QefTFq zzgBxRi`}5yqb=vH1?bS8hR8cF@%QTwT>ggo7aJpvKmO-G{(CfC!YlD2up(?qR_zsI zDC4z8ZHhO8Kz!*q%L;En>rUIS=~eva>lbQN?BP|}U3opp;xseYiJWY;83j;3XMZt0 z9Mul~ap}`h+`R!-794fu!`lfTSMf4BMr$ahz|z(Mzi}l_H5+Y4oJT#BWj23U1d0L` z7<7e};!m*V4PljL(_=JrOKl;rn)W*DG|Se%RxcobsGF&d-v<1m-q;sfy)oY z^L+iROu`hjBOy{*5}u`8mA-&?bum*a_FR=dLZ#wicTPyToIrUauv2woHkl2R1tZR9 z_QQho^O^l|8~Nxpn$`O90bl_~FXHrIKclzb^k5+s-O(yQ0g?r}&zfy{`yxJZ28}9K z)X$+V@DV2m`{BO$B?t2#aq zfNVvs%xCQ&YFr!PCF zh{QSt9K6{g$*!L^2`!RSVq&siT?t!Zf~{ona}5ggU4z?JvS`;SuLUXKfpa`12ct(9 z*kd8|fR3C$T<9KNH~g}ablQy>~~)=vBKD9*LmIL|d?1vxj7H&V@Sm(myV zWaac|CfJJNC#)ml6@`9S$HzcKAIo^#DmS0cn)wDntpVy863ecRc;Qywnk%`AVI+Y9 zu9}z=o3x=vIz`-V2Yw5>UgvzYpA{Xnhk2YC7qL>_dl~+Y&YRS@y zZ4EJZ0HG4U$b}iAUr(q=1JSUaE!iSk%UpD*&5i>n>WwTciZ+s3FUH8VP*~ZD((a8R zZHdh5R{WBSV96M0l3t$Bq~!*9lIg0fMG6AYHt*&uZA^QQRJaU#*DPF)PYxZ zq`eRGtE^~H#2ND0(}GQpAT1H?2sEI0cF`6$l!&0!y33LP!_gN z&l>3VYRj;oemHM-UtUF(anmQ#Sl5n+kKvMtq2XpDDZF zLj?ZnQ`Y=abC!nTkNTYTbrM6gbC&)|43y@qtjd-wD$lb-Ym$k<$0Pu!Cn_r?00J`L zCa3ux88F!C4>4vyUC}I*A149TGDO6J&m$rxq+vnXCHi?1CI@cvuaMJOsE!vch`cc1nO-Ov+l7s;w}K zs-^t+oTHtlDf;$yI@6TslwsPXr5ab)?dONb7-KjgafZ=Gu6^D9aZncze*P=RvTU3& zHK)UlMiLE48$lAGOv8w`gHUcLc9q5(7Ruj3IRv2` zKX+(qzwXfJgmRKZDAUf?AQ#HClU;~}GWBE^q5`qBNk=S*X_Jpc5Yxu(p=fBP8Ry}Z zG{y7W&hOFPj9X3Y1Jx4aKYO1|`F-!nxgiZQZ3<@NymU-)%*DQ`w*q4qXIYqO*Qxl$ z_@wq5;}e}8nj+CdX%`QXNm34JdscpsxP53-?r(kT&luB=$el-kW#rRdOmzEl2g026);su>05(9JJ2y^}4 zZ@l2V*xnWnLUecD*p=T_4nXwggjtFfwb@Y0xAP?UQ5Pl0d@7mcbEzCpl*dRL&m)Lv zHkr(&GeSDnh;qkCo=b8PW&%~UdY?@25sU)Ao+!kccF8!Kn8noI zX-B>T5z|ZUF~L@d_(kid=tt{sVHHGT=Z#$%E6xX`6h%d{711K`s!*SpL?y&%V~6s7 z;yl26KOco$`xWQ)Cy$Shmzrh*$+vX;GFMVxHFG5!XASs0#<<1VgdFFLA120Q`eWHm z952HCYm9Mg-89=j1aK5<$62fiNbWa_^Tdsbd5$|~e=d8|m|%)Y{BrfuUo}@RMwI$rvL?qBc=K zSk~xCUn$z1Hhysqgf1vHQ6cr%C#uAGaA^mU7iB|IeuLp9&1Cq?O<-~*lw<$+FH0>l z!IaSWWre2qn-wYusi?y7&>0}lW4UV$2zcVJo+-UceoCm@viRkvr0M6UgwFeMKBL%= zdzdzkWbR?w*b%yisUJceW8BbbEt0~d9=MTMWPQ`EgdIS(l@hfzm{;H`B98s}T+B(Iz0~Ir0`~tbt`z^a3;e7aFbtb@e6#;eAU3`PbL>{4xxQ`YO`D;z>c<-DEWvBpdrzBaE+mz zX}C_YjIT(sNDJ#^_8Tb{<*X&D+)CRk)(MqY|2kf=17~{55 zH^&>fFX@LRfU#XW{`DTFJ2&Gi&@|cw^{W;_=UJjssI(PLq^<3HHiWdMe(NG1xb0oS zd9A4;$)ZYoRO7s;l5kv{i*(TEIFkA>aaQBLWt=~bqkf2oND}z}&2j!XF3y#l=*u{g zP@3;m^_$}YZ}C$&q7EAVmb0LJqlMOft4K0fc)Vr@4yL)^2;CSg@R^ufnlPH zj%HcfaMrd7$)N!Bjro3hfTAmAlMV%^o!}^7)Ft%aoZ05BZDT$9DGeVZi~_!#x#eCo zZ3W&CZA%N0A$Q=QT_Rx6pN_JTj=`ex+$Rfk+$zvbAX$xdJdGX>fCz`b33|W)s)UBa z;Wsb>>OsOdks*pkwVTYjCM><*LVys1^6q#H;O|t{k$dQcnuvf|nhx&^EPlm6QvgyR zi?1B6g-(4`vM`;V!Z+IJV zb$bvj{d={+-4^}<SsppQSy$(g=HSKhNAe)wEOd-=?axbFQnX!Y0 z_zok2BwVGk6}?~WX1?BPTsPaRlX{L4DX@r0wCezNMJrelglN(0D4O&dWBj_H2WMEY zG91xjC;^2e*@HHE3Q+sjAkGBTNRFGPjU0(Djy7(?7~}TC<2y%UdwqShoon4j_RStY zNm7+)W2b5{My@NHa78y|P5r8DydIUKS;t4RB?HqhX6(;D5~`Ny%DtYAh?s~5Rk!tL zNdvu}EXhE%f?zB{r5a-Gl&%sjgf~>m6AQ(TBI$=U0LD;MoAefyb5oGaVbh4;O~E3KTh~{&?do-XmC#}B z0A}VM9};6VA8Uni!UQCfsBD2CnFG0J5tWe(1db@)FAyZs0)D~9OSMQ=+h83dG71C& z1!t8#RB1umCi@rK{dI)-mRv=|nN)reOtU2VUI1Eb>U2-h#&8)kfP@xL;?4&e9k{NH z;j&Gn@&*Fvqe7!^P=+CoXi5uOkdS#IK_qjr7sxjqNvh2TfK#6_xP0;pXxA;OKm)=Tshdy+uz&8@rstw4`vyz&eO(H*W$dJKY! z{`q;FsHzDIZdwzv3O^B*#5&=Tn9u6O$8^Ki7ch|qqS}XjktEwN6CEIlwh2ENfRAUU zYyqdoqGABCJ55O1P*;EjlxdCpbj=b?Q?`fLPC_s&*eXVc0|J49BO?J7 zQj>Ht1%gVGmLGO3YTcu!N>bz$@}xlDJPGw)(Qj*hhCA$nqWP{He+Q%xrBo?;VlBmLMZ^8h$QPl$7<3t;7f8qAoM9OX# ze+7TaUA*trO!q@{8|{-9eg9f70ibYAV52p>K+j#X0o~uV3WlNaqCx=M9@&&-s98^zo1k|9a^vgx&s2i_Tvr+1aQGVNekpWrivCoqWxJQ zNb@qI#Aht}h1fGRlBnKb%t>#)6GxGR5Y@TT;;QQcr5>8cOARnyOGdPHh_?pwB{4-l z$Lp(NmSj?y0%2L zFa_#i=j#pIt_uau^IU3x@meT0)zGK6P@n}O#JF#l3<34%UvTa)=iY(OR|gw<3wsS zq|F^ff$2dYt$%kskfni}jRsISm1_jFG=15S>*RomCNc?Q0wvPyABmOE(KZ-=a5j4GWCb;($3Krj~m?W_|fnX6W8-XB^%kp5MtJFw15Gh8Glf|C|3mzw5qXI?% z`?22yn`uP$n_wgNA$*T%!6Y;F;e$l{f||uMlN?(dOmNZTOD9Jvv3}-lYHPOkLQSUw zkTV&)*|H*c4A~w!>n+k*ke)JEbrvQ7`d|i^Xx-%myr~ak-7P;9&-3-O@)CGv59{vo zd||xIE76`Tw$*iuJjX$;D~WZr!%(LkjJ!yQ^feM@30SLZky%2n%;lF`P=r9!1TRj|%n zOca)*y-xF;W6k!VcZ!^y*lJFxCRZ=t*|41`ubvDag*gqZ99q9EOpWH$nu!Txp zOHDCeTJ@$Qg#BvOAB1-cMQ6~NiVM0jn23_AWv>?6#W!aIxSWuTo(r`ytkZ^4! zG%wEcXpF?n__+dhv<2_TgX<_FX95x#=5i7>?1=1_(q$a6LQ8uf zW`$oQnFP@uPg@C(^Ypn4y$Y2kQzp=7-FR>;c~4?mV`bo{(W`WS-^`$^P6=Z&Qii_m1YdOFVb z=GF;lPblHqBOp%@1u@aKmsB(o5k?!kx|cNfW5_w&y|c6C_U;BEQypm!5st2jF@8h~ zCvD_rk?QCG>lmZC6i7vYCv9Q-V<=AKp-obkhQ365h%t8Lv4CMCw*q4agLX2z)E?ud zbmjJH(9SI$beF`2YG22BBas1HMltdZEtW0Wv&2af|6s7lHWK+C2og?Dp%_LNKO+PFf)}=mwI2B42I!}>x=B>`JrE@7(~n*NH@~vMjSy6iXkQX6ikhBTars!0FBp=( z{#|5LS+tzUCbF{_cv1Sa6uwr5jPNtE_3 zmyr%F6SGymDi_=3()0CgyKx&*K4w@%n9WVHLi&MV;cQS^z}BaT|I&dZ_hh2Nje*c0 zGhYP)rHb@|LE?HKWiXZj3Xm+&J#s3d(*lbMuT!HY$!0a!WT!N2?kB4{2bggDF&xnK z$YGxr34XyGz+I^IBB?{7)CU9k&wu<+4_Ih{StQocK<*EoVWX1l%dHd)SIe-$KmYN+ z=nV&v@DDTzY?CaojN;r5=8x}KB2n3wU}Pk!OBs+kRLKA$;jjf;wn-x?0uCL?${h?; zSMJLey~#$#kTjK&U~#wZaV;eFl3=|fGnfSF-G(MtD{ggyH9ZItJrPb z^O{h9Y@kisDj@W50K_gZnxF>^ph{@FjZRcPJ?J{X4-&?S4DmIp-DJ-7{PZ--a&!B;w?6;6fWej(^JfC#-zVLS{>uk``3pEjS$dXVGsc=T-xU(P|*?O_`oGYv^;i3V&$NV$$S zxE(gpZHKQi{LFmdklbO3+24(Q{1c|?6T41L&2nE40k{I zq(^pT&*~NHwMUAwDgdZWT}GBb;w}es17aHnwYXfu0_49-l@P?LB9xJ|;O(ctB`uKj z>_O;UKmu3+f-;B;p zIt=H=ZL8dTZrs+3=Sv7MlJQTs0&_bRDRvmy0Sg|BcW@SXqxyZ zD#b1hAfiyUn)&=z%)`!snX;O&Rk+JV?aX2yoX?5Ig%7PpJ06#_X1=lCarvbynuQ(R ziSGIXV1HTS@hXa&HTTk9HFsgLoa}C~Yp&+LgUhq(9B+%$G~MLQ1@AH{V>UnD@S|Mu z4+LK{ekPW3GBg7nEBR+);O6(?SN9v^v^3pTdefOY$3@_0N3(EX*d-CyM>UTVWw_CW z?`U@4>2{p@vgTl959C&t1TL61Nd_xe*p8pmHG_4J=oGVHpinXmvX&6J`+|kY;j}8E z_@`h139XfZV9g_Ds6m8n*ku0vV7qT9j1-D9f!@&3WD}DxRv{n_iHn=iBxG=-)M}HT z!pz(=J(rqbywokEMeR@B;uj;#IFz=qUEOkC+jcf0#ZzMGoob59<8P~T8YVzr$EXH6 z^Pb}Qw+k_!v_Rs}Qd+>i<{Vhq2GIiPWWayLBcLgc8&U+0X#pb(`U*zEg)RJSqZq5r zE5vIa(JopE1)$Rf(+MYL1DUlD#*Oo4xqMSxYx;7-c*UXC$6=re#c#%L%S# zz@S%Uk}MW7*bvey)d?md97H00F%Y~wEkHfnKq;ZLz(LNWmxx903|We)LZT$uhA2@h zVoYz2IidaZBo&#fC)hGNggX-094&xw$#InuN)Xq-3xB{plGj_oW`dK78g+5 zomA`Fu?T@Wp(Y=PiuDX_7#NAk27X4JL=3U?l=0Z|=THbllw}?{T%>=ejXb^?T9rpc z$IahFG80Z&g1NAvdSAG6VGHFj%j}M`Bl$d=Bgc*YIFXE!+vB~D64{P#KjY-J{dK>l zfTtIRf9qR+5|9zAx)jkPU`*<``Ow@cV)vmi#Tdz%Do22#YtP{>*FjUb3 zMF<6`7QR^=XtD$nP4H&RaQsgX#(E#quWN{7*hlzNcf*+zD5Iv0^Zd}S!u;3O{1+OY zg9Nt3fd(QTyfOgVB8|W~a8E5tXHwZ5P9*Gr0i;JslTbi(0!4F!F8)Rlr1#M_ud#=VSQBb+2av>lc^gve{$`l6LX#?9ypwsnNSnjT&O#5cR=o%R)BE z3u&*0@9-CJasU+Q4!eC;Qpd10>=aY+xh7G7@|_w zRN!27HK}1FP!ee-lRQYEnlq;dXNG3$33S7GNve;|PzPkGV!#&=gNY}&OYWU3IF=?7 zE~I|MxSxnZKyCj%chy3D60;edjks!Vxg%L zN-3}n`BPIvSu!+J>siN=He@t(<}hH!n$d;ra4i0%8=3@66Sj^ig~zpjGVUWe2Y=um z=q)@^5j^-46Ugb{@^f^J-*8@@^o$|;3&E~%t%%sbg9pSDX>h&fD``;n{EnFc#i-3u z8SCcB*u)(&5yEpONqsPhGbHF1W)u7#`r5rR*Y}ARvN;qGhOl5$8LSC^bPfu8E|+qU zObe-H6k%^{(>enh{wqRxIIXA7DW3Z4@vYx?xSz;mMG0M|te zeK-4=7=Pd~aM3`|hS~_UHT;%^dV=0Tr@En@q@C!3#g`Oy`Q;?XW>;RGy|VGuS^w9+ zxG>OL-r;A-3Y%WzIM(gS&TlRZ&(?nI@a~+JB=3GEB|fL!xrN4Z{sWIMv&=zI$CA4h zSyAwX(eD%$BY{-{lrQ7P94@`ad@wfp)zP|BR3E@V%ar+Miw1zJSygqGLTmQJnEmL? z?^sGv!(tkD%YZBG!Z-oL4$=*9VFSoPl4(Ij2I;J_iZv@ZD3$>%X@GwA;I~aU$KBDIJ-~oI+D2C! zL=u-0ay;)al)yQg^AC}fW7FvL5hRhgY$lmS8(pbVLFVIg9iQy z|Mw8KnHfP*Buqz}B+xBpN!TW=NkKz>nBCvdM}noqci)yLhc)R;kZOtk&UMgr`vAUF z3cCVk*c!HvhR_!1KmYCjknG=9>!grx*FHs^tzzVPYWgxh!Ul8JjvkHe=Ao^~mWZ2h zg8Y_DZL<;^^H#k~6FVYCY`k(eojytF0gZq$J$tvbrC$w``1POv?SJpiH)+>6PY%bo zopHU9V(TzA!y@cj1eOT+Z~u1*7K4o<=+2^W!~)b6o8f5}JLm{l_s9DeW@&@8c#Yq3 z_uv@yxygW;8y2vQp#pdB9Z|w*$w+bd_4g5M1MMi0h+nsfM~mIZo-?6AdZJs;6QqPa zo16eAal%B=p^z`!K|K*W&iM&{BJ0Wt`zKmEjzn|_D7Lr!ITVe)tRCT~9LF7J^!YtY z(@zBUm`}l5W4UV$PEzUPG`tvKqs0lA!B_7`vf2fc6DXK7d`3vKe-2IU2n`1=jDxC; zIL)tnfTK*^Co`OnV9(`uING9eG_w($Ae+PTTj(@XWS#tY2lWlE(i+@*n({kv7VbaL zijAn%?@dsG{OQ4M*(?4=)PdExXf?;TnNlr3J^S0gO!9wbSUG!>x-mqh&fnx^OL#oHu1@ppxm>su zN+LwEnpCa@tJTr#eeHFSX})xX!|Z7KaLHM%>rVBeFu89uI;LH%;RbI@ie+9hsl!82 zx357>d%dxm$?i>d!rnZ*KRn!JNA>sq^`u#B-1Vw2&Bl085c_%K?coO0&TrF|^t6_4 z4$?{SA&nb+E%DXn-9xtsZpV4^QBL*W!Bu6XrLLt%{^6}NRn7LxJEy)dc4~BK3@5|K zLoR#YYgUWR_MoIQ_wwz_wPHWMUgU6tN##~jYkK+prN*9>vqG!)UK?2NsZ6i=K7OoZ zT94VMmwbo6e644d7xAe$;i}`>CD+y;m?yq@(MmoT*KgPTPX5}$4L%(jTDO?$*wbvS zR$)a!?wBR<>BZJ%#%jEt?-fwjuJbk2RZ9IP0b)uuP{h z6vpGnIy>RA{Z2BK@7};idg_HSD+RvIR&Fv)R&C=3>*YJ)C9UOp;O5=XIQjZM&m}9v z!<($giP^)#$Y#1sx7Oh=9#gj5=nT%7S4&MwZ)dj*Fa%v1jf*onJ6--fQ*PxqR(`*! z<@1-Xm+;m#y8m>3@qWeMPCIOK^f*l=JNMJ<-H>na?~gU+CEaJ(^D%BP$ED;{_WnY; zRhv1hQ_A1o3HN8r;}bW$?}%r-eyd+5MEdCy5?IMYmmRcXjfkE+okOAe549@ z)>wFwc)sjRz0y;&SGukjuMZ!u%FTz4c*&?%I`>e1DBst$JL{s{71(w|D7QwIoIAAN zdF`bLrpl{OsNa-dRO$6v95n8@H{HYy)?Uucl+1ET_IdHb5ns=P83 z@ANnAzH?qIFce~Is$sv6tlpb;ZafI*W?Ohw*=fHvdetrsvs+*u zxVy8|m2iJGnC7eOi&a+Hu0um`pS|cOyZWf2DgBaNGGG_4ZVSA8RTEkDVj^4j48xS9 z!CB`}m(m>jbYJRQ+N3GG)JDmM`pB|(-E_ZGYUG-@!7^9LUtGV+)d6Q|kDbv#xGFR! z`TA&(Vav7p;OXWu`93LJKD}97O*5;HFO{x-W;U9Sg}3v!-sH?m7jBE3S{(Ooaf4^2 zQk}159>Fx(O{#51P~`JR?zSv0@^5gj>H#sXzO(r*;+;bqG zY0JfGs&jeOZ@%-+p!6SXOK8;8bmzu=>T_I5t@WTZzR=B5TjQ?UJ(116q`Ue2tTkpR1?#k!6o8mbb6^pl()LW+6YIdAKIZux&*@sp&b!OCGnVYhey~R%_xe=4zU-zi^x9?j?2b`8O}*v_*yhs(JDQ#; z7rb#J$({GXBiFjpEHzynm#kWKSkrUDUE{i1&u6>2LZ;Oz6xed3+866~R(VX<9@>ij zm}1hSv~uq>SUpS1ttmSmOHcQDVW@T6g&x-)+p0W$O~c0Y$KqkOluEs@V&ye|&U2=6 zpYJgJ_EW*Oi@m{K&B(lNW$!Qf_TZvX$v`1LY+U3XT2Fah>bE4(=w79& zgIBG7SG6krmz$JQsI_o|)oS7J_7;HF6W12{tlC!qcpn{}i%*wlccon6|FicbONwjR z{R;8CX$Mt_CZ_k|b%Z1kh7vzH7!Y8K zkossIT_>{}yuW3dBX*ROiH+MCB(s@zN@^2XS=MrRs!3)>Jxgqs)AH2Jkq6R{Gyo3{ zICj9LsZD;{;s=0BGyQ^ptN+HOQPt-zat%}M@la6f-LyN^#7e)IE*IJcM*}fRqLps3 z6AT$#7G3{8dd5=VM`~-k9Fzv7@xm^5{GO1l9GS|{`DMBe?pOGtJmLL!3Rc^{%ofQ> z-z>=1u7@?W+wV|=qEay@9l1+2}Z+Q zi*1^$sk5Y>5okjoQHC3vW)5%kx;#l#FrnOAmxhh}f~HI2crq(!Ib`Vn>#=+%8=y^v zSXYXRm7|pzqTL{~lZCoK7B#Y27@$Ib%B@ge`fhV62J2Qxr(0<-D|5(AeSpdJ6wPay z>5|P3H5%oDRUTw8cSNUknw1LERccgCw^>_kt2E1&$uem%rrjS^^UM08*j|^oZE_^k zx`@r&2!hrKc4pDUc(a@l)zM}U2&tyAC>p9p)(d7PX$k3pIaqk5VzOmsL|eB7L#o-n z!8B7SLhomFl;BG8YU2#+!yH*PYuVPENES9sU#jsCAl~rui&VE;Kn5L}#>bd#azeX6 z8j9>yk_)wAw5V~3GP$HvRjr}6RJe{$Jd!pat6i=#QGHh856fM)wO|gNtd&Zx@g&w? z`2xk7lsjmCGpFj*tl;L>HP4hPrOu$pE^=Dmhc*_gZl&wByW2iDulKBUQ_|UNN@_W( z7pyX0W!fxjO^rNbRNca?Ps@H^TSF|r&TbvXl`4X&jh97sDVYF-KzqL#$Mn)Y9;;*mSi=(a#yuLE^{R-S2pwG+RSYh%&gKZX6qBPRdRE! z0_}FFDrwc|ZMrd}`?A_!O}NTxxUrB1_nneof%nQOdz( zug_*SozZIEsMCz-S@beMn<-u$42Dysw^`z*%q8U#rWGkuPcAmq;g(yd18l6@vR>IX zjI`vY(HhI4&0bCDigUK8r~?Jh%Ka&7m$Xo(G;>bLVe);uo++rQa#qq1r<27zUcwtn zub9l*=~TN$BjPqWZp{bz+ssZ;)!mnJv0k-iemD_ zh;Q?5QeC1YD>@#(GnXC@` zqhYZ;vT2$XdUVqq*Ua>2oua$!Xu>wkF;jK>|vVs#|(hX{}1C)0L;=oY(3#W@4#S^|~^gv=zEMGKpNncB#F2rAP%K8DG?rBoxdt zSu4>Hpszbs$u^M9EO1&tqB!|5cELA0eSJNRjL=S+FAcV%E|}|0yXzL|S{o<^<3KJ0 zw}-!4WV40Hsr(pR^g#nO5dMdsEVzGYTQ@EPRN0lyT8OWP&`Y3R6yQh>J{d5&QzP=V zm(^EQ1b%#=yu@#DsM}Bj((fU20+ZYVb>))I6Of)J9CUlv<2=U7-DVM7RlraSCsROY z==LEq2^J;fC}&r$YG}SJ1Z3k=2=Fv5j-iqsP~}P;kN5IYAX5NEczLz1<%?6S4uQW- zc)t|9Hug!6%7LCbt_APFmwy8;MGNeXhOWc6NQ86F!~A>BLlBbi2XG2vNIG-~5@;6N zxdSuAA8W-@ri!ZA-tX|M8o2DB%MZf-J@C)|vHl+TA)%KOlh-sIwWRon?6TMy<^w!ftzTMTEa)H(7Tg!74YBX%O zkU%jbI%sY#&GhoRViJ0Dp_`0WNpH5Y$#v}VP{ON=rL;|XB_rKUmb19*tC^lG%uT$L z(=c_8u14)z__xch_ zdqce}kE+uiy{({wX?0#7rE6Qhw_Z#6vNHosWB3;%aIeU_?xm~whO^Fp% zCPtg$CS^#5XLl*GNexY7EW6ceztvmtO*c1dY;sCEDNstF>6ICK*;%?>oYB$)XDKut zH(eXGiGE|y@mag5`&y1?h|8^m;j6Tn7MT7jxm^I`#1o_}KQm^?#-B7Rg{lx>qvT@E z-nO}<>$5z5pq-rZ;>KF`(b$0(kQW~c&_i)^qZHjqkKwv)4YQEX4|W3d5Mc0;-jkv` zfD^A(r*oi(1s>c2;^-W}@|zSrL=Arm7-+lu?~-Jlv?2ZS5I#x%`DY+45+MHP&)>8l zZs;49$(Y}91kZd^g9xQ>-~-~GOc2}jO@;ph9&Hk!J_Z4vgKxrn-@a#%9I+9916fm4 zm}U3R-=-?ZFMyaa4H(oaK@kOm$vD$ATw?(O&%g#;D7X$K*jv2J8TkbQG=j1p{}SG` zfuOrC(m+T{AkuI&6lr-R`?|rE%ib>2eo3ldlIovXQqif+CeLiZw7x5;@-5C~0~Z2Q z@2%Trz96zAu~A+32h&NZ-!Hb^aU)f2^)N?Qoxz-6d){XxJmmo+wiO$2 z{mY_cKT`0VFhNg*35H--q)8w%?{PT(vk`(osxbgqqAWkSQ zR|xfFv&gwCV@0jdn53S$wcYofn)y~=;e)p=T>LZI4UrRO+NA}%S>G-H@aXL6L>3&iTVt8>> zf%p+shV!6$#m8j5daWcJ^85W9SNJYR(8Y9B#}slRIj`kHI?m8@DtE7u=pAD0T9T!I z{Oy0PG4>aD1V@vv0*#-KHcBnuB-SClBqv4DN7y;&(yv> zdP*WF$N~~FLG10~TAH|QI5)egyO6Wyh{UFlF+u(oBu(5sd()zS$1bHUJke&ZQRmH2 zL(Xvxaib)Px}b^O(9ENB!Q1CgG$sB~Eb8W7oRnhv$G`t~g!#Q>qdlOK`L*fX@9_8Y zpDU230cG6^|0}G?|J}YO*vBnNG~B+-p+E!I$_w5B@1pX2+~+W5)jeJQ3x@yeL9bKS zq)z&SHRmfr;~fF9Qy0(l1P;`f6}uOCAHNmdF&rzLwn&=r6*U+O_5L_oug(FR=Vajwe@o_7i5VSK?=8sN!3 zV;5^sPp?0C0pf{n8&oNLIRKHmCbxh9|GYA7Z|+K8eF!~yZyK0g17+&Y%RJDTFoh@% zH8)8yExQIG?Q+x|%fx5}0b^AI3QOrlXf75{F@vHH&uT7Oamtw0us|7)NCiq_4eg}j z!3U1*i8bNwN@^Xi=6CcA)v-qS#5!j5wMjhLrVOp3$cpCohv*MaoYPoM?Nv~HR+CSh z$WN^Wd;VcXKYm*F{1x!U@4|03*qr|Jw||=&#zN!FMK%Ln1F~ZI`US{!`P=a@;8}-V zk3sAx!<=X*$_!Msb!kP@Fu@UY4csLvZ#X%cn8O30j*&<#7`iFV@efBO&HaCli1{{FZB+!gcH6yZDY zwfH^zmavRqRC`bqD`DA+swQ5IJk@(E2(>F>?8}YwojR^51>kYZrD-fpg|o$%1gYAx z;mqU&sJ#>P*`LY14p_blZHq!sbPC)D#i0|&m6Q+a7=KF~)xAw!Q*A*x-_KKRVGiP0 zC5VAyd#c8UICNyyoyVwarJb~IH%__*t4D(b=|QQu#8l)t#}eO`QwK@yY=5C0UEqQO zm;xk;mn&rRQ2t6j$$CFO`8R~CJXHUPQf4XEv|>nvmSPoij8gJB){y?PR1MpXWKYEM z6htc29Z!QgYqwnYm_Br0ld|Y* z+rH(ZahB!3W@ipo9vr?D2#SNDu(wH1w}#3VZ4qIh{$b3I^)8-n6QF@sKy zBHYhbp4Mu#!uB!FQ`vvjjVOjlytV|zvXrGimC>rr$7+*%-c*|0QV~?|iw-T8-yvct z+IS=U~Y!NrS%;~e|HE1ce_&nm%9Lx4?knpf};4Keig>OC> zelx%*3FZD;O!zhnFTWgsN?mi3Kl-S4#Q2ZBLb-SQ$P+gOe^8OpGN!T;N!G<`OWbgv zmhH2elOyrxn0D6lTKcR2i6^=HeC6wDp4sQ2{?f2udZ7sI#nTs_X6>v+Q<0+RTrt_z z`TI|^ku4E8(!Lv}AU-XQhvRw2Q+1gYd>D-?sk4zyi^i(y-ODqdz}Wet#6r z@1rd);Wo1mmv>YS#09`0jG$av*go=-PS{2w=l{{bT!Cxw#h(ojz+nZw-VF|b1F;@D zc=V`C?}WNQMI>IRi_Q65DS;m*Xi1%mbg}>Xk|3>wxLJxk7`JqJ;i0N`by1F+yR7(8 z4?bG+Mk(*Ab3eyl^ct5)($VVc&f2s{yVBnBk8705X0HB7>y5AHTKRBZ3iWp*aU4Z$ckI*b~074%62& zrr!%NyRQ{D;hmbnFD$@Xb?bNTj?&#AtS4Bz>y5>2VhCtgC zGEBs=-%<3oQ)uU7$>Yt)Uv4`#cMbZHId*c0_eM0jb8yFLfKG=PB?sLp;ByA`^G0`V zT-U<1BCOX*&ZEy8(NXe=9|Z-k4e5GR%8xmwt4A-Mzz5GC%81DaV=;+e+~+4iYxL*i zJ~y1y{V@mj&XM3Bb+v+1JKuNlsNY`$SniQ+XHW#wX}9*Meb6>C_L!b#(u z=;3C%VmpySmSQ#N%Hq?g?TP7PBAy?L7gnHbpSN6*B0+xf#`7&*^YlElp)+AjwXQrC15=EJ?YfuA&V<`S=--RtVczArZu7^1I(yr|FZ<^c>i zc=Wu>6ZYZ6)%`DQ4gA3xPSm zjxe?6$vQ&WaDE*_7spKl*q?*OE*|B+nRv_`MDDd{nud8z{CvGGnvj5S z#9LI`_X*v-s?~kH>AflL^y_u|2GjWKb^3Zbt1rmn-i_=2dh~~0D@pbXCF1t?&RyY8 zLIw=^{*LMU_4@p+={Byb>qUefuX zxWG*VeoBluz_w7j$E=yL#=z>$H_jMF3xC{$F}m#&|%F%;@RY55GdwwGnO^1PN@AHP~ z5r;U8cGz)$qZcc=Zk+gp+S5iDO47xmQ?xA185qe{UPlL97Ppd3?zJ3f=76_#)_dp2>%9 z&4=>(_syNak97}S0H4FpLKpEWLVg-uU|F~XJGuyR82xN?5zmkNe7Zp2C5vZbcDxFr z@420C!|c7-=_^Xeg|+M{nrI~&qMPU#8V8S+A1vI?X?cLEw=PxooK^p0vapXWx%Vv5 z9+dw5CE7okg&}YmehRwy*m^x5M;8cWO*^_kf;w3{y1*dU`{C)r7wupt?u*d{_!B&7 zo<))q9HTDn{RBY5W{=z&;1p4a%(2}XPut{*m)_|y#1w=g-{{kbZ7ywJPB3P;l9`ph^h$wIjEYs2UXuU_@9QUp?dPm+CRHaA8PGKTc}4LA$t-_ z$$x2<@~%~KLh$LAZ2EIJ4RIHz`B1w&5(ZNM#*c`>p?&zXU@-AQd_A=e{0Sa2&!WRA zHeK>w20+3#k1gnIjKF~R(EBSyL*<~n`scQE(Z^Z3?=AVI5auttW8%)voD# za^t#kzk>2=reaf~p7vDiDvvDRab?EiYkTV6%Em=ekcA9IDkSB{S)Jq?Zq?l+i!8Fu zPvlR|59Aku21r>Cl2Qv4L~1+>dn}RYMx)VhG%V-z;HY*`Is3=wPr+~G`O}ldKQWKt zlgjfa|Hg-J!n3B)Y|tb4D3o8o$MT1K#J}|1FyI4Nfz8 zZ00`3V2+xr0aqJyK>5$H_!-*b`{-x%wEY)8&@&&#tR5fm|Awz)dV0`*v7%Aq2gl^u zY?NMAzuv>p9}ar}VwZ%+@Z)rQ&rT<=alx}XDV;)L+c zdA)tosU3*XBOrI-t3%_N-CI3}-f)PIzBL{$lA}ilp3hM|uEW?4bNT;kjcWYI?Zn|9 zSd-9`FEY0e-_QXEebSJh{fixgvZ)(VUw(>Oos?w&nn%N^F8CUp)-tNcyWzBEI;X)e z`Iw)`4$IthnZiwSkO-##g|f$C7~{lQC}!07iDdphX`GhE%cI~mu<&S zrK%^pVX4+8EM?+3s-whF(Km`5HRYj9hRTyo)}?1#7=$Q-UX*i-o)mhE;_cXDqqd`+ zyOA>3#AAvq-_mi~o_S2B(WsZ-W9oo?i}sj~t1+YI?lET!))%i$JBv0O2|^B^_bd5Yey`l$z$rkV!nG!`FTv8Mme|Wi7;s*rQZ^U(Eb>; zM@^&J-f#b@(<~|9!G4MPuGo5FBfe|xDASptKj4>q%ui&FW!_4Q0?9!lm>Tm>ozkUO z_tcwe=<}vPBEEZ5`b^)3QQMK|(&kMSB8&YCc~cGJWJf7YUEY*hlKkD9S|Vs6QpE4x z)ZA`5s_m?PPn$QTmPmg0rnbU&b)(iQzc+P}79o;@L@;%FQ>9D2?x{D`)aOm5Rg@NX z$xH4{)r@L&zrCr8LS(pqp=!RG(K7eio4Qa-puc-lO9U-M`go&iK0s%0b5o7t)?U}~)NyC_{Ec2B*j zmNswdBCXoAuuES0O26YWnZBENQzbn>Tv~6+G|bw5dsAu&^mlJ+iJ&D-AMdv})i!E7 z3bbWdwHbW3fj3o%li2UMsd>I@?dyj%<(VeP1THMnGU&Z;!PDI!~F|+Q+4B{c(KKFmfFCZQcIw}ds9o6MY~TJG?j5E$J!keXsOu?5I-wB%SZzmwe1mWR7LtN{bN5K_Zw- zxha9B02cFiBDW`bQ}Fd?&+k(|fIoU(7+HXsh;7>2kb#>Zl#(=cw(Fn+kD?`WLECY#PlS3EYhg_9P#0hum6-l>aYO`nbEc z9GjV?g<@8aG805&YcqEqU@-HblgpDJ&k#vLPA9C7}*pLYFjZ_nB^Ee5`pHooRlhHlLn12<7 zmd^*NHzWSx0tYxRl0ofSEOaEv7gc-;n{4+W`4>J@&iV0HTM{@eu}W{7y61U6N0$Hd z4yMYVgQYoc39ac`BmP47#Ttzr`e4@o`2BAW=EcLkZ@IzP^TP+`K3ESI6U%wH@q90k zAmahMLS)6mN!Fd=Um?3=q%SY4)yvDp9T`E+kOe7&EbsrgEFd16yo{W98OJ^isQ*L{ z&d36&MB20k4@ufQ#80$icROMB?TE3EvlsL>FY=iEqO4nQ_DFoEY*8AFnOhoEt4O7)@Z&x8NgPi%VjHf0hb+ios71ap<54!?(eR9}w9N7`z#?#c zI`Z5g^sSKUn`1cCHb2`MTRrBmkZGKsH_!&^=F4rj`{#}>a)zF^nc0?OPaMvd+8_=b z?^zciGY#ZiA!XUO`HB*5o*s=?n|-+g9nn6UjL0*$hDe_c29tn2Q9>h4O)M_m9toE> zWaM!%z(3&nfQ_O*II=V_$UXmh;LsP=G%{s?&w8~}M z;WA_&H~5f-)b}2#OR?6Fnp{C`Iwep~me0INKx_|8=oc|fp&FP=EMi{pFTlqKiO&L( zXjr5Gltwv!-{p=A^#eYf9E%K?={X_CR zWcHA7*+8s-fW`zRBs3=BUTF|ok1m%Q-h83K-|FCKIlN0O5v6f>98Ih6V>4lV+=Jpc%Eb7A6q;3ugvQ8#GHBsGc^)=YA69+E5d?7%w z463V+ef8J5!7DS9UA4eVV;PG>rN@-j4s@!9&)abVV0G|&yN!0Ex`Qa1|Ay$A!SA@1 z!xU#A;`yYd;6+e;DFq)LpGba1)LAXPB9wM=*4|A2Dk`p+<){?4o#m;!$ZpQq0&6qB zg0Zna!vD>Syv(b!=&3&}TWAzn%gacexKG@lj8{dnRqq4;;|#I}1_ zdga7oYi85DenV8kua(!=m|FyN5YUu@*!UU()zrgyqHS^m?vWj8o0@J?n)P#Sus$q& zoaw-}W#Mv$1G|o$0|z%U=C`(nh%2qPsv+w2x%VqcUT=8zQ6DpEEJNb5SQ{)%SW&U2 z1RLU00|ybKJ*48qWl$fX4PKwi9G~?>t$;S5`f9k6pM^l{v0}W@biu1tbwT>U;ar&f3Wo@n~a_X}u2BlSwwkl+tx1<)^u~14>?eGL&DFeeIN<4xp zK2oeG4KU{z)Cx+qRX2~lAb=8fUGPw6LDWtb#15dox#>Hhw23HI3xXic0;Sn`Pnl`L zvMw4rkfa37_1vQ<=;FK{l7J;Y#&zQ>>Aezf#KI7OPY+m#TBo^)f>grc5DvLOw7?5R z)f895GNfR8u1jtCa$Fkqc8ul->XWCZW8y*Or;&Q+-^s%_N#EKQ6kHLg*X9~~F{lBh z(a%WFR3RW7p7l`K3nfrcf2|9aPycnod{j_Iac-72I?A#>1T-bnB&r@nfLknk!`UaW zadZJo4y18IQx^hg^{2!*xZ@~Fpf=F#O7O6XU5$DlOMZ4o70okqIQzCveKDqT_;R~L~%lj({b~M$q`#uXU_~ZSh2~j4WKygs0|vb?xk@eTIS~==I%0Pxb`65 zzy7$t`hGn(R3+m)M&`hIQ`S6cm>=iG^fnjr+|>r^+Uht*+mt`s*~pRb(gqM(sOW5Y zps^o~P64dBPHATXaofU7$?2~`zUu8ndz^fd=K!Tq0!QWp7Se#QH;W5mZIGoAu`Yt5 ztyvegVji^Z{rvkG@!;)#ck(tgQ z0UJdJ0FCuISgmaX?r?@;qYb3CElKAKOht|oAWSK+8tt^Ll0)4`REen)wB%k8d`Ise zQ}!8mifG7wLq&5-!ZoPcOf{K>jP)x4TQm}80f8o)8Tafc6|?XR(-f*CP1ULfraVxs zxr#18sO6S|GHt;P1kOqM4a)&3A9-z+#DN#>k|ywfcr(Lg^};1tV?X@F&FyR z0lw2X_kIKeHl=v=BiPQ&4Slaau|@ub+t7;#ZY0wSBC?UTL^-a?R0$Na$~3;rcq3SX zQFToWW#}kDsvmL>QyUF+%?c%gU~@bKAsr`=g*rK_gf;f)kxwqIrgG`d$>`cWLa;i_U~s$}K1h?eDH z&B?F7J1SY;33v{>JGXK&du*jK^M47# zM4XaZ^CBdfq1ogJgHp999AVG~Ok52V;4YU_>w$*qhNlE77!N5fmZ$~~+e%Iem~ZtN z>P8!L@fK?JKxvjOn9_zyY0jAFreei5_Yt%K8=)HKDS_I^NKh0oQtKsui!=n(oAoZT z@WqN}pAoVCEU8`Y?NB#Xg!&e1%jGGOS!>2zuW!kbSxws|`GQZbX${XRfxg{{JoTvp zEBV=AXpL!fqZMY?Wa)71uF2A2i+2&+y^eaGBSQV>+-{kEfCTw}|NcK2K-V89QAMOJ z%PIFJY9{$`WBEUa6R3)Z+WGVGm^$7eF;7lT4#^+C|Hu8bRGzuy0cvG6d5(zx_FuT^w~SQ@gZ!jOE6pU#7djVL z2pSmV+w`_@xuV=R*~Y^B_sZ?LI9HiP-+D}0A|8YgXn9U3OH9%iHS4{Zdi^H+~BRZAT(!> z=nNyac8L9U3^;rRY?S!kwgIPY%M^26@P>8NFkV`Q+nk8BpoOQ2scp2sTDM7-Sn`-Ccu?~w8G^ChNJBYu*-C{~gTw5;# z{2fk8;A&NEttU`L)Jl+s){{0)Om0xK6-Ytg*~|*{G5xy$R-KgY8*Gp=SfvF=^0QOH zOlr01^{UYNR@5FY43ynPy_H)7jhox6>q2&*qYfJ}mv3oeISv{7%oVrOM13{9NjRQ_ z1g>>A7O_va2BA{5Ace9hV{p@s?w6k9c+Y}t(8v#(&_MeUXiGe8-Ev6GYTPP@e`luI zOVGG<7roRgU&)7n+MbKMXkg!Z%p^Zs{V3X=uIfCq0sZ#6(PiJGfw;Yj3uD>n(sEzp z?ncqA0vt3nyUgJCCH16Gb;}Kk`KFqv$}}awxO=SBV8uZ=eTCY{>!no6PB&@dq6QCl zL{G7}7ke+T(#%j5*^0FZ=!=1s;NfoKRsw}8$r?|%3V6t=52K<)LOBIWpq_mehSb#t z4|nx|8YtWmMm4!k9m;iAf7UK1)_`lX8S8Qbb{xQMgw(YY%i>Z{jQpuLb-z@2nQb_> zax;AHx?j7U`|icV_aFB+KXz;WBtHvvmKfr+nh;RWg*ZR%y0;HEKdw7p3P=}er@RV# zP%siVs(akglhPt~LSwE!n&EnRLjj7WwcI=vLDN6op5N@2re|Zv3*nwvP9ke0DQGNW zlccJBn{0(S^blet4TwOl@ zg^SVzkobeHz#x7>!e0l8Wr=wYhXRt8W4)pBjke*@uh-`}L=pMTLX*i0DMBzy3n?HZ zFJ#O}7;XYQuH12^FP1@teCChF7$jb~5YF_Niia6_xK+ zSB(@8=@t151i}i5Fbu*g3Zk@9`2PU_0RR8&eaUj;x|ZOtDEuNS^0w0!NzJ~M8KKdZ z2T7LX^sp!gMNtxM4l)M~UcK)Agx*#ydePIqqr1Q7{XqRf10X4DqzDcW(%1LJOG_jK z8~|rN2M2mhQ%xf=J>v~Ql71W&b%~dcl0W}BIX%-``pcJXgMY{H^*AwQ(`RE|=j;6+N7+=4VM?{q z5qfHhGZQ||IsbvDXSyNv+dqyNCe7wbsp{fUMI7*!Y%aY)z1uL1JLX&#T?k8Bf8GUM zuY=zc2bvC61Wmx#%-`KE*_BDdxw(JQ67*!}kFz8_`5ydo3V?<1oAWUkmA6dI?iReR zt9`pcI?aAG>CgB@i)((aS?1!^K$?mD#mllN%Qrk4OBM&P)#_M_j&x}_+W8u8*GgY- zSWSC%C(W=`^rL~K8)jPreIQt6e)$`ES=MArQJ3DYJW#cZ60i0h5LE4#`)vWkV%g4h zsSiI6!C%ma4S7DF$$YeRo0$4mY}rJ%$_`|+J8_2AFGOdl(9}6D?T+ZS5bS^5Z_WlI z*tRXK({L;LmqVd{F_kNnx!vgB<$JQ&0wWG}emvSm1ZXd0z%{{S88ij>rESUJfj9#c zZU0b0hzgPH$596D*n)6AsDpF2a)mlp8O*NMkY#l1-Rr6cbK1(GJ-ftbfL`!bXFQOL zA_jzrArpjo$Wd5q3Y;3}9sD zIM)HIGwL_&8tz{maw(+`~8gprRik3rQ$a zWQ52WC%+mKi3>DzUkphGWdjX&kFxml7TdIpHDK7hK>D> z0bG_aZ~+n$Vp%_Y8*Xb5F&R$22FfIiRlbtXB>c_ftDn%uw@lnV2kIm&>97}GUL9%Z zBpeA#A|U63zX_TOI|h<>5-E?PE$ynzkWahX%i|a(zJ!ASMx-a@``{cvQtDXgHl))w zC8fv9yeii$@+mH~=HU@H@=wwjS!wP{P2C5q`-B+4RJ-eNPnnPg5c8A? z36F^nJNRndNK1y}f7E4Fu@q)ieWmzq10(VjKbE@ODwe|Bs;?Bk4H%+L@nfmW-C-%r z-Pxbw$Jzdu-7UUS{I=+zUnzbcU{Ian$5NNb!P1+^L4?Hpcww(%#_9k;q>yMxUA&W} zH{MAE4S(BcW=KS&E-1y44@wbnrBxrw7sbYT^|{lkmh07y7bYDzq=Dn1A`M$j!#QA2 z8ai0$iN^tubU?_>-NDI>BE5(T|4MT~sH+Fc_xF_Iy%jWZFrXPg@y+6Ka#l&hXC6G< zjIXjZ_*IfghEiEL>Vmo4VS~9L6=5${cZ`7uq*KdqVB7Duh!(a79482A;BZp5V}T8y zgRIG1h{+)s2zBWL+*gH+eHb8X!{^sv2p^^O%|vQ_bJPWLIVu9VsJ8L~6}dv3S?wO1 zeKO<~1>bk$FiSpXEL!qf%Rt+P*6@#A%YG~3go_nBZ~*gYa3C* zmm`tyi+Woeh`Oi>5LX?FvB5h^=w}j`kzVg-7{?wRXqvh0C*nj@SK2$q^{)2YhH$(= z<6#F*2bR+3puhy5N01-qZQ%(U-0*NprZ$FcvZx7?J77=p=vz-SO-%uBS!Ccjgp;+u z*wY4U0l(M){x~WimUK3>O!RdzRKrrb0AldUFnJwxlFB$!6EqoKkl=$m8^;MRv!CN|Age6u7BH|BvfS3j};{h}2EcVi8^2g6+o z(QQISV#VB zPcQ_--@R_T*yyyH?MRiRSWjI9+d=X^BSL&b5M>#IZO|LE2Vfd9Fy+_lhyxxxxA<+%ybRi^) zrIJO+eg0}LRUqfD_HzK%loavVFvYPKe(mlc%9F{dEEA;^P1EP?O4FA+nPOS5Bl6@C zvZq;UpV#Nlf~NM-O|M}pk-#4gWNYTt#hQ-kXnTZtwh#K)m`6zZpwBax{s{4)bYH=;I|Zg^tqhV^ko|YMzY37B4HUMiu+^mikO14 z9+UIK57%HMT}eac=c4{EIHgEPL-;SeJRb2>Lnw|7N&cq%ad05u0#xxQUAJh}1Lg@^+OaGSsCLs_!oLaZG)cv( zVMH24Lz6AcYb{CRBMtWqc!0NYp}+ya!ku;ZMP)NIUdurc5C5X~A!O)_*=5Mb>>|M+^4??mJpY;B z)bsB{vFTK=tL1LB^4z@Zw(g=lEtsV*3V_PP{e^ux5i7cW60;>aZd1m`q{JDU;!h1R zN+(g4K9^N(LAms(slL4~P3wp3yCythbR1lG16jEwf4$Y@LE z<>+$}=BT`$juoaZx>rQHVo;*jyMNy zNyAp1@yggcX1NAoELVpIpw3h=O7f)7;hX!k^kKJ*f2*czhGfnU@5%H4vIehnJZb8E zQKuQq>I`6|I;0vQF;CV=th!dNzw3-ku;QJ zx>bf(N!9=#Q4YO=__Acm0|bp!lF%1E&XErvlawTez++iYq&*6=X9y<60ODlQkZ@D_ zIrYj#NV0kQ@&)prHecYkAldmB$wuy^WKQ!@(ky)m7x_;USgh z2@Z7-xm&}J)QIwSmppw55&6H|nJJUkSAA?D_cTyCL97YfdGhH56ee(!uK0*@AD$l$ z4dL1tK2B^^>YXT4Y4d>s`0*0NVFUQ_5yV=$o;NBGck$R1@kld>9!CNW0V%#bTRoK# zB^lEf)6X9^rXP}w1L!IksN%z#64fZLmdytWe`OZM4ujwaY*5l*FdSvc_B7Mf6t`~! zEQc(@-x%*dj-XoW5+8JooC%t&>2ON$zXh@_dfSJ37aU!Zm3H?k0 zAnNsghH)r=JnX=MAcAtvevDv^kG#$IV1pYT4rXd&@I1?*CMew-tN`-RIamwcvi4h> zxj0R2fM9VRq_dn2G|hzH(aWJ_I$zLO0Hci$B+o4-ZqN8*+wEQ2u^+oa57FRtN$bzM zpzC#v?ui3Uhd@Jv*uigS#@q0FnG2_p8|Q2Q6JxH?4>Jp)vyA0HG>)+HQ4m93!gdVt zZT?iS6C*+mH?Y$gaK=N2yn~JB{6t#g24K#EJMd3@G7r>A3wV- zaydtXaUWEXe0P6Vi?Qx-oB9=tPV_no7F$?+ zu@x+Uw1T6WEo)e8-VMGu=%Uv&)r6`hZwQj~qK;waH^7+1^NoP#qBiD-xZXQhfL?c=k_@#}u5)Swpmini z=fD5w|L!rZy}$nge+?u5tADO+6L>JDyo7ek<9p?f2c6R2|7Q%H`k>r+NOWxvIL8YY zU@$Ckee54C!ssD%?uw^j5*RK2m;WW@LhM}>{A`!d*}~5L4|Omky%eWiS#Y5HK;FC$ zsQ0TZVGt;gQ?PGCzU&uVNGd$PV2TNBonwqBQPZu*HqO|#ZQHhO+jGXYZO<9owr$(i zo%eflb90j~>HfDnRq0fBdRITS);XH6-o7hTfk><(-gZeE?OE|=#(`a^ZpIh~-~-M4 zO!hM6koD1Q2-w)mQ#}W2@sU_IH^{2<&gqIiGVeM+MmYqiO57x>uNC?3hN!x)8 z+%_tXtH~`P`=uC7@Pqv_;y1E-T)St#VPChy*^<^cx0HU- z%M+r?sPWb;9BYTum_zh%(Cw59Serr4TLh)>SU8tQeu{Kk3(3ELn9|E}P(S*nUYb!n9;G z+Ds`$2%Cbp1^OWdS-{fU@_a1|SB$^Qi7JV@gBaJ18zrz2Vp&ztpT30_D-wNq+Q!iI zH8w!-V6Res`|87U?rIXwp{Mp_?Noqp*@kQ4{!WK;%^>V-qfHEopQXz@)BF z_NvH(KovcdsDp5jRgih8W0@rokZta!5&%xV9hh;jAP&2y3x{>GP(?Ph1{ zG;ZE1S=^m@-a*!kD)h(cTiQdvEA_JJBzY)hggy7M=QSHUrF#=(0=2Foi|HSu%J6$j zEeEUB$NCaII88BLSZXB2(`N1(s9HM_o-@KfK=wMu_6@Jvw_y#NjL-T&>xKD1UZp*- z1Di4PYV{_kY7 zt_fy=bOd}~`Am940a%z(q!o#jCa z(|^OrjCnZ1KF|AG23Tg@@x_RiaPUfz!Ws}$b~;owfc%P$e2F>O=pq5(EkRG?GP-&L1#?3zaJYIMUn5Sy@T^!x8Dy&r@19t8{j{W84FUSW=vyDa5 zoy!piN}D>I^goS$_Q1ON>ur>-LCjnicf0ohgDdFEx{3n6+Kp5Ep7}5#dj$cR$HeNB5vaE#=YNT4W=2*n9W!yf@Ww}$K=4GY!FXbJT1fp}j=m1LS&a;` zlip>5C%2_lX2YIFLx)ejkwcVhc7dh!<)GVk;Q+L(=?ShrG=V48P}mnvW%DcXrD+2y zw<6I$ExWmbr_<~5a$G7fS*3y@a183^vugMp4T_IYm+)k4cGUSQ)sn$c|G~iaA zh#g2bWeNGY@ptAXeYmK!+2r=8uNKO4Y9f6 z>D{}p*P6oZ7F;J0tJ$)LugXiAr+ZUX@)#OfBGaUGonG59R)O38nO%x$hc2HiuFZ0ujL$AH|J>ibOVDJhJV_ zKG!CMT`$(d3aCf|&`4U}<7jzW6O za8EY*Pi*I_=c6lLu06*#1T|&h5(=@xeXKSRzAKzW7bdrL;66s=6iwLCwNHjtGPExq zNqf*`q}05Q=04u2dC0R`K6q%I9E`YQwh!+gxrr`T?EdCFK5};0N!rDh3B`CNwR6sN z@ouYEO=h$tqaslvMSN-9T4s4jU^XGGm{_*7u@<^wE$Nk~R;i+g zwcNB1OFq-?pshK}aCA>SQ0MZ|%2XNit@WHaq{d=MSw4xLjHxNfK--JSb^uwBHcfK@^>||3fH!@~yH~5^!wV1DcVQF2j$f%X7S(?Cr`#5H0)J!Mk>*$KmsBsmSj^ z7h|)jrq=Ai;G@-EYwr?ngssK!Ty2lFxKlOK=-^vBdwDgro&q-a8djBWS(x{sQogIB zJD1fg*0gYz5(audkC6C8?P+E4uwH|1Npy)Txt#b)#^P?g&3OPyIw4W2Jt@&N%Al*W zC-!^^yoSdk9dhiYRF=ia< zx0TbjdvaaoOSkg`cV`%M@9U_`Mi*DD;i_eFw;Uf5+bP|Xl8KJ4?YOpI#Hn97v_U|D z&DX^7Z;8Ao8|5VExqSJHq8nOzJNG%9)0TDl&#Qb5PuO^)Z{bpP>GFlQJp1(6q!8Vh ziD)2rb!uhVz?)Y~Mn=C_ZQQOF9{Xy}W838C+1{^Sq(-3@T~hm*XuYOinzrmev>Um? z#(37y;jOQ)*W#2ek8&6J&}vmO9-1vjxfesOrHf)Gre>0ulQ*mDSM_5kNhTien~bx^ zY)x6orTx0TQjO-Sk|#~udnwAJbkP@^^_p%RH9W27q}bX9HPasou9?l^rIpYUg=D7W zl5$k&!k0?g1t027ywV%bT78i!tS6gw?9C}W&+K*XOw5uKIzUY#Y6&hjAso$q z{(8z|rE)uzLs`YKW5p4*A)~iwyoRfXL-af&If?Q%#Wzp)xpA0Ste!>RlOx34w(*Ne zqpOmIjM9y(@m5xzW zDj2bry>to;2#IuFVdKRjjNcU zAexNsO(7*SWGOqAY>2!U9nnslL}uTMOMC~8CTQh2ygC7ADS^RMVJ(UBl=SUEJ;bS^ zA~NYJ6FN+T@wPvnz3G`$BFC&S16$Okvg_obnH-Ay1j1f-BklUqxeW%{2c<9u>LyIH zyoQMsHIUIL!aIj4seW0!y=^ZX3j)FrSe$hoJ#cySLZ>+K`dG9u=y2v}J~4s{0A93` zA`>-KV95a0i3F^qLk75C5`2Gph^`>iiwD&@u*m;e&><<-L7FjK#dU zuXJ;Vi*Qo$2(XGUXw5}LxWg0^7v zuP_tWqOXmgv@IIR(Ze-Sit8UZBmaGia$U0eZuAJb66yr4VMv$=gROtKmh9A0H*AJe z@^TJq;y^ljzU}k$XL}Pgf=>JP-J7ve0`_(g8jeS#pPOj^d_*qrc*{X<&IQ-;_ozv= zH3kktDQh#H$4ULqH&>KzEdhD}p}ms)osBShS*4#zfXP2^jev3(gE9Y@*M@ak0`O$A z#s7ny;Vf7Q?@lR-hob^_u8>$#3}3}nlrvxQCVoGPTQ079DPX56C@ z4_CItVRNvV$unjIdI;e%t3}cNlcJ%KT5dY_H5dkdVHx8bp9Vg@#)&;Zzvxa}W#cw8 z#-T5PM?lK*C#MF{l6>VjwGP{TuK^nFiZ9F^0}+p)$&ANP{DHhF~mxkO>*~D=zkSAaqsQ)o33oXDiP*Lea%&Uvs)v}u(eb`M3+y9F~F{60cgP*dvp-KmpvcEHvytSKY{jL2-w z@NLZ`IXRE>v<2NFpiHHlEv<+owqo4ZLtA}r@MS&ctAuDM#OU|wo(rNyM&WRliJ0&o z|DNQZ$@d1)0^^Ocinio|H7Y=aWQsz9nv9&w%?wI3Lt$`)h*B5LZAar5-EVq*@kIgM zS6o9eEXZYq71957(b%Rfb<1%D(pQdDNf1sOVCfvBZJPL zRv^-$oaRs69}Ju8?zmh`4S$0^FE|ZC!$w-fuP@?OHH8nj2u2SZB@@B3BrT$;DECDz z`m00w?1}ah4$2D!fFVmXgb_g0C?HwVOBWI^s_!i0B1=--r{&n`{^1Sni>-QyfB!XI zIY?UcW#Q=>j)z0#FN9^unVb=+!|Ih>rep zVZ^{^;1yo`b9%gbu@vphP0dBVC>|1KB2j}j*uT(pj4t%XrG^_Gf?!E5k`a$-nYUr) zDiIxOMHGrDO~{Ib>j+XvE61B{7# zPFnz1qZvl&M5fAIvNiHSlp9Vlgo{ns5?@70?lveQKLiF{nOMxR2f9?dRZw33&I^dV z0MoHMO3Vp3{II?zdT$D=08mboFunaV^9C|N&7coa0@b*Z?l~1Iv~Qw0Yg2$|E|ZM3 zlQ%SuZiU_fhWw~?$V{kJ7C~j)aw*xPsThcm0XZ~A_ z>Y;Y+vZ+DuGvw(~ZZyIHm^ombg=|l$Y&-VqW*4K2XvZ}iBHgWZqpQXsT8=B2w*ZfE-6$h|Wg85F&9P;!o~Ct<}jIQh4ei z5EGTXkj$GXz854nOOnLT!7uY=N!U>{(ahyAtg|Bg2jj)ToKQjUq+1VJqpgJ}+jZ6f zp0LlQMe9|B>*W#*OwzjThfsGO;t+utjzsq_&HOCE!-4RI)AHr6KA5<0UNAK0^|JWe zZjDsor7T<@cwsl34Ikd7+Z<|U!wqX-9G8sHnxQX)i&e-SuBD@Nin_uQ_}I5`paR)W zgWKWB4*jkJ{8QpSKKpZ`({T>E_3E<{HGrWV0%N7BXYe6XVC_{q=h*cjf;Y|iMJ?g3 zRe2Sfo)nX^@+>%%+7kIDMyq!)q{RTiNY zfC93<3a=Zsg(WHthD;B*SZtV5Z>&`8+w^`(&io+rB^xeRp+5o6YmekGJ_PO}k2Ksr z3;sK#25NYxMoU{~ zGeX5SNBJa-jEmc-eyN$dYh*(JrK_3&9y38q{z)fNVs292%iT&BA{vZ{pXBn13QC1E zm8azW7TBm!rO)xjBh_Sz$?A8>yA6MWb(9`Pmo_dFC?~h)(pQJ(9}~C8UrvdJ^HeQj z2OM3w^fkF$>X3Zlf5VX)r0qHrAuzw2=O*LA#C7B=yjLv&>f7ck;Ey5=4?5pBEmS6+ zEJvUd;jrg>@8sh{szY3+enBq%CrVs!{&_$GHaBoGrie#E%1^4PG*X z>b&qEz$t(TyFbg-YDIekJ>*oDySFMSU_A~q{OHMl+x2bV>iRb0BI?j8xrX^c=F3gk z>#p3igrPTpV~~TH?b#_d>U%?G1eT3y2M-Zog4-Vh?*A7eNv#a}Fr^&gupn>_TKN#l z!L-TC`gtr)4JE3u8lx0sY0(Ek$q|xwy+oFYVId~A7a$ME6*VeuQAp>oO_29qdeQA~ zKoa#Ecb&O}DNQ9cafKpUc1>KYEVAKxZ(u4t^(!!g4WB`+I73`}ui4-JUNVW|6?icB zcFZwxn`h<0y((W*R1;d`zwP3df4zyH9*UmT3?sz8{Q&+)jlpLvVPEp!Zms^BsgVmQ zl@gU!P7R}x9OGK*rtWw!0zLwgxZy-;j@JqNvCFYT3SHWf+dKF>8Yv-he3f88FoH{2 zGcTm#?jGXa-u2#|l=(CLhXZmf(_ZH6rGQ>kFdo|#hnvvnCl_G%1M1Vsjv0L6Y?L9M zXx8}A2A?gVbP}=B*(e$a?9M5M~$t zB-o7LB046FVXFc9g!S#b&-%WM|<4D9SNHHKeQ%K7x2ot&QK%p(T> zr0tTJz~%EJiDuQ`m4BdipDXXrn4G=>iDo+T5yVEeDT}68*UAFOk4-}jrQpbjSZVoh z@`8N83tWM_OXc}codlEc3G^D z4tmh6!=hJO!iM!>K9TCgA!%?~c*q1d&Ky_?l*c<+3+AiXgOi^88txt)OxCx>--G-s z+R07@7Zkv&K^s0<1nFs4gO{OWO)%}B5)0_9?*zd(^n+fENU^K?SNgkt`&WQYr=_G7 z(PI#JIWX%ipxOxajOeY50))#?@yOSQY*_4XQ`$!_D!v=L6WS@C!v;(zrs33JHEM4- z+;3Cu#Q@kq>}>TR4EA3>M{dOS_gLTils&cgUU=Pm6A3%)*2kOF41oa`D!$-yzG9n- z0C0d=nd*h;t>4}ETz}Z#U`d`-eD#iAc)bf#NqQVsC)+d(VSraEKjCsdU1b2-LF{b} zqm6doKgMr_cMn^BXoI>(Z_E!Vdw3AT?*1EKk~*H?H~hu;4VM#qmX@Yc(FSO#{U2^} z##t=I5eKO^pJKn=&k3gQk5s+l9w$m3$b}Xo2li=Ov)*f<^f0!|hjWS(i0V9Zs2ZFD z@+{DwF7dB(Gw>tF-GV^IZ!u6E7SI#r^A74^he|GBSF};#PJ>*vTy8OQP!T2jt3a_m z>em~QbG2Ar{M3d3=!3~uykU&J_zRf5`T)T!N%@8EtX88YlrxSAq9f zF^Xn@93E;W=oLg-Fw3re@O^eyWOn@|CxZ6iuXhT&(F$kgoNER|;!J&))EBCqc~822 zNo;U6fXZ@yBwEg4!MTUqX8ReOS>HSy>TiAaU)!D;?Q8uS%RGg((Jk0Wc$w$0zf1bPNjdkF*|BRi zd=?+jW4#h)e)Ghh1AugMK6iA~*;hVZ*ijp~Rbkt+$0Y4g9yHkt#=C~-4J+uwmCoP& zG4*aqQ2&VoSwMz;OPGlN?NZESluIz#*Gk6-S-@808%`Uv4gHaq3?Q4hLO+NP?bWmO zf`LueV1*?7vwE^5^g9+TFo&Y;RiA+Li za=rhQg)FG7(kZ)Rsaub6_ zEaB8WF_086I_YU&008Z+@s9vtsW9{F=2;h6^gXu4s`yWyWc`-Fo%Ela=(RR=4u z_Zo6*bKY`rOdb>?yv1OivH|5N8^MzR$biDb6}<^#kk8e|u>G>HVMJ0)!D&o8Jxi+3 zm79yf`BR}S4jkSkTSQ1dp!czK=9m= zAx7n6lM)Q&rjXr-Ay-Usiwju1@_Hl~K-UYl@Z+ z4IlyM>dX4-8&#ctO9W#bn2aLEV_{60rKd~)aadWX)>nvb35o?{lG=7HPh9c{F#$_iLCj39my?O+)@rMz3e%(1GWIz z3`Sr+xpM#_dZ0B0a@$mSq+Tasi^!;*4LlLtq&toUV+(M-!{;+a58(IrDrV@!m%}_( z@4<8EkD5QP1%gfeLb|zs8lVPrcFbsGV3koExQ(H!Ei!_~4Mikxxy2hh5{$5>hBNcK zB4)v!J_T$7zS~m{R`(?aM~&WGEAdDo=1?rr$b;sP+&E%WJiu)>5C)z8DprtJ3DB>{ z(PA$S$2{2-mMb;~7@@-|m>Y~z-+oNSw2R5KZl_l-Zg!H~Lju?D3Tr16j`{D>=DXks zZ1HAkimRjbZ040-2dk5w^f@O2RXVhcXzw=TmIbzyZ(>^kSHUq3+o~~gIT{U{Ivu(f z^s01f;CiC*tl)tCJ)diuhzvrRTk6H`)^ZMnj0%A10e&3qAj#GPk3J^xh2K*tDt0{) znCN#4c+~~ZJ)4C+dthHCKKQQcCK27&AX>=v=&wLD@hTP#*H|}q5H2wX2&W(?W9xid z)$M!>#7AAz+5;+s!P@pkgPw7BV>$#$15H+90=}7T$QrihMU74W!uVDFG4eLo+90%t zu6649SRuuW$i2Xg(-~pcJx)aimV1Jn*aXa3)S0Z-*D$v5y>SRE5(@X~eWvxg2(#=a zX&h)4Q~Jd=;w321y}_5hyH=A9-K4`MZ+)IFNV+syWoEx9mJM?&iEYCY`7<(g;B ziA&Wk`Ea?$?J8M4=9f71` z(8lQ6)+x{Z)ZYf~=Srk9Gssl7iKDK9HYeoJx^Ba?;~64{czFPI*i7TObG88dFz-FHFCs^C@PtoSdL@- z?%I?3&y^<^HRVM-Hp~>Yk_AYA5o5-v_svS*rw*>VN|rov48~U9DfiUz5ZH|AC|JK~ zD`F)Iy!tzMP(N1%eGUX;4+KE6mt=BZ1NOgfEjS*uhtZUzN)k%;P|O9b`4%Bq*=yAv zhl$Cyz0q$ZCtx9_vDdXGLejINXP6w&G#)$4HT`t>ukAk;;B4wSR9`+nfHqo z7~F|`9~&8;Z@8uBJv0Y3a9LP_)btm@3;hkZL0OM}hk^9(>e!q0%Oru833aUzn#&2~adG77%9Mzw6 zjdSJC9vl~#j&l3`i^FT8Ta9izpxt7Xpn%{~C5g zu}(I?mxS6S8gQDy@1{<7@aN}AChqHygZuEyy(}f3bBDWlJZup$_=YaP&@%Skfn371{W?zNO;vRG^~NlP-Vr&ns$ZR{TgKN0gMoI zuyEr>Id1gVC4064kSlCb>f}QAeK{n^EdY=A2K4)k6+{)obVr7JIK~~GF@lu==%g1# zFQ+=x!o4jz$gLEw`;_a8$Qczz(ZN0g$(T;6LnNmC8;Z`SEjAy16~DZ9!v2uNN*S_A z-%6j881P&4iy2nI9#@BOx#sn3p1?c|zPF>0enl|%>@dFECTtd*>_`!X*1Mv-~3 zIFD`uCqH`4))0P&pb=US(>gR-P<1wZsgX2|)}90di~Gcow6*4C+R{K5|Jpnrx0pw4 zNHb@`pm`CclS6A4EF>|+OIYW_ABYwx_q0O!hKQ7T2I(+)QVh=wRA)t{8+-V(Tq>>TD z;%_A2VN|$qK6#0w z$jaUZH0^@3f$C?%kJUj9#mb&U;WpDedbd{sNe`B@{^N1JsaPH-YIaV5;<&9fC-nO% zmdQC$L5M^;h1}Anoaw3V!(dH;1hOOrklyB9Cq$-21_{IOWy6bn0mxl1F=|~esLc2C zWcRZXLhANlWEQ6czFX6{g(Vlm0!V~@4{Wh6Y^AjE`c~`rgU8B_Q*RkcX76-Pj@IFc zC;rfE==7SxaXE3?B8}7~?7L-S+m%bSyLW`*5)oFZqmS7sTL+yb(7XYv3o{8gR|_9q zXSA-{L5*X)9-lTQ{mf{?YKZIj(vP3MI)BOG(La#@p!5+SG zsi{g?QQ)k)4*M1wTm)S)c_s)&&5BTZYEV%c)`?I7*hU#B^K)RzIzQXlq+$z(0FL*| zAx*xZuz)Olvd)Tte?tZ)(Hu*9vIqbF?p!(pr#b)pkMXa#|laAcxmURD#j7$1#76#`M_w#vtvkmr9q_A ziZtk(D&?wc!O~dr=(PB&snTRd6(}(cE&+P-^!#N2m+1y)_H=-;0#qhnL9wgT`=J^E zD3NQ;qFj+MX*SXIS!VsT^oVi+g)zs;30e|Q3ntvxRbL}815@73Vffi=@D zM47soS@29%WEybHQJF^3X1XFxfGayvL5_>f5jf;oZx^=7ziyy>T*fp5s zPHWjdPe?_OqQ~xHG3C^H(XQmxvp3 zQAr}b7r1IsNWc>GfmZJx7r$yUH3Gt9gyw2WdI7q_A4>5j1CH>h000rtVa*G-@Rluy zF5idK7NZPa%;qWMR~^@8aYFUQ`p5L8P*5y)f3CyXQ%^MC{;eV=ZJ$S+o1lxDq%&ti zw%Rm&>gcP0=?gBpQH(*7vWNt+`xDmqX9PYjhVWjWuoNCs819TmFCjX*G?5s?%oc%7 z*QAdCbQ071)e4U6IaM^i?zRqWYU8)Rj&uM>PDmfretQz9)KTCK{uBuw0kfk-wB=bs zRR|u@1|LMmRA2pqTQ=&0?R`d&{^hUhy$z^AGl_RyMxW;qQt*=%k+F(IqM*l}7mIW% zq;$PIzC}Qd8+G*IX^9F&ABXSO>7RD#8Do9HwS)eRaZF{k=%)WXD3^C)KR*s~X=`sL zaRN?$wW0+WErj;g#b33ehmW89#nBbycO50-4Il*csR6hzfXtT<6_z&aHb~!#>B{xM zieG@oHWig3OIjIj%oZ=_@AqaIaqS!7QULvn4@%tbfO&sQrj*dMkp}#@>EafzjcAqY z#CdsMlY0rhmcvWs-eICHnX-kM;1f5Y1T@P>F2kj&Y_d;yR597=3HMj!q3k zYul~Er=DSJ)OMvL$q`~ElHFnO;TcD^DY7xkNm~i6P`~N)+h)DEw>sj&1M z@5J?7#*_B3^wWxZ8sGoP)Z>#ik#E4FiHh%BF4{w*(v@-MO_Z5OdL@&>mN#;F*pV7D z(${=IlYw@YZXhC#x<2vlqcOin^h2qBCpt9@6zH|63)0&_I>t_KA>IH++Ajm&bZGF| zkVL)UTU_40KBvOI9_scD>w&llH*z8HlbFE2dgNYTelo@^H{8(9F*B!I%`&?Mn=Lc) zE5v<+%xPh+FvS-wROC9@TW=O8nf70@v4X1B)E|ZD2BbLxPmy@c6&M)3`$pAeqN!5b zk7priH?C|!X>{Xa>n;`_0@S}#jf!0}n^{+bPED?naD0E7UbfXGryLC=Xrc~i?u_XD zXd(~XK;lYvhC+U|vtRau6Ue(VOvMXSFc=%wyu!1T>TM%o$<|eFEm5wKHCZLtMy**i ziH<}m9{L}NBs+(F%tQ5N?m1|fza#8{ChYytI!0Ufm-^d%WjWG4i?M;Y-u%(ZQi>f8md?RJ||4c zj?D-+F`b5?R=9BisaG^9L}y8O+TKnQ_&+#2k&sRjM(Y;4W&SKmB@!TZe@)siY1gus zK>@chh9f#MQ_`i41zRpv&Y@(#nyZ5DDM|9ajLSVCZFv!)wN&E*jVeoopPT7L=$vtA zl~eu&TFPO3G!w3ojX2O%oWEasd`KLY4xx~YjG;^qC`qvUYi=mOI#Iw%#T-FBI}i5$ z00Sr;J0Y!*cyUD*?mZLrXe+2@1cYdoi)C42&n3$XmF*zyQ8U+cxGO}}c#OK29F|Jq zaF3bo!@BN$#=w^Dq6_T;3uxW_lx*!mos>!A$&7PKN8*!`))On$l6;<+j}3di`DteVN!mXW!yTLL!4k4V?7p0(5kq4#>@>g1M!4WF+~_K0D#GX7z@ z?rRQ@`MvNwtCINyZ|$_|hkWD+oegtX%(`nvB-FZ{E?F-Tk+ei{@!*n0iP{fS=vY#@ zX~S=Sk^2L)IK#Moxk5^rGW9Grr^%Zq6_L-&M&Z)Oe9nTpJ8VfyvT!B}{1U62?@wi0 zFe?<sYs(b#+#Co@G#q)F3&f>Bda7)_czPtJKGB7b}tZz`lh6d7^*T8;NCcD(n3X?Q$$II(&C zfcG(U2K(uuFa>QaAKxz+h_81AlRHZ0%8T7%Hs#IvwffulSVH74UrnjZh00CuQiPeK zC}BL`4fhEbbG$lHG!;GfG+mw@7&Gvkt3+)RFLe4yuu3?r`w*NvE0rvv-y5iw_IiJ` zh2iMGJ=hRTuqe^9(=(lsZpk(>E0$JSVsYjDS{$dV7o#NWsr-jyC6$bHD78jx{b~;I zrgdaBu~cHi+4<`3l?%ZkX>}NGEJQWUm_FR7t5Ni1nu`}SbeOaKE6<{M#3Xk>fXwjh z7}9MM7Q6NQnOu!rSe8V6i#NBzyJhZB-Qvmhl15SH(%mSZ5q>SjCD?Pw%qlfP+2&D@ zs+1eb&^#{l5gQ)pi6sVrHuaWfzKn~<)bdcpEO&$@W4n4GrWa9YDRGLbN2Md+9o?nE z+X35-ng8hhW~7**By#5Pxh{|O+p%H3ueW$V8o<9)FkZ(`43;k?9U89wradXWywdue zNf)LR3{Drd)4IFNi>GiS)MzGk9`#hkJ(J58X;L}J*uQunE)2`1Q*w=CG#;GIL;y$His`gD2msl9?(IU^y09EVZzclw z+-ECBztgVU*~iPx?O+k+&aB@_|13LE-;MQUM}(&MG1KDv2hJxGICu&i`+C}RFAZeb zn>?Kws`1YGCch3I4grUXis?82?!P_*BhmO#Y-GmG_$SoLNtsc3(vuPiC|sGzhd={h zVKNB!!BL7AXS)(lj8Ch|39SWb`s{%axe8`Oe6u2`gS#@@x9bQ^w4aC_paq_yk)Ci*Hgs_#F2?#~S5+pO zp;BA4)?kiXM^5MdPM7>lPJAPV`cW&;k8|u11G#aq{uq-+DBV@E{iH73_>0kG_!<~SZ+Qo{o%ajztHkS#%QQZtlS3c2Wsy> zcyz;#y`&Khqzu0Y_$TVj)tyjJE{JK0j~|8N0w^TPT5nEJbBy0Kx;=j@1rh`5BiVPb z?FcPa&k0Xoeno(*ALVTouocC1Ig|I4yJLS!g&8Cu?)rG-|IaxsZpzd>CULYiP5)$- z@q((}3HX%nr}f3Et8OB=?Hu;Pe^+)f1_T#F_Uk+ji}HJlXyw|8{v5B6&uz>AMB?7& ztZv$+#7BZsSoPV0AG?lfi;TBSHmZw5vdyRyigYpi3Vzbtj?xkE{@ zpt8C;DarJYzs?wmObd6%wif-S`UmnBGi*FDq)XI&G=cpebzMowD|xGcrYr=8m5hMo zV`1nyg%PUr>i)J4nohTYOjzfUQ(M;4Y9N{p=GYJUKLGoJj4+y30kLsUH`|XpEvY<> z1iO$OmAbW3c-}Uw7o02dbW>S?MGcp9C?d67GU*|iJT*l2!J-{YN2?Z>Yxnwn&v`6t z7b!ghs<8M!*yb&qoYo9nFhX*#>`aC`EZweX&boyg``I^jK2Ne)S9LaWDYXjN+e#^? zJ6tGQD}M$aib&IH5c87vrsm>3vDeJt*Q019)K$nfVWhn{nX?(?K^Aw>x0F(Rl)0ggY>14J}if@rI129a}SI^^>Oi$EW*J} zJe_q4xTJv>1v4?~LF-CMg_uIe_bg1MNuB6*_icChGFfb{3Miv!>jjiXXdoKjZwY&h{Dsi`grB^v;svXE)EU&uli)c(O%n0iKUebWO zM%_$M-0Fy}q&PmSJUNJRz%{aAjjydMsIOxgXDq{e*f%2_g)`1gT8t!P`?qfjRS zUgSv%CaRw4&$uL9W%z9rsJnJQU!MnJ=hRO@VSJEA#bg}Zd-hXfjSyr*Y|y(U2sJ8M z*UJEIukRFGSJYrH?^=%@(-rnsm)Q)z+ACL=tyo;Sl_^C@D5u(-o&UH{>ySgx)2Gys z;Am*!oB}Q0M|Q1Q>8NL|Uz!YZ+^FBuKtqWdpqA2aB}O?t{`|i2_OWX$Jh}S-E(@lz zVSxDpW^`9o+moF(`3<99!#X5jPD2^xFa3Qu_t~eSY%$DX6R*~>e?I(1R-G4loCObOw{4t3JQ)q|nL2>o8VCkJ)7|HKHTQbsW% zOH)H7O7=1WE2l+gf|G6vB9n-OcpR=kOAlI9_JTALHYIsL@G@rTKucpQ=@S;sB#vVv z(M$HIJ8KFTJFId#p zKCo$!PZj(-a~%#}x*gly>};fLS$@PYKl@-`QgOyubDlhZ8XANPE;du8 z9X;#_9E(l+>Axc5eOO2nISy9%XB`^@-S7xsEP2RJHh9F_xX%{LNrNmfGmFS6c>x*}fBJ0wdB=B&g>i)?@j+5(Do$di_z& zGOhFCs+dcfq*!jcN8=`-b4tWk^B;#^JZL-a@)^Do8lLs(KekIlHneobYpT@AZ1k6G z7e{y88dp>6Gc9(7XzAW~f0*~LjP95X@8^=fyTiJYGjHnIKO`fM1Z(DM7avc~8q;r9 zI2k1V4**+0q`%8$!bG;59MMlv1n{|^rXC}i*npdjW)(f2m}t+v>U2`e=Niw&#qcFu z?i158(a17FeDcmfk|Ky$Iswzd&tSUtudMh+IRbKA;oFcYB%WYu{4`9BpQ|nSMSRc# zWW*0&XvCQ_i^|O4%$X?Jk9DIjc_urKiZ2S4Z-!s;jjmC+Bj0|SvE_b-j@8D~L}X60 z95D}nDtzmuQlxL6nb+B4TYG%Uk$nASpe57K5=Bc1nQfJB-(DBVTP~R&$1=70v}Yu$ zPe-Q84Ve)(kqFmwADXS9-0~n>LN~BE>c_{cN@=H8XF2umzzc@}tK&F(hi` zS@*HR_HMJ4N@SGIeUMyx(bDO9qPJ-02TCvhiU5v@Cij|Z)L)9#dH=npC)JsDTc%U7 z9*|xWdlY{y8p7@WrhRfGaF(9Ux9wf^?^@#ODSbqLK_>Wii(N zRjO&6vIOQFuGJ=h=2 zP4w=b&1UEQ>)-yLO*dP6`B=7bZm!{V&@ZNMvysQzU@$OZ&irDV;Mv%6R)XiSd70Jc ztxmy~@0l~QN_2ZxUP z#47?cyo*4V+78u^tbDtX-|aVSKT;hWAc2Yq_%xVPtR*}gO5)iP_Kz6Y6#DrHA*F+& z{V@iHg~HEoLmSAO6R?BtZ27>!D(_B*`Ulp69rkneY{A5R(`77<4I-PY+FgR09;f=3 zElHcG9njLR?!eG+l7qYI3oBi>tDg3y=GfDhH^;XX06)b8ZMSi7m4yl~Jji`~>gI5d z3^hDlWBO!Qu`)B6)4pjLNT?#Wr!eL2 zP;`XDW+-~hl<~Vl(ao@=Rhrq0#CBfi#(^xv2S9D_4up=Y-GPBU6J94Lm$)D2s=s?3 zk-=_j9ZhX_*E*UvDvk!QItO`qG_eceu$cvK#*dA0M?99~&V{gT(uLsRYZeCb2ImuQ z=vAC4CiQSplUzTX898`JAE*r&JcJKqXbv92%gcm|!ul)Y@kOC+TeB{Rf)AEXy*P3< z%e-C^-n*fG0|yKpG(J-M+#JeQ7^Wm@I%u#_1%t3VNY!%!?VlUIdd%;5*(ZL z7tKLSGXI!!(vn_7$bSPJnv9T%uX7c6okuD#bO13%ZRWF`bITS56sWg+)e+}Hd-)PZ z?-e=J7d)PA^|b_q&TIQ#!{u6o1-k`0x;1E$${5ZsqN?dN1!9Yiirnfq^fHA~53Iaj zdmt;1NpKuCQIM4v>)R5C<+SBgu?;_V!QYhS1QUxH*$|DkRuf&_NiEyNwlAln0mSTD zHG(Luq0`Hl*JTUd_^hK-I;ZTtXoD0yc#4{&Gu*9V#qEz1Lr4W!g6reW?j``p3jbfyr3GgCgmcH?O zfsd#=bdn|BrSjQh4v*N{{TfUHX-Du03R?w|6g71!w)f>#HGr7?Zi;O)KzpTyhhp1Z zir-_z_L>ErWi4Z=Jt4t)H(EF)JDhrh+gZO)yCqO*tN`P8#Fq6N#RKNAbEAjJll?~T zp!vcV1o1iYiVfp_4Km@1FQY0=f#S<3cEex3d?-gC6HW5o?7!;5m{874=C%hX56IksqChblbbb~r z%JjGHdd^hu(QqKCaPs6jSYPsft5&lc7P2qi*Z{Jdg`8Fg^E!UsJE?b=g{&}$^KyZb zZ8)Dl!j5vq1mF*G4w!x$sqAO?%%|TThaHLIBX%`G=hQYTJs;o&UN4Aoh8aA;1ng06k|!0g{<}$Dnt*k3P4X>#YO_P&M6BOj4$o`w z@c#A|JNy(D=Vx%dB16C^jr|&AxG!8VxxhJ<#r$_FJ7}Xec@)IlbLWL4j*+%I-vQ?U zqEg)umG(&a?UX7GTbzWMkHv2#6N`!XJ%O?k;F%k#3fO~o*`a)yK75&de}BIQkZ{F% z z&NQc`)!;ePTwS|%qv5%0SNs@1nbT5Z@cd+UxOQFrwY>G$iU-cwA|5vXr>>Ekn3c zSrUP}eM_A8_RXy(Y{%G?Ymxcl5hAntQfvfm{wGGY3Z*A6zTeb?oNLyUmLut~@> z>j7mM6wb{-nS0yRcphvX2YVQ79%>y8m)j?B7tjg+FQ9!jU;Tgft~AMQ97|t?;a~Q& ztrV%fCdv_Zrn1X1zNh+8A)pLiA=o8FI`X+sWxx!$hQrtiS zAVH8;MO7&!QFs8}f`{)tJTM65Idvx~8C*f?CX08!lOLph<^nEiqoah4@_OA(ns~6~ zcU)%`m@K6c$3%W48~Q5YvT~t?FSyQsu2_i0B*`}?V!^`nQig@L6@AH5IW%}6{qYYi z--{gY;2%QV^8W4{Y!nvzH%Kj|Eo9pqF9+~}k0xw5^7o)wG&FKW94gEB)5?z`fA=#? zlR(`^f;lyCOSZYT1M;(t??>>>!a#F&cZkqiLdNo4ctrydgV}L>cwo;Gj2TzJBC%U1 zs@$wcfUQ#{9M4IVjIbjAx(PTN@4PVYUXOg`tlUh2%W*3E#|u3E`PaW)VgX3qh(n!L zu_$O(^4Tu)APy9DT2k7tCuSfmIs%t@jK}D{i}Ph3n0)SK9@Ft8z6^)sGLLsffll0r zpg(~6mN&69f1oHWp_=$Nk_0fN)Ws9H|D%O07HZf?&h|?m*eot`l~E;6i()qeRnZnMh87|Dav0j=t`u$$S;~1dk_N#pa~snQ>pbTEz6eiiPv(js`|it}ZEgKq zr{p^7jF%vzMq7pS%qTe2DtJZUSbKt31a>zkcxCSS@zV3cDB`sANQpr`QX<<0`uL$~ zKfMa@{I3FiKn+w^tqI|eWFWIruxK%y>4xZB7|Gg=^vNKomx_}yTp06tqERUH0tT)K z=EaS)Vc?1)B<&fvS=pJn>ISa(iOKM60@Ix^g!R5BHgGZiNi~8B zPsVs+%!ZY&3vgdE-uN=4an}^ufTFZ9bq+DKz z8DO5Y(9yI>1FT+JXx0F?vTtd@RvT~h1%m)fH`b=dVgh9w88Zxh%Q4yPwCqkgJ7!y` z$k~kAZ6QwvX|uLaeg^3evFlJSGwib0nPG77=co_vgdv>WVGGWFbT)#d6Jy~MVSO=zwH$}&ixI5lIK-4?GJc@r5Le2jI$icU)v5T2 z^NNt|#8h}i=!+4oxlept+I6_C;9c9(MqJY zQbw!Lg2Afm-Lt2qM<`OA9-Zwe`y{iT*iazFICbZP68+^`v}!)Faiv`5>6QGzN4SWdg}=Xuw8TjG^+ zIZjvdbDSiJ$j0>_Zr4s=TkvF5bx|3&W38%G_Vt^`@^h#qk_msfaSxBQCfWfA*wrI54ng%$E^M`wAGVU@KCGS1<`4o|22yQrHjd@k z9?PXH_yA`6Tb$vbRs*dZ2ECMzLFX7~berb0$1ulN62Pu2VWC~yyNk9WR=GB5tTQ6A zWr~H}^{}1hP?SRN^|9lx>{g^h9NB zV;Grto=IQZYcP&gP7K#7jmn{s%XZO7*-5MQUgf$}4mn)5iySr<{Qvg(*WYeFeEvkU z2PtVFIcW7RXtb59df&#xoHo7uQhH0R=+g2`eg=z^O!%;2?hfb~*6z*-+kbg?R+UrRwVZcZ30xMlla8kWQgeVEmX$z3al3STRDn1R^D;wKD4@S^(!rG~so2OVPe-#7@3}>01Olbhg!u^HAr(g z>~x|lhiv7B9R<0n8UnQ(%15BubkTqNw)}eg<+o3l$ry+rS5*Uamc!mAVQy`64S3FU z@R9g1^?EFnPF}jVFw)A>MMa#dPiD5~g1Vs^#r>X~(mUA5 z;SoyzZa&|T&EMT#LY9Y%Z7o=#Qolrwe zl@BRC^8#N9s4q~jpRWY8A5AOD3V=d&9b#FOjL=jGR+ZZz__A^f1wsskBj20|1Pi-M zc@^4L^d(Q(;Fr)%wS%wr#tv-Hf-*=n0eA0(7X0LZ5d|OC6P@JT?C-uoT0nVp0~$~8 z_ZD((sx^3%rm zBlsSDd3T7&8$`?U-B80526{a^jvWvBS+Frv^Vz2t!MeQq{LH@inmat|_&QJ2a@lpB zMsnVCk||7>8eIEc1V?U$mgD^V;$7gFE}Fb|UU+<8s^OKJ0YgdKdT6F7ipbb>R&(P7 zE`D1eFuKuX(B#+9HJdS;t>crv?A?h$7%%R6GN4Z1F3a4-AHY7cxI9mjG&L z(~2>K=Y1{s`UBe9KEQn~8g&A2Lr?r_KKTcT;Nh<}&ZE6PetBuT?ne{Rg4^Q^tz$!I zzg+Y+WLKgsNY?ki$Acc~sLbL|8z%^(uRer0;9J)`eTTlh^xebGJNZ8Gf#?77-t^X_ z3!eX{_}#G&$7%ax;H=@Fcind(Iu5V#RSn-?<0oy(hA3TCPo zWi3@xfJW+@jEvE7lF74K)j0)jP!2*l=sKFn&H&jTJZpPfTI;!n1fwc&DoZ|Th0)bn z`FW`qrIFx93RI(NDb=QG^=A-!+QQt&R_Lvj~p>mj|-Wu59-l!=2I zDNxU3C~TuNVE;bU%>1X<%Z!#S}{9CS&^MLJLaPk zVyh$Pej!eUc@g^y?I-I}dg*v7_iksy@`OoErFT)b$Mxc)O943aD`AC&2TW<4WTxt z5UGSIx+qA8c(6wNr^;QV6ewt;r|j!lvPMLmYRnZ?ZB~ujjjE1k3Rml_u$!{I8gHpz z8eHM8$uSL=M?T;K@BLtH2PjVwA1#mD4#9M|HvCQa7r-p^2Ub3m*lYQ&4-b>0e~!X- zY^_Z6xVqnxn# zbpCi0pO!eC(gIuW>~{Xj0o_CS+L{^I+MRQ6dz#~=mw_#i^8j=O9#AknYYS!dcIEru zcV_T?Hiyu~Pg^I9{NM?mJV-MWNq0O8P{OaT)69#YjA^53nuABmWuqBrH`{n9U;q(# za~z;+KG^{ppm*4=So-LdJX>HM`1%mNWdcTpC;_RIMG8y0ENcEn7A2N^LLoxf zcF3Xz)siJGLx5O;($Nyq@|8|N@y|-vDW#J*g<*xewd<5an=I5uhGvGNbz+6<_tGV2ycS+tnaV!OgHj>TSxUP&pYT4~V>sC8BjnO7JgYRrdH zc?mJuUx9LO%*+y^#mp=rYDO}Lu|Z0}jYbHc5B?Wu8~+e!u_?h|ABHpGR1?TA)W*hZ zZ3_OIga6>~^&$8JmNFwxzz?*Q4f}||L(j8=ogYT16^4NcIg3nNx~_P@;T|H2()L&n zTgRf+r>m8iye*661BtZg)!gcpMbBmNqy#rf@cp2?%+nw-hIN(7NCx4XsOzs7bt>X5UX$Y#?jJBhR5hU zOcREQ@_dE#;Se$XQ~staBYu0@t^Cu9k>rCU*Wdo%|NJjSXfR;AhX?x|-#f}qCbL41 zv!v+Kv?~y&3kJDO)OKW(+YZf?Q#4gC#{+%wkH1qBhts{truJ3r#hYnCFaGg&29Blc zkuq7D;b0_-6pIuJj)?`M5F+)nEJFIgnAR_rZ{JMv$uaqNLIYz$^!X@BN|mCFqo9c< ztZ#+hR!Qk%?KrA5!z%-94ywQ$0UzIVQ+FIUNQ@0{7EmMdlXSS4w!^4-L0wq|bHIeg z2%5;5!GdTB5i_L?tJ0kTwNfm(Orlm=a5uB@UDtnrP1=7xprfDKCh&LK7hs;Zhaij) zIQ(wEw_RU*sV^3b*UwMt#_Uz{#+3`o7G>1@eO@}E5#P=>hbK78>q6`4D^*D<$FmwH zLMd>F__B#8(@s@);8@odKh}7Cb_c_GRmd*Ys(JGu@mY6L5b(VLTOGw`2{!^Wj zL1eRxkhnO;Ln@kh*bvo^EB;;OD()4!@X}bks;&=pS4GGyUb9MoroJF+vY;DrIuYgm zg1BRl*J_Gq_|_RNVoVJNHR*cKg7;w?mXEwQ(YtG-Z0=U(MB)#Y zs0Z;6F#Rf>04=1%1eL3yh)PLQS>?cxCZBe&cYib;)Y*AHcp{gP3w(=gnvuwMEy+rXf86)fAqKc?shLEUq80UwGYWpQ$MW4E+@kBUI}z-(Bg_mHM>L z&zGThYO3Qz0I+a%N~Ecdv3k=Cr33gu9h+q8S!6XPx!lDi$I?>e1TJX)SlxwMv;J6o zi5izbcIxL=sjuNSC8zy5cVVO)U6EIcrAW6AS@IoeJ z<^H>df=g&Of|DekBQfCX56E^tK*NcKoi5V4a(^|S`~%$9;IB5$qrEa-)jH=yyv zIjg0E5=;Z>+;ex?ZH25JfH!s!y>p$r;~a*EJy32daQ0}Ab=t?|+3BkG3}ROOuxCYA zdT0{u+4z|CU)`P!$%@Hg&l2iWvpq{|Zv|iVT@z-GX3m@@>>1f2F!iJjyCuM=X3beq z$8yYEhNF~gjth+##1gcg7_nw=m}zcf9fLfrI%OQ1Ks#H^zQdAYpfX{RHmp(6F+OJF zQ%%JoFxVFrZ?-U1bNjAg@-&yAb_gkYlWQYqf&f?dXr?3g>{IDdI4Qk%t}A+iq_T@k z;fxq)1@$BoPRy~+&SL`_KnU|d7S8WndVmgQ^+FHCN>Q}v5|X((>p?Ag@H>|t7^t9F zFZ7`9${y0z14ex3tOs;G_+G3B@C82>5ZSr*S=;W{%qP)cTET$ z?U^ESY}$jfe+uR8#@X4S_Q`(GzWO^8)j>&!4}vAwbSJ;be3!n65)@E<$OUFK8n|bZ znMpTg#+c9p?`_FU*4k!dW;hrQll5Y&NlmkHX*Q{8wj@JyQZpvtK=-6(G#E{6T6rZd z!Z~n#hVq^ANi-p4WXBiL|xpjI5QhR)rJ_ z9(C5|WR2*JI*+G3u4W!ER>pG`QXsf^J|p_vAD$ardY*%8mGNAK1O_gi$2Pn-JlFNi z?XUs})U?RQ$BhuOX#{E(7fq}mftsig(*3azsHr3bYNA4f^~Xb?cyc^=5GWObp+6P^ zH64s*{YIcvh?V|W2-J8mG5U=_sSrv%BT#Y?C>849oDryUb>={zIv26-Edn)~bD3}s z1gdkP?EWH9V+tBk%yV`G3SA`HNuG~L1?c`DP_tn%&*2MxGRWmjma#=XK5m4Nm54y0 z`)ga5w3AD8`;S14B_U8#B_fgRtnD}g#fKI!BT!Q%f{`5D?JfeP4~%g;XaSGg!GSsVp*eMxYWr=Rly)*@;fBO=kqEjI~NctU1)VhX~Y! zvNNUdoEd?dDiO-&;d%cMs0mlz8wUcVM1Y%z=lw&V7L+X|e8Eo!xtz%`c2?x$<3L zb_5EoTU`vMo)IX_a}ERwm1*we+SJ)%MfzaIJjO98~1}4xe7J#WlBv~k6th6*QfSPYARH_mnk(}JzO2b2S19fDKB_0 zQ);?RkFoZ_&}=f)dJxFZi=) zE*7IE-<&X$Hn+ut32iI-66DZCBL#9F|Ih+c>39eK5aO2ici&*6KuL6i$iWu; zJ(-V*Y2V*{G-1P$zbDd9q+yDNP80|3t*{Uw=Vxl*mTVJf1o_#<_oL&RyF*0YAR<7a zAb*LD&G5~k7xA#3%za>oc5rXMc&p_#8NGd}FJ_Zh(#V0?l16LoY&M6`@jYo2 z9WU~w5exTQ8$2U%aMDPb(kNN3AKGha3We3z2(p zqOCMyq3<5xZRgU&#PsBeq~)4V(ue^mS%~`W=~-L2i@RO<{`Z|3e4ovc3%7N`$PbabBX~@03r@j&|13*lleuaQN)T8P@0~T%-bskwo$pJtY~Xva%1Rp=)2>ipUi`P_zyF!yOY!B;>pdWl>_p(8cCZnjG%@l|wbX zwNkTe*A1n~JR_dh5srcHr5Ss9GN1n}gw32CmQf7}&p^9@pLzR3q(OL1b3zU5DZI!5 zn|%%9(+Fz=P25AILGwNPwPrtB_C7*D9A!AGD!qRbM&_ModJ)SoCM*vFsYOHBIgfC1 zH>L#~t57p{K6n>x{~rJV|Nrbg+j8Q_lE0$xzI5-}fB@h6Y&Darr@$qH$yg3Re zK&OR7OTw3VI=kPnzp?vK`vd0}wz8@ONER|li9~oj5!2=(DzmDxGPCl^tuA-nuwtFK z(a@g^hL-0?7IR%I8ggsoJUQOL>a%X-2cg9RZiPet(X$-S`uFPNr|1j(8+`fq$4|rO zF%MkF`)NIXVqSOX2cLKDJHG#O#DbrPNA`~ReCUK?oafIw_740+{w}zZf4aWw2jYF(iT~Q|ovIpLJrI3~SjXj7V?P17ItO_=X7puOq95=Pb3B+q#zdSR_adjuT&pi2 zhm%goe@(ms8`jsNu8IAmoBOX#x*Y8`b_jdtT2-Ep5Dhbfy-!Z@*TaR}0)0hS9viEuC zpmA8MogX!Kqg%%-J%eDdjC!vmrH;v|g{N{S%iVxT%^3^XLpa`lY>pMXheU-!PH*0!-G)k}NS`w(4uGMx16QLv7&GfpzRJN8L z6e*cTVqbYEiA0DgpooA)LJC{s!0!vf2tf&zN@{|DIuQeER63Vdz(UJzoJft%Zk!^H zMZ;tUfB+RNJx?ldcB7R%kZXi>J0zP{hlNg;3Rs`BNE|T?mo|du_o*O7bUPM3`c$Ao zXEbpo10vfp!T;Xio`r10-y-)A>W)K79&hqQk2(7p?ph49infuW!Q3t!Y@srAo~1q^ zn2I%b+A%j{BTS@q%^5i^3o4c%T&tC5PKn7ahHXn7QK0n4^poSIu-VJm2~gub&H~G> z)UDC3)tN-rqd#%QT5*d-7VG%p6T8yfw?>Iks(BhZ=%<_0(Cczp(i(Vt1JXn4H9*}) zkLZrrff1c`LN4@a1h{=NHf1z1X`E%K3%$|I{_s7Xx|yzVb~sUHG%?4E_#gnDNHw{{ z4G+Wnji92Ax6z6c9&dFWMnE$%{*3(q1QEv0YR0@!IR4 zgI4q8^1){1a!m{7c*avjrXHKWY!3`~AeC^aA!MV2GDvZ6>pNP8i(^ zYW#dCf0w@ygdlybVj9h6L#$?F$LfmNh}rHRA06sB@qV9o zqjUAFD`yO}CU!*r+nLS&Q6O{ck59bbsUJoDNPXJ#yH|nb05Km6>h{Fd^YhN-NUVq@ zKj`tWD~5`#osC`Vnumg(r6GFm4ghb3aPmUI?jmJcoO%TcShMa-H6&I&_~oi13v#AxExr|}dm@yd8K z@8Qbn!kpoaSc)=GK#U3?2AlK(&yMSi+m7qP^1^E?_{2vY;3a}N>K#W~L zHxUCO{RCuxbS#lngr9H{$wA`}&LxiV4-`hrq1DMnZlP*2^)OY^8d3Hv>Y209iL7E6tDM>R8$r`@QuNgA|LEJ4Hdqn_4|V(`K}{v5)d7xw10IMI8blYwB-#f zM)32_ab51^U=qoci>Et0hvJba(MP-+{a7(-c}~Mxlu7U^qc2V$9JV%I`P8U z2P*^r=YRcg4)|3@w3pu^TN{X00D~f(&j_k9I)1fE9Wi~w^RSM?kY@kYJaq(|VVhG& zj;AUxs9Dpv{#^5J!n)gR#vxcq-DNd}!py&n=cQ(T`uU3uAyCdxDKi(pH8#Hy=~Of514hQ36Zft%f;P3_Rc=mZl)A#z$qb+jKOlpK(ofAm2@R~nI;f%? zW&mBzLQDv^88mf`!Rbmy03V0k!vHfC>aIhmGfdsez`c`;3Y_aMwtqX$>5d`fMg| zr~q|1#8^-*Vb>4DBV*s|fsLa=1@;m{`eyf4GEUWXAvHZ3vPhcdz&FF@tbbCCh79(R zxPVzg6Lfe0wWvUmfl7>BHVL`Kyl3$fq1tpEC^-c`3HYyx6X@DQW3UV9%0qtNl6gx# z-V@M56%syjGO^2^Numnn2hWe3E>|;PR;U2UA^_TstHR1t}Lhjv*b&)dgDnj_CpSZBP_>tCn2N~i(PWO zSq&)6G9ES{8Pc$b*3r`IMzLaG)5a`;P8=~?f|Rp5a}A;|A9tchdK@7EVJI<#pd#!s*n*E@4)#O&BB+Q5nVtERWu4t+8PGaz3rGRtntPO7}61B zHnE8tIk+NoW<@A;Wyn3qF+u>Pt7wUK0lc@H|M!pozCY^m-qYpY+#(>+o{`1YpsdJuYtTK{47HF2HmJI`JjOSZKwR3lhlX1|@SP_~7P~T< z>6_rI0duYMUlYf5I)Rf^_^Wwh;cTs9;Z^yiQmAlYxV8-4jl*yo@+O;CQCqLu?R?jc zNf?`ehAiZJU=)%oHyQ1Uizh7YUY=_hnvlTChl+OgprUoWCsx2&SH9@7F%vq76FFR3 zlddkV&(Htb0>g#)LC5jt>_9B$rF*lw1Bu^9zP4Zi*8E`_pVqe?StK+WT`;>PE3LWK zkDo3Z`XgpBF*R{bQg`YB_o48Lxb_Fnu{xw5u*5=G9WE~CvTTaeQAIPagt!<^#Nx{N zO4mqeeXx(SSLOKNqX6{igJrGfj~rPkMd1gzcw!a6jT+;sA%C)%yzGm`w?=H>@ep2h zoGuGGz6VA#IYQ2yTC0ya(>;MNHW7i?q%3K?u<1S`PCZx}&CdC<&2 z9ad^|8%F1lKdkJNP3w)4{KOO2VA+_145UySP{B6aa>yvRP0Kqvc&Nl*Ls(>xLcb^U z12S-PdI$!lS?rh8n514fzKFFYDd#|GJF4u1Hh5gA$6v+Vz=Bhn((7c$I@asS6v!LzOB|Xl1dz_FeeYy@Y@;S0i z1G$#809356EEuGEfq}^+bAScFSP*j0>F!z~cf|{7$r%RzNWKE&#Y9L@5O&H2;X#Wg z=DN>P&ZhA>QG>~-gfR5Gj*K{A?#K@#a2f%fKXCnH`O~2@819WPc4LwH!hRtwAeF?7 zs(F?g0`4H+QJecqP%-qiwuwkA%RE~b*W zlb~RnlM$U*fmlH*ShV*Sh^lfxR8axUmb+gZH@|Rh(F`W(yNLZ1f`>y&eyDr~5#P0X zzAMB$yn;ULp>D~Z^x{Zoig^54>H-On)jTQO-l!Cwt3kf9cPvZf4xf90KMD85dInB+ z&wnB;K%#wSsC*tHfYakcRmp;~Bak96+85KHJ5A44kZUtN%M{#l19kBx;7WGvV@+QRNvkSHI=JN+O_I1Jw zT#4iD65mh7rWC63+gPr~X66Uh^FuB>p8#TF{1_VdECB{W17rxMyjlZD8GH#t$(V>G zK*(i*;=P&vNTHc1d$*dwlpD#RvSeBupn<5qd<+-g%}M+Nnc`zmmoDSp-N>#~mrAk- zAt**!L0*eRnTutSI|^wVkmTgZ&|7HME;d|kB{K1PTkfP&5~l(v4;>Y-6S5uiBRW$I z-KD->t5JcXG!sM68R3PVZogtVN(B!a&t_(Zp(79_IOv!nbYh}{MQQL90yObWHBVmw z8^JoeMdWB9D|LK$(Y_%rNwgfb9}{NA&8 z=XCGSSj5zz**}z?tQW;BWS0G+pU5?O@e^4{AiMsBo@&-tIaM<>4)a8|M8&kk>~rXK z!B8&=**2hLEUfe`;S22E@+1v5sLd71Ig|@EMLws$ZD($lF=6LU45*vl&}U-WQY3fjJTs_)CN?Wgs5gVUs8q+rWZyGcZoCt*e5*PXMgyk4*RJpCJCj$g)%nB zwT~6+&J%(pnn0?S`@9Ph1p=WSeJkXu40ML*VF9;1Ke8MMd-G%-nJi5hM&c447obK= z%`9OYcMQy6;m?5?ycG|EVKb=}PJ&_IKaO$$nyqQyK^5~bYX(Nw5@-@SxHd0lErG}& z#g&ffHcfCoGFZ53FQ$BQsS9|~9Bc(kpOaQ`6_L4EU?~L` zUAe&SlO7&1HM1-Ym<4U)X*z9IuPNDDzI~0BFv+IJu@$+@W)>SZr~snuCq_3dt*Mi( zB;5g*_YNXp+0Vvzo(B|>HI?otd?J?VC#5g zU^eQB`9)pyG@e(=ytCW^mt$!8RB|Yt8>>=D{(NJ)S(;#$1eql+3s|USw-MMRVjs2p zlnlL&>vw-*t`yYkr%FbZcm;6=L2B$AZ#==+7uK@9DHw6NKpMSsGz~!{Q%>|H-a_}{0CfFC?jx4mDC6p((P;(b_>l< zseqx}dS;NwsDA8+q0^x&TS%8u&cg^A4${qxFwM?)-(sPNjFN*8PLi%Q7&=f-DOpq4 z8jJs32kIr^>KesaBe3>cv^q zD1_eHvU!+iu?HS7fDND^W)_C<`&OeC&$?o@6*?iGwn0m}eB%`ZW4$gkhB#Pej(Jr7 zArnX)RFsXG0>vRCiwYbn1I7qat&;5gzD7`r;~}6K#bD`^LbhYL{yaw7b>I&I8DU#MqB+#1&pwfhgSNjz!4f}?aIMB zaTpq9wc1#r0(eVjqVguAjx@$BFyFu}IJVHm_kFukv&4=4YjQoRdG?mpM(r(i32058 z9WY6;kv~zEhBzS4S7t9AT%1})Y5fTKuL)F!X09br4|KP58M+5u)4}!MwU9pMhG7J$PBy3U zc(iLtZ!w5KePs(l@vtim>E5UuSR<)v#a3L{8bmtZ(wu@OioK&3L7!6Jhc@}4t-T5=fe#0VlbNWushngJU@Lo#3^ShyRn z5hxS~HiFcwG^s%0{Xa(F@Ru7SaJb8j8Pi8!Zp`Q&d$}=!b`ty7$ySq0gx0A55uY?l zIgK;VnK5B}mdC1~raA!?z&Rb5Y&pqfT7yoeVNKIp!l~dySEztp_>cSnS5x0`&rs3w zTe4+@+=}#GM#i5U&l>nV8tSM<1Xv@p&XA8-q#`Aybz;aKxYcKY)#r~qNEscXA@kx^ zoR(_EX~|Zc%2v^jt^I!Af=z-TS^YF(I!4tc6jBIi2Dygfcp+PB8v%P{WG!h}&~c)G z1rEw^YBW21NU9Mylr~_rmZ*?aqdCxf@hTMAkaP}1NL@Q3+3_&%= zT%vWStWUN0`798+mcwSceIBcLm{h;d@!%6xk|90v+@S1oW~JB27#aSOVFYdimyD8j{4)ZDE$B<8LmB}RLrln2eo7q@<31n^ zfi+V}P*y7=P%4n)?Gc8w3{e3a)2$#Rxxc;Lf}2b!@9l;+3*5ckfITf3@x|pLwWZZO z4YIx2to^1ew-w(*rZMGtVdS7;0xDW#w_`mqmA7B19a`cX$>=p{K%SLJnAVKVs83$8 zPGkx^q}Y$dhjD2HG0f4iHK@Xn)89w_Gz^Z00zhieH6)}g>%qb|Sk(i6H!xFPuy+Hq zJOiWy!mNo2>OyCqkpa1pl^6Ta4_2u2S`>TtSo1*HYugXAdl|w44hpQ!4BrKLplDq}gwOps8 zI&{m`!)Lz}hG5HD!K;Fb3FZw>Eo2WUm!uIeHejgC8#7=S_1SCvDj#c-?mP#h*lG)kBnAJ5}+5Ki= zE313=YP#`H0&b46kPqW-f+aze&8fp*ZC(Pw$$# z?IKXJV08jm+j-;=493W>^eAq=2v|l2l4pmz7`@l5^wSDGhm8P=?o9bYcT$9s;y9ce;Pud?A82jy`08bAnBW;?_l|@xko`0gJF$o*6w( z%Ue<{*R_r*%AiXsFeh=K ze(|Jh_PNTFgfNL~AF!3TH8%fFe%bQf$;g}gKJkI)U!01Yt46`|e~;fyahNXKZ-LW; zmjm&)1<~4ajcWDdnD*wLiNGNLl5}2D-u?p0Q-f&O!G($y*K@B=8+}io=&FC?cY22v za#>5OpUgZA;LcdzrCaI^R|4W7VB_JUBQX~@R1ZP63H==gjjInAP{ zfq~p!-hNH`WKzFPu_ARIbH~K9!aM}eU**~_P}FRO3`N0>_x5fB=7nQFz+Bfz8a;dj^?J5B1>|)$_a)%!lAkmQRi$bI zpLEq9_4KkL6C@E@WKN@o*CH|x$VFyxk`GThU;d@Y?L02uc7ox5TeoxRZObPEY272_ zad&vf_U75!co=a0t6S-%QYQ^h#G;1RYLJbbh?Dmdq08%#ortqP{85Kt+H+E4h*O)W zvHK=2k{EvmHGYswRQrfPP&*Omw)fYBX{!yz-J2$Wb*@Tox4+RD)>1w2I4mn^|s!;-ZV`(Q)PMVCa%yr{nxL zjbRFgH0b9eKIEx&H9V|~3iPN!HgZ_kTXphHn^8^|g-UL2J5SeJe1LR2myoAAdFTGy z$<6Kg_5ID&dF%3Je!0mOFY;37ZgC@a!>?tFiw>T8eTyU33H9IjG1zYye(Z;09>)i9 zutfamJXP4Wn!ZOBLKjQ$?Hh3oNKip)#Kk{l9sRxt>J(V~xG0huSMpr1mm29k*JWTh zYv45HbFrLm*2QAVHgG31pERg7=FbS+Ugw7-ciZB*UHQCJr}SQ`*JN+~xSlI}wP;@T z5aH>-^#}L47W4vy@9W1AYK9g`i{nXk6^<6k+ps~dL^srJtE|M6_XIDJktX=W_?obr1 z7K@u)yuA`5h>?{mZ){2;n;rgE`K-__dMot1Bw7uPV$b52qsnokNZMY>{Jvh=rZ>O8 z3pRxyhBs5ojg#<4b1zBy+q-zwxHV8$RO+q8=u^}y2WR%84#ZdD1*Flb>OT@-s%C;` zB~ROW1rNQa?Omx_4UPJ7rI9RUZAgvf^9{D%eS_N|$=}tWO~|4ZajUDUOc3N{E-?I5uTpvSAnNofj5McS zJVkm~alTCSf1$SN@C%6_s|wIMZ@F9e{q*$@Eo(C{B$?`|)Dd|zKO z%31k5y=Nu#^wy3vOIh?p+eJ?_kD9MMabO?B<>NE?TCpiFOT@dL+#^4%kHFIIQ@zT@dxhhSb=Qg5?uE7m32}eIJf~oz_jWhYsKp! zBoZDexeE_`V*o7j$KvxwO+F&qDTviNlJ7cx6!|0ZtzB2O^d*xxP;V4M0!w()_kG!U zLcSSHBK<}J>iRBppV0exIGwec?u?hH?Od>Ni#%n^ZQL>qmX5T@oacwlBYlwc4rRB} zfW=Vl5Oex1&7X*+hbgLK(!!x%o=)X;Fk%!2(_5vb5@K@e>L!yz0Wi{PO_DO_m7Y=T ziy)rSN==lOn$U)}Xq6^QWuDKfO_<6&C%akszkmGqdZv_Ue*^$pVkpO(q>B7i^JJ8n zv+|{Kfo%Zwx};J+ohl$}Yx>k|%DzacUQO>!pXQrB9Us{SJ)h1N`6AUI8uY67T!~xO z!scCb7ljWjNB%^<`j_Wsg)UL=$(2hCw?uMfy;eEQV6T$UG?^+gUhYiDbGycYxd06gLr!rS_LkmP|1h>(}FEi+qf)Z%j zfR`+CsH;IX!Alm!;jE9BWC%8CikM2aX7f+z<6lOy9aWk|2H2f1a;fK1<670MMKLhz zqehY*F>xRrf+tE3yyE`69oz8e|jaVNo2;`p(0v+_}C_+0|i* z(5G>3IwB2g-me_mMP`wmFY&_T?J6{5;!#1 zp4qU3S^G!*!yvaOC(X$&IBBF{Tm4G@tF^L;^7*ey*M=zKqw(esd40c9ASJd-=QTQ~ z_ZpRp5|?0Z6VHiCkRUkn-RjT5W0B-oIuAm-d>#Z^a$JHXwb&!sbOd@li0+^;liMLPJ~rL#P@=`GL8 zGR4JDl+Jk3ayL(_2bF_nl2$i@Mt8`9L6O$!_Da_2b@~q5rLazKP?1S8QmoW! zjpHI6hwYWD(`zNg@>-|MLyF1z9h)M>=3%|i`&H>opzS}q33T0MsT3ilsK^v05|8zy za7$NPW*nD`{x=)0Uucn}B}n=F`&p6OSvJFEyGC!gB#FtnyE#W3Zp|NyWgt1&g}yt9 z9N$BrxRzSME2tR-*7k1K%4R)n*ESn`y|&|U{@1(9ua~FSmv`UpuP#n*Qq|t_$)diN zXyQ%NUfJxWZJAhEF3mDC!X_2YTUS+6VREJLdY<{NKXRfH1lpvlc5MU+yHcQSpj|7Q zX}4V~pJ{g+Pfd%t-S?CmZ%gWuAEEA)jCPbPdB5=iMB6Y>{-9xdnY=KT8p>h60hnR#xwtEDrX+ncS% zu})C~W%rjq<1u|b#vj=6CuBFh(S3e$6q+d&jb47nObR{fiie~7{49zMuO5Vj-RFnI zZFm9mYiv*;hv(8GSk=%EI=q)!+o~C(UZvlB^KgC9&uyFDSu@)YUG!NsN0}9Uo|QD8 z=jrt$ZCxy!rQ5kq!4&nVlI?`&=cTgn3W7EE73q4?7qCR)+P&OQD;)>$Y6yB=S`$f)=oIv;JCU>^v^$Z)+uJllQEh zn@P|I0HR@8xtMp??UNQtS9zTv7cjm;IaTTW zNA=D6kIJN6P-m~bXY48pES(dszRga!oLyUk&*uLD00960?0xHQ;!3yRt5`YGQSV7N zVD6+(w?u&4IwT<>*U>04rT{0#Cbqfd*Y^-dnm;p7GjH-e$<(T{0fTK^*cd0B-r50U zyVk0zb*rj%(FcNve(eo3q$6#F_I`8!l^h=!zu~X;`@gI|SL8!~=f(#kLH@OuPVFV> zGxUz}ThR4kAL(9iV^EUPwVL>mg(f^3L|n0 zUkx-d;MaorZ;v)&qN1H3soOJVsAer(XHSUquXS~gA07YND;4=1ZvViT4sa*h6Ty1T zd~o1|QOX4)#}3h-s;DCjWdrV%GlfzmP0$~hKyHkwj4a%nLQ6(h7-Clw20c0nhS1W@ zPwO!mbqr{Jpz6Q&GO28F_N3zz*;J~q=800CJORBo!AVLR--V}s?eVFU31SVQ!F1Cn zyr?U^mb!l547JYX$!4T3w9M;uc&ul^->F2ZuzM`>sZ?UiSghyx-e}aPy&62HQ5; zeBh8xYC zvt=}VsG1*MD6kK0Dq&yR1r!s9u@e*J*ouj0SlkC?8>m0nJ(H(%i7+X#8aqm?{NLFL?T*8w$D`QMqlxEVOOHNeQbpK3F(&vDpHJsPq{VFPP8727 zJ5h)oE!Mj+pv6=sS15&PF=k`81D=h32mHg);zcavVmh7A7sI5**lpiuqu;*&csg2+ z11)Cod}YI=#f^4;(`2=`C0dNd&hI)}oKK!CDTq7*kHf|FP{u!?i69!Z`7P2dPu^KW zxG|vH6rU=s-zSETmh4Ix!FFQJI}3!tGKXu&OGlz{<-~MwvxkH>(ymblX-E-)7EO+z z=TkpgYFG<2lFXbal|w}=;80V zB2_i;KwW??8R`J@a+*9rjzsX36vlzm|Js>9vS^)RDrX!kA1EmI0rtKUnqk z2cK+?_-x|e|N8Ikbcq;2i@++lDM=Zkwhdm=OGgDeLRz(N?1t~5+MYIX)64kJ^cOTL zbcj|q4Fu0&q0P+fA)dTrjR5r1`Xu8)%{u&Hj!#QAmk7i-pr(p2G*sFwzI{s6=ooY; z83Ef8f;@39Ow}Q*N$9PPG(qjz%?grbY`nk~sNxk^vxbO0<8~XS&ej%yRn=Fk(<#12 zjT=eRjcXMwDPjc)i&x}kMU{trW#PW<2Sq(O6qL4!f}-A8S2G-D!*;AmZTQ;7pSTT* zIiJd;^7DtSXM8UL-HwcCBPQ%k7l9Nxr=j&)1-hN^`eTOetOEJ9P8FGDr;1fRqjoY` zaHLaYb-Z@bSjt7cX1wu`l2NT0)0rHf%j_Nzu_tIJB*8n+Wf+Q?3r#_h;IW=ykg39(zA z`JC>^e8TSNv=a{GLyhswxt*KRMs~u1ZjKJy-c(PgSk*(022aZ>FF-ESe ze;W*1o+pqy#;_uMtH&9?dN;HFg!G7+S0e@bXm_dTQS@ zPe>FfF2V4#vHdobI!N2IwVDj3MK($Pl`UA|cw5mT(I1G-=faG#p`q>bD4ThlSwsp) zm`FO+H#^^!^wKw1supKq1geIuqEFkbh7_SlBJ6F5k zDykw9tq4}n_ZW|-q{MhA@sfVmL$?IO$BJ)>y^};&yQn=k*A(3P*43UBY08@}Icw$v z`az%YJ9~Xq7UX|eSTzz~5FZ{$dxMiO4X(mgGhA+Da229YaT%o*rQ`K5i;)twV4FMx znlVPue$3~MTTFJ^!abWTY&8?;W<0ywVpwtG*{C<5r>s01HG(|)VGnSP8G1|n>5bi1 ze33n{gVlbF2QLojv5RE960$Xz3?`D@9D`^hCeUa_@@@;-r8DN5Cv=g_RC73LUM0RQ z&kwuCa0!N=5~|JG)$>J|<#-9H#f&GS&&(SQPcW4!jCvo3^28$phEXpmnwQOQdu4r( zVgIE%L_+Y2=^0&Q{{cyQyqoRYkSzgXf zxCtIORJAtJbhx1D)~&X6JSH-Ncl7sPd$3@!rh^=Ki>j<@&?WdcW6fD>>liiqf`;>H zUVCuA8T+!YbNysGfDiYo1%>UF<2#}5#n#cstcTVaP@1>W37N0ARQ0tlXsT8BywqGmA0(hxSI=0-=J1fPm_srAX^s#-L8ku zy0p{jG@(7p@!9ke$GarNP1EPhS`^vLJkRnuX(u`|QVjBArKd_F;;zx#P{MQeYi~TzNl)9FFvi`$Uk3+*BKGh^wI$tX63GkS4rkxa zXWw8T_c&dG2$UJY2v``OsxvGjJN3^Vpuc%GlkxAa` zQw7pelY4?JtK-WN(qv&k6G{*8d{Vruc~0jlAc)`wYD;9I&7Z5#qrt%pFK$AhOyMsK z`~VV@N#N~pGDG)BgQ6b;p^NCt_=(F-M@M)moy}nUAqHsiSL>2CV{7zorBO>KEVZ1^ zq*4Va3Fq4I9eD%O8lFE+oIo-)9&0{M#C<7dvpFgi@DrU55{(*t4w!3?15(DbLH@Sp zJs)F4E>s24tG0^uB?l6wn8Kq>#Td|bOPz4=6Mam)7#%|gB=JbYj{t!Q2c%2pFXwnJ zbr1-OejxnX>lw!2Aeq#~9_kBvLLDFl-^1L|7Yux>2ukPQD2TlaAJhPYiU4W(6PuR|-hZUmakH zag4A<1z&#cX_zbscwuy|8}w1@5fc*%9KIQo)`ZAg{5caEP9ip4t%faPmn|heGZUig zD;M!Lh2hUsT3yQ9TLE2@cCnNe$A^reIdb@03o8dGnxui?(%*)HhRs>|RH4Gru)b*4 zm)7hTL$0WVbz!;`wTvypjzp$x-mZB;C@pCt<;82tM^su8glED%Ia2{d8ysOd+Y-cA zG7pl7dow!FfuhOWI*D5l6^rtLQ}MvUkIxfO=+8QzNn<05TKxZE{%E9AX{;tdhhk}H zinarxMKZmipP&E_Qa^!|eh9MERftObi7lY6r2HUv`BFNO$_-{e8tUL6TT0~dFJq}~ z^bRukTaRd*gM1!U?GWyxq)gLfbKL~OM zbiU@lf{w$ZfG83vhZ}&1)9*x&JKmuS9`lwp7(ehpOYfMZ1bIF#E)V>$w95f#EBjMe zV;T@&;nIk8d)@>L`p?l1I`(9~p)?juYqv9LW4ijacU#k|hlh>wVYhr*#{W(mm2~%A zx=D8N#bxaf|82tW_o<6fOSzWu|DC%NdHnQn(LPstM(gb6x^Y{m)(;Pl{_{U3<)5Y0 zi#YC_-k;s(3ypGD&OiQ1-J~k&$?@T9bMoi>>3EWB9`{Bsxy$r%>gM|XLVZsbipsDw z7ALPq_2Y|f{%zQJJI`O2NrNdp_n4Qo+{h@&RsL*zSUnwI*3bT&3{K>MmM{J3v`=29 zlbgOK-EV%7dDyu)721FD_1al|QYsIsNwrEEyp)@os`Vby@=;Ba`{HH# zx_x21RC1H*QE5;aHm8q=hq;!NZ#A;|R6WadOZSb`6swr?_ipY_yYe9aIe!_6_r+3% zG+S=+yq4HVf5$_2#xBOvZ)lH>Fr87M}F}b-jercl|4L zc#$2xJ&u~jec@#!y>v?#$th{@On*S)`CIC3|Gt{<7xC~{lgV+tygFIsZ1UzL$-`uw zHDI#N;rEBkncO<5kIt1dnKalsxqN-CAH9v=%k|!HzdCxny6!w23*(9O(v`m_&6tP=WnH!^z=Hpzm(n{ zNrUP1qtw)d^y_1N$jiLZsAf{h)>S_<9zR~BCVa8m%I3=L2EH}Oy(IOc!*nxs)F@o1 zl;%b4F7uLCOC8jB*Hm7jvwUCXvq$~?Mp58};{M@im~1E8^;Y`qF*lU1TD{}stD$7Y zx8vI+(lP^aG_JUfGieYH_G3wF+{@!yxm>ALfj{8p)5+QUdHQzRN?ng0r@3tFeyZQ< zN5kW3tueamyj@MJ!}`6hygg0tc>bjIc63iCUZ6C8 zSCBI5(_#N9JGw&0d?%wKt@Tj5$z*$aNjbXj2!GO&k$G#094K^?SWb`f? z9cK!S>1FbvP}(viLJaCCW+%^i)TLUz)Z?m9iGdZ``nXT^pgU-!;4 zmkm7h##1X_uPb-A&1&cM_~m(9tMtUq1VFHXzSxLbe8AMVphQC?qq zYL(~D>ZQr`+u(Anx0?^wxwA&Uem?k<=@l+J=yg(0p%Y$|bJvZ#BN;thyrbNxeKbJY z>HT^BO+TI})kcv@8?E}Mm^n{Mm&zmRzdiL2$DQ~0=FJe#M(a_TWTiqir`0cvGPy^xN%!9Kb9*%W0hJtnNp~Ry{ybgquTPqCarSzjkqhtT{-yDfEG0)d>7p<^d=SUCT1`Bg-kp}~rCz?(I&Kz^ zj+2?={c=y}HQtKHFRz_Lql~*xc{yiPa_vD!Z~l2`?2jLN_tjJRv9UjSIZ>|8Z%X2g zsweNIM(b5fUS8h~lsmFG@a@aE- z6KVV&uWTi55g6_((r{~0!DEZP4FpOTjG>0d(q0X4ivaQJhdGvSQ&>y^)*ofY1R9gWf^P_Gj@X~}X(uUHOOYu~nZn`Zr6@w=c!Cl_0-*!@f$ zk+P4Pl@)peXpEYG^YkxXhVNi~`O`!{_(YCrj*WhT!*&zbQHPq*gHyO6Z0ccDB!$Cj z1%C{N28WGc?i*Y#JkU|$d<{kuZWujDYcGTDP4U_n8>vtjmKuEv=i59_O6&F{-B7hD zJ>jqqON$JGj}vMKcZ3<}O&bl)K#&<6^|AH#57$Ks0y{^Candf zLc*-3b5;QpF2%K`+z^h5m_|374Q+H+O1(rqyuZJ(^t@1luraTm`{=U)emGnP&Q;g+ z+xY!YV)-d|r-ESd&*mM{x+yu>YFX2RKJ#r)M7NtceVu!bRW#evIfuA~(bMK~dxS(d zi}=yh1VtaHn(+)}?MzvvQ#j7ekUp*W-k7d3&aV*GT6x8cxo~p4@wjEG8mC)U_~Cle zU9|^Rbgsh?IWZd}9LtMp1GWy_qs0mK&4J)TvO^AB3Mus{ArFGo>a8D+Ep9hczFWuW zepH5Ja$lQEXfyvL7oq~Qg+(urT3DedMAzC2(P~9FS>;;b0ma2!L2?649Z79s{vb|4 zqT|ZO_^s=LHpM0<^}qq^$51(e2rlxbW_lu01Ik0FEXxk!F1hJAOA6CkJrFFmot!|R zpa4Zwurx#-Q4F?i%#SjZn`~nS0tid+L{z}ak?VhxTNfWzwz#F?oIxfT+I zp^i9Jk*A!%!R7`wCO{!^lFs2fZMyx0FJLFsH1ZQR07)-fc)N*X)*1Ocv1Q#-_RS{O#16Yx|FWYsX}I4{lH8ryN5745@z>`2`qMuE52noc?!j|r|i zgws!RH&Qb23W@9Bb*zn~zLVQMJbawEn2C@KfUdTsVgEZB1o8!T+xkLRK{~$V+DO!p zfXPuGiap$pV3=`*v&S=UDj#sSBZIX;R_TqqMQ1W9aCX9r3aUjeQNd$chXsP9psp-+ z!M%GoGnj}9Y?(Rt?WT}~7F%`RK)~2?Zv_GcA~h;lmgKhGO?p{E!O9t~ZgEW}djp4|5D}g>1E72O zd#*?gBY2=L05C&^V80BtpiFy;1P)qZ;$WYd@sz~$%F_#q5Q(C}mY1p;vy1M~FfRxo zY~a9-tvO|dS#UJ%E}ahR({)<5n?}oSpxW$Ao(4Y8$&)Emd>$j}{-!+)R8oL6e20NL zhiJkeID}{(!3fwQ8?)I=i5$;BWE*}cS1Qu(vP3s7#xrKEc*av~K|k4j2M zR>vmJe^qeh`li5#6i*Ir4SxfVQWGuwEpThf=t>fy&v1c<;$zW@g*0>lrgNo7Em;~I zNwN$R0pGDKM*S9eMiX(2^@&Iv8$er03K22Ffo^EX5PR?ye5$W8r$OTjHwd74+i=Aa zu7xRsR1A6l(7YRSdavUoF>ST?#Gd%+W% zV5JxC$M}{rm(N}>jZ0khSx&t~d$V&$E`gAl5CUmflV~P9e`sBH$ z{+L}dHR7l1*G$8Ix}GgqET67#pHmc4i!z*UtuIjWB@H+4lAwIPF3}()>o`cB!hwl_ zmydw2z_swg1ewP@5WBDt$nYKCHcxTTMC=Jl7isi7NZ|CL*1@>b6CiNTmeB;kAr9He zPuRMV^fLH^<%16DVrZ{!6u^x4?4w&6Zhw7@#M>}iv<|LqXQq+*Sgo~0LIuZmmKF$< zA6q0;fGvbsGO~$_kVdT2<>+XVoG`JR@CL}*$V!yUUfyw?wWTuWTkMo>2#|2@VJB>lC%sID?WQS3#^z(MFuNMS4SN$mJErlF8mjnxB@FBQa>XDW-9fS zgMG)RU0PmI$#ZvKN#}GKY#MpWnUhAnkPC@ag1bQqQaR^_u@HjW^t7zwUQy+&cYh-)$_a1YNeZOmcg2Qnti ze3F-7VpQoNCvxzcb|IO$SN7blGVKxwtBWn&`{#o#q(RG`?b_&}h{6OyRFnP)ImD_|WUQhD1GMu=-6gyppG>KsY# z3`XJF61at7y+`CV$aGAEkeO$wp`UnpI|~Iem4K|SWZhZpEhLp%+qpmPBtkW^hGqdq zb3NwJbIu?t7OR*Unu}V=A$AC2m2_^5AOHz3qT!A_)bY>M7U-*O#1e1I2iif>sGkzk z@;1^C&VbMmQy4%nU@biPOlyfi&}7)|V_R?rf~P8xf$C#6!n_~dSTfsy!N4&tIfIeO zOq50j5=$`+OR=dU^qI`FU{E3PN_1jOWLxG2f`ujnSuk~WWQh|8yL zXw&a_J!AS!IH?_-?CaWBQVAQ#q}NG-TYXmC%UA|2wJC60+>+^rK_iKL#5tMnHEz#4 zfiSa*F@{E&!B0U$qe^KqA4|begYLz!-<(46p93A-romgERsahpaB92dH_g0sRw30H z*;t22`Gul<>D-z_Bx{6uYvtnQ98YrwP`C2hL;&;ena})d-HQki>CW{j z1)Dpy-=}$R`+_p%kTQ}qRe>r3f^2Cf{Q#>25z`foed(jNL{7mMY)j%rhyQ9_0XAp! zVT&@_&-t4)-(HtkOEg9XiNf?JZVo`{rk(JUZt}bhkvh~DRLyrtKPC^I-3Ncec#w8} z$WoW2OItY5Fdh0NokMhiNKYedx)*#DR2h!riG$$P$#t#PsK8;oB=#)dNgXRg8v88B zeHFhgwIRhUge2qf!-^A940b|N#kP(ny$mKOD8D;{DZfGTL7TnA=I3ggHFBUt{WRvL z5fu*3bOK%-;~r8tfg22EI$c(Aj9Ea}MYGI(QzUHF$f|)US45D1;-Bc)pKT94Ap5rj zIXcP4=C>Hof&2wq(rhO!K{ao5cABHZ(UvGg9`=`Vp>7i%n^(xkvOuW{i_mN_my;2$ zRiYGL))G0w?lD!I3%nHLDD$x_uC0nYn@t`yyP^WOSy8<}E0{P(a87!@d=JM^K#q^q!~pfLp~27=U*)V`oIF?S$%bg2m@^lSl} zusxadTDS$P+8s1+L)tR0*B^oht0KozoXtYV?JSk7FX>t8yz<(W0BIp1=79Fq`Bg}Z zw|We_bO>#KWufBR!Yk(CwA0D0>4f2QYpKB7;w{s!Vv$NWuTmCfwY4B2yn#D1pH=@H z6|9P2P>$lQx_f3HLaeq{3RXrgaD@qaV{sFwkayjrVUWIo?18q_hu|SL3*@61bG>O> z!_ya?Ifoa+cr|56Ov}?i5Si?PK#m7bX6s#t#Y-?WsQ7kV5?iu3G-1uuh|th z3`TPeS**_=yfo?o>NT)qpDEhsG$8JqX>(`W+o?=)F=e_&I$6iHR_K;#`=jL)hb`w>r`UwP!aW>bEWs zSglo^#qA+s}LU25hNp$OSO7s}0K z$jB)cJ-?bKLx8Lxo4yYnn4?0jOipqdsqI!oCdWeH!9ogpx-l(Jvv62-G-)Q3wfQ|v z(e)x)z#tC}(){v&Ye@>s(uLThfN#NSHn&c^+M$3j5tAVk6>pM?;^ zF4y`+h>V1I2Px9rsgTG;@}yrO?3PZ7HsUOVA#^SdLYR$qw_BCVAMNG|IG?0Tcf29# zloydUA(1(EfyUgm+80P2avKTRjuiY6DpQj{iswk_db())gRpKTu>v@_)y>>hrt?Z) z-CS8*MApr<;%BAz4#$bH(1L7|V7tY3wk8R(Idg_$ED89OXU&L@%^+5_a<2if?@ij6 z13u_eewDLZv^;IZO*zjvVgu#8j&-)1V$dJ!(8^OEQ;D*R+$&X6b;+21=Z1=8$Vhhz zG1y4_uAA%aCb!z!T<5Ye5tB=Ey>i08I@hU0Hcav17GXjgaS z4=g`Ci05!9zlN>x*3)c!Y|}O=&J)@e%{o%vZk*vZNZHEyXXR|2?}d;%u_tgokwf{g z2`e_n<@(hwqX$zEsN(=GPBxw+dW1aXQ)!jm{0eC!&PppkUj>G*w94BJXY^?Yk&M+= za%~dp`x$iBu_p9c{MCKYv`N9AecvdS-P92YboC18-l(%?YW8?_md(H5t=p$8jb8C#0EB~q^vU64GO2)7)DNHf@e!yGRy*`BgnU!G)Q3vgik>cR6^^wmX zJt!rWNaeyN&`;*30UtD~z>zq^F2l)~|_>jNhVi z>#NVSQ3toshI&0#ogGq01&Y|T5I2OvZ%~Vll+3Z!TY)M_W*r`;ERmLL`vwfan!7O& zC|b{F$_N5WmiikksuAVwJ@rYyL@_+QtDeWt2XLBKgbOZ7CL zNF_KZiPjbj0m`*<9SIvGlCs=XZ#qC4Ha8#yT2RCu>>n)H+r$LIs@_nwDHtlt{qdU{ zm&=rFfRhW5+1q3z06~WWZn~ijq2w2ot%d42cu=qfqjumz((J}gf;%E6j#J>Div<~W zxrRBRtThaEBpO#RV9S8W{Ng1a(ymblvw|I)+Xb46-V!UJ^yfEnrl|DK`s`K+MNBDtb_R`@P#aRSoBX3f(JijcWs)lpSr zcF`Rg<^=(S$pEZ-bD9gY#Wd|Moet~Mby~LTG`h~PFTkO!HGw1wYJJR6k<9Z#`9lXg z-kJW*x|C3fc?e~hp)MwrE2QP1O|u?b{hWfv+`s?ze-O6Xu_XTYzy2@C1>gx5*^o<- z{&>g+ScUnL5I2|Sx6RYbi|2azrdhjwzPYMZPHQ*51%_WhOkx8BC)dJ@qgM`gA=)rv z7lwdG3rh!ZS|KZ-fhs8mh!nWnEW=oiC0Pa$tO3ty_(d#{@vzTcC(9=gNO}kwIjv-xmnhn!HsjzyfK0Jg2~Pk#%lNj_x7@$7F2>1BIC+ zGFWT{`!)mhDTJuQXauX2$W-Mrd?Q)v_rZBa5@b&5VC^>;8YJ2eYex-X8&F32COR=o zQtX5}o#D)1sDn4xjNi!?B9zCL`U82&>BsUWl}qnfLVka5gVM1=>ydTVk?Rg ztOOA?x}pNdB+UXrV%rkg?1aNxZklU}Fy-c!1!ka9g1~Z7O)lZ=L{!i&@B%P8vK3fN zrU+Rim_%dW#R~*)!(F^UFqsU{V50zfK!v|4d$}})3Cj6dOKX~Y!Nef3R_|n`C~&f% zbrCm$%v9!C+=`j9i1X6cy$e{E;eh=VlB|^b#{a+n&8IxzutYEx7)InD7gKBzHVEUz z_J8<))){D5z$T)bq9rGR9SLdQxp7YtdoT+ko-07o;zn+fP0Z6%JVH}WL4t;DCD@_0 zHJ|j_#|l=v(ogY+oasNYyctD)G{?&I$lV%F=z}@Pj!qpkIp(rchq?9WIarvl@8}5e~Jg&UV>k8CsySI)}l6&4W5M5jGM!@?f}MGM z!{OKL_>7*IVHqWwoMiL=w#QMd^S`yrnPp+(BlWw_oz?*HJBMz8W}dV$^ZDBbZA2f; ziPb*MQYo~o$6&sp`GKmF(`D0Sb$cRRTK7bzSTv2#g(qkLwe?6opPg~JiP6@GZ`F~0 zmHIr72i@NjTITgS9M;!G`(3$A?;eS?XTV?>Nca#1dAy3_3tnOD5h23k;ox~bOc}IE zwSeu)Ah!_r&o6^=>BwY|AO82;A&W=`$zEGL5h3B7dpEL?*uD74kI#DW?LN$S6=SEZci`-~pEq%O0I-?ehYc4H64qSsV{Lwk>HDo6mKsx9Z*oj&Vi=# zxgBVtkP|+(b1!3YOW5I1Jv&ydDvrGQ}$zZ}a zc3v9Q7=SlSr zL0m%4Ol=m+WyDqnj$QCBg(@V2$=%p_om6A!b@G>*beRO7W3cFQCSKb%m_oGiqC)x0 z#skjY$Sov8%Jb% zkK<1))jhSkAJc$U&zg4qm!6G6&&JNJp&GqgLnL~ZX=(eVXV>yUxTh7da|5VG?*{Ot zXW6*sOV57kS-%2?6c>n>fcd1pC||B9q3fXrLBF^Q`$8Z;J!31^O|;PKm#&D z?9ORxU+1)5B;dk|I@Q z+c*-w3d>JPO)QDjpY0jDDprzlYBNsONzFWLZMh&3lDMG=ElI`pJnbR2Y7ewG*^?|9 zKa?o(4fn4bc7KUj6cL;a^?;(uN=S%kJ<${HeD@6U&)t4;Md> zeR*=)J!!Msf66;X2kyYDqB`wyVYAop<;l{;9(I4=lPgVuMlY4d)rkCLgleRJm+Y@U z;Xk~fORI1_%e=ch>2!Mf@Vfi{M0?PC7fa-#kLKmcpgZhzK726vT^~RCaCa#Fo$yKo zRrdy4v$-E|)st)mB_{l@y!wL{eV{Z3=L1^*h5xjqZDKwm`I;!WjN(X-;V4ode(N2c zqLuB#legXB`N&}GF9ngW{*#R*@88ha#$PDKnTwWl-rhbMd*W9Xv+>l2>X*d3Jkiew zXFV0yJP zFx|=x%;rd!x|VO8C-mFxP46cKbsX$NFk57@zPa#=~3+r%yr|XpTiTXOxO1^B~EgwH+AN&Zoz~M-sPrC)iG2h zD0BfcBJQf05ra7(Myz}@^6sVJly&#pmV+4?C=M5QE1TZHk7(lWTDs%JG#S{?d#&>Z z)C8?@D4+&@#x|6X9Pb|rjd$^c)xIr7`mjoEEDuloFHyD>9?mf`v3rN7*u~BSOpGve zoV^pxy|Ac6?nkrV6(e>^h#&O|{(+rPc`?_ID<46EV>{Xmv#%fyHNUz6fRFxv4r+V0 zF7O)yk$keG_q!cd#03LS`{ayWjfwA*1%0X;?3x>%0l(m4)3$&M&fw+AxxspDw({9! zK$uMYn-sEfR#Z@Xwd8i=-9?EnUYvmc^DRC)d zXF`-s3v6&^11)hs5XT2$kT2STZyhhVPPNRLtD)R&jYHLL{#H+vF@VT9@hq7GxRENghxMJT=B z`rp6)y&svjMY+y`;2WdVPYYrq19%?R0-*^NEAa_Ekrm9) z_@k-yh|S>P2-`OG`EUgeY=>4*5kmoSkD=>AbpcsIzDuDy`g;xuEZ6hz2mla<9nj_# zdpIKYYT;}=58ZIc%{6jN!Gc46msbG~L9_kpS|B(Y_RrZI9E1-o6pEQIouUiN@sEkDfITW=)($t+)@^m0P+QO%$F_b*2YFmh4X@-` z>`q)}JhKxS!_*QlH>kt zO@ncyZq)_jbQ+Aa(HcjHapE$PcqPwbcjEFw_h)zVjp`CHPI|w;oPf;E#@l+a_v|P~ z-HMM$*%6tz1SDR`vsjI|WY7IsjRvhq1*;2M(Obg?tpu%cglHu$5sFvxEOsX@J9K|` zC*P>fJdrKh=jCr=Iu;~VHE)VYs%rM?94}&!$tXKw)C<+uE@TV!xa<#J$#d93z3f!O z27?LZI;aHneuKe+);K;4rsvB2*{|KHKKCczs4fxbu$?kB#W~eGYbBghHG8#QP&7W* zn7eu-#LsL|@mMskitMp;qqV)l-7e;<>X$jDH<@Fif+NMqnGT+4Aac+c#|V+@mpG;$ zLE>1=!&%1z^Ilw%dkV~}^J;nBAYKMzTQ0<_U*eqJB+iKnUTzpvW#u3PVmxmaw%3hu zjEJ#*X?Xe(q~RS=V6bX5Ya9<`tUfaM>hsO(I_EGx`&32U-fnNxZ5Ok*^-EyX4={o8 zg@zgL1$+s*3n3V!1(lFx=~x%BUYfDr1BAa`V=0)`E*6zOKro zzkz(I26y{pdi&fRjO&q~NJ-Mcj_$fW|q`Xvb(2bd)Il45~_R<{9r4cIHq0@W{H&^U&C!3ON* z#1m61NKsFZMiGIM*Z>yjRVXVd`W0eAG8K%3UIIT6H8UWT~Bmw1MVW3 zC>h+jJ=z>LhIhO_FHayvKz1wp z?&O5n#08PyUtrFH+R}{MbACTld@_@NiGBUa%=PzOOR+;4H0b^9yHpK=AO3aP$adUs z>c$O5CY4FfumTC?7f20V>YsRhOvv{Ia=(9tPs`JSmI)uC2i3lC(1O14(Xo6B+4smX z@2|^y}LkYhyI|K662}wFz-1*zsM<Z%| z&8Gz>?5o`xaef@wIVehudDv>C41@0-%FGW zHIJ5LH9lDWoHY=~bZfQ?KyKUPj>G5-zL&iu|q?Rk&tBe@3 zJyIDhw=%J2)(>2nZYXIX^D@emDzbeEa^!{rdx1$AZFE%{@ODaVSXIP~Bxg}7rTLqx zC{<`)*I1+~iqid6Mb8Rj?qo{&?2)8IT`@6N6I@waBL4_glEJE~h^-voN}9Wu-G~}~ zq?XxQP}o+LT4KknYzQDl(_e_#uwNCWc}szkTsp}`=~f}IUyM?69H>-MBb5+VZqpm%EBE=NT*QWjaQW^ zWR>F#nWhq=Dnx8bRNPk)Qqg56bL7q-L}=5AEs*kvyJXQK7o!P}^FVm%%gx>U_kSH} zuRM&m>ra^;vjxOr)8ns_sXNJ3h=q3a1oU-lyHtFTIBs(z<*SMXF`o7Z9P-zr*QHoX z@^z`dSPu5B$^AP#bCJmca`$9egCUV9yrD5>X>xf%Utpckx>g)42(uU zlHq%`eic$AjDXC654M<=Z)jxaccZlrhG#N87*?tF9t^J~Eo)Z7D_DbCGrLP_XGs%` znLiIz-A*#-#kMOJUd|Nx1%mxDmowwGhGr8?Z8>vuS#mgtTy{(uwA=k!U1*It+q{&J z=dBh>D6kMYUu6}j5G9j&FcmCah@8?yvRD%;O(YAEVg;N@W%Lp~c&U`c(s)(m)IvhV z+VJsdrnDwmtR0gwhz?WjV`|*-({kE)5vrt}AbFYJL@M2 zGK|Q|wXmz*Vm7CfO)mKk_fp1}p@ZP_unGO0Qquz@@bi2X(cB_Sa-F}bZ%4JRjHFF2 zsRXw)P|iHn`A}DWg=S6KE2AnR--c8b=Xz_9xPMDoBX(1oBUGXSjmW^q;iyD$ORl66 z#?ZJqAf4E(rjRZ_>qtCY8)CG2Mz2(b$>3JXY_6Jmm889^_11_^t3Mo!%G8J~CM0RW zUIimn&3Do^wW>_tGn(w%gH`iVO?L5IP6f`pE&X6!{HSt8Pdb~Z!K=G6?jNsa2u*YV zmE0Cm@<yzEEh`ivwV+K{naV3Ir4^z? z2Xi=EVV|^YteD_mP&t(LffN%B_NP{+9hFhCG5Ueop4wn{?if$d%ENMhuUtoKX&+WD zz2Pn>PIuNQEZzKJe*@>V)qVDu?uM!v=l#{ z2>-y&iRQA5RQIFV?}@WCm$R?XYH*&BA&&2v!@BPoKS%)z{Dy#-PnPt4x3hWv!r+Wu z@k5U2Q=OmAz+v)$UvP#l`3Xl;Lj2%jw(`XVBQzm4%qoP&4}+t9xVXGKkxEtz*#PbunAhSoQRjBB50|<&Dx)mPE1hf4iOA2^|;EMQq5eHw1ZGVD6x5`4ni#x zr*wzeQMN^aUedv?s^*{`V$lghX~U{U8VEtBW>~$jVO689y7kfV4Jya--6xy)wDbh~ z$j8UmZ>OiH$JcLY>?KE!57Tue?men;Pi>LUa4L3YyW z_EG0!`xAO1D+qV+M^oz&o54faTl*Vgv|wJeLo29=#S`NmL)V4s0(7JC_U-GCM z*yUqUxBY&~BAdDmH%@ss2Ej#=w)NP#^qc3pcR8{-B&+uYfM@tv@I2}Wc;HynvDjx6 zo=qK%K4Wo19S5TS4@VoXW4?0`uafY?Uv?w=XSaLvd?&ldSG5^2sru0aAqsr{9{>RV z|LlEPlH$s;;8w7DX3x$wZYG+A>bxp5=6Rm^d8P>vXaEgNUu|}m(0l0a6?FG{dIN6@ z9U%#lNq`VgWL4&|Q-B8d2zL(;4-a>b#dnjBYq}un#?Sv)d^fdeXz_i{%0Iptk~);d zZ{Vk~{_%~lzf4(P{P7Ke-+4{ebnxB&`xg26ACbi_DEn7chcE#|l=wbnbv7sb_(tJ0 zf+7U{&Aw`iOA}tD-9HFfHzc7BArmMa$5Y!&NpZkhvI+0RaGFVA-)!hEl7_jG#ZB9r zEGLUqfN`j^(-CZ)(|FJ&@CYXkG#&IKYIj7IRPY@mwm<5Y3@)&isW~r7ssQhZ1ArRE z?7o5)IcW8?rkV!0%^JKU0mPCb8lked2-P)(Rb9;MO}kLSrIh`8WZQb@A3q?sow4D* zkea<0*A@0QYHAFt~5P=`glln<{I}%qC3dbpNb%3~N^{gljN9Lwkcyv21HcxoX zU5+H~4a`deDDeUV2+S9L2T)Mk`WG4}P0eKGdkgci9sP?&73%Wk90d}$%sQtm`b)x{ z{G7u5WqDuAU{}k2HU<;)>s!dgJ0rf)_f`*=MaV->-PKyXBv$FqDOMQs`c~!V5-a%O zynn5QN8MoI5tQA28`(yDPYd%679NSdfG{(VEUqv!&>yxV%i@yd%@aD3bXN*DO5UTq zrzZ@Yt6Y{I+`(ReJ3Fpz)b>_>cGvbf1yp{N5BtcU?#}V&1ckU|M!UfhCgEiAWeNYj zmM{q&YhRY|GZhK)j@-iB8|+b%{IW-1iMjB@dG1=PFn)_wh(6LP{Mu80wn$a>1nPb` zZ?QYDTQt`#cE>C1ecvEvUv|f}41R?@>KhpR89Z?KJBpFw8+mWN@hN<8y~Gadm!0)xXYGsfEq2yR>?eQOSsUiU59hgS?W|k&lL6N@vhe^r z>m~M+f1f;(YXaH!-C0+vi(5>am)OMp3Lbl$Y4Z}BxW8u_1qzcW_no~@5uq2@!lhnf z3-|X-qxf861wWkkuQYIIFHfKY#BIz|4V;%ql!e}`KgPgG>}Sbdsi( z44i8j{1Tg>{u%sb;Jmhh^AcOH{>AFc!1?tCj+YD00pd31nUz53SI86nvnqkaCGfg& z(pv)#!0ex3x{tobLdZ(<*7sU22-7A=jxc>Amc^V6!n*%rr!1= zKJOq_*A&n>6=r%-pl&d5=uete`Z)|7oD$#m6Tt5vKJGyBZ{gg#Ay+K$hxaw9yxffr z5EtoDlI1334DXr zX|J%Sr%EgI-2GPe)S+E-MK0a_W4Vtf+sE2czfg)_Vkh~JiWI-Mnf42X=OwnP{Rq#O z1^8<%z+Wh?6*1z!GVXfYCXF=UR!kj$DuJ%=PC#E(Qp;#pZFk36e}I57ko0C*|9hnfJ2APoipB6tkE8xmzv0neX3|KL#UZ7{0b-aeAdv8^&PnRCFadcm_N}K!B3qnWUECFwF0#DI0#*Dh8JX(Z zToS~m;RB3&7A*}^llYOODWa*bd?4Lu=$nvggQrR5^C;4tfeG>cG>pxWG zkMBUVl{K7f_bsG|?JDwc3OzP9+{-ECdhP5pm3G`fUUfsGo0ZbOuSZ<+vLyhB0chsW zoIZo-k9IEk83#caph)ULYS{yk`5fQRGY|sFus;R)N$7Wrb?`LfAP~ErNJOY?eOm_4 zGz^|5_Me4goB96zIS4%<+Phaf5Wx!k)PB5&0rJ?~rAxa~s1pO=ZcEvf;I7z~+PHf5 z%@JPH0sW?$>eD0%*Q3_pM^@%4q|d1 zi0gSf1=;f{2#4WzC!#?%bxh8q$KJeF@2)rXSsnJ}XbgmDD9y#^b?fn%Mk_Gdz)Ug$ za9EWe!DyTRu8S9V~R2KCF6+!;bVlYhIdzIG?jN7HZPp6`|e zW$>xmt1YE-E{dyQ*xLAW_4=HZ`+Cjwm#q71+I!jY^YbrN0>fF>Oz;jbnqZpuGld5$ zvf$pap*!vI=i9)~ml)e6!*+q<hFR z?VLRyfCmW1o<9x)*g3h#t~3kIGS01mv=oKy&4eh+CDz6T&66WsTR`@Z+>mtuq9hY zmjw8A2tEM}r{yR?x~FX%T*kJg3_jkxHjgmsl{@YLaa(j)kBYdq;3jPH3BK+oCYaiE z1J{uJWhFc{tHI9y`_)+uc70TzSq=30tcGJN@xvdnNf+H4?pLc%7u+c&>Wu{|&xEE- zHTBTp=BOE)OJ_w6vl;(eh}UF7C|8(8=sQD2@2OI}wr3q69xCOLMvCoV{Zc7URVn*n^^a32%qOkz{#&aQ z;yp^-Ri)f=#yTF|gx}u5m-Ix>r+sqz*OKa~+NyjnZS@Pq<`wp6ZV;Q_S`i}eKu9hs zLipiboyx9nb~|H__sY)_*Sj}{$eYzu3LD-Wi7b%Py11!(v>g^sL%xM{JM>A<2_)gt zZJ=r9saM3gsO~-QZq|D}e+q@Wke&`3usd+DVy-xjz;`lAxH@4vEU~alrZxrFai@-! zD~ps-i8`DB>xavM|eEM%wJRD|+gUVNk z>p+ubZ6W!}IyubR@fY3?=qXKQ822j8{d6->$)l2{YJQT_4)*|kA=6p&X&n=n@Damb zV1FP6`U>n1L`Tc;RW>b9uY8pc34}=yVTLs4M?!-2%$G8Grr-zamao*EK$ylUQggS;+i_1 zPrwE`z2Bfao>?)%iK%mpYJ6*9pDhf5A?SYPYRQ?mKdiewvO~%`&+T$b)vCIt4R)SW z`0p_pST!mb2?<~_1N+gwm>6jiFv;rT%#wf*{P?z*8a6QnorSY6_&RlyeL{j{m`&Sc zg5ToXZ^i95$g6K5LsF(-$pPsEe(9oYBCAFQ4znq)8(x_>xv1iGHo_#ZIXP}cZ~ zDA@1Fb^v8gh4GE{Jr)`RmAR$z_P^Xm z*B78AWla^GUxEf!sv&5OM-ebEo!kg$K62VJ1TQ&{@#T32_CVs(I(P(182jDslY6BI zm}x*2qZ;4YAKyl%IsG1q7_c}iYrJbyQ3dzFFi}_&{M3gLSKbskf*}YMQCP`dyur?& zLlzXp4yYt+vLQ>CjzB3AuWN=jFyDDiiD)q7N{lSP>K?#B5&PRz*LY~{sKdsHojM|8 zd|wz)>wzzz2MsVxL*_EBEus8Ew8qpXlGDlUGtLW!{f+&;9Ow%C1V|5rmW5K_Edr5` zcc;2xW<*U1!7pH$1?0lU&(4d6={&l5#BGX$9ey*H+|t&A;B%`sPU&$hnY{P*--kkV zH0VxV`;i9q(v??u5ZreT=C&Z7@?Bcl^mM5RzHwkN2AASGRAa`>Vs#N{yPWE%N^|o? z-+bY=S4=sf+2a_pPSs+TsSPBXeIIb$AGX*<_T+l^w=<|5-Dx*?tLh`$3BjHl(m?BS zEN>?>P9+}nX8zrP;%)Q!l=6joV^>*(G(cE*@jsW)HTItdien_`r@j3DH}|56f!Q`> zz%?t-jjp2m4rWzNwoLJFI4yoh{)S@p#=??5_C)!&!sbJU|7}X#{fO25iZx>$aofOp;ojO1;|&m6T5GTr^#@%%9(dc# zHQ(Xfwf_{XiUdnzdjQ$o{r~}q{`dUNp}oy-=x~8-9S)Yj&;x3>l`@j?cr6wm#&R+6 zm#ZbP;aX}$hTumf6$k$|;q?wuo^xtl2LBJ*S$Wa#mW84^GP!)CUTe|GQaqmi_kUZ) z{$`LdzZm2?`4&ajVndng6_5s!(6X8Mq`52<`Upz-P32WAyH_Z+`o=f8)Q;w`` zfO(@U^2Hf43wM%~5(VT>Mk0$+?3h_GBGSl4P{^!&4Kk|;uXpjh%wfcoSFI1a8FsOh#!V?aMl$nh)=2gwrNnlS-U=J&Sc#~{ORCPbxJZp5 za(})z87_Bo)V!&kT0*8^= zlF=K@{O&#&jyHLJ*la)*rZpoP#HCANgRoARRv!xdSzsZMu!|h z#)KNUH6_OpBOS+@NV-PX5w%%Pwec~fF$1x-)-_aexZH`ML|O^gqAbcr!|}Nl5h6l~ z!}2}SlB(P&6PcJQ!Ot?Sh^XUJe!fU}(b)!=tHqbfJie3{saPzLOTzI1Z}zkKbrEZ= zIHW%Btw@6Ftc;eCwo>a-KpD8!ms zJfn8Z+E`nJ85>|n?zY8sD`AeZ@lK);9&|_L)dY_VQHo_s2x&}IWZbD+Gj`cS6;wn! ztVu2L8J3-_5hfW~WQw(_nrxPshBNej=>z z5^7H!=1VrfNE2&i$($S?NJKLnk80gyTy3a}Tx_-u3)M+uz=Vr(r>oOA2}CXyiA0mJ zbi5c_)LOAvFP4BZmPp0I7Sglbpf?< zY?YxADO$s76HZ$6S!!M{_YozY;3xGoU$FsZ%O!=SN@!D2Rywy}$Z?|*nd4I?EJzjF zimN=*(o=kXMYLjlJ&9sUP9?ZvjIGc@^rH&2IT#MY9+=wMy{{s7AaQ@<44Pz`J z)3$^((-OOJnMV;z%%BF)Eb*9x#L|Fmu^5CF8^w}iCO3$5;14;L+5j~6VS>LR)I4cs z)$c5UAd>dyNr2f58_j0AP(pIU(gvU{Hv0gFxsCY9C51_GSjoGURozTcO%eXE0VZmo zH8D6j?f*q}LQ0Q?V*|E|!c!Vs2>o!~XIuG>~K&`Vt1vu+%l%uQ2!q z4OnQ)K=V{m!QvX&)Bm*pv)3J8i=0~*Ia{)VcTmK3DTEw*aq0R{AXInt;6Sn06L7)t zvC4qIj-6DeJdrQ&-@<7u`T+kHbRnMbZ{e^9nEh~X{}vjhDb$~Ti^Lh4 zbe$VCN|1N-Zvp8)^l!NX;>*AFO8%{rBJd0RTlWruK2-e}by4*nM!Pgt3a82Ntx-%h zJ}z9G4}1Xfnl^SPiU0c7|NioY9VqHOUl`OiCwyVl1AJiwZ9BVmePP5q{oxBE9LLzk z8HU?W@43S;n#8``VPEdBFL&6NJM5wEFulOf4FxU(FS^693bKyX=2CT;oO1JW39g$OEX^}r(9m@a000}`#LHvYfFKiD!o1xA6oNnB{Aw#L)r!?_nSQp zHxgtY&E$&lsm7?B6wSZ&=}C-Hs@o8>I%4r7beuI&!XyY8^wq?`#`x(O`KLbEnV7YAs8 z=`KZj#*cYv%11Nv(#TO?1v1+#%&TppPd3yU#kQhmiR`8+a+*=-Mx9?q$6cXCEWxZZ zs?debL@XQm0WKES^+qxsO@ztLy1Hx=1)Wu$MZQ^GqgN*ka#S@6WX-B1E9s<^ zTPVwLIjK(P5vGWS+fyzAT^3$rJyEj(&PO_q+b)U;9Prf-8LZC*j9m4*J=>?z%thi& zqqIn+n)60=l{8ypewHeYQZ;!w8|v{yO>xFDAbmE^5K7xBqf!~cB1ycM=n!kn%o++_ zSX=1~&&TM_geY?DS}rjgR5PtvWT@c^Db`|jO=8D&B&-o}!%?tYK`%;ZuDhIur%SVB zFQrMy1XhQUghMrh`>Pt7`Eb;vf5iifpoyFNWa{0_uP`bmyFO zhk?JenFLA?>32w^i`Gd#(_VKQP&q7XjYTR^ti|@6os}vwiZIYulyHU~bY(#Y-ND}+ zUf)&kT(*1?AiGkFbl#Q_M<2!ju%z9Sy*~@~?pTGLZsnv%una?NyZqsj-TO2;QKe;>Yh+Lh_X%pF2S4`Y~r@@LxQ5A|CJ~2ipx`Jvk9b zj6Aw|LW=f>(0&t+pk67Q!7FZl!ZCBi`y&DJJvf{^k;V7L7N+Z=y^PF13$EV8I35^# zP$RY$J~f-62;)`!3;@3=XX|J-I}-=I5o*t#+?2_6l$PZt{QR06EBnVmhSgoNsP0|Q z=s2Ex=U5$-JUCXzE1Da3B4!Un_zrt_Uem5)NZwnMm!Q>XP!Mcw1P zzWq7wtVrCu4AP~{0>;gxh7CN*3UCF7+EyGmD>(FiO7;iMwsmt)NepKXS9{d+b`{^v zv)3_bb56mbP#qnx_49}CiNehVy$CvZTFUjk_<#THzxx*A>!Hu?2iqMd=SJkY!xn?~ zr28^G31o$NHtNV;_^*HcPd@_ZCEJfOd7O^yHu&xA-x&m)jo@lDufUrB#9I&#i{^QxK( z;NN92cFr2x^xd;FXBT782;02K0|A#*OS24@ZoU>?XI5R9^E1$*OSK>%cz=&F?GY(q!`AwrgZZlge7~-(M_*%(5JjRlO6?aZ^{iDQ+P4YcafEsYa z{!K>$=(3~Xb9CtJfBox!`Ozesb^Rr{x9R@fh7~S6d!i9;HP>^7-?{n?Cug6H^YR8{ z!D$fo+uFxEz;>Iq@5Vbj)*iiib8f8dRVSz1V`BV|B#$BKb1i%*L&p_;{khu%se%*M z%m4ME3B0`EPd0k5=+!;++r7rsA>1SVbXn`2({AT#b)432t}TCeEp|m$eJeK)P5iV5 zU$Jv>b&|ss-Ni2ZNMB@&>7pu$oS7bC(9nCV0q#9L+&&Zh!L~U@ISE8w#(5M&HtxNf zjPuyND>9$(sXLZ;$d+Z$1>8Ax70RraQ~gZR)c&br$i9_vq#5=`%Z46T=mQsQ@GTQ> z06qgEy!62}VFcIfhhR0Fuh0*d)8TI1E&Vh~U}xw%z4J9(?|tI-x!RJKw#QH!+ZJ~A zESiN9yOn6|<3_I-*c*%2V=y_>_4#rA`Zcp?gm^$sA*Aq$oI(=z=x#ZMC{E!RO8>_L zYG$DXg2PI^*XI-xB!eQ4s+xtO$61Ar&i%?Ne5I^H4R}pWH$l!m(jYrkddUp% z$tdo~VXs|D*5joD5zdemT%n9MHO`^^T8&Be(b%F()!+cvnXQ_UMK`N*XaAp}eS{wK3wYn)~$9QBmnU)vbL1$KNwy}9WpUfZ=U6BpY zEfZJFvNCVe>0}zWl>TV0Wz#Z6F7l$NiKLVH*-{EsT8e7)x|SHWkYbV}5-f>e^;$*m z2wW9SuCc;&CXIM(Bo^6xWE3_cYMvOEncB26spN;$LMkMQSXFb942|ZXohc~&K3!1J zc)Z%DGR=BF94V%$AUWg5nlx?gr$Md@ z!*z@3r5kfOicZN)e_gIJN(L*O|{lG3-fs^H(m~6q>(9+ zk#;3M#qv((XJH&GXQ@PV(pbzERg;NXMqyN&Tg_Z%Tqv!TK3Q2u=9Ne@jfhORheMI_ zsto1;w4^X|Wo59nt(g-kSQ%_cw{v)5+>FZ_OUSkMa8znIf;~jC;|UdQvg-`BOwe3+ zM9XrCqyO6atb2sak-p-?A!l-!P{6$T$;i9|ZnL^wokR}+qcjWxM6 z)9zTMaJAa5gGwG=B5DZVtQ z&dSL}YlT+HTwasKg;EaBI|XfM18j22s+Y$st1xL-tMNoySECUmyS$|`*y%LL0F}XP zfUrDRpvqtck|Em#7D|Ytv12f6Ghk(~gs#o!O>x_0ugYKyM0R~;u!s#1QZ)AX%3xp1 zxIb+f_q41{^XFnD>OKyzK<^Xr<4sd9&ng6WMZSsm+s8cid9F*KGi&^vND?6K!1swH zhgm(3JCP(%ud?TlBstoPIua*zqtdR^83&DbbFFSb{| zEOKtk_ui+_el&Lzvvb`^Mks>0**E*W4{mGT5^ZsoWH1QnS-a#Pec5h#GbfHU4PJ%NB={~0qHipq8A8aDF;b*%8(fnylMP3?6=K@a;2SXsM)8~pI5H4RUhCrAM zi!;n;cFi&+Sz7xw-UFe8#(TuiIkrKtoqm=VW!Z>~{_)Q%tdlcV$mK-vBX7$Uc|X2W z*SD(mp?N<(C)J}goCnUTfy9xMG=(+%bS;?l`;q)W-iJSV;TniVL!CW02Jec?-vTcX zD!&WYPtvc`&pNBwVCwxLX`QE=YxwD#WQ2fz42@WM@Mf^4rQ6eY2$4WNTNEYFKm6I?x)Lv^CS6X#Lh$%j~caF_+w z`vr<#Bna7Xdvl^`KIY$0SEx_?8gp>K z1Bu=HnDYu%dmd2%xqPYi`kv#(KVM;gq}Hs7)Sv)3bjb>ODBjelKtyHEBa z9ri1sot1!Kr6v7G2%s>#((Z+KMvmiU^nQXt$jdo9A0;h;z~S3N@6URNsr|x;J5zA5 z0(Y0Hy4`WbaaMqiih1-djhLN>Pi=$0Xt%gaK7q5{@@V~u9T8u}kIua3x5&}CCj5n? z*B3L2J+45hzkL~UQ{Cz+ZGA8R-FII906q+*9*`^tw;fI-%h9k$_e++eF@iwOo|AWD zvfLX zfW;peVtLt6|H_m*nppNT<*<{Pa?uB5%HiaDbU#tt!ulUwMksqUN>SUR63XJVDqD%F~g2g_`2j0-bP$l~1w)#3y;wZLqEx}nZu zXe?7P8u4LxP+J2@sB+0BYDq%0)~oQnxTZwwYuci4Qx;ct+1)B`rJ^My<4{iejo& zloH%Rt96mWJk=1;PL@^bNEL19Hb6_K%(@Y?a>^*VEY9&YA*@=FgjsHCOlM*!5}RqS z6IeUNTg19kK|8Fej8;09Mq~&C*O&g_1N6H zy>3R>R>mq?#cX3mRjZ}cus-N#!qxsdQkHW~Wi479#aNt)=C!Ikv%02$MmdY>=Exk? zFU5;^(Gl#1)gThXG%6MnEfpPBLRd}|n6W7(-`^s9>w7d2Hak)EX!`hu<0qnVO(Y9&|F zIRz=om>gb|EP0C8`HPSTabyH7fMS@UpV>bM+fF|#spo73UXwNGmb0uz&H$tc`E*od^kKND5irZ(JuiQtkdCfT*d6$GuNWwE*xB%)3W6r;o=%e`r z_W#+ty5zQzBz+Z(=SA*rkp%xFbw?{gmgSbhvaFTZ-7zsS;Q&cUWSb;30BG6sG!b)z zd6*l_>`aZEt$Hm_XZ#SdQ~OAlFpM915Jt9&M817jYNGa!(| z38A^bucjZt(GJeq3jkybxLP4(uRW%Y*KeNZtDPb@(BmjNUVEC0{RXGzAg)T=j1BV@ zI>A<(_ZJq5EVVs8Z(q*DHY7AE`m$I&IA zEfj`=Xx>UaHgBa67D@9KYF76`A$X8K#b{`=HZ8Fzt#o_~&{Z7I4HnqD!a@4u1^uAY zG+z8_;Fu8XU?w>g8y|G=^A+AqF#sMOHhE&Z zT1_blE9aN+TSP-NZ9lp5Df;JQ@Od5u-k5#5WU)W@h69>j9{Y2*Px8`9%VC2)@?fNy zE6tmEV4b89N~lY+LBoma4WhAxPfW=F!*7%w@JKS2d-4jq;z_8X^Axu01&q6}(F@*R zP|bMs4u0)m*Xsj}uxTj?o)x0d93mn@cEN>TSsD1?f~Y4Qa16(LQ*U7%YdSq$w;{ zZN1qFSdQK;(i)xL|27HxLQp@pyK9X2+9r2MNq9>>R>YdQDXb_P2V0T$8yv@Llq+XC zu$mL(YHA`d`jze%FC|)^&_!XsP@xa9-7R6#uWoWSQj7l_|VBB;EAhTKzoM5@2N(w_e7fCq;R;SkcSBUjmOggx8ck zSZdVjHCT2C%#Mw-$Um1J{?u6|CV)@>RcxEX^q&}(Xl?qhy94^~s5R`{hezr;Q;~=i zD`0f3){f_<#6$#rkSBR9?Yz7_(g^J~X=z8PwPh^rA_0<(1zJXcXp-jMBCgsZPUljm zEaEsIINy$tX%QDOo@^9KRgAZ{T^>fqoV3JGSBm3CP*W+Tct*3wF!TFBa_Ww@sh2wdoE*S<^lFd zH!@`>iR_KcXbsiGQnG#GfbY!rfNrH3$cUqlJw{t9+N9%LYGKR`RuPxR1GYs@rwjRi{gJ5LEp?G5o0)3FbQM8dv=@bk6 z7DZMuLqLw4nJfXVk~zw1ql_#(%i8tqBIJB_qv# z5v%1CC?&le%YFrK1F2W&PMC#bNnLPRKhf){te>d5*p>(m1lVx&47ti_CC7{rQcv7n zC9!l*qs7aR#2jvvU9Afya}io;p~#J)VpdN*DzdA?Ap9{1(KUW?&+Ib?$l z-G5n*ods%ZcDC|1f5raRCB)k5 zGoAGz3R#KH#61MUOY>j+q9Z#&pip!=CaDISDLYhHhJ3=(CH8AH^sR$3N6rZ+LzbwD zS_MP)=?PT{Lvl{dkI+Gc$Lyk(;S?9r`hS1@yZC@VR>BLA6cP^gPgKCa#7E1r=@oK* zcyFMD^9A`RNjmlM$>;a%`A-&CIz0^jW3)2Ht?;&01)KgiU@`@&M&`5_n)#XQlfR#! z_E|9E@aA%@rXFMzvwTa^Iy7W$bhOgwv(F8s4&O#0Q&Jzs< z2rJ)`KwuI@5O5TY3&x6PNF3}l+nU-aY5;wCa2!AS^0@Zt7u?CjS)eJPJJ?ZlxkrY@ zxj@xsHWYE?2^|Wn;1MXw&Od#g*`R`w;#L77a9br0HYbsFsi?5BTI5csJ)JLuF+xOBLiGU7qeZubr!J?_ zl(-d#&t{_enji1|55XZ|Kr@@#}o*&(It61w!?S*+E%J z;R_+v(eLKbNw`#~6Z{X*5vtmpr@|6@#8sDhhDr!!AQP^&@*dRL@Okn06^i`{Q59-yHJPDY)va_V z3@kAVtOdvY637|mw{0RgQk8s^W6Br@ck+<9mzIOtejI|ay){Ey3)2Fui+~3Ux*ZC2 z1>O#YdIN2Ta-4wM%Ut3RQ`Tob&6$B`*d3*iB7x`g2zBSPuI;3&V^w{*wr{ypsDoZe zO6u55L6RxdQ@5k4Cs>-0P**(zmVK3qy$AKSQ|VWtLsfKp%?`{=4oWaH5TWAxff8GM zX{qY;l|8Z6o~jHlg~?<)k=Q9F1hA9NF697&YzCp8#*ir#TP~W|tW2LMl(qRP(6&rW zEt%bAKf81mwr4mGMlf#AHn2EaC@3`8m(bq~lt_vn2qo1B1jwMAZ9LEYS+YCkdANIo z0(e>H;W6HFIL?`GuWl|zSLgS!?%P?XO<>F7vx+7UGAq3!3>_$AR_@M57xhlbX<*=6 z#(3dOK6*bGE64EG?nCepKq)Hz2%}>wB})Y`M4b(3AdaG9TovT8_w^W6N8SbVIR|7x_d>79du$I#b>wfznMc#iW_wtkQOVdY%D3XBy>!piw2{1(v=P1{fIe2V`07<`^b zSq2m=HTmaWhaS}9f9{h*ENMAxkhkQ_>pV~{(g-CqRVXnUOZY@i$r&_~jOE@&$@iV7 zuw8EsgUAoV^vb@E2EYxm|5^-CSPsNKaV&!n_WPmdr&#{S2`v!MstdIMx9X+MB@}SF zG($4<;q;z(k1~`kULzL6AsJ~3!&M9PTp7a+pbVEnZHNW)mt;F;=H+wL6)B#@W=B?n zr))Y>;biH8jj2qVtent7K|#AlQv^jeCaWSr3E}>Kn}l7V)Nb2tmh`YfD0PsYxKk-6 zJ?Mix;4&4wX+fn7PF)8sc zLK-8+umT!`B?E(2=g2;c=TymH*1GgSj>XEFg6jmrQcP^n2YHUy63t7+C5_Ndlcl5w zVM4J4OH|QsY<<}Vq%0w&`Zs|jlISNTvrt)oQI3c@hFNp-Y85Y~ZMPar@5p{_h<0mYLQ>TfF{yLsz2vp~33LP!o1XN{th zR1Hn#g2AAec1O~{MvqW`Pp&huJ+EabL?eWsZ-lxlF{MKNl|c>?>JW%FDAbn^^D7AT z1xG0o8yaK>5af`h1KI<`;5Z?AQmCi-%6FaVdZKJ-2UGjWUQOp9*OS;}D&v0GrX!{y z=a0&Ur3xHY=>#IMDuS2tV7o7aqc!s!l~JW+oL!@&o7r6sY3NWNoZ!&0{yXD&HlNHe zlne1m8IiBZ7&*qoSs@~f2iI8|1Zj(cz&zP5&YDEPT47Nyz$}VY_hWQaV-Y_8G+r3H z!WmF^2*Hc4YFOZMdtxRn=)5B|Flb$n9q|J_TfwlDIql{U1tZpzvcu`hMyD#v{i3Qv zg_>i%@aInpWg{D_n?rTSe6+>MZUFw` zn1DFUl3)T}t)ABYhd1+uOK?K9_;mlV^bXMvW8hw<7JBXP&`=@-g!my&! zHn(!%W8zUW7@oV_i+D9w?ygc{g=o?Eg+~lPLRfe@+>ub@tzmKrTeV09g(KU9B=&|l z#HkPyBUPfxU`Il+%O7=%P-8jd0mok&{dllpn}KSq0^-@5InN%(b)6$|H68+fH>S2b z{}deW@qr)x7Cb+(kva_iYV}rK3s~717|WTe&eX9s4V?sZC*+QSRnQO`nYDPfz9?I< zK$hCdIy*qVK~RDtB%sf*Kcl8ST+o3&wK0ZptV8hD%A5ONq7%I__YBMP)=SdI*fvb# zBkZ6p8`5Yqm7DVb%>=6w`@T;A5tC<73d@sqnhe1zd5DOgRM6B)$G)!+D>_YmzaQri zLE6iSOZGZqppw)&(rm}9b)-LW4Pbi?iu?ks1RiUJ(Qo?tmtI;)x=~BsEGMJ7*;6I_s*qA-&}dBFPpQQ%f2Zz&l_`Z@{|25}-L5UR zf#<jv-wZvvX%iJtae$|11Bl5%WkhPV5b4qs_y3f=mKI+ zq+tH4ws~goAYO&!(O?RVDRk{Wujel43P<%CqcYuN%LCs*DkQPMf2?E%;k!q8r2pOT zV(qrYHjg|QEz$_>Tj}N@hF-R}3GgK51>@GYtg=g$>b)}iUcElX>z?$4_AeIWdA{YZ;oy;tQ+EVtSud_@=>69H z`|F=aSMP5C{E)&>ulR`A(U`W|b&~Pf^rfH^DyFXl-kfSD1rUN*^$OpN&NNJv*6!@<1h#N>G7R~hU7a> zC|jQ7wbCrtA*q&1DwYJlqS{lD1PsX+GVEY3&=*2rApBjtVvlPde~r4jSuaNc#lcS= z3KjqHMem3XZQ?9Ys3>L9qiE*IlyAg{uv8B7_6lI&N^e+7F|hg@mJ9|)3>NWkU@j#2w?a1LVF6|~ zvjjHe5QSF%L?$0rdNEXr57l1`6)Vy{vFOw=B8SKP{XvI`ODTaBIj9(RTLYQASm}jP zDPB~6VWb%^awsHrB^gDmIB0d_C~9J?XjXcKRE8CC@wYuI7HrQ$)vi37)I4MY z@zze?D{J!c(RJ1u_D66D_R znA-W&&9C04{9VlHT)D-+j$(2EoIPW56gXrL>ztDRH5yUU6S z8mguamI$UISDnKKNz~72i|zi}U1W9}dXc%`{e^c}ji=A-K&adA{u|o55VJ}3vQF&9 z0&=OPVvFFo)LJ@IJAP7ai|rEH-J^CJ1hU4l=U?2!k-!C)Q@bn5?kb4gonKW`=g)Lr;Rk1}^W=R5mk-bcEyT602{Py7 za?=*uHnfW<=++D2DAfw!2@Z(c@q(+V-MxHQ{k?pJw@DmAdU-QCI|Rr*4~ujqvPe(6 z>+)W`Fox<`1fd(cGEtv;+Fd;N8VV8!$_Y^I*mw&us8tj9qsFuywT69Lw$eV5Dd5`O z=l2?VpRcv&@+~uFYA@iqv<+L`fph_v8Q9&^?#iy$&?~#1&I0~tNSPniZXKNk+-&tb zM<5C3u+w|(-cV{-UQfF#m)&PLHg-2KTWPG_S?brcR3 z^Y=tm>U?s9s7g(OaiXb}s_(SBi|g(3T^wWihC1sz7Z$&vTC3=+@eV-;Xw}rkYia65 z+uN&~gBP#n&eHO{7tAE#{Uqkn20GY%brT0xt4YhREw;OA7aI}M*|gpD2(r7X7K5d; z097jQDW(syy{e{7bISyx;VPLr@c2(hSMM%jEw+VpTwlB39$cPCt&Yn;Ac)}ub-N_s z2T`5@Kv0=lJl5GKef#t10Esswv$K-GUAUECieTEH7a^Hc%2W8PPdckySRlG;>NMZ4 zU^xb=Id83Xj(j3vTCb_2=ji50MkN!N=z|AK)>=%~3oDh<+!iyMw2PkYH#BRLcpd} z(+0V?C{5dN&@%fnMGH=4&_NWN?tfAcQZ zAQA-u1*F|&+@PVbFQ5cS-9wgz>HB{G00960>|J|v;!3XnDpPFL);VWx0ygj5%~Sy) zlhnzp66WmQs#}#Z&?LU&*sL*=WIz3NcN-ED49E{zI6Z$1F*df`EvePgPtx;|`|Tgk z!GAa6WA>jf&qu!u>$s#>O670=C@;@=-;Vi_C%^mfyQwiU?T5vW532mf8*lgJ<;fC1 zW5=bb%Vx~|#Y*44Y2Bn*>jF&zSk} z=q;(LEy!A4F_Ql;j{fOi`g~k!RhxDH{zu;H)E|@ai?R4waN%?vMU4oG*1nMZ>V!>< zx#jUQooch)(*^m{;30S3tHl@9)<#r+Y#_VyL{Bc5#KYDwtEMqKve@k;VPsz<@K@Y@_no)cDLZTrbTzt&*EleUDY|hN;si`?Y>P0f@ui=Rx+M z+hr(%HmzK3RKin~P_j7ZgC(ol&QP*y#gr_a@(%E4*ifcL97M9PX{#Srnk;P>Pc=;e zj};QiRKN=w5~@;OI%ke$j*H^LCE|dp9yaSNRaqtHj%^gw9b1FQY6DpmfG`Ve@*t9m zP20iGr$2tXyuSFY)N{V-B}lZiiA`$W!w6S+zg?E)I`Vt@=QupJZPVLJ>IHV?yKQrNr|0t}BTQfJM$^hOurYRxSU>|^aJhI`a7BviK0eUkZ4xZg_6gP6+zBiWZs(T&1$!|@ zp1fA!@rsPc;~zsSiZz?bpc28EcdQ9vysa}cV#M9jDC~drjv%1OM+w|L=NB?h^O~mje2ga7!Ew9nW)~{Ii-oE9ES>RMO<1thTu0_h{lc9zPZ*ALd?gAf7dH ztl1Yiz&_Q@k}O?buhc`sbhQm zm5kZQG>=Oi*EFnEw%5dOR`t%}9RtqxKLVi`T7jMxBPb`>n0t=At$+GlC_DdxT8)oI zSdWVB4%>Iv9P>XP{7?TL z0oPY*6`_me#fxipU5T5qP(-_~#FDsmL%U%qZsNm;K8k_V142FO@)fqO%L*DCp2k=x znq7T6@i=RrVKgyJ_B64KNz8)Yv5K)9J{05RUA z7BqsW5W*OqFggg~W~Ongc%oI%z?FgsV~7?$M7UZ_9U@#yQ^GS%g^MTQ_%3RN5mp%C z^qu0VV}x6orZ>hCR^eDKps<2K!r1UpAl?g`ynO))UwOtsVPL|U&<59enZblxnWh29 z(|rZa16DZUeTKZGw{9q$@K$w~GETTfFP79QXiByM3dbc*0fl4Irhvij%Xpp!NnMo*JR=)qxH`NCneb|VpwY%(!@rTH|s3;;i1@5g!o z+R#JU)k7`J`=iB1h@S&NuC_+8~|9(xw+a6}4tQ)B2xHN2fNuP+&XfP#`IX%np){;wUiMs{G;m|xi8px*G zfmJmvO-`j3ifQK@iYZPZo(?^ST_{4UZR1LchJ!f5~pt%mc>zn@pZ~}V8HVHkYTy`eR_{3c|Ol#wsAN|ubVIJ&7 zs~^r-cxRiCz3DmeJNQogLbLY{%i+^zZ^;(!=0D`6`ofhoHxm_%7n<2AiwOb<#LiDV zQsea zHmhkRh!n5X0=*b@MXgc^m8^j4rv;?3!X$pckr z!M5I~b9)4FYGWJkgX=-(;-1%<{n+4#)<}NMdlcbng^y@iPrGwcm!1#4o39T(JKaLM zbrMv!WI`WYD*imb;w=)E*w51M<<#4mbm_%4y7|U6vXc=|^C2Z85E*$7k;kEsK+qr>MWx(EiK+tg5wDn(% zr|IS(Zw}j|U7)}96eYGtFZ|Nm?>apjW^O0X_zFXyBh@SS0{wPGn8ptw$j#*C5PF8y z)WjY?QS&qR5rk{LX_^trUX-_9-ekSztF_JXL_KuS;Lm0(x2ce-5Rzc@=g3P^Cx?3@SX5~Q6{y=Kn1bUr~A9> zJbRC%htODQ=s=9TyTBm>F)Yxh`NW*f9P1a$eZZmzL5RK|-rlePlo zJymI7J~7DJfvuZOoABrf5LZ}4X^md#(j2)Cw4opNFishy9}4yu{xmJe*B={;K;%4t z&xXg`-1!i07nG)FsV;C)papr8;HkI^Toi0#hV53lxwszO{|i!s7QKtI1__no_bG-@hdp*2w|D<+jzJYc)zbDx zTZQuM&R(B}j&(mX{{!(-eY)w5v1d$msilViI>{FSL?nq8TM+0kwJ(%c+RN(;p3M7I zUrAAHh6WGLh`X=8 z#CEf9>zvHk$h%o*b@P)G$MKkZ%O=ca_K4e}(jsQRm|gnf9-02@xaZ?~U6W6Xx_&HQ zC-jpbTs(ca82*R3Ck~g7x|%-?e2V>30+@4L@~v`t&R-g5{AAO)Wc40Dazc2E&~?VI1OL_mOE0-(k&+yYcrfwqsbhQmm5kZQG>=Oi z*EFnEY0$)P7TmJ>jsesAAAzh4tzZWw23yYkTagX_^tsrD@X3~M9ok@tD=v&zXU?~5 z^3=q9VdLdVUP-~{27bin_`|c7Hxm32by|w+yL<7+I?m6OMZkW5)98@?$#d*|z zIX&Xket9qAJh9TGvc((al_nMJd24~5{=d=UC*p+satllG$&gp<%76`seX3QF#RG1j zqLT=+P&MoZ_6HXo-$ead`W-|i_87j36lTg4Li9BHBh=d;|DnhpH58r7&_r2BDWd z-p@CC{B!rXq1=f=^|%q@K`-~YpKtE7>T#ob+$1HBLXR7`X_0;-`hJ|A<+V)v$n^2k zJ>RAR)JG;uMHI7<%=Z08x{?&9kqkDC2^z@+s5d;t1Z*UOJ(MvT$zYQRY$StCUYtfU z*sHfs;}F(FCX-QIc}Ut#WcpE+4i<|F22^d~A}dl8nSK-;THYjhEbfjaDw{C7xu)Gj z2HWBWH<7`{DuJ5FV2>WOiA*g(iaamA&=xucZ^Ew(8{Aa}dt6~%Ww2Q?Mpqf^0R(rI zp;GJqe?#{xCtL5LFz@mv!6R|kyJUGNiPyVEX6s!k@PQPjAsIGtPo`y=T&+M9Gq&m@ zpqSxyv}Jx!hMd0>D3&N7qP$5iiX|%L2uZQ1W>u>3P1@nQRGU@xqu>tmCb`IL6vSG| zEQ&~|W>py&@Zs=cGMPP%LZHZ-F@1{a``(4m|Z{OQ&(*F&R%Pe%MkqTT;!I zV$!CXEoJC%%%<7WDZTLhX};lm)oh8V=2Oj<;!~%ZEhXJ`tKuhnKfN*bjHxcQaSHg= zWWh@Du;7X`ms)(}z}qZ<(D$k@6Hy9Dm+brV{EFAOzn=v-Y|?f6%7kgF9yaT&N|-=M z(L-!^g2vja=pl~XfK6Kwds}_>qIkQ+v%-^J7ItBTiAAACa{7rU8wMxdZUo!k0pU6- z5v){$s8Ki}d6VFgxQ@S1Rf-YRTMOG{f$uxeV>ElP@3``ecv}zb!Gvr*uxV3U54^1h zHhIvk2R40_w;tdIW!QrkYx6;QhOueOKjsj_Molr-POs1_aCn+;fx}iSE1X~Pc5PI^ z>nZNq^a{C(j(R2EijJz6(~cBkN6hJO(1PS*(9R5d6lr%qu2M$ifZGgEwmq>257cCU zdc;a~aeAXIMu!3H;ZtBWwQ(#bGn2`cQPwN@mQhw4$K7cw2Gk#Idm$({q2vY~Eyp8W67#bEt za7kC7#U4G=p76SX_Cww@!i|fWW6e3-CUn68Ji8EkmxX@#q0;~ zF>7|*#jT*F$&Tbu#CioEMZAZ)arS6VJOavbWdoCp8#QuxA-#f+7ux3Jsx~Choend4 z<`cW0d2E_7Kkm>}Cf)KXx<(JLqv7Lq_Kzbcmh*f+HeELQu$f4oEq5Sj;<(R-o2H{v zqZcC6irZ;)=*(q(QC?@%x{)8=Dy zHf8>+|MDeobBiJzqxZ0qVi9^>qZhK$@IzMn$CV?;<@Uur=gy3IatBrEx$|%^Bq3AA za++2%EOw-8_)b$S^I~jHCi59D%{+40WMYm?W<#PMC^edQsuP~-<|~%3G+Q2|=qn}X zoSM$<(WC5ppRr=ZcHe9C{G}R2e+~F_8VScKc}?k> zwpU0^smJl0RvTHeq)x(fx>ZxY%^ax0W^UX|NvWo}FW2LESgZ9c%}*WQ!}>N0%VK1U z-3AKEw0C_2$&w9{iPPN(Z6I$gUTHIl=xLsnu&F_dI?4dpzX52&2OyfBX;_3uZ{&-{ z6J^1OA-mYKJY*y1X|u~4V-VrCfoV^y`KlAEoNPU&7roK(qc`a-y6_D`|LP>o`J@;3 z&{e9=k{>d0DQ}?h!T@FJV3Su5Z!KsM2hG&MrtjG#T|{nZjD9}29O6NE4C5qqV1$M8 zN$Sw)C3Wa3sbf1UkO3~Q=<|f!NH42H$B$G}^ar7DdYJ{;lUI?+(?DH4x5G~I^95m# z9K;udJ#G_FH7)Fs^By5t+USMSC^H=eZ3188pPVtX4i67QcP%GdVCms5^t`%Vs0EfV zd9Yv$wzAVwuHBPr_Ft7Ah(*u0TKInZcdPVr=c@VEx=wXIcUXvj-1TqoZ+=|$&eELL zSczwuqH?SIop=_nz6NNtk_z%lbUaAExWq(D=@pw%z*7>7C2b|eb}!0!S$eX zaX&b}?3X{Jdea)ouX&FmT&?gCE!RE{Ea&kAx`kexx0-L9H#^+|@@8P~KA^fK6Z+s% z@v#Ycc}-8dgfc=eoK?*?-7Y&BsVW)CN=CvBGcynqdU3XDzHzqf#01peR*A{(VzRz% zQ9{9pTM~xh7_C>zD|BB7!d&n1f zV<0&}>!(7zLYh+%7M!j#ejWI?UKN=|dQW&gaZerFbRz1tumyhtrL>P zI|f|me+2A0v;w^%22|>lx12Wr^tq5t|AJbZJ8Z*hM_h4XygGBP$mFSs`NGD_lRaix z{*3b@K93)swY-twfvD3`Uf$h{Kh|-6E?&B#^(8~_67#nXXFtI?#``02vL_ND-klG9 zVLNAC!yX4D*v?;zqa_W?Vf*fyWB%uZ|LNZ&VERh6vP>a-yJpvwqZZ3czx&F;iCZ_c z8&-}QzL)-^7%X!xxi%7uUmVpHv0!Xa<-%wG{kC%x_StV+ z0H3BAVXbAH=oUxuD(Hy77~`+reJ6(4An8*0O- z!yY@;?mHoE`M3MtKwP}`(4TI4SDvwpuPoK2Hsio}oTWDBz<6d$EeJn?EeQ0N+84?z z?dA0a$FY3XSEBQ@hVT!B1ld_Db!Dv-+gdr}#)|T+C~JlMQie@i*P1hBtSDopoXl9sxZq9mEQ4UdE8V}6& z3}s90z4Yd7OVLX{tM7I4*~)y<%#jE12fZAfI)08$JXY8+N&B7s8ctkG$YAsmhU)ny z45{o_mHnEKJPO&b@P#la7!Sfn{m(G1(}RH5iwXf(8KyC5QyHdd zP^vOa7Yc?Rn6zG0FsaHgO%_y88K$wRQyHcSX;T@d`#-%a&%kzwH|QZD>qSLEf-+38 zw-*XrkchaC-2?~|TP94~n&R@b2!vosv4vP;ZG|P>%Oj46L*~D{Zw{C5@APSN&p-2rsEPH;Phqym?U+z4~ zq8p$@QWQlH6htXGb?-QmNHoysMmPHNpC|K|{ulrCKj$yQ*RTG00)ODY_>K6F_%)aj zo4I3a{_=r1ubv&BKRdy%|Bk=uw&9z^aMt70!Pn@kXEUD$)PJDQURw$KRJ{BLNBKjJB$zwZZZ`1RGZcKfW;e{*{C%$j%3Ue1V5J`7(yJ3sBWJKgiH_%@`E zA$;4H|9d6|ks$r|l#M6hVoGQ6oEA^m;=l2yKlr2bSI;`_)Al(B@G^Xwag+=nN&KFC za+Wux&YCIZu1I|KmX1i|gz(GNY5(%Ni}RmJAm73#hsKk?BLjzi;Sk3@nN0+?nLFe^ zJ9NZH=$>ARFXJ6rvlD=K@kDAr3-;|Sy>Z2a(BB5J6-@5S$Io~7|LcD@c!rNhyXMt` z$^G`>_W84G?=~d&f#=Uc=DE*aG#HsD4aVhZtKXxi4MyJoXz<)R^s>o(VtbC~HyC|8 z*9Qvb_Nz~+tFpPKkrzBo2cB~uu)pcgEiMhixXO3dJeBYCKvlkT6_wBQd7`fJnVwR4}t7}V`FYbkO6Z~)5v@s! z*Uh8FHw~o4%U-i+(V^}*oHT$M+pS)mhp$pDIgCXyo~G;@4?o?>El} z)8A_!Oc6N^yvQ9A|LNZL+#v&!QZUn=Nxg0!f6?h}7OVBzr$$cn*t`j=AMPvb(Bz@! z`Kgdweje_H+&E;xjPjK~a89HRxRkZpb(#qJ&9k2N8(}?dHc{H158B2(5a*Ujvcy3d z`ce9Bs7aH}v!eFRTTu-u8$&i4MFH0_xVAw@BW5$|s(9wQa%Ni<)}<_`wO+)UXF2Wv zw481}7iW=cPwo%VwRF)u^J%{k=F<#C_B-h6ZWu+5eEL^JUHfUvR9VJ^+O3l+E16J5 zCe4G{oBI8m6M>BN8mvA>UfaL_gwhgA{;Oqg+Z zlOS->Ja@vy&!Fs$l+c(c*iOAS!AhQm-omI^g&N_3H=aMFK5py43qx-jj~#GyI27Iq z{(kigtS2#(gT?tJmOy|d!T%Pdy%=p1p__MFEO(fnfK+g@{O~n$_!lG!y&6fmCdC*2 z44k!i+^(tpjW>L{<3ndLIG`iX2OM@lvy})vMGI>#LX!u^8Cv3Ajvz(%Bfi*MoT*8) zu8}Ku6KZwZ$5R?o-{M3VOn{rTGSKtp>Xveg?k=3!p^OV?=mIXr~ zcq^QHSvfV~4C3=OeCKl{t~~)FzaMzs_bKtepIssoO;`|m{u5^_L|u{!;CzwH5hD>8 zprc%?((xeJKIbW;cMlRQI#o#jyRK=f)-AUfvTJ>TNPlg3cE#kYN_5@ zJgv5ETA*a!i79XuHcfMRrXX!}^3_R;Dh6fE1B73~$10Wry>+!)ra;}9I~rr6H>ML1 zpK@Jp#<=bldR7dct8i_LpJM!P=LminP%8@fGY$b|j=2^;cdTw3Q^u{SH>6H_H%?HW z&exnT*Tv276&cW+`GqX0IipHkQgg=ZIq2RHW1*!-XEviy6FbE)^;%TluUB_B-?AIE zE4|m^3Qq1b`Qvd!2S|24r$LK8!Y>dd8CZN@`Ts}0^_@QxGTZX`Z3DUJrS<+cB*)z& zOBVb*vaY>FrS~Hw@pScfaYtDJ0c;}VUl`wV3OE!Hmqhz<5E4JvKE7tHM}Ql?7zxUa zrUUBpPj5)T>|=+xbt`hd_A0^rAswyh5!fs3|}X#Ah4sQ?ngxWzjlY5AAAB!e>1voj4(o+b z(&2$m1YQok8UOygi;qa%{v4zFr9+1Q+7Z8sYk+)oLdlSV2L^8eo)^N0%Py{b9EJE% zg5t_^V2P#i1@sq=2(bWx;P~%aM6ZkJE{AB{`x0h#$6JC;C^lY~x+#>Nop$mrM_epg zHgW6-?vz7ov})5F{uu?K1Fp~5r#RbmA*YBR3Ep+5J0Jm*T< z+AT^CpB)@8>9P8US6i+!q8%8uJ_VFxEd?{Aqyy1j!9W9V*f=G)bIb;6z;g++eskO-yKmnY=h#0MvsTv)%)}>^0)LNE745Dlq zF(n6+7C`B1GzBgea%tHcfOP!w`yI$f5cT}iuQ%e8FFp3))h7=Wf94G2GYTKjRmi0$ z3Bf{Qd($bGwBYCWxTc`uspOLpE>;8}y{xOc#`A!3s7|03^x5yAkxMTIkv@{?%%RqK z3i8RC;J#M&sr6>L?dFhgGRvJVEOF({aw29pVV1MZMKN@-kZvte3|#8m+X2gq?`HgleU+t7s$AvC|pfa#7Uqo^Q;8dx|E0|?lZ(~U5S@^>)+hcm9E z?Uwb<6Cu`Fh)aN=cyo{hAsylDI3e*-$%-DGjT6qIGPxJWa*%u+y%1pu`5JrvD;&NI zH00~VO;DZDG=JbDi;XOo(xEsM2OPOtU5RAiE@cXqn(WmAH58|sDR4^q zixwo6*hwuwoI6y)%C%teW5pn0!0FYpJ{ThorJJN49=SGS3f9cyr@5M+NAK`3wld`; z2faNrhd_t=Tn93?G9?MgXO}<93l%$s9-q3VAfe`AY+Yc31QmzacH|TLDOP#hXi9x% z6UPEC^;nuk;c1f9*;>}E$GCfAh;NEA zE(spT+wA-DJGHp3RN1NgXWOkdzdavWd|&>izPD6cCr?A)+XCNDMSjaaE!1ia~3vpoA?7IE38JIoT}|m3zQpy zCBiLECa)79P`)WxN;-(%js<~dV@$d!h>FEPv|!0I!W6i%@6F9E&K!}jvFrKfD8!s( z2NQ^?RiOa}&*hdWkXQVIp`y2Fo{uW3st&09XQeqkkQOyGO2=7gnPGk`Gb3i;fu0xz zkb6IH;bRQAYh zMj_M?5Qw=P&pBQ(((r}AYT)?;t_r3?3PC}1AE*zxBOw}UPR3S1hYSo(G97wpXKJbK zOt-dTQ@As~e!cp#fti6t0xNi$4lqxN-|f99MAAl+-H3BEmkwZf6mL#v z`J)q`1)eJmiaHAFb_<|yR8X<3gJ!0ar592ms-r0pYr8g0Gr!XCPEL`W$O?g)ZrfTU ze$huhEy?i1$j9BptS>Gf@C2~E0a0^In{=(}!5R*gY&x3I%pp-xY14uwsu&sr$6SYo z>Em#l;EddYcZ5kL#kYwEbQVQfVM_&Tp>nN<1`u?Oy6<^mLDb~BUT%;{u)y`3+6{Vb3 z>Lu4P@z$gOPblZ^}?s14yF%Rb)5vPAf;*9~S~el50bEOzNOG_^!?E>Wer z0(#C#wW>RMI~LNJF%&8t?d!WQsOb)SawMG|owrpeOas`O5wmK%ESZqrf|DX4T6gEL z96@SMvgac^8D0HD8{kp`E#OFJj3`DHIFx-kNZ-5 zR@WJ4`VhGxN~JhVPj5}d2NbWIkoGe>DejUqD@b**+;Ls!P_|bshG%3PY#Ug z7O_T7^k@yBEhX`v!0A3@nAM>vHR2KP7b6zZQlaR;l#_)KhJ{ZMcH3^Xd)8EUnu$?2 z1Su8Ga1q4;nc9(JK_a}E8$ERv$xjWQrMh{@;N$|@WYj60I;JNF*=h}*p7wDf`TxEo zmld9S4aU=3wJ>Va(^Cs@F+IDv&%%(p4W416kB|x}Kt^SQ!*9xTctENZfxfN0G|hkxO|({s=+J|>4CzqHhT0qAQE&6B2Twh6Sa17e z!4-3xr&^L+3tIlObI9@up$Y`#`($1$&SSF3 zngfT1qt|WO^VjyKBJ+#6BPW7FoN;+8mn%J1{@Hs{q>h1Zv(=tq>y@m+o?)V;*H?=5 zKyA?PLXPoQ&*%enpIQD(#wY8481{PdwkEoMm3SVN*Y(fK(wV7OF#K<>+Q#fuq=9Xx zjoEB`8%^){jQLO4%NDw`VR%$cEzYiXs-{4(nu(8L-S=48WR3&#Sr*5^jv+bzs>P%Exqn1ldVDCXKeC9?BKuh+_=V!aOdW~(~j zd#>$rnv(kXlHy|>uzN1`?yQ!V((7WP`36cbe+-oN%QNT%@)8<9yn6Pl&xZHcSeaxD zn!Xq_|25Pg#cK;{yb$K@b+4eJy7G#gdHlr@u`wyr$oUTabA>aAAs_9FLKuEBrjVR7e|B(NEK_3X-L#F1N_SZqwwg$sMT zlWUpcMGUzwaS^jhc~Aa;S~Yp5>tj)p`hg}7%EdiS6ny6A9C7C4DX?5>(;$ElKYrZV z6Ka3Yl>5#W0_XJ0(G#?+4_K@_|0Jb8aln5_oTm^+i6tQv>EWUfq~?H2z6Zh_=>Hts zWdc#8$Dxm@DHm``mLaqY*|#zZ=H{N0yi3=`6n2E|r8) zQjlBF&~5H58<$x?%z-rqZAEmBfHo8OE>=$D!*Nw505=W^f(Sd(EE|g~l@#jxp1fB3 z6o5TYer*h<#BmhoFm~C959x;d{pBOcIpOoxG+IYmpxB7RXK0ZzVWP)~xZZo9Z1G=b z6nY-CtlwR(_=J(mKRHiF*3gRvXgFAa3E1DpHdL)fnhqp~U$Bh<`zssCOBR?q6Gr<8f1*GgKQMYYyekwvvCSxMS5g;KQ>T?>@*iLM3BTrc%0do%?~ zwFHtD^((at(t@N$gj%5Db8{z$h$%7wOQb1Su~!M4eRD3)TB*lQifq_mn%-S#Q5U26 zjaanrJPYiH;^HHU@U~=X&w{ynokNU(N8t+15aPwWdrE4usjm~2B0<~?OG z=_WA+?oLHz)`EmpHcSCy;DVp38XmPks$K4Nk3~!}P=Ke`{fX;+s<^}gmsQ~rbA6K3 zM2yy|Izq=Y1rAk7V|aXS5Rr<-Sj;ts)>@T81PXil3uBFw4fed2uME-yBnyHSoh|TM z-DjCGVqLrRQkA#1v2?Z0qk5gkm8!JrF{*N*XRZCrj<`~JY(=P?6nP%s?bP##wjeFX zqpY0$ryYYFc;Q5%B<*@sGiGXbH8s~CQ&o}H?G9T-lm6M)H}8m2RN0M2-fP_tl)_~+ z8_}w5m=>%`ee(1`s@;6{29xSnA3b<@_fb-BHNeSN)~K9i>Wb#;UYb0qL`j+@cMKlb z9)$S%Dp_=T9#K<(gwsHUW;MXACE3!YaPvu4ORrX-xSJd{nhTy{ovIXJ%hQ>c$>Zs#m19F5gq><-R9$nExzjhR0JjoN)w)aVdIXqCBSV zaG5*=S)O1nfNJ!LQ7GpsI!mwU(JH2qfCi zQbSm2RulmGDw1l&Q29^eidM=6VOZ$8S8(%IUO^{XeyyO)Xvv=n-a?j5lSTESJrWb; z_rIgH|Jnt6WaU&j{~8PSTy=M9as;$4OpXY&q{*>Nc7wSTvLQdZd^QjTcT52_mq|wW zjl+wK72H%)^YpTWrc-aA)_q3{9t6CGEQHF~#^^-J0Jtwno60=^^cX4kI>>_-Can#D&P3)C*+qoTosZs0X3fiVCRI zpoD`{)TT6X(BBabz*>Np%TD_ki&Uhd?nU)O_&HGx8LJA-xE^UefHdGF&#bOgJghgF&m@S>Z}i4^}mAT14S6nFgmT9qpIwP2=_%gAqr)WyNC{H9FaOv1#V>XCu z!;F10n^m(l|iGv~6YbBZnFRixR&^}hI?H_B)Q={M&uhd!BeGU5N6ap35)1pECR;uHS$ zX7R6&i+{nA`C4ZjD}rxhY;}8Y!2t$8&>=%~$*(T~1GATWp-|tze&iRpv$IaG-+gA; zoV)o$y~_)+T>jK(#5d?hJPXYI%mQ3;TEqVi;{Bby9C|jVTp&Qq-WQIy4^uLx7Jf0L zfz4lfhgKA;(>sFs2Oj!pIbYixfG-R40%!9>ieo8)%8;VQuaG)%Jx3w(Bxw8g;a6aE zX1{~V4}ebc5?Nn<^AQRl!FlNhFUhNClQ5jUJUI#M37wLl<;|$ee-kmw{G&fUk$W+9 zPWW~9{A5ZP!aCUiOcz9AsJBo&A@W&;p=QhuIga^g{9i9;i)rzHX^-YUd|@`M89s1S z>}1Ph*f0~=m6eGN95#E$90%|T|K=wnoepSxIPwF-4nlrG2f@i)WO(v22z?sb6Zj{z zZTiaT9tKbRfPj``!>0h*oxFS;`BV7ojYifZvc{8S4Fa52$Yv+Y*JpkZ{z|>61^?i) z<#RxyAP*k{Ih*(qIUO+p{3ri^d?Gr+Arrw{U+2lYl!=R2f=(jO zqkFcfHdkbM>Rfh{%_}>Xef$U&g!tf~sU#2W0{8Uh^E^Ms0B5-pV<6K_@}dRgPf6*p z!E0V5GQ!t_w+htA&7)`Z%sAL%Jx~S3vyLTp&Rb1fUoJuPQ1w|M2pJ=iLl8Zw9+g~D z5uV=0XKOWV?U)XVR+g3(2e-W9xPtv$(<~k6b_h!ny2;^DUy&teKbKT&d)v=7Z8W;= z>9UFjj5AnE{CDk|z&_KA5LXc^z3H~q?Ix{*XQy#aUfRzOu{s3=m?d(( zJfFWJwJ0PlXtT%(lzIngW>_eBtMszyWKnuk@XW2uT+W$_*Jxj|&4#qWbfJ|ib!v_- zTBabq_vVn#X)Nv0U@qd+d!P_oX9}KLOIZ!I%qSL%<5+fhNa=<@peD+opJGV-Ast$A z??>!qopc(q<#2Q-{h>RP95ocmeZnxt2CT@*A_Ux?H{ z*3L75MIZ&}>1IK*wIxyTEoUJ#5ydTEZmx(V@Mr+t$a9BZLyn;8TG7mk+>kkz%PByF z0`uXd&uSSJ+)536Qgkl>r@{{V{6OZNycnEyGZzE;$WfMaGw7frBylsa%A~^OqxFNE z-Q(?tmy6hbt4x%6`1%NXU$WuxYyy3pR!#%X6OI=`GXZS+8ib;!A>5ra&q^kD2!94+ z$_3RZ9GqI!Uc{w7O_*B*r|Ep>-DlJ@qI8eDFYXOr& z$rL!HJA+`s}R8IICFbhyA60<-}<7hF3jA6r}4-~8!qh*RV<}iXe zHr5iXLGIG?(Uh>N0;>wsW5I5)H11#jw&B@TO-|I1sG!NM6i1L#5cVH5`7SJwV+Pwx ztTD$3AYYg&g$8PSbTnc%1N|FkS6g|Et{v-5XQsK@E-7d>e*kjHEN3G6*IwPf>^MP^5SzH*#WUv6514FY40J{B`t zzm?U@@>hW&Yb&deB0X;vaou`7kyClZcPN(oF(PM5ef74 ztW|2gg-oEFnGZLlU1qB+%%G~RniBQutx}Df-gru-VfV$LuHI)^&naQfes2(ovMYos zaH9Ey0yHhp6@;mng2gpK<|vf}*FvN(8txejE0|B1t#XKHdK`z$CZSS5wkE?Jq|4Eb zrqt({G{)Z4_q}BjFd05j8?u*=gUN?+>a+7C(v^R)Mv>2l@gW&j1P)4~ z$H$=oGz+CBxKdac3CwQ!4x(G)yE^QNFN*LI?zQpA?# z#vy~60>_zLMPBH2FjR?O((RSVjG>TAcVj4=`QE^xDm}(E@o28UWgJ6qjMGpKt0jVH z!NU%(#5LF6RV_MM7ni0$#c{}{;4KQ!7~3}AGsfT@V+3OC?C%`4+ig?8iY}5|#|*C= zHeLiE2N7HyY@f|g%}v03eVn@y;p>*Eh1{8AVB-gU(+_#<6jT-9n7UMPfm-lX>X&H& z3PLtgNhHt%CW1jg8)n3@h8#3R&*BIAS0wzRM;6+S@Y25c5;DU=5uU~d)Zz-7O#{dT z#P6||nB}?RlD`;M)FTRP;y~ITWYXbk;cZawjzsldd}jouiB<|`@wxD4At#VQFc2aP;e**^i#$WD}jYig7?(;YOYvhjU@o!NGb>Ez^=X30GBoCs{ zvI!(cLOCfwW-f8$kBK`3$Sxq!K^clXwjaD<{xECaSS+Ds{QY9WezgV2`FiA$gesCaBoh(z3b5TZE-{C)BK#q*R7nx7-|_9xYPkbhq%;>0<@-aeKvNmhzhW%1tf=C zB$8WWpJCN6{_t3&su3t;F`Y#rDhN<)%bG?UCYF)q%b+f}-hQ!Ih|jtdCPuiL%vTu& z)avA4{nsH)g!VuU4j7-0Au9=U&7D{QpF=R>SnFAC7`4RPf+BOziJd z*icPc)T(NsN3EF8Z9`lEHdM2#v{s9F7(gaZD~*djfFF!u$W1M zf!u5>XBSS2tXz<4x7CUO>n&MzwUs}Y5yXla`(2Tv-_*A9ZyN!xc+Fm|pdbyY>SiVeR zQCvQ5pWMA2;y`iMF`3meV-0ape#V6wN5ily7pC<%oY z$izV{v_6<+!j*(+|LDG&&?&@;Tl7I%Y_K2zGRg5AOMHTXNtT9N1bF8Wb$k|BxAcJw ziE!wG?>Bb#g7eiPmhF%rV74_QGd}v@$@-P}K6OO2^(SI~r|#d3LcsNT{{?z`3s@-2 zDO!=o0a3bD>IKYiR3&N!r{qx6g0$FeV@q>QK{A-YF(qzfE_=gZT~>oQln3B(d;pq) z%P;0*pQ!jOw7}io+ zntSVo*O8UqH8FoWF0~-C6rC3{E+whYrKA`;_UtgI8xFO^r4V(VP>ep%p=iG7Eyl2B zV5)E-JSsf|__xS_zX(;!CuGPUl_4Q~B5a7}4K(FQ!3(9(J?4m|$MI1%dX|!FU35Rh z@TSc47wuNElR|0Dg>y7r7u)kX^dS5PYnx+x!bN~p3ZlS$3}(t8CZ}2CzF{W%qZNZf%bR6NM8-YR<&=57590;I&0FtS6)k*CGtY&X;jwF)ovJ8&@ z`tttk&CUP3M%o5DtL>lf&gVM@r|(>3%t;qfrcVP zxJ<~#m{Wh?xyPL|3p#rUWracxLVOq>fm}=pYJPS@Xt3vURVF?XK~xJ6Q_rEt1L6>n zsjUO0N?R!^u@<3Y?C6pkX$oA5B#o`n7$mN<%!#jJAkkuU<E;35KAjZz*A{xS zUVrV)_PI5K)JiMm=bNc6c9P!+{Dn$vnih=@l%nc2)d7Ab^dV%@$KF%{h07HeKgl{H zE?liKY!MrjVwD-ZKt?l>eIa#faUGqKKRLn|8e;Cf6azKm+exh3!PPXr;lM=|Ger1( zg*hz5s7qNN!HT#j^h3hj5K8XGbyHm8JcVeFA3_oGg$W(6+i}m-d@Q8%MAE_;7R6_i zn8{28xB}$lgG-2rD&HGKK?sR1{9DFlJl1EiZ0K|)X3gAL6pG0XJPs#6S}}85y4S- zdjy}5Sj0YBHkN~^>HnuiNC2Q>yRQRNIY5T8y&a>h~iU~i?~ zKPi%uAP;wGHO3G>4WU^&^g*%Sf*#E;lrU2eL47g>OU>20FX<`a+*q%_09|FqDw%R! z+!QD*plAx1si+P4N{JgZ)`U|nf~QsjSPN7_ z!2Bc;4NxNbOevy53*Kx3;!?##u`d*9aMK~ z;D4d42nxe<6}Ci5tS0oOtcwjBw4^C>90q2|!`rP{VdmX_uE}BH0j_F8UkZgqNzJzj zi;^yZde$YY&>U35;RX@l!ez6cRG0xDSEDLw1&p4l|C54uQl#3v(Nb-6%c7jtrs2ek z38G5cnm9(XEi~sxqRjxVcTexglNbQjNuYW!UDBz1=eC9begUE8TKnR7J!8!cXH9~&dsvp@mCLuxS_v}BtPMg*I1=K@q6kE z*L(klGrF9D>-{VKw3x#JZNK_#2>*nVyL=2W^G>fXnIQG``GsWq)VCM0kt*|T-Ut^L z@+eGy+t2&9f0;XOUsn4{eS6u?d$xZb8=4Xe4Z)kYO7tr{bG>&}?I-~@DY%ese~+}xcu+TWy` zyVH}!oBp(8$ToGkzE<|^8e~qePAb8qvNwP1`v4)V_isHITZnJc#dpS}AnQxTsvXwE2ATsiJ>#=X}vW9KO&iu)i}M zsVla!5?^dl9bXckC?#D?|F^Zuh0;@)EA=_9!XRKEIur)kZl8m#36AcW^k_FkaI8?L zj^Oxht9(;NZd4N+n5=pbT%lLZy(X?$q|B7yia2HFbj6m4zch+hN|+MgU)Or!j$71J zxNx5un8%7ob9EZW6&MnH6Nkc(+wD29z57kSk+!aS#MHNK7{y9VOhSq^_EZiaY@#Ymr!SD0U>$+mJz2+3=N;j_p27y1~DL>yl2q<^##kp`b`%lQ zd8?XJbDOG?8YR`8j%nyf?)ETqs&O<^;s9#5y8ZOcye!o;N08T@^<(V(iG6naaQ>8{ zrFQ?K3N3BbeXK@HdSTYPJAuxN!y=kZHQmc9RI^p*sv6ZaA$+z9)tnZ`DmI#GI;Uyd zR5_~IuE$Z0YMKz?T7_!5dwteal2BXq$f;3{G~4W+} zi+n%?7E@;~t(LL<8+5C^Z9=@(MWQNwX*s&L7XL4C58o8c*1#*9ZKFSi#or|RG$F97 z68jvS(ZAA#X0y@XBr!E1C`pN!4#4hzR!QS5VfQylIA8+Y%Tws!O#j{UO60WJ^ly@! zw%f{Yd*{$zTmSo=DulDy`frkOnh;A=g>d%S0nqJLaT}Fz0GK44CdAHEA)LMT0i0D5 zRhxYPCJCnrp)%DppF?v4TwJF6Ta_cH5^eyK=)!2{1`cO$ei@ zB-ZxX8E{%4*5Hr$P8MFw-8Q|51o=y1+vM!l&pV)Y_{Gl|9)6rq!l~^mm0j5v1aSGM=8>|J~8C^+J6Ew-6NvSp)ezb14xI2xiw=pX zycQj?QLoG-_y`$Bti9EWND@kb*lw?tOuc>0$ye(WlfRL0S6baj$(eZ@DQ#?}7Ldfj zSLoG6+^`xVvM9(N)m!TMP_h%K!o;`O<0m=s+Ui*wLNpZXuV=#BXEB3*`SiEOO^tb7A|fwq47;btD%fiq^MMqn{LMkafowu4<5-)FrP} zZ{)KJd0!}jk;TPjp+VzIuxR}k-#urXj!%VLFPHK-AhxRw>Re%{Y>!;Pkc+HMt% zI^u`S=CpWl3^rsz;5pHTj@J9hWwqT58nh;tj!AtdN0Sy-=gHBWb>+i}kCQsDWg8@p zPi;11A@;5>-((D1SJmnNNxSVfH5n7@(Aff5T>KX?QN797*(H`d%Q{qlHW^Dc89R@I z=~G{K7x9Scr@QB|MWI47ubXu-;$jdv(aO!dU?n-*T~j8VQRn;3o|bCwb(&Q$utas; zTt|^Od~lNrC=QwAP$;emxpWmM?)Xztyg5F&Fxb|3vN?es|tWL2M{1FfPx%9P4p6epJ#UN|+mC}V&x2vzHF(S-l z*Nj-Dkm`o}MuUU>-V^9UUqJwDS?f@vnLL00MJmShTAm!q03s|{*Y z(}Yy33RH7?xwoec)EPOiQ#7s%GZus7i^j91@t}fe+(cA+mrb+xBJ9_vSrDaNm>ME% z)BZLgz2y??cZmJH#8}ql_R>dUOS@=tfBP8F5@$}ed-8~{wem}>an?-(IlT>1pkU)$ zIs3n62b+*lvfxQrOJ)bxrMqos(`sYf0uH?X^Zu&8QW4HOKkB~?S%v- z&=r}uDxbD56H6fA8~ec#pskTFkr+h6T~X4uXas!Mh>E~Jl#+H$jz95{r=HIo$1|v{y=z49 z08aamw6(0zC{e%mnrvTgt_Z4jtJ60mH%p*kYkF*576r8rs8$<=$ z(q)SY1gX+GzLI=uL{!EP zCZ9TWMrE9~t3_pOQ$GES$}mk--l>B1-QYt6e(P7N@v1=_IOr z|CCN9Z|UvU=3@5>vZ-m#=+pL3XS8YA^oDt%vAff0yAcgkf2h0DZ=ceAck6?ye|0j0 zfh)&c$Y4WJ(4^b**4(c}2rwBl*d!foU;VH9o!3zi5(8A;v<9;IL`G<{gyxmQN9Gd_8i!xfMJGA)Q);KOau0HRWUZ#PP;Y7XL2?4PWAe zGZIdY_?O|ti^dcFpzV8s?ai2tFWVE!zakF*K%A$51(r9$m&sod8&ThyLL&@@4-739 zcp<);=#)P*&Y?*uisH9FdMV>mbIXctvfG^~z<{VhJ?i#^eO9hNEP zAQ5*rF~-EqotfjR5i2ayT`w%JsDWM<6kdTV)A>Y+iM3#HSvj4V!=kx`ZR(m_Gu3Y$ z(&TAIeSReTfA+4gH*FY*e-&#_n^f9D|GywrYC0jYb}DSIl}XHqYLYH-hIs1-*}hyq zNzdn)(mo2SZ5x3j7x61l)DMX5_s_eymoow$>$jTN~>VT7(08O(O7;Z zBojuYdK{?uUdUNzLOJl85%xRLpOWtqcoqrj2Vx0+_}mxpd@*D2Dk79~0$d0Kz9g?N ze_`qB&nbU>`9~02Ocp-008&!wLQ<0;^uHq-{9+gpl=O)%O#)P@Ah0aW(P|fo>EfNgl}Cto;kMR4r9?L5^zP$|vg4+NWV8I7v?n@k z^vpYKjplW0l;EvzEYjYrl30c8>-Eg{WC&yGn~TCWOY?J_Ogc|&xdaWuBD_ zQq%gZ2C-VCC;|Uq#)2>4(J|>7Gpa=z@+SC+;Q%zCq(Vt#?RFIn3v)S%)*tg2@95(`N$nhdqj^}zy zfQ>Rq9D{-oqk#*}^xqnBL7dV8FtW1+z{X(b{xP^XifMs)rv{xRmR(i%yXO{DK;Bg+ z<)(o24Srpbx64_SoCp@{`)fYOZMeCc#i{BK*(QLFb-t-}h%f?oIs@gD?=wyv;IqMq=HDVltCe%=*tZ651gq@G zCX28e5od^$*pnJ#nA~vpqWn>9OOEZ`Dwopqy4qFR#n|56hsz`ogdW_lGJBnOGPv7o zLqWQ(j#lKI%{OX=I{3CLt=NbAAgXA^rE-L-s)a%Rog}b~nD5CjHlK(5XxOB_R=K`p z$NHK%Zv6%T0RR8&J==2IIF`S{^1j#=M-oLzmQov6IgZnIC2_KGre`0zDg{xH#4$x` zc(JX1nh%-%x%raC0YFNWNQxjxm~y)x;-(1V902EzgM+g(_TQ2A_|EgK$&dF(olZ|b z`(RwfKYheg6xsp2xiHQ~m))cD|9*V8{O-{|cfrcWr0D~)-yi)%V;g@*9-4V*IX`Mc z3xA1B%bAfTV?1>|{QgMqK;O3I!2gfphaaI$e!x%24A_^JGl5rlN?`Xp>^F~r_5X}O z>O*+Z=5N|DV(g#%){pOk^Z$aUfc>`fU5q;Y_$~c7w>#}=VbjmZNR}Sd z{n5ZU>*$6K{6l^X@KXT4a;7>vVx4fH-Zi#n^B_X1+odE;f$_Q*_ zlLV_JnUl#AioWA5muV;sGEl0I(aD_p{BP6@co(`~x;`0jXT(=Os|A@zPQzI(dfh%> z-K-XU!|3I=81&i9XSW#k2c!HJqv3!;fmPtcZn&Jg4HskV{Sg%Bqh6Px@)&m-Ay+H+ z^3}^5%knyZ9NC|uF@LTAi#w|cSX`neVDWX<1T1dl<^n$aEW#lLG>tqza4yUn_l13r zh-9&XRqd-#0Gqqx!Ab3S6wvXPb^?dCoQfYcPsI-#r{eX_KGoVC_V=h~V??GRw?)6B z?}0Mt4EHGTv)*VAlmbRTzZb7>gNy)iPSK^s=AhLTGA%e#icO0G!mHEjo*7M$qMcUf zY}gP)x}#okQ zVHFNqr|;3ng>?EJ*|Me64TeLjb6eH1NTh8?PSjP0JH{fxp z-1KRJ?$25Co7>;7e%xLC`ugqT)t8&w-vlVC%L%zwvW+aZyfGv-wj|MhY97&YL=TQ= zM>?0nl~e6o-?hWQavhP4V{X|ivn53gNfq{45mxF}$Vy$H^k%ufT_D_7R!Xo^=$P0G zkmUp`5n@t7u>~V({VIvpXq^1-cK@10D^3h=$H+#6oReBXk|6qJ2%79LDV+@z=XsPhSfD;5_!gQ?$7X8PF~_c$w|vm*P#C{Ku0;Jp@e){=7X zxv(f8e&Ns9rj(XO&T@%n{0;4WdmQ@-Y43FT*bKg>$qINm$7q7RA9#vAOytg*j~RML zn)l8kBl2!0{lS0%T+Z$Q7Vv(z+oR+@C;#6cvYlXP@D%~Pz+IBxjSg)>S&2;8kUovw zAaEDttxgRZ&Ibebz;Ggn!o$>cgZN<<2K<2nGF{u(*lZD$&te_MM!aShwxStpmzB3z zcI}d)=z}|1{UlvyY9$_v=WFGCa-9IignZMo-XC3f7P5DUn0~V@6QV(KIwgNNiH~hA zs_7K6T7G1S^0JJ0Zzwi!W&9hM*hRtEu&bC-KWmY};hP;R%*;2Ugq> zC4sEhjKeni0HJU{s10`*bCL7PwXp{Q)@>j)LR< z9zDf4#MAbhXHDRLXXG#GgVTJ+=uk#rjiWY&m2s&YnogW(xlb7ba%oeWr;OF-(CqTT zrq&#Sb+BJ+4hO1@v*jH5)tY8C@2!@h2K9TZ)!6F#S+`0fssKG)BijmamE=%!ytxcH z9BRB-JvscgTKeIlN^+<)}c)+pN~0H)=i|0+Yx z%{%|~f~fg}XXI3dSG%t1-A$kzhpiC-VU)){YRk-lI=Ed1)j=<}}Cl@}=wvt@==Eb6VhZ>7A zx^-o%e*QW$F6=wY_@;M`zg?ds^Of_-iYMUYbYE@$_nQXeHne>a=2aCpeK578@#;FE{etNFXOs*XML-(P)4tL zn?Jn<=Gpg$(OOg+QIho8b4bN@XTR=?Q{OWcb}Eqd-)VKqF?f7dT%=O4YUOGd%iR;+O{lK=IqA9hjTyKa+{jPF( ztx--vh?^K$I}Vbo-@IMeUK36bl(89lMqO1YZc(Q-=w6b4jp2o@lYj55F8Sr#P(ZXq zhl3hv#}_z^UoCR|R$s)0RF0oeKuS4wjYh89>J7!BQuUxHZc@MhBhg=5PPCWGNvKz} z|5c9z<+@RW?k##L;b+yjfkwPULeaq2>09Flro@H)CRyg}b^7vP6fo7nG^;)!SSll@ zUO!EJM$T(M@HHU#JaXtYAov;(dDy$PWacwhxxqP~4H zA2x<>{6C5OqyNLEl!|WCwOtQ}1pmcaEAEXxF(guTSkv+dc@dnoLRwc>DW`hG1^LzO z$G!9ff3j;B_3KU2+gAstOKZgO2{i^=6+qS#x~bs7^959RWg)gCv;@o-+RgfEn$1bh z;P9VwtXUK61lH8TULL=L>f0+Y*7ZG8y9&;IY-2OJ(Jhew)^y_I#uO68GngYM1zh^9>>>dLeAb_` zu?Yy{M5!b(@gAI8BE?y$u~`-ppI21_3q&j6%TWi38rfP2Q#Lx6RZiY`B8I&bs0p4DZ7i~O zQs9KvP6`qcEvi8IXrT<&BNC~iEJuYRqDl@@{( zRp6)q7Sh*J;Qr=^$li(p)Cf+Ys6r01SAk_BTbrN&QFETSAJ|JL(yY!chg$zzpUhWF z>=8W)RY8$s&LN8MYwWuB3*_DRMl?z>CoY2Pt%#R=v^`Mp+<5dM8Z1O0K7HC6@cG@h zFMs=a^X)bPzP$mzY|kQ7ncmjj@lA6lrBBNNRXQoZ?!N!Hy4Z;~D4m;gN?T*wHSbTg zak%yneT~~ponw$F!M3H_wr$%!ZTD&0wr$(CZQHhO+jjTq*Z0oEy!ls^kyViunN{)a zti9L5-s6jv*PGe(z(`+mCt)!UVKbQK@K4V_MSK9M&FJ&0+mh3x^_p%)vyX*tipX}g zgzB!Pc>X-||9UV3b+k_?NmpL3+8Mr8o$WMwb$dSZNGyu7UgTF66{otSpzfCt5Wk>- z6HJa0e^%4~nhr}sw7x-&5-*-U8o|2Oj+pLbY*6~(Iy*MRi#u5EZJw^Rw$um3O2>-6 zThx-8c(hoO6)Z{DWK^#AlgD=9x4ekHn*1M zg@=Z$TssW(27*7bMx6qb);qKuPJGBh0aTLWfDTk*TQHyTc{_;~{hUY%>}m}@j#(f_ z+)oCIU`(G+eW69vY;UO|fYd})!tWs0>RlC6wei|Vv0lHS-kqMoi!#pOLK#Yl^O;IS ztl;-3EzKht=oks?o`w3?h+#``hRPv+wVtuSmrz)Q1?_$zwZ&Ki@F<{7LN{A-Oc5fy zAA12cb&fL}`#jBKgAw*S;RcsS$p5+T^A4an*wPR`Z_hUb%|Cqqg!*KAml*p-KrK5f z0em-DP3LUzZ!yRm8@W@Y>0*5Zrh44rhI@X62ekGztg^s4eZO2X+^M*upfb_8BEE|J z)``*}{F^+2it%qbWvQy4lSlm2)63$LI{CteYe*p0Gb|6rdxQ0-LC@Pu?L_qO0I%V5mME z!f3EUggAhNgOT{QM>%$ipt4#(Kimk6OH#XE54J}M6PcnI?ob>8M;Gz=PrC5GM6{(B zL;xz%Tl5v=^Go43I|+3+g90@ml%FCfYWnZO=EbIz~$(NMvhb zN5@m^q|w&=uUK!ImUHeRQm;ogZ)mGm(M-D!bs#5h>qT}$roJM=kXa*xettDJm+4=@ zCV(x~@RMC#gT;&*7j~rf**!B%%45sGgd0uK8My@R4fhsr742<leUxXE>TJhkZgsu zdx$d2Q>g56gQ_sbn=U}->HNi-qrxgw)5Ix~A9d+iC|J4X=kk``hQ0{P?F9}po1Iy$ zqlu9>_ERRC(Kb913%w9~rJxe_TDnoH42|Ool<1W2mW(UJ(2A+txL`$ZPG++GqOo(6 zt`s8KAArEBg>|oaGRZ2V>aj9KSIf1@t(E|&rlPJ~pzuJ@w$2ucgNUGssDQ~`1{5Fc za+u`yV5oq}T%hD^no*DrT*?GN>Y7lINGGX*sa)pdZA^w`xhDFNVYsPD<-J>;MiE|Ozd2R6$I zmB?ujRg;rVXrV16Y-wA7NRkjK{v^^W_u1em$L%r1092hBDNw3y%_GFeE8N}0OECv6 z33Le$88`$4U#hoUQ-Q*M^hMF5t;XC|bxDp7bwJZuS)K^@ecN4S<}?@4t%AXwmXoRl zJ|bt-3U)CjUUym9kyPU@Exc_9FTrcqL~hx7qeBW`yPbcaN&gG@!iY8l7|k`fC9#)G zm=R2ROZstMa6+rf0gMLYD$CC(|MV!`iok3(p&AhBIl_w;eVi8r3oLfw5 zkF{BLvuFQ-TMo+++07dSV;(hTnwi8RFYVUj)B>qC?4|vEd;C0nZL9kG$=B81QDSwZ zjL@0T+TiGmrcLRbFoE5Pdfi&kCM8phv}?l-Y|S#pFuOC9`s9T778htH#@jRqgHYbc zI)2XwH(HkyjI)tK&iQL7K_plozIV)_odgx7P4%NO^(O_0G$oiKmHD&hpM-!`bqUE zEs%;wM+NGMaKmj`=22&ne%R(sc)3D(BKEMCmk!Z z_>a#Kc$P)1<7Ad4a;h4M@VSK<*Dx7}il$9}S|&ji9!OMXlU_SCPM<^! zjd0(tnfdAsan{xzs-ZkWLlg>-je$UpF3R(%DLxzHGF~{f^ei#0(5!nf2 zI1|n_&nUy?1dm-e3P%WPTW}O_f=nK#*bWV^J=6Swg4q2A6FlR(Oypr5_OsSXuxBkB zzWH(TIG><~LRuWor37{rZA69&4vjz$1Ep;=}E zx%(IM#Uk!cU>vJ3YRM6D1oiEzHrQO;JR#vhJGZ`i+iv(&MyOl~#?*D>G1BHuc}c8j zq2e{)&&TWXM<1NKH#S|J*yW~|v38%*eZkv?s!Y_+`|3}9A|FK#BOoCVXH8%Jp;>T~ z87U`sxGCBgsIEU@G9dCM`|lKHI8uO1TOF!FCGFK@q0q3ygoP-A#oX;hW{nh|&hU^V zM7i?wNH_Patwdi*XPIR|t)>r#mXBqLyZ>*ZP5 zjN;gOC;DEDt*Kfx_@SfE^_kX=r58GCEZxpG1^^&WMr$Jis?^Uyd1%OS_(kPzW*goq z_DwYGnP6_%O^%_aIhNOrV5GnDrt8KpVN?1IF?|QFrC0Pp%HQUL$kxX(5`s#e*+dGZ z^K}rGLt!wuN}<-}&T6ZS3C+;JgTCpZBeo+LXDyYOoLP3tt;c%_(0WlAQxPf^LZLOg zC<7`YPM+kwFlr5N5TrjfzH>_ib###x^7UX?iTk(>wTM>H$N` zSw!;ZBn1CeMmScsd^^l+xIB7+hee7KPPXwmVzxXHv;kgN7mVZ!ef%K&i`9SWCjHk0K7C%qZRa{eYC!Jt)-{Gg8uG5(U@p`0^XD~eS?-*H z+mp$8mYDqU*$4IHKV#S65Rza{5mETGgempw+A&y>(>|>C9b^#Q2LVXi^RrENb;Q?O zMW`T5u&RrxAWD?pxFe-5AeG;k(~PwW2Jjop+}-&;>Xf%?6M%g1sdO+IX9Fi*SfBfc z7H$(XtUU?(*G_yn)MKuD8%gsQhf?gM0gs+xpSAR+*XG`+`10F^(VHB?#n8JmG-Tb7 zdb@^Nq|s1w^vYfIhH>YOXFOoH63(Fekdm?gv)fVKU4~DmClwBC%{!l(niS8zL+)d@ zbqOyFVuynB`g%q=LYULC%VP=j!%gfffe-UIUx&P0wrz$~bT5Y`;ysl|u>uKxt!>Dw z>~t1_Xa3$6JpL~_=M6}4Yk@3<{crKT6eZT~srCvh`Y@%&^!Nph57ut*hL5A`93&D;7frKXjMz{(Mg%ehtOe88BE2 zfK}X&D`|ogrRS-O=HJoM*fhL}H9W>ncNXsy9@^71KgX()52d;_`_8hliAyi zc(7K`ccysW*QXFBp2zm;FRf-%xv%;Cs1A5oOK+8!(FKkDH1kmFF_Kd9ErFV`mWG{x zafXd+HIvKEF3^TXcC-oOY2GC}517pPtdaM{JC|ZmRZu-N1h0>^GTVc&cl&wE*G_kt zGUT|0WkLI^le5>i6? z?oJ^c{(ndgOqVhMD-t1DONC7Q&ST>qwgjHZiSJHo{4zR6WQ(YAFu(h$$}%QWAvkLE zmM2&Qii_kZY9fLqCa5_k*+yea8rHKOwXbgWOwIV))e7O_wEQ9H!3|bWVJd~oxGrJy z%btipf-4}`tsl5)(fyHW(O_Xxg~k}(Un+WfpjY9v2B0Mg2tDecOlst_gkG1`$8QfX z8r_v@A3AuEaxA?;G_`{|H`fHUXb-v`Y&sRonaQ6MT<&oFnzxksspM{*V5=+15IaDc z2&tnB2@h4QS1-D-JE{`xtk@!U6a(f$xY}Lv`_ew{<{!ZnXXRB3q4}JXt+qYi)SH z4^O^_jze`rzU?tj_EXodlP%pl^xI!m&sK>%X!mOI{(*0ftKMIYUMJUVhPaycBTwe? ziqY?LQSQa(AA=G`grpHssS$iN0#ejs|Pz_>0#2Yxs$>j*I$Lc-z1=K+ApW-hZ?pr;KC5CDVtE8inPYFUOJJ6&Q-mM(h;6y@SZLkMVT__q@VD?Ul#+#5TgIysDDYoSCkIK)S4a4o}Lt!3$>UK;$MpUP+>x4veQY4sWeAD1!Xk z6`{U~`a8xREt^H~bHG=rPVICv?KI$7mTGi{pR%TTAL^Mh+ga}FJIu0rDK^Z1j|e8? z{DMma^9Ix@Lp%PkjLxB(c>mkQ82_8MjO1=OAUAg(kG<4^^%UTNKw{UR|DXy{6cO1P zvc0{_ zC(RdYJtfqzZX!=Iw?#+(+LG1~mI?@)TYe=c*VOS`5hlt-4kBP%>g8Cri5_8Hc(ltV zc^&0avCwu2v{}kVWxj#7eOcu1J?mRuEkG8OQ-$>k$wI+m?;aI!`v}bCVDvG-s!6IRfDF8RrHrChK2B#cBqkN{6m>q+zTn$&wQsGC| zsOELngN4In$78#l7=|t^3*b(O^)$m`&n8n7E<4UA26o(62X>sxSjBn3ag$bq{GF@T zanPe8_^{|DvLo02qLeut_8{~p*uRV?fUOtc>NuC z7jwKiF1r4lwL{HzyZ{ET);&0u>d-NQjCMQo*g2SgohO1{T$W0zd_Sro_&QBoP`<}` z$^2CH4!KO##Le@5qwBsneyn&_Ig=!>i`|jMA0(lh36RkQ{!@`7?Em)(+6tG_1eyR< zDnHFsE5`uDD#&(UKsh7Rq>UCA*?!HI%-|XG&%ia`P6{>V0Zt*Pfv{M_I@nLcjRM8V zn-4xJc5q_-_q-R&sAt0#i;yiDSK*v84&-@MNz5*rdiYLHcy}36w>383;mZ6btcH*3 z$tr`?9<(A!SSNUj38)GFzTO@{-lIo(dVYGzw%Bw?IA{2Dz2hIBuV`vnv5tizA;|Ig z)aZlhh7p?mkv&SONRgCL2_i4lNDwqH>08qZK!6-KGClST&W!yhqzSS78q6AC1ntHu z2`lp&b~Y!7tIx=4_GrIvnU0H6*9SxfWryGu*U^*buJITW8Sk+rpu`^~ZJ;&aw7m!) zQyuaM^$bV6*=y|B?(o=87}mN%3~u3x$^OX zj8dmRlGKnW*ujO2v+S1J^>=>5BbyKReyDbfoafqEs0jeK(2D-T? zD-7vFDPcvB(106Dtya2#1Ut7}wacczT5jNCdmad_-zkn{yNPyqri(=(`rBwUZZh=9 zT`pkiVE-UX40Af0IcMIsK=zhNeue zEWJRQeaf`{EG=!=p-M;ImW~j+-I=1y6nu$2Asx$e1v6;Fq0R5gdpr~VU;sNm&@+z? zzI`MZgU-LdxhrM!Q7`Xy4pGso&ydTZGx%VV?J&F|e_g+^jm#f^Q3idWtRsEhq`k*Z1SpGg=>Fk`CG-y4aJ&R6ZsQseA^C zt?v-HmLiKSADKQqN4R)w%ryctLYapyxF~6$2-Uk3es2ovF1Onj!^b4 zMG?B%Yyr03ZGXD{qV;jx%y4Am3N&OhUA13{FT)Wry_$~4;J5~K3o}LGac_-&6K5FL zn$BGy1T68|B&1sm^WGpe#YGx`iO1&6u8)Ux4CAGBi^IU@`Mb5iB_4;4#XBkmOM+w?pMMc?f zGy|RsxTHw0MpDoUs=c4FLsFS=WE`$%QC~$>aMT$SzpYf!0FuqsZU8ta5Qg*jK1U;b zG4$@da}9X~ROopXXNpK5?o=(BC!y#9 zcggVIr=oR0sgm^ntivL)O#qO!ST2i*)?f>`UB94EXkI=j5)4QPbx8L2n&4+xakk~z zz19m8XMVQP91`))9tMV#N2Zlbt3jWQpE5*Sb`nVd)Q5yFt7+;MwaoxDL49oe9iiR^ z+P(|}Szp!0!5o!d3$D=O=K$@lFOPRbvBHInvNIsB@^Bm3V|fRt6;m#gK8f6|qMB!e z@l9flGH*AORFf|A%Ni1rw4AYbEP}wE)tweOPQB7N3O2{2D(Pa2)?d}?zjJD6{XRe` zW?N5JDV0Uu60?o_ZhyHTC;ELt!ZrI1;xrCl4fU~HIxB|n8sZnXWzHn0%OZRhwObQE zt*5Jd*?#jh^4R;JwWpPAn|C#URiNz(`vtHr6sqg-M;Fxtg~5P|KyHlFx>Q4h&=8CU z#;FXJC4y08T4ECi8#zURjLue}gO@LpU8@NJWpdakoP1rfzNVC7W1H%bp=Eq(4v4aq z#P^F1iN(sDMbF5e86@^X29IhP{Fm!ynG7HR1{VJ6c1Qad!j^h52Hw03U?KGt7po7r zmJP}*19+uZT!h0Y@V$0c;4S6Y##yA%7T%s^j1*o)aqSe|<@>2FM7N0J(t9g&t~HLrgpWmeN#k z+o!h_$HI3%Jbcu$+uT5~*zWTezDw-V#Tx|`AydUOP(uS_0$(TX`vs6>e>UoNGpUjZ zv^M-zZSYtB{POBwJ66`&1fH_wnAT7Adlyn!Ql4q-r>X|cBuc4d$-FMn;NDZ((SW%z zR7w;}?EKr{p8ibG{99B*HHV;oD^ABVb2M)uD#IcCtJF*Xfpo9}BYKD5@okt0Z86IS zi-s#Av}K>Y2^&R0x^!fY!XLp*>X3F|EB`C) ?b;M8C|9Jet4ik-d)%s@ z#To#Eyr0E(Nj^7pJt-z%T)VU(DptJea8Yf3lPat$5$?S5FN#zdcJM3K$D9}8s%2Dr z>e(2MlfM{?KGvLo;++~j20A%Yq*=5a-IFB3S-}~2RNh@_R^$_Uv)eQbi;#s|9s`7eE zq)KH~g2%`!1o8Qma_SuciSYj=`e>niT_NTGKc?-nI0Zsd!v8L}D3ZNxSCzGFti2ki zWnz33U+I^NcxiT&%#292!H7OEdM8$~&~}{X8$u+^FbJy}YFGDX@bd~W-m;7MhC-V~ zP!_4{Wx4tqj{gRMYMY*{cxq*7297Wf@{Gzc`m=z_)4vg*!(mOFRh84#dZ?7qtV?)O zs_OEp%Kdo^D;syEvWnmDJDt_UDs=OzsV|JM;Ua36nyemHhECcTtS)tIuVGiDd z_Ew?5C06#rvdwT5VnJq7+ou#zT^SLV5a@o$)m3r=VzF*z2%9Xv_TQCc%zUJS64Bgc zWpde2?`W-E??@`USHacwU!Dhq)Y43?#wn_%=BhsW#5k%LlyZ*-I%geUrjTi88Gh7j!#F(2jjLg*hO7}l|_Nla+G3ukVhr@z1u z!~Mm#>|N{OCdOpSV=2N;?O4j5E3|UcMp2wLzPIO01d-;}0BtI%Rf>T1dvOvZ1XORA zk$U|%lP>xjbjLi4lnTD2C18B_HB8CU8!qc4xyJofg?K~Ntc|Z+=cI|PZ$L>sHeM{& zXVu3Sp%iqPVq3<@{q-_K?BLN@@H}fKxK|m;i{hO>?iXjj;lCNbADIS#(B3@6bM!1^ z!sb^4Ag2+&!B#8Sz^I2gsV}VQ7H~271V3=N-u_WHr&?>FG0+OQ)IV0Gv~HU;pO%G9 zHe0Fx5Kb!(#K5}YIc3^DVR3Pc$35b2aCSclr}1tFoI*sz8-1;Ntc}+)u48#}`uR@x zkemFyby_FF4c#A3a1P31!d)e>mXimvnXcRGWOxsX%{!d+vu{^JoISMFPC=jbw{4V8 z2T6xN%HW1pgy*`>+fT(93TPCVl8r>B=C*mk_76N;1VXtWlqx+kYzUfKfv)#PxWTTVw&OJ7 z+wMasBu4F*gjIm<$iEyb_GyIdU~?-?!9}WT#b{Xoa-#cXVsdQp9QO;p0`(Wk{V5A{ zED7C;wcwSy+qyd*P%)tg#6ROLLh&~s$2+@Zry$u?-DB5sW`rSdvK_8M8*WR@ao9(v*jB3e(Vc@=Ap#>Az7 zl6DXqQBjnj{LP&E+{(}gUA6lkz}5bJB_u{|y~FBsgoQk_4&lF4eXlY4{!7&i|DkFD z=ZxYy5YdE0m##qCOfPat7*Bt@;*k+RA+Z;V*GOon zcF%}i8{N*$q~|mPC=%ADU=t8b5>sTYr;R@Yn>(|4dbW+N72>Ms{nq@xZ~l3)o#)dX zj@1*O-ONrHU4>tAe>_mW6w&tj(tMI|1jy~Hdf^vosb^LgogCVIC^@BCF0@0hI63(7#L z_wz0^XIQ|wuhEMWnkYx}CTy_MR}kq>^uLc_zK^kZ+a~NkaC^>e8g=aSBeEB+?6Y#eiAho#&y&h|}@pqa){y~EtX|_421%3U&<-DQ}<#;|fC`sYo2}aCx z;}vUOx9Ho8xgNkDe2dLZh5PaQBTt=FEBfiCH>l@&gdDCdyS_8Klg0@Vfr(d)@xbCb zWQp?_JPUNfSBGvZffa@FMKcRqehr2yYH!o|;>9VZM-jphmfx8bo2I)@`b1VL3O8$w z&Wu%;mx9q$GmN`Ajk8t1h;~WnhdPV9*%u)*gUg;~SlKv?bI$bS=y+B0p98Ct;ynzAqz-O0^d}nH=xBilee(ROVb#8<>pR&~hObsZW^+A#B zo}dsj)q3nD^Nkt+n28oo0cnKAx#_Lv(}#eeA}l&1(0O#*MVBxR2rsxxs8K9Ae#5y< zXypo{TMr4&dsePZ^EKw%f031n-0N+}kczhmA=6dNErWN7Owa~eNXe4!G!)5V+62z2 zCSR#eMGaJh5M-xzu@nH$d&|Zd}~l z(xZQ5E@wm2j#GEqIo=B3=czUA-TRoi-Fk{RV`}J)sa)y zK2B`0fr~2-4Bz$o#rXJZ=6w{L&mKDh_h!KXvjgel`3Mx%G#>!vW9uGsI+(QAt7bD? z7~V^Qsx=>q zPYjN?I~iyrbu4h(eSeVy?;ZBpq_JnLa8wrI_#eugPc5HjHD<^Zw97R?RI$;V2dkt=QN5Y`aiN(DMH#7>vdwjeg=2+ zOR;8ka=+aVOFpy%ErKR^CDZpd%HN}i@KHWN23pIH2!&RTO%ln>KcjktS9i3Y(a*7_ z>kXy2?-H=-4N!dsHV0s8SO$J+;B`bQFqFHlwB}De?M29l-a>n;lRTKf^fj~V3ka}h zjFWksZ#{U&9S1nDgn3~#kb6GVc(g%=#$F9j2-{kr{G$&->GiM z1IxqRvA6gc?+Zu_+O!<_M26g9v`{Ymg0sZ^S&Cpk(R1TL>iJDVZc@KamCb{Gb}%CY zc!XBc44g4R3^Z%9cdA|M3s{H@K8sk$6F;Y=<(Jz0pHA#{gH58Yc8>}9vb2}D+A-bDKqiU~*PBx7vNo5^YJv0VH+tc$$v#_SY zgp)JvEdc!6anMCXvWiAnio7NR5yFCQF+q666II7nxzp^fMbyXjoSJ({CRR{x-6G=> zr)<4S4^?Z%52sp8?gHC`Vn*+Z$>9&)awh@C0%G;=r4v)(^rs?aRUR|K!YE8dyh?0N zvFUHg{htUmSs#|6t?s<6q+|KmPF(NftnqGoAB;1g_{RH7IgK@52H-&JtV~@kDL6wcgSuu34r$H)}> z?0R5n0dP6t|ljGI2{ESsIsrLL|vEGGZQ+AJ&cno zlJU?C)I)H^kHxA@no|wEMp^1lUxIv_l<5`!NF>u%KN-!U8M-%|<8F zL2bI%9A0>)X5aPaJ6+tmgiNlAFWcw z)8(xEbNKobpdCJqzE33~@r*K0d2kq672c3@E$@!OK>Y<3({9awSFEP;V>(hg(x%dv zo4^To<=;*p_Oo#^_K`cX-4j8XT1*p zGlI|1OgH7xGlu1d3Zi^=)Er(J54g8TU>QS1`J2O8p01rF{OnX~*-7X)eO5R9WwVKj*G1CN9Q|R|}gI^)8M3Q_2hm%waF%E^@{Xnk&b_eCks1@jN`? zYlsurW|nbmuGf!;=p%4uVOHuL0!ZjEs9ncw=Rcs6PaO5lW6SQJ6M(EZT{f&{QFgY6 zhtc=>%yIs|KKFp55Nh1ZcV2Lg+(D%1g~V;`E5kUb{zahWmQV<~5^Io(dvDsS7-ho) z_41gh9-`QWXx-QrP)HXwd7zYHbOC5xCetWIo=JGstziSIMo<|jP-&lG0)=I06m+9K z`9MKakf_xd2y~J{8ndT+^BDzqKaPy}llEbr0E5KBoPIkcPh@sjfv&ou2o$4rLShK> zlm^iJ!)?LpVf`a7fv`4uKH~|qpE&WLd_aD0GGF~Av+DCTZqhewd4szxqf!@r+gDh2 zFk=pc_r;EA?{eosmd{2r%O;u77*b$uP)B>?9NNO~riQln$!W{~p8Y-Zp#BhLB9dLQ zBvj8A6}FZ$DGep{MO0-C&pQk-Bfik!Ww01S+c;5ZZ5 zf|fSbQ#?l^k^CByr^lyp6;!Oi#Gb`|SxE9=7jrAmR9Uim6* zmPUyP&zENpKiK6ZAR`8Mgjl3DiYJ2UP9ddQ9zRB)aSg8~oNai|gn10k_4j+JF@PqR z7lq@JnbqXn@-k~S)MEKumNXy^=AxocUYrXGMB}BYg}3RAEgP}ww0 zI8Z1yDNGSX>s6d~Vz5wYiz#R5)Fn6r@EY2)m{(K%^`CXa7uAPs53QO9c|_>>6?KTM zWO3*vSZ~(XExVidmP0o(^7b&~nP`9Ecg`k){k2#$iu~?h>DO%Xk~~Zv@Y(k$P39St z^)*Mvtgo*bHicNeLOU_1iBz;ETRFfn6b3KCS?2J9T>o%zuI<0HPwDBVWPwz3O`4m$aR!e|4H&^|4#wvI=_zH?5Htam z5*#7G73Ie$WUn7IjFcr+^KC6DicnL3sK=v(J+SmB)0h0|a;GWW%SGSzNQeaco_c)I#&?Jia~Yr|iDKVUR!G%!#KFP~K{&MKk2jP~nE9IF z`PCB~h0P#r@fYqAB;;BMM8Jnp`n6q=)5?_{k<*Gt5Ep>dp!GpkR0Zx(VHJL~Ul){+ zW+Q$q65ONU3l6DAuSu35d1)TCX19nhLhQ$)WuT0lo;0 zhI*glhHNWRrd8uqm~Y6-Q}LGeKhntI8)4n!&TI@}mP8Tw zBoOS`+V=H!{b6(;xHM4ez zZm)~G2#QP5$eG?J&V}A3SC+Bwwv3<7M;~S_Yc169+|5HE_Ju?9T|>5Cr^|jszcGrt ztDXLb-~02qDyv}eL-i2zKGrL^c&vLX94Z9q@Z%StcH|cx;vKGf6I4t*u(zi=;G4|j z8qVd1&wEt~Ty_%g;06!V;923=61dgNRG@J*Gg0=v$?mOBFDk2RmAla`xWZ4|#>BmX zn4WF78i#>zE~w-GydB(}cu7Co*v4&=%F)*!k;F0fg{)5)cDm<#Cmg@9%2H?bIUVWR zBaQ1^as)x3Ff>*j6gM+8kUv)K-dK;+m5_>8y_idJ&{-O(%*|9zVm%t#!YiS%iBfdz z%Cfp*C%Vm8Lte8p6h)gaK+m`&#|&yIqm7>2T7e#;9|b3piufPisjR~@!uOCeWR6-S zLI7yS+2^2cKdB$lsCk0(U+}jm0oV!LgzcKojGnCJxg(V_-I%mA5W>bgV2T6BOHkYKBFq4L=>K{9=EK+I`~Ib<;@FuSArG492}63pyCadwxIRhc zd6XFAeMBErcg{iLts?B z63~lDhZ!#ld|RkJQ?wZ#!^OdRbXvJldh_9$LN3*>Cu`%(R0tGPffXQ7t^PHCq4n72 zv?e|Gl9FHrqh^AA6!mEd`+dV0-D+wyApr=&Rx969S=OQmI$+Ydl7>{4)UKFOkyVI+ z2DS&O{L5$2%q?f!+$Mp6^jq3eW}=Rwcs1!xvPaS%6%^p`!OEa>^_T*nKr*>AI=G7X z1+J7PEe!B{SlCB2=-ogzAHvAOi7Vhw=@Gm{nbC%yMKEFz7`@XFpI)@Gb%il)8e zyMxPW(iz(daOgCQ;bNh4z#+7i6-^1lxVD;q;@*yv6!en?c@Xawp}qG0sOarT&RGQ* z-k5__SQro3RKj5LcefF8>&+CVMqOK#>;3jpTE3Ryr5EOCmS!6s69;k==FR5$H?MHY zu7a3B%~hgrP~sZnj#66YXtZi`!_z1nvSG^2J z#1TE|SN=YVC}S>4>9CEU3XS3$ zp|^9VuwELQwz53WT);qpBI4~+!N&fcOB#>=#@UkKk;u`bFHAuIpsuNv=C zsl!#gE&XYQt0>27z%UFEZi^HniD+3VZeN}w*GLwYt#-F7?m?1Zvx6M^ zdb1y1sEN(>(IgNU5v_Exx^}SKy^nZX)QEIGEW+yxpfgtGF(#$lJ6FV*0a*I?=gA4C5xym-7xWWWOWFpVOwjA z16^OFFA#^1qbg;zJ>=-zxA+5lm>%~z85bzrOD>PVY^q&;1Tv>WU_vR->0_`8a(RdROSzQVr0QUsGPfwr;x ztCT~;*Jrybw|DPx)y<; zHlJuJf7(*NY@t>B6OQOvf@^UOmP#Yn^Mwc=`Ga8_mk|`zHW@fI8^&4Qk3Rc3-m&rrK4o9|48-M%w@{`0Dc^8q_qQvZF^A$V z0cv&jf!mY|IvH6UgXGh7B)mwP1&-=w92Y+$A6qkZ{!~TwpnTm0+{kf=Ys+@vUL??g z%lAo3w$hbV&B}FLKTj7c21jTxlk+wlt|+5?VtCI*q17~K%{^J1gmL}qgRC3J@SkIS z9m|Dla*hH1Lt@{d3G7YUEOWy5-Cs@Q|Bk`~HUS=_?*fPrdm{2weL5qPvS7oK3^+BE zbfZ%1aPb)E+jl(||MrH7J_Px3;jR8rBca8k@^<3VSfWlWroME7q&B`BnS!;`&X#JQ z-k0cAKm1f6na8DCao{RgtV~iQ1LpY>w!~N+XY3=2t%R~g$Co;Z#k9j%!om{oi~I@X z;F%zHeej&yIYXWn@}S65hI5Dz(y$r%J0e8Yg?`DrRsZBzN=P;EW zgAfUa?j95L#<`qi9)jTcojqrQD>!xBM4gN<&3#?rY&*#htUF;6hDm3=EkIqKe1>R1 zpZZy?B*=2>Q;8vF72&!tzIR)C8aAyTU(lX9sh~qf_%fwA5sOTuM9wN2hPgK1TB&1! zEzbNG@l7qhNsY6zf@0k}e&&2Nc?qWs2!b)vy>k8rMKV0Ou{CrwaQL+x z&W`z@eVaA`j@r}&)&3ft*%B+>Xr5S6a|wmNOx;fWIr6lh(7K1Oxuzs-WEqo8u1fb4 z6{wxYDo=$1zbuQi)pRF8bJ-1TFt!7=nW}QX`YY<=dENf(oS-OW)n4n-{KlqK!%eV=d9$B&P?QaamiZIJ0P25C*J4B0BXvHNi0`134-208Syiza3nn$H*#w&!`l z*-B*^El-D5`-Xob_z9VZe`RO<)r|MoyFdTI-J|D5G`x~P@M04-e#?-HH7kzp-(H&2 zR~*BC$^asnJ6&e*$?JJxCP&`gGA*4+ft5mu?WVUG9SPp?t*2%3p(V^H#TsT4oVS)eZVR<6<~AxNjBKzVmShO% z*RW~?LoF*DK0nUym;=8=E?YB;Z>aLJyiz;JR+<*!q_HdHxX6kvE4qecf;bU%v!K-M-@VwIsFUUOftyyWmgFpd=6OjfwcHq8kR?qmDC;(BTTi zl`b+&FKs{Hdip(jkt*RNZZ?w}dZ#kO&cI#mP#{eBY0wOw@&JW!ed+!rO)>DmT3l4_ zKN<+{hf3(J#`7?9+cm{!ku{q?f$-p+dV+ZBy3t+%_Ov(F86kdEhpfnXB(>s|H+=U`C6mBusWxDCIcWrYp%8UwbhxI zc_|zkG8SBgHx#**=4DH3_4@1^Y5=7`sO*bNzrLQch+n&<=B6O&95RxR-19Z98vDtd zt^q(k%Cwgm5dJm`h?cRwaa$dI&0Yl}+XN^22g#d|j@}n~>MG49iZkufM289F28$P3 z9!mFOeY1uE5rhL#11DZQI+B`I>Rkuvd6xr@8Xqb5;?Et`locUodV*aP;+$`z=r;2Wxw5OA9~-6Tki ztwoDTpe8l8SEZ^__^#m0>L7L${45|#3BgdEB#r*RKXAQubTsBEk1`m+C$YC6woZ0g z|M3w{jhT=^tqk^yEUqIn#cNoorkVDEf zity+pdsop-;Q(F4dr_grJ<$Cy%@H~iu~)mAzAT2=ubW=_M&%{|x{rEN$235Mp|vET zwWSscN1;U63k4neBvURoYQ_GV4fOJ$RJ~?11`56O20xmRF3FYUIdo5RR)X0#pRb*+ zZTtV6!X^z=PX~lP^X~2N&M5I)tT-kZ^gK3DE^2H;=%>BU!UPg4b7f=4B)QZBKMyg1 zL`IAhns5f5p75vHSSQhE)9C5pn=hHz3G&!F!`!0*2G>xSDUgdPF8cb@vzaC44V-8l z<&n!JNM;;y9?JMV;fu@Ih8bS?s1B2G;3E$lX$G^~pdG%lN43UTAX27{$3XOVqlZrL zKdaIY-aZu-h+eeEi=_>u`qpBFv&x;q4u|uU@22kBQ-o3gQfu?Y4r8jtiM`t9n<UI77CLg^rQhz6+kme~SRNeFT{L5PERQ zVo;Zm2WdJDIEiT-qBq!StC{RMkq0FMajd?e^%7Z%i$2MIBY5__NV^auzvaR5jquv*kmyXbBx>X`XX&6L# zrm_mu&R?P?Dfrr_Biw0;`sH9Y=E~rd3&k*StP#GJhyQ+P*)@XE!NlXVG=5v z4{lAYAND_>wyE%xF&NRiGTdY2kpTgy6Bqp@^ zg5iEAf^av|f(Lc_r-Nn4E8Ih(ZDto>QuhokqRwnL0?jHx9^MFo85gorC-GOWR^m^5 za+Q8Q@`wV@Uh8+ctw3atY&M16wSzH&M}1!Friui?6^XV)0quQ&?m=DY6052PUD|SK z9N6?|IC^%ucO{xG9HP!Vf&wVScNntCr?v{4@F95ZAk#QZDS^`|^y|BrTVeq2Fn-NY z-7*h9kd2Fw*R*eILFm;MdlNhSlBVJaYW`@m{B8C{qvoOu=@#`&ZOyS*;g(jS*DFK-v#(0_* zjp5XVhxdIW*s&SOe0T0qRcL{RSs4s%!`x^5Rc7l2=rXn7T{1*Y0yup@&_`AQ=G|6B zBlUBo@E7Em;>=eLYffCl;JDn&$C%pt3I}mW2Vi4`3|BxNg$7> zu-AR|WqSuu8Srh^kt0rMaT?LXC{ElTLyf?ilE)^fK9Y_X7J*pE{yV7Q)|_=*Y*>z{ z7(^~vmU6u35l)6Zh%5tvONJ-{pifZdJhb|Hfx!25`~wkMcBlc^ID zlSu4GZnmSuVFJu^IpY99Ew^h-9F@V|p4%W06zI!Ps)Dx@GPiJ-2|I|!sjNzvlk-Bd zn&R7D%!|Y(Q@PaYLjN8*!g-h#^{BQLC=UrfS=i(m9}j^qgtl-u{~#4vyExC(tGu(r z;FIi7y+FmQVt*h$4aprSt~D&~6~m+eFJ=h6cTnirCrlk2j90(y-aN+!q$50k0o*k( z=o}QHFDkKX;+e2d4zec?<07rV#VXF-sT-CAIvqz<>U~2whzp`Wuj(_lbLhzzKXHM!H9d9eS zz<&YAg0us!8k~qu#5(r>GJOC4ur{FeKUlju3+Dr)mHHp7MMeJ~SSvR5eF@Og?=8pn zgQ&NC>-Dj@^~!q}aN*-UqXHlD8$3evPBl!R+k)rq1^rLe+yHp)x=2(^Tr?Lm^%9rB_1w1a*AXjIFu$<3Q6dv$vpkp+5`i7)X*{PdJp%{u@ zQ23j^@BSYNpo}bGwL`4bo!^kutAAN2EreyDoui?eEJb-=C7zK{W>sL|T{RD|(YA)O zJX?XOyfxeQqu-0J>jk5%H87#^z#DK|%ktnE9?#G*{uT-z=j%E58KNw>Q}i9f{z;19}I%sQ8UexXkN;cd#Hep79b98-pZKO zZUstNFClP!6oMuOS~RSh=C;S7VuuYjs#!cq)G;HJgY52u)l()4E71%!SXf@2EJZW^wop~?y6Y^6TfQ{S@Gt-A0I#F5Mh~PYId*C}$gs=B z*_z3dX0qZHb#8}DNlPW9gQ(HPYOeuIQV^$cJG$hvhHg%E3@U}x3$sZwbdNM#E|;s> zLy3l7<`0?L)D6zM@GPg3y|!q>w0icnrcSy&U6VZUT+~-+YadOK)ZC*}p#Peh>oV?4 zjJT>>H4&udh2P!kG44Pa{NJ~c3QgKWsat>CEc0!<_NlY~VND1-E>Z#J@72(Y!Jq$q zo~FuDIguT>l~X9n?W$*z`pqZs${xq*H&>c|v)!*W<3q0M7tX@FXC$Nz+}0b-eR&Et z|AuU8(nb|Ete*@Cf4I|czBDTdHq+6bTDYz0&Z_~eQAo^2*19~swAxR{Hl!X884zcu zy=PqB=~UH#sGkj8c&3S&R@Y&xc(V9mbT!&N3tN|ciZ1-!>iR_J(AuH_)yr2iJOt`AYVmD>SUe zAIYQz&q&@7{@Ro-pQ&&&owPWL2-#JlwZ1|xjBR`nyS{sLlohdCcQ*I^nJ}cIJaZ`1 zP@Y$Lle|koY@{B@+6i2>komFjXyeBoWpFpYdakcE0z4$C3qOY2RCz=_+ z^!nPjyYSeTkdpChuh!*0BkA+{Iu}iU&!6P!(Y}Tk2=|_2HIWiR7Wxmp1C_YzfDMaP+76Hg>tb=vcR~af**MUAWYM zJ(e8mf!zPHu`N_FnU_h-P9BT7(;lw^nD#56jz!r`hq+xb$GlIGC86_N1S%(rD&MXU z4K&4bfYC`lGrb@92k(DGrao7;2kb4omEaos@fi}>6MFRvN+85F%4)MJ<b==;3y7_r_fY15=`|Eaz_bfv%lyVhQh?m2<`}go* zN9nJp+4A`l=Qq(C7%!~SunZnQ0PW!p#ur=DDwNkI8PHn*&*%GdnXX;>iQ3c!(ZQIt z&SYGyZKz!==hQ>TT8C}DoX{sxu-wd>pO`f~?8Z;n)g5t^y_GBBA*!7E<<9Ar-dLfW zU2MmeYi5)m0`JW2M&TYD@>dieyHtN!dY}TKz-8f!d+@O=_>MN~jMo>ah~IF)=HD6E z7<)f{Ag~>TFeAJvQtRb0MvzYy&&j?*_|ROBzKufFQr{kT#=CIY%I$FTgP`uJ+dr|~ zxwCex9oEPjI0>-^{;gs*oXJ=o5US}s@re)HTQc(gjcu+WKpY_$LYRCduwNMYCdUVV zK4M=_vlXn(x-vauz&)=hXOVV-^J6#lgTHnSKLGa{uhtjdl!1h2V_Ag#4M+wROa0X? zn<|i{ZlSsd6V@yp0}`Hv8|OCh+t!~*cQncit~QJ0dOz)hQ;yV#`uFTqADy5&37$;` zGuWYgt-U#L|E+zivfC_mOgYWY%kac8=;1MDs({oKPEY_HAM?%`A)317Y=6fBnn{`usFat_l+IC<<+>N90+#;;bhyP>kk_O$!& z{vUMJk)mS`kl*EL#I{X@@d^RNzO}g_o3?fhahX>#39Ht2af8{mOgsjMzuJ&UPk7)` zyPj#Bdw}nNsyLWV>gG&@9<7*OLa|u(zZw_Wtpw9$LBW=b=TjxLqjBlwnUrz)h(uWF zT8nP15v=YQ?6*O}dv^ko?zeWQr$;EF!etuv30RJP(|p8 z#jgmRVxfKpNQ7UR2Avzmv!(}Le;$F$P3Y6cc97upbxgSjfN~N3Ky_ohb!n8wzW&zi z0?xSs(Lr}p{7S>UNR>D*VT8i;A?!qR&}g@#P6+&j05o!t(5(R>dQPA!Fxu%9LunlE z9ew=+CbXy9Xxr{XXW)#@r!yjpb&XH7Hd%M6j{I&n;ll(2Og8LdX??Ib*1WqVNltX` z``dkY?R6wh;%I0y{^DY#c>4$)aeCw}F|9aL`0OKjJ|E|0t*H_H0&CiyOQR72D%cx+ zoE3c<&;stbXO;~YDI);&nGak99kyBwp;cda-zWbs@{_zHx5tT|lgZNS`ImY)?VAG> z$G_MhD<4viwgCf%>%Pxd1fLwFwZ_oXk59*uTo3osx>lz`L?Jt?_}I^uXHrz9EQ4`U z8SBtar$CdDnoj0EMDz^&Ao@WQ!NdUSlQpBW;CgqnAMwR$s!5ai`XUATA>riXF;F&C zbuN_Em{ct;k5pI}%;{)<((GsS_W_$_-((&%rH5WsunaF?g=K(tn5w-t8 zb^=5A!Y`bSrf*^?hi<`h5pZTA>8-)VUxm(W#8!p~!hk<=8dM@%;u~}YucApa_GjWi_t48;M?(r{CLbUgH%jBPW zJFp`qnc2SS3AS-Mkj_U?K1>N~AdE#YXNy6P+DxQb8vvSCPb-9-9W$A04bNuFfvF24 zREo-v4pjhiI5aZ`4HOH|u%4!8p^8@m8wA<+S~l}*?iE0;sl{*6^(@*=eARNNSS&cV zkWVUeK})d7h(KMh)D1&rnbANpBJjl9YnRWdN4K=W8%5@@*hB4_RiURb)R}QJb9Q*T^^KWIdu0E>rl83__(Xy=3;iy_hv1OFtRE{ns zcLA9&Gbp$H(VNia!a2OFDH$dge&e40tIX}k1`+*UAw)3(-Gmc2dzsLWR$1HGzIZ8B}ZCZKvoDg0hjy3UZ3L~6i+tU41)-;Er}Butvy!v zs=FBkAeydXtZU1~lB?{xGwLmN0j&0C6K3T;*{ASjU2xE9HSHG$&)akOcT2ZDatev; z>$O234DJzYS+2SIC=2LnT^B_5SI?XLyOtFK}PzYuboLx&>(m~8%f&Sttavd37^8Fc3vAYBFBU< z76G$k_}0WUQt~puT;mpQn@IY*U5zjkE|_x*v${)v!|WgjzwUqE?^h?ascv{q_1EV@ z7AnkFo@+;~7cI7h$#LR#F70G}6w)+^5u^ZNyH3MqFTBFMgM8M3t~XiD?)*w!gpA~I zr$JT`0*^qTd~k@?`6(+w!zhgC&I9rnglu@7rtJ!VtF2SiHuzCo*(L^?i7W9e*XlZA zxF=GYVwM0W#QGkvw)}NynIVp+Xv649@*Lm`XUhKeCC#-vzz2BdoK#jZR9mx^y#+Z8 zP>NxLsPcf0SCS@JL;?WoAeeKma&xxZ+(2|0IjGYjgFxAHRN0W>s1nsekwr2z3E-*7 zH*t$KXys!wTXYHgDa`d6XJIxehh!=!3&vl^xY5a5_fOyVd-vz}-<(3S)gH0lNNSkG z(+V_NmDw-|cdubDF06%f&Fl6g#{EUWM-bBrf|r@9fjMJ69#&kC^|hOKf7a$>#@lYc zCrb73YBG*2B~2$L*llg5yX5A;Oqm_V>$)A|o^%e@x<PmC9DdNzjjHzQtu?^bl-x$^sG^(;`nK0^T7N0+-(Ov-$JcH=JBSqtKO%#a= zACvE-4Hd4oyNRZ|%{p6YK!nPO_rm=o_8#xSG`DsOIKZzf85ToNY!+Fdcw5IM$!L}* zC#X8rIw#J*PEX(-zTB8Mf_1{|?o~`2&l_cNeqThu;@R}{Fmm3UD zza0k(0*F%2+gE6cD({#`(EXzUgWFW4fp=oJxw0j)O%`V~%zyPPjw<8rsYw@}boz6b zdL<>?s8(UQOsi;H5u0RZI*3Z8t}qbBF*x_-P+lsdMB@A6-;ZK9mc?9)ib1R2eUTSQaLU1 zLrsHeQ9kc+w-_Y@C!SV=AT@GaO_Ed-xcCUpx+mL0esxs6uWt^BpquY0wK3E|N;SAs z+jQ#np~q=tIn~l~*r;@c?Iy8dc+*>cYUwG^6U!GLmpO0muQ$85tjcB9O8vH5&I7l= zv_ZEEt61i`30CI230AAAx%Ld8T?Zee;!rk#M~z()i?(k)K;xGNS~Us=T9}ryG2R^< zv2FQv@f6)3p?1=R8qNInBP4yU94qxEOe&U!`Nf*FymCE;zGdi~*n;nVf`$g>&3^v& z1|X~bXxNlONGK5wN1wyaQG`u$&f06mwNUe%XoJD25)%ynUDxJ8sLUp@Z9eK&z zahNJ4iGe(5>RL8dPoL$+t`+>fS{M1K2lKCB%ej#=mG zzFNd|f3z(VRvPYG3;>CIHlT$X0la*cX=9m=N1RUk5O1pnyEWRQSjL92)G1nMNRo*V>G@^0M}T z>z8s0XKs-jO^lkf$gVQlu4UV*#wqEPC2ql4PB5kVyn9WIZuy13a4%Y)2g^~H9dln* z`a~|yRh0c1b$E|E`uMi8o@Hup^U}=b#0mzY_09J|03y2@6(bZWUIB2^sLXKCTUS72*;LCuZU_HaeOq)=r-nf z9DwZsK}D3DcDSpY#C^SknO#H|*s=t=CuY4cK?Q4?m+V=^*IH||I7+N_no;d{#Zc#s zyw+F(C)G>M2+TV7S2m@U4{y?9aXgE|ii?Q`i=rWrpSSe-y$FHaBBZ5ODX(lBF`!OZ zVf$3bDxA=;uuRnU0;$#IgQ8kI3Z?Lq)t;p*A=9kHDNOYpU=3!`(iS+IiMDAZW4&&I>NXp z8A@VKN-|llXqBe8102Is#-g0DM1D%CnNiedN-3OC)LTZ*qTDatszNWLwRwx#&c#z` z6irnpTfppK11_2Yxy_?9!wa3so@?W|D?Bn`7AiJ2EhenB9%Pu7R(}26`A=8tEE)peQ*R#;kdg;`vAMDka` zLug-Ra+ha*E07eeBb!D}Mg?On>2L2!OWP|M70DljPlk#FAA;@B1^Wrv3L9h>g3Z3% z>S(p29bqjKeQomX`xWVmRtJLrAcvoOROxH9BWS0s6^ zQFL1vQl2OKCgnTMD=z*tw=g|c*4o@y`Pg{bB@k~w7}lB6|HU8f>tCI|yi$iJTBilO z*oPm~Z=+zNeWa?gtE8*?$wcvy!kTP=W2>T`vmF#1i{rMPp)>UZQc1p#JRJRG+_k z&wjJ4c8|QVPs6pfZ}-nQ1fR?nB%aQCrcPxszF_NIAD%vfa>7d$uBpLQ z+)Jb3S{@Y)$W8aknPY;gIhKdO)!a)`RF+2+H%rwFwuCS(%C#4cWYyIh02uD5*3L~h z%pzLY0x8N3j6fA49vK(sK= z=JhKRY(;UtI$)e#J2w1ZJ0ggQ9AC>$Q&_9mae)#LSM2B3v*GyfvJhyRE4zlbfsB|rYYNv89gfstUCAbWi$ZHY#<5pP`ZYKD9CV9> zQ_>xmH<2ifO@R$xHDqTvu32&d^Z2;d&QWrNI<}VCo z$Ish~pL$i$b2vlE6s;Vz@FEA7x&jlgr(7DhFXC6)1={n$DcLY%2x!1XoZg$LbP>iQ zHT`9Xk=eYLp*gYCxH62F=SA1J z8*U_Qv=PN+&Dm%V>X)3}Tw|57Pga?cGBQ1e3p?5>$^fnQN*+@*#L3$-Nh;;#S3WyeP0$s^Le zf@Vy4!)YMxzUy|IQp-LP6NxY1q*9XYKD6mkcwGWJ6+!3pV%Lcw4G98PIwz_Zn{Gy> zxRH%!ukFjH2B;dNITFpeNcR0%5k?14!bvpCA#Gt{06&;I6NBjwQ&#K{7LMC->x3|; zr{2jzr)`0l?*Vux@IVb){!=nE3P&y)tP7S48z*Ecf{zJ?XO?+cxMDGg;(wc)Sn-ULjwJ zv`uGn2?3t8w#$&>4M#+B*%=!{)TE=WK63D?U7W0_e_L5(l4b(>NjHLU8->v@!Ug9X z5Pt*qXsvrpFn5yOrr6_N=3ONyEQ%Dknb-zvie~XcDt0e39{^lK2KcCgh>x121{Fch zs=mghOIPHTAH3VDl{HC0qSj0CgI55O9rI7z^`K0LaIaSnRuqXhB@0AUk*VAQM>Sc( zeOga~%`(TUbK<8ayK2`q3nv^qR>%?Sl8rQs3(Fv5D}dMu_8OS1lV{|JYa<(R*PbPrh?BU(B;4rWOxdg?}{-$AhND%q`bws26N=T_5RB*tesvHEyTxH ze1e^~sr28SfDjeB^cx~F%oQTO3P)?$6}!a6_zsbYd$J3?qNRh)h`u5Ct$C+|(LH4# z@N4a?YWsux8uds0bZYcu%5xI@Y~HO38#E#^J-q)i8P;n6e!rQXXa)++ZulYYU%o%} z39k#MSc|{BNYusFTMnCHWu_)5)8ibH z0mA)BR4?c>eQ0nx-l=oHo?7HTUYc*f2#9hfMha>u92wQZFWm9xT`2CRGwZw9odMuU zTJY>TxhlL{k%v$0n*7$BJ$jYyt%FOU9L(s^ckM{5Z7 zROX4<|7a@~*zFFVPYlZ}>x&>c{(+9>{oxmn%S_DeL`{cj3$L z@J|;8tvr$M1l%c~u11ZOD+t$X^+?h}OPYka(I@nQPqQk#Q46_HN{zgbV{c{H3vwUMekKrV=n!YpYX%gs^ zeyD+De}CBrFHPk?|4xTOE;e^Tf*9VgaFh=l=6`kt3eL{}K~iL%M~dx;{#MRJ7jRU} zxBm@h_dri;6=V4ZG1^hbfx}^b-_6)Z{_;0Sf~)QWJ;Uqy(2pI%ov7<%jqNc^Q&GUD z7AaV(PL|Nq7@14N0JM%~2{pfaP?3NZxZ2$$Hknf5BPEEGSxZSLi0qpDb7Y&)RMhtz z!&(vl5<_WdkR+spBEtYVFHBR?T}a8b+K{=~YCU(2~ggg zA<$$^wlX0rOgKUz(eUCs;%k$p;X=Ug1{>FmUerjb2g#M z1_?BRloCgBe?_r~0?AU6f7fED4Ri$6k~}nXB#6Xgg%9$}1SA7&SR!EYdE-07^G9fU zKFi{)_&1iv*a$a>JLaWGW0}yS;JQI|QTQshLxfO)ANHc~>XNm-m`iff$M9+SFk`;G zri1$OkTb!_LN~7P{EWTQ$tSad1Kl9Z+5PNu?2PT)x|BYYpklpIOLdp9fKHU^t~7d` zoukb9n=#JCTfGwp$`-W5whWjGFJPJ`8>M&;nv2UHq$qE;g~2kIhT2=qp+v6Uc@MBP ze*8kogAEudJim|08FcRl(H(FzpAYFjjOJrNffy~gNXO;9Mez7`sd0}g$i2Gjg7r?x zc)Y~fm50v8mjg)xk{fwrOhPvO&FOnmslvRmWZ(&Msj;=X6i)azQHQ;phK*Z&?2V$O zmas^JES>7=OvVEJ!0DdKK*35~YbKnuewiDEC{%~kQYxcQeTmB!+|Ye@XcC%pdZI-@ z;aJUvnrQvrMdO?ok(`7CYB=y7<;<*(EV%6f3wo~l`X!0GMNXfmxZZ%J@Bjk+Px)*? zH>xvV^0iJju*;1!j*qz9^6VQvoTY;wKbQ_!`#2V+PP(T{A8c3Vz%b7Iq8o2AYt31 z==%f=h9$1%KhrVL3#6E;p2fnLoO^>W#|Pmf9Tw=`6D!aaN4K0=={Fke;CW|ai{?Su zq-G~0XBemc-_9-CVleCvJp|0A^`Dt2FwQ9^#>yMF_KEQVFrc=^b)qIB4*=e(4pVK| zuoizX1O(iafoK)wx%$e`=LhDXvH3{VV8XwBy8j7>aEYD(wp7Ix?D7Cq9%T-tsmGPGEg_w>y z^Qt-HUuG5pPW-8}v^)AHz$#&nGU&eWey;qWq>;G5GdK#^X+RR(ZW6R;gKyq79UCbO zlC3@ZRe};fY<@l75k-Tds6bKOa@iD+cR)^CmMto zIsy{sP}B>qOq7&sn1}AYcd+=EYDUMYE|DqL?4E~QRlyR|P6=h}wUb0gJK`@60zLyy zax%gZ>mmK+1gF%Bw9y1Ch(~@1O~@7F?0<>N5H7Dvp})*?;>H~q@$fYnLZI&$!2Wi{%HjXs~& zGW%B_m7)S?`BQE{0{Wa>MT-K}Ac?%5kbv5z{?O8AG#NzT#JRP=wS&2a4L+d}g%p57D<=2{{6VfGT$;;t>su%*wtZB;s+6;w?Cb z9UWjeur#D6(_i>Dw6jUYj_A(k$o-i+VEG$( zrM(`lxZeJV>CB^w*)ciX`fvu+m*y?jpU0Z_?(t z8+>6;@HTUh9nU2uYx$n`WmOl5g_&e^?SZ!A)u>(=}iQEcSV)8%WsQL-;nq>;2GgU2FQJ5@i2GR|9xGK zah>|M#8N`fl<`Rvh?hr1Jjf$Pc(A&3RWN1Y<$aabC$La zNYyu)W6WO}m#Qj=JT-j@r$pO(00_2qh@VlB0Q06I5eE8(MPVZ0{+1}hQD;-C9bH5F zT0|d0ly;REcw}S+cqBRg=eqWGv13#LRQJhQ4>^vstF;`Bm)ckV)&o}1kA zkS1oiVi@O<=q^maaM<}NKd)G*ZeNQsj)6K7;4*HF_WL(!Wy4*r-%oCCZupFyH+~l= z(w*8R`_JdcPXuXJKn8wqs9X`xZ~gD+<9Ge9L@LJ+CoScD( z@7tDZdsR${br~xHIQPx}6A{G8FX)(DK_K`>A8`!(zaNdWihw7D6cWUXRQ8?QWw|`5 zs~DzavkCy=2M}uorM+RFVY{jTfHt@ zpSpWV)RT=~6~EMPAZI-J$jjriDrQYyhRc|CzJsr!QI;b`qjKw~wfvY&ETK9QT`z6- zm5T>`$y=cjl<*Q#)G69T;jOahB0eN;P!JSDVq}h`xU1{D_|s|~K*oM?BU)IqpJoAk zh6oH=8l9FU)d-Dt)GAY7lC>T-@l;4;{txnfE`iNH%x>rC;U1{mRNGzt5Rkf%b{7IL zVkqH){_=(X*Q|$L#vlkRRV(vy)I@4Pf|{qt>nf6&27*8`TSpK5b3rCQGQuyzZanm1 zxYyT&`Qtf7+&F~hR*!1DWr~Nk^uB0Jq9o-WkyFS}Kr}IN!SFB|+lP4LH?~?IYpg+w z14vxJl?Dem(Q2jucW-{tBh_-EwCWu;;?I@N04y^PKHNk)r;6SVIfyAZ=3@4)+*w@? zIIM$f0+Z-ly+u`cWhVVOQJ-gkztnx?E8F9Pnl9aL%Fu%oDmZkjxJzxvncc}^a)_|v z^~4z>ZBF7`;(OJdGHzZ&(rh*c@04%oL}A`y^@a|yWF*xWr3PZ9XOg_8KwD{9Z#UDh&m$kyJmfxeKU5-; z!O72qo>}YOd$O{GuEjs#dx?s?!MMsAL1?W2?G#@VQg|ooFNC@7baw{KaVdefo+gCu z#DIt_Cl)yPJ2=>6+eeTA#GKp`(PyO3V1`}W4_`hkmL9jn8o`Jn&K0h~crmWPKI9Ut z=@h0qDUcASh>OBg7C?%;k_w1$SNxNsOe>&{CZRxrjN60=8{rdK}XaojoH|1420`tK^;=iPUTQUe2an@ zqo{y$ZO#>zln$R^X-{%-D_<;?PBW#vDOC-mrn65Dr90%)agwzG@uIX?3?mu*-HvjF z%veMcplIQyG-ahsnuq;LnfkMC1heM{N!lli3jEMC?+Ao4ow z>eP9(BwX%RbSgT8l8#3iqFKJed38j z%_el{`F5%`XcPyK@wCp^R14Y~Y!V&VTdyI7oAP_s3F`tB`$b_X><>rQUBKQiaVRtJ z=wu&RAE5!ut&zey1?<;XqTWchATNWouGU&rF7*d2p%7oEgeBu5z4zGK9itwwY*}4n zX%R~jaW|PMP**T$JQsiMUE`yDUqwSqHB@7L)n^*9I?n&vmsFGa+lDwgVd!k@t9(#w zUv73WbvCb#nrWy47#~+QLrQNiHpQvjHfg)!a`8YZ-{DQb05d(&eaZOL0iy=v089d_ z(+U~Gx2!3^6IfS^`*{VMxEdp&(0Rr+&Bs~%fM=Pcnx34f6oc4FbZo+DGqbaxy}xAiC|b2H2XQ*SpOPv z=uq9R$Vt}Tbj04VaR2&&&{4TfV^LEHOx$8!DkjJ*eeQN*)xZ0=DtiqCV?-LAbD#s6 zhQOsT*iQr99$T`D-u~hKCrV<}+mJ@-5ThD9uC&YGtQwi1$a$L7%1!U8r;SQ75H`a~ zRI*P~73Q$4Ch0aTVOuXxd$6fCz)l@rEBp+Vn5FYTB=BGwQkZS7*lX~WTaj*q+qfJ* zz`J`OYMPn#MeG&q!}mcu`Bj9)N&JtO)X&{dDSj!x@gBUpjvqpZwxYF)x1sER=}VA= z?M~VDD_dTcw%m`6g4O|Lq7_)*p*{kdL3V}u(jKhirlz$m9D?+P%BL5(5)Z@MnR^CRv?&zrG*hP<0?-$kW~@TiEbv?eCK$PlgixPLP%EeV9B6k zt&n6h?^;yhV8u-AsvrCGP0*<(D!p5-8INCZul~5f)5Vz@@j2u*V>RAT(wi0q8eziq zo(bI!6dhXj6&e!26ut9#mf)d|Zbf1z(80B=&x_j}kdWw`2{*V?7LS|(>z+j8On9aJsmZWu|I%p($aT^Ej{W)eYh^~c zsc43+mZFP{~gQ7p)JS%oWcJPS2euuz2OrG}P{#wfr zJkuaKQX4aVRYkO%MJp%Ze!K}_^DB@U3mDLQorKN$huOpiN2C8+h^TwMG`7OlWSq@C zd!9}g3+l_gXO8Y8hbgy1YG;JkzB^WJ@O_uOZCkIv4GJ4|;knTcZg1u{ zAj*h-a>~`2oA%q`APenZt@maOrzs5#`g?d+^K=HDqIx1sKf)8AA#c5NLB zmg(K~SiKD>-6aKI{K>L<3s|Pys`-Vmj##Tz6NJq)ZdCo%)LQ;-uroe0`qX+T+;ft9 ze(USl>$yxkl#rvE>rXUG?C?xkX_ zDn%m!A_3;e9UHRzF4k(B=9enfmX;36bnN^6u4UWQViVSC+ve66<(7^`p72kH#wnV4 zG(YV7oYftT5QPh4;Jfy-E^cq5PS zX?axV-&Qb!p04WS>38_Lt|vto!F*!jV%b3gi2U_w^@}6Td`b2q0_9rU%4Ox`*=jG{g7G%Wgi!PP=eVV^C@PwH`11qVIggSC4@xo2{cowL!f~LEbr`aMJ|kl# zh*EJ69gBEG4-*FZ#=`&Irl{-a%tU1HYPKD|kEkpmq=-+EV5k;n`8`eJcFt-vZsh+E z^-WQtLraux+qP}HZ`-zQ+q!Mrwr$(CZCkge-+QxWesd~WmC8x2q;~Dva>hyEPBP5Z zZXD{1()VxOSRc147Q(blLI+jVm26Xq*Gk7@zgLAv(%bxYJ-TQXE#GL6=PN^Y`IS)D zvW$oKRM}|2w+qn8@0cUPY~sHVss#$9rganqRdox^E`8KwKlH9>z@j}IYQ;8wC?B(oLBWwV4@wnHIWD{w}BC8$L83?b4# z=f>7ubMifS(c0|(7D|Sp-##fMpLlft;8JEvBfEBKEyata%bBKpwRTo*)()%b_>~2& zJ=G;yw3$(9zqJ zQ=8dRhn6frr1hr1OusgCg;Vtbt5mc(!)9f2!uSyq(Z{8t`OJk9fLrBBdL^5GX|jB2 z+GDnHUV4#2CFT;`P}tyu8*y$vDKA)?Unt@7M>R_>uowxGTn>Z_j)ndZrB0=}Y>9iV zBE))mQM3?^zgmY<^yI^(3*1NrC3iW=+}dgo+KaBXUb6_Sak*+ieK{X&u_{upvyEFM z?b3vR=|mMxK0A{4LlY$!s1-Vc=Q*1e!lu@g=ds2Xu=7u3pnUxD_P7!-r+1oX^;FIA zx1r9YiLBq?s}#F4WfxYn-?Msdoph-g3dma#ADZ5A9ux5i3@W>@SMg+l|mg@2Le@D zljYXcMllQj_Ka2d{|C5>l90#feJPN9@dpp<{OM7a=543+AAd z$3vXz88b}`bhUo*e0HB`5i*x^fWWGOgNMm&N&rm;e9MkCb5R>(?OZW0m_;%TTsHz&t;(UDQ3a=XU&nkYZFyWY;J50|h5hdj5praQ3QC|kq2FFR zQKu*CA~nd3bFrOMNM7(uGmZka8i^W2gx$f{9vW{%U+*;PXi-Rln_`}} zoQC_ZE3FwH%7$OUow8uZ=iBqg$E=S@z^Z@-&ywmW?u2V^0cI_&W6W|icaGf#lcr@--3xSe`XuU`fPMRXeg& zHv~05t|UUN@Ix31P-{z0Ng@$K2V@|`^@d90b4hW$WT26wtV`9{i0Xnes2uey<-rsu z{G2EjB(;OxX^UjdCn7#<+6em9Lg6y=|6$+4K`xo(1)Q zGiUv0NyKxGHaqX^&QB^|4>;CvVc6cMUCU<}M59VL|zTO&$$&cyU z&ArprFG8K@8;JkI?=_pU$&qlR68296eT6h~X)>oDqt2vL=gd{brrot9pg&JQs%e-q zLOC%>=cYEB`wH>J*ejrW;6w>+cM4odB0OlM%vcdK9Wy@u9&S{wORfS2wL2F)aHYVr zBa{h}N=RVg3cYL#juxcNv!ii8;XohsAK#hX>jUl~8G9QGAPUg(4cX$ccc&3pA0o8hO+2W>Cm5*t4+Ovjmpethzg7giC!i4|U zO$@^W*E>*ALb%M8XPaeh0jPrfGnp z2Da2C<8sVK8c$Sow>|10pKtDf@t|*xAc1vPSEMG{(80{>C*6jI75bKys05aW{pe z#6{>3NMC82Yv|@te1?4u$tWz*quxsD(j|l@*9(WJNj_ch4r;3! zX`VdIEFsUX;Lo^cIyS$&eJ$1l4hrTG@X4P!Wrf-c(0UxF+5HAvbZ; zZ~P{%?2b>k1IJki0KGr*@hW&?K-yYQ!5Sn^^U58!fWkusA)Y!;A`~qWLD3bZuiUF% z*d#QIxKe<|o?H=}=0}I53RBr7Ix1EFdO8{$oTB>AKL9<`7pyK27j=4fszoEElp^oA zUKHyQ<_2I)=+AY=FMt6TZzEK&xwLo7scbQO{u!_E-JGQDyN1o)ldS`mp5l^&j`eis zrYDiJ4GOjlTRd$H-(<~}TLW>}H&7TrE^ZOrY;UjgBI{iUi0?tx4AgJHzj|g!8ai04 z-xU2`!}1zJXyTd%x!>k-MOgjqkL#ch_Yg)I4elhkppSRr9q~(=eJ^<4W%h_ESAkj2 z%(HC+vttYf?;?8-@Luf+&7;wHXDoG1eD1b6Ok2=~+u4l@CDs}EynV}& zzKxpX2bTLAXXKi^Hr0!pU_sAG58M_Zx{h!Oeuq$y= z`(m*-@Mb+894PHuhUjI&KG|bzDWHWMI;-# zzhQZ^z;-;(?Re$B`r&QqZTw_Q_Q3s$ciEiQtT$)#xkG=vfpYa>cpmS~g|0=kYL{%T z-Bp&}(cy&zN;SEKkU0aycgJpd{+^_?)*lUPKZH{3x_H%9t7}&F)(0nj0E>?IIBG%a zp(IoGTV%GPbi->_Ij-ALV&?BN{d5ceuA1f6NVXQJoI>_ULmlQreTol2}_ZmgBaL&{KIAi8~Z8 zUa^x<+)AI4MEu~MwlH{2qXw&F)OtL6ie|>s3`qhJ6X=O(I1|_`n$=uih03ukf6!Ns z3=@s?w;=+ib{Od-b3be_-_%)M(?J>tcV%xPafbqPo<=-eq+hDDaL80RLd%|gHE(F) z7pldXzan)42Z5{~OKsp5O1ggD6-!aisLu~0&FJ=BuqF}@*N#aMrBvuHEcQuK&zLO? zL;CFQQO+4N!L&_6TGsl@S~$ct($!EknxaUQDp9W>c_kf@{Kx(fN2B=pZYd1~kanUw zuep(2_tIQ$={hhcMRm!VRI6)#Cd<7#gwr84Nj(VaCU!)oaagm-JjP_9z?E$no7OtQ zQ*ZuN>~@kOK6{eQcYhVp|C8xllNw&?d1(FttYsHAqD zmN(c-n9N0~GY@lEi<%I;sEiPqRfBlj!O+4OKtFlSLfL3XiuaGqr-V}f9o8B(v`E8}j*7taazY?ApDONTSjufd+di(PV6}X~l@% z`1bn7j?PtzEoZz)NvgG7f-~&vEHrja4q8|7*y`{AywVC;2!#U-mz()W zB={YR`Gmbi2RoYic9 zowsd?MO_}jkCO*Y7Rg;rcUndCf8xx1o9)gra9r&*<%qlUTnrT#>3_lZ;>IvxuwxSab zKXcJZ*HDkQzho{YcH!f;+QNKA?(X7qjvp@1$s#u@Mj2mgOS5to7n-%aB$Q`}r&{4C zvu>sE_N>+953bB3El-&V(U>WY+Ft#23g<%Pu!kycDNlH#|V3eS%UWcQLYZT($Eepu6Z-iPz0Y*^>iI zCNDUot8^{GeIU0A;0}tYs5Urlq@QK6Nz?i9`TjkBOnyJNcFL)(_WHiPF#}s@nj)Y6 z4SFyhxz*g@G?#vc!%AnD#KeyRvWv#5WI_nOc){kr)g5pkFs`smakV9q>dq8j4p9GO zCXcdNjn&w2$Xp)iLTWDFy_{Uapt<%IO7YB{iwXIhdr_K>2XUy#W*<_#g1!@2A!|SHtJWrRTs~5DIAj$qz+}(M#$F|-2~%qjG=uN-DIcPGpzzBw?CUOt-6TM ztr18F^?nP;Bs{gPO=FDWS>Mo2nXW{MCNe|wn<3VDv)^BHBL6zz;mQX-DuvbIoQ?TO zL@Zdj+Yfy|i%JSn=iL?-@Q0IuejvEJ1!eh{W9SQ_*VahL&__DYeTHfr1>Wfr(ZdVk zfJ4)-gv>u2Ho8Haj*v$B^?(6#e=@nqMW%<4r?J<6v+{>7(^@q;^-~ldBO5e~x}owR zCz5?=-gl_fxMP!rkB1b9uwUM{(zXo~-8X5~h&T7e3Le-rl?(U`gj_aYZcZd)6-``2 zXUmG#E=e*iwX3a!YbjM80OvfYS98>HC0Q3Snp~l)Kuiq{)iRK%5BSBBSJq_k?xlL1 z=lc8B@7s-8N{DKht&S37;(2w32k^G&Dh7!;$1EhW=*ksyO0PFCfAMj5OV3{Z6LGt1 z$W*6;);%qn!LVR=4%h#(DA%07P8yVN>>rQ&p9v9mJ~WXl7o0tV{zLdPEKquw**sEe zO3*@f-)6laR+P&7Lb2CS=3SmFt{m_q zD^@e&<-ZZ&n~ebi^o#P06b-nk3&J|Wpy<3X5j?Wf^TH|^fi7J63reK9ng7L84p-JjTUluV) zZeHuvXs#r$71Ry>w+Q7TJNU&{q^J&J>tf3$>R%&!&H_9?A<{5mAMespX{g}BmQ4Rn zX*dHFsk)%L^v_4Il!Y@pWmct^i3amxYekz0|!9;3sc*bNol;VLK52ZcrOUkdO zoAjkC<%1-yj4qV8wgvuWD32zKcZ?Ih?VxYqDT(D$@;q6*2L8SMpc#`0p%4LV+*bLB1z=y>5~Er1?%} z)J=}(iaET*uLkvtJpXHp>(>2^1-yg;zu$>`H@{P>pa%Z+uCbvq|LnAU_o-=X>T311 z1RM65*#lk$yT>hB`D^V?qjA-R*&%jC>wWpa?&)Ua=jDa=;l~;Fx!ELkdF!za{zN|n zX?*j$bj(wucGQv<9mxoCs{U>2!ww0hBZhK9(AI^9pFx@yYxzX>CjC#%{gEplyDOsi z1*uF&Tnearm@iqWLZuUuB*W_tbWV>?tsE?OMV2--y{PHm6>)y-Me*+Fa?br=^0Pk( zg&*mbqMfYEETbwF2O+LB8FgEA6{jODP8BA|X!)|wGcx?i8L3(%%PP!b?M~P`H<3JB z5YzROM8aYfJXN_8o=sYb&gAfFi+RQ#>ip0j;@zOxv0G{Hr|-{pi<^Guq16|~d+sFAsVzHQzE;g|BQL&`r(`+r@LjUETL5(~ zk|?9JqlcGsAs&nweShg2`50~NPdN>wC#l(#Cm~1rQMY2nNmJTQ9d~2fGyu4ZBlg&1 z20M}e5g$HIK3_vzgPRTL4gdExDK`fpC&x);#17p>5G)n=vpM%{+C)XAc8lRX$WY!F z8Y$navgbvOP8kwsB|rB(S}6$?h(8QEG&;>CR$=KaOE91CjiY(~9p&e8MNwL^fA>3E zr>H{R#~gP=h1O4mIGPQ{)hqMxv9r&~++(2OFn3g;r6qfRAY#_6gw&8nA#Fs+9F zaph6Dcol4)v$uAcuCA-CURl0n^q>rVQ*>5?%eN{{`nSl2J~5+pw$`}jqY6e}3ZNY{ z7sJCIv5b4w3{PkD3sdicCKM179U2kTC$iGpfhC*T5?vOMxxvJ*?e*<>^R%*trUOf+fY}O}$i|E%JZcPx)n#Bq z@<#;E)Z+p}-fbH zesqDr_lKO_O2#ha$HS(F2H$Fkzkh$3e17(m-o4{x2io;wwKi%eHMcVd<}v0tJWwqV zK5Zd2`=TZQ_4+r%xGa`Scmi)&QvyYSjcRoSTwu`8hcSz+)+@W z>>l3PTMBbUuD6XOTBhNhp@b_=4L8i*n1CvYDPteyQ-G}!aG^5oHqdn{qAxj zI;m6;6F;1Cm2+JJPv9Uu`^4ZJ^x5Wjqji`{^O}eF zVB^p>+Iv+>3a|_|WF@D)1?#A{eh`p8>zhx7R1gHqNpW({Pl30>&SP#5?i4c$mx^PB z1qJlJr3tIrz9=fr)dMsqGH+7Xl9XH7y74F#oCO?Y>!xXd(L{WU+a92f#F=AezHiH$ zTa;yn0JnKxfGPB?Ti=%N@fi;2o+G$xTOp-ko!Emfl%M10Tlx$8#HXu2-U4x+CT}_ zNlb5eUz(453vJoP?Z@3lNiJs6I{mq40jZl>2a5Z9ZHz!saPv$6Ywj)Qo=|{I$Z@dY zFWVv$(9|QhSU}Eni?X#5iP!}jC_SEjzxhxrZ4|GqY1+A7MQ+Ji`p##mE8LXe0SkoS zBxOt!9cjAcoWk zYrFG`+&%1uq{EORuPv*jPH(T$fE)jW`Qf?uC(tr!Lf~n!1+J0(m2>6VDi^eu!qy$H z$m@r}08=-dCsfV~YGqC`d?mRvJAb`cGQTNbT6-Y9tRdnVH)UEKkq#FeH+ zRlP?5*-dqQ`^E#?2~ac0+rwm=cz;2f`hokRg8H)i?QGB?Q1ST;WZvun{P%V}5p8-2 zfhBW)@dz%gOT)9q{xL#X4VnCdj4_-34H>Reo>tqY)ji@38PaU(H%S_@J=^?|!0X37*1Uf4 zrwT5cLMxku8?WegDRQoP9QLEGd4N@ zXc@g7+>qPui-z=?AwxZF%Jd>3n8OV~KUP%&?Wvs3Su;l2bp)k5^zSlzioZ{mx1T5H3Z}#TJGc7JNH(pyY^XX>bGIoq z1NpDYWsg5X*Rrb*pou)DR5(Qc0fThJ{Y|ygx>C!;r+#^i`C3BjrV=w?PWQ7SCXafu zIA-1Sa~{mW%Qpz<-$DX!Gn#Ai-S9rT!wl&sdons^`_|!?*RAl8)1G?Weq)=v123u~ z3`7hfB6eT|ah}nbKKvlgU}SJ?C6n1Ufz@oz4Q;o(6KQddS=lA#n{aF3((Au>zTfvy zt?;2~)+Bfw@CP^yb;~;dd8cE(+4@xo6BnpAz6r!xN$2g;DQh(gPT-ps_0v=xx!uo> zkS}m1X+gmFq9gGht}A}vu2^{|@EAY!bqaYgfJZR?M(FmP9NxoV=iXcnQLrxZBFG_0 zZ-Ulc968{BD#XeliOQP5P=cS32n?cEpapaz&TJ4cbb`$e-sW2VU5(W0!~Eh2+RC~B zd{QWT!bEzrZ(VS>MwYqWG?Vc@t^;oaPPuGgpXT2P(?V_`cTFxxvrbxGD7bUes(r&X zdw*_nT)7dI-EFKk<1hV(EcUxw^83%i3OVAkcy_Nzb(On1jqb&_WRi66O#XGHJ?Zsm zP%f}Zq7B#-o9w<|HCC6SKC3ej|H<^zI$Bk?0KtIdRRN2orImzHZBuQHo!hN}!RVmZ z$O~6d@;0adAp6VYNzceAR9`88NkURmRwy1qe$A*(-Nc^9)c_l*28xUhSvBkT8iqDS zn=T@=zmFT!@(N6YKx}|x0H(GhqWH_6F*5fN`MWHpS#jPUu7@+~SIG`ml37Ct;|u8A zI|o`R9DmV)yxkRJ4$5VqkVskPN;wC)t}^h)m{l2)F((0P zPXTh`ax?Z(!S^5B*((Dq2|RI74l7H_%|;X? zZp5B>cQEmukYgB~yb6oD?Y7TM@&4OZkVq~>e7iboGc3GJqjAeuYKS72= z-1$)SsuQ?np4952HVkz1L?3CewqXsExVfG(VBwkyXe?!~X4MC0ra>F&{D`&b{>rf^ z1-G$RBx8&KM1IpBl0^m;FH}vULNq!ME8KSJd)xwJ!@dq6>-TCQ)IpAM5ePE5Nj^s2 z^m3YrxsA1GHlaNX8*HIEtQ9#dK^_&`BtYZEE3HLIU{%0*Obel4nQkqbzqEw@bW&O6 z7$h!75U5-k07idqkjl1OZb2@`yh1DsaSPc5?|Sl^jq>~)lmc-)G8KZ@&!$Sw<;D$} zDX?G&tm^AY>hh$^#_%)MBq5gEMm5RijS?ECPj$-(H)MG{QA-Qw@#FYDj1#x#U5uHANrJ zzudjsbR{1TKfA{%@RxMb)1%;%Q~)Zr;Q9fn{p6|xWr}?bz(}CdK*!}4VotQr()G&{ znf$1n4J%$t4bdxD#aU^o%-Mi_%G{67zvS7LRjc^7VqlOe_83PB!!)baS4c@-YEZEj zmebSL3j;&?$}e>v&X{!GBG?uDk=E7S<)({JkQL|gzO;rX8{XluYmo~Wb7r2AS~z$O zOE|@;Xn%^NMG>rY*Tf%-iQ@g2RjB0`gO``cOLp&Fn-QU7^sg<6RVy+`QH0HPA|f-G zH3x=Rq+E*k6+kUahKJX)=mSSk_#=ePPgK>pbk_4@tV`TE7>mlGC!bWR!?Qic6uzvq zFKAZ6reeLq@pF?PK{~J1tcVIjGN!iV_#_sh^es(w^?96m=l0xjfI|n~4N{)9Fuur8 zQ&{d!#x79u)@g}0MBQx_$+cn%za%8YyOiCh$MpQ-CG2ijYMY>;I_p)1XsW2prA6fh zqsp!B3gn3zQu{N;>nmiZ5rcxMox03wN@>BKL%GdpOO}XILJC$f_QKb7I2Q;(f_OB_ zl+1190+8v~Cho(YhgHqgN0M!mXrsyriV!GJj0OiJG!JAAI<13YZg5a>gW*`bbYtco zdYD%D5P)7vVkjF=sd=pJIF~2FLW*9v^tH?wsZNrhdPbJ>>_J{n94|2O4U>$%08kD2 z1vK{RbX6qZMLfFW?=iS~YXjJ>yRoDQa(TEA6_ZorfvsZug~abfP}p*SK*&)7mQVEh zM5MNZXE5!KsiVw!wFKnLPdv)=S`(S5A)4G+HcYG6niMunVcobt59FnWp)I>!QggG+ zMt{a36s!X72EC)O9eNpBbeXFiBwkq;hu&|NuUF?%!7^%PWJ$40cjkm(<$r5|<9zi) zQX(@t2HkF+Ea#dLT+#yAS|x)+7$J2>uMq+@RU}Sj8qRq4*AWHssKUn#ME4i+FpK!G zleQc$$OwFc038`5yCCRxt)?|}#Z1th1N*kT;-JHRjBGlIc$+S=9=AKQO zGdtfJ3)TsvP^s@H0xZxGmaehPix~t)uN(_CmBs=ZFjQ`4i-4!==S9NNP#aU@Wc8vD z;AU2=(i~Y*C1R2*H!Wtz#V-xt+7D1I%v6!?Na}0~WzO2JZ|_vA3O%cBd>>c8ov1dW zPs@Nc??`CDciU?gl2?Ky;j&lj(QC}|1RA^eIcvb3@zsN`3$CraR|UvkaG;Bem9^ll zCxzv|^1NV+SLJ($8}Pas8~eUFSG5Lv1E$iq|E#4a2ZBKRy2UFN$SsC*Gx{0tlPt=+ zIU%xU_wUR<7ZRrjG7xWFbbri9=u=bHcVM^sByP0bo_2+t`_Q6zqQ{~PiOeCdmfdS#SCgOyXI*y%j&iqZ2K%bcP)eyqDLls zEiMWc-KSYCg|1Hr*t_+y8yYRAPV0s{DZy$PXRwp^Sao0fbgoy^b%X3oLI z55ZfHEq?pE;g8V zdimMR|Dsqq|UD55#~+$U}wQM4d2GJv1Sy%0~(5}DOIJ4vx4 z*ChHDRQueGfv;bH-`asqAP^(g#g9ec`q_zfO_gK#ca%wSY6Q6WdRtOX(O=%|oX;T6arKbBD`+npZ6e6ak~JdC)DAM(XN ziaY3?y6)oDNDhttT~cv5J`71OFUTE7A2;?WAp*OY?`Fm6$7;0b2!(m^HL>eMKD*|D zQ={dDBO_}~<^OgP4d^E!CAZ!rZ1=K!B@9rMe2Ka`K_VBDb_+kCX}RI?Knr! zi83#Pyn-xHK#gV7l~c_%H^M@HmRx>0YAszb@LE`ql_>$c#u&+AU>%c%`+5n)#~3uYsc6hpEowa!glI34Ryd)o zc2+frz>0Dlr>;Jq4^oZLp@6&nnAjMo36G3Wb7khno|BZ(+*UWKI)bLU>>rews?ya9 zQLT@0rsZgA|FGNswq6n#8_^-Oe8p5Cst{~!rNGV^>R`QM&vCS-QrV>JygJOeFD0|V zw|1sig>dXW=i7C@_de}2tTq0c3)jaLZl_SL1Q?_H8W9Fc^kj*nfDQd2F?As44az{p zYvghib+58@8H8d*)=37WqCO+*%)Yvmb7>s{Z}Qh2E-)q0*hkpN9TJ4(PTkEQwY3kcCPK>W&b2?c6s{nH?VN zPn>M%pLW|F$*CAl{Y(Ao23i+kTddId@%b5UyvP(wcmEryoN6b~0Bg7{oY-u2b2sIz z`@y7aF}ypohf#fG7o3Vi^h0{ofl59qV=H8Bf@gbH2V!5@ai-L8T|vRSlt{G+AAv&&qJBN{^3-1gGW z_;Kg)g7?VKQks?etBI8`jiLT~+cS+Rw?xS(zbzdlG`qsc=Rpt{ym0NI#H$ZFf_ESu#kIHQYdM&$AsGmRRdTBra{ zPULqI3-VmzYeS*;0(NDGw+qG2pi>U{F=}|T=uHtu`yFsE`iUVyP~Rkx0S>&7ziCu@ z=0@%lZ1{*Yt`OzRQrh^2Za$iSD&3ZD$P**gy=(H?(ZGc&As_cPEv744_=|oyK zc1u08dVc#@?(*Ww@Uwz+i0Z9Mx9KY0D>cI2vS{{NV_RoG{}iT$qct$&Nlg@|4fZIt ztS4U!(qk@ap|?+&j!M<913|zV~oIFlO*dv5JJAVq#=dNaWmfJavG~HNkyreFQuWdd^;_j2KF_C(Ae(vq#>gf zBovG%q}RMK=1*e?ODCyio@xhtDQA7q_8(SMXuUIO<#bq^a$r9WqJ+*7x0V zIHUf8vlR_=drif3du-}7^k2i5Jl1`t8b0b!)+u62pSohehKdyOgR)7O2rlMw{Z2}I zC;FZI1~^c9y-`-F`l;I)rq8jnoa8;bm2fH`P*E5CoGxL@_>W<6^JHCDd{RD zq_!1pAOhbx?GHqN85xcoX#lGgc6Op4&ljsJ{1d4e`L#=N?;v<04rFSEv;(uVNt`hI z^_)YCK|@1?mAh=qL#v0!SiOAkjv6*4YK9m1xVa@vg|#lYtedm{sML+SXklO6WM&5^ z@;_+%8qzh-$P%sJK>k0cDF5daSx4{)2#Y>>`^vyA2>rkB#zb#l8zQB#Dv+w=g%WI zRQFE$$bWWD>dWuWfjfUHDc-pR9-`|EKNqFpY-VOOVQVUe%%`nE8S>KPm=a*8wHfHx zO%4PAESq@kv9QWrc~OO;;@|mAaTq5B1kwExz2fS_K?r3Qo#T{TOb{5w1=<-04VmWq z_HlQiaQzM*su zDn@JL2`WJ6>V|Gv9x-9dkcDA!$x=+41O2nQG?-sBU)VA*Xib;?(0p6qSjzN~a#wPF zmqC!SIrOl#8^~O8oJjPIH;?!Y1}a&X%!j6X{>!2`Q}bYGpIlrlNCD}V6F6H!Lh;P@ zUMTmjo|inV*TuZD=Wabv8GYx}b!9zrM3rG;4;rdJyd?V7Bj_!Y)-ah5qo17_>ZElU z8r{lGoicH%7~|Z4&qR#&o+dKDffwvAy$MK5f=8&I zWbG85HVIc2r1uO%^>p0?T%wh3Qtg~BYg*zi_r`R1Sbrs~h>P3|JZN;b#@u$>fWBFR z!uN|=x}b1B8iJ{eQMuDVmZW9&NNF3imSt2F%#)R_;3lxcOac z89EU0Oa7;IO)EF77uol}hMlSF3$|5WX0KRf6YH62 zv@+v1E}2~6#W7^6|BE$qam?J!uis&g5)q?NAzJ}9O*yRuSl5Q2FIaVKgT7o>L|3&j zxD`+eOwDDsQ~TIwiP=k0Vk>>MCb)7R5d}%ojB2)KwBx_-ZI`a(HJ=`LyI9|6qvNI5 zSNANS9lAO591YTkP8U)1=Hq#CXa47n&A73A4hOFGIUUBqkA0hg4qYD#>|7W6g4@{4 z8NtDMP2P4>m14H9hO8HDLg-z&*TD4s&2g+#B0^}PB21Kc!F@8|zx{oc5WMxy_T1@X z|3=NpF&ow;`Vxmj@L7fJUu!2r`!)jw|H(@j{JhrwNW`II>!?*zO587t3cjbHj_CM} zONnW58u$ur2#{QaC*l!wdBwX^ux0Jb(@)2Z%!vOtuP-(*_Deu6kVPoS=CG}wM2mXIbMCXnNl8t+n6d$5nw^@0c1mQA# zi@5!8Y-!t@xyYJO2iSk$jj=^|%d8BupQi&#?{S$F-uD*E8-OwK8T%#(o)3wHf*b1(lemry!BiY%7e zNT_cik_Uo$^x5ek^mWWi&ATY5fZKq;5ShWT`;l<6PYo4mU|rK#T@*rN1u!rNfa-t5 zk~KhCIVULpj^gT(2|T$1ya8O&naC!y>2sjRJgoNqeEQkcr}C%e8EFz@3CrPL!_~); zexVI@lmG*tIo(~OI}GF9Jc0TGcBCf`Y}qc`8kTNHp;Yx+{VvG4JrKu zA=-3C@|PWAP*)^SMUrvQNWw$0BFQ)t<;gn*-*!SZTeH)yK(HyNmpCJbM7#tSrXcDs&7z5U_`)P5beb`in3vW+Amb-@7`Gnj;W*Jz=aHAr z^HWVIEztUkb9~1>^g>(3y zg4>B#pEF0oBN4yb)nzq3Ye?1(X6jg5j*o9NJ!?%?(f$8^uuwb@A#60m|n@!6S(FOO$-{g}Fa$7QHm zdeFl^95)Rn?SYw)r<6tOCE9M%_v1NNgB%3lQri}jzH%7UwcKo&)Y_-x*&X4t&@sf1 zA>^mQ>7nbf^YAREzY-Z=2<4)BSx%HQ;WXjw9_C_u7EzDKEx)#6V{=?qWLzbCtI}KX z`(_qOX71IA_(Z!T9H-V^)r)$vmy7At9(YdKg#^KqydLZ)l8JhJmja$a@WT20FHRlg z%dcrUdGuM985LJ-HUie-0NqAa1O#9GuD5%C-BlD_ zScsk)bC54rVy5F_;}C_&?#g<$_Q#6fj^TDi$JAba1H;js{f&%y>)N}u|EUwTf%`AU zN}|oU?sXD@fWM^lJ4sTaJo8E;s`2*4SF8sz_3;J%sjQc{n$IF(o!>sjYkl%|j3bxT z=L(rw_Tw*4r~}W}`Ryn><=e%RmSf6U}JUe$hS*Fn_8 zuel(dQW!K!<(u;u85sB!j5JnDcP-K%50m)yNJeE|3<}S}Ol5ArAp$Ci01li790D$? zOdvu^CEh?~v-;UhM5APe3S98O{^zh${OEQ_9`r<wkT4kmCJ&>*aVqMqx1RJeR~;<>^%9_v0y;j}yS`kUbo z_k4w`WU(tDz@DCm-PAu1VPzHQDMX9;gWDLTBvuQFx?rHcRg^P;{f%6uRQzKk{c!m) zOi1sDga@a}g9!P7keCAmD9a!~{j`u~A|ld4YgP#N;MzDy+>ydKRyyEMmG+o%2G7)8 zl*DD8A^1*9)LcPe_S^_AgH?y7isOr@HF(A@sZ(iWcdZ6B9<$2#zoK4o_|R9KQxJ7~ zVpTxt{Wm+9jr(dh07^tNLW9(AuvWGDE52B8Y;tUXWVTF{c4^W3!-5Ln0`E$fFzP!X z1#mUJaoT*iYsp)k^`HI~&C`SPecXMfIdkz>&~wzUWyy_obJ*eW76gLh*p~XlYz+>A zEc>nmSEJ!O zqK?Wk>#H1lm;UTp9pLuPP9W-lXSjQ7`FE6~8kTNn*!jB=_As6@;^bK4?D2aU5=>a{`@qf4|zfONsei2=*-T{Re?nY5M{Oncr+o_HjG&3NXxO#(O}VKYZ|LI>P)+{xuvB zKnRy8r$8`g6EL9E1jhr>(6w4j@_`cL@(e*C65?viTyDODtY_e(k~G?~M2B*Dm%nNx ze?VtHHI4|H)C7cZ*CKB{DRnzfw$hJkhWZ#pFzIK3b&~J3GA9|qrJ(^r+Oitza6O_v z%R5)MAw0ylT~M^W0d5^YR~eBAZ1*?kg71{=>!~pPIR`Y>DhwM6kkb1jd1e&)xl9qY zw^c5t3W3>!{w&j97`G8on4N$Fpc~e65JlC zL-vM4(NBZ4{e7&c`9A`(!QIFkd=HbN^hLQ^D^%6x_m83x`tCS)iv z&d!WL$y%YH1&)P4pRYaQF~j&t8s2{QdX1wSoydjWS`!yocZ&@Hp@= zim99q@Q}gquXR)hkBd+hX=y7ztcl0#j%^1;s%9&TfpQyg&5Lun46YqPI2v#FJQr3V z^&%9c;I?FBsXza^i3$k?%v(`G9&yOjf^(cFQ6^4&GP&jbEVjN?{hT0q zkVL+JZS6IKCVue5LGOkSSmHRQ;8@CrgnZ)ATIK+DY+`G925n;<#j4CD0ksWz9Y~0D zi$}!!S4QkS$ovfjivvK33f5VZDcmlHAZu5+a5+B`K_Ie)0;i}!wxEaGxS>ePs9@Pn zv8bR0PvHt1KaGqVB_lG!}kL$rFO-}^WZtJoLRk`+ST`u zR4?B}6uFl>v)5wqvFs-3*jd4wK=zY?ybshopkrT!>Os7Tp&$igsI+bmWo8ZZNm(ai$r*pjzFW{l;7UyZYqFag*mI3$X0c-!*wth z4ImK6Be4#39$*4hmyvORW+b%nT*DI=WnfK0p7A5MRRbt!>N-2&SZQgvPgyL^Ka+uu z3W@M2$xITBksWO|fN3J6%{07!PM;|X`U;_%q9!>dB@CRkuBaBuTo+V0C=SJMQJx!q zcf%f)pqXsi`EINv5&Q_qA~bPu@w*g5c> zKrmomJh5_sv;DBUiAMn-n;Fv5L64%oYw->{Y0%jfFhE-s3A9a@5C;%vOTxjUJ-7gq zH`ES)mugYLL;MgGEDHomn-5oB&e^RR6+AA8O&V@wLA2En$84CtkciQE}dzsNe-GQWFZ+L<|%-_#{z(Q9&y{Uhksh zOdJeE9%@inwK7E+5WK1wGZ_IfRg_c6a!Aj!s}E>MFM^uZLA}VhA#w^X5Qj?1>FOMy z-KuW=FR*|*BQKh^)@L9+YCoe9!8diJ2g1f`C?o;jUaNF(`l7Q%()(4Yz)feOj!QUf zl{5%|+lwT~6W)3P@@iu}5}|!#TQ9=7*G3LE^%2D{?2)T72enUOW6!9hLaoHb%v&<3 z%r2mgEaNOwN4woDW&w3@mQ!aYK_*ay7^j@p2G=gjcmU<0%<41tB!q$&NW4bqFbD<8 z2o~V}R0MN3kp$V+^;zf^EF~wDE**4@3K>L=3KBA*^&PL&6~XmJvp{vcKMNzS7oMm9 z>XFKPB`Qd0xem0#gv-XkX~{wOF&wxcR@YaKoj15BbL`xr(vbmlGL@oZlZZ2R18zW$ zE{!1E(9YUj9SWk3?9RxbMOYHdH3Op?TXd@pt7*Erz8bHB;jh&aJ)^U^-(Z;*XrB0ZGMAw^V4$v)>6Skx2b%pK(`(@MFnfaD-spRfuveL zf+oO*%kUls+6MD!QsqQN5cyz*sY90iV}qm|Mp$An6euh`qM{jyPL4!ZB0a+7o?t$o zaQUGDjqGr9IWh@_md40X2w1qxqO%)swjPN4Wj5ieHD%c63Hp6|3*z0xXcx~!!Eg0E(3<5HxYK~{9lDG8#qQ2UEa9>Sfmnk;`H-ysoha)7 zYTpvHZtzibL>;a;@=Vl;nt^Q++1FcsaJai7Jd7vhbVB)CNT+u;d@A+{oke8$JiYY` zN`EjeC^|W!qG9^hj`(QZhW*9oJNP@FJ{Vv4YWN=v!>$DUJlO4urmx@NgCW?zX#EGn zZPPhGr{NsQT9DW!(QppFvKPae4wuX3VmVq0$oDAh&?4@qtCqjL>*fhM?75qiZ3}E} zo}k^`L))9*){2EXAfP=kUlKAfS#-)PIRp-#4P^K~=sjR$&mqdy9qcGB;nE(_6DBlT^$tM3I4#hxkh@2g&lmUuCChPyzjR%#N0jq_CX{e2!K4k*aSw->_Q|62MgTB|6z>mqoS| z^F+c+F)xcl|I={}v~f{caC&!1W|tqWN_Yd@K9J$#SssK~Bh4!P}`1Kko$s9~2Te!NqwbY=R3z zVFK)=xM;(NncRathPMoqrvU9Kx1X0te@P<~?mCjq;j6?tXmFY=drM-G>a8G0F_ z4XPw*J9P_n(0O!kc2hewF1=kqq`leWjaY9L3b#y&9VX?4;100Wdfoc3FMDPUJSJ zQA57w^x^kdZkG)X^ubA3_3OePG`($$`p!Uf68Tk?u*1{oC|Z0KEi{ST7tyiCqB2uw zhQl6#)EysPhqAw(tLixFj50$_q5B((4g7|8XFZ96IYMtZFF5^9XE5HJ7uePEu93hn&-W@!fQub{IQ>?r)GIgWW8yy;p*g4mr;KJglVXyY6eKhUMsUzYl}E09LQ?q&5b!$^yHsapO(_5gjrbd? zd#GB?InX5*Dc%s*8l;NdFPB>T(TKF$b-#!OhO%@SP+JSi>bkpS z9Wl1X4uSnLe4;rR7{L6MA=8lGA!au(x?k;9w%UB$Yg1>3I;)L#8zxg^Dn~Dg~ zLs^0hqihOV2zEL&3JY=Sf)jEn**s(1S_YCV@B`A!>j;RCeR0H@s)-j8sdeq43`{^<#Ete z6L~nA`K^JbHs)}zl?TbpO+iVh5RvHO-wPC+{o5dEih<+AR?UAn7ftLXF;E;Ht_+Tt zzlFSv{qBDuZof_Zg(lPw7NtU9{opT|)rX?;1K&-hZ<5;j64cagN%DqC!AllWnQk-8 z4UN8y@cMg8Chf1QA8_dfi`yS`DnpSOD*M-5G(=96M00tIKT6;)*-(EVa{a&^ytQfe zb`>r8XuG@Jk%Y$$)E%$uSdH|&W2=dcEn2*{pF$ZW zsF?AAM%>$PO(4YoHUDAbAJZJ^!icoP!2*>k{`sw6GK%?pJC`5kYB~5*YZs{DO62FO{u4=`skUG$|X^f`6ks79?WqewJ4SutuX5? zU-J1BC#Jb}(pai@^pJUKCzf!%t*?fud!g_w-Pgx+{wd4QxWR6}IeoU2RjQ~Dm8yBy zTQrUKpmbmBWr}jK+b^&SE7O@O*-SR`YRH`i1E@#21@aHc+4N=JGoLc!xi}s&5Ah{# z@XmM!e0`dj#-564ISbKWjK{4;Zl74WWV~CAlZaS%ZA7d(y8cYxNnEutuPb*FZjh@s zCzD2bYOQjO(JWS+zqC4o=L%~r#BooIjT4o*RyB$*qTFDg5-&??pi_-xE8kFbuFu8W zOj3#u;-iL0PCIrFA8VA+G}HaNp%8l&i^IX7o&}S#RPJ)~$AqdTOI%^Jsw|QNrqU5O zDphS5FQchcuqr7@uTL3He4Q+wn&R{YH%L)0VoztO$xCBKN~GB?(up|Nl4;9&c}OhC z?2t>QazY#4(o*BNQO;AnM7f>mB$VDm>5(3%Rb~L%D_tc;o61i)GFg^m?JP^O*;sx) ziwkj~!BKZFshQZ~MwR%)RFeF((vJh3*7&(qID}{1V69yoFZK4bJS^pMg?16m4|Maj zdbg@m{Uw*^%wLwNB=@v5`bK$HS(e)K$H9GTS)4VV=2ecpe9{@!@uBNp5nwMXb^A@O(16l<-_gw1I$&tY*<);CAPl+bI;<5}s zP|~Y;6F1l>DTC!Go#p1Ed@aKao--s@WUEhwm^kF<$4S0B+0u5v*=8 z;<<@XgLAMlTGj0y@{RF|HLOX?P}e z?c9UeY-QLbJ4~fBOqv%Lt$3St;xd#3cNq>?UXC*9S(l@){>?AWM1pLJ^GO26M} z&`YirGZ-e#Y1z#DagJCj9?uqY<$OJ7wfni;ORj(}7D_fB#)kb&ML}n?J{v!muTd zyR1?um6S{yH)v(p?7S=Wb(1RJk5}_{RuBsViSL3@u~Ka{2f}Rp_?*!?)1F!t7L&)9 z(K4-zfGj*cQOQdEt|2EMUpTQnWh%JAK{LH*fmG|!sL#Z-`kal^U{LN>mu8P_PAhb# zFqY`2I^bS%Wu@^Due35&Z8hyrSZQ&`+=Jp{MX60|)dIL1;RcIctFovx(>e3C_EeiR zKv}WU)iY9l$BCy_uNA>5ZNM>wGSyFUk)Ohnms&CDH; z!qJ2wUU8iJl$xu6tLEz;xWJ7~%Nyy(&hy!O%-h*{?u*;6VE}EYIj^ zn2{-`&y?Kt<&0-+DMM{15B_ekB^=7UbZn`FLXrEir4rtg@+o3VOg8J+@Lp_*Nl_`Z zYx^pprR08S$!68B(9%Z=EqU|6J4BW)ove7&TJiA zl3sBo8jUmRxYDtp5=trh3MzdCmA-;XUqPj729*l(OHQfFITTcC90@8_nu%4eJ@2;6 z7AeNK6e-_7PDM?eJ(b%d4L6wY59`%fE-lE74oI%5oNyn1jVxTgV#syfn8Gl{wtW8TS2Aa^R(**l^C5db*t@>-A(~_GAqCVjghWRy;p7VpS=gBaLyJu_o4SwN@H8I0W5?O0Gfii8xix&n6jhk!YAzN$Iw&*<=i=A`?rClSPM@=_#!}_WO?= z_E{Q`Y37-FVixm`C2DGxtv1X&Zg9D5K1>&d_J|T18uPkZW>*qZwdBc^GZ&Rbby?-h z4>Ld|^5osBG+uEG+I(*p6v5O66RxlFOmVog3w<0)rdWxo3c`6xxsvb4WON zI`13fY`F>Nd%M$QYVlf=>^>~jL^@x2XmqvvVOzN?wOPA|qon}u%$Kpij|6jWF$@Kg z#bHKG$@Jps6)p$kQTg6d^1NBj4evFEf9-0qf<92pWNuUu@1~7vFFhWXtp~%#p*iE) zvq42kD}}@|MGYs0nksAgYOMLvT_|i-OEe3stY~lpdcrh2DWP-Mh)q^f#>{IIx!YxV zGuywPcj%QpQ;Z&Mj3=2qqs^v|@%bw8ym*Rb^(Uq`9Wk-xkZjSyyqc(#o-54(RY@kt zjkMHQ^<#zRYb^&SWUALull27OrV4iaf|96KuYLb0Pb!AEn#8U6ec_CN(pos!AK!k? z4JaWg?lu@AptLQi+y+Ail=Ad|rAT@m_Bt3)ss#!t#oO&S99}!1^kvW>Nw>)c zS%=s62JgE&FVNn*jI-y=TI2Q8?7e%7!yj#aXV7-d*|VUYu>tSgjdt68wwFZT=E83d z+>@>QT|RO!RaCnJlL2-IhC4}Oe|Ml?VYUti&&iE z8H_mN(8g%y@CqDE%$~gN29U<|u5K87N{3Pk?bT>sFzyxU4yf`TYIm>MZRO(>OkcRs z)HNE-ICAwkTI&~RH6o-2LV&wt`J$w9RKw#~4N?N^P^%x0RnrH`2<(qvxj?I*h^zJy z5TqF4Re1F}2q4|#kB(y?NWnt-eWi6E6xa*?rDv9-f*wcf>;kR+Ll(h9J>5sDXQjX> z#~-N(*dKqO;~_rH_z%t0{qg^OfmT1yavc#<1vyDKQl{GPYLEksKhbLaiD(t+tO}>E z|Beelpd)nNcdiDJ)xYIj4OGYaH(XcVU0M4~Vl_&S&HnfU9rJV*R()UkM?O_K+{B(3 zJYcj3YC4pg_jHu`Z_nCo*R3XcwB7KLDt8DUzKmt+^gvZ6Ts8X>%2=Ks{ILGXbu6ib zjX388cZ1&gel|0|OI&;0!^6Nu095&iY zW=T74WvA1p?(N3Ej#r%CZgm@92dvpWf*sFO@ow0U2|SN{^(D{MOWL0(47QVx!i$1a zs)ok`%*^lyzI{ohYhxsUR0>x`|G4tw$M)y*_;02c;e#Vj){DrLozLpLuvg!k%#!$s zN$0+Or1-}DOfuv0%z1iKxVrD5kKEimb2GKWU8fwoo+jPw&+Yt83mwlIKpNQFzTYO^ z6%Ta`1&Y&Iege!Oc6caw5c49>nvsof>m0TSM;QQ8q>JVToJ$=Q846SAsK}^b9m$iu z9H^_2B}gt>C{)=82>y12aZkvLY-Dc<@lk>Feiohi=$bu*j!t+($Ba7%dTUr;g=#A> z;3d{1EK!mO4iGZ~2F z+JYY60Do@7fv7qGOH^m(X15oIwW3R(iV{pKqBr(C(fE9}6SN|%cW!7!g#WqZ4r+RV zRF@FjC6Jb+gUEo1?xCnr0pwL3KBB3CL}NI721)V=1xW`iK9)B!WCmMcLV=Q5!}wtj zFDj789E=p5Xpx8t7SBe8M=mmHf;WyvcDB9uvv6JCdD^>VCyvYPmF#ppkzOS`9Y>fm z)K;}qDzys)i&O_xIM6u#ENOgH*;O4-hZn=&#fRk3{k$V@GuNw4>*^+yd;0KpDcZ9R zb92@EsHSnWuJL1C59Y2ulusYrUG2+25tM9o{goHkZJvpu^uQjsQ`iZ+$ICwhQ1irW z4tsiBBCK&jn9Vn;acls;{yLqMq(YTX`dM z>0%3B?2p(!U?F!$CY@e+?1xP9(FLwC}N-XVzT) zk)_j2#;@VMn#-AVCV}*%tJGXh?blp(oByi09KPoA{|5j7|NrcLX>#khvgTG4z7a3# zhRWtli9Yw72ujpE&qGH?1!q#?B$5(E{d&EM{?YxG@K*75@;1<0Xn@pU*|IEJwocV4 ztD<~Jkjz9T5{U%x0q~rYg9J zx_f1tmzX`g^4G!|Tt)xpZOfM}AKp5t03#nA-sLOO_dA-%pg30`@1j&6WDKTewm*>i z=z6-;1vy7aER!P&`y@_Q_@&{)CoGX+^7vguJ>vf8^Mbei7rejXjqi7ctoZO_$M%4* z7(qm$9$t0hFWn-@st4ZVJyF-c-}ORMunqX3##-JXA^te}2-&lZ|0E_90Il(&ZmGMx z-s4Z{gFOEDfB)+|;PTG*J8!Y%UHL9$R4gwtX@7U&?k>g1t^7F-q)p~>}-%Q?Bb?ZKQ zij(LAN;&&P-*z7F=?5C51iIvFk2Lx~f*VcNRn33I$Oi(xy}8#dNnStR6I2GraE$)8 z(mh?!4c!kPqf0~nW_tELEUx<~gO72U9a1IT^MNMhI3wtZ2QV|I(%mR8r=AG5@7w0~ z(M}=vK-u~Rm=$jvbo0s!_pWU4zP^%yV^W{JwUS+57hff^dwd`P75{B@AL~CV^G6^O zELv4rOTf0i-wg^Lm&M@T+w4xVq7Mhzf36g&g?Xhv_4ot%%cb1BzpmA%r8U(r zX{#C4!b@ncJ8Ie+B$Kt4Odzi3#YU;A(u-whQK!3XL=g3;39Y--%4ZA?s|Go)60{oC zTG=TZj!QE&MJmt2bp0FCCwoMj< zytXN=NrfqOB>|_(4R4|?jC@d{47a{u1bsSRk6QX-5)s7liQad4d_HL`F$42E9DyQ2 z+a!Wu(nQx-RuxE!l{(;&L(LGcn8W*Mv6JbdR=-&o5;NLn6uGl;ZA_0#dBkF5(M)%; zJjQ3!xz!Sp5UC;H)d{uK+k#d?=DtOWi_!p*UBVGpLH;#8M+8C5n5yZiWp)ZIn{RNi ze!z#*a&=S32cdv=SCfz;g;D4YyyCJH7CNh;Qfr6YvN2i`5+4pRtRyUoqqtBO6@0*` zjUbO@23oJsU=|r7A~zXL$yHk}F$!VJme48m2vYMHt2k2l8m{}qW}ICk zQriz#t%zWwU@4(SXN8s4tz-~|sIR9ST^{Arx+)OEd9GDkm*;hENpM-;ldEIyxL!^SFLif zKAm6&Ay0=wlMjjcVA@)EW@%MXMx5rf`xvc`7lXK_2vx=}Gr1P;>6NOA4$^F)RB8?D znp4>b8@iLl>Q%C_9C@n9UqXXAf`?;x8DD=yWIom9VY}%la1<}l$ zt?R>xpgci55~hG$fsaiNUZQoWmZ3q?bf zP-Vc&)$#@jvx8LtHHsi?kn8k<0;nbIfMq9a9x6FsV12tm&R04raJb0^^;1id1OppZ9<>sQ* zSWWxYRky^<&g60k%`YPO+y;++ZOCj(w8RhsXow^o`o=ZT>!1|B1PHU-23~D-IEa#? zo4b^v8-@(xPXz{;u04;hVIT|R85pMOmM6n**YDAPQLpQ(i}%&VOVY*L8x!~nLmy!< zpNb>pHR#ZQ2t1;@?K{O(qTUqjZXNnq@QyWn*|m6Ie$sz@TX{tGdB*SG_??jIl$~Rl z3^d=5wDUvW4N$`0?+BEDAHtjN5_SOPH81*c0fF8bd<3e&_dAM=N+)=ni95MPpdi_e zQ$M0E2(~>39msjl=UpFs0{g8D6J^ihO^~%ec5h^9I%c~|C`38keGup9&swui*Qs+~ zM=mJp9`4eyt&rYkpYp;6)A$)aAFYv7_4E~sE`FLt3$kLnz)mRUy+--EMh|8h+o}s* zi-%D}(2F;%-Mi<7hohr6ZMH}z8z}>p&i2)(wHm{)BUK%w$H_C&`#-*4Zo_y~SD%K zhv&2K8$ti`C>O{%--cb~+qO?4>f54yOIA-7eK?r^f_#+w5RQ{?BNbpHy0x^I-nN3N zJxDYFHjd*Y^vRDJxTdnZAjeS~eB|M6CmQ_+EZ}G{5H<4PkMRgG$WeS7J5w5uDapJf zyW7tc+xFoNgGYK$mwt4+WdoWHXu8(YghrN%%Lo`%CZ;4Wmb@{71L*O*L-fHm-x)e0 zxcy+4@56Hfj{fhTQ`k0OI=nz;^hM*tWXdlJZ=q_G;p3$@MhySDK%1cW!bWuy-cP?y- zPy6EZ<&3W2bJU8T^jS|ml$AjE7au2z#JBG9d9!&ztNAPtKWl2&4QpIqYog45Os#?b z=X2xyZ54l7oyhF2l+Si5BiHw$Q@Jh6Q=Q6f>7O%@80_$*+913Ea-kLZ;r_XWv>`0?#>d&+*kJ<;1r5f|MyK+0~F za2O_v9=xZGJ7by`)WnbT$;_vzG9H4%QOM!#AvlbAq1zKfaKh^f-M(SjZP&JyC-0pc z`P^esQe6;;>Y&nmzY82Ml4Orq*#lWp5Ixb4qF#8F+h5i9S5Q%RDNi>YLvF*t2?(p% zq8!Q*G6eWPxgNh zC_|E2XkAZJcegQ_Bcj6>L|r}t3O%QM4|*p!bB^#Z`U03KD8C4hhoNW&!(Jfr;7f`E zg84%Hsu2kctrZkV^jA0t4@c9Rwk5}Rk}ZNB7i<%=6ey#(2|XZ=;$DUWA%vwE>{N8Y zE6~RF@TVvx0vtl8Y#E4s;!Fd~e2ivJ+mCSofJs53}lyAq&-q0yD&+M?`vfO-$k zK}1En#fd#ZT&DbW&W6PnvGqO(mHCPh`~+C$M@NKj&e>7%@Fw*1e}_4{x1yOZXy(s? zW|GgLne<6$CjJ@FOyYq)2hGed55ybLOf-X%U(n1iXyz9*^9!2!snAS~^3g#I&FowX z&0Iv#Ou=uVXvcNw7CzvcwTR$g=sBB?q!!)K&ZCWKrbr-4N6z|-6<%BoLawn1G)NW-uIwwya9N z(VaC&e#C@kv8!r>)p*h?uJfov*K%~JrwdY8t9y$s+Cs*c>bZDio zj?#jwmgwd%ZB81r*DD!Xix`$Fo;YpIMm1*ck!Z*ig=VwWad*&6&02JJ&`im1Gi(ga z)X_of0L|=+-5V~W>id47!gtB(bP@{^Uf(~W&;-?G&2`NGaG){ zFm}*Pk4n?}d~Haj1?}?71>duWe%3eA%+gzyb#dkw`jsqSZur%RU>LTWi%q_h4kh3< zru`7znCUWQ&KE*+U0RpJrc9Ljydv;yW?o%%bG{QI^-+H?Zs1D0JRemv>Dt7!rsZuZ zPc%E-QRcJJv{&XbUSX|GYDFfTvNo>kRUPS1Gnj>}dXi#^G;^-5bB&0g+H4ib4orFz znpuybnPZ{{jIcSFd838g);OWC=-Gu@*eyf^OWMSI1AV2`qaS{N)*zC+{r8B#TTwXCW1w8W59C+JIYq2R3%(WH!4iI5FePnS{F zURI{eA~!@Uop52en|9Q*?rja+^$fIOAt4t43wyL8xn0$L|$oy4{PbUVlxD zoNRkq^EG6!DtarQUNGtE#H`oF?yARI)gHZ~R`@Jr^ZjL^tr-k6v}MuiIfUc!^|4o^ zvzeSeY!qWyp*LLQC;94hjd`6S-&}KCy-l^VqbAlG;un#mS@4mdt^I-<}q)}_SKa5L`h@QE*RpRG2kA50!#N9xagiiPza^CJr5ih)%T0yrM+CK20VdU8Znzh@I! z=1cLOmkl;=XK61R&;K*lqrU+d^O)D^dG#wKvo5#o+^5<0VNU88_L0aw-#ZnWzj0ef zQu~?QQ<%=oZmxQ(q)&i!zVL8=T1e+bD4EZOb#CFvU$D--tzA?sw}5uO2x$IB*v?D> zY$tb>kNd)Qrs6WX2-}I{5e#hi!Aoo>9WRR6J}0*Bec(C|KJ=XGn6 zt_G=XgO!&ibX1owlH|IzD3_S^Gyn3dnDrB5j^#^YKn&#bxq%=a`;!mC+SYkXHJAFi zbqLQr@U4)x*DyNQcsy+?J_0BEj!x296S{7(!6ha{d>~wsxeg8g23&Gy0-p|-+|`3$ z3@jNnr=M#~yH%;jSjp|8j9&*U83C(5xr-mQUWtH{d%ypy11D)5;(k9II0>=oCxDX~ zDAC6OCowcb64bvw12{=A41JF93*aO};S~B=xXH{*++^$wzi^X(Cfwv{8~6#Z$&X$d z^5$F`xsNFR9$TH9jcUF?lRpbINk0coW=?`8iO&E{k`I}4m`MncJd2pb82k${`GuJL zLQH-kCO;D~$(9OoOEe+S=dH~w{nD}!7CK5_S(k&^%2;BHzJ#GN-In>ndKnSKT3xzL z=0h|;SaMtqT_PZ?0FH2`D9tom=Qd@Qq=HabX6MaJO`VNatUnIP#m4Q9(V~e6h}EB= z=@sUz<6Q~oF5PE|nUr;!CB>DP^r*7Y=E4|lv^%t@R@SA)MsozBHW`-k#U3MRm2sio zvuwL;Pixf~QSp|cQ|=HwZV?e&Shm}>HA%0rXvG|_Hs~l_S7s%?I!c!yV3IEz>pVVe zPN$&Ese`<>x!FcHaqH0 z$}7^)tCA`OMr?s?#~C5L(bL6;+!cs`GrGuT{)4(=4w>3dK~hG_w+jqrDUx z5I}YS>v3HtB1pF*-^}J!h**Qp;pC=)jTwryCA00tfLcg&Lv*uBC(n|ag{wuOqcN4mXf<;C{00l#>$==8(Lt-t z(oL6@7?R+Ga4;CGrRt)Cgc{aI(-A=*)1}#3c7aDKrY9>((X&X_XfAcLBA`P*J6t+W zL!bZNPv-A;DeasHLi9z;mQ^(DrN>C# zpRb@^5hTm8CwFo@-7>y{n9KBo$5|o-uY`z^}1vyaVMCK@~_>>V{&-7!8vt2zcX6 zF1rpizrDx@8$AAH)y9tKTp%R4^jemnHMj zTfn@HdyKbzg{AY8aF4q!pm)~tr^P*9fLQo!)Z=z$@eB31x3mii(zZa)Oo$m zy=gkPf;?s~hdeUZ?V$7pc}&G+bQ$CkLJ|)joPa!{Fx=Zcr?(-)lkd^LTc=-HIRR%IGW5X395`@D++L!tdXfmhKy}=l%2HhzxSBc7F7txrDWohE2t;*N8pC zB=Jk%K3#dCKh<5&hkIP_4_JV59#!Xlq8fHZ+x{+?>s9=8&j$X(HE+f5w`a*3Xj5HK zQgc8)9$-1z4m2tuP4|4;g%FU)K%V9ev?MlcRim82ndf5hxi!Nk55}cuBz%R+hl+lA zh9dyhQLWo6>4_qbqo_|TvFBT;ex@-d^7U7-db{WGq3j@5YYFGy&)VV7tZ9*_{=3z* z?9ung&#q~SLaVD-K~O9pBU}CrYe34gT_+kMu$5F^N`VV3rGiu)bP+V!O8vHL{r>Q6 zpEv&S^wYr@2t@yxLQ)upKal_RzcKWT3@=7HUv!hP-A>2n#iC!4>wC(yjk6KlDfj&y8o9W zDFmMC$B9h(hBC@LmZ!Fe4w%fyci`TzAUQ(f3&ja*z49M@*^0!Q`8Lusu5nN+(+3IAgBe@1{wu95y zqh?08qUy~*dcG_Bq6RM^9HtAb91?%>AYyc&4eydHyLhcqy?f!sAp_B+69LxW0JFz_ zB=Rx`F#FpL-F3SpT(qtkdotF9lNXIOVN8r<*tSm?^K7Q{`J5B$>imltGM^h z!TJ~Ht86zSICZ|tHX?cI{m*1ec%w=1f5esOOic7P^=BQBm-9={nI;d+t`ZSr9zIgO z7ct>GnEGRIl*>~!Y?P7t^9H#odrt$ zMN8?|GrTCM`UU-jZv1jWou3)_YswS_@xPo@`%Xzp>xObu=5(jyeY$AU%v4kX!%#B1k{jMSh@wyur48izq8@vf&%3Hb$csnK9u&G!_v27~Q4I?Fh2ufB#;0E^r zPVM%?P5E{dTt!Qco`hHjst>7(mD(=W4pTntcKjZF5+lrakz~~BK8?|$97Pi$yr23X zaEUSR{?F9+6qW+_Jjjr*oA3?mx#Vvw)r*jwAG1_1MI29wA}5!?oi2liR4xQsl$KFh zLk)&%=!KYDxW@>`UXYvC5QaynN}D)1TNZ{`fS+>Aa?i*M%g zvX`3uL~b3|2A#gdaGal#*Fg7^ zOr-t1j3%3<`f2%mSL5=ekDPEPooJoiM|ICLN4$|&cBt8pGDJOV-v&bIwkd-Svy@{m%)BHe>r=fLIekGh zc|PdNj5pFdy~`ekZPzZpxy@d5^9h^mv2dE?=grwQ$h|MDfm5oRT@^s}vbe`X(8hxJt6anAgo%ChP8A z#p)evJg+LecdYTeir;&X`nQDSUBye$Z^r6|^?SQ}qzN5mD%t+tR}O6PbJ@BXH^sG+ z)Pn1nv5q4fNrL+8*xhoxu5Ek1nFLvh?JyqiV)q-4qSUiPUOrR2VxpA-f1Q!t#A^tz z9rRD!?p(ug`^it-FX${LFA41bI=!P0=Z--ASYE%?Z^kO%K|kzf+>(HCt~zic$r##o zZWM0r_s=8&^;I(j$=ai0|N7lGm*MYZf7=-(d~tnVE^rbNGbre2j>}QXgf+Flq@f0&gfwy+2?w1N5=L{Y z*Lk3vuT-lSsIn3IAKKZ*NLNlL|2Jqki1Zr^%32-RnUS@_QAaz858?NXMHfnD)C;Ej z+?_uRp%8+~LQ?O{+65-g2#7io6&1SUKlx9g1Z5ogjlRxVYtFh*^=~Z=5w~Cewmzbj zdr(iH34AEO9!fC$wjZyvPb?T-d4GF2?4A)_yMxC>X2Pc3t6WO5X$Sk$^rr}~Hg(RC z4O1Kf&#KlNwVvG2Z*B$GDcnVO;VnsNK&MOtAcg-HCUDMeZHtmWF2`fl6GSn4b21y> zY?27*gW{{~4ny)m&Pu)A)h-o6$gxp3D950_`0S=nay0IIS^0guM_&r!cx>PLGBMyL?d3K zQxG5}V0X_al4$8=>XzcoeaE@6pk3%47smf=HhfeoWxL`H}S4|EGtkrh@a(5#_OtoG1 zy;fZKh9b_N=t0&4co%v^|AU5T{{BHj&x531TL**n zN>jvE;&g|W?UtyH1@!u)@e60t^q*tz`k8331J2s0mguH2D!OgW;`XrHb?$b)>rH!^ zPGw<}Cd#<;Sn$-?PNm?k@;y3rCZ<0ww0yL*l)n;MG8E~$f}T4HOS*-aHLb=$_dWHj zlQO8gHC)kMIwr+I6=O5zI%KN7M|SHh;|{2WDiy1fvm5r>Se2EF?rC*iWYuq|66HMS z8pW@qLUgI8p&6D=#q-xSSgHnz*fEf-v3yoso0)7;VLA*W=(=dwzBF^RoWw@P89w$% zQwu?}(YcE-)>VZ~#PL``qa}O_mDs2R*e##dq;XBKh>2Hmn$QpW)_-SJYMJz|>$i5r zD3z(cW6d0T2J-g8Gj9baPyb<2p1owp#3IPB;aVY0jU2DIiDhm~=2uQ9M-~UI+}1$9 zfN_q;cW6onJ3m1rHLqiUi6o2H!|FFMROP9wJ7@HfRe{Uj)L5#nKte*DsDA5G)B(k5 z$){V`w4A@DK0qd@deYQan4O!Spz_)j<-qxb%noYX--m0+w$i9!M2v$M!43nM!{KQ= zAK=2%w5{Bq38^N}D`zXC73Up;DWb_t4SYjMev6uCiXzHpoMKN_087;?LGU`3VeO+i zxf9U2GV3m$bHIogiEl&^yRp|qpE*#)YDCdyoXMw*zFKp)Y7rw7vw?PT=cjmT&qr6&WIhNpK(bK&`u2ZnHmX5gHZi$u%V(N-i!xv- zj<9=vcXm@F2^kKTutTS@Zn8H=)8F095(>rrZ8A(p+^83P_H=+dgNL9xN6a=Xo$NW| z(6#TbMDiX}UOqh@L46RjsfF-Qz)Qa)i?fmRojM{XE$liU4!LtC{2J1=Zmr)+Hb?{# zh*_(SbXos}f4FO)Ti{xG3S^pQvmzl#6D+t$__@B9VI5r5MD0IUjY~%D#LFAnifu_I zg7l%uh*M*yCmZ~!o-b{acA#vm7zn&({b+gN$92VHR-|2FXT2vzC%^A{<-*j9)?!PIb4M{samnG_(GU$(; zSq*%@DJ8^@I)$~4nJ3QQ)F$O_9_$LQ%g`|1v~}G(6-c8c|BSm*@WsHHXr;@NCd`;c ztXZ0Fcg+6DVc{AxYX^*nqSz$SJRjUvYroq2!hcgYr+y~jy%>E_F$jpp|DmVNbW&!< zPt)(MW3sSe#MTV}%Y!lX;>$CEDMaWU155+`}nU>hA(_Y{^J`y01e z8d}LwkD19T9sbd2UHO(B00*&ME3<%><4x?B>QOoN#h;GE(DNc~$l|k& zdMcZwGsmLpMT8E=?p*tq4weSvnlEO`8}BPu{t7o}H~iPNx4e zx1n1tDf?LlVZk@P8zZLyd3H`Yf9O=O;|~jQHWk2R^3Se$x+3|%5jF7m(I99tbS3sd?nLb4sQ|O+5*BxkY z+T5)kNvle;tb}OyfSSJsO)Wz`kmuMoJjG{!0i!d^g{klZz=Kf11pMYA2~e%wA)-M* z%5*KMnNeYV1?kYwS$<2Pq1o$#OF!8?5_Cv->udF0um$(6U}5XNP$_?DYdph2_I1Fe z73O^abqRWJV((V^fXs6p@A;g})_C}F6psBhfM~4h(qRB8n_afU5poA%j7}-Zc5KRu z%5y>UXvu?PFwMliVz{B>4n*X(IF^}Xr<>UY-2m;n(AzkO%cQfkMesbI)S314!Dr7j zXvK4ki9CHNF_tyHA0L1!@22FzzirNIXY4k5)Z%Pdd%-vxVV$-^{_y)=`RAZV|!npiMcP8l)=uo0`IGt zVD&0tR0kh*@{P0__37_NieQH7{WCOE$B6Uf{UV8sTgS+~f$<{gyu)WS5o7lv8MjFi z>ah!bjpR1!|Boa3D{ujR==C|~GW@U2jpSpV8>!F$PXgq^9FdWy1hOor=K$XT^Y~+{ z*Wm`={T2S3YwYV8{&;WfP6!hgHoZc-#G_K6p2-iu#3^3k(ex?gkzbd7{c+zR2T3Nx zLZ6nZ5Vn!}MYIkY%7RFuqfu!#Ei7NhLd(x95#lHr5v~{_vDKLjg=33Eq4i3>DGBFn zd|%lN8r_6lLE2%1k2#-ZMJELP_?g6#d7(P^lHdPx?zz$@y;mC%MV?>fx=05&WtLexouSYu1ug zvi0{`8Aqs_)>}A@X~BDBk*G?53~ycV$N525{V#$>IoC1hKwbjPZPk(bHK)P^x)|se zXq$8u8aa9TaJG{cpU}N*ayz%BS_D zt*ao|z4e25+se9&BjM_Hw6DOm!&R_lOM6sC!=H`w9lZ3tYn)+>h96D;9E6WlAueGk zce6#0>NKE>2;!4o}_M4%{4e?hjIF=OoMKE)fq*V|CRmQFcwK~Ww~ub*BOh6sSn&2(!Ihf#Vbl>gZQ5wp(t{7qbYWu$ z-Jc=#3VjOKtWQ|KmB2Qm6U^rM5eWd~LxG)T)&}}N9}Z4V9X#f48t8_vfZ{24-p7jr z!e-&!--J$5El!>1JdWr5HxefB5yLC5fDYQ(KAi2$u8==maVM?$ReflOLN2Ic_W~9+ zahf#83HGD}S3VNn5HUFu_4|8?tCu0*zFecdpI|029-{hoS1vroG1+ZXKLxI_xEOwM z3vE#Kn=uMcL?mxFgWZ_A8F+}h_R5a1Bs_V{GS%aOTsX`^;_k3Yl~hY};&({7hP(a& z+w!D*K96kMFq-p~Hjm7QOE%Tuf%EVasYZcaole+eGXLc3?wwcj9oydLT4p-8*kxKM z=?|1?wq7HgwXeXv%^xb{EC!oKdgcP1{AlMfzaPt+vi)f9<+Sh^6?X|fe|zY?0|3|9 zn-sXFrzbjR^T2wMy&J-2a1yt8_dDmhYgD)StO+dl+ZVqXyEKuvQ@tn-Q>R_RR2Bpd z9p&+{4&}TDn|iU$8y!~Qhhwecpa{r(W4_C)jxs8RVp%`|pQWHLN*5T?9jzV8 z!!yeE@zFETT}+bVY2p`OvbR5h%qXZ{3f>9NQ}`cK`w(l5c=!5?;fbkM`vm@%Dw<3 zef_!1*pHNqJBi-XsvnEB`rP&_R6jQ699$Kb`e4_yNNABCtghk_4<{KG%$||2g!_Z} z6koBv1L-56LO_(y(cvCqfvVXP+2mc>@js^DE4xUqpg?edASS5MV#ZEvVav()ui1WE9^#Rkv|)`Db$ zg+|u&11qxRJ%|OV7$?c>ykwdRw|Hq@*;CJq8t?Q-7WlRTsnoC%V-5}((yB$^c2WG$ zB`Y#bcp$(oJ=Ui*UME3(-{O8Oz-31gZ?DuCGR*g zu@5=Q&(}Om)06xb%B=5Z%}?op4gZ!-GaE`5&By$57jNxTMTtEZxB_Xqqy?Xiz<-VI z*I0UAAESl6jR1sERCIllR~QqzWWxg?xso-u`Kc`t`TS2U=@U*6Vob7YS=9@KrmT3I zka*NENRd%Y^u7GbgjI%!gdjchK|T3-O6Qn?L!@=^x+hFo*$JojF>iVO^V?x;l*kW( z`D9+{iGbgokrMKm8eGb^Ni~(vC7UwY%(=k?pfuT`U6r*Ln~3mRoL>NWWuhpM)#26LqLB!oO16?Rv#40%`F>mF+Z+17q4M=cgN!B z(0O_0ub{PbBo&t-s?oREd1)H5FP81_%rG%VF}>x)mC*KFa(9=fM5qKLdC)u)NE^5$ zAkihk=L1z{8@l#8Hzw{ka^}C$YA>g;>ig}gC4)WOzjB_NKv%nZRo%^#-ZgZnh8Dis zXw#u-HZ$-4#AZLa{#GeOh3;<@a+!$vC>I+0CRYiFFSO29F8h$1k`~~}b;BfIQ!JF+ zQHEprZYD?YF(qHai8o5-9OZb5Wy_51`YX8P;#|gEn{ct_t=BduCZ33D?-j%w9(;9| z@|J;-u={n~kbAkkH?isPp73n_-pjeBzg9=xD!8}|fyFyWHUe-|-Ex|A?{3%9#dnC@Z-G<M{kA|7WNX3asC@ymcUGcxHruk0bcZam zFd1EQxFS;8S&4eK0Q>8)$Kbm1eBrX?vw&su!)HD%52&=_)p^BZEV7uRX6PtX+HQ&d z4vmlLjHa1~{crcx*0O2%s>i0$Ii zc+vCxaxn>MdECXN;V;?F3wGPlcV046vLnMg!CCUnF3jwb!xmQEo+OfP4@vj&u($Pd zF5T;u?a=WNX;zv`Hj?c5ugh`*ZN3t(c=PTG^2~(gaCM{PPR%Oy$>`=gkx!!BDfnyZ zCq?!Q&ExmLjd@C!9XdDyO`EisvA0rTBDxIaoY5jsT`QGG%DAE{$Vs-S{;en}QlqO> zMBO&L#se`&%m|FLPU)g#t?+yx-5zb|r{9;|@F+&?4XJbf+ElW|(AlM#r^DlyWF4!x z^Xbcyl7pGby7ZAW%0{Iy&ZV5ki>kGxGbUQ7q{dhZrq0!hVSFkJwAtp+C?xSQD#4zj z32=1pQye^B6QAYlw#|+=3RzXaHTdQLO~YD|)B{U7MdQK&ud?6f6Zw|+Gl+Vx65rV; zJD!Ncz4umtGEtwzjx)LpQJYoD)t^i2&9YoBz_iksCg9c`KIPp+&%U%3yFoonSh z+GyLGsBRyabu%Mri)B#l5~1l180c<|;LiK~SGg~0ll5&I+}dY_1KRY^=5T(O`?j|s zk0+s@+RS$4yoI*y6D@T#&p!pq8 z19VDKflwor!c0&Y_hM?Q2gfC+d~%MtJ=veBE(Nm=lRO&1xAWHErLc(4-R5H)({=!V zIBu|(HH)`I0*wpYY_E z`+adjWU}?t$+vYl67Wb-#_M+N4&oGg$#5@788M-feU3g||2|`VTzbWt9iG9!aK&Z( zl&n}{Px;#3{9+J_bqno!kc6L4Hp&{B&yeOW5pdml2gZ}*`Q^cFB5o!oOL&TqWy_}N zHXXhB%oWle=(WL+!+$78v7X$fX^R0}jSJ4nBlART?{Amy0$T~vu+dWtO{KvXpl*_t z>?9@)9~weWh==8%P=cUx`fJ#nBPIAF`wt;xCYz^4H z3>d)QtmQzhnmW91=acLMhjb*Re}iIjDEAE&%Em#3Ie}3`Z_IuT{OuP;q+tqUv<*1! z`1f7=izKuOh#WiS-;19|4Js+a5Y^bv;k_;*>ok0zN{SNFSYZ;YtsqWJNFuEKgZ(_E z(GyPV!mr!<&R5##z)X2TRl81Dyqar(h=s@0Z1R6 zK)WRIx8ER&3(?frZYzp}DF`wsqPpqP-PD0;Y5X%KFKb4y?;#pOu^us&Fu)CB zxJ~@qPb=7k?qyLp@xSwxo&I7f8XH0-%0KGf>00a}CZO=z&$^6yh*xy#f(IAQ#4eRfqSZIBdp6MgH*eKhBfa_a9AW6MA$*Pd-vrdGy?l2}PQ}E)h z4M%YvvlZ@V+U+Q$;0=KU+Cc2ebn1>*m2$swK%N5UzT+b(`o$z2n3#)N9Nl~Fk4c#@ zI;7?EE;lU!5U2cv&_}iQ9#ocPoJCTP%L|#|T2JK#bIV~^Q;yTf+`*%xv(imN6$Iov zEaQQLY?>&l&Aj{K>ay}JzO?2^(07A+$XZ>GMcOh%@8nG%<4cz_l0#k)&GSX_$gfT?riv(r&;yT)z9zUU1&w0gM&?ZTDoZ_Ak)&of>9rd!*BS^5+>9ctg377J~HN^ zg6C#2Ilp>m43eYqb8LoddrU%DT*o1_Y3FelhT~F8boUZIKjj(QX8`p8$z0XfCG39^ zm@+L^harIu`4;-uHS`(`2tb7UoTy=p#BWO9$#OPXL|QJ0E01x6&dSW}8@vdbxlNG}YbB%N_G)zVUYx#X<@`rLr*a z32P27M86?6KrD@9jz7e{1FEq(|Gd8a1w}>K=G%K=KpW!w1%e^mBX+1kKZ+f~vL_)b zgU6+Dn~t`zP@UlJT4G5$Kr;X|M6*Rz;{voNscl;QbP)Hvw(IU~87D$(#!-4lSV)oJ zQr!x7`45eS5y3YXXs?qi8FC+13ybjq63F_{bGu3ITFg^FJ4C&pl_}K^(&2COdZRCZ z<6pDBCQOt)kEq5)f8gbf%g&?CvqZ)ZXkX!bjC{4M9kDpReLWu~9L*JH$ErGpe|23R zC*wfPKcw5Ng>0t2G@tNHtz*gN zF+}x-)PQ7Qw7(`SWo!l!vP=8mi=WlYStGZ-QgT3KGJ^G_JIxG;@qLA_c!ZCEdfaR` zo3EE|IwnM)+hVcE-rpTfKXf_RTQHkHj^;Dr(B$hEi@Q8VIl0GGJL>d7$mqq{2N<}_ zQ-Wi2NgW-Mf%~E-#%t@_n+Ac%_GY2U1rjidAxe3(O=2+b=VF!L<^vbsX3NY(;V!NQ zx|q6eVZLp$98j;s2b4@;ehO**o0KI71RY$F&{^Fsn$54Wscyw_Wyv60z!tJznTz(a z`_=&|`Trf<>?vXk-jqaf5&7*5M8mL<+UO23(j#M!;1wb_+Umiwe_h3+Rk36w?Q_G zSLx)ym-Em;?DX6HnmCZ&SjG_Qao1-oj4}fYnUgh6#z6jK37KZ+dqCt zb0N}UquL(fB?N{Fom1QMyQ9UKKx{r8?DV+`0m$KCwbWex{t>f#Z1KkImupT}`9EW} zsWhvRs+N63r>j8gX$;DZ)Rl)c*k;{lRn=RSa^gSoy^*Kt`#GQ zRfd%;0{PgDuFi=wTa@$`u|bb;S?yqJx06%icq&WeH=g)$P(Q}_@OO_~S5nz|91o-k{rkMC1qrDb9(rAK`yO_uMj*E0hljw0P zkeu3@*-21xkDU`K7(LoO^M2zVI`{3{_BHVvW*vIwz4#Qq7ASHIWRq* zT@34}!51A}Ak9<&?=2X2QiHg_h(Kg0bEcxvk|99tTSV$O>b)YY{%DdU@#x)SjNsJ( z!$u|s7N}IHo%JdjaFhvYU)%60BaOS&(`%>kUU(ZyR1f)*9y#U~*o^m1;FmxqUk}(v zhPD?LLIOh6ZPph2Q!Q`5xp|Zf=JcerX7Fyi56p_3$CCmn7(YV-lI!#v(BRE_+n(JX zUY4%y@@~5XbnZIeew{7Ga7jGCU@V~ z{bZQn_YxcV7M=wjX299WgFa5X{}(S`1K?zf(pU9H9KO)o-G6OX`3!@1RQzs2RpiUK z*QWZku^~6rx7p|xmrCqD26dLJT6gTQ$AzaZrJv;sqqpMBZ|CTG3WjvQFziA5mUd;h z*0Q~1kZNy)smUf3OY%ckEEv@BuZ=Ul&xEpIOZts{|bJX^pgE7A)qPgY{aRr;eii`AYQq2On6 zmR%x&tgb(##UVX6t7Pco0UmadRG5cB+*mO$iIa}H*!TjB#IASukN)J-Te75RIulQ8 z7lK2bsSrh@0ss5ckQS6Gi^&;lpYdIRZ}_lW`O^pxB4POyqZUyP7E~(NW&^&52GI^; z1PeaBtyF%zk85e+F||7Im8#|P-fPm+@8g-VjB6T{K88@v@0=I6l#YhFfXH#avPN3@ zbhmE}^Y20hW_)KzzFaF#+AGf1F6-bV8(fZZD$&j2la4ndrx}_> z=@oHb+n!1dDW2!p-N-CK9sdzRmeNNNRoFr;Az`xspMs`5OTW_~%i-2-PGoa-oyJKp zg^!hNMUo5jG;;MZ zTJueV%Y~9CjAL5NHTYtl4h-{!-$&@L>z<2ZL|WhHiu!rDqw<`hb?)EVvG;wL&3}>4 zwIkoxwNykvBEPC7d@dAMG&k+|&RI?s`y-i6Yj8|t`M*H}`DVh*(UPtn$x}a(y5iJA zyd`O<)XZCGo@zoXG2rx^Nu0J$M?f#sUv_XPZ(0Y(vfh3gn8D|sfM*qXVg1GIrYv9z zP#UK{;(8TSTY3kS3}WytF{-TLYeRs>gTCVVJe@#9O*dLVyNwFW!GXv_eOF<*^Q}X< z#v~x5d}NTwIM9!m%p^!bG9lhu@3t zZI35E56L?P0O~uZD@;?NU=MB-e*Oy_3a&Q;0;wF8;b>mg@dS;7^og#OGzI_!{gdoW z{=5*OEGa|3DgqhW?HOItFza&REJfszJfx3dL86*{AH7rfqU;J?qqZo2b|1%*aGRdQfTU0o%Yphu zXkp8NkOaig`q5Qs02-cei1aVDBnX;Yn2jMfDwt^rcM~jKpaZU8)G~Zmz-e)uXkM=c zxUXEpulEBW#H#G6szi|BIqG16L9LGRutiMMM`X7SBYrB`< z$A@zQ4k$^&2icU~QKuA7*c<@PS#mnU5ZXq##!~*^^E9R0Y>2FIlrbd{Z;iaa{esKk zyueNLKlg%K1Vyt@`TSTq<*7WG%$K#TJQ+8h_8+44(zmfO5! z`kX_+Q!(>`(td3!%Eep;`t=QfsC~*2xxn2D`%S=b8>RKAqM&spkVYh`+AsrPoV_#e z*OfT>1`RAvI|Oa?Fdi9InJAH>N-mVKstL^egHuybLFf@mJfSt?lsPThff4eE#Is`R z*xQ}Sv1M*4GAaS3*hH#tMX;PDk9!*8Izqs(3ec!2Jtxq}IZz{Dlmze&e`UdQca^&^6SRJNqclEqyUoMYn7ua8+mV$O2AD+w5^?hIDK=G>0o$t}V5S znp&${N#vzx>Z9Htl5j6jSl{W}PuoH+G~>WL+%#pI*~D?Sl64-{SkHH~n7xy6>PWh}@trwH(YxVWE$XIxip z1u%;{1LiG+iPH-qq#IN*zA%iMzMRz_m%32Qy()dOsbGmUF%b(l~m7oxKT7Z7PM9HlupMe${1qu=$P2f0B> zX;ZNU)AYeEQjlPK8vq*j%n;P%bEqU@*#2^&XHp{Bg3+QLGnHn!P16el7+vQ3zKm90z!j*TKtn@YGL5}LP%F{zHNd#r) z{^U_BnKU_LwK=mnX8^Pv)w5)G|Lkd{lxC39mgj!le3f9PM1L>%Vt32_ORT5>8FU`6 z68NQD{PXG22f^Cc#awZfD*FgQxJmdE=24kAAiW+NP*2l_2v-?<0V~c{?VxgkBCzZm zDusjJPd~;=&X9xtN#w-%g*(&H zPi4RFU*cm(xSp6{UIEmdEEyn#aDj*|L8aUdvHQ#M2TllCfN9`(TAyRy3wZICbUyW4 zvXKdDZc5Qa^#;Gy0PeO(B`qXt3kS);1))Dc^#uj_()X(1PT{i2k|ff@4e!XeoD>ki zY(ioO6GgaVkVdR)1(ijnM0cxw%KmU=N~Gy>%?Q>ho?F}MwPK|Q^Di~0PC}bQE{RZv zdpZE!K;urP63Pk7fCNQhg>YboZ4r_Q8d?fl2pO0b4Yrkx50owr@(OlDoAWQWY=_Gx z1UskL{l;GzWR7VAE>q|O43dpNUAciFLD4Do<&FC1?t8#(f~~~|7WrRni3Yo>0*HdZ zW8h93FFO*r$y)XtNok@o{qHh42L`k2m|2Ceut_%V?A-JUd`-zwgp~f8be5loOyz6)?5n$5 z<%K2QjqiB6l}0I8d7;2MX=)c_MJt^0wA?{0@$nmYbJOs^Fj&uKA4sOl)+0mdN-<24 zSJ@g|9iww=Savze`0z-q_`tV;<*<1)`-`uQoAF(mcOfZb-(&MZ?eQf%W`sTO+f zRI{GfHp`Z3n|oO`-)9iiSN!wAmmp`(+NT=3-jts6mNvvIa|Iq0yS29wuJI4Zx4(|M zHn>V!xkp097tu@Ud@iRu#9zQsSZ)J0X&1Ez?$+t=^pz&8Pxs97aHnOk9hJG@B~kY% zcF6-x1O!t!(rZ(i#iK}YcZ3p~!FUewC>})2Xvl-9fAl*JeT!Stg8x=u4>?;U1B=!< zC7Umh1R^PW9~ppB%KKwP%}@h<4vkp?eSW(T^8p>pOdc%I8oPKPBWiMW`M4<3*u~I zj@#k{Z3~1d-CSIqGsQx$e<={j%V;@(Q zj!;K<$by4XpS=Q&dY?U-f}1xaszTNMT+I>3!~!!I4I36z1oUBcdU~)jC9Y)Hr6Fc- zH7V&ig3Dmgfg&{B_Q=z7YPt>=2C04cRU|q!Id~Z_QQOqB0o!2YVLeSFaZc<48fE5V z(QbMqz-hG&_ytA#x*a%l;iV6aP^bO`8nb5A2`uW>2WN8Z(9-fKAcDkbD;%+rACk&m zBVE6Suo|W>VIL`koUK{JHZ?2}Y<=fCWt4VKt+H-W-i*eu|8BXlGk%_2t|fX#gSwz{ zAkJ0JQ0dm-%qYv}8XmL$J)`cFfJ);q4P-Xq5;|#S{2u^G(fzMY4Wu^(?McOP@9<>& zi0l*#Hb#!)k!<&&_G)_P`7$MDRN5m^n}P!jlpnH`MA4r+!y!fD*3ka`(HUW|z?2$T zOwMm44F8xY^LZO5x)wV#B#P`ijYL;Q?tn6|5#9jCL3DV_xX?4m!rrM0SsqXq)O81R zHsEJw5=%ERNQ~>hR3QmgDlwB>Zz2ebIM;YJ>`_a9!HU}*P%(X^&X{3o+m)=a^i+4F zrCBDW`|Fa^p(`sCX@r!^dpJ>CDy1m{x{71#@f4Uq2whz0J3!~jUr%n z2?A>GhOr_#+y@6#O)a)w>1#M#iK zvB&XiWY|3?b+++j1&GMhL(Gs7(F5su6M*(nY+!=F5r%!f!#lZ9)DDTQq*bd1l2d}B2sr3eo$22CZ`S&dYaOBO&Stbb?i* ziv#-JV!tc-p;M`4hDaN)`NDS6Fxg{dU;AILZGf5}`{}82&C0IbWd)V?Vs5r&0=S{z zIeou06jCT!YHzSq%l|~2o2EwjLpn{YXd%(9x1VDEKohuxZBP%PGeNYzLHndB7nfIA zd-ptr6r?l?=4nt;o(FzeMh|9KlgV8U3WV-*U=9vt$+5K5n;#$@%;9tQDKbGmAxfkN zYUDLDTejIM;9Zj96nuf&eOvW5pkwa2hSep#j*K9g+M1~t#VxQ=?3+Fij@s!b*4fxwLThvuIeX&zcCb84=Z8wHNE>`)T6 zJ!8n$ne~O-_iCT1wN6j*>})BD{~l;Kh&!>M2sNFYD{0%xq)(s-Es5+2VA~l01ga`C znnt-MLa^{-h=fds*xBMHXImATTbTffBlSwc2_5FtWe_?Y@}_c-6lmepaLE4c*r~-+cVz zKT8biT1g9@T9!czp6naRo-31J!5kX~bd*#0J=*}_=;?bX{gxtlD>o1hF8REK;ILZe zL)aV~`-GnAxQ@eiW4Hi34|>zg?XO*~*XY`DC*?kr+A))$e$*DW^Yzlyd^tXoF5~DT zT&!7j!xKA*mm?W@As<>vaK z9<)!n`G40(A)M$cCh(5YaC>%^edTaSavR{1wQizsXe1`=hS|POA8;ev<%gG)wK{LP zn3&pKUaCD~gKGA2@R0HRc&f}5-%sSgBzBqaAbZJ-Pv=g`>l z@Q5iGxB=iI8z0LLmF3aTO%;9>UA5JM10tcnnasmD!$?2G$3{N{asn5nzk+jG=>T+a zEwjl3|CdI>A%>HN{h>kv7vm6Lf#I~|w&bPARShV^?ExPK!v;db4WoNMP zLw|hvH(Px`t3n+7!7CFE0C7k`DYW+B*Fx+FS0~-R?#pp>qq1bJYn>aknjoRWr@b5W zS@V}OPw?m(RgpT5S!tY}#Z=!+-%ZjDi%Bf$2b=3l>0Pe&f!L+XHdruVe$juW?hl_zo+7Sc6GdYeFmpQ*xmk z_B=`H{TfT&LDQRYtaU-|Ht>R~o1hV;QBNvx!qk4I^oc2oJBSXYh3j3A8u_Gnk0u>A5WsJzf372)7p z17Xrr7157=s7y0iaKJOl`gD?}V^j!0W=B92?ImKm*3B9Pu}eT3?ij%iZ5nD8gom%s zx`D0utieu|IRr;pNa!~b@M}qljDCkgs{4OTfN3T0d3gC(>@LOKG%)L_PG-iNf1hS- z2nSRSVsCl~x!9ioDgt>*FK4u)dsKfIj%K_LTN*CTw0j(mj2g&(#xYdzHn~jP zwryc6E=hMtBwDV|NVT1w{*)~|I6VmkoiLQa=ji`-x&2Jy^DAYt#t^rj@bE>lH15vP z=WBN0frD7L&buJf42}EY)BE9jOycvYWx_=L51*%FRzVKEyyDk&RwWzF|4%1~Xy0Ng z97nVdK3%krr%tDu?|%Ceu%-TNmmcQd+#t6ffqlT>j+q^>{vQi{fBFXLFs(^x`dyhTf1g-wlGeZ) z#YE+EfM#x|dJQkVo89Fz5a2$$UfKm;yrdd0woM&IM^4ehENOhlo~=SB+R}*oF2kBA zLauX$ab70^?j#4^ewSxLq>8ePcPN5^UhPnu&Yn%|h)4}p72imVyWVKnq}Rvsvpc8# zlkd`;^q`L-3{5OKRO4=VIKsOUtfu5Yas@vVNK&X(waqs%2*cN~)vl^5z^kFt6u>nF zf#m*ou3-!en)_<>wv2*%M4AX{g!+O44Mh<;q2}Sawj}aUr7RVXH0P0Vl@<1Ji^fQb*jc% zwRSBd{$o$Yk6zA3!x5b;Pvgxz(uKkz#$uNkRC|4;{|^JoDAg9{WU3Wxo%VXRr-QAw zvY}fx-;cqky-z>88q_8<~m7=dJQ%dt)e%h?)rlFrNu!{{$ar`TqomqBY^;KkfFmRG8iWk2zWWk4m>f1FhI1O#pYL;NUSibVt1A};*j$3$7L!PIFYSTnpYXcsx$Y%IXs zEPJtrWdgUiAq}_ZA0Ly|j#G7A$%>fYBkjU&O^~*sKHk2^h`hwv7pPdFXmI#B26AIF zyni<&UZI+*pw^jQHPVVk(3^s-i^@r%iSqAUIEV=h0ihlHdt5|$!CGLNcA1j+Q38C0_|F} z6G>*M!M4RWkKvE}hwjT~n1A!L-$#b;0b7%1&$1b%PG(ax;F@0?JbUV)TMD@Rbvup9 z#OR@(#UbSp$v?9|>Ddj&(MT6*oE~q?8uLEbO|&XDic7+cnn$ ztE5wEXigiP2arcyrE% zJt~_SOn#7sZ(KZMyKHZE3<>pj^Yv723=dM*9QTB6{v|D&fG*$sjfv$V0QI~ju*fDs z?K5ksrok? z;K==>in_sXD@X`Sy!IwzYvY||NeF$KjG$e9yZ>4$@EGZ)2=Zabs3-w_c!h z+>BYA{LOw<9%STl^NFh1Ng=dNZH@4)IM_)+w#6sHhx~<=S5$-6?0c!JU`>U+4pX2T ztUA1m3R%&pfe48#J}iS6DOhw7m%%LI*+h_-7g`sR0z%^McTO7ph-#EE#(l>X1tED^*l=r z&98Av&F)=%8!8)mM{OEsdWeG}n>E&PpA`di8>04ih#1~CaM`F2>vz9=0S!Q(fBI%Y zUZEzyZ&|QD;hCBmgzhV;!FojwZ@M|0wRR=ELS6iG%Xc||{)eX!)b~rgRQqQIhVTt_ zSN}0uH5sr&1pTs&!%cTv*lohvH>+}+3G@kS0`jT|EU;mT+AXLI{W*i6*!iECEB+5< z?-VUsuxpD>+qP}nwyia7+qR80ZQHhO+qU)A-uIr{&hPuJq(;(4>n+tsMk)d6eH0$L z`uAw1J$6^X|2ja@XLkkk-wl{qFFgDrALC%-wG}8|6=ai0K>Qn@y}(~Gp#1oIwBa`nM4=K$~{_tjpI^E>kNIyrgx()}-i|E_Ww z;pihbd)nz~{vPOFDc~0mN*BNvfUkUhD9-HdmQGG?SRlH8F5I1PKXf1b-YbYD-PrvX z-P6O@ij6_s6wRWitC%MDTk0U(gUz2e8|NeU*ZzwhDPY3UkamVN=)*kmj&y5cc-{q2 z6X`0tc|3z-#TM=-iBen|){Yb~>7z16bTDNj|B!!RfF`Z8hxr#UfuN=J2{}uqLi%Me z_4CuM`-C8AoC8Aog!By{X-Hb#RzhaF8^^3U&jHznje)Hvx-7x|0SGXYR9`vRQJLPl zqIAo;RB$sjiBDfihOMs%MCQX^vacwCVco|0GXycykwG#x%gKO_(+uc;f;jU31o3eP z7rLqA3z>lbaR}ZZUg98vLmmtcu?GdJ-+Zl)=!fl94pgDV$+<#6Jx%lvE0Y_^acEK_Rod?uZr12QZ7PTT{e)2XZ=?+ zRR63F-T!FpqWqt&`gffu8?Tjecb!X}x9Zi`or>3xcZ&f32TElAe}*k)r5(Mn^!|31 z=0{n|{}(R*7n2|3asP0%@DE4-OYjdzD3tqf#YA2>i& z;9+3&p^8*FZaMo=0lOQqko&)maOpbvpD8;+Zb)!#rS7OYVLVn%wHh66lX(lMD%H-p zslntgsdWcErygx;)olbt-&Y;c#D0u1X8Z^%`KSDE(6fKqes&?H&)sK)Wi)z@gKoi) zH%8hb$;K6u$vGcz2M$1?w;Ma1VvxrD-Pmu%YoUeNj)@cwP>yMHK%Xw{NBQvwJC+9qc)^--U1BGTRp9|H-ZM%WI2Zj z#FyI^q?g?j#t$p$XTArw=tGH`M2>)1yAF0HR?c0n4YlF59=2QmCjViPYg_QFC_WsQ zHBhuRktRZ^tk&lHVc6r#Vvj23ljVFu-$<&M`EgeFd@ZVInrjiUIhIo);LH@ttXksA z^kmocNVv^^i;Pr}9#vH-`sly272zDu(N~KyvsAT;s~r(;c6Pwv=22~^Fk`P2+^^?f z#(D}g!2vx~y;44D49RV?G*OXv;yLsf7AE;@f-&^dJokcfjLxGL#uQ9$l-n|Ks{n;T z#~CQE=_t%v)ZEHKUfIHP6O;Bas~+(;^Him-lhklaP8;5Zn6-FVJIl3@kH{{YU++Ph z_PPC4tx~m`5H&c`XjS*rY;C@g__HIx)gIuj_p4t!C~N|@ZRrg5ld*hQXSs|zovn9J z@1B}%35XnL`ObriP3jKKO;3BY^2^G3u-4q(xfsp4;#a6Lv`rgC-U^&Xbf~0aHu9FZo~*Zy8ftwLVYD{tKJ#N_ zS41$nJsww7c)K%t&#`wlMB~Hm+e!~*1a8)I_&)FDcOV|kospFiCXwM@+Y_M&K8`Ee zsy926+k#huzt+sxh!*Y9d4LIR0lp4Q{~xlaOAm*ixVx$5DK&J^B4QBqw8;^Dc*nfE?VvAb-5= zoa~QgPsg_!?X1Oeb*z{bEMddo%%ZO6HLe;A-fEv^wOu#ZPoGJ`Q|~|HF%2z+|9|kQ zcAMtvCK@7c4x3pCbrxh@-+Qu}WcnHzrDY+<>idi?ifHJrpk5^2K$?izcNIwX8#AL&apDIHFMZ z3kwu+)5LNP?!v1s<&w3`XOU_xFSc1*q6*eiP4A zFtod&i<69`U}(Fs<(4`Z zJpAWY7G`@KovP#4n488_d*NuimunL(p8p+@Q@>WIQ$Y?#_QRqrk$q*++o;N|iLT-` zKQ`v&wSJXbLp47b+gZKe?~!IFk0+p}8R+c?Dfz`c?xL_zzlznkDp7sgwuSOo{x+Vs z&DTl3wXgtmW^PY<-KE33!wS3O%i<9LaVNS*ap#N#Z7p8gib5eJ++ zt8wZv+>#X9vDZHI}<=J08TarKNJC1MS)yn@B*%6?hN^J>hX*hJa5WN3wX(eT%=Degy4 zh2AStq+dk;d-5)H_+I+5+moZa-POzW?HDlk?V0EWmS%>0Ada`q5#^3w7dP<~(Bi>2 zw_(o5VToTe&iE3V+?IC*V&pt|FWBxo?_x(M#^)r5dxAA{#txId8BXxIKf;+syr6;i zr-uJeuHK9arA)U#IAV^KMmVCKwMn=`D9H(XmV=I^HgwnIUgJZoBi1L4KBQUfc$P2h zVR$1$-(4FTNu1kJT)uR-R7Q@saSl1YZ6$dUq;xW|(ZZe92n`c%2C3xPwi0^3F%@%6 z`CCjsk;wC)OB7tZK2G5MCmFVZh*6N}TegQ%AQ-g03<376X(a3zLR^^q53ll{Y7JK} zD?L~4ZF5(vrfZktR;axSJSqzujBJ({SvjnZjL8%hXXXfLtd4eJvgqczuv-TbLh9B* zgPkKU;oqaq5;*arkgrhkR(79IY#t41;}LB9>@{(AK2k|kEX5MUzwDyBYgZ`W9bVlL z!U||**z@wXAemsy|E@3ooz8^2)iqG7R6UupUF=eYo1U(5d|TIju{~`#e(jmmFVHH49+n*Ku>N*QV}lW=FSRxzb4AA;kDMXvJz6DaZpF^X~^b6AdFKp`ogwDsZNDb~oVU zgg#xQCId8Gq?XC}qb$0*pO?idW4|nWRQg_tc6a)^)wUxxEW*_J43uswTj$0iO*dZQ zLW=G5L;Pg2Wy5L@lSXIDc3I0=&%FPl{&E3Ol&_1{cg^VXjHANKU8;!V|G3r8Fe56w?L2Fz6(S)k1!gnQ~t zHmlb&AMLwR+Z}~B+o z%92c8nY5|+?ne3NC8!VU8j~SQ*pUuzwO^)#h3!U7_O-iuC%KLKnY7NUHh@$(d`1 zi5B#2YIHXZm&y8yFnzh#_#L=PTV}QAr>cD|FbOnu2~R5VJpFuI<}EpmHtZ-JG2)OA zy>jY3?Gu|;>+@aPb{G`4O>v}9$eC48s7(xovTtKn5{e}}>z>#HzNKahw0k*PI7?jP zhi;*c0aCwjv#QA}dhAFem6aw_-1A+RB__Kl2kBq5!v|nQuF9?)1E7P;g`%{e=qKRu-Rw>tUC% zi18$Gu|g!YB?bJrdD<=pym)|TNWAOCieRTD&FzhVQ|P2P3WTz4W0i*i{dJew4lrpr zRCQ8^3xp-q`P?htXOxR7jLE9M{-a>r+<-3#}ZPz}s(E8x9&128w!b)$mNklaS zVkHvwrtkKV_nb?wfh*cgNj|>&qp@pI z&9~KNT6!cxJym_jxlu#lP09uOHv+h;i{Bn}61wx_ixL?a;lTZA%_mk0t}``OBa}od z&h2nI1*73nS*E&7jz(1M{dU;HXwt?B?YNy?f1>y18GV3v`Zug9g_m?p}1mRIDH8zuATLLZ=_f z7|HM1ORhCB{8qfOW!rfu<X|P?^@@yMNjmWM)tz>f3m^EC}U9dAT@|e?k|4mpIzvzIq%Z%@^ z-Ki;?&#u$q@OjPN0pD@u&`mRS($-xc+vu{{zn=ExV#&_Zt8gH6Qzep~rKT~WdEHbd zXGst70lg+(h1-1jZgqNC3!}JWi`K=OBwq0%Jk95?<_2_dSLsUna?nAHA}*C9a@BG% zc14#(`rXFf^s$+gk^eo}28WHhD)y%ScKA1a3=H$WP9#XDKX8VxTia6bKz>%6Wc1sx zb7z4(?x>CBgKTO4Pfmlyy}blv*>B{Fg$%HGneaMxcd_7bBsYvkG=JNt>&5#w!%=0j zx(p57Z3WqMS0Y{q9&Ar!3k1G-5f%P`%cnw!n&KWY;`P1($xS6u{T&m+L;hDW4sgx} ztO+xdFJz5~O~dqEohEvwtP)-vwK!~fNWVl@0cjRl@r%XLAK=A-Y>tThoYd?S3j6Y- z{zoBw?2KcMmCd>C&d`e7@RR4kr%BE7{Gn5WK2a};0|r+e&KS)5 z2A>0q(TOq&h~6QCwLb^uwlX7o8TOcflLPy-X{29TVoVOtFFzL#KT;4-Bq#wil6x?N z?o@|jpWYw-9Wqdy-8RteqPPg~ux-aO0?pNG-3CEYS)GSaD3UjEbYMgz;JfHSq9x75;DfxcJ^od8u9d3qt{EAJz+ zGp{20r3B~khZFISWy+PLGw~lJ<)MhMdz$>wJ_Gw^JY~g}cimcrdb_pn!IE0dq(hO3 z?kdaN0}-r|nz0o`C-w-GOJM5RXF0TOR65%BpCRKql)nBH&Q@MhY7B%Z55V%gaiXVF zkHHkftihTWuV*X^LTgS0sSXjjngl_>0cU8+H!#B{_&eP|R_H1Go&=D*OSHbE3%`